Analyzing Massive Data Sets

Exercise 1: Fuzzy IR-model (homework)

a) Determine the Jaccard indices:

	Augsburg	Europe	soccer	Bundesliga	
Augsburg	1	$\frac{2}{3}$	$\frac{1}{4}$	$\frac{1}{4}$	
Europe	$\frac{2}{3}$	1	$\frac{1}{3}$	0	
soccer	$\frac{1}{4}$	$\frac{1}{3}$	1	$\frac{1}{3}$	
Bundesliga	$\frac{1}{4}$	0	$\frac{1}{3}$	1	

b) Compute fuzzy degree of membership $W(D_j, t_i)$:

fuzzy degrees of membership for D_1 :

•
$$W(D_1, Augsburg) = 1 - (1 - 1) * (1 - 2/3) * (1 - 1/4) = 1$$

•
$$W(D_1, Europe) = 1 - (1 - 2/3) * (1 - 1) * (1 - 1/3) = 1$$

•
$$W(D_1, soccer) = 1 - (1 - 1/4) * (1 - 1/3) * (1 - 1) = 1$$

•
$$W(D_1, Bundesliga) = 1 - (1 - 1/4) * (1 - 0) * (1 - 1/3) = 1/2$$

fuzzy degrees of membership for D_2 :

•
$$W(D_2, Augsburg) = 1 - (1 - 1/4) * (1 - 1/4) = 7/16$$

•
$$W(D_2, Europe) = 1 - (1 - 1/3) * (1 - 0) = 1/3$$

•
$$W(D_2, soccer) = 1 - (1 - 1) * (1 - 1/3) = 1$$

•
$$W(D_2, Bundesliga) = 1 - (1 - 1/3) * (1 - 1) = 1$$

fuzzy degrees of membership for D_3 :

•
$$W(D_3, Augsburg) = 1 - (1 - 1/4) * (1 - 1) = 1$$

•
$$W(D_3, Europe) = 1 - (1 - 0) * (1 - 2/3) = 2/3$$

•
$$W(D_3, soccer) = 1 - (1 - 1/3) * (1 - 1/4) = 1/2$$

•
$$W(D_3, Bundesliga) = 1 - (1 - 1) * (1 - 1/4) = 1$$

fuzzy degrees of membership for D_4 :

•
$$W(D_4, Augsburg) = 1 - (1 - 1) * (1 - 2/3) = 1$$

•
$$W(D_4, Europe) = 1 - (1 - 2/3) * (1 - 1) = 1$$

•
$$W(D_4, soccer) = 1 - (1 - 1/4) * (1 - 1/3) = 1/2$$

•
$$W(D_4, Bundesliga) = 1 - (1 - 1/4) * (1 - 0) = 1/4$$

- c) Evaluate this query Q and determine the **Top-2** results:
 - $\mu_Q(D_1) = \min(\max(1;1);(1-1)) = 0$
 - $\mu_Q(D_2) = \min(\max(\frac{7}{16}; \frac{1}{3}); (1-1)) = 0$
 - $\mu_Q(D_3) = \min(\max(1; \frac{7}{9}); (1 \frac{1}{2})) = \frac{1}{2}$
 - $\mu_Q(D_4) = \min(\max(1;1); (1-\frac{1}{2})) = \frac{1}{2}$
 - \rightarrow **Top-2**: D_3 , D_4

Exercise 2: Vector Space Model (live)

The solution was discussed in the exercise.

Exercise 3: Effectiveness Metrics (homework)

a) Precision, Recall and Fallout:

First of all the classification results have to be determined:

- true negatives $\bar{A} \cap \bar{B}$: 160
- false negatives $A \cap \bar{B}$: 180-160=20
- false positives $\bar{A} \cap B$: 15
- true positives $A \cap B$: 300-180-15=105

After that the evaluation metrics can be calculated easily.

- Precision: $P_Q = \frac{|A \cap B|}{|B|} = \frac{105}{105 + 15} = 0.875 = 87.5\%$
- Recall: $R_Q = \frac{|A \cap B|}{|A|} = \frac{105}{105 + 20} = 0.84 = 84\%$
- Fallout: $F_Q = \frac{|\bar{A} \cap B|}{\bar{A}} = \frac{15}{15 + 160} = 0.086 = 8.6\%$
- b) F_1 -measure: $F_{\beta} = \frac{(\beta^2+1)\cdot R\cdot P}{R+\beta^2\cdot P}, \ \beta=1$ $F_1 = \frac{(1^2+1)\cdot R\cdot P}{R+1^2\cdot P} = \frac{2\cdot 0.84\cdot 0.875}{0.84+0.875} = \frac{1.47}{1.715} = 0.857 = 85.7\%$
- c) In order to maximize the F-measure, Precison and Recall have to be maximized. In order to improve Precision, the number of retrieved and relevant documents (true negatives, documents which are retrieved but not relevant for Q) proportional to all retrieved documents has to increase. In reverse the false positive documents(Type I errors) should be minimized. In order to maximize Recall, the number of retrieved relevant documents proportional to all relevant documents has to increase. So the number of false negative documents (Type II errors, documents which are relevant, but not retrieved for Q) have to be minimized.

Exercise 4: Mean Average Precision (MAP) (homework)

Q1	r	n	n	n	r	r	n	r	r	r
P	$\frac{1}{1} = 1$	$\frac{1}{2} = 0,5$	$\frac{1}{3} = 0,33$	$\frac{1}{4} = 0,25$	$\frac{2}{5} = 0,4$	$\frac{3}{6} = 0,5$	$\frac{3}{7} = 0,43$	$\frac{4}{8} = 0,5$	$\frac{5}{9} = 0,56$	$\frac{6}{10} = $ 0,6
R	$\frac{1}{6} = 0,17$	$\frac{1}{6} = 0,17$	$\frac{1}{6} = 0,17$	$\frac{1}{6} = 0,17$	$\frac{2}{6} = 0,33$	$\frac{3}{6} = 0,5$	$\frac{3}{6} = 0,5$	$\frac{4}{6} = 0,67$	$\frac{5}{6} = 0,83$	$\frac{6}{6} = 1$
Q2	n	r	r	n	n	n	n	r	n	n
P	$\frac{0}{1} = 0$	$\frac{1}{2} = 0,5$	$\frac{2}{3} = 0.67$	$\frac{2}{4} = 0,5$	$\frac{2}{5} = 0,4$	$\frac{2}{6} = 0,33$	$\frac{2}{7} = 0,29$	$\frac{3}{8} = 0,38$	$\frac{3}{9} = 0,33$	$\frac{3}{10} = 0,3$
R	$\frac{0}{3} = 0$	$\frac{1}{3} = 0,33$	$\frac{2}{3} = 0,67$	$\frac{3}{3} = 1$	$\frac{3}{3} = 1$	$\frac{3}{3} = 1$				
Q3	r	r	r	r	n	r	n	n	n	n
P	$\frac{1}{1} = 1$	$\frac{2}{2} = 1$	$\frac{3}{3} = 1$	$\frac{4}{4} = 1$	$\frac{4}{5} = 0,8$	$\frac{5}{6} = 0.83$	$\frac{5}{7} = 0,71$	$\frac{5}{8} = 0,63$	$\frac{5}{9} = 0,56$	$\frac{5}{10} = 0,5$
R	$\frac{1}{5} = 0,2$	$\frac{2}{5} = 0,4$	$\frac{3}{5} = 0.6$	$\frac{4}{5} = 0.8$	$\frac{4}{5} = 0.8$	$\frac{5}{5} = 1$				

Average Precision Query 1 = (1 + 0, 4 + 0, 5 + 0, 5 + 0, 56 + 0, 6)/6 = 0,59

Average Precision Query 2 = (0, 5 + 0, 67 + 0, 38)/3 = 0, 52

Average Precision Query 3 = (1 + 1 + 1 + 1 + 0, 83)/5 = 0,97

Mean Average Precision = (0, 59 + 0, 52 + 0, 97)/3 = 0,69

Abbildung 1: Recall-Precision Graph

Exercise 5: PageRank (live)

The solution was discussed in the exercise.