Matlab 数字图像处理函数

1、数字图像的变换

① fft2: fft2 函数用于数字图像的二维傅立叶变换,如: i=imread('104_8.tif'); j=fft2(i);

②ifft2:: ifft2 函数用于数字图像的二维傅立叶反变换,如:

i=imread('104_8.tif');

j=fft2(i);

k=ifft2(j);

2、模拟噪声生成函数和预定义滤波器

① imnoise: 用于对数字图像生成模拟噪声,如:

i=imread('104_8.tif');

j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声

② fspecial: 用于产生预定义滤波器,如:

h=fspecial('sobel');%sobel 水平边缘增强滤波器

h=fspecial('gaussian');%高斯低通滤波器

h=fspecial('laplacian');%拉普拉斯滤波器

h=fspecial('log');%高斯拉普拉斯(LoG)滤波器

h=fspecial('average');%均值滤波器

3、数字图像的增强

①直方图: imhist 函数用于数字图像的直方图显示,如:

i=imread('104_8.tif');

```
imhist(i);
②直方图均化: histeq 函数用于数字数字图像的直方图均化,如:
i=imread('104_8.tif');
j=histeq(i);
③对比度调整: imadjust 函数用于数字数字图像的对比度调整,如:
i=imread('104_8.tif');
j=imadjust(i,[0.3,0.7],[]);
④对数变换: log 函数用于数字数字图像的对数变换,如:
i=imread('104_8.tif');
j=double(i);
k = log(j);
⑤基于卷积的数字数字图像滤波函数: filter2 函数用于数字数字图像滤波, 如:
i=imread('104_8.tif');
h=[1,2,1;0,0,0;-1,-2,-1];
j=filter2(h,i);
⑥线性滤波: 利用二维卷积 conv2 滤波, 如:
i=imread('104_8.tif');
h=[1,1,1;1,1,1;1,1,1];
h=h/9;
j=conv2(i,h);
⑦中值滤波: medfilt2 函数用于数字数字图像的中值滤波,如:
i=imread('104_8.tif');
```

```
j=medfilt2(i);
⑧锐化
 (1) 利用 Sobel 算子锐化数字数字图像, 如:
i=imread('104_8.tif');
h=[1,2,1;0,0,0;-1,-2,-1];%Sobel 算子
j=filter2(h,i);
 (2) 利用拉氏算子锐化数字数字图像, 如:
i=imread('104_8.tif');
j=double(i);
h=[0,1,0;1,-4,0;0,1,0];%拉氏算子
k=conv2(j,h,'same');
m=j-k;
4、数字图像边缘检测
①sobel 算子 如:
i=imread('104_8.tif');
j =edge(i,'sobel',thresh)
②prewitt 算子 如:
i=imread('104_8.tif');
j =edge(i,'prewitt',thresh)
```

③roberts 算子 如:

```
i=imread('104_8.tif');
j =edge(i,'roberts',thresh)
④log 算子 如:
i=imread('104_8.tif');
j =edge(i,'log',thresh)
⑤canny 算子 如:
i=imread('104_8.tif');
j =edge(i,'canny',thresh)
⑥Zero-Cross 算子 如:
i=imread('104_8.tif');
j =edge(i,'zerocross',thresh)
5、形态学数字图像处理
①膨胀:是在二值化数字图像中"加长"或"变粗"的操作,函数 imdilate 执行膨胀
运算,如:
a=imread('104_7.tif');%输入二值数字数字图像
b=[0 1 0;1 1 1;01 0];
c=imdilate(a,b);
②腐蚀: 函数 imerode 执行腐蚀,如:
a=imread('104 7.tif');%输入二值数字数字图像
b=strel('disk',1);
c=imerode(a,b);
```

③开运算: 先腐蚀后膨胀称为开运算,用 imopen 来实现,如:

a=imread('104_8.tif');

b=strel('square',2);

c=imopen(a,b);

④闭运算:先膨胀后腐蚀称为闭运算,用imclose来实现,如:

a=imread('104_8.tif');

b=strel('square',2);

c=imclose(a,b);

数字图像增强

- 1. 直方图均衡化的 Matlab 实现
- 1.1 imhist 函数

功能: 计算和显示数字数字图像的色彩直方图

格式: imhist(I,n)

imhist(X,map)

说明: imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为 256; imhist(X,map) 就 算和显示索引色数字数字图像 X 的直方图,map 为调色板。用 stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数

功能:显示数字数字图像的等灰度值图

格式: imcontour(I,n),imcontour(I,v)

说明: n 为灰度级的个数, v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数

功能:通过直方图变换调整对比度

格式: J=imadjust(I,[low high],[bottomtop],gamma)

newmap=imadjust(map,[low high],[bottomtop],gamma) 说明: J=imadjust(I,[low high],[bottomtop],gamma) 其中, gamma 为校正量 r, [lowhigh] 为原数字数字图像中要变换的灰度范围, [bottom top] 指定了变换后的灰度范围; newmap=imadjust(map,[lowhigh],[bottom top],gamma)

调整索引色数字数字图像的调色板 map 。此时若 [low high] 和 [bottom top] 都为 2×3 的矩阵,则分别调整 R、G、B 3 个分量。

1.4 histeq 函数

功能: 直方图均衡化

格式: J=histeq(I,hgram)

J=histeq(I,n)

[J,T]=histeq(I,...)

newmap=histeq(X,map,hgram)

newmap = histeq(X, map)

[new,T]=histeq(X,...)

说明: J=histeq(I,hgram) 实现了所谓"直方图规定化",即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素

都在 [0,1] 中; J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64; [J,T]=histeq(I,...)返回从能将数字数字图像 I 的灰度直方图变换成数字数字图像 J 的直方图的变换 T ; newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色数字数字图像调色板的直方图均衡。

2. 噪声及其噪声的 Matlab 实现

imnoise 函数

格式: J=imnoise(I,type)

J=imnoise(I,type,parameter)

说明: J=imnoise(I,type) 返回对数字数字图像 I 添加典型噪声后的有噪数字数字图像 J ,参数 type 和 parameter 用于确定噪声的类型和相应的参数。

- 3. 数字图像滤波的 Matlab 实现
- 3.1 conv2 函数

功能: 计算二维卷积

格式: C=conv2(A,B)

C=conv2(Hcol,Hrow,A)

C=conv2(...,'shape')

说明: 对于 C=conv2(A,B), conv2 的算矩阵 A 和 B 的卷积, 若[Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];

C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与 Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积; C=conv2(...,'shape') 用来指定 conv2

返回二维卷积结果部分,参数 shape 可取值如下:

- 》full 为缺省值,返回二维卷积的全部结果;
- 》same 返回二维卷积结果中与 A 大小相同的中间部分;

valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分, 当 size(A)>size(B) 时, size(C)=[Ma-Mb+1,Na-Nb+1]。

3.2 conv 函数

功能: 计算多维卷积

格式:与 conv2 函数相同

3.3 filter2 函数

功能: 计算二维线型数字滤波, 它与函数 fspecial 连用

格式: Y=filter2(B,X)

Y=filter2(B,X,'shape')

说明: 对于 Y=filter2(B,X),filter2 使用矩阵 B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大

小与 X 一样; 对于 Y=filter2(B,X,'shape') ,filter2 返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下

- 》full 返回二维相关的全部结果, size(Y)>size(X);
- 》same 返回二维互相关结果的中间部分,Y与X大小相同;
- 》valid 返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X)。
- 3.4 fspecial 函数

功能:产生预定义滤波器

格式: H=fspecial(type)

H=fspecial('gaussian',n,sigma) 高斯低通滤波器

H=fspecial('sobel')
Sobel 水平边缘增强滤波器

Prewitt 水平边缘增强滤波器 H=fspecial('prewitt')

H=fspecial('laplacian',alpha) 近似二维拉普拉斯运算滤波器

H=fspecial('log',n,sigma)

高斯拉普拉斯 (LoG) 运算滤波器

H=fspecial('average',n)

均值滤波器

H=fspecial('unsharp',alpha) 模糊对比增强滤波器

说明:对于形式 H=fspecial(type), fspecial 函数产生一个由 type 指定的二维 滤波器 H, 返回的 H 常与其它滤波器搭配使用。

4. 彩色增强的 Matlab 实现

4.1 imfilter 函数

功能: 真彩色增强

格式: B=imfilter(A,h)

说明:将原始数字数字图像 A 按指定的滤波器 h 进行滤波增强处理,增强后

的数字数字图像 B 与 A 的尺寸和类型相同

数字图像的变换

1. 离散傅立叶变换的 Matlab 实现

Matlab 函数 fft、fft2 和 fftn 分别可以实现一维、二维和 N 维 DFT 算法: 而函数 ifft、ifft2 和 ifftn 则用来计算反 DFT。

这些函数的调用格式如下:

A = fft(X, N, DIM)

其中, X 表示输入数字数字图像; N 表示采样间隔点, 如果 X 小于该数 值,那么 Matlab 将会对 X 进行零填充,否则将进行截取,使之长度为

N; DIM 表示要进行离散傅立叶变换。

A = fft2(X,MROWS,NCOLS)

其中,MROWS 和 NCOLS 指定对 X 进行零填充后的 X 大小。

A = fftn(X,SIZE)

其中, SIZE 是一个向量, 它们每一个元素都将指定 X 相应维进行零填充后的 长度。

函数 ifft、ifft2 和 ifftn 的调用格式于对应的离散傅立叶变换函数一致。 例子: 数字数字图像的二维傅立叶频谱

% 读入原始数字数字图像

I=imread('lena.bmp');

imshow(I)

% 求离散傅立叶频谱

J=fftshift(fft2(I));

figure;

imshow(log(abs(J)),[8,10])

- 2. 离散余弦变换的 Matlab 实现
- 2.1. dCT2 函数

功能:二维 DCT 变换

格式: B=dct2(A)

B = dct2(A,m,n)

B = dct2(A,[m,n])

说明: B=dct2(A) 计算 A 的 DCT 变换 B , A 与 B 的大小相同; B = dct2(A,m,n) 和 B=dct2(A,[m,n]) 通过对 A 补 0 或剪裁, 使 B 的大小为 $m\times n$ 。

2.2. dict2 函数

功能: DCT 反变换

格式: B=idct2(A)

B = idct2(A,m,n)

B=idct2(A,[m,n])

说明: B=idct2(A) 计算 A 的 DCT 反变换 B , A 与 B 的大小相同; B=idct2(A,m,n) 和 B=idct2(A,[m,n]) 通过对 A 补 0 或剪裁,使 B 的大小为 $m\times n$ 。

2.3. dctmtx 函数

功能: 计算 DCT 变换矩阵

格式: D=dctmtx(n)

说明: D=dctmtx(n) 返回一个 n×n 的 DCT 变换矩阵,输出矩阵 D 为 double

类型。

- 3. 数字数字图像小波变换的 Matlab 实现
- 3.1 一维小波变换的 Matlab 实现
- (1) dwt 函数

功能:一维离散小波变换

格式: [cA,cD]=dwt(X,'wname')

 $[cA,cD]=dwt(X,Lo_D,Hi_D)$

说明: [cA,cD]=dwt(X,'wname')使用指定的小波基函数'wname' 对信号 X 进行分解, cA、cD 分别为近似分量和细节分量; [cA,cD]=dwt(X,Lo_D,Hi_D) 使用指定的滤波器组 Lo_D、Hi_D 对信号进行分解。

(2) idwt 函数

功能:一维离散小波反变换

格式: X=idwt(cA,cD,'wname')

X=idwt(cA,cD,Lo_R,Hi_R)

X=idwt(cA,cD,'wname',L)

X=idwt(cA,cD,Lo_R,Hi_R,L)

说明: X=idwt(cA,cD,'wname')由近似分量 cA 和细节分量 cD 经小波反变换重构原始信号 X 。

'wname' 为所选的小波函数

X=idwt(cA,cD,Lo_R,Hi_R) 用指定的重构滤波器 Lo_R 和 Hi_R 经小波反变换重构原始信号 X 。

X=idwt(cA,cD,'wname',L) 和 X=idwt(cA,cD,Lo_R,Hi_R,L) 指定返回信号 X 中心附近的 L 个点。

3.2 二维小波变换的 Matlab 实现

二维小波变换的函数

函数名	函数功能
dwt2	二维离散小波变换
wavedec2	二维信号的多层小波分解
idwt2	二维离散小波反变换
waverec2	二维信号的多层小波重构
wrcoef2	由多层小波分解重构某一层的分解信号
upcoef2	由多层小波分解重构近似分量或细节分量
detcoef2	提取二维信号小波分解的细节分量
appcoef2	提取二维信号小波分解的近似分量
upwlev2	二维小波分解的单层重构
dwtpet2	二维周期小波变换
idwtper2	二维周期小波反变换

(1) wcodemat 函数

功能: 对数据矩阵进行伪彩色编码

格式: Y=wcodemat(X,NB,OPT,ABSOL)

Y=wcodemat(X,NB,OPT)

Y=wcodemat(X,NB)

Y=wcodemat(X)

说明: Y=wcodemat(X,NB,OPT,ABSOL)返回数据矩阵 X 的编码矩阵 Y; NB 伪编码的最大值,即编码范围为 $0\sim NB$,缺省值 NB=16;

OPT 指定了编码的方式(缺省值为 'mat'),即:

OPT='row', 按行编码

OPT='col', 按列编码

OPT='mat', 按整个矩阵编码

ABSOL 是函数的控制参数(缺省值为 '1'),即:

ABSOL=0 时,返回编码矩阵

ABSOL=1 时,返回数据矩阵的绝对值 ABS(X)

(2) dwt2 函数

功能: 二维离散小波变换

格式: [cA,cH,cV,cD]=dwt2(X,'wname')

 $[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D)$

说明: [cA,cH,cV,cD]=dwt2(X,'wname')使用指定的小波基函数 'wname' 对二维信

号 X 进行二维离散小波变幻; cA, cH,cV,cD 分别为近似分

量、水平细节分量、垂直细节分量和对角细节分量;

[cA,cH,cV,cD]=dwt2(X,Lo_D,Hi_D) 使用指定的分解低通和高通滤波器 Lo_D 和 Hi D 分

解信号 X。

(3) wavedec2 函数

功能: 二维信号的多层小波分解

格式: [C,S]=wavedec2(X,N,'wname')

[C,S]=wavedec2(X,N,Lo_D,Hi_D)

说明: [C,S]=wavedec2(X,N,'wname')使用小波基函数'wname' 对二维信号 X 进行 N 层分解; [C,S]=wavedec2(X,N,Lo_D,Hi_D) 使用指定

的分解低通和高通滤波器 Lo_D 和 Hi_D 分解信号 X 。

(4) idwt2 函数

功能: 二维离散小波反变换

格式: X=idwt2(cA,cH,cV,cD,'wname')

X=idwt2(cA,cH,cV,cD,Lo R,Hi R)

X=idwt2(cA,cH,cV,cD,'wname',S)

X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)

说明: X=idwt2(cA,cH,cV,cD,'wname')由信号小波分解的近似信号 cA 和细节信号 cH、cH、cV、cD 经小波反变换重构原信号 X

; X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R)使用指定的重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号 X ; X=idwt2(cA,cH,cV,cD,'wname',S)

和 X=idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S) 返回中心附近的 S 个数据点。

(5) waverec2 函数

说明:二维信号的多层小波重构

格式: X=waverec2(C,S,'wname')

X=waverec2(C,S,Lo_R,Hi_R)

说明: X=waverec2(C,S,'wname')由多层二维小波分解的结果 C、S 重构原始信号 X , 'wname'为使用的小波基函数; X=waverec2(C,S,Lo_R,Hi_R) 使用重构低通和高通滤波器 Lo_R 和 Hi_R 重构原信号。

数字图像处理工具箱

1. 数字图像和数字图像数据

缺省情况下,MATLAB将数字数字图像中的数据存储为双精度类型(double),64位浮点

数,所需存储量很大; MATLAB 还支持另一种类型无符号整型(uint8), 即数字数字图像矩

阵中每个数据占用1个字节。

在使用 MATLAB 工具箱时,一定要注意函数所要求的参数类型。另外, uint8 与 double 两种类型数据的值域不同,编程需注意值域转换。

从 uint8 到 double 的转换

数字数字图像类型 MATLAB 语句

索引色 B=double(A)+1

索引色或真彩色 B=double(A)/255

二值数字数字图像 B=double(A)

从 double 到 uint8 的转换

数字数字图像类型 MATLAB 语句

索引色 B=uint8(round(A-1))

索引色或真彩色 B=uint8(round(A*255))

二值数字数字图像 B=logical(uint8(round(A)))

- 2. 数字数字图像处理工具箱所支持的数字数字图像类型
- 2.1 真彩色数字数字图像

R、G、B 三个分量表示一个像素的颜色。如果要读取数字数字图像中(100,50) 处的像素值,

可查看三元数据(100,50,1:3)。

真彩色数字数字图像可用双精度存储,亮度值范围是[0,1];比较符合习惯的存储方法是用无

符号整型存储, 亮度值范围[0,255]

2.2 索引色数字数字图像

包含两个结构,一个是调色板,另一个是数字数字图像数据矩阵。调色板是一个有3列和若干行

的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝色强度的双精度数。

注意: MATLAB 中调色板色彩强度[0,1], 0 代表最暗, 1 代表最亮。 常用颜色的 RGB 值

颜色 R G B 颜色 R G B

 黑
 0
 0
 1
 洋红
 1
 0
 1

 白
 1
 1
 1
 青蓝
 0
 1
 1

 红
 1
 0
 0
 天蓝
 0.67
 0
 1

 绿
 0
 1
 0
 橘黄
 1
 0.5
 0

 蓝
 0
 0
 1
 深红
 0.5
 0
 0

 黄
 1
 1
 0
 灰
 0.5
 0.5
 0.5

产生标准调色板的函数

函数名 调色板

Hsv 色彩饱和度,以红色开始,并以红色结束

Hot 黑色一红色一黄色一白色

Cool 青蓝和洋红的色度

Pink 粉红的色度

Gray 线型灰度

Bone 带蓝色的灰度

Jet Hsv 的一种变形,以蓝色开始,以蓝色结束

Copper 线型铜色度

Prim 三棱镜,交替为红、橘黄、黄、绿和天蓝

Flag 交替为红、白、蓝和黑

缺省情况下,调用上述函数灰产生一个 64×3 的调色板,用户也可指定调色板大小。

索引色数字数字图像数据也有 double 和 uint8 两种类型。

当数字数字图像数据为 double 类型时, 值 1 代表调色板中的第 1 行, 值 2 代表第 2 行......

如果数字数字图像数据为 uint8 类型, 0 代表调色板的第一行, , 值 1 代表第 2 行......

2.3 灰度数字数字图像

存储灰度数字数字图像只需要一个数据矩阵。

数据类型可以是 double, [0, 1]; 也可以是 uint8, [0,255]

2.4 二值数字数字图像

二值数字数字图像只需一个数据矩阵,每个像素只有两个灰度值,可以采用 uint8 或 double 类型存储。

MATLAB 工具箱中以二值数字数字图像作为返回结果的函数都使用 uint8 类型。

2.5 数字数字图像序列

MATLAB 工具箱支持将多帧数字数字图像连接成数字数字图像序列。

数字数字图像序列是一个4维数组,数字数字图像帧的序号在数字数字图像的 长、宽、颜色深度之后构成第4维。

分散的数字数字图像也可以合并成数字数字图像序列,前提是各数字数字图像 尺寸必须相同,若是索引色数字数字图像,

调色板也必须相同。

可参考 cat()函数 A=cat(4,A1,A2,A3,A4,A5)

3. MATLAB 数字数字图像类型转换

数字数字图像类型转换函数

函数名 函数功能

dither 数字数字图像抖动,将灰度图变成二值图,或将真彩色数字数字 图像抖动成索引色数字数字图像

gray2ind 将灰度数字数字图像转换成索引数字数字图像

grayslice 通过设定阈值将灰度数字数字图像转换成索引色数字数字图像

im2bw 通过设定亮度阈值将真彩色、索引色、灰度图转换成二值图

ind2gray 将索引色数字数字图像转换成灰度数字数字图像

ind2rgb 将索引色数字数字图像转换成真彩色数字数字图像

mat2gray 将一个数据矩阵转换成一副灰度图

rgb2gray 将一副真彩色数字数字图像转换成灰度数字数字图像

rgb2ind 将真彩色数字数字图像转换成索引色数字数字图像

4. 数字数字图像文件的读写和查询

4.1 图形数字数字图像文件的读取

利用函数 imread()可完成图形数字数字图像文件的读取,语法:

A=imread(filename,fmt)

[X,map]=imread(filename,fmt)

- [...]=imread(filename)
- [...]=imread(filename,idx) (只对 TIF 格式的文件)
- [...]=imread(filename,ref) (只对 HDF 格式的文件)

通常,读取的大多数数字图像均为8bit,当这些数字图像加载到内存中时,

Matlab 就将其存放

在类 uint8 中。此为 Matlab 还支持 16bit 的 PNG 和 TIF 数字图像,当读取这类文件时, Matlab 就将

其存贮在 uint16 中。

注意:对于索引数字图像,即使数字图像阵列的本身为类 uint8 或类 uint16, imread 函数仍将

颜色映象表读取并存贮到一个双精度的浮点类型的阵列中。

4.2 图形数字图像文件的写入

使用 imwrite 函数, 语法如下:

imwrite(A,filename,fmt)

imwrite(X,map,filename,fmt)

imwrite(...,filename)

imwrite(...,parameter,value)

当利用 imwrite 函数保存数字图像时,Matlab 缺省的方式是将其简化道 uint8 的数据格式。

- 4.3 图形数字图像文件信息的查询 imfinfo()函数
- 5. 数字图像文件的显示
- 5.1 索引数字图像及其显示

方法一:

image(X)

colormap(map)

方法二:

imshow(X,map)

5.2 灰度数字图像及其显示

Matlab 7.0 中,要显示一副灰度数字图像,可以调用函数 imshow 或 imagesc (即

imagescale, 数字图像缩放函数)

(1) imshow 函数显示灰度数字图像

使用 imshow(I) 或 使用明确指定的灰度级书目: imshow(I,32)

由于 Matlab 自动对灰度数字图像进行标度以适合调色板的范围,因而可以使用自定义

大小的调色板。其调用格式如下:

imshow(I,[low,high])

其中, low 和 high 分别为数据数组的最小值和最大值。

(2) imagesc 函数显示灰度数字图像

下面的代码是具有两个输入参数的 imagesc 函数显示一副灰度数字图像 imagesc(1,[0,1]);

colormap(gray);

imagesc 函数中的第二个参数确定灰度范围。灰度范围中的第一个值(通常是 0),

对应于颜色映象表中的第一个值(颜色),第二个值(通常是1)则对应与颜色映象表

中的最后一个值(颜色)。灰度范围中间的值则线型对应与颜色映象表中剩余的值(颜色)。

在调用 imagesc 函数时,若只使用一个参数,可以用任意灰度范围显示数字 图像。在该

调用方式下,数据矩阵中的最小值对应于颜色映象表中的第一个颜色值,数据矩阵中的最大

值对应于颜色映象表中的最后一个颜色值。

5.3 RGB 数字图像及其显示

(1) image(RGB)

不管 RGB 数字图像的类型是 double 浮点型,还是 uint8 或 uint16 无符号整数型,Matlab 都

能通过 image 函数将其正确显示出来。

RGB8 = uint8(round(RGB64×255)); %将 double 浮点型转换为 uint8 无符号整型

RGB64 = double(RGB8)/255; % 将 uint8 无符号整型转换为 double

浮点型

RGB16 = uint16(round(RGB64×65535)); %将 double 浮点型转换为 uint16 无符号整型

(2) imshow(RGB) 参数是一个 m×n×3 的数组

5.4 二进制数字图像及其显示

(1) imshow(BW)

在 Matlab 7.0 中,二进制数字图像是一个逻辑类,仅包括 0 和 1 两个数值。 像素 0 显示

为黑色,像素1显示为白色。

显示时,也可通过 NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色; 1 显示

为黑色。

例如: imshow(~BW)

(2) 此外,还可以使用一个调色板显示一副二进制数字图像。如果图形是 uint8 数据类型,

则数值 0 显示为调色板的第一个颜色,数值 1 显示为第二个颜色。

例如: imshow(BW,[100;001])

5.5 直接从磁盘显示数字图像

可使用一下命令直接进行数字图像文件的显示:

imshow filename

其中, filename 为要显示的数字图像文件的文件名。

如果数字图像是多帧的,那么imshow 将仅显示第一帧。但需注意,在使用这种方式时,数字图像

数据没有保存在 Matlab7.0 工作平台。如果希望将数字图像装入工作台中,需使用 getimage 函数,从当前的句柄图形数字图像对象中获取数字图像数据,

命令形式为: rgb = getimage;

bwlabel

功能:

标注二进制数字图像中已连接的部分。

L = bwlabel(BW,n)

```
[L,num] = bwlabel(BW,n)
isbw
功能:
判断是否为二进制数字图像。
语法:
flag = isbw(A)
相关命令:
isind, isgray, isrgb
74. isgray
功能:
判断是否为灰度数字图像。
语法:
flag = isgray(A)
相关命令:
isbw, isind, isrgb
11. bwselect
功能:
在二进制数字图像中选择对象。
语法:
BW2 = bwselect(BW1,c,r,n)
BW2 = bwselect(BW1,n)
[BW2,idx] = bwselect(...)
举例
BW1 = imread('text.tif');
c = [16\ 90\ 144];
r = [85 \ 197 \ 247];
BW2 = bwselect(BW1,c,r,4);
imshow(BW1)
figure, imshow(BW2)
47. im2bw
功能:
转换数字图像为二进制数字图像。
语法:
BW = im2bw(I,level)
BW = im2bw(X,map,level)
```

BW = im2bw(RGB, level)

举例

load trees

BW = im2bw(X,map,0.4);

imshow(X,map)