Scalarization The ε -constraint Method with Adaptive Step The Two Phase Method Bound sets, Branch & Bound

Multi-Objective Combinatorial Optimization

Anthony Przybylski

University of Nantes, Master 2 ORO

Overview

- Scalarization
- ② The arepsilon-constraint Method with Adaptive Step
- 3 The Two Phase Method
- 4 Bound sets, Branch & Bound

The Two Phase Method Bound sets. Branch & Bound

Overview

- Scalarization

Convert multi-objective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

Convert multi-objective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Convert multi-objective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Convert multi-objective problem to (parameterized) single objective problem and solve repeatedly with different parameter values

- Correctness: Optimal solutions are (weakly) efficient
- Completness: All efficient solutions can be found
- Computability: Scalarization is not harder than single objective version of problem (theory and practice)
- Linearity: Scalarization has linear formulation

Scalarization Methods

- Weighted sum: $\min_{x \in X} \{\lambda^T z(x)\}$
- ε -constraint:

$$\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$$

Weighted Chebychev

$$\min_{x \in X} \left\{ \max_{k=1,\dots,p} \mu_k(z_k(x) - y_k^I) \right\}$$

Scalarization Methods

• Weighted sum: $\min_{x \in X} \{\lambda^T z(x)\}$

• ε -constraint:

$$\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$$

Weighted Chebychev

$$\min_{x \in X} \left\{ \max_{k=1,\dots,p} \mu_k(z_k(x) - y_k^l) \right\}$$

Scalarization Methods

- Weighted sum: $\min_{x \in X} \{\lambda^T z(x)\}$
- ε -constraint:

$$\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$$

• Weighted Chebychev:

$$\min_{x \in X} \left\{ \max_{k=1,...,p} \mu_k(z_k(x) - y_k^I) \right\}$$

$$\min_{x \in X} \quad \left\{ \max_{k=1,\dots,p} [\mu_k (c_k x - \rho_k)] + \sum_{k=1}^p [\lambda_k (c_k x - \rho_k)] \right\}$$
 subject to $c_k x \leq \varepsilon_k \quad k = 1,\dots,p$

Includes

P

λ

chebychev y h

Correct Complete Computable

ε-constraint Chebychev

Bound sets, Branch & Bound General Scalarization

$$\min_{x \in X} \quad \left\{ \max_{k=1,\dots,p} [\mu_k(c_k x - \rho_k)] + \sum_{k=1}^p [\lambda_k(c_k x - \rho_k)] \right\}$$
 subject to $c_k x \leq \varepsilon_k \quad k = 1,\dots,p$

Includes	ρ	μ	λ	arepsilon
Weighted Sum	0	0	λ	$\varepsilon_k = \infty$, for all k

|--|--|--|--|--|

The Two Phase Method Bound sets, Branch & Bound

General Scalarization

e-constraint
Chebychev

Anthony Przybylski

$$\min_{x \in X} \ \left\{ \max_{k=1,\dots,p} [\mu_k(c_k x - \rho_k)] + \sum_{k=1}^p [\lambda_k(c_k x - \rho_k)] \right\}$$
 subject to $c_k x \leq \varepsilon_k \quad k = 1,\dots,p$
$$\frac{\text{Includes}}{\text{Includes}} \quad \frac{\rho}{\rho} \quad \frac{\mu}{\mu} \quad \lambda \qquad \varepsilon$$

$$\frac{\varepsilon}{\text{Weighted Sum}} \quad 0 \quad 0 \quad \lambda \quad \varepsilon_k = \infty, \text{for all } k$$

$$\varepsilon\text{-constraint} \quad 0 \quad 0 \quad \lambda_I = 1, \lambda_k = 0, k \neq I \quad \varepsilon_I = \infty, \varepsilon_k, k \neq I$$

$$\text{Chebychev} \quad y^I \quad \mu \quad 0 \quad \varepsilon_k = \infty, \text{for all } k$$

$$\text{Method} \quad \text{Correct} \quad \text{Complete} \quad \text{Computable} \quad \text{Linear}$$

ε-constraint
Chebychev

Anthony Przybylski

Anthony Przybylski

Method	Correct	Complete	Computable	Linear
Weighted Sum	+	_	+	+

Method	Correct	Complete	Computable	Linear
Weighted Sum	+	-	+	+

Method	Correct	Complete	Computable	Linear
Weighted Sum	+	-	+	+
arepsilon-constraint	+	+	-	+

Anthony Przybylski

Method	Correct	Complete	Computable	Linear
Weighted Sum	+	-	+	+
arepsilon-constraint	+	+	-	+
Chebychev	+	(+)	(-)	+

Anthony Przybylski

Scalarization
The ε -constraint Method with Adaptive Step
The Two Phase Method
Bound sets. Branch & Bound

General scalarization

Theorem (Ehrgott 2005)

- ① The general scalarization is \mathcal{NP} -hard
- ② An optimal solution of the Lagrangian dual of the linearized general scalarization is a supported efficient solution

Notes

Theorem (Ehrgott 2005)

- ① The general scalarization is \mathcal{NP} -hard
- ② An optimal solution of the Lagrangian dual of the linearized general scalarization is a supported efficient solution

Notes

- The general scalarization includes other particular scalarizations
- Given a problem the single objective case is \mathcal{NP} -hard, a scalarization (like ε -constraint) of this problem is also \mathcal{NP} -hard.

This does not imply a same practical difficulty

straint Method with Adaptive Step The Two Phase Method Bound sets, Branch & Bound

General scalarization

Theorem (Ehrgott 2005)

- ① The general scalarization is \mathcal{NP} -hard
- ② An optimal solution of the Lagrangian dual of the linearized general scalarization is a supported efficient solution

Notes

- The general scalarization includes other particular scalarizations
- Given a problem the single objective case is \mathcal{NP} -hard, a scalarization (like ε -constraint) of this problem is also \mathcal{NP} -hard.

This does not imply a same practical difficulty

Overview

- 1 Scalarization
- 2 The ε -constraint Method with Adaptive Step
- (3) The Two Phase Method
- 4 Bound sets, Branch & Bound

The ε -constraint Method

- ullet Given an instance of a MOCO problem, a complete set can be computed using arepsilon-constraint method
- All efficient solution \bar{x} is an optimal solution of a problem

$$\min_{\mathbf{x} \in X} \{ z_{l}(\mathbf{x}) : z_{k}(\mathbf{x}) \le \varepsilon_{k}, k \ne l \}$$
 (1)

- A suitable parameter to find \bar{x} (or an equivalent solution) by optimization of (1) could be $\varepsilon = z(\bar{x})$
- However, \bar{x} is not know
- Determination of appropriate ε value?

The ε -constraint Method

- ullet Given an instance of a MOCO problem, a complete set can be computed using arepsilon-constraint method
- All efficient solution \bar{x} is an optimal solution of a problem

$$\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$$
 (1)

- A suitable parameter to find \bar{x} (or an equivalent solution) by optimization of (1) could be $\varepsilon = z(\bar{x})$
- However, \bar{x} is not know
- Determination of appropriate ε value?

The ε -constraint Method

- Given an instance of a MOCO problem, a complete set can be computed using ε -constraint method
- All efficient solution \bar{x} is an optimal solution of a problem

$$\min_{x \in X} \{ z_l(x) : z_k(x) \le \varepsilon_k, k \ne l \}$$
 (1)

- A suitable parameter to find \bar{x} (or an equivalent solution) by optimization of (1) could be $\varepsilon = z(\bar{x})$
- However, \bar{x} is not know
- Determination of appropriate ε value?

- Use of the "natural order" of non-dominated points in the bi-objective case:
 - Let y^1,y^2 be two nondominated points with $y^1 \neq y^2$ then $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$, or $(y_1^1 > y_1^2 \text{ and } y_2^1 < y_2^2)$
- ullet With two objectives, the arepsilon-constraint scalarization is

$$\min_{\mathbf{x} \in X} \{ z_1(\mathbf{x}) : z_2(\mathbf{x}) \le \varepsilon_1 \} \tag{2}$$

• Given a nondominated point y', the next (weakly) non-dominated point w.r. to z_1 (if is exists) can be found by solving

$$\min_{x \in X} \{ z_1(x) : z_2(x) < y_2^T \}$$

This is not an instance of (2)!!!

- Use of the "natural order" of non-dominated points in the bi-objective case:
 - Let y^1,y^2 be two nondominated points with $y^1 \neq y^2$ then $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$, or $(y_1^1 > y_1^2 \text{ and } y_2^1 < y_2^2)$
- With two objectives, the ε -constraint scalarization is

$$\min_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \}$$
 (2)

• Given a nondominated point y', the next (weakly) non-dominated point w.r. to z_1 (if is exists) can be found by solving

$$\min_{x \in X} \{ z_1(x) : z_2(x) < y_2^{i} \}$$

This is not an instance of (2)!!!

- Use of the "natural order" of non-dominated points in the bi-objective case:
 - Let y^1,y^2 be two nondominated points with $y^1 \neq y^2$ then $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$, or $(y_1^1 > y_1^2 \text{ and } y_2^1 < y_2^2)$
- With two objectives, the ε -constraint scalarization is

$$\min_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \} \tag{2}$$

• Given a nondominated point y^i , the next (weakly) non-dominated point w.r. to z_1 (if is exists) can be found by solving

$$\min_{x \in X} \{ z_1(x) : z_2(x) < y_2^i \}$$

This is not an instance of (2)!!!

- Use of the "natural order" of non-dominated points in the bi-objective case:
 - Let y^1,y^2 be two nondominated points with $y^1 \neq y^2$ then $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$, or $(y_1^1 > y_1^2 \text{ and } y_2^1 < y_2^2)$
- With two objectives, the ε -constraint scalarization is

$$\min_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \}$$
 (2)

• Given a nondominated point y^i , the next (weakly) non-dominated point w.r. to z_1 (if is exists) can be found by solving

$$\min_{x \in X} \{ z_1(x) : z_2(x) \leq y_2^i - \epsilon \}$$

where $\epsilon > 0$ is as small as possible!!!

Algorithm (ε -constraint with adaptive step)

- Initialization:
 - Determine x^1 a lexicographic optimal solution for $z^{(1,2)}$
 - $\tilde{X} \leftarrow \{x^1\}$
 - $\varepsilon_1 \leftarrow z_2(x^1) \epsilon$
- 2 While problem (2) is feasible do

3 Filter dominated solutions in \tilde{X}

Output: \tilde{X} contains one solution for each nondominated point, i.e. a minimal complete set X_{E_m}

Algorithm (ε -constraint with adaptive step)

- Initialization:
 - Determine x^1 a lexicographic optimal solution for $z^{(1,2)}$
 - $\bullet \ \tilde{X} \leftarrow \{x^1\}$
 - $\varepsilon_1 \leftarrow z_2(x^1) \epsilon$
- ② While problem (2) is feasible do
 - Let \hat{x} be an optimal solution of (2)
 - $\tilde{X} \leftarrow \tilde{X} \cup \{\hat{x}\}$
 - $\varepsilon_1 \leftarrow z_2(\hat{x}) \epsilon$
- 3 Filter dominated solutions in \tilde{X}

Output: \tilde{X} contains one solution for each nondominated point, i.e. a minimal complete set $X_{F_{-}}$

Algorithm (ε -constraint with adaptive step)

- Initialization:
 - Determine x^1 a lexicographic optimal solution for $z^{(1,2)}$
 - $\bullet \ \tilde{X} \leftarrow \{x^1\}$
 - $\varepsilon_1 \leftarrow z_2(x^1) \epsilon$
- ② While problem (2) is feasible do
 - Let \hat{x} be an optimal solution of (2)
 - $\tilde{X} \leftarrow \tilde{X} \cup \{\hat{x}\}$
 - $\varepsilon_1 \leftarrow z_2(\hat{x}) \epsilon$
- ③ Filter dominated solutions in \tilde{X}

Output: \tilde{X} contains one solution for each nondominated point, i.e. a minimal complete set X_{E_m}

Illustration

Illustration

Illustration

MOCO 2

• In order to avoid to filter dominated solutions (step 3), (2) is sometimes replaced by

$$\operatorname{lexmin}_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \} \tag{3}$$

However, a lexicographic optimization may require several steps

 It seems to clarify the algorithm but could lead to an inefficient implementation

• In order to avoid to filter dominated solutions (step 3), (2) is sometimes replaced by

$$\operatorname{lexmin}_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \} \tag{3}$$

- However, a lexicographic optimization may require several steps
 - Solve $\min_{x \in X} z_1(x)$ and obtain a solution x^1
 - Solve $\min_{x \in X} z_2(x)$ with the additional constraint $z_1(x) \le z_1(x^1)$
- It seems to clarify the algorithm but could lead to an inefficient implementation

 In order to avoid to filter dominated solutions (step 3), (2) is sometimes replaced by

$$\operatorname{lexmin}_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \} \tag{3}$$

- However, a lexicographic optimization may require several steps
 - Solve $\min_{x \in X} z_1(x)$ and obtain a solution x^1
 - Solve $\min_{x \in X} z_2(x)$ with the additional constraint $z_1(x) < z_1(x^1)$

MOCO 2

• In order to avoid to filter dominated solutions (step 3), (2) is sometimes replaced by

$$\operatorname{lexmin}_{x \in X} \{ z_1(x) : z_2(x) \le \varepsilon_1 \} \tag{3}$$

- However, a lexicographic optimization may require several steps
 - Solve $\min_{x \in X} z_1(x)$ and obtain a solution x^1
 - Solve $\min_{x \in X} z_2(x)$ with the additional constraint $z_1(x) \le z_1(x^1)$
- It seems to clarify the algorithm but could lead to an inefficient implementation

- ullet The choice of the step ϵ can be difficult in a general context
 - With a step too large, a nondominated point may be "jumped
 - A step too small may cause numerical imprecisions in practice
- In a MOCO problem, $C \in \mathbb{Z}^{2 \times n} \Longrightarrow Y \subset \mathbb{Z}^2$ Consequently, the step ϵ can be fixed to 1
- Using the integrity of cost vectors, lexicographic optimization can be solved with a weighted sum scalarization

- ullet The choice of the step ϵ can be difficult in a general context
 - With a step too large, a nondominated point may be "jumped"
 - A step too small may cause numerical imprecisions in practice
- In a MOCO problem, $C \in \mathbb{Z}^{2 \times n} \Longrightarrow Y \subset \mathbb{Z}^2$ Consequently, the step ϵ can be fixed to 1
- Using the integrity of cost vectors, lexicographic optimization can be solved with a weighted sum scalarization

- ullet The choice of the step ϵ can be difficult in a general context
 - With a step too large, a nondominated point may be "jumped"
 - A step too small may cause numerical imprecisions in practice
- In a MOCO problem, $C \in \mathbb{Z}^{2 \times n} \Longrightarrow Y \subset \mathbb{Z}^2$ Consequently, the step ϵ can be fixed to 1
- Using the integrity of cost vectors, lexicographic optimization can be solved with a weighted sum scalarization

- ullet The choice of the step ϵ can be difficult in a general context
 - With a step too large, a nondominated point may be "jumped"
 - A step too small may cause numerical imprecisions in practice
- In a MOCO problem, $C \in \mathbb{Z}^{2 \times n} \Longrightarrow Y \subset \mathbb{Z}^2$ Consequently, the step ϵ can be fixed to 1
- Using the integrity of cost vectors, lexicographic optimization can be solved with a weighted sum scalarization

- ullet The choice of the step ϵ can be difficult in a general context
 - With a step too large, a nondominated point may be "jumped"
 - A step too small may cause numerical imprecisions in practice
- In a MOCO problem, $C \in \mathbb{Z}^{2 \times n} \Longrightarrow Y \subset \mathbb{Z}^2$ Consequently, the step ϵ can be fixed to 1
- Using the integrity of cost vectors, lexicographic optimization can be solved with a weighted sum scalarization

- ε -constraint method with adaptive step is a powerful method to solve $(1 \sum, 1 \max)$ and $(2 \max)$ MOCO problems
- It is judicious to convert a bottleneck objective (z₂ here) to a constraint

$$\min_{x \in X} \{ z_1(x) : \max_{i=1,...,n} c_i^2 x^i \le \epsilon_2 \}$$

is equivalent to

with a modified cost vector c'^{\perp} where

o If
$$c_i^* > \epsilon_2$$
 then $c'_i^* := \infty$

 The ε-constraint scalarization is an instance of the single-objective problem with the same (practical and theoretical) difficulty

- ε -constraint method with adaptive step is a powerful method to solve $(1-\sum,1-\max)$ and $(2-\max)$ MOCO problems
- It is judicious to convert a bottleneck objective (z₂ here) to a constraint

$$\min_{x \in X} \left\{ z_1(x) : \max_{i=1,\dots,n} c_i^2 x^i \le \epsilon_2 \right\}$$

is equivalent to

$$\min_{x \in X} z_1(x)$$

with a modified cost vector c'^1 where

- If $c_i^2 > \epsilon_2$ then ${c'}_i^1 := \infty$
- Else $c'_{i}^{1} := c_{i}^{1}$
- The ε -constraint scalarization is an instance of the single-objective problem with the same (practical and theoretical) difficulty

- ε -constraint method with adaptive step is a powerful method to solve $(1 \sum, 1 \max)$ and $(2 \max)$ MOCO problems
- It is judicious to convert a bottleneck objective (z_2 here) to a constraint

$$\min_{x \in X} \left\{ z_1(x) : \max_{i=1,\dots,n} c_i^2 x^i \le \epsilon_2 \right\}$$

is equivalent to

$$\min_{x \in X} z_1(x)$$

with a modified cost vector c'^1 where

- If $c_i^2 > \epsilon_2$ then ${c'}_i^1 := \infty$
- Else $c'_{i}^{1} := c_{i}^{1}$
- The ε -constraint scalarization is an instance of the single-objective problem with the same (practical and theoretical) difficulty

- ε -constraint method with adaptive step is a powerful method to solve $(1-\sum,1-\max)$ and $(2-\max)$ MOCO problems
- It is judicious to convert a bottleneck objective (z_2 here) to a constraint

$$\min_{x \in X} \left\{ z_1(x) : \max_{i=1,\dots,n} c_i^2 x^i \le \epsilon_2 \right\}$$

is equivalent to

$$\min_{x \in X} z_1(x)$$

with a modified cost vector c'^1 where

- If $c_i^2 > \epsilon_2$ then ${c'}_i^1 := \infty$
- Else $c'_{i}^{1} := c_{i}^{1}$
- The ε -constraint scalarization is an instance of the single-objective problem with the same (practical and theoretical) difficulty

- ε -constraint with adaptive step is a generic method to compute a set X_{E_m} of an instance of a MOCO problem with two objectives (or a bounded bi-objective integer programme)
- The method is particularly efficient in presence of a bottleneck objective
- With two sum objectives, the constraint structure of the problem is modified
- A MIP solver is generally required and the scalarization is often difficult to solve

 The size of solved instance is generally moderate
- However, the method can be implemented easily and rapidly
 Interesting for a first feedback about a problem

- ε -constraint with adaptive step is a generic method to compute a set X_{E_m} of an instance of a MOCO problem with two objectives (or a bounded bi-objective integer programme)
- The method is particularly efficient in presence of a bottleneck objective
- With two sum objectives, the constraint structure of the problem is modified
- A MIP solver is generally required and the scalarization is often difficult to solve

 The size of solved instance is generally moderate
- However, the method can be implemented easily and rapidly
 Interesting for a first feedback about a problem

- ε -constraint with adaptive step is a generic method to compute a set X_{E_m} of an instance of a MOCO problem with two objectives (or a bounded bi-objective integer programme)
- The method is particularly efficient in presence of a bottleneck objective
- With two sum objectives, the constraint structure of the problem is modified
- A MIP solver is generally required and the scalarization is often difficult to solve

 The size of solved instance is generally moderate
- However, the method can be implemented easily and rapidly
 Interesting for a first feedback about a problem

- ε -constraint with adaptive step is a generic method to compute a set X_{E_m} of an instance of a MOCO problem with two objectives (or a bounded bi-objective integer programme)
- The method is particularly efficient in presence of a bottleneck objective
- With two sum objectives, the constraint structure of the problem is modified
- A MIP solver is generally required and the scalarization is often difficult to solve

 The size of solved instance is generally moderate
- However, the method can be implemented easily and rapidly
 Interesting for a first feedback about a problem

Multi-objective case: ε -constraint (like) with adaptive step

- M. Laumanns, L. Thiele, E. Zitzler. An adaptive scheme to generate the Pareto front based on the ε-constraint method. In: J. Branke. K. Deb, K. Miettinen, R.E. Steuer (eds.) Practical Approaches to Multi-Objective Optimization, number 04461 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales Begegnungs und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.
- M. Ozlen, M. Azizoglu. Multi-objective integer programming: a general approach for generating all non-dominated solutions. Eur. J. Oper. Res. 199, 25-35 (2009)
- M. Ozlen, B.A. Burton, C.A.G MacRae. Multi-objective integer programming: an improved recursive algorithm. J. Optim. Theory and Appl. 160(2), 470-482 (2014)
- B. Lokman, M. Köksalan. Finding all nondominated points of multi-objective integer programs. J. Global Optim. 57, 347-365 (2013)
- G. Kirlik, S. Sayin. A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232, 479-488 (2014)
- K. Dächert, K. Klamroth. A linear bound on the number of scalarizations needed to solve tricriteria optimization problems. J. Global Optim. 62, 643-676 (2014)

Overview

- Scalarization
- \bigcirc The ε -constraint Method with Adaptive Step
- 3 The Two Phase Method
- 4 Bound sets, Branch & Bound

The Two Phase Method

- General solving scheme for multi-objective combinatorial optimization problems (Ulungu and Teghem, 1995)
- Observation: There exists efficient algorithm for single-objective combinatorial optimization problems
- Idea: Intensively use these algorithms
- Consequence: The constraint structure cannot be modified the only usable scalarization is the weighted sum

The Two Phase Method

- General solving scheme for multi-objective combinatorial optimization problems (Ulungu and Teghem, 1995)
- Observation: There exists efficient algorithm for single-objective combinatorial optimization problems
- Idea: Intensively use these algorithms
- Consequence: The constraint structure cannot be modified the only usable scalarization is the weighted sum

The Two Phase Method

- General solving scheme for multi-objective combinatorial optimization problems (Ulungu and Teghem, 1995)
- Observation: There exists efficient algorithm for single-objective combinatorial optimization problems
- Idea: Intensively use these algorithms
- Consequence: The constraint structure cannot be modified, the only usable scalarization is the weighted sum

Phase 1: Compute Supported Solutions

Using weighted sum scalarization, we solve

$$\min_{x \in X} \{\lambda_1 z_1(x) + \lambda_2 z_2(x)\} \tag{4}$$

where $\lambda \in \mathbb{R}^2$

- Only supported solutions can be found by optimization of (4)
- How can we choose appropriate parameters λ to find all supported solutions ?
- By dichotomy using the "natural order" of nondominated points

Phase 1: Compute Supported Solutions

Using weighted sum scalarization, we solve

$$\min_{x \in X} \{\lambda_1 z_1(x) + \lambda_2 z_2(x)\} \tag{4}$$

where $\lambda \in \mathbb{R}^2$

- Only supported solutions can be found by optimization of (4)
- How can we choose appropriate parameters λ to find all supported solutions ?
- By dichotomy using the "natural order" of nondominated points

Dichotomic Method

- Given two supported solutions x^1, x^2 with $y^1 = z(x^1)$ and $y^2 = z(x^2)$ such that $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$
- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight defined by

$$\lambda_1 = y_2^1 - y_2^2$$
 and $\lambda_2 = y_1^2 - y_1^2$

• $\lambda_1 y_1^1 + \lambda_2 y_2^1 = \lambda_1 y_1^2 + \lambda_2 y_2^2$ λ defines the normal to the line segment connecting y^1 and y^2

Dichotomic Method

- Given two supported solutions x^1, x^2 with $y^1 = z(x^1)$ and $y^2 = z(x^2)$ such that $(y_1^1 < y_1^2 \text{ and } y_2^1 > y_2^2)$
- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight defined by

$$\lambda_1 = y_2^1 - y_2^2$$
 and $\lambda_2 = y_1^2 - y_1^1$

• $\lambda_1 y_1^1 + \lambda_2 y_2^1 = \lambda_1 y_1^2 + \lambda_2 y_2^2$ λ defines the normal to the line segment connecting y^1 and y^2

- Let \hat{x} be an optimal solution of (4) with $\hat{y} = z(\hat{x})$
- \hat{y} is necessarily located "between" y^1 and y^2
- Suppose $\lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2 < \lambda_1 y_1^2 + \lambda_2 y_2^2$ Then \hat{y} is located below the line segment connecting y^1 and y^2

Question: Is there supported solutions between y^1 and \hat{y} , \hat{y} and y^2 ? Recursive solution to check it

- Let \hat{x} be an optimal solution of (4) with $\hat{y} = z(\hat{x})$
- \hat{y} is necessarily located "between" y^1 and y^2
- Suppose $\lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2 < \lambda_1 y_1^2 + \lambda_2 y_2^2$ Then \hat{y} is located below the line segment connecting y^1 and y^2

Question: Is there supported solutions between y^1 and \hat{y} , \hat{y} and y^2 ? Recursive solution to check it

- Let \hat{x} be an optimal solution of (4) with $\hat{y} = z(\hat{x})$
- \hat{y} is necessarily located "between" y^1 and y^2
- Suppose $\lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2 < \lambda_1 y_1^2 + \lambda_2 y_2^2$ Then \hat{y} is located below the line segment connecting y^1 and y^2

Question: Is there supported solutions between y^1 and \hat{y} , \hat{y} and y^2 ? Recursive solution to check it

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x¹ or x
 or a non-extreme supported solution

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x¹ or x
 or a non-extreme supported solution

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x¹ or x̄ or a non-extreme supported solution

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x^1 or \bar{x} or a non-extreme supported solution

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x¹ or x
 or a non-extreme supported solution

- Let $\lambda = (\lambda_1, \lambda_2)$ be the weight vector defined by y^1 and \hat{y}
- Let \bar{x} be an optimal solution of (4) with $\bar{y} = z(\bar{x})$
- Suppose $\lambda_1 \bar{y}_1 + \lambda_2 \bar{y}_2 = \lambda_1 \hat{y}_1 + \lambda_2 \hat{y}_2$ Is the solution/point necessarily new?
- We can obtain an equivalent solution to x¹ or x
 or a non-extreme supported solution

- Compute $x^{(1,2)}$ and $x^{(2,1)}$ two lexicographic optimal solutions for resp. $z^{(1,2)}$ and $z^{(2,1)}$
- $\tilde{X} \leftarrow \{x^{(1,2)}, x^{(2,1)}\}$
- $\tilde{X} \leftarrow \text{SolveRecursion}(x^{(1,2)}, x^{(2,1)}, \tilde{X})$

Algorithm (solveRecursion)

Input:
$$x^1$$
, $x^2 \in X_{SE}$, $\tilde{X} \subseteq X_{SE}$

$$0 \lambda_1 \leftarrow \pi(x^1) - \pi(x^2) : \lambda_2 \leftarrow \pi(x^2)$$

$$0 \times \leftarrow \text{solveWeightedSum}(\lambda) \cdot \tilde{X} \leftarrow \tilde{X} \cup \{x\}$$

o If
$$(\lambda_1 z_1(x) + \lambda_2 z_2(x) < \lambda_1 z_1(x^1) + \lambda_2 z_2(x^1))$$
 Then

$$\tilde{X} \leftarrow \text{SolveBocursion}(x, x^2, x^2)$$

- Compute $x^{(1,2)}$ and $x^{(2,1)}$ two lexicographic optimal solutions for resp. $z^{(1,2)}$ and $z^{(2,1)}$
- $\tilde{X} \leftarrow \{x^{(1,2)}, x^{(2,1)}\}$
- $\tilde{X} \leftarrow \text{SolveRecursion}(x^{(1,2)}, x^{(2,1)}, \tilde{X})$

Input:
$$x^1$$
, $x^2 \in X_{SE}$, $\tilde{X} \subseteq X_{SE}$

- Compute $x^{(1,2)}$ and $x^{(2,1)}$ two lexicographic optimal solutions for resp. $z^{(1,2)}$ and $z^{(2,1)}$
- $\tilde{X} \leftarrow \{x^{(1,2)}, x^{(2,1)}\}$
- $\tilde{X} \leftarrow \text{SolveRecursion}(x^{(1,2)}, x^{(2,1)}, \tilde{X})$

Algorithm (solveRecursion)

Input :
$$x^1$$
, $x^2 \in X_{SE}$, $\tilde{X} \subseteq X_{SE}$

•
$$\lambda_1 \leftarrow z_2(x^1) - z_2(x^2)$$
; $\lambda_2 \leftarrow z_1(x^2) - z_1(x^1)$

- $x \leftarrow \text{solveWeightedSum}(\lambda); \tilde{X} \leftarrow \tilde{X} \cup \{x\}$
- If $(\lambda_1 z_1(x) + \lambda_2 z_2(x) < \lambda_1 z_1(x^1) + \lambda_2 z_2(x^1))$ Then

- Compute $x^{(1,2)}$ and $x^{(2,1)}$ two lexicographic optimal solutions for resp. $z^{(1,2)}$ and $z^{(2,1)}$
- $\tilde{X} \leftarrow \{x^{(1,2)}, x^{(2,1)}\}$
- $\tilde{X} \leftarrow \mathtt{SolveRecursion}(x^{(1,2)}, x^{(2,1)}, \tilde{X})$

Algorithm (solveRecursion)

Input : x^1 , $x^2 \in X_{SE}$, $\tilde{X} \subseteq X_{SE}$

•
$$\lambda_1 \leftarrow z_2(x^1) - z_2(x^2)$$
; $\lambda_2 \leftarrow z_1(x^2) - z_1(x^1)$

•
$$x \leftarrow \text{solveWeightedSum}(\lambda); \tilde{X} \leftarrow \tilde{X} \cup \{x\}$$

• If
$$(\lambda_1 z_1(x) + \lambda_2 z_2(x) < \lambda_1 z_1(x^1) + \lambda_2 z_2(x^1))$$
 Then

- Compute $x^{(1,2)}$ and $x^{(2,1)}$ two lexicographic optimal solutions for resp. $z^{(1,2)}$ and $z^{(2,1)}$
- $\tilde{X} \leftarrow \{x^{(1,2)}, x^{(2,1)}\}$
- $\tilde{X} \leftarrow \mathtt{SolveRecursion}(x^{(1,2)}, x^{(2,1)}, \tilde{X})$

Algorithm (solveRecursion)

Input : x^1 , $x^2 \in X_{SE}$, $\tilde{X} \subseteq X_{SE}$

•
$$\lambda_1 \leftarrow z_2(x^1) - z_2(x^2)$$
; $\lambda_2 \leftarrow z_1(x^2) - z_1(x^1)$

•
$$x \leftarrow \text{solveWeightedSum}(\lambda); \tilde{X} \leftarrow \tilde{X} \cup \{x\}$$

• If
$$(\lambda_1 z_1(x) + \lambda_2 z_2(x) < \lambda_1 z_1(x^1) + \lambda_2 z_2(x^1))$$
 Then

•
$$\tilde{X} \leftarrow \text{SolveRecursion}(x^1, x, \tilde{X})$$

•
$$\tilde{X} \leftarrow \text{SolveRecursion}(x, x^2, \tilde{X})$$

Conclusion for Phase 1

- The dichotomic method is general
- At termination of this method, \tilde{X} contains a minimal complete set X_{SE1_m} plus possibly some non-extreme and/or equivalent supported solutions
- A complete set of supported solutions X_{SE} is not necessarily obtained
- Given a weight λ , the procedure solveWeightedSum returns one optimal solution
- Instead, by using an algorithm enumerating all optimal solution of a single-objective problem,
 all supported solutions can be found (including equivalent ones), i.e. the set X_{SEM}

Conclusion for Phase 1

- The dichotomic method is general
- At termination of this method, \tilde{X} contains a minimal complete set X_{SE1_m} plus possibly some non-extreme and/or equivalent supported solutions
- A complete set of supported solutions X_{SE} is not necessarily obtained
- ullet Given a weight λ , the procedure solveWeightedSum returns one optimal solution
- Instead, by using an algorithm enumerating all optimal solution of a single-objective problem,
 all supported solutions can be found (including equivalent ones), i.e. the set X_{SEM}

Conclusion for Phase 1

- The dichotomic method is general
- At termination of this method, \tilde{X} contains a minimal complete set X_{SE1_m} plus possibly some non-extreme and/or equivalent supported solutions
- A complete set of supported solutions X_{SE} is not necessarily obtained
- ullet Given a weight λ , the procedure solveWeightedSum returns one optimal solution
- Instead, by using an algorithm enumerating all optimal solution of a single-objective problem,
 all supported solutions can be found (including equivalent ones), i.e. the set X_{SEM}

Illustration

However, even if an efficient algorithm exists for the considered problem, this remains an enumeration problem

Multi-objective case

- A. Przybylski, X. Gandibleux, M. Ehrgott. A recursive algorithm for finding all nondominated extreme points in the outcome set of a multiobjective integer programme. INFORMS Journal on Computing, 22:371-386, 2010.
- Ö. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported nondominated points of multiobjective mixed integer programs. Management Science, 56:2302-2315, 2010.

Phase 2: Compute other efficient solutions

- It remains to determine non-supported efficient solutions (and missing non-extreme supported efficient solutions)
- However, it is forbidden to modify the constraint structure
- We can only use weighted sum scalarization, that computes only supported solutions
- Phase 2 is therefore enumerative

Phase 2: Compute other efficient solutions

- It remains to determine non-supported efficient solutions (and missing non-extreme supported efficient solutions)
- However, it is forbidden to modify the constraint structure
- We can only use weighted sum scalarization, that computes only supported solutions
- Phase 2 is therefore enumerative

Phase 2: Compute other efficient solutions

- It remains to determine non-supported efficient solutions (and missing non-extreme supported efficient solutions)
- However, it is forbidden to modify the constraint structure
- We can only use weighted sum scalarization, that computes only supported solutions
- Phase 2 is therefore enumerative

The Search Area

- All known feasible point is used to define a search area where potentially nondominated points may exist
- Using Y_{SN}, the initial search area i given by triangles defined by consecutive supported points w.r. to z₁

The Search Area

- All known feasible point is used to define a search area where potentially nondominated points may exist
- Using Y_{SN}, the initial search area is given by triangles defined by consecutive supported points w.r. to z₁

- The initial search area is naturally partitionned
- Each triangle is explored separately with a problem-specific enumeration
- Using the weight λ defining the normal to the hypothenuse of the triangle, solutions x with y=z(x) in the triangle are explored
- However, an enumeration of all solution x with y = z(x) in the explored triangle is not acceptable

 Paguired pruning tests in the enumeration
- ⇒ Required pruning tests in the enumeration
- Contrary to Phase 1, Phase 2 is not general

- The initial search area is naturally partitionned
- Each triangle is explored separately with a problem-specific enumeration
- Using the weight λ defining the normal to the hypothenuse of the triangle, solutions x with y=z(x) in the triangle are explored
- However, an enumeration of all solution x with y = z(x) in the explored triangle is not acceptable

 Required pruning tests in the enumeration
- \Longrightarrow Required pruning tests in the enumeration
- Contrary to Phase 1, Phase 2 is not general

- The initial search area is naturally partitionned
- Each triangle is explored separately with a problem-specific enumeration
- Using the weight λ defining the normal to the hypothenuse of the triangle, solutions x with y=z(x) in the triangle are explored
- However, an enumeration of all solution x with y=z(x) in the explored triangle is not acceptable
 - ⇒ Required pruning tests in the enumeration
- Contrary to Phase 1, Phase 2 is not general

- The initial search area is naturally partitionned
- Each triangle is explored separately with a problem-specific enumeration
- Using the weight λ defining the normal to the hypothenuse of the triangle, solutions x with y=z(x) in the triangle are explored
- However, an enumeration of all solution x with y = z(x) in the explored triangle is not acceptable
 - ⇒ Required pruning tests in the enumeration
- Contrary to Phase 1, Phase 2 is not general

Local Nadir Points

- Definition: Points defined with maximum entries of two consecutive (potentially) nondominated points
- Properties:
 - Used to define the search area initially and during the exploration of a triangle
 - Search area \equiv area located "below" the local nadir points: $(\operatorname{conv} Y + \mathbb{R}^2_>) \cap \bigcup_i (y^{N^i} \mathbb{R}^2_>)$

- Each known feasible point in the triangle can be used to reduce the search area
- It is done by updating the local nadir points
- Upper bounds β_i on $\lambda_1 z_1(x) + \lambda_2 z_2(x)$ for a solution $x \in X$ with z(x) in a triangle $\Delta(y^r, y^s)$ to be efficient can be computed using these points

- Each known feasible point in the triangle can be used to reduce the search area
- It is done by updating the local nadir points
- Upper bounds β_i on $\lambda_1 z_1(x) + \lambda_2 z_2(x)$ for a solution $x \in X$ with z(x) in a triangle $\Delta(y^r, y^s)$ to be efficient can be computed using these points

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\beta_0 = \max_{i=1}^{q-1} \{\lambda_1 y_1^{i+1} + \lambda_2 y_2^{i}\}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) \ge \beta_0$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) < \beta_0$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\beta_0 = \max_{i=1}^{q-1} \{\lambda_1 y_1^{i+1} + \lambda_2 y_2^{i}\}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) \ge \beta_0$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) < \beta_0$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\beta_0 = \max_{i=1}^{q-1} \{ \lambda_1 y_1^{i+1} + \lambda_2 y_2^{i} \}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) \ge \beta_0$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) < \beta_0$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\delta_1 = \max_{i=1}^q \{\lambda_1 y_1^i + \lambda_2 y_2^i\}$$

$$\delta_2 = \max_{i=1}^{q-1} \{\lambda_1(y_1^{i+1} - 1) + \lambda_2(y_2^{i} - 1)\}$$

$$\beta_1 = \max\{\delta_1, \delta_2\}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_1$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_1$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

MOCO 2

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$egin{aligned} \delta_1 &= \max_{i=1}^q \{\lambda_1 y_1^i + \lambda_2 y_2^i\} \ \delta_2 &= \max_{i=1}^{q-1} \{\lambda_1 (y_1^{i+1} - 1) + \lambda_2 (y_2^i - 1)\} \ egin{aligned} eta_1 &= \max\{\delta_1, \delta_2\} \end{aligned}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_1$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_1$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

MOCO 2

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\begin{split} \delta_1 &= \max_{i=1}^q \{\lambda_1 y_1^i + \lambda_2 y_2^i\} \\ \delta_2 &= \max_{i=1}^{q-1} \{\lambda_1 (y_1^{i+1} - 1) + \lambda_2 (y_2^i - 1)\} \\ \beta_1 &= \max\{\delta_1, \delta_2\} \end{split}$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_1$ is dominated
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_1$ in each triangle, we find all efficient solution, i.e. the complete set X_{E_M}

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r,y^s)$ sorted by increasing z_1 values $(y^1=y^r)$ and $y^q=y^s$

$$\delta_2 = \max_{i=1}^{q-1} \{\lambda_1(y_1^{i+1} - 1) + \lambda_2(y_2^{i} - 1)\}$$

$$\beta_2 = \delta_2$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_2$ is dominated or equivalent to a solution in X_{PF}
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_2$ in each triangle, we find a complete set X_E

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r,y^s)$ sorted by increasing z_1 values $(y^1=y^r)$ and $y^q=y^s$

$$\delta_2 = \max_{i=1}^{q-1} \{\lambda_1(y_1^{i+1} - 1) + \lambda_2(y_2^{i} - 1)\}$$

$$\beta_2 = \delta_2$$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_2$ is dominated or equivalent to a solution in X_{PE}
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_2$ in each triangle, we find a complete set X_E

• Let $\{y^i: 1 \leq i \leq q\}$ be the set of found (potentially) non-dominated points in $\Delta(y^r, y^s)$ sorted by increasing z_1 values $(y^1 = y^r \text{ and } y^q = y^s)$

$$\delta_2 = \max_{i=1}^{q-1} \{\lambda_1(y_1^{i+1}-1) + \lambda_2(y_2^{i}-1)\}$$
 $eta_2 = \delta_2$

- All $x \in X$ with z(x) in the triangle and $\lambda_1 z_1(x) + \lambda_2 z_2(x) > \beta_2$ is dominated or equivalent to a solution in X_{PE}
- Enumerating all solution $x \in X$ such that $\lambda_1 z_1(x) + \lambda_2 z_2(x) \le \beta_2$ in each triangle, we find a complete set X_E

- Fix (well-chosen) variables $x_i = 1$ Solve the weighted sum reduced problem
- Necessity to simultaneously fix a number of variables to find all non-supported solutions of the triangle
- Difficulties to order the exploration and to avoid redundancy
- Use of a list of potentially efficient solutions X_{PE} updated during all the process

- Fix (well-chosen) variables x_i = 1
 Solve the weighted sum reduced problem
- Necessity to simultaneously fix a number of variables to find all non-supported solutions of the triangle
- Difficulties to order the exploration and to avoid redundancy
- Use of a list of potentially efficient solutions X_{PE} updated during all the process

- Fix (well-chosen) variables $x_i = 1$ Solve the weighted sum reduced problem
- Necessity to simultaneously fix a number of variables to find all non-supported solutions of the triangle
- Difficulties to order the exploration and to avoid redundancy
- Use of a list of potentially efficient solutions X_{PE} updated during all the process

- Fix (well-chosen) variables $x_i = 1$ Solve the weighted sum reduced problem
- Necessity to simultaneously fix a number of variables to find all non-supported solutions of the triangle
- Difficulties to order the exploration and to avoid redundancy
- Use of a list of potentially efficient solutions X_{PE} updated during all the process

Strategy for Enumeration: Ranking

- Use a ranking method, i.e. an algorithm to find the *K*-best solution of a single objective problem
 - → No modification of the problem structure
 - No repetition of solutions
 - Exploration naturally ordered
- Use of a list of efficient solutions completed during the process
 No need to remove solutions from the list
- Ranking algorithms are available for most polynomially solvable problems

- The same algorithm is applied to all triangle $\Delta(y^r, y^s)$
- \tilde{X} denotes the set of collected efficient solutions in $\Delta(y^r, y^s)$

- The same algorithm is applied to all triangle $\Delta(y^r, y^s)$
- \tilde{X} denotes the set of collected efficient solutions in $\Delta(y^r, y^s)$

- SingleOpt: Given $\lambda \in \mathbb{R}^2_>$, solve the weighted sum single-objective problem and return an optimal solution
- UpdateUB: Given \tilde{X} , return an upper bound β_i on $\lambda_1 z_1(x) + \lambda_2 z_2(x)$
- Kbest: Given $\lambda \in \mathbb{R}^2_>$ and $k \in \mathbb{N}_0$, return the k-best solution of the weighted sum single-objective problem

- The same algorithm is applied to all triangle $\Delta(y^r, y^s)$
- \tilde{X} denotes the set of collected efficient solutions in $\Delta(y^r, y^s)$

- SingleOpt: Given $\lambda \in \mathbb{R}^2_>$, solve the weighted sum single-objective problem and return an optimal solution
- UpdateUB: Given \tilde{X} , return an upper bound β_i on $\lambda_1 z_1(x) + \lambda_2 z_2(x)$
- Kbest: Given $\lambda \in \mathbb{R}^2_>$ and $k \in \mathbb{N}_0$, return the k-best solution of the weighted sum single-objective problem

- The same algorithm is applied to all triangle $\Delta(y^r, y^s)$
- \tilde{X} denotes the set of collected efficient solutions in $\Delta(y^r, y^s)$

- SingleOpt: Given $\lambda \in \mathbb{R}^2_>$, solve the weighted sum single-objective problem and return an optimal solution
- UpdateUB: Given \tilde{X} , return an upper bound β_i on $\lambda_1 z_1(x) + \lambda_2 z_2(x)$
- Kbest: Given $\lambda \in \mathbb{R}^2_>$ and $k \in \mathbb{N}_0$, return the k-best solution of the weighted sum single-objective problem

•
$$\lambda \leftarrow (y_2^r - y_2^s, y_1^s - y_1^r); k \leftarrow 1$$

•
$$x^1 \leftarrow \text{SingleOpt}(\lambda); \tilde{X} \leftarrow \{x^1\}$$

- \circ $UB \leftarrow \mathtt{UpdateUB}(ilde{X})$
- While $(z^{\lambda}(x^k) \leq UB)$

•
$$\lambda \leftarrow (y_2^r - y_2^s, y_1^s - y_1^r); k \leftarrow 1$$

•
$$x^1 \leftarrow \text{SingleOpt}(\lambda); \tilde{X} \leftarrow \{x^1\}$$

- $UB \leftarrow \text{UpdateUB}(\tilde{X})$
- While $(z^{\lambda}(x^k) \leq UB)$
 - \bullet $k \leftarrow k+1$
 - $x^k \leftarrow \text{KBest}(k, \lambda)$;
 - If (x^k) is not dominated) Then

•
$$\lambda \leftarrow (y_2^r - y_2^s, y_1^s - y_1^r); k \leftarrow 1$$

•
$$x^1 \leftarrow \text{SingleOpt}(\lambda); \tilde{X} \leftarrow \{x^1\}$$

- $UB \leftarrow \text{UpdateUB}(\tilde{X})$
- While $(z^{\lambda}(x^k) \leq UB)$

•
$$k \leftarrow k + 1$$

•
$$x^k \leftarrow \text{KBest}(k, \lambda)$$
;

• If $(x^k \text{ is not dominated})$ Then

$$\tilde{X} \leftarrow \tilde{X} \cup \{x^k\}$$

• $UB \leftarrow \text{UpdateUB}(\tilde{X})$

•
$$\lambda \leftarrow (y_2^r - y_2^s, y_1^s - y_1^r); k \leftarrow 1$$

•
$$x^1 \leftarrow \text{SingleOpt}(\lambda); \tilde{X} \leftarrow \{x^1\}$$

•
$$UB \leftarrow \text{UpdateUB}(\tilde{X})$$

• While
$$(z^{\lambda}(x^k) \leq UB)$$

•
$$k \leftarrow k + 1$$

•
$$x^k \leftarrow \text{KBest}(k, \lambda)$$
;

• If $(x^k \text{ is not dominated})$ Then

$$\tilde{X} \leftarrow \tilde{X} \cup \{x^k\}$$

$$ullet$$
 $UB \leftarrow ext{UpdateUB}(ilde{X})$

•
$$\lambda \leftarrow (y_2^r - y_2^s, y_1^s - y_1^r); k \leftarrow 1$$

•
$$x^1 \leftarrow \text{SingleOpt}(\lambda); \tilde{X} \leftarrow \{x^1\}$$

•
$$UB \leftarrow \text{UpdateUB}(\tilde{X})$$

• While
$$(z^{\lambda}(x^k) \leq UB)$$

•
$$k \leftarrow k + 1$$

•
$$x^k \leftarrow \text{KBest}(k, \lambda)$$
;

• If $(x^k \text{ is not dominated})$ Then

$$\tilde{X} \leftarrow \tilde{X} \cup \{x^k\}$$

$$ullet$$
 $UB \leftarrow \mathtt{UpdateUB}(ilde{X})$

MOCO 2

Conclusion for Phase 2

- Contrary to Phase 1, the enumeration in Phase 2 is not general
- But some features are specific

Conclusion for Phase 2

- Contrary to Phase 1, the enumeration in Phase 2 is not general
- But some features are specific
 - The enumeration is done triangle by triangle
 - General upper bounds can be used
 - A general enumeration algorithm exists with the assumption that a ranking algorithm is available

Conclusion for Phase 2

- Contrary to Phase 1, the enumeration in Phase 2 is not general
- But some features are specific
 - The enumeration is done triangle by triangle
 - General upper bounds can be used
 - A general enumeration algorithm exists with the assumption that a ranking algorithm is available

Conclusion for the Two Phase Method

- Two phase method respects problem structure
- Successful for assignment, spanning tree, shortest path,
 knapsack and network flow problem using a ranking algorithm
- Branch and Bound algorithms have also been used successively for Phase 2
- In both phases, two phase method strongly use specific features of the bi-objective case
- Note: Two phase method is not appropriate for problem the single-objective problem is hard to solve

Conclusion for the Two Phase Method

- Two phase method respects problem structure
- Successful for assignment, spanning tree, shortest path,
 knapsack and network flow problem using a ranking algorithm
- Branch and Bound algorithms have also been used successively for Phase 2
- In both phases, two phase method strongly use specific features of the bi-objective case
- Note: Two phase method is not appropriate for problem the single-objective problem is hard to solve

Conclusion for the Two Phase Method

- Two phase method respects problem structure
- Successful for assignment, spanning tree, shortest path,
 knapsack and network flow problem using a ranking algorithm
- Branch and Bound algorithms have also been used successively for Phase 2
- In both phases, two phase method strongly use specific features of the bi-objective case
- Note: Two phase method is not appropriate for problem the single-objective problem is hard to solve

Conclusion for the Two Phase Method

- Two phase method respects problem structure
- Successful for assignment, spanning tree, shortest path,
 knapsack and network flow problem using a ranking algorithm
- Branch and Bound algorithms have also been used successively for Phase 2
- In both phases, two phase method strongly use specific features of the bi-objective case
- Note: Two phase method is not appropriate for problem the single-objective problem is hard to solve

Multi-objective case

 A. Przybylski, X. Gandibleux, M. Ehrgott. A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives. Discrete Optimization, 7:149-165, 2010.

Overview

- 1 Scalarization
- 2 The ε -constraint Method with Adaptive Step
- 3 The Two Phase Method
- 4 Bound sets, Branch & Bound

Ideal and Nadir Point

- Single-objective case: (Single) lower and upper bounds I and u on the (single) optimal value \tilde{y}
- Multi-objective case:
 (Single) bounds on the whole set
 Y_N naturally defined by the ideal
 point y^N and the nadir point y^N
- y^I and y^N generally located "far away" from Y_N
 - ⇒ Need to use several points to

Ideal and Nadir Point

- Single-objective case: (Single) lower and upper bounds I and u on the (single) optimal value \tilde{y}
- Multi-objective case:
 (Single) bounds on the whole set
 Y_N naturally defined by the ideal point y^N and the nadir point y^N
- y' and y' generally located "far away" from Y_N
 ⇒ Need to use several points to bound!

Ideal and Nadir Point

- Single-objective case: (Single) lower and upper bounds I and u on the (single) optimal value \tilde{y}
- Multi-objective case:
 (Single) bounds on the whole set
 Y_N naturally defined by the ideal point y^N and the nadir point y^N
- y^I and y^N generally located "far away" from Y_N
 - \Rightarrow Need to use several points to bound!

Implicit use of particular bound sets

- Early algorithms: Use of the set of all known feasible points to apply a dominance test (Incumbent list)
- Two Phase Method: Knowing Y_{SN1} , use of two sets of points to define a search area containing Y_N
 - $(\text{conv } Y_{SN1})_N$ bounds Y_N from "below" (Convex relaxation)
 - Y_{SN_1} bounds Y_N from "above" (Incumbent list)

Implicit use of particular bound sets

- Early algorithms: Use of the set of all known feasible points to apply a dominance test (Incumbent list)
- I wo Phase Method: Knowing Y_{SN1} , use of two sets of points to define a search area containing Y_N
 - $(\text{conv } Y_{SN1})_N$ bounds Y_N from "below" (Convex relaxation)
 - Y_{SN_1} bounds Y_N from "above" (Incumbent list)

Implicit use of particular bound sets

- Early algorithms: Use of the set of all known feasible points to apply a dominance test (Incumbent list)
- Two Phase Method: Knowing Y_{SN1}, use of two sets of points to define a search area containing Y_N
 - $(\operatorname{conv} Y_{SN1})_N$ bounds Y_N from "below" (Convex relaxation)
 - Y_{SN_1} bounds Y_N from "above" (Incumbent list)

- Is Y_N bounded from "above" by the incumbent list?
- Is Y_N bounded from "above" by deduced local nadir points?
- No distinction in the single-objective case, but
 - Incumbent list is a more natural extension of Incumbent
 - Local nadir points deduced from Incumbent list
- Single-objective case: $u = l \Rightarrow u = l = \tilde{y}$

- Is Y_N bounded from "above" by the incumbent list?
- Is Y_N bounded from "above" by deduced local nadir points?
- No distinction in the single-objective case, but
 - Incumbent list is a more natural extension of Incumbent
 - Local nadir points deduced from Incumbent list
- Single-objective case: $u = l \Rightarrow u = l = \tilde{y}$
- Intersection between Incumbent list and convex relaxation ⇒

 Nondominated point!

- Is Y_N bounded from "above" by the incumbent list?
- Is Y_N bounded from "above" by deduced local nadir points?
- No distinction in the single-objective case, but
 - Incumbent list is a more natural extension of Incumbent
 - Local nadir points deduced from Incumbent list
- Single-objective case: $u = l \Rightarrow u = l = \tilde{y}$

- Is Y_N bounded from "above" by the incumbent list?
- Is Y_N bounded from "above" by deduced local nadir points?
- No distinction in the single-objective case, but
 - Incumbent list is a more natural extension of Incumbent
 - Local nadir points deduced from Incumbent list
- Single-objective case: $u = I \Rightarrow u = I = \tilde{y}$

- Is Y_N bounded from "above" by the incumbent list?
- Is Y_N bounded from "above" by deduced local nadir points?
- No distinction in the single-objective case, but
 - Incumbent list is a more natural extension of Incumbent
 - Local nadir points deduced from Incumbent list
- Single-objective case: $u = I \Rightarrow u = I = \tilde{y}$
- Intersection between Incumbent list and convex relaxation ⇒
 Nondominated point!

- Single-objective case:
 - Upper bound value u given by the incumbent
 - Lower bound value / obtained by the solution of a relaxation (linear, surrogate,...)
 - Optimal value \tilde{y} such that $l \leq y \leq u$
 - Equality of upper and lower bound values $\Rightarrow \tilde{y}$ found
- Multi-objective case:
 - Upper bound set U given by the incumbent list
 - Lower bound set L obtained by the solution of a relaxation (linear, convex,...)
 - $\bullet \ \ Y_N \subseteq (L + \mathbb{R}^p_{>}) \setminus (U + \mathbb{R}^p_{>})$
 - \bullet $L \cap U \subseteq Y_{\Lambda}$
 - Equality of upper and lower bound sets $\Rightarrow Y_N$ found

- Single-objective case:
 - Upper bound value u given by the incumbent
 - Lower bound value / obtained by the solution of a relaxation (linear, surrogate,...)
 - Optimal value \tilde{y} such that $l \leq y \leq u$
 - Equality of upper and lower bound values $\Rightarrow \tilde{y}$ found
- Multi-objective case:
 - Upper bound set U given by the incumbent list
 - Lower bound set L obtained by the solution of a relaxation (linear, convex,...)
 - $Y_N \subseteq (L + \mathbb{R}^p_>) \setminus (U + \mathbb{R}^p_>)$
 - $L \cap U \subseteq Y_{\Lambda}$
 - Equality of upper and lower bound sets $\Rightarrow Y_N$ found

- Single-objective case:
 - Upper bound value *u* given by the incumbent
 - Lower bound value / obtained by the solution of a relaxation (linear, surrogate,...)
 - Optimal value \tilde{y} such that $l \leq y \leq u$
 - Equality of upper and lower bound values $\Rightarrow \tilde{y}$ found
- Multi-objective case:
 - Upper bound set U given by the incumbent list
 - Lower bound set L obtained by the solution of a relaxation (linear, convex,...)
 - $Y_N\subseteq (L+\mathbb{R}^p_{\geq})\setminus (U+\mathbb{R}^p_{\geq})$
 - $L \cap U \subseteq Y_N$
 - Equality of upper and lower bound sets $\Rightarrow Y_N$ found

- Single-objective case:
 - Upper bound value u given by the incumbent
 - Lower bound value / obtained by the solution of a relaxation (linear, surrogate,...)
 - Optimal value \tilde{y} such that $l \leq y \leq u$
 - Equality of upper and lower bound values $\Rightarrow \tilde{y}$ found
- Multi-objective case:
 - Upper bound set U given by the incumbent list
 - Lower bound set L obtained by the solution of a relaxation (linear, convex,...)
 - $Y_N \subseteq (L + \mathbb{R}^p_>) \setminus (U + \mathbb{R}^p_>)$
 - \bullet $L \cap U \subseteq Y_N$
 - Equality of upper and lower bound sets $\Rightarrow Y_N$ found

Properties of Main Formal Definitions of Bound Sets

- Pioneer definition (Villareal and Karwan, 1981)
 - Does not support continuous sets of points as bound sets (like linear or convex relaxation)

MOCO 2

Properties of Main Formal Definitions of Bound Sets

- Pioneer definition (Villareal and Karwan, 1981)
 - Does not support continuous sets of points as bound sets (like linear or convex relaxation)
- General definition (Ehrgott and Gandibleux, 2001)
 - Proposed to bound any subset Y of feasible points
 - Support continuous sets of points as bound sets
 - Does not support the incumbent list as an upper bound set (on Y_N)
 - Consider local nadir points as bound sets

Properties of Main Formal Definitions of Bound Sets

- Pioneer definition (Villareal and Karwan, 1981)
 - Does not support continuous sets of points as bound sets (like linear or convex relaxation)
- General definition (Ehrgott and Gandibleux, 2001)
 - Proposed to bound any subset \overline{Y} of feasible points
 - Support continuous sets of points as bound sets
 - Does not support the incumbent list as an upper bound set (on Y_N)
 - Consider local nadir points as bound sets
- Modern definition (Ehrgott and Gandibleux, 2007)
 - Include the incumbent list as an upper bound set
 - Verify all desirable properties of bound sets

Bound sets: Definition (Ehrgott and Gandibleux, 2007)

- ① Lower bound set L (for Y_N)
 - is $\mathbb{R}^p_{>}$ -closed
 - is $\mathbb{R}^{\overline{p}}_{>}$ -bounded
 - $Y_N \subset L + \mathbb{R}^p_>$
 - $L \subset \left(L + \mathbb{R}^{p}\right)_{N}$
- ② Upper bound set U (for Y_N)
 - is $\mathbb{R}^p_>$ -closed
 - is $\mathbb{R}^{\overline{p}}_{>}$ -bounded
 - $Y_N \subset \operatorname{cl}\left[\left(U + \mathbb{R}^p_{\geq}\right)^c\right]$
 - $U \subset \left(U + \mathbb{R}^p_{\geq}\right)_N$

Bound sets: Definition (Ehrgott and Gandibleux, 2007)

- ① Lower bound set L (for Y_N)
 - is $\mathbb{R}^p_{>}$ -closed
 - is $\mathbb{R}^{\overline{\overline{p}}}_{>}$ -bounded
 - $Y_N \subset L + \mathbb{R}^p_>$

•
$$L \subset \left(L + \mathbb{R}^{p}\right)_{N}$$

- ② Upper bound set U (for Y_N)
 - is $\mathbb{R}^p_>$ -closed
 - is $\mathbb{R}^{\overline{p}}_{>}$ -bounded
 - $Y_N \subset \mathsf{cl}\left[\left(U + \mathbb{R}^p_{\geq}\right)^c\right]$
 - $U \subset \left(U + \mathbb{R}^p_{\geq}\right)_N$

Main component of a single-objective branch and bound

- Upper and lower bound values
- Separation procedure
- Choice of the active node
- Generation of feasible solution

Extension

- Upper and lower bound sets
- No change in the partitioning strategy (concerns the feasible set)... But how to choose a "good" variable to apply the separation?
- Immediate adaptation of depth-first search, breadth-first search... But how to apply a dynamic strategy?
- Generation of feasible solutions

MOCO 2

Main component of a single-objective branch and bound

- Upper and lower bound values
- Separation procedure
- Choice of the active node
- Generation of feasible solution

Extension

- Upper and lower bound sets
- No change in the partitioning strategy (concerns the feasible set)... But how to choose a "good" variable to apply the separation?
- Immediate adaptation of depth-first search, breadth-first search... But how to apply a dynamic strategy?
- Generation of feasible solutions

MOCO 2

Main component of a single-objective branch and bound

- Upper and lower bound values
- Separation procedure
- Choice of the active node
- Generation of feasible solution

Extension

- Upper and lower bound sets
- No change in the partitioning strategy (concerns the feasible set)... But how to choose a "good" variable to apply the separation?
- Immediate adaptation of depth-first search, breadth-first search... But how to apply a dynamic strategy?
- Generation of feasible solutions

Main component of a single-objective branch and bound

- Upper and lower bound values
- Separation procedure
- Choice of the active node
- Generation of feasible solution

Extension

- Upper and lower bound sets
- No change in the partitioning strategy (concerns the feasible set)... But how to choose a "good" variable to apply the separation?
- Immediate adaptation of depth-first search, breadth-first search... But how to apply a dynamic strategy?
- Generation of feasible solutions

Fathoming nodes by infeasibility and optimality

- Fathoming by infeasibility: Identical to the single-objective case (concerns only the feasible set)
- Fathoming by optimality:

Fathoming nodes by infeasibility and optimality

- Fathoming by infeasibility: Identical to the single-objective case
 - (concerns only the feasible set)
- Fathoming by optimality:
 - ullet Early algorithms: Lower bound set o Ideal feasible point
 - Possibility to do better (?): Let \overline{Y} be the feasible set of a subproblem
 - ① Compute upper bound set on \bar{Y}_{i}
 - 2 Compute lower bound set on \bar{Y}_{Λ}
 - Oheck equality between both bound sets (Unlikely to happen!)

Fathoming nodes by infeasibility and optimality

- Fathoming by infeasibility: Identical to the single-objective case
- (concerns only the feasible set)
- Fathoming by optimality:
 - ullet Early algorithms: Lower bound set o Ideal feasible point
 - Possibility to do better (?): Let \overline{Y} be the feasible set of a subproblem
 - ① Compute upper bound set on \bar{Y}_N
 - 2 Compute lower bound set on \bar{Y}_N
 - 3 Check equality between both bound sets (Unlikely to happen!)

- Single-objective case
 - Upper bound u: Incumbent
 - Lower bound I for a subproblem:
 Relaxation of this subproblem
 - Node fathomed if $u \le I$
- Multi-objective case

Node fathomed!

- Single-objective case
 - Upper bound u: Incumbent
 - Lower bound I for a subproblem:
 Relaxation of this subproblem
 - Node fathomed if $u \le I$
- Multi-objective case
 - Upper bound set *U*: Incumbent List
 - Lower bound set L for \overline{Y}_N : relaxation of a subproblem
 - Node fathomed if $\forall I \in L$, there is $u \in U$ with $u \leq I$

- Single-objective case
 - Upper bound u: Incumbent
 - Lower bound I for a subproblem:
 Relaxation of this subproblem
 - Node fathomed if $u \le I$
- Multi-objective case
 - Upper bound set *U*: Incumbent List
 - Lower bound set L for \overline{Y}_N : relaxation of a subproblem
 - Node fathomed if $\forall I \in L$, there is $u \in U$ with $u \leq I$

- Single-objective case
 - Upper bound u: Incumbent
 - Lower bound I for a subproblem:
 Relaxation of this subproblem
 - Node fathomed if $u \le I$
- Multi-objective case
 - Upper bound set *U*: Incumbent List
 - Lower bound set L for \overline{Y}_N : relaxation of a subproblem
 - Node fathomed if $\forall I \in L$, there is $u \in U$ with $u \leq I$

(Assumption: U is discrete)

- Lower bound set L composed of a finite set of points:
 - ullet Pairwise comparison between points of L and U
- Lower bound set L composed of an infinite set of points:
 - Pairwise comparison between all pairs of points not possible.
 - (Sourd and Spaanjard, 2008): Proposition for the particular case for which $L+\mathbb{R}^2_\geq$ is a polyhedron

(Assumption: U is discrete)

- Lower bound set L composed of a finite set of points:
 - ullet Pairwise comparison between points of L and U
- Lower bound set *L* composed of an infinite set of points:
 - Pairwise comparison between all pairs of points not possible!
 - (Sourd and Spaanjard, 2008): Proposition for the particular case for which $L+\mathbb{R}_>^2$ is a polyhedron

Use of corner points

- For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

Use of corner points

- For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Use of corner points
 - For each local nadir point u, is there an edge of L such that u is located below?
- Possible partial computation of lower bound set when node fathomed
- Partial computation thanks to reoptimization from the father node to the child node

- Fewer nodes fathomed by dominance with increasing number of objectives
- Partition objective space to apply several local B & B or apply a global B& B algorithm?
- (Visée et al., 1997) proposed the use of B&B as Phase 2 of Two Phase Method
- Advantages
 - More nodes fathomed by dominance
 - Preprocessing more effective
- Drawback
 - Possible redundant computations

- Fewer nodes fathomed by dominance with increasing number of objectives
- Partition objective space to apply several local B & B or apply a global B& B algorithm ?
- (Visée et al., 1997) proposed the use of B&B as Phase 2 of Two Phase Method
- Advantages:
 - More nodes fathomed by dominance
 - Preprocessing more effective
- Drawback
 - Possible redundant computations

- Fewer nodes fathomed by dominance with increasing number of objectives
- Partition objective space to apply several local B & B or apply a global B& B algorithm ?
- (Visée et al., 1997) proposed the use of B&B as Phase 2 of Two Phase Method
- Advantages:
 - More nodes fathomed by dominance
 - Preprocessing more effective
- Drawback
 - Possible redundant computations

- Fewer nodes fathomed by dominance with increasing number of objectives
- Partition objective space to apply several local B & B or apply a global B& B algorithm ?
- (Visée et al., 1997) proposed the use of B&B as Phase 2 of Two Phase Method
- Advantages:
 - More nodes fathomed by dominance
 - Preprocessing more effective
- Drawback
 - Possible redundant computations

MOB&B: the 01 Case

Presentation

$$min z(x) = Cx$$
subject to $Ax = b$

$$x \in \{0,1\}^n$$

$$x \in \{0,1\}^n \longrightarrow n \text{ variables, } i=1,\ldots,n$$
 $A \in \mathbb{Z}^{m \times n} \longrightarrow m \text{ constraints, } j=1,\ldots,m$
 $C \in \mathbb{Z}^{p \times n} \longrightarrow p \text{ (sum) objective vectors, } k=1,\ldots,p$

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:
 - One variable x_i is fixed at the value 1 first and next to 0
 - Choice of x; (dynamic strategy)

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:
 - One variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (dynamic strategy):
 - Constructed solution feasible \rightarrow any free variable x_i such that $c_i \not \leq 0$
 - Otherwise, consideration of each possible child node (by fixing $x_j = 1$) until a feasible solution is constructed
 - If no feasible solution can be constructed in a child node, infeasibility is measured by summing the slack variables of unsatisfied constraint, to branch on the variable nearest to feasibility

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:
 - One variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (dynamic strategy):
 - ullet Constructed solution feasible o any free variable x_j such that $c_j \not \leq 0$
 - Otherwise, consideration of each possible child node (by fixing $x_i = 1$) until a feasible solution is constructed
 - If no feasible solution can be constructed in a child node, infeasibility is measured by summing the slack variables of unsatisfied constraint, to branch on the variable nearest to feasibility

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:
 - One variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_i (dynamic strategy):
 - Constructed solution feasible \rightarrow any free variable x_i such that $c_i \not \leq 0$
 - Otherwise, consideration of each possible child node (by fixing $x_j = 1$) until a feasible solution is constructed
 - If no feasible solution can be constructed in a child node, infeasibility is measured by summing the slack variables of unsatisfied constraint, to branch on the variable nearest to feasibility

- Problem: MO01LP in maximization case, $C \in \mathbb{Z}^{p \times n}$
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \overline{Y}_N : Ideal point of the unconstrained problem
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of solution by fixing all free variable to 0 before a feasibility check
- Separation procedure:
 - One variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (dynamic strategy):
 - Constructed solution feasible \rightarrow any free variable x_i such that $c_i \not \leq 0$
 - Otherwise, consideration of each possible child node (by fixing $x_j = 1$) until a feasible solution is constructed
 - If no feasible solution can be constructed in a child node, infeasibility is measured by summing the slack variables of unsatisfied constraint, to branch on the variable nearest to feasibility

Embedded into the two phase method

Ulungu and Teghem (1997)

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \bar{Y}_N : For each objective function z^k , one single-objective upper bound is computed (Martello and Toth)
 - ightarrow One single point is obtained as an upper bound set
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0
- Separation procedure:

Embedded into the two phase method

Ulungu and Teghem (1997)

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on Y_N: Incumbent list
- Upper bound set on \overline{Y}_N : For each objective function z^k , one single-objective upper bound is computed (Martello and Toth)
 - ightarrow One single point is obtained as an upper bound set
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0
- Separation procedure

Embedded into the two phase method

Ulungu and Teghem (1997)

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on Y_N : Incumbent list
- Upper bound set on \bar{Y}_N : For each objective function z^k , one single-objective upper bound is computed (Martello and Toth)
 - \rightarrow One single point is obtained as an upper bound set
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0
- Separation procedure:
 - One free variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (static strategy): Order \mathcal{O}_k defined by sorting c_j^k/ω_j by decreasing order for $k \in \{1,2\}$, and definition of the rank r_j^k of each item j according to \mathcal{O}_k
 - Consideration of items j by decreasing value of the sum $r_j^1 + r_j^2$

Visée et al. (1998)

Application of a B&B algorithm in each triangle Δ with weight λ

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on $Y_N \cap \Delta$: Incumbent list, restricted to Δ
- Upper bound set on $\bar{Y}_N \cap \Delta$: For each objective z^k and for the weighted sum $\lambda^T z$, a single-objective upper bound is computed
 - ightarrow One edge is obtained as an upper bound set
- Choice of the active node: Depth-first search
- Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0, need to test if it belongs to Δ
- Separation procedure

Visée et al. (1998)

Application of a B&B algorithm in each triangle Δ with weight λ

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on $Y_N \cap \Delta$: Incumbent list, restricted to Δ
- Upper bound set on $\bar{Y}_N \cap \Delta$: For each objective z^k and for the weighted sum $\lambda^T z$, a single-objective upper bound is computed
 - ightarrow One edge is obtained as an upper bound set
- Choice of the active node: Depth-first search
- ullet Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0, need to test if it belongs to Δ
- Separation procedure

Visée et al. (1998)

Application of a B&B algorithm in each triangle Δ with weight λ

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on $Y_N \cap \Delta$: Incumbent list, restricted to Δ
- Upper bound set on $\bar{Y}_N \cap \Delta$: For each objective z^k and for the weighted sum $\lambda^T z$, a single-objective upper bound is computed
 - ightarrow One edge is obtained as an upper bound set
- Choice of the active node: Depth-first search
- ullet Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0, need to test if it belongs to Δ
- Separation procedure:
 - One free variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (static strategy):

Consideration of items
$$j$$
 by decreasing value of $\lambda^T \left(\frac{c_j^1}{w_j}, \frac{c_j^2}{w_j}\right)^T$

Preprocessing applied at the root node for each triangle arDelta

Visée et al. (1998)

Application of a B&B algorithm in each triangle Δ with weight λ

- Problem: bi-objective uni-dimensional binary knapsack problem
- Lower bound set on $Y_N \cap \Delta$: Incumbent list, restricted to Δ
- Upper bound set on $\bar{Y}_N \cap \Delta$: For each objective z^k and for the weighted sum $\lambda^T z$, a single-objective upper bound is computed
 - → One edge is obtained as an upper bound set
- Choice of the active node: Depth-first search
- \bullet Construction of feasible points: At each node, construction of one feasible solution by fixing all free variables to 0, need to test if it belongs to Δ
- Separation procedure:
 - One free variable x_i is fixed at the value 1 first and next to 0
 - Choice of x_j (static strategy):

Consideration of items
$$j$$
 by decreasing value of $\lambda^T \left(\frac{c_j^1}{w_j}, \frac{c_j^2}{w_j}\right)^T$

Preprocessing applied at the root node for each triangle Δ

Sourd and Spanjaard (2008)

- Problem: bi-objective minimum weight spanning tree problem
- Upper Bound set on Y_N : Incumbent list
- Lower Bound Set on \overline{Y}_N : convex relaxation
- Choice of the active node: depth-first search
- Separation procedure:

- Construction of feasible points
- Initialization of the incumbent with the co
- Preprocessing: adaptations of the cut optimality condition and the

optimality condition to reduce the size of the graph

MOCO 2

Sourd and Spanjaard (2008)

- Problem: bi-objective minimum weight spanning tree problem
- Upper Bound set on Y_N : Incumbent list
- Lower Bound Set on \bar{Y}_N : convex relaxation
- Choice of the active node: depth-first search
- Separation procedure:
 - One free edge e is mandatory first and next forbidden
 - Choice of e (static strategy) : e such that $\min\{w_e^1, w_e^2\}$ is minimal
- Construction of feasible points

 Initialization of the incumbent with the computation of Y_{SN1}, completed with a local search with a local search

Preprocessing: adaptations of the cut optimality condition and the cycle optimality condition to reduce the size of the graph

Sourd and Spanjaard (2008)

- Problem: bi-objective minimum weight spanning tree problem
- Upper Bound set on Y_N : Incumbent list
- Lower Bound Set on \bar{Y}_N : convex relaxation
- Choice of the active node: depth-first search
- Separation procedure:
 - One free edge e is mandatory first and next forbidden
 - Choice of e (static strategy) : e such that $\min\{w_e^1, w_e^2\}$ is minimal
- Construction of feasible points
 - ullet Initialization of the incumbent with the computation of Y_{SN1} , completed with a local search

MOCO 2

Convex relaxation always generates feasible points

Preprocessing: adaptations of the cut optimality condition and the cycle optimality condition to reduce the size of the graph

Sourd and Spanjaard (2008)

- Problem: bi-objective minimum weight spanning tree problem
- Upper Bound set on Y_N : Incumbent list
- Lower Bound Set on \bar{Y}_N : convex relaxation
- Choice of the active node: depth-first search
- Separation procedure:
 - One free edge e is mandatory first and next forbidden
 - Choice of e (static strategy) : e such that $\min\{w_e^1, w_e^2\}$ is minimal
- Construction of feasible points
 - ullet Initialization of the incumbent with the computation of Y_{SN1} , completed with a local search
 - Convex relaxation always generates feasible points

Preprocessing: adaptations of the cut optimality condition and the cycle optimality condition to reduce the size of the graph

01 Case: Entries found in the literature

- Nakamura and Riley (1981)
 the older reference found (unfortunately not rigorous)
- Kiziltan and Yucaoglu (1983) any MO01ILP
- Ulungu and Teghem (1997)
 bi-objective unidimensional 01 knapsack
- Visée et al. (1998)
 bi-objective unidimensional 01 knapsack
- Ramos et al. (1998)
 bi-objective minimum weight spanning tree
- Sourd and Spanjaard (2008)
 bi-objective minimum weight spanning tree
- Florios et al. (2010) multi-dimensional multi-objective knapsack
- Jorge (2010) (PhD thesis) three-objective uni-dimensional 01 knapsack
- Delort (2011) (PhD thesis) bi-objective linear assignment
- Parragh and Tricoire (2014) (Technical report)
 bi-objective ream orienteering problem with time windows

MOB&B: the Mixed 01 Linear Case

Presentation

$$\begin{array}{rcl} \min z(x) & = & C(x^T, y^T)^T \\ \text{subject to } A(x^T, y^T)^T & = & b \\ & x & \in & \{0, 1\}^{n_1} \\ & y & \in & \mathbb{R}^{n_2} \end{array}$$

$$x \in \{0,1\}^{n_1} \longrightarrow n_1 \text{ binary variables}$$
 $y \in \mathbb{R}^{n_2} \longrightarrow n_2 \text{ continuous variables}$
 $(n_1 + n_2 = n)$
 $A \in \mathbb{Z}^{m \times n} \longrightarrow m \text{ constraints}$
 $C \in \mathbb{Z}^{p \times n} \longrightarrow p \text{ objective vectors}$

MOCO 2

Mavrotas and Diakoulaki (1998, 2005)

- Lower Bound Set for \overline{Y}_N : Ideal Point of the linear relaxation
- Choice of the active node:
 Depth-first search
- Separation procedure: binary variables fixed to 0 first and next to 1 (in order of index)
- Construction of feasible points:
 When all binary variables are fixed,
 a MOLP is obtained and solved,
 Only extreme points are considered
- Upper Bound Set:
 Restricted incumbent list
- 2005: Final Dominance Test

Mavrotas and Diakoulaki (1998, 2005)

- Lower Bound Set for \overline{Y}_N : Ideal Point of the linear relaxation
- Choice of the active node:
 Depth-first search
- Separation procedure: binary variables fixed to 0 first and next to 1 (in order of index)
- Construction of feasible points:
 When all binary variables are fixed,
 a MOLP is obtained and solved,
 Only extreme points are considered
- Upper Bound Set: Restricted incumbent list
- 2005: Final Dominance Test

-1

Mavrotas and Diakoulaki (1998, 2005)

- Lower Bound Set for \overline{Y}_N : Ideal Point of the linear relaxation
- Choice of the active node:
 Depth-first search
- Separation procedure: binary variables fixed to 0 first and next to 1 (in order of index)
- Construction of feasible points:
 When all binary variables are fixed,
 a MOLP is obtained and solved,
 Only extreme points are considered
- Upper Bound Set:
 Restricted incumbent list
- 2005: Final Dominance Test

41

Mavrotas and Diakoulaki (1998, 2005)

- Lower Bound Set for \overline{Y}_N : Ideal Point of the linear relaxation
- Choice of the active node:
 Depth-first search
- Separation procedure: binary variables fixed to 0 first and next to 1 (in order of index)
- Construction of feasible points:
 When all binary variables are fixed,
 a MOLP is obtained and solved,
 Only extreme points are considered
- Upper Bound Set:
 Restricted incumbent list
- 2005: Final Dominance Test

41

Mavrotas and Diakoulaki (1998, 2005)

- Lower Bound Set for \overline{Y}_N : Ideal Point of the linear relaxation
- Choice of the active node:
 Depth-first search
- Separation procedure: binary variables fixed to 0 first and next to 1 (in order of index)
- Construction of feasible points:
 When all binary variables are fixed,
 a MOLP is obtained and solved,
 Only extreme points are considered
- Upper Bound Set: Restricted incumbent list
- 2005: Final Dominance Test

41

The first full and correct algorithm with two objectives Vincent et al. (2013)

Theorem

The nondominated set of a BOMIP is composed of edges (that can be closed, half-open, open or reduced to a point).

Figure: Representation of Z with extreme and non-extreme

The first full and correct algorithm

Vincent et al. (2013)

- Lower Bound Set for \overline{Y}_N : Ideal point of linear relaxation, linear relaxation, Ideal point of convex relaxation, convex relaxation
- Upper Bound Set: Extended Incumbent list
- Construction of feasible points:

- Choice of the active node: (some kind of) depth-first search
- Separation procedure

The first full and correct algorithm

Vincent et al. (2013)

- Lower Bound Set for \overline{Y}_N : Ideal point of linear relaxation, linear relaxation, Ideal point of convex relaxation, convex relaxation
- Upper Bound Set: Extended Incumbent list
- Construction of feasible points:
 - Initialization of the incumbent list with the computation of Y_{SN1} , Extended with the solutions of MOLPs with obtained set of fixed variables
 - Feasible solutions obtained when all binary variables are fixed
- Choice of the active node: (some kind of) depth-first search
- Separation procedure

The first full and correct algorithm

Vincent et al. (2013)

- Lower Bound Set for Y_N : Ideal point of linear relaxation, linear relaxation, Ideal point of convex relaxation, convex relaxation
- Upper Bound Set: Extended Incumbent list
- Construction of feasible points:
 - Initialization of the incumbent list with the computation of Y_{SN1} , Extended with the solutions of MOLPs with obtained set of fixed variables
 - Feasible solutions obtained when all binary variables are fixed
- Choice of the active node: (some kind of) depth-first search
- Separation procedure
 - Consideration of variables x_k by decreasing order of the absolute value of

$$e(k) := (c_k^1 - \mu_1) + (c_k^2 - \mu_2)$$

- If e(k) > 0: Variable fixed to 1 first and next to 0
 else: Variable fixed to 0 first and next to 1

Mixed 01 Linear Case: Entries found in the literature

- Mavrotas and Diakoulaki (1998, 2005)
- Vincent et al. (2013)
- Stidsen et al. (2014)
 - Bi-objective case
 - One objective function with only binary variables
 - Local Branch and Bound: use of slicing
- Belotti et al. (2013) (Technical report)
 - Bi-objective case: consideration of integer variables rather than binary variables
- Vincent et al. (2013) (PhD thesis)
 - Different strategies applied in a two phase method
 - Three-objective case

- Natural extension of single-objective algorithms but...
- ... initially inefficient using the ideal and the nadir points as bounds
- Promising methods using bound sets
- The strategies for choosing the active node and for the separation procedure remain basic in the published methods
- Other relaxations than the convex or linear relaxations are scarcely studied
- Linear relaxation not tight enough ⇒ Development of multi-objective Branch and Cut algorithms

- Natural extension of single-objective algorithms but...
- ... initially inefficient using the ideal and the nadir points as bounds
- Promising methods using bound sets
- The strategies for choosing the active node and for the separation procedure remain basic in the published methods
- Other relaxations than the convex or linear relaxations are scarcely studied
- Linear relaxation not tight enough ⇒ Development of multi-objective Branch and Cut algorithms

- Natural extension of single-objective algorithms but...
- ... initially inefficient using the ideal and the nadir points as bounds
- Promising methods using bound sets
- The strategies for choosing the active node and for the separation procedure remain basic in the published methods
- Other relaxations than the convex or linear relaxations are scarcely studied
- Linear relaxation not tight enough ⇒ Development of multi-objective Branch and Cut algorithms

- Natural extension of single-objective algorithms but...
- ... initially inefficient using the ideal and the nadir points as bounds
- Promising methods using bound sets
- The strategies for choosing the active node and for the separation procedure remain basic in the published methods
- Other relaxations than the convex or linear relaxations are scarcely studied
- Linear relaxation not tight enough ⇒ Development of multi-objective Branch and Cut algorithms

Scalarization The ε -constraint Method with Adaptive Step The Two Phase Method Bound sets, Branch & Bound

References

 Multicriteria Optimization Matthias Ehrgott Second edition Chapter 9-10

Acknowledgements

Matthias EhrgottSlides and figures from

Lecture 4: Multiobjective Combinatorial Optimization