

NLP for Fact-Checking and Claim Assessment

A Language Model based approach

Othman EL HOUFI
Pr. D. KOTZINOS – Project supervisor

M2 Research in Data Science & Machine Learning

Overview

- Fake news & NLP
- Related work
- Language Models
- Proposed architecture
 - FEVER dataset
 - Fine-tuning Language Models
 - Learning & Validation
- Results & Discussion
- Conclusion & Perspective

Breaking: Two Explosions in the White House and Barack Obama is injured

12:07 PM - 23 Apr 13

NEWS

Roger Stone: Bill Gates may have created coronavirus to microchip people

By Bob Fredericks

April 13, 2020 | 2:49pm | Updated

Fake news

<u>false</u>, often <u>sensational</u>, information <u>disseminated</u> under the <u>guise</u> of <u>news</u> <u>reporting</u>.

Collins English Dictionary

Humans

have been proven <u>irrational</u> and <u>vulnerable</u> when <u>differentiating</u> between <u>real</u> and <u>fake</u> news. Typical accuracy ranges between 55% and 58%.

Xinyi Zhou, Reza Zafarani, Kai Shu, and Huan Liu. Fake news: Fundamental theories, detection strategies and challenges.

<u>Automatic</u> fake news <u>detection</u> is a practical <u>NLP problem</u> useful to all online content providers.

- → Reduce the human time and effort to detect fake news,
- → Can sweep through huge data streams,
- → Capable of ceasing the spreading much faster.

- How can we differentiate fake news from real news?
- At what level of confidence can we do so?
- What are the existing methods that solves this problem?

Related work

S Hangloo, B Arora. Fake News Detection Tools and Methods – A Review

Related work

Knowledge-based Fake News Detection

aims to assess news authenticity by comparing the knowledge extracted from to-be verified news content with known facts, also called fact-checking.

Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. Whatthewikifact: Fact-checking claims against wikipedia.

Style-based Fake News Detection

focuses on the style of writing, i.e. the form of a text rather than its meaning.

P. Przybyla. Capturing the style of fake news. In Proceedings of the AAAI Conference on Artificial Intelligence.

Related work

Language Model based Fact-Checking

a new approach that relies on fine-tuning state-of-art LMs like BERT that were pre-trained on Wikipedia's articles in order to solve the claim classification problem.

Nayeon Lee, Belinda Z Li, Sinong Wang, Wen-tau Yih, Hao Ma, and Madian Khabsa. Language models as fact checkers?

- What are Language Models?
- How can they be employed as fact-checkers?

Language Models

Attention is all you need.

Bert: Pre-training of deep bidirectional transformers for language understanding.

Language Models BERT

Q 2019 brazil traveler to usa need a visa

BEFORE 9:00 google.com top Washington Post > 2019/03/21 U.S. citizens can travel to Brazil without the red tape of a visa ... Mar 21, 2019 · Starting on June 17, you can go to Brazil without a visa and ... Australia, Japan and Canada will no longer need a visa to ... washingtonpost.com; © 1996-2019 The Washington Post ...

Language Models BERT

Q parking on a hill with no curb

BEFORE AFTER

- We start by <u>fine-tuning</u> a set of LMs for the <u>downstream task</u> that is claim classification using the <u>FEVER dataset</u>,
- Then each model is employed to <u>assess</u> the <u>validity</u> of new <u>input claims</u>.

FEVER dataset

FEVER (Fact Extraction and VERification)

consists of 185,445 claims generated by altering sentences extracted from Wikipedia. The claims are classified as Supported, Refuted or NotEnoughInfo.

Claim: The Rodney King riots took place in the most populous county in the USA.

[wiki/Los_Angeles_Riots]

The 1992 Los Angeles riots, also known as the Rodney King riots were a series of riots, lootings, arsons, and civil disturbances that occurred in Los Angeles County, fornia in April and May 1992.

[wiki/Los_Angeles_County]

Los Angeles County, officially the County of Los Angeles, is the most populous county in the USA.

Verdict: Supported

ID	Claim	Label
79044	The Apple Store first opened in 2001.	1
117129	Adventure Time won an Oscar.	0
55061	Yamaha Corporation produces hardware.	2

EXAMPLES OF FEVER CLAIMS AND LABELS.

Split	SUPPORTS	REFUTES	NEI	Total
Train	80,035	29,775	35,639	145,449
Val	3,333	3,333	3,333	9,999
Test	3,333	3,333	3,333	9,999

DATASET SPLIT SIZES FOR SUPPORTS, REFUTES AND NOTENOUGHINFO (NEI) CLASSES.

Fine-tuning Language Models

LMs used in this experiment:

- BERT-base-uncased
- RoBERTa-base
- DistilBERT-base-uncased
- XLNET-base-cased
- ALBERT-base-v2
- BigBird-RoBERTa-base

Hyperparameters:

- Tokenizer max sequence length: 128
- Output layer size: 3
- Activation function: GeLU
- Learning rate: 3e-5
- Optimization: Adam with linear decay
- Loss function: Cross-Entropy
- Epochs: 3
- Training batch size: 20
- Validation batch size: 20

Learning & Validation

Results & Discussion

Fine-tuned model	Label	prec	recall	f1	accuracy	macro prec	macro recall	macro f1
	SUPPORTS	0.55	0.78	0.64				
BERT-base-uncased	REFUTES	0.75	0.59	0.66	0.62	0.63	0.62	0.61
	NEI	0.61	0.47	0.53				
	SUPPORTS	0.46	0.81	0.59				
ALBERT-base-v2	REFUTES	0.77	0.46	0.58	0.53	0.58	0.53	0.52
	NEI	0.50	0.33	0.40				
	SUPPORTS	0.54	0.78	0.64				
DistilBERT-base-uncased	REFUTES	0.75	0.58	0.65	0.61	0.63	0.61	0.61
	NEI	0.60	0.47	0.53				
	SUPPORTS	0.54	0.81	0.65				
RoBERTa-base	REFUTES	0.75	0.59	0.66	0.62	0.64	0.62	0.61
	NEI	0.63	0.45	0.53				
	SUPPORTS	0.53	0.81	0.64				
BigBird-RoBERTa-base	REFUTES	0.75	0.58	0.66	0.61	0.64	0.61	0.60
	NEI	0.63	0.44	0.52				
	SUPPORTS	0.53	0.81	0.64				
XLNET-base-cased	REFUTES	0.74	0.59	0.65	0.61	0.63	0.61	0.60
	NEI	0.63	0.43	0.51				
Related work	Label	prec	recall	f1	accuracy	macro prec	macro recall	macro f1
	SUPPORTS	0.54	0.67	0.59				
BERT-large [7]	REFUTES	0.62	0.55	0.58	0.57	0.57	0.57	0.57
	NEI	0.57	0.49	0.53				
FEVER Baseline [19]	l -	-	-	-	0.49	-	-	-
Ohio State University [19]	-	-	-	-	0.50	-	-	-
Columbia NLP [19]	-	-	-	-	0.58	-	-	-
Papelo [19]	-	-	-	-	0.61	-	-	-
UNC-NLP [19]	-	-	-	-	0.68	-	-	-
DREAM [20]	-	-	-	-	0.77	-	-	-

Results & Discussion

- Pre-trained LMs can classify claims,
- LMs surpasses most of the existing fact-checking methods,
- We don't need bigger models for better results
 - BERT-large Vs. BERT-base Vs RoBERTa-base
- Using LMs does not require an external source of knowledge.

Conclusion & Perspective

- LMs have a great potential to solve different NLP problems,
- LMs for fact-checking is good but not great,
 - Does not beat state-of-art traditional models.
- Different paths can be explored
 - We still have much to learn about LM.

Proposed Method

Language Models for classification

Comparison	BERT October 11, 2018	RoBERTa July 26, 2019	DistilBERT October 2, 2019	ALBERT September 26, 2019
Parameters	Base: 110M Large: 340M	Base: 125 Large: 355	Base: 66	Base: 12M Large: 18M
Layers / Hidden Dimensions / Self- Attention Heads	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 12 / 768 / 12 Large: 24 / 1024 / 16	Base: 6 / 768 / 12	Base: 12 / 768 / 12 Large: 24 / 1024 / 16
Training Time	Base: 8 x V100 x 12d Large: 280 x V100 x 1d	1024 x V100 x 1 day (4-5x more than BERT)	Base: 8 x V100 x 3.5d (4 times less than BERT)	[not given] Large: 1.7x faster
Performance	Outperforming SOTA in Oct 2018	88.5 on GLUE	97% of BERT-base's performance on GLUE	89.4 on GLUE
Pre-Training Data	BooksCorpus + English Wikipedia = 16 GB	BERT + CCNews + OpenWebText + Stories = 160 GB	BooksCorpus + English Wikipedia = 16 GB	BooksCorpus + English Wikipedia = 16 GB
Method	Bidirectional Trans- former, MLM & NSP	BERT without NSP, Using Dynamic Masking	BERT Distillation	BERT with reduced para- meters & SOP (not NSP)

https://humboldt-wi.github.io/blog/research/information_systems_1920/uncertainty_identification_transformers/