intro	
	C5-TO Discussion IC: tiny unl. com/frank-discussion 6/23/2020
	(a) the N (n ≥1), 3 n3-n (b) Prove that you can make exactly n
	ents of action with 3-cept and 7-cept
	chase ase as many my parties of loss as m > 12
	() Rase Case: n=12,13,14
4 min break 7 min disc	$0 n = 1 n^3 - n = 1^3 - 1 = 0 3 \mid 0 n = 12 = 4(3) n = 13 = 2(3) + 1(7)$
	3 (K+1)3-(K+1) (KZ15) (H124n4K)
	that a can be made using 3-lent and
	-13-3k2+3k-k
	(1)
	=(163-1x)+3(x2+1x) = We know that (k-2) cents can be
	div by QEP made using 3-cent and 7-cent stamps, So (kt) cents can be broken into a combo
	of 3-cent and 7-cent stamps. 10
5:26 []	For xER, x≥1, use induction to N=12, n=13 (K=13)
	For $x \in \mathbb{R}$, $x \ge 1$, use induction to $N = (2, n = 1)$ ($(k = 13)$) show that all entries of the matrix $(k + 1) = (4 - 1)$
	$(1 \times)^n$ are $\leq \chi n$. $((+1)-3=[1]$
	$\begin{bmatrix} 1 \times 7 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \times 7 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \times 7 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \times 7 \\ 0 \end{bmatrix}$
	01) 01
3 min alone	1r, ~1 [13x]
3 min break 5 min disc	$\begin{bmatrix} 1 & 2x \end{bmatrix} \begin{bmatrix} 1 & x \end{bmatrix} = \begin{bmatrix} 1 & 3x \\ 0 & 1 \end{bmatrix}$
S MIN OUT	_
	Claim: [1 x] = [0 1] (YneN) n>1
	(1) Base Case: [1 x] / (n=1)
5:39	(2) Inductive 3 keN [1] x] = [0] Hypothesis: (k>1) [0]
	11/bothezi), (K) 1) [0 12
	$3 \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} (k+1)x \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & kx \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & (k+1)x \\ 0 & 1 \end{bmatrix} $
	- [0,1] (0,1) [0,1] [0,1]

[3]	Prove that every positive integer n can be written in binary;
	1.e. n= c1:2k+c1c-12k-1++c,2+c0.20, for kell and cxe{0,1}
	OBase casez n=1
4 min alone	1=1.20
4 min break	(=12
disc	2) Inductive Hypothesis- IKEN (K>1)
	4 n 15 n sk satisfy the claim we're n=k
	trying to prove.
	3 n=(k+1) -> [n is odd) k+1 is odd
	k is even
	niseven (= ck-2k+11+C1.2+Co-20
	san integer 2
18	V+ = C 2C + C 2 + 1 2
	k+1 = c _k ·2 ^k ++ c ₁ ·2'+ c ₆ ·2°
·	[K+1 = Ck:2K+1++c,-2+Cc-2+0.2"]
	R
-	