		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	109	983	4891	9605
	m = 100	X	120	521	1020
	m = 500	X	X	130	237
	m = 1000	X	X	X	123
M Primo	m = 7	155	1407	6839	13774
	m = 97	X	129	549	1069
	m = 499	X	X	124	238
	m = 997	X	X	X	127

Figure 1: Comprimento da Lista Mais Longa

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	84	899	4666	9316
	m = 100	X	78	432	883
	m = 500	X	X	70	151
	m = 1000	X	X	X	70
M Primo	m = 7	108	1308	6697	13472
	m = 97	X	79	440	895
	m = 499	X	X	70	152
	m = 997	X	X	X	68

Figure 2: Comprimento da Lista Mais Curta $_{_{\rm I}}$

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	94.3	948.09	4752.2	9507.9
	m = 100	X	94.8	475.2	9507.9
	m = 500	X	X	95.04	190.7
	m = 1000	X	X	X	95.07
M Primo	m = 7	134.7	1354.4	6788.8	13582.7
	m = 97	X	97.7	489.9	980.1
	m = 499	X	X	95.2	190.5
	m = 997	X	X	X	95.3

Figure 3: Comprimento Médio das Listas

		n = 1000	n = 10000	n = 50000	n = 100000
M Composto	m = 10	100	1000	500	10000
	m = 100	X	100	500	1000
	m = 500	X	X	100	200
	m = 1000	X	X	X	100
M Primo	m = 7	142	1428	7142	14285
	m = 97	X	103	515	1030
	m = 499	X	X	100	200
	m = 997	X	X	X	100

Figure 4: Comprimento Esperado Diante da Hipótese de Hashing Uniforme

e. Nos casos avaliados houve alguma diferença significativa no comprimentos das listas mais longas e mais curtas entre M primo e M composto? Se sim, em qual(is) caso(s)?

Conforme o tamanho de m aumentava, a diferença entre os valores diminuiam, se considerarmos o valor esperado, a tabela de número primos tenho um desempenho superior mas se comparados uma a outra, a diferença é bem menor.

 \mathbf{f} . Nos casos avaliados houve alguma diferença significativa no comprimento médio das listas entre M primo e M composto? Se sim, em qual(is) caso(s)?

Segue-se o mesmo padrão das outras tabelas, conforme o m aumenta menor a diferença

g. O comprimento médio das listas (Tabela 3) é comparável ao comprimento esperado diante da hipótese de hashing uniforme (Tabela 4)? O que isso quer dizer?