Московский Физико-Технический Институт (государственный университет)

Вычислительная математика

Лабораторная работа N_2

Автор:

Овсянников Михаил Б01-008

Долгопрудный, 2022

Содержание

Цель	3
Важные математические определения	3
Нормы	3
Число обусловленности	4
Невязки	4
Критерий останова	4
Собственные значения	4
Система уравнений	6
Прямой способ	6
Итерационный метод	7
Результаты	8
Вывол	11

Цель

Реализовать численные методы решения систем линейных алгебраических уравнений (СЛАУ), сравнить полученные решения, оценить погрешности, найти число обусловленности в разных нормах, сделать печать невязок для методов решения, вычислить максимальное и минимальное собственные значения матрицы.

Важные математические определения

Для начала приведем некоторые сведения про нормы, число обусловленности, и невязки.

Нормы

Будем брать в расчет три разные нормы, определенные на пространстве, котором находятся x и f, то есть нормы векторов:

$$||x||_1 = \max_k |x_k|$$
 $||x||_2 = \sum_k |x_k|$
 $||x||_3 = \sqrt{(x,x)},$

где операция $(\cdot\,,\cdot)$ – скалярное произведение.

Определим норму матрицы через норму вектора:

$$||A|| = \sup_{x \neq 0} \frac{||Ax||}{||x||}$$

Отсюда ответвляются различные нормы матрицы, обоснованные на разных нормах вектора.

$$||A||_1 = \max_{1 \le i \le n} \sum_{j=1}^n |a_{ij}|$$

$$||A||_2 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}|$$

$$||A||_3 = \sqrt{\max_{1 \le i \le n} |\lambda^i(A^*A)|}$$

Перейдем непосредственно к части вычислительной математики.

Число обусловленности

Определим число обусловленности для задачи Ax = f – число, показывающее, насколько хорошо обусловлена, поставлена задача:

$$\mu = ||A|| \cdot ||A^{-1}||$$

Причем неважно в какой норме. По известной теореме из курса математического анализа, все нормы в конечномерном пространстве эквивалентны.

Невязки

Как в любом численном методе, полученное решение не является точным, поэтому необходимо оценивать ошибку по сравнению с действительным решением. Очевидный способ это сделать – это невязка, определяемая следующим образом:

$$r = ||Ax_{\text{sol}} - f||,$$

где x_{sol} – решение, полученное численным методом. Как и с числом обусловленности, здесь неважно, какая норма будет использована.

Критерий останова

Один из методов решения СЛАУ — это итерационный метод, в котором $x^{k+1} = g(x^k)$, $x^k - k$ -ая итерация. Однако хоть теоретически это можно делать бесконечно долго и бесконечно много раз, в реальности у компьютеров запас памяти, время на выполнение и другие ресурсы конечны. Именно поэтому необходимо сформулировать критерий, при котором следует остановить итерации. Самый банальный — как только была достигнута необходимая точность.

Конкретно в данной работе определим критерий останова итераций как

$$r = ||Ax_{\text{sol}} - f|| < \varepsilon,$$

где ε – нужная нам точность.

Собственные значения

Определение собственных значений матрицы A до банальности просто: это просто корни уравнения $\chi(\lambda) = \det(A - \lambda E) = 0$.

Нам, с точки зрения людей, занимающихся вычислительной математикой, важны собственные значения, являющиеся наибольшими и наименьшими по модулю.

Для нахождения наибольшего по модулю собственного значения матрицы A можно воспользоваться степенным методом.

Пусть
$$y^{k+1} = Ay^k$$
. Тогда

$$|\lambda|_{\max} = \lim_{k \to \infty} \frac{\|y^{k+1}\|}{\|y^k\|}.$$

Хоть и выглядит просто, однако у этого алгоритма есть очень большой минус — он не всегда работает, а именно зависим от начального приближения y^0 . Самый простой пример y^0 , при котором он не работает — это если y^0 случайно выбран так, что он является собственным вектором, отвечающим другому собственному значению. В общем случае метод не будет работать для векторов e_i таких, что $(e_i, e_{|\lambda|_{\max}})_{A_{\text{diag}}} = 0$. Выглядит страшно, но это просто означает, что скалярное произведение с диагонализированной A как матрицей Грама каких-то векторов e_i с $e_{|\lambda|_{\max}}$, отвечающих $|\lambda|_{\max}$, равно нулю. Еще проще — в базисе собственных векторов матрицы A векторы e_i не имеют компоненты вдоль $e_{|\lambda|_{\max}}$, отвечающих $|\lambda|_{\max}$. Дабы избежать этого, в скрипте выбирается начальный вектор $y^0 = (y_i^0)$, $y_i^0 = i$, $i = \overline{1,n}$.

Другой минус — это постоянное увеличение длины вектора на каждой итерации, вследствие чего может появиться переполнение. Решение этой проблемы — это нормализация векторов. Однако это приводит к увеличению ошибки округления.

Существует такой интересный факт из линейной алгебры: если λ – собственное значение для матрицы A такой, что $\det A \neq 0$, то $1/\lambda$ является собственным значением для матрицы A^{-1} .

Основываясь на этом факте, мы можем построить алгоритм нахождения минимального по модулю собственного числа матрицы A.

Пусть
$$y^{k+1} = A^{-1}y^k$$
. Тогда

$$1/|\lambda|_{\min} = \lim_{k \to \infty} \frac{\|y^{k+1}\|}{\|y^k\|}.$$

Перейдем непосредственно к системе уравнений и методам ее решения.

Система уравнений

В данной работе решается СЛАУ вида:

$$Ax = f$$

где
$$A = (a_{ij}), x = (x_i), f = (f_i),$$
 где $i, j = \overline{1, n}$.

Конкретно в этой работе система имеет вид (**пункт** (κ)):

$$n = 10; \ a_{ii} = 1; \ a_{ij} = \frac{1}{i+j}, \ i \neq j; \ f_i = \frac{1}{i}.$$

Предлагается решить систему двумя принципиально разными способами: прямой и итерационный.

Прямой способ

В качестве прямого способа решения выбран метод Холецкого, поскольку $A=A^T$ – симметричная положительно определенная матрица.

Опишем алгоритм. Пусть $A = A^T$ — симметричная положительно определенная матрица. Тогда $\exists L$ — нижнетреугольная матрица такая, что $LL^T = A$.

Так как L – нижнетреугольная, то получаются такие формулы для ее элементов:

$$l_{11} = \sqrt{a_{11}}$$

$$l_{j1} = \frac{a_{j1}}{l_{11}}, \quad j \in [2, n]$$

$$l_{ii} = \sqrt{a_{ii} - \sum_{p=1}^{i-1} l_{ip}^2}, \quad i \in [2, n]$$

$$l_{ji} = \frac{1}{l_{ii}} \left(a_{ji} - \sum_{p=1}^{i-1} l_{ip} l_{jp} \right), \quad i \in [2, n-1], \quad j \in [i+1, n].$$

Тогда решение исходной системы с симметричной матрицей разбивается на последовательное решение двух систем с треугольной матрицей:

$$\boxed{LL^T x = f} \xrightarrow{L^T x = y} \boxed{Ly = f} \xrightarrow{\text{solved for } y} \boxed{L^T x = y}$$

Итерационный метод

Выбранный итерационный метод – метод верхней релаксации. Пусть матрица A является положительно определенной, и $\omega \in (1,2)$. Разобьем матрицу на три составляющие: A = D + L + U.

- $D = \operatorname{diag}(A)$
- L нижняя треугольная часть A, исключая диагональ
- ullet U верхняя треугольная часть A, исключая диагональ

Тогда итерационный метод верхней релаксации выглядит следующим образом:

$$x^{k+1} = -(D + \omega L)^{-1} [(\omega - 1)D + \omega U] x^k + \omega (D + \omega L)^{-1} \cdot f$$

Как уже говорилось выше, критерий останова для данного метода выберем $r = \|Ax_{\rm sol} - f\| < \varepsilon$. Причем выберем норму $\|\cdot\| = \|\cdot\|_3$, а точность $\varepsilon = 10^{-16}$.

Параметры: $\omega = 1.5, \ x^0 = (0 \ 0 \ \dots \ 0)^T.$

Результаты

Для начала посмотрим на результаты вычисления μ в разных нормах, максимальное и минимальное по модулю собственные значения матрицы A.

$$\mu_1 = ||A||_1 \cdot ||A^{-1}||_1 = 5.6336089382284005$$

$$\mu_2 = ||A||_2 \cdot ||A^{-1}||_2 = 5.6336089382284005$$

$$\mu_3 = ||A||_3 \cdot ||A^{-1}||_3 = 3.1131994246085670$$

Как видим, $\mu_i \ll 100$, следовательно, задача хорошо обусловлена.

Теперь посмотрим на собственные значения. По расчету:

 $|\lambda|_{\text{max}} = 2.0483599269774470$

 $|\lambda|_{\min} = 0.6579597538101798$

Значения, полученные с помощью библиотеки NumPy:

 $|\lambda|_{\text{max}} = 2.0483599269774455$

 $|\lambda|_{\min} = 0.6579597538101790$

Видно, что результаты чрезвычайно близки друг к другу. Относительная ошибка $\sim 10^{-15}$.

Теперь приступим к самому интересному – сравним результаты, полученные разными методами, между собой.

$x^{\text{straight}} =$	$\left(\begin{array}{c} 0.9190771092669204 \end{array}\right)$	$x^{ m iterative} =$	$\left(\begin{array}{c} 0.9190771092669205 \end{array}\right)$
	0.1755401704930880		0.1755401704930880
	0.0639348240144408		0.0639348240144407
	0.0272747639608455		0.0272747639608455
	0.0114234685355545		0.0114234685355545
	0.0035108392787171		0.0035108392787171
	-0.0007899578138555		-0.0007899578138556
	-0.0032508014494853		-0.0032508014494853
	-0.0046978778105116		-0.0046978778105116
	(-0.0055537399412659)		(-0.0055537399412659)

Результаты опять чрезвычайно близки. Различия появляются лишь в 16 знаке после запятой!

Сделаем печать невязок обоих методов. Прямой метод:

- $||Ax^{\text{straight}} f||_1 = 2.7755575615628914 \cdot 10^{-17}$
- $||Ax^{\text{straight}} f||_2 = 1.1102230246251565 \cdot 10^{-16}$
- $||Ax^{\text{straight}} f||_3 = 5.5511151231257830 \cdot 10^{-17}$

Итерационный метод:

- $||Ax^{\text{iterative}} f||_1 = 2.7755575615628914 \cdot 10^{-17}$
- $||Ax^{\text{iterative}} f||_2 = 1.1102230246251565 \cdot 10^{-16}$
- $||Ax^{\text{iterative}} f||_3 = 5.5511151231257830 \cdot 10^{-17}$

По чистой случайности они совпали. Однако если выставить другую точность или другую норму для критерия останова, то значения у итерационного метода меняются.

Для итерационного метода конкретно в этом случае потребовалось 77 итераций, чтобы достичь этого результата.

Вывод

Были реализованы численные методы решения СЛАУ, а именно метод Холецкого в качестве прямого и метод верхней релаксации в качестве итерационного. Были найдены максимальное и минимальное по модулю собственные числа матрицы A:

- $|\lambda|_{\text{max}} = 2.0483599269774470$
- $|\lambda|_{\min} = 0.6579597538101798$

Было вычислено число обусловленности в разных нормах:

- $\mu_1 = ||A||_1 \cdot ||A^{-1}||_1 = 5.6336089382284005$
- $\mu_2 = ||A||_2 \cdot ||A^{-1}||_2 = 5.6336089382284005$
- $\mu_3 = ||A||_3 \cdot ||A^{-1}||_3 = 3.1131994246085670$

Отсюда же видно, что задача хорошо обусловлена: $\mu_i \ll 100$.

Решения, полученные разными способами, очень близки как друг к другу, так и к истинному, поскольку невязки составляют $\sim 10^{-16}$.