Московский государственный технический университет имени Н. Э. Баумана Кафедра «Программное обеспечение ЭВМ и информационные технологии»

Математическая статистика

Домашняя работа N2

Студент Инфлянскас Р. В.

Группа ИУ7-61 Вариант 10

Преподаватель Власов П. А.

Задача №1

Условие

После обработки n=8 результатов независимых наблюдений нормально распределенной случайной величины X, получено значение $\hat{\sigma}^2(\overrightarrow{X}_n)=5.75$ смещенной оценки выборочной дисперсии. С какой вероятностью можно гарантировать выполнение неравенства $\overline{X}_n-6.2 < M[X] < \overline{X}_n+6.2$?

Решение

Из условия следует, что μ и σ неизвестны, требуется найти вероятность выполнения оценки μ . Воспользуемся для этого центральной статистикой

$$T(\overrightarrow{X}_n, \mu) = \frac{\mu - \overline{X}_n}{S(\overrightarrow{X}_n)} \sim St(n-1),$$

которая даёт следующие границы интервальной оценки математического ожидания с коэффициентом доверия γ , где $\alpha = \frac{(1-\gamma)}{2}$:

$$\underline{\mu}(\overrightarrow{X}_n) = \overline{X} - \frac{S(\overrightarrow{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1)$$
$$\overline{\mu}(\overrightarrow{X}_n) = \overline{X} + \frac{S(\overrightarrow{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1)$$

Выразим $t_{1-\alpha}(n-1)$ (квантиль уровня q для распределения Стьюдента с n-1 степенями свободы):

$$p = \frac{S(\overrightarrow{X}_n)}{\sqrt{n}} t_{1-\alpha}(n-1)$$

$$t_{1-\alpha}(n-1) = \frac{p\sqrt{n}}{S(\overrightarrow{X}_n)}$$
(1)

Найдём $S(\overrightarrow{X}_n)$ по исправленной выборочной дисперсии:

$$S^{2}(\overrightarrow{X}_{n}) = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} = \frac{n}{n-1} \hat{\sigma}^{2}(\overrightarrow{X}_{n})$$

$$S(\overrightarrow{X}_{n}) = \sqrt{S^{2}(\overrightarrow{X}_{n})}$$

$$(2)$$

Подставим (2) в (1), а также n=8, p=6.2 из условия и получим:

$$t_{1-\alpha}(n-1) = \frac{p\sqrt{n}}{S(\overrightarrow{X}_n)} = \frac{6.2 \cdot \sqrt{8}}{\sqrt{\frac{8}{8-1} \cdot 5.75}} \approx 2.67$$

Поскольку в таблице (из приложения к учебнику) этого значения не нашлось, используем функцию stats.t.cdf из пакета scipy языка Python, которая принимает квантили и число степеней свободы как параметр, а возвращает значение функции распределения:

In : stats.t.cdf([2.67], 7)

Out: array([0.984])

Так как
$$\alpha=\frac{(1-\gamma)}{2},$$
 то есть $\gamma=1-2a=1-2(1-(1-a))=-1+2(1-a)=-1+2\cdot 0.984=0.968$

Ответ

0.968

Задача №2

Условие

На двух токарных автоматах изготавливают детали по одному чертежу. Из продукции первого станка было отобрано $n_1=9$ деталей, а из продукции второго — $n_2=11$ деталей. Выборочные дисперсии контрольного размера, определенные по этим выборкам, составляют $S^2(\overline{X}_{n_1})=5.9~{\rm mkm}^2$ и $S^2(\overline{Y}_{n_2})=5.9~{\rm mkm}^2$ соответственно. С использованием двустороннего критерия при уровне значимости $\alpha=0.05$ проверить гипотезу о равенстве дисперсий контрольного размера деталей, изготовленных на разных станках.

Решение

Проверим гипотезу о равенстве дисперсий $H_0: D[X] = D[Y]$. По условию, требуется использовать двусторонний критерий, то есть конкурирующая гипотеза $H_1: D[X] \neq D[Y]$, а критическая область — двусторонняя.

Найдём отношение большей исправленной дисперсии к меньшей:

$$F_{ ext{haбл}} = rac{S^2(\overline{X}_{n_1})}{S^2(\overline{Y}_{n_2})} = rac{5.9}{5.9} = 1$$

Достаточно найти правую критическую точку $F_{\rm kp_2}$ при уровне значимости, вдвое меньшем заданного. Тогда не только вероятность попадания критерия в «правую часть» критической области (то есть правее $F_{\rm kp_2}$) равна $\alpha/2$, но и вероятность попадания в «левую часть» критической области (то есть левее $F_{\rm kp_1}$) также равна $\alpha/2$. Так как эти события несовместны, то вероятность попадания рассматриваемого критерия во всю двустороннюю критическую область будет равна $\alpha/2 + \alpha/2 = \alpha$.

По таблице квантилей распределения Фишера, по уровню значимости, вдвое меньшем заданного, то есть при $\alpha/2=0.05/2=0.025$, а значит при $p=1-\alpha/2=0.975$, и числам степеней свободы $k_1=n_1-1=9-1=8$, $k_2=n_2-1=11-1=10$ находим критическую точку $F_{\text{кр}_2}=f_{0.975}(8,10)=3.85$.

Так как $F_{\text{набл}} < F_{\text{кр}}$, нулевую гипотезу о равенстве дисперсий принимаем.

Ответ

Гипотеза о равенстве дисперсий принимается.