

TECLADO VIRTUAL INTELIGENTE CON AUTOCOMPLETADO POR LSTM

PROBLEMATICA

Muchas personas con discapacidad motriz no pueden usar teclados físicos ni sistemas de reconocimiento de voz. Los teclados en pantalla requieren precisión motora alta, y la voz puede fallar en ambientes ruidosos.

Además, las ayudas de autocompletado actuales son básicas y no consideran el contexto o estilo de escritura del usuario, lo que limita la eficiencia y comodidad.

JUSTIFICACION

Es necesario desarrollar un sistema que combine detección de gestos con modelos de lenguaje avanzados para ofrecer escritura sin contacto físico y con ayuda contextual. Esto mejora la accesibilidad, permitiendo a usuarios con limitaciones motrices comunicarse de manera más rápida y efectiva.

ARQUITECTURA DEL SISTEMA

El sistema utiliza Python 3 con OpenCV y MediaPipe para la detección de manos y gestos, Pygame para sonidos, y un modelo LSTM para predecir palabras y sugerir autocompletados. El flujo de trabajo va desde la captura de video hasta la visualización del texto y sugerencias en tiempo real, desarrollado en Visual Studio Code.

DETECCIÓN DE GESTOS

La detección se basa en MediaPipe Hands, que identifica 21 puntos clave en la mano. Se calcula la distancia entre la punta del dedo índice y el pulgar; cuando es menor a un umbral, se interpreta como un clic virtual, simulando una pulsación para seleccionar teclas sin contacto.

SELECCIÓN DE TECLAS

El teclado virtual se dibuja en pantalla y detecta la posición del dedo índice. La tecla sobre la que está el dedo se resalta, y el clic virtual confirma la selección, insertando la tecla en el texto. Esto permite escribir sin tocar ningún dispositivo físico.

ESCRITURA Y VISUALIZACIÓN

El texto ingresado se muestra en pantalla en tiempo real. Se realizan pruebas para asegurar que el texto escrito coincide con lo esperado, alcanzando una precisión superior al 90%. Esto permite un seguimiento confiable de la escritura.

INSERCIÓN DE SUGERENCIAS

El modelo LSTM genera sugerencias basadas en el texto parcial. Pulsando la tecla "COMPLETAR", el usuario puede insertar la palabra sugerida automáticamente, agilizando la escritura y reduciendo el esfuerzo.

CONCLUSIÓN

El proyecto demuestra que es viable integrar visión computacional y modelos de lenguaje para crear interfaces accesibles e intuitivas. Aunque faltan mejoras en integración en tiempo real y robustez, el sistema abre nuevas posibilidades para la inclusión digital.

TRABAJO A FUTURO

- Integrar autocompletado en tiempo real en el teclado.
- Ampliar y mejorar el corpus de entrenamiento.
- Optimizar la interfaz para mayor usabilidad.

