Operating System Concepts

- OS Concepts
- Linux commands
- Shell scripts
- Linux System call Programming

Learning OS

- step 1: End user
 - Linux commands
- step 2: Administrator
 - Install OS (Linux)
 - o Configuration Users, Networking, Storage, ...
 - Shell scripts
- step 3: Programmer
 - o Linux System call programming
- step 4: Designer/Internals
 - UNIX & Linux internals

What is OS?

- Interface between end user and computer hardware.
- Interface between Programs and computer hardware.
- Control program that controls execution of all other programs.
- Resource manager/allocator that manage all hardware resources.
- Bootable CD/DVD = Core OS + Applications + Utilities
- Core OS = Kernel -- Performs all basic functions of OS.

OS Functions

- CPU scheduling
- Process Management
- Memory Management
- File & IO Management
- Hardware abstraction
- User interfacing
- Security & Protection
- Networking

Process Management

Program

- Set of instructions given to the computer --> Executable file.
- Program --> Sectioned binary --> "objdump" & "readelf".

Exe header --> Magic number, Address of entry-point function, Information about all sections.
 (objdump -h program.out)

- Text --> Machine level code (objdump -S program.out)
- Data --> Global and Static variables (Initialized)
- BSS --> Global and Static variables (Uninitialized)
- RoData --> String constants
- Symbol Table --> Information about the symbols (Name, Size, section, Flags, Address) (objdump
 t program.out)
- Program (Executable File) Format
 - O Windows -- PE
 - Linux -- ELF
- Program are stored on disk (storage).

Process

- Progam under execution
- Process execute in RAM.
- Process control block contains information about the process (required for the execution of process).
 - o Process id
 - Exit status
 - 0 Indicate successful execution
 - Non-zero Indicate failure
 - Scheduling information (State, Priority, Sched algorithm, Time, ...)
 - Memory information (Base & Limit, Segment table, or Page table)
 - File information (Open files, Current directory, ...)
 - IPC information (Signals, ...)
 - Execution context (Values of CPU registers)
 - Kernel stack
- PCB is also called as process descriptor (PD), uarea (UNIX), or task_struct (Linux).
- In Linux size of task_struct is approx 4KB

Process

- Process is program in execution.
- Process has multiple sections i.e. text, data, rodata, heap, stack. ... into user space and its metadata is stored into kernel space in form of PCB struct.
- PCB contains
 - id, exit status,
 - o scheduling info (state, priority, time left, scheduling policy, ...),
 - o files info (current directory, root directory, open file descriptor table, ...),
 - o memory information (base & limit, segment table, or page table),
 - o ipc information (signals, ...),
 - o execution context, kernel stack, ...

File Management

File

- File is collection of data/information on storage device.
 - File = Contents (Data) + Information (Metadata)
 - The data is stored in zero or more Data blocks (in FS), while metadata is stored in the FCB (in filesystem).
- FCB is called as "inode" on UNIX/Linux. It contains
 - type: UNIX/Linux has 7 types of files
 - -: regular, d: directory, l: symbolic link, p: pipe, s: socket, c: char device, b: block device
 - o size: number of bytes
 - links: number of hard links
 - o mode (permissions): (u) rwx, (g) rwx, (o) rwx
 - o user & group
 - o time-stamps: modification, creation, access.
 - o info about data blocks
- terminal> ls -l
 - o type, mode, links, user, group, size, timestamp, name.
- terminal> stat filepath

File System

- Files are stored on storage device. Arrangement of files in storage device is called as "File System".
- e.g. FAT, NTFS, EXT2/3/4, ReiserFS, XFS, HFS, etc.
- File System logically divide partition into 4 sections.
 - Boot block/Boot sector
 - Contains programs/info required for booting of OS
 - Typically contains bootstrap program and bootloader program
 - Super block/Volume control block
 - Contains information of whole partition.
 - Capacity, Label.
 - terminal > df -h
 - Total number of data blocks/inodes.
 - Number of used/free data blocks/inodes.
 - Information of free data blocks/inodes.
 - Inode List/Master file table
 - Inodes (FCB) for each file
 - Data blocks
 - Stores data of the file.
 - Each file have zero or more data blocks.
 - Size of data blocks can be configured while creating file system
- File system is created by the format utility while formatting the partition.
 - Windows: format.exe
 - o Linux: mkfs
 - terminal > sudo mkfs -t ext3 /dev/sdb1
 - terminal > sudo mkfs -t vfat /dev/sdb1
 - -t fs_type e.g. ext3, ext4, vfat, ntfs, ...

- partition e.g. /dev/sdb1
- Disk/partition naming conventions
 - Windows:
 - Disks are named as disk0, disk1, ...
 - partitions are named as drives i.e. C:, D:, E:, ...
 - Linux:
 - Disks are named as /dev/sda, /dev/sdb, /dev/sdc, etc.
 - Partitions per disk are named as
 - sda partitions: sda1, sda2, sda3, ...
 - sdb partitions: sdb1, ...

Linux File Structure

- Linux follows "/" (root) file system.
- "/" is a starting point of Linux file system.
- All your data is stored in this partition.
- / contains boot, bin, sbin, etc, root, home, dev, proc, mnt, media, opt
- In Linux everything is a file.
- Mainly there are two types of files in Linux
 - File
 - Directory (Folder)
- Linux Directories
 - boot files related to booting
 - vmlinuz kernel Image
 - grub boot loader
 - config kernel configuration
 - initrd/initramfs initail root file system
 - bin user commands in binary format
 - sbin all admin/system commands in binary format
 - etc configuration files
 - root home directory of root user
 - home it contains sub directories for each user with its name
 - devendra -> /home/devendra
 - sunbeam -> /home/sunbeam
 - osboxes -> /home/osboxes
 - o dev it contains all device related files
 - o lib shared program libraries required by kernel
 - o mnt it is temporary mount point
 - o media it is mount point for media eg cdrom
 - o opt stores optional files of large softwares
 - o proc virtual file system it contains information about system or processes
 - sys entries of each block devices, subdirectories for each physical bus type supported, every device class registered with the kernel, global device hierarchy of all devices
 - o tmp temporary files that may be lost on system shutdown
 - o usr read only directory that stores small programs and files accessible to all users

User interfacing

- UI of OS is a program (Shell) that interface between End user and Kernel.
- Shell -- Commmand interpreter
 - End user --> Command --> Shell --> Kernel
- User interfacing (Shell)
 - o Graphical User Interface (GUI)
 - o Command Line Interface (CLI)

Example shells

- Windows
 - o GUI shell: explorer.exe
 - o CLI shell: cmd.exe, powershell.exe
- DOS
 - CLI shell: command.com
- Unix/Linux
 - o CLI shell: bsh, "bash", ksh, csh, zsh, ...
 - Is /bin/*sh
 - echo \$SHELL
 - shell of current user can be changed using "chsh" command.
- GUI shell/standards
 - GNOME: GNU Network Object Model Environment (e.g. Ubuntu, Redhat, CentOS, ...)
 - KDE: Kommon Desktop Environment (e.g. Kubuntu, SuSE, ...)

Path

- It is a unique location of any file in the file system.
- It is represented by character strings with few delimiters ("/", "\", ":")
- Types of path
 - There are two types of paths in linux
 - Absolute path
 - Path which starts with "/" is called as absolute path.
 - E.g. /home/devendra/MyData/Demos/demo01.sh
 - Relative path
 - Path with respect to current directory is called as relative path
 - E.g. MyData/Assignments/assign02.pdf

Types of files

- Regular file (-)
- Directory file (d)
- Link file (I)
- Socket file (s)
- Pipe file (p)

- Character Special file (c)
- Block Special file (b)

Operating System

Functions of Operating System

1) Process Management 2) CPV scheduling 3) memory management 4) File & IO management => Hardware Abstraction (x) Vser Interfacing 7) Networking 8) Security & Protection

Process Management

Process - Program in execution Program - set of instructions to machine (CPU)

.out/.exe

Eccutable
Hearder
Text
Dutce

RO Jate

Symbol
Tarble

ExecutableFile

Exe Header

— info about application

— info about remaining sections of executable

Li name, start, end, Size

— type of application (CLI/GVI/Library)

— address of entry point function

(20x4bylu) magic numbers identity to file format

Windows — Portable Executable (Pt) — MZ

Linux — Executable Linking Format (ELF) — & ELF

Text (Code)

— instructions of the program in machine

-instructions of the program in muchine code format are stored.

Data - static & global variables (initialised) intanti-{...?

BSS - static & global Variables (un initialised) int and?

RO Data (Read Only)
-string constants

Symbol Table

chartphr= "synbeam".

-info about symbols
-symbols are variables & functions of the program
/ Variables - name, type, size, address, section - ---functions -name, address, return type, no. /type areg ----

Process

Process = sections + PCB

File Management File - collection of data/information metadata File = date (information about file) (Actual contents) - name (data block) 5126 - time stamp rcreate, modify, ceccess - Owner/group - permissions cr-read, w-write, x-execute - Wers/group/other - lênk count _ into about data blocks

(File Control Block) (FCB)

User Interfacing

Shell - intermediate between End user and OS Shell - Command Interpretor

- In Linux, default shell is bash(Bourne Again Shell)
- echo \$SHELL
- to change shell chsh

Linux File Structure

admin-admistrator not-superuser

- Linux follows root "/" file structure
- In Linux file -> file and folder -> directory

chronod +x filel.tat + : add ; remove 000-0 001-1 010-2 011-5 chmod g-x file. tot U-Wer/owner 100-4 101-5 + : add 9-9 MUP - remov 0 - others $\wedge \wedge \wedge \times$