

Automatic Femur Segmentation for Femoral Implant Design

Iwan Paolucci, Severin Tobler University of Bern

16. December 2015, Medical Image Analysis Lab

Introduction

UNIVERSITÄT BERN

> Goal: Dice 0.95 with 0.05 std

Methods – Algorithm Pipeline

Methods – Pre-Process

UNIVERSITÄT BERN

> Normalization

$$I_n = \frac{I - \mu}{\sigma}$$

Noise removal— 3D Wiener filter

Methods – Feature Extraction

- Standard deviation
- > Entropy
- > Relative position (3D)
- > Gaussian
- > Average
- > Laplacian of Gaussian
- > Laplacian
- Prewitt (horizontal and vertical)
- Sobel (horizontal and vertical)

Methods – Post-Processing

- Morphological opening
- > Keep largest area / volume
- > Fill holes

u^{b}

Results

- > Boxplot mit dice
- > Schlechte segmentation

u^{b}

Discussion

- > Slim & Fast
- > Best / Worst case
- Segmentation is always the Femur
- Dice interpretation

Outlook

- Include prior information
- > Investigate 3D features
- > Extend to further bone structure

UNIVERSITÄT

Thanks for your attention!

Questions?

Tested but was not good...

- > ASM
- > 3D filter for features
- > Histogram bins as features
- > Skewness as features