#### ME231: Solid Mechanics-I

# Stress, Strain and Temperature relationship

# Elastic vs. Plastic Behaviour: Unloading



- If a material is subjected beyond its elastic limit (till point C) and then the load is removed; the stress and strain decreases in a linear fashion (path CD). The linear unloading path CD is parallel to the initial loading path AB.
- It should be noted that after complete unloading strain  $\epsilon$  does not return to zero, which indicates that a **permanent set or plastic deformation** of the material has taken place.
- Strain recovered during the unloading process is the **elastic strain**.

# Elastic vs. Plastic Behaviour: Reloading



- If the unloaded test specimen is reloaded under tension, stress-strain curve first follow the path DC, then it will bend to the right and connect with the curved portion of the original stress-strain diagram.
- The straight-line portion of the new loading curve is longer than the corresponding portion of the initial one.
- Thus, the proportional limit and the elastic limit have increased as a result of the strain-hardening that occurred during the earlier loading. However, since the point of rupture remains unchanged, the ductility of the specimen, which should now be measured from point D, has decreased.

# Repeated loading and fatigue





- Most engineering components experience repeated or fluctuating load
- For example,
  - A beam supporting an industrial crane can be loaded as many as two million times in 25 years (about 300 loadings per working day)
  - An automobile crankshaft is loaded about half a billion times if the automobile is driven 200,000 miles,
  - An individual turbine blade can be loaded several hundred billion times during its lifetime.
- When loadings are repeated thousands or millions of times, then the rupture can occur at a stress much lower than the static breaking strength; this phenomenon is known as **fatigue**.
- A fatigue failure is of a **brittle nature**, even for materials that are normally ductile.

#### **Endurance limit**



#### Elastic stress-strain relations

- We already developed stress-strain relationship as Hooke's law for special case of one dimensional loading.
- We will now generalize the elastic behaviour and establish the relationship between six components of stress and six components of elastic strain.
- We will restrict our self to all **linearly elastic materials**. We will also restrict our self to definitions of **strain for small deformations**.
- We will also assume materials to be **homogeneous isotropic**. An isotropic material is defined as one whose properties are **independent of orientation**.
- Materials made up of randomly oriented structural elements may be thought of as being **statistically isotropic**.
- Homogeneity implied that material properties are **independent** of position.



Statistically isotropic material

Consider an element on which only one component of normal stress acting. This normal component of stress will produce a corresponding normal component of strain. Relation between the normal stress and normal strain produced is,

$$\epsilon_x = \frac{\sigma_x}{E} \qquad \dots (6)$$



From the measurement made during the uniaxial tensile test, it is observed that there are deformations in the lateral directions also. It is found that lateral strain is a fixed fraction of the normal strain. This fixed fracture is called **Poisson's ratio** and is denoted by the symbol v. Thus, lateral strain can be defined as,

The possibility of occurrence of shear strain because of normal stress  $\sigma_x$  can be discarded because of isotropy.

Thus normal stress will produce only normal strains.



Now, if normal stress  $\sigma_y$  is considered then, normal strain in y-direction will be

$$\epsilon_y = \frac{\sigma_y}{E}, \qquad \dots (8)$$

and corresponding lateral strains will be,  $\epsilon_x = \epsilon_z = -\nu \epsilon_y = -\nu \frac{\sigma_y}{E}$ . ....(9)

Similarly for normal stress  $\sigma_z$  corresponding strains are,

$$\epsilon_z = \frac{\sigma_z}{E}$$
, and  $\epsilon_x = \epsilon_y = -\nu \epsilon_z = -\nu \frac{\sigma_z}{E}$ . ....(10)

Under the most general loading condition, shear stresses does not affect the normal strains directly when deformations are small. Also shear stresses in a direction does not affect shear strains in other directions. Hence, Hooke's law for shear stresses is

$$\gamma_{xy} = \frac{\tau_{xy}}{G}, \quad \gamma_{xz} = \frac{\tau_{xz}}{G}, \quad \text{and} \quad \gamma_{yz} = \frac{\tau_{yz}}{G}.$$
 ....(11)

where G is called the **shear modulus**.

### Multi-axial loading: Generalized Hooke's Law

Consider a case where all stress components are  $\sigma_{xx}, \sigma_{yy}, \sigma_{zz}, \tau_{xy}, \tau_{xz}$  and  $\tau_{yz}$  acting simultaneously, then within the limits of linear elasticity and small deformations stresses and strains can be related as,

These equations are known as the **generalized Hooke's law.** These equations involves three constants E, G and  $\nu$ .

#### Dilatation and Bulk Modulus



Consider a cubic material element having unit volume shown in its unstressed state. Under the stresses  $\sigma_{xx}$ ,  $\sigma_{yy}$  and  $\sigma_{zz}$  it deforms into a rectangular parallelepiped of volume v, where

$$v = (1 + \epsilon_x)(1 + \epsilon_y)(1 + \epsilon_z).$$

As strains are smaller than unity, we can write,

$$v \approx 1 + \epsilon_x + \epsilon_y + \epsilon_z$$
.

Now the change in volume is

$$e = v - 1 = \epsilon_{xx} + \epsilon_{yy} + \epsilon_{zz} \qquad \dots (13)$$

Here, e represents the change in volume per unit volume which is called dilatation of the material. Using (12) we can rewrite (13) as,



If a body is subjected to uniform hydrostatic pressure, i.e.,  $\sigma_{xx} = \sigma_{yy} = \sigma_{zz} = -p$ , then (14) yields

$$e = -\frac{3p(1-2\nu)}{E} = -\frac{p}{k},$$
 .....(15)

where  $k = \frac{E'}{3(1-2\nu)}$  is a material constant, known as **bulk modulus** of the material.

Bulk modulus is defined as the ratio of pressure to dilatation/volumetric strain (e). Note that k is always positive, as hydrostatic pressure will always decrease the volume.

Hence,  $(1-2\nu)>0$  or  $\nu<0.5$ .  $\nu$  is also positive, hence for any engineering material

$$0 < \nu < 0.5$$
.

- $\nu=0$ : Stretching is one directional without contraction in lateral direction.
- $\nu=0.5$ , i.e.,  $k=\infty$ , which means, zero dilatation or no change is volume when pressure is applied. i.e., perfectly incompressible materials.

# Structures with negative Possion's ratio



# Relationship between E, $\nu$ and G





$$\gamma_{xy} = \frac{\tau}{G}.$$
 .....(16)

Using stress transformation, let us determine the state of stress at angle orientation of 45°. We already did this as exercise and shown that the state of stress at 45° orientation of the element will be as follows.

For this element, applying generalized Hooke's law yields,

$$\epsilon_1 = \frac{\tau}{E} - \nu \frac{-\tau}{E} = \frac{(1+\nu)\tau}{E}$$

$$\epsilon_2 = \frac{-\tau}{E} - \nu \frac{\tau}{E} = -\frac{(1+\nu)\tau}{E}$$

$$\tau$$
Maximum shear strain is nothing but  $\gamma_{xy}$ , which can

Maximum shear strain is nothing but  $\gamma_{xy}$ , which can be determined as

 $\cdots \cdots (17)$ 

Now equating (16) and (18) we can write,

$$G = \frac{E}{2(1+\nu)}.$$
 ....(19)

Thus for an isotropic elastic material there are just two independent elastic constants.