Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training

NSDI'23

2024.4

Background

- Deep learning applications is everywhere
 - Image processing
 - Autonomous driving
 - Machine translation
 - Image/text generation

DNN Energy Consumption is Skyrocketing

• Training LLMs (GPT-3)

• Re-training demands

120 years of electricity for a household

Re-training is commonplace(e.g. every hour)

Existing Energy-Efficient Solution

New energy-efficient DNN architectures

SqueezeNext

Existing Energy-Efficient Solution

New energy-efficient HW architectures

TPU LNPU

Existing Energy-Efficient Solution

- Offline profiling and power model fitting.
- Confined to GPU power configuration knobs.

Consider the energy consumption of training

- Energy to Accuracy(ETA)
 - Energy needed to reach the user-specified target accuracy.
 - Energy-counterpart of Time to Accuracy (TTA)

Consider the energy consumption of training

- Energy to Accuracy(ETA)
 - Energy needed to reach the user-specified target accuracy.
 - Energy-counterpart of Time to Accuracy (TTA)

Opportunities for Improving Energy Efficiency

- Training terminates when the DNN reaches its original target accuracy.
 - 24~75% energy reduction with optimization

Relationship between time and energy

- Efficient time and energy show a **trade-off**.
- Optimize metric

 $Cost = \eta \cdot ETA + (1 - \eta) \cdot MaxPower \cdot TTA$

Time to Accuracy (Seconds)

Decoupling Batch Size and Power Limit

Relationship between time and energy

- Offline Profiling is timeconsuming.
 - Different DNN model
 - Different Dataset
 - Different GPU

Time to Accuracy (Seconds)

Relationship between time and energy

• Feasible A Default —— Pareto Front

Build An Energy Optimization Framework for DNN Training, Optimize the cost of an arbitrary DNN model in an efficient manner without any offline profiling, hardware modification or accuracy degradation.

Time to Accuracy (Seconds)

• Architecture

GPU

• Architecture

Monitoring library for C#

Monitor energy consumption

• Architecture

- Zeus Architecture
 - JIT Profiler
 - Profiles the power and throughput of each power limit
 - **Five seconds** per power limit is enough
 - Batch Size Optimizer
 - Multi-armed bandit

a **software-level** optimization framework.

Batch Size Optimizer

• Multi-armed bandit

- Workflow of Zeus
 - Job submission
 - Optimization
 - Execution
 - Observation

Task	Dataset	DNN	GPU	Arch
Speech Recognition	LibriSpeech	DeepSpeech2	NVIDIA A40	Ampere
Question Answering	SQuAD	BERT	NVIDIAV100	Volta
Sentiment Analysis	Sentiment I 40	BERT	NVIDIA RTX6000	Turing
Image Classification	ImageNet	ResNet-50	NVIDIA P100	Pascal
Image Classification	CIFAR-100	ShuffleNet-v2		
Recommendation	MovieLens-IM	NeuMF		

• ETA(lower is better) & TTA(higher is better)

(a) Energy Consumption

(b) Training Time

Search paths

- Handling Data Drift
 - Spikes in ETA and TTA (signaling that the current batch size may no longer be optimal) trigger the exploration of a batch size.

