Exploring Randomly Wired Neural Networks for Image Recognition

7th April, 2019 PR12 Paper Review JinWon Lee Samsung Electronics

Introduction

- What we call deep learning today descends from the connectionist approach to cognitive science.
- How computational networks are wired is crucial for building intelligent machines.
- ResNet and DenseNet, that are effective in large part because of how they are wired.
- Advancing this trend, neural architecture search (NAS) has emerged as a promising direction for jointly searching wiring patterns and which operations to perform.

Introduction

- However, like the wiring patterns in ResNet and DenseNet, the NAS network generator is hand designed and the space of allowed wiring patterns is constrained in a small subset of all possible graphs.
- What happens if we loosen this constraint and design novel network generators?

Main Topic

- Design a Network Generator not an Individual Network!
- The authors suggest a new transition from designing an individual network to designing a network generator may be possible, analogous to how our community have transitioned from designing features to designing a network that learns features.
- Rather than focusing primarily on search with a fixed generator, authors suggest designing new network generators that produce new families of models for searching.

Related Work

- Network Wiring
 - CNN & RNN use chain-like wiring patterns.
 - LSTM, Inception, ResNet, and DenseNet wiring patterns are effective in general.
- Neural Architecture Search(NAS)
 - Recent research on NAS mainly focuses on optimization methods, including RL, progressive, gradient-based, etc.
 - The search space in these NAS works is largely unchanged in these works.

Related Work

- Randomly Wired Machines
 - Turing suggested a concept of unorganized machines, which is a form of the earliest randomly connected neural networks.
 - Minsky and Rosenblatt also suggested randomly connected machines
- Relation to Neuroscience
 - Turing analogized the unorganized machines to an infant human's cortex.
 - Rosenblatt pointed out that "at birth, the construction of the most important networks is largely random."
- Random Graphs in Graph Theory
 - Random graphs are widely studied in graph theory.
 - The definition of the random graph model determines the prior knowledge encoded in the resulting graphs and may connect them to naturally occurring phenomena.

Network Generator

- Defining α network generator as a mapping g from a parameter space Θ to a space of neural network architecture N.
 - The set N is typically a family of related networks, for example, VGG nets, ResNets, or DenseNets.
- The parameters $\theta \in \Theta$ specify the instantiated network and my contain diverse information.
 - For example, in a ResNet generator, θ can specify the number of stages, number of residual blocks for each stage, depth/width/filter sizes, activation types, etc.

Network Generator

- Stochastic Network Generator
 - The network generator $g(\theta)$ performs a deterministic mapping.
 - We can extend g to accept an additional argument s that is the seed of a pseudo-random number generator that is used internally by g.
 - We call generators of the form $g(\theta, s)$ stochastic network generators.
- NAS from the Network Generator Perspective
 - The weight matrices of the LSTM are the parameters θ of the generator.
 - Given the probability distribution conditioned on θ and the seed s, each step samples a construction action(e.g., insert an operator, connect two nodes).
 - NAS is the network generator that is hand-designed and encodes a prior from human knowledge.
 - The network space N has been restricted by hand-designed rules. (e.g., 5 nodes in a cell always have input degree 2 and output degree 1)

- To investigate how important the generator design is necessary to study new network generators that are substantially different from the NAS generator.
- So, authors define network generators that yield networks with random graphs, subject to different human-specific priors.
 - They use three classical random graph models ER, BA, WS models
- Generating General Graphs
 - Starting by generating a general graph.
 - Without restricting how the graphs correspond to neural networks.
 - Once a graph is obtained, it is mapped to a computable neural networks.
 - The mapping is in itself arbitrary, and authors intentionally use a simple mapping.

- Edge Operation
 - The edges are data flow a directed edge sends data from one node to another node.
- Node Operation
 - Aggregation
 - The input data to a node are combined via a weighted sum; the weights are learnable and positive.
 - Transformation
 - > ReLU-convolution-BN triplet
 - The same type of convolution is used for all nodes. -3x3 separable convolution (3x3 depthwise conv \rightarrow 1x1 pointwise conv)
 - Distribution
 - The same copy of the transformed data is sent out by the output edges of the node.

- Nice Properties of Node Operation
 - Additive aggregation maintains the same number of output channels as input channels.
 - Transformed data can be combined with the data from any other nodes.
 - Fixing the channel count then keeps the FLOPs and parameter count unchanged for each node, regardless of its input and output degrees.
 - Aggregation and distribution are almost parameter-free, regardless of input and output degrees.
 - Also, the overall FLOPs and parameter count of a graph are roughly proportional to the number of nodes and nearly independent of the number of edges
 - This enables the comparison of different graphs without inflating/deflating model complexity. Differences in task performance are therefore reflective of the properties of the wiring pattern.

- Input and Output Nodes
 - A general graph is not yet a valid neural network.
 - > It may have multiple input and output nodes.
 - Creating a single extra node that is connected to all original input nodes.
 - ➤ Unique input node.
 - Similarly, creating a single extra node that is connected to all original output nodes.
 - ➤ Unique output node & computing the average(unweighted) from all original output nodes.

Stages

- In image classification in particular, it is common to divide a network into stages that progressively downsample feature maps.
- Simple strategy
 - > An entire network consists of multiple stages.
 - ➤ One random graph represents one stage, and it is connected to its preceding/succeeding stage by its unique input/output node.
 - For all nodes that are directly connected to the input node, their transformations are modified to have a stride 2.
 - The channel count in a random graph is increased by 2x when going from one stage to the next stage.

< Rand Wire Architectures>

stage	output	small regime	regular regime			
conv ₁	112×112	3×3 conv, $C/2$				
conv ₂	56×56	3×3 conv, C	random wiring N/2, C			
conv ₃	28×28	random wiring N, C	random wiring N, 2C			
conv ₄	14×14	random wiring $N, 2C$	random wiring N, 4C			
conv ₅	7×7	random wiring $N,4C$	random wiring N, 8C			
classifier	1×1	1×1 conv, 1280-d global average pool, 1000-d fc, softmax				

Figure 1. **Randomly wired neural networks** generated by the classical Watts-Strogatz (WS) [50] model: these three instances of random networks achieve (left-to-right) 79.1%, 79.1%, 79.0% classification accuracy on ImageNet under a similar computational budget to ResNet-50, which has 77.1% accuracy.

Random Graph Models

- Erdös-Rényi (ER), 1959.
 - Has N nodes
 - An edge between two nodes is connected with probability P.
 - The ER generation model has only a single parameter P, and is denoted as ER(P).
 - Any graph with N nodes has non-zero probability of being generated by the ER model.

Random Graph Models

- Barabási-Albert (BA), 1999.
 - Generates a random graph by sequentially adding new nodes.
 - The initial state is M nodes without any edges $(1 \le M < N)$.
 - Sequentially adds a new node with M new edges.
 - For a node to be added, it will be connected to an existing node v with probability proportional to v's degree.
 - The new node repeatedly adds non-duplicate edges in this way until it has M edges.
 - Any graph generated by BA(M) has exactly M(N-M) edges. This gives one example on how an underlying prior can be introduced by the graph generator in spite of randomness.

Random Graph Models

- Watts-Strogatz (WS), 1998.
 - "Small World" model.
 - > Stanley Milgram experiment, Erdös number, Bacon number(http://oracleofbacon.org/).
 - > High clustering, small diameter.
 - N nodes are regularly placed in a ring and each node is connected to its K=2 neighbors on both sides starts from regular graph.
 - Then, in a clockwise loop, for every node v, the edge that connects v to its clockwise i-th next node is rewired with probability P.

"Rewiring" is defined as uniformly choosing a random node that is not v and that is not a duplicate edge.
 Regular Small-world Random

Converting Undirected Graphs into DAGs

- Assign indices to all nodes in a graph and set the direction of every edge as pointing from the smaller-index node to the larger-index one. → no cycle.
- Indexing
 - ER indices are assigned in a random order.
 - BA the initial M nodes are assigned indices 1 to M, and all other nodes are indexed following their order of adding to the graph.
 - WS indices are assigned sequentially in the clockwise order.

Visualization of the Random Graphs

Design and Optimization

- Randomly wired neural networks are generated by a stochastic network generator $g(\theta, s)$.
- The random graph parameters, P, M, (K; P) in ER, BA, WS respectively, are part of the parameters θ .
- The "optimization" of such a 1- or 2-parameter space is essentially done by trialand-error by human designers. — line/grid search
- The accuracy variation of our networks is small for different seeds s so they perform no random search and report mean accuracy of multiple random network instances.

Experiments

- Architecture Details
 - A small computation regime MobileNet & ShuffleNet
 - A regular computation regime ResNet-50/101
 - N nodes, C channels determine network complexity.
 - \triangleright N = 32, C = 79 for the small regime.
 - \triangleright N = 32, C = 109 or 154 for the regular regime.
- Random Seeds
 - Randomly sample 5 network instances, train them from scratch.
 - Report the classification accuracy with "mean±std" for all 5 network instances.
- Implementation Details
 - Train for 100 epochs
 - Half-period-cosine shaped learning rate decay and initial learning rate 0.1
 - The weight decay is 5e-5
 - Momentum 0.9
 - Label smoothing regularization with a coefficient of o.1

Analysis Experiments

- All random generators provide decent accuracy over all 5 random network instances. no fails to converge.
- ER, BA, and WS all have certain setting that yield mean accuracy > 73%, with in a
 9 gap from the best accuracy from WS(4, 0.75)
- The variation among the random network instances is low. (std : 0.2~0.4%)
- Different random generators may have a gap between their mean accuracies. It means that random generator design plays an important role in the accuracy.

Analysis Experiments

- Graph Damage.
 - Graph damage by randomly removing one node or edge.
 - For networks generated by WS, the mean degradation of accuracy is larger when the output degree of the removed node is higher(hub nodes).
 - The accuracy loss is generally decreasing along the x-asis in the right figure(bottom).

Figure 5. **Graph damage ablation**. We randomly *remove one node* (top) or *remove one edge* (bottom) from a graph after the network is trained, and evaluate the loss (Δ) in accuracy on ImageNet. From left to right are ER, BA, and WS generators. Red circle: *mean*; gray bar: *median*; orange box: *interquartile range*; blue dot: *an individual damaged instance*.

Analysis Experiments

- Node Operations
 - Almost all networks still converge to non-trivial results.
 - The Pearson correlation between any two series in the below figure is 0.91~0.98.
 - This suggests that the network wiring plays a role somewhat orthogonal to the role of the chosen operations.

Comparisons

- Small Computation Regime
 - 250 epochs for fair comparisons.
 - The mean accuracy achieved by RandWire is a competitive result, especially considering that they perform no random search, and use a single operation type for all nodes.

network	top-1 acc.	top-5 acc.	FLOPs (M)	params (M)
MobileNet [15]	70.6	89.5	569	4.2
MobileNet v2 [40]	74.7	-	585	6.9
ShuffleNet [54]	70.9	89.8	524	~5
ShuffleNet v2 [30]	73.7	-	524	\sim 5
NASNet-A [56]	74.0	91.6	564	5.3
NASNet-B [56]	72.8	91.3	488	5.3
NASNet-C [56]	72.5	91.0	558	4.9
Amoeba-A [34]	74.5	92.0	555	5.1
Amoeba-B [34]	74.0	91.5	555	5.3
Amoeba-C [34]	75.7	92.4	570	6.4
PNAS [26]	74.2	91.9	588	5.1
DARTS [27]	73.1	91.0	595	4.9
RandWire-WS	74.7 _{±0.25}	$92.2_{\pm 0.15}$	583 _{±6.2}	$5.6_{\pm0.1}$

Comparisons

- Regular Computation Regime
 - Use a regularization method inspired by edge removal analysis. Randomly remove one edge whose target node has input degree > 1 with probability of 0.1.
 - Mean accuracies are respectively 1.9% and 1.3% higher than the ResNet-50 and ResNet-101 and are 0.6% higher than the ResNeXt.

network	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
ResNet-50 [11]	77.1	93.5	4.1	25.6
ResNeXt-50 [52]	78.4	94.0	4.2	25.0
RandWire-WS , C =109	79.0 _{±0.17}	94.4 _{±0.11}	$4.0_{\pm 0.09}$	$31.9_{\pm 0.66}$
ResNet-101 [11]	78.8	94.4	7.8	44.6
ResNeXt-101 [52]	79.5	94.6	8.0	44.2
RandWire-WS, C =154	80.1 _{±0.19}	94.8 _{±0.18}	$7.9_{\pm 0.18}$	$61.5_{\pm 1.32}$

Comparisons

Larger Computation

- Same trained networks as regular computation regime, but only increase the test image size to 320x320 without retraining.
- Mean accuracy is 0.7%~1.3% lower than the most accurate NAS results, but use only ~2/3 FLOPs and ~3/4 parameters. Networks are trained for 100 epochs and not on the target image size.

Object Detection

The features learned by randomly wired networks can also transfer.

network	test size	epochs	top-1 acc.	top-5 acc.	FLOPs (B)	params (M)
NASNet-A [56]	331^{2}	>250	82.7	96.2	23.8	88.9
Amoeba-B [34]	331^{2}	>250	82.3	96.1	22.3	84.0
Amoeba-A [34]	331^{2}	>250	82.8	96.1	23.1	86.7
PNASNet-5 [26]	331^{2}	>250	82.9	96.2	25.0	86.1
RandWire-WS	320^{2}	100	$81.6_{\pm 0.13}$	$95.6_{\pm 0.07}$	$16.0_{\pm 0.36}$	$61.5_{\pm 1.32}$

backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_{M}	AP_L
ResNet-50 [11]	37.1	58.8	39.7	21.9	40.8	47.6
ResNeXt-50 [52]	38.2	60.5	41.3	23.0	41.5	48.8
RandWire-WS, C =109	39.9	61.9	43.3	23.6	43.5	52.7
ResNet-101 [11]	39.8	61.7	43.3	23.7	43.9	51.7
ResNeXt-101 [52]	40.7	62.9	44.5	24.4	44.8	52.7
RandWire-WS, C =154	41.1	63.1	44.6	24.6	45.1	53.0

Conclusion

- Exploring randomly wired neural networks by three classical random graph models from graph theory.
- The result were surprising: the mean accuracy of these models is competitive with hand-designed and optimized from NAS.
- The authors hope that future work exploring new generator designs may yield new, powerful networks designs.