Самостоятельная работа 1

Тема. Вычислительная сложность алгоритма

Цель:

- получение умений и навыков по выполнению анализа алгоритма;
- получение умений и навыков по определению функции, показывающей зависимость увеличения (или нет) количества выполняемых инструкций при увеличении размера задачи;
- получение умений и навыков по оценке объемной сложности алгоритма;
- получение умений и навыков по определению зависимости вычислительной сложности алгоритма от обрабатываемых алгоритмом данных.

1. Требования к выполнению практической работы

- 1. Провести оценку вычислительной сложности алгоритма. Определить зависимость вычислительной (временной) сложности алгоритма от размера обрабатываемых данных.
- 2. Оформить отчет.

2. Задание

Разработать алгоритм задачи варианта. Определить функцию, показывающую зависимость количества выполняемых инструкций от размера задачи, функцию емкостной сложности алгоритма.

3. Требования к выполнению задания

- 1. Выполнить разработку алгоритма задачи варианта, представляя последовательность как массив из п значений, Записать алгоритм на псевдокоде. Символы и правила для псевдокода приведены в пособии [1], представленном в списке литературы.
- 2. Определить, для полученного алгоритма, функциональную зависимость (функцию), указывающей зависимость количества выполняемых инструкций от размера задачи.
- 3. Технологию подсчета количества инструкций алгоритма представить в таблице табл. 1. При этом:
- псевдокод алгоритма разместить в столбце *Инструкции* (onepamop) алгоритма таблицы табл. 1, каждая управляющая инструкция строго в отдельной строке таблицы;

<u>Примечание.</u> Можно в одной строке размещать несколько операторов присваивания, но при расчетах считать их все. Управляющие инструкции (условный оператор, оператор цикла) только в отдельной строке.

- в строке столбца *Количество выполнений инструкции* разместить формулу (или значение), определяющую (определяющее) количество выполнений инструкции на заданном размере задачи (n).
- 4. Определить функцию (функции: наилучший, наихудший и средний случаи) зависимости количества инструкций алгоритма от размера задачи и от данных. Для этого выполнить суммарный подсчет всех значений столбца Количество выполнений инструкции, учитывая влияние данных на количество выполняемых инструкций.
- 5. Реализовать алгоритм.
- 6. Разработать тесты для доказательства корректной работы алгоритма при n=20.
- 7. Выполнить отладку и тестирование алгоритма.
- 8. Определить емкостную сложность алгоритма.

Таблица 1. Форма представления алгоритма при получении функции зависимости количества выполняемых инструкций от размера задачи

Номер	Инструкция (оператор) алгоритма	Количество
строки		выполнений
инструкции		инструкции
алгоритма		

4. Варианты задач

Таблица 2. Варианты задач практической работы 1

$\mathcal{N}_{\underline{o}}$	Условие задачи
1.	Дана последовательность из п целых чисел. Найти сумму положительных чисел и
	количество отрицательных чисел последовательности.
2.	Дано натуральное число n и последовательность b0, b1,, bn. Вычислить значения: $f(b0)$, $f(b1)$,, $f(bn)$. Где $f(x) = \begin{cases} x^2, \text{ если x кратно 3} \\ x^3, \text{ если при делении x на 3 равен 1} \\ \frac{x}{3}, \text{ в других случаях} \end{cases}$
3.	Дано натуральное число n , действительные числа a , b и последовательность c_1 , c_2 ,, c_n . Верно ли, что при $1 \le k \le n-1$ всякий раз, когда $c_k < a$ выполняется $c_k + 1 > b$?

	T			
	Дано натуральное число n и последовательность действительных чисел a1,, an			
4.	(n≥2). Сколько среди точек (a1, an), (a2, an-1),, (an, a1) таких, которые			
	принадлежат кругу радиуса r с центром в начале координат?			
	Даны целые числа a, n и последовательность целых чисел x1,, xn (n>0).			
5.	Определить номер члена последовательности равного значению а, если такого			
	члена в последовательности нету, то результатом должно быть число 0.			
6.	Дано натуральное число n и последовательность действительных чисел $a_1,, a_n$.			
0.	Определить количество натуральных чисел j (2 \leq j \leq n-1), для которых a_{j-1} < a_{j} > a_{j} +1.			
	Дано натуральное число n и алгоритм формирования членов последовательности:			
7.	$a_i = \frac{i-1}{i+1} + \sin\frac{(i-1)^3}{i+1} \ i = 1, 2, \dots$			
/.	$a_i - \frac{1}{i+1} + stn \frac{1}{i+1} = 1, 2, \dots$			
	Найти наименьшее положительное число среди п чисел последовательности.			
	Дано натуральное число n и последовательность действительных чисел $x_1,, x_n$.			
8.	Получить значение выражения $(1+r)/(1+s)$ где r – сумма тех чисел			
0.	последовательности, которые больше 1, а s – сумма тех чисел			
	последовательности, которые не превышают 1.			
	Дано натуральное число n и последовательность действительных чисел y1,, yn.			
9.	Найти Max(z1 ,, zn) где			
9.	$z_i = egin{cases} y_i \ \text{при} \ y_i \leq 2 \ 0.5 \ \text{в противном случае} \end{cases}$			
	$z_{i} = (0.5 \text{ в противном случае}$			
10.	Дана последовательность из п натуральных чисел. Определить количество членов			
10.	последовательности, которые являются удвоенными нечетными числами.			
11.	Дана последовательность из п натуральных чисел. Определить количество членов			
11.	последовательности, которые при делении на 7 дают остаток 1 или 2 или 5.			
	Дано натуральное число n и последовательность натуральных чисел $q_{1, \dots} q_{n}$.			
12.	Определить количество членов последовательности, которые обладают			
	свойством: корни уравнения x^2+3 х $q_i-5=0$ действительные и положительные.			
	Дано натуральное число n и последовательность действительных чисел $q_{1, \dots} q_{n}$.			
13.	Вычислить обратную величину произведения тех членов q _i последовательности			
	$q_{1,} q_{n,}$ для которых выполнено условие $i+1 < q_i < i$.			
	Дано натуральное число n и последовательность действительных чисел $q_1, \dots q_n$.			
14.	Определить количество членов последовательности, которые принадлежат			
	отрезку [1,2].			
	Дано натуральное число n и последовательность действительных чисел q_1, q_n .			
15.	Определить количество и сумму членов последовательности, принадлежащих			
	отрезку [3,7].			

Продолжение табл. 2

No॒	Усторую зачачу
No	Условие задачи
16.	Дано натуральное число n и последовательность натуральных чисел. Определить
	количество чисел последовательности, сумма цифр которых кратна 7.
17	Дано натуральное число n и последовательность целых чисел. Определить
	количество чисел последовательности, являющихся простым числом.
1.0	Дано натуральное число n и последовательность натуральных чисел. Определить
18.	количество чисел последовательности, которые делятся на каждую из своих цифр.
	Дано натуральное число n и последовательность натуральных чисел. Определить
19.	количество чисел последовательности в десятичной записи которых нет цифр 5 и
	7.
20	Дано натуральное число n и последовательность натуральных чисел. Определить
20.	количество чисел последовательности, старшая цифра которых меньше младшей.
	Дано натуральное число n и последовательность натуральных чисел. Определить
21.	количество чисел последовательности, имеющих только три делителя.
	Дано натуральное число n и последовательность натуральных чисел. Определить
22.	количество чисел последовательности, являющихся палиндромами.
	Дано натуральное число n и последовательность натуральных чисел. Определить
23.	количество чисел последовательности, цифры которых образуют
23.	арифметическую прогрессию от младшего разряда числа к старшему.
	Дано натуральное число n и последовательность натуральных чисел. Определить
24.	количество чисел последовательность сумма цифр, которых кратна 7.
	Дано натуральное число n и последовательность натуральных чисел. Определить
25	
25.	количество чисел последовательности, в двоичном коде которых только три
	единицы.
	Дано натуральное число n и последовательность натуральных чисел. Определить
26.	количество чисел последовательности, в шестнадцатеричном коде которых
	старшая цифра А.
	Дано натуральное число n и последовательность натуральных чисел. Определить
27.	среднее арифметическое чисел последовательности, сумма цифр которых кратна
	7.
	Дано натуральное число n и последовательность натуральных чисел. Определить
28.	среднее арифметическое тех чисел последовательности, сумма цифр которых
	кратна 7.
29.	Дано натуральное число n и последовательность натуральных чисел. Определить
	среднее арифметическое чисел последовательности, цифры которых образуют
	убывающую последовательность.
30.	Дано натуральное число n и последовательность натуральных чисел. Определить
	количество чисел последовательности, которые по значению больше своих
	соседей.
	·

5. Структура отчета

Титульный лист.

Оглавление.

1. Условие задачи.

Сюда вставьте задание, требования и строку из таблицы вариантов.

- 2. Разработка решения.
 - 2.1. Таблица (табл. 1) заполненная согласно требованиям задания.
 - 2.2. Функциональные зависимости, полученные в результате анализа алгоритма. Описание получения функций для различных случаев, если для алгоритма они должны быть рассмотрены.
 - 2.3. Код алгоритма на языке С++.
 - 2.4. Разработанные тесты представить в форме таблицы (табл. 3).

	Название алгоритма операции			
Номер теста		Входные данные		Эталон результата (ожидаемый
				результат)
1	n=20			
	A{		}	

Таблица 3. Шаблон таблицы тестов

- 2.5. Скрины результатов тестирования алгоритма на задаче размером n=20.
- 2.6. Результаты исследования алгоритма (тестирования) на различных объемах данных и получение времени его выполнения. Результаты прогонов занести в табл. 4.

Размер	Время	Количество инструкций	Время выполнения Т
задачи(n)	выполнения	по формуле функции	инструкций на компьютере
	алгоритма(сек)	(T)	(Т/быстродействие комп.) (сек)
1	2	3	4
100			
1000			
5000			

Таблица 4. Параметры алгоритма при оценке сложности алгоритма

2.7. Проведите анализ выполнения алгоритма на данных табл. 4.

Сравните значения в столбцах 2 и 4, которые указывают время, затраченное на выполнение алгоритма.

Приведите ваши выводы: можно ли заметить рост времени при увеличении размера задачи, согласно формуле функции?

6. Контрольные вопросы

- 1. В чем цель анализа алгоритма?
- 2. Что определяет понятие «размер задачи»?
- 3. Какой алгоритм считается корректным?
- 4. Инвариант цикла. Дайте определение.
- 5. Как по инварианту цикла определить, что алгоритм корректен?
- 6. Приведите инвариант цикла для алгоритма поиска максимального числа в массиве натуральных чисел из n элементов.
- 7. Для каких алгоритмов следует выполнить оценку для наилучшего, наихудшего и среднего случаев?
- 8. Какое количество операций сравнения выполнить оператор for(int i=1; i< n; i++) {}?
- 9. Какое общее количество инструкций выполняются в этом операторе for(int i=1;i< n;i++) {}?
- 10. Какая функция оценивает временную сложность алгоритма: while (n>1) n=n/2;?
- 11. Какая инструкция алгоритма выбирается при оценке сложности алгоритма (получении функции роста количества инструкций при увеличении размера задачи)?
- 12. Расскажите о данных при выполнении алгоритма поиска минимального значения в массиве в наилучше, наихудшем, среднем случае?
- 13. Какие инструкции содержит алгоритм, если в наихудшем, наилучшем и среднем случаях алгоритм имеет сложность, определяемую функцией n²?
- 14. Какие инструкции содержит алгоритм, если в наихудшем, наилучшем и среднем случаях алгоритм имеет сложность, определяемую функцией n*logn?
- 15. Какие инструкции содержит алгоритм, если в наихудшем, наилучшем и среднем случаях алгоритм имеет сложность, определяемую функцией n³?