RANGKAIAN PARALEL L& C

Impedansi kapasitor =
$$\frac{1}{j 2\pi f C} = \frac{1}{j \omega C} = \frac{1}{j \omega C} \times \frac{j}{j} = -\frac{j}{\omega C}$$

Nilai
$$\frac{1}{\omega C}$$
 disebut Reaktansi kapasitor (X_C) $jadi$ $X_C = \frac{1}{\omega C}$

Impedansi induktor =
$$j \ 2\pi f \ L = j \ \omega \ L$$
 ; $j = \sqrt{-1}$

Nilai
$$\omega L$$
 disebut Reaktansi Induktor (X_L) $jadi$ X_L = ωL

Perhatikan bahwa : Impedansi Kapasitor = $-j X_C$, nilainya **berubah** bergantung frek Impedansi Induktor = $+j X_L$, nilainya **berubah** bergantung frek Impedansi Resistor = R , nilainya **tak berubah** terhadap frek

$$\text{Impedansi paralel LC = } Z_{AB} \ = \ \frac{(-\textit{j}\,X_\textit{C}\,)\times(\textit{j}\,X_\textit{L}\,)}{(-\textit{j}\,X_\textit{C}\,)+(\textit{j}\,X_\textit{L}\,)} = \ \frac{(-\textit{j}\,X_\textit{C}\,)\times(\,X_\textit{L}\,)}{(-\,X_\textit{C}\,)+(\,X_\textit{L}\,)}$$

$$\mathbf{Z}_{AB} = \frac{\frac{-j \omega L}{\omega C}}{\omega L - \frac{1}{\omega C}} = \frac{\frac{-j L}{C}}{\omega L - \frac{1}{\omega C}}$$

Bila : $\omega \, L > \frac{1}{\omega \, C}$ maka rangkaian LC tsb bersifat kapasitif , artinya rangk LC tersebut bsebagai sebuah kapasitor .

Sebaliknya bila ω $L<\frac{1}{\omega$ $C}$ maka rangkaian LC tsb bersifat Induktif artinya rangk LC tersebut sebagai sebuah Induktor .

$$Z_{AB} = \frac{\frac{-jL}{C}}{\omega L - \frac{1}{\omega C}}$$
, bila $\omega L = \frac{1}{\omega C}$ maka $Z_{AB} = \pm j \infty$; ini disebut **resonansi**

Jadi pada frekuensi resonansi (f_r) terjadi kondisi $2\pi f_r L - \frac{1}{2\pi f_r C} = 0$

Maka diperoleh rumus frekuensi resonansi $: f_r = rac{1}{2 \, \pi} \, \sqrt{rac{1}{L \, C}}$

Pada kondisi resonansi $Z_{AB} = \pm j \infty$ jadi dapat dipandang "Open Circuit"

Kita simbolkan impedansi paralel LC sebagai Z_{LC} , yaitu $Z_{LC} = \frac{-jL}{\omega L - \frac{1}{\omega C}} = j\frac{\frac{L}{C}}{\frac{1}{\omega C} - \omega L}$

$$C \xrightarrow{A} L \underset{B}{ } R$$

Impedansi
$$Z_{AB}=rac{(Z_{LC}) imes(R)}{(Z_{LC})+(R)}$$
 ; $Z_{LC}=jrac{rac{L}{C}}{rac{1}{\omega\,C}-\omega\,L}$ $\omega=2\pi\,f$

Kita akan menganalisa – memahami , bagaimana perubahan nilai impedansi \mathbf{Z}_{AB} terhadap perubahan nilai frekuensi (f)

Misalkan diketahui : $L=3.96\times 10^{-9}~Henry=3.96~nH$

$$C = 0.64 \times 10^{-9} Farad = 0.64 nF$$

Resistor: R = 75 Ohm

$$Z_{AB} = \frac{JX R}{R + J X} = \frac{JX R (R - J X)}{(R + J X) (R - J X)} = \frac{X^2 R + j X R^2}{R^2 + X^2} \quad ; \quad X = \frac{\frac{L}{C}}{\frac{1}{\omega C} - \omega L}$$

$$Z_{AB} = Z_{AB} real + j Z_{AB} imajiner$$
;

$$Z_{AB} real = \frac{X^2 R}{R^2 + X^2}$$
; $Z_{AB} imajiner = \frac{X R^2}{R^2 + X^2}$

Tabel A berikut adalah hasil Perhitungan menggunakan Excel:

Frek	Z AB	Z AB	Mag
(MHz)	Real	Imj	Z AB
96,00	10,74	-26,27	28,38
98,00	30,68	-36,87	47,97
99,00	55,65	-32,82	64,60
99,50	69,33	-19,83	72,11
99,80	74,19	-7,75	74,59
100,00	74,98	1,22	74,99
100,20	73,62	10,07	74,31
100,50	68,15	21,61	71,49
101,00	54,35	33,50	63,85
103,00	17,70	31,85	36,44
105,00	7,68	22,74	24,01
107,00	4,21	17,27	17,77

Perhatikan bahwa Nilai magnitude \mathbf{Z}_{AB} maksimum tertjadi pada frekuensi sekitar 100 Mhz

Berapakah frekuensi Resonansi rangkaian paralel LC tersebut ?

$$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} = \frac{1}{2\pi} \sqrt{\frac{1}{(3.96 \times 10^{-9}) \times (0.64 \times 10^{-9})}} = 99.973 \text{ MHz}$$

Impedansi
$$Z_{AB} = \frac{(Z_{LC}) \times (R2)}{(Z_{LC}) + (R2)} + R1$$

$$Z_{LC} = j \frac{\frac{L}{C}}{\frac{1}{\omega C} - \omega L}$$

Sumber sinyal: $V_s(t) = A \cos(2\pi f t)$

$$R_b$$
 adalah brban yang bersifat resistif
Tegangan pada beban = $V_{BG}(t) = V_{Rb}(t)$
 $V_{Rb}(t) = \left| \frac{Z_{BG}}{Z_{BG} + R_S} \right| A \cos(2\pi f t + \theta)$

$$Misal: \frac{Z_{BG}}{Z_{BG} + R_S} = X_R + j X_I ; maka \theta = tan^{-1} \left(\frac{X_I}{X_R}\right)$$

Daya yang diserap beban =
$$P_{Rb}=\frac{(V_{Rb-max})^2}{2\,R_b}$$
 ; $V_{Rb-max}=\left|\frac{Z_{BG}}{Z_{BG}+\,R_s}\right|\,A$

$$I_S = I_C + I_L + I_{Rh}$$

$$I_c = I_{Rh}$$
 : $I_c = -I_R$

Pada frekuensi resonansi :
$$V_{Rb}(t)=rac{R_b}{R_b+R_s}~A~\cos(2\pi\,f\,t\,)~~;~~I_S=I_{Rb}=rac{V_S}{R_b+R_s}$$

Daya yang diserap beban =
$$P_{Rb} = \frac{\left(\frac{R_b}{R_b + R_s}A\right)^2}{2R_b} = \frac{A^2 R_b}{2(R_b + R_s)^2}$$

Kita akan hitung (analisis) daya yang diserap beban pada beberapa nilai frekuensi

Daya yang diserap beban =
$$P_{Rb}=\frac{(V_{Rb-max})^2}{2\,R_b}$$
 ; $V_{Rb-max}=\left|\frac{Z_{BG}}{Z_{BG}+\,R_S}\right|\,A$

Misalkan diketahui :
$$A = 10 \ Volt$$
 ; $L = 3.96 \times 10^{-9} \ Henry = 3.96 \ nH$

$$C = 0.64 \times 10^{-9} Farad = 0.64 nF$$

Resistor : Rs = 100 Ohm ; Rb = 75 Ohm

- Berapa daya pada beban pada frekuensi Resonansi (99,973 MHz)
 (Gunakan Tabel A)
- 2). Daya pada beban mencapai maksimum (P max) pada frekuensi berapa?
- 3). Bila Resistor Rb pada Gbr tsb diganti dgn sebuah lampu yang memiliki resistansi sebesar 75 Ohm, maka pada frekuensi berapa Lampu menyala paling terang ?
- 4). Pada frekuensi sangat rendah (<< 80 MHz) apakah lampu menyala?
- 5). Pada frekuensi sangat tinggi misal >> 200 MHz apakah lampu menyala?
- 1). Pada frekuensi resonansi:

Daya yang diserap beban =
$$m{P_{Rb}}=rac{A^2\ R_b}{2\ (R_b+\ R_s)^2}=rac{10^2 imes75}{2\ (75+\ 100\)^2}$$
 $m{Watt}$ $m{P_{Rb}}=rac{6}{49}$ $m{Watt}=0$, $m{122}$ $m{Watt}$

Pertanyaan No 2 dan 3 adalah Tugas / PR yang harus dikumpulkan

(Jawaban harus disertai penjelasan beserta Rumus yang mendukung jawban tsb)