

Sistemas Inteligentes

Tema 5 – Modelos de razonamiento

Facultade de Informática Universidade da Coruña

Modelos y dominios

Modelos categóricos

• Dominios de naturaleza marcadamente simbólica, con soluciones que pueden establecerse con total seguridad.

Modelos probabilísticos

- Dominios de naturaleza estadística, soluciones no obtenibles de forma unívoca.
- Modelos de razonamiento bajo incertidumbre
 - Dominios con incertidumbre, inherente a datos o a los propios mecanismos inferenciales.
- Modelos de razonamiento basado en conjuntos difusos:
 - Dominios en los que los elementos diferenciales incluyen matices lingüísticos.

MODELO CATEGÓRICO

- Formalmente...
 - X = {manifestaciones} = {x1, x2,..., xn}
 - Y = {interpretaciones} = {y1, y2,..., ym}
 - En un caso concreto:
 - f = función booleana de X = f (x1,..., xn) tal que
 - f (xi) = 0 ⇔ xi no es una manifestación de mi problema
 - f (xi) = 1 ⇔ xi es una manifestación de mi problema
 - g = función booleana de Y = g (y1,..., ym) tal que
 - g (yj) = 0 ⇔ yj no es una interpretación de mi problema
 - g (yj) = 1 ⇔ yj es una interpretación de mi problema

 Las relaciones causales entre manifestaciones e interpretaciones se formalizan a través de la función de conocimiento E

•
$$E = E(X, Y)$$

- Problema lógico
 - Dadas unas manifestaciones caracterizadas por una función
 - f − , encontrar la función − g − que satisface
 - $E:(f \rightarrow g)$
 - $E: (\neg g \rightarrow \neg f)$
 - E = E (x1,..., xn, y1,..., ym)

Ejemplo

Sea un dominio D caracterizado por

```
■ Manifestaciones M = \{ m(1), m(2) \}
```

Interpretaciones $I = \{ i(1), i(2) \}$

- En el que el conocimiento incluye las siguientes relaciones causales
 - Para que i(2) sea cierta, m(1) debe estar presente
 - Para que i(1) sea cierta, e i(2) sea falsa, m(2) debe estar presente
 - Para que i(2) sea cierta, e i(1) sea falsa, m(2) no debe estar presente
 - Si alguna manifestación está presente es porque se puede establecer alguna interpretación

Formalización del ejemplo

```
• R1: i(2) \rightarrow m(1)

• R2: i(1) \times \neg i(2) \rightarrow m(2)

• R3: \neg i(1) \times i(2) \rightarrow \neg m(2)

• R4: m(1) + m(2) \rightarrow i(1) + i(2)

• E = {R1, R2, R3, R4}
```

 En el dominio D aparece una situación en la que m(2) está presente, y m(1) está ausente... ¿Cuál es la interpretación lógica?

- $f[m(1), m(2)] = \neg m(1) \times m(2)$
- E: $(f \rightarrow g)$
- R1: $i(2) \rightarrow m(1) \equiv \neg i(2) \lor m(1)$
- R2: $i(1) \times \neg i(2) \rightarrow m(2) \equiv \neg i(1) \vee i(2) \vee m(2)$
- R3: $\neg i(1) \times i(2) \rightarrow \neg m(2) \equiv i(1) \vee \neg i(2) \vee \neg m(2)$
- R4: $m(1) + m(2) \rightarrow i(1) + i(2) \equiv [\neg m(1) \land \neg m(2)] \lor i(1) \lor i(2)$
- Sabemos que todas las declaraciones son ciertas
- Sabemos que f = ¬ m(1) x m(2) también es cierta
- Para que R1 sea cierta, [¬ i(2)] ha de ser cierta
- Para que R4 sea cierta, [i(1)] ha de ser cierta
- Luego: g = i(1) x i(2)

- Procedimiento sistemático para el modelo categórico
 - Identificación de M
 - 2. Identificación de I
 - 3. Construcción de E
 - 4. Construcción del conjunto completo de complejos de manifestaciones
 - 5. Construcción del conjunto completo de complejos de interpretaciones
 - 6. Construcción del conjunto completo de complejos manifestación-interpretación

m(1)	0	0	1	1
m(2)	0	1	0	1
	m1	m2	m3	m4
i(1)	0	0	1	1
i(2)	0	1	0	1
	i1	i2	i3	i4

M = { m1, m2, m3, m4 }

I = { i1, i2, i3, i4 }

- Construcción del conjunto completo de complejos manifestación-interpretación
 - Base Lógica Expandida

```
    BLE = M x I = { m1i1, m1i2, m1i3, m1i4, m2i1, m2i2, m2i3, m2i4, m3i1, m3i2, m3i3, m3i4, m4i1, m4i2, m4i3, m4i4}
```

- La solución a cualquier problema está en BLE, pero hay muchas combinaciones absurdas
- El papel del conocimiento E es eliminarlas y pasar a una base lógica reducida E : (BLE → BLR)

facultade de informática da coruña CATEGÓRICO

	m1	m2	m3	m4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

- R1: $i(2) \rightarrow m(1)$ $\neg l(2) \vee m(1)$
 - Elimina de BLE: m1i2, m1i4, m2i2, m2i4

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

- R2: $i(1) \times \neg i(2) \rightarrow m(2) \quad [\neg i(1) \vee i(2)] \vee m(2)$
 - Elimina de BLE: m1i3, m3i3

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
ì (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

- R3: $\neg i(1) \times i(2) \rightarrow \neg m(2)$ [i(1) $\vee \neg i(2)$] $\vee \neg m(2)$
- Elimina de BLE: m2i2, m4i2

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
i (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

- R4: $m(1) + m(2) \rightarrow i(1) + i(2) [\neg m(1) \land \neg m(2)] \lor i(1) \lor i(2)$
- Elimina de BLE: m2i1, m3i1, m4i1

	m 1	m 2	m 3	m 4												
m (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
m (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
ì (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
i (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	i1	i1	i1	i1	i2	i2	i2	i2	i3	i3	i3	i3	i4	i4	i4	i4

• BLR = {m1i1, m3i2, m2i3, m4i3, m3i4, m4i4}

- IF: (1) El conocimiento es completo
- And: (2) El dominio está bien descrito
- Then: (1) La solución a cualquier problema está en BLR

En términos de complejos:

Problema planteado inicialmente

$$f = -m (1) \times m (2) = m2$$

¿Qué complejos de BLR contienen a m2?

La interpretación i (1) es correcta, y además sabemos que i (2) es falsa

- Las interpretaciones categóricas son poco frecuentes en el mundo real
 - La existencia de una determinada causa no siempre conlleva la presencia de una manifestación
 - Ante una manifestación dada, ¿podemos afirmar siempre y de forma categórica que existe una determinada causa?
- Probabilidad total y probabilidad condicional

- La probabilidad condicional se parece a la total, pero puede ser definida como la probabilidad de las causas
- En la probabilidad condicional aparecen involucrados dos sucesos, en donde la ocurrencia del segundo depende de la ocurrencia del primero

Bayes introduce una forma de razonamiento a posteriori...

 Dadas dos posibles acciones A y B, y ante un caso tratado con una de tales acciones ¿Cuál es la probabilidad de que la acción haya sido A, si la respuesta del sistema ha sido E?

$$P(A/E) = \frac{P(E/A)P(A)}{P(E)}$$

- Obtención de la ecuación elemental del teorema de Bayes
 - Sea una población sobre parte de cuyos elementos ha sido efectuada una acción A de un número de posibles acciones
 - Todos los elementos de la población fueron tratados, con A o con cualquier otra acción, registrándose un cierto número de respuestas E

- N = población
- Acciones posibles: A , ¬ A
- Resultados posibles: E , ¬ E
- n(A)
- n (¬ A)
- n(E)
- n (¬ E)
- $n (A \cap E) = n (E \cap A)$

Por definición de probabilidad condicional:

$$P(E/A) = \frac{n(A \cap E)}{n(A)} = \frac{n(A \cap E)/N}{n(A)/N} = \frac{P(A \cap E)}{P(A)} \rightarrow P(A \cap E) = P(A)P(E/A)$$

Análogamente...

$$P(A/E) = \frac{n(A \cap E)}{n(E)} = \frac{n(A \cap E)/N}{n(E)/N} = \frac{P(A \cap E)}{P(E)} \rightarrow P(A \cap E) = P(E)P(A/E)$$

$$P(A)P(E/A) = P(E)P(A/E)$$

- Obtención de una ecuación generalizada del teorema de Bayes
 - Sea una característica cualquiera X
 - Sea A el número de casos de una población estadística en los que X está presente
 - Sea ¬ A el número de casos de la misma población estadística en los que X está ausente
 - Sea P una prueba potencialmente resolutiva para investigar la característica X
 - Sea E el número de casos en los que la prueba da resultados positivos
 - Sea

 E el número de casos en los que la prueba da resultados negativos

	A	_A	TOTAL
E	а	b	a+b
¬E	С	d	c + d
TOTAL	a + c	b + d	N

- a = positivos reales
- b = falsos positivos
- c = falsos negativos
- d = negativos reales

Relaciones

•
$$P(E/A) = a/(a+c)$$

sensibilidad

•
$$P(\neg E/A) = c/(a+c)$$

•
$$P(A/E) = a/(a+b)$$

•
$$P(\neg A/E) = b/(a+b)$$

•
$$P(E/\neg A) = b/(b+d)$$

•
$$P(\neg E/\neg A) = d/(b+d)$$
 especificidad

•
$$P(A/\neg E) = c/(c+d)$$

•
$$P(\neg A/\neg E) = d/(c+d)$$

Prevalencias

•
$$P(\neg E) = (c + d) / N$$

$$P(A) = (a + c) / N$$

$$P (\neg A) = (b + d) / N$$

Tras conocer las probabilidades a priori ¿cómo se plantea la probabilidad condicional a posteriori de la característica X dado un resultado positivo de la prueba?

Bayes
$$\to P(A/E) = \frac{P(E/A)P(A)}{P(E)} : P(E) = \frac{(a+b)}{N}$$

 $a = (a+c)P(E/A) : b = (b+d)P(E/\neg A)$
 $(a+c) = N \times P(A) : (b+d) = N \times P(\neg A)$
 $a = N \times P(A) \times P(E/A) : b = N \times P(\neg A) \times P(E/\neg A)$
 $P(E) = P(A)P(E/A) + P(\neg A)P(E/\neg A)$
 $P(A/E) = \frac{P(E/A)P(A)}{P(E/A)P(A) + P(E/\neg A)P(\neg A)}$

La ecuación

$$P(A/E) = \frac{P(E/A)P(A)}{P(E/A)P(A) + P(E/\neg A)P(\neg A)}$$

es directamente generalizable. Así, si consideramos todos los Ai posibles obtenemos que:

$$P(A0/E) = \frac{P(E/A0)P(A0)}{\sum_{i} P(E/Ai)P(Ai)}$$

Que es una expresión general del teorema de Bayes

BAYESIANO Matica

- Volviendo al ejemplo categórico anterior...
 - BLR = {m1i1, m3i2, m2i3, m4i3, m3i4, m4i4}
 - Dado $f = m(1) \land \neg m(2) = m3 ...$
 - ¿Cuál es g? : g = i2 \vee i4 = [\neg i(1) \wedge i(2)] \vee [i(1) \wedge i(2)]
- Según el planteamiento bayesiano, el problema se reduce ahora a evaluar...
 - P (i2 / m3)
 - P (i4 / m3)

facultade de BAYESIANO informática

De acuerdo con la expresión general del teorema de Bayes:

$$P(i2/m3) = \frac{P(m3/i2)P(i2)}{P(m3/i1)P(i1) + P(m3/i2)P(i2) + P(m3/i3)P(i3) + P(m3/i4)P(i4)}$$

$$P(i4/m3) = \frac{P(m3/i4)P(i4)}{P(m3/i1)P(i1) + P(m3/i2)P(i2) + P(m3/i3)P(i3) + P(m3/i4)P(i4)}$$

facultade de informática BAYESIANO

Así, un tratamiento exhaustivo del problema obliga a conocer:

•	P(i1)	P(i2)	P(i3)	P(i4)
•	P(m1/i1)P(m1/	i2)	P(m1/i3)	P(m1/i4)
•	P(m2/i1)P(m2/	i2)	P(m2/i3)	P(m2/i4)
•	P(m3/i1)P(m3/	i2)	P(m3/i3)	P(m3/i4)
•	P(m4/i1)P(m4/	i2)	P(m4/i3)	P(m4/i4)

MODELO BAYESIANO

PROBLEMAS:

- Independencia
- Secuencialidad
- Causalidad
- Consistencia matemática

Independencia

		INTERPRETACIONES								
MANIFESTACIONES	A1	A1 and A2	A2	A3	TOTAL					
m1	b1	c1	d1	e1	n1					
m1 and m2	b2	c2	d2	e2	n2					
Only m2	b3	c3	d3	e3	n3					
m3	b4	c4	d4	e4	n4					
TOTAL	В	С	D	Е	N					

P(A1|m1)??

- a) Usando el teorema de Bayes
- b) Directamente usando el concepto de probabilidad condicional

Independencia

P(A1|m1)= (P(m1|A1)P(A1))/(P(m1|A1) P(A1)+P(m1|A2) P(A2)+P(m1|A3) P(A3)).

- P(A1) = B+C/N
- P(A2) =C+D/N
- P(A3)=E/N
- P(m1|A1) = b1+b2+c1+c2/B+C
- P(m1|A2) = c1+c2+d1+d2/C+D
- P (m1|A3)= e1+e2/E

Sustituyendo y operando

P(A1|m1)= b1+b2+c1+c2/n1+n2+c1+c2

Y de la tabla P(A1|m1) = b1+b2+c1+c2/n1+n2

Secuencialidad y consistencia matemática

- E1 información disponible en cierto momento,
- S1 nuevos datos
- E= E1 + nuevo dato S1

$$P(Ii|E)=p(S1|Ii \land E1) p(Ii|E1)/\sum p(S1|Ij \land E1) p(Ij|E1)$$

Consistencia matemática

$$P(A)+P(\neg A)=1$$

 $P(H|o1 \land o2 \land o3) = x , 0 \le x \le 1$
 $P(\neg H|o1 \land o2 \land o3) = 1 - x$

Sistemas Inteligentes

Tema 5 – Modelos de razonamiento

Facultade de Informática Universidade da Coruña