Deep Learningの基本

2017/2/14

ディープラーニングをいきなり勉強するのは 難しい

学習の順序

パーセプトロン

複数の信号を入力し、一つの信号を出力する

信号は流れる (=1) か流れない (=0) の2値

x1, x2は入力信号、w1, w2は重み、yは出力信号

入力信号はニューロンに送られる際、重みを乗算(w1x1, w2x2)

この総和がある閾値(θ)を 超えたときのみyは1を出力する = ニューロンが発火する

 $y = \begin{cases} 0 & (w1x1 + w2x2 <= theta) \\ 1 & (w1x1 + w2x2 > theta) \end{cases}$

重みは各信号の重要性を表している

パーセプトロンで単純な論理回路を作ってみる

ANDゲート

<u>×1</u>	x2	У
		0
1		0
	1	0
1	1	1

上記の表を満たすようなw1, w2, thetaを見つける そのようなパラメータは無数にある 例えば(w1, w2, theta) = (0.2, 0.2, 0.3)でも満たせる

0 * 0.2 + 0 * 0.2 = 0 <= 0.3, y = 0 1 * 0.2 + 0 * 0.2 = 0.2 <= 0.3, y = 0 0 * 0.2 + 1 * 0.2 = 0.2 <= 0.3, y = 0 1 * 0.2 + 1 * 0.2 = 0.4 > 0.3, y = 1

同様にNAND, ORも作れる

上記のANDゲートをPythonで実装

def AND (x1, x2):
w1, w2, theta = 0.2, 0.2, 0.3
if x1 * w1 + x2 * w2 <= theta:
 return 0
else
 return 1</pre>

バイアスの導入

theta = -bとする

 $y = \begin{cases} 0 & (b + w1x1 + w2x2 <= 0) \\ 1 & (b + w1x1 + w2x2 > 0) \end{cases}$

bをバイアスと呼ぶ バイアスは発火のしやすさを表す (bが小さいほど発火しにくい)

パーセプトロンの限界

XORゲート

<u> </u>	×2	У
0		0
1		1
0	1	1
1	1	0

どうやってもXORゲートを満たすw1, w2, bを見つけることはできない

上の図の○と△を分けるには非線形に領域を分割する必要があるが、 パーセプトロンは線形に分けることしかできない。

多層パーセプトロン

パーセプトロンでは領域の非線形な分割はできないが、パーセプトロンの 層を重ねることによって実現できる。

XORゲート

真理值表

x 1	x2	s1	s2	У
0		1		0
1	0	1	1	1
0	1	1	1	1
1	1	0	0	0

Pythonによる実装

def XOR (x1, x2):
s1 = NAND(x1, x2)
s2 = OR(x1, x2)
y = AND(s1, s2)
return y

パーセプトロン

ニューロンは3層になっているが重みを持つ層は2層であるため、2層のパーセプトロンと呼ぶ。(文献によっては3層と呼ぶこともある)