

Module 6

Upsampling and Downsampling, Part I

Overview

- Compressor and expander definitions
- The noble identities
- Polyphase representation
- Efficient structures for decimation and interpolation filters
- MATLAB example

Efficient Structures for Decimation and Interpolation Filters

Example decimation filter (M=2)

In this structure, the polyphase filters E_0 and E_1 are computed at the *input* sample rate.

Efficient Structures for Decimation and Interpolation Filters

 By using the noble identity, an equivalent structure can be found

In this structure, the polyphase filters E_0 and E_1 are computed at the *output* sample rate (*i.e.* 2x reduction in computational load).

Polyphase M-fold Decimator

Switch Model

Switch Model

Polyphase L-fold Interpolator

Polyphase L-fold Interpolator

Type II polyphase representation

$$H(z) = \sum_{l=0}^{L-1} z^{-(L-1-l)} R_l(z^L)$$

$$R_l(z) = E_{L-1-l}(z) \quad 0 \le l \le L-1$$

 Design a lowpass decimation filter using the Parks-McClellan algorithm for M=3 and find the Type I polyphase components. The filter specifications are:

$$\circ$$
 ω_p= π/M - Δω, ω_s= π/M + Δω, Δω= π/50

$$\circ A_p = 1 dB, A_s = 40 dB$$

