### Optimization for data science

#### **Stochastic Gradient Descent**

R. Flamary

Master Data Science, Institut Polytechnique de Paris

October 15, 2024















## Full course overview

- 1. Introduction to optimization for data science
  - 1.1 ML optimization problems and linear algebra recap
  - 1.2 Optimization problems and their properties (Convexity, smoothness)
- 2. Smooth optimization: Gradient descent
  - 2.1 First order algorithms, convergence for smooth and strongly convex functions
- 3. Smooth Optimization : Quadratic problems
  - 3.1 Solvers for quadratic problems, conjugate gradient
  - 3.2 Linesearch methods
- 4. Non-smooth Optimization : Proximal methods
  - 4.1 Proximal operator and proximal algorithms4.2 Lab 1: Lasso and group Lasso
- 5. Stochastic Gradient Descent
- 5.1 SGD and variance reduction techniques
  - 5.2 Lab 2: SGD for Logistic regression
- 6. Standard formulation of constrained optimization problems
- 6.1 LP, QP and Mixed Integer Programming
- 7. Coordinate descent
- 7.1 Algorithms and Labs
- 8. Newton and quasi-newton methods
  8.1 Second order methods and Labs
- 9. Beyond convex optimization
  - 9.1 Nonconvex reg., Frank-Wolfe, DC programming, autodiff

### **Current course overview**

| 1. Introduction to optimization                              | 4  |
|--------------------------------------------------------------|----|
| 2. Smooth optimization : Gradient descent                    | 4  |
| 3. Smooth Optimization: Quadratic problems                   | 4  |
| 4. Non-smooth optimization : Proximal methods                | 4  |
| 5. Stochastic Gradient Descent                               | 4  |
| 5.1 Machine learning a.k.a minimizing a finite sum           | 4  |
| 5.2 SGD: Optimizing with gradient approximations             | 5  |
| 5.2.1 SGD with fixed and decreasing step size                |    |
| 5.2.2 SGD with averaging                                     |    |
| 5.3 Stochastic Variance Reduction methods                    | 27 |
| 5.3.1 Controling the variance with covariates                |    |
| 5.3.2 Stochastic Variance reduced method gradient (SVRG)     |    |
| 5.3.3 Memory methods : SAG and SAGA                          |    |
| 5.4 Conclusion                                               | 39 |
| 5.4.1 SGD in machine learning                                |    |
| 5.4.2 Comparison of methods                                  |    |
| 6. Standard formulation of constrained optimization problems | 42 |
| 7. Coordinate descent                                        | 42 |
| 8. Newton and quasi-newton methods                           | 42 |
| 9. Beyond convex optimization                                | 42 |

## Machine learning a.k.a minimizing a finite sum

### Optimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \qquad F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{w})$$
 (1)

- Standard ML problem (supervised or unsupervised learning).
- d is the number of parameter in the model, n the number of training samples.
- Can handle both ERM and regularized learning:
  - ► Empirical Risk Minimization :  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$ ► Regularization :  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$
- Gradient of F is:  $\nabla_{\mathbf{w}} F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\mathbf{w}} f_i(\mathbf{w})$

#### Large sale optimization

- Both n and d can be very large.
- Computation of F and  $\nabla F$  is O(nd).
- Dataset may not fit in memory.
- ⇒ Approximate the gradient: Stochastic Gradient Descent.

### Stochastic Gradient Descent

### Stochastic Gradient Descent (SGD) algorithm

- 1: Initialize  $\mathbf{x}^{(0)}$
- 2: **for**  $k = 0, 1, 2, \dots$  **do**
- 3:  $i^{(k)} \leftarrow \text{randomly pick an index } i \in \{1, \dots, n\}$
- 4:  $\mathbf{d}^{(k)} \leftarrow -\nabla_{\mathbf{x}} f_{i(k)}(\mathbf{x}^{(k)})$
- $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)}$
- 6: end for
  - $\mathbf{d}^{(k)} \in \mathbb{R}^n$  is an approximation of the full gradient on one sample.
- ▶ Iteration complexity is O(d) VS O(nd) for GD.
- ▶ With very small step size, SGD (over an epoch) is very close to GD.
- Step size strategies:

  - Fixed step size : ρ<sup>(k)</sup> = ρ
     Decreasing step size : ρ<sup>(k)</sup> = 1/√k



# Convergence of SGD with fixed step size (1)

#### **Assumptions**

- ▶ F is  $\mu$ -strongly convex.
- ▶  $F = \frac{1}{n} \sum_{i} f_i$  has Expected Bounded Stochastic Gradients (EBSG):

$$\mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$
 (2)

#### Convergence of fixed step SGD on strongly convex functions

If F is  $\mu$ -strongly convex and  $F=\frac{1}{n}\sum_i f_i$  has Expected Bounded Stochastic Gradients, then for  $\rho<\frac{1}{\mu}$  we have for fixed step SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le (1 - \rho\mu)^{k} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{\rho}{\mu} B^{2}$$
(3)

- Fast (exponential) convergence of the first term.
- ▶ Bias term  $\frac{\rho}{\mu}B^2$  proportional to the step size!

# Proof of convergence of fixed step SGD (1)

$$\begin{split} \|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^2 &= \|\mathbf{x}^{(k)} - \rho \nabla f_{i^{(k)}}(\mathbf{x}^{(k)}) - \mathbf{x}^{\star}\|^2 \\ &\leq \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^2 - 2\rho \nabla f_{i^{(k)}}^{\top}(\mathbf{x}^{(k)} - \mathbf{x}^{\star}) + \rho^2 \|\nabla f_{i^{(k)}}(\mathbf{x}^{(k)})\|^2 \end{split}$$

By taking the expectation w.r.t.  $i^{(k)}$  we get:

$$\mathbb{E}_{i^{(k)} \sim \frac{1}{n}} [\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^{2}] \leq \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2} - 2\rho \nabla F(\mathbf{x}^{(k)})^{\top} (\mathbf{x}^{(k)} - \mathbf{x}^{\star}) + \rho^{2} B^{2}$$
$$\leq (1 - \rho\mu) \|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2} + \rho^{2} B^{2}$$

Now taking the total expectation w.r.t. all steps

$$\begin{split} \mathbb{E}[\|\mathbf{x}^{(k+1)} - \mathbf{x}^{\star}\|^{2}] &\leq (1 - \rho\mu)\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] + \rho^{2}B^{2} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \rho^{2}B^{2}\sum_{i=0}^{k}(1 - \rho\mu)^{i} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \rho^{2}B^{2}\frac{1 - (1 - \rho\mu)^{i+1}}{1 - (1 - \rho\mu)} \\ &\leq (1 - \rho\mu)^{k}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{\rho}{B}B^{2} \end{split}$$

 $<sup>^1 \</sup>text{Unbiased gradient } \nabla F(\mathbf{x}^{(k)}) = \mathbb{E}_{i \sim \frac{1}{2}} \nabla f_i(\mathbf{x}^{(k)}) \text{ and } \mathbb{E}_{i \sim \frac{1}{2}} [\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \leq B^2$ 

<sup>&</sup>lt;sup>2</sup>Strong convexity  $\nabla F(\mathbf{x}^{(k)}) \mathcal{I}(\mathbf{x}^{(k)}) \mathcal{$ 

# Assumptions for convergence of SGD

### **Expected Bounded Stochastic Gradients (EBSG)**

$$\mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

#### **Exercise 1: Linear regression**

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) =$$

3. Compute  $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ 

$$\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] =$$

- **4.** What is  $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ ?
- 5. Is Quadratic loss EBSG?

# Assumptions for convergence of SGD

### **Expected Bounded Stochastic Gradients (EBSG)**

$$\mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

#### **Exercise 1: Linear regression**

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i$$

**3.** Compute  $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ 

$$\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] =$$

- **4.** What is  $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ ?
- 5. Is Quadratic loss EBSG?

## Assumptions for convergence of SGD

**Expected Bounded Stochastic Gradients (EBSG)** 

$$\mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^{(k)})\|^2] \le B^2, \quad \forall k$$

#### **Exercise 1: Linear regression**

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i$$

**3.** Compute  $\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ 

$$\mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2] = \frac{4}{n} \sum_i \|\mathbf{x}_i(y_i - \mathbf{x}^\top \mathbf{w})\|^2$$
$$= \frac{4}{n} \sum_i \|\mathbf{x}_i\|^2 (y_i - \mathbf{x}_i^\top \mathbf{w})^2$$
$$= \frac{4}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{\text{diag}(\|\mathbf{x}_i\|)^{-1}}^2$$

- **4.** What is  $\max_{\mathbf{w}} \mathbb{E}[\|\nabla f_i(\mathbf{w})\|^2]$ ?
- 5. Is Quadratic loss EBSG?

# Convergence of SGD with fixed step size (2)

#### **Assumptions**

- ▶ F is  $\mu$ -strongly convex.
- $ightharpoonup F = rac{1}{n} \sum_i f_i$  and each  $f_i$  is  $L_i$ -smooth.
- ► Definition: **Gradient noise**

$$\sigma^2 = \mathbb{E}_{i \sim \frac{1}{n}}[\|\nabla f_i(\mathbf{x}^*)\|^2] \tag{4}$$

### Convergence of fixed step SGD on strongly convex and smooth functions

If F is  $\mu$ -strongly convex and  $F=\frac{1}{n}\sum_i f_i$  with  $\forall i,\ f_i$  is  $L_i$ -smooth and  $L_{max}=\max_i L_i$ , then for  $\rho\leq \frac{1}{2L_{max}}$  we have for fixed step SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le (1 - \rho\mu)^{k} \|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2} + \frac{2\rho}{\mu}\sigma^{2}$$
 (5)

- Fast (exponential) convergence of the first term.
- ▶ Bias term  $\frac{\rho}{\mu}\sigma^2$  proportional to the step size but now only on solution.
- ▶ Homework exercise on moodle, proof available in [Gower et al., 2019].

## **Example optimization problem**





#### 1D Logistic regression

$$\min_{w,b} \quad \sum_{i=1}^{n} \log(1 + \exp(-y_i(wx_i + b))) + \lambda \frac{w^2}{2}$$

- ▶ Linear prediction model : f(x) = wx + b
- ▶ Training data  $(x_i, y_i)$  : (1, -1), (2, -1), (3, 1), (4, 1).
- ▶ Problem solution for  $\lambda=1$  :  $\mathbf{x}^*=[w^\star,b^\star]=[0.96,-2.40]$
- ▶ Initialization :  $\mathbf{x}^{(0)} = [1, -0.5].$

## **Example of constant step SGD**





#### Discussion

- ▶ SGD VS GD (as a function of iterations and nb of grad. computation).
- Fixed step size :  $\rho^{(k)} = 0.01$  and  $\rho^{(k)} = 0.02$
- ▶ One GD iter  $\equiv 4$  SGD iter (since n = 4).
- ▶ Complexity O(d) per iteration but not convergence (bias).

## **Example of constant step SGD**





#### Discussion

- ▶ SGD VS GD (as a function of iterations and nb of grad. computation).
- Fixed step size :  $\rho^{(k)} = 0.01$  and  $\rho^{(k)} = 0.02$
- ▶ One GD iter  $\equiv 4$  SGD iter (since n = 4).
- ▶ Complexity O(d) per iteration but not convergence (bias).

### Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$ .

$$\nabla f_i(\mathbf{w}) =$$

**3.** Compute  $\nabla^2 f_i(\mathbf{w})$ .

$$abla^2 f_i(\mathbf{w}) =$$

4. Find  $L_i$ .

$$\|\nabla^2 f_i(\mathbf{w})\| =$$

5. Fin  $L_{max} =$ .

### Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$ .

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i + 2\lambda \mathbf{w}$$

**3.** Compute  $\nabla^2 f_i(\mathbf{w})$ .

$$abla^2 f_i(\mathbf{w}) =$$

4. Find  $L_i$ .

$$\|\nabla^2 f_i(\mathbf{w})\| =$$

5. Fin  $L_{max} =$ .

### Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$ .

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i + 2\lambda \mathbf{w}$$

3. Compute  $\nabla^2 f_i(\mathbf{w})$ .

$$\nabla^2 f_i(\mathbf{w}) = 2\mathbf{x}_i \mathbf{x}_i^\top + 2\lambda \mathbf{I}$$

4. Find  $L_i$ .

$$\|\nabla^2 f_i(\mathbf{w})\| =$$

5. Fin  $L_{max} =$ .

### Ridge regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = (y_i \mathbf{x}_i^T \mathbf{w})^2 + \lambda ||\mathbf{w}||^2$ .
- **2.** Compute  $\nabla f_i(\mathbf{w})$ .

$$\nabla f_i(\mathbf{w}) = -2(y_i - \mathbf{x}_i^T \mathbf{w}) \mathbf{x}_i + 2\lambda \mathbf{w}$$

3. Compute  $\nabla^2 f_i(\mathbf{w})$ .

$$\nabla^2 f_i(\mathbf{w}) = 2\mathbf{x}_i \mathbf{x}_i^\top + 2\lambda \mathbf{I}$$

4. Find  $L_i$ .

$$\|\nabla^2 f_i(\mathbf{w})\| = \le 2\|\mathbf{x}_i\|^2 + 2\lambda = L_i$$

**5.** Fin  $L_{max} = 2(\lambda + \max_i ||\mathbf{x}_i||^2)$ .

### Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})) + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^\top \mathbf{w})) + \lambda ||\mathbf{w}||^2$ .
- 2. Compute  $\nabla f_i(\mathbf{w}) =$
- 3. Compute  $\nabla^2 f_i(\mathbf{w})$

$$\nabla^2 f_i(\mathbf{w}) =$$

4. Find  $L_i$ .

$$\nabla^2 f_i(\mathbf{w}) \preceq \qquad \qquad (\text{hint } e^t/(1+e^t)^2 \leq \frac{1}{4})$$

5. Find  $L_{max} =$ 

Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})) + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})) + \lambda ||\mathbf{w}||^2$ .
- 2. Compute  $\nabla f_i(\mathbf{w}) = \frac{-y_i \mathbf{x}_i}{1 + \exp(y_i \mathbf{x}_i^\top \mathbf{w})} + 2\lambda \mathbf{w}$
- 3. Compute  $\nabla^2 f_i(\mathbf{w})$

$$abla^2 f_i(\mathbf{w}) =$$

4. Find  $L_i$ .

$$\nabla^2 f_i(\mathbf{w}) \preceq \qquad \qquad (\text{hint } e^t / (1 + e^t)^2 \le \frac{1}{4})$$

5. Find  $L_{max} =$ 

Logistic regression

$$F(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})) + \lambda ||\mathbf{w}||^2$$

Compute the smoothness constant  $L_i$  and  $L_{max}$ .

- 1.  $f_i(\mathbf{w}) = \log(1 + \exp(-y_i \mathbf{x}_i^{\mathsf{T}} \mathbf{w})) + \lambda ||\mathbf{w}||^2$ .
- 2. Compute  $\nabla f_i(\mathbf{w}) = \frac{-y_i \mathbf{x}_i}{1 + \exp(y_i \mathbf{x}_i^\top \mathbf{w})} + 2\lambda \mathbf{w}$
- 3. Compute  $\nabla^2 f_i(\mathbf{w})$

$$\nabla^2 f_i(\mathbf{w}) = \frac{\mathbf{x}_i \mathbf{x}_i^{\top} \exp(y_i \mathbf{x}_i^{\top} \mathbf{w})}{(1 + \exp(y_i \mathbf{x}_i^{\top} \mathbf{w}))^2} + 2\lambda \mathbf{I}$$

4. Find  $L_i$ .

$$\nabla^2 f_i(\mathbf{w}) \preceq \frac{\|\mathbf{x}_i\|^2}{4} \mathbf{I} + 2\lambda \mathbf{I} = L_i \mathbf{I} \qquad (\text{hint } e^t / (1 + e^t)^2 \leq \frac{1}{4})$$

**5.** Find  $L_{max} = \frac{\max_i \|\mathbf{x}_i\|^2}{4} + 2\lambda$ .

# SGD with decreasing step size

### Convergence for strongly convex and smooth function with $\rho^{(k)} = O(\frac{1}{k})$

If  $F=\frac{1}{n}\sum_i f_i$   $\mu$ -strongly convex with  $\forall i,\ f_i$  is  $L_i$ -smooth with  $\mathcal{K}=\frac{L_{max}}{\mu}$  and the step size is

$$\rho^{(k)} = \begin{cases} \frac{1}{2L_{max}} & \text{if } k \le 4\lceil \mathcal{K} \rceil \\ \frac{2k+1}{(k+1)^2\mu} & \text{else} \end{cases}$$

for  $k > 4\lceil \mathcal{K} \rceil$  we have for SGD:

$$\mathbb{E}[\|\mathbf{x}^{(k)} - \mathbf{x}^{\star}\|^{2}] \le \frac{8\sigma^{2}}{\mu^{2}k} + \frac{16\lceil\mathcal{K}\rceil^{2}\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^{2}}{e^{2}k^{2}}$$

$$\tag{6}$$

### Convergence for smooth function with $\rho^{(k)} = O(\frac{1}{\sqrt{k}})$

If  $F=\frac{1}{n}\sum_i f_i$  with  $\forall i,\ f_i$  is  $L_i$ -smooth and  $\rho^{(k)}=\frac{\rho}{\sqrt{1+k}}$  and  $\rho\leq \frac{1}{4L_{max}}$  we have for SGD:

$$\mathbb{E}[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] \le \frac{\|\mathbf{x}^{(0)} - \mathbf{x}^{\star}\|^2 + 2\rho(F(\bar{\mathbf{x}}^{(0)}) - F(\mathbf{x}^{\star}))}{2\rho\sqrt{k - 1}} + \frac{2\sigma^2(\log(k) + 1)}{\sqrt{k - 1}}$$
(7)

with  $\bar{\mathbf{x}}^{(k)} = \frac{1}{k+1} \sum_{i=0}^{k} \mathbf{x}^{(i)}$ .

See details in [Garrigos and Gower, 2023]

## **Example of decreasing step SGD**





#### **Discussion**

- ▶ Decreasing step size :  $\rho^{(k)} = \frac{1}{\sqrt{k}}$
- ▶ Slow convergence but less noise for large number of iterations.
- ▶ Complexity  $\mathcal{O}(d)$  per iteration.

# SGD with averaging (SGDA)

### SGD with late start averaging

11: end for

```
 \begin{array}{lll} \text{1: Initialize } \mathbf{x}^{(0)} \text{ set } s_0 \geq 0 \\ \text{2: } \textbf{for } k = 0, 1, 2, \dots \textbf{do} \\ \text{3: } & i^{(k)} \leftarrow \text{randomly pick an index } i \in \{1, \dots, n\} \\ \text{4: } & \mathbf{d}^{(k)} \leftarrow - \nabla_{\mathbf{x}} f_{i^{(k)}} \left(\mathbf{x}^{(k)}\right) \\ \text{5: } & \mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho^{(k)} \mathbf{d}^{(k)} \\ \text{6: } & \textbf{if } k \geq s_0 \textbf{ then} \\ \text{7: } & \bar{\mathbf{x}}^{(k)} = \frac{1}{k - s_0} \sum_{i = s_0}^k \mathbf{x}^{(i)} \\ \text{8: } & \textbf{else} \\ \text{9: } & \bar{\mathbf{x}}^{(k)} = \mathbf{x}^{(k)} \\ \text{10: } & \textbf{end if} \\ \end{array}
```

- Principle: Averaging of the iterates after a certain number of steps to compensate oscillations around optimality.
- ▶ Convergence of the average  $\bar{\mathbf{x}}^{(k)}$  to the optimality in  $O(\frac{1}{\sqrt{k}})$  for  $L_i$  smooth and convex functions  $f_i$  [Polyak and Juditsky, 1992].
- ► Convergence remains slow because averaging slows changes.

## **Example of SGD with averaging**





#### Discussion

- ▶ Decreasing step size :  $\rho^{(k)} = \frac{1}{\sqrt{k}}$
- ▶ Slow convergence of  $\bar{\mathbf{x}}^{(k)}$  but less noise that SGD.
- ▶ Complexity  $\mathcal{O}(d)$  per iteration (how is that implemented?).

### Convergence of SGD VS GD

Iteration complexity for a linear model is with d parameters and n samples and k iterations.

#### On strongly convex and smooth functions

| Method                              | Cost 1 iter. | Convergence       | Nb. iter.                 | Running time                |
|-------------------------------------|--------------|-------------------|---------------------------|-----------------------------|
| GD                                  | nd           | $\exp(-k/\kappa)$ | $\kappa \log(1/\epsilon)$ | $nd\kappa \log(1/\epsilon)$ |
| SGD $(O(\frac{1}{k}) \text{ step})$ | d            | $\kappa/k$        | $\kappa/\epsilon$         | $d\kappa/\epsilon$          |

- ▶ Conditioning of the problem is  $\kappa = \frac{L_{max}}{\mu}$ .
- $\blacktriangleright$  SGD more efficient when  $n\gg \frac{1}{\epsilon\log(\epsilon)}$  is very large.

#### On smooth functions

| Method                                      | Cost 1 iter. | Convergence  | Nb. iter.           | Running time         |
|---------------------------------------------|--------------|--------------|---------------------|----------------------|
| GD                                          | nd           | 1/k          | $1/\epsilon$        | $dn/\epsilon$        |
| AGD                                         | nd           | $1/k^2$      | $1/\sqrt{\epsilon}$ | $dn/\sqrt{\epsilon}$ |
| SGDA $(O(\frac{1}{\sqrt{k}}) \text{ step})$ | d            | $1/\sqrt{k}$ | $1/\epsilon^2$      | $d/\epsilon^2$       |

▶ SGD more efficient than GD when  $n \gg \frac{1}{\epsilon}$  is very large.

#### Limits of SGD

- Convergence remains slow in practice because of gradient noise.
- ▶ Better estimation of the gradient can be done with variance reduction methods.

### Stochastic Variance Reduced methods

### **Principle**

- $\triangleright$  Keep iteration cost of SVG (compute only one gradient  $\nabla f_{i(k)}$ ).
- Use and estimate  $\mathbf{g}^{(k)} \approx \nabla F(\mathbf{x}^{(k)})$  with low variance updated (for cheap) at each step.
- ightharpoonup Use  $\mathbf{g}^{(k)}$  to compute the descent update.

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \rho^{(k)} \mathbf{g}^{(k)}$$

### What we want for $g^{(k)}$

▶ Unbiased estimator of the gradient  $\nabla F(\mathbf{x}^{(k)})$ :

$$\mathbb{E}_{i \sim \frac{1}{n}}[\mathbf{g}^{(k)}] = \nabla F(\mathbf{x}^{(k)})$$

- Low variance  $\mathbb{VAR}[\mathbf{g}^{(k)}] = \mathbb{E}[\|\mathbf{g}^{(k)} \nabla F(\mathbf{x}^{(k)})\|^2]$  for faster convergence.
- ► Convergence in L2 to 0 at solution (no need for decreasing step size):

$$\lim_{\mathbf{x}^{(k)} \to \mathbf{x}^{\star}} \mathbb{E}[\|\mathbf{g}^{(k)}\|^2] = 0$$

## Controling the variance with covariates

#### **Controlled Stochastic Reformulation**

- **Covariate function**:  $\mathbf{z}_i$  is a function of the sample  $i, \forall i \in 1, \dots, n$ .
- ▶ Reformulation of original problem:

$$\frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x}) = \mathbb{E}_{i \sim \frac{1}{n}} [f_i(\mathbf{x})] = \mathbb{E}_{i \sim \frac{1}{n}} [f_i(\mathbf{x}) - z_i(\mathbf{x}) + z_i(\mathbf{x})]$$

$$= \mathbb{E}_{i \sim \frac{1}{n}} [f_i(\mathbf{x}) - z_i(\mathbf{x}) + \mathbb{E}_{i \sim \frac{1}{n}} [z_i(\mathbf{x})]]$$

Equivalent optimization problem but one can use the gradient estimation for sample i:

$$\mathbf{g}_i = \nabla f_i(\mathbf{x}) - \nabla z_i(\mathbf{x}) + \mathbb{E}_{i \sim \frac{1}{n}} [\nabla z_i(\mathbf{x})]$$

ightharpoonup How to choose  $z_i$  to control the variance?

#### **Covariates**

Let x and z two random variables, we say that x and z are covariates if:

$$cov(x, z) = \mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \ge 0$$

### Covariates and variance reduction

#### Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

$$x_z = x - z + \mathbb{E}[z]$$

#### Exercise 4: Properties of variance reduction

- 1. Compute  $\mathbb{E}[x_z] = \mathbb{E}[x]$
- 2. Compute  $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2]$

$$VAR[x_z] = \mathbb{E}[(x_z - \mathbb{E}[x_z])^2]$$

**3.** Under which condition is  $VAR[x_z] \leq VAR[x]$ ?

### Covariates and variance reduction

#### Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

$$x_z = x - z + \mathbb{E}[z]$$

#### Exercise 4: Properties of variance reduction

- 1. Compute  $\mathbb{E}[x_z] = \mathbb{E}[x]$
- **2.** Compute  $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2]$

$$\begin{split} \mathbb{VAR}[x_z] &= \mathbb{E}[(x_z - \mathbb{E}[x_z])^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x])^2] + \mathbb{E}[(z - \mathbb{E}[z])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \\ &= \mathbb{VAR}[x] + \mathbb{VAR}[z] - 2\mathsf{cov}(x, z) \end{split}$$

**3.** Under which condition is  $VAR[x_z] \leq VAR[x]$ ?

### Covariates and variance reduction

#### Variance reduced estimate

When x and z are covariates one can define the variance reduced estimate:

$$x_z = x - z + \mathbb{E}[z]$$

#### Exercise 4: Properties of variance reduction

- 1. Compute  $\mathbb{E}[x_z] = \mathbb{E}[x]$
- **2.** Compute  $\mathbb{VAR}[x_z] = \mathbb{E}[(x_z \mathbb{E}[x_z])^2]$

$$\begin{split} \mathbb{VAR}[x_z] &= \mathbb{E}[(x_z - \mathbb{E}[x_z])^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x] - (z - \mathbb{E}[z]))^2] \\ &= \mathbb{E}[(x - \mathbb{E}[x])^2] + \mathbb{E}[(z - \mathbb{E}[z])^2] - 2\mathbb{E}[(x - \mathbb{E}[x])(z - \mathbb{E}[z])] \\ &= \mathbb{VAR}[x] + \mathbb{VAR}[z] - 2\mathsf{cov}(x, z) \end{split}$$

3. Under which condition is  $VAR[x_z] \leq VAR[x]$ ?

$$\mathrm{cov}(x,z) \geq \frac{1}{2} \mathbb{VAR}[z]$$

the larger the correlation the better the variance reduction.

# Stochastic Variance Reduced Gradient (SVRG)

### Principle of SVRG [Johnson and Zhang, 2013]

• Use covariate function  $z_i$  that is a linear approximation of  $f_i$ :

$$z_i(\mathbf{x}) = f_i(\tilde{\mathbf{x}}) + \nabla f_i(\tilde{\mathbf{x}})^{\top} (\mathbf{x} - \tilde{\mathbf{x}})$$
(8)

where  $\tilde{\mathbf{x}}$  is a reference (anchor) point.

ightharpoonup The gradient  $g_i$  with the variance reduced estimate:

$$\mathbf{g}_i = \nabla f_i(\mathbf{x}) - \nabla f_i(\tilde{\mathbf{x}}) + \nabla F(\tilde{\mathbf{x}})$$

► The variance of the gradient estimation is:

$$VAR[\mathbf{g}_i] = \mathbb{E}[\|\nabla f_i(\mathbf{x}) - \nabla f_i(\tilde{\mathbf{x}}) - \nabla F(\mathbf{x}) + \nabla F(\tilde{\mathbf{x}})\|^2]$$

$$\leq 2\mathbb{E}[\|\nabla f_i(\mathbf{x}) - \nabla F(\mathbf{x})\|^2] + 2\mathbb{E}[\|\nabla f_i(\tilde{\mathbf{x}}) - \nabla F(\tilde{\mathbf{x}})\|^2]$$

$$\leq 2(L_{max}^2 + L^2)\|\mathbf{x} - \tilde{\mathbf{x}}\|^2$$

Smaller variance when x is close to  $\tilde{x}$ .

## Algorithm of SVRG

### Algorithm of SVRG [Johnson and Zhang, 2013]

```
1: Initialize \mathbf{x}^{(0)}. \tilde{\mathbf{x}}^{(0)} = \mathbf{x}^{(0)}
  2: for k = 0, 1, 2, \dots do
  3.
         \mathbf{v}^{(0)} \perp \tilde{\mathbf{v}}^{(k)}
           for j = 1, \ldots, M do
  4.
                  i \leftarrow \text{randomly pick an index } i \in \{1, \dots, n\}
 5:
                 \mathbf{g} = \nabla f_i(\mathbf{x}^{(k)}) - \nabla f_i(\tilde{\mathbf{x}}^{(k)}) + \nabla F(\tilde{\mathbf{x}}^{(k)})
 6:
                  \mathbf{x}^{(j+1)} = \mathbf{x}^{(j)} - \rho \mathbf{g}
 7:
 8:
             end for
             \tilde{\mathbf{v}}^{(k+1)} - \mathbf{v}^{(m)}
10: end for
```



- ▶ The gradient g is the variance reduced estimate of the gradient.
- ▶ The anchor point  $\tilde{\mathbf{x}}^{(k)}$  is updated every M steps.
- ▶ The full gradient  $\nabla F(\tilde{\mathbf{x}}^{(k)})$  is computed when anchor point is updated.
- ightharpoonup Need to choose the parameter M.
- Convergence in  $O(e^{-Ck})$  for strongly convex and smooth functions and M sufficiently large (same as GD because full gradient...).

### **Example of SVRG**





#### Discussion

- Fixed step :  $\rho^{(k)} = 0.02$  (same as GD)
- M = 500 = 125 \* n
- lackbox Convergence in  $O(e^{-Ck})$  similar to GD for strongly convex and smooth functions.
- ▶ Similar speed as GD in term of gradient computation (full gradient every M iter.).

## Stochastic Average Gradient (SAG)

### Stochastic Average Gradient (SAG) [Roux et al., 2012]

- 1: Initialize  $\mathbf{x}^{(0)}, \mathbf{g}_i = \nabla f_i(\mathbf{x}^{(0)}) \ \forall i$
- 2: **for** k = 0, 1, 2, ... **do**
- 3:  $i^{(k)} \leftarrow \text{randomly pick an index } i \in \{1,\dots,n\}$
- 4:  $\mathbf{g}_{i^{(k)}} \leftarrow \nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x})$
- 5:  $\mathbf{d}^{(k)} \leftarrow -\frac{1}{n} \sum_{i=1}^{n} \mathbf{g}_i$
- 6:  $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho \mathbf{d}^{(k)}$
- 7: end for
- Neep in memory all previous computed gradients  $\mathbf{g}_i$ , update only for sample  $i^{(k)}$ .
- ▶ Iteration is O(d), memory is O(nd).
- ► Convergence speed [Roux et al., 2012]

$$E[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] = \begin{cases} O(\frac{1}{k}) & \text{for } F \text{ convex} \\ O(e^{-Ck}) & \text{for } F \text{ strongly convex} \end{cases}$$

### Exercise 5: Efficient implementation of SAG

- ▶ How to implement (reformulate) line 5 to avoid O(n) complexity?
- For a linear model with  $f_i(\mathbf{x}) = l_i(\mathbf{a}_i^{\top}\mathbf{x})$ , do we weed to store all gradients  $\mathbf{g}_i$ ?



# **Example of Stochastic Average Gradient (SAG)**





#### Discussion

- Constant step size :  $\rho^{(k)} = 0.02$
- ► Fast convergence because the problem is strongly convex..
- ▶ One GD iter  $\equiv 4$  SGD iter (since n=4).
- ▶ SAG complexity O(d) per iteration (but O(nd) in memory).

# SAGA: Stochastic Average Gradient Accelerated

### SAGA [Defazio et al., 2014]

- 1: Initialize  $\mathbf{x}^{(0)}, \mathbf{g}_i = \nabla f_i(\mathbf{x}^{(0)}) \ \forall i$
- 2: **for**  $k = 0, 1, 2, \dots$  **do**
- 3:  $i^{(k)} \leftarrow \text{randomly pick an index } i \in \{1, \dots, n\}$
- $\mathbf{d}^{(k)} \leftarrow -\left( 
  abla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)}) \mathbf{g}_{i^{(k)}} + rac{1}{n} \sum_{i} \mathbf{g}_{i} 
  ight)$
- 5:  $\mathbf{g}_{i^{(k)}} \leftarrow \nabla_{\mathbf{x}} f_{i^{(k)}}(\mathbf{x}^{(k)})$ 6:  $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho \mathbf{d}^{(k)}$
- $\mathbf{x}^{(k+1)} \leftarrow \mathbf{prox}_{ch}(\mathbf{x}^{(k+1)})$
- 8: end for
- Minimizes the following problem:

$$\min_{\mathbf{x}} F(\mathbf{x}) + h(x) = \frac{1}{n} \sum_{i} f_i(\mathbf{x}) + h(\mathbf{x})$$

- SAGA is a variant of SAG that can handle proximal operators.
- Convergence speed is same as SAG but better constant [Defazio et al., 2014]

$$E[F(\bar{\mathbf{x}}^{(k)}) - F(\mathbf{x}^{\star})] = \begin{cases} O(\frac{1}{k}) & \text{for } F \text{ convex} \\ O(e^{-Ck}) & \text{for } F \text{ strongly convex} \end{cases}$$

## **Example of SAGA**





#### Discussion

- Constant step size :  $\rho^{(k)} = 0.02$
- ► Fast convergence because the problem is strongly convex..
- ▶ One GD iter  $\equiv 4$  SGD iter (since n = 4).
- ▶ SAGA complexity O(d) per iteration (but O(n) in memory for linear models).

## **SGD** in machine learning



### Large scale optimization [Bottou, 2010, Bottou et al., 2018]

- Used for training linear and non-linear models on very large datasets.
- State of the art algorithm for linear SVM, logistic regression, least square.
- Classification (SVM,Logistic): sklearn.linear\_model.SGDClassifier.
- Regression (least square, huber): sklearn.linear\_model.SGDRegressor.

### **Efficient implementation**

- Minibatches (compute stochastic gradient on multiple samples).
- Sparse implementation for sparse data.
- Parallel implementation on CPU/GPU.
- Early stopping can be used as regularization.

## SGD in deep learning



#### Training Neural Networks with SGD

- Usually use fixed step or scheduling of the step decrease.
- Use early stopping as regularization (but not always: double descent).
- Works very well on continuous, nonconvex problems but not very well understood.
- Several momentum averaging and adaptive step size strategies:
  - Momentum and Accelerated gradients [Nesterov, 1983]
  - RMSPROP [Tieleman and Hinton, 2012].
  - Adaptive gradient step ADAGRAD [Duchi et al., 2011].
  - Adaptive Moment estimation ADAM [Kingma and Ba, 2014].

## Complexity of GD methods

- $\triangleright$  Iteration complexity for a linear model is with d parameters and n samples.
- ▶ Conditioning of the problem is  $\kappa = \frac{L}{\mu}$  or  $\kappa = \frac{L_{max}}{\mu}$  for SGD.

#### On strongly convex and smooth functions

| Method                              | 1 iter. | Convergence       | Nb. iter.                    | Running time                  |
|-------------------------------------|---------|-------------------|------------------------------|-------------------------------|
| GD                                  | nd      | $\exp(-k/\kappa)$ | $\kappa \log(1/\epsilon)$    | $nd\kappa \log(1/\epsilon)$   |
| SGD $(O(\frac{1}{k}) \text{ step})$ | d       | $\kappa/k$        | $\kappa/\epsilon$            | $d\kappa/\epsilon$            |
| SAG(A)/SVRG                         | d       | 1/k               | $(n+\kappa)\log(1/\epsilon)$ | $d(n+\kappa)\log(1/\epsilon)$ |

#### On smooth functions

| Method                                      | Cost 1 iter. | Convergence  | Nb. iter.           | Running time         |
|---------------------------------------------|--------------|--------------|---------------------|----------------------|
| GD                                          | nd           | 1/k          | $1/\epsilon$        | $dn/\epsilon$        |
| AGD                                         | nd           | $1/k^2$      | $1/\sqrt{\epsilon}$ | $dn/\sqrt{\epsilon}$ |
| SGDA $(O(\frac{1}{\sqrt{k}}) \text{ step})$ | d            | $1/\sqrt{k}$ | $1/\epsilon^2$      | $d/\epsilon^2$       |
| SAG(A)/SVRG                                 | d            | $\sqrt{n}/k$ | $\sqrt{n}/\epsilon$ | $d\sqrt{n}/\epsilon$ |

- SGD and variance reduction methods are more efficient for large n.
- SAGA only needs smoothness params but require to store gradients.
- SVRG is O(d) in memory but require full regular full gradienst (+ param M).
- Accelerated version of SAGA and SVRG are also available [Lin et al., 2018].

### References I



Bottou, L. (2010).

Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT'2010, pages 177-186. Springer.



Bottou, L., Curtis, F. E., and Nocedal, J. (2018).

Optimization methods for large-scale machine learning.

SIAM review, 60(2):223-311.



Defazio, A., Bach, F., and Lacoste-Julien, S. (2014).

Saga: A fast incremental gradient method with support for non-strongly convex composite objectives.

In Advances in neural information processing systems, pages 1646–1654.



Duchi, J., Hazan, E., and Singer, Y. (2011).

 $\label{problem} \mbox{Adaptive subgradient methods for online learning and stochastic optimization}.$ 

Journal of machine learning research, 12(Jul):2121-2159.



Garrigos, G. and Gower, R. M. (2023).

Handbook of convergence theorems for (stochastic) gradient methods. arXiv preprint arXiv:2301.11235.

### References II



Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., and Richtárik, P. (2019).

Sgd: General analysis and improved rates.

In International conference on machine learning, pages 5200-5209. PMLR.



Johnson, R. and Zhang, T. (2013).

Accelerating stochastic gradient descent using predictive variance reduction.

In Advances in neural information processing systems, pages 315–323.



Kingma, D. P. and Ba, J. (2014).

Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.



Lin, H., Mairal, J., and Harchaoui, Z. (2018).

Catalyst acceleration for first-order convex optimization: from theory to practice.

Journal of Machine Learning Research, 18(212):1–54.



Nesterov, Y. E. (1983).

A method for solving the convex programming problem with convergence rate o  $(1/k^2)$ .

In Dokl. akad. nauk Sssr, volume 269, pages 543-547.

### References III



Polyak, B. T. and Juditsky, A. B. (1992).

Acceleration of stochastic approximation by averaging.

SIAM journal on control and optimization, 30(4):838-855.



Roux, N. L., Schmidt, M., and Bach, F. R. (2012).

A stochastic gradient method with an exponential convergence \_rate for finite training sets.

In Advances in neural information processing systems, pages 2663–2671.



Tieleman, T. and Hinton, G. (2012).

Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude.

COURSERA: Neural networks for machine learning, 4(2):26–31.