Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

15.1 Ant Colony Optimisation and Particle Swarm Optimisation

Class Tests So Far... ☐ Class Test CRI: 305 attempts ☐ Class Test CRII: 257 attempts ☐ Class Test CRIII: 184 attempts ☐ Class Test CRIV: 114 attempts ☐ All four class tests must be passed to pass **Task #1.** ☐ Task #1 weighs 30% of the coursework But, if you do not pass Task #1 you will be capped at D- grade (coursework). Class tests needs to be completed by 16/02/2021

This Lecture

- ☐ In this lecture we are going to cover:
 - ☐ Swarm Intelligence
 - Ant Colony Optimisation
 - ☐ Particle Swarm Optimisation

Swarm Intelligence

☐ A new field of study ☐ around 30 years old (OK...maybe not that new...) ☐ The interaction of many simple parts creating complex behaviour ☐ For example, ants, bees, fish, birds, etc... ☐ The net effect is greater than the sum of the individuals Emergent behaviour as a side effect of the system

Social Insects

- ☐ Several million years of success
 - ☐ Efficient
 - ☐ Flexible
 - ☐ Robust
- ☐ Can solve many problems:
 - ☐ Find food, feed the brood, defend the nest
 - ☐ Build a nest ...

Ant Colony Optimisation and Particle Swarm Optimisation

Flocking

- ☐ "Boids" model created by Craig Reynolds in 1987
- ☐ Boids ="bird-oid" objects (also schooling fish)
- ☐ Video links:
 - ☐ http://www.red3d.com/cwr/boids/
 - ☐ http://www.youtube.com/watch?v=Psq0FSOF_xU&feature=related
- ☐ Only three simple rules [see Blackboard for materials]...

Swarm Intelligence

First used by Beni, Hackwood and Wang in 1989 for work on cellular robotic systems
☐ Later: for anything swarm inspired
 Study of collective behaviour of decentralised, self- organised systems No central control
 Only simple rules for each individual Simple but extremely powerful The problems are usually difficult to define Solutions result from the behaviour and interactions
between individual agents
Solutions are emergent in the systems

Swarm Intelligence Algorithms

☐ Ant Colony Optimisation (ACO) ☐ Particle Swarm Optimisation (PSO) ■ More esoteric (not covered) ■ Bacteria Colony Optimisation ☐ Artificial Bee Colony Algorithm ☐ Plant Propagation Algorithms ☐ Strawberry Plant...

Ant Colony Optimisation

☐ First proposed by Marco Dorigo in 1992
 ☐ A Heuristic optimisation method inspired by biological systems
 ☐ A multiple agent based approach for solving difficult combinatorial optimisation problems
 ☐ Mainly Graph based problems
 ☐ Traveling Salesperson, vehicle routing, sequential ordering, graph colouring, routing in

communications networks, etc...

Ant Behavior

☐ Ants (blind) navigate from nest to food sources ☐ The shortest path is discovered via pheromone trails ☐ Each ant moves at random (biased – see below) Pheromone is deposited onto the path ☐ Ants detect the lead ants path and are inclined to follow More pheromone on the path means an increased probability of the path being followed ☐ Pheromone upgrade: evaporation

Dealing With Obstacles

The more ants follow a trail, the more attractive to follow that trail becomes

Fig.1. (A) Real ants follow a path between nest and food source. (B) An obstacle appears on the path: Ants choose whether to turn left or right with equal probability. (C) Pheromone is deposited more quickly on the shorter path. (D) All ants have chosen the shorter path.

Stigmergy

☐ Indirect coordination/communication between
agents or actions
Individual behaviour modifies the environment, which in turn modifies the behaviour of other individuals
Stimulates the performance of subsequent actions leading to the spontaneous emergence of coherent, apparently systematic activity
Reduces (or eliminates) communications between agents
Supports efficient collaboration between simple agents
Produces complex, seemingly intelligent structures, without need for any planning, control, or even direct communication between the agents

Route Selection

- ☐ At the beginning of the search process, a constant amount of **pheromone** is assigned to all arcs
- \square When located at a node i an ant k uses the **pheromone** trail to compute the probability of choosing j as the next node:

$$p_{ij}^k \propto \frac{\text{Pheromone from node } i \text{ to } j}{\text{Sum of Pheromone for all valid paths}}$$

- \Box The probability is zero for nodes that are unreachable from node i
- ☐ Similar to **Roulette Wheel Selection** in a Genetic Algorithm...

Pheromone Update

 \Box The pheromone value of an arc (i,j) is updated when traversed by ant k as follows:

$$\tau'_{ij} = \tau_{ij} + \Delta \tau^k_{ij}$$

$$\Delta \tau^k_{ij} \propto \frac{1}{\text{The Tour Length of Ant } k \text{ so far}}$$

☐ The probability of an arc being taken by subsequent ants is proportional to how "good" it was deemed by ants that have already traversed it

Pheromone Evaporation

☐ The pheromones "evaporate" by applying the following equation to all the arcs:

$$\tau'_{ij} = (1-p)\tau_{ij}$$

- \square Here $p \in (0,1)$ is a parameter
- ☐ Similar to the cooling rate heuristic for the temperature in Simulated annealing
- ☐ An iteration is a complete cycle involving the ant's movement, pheromone depositing and pheromone evaporation

ACO Flowchart

ACO Simulator (searching for food)

https://www.youtube.com/watch?v=hXUCCRiNBOc

ACO Advantages and Disadvantages

■ Advantages ☐ Can be used in dynamic applications ☐ Rapid discovery of good solutions Performs better against other global optimisation techniques Easily parallelised Disadvantages ☐ Theoretical analysis is difficult ☐ Time to convergence uncertain ☐ Performed poorly for large scale problems e.g. >75 cities **TSP**

ACO Applications

Graph based and combinatorial optimisation type problems, e.g.: ☐ TSP (Travelling Salesperson Problem) ☐ Vehicle Routing ☐ Graph Colouring Timetable Scheduling ■ Manufacturing Scheduling ■ Network Routing → Etc...

Particle Swarm Optimisation (PSO)

- ☐ It was developed in 1995 by James Kennedy (social psychologist) and Russell Eberhart (electrical engineer)
- Population based stochastic optimisation technique
- ☐ It uses a number of agents (particles) that constitute a swarm moving around in the search space looking for the best solution
- ☐ Each particle is treated as a point in an n-dimensional space which adjusts its "flying" according to its own flying experience as well as the flying experience of other particles

PSO Concepts – Part 1

☐ Each particle keeps track of its coordinates in the solution space and associated fitness, along with the best solution and fitness it has achieved so far \square This value is called the personal best, p_{best} ☐ The PSO algorithm also tracks the best value obtained so far by any particle in swarm \square This value is called the global best, g_{best} ☐ The basic concept of PSO lies in accelerating each particle toward its p_{best} and the g_{best} locations, with a random weighted acceleration at each time step ☐ Inspired by "Boids"

PSO Concepts – Part 2

- ☐ Each particle tries to modify its position using the following information:
 - ☐ The current position
 - ☐ The current velocity
 - lacktriangle The distance between the current position and p_{hest}
 - \Box The distance between the current position and g_{host}

PSO Concepts – Part 3

 s^k : current position in the search space

 s^{k+1} : modified position

 v^k : current velocity

 v^{k+1} : modified velocity

 v_{pbest} : velocity based on p_{best}

 v_{gbest} : velocity based on g_{best}

PSO Update Formulae

Particle *i* velocity at iteration k+1

Particle *i* best position

$$r_p, r_g \sim UR(0,1)$$

$$\begin{aligned} r_p, r_g &\sim UR(0,1) \\ v_i^{k+1} &= \omega v_i^k + \alpha r_p \Big(p_{best,i} - s_i^k \Big) + \beta r_g \Big(g_{best} - s_i^k \Big) \end{aligned}$$

$$S_i^{k+1} = S_i^k + V_i^{k+1}$$

Particle i position at iteration k

Position of global best

 ω , α and β are parameters...

PSO Flow Chart

PSO Simulation₁

PSO Simulation₂

PSO Simulation₃

PSO Simulation₄

PSO Simulation₅

PSO Simulation 6

PSO Simulation 7

PSO Simulation₈

PSO Simulation₈

https://www.youtube.com/watch?v=gkGa6WZpcQg

PSO Comparison With EC

- ☐ No selection operation in PSO
 - ☐ All particles in PSO are kept as members of the population
 - ☐ PSO [and ACO] is [are] the only algorithm [s] (population based Heuristic search) that does [do] not implement the survival of the fittest operator
- ☐ No crossover operator in PSO
- ☐ The PSO update formulae resembles mutation in EP

PSO Advantages and Disadvantages

 □ Advantages Many optimisation applications in science and industry, including; where GA can be applied, image recognition, training ANN, etc... ☐ Simple implementation and less parameter tunning ☐ Easily parallelized ■ Disadvantages Tendency to a fast and premature convergence ■ Slow convergence

Next Lecture

□ We will be looking at the Travelling Salesperson problem

Next Laboratory

- ☐ The laboratory will involve looking at a number of simulations of ACO and PSO
 - Not assessed but useful revision!