

Algoritmid ja andmestruktuurid

- Graafid, nende esitused
- Graafi sügavuti ja laiuti läbimine
- Topoloogiline sorteerimine

Graaf - laialtkasutatav abstraktsioon

- Paljusid olukordi saab kirjeldada binaarsete suhetena kahe objekti vahel:
 - veebileheküljed ja nendelt lähtuvad viidad
 - sõbrasuhted Facebookis
 - teed punktide vahel, kaardid
 - mitmesugused võrgud
 - olekumuutuse diagrammid
- Graaf on abstraktne struktuur, mis kirjeldab binaarset relatsiooni kahe objekti vahel.
- Mitmete probleemide lahenduse saab taandada üldistele graafialgoritmidele: omavahelise kauguse, lühima tee, kliki, minimaalse katva puu leidmine jne

Graaf

- Graaf koosneb tippudest (vertex) ja servadest (edge).
- Servad võivad olla suunatud (directed) ja suunata (undirected).
- Servad võivad olla kaaludega (weighted) ja kaaludeta (unweighted).
- Tee (path) on tippude jada, nii et olemas serv, mis ühendab iga kahte järgnevat tippu.
- Tsükkel (cycle) on tee tipust iseendasse.
- Graaf on sidus (connected), kui igast tipust on olemas tee igasse teise tippu
- Puu (tree) on sidus graaf, mis ei sisalda tsükleid.

Graafi mõistete definitsioon

- Graaf G = (V, E)
- Tippude hulk V
- Servade hulk $E = \{ (v_i, v_i) \}, v_i \in V$
- Tee $p = \langle v_0, v_1, v_2, ..., v_k \rangle$, $(v_i, v_{i+1}) \in E$
- Tsükkel tee kus $v_0 = v_k$

Graafi esitusviisid

Graafi kaks standardset esitust:

- Naabruslist (adjacency list): iga tipu v kohta on olemas list L_v tema naabritest graafis.
 Esituse suurus: Θ(|V|+|E|).
 Sobivam hõredate graafide esitamiseks.
- 2. Naabrusmaatriks (adjacency matrix): $|V| \times |V|$ maatriks kus iga serva e = (u, v) esitab nullist erineva väärtusega element (u, v).

Esituse suurus: $\Theta(|V|^2)$.

Sobivam tihedate graafide esitamiseks.

Mõned algoritmid vajavad esitust naabrusmaatriksina

Esitus naabruslistina

$$V = \{1,2,3,4,5,6\} \qquad V \qquad L_i$$

$$E = \{(1,2),(1,5),(2,5),(3,6)\}_1 \qquad 5 \qquad 2 \qquad 1 \qquad 5 \qquad 0$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 0$$

$$4 \qquad 5 \qquad 6 \qquad 5 \qquad 2 \qquad 1 \qquad 0$$

Kaaludega graafi esitus naabruslistina

Suuna ja kaaludega graafi esitus naabruslistina

$$V = \{1,2,3,4,5,6\} \qquad V \qquad L_i$$

$$E = \{(1,2),(1,5),(2,5),(3,6)\}_1 \qquad 53 \bullet$$

$$1 \qquad 8 \qquad 2 \qquad 18 \bullet 59 \bullet$$

$$4 \qquad 5 \qquad 6 \qquad 5 \qquad \bullet$$

Kaaludeta graafi esitus naabrusmaatriksina

Suunata graafidel, $A = A^T$

Suuna ja kaaludega graafi esitus naabrusmaatriksina

$$V = \{1,2,3,4,5,6\}$$

$$E = \{(1,2),(1,5),(2,5),(3,6)\}$$

	1	2	$\frac{A}{3}$	4	5	6
1					3	
2	8				9	
3						
1						
5						
6			7			

Naabruslist ja naabrusmaatriks

Naabruslist

- - Mälu $\Theta(|V| + |E|)$
 - Tipu kõigi naabrite leidmine on proportsionaalne naabrite arvuga
 - -
- Tippudevahelise serva kontroll
 - $-\Theta(|V|)$

Naabrusmaatriks

- Võib olla ebaefektiivne hõredate graafide korral
 - Mälu $\Theta(|V|^2)$
 - Tipu kõigi naabrite leidmine on proportsionaalne tippude arvuga
 - Efektiivne mälukasutus täieliku graafi korral
- Efektiivne kahe tipu vahelise serva kontrolliks
 - $-\Theta(1)$

Graafi läbimine (otsing)

 Graafi läbimise (otsingu) eesmärgiks on läbida kõik tipud üks kord.

Tipu läbimine võib tegelikus algoritmis tähendada arvutusi tipuga seotud andmetega vms. Abstraktselt tähistame seda funktsiooniga *visit(v)*

- Graafi tippe saab läbida erinevas järjekorras.
 Klassikaliselt eristatakse kahete järjekorda:
 - sügavuti otsing liigutakse mööda servi nii "kaugele" kui saab
 - laiuti otsing kõik sama "kauged" tipud läbitakse järjest

Sügavuti läbimine

Laiuti läbimine

Läbimine sügavuti (DFS) ja laiuti (BFS)

Depth-First Search

www.combinatorica.com

Breadth-First Search

www.combinatorica.com

Laiuti läbimise (BFS) algoritmi mõisteid ja omadusi

- Tipud märgendatakse ühega kolmest märgendist:
 - visited (black): tipp ja selle naabrid on läbitud.
 - current (grey): tipp on otsingu frondil.
 - not_visited (white): tipuni pole veel jõutud.
- Läbitakse kauguse tasemete kaupa.
 dist(v) kaugus juurtipust
- Läbimisel moodustatakse puu, mille juureks on esimene tipp.
 parent(v) tipu v vanem läbimise puus
 - saadud puu esitab lühimaid teid juurtipust (servade arvu mõttes)
 - laiuti otsingut saab kasutada lühimate teede otsinguks
- Otsimisfronti current tippe hoitakse järjekorras Q

Laiuti läbimise (BFS) algoritm

```
BFS(G, s)
for all vertices u in V - \{s\} do
  label[u] = not\_visited; \ dist[u] = \infty; \ parent[u] = null
label[s] = current; dist[s] = 0; parent[s] = null
EnQueue(Q,s)
while Q is not empty do
   u = \text{DeQueue}(Q)
   for each v that is a neighbor of u do
        if label[v] == not\_visited then label[v] = current
                dist[v] = dist[u] + 1; parent[v] = u
                EnQueue(Q,v)
    label[u] = visited
                                                         O(|V| + |E|)
```


Laiuti läbimise (BFS) näide

Sügavuti läbimise (DFS) algoritmi mõisteid ja omadusi

- Tipud märgendatakse ühega kolmest märgendist:
 - visited (black): tipp ja selle naabrid on läbitud.
 - current (grey): tipp on otsingu frondil.
 - not_visited (white): tipuni pole veel jõutud.
- Läbimisel moodustatakse puu (mets), mille juureks on esimene tipp.
 parent(v) - tipu v vanem läbimise puus
- Ei eelda, et graaf on sidus. Välise funktsiooni DFS tsükkel läbib kõik läbimata tipud. Mittesidusa graafi läbimisel saadakse tulemuseks mets.
- Tulemuseks saadav metsa (puude hulk) tippude järjestus sõltub naabrite valimise järjestusest

Sügavuti läbimise (DFS) rekursiivne algoritm

```
DFS(G, s)
for all vertices u in V do
  label[u] = not\_visited; parent[u] = null;
for each vertex u in V do
  if label[u] = not\_visited then
     DFS-Visit(u)
DFS-Visit(u)
label[u] = current; time = time + 1; s[u] = time
for each v that is a neighbor of u do
  if label[v] == not\_visited then
      parent[v] = u;
      DFS-Visit(v)
label[u] = visited; time = time + 1; f[u] = time
```


DFS näide

Sügavuti läbimise algoritm magasini (*stack*) abil

```
DFS(G, s)
for all vertices u in V - \{s\} do
  label[u] = not\_visited; \ dist[u] = \infty; \ parent[u] = null
label[s] = current; dist[s] = 0; parent[s] = null
Push(S,s)
while S is not empty do
   u = \text{Pop}(S)
   for each v that is a neighbor of u do
        if label[v] == not\_visited then label[v] = current
                dist[v] = dist[u] + 1; parent[v] = u
                Push(S,v)
    label[u] = visited
```


Graafi läbimise algoritmid

- Laiuti läbimise algoritmi võib pidada üldiseks läbimise algoritmiks
 - seda saab modifitseerida sügavuti otisinguks andmestruktuuri asendamisega - magasin järjekorra asemel
 - laiuti läbimist toetav andmestruktuur Q kujutab endast otsimisfronti. Frondist liikmete väljastamise järjekord määrab läbimisstrateegia
- Sügavuti läbimise esimeses (rekursiivses) versioonis moodustatakse magasin peidetult.
 - kompilaator lisab rekursiivsed väljakutse magasini
 - nimetatakse ka tagasivõtmisega (backtracking) algoritmiks

Suunaga tsükliteta graafid Directed Acyclic Graphs - DAGs

- DAG on suunatud tsükliteta graaf
- Esitab osalist järjestust

Topoloogiline sorteerimine

- DAGi topoloogiline sorteerimine:
 - Annab DAG G tippude lineaarse järjestuse, nii et tipp u on järjestuses eespool kui v, kui esineb serv $(u, v) \in G$.
- Kasutatakse näiteks tööde järjestuse leidmiseks
- Praktiline näide: riidesse panemine

Sokid

Pesu

Riietumine

Kell

Särk

→ Kingad

→ Püksid -

Pintsak

Lips

Vöö

Topoloogilise sorteerimise algoritm

```
Topological-Sort()
{
    Run modified DFS
    Add vertex to the list when it gets label visited
    Reverse the list
}
```

- Keerukus: O(V+E)
- Korrektsuse tõestuse idee: tipp saab *visited* alles pärast kõigi temast saavutatavate tippude (naabrite) *visited* märgendi saamist
 - Naaber oli juba enne tippu jõudmist visited
 - Naaber läbiti sügavuti läbimisega tippu jõudes

Sügavuti läbimise (DFS) rekursiivne algoritm

```
DFS(G, s)
for all vertices u in V do
  label[u] = not\_visited; parent[u] = null;
for each vertex u in V do
  if label[u] = not\_visited then
     DFS-Visit(u)
DFS-Visit(u)
label[u] = current; time = time + 1; s[u] = time
for each v that is a neighbor of u do
  if label[v] == not\_visited then
      parent[v] = u;
      DFS-Visit(v)
label[u] = visited; time = time + 1; f[u] = time
```


Tugevalt sidusad komponendid Strongly Connected Component (SCC)

- Suunatud graaf on tugevalt sidus, kui igast tipust on olemas tee igasse tippu
- Suunatud *graafi tugevalt sidus komponent* (SCC) on maksimaalne tippude hulk C, nii et iga tippude paari $u,v \in C$ jaoks on olemas tee $u \rightarrow v$ ja $v \rightarrow u$.

Näiteks üksteise postitusi like-vad sõbrad.

Komponentgraaf

- Komponentgraafis on tipp graafi iga SCC kohta
- Komponentgraafis on serv U → V, kui graafi komponendi U mõnest tipust läheb serv komponendi V mõne tipuni

Komponentgraaf on DAG

Transponeeritud graaf

 Transponeeritud graaf on graaf, kus servade suunad on ümber pööratud

$$G^{\mathsf{T}} = (V, E^{\mathsf{T}}), E^{\mathsf{T}} = \{(u, v) : (v, u) \in E\}$$

 Graafil ja tema transponeeritud graafil on samad tugevalt sidusad komponendid

SCC leidmise algoritm

SCC(G)

Call DFS(G) to compute finishing times f[u] for all u Compute G^T

Call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)

Output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

- Keerukus: O(V + E), kui graaf on esitatud naabruslistidena
- On olemas SCC algoritme (Tarjani algoritm jt), mis kasutavad ühekordset täiendatud sügavuti otsingut

SCC leidmise näide

Leiame sügavuti otsingu puud (metsa) originaalgraafil ja vastavad tippude otsingu lõpetamise ajad. Otsing algas tipust *c*

SCC leidmise näide

Transponeerime graafi

Tippudes on sügavuti otsingu lõpetamise järjekord Iga SCC piire ületava serva sihttipp on suurema numbriga kui lähtetipp!

SCC leidmise näide

Teeme sügavuti otsingu transponeeritud graafil numbrite kahanemise järjekorras (algab tipust *b*)

 $\{b, a, e\} \{c, d\} \{g, f\} \{h\}$

