TAREA: CIRCUITOS SECUENCIALES MODO NIVEL!!!!

VIII.-INTRODUCCION A CARTAS ASM (ALGORITHMIC STATE MACHINE)

1.- INTRODUCCION.

a) ALGORITMO

Un Algoritmo es una secuencia lógica de pasos (acciones y decisiones) que nos ayudan a resolver un problema. Un Algoritmo puede ser definido mediante:

- Un diagrama de flujo,
- Pseudocódigo (PDL Program Design Languaje),
- Tablas,
- Etc.

b) CARACTERISTICAS

Las características principales de un Algoritmo son:

- 1.- Tener un número finito de pasos.
- 2.- Cada paso debe de estar definido claramente.
- 3.- Un Algoritmo puede tener una o más salidas.
- 4.- Un Algoritmo puede no tener entradas.

2.- LA CARTA ASM.

a) DEFINICION.

La Carta ASM describe el funcionamiento de una máquina secuencial; sustituye hasta cierto punto el DIAGRAMA DE ESTADOS en el diseño tradicional de circuitos secuenciales.

b) COMPONENTES DE LA CARTA ASM

i) BLOQUE DE ESTADO

Un BLOQUE DE ESTADO puede representar toda una máquina secuencial, una parte de ella o solo un estado, un BLOQUE DE ESTADO está definido como:

ii) DIAMANTE DE DECISION

Transición cuando la Condición de Entrada a probar no se Verifica Transición cuando la Condición de Entrada a probar se Verifica

iii) SALIDAS CONDICIONADAS

La Salida de un Sistema Digital puede depender, ya sea del Estado y de la Entrada (Modelo Mealy), o solamente del Estado (Modelo Moore). Una Salida Condicionada depende del Estado y de la Condición de Entrada a probar, y se representa:

Viene de un Diamante de Decisión

iv) BLOQUE ASM

Un Bloque ASM consiste de un Bloque de Estado y todos los Diamantes de Decisión y Salidas Condicionadas asociados a él (NOTA: UN BLOQUE ASM REPRESENTA UN SOLO PERIODO DE TIEMPO),

Ejemplo:

A

B

HRST

O

NRT

1

3∆t

3

D

¿CUANTOS BLOQUES ASM TIENE ESTA CARTA ASM?

¿EN CUANTOS TIEMPOS SE EJECUTA?

OJO: EN ESTA CARTA ASM PODEMOS OBSERVAR QUE SE PRESENTAN LOS DOS MODELOS MEALY Y MOORE, DONDE LA SALIDA "LOUT" DEPENDE DEL ESTADO "B" Y DE LA ENTRADA "NRT" Y LA SALIDA "HRST" DEPENDE EXCLUSIVAMENTE DEL ESTADO "B", LA REPRESENTACION DE ESTA CARTA EN DIAGRAMA DE ESTADOS SERIA:

A

BIHRST

NRT=1

D

NRT=0

LOUT

C

iv) BLOQUE ASM

Un Bloque ASM consiste de un Bloque de Estado y todos los Diamantes de Decisión y Salidas Condicionadas asociados a él (NOTA: UN BLOQUE ASM REPRESENTA UN SOLO PERIODO DE TIEMPO), Ejemplo:

NOTA: HEMOS USADO MNEMONICOS PARA NOMBRAR LAS VARIABLES Y PREFIJOS PARA INDICAR SI SE VERIFICAN ALTAS O BAJAS, POR EJEMPLO:

HRST VARIABLE DE SALIDA QUE SE

VERIFICA ALTA Y HACE UN "RESET"

LOUT VARIABLE DE SALIDA QUE SE

VERIFICA BAJA Y ES UNA "SALIDA"

NRT VARIABLE DE ENTRADA QUE SE

VERIFICA BAJA Y HACE UN

"RETURN"

LOS PREFIJOS "H" Y "L" LOS USO PARA VARIABLES DE SALIDA Y SI SE VERIFICAN ALTA O BAJA RESPECTIVAMENTE Y "Y" Y "N" PARA LAS ENTRADAS Y SI VERIFICAN ALTA O BAJA RESPECTIVAMENTE

v) RESPUESTA EN EL TIEMPO

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD

Es necesario observar el comportamiento en el tiempo de las Cartas ASM, por ejemplo en el caso de la carta anterior consideraremos 3 casos:

v) RESPUESTA EN EL TIEMPO

Es necesario observar el comportamiento en el tiempo de las Cartas ASM, por ejemplo en el caso de la

carta anterior consideraremos 3 casos:

OJO: PODEMOS OBSERVAR QUE EN ESTE CASO LA ENTRADA "NRT" ES ASINCRONA Y NO ES SUFICIENTEMENTE ANCHA PARA DISPARAR UN CAMBIO DE ESTADO, POR LO QUE LA CARTA TRASCIENDE AL ESTADO "D" DEBIENDOSE DE HABER IDO AL ESTADO "C"

c) PASOS DE DISEÑO

- i) Reglas del buen diseñador.
- PROF: ING. ROBERTO FEDERICO MANDUJANO WILD
- 1.-Diseñar de arriba abajo (Diseño UP-DOWN)
- 2.-Identificar claramente que es lo que se quiere controlar y con qué. El Controlador es la Base fundamental del Diseño, sin embargo, lo que se quiere controlar es el Fin del Diseño (Arquitectura)

3.-Documentar el Diseño. Describir detalladamente cada uno de los pasos del diseño desde la problemática hasta la implementación.

ii) Algunos ejemplos ilustrativos de las cartas ASM.

EJEMPLO 1.- DADA LA SIGUIENTE CARTA ASM "DIBUJARLA" CORRECTAMENTE

EJEMPLO 2.- DADA LA SIGUIENTE CARTA ASM "RE-DIBUJARLA MAS BONITA"

SON DOS BLOQUES ASM SON DOS BLOQUES ASM ΥX ΥX ΥX 0 0 HLT HLT HLT

EJEMPLO 3.- DADO EL SIGUIENTE ALGORITMO REPRESENTARLO USANDO CARTAS ASM

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD EJEMPLO 3.- DADO EL SIGUIENTE ALGORITMO REPRESENTARLO USANDO CARTAS ASM

SEGUNDO PASO (DIAGRAMA DE BLOQUES)

NOTA: LOS BLOQUES ASM
DEPENDEN DE LA
ARQUITECTURA, ES DECIR, EN
FUNCION DE COMO EJECUTA
LAS INSTRUCCIONES LA
ARQUITECTURA: TODAS AL
MISMO TIEMPO UN TIEMPO
DESPUES DE PREGUNTAR POR
LA CONDICION DE ENTRADA, O
AL MISMO TIEMPO QUE
PREGUNTA, O EJECUTA CADA
INSTRUCCIÓN UNA POR UNA EN
FORMA CONSECUTIVA, ETC.

EJEMPLO 4.- DADO EL SIGUIENTE ALGORITMO REPRESENTARLO USANDO CARTAS ASM

IF X=N THEN SALIDA=0 INICIO=1

(NOTA: X y N son variables booleanas)

SEGUNDO PASO (DIAGRAMA DE BLOQUES)

PRIMER PASO (DIAGRAMA DE FLUJO)

TERCER PASO (CARTA ASM)

d) Ejemplos de Diseño.

EJEMPLO 1: DISEÑAR UN CONTROLADOR DE TRAFICO DE UN CRUCE DE 4 DIRECCIONES, EN DONDE EL SIGA DURA 20 SEGUNDOS Y LA PREVENTIVA 5 SEGUNDOS. EL CONTROL ES EN LA DIRECCION NORTE-SUR Y EN LA DIRECCION ESTE-OESTE

PRIMER PASO (DIAGRAMA DE FLUJO) SEGUNDO PASO (DIAGRAMA DE BLOQUES)

TERCER PASO (CARTA ASM)

CUARTO PASO (LEER LA CARTA ASM)

ESTADO	(Y3,Y2,Y1,Y0)t	(Y3,Y2,Y1,Y0)t+1	HEOV	HEOA	HEOR	HNSV	HNSA	HNSR
А	0 0 0 0	0 0 0 1	0	0	1	1	0	0
В	0001	0010	0	0	1	1	0	0
С	0010	0 0 1 1	0	0	1	1	0	0
D	0 0 1 1	0 1 0 0	0	0	1	1	0	0
Е	0100	0 1 0 1	0	0	1	0	1	0
F	0 1 0 1	0 1 1 0	1	0	0	0	0	1
G	0 1 1 0	0 1 1 1	1	0	0	0	0	1
Н	0 1 1 1	1000	1	0	0	0	0	1
1	1000	1001	1	0	0	0	0	1
J	1 0 0 1	0000	0	1	0	0	0	1

OBTENGO: LA TABLA DE TRANSICION

QUINTO PASO (IMPLEMENTACION), PERO:

LOS SISTEMAS DIGITALES PUEDENSER IMPLEMENTADOS CON CIRCUITOS DE CUALQUIER NIVEL DE INTEGRACION: SSI (FF's Y COMPUERTAS), MSI (FF'S, DEC's, MUX's, ETC.), LSI (FF's, ROM Y PLA), Y DESDE LUGO CON CIRCUITOS CON MAYOR NIVEL DE INTEGRACION.

EN EL DISEÑO CON CARTAS ASM ES SENCILLO IMPLEMENTAR CON ROM'S PARA LA **PARTF** IMPLEMENTAR COMBINACIONAL Y FF's D COMO ELEMTOS DE MEMORIA DEL CISRUITO SECUENCIAL, DE TAL FORMA QUE PARA IMPLEMENTAR EL **EJEMPLO** DEL CONTROLADOR. **BASTA** CON **CONSIDERAR A LA TABLA DE TRANSICION** COMO LA TALA DE PROGRMACION DE LA **ROM, ESTOS ES:**

DIRECCION	DATOS							
A3 A2 A1 A0	B9 B8 B7 B6	B 5	В4	Вз	B ₂	B ₁	Bo	
(Y3,Y2,Y1,Y0)t	(Y3,Y2,Y1,Y0)t+1	HEOV	HEOA	HEOR	ANNSV	HNSA	HNSR	
0 0 0 0	0 0 0 1	0	0	1	1	0	0	
0 0 0 1	0 0 1 0	0	0	1	1	0	0	
0 0 1 0	0 0 1 1	0	0	1	1	0	0	
0 0 1 1	0 1 0 0	0	0	1	1	0	0	
0 1 0 0	0 1 0 1	0	0	1	0	1	0	
0 1 0 1	0 1 1 0	1	0	0	0	0	1	
0 1 1 0	0 1 1 1	1	0	0	0	0	1	
0 1 1 1	1 0 0 0	1	0	0	0	0	1	
1000	1001	1	0	0	0	0	1	
1 0 0 1	0000	0	1	0	0	0	1	

QUINTO PASO (IMPLEMENTACION)

PROF: ING. ROBERTO FEDERICO MANDUJANO WILD CONTENIDO DE LA ROM

DIRECCION	DATOS							
A3 A2 A1 A0	B9 B8 B7 B6	B 5	В4	Вз	B ₂	B ₁	Bo	
(Y3,Y2,Y1,Y0)t	(Y3,Y2,Y1,Y0)t+1	HEOV	HEOA	HEOR	NSNH	HNSA	HNSR	
0 0 0 0	0 0 0 1	0	0	1	1	0	0	
0 0 0 1	0 0 1 0	0	0	1	1	0	0	
0 0 1 0	0 0 1 1	0	0	1	1	0	0	
0 0 1 1	0 1 0 0	0	0	1	1	0	0	
0 1 0 0	0 1 0 1	0	0	1	0	1	0	
0 1 0 1	0 1 1 0	1	0	0	0	0	1	
0 1 1 0	0 1 1 1	1	0	0	0	0	1	
0 1 1 1	1000	1	0	0	0	0	1	
1000	1 0 0 1	1	0	0	0	0	1	
1001	0000	0	1	0	0	0	1	

PERO..... ALTO!!!! UNA ROM DE 16 X 10 TIENE 16
PALABRAS Y LA TABLA SOLO TIENE 10 RENGLONES

CONTENIDO DE LA ROM

DIRECCION	DATOS						
A3 A2 A1 A0	B9 B8 B7 B6	B 5	B4	Вз	B ₂	B ₁	B ₀
0000	0001	0	0	1	1	0	0
0001	0 0 1 0	0	0	1	1	0	0
0010	0 0 1 1	0	0	1	1	0	0
0 0 1 1	0 1 0 0	0	0	1	1	0	0
0 1 0 0	0 1 0 1	0	0	1	0	1	0
0 1 0 1	0 1 1 0	1	0	0	0	0	1
0 1 1 0	0 1 1 1	1	0	0	0	0	1
0 1 1 1	1000	1	0	0	0	0	1
1000	1001	1	0	0	0	0	1
1001	0 0 0 0	0	1	0	0	0	1
1010							
1 0 1 1							
1 1 0 0							
1 1 0 1							
1110							
1111							

¿QUE HAGO CON ESTAS PALBRAS?

CONTENIDO DE LA ROM

DIRECCION	DATOS						
A3 A2 A1 A0	B9 B8 B7 B6	B 5	B4	Вз	B2	B1	Во
0 0 0 0	0001	0	0	1	1	0	0
0001	0 0 1 0	0	0	1	1	0	0
0 0 1 0	0 0 1 1	0	0	1	1	0	0
0 0 1 1	0 1 0 0	0	0	1	1	0	0
0 1 0 0	0 1 0 1	0	0	1	0	1	0
0 1 0 1	0 1 1 0	1	0	0	0	0	1
0 1 1 0	0 1 1 1	1	0	0	0	0	1
0 1 1 1	1 0 0 0	1	0	0	0	0	1
1000	1001	1	0	0	0	0	1
1001	0 0 0 0	0	1	0	0	0	1
1010	0 0 0 0	0	0	1	0	0	1
1 0 1 1	0 0 0 0	0	0	1	0	0	1
1 1 0 0	0 0 0 0	0	0	1	0	0	1
1 1 0 1	0 0 0 0	0	0	1	0	0	1
1 1 1 0	0 0 0 0	0	0	1	0	0	1
1 1 1 1	0000	0	0	1	0	0	1

QUINTO PASO (IMPLEMENTACION)

EN FORMA GENERAL LA IMPLEMENTACION CON ROM SERIA DE LA SIGUIENTE FORMA:

(núm. de Ent + núm. de variables de estado)
DONDE M=2
N=núm. De Sal + núm. de variables de estado

NOTA: EL EJEMPLO DEL CONTROLADOR DE TRAFICO NO

TIENE ENTRADAS

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.