assignment 4 - solns.

(due before class on 10 Nov 2020)

1. Shown below is a PES for the reaction $OH^-+CH_3I \rightarrow products$.

- (a) What are the likely products?
- (b) The curved arrow indicates how a co-linear approach starting at large distances is steered towards the non-co-linear entrance channel complex. Explain how this statement can be derived from the figure.
- (c) What are the magnitudes of O-C distance and O-C-I angle after the system has landed in in the exit valley? If the C-I distance was monitored as the reaction progressed, what is its likely value in the exit valley?
 - (d) Estimate the activation energy for the reaction from the graph.

Ans. (a) It is a S_N2 reaction.

$$\mathrm{OH^-{+}CH_3I}{\rightarrow}\mathrm{CH_3OH{+}I^-}$$

(b) colinearlty \implies $\angle O$ -C-I = π

The figure shows that the entrance at \angle O-C-I = π is at roughly -0.3eV of potential energy and the system is taken away to a lower energy zone (-0.8 eV) of \angle O-C-I $\lesssim \frac{2\pi}{3}$. The energy estimate is based on the assumption that the minimum shown is at the bottom of the scale.

(c) In the exit valley O-C distance must be the smallest ($\sim 2.2 \text{Å}$).

It is seen from the figure that at this point \angle O-C-I = π

(d) There are two activation energies here - the first one is from the colinear entry to the minimum at \angle O-C-I $\lesssim \frac{2\pi}{3}$. This is an almost barrier less transition, so for this step $E_a \approx 0$.

The second one is from the minimum at \angle O-C-I $\lesssim \frac{2\pi}{3}$ to the products. Assuming that the minimum shown is at the bottom of the scale (-0.8 eV) and with a visual estimate of TS at (-0.6 eV, $E_a \approx -0.6 - (-0.8) = 0.2 \text{eV} \approx 4.6 \text{ kcal/mol}$

2. For a reaction $A+B_2 \rightarrow AB+B$, the following parameters are reported:

Dissociation energy, $D_{A-B}=591.1 \mathrm{kJ/mol};~D_{B-B}=458.2 \mathrm{kJ/mol};$

equilibrium distance, $\mathbf{R}_{A-B}=0.917 \text{Å}$; $\mathbf{R}_{B-B}=0.742 \text{Å}$

Using this data and activation energy= 300 kJ/mol, draw the contour diagram for the variation of potential energy with distances between atoms.

Ans. This is similar to the $F+H_2 \rightarrow HF+H$ reaction with A as the F atom and B as the H atom. You may refer to the contour diagram as shown below except that the numbers for energy will be different. The distances are the same.

3. Derive expressions for $\frac{d(\ln k)}{d(\frac{1}{T})}$ for the rate constant from the Arrhenius equation and from collision theory and compare the two. Comment on the difference.

Ans. Arrhenius equation : $k = A.e^{-\frac{E_a}{RT}}$

$$\implies \ln k = \ln A - \frac{E_a}{RT}$$

 $\therefore \frac{d(\ln k)}{d(\frac{1}{T})} = -\frac{E_a}{R}$ (assuming A to be a constant w.r.t. temperature)

collision theory : $k = \text{const.}\sqrt{T}.e^{-\frac{E_a}{RT}}$

$$\implies \ln k = const + \frac{1}{2} \ln T - \frac{E_a}{RT}$$

$$\therefore \frac{d(\ln k)}{d(\frac{1}{T})} = -\frac{1}{2}T - \frac{E_a}{R}$$

The difference is due to the fact that in Arrhenius equation, T dependence of the pre-exponential factor is not explicitly stated.

4. Rutherford scattering experiment: For the case of classical scattering of two particles with a repulsive Coulomb potential, $V(r) = \frac{B}{r}$,

scattering angle,
$$\chi(E, b) = 2 \csc^{-1} \left[1 + \left(\frac{2bE}{B} \right)^2 \right]^{\frac{1}{2}}$$
.

Show that the differential scattering cross-section,

$$\frac{d\sigma}{d\Omega}(E, \chi) = \left(\frac{B}{4E}\right)^2 \csc^4\left(\frac{\chi}{2}\right)$$

Ans. Let us say, we have a trajectory with impact parameter $b\to b+db$ that scatters into the solid angle $\Omega\to\Omega+d\Omega$ with differential cross-section $\frac{d\sigma}{d\Omega}$

Conservation of particle flux implies that the total number of particles passing through an annular ring of radius $b \to b + db$ must be equal to the total number of particles scattered with scattering angle $\chi \to \chi + d\chi$ in all azimuthal directions taken together. The number of such particles passing through a given area per unit time is the product of the flux density and the area element.

In the picture below, read θ as χ .

Assuming azimuthal symmetry (i.e., identical environment for all values of the angle ϕ : $(0, 2\pi)$, we have,

 $\text{flux} \times 2\pi b db = \text{flux} \times 2\pi \frac{d\sigma}{d\Omega} \cdot \sin \chi \cdot d\chi$ (similar to writing $d\Omega = \sin \theta d\theta d\phi$; here ϕ is integrated out as 2π)

or,
$$\frac{d\sigma}{d\Omega} = \frac{b}{\sin \chi} \left| \frac{db}{d\chi} \right|$$

for Rutherford scattering, $\csc \frac{\chi}{2} = [1 + ab^2]^{\frac{1}{2}}$, where $a = \left(\frac{2E}{B}\right)^2$

or,
$$1 + ab^2 = \csc^2 \frac{\chi}{2}$$

or,
$$2abdb = -2\csc\frac{\chi}{2} \cdot \frac{1}{2}\cot\frac{\chi}{2} \cdot \csc\frac{\chi}{2}d\chi$$

$$\therefore \frac{d\sigma}{d\Omega} = \frac{b}{\sin\chi} \left| \frac{db}{d\chi} \right| = \frac{1}{2a\sin\chi} \cdot \cot\frac{\chi}{2} \cdot \csc^2\frac{\chi}{2} = \frac{1}{4a\sin\frac{\chi}{2}\cos\frac{\chi}{2}} \cdot \frac{\cos\frac{\chi}{2}}{\sin\frac{\chi}{2}} \cdot \csc^2\frac{\chi}{2} = \left(\frac{B}{4E}\right)^2 \csc^4\frac{\chi}{2}$$

Sometimes differential scattering cross-section is written as σ . Be careful, when you are looking at a text book.