Gringotts: Fast and Accurate Internal Denial-of-Wallet Detection for Serverless Computing

Junxian Shen ♀ , Han Zhang, Yantao Geng Jiawei Li, Jilong Wang, Mingwei Xu

Background and Motivation

Denial-of-Wallet Attack

Design

Evaluation

Conclusion

Emerging Serverless Computing

- Additional responsibilities
 - task deployment
 - environment configuration
 - auto-scaling

- Key features
 - pay-as-you-go
 - auto-scaling
 - short-lived

Emerging Serverless Computing

Serverless Billing Model

- Billing model = Duration + Requests + Other
- Functions can either actively (e.g., sleep) or passively (e.g., wait for I/O operations) yield their allocated CPUs during the execution
- Victims will still be charged until their functions return the response
 - Resource contention (Prolonged execution time) + Billing model = **Financial Exhaustion**!

Commercial Platforms	Duration Costs	Requests Costs (/1M requests)	Other Costs
AWS Lambda[50]	$1.667 * 10^{-5}$ /GB-s	\$0.20	Networking + Resource reserved
GCF[51]	$2.5 * 10^{-6}$ /GB-s + $1.0 * 10^{-5}$ /GHz-s	\$0.40	Networking + Deployment costs
Azure Functions[52]	$1.6 * 10^{-5}$ /GB-s	\$0.20	Networking + Storage costs
Alibaba Cloud FC[49]	$1.6384 * 10^{-5}$ /GB-s	\$0.20	Networking

Table 1: Current billing models of major commercial serverless platforms.

Background and Motivation

Denial-of-Wallet Attack

Design

Evaluation

Conclusion

Denial-of-Wallet Attack

- DoW attack
 - a variant of the Denial-of-Service (DoS) attack specifically conducted on serverless platforms
- Three key differences
 - Different focus
 - Different results
 - Different financial consequences
- External DoW attack
 - repeatedly invoking the APIs that the victims unwittingly expose
 - can be defended by existing DoS detection mechanisms
 - ingress filtering, traceback, source validation
- Internal DoW attack
 - triggering resource contentions on shared hardware

Memory Bus Locking

- Memory bus locking
 - atomic memory operation crossing the cache line boundary will triggers the briefly halt of other memory operations
- Requires no additional privileges
- Simple to implement
- Feasible
- Not fundamental contentions on shared resources
 - PCle I/O switches
 - caches
 - power management

Figure 2: Overview of memory bus locking.

Figure 3: Latency spikes caused by atomic operations.

Denial-of-Wallet Attack

- Step 1: Malicious function placement
- Step 2: Create resource contentions
- Step 3: Direct financial exhaustion

- A hypothetical victim scenario
 - a mobile backend application
 - 1536 MB memory
 - 3 million requests per month (120ms)
 - \$2.73 **→ \$326.33**

(a) Influence of the DoW attack on function execution time.

(b) Influence of the DoW attack on per-request cost.

Accurate Detection is Challenging

Errors introduced by improper sampling

Figure 6: Sample validation rate on Azure traces [80].

Figure 7: Sampling with a fixed-length window.

Accurate Detection is Challenging

- Errors introduced by improper sampling
- Errors introduced by the noisy environment

- Background and Motivation
- Denial-of-Wallet Attack
- Design
- Evaluation
- Conclusion

Overview of Gringotts

- Agent
 - monitoring the resource utilization of the target functions
- Diagnostic Program
 - performs the actual detection atop physical machines

Performance Metric Collection

Performance Metric Collection

- P1: multiplexing-related issue
 - metric collection behaviors be bound to the runtime
- P2: runtime destruction
 - dynamic library loading
- P3: changes in function behaviors
 - request-oriented nature of serverless architecture
- Negligible Performance Overhead
- Avoiding event-skid
- Easy-to-use

DoW Detection Model

Time series exception detection?

The workload necessary to finish a request is essentially independent of the prior requests completed

Multivariate distribution outlier detection

• processing time ∝ processing content

$$t_i \propto \sum_{j=1}^c W_i(m_i^j), \quad W_i(m_i^j) \propto m_i^j$$

DoW Detection Model

For training / testing sample

$$[m,t], [\overline{m},\overline{t}]$$

Training

- Multivariate linear regression
- New Gaussian distribution

$$\widehat{T}(\beta, m') = \beta_0 + \beta_1 * m'^1 + \dots + \beta_c * m'^c, \min_{\beta} ||M'\beta - T'||_2^2$$

$$x = (t', m'^1, \dots, m'^c, \varepsilon)^T \sim \mathcal{N}(\mu_r, \Sigma)$$

Testing

- Construct prediction vector
- Mahalanobis distance

$$\bar{x} = \left(t'', m''^1, \dots, m''^c, \bar{\varepsilon}\right)^T$$

$$D(\bar{X}, \mu_x) = \sqrt{(\bar{X} - \mu_x)^T \Sigma^{-1} (\bar{X} - \mu_x)} \le Threshold$$

- Background and Motivation
- Denial-of-Wallet Attack
- Design
- Evaluation
- Conclusion

Evaluation

• Is the overhead of Gringotts negligible?

 How do the parameters of the diagnostic program affect the precision of Gringotts?

 What is the overall prediction accuracy of Gringotts' detection model?

Performance Overhead

• The performance overhead of Gringotts is negligible

Influences of the Threshold

• Between the thresholds of 50 and 100, accuracy reaches its peak

End-to-end result

Gringotts retains a high level of accuracy, from 91 percent to 99 percent

- Background and Motivation
- Denial-of-Wallet Attack
- Design
- Evaluation
- Conclusion

Conclusion

Thoroughly analyze the Denial-of-Wallet attack

 Conduct a real-world DoW attack on commercial serverless platforms

 Implement Gringotts as a real system for potential DoW detection on the serverless platform