

### HEXFET® Power MOSFET

| V <sub>DS</sub>                                            | 60   | V                  |
|------------------------------------------------------------|------|--------------------|
| V <sub>GS Max</sub>                                        | ± 16 | ٧                  |
| <b>R</b> <sub>DS(on) max</sub><br>(@V <sub>GS</sub> = 10V) | 480  | $\mathbf{m}\Omega$ |
| $R_{DS(on) max}$<br>(@V <sub>GS</sub> = 4.5V)              | 640  | mΩ                 |





### Application(s)

• Load/ System Switch

### **Features and Benefits**

#### **Features**

| Industry-standard pinout                                     |
|--------------------------------------------------------------|
| Compatible with existing Surface Mount Techniques            |
| RoHS compliant containing no lead, no bromide and no halogen |
| MSL1                                                         |

### **Benefits**

results in

| Multi-vendor compatibility |
|----------------------------|
| Easier manufacturing       |
| Environmentally friendly   |
| Increased reliability      |

**Absolute Maximum Ratings** 

| Symbol                                                          | Parameter                                       | Max.         | Units |
|-----------------------------------------------------------------|-------------------------------------------------|--------------|-------|
| V <sub>DS</sub>                                                 | Drain-Source Voltage                            | 60           | V     |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C                          | Continuous Drain Current, V <sub>GS</sub> @ 10V | 1.2          |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C                          | Continuous Drain Current, V <sub>GS</sub> @ 10V | 0.93         | Α     |
| I <sub>DM</sub>                                                 | Pulsed Drain Current                            | 4.8          | 1     |
| P <sub>D</sub> @T <sub>A</sub> = 25°C                           | Maximum Power Dissipation                       | 1.25         | 10/   |
| P <sub>D</sub> @T <sub>A</sub> = 70°C Maximum Power Dissipation |                                                 | 0.80         | 1 W   |
| Linear Derating Factor                                          |                                                 | 0.01         | W/°C  |
| V <sub>GS</sub>                                                 | Gate-to-Source Voltage                          | ± 16         | V     |
| T <sub>J,</sub> T <sub>STG</sub>                                | Junction and Storage Temperature Range          | -55 to + 150 | °C    |

### **Thermal Resistance**

| Symbol          | Parameter                        | Тур. | Max. | Units |
|-----------------|----------------------------------|------|------|-------|
| $R_{\theta JA}$ | Junction-to-Ambient <sup>③</sup> |      | 100  | °C/W  |
| $R_{\theta JA}$ | Junction-to-Ambient (t<10s) ®    |      | 99   | C/VV  |

### ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Notes ① through ④ are on page 10 www.irf.com

## Electric Characteristics @ $T_J = 25$ °C (unless otherwise specified)

| Symbol                          | Parameter                            | Min. | Тур. | Max. | Units | Conditions                                        |
|---------------------------------|--------------------------------------|------|------|------|-------|---------------------------------------------------|
| V <sub>(BR)DSS</sub>            | Drain-to-Source Breakdown Voltage    | 60   |      |      | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta V_{(BR)DSS}/\Delta T_J$ | Breakdown Voltage Temp. Coefficient  |      | 0.06 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = 5.0mA         |
| D                               | Static Drain-to-Source On-Resistance |      | 356  | 480  | mΩ    | V <sub>GS</sub> = 10V, I <sub>D</sub> = 1.2A ②    |
| R <sub>DS(on)</sub>             | Static Diam-to-Source On-nesistance  |      | 475  | 640  | 11122 | $V_{GS} = 4.5V, I_D = 0.96A$ ②                    |
| V <sub>GS(th)</sub>             | Gate Threshold Voltage               | 1.0  |      | 2.5  | V     | $V_{DS} = V_{GS}$ , $I_D = 25\mu A$               |
| I <sub>DSS</sub>                | Drain-to-Source Leakage Current      |      |      | 20   | μA    | $V_{DS} = 60V$ , $V_{GS} = 0V$                    |
|                                 | Diani-to-Source Leakage Current      |      |      | 150  | μΑ    | $V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>                | Gate-to-Source Forward Leakage       |      |      | 100  | nA    | V <sub>GS</sub> = 16V                             |
|                                 | Gate-to-Source Reverse Leakage       |      | _    | -100 |       | $V_{GS} = -16V$                                   |
| $R_{G}$                         | Internal Gate Resistance             |      | 7.5  |      | Ω     |                                                   |
| gfs                             | Forward Transconductance             | 1.6  | _    |      | S     | $V_{DS} = 25V, I_D = 1.2A$                        |
| $Q_g$                           | Total Gate Charge                    |      | 0.67 |      |       | I <sub>D</sub> = 1.2A                             |
| $Q_{gs}$                        | Gate-to-Source Charge                |      | 0.18 |      | nC    | $V_{DS} = 30V$                                    |
| $Q_{gd}$                        | Gate-to-Drain ("Miller") Charge      |      | 0.40 |      |       | V <sub>GS</sub> = 4.5V ②                          |
| $t_{d(on)}$                     | Turn-On Delay Time                   |      | 4.9  |      |       | V <sub>DD</sub> = 30V <sup>②</sup>                |
| t <sub>r</sub>                  | Rise Time                            |      | 3.8  |      |       | I <sub>D</sub> = 1.2A                             |
| $t_{d(off)}$                    | Turn-Off Delay Time                  |      | 3.7  |      | ns    | $R_G = 6.8\Omega$                                 |
| t <sub>f</sub>                  | Fall Time                            |      | 2.8  |      |       | V <sub>GS</sub> = 4.5V                            |
| C <sub>iss</sub>                | Input Capacitance                    |      | 64   |      |       | V <sub>GS</sub> = 0V                              |
| Coss                            | Output Capacitance                   |      | 13   |      | pF    | V <sub>DS</sub> = 25V                             |
| C <sub>rss</sub>                | Reverse Transfer Capacitance         |      | 6.6  |      |       | f = 1.0MHz                                        |

### **Source - Drain Ratings and Characteristics**

| Symbol          | Parameter                              | Min. | Тур. | Max. | Units | Conditions                                           |
|-----------------|----------------------------------------|------|------|------|-------|------------------------------------------------------|
| I <sub>S</sub>  | Continuous Source Current (Body Diode) |      |      | 1.2  |       | MOSFET symbol showing the                            |
| I <sub>SM</sub> | Pulsed Source Current (Body Diode) ①   |      |      | 4.8  | A     | integral reverse p-n junction diode.                 |
| $V_{SD}$        | Diode Forward Voltage                  |      |      | 1.2  | V     | $T_J = 25^{\circ}C$ , $I_S = 1.2A$ , $V_{GS} = 0V$ ② |
| t <sub>rr</sub> | Reverse Recovery Time                  |      | 14   | 21   | ns    | $T_J = 25^{\circ}C$ , $V_R = 30V$ , $I_F=1.3A$       |
| Q <sub>rr</sub> | Reverse Recovery Charge                |      | 8.3  | 12   | nC    | di/dt = 100A/µs ②                                    |

# International TOR Rectifier

## IRLML2060TRPbF



Fig 1. Typical Output Characteristics



Fig 2. Typical Output Characteristics



Fig 3. Typical Transfer Characteristics



**Fig 4.** Normalized On-Resistance vs. Temperature

International

TOR Rectifier



**Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage



**Fig 6.** Typical Gate Charge vs. Gate-to-Source Voltage



**Fig 7.** Typical Source-Drain Diode Forward Voltage



Fig 8. Maximum Safe Operating Area

# International TOR Rectifier

## IRLML2060TRPbF



**Fig 9.** Maximum Drain Current vs. Ambient Temperature



Fig 10a. Switching Time Test Circuit



Fig 10b. Switching Time Waveforms



Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient



**Fig 12.** Typical On-Resistance vs. Gate Voltage



**Fig 13.** Typical On-Resistance vs. Drain Current



Fig 14a. Basic Gate Charge Waveform



Fig 14b. Gate Charge Test Circuit

# International IOR Rectifier

# IRLML2060TRPbF



**Fig 15.** Typical Threshold Voltage vs. Junction Temperature

Fig 16. Typical Power vs. Time



### Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)



| DIMENSIONS |             |      |        |       |  |
|------------|-------------|------|--------|-------|--|
| SYMBOL     | MILLIMETERS |      | INCHES |       |  |
| STIVIBOL   | MIN         | MAX  | MIN    | MAX   |  |
| Α          | 0.89        | 1.12 | 0.035  | 0.044 |  |
| A1         | 0.01        | 0.10 | 0.0004 | 0.004 |  |
| A2         | 0.88        | 1.02 | 0.035  | 0.040 |  |
| b          | 0.30        | 0.50 | 0.012  | 0.020 |  |
| С          | 0.08        | 0.20 | 0.003  | 0.008 |  |
| D          | 2.80        | 3.04 | 0.110  | 0.120 |  |
| Е          | 2.10        | 2.64 | 0.083  | 0.104 |  |
| E1         | 1.20        | 1.40 | 0.047  | 0.055 |  |
| е          | 0.95        | BSC  | 0.037  | BSC   |  |
| e1         | 1.90        | BSC  | 0.075  | BSC   |  |
| L          | 0.40        | 0.60 | 0.016  | 0.024 |  |
| L1         | 0.54        | REF  | 0.021  | REF   |  |
| L2         | 0.25        | BSC  | 0.010  | BSC   |  |
| 0          | 0           | 8    | 0      | 8     |  |





- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- 1. DIMENSIONING & TOLEPANCING PER ANSI Y14.5M-1994
  2. DIMENSIONS ARE SHOWN IN MULIMETERS (INCHES).
  3. CONTROLLING DIMENSION: MILLIMETER

  ADATUM PLANE HIS LOCATED AT THE MICL PARTITING LINE.

  ADATUM A AND B TO BE DETERMINED AT DATUM PLANE H.

  AD IMENSIONS DAND E1 ARE MEASURED AT DATUM PLANE I DIMENSIONS DOES

  NOT INCLUDE MOLD PHOTRUSIONS OR INTERLEAD PLASH, MOLD PROTRUSIONS. OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.
  DIMENSION L IS THE LEAD LENGTH FOR SOLDERING TO A SUBSTRATE. 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

### Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001



Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

### Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)



Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

| Orderable part number | Package Type    | Standard Pack |          | Standard Pack |  | Note |
|-----------------------|-----------------|---------------|----------|---------------|--|------|
|                       |                 | Form          | Quantity |               |  |      |
| IRLML2060TRPbF        | Micro3 (SOT-23) | Tape and Reel | 3000     |               |  |      |

#### Qualification information<sup>†</sup>

| Qualification level        | Consumer <sup>††</sup><br>(per JE DE C JE S D47F <sup>†††</sup> guidelines ) |                                                     |  |
|----------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|--|
| Moisture Sensitivity Level | Micro3 (SOT-23)                                                              | MS L1 (per IP C/JE DE C J-STD-020D <sup>†††</sup> ) |  |
| RoHS compliant             | Yes                                                                          |                                                     |  |

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

#### Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width  $\leq$  400 $\mu$ s; duty cycle  $\leq$  2%.
- ③ Surface mounted on 1 in square Cu board.
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.



IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

170 1 dx. (010) 202 7000

Visit us at www.irf.com for sales contact information. 03/12