Supervised Learning Capstone Project - Tree Methods Focus

will add more non-tree-based models e.g. logistic regression later...

GOAL: Create models to predict whether or not a customer will Churn

Part1: Imports and Read in the Data

```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         df = pd.read_csv('../DATA/Telco-Customer-Churn.csv')
In [2]:
         df.head()
            customerID gender SeniorCitizen Partner Dependents tenure PhoneService
Out[2]:
                                                                                       MultipleLines
                 7590-
                                                                                           No phone
         0
                        Female
                                                 Yes
                                                              No
                                                                                   No
                VHVEG
                                                                                              service
                 5575-
                                                                                   Yes
                          Male
                                                 No
                                                              No
                                                                                                 No
                GNVDE
                 3668-
         2
                          Male
                                          0
                                                 No
                                                              No
                                                                       2
                                                                                   Yes
                                                                                                 No
                 QPYBK
                 7795-
                                                                                           No phone
         3
                          Male
                                          0
                                                 No
                                                              No
                                                                      45
                                                                                   No
                CFOCW
                                                                                              service
            9237-HQITU
                        Female
                                          0
                                                 No
                                                              No
                                                                       2
                                                                                   Yes
                                                                                                 No
        5 rows × 21 columns
In [3]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7032 entries, 0 to 7031
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype	
0	customerID	7032 non-null	object	
1	gender	7032 non-null	object	
2	SeniorCitizen	7032 non-null	int64	
3	Partner	7032 non-null	object	
4	Dependents	7032 non-null	object	
5	tenure	7032 non-null	int64	
6	PhoneService	7032 non-null	object	
7	MultipleLines	7032 non-null	object	
8	InternetService	7032 non-null	object	
9	OnlineSecurity	7032 non-null	object	
10	OnlineBackup	7032 non-null	object	
11	DeviceProtection	7032 non-null	object	
12	TechSupport	7032 non-null	object	
13	StreamingTV	7032 non-null	object	
14	StreamingMovies	7032 non-null	object	
15	Contract	7032 non-null	object	
16	PaperlessBilling	7032 non-null	object	
17	PaymentMethod	7032 non-null	object	
18	MonthlyCharges	7032 non-null	float64	
19	TotalCharges	7032 non-null	float64	
20	Churn	7032 non-null	object	
dtypes: float64(2), int64(2), object(17)				

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB

In [4]: df.describe()

Out[4]:		SeniorCitizen	tenure	MonthlyCharges	TotalCharges
	count	7032.000000	7032.000000	7032.000000	7032.000000
	mean	0.162400	32.421786	64.798208	2283.300441
	std	0.368844	24.545260	30.085974	2266.771362
	min	0.000000	1.000000	18.250000	18.800000
	25%	0.000000	9.000000	35.587500	401.450000
	50%	0.000000	29.000000	70.350000	1397.475000
	75%	0.000000	55.000000	89.862500	3794.737500
	max	1.000000	72.000000	118.750000	8684.800000

In [5]: df.isna().sum()

0 customerID Out[5]: gender SeniorCitizen Partner Dependents tenure PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection 0 TechSupport StreamingTV StreamingMovies Contract PaperlessBilling PaymentMethod MonthlyCharges TotalCharges Churn dtype: int64

Summary:

The dataset contains 21 columns and 7032 rows, most columns are dummy variables

There is no missing values

Part 2: Exploratory Data Analysis

General Feature Exploration

Count plot for variable (churn)

The distrbution of TotalCharges between Churn categories with a violin plot

```
In [7]: # showing total charge distribution by YES or NO
sns.violinplot(data=df,x='Churn',y='TotalCharges')
```

Out[7]: <AxesSubplot:xlabel='Churn', ylabel='TotalCharges'>

The distribution boxplot of TotalCharges per Contract type, hue color of churn class

```
In [8]: plt.figure(figsize=(10,4),dpi=200)
    sns.boxplot(data=df,y='TotalCharges',x='Contract',hue='Churn')
    plt.legend(loc=(1.1,0.5))
```

Out[8]: <matplotlib.legend.Legend at 0x1f2db932130>

Features to the class lable

Dummy variable correlation with the label

```
-0.301552
         Contract_Two year
Out[11]:
         StreamingMovies_No internet service
                                                    -0.227578
         StreamingTV_No internet service
                                                    -0.227578
         TechSupport_No internet service
                                                    -0.227578
         DeviceProtection No internet service
                                                    -0.227578
         OnlineBackup_No internet service
                                                    -0.227578
         OnlineSecurity_No internet service
                                                    -0.227578
          InternetService No
                                                    -0.227578
         PaperlessBilling_No
                                                    -0.191454
         Contract_One year
                                                    -0.178225
         OnlineSecurity_Yes
                                                    -0.171270
         TechSupport_Yes
                                                    -0.164716
         Dependents Yes
                                                    -0.163128
          Partner Yes
                                                    -0.149982
          PaymentMethod_Credit card (automatic)
                                                    -0.134687
          InternetService_DSL
                                                     -0.124141
          PaymentMethod_Bank transfer (automatic)
                                                    -0.118136
         PaymentMethod_Mailed check
                                                    -0.090773
         OnlineBackup_Yes
                                                    -0.082307
         DeviceProtection_Yes
                                                    -0.066193
         MultipleLines_No
                                                    -0.032654
         MultipleLines_No phone service
                                                    -0.011691
         PhoneService No
                                                    -0.011691
         gender_Male
                                                    -0.008545
         gender_Female
                                                     0.008545
         PhoneService_Yes
                                                     0.011691
         MultipleLines_Yes
                                                     0.040033
         StreamingMovies_Yes
                                                     0.060860
         StreamingTV_Yes
                                                     0.063254
         StreamingTV_No
                                                     0.128435
         StreamingMovies No
                                                     0.130920
         Partner No
                                                     0.149982
         SeniorCitizen
                                                     0.150541
         Dependents_No
                                                     0.163128
         PaperlessBilling_Yes
                                                     0.191454
         DeviceProtection_No
                                                     0.252056
         OnlineBackup_No
                                                     0.267595
         PaymentMethod_Electronic check
                                                     0.301455
          InternetService Fiber optic
                                                     0.307463
          TechSupport No
                                                     0.336877
         OnlineSecurity_No
                                                     0.342235
         Contract Month-to-month
                                                     0.404565
         Name: Churn_Yes, dtype: float64
```

The correlation plot

```
In [12]: plt.figure(figsize=(10,4),dpi=200)
    sns.barplot(x=corr_df['Churn_Yes'].sort_values().iloc[1:-1].index,y=corr_df['Churn_plt.title("Feature Correlation to Yes Churn")
    plt.xticks(rotation=90);
```


Part 3: Churn Analysis

segementing customers based on their tenure

Contract type variable

```
In [13]: df['Contract'].unique()
Out[13]: array(['Month-to-month', 'One year', 'Two year'], dtype=object)
```

The histogram displaying the distribution of 'tenure' column, which is the amount of months a customer was or has been on a customer

```
In [14]: plt.figure(figsize=(10,4),dpi=200)
    sns.histplot(data=df,x='tenure',bins=60)
Out[14]: <AxesSubplot:xlabel='tenure', ylabel='Count'>
```


The histograms separated by two additional features, Churn and Contract

The scatter plot of Total Charges versus Monthly Charges, and color hue by Churn

```
In [16]: plt.figure(figsize=(10,4),dpi=200)
sns.scatterplot(data=df,x='MonthlyCharges',y='TotalCharges',hue='Churn', linewidth:
Out[16]: <AxesSubplot:xlabel='MonthlyCharges', ylabel='TotalCharges'>
```


The Cohorts based on Tenure

Treating 1 month, 2 month, 3 month...N months as unit cohort, calculate the Churn rate (percentage that had Yes Churn) per cohort

```
no_churn = df.groupby(['Churn', 'tenure']).count().transpose()['No']
In [17]:
         yes_churn = df.groupby(['Churn', 'tenure']).count().transpose()['Yes']
         churn_rate = 100 * yes_churn / (no_churn+yes_churn)
In [18]:
         churn_rate.transpose()['customerID']
In [19]:
         tenure
Out[19]:
         1
               61.990212
         2
               51.680672
         3
               47.000000
               47.159091
               48.120301
         68
                9.000000
         69
                8.421053
                 9.243697
         70
         71
                 3.529412
         72
                 1.657459
         Name: customerID, Length: 72, dtype: float64
```

The plot showing churn rate per months of tenure

Broader Cohort Groups

Based on the tenure column values, create a new column called Tenure Cohort that creates 4 separate categories:

- '0-12 Months'
- '24-48 Months'
- '12-24 Months'
- 'Over 48 Months'

Out[23]:		tenure	Tenure Cohort
	0	1	0-12 Months
	1	34	24-48 Months
	2	2	0-12 Months
	3	45	24-48 Months
	4	2	0-12 Months
	5	8	0-12 Months
	6	22	12-24 Months
	7	10	0-12 Months
	8	28	24-48 Months
	9	62	Over 48 Months

The scatterplot of Total Charges versus Monthly Charts

```
In [24]: plt.figure(figsize=(10,4),dpi=200)
    sns.scatterplot(data=df,x='MonthlyCharges',y='TotalCharges',hue='Tenure Cohort', 1:
    Out[24]: <AxesSubplot:xlabel='MonthlyCharges', ylabel='TotalCharges'>
```


The count plot showing the churn count per cohort

```
In [25]: plt.figure(figsize=(10,4),dpi=200)
    sns.countplot(data=df,x='Tenure Cohort',hue='Churn')
Out[25]: <AxesSubplot:xlabel='Tenure Cohort', ylabel='count'>
```


Part 4: Predictive Modeling

A Single Decision Tree, Random Forest, AdaBoost, Gradient Boosting

Single Decision Tree

```
In [26]:
         X = df.drop(['Churn','customerID'],axis=1)
         X = pd.get_dummies(X,drop_first=True)
In [27]: y = df['Churn']
         train_test_split
In [28]:
         from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state
In [29]:
In [30]:
         from sklearn.tree import DecisionTreeClassifier
         dt = DecisionTreeClassifier(max_depth=6)
In [31]:
In [32]:
         dt.fit(X_train,y_train)
         DecisionTreeClassifier(max_depth=6)
Out[32]:
         preds = dt.predict(X_test)
In [33]:
         from sklearn.metrics import accuracy_score,plot_confusion_matrix,classification_re
In [34]:
         The classification report
In [35]:
         print(classification_report(y_test,preds))
```

	pr	ecision	recall	f1-score	support
ı	No	0.87	0.89	0.88	557
Y	es	0.55	0.49	0.52	147
accura	су			0.81	704
macro a	vg	0.71	0.69	0.70	704
weighted a	vg	0.80	0.81	0.80	704

```
In [36]: plot_confusion_matrix(dt,X_test,y_test)
```

C:\Users\joeyd\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: Future Warning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class method s: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimato r.

warnings.warn(msg, category=FutureWarning)

Out[36]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f2dbc9f490>

Feture importance

Visualizing the tree

```
In [39]: from sklearn.tree import plot_tree

In [40]: plt.figure(figsize=(12,8),dpi=150)
    plot_tree(dt,filled=True,feature_names=X.columns);
```


Random Forest

```
In [41]: from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(n_estimators=100)
```

```
rf.fit(X_train,y_train)
```

Out[41]:

RandomForestClassifier()

The classification report of Random Forest

```
In [42]: preds = rf.predict(X_test)
    print(classification_report(y_test,preds))
```

	precision	recall	f1-score	support
No	0.86	0.88	0.87	557
Yes	0.51	0.46	0.48	147
accuracy			0.79	704
macro avg	0.68	0.67	0.68	704
weighted avg	0.79	0.79	0.79	704

In [43]: plot_confusion_matrix(dt,X_test,y_test)

C:\Users\joeyd\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: Future Warning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class method s: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimato r.

warnings.warn(msg, category=FutureWarning)

Out[43]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f2df805dc0>

Boosted Trees: Gradient and Ada

Gradient

```
In [44]: from sklearn.ensemble import GradientBoostingClassifier
In [45]: Gra_model = GradientBoostingClassifier()
In [46]: Gra_model.fit(X_train,y_train)
Out[46]: GradientBoostingClassifier()
In [47]: preds = Gra_model.predict(X_test)
```

The classification report of Gradient

In [48]: print(classification_report(y_test,preds))

	precision	recall	f1-score	support
No	0.87	0.90	0.89	557
Yes	0.57	0.50	0.53	147
accuracy			0.82	704
macro avg	0.72	0.70	0.71	704
weighted avg	0.81	0.82	0.81	704

In [49]: plot_confusion_matrix(dt,X_test,y_test)

C:\Users\joeyd\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: Future Warning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class method s: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimato r.

warnings.warn(msg, category=FutureWarning)

Out[49]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f2df69fd60>

Ada

In [59]:	<pre>from sklearn.ensemble import AdaBoostClassifier</pre>
In [60]:	<pre>ada_model = AdaBoostClassifier()</pre>
In [61]:	ada_model.fit(X_train,y_train)
Out[61]:	AdaBoostClassifier()
In [62]:	<pre>preds = ada_model.predict(X_test)</pre>

The classification report of Ada

In [63]: print(classification_report(y_test,preds))

	precision	recall	f1-score	support
No	0.88	0.90	0.89	557
Yes	0.60	0.54	0.57	147
accuracy	I		0.83	704
macro av		0.72	0.73	704
weighted av	g 0.82	0.83	0.83	704

In [64]: plot_confusion_matrix(dt,X_test,y_test)

C:\Users\joeyd\anaconda3\lib\site-packages\sklearn\utils\deprecation.py:87: Future Warning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class method s: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimato r.

warnings.warn(msg, category=FutureWarning)

Out[64]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x1f2dce15400>

The AdaBoosting shows it has the best average performance(f1-socre) on classifying this churn analysis