Leçon 141 : Polynômes irréductibles à une indéterminée. Corps de rupture. Exemples et applications.

Développements :

Irréductibilité des polynômes cyclotomiques. Dénombrement des polynômes irréductibles sur \mathbb{F}_a .

Bibliographie:

Perrin (P), Gozard (G), Calais Théorie de Galois (C), Ulmer (U)

Plan

Soient A un anneau intègre et \mathbb{K} un corps

1 Polynômes irréductibles

1.1 Définitions et premières propriétés

Définition 1 (P p.46). Polynôme irréductible

Proposition 2 (G p. 9). Polynômes irréductibles dans $\mathbb{K}[X]$

Contre-exemple 3 (G p.9). Un réductible sans racines

Contre-exemple 4 (G p.9). Quand on n'est pas sur un corps

 $\textbf{Proposition 5.} \ P \ irr\'eductible \ ssi \ (P) \ maximal$

Contre-exemple 6. Faut être sur un corps : $X^2 + 1$ et $\mathbb{Z}[X]$.

1.2 Critères d'irréductibilité

Définition 7 (G p.10). Contenu d'un polynôme

Proposition 8 (G p.10). Lemme de Gauss

Théorème 9 (G p.10). Lien entre irréductibles de A[X] et de Frac(A)[X].

Exemple 10. polynôme primitif irréductible de $\mathbb{Q}[X]$ qui est irréductible dans $\mathbb{Z}[X]$

Contre-exemple 11. Polynôme irréductible dans $\mathbb{Q}[X]$ mais pas dans $\mathbb{Z}[X]$

Application 12. A factoriel implique A[X] factoriel

Théorème 13 (G p.11). Critère d'Eisenstein

Exemple 14 (G p.11).

Théorème 15 (G p.12). Critère de réduction

Exemple 16 (G p.12).

1.3 Eléments algébriques et polynôme minimal

Définition 17 (C p.11). Element algébrique, transcendant, polynôme minimal

Exemple 18.

2 Adjonction de racines

2.1 Extension de corps

Définition 19 (U p.163). Extension de corps

Définition 20 (C p.4). Sous-extension engendrée par une partie

Définition 21 (C p.4). Extension simple

Proposition 22 (C p.4). Adjonctions successives

Exemple 23 (C p.4).

Définition 24 (C p.6). degré d'une extension

Remarque 25 (C p. 6). [K : k] = 1 ssi k = K

Théorème 26 (C p.6 bonne écriture :G p. 22). Base téléscopique

Corollaire 27 (C p.6 bonne écriture :G p. 22). Multiplicité du degré

Exemple 28.

Théorème 29 (G p.101 ou C p.46). (à voir..) Thm de l'élément primitif

Théorème 30 (C p. 13). Equivalence algébrique, K[x] = K(x) et degré

2.2 Corps de rupture

Définition 31 (G p. 57). corps de rupture

Théorème 32 (G p.57). existence et unicité du corps de rupture

Proposition 33 (G p.58). degré du corps de rupture +base

Exemple 34 (G p.58). Corps à 4 éléments

Corollaire 35 (G p.58). Il existe une extension dans laquelle un polynôme donné possède une racine

Proposition 36 (G p.59). Critère irréductibilité polynôme et la prop d'après

2.3 Corps de décomposition

Définition 37 (G p. 59 ou C p.36). corps de décomposition

Remarque 38. C'est une extension algébrique de degré fini

Exemple 39 (G p.60).

Théorème 40 (G p.60). Existence et unicité + majoration du degré

Exemple 41.

Proposition 42 (C p.37). Caractérisation avec les racines

Exemple 43.

Application 44. Construction corps finis

3 Etude de certaines familles de polynômes irréductibles

3.1 Polynômes cyclotomiques

Définition 45 (G p.67). (si la place) Racines primitives de l'unite

Proposition 46 (G p.67). (si la place) Ecriture des racines primitives

Définition 47 (G p.67). polynôme cyclotomique

Exemple 48.

Proposition 49 (G p.68). Unitaires, à coefficients entiers, irréductibles, degré

Corollaire 50 (G p.69). Polynôme minimal et degré

Application 51. Version faible du théorème de Dirichlet

3.2 Polynômes irréductibles sur un corps fini

Proposition 52 (G p.87). $\mathbb{F}_{p^n} \cong \mathbb{F}_p[X]/(P)$

Corollaire 53 (G p.87). Corps de rupture et de décomposition

Proposition 54 (G p.88). Facteurs irréductibles de $X^{p^n} - X$

Corollaire 55 (G p.88). Nombre de polynômes irréductibles unitaires

Exemple 56 (G p.89).

Si on veut:

Théorème 57. Berlekamp