# DATA VISUALIZATION PROJECT:

For the final project, I'm analysing the records from the US Cars dataset.

#### **OBJECTIVE:**

The main objective of this project is to analyse the datasets, find unique insights from the data available to us, and visualise using the Altair library.

#### **DATASET:**

The dataset is obtained from Kaggle.

LINK: https://www.kaggle.com/code/tanersekmen/us-car-data-analysis-eda-visualization/data

This dataset contains 12 features that describe 2499 vehicles for sale in US.

```
Unnamed: 0 - column id.

price - price of the car.

brand - brand of the car.

model - model of the car.

year - vehicle registration year.

title_status - clean vehicle or salvage insurance.

mileage - miles traveled.

color - car color.

vin - vehicle identification number.

lot - A lot number is an identification number assigned to a particular quantity or lot of material from a single.

state - The location in which the car is being available for purchase.

country - The location in which the car is being available for purchase.
```

### **IMPORTING THE DATA:**

condition - time left.

```
1 import pandas as pd
2 import altair as alt
3 import matplotlib.pyplot as plt
4 from vega_datasets import data

1 filepath = r"./USA_cars_datasets.csv"

1 df = pd.read_csv(filepath)
2 df
```

|          | color  | mileage  | title_status  | year | model   | brand  | price | Unnamed: |   |
|----------|--------|----------|---------------|------|---------|--------|-------|----------|---|
| jtezu11f | black  | 274117.0 | clean vehicle | 2008 | cruiser | toyota | 6300  | 0        | 0 |
| 2fmdk3gc | silver | 190552.0 | clean vehicle | 2011 | se      | ford   | 2899  | 1        | 1 |
| 3c4pdcg  | silver | 39590.0  | clean vehicle | 2018 | mpv     | dodge  | 5350  | 2        | 2 |

We drop the first column since it is not required for our analysis.

```
1 df = df.drop(columns = ['Unnamed: 0'])
```

1 df

|      | price | brand     | model   | year | title_status  | mileage  | color  |               |
|------|-------|-----------|---------|------|---------------|----------|--------|---------------|
| 0    | 6300  | toyota    | cruiser | 2008 | clean vehicle | 274117.0 | black  | jtezu11f88k00 |
| 1    | 2899  | ford      | se      | 2011 | clean vehicle | 190552.0 | silver | 2fmdk3gc4bbb0 |
| 2    | 5350  | dodge     | mpv     | 2018 | clean vehicle | 39590.0  | silver | 3c4pdcgg5jt34 |
| 3    | 25000 | ford      | door    | 2014 | clean vehicle | 64146.0  | blue   | 1ftfw1et4efc2 |
| 4    | 27700 | chevrolet | 1500    | 2018 | clean vehicle | 6654.0   | red    | 3gcpcrec2jg47 |
|      |       |           |         |      |               |          |        |               |
| 2494 | 7800  | nissan    | versa   | 2019 | clean vehicle | 23609.0  | red    | 3n1cn7ap9kl88 |
| 2495 | 9200  | nissan    | versa   | 2018 | clean vehicle | 34553.0  | silver | 3n1cn7ap5jl88 |
| 2496 | 9200  | nissan    | versa   | 2018 | clean vehicle | 31594.0  | silver | 3n1cn7ap9jl88 |
|      |       |           |         |      |               |          |        |               |

## **CHECKING THE DATASET FOR NULL VALUES:**

1 df.isna().sum()

| price        | 0 |
|--------------|---|
| brand        | 0 |
| model        | 0 |
| year         | 0 |
| title_status | 0 |
| mileage      | 0 |
| color        | 0 |
| vin          | 0 |
| lot          | 0 |
| state        | 0 |
| country      | 0 |
| condition    | 0 |
| dtype: int64 |   |
|              |   |

## **SUMMARY OF THE DATASET:**

1 df.dtypes

| price | int64  |
|-------|--------|
| brand | object |
| model | object |

```
int64
vear
title_status
                object
mileage
                float64
color
                object
vin
                 object
lot
                 int64
                 object
state
                object
country
condition
                 object
dtype: object
```

## IMPLEMENTING VISUALIZATIONS:

### **VISUALIZATION 1:**

The first graph is a simple horizontal barchart plotted using the altair library. It shows the number of cars available for sale in each brand.

```
1 alt.Chart(df).mark_bar().encode(
2     x='count():Q',
3     y=alt.Y('brand', sort='-x'),
4     color = alt.Color('brand', scale=alt.Scale(scheme = 'category20'))
5 )
```



We find out that Ford has the most number of cars for sale, followed by Dodge, Nissan and Chevrolet.

### **VISUALIZATION 2:**

Next plot a vertical barchart to sort the vehicles by color.

```
1 alt.Chart(df).mark_bar().encode(
2    alt.X('color:N', sort='-y'),
3    alt.Y('count():Q'),
4    color = alt.Color('color', scale=alt.Scale(scheme = 'tableau10')),
5
6 )
```



We can see that the most common color is white followed by black, gray, silver, red, blue and so on.

### **VISUALIZATION 3:**

This is an interactive graph in which the overview graph shows the total number cars avilable for sale in each brand.

In the second graph, which is the details graph, if we click on a particular bar in the first chart, it shows the the number of cars available, by model in the particular brand.

```
1 selection = alt.selection(type="single", fields=["brand"])
2
3 base = alt.Chart(df).properties(width=500, height=250)
4
5 overview = alt.Chart(df).mark bar().encode(
      x = 'brand',
6
      y = 'count()',
7
      color=alt.condition(selection, alt.value("#CFB87C"), alt.value("lightgrey"))
9 ).add selection(selection).properties(height=250, width=500)
10
11 detail = hist = base.mark_bar().encode(
12 x = "model",
      y = "count()"
14 ).transform_filter(selection).properties(height=250, width=300)
16 overview | detail
```



The following chart is similar to the previous chart, but we look at the most popular brands available for sale in each state.

```
1 selection = alt.selection(type="single", fields=["state"])
2
3 base = alt.Chart(df).properties(width=500, height=250)
4
5 overview = alt.Chart(df).mark bar().encode(
      x = 'state',
6
      y = 'count()',
7
      color=alt.condition(selection, alt.value("#CFB87C"), alt.value("lightgrey"))
  ).add_selection(selection).properties(height=250, width=500)
10
11 detail = hist = base.mark_bar().encode(
      x = "brand",
      y = "count()"
13
14 ).transform_filter(selection).properties(height=250, width=250)
16 overview | detail
```



### **VISUALIZATION 4:**

The following interactive scatter plot shows the price of each model by brand. If we hover over a particular point, we can see the details of that model.

```
2
3 alt.Chart(df).mark_circle().encode(
4          x = "brand",
5          y = "price",
6          color=alt.Color('model', scale=alt.Scale(scheme='tableau10')),
7          tooltip=["model", "brand", "price"],
8          opacity=alt.condition(selection,alt.value(1),alt.value(.2))
9 ).add_selection(selection).interactive()
```



### **SUBSETTING THE DATASET:**

Most expensive car available in each brand.

```
1 df2 = df.groupby('brand').max()
2 df2.sort_values('price',ascending = False)
```

|                                                                                                                                                                                                          | price | model       | year | title_status         | mileage  | color  |              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|------|----------------------|----------|--------|--------------|
| brand                                                                                                                                                                                                    |       |             |      |                      |          |        |              |
| mercedes-<br>benz                                                                                                                                                                                        | 84900 | vans        | 2019 | clean vehicle        | 110907.0 | white  | wddzf4jb6ha2 |
| ford                                                                                                                                                                                                     | 74000 | wagon       | 2020 | salvage<br>insurance | 999999.0 | yellow | wf0dp3th0g41 |
| dodge                                                                                                                                                                                                    | 67000 | van         | 2020 | salvage<br>insurance | 239822.0 | white  | 3d7ks28c15g7 |
| chevrolet                                                                                                                                                                                                | 63200 | volt        | 2020 | salvage<br>insurance | 507985.0 | yellow | kl8cb6sa3jc4 |
| bmw                                                                                                                                                                                                      | 61200 | хЗ          | 2020 | salvage<br>insurance | 216657.0 | white  | wbawb33548p1 |
| lexus                                                                                                                                                                                                    | 55600 | mpv         | 2020 | clean vehicle        | 36596.0  | silver | jtjam7bx4l52 |
| harley-<br>davidson                                                                                                                                                                                      | 54680 | road/street | 2016 | clean vehicle        | 9502.0   | black  | 1hd1krm1xgb6 |
| gmc                                                                                                                                                                                                      | 48500 | mpv         | 2019 | salvage<br>insurance | 235348.0 | white  | 2gtv2mecxk11 |
| 1 df.year.unique()                                                                                                                                                                                       |       |             |      |                      |          |        |              |
| array([2008, 2011, 2018, 2014, 2010, 2017, 2009, 2013, 2015, 2020, 2016, 1973, 2003, 2019, 2002, 2000, 2001, 2005, 2012, 2006, 2007, 1998, 2004, 1994, 1997, 1996, 1999, 1984, 1995, 1993], dtype=int64) |       |             |      |                      |          |        |              |

### **VISUALIZATION 5:**

We plot the percentage of cars by the year they were registered in a pie chart. Since Pie-Charts are not available in altair, we use matplotlib instead.

IIISUI aliu<del>u</del>



The following Pie chart shows the status of the vehicles on sale.

```
1 s1 = df['title_status'].value_counts()
2 label = [r'Clean Vehicle', r'Salvage Insurance']
3
4 plt.pie(s1, labels = label, shadow=True, explode=(0.1, 0.1), colors=['#66b3ff', '#15 plt.title('Status of the car', pad = 150)
6 plt.legend(bbox_to_anchor=(1.0, 1.02, 1., 1.202), loc=4)
7 plt.show()
```



### **VISUALIZATION 6:**

We plot this interactive scatter plot to check if there is a relationship between the mileage and the price of the car.



We can see that there is an exponential relationship. The prices of the cars drop significantly when the mileage increases.

We further confirm this by looking at their relationship by brand in the faceted scatterplot below.

```
1 alt.Chart(df).mark_point().encode(
2          x = alt.X('mileage'),
3          y = alt.Y('price'),
4          color = 'brand'
5 ).properties(width = 100, height = 100).facet(
6          'brand:N',
7          columns = 3
8 ).interactive()
```



Hence, we can confirm the same relationship we found previously.

# **DESIGN ELEMENTS:**

### LIBRARIES USED:

- 1. altair.
- 2. matplotlib.
- 3. vega\_datasets.

### **DESIGN ELEMENTS USED:**

- 1. Bar Chart.
- 2. Interactive bar chart using altair.
- 3. Pie Chart.
- 4. Scatter Plot.

Since we are looking to find new insights from the dataset, the usage of the design elements mentioned above were best suited to achieve our objectives.

- 1. Bar charts are great at displaying the count of categorical data.
- 2. Making the bar charts interactive allows us to show the data represented by each bar in detail and in a user-friendly manner.
- 3. While pie charts are usually not preferred, they represent percentage values in a simple and effective manner.
- 4. The scatter plot was used to plot the details of the car by brand and also to plot the relationship between mileage and price.

### **EVALUATION:**

I've had 3 people evaluate the project.

- 1. My parents.
- 2. Friend.
- 3. Classmate.

Their opinion was to do away with **VISUALIZATION 4** that had an interactive scatter-plot showing the price and other details of a particular car, because they were a little difficult to interpret. But I decided to keep it since it showed multiple relationships in a single chart.

### **FINDINGS**:

- 1. The top 3 brands based on availability:
  - o Ford.
  - o Dodge.
  - o Nissan.
- 1. The top 3 colors based on availability"
  - o White.
  - Black.
  - Gray.

- 3. The costliest car available is a 2019 Mercedes-Benz Vans priced at \$84900.
- 4. 35.69% of the cars on sale were registered in 2014, 15.81% in 2008, 15.09 in 2011, 8.12% in 2018, 7.84% in 2010 and less than 5% of the cars were registered in each of the remaining years.
- 5. 93.48% percentage of the cars are clean vehicles while the remaining 6.52% are salvaged.
- 6. There is an exponential relationship between mileage and price of the car across all brands. The price of the car drops significantly when mileage increases.

1