Solving the Cahn-Hilliard Equation with Finite Difference and Spectral Methods

Cristian Lacey, Amlan Sinha, Sijie Tong APC 523 May 14, 2019

Background of Cahn-Hilliard Equation

Cahn-Hilliard Equation

$$\frac{\partial c}{\partial t} = D\nabla^2(c^3 - c - \gamma\nabla^2c)$$

Ginzburg-Landau Free Energy Functional

$$f = \frac{1}{2}\gamma |\nabla c|^2 + \frac{1}{4}(c^2 - 1)^2$$

Time Evolution of order parameter $c(\vec{x})$

$$\frac{\partial c}{\partial t} = D\nabla^2 \frac{\delta f}{\delta c}$$

J. Zhou et al. Journal of Micromechanics and Molecular Physics. (2016)

Project Goals

- Finite Differences Method
 - Spatial Method
 - 2nd Order Central Difference
 - 4th Order Central Difference
 - Temporal Method
 - 1st Order Explicit Euler
 - 4th Order Explicit Runge-Kutta
 - 1st Order Implicit Euler
 - 2nd Order Implicit Crank-Nicolson

Spectral Method

- 1st Order Explicit
- o 1st Order Semi-Implicit
- 4th Order Explicit Runge-Kutta

Problem Parameters

Spatial Domain: [-25,25]

Temporal Domain: [0,60]

Constants: D = 1, γ = 1

Boundary conditions: Periodic

Grid Size: 25, 50, 75, 100

Initial Conditions: Bivariate Normal Distribution

Finite Differences

Laplacian

$$\nabla^2_{N^2 \times N^2} = I_{N \times N} \otimes D^2_{N \times N} + D^2_{N \times N} \otimes I_{N \times N}$$

Second Order Central Difference

$$\frac{\partial^2 c[i][j]}{\partial x^2} \approx \frac{c[i][j+1] - 2c[i][j] + c[i][j-1]}{dx^2}$$

$$D^{2} = \frac{1}{dx^{2}} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0 & 1\\ 1 & -2 & 1 & 0 & \dots & 0 & 0\\ 0 & 1 & -2 & 1 & \dots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\ 0 & 0 & \dots & 1 & -2 & 1 & 0\\ 0 & 0 & \dots & 0 & 1 & -2 & 1\\ 1 & 0 & \dots & 0 & 0 & 1 & -2 \end{bmatrix}$$

Fourth Order Central Difference

$$\frac{\partial^2 c[i][j]}{\partial x^2} \approx \frac{-c[i][j+2] + 16c[i][j+1] - 30c[i][j] + 16c[i][j-1] - c[i][j-2]}{12dx^2}$$

$$D^2 = \frac{1}{dx^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots & 0 & 1 \\ 1 & -2 & 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -2 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -2 & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 & -2 & 1 \\ 1 & 0 & \dots & 0 & 0 & 1 & -2 \end{bmatrix}$$

$$D^2 = \frac{1}{12dx^2} \begin{bmatrix} -30 & 16 & -1 & 0 & \dots & -1 & 16 \\ 16 & -30 & 16 & -1 & \dots & 0 & -1 \\ -1 & 16 & -30 & 16 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 16 & -30 & 16 & -1 \\ -1 & 0 & \dots & -1 & 16 & -30 & 16 \\ 16 & -1 & \dots & 0 & -1 & 16 & -30 \end{bmatrix}$$

Temporal Schemes - Explicit Methods

$$\frac{\partial c}{\partial t} = \nabla^2 (c^3 - c - \nabla^2 c)$$

First Order Forward Euler

$$\frac{c^{k+1} - c^k}{dt} = \nabla^2((c^k)^3 - (c^k) - \nabla^2(c^k))$$

$$c^{k+1} = c^k + dt \nabla^2((c^k)^3 - (c^k) - \nabla^2(c^k))$$

Fourth Order Runge-Kutta

$$k_{1} = dt f(c^{k})$$

$$k_{2} = dt f(c^{k} + \frac{k_{1}}{2})$$

$$k_{3} = dt f(c^{k} + \frac{k_{2}}{2})$$

$$k_{4} = dt f(c^{k} + k_{3})$$

$$c^{k+1} = c^{k} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Temporal Schemes - Implicit Methods

$$\frac{\partial c}{\partial t} = \nabla^2 (c^3 - c - \nabla^2 c)$$

First Order Backward Euler

Second Order Crank-Nicolson

$$\frac{c^{k+1}-c^k}{dt} = \nabla^2((c^{k+1})^3 - (c^{k+1}) - \nabla^2(c^{k+1})) \qquad \qquad \frac{c^{k+1}-c^k}{dt} = \frac{1}{2}\nabla^2((c^k)^3 - (c^k) - \nabla^2(c^k)) + \frac{1}{2}\nabla^2((c^{k+1})^3 - (c^{k+1}) - \nabla^2(c^{k+1})) \\ \underbrace{[I + dt\nabla^2 + dt\nabla^2\nabla^2]}_{A} c^{k+1} = \underbrace{c^k + dt\nabla^2(c^{k+1})^3}_{b} \qquad \underbrace{[I + \frac{dt}{2}\nabla^2 + \frac{dt}{2}\nabla^2\nabla^2]}_{A} c^{k+1} = \underbrace{c^k + \frac{dt}{2}\nabla^2(c^{k+1})^3 + \frac{dt}{2}\nabla^2((c^k)^3 - (c^k) - \nabla^2(c^k))}_{b}$$

Spectral Methods

Cahn-Hilliard Equation in Fourier Space

$$\frac{\partial \tilde{c}}{\partial t} = -k^2(\tilde{g} + k^2\tilde{c})$$

$$g = c^3 - c$$

First Order Forward Euler

$$\frac{\tilde{c}^{j+1} - \tilde{c}^j}{dt} = -k^2(\tilde{g}^j + k^2\tilde{c}^j)$$

$$\tilde{c}^{j+1} = \tilde{c}^j - dtk^2(\tilde{g}^j + k^2\tilde{c}^j)$$

Fourth Order Runge-Kutta

$$f(\tilde{g}^j, \tilde{c}^j) = -k^2(\tilde{g}^j + k^2 \tilde{c}^j)$$

$$d_1 = dt f(\tilde{g}^j, \tilde{c}^j)$$

$$d_2 = dt f(\tilde{g}_1^{j+1/2}, \tilde{c}^j + d_1/2)$$

$$d_3 = dt f(\tilde{g}_2^{j+1/2}, \tilde{c}^j + d_2/2)$$

$$d_4 = dt f(\tilde{g}_1^{j+1}, \tilde{c}^j + d_3)$$

$$\tilde{c}^{j+1} = \tilde{c}^j + \frac{1}{6}(d_1 + 2d_2 + 2d_3 + d_4)$$

First Order Semi-implicit

$$\frac{\tilde{c}^{j+1} - \tilde{c}^j}{dt} = -k^2(\tilde{g}^j + k^2\tilde{c}^{j+1})$$

$$\tilde{c}^{j+1} = \frac{\tilde{c}^j - dtk^2\tilde{g}^j}{1 + k^4dt}$$

Comparison of Central Difference Methods

Spatial Method (with 1st Order Forward Euler)	Runtimes (s)
2 nd Order Central Difference	80.86
4 th Order Central Difference	99.05
Spatial Method (with 4 th Order Explicit Runge-Kutta)	Runtime (s)
2 nd Order Central Difference	208.45
4 th Order Central Difference	246.97

Comparison of Explicit/Implicit Time Methods

Temporal Methods (with 4 th Order Central Difference)	dt _{max} (s)	Runtimes (s)
1 st Order Explicit Euler	0.001	89.14
4 th Order Explicit Runge-Kutta	0.001	232.44
1 st Order Implicit Euler	0.1	794.64
2 nd Order Crank Nicolson	0.5	179.08

Linear Cahn-Hilliard Equation

$$\frac{\partial c}{\partial t} = \nabla^2(-c - \nabla^2 c)$$

Integration Scheme	dt (s)	Runtime (s)
First Order Backward Euler	1	10.01
Second Order Crank Nicolson	2	7.29

Comparison of Explicit Methods

Comparison of Finite Differences and Spectral

dt = 0.0004s Temporal method: 4th order Runge-Kutta

Number of grid points in one direction (N)	Runtime of 4 th order Central Difference (s)	Runtime of Spectral Method (s)
25	32.55	87.16
40	54.72	119.91
50	73.50	146.53
100	233.98	381.69

Metric for accuracy: 4th order Central Difference with N=200, dt =0.00008s

Optimal Method with Random Initial Conditions

Simulated phase separation using random initial fluctuations bounded by 0.05, spectral in space, RK4 in time, on a 100×100 grid for L = 50, T = 60. Color represents phase concentration. x and y values correspond to jth and ith entries in c[i][j] matrix, respectively.

Summary of Results

- 4CD > 2CD
- Explicit methods > implicit methods for Cahn-Hilliard
- Implicit methods > explicit methods for Linear Cahn-Hilliard
- Constructed an estimate for the 'truth' with a conservative bound on the error
- Spectral methods > finite differences for Cahn-Hilliard with periodic BCs