Regressão linear múltipla

Atsler Luana Lehun Lidiany Doreto Cavalcanti ► É uma extensão da regressão linear simples → usada para prever uma variável resposta (y) com base em várias variáveis preditoras distintas (x)

- Os valores de b → são coeficientes da regressão que mostram a relação entre o Y e o X correspondente
- e → erro

Calculados a partir dos resíduos

Reta de ajuste x plano de ajuste

- Assim como a regressão linear simples, o ajuste do modelo da regressão linear múltipla também é calculado a partir do método dos mínimos quadrados
 - Ao invés de uma reta que se ajusta à duas variáveis teremos um plano

O plano também é calculado para que minimize a proporção de resíduos não explicada pela relação entre as variáveis

Os resíduos são calculados a distancia vertical de cada dado até o plano predito

- Assim como a regressão linear simples teremos:
 - Estimativa dos parâmetros do modelo pelo **método dos mínimos** quadrados
 - $ightharpoonup R^2$
 - Estatística F para testar a significância do modelo geral
 - ► As variâncias do erro
 - ► Intervalo de confiança
 - ► Teste de hipóteses para cada um dos coeficientes (b1,b2...)

Pressupostos

- Linearidade
- ► Normalidade (Shapiro-Wilk do modelo)
- ► Homocedasticidade (inspeção visual dos resíduos)
- Multicolinearidade

Multicolinearidade

Quando duas ou mais variáveis preditoras são correlacionadas entre si

- Qual o problema?
 - Quando acontece correlação entre as variáveis dificulta a separação das contribuições de cada variável para a variável resposta
 - ► Matematicamente → as estimativas dos mínimos quadrados ficam instáveis e difíceis de calcular

O que fazer então?

► Testes para verificar as variáveis correlacionadas e retirá-las

Escolher de acordo com critérios ecológicos

Combinar matematicamente um conjunto de variáveis preditoras correlacionadas em um número menor de variáveis usando métodos multivariados (eixos da PCA)

Testes no R para multicolinearidade

- VIF (fator de inflação de variação) → mede quanto a variação de um coeficiente de regressão é inflada devido à multicolinearidade no modelo
 - ▶ O menor valor é 1 (ausência de multicolinearidade)
 - ▶ Regra geral: um VIF maior que 5 ou 10, tirar a variável
- ►Teste de correlação
- ► Visualização gráfica

Métodos de seleção de modelos para regressão múltipla

O que fazer então?

O critério de informação de Akaike (AIC) pode ser uma saída para seleção de modelos!

► AIC → Uma medida do poder explicativo de um modelo estatístico que considera o número de parâmetros do modelo

 ▶ Critério de parcimônia → menor número de variáveis que tem o mesmo poder se explicação

O que fazer então?

 ► AIC → quanto maior o AIC, a inclusão/exclusão da co-variável não melhora a qualidade do modelo

► Vamos sempre considerar os modelos que são significativos (p<0,05) e com menor valor de AIC (delta AIC <2)

Exemplo de regressão linear múltipla

- Instalar o pacote "datarium" do R
- Vamos usar a planilha Marketing → contém os gastos com mídias para cada rede social

1 276.12 45.36 83.04 26.52 2 53.40 47.16 54.12 12.48 3 20.64 55.08 83.16 11.16 4 181.80 49.56 70.20 22.20 5 216.96 12.96 70.08 15.48 6 10.44 58.68 90.00 8.64
3 20.64 55.08 83.16 11.16 4 181.80 49.56 70.20 22.20 5 216.96 12.96 70.08 15.48
4 181.80 49.56 70.20 22.20 5 216.96 12.96 70.08 15.48
5 216.96 12.96 70.08 15.48
6 10.44 58.68 90.00 8.64
7 69.00 39.36 28.20 14.16
8 144.24 23.52 13.92 15.84
9 10.32 2.52 1.20 5.76
10 239.76 3.12 25.44 12.72

Nós precisamos construir um modelo assim:

sales = b0 + b1*youtube + b2*facebook + b3*newspaper

*	youtube [‡]	facebook [‡]	newspaper [‡]	sales [‡]
1	276.12	45.36	83.04	26.52
2	53.40	47.16	54.12	12.48
3	20.64	55.08	83.16	11.16
4	181.80	49.56	70.20	22.20
5	216.96	12.96	70.08	15.48
6	10.44	58.68	90.00	8.64
7	69.00	39.36	28.20	14.16
8	144.24	23.52	13.92	15.84
9	10.32	2.52	1.20	5.76
10	239.76	3.12	25.44	12.72

Construindo o modelo...

```
Call:
lm(formula = sales ~ youtube + facebook + newspaper, data = marketing)
Residuals:
              10 Median
    Min
                                      Max
-10.5932 -1.0690 0.2902
                         1.4272
                                    3.3951
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.526667
                      0.374290
                               9.422
                                        <2e-16 ***
youtube 0.045765 0.001395 32.809 <2e-16 ***
facebook 0.188530 0.008611 21.893 <2e-16 ***
           -0.001037 0.005871 -0.177
                                          0.86
newspaper
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
Residual standard error: 2.023 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
```

1° Observar o valor de F e p

O p significativo indica que pelo menos uma das variáveis preditoras tem influência sobre o Y

Qual variável preditora tem relação?

```
Call:
lm(formula = sales ~ youtube + facebook + newspaper, data = marketing)
Residuals:
    Min
              10 Median
                                       Max
-10.5932 -1.0690
                           1.4272
                 0.2902
                                    3.3951
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.526667
                      0.374290
                                9.422
                                         <2e-16 ***
                      0.001395 32.809 <2e-16 ***
youtube
            0.045765
facebook
                                21.893 <2e-16 ***
          0.188530
                      0.008611
           -0.001037
                      0.005871 -0.177
                                          0.86
newspaper
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.023 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DK, p-value: < 2.2e-16
```

O gasto com publicidade no jornal, não faz aumentar o número de vendas do produto

Exemplo: para cada aumento de 1 unidade (1000 dólares) no orçamento de publicidade do youtube, mantendo todos os outros preditores constantes, podemos esperar um aumento de 0,045 * 1000 = 45 unidades de vendas, em média.

Como jornal não tem efeito, podemos tirá-lo!

```
Call:
lm(formula = sales ~ youtube + facebook, data = marketing)
Residuals:
             1Q Median
    Min
                              3Q
                                      Max
-10.5572 -1.0502 0.2906
                           1.4049
                                   3.3994
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.50532 0.35339 9.919 <2e-16 ***
youtube 0.04575 0.00139 32.909 <2e-16 ***
                      0.00804 23.382
facebook 0.18799
                                       <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.018 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

Testar os pressupostos

Normalidade: Shapiro-Wilks (p>0,05)

> shapiro.test(modelo1\$residuals) #normalidade

Shapiro-Wilk normality test

data: modelo1\$residuals
W = 0.91804, p-value = 4.19e-09

► Homocedasticidade

Multicolinearidade

- VIF
- Correlação
- ▶ Plotar um gráfico

> vit(marketing[,-4])
youtube facebook newspaper
1.004611 1.144952 1.145187

youtube facebook newspaper youtube 1.00000000 0.05480866 0.05664787 facebook 0.05480866 1.00000000 0.35410375 newspaper 0.05664787 0.35410375 1.00000000

Precisão do modelo (R2)

```
Residual standard error: 2.018 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: < 2.2e-16
```

Significa que 89% da variação na medida de vendas pode ser prevista pelos orçamentos de publicidade do youtube e do facebook

E agora?

Transformamos em LOG

A transformação logarítmica é uma técnica amplamente utilizada para manipular dados e torná-los mais adequados

para análise:

Normalizar distribuições, Reduzir efeitos de outliers, Facilitar interpretações.

O que é a transformação logarítmica? consiste em aplicar a função logaritmo aos valores de uma variável.

```
R 4,2,2 · C:/Users/User/Desktop/Disciplina_PEA/ @
TOG(Tacebook + I) 3.3139
                              0.1903 18.43
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.487 on 197 degrees of freedom
Multiple R-squared: 0.8438, Adjusted R-squared: 0.8422
F-statistic: 532.2 on 2 and 197 DF, p-value: < 2.2e-16
> shapiro.test(modelo2$residuals) #normalidade
        Shapiro-Wilk normality test
data: modelo2$residuals
W = 0.84984, p-value = 4.224e-13
>
```

USAR MODELOS
COM OUTRA
FAMÍLIA DE
DISTRIBUIÇÃO
GLM

Exemplo 2


```
-6.4065 -2.6493 -0.2876 2.2003 8.4847

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -57.9877 8.6382 -6.713 2.75e-07 ***
Girth 4.7082 0.2643 17.816 < 2e-16 ***
Height 0.3393 0.1302 2.607 0.0145 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

Residual standard error: 3.882 on 28 degrees of freedom
Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```

Residual standard error: 3.882 on 28 degrees of freedom Multiple R-squared: 0.948, Adjusted R-squared: 0.9442 F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16

- > ####pressuposto de normalidade
- > #se > 0.05 ? dist. normal
- > shapiro.test(modelo3\$residuals) #normalidade

Shapiro-Wilk normality test

data: modelo3\$residuals W = 0.97431, p-value = 0.644

Referências

http://www.sthda.com/english/articles/40-regression-analysis/168-multiple-linear-regression-in-r