SESA 6071

Spacecraft Propulsion

Author: Yusaf Sultan Lecturer: Charlie Ryan Word Count: 532

Contents

1.	Lecture 1	3
	1.1. What is Rocket Propulsion	3
	1.2. Rocket Propulsion Family Tree	3
	1.2.1. Chemical Rockets	3
	1.2.2. Electric Rockets	
	1.2.3. Nuclear Rockets	4
	1.2.4. Solar and Laser Rockets	4
	1.2.5. Solar Sails	4
	1.3. Rocket Propulsion Applications	4
	• • • • • • • • • • • • • • • • • • • •	
\mathbf{L}	ist of Figures	
Fi	gure 1 Flowchart of the rocket propulsion family tree	3

List of Tables

1. Lecture 1

1.1. What is Rocket Propulsion

Propulsion itself is the **act of changing the motion of a body**, typically by using newtons third law and it can be classified in various types of ways. A more colloquial way of defining rocket propulsion is as **mass drivers**, throwing out mass one way to yield an acceleration in the other.

1.2. Rocket Propulsion Family Tree

In **Figure 1** the rocket propulsion types are grouped by the energy source.

Figure 1: Flowchart of the rocket propulsion family tree

1.2.1. Chemical Rockets

These utilize either a chemical reaction or decomposition to generate energy. Gas is heated to between $700^{\circ}C - 1300^{\circ}C$ and to speeds between 1.5 km/s - 4.5 km/s. These require a fuel and oxidizer and come in the following types:

- **Solid:** Fuel and oxidizer mixed within into a solid grain which cannot stop burning once ignited. feature **high thrust with low performance**.
- Liquid: Burn a liquid fuel and oxidizer allowing for repeated firings and variable thrust. Feature high performance and thrust with high complexity.
- **Hybrid:** Have a liquid oxidizer but a solid fuel allowing for better performance than solid with lower complexity.

1.2.2. Electric Rockets

These use electrical energy to generate thrust without utilizing combustion. Typically have very high exhaust velocities ($\sim 60,000 \text{ m/s}$) and therefore very high performance at the costs of high complexities and very low thrust. The four distinct groups are:

- Electrothermal: Uses electrical energy to heat a propellent (Resistojet). Are simple to build at the cost of low thrust.
- **Electrostatic:** Uses electrical energy to accelerate ionized fuel across an electric fields. Feature **good performance** at the cost of **being expensive and low thrust**.
- Electromagnetic: Accelerates an ionized fuel using a magnetic field. Fall issue to low efficiency unless power input is high.
- Hall Effect Thruster: Uses a mixture of both electrostatic and electromagnetic propulsion methods to accelerate propellent. These are the most commonly used.

1.2.3. Nuclear Rockets

Broadly speaking there are two types of nuclear rockets, these are:

- Nuclear Detonation: Use the shockwave produced when nuclear bombs are detonated to produce thrust (Orion Drive). High performance and thrust but are very dangerous and have limited testing.
- Nuclear Thermal: Uses the heat energy produced during nuclear fission to heat a propellent (typically hydrogen) which is then exhausted. These have high performance and thrust but are dangerous and have limited testing.

1.2.4. Solar and Laser Rockets

These systems use large diameter telescopes to focus in a laser or solar radiation to heat up a propellent. These systems feature **high theoretical performance and moderate thrust** but are **very complex and lack any real testing**.

1.2.5. Solar Sails

These systems use no propellent at all and instead produce thrust through the momentum gained when a photon is incident on the sail. These systems feature **good performance** with no fuel but fall victim to low thrust and engineering complexity.

1.3. Rocket Propulsion Applications

Instead of grouping together rocket propulsion methods using the energy source, the rocket application can also be used, for example:

- **High Thrust/Maneuverability:** Typically have the cost of **low performance** and use **chemical or solid** propulsion methods.
- **High Performance:** Typically have the cost of **low thrust** and use **electrical** propulsion methods.
- Balanced Thrust and Performance: Typically the middle ground is nuclear thermal.