INDIAN PAYLOAD CAPABILITIES FOR SPACE MISSIONS

A.S. Kiran Kumar Director

Space Applications Centre Ahmedabad

Application-specific EO payloads

Application-specific EO payloads

Bhaskara (I and II) series

The Bhaskara (I and II) - experimental satellites (1979/1981)

Slow Scan Vidicon camera (operating in 0.54-0.66 micron and 0.75-0.85 micron spectral channels), produced images for land use, snow cover, coastal processes, and for forestry purposes)

Passive Microwave Radiometers (operating in the 19, 22, and 31 GHz range) collected data on sea surface phenomena, water vapor and liquid water content).

The 'IRS Series' -

1988-1997 First Generation

IRS 1A/1B

LISS-VLISS-II

72/36 meter spatial resolution

4 Spectral bands

22 day repetivity

1995-2007 Second Generation

IRS 1C/1D

WiFS 188 meter - 2 band

5 day repetivity

LISS-III 23.5 meter - 3 band VNIR

70 meter SWIR

24 day repetivity

LISS-IV 5.8 meter PAN

5 day revisit

2003-2012 Third Generation

RESOURCESAT 1-2 series

AWiFS 56 meter, 4 band

5 day repetivity

LISS-III 23.5 meter, 4 band

24 day repetivity

LISS-IV 5.8 meter, 3 band

5 day revisit

Current observation capabilities : Optical

Payload	Sensors in operation	Spatial Res.	Swath/ Coverage (km)	Radiometry	Spectral bands	Repetivity/ revisit
CCD	1	1 Km	India & surround.	10 bits	3 (B3, B4, B5)	4 times/ day
VHRR	2	2 km VIS 8 km WV/IR	Earth Disc	10 bits	3	Every ½ hrs
HySI/ IMS	1	500 m	128	12 bits	64	24 days
OCM-2	1	360m	1420	12 bits	8	2 days
AWiFS	2	56 m	740	10/12 bits	4(B2,B3, B4, B5)	5 / 2.5 days
MX/ IMS	1	37 m	148	10 bits	4(B1, B2,B3, B4)	24 days
LISS3	2	23 m	140	7/10 bits	4(B2,B3, B4, B5)	24/12 days
LISS4	2	5.8 m	23/70	7/10 bits	3(B2,B3, B4)	40/ 5 days
PAN (stereo)	1	2.5 m	30	10 bits	1	100 days
PAN (mono)	4	0.8/ 1 m	10 / 16	10 bits	1	5 day revisit

Current observation capabilities : Microwave

Payload	Spatial Res.	Swath km	Radiometry	Frequency	Repetivity/revisit
Scatterometer	50 Km	1400	10 bits	Ku band	2 days
SAR-X	1m to 8m	10 to 120	10 bits	X	2days
SAR-C	1m to 50m	10 to 220	10 bits	C	25/7days

Payload	Spatial Res.	Swath	Frequency bands	Repetivity/revisit
MADRAS	6km to 40 km	1700	5 (18.7 to 157GHz)	
SAPHIR	10 km	1700	6 @183 GHz	Multiple observations per day
ScARaB	40 km	2240	4	
ROSA			L1,L2	~600 occultaions per day

Indian Imaging Capabilities - from Kilometer to sub-Meter PAN CARTO-2 2.5m PAN CARTO-1 5.8m LISS-4 23m LISS-3 36m LISS-2 1 Km BHASKARA TV PAYLOAD 56m **AWiFS** 73m LISS-1 188m WiFS 360m OCM

1km INSAT-CCD

1 Km BHASKARA TV PAYLOAD < 1m CARTOSAT-2 PAN

Imaging Sensor for Earth Observation Cartographic applications

CARTOSAT-2C/2D

ORBIT	500km POLAR SSO
PAYLOADS	HIGH-RESOLUTION PANCHROMATIC (PAN) HIGH-RESOLUTION MULTI-SPECTRAL (MX)

PAN PAYL	OAD FEATURES
Spectral bands	PAN: 0.45-0.9 μm
Resolution	0.64m
Swath	10Km
Quantization	11 bits
SWR	>10%
SNR	>180

MX PAYLOAD FEATURES			
Spectral bands	VIS1: 0.45-0.52 μm		
	VIS2: 0.52-0.59 μm		
	VIS3 : 0.62-0.68 μm		
	VIS4 : 0.77-0.86 μm		
Resolution	1.6m		
Swath	10Km		
Quantization	11 bits		
SWR	>20%		
SNR	>500		

- ➤ Compact focal plane providing continuous imaging line (16000 pixels)
- > Time-delay-and-integration (TDI) CCD based detection system

FOCAL PLANE

CAMERA ELECTRONICS

CARTOSAT-3 series

Cartosat-3 series (3, 3A, 3B)

0.25m GSD PAN, 1m Mx and ~5m MWIR

16km swath

TDI CCD based imager

Can provide 64000 Square kilometer data per orbit 6400 sq km imaging per orbit

0.25 m GSD PAN
0.5 m, 4 band MX
5 m MIR or 30m VNIR+ SWIR HySI
CONTINUOUS IMAGING

Mirror light-weighted 420 to 70 kg

High speed FECE

Indian Mini-Satellite

4 Band, 36m GSD with a swath of ~ 140 Km Mx-Imager

HySI Image Cube Jalgaon Area, 03-Jun-2008

64 bands; 400-950 nm range; Spectral separation 8 nm; Spatial Res. 500 m; Swath 129.5 km

Crop Classification using HySI Data

HySI Payload

FCC with Classes

RISAT-1

- C-band SAR
- Single/dual/quad polarisation
- Imaging with 1-50m resolution
- 10-240 km SWATH

INSAT-3D Met. Payloads

6 channel Imager

- Visible to Thermal IR
- 1KM to 8KM IGFOV
- Half hourly earth coverage
- Flexible scanning modes
- Programmable number of lines and frame repeats
- Improved Blackbody calibration scheme
- Image motion & mirror motion compensation

19 channel Sounder

- Visible to Lon. Wave IR
- Fully programmable East-West and North –South Scan pattern
- Programmable dwell time for East-West scan step motion
- Automatic space view every 2 min and Blackbody view every 30min.
- 10KM IGFOV, 14bits digitization
- Image motion & Mirror motion compensation

6 Channel Imager

Scan Modes:

Normal: Full Earth Disk, 18°x18° in

24°x19° FOR (<27min)

Programme: No. of Scan lines and No. of

Image repeats programmable. Can be

placed anywhere in FOR

Channel (NEΔT@300K)	Spectral Band (µm)	Spatial Resolution at Nadir (km)
VIS (SNR>150)	0.55-0.75	1 km
SWIR (SNR>150)	1.55-1.70	1 km
MIR (1.4K)	3.80-4.00	4 km
WV (1.0K@230K)	6.5-7.1	8 km
TIR-1 (0.35K)	10.3-11.3	4 km
TIR-2 (0.35K)	11.5-12.5	4 km

19 Channel Sounder

24°

VIS SWIR 6Ch MWIR 5Ch LWIR 7Ch 0.67-0.72um 3.67-4.59um 6.38-11.33um 11.66-14.85um

Sounder Modes:

Programmable

Sounding Area:

Programmable Space view

Direction selection

Selection of Dwell time on

each scene: 0.1, 0.2 or 0.4s

Minimum: 1° x 1°
(640x640KM) in
1.7min, anywhere in
FOR of
24° x19°
Maximum: 15° x 15°

(9600KMx9600KM) in ~400min, anywhere in

FOR

Megha-Tropiques (ISRO-CNES Collaboration)

Studying water cycle and energy exchanges in Tropical-belt

MADRAS:

- Precipitation and cloud properties
- Total-power radiometer with Conical scanning
- 5 frequencies (18.7GHz 157GHz)
- ScaRAB: Outgoing fluxes at TOA
- Four Channel Earth Radiation budget at 0.5-0.7 μ m, 0.2-4 μ m, 0.2-50 μ m & 10.5-12.5 μ m
- Resolution: 40 Km, Swath: 2242 Km
- SAPHIR: Water vapour profile
- mmW HSU at 183 GHz, 6-Ch Sounder
- Brightness-Temperature 4K-313K
- Resolution: 10 km & Swath: 1705 km
- ROSA: GPS based Two Frequency Receivers L1 (1575.42 MHz) & L2 (1227.60MHz)

SARAL: Satellite for Argos and Altika

- To provide altimetric measurements designed to study ocean circulation and sea surface elevation.
- Marine meteorology and sea state forecasting, operational oceanography, seasonal forecasting, climate monitoring and climate research.

Argos

Satellite based system collects environmental data from autonomous platforms

Altika

- A Ka Band altimeter (35.5 36 GHz)
- A dual frequency radiometer (24 / 37 GHz)
- A common antenna shared by Altimeter & Radiometer (1 meter dia)
- LRA (Laser Retro Reflector Array)
- DORIS instrument (Doppler Orbitography & Radio positioning Integrated by Satellite)

GISAT

High Resolution Imaging Sensors on GEO Platform

High resolution Multi-spectral VNIR

Ground Resolution: 50 meters

Hyper-spectral VNIR

Ground Resolution: 500 meters

Hyper-spectral SWIR

Ground Resolution: 500 meters

Multi-channel IR

Ground Resolution: 1500 meters

Scanning Modes:

- Full globe (18x18 deg)
- Sub continent (10x12 deg)
- User defined area scanning

Chandrayaan-1

Guidance & Control System

Payloads

TMC images of Chandrayaan-1

Lunar Impact Craters

Dark Haloed crater

Ray Crater

Mare Orientale is one of the youngest basin on the Moon surface. Location of Mare Orientale is shown as red dot on extreme left Lunar composite image.

The HySI image from Chandrayaan-1 data represent sixty four colour of Lunar surface. The reflectance curves generated from HySI data helps us to identify highland and basaltic rocks on Moon.

Detection of Lunar rock types using HySI reflectance data

Lunar Mineralogy: HySI data

Chandrayaan-2 Mission

- GSLV launch with a weight of ~2,650 kg
- Orbiter & Lander
- Indian Rover
- Orbiter Payloads
- Soft X-ray spectrometerL & S band mini SAR
- Imaging IR spectrometerNeutral mass spectrometer
- Terrain Mapping Camera

Rover Payloads

- Laser Induced Breakdown spectroscopy
- Alpha particle induced X-ray spectroscopy

Chandrayaan-2 Electro-Optical Payloads

Micro Camera

Terrain Mapping Camera-2 (TMC-2)

- Event Monitoring Camera

- Rover Arm Camera (RAC)

Fore Optics

telescope

Spectrometer

	Camera Head (each)	Processing Electronics (for 2 Camera head)
Regulated Power (W)	500 mW	800 mW
Size (mm x mm)	40 X 40 X 20	100 X 100 X 30
Weight (g)	<30	<300

grating

Camera weight 4 Kg

1° along track **FOV** 6.5° across track

Imaging views: +25°, 0°, -25°

Size table

Direction	EOM	Elect. Pkg.
YAW	260 mm	192 mm
PITCH	200 mm	35 mm
ROLL	345 mm	172 mm

Footprint: 10 m X 10 m Along-track sampling: 5 m Swath: 40km

imaging	ік эре	ctromete (IIRS	
GIFOV		80m	
Swath		40km	
Spectral Range		0.8-5.0 μm	8
Spectral Resolution		<20 nm	
Max. spectral bands		256	
Regulated Power	7W + Det	ector cooler i	oower

6.5kg

Weight

ASTROSAT

- 1. Large Area Xenon Proportional Counter (LAXPC)
- 2. Scanning Sky Monitor (SSM)
- 3. Cadmium Zinc Telluride Imager (CZT)
- 4. Soft X-ray telescope (SXT)
- 5. UV Imaging Telescope (UVIT) jointly developed by ISRO & CSA
- 6. Charged Particle Monitor (CPM)

ASTROSAT is a national multi-wavelength space borne astronomy observatory, which would enable simultaneous observations of the celestial bodies, cosmic sources in X-ray and UV spectral bands. The uniqueness of ASTROSAT lies in its wide spectral coverage extending over visible (3500-6000 Å), UV (1300-3000 Å), soft X and hard X ray regions (0.5-8 keV; 3-80 keV).

MARS Mission

- · Study of Martian surface
- · Martian Atmosphere and Ionosphere
- Radiation & particles in Martian environment

Depart Earth Orbit @	Transfer Days	Arrival in MARS Orbit	
26-11-2013	299	21-09-2014	PSLV-XL
10-01-2016	275	11-10-2016	100 100 100
17-05-2018	239	11-01-2019	PSLV-XL

Studies of Mars & Phobos

ADITYA

A Space based Advanced Solar Coronagraph to study solar Corona in Visible and NIR wavelengths

Observe Oscillations of coronal structures
Polarization of light: Study of magnetic field Detect "start" of coronal mass ejection

inputs for Space-Weather

Technically Challenging LONG duration (~ 300 days travel) Deep-Space Mission

ASTROSAT – versatile space based observatory

India's first dedicated multi-wavelength astronomy satellite with a capability to observe target sources in wide spectral coverage extending over visible, ultraviolet, soft x-ray and hard x-ray regions with coaligned instruments simultaneously

- Large Area X-ray Proportional Counters (LAXPCs)
- Cadmium zinc Telluride Imager (CZTI)
- Soft X-Ray Telescope (SXT)
- Ultraviolet Imaging Telescope (UVIT)
- Scanning Sky Monitor (SSM)

OPTICAL SYSTEMS

≻REFRACTIVE

Double Gauss

FOV <40° EFL < 0.7m

Telecentric

FOV < 90°

EFL:very small focal lengths~25mm

>ALL REFLECTIVE

Cassegrain

FOV < 3°

EFL:Large focal length~15m

Three-mirror Anastigmat UNOBSCURED) FOV ~ 10° MIRROR MIRROR FEL< 3 m

≻CATADIOPTRIC

Ritchy Cassegrain with FCO

FOV ~ 3°

EFL: Large focal length~15m

Optical System - Technologies

Computer Aided Polishing

F E computation

Optical Fabrication

- Computer aided polishing
- Ion Beam figuring
- Stressed mirror polishing
- Light Weighting
 - Scooping from rear
 - ➤ Honey Comb structures
 - Frit bonding

- Optical performance simulation
- > FE computation
- Gravity unloaders for large mirrors
- Optical Metrology
 - Mirror testing using CGH
 - Interferometric aided alignment

Honey comb structure

Ion beam figuring

Optical performance simulation

Interferometry alignment

Near ideal electro-optical system performance

Ideal Detector:

- ✓ 100% Photons Detected with 63% MTF Nyquist
- ✓ Measures Photon wavelength
- √ Time of Photon arrival
- ✓ Detects Polarization

Telescope:

- ✓ Defines the spatial resolution
- ✓ Diffraction limited MTF
- ✓ Negligible Stray light

Imaging Sensors

Evolution

Detector	Wavelength (m)		
Si	0.2 - 1.1		
Ge	0.4 - 1.8		
InGaAs	1.0 - 3.8		
InSb	1.0 - 7.0		
InSb (77K)	1.0 - 5.6		
HgSdTe (77k)	1.0 -25.0		

Camera on chip

Single/ multi element detector

Focal plane

array

ASIC for TR Control

	Bhaskara	IRS 1A/1 B	IRS 1C/1D/P6	TES/CARTO	
lmaging Technology	Frame	Pus	shbroom	Step & Stare	
Resolution (m)	1000	72/36	5	1	
Focal Length (mm)	Refractive (10-	450)	Reflective (~980)	Catadioptic (~5600)	
Aperture (mm)	50 – 140		220	700	
Detector	Vidicon / vacuum tube	Lin	ear array CCE) / solid state	
Data rate (Mbps)	~0.1	5-20	~100	~200	
Platform	Spin stabilised	3-axis	stabilised	Agile	

Multi-spectral imager with high resolution (spatial, spectral and radiometric)

Detector:

- 1) Multi-linear detector for high BBR
- 2) Mechanically/optically butted array for Large swath
- 3) Area array overlaid with filter operated as multi-linear array
- 4) Multi-band detector

Filter:

- Discrete filter
- Strip filter
- Filter overlaid on detector die

3 Separate
Silicon Layers
at Each Pixel

Different Colours
Absorbed at
Different Depths

- Low emissive mirrors and grating
- Cold shield and cold stop at the exit pupil of the optige
- cooling the spectrometer optics and its structure
- Cooled Linear variable filter (LVF)
- Cooled Multiple Strip filter

CS Properties	Grating		Prism		FT Spectrometer		Wedge Filter	
Spectral Resolution	High	+	Medium	0	High	+	Medium	0
Throughput	High	+	Medium	0	High	+	Medium	0
Spectral Range	Broad	+	Narrow	-	Broad	+	Medium	0
Sensitivity to S/C motion	No	+	No	+	Yes	Ŧ	No	+
Moving Parts	No	+	No	+	No/Yes	0	No	+
Simultaneous acquisition	Yes	+	Yes	+	Yes	+	No	Ŧ
Straylight	Low	+	Low	+	High	Ŧ	High	Ŧ
Complexity	Low	+	Low	+	High	-	Low	+
Distortion	Low/High*	0	High	+	Low	+	Medium	0
Compactness	Medium	0	Medium	0	Low	-	High	+

Camera optics

grating

Beam

Splitter

Condenser

Detector

RADAR IMAGING SATELLITE (RISAT-1)

DACS

TR MODULE

ASIC FOR TRC

MULTILAYER DUAL POLARISED PRINTED ANTENNA

- > First Spaceborne SAR indigenously developed
- > C-band SAR catering to diverse applications from Agriculture to high resolution land-mapping

INTEGRATION LAB

➤ Resolution from 1m to 50m

MODEL

FEATURES

- ➤ Swath from 10km to 220km
- > State-of-the-art Active Antenna with 576 TRMs
- ➤ Electronic beam steering covering 107-659km range

RESULTS WITH IN HOUSE DEVELOPED NEAR-FIELD MEASUREMENT AND PROCESSING

APPLICATIONS

- > Forestry, Flood Mapping, Vegetation, Soil Moisture, Oil Spillage, Disaster Management
- > Caters to some applications of L and X band SAR also.

BEAM STEERING

CHARACTERIZATION

TIME GATED NEAR FIELD CHAMBER

EPC FOR TRM

1M X 1M TILE (ONE OUT OF 12 TILES)

SINGLE-TILE HOLOGRAM

TECHNOLOGY EVOLUTION

MICROWAVE

OPTICAL

	(BHASKARA)	MULTI-SPECTRAL	HIGH-RESOLUTION	RADAR IMAGING
IMAGING TECHNOLOGY	FRAME IMAGER	PUSH-BROOM	STEP & STARE	Synthetic Aperture Radar
RESOLUTION	1000M	72/36M – 5M	0.8M	1M-50M
EM ENERGY COLLECTION	REFRACTIVE (10-450mm)	REFLECTIVE (~980mm)	CATADIOPTRIC (~5600mm)	ACTIVE ANTENNA
DETECTOR	VIDICON/ VACUUM TUBE	LINEAR ARRAY CCD/SOLID-STATE	LINEAR ARRAY CCD/SOLID-STATE	RECEIVE MODULES
ELECTRONICS	CMOS	LSTTL/STTL	STTL/FTTL	ASICS/ FTTL/ FPGA
DATA RATE	~100 Kbps	5-20 Mbps – 100 Mbps	~ 200 Mbps	640 Mbps
PLATFORM	SPIN- STABILISED	3-AXIS STABILISED/ SUN- SYNCHRONOUS	AGILE	3-AXIS STABILISED/ SUN-SYNCHRONOUS
YEAR	1979	1988-2012	2001-2012	2012

TRANSPONDERS: PRESENT COMMUNICATION SATELLITES

XPDR	55 deg E		74 deg E		83 deg E		93.5 deg E		
	INSAT-3E	GSAT-8	INSAT-3C	INSAT-4CR	INSAT-3B	INSAT-4A	INSAT-3A	INSAT-4B	GSAT-12
MSS	-	-	1 SxC		1 SxC	-	-	-	-
			1 CxS	-	1 CxS				
Ext. C	12	-	6	-	12	-	6	-	12
Nor. C	24	-	24	-	-	12	12	12	-
Ku	-	24	-	12	3	12	6	12	-
Others	-		2 BSS						
		-	-	(C x S)	-	-	-	-	-

Communication Payload Systems

Filters & Multiplexers:

Output Multiplexers -

INVAR Waveguide Type

Programs INSAT-2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C

INSAT- 4A, 4B, 4C (S, C & Ku-band)

Ku-band OMUX : INSAT-4C

Dielectric Loaded Type

Programs GSAT- 5 (C- band QM under progress)

C-band High Power OMUX: INSAT-3A

Typical Performance:

Insertion Loss : 0.5 dB Bandpass Flatness : 1.0 dB Group Delay : 72 nS

Rejection

At Cf ± 25 MHz : 27 dB At Cf ± 40 MHz : 40 dB

Antenna System:

Reflector Size

Single Shell Shaped & Un-shaped Reflector (Fixed & Deployable, S,C & Ku-band):

:INSAT-2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, 3E :From 0.9m to 2m

Dual Gridded Shaped Reflector (Deployable, C & Ku-band): INSAT-4A.4B **Programs**

2.0 & 2.2m Reflector Size

Multi-Beam (Ku & Ka-band)

Typical Performance in Ku-band:

Gain (EOC, India Coverage)

Cross Pol. Isolation

: GSAT-3 (In orbit), GSAT-4 (Y2008 launch) Program

:1.2m, 5 Beams Ku-band Reflector Size

: 32.5 dBi

Sectored, 8 Beams Ka-band

Ku-band High Power Output Section INSAT-4A Payload Panel

: < - 33 dB Dual Gridded Shaped Reflector Antenna System INSAT-4A: Ku-band Payload

Sectored Reflector Multi-beam Antenna System GSAT- 4: Ka-band Payload

TWTA:

Conduction Cooled: INSAT-2C, 2D, 2E, 3A, 3B, 3C, GSAT-2

(S, C & Ku-band, 63 & 70 W)

Radiation Cooled : GSAT-3, INSAT- 4A, 4B, 4C

Ku-band, 140 W Linearized

SSPA INSAT-2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, 3E

GSAT-3, INSAT- 4A, 4B, 4C (C& Ku band 0.25 to 15 W)

Typical LTWTA Performance:

: 140 W Psat Efficiency : 59 %

3rd order IMP at 6 dB IBO : < - 18 dBc

INVAR Waveguide Type: INSAT-2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, INSAT- 4A, 4B, 4C (S, C & Ku-band)

Dielectric Loaded Type: GSAT-3, INSAT-4A, 4B (C-band), GSAT-8

Filters & Multiplexers

Bandpass Flatness : 0.6 dB **Group Delay** : 38 nS

Rejection

At Cf ± 25 MHz : 30 dB

At Cf ± 40 MHz : 45 dB

C-band DR IMUX: INSAT-4A

C-band LTWTA Assembly: INSAT-4A

Ku-band IMUX: INSAT-4C

Hybrid MIC: INSAT-2A, 2B, 2C, 2D, 2E, 3A, 3B, 3C, S, C & Ku-band

GSAT- 5 (C-band under Qualification) MMIC :

GSAT-7 (Ku-band QM under progress)

C-band Receiver: INSAT-4A

Typical Performance:

Frequency Translation: 2225 MHz

Noise Figure : 1.4 dB Gain : 52 dB

Spurious : < -60 dBc

C-band MMIC Module

Navigation payload-IRNSS

Onboard Reflector Antennas

2m Deployable Antenna on EV Top

EV deployable & fixed Antennas INSAT3

EV Mounted Prime Focal Antenna GSAT3

On Board C/Ku Band Shaped Antennas

INSAT-3E Antenna System

INSAT-4C Antenna System

INSAT-3C Antenna System

INSAT-4C Antenna System

ASA/SAC/ISRO

ANTENNA MESUREMENT FACILITY

COMPACT ANTENNA TEST RANGE

Near-Field diagnosis Module

- Remote sensing optical payloads
- Microwave payloads
- Communication and navigation payloads
- LEO- GEO-Lunar and planetary orbits
- Atomic clock developments

Thank You!

A.S. Kiran Kumar Director Space Applications Centre