14.2 Outer measures

June 19, 2017

14-11

\diamond La mesure de Lebesgue sur \mathbb{R}^d est une outer measure

On suppose d>1 car la chose est déjà prouvée pour d=1. Soit alors $A\subseteq B$. Alors il est clair que tous les recouvrement de B sont des recoubrement de A. Par le même raisonnement que dans la preuve de **thm. 8.6**, on peut déduire $\lambda(A) \leq \lambda(B)$.

On a de même que $\emptyset \subseteq (-\frac{1}{n}, \frac{1}{n})^d$. Alors $\lambda(\emptyset) \le \lambda([-\frac{1}{n}, \frac{1}{n}]^d) \le (\frac{2}{n})^d$, qui est arbitrairement petit. Donc $\lambda(\emptyset) = 0$.

Pour la dernière partie de la preuve, on peut recopier mot à mot la démontration du **thm. 8.6** en imaginant que les I_i^n sont des boites ouvertes.

14-12

- 1. M un ensembles
- 2. $\mu: \mathcal{P}(M) \to [0, \infty]$ une outer measure
- \diamond Pour tout $S, T \subseteq M$, on a $\mu(T) \leq \mu(T \cap S) + \mu(T \cap S')$

Car on a que $T\subseteq (T\cap S)\cup (T\cap S')$. Par **def. 14.16**, on a $\mu(T)\leq \mu((T\cap S)\cup (T\cap S'))\leq \mu(T\cap S)+\mu(T\cap S')$ (la subadditivité du cas où la séquence est fini est triviale).

14-13

- 1. M un ensemble
- 2. $\mu: \mathcal{P}(M) \to [0, \infty]$ une outer measure
- $\diamond \mu(S) = 0$ alors S est μ -mesurable

Soit $T \subseteq M$. On a $\mu(T) \le \mu(T \cap S) + \mu(T \cap S') = \mu(T \cap S')$ par **prop. 14.21**, **def. 14.16**.

Or, $T \cap S' \subseteq T$. Donc $\mu(T \cap S') \leq \mu(T)$ par **def.** 14.16. Donc $\mu(T) = \mu(T \cap S') = \mu(T \cap S') + \mu(T \cap S)$.

14 - 14

- 1. M un ensemble
- 2. $\mu: \mathcal{P}(M) \to [0, \infty]$ une outer measure
- 3. $A, B \subseteq M$
- \diamond Si A, B sont μ -mesurables, alors $A \cap B$ l'est aussi.

Même preuve que lem. 9.8.

14 - 15

Une copie de la preuve de lem. 9.9.

14-16

- 1. M un ensemble
- 2. $\mu \mathcal{P}(M) \to [0, \infty]$ une outer measure
- 3. Σ_{μ} l'ensemble des ensembles μ -mesurables
- $\diamond (M, \Sigma_{\mu}, \mu)$ est un espace mesuré

Par prop. 14.22, $\emptyset \in \Sigma_{\mu}$.

Soit alors $S \in \Sigma_{\mu}$ et $T \subseteq M$. On a $\mu(T) = \mu(T \cap S) + \mu(T \cap S') = \mu(T \cap (S')') + \mu(T \cap S')$ et donc S' est μ -mesurable ie. $S' \in \Sigma_{\mu}$.

De plus, par **lem. 14.24**, on a que $\bigcup_{n=1}^{\infty} A_n \in \Sigma_{\mu}$ si $A_n \in \Sigma_{\mu}$.

Donc Σ_{μ} est une σ -algèbre. On a que μ est une outer measure sur certains sousensembles de M, mais on veut une mesure sur Σ_{μ} . On doit avoir l'additivité pour des ensembles disjoints.

Soit alors $\{A_n\}_{n=1}^{\infty} \subseteq \Sigma_{\mu}$ des ensembles disjoints. Par le **lem. 14.24**, on a

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu\left(A_n \cap \left(\bigcup_{i=1}^{\infty} A_i\right)\right) + \mu\left(\left(\bigcup_{n=1}^{\infty} A_n\right)' \cap \left(\bigcup_{n=1}^{\infty} A_n\right)\right)$$

=

$$\sum_{n=1}^{\infty} \mu \left(A_n \cap \left(\bigcup_{i=1}^{\infty} A_i \right) \right)$$

$$=$$
 < pour tout $n, A_n \subseteq \bigcup_{i=1}^{\infty} A_i >$

$$\sum_{n=1}^{\infty} \mu(A_n)$$

et donc on a l'additivité.

14-17

- 1. $d \leq 1$ et pour $i = 1, \dots, d$ on pose $a_i < b_i$ des nombres rationnelles
- 2. $D:=\prod_{i=1}^d (a_i,b_i)$ une boite dyadique ouverte de \mathbb{R}^d
- \diamond Pour tout $S \subseteq \mathbb{R}^d$ on a

$$\lambda(S) = \inf \left\{ \sum_{n=1}^{\infty} |D_n| : S \subseteq \bigcup_{n=1}^{\infty} D_n, \text{ où chaque } D_n \text{ est une boite dyadique ouverte de } \mathbb{R}^d \right\}$$

On montre par induction que, pour toutes boites ouvertes B il existe une boite ouverte dyadique D telle que $|D| - |B| < \delta$ pour $\delta > 0$.

Si d=1, la chose est évidente car, par ex. 1-29c, les nombres dyadiques sont denses dans \mathbb{R} .

On suppose la chose prouvée pour d quelconque. On pose $\delta > 0$ quelconque. On considère

$$\prod_{n=1}^{d+1} (b_n^* - a_n^*) - \prod_{n=1}^{d+1} (b_n - a_n)$$

$$(b_{d+1}^* - a_{d+1}^*) \prod_{n=1}^d (b_n^* - a_n^*) - \prod_{n=1}^{d+1} (b_n - a_n)$$

On pose $(b_{d+1}^* - a_{d+1}^*) - (b_{d+1} - a_{d+1}) \le \frac{\delta}{2\prod_{n=1}^d (b_n - a_n)}$ et on pose de plus $\delta^* := \frac{\delta}{2(b_{d+1}^* - a_{d+1}^*)}$. (hypothèse d'induction).

On peut de plus, toujours par **hypothèse d'induction**, poser $\prod_{n=1}^d (b_n^* - a_n^*) \leq$

$$\delta^* + \prod_{n=1}^d (b_n - a_n)$$
. On a donc

$$(b_{d+1}^* - a_{d+1}^*) \prod_{n=1}^d (b_n^* - a_n^*) - \prod_{n=1}^{d+1} (b_n - a_n)$$

 \leq

$$(b_{d+1}^* - a_{d+1}^*)\delta^* + (b_{d+1}^* - a_{d+1}^*) \prod_{n=1}^d (b_n - a_n) - (b_{d+1} - a_{d+1}) \prod_{n=1}^d (b_n - a_n)$$

=

$$(b_{d+1}^* - a_{d+1}^*)\delta^* + \left(\prod_{n=1}^d (b_n - a_n)\right) \left((b_{d+1}^* - a_{d+1}^*) - (b_{d+1} - a_{d+1})\right)$$

 \leq

$$\frac{\delta}{2} + \frac{\delta}{2} = \delta$$

Ainsi donc, pour tout $d \in \mathbb{N}$ et pour toutes boites ouvertes B il existe une boite ouverte dyadique D tel que $|D| - |B| < \delta$ où $\delta > 0$.

On a que tout recouvrement de boites dyadiques ouvertes est un recouvrement et donc l'infimum des recouvrements dyadiques est \geq à l'infimum des recouvrement de boites ouvertes.

Supposons alors que l'infimum est >. Alors il exste ϵ la distance entre les deux. Soit alors $\{B_n\}_{n=1}^{\infty}$ un recouvrement de boites ouvertes tel que $\lambda(S)$ – $\sum_{n=1}^{\infty} |B_n| < \frac{\epsilon}{2}$.

On veut construire un recouvrement de boites dyadique D_n tel que $\sum_{n=1}^{\infty} |D_n| - \sum_{n=1}^{\infty} |B_n| \le \frac{\epsilon}{2}$, car alors $|\lambda(S) - \sum_{n=1}^{\infty} |D_n|| < \epsilon = \lambda^*(S) - \lambda(S)$ où $\lambda^*(S)$ est l'infimum des recouvrements dyadiques. On aura alors $\sum_{n=1}^{\infty} |D_n| < \lambda^*(S)$, une contradiction.

Or, pour tout B_n , il existe D_n tel que $|D_n| - |B_n| \le \frac{\epsilon}{2^{n+1}}$. Alors on a $\sum_{n=1}^{\infty} |D_n| - |B_n| \le \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n+1}} = \frac{\epsilon}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\epsilon}{2}$.

14-18

- 1. $A, B \subseteq \mathbb{R}$
- $2. \ \lambda(A) = 0$

 $\diamond \lambda(A \times B) = 0$ où λ est la mesure de Lebesgue sur \mathbb{R}^2

On suppose d'abord que $\lambda(B) < \infty$. On pose $\{J_n\}_{n=1}^{\infty}$ tel que $B \subseteq \bigcup_{n=1}^{\infty} J_n$ et $\sum_{n=1}^{\infty} |J_n| - \lambda(B) < \epsilon^*$ pour un $\epsilon^* > 0$.

Soit alors $\epsilon > 0$. On pose $\{I_n\}_{n=1}^{\infty}$ tel que $A \subseteq \bigcup_{n=1}^{\infty}$ et $\sum_{n=1}^{\infty} |I_n| < \frac{\epsilon}{\lambda(B) + \epsilon^*}$.

Alors on a que $A \times B \subseteq \bigcup_{n=1}^{\infty} I_n \times \bigcup_{n=1}^{\infty} J_n = \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{\infty} I_n \times J_j = \bigcup_{n,j=1}^{\infty} I_n \times J_j$

et
$$\sum_{n,j=1}^{\infty} |I_n||J_j| \le \frac{\epsilon}{\lambda(B)+\epsilon^*} \sum_{j=1}^{\infty} |J_j| \le \epsilon$$
.

Alors l'infimum est arbitrairement proche de 0 et donc $\lambda(A \times B) = 0$.

On a donc que, pour tout $n \in \mathbb{N}$, on a $\lambda(A \times [-n, n]) = 0$. Alors $\lambda(\bigcup_{n=1}^{\infty} A \times [-n, n]) \leq \sum_{n=1}^{\infty} \lambda(A \times [-n, n]) = 0$. Or $\bigcup_{n=1}^{\infty} A \times [-n, n] = A \times \mathbb{R}$.

Or $A \times B \subseteq A \times \mathbb{R}$. Donc $\lambda(A \times B) = 0$ pour tout $B \subseteq \mathbb{R}$.

14-19

- 1. [a, b] un interval
- 2. $S \subseteq [a, b]$ on définit $J(S) := \inf\{\sum_{j=1}^{n} |I_j| : S \subseteq \bigcup_{j=1}^{n} I_j \text{ où } I_j \text{ des intervals ouverts}\}$ le Jordan content.

 \mathbf{a}

$$\diamond [c,d] \subseteq [a,b]$$
 on a $J([c,d]) = d-c$

Soit ϵ . Alors il existe $\{I_n\}_{n=1}^{\infty}$ tel que $[c,d] \subseteq \bigcup_{n=1}^{\infty} I_n$ et $\sum_{n=1}^{\infty} |I_n| - \lambda([c,d]) < \epsilon$. Par **Heine-Borel**, il existe $\{I_{n_j}\}_{j=1}^m$ une sous suite telle que $[c,d] \subseteq \bigcup_{j=1}^m I_{n_j} \subseteq \bigcup_{n=1}^{\infty} I_n$.

Alors
$$\lambda([c,d]) \leq \sum_{i=1}^{m} |I_{n_i}| \leq \sum_{n=1}^{\infty} |I_n|$$
 et donc $\sum_{i=1}^{m} |I_{n_i}| - \lambda([c,d]) \leq \epsilon$.

b)

♦ Le Jordan content n'est pas une outer measure

On pose
$$[a, b] = [0, 1]$$
. Par **ex. 9-7**, on a $J(\mathbb{Q} \cap [0, 1]) = J(\mathbb{Q}' \cap [0, 1]) = 1$.

Supposons que J était une outer measure. Alors $([0,1], \mathcal{P}([0,1]), J)$ serait un espace mesuré par **def. 14.7**, **exemple 14.2**.

Donc, par **prop. 14.11**, on a que $2 = J(\mathbb{Q} \cap [0,1]) + J(\mathbb{Q}' \cap [0,1]) = J(\mathbb{Q} \cap [0,1]) \cup \mathbb{Q}' \cap [0,1]) = J([0,1]) = 1$, une contradiction.

Donc J n'est pas une outer measure.

c)

1.
$$J_i(S) := \sup\{\sum_{j=1}^n |b_j - a_j| : S \supseteq \bigcup_{j=1}^n [a_j, b_j], a_1 \le b_1 \le a_2 \le b_2 \le \cdots \le a_n \le b_n\}$$
 le inner Jordan content de $S \subseteq [a, b]$.

$$\diamond$$
 Pour $[c,d] \subseteq [a,b]$, on a $J_i([c,d]) = d-c$

Clairement, $|d-c| \leq J_i([c,d])$.

Aussi, je dis $b_i = a_{i+1}$.

Car sinon, on a $c = a_1 \le b_1 \le \cdots \le a_i \le b_i < a_{i+1} \le \cdots \le b_n = d$. Alors il existe $x \in [c,d]$ tel que $x \notin \bigcup_{j=1}^n [a_j,b_j]$ si $x \in (b_i,a_{i+1})$.

Donc $b_i = a_{i+1}$.

Mais alors $\sum_{j=1}^{n} |b_j - a_j| = (b_1 - a_1) + (b_2 - a_2) + \cdots + (b_n - a_n) = (a_2 - a_1) + (a_3 - a_2) + \cdots + (b_n - a_n) = b_n - a_1 = d - c$. Par conséquent, toutes les partitions de cette forme donne d - c.

d)

♦ Le inner Jordan content n'est pas une outer measure

Soit $S, S' \subseteq [a, b]$ dense dans [a, b] et $\{[a_i, b_i]\}^n$ des intervals tq $a_1 \leq b_1 \leq a_2, ..., \leq b_n$ et $\bigcup^n [a_i, b_i] \subseteq [a, b] \cap S$.

Soit j tq $a_j < b_j$. Puisque S' est dense dans [a,b], il existe $q \in S' \cap [a_j,b_j]$ par la densité de S'. Mais alors $q \notin [a,b] \cap S$ et donc $\bigcup^n [a_i,b_i] \not\subseteq [a,b] \cap S$, une contradiction.

Donc pour tout j, $a_j = b_j$. Mais alors $\sum^n b_j - a_j = 0$ pour tout $\{[a_i, b_j]\}^n$ tq $\bigcup^n [a_i, b_j] \in [a, b] \cap S$. On obtient un résultat similaire pour $[a, b] \cap S'$.

Or,
$$J_i([a,b]) = b-a$$
 par **ex.** 14-9 (d). Mais $J_i([a,b]) = J_i([a,b] \cap S \cup [a,b] \cap S') > J_i([a,b] \cap S) + J_i([a,b] \cap S') = 0$.

Or, \mathbb{Q} , \mathbb{Q}' sont denses dans [a, b].

e)

- 1. Soit une **algèbre** un ensemble d'ensembles tel que les deux premières propriétés d'une σ -algèbre sont satisfaites mais où seule la fermeture sous l'union finie d'ensembles s'applique plutôt que l'union dénombrable
- 2. $S \subseteq \mathbb{R}$ jordan mesurable ssi $J(S) = J_i(S)$

\diamond $\mathcal{J}_{[a,b]}$ l'ensemble des sous-ensembles jordan mesurables de [a,b] est une algèbre

On doit montrer que si S est jordan mesurable, alors $J(S') = J_i(S')$. On voit que si pour tout S, $J(S) + J_i(S') = b - a$, alors $J(S) = J_i(S) \Rightarrow J(S') = J_i(S')$. Car alors $J(S) + J_i(S') = J(S') + J_i(S)$ et en substituant J(S) par $J_i(S)$ on obtient l'égalité voulue.

On doit donc montrer que $J(S) + J_i(S') = b - a$. Plus précisément, on

montre

$$\forall \epsilon \forall [a_i,b_i] \text{ tq } \bigcup_{i=1}^n [a_i,b_i] \subseteq S' \text{ alors } \exists \{I_j\}_{j=1}^m \text{ tq } S \subseteq \bigcup_{j=1}^m I_j \text{ tq }$$
$$\sum_{i=1}^n b_i - a_i + \sum_{j=1}^m |I_j| = b - a + \epsilon$$

Soit ϵ . Soit $[a_i, b_i]$ tq $\bigcup_{i=1}^n \subseteq S'$. On pose alors $I_1 := (a - \frac{\epsilon}{2}, a_1), I_2 := (b_1, a_2), \dots, I_{n+1} := (b_n, b + \frac{\epsilon}{2}).$

Par contruction, on a que $S \subseteq \bigcup_{i=1}^{n+1} I_i$. ($\langle \mathbf{s.d.} \rangle$).

$$\sum_{i=1}^{n} b_{i} - a_{i} + \sum_{i=2}^{n} a_{i} - b_{i-1} + a_{1} - (a - \frac{\epsilon}{2}) + (b + \frac{\epsilon}{2}) - b_{n}$$

$$= \left(\sum_{i=2}^{n} b_{i} - a_{i} + a_{i} - b_{i-1}\right) + a_{1} - (a - \frac{\epsilon}{2}) + (b + \frac{\epsilon}{2}) - b_{n} + b_{1} - a_{1}$$

$$= \left(\sum_{i=2}^{n} b_{i} - b_{i-1}\right) + (b - a) - b_{n} + b_{1} + \epsilon$$

$$= ((b_2 - b_1) + (b_3 - b_2) + (b_4 - b_3) + \dots + (b_n - b_{n-1})) + (b - a) + \epsilon - b_n + b_1$$

$$= (b_n - b_1) + (b - a) + \epsilon - b_n + b_1$$

 $(b-a)+\epsilon$

Soit alors $J(S) + J_i(S') \neq b - a$. Alors il existe ϵ tel que pour tout $[a_i, b_i]$ et tout $\{I_j\}$, $\sum b_i - a_i + \sum |I_j| - (b - a) > \epsilon$. Mais cela est impossible par ce qui fût montré ci-haut. Donc $J(S) + J_i(S') = b - a$.

Mais alors $J(S) = J_i(S) \Rightarrow J(S') = J_i(S')$.

On montre également que \emptyset est jordan mesurable. On a que $J([a,b]) = J_i([a,b])$ par **ex. 14-19 c) ex. 14-19 a)**. Or, par ce qui fût montré ci-haut, on a que $[a,b]' = \emptyset$ est jordan mesurable.

On montre maintenant que pour tout $\{A_i\}_{i=1}^n$ jordan mesurable, alors $\bigcup_{i=1}^n A_i$ est jordan mesurable.

Soit $\{\omega_i\}^n$ tq $\omega_i := \bigcup_{j=1}^m I_j$ des ouverts et $A_i \subseteq \omega_i$ et soit $\{\alpha_i\}^n$ tq $\alpha_i := \bigcup_{j=1}^k [a_j, b_j]$ et $\alpha_i \subseteq A_i$ où, pour chaque α_i , $a \le a_1 \le b_1 \le a_2 \le ... \le a_k \le b_k < b$. On pose de même $|\omega_i| := \sum_{j=1}^m |I_j|$ et $|\alpha_i| = \sum_{j=1}^k b_j - a_j$.

b. On pose de même $|\omega_i| := \sum_{j=1}^m |I_j|$ et $|\alpha_i| = \sum_{j=1}^k b_j - a_j$. Supposons alors que $J(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n |\omega_i|$ et $\sum_{i=1}^n |\alpha_i| \leq J_i(\bigcup_{i=i}^n A_i)$ pour tout $\{\omega_i\}^n$, $\{\alpha_i\}^n$. On a alors que $J(\bigcup_{i=1}^n A_i) - J_i(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n |\omega_i| - |\alpha_i|$.

On montre alors que, pour tout $\epsilon > 0$, il existe $\{\omega_i\}^n$ et $\{\alpha_i\}^n$ tel que $\sum_{i=1}^n |\omega_i| - |\alpha_i| < \epsilon$.

Soit A_n quelconque. Puisque $J(A_n) = J_i(A_n)$ par hypothèse, on a qu'il existe $\omega_i = \{I_j\}^m$, $\alpha_i = \{[a_j,b_j]\}^k$ tel que $\sum_{j=1}^m |I_j| - \sum_{j=1}^k b_j - a_j < \frac{\epsilon}{n}$. Alors, pour chaque A_i , on pose ω_i , α_i tel que $|\omega_i| - |\alpha_i| \le \frac{\epsilon}{n}$. On a donc que $J(\bigcup_{i=1}^n A_i) - J_i(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n |\omega_i| - |\alpha_i| \le n\frac{\epsilon}{n} = \epsilon$. Il ne reste donc plus qu'à montrer que $J(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n |\omega_i|$ et $\{\alpha_i\}^n$

 $J_i(\bigcup_{i=1}^n A_i)$ pour tout $\{\omega_i\}^n$ et $\{\alpha_i\}^n$. Soit $\{\omega_i\}^n$. Puisque $A_i \subseteq \omega_i$ par définition, on a que $\bigcup_{i=1}^n A_i \subseteq \bigcup_{i=1}^n \omega_i$. Or, $\bigcup_{i=1}^n \omega_i$ est une union d'intervals ouverts (à un ré-indexage près). Donc

$$\begin{split} \sum_{i=1}^n |\omega_i| &\in \left\{ \sum_{j=1}^m |I_j| : \bigcup_{i=1}^n A_n \subseteq \bigcup_{j=1}^m I_j \text{ tq } I_j \text{ sont des intervals ouverts} \right\} \\ \Rightarrow \\ \sum_{i=1}^n \omega_i &\geq J \left(\bigcup_{i=1}^n A_i \right) \end{split}$$

$$\sum_{i=1}^{n} \omega_i \ge J\left(\bigcup_{i=1}^{n} A_i\right)$$