Comprehensive Waste Management Plan for Rice Milling Industry in Odisha

Name-Rounak Mishra

Roll No-230876

1. Industry Selection: Rice Milling in Odisha

Odisha is a major rice-producing state with numerous rice mills, especially in districts like Bargarh, Sambalpur, and Kalahandi. I live in Odisha and I have seen all this up close. Thus I chose this. These mills produce large amounts of waste, primarily:

- Solid waste: Rice husk, bran
- Liquid waste: Parboiling wastewater

[Parboiling, also known as converting or partially cooking, is a hydrothermal treatment applied to paddy rice before milling. It involves soaking, steaming, and drying the paddy, resulting in a product called parboiled rice. This process aims to improve the nutritional value, cooking quality, and reduce breakage during milling.]

- Gaseous emissions: From steam generation using husk

2. Process Flow Diagram and Material/Energy Balances

Simplified Process Flow Diagram:

Byproducts: Husk, Bran, Wastewater, Combustion Emissions (released due to parboiling)

Material Balance (for 1,000 kg of paddy):

Input	Quantity
Raw Paddy	1,000 kg

Water (Parboiling) 12,000 L

Energy (Steam from Husk) 150 kWh

Output Quantity

Milled Rice 650 kg

200 kg Husk

80 kg Bran

Broken Rice/Dust 70 kg

12,000 L Wastewater

3. Waste Streams and Current Handling

Solid Waste:

- Rice Husk: Partially burned, rest dumped or sold

- Bran: Sold for oil or cattle feed

Liquid Waste(wastewater):

- Effluent from parboiling: High BOD(biological oxygen demand), usually untreated

Gaseous Emissions:

- Particulate matter, CO, SO₂, NOx from husk combustion(during parboiling)

4. Optimization Strategies

Proposed Interventions:

- Install anaerobic digester and constructed wetlands for wastewater
- Use husk gasifier for cleaner combustion
- Extract oil from bran on-site
- Replace steam dryers with solar-assisted dryers

Before vs After Comparison:

Metric	Baseline	After Optimization
Husk Utilization	~60% burned, rest dumped	90% gasified
Wastewater Discharge	Untreated	Treated + reused
Bran Utilization	Sold raw	Value-added (oil)
Energy Consumption	150 kWh/ton	110 kWh/ton(lower)

5. Life Cycle Assessment (LCA) and Product Carbon Footprint (PCF)

Baseline Scenario:

- High emissions from husk burning
- Water pollution from untreated wastewater
- No carbon capture or offset mechanism

Optimized Scenario:

- Husk gasification reduces PM and GHGs
- Wastewater treatment and reuse
- On-site oil extraction reduces supply chain emissions

Qualitative Impact Summary:

Impact Category	Baseline	Optimized
Global Warming	High	Medium

Water Pollution	Severe	Controlled
vvaici i ollulloli	DEACTE	GOIIU OIIEU

Resource Efficiency Low High

6. Cost-Benefit Analysis (in ₹)

Estimated Costs (for 10 Tons per day mill) [Taken from references]:

Item	Cost (₹ Lakhs)
Husk Gasifier	8.0
Effluent Treatment Plant	5.0
Solar-Assisted Dryer	6.0
Bran Oil Unit	4.5
Total CAPEX(Capital Cost)	23.5
Annual Savings/Revenues:	
Source	Savings/Revenue (₹ Lakhs/year)
Fuel Cost Savings	4.5
Water Reuse Savings	1.5
Bran Oil Revenue	3.0
Avoided Fines	1.0
Total Annual Benefit	10.0

Payback Period: ~2.4 years(lesser than before)

All this data is taken from the resources.

7. Final Recommendations

- 1. Adopt husk gasification for cleaner and more efficient energy use.
- 2. Install ETP systems and reuse wastewater in parboiling and cleaning.

- 3. Implement value addition for bran through oil extraction.
- 4. Deploy solar-assisted dryers to reduce energy consumption.

Environmental Gains:

- Reduced GHG emissions
- Lower water pollution
- Better resource utilization

Economic Benefits:

- Short payback period
- Reduced recurring costs
- New revenue sources

8. References

- 1. Odisha Rice Millers Association Reports
- 2. CPCB Guidelines for Rice Mills
- 3. IPCC Emission Factors (2021)
- 4. MNRE Renewable Energy for Agro Industries
- 5. Academic Journals on LCA of Rice Milling (ScienceDirect, Springer)