第三章、牛顿运动定律 第一节、运动定律基础知识

【知识要点回顾】	
一、历史上对力和运动关系的认识过程	
1、亚里士多德的观点:	
2、伽利略的观点:	
3、理想实验:	
例题1理想实验有时更能深刻反映自然规律,如图所	示,伽利略设计了一个理想实验:
①如果没有摩擦,小球将上升到原来的高度;	1 4 4 7 1 1 5 7 1 1 4 4 4 4 4 4 4 4
②继续减小右边斜面的倾角,最后使它成为水平面, ③减小右边斜面的倾角,小球在这斜面上仍然要打到	
④在两个对接的斜面上, 让静止的小球沿左边的斜面	
(1) 请将上述关于理想实验的描述按正确的逻辑顺)	
	事实,有的是理想化的推论,下列关于事实和推论的分
类正确的是() A、①是事实,②、③和④是推论	
B、②是事实, ①、③和④是推论	
C、③是事实, ①、②和④是推论	
D、②是事实,①、②和③是推论	
二、牛顿第一定律	
一、 一	
2、意义:	
(1)	
(2)	
(3)	
例题2关于牛顿第一定律的下列说法中, 正确的是(()
A、牛顿第一定律是实验定律	
B、牛顿第一定律说明力是改变物体运动状态的原因	
C、惯性定律和惯性的实质是相同的 D、物体的运动不需要力来维持	
三、牛顿第二定律	
1、内容:	
2、表达式:	
3、意义:	
4、"七性":	
(1) 瞬时性	(2) 矢量性
(3) 独立性	(4) 因果性
(5) 同一性	(6) 单位统一性
(7) 局限性	7
例题3一个物体受几个力作用而处于静止状态,若保 零(方向不变),然后又逐渐增大到F,在这个过程中	
A、加速度增大,速度增大	, 100 17-40
B、加速度减小,速度增大	
C、加速度先增大后减小,速度增大	
D、加速度和速度都是先增大后减小 例题4 关于直线运动,下列说法正确的是()

A、物体的运动方向总是和它所受合力的方向一致 B、物体的加速度方向总是和它锁定后合力方向一致 C、物体所受的合力保持不变其速度也保持不变 D、物体所受的合力逐渐增大时期速度也一定逐渐增大 例题 5 如图所示,在静止的木箱内,用细绳 a 和 b 系住一个小球 c ,绳 a 水平,绳 b 与 竖直方向成角,静止不动时,两声拉力分别为 Ta 和 Tb ,现将木箱沿 cb 方向斜向上由静止开始做加速直线运动,则细绳拉力的变化情况是(

a 0

A、Tb 增大、Ta 減小

B、Tb 增大、Ta 不变

C、Tb 不变、Ta 减小

D、Tb 和 Ta 都增大

例题6—个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹起到原高度。 小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图像 如图所示,途中0a段和cd段为直线,根据此图像可知,小孩和蹦床相接触的 时间为())

 $A, t2^{\sim}t4$ $B, t1^{\sim}t4$ $C, t1^{\sim}t5$ $D, t2^{\sim}t5$

倒题7如图1所示,一直亮为m的物体洗浴长度分别为L1、 L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹 角为,L2水平拉直,物体处于平衡状态。现将L2线剪断,求 剪断瞬时物体的加速度。

下面是某同学对该题的某种解法:

解:设L1线上拉力为 T1, L2线上拉力为 T2, 重力为 mg, 物

体在三力作用下处于平衡。 $\emph{T1}\cos\theta$ = \emph{mg} , $\emph{T1}\sin$ = $\emph{T2}$, 解得 $\emph{T2}$ = \emph{mg} tan θ , 剪断线的瞬间, $\emph{T2}$ 突然消失,物体却在 $\emph{T2}$ 反方向获得加速度,因为 \emph{mg} tan= \emph{ma} , 所以加速度 \emph{a} = \emph{gtan} θ , 方向在 $\emph{T2}$ 反方向。你认为这个结果正确吗?说明理由

若将图 1 中的细线 L1 改为长度相同,质量不计的轻弹簧,如图 2 所示,其他条件不变,求解的步骤和结果与 1 完全相同,即 $a=gtan \theta$,你认为这个结果正确吗?请说明理由。

四、牛顿第三定律

- 1、内容:
- 2、作用力反作用力和平衡力:

内容	作用力和反作用力	一对平衡力
受力物体		
作用时间		
力的性质		
力的大小关系		
力的方向关系		
依赖关系		
叠加性		

例题8甲乙两人拔河,甲拉动乙向左运动,下列说法正确的是(

- A、做匀速运动时, 甲乙两人对绳的拉力大小一定相等
- B、不论做何种运动, 根据牛顿第三定律, 甲乙两人对绳的拉力大小一定相等
- C、绳的质量可以忽略不计时, 甲乙两人对绳的拉力大小一定相等
- D、绳的质量不可以忽略不计时,甲对绳的拉力大小一定大于乙对绳的拉力

例题 9 如图所示,一个劈行物体 M 放在固定的粗糙斜面上,其上面水平,在其水平面上放一个光滑小球 m, 当劈行物体从静止开始释放后。观察到 m 和 M 有相对运动。则小球 m 在碰到斜面前的运动轨迹是 (

A、水平向右

B、沿斜面向下

C、竖直向下

D、无规则曲线

【针对练习】

A、由于甲端比较轻,甲容易将凳子拉向自己

- B、由于乙端比较重, 凳子和手之间摩擦力较大, 乙可以将凳子拉向自己
- C、谁用的力气大就可以将凳子拉向自己
- D、拔河过程中乙的手和凳子之间不会有相对滑动,甲的手可以和凳子间有相对滑动,也可以没有相对滑动。

9、如图所示,弹簧左端固定,右端自由伸长到 O 点并系住物体 m。现将弹簧压缩到 A 点,然后释放,物体一直可以运动到 B 点。如果物体受到的阻力恒定,则()A、物体从 A 到 O 先加速后减速 B、物体从 A 到 O 加速运动,从 O 到 B 减速运动

10、如图所示,为一箱装得很满的土豆,以一定的初速度在动摩擦因数为µ的水平地面上做匀减速运动,不计其他外力即空气阻力,则中间一质量为 m 的土豆 A 受到其他土豆对它的作用力大小应该是()

重为 m 的工豆 A 支到兵他工豆对它的作用力大小应该是() A、mg B、 μ mg C、 $mg\sqrt{1+\mu^2}$ D、 $mg\sqrt{1-\mu^2}$

11、在水平面上有一辆运动小车,车上固定一辆盛水的杯子,杯子直径为 L,当车向右作匀加速直线运动时,睡眠呈如图所示状态,若左、右两侧液 面高度差为 h,则小车的加速度为()

A、hg/L

B、q/L

C、L/q

D、Lg/h

12、如图所示, 小球用水平轻弹簧系住, 并用倾角为 37°的光滑板托住, 当板突然向下撤离的瞬间, 小球的加速度为_____m/s²。若改用水平轻绳系住, 在板突然向下撤离的瞬间, 小球的加速度又为_____m/s²。

