LC 2 Liaisons covalente

EI: Théorie de Lewis, modèle VSEPR, noménclature de GILLPESIE, résonance, moment dipolaire, mésomérie, géométrie des molécules

Niveau: L1 (tout début)

Prérequis:

- Electronégatvité

Objectifs:

- Savoir prédire la répartition des liaisons dans une molécule
- Savoir prédire la géométrie d'une molécule

TD: Etude de doc

Leçon de tout début L1, on pose les bases. Très peu de prérequis car tout est nouveau.

Introduction:

Notion de liaison covalente est fondamentale pour comprendre la cohésion des molécules. Elle est d »finie d'un point du vue classique par l'attraction entre un noyau et les électrons de l'atome voisins.

<u>Liaison covalente</u> (IUPAC) : Région de densité électronique relativement élevée entre 2 noyaux qui résulte au moins en partie du partage des électrons et donne naissance à une force attractive et à une distance intranucléaire caractéristique.

I. Représentation de la répartition des liaisons dans la molécules

1. Théorie de Lewis

- Description de la liaison selon Lewis : partage ou mise en commun deux deux électrons de valences
- Introduction des doublets non liants + simple, double, triple liaisons
- Exemples => STRUCTURE DE LEWIS : schéma représentant l'ensemble des liaisons et paires libre au sein d'une molécules +ODG
- Règle de l'octect (ca restreint le nombre de possibilité de structure ex N2)
- Liaisons peut être polarisé : moment dipolaire
- Classification des réactifs : Radicaux + A/B de Lewis
- => Structure électronique des molécules tome I, Jean et Volatron Chapitre n°1 De la classification périodique aux molécules p.4 à 12 (très bien et complet)
- => Chimie^3 chapitre n°3 Les molécules diatomiques p.133 et chap n°4 : Structure et géométrie des molécules polyatomiques 178 (pour compléter)

Transition : ion carbonate CO32- a une valeur de distance identiques pour toutes ces liaisons, comment ça se fait ?

2. Résonnance et mésomérie

On introduit le problème sur CO32-

- <u>Mésomérie</u>: délocalisation des électrons dans la molécules. On la représente avec une combinaison virtuelle de structures aux électrons localisées appelées <u>formes mésomères</u>.
- Supperposition du plusieurs formes mésomères : Résonnance
- Représentation des formes mésomères (double flèches)
- Sélection des formes mésomères (respect de la règle de l'octet + max de liaison + Moins de charges formelles)
- Application
- => Structure électronique des molécules tome I, Jean et Volatron Chapitre n°1 De la classification périodique aux molécules p.13 à 16
- => Chimie^3 Chapitre n°4 : Strucutre et géométrie des molécules poyatomiques p.203 (ça complète et il y a des illustrations)

Transtion : Le modèle de Lewis représente uniquement la répartition des liaisons dans la molécule mais ne nous donne pas d'indication sur la géométrie de l'espace de la molécule.

II. Représentation de la géométrie des molécules

- => Structure électronique des molécules tome I, Jean et Volatron Chapitre n°1 De la classification périodique aux molécules p.13 à 16 (complet, mais les définitions comme la nomenclature de GILLEPSIE un peu vague)
- => Fosset PCSI Chapitre n°3 petit 4 : Modèle de Lewis des molécules et des ions p.180 (définition plus propres et efficaces)
- => Chimie^3 Chapitre n°4 : Strucutre et géométrie des molécules poyatomiques p.194 à 205 (ça complète et il y a des illustrations)

1. Théorie VSEPR

- Modèle de Cram
- Théorie VSEPR

2. Noméncalture de GILLEPSIE

- Nomenclature de GILLEPSIE
- Présentation des différentes géométries + exemples (Chimie^3 il y a pour des molécules plus complexes)
- Intensité relative des répulsions + exemples (Fosset p.184)
- Extension de la théorie VSEPR (Volatron)

3. Moment dipolaire pour une molécule polyatomique

- Revenir sur le moment dipolaire pour la molécule polytomique (chimie^3 p.195 (couleur) + Fosset p.188 calculs + Volatrons p.22)

Ouverture : Limite du modèle : Ethène doit être plane mais elle ne l'est pas selon VSEPR : Limite. Le modèle orbiculaire permet de comprendre ça.

Autre plan : accès orbitalaire

Présentation des OA et OM, ils ont déjà vu l'équation de Schrodinger

 $C'est\ la\ leçon\ de\ Manon: \underline{http://perso.ens-lyon.fr/manon.leconte/pedago/fichiers/interactions/\underline{liaison\ covalente.pdf}}$

- => Structure électronique des molécules tome I, Jean et Volatron Chapitre n°3Intéractions de deux orbitales atomiques sur deux centres p.73
- =>Fosset PC
- => Courschimie orbiculaire M. Vérot
- => Chimie^3 chap n°4 Structure et géométrie des molécules poylatomques p.205

I. Modèle de la liaison covalente

- 1. Modèle de Lewis
- Rappel des définition
- Montrer les limites du modèles, c'est l'approche orbitaire qui va résoudre ça.
- 2. Théorie des orbitales moléculaires
- II. <u>Diagramme d'orbitales moléculaires de molécules diatomiques homonucléaires</u>
- 1. Orbitales moléculaire de H2
- 2. Orbitales moléculaire de O2
- III. **Ecnergie de liaisons** (surement pas le temps)
- 1. Vocabulaire
- 2. Longeur de liaison et rayon covalent