Feuille 1

Exercice 1.

On considère la relation \mathcal{R} , dont le tableau de vérité est le suivant.

P	Q	$P \mathcal{R} Q$
1	1	0
1	0	0
0	1	0
0	0	1

- 1) Calculer le tableau de vérité de $(P \mathcal{R} Q) \mathcal{R} (P \mathcal{R} Q)$ et identifier cette relation avec un connecteur classique.
- 2) Calculer le tableau de vérité de $(P \mathcal{R} P) \mathcal{R} (Q \mathcal{R} Q)$] et identifier cette relation avec un connecteur classique.

Exercice 2.

On considère la relation \mathcal{R} , dont le tableau de vérité est le suivant.

P	Q	$P \mathcal{R} Q$
V	V	V
V	F	V
F	V	F
F	F	V

- 1) Calculer le tableau de vérité de $P \mathcal{R} (P \mathcal{R} Q)$ et identifié cette relation avec un connecteur classique.
- Calculer le tableau de vérité de [(non P) \mathcal{R} (non Q)] et identifier cette relation avec un connecteur classique.

Exercice 3.

Lorsque cela a un sens, placer le connecteur \Rightarrow ou \Leftrightarrow (ou \Leftarrow) entre les phrases mathématiques suivantes. Donner un contre-exemple lorsque une des deux implications est fausse.

a)
$$0 \le x \le y$$
 $x^2 \le y$

b)
$$0 \le x \le y$$
 $\sqrt{x} \le \sqrt{y}$

c)
$$x \le y$$
 $\sqrt{x} \le \sqrt{y}$

b)
$$0 \le x \le y$$
 $\sqrt{x} \le \sqrt{y}$
c) $x \le y$ $\sqrt{x} \le \sqrt{y}$
d) $x \le y$ $\frac{1}{x} \ge \frac{1}{y}$

Exercice 4. Un peu de français...

- Donner la négation de chacune des phrases suivantes :
 - 1. "Tous les étudiants de MT100 viennent en bus ou à pieds."
 - 2. "Il existe un étudiant de MT100 qui aura une moyenne inférieure ou égale à 14/20."
- 2) Donner la contraposée de chacune des phrases suivantes :
 - 1. "Si je suis étudiant à l'UVSQ, alors je suis excellent en mathématiques."
 - 2. "Je prends un abonnement au théatre si le programme me plait et si le tarif est raisonnable". On pourra d'abord traduire la phrase sous la forme d'une proposition mathématique à l'aide des propositions suivantes :
 - P "le programme me plaît", Q "le tarif est raisonnable", R " Je prends un abonnement".
 - 3. "J'aurai 20/20 de moyenne en MT100 si je travaille ou si je suis un génie".

Quantificateurs

Exercice 5.

Soit $n \ge 1$ un entier. On se donne n+1 réels $x_0, ..., x_n$ de [0; 1] vérifiant $0 \le x_0 \le ... \le x_n \le 1$. On désire montrer par l'absurde que au moins deux de ces réels sont à une distance plus petite ou égale à 1/n.

- Ecrire à l'aide des quantificateurs et des valeurs $x_{i+1} x_i$ la propriété à démontrer. Puis en donner sa négation.
- Rédiger une démonstration par l'absurde de cette propriété.

Exercice 6.

Soit I un intervalle de \mathbb{R} et f une application définie sur I à valeurs dans \mathbb{R} . Donner la négation des propositions suivantes et en donner la signification.

- a) $\exists C \in \mathbb{R}, \forall x \in I, f(x) = C$
- b) $\forall x \in I, (f(x) = 0 \implies x = 0)$
- c) $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y$
- d) $\forall x, y \in I, (f(x) = f(y) \implies x = y)$

Écrire la négation de la proposition suivante. Dire, en le justifiant, laquelle des deux est vraie.

- a) $\exists x \in \mathbb{N}, x^2 > 4$
- b) $\forall x \in \mathbb{N}, x^2 > 4$
- c) $\forall x \in \mathbb{R}, (x = |x| \text{ ou } x = -|x|)$ d) $(\forall x \in \mathbb{R}, x = |x|)$ ou $(\forall x \in \mathbb{R}, x = -|x|)$
- e) $\forall x \in \mathbb{N}, \exists y \in \mathbb{N}, y > x^2$ f) $\exists y \in \mathbb{N}, \forall x \in \mathbb{N}, y > x^2$ g) $\exists x \in \mathbb{N}, \forall y \in \mathbb{N}, y > x^2$ h) $\forall y \in \mathbb{N}, \exists x \in \mathbb{N}, y > x^2$

Exercice 7.

Écrire la négation de la proposition suivante. Dire, en le justifiant, laquelle des deux est vraie.

- 1. $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \ge y \Rightarrow |x| \ge |y|$.
- 2. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x \ge y \Rightarrow |x| \ge |y|$.
- 3. $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x \ge y \Rightarrow |x| \ge |y|$.
- 4. $\exists x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ x \ge y \Rightarrow |x| \ge |y|$.

Exercice 8.

Soient f et g deux fonctions définies sur l'ensemble E à valeurs dans F $(E, F \subset \mathbb{R})$.

- 1) Donner une écriture mathématique, à l'aide de quantificateurs, des phrases suivantes :
 - La fonction f ne s'annule jamais.
 - Les fonctions f et g ne sont pas égales.
 - la fonction f est croissante sur E.
 - La fonction q n'est pas strictement décroissante sur E.
 - La fonction f est bornée.
 - On dit que f est bijective de E sur F si tout élément de F admet un unique antécédent par f.
 - Le réel y appartenant à F n'a pas d'antécédent par f.
- 2) Que signifie la phrase suivante : $(\forall x \in E), (f(x) = 0 \Rightarrow x = 0)$. Donner des exemples de fonctions f qui vérifient cette propriété.

Exercice 9.

Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Énoncer en langage courant les assertions suivantes écrites à l'aide de quantificateurs. Peut-on trouver une fonction qui satisfait cette assertion? Qui ne la satisfait pas?

- 1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, f(x) < f(y).$
- 2) $\forall x \in \mathbb{R}, \exists T \in \mathbb{R}, f(x) = f(x+T).$
- 3) $\forall x \in \mathbb{R}, \exists T \in \mathbb{R}^*, f(x) = f(x+T).$
- 4) $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ y = f(x).$

Exercice 10. En rapport direct avec le MA100...

- 1. (a) Dans cette question, $a \in \mathbb{R}$ et $L \in \mathbb{R}$ sont fixés et f est une fonction définie sur \mathbb{R} à valeurs réelles. Rappeler la définition de $\lim_{x\to a} f(x) = L$ avec les quantificateurs et "l'epsilon". En déduire une proposition exprimant le fait que f ne tend pas vers L lorsque x tend vers a.
 - (b) Même question pour $\lim_{x\to+\infty} f(x) = +\infty$.
- 2. Soit f une fonction dérivable sur I intervalle de \mathbb{R} . On sait que si f'(x) > 0 sur I alors f est strictement croissante sur I. Ecrire cette dernière phrase à l'aide de quantificateurs et du symbole \Longrightarrow . Donner la contraposée de cette implication.

Exercices supplémentaires

Exercice 11.

On considère la relation \mathcal{R} , dont le tableau de vérité est le suivant.

P	Q	$P \mathcal{R} Q$
V	V	F
V	F	V
F	V	V
F	F	V

- 1) Calculer le tableau de vérité de $(P \mathcal{R} Q) \mathcal{R} (P \mathcal{R} Q)$ et identifier cette relation avec un connecteur classique.
- 2) Calculer le tableau de vérité de $(P \mathcal{R} P) \mathcal{R} (Q \mathcal{R} Q)$ et identifier cette relation avec un connecteur classique.

Exercice 12.

On considère la relation \mathcal{R} , dont le tableau de vérité est le suivant.

P	Q	$P \mathcal{R} Q$
V	V	F
V	F	F
F	V	V
F	F	F

- 1) Calculer le tableau de vérité de $(P \mathcal{R} Q) \mathcal{R} Q$ et identifier cette relation avec un connecteur logique classique, c'est-à-dire "et", "ou", "non", " \Rightarrow ", " \Leftarrow ", " \Leftrightarrow ".
- 2) Calculer le tableau de vérité de $P \mathcal{R} (P \mathcal{R} Q)$ et exprimer cette relation à l'aide des connecteurs logiques classiques.

Exercice 13.

Nier les assertions suivantes et dire quelle est des deux l'assertion qui est vraie.

- 1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, y x^2 > 0.$
- 2) $\exists y \in \mathbb{Z}, \forall x \in \mathbb{R}, y x^2 > 0.$
- 3) $\forall x \in \mathbb{R}, x \ge x^2 \Rightarrow x \le 1.$
- 4) $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x,y) \in \mathbb{R}^2, \ (|x-y| \le \eta \Rightarrow |x^2 y^2| \le \varepsilon).$

Exercice 14.

Nier les assertions suivantes et dire quelle est des deux l'assertion qui est vraie.

- 1) $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, y^2 x > 0.$
- 2) $\exists y \in \mathbb{Z}, \forall x \in \mathbb{R}, y^2 x > 0.$
- 3) $\forall x \in \mathbb{R}, x \ge x^2 \Rightarrow 0 \le x \le 1$.
- 4) $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x,y) \in \mathbb{R}^2, \ (|x-y| \le \eta \Rightarrow |3x 3y| \le \varepsilon).$

Licence de mathématiques. Méthodologie mathématique. Année 2020/2021. Université Versailles-Saint Quentin

Feuille 2

Exercice 1.

Soit E un ensemble. Soit A, B et C trois parties de E. Simplifier les expressions

$$A \cap (CA \cup B);$$
 $A \cup (CA \cap B),$ $A \cap (CA \cup B) \cap (CA \cup CB \cup CC)$

Exercice 2.

Soit E un ensemble. Dans les questions ci-dessous, A, B, C désignent des sous-ensembles d'un ensemble E.

- 1. Simplifier l'expression suivante $(A \cap \complement B) \cup (A \cap B)$.
- 2. Montrer que $A \cap B \cap CC = A \cap B \cap C(A \cap B \cap C)$.
- 3. Montrer que $\mathbb{C}(\mathbb{C}B \cup \mathbb{C}C) = B \cap C$. Simplifier $(A \cap \mathbb{C}C) \cup (A \cap \mathbb{C}B) \cup (A \cap B \cap C)$.

Exercice 3.

Soient A, B et C trois parties d'un ensemble E. Démontrer :

- 1. $(A \cup B = A \cup C \text{ et } A \cap B = A \cap C) \Rightarrow B \subset C$. Que dire de plus?
- 2. On suppose que $A \cup B = B \cap C$. Montrer que $A \subset B \subset C$.
- 3. Si $A \subset B \subset C$ a-t-on $A \cup B = B \cap C$?
- 4. Démontrer que, si $A \cap B = A \cup B$, alors A = B.

Exercice 4.

- 1. Soit $A = \{(x, y) \in \mathbb{R}^2, \ 4x y = 1\}$ et $B = \{(t + 1, 4t + 3) \in \mathbb{R}^2, \ t \in \mathbb{R}\}$. Montrer que A = B.
- 2. Soit $A = \{(x, y) \in \mathbb{R}^2, \ 2x 3y = -1\}$ et $B = \{(3t + 1, 2t + 1) \in \mathbb{R}^2, \ t \in \mathbb{R}\}$. Montrer que A = B.

Exercice 5.

Dans chaque cas, décrire les parties de \mathbb{R} (la plus grande possible) dans laquelle évolue x pour que la proposition soit vraie.

- 1. "(x > 0 et x < 1) ou x = 0",
- 2. "x > 3 et x < 5 et $x \neq 4$ ",
- 3. Plus difficile : " $x \ge 0 \implies x \ge 2$ ".
- 4. Plus difficile : " $x \ge 2 \implies x \ge 0$ ".

Exercice 6.

Montrer que chacun des ensembles suivants est un intervalle (éventuellement vide ou réduit à un point) que l'on spécifiera :

$$I_1 = \bigcap_{n=1}^{+\infty} \left[3; 3 + \frac{1}{n^2} \right[, I_2 = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}; 4 + n^2 \right[, I_3 = \bigcup_{n=3}^{+\infty} \left[1 + \frac{1}{n}; n \right[.$$

Exercice 7. Ensemble de définitions, image directe, image réciproque

- 1) Déterminer l'ensemble de définition de la fonction f de variable réelle x définie par $f(x) = \sqrt{x^2 3x + 2}$. Même question pour g avec $g(x) = \sqrt{x 2} \cdot \sqrt{x 1}$.
- 2) Déterminer l'image directe de [-1;3[par la fonction définie sur \mathbb{R} par $f(x)=x^2$.
- 3) Déterminer l'image réciproque de [-2, 9] par la fonction définie sur \mathbb{R} par $f(x) = x^2$.

Exercice 8. union, intersection, image directe, image réciproque

Soient E et F deux ensembles et soit $f: E \to F$ une application.

1. Montrer que

$$\forall A, A' \in \mathcal{P}(E), f(A \cup A') = f(A) \cup f(A') \text{ et } f(A \cap A') \subset f(A) \cap f(A').$$

Donner un exemple d'application pour laquelle la dernière inclusion est stricte.

2. Montrer que

$$\forall B, B' \in \mathcal{P}(F), f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B') \text{ et } f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B').$$

Exercice 9. Exemples d'applications injectives, surjectives ou bijectives

- 1. Rappeler les définitions de bijection, surjection et injection.
- 2. La fonction $f:I\to J$ définie par $f(x)=x^2$ est-elle une injection, surjection ou bijection dans les cas suivants : $I=\mathbb{R}$ et $J=\mathbb{R}$; $I=\mathbb{R}^+$ et $J=\mathbb{R}^+$; $I=\mathbb{R}^+$ et $J=\mathbb{R}^+$?
- 3. Même question avec f(n) = n+2, $I = \mathbb{N}$ et $J = \mathbb{N}$; $I = \mathbb{Z}$ et $J = \mathbb{Z}$; Pour $I = \mathbb{N}$, quel ensemble J faut-il (et suffit-il de...) considérer pour que $f: I \to J$ soit une bijection?

Exercice 10.

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1) $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1.$
- 2) $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1.$
- 3) $h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + y, x y)$.

Exercice 11.

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1) $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+4$.
- 2) $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+4$.
- 3) $h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + 2y, 2x y)$.

Exercice 12.

Soit $f: \mathbb{N} \to \mathbb{N}, n \mapsto n^2$.

- 1) L'application f est-elle injective?
- 2) Montrer que l'application f n'est pas surjective. Trouver un ensemble $A \subset \mathbb{N}$ tel que $q: \mathbb{N} \to A, \ n \mapsto n^2$ est surjective.
- 3) L'application q est-elle bijective?

Exercice 13.

- 1) Soit $n, q \in \mathbb{N}$ vérifiant n > q > 0, montrer que n q < nq.
- 2) Soit $f: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$ définie par $f(p,q) = p + \frac{1}{q}$. L'application f est-elle injective? Surjective?

Exercice 14. Plus difficile

Soit $f: \mathbb{N}^2 \to \mathbb{N}^*$ définie par $f(n,p) = 2^n(2p+1)$. Montrer que f est une bijection.

Exercice 15. Composition de fonctions, injectivité et surjectivité

Soient $f: E \to F$, $g: F \to G$ deux applications. Montrer que:

- 1. $g \circ f$ injective $\implies f$ injective
- 2. $g \circ f$ surjective $\implies g$ surjective.
- 3. A-t-on : $g \circ f$ injective $\implies g$ injective? Proposer une hypothèse supplémentaire à imposer à f afin que l'implication devienne vraie.

Exercice 16.

Soit $f(x) = \frac{x}{1+x}$.

- 1. Calculer $f \circ f(x)$ et $f \circ f \circ f(x)$.
- 2. Trouver une formule pour $f \circ f \circ \cdots \circ f(x)$ (où le symbole f apparaît n fois), et démontrer cette formule par récurrence.

Exercice 17.

Soient f et g les deux fonctions de \mathbb{R} dans \mathbb{R} définies par f(x) = 3x + 1 et $g(x) = x^2 - 1$.

- 1. Calculer $f \circ q$ et $q \circ f$.
- 2. Dans les exemples suivants, pour j=1,2,3 déterminer deux fonctions u_j et v_j telles que $h_j=u_j\circ v_j$ où $h_1(x)=\sqrt{3x-1},\ h_2(x)=\sin(x+2)$ et $h_3(x)=\frac{1}{x+7}$.

Exercice 18.

Soient f et g les applications de N dans N définies par f(x) = 2x et

$$g(x) = \begin{cases} x/2 & \text{si } x \text{ est pair} \\ 0 & \text{si } x \text{ est impair} \end{cases}$$

- 1. Déterminer $g \circ f$ et $f \circ g$.
- 2. f et g sont-elles injectives? surjectives? bijectives?
- 3. Mêmes questions pour $g \circ f$ et $f \circ g$.

Exercice 19.

Soit la fonction $f: \mathbb{R} \to]0, +\infty[$ définie par $f(x) = \frac{e^x + 2}{e^{-x}}$

- 1. Démontrer que f est bijective.
- 2. Calculer f^{-1} .

Exercice 20.

Soit $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = 2x/(1+x^2)$.

- 1. f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que la restriction $g: [-1,1] \to [-1,1], g(x) = f(x)$ est une bijection.

Exercices supplémentaires

Exercice 21.

Soit

$$A = \{(x, y) \in \mathbb{R}^2, \ 5x + 6y = 1\}$$

$$B = \{(6t - 1, -5t + 1) \in \mathbb{R}^2, \ \text{où } t \in \mathbb{R}\}$$

- 1) Montrer que $A \subset B$.
- 2) Montrer que $B \subset A$. Que peut-on en conclure?

Exercice 22.

Les applications suivantes sont-elles injectives, surjectives, bijectives?

- 1) $f: \mathbb{N} \to \mathbb{N}, n \mapsto n+1$.
- 2) $g: \mathbb{Z} \to \mathbb{Z}, n \mapsto n+1.$
- 3) $h: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \mapsto (x + y, x y)$.

Exercice 23.

On rappelle que $\mathbb{C}A$ désigne l'ensemble complémentaire de A.

Soit
$$I = [1, 3]$$
 et $J =]2, 4]$.

Écrire sous forme d'intervalles les ensembles suivant, $I \cap J$, $I \cup J$, $\complement I \cap J$ et $I \cap \complement J$. On justifiera les réponses.

8

Feuille 3

Exercice 1.

1) Calculer $(1+i)^2$, puis $(1+i)^7$.

2) En déduire

$$1 - {7 \choose 2} + {7 \choose 4} - {7 \choose 6}$$
 et ${7 \choose 1} - {7 \choose 3} + {7 \choose 5} - 1$.

3) Calculer $(1+i)^4$, puis $(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}})^8$.

Exercice 2.

Calculer la forme cartésienne de

1) $\frac{1+i}{1-i}, \quad \frac{3+i}{2+3i}, \quad \frac{i-7}{3+7i}, \quad \frac{2+i}{3-i}, \quad \frac{i-7}{3+i}, \quad \frac{3-i}{2+i}, \quad \frac{1-i}{1+i}.$

2)
$$\frac{\sqrt{3}+i}{\sqrt{3}-i} + \frac{\sqrt{3}-i}{\sqrt{3}+i} + i - 1.$$

Exercice 3.

Calculer
$$S = \sum_{k=0}^{2020} i^k = 1 + i + i^2 + \dots + i^{2020}$$
.

Exercice 4.

Résoudre l'équation |z - i| = |z + i|.

Exercice 5.

Trouver $z \in \mathbb{C}$ tel que $(z-2)(\bar{z}+i) \in \mathbb{R}$.

Exercice 6.

Soit z un nombre complex de module 1 mais $z \neq 1$.

Montrer que $\frac{1+z}{1-z}$ est imaginaire pur.

Exercice 7.

Résoudre dans \mathbb{C} les systèmes

$$\begin{cases} 3iz + z' = 8 + i \\ 2z - iz' = 1 - i \end{cases} \qquad \begin{cases} (1+i)z + iz' = 2 - i \\ (2-i)z + (3-i)z' = 5 + 3i \end{cases}$$

Exercice 8.

Résoudre dans \mathbb{C} les systèmes

$$\begin{cases} 2z - z' = i \\ -2z + 3iz' = -17 \end{cases} \begin{cases} 3z + z' = 1 - 7i \\ iz + 2z' = 11i \end{cases}$$

Exercice 9.

Résoudre $4z^2 + 8|z|^2 - 3 = 0$.

Exercice 10.

Mettre sous forme trigonométrique les nombres complexes suivants

$$z_1 = \sqrt{3} + i$$
, $z_2 = 2i - z_1$, $z_3 = 2i + z_1$, $z_4 = \frac{z_3}{z_2}$, $z_5 = \frac{1}{1 + i \tan \alpha}$

Exercice 11.

On écrit $z = \cos x + i \sin x$.

- Montrer que $\cos x = \frac{1}{2} \left(z + \frac{1}{z} \right)$ et $\sin x = \frac{1}{2i} \left(z \frac{1}{z} \right)$. Montrer que $\cos nx = \frac{1}{2} \left(z^n + \frac{1}{z^n} \right)$ et $\sin nx = \frac{1}{2i} \left(z^n \frac{1}{z^n} \right)$.
- 3) Utiliser les formules ci-dessus pour linéariser

 $\cos^3 x$, $\sin^3 x$, $\cos^4 x$, $\sin^4 x$, $\cos^4 x \sin x$, $\sin^2 x \cos^3 x$, $\cos x \sin^4 x$, $\cos^4 x \sin^3 x$.

Exercice 12.

Calculer les racines carrées des nombres complexes 3 + 4i et 8 - 6i.

Exercice 13.

Résoudre dans \mathbb{C} les équations suivantes.

1.
$$z^2 - (3+2i)z + 5 + i = 0$$
.

2.
$$z^2 - 2iz - i\sqrt{3} = 0$$
.

3.
$$2z^2 - (20 + 9i)z + 50 = 0$$
.

4.
$$iz^2 + (1-5i)z + 6i - 2 = 0$$
.

5.
$$(4+3i)z^2 - (2i-4)z + 2 - i = 0$$
.

Exercice 14.

Résoudre

$$\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}.$$

Pour cela poser

$$Z = \frac{z - 12}{z - 8i},$$

et exprimer z en fonction de Z.

Exercice 15.

Soit $\theta \in]-\pi,\pi[.$

1) Montrer que $e^{i\theta} \neq -1$.

On pose $z = \frac{1 - e^{i\theta}}{1 + e^{i\theta}}$.

- 2) En calculant \bar{z} , montrer que z est imaginaire pur.
- 3) Montrer que $z = -i \tan(\theta/2)$.

Exercice 16.

- 1) Mettre $\frac{1+i\sqrt{3}}{\sqrt{2}+i\sqrt{2}}$ sous la forme $re^{i\theta}$.
- 2) En déduire la valeur de $\cos(\pi/12)$ et $\sin(\pi/12)$.

Exercices supplémentaires

Exercice 17.

Le but de l'exercice est de résoudre $z = p\bar{z} + q$ où p et z sont des nombres complexes donnés.

- 1) On suppose que $|p| \neq 1$. Trouver l'unique z vérifiant l'équation.
- 2) On suppose que |p|=1. Montrer que si $p\bar{q}+q\neq 0$ alors l'équation n'admet pas de solutions.
- 3) On suppose que |p|=1 et $p\bar{q}+q=0$. Montrer que si $q\neq 0$, les solutions s'écrivent z=q/2+iqt, où $t\in\mathbb{R}$.
- 4) On suppose que $|p|=1, p\bar{q}+q=0$ et q=0. Trouver toutes les solutions de l'équation $z=p\bar{z}$

Exercice 18.

Soit z et z^\prime deux nombres complexes de module 1.

- 1) Montrer que $\frac{z+z'}{1+zz'}$ est un réel.
- 2) En écrivant $z = e^{i\theta}$ et $z' = e^{i\alpha}$ où θ et α sont des réels, calculer le module de $\frac{z+z'}{1+zz'}$.

11

Exercice 19.

Soit $p \in \mathbb{N}^*$, on pose $\omega = e^{2i\pi/p}$ et $\omega_j = \omega^j$ pour $j = 1, \dots, p$.

- 1) Montrer que $\omega_j^p = 1$.
- 2) Montrer que $\omega_j \neq 1$ pour $j=1,\ldots,p-1$. En déduire que les ω_j sont deux à deux distincts.

On admet que $z^p - 1 = \prod_{j=1}^p (z - \omega_j)$.

3) Montrer que l'on a aussi $z^p - 1 = -\prod_{j=1}^p (1 - \omega_j z)$.

Exercice 20.

Soit z_1 , z_2 et z_3 des nombres complexes de module 1.

Montrer que $|z_1 + z_2 + z_3| = |z_1 z_2 + z_1 z_3 + z_2 z_3|$.

Exercice 21. La méthode de Viete

La méthode de Viete pour résoudre les équations de troisième degré de la forme

$$z^3 + pz + q = 0,$$

consiste à rechercher z sous la forme $z = y - \frac{p}{2y}$.

Trouver les solutions de $z^3-15z-4=0$ en faisant le changement d'inconnue de la méthode de Viete. C'est-à-dire en posant $z=y+\frac{15}{2y}$.

Exercice 22.

Soit z et z' deux nombres complexes. On suppose que |z+z'|=|z-z'|.

En supposant $z \neq 0$, montrer qu'il existe $t \in \mathbb{R}$ tel que z' = izt.

Exercice 23.

Soit $N_1 = p_1^2 + q_1^2$ et $N_2 = p_2^2 + q_2^2$ où $p_1, q_1, p_2, q_2 \in \mathbb{N}$.

En écrivant $z_k = p_k + iq_k$ pour k = 1, 2, montrer que $N_1N_2 = p_3^2 + q_3^2$ où $p_3, q_3 \in \mathbb{N}$, et on précisera la valeur de p_3, q_3 en fonction de p_1, q_1, p_2, q_2 .