Prepared for and published by the incorporated Association of Registered Teachers of Victoria

IARTY TESTS — OCTOBER 2000
© IARTY Test Papers are COPYRIGHT
and may not be reproduced
in whole or in part

YEAR 12

JARTY TEST -- OCTOBER 2000

SECTION A:	MATHEMATICAL METHOD MATHEMATICAL METHOD EXAMINATION 1 — ANSWEI SECTION A: MULTIPLE CHOICE OUESTIONS	MATHEMATICAL METHODS Units 3 and 4 EXAMINATION 1 — ANSWERS & SOLUTIONS TITIFLE CHOICE OURSTIONS
1. B	12. A	23. E
2. D	13. D	24. A
3. A	14. E	25. B
4. C	15. D	26. В
5. E	16. B	27. C
6. D	17. A	28. F
7. E	18. D	29. Е
8. D	19. ♠ €	30. A
9. E	20. D	31. C
1	2	

32. A 33. A

$Pr(X \ge 1) = 1 - \frac{32}{3125} = \frac{3093}{3125} \approx 0.99$	
$Pr(X=0) = {}^{5}C_{0}q^{5}p^{0} = 0.40^{3} = \frac{32}{2125} \approx 0.01$	
Probability that out of 5 people chosen at random at least 1 will be in favour of the GST: $\Pr(X \ge 1) = 1 - \Pr(X = 0)$	Therefore $\int \frac{6x}{x^2 - 2} dx = 3 \log_x (x^2 - 2)$
$X \sim Bi (n = 5, p = 0.60)$ $q = 1 \cdot p = 1 \cdot 0.60 = 0.40$	Derivative of $\log_{x}(x^2-2) = \frac{2x}{x^2-2}$
QUESTION 6	OHESTION 3
$\Pr(Z < 2) = 1 - \Pr(Z < 2)$ = 1 - 0.9772 = 0.0228	$x = \frac{-7\pi}{12}, \frac{-5\pi}{12}, \frac{5\pi}{12}, \frac{7\pi}{12}$
$2 = \frac{x - \mu}{x - \mu} = \frac{-10}{x - \mu} = -2$	اله
Probability that Poppy's tram will arrive at least 10 minutes earlier:	
Mean value $x = 7.15$ am Standard deviation $\sigma = 5$ minutes	Find $\{x: \sqrt{3} + 2\cos 2x = 0, -\pi \le x \le \pi\}$ $= \sqrt{3}$ $\pi = \sqrt{3}$
QUESTION 5	QUESTION 2
	$f^{-1}[2,\infty) \to R \text{ where } f^{-1}(x) = -(x-2)^2 + 3$
= \$7,344	Range of $f(x) : [-1, \infty)$ c) Domain of $f^{-1}(x) : [-2, \infty)$ Rule of $f^{-1}(x)$:
b) Maximum profit = $P(12)$ = $2/(2)^3 + 900/(12)$	b) Domain of $f(x)$: $(-\infty,3]$
$n = \sqrt{\frac{900}{6}} = 12.25 \text{ i.e. } 12 \text{ employees.}$	
$P'(n) = -6n^2 + 900$ $-6n^2 + 900 = 0$	f(x) $y=x$
a) For maximum no. of employees $P'(n) = 0$	$f: \{-\infty, 2\} \rightarrow R$ where $f(x) = 2 + \sqrt{3 - x}$ a) Sketch the function f and the inverse function f'
QUESTION 4 $P(n) = -n(2n^2 - 900) = -2n^3 + 900n$	QUESTION 1
	SECTION B: SHORT ANSWER QUESTIONS

Prepared for and published by the Incorporated Association of Registered Teachers of Victoria

YEAR 12

IARTY TESTS — OCTOBEH 2000 © IARTY Test Papers are COPYRIGHT and may not be reproduced in whole or in part

MATHEMATICAL METHODS — EXAMINATION 2 (ANALYSIS TASK) JARTV TEST — OCTOBER 2000 ANSWERS & SOLUTIONS

Question 3 a) i) \$533.33 ii) \$5300 $\begin{cases} 8000, & n \le 20 \\ n & 400, & 20 \le n \le 30 \end{cases} & n \in \mathbb{N}$ $c) 30 + x$ $d) R = n(700 - 10n) = (x + 30)(400 - 10x)$ $R = 12000 + 100x - 10x^{2}$ $e) x \in [0,20] \text{ and } x \in \mathbb{N}$ $f) \frac{dR}{dx} = 0 = 100 - 20x \Rightarrow x = 5$ Thus 35 passengers maximises R, the receipts. g) R contains points on a negative quadratic function and so R achieves a maximum.	Question 1. a) $c'(t) = \cos t - \sqrt{3} \sin t$ b) Turning points when $c'(t) = 0$. $\cos t = \sqrt{3} \sin t$, $\tan t = \frac{1}{\sqrt{3}}$, $t = \frac{\pi}{6}, \frac{7\pi}{6}$ Coordinates $(\frac{\pi}{6}, 2), (\frac{7\pi}{6}, -2)$ c) $(0, \sqrt{3})$ d) $t = \text{intercepts occur when } c(t) = 0$, $\tan t = -\sqrt{3}, t = \frac{2\pi}{3}, \frac{5\pi}{3}$. e) see over page. $b \in A^{(n)}$: f) $A = \text{amplitude} = 2$ $B = 1$ $C = \pi/6$ g) solving $1 = 2\cos(t - \frac{\pi}{6})$, $t = \frac{\pi}{2}, \frac{11\pi}{6}$. $t = \frac{\pi}{2}, \frac{11\pi}{6}$.
Question 4 a) $\frac{28}{55}$ b) $\frac{63}{64}$ c) f) 0.067 \otimes (a) fi) 0.061 fii) 0.988 d) 108.42 e) f) 0.871 f) 0.871 f) 0.871	Question 2 a) $t = 2$, $P = 4.84$ b) $t = 10^{16}^{(10^{2}-1)} - 1$ c) $t = 10^{0.6} - 1 = 2.98 \approx 3 \text{ months}$ d) $10^{9} = x$, $\log_{x}(10^{9}) = \log_{x} x$ y $\log_{x} 10 = \log_{x} x \Rightarrow result$ $\frac{dy}{dx} = \frac{1}{(1+t)\log_{x} 10}$ e) $\frac{dP}{dt} = \frac{-15}{(1+t)\log_{x} 10}$ f) when $t = 2$, $\frac{dP}{dt} = -2.17$ P is reducing by \$2170 per month after 2 months. g) $t = 1.17$ h) $t = 5.31 months$ i) Total bprofit = $\int_{0}^{1} Pdt = 21.23$, ie.\$21,230.

2000 HRTV 1

Q1 normal distribution $\mu = 43$ $\sigma = 6$

Use muNorm (0.025, 43,6) this finds the value for which 2.5% falls below.

⇒ 31.24.

Use Inv Norm (97,5,43,6) This finds the value for which 97.5% fall below (ie 25% Is outside)

=> 54.76

of $2 \cdot f(x) = \log_e x - \log_e(x^2 - x)$ $\frac{d \cdot \log_e x}{dx} = \frac{1}{x}.$ $\frac{d \cdot \log_e(gx)}{dx} = \frac{g'(x)}{g(x)} = \frac{2x-1}{x^2-x}.$

$$f(x) = \frac{1}{x} - \frac{2x-1}{x^2-x}$$

$$= \frac{1}{x} - \frac{2x-1}{x(x-1)}$$

$$=\frac{x-1-2x+1}{x(x-1)}$$

$$= \frac{1}{2(x-1)}$$

Q3/ Maximal domain is the maximum possible domain in they set of real numbers

Only has read values when $\sqrt{-6+2} > 0$ it can't be =0 : $\frac{2}{6}$ is undefined

94 r= 7cm.

rnew = 7+h

Surface Area = 4TT-2

fath) = fas + hf(x) page 2472

The increase in the surface area will be f(x+h) - f(x) = hf(y)= $h \times 8 Tr$

When r = 7 = 56 T h

 $95 y = 3 + \frac{2}{2x-1}$

will have a vertical asymptote

When 2x-1=0

When x -> 00

$$\frac{2}{2x-1} \rightarrow 0$$

$$\therefore y \rightarrow 3$$

: horizontal asymptote is y=3.

$$x = \frac{1}{2}, y = 3$$

 $\widehat{\pm}$

2000 HARTU 1.

 $96 \text{ f } y = (5x^3 - 3x)^5$ then dy = dy du dx

of u= (5x3-3x) they y - u5.

 $\frac{dy}{dx} = 5u^{4} \times (15x^{2} - 3)$ $=5(5x^{2}-3x)^{4}3(5x^{2}-1)$ = 15 (5x2 -3x)(5x2 -1) $=(75x^2-15)(5x^3-3x)^{\dagger}$

97 24 -323 +922 +27x +81 This can be expressed as the

(-3) x 4-1

- (E)

98 y = 6222-23 This graph touches at x=0.

and intersects at biz= b2 (linear factor)

09 y = ea(x-6) When x=0 $y=e^2$ $e^2=e^{ab}$

-- -ab = 2.

When x=2 y=1. (=ea(2-6)

69(cont.) | = $e^0 = e^{a(2-b)}$

-a(2-b)=0.

ether a=0 or b=2 impossible

Since -ab=2,

If -ab= 2 a=-1.

:. y = e -(2-2) · · · (E)

00 f'w = 322 - 22+2 $f(x) = \int 3x^2 - \frac{2}{x+2}$

> $=3x^{3}$ $-2\log_{0}(x+2)+c$ f(1) =-1 = (-1)3-2loge1 + c -1 --1 -0 +0 ·· <=0

:. f(x) = x3 - 2loge (x+2)

QU fw = 8 is a straight line

This is not one-to-one it is manytoone.

Q12 F(x) = -35m(2x+TT) = -3 sin 2(x +==) period = 2 = 11.

the = moves to the right

\$12(cont.)

The (-3) reflects the graph in the 22 axis

The domain of the inverse
$$f^{-1}$$
is the range of f
: range of $f = [1,3]$
: domain $f^{-1} = [1,3]$

Que
$$e^{2x} - 6e^{x} = -5$$
.
 $(e^{x})^{2} - 6(e^{x}) + 5(e^{x}) = 0$.
Let $a \cdot e^{x}$
 $a^{2} - 6a + 5 = 0$.
 $(a - 5)(a - 1) = 0$
 $a = 5$ or $a = 1$.
If $a = 5 = e^{x}$
 $a = 6 = 6$.
 $a = 6 = 6$.

X-O,

.. The solution set is

50, 69e5

Q(5.
$$f(x) = 2x^{2} + 1$$

 $f(x) = 2(x^{2} + 1) = 9$
 $f(x+h) = 2(x+h)^{2} + 1$
 $= 2(x+h) + h^{2} + 1$
 $= 8 + 8h + 2h^{2} + 9$
 $= 8h + 2h^{2} + 9$
 $= 8h + 2h^{2} + 9$
 $= h(2h + 8)$
 $= h(2h + 8)$
 $= 2h + 8 + 8 + 8$

Q16 The period is the length along the horizontal axis, until the graph repeats itself.

In this case the period = TT

The amplitude = max - min = 1 = -5

2 = 3

$$e^{17} \int e + (3+4x)^{2} dx$$

$$= \int e dx + \int (3+4x)^{3} dx.$$

$$= ex + \frac{(3+4x)^{3}}{3\times4} + c$$

$$= ex + \frac{(3+4x)^{3}}{12} + c.$$

$$= ex + \frac{(3+4x)^{3}}{12} + c.$$

Let
$$u = 2\cos\frac{x}{2}$$
. $y = e^{u}$.

Let $u = 2\cos\frac{x}{2}$. $y = e^{u}$.

 $\frac{dy}{dx} = \frac{dy}{dx} \frac{du}{dx}$
 $= e^{u} \times 2\sqrt{(-\sin\frac{x}{2})}$
 $= -e^{2\cos\frac{x}{2}} \sin\frac{x}{2}$

2000 HRTV 1

919 The graph of y = 35 in 2x \$20(cont.)

Plot the graph on your calculator, and then use [2nd] [Arc] [7] to find the area under the graph. Use "O" as your lower bound and "I as your upper bound.

: The total area bounded between x=0 and x=11 and the figuration is 3+2=6 Squarits.

If you try to use an upper bound of IT, with "O" lower bound, the calculator will show the area to be zero.

QD $f(x) = 1 + 2e^{-x}$ 00×300 $e^{-x} = \frac{1}{e^{x}} \Rightarrow \frac{1}{00} \Rightarrow 0$ $00 \times 300 \quad f(x) \Rightarrow 1$ $00 \times 300 \quad 1 + 2e^{0} = 3$ $00 \times 300 \quad 1 + 2e^{0} \Rightarrow 00$ $00 \times 300 \quad 1 + 2e^{0} \Rightarrow 00$

\$20(cont.)

The range of the function is

(1,00)

The graph looks like

Q21 |-2 0 1

Use [2 rail [Darc] [7] to find the area between -2 or 0, and then 0, and 1.

DO NOT find the area using the domain [-2,1]The area for $[-2,0] = 2\frac{2}{3}$ The area for [0,1] = 0.4167

$$\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 2 \\ 2 & 2 & 3 & 12 & 2 \\ 2 & 3$$

$$922 \quad y = \frac{5-x^2}{3x}$$

gradient function =
$$\frac{32}{32}$$
.

$$y = \frac{5}{32} - \frac{2^{2}}{32}$$

$$= \frac{5}{32} - \frac{2}{32}$$

: The gradient of the normal
$$= \frac{1}{(-2)} = \frac{1}{2}.$$
(Since $M_1M_2 = -1$)

: equation of normal is

$$(y-y_1) = m(x-x_1)$$
 $(y-\frac{4}{3}) = \frac{1}{2}(x-1)$
 $y-\frac{4}{3} = \frac{1}{2}x - \frac{1}{2}$
 $y-\frac{4}{3} = \frac{1}{2}x$

$$\therefore \sin x = \frac{1}{5}$$

$$x = \frac{11}{6}, \frac{1311}{6}, \frac{1311}{6} + \cos \log e.$$
not in domain
$$\Pr(x \ge 6.6)$$
Here the colorelation.

$$\frac{5x^2}{e^{2x}}$$
of Maximum $\frac{dy}{dx} = 0$.

Let
$$y = 5x^2 e^{(2x)}$$

$$\frac{dy}{dx} = \sqrt{\frac{dy}{dx}} + \sqrt{\frac{dy}{dx}}$$

$$= e^{-2x} \log x + (5x^2)(-2e^{-2x})$$

$$= e^{-2x}(10x - 10x^2)$$

for
$$\frac{dy}{dz} = 0 = 0$$
 $10x - 10x^2 = 0$ $10x(1-x) = 0$ $\therefore x = 1$.

$$P(3) = 0.3(3)^{3} + 0.2(3)^{2}$$

$$= 9.9$$

$$P(i) = 0.3(i)^3 + 0.2(i)^2$$

= 0.5

$$\frac{P(3) - P(1)}{3 - 1} = \frac{9.4}{2} = 4.7 \text{ m/s}.$$

$$Pr(x \ge 6.6)$$

2000 HARTV 1 927 EPr(2=2) = 1. (1) 030 R 3(k) =5. and = 2 Pr(==z) = 2.38 . 2 Use this to create two simultaneous equations to Find K+M. 01.005+0.25+k+03+m+0.03=1 0.63+k+m=1 K+m = 0.37, -3

2 1x0.25 +2k +3x0.3 +4m+5x0.03.238 0.25 +2k+0.9+4m+0.15=2.38 ZK+4M = 1.08 -4.

4-3 x2 2k+2m=0.74 2m = 0.34M = 0.17: K = 0.20

128 This is a binomial distribution because the student either gets a coupon or obesnit. n=7 P= = q=== 1. 7c3 (0.2)3 (0.8)4

Since the number of successes is 3,

this requires a failure, fail, fail, success = Pr(failure) Pr(saccess) =(0.65)3 × 0.35

= 0.9612

then E(2X-4) = 2 E(x) - 4 = 10-6 = 6.

:. (A)

031 n=15. x=6. P=0.85 9=0.15 :. 15G (0.85) (0.15) 9 ~~ (C) ,

Q32 Since there is no replacement this is a hypergeometric distribution Pop = N = 12 Sample n=3 8 caronel | caronel tzp
4 peppernit. 012c+1p.

:. (8)(4) + (8)(4)

933 Pr (Success) = 0.74 N=15 231, r. 1 - Pr(x = 0) Pr(X=0) = (15) (0.74) (0.26) . $Pr(x \ge 1) = 1 - {15 \choose 0} (0.74)^0 (0.26)^{15}$