egefexi1u

April 29, 2024

```
[]: import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     %matplotlib inline
     import warnings
     warnings.filterwarnings('ignore')
     from sklearn.feature_selection import SelectKBest
     from sklearn.ensemble import RandomForestClassifier
     from sklearn.pipeline import make_pipeline
     from sklearn.model_selection import cross_validate
     from collections import Counter
     from xgboost import XGBClassifier
     from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier,
      -GradientBoostingClassifier, ExtraTreesClassifier, VotingClassifier
     from sklearn.discriminant analysis import LinearDiscriminantAnalysis
     from sklearn.linear_model import LogisticRegression
     from sklearn.neighbors import KNeighborsClassifier
     from sklearn.tree import DecisionTreeClassifier
     from sklearn.neural_network import MLPClassifier
     from sklearn.svm import SVC
     from sklearn.model_selection import GridSearchCV, cross_val_score, __
      →StratifiedKFold, learning_curve
```

1 Introduction

- Aquiring Data and analyzing the dataset
- EDA Exploratory data analysis

2 Aquiring Data

We'll first read the csv(comma separated values) files into a training and testing dataframes which we can manipulate for analysis and predictions

```
[]: #Reading data in the .csv format (no special encoding schemes required)

df_train = pd.read_csv('/content/train.csv')
```

```
df_test = pd.read_csv('/content/test.csv')
id_t = df_test['PassengerId']
print(df_train.shape)
print(df_test.shape)
(891, 12)
```

Outlier detection

(418, 11)

```
[]: #Outlier detection using the Tukey method
     def detect(dataframe,n,features):
         ind = []
         for column in features:
             q1 = np.percentile(dataframe[column],25)
             q3 = np.percentile(dataframe[column],75)
             res = q3 - q1
             new = 1.5 * res
             out = dataframe[(dataframe[column] < q1 - new) | (dataframe[column] > q3 +
      ⊶new)].index
             ind.extend(out)
         ind = Counter(ind)
         val = list(s for s,i in ind.items() if i>n)
         return val
     #Detecting outliers for the numerical features
     ott = detect(df_train,2,["Age","SibSp","Parch","Fare"])
```

Outliers can have dramatic effects on our predictions and can also result in harming our final result. We find outliers for the numerical features in the given dataset and we outlined rows with atleast two outliers

```
[]: #Our final outliers - can have a harmful effect on regression tasks df_train.loc[ott]
```

\	Sex	Name	Pclass	Survived	${\tt PassengerId}$	[]:
	male	Fortune, Mr. Charles Alexander	1	0	28	27
	female	Fortune, Miss. Mabel Helen	1	1	89	88
	male	Sage, Master. Thomas Henry	3	0	160	159
	female	Sage, Miss. Constance Gladys	3	0	181	180
	male	Sage, Mr. Frederick	3	0	202	201
	male	Sage, Mr. George John Jr	3	0	325	324
	female	Fortune, Miss. Alice Elizabeth	1	1	342	341
	female	Sage, Miss. Stella Anna	3	0	793	792
	male	Sage, Mr. Douglas Bullen	3	0	847	846
	female	Sage, Miss. Dorothy Edith "Dolly"	3	0	864	863

	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
27	19.0	3	2	19950	263.00	C23 C25 C27	S
88	23.0	3	2	19950	263.00	C23 C25 C27	S
159	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S
180	NaN	8	2	CA. 2343	69.55	NaN	S
201	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S
324	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S
341	24.0	3	2	19950	263.00	C23 C25 C27	S
792	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S
846	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S
863	${\tt NaN}$	8	2	CA. 2343	69.55	NaN	S

These rows were identified as outliers according to our given function so we will proceed to drop them from our dataframe

```
[]: df_train.drop(ott,axis=0,inplace=True) #dropping on the row axis
```

Create a final dataset (used while feature tuning and cleaning) by combining the training and testing dataframe

```
[]: #Dataset combining both the training and testing datasets
t_len = len(df_train)
final = pd.concat([df_train,df_test],axis=0).reset_index(drop=True)
final.shape
```

[]: (1299, 12)

3 Analyzing the dataset

Viewing the first 5 rows of the dataset

```
[]: df_train.head()
```

```
[]:
         PassengerId
                        Survived
                                  Pclass
     0
                    1
                                0
                                          3
                    2
     1
                                1
                                          1
     2
                    3
                                1
                                          3
     3
                     4
                                1
                                          1
                     5
                                          3
     4
```

```
Name
                                                            Sex
                                                                  Age
                                                                       SibSp
0
                              Braund, Mr. Owen Harris
                                                           male
                                                                 22.0
                                                                            1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female
                                                               38.0
                                                                          1
2
                               Heikkinen, Miss. Laina
                                                                 26.0
                                                                            0
                                                         female
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel)
                                                                 35.0
                                                         female
                                                                            1
4
                             Allen, Mr. William Henry
                                                           male
                                                                 35.0
                                                                            0
```

Embarked	Cabin	Fare	Ticket	Parch	
S	NaN	7.2500	A/5 21171	0	0
C	C85	71.2833	PC 17599	0	1
S	NaN	7.9250	STON/02. 3101282	0	2
S	C123	53.1000	113803	0	3
S	NaN	8.0500	373450	0	4

List of columns present in the dataset

```
[]: df_train.columns
```

```
[]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'], dtype='object')
```

[]: df_test.head()

[]:	PassengerId	Pclass	Name	Sex	\
0	892	3	Kelly, Mr. James	male	
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	
2	894	2	Myles, Mr. Thomas Francis	male	
3	895	3	Wirz, Mr. Albert	male	
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	

	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	34.5	0	0	330911	7.8292	NaN	Q
1	47.0	1	0	363272	7.0000	NaN	S
2	62.0	0	0	240276	9.6875	NaN	Q
3	27.0	0	0	315154	8.6625	NaN	S
4	22.0	1	1	3101298	12.2875	NaN	S

Checking for NULL values

Multiple NULL values present in Age and Cabin while only 2 in the Embarked column.

```
[]: df_train.info()
df_train.isnull().sum()
```

<class 'pandas.core.frame.DataFrame'>

Index: 881 entries, 0 to 890

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	881 non-null	int64
1	Survived	881 non-null	int64
2	Pclass	881 non-null	int64
3	Name	881 non-null	object
4	Sex	881 non-null	object
5	Age	711 non-null	float64

```
6
         SibSp
                       881 non-null
                                       int64
     7
         Parch
                       881 non-null
                                       int64
         Ticket
     8
                       881 non-null
                                       object
     9
         Fare
                       881 non-null
                                       float64
                       201 non-null
     10
         Cabin
                                       object
     11 Embarked
                       879 non-null
                                       object
    dtypes: float64(2), int64(5), object(5)
    memory usage: 89.5+ KB
[]: PassengerId
                      0
     Survived
                      0
     Pclass
                      0
     Name
                      0
     Sex
                      0
     Age
                    170
                      0
     SibSp
     Parch
                      0
     Ticket
                      0
     Fare
                      0
     Cabin
                    680
     Embarked
                      2
     dtype: int64
[]: df_test.info()
     df_test.isnull().sum()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 418 entries, 0 to 417
    Data columns (total 11 columns):
     #
         Column
                       Non-Null Count
                                       Dtype
         _____
                       _____
                                       ____
     0
         PassengerId 418 non-null
                                       int64
     1
         Pclass
                       418 non-null
                                       int64
     2
                       418 non-null
         Name
                                       object
     3
         Sex
                       418 non-null
                                       object
     4
                       332 non-null
                                       float64
         Age
     5
                       418 non-null
                                       int64
         SibSp
     6
         Parch
                       418 non-null
                                       int64
     7
         Ticket
                       418 non-null
                                       object
     8
         Fare
                       417 non-null
                                       float64
         Cabin
                       91 non-null
                                       object
     10 Embarked
                       418 non-null
                                       object
    dtypes: float64(2), int64(4), object(5)
    memory usage: 36.0+ KB
```

[]: PassengerId

Pclass

Name

0

0

0

Sex 0 Age 86 SibSp 0 Parch 0 Ticket 0 Fare 1 Cabin 327 Embarked 0 dtype: int64

The describe method provides us a brief summary of basic statistical measures such as quartiles, mean, count etc.

\

[]: #Brief statistics df_train.describe()

[]:		PassengerId	Survived	Pclass	Age	SibSp	١
	count	881.000000	881.000000	881.000000	711.000000	881.000000	
	mean	446.713961	0.385925	2.307605	29.731603	0.455165	
	std	256.617021	0.487090	0.835055	14.547835	0.871571	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	
	25%	226.000000	0.000000	2.000000	20.250000	0.000000	
	50%	448.000000	0.000000	3.000000	28.000000	0.000000	
	75%	668.000000	1.000000	3.000000	38.000000	1.000000	
	max	891.000000	1.000000	3.000000	80.000000	5.000000	
		Parch	Fare				

	Parch	rare
count	881.000000	881.000000
mean	0.363224	31.121566
std	0.791839	47.996249
min	0.000000	0.000000
25%	0.000000	7.895800
50%	0.000000	14.454200
75%	0.000000	30.500000
max	6.000000	512.329200

[]: df_test.describe()

[]:		PassengerId	Pclass	Age	SibSp	Parch	Fare
	count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
	mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
	std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
	min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
	25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
	50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
	75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
	max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

4 EDA (exploratory data analysis)

Checking the correlation among the numerical variables present in the dataset

We see that there's high correlation only between fare and survival probabilities, this feature may turn out to be our main focus

```
[]: df_train[['Sex','Survived']].groupby(['Sex'],as_index=False).mean().

sort_values(by='Survived',ascending=False)
```

```
[]: Sex Survived
0 female 0.747573
1 male 0.190559
```

There is a much higher probability of females surviving on the Titanic than men, Let us now proceed to visualize it.

```
[]: #Plot for gender distribition of survival rate
sns.barplot(x='Sex',y='Survived',data=df_train)
plt.title('Survival %: Gender distribution')
plt.ylabel('% of passengers survived')
plt.xlabel('Sex')
```

[]: Text(0.5, 0, 'Sex')

We can clearly see that gender plays a huge role in calculating the survival probability for a passenger. This is a crucial feature that would help to improve upon our predictions.

We will now visualize the total passenger count according to gender and survivability.

```
[]: #Survivor count for each gender

m = sns.countplot(x='Sex',hue='Survived',data=df_train)
plt.title('Survival count: Gender distribution')
plt.xlabel('Sex')
plt.ylabel('Number of passengers survived')
a = m.get_legend()
b = a.texts
b[0].set_text('No')
```


Again, we see that there is a large difference between the number of survivors between both of the genders.

```
[]: #Age survival ratio
s = sns.FacetGrid(df_train,col='Survived')
s.map(plt.hist,'Age',bins=20)
```

[]: <seaborn.axisgrid.FacetGrid at 0x7bd1d187b3a0>

It seems that the middle-aged and old people had a very low survival probability as compared to infants, childrens and young adults. Age plays an important role in saving yourself during a time of crisis.

```
[]: #Survival probability vs Class
b = sns.barplot(x='Pclass',y='Survived',data=df_train)
b.set_ylabel('Survival probability')
b.set_xlabel('Passenger class')
```

[]: Text(0.5, 0, 'Passenger class')


```
[ ]: c = sns.barplot(x='Pclass',y='Fare',data=df_train)
    c.set_ylabel('Fare')
    c.set_xlabel('Pclass')
```

[]: Text(0.5, 0, 'Pclass')

It seems that the rich people present in Passenger Class 1 had a much higher probability of survival in comparison to the other passenger classes. The fare is proportional to the survivability result.

```
[]: #Survival Probability vs Class and Sex
b = sns.barplot(x='Pclass',y='Survived',hue='Sex',data=df_train)
b.set_ylabel('Survival Probability')
b.set_xlabel('Passenger class')
```

[]: Text(0.5, 0, 'Passenger class')

We observe a similar trend here where the survival probability is in direct correlation with the gender as well as the Passenger class. Higher the passenger class equalled low fare which results in low survival chance.

```
[]: #Exploring Embarked vs Survival probability
ax = sns.barplot(x='Embarked',y='Survived',data=df_train)
ax.set_ylabel('Survival probability')
ax.set_xlabel('Embarked')
```

[]: Text(0.5, 0, 'Embarked')


```
[]: g1 = sns.FacetGrid(df_train,col='Survived',row='Pclass')
g1.map(plt.hist,'Age',bins=20)
```

[]: <seaborn.axisgrid.FacetGrid at 0x7bd1d16d6da0>

We see that Pclass 1 consists of more middle-aged and old men while P-class 2 and 3 consist of infants, children and the like. It is a similar occurrence in real-life where usually old and rich people travel in First-Class with the presence of children being very rare.

We also see that the survived histogram dwindles down in height as we move lower down the graph. The histogram still rises up pretty well for the lower age group which is what we saw above as well. Children, teenagers and young adults have a higher survival rate than the middle-aged and old people.

[]: Text(0.5, 0, 'Fare distribution')


```
[]: #Survival by Fare, Age and Sex
s = sns.FacetGrid(df_train, hue='Survived', col='Sex')
s.map(plt.scatter, 'Fare', 'Age', edgecolor='w').add_legend()
```

[]: <seaborn.axisgrid.FacetGrid at 0x7bd1cef73970>


```
[]: #Plotting fare in the combined dataset
s = sns.distplot(final['Fare'])
```

