celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
		Código:	Revisão:
Título: CABO DE POTÊNCIA ISOLADO MÉDIA TENSÃO		ET.202.EQTL. NORMA E PADRÕES	00

1 FINALIDADE

Esta Norma especifica e padroniza as dimensões e as características mínimas exigíveis para cabos de potência isolado de 1 a 35 kV utilizados nas Redes de Distribuição da CEMAR – Companhia Energética do Maranhão e da CELPA – Centrais Elétricas do Pará S/A, empresas do Grupo EQUATORIAL Energia, doravante denominadas apenas de CONCESSIONÁRIA.

2 CAMPO DE APLICAÇÃO

Aplica-se à Gerência de Normas e Padrões, Gerência de Manutenção e Expansão RD (rede de distribuição), Gerência de Expansão e Melhoria do Sistema de MT/BT, Gerência de Manutenção do Sistema Elétrico, e à Gerência de Suprimentos e Logística no âmbito da CONCESSIONÁRIA.

3 RESPONSABILIDADES

3.1 Gerência de Normas e Padrões

Estabelecer as normas e padrões técnicos para o fornecimento de energia elétrica em Média Tensão. Coordenar o processo de revisão desta norma.

3.2 Gerência de Manutenção e Expansão RD (CEMAR)

Realizar as atividades relacionadas à expansão nos sistemas de 15 e 36,2 kV de acordo com os critérios e recomendações definidas nesta norma. Participar do processo de revisão desta norma.

3.3 Gerência de Expansão e Melhoria do Sistema de MT/BT (CELPA)

Realizar as atividades relacionadas à expansão nos sistemas de 15 e 36,2 kV de acordo com os critérios e recomendações definidas nesta norma. Participar do processo de revisão desta norma.

3.4 Gerência de Manutenção do Sistema Elétrico (CELPA)

Realizar as atividades relacionadas à manutenção nos sistemas de 15 e 36,2 kV de acordo com os critérios e recomendações definidas nesta norma. Participar do processo de revisão desta norma.

3.5 Gerência de Suprimentos e Logística

Solicitar em sua rotina de aquisição e receber em sua rotina de inspeção, materiais conforme exigências desta Especificação Técnica;

3.6 Fabricante/Fornecedor

Fabricar/Fornecer materiais conforme exigências desta Especificação Técnica.

4 DEFINIÇÕES

4.1 Unidade de Expedição

Comprimento contínuo de material contido em uma embalagem de expedição, ou seja, um rolo para materiais condicionados em rolos ou uma bobina para materiais acondicionados em carretéis.

4.2 Comprimento Efetivo

Comprimento efetivamente medido em uma unidade ou lote de expedição por meio de equipamento adequado, que garanta a incerteza máxima especificada.

4.3 Comprimento Nominal

Comprimento padrão de fabricação e/ou comprimento que conste na ordem de compra.

4.4 Lance Irregular (quanto ao comprimento)

Lance com comprimento diferente, em mais de 3%, do comprimento nominal, com no mínimo 50% do referido comprimento.

4.5 Cabo de potência a campo elétrico radial

Cabo provido de camada semicondutora e/ou condutora, envolvendo o condutor e sua isolação.

4.6 Temperatura máxima no condutor em regime permanente

Máxima temperatura admissível, em qualquer ponto do condutor, em condições estáveis de funcionamento.

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
		Código:	Revisão:
Título: CABO DE POTÊNCIA ISOLADO MÉDIA TENSÃO		ET.202.EQTL. NORMA E PADRÕES	00

4.7 Temperatura máxima no condutor em regime de sobrecarga

Máxima temperatura admissível, em qualquer ponto do condutor, em regime de sobrecarga.

4.8 Temperatura máxima no condutor em regime de curto-circuito

Máxima temperatura admissível, em qualquer ponto do condutor, em regime de curto-circuito.

4.9 Tensão nominal do sistema U

Tensão de linha pela qual o sistema é designado. No caso de corrente alternada, a tensão é dada em valor eficaz. Não é necessariamente igual à tensão nominal dos equipamentos ligados ao sistema.

4.10 Tensão máxima de operação do sistema Um

Máxima tensão de linha que pode ser mantida em condições normais de operação, em qualquer tempo e em qualquer ponto do sistema. No caso de corrente alternada, a tensão é dada em valor eficaz. Não é necessariamente igual à tensão nominal dos equipamentos ligados ao sistema.

4.11 Tensão de isolamento do cabo Uo/U

Valor Uo/U pelos quais os cabos são designados, onde Uo é o valor eficaz da tensão entre condutor e terra ou blindagem da isolação ou qualquer proteção metálica sobre esta e U é o valor eficaz da tensão entre condutores.

4.12 Construção bloqueada longitudinalmente

Construção em que é feito o preenchimento dos interstícios do cabo ao longo do seu comprimento, com a finalidade de conter a migração longitudinal de água no seu interior.

4.13 Construção bloqueada transversalmente

Construção em que é colocada uma barreira ao longo do comprimento do cabo, com a finalidade de conter a migração radial de umidade para o interior de sua isolação.

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 4 de 20
Título: CABO DE POTÊ	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

4.14 Arborescência

Fenômenos que causam a degradação da isolação do cabo em consequências das interações de umidade, campo elétrico, impurezas no material isolante e/ou imperfeições do processo produtivo. O termo arborescência é utilizado porque o formato dos efeitos causados no dielétrico sob tensão assemelha-se a uma árvore. A arborescência pode ser úmida ou elétrica.

4.15 Retardamento da arborescência

Características que o projeto do cabo e/ou material dielétrico da isolação apresenta, que retarda o crescimento da arborescência.

4.16 Separador

Invólucro metálico, sem função de isolação, colocado entre componentes de um cabo para impedir contato direto entre eles.

5 REFERÊNCIAS

- [1] NBR 5111:2012 Fios de cobre nus, de seção circular, para fins elétricos;
- [2] NBR 5368:2012 Fios de cobre mole estanhados para fins elétricos Especificação;
- [3] NBR 5426:1989 Planos de amostragem e procedimentos na inspeção por atributos;
- [4] NBR 5456:2010 Eletricidade geral Terminologia;
- [5] NBR 5471:1986 Condutores elétricos;
- [6] NBR 6251:2013 Cabos de potência com isolação extrudada para tensões de 1 kV a 35 kV Requisitos construtivos;
- [7] NBR 7286:2001 Cabos de potência com isolação extrudada de borracha etilenopropileno (EPR) para tensões de 1kV a 35kV Requisitos de desempenho.
- [8] NBR-7287:2019 Cabos de potência com isolação sólida extrudada de polietileno reticulado (XLPE) para tensões de isolamento de 1kV a 35kV Requisitos de desempenho.
- [9] NBR 6813:2012 Fios e cabos elétricos Ensaio de resistência de isolamento;
- [10] NBR 6814:2001 Fios e cabos elétricos Ensaio de resistência elétrica;

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 5 de 20
Título: CABO DE POTÊ	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

- [11] NBR NM 280:2011 Condutores de cabos isolados;
- [12] NBR 6881:2014 Fios e cabos elétricos de potência, controle e instrumentação Ensaio de tensão elétrica:
- [13] NBR 7312:1998 Rolos de fios e cabos elétricos Características dimensionais;
- [14] NBR 9511:1997 Cabos elétricos Raios mínimos de curvatura para instalação e diâmetros mínimos de núcleos de carretéis para acondicionamento;
- [15] NBR 9512:1986 Fios e cabos elétricos Intemperismo artificial sob condensação de água, temperatura e radiação ultravioleta-b proveniente de lâmpadas fluorescentes Método de ensaio;
- [16] NBR NM 244:2011: Condutores e cabos isolados Ensaio de centelhamento;
- [17] NBR 11137:2012 Carretéis de madeira para o acondicionamento de fios e cabos elétricos Dimensões e estruturas.
- [18] NM-IEC 60811-4-1:2005 Métodos de ensaios comuns para materiais de isolação e de cobertura de cabos elétricos. Parte 4: Métodos específicos para os compostos de polietileno e polipropileno -Capítulo 1: Resistência à fissuração por ação de tensões ambientais - Ensaio de enrolamento após envelhecimento térmico no ar - Medição do índice de fluidez - Determinação do teor de negro-defumo e/ou de carga mineral em polietileno;
- [19] NBR NM IEC 60811-1-1:2001- Métodos de ensaios comuns para os materiais de isolação e de cobertura de cabos elétricos. Parte 1: Métodos para aplicação geral Capítulo 1: Medição de espessuras e dimensões externas Ensaios para a determinação das propriedades mecânicas;

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 6 de 20
Título: CABO DE POTÊ	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

6 CARACTERÍTICAS CONSTRUTIVAS

Conforme o desenho e as características do ANEXO I e as normas NBR-7286 ou NBR-7287.

6.1 Condutor

- 6.1.1 O condutor deverá ser constituído por um ou vários fios de cobre eletrolítico com ou sem revestimento metálico ou de alumínio nu. Podendo dependendo de sua construção ser:
 - Condutor de construção maciça
 - Condutor de seção circular de formação simples
 - Condutor de seção circular compactado
- 6.1.2 O cabo deverá ter classe 2 de encordoamento, tempera mole conforme NBR NM-280.
- 6.1.3 A tensão de isolamento (Vo/V) deverá ser 8,7/15 kV ou 20/35 kV, para as classes de tensão de 15kV e 34,5kV respectivamente.
- 6.1.4 A temperatura do condutor em regime permanente não deverá ultrapassar a temperatura de 90°C, em função das características dos materiais utilizados na isolação, conforme tabela 2.
- 6.1.5 A temperatura do condutor em regime de sobrecarga não deve ultrapassar 130°C. A operação neste regime não deve superar 100 h durante 12 meses consecutivos, nem 500 h durante a vida do cabo. A tabela 3 indica estes valores, considerando-se, no entanto que sob estas condições o cabo tem sua vida útil reduzida.
- 6.1.6 A temperaturas máxima para um período de 5s que pode ser atingida pelo condutor sob condição de curto-circuito, é dado na tabela 4.

6.1.7 Blindagem do condutor

A blindagem do condutor deve ser não metálica, constituída por camada de composto semicondutor com temperatura compatível a do isolamento e do condutor (características físicas conforme a NBR-6251), estar justaposta sobre o condutor, porém facilmente removível e não aderente ao mesmo. A blindagem do condutor deve ser extrudada simultaneamente com a isolação.

6.2 Isolação

A isolação deverá ser constituída por composto termofixo à base de polietileno reticulado (XLPE), extrudado simultaneamente com a blindagem do condutor ou borracha etilenopropileno (EPR) e a blindagem da isolação (características físicas conforme a NBR-6251).

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
		Código: ET.202.EQTL.	Revisão:
Título: CABO DE POTÊNCIA ISOLADO MÉDIA TENSÃO		NORMA E PADRÕES	00

6.3 Blindagem da isolação

A blindagem da isolação será composta por uma camada semicondutora formada por parte nãometálica e uma parte metálica (características físicas conforme a NBR-6251). Esta blindagem deve ser aplicada somente em cabos com tensões de isolamento iguais ou maiores que 06/10kV.

A parte não metálica deverá ser constituída por uma fita semicondutora ou uma camada extrudada de composto semicondutor aplicada diretamente sobre a isolação.

A parte metálica deve ser em cobre nu ou revestido, com resistividade máxima de 0,018312 Ω mm²/m a 20°C, ter continuidade elétrica ao longo de todo seu comprimento e com as seguintes formas de aplicação:

- a) sobre a parte semicondutora da isolação
- b) sobre a reunião das veias blindadas ou não, individualmente, com parte semicondutora
- c) sobre a isolação de cabos para tensões de isolamento onde não seja obrigatória a presença da parte semicondutora da blindagem

6.4 Cobertura

A cobertura deverá ser de composto termoplástico ST2 (PVC) de cor preta, resistente à abrasão, dobra, umidade, chama e raios ultravioleta (características físicas conforme a NBR-6251).

6.5 ACABAMENTO

A superfície do cabo não deverá apresentar fissuras, rebarbas, asperezas, estrias ou inclusões. O cabo não deverá apresentar falhas no encordoamento. A camada de material isolante deverá ser contínua, uniforme e homogênea ao longo de todo o comprimento.

6.6 Desenho do Material

Conforme ANEXO I - CABO DE POTÊNCIA ISOLADO 15 E 35 KV - DETALHES CONSTRUTIVOS.

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 8 de 20
Título: CABO DE POTÊ	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

6.7 Códigos Padronizados

Os códigos padronizados estão indicados na Tabela 1 - características dimensionais.

Tabela 1 – Características Dimensionais

	Cód	ligo		Condutor		Isolação Cobertura						
ltem	CEMAR	CELPA	Classe de tensão (kV)	Seção (mm²) (seção circular compactada)	Material	Número de fios	Diâmetro (mm)	Espessura (mm)	Diâmetro Nominal (mm)	Espessura (mm)	Diâmetro externo do cabo (mm)	Peso Líquido Nominal (kg/km)
1				25	Cu	19	5,90	3,0	13,4	1,4	18,5	566
2				35	Cu	19	6,90	3,0	14,5	1,4	19,6	674
3			15	70	Cu	19	9,70	3,0	17,2	1,5	22,3	1.023
4				150	Cu	37	14,2	3,0	21,8	1,6	27,3	1.847
5				240	Cu	37	18,3	3,5	26,9	1,8	32,8	2.865
6				400	Cu	37	23,2	3,5	32,3	1,9	38,5	4.292
7	12225	50012	34,5	120	Cu	37	12,75	8,8	31,7	2,0	38,5	2.340
8			34,3	185	Cu	37	15,65	8,8	34,7	2,1	42,0	3.060

equatorial		Elaborado em:	Pagina:
celpa cemar	ESPECIFICAÇÃO TÉCNICA	30/08/2017	9 de 20
		Código:	Revisão:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	ET.202.EQTL. NORMA E PADRÕES	00

Tabela 2 – Temperatura máxima em regime permanente em função da isolação

Isolação	Temperatura máxima no condutor º C
PVC/A 70	70
PE 70 (ver nota)	70 (ver nota)
EPR e HEPR 90	90
EPR 105	105
XLPE e TR XLPE	90
1	· · · · · · · · · · · · · · · · · · ·

NOTA 75 °C para os cabos com isolação de PE de densidade de massa superior a 0,940 g/cm3 a 23 °C.

Tabela 3 – Temperatura máxima em regime de sobrecarga

Isolação	Temperatura máxima no condutor ^o C
PVC/A 70	100
PE 70	90
EPR e HEPR 90	130
EPR 105 105	140
XLPE e TR XLPE	130

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

Tabela 4 - Temperatura máxima em regime de curto-circuito

Isolação	Temperatura máxima no condutor ^o C
PVC/A, seção do condutor ≤ 300mm²	160
PVC/A, seção do condutor > 300mm²	140
PE	130
EPR, HEPR e EPR 105	250
XLPE e TR XLPE	250

6.8 Identificação

6.8.1 Marcação do Cabo

Na superfície externa da isolação dos cabos deverão ser marcados de forma legível e indelével, em intervalos regulares de até 500 mm, no mínimo as seguintes informações:

- a. Nome e/ou marca do fabricante;
- b. Seção do nominal do condutor (mm²);
- c. Material do condutor: "Cu";
- d. Material da isolação XLPE ou EPR e da cobertura;
- e. Tensão de isolamento: 8,7/15 kV ou 20/35 kV, para as classes de tensão de 15kV e 34,5kV respectivamente;
- f. Ano de fabricação;
- g. Número da norma aplicável: NBR-7286 ou NBR-7287;

6.8.2 Identificação

Externamente, os carretéis devem ser marcados, nas duas faces laterais, diretamente sobre o disco e/ou por meio de plaqueta, com caracteres legíveis e permanentes, com as seguintes indicações:

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 11 de 20
		Código: ET.202.EQTL.	Revisão:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	NORMA E PADRÕES	00

- a. Dados do Fabricante;
- b. Indústria brasileira;
- c. Tensão de isolamento (Uo/U), em quilovolts (kV);
- d. Número de condutores e seção nominal, em milímetros quadrados;
- e. Material do condutor (Cu), da isolação interna (XLPE);
- f. Comprimento, em metros;
- g. Massa bruta, em quilogramas (kg);
- h. Número da ordem de compra;
- i. Número de série do carretel;
- j. Seta no sentido de rotação para desenrolar;
- k. Número da norma da ABNT;
- Data de fabricação;
- m. Lote de fabricação;

Os rolos devem conter uma etiqueta com as indicações acima com exceção das referentes às alíneas j e k e, no caso da alínea g, o valor a ser indicado é o de massa líquida mínima.

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
		Código:	Revisão:
Título: CABO DE POTÊNCIA ISOLADO MÉDIA TENSÃO		ET.202.EQTL. NORMA E PADRÕES	00

6.9 Embalagem

- 6.9.1 O fornecedor deverá garantir que a embalagem do material preserve seu desempenho e suas funcionalidades durante o transporte, movimentação e armazenamento. Sempre que necessário, deverá informar as condições especiais de transporte, movimentação e armazenamento.
- 6.9.2 Os cabos deverão ser acondicionados em carretéis conforme a NBR-11137. A embalagem deverá ser elaborada com material reciclável.
- 6.9.3 Não serão aceitas embalagens elaboradas com poliestireno expandido, popularmente conhecido como "isopor".
- 6.9.4 As extremidades do cabo deverão ser convenientemente seladas com capuzes de vedação resistentes às intempéries, a fim de evitar a penetração de umidade durante o transporte, movimentação e armazenamento.

6.10 Garantia

O fornecedor deve dar garantia de 24 meses a partir da data de fabricação ou de 18 meses após a data de início de utilização, prevalecendo o que ocorrer primeiro, contra qualquer defeito de fabricação, material e acondicionamento.

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

7 INSPEÇÕES E ENSAIOS

7.1 Generalidades

- 7.1.1 As despesas relativas ao material de laboratório e pessoal para execução dos ensaios correrão por conta do fabricante e/ou fornecedor.
- 7.1.2 A CONCESSIONÁRIA deverá ser informada com antecedência de 7 dias úteis, no mínimo, das datas em que o material estiver pronto para inspeção e ensaios. À CONCESSIONÁRIA se reserva o direito de designar um inspetor para acompanhar os ensaios.
- 7.1.3 Os instrumentos de medição usados deverão ser de precisão ASA, classe de exatidão 0,5 ou inferior, e estarem aferidos por órgão oficial ou outros devidamente credenciados, e os certificados de aferição estar à disposição do inspetor.
- 7.1.4 De comum acordo com a CONCESSIONÁRIA, o fornecedor poderá substituir a execução de qualquer ensaio de tipo pelo fornecimento do relatório do mesmo ensaio.
- 7.1.5 À CONCESSIONÁRIA se reserva o direito de efetuar os ensaios de tipo para verificar a conformidade do material com os relatórios de ensaio exigidos neste documento.
- 7.1.6 O fornecedor deverá dispor de pessoal e aparelhagem, próprios ou contratados, necessários à execução dos ensaios (em caso de contratação, deverá haver aprovação prévia da CONCESSIONÁRIA).
- 7.1.7 À CONCESSIONÁRIA se reserva o direito de enviar inspetor devidamente credenciado, com o objetivo de acompanhar qualquer etapa de fabricação e, em especial, presenciar os ensaios, devendo o fornecedor garantir ao inspetor da CONCESSIONÁRIA livre acesso aos laboratórios e locais de fabricação e de acondicionamento.
- 7.1.8 O fornecedor deverá assegurar ao inspetor da CONCESSIONÁRIA o direito de se familiarizar, em detalhes, com as instalações e os equipamentos a serem utilizados, estudar as instruções e desenhos, verificar calibrações, presenciar os ensaios, conferir resultados e, em caso de dúvida, efetuar nova inspeção e exigir a repetição de qualquer ensaio.

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

- 7.1.9 Todas as normas técnicas, especificações e desenhos citados como referência deverão estar à disposição do inspetor da CONCESSIONÁRIA, no local da inspeção.
- 7.1.10 A eventual dispensa dos ensaios referentes aos materiais, somente será válida se fornecida por escrito pela CONCESSIONÁRIA.
- 7.1.11 A aceitação do lote e/ou a dispensa de execução de qualquer ensaio:
 - a. N\u00e3o exime o fornecedor da responsabilidade de fornecer o material de acordo com os requisitos deste documento;
 - b. Não invalida qualquer reclamação posterior da CONCESSIONÁRIA a respeito da qualidade e/ou fabricação.

Nota:

1. Em tais casos, mesmo após haver saído da fábrica, o lote poderá ser inspecionado e submetido a ensaios, com prévia notificação ao fornecedor e, eventualmente, em sua presença. Em caso de qualquer discrepância em relação às exigências deste documento, o lote poderá ser rejeitado e sua reposição será por conta do fornecedor.

- 7.1.12 No caso de haver alteração no material, o fabricante deverá comunicar com antecedência o fato a CONCESSIONÁRIA, submetendo-a à aprovação desta empresa através da realização de novos ensaios de tipo.
- 7.1.13 À CONCESSIONÁRIA se reserva o direito de solicitar novos ensaios para a revalidação de fornecedor e/ou fabricante em seu cadastro de fornecedores, podendo haver o cancelamento do referido cadastro caso não sejam atendidas as premissas deste documento.

7.2 Ensaios de Tipo

- 7.2.1 Antes de qualquer fornecimento, o material deverá ser aprovado, devendo ser apresentado relatórios dos ensaios de tipo dispostos na NBR-7286 (para isolação EPR) ou na NBR-7287 (para isolação XLPE), conforme o cabo.
- 7.2.2 Deverão ser realizados em laboratório pertencente à Rede Brasileira de Laboratórios de Ensaios (RBLE) (www.inmetro.gov.br/laboratórios/labRBLE.asp) ou aceito em comum acordo com a CONCESSIONÁRIA.

7.3 Ensaios de Rotina

Antes de qualquer fornecimento, o material deverá ser aprovado, devendo ser apresentados relatórios dos ensaios de rotina dispostos na NBR-7286 (para isolação EPR) ou na NBR-7287 (para isolação XLPE), conforme o cabo.

7.4 Ensaios de Recebimento

- 7.4.1 Quando se tratar de aquisição pela CONCESSIONÁRIA, os subitens a seguir, do item 7.4, deverão ser observados.
- 7.4.2 Os ensaios de recebimento deverão ser realizados nas instalações do fornecedor, com a presença do inspetor da CONCESSIONÁRIA.
- 7.4.3 Os ensaios de recebimento são os constantes na NBR-7286 (para isolação EPR) ou na NBR-7287 (para isolação XLPE), conforme o cabo, incluindo as seguintes:

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
		Código:	Revisão:
Título: CABO DE POTÊNCIA ISOLADO MÉDIA TENSÃO		ET.202.EQTL. NORMA E PADRÕES	00

- a. Inspeção geral.
- b. Verificação de dimensões.

7.5 Execuções dos Ensaios

- 7.5.1 Os ensaios estabelecidos nos itens 7.2, 7.3 e 7.4, deverão ser realizados de acordo com as normas correlacionadas.
- 7.5.2 A inspeção geral consistirá na verificação do atendimento aos itens referentes ao acondicionamento e aos materiais construtivos dos cabos.
- 7.5.3 A verificação dimensional consistirá na verificação do atendimento às características dimensionais e mecânicas dos cabos.

7.6 Relatórios dos Ensaios

- 7.6.1 O fabricante deverá expedir, dentro do prazo de 7 (sete) dias, relatórios dos ensaios realizados. O fabricante deverá iniciar a fabricação dos cabos somente após a aprovação, pela empresa, dos relatórios de ensaios de tipo.
- 7.6.2 Os relatórios de ensaios de tipo e de rotina a serem preparados pelo fornecedor, deverão ser redigidos em português ou inglês, e deverão conter, no mínimo, as seguintes informações:
 - a. Nome e/ou marca comercial do fabricante;
 - b. Número da ordem/pedido de compra (no caso de aquisição por parte da CONCESSIONÁRIA);
 - c. Identificação dos cabos ensaiados;
 - d. Descrição sucinta dos ensaios;
 - e. Indicação de normas técnicas, instrumentos e circuitos de medição;
 - f. Memórias de cálculo, com resultados obtidos nos ensaios e eventuais observações;
 - g. Tamanho do lote, número e identificação das unidades amostradas e ensaiadas (no caso de aquisição por parte da CONCESSIONÁRIA);
 - h. Datas de início e término dos ensaios e de emissão do relatório;

equatorial celpa cemar	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
Título: CABO DE POTÊN	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

- i. Nome do laboratório onde os ensaios foram executados;
- j. Nomes legíveis e assinaturas do inspetor da CONCESSIONÁRIA e do responsável pelos ensaios.
- k. Declaração de que o material inspecionado atende, ou não, às especificações deste documento.
- 7.6.3 Quando se tratar de aquisição pela CONCESSIONÁRIA, os relatórios de ensaios de recebimento, a serem preparados pelo fornecedor, deverão ser redigidos em português e deverão conter, no mínimo, as seguintes informações:
 - a. Nome e/ou marca comercial do fabricante;
 - b. Número da ordem/pedido de compra;
 - c. Identificação dos cabos ensaiados;
 - d. Descrição sucinta dos ensaios;
 - e. Indicação de normas técnicas, instrumentos e circuitos de medição;
 - f. Memórias de cálculo, com os resultados obtidos nos ensaios e eventuais observações;
 - g. Tamanho do lote, número e identificação das unidades amostradas e ensaiadas;
 - h. Datas de início e término dos ensaios e de emissão do relatório;
 - Nomes legíveis e assinaturas do inspetor da CONCESSIONÁRIA e do responsável pelos ensaios.
 - j. Declaração de que o material inspecionado atende, ou não, às especificações deste documento.
- 7.6.4 Após a inspeção, e caso liberados os materiais, o fabricante deverá enviar uma via destes relatórios com os mesmos.

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina:
Título: CABO DE POTÊI	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

8 ACEITAÇÃO

8.1 Aceitação do Protótipo

O protótipo do cabo será aceito se apresentar resultados satisfatórios em todos os ensaios de tipo e de rotina.

8.2 Aceitação do Recebimento

O cabo deverá ser aceito se apresentar resultados satisfatórios em todos os ensaios de recebimento aplicáveis ao material.

8.3 Aplicação

O cabo de potência isolado para 15 kV e 34,5 kV é utilizado em rede de distribuição subterrânea e para efetuar as ligações em unidades consumidoras subterrâneas.

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 19 de 20
Título: CABO DE POTÊI	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

9 ANEXOS

ANEXO I - CABO DE POTÊNCIA ISOLADO 15 E 35 KV - DETALHES CONSTRUTIVOS

celpa CEMAR	ESPECIFICAÇÃO TÉCNICA	Elaborado em: 30/08/2017	Pagina: 20 de 20
Título: CABO DE POTÊ!	NCIA ISOLADO MÉDIA TENSÃO	Código: ET.202.EQTL. NORMA E PADRÕES	Revisão:

10 CONTROLE DE REVISÕES

REV	DATA	ITEM	DESCRIÇÃO DA MODIFICAÇÃO	RESPONSÁVEL
00	30/08/2017	Atualização no item 6	- Características construtivas do condutor, incluindo a inserção das tabelas: Tabela 2- Temperatura máxima em regime permanente em função da isolação Tabela 3 - Temperatura máxima em regime de sobrecarga Tabela 4 - Temperatura máxima em regime de curto-circuito	Álvaro Luiz Garcia Brasil
		Atualização no item 6.3	– Blindagem da isolação	

11 APROVAÇÃO

ELABORADOR (ES) / REVISOR (ES)

Álvaro Luiz Garcia Brasil - Gerência de Normas e Padrões

Francisco Carlos Martins Ferreira - Gerência de Normas e Padrões

Thays de Morais Nunes Ferreira - Gerência de Normas e Padrões

APROVADOR

Jorge Alberto Oliveira Tavares - Gerência de Normas e Padrões