Multiple Linear Regression

Simple linear regression: One predictor — X

Multiple linear regression: Several predictors — X_1, \ldots, X_k

Linear (regression) model:

 $E(Y|X_1 = x_1, \dots, X_k = x_k) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$ — models mean response as a function of predictors

Examples:

liner model?

•
$$E(Y|x) = \beta_0 + \beta_1 x - \forall m$$

• $E(Y|x) = \beta_0 + \beta_1 x + \beta_2 x^2 - \forall m$. $(x_1 = x_1, x_2 = x^2) - \frac{\text{Not.}}{\text{modd}}$ is capturing a non-time value of the year x .
• $E(Y|x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 * x_2) - \forall m$.

•
$$E(Y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 (x_1 * x_2) - \forall n$$
.

•
$$E(\log(Y)|x) = \beta_0 + \beta_1 \log(x) - \forall x$$

•
$$E(\log(Y)|x) = \beta_0 + \beta_1 \log(x) - \forall \beta_1$$
• $E(Y|x) = \beta_0 + (\beta_1 x)^{-1} = \beta_0 + \frac{1}{\beta_1} \cdot \frac{1}{\chi} - N_0$
• $E(Y|x) = \beta_0 + (\beta_1 x)^{-1} = \beta_0 + \frac{1}{\beta_1} \cdot \frac{1}{\chi} - N_0$
• Note: "Linear" refers to linear in regression coefficients

Linear model:
$$\widehat{E(Y|\mathbf{x})} = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k$$

Y-ruponse, Xi, -, Xk predictors

Interpretation of k+1 regression coefficients:

•
$$\beta_0 = E(Y|\mathbf{x} = \mathbf{0})$$
 — intercept

•
$$\beta_j = E(Y|x_1, \ldots, x_j + 1, \ldots, x_k) - E(Y|x_1, \ldots, x_j, \ldots, x_k)$$
— slope of x_j , i.e., change in mean response when j th predictor increases by 1, while keeping other predictors fixed, $j = 1, \ldots, k$.

Fixed of the ordinary of the ordinary for the ordinary of the or

Data: n independent subjects, ith subject gives $(Y_i, X_{1i}, X_{2i}, \dots, X_{ki}), i = 1, \dots, n.$

Linear model for data: For i = 1, ..., n, $E(Y_i|x_{i1},...,x_{ik}) = \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik}$

Swainer #	Y	XI	the parties and	XK
	+ Y, 7/	X11		. X116
d	12	XLI		· ×210
	1	Xir		- Xix
ſ		<i>((L)</i>		Xan
n	Lynl	- Xnr	_	

Alternative form:
$$Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i$$

Assumptions:

- $E(\epsilon_i) = 0$, $var(\epsilon_i) = \sigma^2$, and ϵ_i are independent.
- k+1 < n i.e., have more observations than the number of regression coefficients
- The predictors are considered fixed and are measured without error

These imply:

$$E(Y_i|x_{i1},\ldots,x_{ik}) = \beta \cdot + \beta_i \chi_{i/f} - \cdot + \beta_k \chi_{ik}$$
 as before

- $\operatorname{var}(Y_i) = e^{\nu}$
- Y_1, \ldots, Y_n are independent.

Linear Model in Matrix Notation

- rank of X is full, i.e., $(\mathbf{X}'\mathbf{X})^{-1}$ exists.
- $\hat{\beta}$ = estimator of β
- $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \text{fitted (or predicted) response}$

Predicted response when $\mathbf{x} = (\hat{\mathbf{x}}_0)$: $\hat{Y}_0 = \mathbf{x}_0'\hat{\boldsymbol{\beta}}$

Least Squares Estimation of β

As before: Minimize $\sum_{i=1}^{n} \epsilon_i^2$ with respect to $\beta_0, \beta_1, \beta_k$ to get $\hat{\beta}$

- Least squares estimator: $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$ Jolukim y the system Minimum value of $\sum_{i=1}^{n} \epsilon_i^2$ is
- $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2 = (\mathbf{Y} \hat{\mathbf{Y}})'(\mathbf{Y} \hat{\mathbf{Y}}) = SS_{\text{ERR}} \text{error} (\hat{\mathbf{\sigma}}_{\mathbf{r}})^2$ residual) sum of squares

Properties of β :

- Linear in Y
 Unbiased, i.e., $E[\hat{P}] = E[(x'x)^{-1}x'y] = (x'x)^{-1}x'[E(Y)]$ $= (x'x)^{-1}x'(x)^{-1} = P$ $= (x'x)^{-1}x'(x)^{-1} = P$
- $\operatorname{var}(\hat{\boldsymbol{\beta}}) = \widehat{\sigma^2(\mathbf{X}'\mathbf{X})^{-1}}$
 - $\operatorname{var}(\hat{\beta}_0) = \sigma^2 \times \text{ first diagonal element of } (\mathbf{X}'\mathbf{X})^{-1}$
 - $\operatorname{var}(\hat{\beta}_j) = \sigma^2 \times (j+1)$ th diagonal element of $(\mathbf{X}'\mathbf{X})^{-1}$
 - $\hat{\sigma}^2 = SS_{\text{ERR}}/(n-k-1) = MS_{\text{ERR}}$ is unbiased for σ^2 .

unknown parameter = ((c+1) mg croff + 1 = (x+2).

ANOVA table

As before:

•
$$\overline{SS_{TOT}} = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 = (Y - \overline{Y})'(Y - \overline{Y})$$
, where

 $\overline{Y} = \overline{Y}$

:

SSEPP

SSEP

•
$$SS_{REG} = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 = (\hat{\mathbf{Y}} - \overline{\mathbf{Y}})'(\hat{\mathbf{Y}} - \overline{\mathbf{Y}})$$

• $SS_{ERR} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = (\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}})$

•
$$\widehat{\mathrm{SS}}_{\mathrm{ERR}} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = (\mathbf{Y} - \hat{\mathbf{Y}})'(\mathbf{Y} - \hat{\mathbf{Y}})$$

	# Slobos					
Source	SS	d.f. /	MS	F		
Model	$SS_{ m REG}$	k	$MS_{\text{REG}} = \frac{SS_{\text{REG}}}{k}$	$\overline{MS_{ exttt{ERR}}}$		
Error	SS_{ERR}	(n-k-1)	$MS_{\rm ERR} = \frac{SS_{\rm ERR}}{n-k-1}$			
Total	SS_{TOT}	$\sqrt{n-1}$				
	n	- Hrg. Co	H.			

1 11001