Mini Project

Emily Hendrickson (PID: A69034780)

```
# Save your input data file into your Project directory
fna.data <- "WisconsinCancer.csv"

# Complete the following code to input the data and store as wisc.df
wisc.df <- read.csv(fna.data, row.names=1)
head(wisc.df)</pre>
```

	diagnosis	radius_mean	texture_mean	<pre>perimeter_mean</pre>	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	М	12.45	15.70	82.57	477.	1
	smoothnes	s_mean compa	ctness_mean co	ncavity_mean co	oncave.po	ints_mean
842302	0	.11840	0.27760	0.3001		0.14710
842517	0	.08474	0.07864	0.0869		0.07017
84300903	0	.10960	0.15990	0.1974		0.12790
84348301	0	.14250	0.28390	0.2414		0.10520
84358402	0	.10030	0.13280	0.1980		0.10430
843786	0	.12780	0.17000	0.1578		0.08089
	symmetry_n	mean fractal	_dimension_mea	n radius_se te	kture_se	perimeter_se
842302	0.3	2419	0.0787	1 1.0950	0.9053	8.589
842517	0.	1812	0.0566	0.5435	0.7339	3.398
84300903	0.3	2069	0.0599	9 0.7456	0.7869	4.585
84348301	0.3	2597	0.0974	4 0.4956	1.1560	3.445
84358402	0.	1809	0.0588	3 0.7572	0.7813	5.438
843786	0.3	2087	0.0761	3 0.3345	0.8902	2.217
	area_se si	moothness_se	compactness_s	e concavity_se	concave.	points_se
842302	153.40	0.006399	0.0490	0.05373		0.01587
842517	74.08	0.005225	0.0130	0.01860		0.01340

84300903	94.03	0.006150	(0.04006	0.03	3830	0.02058
84348301	27.23	0.000100				0.01867	
84358402		0.011490				0.01885	
843786	27.19	0.007510		0.03345		3672	0.01337
043700							
842302	0.03003	ITactar_uii	.0.0061		25.38	texture_worst 17.33	
	0.03003				25.30	23.41	
842517			0.0035				
84300903	0.02250		0.0045		23.57		
84348301	0.05963		0.0092		14.91	26.50	
84358402	0.01756		0.0051		22.54		
843786	0.02165		0.0050		15.47	23.75	
	• –	_		oothness	_	ompactness_wor	
842302	184		19.0		0.1622	0.66	
842517	158		56.0		0.1238	0.18	
84300903	152		09.0		0.1444	0.42	45
84348301	98	.87 50	67.7		0.2098	0.86	63
84358402	152	. 20 15	75.0		0.1374	0.20	50
843786	103	.40 74	41.6		0.1791	0.52	49
	concavity_wor	rst concave	e.points	s_worst	symmetry	_worst	
842302	0.7	119		0.2654	(0.4601	
842517	0.24	416		0.1860	(0.2750	
84300903	0.49	504		0.2430	(0.3613	
84348301	0.68	369		0.2575	(0.6638	
84358402	0.40	000		0.1625	(0.2364	
843786	0.53	355		0.1741	(0.3985	
	fractal_dimen	nsion_wors	t				
842302	_	0.11890					
842517		0.0890	2				
84300903		0.08758	3				
84348301		0.1730					
84358402		0.07678					
843786		0.12440					
		· ·					

To remove the first column and avoid including diagnosis in our analysis:

```
# We can use -1 here to remove the first column
wisc.data <- wisc.df[,-1]
#wisc.data</pre>
```

And to save the first diagnosis column for later:

```
# Create diagnosis vector for later
diagnosis <- as.factor(wisc.df$diagnosis)
#diagnosis</pre>
```

Q1: How many observations are in this dataset?

```
n.observations <- nrow(wisc.data)
n.observations</pre>
```

[1] 569

Q2: How many of the observations have a malignant diagnosis?

```
n.malignant <- table(wisc.df$diagnosis)["M"]
n.malignant</pre>
```

M 212

Q3: How many variables/features in the data are suffixed with _mean?

```
n._mean <- length(grep("_mean", colnames(wisc.data)))
n._mean</pre>
```

[1] 10

PCA

```
# Check column means and standard deviations for scaling colMeans(wisc.data)
```

perimeter_mean	texture_mean	radius_mean
9.196903e+01	1.928965e+01	1.412729e+01
compactness_mean	smoothness_mean	area_mean
1.043410e-01	9.636028e-02	6.548891e+02
symmetry_mean	concave.points_mean	concavity_mean
1.811619e-01	4.891915e-02	8.879932e-02
texture_se	radius_se	fractal_dimension_mean
1.216853e+00	4.051721e-01	6.279761e-02

smoothness_se	area_se	perimeter_se
7.040979e-03	4.033708e+01	2.866059e+00
concave.points_se	concavity_se	compactness_se
1.179614e-02	3.189372e-02	2.547814e-02
radius_worst	fractal_dimension_se	symmetry_se
1.626919e+01	3.794904e-03	2.054230e-02
area_worst	perimeter_worst	texture_worst
8.805831e+02	1.072612e+02	2.567722e+01
concavity_worst	compactness_worst	smoothness_worst
2.721885e-01	2.542650e-01	1.323686e-01
<pre>fractal_dimension_worst</pre>	symmetry_worst	concave.points_worst
8.394582e-02	2.900756e-01	1.146062e-01

apply(wisc.data,2,sd)

perimeter_mean	texture_mean	radius_mean
2.429898e+01	4.301036e+00	3.524049e+00
compactness_mean	${\tt smoothness_mean}$	area_mean
5.281276e-02	1.406413e-02	3.519141e+02
symmetry_mean	concave.points_mean	concavity_mean
2.741428e-02	3.880284e-02	7.971981e-02
texture_se	radius_se	fractal_dimension_mean
5.516484e-01	2.773127e-01	7.060363e-03
smoothness_se	area_se	perimeter_se
3.002518e-03	4.549101e+01	2.021855e+00
concave.points_se	concavity_se	compactness_se
6.170285e-03	3.018606e-02	1.790818e-02
radius_worst	fractal_dimension_se	symmetry_se
4.833242e+00	2.646071e-03	8.266372e-03
area_worst	perimeter_worst	texture_worst
5.693570e+02	3.360254e+01	6.146258e+00
concavity_worst	${\tt compactness_worst}$	smoothness_worst
2.086243e-01	1.573365e-01	2.283243e-02
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
1.806127e-02	6.186747e-02	6.573234e-02

Perform PCA with scaling and look at summary

```
# Perform PCA on wisc.data by completing the following code
wisc.pr <- prcomp(wisc.data, scale = T)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                         PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                        PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                  PC20
                                                                         PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion
                       0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                         PC26
                                                                 PC27
                                                                         PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion
                       0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Q4: From your results, what proportion of the original variance is captured by the first principal components (PC1)?

0.4427

```
wisc.pr.summary <- summary(wisc.pr)
plot(wisc.pr.summary$importance[2,])</pre>
```


Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

```
sum(wisc.pr.summary$importance[3,] < .70) + 1</pre>
```

[1] 3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

```
sum(wisc.pr.summary$importance[3,] < .90) + 1</pre>
```

[1] 7

Create a biplot of the wisc.pr using the biplot() function.

```
biplot(wisc.pr)
```


Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

This plot is difficult to understand because the data points are not clearly differentiated and you can't read any of the labels. It's just a mess.

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

The plots are easy to interpret and differentiate between each sample. PC1 generally differentiates the malignant and benign samples, and PC2 delineates the diagnosis groups better than PC3. You can tell this because there is less overlap between the distribution of the red dots and the black dots in the PC1 vs PC2 plot compared to the PC1 vs PC3.

Using ggplot to make a better figure

```
# Create a data.frame for ggplot
df <- as.data.frame(wisc.pr$x)
df$diagnosis <- diagnosis

# Load the ggplot2 package
library(ggplot2)

# Make a scatter plot colored by diagnosis
ggplot(df) +
   aes(PC1, PC2, col=diagnosis) +
   geom_point()</pre>
```


Looking at the variance

```
# Calculate variance of each component
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

Proportion of Variance by PC

Another alternative


```
## ggplot based graph
#install.packages("factoextra")
library(factoextra)
```

 ${\tt Welcome!\ Want\ to\ learn\ more?\ See\ two\ factoextra-related\ books\ at\ https://goo.gl/ve3WBa}$

```
fviz_eig(wisc.pr, addlabels = TRUE)
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean? This tells us how much this original feature contributes to the first PC.

```
wisc.pr$rotation["concave.points_mean", 1]
```

[1] -0.2608538

3. Hierarchical clustering

First scale the wisc.data data and assign the result to data.scaled.

```
# Scale the wisc.data data using the "scale()" function
data.scaled <- scale(wisc.data)

# Calculate the (Euclidean) distances between all pairs of observations in the new scaled data.dist <- dist(data.scaled)

#Create a hierarchical clustering model using complete linkage. Manually specify the method a wisc.hclust <- hclust(data.dist, method = "complete")</pre>
```

Let's use the hierarchical clustering model you just created to determine a height (or distance between clusters) where a certain number of clusters exists.

Q10. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

Approximately 20. 20.24330 is closer.

```
plot(wisc.hclust)
abline(h=20, col="red", lty=2)
```

Cluster Dendrogram

data.dist hclust (*, "complete")

Selecting number of clusters.

```
#using cutree() to make 4 clusters
wisc.hclust.clusters <- cutree(wisc.hclust, k=4)

#using the table() function to compare the cluster membership to the actual diagnoses.
table(wisc.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

As we discussed in our last class videos there are number of different "methods" we can use to combine points during the hierarchical clustering procedure. These include "single", "complete", "average" and (my favorite) "ward.D2".

```
methods <- c("single", "complete", "average", "ward.D2")

for (method in methods) {
   hclust_result <- hclust(data.dist, method = method)
   clusters <- cutree(hclust_result, k = 2)
   plot(hclust_result, main = method)

   cat("\nClustering Method:", method, "\n")
   print(table(clusters, diagnosis))
}</pre>
```

single

data.dist hclust (*, "single")

```
Clustering Method: single diagnosis clusters B M 1 357 210 2 0 2
```

complete

data.dist hclust (*, "complete")

Clustering Method: complete

diagnosis

clusters B M

1 357 210

2 0 2

average

data.dist hclust (*, "average")

Clustering Method: average

diagnosis

clusters B M

1 357 209

2 0 3

ward.D2

data.dist hclust (*, "ward.D2")

Clustering Method: ward.D2

diagnosis

clusters B M

1 20 164

2 337 48

Q12. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

The ward.D2 method gives my favorite result because it produces the best delineation between the groups while the other methods are less effective. The complete method provides groups, although they are not as differentiated. Having these groups that are well defined is important for modeling and predicting benign vs malignant tumors, so the ward.D2 method is my favorite to use for this case.

4. Combining methods

Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
dist_matrix <- dist(wisc.pr$x[,1:7])
wisc.pr.hclust <- hclust(dist_matrix, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

Cluster Dendrogram

dist_matrix hclust (*, "ward.D2")

```
grps <- cutree(wisc.pr.hclust, k=2)
table(grps)</pre>
```

grps 1 2 216 353

```
table(grps, diagnosis)
```

diagnosis grps B M 1 28 188 2 329 24

```
plot(wisc.pr$x[,1:2], col=grps)
```


plot(wisc.pr\$x[,1:2], col=diagnosis)


```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

# Plot using our re-ordered factor
plot(wisc.pr$x[,1:2], col=g)</pre>
```


 $Cut this \ hierarchical \ clustering \ model \ into \ 2 \ clusters \ and \ assign \ the \ results \ to \ wisc.pr.hclust.clusters.$

```
wisc.pr.hclust.clusters <- cutree(wisc.pr.hclust, k=2)
table(wisc.pr.hclust.clusters, diagnosis)</pre>
```

```
diagnosis
wisc.pr.hclust.clusters B M
1 28 188
2 329 24
```

```
#FalsePositives
28/188 *100
```

[1] 14.89362

```
#FalseNegatives
24/329 *100
```

[1] 7.294833

Q13. How well does the newly created model with four clusters separate out the two diagnoses?

The model separates most of the diagnoses, but not all are correctly assigned. The "false positive" rate of a B in the M cluster is 14% and the "false negative" rate of an M in the B cluster is 7%. Both seem very high and not ideal.

Q14. How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

```
table(wisc.hclust.clusters, diagnosis)
```

```
diagnosis
wisc.hclust.clusters B M
1 12 165
2 2 5
3 343 40
4 0 2
```

```
#FalsePositives
12/165 *100
```

[1] 7.272727

```
#FalseNegatives
40/343 *100
```

[1] 11.66181

The clustering in the previous sections had a lower rate of benign samples in the predominantly malignant sample cluster but a higher rate of malignant samples in the predominantly benign sample cluster. Although overall the clustering may be better, the rate of false negatives (which is arguably a worse outcome) is much higher.

6. Prediction

We will use the predict() function that will take our PCA model from before and new cancer cell data and project that data onto our PCA space.

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                           PC7
     2.576616 -3.135913
                         1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
           PC8
                     PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
                                 PC17
                                             PC18
                                                         PC19
          PC15
                     PC16
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
                     PC22
                                 PC23
                                            PC24
                                                        PC25
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                                                   PC30
            PC27
                         PC28
                                      PC29
[1,]
     0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

```
plot(wisc.pr$x[,1:2], col=g)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```


Q16. Which of these new patients should we prioritize for follow up based on your results?

Sample 2 should be prioritized.