Categorical: Repeated measures

Table of contents

1	Goals							
	1.1	Goals	1					
2	Repeated measures							
	2.1	Repeated measures	2					
	2.2	Example	4					
	2.3	Repeated-measures ANOVA	5					
3	Linear mixed model							
	3.1	Linear mixed model	6					
	3.2	R matrix	8					
	3.3	G matrix	13					
	3.4	Example: Random intercept and slope	16					
	3.5	Comparing both sets of models	17					
4	Summary							
		Summary	18					

1 Goals

1.1 Goals

1.1.1 Goals of this section

- Models for repeated measures
 - Mixed models framework
- First continuous outcomes

- Then categorical outcomes
- Two types of mixed model
 - Marginal mixed model
 - Conditional mixed model

1.1.2 Goals of this lecture

- What's the problem with repeated measures?
- Mixed model for continuous outcomes

Marginal model: **R** matrixConditional model: **G** matrix

2 Repeated measures

2.1 Repeated measures

2.1.1 Assumptions of GLM

- GLM (ANOVA / linear regression) assumes
 - Conditional normality of residuals
 - Constant variance of residuals
 - Independence of residuals

2.1.2 Assumptions of GLiM

- GLiM relaxes the assumptions of
 - Conditional normality of residuals
 - Constant variance of residuals
- But GLiM still assumes independence of residuals

2.1.3 Independence

- Independent observations: Information about one observation doesn't provide any information about other observations
 - Lack of independence implies correlation (but the reverse is not true)
 - * If observations are **not independent**, they will be correlated
 - * If observations are **correlated**, they are not independent
 - * If observations are **not correlated**, we don't know if they're independent or not

2.1.4 Repeated measures = non-independence

- Repeated measures from the same person are **not independent**
 - An observation from a person provides information about other observations from that person
 - Observations from the same person are more like one another than observations from different people
 - Observations from the same person are **correlated**

2.1.5 Violation of independence

- Does not impact regression coefficients
 - Impacts standard errors
 - Impacts statistical significance
- Will it be too large or too small? It depends
 - Hu, Goldberg, Hedeker, Flay, Pentz (1998)
 - Predictors about person: Standard errors are **too small**
 - Predictors about occasion: Standard errors are too large
 - Also depends on other things

2.1.6 Individual effects

- In models so far, there is an effect of a predictor
 - Individual differences in terms of variables
- But what if the effect of a predictor varied depending on the person?
 - Individual differences in terms of effects or slopes
- Mixed models can estimate person-specific effects

2.2 Example

2.2.1 Example data: Substance use in adolescence

id: ID variable
age: Age in years
alcuse: Alcohol use
ciguse: Cigarette use
potuse: Marijuana use

• Demographics: gender, family structure, other variables

2.2.2 Tall or univariate data

id	female	twopars	peerenc	parconf	paruse	age	alcuse	ciguse	potuse
1	0	1	7	11	13	15	5	6	5
1	0	1	7	11	13	16	5	6	5
1	0	1	7	11	13	17	5	5	4
1	0	1	7	11	13	18	6	7	5
6	1	0	6	14	16	15	8	9	6
6	1	0	6	14	16	16	8	8	5

2.2.3 Plot: Individual effects

2.2.4 Two types of mixed model

- Marginal models
 - Population-averaged models or generalized estimating equations (GEE)
 - Treat the person as a nuisance and adjust standard errors
- Conditional models
 - Generalized linear mixed models (GLMM)
 - Explicitly model the person (and variability among people) to get person-specific effects

2.3 Repeated-measures ANOVA

2.3.1 Review: Repeated-measures ANOVA assumptions

Covariance matrix of outcomes

$$\mathbf{S}_{YY} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ & & \sigma_3^2 & \sigma_{34} \\ & & & \sigma_4^2 \end{bmatrix}$$

- σ_1^2 = variance of outcome at time 1 σ_{12} = covariance between outcome at time 1 and outcome at time 2

2.3.2 Review: Repeated-measures ANOVA assumptions

- Compound symmetry of the covariance matrix of outcomes
 - Homogeneity of variances (i.e., variances are all the same):

*
$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

- Homogeneity of covariances (i.e., covariances are all the same):

$$* \ \sigma_{12} = \sigma_{13} = \sigma_{14} = \sigma_{23} = \sigma_{24} = \sigma_{34}$$

- Actual assumption: Sphericity
 - Compound symmetry holds for **differences** between pairs of scores
 - Slightly weaker assumption

3 Linear mixed model

3.1 Linear mixed model

3.1.1 Linear mixed model

- Also known as: random coefficient model, multi-level model, nested model, hierarchical linear model, random effects model
- Many names because they were developed in parallel in different disciplines
 - Multi-level models and hierarchical linear models from education
 - Random coefficient from statistics

3.1.2 Linear mixed model

- Extension of GLM that allows for non-independence
 - Partitions variation, just like ANOVA, linear regression
 - More control over the form of non-independence
 - * Linear regression: Independence
 - * Repeated-measures ANOVA: Compound symmetry
- Two approaches
 - Correlated residuals: R matrix
 - Random effects: **G** matrix

3.1.3 Linear mixed model: Equations

The linear mixed model:

$$Y = \mathbf{X}\beta + \mathbf{Z}\gamma + \epsilon$$

- where $\gamma \sim N(0, \mathbf{G})$ and $\epsilon \sim N(0, \mathbf{R})$
- $variance(Y) = V = \mathbf{ZGZ}' + \mathbf{R}$

3.1.4 Linear mixed model: Simpler

$$Y = \mathbf{X}\beta + \mathbf{Z}\gamma + \epsilon$$

- $\mathbf{X}\beta$ are the fixed effects
 - Average effects
 - Think predictors (**X**) and regression coefficients (β)
- $\mathbf{Z}\gamma$ and ϵ are special residuals that let us include correlations among the repeated observations
 - Specifically, among their **residuals**

3.1.5 Two approaches

- $\mathbf{Z}\gamma$ are the random effects
 - $-\gamma$ has mean = 0 and variance given by covariance matrix **G**
 - Generalized linear mixed models (GLMM) use this
- ϵ is the **error** or **residual term**
 - $-\epsilon$ has mean = 0 and variance given by covariance matrix **R**
 - Generalized estimating equations (GEE) and related methods use this

3.1.6 Continuous vs categorical outcomes

- Continuous outcomes
 - **G** and **R** portions of the model are *independent*
- Categorical outcomes
 - G and R portions of the model are NOT independent
- ullet This week: ${f G}$ and ${f R}$ for the continuous model
 - Understand how they function
- Next week: Categorical outcomes

3.2 R matrix

3.2.1 R matrix

 \bullet **R** is the covariance matrix among the repeated outcomes / timepoints

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ & & \sigma_3^2 & \sigma_{34} \\ & & & \sigma_4^2 \end{bmatrix}$$

3.2.2 How are timepoints related?

• Linear mixed model is really flexible about what this matrix can look like

- Unstructured

- Compound symmetry

- Autoregressive

- Diagonal

- Many others: See Kinkaid (2005)

• Repeated-measures ANOVA is a special case of LMM

- Not flexible: Compound symmetry only

3.2.3 Unstructured R

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\ & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\ & & \sigma_3^2 & \sigma_{34} \\ & & & \sigma_4^2 \end{bmatrix}$$

• Estimate every value in the matrix

• $\frac{t(t+1)}{2}$ values: Here, 10 values

3.2.4 Compound symmetry R

$$\mathbf{R} = \begin{bmatrix} \sigma^2 + \sigma_1^2 & \sigma_1^2 & \sigma_1^2 & \sigma_1^2 \\ & \sigma^2 + \sigma_1^2 & \sigma_1^2 & \sigma_1^2 \\ & & \sigma^2 + \sigma_1^2 & \sigma_1^2 \\ & & & \sigma^2 + \sigma_1^2 \end{bmatrix}$$

8

• One value for all variances

• One value for all covariances

• 2 values: Here, 2 values

3.2.5 Autoregressive R

$$\mathbf{R} = \begin{bmatrix} \sigma^2 & \sigma^2 \rho & \sigma^2 \rho^2 & \sigma^2 \rho^3 \\ & \sigma^2 & \sigma^2 \rho & \sigma^2 \rho^2 \\ & & \sigma^2 & \sigma^2 \rho \\ & & & \sigma^2 \end{bmatrix}$$

• One value for variances

• Covariance decreases as time between points increases (ρ)

• 2 values: Here, 2 values

3.2.6 Diagonal (independence) R

$$\mathbf{R} = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 \\ & \sigma_2^2 & 0 & 0 \\ & & \sigma_3^2 & 0 \\ & & & \sigma_4^2 \end{bmatrix}$$

• One value for variance for each time point

 \bullet t values: Here, 4 values

3.2.7 Why do we care about R?

• R is the residual variance matrix

- Residual variance impacts the standard errors of the fixed effects

- \mathbf{R} impacts the standard error (and therefore the significance) of the fixed effects

• Variance structure you choose affects what is significant

- Choose the variance structure that most closely reflects reality

3.2.8 Which form of R to use?

• Run models with different versions of R matrix

- Compare using AIC and likelihood

* AIC: smaller is better

* Likelihood: likelihood ratio test

3.2.9 Which form of R to use?

- Unstructured: Most information, but also most parameters
 - Difficult with more than a handful of timepoints
 - First try to get an idea of what the covariance matrix looks like
- Diagonal: Independence
 - All timepoints are uncorrelated
 - Unlikely given our discussion of repeated measures

Generalized least squares fit by maximum likelihood

logLik

- Compound symmetry: In between
- Autoregressive: In between

3.2.10 Example: Unstructured

Model: alcuse ~ 1 + age15

981.0951 1017.108 -481.5476

BIC

Data: alcuse_tall AIC

```
Correlation Structure: General
Formula: ~1 | id
Parameter estimate(s):
Correlation:
 1
       2
             3
2 0.580
3 0.421 0.605
4 0.324 0.366 0.340
Coefficients:
               Value Std.Error t-value p-value
(Intercept) 5.901857 0.08824313 66.88177 0.0000
           0.105372 0.03342207 3.15278 0.0017
Correlation:
      (Intr)
age15 -0.633
Standardized residuals:
        Min
                       Q1
                                   Med
                                                 QЗ
-3.418749537 -0.239414053 -0.007940977 0.858943288 2.304510243
```

Residual standard error: 0.9104505

Degrees of freedom: 404 total; 402 residual

3.2.11 Example: Unstructured

• Working correlation matrix (**R**)

```
[,1] [,2] [,3] [,4]
[1,] 1.0000000 0.5797687 0.4208941 0.3236446
[2,] 0.5797687 1.0000000 0.6053009 0.3663275
[3,] 0.4208941 0.6053009 1.0000000 0.3404776
[4,] 0.3236446 0.3663275 0.3404776 1.0000000
```

3.2.12 Example: Compound symmetry

```
Generalized least squares fit by maximum likelihood
 Model: alcuse ~ 1 + age15
 Data: alcuse_tall
      AIC
               BIC
                      logLik
 988.1413 1004.147 -490.0706
Correlation Structure: Compound symmetry
Formula: ~1 | id
Parameter estimate(s):
     Rho
0.4430272
Coefficients:
              Value Std.Error t-value p-value
(Intercept) 5.890099 0.08302555 70.94321 0.0000
          0.107921 0.03036304 3.55435 0.0004
age15
Correlation:
      (Intr)
age15 -0.549
Standardized residuals:
```

Min Q1 Med Q3 Max -3.405625651 -0.234496379 0.002171263 0.861991319 2.313480479

Residual standard error: 0.9120029

Degrees of freedom: 404 total; 402 residual

3.2.13 Example: Compound symmetry

• Working correlation matrix (**R**)

[,1] [,2] [,3] [,4] [1,] 1.0000000 0.4430272 0.4430272 0.4430272 [2,] 0.4430272 1.0000000 0.4430272 0.4430272 [3,] 0.4430272 0.4430272 1.0000000 0.4430272

[4,] 0.4430272 0.4430272 0.4430272 1.0000000

3.2.14 Compare

Model	AIC	-2LL	# parameters
Unstructured	981.095	963.095	10
Compound symmetry	988.141	980.141	2

• Difference in -2LL: 980.141 - 963.095 = 17.046

• Degrees of freedom: 10-2=8

• Critical $\chi(8)^2 = 15.507$

• Test is significant: More complex model fits better

- Unstructured

3.2.15 Interpretation

- This is a marginal model
 - Treat the person as a *nuisance* and adjust standard errors
- ullet Use ${f R}$ to account for additional correlation of repeated measures
 - But don't care about it
 - Just want to get rid of it

3.3 G matrix

3.3.1 Individual effects

- Before:
 - There is **an** effect of a predictor
 - * Individual differences in terms of variables
- Now:
 - Effect of a predictor varies depending on the person
 - * Individual differences in terms of effects or slopes

3.3.2 Conceptually

- Perform a regression on each person's data
 - Predictor: timeOutcome: Outcome
- Separate regression for **each person** in the study
 - Each person has an intercept
 - Each person has a slope

3.3.3 Time vs outcome for the first four participants

3.3.4 Time vs outcome for all participants

3.3.5 Assumptions

- Figures are a good way to think about the model
 - But still violate assumptions of linear regression
- Observations for each line are **not independent**
 - Multiple observations from the same person
- Good news!
 - Lack of independence only impacts standard errors
 - Estimates of the **intercepts** and **slopes** are good

3.3.6 That's a lot of lines!

- Intercept and slope for every single person in the sample
 - Can't report all of those
 - Summarize the intercepts and slopes in some way
- Variances and covariances
 - Variance of intercepts
 - Variance of slopes
 - Covariances between intercepts and slopes

3.3.7 G

• **G** is the variance-covariance matrix of intercepts and slopes

$$\mathbf{G} = \begin{bmatrix} \sigma_{int}^2 & \sigma_{int-slope} \\ & \sigma_{slope}^2 \end{bmatrix}$$

- σ_{int}^2 is the variance of the intercepts
- σ_{slope}^2 is the variance of the slopes
- $\sigma_{int-slope}$ is the covariance between intercepts and slopes

3.3.8 Why do we care about G?

$$Y = \mathbf{X}\beta + \mathbf{Z}\gamma + \epsilon$$

- $\mathbf{Z}\gamma$ is where the random effects (**G**) are
 - It accounts for some variation in scores
- Remaining variation ends up in ϵ , the residual variance
 - Residual variance impacts the standard errors of the fixed effects
 - G impacts s.e.s (and therefore significance) of fixed effects
- Random effects affect what is significant

3.4 Example: Random intercept and slope

```
Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's method [lmerModLmerTest]
```

Formula: alcuse ~ 1 + age15 + (1 + age15 | id)

Data: alcuse_tall

AIC BIC logLik deviance df.resid 985.7 1009.7 -486.8 973.7 398

Scaled residuals:

Min 1Q Median 3Q Max -2.71801 -0.60424 -0.07987 0.54069 2.97288

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 0.55174 0.7428

age15 0.03706 0.1925 -0.59

Residual 0.40148 0.6336 Number of obs: 404, groups: id, 101

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 5.89010 0.09080 100.99824 64.866 < 0.00000000000000000 *** age15 0.10792 0.03409 100.99947 3.166 0.00204 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

3.4.1 Example: Random intercept and slope

• Random effects (and residual variance)

Groups Name Std.Dev. Corr id (Intercept) 0.74279 age15 0.19252 -0.586 Residual 0.63363

3.4.2 Interpretation

- This is a conditional model
 - Individual variability in intercept and slope are of interest
- Explicitly model this using G
 - Person-specific intercepts and slopes

3.5 Comparing both sets of models

3.5.1 Compare fixed effects

Model	Intercept	Slope
R unstructured	5.902	0.105
${f G}$ with random intercept and slope	5.89	0.108

- R unstructured: Correlated residuals
- G with random intercept and slope: Random effects

3.5.2 Continuous models vs categorical models

- Continuous outcome (here)
 - Interpretations are different
 - But numerical results are basically identical
 - * Assuming some things

- Categorical outcome
 - Interpretations are different
 - Numerical results are **very** different
 - * Nonlinearity for categorical outcomes

4 Summary

4.1 Summary

4.1.1 Summary of this week

- Repeated measures violate the assumption of independence
- Mixed model (/ multilevel model / hierarchical linear model)
 - Marginal and conditional models
 - * **R** and **G** matrix approaches
 - * Equivalent (numerically) for continuous outcomes

4.1.2 Next weeks

- Extend mixed models to categorical outcomes
 - Marginal: R matrix, population averaged, GEE, cluster robust
 - Conditional: **G** matrix, generalized linear mixed models (GLMM)
- Different interpretations, different numbers