

الدالة الأسية

تەرىف:

$$epprox 2,718$$
 فرحيدة $f(x)=e^x$ و $f(0)=1$ و $f'=f$ حيث $f(x)=e^x$

خواص: ۱٪ و ۷ عندان حقِقان و ۱۸ عند صحیح:

$$e^{-x} = (e^x)^n \qquad e^{x-y} = \frac{e^x}{e^y} \qquad e^{x+y} = e^x \cdot e^y$$
$$e^{-x} = \frac{1}{e^x} > 0 \qquad e^{-1} = \frac{1}{e} \qquad e^0 = 1$$

و
$$e^{\ln a}=a$$
 يكافئ $a>0$) $x=\ln a$ يكافئ $e^{x}=a$ و $a>0$) و $a>0$

$$e^{3\ln 2} = (e^{\ln 2})^3 = 8$$
 $e^{-\ln 2} = \frac{1}{e^{\ln 2}} = \frac{1}{2}$: Other

المشتة

$$\left(e^{2x}\right)'=2e^{2x}$$
: کال $\left[e^{tt(x)}\right]'=tt'(x).e^{tt(x)}$

النهايات:

$$\lim_{x\to 0}\frac{e^x-1}{x}=1\qquad \lim_{x\to -\infty}e^x=0$$

$$\lim_{x\to \infty}e^x=+\infty$$

ر
$$\lim_{x\to -\infty} xe^x = 0$$
 و $\lim_{x\to -\infty} \frac{e^x}{x} = +\infty$

$$(\alpha > 0) \quad \lim_{x \to -\infty} x^{\alpha} e^{x} = 0 \qquad \lim_{x \to +\infty} \frac{e^{x}}{x^{\alpha}} = +\infty \quad : \text{disc}$$

الدالة اللوغاريتمية

f(1)=0 تعريف: الدالة f المعرفة على f(1)=0 بناية المشتقة f حوث f عرف

هي:
$$f(x) = \ln x$$
 و y عدد مقيقي $x = e^y$ و عدد مقيقي $f(x) = \ln x$

$$(\ln e=1)$$
 $x=e$ کان $\ln x=1$ $(\ln l=0)$ $x=1$ کان $\ln x=0$ •

$$a=b$$
 یکافی: $a=\ln b$ یکافی: $a=b$ یکافی مرجبان شامه، a عدد ناطق:

$$\ln a^n = n \ln a$$
 $\ln \left(\frac{a}{b} \right) = \ln a - \ln b$ $\ln (a \times b) = \ln a + \ln b$

$$\ln \sqrt{a} = \frac{1}{2} \ln a$$
 و $\ln \left(\frac{1}{a}\right) = -\ln a$

نق:
$$\left[\ln u(x)\right] = \frac{u'(x)}{u(x)}$$
 عيث u مرجبة تماما وقابلة الاشتقاق

النهايات:

$$\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1 \qquad \lim_{x\to 0^+} \ln x = -\infty \qquad \lim_{x\to \infty} \ln x = +\infty$$

$$\lim_{x \to \infty} x \ln x = 0$$
 و $\lim_{x \to \infty} \frac{\ln x}{x} = 0$ (الترافيد المقارن)

$$\lim_{x \to 0} \frac{\ln x}{x - 1} = 0 \quad (\alpha > 0) \quad \lim_{x \to 0} x^{\alpha} \ln x = 0 \quad \lim_{x \to \infty} \frac{\ln x}{x^{\alpha}} = 0 : 2525$$

الدوال المرجعية

مجموعة النقط فثي الفضاء

$$(E_1)$$
 $MA = r$

r مجموعة النقط (E_1) هي: سطح كرة مركزها A ونصف قطرها $(x-x_A)^2 + (y-y_A)^2 + (z-z_A)^2 = r^2$

$$(E_2)$$
 $MA = MB$

[AB] هي: المستري محور القطعة ال $({f E}_2)$

(E₃)
$$\overrightarrow{MA} \cdot \overrightarrow{BC} = 0$$

A مجموعة النقط \overline{BC} هي: المستوي شعاعه الناظمي مجموعة النقطة

$$(E_4)$$
 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$

[AB] هي: سطح کرة قطرها (E_4)

المرجع:

 $\alpha+\beta+\gamma\neq 0$: حيث $\{(A_i\alpha)\,;\,(B_i\beta)\,;\,(C_i\gamma)\}$ حيث G مرجح الجملة (C_i\gamma)

$$\alpha \overrightarrow{GA} + \beta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \vec{0}$$

$$G\left(\frac{\alpha x_{A} + \beta x_{B} + \gamma x_{C}}{\alpha + \beta + \gamma}; \frac{\alpha y_{A} + \beta y_{B} + \gamma y_{C}}{\alpha + \beta + \gamma}; \frac{\alpha z_{A} + \beta z_{B} + \gamma z_{C}}{\alpha + \beta + \gamma}\right)$$

ABC النقطة G ثمثل مركز ثقل المثلث $\alpha = \beta = \gamma$ لما

الجداء السلَّميُّ

تذكيو:

 $\mathrm{B}(x_{\mathrm{s}}^{-};y_{\mathrm{s}}^{-};z_{\mathrm{s}})$ و $\mathrm{A}(x_{\mathrm{s}}^{-};y_{\mathrm{s}}^{-};z_{\mathrm{s}})$ في معلم متعامد ومتجانس من الفضاء، لثكن:

$$\overrightarrow{AB}\begin{pmatrix} x_8 - x_A \\ y_8 - y_A \\ z_9 - z_A \end{pmatrix} : \overrightarrow{AB}$$
 مرکبة الشماع

 $\|\overline{AB}\| = AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$: \overline{AB} طویلهٔ الشعاع

$$\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}; \frac{z_A + z_B}{2}\right) : [AB]$$

حجم رباعي الوجوه: $\frac{1}{3}S.H$ حيث S مساحة القاعدة و H الارتفاع الجداء السلمي:

 $ec{v}(x';y';z')$ و $ec{u}(x;y;z)$: نوم شعاعان حیث $ec{u}$

$$\vec{u}.\vec{v} = u.v.\cos(\vec{u}.\vec{v})$$
 $\vec{u}.\vec{v} = xx' + y.v' + zz'$

 $\vec{u}.\vec{v}=0$: التعامد: \vec{u} و \vec{v} متعامدان إذا كان

الارتباط الخطي: $\vec{u} = \lambda \vec{v}$ مرتبطان خطبا إذا كان: $\vec{u} = \lambda \vec{v}$ عدد حقيقي)

﴿ و الله مستویان، ñ و ñ ناظمیان لهما علی النزئیب:

$$\mathcal{J}'$$
 بو از ی \mathcal{J}'' إذا كان: \mathcal{J}'' عدد حقيقي \mathcal{J}''

المستقيم AB عمودي على الله إذا كان: AB

: عن مستو P(ax+by+cz+d=0) عن مستو $A(x_{\lambda},y_{\lambda},z_{\lambda})$ هو P(ax+by+cz+d=0)

$$d = \frac{\left|ax_{A} + by_{A} + cz_{A} + d\right|}{\sqrt{a^{2} + b^{2} + c^{2}}}$$

الأعداد الهركبة [C]

الشكل الجبري:

عدين حَيْقيين
$$x$$
 $z = -1$ حيث $z = x + iy$

الجزء المحقوقي و
$$r(z) = x$$
: الجزء التخولي $\operatorname{Re}(z) = x$

$$z' = x' + iy'$$
 $z = y + y'$ $z = x' : z = z'$ $z = 0 : z = 0$

$$z.\overline{z} = x^2 + y^2$$
, $z + \overline{z} = 2x$ $\overline{z} = x - iy$

$$\overline{z} = -z$$

$$\overline{z} = z$$

$$\overline{z} = z$$

طويلة عدد مركب:

الشكل الأسي:

$$\frac{\left||z| = \sqrt{x^2 + y^2}\right|}{\left|\frac{z'}{z}\right| = \frac{|z'|}{|z|} \quad ; \quad |z''| = |z|'' \quad ; \quad |zz'| = |z| \times |z'| \quad ; \quad |z|^2 = z \times \overline{z} \quad ; \quad |\overline{z}| = |z|$$

$$z = r(\cos\theta + i\sin\theta)$$

arg(z.z') = arg(z) + arg(z') arg(z) = -arg(z)

عد منجج n arg(z'') = n arg(z) arg $\left(\frac{z}{z'}\right) = a$ rg(z) - arg(z')

قانون مواهر $(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$

عمدة $z \neq 0$ arg $(z) = \theta + 2k\pi$ عدد صحيح

$$\theta$$

$$y$$
 θ
 $M(z)$

$AD = DC \cdot \overline{AD} = \overline{BC}$ أو القطران متناصفان ومتعامدان

$$(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}$$
, $\overrightarrow{AD} = \overrightarrow{BC}$

أو القطران متناصفان ومتساويان

المربع:

$$AD = DC$$
 و $\overline{AD} = \overline{BC}$ و $\overline{AD} = \overline{BC}$ و $\overline{ABC} = \frac{\pi}{2}$ و $\overline{ABC} = \frac{\pi}{2}$ و متعامدان ومتعاربان $\overline{ABC} = \overline{ABC} = \overline{ABC}$

التفسير المهندسي للأعداد المركبة

$$AB = |z_B - z_A|$$
 هو \overline{AB} هو \overline{AB} ه \overline{AB} ه \overline{AB} ه \overline{AB} ه \overline{AB}

$$z_1 = \frac{z_A + z_B}{2}$$
 هي [AB] هي جنان النقطة المنتصف (

$$Z_{G} = \frac{\alpha Z_{A} + \beta Z_{B} + \gamma Z_{C}}{\alpha + \beta + \gamma}$$
 {\left(A\cappa \cappa \cappa (B\beta); \left(C\gamma)\right)} : \left(C\gamma\gamma) \text{ \(G\gamma\gamma\gamma}\right) \text{ \(G\gamma\gamm

$$\boxed{\left|\frac{z_{\rm C} - z_{\rm A}}{z_{\rm B} - z_{\rm A}}\right| = \frac{AC}{AB}} \quad \text{arg}\left(\frac{z_{\rm C} - z_{\rm A}}{z_{\rm B} - z_{\rm A}}\right) = \left(\overrightarrow{AB}, \overrightarrow{AC}\right)$$

$$\arg\left(\frac{z_{\rm C} - z_{\rm A}}{z_{\rm B} - z_{\rm A}}\right) = \left(\overrightarrow{\rm AB}, \overrightarrow{\rm AC}\right)$$

بة كان
$$\frac{z_{
m C}-z_{
m A}}{z_{
m R}-z_{
m a}}$$
 عدا حقيقيا فإن النقاط B ، A و B على استقامة والحدة.

بنا كان
$$\overline{AC}$$
 عدا تخيلها صرفا فإن الشعاعين \overline{AB} و متعامدان. $z_{\mathrm{B}}-z_{\mathrm{A}}$

متوازي الأضلاع:

$$\overrightarrow{AD} = \overrightarrow{BC}$$

المستطيل:

$$(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2}$$
, $\overrightarrow{AD} = \overrightarrow{BC}$

$$e^{i\pi} = -1$$
 , $\overline{z} = re^{-i\theta}$: $z = re^{i\theta}$

$$\left(re^{i\theta}\right)^n = r^n e^{in\theta} \quad , \quad \frac{z}{z'} = \frac{r}{r'} \times e^{i(\theta - \theta')} \quad , \quad z.z' = r.r' \times e^{i(\theta + \theta')}$$

Cercle Trigonométrique

$\sin^2\alpha + \cos^2\alpha = 1$	
$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha$ $= 1 - 2\sin^2 \alpha$	<i>t</i> - 1
$\sin 2\alpha = 2\sin \alpha \cos \alpha$	
$2\cos^2\alpha = 1 + \cos 2\alpha$	
$2\sin^2\alpha = 1 - \cos 2\alpha$	

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
$\sin\!lpha$	0	1/2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	-1	0
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	0	

التحويلات النقطية

M'(z') تحویل نقطی الذی یرفق بکل نقطة M(z) الفقطة M'=M'=M' هي صورة (محولة) الفقطة M'=M'=M'

z'=az+b

<u>العبارة المركبة للتحويل:</u>

 $z' = z + b \qquad \underline{a} = 1 (1)$

z'=z+2-i مثال: $\overrightarrow{\mathbf{U}}$ مثال: b مو لاحقة $\overrightarrow{\mathbf{U}}$ مثال: \mathbf{U}

 $\overline{\Omega M'} = a \overline{\Omega M} \qquad z' - \omega = a(z - \omega) \qquad \underline{a \in \mathbb{R}^* - \{1\} \ (2)}$

 $a=rac{b}{1-a}$ نصبته a ومركزه النقطة الصمامدة lpha ذات الملاحقة a

z' = 2z - 3 + 4i مثل:

 $\boxed{z'-\omega=e^{i\theta}(z-\omega)}\qquad \underline{\theta\neq k\pi} \ \exists \ |a|=1 \ \exists \ a\in \mathbb{C}^* \ (3)$

 $m{a}=rac{b}{1-a}$ ومركزه النقطة الصاحدة Ω ذك اللاحقة $m{\theta}=rg(a)$ ومركزه النقطة الصاحدة Ω ذك اللاحقة $m{\Omega}M'=m{\Omega}M'=m{\Omega}M'=m{\Omega}M'=m{\Omega}M'=m{\Omega}M'$ مثل: a'=iz+4 فإن $a'=e^{i\theta}z$ فإن $a'=e^{i\theta}z$ وزاويته $a'=e^{i\theta}z$

<u>θ≠kπ υ | a | ≠1 υ a∈ C^ (4</u>

 $egin{aligned} a & \partial = \arg(a) & \partial = \arg(a) & \partial = a \end{array}$ ومركزه التقطة الصامدة Ω ذات $z' = (1+i)z - 2 + 5i & a = rac{b}{1-a} \end{aligned}$ المناطقة $\omega = rac{b}{1-a}$

- التشابه العباشر بحافظ على نسب المسافات وبحافظ كذلك على الزوادا الموجهة.
 - الانسحاب والتحاكي والدوران عبارة عن تشابهات مباشرة.
 - $M_1M_2=M_1^{\prime}M_2^{\prime}$ الانسحاب والدور ان عبارة عن تقايس: $M_1M_2=M_1^{\prime}M_2^{\prime}$

التحويلات النقطية

M'(z') مُحويل نَظَي الذي يَرَفَق بَكُل نَظَمَّة M(z) النَظْمَة M'(z') النَظْمَ M'=f(M) هي صورة (محوكة) النقطة M'=f(M)

z'=az+b

<u>العبارة المركبة للتحويل:</u>

 $z' = z + b \qquad \underline{a = 1 \ (1)}$

z'=z+2-i مثال: \overrightarrow{U} مثال: d من d من d مثال: d

 $\boxed{\overline{\Omega M'} = a \overline{\Omega M}} \qquad \boxed{z' - \omega = a(z - \omega)} \qquad \underline{a \in \mathbb{R}^* - \{1\} \ (2)}$

 $\omega=rac{b}{1-a}$ نسبته lpha ومركزه النقطة الصامدة lpha ذات اللاحقة lpha

مثال: z'=2z-3+4i

 $\boxed{z'-\omega=e^{i\theta}(z-\omega)}\qquad \underline{\theta\neq k\pi} \ni |a|=1 \ni a\in \mathbb{C}^* (3)$

 $\omega=rac{b}{1-a}$ فهريان زلوينه $\theta=rg(a)$ ومركزه النقطة الصامدة Ω ذات الملاحقة $heta=-rac{b}{1-a}$ مثال: ΩM : ΩM = ΩM = ΩM = ΩM = ΩI بالا كان $Z'=e^{i\theta}$ فإن f دور ان مركزه Ω وزاويته θ .

$\theta \neq k\pi$ $\exists |a| \neq 1$ $\exists a \in C^*$ (4)

ومركزه النقطة الصامدة Ω ذلك $\theta = \arg(a)$ وتركزه النقطة الصامدة Ω ذلك z' = (1+i)z - 2 + 5i مثل: $\omega = \frac{b}{1-a}$

- التشابه المباشر بحافظ على نسب المسافات وبحافظ كذلك على الزوايا الموجهة.
 - الانسحاب والتحاكي والدوران عبارة عن نشابهات مباشرة.
 - الانسحاب والدوران عبارة عن تقايس: M₁M₂=M₁^{*}M₂

الهتتاليات (الحسابية والهندسية)

المتتالية المنحسية

<u>الحد العام:</u>

 $v_n = v_0, q^n$

<u>الوميط الهندسي:</u>

b+a و c حدود متتابعة.

 $S_n = v_p + v_{p+1} + \dots + v_n$

 $\left| S_n = v_p \left(\frac{1 - q^{n-p+1}}{1 - q} \right) \right|^{\frac{1}{2}} q \neq 1$

 $v_0 + v_1 + \dots + v_n = v_0 \left(\frac{1 - q^{-n}}{1 - q} \right)$

 $v_1 + v_2 + \dots + v_n = v_1 \left(\frac{1 - q^n}{1 - \alpha} \right)$

 $1+q+q^2+\ldots+q^n=\frac{1-q^{n+1}}{1-q}$

 $q \in \mathbb{R}^*$) هو الأساص $q \in \mathbb{R}^*$

 $V_{n+1} = q \cdot V_n$

 $v_n = \overline{v_p, q^{n-p}}$

 $a \times c = b^2$

 $V_n = V_1, \, q^{n-1}$

المتتالية العسابية

$$u_{n+1} = u_n + r$$

* مو الأسلاس (r∈R)

$$u_n = u_p + (n-p)r$$

n و p عددان طبیعیان $u_n = u_0 + nr$ $u_n = u_1 + (n-1)r$

<u> الوسط التصاني:</u>

$$a+c=2b$$

b : a و عجدود متتابعة

$$S_n = u_p + u_{p+1} + \ldots + u_n$$

$$S_n = \frac{n-p+1}{2}(u_p + u_n)$$

$$u_0 + u_1 + \dots + u_n = \frac{n+1}{2}(u_0 + u_n)$$
$$u_1 + u_2 + \dots + u_n = \frac{n}{2}(u_1 + u_n)$$

$$1+2+3+...+n=\frac{n(n+1)}{2}$$

المتناليات (التغيرات والتقارب)

تخيرات متتالية

- $u_{n+1} u_n$ فيرك متتالية، ندرس إشارة الغرق $u_{n+1} u_n$
 - المنز المن المنز المنز
 - المنتالية (u_n) المنتالية : $u_{n+1} u_n < 0$
 - المنتالية (u_n) ثابتة : $u_{n-1} u_n = 0$
 - ا بنا کانت $u_n > 0$: نقارن النسبة $\frac{u_{n+1}}{u}$ مع 1.
- \bullet إذا كانت $u_n = f(n)$: ندرس تغير ات f على] \bullet (0]. وهناك طرق أخرى لدراسة تغيرات متتالية.

تفارب متنالية

 $\lim_{n\to\infty} u_n = l$: المنتائية (u_n) منقاربة إذا كانت

- ♦ إذا كانت (u_n) محدودة من الأعلى (u_n < M) ومنز إيدة فإنها متقاربة.
- ullet إذا كانت (u_n) محدودة من الأسلى $(u_n>m)$ ومتناقصة فإنها متقاربة.

متتاليتان متجاورتان

- إحداهما منتاقصة والأخرى متزاودة.
 - $\lim_{n\to\infty}(u_n-v_n)=0\quad \bullet$

المنتاليتان المتجاورتان نقبلان النهاية نفسها.

الحساب التكاملي

و الله مستمرة على I = [a;b] و F دالة أصلية الدالة f على F التكامل من a إلى f دالة مستمرة على $\int_a^b f(x) dx = [F(x)]_a^b = F(b) - F(a)$ التكامل من a إلى f التكامل من f

وعلاقة شال

$$\int_{a}^{b} f(x)dx = \int_{c}^{b} f(x)dx + \int_{a}^{c} f(x)dx$$

$$\int_{a}^{a} f(x)dx = 0 \quad \text{s} \quad \int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$

$$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \quad \frac{1}{2}\int_{-a}^{a} f(x)dx = 0 \quad \text{s} \quad \frac{1}{2}\int_{-a}^{a} f(x)dx = 0$$

+ الخطية

$$\int_a^b \left[\alpha f(x) + \beta g(x) \right] dx = \alpha \int_a^b f(x) dx + \beta \overline{\int_a^b g(x)} dx$$

♦ الإيلجابية

 $\int_{a}^{b} f(x)dx \ge 0$ فإن $a \le b$ و $f(x) \ge 0$ فإن

♦ الصقارنة

 $\int_a^b f(x)dx \le \int_a^b g(x)dx$ بن $\int_a^b f(x) \le g(x)$ بن بازد کانت $\int_a^b f(x)dx \le \int_a^b g(x)dx$ بن بازد کانت $\int_a^b f(x)dx \le \int_a^b g(x)dx$

♦القيمة المتوسطة

$$\mu = \frac{1}{b-a} \int_a^b f(x) dx$$
 القرمة العنوسطة أ $f = a$ على $I = [a;b]$ هي:

♦النصر

 $\mathsf{m}(b-a) \leq \int_a^b f(x) dx \leq \mathsf{M}(b-a)$ قبن $(a \leq b)$ من $m \leq f(x) \leq \mathsf{M}$ بنائب $m \leq f(x) \leq \mathsf{M}$

التكامل بالتجزئة

$$\int_{a}^{b} f(x).g'(x)dx = [f(x).g(x)]_{a}^{b} - \int_{a}^{b} f'(x).g(x)dx$$

الحوال الأصلية

f(x)	F(x)
(حقيقي) ۾	ax + C
$x^n (n \neq -1)$	$\frac{x^{n+1}}{n+1} + C$
$u'.u^n (n \neq -1)$	$\frac{u^{n+1}}{n+1} + C$
$\sin(ax+b)$ $(a\neq 0)$	$-\frac{1}{a}\cos(ax+b)+C$
$\cos(ax+b) \ (a\neq 0)$	$\frac{1}{a}\sin(ax+b)+C$
$\frac{u'}{u} (u \neq 0)$	$\ln u + C$
u'.e ^u	e" + C

التحليل التوفيقي

لصحج

لدونا n قريصة، نسحب p قريصة:

- C_n^p :في أن واحد نستعمل C_n^p
- طى النوالي بدون إرجاع: A^P_n
 - على النوالي بالإرجاع: n^p

الجمعيابة

- $A_n^{
 ho}$ ذكر وظيفة الأشخاص: $A_n^{
 ho}$
- C_n^p : لا تذكر وظيفة الأشخاص C_n^p

حستور ثناني البد

$$(x+y)^n = \sum_{p=0}^n C_n^p x^{n-p} y^p$$

 $= C_n^0 x^n + C_n^1 x^{n-1} y + \dots + C_n^n y^n$

عثال

$$(x+1)^n = \sum_{p=0}^n C_n^p x^{n-p} 1^p$$

= $x^n + C_n^1 x^{n-1} + \dots + C_n^{n-1} x + 1$

الترتيبات

$$A_n^p = \frac{n!}{(n-p)!}$$

 $(n \ge p \ge 0)$ عدد طبیعی حیث $n!=1 \times 2 \times 3 \times ... \times n$

$$A_n^p = n(n-1) \times \ldots \times (n-p+1)$$

التوغيقاتم

$$C_n^p = \frac{n!}{p!(n-p)!}$$

$$C_n^p = \frac{A_n^p}{p!} : \text{disc}$$

التبديلة

$$A_n^n = n!$$

الهائمة

 n^{ν}

خواحي

$$C_n^0 = C_n^n = 1 \qquad C_n^1 = n$$

$$0!=1!=1$$
 $C''_{n+1}=n+1$

التحليل التوفيقي

السديم

لدينا ١١ قريصة، نسحب ٣ قريصة:

- أن ولحد نستعمل: C_n^p
- ♦ على النوالي بدون إرجاع: A^P_n
 - n^{P} على النوالي بالإرجاع:

الجمعيات

- $A_{\scriptscriptstyle R}^{p}$ نكر وظيفة الأشخاص: $A_{\scriptscriptstyle R}^{p}$
- C_n^p :لا نذكر وظيفة الأشخاص C_n^p

حستور ثناني المد

$$(x+y)^n = \sum_{p=0}^n C_n^p x^{n-p} y^p$$

$$= C_n^0 x^n + C_n^1 x^{n-1} y + \ldots + C_n^n y^n$$

عثال

$$(x+1)^n = \sum_{p=0}^n C_n^p x^{n-p} 1^p$$

= $x^n + C_n^1 x^{n-1} + \dots + C_n^{n-1} x + 1$

الترتيبات

$$A_n^p = \frac{n!}{(n-p)!}$$

 $(n \ge p \ge 0)$ عند طبيعي حيث $n!=1 \times 2 \times 3 \times ... \times n$

$$A_n^p = n(n-1) \times \ldots \times (n-p+1)$$

التوقيقات

$$C_n^p = \frac{n!}{p!(n-p)!}$$

$$C_n^p = \frac{A_n^p}{p!} : \text{Alix}$$

التبديلة

$$A_n^n = n!$$

الهائمة

nP

خواسي

$$C_n^0 = C_n^n = 1$$

$$C_n^1 = n$$

$$0! = 1! = 1$$

$$C_{n+1}^n = n+1$$