

知识图谱

童世炜

BDAA LAB

目录 contents

01

02

03

04

概述

什么是知识图谱

应用

如何利用知识图谱

构建

如何构建一个知识图谱

总结

总结、现状与推荐阅读

概述 Overview

什么是知识图谱

Alpha Go _{横扫围棋界}

Siri 智能助理,帮助用户更加便捷地完成各项任务

Atlas 协助或取代人类繁重、危险的工作

《 人工智能

模拟脑的结构

连接派 神经网络 深度学习

模拟人的心智

符号派 知识表示 知识图谱

模拟人的行为

行为派 机器人 增强学习

知识图谱

知识图谱发展

定义

知识图谱(knowledge graph)一词由谷歌于2012年提出。

狭义上讲,知识图谱是一种用图结构来描述知识的方式,是一种语义网络(semantic network)。

广义上,采用任意结构描述知识的方式也可以被称为知识图谱(此时其含义和知识库knowledge base相同)。

Applications

关系机器学习 基于知识图谱的推荐系统 基于知识图谱的搜索问题

给定 N_d 个已观测的三元组(点-边-点)集合,三元组特征记为 x, 标签记为 y

$$\mathcal{D} = \{(x^n, y^n) | n = 1, \dots, N_d\}$$

$$\mathcal{D} = \{(x^n, y^n) | n = 1, \dots, N_d\} \quad \begin{cases} (S, P, O)^n = x^n \\ label^n = y^n \end{cases}$$

独立假设

$$P(\underline{Y}|\mathcal{D},\Theta) = \prod_{i=1}^{N_e} \prod_{j=1}^{N_e} \prod_{i=1}^{N_r} Ber(y_{ijk}|\sigma(f(x_{ijk};\Theta)))$$

(##2)

$$Ber(y|p) = \begin{cases} p, & if \ y = 1\\ 1 - p, & if \ y = 0 \end{cases}$$

伯努利分布函数

关系估分函数 $f(x_{ijk}; \Theta)$ 和Pairwise Loss

Translation Embeddings

$$\min_{\boldsymbol{\Theta}} \sum_{x^+ \in \mathcal{D}^+} \sum_{x^- \in \mathcal{D}^-} \mathcal{L}(f(x^+; \boldsymbol{\Theta}), f(x^-; \boldsymbol{\Theta})) + \lambda \operatorname{reg}(\boldsymbol{\Theta})$$

$$\mathcal{L}(f, f') = \max(1 + f' - f, 0).$$

基于知识图谱的推荐系统

$$\begin{cases} (User, Like, Item)^n = x^n \\ label^n = y^n \end{cases}$$

Zhang F, Yuan N J, Lian D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. ACM, 2016: 353-362.

Wang H, Zhang F, Wang J, et al. Ripple Network: Propagating User Preferences on the Knowledge Graph for Recommender Systems[J]. arXiv preprint arXiv:1803.03467, 2018.

基于知识图谱的搜索问题

Concept

Concept

Concept

Concept

Concept

构建基于图的嵌入式 表达的启发式函数

图结构限制

图表示学习

Latent Vector
Random Walk
Markov Random Field

构建 Construction

Surface \rightarrow Thing \rightarrow Graph \rightarrow Data

知识图谱的本质

- 统一的数据管理层
 - 不同格式的数据转换为统一的数据格式
 - 消除不同数据之间的冲突
 - 同名异指
 - ・ 张伟、刘洋
 - ・他、她、它
 - 异名同指
 - ・ 飞人-乔丹、外星人-罗纳尔多
 - 他-那个人
- 高效的数据管理层
 - · 概念化的缓存 Cache

- 非结构化
 - 文本
 - 图片
 - 视频
 - 知识
- 半结构化
 - 百科知识库
 - 表格、网页
- 结构化
 - 知识库
 - 知识图谱

一组封闭的专家输入

WordNet Freebase

一组开放的志愿者输入

WIKIPEDIA WikiData

自动半结构化

Wikipedia infoboxes YAGO

DBpedia

自动非结构化

NELL

Knowledge Vault

知识图谱构建流程

Surface → **Thing Graph** → **Data** 基底对齐 用什么方式来存储数 实体抽取 据 关系抽取 如何高效地管理数据 02 03 01 Thing → Graph 知识与知识的联系 • 知识与知识可能存在 冲突和重复

- 统一的概念化的表示
 - SPO三元组

- 点代表实体/属性
- 边代表了实体-实体或实体-属性的关系
- NER
 - 命名实体识别
- Resolution
 - 消解

Entities with Same Name

Same type of entities share names

Kevin Smith, John Smith, Springfield, ...

Things named after each other

Clinton, Washington, Paris, Amazon, Princeton, Kingston, ...

Partial Reference

First names of people, Location instead of team name, Nick names

Different Names for Entities

Nick Names

Bam Bam, Drumpf, ...

Typos/Misspellings

Baarak, Barak, Barrack, ...

Inconsistent References

MSFT, APPL, GOOG...

- 概念化
 - SPO三元组
- Data组织
 - RDF (SPO三元组)
 - RDFs, RDFa
 - OWL
 - N-Triples
 - JSON-LD
- 底层支撑
 - 关系型数据库
 - 图数据库

- Precision
 - 知识准确性
- Recall
 - 知识丰富度
- Time
 - 查询时间

知识图谱

总结 Summary

总结 现状 参考文献

- 定义
 - 一个结构化统一、丰富的数据集
 - 可以作为一个高效的数据Cache
- 应用
 - 图表示学习
- 构建
 - Surface → Thing → Graph
 - Graph → Data

http://rtw.ml.cmu.edu/rtw/

https://nlp.stanford.edu/software/openie.html

http://knowledgeworks.cn/

http://openkg.cn/

https://www.jiqizhixin.com/articles/2017-03-20

https://developers.google.com/knowledge-graph/

https://ai.baidu.com/tech/kg/schema

https://www.zhihu.com/question/62164852

机构	产品/奖项	备注
СМИ	NELL	
Stanfold	OpenIE	
复旦	知识工场	肖仰华
浙大等	OpenKG	刘知远、漆桂林、王昊奋
微软	Satori, Probase/Microsoft Concept Graph	
谷歌	Knowledge Graph,Knowledge Vault[2]	
百度	Schema	
	DBpedia	维基百科
	Yago	维基百科与 WordNet
维基媒体基金会	Wikidata	

推荐阅读

• Nickel M, Murphy K, Tresp V, et al. A review of relational machine learning for knowledge graphs[J]. Proceedings of the IEEE, 2016, 104(1): 11-33.

A&Q