In [54]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from pandas.plotting import scatter_matrix

from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

import psycopg2
from psycopg2 import extras
from pandas import DataFrame
```

Задание 1

In [55]:

```
# Импортируем данные из датасета
df = pd.read_csv('exam_1.csv', sep = ';')
```

In [56]:

df

Out[56]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	New York	192261.83
1	162597.70	151377.59	443898.53	California	191792.06
2	153441.51	101145.55	407934.54	Florida	191050.39
3	144372.41	118671.85	383199.62	New York	182901.99
4	142107.34	91391.77	366168.42	Florida	166187.94
5	131876.90	99814.71	362861.36	New York	156991.12
6	134615.46	147198.87	127716.82	California	156122.51
7	130298.13	145530.06	323876.68	Florida	155752.60
8	120542.52	148718.95	311613.29	New York	152211.77
9	123334.88	108679.17	304981.62	California	149759.96
10	101913.08	110594.11	229160.95	Florida	146121.95
11	100671.96	91790.61	249744.55	California	144259.40
12	93863.75	127320.38	249839.44	Florida	141585.52
13	91992.39	135495.07	252664.93	California	134307.35
14	119943.24	156547.42	256512.92	Florida	132602.65
15	114523.61	122616.84	261776.23	New York	129917.04
16	78013.11	121597.55	264346.06	California	126992.93
17	94657.16	145077.58	282574.31	New York	125370.37
18	91749.16	114175.79	294919.57	Florida	124266.90
19	86419.70	153514.11	0.00	New York	122776.86
20	76253.86	113867.30	298664.47	California	118474.03
21	78389.47	153773.43	299737.29	New York	111313.02
22	73994.56	122782.75	303319.26	Florida	110352.25
23	67532.53	105751.03	304768.73	Florida	108733.99
24	77044.01	99281.34	140574.81	New York	108552.04
25	64664.71	139553.16	137962.62	California	107404.34
26	75328.87	144135.98	134050.07	Florida	105733.54
27	72107.60	127864.55	353183.81	New York	105008.31
28	66051.52	182645.56	118148.20	Florida	103282.38
29	65605.48	153032.06	107138.38	New York	101004.64
30	61994.48	115641.28	91131.24	Florida	99937.59
31	61136.38	152701.92	88218.23	New York	97483.56
32	63408.86	129219.61	46085.25	California	97427.84
33	55493.95	103057.49	214634.81	Florida	96778.92

	R&D Spend	Administration	Marketing Spend	State	Profit
34	46426.07	157693.92	210797.67	California	96712.80
35	46014.02	85047.44	205517.64	New York	96479.51
36	28663.76	127056.21	201126.82	Florida	90708.19
37	44069.95	51283.14	197029.42	California	89949.14
38	20229.59	65947.93	185265.10	New York	81229.06
39	38558.51	82982.09	174999.30	California	81005.76
40	28754.33	118546.05	172795.67	California	78239.91
41	27892.92	84710.77	164470.71	Florida	77798.83
42	23640.93	96189.63	148001.11	California	71498.49
43	15505.73	127382.30	35534.17	New York	69758.98
44	22177.74	154806.14	28334.72	California	65200.33
45	1000.23	124153.04	1903.93	New York	64926.08
46	1315.46	115816.21	297114.46	Florida	49490.75
47	0.00	135426.92	0.00	California	42559.73
48	542.05	51743.15	0.00	New York	35673.41
49	0.00	116983.80	45173.06	California	14681.40

Data Preprocessing

In [57]:

```
# Let's check how much the data are spread out from the mean.
mean rd spend = np.mean(df['R&D Spend'], axis=0)
sd rd spend = np.std(df['R&D Spend'], axis=0)
mean Administration = np.mean(df['Administration'], axis=0)
sd Administration = np.std(df['Administration'], axis=0)
mean Marketing Spend = np.mean(df['Marketing Spend'], axis=0)
sd Marketing Spend = np.std(df['Marketing Spend'], axis=0)
mean Profit= np.mean(df['Profit'], axis=0)
sd Profit = np.std(df['Profit'], axis=0)
counter_rd_spend = 0
counter Administration = 0
counter Marketing Spend = 0
counter mean Profit = 0
for rd spend, Administration, Marketing Spend, Profit in zip(df['R&D Spend'], df[
'Administration'], df['Marketing Spend'], df['Profit']):
        if not mean rd spend - 3*sd rd spend <= rd spend <= mean rd spend + 3*sd r
d spend:
            counter rd spend += 1
        if not mean Administration - 3*sd Administration <= Administration <= mean</pre>
Administration + 3*sd Administration:
            counter Administration += 1
        if not mean Marketing Spend - 3*sd Marketing Spend <= Marketing Spend <= m</pre>
ean Marketing Spend + 3*sd Marketing Spend:
            counter_Marketing_Spend += 1
        if not mean Profit - 3*sd Profit <= Profit <= mean Profit + 3*sd Profit:</pre>
            counter mean Profit += 1
counter dicts = {'counter rd spend': counter rd spend,
                 'counter Administration': counter Administration,
                'counter Marketing Spend': counter Marketing Spend,
                'counter mean Profit': counter mean Profit
print(counter dicts)
```

```
{'counter_rd_spend': 0, 'counter_Administration': 0, 'counter_Marketing Spend': 0, 'counter mean Profit': 0}
```

Как мы видим, данные не имеют значения вне 3 сигм, соответственно, не требуют дополнительной обработки.

Переменная State является факторной, т.е. нам нужно преобразовать ее значения к 0,1..

In [58]:

```
# Function Encoding
def encoding_char(x):
    char_var = list(set(x.columns) - set(x._get_numeric_data().columns))
    for col_names in char_var:
        f = pd.factorize(x[col_names])
        x[col_names] = pd.factorize(x[col_names])[0]
    return(x)

# Encoding categorical data
df = encoding_char(df)
df
```

Out[58]:

	R&D Spend	Administration	Marketing Spend	State	Profit
0	165349.20	136897.80	471784.10	0	192261.83
1	162597.70	151377.59	443898.53	1	191792.06
2	153441.51	101145.55	407934.54	2	191050.39
3	144372.41	118671.85	383199.62	0	182901.99
4	142107.34	91391.77	366168.42	2	166187.94
5	131876.90	99814.71	362861.36	0	156991.12
6	134615.46	147198.87	127716.82	1	156122.51
7	130298.13	145530.06	323876.68	2	155752.60
8	120542.52	148718.95	311613.29	0	152211.77
9	123334.88	108679.17	304981.62	1	149759.96
10	101913.08	110594.11	229160.95	2	146121.95
11	100671.96	91790.61	249744.55	1	144259.40
12	93863.75	127320.38	249839.44	2	141585.52
13	91992.39	135495.07	252664.93	1	134307.35
14	119943.24	156547.42	256512.92	2	132602.65
15	114523.61	122616.84	261776.23	0	129917.04
16	78013.11	121597.55	264346.06	1	126992.93
17	94657.16	145077.58	282574.31	0	125370.37
18	91749.16	114175.79	294919.57	2	124266.90
19	86419.70	153514.11	0.00	0	122776.86
20	76253.86	113867.30	298664.47	1	118474.03
21	78389.47	153773.43	299737.29	0	111313.02
22	73994.56	122782.75	303319.26	2	110352.25
23	67532.53	105751.03	304768.73	2	108733.99
24	77044.01	99281.34	140574.81	0	108552.04
25	64664.71	139553.16	137962.62	1	107404.34
26	75328.87	144135.98	134050.07	2	105733.54
27	72107.60	127864.55	353183.81	0	105008.31
28	66051.52	182645.56	118148.20	2	103282.38
29	65605.48	153032.06	107138.38	0	101004.64
30	61994.48	115641.28	91131.24	2	99937.59
31	61136.38	152701.92	88218.23	0	97483.56
32	63408.86	129219.61	46085.25	1	97427.84
33	55493.95	103057.49	214634.81	2	96778.92

	R&D Spend	Administration	Marketing Spend	State	Profit
34	46426.07	157693.92	210797.67	1	96712.80
35	46014.02	85047.44	205517.64	0	96479.51
36	28663.76	127056.21	201126.82	2	90708.19
37	44069.95	51283.14	197029.42	1	89949.14
38	20229.59	65947.93	185265.10	0	81229.06
39	38558.51	82982.09	174999.30	1	81005.76
40	28754.33	118546.05	172795.67	1	78239.91
41	27892.92	84710.77	164470.71	2	77798.83
42	23640.93	96189.63	148001.11	1	71498.49
43	15505.73	127382.30	35534.17	0	69758.98
44	22177.74	154806.14	28334.72	1	65200.33
45	1000.23	124153.04	1903.93	0	64926.08
46	1315.46	115816.21	297114.46	2	49490.75
47	0.00	135426.92	0.00	1	42559.73
48	542.05	51743.15	0.00	0	35673.41
49	0.00	116983.80	45173.06	1	14681.40

In [59]:

```
df['R&D Spend'].plot(kind = 'hist', figsize=(10,5))
```

Out[59]:

<AxesSubplot:ylabel='Frequency'>

In [60]:

```
df['Administration'].plot(kind = 'hist', figsize=(10,5))
```

Out[60]:

<AxesSubplot:ylabel='Frequency'>

In [61]:

```
df['Marketing Spend'].plot(kind = 'hist', figsize=(10,5))
```

Out[61]:

<AxesSubplot:ylabel='Frequency'>

In [62]:

```
df['Profit'].plot(kind = 'hist', figsize=(10,5))
```

Out[62]:

<AxesSubplot:ylabel='Frequency'>

Наши данные можно назвать весьма симметричными, поэтому не будем заниматься процедурой логарифмирования.

In [63]:

```
df.isnull().sum()
```

Out[63]:

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0

dtype: int64

Simple Linear Regression

Для начала проверим корреляцию между переменными для того, чтобы отобрать фактор для модели.

In [64]:

```
# Cheking correlations
correlation = df.corr()
correlation.style.background_gradient(cmap='coolwarm')
```

Out[64]:

	R&D Spend	Administration	Marketing Spend	State	Profit
R&D Spend	1.000000	0.241955	0.724248	0.037930	0.972900
Administration	0.241955	1.000000	-0.032154	0.003026	0.200717
Marketing Spend	0.724248	-0.032154	1.000000	0.137777	0.747766
State	0.037930	0.003026	0.137777	1.000000	0.048471
Profit	0.972900	0.200717	0.747766	0.048471	1.000000

Для построение однофакторной модели имеет смысл брать R&D Spend. Также можно посмотреть на результаты модели с Marketing Spend.

```
In [65]:
```

```
scatter_matrix(df, alpha=0.2, figsize=(20, 20))
plt.show()
```


Построим линейную регрессию с R&D Spend в качестве X и Profit в качестве Y.

```
In [66]:
```

```
# Splitting the dataset into the Training set and Test set
X = df.iloc[:, 0:3].values
y = df.iloc[:, 4].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st ate=0)
```

In [67]:

```
# Fitting Simple Linear Regression to the Training set (R&D Spend)
from sklearn.linear_model import LinearRegression
sr = LinearRegression().fit(X_train[:, 0:1], y_train)
```

In [68]:

```
# Getting parameters
sr.coef_, sr.intercept_
```

Out[68]:

(array([0.8516228]), 48416.297661385026)

In [69]:

```
# Predicting the Test set results
y_pred = sr.predict(X_test[:, 0:1])
```

In [70]:

```
# Coefficient of determination R^2
sr.score(X_train[:, 0:1], y_train), sr.score(X_test[:, 0:1], y_test)
```

Out[70]:

(0.9449589778363044, 0.9464587607787219)

In [71]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, sr.predict(X_train[:, 0:1])), mean_squared_error(y_test, y_pred)
```

Out[71]:

(90128072.57027796, 68473440.71905932)

In [72]:

```
# Visualising the Training set results
plt.scatter(X_train[:,0], y_train, color = 'red')
plt.plot(X_train[:,0], sr.predict(X_train[:, 0:1]), 'bo')
plt.title('Profit vs R&D Spend (Training set)')
plt.xlabel('R&D Spend')
plt.ylabel('Profit')
plt.show()
```


In [73]:

```
# Visualising the Test set results
plt.scatter(X_test[:,0], y_test, color = 'red')
plt.plot(X_test[:,0], sr.predict(X_test[:, 0:1]), 'bo')
plt.title('Profit vs R&D Spend(Training set)')
plt.xlabel('R&D Spend')
plt.ylabel('Profit')
plt.show()
```


Исходя из результатов коэф. детерминации, можно сделать вывод, что построенная модель отличного качества.

Построим линейную регрессию с Marketing Spend в качестве X и Profit в качестве Y.

```
In [74]:
```

```
# Fitting Simple Linear Regression to the Training set (R&D Spend)
from sklearn.linear_model import LinearRegression
sr2 = LinearRegression().fit(X_train[:, 2:3], y_train)
```

In [75]:

```
# Getting parameters
sr2.coef_, sr2.intercept_
```

Out[75]:

(array([0.24606293]), 59707.03350741453)

In [76]:

```
# Predicting the Test set results
y_pred = sr2.predict(X_test[:, 2:3])
```

In [77]:

```
# Coefficient of determination R^2
sr2.score(X_train[:, 2:3], y_train), sr2.score(X_test[:, 2:3], y_test)
```

Out[77]:

(0.5636026973161414, 0.49039262125463223)

In [78]:

```
# Mean squared error
from sklearn.metrics import mean_squared_error
mean_squared_error(y_train, sr2.predict(X_train[:, 2:3])), mean_squared_error(y_te
st, y_pred)
```

Out[78]:

(714587887.7174464, 651732592.4097881)

In [79]:

```
# Visualising the Training set results
plt.scatter(X_train[:,2], y_train, color = 'red')
plt.plot(X_train[:,2], sr2.predict(X_train[:, 2:3]), 'bo')
plt.title('Profit vs R&D Spend (Training set)')
plt.xlabel('R&D Spend')
plt.ylabel('Profit')
plt.show()
```


In [80]:

```
# Visualising the Test set results
plt.scatter(X_test[:,2], y_test, color = 'red')
plt.plot(X_test[:,2], sr2.predict(X_test[:, 2:3]), 'bo')
plt.title('Profit vs R&D Spend(Training set)')
plt.xlabel('R&D Spend')
plt.ylabel('Profit')
plt.show()
```


Исходя из результатов коэф. детерминации, можно сделать вывод, что построенная модель значительно уступает той, что была построена на основе R&D Spend в качестве переменной X. Именно ее стоит рассматривать, как пригодную для прогнозирования модель.

ВЫВОД: для однофакторной модели (R&D Spend): R^2 = 0.94, для однофакторной модели (Marketing Spend): R^2 = 0.56. Первая модель значительно превосходит в качестве.

Задание 2

KNN

In [81]:

```
# Импортируем данные из датасета
df2 = pd.read_csv('exam_2.csv', sep = ';')
```

In [82]:

df2

Out[82]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
•••					
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

Data Preprocessing

In [83]:

```
df2 = df2.iloc[:, 1:]
df2
```

Out[83]:

	Gender	Age	EstimatedSalary	Purchased
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0
395	Female	46	41000	1
396	Male	51	23000	1
397	Female	50	20000	1
398	Male	36	33000	0
399	Female	49	36000	1

400 rows × 4 columns

Избавимся от выбросов в наших данных

In [84]:

```
# Function Outliers
def outliers(df):
    num var = list(df._get_numeric_data().columns)
    for col names in num var:
        df[col names] = df[col names].apply(lambda y: df[col names].mean()-3*df[col
l names].std()
                             if y < df[col_names].mean()-3*df[col_names].std() else</pre>
y)
        df[col_names] = df[col_names].apply(lambda y: df[col_names].mean()+3*df[col_names]
l names].std()
                             if y > df[col names].mean()+3*df[col names].std() else
y)
    return(df)
# Outliers
df2 = outliers(df2)
df2.describe()
```

Out[84]:

	Age	EstimatedSalary	Purchased
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

Преобразуем факторную переменную Gender

In [85]:

```
# Function Encoding
def encoding_char(x):
    char_var = list(set(x.columns) - set(x._get_numeric_data().columns))
    for col_names in char_var:
        f = pd.factorize(x[col_names])
        x[col_names] = pd.factorize(x[col_names])[0]
    return(x)

# Encoding categorical data
df2 = encoding_char(df2)
df2
```

Out[85]:

	Gender	Age	EstimatedSalary	Purchased
0	0	19	19000	0
1	0	35	20000	0
2	1	26	43000	0
3	1	27	57000	0
4	0	19	76000	0
395	1	46	41000	1
396	0	51	23000	1
397	1	50	20000	1
398	0	36	33000	0
399	1	49	36000	1

400 rows × 4 columns

Построим графики переменных для того, чтобы увидеть их расспределение.

In [86]:

```
scatter_matrix(df2, alpha=0.2, figsize=(20, 20))
plt.show()
```


Наши данные можно назвать весьма симметричными, поэтому не будем заниматься процедурой логарифмирования

```
In [87]:
```

df2

Out[87]:

	Gender	Age	EstimatedSalary	Purchased
0	0	19	19000	0
1	0	35	20000	0
2	1	26	43000	0
3	1	27	57000	0
4	0	19	76000	0
395	1	46	41000	1
396	0	51	23000	1
397	1	50	20000	1
398	0	36	33000	0
399	1	49	36000	1

400 rows × 4 columns

K-Nearest Neighbors (K-NN)

Приступаем к построении модели, мы будем предсказывать покупку (Purchased)

In [90]:

```
# Splitting the dataset into the Training set and Test set
X = df2.iloc[:, :-1].values
y = df2.iloc[:, -1].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_st ate=0)
```

Для данной модели очень важно подобрать оптимальное значение к

In [92]:

```
# Optimal K
from sklearn.neighbors import KNeighborsClassifier
error_rate = []
for i in range(1,50):
     knn = KNeighborsClassifier(n neighbors=i)
     knn.fit(X train,y train)
     pred i = \overline{knn.predict(X_test)}
     error rate.append(np.mean(pred i != y test))
plt.figure(figsize=(10,6))
plt.plot(range(1,50),error rate,color='blue', linestyle='dashed',
         marker='o', markerfacecolor='red', markersize=10)
plt.title('Error Rate vs. K Value')
plt.xlabel('K')
plt.ylabel('Error Rate')
print("Minimum error:-",min(error_rate),"at K =",error_rate.index(min(error_rate))
)))
```

Minimum error: 0.1125 at K = 10

Выберем k = 10

In [94]:

```
# Построим модели KNN для всех переменных.
knn = KNeighborsClassifier(n_neighbors = 12, metric = 'minkowski', p = 2).fit(X_train, y_train)
```

In [95]:

```
# Predicting the Test set results
y_pred = knn.predict(X_test)
knn.score(X_test,y_test)
```

Out[95]:

0.8875

Как мы видим точность данной модели достаточно высока (0,89), т.е. ее можно использовать в прогнозах.

In [96]:

```
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
```

[[56 2] [7 15]]

Как результат, мы получили всего 9 неверных результатов исходя из нашей матрицы Confusion Matrix.

ВЫВОД: построенная на основе всех 3 переменных модель KNN показала отличнй результат.Показатель ее точности равен практически 89%, также мы имеем всего 9 неверных результатов (7-ложно положительных и 2 ложно отрицательных)