Inf-KDDM: **Knowledge Discovery and Data Mining**

Winter Term 2020/21

Lecture 5: Classification

Lectures: Prof. Dr. Matthias Renz

Exercises: Steffen Strohm

Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers

The classification problem

Given:

- a dataset of instances $D=\{t_1,t_2,...,t_n\}$ and
- a set of classes $C = \{c_1, ..., c_k\}$

classification is the task of learning a target function/ mapping $f:D \rightarrow C$ that assigns each t_i to a c_i .

□ The mapping or target function is known informally as a *classification model*.

ID	Age	Car type	Risk
1	23	Family	high
2	17	Sport	high
3	43	Sport	high
4	68	Family	low
5	32	Truck	low

Predictor attributes: Age, Car type

Class attribute: risk={high, low}

The classification problem

Classification vs Prediction

- Classification
 - predicts categorical (discrete, unordered) class labels
 - Constructs a model (classifier) based on a training set
 - Uses this model to predict the class label for new unknown-class instances
- Prediction
 - is similar, but may be viewed as having infinite number of classes (cf. Regression)

A simple classifier

ID	Age	Car type	Risk
1	23	Family	high
2	17	Sport	high
3	43	Sport	high
4	68	Family	low
5	32	Truck	low

A simple classifier:

■ if Age > 50 then Risk= low;

• if Age \leq 50 and Car type =Truck then Risk=low;

• if Age \leq 50 and Car type \neq Truck then Risk = high.

Applications

- Credit approval
 - Classify bank loan applications as e.g. safe or risky.
- Fraud detection
 - e.g., in credit cards
- Churn prediction
 - E.g., in telecommunication companies
- Target marketing
 - Is the customer a potential buyer for a new computer?
- Medical diagnosis
- Character recognition
- **...**

Classification techniques

- Typical classification approach:
 - Create specific model by evaluating training data (or using domain experts' knowledge).
 - Assess the quality of the model
 - Apply model developed to new data.
- Classes must be predefined!!!
- Many techniques
 - Decision trees
 - Naïve Bayes
 - kNN
 - Neural Networks
 - Support Vector Machines
 - **...**.

Classification technique (detailed)

- Model construction: describing a set of predetermined classes
 - The set of tuples used for model construction is the training set
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label
 - The model is represented as classification rules, decision trees, or mathematical formula
- Model evaluation: estimate accuracy of the model
 - The set of tuples used for model evaluation is the test set
 - The class label of each tuple/sample in the test set is known in advance.
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
- Model usage: for classifying future or unknown objects
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known.

predefined class values

Class attribute: tenured={yes, no}

Training set			
NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no
			/

known class label attribute

Test set				
NAME	RANK	YEARS	TENURED	PREDICTED
Maria	Assistant Prof	3	no	no
John	Associate Prof	7	yes	no
Franz	Professor	3	yes	yes
known class label attribute predicted class value by the model				

NAME	RANK	YEARS	TENURED	PREDICTED
Jeff	Professor	4	?	yes
Patrick	Associate Prof	8	?	yes
Maria	Associate Prof	2	?	no
unknown class label attribute				

predicted class value by the model

General approach for building a classification model

Model construction

Model evaluation

Model usage for prediction

A supervised learning task

- Classification is a supervised learning task
 - Supervision: The training data (observations, measurements, etc.) are accompanied by *labels* indicating the class of the observations
 - New data is classified based on the training set

- Clustering is an unsupervised learning task
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc., the goal is to group the data into groups of similar data (clusters)

Supervised learning example

Classification model

New object (unknown class)

Question:

What is the class of a new object??? Is it a screw, a nail or a paper clip?

Unsupervised learning example

Question:

Is there any structure in data (based on their characteristics, i.e., width, height)?

Classification techniques

- Statistical methods
 - Bayesian classifiers etc
- Partitioning methods
 - Decision trees etc
- Similarity based methods
 - K-Nearest Neighbors etc

Outline

- Classification basics
- Decision tree classifiers
- Overfitting
- Lazy vs Eager Learners
- k-Nearest Neighbors (or learning from your neighbors)
- Evaluation of classifiers