02-05 Algorithme Apriori

NOUS ÉCLAIRONS. VOUS BRILLEZ.

FORMATION CONTINUE
ET SERVICES AUX ENTREPRISES

Sommaire

- 1. Algorithme Apriori
- 2. Pour aller plus loin ...
- 3. Lectures et références

Sommaire

- 1. Algorithme Apriori
- 2. Pour aller plus loin ...
- 3. Lectures et références

Algorithme Apriori

- L'algorithme Apriori est une approche nécessitant deux passages sur les données pour trouver les itemsets fréquents
- Se base sur la monotonicité
 - \circ Si un ensemble d'items I apparaît au moins s fois, alors chaque sous-ensemble J de I aussi

Contraposée pour les paires

 \circ Si l'item i n'apparaît pas dans s baskets, alors aucune paire incluant i ne peut apparaître dans s baskets

Algorithme Apriori

 L'algorithme Apriori est une approche nécessitant deux passages sur les données pour trouver les itemsets fréquents

Se base sur la monotonicité

À partir de ces constatations, comment trouver d'abord des alors chaque sous-paires d'items fréquents?

Contraposée pour les paires

 Si l'item i n'apparaît pas dans s baskets, alors aucune paire incluant i ne peut apparaître dans s baskets

- Lire tous les baskets et compter le nombre de chaque items
- lacktriangle Les items apparaissant au moins s fois sont considérés **fréquents**

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {lait, coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

lait	5
coca-cola	5
bière	6
pepsi	2
jus	4

- Lire tous les baskets et compter le nombre de chaque items
- lacktriangle Les items apparaissant au moins s fois sont considérés **fréquents**

B ₁ = {lait, coca-cola, bière}	B ₂ = {lait, pepsi, jus}
B ₃ = {lait, bière}	B ₄ = {coca-cola, jus}
B ₅ = {lait, pepsi, bière}	B ₆ = {lait, coca-cola, bière, jus}
B ₇ = {lait, coca-cola, bière, jus}	B ₈ = {bière, coca-cola}

lait	5
coca-cola	5
bière	6
pepsi	2
jus	4

Sis = 3

 Lire à nouveau tous les baskets et compter le nombre de paires (2-tuple) dont chaque élément est fréquent

■ Lire à nouveau tous les baskets et compter le nombre de paires (2-tuple) dont chaque élément est fréquent

■ Pour chaque k, construction de deux ensembles: C_k et L_k

Tous les items 1-ltemsets fréquents

- L_k = k-itemsets **réellement fréquents**

■ Pour chaque k, construction de deux ensembles: C_k et L_k

■ Pour chaque k, construction de deux ensembles: C_k et L_k

Étapes de l'algorithme Apriori

```
\circ C<sub>1</sub> = { {b}, {c}, {j}, {l}, {p} }
```

$$\circ$$
 L₁ = { {b}, {c}, {j}, {l} }

$$\circ \quad C_2 = \{ \{b,c\}, \{b,j\}, \{b,l\}, \{c,j\}, \{c,l\}, \{l,j\} \} \}$$

$$\circ$$
 $C_3 = ?$

Étapes de l'algorithme Apriori

```
    C<sub>1</sub> = { {b}, {c}, {j}, {l}, {p} }
    L<sub>1</sub> = { {b}, {c}, {j}, {l} }
```

$$\circ \quad C_2 = \{ \{b,c\}, \{b,j\}, \{b,l\}, \{c,j\}, \{c,l\}, \{l,j\} \} \}$$

$$\circ$$
 L₂ = { {b,l}, {b,c}, {c,l}, {c,j} }

$$\circ \quad \mathbf{C}_3 = \{ \{ \mathbf{b}, \mathbf{c}, \mathbf{l} \}, \{ \mathbf{b}, \mathbf{c}, \mathbf{j} \}, \{ \mathbf{b}, \mathbf{l}, \mathbf{j} \}, \{ \mathbf{c}, \mathbf{l}, \mathbf{j} \} \}$$

Pour obtenir C₃, "combiner" L₂ et L₁

Étapes de l'algorithme Apriori

```
\circ C<sub>1</sub> = { {b}, {c}, {j}, {l}, {p} }
\circ \quad L_1 = \{ \{b\}, \{c\}, \{j\}, \{l\} \} \}
\circ \quad C_2 = \{ \{b,c\}, \{b,j\}, \{b,l\}, \{c,j\}, \{c,l\}, \{l,j\} \} \}
\circ \quad \mathbf{C}_3 = \{ \{ \mathbf{b}, \mathbf{c}, \mathbf{l} \}, \{ \mathbf{b}, \mathbf{c}, \mathbf{j} \}, \{ \mathbf{b}, \mathbf{l}, \mathbf{j} \}, \{ \mathbf{c}, \mathbf{l}, \mathbf{j} \} \}
\circ \Gamma^3 = \{ \{ p'c' \} \}
```

Pour obtenir C_3 , "combiner" L_2 et L_1

D'une manière générale, pour obtenir C_k , "combiner" L_{k-1} et L_1

Sommaire

- 1. Algorithme Apriori
- 2. Pour aller plus loin ...
- 3. Lectures et références

Pour aller plus loin ...

- Algorithme de Park, Chen, et Yu (PCY)
- Algorithme multistages
- Algorithme multihash
- Algorithme SON
- etc ...

6 Frequent Itemsets p. 213-251

https://github.com/mswawola-cegep/420-a58-sf-gr-12060.git 02-05-A1 et 02-05-A2

Sommaire

- 1. Algorithme Apriori
- 2. Pour aller plus loin ...
- 3. Lectures et références

Lectures

Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman, Mining of Massive Datasets, 3rd edition

Références

[1] Mining of Massive Datasets, 3rd edition