Assessing The Effect of Stimuli Complexity in Web-Based Visual Foraging

Enilda M. Velazquez, University of Central Florida, enilda.velazquez@ucf.edu Nelson A. Roque, The Pennsylvania State University, nur375@psu.edu

Background

- Single vs. Multi-target Search
- · Single target search: looking for one target among distractors.
- Multi-target search: looking for many targets among= distractors.
- Visual Foraging Task
 - Developed to address concerns of ecological validity in single target search tasks: the real world is rarely comprised of single targets.
- · A multi-target search task in which observers are instructed to search for all of one kind of target among many distractors [2]
- Information Processing \rightarrow Search Strategy: Theories
- · Optimal Foraging Theory [1]: observers maximize target acquisition for targets with maximum information and lowest energetic cost.
- Increasing the information necessary for acquisition \rightarrow increases cost to acquire target \rightarrow observer changes search strategy or search slows [1, 3, 4]

Research Question

How does increasing stimuli complexity impact multitarget search behavior in a foraging task?

Hypothesis

As the stimuli become more complex, mean inter-target time is expected to become larger.

Data Preparation

- All preparation done in R (v 4.2.2) and Python (v 3.11).
- Foraging task embedded into Qualtrics produced 2 databases: surveys + task.
- Event level task data → trial level aggregates by block
- Device meta-data retrieved from user-agent string and parsed.
- Qualtrics loaded and scored.
- Survey + task data joined in long format.
- 251 participants recruited. 221 participants in final sample (N = 221).

Methods

- 14 block foraging task
- Conjunctive search for 2 experimental sets of stimuli and 1 control set of stimuli.
- · Experimental sets were composed of images one additional layer of features per image.
- · (1) background layer, (2) border layer, (3) writing layer Yield Signs Stop Signs

- Each block presented multiple pages of a pairwise stimuli combination.
- Each page contained 6 targets and 6 distractors.
- Participants foraged through as many pages as possible per block for 45 seconds.

13905

Counterbalancing of block-stimuli assignment was utilized.

device: task examples on non-mobile and mobile.

Predictors	Yield Sign Performance				
	Estimates	CI	t	p	
Intercept	606.96	547.84 - 666.07	20.12	<0.001	
Page	-1.4	-2.09 – -0.72	-4.03	<0.001	
Device Type	-162.34	-258.33 – -66.34	-3.31	0.001	
(N) Target Layers	23.6	9.24 – 37.97	3.22	0.001	
(N) Distractor Layers	27.64	13.27 – 42.01	3.77	<0.001	
Random Effects					
σ^2			20841.97		
τ _{00 Individual}			45124.02		
τ _{00 Block}			304.12		
ICC				0.69	
N _{Block}			13		
N Individual				215	

Observations

Marginal R²/

Conditional R²

0.049 / 0.701

			-	,-	
Intercept	1433.79	1081.00 - 1786.57	7.97	<0.001	
Page	-5.55	-6.76 – -4.34	-9	<0.001	
Device Type	-112.63	-212.2513.02	-2.22	0.027	
(N) Target Layers	-163.68	-265.5661.79	-3.15	0.002	
(N) Distractor Layers	-153.02	-254.90 – -51.14	-2.94	0.003	
Random Effects					
σ^2			59690.89		
$ au_{00\ Individual}$			47898.32		
τ _{00 Block}			1	7598.62	
ICC				0.52	
N _{Block}				13	
N Individual				216	
Observations Marginal R ² / Conditional R ²	0.131 / 0.586			12946	

Stop Sign Performance

Results

- Finding 1: ITT increased as the number of feature layers increased for all categories except the 3-layer stop sign condition.
- Finding 2: Low between-individual variation of ITT across categories.
- Finding 3: Performance variability was higher for the experimental categories vs the control category.
- **Exploratory Finding:** Using a mobile device for the task decreased ITT, compared to using a non-mobile device.

Conclusions

- Main hypothesis supported: as stimuli complexity increased, ITT increased, except for the 3-layer stop sign condition. This finding is consistent with existing theory [2, 3, 4].
- Stimuli complexity slowed foraging until the difference in complexity between target and distractor turned the search task from conjunctive search into a pop-out search.
- Low between-individual variation suggests that individuals forage at different baseline foraging rates that are consistent across categories.
- Main Limitation: when observers searched for the 3-layer stop sign paired with other stop signs, observer performance exhibited the performance predicted by the pop-out search effect.
- · Thus, complexity defined by number of feature layers may not fully capture how complexity impacts 'real-world' foraging.

References

- [1] Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. In Foraging theory. Princeton university press. https://doi.org/10.2307/j.ctvs32s6b
- [2] Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual Foraging Tasks Provide New Insights into the Orienting of Visual Attention: Methodological Considerations. In Spatial Learning and Attention Guidance (pp. 3–21). https://doi.org/10.1007/7657_2019_21
- [3] Treisman, A., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology. https://doi.org/10.1016/0010-0285(80)90005-5
- [4] Wolfe, J. M. (2021). Guided Search 6.0: An updated model of visual search. Psychonomic Bulletin & Review, 28(4), 1060–1092. https://doi.org/10.3758/s13423-020-<u>01859-9</u>

