DISJOINT SETS

Michael Tsai 2013/05/14

Equivalence Relation

- Set: 一個group的elements, 沒有次序
- · 假設S為包含所有元素的集合
- 兩個element a和b的relation R稱為equivalence relation, iff:
 - 1. Reflexive: 對每個element $a \in S$, a R a is true.
 - Symmetric: 對任兩個elements $a, b \in S$, if a R b is true, then b R a is true.
 - 3. Transitive: 對任三個elements $a, b, c \in S$, if a R b and b R c is true, then a R c is true.
- 例: 道路連接性 (road connectivity)是equivalence relation

Equivalence Class

- The equivalence class of an element a:
 - 一個包含S中所有和a 有equivalence relation的elements的集合
- $\{\forall e \in S \text{ s.t. } e R a\}$
- 假設我們把S中所有元素分到不同的equivalence class, 則每個元素只會屬於一個equivalence class
 - 任兩個equivalence class S_i , S_j 都符合 $S_i \cap S_j = \phi$, if $i \neq j$. \rightarrow Disjoint sets!
 - Equivalence class把原本的S 切(partition)成數個equivalence class
- 道路連接性的例子: 如果兩個城市有路連接,則它們屬於同一個equivalence class

Operation on Disjoint Sets

- MAKESET(x): 做一個新的set, 只包含element x
- UNION(x,y): 將包含x的set和包含y的set合併成為一個新的set (原本包含x 和包含y的兩個set刪掉)
- FIND(x): 找出包含x的set的"名字"(ID號碼)
- UNION之前通常要先用FIND確定兩個element屬於不同set
- 問: 如何表示Disjoint Sets, 使得這些operation可以快速地執行呢?

例子: 尋找兩個城市是否連接


```
• 給一些城市,及所有道路(每條道路連接兩個城市)
for each city C
      MAKESET (C)
for each road (x, y)
       if FIND(x) != FIND(y)
              UNION(x, y)
• 如何知道兩個城市是否連接?
Boolean CITY CONNECTED(x,y) {
       if FIND(x) == FIND(y)
              return TRUE;
       else
              return FALSE;
```

例子: 尋找兩個城市是否連接

Edge processed	Collection of disjoint sets									
initial sets	{a}	<i>{b}</i>	{ <i>c</i> }	{ <i>d</i> }	{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	{ <i>h</i> }	{ <i>i</i> }	{ <i>j</i> }
(<i>b</i> , <i>d</i>)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		{ <i>e</i> }	{ <i>f</i> }	{ <i>g</i> }	{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(<i>e</i> , <i>g</i>)	{ <i>a</i> }	{ <i>b</i> , <i>d</i> }	{ <i>c</i> }		$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(a,c)	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> }	$\{i\}$	{ <i>j</i> }
(h,i)	{ <i>a</i> , <i>c</i> }	{ <i>b</i> , <i>d</i> }			$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> , <i>i</i> }		{ <i>j</i> }
(a,b)	$\{a,b,c,d\}$				$\{e,g\}$	{ <i>f</i> }		{ <i>h</i> , <i>i</i> }		{ <i>j</i> }
(e,f)	$\{a,b,c,d\}$				$\{e,f,g\}$			{ <i>h</i> , <i>i</i> }		{ <i>j</i> }
(b,c)	$\{a,b,c,d\}$				$\{e,f,g\}$			{ <i>h</i> , <i>i</i> }		$\{j\}$

要怎麼表示集合呢? 方法一

• 方法一: Array法 - Find很快, Union很慢

Index代表的是每個element的號碼

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	4	3	1	2	2	2

Array裡面的值紀錄的是該element所屬的set ID

· 上面的例子共有四個SET:

$$S_1 = \{3\}, S_2 = \{4,5,6\}, S_3 = \{0,2\}, S_4 = \{1\}$$

- FINDSET(x)?
 - 直接看array的值
- 時間複雜度?
- UNION(x,y)?

- 要把所有跟x同set的element都改set ID成跟y的set ID一樣
- 時間複雜度?

要怎麼表示集合呢? 方法二

·方法二: tree法 – Union很快, Find有點慢

Array裡面的值紀錄的是該element的"parent"

反正我們並不是那麼重視set ID or name, 只要可以做FINDSET(x)==FINDSET(y) 的比較!

→用每個set的root來代表那個set即可!

要怎麼表示集合呢?方法二

- FIND(x)?
 - · 必須找到該"tree"的root
- 時間複雜度?
- 跟樹的高度有關!
- Worst case: skew tree (一條龍)

- 把element x的set的root的 parent (array的值)設成y (或反過來)
- 例如UNION(2,4)
- 時間複雜度?
- · 如果不計算找root的部分 (通常需要先用FIND 檢查兩個是否為同set)

方法二: 改良版 Weighted Union

- · 之前的問題在於, FIND的時候如果碰到skew tree就會變成 worst case, O(n)
- 如果從一開始(每一個set只有一個element)的時候,每次 UNION的時候仔細選擇誰要當新的tree的root, 則可以避免 這個問題!
- Weighted Union: Union的時候用某種"weight"來決定誰當 root
 - 1. Union by size: 每個set (tree)紀錄裡面有幾個node (element). Size大的set的root當合併之後的tree的root.
 - 2. Union by height:每個set (tree)紀錄裡面tree的高度. 比較高的set的 root當合併之後的tree的root.
- 使用兩者的執行時間相似, 下面使用Union by height舉例

Union by Height

- 考慮某個element x, 一開始它所屬的set只有1個element
- · 跟別人union的時候, 如果加入別人(別人當root)就是比較小的
- · 第一次union的時候, 如果是加入別人, 產生的set最少有兩個 element
- ·第二次union的時候,如果是加入別人,產生的set最少有四個element
- ...
- · →每次加入別人(高度增加)的時候, tree的size最少會變兩倍大
- 每個FIND最多只會花

• UNION的部分不變!

方法二: 開外掛加強版 Path Compression

- · FIND還是太慢了
- 有沒有什麼方法可以加快?
- · 從某一個node往上走的路上, 每一個parent都改指到root
- 時間複雜度還是一樣, constant變大而已
- 下一次FIND就快得多
- 此方法叫做path compression

Amortized Analysis (多個operation一起考慮)

• 假設有m個 UNION 或 FIND operation, n個element

方法	FIND(x)	UNION(x,y)	m個UNION+FIND
方法一: array法	O(1)	O(n)	O(mn)
方法二: tree法	O(n)	O(1)	O(mn)
方法二: tree法 +Weighted Union	O(log n)	O(1)	O(m log n)
方法二: tree法 +Weighted Union+Path Compression	O(log n)	O(1)	$O(m \ \alpha(n)) \approx O(m)$ $\alpha(n)$ 是一個長得很慢的function Ackermann's function的反函式,大部分情形 $\alpha(n) \leq 4$ (Cormen 21.4)

Today's Reading Assignment

- Karumanchi chapter 8
- (可參考Cormen chapter 21)