EE 599 Spring 2020

Homework2

ChaoGaogaoc@usc.edu,4458723430

Github: https://github.com/gaochaousc/EE-599 -gaoc- -4458723430-

2020/03/05

1 Barrel Shifter [50 Points]

A Barrel Shifter is a logic circuit for shifting a word by a varying amount. It has a control input (select bits) that specifies the number of bit positions that it shifts. A Barrel Shifter is implemented with a sequence of shift multiplexers, each shifting a word by 2^k bit positions for different values of k. The diagram below (Figure 1) shows a pipeline clock-wise barrel shifter for 8 inputs.

Figure 1: An Example Pipeline Barrel Shifter

Notice that we can shift the input elements by 0 - 7 elements using an implementation like Figure 1. Table 1 shows all the shifting possibilities for the above example.

Similarly, a scalable Barrel Shifter with N inputs and maximum shift of N-1 can be implemented.

Table 1: All the shifting possibilities for the given example

Select[2]	Select[1]	Select[0]	Shift
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

1.1 Implementation: Using Xilinx Vivado Software (Use Zynq-7000 xc7z007sclg225-2 FPGA)

Consider only 8-bit arithmetic. You must implement a scalable design.

- Implement a barrel shifter design in Verilog which takes n inputs with 8 bits and shift them by r (value of r is passed to select bits and r_{max} = (n − 1)).
- For a 16 elements design with a maximum shift of 15, write a testbench and verify the waveforms.
- Elaborate the design and include all the schematics screenshots of the modules in the report.
- 4. Synthesis the design and include the schematics screenshots in the report.
- 5. Generate Resource and timing estimations and include them in the report.
- Redo parts 3, 4, 5 for 64 elements (with maximum shift of 63).

1. Schematic Screenshot (for 8 elements)

a. Mux

b. D-FF

c. State Machine

1. For single input

- d. Whole Design
- 2. For multiple input data set =16,64

For data set =16:

For 64 elements:

3. Function Waveform Test Here, we gave the input different value and different number for shifting and it returns different result. For single input and single output.

For multiple inputs and multiple output.

Size=16 Datasize=8bits:

Here comes the array, from <0> to <15>, and the outcome will be finished in the next several cycles.

Size=64 Datasize=8bits:

06	fa	0.4	f8	f1	06	fb	08	0	a)	fa	f9	01	04	f3	04	08	f5	f1	01	09	06	0a	Oc)	f9	01	02
06	0a	f3	01	04	06	Oa	f8	fc	02	0a	08	f2	fl	f9	f3	f8	Od	fb	f2	0e	ОЪ	02	Od	08	f2	fc
0ъ	03	f9	0a	f1	ОЪ	fc	01	0e	fc	03	f8	f5	fb	f1	f9	01	Od	Oa.	f5	Od	f9	fc	Od	f8	f5	fa
f9	ff	f1	02	fb	f9	0e	0a	06	fa	ff	01	Od	0a	04	fl	0a	f3	fc		d	08	fa	06	01	Od	0a
08	04	04	fc	0a	08	06	02	06	0a	04	0a	Od	fc	f1	04	02	f9	0e	04	06	f8	0a	0d	0a	04	03
f8	fe	f1	fa	fc	f8	06	fc	ОЪ	03	fe	02	f3	Oe	fb	f1	fc	f1	06	f3	Od	01	03	OI.	02	f3	ff
01	f2	fb	0a	0e	01	ОЪ	fa	f9	ff	f2	fc	f9	06	0a	fb	fa	04	06	f9	01	0a	ff	f2	fc	f9	04
0a	f5	0a	03	06	0a	f9	0a	08	Od	f5	fa	f1	06	fc	0	a	f1	(OP)	f1	f2	02	Od	f5	fa	f1	fe
02	Оъ	fc	ff	06	02	08	03	f8	fe	Оь	0a	04	OP	0e	fc	03	fb	f9	04	f5	fc	fe	Od	0a	04	f2
fc	f3	0e	Ođ	Ob	fc	f8	ff	01	f2	f3	03	f1	f9	06	0e	ff	Oa.		f1	0d	fa	f2	Od	03	f1	f5
fa	fd	06	fe	f9	fa	01	0d	0a	f5	fd	ff	fb	08	χ	6	04	fc	f8	fb	0d	0a	f5	f3	ff	fb	ОЪ
0a	f3	06	f2	08	0	a	fe	02	ОЪ	f3	04	0a	f8	Оь	06	fe	0e	<u> </u>	0a	f3	03	ОЪ	f9	0d	0a	f3
03	f6	Оъ	f5	f8	03	02	f2	fc	f3	f6	fe	fc	ot	f9	Оъ	f2	06	Oa.	fc	f9	ff	f3	fi	fe	fc	fd
ff	fd	f9	Оъ	(01	ff	fc	f5	fa	亡	fd	f2	0e	Oa.	08	f9	f5	06	02	0e	(fl	04	fd	04	f2	0e	f3
04	0a	08	f3	0a	Od	fa	0ъ	0a	f3	0a	f5	06	02	f8	08	0	ь	fc	06	04	fe	f3	f1	f5	06	f6
fe	00	f8	fd	02	fe	(Oa	f3	03	f6	00	ОЪ	06	fc	01	f8	f3	f9	fa	06	(fl	f2	f6	fb	ОЬ	06	fd
f2	00	01	f3	fc	f2	03	fd	ff	fd	00	f3	Оъ	fa	0a	01	fd	08	Oa.	ОЪ	fb	f5	fd	Oa.	f3	ОР	0a
f5		a	f6	fa	f5	ff	f3	Od		0a	fd	f9	Oa.	02	0a	f3	f8	03	f9	(Oa	ОР	0a	fc	fd	f9	00
0ъ	f3	02	fd	0a	Оъ	Od	f6	fe	•	f3		08	03	fc	02	f6	01	ff	08	fc	f3	00	0e	f3	08	00
f3	f5	fc	0a	03	f3	fe	fd	f2	•	f5	f6	f8	ff	fa	fc	fd	0a	Od	f8	0e	fd	00	06	f6	f8	0a
f	d	fa	00	ff	fd	f2	0a	f5	0a	fd		01	Oa	0a	fa	0a	02	fe	01	06	f3	0a	06	fd	01	f3
f3	fd	0a	00	Od	f3	f5	00	ОЪ	f3	fd	0	a	fe	03	0a	00	fc	f2	0a	06	f6	f3	ОЪ	0	a	f5

> 💆 [40][7:0]	00	00 V	fd V	15	ff	13	12	fd	13	0a	_	ld.	15	-	fc	15	04	11	-	a	Ob	y fe	19	0a	V fd	08	V 00	fc
> • [40][7:0]	00	^		—1:	0d	$\underline{}$	5	0a	fd	-	3	fd		Oa.	fa	-Ob	fe	Od	f3	03	£3	fa	08		fd	f8	0a	fa
> 10 [38][7:0]	00		=}-			fd	Оь	00	£3	f5		\ -	fe	f3	Oa	£3	£2	fe	f5	ff	fd	Oa	£8	-	V Oc	\ 		Oa.
> • [37][7:0]	00	- 00	=>=	12	f2	fd	f3	-00	f6) I	d	f5	02	f5	03	fd	f5	f2	fd	Od	f3	03	01	0a	f5	Oa.	f5	03
> ₩ [36][7:0]	00	00 V	Oa ()£	f5	0e	fd	0a	=	d	(Oa	f8	Of	fd	ff	£3	Оъ	£5	fd	fe	£6	ff	0a	f3	f8	02	fd	ff
> W [35][7:0]	00		f3 (2	0ь	f5	7	3	0a	0c	00	fe	f2	fd	Od	16	f3	Ob	0c	f2	fd	Od	02	f5	fe	fc	fd	0 d
> 🕨 [34][7:0]	00	₩×	f5 (7	f3	f8	f6	f5	00	f5	00	02	£7	0c	fe	严	d	f3	f	5	0a	fe	fc	fd	02	fa	0e	fe
> 🕊 [33][7:0]	00	-00 X	fd ()5	fd	fe	7	d	00	f8	0a	Of	05	15	f2	0a	f3	fd	f8	Оь	₩	£2	fa	fd	01	Oa.	f5	ζ=,
> 😽 [32][7:0]	00	-00 X	fd (a	f3	02	0a	fd	0a	fe	f3	f2	fa	f8	f5	₩	f6	f3	fe	f3	₩	f5	0a	0e	f2	03	f8	f5
> 😽 [31][7:0]	00	00 X	Oc X	- X	f6	Of	₩	0c	£3	02	£5	£7	f5	fe	Оь	₩	fd	16	02	fd	- Oa	0ъ	03	£5	£7	ff	fe	Оъ
> 😽 [30][7:0]	00	00	f5 X	6	fd	f2	•	í	5	0f	fd	05	f6	02	f3	一	a	fd	0f	=	f3	<u> </u>	ff	f8	05	Od	02	f3
> 🕊 [29][7:0]	00	00	f8 (19	0a	£7	Oa.	f8	fd	£2	fd	fa	09	0f	fd	£3	00	0a	£2	f6	£5	fd	04	fe	fa		0f	fd
> 🕊 [28][7:0]	00	00 X	fe 🗸 ()c	00	05	f3	fe	fd	£7	0c	f5	Oc	£2	f3	£5	(-	0	£7	(f	d	(f3	fe	02	(f5	(' '	2	f3
> 😽 [27][7:0]	00	00 X I	02 / 0	ld X	00	fa	£5	02	Oc.	05	f5	f6	0 d	£7	f6	fd	0a	00	05	0a	fd	(f6	f2	0f	(f6	£5	(f7	f6
> 🕊 [26][7:0]	00	00 X	01 (ra X	0a	15	fd	01	15	fa	18	09	04	05	(1	d	f 3	0a	fa	00	Oc.	fd	15	12	09	ОЪ	05	fd
> 😽 [25][7:0]	00	00 X	f2 (16	f3	f6	fd	f2	f8	f5	fe	X Oc	06	fa	0a	Oc.	f5	f3	f5	00	f5	(Oa	ОЪ	£7	(Oc	f3	fa	0a
> 🕊 [24][7:0]	00	00 X	£7 X () da	f5	09	Oc	£7	fe	f6	02	X 💢	0d	£5	00	£5	fd	15	f6	Oa.	(f8	(00)	13	05	(0 d	fd	f5	00
> 😽 [23][7:0]	00	00 X	05 (ıΣχ	fd	0c	£5	05	02	09	Of	Od	01	f6	00	_f8	(f	d	09	f3	fe	(OO	fd	fa	Od	£3	f6	00
> 🕊 [22][7:0]	00	00		= X	fd	0d	(18)	fa	Of	0c	f2	X 06	f2	09	(Oa	~	0c	fd	Oc.	f5	(O2	(Oa	f3	f5	06	£6	09	0a
> 🕊 [21][7:0]	00	00	f5	$ \wedge$	0c	0d	fe	f5	f2	0 d	£7	Od	f5	0c	f3	02	f5	Oc.	04	fd	Of	(f3		6	Od	fd	(Oc	f3
> 🕊 [20][7:0]	00	^_)d	f5	06	02	f6	£7	0 d	0.5	01	0d		f5	Of.	f8	£5	04	fd	f2	f5	fd	09	01	0a	0 d	f5
> 🕊 [19][7:0]	00	^_		$ \wedge$	f8	04	0£	09		12 06	fa	12	04		fd	12	fe	18	06	_0c	17	fd	0a	0c	f2	•	04	fd
> 💆 [18][7:0]	00	00 X 1	0e X :	3 (fe	01	f2	0c	fa	0 d	<u></u>	£5	f3	06	fd	£7	02	fe	Od	f5	05	fd	00	04	f5	00	06	fd
led 18																												_ &
≝ ⊕	Q 💥	- Γ	M	7.0	*	+[Tes	»ľ																				

	- 1 1		1																										_
Name	Value	100	0.000	ns	150.0	00 ns	. 20	0.000	ns	250.0	00 ns	. 30	0.000 ns	350.0	00 ns	. 40	0.000 1	ns	450.0	00 ns	500	0.000	ns	550.0	00 ns	. 60	0.000 :	as	650.0
> 😽 [22][7:0]	00	00	fa	f2	fd	Od	f8	fa	Of	0c	f2	06	f2	09	Oa.	fe	000	fd	0c	f5	02	0a	f3	f5	06	f6	09	0a	0d
> 😻 [21][7:0]	00	00	$\overline{}$	5	0e	Od	fe	f5	f2	0d	17	Od	f5	0c	f3	02	£5	Oc.	Od	fd	Of	£3		:6	Od	fd	(Oc		01
> 😻 [20][7:0]	00	00	f6	0.0	f5	06	02	f6	£7	0d	05	01	0.0		£5	Of	f8	£5	04	fd	f2	f5	fd	09	01	0a	04	f5	f2
> 😽 [19][7:0]	00	00	09	Od	f8	Od	Of	09	05	06	fa	f2	Od		fd	f2	fe	f8	06	Oc.	£7	fd	0a	Oc.	f2	(d)	Od	fd	f5
> 😽 [18][7:0]	00	00	0c	f3	fe	01	f2	0c	fa	Od	X 1	5	f3	06	fd	£7	02	fe	Od	f5	05	fd	00	Od	f5	00	06	fd	0d
> 😽 [17][7:0]	00	00	04	f9	02	f2	17	04	f5	01		Od	£9	04	(Oc	05	Of	02	01	f8	fa	Oc	00	~	d	(Oa	04	(Oc	0d
> 😽 [16][7:0]	00	00	Od	f1	0f	f5	05	Od	f6	f2	09	Od	f1	01	f5	fa	f2	Of	f2	fe	f	5	0a	06	0d	f3	01	f5	f3
> 😽 [15][7:0]	00	00	06	04	f2	Od	fa	06	09	f5	(Oc	13	04	f 2		£5	£7	f2	f5	02			f3	Od	f3	£5	f2		19
> 😽 [14][7:0]	00	00	0.0	f1	£7	Od	15	0 q	(Oc)d	1 9	f1	15	fe	16	05	£7	Od	Of	09	fe	f5	01	(f9	fd	(f5	fe	fl
> 😽 [13][7:0]	00	00	01	fb	05	f3	f6	01	$\overline{}$	0d		f1	fb	Od	02	09	fa	05	Od	f2	Oc.	02	fd	f2	(fl	fd	Od	02	04
> 😽 [12][7:0]	00	00	f2	0a	fa		09	f2	Od	13	06	04	(Oa	Od	Of	Oc.	£5	fa	f3	£7	Od	Of	fd	f5	04	(Oc	Od	Of	fl
> 🛂 [11][7:0]	00	00	f5	fc	£5	f1	Oc.	f5	06	f 9	Oq	(1	fc	f 3	£2	Od	16	£5	£9	05	Od	f2	0c	Od	(fl	£5	(f3	f2	fb
> 🛂 [10][7:0]	00	00	04	0e	f6	04	\subset	04		fl	(OI	fb	0e	f9	(f7	Od	09	f6	fl	fa	06	_f7	f5	Od	fb	f8	(f9	(f7	0a
> 🛂 [9][7:0]	00	00	Ođ	06	09	fl	Ċ	d	01	04	f2	0a	06	fl	05	06	Oc.	09	04	f5	Od	05	f8	f3	(Oa	fe	(fl	05	fc
> 🕨 [8][7:0]	00	00	f3	06	0e	fb	06	£3	f2	fl	15	(Ic	06	04	fa)d	Oc.	fl		<u> </u>	fa	fe	£9	fc	02	04	fa	0e
> 🕨 [7][7:0]	00	00	f9	ОЪ	Od	(Oa	Od	f9	f5	fb	Od	Oe	Оь	fl	f5	01	χ0	ď	fb	09	£2	f5	02	fl	(Oe	0 f	(fl	f5	06
> 🛂 [6][7:0]	00	00	f1	f9	0 d	fc	(01	fl	Ođ	0a	Od	06	f9	fb	(f6	f2	V 06	Od	0a	Oc		f6	0f	04	06	f2	fb	(f6	06
> 🛂 [5][7:0]	00	00	04	08	06	(Oe	12	04	04	fc	f 3	06	08	0a	09	15	Od	06	fc	<u> </u>	d	09	12	f1	06	£7	(Oa	09	0ъ
> 🕨 [4][7:0]	00	00	f1	f8	0 d	06	£5	(fl	f3	0e	(f9	ОЪ	f8	fc	Oc.	Od	01	0 d	0e	_ °	d	Oc	£7	fb	(Оь	05	fc	(Oc	f9
> 🛂 [3][7:0]	00	00	fb	(i)	06	Od	fb	f9	06	(fl	(f9	01	0e	(°	ď	f2	01	0	6	f3	Od	05	0a	(f9	fa	(Oe	0d	08
> 🛂 [2][7:0]	00	00		a	12	ОР	Od	(Oa	(f1	06	04	08	Oa.	06	04	13	15	12	06	Od	19	Od	fa	fc	08	£5	06	04	f8
> 🛂 [1][7:0]	00	00	fc	02	f5			fc	04	Оъ	(fl	_f8	02		16	£9	Od	f5	Оъ	01	f1	06	f5	0e	(f8	f6	(°	16	01
> 😽 [0][7:0]	00	00	0e	fc	Od	08	f9	0e	fl	f9	fb	(01	fc	Оъ	Od	f1	X 0	d	f9	f2	04	Od	f6	06	(01	09	(0b	Od	0a

4. Synthesis Screenshot

5. Timing Estimation Obesign Timing Summary

etup		Hold		Pulse Width	
Worst Negative Slack (WNS):	3.609 ns	Worst Hold Slack (WHS):	0.127 ns	Worst Pulse Width Slack (WPWS):	2.000 ns
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0
Total Number of Endpoints:	16	Total Number of Endpoints:	16	Total Number of Endpoints:	25

6. Resources Estimation

7. Power Estimation

Summary

derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation. Total On-Chip Power: 0.105 W **Design Power Budget: Not Specified** Power Budget Margin: N/A Junction Temperature: 26.2°C Thermal Margin: 73.8°C (6.2 W) Effective θJA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: <u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

Power estimation from Synthesized netlist. Activity

- 1. Schematic Screenshot (for 64 elements)
- a. Mux

b. D-FF

c. State Machine

d. Whole Design

2. Synthesis Screenshot

3. Timing Estimation

4. Resources Estimation

5. Power Estimation

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 46.462 W (Junction temp exceeded!)

Design Power Budget: Not Specified

Power Budget Margin: N/A 125.0°C Junction Temperature:

Thermal Margin: -460.9°C (-39.5 W)

Effective θJA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level:

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

2 Systolic Array for Dense Matrix-Matrix Multiplication [50 Points]

The Systolic Architecture consists of an array of processing elements, where data flows between neighboring elements, synchronously, from different directions. Processing element takes data from Top, Left, and output the results to Right, Bottom.

Figure 2: Inputs and outputs to the Processing Elements

One of the main applications of Systolic Architecture is matrix multiplication. As the following figure depicts, in_a, in_b are inputs to the processing element and out_a, out_b are output to the processing element. out_c is to get the output result of each processing element.

Processing elements are arranged in the form of an array. In the following example, we

Figure 3: Internals of the PE

analyze, multiplication of 3×3 matrices, which can be easily extended. Let say the two matrices are A and B. Figure 4 depicts how matrix A and B are fed into PE array.

Figure 4: Example 3×3 Systolic Array

2.0.1 Implementation: Using Xilinx Vivado Software (Use Zynq-7000 xc7z007sclg225-2 FPGA)

Consider only 8-bit arithmetic. All the values are already stored in the BRAM.

You must implement a scalable design.

- Implement a Systolic Array design in Verilog, which takes two n × n matrices and multiply them together.
- Write a testbench that takes two 16 × 16 matrices to the design and provide an output of 16 × 16.
- Simulate the design using the Vivado simulator and include the waveform in the report (clearly indicate the locations where final outputs produced).
- Elaborate the design for 16×16 and include all the schematic screenshots of the modules in the report.
- Synthesis the design and include the schematics screenshots in the report.
- 6. Generate Resource and timing estimations and include them in the report.
- Generate power estimation reports and include them in the report.
- Similarly provides reports for 32 × 32 matrix multiplication.

A. 16*16 Systolic Array

1. Schematic Implementation & Function Test
Here we randomly choose number from 0-128, and generate outcome as a txt format in
testbench, after that, we can compare the outcome value by writing just a simple python.

<u>F</u> ile <u>E</u> dit	F <u>o</u> rmat <u>V</u> iew	<u>H</u> elp														
3114	-10640	-27926	-13544	-16209	-1263	12293	-33605	7028	-3902	12368	-3678	5507	-18234	992	20080	
10920	-22488	-33234	-31020	-35348	-7150	26906	15509	2755	-53529	34111	-21830	5012	11705	1524	3324	
-17906	40885	9855	-18866	3021	-25479	9385	-32502	3997	21070	-38247	-941	19045	-7646	-11898	-13227	
27949	51370	-5816	-3119	26269	-26682	12086	12738	-11100	-41620	-13960	-23479	-11838	50478	-9924	-1964	
18809	56296	-10850	17478	29892	-26402	-26188	4757	14483	-2820	-50983	-25427	848	39672	17274	21739	
31847	1790	4919	1981	33137	-5055	13080	11359	-28525	-23813	35856	13710	-21713	25215	-8073	-18945	
-36227	4776	-6294	-11310	8916	17916	-16025	8769	13360	26046	-35808	23550	6674	-26450	19016	22804	
12125	8648	-7393	22332	15958	-23286	-37675	-27645	-27212	-39425	-18406	55	-18551	21627	-35294	32473	
-31557	2750	-25527	-12004	-46575	2442	-13473	10	34352	13280	-49281	-14723	17137	-16335	16825	12036	
-13391	16883	22203	24910	11320	26897	1131	-27146	2056	18480	-9227	2309	-4817	-17997	-5820	5112	
-4970	-3988	-6161	43121	25463	38745	2804	12475	4426	12924	-14788	14585	10028	-18794	3846	21449	
12333	-41526	13528	22571	-18082	-9926	-9863	13394	-11995	8536	26373	40363	4070	-10070	1819	34060	
19176	-17637	18361	8911	4845	5052	1498	-3612	-4438	25221	8006	4528	8635	587	18941	-7739	
26506	-22704	14955	-15880	14619	-20331	-15743	-4646	-26791	9559	56665	31503	-24687	8602	3674	-5321	
21499	11313	13196	32578	-3418	3982	16266	-4968	-2656	-5712	8891	46261	19933	-1747	-6265	15065	
-30176	3003	-12245	-10980	-45197	-1050	21035	-6504	1440	-25636	-25827	2470	-18273	-12789	-13635	8057	

	M	latrix_A.	txt - No	tepad												-	-
	<u>F</u> ile	<u>E</u> dit F	<u>o</u> rmat	<u>V</u> iew	<u>H</u> elp												
	36	-119	13	-27	1	118	109	121	-59	101	-110	114	-24	92	-83	-29	
1	0	42	-106	-115	107	-126	29	35	-54	114	65	120	107	70	-68	-117	
	5	-69	-2	113	98	31	120	-97	-37	-55	-41	22	-62	-9	18	109	
	31	5	91	-65	88	-114	122	115	-81	-33	119	-26	41	-38	-75	121	
	-48	43	92	-3	86	-25	54	121	20	-124	91	89	-10	54	-58	119	
	-76	40	-57	-120	-3	-100	-38	102	-13	94	85	-71	22	38	125	6	
	126	-49	-6	23	6	117	-87	-59	75	-20	78	41	14	-97	42	30	
	-7	74	107	54	68	18	127	122	50	4	74	-95	-5	-17	54	-113	
	8	27	40	75	-98	108	81	-63	88	-42	-30	115	18	-71	-95	1	
	39	-97	88	20	-106	85	43	45	4	-25	-55	73	-95	122	3	-14	
	-24	6	56	-88	-59	116	-80	42	21	23	73	37	-115	7	12	-69	
	-9	-36	-96	114	93	75	-98	-5	-125	29	68	-32	82	13	4	-116	
ı	23	4	124	58	-90	50	-55	-67	-36	6	-76	-84	7	17	-53	108	
	36	-71	-44	29	2	-39	-100	99	-56	58	-85	-110	89	-18	91	59	
	-113	-116	69	16	-23	74	27	56	-122	119	84	118	11	91	66	-80	
	-26	-23	-122	97	-18	-27	100	-31	110	85	112	15	-3	-30	-87	-37	

<u>F</u> ile	<u>E</u> dit	F <u>o</u> rmat	<u>V</u> iew	<u>H</u> elp											
-127	-29	13	-110	13	61	12	-58	-86	-9	15	-50	-59	-67	-27	10
32	-99	-109	-45	-43	-82	-49	10	-68	10	-40	-119	54	46	42	-15
79	58	21	89	76	15	-73	-36	9	-48	-47	12	72	61	-2	57
-45	-8	73	42	-122	-100	-90	-93	-77	68	-53	90	-19	-27	-33	68
42	14	-102	-61	78	-118	-72	-72	19	-39	-51	-19	74	21	4	105
8	-83	-82	28	41	6	-67	-16	58	122	-102	55	64	-74	92	120
-37	121	-31	-95	-48	-75	65	-104	-13	-118	-88	-95	-26	42	-115	-72
72	19	-57	58	57	-76	-122	-14	-67	-28	41	14	-117	73	-11	107
-82	18	-83	-62	13	24	-122	-69	83	-37	-124	-40	-72	-27	43	72
33	-124	-106	-110	-79	-19	117	-89	-89	-71	91	81	42	-59	-4	-2
-17	112	64	118	64	57	60	98	-31	-61	-122	65	-38	44	-15	54
-98	85	-96	-76	-115	-7	-3	15	99	49	-107	-19	120	-46	70	16
106	-86	-32	-117	-91	-94	-108	75	71	-71	80	12	-22	104	115	35
73	-33	103	48	73	32	19	-86	-35	4	57	-46	-48	23	38	0
-23	89	79	-47	119	-40	-60	-73	-80	53	7	105	1	0	-59	-81
47	120	-17	-107	96	-88	41	-9	1	104	-86	-15	14	60	111	-81

2. Synthesis schematic

3. Resources Utilization

4. Timing Report

5. Power Report

B. 32*32 16*16 Systolic Array

1. Schematic and Function Wave form

2. Synthesis schematic

3. Resources Utilization

4. Timing Report

5. Power Report

