3-Bit 4:1 Mux-Latch

The MC10E/100E256 contains three 4:1 multiplexers followed by transparent latches with differential outputs. Separate Select controls are provided for the leading 2:1 mux pairs (see logic symbol).

When the Latch Enable (LEN) is LOW, the latch is transparent, and output data is controlled by the multiplexer select controls. A logic HIGH on LEN latches the outputs. The Master Reset (MR) overrides all other controls to set the Q outputs LOW.

- 950ps Max. D to Output
- 850ps Max. LEN to Output
- Split Select
- Differential Outputs
- Extended 100E V_{EE} Range of − 4.2V to − 5.46V
- 75kΩ Input Pulldown Resistors

Pinout: 28-Lead PLCC (Top View)

 $^{^{\}star}$ All VCC and VCCO pins are tied together on the die.

MC10E256 MC100E256

3-BIT 4:1 MUX-LATCH

FUNCTION TABLE

Pin	State	Operation
SEL2	Н	Output c/d Data
SEL1A	Н	Input d Data
SEL1B	Н	Input b Data

PIN NAMES

Pin	Function						
D _{0x} – D _{2x} SEL1A, SEL1B	Data Inputs First-stage Select Inputs						
SEL2	Second-stage Select input						
LEN	Latch Enable						
MR	Master Reset						
$Q_0, \overline{Q_0} - Q_2, \overline{Q_2}$	Data Outputs						

MOTOROLA

12/93

REV 2

DC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = V_{CCO} = GND$)

		0°C		25°C			85°C					
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
lн	Input HIGH Current			150			150			150	μΑ	
IEE	Power Supply Current										mA	
	10E		69	83		69	83		69	83		
	100E		69	83		69	83		79	96		

MOTOROLA 2–2

AC CHARACTERISTICS ($V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = V_{CCO} = GND$)

		0°C		25°C			85°C					
Symbol	Characteristic	min	typ	max	min	typ	max	min	typ	max	Unit	Condition
tPLH	Propagation Delay to Output										ps	
tPHL	D	400	600	900	400	600	900	400	600	900		
	SEL1	550	775	1050	550	775	1050	550	775	1050		
	SEL2	450	650	900	450	650	900	450	650	900		
	LEN	350	500	800	350	500	800	350	500	800		
	MR	350	600	825	350	600	825	350	600	825		
t _S	Setup Time										ps	
	D	400	275		400	275		400	275		l	
	SEL1	600	300		600	300		600	300			
	SEL2	500	250		500	250		500	250			
t _h	Hold Time										ps	
	D	300	- 275		300	- 275		300	- 275			
	SEL1	100	- 300		100	- 300		100	- 300			
	SEL2	200	- 250		200	- 250		200	- 250			
tRR	Reset Recovery Time	700	600		700	600		700	600		ps	
tpW	Minimum Pulse Width										ps	
	MR	400			400			400				
tSKEW	Within-Device Skew		50			50			50		ps	1
t _r	Rise/Fall Times										ps	
t _f	20 - 80%	275	475	700	275	475	700	275	475	700		

2-3

MOTOROLA

Within-device skew is defined as identical transitions on similar paths through a device.

OUTLINE DIMENSIONS

MOTOROLA 2-4

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and material registered trademarks of Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

Copyright © Each Manufacturing Company.

All Datasheets cannot be modified without permission.

This datasheet has been download from:

www.AllDataSheet.com

100% Free DataSheet Search Site.

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com