Formulario TERMODINAMICA

Equazione dei gas ideali:

$$PV = nRT$$

Lavoro di espansione/contrazione: $W_{EC} = -\int PdV$ + quando è fatto sul sistema

$$W_{EC} = -\int PdV$$

Lavoro di rotazione: $W_S = \int_{in}^{out} V dp$

$$W_S = \int_{in}^{out} V dp$$

Lavoro associato al flusso:
$$W_{flow} = (PV)^{in} \dot{m}^{in} - (PV)^{out} \dot{m}^{out}$$

PRIMO PRINCIPIO: $dU = \delta Q + \delta W$

$$dU = \delta Q + \delta W$$

Entalpia:

$$H \equiv U + PV$$

Gas ideale:
$$C_P = C_V + R$$

Trasformazioni: gas ideali, processo reversibile, sistema chiuso. $\Delta U = \int_{T_c}^{T_2} C_V dT$ $\Delta H = \int_{T_c}^{T_2} C_P dT$

$$\Delta U = \int_{T}^{T_2} C_V \, dT$$

$$\Delta H = \int_{T_1}^{T_2} C_P \, dT$$

	W	Q	$\Delta oldsymbol{U}$	ΔH
ISOTERMA	-Q	$RT \ln \frac{V_2}{V_1} = -RT \ln \frac{P_2}{P_1}$	0	0
ISOBARA	$-R\Delta T$	ΔΗ	$C_V \Delta T$	$C_P \Delta T$
ISOCORA	0	ΔU	$C_V \Delta T$	$C_P \Delta T$
ADIABATICA	ΔU	0	$C_V \Delta T$	$C_P \Delta T$

Processo adiabatico:

$$TV^{\gamma-1} = cost \quad PV^{\gamma} = cost \quad TP^{\frac{1-\gamma}{\gamma}} = cost \qquad \gamma \equiv \frac{C_P}{C_V} \qquad \gamma = 1 + \frac{R}{C_V}$$

$$\gamma \equiv \frac{C_P}{C_V}$$

$$\gamma = 1 + \frac{R}{C_V}$$

Entropia macroscopica: $d\underline{S} \equiv \frac{d\underline{Q}_{rev}}{T_{core}}$

$$d\underline{S} \equiv \frac{d\underline{Q}_{rev}}{T_{SVS}}$$

$$\Delta S \equiv k \ln \left(\frac{p_2}{p_1} \right)$$

Entropia microscopica: $\Delta S \equiv k \ln \left(\frac{p_2}{p_1}\right)$ numero di microstati p_i

Entropia di una trasformazione reversibile: $\Delta S = 0$

$$\Delta S = 0$$

SECONDO PRINCIPIO: $dS \ge \frac{\delta Q}{T_{sys}}$ $dS = \frac{\delta Q_{rev}}{T_{sys}} + S_{gen}$ $S_{gen} \ge 0$

$$dS \ge \frac{\delta Q}{T_{sys}}$$

$$dS = \frac{\delta Q_{rev}}{T} + S_{gen}$$

$$S_{gen} \geq 0$$

Relazioni fondamentali:

$$dU = TdS - PdV$$

$$dU = TdS - PdV$$
 $dH = TdS + VdP$
 $dA = -PdV - SdT$ $dG = VdP - SdT$

Equilibrio di fase (liquido puro): $G^L = G^V$

$$G^L = G^V$$

Potenziale chimico:
$$\underline{\mu}_i = (\frac{d G}{dn_i})_{T,P,n_{j\neq i}}$$

Equilibrio di fase (composto puro): $\mu_i^V(T, P) = \mu_i^L(T, P)$

$$\mu_i^V(T,P) = \mu_i^L(T,P)$$

Fugacità gas ideale puro:

$$f_{nure}^{ig} = P$$

Fugacità componente i gas ideale: $\widehat{f}_i = x_i P$

$$\widehat{f}_i = x_i I$$

Fugacità soluzione ideale: $\widehat{f}_i = \varphi_i y_i P$

$$\widehat{f}_{\cdot} = \omega_{\cdot} v_{\cdot} F$$

Fugacità soluzione reale: $\widehat{f}_i = \widehat{\varphi}_i y_i P$

$$\hat{f}_i = \hat{\varphi}_i y_i P$$

Attività:

$$a_i = \frac{\hat{f}_i}{f_i^o}$$

Coefficiente di attività:

$$\gamma_i = \frac{\hat{f}_i}{x_i f_i^o}$$

$$y_i P = x_i P_i^{sat}$$

$$P = x_1 P_1^{sat} + x_2 P_2^{sat}$$

$$P = \frac{1}{\frac{y_1}{P_2^{\text{sat}}} + \frac{y_1}{P_2^{\text{sat}}}}$$

Equazione di Van't Hoff (sol. diluita, volume incomprimibile): $\pi V = n_2 RT$

$$d\varepsilon = \frac{dn_i}{v_i}$$

$$\sum_{i} v_{i} \mu_{i} = 0$$

$$K \equiv exp\left(\frac{-\Delta G^{\circ}}{RT}\right)$$

$$\frac{\partial}{\partial T} \ln K_a = \frac{\Delta H_T^o}{RT^2}$$