FINAL PROJECT – INFORMATICA INDUSTRIALE

Group 2:

- Mattia Vincenzi (860579)
- Francesco Porto (816042)

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

INTRODUCTION

- Initial assumptions:
 - Red will be modulated along with Green
 - (i.e. setting MOD12 makes both Red and Green last 12 seconds)
 - We decided to add an initial OFF state
 - It can only be left by setting the MAINTENANCE state
 - A FAULT signal has been added to report errors (due to setting conflicting inputs)
 - We decided to set the clock period to 1 sec (1 Hz)
 - However, for testing purposes, we set it to 20 ns
 - Simulating a 1 sec clock period with ModelSim was too expensive

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

SYMBOL

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

I/O PORTS

Name	Direction	Resolution	Comment				
Enable	Input	1	Active High, Synchronous.				
Reset	Input	1	Active Low, Asynchronous.				
Condition	Input	2	00 -> Maintenance 01 -> Nominal 11 -> Standby 10 not used				
Modality	Input	2	00 -> MOD5 01 -> MOD12 11 -> MOD15 10 not used				
Clk	Input	1					

I/O PORTS

Name	Direction	Resolution	Comment
Red	Output	1	
Yellow	Output	1	
Green	Output	1	
Fault	Output	4	0000 -> Enable is set to 0 0001 -> Everything working correctly 0010 -> Condition error 0100 -> Modality error 1000 -> Condition AND Modality error

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

TOP-VIEW BLOCK SCHEME

(Link to code: <u>SemaforoTopView.vhdl</u>)

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

INTERNAL SIGNALS

Name	Resolution	Comment		
mod5_int	1	Connects MM and LCS. It is 1 when mod5 is set.		
mod12_int	1	Connects MM and LCS. It is 1 when mod12 is set.		
mod15_int	1	Connects MM and LCS. It is 1 when mod15 is set.		
err_MM_int	1	Connects MM and FD. It is 1 when the input modality is 10.		
m_int	1	Connects CM and LCS. It is 1 when MAINTENANCE is set.		
n_int	1	Connects CM and LCS. It is 1 when NOMINAL is set.		
s_int	1	Connects CM and LCS. It is 1 when STANDBY is set.		
err_CM_int	1	Connects CM and FD. It is 1 when the input condition is 10.		
fault_for_enable_int	1	It is 1 when FAULT is 0001 (everything works correctly)		
enable_LCS_int	1	Enables LCS. It is 1 iff fault_for_enable_int AND (global) Enable.		

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

CONDITION MANAGER

(Link to code: ConditionManager.vhdl)

- It is a Moore FSM
- The starting state is OFF, which can be left only by setting Condition to 00, thus entering the MAINTENANCE state
- OFF can be reached again only by setting Enable=0 from each state
- Gray code has been used to minimize transitions to a unwanted states

Note: We omitted the loops when ENABLE=1 or when the condition remains the same for the sake of clarity

MODALITY MANAGER

(Link to code: ModalityManager.vhdl)

- It is a Moore FSM
- The starting state is MOD5
- The modality can only be changed when the circuit is in the

MAINTENANCE state

- Otherwise the circuit ignores the modality change
- When Reset is set to 0 (Active Low) the FSM returns to MOD5

LIGHT CONTROL SYSTEM

(Link to code: <u>LightControlSystem.vhdl</u>)

- It is made by two sub-components:
 - Control Logic: a process that sets the lights according to the current condition and modality.
 - Counter (w/ Reset): a simple counter that keeps track of time
- By using both components, it is possible to handle the timings for the three lights
- The two components cooperate as follows:
 - The Control Logic can reset the Counter
 - The Counter is read by the Control Logic

- Detects whether or not the circuit is working correctly
- Takes as input the error bit from CM and MM
- Uses a 2x4 Decoder for returning a bit sequence that represents the error type
- It is a combinatory component
- When an error is found, the Enable for the LCS is set to 0

Truth Table

enable	A1	A0	вз	B2	В1	во
0	х	х	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

FAULT DETECTOR

(Link to code: FaultDetector.vhdl)

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

Scenario #1: Everything working correctly

Delay between internal state change and lights update

MAINTENANCE

NOMINAL (MOD-5)

The modality does not change since the traffic light is not in the MAINTENANCE state, therefore the Enable for Modality Manager is 0

The modality does change since the traffic light is in the MAINTENANCE state, therefore the Enable for Modality Manager is 1

NOMINAL (MOD-12)

NOMINAL (MOD-15)

Scenario #2: FAULT Configuration

- 10 is an invalid input Condition, so Fault is set to 0010 that represents this type of error
- Lights are turned off until a valid Condition is set

10 is an invalid input Modality, but it is ignored because the modality cannot be changed since the traffic light is not in the MAINTENANCE state

- 10 is an invalid input Modality, so Fault is set to 0010 that represents this type of error.
 - This is detected because the traffic light is in the MAINTENANCE state and therefore the Modality can be modified.
- Lights are turned off until a valid Condition is set

- 10 is an invalid input Condition
- 10 is an invalid input Modality
 - Fault is set to 1000 that represents an error on both
- Lights are turned off until a valid Condition is set

Scenario #3: Enable

ENABLE:

- Active High
- Synchronous

All lights are off and it is not sensitive to condition changes

When ENABLE becomes 1 the OFF condition can be changed only by setting MAINTENANCE

Scenario #4: Reset

RESET:

- Active Low
- Asynchronous

When RESET becomes 0 the modality becomes MOD5

Scenario #5: Enable and Reset

- RESET (Asynchronous) is prioritary over ENABLE (Synchronous)
- ENABLE = 0 makes the circuit insensitive to external signals and turns all the lights off
 - But when RESET = 0, the modality changes nonetheless

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion

CONCLUSION

- Starting by the top-view block scheme, each component has been implemented in VHDL
- Each entity has been tested independently with its own testbench, before being connected
- As shown by the simulation results, and according to the initial assumptions, the circuit works as expected

- Introduction
- Symbol
 - I/O ports
- Top-view block scheme
 - Internal signals
 - VHDL Design of all stages
- Simulation results
- Conclusion