Семинар #9: Файлы и изображения. Классные задания.

Часть 1: Переменные в памяти. Little и Big Endian

Положение любой переменной в памяти характеризуется двумя числами: её адресом(номером первого байта этой переменной) и её размером. Рассмотрим ситуацию, когда были созданы 3 переменные типов int (размер 4 байта), char (размер 1 байт) и float (размер 4 байта). На рисунке представлено схематическое расположение этих переменных в памяти (одному квадратику соответствует 1 байт):

Какие выводы можно сделать из этого изображения:

- Значение одного байта памяти удобно представлять двузначным шестнадцатиричным числом.
- Каждая переменная заняла столько байт, чему равен её размер.
- Переменные в памяти могут хранится не в том порядке, в котором вы их объявляете.
- Переменные в памяти хранятся не обязательно вплотную друг к другу.
- Байты переменных а и в хранятся в обратном порядке. Такой порядок байт называется Little Endian. Обратите внимание, что обращается только порядок байт, а не бит. Большинство компьютеров применяют именно такой порядок байт. Но в некоторых системах может использоваться обычный порядок байт Big Endian. Обратный порядок байт применяется не только к типу int, но и ко всем базовым типам.
- Переменная b хранит ASCII-код символа A. Он который равен $65 = 41_{16}$.

Часть 2: Просмотр байт

Просмотр байт переменной

Просмотреть, что содержится в байтах какого-либо объекта можно с помощью указателя на unsigned char.

```
#include <stdio.h>
int main()
{
    int a = 0x11223344;

    unsigned char* p = (unsigned char*)&a;
    for (size_t i = 0; i < sizeof(a); ++i)
        printf("%x ", *(p + i));
    printf("\n");
}</pre>
```

Задача:

• Напечатайте байты объекта а типа double.

```
double a = 123.456;
```

• Напечатайте байты объекта b типа int.

```
int b = -1;
```

• Напечатайте байты объекта с типа struct cat.

```
struct cat
{
    char first;
    int second;
};
int main()
{
    struct cat c = {0x50, 0x12345678}}
```

Часть 3: Работа с памятью. Стандартные функции memset, memcpy и memmove.

Часть 4: Работы с бинарными файлами fread и fwrite

fwrite записывает некоторый участок памяти в файл без обработки. fread считывает данные из файла в память без обработки.

Пример. Записываем 4 байта памяти переменной а в файл binary.dat:

```
#include <stdio.h>
int main()
{
    int a = 0x11223344;
    FILE* fb = fopen("binary.dat", "wb");
    fwrite(&a, sizeof(int), 1, fb);
    fclose(fb);
}
```

• Печать в текстовом и бинарном виде:

В файле text_and_binary.c содержится пример записи числа в текстовом и бинарном виде. Скомпилируйте эту программу и запустите. Должно появиться 2 файла (number.txt и number.bin). Изучите оба эти файла, открывая их в текстовом редакторе, а также с помощью утилиты xxd. Объясните результат.

• Печать массива в бинарном виде:

Пусть есть массив из чисел типа int: int array[5] = {111, 222, 333, 444, 555};

Запишите эти числа в текстовый файл array.txt, используя fprintf. Изучите содержимое этого файла побайтово с помощью xxd.

Запишите эти числа в бинарный файл array.bin, используя fwrite. Изучите содержимое этого файла побайтово с помощью xxd.

Часть 5: Работа с файлами. Функции fgetc, fseek, ftell.

Функция fgetc.

Функция fgetc считывает 1 символ и возвращает код ASCII символа или EOF если дошли до конца файла (EOF это просто константа равная -1). Пример считывания:

- Напишите программу, которая печатает количество строк в файле.
- Напишите программу, которая печатает размер самой длинной строки файла.

Функции ftell и fseek.

Процесс считывания файла можно представить как перемещение по набору байт. При открытии файла указатель положения равен нулю. При считывании он увеличивается на количество считанных байт.

Однако, положение в файле можно менять и без считывания при помощь функции fseek:

fseek(<файловый указатель>, <смещение>, <начало отсчёта>)

Начало отсчёта в этой функции может принимать 3 значения:

- 1. SEEK_SET отсчитывать от начала файла
- 2. SEEK_CUR отсчитывать от текущего положения
- 3. SEEK_END отсчитывать от конца файла

Например:

```
#include <stdio.h>
int main()
{
    FILE* f = fopen("test.txt", "r");
    fseek(f, 10, SEEK_SET); // Перемещаемся на 11 - й символ
    fseek(f, -1, SEEK_END); // Перемещаемся к последнему символу

fseek(f, -1, SEEK_CUR); // Перемещаемся на 1 символ назад
    fseek(f, 0, SEEK_SET); // Возвращаемся к началу
    fclose(f);
}
```

Функция ftell(<файловый указатель>) возвращает целое число – текущее положение в файле.

- Написать программу, которая будет печатать 3 последних символа в файле.
- Написать программу, которая будет считывать файл test.txt и печатать число, которое начинается с 10-го символа.
- Написать программу, которая будет принимать название файла через аргумент командной строки и печатать его размер в байтах.
 - Подсказка: Используйте fseek, чтобы перейти в конец файла и ftell, чтобы узнать позицию.
- В файле numbers.txt хранятся некоторые целые числа (но не указано их количество). Напишите программу, которая будет считывать все числа из этого файла и печатать их на экран. Есла в файле содержится какие-то другие символы кроме цифр и пробельных символов, то программа должна печатать Error! и завершаться.

Подсказка: Для начала нужно узнать количество чисел. Это можно сделать, используя fgetc. Затем считываем. Память для чисел выделяем в куче, так как их количество изначально неизвестно и может быть болишим.

Часть 6: Работа с изображениями формата . ppm

Простейший формат для изображение имеет следующую структуру

- В первой строке задаётся тип файла РЗ означает, что в этом файле будет храниться цветное изображение, причём значения пикселей будет задаваться в текстовом формате.
- Во второй строке задаются размеры картинки 3 на 2 пикселя.
- Во третьей строке задаётся максимальное значение RGB компоненты цвета.
- Дальше идут RGB компоненты цветов каждого пикселя в текстовом формате.

Картинка имеет следующий вид:

Задачи

- Написать программу, которая генерирует одноцветную картинку (500 на 500) в формате . ppm. Цвет должен передаваться через аргументы командной строки.
- Белый шум: Написать программу, которая случайное изображение в формате . ppm. Цвет каждого пикселя задаётся случайно.
- Градиент: Написать программу, которая генерирует градиентную картинку в формате . ррт. Два цвета должны передаваться через аргументы командной строки.
- **Черно-белая картинка:** Написать программу, которая считывает изображение в формате .ppm и сохраняет его в черно-белом виде. Файл изображения должен передаваться через аргументы командной строки. Считайте файл russian_peasants_1909.ppm и сделайте его черно-белым.

Часть 4: Работа с изображениями формата . jpeg