LAAG I/II - Zusammenfassung

Jan-Cornelius Molnar, Version: 1. Oktober 2008 17:16

1 Allgemeines

- Eine binäre Operation ist eine Abbildung $B: A \times A \rightarrow A$.
- Eine nichtleere Menge A zusammen mit einer binären, assoziativen Operation heißt Gruppe, falls ein neutrales Element und zu jedem Element $a \in A$ ein Inverses existiert.
- Ist A Gruppe und die Operation außerdem kommutativ, heißt A abelsche Gruppe.
- Eine nichtleere Menge \mathbb{K} mit zwei binären Operationen + und · heißt Körper, falls K bezüglich + eine abelsche Gruppe mit neutralem Element K und $K \setminus \{0\}$ eine abelsche Gruppe bezüglich · bildet und die Multiplikation distributiv über der Addition ist.
- Ein Ring ist eine abelsche Gruppe (R,+) mit einer assoziativen, binären Operation $R \times R \to R$, $(r,s) \to r \cdot s$ genannt Multiplikation, die auf beiden Seiten distributiv über der Addition ist.

Hat R ein neutrales Element bezüglich dieser Multiplikation wird er Ring mit Eins genannt. Ein Ring mit kommutativer Multiplikation wird kommutativer Ring genannt.

- Ein K-Vektorraum ist eine abelsche Gruppe (V, +) mit einer kommutativen skalaren Multiplikation mit Elementen aus K, die distributiv über der Addition ist.
- Eine K-Algebra ist ein K-Vektorraum A, der zugleich ein Ring mit Eins ist, sodass gilt

$$\lambda(ab) = (\lambda a)b = a(\lambda b), \ \forall \ a, b \in A, \lambda \in K.$$

• Sei A eine K-Algebra oder Ring mit Eins, dann heißt $a \in A$ invertierbar oder Einheit, falls es ein multiplikatives Inverses zu a gibt, d.h. falls es ein Element b in A gibt, sodass $ab = ba = 1_A$ ist. Die Menge der invertierbaren Elemente wird mit U(A) bezeichnet.

• Sei \mathbb{K} Körper und $\mathbb{K}[x]$ die Menge der formalen Ausdrücke

$$f(x) = \sum_{i=0}^{n} \alpha_i x^i,$$

mit $\alpha_i \in \mathbb{K}$. Dann nennt man f(x) Polynom.

2 Vektorräume

• Seien $U, W \le V$, dann ist die Summe von U und W die Teilmenge

$$U + W = \{x + y : x \in U, y \in W\}.$$

• Zwei Unterräume $U, W \leq V$ komplementär, falls

$$U \cap W = (0) \text{ und } U + W = V.$$

- Sei $T \subseteq V$, dann ist $\langle T \rangle$ die Menge aller Linearkombinationen von T und heißt linearer Aufspann.
- Sei $\emptyset \neq T \subseteq V$, dann heißt T Erzeugendensystem von V, falls $\langle T \rangle = V$.
- $\langle \emptyset \rangle = (0) \leq V$, für alle V.

1

- Eine Teilmenge T von V heißt linear abhängig, falls es eine nichttriviale Darstellung der 0 mit Vektoren aus T gibt, sonst linear unabhängig.
- Ein minimales Erzeugendensystem von V heißt Basis von V.
- Eine geordnete Basis von V ist eine Basis B zusammen mit einer vollständigen Ordnung.
- Ist V endlich erzeugt, ist die Anzahl der Elemente einer Basis eindeutig bestimmt. Diese natürliche Zahl heißt Dimension von V und wird mit $\dim_K V$ bezeichnet.

■ Seien U_i , $i \in I$ ein System von K-Vektorräumen. Die direkte Summe der U_i ist definiert ■ Seien $U, W, X \leq V$, dann ist als

$$U = \bigoplus_{i \in I} U_i = \{(u_i)_{i \in I} : u_i \in U_i, u_i = 0 \text{ für fast alle } i \in I\}$$

■ Sei $U \leq V$, dann wird durch ~ eine Äquivalenzrelation auf V definiert

$$v \sim w \Leftrightarrow w - v \in U$$
.

Ist $v \sim w$, *schreibt man auch* $v \equiv w \mod U$.

Die Äquivalenzklassen von \sim heißen Restklassen modulo U und die Klasse, die ν enhält, ist

$$\overline{\nu} = \nu + U = \{\nu + u : u \in U\}.$$

2.1 SÄTZE ÜBER UNENDLICH DIMENSIONALE VEKTORRÄUME

- Ist $T \neq \emptyset$ und $U = \langle T \rangle$, so ailt für $u, v \in U$, $\lambda \in \mathbb{K}$, dass $u + v \in U$ und $\lambda u \in U$.
- Sei $\emptyset \neq U \subseteq V$, dann ist U genau dann Unterraum von V, falls gilt

$$u,v\in U\Rightarrow u-v\in U$$

 $\lambda \in \mathbb{K}, u \in U \Rightarrow \lambda u \in U$.

■ Sei $\emptyset \neq T \subseteq V$, dann ist $\langle T \rangle \leq V$ und es gilt

$$\langle T \rangle = \bigcap_{T \subseteq U \leq V} U,$$

der kleinste Unterraum von V, der T als Teilmenge enthält.

- Ist $T \subseteq S \subseteq V$, dann ist $\langle T \rangle \subseteq \langle S \rangle \subseteq V$.
- Ist $T \subseteq V$, dann ist $\langle \langle T \rangle \rangle = \langle T \rangle$ und ist $U \leq V$, dann ist $\langle U \rangle = U$.
- Seien $U, W \leq V$, dann ist $U + W \leq V$, der kleinste Unterraum von V, der U und Wenthält und $U \cap W \leq V$, der größte Unterraum von V, der in U und W enthalten ist.

$$U \cap (W + (U \cap X)) = (U \cap W) + (U \cap X).$$

Ist außerdem $X \subseteq U$, *so gilt*

$$U \cap (W + X) = (U \cap W) + X$$
.

- ullet $T \subseteq V$ ist genau dann Erzeugendensystem von V, falls T in keinem echten Unterraum von V enthalten ist.
- Sei T ein Erzeugendensystem für V. dann ist T minimal genau dann, wenn es linear unabhängig ist.
- $T \subseteq V$ ist Basis von V aenau dann, wenn wenn T eine maximale linear unabhänaiae Teilmenge von V ist.
- Sei T Erzeugendensystem von V. dann ist T Basis von V genau dann, wenn sich jeder Vektor in V eindeutig als Linearkombination von Vektoren aus T darstellen lässt.
- Sei $V = U \bigoplus W$, dann ist $\dim_K V = \dim_K U + \dim_K W$.
- Der Faktorraum V/U ist ein Vektorraum.
- Sei $V = U \oplus W$ und $w, w' \in W$, dann ist $w \sim w' \Leftrightarrow w = w'$. Darüber hinaus enthält jede Nebenklasse $v + U = \overline{v}$ genau ein Element $w_v \in W$.

2.2 SÄTZE, DIE DAS AUSWAHLAXIOM ERFORDERN

- Jeder Vektorraum hat eine Basis.
- Jedes Erzeugendensystem enthält eine Basis.
- Ieder Unterraum U von V besitzt ein Komplement.
- Sei $U \leq V$, dann lässt sich jede Basis von U zu einer von V ergänzen.

2.3 SÄTZE FÜR ENDLICHDIMENSIONALE VEKTORRÄUME

- Sei \mathcal{B} Erzeugendensystem und $T = \{x_1, \ldots, x_k\}$ eine linear unabhängige Teilmenge von V, dann gibt es eine k-elementige Teilmenge C von \mathcal{B} , sodass $(\mathcal{B} \setminus C) \cup T$ den ganzen Raum V aufspannt.
- Eine linear unabhängige Teilmenge eines n-dimensionalen Vektorraums hat maximal n Elemente. Sie ist eine Basis genau dann, wenn sie n Elemente hat und linear abhängig, wenn sie aus mehr als n Elementen besteht.

Dimensionsformel

$$\dim_K(U+W)+\dim_K(U\cap W)=\dim_KU+\dim_KW.$$

$$\dim_K V = \dim_K U + \dim_K V/U.$$

3 Homomorphismen

• Seien V und W Vektorräume. Eine Abbildung $f:V\to W$ heißt Homomorphismus bzw. linear, falls gilt

$$f(x + y) = f(x) + f(y), \quad \forall x, y \in V,$$

 $f(\lambda x) = \lambda f(x), \quad \forall x \in V, \lambda \in K.$

- Seien V und W Vektorräume. Ein injektiver Homomorphismus $f:V \to W$ wird Monomorphismus genannt. Ist f linear und surjektiv, spricht man von einem Epimorphismus und ist f bijektiv, von einem Isomorphismus.
- Der Kern einer Abbildung $f: V \to W$ ist die Menge

$$\ker f = f^{-1}(0) = \{ \nu \in V : f(\nu) = 0 \}.$$

■ Das Bild einer Abbildung $f: V \to W$ ist die Menge

$$\operatorname{im} f = \{ w \in W : \exists v \in V f(v) = w \}.$$

- Die Matrix $\mathfrak{M}_f(C, \mathcal{B})$ ist die Zuordnungsvorschrift eines Homomorphismus. Sie gibt an, wie Elemente der Basis \mathcal{B} auf Elemente der Basis \mathcal{C} abgebildet werden.
- Die Menge der Homomorphismen $f: V \to W$ wird mit $Hom_K(V, W)$ bezeichnet. Analog dazu $End_K(V)$, $Aut_K(V)$.
- Die Menge der $m \times n$ Matritzen über K wird mit $M_{m \times n}(K)$ bezeichnet.
- Seien A,B Ringe und $f \in \text{Hom}(A,B)$, dann heißt f Antihomomorphismus, falls f(ab) = f(b)f(a).
- Äquivalenzrelation

$$A \approx B \Leftrightarrow \exists f \in \text{Hom}_K(V, W) : A, B \in \mathfrak{M}_f(-, -).$$

- Sei $A \in M_{m \times n}$, dann ist der Spaltenrang von A die Dimension des von den Spaltenvektoren aufgespannten Unterraums des K^m . Analog ist der Zeilenrang von A definiert.
- *Der Rang einer Matrix A wird mit* rg *A bezeichnet.*

3.1 SÄTZE ÜBER HOMOMORPHISMEN AUF VEKTORRÄUMEN UNENDLICHER DIMENSION

- Sei $f: V \to W$ ein Isomorphismus, dann ist $f^{-1}: W \to V$ ebenfalls ein Isomorphismus.
- Die Komposition von (Mono-, Epi-, Iso-) Homomorphismen ist (Mono-, Epi-, Iso-) Homomorphismus.
- Hom_K(V, W) und $M_{m \times n}$ sind Vektorräume.
- Ein Homomorphismus ist vollständig durch seine Werte auf einem Erzeugendensystem bestimmt. D.h. Sind $f, g: V \to W$, $\langle T \rangle = V$ und $f(t) = g(t) \ \forall \ t \in T$, so gilt f = g.
- Sei \mathcal{B} Basis von V und sei für jedes $b \in \mathcal{B}$ ein $w_b \in W$ gegeben, dann gibt es genau eine Abbildung $T: V \to W$ mit $T(b) = w_b$.
- Sei $f \in \text{Hom}(V, W)$, dann ist $\ker f \leq V$ und $\operatorname{im} f \leq W$.

- Sei $f \in \text{Hom}(V, W)$ und \mathcal{B} Basis von V, dann ist $\langle f(\mathcal{B}) \rangle = \text{im } f$.
- Sei $U \leq V$, dann ist die Abbildung $T: V \to V/U: v \to \overline{v}$ ein Epimorphismus.
- Sei $f \in \text{Hom}_K(V, W)$, dann ist f injektiv genau dann, wenn ker f = (0).
- **1. Isomorphiesatz** Sei $f \in \text{Hom}_K(V, W)$ und sei $U \leq \text{ker } f$, dann faktorisiert f eindeutig über V/U.

- Sei $f \in \text{Hom}_K(V, W)$, dann induziert f einen Monomorphismus $\tilde{f}: V/\ker f \to W$. Es ist $\mathfrak{M}_f(-, -) = GL_m(K)\mathfrak{M}_f(\mathcal{B}, \mathcal{A})GL_n(K)$ für jede Wahl von Basen \mathcal{A} und \mathcal{B} . *Insbesondere gilt V* / ker $f \cong \text{im } f$.
- Sei $f \in \operatorname{Hom}_K(V, W)$ und sei $X \leq W$, dann ist $f^{-1}(X) = \{v \in V : f(v) \in X\}$ ein *Unterraum von V, der* ker *f enthält.*

Ist darüber hinaus $X \leq \text{im } f$, so ist $f^{-1}(X)/\text{ker } f \cong X$ und $X \to f^{-1}(X)$ definiert eine inklusionserhaltende Bijektion.

- **2. Isomorphiesatz** Seien $U, W \le V$, dann ist $(U + W)/U \cong W/(U \cap W)$.
- **3. Isomorphiesatz** Seien $U \le W \le V$, dann ist $W/U \le V/U$ und es gilt

 $(V/U)/(W/U) \cong V/W$.

3.2 SÄTZE ÜBER HOMOMORPHISMEN AUF VEKTORRÄUMEN ENDLICHER **DIMENSION**

V,W seien endlich erzeugt mit $\dim_K V = n$ und $\dim_K W = m$ und $f,g \in$ $Hom_K(V, W)$.

Die Abbildung

$$\mathfrak{M}_{-}(C,\mathcal{B}): \operatorname{Hom}_{K}(V,W) \to M_{m \times n}(K), f \mapsto \mathfrak{M}_{f}(C,\mathcal{B})$$

ein Isomorphismus mit Umkehrabbildung

$$f(C,\mathcal{B}): M_{m\times n}(K) \to \operatorname{Hom}_K(V,W,A \to f_A(C,\mathcal{B}).$$

- Seien M und N endlichen Mengen derselben Mächtigkeit und sei $f: \mathcal{M} \to \mathcal{N}$, dann ist f injektiv genau dann wenn f surjektiv ist.
- \bullet f ist genau dann Monomorphismus, wenn f Epimorphismus ist.
- Zwei Vektorräume sind isomorph aenau dann, wenn sie dieselbe Dimension über K haben.
- Es gilt $\dim_K M_{m \times n} = \dim_K \operatorname{Hom}_K(V, W) = mn$.
- Es gilt entweder

$$\mathfrak{Ml}_f(-,-) \cap \mathfrak{Ml}_g(-,-) = \emptyset$$
 oder $\mathfrak{Ml}_f(-,-) = \mathfrak{Ml}_g(-,-)$.

- Sind $A, B \in M_{m \times n}$, dann ist $A \approx B$ genau, dann wenn $X \in GL_m(K)$ und $Y \in GL_n(K)$ existieren, sodass B = XAY.
- Sei $f \in \text{Hom}_K(C, \mathcal{B})$ und $A = \mathcal{M}_f(C, \mathcal{B})$. Seien s_1, \ldots, s_n die Spaltenvektoren von A, dann ist im $f = \langle s_1, \ldots, s_n \rangle$.
- Spaltenrang und Zeilenrang stimmen überein.
- Alle Matritzen in $\mathfrak{M}_f(-,-)$ denselben Spaltenrang und dieser entspricht $\dim_K \operatorname{im} f$.
- Ist rg f = k, so ist $E_{m \times n}(k)$ in $\mathfrak{M}_f(-, -)$ enthalten.
- Es gilt $\dim_K \operatorname{im} f + \dim_K \ker f = \dim_K V$.
- Unter elementaren Operationen bleibt der Rana einer Matrix erhalten.

- Sei $A \in M_{m \times n}$, dann gibt es eine Reihe von elementaren Operationen, die $E_{m \times n}(k)$ 4.1 Sätze für Multilinearformen erzeugen mit $k = \operatorname{rg} A$.
- Sei $A \in M_{m \times n}$, dann ist $\operatorname{rg} A = \operatorname{rg} A^t$.

4 Multilineare Abbildungen

- Eine Abbildung $f: V_1 \times ... \times V_k \to W$ heißt k-fach multilinear, wenn sie in jeder Komponente K-linear ist. Ist W = K und $V_1 = \ldots = V_n$, so heißt f Multilinearform.
- Seien $I_1 = \{1, ..., n_1\}, I_2 = \{1, ..., n_2\}, ..., I_k = \{1, ..., n_k\}$ endliche Indexmengen, dann wird $i \in I_1 \times I_2 \times ... \times I_k$ Multiindex genannt.
- (a) $F\ddot{u}r\underline{i},\underline{j} \in \mathbb{N}^{\times k}$ ist $\delta_{\underline{i},\underline{j}} = \prod_{l=1}^{k} \delta_{i_{l},j_{l}}$
- (b) Für $\pi \in \sigma_k$ ist $\pi(i) = (i_{\pi(1)}, \dots, i_{\pi(k)})$.
- (c) $e_i: V^{\times k} \to K, v_i \mapsto \delta_{i,i}$.
- Sei $(w_1, ..., w_m)$ Basis von W, \underline{i} Multiindex und $1 \le j \le m$, dann wird druch

$$f_{\underline{i},j}: V_1 \times \ldots \times V_k \to W, \nu_{\underline{k}} \mapsto \begin{cases} w_j & \text{falls } \underline{i} = \underline{k}, \\ 0 & \text{sonst,} \end{cases}$$

eine multilineare Abbildung definiert.

- Eine k-fache Linearform $f: V^{\times k} \to K$ heißt symmetrisch, falls $f(v_i) = f(v_{\pi(i)})$ für jedes $\pi \in \sigma_k$.
- Eine k-fache Linearform $f: V^{\times k} \to K$ heißt alternierend, falls $f(u_1, \dots, u_k) = 0$ für jedes linear abhängige Tupel (u_1, \ldots, u_k) .
- Die Menge der alternierenden k-fachen Linearformen auf V wird mit $A_k(V)$ bezeichnet.

Sei V endlich dimensional mit dim $_K V = n$ und Basis $\mathcal{B} = \{v_i \in V : 1 \le i \le n\}$.

- Die Menge M der multilinearen Abbildungen $f: V_1 \times ... \times V_k \rightarrow W$ ist ein K-Vektorraum.
- Sei f multilinear, dann ist M endlichdimensional und es gilt

$$\dim_K M = \prod_{i=1}^k \dim_K V_i \dim_K W.$$

- $\mathcal{B} = \{f_{i,j} : \underline{i} \text{ Multiindex}, 1 \leq j \leq m\}$ ist eine Basis von M.
- Sei $0 \neq f: V^{\times n} \to K$ und $v_1, \dots, v_n \in V$, dann ist $\mathcal{B} = (v_1, \dots, v_n)$ Basis von V genau dann, wenn $f(\mathcal{B}) \neq 0$ ist.
- $A_k(V)$ ist ein K-Unterraum von M.
- Sei $i \in \mathbb{N}^{\times k}$ mit $1 \le i_1 < \ldots < i_k \le n$ und seien $u_1, \ldots, u_k \in V$ und $\pi \in \sigma_k$, dann ist $e_i(u_{\pi(1)},\ldots,u_{\pi(k)})=e_{\pi^{-1}(i)}(u_1,\ldots,u_k).$
- $\{e_j: j \in \{1,...,n\}^{\times k}\}$ ist Basis des Vektorraums aller k-fachen Multilinearformen
- $\bullet \textit{ Sei } a_{\underline{i}} = \sum_{\pi \in \sigma_k} (\operatorname{sign} \pi) e_{\pi(i)}, \textit{ dann ist } \left\{ a_{\underline{i}} : \underline{i} = (i_1, \ldots, i_n) \in \mathbb{N}^{\times k}, 1 \leq i_1 < \ldots < i_k \leq n \right\}$ Basis von $A_k(V)$.
- $\bullet \dim_K \mathcal{A}_k(V) = \binom{n}{k}.$
- Sei $f \in \mathcal{A}_n(V)$ und $u_i = \sum_{i=1}^n \lambda_{ij} v_i$ für $\lambda_{ij} \in K$, so ist

$$f(u_1,\ldots,u_n)=\sum_{\boldsymbol{\pi}\in\sigma_n}(\operatorname{sign}\boldsymbol{\pi})\prod_{i=1}^n\lambda_{i\boldsymbol{\pi}(i)}f(\nu_1,\ldots,\nu_n)=\det(\lambda_{ij})f(\nu_1,\ldots,\nu_n).$$

5 Endomorphismen

- Eine lineare Abbildung $f: V \to V$ bezeichnet man als Endomorphismus. Ist f außerdem bijektiv, heißt f Automorphismus.
- Die Einheitengruppe $U(M_n(K))$ der K-Algebra $M_n(K)$ wird mit $GL_n(K)$ bezeichnet.
- Die Determinante det A einer Matrix A ist definiert als

$$\det A = \sum_{\pi \in \sigma_n} \operatorname{sign}(\pi) \prod_{i=1}^n \alpha_{i\pi(i)}.$$

■ Die Determinante von $\phi \in \text{End}_K(V)$ ist mit einer beliebigen $0 \neq f \in \mathcal{A}_n(V)$ definiert als

$$\det \phi = \frac{f(\phi(\nu_1), \dots, \phi(\nu_n))}{f(\nu_1, \dots, \nu_n)},$$

wobei $\mathcal{B} = \{v_1, \dots, v_n\}$ irgendeine Basis von V ist.

- Ist $f \in \text{End}_K(V)$, dann ist $\det f = \det \mathfrak{M}_f(\mathcal{B}, \mathcal{B})$ für eine beliebige Basis \mathcal{B} .
- Die spezielle lineare Gruppe ist die Menge aller $n \times n$ Matrizen mit Determinante 1 und wird mit $SL_n(K)$ bezeichnet.
- Zwei Matritzen heißen ähnlich, falls es eine invertierbare $n \times n$ -Matrix P mit $B = P^{-1}AP$ gibt. Man schreibt $A \sim B$ und sagt A und B sind konjugiert in $GL_n(K)$.
- Die Adjunkte einer $n \times n$ -Matrix $A = (\alpha_{ij})$ ist die $n \times n$ -Matrix

$$\operatorname{adj} A = \left((-1)^{j+i} \det A_{ji} \right)_{ij}$$

■ Die Summe der Diagonalenelemente einer Matrix A heißt Spur tr A.

5.1 SÄTZE FÜR ENDLICHE DIMENSION

V,W seien endlich erzeugt mit $\dim_K V=n$ und $\dim_K W=m$ und $f,g\in \operatorname{Hom}_K(V,W)$.

- $\operatorname{End}_K(V)$ mit der Komposition als Multiplikation und $M_n(K)$ mit der Matritzenmultiplikation sind K-Algebren.
- Sind A, B Ringe und $f: A \to B$ ein Ringhomomorphismus, so ist $f(U(A)) \subseteq U(B)$ und die Einschränkung $f|_{U(A)}$ ist ein Gruppenhomomorphismus. Ist f Isomorphismus, so auch $f|_{U(A)}$.
- Transponieren ist ein Antiautomorphismus. Seine Einschränkung auf invertierbare Matritzen ist ein Antiautomorphismus auf $GL_n(K)$ und es gilt

$$(A^t)^{-1} = (A^{-1})^t$$
, für $A \in GL_n(K)$.

5.2 SÄTZE FÜR ENDOMORPHISMEN

- Sei $A \in M_n$, dann ist A genau dann invertierbar, wenn $\operatorname{rg} A = n$ ist.
- Jede invertierbare Matrix ist das Produkt von Elementarmatritzen.
- Sei $\phi \in \operatorname{End}_K(V)$, dann ist det ϕ unabhängig von der Wahl der Basis \mathcal{B} von V und unabhängig von der Wahl der Form $f \neq 0 \in \mathcal{A}_n(V)$.
- Seien $\phi, \psi \in \operatorname{End}_K(V)$, dann gilt
- (a) $\det(\phi) \neq 0 \Leftrightarrow \phi \in \operatorname{Aut}_K(V)$.
- (b) det(id) = 1.
- (c) $\det(\phi \circ \psi) = \det(\phi) \det(\psi)$.
- (d) $\det(\phi^{-1}) = (\det(\phi))^{-1} \text{ für } \phi \in \text{Aut}_K(V).$
- (e) Die Einschränkung det : $\operatorname{Aut}_K(V) \to K \setminus \{0\}$ ist Gruppenhomomorphismus.
- Analoges gilt für Matritzen $A, B \in M_n(K)$
- (a) $\det A = \det A^t$.

- (b) det(AB) = det A det B.
- (c) $\det E = 1$.
- (d) $\det(A^{-1}) = \frac{1}{\det A}$.
- (e) A invertierbar $\Leftrightarrow \det A \neq 0$.
- (f) Hat A Nullspalte oder -zeile, gilt $\det A = 0$.
- (g) Sind zwei Spalten/Zeilen in A linear abhängig ist $\det A = 0$.
- Für Diagonal-, obere und untere Dreiecksmatrizen ist die Determinante das Produkt der Diagonalelemente.
- Ist $A \sim B$, so gilt $\det A = \det B$.

Laplace Entwicklung Sei $k \in \{1, ..., n\}$ und $A = (\alpha_{ij})$ eine $n \times n$ Matrix mit Kofaktoren A_{ij} , dann ist

$$\det A = \sum_{i=1}^{n} (-1)^{i+k} \alpha_{ik} \det A_{ik}$$
 Entwicklung nach der k-ten Spalte
$$= \sum_{j=1}^{n} (-1)^{k+j} \alpha_{kj} \det A_{kj}$$
 Entwicklung nach der k-ten Zeile

 $A(\operatorname{adj} A) = \det AE_n.$

6 Lineare Gleichungssysteme

■ Ein lineares Gleichungssystem hat die Form \mathfrak{B} : Ax = b. Ist b der Nullvektor, so heißt das System homogen, andernfalls inhomogen. Falls $b \neq 0$, so heißt \mathfrak{B} : Ax = 0 das $zu\mathfrak{B}$ gehörende homogene System.

6.1 SÄTZE ZUR LÖSBARKEIT VON LGSN

- Die Lösungsgesamtheit von \mathfrak{L} ist ker f_A .
- £ besitzt genau dann nichttriviale Lösungen, wenn f_A nicht injektiv ist.
- Für die Lösungsgesamtheit $\mathfrak{L}_{\mathfrak{b}}$ des homogenen Gleichungssystems gilt $\mathfrak{L}_{\mathfrak{b}} \leq K^n$ mit $\dim_K \mathfrak{L}_{\mathfrak{b}} = n \operatorname{rg} A$.
- Ist m < n, so besitzt \mathfrak{L} nichttriviale Lösungen.
- Für $A \in M_{m \times n}$ und \mathfrak{B} : Ax = b sind folgenden Aussagen äquivalent
- (a) **3** besitzt eine Lösung,
- (b) $b \in \operatorname{im} f_A$,
- (c) $\operatorname{rg} A = \operatorname{rg} A | b$.
- Ist x_0 beliebige Lösung von \mathfrak{B} , dann ist die Gesamtheit der Lösungen x_0 + ker f_A .
- Ist $\operatorname{rg} A = \operatorname{rg} A | b = n$, so bestitzt \mathfrak{Z} eine eindeutige Lösung.
- Sei $A \in M_n(K)$, dann so besitzt \mathfrak{Z} eine eindeutige Lösung, falls A invertierbar ist.
- Sei $A \in M_n(K)$, dann so besitzt \mathfrak{B} eine eindeutige Lösung, falls $\det A \neq 0$ ist. Diese ist gegeben durch

$$x_j = \frac{1}{\det A} \sum_{i=1}^n \beta_i (-1)^{i+j} \det A_{ij}.$$

7 Eigenwerte

- Sei $U \le V$ und $f \in \operatorname{End}_K(V)$, dann heißt f U invariant, falls für alle $u \in U$ gilt $f(u) \in U$.
- Ein Vektor $0 \neq v \in V$ heißt Eigenvektor zum Eigenwert $\lambda \in K$, falls $f(v) = \lambda v$.
- Eine Diagonalmatrix mit den Diagonaleinträgen $\lambda_1, \ldots, \lambda_n$ wird mit diag $\{\lambda_1, \ldots, \lambda_n\}$ bezeichnet.

■ Für t beliebig, ist $(-1)^n \det(f - l_t)$ ein Polynom $\chi_f(t) \in K[t]$ der Form

$$\chi_f(t) = t^n + \beta_{n-1}t^{n-1} + \ldots + \beta_0,$$

und wird als charakteristisches Polynom bezeichnet.

■ Die Eigenvektoren von f zum Eigenwert λ bestehen aus $\ker(f - l_{\lambda}) \setminus \{0\}$. Der Unterraum $\ker(f - l_{\lambda})$ von V wird Eigenraum genannt und mit $V_{\lambda}(f)$ bezeichnet.

7.1 SÄTZE FÜR ENDLICHDIMENSIONALE VEKTORRÄUME

Sei V ein Vektorraum mit dim $_K V = n$ und $f \in \operatorname{End}_K(V)$.

- Sei $\mathcal{B} = (\nu_1, \dots, \nu_n)$ geordnete Basis von V, dann ist $\mathfrak{M}_f(\mathcal{B}) = \operatorname{diag} \{\lambda_1, \dots, \lambda_n\}$, genau dann, wenn ν_i EV zum EW λ_i ist.
- Sei \mathcal{B} beliebige Basis von V, dann ist $\mathfrak{M}_{l_{\lambda}} = \lambda E_n$.
- λ ist genau dann Eigenwert von f, wenn $\det(f l_{\lambda}) = 0$.
- Ähnliche Matritzen haben dasselbe charakteristische Polynom.
- Es gilt $\beta_0 = (-1)^n \det f$ und $-\beta_{n-1} = \operatorname{tr} f$.
- Die Abbildung tr : $\operatorname{End}_K(V) \to K$ ist ein Homomorphismus und für $f, g \in \operatorname{End}_K(V)$ gilt $\operatorname{tr}(fg) = \operatorname{tr}(gf)$.
- ullet Die Eigenwerte von f sind genau die Nullstellen von $\chi_f(t)$.
- Die Dimension des Eigenraums $V_{\lambda}(f)$ ist kleiner gleich der Vielfachheit von λ als Nullstelle von $\chi_f(t)$.
- ullet Eine quadratische Matrix A ist genau dann zu einer Dreiecksmatrix ähnlich, wenn $\chi_A(t)$ in Linearfaktoren zerfällt.
- Eigenvektoren zu paarweise verschiedenen Eigenräumen sind linear unabhängig.
- Eine Matrix A ist genau dann diagonalisierbar, wenn V eine Basis bestehenden aus Eigenvektoren von A besitzt.

• f ist genau dann diagonalisierbar, wenn

$$\sum_{i=1}^k \dim V_{\lambda_i}(f) = n.$$

• Ist A eine obere Blockmatrix, gilt $\det A = \prod\limits_{i=1}^k \det A_i$, sowie $\chi_A(t) = \prod\limits_{i=1}^k \chi_{A_i}(t)$.

8 Euklidische und Unitäre Vektorräume

• Eine Norm auf einem Vektorraum V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R},$$

mit den Eigenschaften

- (a) $||x|| \ge 0$ für alle $x \in V$ und ||x|| = 0, wenn x = 0.
- (b) $\|\lambda x\| = |\lambda| \|x\|$ für alle $x \in V, \lambda \in \mathbb{K}$.
- (c) $||x + y|| \le ||x|| + ||y||$ für alle $x, y \in V$.
- Ein Skalarprodukt ist eine symmetrische, homogene, postiv definite Bilinearform.
- Eine hermitische Form ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ mit den Eigenschaften
- (a) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$,
- (b) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$,
- (c) $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
- Zwei Vektoren $x, y \in V$ heißen orthogonal, falls $\langle x, y \rangle = 0$ ist.
- Ein orthonormales System ist eine eine nichtleere Teilmenge von V deren Elemente verschieden vom Nullvektor und jeweils paarweise orthogonal sind. Ein orthonormales System, das V erzeugt, heißt Orthonormalbasis (ONB).

• Eine Abbildung $f \in \text{Hom}_{\mathbb{R}}(V, W)$ heißt orthogonale Abbildung, falls

$$\langle f(x), f(y) \rangle = \langle x, y \rangle, \ \forall \ x, y \in V.$$

■ Eine Abbildung $f \in \text{Hom}_{\mathbb{C}}(V, W)$ heißt unitär, falls

$$\langle f(x), f(y) \rangle = \langle x, y \rangle, \ \forall \ x, y \in V.$$

- Ein orthogonaler Isomorphismus heißt Isometrie.
- Eine Matrix A heißt unitär (orthogonal), falls $A^{-1} = A^*$ ($A = A^{-1}$).
- Eine Matrix A heißt hermitsch (symmetrisch), falls $A = A^*$ ($A = A^t$).
- Eine Matrix A heißt normal, falls $AA^* = A^*A$.
- Zwei Endomorphismen $f, g \in End_K(V)$ heißen orthogonal äquivalent, falls es einen orthogonalen Automorphismus p von V mit $g = p^{-1} \circ f \circ p$ gibt.
- Die zu einer Matrix A adjungierte Matrix wird mit $A^* = \overline{A}^t$ bezeichnet.
- Der zu $f \in \operatorname{End}_{\mathbb{C}}(V)$ adjungierte Endomorphismus ist definiert als

$$f^*(\nu_j) = \sum_{i=1}^n \overline{\alpha_{ji}} \nu_i.$$

8.1 SÄTZE FÜR UNENDLICH DIMENSIONALE VEKTORRÄUME

Seien V ein Vektorraum höchstens abzählbarer Dimension, $\mathcal B$ eine geordnete Basis von V und $\mathcal E$ die natürliche Basis.

Ein System orthogonaler Vektoren ist linear unabhängig.

Gram-Schmidt Für $k \le n$ sei $\mathcal{B}_k = (v_1, ..., v_k)$ und $U_k = \langle \mathcal{B}_k \rangle$. Dann ist $\mathcal{T}_k = (e_1, ..., e_k)$ eine ONB von U_k und \mathcal{T} ist eine ONB von V. Die Basiswechselmatrix $\mathfrak{M}_{\operatorname{ld}_V}(\mathcal{B}_k, \mathcal{T}_k)$ ist eine obere Dreiecksmatrix mit postivier Determinante.

• Sei $x \in V$, dann ist $x = \sum_{i} \langle x, e_i \rangle e_i$.

- Seien $M, N \le V$, M und N orthogonal, so ist $M \cap N = (0)$. Ist M endlichdimensional, so ist $V = M \oplus M^{\perp}$.
- Ist $W \le V$ endlich dimensional mit orthonormaler Basis $(e_1, ..., e_k)$ und ist $y \in V$, dann gibt es genau ein $z \in W^{\perp}$ mit

$$y = \sum_{i=1}^{k} \langle y, e_i \rangle e_i + z.$$

Der Vektor $y_1 = \sum_{i=1}^{k} \langle y, e_i \rangle e_i$ ist der eindeutig bestimmte Vektor von W, der y am nächsten ist, d.h.

$$||y - u|| \ge ||y - y_1||, \ \forall \ u \in U.$$

- Ist $W \leq V$, so ist $\dim_K V = \dim_K W + \dim_K W^{\perp}$.
- Ist $M \leq M$, so ist $(M^{\perp})^{\perp} = M$.

8.2 SÄTZE FÜR ENDLICHE DIMENSION

• Seien $x, y \in V$ Eigenvektoren zu verschiedenen Eigenwerten λ, μ , dann gilt $x^t y = 0$.

8.3 Sätze für unendlich dimensionale Vektorräume \mathbb{C}^n

- Sei W beliebiger Vektorraum und $f \in \operatorname{Hom}_{\mathbb{C}}(V,W)$, dann sind folgende Aussagen äquivalent
- (a) f ist unitären (bzw. orthogonale) Abbildung.
- (b) $||x|| = 1 \Rightarrow ||f(x)|| = 1$.
- (c) ||x|| = ||f(x)||.
- (d) Ist \mathcal{E} ein orthonormales System, dann ist $f(\mathcal{E})$ ein ebensolches.
- (e) Es gibt eine ONB $\mathcal B$ von V, sodass $f(\mathcal B)$ ein orthonormales System ist.

- Eine unitäre Abbildung ist injektiv. Gilt darüber hinaus dim $V=\dim W$, so ist f Iso- Sei $f\in \operatorname{End}_{\mathbb{C}}(V)$, dann ist f normal genau dann, wenn metrie.
- Die Menge der Isometrien eines unitären Vektorraums V in sich ist eine Untergruppe $der GL_{\mathbb{C}}(V)$, die orthogonale Gruppe $O_{\mathbb{C}}(V)$.

$$\langle f(x), f(y) \rangle = \langle f^*(x), f^*(y) \rangle.$$

• Sei $f \in \text{End}_{\mathcal{C}}(V)$ normal und x sei Eigenvektor zum Eigenwert λ , dann ist $f^*(x) =$ $\overline{\lambda}x$. Insbesondere ist $V_{\lambda}(f) = V_{\overline{\lambda}}(f^*)$.

Hauptachsentheorem *Jede normale Matrix* $A \in M_n(\mathbb{C})$ *ist unitär-äquivalent zu einer* Diagonalmatrix.

- Sie A eine Matrix, dann ist die natürliche Basis von V orthonormal und f_A eine unitäre I Sei $f \in \operatorname{End}_{\mathbb{C}}(V)$ hermitisch, dann sind alle Eigenwerte von f reell und V hat eine *ONB bestehend aus Eigenvektoren von f.*
 - Sei A eine hermitisch, dann sind die Eigenvektoren zu verschiedenen Eigenwerten paarweise orthogonal.
 - Die Determinante einer unitären (orthogonalen) Abbildung f_A ist ± 1 .

8.4 Sätze für endliche Dimension im \mathbb{C}^n

- Sei $f: V \to \mathbb{C}^n: \sum_{i=1}^n \alpha_i x_i \mapsto (\alpha_1, \dots, \alpha_n)$, dann ist f Isometrie.
- Abbildung genau dann, wenn A unitäre Matrix ist.
- Sei \mathcal{E} eine ONB von V, dann ist \mathcal{B} genau dann eine ONB, wenn $MaM_{idv}(\mathcal{E},\mathcal{B})$ unitär ist.
- Die Spalten- bzw. Zeilenvektoren einer komplexen $n \times n$ Matrix bilden genau dann eine orthonormale Basis von \mathbb{C}^n , wenn

$$AA^* = A^*A = E_n \Leftrightarrow A^{-1} = A^*.$$

- Für $A, B \in M_n(\mathbb{C})$ gilt
- (a) $A^{**} = A$
- (b) $(A + B) * = A^* + B^*$
- (c) $(\lambda A)^* = \overline{\lambda} A^*$
- (d) $(AB)^* = B^*A^*$
- Unitäre und hermitische Matritzen sind normal.
- Sei $f \in \text{End}_{\mathbb{C}}(V)$, dann ist f unitär genau dann, wenn $\mathfrak{M}_f(\mathcal{B},\mathcal{B})$ für jede ONB \mathcal{B} unitäre Matrix ist.
- Sei $f \in \text{End}_{\mathbb{C}}(V)$ und seien $x, y \in V$, dann ist $\langle f(x), f(y) \rangle = \langle x, f^*(y) \rangle$.

8.5 Sätze für unendlich dimensionale Vektorräume \mathbb{R}^n

■ Die Menge der Isometrien eines euklidischen Vektorraums V in sich ist eine Untergruppe der $GL_{\mathbb{R}}(V)$, die orthogonale Gruppe $O_{\mathbb{R}}(V)$.

8.6 Sätze für endliche Dimension im \mathbb{R}^n

- **Hauptachsentheorem** *Jede relle symmetrische* $n \times n$ *Matrix ist orthogonal äquivalent* zu einer Diagonalmatrix.
- Die Eigenwerte symmetrischer Matritzen sind alle reell.
- Sei A eine relle symmetrische Matrix, dann besitzt \mathbb{R}^n eine Basis aus Eigenvektoren von A.

9 Körper

• Sei K Körper, dann heißt $F \subseteq K$ Unterkörper, falls F mit Addition und Multiplikation von K eingeschränkt auf F wieder einen Körper bildet.

• Sei K ein Körper. Den kleinsten Unterkörper von K nennt man Primkörper von K.

• Sei K ein Körper. Die Charakteristik char(K) von K ist definiert als

(a) char(K) = p, falls p die kleinste natürliche Zahl ist mit $\sum_{i=1}^{p} 1_K = 0_K$.

(b) char(K) = 0, falls es keine solche Zahl gibt.

9.1 SÄTZE ÜBER KÖRPER

■ Seien $0 < p, q \in \mathbb{Z}$ und $d \in \mathbb{N}$ ihr größter gemeinsamer Teiler, dann gibt es $a, b \in \mathbb{Z}$ sodass gilt

$$ap + bq = d$$
.

• Ist K Unterkörper von F, dann ist $1_F = 1_K$ und $0_F = 0_K$.

■ Sei K ein Körper, dann besitzt K einen kleinsten Unterkörper bezüglich ⊆.

■ Die Körper $\mathbb Q$ und $\mathbb Z/(p)$ besitzten keine echten Unterkörper.

9.2 SÄTZE ÜBER ENDLICHE KRÖPER

■ $\mathbb{Z}/(n)$ ist genau dann ein Kröper, wenn n eine Primzahl ist.

$$|GL_n(\mathbb{Z})| = \prod_{i=0}^{n-1} (q^n - q^i).$$

• *Ist* $char(K) \neq 0$, *so ist* char(K) *prim.*

• Ist char(K) = 0, dann ist der Primkörper von K isomorph zu \mathbb{Q} .

• Ist char(K) = p, dann ist der Primkörper von K isomorph zu $\mathbb{Z}/(p)$.

■ Ist K endlicher Körper, so existiert eine Primzahl p und ein $n \in \mathbb{N}$, sodass $|K| = p^n$.

10 Dualraum

■ Der Vektorraum $Hom_K(V,K)$ wird mit V^* bezeichnet und der zu V duale Raum genannt.

• Sei $\mathcal{B} = \{v_i : i \in \mathcal{I}\}$ Basis von V, dann ist die Linearform $v_i^* \in V^*$ gegeben durch $v_i^*(v_j) = \delta_{ij}$.

• Sei $U \leq V$, dann ist

$$U^{\perp} = \{ f \in V^* : f(U) = (0) \},$$

ein Unterraum von V^* , das duale Komplement von U in V^* .

10.1 SÄTZE FÜR UNENDLICH DIMENSIONAL

• Sei $f \in \text{Hom}_K(V, U)$, dann wird durch

$$f^*: U^* \rightarrow V^*, h \mapsto f^*(h) = h \circ f \in V^*,$$

ein Homomorphismus definiert.

10.2 SÄTZE FÜR ENDLICH DIMENSIONAL

Sei V endlich dimensional mit $\dim_K V = n$ und Basis $\mathcal{B} = \{v_i \in V : 1 \le i \le n\}$.

■ $\mathcal{B}^* = \{ \nu_i^* \in V : 1 \le i \le n \}$ ist eine Basis von V^* , insbesondere sind V und V^* isomorph. Der Isomorphismus

*:
$$V \to V^*$$
, $\sum_{i=1}^n \lambda_i \nu_i \mapsto \sum_{i=1}^n \lambda_i \nu_i^*$,

hängt dabei ganz wesentlich von B ab.

- Sei $f \in V^*$, dann ist $f = \sum_i f(v_i)v_i^*$.
- Ist $(v_1, ..., v_k)$ Basis von U, dann ist $(v_{k+1}^*, ..., v_n^*)$ Basis von U^{\perp} . Insbesondere gilt $\dim_K U^{\perp} = \dim_K V \dim_K U$.
- Sei $v \in V$. Definiere

$$f_{\nu}: V^* \to K, f_{\nu}(x) = x(\nu),$$

dann ist $f_{\mathcal{V}} \in V^{**}$ ein Homomorphismus. Die Abbildung

$$\mathcal{E}: V \to V^{**}, \nu \mapsto f_{\nu},$$

ist ein Isomorphismus.

- *Ist* $b \in B$, dann gilt $b^{**} = f_b$.
- Sei $f \in \operatorname{Hom}_K(V,U)$ und $f^* \in \operatorname{Hom}_K(U^*,V^*)$ der zugehörige Homomorphismus, dann gilt
- (a) $\ker f^* = (\operatorname{im} f)^{\perp}$.
- (b) $\dim_K(\operatorname{im} f) = \dim_K(\operatorname{im} f^*)$.
- (c) f^* ist surjektiv $\Leftrightarrow f$ ist injektiv
- (d) f^* ist injektiv $\Leftrightarrow f$ ist surjektiv
- (e) Das Diagramm kommutiert

- (f) Ist $g \in \text{Hom}_K(U, W)$, dann gilt $(g \circ f)^* = f^* \circ g^*$.
- Sei $f \in \text{Hom}_K(V,U)$ und $C = \{u_i : 1 \le i \le m\}$ Basis von u. Sei $A = \mathfrak{M}_f(C,\mathcal{B})$, dann ist $\mathfrak{M}_{f^*}(\mathcal{B}^*,C^*) = A^t$.

11 Bilinearformen

- Sei $\mathcal{B} = \{ \nu_i \in V : i \in I \}$ Basis von V und sei $f : \langle \cdot, \cdot \rangle : V \times V \to K$ eine Bilinearform, dann ist f durch die Angabe der Skalare $\lambda_{ij} = \langle \nu_i, \nu_j \rangle$ eindeutig bestimmt. Die Matrix (λ_{ij}) heißt Grammatrix G der Bilinearform f bezüglich der Basis \mathcal{B} .
- Sei $\langle x, y \rangle = 0$, so heißt x linksorthogonal zu y und y rechtsorthogonal zu x.
- Linksradikal und Rechtsradikal einer Bilinearform f sind definiert als

$$rad_{l}(f) = \{x \in V : f(x, y) = 0, \ \forall \ y \in V\},\$$
$$rad_{r}(f) = \{x \in V : f(y, x) = 0, \ \forall \ y \in V\}.$$

• Sei f bilinear, dann wird durch

$$E_l: V \to V^*, \nu \mapsto \lambda_{\nu}, \quad \lambda_{\nu}: V \to K, x \mapsto f(\nu, x),$$

der zu f assoziierte kanonische Linkshomomorphismus definiert. Analog dazu wird $E_r(v) = \rho_v$ mit $\rho_v(w) = f(w, v)$ definiert.

11.1 SÄTZE FÜR BILINEARFORMEN

Sei V Vektorraum und f bilinearform.

- $\operatorname{rad}_{l}(f)$, $\operatorname{rad}_{r}(f) \leq V$.
- $\operatorname{rad}_l(f) = \ker E_l \text{ und } \operatorname{rad}_r(f) = \ker E_r.$
- $f \to E_l^f$ und $f \to E_r^f$ definieren Bijketionen zwischen der Menge der Bilinearformen auf V und $\text{Hom}_K(V,V^*)$.

Sei V endlich dimensional mit $\dim_K V = n$ und Basis $\mathcal{B} = \{v_i \in V : 1 \le i \le n\}$.

- $\operatorname{rad}_{l}(f) = \ker \mathcal{G}_{f}(\mathcal{B})^{t}, \operatorname{rad}_{r}(f) = \ker \mathcal{G}_{f}(\mathcal{B}).$
- Sei B* die duale Basis, dann ist

$$\mathcal{M}_{E_r}(\mathcal{B}^*,\mathcal{B}) = \mathcal{G}_f(\mathcal{B}) = \mathcal{M}_{E_l}(\mathcal{B}^*,\mathcal{B})^t$$

■ Ist f alternierend oder symmetrisch, so ist $x \perp y \Leftrightarrow y \perp x$ und es gilt $rad_I(f) = 12.1$ Unendliche Dimension $rad_r(f)$.

• Ist f symmetrisch, dann ist $E_l = E_r$.

• Ist f alternierend, dann ist $E_l = -E_r$.

• Ist char K = 2, dann ist symmetrisch \Leftrightarrow alternierend.

• f ist symmetrisch $\Leftrightarrow G_f(\mathcal{B})$ ist bezüglich einer Basis \mathcal{B} symmetrisch.

• f ist alternierend $\Leftrightarrow G_f(\mathcal{B})$ ist bezüglich einer Basis \mathcal{B} schiefsymmetrisch ($A^t =$ -A).

12 Tensorprodukt

• Der freie Vektorraum $\mathcal{F}(V \times W)$ ist der K-Vektorraum, bestehnd aus Folgen von *Elementen von K, die mit V* \times *W indiziert sind.*

$$\mathcal{F}(V\times W)=\left\{(k_{vw}): \textit{fast alle } k_{vw}=0\right\}.$$

• Ein K-Vektorraum W zusammen mit einer k-fachen linearen Abbildkung $\iota: V_1 \times \ldots \times$ $V_k \rightarrow W$ heißt Tensorprodukt, falls folgende universelle Eigenschaft erfüllt ist: Ist $f: V_1 \times ... \times V_k \to U$ multilinear, so gibt es genau eine Abbildung $\hat{f} \in \text{Hom}_K(W, U)$ mit $\hat{f} \circ \iota = f$. Für W schreiben wir $V_1 \otimes ... \otimes V_k$.

Seien V, W K-Vektorräume und $\mathcal{B} = \{v_i \in V : i \in \mathcal{I}\}, C = \{w_j \in W : j \in \mathcal{I}\}$ Basen.

• Existieren ι und W, so ist W eindeutig bis auf Isomorphie.

■ W wird von Elementen der Form $\{v_1 \otimes ... \otimes v_k = \iota(v_1,...,v_k) : v_i \in V_i 1 \le i \le k\}$ erzeugt.

■ $W \cong \mathcal{F}(V_1 \times ... \times V_k)/I$, wobei I der von der multilinearen Relation erzeugte Unterraum ist.

• Ein Spezialfall: $V \otimes K \cong V$.

■ Seien U, V, W K-Vektorräume, dann gilt

(a) $V \otimes W \cong W \otimes V$.

(b) $(U \otimes V) \otimes W \cong U \otimes (V \otimes W) \cong U \otimes V \otimes W$.

 Das Tensorprodukt ist eine assoziative, kommutative Operation auf der Klasse der K-Vektorräume.

■ Das Tensorprodukt ist distributiv über \bigoplus . Seien I, J Indexmengen und V_i , $i \in I$ und $W_i, j \in J$ K-Vektorräumge, dann gilt

$$\left(\bigoplus_{i\in I}V_i\right)\bigotimes\left(\bigoplus_{j\in J}W_j\right)\cong\bigoplus_{i,j}\left(V_i\bigotimes W_j\right).$$

• Ist $\mathcal{B}_i = (v_{i1}, \dots, v_{in_i})$ Basis von V_i , so ist

$$\mathcal{B} = \mathcal{B}_1 \bigotimes \ldots \bigotimes \mathcal{B}_k = \left\{ v_{1i_1} \bigotimes \ldots \bigotimes v_{ki_k} : 1 \le i_{\nu} \le n_{\nu}, 1 \le \nu \le k \right\}$$

Basis von $V_1 \otimes ... \otimes V_k$.

• Sind $\phi_{\mathcal{V}} \in \operatorname{Hom}_K(V_{\mathcal{V}}, X_{\mathcal{V}})$ $(1 \le \mathcal{V} \le k)$, so wird durch

$$\phi = \phi_1 \bigotimes \ldots \bigotimes \phi_k : V_1 \bigotimes \ldots \bigotimes V_k \to X_1 \bigotimes \ldots \bigotimes X_k \text{ mit}$$

$$\phi \left(\sum \lambda_{i_1 \ldots i_k} \nu_{i_1} \bigotimes \ldots \bigotimes \nu_{i_k} \right) = \sum \phi_1(\nu_{i_1}) \bigotimes \ldots \bigotimes \phi_k(\nu_{i_k}),$$

eine K-lineare Abbilduna definiert.

12.2 ENDLICHE DIMENSION

- Sei $Y = \{f : V \times W \to K : f \text{ bilinear}\}$, dann ist die Abbildung $j : V \times W \to Y^*$, $j(v,w) = \alpha_{v,w} \text{ mit } \alpha_{v,w}(g) = g(v,w) \text{ bilinear}$.
- Sei $f: V \times W$ bilinear, dann existiert genau eine Abbildung $\hat{f}: Y^* \to U$, sodass $\hat{f} \circ j = f$. Es gilt also $V \otimes W \cong Y^*$.

13 Symmetrische Gruppen

■ Sei G eine Gruppe, $|G| < \infty$ und $g \in G$, dann gibt es ein $k \in \mathbb{N}$, dass $g^k = 1_G$. Die kleinste natürliche Zahl für die dies gilt heißt Ordnung |g| von $g \in G$.

Sei $\pi \in \sigma_n$ und $1 \le i \le n$.

- Es existiert eine kleinste Zahl $k \in \mathbb{N}$ für die gilt $\pi^j(i) = i$. Die Elemente aus $B = \left\{\pi^k(i): 0 \le j \le k-1\right\}$ paarweise verschieden und B heißt Bahn von i unter π oder Zykel. k ist die Länge der Bahn.
- ullet Ein Zykel ist eine Permutation π mit höchstens einer Bahn der Länge l>1.
- Ein Zykel der Länge 2 heißt Transposition. Eine Transposition der Form (k, k + 1) heißt Fundamentaltransposition.
- Ein reduzierter Ausdruck von π ist ein Produkt von Fundamentaltranspositionen $\pi = (i_1, i_1 + 1) \dots (i_l + i_l + 1)$, sodass l minimal ist. l nennt man die Länge der Permutation π und bezeichnet sie mit $l(\pi)$.
- Die Menge der Fehlstände von π ist definiert als

$$\{[i,j]: 1 \le i < j \le n \text{ und } \pi(i) > \pi(j)\}.$$

Die Anzahl der Fehlstände wird mit $n(\pi)$ bezeichnet.

■ Eine Permutation heißt gerade bzw. ungerade, wenn $l(\pi)$ gerade, also $sign \pi = 1$ bzw. ungerade, also $sign \pi = -1$ ist.

- Zwei Elemente $x, y \in G$ heißen konjugiert, falls es ein $g \in G$ gibt, sodass $x = gyg^{-1}$. Für $x \in G$ heißt die Menge $\{gxg^{-1} : g \in G\}$ Konjugationsklasse von x.
- Eine Partition von $n \in \mathbb{N}$ ist eine Folge (λ_i) mit $\lambda_i \in \mathbb{N}_0$, $\lambda_i \geq \lambda_{i+1}$ und $\sum_i \lambda_i = n$.
- Der Zykeltyp von π ist die Partition von n, die entsteht, wenn man π als Produkt von disjunkten Zykeln schreibt und die Länge der Zykel absteigend ordnet.

13.1 SÄTZE...

Sei $\pi \in \sigma_n$ und $\mathfrak{M} = \{i : 1 \le i \le n\}.$

- $s \sim t \Leftrightarrow \pi^k(s) = t$ für ein $k \in \mathbb{N}_0$, definiert für $s, t \in \mathbb{M}$ eine Äquivalenzrelation auf \mathbb{M} . Die Äquivalenzklassen sind gerade die Bahnen $s^{[\pi]}$ unter π .
- \mathfrak{M} ist disjunkt zerlegt in Bahnen bezüglich π .
- Disjunkte Zykler kommutieren.
- Jedes $\pi \in \sigma_n$ kann bis auf die Reihenfolge der Faktoren eindeutig als Produkt aus disjunkten Zykeln geschrieben werden.
- $|\pi|$ ist das kleinste gemeinsame Vielfache der Länge der Bahnen von π .
- Jede Permutation $\pi \in \sigma_n$ kann als Produkt von Transpositionen geschrieben werden.
- Jede Transposition kann als Produkt von Fundamentaltranspositionen geschrieben werden.

$$n(\pi(k, k+1)) = \begin{cases} n(\pi) + 1, & \text{falls } \pi(k) < \pi(k+1), \\ n(\pi) - 1, & \text{falls } \pi(k) > \pi(k+1). \end{cases}$$

- $l(\pi) = n(\pi)$.
- Kein Produkt einer geraden Anzahl von (Fundamental-)transpositionen ist gleich einem Produkt einer ungeraden Anzahl.
- $sign : \sigma_n \to \{-1,1\}, \pi \mapsto sign(\pi)$ ist ein Gruppenhomomorphismus.

■ Die Relation ~ gegeben durch $x \sim y$ genau dann, wenn ein $g \in G$ existiert, sodass eine Basis von des von y erzeugten f-zyklischen Unterraums von Y. Wir nennen \mathcal{B} $x = g y g^{-1}$ ist eine Äquivalenzrelation.

• Sei $\sigma = (a_1, \ldots, a_n)$ ein Zykel, dann ist $\pi \sigma \pi^{-1} = (\pi(a_1), \ldots, \pi(a_n))$.

• Zwei Elemente von σ_n sind genau dann konjugiert, wenn sie vom selben Zykeltyp sind.

• Es gibt eine Bijektion zwischen den Konjugationsklassen der σ_n und den Partitionen von n. Die Bijektion bildet eine Konjugationsklasse π^{σ_n} ab auf den Zykeltyp von π .

14 Jordansche Normalform

Sei V endlich dimensional und $f \in \operatorname{End}_K(V)$.

• Sei $x \in V$, dann nennt man $W = \langle f^i(x) : i \geq 0 \rangle$, den von x erzeugten f-zyklischen Unterraum von V.

• Sei $p(t) \in K[t]$ ein Polynom, dann erfüllt f(p(t)), falls $p(f) \equiv 0$.

• Ein Jordanblock $J_{\lambda}(k)$ ist eine $k \times k$ -Matrix mit 1 auf der Neben- und λ auf der Diagonalen. Eine Matrix ist in Jordanform, falls ihre Blöcke auf der Diagonalen Jordanblöcke sind.

• Sei f so, dass $\chi_f(t)$ in Linearfaktoren zerfällt. Eine Jordanbasis von f ist eine Basis \mathcal{B}_f von V, sodass $\mathfrak{M}_f(\mathcal{B}_f)$ in Jordanform ist.

• Der Unterraum $\mathcal{V}_{\lambda}(f)$ heißt verallgemeinerter Eigenraum zum Eigenwert λ von f. Seine Elemente heißen verallgemeinerte Eigenvektoren.

$$\mathcal{V}_{\lambda}(f) = \cup_{i=1}^{\infty} \ker(f - \ell_{\lambda})^{i} = \left\{ v \in V : \exists p \in \mathbb{N} : (f - l_{\lambda})^{p}(v) = 0 \right\}.$$

• Sei γ verallgemeinerter Eigenvektor zu λ und $p \in \mathbb{N}$, sodass $(f - \ell_{\lambda})^{p}(\gamma) = 0$, dann

$$\mathcal{B} = ((f - \ell_{\lambda})^{p-1}(\nu), (f - \ell_{\lambda})^{p-2}(\nu), \dots, (f - \ell_{\lambda})(\nu), \nu)$$

 λ -Zykel von f. Dabei heißt ν Anfangs- und $(f - \ell_{\lambda})^{p-1}(\nu)$ Endvektor des Zykels.

• Eine Fahne der Länge k in V ist eine aufsteigende Kette

$$f:(0) = U_0 \le U_1 \le \ldots \le U_{k-1} \le U_k = V$$

von Unterräumen U_i von V. Eine Basis $\mathcal{B} = (v_1, \dots, v_n)$ von V heißt an \mathfrak{f} angepasst, falls (v_1, \ldots, v_{m_i}) eine Basis von U_i ist, wobei $m_i = \dim_K U_i$ für $i = 1, \ldots, k$ gesetzt wird.

14.1 SÄTZE FÜR ENDOMORPHISMEN

- Sei $U \leq V$ f-invariant und $\hat{f} = f|U$, dann gilt $\chi_{\hat{f}}(t)|\chi_{f}(t)$.
- Ein f-zyklischer Unterraum ist f-invariant.

Sei $x \in V$ und W der von x erzeugte f-zyklische Unterraum von V mit $1 \le k = 1$ $\dim_K(W)$.

- $\mathbf{B}_W = (x, f(x), f^2(x), \dots, f^{k-1}(x))$ ist eine Basis von W.
- Sei $f^k(x) = -\alpha_0 x \alpha_1 f(x) \ldots \alpha_{k-1} f^{k-1}(x)$, dann ist $\chi_{\hat{f}}$ für $\hat{f} = f|U$ gegeben als $\chi_{\hat{t}}(t) = t^k + \alpha_{k-1}t^{k-1} + \ldots + \alpha_0$.

Cayley-Hamilton Sei $f \in \text{End}_K(V)$, dann erfüllt f sein charakteristisches Polynom.

- $\ker(f l_{\lambda}) \leq \ker(f l_{\lambda})^2 \leq \ldots \leq \ker(f l_{\lambda})^i \leq \ldots$ ist eine aufsteigende Kette von Unterräumen von V. die terminiert.
- Sei λ ein Eigenwert von $f \in \operatorname{End}_K(V)$, dann ist $\mathcal{V}_{\lambda}(f)$ ein f-invarianter Unterraum von V, der $V_{\lambda}(f)$ enthält.
- Sei B ein λ -Zykel, dann ist B Basis des vom Anfangsvektor erzeugten, $(f-\ell_{\lambda})$ zyklischen Unterraums von W und dieser ist f-invariant. Die Einschränkung von f auf W besitzt genau einen eindimensionalen Eigenraum und dieser wird vom Endvektor des Zykels B erzeugt.
- Ist B Basis, dann ist B genau dann Jordanbasis von f, wenn sie eine disjunkte Vereinigung von Zykeln verallgemeinerter Eigenvektoren von f ist.

• Zerfällt $\chi_f(t)$ in Linearfaktoren, dann ist V die direkte Summe seiner verallgemeiner- 14.2 SÄTZE FÜR JORDANKÄSTCHEN ten Eigenräume

$$V=\bigoplus_{\lambda}\mathcal{V}_{\lambda}(f),$$

wobei λ die Menge der Eigenwerte von f durchläuft.

- Seien $\lambda_1, \ldots, \lambda_k$ die verschiendenen Eigenwerte von f. Sei \mathcal{B}_i die Basis des verallgemeinerten Eigenraums $\mathcal{V}_{\lambda_i}, \mathcal{B} = \bigcup_{i=1}^k \mathcal{B}_i$ und sei f_i die Einschränkung von f auf \mathcal{V}_i , dann ist $\mathfrak{M}_f(\mathcal{B}) = \operatorname{diag}\{A_1, \dots, A_k\}$, wobei $A_i = \mathfrak{M}_{f_i}(\mathcal{B}_i)$ ist.
- Sei λ Eigenwert von f. Es seien λ -Zykeln Z_i alle mit derseleben Länge t gegeben $(1 \le i \le s)$ und es sei y_i der Anfangsvektor von Z_i . Ist die Menge $\{y_i : 1 \le i \le s\}$ linear unabhängig modulo $\ker(f-\ell_{\lambda})^{t-1}$, so ist $Z=\bigcup_{i=1}^{s} Z_{i}$ linear unabhängig.
- Seien die Vektoren $\{y_i: 1 \le i \le s\} \subset \ker(f \ell_{\lambda})^t$ im Faktorraum $\ker(f \ell_{\lambda})^t$ $(\ell_{\lambda})^t/\ker(f-\ell_{\lambda})^{t-1}$ linear unabhängig, dann sind die von den v_i erzeugten λ -Zykel paarweise disjunkt.
- Sei $\mathcal{N}_r = \mathcal{N}_{r+1}$, dann ist $\mathcal{N}_r = \mathcal{N}_{r+i}$ für iedes $i \in \mathbb{N}$.
- Sei $A \in M_n(K)$ und zerfällt $\chi_A(t)$ in Linearfaktoren, so gibt es eine Matrix $P \in$ $GL_n(K)$, sodass $P^{-1}AP$ Iordanform hat.
- Zerfällt $\chi_f(t)$ in Linearfaktoren, so besitzt V eine Jordanbasis bezüglich f.
- Die Unterräume $\ker(f-\ell_{\lambda})^i$ des $\mathcal{V}_{\lambda}(f)$ bilden eine Fahne. Die zugehörige Jordanbasis ist angepasst.
- Sei $A \in M_n(K)$ in Jordanform, dann existieren eine Diagonalmatrix D und eine nilpotente Matrix N, die kommutieren, sodass

$$A = D + N$$
, $DN = ND$.

• Seien $A, N \in M_n(K)$ ähnlich und N nilpotent (unipotent), dann ist A nilpotent (unipotent).

Jordanzerlegung Sei $A \in M_n(K)$ und $\chi_A(t)$ zerfallen in Linearfaktoren, dann gibt es eine diagonalisierbare Matrix S und eine nilpotente Matrix N mit

$$A = S + N$$
, $SN = NS$.

- Sei $J = J_{\lambda}(k)$, dann ist $\dim_K \ker(J \lambda E)^i = i$, für $1 \le i \le k$ und $\dim \ker(J \lambda E)^i = k$ für i > k.
- Sei A eine Matrix in Blockdiagonalform, deren s Diagonalblöcke Jordankästchen $J_i =$ $J_{\lambda}(i)$ sind. Sei $n_i = \dim_K(\ker(A - \lambda E)^i)$, und k_i sei die Anzahl der vorkommenden Kästchen J_i . Sei $n_{r-1} < n_r = n_{r+1}$, dann gilt $n_i - n_{i-1} = \sum_{l=i}^{r} k_l$.

15 Ringtheorie

- Sei $\emptyset \neq S \subseteq R$. Dann ist S ein Unterring von R genau dann, wenn gilt
- (a) $r s \in S$ für alle $r, s \in S$ ((S, +) ist abelsche Gruppe von (R, +)).
- (b) $rs \in S$ für alle $r, s \in S$.

Ein Unterring muss kein Einselement haben, außerdem ist $1_R \neq 1_S$ möglich, ist aber $1_R \in S$, so ist $1_S = 1_R$ das Einselement von S.

- Seien S, R Ringe und $f: R \to S$, dann heißt f Ringhomomorphismus, falls gilt
- (a) $f(a+b) = f(a) + f(b), \forall a, b \in R$.
- (b) $f(ab) = f(a)f(b), \forall a, b \in R$.

Gilt $f(1_R) = 1_S$, sagt man f erhält das Einselement. $\ker f = \{r \in R : f(r) = 0\}$ heißt Kern, $\operatorname{im} f = \{f(r) \in S : r \in R\}$ heißt Bild.

Ein Unterring S von R heißt Linksideal bzw. Rechtsideal, falls

$$rs \in S(sr \in S) \ \forall \ r \in R, s \in S.$$

Ist S sowohl Links- als auch Rechtsideal, heißt S Ideal und man schreibt $S \leq R$.

- Alle Ideale von R außer (0) und R selbst heißen nichttrivial bzw. echt.
- Ein Ideal M heißt maximal, falls es kein größeres echtes Ideal gibt, also für alle Ideale $I \text{ ailt } M \subseteq I \subseteq R \Rightarrow M = I.$

- Sei $I ext{ } ex$ definiert. R/I bezeichnet die Menge der Äguivalenzklassen.
- R/I wird zum Ring durch

$$(r+I) + (s+I) = (r+s) + I,$$

 $(r+I) \cdot (s+I) = (rs) + I.$

Diesen Ring nennt man Faktorring. Die natürliche Projektion $\pi: R \to R/I, r \mapsto r + I$ *ist* ein Ringhomomorphismus.

- Ein Ideal I von R heißt endlich erzeugt, falls es eine endliche Teilmenge S von R gibt, so dass $\langle S \rangle = I$. S heißt dann Erzeugendensystem von I. Besteht S aus genau einem Element, so heißt I Hauptideal. In diesem Fall ist $I = sR = \{sr : r \in R\}$.
- Ein Ring in dem alle Ideale endlich erzeugt sind heißt noethersch.
- Seien $I, J \leq R$. Das Produkt $I \cdot J$ ist das Ideal von R, das von der Menge $\{a \cdot b : a \in I, b \in J\}$ erzeugt wird.
- Der Polynomring R[x] besteht aus formalen Summen $\sum_{i=0}^{n} \alpha_i x^i$, wobei x Unbestimmte und $\alpha_i \in R$ ist. Ist p(x) Polynom mit $\alpha_k \neq 0$ aber $\alpha_m = 0$ für m > k, so ist heißt k der *Grad* deg p(x) *von* p(x).
- Ein Element $a \in R$ heißt Nullteiler, falls es ein $0 \neq b \in R$ gibt mit ab = 0. Besitzt Raußer 0 keinen Nullteiler, so heißt R Integritätsbereich oder Nullteilerfrei.
- Ein Integritätsbereich R heißt Hauptidealring, falls jedes Ideal von R ein Hauptideal ist.
- Sei R Integritätsbereich. Auf der Menge $\{(a,b) \in R \times R : b \neq 0\}$ definieren wir eine Äquivalenzrelation durch $(a,b) \sim (c,d) \Leftrightarrow ad = bc$. Die Äquivalenzklasse von (a,b)wird mit $\frac{a}{b}$ bezeichnet. Wir definieren für $a, b, c, d \in R, b, d \neq 0$ eine Addition und eine Multiplikation durch

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd},$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Die Abbildung $R \to K, r \mapsto \frac{r}{1}$ ist ein Ringmonomorphismus.

- Ein Integritätsbereich R heiß euklidischer Ring, falls es eine Abbildung deg: $R \rightarrow$ $\mathbb{N} \cup \{-1\}$ gibt, sodass
- (a) Für alle $r \in R$ mit $r \neq 0$ gilt $\deg(0) < \deg(r)$.
- (b) Für $f,g \in R$ mit $g \neq 0$ gibt es $q,r \in R$ mit $\deg(r) < \deg(g)$, sodass f = qg + r
- $a, b \in R$ heißen assoziiert, falls es eine Einheit $u \in U(R)$ gibt, sodass a = bu.
- Sei R Integritätsbereich und $a,b \in R$ $c \in R$ heißt größter gemeinsamer Teiler von a und b ggT(a, b), falls gilt
- (a) $c \mid a \text{ und } c \mid b$
- (b) Ist $d \in R$ mit $d \mid a$ und $d \mid b$, so gilt $d \mid c$.
- Sei R Integritätsbereich und $a, b \in R$. $c \in R$ heißt kleinstes gemeinsames Vielfaches von a und b kgV(a,b), falls gilt
- (a) $a \mid c$ und $b \mid c$
- (b) Ist $d \in R$ mit $a \mid d$ und $b \mid d$, so gilt $c \mid d$.
- Sei R kommutativer Ring mit 1.
 - (a) Sei $\mathcal{P} \leq R$, dann heißt \mathcal{P} Primideal, falls gilt. Sind $x, y \in R$ mit $xy \in \mathcal{P}$, so ist $x \in \mathcal{P}$ oder $y \in \mathcal{P}$.
- (b) $0 \neq a \in R$ heißt irreduzibel, falls $a \notin U(R)$ und a = xy für $x, y \in R \Rightarrow x \in U(R)$ oder $y \in U(R)$.
- (c) $0 \neq a \in R$ heißt Primelement, falls aR Primideal ist, d.h. $a|xy \Rightarrow a|x$ oder a|y.
- (d) $0 \neq a \in R$ besitzt eine Zerlegung in irreduzible Faktoren, falls $a = \varepsilon \prod_{i=1}^r \pi_i$, mit $\varepsilon \in U(R)$ und π_i irreduzibel. a besitzt eine eindeutige Zerlegung in irreduzibel Faktoren, falls zusätzlich gilt ist $a = \varepsilon' \prod_{i=1}^r \pi'_i$ mit $\varepsilon' \in U(R)$ und π'_i irreduzibel, dann gibt es eine Umordnung, sodass π_i und π'_i assoziiert sind.

■ Ein Integritätsbereich heißt faktoriell oder UFD unique factorisation domain, falls 15.2 SÄTZE FÜR INTEGRITÄTSBEREICHE jedes Element $0 \neq a \in R$ eine eindeutige Zerlegung in irreduzible Elemente bestizt.

15.1 RINGTHEORIE SÄTZE

Seien R, S Ringe, $f: R \to S$ Ringhomomorphismus und $I, J \leq R$.

- Die Menge der invertierbaren Elemente U(A) eines Rings mit 1 oder einer K-Algebra A ist multiplikativ abgeschlossen und bildet mit der Multiplikation eine Gruppe.
- Seien R, S Ringe, $f: R \to S$ Ringhomomorphismus, dann gilt
- (a) (0), $R \le R$. Alle anderen Ideale heißen echt.
- (b) f ist surjektiv \Leftrightarrow im f = S und f ist injektiv \Leftrightarrow ker f = (0).
- (c) $\ker f \leq R$. Ist f surjektiv, so gilt $\operatorname{im} f \leq S$.
- (d) Der Durchschnitt von beliebig vielen Idealen von R ist Ideal von R.
- (e) Sei $A \subseteq R$, dann ist $\langle A \rangle$ das kleinste Ideal, das A enthält.
- (f) $I + J = \langle I \cup J \rangle$ das eindeutig bestimmte, kleinste Ideal, das I und J enthält.
- (g) Die Isomorphiesätze I III gelten ebenfalls für Ringe.
- Ist $J \subseteq I$, dann ist J Ideal von I.
- Durch $r \sim s \Leftrightarrow r s \in I$, für $r, s \in R$ wird eine Äquivalenzrelation definiert.
- R/I genau dann ein Körper, wenn I ein maximales Ideal ist.
- Sei R ein Ring, dann sind folgenden Bedingungen äguivalent
- (a) R ist noethersch.
- (b) *Jede aufsteigende Kette von Idealen in R wird stationär.*
- (c) *Iede nichtleere Menae von Idealen besitzt maximale Elemente.*
- $I \cdot J \subseteq I \cap J$.
- $\{Euklidische\ Ringe\} \subseteq \{HIRs\} \subseteq \{UFDs\}.$

Sei R Integritätsbereich.

- Seien $a, b \in R$, dann sind ggT(a, b) und kgV(a, b) falls sie existieren, bis auf Assoziiertheit eindeutig bestimmt.
- R ist Integritätsbereich \Leftrightarrow (0) ist Primideal von R.
- $P \leq R$ ist Primideal $\Leftrightarrow R/P$ ist Integritätsbereich.
- M ist maximales Ideal \Rightarrow M ist Primideal.
- $p \in R$ ist Primelement $\Rightarrow p$ ist irreduzibel.
- Sei R UFD und $p \in R$ irreduzibel, dann ist p Primelement.
- R ist UFD genau dann, wenn beiden Eigenschaften gelten
- (a) Jede aufsteigende Kette von Hauptidealen wird stationär.
- (b) *Jedes irreduzibel Element von R ist Primelement.*

15.3 SÄTZE FÜR HIR

- Sei $a \in R$, dann ist aR = R genau dann, wenn $a \in U(R)$.
- Euklidische Ringe sind Hauptidealringe.
- \mathbb{Z} und K[x] sind HIRs.
- Sind $a, b \in R$, dann gilt $a \mid b \Leftrightarrow bR \subseteq aR$.
- Assoziiert sein ist eine Äquivalenzrelation.
- $a, b \in R$ assoziiert $\Leftrightarrow aR = bR \Leftrightarrow a|b$ und b|a.
- Seien $a, b \in R$, dann existieren ggT(a, b) und kgV(a, b) und es gilt
- (a) aR + bR = ggT(a,b)R.
- (b) $aR \cap bR = \text{kgV}(a,b)R$.

(c) $(aR) \cdot (bR) = (ab)R$.

• Jedes Primideal $P \neq (0)$ von R ist maximal und daher ist R/P ein Körper.

15.4 FÜR K-ALGEBREN

Sei R K-Algebra.

■ Durch $k \mapsto k \cdot 1_R$ wird ein Ringhomomorphismus definiert, der 1_K auf 1_R abbildet. Insbesondere ist dieser Homomorphismus nicht die Nullabbildung und daher injektiv, da K keine echten Ideale besitzt.

■ Jedes Ideal von R ist abgeschlossen gegenüber skalarer Multiplikation mit Elementen aus K und deshalb automatisch ein K-Vektorraum.

• Man braucht nicht zwischen Ring- und Algebraidealen zu unterscheiden.

15.5 FÜR POLYNOME K[t]

■ Seien $h, g \in K[t]$ und sei $\deg g \leq \deg h$, dann gibt es Polynome $q, r \in K[t]$ mit $\deg r < \deg g$, sodass h(t) = q(t)g(t) + r(t).

■ Sei $I ext{ } ext{$\leq$ } E[t]$ und $p \in I$ ein nichttriviales Polynom minimalen Grades in I. Dann ist I = pK[t] und wir haben I = rK[t] für ein $r \in K[t]$ genau dann, wenn $r = \beta p$ für $0 \neq \beta \in K$ ist. Daher gibt es genau ein normiertes Polynom $q \in I$, sodass I = qK[t].

• Der Polynomring $K[x_1,...,x_n]$ über K hat folgende universelle Eigenschaft

(a) Es gibt eine Abbildung $\iota: \{1, ..., n\} \to K[x_1, ..., x_n]$. (Gegeben durch $\iota(i) = x_i$)

(b) Ist R eine kommutative K-Algebra mit 1 und $f:\{1,\ldots,n\}\to R$, dann gibt es genau einen K-Algebraautomorphismus $\hat{f}:K[x_1,\ldots,x_n]\to R$ mit $\hat{f}(x_i)=f(i)$.

16 Minimalpolynom

Sei $f \in \operatorname{End}_K(V)$

• $\mathcal{I}_f = \{p(t) \in K[t] : p(f) \equiv 0\} \leq K[t]$ ist das sogenannte Verschwindungsideal.

■ Das eindeutig bestimmte normierte Polynom kleinsten Grades in I_f heißt Minimalpolynom von f und wird mit $\mu_f(t)$ bezeichnet. Analog ist $\mu_A(t)$ definiert.

16.1 MINIMALPOLYNOMSÄTZE

■ Sei $p \in K[t]$ so, dass $f(p) \equiv 0$, dann gibt es ein $q(t) \in K[t]$, sodass $p(t) = q(t)\mu_f(t)$. Insbesondere gilt $\mu_f(t)|\chi_f(t)$.

■ Die Minimalpolynome ähnlicher Matritzen stimmen überein.

• $\lambda \in K$ ist genau dann Nullstelle von $\mu_f(t)$, wenn λ Nullstelle von $\chi_f(t)$ ist.

■ Zerfalle $\chi_f(t)$ in Linearfaktoren. Sei $V = V_1 \oplus \ldots \oplus V_k$ eine Zerlegung von V in f-invariante Unterräume V_i . Sei μ_i das Minimalpolynom von $f_i = f|V_i$, dann gilt $\mu_f|\prod_{i=1}^k \mu_i(t)$ und $\mu_i(t)|\mu_f(t)$ für $1 \le i \le k$. Sind daher die $\mu_i(t)$ paarweise teilerfremd, so gilt $\mu_f(t) = \prod_{i=1}^k \mu_i(t)$.

■ Sei $A = \text{diag}\{J_1, ..., J_k\}$ Blockdiagonalmatrix und zerfalle $\chi_A(t)$ in Linearfaktoren, dann ist $\mu_A(t) = \prod_{i=1}^k \mu_{J_i}(t)$, falls die $\mu_{J_i}(t)$ paarweise teilerfremd sind.

• Sei $\chi_f(t) = \prod_{i=1}^k (t-\lambda_i)^{n_i}$, mit λ_i paarweise verschieden , dann ist $\mu_f(t) = \prod_{i=1}^k (t-\lambda_i)^{m_i}$, wobei m_i die kleinste natürliche Zahl s ist mit $\ker(f-\ell_{\lambda_i})^s = \ker(f-\ell_{\lambda_i})^{s+1}$. Insbesondere ist f diagonalisierbar genau dann, wenn $m_i = 1$, $\forall \ 1 \le i \le k$.

17 Moduln

Sei R ein Ring mit 1 oder K-Algebra.

- Ein R-Linksmodul ist eine abelsche Gruppe (M,+), zusammen mit einer äußeren binären Operation $R \times M \to M$, $(a,m) \mapsto am$, sodass gilt
- (a) $1_R m = m \ \forall \ m \in M$.
- (b) $a(bm) = (ab)m \ \forall \ a,b \in R, m \in M$.
- (c) $(a+b)m = am + bm \ \forall \ a,b \in R, m \in M$.
- (d) $a(m_1 + m_2) = am_1 + am_2 \ \forall \ a \in \mathbb{R}, \ \forall \ m_1, m_2 \in M$.

Ein R-Rechtsmodul wird analog definiert. Ist R kommutativer Ring bzw. kommutative K-Algebra, dann ist M sowohl Links- als auch Rechtsmodul und wird einfach als Modul bezeichnet.

Seien M, N R-Moduln.

- RR wird regulärer Modul genannt.
- Eine Abbildung $f: M \to N$ heißt R-Modulhomomorphismus, falls f ein Homomorphismus der zugrundeliegenden abelschen Gruppe ist, der zusätzlich die R-Operation respektiert. Die Menge $\ker f = \{m \in M : f(m) = 0_N\}$ heißt Kern, $\operatorname{im} f = \{f(m) : m \in M\}$ heißt Bild.
- Eine Teilmenge $\emptyset \neq U \subseteq M$ heißt Untermodul, falls (U, +) abelsche Untergruppe von (M, +) ist und $r \cdot u \in U \ \forall \ r \in R, u \in U$. Wir schreiben $U \leq M$.
- Sei $S \subseteq M$. Der von S erzeugte Untermoduln $U = \langle S \rangle$ ist definiert als der kleinste Untermoduln von M, der S enthält.
- $Sei \varnothing \neq S \subseteq M$ $mit \langle S \rangle = M$, dann heißt S Erzeugendensystem von M und M heißt endlich erzeugt (e.e.), falls es ein endlich es Erzeugendensystem gibt.
- Sei $S \subseteq M$ Erzeugendensystem von M, dann ist S ein minimales Erzeugendensystem, falls $\langle T \rangle \not\equiv M$ für jede echte Teilmenge T von S.

- Sei $U \le M$. Wir definieren eine Äquivalenzrelation $\equiv \mod U$ auf M durch $x \equiv y \mod U \Leftrightarrow x y \in U$ für $x, y \in M$. Auf der Menge M/U der Äquivalenzklassen ist eine Addition und eine äußere Operation wohldefiniert, wodurch M/U zum R-Modul, dem Faktormodul wird.
- $lue{}$ Ein Modul heißt frei, falls er isomorph zu einer direkten Summe von Kopien des regulären R-Moduls $_RR$ ist.
- Eine Teilmenge $S \subseteq M$ heißt linear unabhängig, falls es keine nichttriviale Darstellung $\sum_{s \in S} r_s \cdot s = 0, r_i \in A$ fast alle 0, gibt. Ein linear unabhängiges Erzeugendensystem von M heißt Basis von M. Es gilt dann $N = \bigoplus_{s \in S} R \cdot s$.
- Eine Teilmenge $S = \{y_i : i \in I\} \subseteq M$ heißt unabhängig, falls aus $\sum_I \lambda_i y_i = 0$ folgt $\lambda_i y_i = 0 \ \forall \ i \in I$.
- Eine Folge von R-Moduln

$$M_1 \xrightarrow{a_1} M_2 \xrightarrow{a_2} M_3 \xrightarrow{a_3} \dots \xrightarrow{a_{i-1}} M_i \xrightarrow{a_i} \dots$$

mit R-Modulhomomorphismen $a_i: M_i \to M_{i+1}$ heißt exakt, falls $\ker a_{i+1} = \operatorname{im} a_i$ ist. Eine exakte Folge der Form

$$(0) \to M \xrightarrow{\alpha} N \xrightarrow{\beta} E \to (0),$$

heißt kurze exakte Folge (keF).

Sei *R* kommutativer Ring mit 1.

- Sei R noethersch, M ein R-Modul. Dann ist der Rang rg(M) definiert als Kardinalität einer Basis von M.
- Sei $m \in M$. Der Annulator von m in R ist $\operatorname{ann}_R(m) = \{r \in R : rm = 0\}$. Für $S \subseteq M$ ist $\operatorname{ann}_R(S) = \{r \in R : rm = 0 \ \forall \ m \in S\} = \bigcap_{m \in S} \operatorname{ann}_R(m)$.
- Sei $m \in M$, sodass M = Rm, dann heißt M zyklischer R-Modul.

Sei R Integritätsbereich.

• $m \in M$ heißt Torsionselement, falls $\operatorname{ann}_R(m) \neq 0$ ist. Ist 0_M das einzige, so heißt M torsionsfrei.

■ Sei $T(M) \subseteq M$ die Menge der Torsionselemente von M, dann ist $T(M) \le M$ und heißt 17.3 MODULN ÜBER RING MIT 1 Trosionsuntermodul von M. Ist T(M) = M, so heißt M Torsionsmodul.

Sei R HIR und M e.e. R-Modul.

• Sei $p \in R$, dann ist M_n der Untermodul

$$M_p = \left\{ m \in M : p^k m = 0 \; \exists \; k \in \mathbb{N} \right\}.$$

Ist $0 \neq p \in R$ Primelement, so heißt M_p Primärkomponente.

• Sei ann_R(M) = rR, dann wird r die Ordnung von M genannt und mit r = O(M)bezeichnet.

17.1 BEISPIELE

- (a) Der 0-Modul (0) ist *R*-Modul mit Operation $r \cdot 0 = 0 \ \forall \ r \in R$.
- (b) R wird zum R-Linksmodul RR, wobei R auf R durch die gewöhnliche Linksmultiplikation operiert.
- (c) Jedes Ideal von *R* ist *R*-Modul.
- (a) Sei $R = \mathbb{Z}$, dann ist \mathbb{Z} torsionsfrei und $\mathbb{Z}/2\mathbb{Z}(0 \neq z \in \mathbb{Z})$ Torsionsmodul, also $T(\mathbb{Z}/z\mathbb{Z}) = \mathbb{Z}/z\mathbb{Z}.$
- (b) Sei R = K[t], V K-Vektorraum, $f \in \text{End}_K(V)$, V der K[t]-Modul V_f , daann ist $\mathcal{O}(V_f) = \mu_f(t)$ und es gilt ann_R $(V_f) = \mu_f K[t]$ und V_f ist Torsionsmodul.

17.2 DARSTELLUNGSSÄTZE

Sei R Ring mit 1.

- Sei M ein R-Modul, dann ist $f_r: M \to M, m \mapsto mr \in \text{End}(M,+)$ und $F: R \to M$ $\operatorname{End}(M,+), r \mapsto f_r \text{ ein Ringhomomorphismus.}$
- Sei M abelsche Gruppe mit + und $F: R \to \text{End}(M, +), r \mapsto f_r$ Ringhomomorphismus, der die 1 erhält, dann wird M zum R-Modul durch rm = (F(r))(m) für $r \in R$ und $m \in M$.

Sei R Ring mit 1, M, N R-Moduln.

- Die R-Untermoduln von R sind genau die Linksideale von R.
- Der Durchschnitt beliebig vieler Untermoduln von M ist Modul. Dieser ist der eindeutig bestimmte größte Untermodul von M, der in allen Untermoduln der vorgegebenen Menge enthalten ist.
- Die natürliche Projektion $\pi: M \to M/U$, $m \mapsto m + U$ ist ein Epimorphismus.
- Sei $f: M \to N$ R-linear, dann ist ker $f \le M$ und im $f \le N$.
- **1.** Isomorphiesatz Sei $f: M \to N$ eine R-lineare Abbildung und $U \leq M$ mit $U \subseteq \ker f$, dann gibt es ein eindeutig bestimmtes $\hat{f}: M/U \to N$ mit $\operatorname{im} \hat{f} = \operatorname{im} f$ und ker $\hat{f} = U/\ker f \leq M/\ker f$, sodass $\hat{f} \circ \pi = f$. Ist außerdem ker f = U, so ist \hat{f} ein *R-Modulisomorphismus, es gilt also M*/ ker $f \cong \text{im } f$.

- **2. Isomorphiesatz** Seien $U, V \leq M$, dann ist $(U + V)/V \cong U/(U \cap V)$.
- **3. Isomorphiesatz** Seien $U, V \leq M$ und $V \leq$, dann ist $U(M/V)/(U/V) \cong U/M$.
- Ist R außerdem K-Algebra, so wird M ein K-Vektorraum durch $\lambda m = (\lambda \cdot 1_R)m$ für $\lambda \in K, m \in M$.
- M ist frei genau dann, wenn M eine R-Basis besitzt.
- Sei $\emptyset \neq 1$ eine beliebige Indexmenge, dann kann der freie Modul zu 1 definiert werden als $\mathcal{F}(\mathcal{I}) = \{f : \mathcal{I} \to R : f(i) = 0 \text{ für fast alle } i \in \mathcal{I}\}$. Durch $\{e_i : e_i(j) = \delta_{ij}, \forall i \in \mathcal{I}\}$ ist eine Basis von $\mathcal{F}(I)$ gegeben.

Universelle Eigenschaft des freien R-Moduls $\mathcal{F}(\mathcal{I})$ über \mathcal{I} Sei $g: \mathcal{I} \to M, i \mapsto m_i$, eine Abbildung von Mengen, dann existiert genau eine R-lineare Abbildung $\hat{g}: \mathcal{F}(\mathcal{I}) \to M$ mit $\hat{g} \circ \iota = g$, wobei $\iota: \mathcal{I} \to \mathcal{F}(\mathcal{I}), i \mapsto e_i$ ist.

- Alle K-Moduln (das sind genau die K-Vektorräume) sind frei.
- Sei $f: M \to N$ ein R-Epimorphismus. Sei $S \subseteq M$ ein Erzeugendensystem für M, dann wird N von f(S) erzeugt. So sind insbesondere epimorphe Bilder von endlich erzeugten R-Moduln endlich erzeugt.
- Sei $(0) \rightarrow N \xrightarrow{\alpha} M \xrightarrow{\beta} E \rightarrow (0)$ keF von R-Moduln. Sind N und E e.e., so auch M.
- Sei $(0) \to N \xrightarrow{\alpha} M \xrightarrow{\beta} E \to (0)$ keF von R-Moduln und sei E freier Modul, dann gibt es ein $U \leq M$ mit $U \cong E$, sodass $M = \text{im } \alpha \bigoplus U$.
- Sei $(0) \rightarrow N \xrightarrow{\alpha} M \xrightarrow{\beta} E \rightarrow (0)$ keF von R-Moduln und sei $\delta : E \rightarrow U$ ein R-Homomorphismus mit $\beta \circ \delta = \mathrm{id}_E$, dann gilt $M = \mathrm{im} \alpha \oplus \mathrm{im} \delta$.
- Sei I ⊴ R, dann gilt:
- (a) $IM \leq M$
- (b) $\operatorname{ann}_R(M) \leq M$.
- (c) $I \subseteq \operatorname{ann}_R(M/IM)$.
- (d) Sei $L \le R$ und sei $L \subseteq \operatorname{ann}_R(M)$. Dann wird M zum R/L-Modul durch (r+L)m = rm, für $r \in R$, $m \in M$.
- (e) M/IM ist R/I-Modul mit R-Operation gegeben durch (r+I)(m+IM)=rm+IM. $\{m\}$.

- Universelle Eigenschaft des freien R-Moduls $\mathcal{F}(\mathcal{I})$ über \mathcal{I} Sei $g: \mathcal{I} \to M, i \mapsto m_i$, eine Sei $M = \langle m_1, \dots, m_k \rangle$ e.e., dann ist $\operatorname{ann}_R(M) = \{r \in R : rm = \bigcap_{i=1}^k \operatorname{ann}_R(m_i)\}$.
 - Sei R kommutativer, noetherscher Ring mit 1 und sei M ein freier R-Modul. Seien $\{m_{\alpha}: \alpha \in \mathcal{A}\}$ und $\{m_{\beta}: \beta \in \mathcal{B}\}$ Basen von M mit Indexmenge \mathcal{A} bzw. \mathcal{B} , dann ist $|\mathcal{A}| = |\mathcal{B}|$.
 - Sei R kommutativer, noetherscher Ring mit 1 und seien M,N freie R-Moduln mit $\operatorname{rg}(M)=\operatorname{rg}(N)$. Dann sind M und N isomorph. Für jede Kardinalität α gibt es daher einen bis auf Isomorphie eindeutigen freien R-Modul \mathcal{F}_{α} vom Rang α , nämlich $\mathcal{F}_{\alpha}=\bigoplus_{i=1}^{\alpha} {_RR}$.
 - Sei $S \subseteq M$, $m \in M$, dann gilt $\operatorname{ann}_R(m)$, $\operatorname{ann}_R(S) \subseteq R$.
 - Sei M ein zyklischer R-Modul, dann wir durch $f: {}_RR \to M, r \mapsto rm$, ein R-Modul Epimorphismus definiert.
 - R/I ist genau dann zyklischer R-Modul, wenn $I \leq R$.
 - Sei $S = \{y_i : 1 \le i \le m\}$ Erzeugendensystem von M, dann ist S genau dann unabhängig, wenn $M = \bigoplus_{i=1}^m Ry_i$.

17.4 MODULN ÜBER INTEGRITÄTSBEREICHEN

Sei R Integritätsbereich, M ein R-Modul.

- Ist M freier R-Modul, dann ist M torsionsfrei.
- \bullet M/T(M) ist torsionsfrei.
- Epimorphe Bilder von Torsionsmoduln sind Torsionsmoduln.
- Sei M_{α} , $\alpha \in \mathcal{A}$ eine Menge von R-Moduln. Dann ist $T\left(\bigoplus_{\alpha \in \mathcal{A}} M_{\alpha}\right) = \bigoplus_{\alpha \in \mathcal{A}} T(M_{\alpha})$. Sind insbesondere die M_{α} Torsionsmoduln (torsionsfrei), so auch ihre direkte Summe.
- Untermoduln von Torsionsmoduln sind Torsionsmoduln und Untermoduln von torsionsfreien Moduln sind torsionsfrei.
- Sei $(0) \neq M = Rm$ torsionsfreier, zyklischer R-Modul, dann ist $M \cong {}_RR$ frei mit Basis $\{m\}$.

17.5 MODULN ÜBER HIR

Sei R ein HIR und M e.e. R-Modul.

- Sei F e.e., freier R-Modul vom Rang n über R mit R-Basis $\mathcal{B} = \{v_i : 1 \le i \le n\}$. Sei $M \le F$, dann ist M freier R-Modul vom Rang k mit $k \le n$.
- Sei M torsionsfrei mit Erzeugendensystem S, |S| = k, dann ist M frei vom Rang $n \le k$.
- Sei M e.e., dann ist $M = T(M) \oplus U$, wobei $U \leq M$ freier R-Modul mit $\operatorname{rg}(U) < \infty$ ist und $U \cong M/T(M)$. Ist T(M) = (0), so ist M frei mir $\operatorname{rg}(M) < \infty$.
- Sind $0 \neq p, q \in R$ mit ggT(p,q) = 1, so ist $M_p \cap M_q = (0)$ und daher ist $M_p \oplus M_q$.
- Sei M e.e. R-Torsionsmodul, dann gilt
- (a) $\mathcal{O}(M)$ ist bis auf Assoziiertheit eindeutig und es gilt $(0) \neq \operatorname{ann}_R(M) = \mathcal{O}(M)R$.
- (b) Ist $\mathcal{O}(M) = r$ und $r = \prod_{i=1}^{n} p_i^{k_i}$ die Primfaktorzerlegung von r in nicht paarweise assoziierte Primelemente $p_i \in R$, $k_i \in \mathbb{N}$, so zerlegt sich M in die direkte Summe $M = \bigoplus_{i=1}^{n} M_{p_i}$ seiner eindeutig bestimmten Primärkomponenten M_{p_i} , i = 1, ..., n.
- (c) Sei $\mathcal{O}(M) = r = \prod_{i=1}^{n} p_i^{k_i}$ Primfaktorzerlegung, dann ist $\mathcal{O}(M_{p_i}) = p_i^{k_i}$.
- ullet M ist zyklischer R-Modul genau dann, wenn M epimorphes Bild des ${}_RR$ ist.
- Sei M=Rm zyklischer R-Torsionsmodul mit $\mathcal{O}(m)=r$, dann ist $M\cong R/rR$ als R-Modul und $\mathcal{O}(M)=r$.
- Sei $S = \{y_i : 1 \le i \le m\}$ unabhängiges Erzeugendensystem von M und $s_i = \mathcal{O}(y_i)$, dann ist $M = \bigoplus_{i=1}^m Ry_i \cong \bigoplus_{i=1}^m R/Rs_i$.
- Sei M e.e. Torsionsmodul mit $\mathcal{O}(M) = p^k$ für $p \in R$ Primelement. Sei $m \in M$ mit $\mathcal{O}(m) = \mathcal{O}(M) = p^k$.
- (a) Sei $\overline{M} = M/Rm$, dann gibt es in jeder Nebenklasse $\overline{x} = x + Rm \in \overline{M}$ einen Vektor y = x + Rm mit $\mathcal{O}(\overline{x}) = \mathcal{O}(y)$.

- (b) Seien $y_1, ..., y_n \in M$ so, dass die $\overline{y_i}$ unabhängig sind und seien die Nebenklassenvertreter so gewählt, dass $\mathcal{O}(\overline{y_i}) = \mathcal{O}(y_i) \ \forall \ i$, dann ist auch $\{m, y_1, ..., y_n\}$ unabhängig.
- Sei M = mR zyklischer R-Modul, $\mathcal{O}(M) = p^k$ für ein Primelement $p \in R$, für $0 \le v \le k$ sei $M_v = p^v M = Rp^v \cdot m$, dann gilt
- (a) $M_{\nu} \leq M$ und $\{M_{\nu} : \nu = 0, ..., k\}$ ist genau die Menge der Untermoduln von M.
- (b) $(0) = M_k \neq M_{k-1} \neq \dots \neq M_1 \neq M_0 = M$.
- (c) M_{ν} ist zyklisch mit Erzeuger p^{ν} m und der Ordnung $\mathcal{O}(M_{\nu}) = p^{k-\nu}$.
- (d) Sei $x \in M$, dann ist M = Rx genau dann wenn $x \notin M_1$ ist.
- (e) Jedes Erzeugendensystem von M enthält ein $x \notin M_1$. M = Rx.
- (f) Sei $S \subseteq M$ minimales Erzeugendensystem von M, dann ist $S = \{x\}$ mit $x \in M$ aber $x \notin pM$.
- M ein e.e. R-Torsionsmodul der Ordnung p^k für ein Primelement $p \in R$. Sei $s = \{m_i : 1 \le i \le n\} \subseteq M$ ein endliches minimales Erzeugendensystem von M. Dann enthält jedes minimale Erzeugendensystem exakt n Elemente und es gibt einedeutig bestimmte natürliche Zahlen $k = e_1 \ge e_2 \ge ... \ge e_n$, sodass mit $q_i = p^{e_i}$ gilt

$$M\cong\bigoplus_{i=1}^n R/Rq_i$$

Prototypen Seien $\{p_i \in R : 1 \le i \le k\}$ paarweise nicht assoziierte Primelemente, $\{e_{\mathcal{V}}^{(i)} \in \mathbb{N} : e_{\mathcal{V}}^{(i)} \ge e_{\mathcal{V}+1}^{(i)}, 1 \le \mathcal{V} \le n_i\}$ und $I_{\mathcal{V}}^{(i)} = Rp^{e_{\mathcal{V}}^{(i)}}$. Sei $\underline{e}_i = (e_1^{(i)}, \dots, e_{n_i}^{(i)})$ und

$$E(p_i,\underline{e}_i) = \bigoplus_{v=1}^{n_i} R/I_v^{(i)}.$$

 $F\ddot{u}r \ \alpha \in \mathbb{N}_0 \ sei \ M(p_1, \underline{e}_1, \dots, p_k, \underline{e}_k, \alpha) = \left(\bigoplus_{i=1}^k E(p_i, \underline{e}_i) \right) \bigoplus \left(\bigoplus_{j=1}^\alpha R \right), \ dann \ ist$ $\left\{ M\left(p_1, \underline{e}_1, \dots, p_k, \underline{e}_k, \alpha \right) : k, \alpha \in \mathbb{N}_0, p_i \in R \ Primelement \right\},$

eine vollständige Liste von paarweise nicht isomorphen, endlich erzeugten R-Moduln.

- Sei $r \in R$ und $r = s \cdot t$ mit $s, t \notin U(R)$ und ggT(s,t) = 1, dann ist M = R/Rr ein zyklischer R-Modul isomorph zu $R/Rs \oplus R/Rt$.
- ullet Sei $q\in R$ und $q=\prod_{i=1}^k p_i^{e_i}$ eine Primfaktorzerlegung, dann ist

$$R/Rq \cong \bigoplus_{i=1}^k R/Rp_i^{e_i}.$$