MANEJO DE MOTORES

¿Qué es un motor?

- Es un dispositivo que convierte la energía eléctrica en energía mecánica mediante la acción de campos magnéticos.
- Son máquinas rotatorias compuestas por un rotor y un estator.
- Algunos pueden trabajar como motores y generadores o dinamo.
- ► Tienen una infinidad de aplicaciones y se los puede encontrar en aparatos como:
 - Ascensores
 - Licuadoras
 - Bombas
 - Bandas transportadoras
 - Refrigeradores
 - Ventiladores
 - Computadores
 - Etc.

CLASIFICACIÓN DE LOS MOTORES

MOTORES DE CORREINTE CONTINUA

▶ Utilizan corriente continua para su funcionamiento

CLUB DE ROBÓTICA EPN VARGAS SUASNAAVS JONATHAN

Parámetros importantes de un motor

Par o Torque

Fuerza que producen los suerpos en rotación

> Se mide en: [Nm] [kg/cm]

Potencia

La potencia es la energia necesaria para que el motor trabaje a cierto torque nominal con una velocidad angular nominal

Se mide en:

[W] [HP]

Velocidad

Número de revoluciones que la máquina se mueve por una unidad de tiempo

> Se mide en: [rad/s] [rev/seg]

Caracteristica Par velocidad Motor DC

▶ Es la representaci[on grafica de la velocidad del motor en function del torque.

Model	Operating Voltage			No Load Current	realization.	Load	Rated Load Speed	Rated Load	Starting Torque		Starting	
Model	(V)	(V)	Speed (min ⁻¹)	(mA)	(gf·cm)	(mN·m)		Current (mA)	(gf·cm)	(mN·m)	Current Le (mA) (n	(mm)
PAN14EE12AB	9 to 16	12.0	11050	70	50.0	4.9	9094	563	282.5	27.7	2857	a=11.5

club de robótica epn vargas suasnaavs jonathan

Model	Operating Rated Voltage (V) (V)		No Load Speed		Nateu Loau		Rated Load Speed (min ⁻¹)	Rated Load Current (mA)	Starting Torque		Starting	Shaft
		(min ⁻¹)		(gf•cm)	(mN·m)	(gf·cm)			(mN·m)	Current I (mA)	Length (mm)	
PPN7PA12C	2 to 7	5.0	14033	84	5.1	0.5	11605	235	29.5	2.9	957	a=11

MOTORES CON CAJA REDUCTORA

Specs for the similar, less expensive Pololu metal gearmotors running at 6 V:

gearmotor	gear ratio	free-run RPM	free-run current	stall current	stall torque (oz-in / kg-cm)	price
5:1 Micro	5:1	2450	50 mA	360 mA	1 / 0.1	\$15.95
10:1 Micro	10:1	1250	40 mA	360 mA	2 / 0.2	\$15.95
30:1 Micro	30:1	440	40 mA	360 mA	4 / 0.3	\$15.95
50:1 Micro	50:1	250	40 mA	360 mA	6 / 0.4	\$15.95
100:1 Micro	100:1	120	40 mA	360 mA	10 / 0.7	\$15.95
150:1 Micro	150:1	85	40 mA	360 mA	15 / 1.1	\$15.95
210:1 Micro	210:1	60	40 mA	360 mA	19 / 1.3	\$15.95
250:1 Micro	250:1	50	30 mA	360 mA	22 / 1.6	\$15.95
298:1 Micro	298:1	45	30 mA	360 mA	25 / 1.8	\$15.95

APLICACIÓN 1 CONTROL DE VELOCIDAD CON PWM

RELES

Interruptor accionado por un electroimán

Relé de dos posiciones

Relé Simple

APLICACIÓN 2 CONTROL DE MOTOR USANDO RELÉ

INVERSIÓN DE GIRO DE UN MOTOR

DC

Para invertir el sentido de giro de un motor do solamente se cambia la polaridad de la alimentación.

CLUB DE ROBÓTICA EPN VARGAS SUASNAAVS JONATHAN

PUENTE H

Configuración que permite invertir el sentido de giro de un motor DC

DRIVER DE MOTORES L293D

- Circuito integrado que posee 2 puentes H en su interior con diodos integrados.
- Permite manejar motores a pasos también.

recommended operating conditions

			MIN	MAX	UNIT
	V _{CC1}		4.5	7	>
	Supply voltage VC	C2	V _{CC1}	36	V
VIH	High level input voltage	C1 ≤ 7 V	2.3	V _{CC1}	V
	High-level input voltage	C1 ≥ 7 V	2.3	7	V
V _{IL}	V _{IL} Low-level output voltage				V
T _A Operating free-air temperature					°C

[†]The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

APLICACIÓN 3 INVERSION DE GIRO MEDIANTE COMUNICACIÓN SERIAL

USO DE 2 MOTORES

MOTOR DERECHO	MOTOR IZQUIERDO	FUNCION
	•	
		←