Calvin Passmore ECE 5460 Homework 1

Problem 1

	Full Custom	Standard Cell
Design Time:	Very time consuming, several man- months	A lower design time then full custom, but higher than full automation
Flexibility:	Very flexible	Moderately flexible
Density:	High density designs	Density is determined by the standard cell size, and cannot be changed later

Problem 2

BB^T represents the connections between j and I.

Problem 3

I arranged them in the following order based on how quickly they get large

Best

n

n log∧2 n

n sqrt(n)

 n^2

n^2 log n

 $n (\log n)$

2^n

 $n^{(0.5n)}$

n^99

Worst

Problem 4

- A) $O(n^2 + n \log n + n)$
- B) $O(n^2 + n \operatorname{sqrt}(n)$
- C) $O(n \log_e n + \log_2 n)$
- D) $O(2^n + e^n)$

Problem 5

- A) The Big O notation is said to be an 'upper bound' as well as 'in order to be informative, its is customary to choose g(n) to be as small a function of n as one can come up with such that f(n) = O(g(n)).' Therefore if f(n) = O(g(n)) implies g(n) = O(f(n)) because g(n) is the smallest upper bound of f(n).
- B) If f(n) = O(g(n)), then g(n) = O(f(n)). and g(n) = O(h(n)), therefore g(n) = O(f(n)) = O(h(n)). Then f(n) = O(g(n)) = O(h(n)).