Finding All Valid Hand Configurations for a Given Precision Grasp

C. Rosales, J. M. Porta, R. Suárez and L. Ros

Problem statement

Formulation

The variables are in global coordinates Algebraic equations with linear, bilinear and quadratic monomials

I. Loop constraints

II. Finger kinematic and reference frame constraints

III. The contact point is fixed and modelled as a revolute joint

$$c = \cos(\phi)$$

$$s = \sin(\phi)$$

$$c = \mathbf{u} \cdot \mathbf{v}$$

$$s \cdot \mathbf{w} = \mathbf{u} \times \mathbf{v}$$

IV. Joint angles are limited by constraining their sines and cosines, defined by dot and cross products of finger vectors

Dimension of the solution

For *n* fingers:

f = 5n degrees of freedom

c = 6(n - 1) constraints

By the Grübler-Kutzbach's criterion

d = f - c = 6 - n

Numerical Solution

Branch-and-prune algorithm based on linear relaxations

Pre-processing step

$$x_i$$
, x_i^2 and x_ix_j

$$b_k = x_i x_j$$
$$q_i = x_i^2$$

$$L(\mathbf{x}) = 0 \vdash$$
$$Q(\mathbf{x}) = 0 \vdash$$
$$B(\mathbf{x}) = 0 \vdash$$

initial system -> change of variables -> new system

Iteration of 2 basic steps

Shrink box Linear programming problem

Split box Trvial bisection The configuration of the robot arm has a closed-form solution

Test cases

Snapshots of 1-dimensional solution subset

 $b_k = x_i x_j$

