Fortgeschrittenen-Praktikum – Gamma-Spektroskopie

January 6, 2015

von

Till Kolster & Lukas Schmidt

Tutor: Dr. Katayoun Gharagozloo-Hubmann

Der Versuch wurde im Rahmen des Forgeschrittenenpraktikums am Fachbereich Physik der FU-Berlin durchgeführt und soll praktische Erfahrung und eine theoretische Vertiefung zu den kernphysikalischen Hintergründen von Radioaktivität und deren Messung geben.

1 Theoretische Grundlagen

1.1 Einleitung

Radioaktive Strahlung hat verschieden Quellen, die wohl bekannteste ist der Zerfall von instabilen Atomkernen. Dabei treten verschiedene Strahlungsarten auf, die aus vielfältigen Gründen gemessen und quantifiziert werden wollen. So kann eine gesundheitliche Belastung durch Strahlungsquellen von Interesse sein, die Aktivität dieser zu bestimmen. Im folgenden Versuch steht die Gammastrahlung als eine der drei Strahlungsarten im Fokus.

1.2 Kernzerfälle

Radioaktiver Kernzerfall kann auf verschiedene Arten stattfinden, α , β , γ -Zerfall genannt. Auf sogenannten Nuklidkarten wird aufgezeichnet, welche Isotope eines Atoms mit welcher Strahlungsart zerfallen. Die Einteilung in α , β , γ -Strahlung folgt der Wechselwirkung der Strahlung mit Materie.

1.2.1 α -Zerfall

Beim α -Zerfall verringert das Atom seine Kernladungszahl um den Betrag zwei, indem es einen ionisierten Helium-4-Kern verliert. Dieser Helium-Kern wird in diesem Zusammenhang als α -Teilchen bezeichnet. Da die kinetische Energie des Teilchens charakteristisch für den α -Strahler ist, kann die Bestimmung dieser Energie dazu dienen, den Strahler zu identifizieren. Da das zurückbleibende Tochternuklid nun einen Elektronenüberschuss besitzt, werden diese an die Umgebung abgegeben [1].

1.2.2 β -Zerfall

 β -Zerfall bezeichnet die Emittierung von Elektronen (β^-) und Positronen (β^+) durch einen Atomkern. Gleichzeitig emittiert der Kern ein Antineutrino oder ein Neutrino (β^+) . Dabei wird ein Neutron zum Proton umgewandelt bzw. andersherum wenn es sich um den β^+ -Zerfall handelt. Die Massenzahl des Atoms bleibt bei diesem Prozess gleich, die Kernladungszahl wird jedoch um 1 vergrößert bzw. verkleinert (β^+) .

Wenn ein Proton des Atomkerns ein Elektron einfängt, verwandelt es sich zu einem Neutron und einem Neutrino. Dieser Prozess wird Elektroneneinfang genannt. Die Emittierung eines Positrons kann nur zusammen mit diesem Prozess stattfinden, der Elektroneneinfang kann jedoch auch unabhängig stattfinden. Die freiwerdende Energie kann komplett an das freigesetzte Neutrino abgegeben werden oder verbleibt (zum Teil)

im Kern und kann als $\gamma\textsc{-Strahlung}$ abgegeben werden. Außerdem wird das entstandene Loch in der Schale, aus der das Elektron eingefangen wurde wieder aufgefüllt. Die hierbei frei werdende Energie kann entweder in Form eine Augerelektrons oder als Röntgenstrahlung emittiert werden.

1.2.3 γ -Zerfall

Als Gammastrahlung werden Photonen mit Energien von mehr als 300keV bezeichnet, oder elektromagnetische Strahlung, die einem Kern entstammt oder deren Ursprung nicht bekannt ist. Davon abgegrenzt ist die Röntgenstrahlung, die durch Elektronenprozesse hervorgerufen wird und im Bereich von ca. $100-300{\rm keV}$ liegt.

Im Gegensatz zum α - und β -Zerfall, ändert sich bei dieser Strahlungsart weder Massenzahl noch Kernladungszahl. Sie ist allein auf das Abregen eines angeregten Zustandes des Kerns zurückzuführen. Diese Relaxation folgt manchmal den beiden anderen Zerfallsarten. Gamma-Strahlung kann jedoch auch auf andere Weise entstehen, beispielsweise durch die sogenannte Paarvernichtung.

1.3 Photoeffekt

Ein Prozess, bei dem Materie mit hochenergetischer Strahlung wechselwirkt ist der Photoeffekt. Dabei gibt ein Photon bei einem Absorptionsprozess seine gesamte Energie an ein Elektron ab [2]. Die kinetische Energie des so emittierten Elektrons ist dann gleich der des Photons minus der Bindungsenergie aus dem Atom. Diese Bindungsenergie verbleibt zunächst im Atom und kann in Form eines Auger-Elektrons oder Röntgen-Strahlung abgegeben werden. Der Wirkungsquerschnitt des Photoeffekts kann folgender Näherung entnommen werden:

$$\sigma_{Ph} \propto E_{\gamma}^{-3.5} \cdot Z^5,$$
 (1)

Mit E_γ der Energie des einfallenden Photons und Z der Kernladungszahl des einfangenden Atoms. Elemente mit hoher Kernladungszahl erreichen daher die beste Abschirmung der Primärstrahlung pro Dicke des Materials. Es empfiehlt sich also zur Abschirmung gegen hochenergetische Strahlung Elemente mit hoher Kernladungszahl zu benutzen, jedoch entstehen relativ große Mengen an Sekundärstrahlung, die unter Umständen eine stärkere Wechselwirkung mit beispielsweise organischen Materialien zeigen.

Mit steigender Energie des Photons nimmt jedoch der Wirkungsquerschnitt ab, erreicht die Photonenenergie jedoch die Energie, die zum ionisieren der Schale, die in

der Energieskala höher liegt, springt der Wirkungsquerschnitt wieder auf einen höheren Wert. Dies findet so lange statt, bis keine höherenergetischen Schalen mehr existieren, wie in Abbildung 1 zu sehen ist.

Figure 1: Schematischer Darstellung des Wirkungsquerschnittes als Funktion der Photonenenergie [3]

Die Sprungkanten werden als Absorptionskanten bezeichnet und sind im Absorptionsspektrum gut sichtbar. Der Photoeffekt ist also sehr wichtig bei kleineren Photonenenergien und Materialien mit hoher Kernladungszahl [2].

1.4 Compton-Streuung

Bei der Compton-Streuung wird nicht wie beim Photoeffekt die gesamte Energie auf eine Elektron übertragen, sondern nur ein Teil. Wie viel, hängt vom Winkel des Zusammenstoßes zwischen Photon und Elektron ab, es handelt sich also um einen elastischen Stoß. Das Elektron wird hierbei als frei angenommen, was bei den äußeren Elektronen eines Atoms näherungsweise stimmt. Durch den Energieverlust wird die Wellenlänge des Photons um den Betrag $\Delta\lambda$ vergrößert, für welche folgende Relation gilt:

$$\Delta \lambda = \frac{h}{m_e c} (1 - \cos \phi) = \lambda_c (1 - \cos \phi), \quad (2)$$

mit λ_c der Compton-Wellenlänge, m_e der Masse des Elektrons, h dem Planckschen Wirkungsquantum, c der Lichtgeschwindigkeit und ϕ dem Streuwinkel. Der Energieverlust hängt also allein vom Streuwinkel ab.

Der Wirkungsquerschnitt ist somit allein von der Elektronendichte abhängig, welche ungefähr proportional zur Kernladungszahl ist. Somit ergibt sich für den Wirkungsquerschnitt folgende Näherung:

$$\sigma_C \propto E_{\gamma}^{-1} \cdot Z$$
 (3)

Der Comptoneffekt stellt sich somit als besonders wichtig heraus für mittlere Energien zwischen $100\,\mathrm{und}$ $1000\mathrm{keV}.$

Wenn nun die gestreuten Photonen energieaufgelöst beobachtet werden, so ist die Energie des gestreuten Photons E_γ' in Abhängigkeit des Winkel von Interesse:

$$E'_{\gamma}(\phi) = \frac{E_{\gamma}}{1 + \frac{E_{\gamma}}{m_e c^2} (1 - \cos \phi)}$$
 (4)

Bei Aufnahme eines Spektrums ergibt sich nun also ein kontinuierliches Spektrum für alle Winkel zwischen 0°und 180°. Danach folgt eine scharfe Kante, die sogenannte Compton-Kante, die auftritt, weil nicht mehr Energie abgegeben werden kann, als bei einem Stoß von 180°. Die korrespondierende Energie beträgt dann also

$$E'_{\gamma}(180^{\circ}) = \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{m_e c^2}}$$
 (5)

Zusätzlich sollte ein Maximum mit höherer Energie im Spektrum auftreten, da auch einige Photonen ohne Streuprozess durch das Material fliegen. Dieses Maximum wird Photopeak genannt. Zu jedem Photopeak gibt es also eine korrespondierende Compton-Kante.

1.5 Paarbildung/-vernichtung

Bei höheren Photonenenergien von ab 1022keV tritt als zusätzlicher Effekt die Paarbildung bzw. -vernichtung auf. Hierbei kann sich ein Photon im Feld eines Atomkerns oder eines Hüllenelektrons in Elektron und Positron aufspalten.

Findet diese Aufspaltung im Feld eines Atomkerns statt, so geht fast die gesamte Energie des Photons in die beiden Teilchen über, davon $E=m_ec^2=511{\rm keV}$ in die Ruhemasse jedes Teilchens und der Rest in die kinetische Energie. Elektron und Postiron fliegen dabei genau in entgegengesetzte Richtungen senkrecht zur Bahn des erzeugenden Photons, sodass der Impuls beider Teilchen zusammenaddiert genau null ergibt. Da dem Photon ebenfalls ein Impuls zugeschrieben werden kann, der durch die beobachtbaren Bahnen nicht an die beiden Spaltprodukte übergegangen sein kann, muss dieser an den beteiligten Atomkern übergehen und beträgt $p=E_{\gamma/c}=h\nu/c$.

Trifft nun ein Elektron auf ein Positron, so kommt es zur Paarvernichtung, dabei werden jedoch zwei Photonen frei, die sich aufgrund der Impulserhaltung bei vorher ruhenden Teilchen in genau entgegengesetzte Richtungen bewegen. Wird die kinetische Energie des Elektrons und Positrons vernachlässigt, so besitzen beide Photonen eine Energie, die wieder genau der Ruheenergie

eines Elektrons entstpricht, 511keV. Diese Energie kann im Detektor gemessen werden. Es kann jedoch auch vorkommen, dass ein Photon der Paarvernichtung aus dem Detektor entkommt. Dementsprechend verbleibt nur ein Teil der Energie des ursprünglichen Photons im Detektor. Wenn angenommen wird, dass das Elektron/Positron seine gesamte kinetische Energie im Detektor verloren hat, beträgt die Energie des sogenannten Single-Escape-Peaks $E=E_{\gamma}-511{\rm keV}$. Entkommen das Paar, so fehlt dementsprechend doppelt so viel Energie: $E=E_{\gamma}-1022{\rm keV}$.

Paarbildung bzw. -vernichtung wird für hohe Photonenenergien zum dominierenden Effekt und ihr Wirkungsquerschnitt hat folgende Abhängigkeit [4]:

$$\sigma_A \propto Z^2 \ln E_{\gamma}$$
 (6)

1.6 Massenschwächungskoeffizient

Um die Stärke der Interaktion von Gammastrahlung mit Materie zu beschreiben, wird ein Exponentieller Ansatz gewählt, in die drei vorgestellten Effekte eingepasst werden:

$$I(s) = I_0 e^{-\mu s},\tag{7}$$

wobei I die Intensität in Abhängigkeit der durchquerten Strecke s ist und μ der Absorptionskoeffizient. Dieser ist Abhängig von der Atomdichte des Absorbers n in Anzahl pro Volumen und dem totalen Wirkungsquerschnitt [5]:

$$\mu = n \cdot \sigma_{tot} = n \cdot (\sigma_{Ph} + \sigma_C + \sigma_A) \tag{8}$$

Aufgrund der verschiedenen Z- und E_{γ} - Abhängigkeiten, bietet sich die in Abbildung 2 gezeigte Abhähngigkeit des Absorptionskoeffizienten von der Photonenenergie.

1.7 Szintillationsdetektor

Der moderne Szintillationsdetektor oder -zähler beseht aus zwei Teilen: Dem Szintillator und dem Photomultiplier. Im Szintillator werden durch ionisierende Strahlung Exzitonen erzeugt. Diese ionisieren weitere Atome im Gitter. Energiereiche Strahlung erzeugt also mehrere Elektron-Loch-Paare. Diese rekombinieren nun wieder. Findet dies an den dotierten Störstellen statt, wird Energie in Form von Lichtblitzen frei [6]. Diese können mithilfe eines Photomultipliers festgestellt werden. Das Signal ist dann proportional zur Energie der

Figure 2: Beitrag der verschiedenen Komponenten zum Absorptionskoeffizienten von Germanium [2]

detektierten Strahlung. Damit die Lichtblitze detektiert werden können, muss das Detektormaterial für sichtbares Licht durchsichtig sein. Daher ist der Szintillator häufig als Einkristall ausgeführt. Im Experiment wird als Material ein Thallium dotierter Natrium-Iodid Kristall verwendet. Das Thallium nimmt dabei den Platz der Natrium-Positionen im kubischen Kristallgitter ein. Je nach Dotierungskonzentration ändert sich die Auflösung des Detektors.

1.8 Halbleiterdetektor

Ein Halbleiterdetektor besteht meist aus einem p-n-Übergang, bei dem ein positiv und ein negativ dotierter Halbleiter, in diesem Fall Germanium, aneinandergebracht werden. Fällt nun Strahlung in den Halbleiter ein, so erzeugt diese Elektron-Loch-Paare. Dies geschieht analog zum Szintillator durch anregung eines einzelnen Elektrons, welches dann auf seiner Bahn durch den Halbleiter weitere Elektronen anregt. Diese können abgegriffen und der erzeugte Strom oder die Schwankung in der Spannung gemessen werden. Die Anzahl der freigesetzten Elektronen wird dabei durch die Bandlücke bestimmt, da diese Energie zum anheben in das Leitungsband benötigt wird. Da diese Bandlücke nicht sehr groß ist, kann die Energie der Strahlung sehr gut aufgelöst werden. Um möglichst alle angeregten Elektronen abfangen zu können, wird eine Hochspannung angelegt, die die Elektronen absaugt und die Sperrschicht vergrößert. Außerdem wird der Detektor gekühlt, um eine

thermische Anregung ins Leitungsband zu verhindern und um den Leckstrom gering zu halten, der bei der angelegten Hochspannung den Detektor zerstören kann [7].

Als Detektormaterial wird ein Halbleiter mit hoher Kernladungszahl verwendet, in diesem Fall Germanium, da diese einen höheren Wirkungsquerschnitt aufgrund der höheren Elektronenzahl aufweisen.

Normalerweise beträgt die statistische Schwankung von n Messwerten $\sigma_n = \sqrt{n}$. Durch die Fanoresonanz wird diese jedoch reduziert, sodass hier $\sigma_n = \sqrt{nF}$ gilt, wobei F den Fano-Faktor beschreibt. Dieser kann bei Germanium im auf Werte bis zu $F \approx 0,13$ schrumpfen [8]. Diese Reduzierung des statistischen Fehlers ist darauf zurückzuführen, dass die Energieverluste in inelastischen Streuprozessen im Festkörper nicht komplett zufällig verlaufen, sondern durch die Beträge der möglichen Übergänge aus den Elektronenschalen limitiert sind.

2 Durchführung

- 2.1 Versuchsaufbau
- 2.2 Ablauf
- 3 Auswertung

References

- [1] Theo Mayer-Kuckuk. Atomphysik: Eine Einführung (Teubner Studienbücher Physik) (German Edition). Vieweg+Teubner Verlag, 1997. ISBN 3519430428.
- [2] Günter Schatz and Alois Weidinger. Nukleare Festkörperphysik: kernphysikalische Messmethoden und ihre Anwendungen. Teubner-Studienbücher: Physik. Teubner, 1997. ISBN 9783519230793.
- [3] wikipedia. Ionisations-wirkungsquerschnitt als funktion der photonenenergie, May 2009. URL https://de.wikipedia.org/wiki/Photoelektrischer_Effekt/.
- [4] B.G. Harvey and M. Kolb. Kernphysik und Kernchemie (Introduction to nuclear physics and chemistry, dt.) Eine Einf. 1966.
- [5] P. Marmier, E. Sheldon, and R. Szostak. *Kernphysik*, 1. *Vorlesungen von P. Marmier*. Zürich, 1960.
- [6] K. Kleinknecht. Detektoren für Teilchenstrahlung. Teubner Studienbücher Physik. B. G. Teubner, Stuttgart, 1984. ISBN 9783835100589.
- [7] R. Nicoletti, M. Oberladstätter, and F. König. Messtechnik und Instrumentierung in der Nuklearmedizin: eine Einführung. Facultas, 2007. ISBN 9783850767958.
- [8] R. C. Alig, S. Bloom, and C. W. Struck. Scattering by ionization and phonon emission in semiconductors. *Phys. Rev. B*, 22:5565–5582, Dec 1980. doi: 10.1103/PhysRevB.22.5565. URL http://link.aps. org/doi/10.1103/PhysRevB.22.5565.
- [9] FU Berlin. Ba2 gamma-spektrometrie, 2014. URL https://wiki.physik.fu-berlin.de/fp/.

Figure 3: Schematischer Aufbau des Versuchs [9] mit NaJ-Detektor, VV-Vorverstärker, HV-Hauptverstärker, VKA-Vielkanalanalysator