First Come First Serve

- Jobs are executed on first come, first served basis.
- It is a non-preemptive scheduling algorithm.
- Easy to understand and implement.
- Its implementation is based on FIFO queue.
- Poor in performance, as average wait time is high.

Here I am going to use some short forms .

PID = Process ID

AT = Arrival Time

BT = Burst Time

CT = Completion Time

TAT = Turn Around Time

WT = Waiting Time

Example: Find Average Waiting Time & Average Turn Around Time

PID	AT	BT
PO	0	5
P1	1	3
P2	2	8
Р3	3	6

Solution :

Process Number = N = 4

Gantt Chart:

PID	AT	BT	СТ	TAT	WT
PO	0	5	5	5	0
P1	1	3	8	7	4
P2	2	8	16	14	6
Р3	3	6	22	19	13

We have gotten CT from Gantt chart.

$$TAT = CT - AT$$

 $WT = TAT - BT$

Average Turn Around Time (TAT) = Sum of TAT/N
=
$$(5+7+14+19)/4 = 45/4 = 11.25$$

Average Waiting Time (WT) = Sum of WT/N
= $(0+4+6+13)/4 = 23/4 = 5.57$

If there is no Arrival time then Arrival time = 0 for all processes.

One Exercise for You:

Find the average Waiting time and average Turn Around Time.

PID	AT	BT	
PO	0	4	
P1	1	3	
P2	2	1	
Р3	3	2	
P4	4	5	