Ring-LWE on 8-bit AVR Embedded Processor

Hwajeong Seo, **Hyeokdong Kwon,**Yongbeen Kwon, Kyungho Kim,
Seungju Choi, Hyunjun Kim,
and Kyoungbae Jang

Contents

Lattice-based Cryptography

Implementation Platform

Previous Works

Ring-LWE Scheme

Proposed Method

Lattice-based Cryptography

RSA and ECC:

Integer Factorization and Elliptic Curve Discrete Logarithm Problem

- Hard problems can be solved by Shor's algorithm
- Lattice-based Cryptography: Hard for quantum computers
 - Ring-LWE Encryption schemes: Proposed [EUROCRYPT'10]
 - Generic Algorithm for other Lattice-based Cryptography

Implementation Platform

8-bit XMEGA128 Microcontroller

- Internet of Things
- Operating Frequency: 32 MHz
- 128KB Flash, 8KB RAM, 32 registers
- Core Instruction: 8-bit mul/add (2/1 cycles)
- AES/DES Crypto Engine (for PRNG)

Previous Implementations on 8-bit AVR processor

8-bit AVR processor:

- Boorghany et al. [ACM TEC'15]: NTRU, Ring-LWE
- → Poppelmann et al. [Latincrypt'15]: BLISS
- → Liu et al. [CHES'15]: Ring-LWE
- → Liu et al. [ACM TEC'17]: Ring-LWE, BLISS
- → Seo et al.[ICISC'17]: Ring-LWE
- → This work [WISA'19]: Ring-LWE

Ring-LWE Scheme

Key generation: $Gen(\tilde{a})$

two error polynomials $r_1, r_2 \in R_q$ (from discrete Gaussian distribution)

$$\widetilde{r_1} = NTT(r_1), \qquad \widetilde{r_2} = NTT(r_2), \qquad \widetilde{p} = \widetilde{r_1} - \widetilde{a} \cdot \widetilde{r_2} \in R_q$$

Public key (\tilde{a}, \tilde{p}) , Private key $(\tilde{r_2})$

Encryption: $Enc(\tilde{a}, \tilde{p}, M)$

three error polynomials $e_1, e_2, e_3 \in R_q$, message M

$$(\widetilde{C_1}, \widetilde{C_2}) = (\widetilde{a} \cdot \widetilde{e_1} + \widetilde{e_2}, \widetilde{p} \cdot \widetilde{e_1} + NTT(e_3 + M))$$

Decryption: $Dec(\widetilde{C_1}, \widetilde{C_2}, \widetilde{r_2})$

Inverse NTT (INTT)

$$M = INTT(\widetilde{r_2} \cdot \widetilde{C_1} + \widetilde{C_2})$$

NTT (Number Theoretic Transform):

Discrete Fourier transform: n degree polynomial multiplication $O(n^2) \rightarrow O(n \log n)$

$$\tilde{a} = NTT(a), \qquad \tilde{a}[i] = \sum_{j=0}^{n-1} a[j]w^{ij} \mod q \quad (i = 0, 1, ..., n-1)$$

$$b = INTT(\tilde{a}),$$
 $b[i] = n^{-1} \sum_{j=0}^{n-1} \tilde{a}[j] w^{-ij} \mod q \ (i = 0,1,...,n-1)$

$$INTT(NTT(a)) = a$$

n	q	a	W
Power of 2	Prime with $q \equiv 1 \pmod{2n}$	$a = (a[0],, a[n-1]) \in \mathbb{Z}_q^n$	primitive <i>n</i> -th root of unity in Z_q : $w^n \equiv 1 \pmod{q}$

Number Theoretic Transform

Algorithm 1: Iterative Number Theoretic Transform

```
Require: Polynomial a(x), n-th root of unity \omega
Ensure: Polynomial a(x) = NTT(a)
  1: a \leftarrow BitReverse(a)
      for i from 2 by 2i to n do
  3:
         \omega_i \leftarrow \omega_n^{n/i}, \, \omega \leftarrow 1
  4:
       for j from 0 by 1 to i/2 - 1 do
                                                                                     Nested loop
               for k from 0 by i to n-1 do
                    ① U \leftarrow a[k+j], ② V \leftarrow \omega \cdot a[k+j+i/2]
③ a[k+j] \leftarrow U + V, ④ a[k+j+i/2] \leftarrow U - V
  6:
               end for
               \omega \leftarrow \omega \cdot \omega_i
           end for
       end for
       return a
```


Number Theoretic Transform

Algorithm 1: Iterative Number Theoretic Transform

```
Require: Polynomial a(x), n-th root of unity \omega
Ensure: Polynomial a(x) = NTT(a)
  1: a \leftarrow BitReverse(a)
 2: for i from 2 by 2i to n do
 3:
       \omega_i \leftarrow \omega_n^{n/i}, \, \omega \leftarrow 1
 4:
      for j from 0 by 1 to i/2 - 1 do
                                                     Overheads: modular multiplication
 5:
             for k from 0 by i to n-1 do
                 ① U \leftarrow a[k+j], ② V \leftarrow \omega \cdot a[k+j+i/2]
 6:
                 (3) a[k+j] \leftarrow U + V, (4) a[k+j+i/2] \leftarrow U - V
 7:
             end for
             \omega \leftarrow \omega \cdot \omega_i
         end for
      end for
      return a
```


- Approximation based reduction [ACM TEC'15]
 - $\lfloor z/q \rfloor \cong \sum_{i=1}^{l} (z \gg (w p_i))$
 - $z \mod q \cong z q \times \lfloor z/q \rfloor$
 - $[z/7681] \cong (z \gg 13) + (z \gg 17) + (z \gg 21)$

 Optimized Implementation of approximation based reduction (8-bit) [CHES'15]

SAMS2 method, ①: shifting; ②: addition; ③: multiplication

 Optimized Implementation of approximation based reduction (8-bit) [CHES'15]

SAMS2 method, 1: shifting; 2: addition; 3: multiplication

 Optimized Implementation of approximation based reduction (8-bit) [CHES'15]

SAMS2 method, ①: shifting; ②: addition; ③: multiplication

- Incomplete modular arithmetic [CHES'15]
 - Complete: $s = a + b \mod q$
 - Incomplete: $s = a + b \mod 2^m$ where $m = \lceil \log_2 q \rceil$

Tiny Montgomery reduction [ACM TEC'17]

```
Precondition: 13-bit modulus q = 7681, Montgomery radix R = 2^{13}, (incomplete) coefficients a, b \in [0, 2^{13} - 1], pre-computed constant q' = -q^{-1} \mod 2^{13} = 7679

1: function z = (a \cdot b \cdot R^{-1} \mod q)

2: t \leftarrow a \cdot b

| 3: s \leftarrow t \cdot q' \mod R | Main Montgomery multiplication parts

14: z \leftarrow (t + s \cdot q)/R |

5: if z \geq q then z \leftarrow z - q end if

6: if z \geq q then z \leftarrow z - q end if

7: return z

8: end function
```

Tiny Montgomery reduction [ACM TEC'17]

```
Precondition: 13-bit modulus q=7681, Montgomery radix R=2^{13}, (incomplete) coefficients a,b\in[0,2^{13}-1], pre-computed constant q'=-q^{-1} \mod 2^{13}=7679

1: function z=(a\cdot b\cdot R^{-1} \mod q)

2: t\leftarrow a\cdot b

3: s\leftarrow t\cdot q' \mod R

4: z\leftarrow (t\pm s\cdot q)/R

5: if z\geq q then z\leftarrow z-q end if

6: if z\geq q then z\leftarrow z-q end if

7: z\leftarrow (t\pm s\cdot q)/R

8: end function
```

• LUT based Implementation: (1), (2) LUT access

• LUT based Implementation: (3) addition

• LUT based Implementation: (4), (5) shifting

LUT based Implementation: (6) modulo

LUT based Implementation: (7) addition and subtraction

Motivation & Contribution

- Motivation
 - Few secure 8-bit AVR implementations
 - High security -> basic requirement for IoT
- Contributions
 Secure & efficient Ring-LWE implementation
 - LUT based multiplication
 - Constant time modular reduction

Previous work: LUT#1 → LUT#2 → addition

- Proposed work: LUT#1 → addition → LUT#2
 - LUT#2 performs reduction on more bits at once than previous work.

Proposed method: (1) LUT access

Proposed method: (2) addition

Proposed method: (3) modulo

Proposed method: (4) concatenation

Proposed method: (5) LUT access

Proposed method: (6) addition

LUT access optimization

Previous work: storing data in 16-bit wise

$$0x01$$
 $0x02$ $0x03$... $0xFF$

- Proposed work: storing data in 8-bit wise in separated way
 memory offset calculation is 1 clock cheaper than previous work
 - 0x01 0x02 0x03 \cdots 0xFF
 - 0x01 0x02 0x03 ··· 0xFF

Evaluation

lino io	256-bit security			
lmp.	Mod MUL	NTT	Const	
Boorghany	N/A	2,207,787	X	
Boorghany	N/A	N/A	X	
Poppelmann	N/A	855,595	X	
Liu	N/A	441,572	X	
Liu	70	516,971	0	
Seo	66	403,224	0	
This work	47	344,288	0	

Evaluation

lmn	256-bit security			
lmp.	Mod MUL	NTT	Const	
Boorghany	N/A	2,207,787	X	
Boorghany	N/A	N/A	X	
Poppelmann	N/A	855,595	X	
Liu	N/A	441,572	X	
Liu	70	516,971	0	
Seo	66	403,224	0	
I This work	This work 47		0	

Evaluation

Imp.	NTT/FFT	Key-Gen	Enc	Secure		
Implementations of 256-bit security level						
Boorghany	2,207,787	N/A	N/A	X		
Poppelmann	855,595	N/A	3,279,142	X		
Liu	441,572	2,165,239	2,617,459	X		
Liu	516,971	N/A	1,975,806	0		
Seo	403,224	N/A	1,754,064	0		
This work	344,288	1,325,171	1,430,601	O		

Conclusion

Contribution

- Secure and fast NTT computation
- New speed record for Ring-LWE encryption on 8-bit AVR

Future works

- Implementations on other low-end processors (8-bit PIC / 16-bit MSP)
- Investigation of side channel attack model

Q&A

