Assignment S.

- · Title: Parelles Reduction using CUDA.
- · Problem Statement:

(a) Implement paullel reduction using min, max, sum e average oper? (b) Kleite CUDA program that, given N-number vector find

- · Max element in vector
 - · Min element in vector
 - · Arithmatic mean
 - · Standard deviation

Test for input N and generate a randomized vector of V of length N. The program should generate output as two computed maximum values as well as the time taken to find each value.

· Objectives:

- ives:
 To learn parellel programming concey
 To learn parellel computing in CUDA
- · Outcomes:

We will able to learn parelles computing concepts using cush.

· Requirements:

- 05: Fedora 20/ ubuntu 64-bit
- Nvidia GPU (Geforce 920M) CUDA API with (/C++ (NVCC compiler)

Mathematical model:

Let 5 be the system set

S= & S', e, x, y, Fme, DD, NDD, Fc, Sc} where

S'= start state

e = end state

x = set of inputs

Y= output set = & min, max, avg, &}

DD = deterministic data

NDD= non-deterministic data

Fr = failure case

Fre = set of junctions = [F, fz, Fz, Fz, Fz, Fz]

Theory:

- CUDA is a parellel computing platform and API model weated by NVIDIA

- It enables programmels to use a CUDA-enabled GPU for general purpose bus cessing

- The CUDA platform is a software layer that gives direct access to the GPU's virtual instructions set, and parellel computational elements for the execution of complete kernel.

- Cuda was initially released in 2007 by NVIDIA Corporation
- cuda 8.0 comes with foll libraries
 - · CUDART -> Cuda Runtime library
 - · CUDIAS → Cuda Basic lineas Algebra Subroutines library
 - · CUDFFT CUDA Past Fourier Transform

- CUDA programming:

- -nvcc compiler is used for compilation

 It separates both the host code & device

 code in compilation phase

 Source under the tor CURA has
- source code file for CUDA has
- -- CUDA program structure:
 - + Allocate GPU memories
 - 2. Copy data from CPU memory to
 - 3. Invoke CUDA keenel
 - 4. Copy data back from GPU to CPU
 - 5. Destroy 9PU memories
- How to sun CUDA program on semote m/c
 - 1. Open terminal
 - 2. Get login to remote sys which has
 - eg: student @ 10.10.15.21

	3 create a CUDA file with cu
	extension à voite vode in it
	4. Compile CUDA program with nice
	5. It will create an executable file
1	a out lun it
•	Parellel Reduction: Suppose we have an away with
	10 elements
	- Decompose array into subgrps of zelements - find min from each subgrp parellely
	- Find min from each suborp parellely
	- Repeat this process.
	6 2 10 3 7 13 17 21 16 8
	2 3 7 17 8
	12 8 6
	4
	Min element

· Test cases and Analysis:

1				
Function	Hp size	sequential!	Parellel	Efficie
		time	trine	-ucy
	N= 128	0.136	0.129	1.054
Average	u = 256	0.142	0.123	1.154
O	u = 512	0.138	0.120	1.15
	N = 128	0 . 02	0.142	0.014
Max	U=1024	0.137	0.113	1.212
*	n = 2048	0.135	0.128	1.05
	N = 64	0.02	0.187	0.010
Min	n=1024	0:134	0.114	1.175
	u = 2048	0 - 131	0.183	0.98
	N = 64	0.02	0.05	0.4
Standard	u = 256	0.9133	0.179	0.76
Deviation	N = 1024	0.133	0.15	8 0.841
	N = 512	0.01	0.[8]	0,55
Bum	N = 1024		0.113	0.088
	u = 204		0.12	6 0.079

Efficiency - LICSA LICPA

Here we observe that as the size of input increases, parellel algorithm gives better performance than sequential algorithm.

Input:

Size of away =8

Array = 4,0,4,4,3,0,6,1

output:

Avelage = 2.7500

Min = 0

Max = 6

Sum = 22

Standard deviation = 2.0463

· Conclusion:

parelles reduction using CUDA.