

Sharif University of Technology
Department of Computer Engineering

Digital System Design Algorithmic State Machine (ASM)

Siavash Bayat-Sarmadi

Introduction

- Digital system design
 - Design of digital circuits performing dataprocessing operations
 - Arithmetic, logic, etc.
 - Design of control circuit
 - Determines the sequence of performing above operations

Introduction (Cont.)

Algorithmic State Machine (ASM) Chart

- A flowchart to define digital hardware alg.
- Resembles conventional flowchart
 - Different interpretation
- Demonstrates
 - State transitions
 - Events that occur while going from one state to another
- Three boxes
 - State box
 - Decision box
 - Conditional box

ASM Chart Boxes

- □ State box
 - A state in the control sequence
 - Contains
 - Register operations
 - Confusing
 - Executed while going to the next state
 - Moore outputs
 - Can be assigned
 - Name or symbol
 - Binary code

ASM Chart Boxes (Cont.)

Decision box ■ Two or more exit paths ■ Condition to be tested written inside Condition

ASM Chart Boxes (Cont.)

- Conditional box
 - ■Unique to ASM chart
 - Must get its inputs from a decision box
 - Written inside
 - Mealy outputs
 - Register operations
 - State transition

Which path is taken?

- Control signal 'Start' asserted in S_1
- The value of 'Flag' is checked
 If Flag == 1, R is to be cleared

- Otherwise, remains unchanged
- ■Next state is S_2

ASM Chart (Cont.)

□ Some illegal connections

ASM Block

- One state box & all the decision and conditional boxes connected to the exit path of it
- Only one entrance
- Represents what happens in the system during one clock cycle

ASM Block (Cont.)

Example: Multiplier

Example (Cont.)

- Datapath
 - ■For RA

RA<-DIPA

RA<-RB

RA<-RA-1

Control Unit (Cont.)

Algorithmic state machine and datapath (ASMD)

- To clarify the information displayed by ASM charts
- Differences with ASM
 - No register operation in state boxes
 - Edges annotated with register operations
 - Conditional boxes identify signals controlling register operations

Example

- Specifications
 - Datapath
 - Two JKFFs, i.e., E and F
 - One four-bit binary counter, i.e., A[3:0]
 - Start
 - Initiation by clearing A and F
 - At each subsequent clock A incremented
 - If $A_2 = 0$, E cleared, count continues
 - If $A_2 = 1$, E set
 - If $A_3 = 0$, count continues
 - If $A_3 = 1$, F set, counting stops

Example (Cont.)

- Synchronous reset
- Register operations annotated on edges leaving
 - A state box
 - Occur unconditionally
 - Controlled by a Moore-type control signal
 - E.g., A \leftarrow A + 1
 - A decision box
 - Occur conditionally
 - Controlled by a Mealy-type control signal
 - **■** E.g., E ← 1

- Asynchronous reset
- Conditional boxes inserted
 - Demonstrate control signals in the chart

$$S_idle \longrightarrow S_1, clr_A_F$$
: $A \longleftarrow 0, F \longleftarrow 0$

$$S_1 \longrightarrow S_1, incr_A$$
: $A \longleftarrow A + 1$

$$if (A_2 = 1) \text{ then } set_E$$
: $E \longleftarrow 1$

$$if (A_2 = 0) \text{ then } clr_E$$
: $E \longleftarrow 0$

$$S_2 \longrightarrow S_idle, set_F$$
: $F \longleftarrow 1$

	Present State te G ₁ G ₀	Inputs Start A ₂ A ₃	Next State G ₁ G ₀	Outputs				
Present-Sta				set_E	clr_E	set_F	clr_A_F	incr_A
S_idle	0 0	0 X X	0 0	0	0	0	0	0
S_idle	0 0	1 X X	0 1	0	0	0	1	0
S_1	0 1	X = 0 X	0 1	0	1	0	0	1
S_1	0 1	X 1 0	0 1	1	0	0	0	1
S_1	0 1	X 1 1	1 1	1	0	0	0	1
S 2	1 1	X X X	0 0	0	0	1	0	0

