CSCM603130: Sistem Cerdas Multi-Agent Systems: Game Theory

Fariz Darari, Aruni Yasmin Azizah

Fakultas Ilmu Komputer Universitas Indonesia

2019/2020 • Semester Ganjil

Outline

- Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Outline

- Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Multi Agent Systems

- Multi Agent System, biasanya melibatkan
 - banyak agent (dan autonomous)
 - beragam tujuan (divergen)
 ada agent-agent yang saling berkompetisi (competitive) vs
 ada agent-agent yang saling bekerja sama (cooperative)
- Ada banyak aspek yang dapat diterapkan pada multi agent system: komunikasi, koordinasi, decision making, koalisi, argumentation, bargaining, logical modelling, dll.

Decision Making dalam konteks Multi Agent Systems

Bagaimana sebuah *agent* mengambil suatu keputusan dalam lingkungan yang penuh ketidakpastian: keputusan yang diambil dipengaruhi oleh *agent* lain?

Outline

- 1 Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Game Theory

Game Theory digunakan untuk menganalisa keputusan agent dan menghitung expected utility untuk setiap keputusan, dengan asumsi agent lain bertindak secara optimal.

- Adversarial search: turn-taking, fully observable
- Game Theory: imperfect information (partially observable), simultaneous move

Contoh: Two-Finger Morra game

Anto dan Budi, secara bersamaan, menunjukkan satu atau dua jarinya. Andaikan jumlah jari yang ditunjukkan adalah f. Jika f ganjil, maka Anto mendapatkan f dollar dari Budi. Sebaliknya, jika f genap, Budi mendapatkan f dollar dari Anto.

Single-move games

- Agent hanya dapat mengambil satu kali tindakan dan hasil permainan ditentukan dari tindakan-tindakan yang diambil oleh semua agent yang terlibat.
- Trivial, tapi menjadi dasar bagi banyak kasus yang melibatkan milyaran dolar dan ribuan nyawa manusia!
- Di antaranya:
 - memilih harga suatu produk baru yang juga dimiliki perusahaan lain
 - mengambil keputusan dalam lelang
 - mengambil tindakan agresif atau pasif dalam hubungan internasional
 - strategi perang

Komponen dari Single-move Game

- Players: agent yang mengambil tindakan; pada kuliah ini kita hanya fokus pada two-player games.
- Actions: tindakan yang dapat diambil player. Player dapat memiliki action yang sama atau berbeda dengan player lain.
- Payoff Function: nilai utility yang didapatkan setiap player untuk setiap kombinasi action yang diambil semua player.
 Representasi fungsi payoff untuk single-move game dalam sebuah matriks:
 Strategic form/Normal form.

Komponen dari Single-move Game

- Players: agent yang mengambil tindakan; pada kuliah ini kita hanya fokus pada two-player games.
- Actions: tindakan yang dapat diambil player. Player dapat memiliki action yang sama atau berbeda dengan player lain.
- Payoff Function: nilai utility yang didapatkan setiap player untuk setiap kombinasi action yang diambil semua player.
 Representasi fungsi payoff untuk single-move game dalam sebuah matriks: Strategic form/Normal form.

	Anto : satu	Anto : dua
Budi : satu	Budi = 2, Anto = -2	Budi = -3, Anto = 3
Budi : dua	Budi = -3, Anto = 3	Budi = 4, Anto = -4

Strategi pada Game

- Setiap player harus mengadopsi dan mengeksekusi suatu strategy (policy).
 - Pure Strategy: deterministic policy. Mengambil sebuah tindakan secara deterministik.
 - Mixed Strategy: randomized policy. Mengambil sebuah tindakan berdasarkan suatu distribusi probabilitas [p:a;(1-p):b]. Contoh: [0.4:one;0.6:two]
- Strategy Profile merupakan pemilihan suatu strategi untuk setiap player. Dari strategy profile, didapatkan outcome permainan (berupa nilai numerik) untuk setiap player.

Solusi pada Game Theory

- Solusi pada game theory merupakan strategy profile dimana setiap player mengambil strategi rasional.
- **Solusi** merupakan konsep teoritis untuk menganalisis permainan.
- Sedangkan Outcome merupakan hasil aktual berupa nilai numerik yang didapatkan berdasarkan strategi yang diadopsi oleh player.

Game Theory: Single-move Games

└Strategi Dominan

Outline

- 1 Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Game Theory: Single-move Games

LStrategi Dominan

Prisoner's Dilemma

Anto dan Budi tertangkap basah di TKP. Keduanya diinterogasi secara terpisah oleh polisi. Jaksa memberikan tawaran kepada mereka:

Prisoner's Dilemma

Anto dan Budi tertangkap basah di TKP. Keduanya diinterogasi secara terpisah oleh polisi. Jaksa memberikan tawaran kepada mereka:

jika kamu mau bersaksi bahwa partner kamu yang melakukan, maka kamu bebas, dan partner kamu mendapat 10 tahun penjara.

Prisoner's Dilemma

Anto dan Budi tertangkap basah di TKP. Keduanya diinterogasi secara terpisah oleh polisi. Jaksa memberikan tawaran kepada mereka:

- jika kamu mau bersaksi bahwa partner kamu yang melakukan, maka kamu bebas, dan partner kamu mendapat 10 tahun penjara.
- namun jika baik kamu maupun partner kamu sama-sama bersaksi, maka masing-masing mendapatkan hukuman 5 tahun penjara.

Prisoner's Dilemma

Anto dan Budi tertangkap basah di TKP. Keduanya diinterogasi secara terpisah oleh polisi. Jaksa memberikan tawaran kepada mereka:

- jika kamu mau bersaksi bahwa partner kamu yang melakukan, maka kamu bebas, dan partner kamu mendapat 10 tahun penjara.
- namun jika baik kamu maupun partner kamu sama-sama bersaksi, maka masing-masing mendapatkan hukuman 5 tahun penjara.
- di sisi lain, jika baik kamu maupun partner kamu sama-sama menolak bersaksi, maka masing-masing mendapatkan hukuman 1 tahun penjara.

Prisoner's Dilemma

Anto dan Budi tertangkap basah di TKP. Keduanya diinterogasi secara terpisah oleh polisi. Jaksa memberikan tawaran kepada mereka:

- jika kamu mau bersaksi bahwa partner kamu yang melakukan, maka kamu bebas, dan partner kamu mendapat 10 tahun penjara.
- namun jika baik kamu maupun partner kamu sama-sama bersaksi, maka masing-masing mendapatkan hukuman 5 tahun penjara.
- di sisi lain, jika baik kamu maupun partner kamu sama-sama menolak bersaksi, maka masing-masing mendapatkan hukuman 1 tahun penjara.

Tindakan "terbaik" apa yang harus diambil?

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Strategi Anto

Jika Budi bersaksi:

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

- Jika Budi bersaksi:
- Jika Budi menolak:

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

- Jika Budi bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Budi menolak:

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

- Jika Budi bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Budi menolak:
 - \rightarrow bersaksi (0) vs menolak (-1)

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Strategi Anto

- Jika Budi bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Budi menolak:
 - ightarrow bersaksi (0) vs menolak (-1)

Strategi terbaik: bersaksi

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Strategi Anto

- Jika Budi bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Budi menolak:
 - \rightarrow bersaksi (0) vs menolak (-1)

Strategi terbaik: bersaksi

Strategi Budi

- Jika Anto bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Anto menolak:
 - \rightarrow bersaksi (0) vs menolak (-1)

Strategi terbaik: bersaksi

Prisoner's Dilemma Payoff Matrix

	Anto : bersaksi	Anto : menolak
Budi : bersaksi	Budi = -5, Anto = -5	Budi = 0, Anto = -10
Budi : menolak	Budi = -10, Anto = 0	Budi = -1, Anto = -1

Strategi Anto

- Jika Budi bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Budi menolak:
 - \rightarrow bersaksi (0) vs menolak (-1)

Strategi terbaik: bersaksi

Strategi Budi

- Jika Anto bersaksi:
 - \rightarrow bersaksi (-5) vs menolak (-10)
- Jika Anto menolak:
 - \rightarrow bersaksi (0) vs menolak (-1)

Strategi terbaik: bersaksi

Dominant Strategy

Anto mendapatkan pencerahan bahwa *Bersaksi* adalah *dominant strategy* dari permainan ini.

- Strategi *s* untuk player *p* dikatakan *strongly dominates* strategi *s'*, jika
 - outcome s selalu lebih baik untuk p daripada outcome s', apapun yang dilakukan player lain.
- Strategi s untuk player p dikatakan weakly dominate s', jika
 - outcome s lebih baik untuk p daripada outcome s' pada minimal satu strategy profile dan tidak lebih buruk dari strategy profile lainnya.

Strategi Dominan

- Strategi s untuk player p dikatakan strongly dominates strategi s', jika
 - outcome s selalu lebih baik untuk p daripada outcome s', apapun yang dilakukan player lain.
- Strategi s untuk player p dikatakan weakly dominate s', jika
 - outcome s lebih baik untuk p daripada outcome s' pada minimal satu strategy profile dan tidak lebih buruk dari strategy profile lainnya.

Anto rasional jika memilih strategi *Bersaksi*, karena *Bersaksi* adalah strategi yang dominan bagi Anto.

Outline

- 1 Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Equilibrium

- Jika Anto cerdas, dia dapat berpikir lebih lanjut bahwa: strategi dominan Budi juga Bersaksi, sehingga mereka berdua akan mendapatkan hukuman 5 tahun penjara!
- Jika setiap player memiliki strategi dominan, maka kombinasi dari strategi tersebut disebut Dominant Strategy Equilibrium
 - Pada Prisoner's Dilemma =
- Equilibrium: konsep untuk menyatakan strategy profile yang menggambarkan tidak seorang player pun mendapatkan keuntungan dengan mengganti strateginya jika diketahui player lain tidak mengubah strateginya.
 - Pada Prisoner's Dilemma =
- John Nash membuktikan bahwa setiap game setidaknya memiliki satu (Nash) equilibrium.

Equilibrium

- Jika Anto cerdas, dia dapat berpikir lebih lanjut bahwa: strategi dominan Budi juga Bersaksi, sehingga mereka berdua akan mendapatkan hukuman 5 tahun penjara!
- Jika setiap player memiliki strategi dominan, maka kombinasi dari strategi tersebut disebut Dominant Strategy Equilibrium
 - Pada Prisoner's Dilemma = (*Bersaksi*, *Bersaksi*)
- Equilibrium: konsep untuk menyatakan strategy profile yang menggambarkan tidak seorang player pun mendapatkan keuntungan dengan mengganti strateginya jika diketahui player lain tidak mengubah strateginya.
 - Pada Prisoner's Dilemma =
- John Nash membuktikan bahwa setiap game setidaknya memiliki satu (Nash) equilibrium.

Equilibrium

- Jika Anto cerdas, dia dapat berpikir lebih lanjut bahwa: strategi dominan Budi juga Bersaksi, sehingga mereka berdua akan mendapatkan hukuman 5 tahun penjara!
- Jika setiap player memiliki strategi dominan, maka kombinasi dari strategi tersebut disebut Dominant Strategy Equilibrium
 - Pada Prisoner's Dilemma = (*Bersaksi*, *Bersaksi*)
- Equilibrium: konsep untuk menyatakan strategy profile yang menggambarkan tidak seorang player pun mendapatkan keuntungan dengan mengganti strateginya jika diketahui player lain tidak mengubah strateginya.
 - Pada Prisoner's Dilemma = (Bersaksi, Bersaksi)
- John Nash membuktikan bahwa setiap game setidaknya memiliki satu (Nash) equilibrium.

Dilema pada Prisoner's Dilemma

■ Di mana dilema dari Prisoner's Dilemma?

Dilema pada Prisoner's Dilemma

- Di mana dilema dari Prisoner's Dilemma?
 - Outcome dari equilibriumnya lebih buruk daripada outcome jika mereka menolak bersaksi.

Dilema pada Prisoner's Dilemma

- Di mana dilema dari Prisoner's Dilemma?
 - Outcome dari equilibriumnya lebih buruk daripada outcome jika mereka menolak bersaksi.
- Suatu outcome disebut Pareto optimal jika tidak ada outcome lain yang lebih diinginkan oleh setiap player.
- Sebuah outcome dikatakan pareto dominated oleh outcome o jika setiap player lebih memilih o.
 - \bullet (-5,-5) pareto dominated oleh (-1,-1).

Dilema pada Prisoner's Dilemma

- Di mana dilema dari Prisoner's Dilemma?
 - Outcome dari equilibriumnya lebih buruk daripada outcome jika mereka menolak bersaksi.
- Suatu outcome disebut Pareto optimal jika tidak ada outcome lain yang lebih diinginkan oleh setiap player.
- Sebuah outcome dikatakan pareto dominated oleh outcome o jika setiap player lebih memilih o.
 - \bullet (-5,-5) pareto dominated oleh (-1,-1).
- Apakah ada cara untuk mencapai (-1, -1)?

Dilema pada Prisoner's Dilemma

- Di mana dilema dari Prisoner's Dilemma?
 - Outcome dari equilibriumnya lebih buruk daripada outcome jika mereka menolak bersaksi.
- Suatu outcome disebut Pareto optimal jika tidak ada outcome lain yang lebih diinginkan oleh setiap player.
- Sebuah outcome dikatakan pareto dominated oleh outcome o jika setiap player lebih memilih o.
 - \bullet (-5,-5) pareto dominated oleh (-1,-1).
- Apakah ada cara untuk mencapai (-1, -1)?
 - Walaupun diperbolehkan untuk memilih Menolak, sulit dibayangkan rational agent mengambil keputusan tersebut, berdasarkan definisi dari game-nya.

Dilema pada Prisoner's Dilemma

- Di mana dilema dari Prisoner's Dilemma?
 - Outcome dari equilibriumnya lebih buruk daripada outcome jika mereka menolak bersaksi.
- Suatu outcome disebut Pareto optimal jika tidak ada outcome lain yang lebih diinginkan oleh setiap player.
- Sebuah outcome dikatakan pareto dominated oleh outcome o jika setiap player lebih memilih o.
 - \bullet (-5,-5) pareto dominated oleh (-1,-1).
- Apakah ada cara untuk mencapai (-1, -1)?
 - Walaupun diperbolehkan untuk memilih Menolak, sulit dibayangkan rational agent mengambil keputusan tersebut, berdasarkan definisi dari game-nya.
 - Definisi game perlu berubah: repeated game, payoff matrix berbeda.

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

	Acme : bluray	Acme : dvd
Best : bluray	A = +9, B = +9	A = -4, B = -1
Best : dvd	A = -3, B = -1	A = +5, B = +5

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

Acme, perusahaan pembuat konsol video game, harus memutuskan apakah mengeluarkan game machine menggunakan Blu-ray atau DVD. Sementara itu, produser game software Best juga perlu memutuskan apakah game baru mereka selanjutnya akan diproduksi dalam Blu-ray atau DVD. Keuntungan yang mereka dapatkan positif jika keduanya sepakat menggunakan disc yang sama, dan keuntungannya akan negatif jika tidak ada kesepakatan.

	Acme : bluray	Acme : dvd
Best : bluray	A = +9, B = +9	A=-4, B=-1
Best : dvd	A = -3, B = -1	A = +5, B = +5

Apa dominan strategi game di atas?

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

Acme, perusahaan pembuat konsol video game, harus memutuskan apakah mengeluarkan game machine menggunakan Blu-ray atau DVD. Sementara itu, produser game software Best juga perlu memutuskan apakah game baru mereka selanjutnya akan diproduksi dalam Blu-ray atau DVD. Keuntungan yang mereka dapatkan positif jika keduanya sepakat menggunakan disc yang sama, dan keuntungannya akan negatif jika tidak ada kesepakatan.

	Acme : bluray	Acme : dvd
Best : bluray	A = +9, B = +9	A=-4, B=-1
Best : dvd	A = -3, B = -1	A = +5, B = +5

Apa dominan strategi game di atas? Tidak ada!

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

	Acme : bluray	Acme : dvd
Best : bluray	A = +9, B = +9	A = -4, B = -1
Best : dvd	A = -3, B = -1	A = +5, B = +5

- Apa dominan strategi game di atas? Tidak ada!
- Apa Nash equilibrium dari game di atas?

Strategi Dominan, Equilibrium, & Pareto Optimal (1)

	Acme : bluray	Acme : dvd
Best : bluray	A = +9, B = +9	A = -4, B = -1
Best : dvd	A = -3, B = -1	A = +5, B = +5

- Apa dominan strategi game di atas? Tidak ada!
- Apa Nash equilibrium dari game di atas? Ada dua Nash equilibria!

Strategi Dominan, Equilibrium, & Pareto Optimal (2)

Dua equilibria yang didapatkan: (bluray, bluray) & (dvd, dvd).

Pilih mana?

Solusi dapat ditentukan jika terdapat Pareto-Optimal Nash Equilibrium yang unik.

Strategi Dominan, Equilibrium, & Pareto Optimal (2)

Dua equilibria yang didapatkan: (bluray, bluray) & (dvd, dvd).

Pilih mana?

Saluri dapat ditantukan iika tardapat Parata Ontimal Nach Equilibrium

Solusi dapat ditentukan jika terdapat Pareto-Optimal Nash Equilibrium yang unik. \rightarrow (bluray, bluray)

Strategi Dominan, Equilibrium, & Pareto Optimal (2)

Dua equilibria yang didapatkan: (bluray, bluray) & (dvd, dvd). Pilih mana?

Solusi dapat ditentukan jika terdapat Pareto-Optimal Nash Equilibrium yang unik. \rightarrow (bluray, bluray)

- Setiap game memiliki setidaknya sebuah solusi Pareto-optimal
- Ada suatu game yang memiliki beberapa solusi Pareto-optimal
 - Mis, jika outcome dari (bluray, bluray) adalah (5,5), maka akan ada dua Pareto-Optimal.
 - Salah satu tindakan yang dapat dilakukan: Berkomunikasi!
 - Lebih lanjut dipelajari dalam coordination game
- Ada juga game yang memiliki outcome Pareto-Optimal dan bukan equilibrium.
 - "optimizing individually" vs "good for society"

Outline

- 1 Multi-Agent Systems
- 2 Game Theory: Single-move Games
 - Strategi Dominan
 - Equilibrium pada Pure Strategies
 - Equilibrium pada Mixed Strategies

Zero-sum Game

Bagaimana menjamin setiap game pasti memiliki Nash Equilibrium?

■ Two-finger morra game: Apa equilibriumnya?

	Anto : satu	Anto : dua
Budi : satu	Budi = 2, Anto = -2	Budi = -3, Anto = 3
Budi : dua	Budi = -3, Anto = 3	Budi = 4, Anto = -4

Zero-sum Game

Bagaimana menjamin setiap game pasti memiliki Nash Equilibrium?

■ Two-finger morra game: Apa equilibriumnya?

	Anto : satu	Anto : dua
Budi : satu	Budi = 2, Anto = -2	Budi = -3, Anto = 3
Budi : dua	Budi = -3, Anto = 3	Budi = 4, Anto = -4

 Dari matriks payoff dapat dilihat bahwa apapun strategi yang dipilih, salah satu player pasti lebih memilih strategi lain.

Zero-sum Game

Bagaimana menjamin setiap game pasti memiliki Nash Equilibrium?

■ Two-finger morra game: Apa equilibriumnya?

	Anto : satu	Anto : dua
Budi : satu	Budi = 2, Anto = -2	Budi = -3, Anto = 3
Budi : dua	Budi = -3, Anto = 3	Budi = 4, Anto = -4

- Dari matriks payoff dapat dilihat bahwa apapun strategi yang dipilih, salah satu player pasti lebih memilih strategi lain.
- Tidak ada pure strategy Nash equilibrium!
- Kita perlu melihat *mixed strategy*.
- Fenomena mixed strategy dapat ditunjukkan pada zero-sum game
 - Zero-sum Game: Permainan dengan total payoff yang didapatkan player selalu sama dengan nol.

Mixed Strategies

- Pure Strategy VS Mixed Strategy
 - Pure Strategy: deterministic policy. Mengambil sebuah tindakan secara deterministik.
 - **Mixed Strategy**: randomized policy. Mengambil sebuah tindakan berdasarkan suatu distribusi probabilitas.
- Pada mixed strategy, strategi untuk setiap player dinyatakan dalam bilangan pada interval [0,1].
- Pada two-finger morra game, Anto tidak secara deterministik memilih satu atau dua sebagai strateginya, melainkan memilih probabilitas p ia memainkan strategi satu (dan 1-p untuk strategi dua).

Payoff pada Mixed Strategies

	Anto : satu	Anto : dua
Budi : satu	Budi = 2, Anto = -2	Budi = -3, Anto = 3
Budi : dua	Budi = -3, Anto = 3	Budi = 4, Anto = -4

- Misal, Anto memilih strategi p: Anto bermain strategi satu dgn probabilitas p dan dua dgn probabilitas 1 p.
 - Jika Budi memilih *pure strategy satu*, maka ia menerima payoff 2 dengan probabilitas p dan -3 dengan probabilitas 1-p
 - Maka expected payoff = 2p 3(1 p) = 5p 3
 - Jika Budi memilih *pure strategy dua*, maka ia menerima payoff -3 dengan probabilitas p dan 4 dengan probabilitas 1-p
 - Maka expected payoff = -3p + 4(1-p) = 4-7p

- Equilibrium: strategy profile (berupa probabilitas) di mana setiap strateginya merupakan strategi terbaik bagi kedua player.
- Perhatikan bahwa tidak ada pure strategy yang dapat menjadi Nash equilibrium pada zero-sum game, sehingga kedua player harus menggunakan strategi dengan probabilitas (mixed strategies).
- Diketahui bahwa expected payoff Budi jika mengambil pure strategy satu = 5p 3, dan jika mengambil pure strategy dua = 4 7p.
- Untuk mencapai Nash equilibrium, maka 5p 3 = 4 7p, sehingga didapatkan p = 7/12.
 - Artinya, Anto harus memainkan strategi 7/12 untuk *satu*.
- Tentukan mixed strategy yang harus dimainkan Budi agar mencapai equilibrium!

Maximin Equilibrium

- Nash equilibrium untuk two-finger morra game:
 - Anto mengambil strategi 7/12 untuk *satu*
 - Budi juga mengambil strategi 7/12 untuk satu
- Mixed strategy dari kedua player membentuk equilibrium: maximin equilibrium.
- Setiap zero-sum game dengan dua player memiliki sebuah maximin equilibrium yang diperoleh melalui mixed strategies.

Interpretasi Maximin Equilibrium pada Zero-sum game

Anto mengambil strategi 7/12 untuk satu (maximin equilibrium). Maka, expected payoff Budi, jika

strategi yang diambil:

•
$$satu$$
: $5(7/12) - 3 = -1/12$

• dua:
$$4 - 7(7/12) = -1/12$$

Apapun strategi yang diambil Budi tidak akan memberikan keuntungan apa-apa.

Andaikan, Anto mengambil strategi 3/4 untuk *satu*.

Maka, expected payoff Budi, jika strategi yang diambil:

•
$$satu$$
: $5(3/4) - 3 = 3/4$

• dua:
$$4 - 7(3/4) = -5/4$$

Budi akan selalu ambil strategi $satu \rightarrow$ lebih untung!

Interpretasi Maximin Equilibrium pada zero-sum game

- Mengambil strategi yang merupakan maximin equilibrium membuat lawan tidak dapat mengetahui secara deterministik mana strategi yang terbaik bagi dirinya.
- Bandingkan jika strateginya bukan maximin equilibrium!

