VC210 Recitation Class 5

Wei Xiwen

UM-SJTU JI

2020 Nov. 2

Contents

- 1 First Law of Thermodynamics
 - Work
 - Heat
 - Enthalpy
- 2 Second Law of Thermodynamics
- 3 Thrid Law of Thermodynamics
- 4 Gibbs Free Energy

- 1 First Law of Thermodynamics
- 2 Second Law of Thermodynamics
- 3 Thrid Law of Thermodynamics
- 4 Gibbs Free Energy

First Law of Thermodynamics

$$\Delta U = q + w \tag{1}$$

q: heat; w: work

- Isolated system: $\Delta U = 0$, internal energy is constant.
- Constant volume: w=0, $\Delta U=q$.
- Energy is only transferred as heat: $\Delta U = q$.

Attention

- w: the work done to the system.
- q: the heat enters the system

Pay attention to the sign!

Type of system

	Exchange with surroundings	
open system	matter & energy	
closed system	energy	
isolated system	nothing	

Expansion Work

$$w = -P_{ex}\Delta V \tag{2}$$

 P_{ex} : external pressure.

- When $\Delta V > 0$, the system expands, the work is negative.
- When the system is expands to vacuum, $P_{ex} = 0$, w=0.

Constant temperature: $dw = -P_{ex}dV$. This leads to:

$$w = -nRT \ln \frac{V_f}{V_i} \tag{3}$$

T: the constant temperature; V_f : final volume; V_i : initial volume.

- 4 □ ト 4 圖 ト 4 ≣ ト 4 ≣ ト 9 Q (^)

Heat Capacity

$$c = \frac{q}{\Delta T} \tag{4}$$

Unit: $J/(kg \cdot K)$, 1 cal=4.184 J.

- Specific heat capacity: $c_s = \frac{c}{m}$.
- Molar heat capacity: $c_m = \frac{c}{n}$

Calorimeter

- Measure energy transfer
- $q = -C_{cal}\Delta T$, c_{cal} : heat capacity of calorimeter.

Heat Capacity

Heat capacity and molecular structure:

	Monoatomic	Linear	Nonlinear
C _{v,m}	$^{3}/_{2}R$	$^{5}/_{2}R$	3R
$C_{p,m}$	⁵ / ₂ R	$^{7}/_{2}R$	4R

 $C_{v,m}$: constant volume & per mol; $C_{p,m}$: constant pressure & per mol.

8/30

Enthalpy and Enthalpy cannge

$$H = U + PV \tag{5}$$

- Constant pressure: $\Delta H = q.(\text{why?})$
- For chemical reaction open to atmosphere or constant pressure:
 - Exothermic: $\Delta H < 0$.
 - Endothermic: $\Delta H > 0$.

Enthalpy Change of Reactions

• Vaporization:

$$\Delta H_{vap} = H_m(vapor) - H_m(liquid) \tag{6}$$

• Fusion:

$$\Delta H_{fus} = H_m(liquid) - H_m(solid) \tag{7}$$

• Sublimation:

$$\Delta H_{sub} = H_m(vapor) - H_m(solid) \tag{8}$$

Reverse reaction:

$$\Delta H_{reverse} = \Delta H_{forward} \tag{9}$$

Heating Curve

Standard Reaction Enthalpy

Reaction enthalpy measured at standard state

Standard State in Thermodynamics

- Pressure: 1 bar
- Temperature: 298.15 K (not 273.15 K or 0°C)
- Solution concentration (if solution is involved): 1 mol/L

Denote as X°

• Standard enthalpy of formation:

$$\Delta H_f^{\circ} = \sum n\Delta H_f^{\circ}(products) - \sum n\Delta H_f^{\circ}(reactants) \qquad (10)$$

Standard Reaction Enthalpy

- No gas is generated or consumed: $\Delta H = \Delta U$
- Gas is generated: $\Delta H = \Delta U + \Delta n_{qas} RT$

Hess's Law

$$\Delta H_{overall} = \sum \Delta H_{steps}$$

$$C(gr) + \frac{1}{2}O_2(g) \longrightarrow CO(g) \qquad \Delta H = -110.5 \text{ kJ} \qquad (E)$$

$$CO(gr) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g) \qquad \Delta H = -283.0 \text{ kJ} \qquad (F)$$

$$C(gr) + O_2(g) \longrightarrow CO_2(g) \qquad \Delta H = -393.5 \text{ kJ} \quad (D) = (E) + (F)$$

Born-Haber Cycle

Consider an ionic compound, MX2, composed of generic metal M and generic, gaseous halogen X.

- The enthalpy of formation of MX_2 is $\Delta H_f^{\circ} = -817$ kJ/mol.
- The enthalpy of sublimation of M is $\Delta H_{\text{sub}} = 109 \text{ kJ/mol.}$
- The first and second ionization energies of M are $IE_1 = 771 \text{ kJ/mol}$ and $IE_2 = 1387 \text{ kJ/mol}$.
- The electron affinity of X is ΔH_{EA} = -311 kJ/mol. (Refer to the hint).
- The bond energy of X₂ is BE = 231 kJ/mol.

Determine the lattice energy of MX₂.

$$\Delta H_{\text{lattice}} =$$
 kJ/mol

Heat Capacity to Enthalpy

At constant pressure,

$$\Delta H_2^{\circ} = \Delta H_1^{\circ} + (T_2 - T_1) \Delta c_p \tag{11}$$

$$\Delta c_p = \sum nc_{p,m}(products) - \sum nc_{p,m}(reactants)$$

- First Law of Thermodynamics
- 2 Second Law of Thermodynamics
- 3 Thrid Law of Thermodynamics
- 4 Gibbs Free Energy

Entropy

- Spontaneous change: can occur without external influences.
- Entropy (S): measure of disorder. Disorder \uparrow , entropy \uparrow .

The second law of thermodynamics: The entropy of an **isolated** system increases in the course of any **spontaneous** change.

Entropy Change

In a reversible process,

$$\Delta S = \frac{q_{rev}}{T} \tag{12}$$

If pressure is constant (e.g. vaporization, fusion, etc.), $\Delta H = q$, so

$$\Delta S = \frac{\Delta H}{T}$$

For $\Delta S_{surrounding}$,

$$\Delta S_{sur} = \frac{-\Delta H}{T} \tag{13}$$

Reversible Process

For a change: state 1 to state 2, if we can find some ways to get state 2 back to state 1, the change is a **reversible process**.

Ideal Gas of in a Reversible Process

• Constant temperature & reversible process & ideal gases:

$$\Delta S = nR \ln \frac{V_f}{V_i} = nR \ln \frac{P_i}{P_f} \tag{14}$$

Hence, volume \uparrow , entropy \uparrow .

• Constant volume & constant c & reverse process & ideal gases:

$$\Delta S = c_V \ln \frac{T_f}{T_i} \tag{15}$$

• Constant volume & time-varying c & reverse process & ideal gases:

$$\Delta S = \int_{T_i}^{T_f} \frac{cdT}{T} \tag{16}$$

Trouton' Rule

Approximately, for any liquid converted to vapor, the entropy change:

$$\Delta S = 85J/(K \cdot mol) \tag{17}$$

Applying the equation $\Delta S = \frac{\Delta H}{T}$,

- $\Delta S_v ap = \frac{\Delta H_v ap}{T_c}$, T_b : boiling temperature.
- $\Delta S_f us = \frac{\Delta H_f us}{T_f}$, T_f : melting temperature.

Qualitively Compare Entropy

- 1. Gas>Liquid>Solid
- 2. More complex the molecule, more chaotic the substance is.
- 3. Heavier atom has more energy
- 4. Polar molecules have less entropy

where "more complex molecule" means "have more atoms".

Standard Entropy

$$\Delta S^{\circ} = \sum n\Delta S^{\circ}(products) - \sum n\Delta S^{\circ}(reactants)$$
 (18)

where n is the moles.

- 1 First Law of Thermodynamics
- 2 Second Law of Thermodynamics
- 3 Thrid Law of Thermodynamics
- 4 Gibbs Free Energy

Thrid Law of Thermodynamics

Content: The entropy of perfect crystal approaches 0 as the absolute temperature approaches 0.

Boltzmann Formula

$$S = k \ln W \tag{19}$$

- $k = \frac{R}{N_A} = 1.381 \times 10^{-23} J/K$
- W: microstates, the number of possible positions that atoms/molecules can be arranged.
- S: absolute entropy at any temperature, called "statistical entropy".

Example

With two dice, each numbered 1-6, there are two possible ways to roll a 3. Thus, for the outcome of 3 (a particular macrostate), there are 2 microstates. How many possible ways are there to roll a 4? number of ways to roll a 4: What is the entropy associated with an outcome of 4? S =J/K

- First Law of Thermodynamics
- 2 Second Law of Thermodynamics
- 3 Thrid Law of Thermodynamics
- 4 Gibbs Free Energy

Gibbs Free Energy

$$\Delta G = \Delta H_{system} - T \Delta S_{system} \tag{20}$$

- $\Delta G < 0$, reaction is spontaneous.
- $\Delta G = 0$, reaction is in equilibrium (no tendency to proceed in either direction).
- $\Delta G > 0$, reverse reaction is spontaneous.

Gibbs free energy of a reaction (similar to enthalpy and entropy):

$$\Delta G = \sum n\Delta G(products) - \sum n\Delta G(reactants)$$
 (21)

Maximum Non-expansion Work

$$w_{max} = -\Delta G \tag{22}$$

Non-expansion Work

Work without change of volume. For example, electric work.

End

 $\mathbf{Q\&A}$

