Name:	• • • • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
All st	atements should	d be written	in C++.		
You ma	y find a partia	al ASCII tab	le at the	end of this doc	ument.
fol	llowings.			-	d need to use for the
II. st	cring name		# inc	lude <	
III. ab	os(x)		# inc	lude <	
IV. se	etprecision(2)		# inc	lude <	>
_	1 pts] Distingu legal, explain		the varia	able name if it i	s legal or illegal. If
	Variable name	Legal?(Y/N)		If illeg	al, why?
I.	tax amount				
II.	taxAmount				
III.	2018tax				
IV.	tax2018				
٧.	tax\$				
_	.5 pts] Identif valid, explain		ty of the	e following state	ment(s). If a statement is
	Sta	itement(s)			Validity
				Valid/ invalid	If invalid, why?
I.	const double	MOR_RATE = 4	1.27;		
II.	const double MOR_RATE = 3.	_	1.27;		
III.	const double	MOR_RATE;			

4. [4 pts] Which of the following are valid character literals?

	literal	Character Literal (Y/N)	if not a character literal, why?
I.	68		
II.	"C"		
III.	c,		
IV.	"\0"		
٧.	'B+'		

5.	[2 pts] \	ou are	to	write	а	program	to	maintain	the	student	scores	of	а	class.
	Write stat	ements	to	do ea	ch	of the	fol]	Lowings:						

- I. Define a variable with a proper type and a proper name for the number of students in this class.
- II. Assign 30 to the variable.

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	 •	
•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 	•	•	•	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•		 •	•	•	•	•	•				•	•	 	•	•		•			•	•	•	 •	
																				 					 																											 										 	,

6. **[4 pts]** If **income** and **expenditure** are numeric variables, and **companyName** is a string variable, which of the following statements are valid assignments? If a statement is not valid, explain why not.

	Statement	Validity (Y/N)	If invalid, why?
I.	income = 100;		
II.	expenditure = "2400.99";		
III.	income = 31,305.52;		
IV.	<pre>companyName = "ABC company";</pre>		
<i>V</i> .	<pre>income * 2.1 = expenditure;</pre>		

	<pre>int flightNum = 89; int travelTime; int departure = 10; int distance;</pre>	
	•••••	•••••
8	. [2 pts] Write down a complete C++ ind grade. Name the variable <i>grade</i> and se	itialization statement to store a letter $oldsymbol{a}$ the value to be $oldsymbol{A}$.
9		e by calculating and writing the value of
	each C++ expression	
	each C++ expression Expression	Value
	·	Value
	Expression	Value
	Expression x = 5 + 2 * 4 +10 / 5 - 3	Value
10	<pre>Expression x = 5 + 2 * 4 +10 / 5 - 3 x = (5 + 2) * 4 +10 / (5 - 3) x = 4 + 2 * (6 - 2) + (4 + 17) % 2 - 1 0. [2 pts] Convert the following Algebra may assume the variable definition has</pre>	aic expressions to programming statement (you
10	<pre>Expression x = 5 + 2 * 4 +10 / 5 - 3 x = (5 + 2) * 4 +10 / (5 - 3) x = 4 + 2 * (6 - 2) + (4 + 17) % 2 - 1 0. [2 pts] Convert the following Algebra may assume the variable definition has</pre>	aic expressions to programming statement (you
10	<pre>Expression x = 5 + 2 * 4 +10 / 5 - 3 x = (5 + 2) * 4 +10 / (5 - 3) x = 4 + 2 * (6 - 2) + (4 + 17) % 2 - 1 0. [2 pts] Convert the following Algebra may assume the variable definition has</pre>	aic expressions to programming statement (you
10	<pre>Expression x = 5 + 2 * 4 +10 / 5 - 3 x = (5 + 2) * 4 +10 / (5 - 3) x = 4 + 2 * (6 - 2) + (4 + 17) % 2 - 1 0. [2 pts] Convert the following Algebra may assume the variable definition has</pre>	aic expressions to programming statement (you
10	<pre>Expression x = 5 + 2 * 4 +10 / 5 - 3 x = (5 + 2) * 4 +10 / (5 - 3) x = 4 + 2 * (6 - 2) + (4 + 17) % 2 - 1 0. [2 pts] Convert the following Algebra may assume the variable definition has</pre>	aic expressions to programming statement (you

7. [3 pts] Write ONE statement that consolidate the following statements.

11. [2.5 pts] Assume the following variable definitions and predict the output.

short luckyNum = 2;
char initials = 'R';

Statement	Output
<pre>cout << sizeof(initials) << endl;</pre>	
<pre>cout << sizeof(luckyNum) << endl;</pre>	
cout << sizeof(2 * luckyNum) << endl;	
cout << sizeof(2 * 1.0) << endl;	
<pre>cout << sizeof(2 * initials) << endl;</pre>	

12. [5 pts] Assume int x = 6, a = 2, b = 3, c = 1, d = 2. Find the value of x after the statement.

Statement	Value of x
x += 4 + b;	
x -= 3 *	
d;	
x *= 11 -	
с;	
x /= b;	
x %= d;	

What would be the output of the each of the following sample codes; Assume individual codes were embedded in an error free program (#13 - #22 - 2 pts each).

13.

cout << "Blue " << endl << "Green" << endl << "Red";	
output:	
•••••••••••••••••	

14.

cout << "one " << "two " << "Three";
output:

15.

<pre>cout << "Enter the last three temperature readings." << endl; cin >> temp3 >> temp2 >> temp1; cout << temp1 << endl << temp2 << endl << temp3 << endl;</pre>
Output:
Enter the last three temperature readings. 101 100 98 [Enter]

16.

```
string school = "Webster";
cout << "My School is " << "school";
output:</pre>
```

17.

```
double number = 7.5;
cout << number << endl;
output:</pre>
```

18.

```
double tmpNumber = 7.5;
int number = tmpNumber;
cout << number << endl;
output:</pre>
```

19.

```
double ratio;
ratio = 5 / 2;
cout << ratio << endl;
output:</pre>
```

20.

```
double ratio;
ratio = 5.0 / 2.0;

cout << ratio << endl;

output:</pre>
```

nt ratio; ratio = 5 % 2;	
ratio = 5 % 2;	
cout << ratio << endl;	
output:	

22.[3 pts] Write the output.

Statement	output
<pre>cout << 11/ static_cast <float> (2);</float></pre>	
<pre>cout << static_cast <char> (66);</char></pre>	
<pre>cout << static_cast <float> (11/2);</float></pre>	

23.[2 pts] Write the output of the following statement in the given space. double distance = 62.3472;

<pre>cout << fixed << setprecision(2) << distance << endl</pre>
<< scientific << setprecision(3) << distance << endl;
output:

24.[3 pts] Write the output of each statement.

Statement	Output
cout << pow(2.0, 3.0);	
cout << abs(-6);	
cout << sqrt(4.0);	

25.[2 pts] Fill in the blank with a single statement that reads the user input given in one-line (as in the output: 470 Lockwood Ave) and store it in the variable address.
string address;
cout << "Enter the address";
••••••••••
•••••••••••
Output:
Enter the address
470 Lockwood Ave[Enter]
26.[2 pts] Write a statement to read a character, including white characters, from the keyboard and store it in the variable continue.
char continue;
cout << "Press any key to continue";
27. [4 pts] Write a C++ statement to get the following output. You may NOT use any spaces or tabs to align the output. Use only stream manipulators: setw(), fixed, setprecision(), left, and right. Note: The borders and the serial numbers are just to make it easier to read; they would not be displayed in the output. Also assume the following statements already have been made.
double price = 2.75
count = 13,
<pre>total; total = price * count;</pre>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
G a 1 1 o n P r i c e 2 . 7 5
G a 1 1 o n C o u n t 1 3
T o t a 1 3 5 . 7 5
<u> </u>

28.[8 pts] Write a main() function of a program that reads the width and the length of a rectangle from the key board and calculate the area. Then your program should output the result on the screen; You may assume both the width and length hold only whole numbers.

29.[8 pts] Write a main() function of a program that calculates the fuel price for customer's gasoline purchase. The program should have the price of a gallon initialized to 2.95 and it should ask the number of gallons pumped from the user and take as a keyboard input, and display the price on the screen.

30.[12 pts] Write a complete program that reads a full name as a three-word input (i.e., first name, middle name, and last name) and store them in THI different variables. Then display the first name and the last name on the	REE
••••••••••••••••••	

998 Appendix B The ASCII Character Set

Printable ASCII Characters				Printable ASCII Characters			
Dec	Hex	Oct	Character	Dec	Hex	Oct	Character
65	41	101	A-	96	60	140	1
66	42	102	В	97	61	141	a
67	43	103	C	98	62	142	ь
68	44	104	D	99	63	143	c
69	45	105	E	100	64	144	d
70	46	106	F	101	65	145	e
71	47	107	G	102	66	146	f
72	48	110	H	103	67	147	g
73	49	111	I	104	68	150	h
74	4a	112	J	105	69	151	i
75	4b	113	K	106	6a	152	j
76	4c	114	L	107	6b	153	k
77	4d	115	M	108	6c	154	1
78	4e	116	N	109	6d	155	m
79	4f	117	О	110	6e -	156	n
80	50	120	P	111	6f	157	0
81	51	121	Q	112	70	160	p
82	52	122	R	113	71	161	q
83	53	123	S	114	72	162	r
84	54	124	T	115	73	163	S
85	55	125	U	116	74	164	t
86	56	126	V	117	75	165	u
87	57	127	W	118	76	166	v
88	58	130	X	119	77	167	w
89	59	131	Y	120	78	170	x
90	5a	132	Z	121	79	171	y
91	5b	133	[*	122	7a	172	z
92	5c	134	1	123	7b	173	{
93	5d	135]	124	7c	174	Ì
94	5e	136	۸	125	7d	175	}
95	5f	137	_	126	7e	176	~