

Heat Production Optimization

SDU / Danfoss student project case

Heat Production Optimization - introduction

What are you developing

- Heat production optimization for a district heating utility
 - Secure heat availability for all buildings in the district heating network
 - Produce heat for the lowest costs
 - Utilize the electricity market for the highest profit or lowest costs
- 5 Components
 - Asset Manager (AM)
 - Source Data Manager (SDM)
 - Result Data Manager (RDM)
 - Optimizer (OPT)
 - Data Visualization (DV)
- 2 Scenarios
 - Single heating area, one gas boiler, one oil boiler
 - Single heating area, one gas boiler, one oil boiler, one gas motor, one electric boiler
- 2 Periods
 - Winter period
 - Summer period

Heat Production Optimization – district heating net

An example of a district heating net

Heat Production Optimization - system overview

All should implement the base modules

- Asset Manager (AM)
- Source Data Manager (SDM)
- Result Data Manager (RSD)

Specialize and select to implement one of the modules

- Optimizer (OPT)
- Data Visualization (DV)

You are free to implement both modules

Heat Production Optimization – modules

Asset Manager (AM)

Source repository for static system information

- Heating grid information such as:
 - Name
 - o image
- Production unit information such as:
 - o Name
 - o Image
 - Produced heat
 - Produced / consumed electricity
 - Consumption of primary energy
 - Production costs
 - Produced CO₂ emissions

Heat Production Optimization – modules

Source Data Manager (SDM)

Source repository for dynamic system information

- Time series for heat demand in heating grid
- Time series for electricity prices

Example of a time series for heat demand with a 1-hour time resolution

Example of a time series for electricity prices with a 1-hour time resolution

ENGINEERING TOMORROW

Heat Production Optimization - modules

Result Data Manager (RDM)

Sink repository for optimization results

- Heat production
- Electricity production / consumption
- Expenses and profit
- Consumption of primary energy
- Produced CO₂ emissions

Heat Production Optimization - modules

Classified as Public

Optimizer (OPT)

Kernel module for optimization of energy production

- Secure heat availability
- Produce heat for lowest costs
- · Produce electricity with highest profit
- Consume electricity with lowest expenses

Heat Production Optimization - modules

Data Visualization (DV)

Visualization of results via diagrams and charts

- Settings for production units
- Heat demand in heating grids
- Heat production
- Electricity production / consumption
- Electricity prices
- Expenses and profit
- Consumption of primary energy
- Priorities of production units (net production costs)

Heat Production Optimization - scenario 1

Heat only optimization

Heating Grid 1

GB1

OB2

- 1 district heating network
- 1 gas boiler
- 1 oil boiler

Heat Production Optimization - scenario 2

Heat and electricity optimization

Single grid system with heat only boilers and CHPs

- 1 district heating network
- 1 gas boiler
- 1 oil boiler
- 1 gas motor
- 1 electric boiler

Heat Production Optimization – Danfoss delivery

Data delivery

Danfoss will deliver the following data:

- Graphical representation of the district heating network
- Configuration parameters for the heat production units, aka operation points, such as:
 - · Graphical representation of the unit
 - · Produced heat
 - Produced / consumed electricity
 - · Consumption of primary energy
 - · Production costs
 - Produced CO₂ emissions
- Heat demand and electricity prices for a 7-days winter period both with a resolution of 1 hour
- · Heat demand and electricity prices for a 7-days summer period both with a resolution of 1 hour

Classified as Public

Heat Production Optimization – Project process

What do you need to do

- Understand the requirements
- Create software architecture definition (with stakeholders!)
- Analysis, design and implementation of the subsystems
 - Define domain objects
 - · Define data transfer objects
 - Implement interfaces for data exchange
- Implement tests for the subsystems
- Implement a combined test of the entire system

Heat Production Optimization – Additional exercises

What more can you do (if there is time left)

- If you have chosen to implement the Optimizer, also implement the Data Visualization.
- If you have chosen to implement the Data Visualization, also implement the Optimizer.
- Run scenario 2 with different configurations such as with or without the gas motor and compare the results in terms of revenue, CO2 emissions etc.
- Implement API's for the communication between the modules.
- Implement an API client to call the API from Energinet.dk to directly read electricity prices from their web server.

ENGINEERING TOMORROW