Assignment 4

Optimal Estimation and Kalman Filter Fall 2020

Due date: October 30, 2020 at 1:00 PM

Problem 1. Show that the Kalman filter for an LTI system with a noise-free scalar measurement that satisfies $(HQH^T)Q = QH^THQ$ has a steady-state a posteriori covariance of zero.

Problem 2. Consider the scalar system

$$x_k = x_{k-1} + w_{k-1}$$
$$y_k = x_k + v_k$$

where $w_k \sim (0,1)$ and $v_k \sim (0,1)$ are white noise processes. Suppose that $E(w_k v_{k+1}) = 1$.

- a. Design a Kalman filter that ignores the correlation between w_k and v_{k+1} . What is the steady-state a posteriori estimation covariance with this incorrect Kalman filter?
- b. For the Kalman filter designed above, write a recursive equation for the *a posteriori* estimation error $e_k = x_k \hat{x}_k^+$. Use this equation to find the steady-state solution to $E(e_k^2)$.
- c. Design a Kalman filter that takes into account the correlation between w_k and v_{k+1} . Show that the steady-state a posteriori estimation covariance is zero.
- d. Explain why the estimation covariance goes to zero in spite of the existence of the process and measurement noise.

Problem 3. Consider the scalar system

$$x_k = \frac{1}{2}x_{k-1} + w_{k-1}$$

$$y_k = x_k + v_k$$

$$v_k = \frac{1}{2}v_{k-1} + \zeta_{k-1}$$

where $w_k \sim (0,1)$ and $\zeta_k \sim (0,1)$.

a. Design a Kalman filter that ignores the dynamics of the measurement noise v_k , but assumes that $v_k \sim (0,1)$. What is the steady-state a posteriori estimation covariance with this incorrect Kalman filter?

1

- b. With the above incorrect Kalman filter, what is the true steady-state a posteriori estimation covariance $E(e_k^2)$?
- c. Design a Kalman filter that takes into account the dynamics of the measurement noise. What is the steady-state *a posteriori* estimation covariance?
- d. Simulate in MATLAB both Kalman Filters. Numerically calculate a posteriori estimation covariance and compare with the analytically calculated values above.

Problem 4. The steady-state, zero-input, one-step formulation for the a posteriori Kalman filter is

$$\hat{x}_{k}^{+} = (I - KH)F\hat{x}_{k-1}^{+} + Ky_{k}$$

 $\hat{y}_{k} = H\hat{x}_{k}^{+}$

Prove that if (F, H) is observable and (I - HK) is full rank, then the Kalman filter is an observable system. Hint: H(I - KH) = (I - HK)H.