Lecture 9: Policy Gradient II ¹

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2022

Additional reading: Sutton and Barto 2018 Chp. 13

¹With many slides from or derived from David Silver and John Schulman and Pieter:Abbeel > + 4 > + 4 > + 4 > + 5 > 4 > + 5 > 4 > + 5 > 4 > + 5 >

Refresh Your Knowledge

- Select all that are true about policy gradients:

 - ② θ is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
 - State-action pairs with higher estimated Q values will increase in probability on average
 - Are guaranteed to converge to the global optima of the policy class
 - Not sure

Refresh Your Knowledge Solutions

- Select all that are true about policy gradients:

 - \bullet is always increased in the direction of $\nabla_{\theta} \ln(\pi(S_t, A_t, \theta))$.
 - State-action pairs with higher estimated Q values will increase in probability on average
 - 4 Are guaranteed to converge to the global optima of the policy class
 - Not sure

Class Structure

• Last time: Policy Search

• This time: Policy Search

Next time: Exam

Next next time: Exploration

Recall: Policy-Based RL

 Policy search: directly parametrize the policy

$$\pi_{\theta}(s, a) = \mathbb{P}[a|s; \theta]$$

- Goal is to find a policy π with the highest value function V^π
- (Pure) Policy based methods
 - No Value Function
 - Learned Policy
- Actor-Critic methods
 - Learned Value Function
 - Learned Policy

Recall: Advantages of Policy-Based RL

Advantages:

- Better convergence properties
- Effective in high-dimensional or continuous action spaces
- Can learn stochastic policies

Disadvantages:

- Typically converge to a local rather than global optimum
- Evaluating a policy is typically inefficient and high variance

Recall: Policy Gradient

- Defined $V(\theta) = V^{\pi_{\theta}}(s_0) = V(s_0, \theta)$ to make explicit the dependence of the value on the policy parameters
- Assumed episodic MDPs
- Policy gradient algorithms search for a *local* maximum of $V(\theta)$ by ascending the gradient of the policy, w.r.t parameters θ

$$\Delta\theta = \alpha\nabla_{\theta}V(\theta)$$

• Where $\nabla_{\theta} V(\theta)$ is the policy gradient

$$abla_{ heta}V(heta) = egin{pmatrix} rac{\partial V(heta)}{\partial heta_1} \ dots \ rac{\partial V(heta)}{\partial heta_n} \end{pmatrix}$$

ullet and α is a step-size hyperparameter

Desired Properties of a Policy Gradient RL Algorithm

- Goal: Converge as quickly as possible to a local optima
 - Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy

Desired Properties of a Policy Gradient RL Algorithm

- Goal: Converge as quickly as possible to a local optima
 - Incurring reward / cost as execute policy, so want to minimize number of iterations / time steps until reach a good policy
- During policy search alternating between evaluating policy and changing (improving) policy (just like in policy iteration)
- Would like each policy update to be a monotonic improvement
 - Only guaranteed to reach a local optima with gradient descent
 - Monotonic improvement will achieve this
 - And in the real world, monotonic improvement is often beneficial

Desired Properties of a Policy Gradient RL Algorithm

- Goal: Obtain large monotonic improvements to policy at each update
- Techniques to try to achieve this:
 - Last time and today: Get a better estimate of the gradient (intuition: should improve updating policy parameters)
 - Today: Change, how to update the policy parameters given the gradient

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- 4 Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Likelihood Ratio / Score Function Policy Gradient

• Recall last time (*m* is a set of trajectories):

$$\nabla_{\theta} V(s_0, \theta) \approx (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)}|s_t^{(i)})$$

- Unbiased estimate of gradient but very noisy
- Fixes that can make it practical
 - Temporal structure (discussed last time)
 - Baseline
 - \bullet Alternatives to using Monte Carlo returns $R(\tau^{(i)})$ as targets

Policy Gradient: Introduce Baseline

• Reduce variance by introducing a baseline b(s)

$$\nabla_{\theta} \mathbb{E}_{\tau}[R] = \mathbb{E}_{\tau} \left[\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi(a_t | s_t; \theta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t) \right) \right]$$

- For any choice of b, gradient estimator is unbiased.
- Near optimal choice is the expected return,

$$b(s_t) \approx \mathbb{E}[r_t + r_{t+1} + \cdots + r_{T-1}]$$

• Interpretation: increase logprob of action a_t proportionally to how much returns $\sum_{t'=t}^{T-1} r_{t'}$ are better than expected

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} & \mathbb{E}_{\tau}[\nabla_{\theta}\log\pi(a_t|s_t;\theta)b(s_t)] \\ & = \mathbb{E}_{s_{0:t},a_{0:(t-1)}}\left[\mathbb{E}_{s_{(t+1):\mathcal{T}},a_{t:(\mathcal{T}-1)}}[\nabla_{\theta}\log\pi(a_t|s_t;\theta)b(s_t)]\right] \end{split}$$

Baseline b(s) Does Not Introduce Bias-Derivation

$$\begin{split} &\mathbb{E}_{\tau} \big[\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t) \big] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[\mathbb{E}_{s_{(t+1):\mathcal{T}}, a_{t:(\mathcal{T}-1)}} [\nabla_{\theta} \log \pi(a_t | s_t; \theta) b(s_t)] \right] \text{ (break up expectation)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{s_{(t+1):\mathcal{T}}, a_{t:(\mathcal{T}-1)}} [\nabla_{\theta} \log \pi(a_t | s_t; \theta)] \right] \text{ (pull baseline term out)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \mathbb{E}_{a_t} [\nabla_{\theta} \log \pi(a_t | s_t; \theta)] \right] \text{ (remove irrelevant variables)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \pi_{\theta}(a_t | s_t) \frac{\nabla_{\theta} \pi(a_t | s_t; \theta)}{\pi_{\theta}(a_t | s_t)} \right] \text{ (likelihood ratio)} \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \sum_{a} \nabla_{\theta} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} \sum_{a} \pi(a_t | s_t; \theta) \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \nabla_{\theta} 1 \right] \\ &= \mathbb{E}_{s_{0:t}, a_{0:(t-1)}} \left[b(s_t) \cdot 0 \right] = 0 \end{split}$$

"Vanilla" Policy Gradient Algorithm

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, \cdots do
  Collect a set of trajectories by executing the current policy
  At each timestep t in each trajectory \tau^i, compute
    Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, and
    Advantage estimate \hat{A}_{t}^{i} = G_{t}^{i} - b(s_{t}).
  Re-fit the baseline, by minimizing \sum_{i} \sum_{t} ||b(s_t) - G_t^i||^2,
  Update the policy, using a policy gradient estimate \hat{g},
   Which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}_t.
    (Plug \hat{g} into SGD or ADAM)
endfor
```

Other Choices for Baseline?

```
Initialize policy parameter \theta, baseline b
for iteration=1, 2, \cdots do
  Collect a set of trajectories by executing the current policy
  At each timestep t in each trajectory \tau^i, compute
    Return G_t^i = \sum_{t'=t}^{T-1} r_{t'}^i, and
    Advantage estimate \hat{A}_{t}^{i} = G_{t}^{i} - b(s_{t}).
  Re-fit the baseline, by minimizing \sum_{i} \sum_{t} ||b(s_t) - G_t^i||^2,
  Update the policy, using a policy gradient estimate \hat{g},
   Which is a sum of terms \nabla_{\theta} \log \pi(a_t|s_t,\theta) \hat{A}_t.
    (Plug \hat{g} into SGD or ADAM)
endfor
```

Choosing the Baseline: Value Functions

• Recall Q-function / state-action-value function:

$$Q^{\pi}(s, a) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s, a_0 = a \right]$$

State-value function can serve as a great baseline

$$V^{\pi}(s) = \mathbb{E}_{\pi} \left[r_0 + \gamma r_1 + \gamma^2 r_2 \cdots | s_0 = s \right]$$

= $\mathbb{E}_{a \sim \pi} [Q^{\pi}(s, a)]$

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- 4 Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Likelihood Ratio / Score Function Policy Gradient

Recall last time:

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau^{(i)}) \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)}|s_t^{(i)})$$

- Unbiased estimate of gradient but very noisy
- Fixes that can make it practical
 - Temporal structure (discussed last time)
 - Baseline
 - Alternatives to using Monte Carlo returns G_t^i as estimate of expected discounted sum of returns for the policy parameterized by θ ?

Choosing the Target

- ullet G_t^i is an estimation of the value function at s_t from a single roll out
- Unbiased but high variance
- Reduce variance by introducing bias using bootstrapping and function approximation
 - Just like in we saw for TD vs MC, and value function approximation

Actor-critic Methods

- Estimate of V/Q is done by a **critic**
- Actor-critic methods maintain an explicit representation of policy and the value function, and update both
- A3C (Mnih et al. ICML 2016) is a very popular actor-critic method

Policy Gradient Formulas with Value Functions

Recall:

$$egin{aligned}
abla_{ heta} \mathbb{E}_{ au}[R] &= \mathbb{E}_{ au}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t|s_t; heta) \left(\sum_{t'=t}^{T-1} r_{t'} - b(s_t)
ight)
ight] \
abla_{ heta} \mathbb{E}_{ au}[R] &pprox \mathbb{E}_{ au}\left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t|s_t; heta) \left(Q(s_t,a_t;oldsymbol{w}) - b(s_t)
ight)
ight] \end{aligned}$$

ullet Letting the baseline be an estimate of the value V, we can represent the gradient in terms of the state-action advantage function

$$abla_{ heta} \mathbb{E}_{ au}[R] pprox \mathbb{E}_{ au} \left[\sum_{t=0}^{T-1}
abla_{ heta} \log \pi(a_t | s_t; heta) \hat{A}^{\pi}(s_t, a_t)
ight]$$

ullet where the advantage function $A^\pi(s,a)=Q^\pi(s,a)-V^\pi(s)$

Choosing the Target: N-step estimators

$$abla_{ heta}V(heta) pprox (1/m)\sum_{i=1}^{m}\sum_{t=0}^{T-1}R_{t}^{i}
abla_{ heta}\log\pi_{ heta}(a_{t}^{(i)}|s_{t}^{(i)})$$

• Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

Choosing the Target: N-step estimators

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{I-1} R_t^i \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

 Note that critic can select any blend between TD and MC estimators for the target to substitute for the true state-action value function.

$$\hat{R}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1})$$

$$\hat{R}_{t}^{(2)} = r_{t} + \gamma r_{t+1} + \gamma^{2} V(s_{t+2}) \qquad \cdots$$

$$\hat{R}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \cdots$$

If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots - V(s_{t})$$

Check Your Understanding: Blended Advantage Estimators

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{I-1} R_t^i \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)}|s_t^{(i)})$$

If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots - V(s_{t})$$

- Select all that are true
- $\hat{A}_{t}^{(1)}$ has low variance & low bias.
- $\hat{A}_{t}^{(1)}$ has high variance & low bias.
- $\hat{A}_t^{(\infty)}$ low variance and high bias.
- $\hat{A}_t^{(\infty)}$ high variance and low bias.
- Not sure

Check Your Understanding: Blended Advantage Estimators Answers

$$\nabla_{\theta} V(\theta) \approx (1/m) \sum_{i=1}^{m} \sum_{t=0}^{T-1} R_t^i \nabla_{\theta} \log \pi_{\theta}(a_t^{(i)} | s_t^{(i)})$$

• If subtract baselines from the above, get advantage estimators

$$\hat{A}_{t}^{(1)} = r_{t} + \gamma V(s_{t+1}) - V(s_{t})$$

$$\hat{A}_{t}^{(\text{inf})} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+1} + \dots - V(s_{t})$$

• Solution: $\hat{A}_t^{(1)}$ has low variance & high bias. $\hat{A}_t^{(\infty)}$ high variance but low bias.

"Vanilla" Policy Gradient Algorithm

```
Initialize policy parameter \theta, baseline b for iteration=1,2,... do Collect a set of trajectories by executing the current policy At each timestep t in each trajectory \tau^i, compute Advantage\ estimate\ \hat{A}^i_t Update the policy, using a policy gradient estimate \hat{g}, Which is a sum of terms \nabla_{\theta}\log\pi(a_t|s_t,\theta)\hat{A}_t. (Plug \hat{g} into SGD or ADAM) endfor
```

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- 4 Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Policy Gradient and Step Sizes

- Goal: Each step of policy gradient yields an updated policy π' whose value is greater than or equal to the prior policy π : $V^{\pi'} \geq V^{\pi}$
- Gradient descent approaches update the weights a small step in direction of gradient
- **First order** / linear approximation of the value function's dependence on the policy parameterization
- Locally a good approximation, further away less good

Why are step sizes a big deal in RL?

- Step size is important in any problem involving finding the optima of a function
- ullet Supervised learning: Step too far o next updates will fix it
- Reinforcement learning
 - ullet Step too far o bad policy
 - Next batch: collected under bad policy
 - Policy is determining data collection! Essentially controlling exploration and exploitation trade off due to particular policy parameters and the stochasticity of the policy
 - May not be able to recover from a bad choice, collapse in performance!

Simple Step Size

- Simple step-sizing: Line search in direction of gradient
 - Simple but expensive (perform evaluations along the line)
 - Naive: ignores where the first order approximation is good or bad

Policy Gradient Methods with Auto-Step-Size Selection

- Can we automatically ensure the updated policy π' has value greater than or equal to the prior policy π : $V^{\pi'} \geq V^{\pi}$?
- Consider this for the policy gradient setting, and hope to address this by modifying step size

Objective Function

Goal: find policy parameters that maximize value function¹

$$V(heta) = \mathbb{E}_{\pi_{ heta}}\left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t); \pi_{ heta}
ight]$$

- where $s_0 \sim P(s_0)$, $a_t \sim \pi(a_t|s_t), s_{t+1} \sim P(s_{t+1}|s_t, a_t)$
- ullet Have access to samples from the current policy $\pi_{ heta}$ (param. by heta)
- Want to predict the value of a different policy (off policy learning!)

Objective Function

Goal: find policy parameters that maximize value function¹

$$V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}); \pi_{\theta} \right]$$

- where $s_0 \sim P(s_0)$, $a_t \sim \pi(a_t|s_t), s_{t+1} \sim P(s_{t+1}|s_t, a_t)$
- ullet Express value of $ilde{\pi}$ in terms of advantage over π

$$V(\tilde{\theta}) = V(\theta) + \mathbb{E}_{\pi_{\tilde{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} A_{\pi}(s_{t}, a_{t}) \right]$$
 (1)

$$= V(\theta) + \sum_{s} \mu_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$
 (2)

$$\mu_{\tilde{\pi}}(s) = E_{\tilde{\pi}} \sum_{t=0}^{\infty} \gamma^t I(s_t = s)$$
 (3)

 $\underline{\bullet}$ $\mu_{\tilde{\pi}}(s)$ is the discounted weighted frequency of state s under policy $\tilde{\pi}$

¹For today we will primarily consider discounted value functions

Objective Function

Goal: find policy parameters that maximize value function¹

$$V(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}); \pi_{\theta} \right]$$

- where $s_0 \sim \mu(s_0)$, $a_t \sim \pi(a_t|s_t), s_{t+1} \sim P(s_{t+1}|s_t, a_t)$
- Express expected return of another policy in terms of the advantage over the original policy

$$V(\tilde{\theta}) = V(\theta) + \mathbb{E}_{\pi_{\tilde{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} A_{\pi}(s_{t}, a_{t}) \right] = V(\theta) + \sum_{s} \mu_{\tilde{\pi}}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s, a)$$

- where $\mu_{\tilde{\pi}}(s)$ is defined as the discounted weighted frequency of state s under policy $\tilde{\pi}$
- ullet We know the advantage A_π and $ilde{\pi}$
- But we can't compute the above because we don't know $\mu_{\tilde{\pi}}$, the state distribution under the new proposed policy

¹For today we will primarily consider discounted value functions

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Local approximation

- Can we remove the dependency on the discounted visitation frequencies under the new policy?
- Substitute in the discounted visitation frequencies under the current policy to define a new objective function:

$$L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$$

- ullet Note that $L_{\pi_{ heta_0}}(\pi_{ heta_0})=V(heta_0)$
- Gradient of L is identical to gradient of value function at policy parameterized evaluated at θ_0 : $\nabla_{\theta} L_{\pi_{\theta_0}}(\pi_{\theta})|_{\theta=\theta_0} = \nabla_{\theta} V(\theta)|_{\theta=\theta_0}$

Conservative Policy Iteration

- Is there a bound on the performance of a new policy obtained by optimizing the surrogate objective?
- Consider mixture policies that blend between an old policy and a different policy

$$\pi_{new}(a|s) = (1-eta)\pi_{old}(a|s) + eta\pi'(a|s)$$

• In this case can guarantee a lower bound on value of the new π_{new} :

$$V^{\pi_{new}} \ge L_{\pi_{old}}(\pi_{new}) - \frac{2\epsilon\gamma}{(1-\gamma)^2}\beta^2$$

ullet where $\epsilon = \max_{s} \left| \mathbb{E}_{a \sim \pi'(a|s)} \left[A_{\pi}(s,a)
ight]
ight|$

Check Your Understanding: Conservative Policy Iteration

- Is there a bound on the performance of a new policy obtained by optimizing the surrogate objective?
- Consider mixture policies that blend between an old policy and a different policy

$$\pi_{new}(a|s) = (1-\beta)\pi_{old}(a|s) + \beta\pi'(a|s)$$

• In this case can guarantee a lower bound on value of the new π_{new} :

$$V^{\pi_{new}} \ge L_{\pi_{old}}(\pi_{new}) - \frac{2\epsilon\gamma}{(1-\gamma)^2}\beta^2$$

- ullet where $\epsilon = \max_{s} \left| \mathbb{E}_{a \sim \pi'(a|s)} \left[A_{\pi}(s,a)
 ight]
 ight|$
- What can we say about this lower bound? (Select all)
 - **1** It is tight if $\pi_{new} = \pi_{old}$
 - 2 It is most loose if $\beta = 1$
 - **3** It is most tight if $\beta = 1$
 - It is most tight if $\beta = 0$
 - Not sure

Conservative Policy Iteration

- Is there a bound on the performance of a new policy obtained by optimizing the surrogate objective?
- Consider mixture policies that blend between an old policy and a different policy

$$\pi_{new}(a|s) = (1-eta)\pi_{old}(a|s) + eta\pi'(a|s)$$

• In this case can guarantee a lower bound on value of the new π_{new} :

$$V^{\pi_{new}} \ge L_{\pi_{old}}(\pi_{new}) - \frac{2\epsilon\gamma}{(1-\gamma)^2}\beta^2$$

ullet where $\epsilon = \max_{s} \left| \mathbb{E}_{a \sim \pi'(a|s)} \left[A_{\pi}(s,a)
ight]
ight|$

Find the Lower-Bound in General Stochastic Policies

- Would like to similarly obtain a lower bound on the potential performance for general stochastic policies (not just mixture policies)
- Recall $L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$

Theorem

Let
$$D_{TV}^{\mathsf{max}}(\pi_1, \pi_2) = \mathsf{max}_s \, D_{TV}(\pi_1(\cdot|s), \pi_2(\cdot|s))$$
. Then

$$V^{\pi_{new}} \geq L_{\pi_{old}}(\pi_{new}) - rac{4\epsilon\gamma}{(1-\gamma)^2} (D^{\sf max}_{TV}(\pi_{old},\pi_{new}))^2$$

where $\epsilon = \max_{s,a} |A_{\pi}(s,a)|$.

Find the Lower-Bound in General Stochastic Policies

- Would like to similarly obtain a lower bound on the potential performance for general stochastic policies (not just mixture policies)
- Recall $L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$

Theorem

Let
$$D_{TV}^{\max}(\pi_1, \pi_2) = \max_s D_{TV}(\pi_1(\cdot|s), \pi_2(\cdot|s))$$
. Then

$$V^{\pi_{new}} \geq L_{\pi_{old}}(\pi_{new}) - rac{4\epsilon\gamma}{(1-\gamma)^2} (D^{\sf max}_{TV}(\pi_{old},\pi_{new}))^2$$

where $\epsilon = \max_{s,a} |A_{\pi}(s,a)|$.

- Note that $D_{TV}(p,q)^2 \leq D_{KL}(p,q)$ for prob. distrib p and q.
- Then the above theorem immediately implies that

$$V^{\pi_{new}} \geq L_{\pi_{old}}(\pi_{new}) - rac{4\epsilon\gamma}{(1-\gamma)^2} D_{ extit{KL}}^{ ext{max}}(\pi_{old},\pi_{new})$$

• where $D_{\mathit{KL}}^{\mathsf{max}}(\pi_1,\pi_2) = \mathsf{max}_s \, D_{\mathit{KL}}(\pi_1(\cdot|s),\pi_2(\cdot|s))$

Guaranteed Improvement¹

• Goal is to compute a policy that maximizes the objective function defining the lower bound:

 $^{^{1}}L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$

Guaranteed Improvement¹

 Goal is to compute a policy that maximizes the objective function defining the lower bound:

$$egin{array}{lcl} M_i(\pi) &=& L_{\pi_i}(\pi) - rac{4\epsilon\gamma}{(1-\gamma)^2} D^{\sf max}_{KL}(\pi_i,\pi) \ &V^{\pi_{i+1}} &\geq & L_{\pi_i}(\pi_{i+1}) - rac{4\epsilon\gamma}{(1-\gamma)^2} D^{\sf max}_{KL}(\pi_i,\pi_{i+1}) = M_i(\pi_{i+1}) \ &V^{\pi_i} &=& M_i(\pi_i) = L_{\pi_i}(\pi_i) \ &V^{\pi_{i+1}} - V^{\pi_i} &\geq & M_i(\pi_{i+1}) - M_i(\pi_i) \end{array}$$

- So as long as the new policy π_{i+1} is equal or an improvement compared to the old policy π_i with respect to the lower bound, we are guaranteed to to monotonically improve!
- The above is a type of Minorization-Maximization (MM) algorithm

Guaranteed Improvement¹

$$V^{\pi_{new}} \geq L_{\pi_{old}}(\pi_{new}) - rac{4\epsilon\gamma}{(1-\gamma)^2} D_{ extit{KL}}^{ ext{max}}(\pi_{old},\pi_{new})$$

Figure: Source: John Schulman, Deep Reinforcement Learning, 2014

 $^{1}L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{a} \tilde{\pi}(a|s) A_{\pi}(s,a)$

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- 4 Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Optimization of Parameterized Policies¹

Goal is to optimize

$$\max_{\theta_{new}} L_{\theta_{old}}(\theta_{new}) - \frac{4\epsilon\gamma}{(1-\gamma)^2} D_{KL}^{\mathsf{max}}(\theta_{old}, \theta_{new}) = L_{\theta_{old}}(\theta_{new}) - CD_{KL}^{\mathsf{max}}(\theta_{old}, \theta_{new})$$

- where C is the penalty coefficient
- In practice, if we used the penalty coefficient recommended by the theory above $C = \frac{4\epsilon\gamma}{(1-\gamma)^2}$, the step sizes would be very small
- New idea: Use a trust region constraint on step sizes. Do this by imposing a constraint on the KL divergence between the new and old policy.

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to $D_{KL}^{s\sim \mu_{\theta_{old}}}(\theta_{old},\theta)\leq \delta$

• This uses the average KL instead of the max (the max requires the KL is bounded at all states and yields an impractical number of constraints)

TRPO Overview

- Policy gradient approach
- Uses surrogate optimization function
- Automatically constrains the weight update to a trusted region, to approximate where the first order approximation is valid
- Empirically consistently does well
- Very influential: +4500 citations since introduced in 2015

Table of Contents

- Better Gradient Estimates
- 2 Policy Gradient Algorithms and Reducing Variance
- 3 Need for Automatic Step Size Tuning
- 4 Updating the Parameters Given the Gradient: Local Approximation
- 5 Updating the Parameters Given the Gradient: Trust Regions
- 6 Updating the Parameters Given the Gradient: TRPO Algorithm

Practical Algorithm: TRPO

Applied to

Locomotion controllers in 2D

Figure: Trust Region Policy Optimization, Schulman et al, 2015

Atari games with pixel input

TRPO Results

Figure: Trust Region Policy Optimization, Schulman et al, 2015

From Theory to Practice

• Prior objective:

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to $D_{KL}^{s \sim \mu_{\theta_{old}}}(\theta_{old}, \theta) \leq \delta$ where $L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{s} \tilde{\pi}(a|s) A_{\pi}(s, a)$

- Don't know the visitation weights nor true advantage function
- In TRPO implementation do several substitutions

From Theory to Practice

Prior objective:

$$\max_{\theta} L_{\theta_{old}}(\theta)$$
 subject to $D_{KL}^{s \sim \mu_{\theta_{old}}}(\theta_{old}, \theta) \leq \delta$ where $L_{\pi}(\tilde{\pi}) = V(\theta) + \sum_{s} \mu_{\pi}(s) \sum_{s} \tilde{\pi}(a|s) A_{\pi}(s, a)$

- Don't know the visitation weights nor true advantage function
- Instead do the following substitutions:

$$\sum_{s} \mu_{\pi}(s) \to \frac{1}{1-\gamma} \mathbb{E}_{s \sim \mu_{\theta_{old}}}[\ldots],$$

From Theory to Practice

Next substitution:

$$\sum_{\mathsf{a}} \pi_{\theta}(\mathsf{a}|\mathsf{s}_n) A_{\theta_{old}}(\mathsf{s}_n, \mathsf{a}) \to \mathbb{E}_{\mathsf{a} \sim q} \left[\frac{\pi_{\theta}(\mathsf{a}|\mathsf{s}_n)}{q(\mathsf{a}|\mathsf{s}_n)} A_{\theta_{old}}(\mathsf{s}_n, \mathsf{a}) \right]$$

- where q is some sampling distribution over the actions and s_n is a particular sampled state.
- This second substitution is to use importance sampling to estimate the desired sum, enabling the use of an alternate sampling distribution q (other than the new policy π_{θ}).
- Third substitution:

$$A_{ heta_{old}} o Q_{ heta_{old}}$$

 Note that the above substitutions do not change solution to the above optimization problem

Selecting the Sampling Policy

Optimize

$$\begin{split} \max_{\theta} \mathbb{E}_{s \sim \mu_{\theta_{old}}, a \sim q} \left[\frac{\pi_{\theta}(a|s)}{q(a|s)} Q_{\theta_{old}}(s, a) \right] \\ \text{subject to } \mathbb{E}_{s \sim \mu_{\theta_{old}}} D_{KL(\pi_{\theta_{old}}(\cdot|s), \pi_{\theta}(\cdot|s))} \leq \delta \end{split}$$

- Standard approach: sampling distribution is q(a|s) is simply $\pi_{old}(a|s)$
- For the vine procedure see the paper

Figure: Trust Region Policy Optimization, Schulman et al, 2015

Searching for the Next Parameter

- Use a linear approximation to the objective function and a quadratic approximation to the constraint
- Constrained optimization problem
- Use conjugate gradient descent

Practical Algorithm: TRPO

- 1: **for** iteration= $1, 2, \ldots$ **do**
- 2: Run policy for T timesteps or N trajectories
- 3: Estimate advantage function at all timesteps
- 4: Compute policy gradient *g*
- 5: Use CG (with Hessian-vector products) to compute $F^{-1}g$ where F is the Fisher information matrix
- 6: Do line search on surrogate loss and KL constraint
- 7: end for

Common Template of Policy Gradient Algorithms

- 1: **for** iteration= $1, 2, \ldots$ **do**
- 2: Run policy for T timesteps or N trajectories
- 3: At each timestep in each trajectory, compute target $Q^{\pi}(s_t, a_t)$, and baseline $b(s_t)$
- 4: Compute estimated policy gradient \hat{g}
- 5: Update the policy using \hat{g} , potentially constrained to a local region
- 6: end for

Policy Gradient Summary

- Extremely popular and useful set of approaches
- Can incorporate prior knowledge by choosing the policy parameterization
- You should be very familiar with REINFORCE and the policy gradient template on the prior slide
- Understand where different estimators can be slotted in (and implications for bias/variance)
- Don't have to be able to derive or remember the specific formulas in TRPO for approximating the objectives and constraints
- Will have the opportunity to practice with these ideas in homework 3

Class Structure

• Last time: Policy Search

• This time: Policy Search

Next time: Exam

Next next time: Exploration

Practical Implementation with Auto differentiation

- Usual formula $\sum_t \nabla_\theta \log \pi(a_t|s_t;\theta) \hat{A}_t$ is inefficient—want to batch data
- Define "surrogate" function using data from current batch

$$L(\theta) = \sum_{t} \log \pi(a_{t}|s_{t};\theta) \hat{A}_{t}$$

- Then policy gradient estimator $\hat{g} = \nabla_{\theta} L(\theta)$
- Can also include value function fit error

$$L(\theta) = \sum_{t} \left(\log \pi(a_t|s_t;\theta) \hat{A}_t - ||V(s_t) - \hat{G}_t||^2 \right)$$

TRPO Results

Figure: Trust Region Policy Optimization, Schulman et al, 2015