Fiche de Révision : Théorie des Graphes

1. Définitions de Base

- **Graphe** : Objet mathématique modélisant des relations entre éléments.
 - Graphe orienté : D = (V, A) où V = sommets, $A \subseteq V \times V =$ arcs.

Exemple: Réseau routier à sens unique.

• Graphe non orienté : G = (V, E) où E = arêtes (paires non ordonnées).

Exemple: Réseau social (amis mutuels).

- Ordre : Nombre de sommets (|V|).
- Taille : Nombre d'arêtes/arcs (|E| ou |A|).

2. Vocabulaire et Propriétés

- Degré d'un sommet :
 - Non orienté : Nombre d'arêtes incidentes $(\delta(v))$.

Théorème : $\sum \delta(v) = 2|E|$.

- Orienté :
 - Degré entrant $(\delta^-(v))$.
 - Degré sortant $(\delta^+(v))$.
- Voisinage :
 - $N_G(v)$ = sommets adjacents à v.
 - Pour un graphe orienté :
 - Voisins sortants $(N^+(v))$.
 - Voisins entrants $(N^-(v))$.

3. Types de Graphes Classiques

- Graphe complet K_n : Tous les sommets sont reliés.
 - Taille : $\frac{n(n-1)}{2}$.
- Cycle C_n : Chaîne fermée sans répétition.

- Degré constant = 2.
- **Arbre** : Graphe connexe sans cycle, taille = n-1.
- Biparti complet $K_{p,q}$: Deux ensembles de sommets, toutes les arêtes entre eux.

Exemple:

- *K*₃ (triangle) : 3 sommets, 3 arêtes.
- C_4 (carré) : 4 sommets, 4 arêtes.

4. Connexité

- Non orienté :
 - Connexe : Chemin entre toute paire de sommets.
 - Composante connexe : Sous-graphe connexe maximal.
- Orienté :
 - Fortement connexe : Chemins dans les deux sens entre toute paire.
 - Composante fortement connexe (CFC): Sous-graphe maximal fortement connexe.

Exemple:

- · Graphe non connexe: Deux triangles disjoints.
- Graphe fortement connexe : Cycle orienté.

5. Chaînes, Cycles, Chemins, Circuits

- Chaîne (non orienté) : Suite d'arêtes consécutives.
 - Élémentaire : Pas de sommet répété.
- Cycle : Chaîne fermée ($v_0 = v_k$).
- Chemin (orienté): Suite d'arcs consécutifs.
- Circuit : Chemin fermé.

Exemple:

- Chaîne : a-b-c-d.
- Circuit : a o b o c o a.

6. Parcours dans les Graphes

- Parcours en largeur (BFS) :
 - Utilise une file, calcule les distances depuis un sommet.
 - Application : Plus court chemin dans un graphe non pondéré.
- Parcours en profondeur (DFS) :
 - Utilise une pile, détection de cycles.

Algorithme BFS:

- 1. Initialiser une file avec le sommet de départ.
- 2. Marquer les sommets visités.
- 3. Pour chaque voisin, mettre à jour la distance.

7. Graphes Eulériens et Hamiltoniens

- Eulérien : Cycle passant par chaque arête une fois.
 - Condition : Tous les degrés pairs et graphe connexe.
- Hamiltonien: Cycle passant par chaque sommet une fois.
 - Condition: Aucune condition simple connue.

Exemple:

- Eulérien : Cycle C_n .
- Non eulérien : Graphe avec un sommet de degré impair.

8. Algorithmes et Applications

- Tri topologique : Ordonnancement de tâches (graphe sans circuit).
 - Exemple : $T_5 o T_6 o T_2 o \dots$ (cf. TD4).
- Graphes de précédence : Modélisation de dépendances.

9. Exercices Types

1. Calculer ordre/taille/degres:

• Exemple : Graphe G=(V,E) avec $V=\{a,b,c\},\,E=\{ab,bc\}.$

• Ordre = 3, Taille = 2,
$$\delta(a)=1$$
, $\delta(b)=2$, $\delta(c)=1$.

2. Détecter une CFC :

Identifier les sommets mutuellement accessibles.

3. Vérifier si eulérien :

• Compter les degrés et vérifier la connexité.

10. Formules Utiles

Nombre maximal d'arêtes :

• Non orienté : $\frac{n(n-1)}{2}$.

• Orienté : n(n-1).

Somme des degrés :

• Non orienté : 2|E|.

• Orienté : $\sum \delta^+(v) = \sum \delta^-(v) = |A|$.

À Retenir

Un graphe est un outil puissant pour modéliser des relations.

• La connexité et les parcours (BFS/DFS) sont fondamentaux.

• Les conditions pour les cycles eulériens/hamiltoniens sont classiques en examen.