STA 711 Homework 3

Due: Friday, February 3, 12:00pm (noon) on Canvas.

Instructions: Submit your work as a single PDF. For this assignment, you may include written work by scanning it and incorporating it into the PDF. Include all R code needed to reproduce your results in your submission.

Maximum likelihood estimation

1. Let $Y_1, ..., Y_n$ be an iid sample from a distribution with pdf

$$f(y|\lambda,\sigma) = \frac{\sigma^{1/\lambda}}{\lambda} \exp\left\{-\left(1 + \frac{1}{\lambda}\right) \log(y)\right\} \mathbb{1}\{y \ge \sigma\},\,$$

where $\lambda, \sigma > 0$. Find the maximum likelihood estimators of λ and σ . (Hint: find $\hat{\sigma}$ first)

Score and information

- 2. Let $Y_1, ..., Y_n \stackrel{iid}{\sim} Poisson(\lambda)$.
 - (a) Find the score function $U(\lambda)$.
 - (b) Calculate the Fisher information $\mathcal{I}(\lambda)$ using $Var(U(\lambda))$.
 - (c) Calculate the Fisher information $\mathcal{I}(\lambda)$ using $-\mathbb{E}\left[\frac{d^2}{d\lambda^2}\ell(\lambda|\mathbf{Y})\right]$ (the required regularity conditions hold in this example).
- 3. Consider a clinical trial to compare two treatments. n_1 subjects are given treatment 1, and n_2 subjects are given treatment 2. Let Y_1 be the number of people on treatment 1 who respond favorably, and Y_2 the number of people on treatment 2 who respond favorably. Assume that $Y_1 \sim Binomial(n_1, p_1)$ and $Y_2 \sim Binomial(n_2, p_2)$. The quantity of interest is the difference in the two treatments: $\psi = p_1 p_2$.
 - (a) Find the maximum likelihood estimate $\widehat{\psi}$ for ψ .
 - (b) Since we have two parameters, p_1 and p_2 , Fisher information is no longer a scalar. Instead, $\mathcal{I}(p_1, p_2)$ is a 2×2 matrix. By definition, the i, j entry of this Fisher information matrix is

$$[\mathcal{I}(p_1, p_2)]_{ij} = \mathbb{E}\left[\left(\frac{\partial}{\partial p_i}\ell(p_1, p_2|\mathbf{Y})\right)\left(\frac{\partial}{\partial p_j}\ell(p_1, p_2|\mathbf{Y})\right)\right].$$

Use this definition to find $\mathcal{I}(p_1, p_2)$.

(c) The definition in part (b) is often a clunky way to calculate Fisher information. Under appropriate regularity conditions, it can be shown that the Fisher information is also

$$[\mathcal{I}(p_1, p_2)]_{ij} = -\mathbb{E}\left[\frac{\partial^2}{\partial p_i \partial p_j} \ell(p_1, p_2 | \mathbf{Y})\right].$$

Confirm that this second method of calculating $\mathcal{I}(p_1, p_2)$ gives the same answer as in part (b).

(d) A sufficient condition for the formula in part (c) is given in Lemma 7.3.11 of Casella & Berger, which essentially requires that we can differentiate under the integral sign. Read Section 2.4 of Casella & Berger (particularly Theorem 2.4.2), on rules for differentiating under the integral sign. Then explain why the regularity conditions hold for this problem.

1

Fisher scoring problems

In class, we learned how to use Fisher scoring to fit a logistic regression model. Recall that the Fisher scoring algorithm estimates the parameters β of a model as follows:

- Start with an initial guess $\beta^{(0)}$
- Update the estimate: $\beta^{(r+1)} = \beta^{(r)} + \mathcal{I}^{-1}(\beta^{(r)})U(\beta^{(r)})$
- Stop when $\beta^{(r+1)} \approx \beta^{(r)}$

The purpose of these questions is to practice with Fisher scoring.

4. In this problem, we will work with the dengue data we discussed in class. A CSV containing the data can be downloaded in R by running

For this problem, we are interested in modeling the relationship between platelet count and dengue fever. Let PLT_i denote the platelet count of patient i, and Y_i denote their dengue status (0 = negative, 1 = positive). Our logistic regression model is

$$Y_i \sim Bernoulli(p_i)$$
$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 PLT_i$$

- (a) Fit this logistic regression model in R, and report the estimated coefficients $\widehat{\beta}_0$ and $\widehat{\beta}_1$.
- (b) In R, write a function U which calculates $U(\beta)$ using the dengue data. For example, if $\beta = (1.8, 0)^T$ then your function should produce the following:

(c) In R, write a function I which calculates $\mathcal{I}(\beta)$ using the dengue data. For example, if $\beta = (1.8, 0)^T$ then your function should produce the following:

- (d) Suppose that we use Fisher scoring to estimate β , and our current estimate is $\beta^{(r)} = (1.8, 0)^T$. Calculate the updated estimate $\beta^{(r+1)}$.
- (e) Use your code from (b) and (c) to write code which implements Fisher scoring until convergence, beginning with $\beta^{(0)} = (1.8, 0)^T$. For the purpose of this question, stop when

$$\max\{|\beta_0^{(r+1)}-\beta_0^{(r)}|,\ |\beta_1^{(r+1)}-\beta_1^{(r)}|\}<0.0001$$

Does your final estimate match the estimated coefficients in (a)? How many scoring iterations did it take to converge?

- 5. One alternative to Fisher scoring is gradient ascent, variations of which are often used to fit complicated machine learning models for which it is challenging to calculate the Hessian / Fisher information. Rather than the Fisher information, gradient ascent uses a learning rate (or step size) $\gamma > 0$ to update coefficient estimates.
 - Start with an initial guess $\beta^{(0)}$
 - Update the estimate: $\beta^{(r+1)} = \beta^{(r)} + \gamma U(\beta^{(r)})$
 - Stop when $\beta^{(r+1)} \approx \beta^{(r)}$
 - (a) Modify your code from 4(e) to implement gradient ascent instead of Fisher scoring. Use a learning rate (step size) of $\gamma = 0.0000001$, begin with $\beta^{(0)} = (1.8, 0)^T$, and run for 5000 iterations (do not run until convergence!). Report the estimated coefficients after 5000 steps. Why do you think Fisher scoring performs better here than gradient ascent?
- 6. So far, we have applied Fisher scoring to estimate parameters in logistic regression models. How does this relate to estimation for *linear* regression models?

Consider the model

$$Y_i \sim N(\mu_i, \sigma^2)$$
$$\mu_i = \beta^T X_i$$

where $\beta = (\beta_0, \beta_1, ..., \beta_k)^T$ and $X_i = (1, X_{i,1}, ..., X_{i,k})^T$. Suppose we observe data $(X_1, Y_1), ..., (X_n, Y_n)$, and we want to estimate β .

- (a) Write down the log likelihood function $\ell(\beta|\mathbf{X},\mathbf{Y})$.
- (b) Show that the score function, in matrix form, is given by

$$U(\beta) = \frac{1}{\sigma^2} \mathbf{X}^T (\mathbf{Y} - \mu),$$

where $\mu = \mathbf{X}\beta$.

(c) Set the score equal to 0 and solve for β to get

$$\widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

(d) Show that the Hessian of the log likelihood, in matrix form, is given by

$$H(\beta) = -\frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}$$

(e) As we can see from (c), for *linear* regression we can get a closed form for $\widehat{\beta}$. But for the sake of comparison with logistic regression, let's suppose instead that we use Fisher scoring. Let $\beta^{(0)}$ be any initial estimate of β . Show that the result from a single iteration of Fisher scoring is

$$\beta^{(1)} = \widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

(in other words, Fisher scoring converges in a single step).