ML-prac-1

September 10, 2023

```
[2]: # This Python 3 environment comes with many helpful analytics libraries
      \hookrightarrow installed
     # It is defined by the kaggle/python Docker image: https://github.com/kaggle/
      \rightarrow docker-python
     # For example, here's several helpful packages to load
     import numpy as np # linear algebra
     import pandas as pd # data processing, CSV file I/O (e.g. pd.read csv)
     # Input data files are available in the read-only "../input/" directory
     # For example, running this (by clicking run or pressing Shift+Enter) will list_
      →all files under the input directory
     import os
     for dirname, _, filenames in os.walk('/kaggle/input'):
         for filename in filenames:
             print(os.path.join(dirname, filename))
     # You can write up to 20GB to the current directory (/kaggle/working/) that _{f L}
      →qets preserved as output when you create a version using "Save & Run All"
     # You can also write temporary files to /kaggle/temp/, but they won't be saved
      ⇔outside of the current session
```

/kaggle/input/breast-cancer-wisconsin-data/data.csv /kaggle/input/pngpng/breast-cancer-awareness-campaign-4375584-3649338.png

1 ML Feature Selection Techniques | Breast Cancer Diagnosis

- 1.1 In this Project we will cover following sections
 - Import Dataset using pandas.read_csv
 - Visualization of dataset in different ways and check for null values, undesired columns and remove them
 - Declare the dependent (y) and independent (X) parameters from the dataset
 - Convert the dependent (y) parameter into 0,1 using a label encoder to classify it not two classes

- Use a Standard scaler to normally distribute the data
- Train the model and check the accuracy without reducing the learning parameters
- Apply Different correlation Techniques to reduce the learning parameter

• Filter Method:

- i) Pearson Correlation Coefficient
- ii) Spearman's Rank Correlation Coefficient
- iii) Kendall's Rank Correlation Coefficient

• Statistical and Ranking Filter Method:

- i) Mutual Information or Information Gain
- ii) ANNOVA Univariate Test

• Wrapper Method:

- i) Step Forward Feature Selection
- ii) Step Backward Feature Selection
- iii) Step Floating Forward Feature Selection
- iv) Step Floating Backward Feature Selection
- Train the model and check the accuracy after reducing the learning parameters
- Do the above step for all the feature selection technique
- Compare the correlation technique using a Bar graph and ROC curve

1.2 Importing Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn import preprocessing
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split as tts
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, confusion_matrix,u

mutual_info_score, classification_report, ConfusionMatrixDisplay
from sklearn.feature_selection import mutual_info_classif as MIC
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif
```

```
df = pd.read_csv('/kaggle/input/breast-cancer-wisconsin-data/data.csv')
     df.head()
[4]:
              id diagnosis
                             radius mean
                                          texture mean perimeter mean
                                                                          area mean
     0
          842302
                                    17.99
                                                   10.38
                                                                   122.80
                                                                               1001.0
                          Μ
     1
          842517
                          М
                                    20.57
                                                   17.77
                                                                   132.90
                                                                               1326.0
     2
       84300903
                          Μ
                                    19.69
                                                   21.25
                                                                   130.00
                                                                               1203.0
     3 84348301
                          М
                                    11.42
                                                   20.38
                                                                    77.58
                                                                                386.1
     4 84358402
                                    20.29
                                                   14.34
                                                                   135.10
                                                                               1297.0
        smoothness_mean
                          compactness_mean
                                             concavity_mean
                                                              concave points_mean
     0
                0.11840
                                    0.27760
                                                      0.3001
                                                                           0.14710
     1
                0.08474
                                    0.07864
                                                      0.0869
                                                                           0.07017
     2
                                                                           0.12790
                0.10960
                                    0.15990
                                                      0.1974
     3
                0.14250
                                                      0.2414
                                                                           0.10520
                                    0.28390
                0.10030
                                    0.13280
                                                      0.1980
                                                                           0.10430
                                                          smoothness_worst
           texture_worst
                           perimeter_worst
                                             area_worst
                                                  2019.0
                                                                     0.1622
     0
                    17.33
                                     184.60
                    23.41
                                     158.80
                                                  1956.0
                                                                     0.1238
     1
     2
                    25.53
                                                                     0.1444
                                     152.50
                                                  1709.0
     3
                    26.50
                                                                     0.2098
                                      98.87
                                                  567.7
                    16.67
                                     152.20
                                                  1575.0
                                                                     0.1374
     4
        compactness_worst
                            concavity_worst
                                              concave points_worst
                                                                      symmetry_worst
     0
                    0.6656
                                      0.7119
                                                             0.2654
                                                                               0.4601
     1
                    0.1866
                                      0.2416
                                                             0.1860
                                                                              0.2750
     2
                    0.4245
                                      0.4504
                                                             0.2430
                                                                              0.3613
     3
                    0.8663
                                      0.6869
                                                             0.2575
                                                                              0.6638
                    0.2050
                                      0.4000
                                                             0.1625
                                                                              0.2364
        fractal_dimension_worst
                                  Unnamed: 32
     0
                         0.11890
                                           NaN
                         0.08902
                                           NaN
     1
     2
                         0.08758
                                           NaN
     3
                         0.17300
                                           NaN
                         0.07678
                                           NaN
     [5 rows x 33 columns]
```

[4]: #importing the dataset and displaying above 5 rows

1.3 Visualization in different ways

```
[5]: df.shape #shape of out dataset
```

[5]: (569, 33)

[6]: df.isnull().sum()#checking for nulls [6]: id 0

diagnosis 0 0 radius_mean texture_mean 0 0 perimeter_mean 0 area_mean 0 smoothness_mean compactness_mean 0 0 concavity_mean 0 concave points_mean 0 symmetry_mean fractal_dimension_mean 0 0 radius_se 0 texture_se perimeter_se 0 area_se 0 0 smoothness_se 0 compactness_se 0 concavity_se 0 concave points_se 0 symmetry_se 0 fractal_dimension_se 0 radius_worst 0 texture_worst perimeter_worst 0 0 area_worst smoothness_worst 0 0 compactness_worst 0 concavity_worst 0 concave points_worst symmetry_worst 0 fractal_dimension_worst 0 Unnamed: 32 569

dtype: int64

[7]: df.describe() #displaying statistical data of our dataset

[7]:		id	radius_mean	texture_mean	perimeter_mean	area_mean	\
	count	5.690000e+02	569.000000	569.000000	569.000000	569.000000	
	mean	3.037183e+07	14.127292	19.289649	91.969033	654.889104	
	std	1.250206e+08	3.524049	4.301036	24.298981	351.914129	
	min	8.670000e+03	6.981000	9.710000	43.790000	143.500000	
	25%	8.692180e+05	11.700000	16.170000	75.170000	420.300000	
	50%	9.060240e+05	13.370000	18.840000	86.240000	551.100000	
	75%	8.813129e+06	15.780000	21.800000	104.100000	782.700000	

9.113205e+08 28.110000 39.280000 188.500000 2501.000000 maxsmoothness_mean compactness_mean concavity_mean concave points_mean 569.000000 569.000000 569.000000 569.000000 count 0.096360 0.104341 0.088799 0.048919 mean std 0.014064 0.052813 0.079720 0.038803 min 0.052630 0.019380 0.00000 0.000000 25% 0.086370 0.064920 0.029560 0.020310 50% 0.095870 0.092630 0.061540 0.033500 75% 0.105300 0.130400 0.130700 0.074000 0.163400 max 0.345400 0.426800 0.201200 symmetry_mean texture_worst perimeter worst area worst count 569.000000 569.000000 569.000000 569.000000 0.181162 25.677223 107.261213 880.583128 mean std 0.027414 6.146258 33.602542 569.356993 0.106000 12.020000 50.410000 185.200000 min 25% 84.110000 515.300000 0.161900 21.080000 50% 0.179200 25.410000 97.660000 686.500000 75% 0.195700 29.720000 125,400000 1084.000000 0.304000 49.540000 251.200000 4254.000000 max smoothness_worst compactness_worst concavity_worst 569.000000 569.000000 569.000000 count 0.132369 0.254265 0.272188 mean std 0.022832 0.157336 0.208624 min 0.071170 0.027290 0.000000 25% 0.116600 0.147200 0.114500 50% 0.131300 0.211900 0.226700 0.382900 75% 0.146000 0.339100 0.222600 1.252000 max 1.058000 fractal_dimension_worst concave points_worst symmetry_worst 569.000000 count 569.000000 569.000000 0.114606 0.290076 0.083946 mean std 0.065732 0.061867 0.018061 0.00000 0.156500 0.055040 min 25% 0.064930 0.250400 0.071460 50% 0.099930 0.282200 0.080040 75% 0.161400 0.317900 0.092080 0.291000 0.663800 0.207500 maxUnnamed: 32 count 0.0 NaN mean NaN std

min

NaN

```
25%
                     NaN
     50%
                     NaN
      75%
                     NaN
                     NaN
     max
      [8 rows x 32 columns]
 [8]: #dropping the id and Unnamed: 32 columns as it will not contirbute to the
      ⇔training of model
      df.drop('id',axis=1,inplace=True)
      df.drop('Unnamed: 32',axis=1,inplace=True)
 [9]: #Value counts of the target column diagnosis
      df['diagnosis'].value_counts()
 [9]: diagnosis
     В
           357
     М
           212
     Name: count, dtype: int64
           Convert the dependent (y) parameter into 0,1
     1.4
[10]: label_encoder = preprocessing.LabelEncoder()
      df['diagnosis'] = label_encoder.fit_transform(df['diagnosis'])
      df['diagnosis'].unique()
[10]: array([1, 0])
[11]: #plotting heatmap to see the correlation of the features of the dataset
      plt.figure(figsize=(20,20))
      sns.heatmap(df.corr(),annot=True)
[11]: <Axes: >
```


1.5 Declare the dependent (y) and independent (X) parameters from the dataset

```
[12]: #splitting the dataset into X (independent) and y (dependent)
data = np.array(df)
Y, X = np.split(data,[1],axis=1)
X_train,X_test,y_train,y_test = tts(X,Y,test_size=0.3,random_state=40)
```

1.6 Using Standard scaler to normally distribute the data

```
[13]: ss=StandardScaler()
    X_train=ss.fit_transform(X_train)
    X_test=ss.transform(X_test)
```

1.7 Train and check accuracy

Accuracy without feature selection: 0.9649122807017544

```
[14]:
                      0.0
                                 1.0 accuracy
                                                macro avg weighted avg
     precision
                  0.973913
                            0.946429 0.964912
                                               0.960171
                                                              0.964912
     recall
                  0.973913
                            0.946429 0.964912
                                                 0.960171
                                                              0.964912
     f1-score
                  0.973913
                            0.946429 0.964912
                                                 0.960171
                                                              0.964912
     support
                115.000000 56.000000 0.964912 171.000000
                                                             171.000000
```


1.8 Applying Feature Selection Techniques and Training

FEATURE SELECTION TECHNIQUES USED: 1. Filter Method: a) Pearson Correlation Coefficient b) Spearman's Rank Correlation Coefficient c) Kendall's Rank Correlation Cofficient 2. Statistical and Ranking Filter Methods: a) Mutual Information or Information Gain b) ANNOVA Univariate Test 3. Wrapper Method: a) Step Forward Feature Selection

b) Step Backward Feature Selection c) Step Floating Forward Feature Selection d) Step Floating Backward Feature Selection

1.8.1 Filter Method

a) Pearson Correlation Coefficient

Accuracy with Pearson Correlation Coefficient: 0.9590643274853801

20, 21, 22, 23, 27}

```
[17]:
                      0.0
                                 1.0 accuracy
                                               macro avg weighted avg
     precision
                 0.957627
                            0.962264 0.959064
                                                0.959946
                                                              0.959146
     recall
                 0.982609
                            0.910714 0.959064
                                                0.946661
                                                              0.959064
     f1-score
                 0.969957
                            0.935780 0.959064
                                                0.952868
                                                              0.958765
     support
                115.000000 56.000000 0.959064 171.000000
                                                            171.000000
```


1.8.2 Filter Method

b) Spearman's Rank Correlation Coefficient

```
[19]: src_X_train = pd.DataFrame(X_train)
    src_X_test = pd.DataFrame(X_test)
    src_matrix = src_X_train.corr(method = "spearman")
    src_features = set()
    for i in range(len(src_matrix)):
        for j in range(i):
            if(abs(src_matrix.iloc[i,j]>0.8)):
                  column = src_matrix.columns[i]
                  src_features.add(column)
    print('Features selected for Spearmans Rank Correlation method',src_features)
    src_X_train.drop(labels = src_features, axis = 1, inplace=True)
    src_X_test.drop(labels = src_features, axis = 1, inplace=True)
```

Features selected for Spearmans Rank Correlation method {2, 3, 6, 7, 12, 13, 15, 16, 17, 20, 21, 22, 23, 25, 26, 27}

Accuracy with Spearmans Rank Correlation Coefficient: 0.9590643274853801

```
[20]:
                       0.0
                                  1.0 accuracy
                                                 macro avg weighted avg
     precision
                  0.957627
                             0.962264 0.959064
                                                  0.959946
                                                                0.959146
     recall
                  0.982609
                             0.910714 0.959064
                                                   0.946661
                                                                0.959064
     f1-score
                  0.969957
                             0.935780 0.959064
                                                   0.952868
                                                                0.958765
     support
                115.000000 56.000000 0.959064 171.000000
                                                              171.000000
```


1.8.3 Filter Method

c) Kendall's Rank Correlation Coefficient

Features selected for Kendalls Rank Correlation method {2, 3, 12, 13, 20, 22, 23}

Accuracy with Kendalls Rank Correlation Coefficient: 0.9590643274853801

```
[23]:
                      0.0
                                 1.0 accuracy
                                                macro avg weighted avg
                  0.965517
                            0.945455 0.959064
     precision
                                                 0.955486
                                                               0.958947
     recall
                  0.973913
                            0.928571 0.959064
                                                 0.951242
                                                               0.959064
     f1-score
                  0.969697
                            0.936937 0.959064
                                                 0.953317
                                                               0.958969
     support
                115.000000 56.000000 0.959064 171.000000
                                                             171.000000
```


1.8.4 Statistical and Ranking Filter Methods

a) Mutual Information or Information Gain

Estimated mutual information between each feature and the target [0.3654233 0.09727465 0.40212302 0.35941978 0.07658193 0.21109952 0.37461926 0.43933328 0.06740813 0.00401972 0.2481417 0.00092304 0.27361804 0.3393041 0.01530332 0.0766155 0.11560666 0.12769907 0.01454752 0.04111067 0.45184226 0.12517228 0.47701961 0.46372746 0.1019735 0.2268808 0.31467776 0.43852798 0.09537434 0.06827815]

[25]: <Axes: >


```
[26]: mic_score_selected = np.where(mic_scores > 0.2)
print('Selected features where mutual information > 0.2',mic_score_selected)
mic_X = np.delete(X,[1,4,8,9,11,14,15,16,17,18,19,21,24,28,29],axis = 1)
mic_X_train, mic_X_test, mic_y_train, mic_y_test = tts(mic_X,Y, random_state = 0, stratify = Y)
```

Selected features where mutual information > 0.2 (array([0, 2, 3, 5, 6, 7, 10, 12, 13, 20, 22, 23, 25, 26, 27]),)

Accuracy with Mutual Information: 0.9230769230769231

```
[27]:
                      0.0
                                1.0 accuracy
                                                macro avg weighted avg
     precision
                 0.943820
                           0.888889 0.923077
                                                 0.916355
                                                              0.923461
     recall
                 0.933333
                           0.905660 0.923077
                                                 0.919497
                                                              0.923077
                                                 0.917872
     f1-score
                 0.938547
                                                              0.923222
                           0.897196 0.923077
                90.000000 53.000000 0.923077 143.000000
     support
                                                            143.000000
```


1.8.5 Statistical and Ranking Filter Methods

b) ANNOVA Univariate Test

```
[29]: fs = SelectKBest(score_func=f_classif, k='all')
    fs.fit(X_train, np.ravel(y_train))
    X_train_fs = fs.transform(X_train)
    X_test_fs = fs.transform(X_test)
    plt.bar([i for i in range(len(fs.scores_))], fs.scores_)
    plt.title('F-value of the features')
    plt.show() #bar graph to analyze f-statitic value for each feature
```


Accuracy with ANNOVA Univariate Test: 0.9649122807017544

```
[30]:
                        0.0
                                   1.0
                                        accuracy
                                                   macro avg weighted avg
     precision
                   0.973913
                              0.946429
                                        0.964912
                                                    0.960171
                                                                  0.964912
      recall
                   0.973913
                              0.946429
                                        0.964912
                                                    0.960171
                                                                  0.964912
      f1-score
                   0.973913
                              0.946429
                                        0.964912
                                                    0.960171
                                                                  0.964912
                 115.000000 56.000000 0.964912 171.000000
                                                                171.000000
      support
```


1.8.6 Wrapper Method

a) Step Forward Feature Selection

```
[32]: X_train_wrap,X_test_wrap,y_train_wrap,y_test_wrap = tts(X,Y,test_size=0.2)_u  
#splitting the dataset
```

```
[33]: sfs = SFS(GaussianNB(), k_features = 15, forward = True, floating = False, verbose = 2, scoring = 'accuracy', cv=0) sfs.fit(X_train_wrap, np.ravel(y_train_wrap)) sffs = sfs.transform(X_train_wrap)
```

[2023-09-10 14:47:48] Features: 1/15 -- score: 0.9142857142857143 [2023-09-10 14:47:48] Features: 2/15 -- score: 0.9472527472527472

```
[2023-09-10 14:47:48] Features: 3/15 -- score: 0.9604395604395605
     [2023-09-10 14:47:48] Features: 4/15 -- score: 0.9626373626373627
     [2023-09-10 14:47:48] Features: 5/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:48] Features: 6/15 -- score: 0.9714285714285714
     [2023-09-10 14:47:48] Features: 7/15 -- score: 0.967032967032967
     [2023-09-10 14:47:48] Features: 8/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:48] Features: 9/15 -- score: 0.9692307692307692
     [2023-09-10 14:47:48] Features: 10/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:48] Features: 11/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:48] Features: 12/15 -- score: 0.9692307692307692
     [2023-09-10 14:47:48] Features: 13/15 -- score: 0.9736263736263736
     [2023-09-10 14:47:48] Features: 14/15 -- score: 0.9692307692307692
     [2023-09-10 14:47:48] Features: 15/15 -- score: 0.9692307692307692
[34]: sf_model = GaussianNB()
      sf_model.fit(sffs,np.ravel(y_train_wrap))
      sf_predict = sf_model.predict(sfs.transform(X_test_wrap))
      sf_accuracy = accuracy_score(y_test_wrap,sf_predict)
      print('Accuracy with Step Forward Feature Selection:',sf_accuracy)
      sf_report = pd.DataFrame(classification_report(y_test_wrap, sf_predict,__
       →output_dict=True))
      sf_report
     Accuracy with Step Forward Feature Selection: 0.9824561403508771
[34]:
                       0.0
                                  1.0 accuracy
                                                  macro avg weighted avg
     precision
                  0.972222
                             1.000000 0.982456
                                                   0.986111
                                                                 0.982943
      recall
                  1.000000
                             0.954545 0.982456
                                                   0.977273
                                                                 0.982456
                 0.985915
                             0.976744 0.982456
                                                   0.981330
                                                                 0.982376
      f1-score
      support
                 70.000000 44.000000 0.982456 114.000000
                                                               114.000000
[35]: cm = confusion_matrix(y_test_wrap, sf_predict, labels=sf_model.classes_)
      disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=sf_model.
       ⇔classes_)
      disp.plot()
      plt.grid(False)
      plt.show()
```


1.8.7 Wrapper Method

b) Step Backward Feature Selection

Accuracy with Step Backward Feature Selection: 0.9736842105263158

```
[37]:
                      0.0
                                 1.0 accuracy
                                                 macro avg weighted avg
     precision
                 0.958904
                            1.000000 0.973684
                                                  0.979452
                                                               0.974766
     recall
                 1.000000
                            0.931818 0.973684
                                                  0.965909
                                                               0.973684
                                                  0.971863
     f1-score
                 0.979021
                            0.964706 0.973684
                                                               0.973496
     support
                70.000000 44.000000 0.973684 114.000000
                                                              114.000000
```


1.8.8 Wrapper Method

support

c) Step Floating Forward Feature Selection

```
[39]: sfloat = SFS(GaussianNB(), k features = 15, forward = True, floating = True,
       ⇔verbose = 2, scoring = 'accuracy',cv=0)
      sfloat.fit(X_train_wrap, np.ravel(y_train_wrap))
      sfloat_fw = sfloat.transform(X_train_wrap)
     [2023-09-10 14:47:49] Features: 1/15 -- score: 0.9142857142857143
     [2023-09-10 14:47:49] Features: 2/15 -- score: 0.9472527472527472
     [2023-09-10 14:47:49] Features: 3/15 -- score: 0.9604395604395605
     [2023-09-10 14:47:49] Features: 4/15 -- score: 0.9626373626373627
     [2023-09-10 14:47:50] Features: 5/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:50] Features: 6/15 -- score: 0.9714285714285714
     [2023-09-10 14:47:50] Features: 7/15 -- score: 0.967032967032967
     [2023-09-10 14:47:50] Features: 8/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:50] Features: 9/15 -- score: 0.9692307692307692
     [2023-09-10 14:47:50] Features: 10/15 -- score: 0.9648351648351648
     [2023-09-10 14:47:50] Features: 10/15 -- score: 0.967032967032967
     [2023-09-10 14:47:50] Features: 10/15 -- score: 0.9736263736263736
     [2023-09-10 14:47:50] Features: 11/15 -- score: 0.9758241758241758
     [2023-09-10 14:47:50] Features: 12/15 -- score: 0.9736263736263736
     [2023-09-10 14:47:50] Features: 11/15 -- score: 0.978021978021978
     [2023-09-10 14:47:50] Features: 12/15 -- score: 0.9758241758241758
     [2023-09-10 14:47:50] Features: 13/15 -- score: 0.9714285714285714
     [2023-09-10 14:47:50] Features: 14/15 -- score: 0.9714285714285714
     [2023-09-10 14:47:50] Features: 14/15 -- score: 0.9736263736263736
     [2023-09-10 14:47:50] Features: 15/15 -- score: 0.9692307692307692
[40]: sfloat model = GaussianNB()
      sfloat_model.fit(sfloat_fw,np.ravel(y_train_wrap))
      sfloat predict = sfloat model.predict(sfloat.transform(X test wrap))
      sfloat_accuracy = accuracy_score(y_test_wrap,sfloat_predict)
      print('Accuracy with Step Floating Forward Feature Selection:',sfloat_accuracy)
      sfloat_report = pd.DataFrame(classification_report(y_test_wrap, sfloat_predict,__
       →output_dict=True))
      sfloat_report
     Accuracy with Step Floating Forward Feature Selection: 0.9824561403508771
[40]:
                       0.0
                                  1.0 accuracy
                                                  macro avg weighted avg
                  0.972222
                             1.000000 0.982456
                                                   0.986111
                                                                 0.982943
     precision
                  1.000000
                             0.954545 0.982456
                                                                 0.982456
      recall
                                                   0.977273
      f1-score
                 0.985915
                             0.976744 0.982456
                                                   0.981330
                                                                 0.982376
```

114.000000

70.000000 44.000000 0.982456 114.000000

1.8.9 Wrapper Method

d) Step Floating Backward Feature Selection

```
[42]: sfloatbw = SFS(GaussianNB(), k_features = 12, forward = False, floating = True, werbose = 2, scoring = 'accuracy', cv=0)
sfloatbw.fit(X_train_wrap, np.ravel(y_train_wrap))
sfloat_bw = sfloatbw.transform(X_train_wrap)
```

```
[2023-09-10 14:47:51] Features: 29/12 -- score: 0.9428571428571428 [2023-09-10 14:47:51] Features: 28/12 -- score: 0.9494505494505494 [2023-09-10 14:47:51] Features: 27/12 -- score: 0.9494505494505494 [2023-09-10 14:47:51] Features: 26/12 -- score: 0.9516483516483516
```

```
[2023-09-10 14:47:51] Features: 25/12 -- score: 0.9538461538461539
     [2023-09-10 14:47:51] Features: 24/12 -- score: 0.9538461538461539
     [2023-09-10 14:47:51] Features: 23/12 -- score: 0.9538461538461539
     [2023-09-10 14:47:51] Features: 22/12 -- score: 0.9538461538461539
     [2023-09-10 14:47:51] Features: 21/12 -- score: 0.9538461538461539
     [2023-09-10 14:47:51] Features: 21/12 -- score: 0.9604395604395605
     [2023-09-10 14:47:51] Features: 20/12 -- score: 0.9626373626373627
     [2023-09-10 14:47:51] Features: 19/12 -- score: 0.9648351648351648
     [2023-09-10 14:47:51] Features: 18/12 -- score: 0.9648351648351648
     [2023-09-10 14:47:52] Features: 17/12 -- score: 0.9648351648351648
     [2023-09-10 14:47:52] Features: 16/12 -- score: 0.9648351648351648
     [2023-09-10 14:47:52] Features: 15/12 -- score: 0.9648351648351648
     [2023-09-10 14:47:52] Features: 15/12 -- score: 0.9692307692307692
     [2023-09-10 14:47:52] Features: 14/12 -- score: 0.967032967032967
     [2023-09-10 14:47:52] Features: 13/12 -- score: 0.9692307692307692
     [2023-09-10 14:47:52] Features: 12/12 -- score: 0.9648351648351648
[43]: sfloatbw_model = GaussianNB()
      sfloatbw_model.fit(sfloat_bw,np.ravel(y_train_wrap))
      sfloatbw_predict = sfloatbw_model.predict(sfloatbw.transform(X_test_wrap))
      sfloatbw_accuracy = accuracy_score(y_test_wrap,sfloatbw_predict)
      print('Accuracy with Step Floating Backward Feature Selection:

¬',sfloatbw_accuracy)
      sfloatbw report = pd.DataFrame(classification report(y test wrap,

sfloatbw_predict, output_dict=True))
      sfloatbw_report
     Accuracy with Step Floating Backward Feature Selection: 0.9824561403508771
[43]:
                       0.0
                                  1.0 accuracy
                                                  macro avg weighted avg
     precision
                 0.985714
                            0.977273 0.982456
                                                   0.981494
                                                                 0.982456
                  0.985714
                            0.977273 0.982456
                                                   0.981494
                                                                 0.982456
     recall
      f1-score
                 0.985714
                            0.977273 0.982456
                                                   0.981494
                                                                 0.982456
      support
                70.000000 44.000000 0.982456 114.000000
                                                               114.000000
[44]: cm = confusion_matrix(y_test_wrap, sfloatbw_predict, labels=sfloatbw_model.
      ⇔classes_)
      disp = ConfusionMatrixDisplay(confusion_matrix=cm,__

→display_labels=sfloatbw_model.classes_)
      disp.plot()
      plt.grid(False)
      plt.show()
```


1.8.10 Comparisons

ROC Curve

```
[45]: fpr, tpr, _ = metrics.roc_curve(y_test,predict)
      plt.plot(fpr, tpr)
      fpr_pcc, tpr_pcc, _ = metrics.roc_curve(y_test,pcc_predict)
      plt.plot(fpr_pcc, tpr_pcc)
      fpr_src, tpr_src, _ = metrics.roc_curve(y_test,src_predict)
      plt.plot(fpr_src, tpr_src)
      fpr_krc, tpr_krc, _ = metrics.roc_curve(y_test,krc_predict)
      plt.plot(fpr_krc, tpr_krc)
      fpr_mic, tpr_mic, _ = metrics.roc_curve(mic_y_test,mic_predict)
      plt.plot(fpr_mic, tpr_mic)
      fpr_annova, tpr_annova, _ = metrics.roc_curve(y_test,annova_predict)
      plt.plot(fpr_annova, tpr_annova)
      fpr_sf, tpr_sf, _ = metrics.roc_curve(y_test_wrap,sf_predict)
      plt.plot(fpr_sf, tpr_sf)
      fpr_sb, tpr_sb, _ = metrics.roc_curve(y_test_wrap,sb_predict)
      plt.plot(fpr_sb, tpr_sb)
      fpr_sfloar, tpr_sfloat, _ = metrics.roc_curve(y_test_wrap,sfloat_predict)
      plt.plot(fpr_sfloar, tpr_sfloat)
```

[45]: <matplotlib.legend.Legend at 0x78a034cf3e80>

1.8.11 Comparisons

Accuracy Comparison

```
[46]: x_labels = ['Without Feature Selection', 'Pearson correlation', 'Spearmans rank_\( \) \( \text{Correlation'}, 'Kendalls rank Correlation', 'Mutual Information', 'ANNOVA_\( \) \( \text{Univariate'}, 'Step Forward Feature Selection', 'Step Backward Feature_\( \) \( \text{Selection'}, 'Step Floating Forward Feature Selection', 'Step Floating Backward_\( \text{Selection'} \) \( \text{Feature Selection'} \)
```

```
y_labels = [round(accuracy,2),round(pcc_accuracy,2), round(src_accuracy,2),__
 ⊖round(krc_accuracy,2), round(mic_accuracy,2), round(annova_accuracy,2),
 →round(sf_accuracy,2), round(sb_accuracy,2), round(sfloat_accuracy,2),
→round(sfloatbw_accuracy,2)]
def addlabels(x_labels,y_labels):
   for i in range(len(x labels)):
       plt.text(i,y_labels[i],y_labels[i], ha = 'center')
addlabels(x_labels,y_labels)
plt.bar(x_labels,y_labels, width=0.5, align='center',_

color=['gray','lightgreen', 'plum', 'lavender', 'salmon', 'lightblue',
]

                    'purple', 'seagreen', 'skyblue', 'tomato'])
plt.xlabel('Feature Selection Techniques')
plt.ylabel('Accuracy')
plt.title('Accuracy Comparison')
plt.xticks(rotation = 90)
plt.show()
```


Feature Selection Techniques

1.8.12 Comparisons

```
AUC Value
```

```
[47]: auc = metrics.roc_auc_score(y_test,predict)
auc_pcc = metrics.roc_auc_score(y_test,pcc_predict)
```

```
auc_src = metrics.roc_auc_score(y_test,src_predict)
auc_krc = metrics.roc_auc_score(y_test,krc_predict)
auc_mic = metrics.roc_auc_score(mic_y_test,mic_predict)
auc_annova = metrics.roc_auc_score(y_test,annova_predict)
auc_sf = metrics.roc_auc_score(y_test_wrap,sf_predict)
auc_sb = metrics.roc_auc_score(y_test_wrap,sb_predict)
auc_sfloat = metrics.roc_auc_score(y_test_wrap,sfloat_predict)
auc_sfloatbw = metrics.roc_auc_score(y_test_wrap,sfloatbw_predict)
print('AUC Value for Without Feature Selection:',auc)
print('AUC Value for Pearson:',auc pcc)
print('AUC Value for Spearman:',auc_src)
print('AUC Value for Kendall:',auc_krc)
print('AUC Value for Mutual Information:',auc_mic)
print('AUC Value for Annova:',auc_annova)
print('AUC Value for Step Forward Feature Selection:',auc sf)
print('AUC Value for Step Backward Feature Selection:',auc_sb)
print('AUC Value for Step Floating Forward Feature Selection:',auc_sfloat)
print('AUC Value for Step Floating Backward Feature Selection:',auc_sfloatbw)
AUC Value for Without Feature Selection: 0.9601708074534161
AUC Value for Pearson: 0.9466614906832297
AUC Value for Spearman: 0.9466614906832297
AUC Value for Kendall: 0.9512422360248447
AUC Value for Mutual Information: 0.919496855345912
AUC Value for Annova: 0.9601708074534161
AUC Value for Step Forward Feature Selection: 0.97727272727272723
AUC Value for Step Backward Feature Selection: 0.9659090909090908
AUC Value for Step Floating Forward Feature Selection: 0.9772727272727273
AUC Value for Step Floating Backward Feature Selection: 0.9814935064935065
```