MATH 570, Homework 11

Colin Roberts

November 28, 2017

Solutions

Problem 1. Let X be the 2-dimensional simplicial complex with ten 2-simplices drawn below; recall that X is homeomorphic to the projective plane \mathbb{RP}^2 .

Show that the 2-dimensional simplicial homology group of X is $H_2(X) \cong 0$.

Proof. Henry has a hint online. \Box

Problem 2. Prove Proposition 13.5 in our book: If X is a space, $\{X_{\alpha}\}_{{\alpha}\in X}$ is the set of path components of X, and $\iota_{\alpha}\colon X_{\alpha}\hookrightarrow X$ is the corresponding inclusion, then for each $p\geq 0$ the map $\bigoplus_{{\alpha}\in A}H_p(X_{\alpha})\to H_p(X)$ whose restriction to singular homology group $H_p(X_{\alpha})$ is $(\iota_{\alpha})_*\colon H_p(X_{\alpha})\to H_p(X)$ is an isomorphism. Proceed by the following steps.

- (a) Show the maps $(\iota_{\alpha})_{\#}: C_p(X_{\alpha}) \to C_p(X)$ give an isomorphism $g_C: \bigoplus_{\alpha \in A} C_p(X_{\alpha}) \to C_p(X)$, defined by $g_C((c_{\alpha})_{\alpha \in A}) = \sum_{\alpha} (\iota_{\alpha})_{\#}(c_{\alpha})$, where $c_{\alpha} \in C_p(X_{\alpha})$. Injectivity is clear, and the first sentence of the proof in our book implies surjectivity.
- (b) Show that restricting g_C gives an isomorphism $g_Z : \bigoplus_{\alpha \in A} Z_p(X_\alpha) \to Z_p(X)$. The injectivity of g_Z follows from that of g_C ; you need to show that g_Z is well-defined and surjective.
- (c) Show that restricting g_C gives an isomorphism $g_B : \bigoplus_{\alpha \in A} B_p(X_\alpha) \to B_p(X)$. The injectivity of g_B follows from that of g_C ; you need to show that g_B is well-defined and surjective.
- (d) Deduce that g_C induces an isomorphism $\bigoplus_{\alpha \in A} H_p(X_\alpha) \to H_p(X)$.

•

Proof. (a)

Problem 3. Prove Proposition 13.6: For any topological space X, the singular homology group $H_0(X)$ is a free abelian group with basis consisting of an arbitrary point in each path component.

Remark: Our book contains a detailed proof; you can learn and use this proof!

Proof. First, assume X is path-connected. Let an element in C_0 be given by $c = \sum_{i=1}^m$ and define the map $\epsilon \colon C_0(X) \to \mathbb{Z}$ by

$$\epsilon \left(\sum_{i=1}^{m} n_i x_i \right) = \sum_{i=1}^{m} n_i.$$

Clearly, ϵ is a surjective group homomorphism.

Now choose a point $x_0 \in X$ and for every $x \in X$ let $\alpha(x)$ be a path from x_0 to x. This path α is a singular 1-simplex whose boundary is the 0-chain $x - x_0$. So for an arbitrary 0-chain c, we have

$$\partial \left(\sum_{i=1}^{m} \alpha(x_i) \right) = \sum_{i=1}^{m} -\sum_{i=1}^{m} n_i x_0 = c - \epsilon(c) x_0.$$

If we then let $c \in \ker \epsilon$ so that $\epsilon(c) = 0$ we find that $c \in B_0(X)$. This means that $\ker \epsilon \subseteq B_0(X)$.

Next, note that $B_0(X) \in \ker \epsilon$ since for any singular 1-simplex σ we have $\partial \sigma = \sigma(1) - \sigma(0)$ and in particular, $\epsilon(\partial \sigma) = 1 - 1 = 0$. This means $B_0(X) \subseteq \ker \epsilon$.

Then we have that $\ker \epsilon = B_0(X)$, and by the first isomorphism theorem, that ϵ induces and isomorphism $H_0 \to \mathbb{Z}$. Finally, by Proposition 13.5, we have that $H_0(X)$ is a direct sum of infinite cyclic groups, one for each path component. Hence, we have $H_0(X)$ is a free abelian group with basis consisting of an arbitrary point in each path component.

Problem 4. Use the Mayer-Vietoris Theorem to prove Theorem 13.23: For $n \geq 1$, the singular homology groups of the sphere S^n are

$$H_p(S^n) \cong \begin{cases} \mathbb{Z} & \text{if } p = 0 \text{ or } n \\ 0 & \text{if } 0 n. \end{cases}$$

Remark: Our book contains a detailed proof; you can learn and use this proof!

:

Proof. We let N and S represent the north and south poles of S^n . Now $U = S^n \setminus \{N\}$ and $V = S^n \setminus \{S\}$. Since U and V are contractible, the Mayer Vietoris sequence is

$$0 \to H_p(S^n) \xrightarrow{\partial_*} H_{p-1}(U \cap V) \to 0,$$

which gives us that ∂_* is an isomorphism. Since $U \cap V$ is homotopy equivalent to S^{n-1} ,

$$H_p(S^n) \cong H_{p-1}(U \cap V) \cong H_{p-1}(S^{n-1}) \text{ for } p > 1, n \ge 1.$$

Now we finish by induction. For the case n=1, $H_0(S^1)\cong H_1(S^1)\cong \mathbb{Z}$ by Proposition 13.6 and Corollary 13.15. For p>1, The Mayer Vietoris theorem tells us that $H_p(S^1)\cong H_{p-1}(S^0)$. Since S^0 is the disjoint union of two points, $H_{p-1}(S^0)$ is the trivial group by Propositions 13.7 and 13.5. Next, suppose the result is true for S^{n-1} for n>1, then for p=0 and p=1 we have the result

Next, suppose the result is true for S^{n-1} for n > 1, then for p = 0 and p = 1 we have the result by Proposition 13.6 and Corollary 13.15. For p > 1, the Mayer Vietoris theorem and the inductive hypothesis imply that

$$H_p(S^n) \cong H_{p-1}(S^{n-1}) \cong \begin{cases} 0 & \text{if } p < n, \text{ or } p > n, \\ \mathbb{Z} & \text{if } p = n. \end{cases}$$

Hence, we are finished.