文本挖掘技术(2012春)

第八章:

关联分析技术

杨建武

北京大学计算机科学技术研究所

Email:yangjw@pku.edu.cn

- > 关联分析: 关联规则挖掘
- > 关联规则挖掘的典型案例: 购物篮问题
- ▶ 在商场中拥有大量的商品(项目),如: 牛奶、面包等,客户将所购买的商品放 入到自己的购物篮中。

A Example

- 》通过发现顾客放入购物篮中的不同商品之间的联 系,分析顾客的购买习惯
 - ❖哪些物品经常被顾客购买?
 - ❖同一次购买中,哪些商品经常会被一起购买?
 - ◆一般用户的购买过程中是否存在一定的购买时间序列?
- > 具体应用: 购物篮分析、交叉销售、分类设计等
 - ❖商品货架设计: 更加适合客户的购物路径
 - 两种策略:
 - 商品放近,增加销量
 - 商品放远, 增加其他商品的销量

- 关联规则挖掘:简单的说,就是发现大量数据中项集之间有趣的关联
 - ❖在交易数据、关系数据或其他信息载体中, 查找存在于项目集合或对象集合之间的频繁 模式、关联、相关性或因果结构。

关联规则挖掘形式化定义:

设 $I = \{i_1, i_2, ..., i_m\}$ 是项(item)的集合。

- > 若干项的集合,称为项集(Item Sets).
- 》记D为交易(transaction, 事务) T的集合, 其中, 交易T是项的集合, 并且T⊆I。
- > 对应每一个交易有唯一的标识,如交易号,记作TID。
- > 设X是一个I中项的集合,如果X⊆T,那么称交易T包含X。
- > 寻找: 有趣的关联规则(强规则).

▶ 所有形如 $X \rightarrow Y$ 蕴涵式的称为关联规则, 这里 $X \subset I$, $Y \subset I$, 并且 $X \cap Y = \Phi$ 。

关联规则是有趣的,如果它满足最小支持 度阈值与最小置信度阈值,并称之为强规 则

为了描述关联规则的有用性和确定性

- > 关联规则的支持度
 - ❖ 如果交易数据库D中s次交易包含A∪B,则称规则A→B 在事务集D上的支持度为s。
 - \bullet Support (A \Rightarrow B) =P (A \cup B)
- > 关联规则的置信度
 - ❖ 如果交易数据库D中,包含A的交易中有c(%)的交易同时也包含B,称规则的置信度为c。(条件概率)
 - ❖ Confidence (A⇒B) =P(B|A) =support ($\{A\} \cup \{B\}$)/support ($\{A\}$)

(注: 这里的∪是指在交易中同时出现{A}和{B})

- - ❖ 支持度, s, 一次交易中包含{A、 C}的可能性
 - ❖置信度, c, 包含{A}的交易中也包含{C}的条件概率

交易ID	购买的商品
10	A,B,C
20	A,C
30	A,D
40	B,E,F

Tra	ansaction-id	Items bought
	10	A, B, C
	20	A, C
	30	A, D
	40	B, E, F

Min. support 50% Min. confidence 50%

Frequent pattern		Support
{A}	3	75%
{B}	2	50%
{C}	2	50%
{A, C}	2	50%

\bullet rule $A \Rightarrow C$:

- support = support($\{A\} \cup \{C\}$) = 50%
- confidence = support($\{A\} \cup \{C\}$)/support($\{A\}$) = 66.7%
- $rac{\bullet}{\circ}$ rule $C \Rightarrow A :$

挖掘关联规则方法

频繁项集

- > 项集(Itemset): a set of items
 - ❖ 例如 acm={a, c, m}, sup=3
- > 频繁项集(高频项集)
 - ❖ 如果项集满足最小支持度,则称之为频繁项集
 - ❖ 如果 min_sup = 3,则acm 是频繁项集
- > 如果频繁项集中包含 K个项,则称为频繁K 一项集

TID	Items bought
100	f, a, c, d, g, I, m, p
200	a, b, c, f, l, m, o
300	b, f, h, j, o
400	b, c, k, s, p
500	a, f, c, e, l, p, m, n ₁₂

关联规则挖掘

- > 关联规则的挖掘步骤
 - *发现频繁项集
 - ❖由频繁项集生成满足最小支持度和最小置信度的关联规则
- > 发现频繁项集直接的方法
 - ❖产生所有可能的项集,并测试它们的支持度
 - **❖100个项 → 2¹⁰⁰-1** 可能项集

Agrawal & Srikant 1994, Mannila, et al. 1994

- > Apriori性质: 一个频繁项集中的任一非空子集也 应是频繁项集。
 - ◆ 如果一项交易包含 {牛奶,面包,汽水},那么它一定 包含 {牛奶,面包}
 - ❖ {牛奶,面包,汽水}是频繁的 → {牛奶,面包}一定 也是频繁的
- > 即: 任何非频繁项集的超集一定也是非频繁的
 - ❖ 非频繁项集的超集可以不用进行测试
 - ❖ 许多项之间的组合可以去掉(不满足频繁条件)

- > 寻找最大频繁集
- > 逐层搜索的迭代方法。
- ▶ 用 k一项集探求 (k+1)-项集。
- > 具体地:
 - ❖首先找出频繁1-项集,该集合记为L1;
 - ❖用L₁找出频繁2-项集的集合L₂;
 - ❖如此继续下去,直到找到最大频繁项集
- > 该方法,主要由连接和剪枝两步构成。

- $\succ C_k$: Candidate itemset of size k
- $ightharpoonup L_k$: Frequent itemset of size k
- $ightharpoonup L_1 = \{ \text{frequent items} \};$
- \triangleright for $(k = 1; L_k !=\varnothing; k++)$ do
 - $C_{k+1} =$ candidates generated from $L_k;$
 - \diamond for each transaction t in database do increment the count of all candidates in C_{k+1} that are contained in t
 - L_{k+1} = candidates in C_{k+1} with min_support
- \triangleright return $\cup_k L_k$;

- > 产生候选集:
- $ightharpoonup L_3 = \{abc, abd, acd, ace, bcd\}$
- > Self-joining: L_3*L_3
 - \diamond abcd \leftarrow abc * abd
 - ***** *acde* **←** *acd* * *ace*
- > Pruning:
 - \bullet For each itemset c in C_k do
 - For each (k-1)-subsets s of c do if (s is not in $L_{k-1})$ then delete c from C_k
 - \diamond acde is removed because ade is not in L_3
- $\succ C_4 = \{abcd\}$

Database TDB

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	B, E

 C_{I} $\xrightarrow{1^{\text{st}} \text{ scan}}$

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3
	{A} {B} {C}

 $\begin{array}{c|ccccc} C_2 & \textbf{Itemset} & \textbf{sup} \\ & \{A, B\} & 1 \\ & \{A, C\} & 2 \\ & \{A, E\} & 1 \\ & \{B, C\} & 2 \\ & \{B, E\} & 3 \\ & \{C, E\} & 2 \end{array}$

 $2^{nd}\; scan$

 C_2

 L_1

Itemset		
$\{A, B\}$		
{A, C}		
$\{A, E\}$		
{B, C}		
$\{B, E\}$		
{C, E}		

Self-joining Pruning Itemset {B, C, E}

 $3^{\text{rd}} \text{ scan}$

Itemset	sup
$\{B, C, E\}$	2

- > Apriori算法的核心:
 - ❖ 用频繁的(k-1)-项集生成候选的频繁 k- 项集
 - ❖ 用数据库扫描和模式匹配计算候选集的支持度
- > Apriori 的瓶颈: candidate-generation-and-test
 - ❖ 巨大的候选集:
 - 104 个频繁1-项集要生成 107 个候选 2-项集
 - 要找尺寸为100的频繁模式,如 $\{a_1, a_2, ..., a_{100}\}$,你必须先产生 $2^{100} \approx 10^{30}$ 个候选集
 - ❖ 多次扫描数据库:
 - 如果最长的模式是n的话,则需要 (n+1) 次数据库扫描
- > Can we avoid candidate generation?

频繁模式增长算法

- > Mining Frequent Patterns Without Candidate Generation
- > 模式增长的特征
 - ❖令α为DB的一个频繁集,B为α的条件模式库 (一种特殊类型的投影数据库),
 - * β 是 B 中的一个项,要使α∪ β 是 DB 中的频繁集,当且仅当 β 是 B 的频繁项.
- > 例: "abcdef"是频繁集,当且仅当
 - **❖** "abcde"是频繁集,且
 - ❖ "f" 在包含 "abcde" 的事务中是频繁的。
 - ❖ (注: 支持度按个数算,而不是百分比)

频繁模式增长算法

- > Frequent-Pattern Growth (FP-增长)
 - ❖基于FP-tree (频繁模式树)
 - ❖将提供频繁集的数据库压缩到一棵FP-tree, 但仍保留项集关联信息;
 - ❖将压缩后的数据分成一组条件模式库(一种特殊类型的投影数据库),每个关联到一个频繁项集;
 - *分别挖掘每个条件模式库

构造FP-tree

<u>TID</u>	Items bought	(<u>0</u>
100	$\{f, a, c, d, g, i, m, a, c, d, g, i, m, a, d, g, i, m, g, d, g, i, m, g, d, g, i, m, g, g,$	p }
200	$\{a, b, c, f, l, m, o\}$	}
300	$\{b, f, h, j, o\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, \overline{l}, p, m,$	<i>n</i> }

步骤:

- 1. 扫描数据库一次, 得到频繁1-项集
- 2. 把项按支持度递减 排序
- 3. 再一次扫描数据库 ,建立FP-tree

频繁模式增长算法

- > 基本思想(分而治之)
 - ❖用FP-tree递归增长频繁集
- > 方法
 - ❖对每个项,生成它的条件模式库
 - ❖用条件模式库构造对应的条件FP-tree
 - ❖对每个新生成的条件FP-tree, 重复这个步骤
 - ❖直到结果FP-tree为空,或只含唯一的一个路 径(此路径的每个子路径对应的项集都是频繁集)

步骤1:从FP-tree到条件模式库

- > 从FP-tree的头表开始
- > 按照每个频繁项的连接遍历 FP-tree
- 列出能够到达此项的所有前缀路径,得到条件模式库

条件模式库

<u>item</u>	cond. pattern base
\boldsymbol{c}	<i>f</i> :3
a	fc:3
b	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

FP-tree支持条件模式库构造

- > 节点链接
 - ❖ 任何包含 a_i ,的可能频繁集,都可以从FP-tree 头表中的 a_i 出发,沿着 a_i 的节点链接得到
- > 前缀路径
 - ❖要计算路径P中包含节点 a_i 的频繁集,只要考察到达 a_i 的路径前缀即可,且其支持度等于节点 a_i 的支持度

步骤2: 建立条件 FP-tree

- > 对每个条件模式库
 - * 计算库中每个项的支持度
 - ❖用模式库中的频繁项建立该项的条件FP-tree

通过建立条件模式库得到频繁集

项	条件模式库	条件FP-tree
p	{(fcam:2), (cb:1)}	$\{(c:3)\} p$
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
a	{(fc:3)}	$\{(f:3, c:3)\} a$
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

第3步: 递归挖掘条件FP-tree


```
{}
f:3
-
c:3
-
a:3
m-条件FP-tree
```

cm-条件FP-tree

cam-条件FP-tree

特例: FP-tree 中的唯一前缀路径

- ► 假定一个(条件) FP-tree T 有一个共享唯一前缀路径 P
- 段 ▶ 挖掘可分解为如下两个步骤

☆分别计算这两个部分的结果

FP-tree 结构的好处

- > 完备:
 - ❖不会打破交易中的任何模式
 - ❖包含了序列模式挖掘所需的全部信息
- > 紧密
 - ❖去除不相关信息—不包含非频繁项
 - ❖ 支持度降序排列: 支持度高的项在FP-tree中 共享的机会也高
 - ❖决不会比原数据库大(如果不计算树节点的额外开销)

性能比较

- > 性能研究显示
 - ❖FP-growth 比Apriori快一个数量级。
- ▶原因
 - ❖不生成候选集,不用候选测试;
 - ❖使用紧缩的数据结构;
 - ❖避免重复数据库扫描;
 - ❖基本操作是计数和建立 FP-tree 树。

FP-growth vs. Apriori: 相对于支持度的扩展性

挖掘多层关联规则

- > 项通常具有层次
 - ❖ 牛奶⇒面包[20%, 60%].
 - ❖ 酸奶⇒黄面包[6%,50%]

挖掘多层关联规则

- > 自上而下,深度优先的方法:
 - ◆ 先找高层的"强"规则:牛奶⇒面包[20%,60%].
 - ❖ 再找他们底层的"弱"规则: 酸奶⇒黄面包[6%,50%].
- 》多层关联规则的变种: 层次交叉的关联规则:
 - •酸奶⇒北大面包房黄面包

基于关联规则的文本分类

- > 文档中的每个单词看作是一个项 (Item)
- >每篇文档看作是一个事务(Transaction), 即:项的集合
- 》在不同文档中频繁项集(文档集的单词共同出现,简称"共现")用于产生分类的规则

小结

- > 关联规则概念
- > 关联分析的基本方法
- > 基于关联规则的文本分类

Any Question?