Разумов Т.Е., Швечков И.В.

Пусть $f \in C^4_{[a,b]}$, $M_4 = ||f^{(4)}||_C$. Тогда для интерполяционного кубического сплайна S_3 , удовлетворяющего граничным условиям, справедливы следующие оценки:

$$||f - S_3||_C \leqslant C_1 M_4 h_{max}^4$$
, $||f' - S_3'||_C \leqslant C_2 M_4 h_{max}^3$, $||f'' - S_3''||_C \leqslant C_3 M_4 h_{max}^2$.

Если $f''(a) \neq 0$, $f''(b) \neq 0$, то для естественного сплайна справедливы следующие оценки:

$$||f - S_3||_C \leqslant C_1 M_4 h_{max}^3$$
, $||f' - S_3'||_C \leqslant C_2 M_4 h_{max}^2$, $||f'' - S_3''||_C \leqslant C_3 M_4 h_{max}$.

Таким образом, так как Чебышевская сетка не равномерна и ее узлы сгущаются к концам отрезка интерполирования и являются более разреженными в центре, то h_{max} на Чебышевской сетке больше $h_{max} = h$ на равномерной. Но несмотря на то, что оценка на Чебышевской сетке выше оценки на равномерной, мы имеем только оценку сверху, а следовательно мы не можем утверждать, что на Чебышевской сетке погрешность интерполирования кубичискими сплайнами будет больше или меньше погрешности на равномерной сетке, что нам и демонстрируют полученные результаты:

Для функции $f_1(x) = x^2, x \in [-1, 1]$:

количество узлов	на равномерной сетке	на Чебышевской сетке
n=4	0.04649456	0.0322177
n = 10	0.00483792	0.00100083
n = 15	0.00198776	0.000199526

Таблица 1

Для функции $f_2(x) = \frac{1}{1+x^2}, x \in [-2, 2]$:

количество узлов	на равномерной сетке	на Чебышевской сетке
n=4	0.233846	0.272309
n = 10	0.00591651	0.0231865
n = 15	0.000690655	0.00164529

Таблица 2

Из приведенных таблиц видно, что функции f_1 погрешность на Чебышевской сетке меньше, а для функции f_2 больше.