CSE 431/531: Algorithm Analysis and Design (Fall 2024) Graph Algorithms

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

• (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$

Assumption Assume all edge weights are different.

Lemma (u,v) is in MST, if and only if there exists a $\operatorname{cut}\ (U,V\setminus U)$, such that (u,v) is the lightest edge between U and $V\setminus U$.

- (c, f) is in MST because of cut $(\{a, b, c, i\}, V \setminus \{a, b, c, i\})$
- \bullet (i,g) is not in MST because no such cut exists

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- \bullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- \bullet $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

"Evidence" for $e \in \mathsf{MST}$ or $e \notin \mathsf{MST}$

Assumption Assume all edge weights are different.

- $e \in \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cut in which e is the lightest edge
- $e \notin \mathsf{MST} \leftrightarrow \mathsf{there}$ is a cycle in which e is the heaviest edge

Exactly one of the following is true:

- ullet There is a cut in which e is the lightest edge
- ullet There is a cycle in which e is the heaviest edge

Thus, the minimum spanning tree is unique with assumption.

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

algorithm	graph	weights	SS?	running time
Simple DP	DAG	\mathbb{R}	SS	O(n+m)
Dijkstra	U/D	$\mathbb{R}_{\geq 0}$	SS	$O(n\log n + m)$
Bellman-Ford	U/D	\mathbb{R}	SS	O(nm)
Floyd-Warshall	U/D	\mathbb{R}	AP	$O(n^3)$

- ullet DAG = directed acyclic graph U = undirected D = directed
- $\bullet \ \mathsf{SS} = \mathsf{single} \ \mathsf{source} \quad \ \mathsf{AP} = \mathsf{all} \ \mathsf{pairs}$

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

s-t Shortest Paths

Input: (directed or undirected) graph G = (V, E), $s, t \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest path from s to t

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: shortest paths from s to all other vertices $v \in V$

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

 We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: (directed or undirected) graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{\geq 0}$

Output: shortest paths from s to all other vertices $v \in V$

Reason for Considering Single Source Shortest Paths Problem

- We do not know how to solve s-t shortest path problem more efficiently than solving single source shortest path problem
- Shortest paths in directed graphs is more general than in undirected graphs: we can replace every undirected edge with two anti-parallel edges of the same weight

Input: directed graph G = (V, E), $s \in V$

 $w: E \to \mathbb{R}_{>0}$

Output: $\pi[v], v \in V \setminus s$: the parent of v in shortest path tree

 $d[v], v \in V \setminus s$: the length of shortest path from s to v

 ${f Q:}$ How to compute shortest paths from s when all edges have weight 1?

 ${f Q:}$ How to compute shortest paths from s when all edges have weight 1?

 ${f Q:}$ How to compute shortest paths from s when all edges have weight 1?

 ${f Q}$: How to compute shortest paths from s when all edges have weight 1?

 ${f Q}$: How to compute shortest paths from s when all edges have weight 1?

Q: How to compute shortest paths from s when all edges have weight 1?

Q: How to compute shortest paths from s when all edges have weight 1?

 \bullet An edge of weight w(u,v) is equivalent to a path of w(u,v) unit-weight edges

 \bullet An edge of weight w(u,v) is equivalent to a path of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$

 \bullet An edge of weight w(u,v) is equivalent to a path of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v)\in E$
- 2: run BFS
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

 \bullet An edge of weight w(u,v) is equivalent to a path of w(u,v) unit-weight edges

Shortest Path Algorithm by Running BFS

- 1: replace (u,v) of length w(u,v) with a path of w(u,v) unit-weight edges, for every $(u,v) \in E$
- 2: run BFS virtually
- 3: $\pi[v] \leftarrow \text{vertex from which } v \text{ is visited}$
- 4: $d[v] \leftarrow \text{index of the level containing } v$
- Problem: w(u, v) may be too large!

Shortest Path Algorithm by Running BFS Virtually

- 1: $S \leftarrow \{s\}, d(s) \leftarrow 0$
- 2: while |S| < n do
- 3: find a $v \notin S$ that minimizes $\min_{u \in S: (u,v) \in E} \{d[u] + w(u,v)\}$
- 4: $S \leftarrow S \cup \{v\}$
- 5: $d[v] \leftarrow \min_{u \in S:(u,v) \in E} \{d[u] + w(u,v)\}$

Virtual BFS: Example

Time 2

Time 9

Time 10

Outline

- Minimum Spanning Tree
 - Kruskal's Algorithm
 - Reverse-Kruskal's Algorithm
 - Prim's Algorithm
- Single Source Shortest Paths
 - Dijkstra's Algorithm
- 3 Shortest Paths in Graphs with Negative Weights
- 4 All-Pair Shortest Paths and Floyd-Warshall

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

```
1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}

2: while S \neq V do

3: u \leftarrow vertex in V \setminus S with the minimum d[u]

4: add u to S

5: for each v \in V \setminus S such that (u, v) \in E do

6: if d[u] + w(u, v) < d[v] then

7: d[v] \leftarrow d[u] + w(u, v)

8: \pi[v] \leftarrow u

9: return (d, \pi)
```

Dijkstra's Algorithm

$\mathsf{Dijkstra}(G, w, s)$

```
1: S \leftarrow \emptyset, d(s) \leftarrow 0 and d[v] \leftarrow \infty for every v \in V \setminus \{s\}

2: while S \neq V do

3: u \leftarrow vertex in V \setminus S with the minimum d[u]

4: add u to S

5: for each v \in V \setminus S such that (u, v) \in E do

6: if d[u] + w(u, v) < d[v] then

7: d[v] \leftarrow d[u] + w(u, v)

8: \pi[v] \leftarrow u

9: return (d, \pi)
```

• Running time = $O(n^2)$

