Particle spectrograph

Wave operator and propagator

$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	$-\frac{12ik}{(3+4k^2)^2t_1}$	0	0	0	$\tau_1^{\#2} + \alpha$
0	0	0	0	0	0	0	$\tau_{1}^{\#1} + ^{\alpha}$
$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{12}{(3+4k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	0	0	$\sigma_{1}^{\#2} \dagger^{lpha}$
$\frac{12ik}{(3+4k^2)^2t_1}$	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{6}{(3+4k^2)^2t_1}$	0	0	0	$\sigma_{1}^{\#1} +^{lpha}$
0	0	0	0	$\frac{k^2}{(1+k^2)^2t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	$\frac{i\sqrt{2}k}{t_1 + k^2 t_1}$	$\tau_1^{\#1} + \alpha \beta$
0	0	0	0	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\sigma_1^{\#2} + \alpha \beta$
0	0	0	0	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	0	$\sigma_1^{*1} + \alpha \beta$
${t_1^\#}^2_\alpha$	$\tau_{1}^{\#1}{}_{\alpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\sigma_{1^{\bar{-}}\alpha}^{\#1}$	$\tau_1^{\#1}{}_+\alpha\beta$	$\sigma_{1}^{\#2}{}_{lphaeta}$	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	

$f_{1^-}^{\#2}$	0	0	0	<u>i kt1</u> 3	$\frac{1}{3}$ \bar{l} $\sqrt{2}$ kt_1	0	$\frac{2 k^2 t_1}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>£1</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	$-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} + ^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#^2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\sharp 1}$	$ au_2^{\sharp}$	#1 2 ⁺ αβ	$\sigma_{2-\alpha\beta\chi}^{\#1}$						
$\sigma_{2^+}^{\sharp 1} \dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$		$\frac{i\sqrt{2}k}{2k^2)^2t_1}$	0						
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$		$\frac{4k^2}{(k^2)^2t_1}$	0						
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0		0	$\frac{2}{t_1}$						
Source	Source constraints/gauge generators									
SO(3) i	rreps		Multip	licities						
$\tau_{0+}^{\#2} == 0$			1							
$\tau_{0}^{\#1} == 0$			1							
$\sigma_{0+}^{\#1} == 0$)		1							

 $\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#1\alpha} == 0$ 3

 $\tau_{1+}^{\#1\,\alpha\beta} + i k \sigma_{1+}^{\#2\,\alpha\beta} == 0 \quad 3$

 $\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$ 5

Total constraints:

 $\tau_1^{\#1}{}^{\alpha} == 0$

 $\overline{\sigma_1^{\#1\alpha}} = \sigma_1^{\#2\alpha}$

		ω_{2}^{2+1}	$f_2^{\#1}$	$\omega_{2}^{\#1} + ^{'}$		$\sigma_{0^+}^{\#1}$	τ ^{#1}	τ#2	$\sigma_0^{\sharp 1}$
rs					$\sigma_{\scriptscriptstyle 0}^{\scriptscriptstyle \#1}$ †	0	0	0	0
					$\sigma_{0}^{\#1}$ † $ au_{0}^{\#1}$ †	0	0	0	0
					$\tau_{0}^{\#2}$ †	0	0	0	0
_					$\sigma_0^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 - t_1}$
_)#1 0-	0	0	0	2-t ₁				

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

0

0

0

0

0

0

0

 $\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#2} + g_{0}^{#1} + g_{$

0

Massive a	and r	massless	spectra
-----------	-------	----------	---------

(No	
mas	
massless	
pa	
ţ.	
les)	

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$