## 2013-1 期中试卷解答

## 一、基本题(每小题6分,共60分)

**1.** 计算数列极限 
$$l = \lim_{n \to \infty} \frac{1}{4} \cdot \frac{3}{8} \cdot \frac{5}{12} \cdots \frac{2n-1}{4n}$$
.

解法 1: 
$$x_n = x_{n-1} \frac{2n-1}{4n} = \frac{x_{n-1}}{2} \cdot \frac{2n-1}{2n} < x_{n-1}$$
, 以及  $x_n > 0$ ,所以数列  $x_n$  单调减且有下

界. 从而 
$$l = \lim_{n \to \infty} x_n$$
 存在,由通项公式得  $l = \frac{l}{2}$ ,  $\therefore l = 0$ 

解法 2: 由于 
$$0 < x_n^2 < \left(\frac{1}{4} \cdot \frac{3}{8} \cdot \frac{5}{12} \cdots \frac{2n-1}{4n}\right) \left(\frac{4}{3} \cdot \frac{8}{5} \cdot \frac{12}{7} \cdots \frac{4n}{2n+1}\right) = \frac{1}{2n+1}$$
,

因
$$\frac{1}{2n+1} \rightarrow 0$$
,由夹挤原理, $\lim_{n \to \infty} x_n = 0$ .

解法 3: 
$$0 < \frac{1}{4} \cdot \frac{3}{8} \cdot \frac{5}{12} \cdots (\frac{1}{2} - \frac{1}{4n}) < \frac{1}{2^n}$$
,因 $\frac{1}{2^n} \to 0$ ,由夹挤原理, $\lim_{n \to \infty} x_n = 0$ .

**2.** 计算函数极限 
$$l = \lim_{x \to 0} \frac{2^{x^2} - 3^{x^2}}{(2^x - 3^x)^2}$$
.

解法1 基于等价替换和极限非零的因式极限可以单算,得

$$l = \lim_{x \to 0} \frac{3^{x^2} \left[ \left( \frac{2}{3} \right)^{x^2} - 1 \right]}{\left( 3^x \right)^2 \left[ \left( \frac{2}{3} \right)^x - 1 \right]^2} = \lim_{x \to 0} \frac{\left[ \left( \frac{2}{3} \right)^{x^2} - 1 \right]}{\left[ \left( \frac{2}{3} \right)^x - 1 \right]^2} = \lim_{x \to 0} \frac{x^2 \ln \frac{2}{3}}{x^2 \ln^2 \frac{2}{3}} = \frac{1}{\ln 2 - \ln 3}.$$

解法 2: 基于洛比达法则极限非零的因式极限可以单算,得

$$l = \lim_{x \to 0} \frac{2x(2^{x^2} \ln 2 - 3^{x^2} \ln 3)}{2(2^x - 3^x)(2^x \ln 2 - 3^x \ln 3)} = \lim_{x \to 0} \frac{x}{2^x - 3^x} \lim_{x \to 0} \frac{(2^{x^2} \ln 2 - 3^{x^2} \ln 3)}{(2^x \ln 2 - 3^x \ln 3)}$$
$$= \lim_{x \to 0} \frac{1}{2^x \ln 2 - 3^x \ln 3} = \frac{1}{\ln 2 - \ln 3}.$$

3. 计算函数极限 
$$l = \lim_{x \to 0} \frac{e^{\tan x} - e^{\sin x}}{x^3}$$

解 
$$l = \lim_{x \to 0} \frac{e^{\sin x} \left( e^{\tan x - \sin x} - 1 \right)}{x^3} = \lim_{x \to 0} \frac{\tan x - \sin x}{x^3}$$
, 因为  $\tan x - \sin x \sim \frac{1}{2} x^3$ , 故

$$l = \lim_{x \to 0} \frac{x^3}{2x^3} = \frac{1}{2}.$$

**4.** 设 
$$f(x) = (\sin x)^{\cos x}$$
,求  $f'(x)$ 

解 
$$f'(x) = (\sin x)^{\cos x} \left( -\sin x \ln \sin x + \frac{\cos^2 x}{\sin x} \right)$$

5. 设 
$$\begin{cases} x = t + t^2 \\ y = te^t \end{cases}$$
 确定了函数  $y = y(x)$ , 求  $\frac{dy}{dx}$ ,  $\frac{d^2y}{dx^2}$ .

解 
$$\frac{dy}{dx} = \frac{e^t(1+t)}{1+2t}$$
,

$$\frac{d^2y}{dx^2} = \frac{d}{dt} \left[ \frac{e^t(1+t)}{1+2t} \right] \cdot \frac{dt}{dx} = \left\{ \frac{e^t(1+t)}{(1+2t)} + \frac{e^t[(1+2t)-2(1+t)]}{(1+2t)^2} \right\} \cdot \frac{1}{1+2t} = \frac{te^t(3+2t)}{(1+2t)^3}.$$

**6.** 设函数 
$$y = y(x)$$
 由方程  $y = h(x^2 + y^2)$  确定,  $h(x)$  处处可导,且  $h'(x) \neq \frac{1}{2y}$  ,求  $y'$  .

解 方程两边对 x 求导: 
$$y' = h'(x^2 + y^2)(2x + 2yy')$$
 ,  $y' = \frac{2xh'(x^2 + y^2)}{1 - 2yh'(x^2 + y^2)}$  .

7. 求  $f(x) = \sin \ln(1+x)$  在 x = 0 处带 peano 余项的 3 阶 Taylor 公式.

解法 1 直接法求展开式: 
$$f(0) = 0$$
,  $f'(x) = \frac{1}{1+x} \cos \ln(1+x)$ ,  $f'(0) = 1$ ,

$$f''(x) = \frac{-1}{(1+x)^2} \cos \ln(1+x) - \frac{1}{(1+x)^2} \sin \ln(1+x) , \quad f''(0) = -1 ,$$

类似地求得 
$$f'''(0)=1$$
, 套用台劳公式得:  $f(x)=x-\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)$ 。

解法 2 间接法求展开式:利用已知的泰勒展开式

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3), \quad \sin x = x - \frac{1}{6}x^3 + o(x^3)$$

所以

$$\sin \ln(1+x) = \left[x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)\right] - \frac{1}{6}\left[x - \frac{x^3}{2} + \frac{x^3}{3} + o(x^3)\right]^3 + o(x^3)$$

$$=x-\frac{x^2}{2}+(\frac{1}{3}-\frac{1}{6})x^3+o(x^3).$$

**8.** 求 
$$f(x) = \frac{x}{1+2x}$$
 在  $x = 0$  处的  $n$  阶导数  $f^{(n)}(0)$ .

解法1 基于泰勒公式中系数与导数的关系。因为

$$\frac{x}{1+2x} = x\left[\sum_{k=0}^{n} (-2x)^k + o(x^n)\right] = \sum_{k=0}^{n} (-2x)^k x + o(x^{n+1}),$$

所 以 函 数 f(x) 在 x=0 的 台 劳 公 式 的 第 n 项 系 数 为  $a_n=(-2)^{n-1}$  , 于 是  $f^{(n)}(0)=n!(-1)^{n-1}2^{n-1} \ .$ 

解法 2 基于莱布尼兹规则和己知 n 阶导数公式求。

$$\left(\frac{1}{1+2x}\right)^{(n)}\bigg|_{x=0} = \frac{(-1)^n 2^n n!}{(1+2x)^{n+1}}\bigg|_{x=0} = (-1)^n 2^n n!$$

$$f^{(n)}(0) = x(\frac{1}{1+2x})^{(n)} \left|_{x=0} + n(\frac{1}{1+2x})^{(n-1)} \right|_{x=0}$$

于是  $f^{(n)}(0) = n!(-1)^{n-1}2^{n-1}$ 。

解法 3 基于函数化简和已知 n 阶导数公式求。 因为  $f(x) = \frac{1}{2}(1 - \frac{1}{1 + 2x})$ ,

$$f^{(n)}(0) = -\frac{1}{2} \left( \frac{1}{1+2x} \right)^{(n)} \bigg|_{x=0} = -\frac{1}{2} \frac{(-1)^n 2^n n!}{(1+2x)^{n+1}} \bigg|_{x=0} = (-1)^{n-1} 2^{n-1} n!$$

**9.** 求曲线  $y = x \ln(e + \frac{1}{x})$  的斜渐近线方程.

解 斜渐近线方程为  $y = x + \frac{1}{e}$ .

因为 
$$k = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \ln(e + \frac{1}{x}) = 1$$

$$\lim_{x \to \infty} (y - x) = \lim_{x \to \infty} x \left[ \ln(e + \frac{1}{x}) - 1 \right] = \lim_{x \to \infty} \frac{\ln(e + \frac{1}{x}) - 1}{\frac{1}{x}} \quad (-\frac{1}{x}) = \lim_{t \to 0} \frac{\ln(e + t) - 1}{t} = \lim_{t \to 0} \frac{1}{e + t} = \frac{1}{e}.$$

**10.** 指出 
$$f(x) = \left(1 - e^{\frac{x}{1-x}}\right)^{-1}$$
 的间断点与类型.

解 间断点是 x=1, x=0。  $\lim_{x\to 1^+}\frac{1}{1-e^{\frac{x}{1-x}}}=1$ ,  $\lim_{x\to 1^-}\frac{1}{1-e^{\frac{x}{1-x}}}=0$ , x=1是跳跃间断点.

$$\lim_{x \to 0^{+}} \frac{1}{1 - e^{\frac{x}{1 - x}}} = \infty , \quad x = 0$$
 是第二类间断点.

二、综合题(每小题7分,共28分)

11 设 f(x) 在 x = 0 连续,  $f(0) \neq 0$ , 且对一切 x, y 有  $f(x + y) = f(x) \cdot f(y)$ , 证明 f(x) 处处连续.

证 取 
$$x = y = 0$$
,  $f(0) = [f(0)]^2$ ,  $f(0) \neq 0$ ,  $f(0) = 1$ 

由于 f(x) 在原点连续,所以  $\lim_{h\to 0} (f(h)-1)=0$ .  $\forall x_0 \in (-\infty,+\infty)$ ,

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} [f(x - x_0 + x_0) - f(x_0)] = \lim_{x \to x_0} [f(x - x_0)f(x_0) - f(x_0)]$$

$$= f(x_0) \lim_{x \to x_0} [f(x - x_0) - 1] = f(x_0) \lim_{h \to 0} (f(h) - 1) = 0 :: f(x)$$
 处处连续.

**12** 方程  $\ln x - \frac{x}{e} + 1 = 0$  有几个实根? 给出你的论证。

解 设 
$$f(x) = \ln x - \frac{x}{e} + 1$$
,  $x > 0$ , 由于  $f(\frac{1}{e}) = -\frac{1}{e^2} < 0$ ,  $f(e) = 1 > 0$ ,

$$f(e^3) = 4 - e^2 < 0$$
,  $f(0^+) = -\infty$ ,  $f(+\infty) = \lim_{x \to +\infty} \ln \frac{ex}{e^{x/e}} = \ln \lim_{x \to +\infty} \frac{ex}{e^{x/e}} = -\infty$ ,

故方程在区间(0,e)和区间 $(e,+\infty)$ 内均有实根.

又  $f'(x) = \frac{1}{x} - \frac{1}{e} = \frac{e - x}{ex}$  在区间  $(0, e), (e, +\infty)$  上依次为正,负,于是 f(x) 在区间  $(0, e), (e, +\infty)$  上依次为严格增,严格减,故所论方程恰好有两个根.

**13.** 设 
$$f(x)$$
 在  $x = 2$  处可导,  $f(2) \neq 0$ ,  $f'(2)$  为已知。求  $\lim_{x \to \infty} \left[ \frac{f(2 + \frac{1}{x})}{f(2)} \right]^x$ .

解法 1: 依据  $1^{\circ}$  未定型  $u^{\mathsf{v}}$  变化法:  $\lim u^{\mathsf{v}} = e^{\lim \mathsf{v}(u-1)}$ , 有

原式=
$$e^{\lim_{x\to\infty}x(\frac{f(2+\frac{1}{x})}{f(2)}-1)}$$
 =  $e^{\frac{1}{f(2)}\lim_{x\to\infty}\frac{f(2+\frac{1}{x})-f(2)}{\frac{1}{x}}}$  =  $e^{\frac{f'(2)}{f(2)}}$ .

解法 2: 依据通用未定型  $u^v$  变化法:  $\lim u^v = e^{\lim v \ln u}$  ,有原式  $= e^{\lim_{x \to \infty} x \ln \frac{f(2+\frac{1}{x})}{f(2)}}$ 

因为 
$$\lim_{x \to \infty} x \ln(1 + \frac{f(2 + \frac{1}{x}) - f(2)}{f(2)}) = \frac{1}{f(2)} \lim_{x \to \infty} x \left[ f(2 + \frac{1}{x}) - f(2) \right]$$

$$= \frac{1}{f(2)} \lim_{x \to \infty} \frac{f(2 + \frac{1}{x}) - f(2)}{\frac{1}{x}} = \frac{f'(2)}{f(2)} \quad \text{id}, \quad \text{fix} = e^{\frac{f'(2)}{f(2)}}.$$

**14.** 如图,圆锥形容器的高为 8m,底半径为  $R=2\sqrt{2}$  m,

今向其中注水。设当水深h=6m时,水面上升的改变率为

$$\frac{dh}{dt} = \frac{4}{\pi} m / \min,$$
 求此时水的体积的改变率  $\frac{dV}{dt}$ .

解 依题意有 
$$\frac{r}{R} = \frac{8-h}{8}$$
,  $r = \frac{R}{8}(8-h)$ ,

$$V = \frac{8}{3}\pi R^2 - \frac{8-h}{3}\pi r^2 = \frac{8}{3}\pi R^2 - \frac{(8-h)^3}{3}\pi \frac{R^2}{64} ,$$

$$\frac{dV}{dt} = \pi \frac{R^2}{64} (8-h)^2 \frac{dh}{dt}, \text{ 代入条件得 } \frac{dv}{dt} \bigg|_{h=6,\frac{dh}{dt}=\frac{4}{\pi}} = 2m^3 / \min.$$

三、证明题(每小题6分,共12分)

**15.** 证明: 当 
$$0 < x < 1$$
 时,成立不等式  $\frac{1-x}{1+x} < e^{-2x}$ .

注 不等式  $\frac{1-x}{1+x} < e^{-2x}$  可以有不同的等价形式,如

$$e^{2x}(1-x) < 1+x$$
,  $1-x < (1+x)e^{-2x}$ 

或者取对数  $2x < \ln(1+x) - \ln(1-x)$ 

证法 1: 所论问题等价于  $2x < \ln(1+x) - \ln(1-x)$ , 设  $f(x) = \ln(1+x) - \ln(1-x) - 2x$ ,

$$\iiint f'(x) = \frac{1}{1+x} + \frac{1}{1-x} - 2 = \frac{2}{1-x^2} - 2 > 0, \quad 0 < x < 1$$

于是当0 < x < 1时,由单调性判别法得f(x) > f(0) = 0

证法 2: 所论问题等价于  $e^{2x}(1-x) < 1+x$ ,设  $f(x) = 1+x-e^{2x}(1-x)$ ,则

$$f'(x) = 1 + e^{2x}(2x - 1)$$
,  $f''(x) = 4xe^{2x} > 0$ ,于是当 $0 < x < 1$ 时,连续使用单调性判别 法得  $f'(x) > f'(0) = 0$ ,  $f(x) > f(0) = 0$ .

**16.** 设  $0 < x_1 < x_2$ ,证明  $x_1 \ln x_2 - x_2 \ln x_1 = (\ln \xi - 1)(x_1 - x_2)$ ,其中 $\xi$ 在 $x_1$ 与 $x_2$ 之间. 证目标关系变形后等同于

$$\frac{x_1 \ln x_2 - x_2 \ln x_1}{x_1 - x_2} = \frac{\frac{\ln x_2}{x_2} - \frac{\ln x_1}{\ln x_1}}{\frac{1}{x_2} - \frac{1}{x_1}},$$



于 是 取  $f(x) = \frac{\ln x}{x}, g(x) = \frac{1}{x}$  , 在 区 间  $[x_1, x_2]$  上 应 用 柯 西 定 理 , 便 有

$$\frac{\frac{\ln x_2}{x_2} - \frac{\ln x_1}{\ln x_1}}{\frac{1}{x_2} - \frac{1}{x_1}} = \frac{1 - \ln \xi}{\xi^2} (-\xi^2) = \ln \xi - 1, \quad \xi \in x_1 = x_2 \geq 1, \quad \text{With the position of the position}.$$