Corso di Quantum Computing -Giorno 3

Corso per Epigenesys s.r.l.

Docenti: Sara Galatro e Lorenzo Gasparini

Supervisore: Prof. Marco Pedicini

Funzioni booleane periodiche

■ Sia f una funzione booleana in $\{0,1\}^n$. Diremo che f ha **periodo** s se per ogni $x,y \in \{0,1\}^n$ abbiamo che:

$$f(x) = f(y) \Leftrightarrow y = x \oplus s \lor x = y.$$

- Se una funzione booleana f ha periodo s non nullo $s \neq 0^n$, allora f è sicuramente non iniettiva. In particolare f è una funzione 2 a 1. Ci sono esattamente due valori che hanno la stessa immagine.
- Se una funzione booleana f ha periodo nullo $s=0^n$, allora la funzione è biunivoca e dunque invertibile.
- Passiamo ora al problema di Simon, fulcro del prossimo algoritmo che vedremo.

- Il **problema di Simon** è così definito. Sia $f:\{0,1\}^n \to \{0,1\}^n$ una funzione booleana periodica di periodo s. Trovare s.
- L'algoritmo quantistico di Simon è un algoritmo di tipo ibrido. Include una parte di calcolo classico ed una subroutine quantistica.
- L'idea alla base dell'algoritmo è quello di iterare più volte la routine quantistica per ottenere ogni volta un'informazione sul periodo s. Tale informazioni sarà codificata tramite un'equazione lineare in s.
- Una volta ottenute abbastanza informazioni sul periodo, si passa al post-processing classico per l'ottenimento di s. Lo si fa avendo a disposizione abbastanza equazioni lineari da poter risolvere il sistema in maniera univoca.
- Vedremo prima tutti gli step dell'algoritmo e ci soffermeremo in seguito sulla subroutine quantistica.

- 1) Inizializziamo un insieme $E = \emptyset$.
- 2) Fintanto che E non ha soluzione unica, eseguiamo la subroutine quantistica tramite il seguente circuito quantistico

L'equazione $y \cdot s = 0$ viene aggiunta al sistema lineare E

3) Risolviamo il sistema lineare E in s tramite algoritmo classico, ottenendo così il periodo come soluzione del problema.

- Analizziamo la subroutine quantistica dell'algoritmo, che opera su un registro quantistico di 2n qubit.
- 1) Inizializziamo il circuito nello stato $|0^n\rangle \otimes |0^n\rangle$.
- 2) Applichiamo la porta di Hadamard sui primi n qubit:

$$(H^{\otimes n} \otimes \mathbb{I}^{\otimes n}) (|0^n\rangle \otimes |0^n\rangle) = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |0^n\rangle$$

3) Calcoliamo ora la funzione f in sovrapposizione tramite U_f :

$$U_f\left(\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle|0^n\rangle\right) = \frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}|x\rangle|f(x)\rangle$$

4) Riapplichiamo Hadamard sul primo registro ad n qubit:

$$\left(H^{\otimes n} \otimes \mathbb{I}^{\otimes n}\right) s_f = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \left(H^{\otimes n} |x\rangle\right) \otimes |f(x)\rangle$$

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} \left(\frac{1}{\sqrt{2^n}} \sum_{y \in \{0,1\}^n} (-1)^{x \bullet y} |y\rangle \right) \otimes |f(x)\rangle = \frac{1}{2^n} \sum_{x,y} (-1)^{x \bullet y} |y\rangle |f(x)\rangle$$

5) Infine misuriamo il primo registro. Otteniamo una stringa $y \in \{0,1\}^n$ tale che $y \cdot s = 0$ da aggiungere all'insieme di equazioni E.

- Il punto fondamentale per capire il funzionamento dell'algoritmo è dimostrare il perché, misurando il primo registro, otteniamo una stringa y tale che $y \cdot s = 0$.
- Calcoliamo la probabilità di ottenere una stringa y:

$$p(y) = \left\| \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{x \bullet y} |f(x)\rangle \right\|^2$$

• Evidenziando rispetto all'immagine di f:

$$p(y) = \left\| \frac{1}{2^n} \sum_{z \in Im(f)} (-1)^{f^{-1}(z) \bullet y} |z\rangle \right\|^2$$

• Supponendo che f non sia biunivoca, dobbiamo aggiungere una somma sulle possibili preimmagini di z.

Riscriviamo la probabilità come:

$$p(y) = \left\| \frac{1}{2^n} \sum_{z \in Im(f)} \left(\sum_{x \in f^{-1}(z)} (-1)^{x \bullet y} \right) |z\rangle \right\|^2 = \frac{1}{2^{2n}} \sum_{z \in Im(f)} \left| \sum_{x \in f^{-1}(z)} (-1)^{x \bullet y} \right|^2$$

■ Ricordiamo ora che f è una funzione due a uno e dunque la preimmagine contiene due valori x_1 e x_2 .

$$\left| \sum_{x \in f^{-1}(z)} (-1)^{x \bullet y} \right|^2 = \left| (-1)^{y \bullet x_1} + (-1)^{y \bullet x_2} \right|^2 = \left| (-1)^{y \bullet x_1} + (-1)^{y \bullet (x_1 \oplus s)} \right|^2 = \begin{cases} 4 & \text{se } y \bullet s = 0 \\ 0 & \text{se } y \bullet s = 1 \end{cases}$$

Sostituendo nell'equazione di prima abbiamo:

$$p(y) = \begin{cases} \frac{1}{2^{2n}} \sum_{z \in Im(f)} 4 = \frac{1}{2^{n-1}} & \text{se } y \bullet s = 0\\ \frac{1}{2^{2n}} \sum_{z \in Im(f)} 0 = 0 & \text{se } y \bullet s = 1 \end{cases}$$

- Questo dimostra il fatto che misurando il primo registro otteniamo sicuramente, con probabilità uniforme, una stringa y tale che $y \cdot s = 0$.
- La subroutine quantistica ci permette dunque di ottenere un'equazione lineare in s. Naturalmente avremo bisogno di iterare il circuito fino a che non otteniamo n-1 equazioni indipendenti così da poter univocamente calcolare il periodo.
- La domanda che ci poniamo è: quante volte è necessario iterare il processo in media per arrivare ad una soluzione?

- Analizzando l'algoritmo nel modello query, l'algoritmo di Simon trova s in media con un numero polinomiale di chiamate all'oracolo U_f (iterazioni del circuito).
- La dimostrazione è puramente probabilistica e si basa sul dimostrare la probabilità di ottenere vettori linearmente indipendenti, pescando in maniera uniforme nell'insieme $\{0,1\}^n$.
- Si ragiona ricorsivamente, sapendo che i vettori indipendenti da $x_1, ..., x_i$ sono in tutto $2^n 2^i$ e quindi la probabilità di ottenerne uno indipendente è pari a $\frac{2^n 2^i}{2^n}$.
- lacktriangle Si riesce a stimare che la probabilità che l'algoritmo fallisca dopo 2k iterazioni è al massimo

$$\frac{1}{2^{2k}} = \frac{1}{4^k} < e^{-k}.$$

Dunque sono necessarie in media un numero polinomiale query gate.

Complessità quantistica

- Affronteremo ora in maniera più approfondita un modello computazionale che mette in gioco il costo dell'implementazione dei gate quantistici.
- Parleremo di universalità legato al concetto di operazione elementare, così da poter analizzare il numero di gate elementari presenti in un circuito.
- Infine presenteremo alcune classi di complessità computazionali quantistiche e le metteremo a paragone con quelle classiche.
- Abbandoniamo il modello query e vedremo precisamente come si costruisce un gate U_f tramite la **simulazione di circuiti booleani**.

Universalità di gate

- Ricordiamo che qualsiasi gate può essere costruito da altri tramite composizione sequenziale e in parallelo.
- Si definisce un insieme di gate elementari che permettono di costruire, tramite le regole di sopra, ogni altro gate quantistico. Un insieme di gate che soddisfa tale proprietà, viene detto universale.
- Gli insiemi universali sono alla base del costo computazionale di un circuito quantistico.
- Quando si esegue un conto dei gate utilizzati, si deve fare riferimento ad uno specifico insieme di gate universale. Ogni gate nell'insieme considerato, nell'analisi computazionale, viene assunto di costo unitario.
- Presenteremo adesso alcuni dei set universali più standard usati in ambito computazionale.

Universalità di gate

- L'insieme formato da tutti i gate unari con il controlled-NOT formano un insieme universale. Dal punto di vista pratico risulta poco utile. Sia perché ce ne sono infiniti e sia per la difficoltà nell'implementazione perfetta di ognuno di essi.
- L'insieme contenente solo i gate **controlled-NOT**, **Hadamard**, **Phase-shift con** $\alpha = \frac{\pi}{4}$, è un insieme universale per approssimazione.
- L'insieme contenente solamente **Hadamard e Toffoli** è un insieme universale per approssimazione ristretto ai soli operatori reali.

 Precisato l'insieme universale di riferimento si può passare a parlare di costo computazionale.

Costo computazionale

- Faremo riferimento alla dimensione del circuito come metro di misurazione del costo computazionale di un circuito.
- In generale si possono considerare altre metriche, come la profondità di un circuito. Nel nostro caso ci soffermeremo solo sul conto totale di gate elementari presenti.
- Sposteremo l'attenzione al costo computazionale in riferimento a come aumenta all'aumentare della dimensione dell'input.
- Parleremo di una famiglia di circuiti Q_n ognuno dei quali agisce su un input di dimensione n. Ci riferiremo al costo computazionale con la funzione t(n).
- Analizzeremo dunque la funzione costo in riferimento al suo comportamento asintotico.

Costo computazionale

- Trattando la complessità nel contesto asintotico risulta di fondamentale importanza la notazione O. Tale notazione è stata adottata per mettere in evidenza, nella funzione costo, il termine dominante.
- Siano g(n) e h(n) due funzioni. Diremo che g = O(h) se esiste una costante c ed un intero n_0 tale che, per ogni $n \ge n_0$, si ha

$$g(n) \le c \cdot h(n)$$
.

- Naturalmente si tende a scegliere h nella forma più semplice. Per esempio se $g(n) = 2n^2 + 17$, allora $g = O(n^2)$. In generale, per i polinomi, faremo riferimento al termine di grado più alto.
- Se $t(n) = O(n^d)$ per qualche d, diremo che Q_n ha un **costo computazionale polinomiale** e il circuito viene considerato asintoticamente efficiente. Se invece $t(n) = O(2^n)$, diremo che Q_n ha **costo computazionale esponenziale** e viene considerato non efficiente.

Classi di complessità

- Un problema di decisione computazionale corrisponde a quello che viene chiamato **linguaggio**, ovvero un sottoinsieme delle stringhe binarie $L \subset \{0,1\}^*$.
- Un problema è associato ad una sequenza di funzioni booleane $f_n: \{0,1\}^n \to \{0,1\}$. La funzione f_n vale 1 nelle stringhe in input che sono in L.
- Una classe computazionale è un insieme di problemi di decisione che hanno tutti la stessa complessità computazionale asintotica.
- Enunceremo le principali classi computazionali sia nel caso classico che nel caso quantistico.

Classi di complessità

- P (Polynomial Time): insieme di problemi risolvibili da un computer classico deterministico in tempo polinomiale $O(n^d)$.
- **BPP (Bounded-error Probabilistic Polynomial Time)**: insieme di problemi risolvibili da un computer classico in tempo polinomiale con probabilità d'errore minore di $\frac{1}{3}$.
- NP (Non-deterministic Polynomial Time): classe di problemi, per cui data una stringa x, si verifica in tempo polinomiale se tale x è soluzione.
- NP-Complete: sottoclasse di NP contenente tutti quei problemi a cui ogni altro problema in NP si riconduce. L'esempio chiave di problema NPC è il problema SAT (determinare se una certa formula booleana è soddisfacibile).
- PSPACE (Polynomial Space): classe di problemi risolvibili da un computer classico usando spazio polinomiale nella lunghezza dell'input.

Classi di complessità

- BQP (Bounded-error Quantum Polynomial Time): classe di problemi risolvibili da un computer quantistico in tempo polinomiale con probabilità di errore $\leq \frac{1}{3}$. Tale classe è riconosciuta come la classe di problemi efficientemente risolvibili con un computer quantistico.
- QMA (Quantum Merlin-Arthur): classe di problemi L per cui, quando una stringa x è in L, esiste una quantum proof di dimensione polinomiale che convince un quantum verifier sul fatto che $x \in L$ con alta probabilità.
- **QMA-Complete**: sottoclasse contenente tutti quei problemi a cui ogni problema in QMA si riduce. L'esempio più famoso, strettamente legato al problema SAT, è il problema dell'Hamiltoniana locale.

Complessità quantistica

Riportiamo di seguito alcuni risultati che mettono a paragone alcune classi complessità.

P⊆**NP**

Inclusione ovvia e nonostante non ci sia ancora una dimostrazione si crede che l'inclusione debba essere stretta.

BPP⊆**BQP**

Partendo dal fatto che un computer quantistico può simulare un circuito classico e può generare azioni probabilistiche tramite degli Hadamard gate. Si crede che l'inclusione sia stretta.

BQP⊆**PSPACE**

Si dimostra facendo vedere che un computer classico può simulare efficientemente un computer quantistico in termini di spazio (non di tempo).

NPQMA

Si crede anche qui che esistano problemi in QMA ma non in NP.

- Passeremo ora all'analisi dell'implementazione di circuiti booleani su un computer quantistico.
- Ogni calcolo classico può essere eseguito su un computer quantistico con lo stesso costo computazionale asintoticamente.
- Per poter simulare un qualsiasi circuito booleano, dobbiamo essere in grado di simulare i gate logici classici alla base di ogni circuito.
- I circuiti booleani sono formati da AND, OR, NOT e FANOUT gate.
- Mostreremo dunque i 4 gate quantistici che simulano tali 4 gate classici. Faremo uso, per la simulazione, dei soli gate NOT, CNOT, CCNOT. Sono tutte e 3 operazioni deterministiche e unitarie.

Facendo riferimento all'insieme universale contenente tutti i gate ad un singolo qubit e il CNOT, l'unico gate da analizzare in maniera più approfondita è il Toffoli gate. In che modo implementiamo Toffoli tramite gate elementari?

Ricordiamo che il gate Toffoli agisce come segue su un circuito a 3 qubit:

■ Possiamo costruire questa operazione unitaria facendo uso di H, T, T^{\dagger} e CX gate.

 Mostriamo ora come possiamo simulare i gate classici AND, OR, FANOUT (il NOT classico è già implementato con il gate X) usando i gate X, CX, CCX.

FANOUT gate

- Per tutti e 3 i gate simulati è stato necessario l'utilizzo di un qubit workspace, in cui viene salvato il risultato.
- Per l'AND e l'OR i qubit che vengono passati come input al circuito vengono poi ignorati dato che non sono output del circuito logico booleano che stiamo simulando.
- Tali qubit vengono detti qubit ancilla.

- Supponiamo quindi di avere una funzione $f:\{0,1\}^n \to \{0,1\}^m$ implementata tramite un circuito C che fa uso di t gate classici (AND, OR, NOT, FANOUT).
- Simuliamo gate per gate il circuito \mathcal{C} secondo quanto descritto prima includendo i qubit per workspace in un circuito quantistico \mathcal{R} . Sono necessari quindi $\mathcal{O}(t)$ gate quantistici.
- I qubit di R sono ordinati in modo che gli n bit di input del circuito C sono sul registro superiore, mentre i qubit di workspace sono sul registro inferiore. Possiamo però semplicemente scambiare i due registri usando degli SWAP gate.

Esercizi

- Costruire tramite circuito a due qubit uno SWAP gate facendo uso di pochi CNOT gate.
- Costruire tramite un circuito a 3 qubit, la funzione XOR tra 3 qubit in input e l'output salvato sul primo qubit:

$$|a\rangle|b\rangle|c\rangle \mapsto |a \oplus b \oplus c\rangle|...\rangle|...\rangle.$$

■ Provare a generalizzare spiegando in che modo si possa costruire un circuito che implementi lo XOR tra due stringhe binarie $a, b \in \{0,1\}^n$:

$$|a\rangle|b\rangle\mapsto|a\oplus b\rangle|...\rangle.$$

- k è il numero di qubit di workspace che sono necessari e $g:\{0,1\}^n \to \{0,1\}^{n+k-m}$ è la funzione che descrive in che stato vengono lasciati i qubit ausiliari dopo l'esecuzione di R.
- In generale g è una funzione determinata dal circuito \mathcal{C} , ma è una cosa che ignoriamo dato che sono qubit ausiliari.
- La funzione g descrive il cosiddetto **garbage**, il quale è stato riordinato sul secondo registro per un motivo che vedremo a breve.
- Se siamo solo interessati al calcolo della funzione f la costruzione gate per gate è sufficiente, in cui ci sono alcuni qubit che rimangono inutilizzati.
- Ci dedichiamo ora invece ad un modo per ripulire questo garbage.

- Se volessimo implementare calcoli classici come subroutine all'interno di computazioni quantistiche più grandi è necessario ripulire il garbage, così che i qubit del garbage non disturbino eventuali fenomeni di interferenza alla base del funzionamento di molti algoritmi quantistici.
- Per fare ciò faremo uso di un **ulteriore registro quantistico ad** m **qubit** in cui verrà copiato l'output $|f(x)\rangle$ dopo l'esecuzione di R. Questo verrà eseguito tramite dei CNOT i quali implementano uno XOR.
- Si **applica a questo punto il circuito** R **invertito** così da poter resettare il registro in input $|x\rangle$ e il registro workspace $|0^k\rangle$. Notiamo che, dato che R è formato da Toffoli, CNOT e NOT, il suo inverso R^{\dagger} è R stesso.

• Questa tecnica viene spesso detta compute-copy-uncompute.

lacktriangle Possiamo raggruppare tutte queste operazioni in un uno circuito Q.

- Se C è formato da t gate classici allora Q è formato da O(t) gate quantistici elementari il che vuol dire che la costruzione è efficiente.
- Non contando il registro workspace nel circuito, il circuito Q implementa a tutti gli effetti il query gate U_f .
- Inizializzando l'ultimo registro $|y\rangle$ a $|0^m\rangle$ abbiamo in output sull'ultimo registro $|f(x)\rangle$ la valutazione della funzione f sull'input x.

- Analizziamo un ultimo caso in cui f stessa è invertibile. Ciò vuol dire che l'operazione che trasforma $|x\rangle$ in $|f(x)\rangle$ è unitaria.
- Vogliamo quindi costruire un circuito che implementi l'operazione $U|x\rangle = |f(x)\rangle$.
- Tralasciando il workspace, U è diversa dalle operazioni che vengono implementate nel circuito Q dato che qui non dobbiamo salvare l'output in una copia in XOR con una stringa arbitraria ma trasformiamo direttamente x in f(x). Possiamo costruire questa tecnica facendo uso dei circuiti che implementano f e f^{-1} .

Quantum Fourier Transform

- La Quantum Fourier Transform (QFT) è una delle operazioni fondamentali nell'ambito della computazione quantistica. Risulta essere una strumento alla base di molti algoritmi quantistici importanti come Shor, Quantum Phase Estimation e Hidden Subgroup Problem.
- La QFT è l'equivalente della DFT ed agisce sugli stati della base standard ad n qubit nel seguente modo:

$$QFT |x\rangle = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \omega_N^{xj} |j\rangle$$

■ La QFT applica una trasformazione ad uno stato quantistico $|x\rangle$ mappandolo in una sovrapposizione uniforme di stati $|j\rangle$ con fasi diverse.

Quantum Fourier Transform

Vediamo anche la QFT nella sua forma matriciale come operatore unitario. Possiamo specificare le entrate della matrice così:

$$QFT_N = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} \sum_{k=0}^{N-1} e^{\frac{2\pi i jk}{N}} |j\rangle\langle k|$$

• Specificando che nell'entrata (j,k) avremo la radice N-esima dell'unita $e^{\frac{2\pi ij}{N}}$ elevata alla k. **Esplicitando la matrice** abbiamo:

$$QFT_{N} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)^{2}} \end{bmatrix}$$

Quantum Fourier Transform

Le colonne della QFT formano una base ortonormale, detta **base di Fourier**. Ogni vettore in questa base è una sovrapposizione degli stati della base standard. In particolare indichiamo con $|\tilde{j}\rangle$ lo stato ottenuto dallo stato standard $|j\rangle$ dopo l'applicazione della QFT:

$$QFT|j\rangle = |\tilde{j}\rangle$$

- Le ampiezze relative a $|\tilde{j}\rangle$ seguono le potenze di ω_N^j .
- Usando la base di Fourier, lo stato $|\tilde{j}\rangle$ ci indica di quale angolo ogni qubit deve essere ruotato rispetto all'asse Z, dopo che si trova in una sovrapposizione $|+\rangle$.
- Possiamo comprendere meglio questo concetto osservando che $|\tilde{j}\rangle$ è scomponibile come prodotto tensore di più qubit in sovrapposizione:

$$QFT_N |j\rangle = \frac{1}{\sqrt{N}} \bigotimes_{k=1}^n \left(|0\rangle + e^{\frac{2\pi i j k}{2^k}} |1\rangle \right)$$

Esempio QFT

■ Prediamo la QFT su due qubit. L'operatore è il seguente:

$$QFT_4 = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}$$

• Vogliamo scomporre $|\tilde{3}\rangle$. Facciamo il calcolo matriciale a partire dall'applicazione della matrice:

$$|\tilde{3}\rangle = QFT_4 |3\rangle = \frac{1}{2} (|00\rangle - i|01\rangle - |10\rangle + i|11\rangle) =$$

$$= \frac{1}{2} (|0\rangle (|0\rangle - i|1\rangle) - |1\rangle (|0\rangle - i|1\rangle)) =$$

$$= \frac{1}{2} (|0\rangle - i|1\rangle) \otimes (|0\rangle - |1\rangle)$$

Entrambi i qubit coinvolti nello stato prodotto sono stati in sovrapposizione $|+\rangle$ ruotati rispetto all'asse Z rispettivamente di un angolo $\frac{3}{2}\pi$ e π .

Implementazione QFT

- Vediamo ora in che modo implementare la Quantum Fourier Transform tramite gate elementari e verifichiamo che la si può costruire efficientemente.
- Faremo ampiamente uso della versione controllata del phase-gate P_{α} definita come:

$$CP_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\alpha} \end{bmatrix}$$

 Rappresenteremo un cambio di fase controllato nel seguente modo

Implementazione QFT

• Facendo uso dei gate CP_{α} riusciamo ad implementare una phase injection così definita:

$$|a\rangle|y\rangle\mapsto\omega_{2^n}^{ay}|a\rangle|y\rangle$$

• Un'operazione di questo tipo viene costruita utilizzando vari CP_{α} con $|a\rangle$ come qubit di controllo e $|y_i\rangle$ come qubit target per ogni $i=0,\ldots,n-1$. In particolare se il qubit target è $|y_i\rangle$, l'angolo $\alpha=\frac{\pi}{2^{n-1}}\cdot 2^i$. Per esempio con n=5 avremmo la seguente costruzione:

• Applicando questo procedimento, se a=0, lo stato $|a\rangle|y\rangle$ viene mappato in se stesso. Se a=1 invece abbiamo l'applicazione di tutti i gate P_{α} :

$$|1\rangle |y_0\rangle \dots |y_{n-1}\rangle \mapsto |1\rangle \otimes P_{\frac{\pi}{2^{n-1}}} |y_0\rangle \otimes \dots \otimes P_{\frac{\pi}{2}} |y_{n-1}\rangle$$

$$|1\rangle \otimes e^{i\frac{\pi}{2^{n-1}}y_0}|y_0\rangle \otimes \cdots \otimes e^{i\frac{\pi}{2}y_{n-1}}|y_{n-1}\rangle$$

$$e^{i\frac{\pi}{2^{n-1}}y_0 + \dots + i\frac{\pi}{2}y_{n-1}} |1\rangle |y_0\rangle \dots |y_{n-1}\rangle = e^{i\frac{\pi}{2^{n-1}}(y_0 + 2y_1 + \dots + 2^{n-1}y_{n-1})} |1\rangle |y\rangle = \omega_{2^n}^y |1\rangle |y\rangle$$

- Procediamo a questo punto con i passi per eseguire la QFT su un registro di n qubit. L'implementazione seguirà una naturale definizione ricorsiva partendo dalla base QFT_2 che non è altro che Hadamard.
- Eseguiremo la QFT su n qubit descrivendo la sua azione sugli stati della base $|a\rangle|x\rangle$.
- 1) Applichiamo la $QFT_{2^{n-1}}$ agli n-1 qubit descritti dallo stato $|x\rangle$:

$$|a\rangle \left(QFT_{2^{n-1}}|x\rangle\right) = \frac{1}{\sqrt{2^{n-1}}} \sum_{y=0}^{2^{n-1}-1} \omega_{2^{n-1}}^{xy} |a\rangle |y\rangle$$

2) Applichiamo ora il circuito della phase-injection visto prima:

$$\frac{1}{\sqrt{2^{n-1}}} \sum_{y=0}^{2^{n-1}-1} \omega_{2^{n-1}}^{xy} \omega_{2^n}^{ay} |a\rangle |y\rangle$$

3) Applichiamo una porta di Hadamard sul primo qubit descritto da $|a\rangle$:

$$\frac{1}{\sqrt{2^n}} \sum_{b=0}^{1} \sum_{y=0}^{2^{n-1}-1} (-1)^{ab} \omega_{2^{n-1}}^{xy} \omega_{2^n}^{ay} |b\rangle |y\rangle$$

4) Infine permutiamo l'ordine dei qubit, in modo che il bit a finisca alla fine, tramite l'utilizzo di gate SWAP ripetuti, facendo ruotare la stringa by di un posto verso sinistra per ottenere yb:

$$\frac{1}{\sqrt{2^n}} \sum_{b=0}^{1} \sum_{y=0}^{2^{n-1}-1} (-1)^{ab} \omega_{2^{n-1}}^{xy} \omega_{2^n}^{ay} |y\rangle |b\rangle$$

■ Riportiamo di seguito un esempio della costruzione della QFT su n=5 qubit.

Analisi computazionale QFT

- Contiamo il numero di gate elementari che vengono usati nel circuito. Specifichiamo che i gate CP_{α} non fanno parte dell'insieme universale di gate, ma per semplicità sui conti lo considereremo come gate elementare.
- lacktriangle Denotiamo con t_n il numero di gate applicati nel circuito a seconda del numero di qubit n
- Se n=1 ovviamente $QFT_2=H$, quindi ha costo unitario e $t_1=1$.
- Consideriamo ora $n \ge 2$, necessiteremo allora di:
 - t_{n-1} gate per implementare (ricorsivamente) $QFT_{2^{n-1}}$
 - n-1 controlled-phase gate CP_{α}
 - Una singola porta Hadamard H
 - n-1 gate SWAP

Analisi computazionale QFT

Riassumendo, il numero totale di gate è dato da

$$t_n = t_{n-1} + (2n - 1) = \sum_{k=0}^{n} (2k - 1) = n^2$$

- Questo dimostra il fatto che la QFT può essere implementata con n^2 gate.
- Per la precisione dovremmo specificare la costruzione CP_{α} tramite gate elementari. Ciò dipende dal tipo di precisione desiderata. In ogni caso si può implementare CP_{α} in maniera efficiente con pochi gate.
- Concludiamo che la QFT_N è efficientemente implementabile con l'utilizzo di $O(n^2)$ gate quantistici elementari.

L'algoritmo di Grover

Formulazione del problema

- Supponiamo di avere una **funzione binaria** $f: \Sigma^n \to \Sigma$, dove $\Sigma = \{0,1\}$, che sappiamo di poter calcolare efficientemente e che non abbia una struttura specifica da poter sfruttare.
- Grover cercherà una stringa $x \in \Sigma^n$ tale che f(x) = 1. Ci riferiremo a tale stringa come a una **soluzione** al nostro problema di ricerca.
- Il problema associato a Grover è detto **ricerca non strutturata**, dato che non possiamo fare affidamento a delle proprietà specifiche di *f* o della nostra struttura dati.
- Nel **peggior caso classico** (sia deterministico che probabilistico), in uno spazio con $|\Sigma^n| = 2^n =: N$ elementi, dovremmo valutare la nostra funzione su ognuno di essi, portando il nostro algoritmo classico ad avere un costo dell'ordine di O(N).
- L'algoritmo di Grover sfrutta le sovrapposizioni e le interferenze quantistiche per ridurre il numero di iterazioni all'ordine $O(\sqrt{N})$, trovando una soluzione con alta probabilità.

- Per sua definizione, l'algoritmo di Grover garantisce uno speedup negli algoritmi di ricerca a forza bruta, che possiamo sfruttare in particolare per attacchi a crittosistemi a chiave simmetrica, come ad esempio le funzioni hash.
- Una funzione hash crittografica h è una funzione che prende in input una stringa di lunghezza arbitraria, detta messaggio, e restituisce in output una stringa di lunghezza fissata, chiamata digest, che soddisfa le seguenti proprietà:

- Per sua definizione, l'algoritmo di Grover garantisce uno speedup negli algoritmi di ricerca a forza bruta, che possiamo sfruttare in particolare per attacchi a crittosistemi a chiave simmetrica, come ad esempio le funzioni hash.
- Una **funzione hash crittografica** *h* è una funzione che prende in input una stringa di lunghezza arbitraria, detta **messaggio**, e restituisce in output una stringa di lunghezza fissata, chiamata **digest**, che soddisfa le seguenti proprietà:

- Per sua definizione, l'algoritmo di Grover garantisce uno speedup negli algoritmi di ricerca a forza bruta, che possiamo sfruttare in particolare per attacchi a crittosistemi a chiave simmetrica, come ad esempio le funzioni hash.
- Una **funzione hash crittografica** *h* è una funzione che prende in input una stringa di lunghezza arbitraria, detta **messaggio**, e restituisce in output una stringa di lunghezza fissata, chiamata **digest**, che soddisfa le seguenti proprietà:

- Per sua definizione, l'algoritmo di Grover garantisce uno speedup negli algoritmi di ricerca a forza bruta, che possiamo sfruttare in particolare per attacchi a crittosistemi a chiave simmetrica, come ad esempio le funzioni hash.
- Una **funzione hash crittografica** *h* è una funzione che prende in input una stringa di lunghezza arbitraria, detta **messaggio**, e restituisce in output una stringa di lunghezza fissata, chiamata **digest**, che soddisfa le seguenti proprietà:
 - Uniformità
 Determinismo
 Irreversibilità
 Quasi-iniettività

 Vogliamo simulare una funzione iniettiva sfruttando la differenza di cardinalità tra dominio e codominio e definendo una funzione altamente variabile.

- Date queste caratteristiche, le funzioni hash sono molto utilizzate per garantire l'autenticità e l'integrità dei servizi associati.
- Tale sicurezza è data dalla resistenza a due tipi di attacchi:
 - a) **Pre-image Resistance**: dato y = h(x), deve essere computazionalmente difficile trovare x: l'unica possibilità è una ricerca di forza bruta.
 - b) **Collision Resistance**: data h, deve essere computazionalmente difficile trovare x_1, x_2 tali che $h(x_1) = h(x_2)$.
- Se ad esempio, prendessimo una funzione hash sicura a 256 bit...

Impostazione dell'algoritmo

- lacktriangle Supponiamo di avere k soluzioni tra gli N elementi che formano il nostro spazio.
- Nel nostro spazio di Hilbert, definiamo uno **stato «fortunato»** $|w\rangle \in \mathbb{C}^N$ le cui entrate sono tali che

$$w_x = \frac{1}{\sqrt{k}} \cdot \mathbf{1}_{\{x \text{ è } soluzione\}} + 0 \cdot \mathbf{1}_{\{x \text{ } non \text{ è } soluzione\}}$$

- L'obiettivo dell'algoritmo di Grover sarà di avvicinare il più possibile lo stato aleatorio di partenza al nostro vettore fortunato, sfruttandone la struttura di solution-smoothness.
- Altri vettori che godono di tale proprietà sono i vettori nello $Span(|w\rangle,|s\rangle)$ e lo **stato «fallimento»** | l definito come

$$|l\rangle = \frac{1}{\sqrt{N-k}} \left(\sqrt{N} |s\rangle - \sqrt{k} |w\rangle \right)$$

Impostazione dell'algoritmo

- L'algoritmo di Grover opera tramite **riflessioni**: una rispetto al vettore $|l\rangle$ e una rispetto al vettore calcolato all'iterazione precedente $|a\rangle$.
- La riflessione rispetto a $|l\rangle$ è effettuata tramite **oracolo di Grover**:

$$U_f[x,x] = (-1)^{f(x)} =$$

$$= (-1) \cdot \mathbf{1}_{\{x \text{ è } soluzione\}} + 1 \cdot \mathbf{1}_{\{x \text{ non è } soluzione\}}$$

L'idea è di immaginare i nostri stati sul piano generato da |w e |l>, associandoli rispettivamente all'asse delle ordinate e delle ascisse.

Impostazione dell'algoritmo

■ In questo modo, $|s\rangle$ si troverà a un angolo $\theta \in \left[0, \frac{\pi}{2}\right]$, da cui otteniamo che

$$\cos \theta = \frac{\langle s|l\rangle}{\||s\rangle\| \cdot \||l\rangle\|} = \sqrt{\frac{N-k}{N}}$$

ossia

$$\sin^2\theta=\frac{k}{N}$$

In generale, possiamo sempre scrivere

$$|\psi\rangle = \cos\theta |l\rangle + \sin\theta |w\rangle$$

ottenendo che la probabilità di misurare una soluzione sia $\sin^2 \theta_i$.

Focus on: Riflessioni e Rotazioni

- Matematicamente, le riflessioni sono definite via proiezioni.
- Dati due vettori \mathbf{a} , \mathbf{b} la **proiezione** di \mathbf{b} su \mathbf{a} è data da $\mathbf{a}' = \mathbf{a}\langle \mathbf{a}, \mathbf{b}\rangle$
- Dunque, la riflessione rispetto ad \mathbf{a} di \mathbf{b} è data da $\mathbf{b}' = 2(\mathbf{b} \mathbf{a}') = \mathbf{b} 2\mathbf{b} + 2\mathbf{a}\langle \mathbf{a}, \mathbf{b}\rangle = 2(\mathbf{P_a} \mathbb{I})\mathbf{b}$

dove $P_a = a^T a = |a\rangle\langle a|$ è l'operatore proiezione.

- 1) Inizializzare lo stato $|0^n\rangle$ come una sovrapposizione equiprobabile $|a\rangle \coloneqq |s\rangle$;
- 2) Calcolare $\theta = \arcsin\left(\sqrt{\frac{k}{N}}\right) e t_k = \left\lfloor \frac{\pi}{4\theta} \right\rfloor;$
- 3) Ripetere per t_k volte le seguenti operazioni:
 - i. Applica Ref_w allo stato $|a\rangle$ tramite oracolo di Grover tramite U_f per ottenere lo stato $|a'\rangle$;
 - ii. Applica $Ref_a = 2|a\rangle\langle a| \mathbb{I}^{\otimes n}$ allo stato $|a'\rangle$ per ottenere un nuovo stato $|a\rangle$;
- 4) Misura lo stato finale $|a\rangle$, ottenendo una stringa $x \in \{0,1\}^n$;
- 5) Se x è soluzione, <u>**stop**</u>; altrimenti riparti dal punto 1 a causa del collasso del sistema.

- 1) Inizializzare lo stato $|0^n\rangle$ come una sovrapposizione equiprobabile $|a\rangle \coloneqq |s\rangle$;
- 2) Calcolare $\theta = \arcsin\left(\sqrt{\frac{k}{N}}\right) e t_k = \left\lfloor \frac{\pi}{4\theta} \right\rfloor;$
- 3) Ripetere per t_k volte le seguenti operazioni:
 - i. Applica Ref_w allo stato $|a\rangle$ tramite oracolo di Grover tramite U_f per ottenere lo stato $|a'\rangle$;
 - ii. Applica $Ref_a = 2|a\rangle\langle a| \mathbb{I}^{\otimes n}$ allo stato $|a'\rangle$ per ottenere un nuovo stato $|a\rangle$;
- 4) Misura lo stato finale $|a\rangle$, ottenendo una stringa $x \in \{0,1\}^n$;
- 5) Se x è soluzione, **stop**; altrimenti riparti dal punto 1 a causa del collasso del sistema.

$$|0^n\rangle$$
 $\stackrel{n}{\longleftarrow}$ \mathbf{H} U_S $2|a\rangle\langle a|-\mathbf{I}^{\otimes n}$

1) Inizializzare lo stato $|0^n\rangle$ come una sovrapposizione equiprobabile $|a\rangle \coloneqq |s\rangle$;

3.i) Applica Ref_w also stato $|a\rangle$ tramite oracolo di Grover tramite U_f per ottenere lo stato $|a'\rangle$;

3.ii) Applica $Ref_a = 2|a\rangle\langle a| - \mathbb{I}^{\otimes n}$ allo stato $|a'\rangle$ per ottenere un nuovo stato $|a\rangle$;

Analisi dell'algoritmo

• Alla base del corretto funzionamento dell'algoritmo c'è un'importante proprietà geometrica: la composizione di due riflessioni Ref_{AC} , Ref_{AB} per linee non parallele è una rotazione rispetto al punto di intersezione delle due linee pari al doppio dell'angolo formato da esse, ossia

$$Ref_{AC} \circ Ref_{AB} = Rot_{A,2 \angle BAC}$$

Partiamo dunque da un angolo iniziale pari a θ e sia $\theta_t \in [\theta, \frac{\pi}{2}]$ l'angolo alla t-esima iterazione. **All'iterazione** t+1 l'angolo sarà

$$\theta_{t+1} = -\theta_t + 2\theta + 2\theta_t = \theta_t + 2\theta$$

• Dopo t_k iterazioni avremmo un angolo pari a

$$\theta_{t_k} = (2t_k + 1)\theta$$

e vogliamo che valga $\frac{\pi}{2}$.

Analisi dell'algoritmo

Dopo t_k iterazioni avremmo un angolo pari a

$$\theta_{t_k} = (2t_k + 1)\theta$$

e vogliamo che valga $\frac{\pi}{2}$.

Risolvendo tale equazione, otteniamo che

$$t_k = \left[\frac{\pi}{4\theta} - \frac{1}{2}\right] = \left[\frac{\pi}{4\theta}\right] \approx \frac{\pi}{4} \sqrt{\frac{N}{k}}$$

In questo modo, l'angolo finale si troverà nel range $\frac{\pi}{2} \pm \theta$ e, ricordando che $\theta \le \pi/4$, otteniamo che la probabilità di successo sarà almeno pari a ½ dopo t_k iterazioni.

Numero di iterazioni: caso k sconosciuto

- \blacksquare Supponiamo ora di avere k soluzioni, ma di non conoscere esplicitamente tale valore.
- Una **prima opzione** per scegliere il numero di iterazioni t potrebbe essere di sceglierlo uniformemente a caso tra $1, \dots, \left| \frac{\pi \sqrt{N}}{4} \right|$
 - \rightarrow In questo modo l'algoritmo ha una probabilità di successo maggiore del 40%. Ripetendo l'algoritmo m volte nel caso di fallimento, la probabilità sale abbastanza velocemente e si avvicina ad 1.
- Una **strategia più raffinata** è la seguente: si sceglie t uniformemente a caso in $\{1, ..., T\}$, con T che aumenta ad ogni iterazione.
 - \rightarrow Il miglior modo per incrementare T è aggiornarlo come $\left\lceil \frac{5}{4}T \right\rceil$ ad ogni iterazione. In questo modo, anche non conoscendo il numero di soluzioni, otteniamo che l'algoritmo riesce a trovare una soluzione dopo sole $O\left(\sqrt{\frac{N}{k}}\right)$ iterazioni.

Numero di iterazioni: caso k=0,N

- Matematicamente, ciò equivale ad avere f costante sul nostro spazio, ossia $|l\rangle$ o $|w\rangle$ contutte le entrate nulle.
- Ciò vuol dire anche che $U_f|a\rangle=\pm|a\rangle$ e che quindi

$$Grover|a\rangle = \pm (2|a\rangle\langle a|-\mathbb{I})|a\rangle = \pm |a\rangle$$

Dunque, a prescindere del numero di iterazioni che eseguiamo, l'algoritmo restituirà sempre una **stringa scelta uniformemente a caso** in Σ^n .

Ottimizzazione dell'algoritmo

- Nell'inizializzare lo stato del nostro algoritmo, abbiamo implicitamente assunto di non sapere nulla sulle nostre soluzioni.
- Alcune volte però saremo a conoscenza di alcune caratteristiche o proprietà delle nostre soluzioni, che quindi possiamo sfruttare.
- Altre possibili inizializzazioni, a patto che siano sempre solution-smooth, sono lo stato $|GHZ\rangle$ o lo stato $|W\rangle$ generalizzati, oppure uno degli **stati di Dicke** $|Dnk\rangle$.
- Ad esempio, se volessimo cercare i triangoli in un grafo con 4 nodi...

Mani alle tastiere!

Possiamo passare all'implementazione dell'algoritmo, concludendo poi con alcuni esempi applicativi relativi a problemi di reale interesse.

