

PROGRAMAÇÃO DE COMPUTADORES I - BCC701 - 2014-01 Lista de Exercícios do Módulo 1 - Preparação para a Prova 1

Exercício 1

Apesar da existência do Sistema Internacional (SI) de Unidades, ainda existe a divergência na utilização de certas unidades, por exemplo, a unidade de temperatura. Desta forma, visando a facilidade de se estabelecer uma concordância entre as unidades, escreva um programa que leia uma temperatura em graus Centígrados e apresente a temperatura convertida em Fahrenheit. Lembrando que a fórmula de conversão é:

$$F = \frac{9.C + 160}{5}$$

onde F é a temperatura em Fahrenheit e C é a temperatura em Centígrados. A seguir, uma ilustração da entrada e saída de uma execução do programa.

Entrada

DIGITE A TEMPERATURA EM GRAUS CELSIUS: 25

Saída

TEMPERATURA EM FAHRENHEIT: 77

Exercício 2

Uma das preocupações constantes dos proprietários de veículos automotivos é a relação entre quilometragem e gasto de combustível. Essa questão é tão importante que se tornou um dos fatores de decisão por um modelo de carro em detrimento de outro na hora da compra. Pensando nisso, crie um programa que efetue o cálculo da quantidade de litros de combustível gastos em uma viagem, sabendo-se que o carro faz 12 km com um litro de combustível.

Distância = Tempo x Velocidade. Litros = Distancia / 12

O programa deverá apresentar os valores da distância percorrida e a quantidade de litros de combustível utilizados na viagem. A seguir, uma ilustração da entrada e saída de uma execução do programa.

Entrada

DIGITE O VALOR DO TEMPO GASTO NA VIAGEM: 6 DIGITE O VALOR DA VELOCIDADE MÉDIA: 80

Saída

QUANTIDADE DE LITROS DE COMBUSTÍVEL GASTA NA VIAGEM: 40

Exercício 3

Pode-se determinar o n-ésimo termo, a_n , de uma Progressão Geométrica (P. G.) a partir de outro termo qualquer (a_k) , do índice desse termo (k) e da razão (q) da P. G., através da fórmula:

$$a_n = a_k \times q^{(n-k)}$$

Escreva um programa que solicite ao usuário o valor de (n), que representa o índice do n-ésimo termo, o valor de (k), que representa o índice do k-ésimo termo, o valor do k-ésimo termo (ak) e o valor da razão (r) da P. G. Ao final, o programa imprime o valor do n-ésimo termo. A seguir, uma ilustração da entrada e saída de uma execução do programa.

Entrada

DIGITE O ÍNDICE DO TERMO QUE SERÁ CALCULADO (n): 5

DIGITE O ÍNDICE DO TERMO QUALQUER (k): 4

DIGITE O VALOR DO TERMO DE ÍNDICE K: 10

DIGITE O VALOR DA RAZÃO (r) DA P. G.: 3

Saída

N-ÉSIMO TERMO DA P. G. (an): 30

Exercício 4

A Lei da Gravitação Universal, proposta por Newton, a partir das observações de Kepler, sobre os movimentos dos corpos celestes, diz que "Dois corpos quaisquer se atraem com uma força proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distancia entre eles". Essa lei é formalizada pela seguinte expressão:

$$F = \frac{G m_1 m_2}{d_2}$$

onde:

- F: força de atração em Newtons (N)
- G: constante de gravitação universal (6,67*10⁻¹¹ Nm²/kg²)
- m₁ e m₂: massas dos corpos envolvidos, em quilos (Kg)
- d: distância entre os corpos em (m)

Escreva um programa que, leia as massas de dois corpos e a distância entre eles, e imprima a força de atração entre esses dois corpos.

Exemplo de execução do programa:

Entrada

MASSA DO CORPO 1: 40500 MASSA DO CORPO 2: 65000

DISTÂNCIA ENTRE OS CORPOS: 10

Saída

FORÇA ENCONTRADA = 0.00175588 N

Exercício 5

A figura abaixo ilustra uma aproximação para a órbita da Lua ao redor da Terra, supondo que ela seja circular no sentido anti-horário. A Lua completa uma volta ao redor da Terra em 27 dias e a distância entre a Terra e a Lua é d=400000 km. Supondo que no instante, t=0 dia, a Lua está na posição cujas coordenadas cartesianas são $x_0=d$ e $y_0=0$ km, as coordenadas x=0 da posição da Lua depois de decorrido um intervalo de tempo de t dias são dadas pelas seguintes equações:

Faça um programa que leia o valor de um intervalo de tempo ${\bf t}$ (em dias) e calcule as coordenadas ${\bf x}$ e ${\bf y}$, ${\bf em}$ ${\bf km}$, da posição da Lua depois de decorrido esse tempo. O programa deve imprimir o intervalo de tempo lido e as coordenadas calculadas, conforme mostra o exemplo a seguir. Se o valor de entrada for ${\bf t}$ = 10 dias, o programa terá o seguinte comportamento:

Entrada

TEMPO (DIAS): 10

Saída

TEMPO = 10 dias

POSIÇÃO(X, Y) = (-274497, 290949)

Exercício 6

A distância entre dois pontos (x_1, y_1) e (x_2, y_2) em um plano de coordenadas cartesianas é dada pela equação abaixo:

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

Escreva um programa para calcular a distância entre quaisquer dois pontos (x_1, y_1) e (x_2, y_2) especificados pelo usuário. Utilize boas práticas de programação em seu pro- grama. Use-o para calcular a distância entre os pontos (-3,2) e (3,-6).

Entrada

CÁLCULO DA DISTÂNCIA ENTRE DOIS PONTOS	
X1: -3	
Y1: 2	
X2: 3	
Y2: -6	

Saída

DISTÂNCIA = 10	
----------------	--

Exercício 7

A força requerida para comprimir uma mola linear é dada pela equação:

$$F = kx$$

onde F é a força em N (newton), x é a compressão da mola em m (metro), e k é a constante da mola em N/m.

A energia potencial armazenada na mola comprimida é dada pela equação

$$E = \frac{1}{2}kx^2$$

onde E é a energia em J (joule).

Escreva um programa para calcular a compressão e a energia potencial armazenada de uma mola, dadas a constante da mola e a força usada para comprimi-la.

Entrada

CÁLCULO DA ENERGIA ARMAZENADA EM UMA MOLA

CONSTANTE DA MOLA (N/M): 250

FORÇA NA MOLA (N): 30

Saída

COMPRESSÃO DA MOLA = 0.120000 m ENERGIA ARMAZENADA NA MOLA = 1.800000 J

Exercício 8

A Dilatação Linear aplica-se apenas para os corpos em estado sólido, e consiste na variação considerável de apenas uma dimensão. Como, por exemplo, em barras, cabos e fios.

Considere uma barra homogênea, de comprimento L_0 a uma temperatura inicial T_0 . Quando esta temperatura é aumentada até uma T, $(T > T_0)$, observa-se que esta barra passa a ter um comprimento L, $(L > L_0)$.

A dilatação também leva em consideração as propriedades do material com que a barra é feita, definidas pelo coeficiente de dilatação linear α .

Logo, pode-se expressar:

$$\Delta L = L_0 \times \alpha \times \Delta T$$

onde a unidade de comprimento é o metro (m), de temperatura é Celsius (°C) e do coeficiente de dilatação linear é °C⁻¹.

Escreva um programa Scilab que tenha como entrada o valor do comprimento inicial (L_0) e o valor da variação de comprimento (ΔL). O programa calcula o valor da variação da temperatura que ocasionou a dilatação linear (ΔT). Para os cálculos considere que a barra metálica é feita de alumínio, onde $\alpha = 22 \times 10^{-6} \, {}^{\circ}\!\!\!\! \, C^{-1}$.

A seguir um exemplo de execução do programa.

Execução

Dilatação Linear

Qual o comprimento inicial da barra (m)? 2

Qual o valor da variação de comprimento (m)? 0.005

Variação da temperatura: 113.63636

Exercício 9

Faça um programa para conversão de temperaturas em graus Celsius e Fahrenheit. A expressão algébrica a seguir corresponde à relação entre as duas temperaturas.

$$\frac{Tc}{5} = \frac{Tf - 32}{9}$$

Onde:

Tc = Temperatura em Celsius

Tf = Temperatura em Fahrenheit

O programa deverá mostrar uma lista de opções de conversão:

- 1- Celsius para Fahrenheit Solicita a temperatura em Celsius e imprime o resultado em Fahrenheit.
- 2- Fahrenheit para Celsius Solicita a temperatura em Fahrenheit e imprime o resultado em Celsius.

Obs: Os dados não precisam ser validados.

Exemplos de execução do programa

Execução 1:

1-Celsius para Fahrenheit

2-Fahrenheit para Celsius

Informe a opção desejada: 1

Informe a temperatura em Celsius: 36

A temperatura em Fahrenheit é 96.8

Execução 2:

1-Celsius para Fahrenheit

2-Fahrenheit para Celsius

Informe a opção desejada: 2

Informe a temperatura em Fahrenheit: 70

A temperatura em Celsius é 21.1

Exercício 10

Construa um programa para determinar se o indivíduo esta com um peso favorável. Essa situação é determinada através do IMC (Índice de Massa Corpórea), que é definida como sendo a relação entre o peso (PESO) e o quadrado da Altura (ALTURA) do indivíduo. Ou seja,

$$imc = \frac{peso}{altura^2}$$

A situação do peso é determinada pela tabela abaixo:

Condição	Situação	
IMC abaixo de 20	Abaixo do peso	
IMC de 20 até 25	Peso Normal	
IMC de 25 até 30	Sobre Peso	
IMC de 30 até 40	Obeso	
IMC de 40 e acima	Obeso Mórbido	

Exemplos de execução do programa

Execução 1:

Digite o Peso: 40 Digite a Altura: 1.7

Indice de Massa Corporea (IMC) = 13.840830

ABAIXO DO PESO

Execução 2:

Digite o Peso: 80 Digite a Altura: 0.9

Indice de Massa Corporea (IMC) = 98.76

OBESO MÓRBIDO

Exercício 11

Escreva um programa que leia o número de um planeta, um peso na Terra e imprima o valor do seu peso no planeta informado. A relação de planetas é dada a seguir juntamente com o valor das gravidades relativas á Terra:

#	Gravidade Relativa	Planeta
1	0,37	Mercúrio
2	0,88	Vênus
3	0,38	Marte
4	2,64	Júpiter
5	1,15	Saturno
6	1,17	Urano

Exemplos de execução do programa

Execução 1:

Calculo do peso de um corpo em outro planeta

- 1) Mercurio
- 2) Venus
- 3) Marte
- 4) Jupiter
- 5) Saturno
- 6) Urano

Digite o numero de um planeta: 6 Digite o peso no planeta terra: 34

O novo peso é: 39.78

Execução 2:

Calculo do peso de um corpo em outro planeta

- 1) Mercurio
- 2) Venus
- 3) Marte
- 4) Jupiter
- 5) Saturno
- 6) Urano

Digite o numero de um planeta: 2 Digite o peso no planeta terra: 10

O novo peso é: 8.8

Exercício 12

Escreva um programa que leia a nota final de um aluno referente à disciplina de Programação de Computadores I. Caso a nota seja maior ou igual a 6.0, o programa imprime uma mensagem dizendo que o aluno foi aprovado.

No caso da nota ser menor que 6.0, o programa imprime uma mensagem informando que o aluno está em exame especial, e faz uma nova leitura de nota deste aluno, referente à nota do exame especial. Caso a nota do exame especial seja maior ou igual a 6,0, o programa imprime a mensagem que o aluno foi aprovado; caso contrário, imprime que o aluno foi reprovado.

Exemplos de execução do programa:

Execução 1:

Digite a nota final: 8

Aprovado!

Execução 2:

Digite a nota final: 0

Digite a nota do exame especial: 6

Aprovado!

Execução 3:

Digite a nota final: 4

Digite a nota do exame especial: 4

Reprovado!

Exercício 13

A prefeitura de Ouro Preto contratou você para fazer um programa que calcule os valores do IPTU de imóveis da cidade, conforme o tipo do loteamento e a área dos mesmos. Deverão ser considerados apenas dois tipos de loteamento: 1 e 2. Para cada tipo de loteamento, se a área do imóvel for menor que 200 m2, efetua-se um cálculo de IPTU; se for maior ou igual a 200 m2, efetua-se outro cálculo de IPTU. A tabela abaixo mostra como o cálculo deve ser efetuado para cada caso.

Tipo de loteamento	0 < área < 200 m2	área ≥ 200 m2
1	iptu = área * 1,0	iptu = área * 1,2
2	iptu = área * 1,1	iptu = área * 1,3

Faça um programa em Scilab que leia o tipo de um loteamento e a área do mesmo e apresente o valor do IPTU de um determinado imóvel de Ouro Preto, calculado conforme a tabela acima.

Exemplos de execução do programa

Execução 1:

Informe o tipo do loteamento (1 ou 2): 1 Informe a área do imóvel em m2: 150

O valor do IPTU é 150

Execução 2:

Informe o tipo do loteamento (1 ou 2): 1 Informe a área do imóvel em m2: 300

O valor do IPTU é 390

Exercício 14

A conta de energia elétrica de consumidores residenciais de uma cidade é calculada do seguinte modo, onde o consumo é dado em unidades de kilowatts (kw):

- se o consumo é de até 500 kw, a tarifa é de R\$ 0,02 por unidade;
- se o consumo é maior que 500 kw, mas não excede 1000 kw, a tarifa é de R\$ 0,10 para os 500 primeiros kw e de R\$ 0,05 para cada kw excedente a 500;
- se o consumo é maior que 1000 kw, a tarifa é de R\$ 0,35 para os 1000 primeiros kw e de R\$ 0,10 para cada kw excedente a 1000;
- em toda conta, é cobrada uma taxa básica de serviço de R\$ 5,00, independentemente da quantidade de energia consumida.

Escreva um programa Scilab que leia o consumo de energia elétrica de uma residência e imprima a sua conta de energia, no formato indicado no exemplo abaixo. O programa deve verificar se o valor fornecido para o consumo de energia é um valor inteiro positivo e, caso contrário, terminar exibindo uma mensagem indicativa de valor inválido.

A seguir, duas ilustrações de execuções deste programa.

CÁLCULO DA CONTA DE ENERGIA ELÉTRICA

DIGITE O CONSUMO DE ENERGIA ELÉTRICA (KW): 532.6

O CONSUMO DEVE SER INTEIRO E POSITIVO!

FIM DO PROGRAMA

CÁLCULO DA CONTA DE ENERGIA ELÉTRICA

DIGITE O CONSUMO DE ENERGIA ELÉTRICA (KW): 1100

CONSUMO (KW): 1100

VALOR DA CONTA (R\$): 365.00

Exercício 15

Uma empresa de locação de veículos utiliza os seguintes valores para locação de um veículo:

- R\$ 1,00 para os primeiros 100 Km rodados;
- R\$ 0,80 para os próximos 200 Km rodados; e
- R\$ 0,70 para a quilometragem acima de 300 Km.

Escreva um programa Scilab que tenha como entrada a quilometragem percorrida por um veículo e que calcule o custo total da locação e o custo médio por quilômetro percorrido por esse veículo

A seguir, dois exemplos de execução do programa.

Execução 1

CUSTO DA LOCAÇÃO DE UM VEÍCULO QUILOMETRAGEM PERCORRIDA (KM): 84 CUSTO TOTAL DA LOCAÇÃO (R\$): 84 CUSTO MÉDIO POR Km (R\$/Km): 1

Execução 2

CUSTO DA LOCAÇÃO DE UM VEÍCULO QUILOMETRAGEM PERCORRIDA (KM): 431.6 CUSTO TOTAL DA LOCAÇÃO (R\$): 352.12 CUSTO MÉDIO POR Km (R\$/Km): 0.815848

Exercício 16

Um engenheiro precisa calcular quantos ladrilhos de cerâmica ele deve comprar para cobrir a área de uma sala (cm²). Faça um programa que leia a área da sala e o tipo de ladrilho a ser adquirido e calcule e imprima o número de ladrilhos necessários. As áreas de cada um dos tipos de ladrilhos disponíveis são dadas na tabela abaixo:

Tipo	Área (cm²) de 1 Ladrilho
1	80
2	60
3	40

Exemplo de execução do programa:

Entrada

QUAL A ÁREA DA SALA (cm^2)? 820 TIPO DO LADRILHO? 3

Saída

QUANTIDADE DE LADRILHOS NECESSÁRIOS: 20.5

Exercício 17

Um deputado propôs um projeto para alterar as regras para a aposentadoria. Por este projeto, para requerer a aposentadoria, os trabalhadores têm que combinar dois requisitos: tempo de contribuição ao INSS e idade mínima. Os trabalhadores do sexo masculino poderão aposentar-se com no mínimo 50 anos de idade e no mínimo 30 anos de contribuição. Além disto, é necessário que a soma entre o tempo de contribuição e a idade seja de no mínimo 90 anos para eles.

Faça um programa em Scilab que leia a idade e o tempo de contribuição de um trabalhador do sexo masculino e informe se o mesmo pode se aposentar. Não é necessário validar a idade e o tempo de contribuição.

Seguem dois exemplos de execução.

Exemplo 1

Informe a idade em anos: 53

Informe o tempo de contribuição em anos: 35.6

Ainda não pode aposentar-se.

Exemplo 2

Informe a idade em anos: 54

Informe o tempo de contribuição em anos: 37

A aposentaria pode ser solicitada.

Exercício 18

Exercício 19

Exercício 20