

⑤1 BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

Int. Cl.:

C 07 d, 85/26
C 07 d, 91/16

⑤2

Deutsche Kl.: 12 p, 3
12 p, 4/01

⑩
⑪

Offenlegungsschrift 2 350 547

⑫

Aktenzeichen: P 23 50 547.7

⑬

Anmeldetag: 9. Oktober 1973

⑭

Offenlegungstag: 25. April 1974

Ausstellungsriorität:

⑯

Unionspriorität

⑰

Datum: 13. Oktober 1972

2. Mai 1973

⑱

Land: V. St. v. Amerika

⑲

Aktenzeichen: 297582

356548

⑳

Bezeichnung: Neue substituierte Oxazolidine und Thiazolidine

㉑

Zusatz zu:

—

㉒

Ausscheidung aus:

—

㉓

Anmelder: Stauffer Chemical Co., Westport, Conn. (V.St.A.)

Vertreter gem. § 16 PatG: Beil, W., Dipl.-Chem. Dr.jur.; Hoeppener, A.; Wolff, H.J., Dipl.-Chem. Dr.jur.; Beil, H.Chr., Dr.jur.; Rechtsanwälte, 6230 Frankfurt

㉔

Als Erfinder benannt: Teach, Eugene Gordon, El Cerrito, Calif. (V.St.A.)

DT 2 350 547

RECHTSANWÄLTE
DR. JUR. DIPL.-CHEM. WALTER BEIL
ALFRED HOEPPENER
DR. JÜR. DIPL.-CHEM. H.-J. WOLFF
DR. JUR. HANS CHR. BEIL

Ka/MZ

8. Okt. 1973

623 FRANKFURT AM MAIN - HÖCHST
ADELONSTRASSE 58

2350547

Unsere Nr. 18 914

Stauffer Chemical Company
Westport, Conn., V.St.A.

Neue substituierte Oxazolidine und Thiazolidine

Die vorliegende Erfindung betrifft bestimmte neue substituierte Oxazolidine und Thiazolidine, die als Gegenmittel gegen die durch verschiedene Herbizide hervorgerufene Getreideschädigung nützlich sind. Die erfindungsgemäßen Verbindungen besitzen die allgemeine Formel

409817/1173

89

2350547

worin X ein Sauerstoffatom oder ein Schwefelatom, R einen Halogenalkyl-, einen Alkyl- oder einen Alkylthiorest und R_1 , R_2 , R_3 , R_4 , R_5 und R_6 unabhängig voneinander ein Wasserstoffatom, einen niederen Alkylrest, einen Alkoxyalkylrest oder einen niederen Alkylolrest bedeuten, wobei, wenn X ein Sauerstoffatom, R_1 und R_2 Wasserstoffatome oder Methylreste und R_3 und R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten, R keinen Dichlormethylrest bedeutet.

In der vorstehenden Beschreibung können die verschiedenen Substituenten die folgende Bedeutung besitzen:

Für R umfassen der Halogenalkyl- und der Alkyl-Rest vorzugsweise, falls nicht anders angegeben, jene Reste, die von 1 - 10 Kohlenstoffatome enthalten und sowohl gerad- als auch verzeigtkettig vorliegen, und der Ausdruck Halogen umfaßt Chlor- und Bromatome als Mono-, Di-, Tri-, Tetra- und Per-Substitutionen. Beispiele für den Alkyl-Teil innerhalb der bevorzugten Ausführungsform sind:

der Methyl-, Äthyl-, n-Propyl-, Isopropyl-, n-Butyl-, sec.-Butyl-, 1,1-Dimethylbutyl-, Amyl-, Isoamyl-, 2,4,4,-Trimethylpentyl-, n-Hexyl-, Isohexyl-, n-Heptyl-, n-Octyl-, Isooctyl-, Nonyl- und Decyl-Rest. Der Ausdruck Alkylthio-Rest umfasst vorzugsweise jene Reste, die von 1 - 4 Kohlenstoffatome enthalten, z.B. den Methylthio-, Äthylthio-, n-Propylthio-, Isopropylthio-, n-Butylthio-, t-Butylthio-Rest und dergleichen. Für die Reste R_1 , R_2 , R_3 , R_4 , R_5 und R_6 umfaßt der Ausdruck niederer Alkylrest vorzugsweise, falls nicht anderweitig angegeben, jene Reste, die von 1 bis 4 Kohlenstoffatome enthalten, z.B. den Methyl-, Äthyl-, n-Propyl-, Isopropyl-, n-Butyl-, sec.-Butyl-, tert.-Butyl-Rest und dergleichen. Der Ausdruck Alkoxyalkylrest umfaßt vorzugsweise jene Reste, die insgesamt 2 bis 4 Kohlenstoffatome enthalten, z.B. Methoxymethyl-, Methoxyäthyl-, Äthoxyäthyl-, Äthoxymethyl-Rest und dergleichen. Der Ausdruck

409817/1173

niederer Alkylolrest umfaßt vorzugsweise jene Reste mit 1 bis 4 Kohlenstoffatomen, z.B. den Methylol-, Äthylol-, Propylol- und Butylol-Rest.

Einige der erfindungsgemäßen Verbindungen sind wirksam als Herbizide und können in herbiziden Gemischen zur Bekämpfung des Wachstums unerwünschter Pflanzen verwendet werden. Die Verbindungen sind ebenfalls nützlich in Pflanzenwachstum regulierenden Gemischen, nematoziden, algiziden, bakteriostatisch wirkenden und fungiziden Gemischen.

Unter den vielen herbiziden Verbindungen, die kommerziell verfügbar sind, haben die Thiocarbamate, allein oder im Gemisch mit anderen Herbiziden, wie den Triazinen, einen relativ hohen Grad kommerziellen Erfolges erreicht. Diese Herbizide sind für eine große Zahl von Unkräutern bei verschiedenen Konzentrationen, die mit der Resistenz der Unkräuter variieren unmittelbar toxisch. Einige Beispiele dieser Verbindungen werden in den US-PSs 2 913 327, 3 037 853 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben.

In der Praxis wurde gefunden, daß die Verwendung dieser Thiocarbamate als Herbizide auf Getreide manchmal ernsthafte Schädigung der Getreidepflanzen bewirkt. Wenn diese Verbindungen in den empfohlenen Mengen in der Erde zur Bekämpfung vieler breitblättriger Unkräuter und Gräser verwendet werden, treten ernsthafte Missbildung und Verkümmern der Getreidepflanzen auf. Dieses abnormale Wachstum der Getreidepflanzen führt zu einem Verlust der Getreideausbeute. Vorangehende Versuche, dieses Problem zu überwinden, umfassten die Behandlung der Getreidesamen vor dem Pflanzen mit verschiedenen Gegenmitteln (vgl. US-PSs 3 131 509 und 3 564 768). Diese antagonistisch wirkenden Mittel waren nicht besonders erfolgreich. Die vorstehend genannte Patentschrift veran-

2350547

schaulicht die Behandlung der Samen unter Verwendung von Verbindungen einer Klasse die von der erfindungsgemäßen verschieden ist und sie nicht nahelegt.

Andere herbizide Verbindungen, deren Effekt durch die erfindungegemäßen Verbindungen modifiziert werden kann umfassen die Acetanilide, wie z.B. 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)acetanilid und die Herbizide vom Harnstofftyp, wie z.B. 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff.

Es wurde gefunden, daß Pflanzen gegenüber Schädigung durch Herbizide vom Thiocarbamat-Typ, allein oder gemischt mit anderen Herbiziden, geschützt werden können. Eine alternative Art der Wirkung besteht darin, daß man die Toleranz der Pflanzen zu wirksamen herbiziden Verbindungen durch Zusatz einer als Gegengift wirkenden Menge einer erfindungsgemäßen Verbindung der allgemeinen Formel

worin X, R, R₁, R₂, R₃, R₄, R₅ und R₆ die vorstehend genannte Bedeutung besitzen, zu der Erde wesentlich erhöht.

Eine alternative Art der Wirkung besteht darin, daß die erfindungsgemäßen Verbindungen die normale herbizide Wirkung der Herbizide vom Thiocarbamat-Typ beeinträchtigen, um dieselben in ihrer Wirkung selektiv zu machen.

409817/1173

Welche Art der Wirkung auch immer wirksam ist, der entsprechende, nützliche und wünschenswerte Effekt ist der fortgesetzte herbizide Effekt des Thiocarbamates mit dem begleitenden herabgesetzten herbiziden Effekt auf die gewünschten Getreidearten. Dieser Vorteil und die Nützlichkeit werden nachfolgend näher erläutert.

Daher werden die Ausdrücke Herbizide, Gegenmittel oder als Gegenmittel wirkende Menge verwendet, um den Effekt zu beschreiben, der darauf gerichtet ist, der normalen schädigenden herbiziden Reaktion, die die Herbizide sonst erzeugen, entgegenzuwirken. Ob es als Gegenmittel, als beeinträchtigendes Mittel, als schützendes Mittel oder dergleichen bezeichnet wird, hängt ab von der exakten Art der Wirkung. Die Art der Wirkung wird variiert, aber der wünschenswerte Effekt ist das Ergebnis der Art der Behandlung des Bodens, in welchem das Getreide gepflanzt ist. Bisher gab es keine Systeme, die für diesen Zweck zufriedenstellend waren.

Die erfindungsgemäßen Verbindungen der vorstehend genannten allgemeinen Formel können durch verschiedene unterschiedliche Verfahren, abhängig von den verwendeten Ausgangsmaterialien, hergestellt werden.

Die Oxazolidin und Thiazolidin-Zwischenprodukte, werden durch Kondensation eines Aminoalkohols oder -mercaptans mit einem geeigneten Aldehyd oder Keton in siedendem Benzol unter kontinuierlicher Abtrennung des Wassers hergestellt. Dieses Verfahren wird von Bergmann et al. in JACS 75, 358 (1953) beschrieben. Gewöhnlich sind die Oxazolidin- und Thiazolidin-Zwischenprodukte rein genug, um direkt ohne weitere Reinigung verwendet werden zu können. Aliquote Teile dieser Lösungen

werden dann verwendet, um die erfindungsgemäßen Verbindungen herzustellen.

Das geeignete Zwischenprodukt wird in Gegenwart eines Chlorwasserstofffakzeptors, wie Triäthylamin, zur Herstellung der gewünschten Verbindung mit einem Säurechlorid umgesetzt.

Die Verfahren zum Aufarbeiten und Reinigen umfassen Standardmethoden der Extraktion, Destillation oder Kristallisation.

Die erfindungsgemäßen Verbindungen und ihre Herstellung werden durch die nachfolgenden Beispiele näher erläutert. Im Anschluß an diese Beispiele ist eine Tabelle aufgeführt, in der die Verbindungen wiedergegeben werden, die gemäß den beschriebenen Verfahren hergestellt werden können. Die Verbindungen erhaltenen Nummern, die zu ihrer weiteren Identifikation in der Beschreibung verwendet werden.

Beispiel 1

Herstellung von 2,2-Dimethyl-3-dichloracetyl-oxazolidin

5,1 g 2,2-Dimethyl-oxazolidin, gelöst in 50 ml Benzol, wurde mit 5,5 g Triäthylamin behandelt. Unter Rühren und Kühlen in einem Eisbad wurden tropfenweise 7,4 g Dichloracetylchlorid zugesetzt. Das Gemisch wurde in Wasser gegossen, die Benzollösung wurde abgetrennt, über wasserfreiem Magnesiumsulfat getrocknet und das Lösungsmittel wurde unter Vakuum abgestrippt. Das Produkt war ein wachsartiger Feststoff, der nach Umkristallisation aus Diäthyläther einen Schmelzpunkt von 113 - 115°C aufwies.

Beispiel 2

Herstellung von 2,2,5-Trimethyl-3-dichloracetyl-oxazolidin

18 ml einer Benzollösung, die 4,6 g 2,2,5-Trimethyl-oxazolidin enthielt, wurde zu 25 ml Benzol und 4,5 g Triäthylamin zuge-

409817/1173

setzt. Unter Rühren und Kühlen in einem Eisbad wurden 5,9 g Dichloracetylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch in Wasser gegossen. Die Benzolschicht wurde abgetrennt und über wasserfreiem Magnesiumsulfat getrocknet und das Benzol unter Vakuum entfernt. Es wurde 7,7 g eines Öles erhalten, $n_D^{30} = 1,4950$.

Beispiel 3

Herstellung von 2,2-Dimethyl-3-dichloracetyl-thiazolidin

4,7 g 2,2-Dimethyl-thiazolidin und 4,5 g Triäthylamin wurden in 50 ml Methylenchlorid gelöst und unter Rühren tropfenweise mit 5,9 g Dichloracetylchlorid versetzt. Das Gemisch wurde in einem Wasserbad bei Raumtemperatur gekühlt.

Nach Beendigung der Reaktion wurde das Gemisch in Wasser gegossen. Die Lösungsmittelschicht wurde abgetrennt, über wasserfreiem Magnesiumsulfat getrocknet und das Lösungsmittel unter Vakuum entfernt. Es wurden 3,6 g eines wachsartigen Feststoffes erhalten. Die Umkristallisation einer anderen Probe aus Diäthyläther ergab einen weißen Feststoff mit einem Schmelzpunkt von 109 - 111°C.

Beispiel 4

Herstellung von 2,2,5,-Trimethyl-3(2',3'-dibrompropionyl)oxazolidin

25 ml Benzol und 3,5 g Triäthylamin wurden mit 14 ml einer Benzollösung, die 3,5 g 2,2,5-Trimethyloxazolidin enthielt, versetzt. 7,5 g 2,3-Dibrompropionylchlorid wurde tropfenweise unter Rühren und Kühlen in einem Eisbad zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch in Wasser gegossen und die Benzolschicht abgetrennt, über wasserfreiem

Magnesiumsulfat getrocknet und das Lösungsmittel unter Vakuum abgestript. Es wurden 5,7 g eines Öles erhalten. $n_D^{30} = 1,5060$.

Beispiel 5

Herstellung von 2,2-Dimethyl-3-dibromacetyl-thiazolidin

Ein Gemisch aus 3,5 g 2,2-Dimethylthiazolidin, 50 ml Benzol und 7,1 g Dibromacetylchlorid, gemischt in einem Eisbad, wurde unter Rühren und weiterem Kühlen mit 3,1 g Triäthylamin tropfenweise versetzt. Nach Beendigung der Reaktion wurde das Gemisch in Wasser gegossen und die Benzolschicht abgetrennt, über Magnesiumsulfat getrocknet und das Benzol unter Vakuum entfernt. Es wurden 8,5 g eines dunklen Öles erhalten.

Beispiel 6

Herstellung von 2-Äthyl-3-S-äthylthiocarbonyl-oxazolidin

50 ml Benzol und 4,1 g Triäthylamin wurden mit 16,5 ml einer Benzollösung von 2-Äthyloxazolidin versetzt. Unter Rühren und Kühlen in einem Eisbad wurden tropfenweise 5 g Äthylchlorthiolformiat zugesetzt. Das Gemisch wurde in Wasser gegossen und die Benzollösung wurde abgetrennt, über wasserfreiem Magnesiumsulfat getrocknet und das Benzol wurde unter Vakuum abgestript. Es wurden 5,6 g eines Öles erhalten.

$n_D^{30} = 1,5130$.

Beispiel 7

Herstellung von 2,2-Dimethyl-3-heptanoyl-oxazolidin

50 ml Benzol und 4,1 g Triäthylamin wurden mit 16,5 ml einer Benzollösung, die 4,6 g 2,2-Dimethyloxazolidin enthielt, versetzt. Diesem Gemisch wurde tropfenweise unter Rühren und Kühlen in einem Eisbad 6 g n-Heptanoylchlorid zugesetzt.

Das Gemisch wurde in Wasser gegossen und die Benzolschicht extrahiert, über Magnesiumsulfat getrocknet und das Benzol unter Vakuum entfernt. Es wurden 7,5 g eines Öles erhalten.
 $n_D^{30} = 1,4598$.

Die in der nachfolgend angegebenen Tabelle aufgeführten Verbindungen wurden nach den in den vorangegangenen Beispielen erläuterten Verfahren hergestellt.

Tabelle I

Verbindung	Nr.	R	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	oder n _D ²⁰
1	409817	CHCl ₂	CH ₃	CH ₃	H	H	H	H	0	116-118
2	1173	CH ₂ Cl	CH ₃	CH ₃	H	H	H	H	0	1,4932
3		CBr ₃	CH ₃	CH ₃	H	H	H	H	0	1,5560
4		CBr ₃	CH ₃	CH ₃	H	H	CH ₃	H	0	Glasartig
5		CH ₂ Cl	CH ₃	CH ₃	H	H	CH ₃	H	0	1,4842
6		CHCl ₂	CH ₃	CH ₃	H	H	CH ₃	H	0	1,4950
7		CH ₂ Cl	CH ₃	CH ₃	H	H	CH ₃	H	0	1,4900
8		CHCl ₂	CH ₃	CH ₃	CH ₃	C ₂ H ₅	H	H	0	1,4950
9		CCl ₃	CH ₃	CH ₃	CH ₃	C ₂ H ₅	H	H	0	1,4970
10		CBr ₃	CH ₃	CH ₃	CH ₃	C ₂ H ₅	H	H	0	1,5426
11		CH ₃ CHBr	CH ₃	CH ₃	CH ₃	CH ₃	H	H	0	1,4995

ORIGINAL INSPECTED

Verbindung Nr.	R	R ₁		R ₂		R ₃		R ₄		R ₅		R ₆		X	Schmelzpunkt oder m _D ²⁰
		CH ₃ CHBrX	CH ₃	CH ₃	CH ₃	C ₂ H ₅	CH ₃	CH ₃	C ₂ H ₅	CH ₃	CH ₃	CH ₃	CH ₃		
12			CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,4993
13	CH ₂ Cl		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,4928
14	CHCl ₂		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,4982
15	CCl ₃		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5034
16	CH ₃ CHBrX		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5058
17	CBr ₃		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	95-97
18	CH ₂ Br		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5097
19	CH ₂ Br		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5020
20	CH ₂ Br		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5048
21	CH ₃ (CH ₂ Br) ₄		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5658
22	CH ₂ Cl		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,4843
23	CHCl ₂		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	120-123
24	CCl ₂		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5031
25	CH ₂ Br		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5116
26	CH ₃ CHBrX		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5140
27	CBr ₃		CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	CH ₃	0	1,5610

Verbindung Nr.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	X	Schmelzpunkt oder n _D ²⁰
								S
28	ClCH ₂ CH ₂	CH ₃					H	1,4538
29	CHCl ₂	C ₂ H ₅	H	H	H	H	S	1,5458
30	CHCl ₂	CH ₃	CH ₃	H	H	H	S	109-111
31	CH ₂ BrCHBr	CH ₃	CH ₃	H	H	H	O	1,5170
32	CH ₂ BrCHBr	CH ₃	CH ₃	H	H	H	O	1,5060
33	CH ₂ BrCHBr	CH ₃	CH ₃	H	H	H	O	1,5083
34	CH ₂ BrCHBr	CH ₃	CH ₃	C ₂ H ₅	H	H	H	1,5178
35	CH ₂ BrCHBr	CH ₃	CH ₃	t-C ₄ H ₉	H	H	H	1,5165
36	CHCl ₂	CH ₃	CH ₃	t-C ₄ H ₉	H	H	H	2350547
37	CBr ₃	CH ₃	CH ₃	t-C ₄ H ₉	H	H	H	1,4949
38	CHCl ₂	H	H	t-C ₄ H ₉	CH ₃	H	H	1,5431
39	CHCl ₂		CH ₃ OCH ₂	H	H	H	H	1,5033
40	CHCl ₂		C ₃ H ₇	H	H	H	H	1,5132
41	CHCl ₂		C ₄ H ₉	H	H	H	H	1,4988
42	CHBr ₂		C ₂ H ₅	H	H	H	H	1,5126
43	CHBr ₃		C ₂ H ₅	H	H	H	H	1,5750
44	CH ₂ Br		C ₂ H ₅	H	H	H	H	1,5610
								1,5200

Verbindung Nr.	R	R ₁				R ₂				R ₃				R ₄				R ₅				R ₆				X			
		C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	
45	CH ₃ CH ₂ Br	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5140			
46	(CH ₃) ₂ CBBr	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4958			
47	CH ₂ BrCHBr	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5273			
48	CH ₂ Cl	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5020			
49	CHCl ₂	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4955			
50	CH ₂ Cl	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4890			
51	CH ₂ Br	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5064			
52	CHBr ₂	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	glasartig			
53	CHBr ₃	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4978			
54	CH ₃ CH ₂ Br	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5138			
55	CH ₂ BrCHBr	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4851			
56	(CH ₃) ₂ CBBr	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	dunkle Flüssigkeit			
57	CHCl ₂	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5030			
58	CHBr ₂	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5531			
59	CHBr ₃	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5173			
60	CH ₂ Br	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,5076			
61	CH ₃ CH ₂ Br	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	1,4852			
62	(CH ₃) ₂ CBBr	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	C ₂ H ₅	H	H	2350547			

Verbindung Nr.	R	Schmelzpunkt oder n_D^{20}						
		R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	
63	CH ₂ BrCHBr	H	C ₂ H ₅	H	H	H	0	1,5249
64	CCl ₃	H	C ₂ H ₅	H	H	H	0	1,5048
65	CH ₂ Cl	H	C ₂ H ₅	H	H	H	0	1,4998
66	CHCl ₂	CH ₃	C ₂ H ₅	H	H	H	0	1,5112
67	CCl ₃	CH ₃	H	H	H	H	0	1,5148
68	CH ₂ Cl	CH ₃	H	H	H	H	0	1,5077
69	CH ₂ Br	CH ₃	H	H	H	H	0	1,5263
70	CHBr ₂	CH ₃	H	H	H	H	0	1,5471
71	CBr ₃	CH ₃	H	H	H	H	0	dunkle Flüssigkeit
72	CH ₂ BrCHBr	CH ₃	H	H	H	H	0	1,5280
73	CH ₃ CHBr	CH ₃	H	H	H	H	0	1,5162
74	(CH ₃) ₂ CBr	CH ₃	H	H	H	H	0	1,4990
75	CHCl ₂	CH ₃	H	H	H	CH ₃	0	1,4983
76	CCl ₃	CH ₃	H	H	H	CH ₃	0	1,4958
77	CH ₂ Cl	CH ₃	H	H	H	CH ₃	0	dunkle Flüssigkeit
78	CHBr ₂	CH ₃	H	H	H	CH ₃	0	1,5063
79	CH ₃ CHBr	CH ₃	H	H	H	CH ₃	0	1,5782
80	CHBr ₂	C ₂ H ₅	H	H	H	H	S	

Verbundung Nr.	<u>R</u>		<u>R₁</u>		<u>R₂</u>		<u>R₃</u>		<u>R₄</u>		<u>R₅</u>		<u>R₆</u>		<u>X</u>		Schmelzpunkt oder n_D^{20}	
	CH ₂ BrCH ₂		C ₂ H ₅	H	C ₂ H ₅	H												
99	CH ₂ BrCH ₂		C ₂ H ₅	H	C ₂ H ₅	H												
100	CHCl ₂		CH ₃	H	CH ₃	H												
101	C ₃ H ₇ S		CH ₃	H	CH ₃	H												
102	i-C ₃ H ₇ S		CH ₃	H	CH ₃	H												
103	CCl ₃		CH ₃	H	CH ₃	H												
104	CH ₂ Br		CH ₃	H	CH ₃	H												
105	CH ₂ ErCH ₂ Br		CH ₃	H	CH ₃	H												
106	CH ₂ BrC(CH ₃) ₂ Br		CH ₃	H	CH ₃	H												
107	CH ₂ BrCH ₂		CH ₃	H	CH ₃	H												
108	C ₄ H ₉ S		CH ₃	H	CH ₃	H												
109	C ₄ H ₉ S		CH ₃	H	CH ₃	H												
110	CH ₃ S		CH ₃	H	CH ₃	H												
111	C ₆ H ₁₃		CH ₃	CH ₃	CH ₃	CH ₃												
112	CH ₃ S		CH ₃	CH ₃	CH ₃	CH ₃												
113	n-C ₃ H ₇ S		CH ₃	CH ₃	CH ₃	CH ₃												
114	i-C ₃ H ₇ S		CH ₃	CH ₃	CH ₃	CH ₃												
115	CH ₂ BrCH ₂		CH ₃	H	CH ₃	H												
116	CH ₂ BrCHBr		H	H	CH ₃	H												

Verbindung Nr.	R	$\frac{R_1}{R_2}$				$\frac{R_3}{R_4}$				$\frac{R_5}{R_6}$				X	Schmelzpunkt oder n_D^{20}
		CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H		
117	CH ₂ BrCH ₂	CH ₃	CH ₃	H	H	H	H	H	H	H	H	H	H	S	1,5263
118	CH ₂ BrCHBr	CH ₃	CH ₃	H	H	H	H	H	H	H	H	H	H	S	1,5573
119	CH ₂ BrCH ₂	H	H	H	H	CH ₃	CH ₃	H	H	H	H	H	H	0	1,4890
120	CH ₂ Br	H	H	H	H	H	H	H	H	H	H	H	H	S	1,6032
121	CH ₃ CHBr	H	H	H	H	H	H	H	H	H	H	H	H	S	1,5720
122	CH ₂ BrCH ₂	H	H	H	H	H	H	H	H	H	H	H	H	S	1,5629
123	CH ₂ BrCHBr	H	H	H	H	H	H	H	H	H	H	H	H	S	1,5742
124	CH ₃ C(CH ₃)Br	H	H	H	H	H	H	H	H	H	H	H	H	S	1,5420
125	CH ₂ ClCH ₂	H	H	H	H	H	H	H	H	H	H	H	H	S	1,5475
126	BrCH ₂ (CH ₂) ₈ CH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	0	1,4898
127	ClCH ₂ CH ₂ CH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	0	1,4880
128	ClCH ₂ CH ₂ CH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	S	1,5183
129	CH ₃ CHClCH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	0	1,4896
130	CH ₃ CHClCH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	CH ₃	H	0	1,5115
131	CH ₃ CHClCH ₂	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	CH ₃	H	0	1,4701
132	C ₂ H ₅ CHBr	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	0	1,5020
133	C ₂ H ₅ CHBr	CH ₃	CH ₃	H	H	CH ₃	CH ₃	H	H	H	H	H	H	S	1,5288

Verbindung Nr.	$\frac{R}{R_1}$	$\frac{R_1}{R_2}$	$\frac{R_2}{R_3}$	$\frac{R_3}{R_4}$	$\frac{R_4}{R_5}$	$\frac{R_5}{R_6}$	$\frac{R_6}{X}$	Schmelzpunkt oder n_D^{20}	
134	C_2H_5CHBr	CH_3	CH_3	H	H	CH_3	H	0	1,4900
135	C_3H_7CHBr	CH_3	CH_3	H	H	H	H	0	1,4972
136	C_3H_7CHBr	CH_3	CH_3	H	H	H	H	0	1,4972
137	C_3H_7CHBr	CH_3	CH_3	H	H	CH_3	H	S	1,5220
138	$CH_2ClCH_2CH_2$	CH_3	CH_3	H	H	CH_3	H	0	1,4870
139	$CH_2Br(CH_2)_4$	CH_3	CH_3	H	H	CH_3	H	0	1,4747
140	$CH_2Br(CH_2)_4$	CH_3	CH_3	H	H	H	H	0	1,4970
141	$CH_2Br(CH_2)_4$	CH_3	CH_3	H	H	CH_3	H	0	1,4886
142	$CH_2BrCBr(CH_3)$	H	H	H	H	H	H	S	1,5249
143	CH_2Cl	H	H	H	H	H	H	S	halbfest
144	$CHCl_2$	CH_3	C_2H_5	H	H	H	H	S	1,5540
145	CH_3CHBr	CH_3	C_2H_5	H	H	H	H	S	1,5443
146	CH_2BrCH_2	CH_3	C_2H_5	H	H	H	H	S	1,4327
147	CH_2Cl	CH_3	C_2H_5	H	H	H	H	S	1,4263
								S	1,5279

Es ist verständlich, daß die Klassen der hierin beschriebenen und erläuterten herbiziden Mittel als wirksame Herbizide, die solche Aktivität zeigen, charakterisiert sind. Der Grad der herbiziden Wirksamkeit variiert unter den spezifischen Verbindungen und Kombinationen der spezifischen Verbindungen innerhalb der Klassen. Ähnlich variiert der Grad der Wirksamkeit einigermaßen unter den Pflanzenarten, auf die eine spezifische herbizide Verbindung oder Kombination angewendet werden kann. Daher kann die Auswahl einer spezifischen herbiziden Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzenarten leicht vorgenommen werden. Innerhalb der vorliegenden Erfindung kann die Verhinderung der Schädigung einer gewünschten Getreideart in Gegenwart einer spezifischen Verbindung oder Kombination erreicht werden. Die nützlichen Pflanzenarten, die durch diese Methode geschützt werden können, sind nicht auf die spezifischen Getreidearten, die in den Beispielen genannt sind, beschränkt.

Die herbiziden Verbindungen, die bei der Anwendung der vorliegenden Erfindung verwendet werden können, sind wirksame Herbizide eines allgemeinen Typs. Das heißt, die Glieder der Klassen sind herbizid wirksam gegenüber einem breiten Bereich von Pflanzenarten ohne Unterschied zwischen den gewünschten und unerwünschten Spezies. Das Verfahren zur Bekämpfung der Vegetation umfasst die Anwendung einer herbiziden wirksamen Menge der hierin beschriebenen herbiziden Verbindungen auf ein Gebiet oder Ort, wo die Bekämpfung gewünscht ist. Ein Herbizid, wie es hierin verwendet wird, bedeutet eine Verbindung, welche das Wachstum der Vegetation oder Pflanzen bekämpft oder modifiziert. Solche Bekämpfungs- oder Modifizierungseffekte umfassen alle Abweichungen von der natürlichen Entwicklung, z.B. das Abtöten, das Verzögern, den Blätterfall, das Austrocknen, die Regulierung, das Verkümmern, die Bestockung, die Stimulation, das Schrumpfen

und dergleichen. Unter dem Ausdruck "Pflanzen" werden keimende Samen, aufgehende Sämlinge und aufgegangene Pflanzen (established vegetation), einschließlich der Wurzeln und der oberirdischen Teile, verstanden.

Die erfindungegemäßen Verbindungen werden in wirksamen herbiziden, Gegenmittel enthaltenden Gemischen, die Thiocarbamate in Kombination mit den vorstehend beschriebenen, als Gegenmittel wirkenden Verbindungen enthalten, angewandt. Sie wurden in der folgenden Art und Weise getestet.

Tests zur Behandlung von Getreidesamen

Kleine flache Kästen wurden mit Feltons lähmiger Sanderde gefüllt. Zu dieser Zeit wurde mit Herbiziden behandelte Erde angewandt. Die Erde aus jedem Kasten wurde in einen 18,9 l fassenden Zementmischer gebracht, wo die Erde, wenn die Herbizide unter Verwendung einer vorbestimmten Menge einer Vorratslösung, die 936 mg von 75,5%igem Wirkstoff auf 100 ml Wasser enthielt, angewandt wurden, gemischt wurde. Für jeweils 0,454 kg des gewünschten Herbizides wurde mit einer volumetrischen Pipette 1 ml der Vorratslösung auf die Erde aufgebracht. 1 ml der Vorratslösung enthielt 7 mg des Herbizides, welches $0,112 \text{ g/m}^2$ entsprach, wenn es auf die Erde in den Kästen aufgebracht würde. Nach der Einarbeitung des Herbizides wurde die Erde erneut in die Kästen gebracht.

Die Kästen, die die mit Herbizid behandelte und unbehandelte Erde enthielten, waren dann fertig zum Bepflanzen. Eine 0,47 l Probe der Erde wurde aus jedem Kasten entfernt und in der Nähe jedes Kasten zur späteren Verwendung zur Abdeckung der Samen angeordnet. Die Erde wurde geebnet und Reihen einer Tiefe von 1,27 cm wurden zum Pflanzen der Samen angelegt. Alternierende Reihen von behandelten und unbehandelten

Getreidesamen wurden gesät. In jedem Test wurden in jeder Reihe 6 PAG 344T Feld-Kornsamen gepflanzt. In dem Kasten waren die Reihen etwa 3,81 cm auseinander. Die Samen wurden behandelt, indem man 1. entweder 50 mg der als Gegenmittel wirkenden Verbindung mit 10 g Kornsamen in einem geeigneten Behälter brachte und schüttelte bis die Samen gleichmäßig mit der Verbindung bedeckt waren oder 2. durch Auflösen von 50 mg der als Gegenmittel wirkenden Verbindung in 5 ml Aceton eine Vorratslösung herstellte und anschließend 0,5 ml dieser Lösung zur Behandlung von 10 g Kornsamen (0,05% Gewicht/Gewicht) verwendete. Die als Gegenmittel verwendeten Verbindungen wurden ebenfalls als flüssige Aufschlammungen und Pulver oder in zerstäubter Form angewandt. In einigen Fällen wurde Aceton angewandt, um die pulverförmigen oder festen Verbindungen zu lösen, damit sie wirksamer auf die Samen aufgebracht werden konnten.

Nachdem die Kästen mit Samen versehen waren, wurden sie mit 0,47 l der Erde, die vor dem Pflanzen entfert worden war, bedeckt. Die Kästen wurden auf in einem Gewächshaus befindlichen Bänken abgestellt, wo Temperaturen im Bereich von 21,1 - 32,2°C herrschten. Die Kästen wurden mit einem Sprinkler bewässert, was zur Gewährleistung eines guten Pflanzenwachstums notwendig war. Zwei, drei und vier Wochen nach der Behandlung wurde der prozentuale Grad der Bekämpfung bestimmt.

In jedem Test, wurde das Herbizid allein, in Kombination mit dem Samenschutzmittel und das Samenschutzmittel allein zur Prüfung auf Phytotoxizität angewandt. Die unbehandelte benachbarte Reihe wurde angewandt, um jede nützliche laterale Bewegung der als Gegenmittel wirkenden Verbindung in die Erde zu beobachten. Der Grad des Effektes wurde durch Vergleich mit der Kontrollprobe notiert. Die Ergebnisse dieser Tests sind in Tabelle II zusammengestellt.

Tabelle II

% Schädigung von Korn durch EPTC⁺Samenbehandlungstest

Verbindung Nr.	% Schädigung, 2 Wochen	
	behandelte Samen (0,05% Gew./Gew.)	unbehandelte Samen, angren- zende Reihe
1 ⁺⁺	5	30
2	70	80
3 ⁺⁺	40	60
4	10	50
5	30	60
6	0	0
7	40	55
8	0	15
9	10	55
10	20	60
11	30	50
12	10	40
13	50	70
14	0	20
15	20	50
16	10	55
17	30	50
18	20	50
19	40	50
20	20	60
21	50	50
22	60	60
23	50	60
24	20	60
25	20	70

409817/1173

Tabelle II (Fortsetzung)

% Schädigung von Korn durch EPTC⁺Samenbehandlungstest

Verbindung Nr.	% Schädigung, 2 Wochen	
	behandelte Samen (0,05% Gew./Gew.)	unbehandelte Samen, angren- zende Reihe
26	20	60
27	20	60
28	60	70
29	0	5
30	20	5

EPTC 6E unbehandelter Samen 70
 80 (4 Wochen)

+ = S-Aethyl-dipropylthiocarbamat 6E:0,672 g/m² vor dem Pflanzen eingearbeitet.

++ = Samenbehandlung 0,01% (Gew./Gew.)

Unter Verwendung von 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acetanilid bei 0,224 g/m² als Samenbehandlungsmittel (0,5%) ergab die Verbindung Nr. 144 einen 100%igen Schutz für Sorghum (Milo).

Verfahren: Mehrere Getreide umfassender Gegenmittel-Test
(Multicrop Antidote Screen)

Plastikkästen wurden mit Feltons lehmiger Sanderde gefüllt. Da eine Vielzahl von Gras und breitblättrigem Getreide in diesem Test verwendet wurde, wurde EPTAM^R (EPTC) in Men-

409817/1173

gen von $0,056 \text{ g/m}^2$ und $0,560 \text{ g/m}^2$ eingearbeitet, während eine konstante Menge von $0,560 \text{ g/m}^2$ des Zusatzes verwendet wurde. EPTAM (EPTC) und der herbizide Zusatz wurden getrennt aufgebracht, indem man abgemesene Mengen der entsprechenden Vorratslösungen während der Einarbeitung in einem 18,9 l fassenden rotierenden Zementmixer unter Verwendung einer Pipette in die Erde gebracht wurden. Vorratslösungen für EPTAM wurden folgendermaßen hergestellt:

- A. $0,056 \text{ g/m}^2$: 670 mg EPTC 6E (75,5% Wirkstoff) wurden mit 500 ml entionisiertem Wasser verdünnt, so daß $2 \text{ ml} = 0,056 \text{ g/m}^2$ /Plastikkasten entsprachen..
- B. $0,560 \text{ g/m}^2$: 6700 mg von EPTC 6E (75,5% Wirkstoff) wurden mit 500 ml entionisiertem Wasser verdünnt, so daß $2 \text{ ml} = 0,560 \text{ g/m}^2$ /Plastikkasten entsprachen.

Weitere Vorratslösungen wurden hergestellt, indem man 102 mg von technischem Material mit 10 ml Aceton mit einem Gehalt von 1% Polyoxyäthylen-sorbitan-monolaurat (Tween 20) verdünnte, so daß $2 \text{ ml} = 0,560 \text{ g/m}^2$ /Kasten entsprachen. Nach Behandlung des Bodens mit dem Herbizid und dem Zusatz wurde der Boden aus dem Mischer in den Kasten zurückgebracht, wo er zum Säen vorbereitet wurde. Die erste Stufe der Vorbereitung bestand darin, daß man eine Probe von $0,47 \text{ l}$ der Erde aus jedem Kasten entfernte, um sie aufzubewahren und zum Bedecken der Samen nach dem Pflanzen zu verwenden. Die Erde wurde dann eingeebnet und Reihen einer Tiefe von $0,63 \text{ cm}$ wurden in jedem Kasten hergestellt. Mit $0,560 \text{ g/m}^2$ EPTAM behandelte Kästen wurden mit *Zea maize*, *Beta vulgaris*, *Helianthus annus*, *Gossypium hirsutum*, *Glycine max*. und *Brassica napus* besät. In Kästen, die mit $0,056 \text{ g/m}^2$ EPTAM behandelt wurden, wurden *Avena byzantina*, *Sorghum vulgare*, *Triticum aestivum*, *Setaria feberii*, *Oryza sativa* und *Hordeum vulgare* gesät. Die Samen wurden anschließend mit

der 0,47 l Probe, die vor dem Säen entfernt worden war, bedeckt.

Die Kästen wurden anschließend auf Bänke in einem Gewächshaus gebracht, wo Temperaturen zwischen 21,1 - 32,2°C aufrecht erhalten wurden. Die Erde wurde mit Sprinklern bewässert, um ein gutes Pflanzenwachstum zu gewährleisten.

2 und 4 Wochen nach der Behandlung wurde der Grad der Beschädigung bestimmt. Erde, die mit EPTAM allein in Mengen von 0,056 oder 0,560 g/m² behandelt war, wurde ebenfalls untersucht, um eine Basis zur Bestimmung der Menge der Schädigungsverminderung bereitzustellen, die durch die Herbizid-Gegenmittel erreicht wurde. Der prozentuale Schutz von zahlreichen repräsentativen Getreiden wird in Tabelle III zusammengestellt. Der prozentuale Schutz wird bestimmt durch einen Vergleich mit Kästen, die nicht mit dem zu untersuchenden Gegenmittel behandelt worden waren.

Tabelle III

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
31	0,056	Gerste	56
		Reis	30
32	0,056	Gerste	56
		Reis	30
33	0,056	Korn (corn)	100
		Reis	30
		Gerste	44
		Gerste	88
34	0,056 0,560	Korn	100

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
35	0,056	Gerste	44
	0,560	Korn	100
36	0,560	Korn	100
37	0,560	Korn	100
38	0,056	Gerste	88
	0,560	Korn	100
39	0,560	Sonnenblume	50
	0,560	Korn	100
	0,560	Sonnenblume	25
40	0,560	Raps	60
	0,560	Korn	100
41	0,056	Sonnenblume	25
	0,560	Gerste	50
42	0,560	Korn	56 (4 Wochen)
43	0,560	Korn	93 (4 Wochen)
44	0,560	Korn	28 (4 Wochen)
45	0,056	Gerste	50
	0,560	Sonnenblume	81
46	0,056	Reis	100 (4 Wochen)
47	0,056	Réis	100 (4 Wochen)
	0,056	Gerste	75 (4 Wochen)
48	0,560	Raps (oilseed rape)	68 (4 Wochen)
	0,056	Gerste	25
49	0,560	Sonnenblume	67 (4 Wochen)
	0,056	Sorghum	50
	0,560	Gerste	50
		Korn	100 (4 Wochen)

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
50	0,560	Korn	100 (4 Wochen)
51	0,560	Korn	42 (4 Wochen)
52	0,560	Korn	100 (4 Wochen)
53	0,056	Reis	100 (4 Wochen)
	0,056	Gerste	50 (4 Wochen)
	0,560	Korn	70 (4 Wochen)
54	0,056	Gerste	50
	0,560	Korn	100 (4 Wochen)
55	0,056	Weizen	20 (4 Wochen)
	0,056	Gerste	100 (4 Wochen)
	0,560	Korn	93 (4 Wochen)
56	0,056	Sorghum	10 (4 Wochen)
57	0,056	Gerste	50
	0,560	Korn	100 (4 Wochen)
58	0,056	Reis	100 (4 Wochen)
59	0,560	Korn	93 (4 Wochen)
60	0,056	Reis	100 (4 Wochen)
	0,560	Korn	42 (4 Wochen)
61	0,056	Sorghum	40 (4 Wochen)
	0,056	Gerste	75 (4 Wochen)
	0,560	Reis	70 (4 Wochen)
62	0,560	Raps	65 (4 Wochen)
63	0,056	Gerste	75
64	0,560	Korn	42 (4 Wochen)
65	0,560	Korn	70 (4 Wochen)
66	0,560	Korn	100 (4 Wochen)
67	0,560	Korn	28 (4 Wochen)
68	0,056	Reis	100 (4 Wochen)
	0,560	Korn	93 (4 Wochen)

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
69	0,560	Korn	42 (4 Wochen)
70	0,560	Korn	100 (4 Wochen)
71	0,560	Korn	70 (4 Wochen)
72	0,056	Reis	100 (4 Wochen)
	0,056	Gerste	50 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
73	0,560	Korn	100 (4 Wochen)
74	0,560	Korn	42 (4 Wochen)
75	0,056	Sorghum	71
	0,056	Weizen	60
	0,560	Korn	87
	0,560	Raps	71
76	0,560	Korn	56 (4 Wochen)
77	0,560	Korn	100 (4 Wochen)
	0,560	Zuckerrüben	28 (4 Wochen)
78	0,056	Reis	100 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
	0,560	Sonnenblume	81 (4 Wochen)
79	0,056	Gerste	50
	0,560	Korn	100 (4 Wochen)
	0,560	Sonnenblume	67 (4 Wochen)
80	0,560	Korn	70 (4 Wochen)
	0,560	Raps	56 (4 Wochen)
81	0,056	Gerste	50 (4 Wochen)
	0,560	Sonnenblume	67 (4 Wochen)
82	0,560	Korn	56 (4 Wochen)
83	0,056	Reis	100 (4 Wochen)

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
84	0,056	Reis	100 (4 Wochen)
	0,056	Gerste	50 (4 Wochen)
85	0,056	Reis	100 (4 Wochen)
	0,056	Gerste	75 (4 Wochen)
86	0,560	Korn	93 (4 Wochen)
	0,056	Gerste	50 (4 Wochen)
87	0,560	Korn	100 (4 Wochen)
	0,056	Korn	93 (4 Wochen)
88	0,056	Gerste	45
89	0,056	Weizen	67
	0,560	Raps	75
90	0,056	Weizen	15
91	0,056	Sorghum	50
	0,560	Korn	84
92	0,560	Raps	75
93	0,560	Raps	75
94	0,560	Raps	75
95	0,560	Raps	75
96	0,560	Korn	80
97	0,056	Gerste	50
98	0,560	Sonnenblume	60
99	0,056	Gerste	88
100	0,560	Korn	100
101	0,560	Sonnenblume	100
102	0,560	Raps	50
103	0,056	Sorghum	30 (4 Wochen)
	0,560	Korn	100

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
104	0,056	Reis	30 (4 Wochen)
	0,056	Sorghum	30 (4 Wochen)
105	0,056	Weizen	30 (4 Wochen)
	0,056	Gerste	75 (4 Wochen)
106	0,560	Sonnenblume	20 (4 Wochen)
107	0,056	Weizen	40 (4 Wochen)
	0,056	Gerste	60 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
108	0,560	Raps	75
109	0,560	Raps	75
110	0,560	Raps	75
111	0,560	Sonnenblume	60
112	0,560	Raps	75
113	0,560	Raps	67
114	0,560	Raps	33
115	0,056	Gerste	70 (4 Wochen)
	0,560	Korn	10 (4 Wochen)
116	0,056	Gerste	58 (4 Wochen)
	0,560	Sonnenblume	60 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
117	0,056	Gerste	58 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
118	0,056	Gerste	58 (4 Wochen)
	0,560	Korn	65 (4 Wochen)
119	0,056	Gerste	68 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
120	0,560	Sonnenblume	30
121	0,056	Reis	67 (4 Wochen)
	0,560	Raps	60 (4 Wochen)

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test- Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
122	0,056	Gerste	58 (4 Wochen)
	0,560	Korn	100 (4 Wochen)
123	0,056	Reis	44 (4 Wochen)
	0,056	Reis	67 (4 Wochen)
124	0,056	Gerste	58 (4 Wochen)
	0,056	Reis	88 (4 Wochen)
125	0,056	Reis	100
	0,056	Gerste	100
126	0,056	Reis	78
	0,056	Gerste	64
127	0,056	Reis	78
	0,056	Gerste	57
128	0,056	Reis	78
	0,056	Gerste	60
129	0,056	Reis	78
	0,056	Gerste	43
130	0,560	Sonnenblume	100
	0,056	Reis	100
131	0,056	Gerste	43
	0,560	Raps	40
132	0,056	Sojabohnen	33
	0,056	Gerste	43
133	0,056	Sonnenblume	100
	0,560	Raps	80
134	0,056	Sojabohnen	47
	0,056	Reis	78
135	0,056	Hafer	50
	0,056	Gerste	57
136	0,560	Raps	100
	0,560	Korn	58

40981771173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test-Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
133	0,056	Gerste	57
	0,056	Hafer	40
	0,560	Zuckerrüben	45
	0,560	Raps	100
134	0,056	Gerste	43
	0,560	Sojabohnen	33
	0,560	Raps	80
	0,056	Hafer	60
135	0,560	Korn	100
	0,560	Raps	100
	0,056	Reis	55
136	0,056	Gerste	57
	0,560	Korn	100
	0,560	Raps	80
	0,056	Gerste	43
137	0,560	Sonnenblume	70
	0,560	Sojabohnen	33
	0,056	Reis	78
138	0,056	Gerste	71
	0,560	Raps	60
	0,560	Sonnenblume	70
139	0,560	Raps	60
	0,056	Sonnenblume	70
	0,560	Raps	60
140	0,560	Sonnenblume	100
	0,560	Raps	60
	0,560	Sojabohnen	33
	0,056	Sojabohnen	47
141	0,560	Raps	60
	0,056	Reis	86
	0,056	Gerste	62,5

409817/1173

Tabelle III (Fortsetzung)

Mehrere Getreide umfassende
Test-Ergebnisse, %-Schutz

Verbindung Nr.	Menge von EPTC, g/m ²	Getreide	%-Schutz (2 Wochen)
143	0,056	Reis	100
	0,056	Gerste	87,5
144	0,056	Sorghum	100
	0,056	Reis	86
145	0,056	Gerste	100
	0,560	Korn	100
146	0,056	Reis	100
	0,560	Gerste	75
147	0,056	Raps	100
	0,560	Reis	72
		Korn	88

Bei Verwendung zusammen mit 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acetanilid in Mengen von 0,224 g/m² zeigten die Verbindungen Nr. 1 und Nr. 30 in Mengen von 0,560 g/m² nach 4 Wochen 100%igen Schutz für Sorghum. Die Verbindung Nr. 1 ergab ebenfalls einen 67%igen Schutz für Weizen.

Bei Verwendung mit 3-(3,4-Dichlorphenyl)-1,1-dimethyl-harnstoff in Mengen von 0,112 g/m² ergaben die Verbindungen Nr. 1 und Nr. 30 in Mengen von 0,560 g/m² jeweils einen 60%igen Schutz für Baumwolle. Für Korn (corn) ergab Verbindung Nr. 1 ebenfalls einen 60%igen Schutz und Verbindung Nr. 30 einen 43%igen Schutz.

Die als Gegengift oder Gegenmittel wirkenden Verbindungen und Gemische der vorliegenden Erfindung können in jeder üblichen Form verwendet werden. So können die als Gegenmittel wirkenden Verbindungen in emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, Flüssigkeiten, netzbaren Pulvern, Pulvern, in granularer oder in jeder anderen üblichen Form formuliert werden. In der bevorzugten Form wird eine nicht phytotoxische Menge einer herbiziden Gegenmittel-Verbindung mit einem ausgewählten Herbizid vermischt und in die Erde⁺). Es ist jedoch verständlich, daß die Herbizide in die Erde eingearbeitet werden können und anschließend die als Gegenmittel wirkende Verbindung in die Erde eingearbeitet werden kann. Außerdem kann der Getreidesamen selbst mit einer nicht-phytotoxischen Menge der Verbindung behandelt werden und in die Erde, die mit den Herbiziden behandelt worden war oder die nicht mit den Herbiziden behandelt worden war und nachfolgend mit dem Herbizid behandelt wird, gebracht werden. Der Zusatz der als Gegenmittel wirkenden Verbindung beeinflußt nicht die herbizide Wirksamkeit der Herbizide.

Die Menge der vorhandenen als Gegenmittel wirkenden Verbindung kann zwischen etwa 0,001 bis etwa 30 Gewichtsteile der hierin beschriebenen als Gegenmittel wirkenden Verbindung pro Gewichtsteil des Herbizides betragen. Die genaue Menge der als Gegenmittel wirkenden Verbindung wird gewöhnlich durch ökonomische Verhältnisse für die übliche wirksamste Menge bestimmt. Es ist verständlich, daß eine nicht-phytotoxische Menge der als Gegenmittel wirkenden Verbindung in den hier beschriebenen herbiziden Gemischen verwendet wird.

+) vor oder nach dem Pflanzen der Samen eingearbeitet

Patentansprüche:

1. Verbindung der allgemeinen Formel

worin X ein Sauerstoffatom oder ein Schwefelatom, R einen Halogenalkylrest, einen Alkylrest oder einen Alkylthiorest, R₁, R₂, R₃, R₄, R₅ und R₆ unabhängig von einander ein Wasserstoffatom, einen niederen Alkylrest, ein Alkoxyalkylrest oder einen niederen Alkylolrest bedeuten, wobei wenn X ein Sauerstoffatom, R₁ und R₂ Wasserstoffatome oder Methylreste und R₃, R₄, R₅ und R₆ jeweils ein Wasserstoffatom bedeuten, R keinen Dichlormethylrest bedeutet.

2. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R₁ einen niederen Alkylrest, R₂ einen niederen Alkylrest und R₃, R₄, R₅ und R₆ jeweils ein Wasserstoffatom bedeuten.

3. Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest, R₁ einen Methylrest und R₂ einen Äthylrest bedeuten.

4. Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest, R₁ einen Methylrest und R₂ einen t-Butylrest bedeuten.

5. Verbindung nach Anspruch 2, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest, R_1 einen Methylrest und R_2 einen i-Propylrest bedeuten.

6. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Alkylrest, R_1 einen niederen Alkylrest, R_2 niederen Alkylrest und R_3 , R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

7. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Schwefelatom, R einen Halogenalkylrest, R_1 einen niederen Alkylrest, R_2 einen niederen Alkylrest und R_3 , R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

8. Verbindung nach Anspruch 7, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest, R_1 einen Methylrest und R_2 einen Methylrest bedeuten.

9. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 einen niederen Alkylrest, R_2 einen niederen Alkylrest, R_5 einen niederen Alkylrest und R_3 , R_4 und R_6 jeweils ein Wasserstoffatom bedeuten.

10. Verbindung nach Anspruch 9, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest, R_1 einen Methylrest, R_2 einen Methylrest und R_5 einen Methylrest bedeuten.

11. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 einen niederen Alkylrest, R_2 einen niederen Alkylrest, R_3 einen niederen Alkylrest und R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

12. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 einen niederen Alkylrest, R_2 einen niederen Alkylrest, R_3 einen niederen Alkylrest und R_4 einen niederen Alkylrest und R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

13. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 , R_2 , R_3 , R_4 und R_5 jeweils unabhängig von einander einen niederen Alkylrest und R_6 ein Wasserstoffatom bedeuten.

14. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 einen Alkoxyalkylrest und R_2 , R_3 , R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

15. Verbindung nach Anspruch 14, dadurch gekennzeichnet, daß R der Formel einen Dichlormethylrest und R_1 einen Methoxymethylrest bedeuten.

16. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_1 einen niederen Alkylrest, R_5 einen niederen Alkylrest und R_2 , R_3 , R_4 und R_6 jeweils ein Wasserstoffatom bedeuten.

17. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Halogenalkylrest, R_3 einen niederen Alkylrest und R_1 , R_2 , R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

18. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Sauerstoffatom, R einen Dichlor-methylrest, R_1 , R_2 und R_3 jeweils einen Methylrest, R_4 einen Methylorest und R_5 und R_6 jeweils ein Wasser-stoffatom bedeuten.

19. Verbindung nach Anspruch 1, dadurch gekennzeichnet, daß X der Formel ein Schwefelatom, R einen Dichlormethylrest R_1 einen Äthylrest und R_2 , R_3 , R_4 , R_5 und R_6 jeweils ein Wasserstoffatom bedeuten.

Für: Stauffer Chemical Company

(Dr. H.J. Wolff)
Rechtsanwalt

409817/1173

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.