\mathbf{RINGS}

Cosets

Author

Tom Jeong

November 6, 2024

Contents

1	prime elemnets unique factorization domains.	•
2	principle ideal domains and UFD	4

1 prime elemnets unique factorization domains.

exercise show that the field of fractions of $\mathbb{Z}(i)$ is $\mathbb{Q}[i]$

Definition 1.1. 1. A non-zero element in $x \in R - R^*$ Has a factorization into irreducible element if \exists irreducible elements

$$p_1, p_2, \ldots, p_n \in R$$

such that $x = p_1 p_2 \dots p_n$

2. We say x has a <u>unique</u> factorization into irreducible elements if for any other irreducible factorization

$$x = q_1 q_2 \dots q_n$$

Every $p_i, i = 1, ..., n$ divides some q_j for some j = 1, ..., m

remark Since q_i is irreducible, $q_i \mid q_j$ implies $q_j = up_i$ for some $u \in \mathbb{R}^*$ therefore n = m

Definition 1.2. A domain R such that every nonzero element in $R-R^*$ has a unique facrotization into irreducible elements is called a unique factorization domain UFD

Definition 1.3. A Nonzero element $p \in R - R^*$ is called a <u>prime element</u> if $p \mid xy \to p \mid x \lor p \mid y$

exercise If p is prime and $p \mid x_1 x_2 \dots x_n$, then $p \mid x_1$ for some $i = 1 \dots, n$

Proposition 1.1. (3.5.2)

A prime element is irreducible h

Proof. let $p \in R - R^*$ be prime

If $p \mid xy$, then $p \mid x$ or $p \mid y$

wlog $p \mid x$

Then x = rp for some $r \in R$

Then p = rpy AND since R is a domain we can cancel. thus 1 = ry

Hence, y is a unit so p is irreducible

example

$$\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} | a, b \in \mathbb{Z}\} \subset \mathbb{C}$$

$$6 = (1 - \sqrt{-5})(1 + \sqrt{5})$$

Claim: $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible but no prime

Proof. 1. 2 is not prime:

 $2 \mid (1-\sqrt{-5})(1+\sqrt{5})$ but 2 does <u>not</u> divide $1-\sqrt{-5}$ nor $1+\sqrt{-5}$

since
$$\frac{1}{2} \pm \frac{\sqrt{-5}}{2} \not\in \mathbb{Z}[\sqrt{-5}]$$

2. 2 is irreducible

$$\begin{aligned} N: \mathbb{Z}[\sqrt{-5}] &\to \mathbb{N} \\ N(z) &= z\bar{z} \\ N(a+b\sqrt{-5}) &= a^2 + 5b^2 \end{aligned}$$

$$z\in\mathbb{Z}[\sqrt{-5}]^*\leftrightarrows N(z)=1$$
 Then $a+b\sqrt{-5}$ is a unit $\leftrightarrows a=\pm 1, b=0$ Let

$$2 = xy$$
where $x = a + b\sqrt{-5}$

$$y = c + d\sqrt{-5}$$
Then $N(2) = 4 = N(x)N(y)$

$$= (a^2 + 5b^2)(c^2 + 5d^2)$$

$$= a^2c^2 + 5a^2d^2 + 5b^2c^2 + 25b^2d^2$$
therefore,
$$4 = a^2c^2 \text{ and } b = d = 0$$

$$ac = \pm 2 \text{ so a or c is } \pm 1$$

So x, or y is a unit

2 principle ideal domains and UFD

Goal: we will show that every PID is a UFD (the converse is not true) $\underbrace{\text{example}}_{\text{PID}} \ \mathbb{R}[x,y] = \{ \text{polynomials in x and y with real coefficients} \} \text{ is a UFD but is } \underbrace{\text{not}}_{\text{a}} \text{ a}$

$$I = \langle x, y \rangle$$

is not principal

Lemma 2.1 (3.5.5). Let R be a PID and $r \in R$ a non zero element, Then r has an irreducible factorization.

Claim: IF $\langle a_1 \rangle \subseteq \langle a_2 \rangle \subseteq \cdots \in R$ where R is a PID, Then

$$\exists N \in \mathbb{N}$$

such that $\langle a_i \rangle = \langle a_{i+1} \rangle \forall i > N$

proof of claim.

in the HW we shouwed that the

$$\bigcup_{i=1}^{\infty} < a_i >$$

is an ideal since R is a PID,

$$\bigcup_{i=1}^{\infty} \langle a_i \rangle = \langle d \rangle$$

for some $d \in R$

Thus $d \in \langle a_N \rangle$ for some N, and so $\langle d \rangle \subseteq \langle a_N \rangle$ and hence $\langle a_i \rangle = \langle d \rangle$ for $i \geq N$ Suppose $r \in R - R^*$ is a non zero element which is not a product of irreducible. then

$$r = a_1 b_1, a_1, b_1 \not\in R^*$$

where at least one of a_1, b_1 is not a product of irreducibles.

WLOG a_1 is not a product of irreducibles.

Then $a_1 = a_2b_2, a_2, b_2 \notin \mathbb{R}^*$ where at least of a_2, b_2 is not a product of irreducibles ...

Then

$$\langle R \rangle \subsetneq \langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \langle a_3 \rangle \subsetneq \dots$$

which contradicts the claim hence rm ust have an irreducible factorization.

Proposition 2.2 (3.5.6).

suppose R is a PID that is not a field. An ideal $\langle x \rangle \subset R$ is a Maximal Ideal IFF x is irreducible.

Proof. 1. \rightarrow Assume $\langle x \rangle$ is a maximal and x = ab, we want to show that a or b is a unit.

Assume neither a or b is a unit Then $\langle x \rangle \subsetneq \langle a \rangle$ since b is not a unit $\langle x \rangle \subsetneq \langle b \rangle$ since a is not a unit

contradicting maximality of $\langle x \rangle$ hence a or b must be a unit

2. \leftarrow Suppose x is irreducible.

IF $\langle x \rangle \subseteq \langle y \rangle$ then $x = \lambda y$ for some $\lambda \in R$ since x is irreducible λ or y is a unit If λ is a unit, then $\langle x \rangle = \langle y \rangle$ If y is a unit, $\langle y \rangle = K$ Hence $\langle x \rangle$ is maximal.

Theorem 2.3 (3.5.7). A PID R is a UFD

Proof. By lemma 3.5.5 since R is PID, irreducible factorization exists. We need to show uniqueness. We will show that irreducibility elemens are prime and then apply Prop 3.5.3 to show that R is a UFD

Proposition 2.4 (3.5.3). Let R be a ring where every non-zero element $r \in R - R^*$ has a factorization into irreducibles. Every irreducible element is a prime element in R iff R is a UFD

Proof. 1. \rightarrow Suppose $x \in R - R^*$ with $x = p_1 p_2 \dots p_n = q_1 q_2 \dots q_m$ wher pi qj are irreducible.

2. \leftarrow Let R be a ufd and $p \in R$ irreducible. Suppose $p \mid xy$ since R is a UFD, x and y each have unieque factorizations and by uniqueness one of these factorizations must have an irreducible factor that is divisible by p.

Hence $p \mid x$ or $p \mid y$ so p is prime.

To see that every PID is a UFD we will show that irreducible elements are prime and apply prop 3.5.3 to show R is a UFD.

Let $p \in R$ p irreducible, with $p \mid ab$ and $p \nmid a$

WTS $p \mid b$

since $p \nmid a, a \notin$

Then, $\langle p \rangle \subseteq \langle a, p \rangle$

Since p is irreducible, $\langle p \rangle$ is maximal by te earlier prop 3.5.6

Hence $\langle a, p \rangle = R$ so exists $x, y \in R$ so that xa + yp = 1

Multiplying both sides by b: xab + ypb = b

Since $p \mid ab$, it follows that $p \mid b$