

Introduction to Distributed HTC and overlay systems

Tuesday morning, 9:00am

Igor Sfiligoi <isfiligoi@ucsd.edu>
Leader of the OSG Glidein Factory Operations
University of California San Diego

About Me

- Working with distributed computing since 1996
- Working with Grids since 2005
- Leader of the OSG glidein factory ops since 2009
- Deeply involved in overlay system development and deployments
- Mostly worked with Physics communities (CMS, CDF, KLOE)

Logistical reminder

- It is OK to ask questions
 - During the lecture
 - During the demos
 - During the exercises
 - During the breaks
- If I don't know the answer,
 I will find someone who likely does

High Throughput Computing

- Yesterday you were introduced to HTC
 - Often called batch system computing
 - A paradigm that emphasizes maximizing useful computation, given a fixed number of resources

Max ROI in business-speak

High Throughput Computing

- Yesterday you were introduced to HTC
 - Often called batch system computing
 - A paradigm that emphasizes maximizing useful computation, given a fixed number of resources

Max ROI in business-speak

High Throughput Computing

- HTC from the user point of view is not too much different; it is
 - Maximizing useful computation before a fixed deadline

Admittedly very few users presently operate this way

- With the deadline being at least a few days in the future
- The available (fixed) resources just set what can be achieved
 - Users (should) expect to get a subset at any point in time

Introducing DHTC

- So what is **Distributed** HTC???
 - HTC is always distributed, right?
 - However, HTC is normally considered within a single cluster
- DHTC is about
 - Globally maximizing useful computation of several independent compute clusters
 - Located in many locations and operated by many entities

Introducing DHTC

So what is **Distributed** HTC???

- HTC is always distribut
- However, HTC is nor within a single cluster

Again, this is how resource owners see it

- DHTC is about
 - Globally maximizing useful computation of several independent compute clusters
 - Located in many locations and operated by many entities

A user perspective on DHTC

- For users, a DHTC system is just an HTC system that
 - Has more resources
 - Is likely more heterogeneous
 - Unlikely to have a shared file system
 - Has compute nodes far away, network wise
- For some DHTC systems
 - The total amount of available resources may not be known in advance

A user perspective on DHTC

Tomorrow's topic.

- For users, a DHT just an HTC syster
- i.e. you will have to do explicit data movement.
- Has more resources
- Is likely more heterog neous
- Unlikely to have a shared file system
- Has compute nodes far away, network wise
- For some DHTC systems
 - The total amount of available resources may not be known in advance

DHTC vs HTC

 So, for jobs with small data needs, a DHTC system is remarkably similar to a "regular" HTC system

Why a dedicated DHTC lesson?

- Two main reasons
 - Will have hands-on with a DHTC system
 - So knowing some details may help understand
 - We expect several of you to be more than just "dummy computer users"
 - So you may end up running, or at least help operating, a DHTC system

Anatomy of DHTC

 Basically, DHTC is about computing on resources

Why DHTC

Many reasons:

- Practical
 (a site/entity has a limit to how much HW can host)
- Political
 (you only get money for HW if it is hosted at X)
- Economical
 (hosting and operating HW myself is too expensive)
 (someone else can offer you hosted HW for less)
- Opportunistic
 (HW on site X is temporarily idle, might as well allow others to use them (for free or for pay))

Multiple owners

 Different clusters most likely to be owned and operated by different people

Multiple owners

 Different clusters most likely to be own doperated

Why no global scheduler?

- Local users, local policies
- Existing infrastructure
- Different technology preferences
- Being able to work when WAN goes down
- Money & politics

•

Why no global scheduler?

- Local users, local policies
- Existing in
- Diff
- Be WID
- Mor

•

But users still want to have a single scheduler with resources from

multiple clusters

Stitch together leased resources

- Imagine leasing a subset of resources
 - Once you have them, you decide what to do with them

Stitch together leased resources

Overlay systems

- From the user point of view,
 it is just a single, global scheduler
 - DHTC drawbacks still apply, of course (e.g. slow networking)

Overlay systems

- From the user point of view,
 it is just a single, global scheduler
 - DHTC drawbacks still

DHTC and Overlays

Many independent schedulers

- By creating overlays, there can be several independent schedulers
 - Each handling a subset of resources
 - Each serving a different set of users

Many independent schedulers

- By creating overlays, there can be several independent schedulers
 - Each handling a subset of resources

The need for a lease manager

 The overlay system has to get exclusive rights to a set of resources

The need for a lease manager

 The overlay system has to get exclusive rights to a set of resources

Layers of HTC

- Resource providers typically want to maximize their resource use
 - Thus configure them as HTC
 - i.e. they have their own layer of scheduling

Layers of HTC

- Resource providers typically want to maximize their resource use
 - Thus configure them as HTC
 - i.e. they have their own layer of scheduling

Pilot jobs

- The lease requests are known as pilot jobs
- Each pilot job holds the lease for the lifetime of the job
 - Which is typically relatively short
 - User jobs thus cannot run longer than the limits imposed by the sites

Overlay systems

- Many possible implementations
- We will concentrate on glideinWMS
 - Based on HTCondor
 - The one used by most user communities on OSG
- Others available
 - PANDA, DIRAC, ALIEN, CycleCloud, ...

glideinWMS

- A HTCondor based overlay system
 - i.e. looks like a regular HTCondor system to the users
 - Adds a resource provisioning service (i.e. the lease manager)

HTCondor pilots

- HTCondor pilot == A glidein job
 - Basically a properly configured HTCondor Startd

Two level matchmaking

- The system now has two matchmaking points
 - The **glideinWMS** decides when and where to send glideins
 - The **HTCondor negotiator** decides which job runs on which glidein
- The two must treat jobs the same way
 - Or we end up with either unused glideins or jobs that never start

Moving policy in glideinWMS

- In glideinWMS, user jobs never have requirements
- All policy is implemented by system administrators
 - Users just provide parameters

Know your system

- The matchmaking is thus less flexible
 - You can only work within the frame of the system policy
- But arguably easier to use
 - No complex boolean expressions to write
- Be sure to ask for the system policy of your system

Down to practice

- This is all for the theoretical part
- Next we have the hands-on session

Questions?

- Questions? Comments?
 - Feel free to ask me questions later:
 Igor Sfiligoi <isfiligoi@ucsd.edu>
- Upcoming sessions
 - Now 11:00am
 - Hands-on exercises
 - 11:00am 11:15am
 - Break
 - 11:15am
 - Next lecture How to get the needed computing

Beware the power

Courtesy of fanpop.com