BigHW, LazyFCA

Mikhail Sambuev

December 2023

1 Description of first dataset

https://www.kaggle.com/datasets/andrewmvd/heart-failure-clinical-data

I have chosen heart failure clinical records dataset. About this dataset:

- 1. Age: displays the person's age
- 2. Anaemia: displays whether there is anemia or not
 - 1 =there is anemia
 - 0 =there is not anemia
- 3. Creatinine phosphokinase: displays the level of the CPK enzyme in the blood (mcg/L)
- 4. Diabetes: displays whether the person has diabetes
- 5. Ejection fraction: displays the percentage of blood leaving the heart at each contraction
- 6. High Blood pressure: displays whether the person has hypertension

- 1 = hypertension
- 0 = no hypertension
- 7. Platelets: displays the platelets in the blood
- 8. Serum creatinine: displays the level of serum creatinine in the blood
- 9. Serum sodium: displays the level of serum sodium in the blood
- 10. Sex: displays the person's gender
 - 1 = male
 - 0 = female
- 11. Smoking: displays whether the person has smokes or not
 - 1 = smoking
 - 0 = no smoking
- 12. Time: displays the follow-up period
- 13. Death event: displays whether the person died during the follow-up period
 - 1 = died
 - 0 = didn't die

2 Data Pre-Processing

The dataset is shown below

First of all, we should binarize dataset. Details in code.

3 Comparison with classical classification algorithms

Here are the comparative results of classification algorithms. There were used next classifiers:

- 1. Random Forest Classifier
- 2. Decision Tree
- 3. XGB Classifier
- 4. Naive Bayes Classifier

Classifier	Accuracy
LazyFCA	71.5
F1score	54.5
Random Forest	63.4
Decision Tree	53.4
XGB	60
Naive Bayes	76.7

4 Description of first dataset

https://www.kaggle.com/datasets/rashikrahmanpritom/heart-attack-analysis-prediction/

I have chosen heart failure clinical records dataset. About this dataset:

- 1. Age: displays the person's age
- 2. Sex: displays the person's gender
 - 1 = male
 - 0 = female
- 3. Chest-pain type("cp"): displays the type of chest-pain experienced by the individual
 - 0 =typical angina
 - 1 = atypical angina
 - 2 = non anginal pain
 - 3 = asymptotic
- 4. Resting Blood Pressure("trestbps"): displays the resting blood pressure value of an individual in mmHg

- 5. Serum Cholestrol("chol"): displays the serum cholesterol in mg/dl
- 6. Fasting Blood Sugar("fbs"): compares the fasting blood sugar value of an individual with 120mg/dl. If fasting blood sugar > 120mg/dl then:

```
1 = true
```

0 = false

- 7. Resting ECG("restecg"): displays resting electrocardiographic results
 - 0 = normal
 - 1 = having ST-T wave abnormality
 - 2 = left ventricular hyperthrophy
- 8. Max heart rate achieved: displays the max heart rate achieved by an individual
- 9. Exercise induced angina:

$$1 = yes$$

0 = no

- 10. ST depression induced by exercise relative to rest: displays the value which is an integer or float
- 11. Peak exercise ST segment:

```
0 = upsloping
```

1 = flat

2 = downsloping

- 12. Number of major vessels (0-3) colored by flourosopy
- 13. Thal: displays the thalassemia

14. Diagnosis of heart disease : Displays whether the individual is suffering from heart disease or not:

0 = absence

1 = present

5 Data Pre-Processing

The dataset is shown below

	age	sex	ср	trtbps	chol	fbs	restecg	thalachh	exng	oldpeak	slp	caa	thall	output
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
298	57	0	0	140	241	0	1	123	1	0.2	1	0	3	0
299	45	1	3	110	264	0	1	132	0	1.2	1	0	3	0
300	68	1	0	144	193	1	1	141	0	3.4	1	2	3	0
301	57	1	0	130	131	0	1	115	1	1.2	1	1	3	0
302	57	0	1	130	236	0	0	174	0	0.0	1	1	2	0

303 rows × 14 columns

First of all, we should binarize dataset. Details in code.

	age29_50: 0	age29_50: 1	age51_60: 0	age51_60: 1	age61_77: 0	age61_77: 1	male: 0	male: 1	female: 0	female:	 caa4: 0	caa4: 1	thal0: 0	thal0:	thal1: 0	thal1:	thal2: 0	thal
0	False	True	True	False	True	False	True	False	False	True	 True	False	True	False	True	False	False	Tru
1	True	False	False	True	True	False	False	True	True	False	 True	False	True	False	True	False	False	Trt
2	True	False	True	False	False	True	True	False	False	True	 True	False	True	False	True	False	True	Fals
3	True	False	False	True	True	False	False	True	True	False	 True	False	True	False	True	False	True	Fals
4	True	False	False	True	True	False	False	True	True	False	 True	False	True	False	True	False	False	Tru

6 Comparison with classical classification algorithms

Here are the comparative results of classification algorithms. There were used next classifiers:

- 1. Random Forest Classifier
- 2. Decision Tree
- 3. XGB Classifier
- 4. Naive Bayes Classifier

Classifier	Accuracy
LazyFCA	78.8
F1score	79
Random Forest	71
Decision Tree	77.4
XGB	77.4
Naive Bayes	77.4

7 Description of first dataset

https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset

I have chosen heart failure clinical records dataset. About this dataset:

- 1. Age: displays the person's age
- 2. Pregnancies: displays to express the Number of pregnancies
- 3. Glucose: displays the Glucose level in blood
- 4. BloodPressure: displays the Blood pressure measurement

- 5. SkinThickness: displays the thickness of the skin
- 6. Insulin: displays the Insulin level in blood
- 7. BMI: displays the Body mass index
- 8. DiabetesPedigreeFunction: displays the Diabetes percentage
- 9. Serum sodium: displays the level of serum sodium in the blood
- 10. Outcome: displays the final result whether a person has diabetes or not

1 = yes

0 = no

8 Data Pre-Processing

The dataset is shown below

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

First of all, we should binarize dataset. Details in code.

	Age21_29: 0	Age21_29: 1	Age30_40: 0	Age30_40:	Age41_81: 0	Age41_81:	Pregnancies1_3:	Pregnancies1_3:	Pregnancies4_6:	Pregnancies4_6:	 BMI21_40: I	3
0	False	True	True	False	True	False	False	True	True	False	 False	Ī
1	False	True	True	False	True	False	False	True	True	False	 False	
2	True	False	True	False	False	True	True	False	True	False	 False	
3	False	True	True	False	True	False	False	True	True	False	 False	
4	True	False	True	False	False	True	True	False	False	True	 False	

9 Comparison with classical classification algorithms

Here are the comparative results of classification algorithms. There were used next classifiers:

- 1. Random Forest Classifier
- 2. Decision Tree
- 3. XGB Classifier
- 4. Naive Bayes Classifier

Classifier	Accuracy
LazyFCA	68.2
F1score	34.5
Random Forest	67.5
Decision Tree	63.6
XGB	67.5
Naive Bayes	67.5