Sensalyzer 1.0.0

Создано системой Doxygen 1.9.8

1 Описание проекта	1
1.1 Сборка проекта	1
1.1.1 Утилита CMake	1
1.1.2 Утилита Маке	2
1.2 Руководство пользователя	2
1.3 Протокол информационного взаимодействия	2
2 Программные модули	5
2.1 apps	5
2.1.1 Подробное описание	5
2.1.2 Функции	5
2.1.2.1 main()	5
2.2 common	6
2.2.1 Подробное описание	7
2.2.2 Функции	7
2.2.2.1 isTimestampValid()	7
2.2.2.2 makeTimestamp()	8
2.2.2.3 makeVoidTimestamp()	8
2.2.2.4 isVoidTimestamp()	8
2.2.2.5 cmpTimestamps()	9
2.2.2.6 isSubTimestamp()	9
2.2.2.7 printTimestamp()	9
2.2.2.8 initVector()	10
2.2.2.9 clearVector()	10
$2.2.2.10 \ addVectorElement() \ \ldots \ldots \ldots \ldots \ldots \ldots$	10
$2.2.2.11 \ del Vector Element() \ \dots $	11
$2.2.2.12 \text{ getVectorElement}() \dots \dots \dots \dots \dots \dots \dots \dots \dots$	11
2.2.2.13 isVectorEmpty()	11
2.2.2.14 getVectorSize()	11
2.2.2.15 qsortVector()	12
2.3 sensors	12
2.3.1 Подробное описание	13
2.3.2 Функции	13
$2.3.2.1 \text{ readTempFromFile}() \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	13
$2.3.2.2 \; \mathrm{makeTempRecord}() \ldots \qquad \ldots \qquad \ldots \qquad \ldots$	13
$2.3.2.3 \text{ qsortTempByTimestamp}() \dots \dots \dots \dots \dots \dots \dots \dots$	13
$2.3.2.4 \; qsortTempByRecord() \; \ldots \; $	14
$2.3.2.5~\mathrm{printTempRecord}()~\dots~\dots~\dots~\dots~\dots~\dots~\dots~\dots$	14
$2.3.2.6 \; printPeriodTempStats() \;\; \dots \;\;$	14
$2.3.2.7 \; printGlobalTempStats() \;\; \dots \;\;$	14
2.4 tools	15
2.4.1 Подробное описание	15
2.4.2 Функции	15

	2.4.2.1 printCmdHelp()	15
	$2.4.2.2 \; handle Cmd Commands () \; \dots \; $	15
3 Струг	ктуры данных	17
3.1	Структура temp_data	17
3.2	Структура temp_record	18
3.3	Структура timestamp	18
3.4	Структура vector	18
	3.4.1 Подробное описание	19
Предме	тный указатель	21

Глава 1

Описание проекта

Sensalyzer - это консольное приложение для анализа данных с датчиков.

Данная программа может читать файлы данных, составленные в соответствии с установленным протоколом информационного взаимодействия, и выводить по ним статистику за определенный временной период.

Для успешной сборки проекта и продуктивной работы с приложением рекомендуется ознакомиться с представленной ниже информацией.

1.1 Сборка проекта

Сборку проекта можно осуществить с помощью утилиты CMake или Make.

1.1.1 Утилита СМаке

Для сборки проекта с помощью CMake на компьютере должны быть установлены поддерживаемые утилитой компилятор языка C и система сборки.

Команда сборки проекта с помощью утилиты СМаке следующая:

```
cmake -S <path-to-source> -B <path-to-build>
<path-to-source> - путь до корневого файла CMakeLists.txt проекта.
<path-to-build> - путь до директории, куда будут записаны результаты сборки.
```

После успешной сборки исполняемый файл приложения Sensalyzer будет находиться по следующему пути: path-to-build/apps/sensalyzer.

Описание проекта

1.1.2 Утилита Маке

Для сборки проекта с помощью Make на компьютере должен быть установлен компилятор языка C (рекомендуется GCC).

Команда сборки проекта с помощью утилиты Маке следующая:

```
make -f <path-to-source> <path-to-source> - путь до файла Makefile в корне проекта.
```

После успешной сборки исполняемый файл приложения Sensalyzer будет находиться в автоматически созданной директории build/ проекта.

1.2 Руководство пользователя

Программа Sensalyzer может быть запущена в одном из следующих режимов:

```
sensalyzer или sensalyzer -h - вывод общей информации и завершение работы. sensalyzer -f <path-to-file> - чтение файла <path-to-file> и вывод общей статистики. sensalyzer -f <path-to-file> -t <year>[.<month>[.<day>[-<hour>[:<minute>]]]] - чтение файла <path-to-file> и вывод статистики за указанный временной период.
```

Как можно видеть, приложение Sensalyzer поддерживает следующие ключи:

- -h вывод общей информации о приложении с последующим завершением работы.
- -f <path-to-file> указание анализируемого файла данных, составленного в соответствии с установленным протоколом информационного взаимодействия.
- -t <year>[.<month>[.<day>[-<hour>[:<minute>]]]] указание временного периода для вывода статистики.

1.3 Протокол информационного взаимодействия

Для успешного анализа файла данных он должен соответствовать следующим требованиям:

- Каждая элементарная запись с датчика должна быть расположена на новой строке.
- Каждая элементарная запись с датчика должна обладать следующей структурой:

```
ГОД;МЕСЯЦ;ДЕНЬ;ЧАС;МИНУТА;ЗНАЧЕНИЕ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
```

Пример файла данных, удовлетворяющего протоколу информационного взаимодействия:

```
2021;01;16;01;02;-47
2021;01;16;01;03;-44
2021;02;16;01;02;-10
2021;02;16;01;03;-5
2021;03;16;01;02;-3
2021;03;16;01;03;2
```

В случае отклонения данных от принятого стандарта программа Sensalyzer выведет на экран соответствующее уведомление. При этом в сообщениях об ошибках приняты следующие аббревиатуры.

Аббревиатура	Расшифровка
UTST	"Unknown timestamp" - некорректная временная метка
NSD	"No suitable data" - нет данных, удовлетворяющих заданному временному
	периоду
NVD	"No valid data" - нет достоверных данных, удовлетворяющих заданному
	временному периоду

Описание проекта

Глава 2

Программные модули

2.1 apps

Модуль консольных приложений.

Функции

int main (int argc, char *argv[])
 Основная функция приложения Sensalyzer.

2.1.1 Подробное описание

Содержит исходный код приложений проекта с точками входа в виде функций main(..). Перечень реализованных приложений:

• sensalyzer - консольный анализатор данных с датчиков (температуры).

2.1.2 Функции

```
\begin{array}{ll} 2.1.2.1 & \text{main()} \\ & & \\ & \text{int argc,} \\ & & \\ & & \text{char * argv[] )} \end{array}
```

Аргументы

in	argc	Количество переданных аргументов командной строки.
$_{ m in}$	argv	Массив строк, представляющий переданный набор аргументов.

Возвращаемые значения

0	Приложение завершило работу в штатном режиме.
1	Приложение завершило работу с ошибкой при работе со входным файлом.

2.2 common

Модуль общего назначения.

```
• typedef int() vector_cmp(const void *, const void *)
```

Тип функции сравнения элементов вектора.

• bool initVector (vector *vec, size t typeSize, size t capacity)

Инициализировать вектор.

• void clearVector (vector *vec)

Очистить вектор.

• void addVectorElement (vector *vec, void *data)

Добавить элемент в конец вектора.

• void delVectorElement (vector *vec, size t idx)

Удалить элемент из вектора.

• void * getVectorElement (const vector *vec, size t idx)

Получить элемент вектора.

• bool isVectorEmpty (const vector *vec)

Проверить, является ли вектор пустым.

• size t getVectorSize (const vector *vec)

Получить размер вектора.

• void qsortVector (vector *vec, vector cmp *comparator)

Отсортировать вектор.

• #define MIN_YEAR 1900U

Минимальный номер года.

• #define VOID YEAR (MIN YEAR - 1U)

Незаданный номер года.

• #define MIN MONTH 1U

Минимальный номер месяца.

• #define MAX MONTH 12U

Максимальный номер месяца.

• #define VOID MONTH (MAX MONTH + 1U)

Незаданный номер месяца.

• #define MIN_DAY 1U

Минимальный номер дня.

• #define MAX DAY 28 28U

Максимальный номер дня во 2 месяце невисокосного года.

• #define MAX DAY 29 29U

Максимальный номер дня во 2 месяце високосного года.

• #define MAX DAY 30 30U

Максимальный номер дня в 4, 6, 9, 11 месяцах.

• #define MAX_DAY_31 31U

2.2 common 7

```
Максимальный номер дня в 1, 3, 5, 7, 8, 10, 12 месяцах.
• #define VOID DAY (MAX DAY 31 + 1U)
    Незаданный номер дня.
• #define MIN HOUR 0U
    Минимальное число часов.
• #define MAX HOUR 23U
    Максимальное число часов.
• #define VOID HOUR (MAX HOUR + 1U)
    Незаданное число часов.
• #define MIN MINUTE 0U
    Минимальное число минут.
• #define MAX MINUTE 59U
    Максимальное число минут.
• #define VOID MINUTE (MAX MINUTE + 1U)
    Незаданное число минут.
• enum month {
 January = 1, February, March, April,
 May, June, July, August,
 September, October, November, December}
    Названия месяцев.
• bool isTimestampValid (const timestamp *timestamp)
    Определить достоверность временной метки.
• void make Timestamp (timestamp *timestamp, const char *string)
    Сформировать временную метку по формат-строке.
• void makeVoidTimestamp (timestamp *timestamp)
    Сделать временную метку пустой.
• bool isVoidTimestamp (const timestamp)
    Определить, является ли временная метка пустой.
• int cmpTimestamps (const timestamp *first, const timestamp *second)
    Сравнить хронологически две временные метки.
• bool isSubTimestamp (const timestamp *base, const timestamp *sub)
    Проверить, входит ли метка sub во временную область, заданную меткой base.
• void printTimestamp (const timestamp)
    Вывести в консоль временную метку.
```

2.2.1 Подробное описание

Содержит исходный код программных объектов, общеприменимых в рамках проекта:

- vector контейнер, представляющий собой коллекцию переменного размера произвольного типа данных.
- timestamp временная метка, позволяющая задать временной период или конкретное время события.

2.2.2 Функции

2.2.2.1 isTimestampValid() bool isTimestampValid (

const timestamp * timestamp)

in timestamp Временная метка	
------------------------------	--

Возвращаемые значения

true	Временная метка достоверна.
false	Временная метка недостоверна.

2.2.2.2 makeTimestamp()

```
\label{eq:constamp} \begin{array}{c} \text{void makeTimestamp (} \\ \\ \text{timestamp * timestamp,} \\ \\ \text{const char * string )} \end{array}
```

Если формат-строка пустая или содержит недостоверные данные, то временная метка будет сделана пустой.

Аргументы

out	timestamp	Временная метка.
in	string	Строка формата "ГГГГ.ММ.ДД-ЧЧ:ММ", по которой будет сформирована
		временная метка.

2.2.2.3 makeVoidTimestamp()

```
\label{eq:condition} \mbox{void makeVoidTimestamp (} \\ \mbox{timestamp * timestamp )}
```

Аргументы

out	timestamp	Временная метка, которую необходимо сделать пустой.
-----	-----------	---

2.2.2.4 isVoidTimestamp()

```
bool is
VoidTimestamp ( {\rm const~timestamp~*~timestamp~)}
```

Аргументы

in timestamp Проверяемая времен	ная метка.
---------------------------------	------------

Возвращаемые значения

2.2 common 9

Возвращаемые значения

false	Временная метка не является пустой.
-------	-------------------------------------

2.2.2.5 cmpTimestamps()

```
int cmpTimestamps (  {\rm const~timestamp}*{\rm first}, \\ {\rm const~timestamp}*{\rm second}~)
```

Аргументы

in	first	Первая временная метка.
in	second	Вторая временная метка.

Возвращаемые значения

Отрицательное	Если first < second.
0	Eсли $first = second.$
Положительное	Если first > second.

2.2.2.6 isSubTimestamp()

```
\label{eq:const_timestamp} \begin{array}{c} \text{bool isSubTimestamp (} \\ & \text{const timestamp * base,} \\ & \text{const timestamp * sub )} \end{array}
```

Аргументы

in	base	Временная метка, определяющая временную область.	
in	sub	Временная метка, вхождение которой необходимо проверить.	

Возвращаемые значения

true	Метка sub входит во временную область метки base.
false	Mетка sub не входит во временную область метки base.

2.2.2.7 printTimestamp()

```
void print
Timestamp ( {\rm const~timestamp~*~timestamp~)}
```

Выводит только достоверные компоненты временной метки.

in	timestamp	Временная метка для вывода.

2.2.2.8 initVector()

```
\begin{aligned} bool & initVector \; ( \\ & & vector * vec, \\ & size\_t \; typeSize, \\ & size\_t \; capacity \; ) \end{aligned}
```

Аргументы

out	vec	Инициализируемый вектор.
in	typeSize	Размер хранимого в векторе элемента в байтах.
in	capacity	Начальная вместимость вектора.

Возвращаемые значения

true	Инициализация прошла успешно.
false	Инициализация прошла неудачно.

2.2.2.9 clearVector()

```
void clear
Vector ( \label{eq:vector} \mbox{vector} * \mbox{vec} \ )
```

Аргументы

out vec Очищаемый ве	ектор.
----------------------	--------

2.2.2.10 addVectorElement()

```
void add
Vector<br/>Element ( \frac{\text{vector} * \text{vec},}{\text{void} * \text{data}}
```

Аргументы

out	vec	Вектор.
in	data	Элемент, добавляемый в конец вектора.

2.2 common 11

2.2.2.11 delVectorElement()

```
\label{eq:void delVectorElement} \begin{split} \text{void delVectorElement (} \\ & \quad \text{vector} * \text{vec,} \\ & \quad \text{size\_t idx )} \end{split}
```

Аргументы

out	vec	Вектор.
in	idx	Индекс удаляемого элемента.

2.2.2.12 getVectorElement()

```
\label{eq:const_vector} \begin{aligned} \text{void} * & \text{getVectorElement (} \\ & & \text{const} \ \text{vector} * \text{vec,} \\ & & \text{size\_t idx )} \end{aligned}
```

Аргументы

in	vec	Вектор.
in	idx	Индекс элемента.

Возвращаемые значения

Элемент	Если индекс имеет допустимое значение.
NULL	Если индекс имеет недопустимое значение.

$2.2.2.13 \quad is Vector Empty() \\$

```
bool is
Vector<br/>Empty ( \label{eq:const_vector} \mbox{const} \ \mbox{vector} * \mbox{vec} \ )
```

Аргументы

in	vec	Вектор.
----	-----	---------

Возвращаемые значения

true	Вектор является пустым.
false	Вектор не является пустым.

2.2.2.14 getVectorSize()

in vec	Вектор.
--------	---------

Возвращает

Размер вектора.

```
2.2.2.15 \quad qsortVector() void \; qsortVector \; ( vector \; * \; vec, vector \; cmp \; * \; comparator \; )
```

Для сортировки используется функция qsort() стандартной библиотеки С.

Аргументы

out	vec	Вектор.
in	comparator	Указатель на функцию сравнения элементов вектора.

2.3 sensors

Модуль обработки данных с датчиков.

- #define MIN_TEMPERATURE -99
 - Минимальное значение температуры.
- #define MAX TEMPERATURE 99

Максимальное значение температуры.

• bool readTempFromFile (const char *path, vector *records)

Прочитать из файла данные с датчика температуры в соответствии с протоколом информационного взаимодействия.

• void makeTempRecord (temp record *record, int8 t value)

Сформировать значение температуры с достоверностью.

• void qsortTempByTimestamp (vector *records)

Отсортировать массив данных с датчика температуры по временной метке.

 $\bullet \ \ void \ qsortTempByRecord \ (vector \ *records)$

Отсортировать массив данных с датчика температуры по значению температуры.

• void printTempRecord (const temp record *record)

Вывести в консоль значение температуры с достоверностью.

• void printPeriodTempStats (const vector *records, const timestamp)

Вывести в консоль статистику по температуре за указанный временной период.

• void printGlobalTempStats (const vector *records)

Вывести в консоль статистику по температуре за указанные в массиве данных годы и месяцы.

2.3 sensors 13

2.3.1 Подробное описание

Содержит исходный код обработчиков данных с датчиков. Перечень реализованных обработчиков данных:

• temperature - обработчик температуры: способен считать данные из csv-файла и вывести по ним статистику.

2.3.2 Функции

2.3.2.1 readTempFromFile()

```
bool readTempFromFile (  {\rm const~char~*~path}, \\ {\rm vector~*~records~)}
```

При обнаружении данных, отличных от протокола, выводит в консоль сообщение с указанием строки файла, в которой содержится некорректная информация.

Аргументы

in	path	Путь до файла с данными.	
out	records	Массив данных, который будет заполнен информацией из переданного файла.	

Возвращаемые значения

true	Чтение данных прошло успешно.
false	Чтение данных завершилось ошибкой.

2.3.2.2 makeTempRecord()

```
\label{eq:cord_record} \begin{aligned} \text{void makeTempRecord (} \\ & \underline{\text{temp\_record * record,}} \\ & \text{int8\_t value )} \end{aligned}
```

Если value лежит в допустимом диапазоне температур, то в record будет записано достоверное значение, а иначе - недостоверное.

Аргументы

out	record	Формируемое значение температуры с достоверностью.
in	value	Значение температуры.

2.3.2.3 qsortTempByTimestamp()

out records	Массив данных с датчика температуры.
-------------	--------------------------------------

2.3.2.4 qsortTempByRecord()

```
void qsortTempByRecord ( \frac{\text{vector} * \text{records}}{\text{vector}})
```

Аргументы

ou	t	$\operatorname{records}$	Массив	данных	c ,	датчика	температуры.
----	---	--------------------------	--------	--------	-----	---------	--------------

2.3.2.5 printTempRecord()

```
\label{eq:cond_record} \mbox{void printTempRecord (} \\ \mbox{const temp\_record} * \mbox{record )} \\
```

Аргументы

in	record	Значение температуры с достоверностью для вывода.
----	--------	---

2.3.2.6 printPeriodTempStats()

```
\label{eq:const_vector} \mbox{void printPeriodTempStats (} \\ \mbox{const vector} * \mbox{records}, \\ \mbox{const timestamp} * \mbox{timestamp} )
```

Предполагается, что на вход подается отсортированный по временной метке массив данных с датчика температуры. Если данные по температуре за указанный временной период отсутствуют или недостоверны, то выведет в консоль соответствующее сообщение, а иначе - статистику в формате "Timestamp: XXXX.XX.XX.XX.XX! Minimum: XX | Maximum: XX | Average: XX.XXX.XX!".

Аргументы

in	records	Массив данных с датчика температуры.	
in	timestamp	Временная метка, определяющая временной период, за который необходимо	
		вывести статистику.	

2.3.2.7 printGlobalTempStats()

```
\label{eq:const_vector} \mbox{void printGlobalTempStats (} \\ \mbox{const } \mbox{vector} * \mbox{records )}
```

Предполагается, что на вход подается отсортированный по временной метке массив данных с датчика температуры. Если данные по температуре за какой-либо год или месяц отсутствуют или

2.4 tools 15

недостоверны, то выведет в консоль соответствующее сообщение, а иначе - статистику вида "Год -> Месяцы" в формате "Timestamp: XXXX.XX.XX-XX:XX | Minimum: XX | Maximum: XX | Average: XX.XXX".

Аргументы

in	records	Массив данных с датчика температуры.
----	---------	--------------------------------------

2.4 tools

Модуль вспомогательных инструментов.

• void printCmdHelp ()

Вывести в консоль справку по приложению.

• void handleCmdCommands (int argc, char *argv[], bool *isHelpReceived, char **path, char **timeDate)

Обработать аргументы командной строки.

2.4.1 Подробное описание

Содержит исходный код вспомогательных инструментов, а именно:

• cmd handler - обработчик аргументов командной строки.

2.4.2 Функции

2.4.2.1 printCmdHelp()

```
void printCmdHelp ( )
```

Справка по приложению представляет собой описание функционала программы, а также список ключей, их назначение и примеры использования.

2.4.2.2 handleCmdCommands()

```
void handleCmdCommands (
    int argc,
    char * argv[],
    bool * isHelpReceived,
    char ** path,
    char ** timeDate )
```

Аргументы

in	argc	Количество переданных аргументов командной строки.
in	argv	Массив строк, представляющий переданный набор аргументов.
out	isHelpReceived	Флаг запроса вывода в консоль справки по приложению.
Создано OUU	системой Doxygen Path	Путь до файла с массивом данных с интересующего датчика.
out	timeDate	Временная метка в виде строки для дальнейшей обработки.

Глава 3

Структуры данных

3.1 Структура temp_data

Данные с датчика температуры.

#include <temperature.h>

Граф связей класса temp_data:

Поля данных

- timestamp timestamp
 - Временная метка.
- temp record record

Значение.

Объявления и описания членов структуры находятся в файле:

 \bullet sensors/temperature.h

18 Структуры данных

3.2 Структура temp record

Значение температуры с достоверностью.

#include <temperature.h>

Поля данных

• int8_t value Значение.

· bool isValid

Достоверность.

Объявления и описания членов структуры находятся в файле:

 $\bullet \ sensors/temperature.h$

3.3 Структура timestamp

Временная метка.

#include <timestamp.h>

Поля данных

• uint16_t year

Год.

• $uint8_t$ month

Месяц.

• uint8_t day

День.

• uint8_t hour

Час.

• uint8_t minute

Минута.

Объявления и описания членов структуры находятся в файле:

 \bullet common/timestamp.h

3.4 Структура vector

Контейнер типа "Вектор".

#include <vector.h>

3.4 Структура vector 19

Поля данных

- void ** data
- size_t typeSize

Размер элемента данных в байтах.

• $size_t size$

Размер массива данных.

• size t capacity

Вместимость массива данных.

3.4.1 Подробное описание

Представляет собой усеченный аналог std::vector из C++, т.е. коллекцию переменного размера произвольного типа данных (https://en.cppreference.com/w/cpp/container/vector).

Объявления и описания членов структуры находятся в файле:

 \bullet common/vector.h

20 Структуры данных

Предметный указатель

${\it addVectorElement}$	${ m make Temp Record}$
common, 10	sensors, 13
apps, 5	makeTimestamp
$\min, 5$	common, 8
	${\it makeVoidTimestamp}$
clearVector	common, 8
common, 10	
cmpTimestamps	$\operatorname{printCmdHelp}$
common, 9	tools, 15
common, 6	printGlobalTempStats
addVectorElement, 10	sensors, 14
clearVector, 10	printPeriodTempStats
cmpTimestamps, 9	sensors, 14
delVectorElement, 10	$\operatorname{printTempRecord}$
getVectorElement, 11	sensors, 14
getVectorSize, 11	$\operatorname{printTimestamp}$
initVector, 10	common, 9
isSubTimestamp, 9	qsortTempByRecord
isTimestampValid, 7	sensors, 14
isVectorEmpty, 11	qsortTempByTimestamp
isVoidTimestamp, 8	sensors, 13
makeTimestamp, 8	qsortVector
makeVoidTimestamp, 8	common, 12
printTimestamp, 9 qsortVector, 12	common, 12
qsort vector, 12	${\bf read Temp From File}$
delVectorElement	sensors, 13
common, 10	
	sensors, 12
$\operatorname{getVectorElement}$	makeTempRecord, 13
common, 11	printGlobalTempStats, 14
getVectorSize	printPeriodTempStats, 14
common, 11	printTempRecord, 14
	qsortTempByRecord, 14
handleCmdCommands	qsortTempByTimestamp, 13
tools, 15	readTempFromFile, 13
initVector	town data 17
	temp_data, 17 temp_record, 18
common, 10 isSubTimestamp	timestamp, 18
common, 9	tools, 15
isTimestampValid	handleCmdCommands, 15
common, 7	printCmdHelp, 15
isVectorEmpty	printendriesp, 19
common, 11	vector, 18
isVoidTimestamp	
common, 8	Описание проекта, 1
	-
main	
apps, 5	