TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC4049BP, TC4049BF, TC4049BFN TC4050BP, TC4050BF, TC4050BFN

TC4049B HEX BUFFER/CONVERTER (Inverting Type)
TC4050B HEX BUFFER/CONVERTER (Non – Inverting Type)

TC4049B, TC4050B contain six circuits of buffers. TC4049B is inverter type and TC4050B is non-inverter type.

Since one TTL or DTL can be directly driven having large output current, these are useful for interfacing from CMOS to TTL or DTL. As voltage up to $V_{\rm SS}+18$ volts can be applied to the input regardless of $V_{\rm DD}$, these can be also used as the level converter IC's which converts CMOS logical circuits of 15 volts or 10 volts system to CMOS/TTL logical circuits of 5 volts system.

Ideal switching characteristic has been obtained by the circuit diagram of three stage inverters for TC4049B and two stage inverters for TC4050B.

MAXIMUM RATINGS

CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V_{DD}	$V_{SS} - 0.5 \sim V_{SS} + 20$	٧
Input Voltage	V _{IN}	$V_{SS} - 0.5 \sim V_{SS} + 20$	V
Output Voltage	V _{OUT}	$V_{SS} - 0.5 \sim V_{DD} + 0.5$	٧
DC Input Current	I _{IN}	± 10	mA
Power Dissipation	P _D	300 (DIP) / 180 (SOIC)	mW
Operating Temperature Range	T _{opr}	- 40~85	°C
Storage Temperature Range	T _{stg}	- 65∼150	°C

CIRCUIT DIAGRAM

(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT

961001EBA2

■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

RECOMMENDED OPERATING CONDITIONS ($V_{SS} = 0V$)

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DC Supply Voltage	V _{DD}		3	_	18	٧
Input Voltage	V _{IN}		0	_	18	V

STATIC ELECTRICAL CHARACTERISTICS (V_{SS} = 0V)

CHARACTERISTIC	SYM-	TEST CONDITION	V_{DD}	– 40°C		25°C			85°C		UNIT
BOL		TEST CONDITION	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	ONIT
High-Level Output Voltage	V _{OH}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.00 10.00 15.00	_ _ _	4.95 9.95 14.95	_ _ _	V
Low-Level Output Voltage	V _{OL}	$ I_{OUT} < 1\mu A$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15		0.05 0.05 0.05		0.00 0.00 0.00	0.05 0.05 0.05		0.05 0.05 0.05	
Output High Current	I _{он}	$V_{OH} = 4.6V$ $V_{OH} = 2.5V$ $V_{OH} = 9.5V$ $V_{OH} = 13.5V$ $V_{IN} = V_{SS}, V_{DD}$	5 5 10 15	- 0.73 - 2.40 - 1.80 - 4.80		- 0.65 - 2.10 - 1.65 - 4.30			- 0.58 - 1.90 - 1.35 - 3.50		- mA
Output Low Current	I _{OL}	$V_{OL} = 0.4V$ $V_{OL} = 0.5V$ $V_{OL} = 1.5V$ $V_{IN} = V_{SS}, V_{DD}$	5 10 15	3.8 9.6 28.0		3.2 8.0 24.0	6.4 16.0 48.0	1 1 1	2.9 6.6 20.0		
Input High Voltage	V _{IH}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.50 8.25		3.5 7.0 11.0		V
Input Low Voltage	V _{IL}	$V_{OUT} = 0.5V, 4.5V$ $V_{OUT} = 1.0V, 9.0V$ $V_{OUT} = 1.5V, 13.5V$ $ I_{OUT} < 1\mu A$	5 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	
Input "H" Level Current "L" Level	I _{IH}	V _{IH} = 18V V _{IL} = 0V	18 18	_	0.1 -0.1	_	10 ⁻⁵ - 10 ⁻⁵	0.1 -0.1	_	1.0 - 1.0	_
Quiescent Supply Current	I _{DD}	$V_{IN} = V_{SS}, V_{DD} *$	5 10 15		1 2 4	— —	0.002 0.004 0.008	1 2 4		30 60 120	μ Α

^{*} All valid input combinations.

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

DYNAMIC ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vss = 0V, C₁ = 50pF)

	CHARACTERISTIC SYMBOL		TEST CONDITION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Transition Time (Low to High)		t _{TLH}		5 10 15		60 30 25	160 80 60	
Output Transition Time (High to Low)		t _{THL}		5 10 15	_ _ _ _	120 10 8	60 40 30	ns
49B	Propagation Delay Time (Low to High)	t _{pLH}		5 10 15	_ _ _	60 35 30	120 65 50	ns
T C 40	Propagation Delay Time (High to Low)	t _{pHL}		5 10 15	_ _ _	40 20 15	60 30 20	ns
050B	Propagation Delay Time (Low to High)	t _{pLH}		5 10 15	_ _ _	50 30 25	130 70 55	nc
T C 4 (Propagation Delay Time (High to Low)	t _{pHL}		5 10 15	_ _ _	30 17 14	70 35 25	ns ns
Inp	ut Capacitance	C _{IN}		•	_	5	7.5	pF

DIP 16PIN OUTLINE DRAWING (DIP16-P-300-2.54A)

Unit in mm

SOP 16PIN (200mil BODY) OUTLINE DRAWING (SOP16-P-300-1.27)

Unit in mm

SOP 16PIN (150mil BODY) OUTLINE DRAWING (SOL16-P-150 -1.27)

Unit in mm

