1. Iesildīšanās (Logaritmi):

- (a) No desmitciparu skaitļa desmit reizes vilka kvadrātsakni. Kuram veselam skaitlim vistuvākais rezultāts?
- (b) Kurā pakāpē jākāpina 2, lai iegūtu vērtību $2\sqrt{2}$? 0.125? 1/1024?
- (c) Cik dažādām n vērtībām var sakrist ciparu skaits skaitļu 2^n decimālpierakstos? (Atrast visas iespējas.)
- (d) Datora atmiņā dots skaitlis n. Kā noskaidrot, cik šī skaitļa decimālpierakstā ir ciparu?

2. Iesildīšanās (Saknes):

- (a) Vai $\sqrt{2}$, $3 + \sqrt{2}$, $2\sqrt{2}$, $\sqrt{2} + \sqrt{3}$ ir racionāli vai iracionāli?
- (b) $ax^2 + bx + c = 0$ ir kvadrātvienādojums ar racionāliem koeficientiem. Viena no tā saknēm ir $x_1 = 2 + \sqrt{5}$. Vai otra sakne var būt $x_2 = 2 \sqrt{5}$? Vai otra sakne var būt $x_2 = 3 \sqrt{3}$?

3. Pierādīt vai apgāzt apgalvojumus:

- (a) Ja p+q ir racionāls, tad vai nu abi p,q ir racionāli vai arī abi ir iracionāli.
- (b) Ja pq ir racionāls, tad vai nu abi p,q ir racionāli vai arī abi ir iracionāli.
- (c) Ja p^2 un q^2 ir abi racionāli, tad arī reizinājums (p+q)(p-q) ir racionāls.
- (d) Ja p^3 un p^5 ir racionāli, tad arī p ir racionāls.
- (e) Ja p^6 un p^{15} ir racionāli, tad arī p ir racionāls.
- (f) Ja pq un p+q abi ir racionāli, tad p un q ir racionāli.
- 4. Pierādīt vai apgāzt apgalvojumu: Ja x^2 ir iracionāls, tad x^3 ir iracionāls.
- 5. Ar a_n apzīmējam n-to locekli virknē $1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,6,6,6,6,6,\dots$, ko veido, atkārtojot katru naturālu skaitli k tieši k reizes. Pierādīt, ka

$$a_n = \left\lfloor \sqrt{2n} + \frac{1}{2} \right\rfloor.$$

- 6. Pierādīt, ka $\sqrt[3]{2}$ nevar izteikt formā $a+b\sqrt{r}$, kur a,b,r ir racionāli skaitļi.
- 7. Pierādīt, ka $(\sqrt{2}-1)^n$, $n \in \mathbb{N}$ ir izsakāms formā $\sqrt{m}-\sqrt{m-1}$, kur $m \in \mathbb{N}$.
- 8. **Veselā daļa.** Ar x apzīmēts jebkurš reāls skaitlis. Pierādīt, ka $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.