Técnicas de Amostragem - 2022 Lista de Exercícios

Kaique Matias de Andrade Roberto

2 de setembro de 2022

Estes são os Exercícios recomendados para a disciplina. Afim de que você possa extrair o maior proveito possível destes exercícios tenha em mente as seguintes observações:

- esta é a **única** lista de exercícios da disciplina toda;
- esta lista **contém** os exercícios que resolveremos em aula;
- as Seções estão nomeadas de acordo com as aulas (por exemplo, na Seção 10 estão os exercícios recomendados para a Aula 10);
- os exercícios que aparecem em aula estão marcados com (A);
- os exercícios com (*) ou (**) são exercícios que consideramos mais desafiadores.

O Tipos de Variáveis, Estatística Descritiva, Principais Variáveis Aleatórias, Amostragem

Exercício 0.1. Qual é a diferença entre variáveis qualitativas e quantitativas?

Exercício 0.2. Classificar as variáveis a seguir:

a - Faturamento da empresa; e - Distância percorrida em km;

b - Ranking de desempenho: bom, médio, f - Casado: sim ou não;

g - Localização: Barueri ou Santana de c - Número de carros vendidos; Parnaíba;

d - Faixa de renda; h - Municípios do Grande ABC.

Exercício 0.3 (A). Considere a tabela abaixo:

Nome	Idade (anos)	Peso (kg)	Altura (m)
Mariana	48	62	1,60
Luiz	54	84	1,76
Roberta	41	56	1,62
Leonardo	30	82	1,90
Melissa	28	54	1,68
Sandro	50	70	1,72

Calcule a média, variância e desvio-padrão das variáveis Idade, Peso e Altura.

Exercício 0.4 (Resumo Estatística Descritiva). Faça um Resumo das Seções 2.1-2.4 do Livro [2].

Exercício 0.5 (Resumo Probabilidade). Faça um Resumo das Seções 4.1-4.7 do Livro [2] ou do Capítulo 5 do Livro [3].

Exercício 0.6. Defina o conceito de variável aleatória. Você consegue descrever ao menos três variáveis aleatórias dentro do escopo da sua área de atuação?

Exercício 0.7 (Resumo Variáveis Aleatórias). Faça um Resumo do Capítulo 5 do Livro [2].

Exercício 0.8. Faça uma tabela com a esperança, variância e distribuição acumulada das principais distribuições (vide slides 60 e 61 da Aula-00).

Exercício 0.9 (Resumo Noções Básicas de Amostragem). Faça um Resumo do Capítulo 1 do Livro [1].

Exercício 0.10. Apresente uma questão ligada à sua área de interesse e que poderia ser respondida por um levantamento amostral. Discuta brevemente como realizar esse levantamento tendo como roteiro o Apêndice B do Livro [1].

1 Definições e Notações Básicas I: População, Amostra e Planejamento Amostral

Exercício 1.1. Para a situação que você apresentou no Exercício 0.10, descreva com as suas palavras a população, o elemento populacional e as característica de interesse.

Exercício 1.2 (*). Implemente em Python funções para calcular total, média, variância, covariância, correlação e razão populacionais.

Exercício 1.3 (A). Seja $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo"). Considere as amostras

$$\mathbf{s}_1 = (1, 2)$$

 $\mathbf{s}_2 = (2, 1)$
 $\mathbf{s}_3 = (1, 1, 3)$
 $\mathbf{s}_4 = (3)$
 $\mathbf{s}_5 = (2, 2, 1, 3, 2)$

Calcule $f_i(s_j)$ e $\delta_i(s_j)$.

Exercício 1.4 (A). Seja $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo"). Considere as amostras

$$\mathbf{s}_1 = (1, 2)$$
 $\mathbf{s}_2 = (2, 1)$
 $\mathbf{s}_3 = (1, 1, 3)$
 $\mathbf{s}_4 = (3)$
 $\mathbf{s}_5 = (2, 2, 1, 3, 2)$

Calcule $n(s_i)$ e $\nu(s_i)$.

Exercício 1.5 (A). Seja $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo"). Descreva $\mathcal{S}_2(\mathcal{U})$ e $\mathcal{S}_3(\mathcal{U})$.

Exercício 1.6 (**). Mostre que, para uma população $\mathcal{U} = \{1, ..., N\}$, o número de amostras ordenadas de tamanho n, com reposição, é N^n , enquanto que, sem reposição, é dado pelo coeficiente binomial $\binom{N}{n}$.

Exercício 1.7 (A). Considere $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo") e a seguinte regra de sorteio:

- i sorteia-se com igual probabilidade um elemento de \mathcal{U} , e anota-se a unidade sorteada;
- ii este elemento é devolvido à população e sorteia-se um segundo elemento do mesmo modo.

Mostre que este é o mesmo plano amostral do Plano A (slide 45 da Aula-01).

Exercício 1.8 (A). Seja $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo"). Considere a regra "Sorteie uma unidade após a outra, repondo a unidade sorteada antes de sortear a seguinte, até o surgimento da unidade 2 (i = 2) ou até que 3 unidades tenham sido sorteadas". Mostre que esta regra é equivalente ao Plano Amostral C (slide 47 da Aula-01).

Exercício 1.9. Considere $\mathcal{U} = \{1, 2, 3\}$ (vide planilha "aula-01-exemplo") e a seguinte regra:

- i sorteia-se um elemento $\mathcal U$ com probabilidade proporcional ao número de trabalhadores;
- ii sem repor o domicílio selecionado, sorteia-se um segundo também com probabilidade proporcional ao número de trabalhadores.

Mostre que esta regra é equivalente ao Plano Amostral D (slide 48 da Aula-01).

Exercício 1.10. Dê exemplos de amostras nos planos AAS, AE, AC, A2E e AS (se quiser, use os dados na planilha "dados-unificados" como inspiração).

2 Definições e Notações Básicas II: Estatísticas, Distribuições Amostrais, Estimadores

Referências

- [1] Heleno Bolfarine and Wilton de Oliveira Bussab. *Elementos de amostragem*. Editora Blucher, 2005.
- [2] Luiz Paulo Fávero and Patrícia Belfiore. Manual de análise de dados: estatística e modelagem multivariada com Excel(R), SPSS(R) e Stata(R). Elsevier Brasil, 2017.
- [3] Pedro A Morettin and Wilton O Bussab. Estatística básica. Saraiva Educação, 2010.