

ANÁLISIS MATEMÁTICO II Examen Final 01/08/2023

APELLIDO DEL A	ALUMNO:	NOMBRE:	•••••
----------------	---------	---------	-------

CORRIGIÓ: REVISÓ:

T1	T2	P1	P2	P3	P4	CALIFICACIÓN

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta.

No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

T1) Indique si cada una de las siguientes proposiciones es verdadera o falsa. Si es verdadera proporcione una demostración, caso contrario exhiba un contraejemplo.

- **a.** Si el campo vectorial $\vec{F}: R^3 \to R^3$ $/\vec{F}(x,y,z) = (u(x,y,z),v(x,y,z),w(x,y,z))$ es de clase $C^1(R^3)$ y es conservativo, entonces \vec{F} admite matriz Jacobiana simétrica en R^3 .
- **b.** $\iint_A (x^2 + y^2)^{-\frac{3}{2}} dx dy = 1$, siendo $A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1, x + y \ge 1, y \ge x\}$
- **T2**) **a.** Sea un campo escalar $f: B \subseteq \mathbb{R}^n \to \mathbb{R}$ (n > 1) $y \vec{x}_0 \in \mathbb{B}^o$. Muestre que si existe f es diferenciable en \vec{x}_0 $y \vec{x}_0$ es un punto de extremo local de f, entonces $\nabla f(\vec{x}_0) = \vec{0}$.
 - **b.** La función definida por $f(x,y) = 3 (x^3 y^3)$, ¿alcanza un valor extremo local en el punto (0,0)? Justifique claramente la respuesta.
- **P1**) Sean las funciones $\vec{f}: R^2 \to R^2$ de clase $C^1(R^2)$ tal que $D\vec{f}(0,0) = \begin{pmatrix} 1 & 0 \\ 0 & -\frac{1}{8} \end{pmatrix}$ y z = g(x,y) definida implícitamente en el entorno del punto $(x_0, y_0) = (2,1)$ por la ecuación

 $3x^2y^2 + 2z^2xy - 2zx^3 + 4zy^3 = 4$, con $z_0 = g(x_0, y_0) > 1$. Determine la dirección de máximo crecimiento de la función $h = go\vec{f}$ en el punto (0,0), sabiendo que $\vec{f}(0,0) = (2,1)$.

- **P2**) Dada la porción de superficie S de ecuación $2z = 3xy^2$ cuya proyección sobre el plano xy es la región $W = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le 2x , 0 \le x \le 2\}$. Calcule el flujo del campo vectorial definido por $\vec{G}(x,y,z) = (2x,-y,4z)$ a través de la superficie S orientada con el campo de versores normales que apunta hacia las z positivas.
- **P3**) Calcule la circulación del campo vectorial $\vec{F}: \mathbb{R}^3 \to \mathbb{R}^3$ de clase $C^1(\mathbb{R}^3)$ tal que

 $rot\vec{F}(x,y,z)=(-x^2,3y-x,4z^2-3xy)$ a lo largo de la curva γ definida por la intersección de las superficies de ecuaciones $x=3(y^2+z^2)$ y $x=4-(y^2+z^2)$. Indique la orientación escogida para la curva γ .

P4) Determine la solución particular de la ecuación diferencial y'' - 6y' + 9y = 9x sabiendo que en el punto (0,1) la ecuación de su recta tangente es y = x + 1.