VŠB TECHNICKÁ | UNIVERZITA OSTRAVA

Zpracování textu pomocí hlubokých neuronových sítí

Text Processing using Neural Networks

Bc. Vojtěch Prokop prof. Ing. Jan Platoš, Ph.D.

Cíl práce

- zpracování přirozeného jazyka pomocí dostupných metod
- rozpoznání autora (autorství)
- klasifikační problém
- prozkoumat možnosti Transformer modelu

VŠB TECHNICKÁ | FAKULTA | LEKTROTECHNIKY OSTRAVA | A INFORMATIKY

Vytvoření datové sady

- zdroj dat (Projekt Gutenberg)
- stažení uměleckých děl
 - .json pro každé umělecké dílo
 - 13GB
- tvorba datových sad
 - počet autorů
 - počet vět
 - rozličná velikost souborů

Obr. 1 Automatizovaná tvorba datové sady

Návrh experimentů v závěrečné práci

- explorační analýza
 - nalezení optimálních hyperparemetrů pro navržené modely
 - návrh předzpracování textových dat
 - nalezení hodnoty k podvzorkování
- typ experimentu
 - vektorizace textu ve spojení s klasickými modely
 - neuronové sítě
 - BERT (Transformer)
- automatizace a logování

Obr. 2 Automatizované spouštění experimentů

Vektorizace textu a klasické modely

- tokenizace
- vektorizace
 - frekvenční
 - bezkontextové a kontextové vnoření slov
- klasifikátor
 - log. regrese
 - nej. sousedé
 - náh. les
 - naive bayes

Obr. 3 Návrh experimentů klasických modelů

Experiment - Vektorizace textu a klasické modely

- různé kombinace mezi vektorizací a typem klasifikátoru
- nejlepší varianta log. regrese ve spojení s BoW a TF-IDF vektorizací (až 86% přesnost)
- testování většího počtu autorů nad nejlepšími modely
- rozdíl mezi 5 a 55 autory průměrně 30 %

Graf. 1 Výsledky log. regrese ve spojení s různými typy vektorizace

Graf. 2 Výsledky log. regrese ve spojení s různými typy vektorizace

Neuronové sítě

- vnoření slov
 - prázdná inicializace
 - Word2Vec
 - GloVe
- architektura
 - LSTM
 - CNN
 - Dense

Obr. 4 Návrh experimentů neuronových sítí

Experiment – neuronové sítě

- rozličné kombinace typu inicializace a architektury
- nejlepší výsledek experimentálního bloku CNN + GloVe (82,65 %)
- modelování potřebné velikosti vektoru (hodnota 70)
- přesnost kolem 82 %

Graf. 3 Modelování mnohodimenzionálního vektoru – čas (minuty)

Graf. 4 Modelování mnohodimenzionálního vektoru - přesnost

BERT

- typ **Transformeru**
- extrakce dokumentové reprezentace
- hluboká dopředná síť

Obr. 5 Návrh experimentů BERT modelu

Experiment kvality obecného jazykového modelu

- nutnost doučení stagnace na 20 %
- nízký počet iterací k schopnosti porozumět problému autorství

Experiment typu derivátu BERT modelu

- ELECTRA, BERT, DistilBERT
- nejlepší výsledek DistilBERT derivátu kolem 84 %
- možnost zlepšení výsledku u ELECTRA modelu vzhledem k snižující se chybě

Hodnota

0.5

2

Iterace

2.5

1.5

Graf. 8 Průběh derivátu - chyba

3.5

Experiment strategie využití vektorů z jazykového modelu DistilBERT

- 4% zlepšení přesnosti vzhledem k nejlepší a nejhorší strategii
- zlepšení oproti "doporučené" strategii o 1 %
- sečtení všech vrstev nejlepší strategie
- neschopnost výběru nejlepší obecné strategie

Strategie

Obr. 6 Vizualizace extrakce číselných vektorů (https://jalammar.github.io)

Experiment variabilního větného okna u DistilBERT modelu

	počet záznamů v množině					
počet vět	trénovací	validační	testovací	hod. podvzorkování	přesnost (%)	velikost vstupu
1	162 562	28 688	33 750	45 000	65,80	30
2	81 281	14 344	16 875	22 500	77,04	60
3	54 187	9 563	11 250	15 000	83,40	100
7	23 481	4 144	4 875	6 500	88,94	190
10	16 256	2 869	3 375	4 500	91,17	260
15	10 837	1 913	2 250	3 000	91,11	380

Tab. 1 Výsledky experimentů s větným oknem

Srovnání nejlepších modelů

- srovnání nejlepších modelů z experimentálních bloků log. reg., CNN, DistilBERT
- testování variabilního větného okna **zvýšení** přesnosti modelů, schopnost konkurence **CNN** u nízké hodnoty
- testování většího počtu autorů podobné výsledky u BERT derivátu a log. reg.

Graf. 10 Výsledky modelů u variabilního větného okna (2, 3, 7, 10, 15)

Graf. 11 Výsledky vybraných modelů u více autorů (5, 15, 25)

Závěr

- metody a přístupy u zpracování textu vektorizace, neuronové sítě, klasické modely, Transformer
- navržení systému schopného rozpoznání autora
- srovnání přesnosti a výpočetní náročnosti zkoušených modelů
- nekompatibilita klasických klasifikátorů s BERT vektorizací
- prospěch variabilního větného okna
- smysl výběru strategie pro extrakci vektorové reprezentace dokumentu z *BERT* modelu
- vysoká úspěšnost BERT modelu

Otázky z hodnocení

Jak je to se zpracováním češtiny? - doc. Mgr. Jiří Dvorský, Ph.D.

Děkuji za pozornost

Otázky?