Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 12 Martie 2011

SOLUŢII ŞI BAREME ORIENTATIVE – CLASA a VIII-a

Problema 1. Fie a și b două numere reale strict pozitive diferite, cu proprietatea că numerele $a-\sqrt{ab}$ și $b-\sqrt{ab}$ sunt raționale. Arătați că numerele a și b sunt raționale.

Soluţie. Fie S proiecţia punctului D pe dreapta AC. Din $DS \perp VO$ şi $DS \perp AC$ rezultă $DS \perp (VAC)$, prin urmare proiecţia pe planul (VAC) a triunghiului VDC este triunghiul VSC.

Fie u și v măsurile unghiurilor formate de planul (VCD) cu planele (VAC) şi respectiv (BAC). Avem echivalentele

$$\begin{split} u &= v \Leftrightarrow \cos u = \cos v \Leftrightarrow \frac{\text{aria}[VSC]}{\text{aria}[VDC]} = \frac{\text{aria}[COD]}{\text{aria}[VDC]} \\ \Leftrightarrow \text{aria}[VSC] &= \text{aria}[COD] \Leftrightarrow VO \cdot CS = \frac{1}{2}AB \cdot BC. \end{split}$$

Din teorema catetei avem $DC^2 = CS \cdot CA$. Cum DC = AB, rezultă $CS = \frac{AB^2}{AC}$.

În consecință, $u=v\Leftrightarrow VO\cdot AB=\frac{1}{2}AC\cdot BC\Leftrightarrow \frac{VO}{OA}=\frac{BC}{AB}\Leftrightarrow \sphericalangle VAC=$ $\triangleleft BAC$, ceea ce trebuia demonstrat.

......2p

Problema 3. Fie numerele reale strict pozitive a, b, c. Determinați cel mai mare număr întreg n cu proprietatea că

$$\frac{1}{ax+b+c} + \frac{1}{a+bx+c} + \frac{1}{a+b+cx} \ge \frac{n}{a+b+c},$$

pentru orice $x \in [0, 1]$.

Soluţie. Pentru x=1 obţinem $\frac{3}{a+b+c} \ge \frac{n}{a+b+c}$, de unde $n \le 3$.

Vom arăta că numărul cerut este n=3. Este suficient să arătăm că $E\left(x\right)\stackrel{not}{=}\frac{1}{ax+b+c}+\frac{1}{a+bx+c}+\frac{1}{a+b+cx}\geq \frac{3}{a+b+c},$ pentru orice $x \in [0, 1]$.

Folosind inegalitatea dintre media armonică și media aritmetică a nu-

pentru orice $x \in [0, 1]$.

Problema 4. Se consideră un tetraedru ABCD în care $AD \perp BC$ și $AB \perp CD$. Notăm cu E și F proiecțiile punctului B pe dreptele AD și AC, respectiv. Fie M mijlocul segmentului AB şi fie N mijlocul segmentului CD. Arătați că $MN \perp EF$.

Soluție. Deoarece AD este perpendiculară pe BC și pe BE, rezultă $AD \perp (BEC)$, de unde $AD \perp CE$. Analog obtinem $DF \perp AC$.

Fie $\{H\} = CE \cap DF$. Deoarece BH este intersecția planelor (BEC) și (BFC), deducem că $BH \perp (ACD)$.

Rezultă că proiecția Q a punctului M pe planul (ACD) este mijlocul segmentului $[AH]$.
1p
Cercurile ciecumscrise triunghiurilor AEF și BEF au centrele N și Q .
Cum linia centrelor este perpendiculară pe coarda comună, avem $NQ \perp EF$.
1p
Deoarece $MQ \perp EF$, rezultă $EF \perp (MQN)$, deci $MN \perp EF$.
1n