function zero (F, Z) (retrn Z; 3 function add (N) { return function (F, Z) { return N(F, F(Z));} tuo= add1 (add1 (zero)); two (function (X) { console print("Hey!"); }, O); two (function (X) { return X+1;3,0); Normative: . Theories are given Descriptive : • Models are given · Construct no dels Find Heavies that describe Hlem ISWIM M,N,L,K = X FV(b) = E3b = constants | (1×1) FV(on Mi... Mn) on = are n-any primitives (MN) = FV(M1) U ... U FV(Mn) (0 M) b = { true, false} v N (= ng tral number) 0' = {add1, sub1, i3 zero } 02 = 2+,-, *, +, 0/0, 1, <, >, = , , ~] = b (values or answers) V, U, W = b (in ISWIM) $B_{V}: (\lambda X, m) V \rightarrow m[x \leftarrow V]$ (in 1) $B: (JX,M) N \Rightarrow M[X \leftarrow N]$ $(\lambda X, X + X) (5+5)$ B (5+5) + (5+5)10 Br 10+10

4-2/	S: (or V Vn) 7 8(or, V.,, Vn)
	where S' is a parameter (like b and o') of language
	S'(add1, S) = 6 $S'(not, twe) = falseS^{2}(+, 5, 10) = 15 etc.$
	$v = Bv \cup S$ $\exists v = \text{refl-trans clo of } \exists v$ $\exists v = \text{compatible closure of } v = v = \text{sym clo of } \exists v$
A Property	evalv (m) = b if M=v b 'function ; f M=v 1X, N
	(i.e. we obsure which function is returned.)
	evalv is partial (e.g. evalv (Ω) = Δ) we call non-existents, divergence (Ω diverges)
	(1X. (X 5)) O -> 05 +> -"stick" 12 -> 12 - divergence both are partial results of evalv
	$Y_{V} = \lambda F.$ $(all-by-value \ \psi-combinator)$ $(((\lambda G, F(\lambda Y, (G G) Y)))$ $(\lambda G F(\lambda Y, (G G) Y)))X)$
	Program semantics meaning
	implementation answer