Optimization of Energy Efficiency and Execution Time in Cloud Computing

Using MILP, Simulated Annealing, Genetic Algorithms, and Multi-Objective Goal Programming

Introduction

- As cloud computing grows, so does energy consumption in data centers, leading to increased operational costs and CO2 emissions.
- ► This project explores how optimization techniques can enhance energy efficiency and reduce execution time in cloud environments.

Problem Statement

- ▶ **Objective**: To minimize energy consumption and execution time in a cloud computing environment.
- ▶ **Key Features**: CPU usage, memory usage, network traffic, power consumption, execution time, task type, task priority, task status.

Mixed Integer Linear Programming (MILP)

Objective: Minimize the total cost of energy consumption and execution time.

Minimize $Z = \alpha \times \text{Energy Consumption} + \beta \times \text{Execution Time}$

Subject to:

Resource Constraints:
$$\sum_{i} r_{ij} \times x_{it} \leq R_{j}^{\text{max}}, \quad \forall j, t$$

Task Completion Constraints:
$$\sum_t x_{it} = 1$$
, $\forall i$

Binary Constraints on decision variables.

Simulated Annealing (SA)

Objective: Iteratively minimize energy consumption and execution time by exploring different configurations.

- ▶ Start with an initial solution *S* and initial temperature *T*.
- For each iteration, generate a new solution S' in the neighborhood of S.
- ▶ Compute the change in cost $\Delta E = E(S') E(S)$.
- ▶ If $\Delta E < 0$, accept S'. Else, accept S' with probability $\exp(-\Delta E/T)$.
- ▶ Decrease the temperature *T* and repeat until convergence.

Genetic Algorithms (GA)

Objective: Evolve task allocation strategies to minimize energy consumption and optimize execution time.

- ▶ Initialize a population of chromosomes (task allocations).
- ► Evaluate fitness: $f(\text{chromosome}) = w_1 \times \text{Energy Consumption} + w_2 \times \text{Execution Time}.$
- Selection: Choose the fittest chromosomes.
- Crossover: Create offspring by combining pairs of chromosomes.
- Mutation: Introduce small changes to chromosomes.
- Repeat until convergence or max iterations.

Multi-Objective Goal Programming (MOGP)

Objective: Balance multiple goals like minimizing energy consumption and execution time.

- ▶ Define Goals: G_1 Minimize Energy, G_2 Minimize Execution Time.
- ▶ Formulate deviation variables $(d^+ \text{ and } d^-)$ for each goal.
- Minimize the weighted sum of deviations: Minimize $Z = w_1 \times d_1^+ + w_2 \times d_2^-$.
- Subject to: Goal constraints, resource constraints.

Implementation Strategy

- ► Implement the problem using R, with focus on data preprocessing, algorithm application, and evaluation metrics.
- ▶ Data Preparation: Extract and normalize key features from the dataset.
- ► **Algorithm Application**: Apply MILP, SA, GA, and MOGP to optimize the objectives.

Expected Outcomes

- Anticipated results include improved energy efficiency, reduced execution time, and insights into trade-offs between objectives.
- Evaluation will be based on how well the optimization techniques balance energy consumption and execution time.