2020/2021

Folha Prática 7

Uma gramática independente de contexto (GIC) é um quarteto $\mathcal{G}=(V,\Sigma,P,S)$, onde V e Σ são conjuntos de símbolos, tais que $V\cap\Sigma=\emptyset$, sendo ambos finitos e não vazios, $S\in V$, e P é um conjunto finito de regras da forma $X\to w$ com $X\in V$ e $w\in (V\cup\Sigma)^*$. Formalmente, P é definido como uma relação binária de V em $(V\cup\Sigma)^*$, constituída pelos pares (X,w) referidos. É usada a seguinte terminologia:

- V é o conjunto das **variáveis** ou símbolos **não terminais**;
- $S \notin o$ símbolo inicial;
- Σ é o **alfabeto** ou conjunto dos símbolos **terminais**;
- P é o conjunto de **produções** ou **regras** (ou regras de produção) e escreve-se $X \to w$ se $(X, w) \in P$. Podemos referir as regras que definem X como X-**produções**, para $X \in V$.

Por vezes, usamos $X \to w_1 \mid w_2 \mid \dots \mid w_k$ para representar um conjunto de X-produções de forma abreviada. Neste caso, teriamos as regras $X \to w_i$, com $1 \le i \le k$.

Sendo x e y sequências de $(V \cup \Sigma)^*$ tais que x tem pelo menos um símbolo não terminal, diz-se que y se pode derivar de x por aplicação de uma regra $X \to w$ de $\mathcal G$ se e só se $x = x_1 X x_2$ e $y = x_1 w x_2$, com $X \in V$ e $x_1, w, x_2 \in (V \cup \Sigma)^*$. Numa derivação, a aplicação da regra $X \to w$ para substituição de X em $x_1 X x_2$, substitui essa ocorrência de X por w independentemente do contexto em que X está. É por essa razão que a gramática se diz independente de contexto.

Escrevemos:

- $x \Rightarrow_{\mathcal{G}} y$ se se derivar y de x por aplicação de alguma regra de \mathcal{G} (derivação num passo);
- $x \Rightarrow_{\mathcal{G}}^{n} y$ se se derivar y de x por aplicação de n regras de \mathcal{G} , não necessariamente distintas (*derivação em n passos*);
- $x \Rightarrow_{\mathcal{G}}^{\star} y$ se se derivar y de x por aplicação de um número finito de regras de \mathcal{G} , possivelmente zero (derivação em zero ou mais passos).

A derivação num passo $\Rightarrow_{\mathcal{G}}$ pode ser definida como uma relação binária em $(V \cup \Sigma)^{\star}$, sendo $\Rightarrow_{\mathcal{G}}^{\star}$ o seu fecho reflexivo e transitivo, e $\Rightarrow_{\mathcal{G}}^{n}$ a relação obtida por composição de $\Rightarrow_{\mathcal{G}}$ com si própria, n vezes. Mais formalmente, $(\Rightarrow_{\mathcal{G}}^{1}) = (\Rightarrow_{\mathcal{G}})$ e $(\Rightarrow_{\mathcal{G}}^{n}) = (\Rightarrow_{\mathcal{G}}^{n-1} \Rightarrow_{\mathcal{G}}) = (\Rightarrow_{\mathcal{G}} \Rightarrow_{\mathcal{G}}^{n-1})$, para $n \geq 2$.

Se estivermos a considerar apenas uma gramática, podemos omitir \mathcal{G} em $\Rightarrow_{\mathcal{G}}$, $\Rightarrow_{\mathcal{G}}^{n}$, e $\Rightarrow_{\mathcal{G}}^{\star}$.

Num passo de derivação, podemos substituir uma qualquer variável (desde que tal nos permita obter a palavra pretendida, no fim da derivação). Uma **derivação pela esquerda** é uma derivação em que a variável que se substitui em cada passo é sempre a que estiver mais à esquerda. Uma **derivação pela direita** é uma derivação em que a variável que se substitui em cada passo é sempre a que estiver mais à direita. Numa derivação podemos optar por não seguir nenhum desses dois critérios.

A linguagem gerada pela gramática \mathcal{G} é o conjunto das palavras de Σ^* que se podem *derivar num número finito de passos* a partir do símbolo inicial de \mathcal{G} . Denota-se por $\mathcal{L}(\mathcal{G})$, e sendo S o símbolo inicial, tem-se:

$$\mathcal{L}(\mathcal{G}) = \{ x \mid x \in \Sigma^*, S \Rightarrow_{\mathcal{G}}^* x \}.$$

Uma **linguagem é independente de contexto** (**LIC**) é, por definição, qualquer linguagem que possa ser gerada por uma gramática independente de contexto.

A derivação de uma palavra pode ser representada esquematicamente por uma **árvore de derivação** (ou **árvore sintática**) que é uma árvore orientada, com raíz S, em que os descendentes diretos de um nó interno X correspondem ao lado direito da regra aplicada para substituição desse X na derivação. Assim, se a regra aplicada para substituir esse X for $X \to \beta_1\beta_2\dots\beta_m$, com $\beta_i \in V \cup \Sigma \cup \{\varepsilon\}$, para $1 \le i \le m$, o nó X será ligado aos m novos nós, criados para $\beta_1, \beta_2, \dots, \beta_m$, ficando os ramos ordenados. O ramo de X para β_1 será o filho de X mais à direita. Cada folha da árvore contém um símbolo terminal ou ε . A palavra que deu origem a essa árvore de derivação é dada pela concatenação das folhas da árvore.

Uma gramática independente de contexto é ambígua se existir alguma palavra $x \in \mathcal{L}(\mathcal{G})$ que admita mais do que uma derivação pela esquerda (ou, equivalentemente, que admita mais do que uma derivação pela direita) em \mathcal{G} . É conhecido que cada derivação pela esquerda (ou pela direita) determina uma e uma só árvore de derivação, e vice-versa. Assim, uma gramática \mathcal{G} é ambígua se existir alguma palavra $x \in \mathcal{L}(\mathcal{G})$ que admita duas ou mais árvores de derivação em \mathcal{G} .

Uma **linguagem independente de contexto é (inerentemente) ambígua** se <u>todas</u> as gramáticas independentes de contexto que a geram são ambíguas. Existem linguagens independentes de contexto que são ambíguas mas está fora do âmbito da disciplina provar que uma linguagem é ambígua. No entanto, sempre que for simples perceber que uma linguagem não é ambígua, faremos um esforço por a definir por uma gramática não ambígua.

Exemplo

Considere a gramática $\mathcal{G}=(\{E,N\},\{\mathbf{0},\mathbf{1},+\},P,E)$, onde P é constituído pelas regras

$$E \ \rightarrow \ E + E \ | \ {\rm O} \ | \ 1N \qquad \qquad N \ \rightarrow \ 1N \ | \ {\rm O} N \ | \ \varepsilon$$

A palavra 11+0+1 pertence a $\mathcal{L}(\mathcal{G})$, como mostra a seguinte derivação pela esquerda:

 $E \Rightarrow_{\mathcal{G}} E+E \Rightarrow_{\mathcal{G}} E+E+E \Rightarrow_{\mathcal{G}} 1N+E+E \Rightarrow_{\mathcal{G}} 11N+E+E \Rightarrow_{\mathcal{G}} 11\varepsilon+E+E \Rightarrow_{\mathcal{G}} 11+0+E \Rightarrow_{\mathcal{G}} 11+0+1N \Rightarrow_{\mathcal{G}} 11+0+1\varepsilon$ A gramática é ambígua. Por exemplo, para a mesma palavra, existe uma outra derivação pela esquerda:

$$E \Rightarrow_{\mathcal{G}} E+E \Rightarrow_{\mathcal{G}} 1N+E \Rightarrow_{\mathcal{G}} 11N+E \Rightarrow_{\mathcal{G}} 11\varepsilon+E \Rightarrow_{\mathcal{G}} 11+E+E \Rightarrow_{\mathcal{G}} 11+0+E \Rightarrow_{\mathcal{G}} 11+0+1N \Rightarrow_{\mathcal{G}} 11+0+1\varepsilon$$

As árvores de derivação correspondentes a estas derivações são:

As palavras de $\mathcal{L}(\mathcal{G})$ representam números em binário sem 0's não significativos ou somas de números desse tipo, sendo $\mathcal{L}(\mathcal{G}) = (\{0\} \cup \{1\}\{0,1\}^*)(\{+0\} \cup \{+1\}\{0,1\}^*)^*$. A ambiguidade de \mathcal{G} resulta da regra $E \to E + E$. Se a substituirmos convenientemente, podemos obter uma gramática não ambígua equivalente (i.e., que gera a mesma linguagem), o que mostra que $\mathcal{L}(\mathcal{G})$ não é ambígua embora \mathcal{G} seja. Por exemplo, a gramática $\mathcal{G}_1 = (\{E, N\}, \{0, 1, +\}, P_1, E)$, onde P_1 é constituído pelas regras:

$$E \ \rightarrow \ \mathbf{1}N + E \ | \ \mathbf{0} + E \ | \ \mathbf{0} \ | \ \mathbf{1}N \\ \hspace{1cm} N \ \rightarrow \ \mathbf{1}N \ | \ \mathbf{0}N \ | \ \varepsilon \\$$

Exercícios

- **1.** Defina uma gramática independente de contexto que gere a linguagem indicada em cada alínea (pode ser uma gramática ambígua). Para as sete primeiras, o alfabeto é $\{0,1\}$. Para as restantes é $\{a,b,c\}$. Justifique sucintamente a correção da gramática, indicando o que gera cada variável e/ou a forma geral das sequências de símbolos terminais e/ou não terminais que se podem derivar em k passos, com $k \ge 1$.
- a) $\{0^n \mid n \ge 0\}\{1^{2n} \mid n \ge 1\}$
- **b)** $\{0^n 1^{2n} \mid n \leq 2\}$
- c) $\{0^n 1^{2n} \mid n \ge 2\}$
- **d)** $\{0^n 1^m \mid m \ge n \ge 0\}$
- **e**) $\{0^n 1^m \mid m \ge n \ge 0\}^*$
- **f)** $\mathcal{L}(00^*11 + (0+101)^*1)$
- **g)** $\{wtw^R \mid w \in \{0,1\}^*, t \in \{0,1,\varepsilon\}\}$
- h) {palavras que terminam em abc ou têm exatamente dois a's}
- i) $\mathcal{L}(a^*abbb^*)$
- $\mathbf{j}) \ \left\{ \mathbf{a}^n \mathbf{b} \mathbf{a}^n \mid n > 1 \right\}$
- **k)** $\{a^ib^{i+j}c^j \mid i \ge 0, j \ge 0\}$
- **l**) $\{a^ib^ja^kc^i \mid i,j,k \in \mathbb{N} \text{ e } k > 0 \text{ se } j > 0\}$
- **m**) $(\{c\}\{c\}^{\star}\{a^{2n}b^n \mid n \geq 1\})^{\star}\{c\}\{c\}^{\star}$
- n) {palavras cujo número de a's é primo e não excede seis}
- o) {palavras que não terminam em c se tiverem dois b's consecutivos}
- **2.** Seja L a linguagem das expressões regulares sobre $\Sigma = \{a, b\}$, a qual pode ser definida indutivamente, como uma linguagem de alfabeto $\{\}$, $\{, +, *, [\varepsilon], \emptyset\} \cup \Sigma$, por:
 - ullet $[arepsilon] \in L$, $\mathbf{a} \in L$, $\mathbf{b} \in L$, $\emptyset \in L$
 - $(r^*) \in L$, $(rs) \in L$, e $(r+s) \in L$, quaisquer que sejam $r, s \in L$.

Para não confundir a palavra vazia com expressão ε , usámos ε como símbolo em vez de ε . Determine uma gramática independente de contexto (não ambígua) que gere L. Apresente as árvores de derivação das palavras $(((a+b)^*) + (\emptyset[\varepsilon]))$ e $(((a+b)^*) + (\emptyset[\varepsilon]))^*)$.

- **3.** Seja L a linguagem de alfabeto $\Sigma = \{p, \land, \lor, \neg, \Rightarrow, \}, (\}$ assim definida indutivamente: (i) p pertence a L; (ii) se α e β pertencem a L, também as palavras $(\alpha \lor \beta)$, $(\alpha \land \beta)$, $(\alpha \Rightarrow \beta)$, e $(\neg \alpha)$ pertencem a L; (iii) as palavras de L são as que se obtêm por aplicação das regras (i) e (ii).
- a) Verifique que $((p \lor p) \lor (\neg p))$ e $((p \lor p) \Rightarrow (\neg (p \land p)))$ pertencem a L.
- **b**) Partindo da descrição dada, determine uma GIC G não ambígua que gere L.
- c) Para a palavra $((p \lor p) \lor (\neg p))$, apresente: derivação pela esquerda; derivação pela direita; derivação que não é nem pela esquerda nem pela direita; as árvores de derivação correspondentes.
- **d)** Mostre que $((p \lor \lor p)) \notin \mathcal{L}(G)$.

- **4.** Mostre que a linguagem $\{0^n1^{2n} \mid n \ge 0\} \cup \{0\}^*$ não é regular mas é independente de contexto.
- **5.** Considere a linguagem $L = \{a^n b^m \mid m > 3n \ge 0\}$ de alfabeto $\Sigma = \{a, b\}$.
- a) Prove que não existe uma expressão regular que descreva L.
- **b)** Prove que L é uma linguagem independente de contexto não ambígua. Para isso, determine uma GIC G que gere L e seja não ambígua (e demonstre que G gera L e é não ambígua).
- **6.** Considere a gramática independente de contexto $G = (\{A\}, \{a, b\}, P, A)$ com P dado por

$$A \rightarrow aAb \mid Ab \mid b$$

- a) Prove que G é ambígua.
- **b)** Determine a forma geral das palavras de $\mathcal{L}(G)$. Explique usando \Rightarrow^n , com n > 0.
- c) Indique uma gramática não ambígua equivalente a G. Justifique sucintamente.
- **d**) Indique uma gramática não ambígua que gere o fecho de Kleene de $\mathcal{L}(G)$. Justifique sucintamente como garante a não ambiguidade.
- 7. Considere a gramática independente de contexto $G = (\{A, B, C\}, \{a, b\}, P, C)$ com P dado por

- a) Indique uma derivação pela esquerda, uma derivação pela direita e uma derivação que não seja nem pela esquerda nem pela direita para a palavra aaabbaaabaa de $\mathcal{L}(G)$. Determine as árvores de derivação correspondentes. Desta análise, pode concluir que G é ambígua ou que G não é ambígua?
- **b)** Prove que a palavra aaabaab não pertence a $\mathcal{L}(G)$.
- c) Por indução sobre o número de passos da derivação, prove que qualquer que seja $n \ge 1$ e qualquer que seja $x \in \{A, B, C, a, b\}^*$ se tem $B \Rightarrow^n x$ se e só se $x \in \{aaa, b\}^{n-1}$ ou $x \in \{aaa, b\}^n \{B\}$.

Sugestão: Por definição, $L^{k+1} = L^k L = L L^k$, qualquer que seja a linguagem L, para $k \in \mathbb{N}$. Por definição de derivação em k+1 passos, tem-se $\alpha \Rightarrow^{k+1} \gamma$ se e só se existe β tal que $\alpha \Rightarrow^k \beta$ e $\beta \Rightarrow \gamma$, com $k \in \mathbb{N}$.

- d) Prove por indução que todo $x \in \{aaa, b\}^n$ admite uma única derivação a partir de B (e, portanto, uma única derivação pela esquerda). Conclua que a gramática formada pelas regras para B não é ambígua.
- e) Indique a linguagem gerada a partir de cada variável da gramática. Conclua que $\mathcal{L}(G)$ é regular.
- f) Na continuação das alíneas anteriores, averigue se a gramática G é ambígua. Justifique.
- **8.** Considere a linguagem $L = \{a^{2k}wa^{3k}z \mid zw \in \mathcal{L}(bb^*), k \in \mathbb{N}\}\$ de alfabeto $\Sigma = \{a, b\}.$
- a) Prove que L não satisfaz a condição do lema da repetição para linguagens regulares, para nenhum n > 0.
- **b)** Justifique que $L=\mathcal{L}(G)$ para $G=(\{S,A,T,B\},\{\mathtt{a},\mathtt{b}\},P,S)$ com P dado por

 ${f c}$) Averigue se a gramática G definida na alínea anterior é ambígua.