

APPENDIX B

The Preliminary Amendment amends the Specification to read as follows:

TABLE 2.1

Assume B = 6 lots per batch and WafersPerLot = 25 wafers per lot.

In operation (1), WaferStarts = B*(WafersPerLot) = 6*25 = 150 wafers

In operation (2), assume remaining wafers starts (RW_T) > 150 wafers, thus WaferStarts is unchanged

In operation (3), assume previous Starts = 0, thus Starts = 0 + WaferStarts = 150

In operation (4), assume product P_i is chosen to start all 150 wafers

In operation (5), calculate consumption time of 150 wafers of product P_i

In Figure 6, product P_i has a processing time $D_{i,g} = 2$ minutes per wafer at the first "etcher" bottleneck occurrence at step 4.

When 150 wafers are released into the manufacturing line, they will immediately become part of bottleneck segment 1.

The virtual WIP that will be added to segment 1 is derived by the formula on line 12 of page 22, substituting WaferStarts as the additional WIP in segment 1:

 $V_{i,g} = (D_{i,g} / M) * WaferStarts$

Assume M = 2 machines.

Then consumption time for 150 WaferStarts at the first bottleneck occurrence is:

Consumption Time = (2/2) * 150 = 150 minutes

Thus operation [(4)] (5) increases the delta VWIP (DV_i) for this bottleneck by 150 minutes:

 $DV_i = DV_i + 150$