# Classification of neighbourhoods of leaves of singular foliations

joint work with Camille Laurent-Gengoux (Université de Lorraine)

Simon-Raphael Fischer





# Remarks (Based on the following work)

S.-R. F. and Camille Laurent-Gengoux, *Classification of neighborhoods around leaves of singular foliations*, arXiv:2401.05966, (2024).

**Singular Foliations** 



## **Singular Foliations:**

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
  - . .

### First idea

# Definition (Partitionifolds)

Let M be a smooth manifold. A **partitionifold of** M is a partition of immersed connected submanifolds, which we call *leaves*.

#### Remarks

We will denote a partitionifold by  $L_{\bullet}$ ,  $p \mapsto L_p$ , where  $L_p$  is the leaf through  $p \in M$ .



Figure 1: The magnetic partition

A partitionifold with:

- All leaves are of the same dimension.
- But: It lacks regularity!



Figure 2: Isolated lasagna in a spaghetti dish

A partitionifold with:

- Dimension is now different.
- But: Also no regularity!

#### Remarks

Isolated spaghetti in a lasagna dish: Regularity!



Figure 2: Isolated lasagna in a spaghetti dish

A partitionifold with:

- Dimension is now different.
- But: Also no regularity!

#### Remarks

Isolated spaghetti in a lasagna dish: Regularity!

### **Definition (Smooth partitionifold)**

A smooth partitionifold  $L_{\bullet}$  is smooth, if there is for all  $p \in M$  and every vector  $u \in T_pL_p$  a vector field X tangent to  $L_{\bullet}$  with

$$X_p = u$$
.

#### Remarks

This definition is okay, but not widely used: It still has a problem...

### **Definition (Smooth partitionifold)**

A smooth partitionifold  $L_{\bullet}$  is smooth, if there is for all  $p \in M$  and every vector  $u \in T_pL_p$  a vector field X tangent to  $L_{\bullet}$  with

$$X_p = u$$
.

#### Remarks

This definition is okay, but not widely used: It still has a problem...

# Example (Vector fields not necessarily finitely generated)

Consider the following smooth partitionifold:

- $M=\mathbb{R}$ ;
- 0-dimensional leaves:

$$\{1\}, \left\{\frac{1}{2}\right\}, \left\{\frac{1}{3}\right\}, \dots, \left\{\frac{1}{n}\right\}, \dots, \{0\};$$

• 1-dimensional leaves: Remaining open intervals.

#### Remarks

One has a sort of "infinitesimal leaf" next to {0}

Technically: Tangent vectors of  $L_{\bullet}$  are locally not finitely generated around 0.

# Example (Vector fields not necessarily finitely generated)

Consider the following smooth partitionifold:

- $M=\mathbb{R}$ ;
- 0-dimensional leaves:

$$\{1\}, \left\{\frac{1}{2}\right\}, \left\{\frac{1}{3}\right\}, \dots, \left\{\frac{1}{n}\right\}, \dots, \{0\};$$

• 1-dimensional leaves: Remaining open intervals.

#### Remarks

One has a sort of "infinitesimal leaf" next to  $\{0\}$ .

Technically: Tangent vectors of  $L_{\bullet}$  are locally not finitely generated around 0.

Recall:

**Theorem (Frobenius Theorem)** Every integrable subbundle E of TM corresponds to a regular foliation in M.

## Remarks ( $\Gamma(E)$ is involutive)

Integrable:

 $[X, Y] \in \Gamma(E)$ 

for all  $X, Y \in \Gamma(E)$ .

Recall:

**Theorem (Frobenius Theorem)** Every integrable subbundle E of TM corresponds to a regular foliation in M.

## Remarks ( $\Gamma(E)$ is involutive)

Integrable:

 $[X, Y] \in \Gamma(E)$ 

for all  $X, Y \in \Gamma(E)$ .

#### Remarks

Alternatively: An involutive submodule of  $\mathfrak{X}(M)$ , or equivalently of  $\mathfrak{X}_c(M)$ .

A smooth singular foliation  $\mathcal{F}$  on a smooth manifold M is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is involutive,
- it is stable under  $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

A smooth singular foliation  $\mathscr{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication,
- it is locally finitely generated.

A smooth singular foliation  $\mathcal{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication, i.e.  $fX \in \mathcal{F}$  for all  $f \in C^{\infty}(M)$  and  $X \in \mathcal{F}$ ,
- it is locally finitely generated.

A smooth singular foliation  $\mathcal{F}$  on a smooth manifold is a subspace of  $\mathfrak{X}_c(M)$  so that

- it is **involutive**, *i.e.*  $[\mathcal{F}, \mathcal{F}] \subset \mathcal{F}$ ,
- it is stable under  $C^{\infty}(M)$ -multiplication, i.e.  $fX \in \mathcal{F}$  for all  $f \in C^{\infty}(M)$  and  $X \in \mathcal{F}$ ,
- it is **locally finitely generated**, i.e. around each  $p \in M$  there is an open neighbourhood U and a finite family  $(X^i)_i^r$   $(X^i \in \mathcal{F})$  such that for all  $X \in \mathcal{F}$  there are  $f_i \in C^{\infty}(M)$  satisfying on U.

$$X=\sum_i f_i X^i.$$

# Remarks (Leaves)

We have an induced smooth partitionifold  $L_{ullet}$ ,

$$\mathscr{F}\Rightarrow L_{\bullet},$$

but  $\ensuremath{\mathcal{F}}$  also encodes the information about the generators,







Right diagram made by Mark J.D. Hamilton.



# Theorem ( $\mathcal{F}$ -connections)

There is a connection on the normal bundle of a leaf L:

- Horizontal vector fields are in F.
- Parallel transport  $PT_{\gamma}$  has values in  $Sym(\tau_{I}, \tau_{I'})$ .
- For a contractible loop  $\gamma_0$  at I:  $PT_{\gamma_0}$  values in  $Inner(\tau_I)$ .

# Example of a transverse foliation $\tau$ in $\mathbb{R}^d$ :



#### Remarks

- Inner $(\tau_I)$  maps each circle to itself
- Sym $(\tau_I)$  allows to exchange circles
- Both preserve  $\tau_I$  and fix the origin



Sources

# Other example: Regular foliation

# Recovering the ordinary definition

| Foliation | Connection                      |
|-----------|---------------------------------|
| Regular   | Flat lift                       |
| Singular  | Family of possibly curved lifts |

#### Remarks

Inner( $\tau_I$ ): Trivial.

 $\operatorname{\mathsf{Sym}}( au_l)$ : We essentially need the image of a group morphism  $\pi_1(L) \to \operatorname{\mathsf{Diff}}(\mathbb{R}^d,0)$ .

### Idea

We guess:

$$\mathscr{F} = \left\{ egin{aligned} \mathsf{Some \ map \ } \pi_1(L) & \mathsf{Diff} \left( \mathbb{R}^d, 0 \right) \ (\mathsf{at \ l}) \\ \mathsf{Bundle \ structure \ by \ } au_l, \mathsf{Inner}( au_l), \mathsf{Sym}( au_l), \ldots \end{array} 
ight\}$$

Thus, we want to classify  $\mathscr{F}$  with given L and  $\tau_l$  (for a fixed  $l \in L$ ).

#### **Danger**

But  $\mathsf{Sym}( au_l)$  and  $\mathsf{Inner}( au_l)$  are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

# Idea

We guess:

$$\mathscr{F} = \left\{ \begin{array}{l} \mathsf{Some \ map \ } \pi_1(L) \to \mathsf{Diff} \left(\mathbb{R}^d, 0\right) \ (\mathsf{at \ I}) \\ \mathsf{Bundle \ structure \ by \ } \tau_I, \mathsf{Inner}(\tau_I), \mathsf{Sym}(\tau_I), \ldots \end{array} \right\}$$

Thus, we want to classify  $\mathscr F$  with given L and  $\tau_l$  (for a fixed  $l \in L$ ).

## **Danger**

But  $Sym(\tau_I)$  and  $Inner(\tau_I)$  are in general infinite-dimensional, so that we have to deal with infinite-dimensional geometry!

# Definition (Formal foliation)

 $X \in \mathscr{F}$  induces a derivation on  $\hat{C} := C^{\infty}(M)/C_0^{\infty}(M)$ , where  $C_0^{\infty}(M)$  is the ideal of functions vanishing with all their derivatives along L. The image of  $\mathscr{F}$  under this is the **formal singular foliation**.

#### Remarks

 $f \in \hat{C}$  a formal power series, w.r.t.  $(x_1, \dots, x_d)$  as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with  $f_{i_1,...,i_d} \in C^{\infty}(L)$ .

 $f \in \hat{C}$  a formal power series, w.r.t.  $(x_1, \dots, x_d)$  as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d > 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with  $f_{i_1,...,i_d} \in C^{\infty}(L)$ .

# **Example (Canonical example of a formal foliation)**For embedded submanifolds *I*:

- Normal bundle  $\mathcal{T}$ :  $\mathrm{T}M|_L/\mathrm{T}L$ .
- Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism  $\mathfrak{X}(M) \to \mathfrak{X}^{\mathsf{formal}}$ .

 $f \in \hat{C}$  a formal power series, w.r.t.  $(x_1, \ldots, x_d)$  as "normal coordinates":

$$f = \sum_{i_1,...,i_d > 0} f_{i_1,...,i_d} x_1^{i_1} \dots x_d^{i_d}$$

with  $f_{i_1,...,i_d} \in C^{\infty}(L)$ .

# Example (Canonical example of a formal foliation)

For embedded submanifolds L:

- Normal bundle  $\mathcal{T}$ :  $TM|_L/TL$ .
- Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism  $\mathfrak{X}(M) \to \mathfrak{X}^{\mathsf{formal}}$ .
- Formal version of  $\mathcal{F}$  via this map.

 $f \in \hat{C}$  a formal power series, w.r.t.  $(x_1, \dots, x_d)$  as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d \ge 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with  $f_{i_1,...,i_d} \in C^{\infty}(L)$ .

# Example (Canonical example of a formal foliation)

For embedded submanifolds *L*:

- Normal bundle  $\mathcal{T}$ :  $TM|_L/TL$ .
- Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism  $\mathfrak{X}(M) \to \mathfrak{X}^{\mathsf{formal}}$ .
- Formal version of  $\mathcal{F}$  via this map.
- In particular: Formal version of  $X \in \mathcal{F}$  can be evaluated at  $I \in L$ , coinciding with  $X_I$ .

 $f \in \hat{C}$  a formal power series, w.r.t.  $(x_1, \dots, x_d)$  as "normal coordinates":

$$f = \sum_{i_1, \dots, i_d > 0} f_{i_1, \dots, i_d} x_1^{i_1} \dots x_d^{i_d}$$

with  $f_{i_1,...,i_d} \in C^{\infty}(L)$ .

# **Example (Canonical example of a formal foliation)**For embedded submanifolds *I*:

Tor embedded submannoids L.

- Normal bundle  $\mathcal{T}$ :  $TM|_{I}/TL$ .
- Formal vector fields via tubular neighbourhood embedding, a Lie algebra morphism  $\mathfrak{X}(M) o \mathfrak{X}^{\mathsf{formal}}$ .
- Formal version of  $\mathcal{F}$  via this map.
- In particular: Formal version of  $X \in \mathcal{F}$  can be evaluated at  $I \in L$ , coinciding with  $X_I$ .

#### Our aim

# Remarks (Our assumptions)

- $\tau_I$  a formal singular foliation.
- *L* a manifold (connected immersed submanifold of *M*).



# Remarks (Avoiding formal setting)

#### Lither

add real-analyticity conditions to the classification

#### or also

• assume embedded L and real-analytic  $\mathcal{F}$ .

#### Our aim

# Remarks (Our assumptions)

- $\tau_I$  a formal singular foliation.
- *L* a manifold (connected immersed submanifold of *M*).



# Remarks (Avoiding formal setting)

#### Either

add real-analyticity conditions to the classification,

or also

• assume embedded L and real-analytic  $\mathcal{F}$ .

**Multiplicative Yang-Mills** 

connections

Multiplicative Yang-Mills connections





## Remarks ( $\mathcal{F}$ -connection)

For  $\phi \in \operatorname{Sym}(\tau_l)$  we have an induced parallel transport

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then, on the normal bundle  $\pi \colon \mathcal{T} \to L$ ,

$$\begin{aligned} \mathsf{PT}_{\gamma}(\phi \cdot p) &= \mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi) \cdot \mathsf{PT}_{\gamma}(p) \\ \mathsf{PT}_{\gamma_0}(p) &= \varphi \cdot p \end{aligned}$$

for all  $p \in \mathcal{T}_l$ ,  $\phi \in \text{Sym}(\tau_l)$ , and for some  $\varphi \in \text{Inner}(\tau_l)$ .



# Remarks (Sym-connection)

For  $\phi \in \operatorname{Sym}(\tau_l)$  we have an induced parallel transport

$$\mathsf{PT}_{\gamma}^{\mathsf{Sym}}(\phi) \coloneqq \mathsf{PT}_{\gamma} \circ \phi \circ \mathsf{PT}_{\gamma}^{-1}.$$

Then

$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi \circ \phi') = \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi) \circ \mathsf{PT}^{\mathsf{Sym}}_{\gamma}(\phi')$$
$$\mathsf{PT}^{\mathsf{Sym}}_{\gamma_0}(\phi) = \varphi \circ \phi \circ \varphi^{-1}$$

for all  $\phi, \phi' \in \text{Sym}(\tau_l)$ , and for some  $\varphi \in \text{Inner}(\tau_l)$ .

# Idea



## Idea

Generators of  $\mathcal{F}$  given by:

$$\mathbb{H}(X) + \overline{\nu},$$

where  $X \in \mathfrak{X}(L)$ ,  $\mathbb{H}(X)$  its projectable horizontal lift,  $\nu \in \Gamma(\operatorname{inner}(\tau))$  and  $\overline{\nu}$  its fundamental vector field.



# Idea

Fix  $l \in L$ , given  $\tau$  and  $\mathbb{H}$ . Reconstruct  $\mathscr{F}$ .

$$\begin{split} [\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] &= \mathbb{H}([X, X']) + \dots \\ &= [\mathbb{H}(X), \mathbb{H}(X')] \\ &+ [\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}] + \overline{[\nu, \mu]} \end{split}$$

#### Idea

Fix I and given  $\tau_I$ : Reconstruct  $\mathscr{F}$ .

$$[\mathbb{H}(X) + \overline{\nu}, \mathbb{H}(X') + \overline{\mu}] = \mathbb{H}([X, X']) + \dots$$

$$= \underbrace{[\mathbb{H}(X), \mathbb{H}(X')]}_{\text{$\sim$ curvature}} + \underbrace{[\mathbb{H}(X), \overline{\mu}] - [\mathbb{H}(X'), \overline{\nu}]}_{\text{$\sim$ connection}} + \overline{[\nu, \mu]}$$

# Idea (... $\in \tau$ )

We need:

- 1. Lie algebra bundle  $\tau$  with structure  $\tau_l$
- 2. A horizontal lift  $\mathbb H$  into  $\mathcal T$  satisfying

Curvature: 
$$[\mathbb{H}(X),\mathbb{H}(X')]-\mathbb{H}([X,X'])\in au$$
 Connection:  $[\mathbb{H}(X),\overline{\mu}]\in au$ 

# Summary



## Remarks

## Connections

- preserve group bundle action,
- and their curvatures follow corresponding orbits.

The pair of connections may **not** be unique for a given  $\mathcal{F}$ !

## **Curved Yang-Mills gauge theories:**

$$G \longrightarrow \mathscr{G}$$

## Motivation

What are Ehresmann connections, preserving  $\mathscr{G}$ -actions?

# **Definition (LGB actions)**



A **left-action of**  $\mathscr G$  **on**  $\mathscr T$  is a smooth map  $\mathscr G * \mathscr T := \mathscr G_{\pi_{\mathscr G}} \times_{\pi} \mathscr T \to \mathscr T$ ,  $(g,p) \mapsto g \cdot p$ , satisfying the following properties:

$$\pi(g \cdot p) = \pi(p),$$
 $h \cdot (g \cdot p) = (hg) \cdot p,$ 
 $e_{\pi(p)} \cdot p = p$ 

for all  $p \in \mathcal{T}$  and  $g, h \in \mathcal{G}_{\pi(p)}$ , where  $e_{\pi(p)}$  is the neutral element of  $\mathcal{G}_{\pi(p)}$ .

# Connection on $\mathcal{T}$ : Idea



# Connection on $\mathcal{T}$ : Revisiting the classical setup

If  $\mathcal G$  is trivial, and H a connection:



# Connection on $\mathcal{T}$ : Revisiting the classical setup

If  $\mathcal{G}$  is trivial, and H a connection:



# Remarks (Integrated case)

Parallel transport  $\mathsf{PT}_{\gamma}^{\mathcal{T}}$  in  $\mathcal{T}$ :

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g\cdot p) = g\cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p),$$

where  $\gamma:I\to L$  is a base path

# Connection on $\mathcal{T}$ : General case

# Remarks (Integrated case)

Ansatz: Introduce connection on  $\mathcal{G}$ ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p).$$

# Recovering the ordinary definition

- 1.  $\mathscr{G}\cong L\times G$
- 2. Equip  $\mathcal G$  with canonical flat connection

# Connection on $\mathcal{T}$ : General case

# Remarks (Integrated case)

Ansatz: Introduce connection on  $\mathcal{G}$ ,

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p).$$

# Recovering the ordinary definition

- 1.  $\mathscr{G} \cong L \times G$
- 2. Equip  ${\mathscr G}$  with canonical flat connection

Definition (Ehresmann/Yang-Mills connection, [C. L.-G., S.-R. F.]) A surjective submersion  $\pi\colon \mathcal{T}\to L$  so that one has a commuting diagram



1. Ehresmann connection:

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}(g \cdot p) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(g) \cdot \mathsf{PT}_{\gamma}^{\mathscr{T}}(p)$$

2. Yang-Mills connection: Additionally

$$\mathsf{PT}^{\mathscr{T}}_{\gamma_0}(p) = g_{\gamma_0} \cdot p$$

for some  $g_{\gamma_0} \in \mathcal{G}^0_{\pi(p)}$ , where  $\gamma_0$  is a contractible loop.

Definition (Multiplicative YM connection, [S.-R. F.]) On  $\mathscr G$  there is also the notion of multiplicative Yang-Mills connections, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g),$$
  $\mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$ 

#### Remarks

Compare this with the Maurer-Cartan form and its curvature equation!

**Definition (Multiplicative YM connection, [S.-R. F.])** On  $\mathscr G$  there is also the notion of **multiplicative Yang-Mills connections**, that is,

$$\mathsf{PT}_{\gamma}^{\mathscr{G}}(q \cdot g) = \mathsf{PT}_{\gamma}^{\mathscr{G}}(q) \cdot \mathsf{PT}_{\gamma}^{\mathscr{G}}(g),$$
  $\mathsf{PT}_{\gamma_0}^{\mathscr{G}}(q) = g_{\gamma_0} \cdot q \cdot g_{\gamma_0}^{-1}$ 

#### Remarks

Compare this with the Maurer-Cartan form and its curvature equation!

#### Remarks

On the Lie algebra bundle g we have a connection  $\nabla$  with

$$\nabla \left( \left[ \mu, \nu \right]_{\mathcal{Q}} \right) = \left[ \nabla \mu, \nu \right]_{\mathcal{Q}} + \left[ \mu, \nabla \nu \right]_{\mathcal{Q}},$$
$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

## **Example**

Consider the Atiyah sequence of a principal G-bundle P:

$$g := (P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\mathbb{H}} \mathsf{T}L$$

with splitting  $\mathbb{H}\colon \mathrm{T} L o \mathsf{T} P/G$ , where  $\mathfrak g$  is the Lie algebra. Then

$$\nabla_X \nu = [\mathbb{H}(X), \nu]_{\mathsf{TP/G}},$$
  
$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{TP/G}} - \mathbb{H}([X, X']).$$

#### Remarks

On the Lie algebra bundle g we have a connection  $\nabla$  with

$$\nabla ([\mu, \nu]_{\mathcal{Q}}) = [\nabla \mu, \nu]_{\mathcal{Q}} + [\mu, \nabla \nu]_{\mathcal{Q}},$$
$$R_{\nabla} = \operatorname{ad} \circ \zeta.$$

## **Example**

Consider the Atiyah sequence of a principal *G*-bundle *P*:

$$g := (P \times \mathfrak{g})/G \longrightarrow \mathsf{T}P/G \xrightarrow{\mathbb{H}} \mathsf{T}L$$

with splitting  $\mathbb{H} \colon \mathrm{T} L \to \mathrm{T} P/G$ , where  $\mathfrak{g}$  is the Lie algebra. Then

$$\nabla_X \nu = [\mathbb{H}(X), \nu]_{\mathsf{TP/G}},$$
  
$$\zeta(X, X') = [\mathbb{H}(X), \mathbb{H}(X')]_{\mathsf{TP/G}} - \mathbb{H}([X, X']).$$

Foliations and Yang-Mills

connections



 $\begin{tabular}{ll} \textbf{Theorem ([C. L.-G., S.-R. F.])}\\ \textit{Given a multiplicative Yang-Mills connection on $\mathcal{G}$ and a Yang-Mills connection $\mathbb{H}$ on $\mathcal{T}$, then there is $\mathcal{T}$.}\\ \end{tabular}$ a natural foliation on  $\mathcal{T}$  generated by

$$\mathbb{H}(X) + \overline{\nu},$$

where  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(q)$ .

Proof.

$$\begin{split} [\mathbb{H}(X),\overline{\nu}] &= \overline{\nabla_X \nu}, \\ [\mathbb{H}(X),\mathbb{H}(X')] &= \mathbb{H}([X,X']) + \overline{\zeta(X,X')}, \end{split}$$

 $\begin{tabular}{ll} \textbf{Theorem ([C. L.-G., S.-R. F.])}\\ \textit{Given a multiplicative Yang-Mills connection on $\mathcal{G}$ and a Yang-Mills connection $\mathbb{H}$ on $\mathcal{T}$, then there is $\mathcal{T}$.}\\ \end{tabular}$ a natural foliation on  $\mathcal{T}$  generated by

$$\mathbb{H}(X) + \overline{\nu}$$
,

where  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(q)$ .

# Proof.

We have

$$[\mathbb{H}(X), \overline{\nu}] = \overline{\nabla_X \nu},$$
  
$$[\mathbb{H}(X), \mathbb{H}(X')] = \mathbb{H}([X, X']) + \overline{\zeta(X, X')},$$

where 
$$\zeta \in \Omega^2(L; \mathcal{Q})$$
.

Fix a point  $I \in L$  with transverse model  $(\mathbb{R}^d, \tau_I)$ :

- 1.  $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 1.  $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3.  $\mathscr{G} := (P \times G) / G$ , the inner group bundle

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 1.  $G = \operatorname{Inn}(\tau_I)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3.  $\mathscr{G} := (P \times G) / G$ , the inner group bundle
- 4.  $\mathscr{T}:=\left(P\times\mathbb{R}^d\right)\Big/G$ , the **normal bundle**

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 1.  $G = \operatorname{Inn}(\tau_l)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3.  $\mathscr{G} := (P \times G) / G$ , the inner group bundle
- 4.  $\mathcal{T} := (P \times \mathbb{R}^d) / G$ , the **normal bundle**

#### **Remarks**

- $\blacksquare$  Think of the induced connection on  ${\mathcal T}$  as the  ${\mathcal F}\text{-connection}.$
- $\mathcal G$  acts on  $\mathcal T$  (canonically from the left).

Fix a point  $l \in L$  with transverse model  $(\mathbb{R}^d, \tau_l)$ :

- 1.  $G = \operatorname{Inn}(\tau_I)$
- 2. P a principal G-bundle, equipped with an ordinary connection
- 3.  $\mathscr{G} := (P \times G) / G$ , the inner group bundle
- 4.  $\mathcal{T} := (P \times \mathbb{R}^d) / G$ , the **normal bundle**

#### Remarks

- $\bullet$  Think of the induced connection on  $\mathcal T$  as the  $\mathcal F\text{-connection}.$
- $\mathscr{G}$  acts on  $\mathscr{T}$  (canonically from the left).

**Proposition ([C. L.-G., S.-R. F.])** The associated connection on  $\mathcal G$  is a multiplicative Yang-Mills connection and the one on  $\mathcal T$  is a corresponding Yang-Mills connection.

# Proof.

Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all  $[p,g] \in \mathcal{G}$  and  $[p,v] \in \mathcal{T}$ , and

$$\mathsf{PT}_{\gamma}^{\mathscr{T}}ig([p,v]ig) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

**Proposition ([C. L.-G., S.-R. F.])** The associated connection on  $\mathcal G$  is a multiplicative Yang-Mills connection and the one on  $\mathcal T$  is a corresponding Yang-Mills connection.

# Proof.

Recall

$$[p,g]\cdot[p,v]=[p,g\cdot v]$$

for all  $[p,g] \in \mathcal{G}$  and  $[p,v] \in \mathcal{T}$ , and

$$\mathsf{PT}_{\gamma}^{\mathcal{T}}ig([p,v]ig) = \Big[\mathsf{PT}_{\gamma}^{P}(p),v\Big].$$

#### Remarks

Thus, we have a singular foliation on  $\mathcal{T}$ , which, by construction, admits L as a leaf and  $\tau_l$  as transverse data.

**Proposition ([C. L.-G., S.-R. F.])**The reconstructed foliation is independent of the choice of connection on P.

#### Proof.

- The adjoint bundle of P,  $Ad(P) := (P \times \mathfrak{g})/G$ , is the Lie algebra bundle of  $\mathscr{G}$
- $\tau = Ad(P)$
- Difference of two connections on P has values in Ad(P)

$$\mathbb{H}(X) + \mathbb{I}(X)$$

with  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(\mathrm{Ad}(P))$ .

**Proposition ([C. L.-G., S.-R. F.])**The reconstructed foliation is independent of the choice of connection on P.

# Proof.

- The adjoint bundle of P,  $Ad(P) := (P \times \mathfrak{g})/G$ , is the Lie algebra bundle of  $\mathscr{G}$ 
  - $\tau = Ad(P)$
  - Difference of two connections on P has values in Ad(P)

Generators take this already into account; recall:

$$\mathbb{H}(X) + \overline{\nu}$$

with  $X \in \mathfrak{X}(L)$  and  $\nu \in \Gamma(Ad(P))$ .

**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_l)$
- Principal Inner $(\tau_I)$ -bundles P over L



**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_I)$
- Principal  $\operatorname{Inner}(\tau_I)/\operatorname{Inner}(\tau_I)_{\geq 2}$ -bundles P over L

#### Remarks

P is now finite-dimensional

**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, \tau_l)$
- Principal Inner $(\tau_l)$ /Inner $(\tau_l)$ >2-bundles P over L

#### Remarks

P is now finite-dimensional!

Theorem ([C. L.-G., S.-R. F.])
In the simply connected case, the following are equivalent:

the empty commedea case, the renorming are equivalent.

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_l)$
- Principal Inner $(\tau_l)/\text{Inner}(\tau_l)_{\geq 2}$ -bundles P over L

#### Remarks

P is now finite-dimensional!

# **Danger**

Formal setting is here very important! Especially here is where one has to think about real-analytic conditions for the general case.

# **Examples**

**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_I)$
- Principal Inner $(\tau_I)/\text{Inner}(\tau_I)_{\geq 2}$ -bundles P over L

#### **Corollary**

L simply connected and  $\tau_l$  is made of vector fields vanishing quadratically at 0. Then the unique singular foliation is the trivial one, i.e. the trivial product of  $(L, \mathfrak{X}(L))$  and  $(\mathbb{R}^d, \tau_l)$ .

# **Examples**

**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_I)$
- Principal Inner $(\tau_I)/\mathrm{Inner}(\tau_I)_{\geq 2}$ -bundles P over L

**Corollary ([C. L.-G., S.-R. F.])**L contractible. Then the unique singular foliation is the trivial one.

# **Examples**

**Theorem ([C. L.-G., S.-R. F.])**In the simply connected case, the following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, au_l)$
- Principal Inner $(\tau_I)/\text{Inner}(\tau_I)_{\geq 2}$ -bundles P over L

Corollary ([C. L.-G., S.-R. F.])

L simply connected. Then  ${\mathscr F}$  is the trivial foliation if and only if it admits a flat  ${\mathscr F}$ -connection.

# Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$ ,  $M = T\mathbb{S}^2$ . Let us consider two possible  $\tau_I$ :

| Name                                   | Concentric circles          | Spirals                                                              |
|----------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Generator                              | $x\partial_y - y\partial_x$ | $x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$ |
| Picture<br>of<br>the<br>leaves         |                             |                                                                      |
| $Inner(\tau_l)/Inner(\tau_l)_{\geq 2}$ | $\mathbb{S}^1$              | $\mathbb{R}$                                                         |

# Examples [C. L.-G., S.-R. F.]

 $L = \mathbb{S}^2$ ,  $M = T\mathbb{S}^2$ . Let us consider two possible  $\tau_l$ :

| Name                                                                            | Concentric circles          | Spirals                                                              |
|---------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------|
| Generator                                                                       | $x\partial_y - y\partial_x$ | $x\partial_y - y\partial_x + (x^2 + y^2)(x\partial_x + y\partial_y)$ |
| Picture<br>of<br>the<br>leaves                                                  |                             |                                                                      |
| $\overline{\operatorname{Inner}(\tau_l)/\operatorname{Inner}(\tau_l)_{\geq 2}}$ | $\mathbb{S}^1$              | $\mathbb{R}$                                                         |
| Foliation                                                                       | ©                           | ©                                                                    |

# Thank you! ©

# **Total classification**

#### Remarks

Inner $(\tau_l)$  is a normal subgroup of Sym $(\tau_l)$ , thus we have a quotient:

$$\mathsf{Inner}(\tau_I) \ \longleftrightarrow \ \mathsf{Sym}(\tau_I) \ \longrightarrow \ \mathsf{Out}(\tau_I)$$

**Theorem ([C. L.-G., S.-R. F.])**The following are equivalent:

- Singular foliations with leaf L and transverse model  $(\mathbb{R}^d, \tau_l)$ ,
- 1. a group morphism  $\Xi \colon \pi_1(L) \longrightarrow \operatorname{Out}(\tau_l)$ , and
  - 2. a finite-dimensional principal  $H/\operatorname{Inner}(\tau_l)_{\geq 2}$ -bundle, with H a subgroup of  $\operatorname{Sym}(\tau_l)$  containing  $\operatorname{Inner}(\tau_l)$ .