

Learning Black-Box Attackers with Transferable Priors and Query Feedback

Jiancheng Yang*, Yangzhou Jiang*,

Xiaoyang Huang, Bingbing Ni, Chenglong Zhao.

Dec. 2020

It is a Siamese cat

(confidence: 99.9%).

Problem Setting

Black-box adversarial attack, where only classification confidence of a victim model is available.

Query Black-Box

Victim Model

Introduction – Methodology – Experiments – Conclusion

Introducing a surrogate model to the victim model.

High consistency between gradients from vision models

Methodology: SimBA++

SimBA++: A strong baseline combining **transferability**based and query-based black-box attack.

Please refer to the paper for a detailed algorithm.

Methodology: LeBA

Learnable Black-Box Attack (LeBA): Updating the surrogate model with query feedback, in a High-Order

Gradient Approximation (HOGA) learning scheme.

Please refer to the paper for a detailed algorithm.

Attack success with high query efficiency under l_2 -norm threat model.

Clean: Siamese cat

Adversarial: Chihuahua

NEURAL INFORMATION PROCESSING SYSTEMS

Original Image 0.902, 0.00, 0

Attack Step 60%

Attack Step 80%

Attack Success

Attack Performance on ImageNet

High attack **success** rate (ASR) with improved **query efficiency**, even compared with recent Square Attack (ECCV'20).

Methods	Inception-V3		ResNet-50		VGG-16		Inception-V4		IncRes-V2	
	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q
NES [23] ICML'18	88.2%	1726.3	82.7%	1632.4	84.8%	1119.6	80.7%	2254.3	52.5%	3333.3
Bandits _{TD} [24] ICLR'19	97.7%	836.1	93.0%	765.3	91.1%	275.9	96.2%	1170.9	89.7%	1569.3
Subspace [20] NeurIPS'19	96.6%	1635.8	94.4%	1078.7	96.2%	1085.8	94.7%	1838.2	91.2%	1780.6
RGF [10] NeurIPS'19	97.7%	1313.5	97.5%	1340.2	99.7%	823.2	93.2%	1860.1	85.6%	2135.3
P-RGF [10] NeurIPS'19	97.6%	750.8	98.7%	229.6	99.9%	685.5	96.5%	1095.6	88.9%	1380.2
P-RGF _D [10] NeurIPS'19	99.0%	637.4	99.3%	270.5	99.8%	393.1	98.3%	913.6	93.6%	1364.5
Square [2] ECCV'20	99.4%	351.9	99.8%	401.4	100.0%	142.3	98.3%	475.6	94.9%	670.3
TIMI [14] CVPR'19	49.0%		68.6%	=	51.3%	=	44.3%	=	44.5%	
SimBA [19] ICML'19	97.8%	874.5	99.6%	873.9	$\boldsymbol{100.0\%}$	423.3	96.2%	1149.8	92.0%	1516.1
SimBA+ (Ours)	98.2%	725.2	99.7%	717.0	$\boldsymbol{100.0\%}$	365.9	96.8%	946.2	92.5%	1234.7
SimBA++ (Ours)	99.2%	295.7	99.9%	187.3	99.9%	166.0	98.3%	420.2	95.8%	555.1
LeBA (Ours)	99.4%	243.8	99.9%	178.7	99.9%	145.5	98.7%	347.4	96.6%	514.2

Attack over Defensive Methods

High attack success rate (ASR) with improved query efficiency, even compared with recent Square Attack (ECCV'20).

	JPEG Co	mpression	Guided	Denoiser	Adversarial Training		
Methods	ASR	AVG.Q	ASR	AVG.Q	ASR	AVG.Q	
NES [23] ICML'18	14.9%	2330.9	57.6%	2773.8	59.4%	2773.6	
Bandits _{TD} [24] ICLR'19	95.8%	1086.7	20.3%	759.6	96.6%	1121.4	
Subspace [20] NeurIPS'19	46.7%	2073.4	93.2%	1619.2	93.4%	1651.7	
RGF [10] NeurIPS'19	74.4%	846.9	22.0%	2419.1	87.6%	2095.3	
P-RGF _D [10] NeurIPS'19	94.8%	751.2	82.6%	1588.3	98.4%	1092.8	
Square [2] ECCV'20	98.8%	342.3	98.2%	392.6	98.5%	387.6	
TIMI [14] CVPR'19	48.2%	-	39.3%	-	39.2%	-	
SimBA [19] ICML'19	96.0%	762.8	98.0%	971.6	98.0%	978.0	
SimBA+ (Ours)	96.8%	663.4	98.2%	797.1	98.0%	779.4	
SimBA++ (Ours)	98.2%	325.1	98.5%	407.9	98.7%	422.9	
LeBA (Ours)	98.8%	273.0	98.8%	343.6	98.9%	355.0	

- We propose SimBA++ and Learnable Black-Box Attack (LeBA) by combing transferability-based and query-based attack.
- With a novel High-Order Gradient Approximation (HOGA) scheme, we update the surrogate model within limited queries.
- The proposed methods empirically establish a new state of the art, in terms of attack success and query efficiency.

Check out the code for this study

https://github.com/TrustworthyDL/LeBA

Thanks for Listening

WeChat *jekyll4168*

WeChat *j1098122556*