

ETSI EN 300 328 V2.2.2 (FHSS)

TEST REPORT

For

Bluetooth Low Energy and 802.15.4 wireless radio module

MODEL NUMBER: HM-MT2401, HM-MT2401B

REPORT NUMBER: E04A24020079R00102

ISSUE DATE: May 8, 2024

Prepared for

Shenzhen HOPE Microelectronics Co., Ltd

30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, Guangdong, China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products.

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24020079R00102 Page 2 of 55

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	May 8, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
RF output power	Clause 5.4.2.2.1.2	Clause 4.3.1.2	Pass
Duty Cycle, Tx- sequence, Tx-gap	Clause 5.4.2.2.1.3	Clause 4.3.1.3	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Clause 5.4.4.2.1	Clause 4.3.1.4	Pass
Hopping Frequency Separation	Clause 5.4.5.2.1	Clause 4.3.1.5	Pass
Medium Utilization (MU) factor	Clause 5.4.2.2.1.4	Clause 4.3.1.6	N/A
Adaptivity (Adaptive FHSS)	Clause 5.4.6.2.1	Clause 4.3.1.7	Pass
Occupied Channel Bandwidth	Clause 5.4.7.2.1	Clause 4.3.1.8	Pass
Transmitter unwanted emissions in the out-of-band domain	Clause 5.4.8.2.1	Clause 4.3.1.9	Pass
Transmitter unwanted emissions in the spurious domain	Clause 5.4.9.2.1	Clause 4.3.1.10	Pass
Receiver spurious emissions	Clause 5.4.10.2.1	Clause 4.3.1.11	Pass
Receiver Blocking	Clause 5.4.11.2.1	Clause 4.3.1.12	Pass
Radiated Spurious Emission	Clause 5.4.9.2.2	Clause 4.3.1.10	Pass

Note:

^{1.} N/A: In this whole report not applicable.

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <ETSI EN 300 328 V2.2.2 (FHSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES	TATION OF TEST RESULTS	6
2.	TEST N	METHODOLOGY	7
3.	FACILI	TIES AND ACCREDITATION	7
4.	CALIB	RATION AND UNCERTAINTY	8
	4.1.	MEASURING INSTRUMENT CALIBRATION	8
	4.2.	MEASUREMENT UNCERTAINTY	8
5.	EQUIP	MENT UNDER TEST	9
	5.1.	DESCRIPTION OF EUT	9
	5.2.	RECEIVER CATEGORY	9
	5.3.	CHANNEL LIST	10
	5.4.	MAXIMUM EIRP	11
	5.5.	TEST CHANNEL CONFIGURATION	11
	5.6.	THE WORSE CASE POWER SETTING PARAMETER	11
	5.7.	DESCRIPTION OF AVAILABLE ANTENNAS	12
	5.8.	ENVIROMENTAL CONDITIONS FOR TESTING	12
	5.9.	SUPPORT UNITS FOR SYSTEM TEST	12
	5.10.	SETUP DIAGRAM	12
	5.11.	TEST SYSTEM CONFIGURATION	13
	5.12.	DESCRIPTION OF THE EQUIPMENT UNDER TESTED	13
6.	MEASU	JRING EQUIPMENT AND SOFTWARE USED	16
7.	RADIA	TED TEST RESULTS	18
8.	TEST F	PROCEDURES AND RESULTS	34
	8.1.	RF output power	34
	8.2.	Duty Cycle, Tx-sequence, Tx-gap	36
	8.3.	Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	37
	8.4.	Hopping Frequency Separation	39
	8.5.	Medium Utilization (MU) factor	40
	8.6.	Adaptivity (Adaptive FHSS)	41
	8.7.	Occupied Channel Bandwidth	42
	8.8.	Transmitter unwanted emissions in the out-of-band domain	43
	8.9.	Transmitter unwanted emissions in the spurious domain	45
	8.10.	Receiver spurious emissions	
	8.11.	Receiver Blocking	49

REPORT NO.: E04A24020079R00102 Page 5 of 55

9.	TEST DATA	52
APF	PENDIX: PHOTOGRAPHS OF TEST CONFIGURATION	53
APF	PENDIX: PHOTOGRAPHS OF THE EUT	55

REPORT NO.: E04A24020079R00102

Page 6 of 55

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shenzhen HOPE Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-

district, Nanshan, Shenzhen, Guangdong, China

Manufacturer Information

Company Name: Shenzhen HOPE Microelectronics Co., Ltd

Address: 30th floor of 8th Building, C Zone Vanke Cloud City, Xili Sub-

district, Nanshan, Shenzhen, Guangdong, China

EUT Information

Product Description: Bluetooth Low Energy and 802.15.4 wireless radio module

Model: HM-MT2401
Series Model: HM-MT2401B
Brand: HOPERF
Sample Received Date: Mar. 01, 2024

Sample Status: Normal

Sample ID: A24020079 001

Date of Tested: Mar. 01, 2024 to May 8, 2024

APPLICABLE STANDARDS		
STANDARD TEST RESULTS		
ETSI EN 300 328 V2.2.2 (FHSS)	Pass	

Prepared By:

5.17 1 100-100

Win Huang

Project Engineer

Laboratory Manager

Checked By:

Alan He

Laboratory Leader

REPORT NO.: E04A24020079R00102 Page 7 of 55

2. TEST METHODOLOGY

All tests were performed in accordance with the standard ETSI EN 300 328 V2.2.2 (FHSS)

3. FACILITIES AND ACCREDITATION

	AOLA (Cardificata Na - CO 47 O4)	
	A2LA (Certificate No.: 6947.01)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been assessed and proved to be in compliance with A2LA.	
	FCC (FCC Designation No.: CN1343)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been recognized to perform compliance testing on equipment	
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and	
	Certification rules	
	ISED (Company No.: 30714)	
	Guangdong Global Testing Technology Co., Ltd.	
	has been registered and fully described in a report filed with ISED.	
	The Company Number is 30714 and the test lab Conformity	
	Assessment Body Identifier (CABID) is CN0148.	

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24020079R00102 Page 8 of 55

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	k	Uncertainty
RF output power	1.96	± 1.2 dB
Power Spectral Density	1.96	± 1.9 dB
Duty Cycle	1.96	± 0.57%
Tx-sequence	1.96	± 0.57%
Tx-gap	1.96	± 0.57%
Medium Utilisation (MU) factor	1.96	± 0.57%
Dwell time	1.96	± 9.2 PPM
Minimum Frequency Occupation	1.96	± 9.2 PPM
Hopping Sequence	1.96	± 9.2 PPM
Hopping Frequency Separation	1.96	± 9.2 PPM
Occupied Channel Bandwidth	1.96	± 9.2 PPM
Conducted spurious emissions	1.96	30 MHz-1 GHz: ±1.5 dB 1 GHz-12.75 GHz: ± 1.8 dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Measurement Frequency Range	k	U(dB)
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 12.75 GHz	2	5.62

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24020079R00102 Page 9 of 55

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Bluetooth Low Energy and 802.15.4 wireless radio module	
Model		HM-MT2401	
Series Model		HM-MT2401B	
Model Difference		HM-MT2401/19.5dBm, HM-MT2401B/10dBm	
Hardware Version		V1.0	
Software Version		V1.0	
Ratings		Input: DC 1.71V-3.8V	
Power Supply DC		3.3 V	

Frequency Band:	2400 MHz to 2483.5 MHz		
Frequency Range:	2402 MHz to 2480 MHz		
Bluetooth Version:	Bluetooth V5.3		
Bluetooth Mode:	BLE		
Geo-location Capability:	Not Support		
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)		
Type of Modulation:	GFSK		
Number of Channels:	1Mbps: 40 2Mbps: 37		
Channel Separation:	1 MHz 2 MHz		
Hopping Channel Type:	Adaptive Frequency Hopping Systems		
Maximum EIRP:	1Mbps: 19.80 dBm 2Mbps: 19.69 dBm		
Antenna Type:	PCB Antenna		
Antenna Gain:	1 dBi		
Normal Test Voltage:	3.3 Vdc		
Extreme Test Temperature:	General: -40 °C to +85 °C		
EUT Test software: NcpCommander			
Note: The Antenna Cain was previded by systeman and this information may offer the validity			

Note: The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. RECEIVER CATEGORY

EUT belong to	Receiver categories	Relevant receiver clauses	
\bowtie 1		Adaptive equipment with a maximum RF output power	
	'	greater than 10 dBm e.i.r.p.	
		Non-adaptive equipment with a Medium Utilization (MU)	
	2	factor greater than 1 % and less than or equal to 10 %	
		or equipment (adaptive or non-adaptive) with a	
		maximum RF output power greater than 0 dBm e.i.r.p.	
		and less than or equal to 10 dBm e.i.r.p.	
	2	non-adaptive equipment with a maximum Medium	
	J	Utilization (MU) factor of 1 % (irrespective of the	

maximum RF output power); or equipment (adaptive or non-adaptive) with a maximum RF output power of 0 dBm e.i.r.p.

5.3. CHANNEL LIST

1Mbps:

40 channels are provided to this EUT

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

2Mbps:

37 channels are provided to this EUT

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2404	20	2442
2	2406	21	2444
3	2408	22	2446
4	2410	23	2448
5	2412	24	2450
6	2414	25	2452
7	2416	26	2454
8	2418	27	2456
9	2420	28	2458
10	2422	29	2460
11	2424	30	2462
-	-	31	2464
13	2428	32	2466
14	2430	33	2468
15	2432	34	2470
16	2434	35	2472
17	2436	36	2474
18	2438	37	2476
19	2440	38	2478

REPORT NO.: E04A24020079R00102 Page 11 of 55

5.4. MAXIMUM EIRP

Test Mode	Frequency (MHz)	Channel Number	
GFSK(1Mbps)	2402 ~ 2480	0-39[40]	19.80
GFSK(2Mbps)	2404 ~ 2478	1-38[37]	19.69

5.5. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK(1Mbps)	CH 0(Low Channel), CH 19(MID Channel), CH 39(High Channel)	2402 MHz, 2440 MHz, 2480 MHz
GFSK(2Mbps)	CH 1(Low Channel), CH 19(MID Channel), CH 38(High Channel)	2404 MHz, 2440 MHz, 2478 MHz

Note: The hop is hopping mode.

5.6. THE WORSE CASE POWER SETTING PARAMETER

WORST-CASE CONFIGURATIONS

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BLE	FHSS	GFSK	1Mbit/s
BLE	FHSS	GFSK	2Mbit/s

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band							
Test Software NcpCommander							
Modulation Type	Transmit Antenna	Test Software setting value					
Wodulation Type	Number	CH 0 CH 19 CH 39					
GFSK(1Mbps)	1	20 20 20					

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Software NcpCommander						
Modulation Type	Transmit Antenna	nit Antenna Test Software setting value				
Wodulation Type	Number	CH 1 CH 19 CH 38				
GFSK(2Mbps)	1	20 20 20				

REPORT NO.: E04A24020079R00102

Page 12 of 55

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)
1	2402-2480	PCB	1 dBi

Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.8. ENVIROMENTAL CONDITIONS FOR TESTING

Environment Parameter		Selected Values During Tests				
		Ambient				
Test Condition	Temperature (°C) Voltage		Relative Humidity (%)			
NVNT	+15 to +35	3.3 V	20 to 75			
NVLT	-10	3.3 V	20 to 75			
NVHT	55	3.3 V	20 to 75			
Remark: 1) NV: Normal Voltage; NT: Normal Temperature						

5.9. SUPPORT UNITS FOR SYSTEM TEST

The EUT has been tested as an independent unit

Equipment	Manufacturer	Model No.
Test serial port tool	N/A	USB TO TTL
PC	Lenovo	T430

5.10. SETUP DIAGRAM

Radiated emissions:

REPORT NO.: E04A24020079R00102 Page 13 of 55

5.11. TEST SYSTEM CONFIGURATION

5.12. DESCRIPTION OF THE EQUIPMENT UNDER TESTED

(INFORMATION AS REQUIRED BY EN 300 328 V2.2.2, CLAUSE 5.4.1)

a)	Modulation Type						
	non-FHSS						
b)	FHSS Equipment Description						
	The Number of Henning Frequencies	The Maximum	40				
	The Number of Hopping Frequencies	The Minimum	15				
	The (average) dwell time	9.43ms					
c)	Adaptive / Non-adaptive Equipment						
	☐ Non-adaptive Equipment						
	Adaptive Equipment Without the Possibility to Switch to A Non-adaptive Mode						
	Adaptive Equipment Which can also operate in A Non-adaptive Mode						
d)	Adaptive Equipment Description						
	The maximum Channel Occupancy Ti	me implemented by the	equipment /				
	☐ The equipment has implemented an LBT mechanism						
	☐ The equipment has implemented a DAA mechanism						
	☐ The equipment can operate in more than one adaptive mode						
e)	The different transmit operating modes						
	│	nent with only one anten	na				

REPORT NO.: E04A24020079R00102 Page 14 of 55

					ith two diversity t any moment in		nas	but only	one
	○ Operating r (single antenna		Smart A but operating antenna is u	Intening in a	na Systems with a (legacy) mode (e.g. IEEE 802.1	two c	e on	ly one	
	☐ Operating	mode 2 [.]	antenna systems) ☐ Single spatial stream/Standard throughput/(e.g. 802.11™ legacy mode)						IEEE
	Smart Antenna Multiple Antenna	Systems -	s - High Throughput (> 1 spatial stream) using Nor					sing Nom	ninal
	beam forming		Channel Ba	ndwi			,		
	Operating r		802.11™ le	gacy					
	Multiple Anteni beam forming		Channel Ba	ındwi					
			Channel Ba		put (> 1 spatial s dth 2	suean	II) us	sing Non	IIIIai
f)	In case of Sma	art Antenna	a Systems						
	The number of	Receive ch	ains					1	
	The number of	Transmit cl	nains					1	
	In case of bear	n forming, t	he maximum (additi	onal) beam formi	ing ga	in:	/	
g)	Operating Fre								
	Operating Fred	•		2402	MHz to 2480 M	Hz			
h)	Nominal Char	nnel Bandv	vidth(s)						
	Occupied Char	nnel Bandw	/idth	2.07	MHz				
i)	Type of Equip	ment							
	Stand-Alone)							
	☐ Plug-in radi	o Equipme	nt						
	Combined I	Equipment							
j)	The extreme of	perating o	conditions tha	at ap	oly to the equip	ment	:		
	Operating tem	perature ra	nge	-40 °	C to +85 °C				
k)					equipment pow			gs and o	ne or
,				_	sponding e.i.r.p				
	Antenna Type	⊠ PCB Ar	ntenna		nna Gain		dBi	A N I T 4	
					ingle power leve		ain	ANT1	
		☐ Dedicat	ted Antennas		corresponding nna(s)	Ga	ali i		
		(equipmen			ultiple power	D-			
		,	na connector) eattings and						
		aritorina oc	corresponding			Level 2			
			antenna(s) Power Level 3						
I)	The nominal vof the combin	oltages of ed (host) e	the stand-ale equipment or	one r test	adio equipmen jig in case of pl	t or th ug-in	he n dev	ominal v	voltages
	Details provide	ed are for	☐ Testing of	stan	d-alone equipme	nt			
	the		☐ Combined	l equi	pment				
			☐ Test jig						
	Supply Voltage AC mains			State AC voltac	10				

REPORT NO.: E04A24020079R00102 Page 15 of 55

		⊠ DC	State DC voltage	☐ Internal Power Supply	
				⊠ External Power Supply or AC/DC adapter	DC 3.3 V
				☐ Battery	
				□Other	
m)	The equipment type				
	⊠ Bluetooth®				
	☐ IEEE 802.11™ [i.3]				
	☐ Proprietary				
n)	Geo-location capability s by the equipment	supported	equipment	ographical location determir as defined in clause 4.3.1. 2.12.2 is not accessible to t	13.2 or

REPORT NO.: E04A24020079R00102 Page 16 of 55

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

	Test Equipment of Radiated emissions below 1GHz				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17

REPORT NO.: E04A24020079R00102

Page 17 of 55

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

REPORT NO.: E04A24020079R00102

Page 18 of 55

7. RADIATED TEST RESULTS

LIMITS

Transmitter spurious emissions:

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

Table 12: Transmitter limits for spurious emissions

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

Receiver spurious emissions:

The spurious emissions of the receiver shall not exceed the values given in table 13. In case of non-FHSS equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or for emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

Table 13: Spurious emission limits for receivers

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

TEST PROCEDURE

Transmitter spurious emissions:

Refer to Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.9

Spectrum analyser settings for pre-scan:

RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Detector Mode	Peak

Filter type	3 dB (Gaussian)
Trace Mode	Max hold
Sweep Points	\geqslant 19 400 (< 1 GHz); \geqslant 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented.
Sweep Time	For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT, on any channel. For FHSS equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on any of the hopping frequencies. The above sweep time setting may result in long measuring times in case of FHSS equipment. To avoid such long measuring times, an FFT analyser may be used.

Spectrum analyser settings for the emissions identified during the pre-scan:

Measurement Mode	Time Domain Power
Centre Frequency	Frequency of the emission identified during the pre-scan
RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Frequency Span	Zero Span
Sweep Mode	Single Sweep
Detector Mode	RMS
Trace Mode	Max hold
Trigger Mode	Video (burst signals) or Manual (continuous signals)
Sweep Points	Sweep time [μs] / (1 μs) with a maximum of 30 000
Sweep Time	> 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

Receiver spurious emissions:

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

Spectrum analyser settings for pre-scan:

RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Detector Mode	Peak
Filter type	3 dB (Gaussian)
Trace Mode	Max hold

Sweep Points	\geqslant 19 400 (< 1 GHz); \geqslant 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented.
Sweep Time	Auto

Spectrum analyser settings for the emissions identified during the pre-scan:

Measurement Mode	Time Domain Power
Centre Frequency	Frequency of the emission identified during the pre-scan
RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Frequency Span	Zero Span
Sweep Mode	Single Sweep
Detector Mode	RMS
Trace Mode	Max hold
Trigger Mode	Video (burst signals) or Manual (continuous signals)
Sweep Points	≥ 30 000
Sweep Time	30 ms

TEST SETUP

TEST ENVIRONMENT

Temperature	24.3℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020079R00102 Page 22 of 55

TEST RESULTS

• 30MHz to 1GHz

The worst result as bellow:

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	396.175	-72.13	1.47	-70.66	-36.00	34.66	RMS	V
2	444.190	-70.40	1.77	-68.63	-36.00	32.63	RMS	V
3	708.030	-77.50	6.94	-70.56	-54.00	16.56	RMS	V
4	804.060	-76.27	8.37	-67.90	-54.00	13.90	RMS	V
5	828.310	-78.08	8.21	-69.87	-54.00	15.87	RMS	V
6	924.340	-79.07	10.4	-68.67	-36.00	32.67	RMS	V

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	215.755	-59.49	-0.93	-60.42	-54.00	6.42	RMS	Н
2	240.005	-58.61	0.78	-57.83	-36.00	21.83	RMS	Н
3	396.175	-63.76	2.26	-61.50	-36.00	25.50	RMS	Н
4	780.295	-71.40	6.76	-64.64	-54.00	10.64	RMS	Н
5	828.310	-71.28	8.35	-62.93	-54.00	8.93	RMS	Н
6	924.340	-74.94	10.65	-64.29	-36.00	28.29	RMS	Н

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	191.990	-67.18	-5.86	-73.04	-57.00	16.04	RMS	V
2	298.690	-71.26	-0.69	-71.95	-57.00	14.95	RMS	V
3	396.175	-71.35	1.47	-69.88	-57.00	12.88	RMS	V
4	444.190	-71.13	1.77	-69.36	-57.00	12.36	RMS	V
5	780.295	-75.28	7.54	-67.74	-57.00	10.74	RMS	V
6	972.355	-79.24	10.34	-68.90	-57.00	11.90	RMS	V

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	191.990	-56.65	-5.14	-61.79	-57.00	4.79	RMS	Н
2	215.755	-60.67	-0.93	-61.60	-57.00	4.60	RMS	Τ
3	227.880	-62.38	0.28	-62.10	-57.00	5.10	RMS	I
4	371.925	-66.24	1.38	-64.86	-57.00	7.86	RMS	I
5	828.310	-78.52	8.35	-70.17	-57.00	13.17	RMS	Н
6	972.355	-78.71	9.61	-69.10	-57.00	12.10	RMS	Η

REPORT NO.: E04A24020079R00102 Page 26 of 55

Above 1GHz

The worst result as bellow:

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	1870.000	-49.56	2.32	-47.24	-30.00	17.24	RMS	V
2	2146.000	-53.34	3.86	-49.48	-30.00	19.48	RMS	V
3	9416.475	-63.11	6.44	-56.67	-30.00	26.67	RMS	V
4	10053.150	-63.84	7.53	-56.31	-30.00	26.31	RMS	V
5	11310.900	-64.59	8.82	-55.77	-30.00	25.77	RMS	V
6	12513.075	-64.85	9.6	-55.25	-30.00	25.25	RMS	V

Mode:	1-DH5-2402
Power:	DC 5V
TE:	Berny
Date	2024/4/23
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	1870.000	-52.11	2.27	-49.84	-30.00	19.84	RMS	Н
2	2146.000	-53.65	3.72	-49.93	-30.00	19.93	RMS	Η
3	9320.925	-63.60	5.99	-57.61	-30.00	27.61	RMS	Н
4	10559.175	-64.51	8.21	-56.30	-30.00	26.30	RMS	Н
5	11292.375	-65.09	8.95	-56.14	-30.00	26.14	RMS	Н
6	12598.875	-65.86	10.2	-55.66	-30.00	25.66	RMS	Н

Mode:	BLE1M-2480
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	2684.000	-57.50	4.75	-52.75	-30.00	22.75	RMS	Н
2	4371.825	-58.95	-1.24	-60.19	-30.00	30.19	RMS	Н
3	7415.775	-63.10	5.04	-58.06	-30.00	28.06	RMS	Н
4	9312.150	-63.62	5.94	-57.68	-30.00	27.68	RMS	Н
5	10339.800	-64.12	8.04	-56.08	-30.00	26.08	RMS	Н
6	10927.725	-64.96	8.38	-56.58	-30.00	26.58	RMS	Н

Mode:	BLE1M-2480
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	2308.000	-59.41	6	-53.41	-30.00	23.41	RMS	V
2	2798.000	-59.52	5.78	-53.74	-30.00	23.74	RMS	V
3	8229.900	-62.80	5.34	-57.46	-30.00	27.46	RMS	V
4	9378.450	-63.64	6.17	-57.47	-30.00	27.47	RMS	V
5	10589.400	-64.37	8.56	-55.81	-30.00	25.81	RMS	V
6	12599.850	-66.50	10.77	-55.73	-30.00	25.73	RMS	V

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	2139.750	-55.93	-5.28	-61.21	-47.00	14.21	RMS	V
2	3032.750	-61.54	-3.23	-64.77	-47.00	17.77	RMS	V
3	4689.500	-63.96	-0.35	-64.31	-47.00	17.31	RMS	V
4	6005.500	-66.71	3.94	-62.77	-47.00	15.77	RMS	V
5	10635.000	-69.05	8.34	-60.71	-47.00	13.71	RMS	V
6	12609.000	-70.52	10.24	-60.28	-47.00	13.28	RMS	V

Mode:	BLE1M-2402
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	2139.750	-57.77	-5.65	-63.42	-47.00	16.42	RMS	Н
2	6346.250	-65.68	3.31	-62.37	-47.00	15.37	RMS	Н
3	7568.250	-67.30	4.9	-62.40	-47.00	15.40	RMS	Н
4	9366.000	-67.16	5.23	-61.93	-47.00	14.93	RMS	Н
5	10705.500	-68.95	8.38	-60.57	-47.00	13.57	RMS	Н
6	12597.250	-70.68	9.69	-60.99	-47.00	13.99	RMS	Н

Mode:	BLE1M-2480
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	3150.250	-61.36	-3.69	-65.05	-47.00	18.05	RMS	Н
2	6311.000	-66.65	3.98	-62.67	-47.00	15.67	RMS	Н
3	9354.250	-66.84	5.37	-61.47	-47.00	14.47	RMS	Н
4	10047.500	-68.07	6.96	-61.11	-47.00	14.11	RMS	Н
5	10717.250	-69.20	8.31	-60.89	-47.00	13.89	RMS	Н
6	12315.250	-71.07	9.39	-61.68	-47.00	14.68	RMS	Н

Mode:	BLE1M-2480
Power:	DC 3.3V
TE:	Berny
Date	2024/4/24
T/A/P	24.3℃/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBm)	Limit (dBm)	Margin (dB)	Det.	Pol.
1	2139.750	-54.50	-5.28	-59.78	-47.00	12.78	RMS	V
2	5982.000	-66.12	3.41	-62.71	-47.00	15.71	RMS	V
3	9413.000	-67.76	6.02	-61.74	-47.00	14.74	RMS	V
4	10047.500	-68.01	7.13	-60.88	-47.00	13.88	RMS	V
5	10823.000	-69.09	8.34	-60.75	-47.00	13.75	RMS	V
6	12609.000	-70.68	10.24	-60.44	-47.00	13.44	RMS	V

Note: 1. All the modes had been tested, but only the worst data was recorded in the report.

2.For the radiation test from 18 GHz to 26 GHz, a pre-scan was performed, and the result was 20 dB lower than the limit line, the test data was not shown in the report.

REPORT NO.: E04A24020079R00102

Page 34 of 55

8. TEST PROCEDURES AND RESULTS

8.1. RF OUTPUT POWER

LIMITS

RF OUTPUT POWER			
Condition	Limit		
☐ Non-adaptive Equipment	For Non-adaptive FHSS equipment, the manufacturer may have declared a reduced RF Output Power (see clause 5.4.1 m)) and associated Duty Cycle (see clause 5.4.1 e)) that will ensure that the equipment meets the requirement for the Medium Utilization (MU) factor further described in clause 4.3.1.6. This is verified by the conformance test referred to in clause 4.3.1.6.4. For non-adaptive FHSS equipment, where the manufacturer has declared an RF output power lower than 20 dBm e.i.r.p., the RF output power shall be equal to or less than that declared value.		
⊠ Adaptive Equipment	FHSS equipment shall be equal to or less than 20 dBm.		

TEST PROCEDURE

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.2

The power sensor was used for power measurement, and it use a fast power sensor with a minimum sensitivity of -40 dBm and capable of minimum 1 MS/s.

The test software was used to control the power detector and the sampling unit.

For adaptive equipment, the measurement duration shall be long enough to ensure a minimum number of bursts (at least 10) are captured.

Measurement			
⊠Conducted measurement	Radiated measurement		

CALCULATIONS

Add the (stated) antenna assembly gain G in dBi of the individual antenna.

- In case of smart antenna systems operating in mode with beamforming (see clause 5.3.2.2.4), add the additional beamforming gain Y in dB.
- If more than one antenna assembly is intended for this power setting, the maximum overall antenna gain (G or G + Y) shall be used.
- The RF Output Power (Pout) shall be calculated using the formula below:

$$P_{out} = A + G + Y$$

TEST ENVIRONMENT

Temperature	20.1℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020079R00102

Page 35 of 55

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020079R00102 Page 36 of 55

8.2. DUTY CYCLE, TX-SEQUENCE, TX-GAP

TEST ENVIRONMENT

Temperature	\mathbb{C}	Relative Humidity	%
Atmosphere Pressure	kPa		

TEST RESULTS

N/A.

REPORT NO.: E04A24020079R00102 Page 37 of 55

8.3. ACCUMULATED TRANSMIT TIME, FREQUENCY OCCUPATION AND HOPPING SEQUENCE

LIMITS

DWELL TIME		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Shall not be greater than 15 ms within any observation period of 15 ms multiplied by the minimum number of hopping frequencies (N) that have to be used.	
Adaptive frequency hopping systems	400 ms m	be greater than 400 ms within any observation period of ultiplied by the minimum number of hopping es (N) that have to be used.
MINII	MUM FRE	QUENCY OCCUPATION TIME
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Option 1	Each hopping frequency of the Hopping Sequence shall be occupied at least once within a period not exceeding four times the product of the dwell time and the number of hopping frequencies in use.
Adaptive frequency hopping systems	Option 2 The occupation probability for each frequency shall be between ((1 / U) × 25 %) and 77 % where U is the number of hopping frequencies in use.	
	Adaptive frequency hopping systems	
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Shall contain at least N hopping frequencies where N is either 5 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.	
	shall be capable of operating over a minimum of 70 % of the 2.4 GHz to 2.4835 GHz band Shall contain at least N hopping frequencies at all times, where N is either 15 or the result of 15 MHz divided by the minimum Hopping Frequency Separation in MHz, whichever is the greater.	

TEST PROCEDURE

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.4

Connect the UUT to the spectrum analyser and use the following settings:

Frequency Center	Equal to the hopping frequency being investigated
Frequency Span	0 Hz
Trance Mode	Clear / Write
Trigger Mode	Free Run
Detector	RMS
Sweep Point	30000
Sweep Time	Equal to the applicable observation period (see clause 4.3.1.4.3.1 or clause 4.3.1.4.3.2)
RBW	~ 50 % of the Occupied Channel Bandwidth
VBW	≥ RBW

TEST ENVIRONMENT

	Temperature	20.1℃	Relative Humidity	54%
--	-------------	-------	-------------------	-----

TRF No.: 04-E001-0B Global Testing, Great Quality.

REPORT NO.: E04A24020079R00102 Page 38 of 55

-		
Atmosphere Pressure	101kPa	

TEST RESULTS

Page 39 of 55

8.4. HOPPING FREQUENCY SEPARATION

LIMITS

HOPPING FREQUENCY SEPARATION		
Condition	Limit	
☐ Non-adaptive frequency hopping systems	Shall be equal to or greater than the Occupied Channel Bandwidth (see clause 4.3.1.8), with a minimum separation of 100 kHz.	
	The minimum Hopping Frequency Separation shall be 100 kHz.	

TEST PROCEDURE

Refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.5

Measurement	
⊠Conducted measurement	☐Radiated measurement

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	Centre of the two adjacent hopping frequencies
Frequency Span	Sufficient to see the complete power envelope of both hopping frequencies
Detector Mode	Max Peak
RBW	1 % of the span
VBW	3 × RBW
Trace	Max hold
Sweep Time	Auto

TEST ENVIRONMENT

Temperature	20.1℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020079R00102 Page 40 of 55

8.5. MEDIUM UTILIZATION (MU) FACTOR

TEST ENVIRONMENT

Temperature	\mathbb{C}	Relative Humidity	%
Atmosphere Pressure	kPa		

TEST RESULTS

N/A.

REPORT NO.: E04A24020079R00102 Page 41 of 55

8.6. ADAPTIVITY (ADAPTIVE FHSS)

TEST ENVIRONMENT

Temperature	20.1℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 42 of 55

8.7. OCCUPIED CHANNEL BANDWIDTH

LIMITS

OCCUPIED CHANNEL BANDWIDTH		
Condition		Limit
All types of equipment		Each hopping frequency shall be within the 2400 to 2483.5 MHz band
Additional requirement	For non-adaptive non-FHSS equipment with e.i.r.p. greater than 10 dBm	Each hopping frequency shall be equal to or less than 20 MHz

TEST PROCEDURE

Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.7

Measurement		
⊠Conducted measurement	☐Radiated measurement	

Connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test	
Frequency Span	2 × Nominal Channel Bandwidth	
Detector	RMS	
RBW	~ 1 % of the span without going below 1 %	
VBW	3 × RBW	
Trace	Max hold	
Sweep Time	1s	

TEST ENVIRONMENT

Temperature	20.1℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 43 of 55

8.8. TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

LIMITS

Transmitter Unwanted Emissions in The Out-Of-Band Domain		
Condition Limit		
Under Normal Test Condition	The transmitter unwanted emissions in the out-of-band domain shall not exceed the values provided by the mask in figure 3.	

Figure 3: Transmit mask

TEST PROCEDURE

Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.8

Measurement		
⊠Conducted measurement	☐Radiated measurement	

Connect the UUT to the spectrum analyser and use the following settings:

Span	Zero Span
Filter Mode	Channel Filter
Trace Mode	Max Hold
Trigger Mode	Video
Detector	RMS
Sweep Points	Sweep time [µs] / (1 µs) with a maximum of 30 000
RBW / VBW	1MHz / 3MHz
Measurement Mode	Time Domain Power
Sweep Time	> 120 % of the duration of the longest burst detected during the measurement of the RF Output Power

TEST ENVIRONMENT

Temperature	20.1 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020079R00102 Page 44 of 55

TEST RESULTS

Please refer to section "Test Data" - Appendix A

Page 45 of 55

8.9. TRANSMITTER UNWANTED EMISSIONS IN THE SPURIOUS DOMAIN

LIMITS

The transmitter unwanted emissions in the spurious domain shall not exceed the values given in table 12.

In case of equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and as e.i.r.p. for emissions above 1 GHz.

Table 12: Transmitter limits for spurious emissions

Frequency range	Maximum power	Bandwidth
30 MHz to 47 MHz	-36 dBm	100 kHz
47 MHz to 74 MHz	-54 dBm	100 kHz
74 MHz to 87,5 MHz	-36 dBm	100 kHz
87,5 MHz to 118 MHz	-54 dBm	100 kHz
118 MHz to 174 MHz	-36 dBm	100 kHz
174 MHz to 230 MHz	-54 dBm	100 kHz
230 MHz to 470 MHz	-36 dBm	100 kHz
470 MHz to 694 MHz	-54 dBm	100 kHz
694 MHz to 1 GHz	-36 dBm	100 kHz
1 GHz to 12,75 GHz	-30 dBm	1 MHz

TEST PROCEDURE

Refer to Refer to ETSI EN 300 328 V2.2.2 (2019-07) clause 5.4.9

Measurement		
☑Conducted measurement ☐Radiated measurement		

Spectrum analyser settings for pre-scan:

RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)		
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)		
Detector Mode	Peak		
Filter type	3 dB (Gaussian)		
Trace Mode	Max hold		
Sweep Points	\geq 19 400 (< 1 GHz); \geq 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented.		

REPORT NO.: E04A24020079R00102 Page 46 of 55

Sweep Time	For non continuous transmissions (duty cycle less than 100 %), the sweep time shall be sufficiently long, such that for each 100 kHz frequency step, the measurement time is greater than two transmissions of the UUT, on any channel. For FHSS equipment operating in a normal operating (hopping not disabled) mode, the sweep time shall be further increased to capture multiple transmissions on any of the hopping frequencies. The above sweep time setting may result in long measuring times in case of FHSS equipment. To avoid such long measuring times, an
	FFT analyser may be used.

Spectrum analyser settings for the emissions identified during the pre-scan:

Measurement Mode	Time Domain Power	
Centre Frequency	Frequency of the emission identified during the pre-scan	
RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)	
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)	
Frequency Span	Zero Span	
Sweep Mode	Single Sweep	
Detector Mode	RMS	
Trace Mode	Max hold	
Trigger Mode	Video (burst signals) or Manual (continuous signals)	
Sweep Points	Sweep time [μs] / (1 μs) with a maximum of 30 000	
Sweep Time	> 120 % of the duration of the longest burst detected during the measurement of the RF Output Power	

TEST ENVIRONMENT

Temperature	20.1 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

REPORT NO.: E04A24020079R00102 Page 47 of 55

8.10. RECEIVER SPURIOUS EMISSIONS

LIMITS

The spurious emissions of the receiver shall not exceed the values given in table 13. In case of non-FHSS equipment with antenna connectors, these limits apply to emissions at the antenna port (conducted). For emissions radiated by the cabinet or for emissions radiated by integral antenna equipment (without antenna connectors), these limits are e.r.p. for emissions up to 1 GHz and e.i.r.p. for emissions above 1 GHz.

Table 13: Spurious emission limits for receivers

Frequency range	Maximum power	Bandwidth
30 MHz to 1 GHz	-57 dBm	100 kHz
1 GHz to 12,75 GHz	-47 dBm	1 MHz

TEST PROCEDURE

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

Measurement			
⊠Conducted measurement	☐Radiated measurement		

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.10

Spectrum analyser settings for pre-scan:

RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Detector Mode	Peak
Filter type	3 dB (Gaussian)
Trace Mode	Max hold
-	\geqslant 19 400 (< 1 GHz); \geqslant 23 500 (> 1 GHz); for spectrum analysers not supporting this high number of sweep points, the frequency band may be segmented.
Sweep Time	Auto

Spectrum analyser settings for the emissions identified during the pre-scan:

Measurement Mode	Time Domain Power
Centre Frequency	Frequency of the emission identified during the pre-scan
RBW	100 kHz (< 1 GHz) / 1 MHz (> 1 GHz)
VBW	300 kHz (< 1 GHz) / 3 MHz (> 1 GHz)
Frequency Span	Zero Span
Sweep Mode	Single Sweep

REPORT NO.: E04A24020079R00102 Page 48 of 55

Detector Mode	RMS
Trace Mode	Max hold
Trigger Mode	Video (burst signals) or Manual (continuous signals)
Sweep Points	≥ 30 000
Sweep Time	30 ms

TEST ENVIRONMENT

Temperature	20.1 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Page 49 of 55

8.11. RECEIVER BLOCKING

LIMITS

Performance Criteria

For equipment that supports a PER or FER test to be performed, the minimum performance criterion shall be a PER or FER less than or equal to 10 %.

For equipment that does not support a PER or a FER test to be performed, the minimum performance criterion shall be no loss of the wireless transmission function needed for the intended use of the equipment.

While maintaining the minimum performance criteria as defined in clause 4.3.2.11.3, the blocking levels at specified frequency offsets shall be equal to or greater than the limits defined for the applicable receiver category provided in table 14, table 15 or table 16.

Receiver Category 1

Table 14: Receiver Blocking parameters for Receiver Category 1 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 4)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 4)	Type of blocking signal
(-133 dBm + 10 × log ₁₀ (OCBW)) or -68 dBm whichever is less (see note 2)	2 380 2 504		-
(-139 dBm + 10 × log ₁₀ (OCBW)) or -74 dBm whichever is less (see note 3)	2 300 2 330 2 360 2 524 2 584 2 674	-34	cw

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 20 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 4: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

REPORT NO.: E04A24020079R00102 Page 50 of 55

☐ Receiver Category 2

Table 15: Receiver Blocking parameters receiver Category 2 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 10 dB) or (-74 dBm + 10 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 26 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

Receiver Category 3

Table 16: Receiver Blocking parameters receiver Category 3 equipment

Wanted signal mean power from companion device (dBm) (see notes 1 and 3)	Blocking signal frequency (MHz)	Blocking signal power (dBm) (see note 3)	Type of blocking signal
(-139 dBm + 10 × log ₁₀ (OCBW) + 20 dB) or (-74 dBm + 20 dB) whichever is less (see note 2)	2 380 2 504 2 300 2 584	-34	CW

NOTE 1: OCBW is in Hz.

NOTE 2: In case of radiated measurements using a companion device and the level of the wanted signal from the companion device cannot be determined, a relative test may be performed using a wanted signal up to P_{min} + 30 dB where P_{min} is the minimum level of wanted signal required to meet the minimum performance criteria as defined in clause 4.3.1.12.3 in the absence of any blocking signal.

NOTE 3: The level specified is the level at the UUT receiver input assuming a 0 dBi antenna assembly gain. In case of conducted measurements, this level has to be corrected for the (in-band) antenna assembly gain (G). In case of radiated measurements, this level is equivalent to a power flux density (PFD) in front of the UUT antenna with the UUT being configured/positioned as recorded in clause 5.4.3.2.2.

TEST PROCEDURE

Please refer to ETSI EN 300 328 V2.2.2 (2019-07) Clause 5.4.11

REPORT NO.: E04A24020079R00102 Page 51 of 55

N	1easurement
	Radiated measurement

Step 1:

- For non-FHSS equipment, the UUT shall be set to the lowest operating channel on which the blocking test has to be performed (see clause 5.4.11.1). Step 2:
- The blocking signal generator is set to the first frequency as defined in the appropriate table corresponding to the receiver category and type of equipment.

 Step 3:
- With the blocking signal generator switched off, a communication link is established between the UUT and the associated companion device using the test setup shown in figure 6.
- Unless the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the level of the wanted signal shall be set to the value provided in the table corresponding to the receiver category and type of equipment. The test procedure defined in clause 5.4.2, and more in particular clause 5.4.2.2.1.2, can be used to measure the (conducted) level of the wanted signal however no correction shall be made for antenna gain of the companion device (step 6 in clause 5.4.2.2.1.2 shall be ignored). This level may be measured directly at the output of the companion device and a correction is made for the coupling loss into the UUT. The actual level for the wanted signal shall be recorded in the test report.
- When the option provided in note 2 of the applicable table referred to in clause 5.4.11.2.1 is used, the attenuation of the variable attenuator shall be increased in 1 dB steps to a value at which the minimum performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still met. The resulting level for the wanted signal at the input of the UUT is Pmin. This signal level (Pmin) is increased by the value provided in note 2 of the applicable table corresponding to the receiver category and type of equipment.

 Step 4:
- The blocking signal at the UUT is set to the level provided in the table corresponding to the receiver category and type of equipment.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 are met then proceed to step 6.

Step 5:

- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been increased with a value equal to the Occupied Channel Bandwidth except:
- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, step 3 and step 4 shall be repeated after that the frequency of the blocking signal set in step 2 has been decreased with a value equal to the Occupied Channel Bandwidth except:
- For the blocking frequency 2 380 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be decreased by 3 dB.
- For the blocking frequency 2 503,5 MHz, where this frequency offset shall be less than or equal to 10 MHz. If this frequency offset is more than 7 MHz, the level of the wanted signal shall be increased by 3 dB.
- If the performance criteria as specified in clause 4.3.1.12.3 or clause 4.3.2.11.3 is still not met, the UUT fails to comply with the Receiver Blocking requirement and step 6 and step 7 are no longer required.

TRF No.: 04-E001-0B Global Testing, Great Quality.

REPORT NO.: E04A24020079R00102 Page 52 of 55

• It shall be recorded in the test report whether the shift of blocking frequencies as described in the present step was used.

Step 6:

- Repeat step 4 and step 5 for each remaining combination of frequency and level for the blocking signal as provided in the table corresponding to the receiver category and type of equipment. Step 7:
- For non-FHSS equipment, repeat step 2 to step 6 with the UUT operating at the highest operating channel on which the blocking test has to be performed (see clause 5.4.11.1). Step 8:
- It shall be assessed and recorded in the test report whether the UUT complies with the Receiver Blocking requirement.

TEST ENVIRONMENT

Temperature	20.1℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

9. TEST DATA

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

REPORT NO.: E04A24020079R00102 Page 55 of 55

APPENDIX: PHOTOGRAPHS OF THE EUT

Please refer to the report: E04A24020079E00101.

END OF REPORT