Package 'ExaGeoStatCPP'

April 22, 2024

Type Package
Title R Package demonstrates the R/C++ Language Interface for Exascale GeoStatistics software (ExaGeoStat)
Version 1.1.0
Date 2024-01-14
Author Mahmoud ElKarargy [aut, cph], Sameh Abdulah [cre, cph], KAUST King Abdullah University of Science and Technology [fnd, cph], Brightskies [cph]
Maintainer Sameh Abdulah <sameh.abdulah@kaust.edu.sa></sameh.abdulah@kaust.edu.sa>
Description An R-Interface for the ExaGeoStatCPP software: a parallel high performance unified framework for geostatistics on manycore systems. Its abbreviation stands for Exascale Geostatistics. The framework aims at optimizing the likelihood function for a given spatial data to provide an efficient way to predict missing observations. The framework targets many-core systems: clusters of CPUs and GPUs.
License GPL (>= 3)
Imports assertthat (>= 0.2.1), MASS, methods, Rcpp (>= 1.0.9)
Depends R (>= $3.5.0$), assertthat (>= $0.2.1$)
RoxygenNote 7.2.3
SystemRequirements C++ (>= 11), CMake (>= 3.2), lapacke (https://github.com/xianyi/OpenBLAS/releases)
NeedsCompilation yes
OS_type unix
<pre>URL https://github.com/ecrc/ExaGeoStatCPP</pre>
<pre>BugReports https://github.com/ecrc/ExaGeoStatCPP/issues</pre>
Encoding UTF-8
R topics documented:
ExaGeoStatData

2 ExaGeoStatData

	get_locationsX	
	get_locationsY	
	get_locationsZ	7
	get_Z_measurement_vector	8
	idw	9
	mloe_mmom	10
	model_data	12
	predict_data	14
	simulate_data	16
T., J.,,		1 6
Index		18

ExaGeoStatData

ExaGeoStatData Class

Description

The ExaGeoStatData class is designed to facilitate the handling and manipulation of geospatial statistics data within the ExaGeoStat framework. It provides a structured way to store and manage data points based on their dimensions. Instances of this class can hold a specified number of location points, and support different data dimensions including two-dimensional (2D), three-dimensional (3D), and spatiotemporal (ST) configurations.

Value

An object of class ExaGeoStatData representing a data component with the specified size and dimension.

Constructor

ExaGeoStatData Creates a new instance of the ExaGeoStatData class. This is achieved by calling:

```
new(ExaGeoStatData, problem_size, dimension)
```

size An integer representing the size of the locations data.

dimension A string representing the dimensions of the data. Available dimensions are "2D", "3D", and "ST".

```
problem_size <- 4
dimension = "3D"
empty_data <- new(Data, problem_size, dimension)</pre>
```

ExaGeoStatHardware 3

ExaGeoStatHardware

ExaGeoStatHardware Class

Description

The ExaGeoStatHardware class represents a hardware component in the ExaGeoStat system. It is initialized with computation mode, and two integers representing number of CPU cores and number of GPU cores.

Value

An object of class ExaGeoStatHardware representing a hardware component with the specified component and number of CPU cores and GPU cores.

Constructor

ExaGeoStatHardware Creates a new instance of the ExaGeoStatHardware class. This is achieved by calling:

```
new(Hardware, computation, ncores, ngpus)

computation A string specifying the computation method, either "exact" or "dst" or "tlr".

num_of_cpus An integer representing number of CPU cores.

num_of_gpus An integer representing number of GPU cores.
```

Methods

finalize_hardware: finalize_hardware() Manually finalizes the hardware by resetting the context.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)
hardware$finalize_hardware()</pre>
```

4 fisher

fisher

Fisher Function

Description

This function computes the Fisher information matrix for a given dataset and theta vector, using a specified kernel and distance metric. It also allows for the inclusion of missing values and the specification of data dimensions.

Usage

```
fisher(kernel, distance_matrix = "euclidean", estimated_theta, dts,
lts = 0, dimension = "2D", train_data, test_data)
```

Arguments

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"
- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"
- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean".

estimated_theta

A list of estimated theta parameters.

dts A numeric value representing the time step size.

1ts A numeric value representing the length step size. Default is 0.

get_locationsX 5

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D". train_data A numeric vector contains the locations and z measurements for training test_data A numeric vector contains the locations for testing.

Value

A vector containing the Fisher information matrix elements.

Examples

```
dimension = "2D"
ncores <- 1
ngpus <- 0
dts <- 2
kernel <- "univariate_matern_stationary"</pre>
estimated_theta <- c(1,0.1,0.5)
computation <- "exact"</pre>
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
z_value <- c(-1.272336140360187606, -2.590699695867695773,
             0.512142584178685967, -0.163880452049749520)
locations_x <- c(0.092042420080872822, 0.193041886015106440,
             0.330556191348134576, 0.181612878614480805)
locations_y <- c(0.928648813611047563, 0.103883421072709245,
             0.135790035858701447, 0.434683756771190977)
test_x \leftarrow c(0.347951, 0.62768)
test_y \leftarrow c(0.806332, 0.105196)
fisher_matrix <- fisher(train_data=list(locations_x, locations_y, z_value),</pre>
test_data=list(test_x, test_y), kernel=kernel, dts=dts, estimated_theta=estimated_theta)
```

get_locationsX

Get Locations X Function

Description

Retrieves X coordinates of locations from ExaGeoStatData object.

Usage

```
get_locationsX(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

6 get_locationsY

Value

A numeric vector of X locations.

Examples

```
ncores <- 1
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts, dimension=dimension)
x <- get_locationsX(data=exageostat_data)</pre>
```

get_locationsY

Get Locations Y Function

Description

This function retrieves the Y locations from the provided data.

Usage

```
get_locationsY(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

Value

A numeric vector of Y locations.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)
dimension = "2D"
problem_size <- 4</pre>
```

get_locationsZ 7

```
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts, dimension=dimension)
y <- get_locationsY(data=exageostat_data)</pre>
```

get_locationsZ

Get Locations Z Function

Description

Retrieves Z coordinates of locations from ExaGeoStatData object.

Usage

```
get_locationsZ(data)
```

Arguments

data

A list of ExaGeoStatData that contains the locations.

Value

A numeric vector of Z locations.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "3D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts, dimension=dimension)
z <- get_locationsZ(data=exageostat_data)</pre>
```

```
get_Z_measurement_vector
```

Get descriptive Z values Function

Description

Retrieves descriptive Z values from ExaGeoStat data based on type.

Usage

```
get_Z_measurement_vector(data, type)
```

Arguments

data A list of ExaGeoStatData that contains the locations.

type A string specifying the type of descriptor value to retrieve (e.g., "Chameleon",

"HiCMA").

Value

A numeric vector of descriptive Z values.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "3D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)
exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts, dimension=dimension)
Z <- get_Z_measurement_vector(data=exageostat_data, type="chameleon")</pre>
```

idw 9

idw IDW Function

Description

This function performs Inverse Distance Weighting (IDW) interpolation for a given dataset and theta vector.

Usage

```
idw(kernel, distance_matrix = "euclidean", estimated_theta, dts, lts = 0,
dimension = "2D", train_data, test_data, test_measurements)
```

Arguments

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"
- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"
- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean"

estimated_theta

A list of estimated theta parameters

dts A numeric value representing the time step size

1ts A numeric value representing the length step size. Default is 0

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D"

10 mloe_mmom

 $\begin{tabular}{lll} train_data & A numeric vector contains the locations and z measurements for training \\ test_data & A numeric vector contains the locations for testing. \\ test_measurements & \begin{tabular}{lll} test_measurements & \beg$

A numeric vector contains the z measurements for testing.

Value

A vector containing the IDW error.

Examples

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
problem_size <- 4</pre>
dimension = "2D"
dts <- 2
kernel <- "univariate_matern_stationary"</pre>
estimated_theta <- c(1,0.1,0.5)
z_value <- c( -1.272336140360187606, -2.590699695867695773, 0.512142584178685967,
             -0.163880452049749520)
locations\_x <- c(0.193041886015106440,\ 0.330556191348134576,\ 0.181612878614480805,
             0.370473792629892440)
locations_y <- c(0.103883421072709245, 0.135790035858701447, 0.434683756771190977,
             0.400778210116731537)
test_x \leftarrow c(0.347951, 0.62768)
test_y <- c(0.806332, 0.105196)
test_measurements = c(-1.05428, -1.47441)
idw_error = idw(kernel=kernel, estimated_theta=estimated_theta, dts=dts,
train_data=list(locations_x, locations_y, z_value),
test_data=list(test_x, test_y), test_measurements=test_measurements)
```

mloe_mmom

MLOE MMOM Function

Description

This function calculates Mean Misspecification of the Mean Square Error (MMOM) and Mean Loss of Efficiency (MLOE).

Usage

```
mloe_mmom(kernel, distance_matrix="euclidean", estimated_theta, true_theta,
dts, lts=0, dimension="2D", train_data, test_data)
```

11 mloe_mmom

Arguments

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"
- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"
- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean"

estimated_theta

A list of estimated theta parameters

true_theta A list of truth theta parameters

A numeric value representing the time step size dts

A numeric value representing the length step size. Default is 0 lts

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D" train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

Value

A vector of MLOE/MMOM values

```
ncores <- 2
ngpus <- 0
computation <- "exact"</pre>
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
```

12 model_data

```
problem_size <- 4</pre>
dimension = "2D"
dts <- 2
kernel <- "univariate_matern_stationary"</pre>
estimated_theta <- c(1,0.1,0.5)
true_theta <- c(1.1,0.2,0.5)
z_value <- c(-1.272336140360187606, -2.590699695867695773, 0.512142584178685967,
             -0.163880452049749520)
locations_x <- c(0.092042420080872822, 0.193041886015106440, 0.330556191348134576,
             0.181612878614480805)
locations_y <- c(0.928648813611047563, 0.103883421072709245, 0.135790035858701447,
             0.434683756771190977)
test_x <- c(0.347951, 0.62768)
test_y \leftarrow c(0.806332, 0.105196)
result_mloe_mmom = mloe_mmom(train_data=list(locations_x, locations_y, z_value),
test_data=list(test_x, test_y), kernel=kernel, dts=dts,
estimated_theta=estimated_theta, true_theta=true_theta)
```

model_data

Model Data Function

Description

This function models data based on the provided computation method, kernel, distance matrix, and other parameters.

Usage

```
model_data(computation = "exact", kernel, distance_matrix = "euclidean", lb,
ub, tol = 4, mle_itr, dts, lts = 0, dimension = "2D", band = 0, max_rank = 500,
data = NULL, matrix = NULL, x = NULL, y = NULL, z = NULL)
```

Arguments

computation

A string specifying the computation method, either "exact" or "dst" or "tlr". Default is "exact".

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"

model_data 13

- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"
- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean".

A numeric value representing the lower bound for the computation.A numeric value representing the upper bound for the computation.

tol A numeric value specifying the tolerance for the computation. Default is 4.

mle_itr A numeric value specifying the maximum number of iterations for the compu-

tation.

dts A numeric value representing the time step size.

1ts A numeric value representing the length step size. Default is 0.

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D".

A numeric value Bandwidth for band matrices, applicable in certain computa-

tional kernels.. Default is 0.

max_rank A numeric value specifying the Maximum rank for low-rank approximations..

Default is 500.

data A list of data vectors. Default is 'R_NilValue'.

matrix A matrix object. Default is 'R_NilValue'.

x A numeric vector. Default is 'R_NilValue'.

y A numeric vector. Default is 'R_NilValue'.

z A numeric vector. Default is 'R_NilValue'.

Value

A vector containing the starting theta.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
```

14 predict_data

predict_data

Predict Data Function

Description

This function predicts data based on the provided kernel, distance matrix, estimated theta, and other parameters.

Usage

```
predict_data(kernel, distance_matrix = "euclidean", estimated_theta,
dts, lts = 0, dimension = "2D", train_data, test_data)
```

Arguments

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"
- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"

predict_data 15

- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean"

estimated_theta

A list of estimated theta parameters

dts A numeric value representing the time step size

1ts A numeric value representing the length step size. Default is 0

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D" train_data A numeric vector contains the locations and z measurements for training

test_data A numeric vector contains the locations for testing.

Value

A vector of predicted z values

```
ncores <- 2
ngpus <- 0
problem_size <- 4</pre>
dts <- 2
computation <- "exact"</pre>
hardware <- new(Hardware, computation, ncores, ngpus)</pre>
kernel <- "univariate_matern_stationary"</pre>
estimated_theta <- c(1,0.1,0.5)
z_value <- c( -1.272336140360187606, -2.590699695867695773, 0.512142584178685967,
              -0.163880452049749520)
locations_x < -c(0.193041886015106440, 0.330556191348134576, 0.181612878614480805,
              0.370473792629892440)
locations_y <- c(0.103883421072709245, 0.135790035858701447, 0.434683756771190977,
               0.400778210116731537)
test_x \leftarrow c(0.347951, 0.62768)
test_y \leftarrow c(0.806332, 0.105196)
predict_data(train_data=list(locations_x, locations_y, z_value),
test_data=list(test_x, test_y), kernel=kernel, dts=dts,
estimated_theta=estimated_theta)
```

16 simulate_data

simulate_data

Simulate Data Function

Description

This function loads data into an ExaGeoStatData object using the provided configuration and computational settings.

Usage

```
simulate_data(kernel, initial_theta, distance_matrix = "euclidean", problem_size,
seed = 0, dts, lts = 0, dimension = "2D", log_path = "", data_path = "",
observations_file = "", recovery_file = "")
```

Arguments

kernel

A string specifying the kernel to use. Available kernels include:

- "BivariateMaternFlexible"
- "BivariateMaternParsimonious"
- "BivariateSpacetimeMaternStationary"
- "TrivariateMaternParsimonious"
- "UnivariateExpNonGaussian"
- "UnivariateMaternDbeta"
- "UnivariateMaternDdbetaBeta"
- "UnivariateMaternDdbetaNu"
- "UnivariateMaternDdnuNu"
- "UnivariateMaternDdsigmaSquare"
- "UnivariateMaternDdsigmaSquareBeta"
- "UnivariateMaternDdsigmaSquareNu"
- "UnivariateMaternDnu"
- "UnivariateMaternDsigmaSquare"
- "UnivariateMaternNonGaussian"
- "UnivariateMaternNuggetsStationary"
- "UnivariateMaternStationary"
- "UnivariatePowExpStationary"
- "UnivariateSpacetimeMaternStationary"

initial_theta A

A list of initial theta parameters.

distance_matrix

A string specifying the distance metric, either "euclidean" or "great_circle". Default is "euclidean".

problem_size

A numeric value representing the size of the problem to simulate.

seed

A numeric value specifying the seed for random number generation. Default is 0.

simulate_data 17

dts A numeric value representing the time step size.

A numeric value representing the length step size. Default is 0.

dimension A string specifying the data dimension, either "2D" or "3D". Default is "2D".

log_path A string specifying the path for logging. Default is "".

data_path A string specifying the path for data storage. Default is "".

observations_file

A string specifying the file name for observations. Default is "".

recovery_file A string specifying the file name for recovery. Default is "".

Value

A pointer to ExaGeoStatData object that contains the loaded data.

```
ncores <- 2
ngpus <- 0
computation <- "exact"
hardware <- new(Hardware, computation, ncores, ngpus)

dimension = "2D"
problem_size <- 4
empty_data <- new(Data, problem_size, dimension)

dts <- 2
kernel <- "univariate_matern_stationary"
initial_theta <- c(1,0.1,0.5)

exageostat_data <- simulate_data(kernel=kernel, initial_theta=initial_theta, problem_size=problem_size, dts=dts, dimension=dimension)</pre>
```

Index

```
* S4 class
    ExaGeoStatData, 2
    ExaGeoStatHardware, 3
ExaGeoStatData, 2, 2
ExaGeoStatHardware, 3, 3
fisher, 4
fisher (fisher), 4
get_locationsX, 5
{\tt get\_locationsY}, {\color{red} 6}
get_locationsZ, 7
{\tt get\_Z\_measurement\_vector}, 8
idw, 9
mloe\_mmom, 10
model_data, 12
predict_data, 14
{\tt simulate\_data}, \\ 16
```