Rational Zeros Theorem

Theorem

Let $\sum_{k=0}^n a_k x^k = 0$ be a polynomial equation such that $n \ge 1$ and $a_n, a_0 \ne 0$. If $r \in \mathbb{Q}$ where $r = \frac{p}{q}$ such that (p,q) = 1 is a solution to the polynomial equation then $p|a_0$ and $q|a_n$.

Proof

Assume
$$r = \frac{p}{q}$$
 is a solution to $\sum_{k=0}^{n} a_k x^k = 0$. $\sum_{k=0}^{n} a_k \left(\frac{p}{q}\right)^k = 0$ Multiply by q^k . $\sum_{k=0}^{n} a_k p^k q^{n-k} = 0$ $a_0 q^n + \sum_{k=1}^{n} a_k p^k q^{n-k} = 0$ $a_0 q^n = -\sum_{k=1}^{n} a_k p^k q^{n-k}$ $a_0 q^n = -p \sum_{k=1}^{n} a_k p^{k-1} q^{n-k}$ But $a_k, p^{k-1}, q^{n-k} \in \mathbb{Z}$ for $k \in \{1, ..., n\}$. so $p|a_0 q^n$, but $(p,q) = 1$. $\therefore p|a_0$
$$\sum_{k=0}^{n-1} a_k p^k q^{n-k} + a_n p^n = 0$$
 $a_n p^n = -\sum_{k=0}^{n-1} a_k p^k q^{n-k}$ $a_n p^n = -q \sum_{k=0}^{n-1} a_k p^k q^{n-k-1}$ But $a_k, p^k, q^{n-k+1} \in \mathbb{Z}$ for $k \in \{1, ..., n-1\}$. so $q|a_n p^n$, but $(p,q) = 1$. $\therefore q|a_n$

Example

Show that $\sqrt{2}$ is irrational.

$$\sqrt{2}$$
 is a solution to $x^2-2=0$. But by the RZT, the only possible rational solutions are $\pm 1, \pm 2$. $2^2-2=2\neq 0$ $(-2)^2-2=2\neq 0$ $1^2-2=-1\neq 0$ $(-1)^2-2=-1\neq 0$ So the polynomial equation has no rational solutions. $\therefore \sqrt{2} \notin \mathbb{O}$