Lab2: Magic Square problem

square[i][j] = **key**++;

} // end while

magic square 란, 1 에서 n² 까지의 정수로된 n x n 행렬 로서, 각행의 합, 열의 합, 주 대각선의 합이 모두 같다. 또한 크기가 n 이고, n 은 **홀수** 이다.

Ex) Magic Square 3: 열, 행 및 주 대각선의 합이 15


```
● 알고리즘

procedure magic() {
  int square[max] [max], k, l;

// square 를 0으로 초기화 // n = size of the square
```

//i 와 j 는 현재 위치
int key = 2; // key 값은 2 부터 n x n 까지 1 씩 증가
i = 0; int j = n / 2;
square[i][j] = 1; // 첫 행의 중간에서 시작.

if key = 3

key < 3*3

조건:

- 1) 데이터 n: 키보드 입력: 예) 크기가 5인 매직스퀘어
- 2) 첫 번째행의 중앙에 1을 넣는다.
- 3) 출력은 크기가 5일경우 아래 테이블처럼 출력할 것

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

<< Extra Points>> 다항식의 덧셈 A(X) + B(X) = C(X)

- 1) 다항식의 표현: typedef struct { float coef; int expon; } Polynomial;
- 2) 테스트 데이터

$$A(X): 3x^4 + 5x^2 + 6x + 4$$

3	5	6	4
4	2	1	0

$$B(X) : 5x^3 + 4x^2 - 6x + 1$$

5	4	-6	1
3	2	1	0

3) 출력:
$$C(X): 3x^4 + 5x^3 + 9x^2 + 5$$

3	5	9	5
4	3	2	0