

Universidade de Aveiro

Mestrado em Robótica e Sistemas Inteligentes Robótica Móvel

Lesson 9: SLAM

Academic year 2023/2024

Nuno Lau/Vitor Santos

In this assignment we will use ROS to test several different SLAM methods and build a map of simulated environment. We will test 4 SLAM methods: gMapping, Hector, Lama and cartographer. You should follow the evolution of the ROS node graph, tf tree and list of topics as you follow the steps of this assignment.

1. gMapping

1.1. Start the turtblebot3 simulated world using the waffle_pi turtlebot model:

```
export TURTLEBOT3_MODEL=waffle_pi
roslaunch turtlebot3 gazebo turtlebot3 world.launch
```

- 1.2. Visualize ROS node graph, tf tree and list of topics using rgt (or other).
- 1.3. Start robot state publisher:

```
rosrun robot_state_publisher robot_state_publisher
Changes in tf tree?
```

1.4. Use teleop_key to control the robot in the simulated world:

```
roslaunch turtlebot3 teleop turtlebot3 teleop key.launch
```

1.5. Run gmapping:

```
rosrun gmapping slam gmapping
```

Check all changes in ros node graph.

- 1.6. Run rviz and visualize the current map and use teleop_key to build a complete map of the environment.
- 1.7. Save the map using the map_server:

```
rosrun map server map saver -f mapname
```

2. Repeat the previous procedure for Hector mapping method. To run hector mapping use:

```
rosrun hector mapping hector mapping
```

3. Repeat the previous procedure for Lama mapping method. To run lama mapping use:

```
rosrun iris lama ros slam2d ros
```

4. Repeat the previous procedure for cartographer.