

数据库系统概论 An Introduction to Database System

第二章关系数据库(续)

中国人民大学信息学院

第二章 关系数据库

- 2.1 关系模型概述
- 2.2 关系数据结构
- 2.3 关系的完整性
- 2.4 关系代数
- 2.5 关系演算
- 2.6 小结

- ❖ 概述
- * 传统的集合运算
- * 专门的关系运算

概述

表 2.4 关系代数运算符

运算符	守	含义	运算	符	含义
集合运算符	x ⊃ ' ⊂	并 差 交 笛卡尔积	比较运算符	^	大于 大于等于 小于 小于等于 等于 不等于

表 2.4 关系代数运算符(续)

运算符	含义		运算符	含义	
专门的关系运算符	σ π Χ	选择 投影 连接 除	逻辑运算符	\ \ \ \	非与或

- ❖ 概述
- * 传统的集合运算
- * 专门的关系运算

1. 并(Union)

◆R和S

- 具有相同的目 *n* (即两个关系都有 *n* 个属性)
- 相应的属性取自同一个域

$R \cup S$

■ 仍为 n 目关系,由属于 R 或属于 S 的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

A	B	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
a_1	b_3	c_2

2. 差 (Difference)

- ❖ R 和 S
 - 具有相同的目 *n*
 - 相应的属性取自同一个域
- **♦** R S
 - 仍为 n 目关系,由属于 R 而不属于 S 的所有元组组成 $R S = \{ t | t \in R \land t \notin S \}$

差(续)

R		
A	В	C
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R-S		
A	В	C
a_1	b_1	c_1

3. 交 (Intersection)

◆R和S

- 具有相同的目 *n*
- 相应的属性取自同一个域

♦ R∩S

● 仍为 n 目关系,由既属于 R 又属于 S 的元组组成 $R \cap S = \{ t | t \in R \land t \in S \}$ $R \cap S = R - (R-S)$

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

$R \cap S$		
A	В	C
a_1	b_2	c_2
a_2	b_2	c_1

4. 笛卡尔积 (Cartesian Product)

- ❖严格地讲应该是广义的笛卡尔积 (Extended Cartesian Product)
- **❖**R: *n* 目关系, *k*₁ 个元组
- **❖S**: *m* 目关系, *k*₂ 个元组
- *R×S
 - 列: (*n*+*m*)列元组的集合
 - 元组的前 n 列是关系 R 的一个元组
 - 后 m 列是关系 S 的一个元组
 - 行: k₁×k₂ 介元组
 - $R \times S = \{t_r t_s | t_r \in R \land t_s \in S \}$

交(续)

R		
A	В	С
a_1	b_1	c_1
a_1	b_2	c_2
a_2	b_2	c_1
S		
A	В	C
a_1	b_2	c_2
a_1	b_3	c_2
a_2	b_2	c_1

R.A	R.B	R.C	S.A	S.B	S.C
a_1	b_1	c_1	a_1	b_2	c_2
a_1	b_1	c_1	a_1	b_3	c_2
a_1	b_1	c_1	a_2	b_2	c_1
a_1	b_2	c_2	a_1	b_2	c_2
a_1	b_2	c_2	a_1	b_3	c_2
a_1	b_2	c_2	a_2	b_2	c_1
a_2	b_2	c_1	a_1	b_2	c_2
a_2	b_2	c_1	a_1	b_3	c_2
a_2	b_2	c_1	a_2	b_2	c_1

- ❖ 概述
- * 传统的集合运算
- * 专门的关系运算

先引入几个记号

 $(1) R, t \in R, t[A_i]$

设关系模式为 $R(A_1, A_2, \dots, A_n)$

它的一个关系设为R

t∈R 表示 t 是 R 的一个元组

 $t[A_i]$ 则表示元组 t 中相应于属性 A_i 的一个分量

(2) A, t[A], A

若 $A = \{A_{i1}, A_{i2}, \dots, A_{ik}\}$,其中 $A_{i1}, A_{i2}, \dots, A_{ik}$ 是 A_1, A_2, \dots, A_n 中的一部分,则 A 称为属性列或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], \dots, t[A_{ik}])$ 表示元组 t 在属性列 A 上 诸分量的集合。

A 则表示 $\{A_1, A_2, \dots, A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, \dots, A_{ik}\}$ 后剩余的属性组。

$$(3)$$
 $t_r t_s$

R为n目关系,S为m目关系。

 $t_{\underline{r}} \in R$, $t_{\underline{s}} \in S$, $t_{\underline{r}} t_{\underline{s}}$ 称为元组的连接。

 $t_r t_s$ 是一个 n + m 列的元组,前 n 个分量为 R 中的

一个n元组,后m个分量为S中的一个m元组。

(4) 象集 Z_x

给定一个关系 R(X, Z) , X 和 Z 为属性组。

当 *t*[X]=x 时, x 在 R 中的象集 (Images Set) 为:

 $\mathbf{Z}_{\mathbf{x}} = \{t[Z] | t \in R , t[X] = x\}$

它表示 R 中属性组 X 上值为 x 的诸元组在 Z 上分量的集合

R

<i>R</i>	
x_1	Z_1
x_1	Z_2
x_1	Z_3
x_2	Z_2
x_2	Z_3
x_3	Z_1
x_3	Z_3

象集举例

❖ x₁ 在 R 中的象集

$$Z_{x1} = \{Z1, Z2, Z3\}$$

,

 x_2 在 R 中的象集

$$Z_{x2} = \{Z2, Z3\}$$

 x_3 在 R 中的象集

An Introduction to Database System

- ❖ 选择
- ❖ 投影
- ❖ 连接
- 除

4) 学生 - 课程数据库: 学生关系 Student、课程关系 Course 和选修关系 SC

Student

 学号	姓名	性别	年龄	所在系
Sno	Sname	Ssex	Sage	Sdept
200215121	李勇	男	20	CS
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

Course

课程号	课程名	先行课	学分
Cno	Cname	Cpno	Ccredit
1	数据库	5	4
2	数学		2
3	信息系统	1	4
4	操作系统	6	3
5	数据结构	7	4
6	数据处理		2
7	PASCAL 语	6	4
	言		

An Introduction to Database System

SC

 学号	课程号	成绩
Sno	Cno	Grade
200215121	1	92
200215121	2	85
200215121	3	88
200215122	2	90
200215122	3	80

1. 选择(Selection)

- ❖ 1) 选择又称为限制(Restriction)
- ❖ 2) 选择运算符的含义
 - 在关系 R 中选择满足给定条件的诸元组 $\sigma_{F}(R) = \{t | t \in R \land F(t) = ' 真 '\}$
 - F: 选择条件,是一个逻辑表达式,基本形式 为:

$$X_1 \theta Y_1$$

选择(续)

3 选择运算是从关系 R 中选取使逻辑表达式 F 为真的元组,是从行的角度进行的运算

[例 1] 查询信息系(IS 系)全体学生 $\sigma_{Sdept = 'IS'}$ (Student) 或 $\sigma_{5 = 'IS'}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215125	张立	男	19	IS

选择 (续)

[例2] 查询年龄小于20岁的学生

 $\sigma_{\text{Sage} < 20}(\text{Student})$

或 $\sigma_{4<20}$ (Student)

结果:

Sno	Sname	Ssex	Sage	Sdept
200215122	刘晨	女	19	IS
200215123	王敏	女	18	MA
200215125	张立	男	19	IS

2. 投影 (Projection)

- ❖1)投影运算符的含义
 - 从 R 中选择出若干属性列组成新的关系

$$\pi_{A}(R) = \{ t[A] \mid t \in R \}$$

A: R中的属性列

❖2) 投影操作主要是从列的角度进行运算

但投影之后不仅取消了原关系中的某些列,而且还可 能取消某些元组(避免重复行)

投影 (续)

◆[例 3] 查询学生的姓名和所在系

即求 Student 关系上学生姓名和所在系两个属性上的投影

 π_{Sname} , Sdept (Student)

或 π_{2} (Student)

结果:

Sname	Sdept
李勇	CS
刘晨	IS
王敏	MA
张立	IS

投影 (续)

[例 4] 查询学生关系 Student 中都有哪些系 π_{Sdept}(Student)

结果:

Sdept

CS

IS

MA

3. 连接(Join)

- ❖ 1) 连接也称为θ连接
- ❖ 2)连接运算的含义

从两个关系的笛卡尔积中选取属性间满足一定条件的元组 $R \bowtie_{A \theta B} S = \{ t_r t_s \mid t_r \in R \land t_s \in S \land t_r [A] \theta t_s [B] \}$

- ► A和 B:分别为 R和 S上度数相等且可比的属性组
- ▶θ: 比较运算符
- 连接运算从 R 和 S 的广义笛卡尔积 R×S 中选取 (R 关系) 在 A 属性组上的值与 (S 关系) 在 B 属性组上 值满足比较关系 θ 的元组

连接(续)

- ❖3) 两类常用连接运算
 - 等值连接 (equijoin)
 - ▶什么是等值连接
 - θ为"="的连接运算称为等值连接
 - ▶等值连接的含义

从关系 R 与 S 的广义笛卡尔积中选取 A 、 B 属性值相等的那些元组,即等值连接为:

$$R \bowtie_{A=B} S = \{ \widehat{t_{r}t_{s}} \mid t_{r} \in R \land t_{s} \in S \land t_{r}[A] = t_{s}[B] \}$$

连接(续)

- 自然连接 (Natural join)
 - 自然连接是一种特殊的等值连接
 - ▶两个关系中进行比较的分量必须是相同的属性组
 - ▶ 在结果中把重复的属性列去掉
 - 自然连接的含义 R和 S 具有相同的属性组 B $R \bowtie S = \{ \hat{t_r} \hat{t_s} \mid t_r \in R \land t_s \in S \land t_r[B] = t_s[B] \}$

连接(续)

❖4) 一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

❖ [例 5] 关系 *R* 和关系 *S* 如下所示:

R		
A	В	С
a_1	b_1	5
a_1	b_2	6
a_2	b_3	8
a_2	b_4	12

S	
В	E
b_1	3
b_2	7
b_3	10
b_3	2
b_5	2

一般连接 $R_{C < E}^{\bowtie}S$ 的结果如下:

R	\bowtie	S
($\leq E$	

F/7-2-2-400				
A	R.B	С	S.B	E
a_1	b_1	5	b_2	7
a_1	b_1	5	b_3	10
a_1	b_2	6	b_2	7
a_1	b_2	6	b_3	10
a_2	b_3	8	b_3	10

等值连接 $R \bowtie S$ 的结果如下:

A	R.B	C	S.B	E
a_1	b_1	5	b_1	3
a_1	b_2	6	b_2	7
a_2	b_3	8	b_3	10
a_2	b_3	8	b_3	2

自然连接 $R \bowtie S$ 的结果如下:

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2

连接(续)

*外连接

如果把舍弃的元组也保存在结果关系中,而在其他属性上填空值(Null),这种连接就叫做外连接(OUTER JOIN)。

◆ 左外连接

如果只把左边关系 R 中要舍弃的元组保留就叫做左外 连接 (LEFT OUTER JOIN 或 LEFT JOIN)

*右外连接

■ 如果只把右边关系 S 中要舍弃的元组保留就叫做右外连接 (RIGHT OUTER JOIN 或 RIGHT JOIN)。

下图是例 5 中关系 R 和关系 S 的外连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL
NULL	b_5	NULL	2

(a) 外连接

连接(续)

图 (b) 是例 5 中关系 R 和关系 S 的左外连接,图 (c) 是右外连接

A	В	C	E
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
a_2	b_4	12	NULL

A	В	C	Ε
a_1	b_1	5	3
a_1	b_2	6	7
a_2	b_3	8	10
a_2	b_3	8	2
NULL	b_5	NULL	2

(b) 左外连接

(c) 右外连接

4. 除(Division)

给定关系 R(X, Y) 和 S(Y, Z),其中 X, Y, Z为属性组。 R中的 Y与 S中的 Y可以有不同的属性名,但必须出自相同的域 集。

R与S的除运算得到一个新的关系P(X),

 $P \in R$ 中满足下列条件的元组在 X 属性列上的投影:

元组在 X 上分量值 X 的象集 Y_x 包含 S 在 Y 上投影的集合,记作:

$$R \div S = \{ f_r[X] \mid f_r \in R \land \pi_Y(S) \subseteq Y_X \}$$

 Y_x : x在 R 中的象集, x = t[X]

❖2)除操作是同时从行和列角度进行运算

除(续)

[例 6] 设关系 $R \setminus S$ 分别为下图的 (a) 和 (b) , $R \div S$ 的结果为图

(c) R

Λ		
A	В	C
a_1	b_1	c_2
a_2	b_3	c_7
a_3	b_4	c_6
a_1	b_2	c_3
a_4	b_6	c_6
a_2	b_2	c_3
a_1	b_2	c_1
	25-	39

(a)

S		
В	C	D
b_1	c_2	d_1
b_2	c_1	d_1
b_2	c_3	d_2

(b)

$$\begin{array}{c}
R \div S \\
\hline
A \\
\hline
a_1
\end{array}$$

(c)

分析

- * 在关系 R 中, A 可以取四个值 {a1 , a2 , a3 , a4} a_1 的象集为 { $(b_1$, c_2) , $(b_2$, c_3) , $(b_2$, c_1)} a_2 的象集为 { $(b_3$, c_7) , $(b_2$, c_3)} a_3 的象集为 { $(b_4$, c_6)} a_4 的象集为 { $(b_6$, c_6)}
- **❖** S 在 (B, C) 上的投影为 {(b1, c2), (b2, c1), (b2, c3)}
- * 只有 a_1 的象集包含了 S 在 (B, C) 属性组上的投影

以学生-课程数据库为例 (P56)

[例7] 查询至少选修 1 号课程和 3 号课程的学生号码

首先建立一个临时关系K:

Cno

1

3

然后求: **T**_{Sno,Cno}(SC)÷*K*

综合举例(续)

00215121	1
00215121	2
00215121	3
00215122	2
00215122	3
	0215121

[例 8] 查询选修了2号课程的学生的学号。

```
\pi_{Sno} (\sigma_{Cno='2'} (SC))
```

= { 200215121 , 200215122 }

综合举例(续)

[例 9] 查询至少选修了一门其直接先行课为 5 号课程的的学生姓名

$$\pi_{Sname}(\sigma_{Cpno='5'}(Course))$$

或

$$\pi_{\text{Sname}}(\sigma_{\text{Cpno='5'}}(\text{Course}))$$
 SC $\pi_{\text{Sno}}(\text{Student})$

或

$$\pi_{\text{Sname}} (\pi_{\text{Sno}} (\sigma_{\text{Cpno='5'}} (\text{Course})))$$

综合举例(续)

[例 10] 查询选修了全部课程的学生号码和姓名。

$$\pi_{\text{Sno}, \text{Cno}}$$
 (SC) $\div \pi_{\text{Cno}}$ (Course) \bowtie $\pi_{\text{Sno}, \text{Sname}}$ (Student)

小结

- * 关系代数运算
 - 关系代数运算并、差、交、笛卡尔积、投影、选择、连接、除
 - 基本运算 并、差、笛卡尔积、投影、选择
 - 交、连接、除可以用 5 种基本运算来表达引进它们并不增加语言的能力,但可以简化表达

小结(续)

- * 关系代数表达式
 - 关系代数运算经有限次复合后形成的式子
- ◆典型关系代数语言
 - ISBL (Information System Base Language)
 - ➤由 IBM United Kingdom 研究中心研制
 - ➤用于 PRTV (Peterlee Relational Test Vehicle) 实验系统