U.D.L Sidi Bel Abbès

Module: AED

Faculté des Sciences Exactes

Responsable: M. HAMMAD

Département : Probabilités-Statistique

Mercredi 21/01/2024

3^{eme} Année Licence : Mathématiques Appliquées

Durée:1h30

EXAMEN FINAL

Question de Cours (04 points).

Écrire l'algorithme de l'ACP.

Exercice (16 points).

Soit un ensemble de six étudiants caractérisés par trois notes chacun (notes des matières: Probabilités, Statistique et Optimisation).

	I1	12	13	I 4	15	16
P	8	4	6	10	8	0
S	1	6	8	4	2	3
0	0	5	7	7	5	6

On donne $\lambda = 12$, valeur propre de VM.

Appliquer une analyse en composantes principales (ACP) sur des données centrées non réduites.
 Représenter le nuage des points individus sur le plan factoriel.

Calculer la contribution (INR) des individus I1, I2, et I3 relativement à l'inertie globale.

Corrige type ABD - 2023/2024 Prestion de Cows : Voir le Cons (04 points) (16 paints) $1/\sqrt{2} = \frac{1}{2} li nji = \frac{1}{6} li n$ $g = \begin{pmatrix} 6 \\ 4 \\ 5 \end{pmatrix}$ $01 \\ 5$ Tableau Centre: Xc = (2ji- 2)
1 sie 6
1 sie 3 $X_{C} = \begin{pmatrix} 2 & -2 & 0 & 4 & 2 & -6 \\ -3 & 2 & 4 & 0 & -2 & -1 \\ -5 & 0 & 2 & 2 & 0 & 1 \end{pmatrix}$ Por me ACP Centre non réduite $V = X_{c}PX_{c}' = \frac{1}{6}X_{c}X_{c}' = \frac{1}{6}\begin{pmatrix} 64 & -8 & -8 \\ -8 & 34 & 92 \end{pmatrix} = \frac{1}{6}.S$ $I = Tr(VH) = Tr(V) = \frac{64+34+34}{6} = \frac{132}{6} = 22$ or Ig= 1/1+2+2=22, 1=12 01 on: $\lambda_2 + \lambda_3 = 22 - 12 = 10$, det $S = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 192$ Det $(VH - \lambda I_3) = P_1$ for Calculus v.p λ also $\begin{cases} \lambda_2 + \lambda_3 = 10 \\ \lambda_2 - \lambda_3 = 16 \end{cases}$ (1) $\begin{cases} \lambda_2 + \lambda_3 = 16 \\ \lambda_2 - \lambda_3 = 16 \end{cases}$

(1) -> 13= 10-12, on remple-ce do (2) 1, (10-1)=16 = 2 102 + 16=0 $(=) \begin{cases} \lambda_{1} = 12 \\ \lambda_{2} = 8 \\ \lambda_{3} = 2 \end{cases}$ 1=12 = (VM-13)U= 0R3 , n, y, 3 e R. 1 SU1- 174 = 0 SU1- 72IU=0 $= 3 \begin{cases} -82 - 8y - 8z = 0 & (1) \\ -82 - 38y + 22z = 0 & (2) \\ -82 + 22y - 38z = 0 & (3) \end{cases}$ y=3 et 2 =- 24 \rightarrow $U=\begin{pmatrix} x\\1 \end{pmatrix}$, $a \in \mathbb{R}$ i.e $U=\begin{pmatrix} -2\\1 \end{pmatrix} y$, $y \in \mathbb{R}$ $||U_1|| = \sqrt{-4+1+1} = \sqrt{6} + 1 \Rightarrow |U_1| = \frac{\sqrt{6}}{6} \left(\frac{-2}{1}\right) \left(\frac{01}{1}\right)$ De mêne Pour 1=8 > U= 13(1)

facultatif et pour $k_3 = 2$ > $0_3 = \frac{12}{2} \binom{6}{1}$

(2)

Qualite de représentation Part (A41) = 1/2 = 12 = 0,54 sit 54! (-80%) Part (142) = 12 = 8 = 0,36 sit 361, (281. B = Δ4, ⊕ Δ4, > Part (P) = 0,90 poit 90%. Done Hy 'a deux axs principanx Dy et Dy relatifs aux v.p & et 2. Les Confosante principale: $C' = X'_{c} M U_{1} = X'_{c} U_{1} = \begin{bmatrix} 2 & -3 & -5 \\ -2 & 2 & 0 \end{bmatrix} V_{6} \begin{bmatrix} -12 \\ -2 \end{bmatrix} = V_{6} \begin{bmatrix} -6 \\ -6 \\ -1 \end{bmatrix} = V_{6} \begin{bmatrix} -12 \\ -6 \\ -12 \end{bmatrix} = V_{6} \begin{bmatrix} -12 \\ -12 \\ -12 \end{bmatrix} = V$ $C^{2} = X_{C} H Y_{2k} = X_{C} Y_{2k} = \begin{pmatrix} 2 & -3 & -5 \\ -2 & 2 & 0 \\ 0 & 4 & 2 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 & 6 \\ 0 & 6 & 0 \\ -2 & 2 & 0 \\ 2 & -2 & 0 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -6 \\ 0 \\ 0 \\ -6 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 2 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} -2 \\ 0 \\ 0 \\ 2 \end{pmatrix}$ $\frac{1}{3} \begin{pmatrix} (2\sqrt{6}, -2\sqrt{3})$

