МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра САПР

ОТЧЕТ по лабораторной работе №2 по дисциплине «Основы теории управления»

Студент гр. 1302	 Новиков Г.В.
Студентка гр. 1302	Марзаева В.И.
Студентка гр. 1302	 Романова О.В.
Преполаватель	Черных Л.А.

Санкт-Петербург 2023

Цель работы

Выполнить поставленные задания с учетом вариантов в среде MATLAB/Simulink.

Задание

- 1. Построить систему управления с использованием ПИ и ПИД регулятор, который бы обеспечивал $e_{ycr} \rightarrow 0$. Получить для с системы с каждым видом регулятора переходную характеристику и частотные характеристики. Сравнить полученные результаты и сделать выводы.
- 2. Определить параметры ПИД-регулятора при наименьшем перерегулировании в системе. При полученных параметрах определить запасы устойчивости по амплитуде и фазе, степень устойчивости и колебательности. Сделать выводы.
- 3. Определить параметры ПИД-регулятора при наименьшем времени регулирования в системе. При полученных параметрах определить запасы устойчивости по амплитуде и фазе степень устойчивости и колебательности.
 - 4. Для объекта, который описывается следующей передаточной функцией: $W_{ov} = k/(s^2 a),$
- а, к выбрать из варианта задания.

Вычислить операторным методом параметры регулятора, с учетом следующих требований к процессу:

- 1.1 Запас устойчивости по фазе не менее 60°;
- 1.2 Перерегулирование в системе не более 18%;
- 1.3 e_{ycr} → 0.
- 5. Построить систему без регулятора и систему с регулятором в среде Matlab/SIMULINK. Для каждой системы получить переходные характеристики и частотные характеристики.

Вариант 4:

Вариант		Задачи 1-3	3	Зад	ачи 4-5
	h	q	k	k	a
4	15	0.5	0.8	4	5

Основные теоретические положения

Объект управления – бак с водой;

В бак поступает вода (Q). Подача воды в бак регулируется насосом. Из бака вода (q) постоянно поступает для различных задач. Необходимо постоянно поддерживать заданный уровень (h) в баке.

h, [м] - уровень воды в баке, регулируемая величина;

Q, $[\frac{M^3}{c}]$ — поток воды, поступающей в бак, сигнал управления;

q, $\left[\frac{^{M^3}}{^{c}}\right]$ — поток воды, вытекающей из бака.

Модель объекта описывается следующим ДУ: $\frac{dh}{dt} = \frac{1}{S}(Q(t) - q(t))$

Рисунок 1 – Объект управления

Ход работы

1.

$$e_{yct} \rightarrow 0$$
 ДУ: $\frac{dh}{dt} = \frac{1}{S}(Q(t) - q(t))$

 e_{ycr} — установившаяся ошибка, разница между заданным значением и реальным в установившемся режиме.

$$H = 15$$

$$q = 0.5$$

$$k = 0.8$$

Система в Simulink без регулятора:

Рисунок 2 – Система без регулятора

Рисунок 3 – ПХ СУ без регулятора (синяя – заданный уровень, красная –на выходе)

Построим системы в Simulink с использованием регулятора (ПИ и ПИД):

• Пропорционально-интегрирующий регулятор (ПИ-регулятор):

$$W_{\pi u}(s) = k_{\pi} + \frac{1}{T_{\text{W}}s}$$

Рисунок 4 – Система в Simulink с ПИ-регулятором

Через Тune настраиваем параметры для системы с ПИ-регулятором. Получаем значения $k_{\scriptscriptstyle \rm H}$ = 1.083 и $k_{\scriptscriptstyle \rm H}$ = 0.625.

Рисунок 5 – Step Plot СУ с ПИ-регулятором с нужными параметрами

Рисунок 6 – ПХ СУ с ПИ-регулятором (красная – регулятор, синяя – заданный уровень)

Построим через Simulink ЛЧХ для системы с ПИ-регулятором.

Рисунок 7 – ЛЧХ СУ с ПИ-регулятором

• Пропорционально-интегрирующий-дифференцирующий регулятор (ПИДрегулятор):

$$W_{\Pi H}(s) = k_{\Pi} + \frac{k_{H}}{s} + k_{A}s$$

Рисунок 8 – Система в Simulink с ПИД-регулятором

Через Типе настраиваем параметры для системы с ПИД-регулятором. Получаем значения $k_{\scriptscriptstyle \Pi}=1.285,\,k_{\scriptscriptstyle \Pi}=$ -0.2707, $k_{\scriptscriptstyle H}=0.2457$ и N=1.72.

Рисунок 9 – Step Plot СУ с ПИД-регулятором с нужными параметрами

Для более наглядного предмета приведены примеры ПХ системы с ПИДрегулятором при 100 (рис. 10) и 10 сэмплах (рис. 11).

Рисунок $10 - \Pi X$ СУ с $\Pi U Д$ -регулятором при 100 сэмплах (красная – регулятор, синяя – заданный уровень)

Построим через Simulink ЛЧХ для системы с ПИД-регулятором.

Рисунок 11 – ЛЧХ СУ с ПИД-регулятором

Выводы: оба регулятора обладают схожими частотными характеристиками. Исходя из переходных и частотных характеристик можно сказать, что при использовании ПИ-регулятора происходит колебательно-затухающий процесс, а при использовании ПИД-регулятора — апериодический-затухающий.

2. Определим параметры ПИД-регулятора при наименьшем перерегулировании в системе.

С помощью PID-Tuner настроим регулятор (рисунок 13) для наименьшего перерегулирования.

Рисунок 12 – Настройки ПИД-регулятора

Рисунок 13 – Step Plot СУ с ПИД-регулятором при наименьшем перерегулировании

Рисунок 14 – ПХ СУ с ПИД-регулятором с наименьшим перерегулированием

Посмотрим параметры регулятора после настройки, где запасы по амплитуде – Gain margin, по фазе – Phase margin, Overshoot – перерегулирование в системе, Setting time – время регулирования:

	Tuned	Block
Р	1.1923	1.2845
l	0.21059	0.24571
D	0.22642	-0.2707
N	3.6468	1.7204
Performance and Robi	ustness	Block
Performance and Robi		Block
	Tuned	
Rise time	Tuned 1.81 seconds	1.43 seconds
Rise time Settling time	Tuned 1.81 seconds 13.9 seconds	1.43 seconds 12.2 seconds
Rise time Settling time Overshoot Peak	Tuned 1.81 seconds 13.9 seconds 10.2 %	1.43 seconds 12.2 seconds 13.5 %
Rise time Settling time Overshoot	Tuned 1.81 seconds 13.9 seconds 10.2 % 1.1	1.43 seconds 12.2 seconds 13.5 % 1.13

Рисунок 15 – Параметры ПИД-регулятора с наименьшим перерегулированием

Определим запасы устойчивости по фазе и амплитуде с помощью ЛЧХ:

Рисунок 16 – Включение отображения характеристик на графике

Рисунок 17 – ЛЧХ с ПИД-регулятором с наименьшим перерегулированием

Запас устойчивости по фазе = 139, запас устойчивости по амплитуде равен бесконечности.

Рисунок 18 — Корневая плоскость ПИД-регулятора при наименьшем перерегулировании

Степень устойчивости $\eta=0.264$, а степень колебательности равна $\mu=0$ (т.к. мнимые корни отсутствуют).

3. Определим параметры ПИД-регулятора при наименьшем времени регулирования в системе.

Рисунок 12 – Настройки ПИД-регулятора

Рисунок 13 – Step Plot CУ с ПИД-регулятором при наименьшем времени регулирования в системе

Рисунок 21 — ПХ СУ с ПИД-регулятором при наименьшем времени регулирования в системе

Посмотрим параметры регулятора после настройки, где запасы по амплитуде – Gain margin, по фазе – Phase margin, Overshoot – перерегулирование в системе, Setting time – время регулирования:

	Tuned	Block
Р	12.8455	1.2845
I	24.5712	0.24571
D	-0.2707	-0.2707
N	17.2044	1.7204
Performance and Robi	ustness	
Performance and Robi	ustness	Block
Performance and Robi		Block 1.43 seconds
	Tuned	
Rise time	Tuned 0.143 seconds	1.43 seconds
Rise time Settling time	Tuned 0.143 seconds 1.22 seconds	1.43 seconds 12.2 seconds
Rise time Settling time Overshoot	Tuned 0.143 seconds 1.22 seconds 13.5 %	1.43 seconds 12.2 seconds 13.5 %
Rise time Settling time Overshoot Peak	Tuned 0.143 seconds 1.22 seconds 13.5 % 1.13	1.43 seconds 12.2 seconds 13.5 % 1.13

Рисунок 22 — Параметры ПИД-регулятора при наименьшем времени регулирования в системе

Определим запасы устойчивости по фазе и амплитуде с помощью ЛЧХ:

Рисунок 23 — ЛЧХ с ПИД-регулятором при наименьшем времени регулирования в системе

Запас устойчивости по фазе = 118, запас устойчивости по амплитуде равен бесконечности.

Рисунок 24 — Корневая плоскость ПИД-регулятора при наименьшем времени регулирования в системе

Степень устойчивости $\eta=2,3,$ а степень колебательности равна $\mu=\frac{\beta}{\alpha}$, значит, $\mu=\frac{5.66}{10.7}$, следовательно $\mu=0,53$.

Выводы: с помощью ЛЧХ систем были определены запасу устойчивости по амплитуде и фазе, с помощью корневой плоскости были определены степени устойчивости и колебательности.

4. Вычислить операторным методом параметры регулятора.

$$W_{oy}(s) = \frac{4}{(s^2 - 5)}$$

$$W_p(s) = \frac{a_1 s + a_0}{b_1 s + b_0}$$

$$D_{x} = s^3 + d_{2x}s^2 + d_{1x}s + d_{0x}$$

$$(s^{2} - 5)(b_{1}s + b_{0}) + 4(a_{1}s + a_{0}) = b_{1}s^{3} + b_{0}s^{2} - 5b_{1}s - 5b_{0} + 4a_{1}s + 4a_{0} =$$

$$= b_{1}s^{3} + b_{0}s^{2} + s(4a_{1} - 5b_{1}) - 5b_{0} + 4a_{0}$$

$$s^{3} + d_{2x}s^{2} + d_{1x}s + d_{0x} = b_{1}s^{3} + b_{0}s^{2} + s(4a_{1} - 5b_{1}) - 5b_{0} + 4a_{0}$$

$$b_{1} = 1$$

$$b_{0} = d_{2x}$$

$$4a_{1} - 5b_{1} = d_{1x}$$

$$- 5b_{0} + 4a_{0} = d_{0x}$$

$$D_{x} = (s + 1)(s + 4)(s + 3) = s^{3} + 8s^{2} + 19s + 12$$

$$b_{1} = 1$$

$$b_{0} = 8$$

$$4a_{1} = 24$$

$$a_{1} = 6$$

$$4a_{0} = 52$$

$$a_{0} = 13$$

Полученная ПФ регулятора:

$$W_p(s) = \frac{6s + 13}{s + 8}$$

С помощью Simulink построим схемы с регулятором и без регулятора:

Рисунок 25 – Схема без регулятора

Рисунок 26 – ПX схемы без регулятора

Рисунок 27 – ЛЧХ схемы без регулятора

Рисунок 28 – Схема с регулятором

Рисунок $29 - \Pi X$ для двух систем (синяя без регулятора, красная с регулятором)

Рисунок 30 – ПХ системы с регулятором

Рисунок 31 – ЛЧХ системы с регулятором, где запас устойчивости по фазе равен 69.8

Выводы: запас устойчивости в системе с регулятором больше 60, что видно из рисунка 31, также из рисунка 30 видно, что перерегулирование в системе не больше 18% т.к. y_{max} крайне близко к y_{ycr} . В результате выполнения были вычислены операторным методом параметры регулятора, с учетом заданных требований к процессу.

Общие выводы

В результате выполнения данной лабораторной работы мы ознакомились с регуляторами, их регулированием и синтезом регулятора с помощью операторного метода. В первом задании были построены схемы с ПИ и ПИД регуляторами и рассмотрены их переходные и частотные характеристики. С помощью второго и третьего задания мы поняли, что при наименьшем времени перерегулирования увеличивается степень устойчивости, в сравнении с процессом при наименьшем перерегулировании. В четвертом и пятом заданиях был рассмотрен операторный метод для расчета ПФ регулятора согласно заданным требованиям и построение переходной и частотной характеристик.