# **CNN**—Based Change Detection

汇报人:宋雨菲

### 目录

- 1. Background
- 2. Changer: Feature Interaction is What You Need for Change Detection
- 3. Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery
- 4. Seeing Beyond the Patch: Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcemen Learning

# Background

变化检测任务流程: 两个不同时间的图像找变化区域,并标识变化成什么?



# Changer: Feature Interaction is What You Need for Change Detection

#### 在进行变化监测时我们该注意哪些方面?

功能交互是更改检测所需注意的 交换是有用的

研究目标: 旨在强调特征提取过程中特征交互对变化检测的影响



- 1. 本文提出了MetaChanger来探索特征交互在变化检测中的影响。**为了验证特征交互的有效性,将MetaChanger的交互层规定为极其简单的AD和特征"交换"**。
- 2. 研究发现,派生的ChangerAD和ChangerEx在多个变化检测数据集上均能取得竞争性的性能。广泛的消融研究表明ChangerEx的稳健性和可扩展性。

# MetaChanger

(a) Components of MetaChanger



 $Linear_{(C_{in},C_{out})}$ 

#### 解码器Decoder

$$egin{aligned} F_{i,j} &= \operatorname{Upsample}(\operatorname{Linear}_{i(C_i,C)}(F_{i,j})) \quad orall i,j \ \\ \hat{F}_j &= Linear_{(4C,C)}(\operatorname{Concat}(F_{i,j})) \quad orall i \ \\ \hat{F} &= Fuse(\hat{F}_0,\hat{F}_1) \ \\ Y &= Project(F) \end{aligned}$$



# ChangerVanilla-直接映射

为了更好地进行比较,构建了一个基准模型<mark>ChangerVanilla。ChangerVanilla</mark>没有交互层,并使用简单的连接(concat)操作作为融合层。



(b) Components of ChangerVanilla

$$InterAct_{vanilla}(x_i) = Identity(x_i)$$

$$Fuse_{vanilla}(x_0,x_1) = Concat([x_0,x_1])$$

无参数的交互操作,也能有效提高变化检测模型的性能

## ChangerAD-特征聚合

AD特征交互层: aggregation-distribution。先进行元素加,再全局平均池化,两层MLP(第一层压缩,第二层扩张通道)。将结果进行sigmoid操作与原特征操作,相当于赋予注意力权重。

#### 非线性激活函数



(c) Aggregation-distribution

$$InterAct_{AD}(x_i) = x_i \cdot \sigma(\hat{x}_i) \ \hat{x} = MLP_{(C_i,2C_i)}(GAP(x_0 + x_1))$$

# ChangerEx-特征交换



(d) Feature "exchange"

掩膜生成方法 
$$x_{0/1}(n,c,h,w) = \begin{cases} x_{0/1}(n,c,h,w), M(n,c,h,w) = 0 \\ x_{1/0}(n,c,h,w), M(n,c,h,w) = 1 \end{cases}$$



### 实验热力图



**特征交换**更能建立起双 时态图像之间的差异性

### FlowNet 双流对齐融合



(e) Flow dual-alignment fusion

$$egin{aligned} x &= Concat([x_0(p+\Delta p_0)-x_1,x_1(p+\Delta p_1)-x_0]) \ \Delta p &= FlowNet(Concat([x_0,x_1]) \end{aligned}$$

Concat层: 经常用于将特征联合,多个卷积特征提取框架提取的特征融合或者是将输出层的信息进行融合。

目的:对齐双时态图像中的位置偏差

# Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery

#### 传统双时相变化检测图像

#### 遥感图像中单时间监督目标变化检测

研究目标: 旨在**通过单时间监督学习的方法,利用已标记的遥感图像数据,实现在遥感图像中的目标变化检测**。使用未配对的图像作为学习样本进行学习,能节约经费,学习效果会更好。

<mark>论文创新点:</mark>采用单时间监督学习方法,避免了需要成对 图像的问题,简化了数据准备过程。

- 1. 针对成对双时相变化检测训练样本标注耗时、收集困难的问题,提出了一种新颖的弱监督学习算法STAR, 其利用非成对单时相遥感影像构造<mark>伪双时相监督信号</mark>, 以学习变化表征。
- 2. 同时提出了一种变化检测新架构**ChangeStar**,其通过核心模块ChangeMixin,可将任意语义分割模型转化为变化检测器,从而复用现有的优秀架构,揭示了语义分割与变化检测之间的内在联系。



(a) Conventional Bitemporal Supervised Learning



伪变化检测图像

### 如何生成配对图像?



#### STAR方法:

STAR方法的关键思想是通过构造伪双时间图像对,利用单时间态数据进行变化 监控信号的学习。

原始变化检测的思考

$$\min_{\theta} L(F_{\theta}(X_{t1}, X_{t2}), Y_{t1 \to t2})$$
 传统双时相变化检测图像对

可以发现  $Y^{t1\to t2}$  是唯一的监控信号来源。为了获得  $Y^{t1\to t2}$  ,通常需要配对的语义信息来定义正样本和负样本。然而,成对的语义信息只与双时像素的语义有关,与它们的空间位置无关。相同的空间位置仅用于保证训练与推理之间的一致性。如果放宽这个条件,那么在等式中的原始问题1可以简化为以下形式,同时扩大了X的选择范围,即语义分割信息的变化与目标空间位置信息变化无关

$$\min_{ heta} L(F_{ heta}(X_i, X_j), \operatorname{compare}(Y_i, Y_j))$$

为了提供单时间数据的变化监控信号,首先构造并利用伪双时间图像对,双时间数据在原始学习问题可以用单时态数据代替,因此学习问题可以重新表述为:

$$\min_{\theta} L(F_{\theta}(X_{t1}, \pi X_{t1}), Y_{t1} \oplus \pi Y_{t1})$$
 伪变化检测图像对

# 异或 XOR

#### 异或运算的具体逻辑为:

- 1、在伪双时态图像上有两个对象实例重叠,则将重叠区域被指定为**负样本**;
- 2、对象实例不重叠,则对象实例被设定为正样本;
- 3、其余的像素位置被分配为**负样本**。

这种方法的优势在于不需要成对的标记图像,只需要利用单时间态数据,就能够获得大量训练集,来一以此训练高精度的变化检测器。



# 网络架构

网络架构:由语义分割模块和ChangeMixin模块组成,其中语义分割模块负责目标分割,ChangeMixin模块负责目标变化检测。

ChangeMixin模块(变化检测模块):包含时间交换模块和多个卷积层,用于实现目标变化检测





# 训练与推导过程



ChangeMixin

Conv 3x3

ConvNet

其中y 是样本的真实标签,取值为0或1。p 是模型的预测概率,表示样本属于类别1的概率。

**时间交换模块 (TSM)**: 负责在两个时间点的特征图之间进行交换,以提供网络架构的归纳偏差。

利用归纳偏差,即时间对称性,来稳定学习过程,缓解过拟合问题。

ConvNet

Conv (3x3)

Upsample

bitemporal inputs

Segmentation Model

Temporal Swap

Conv Blocks

Upsample

TSM(T1,T2)=cat(T1,T2),cat(T2,T1) 解决

$$F(X_1, X_2) \neq F(X_2, X_1)$$



 $\rightarrow F_{\alpha}(X^{i_1}, X^{i_2})$ 

(required change prediction)

其中y 是样本的真实标签, 取值为0或1。p 是模型的预测概率, 表示样本属于类别1的概率。

# 实验结果

#### 数据好坏直接影响效果

#### 样本多,分辨率高

| Method            | Segmentation Model | Train on xView2 pre-disaster |                           |                          |                          | Train on SpaceNet 2       |                           |               |                    |             |            |
|-------------------|--------------------|------------------------------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------|--------------------|-------------|------------|
|                   |                    | WHU                          |                           | LEVIR-CD <sup>all</sup>  |                          | WHU                       |                           | LEVIR-CDall   |                    | ΔParams (M) | ΔMAdds (B) |
|                   |                    | IoU (%)                      | F <sub>1</sub> (%)        | IoU (%)                  | F <sub>1</sub> (%)       | IoU (%)                   | F <sub>1</sub> (%)        | IoU (%)       | F <sub>1</sub> (%) |             |            |
| PCC               | PSPNet [29]        | 37.46                        | 54.51                     | 55.87                    | 71.69                    | 21.39                     | 35.25                     | 10.19         | 18.50              | 0           | 0          |
| ChangeStar (ours) | + ChangeMixin      | 56.44(+18.98)                | 72.15 <sub>(+17.64)</sub> | 61.63 <sub>(+5.76)</sub> | 76.26(+4.57)             | 25.56(+4.17)              | 40.72(+5.47)              | 15.25(+5.06)  | 26.47(+7.97)       | 0.16        | 0.63       |
| PCC               | DeepLab v3 [5]     | 32.46                        | 49.01                     | 54.77                    | 70.78                    | 33.08                     | 49.72                     | 13.78         | 24.23              | 0           | 0          |
| ChangeStar (ours) | + ChangeMixin      | 56.85(+24.39)                | 72.49(+23.48)             | 60.94(+6.17)             | 75.73 <sub>(+4.95)</sub> | 35.57 <sub>(+2.49)</sub>  | 52.48(+2.76)              | 15.92(+2.14)  | 27.46(+3.23)       | 0.08        | 0.33       |
| PCC               | DeepLab v3+ [6]    | 35.75                        | 52.68                     | 55.51                    | 71.38                    | 23.90                     | 38.58                     | 9.80          | 17.85              | 0           | 0          |
| ChangeStar (ours) | + ChangeMixin      | 52.01(+16.26)                | 68.43(+15.75)             | 57.96(+2.45)             | 73.38(+2.00)             | 38.42 <sub>(+15.42)</sub> | 55.51 <sub>(+16.93)</sub> | 22.22(+12.42) | 36.36(+18.51)      | 0.08        | 0.33       |
| PCC               | Semantic FPN [16]  | 38.66                        | 55.76                     | 56.19                    | 71.95                    | 27.60                     | 43.26                     | 7.09          | 13.25              | 0           | 0          |
| ChangeStar (ours) | + ChangeMixin      | 55.37(+16.71)                | 71.27(+15.51)             | 65.21(+9.02)             | 78.94(+6.99)             | 37.63(+10.03)             | 54.68(+11.42)             | 25.86(+18.77) | 41.10(+27.85)      | 0.08        | 0.33       |
| PCC               | FarSeg [30]        | 31.66                        | 48.09                     | 55.09                    | 71.04                    | 27.69                     | 43.37                     | 7.97          | 14.77              | 0           | 0          |
| ChangeStar (ours) | + ChangeMixin      | 58.22(+26.56)                | 73.59(+25.50)             | 65.71 (+10.62)           | 79.31(+8.27)             | 39.02(+11.33)             | 56.14 <sub>(+12.77)</sub> | 30.42(+22.45) | 46.65(+31.88)      | 0.08        | 0.33       |

结果表明STAR方法在单时间监督下性能优于基线方法,并在双时间监督下取得了更好的性能。

### 传统分割网络的滑动窗口



对于研究一些高分辨率遥感图像的变化检测,使用传统分割网络的滑动窗口,由于窗口的大小限制,会出现明显的<mark>网格效应</mark>现象。

### Seeing Beyond the Patch: Scale-Adaptive Semantic Segmentation of High-resolution Remote Sensing Imagery based on Reinforcement Learning

#### 基于强化学习的高分辨率遥感影像尺度自适应语义分割

本文提出了一种基于深度强化学习的自适应尺度语义分割网络,称为GeoAgent,<u>突破了传统分割网络的滑动窗口大小限制</u>。在三个数据集上的实验证明,GeoAgent在高分辨率卫星图像的语义分割任务上取得了最先进的结果。

研究目标:在遥感图像分析中,基于补丁的方法在捕捉滑动窗口之外的信息方面存在限制。为了解决这一问题,本文提出了一种名为 GeoAgent的动态尺度感知框架,该框架根据不同的地理对象自适应地捕捉图像补丁之外的适当尺度上下文信息。



网格效应严重



### 模型总览



### 实验结果

Table 1: Segmentation accuracies of different models on three datasets.

| Method         | Backbone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WUSU          |                    |                    | ID                 | FBP           |                    |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------|--------------------|--------------------|---------------|--------------------|--|
| Method         | Васкоопе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IoU(%)        | F <sub>1</sub> (%) | IoU(%)             | F <sub>1</sub> (%) | IoU(%)        | F <sub>1</sub> (%) |  |
|                | The state of the s | Lo            | ocal scale patch   | based methods      |                    |               |                    |  |
| -              | UNet [33]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.10         | 59.52              | 58.76              | 68.93              | 53.02         | 59.67              |  |
| -              | PSPNet [50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.37         | 69.29              | 59.04              | 69.34              | 59.69         | 64.27              |  |
|                | FPN [19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 64.85         | 72.68              | 55.31              | 65.79              | 61.88         | 65.50              |  |
|                | Deeplaby3+ [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.39         | 69.97              | 64.89              | 68.65              | 57.08         | 59.46              |  |
|                | UNet++ [54]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60.26         | 66.88              | 61.71              | 71.68              | 55.31         | 58.43              |  |
| 1182           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Globa         | al-local scale pat | ch based method    | ls                 |               |                    |  |
| GLNet 6        | FPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.71         | 59.09              | 58.69              | 68.79              | 21.86         | 24.34              |  |
| MagNet [18]    | FPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.47         | 63.46              | 66.98              | 55.94              | 45.05         | 49.09              |  |
| RAZN [12]      | Deeplaby3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58.62         | 66.27              | 63.52              | 68.49              | 57.63         | 57.73              |  |
| WiCoNet [III]  | ResNet50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61.83         | 75.68              | 65.80              | 76.72              | 58.83         | 70.28              |  |
| CascadePSP [7] | PSPNet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67.48         | 77.42              | 72.45              | 77.24              | 67.35         | 70.03              |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scale-var     | iable segmentati   | on network Geo     | Agent              |               |                    |  |
| GeoAgent       | UNet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70.33(+16.23) | 77.11(+17.50)      | 75.88(+17.12)      | 75.23(+0.30)       | 57.77(+4.75)  | 61.37(+1.70        |  |
| GeoAgent       | UNet++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.93(+14.07) | 79.17(+12.29)      | 77,30(+15.59)      | 78.62(+6.94)       | 61.84(+0.53)  | 60.01(+1.58        |  |
| GeoAgent       | Deeplabv3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.19(+12.80) | 80.56 (+10.50)     | 75.51(+10.62)      | 76.07(+7.42)       | 62.25(+5.17)  | 63.21              |  |
| GeoAgent       | PSPNet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.19(+14.82) | 79.62(+10.33)      | 75.57(+10.53)      | 79.34(+10.00)      | 69.67(+9.98)  | 74.36 +10.0        |  |
| GeoAgent       | FPN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.00(+11.15) | 82.46(+9.78)       | 78.16(+22.85)      | 77.56(+11.77)      | 73.95(+12.07) | 74.11(+8.6)        |  |
| River Lake     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Irrigates     |                    |                    | Notice 1           | Lake Pond     | Fish pond          |  |
| Image          | DeeplabV3+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | mage               | DeeplabV3+         |                    |               | DeeplabV3-         |  |
| Ground Truth   | DeeplabV3+ (Geo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Agent) Grou   |                    | eeplabV3+ (GeoAger | nt) Ground         |               | labV3+ (GedAge     |  |
| (a) W          | USU dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | (b) GID da         | itaset             |                    | (c) FBP data  | set                |  |

(a) WUSU dataset (b) GID dataset (c) FBP dataset

Figure 3: Segmentation results of Deeplabv3+ and modified GeoAgent models on three dataset.

### 超大分辨率遥感图像



#### 整个实验结果表明:

GeoAgent使在高分辨率遥感 图像上做的预测更加精确,通 过"Agent",使整个网络获 得了变相的<mark>超大感受野</mark>。