6/26/2016

PROJECT REPORT

PROJECT 1

Avijeet Mishra
UNIVERSITY AT BUFFALO
50169242
AVIJEETM@BUFFALO.EDU

Contents

PRC	OBLEM 1	2
C	Original Image	2
Δ	A. 2D Convolution: Images after 2D Convolution	3
	Gx	3
	Gy	4
	Gmag	5
В	B. 1D Convolution : Images after 2D Convolution	6
	Gx	6
	Gy	7
	Gmag	8
C	C. Computational Complexity	9
PRC	OBLEM 2	9
C	Original Image	9
C	Comparison of Original Greyscale and Enhanced Image	10
lı	mage Histogram	11
C	Cumulative Histogram	12
Т	Transformation Function	13
F	Final Histogram	14

PROBLEM 1

Original Image

A. 2D Convolution : Images after 2D Convolution

Gmag

B. 1D Convolution : Images after 2D Convolution

Gmag

Gx, Gy and Gmag of 1D and 2D convolution is similar.

C. Computational Complexity

For M*N Image and P*Q Filter, Computational complexity of performing 2D Convolution would be **O** (M*N*P*Q) because each pixel would be computed in P*Q computation.

For M*N Image and P*Q Filter, Computational complexity of performing separable 1D Convolution would be **O** (M*N*(P+Q)) because each pixel would be computed in P+Q computation.

For Example, an image with 256*256 size and filter of 3*3 would take following number of operations:

2D Convolution: 256*256*3*3 = 589284 1D Convolution: 256*256*(3+3) = 393216

So computational complexity of performing 2D convolution is greater than 1D convolution.

PROBLEM 2

Original Image

Comparison of Original Greyscale and Enhanced Image

Image Histogram

Cumulative Histogram

Transformation Function

Final Histogram

