STATISTIKA, PELUANG, **DAN LOGIKA**

Rumus untuk Data Tunggal

Misalkan, dari data tersusun atas: $x_1, x_2, x_3, ..., x_n$

Mean (rataan hitung)

$$\frac{-}{X} = \frac{X_1 + X_2 + X_3 + + X_n}{n} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$\bar{X} = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + \dots + f_n x_n}{f_1 + f_2 + f_3 + \dots + f_n} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}$$

- Modus (Mo) adalah nilai data yang paling banyak muncul/frekuensinya terbesar.
- Median (Me) adalah nilai tengah data setelah data disusun dari yang terkecil hingga terbesar.

Jika n ganjil maka mediannya adalah:

$$Me = X_{\frac{n+1}{2}}$$

Jika n genap maka mediannya adalah:

$$Me = \frac{1}{2} \left(X_{\frac{n}{2}} + X_{\frac{n}{2}+1} \right)$$

Kuartil (Q) adalah nilai data yang membagi sekelompok data menjadi 4 bagian sama banyak. Kuartil data terdiri atas kuartil bawah (Q1), kuartil tengah (Q2), dan kuartil atas (Q₂).

5. Jangkauan (J) adalah nilai data terbesar nilai data terkecil.

$$J = X_{\text{maks}} - X_{\text{min}}$$

6. Jangkauan antarkuartil

$$H = Q_3 - Q_1$$

Jangkauan semi interkuartil atau simpangan kuartil (Q_)

$$Q_d = \frac{1}{2}(Q_3 - Q_1)$$

8. Simpangan rata-rata

$$S_{R} = \frac{1}{n} \sum_{i=1}^{n} |x_{i} - \overline{x}|$$

9. Ragam/variansi

$$S^2 = \frac{1}{n} \sum_{i=1}^{n} \left| x_i - \overline{x} \right|^2$$

10. Simpangan baku

$$S = \sqrt{S^2} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} |x_i - \overline{x}|^2}$$

Rumus untuk Data Kelompok

Mean (rataan hitung)

$$\overline{x} = \overline{x}_s + \frac{\sum_{i=1}^n f_i d_i}{\sum_{i=1}^n f_i}$$

Keterangan:

X_s = rataan sementara (nilai dari salah satu titik tengah interval kelas)

x = titik tengah interval kelas data ke-i

2. Modus (Mo)

$$Mo = t_b + \left(\frac{d_1}{d_1 + d_2}\right) \cdot c$$

Dimana:

$$d_1 = f_0 - f_{-1}$$

$$d_2 = f_0 - f_{11}$$

Keterangan:

tb = tepi bawah kelas modus data

c = panjang interval kelas

 f_{-1} = frekuensi kelas data sebelum kelas

f0 = frekuensi kelas modus

f₊₁ = frekuensi kelas data setelah kelas modus

3. Kuartil (Q_i)

$$Q_{i} = t_{b} + \left(\frac{\frac{i}{4}\sum f - f_{m}}{f_{Q_{m}}}\right) c$$
, dimana $i = 1, 2, 3$

Keterangan:

t_b = tepi bawah kelas kuartil ke-i (Q_i)

c = panjang interval kelas

 $\sum_{f} = \text{jumlah frekuensi}$

f_m = frekuensi kumulatif sebelum kelas Q_i

 f_{on} = frekuensi kelas Q_i

Perubahan Data

Jika terjadi perubahan pada data tunggal dengan nilai perubahan sama untuk setiap data maka perubahannya adalah:

	Setiap nilai data di:			
	ditambah p	dikurangi p	dikali p	dibagi p
\bar{x}	$\overline{X}_b = \overline{X} + p$	$\overline{X}_b = \overline{X} - p$	$\overline{X}_b = p \overline{X}$	$\overline{X}_b = \overline{X} + p$
M _o	$M_b = M_o + p$	$M_b = M_o - p$	$M_b = p.M_o$	$M_b = M_o : p$
Q	$Q_b = Q + p$	$Q_b = Q - b$	$Q_b = p.Q$	$Q_b = Q : p$
J	$J_{b} = J$	$J_b = J$	$J_{b} = J \cdot p$	$J_{p} = J : p$

Kaidah Pencacahan

Jika suatu kejadian dapat terjadi dalam p cara berlainan dan kejadian berikutnya dapat terjadi dalam q cara berlainan maka kedua kejadian tersebut dapat terjadi dalam (p x q) cara.

Perkalian bilangan asli yang pertama disebut faktorial (!).

n! dibaca " n faktorial "

 $n! = n \times (n - 1) \times (n - 2) \times \times 3 \times 2 \times 1$

Contoh:

 $4! = 4 \times 3 \times 2 \times 1 = 24$

1! = 1

0! = 1

Permutasi

Cara menempatkan n buah unsur ke dalam r tempat yang tersedia dengan urutan diperhatikan disebut permutasi r unsur dari n unsur, dinotasikan dengan nPr atau P(n, r) atau $P_{n,r}$ atau $P_{n,r}$.

1. Banyaknya permutasi n unsur berbeda disusun n unsur(seluruhnya) adalah:

$$P = n!$$

 Banyaknya permutasi yang dapat disusun dari n anggota suatu himpunan diambil r unsur anggota adalah:

$$_{n}P_{k}=\frac{n!}{(n-k)!}$$

 Permutasi yang memuat beberapa unsur yang sama. Misalkan terdapat beberapa susunan n unsur dengan n₁ unsur sama, n₂ unsur sama, dan seterusnya maka:

$$_{n}P_{n1' n2' n3' ...} = \frac{n!}{n_{1}! \times n_{2}! \times n_{3}! \times ...}$$

5. Banyaknya permutasi siklis adalah permutasi yang disusun secara melingkar dengan memperhatikan urutannya (arah putarannya) adalah:

$$_{n}P_{(siklis)} = (n-1)!$$

Kombinasi

Banyak kombinasi (susunan acak) k unsur dari n unsur yang tersedia adalah:

$$_{n}C_{k} = \frac{n!}{(n-k)!k!}$$
, dimana $n \ge k$

Teorema Binomial Newton

$$(a + b)^n = {}_{n}C_0 a^n + {}_{n}C_1 a^{n-1}b + {}_{n}C_2 a^{n-2}b^2 + ... + {}_{n}C_n b^n$$

Contoh:

$$(x + y)^3 = {}_{3}C_{0}x^3 + {}_{3}C_{1}a^{3-1}b + {}_{3}C_{2}a^{3-2}b^2 + {}_{3}C_{3}b^3$$
$$= x^3 + 3a^2b + 3ab^2 + b^3$$

Peluang Suatu Kejadian

Peluang kejadian A dinotasikan dengan P(A) adalah perbandingan banyaknya hasil kejadian A dinotasikan n(A) terhadap banyaknya semua hasil yang mungkin dinotasikan dengan n(S) dalam suatu percobaan. Peluang suatu kejadian A dirumuskan sebagai berikut:

$$P(A) = \frac{n(A)}{n(S)}$$

Keterangan:

n(A) = banyak anggota himpunan A

n(S) = banyak anggota himpunan ruang sampel

P(A) = peluang kejadian A

Kisaran Nilai Peluang

Nilai peluang berkisar antara $0 \le P(A) \le 1$. Untuk P(A) = 1, artinya kejadian A pasti terjadi. Sedangkan P(A) = 0, artinya kejadian A tidak mungkin terjadi (mustahil).

Frekuensi Harapan

Frekuensi harapan kejadian A adalah banyaknya kejadian A yang diharapkan dalam beberapa kali percobaan, dan dapat dirumuskan:

$$F(A) = P(A) \times n$$

Keterangan:

F(A) = frekuensi harapan kejadian A

n = banyak percobaan

P(A) = peluang kejadian A

Peluang Kejadian Majemuk

1. Peluang gabungan dari dua kejadian

Misalkan, A dan B adalah dua kejadian yang terdapat dalam ruang sampel S maka peluang gabungan dua kejadiannya dituliskan sebagai berikut:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Keterangan:

P(A) = peluang kejadian A

P(B) = peluang kejadian B

 $P(A \cup B) = peluang kejadian A atau B$

 $P(A \cap B) = peluang kejadian A dan B$

2. Peluang dua kejadian yang saling lepas

Dua kejadian dikatakan saling lepas jika P(A \cap B) = 0 maka:

$$P(A \cup B) = P(A) + P(B)$$

Peluang gabungan dua kejadian yang saling bebas

Dua kejadian A dan B dikatakan saling bebas jika kemunculan yang satu tidak dipengaruhi kemunculan kejadian lainnya (saling bebas).

$$P(A \cap B) = P(A).P(B)$$

4. Kejadian bersyarat

Peluang munculnya kejadian A dengan syarat kejadian B muncul dapat didefinisikan:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
; dimana $P(B) \neq 0$.

atau

$$P(A \cap B) = P(B) \times P(A|B)$$

Keterangan:

P(A|B) = peluang kejadian A setelah kejadian B terjadi

 $P(A \cap B) = peluang kejadian A dan B$

P(A) = peluang kejadian A

P(B) = peluang kejadian B

Tabel Kebenaran

Negasi atau ingkaran (∼)

Negasi atau ingkaran adalah pernyataan baru dengan nilai kebenaran berlawanan dengan nilai pernyataan semula.

р	~p
В	S
S	В

2. Konjungsi

Konjungsi adalah penggabungan dua pernyataan menggunakan kata penghubung "dan". Konjungsi dari pernyataan p dan q dilambangkan $p \land q$.

р	q	p 🗆 q
В	В	В
В	S	S
S	В	S
S	S	S

3. Disjungsi

Disjungsi adalah penggabungan dua pernyataan menggunakan kata penghubung "atau". Disjungsi dari pernyataan p dan q dilambangkan $P \lor Q$.

р	q	p □ q
В	В	В
В	S	В
S	В	В
S	S	S

4. Implikasi

Implikasi adalah penggabungan dua pernyataan menggunakan kata "jika... maka...". Implikasi dari pernyataan p dan q ditulis $p \rightarrow q$.

р	q	$p \rightarrow q$
В	В	В
В	S	S
S	В	В
S	S	В

5. Biimplikasi

Biimplikasi adalah penggabungan dua pernyataan menggunakan kata penghubung "jika dan hanya jika". Biimplikasi dari pernyataan p dan q ditulis $p \leftrightarrow q$.

р	q	$p \Leftrightarrow q$
В	В	В
В	S	S
S	В	S
S	S	В

Pernyataan Berkuantor

Kuantor universal adalah suatu pernyataan yang berlaku umum dan dinotasikan dengan $\forall x$ dibaca "Untuk setiap nilai x". Kuantor eksistensial adalah suatu pernyataan yang berlaku secara khusus dan dinotasikan dengan $\exists x$ dibaca "ada/beberapa nilai x".

Ingkaran dari pernyataan berkuantor, yaitu:

1.
$$\sim (\exists P(x)) = \forall (\sim P(x))$$

2.
$$\sim (\forall P(x)) = \exists (\sim P(x))$$

Konvers, Invers, dan Kontraposisi

Jika implikasi $p \rightarrow q$ maka:

Konvers	Invers	Kontraposisi
$q \rightarrow p$	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$

Pernyataan-pernyataan yang Ekuivalen

1.
$$\sim (p \land q) \equiv \sim p \lor \sim q$$

2.
$$\sim (p \vee q) \equiv \sim p \wedge \sim q$$

3.
$$\sim (p \rightarrow q) \equiv p \land \sim q$$

4.
$$\sim (p \leftrightarrow q) \equiv (p \land \sim q) \lor (q \land \sim p)$$

5.
$$p \rightarrow q \equiv \sim p \vee q$$

6.
$$p \rightarrow q \equiv \sim q \rightarrow \sim p$$
 (implikasi \equiv kontraposisi)

7.
$$q \rightarrow p \equiv \sim p \rightarrow \sim q$$
 (konvers \equiv kontraposisi)

Penarikan Kesimpulan

Modus Ponens

Bentuk umum:

Premis 1: $p \rightarrow q$

Premis 2:

Kesimpulan: q

Modus Tollens

Bentuk umum:

Premis 1: $p \rightarrow q$

Premis 2: ~q

Kesimpulan: ~p

Silogisme

Bentuk umum:

Premis 1:

Premis 2:

Kesimpulan: $p \rightarrow r$

CONTOH SOAL

STATISTIKA, PELUANG, DAN LOGIKA

Soal Ujian SNMPTN

Jika nilai rata-rata tes matematika 20 siswa kelas A adalah 65 dan nilai rata-rata 10 siswa lainnya di kelas tersebut adalah 80 maka nilai rata-rata semua siswa kelas A adalah

D. 69

E. 68

72

Pembahasan:

Diketahui:

$$n_A = 20 \text{ siswa}; \overline{X}_A = 65$$

$$n_R = 10 \text{ siswa}; \overline{X}_R = 80$$

Maka, rata-rata gabungannya adalah

$$=\frac{n_A.\overline{x_A}+n_B.\overline{x_B}}{n_A+n_B}$$

$$=\frac{20.65+10.80}{20+10}=\frac{2.100}{30}=70$$

Jawaban: C

Soal Ujian SNMPTN

Suatu panitia yang terdiri atas 4 orang dengan rincian seorang sebagai ketua, seorang sebagai sekretaris, dan dua orang sebagai anggota (kedua anggota tidak dibedakan), akan dipilih 3 pria dan 3 wanita. Jika ketua panitia harus wanita dan sekretarisnya harus pria maka banyak susunan panitia berbeda yang bisa dibentuk adalah

Pembahasan:

3 pria dan 3 wanita dipilih menjadi ketua, sekretaris, dan anggota.

Karena ketua harus wanita maka cara memilih ketua dari wanita ada 3 cara.

Karena sekretaris harus pria maka cara memilih sekretaris dari pria ada 3 cara.

Sedangkan, cara memilih 2 anggota dari 4 orang (2 sudah dipilih menjadi ketua dan sekretaris).

$$C_2^4 = \frac{4!}{(4-2)!2!} = \frac{4.3.2!}{2!.2.1} = 6$$

Jadi, banyaknya susunan panitia adalah: 3 3 x 6 = 54 cara.

Jawaban: B

3. Soal Ujian SNMPTN

Pernyataan yang mempunyai nilai kebenaran sama dengan pernyataan: "Jika bilangan ganjil sama dengan bilangan genap maka 1 + 2 bilangan ganjil" adalah...

- A. "Bilangan ganjil sama dengan bilangan genap dan 1 + 2 bilangan genap"
- B. "Jika 1 + 2 bilangan ganjil maka bilangan ganjil sama dengan bilangan genap"
- C. "Jika bilangan ganjil sama dengan bilangan genap maka 1 + 2 bilangan genap"
- D. "Bilangan ganjil sama dengan bilangan genap dan 1 + 2 bilangan ganjil"
- E. "Jika bilangan ganjil tidak sama dengan bilangan genap maka 1 + 2 bilangan genap"

Pembahasan:

p = "bilangan ganjil sama dengan bilangan genap" bernilai **Salah**

q = "1 + 2 bilangan ganjil " bernilai **Benar**

Maka, $p \Rightarrow q$ bernilai **Benar**.

Perhatikan pilihan jawaban.

- A. "Bilangan ganjil sama dengan bilangan genap dan 1 + 2 bilangan genap"
 - S ^ S bernilai **Salah**
- B. "Jika 1 + 2 bilangan ganjil maka bilangan ganjil sama dengan bilangan genap"

B ⇒ S bernilai **Salah**

- C. "Jika bilangan ganjil sama dengan bilangan genap maka 1 + 2 bilangan genap"
 - S ⇒ S bernilai **Benar**
- D. "Bilangan ganjil sama dengan bilangan genap dan 1 + 2 bilangan ganjil"
 - S ^ B bernilai Salah
- E. "Jika bilangan ganjil tidak sama dengan bilangan genap maka 1+2 bilangan genap"

B⇒ S bernilai **Salah**

Jawaban: C