

Elektrostatika. Formulu lapa

Apzīmējums	Mērījumu priekšmets	SI mērvienība	Formulas
e	Elementārlādiņš	C	$e=1,602*10^{-19}$
q	(Kop-)lādiņš	С	$q=\mathbb{N}st e$
F	Lādiņa spēks	N	$F=k q_1q_2 :(arepsilon*R^2)=\ ec Eq$
k	Kulona konstante	$ m N^*m/C^2$	$k = 8,99*10^9$
ε	Vides rel. dielektriskā caurlaidība	nav	$arepsilon_{ m gaisar{a}}pprox arepsilon_{ m vakuumar{a}}=1$
R	Attālums starp daļiņām laukā	m	$R = \sqrt{k q_1q_2 :(\varepsilon*F)}$
$ec{F}$	Rezultējošais i no M lādiņu spēks	N	$ec{F} = \sum_{i=1}^N ec{F}_i$
a	Paātrinājums	$ m m/s^2$	$a=F/m$, kur m ir massa ${ m kg}$
$ec{E}$	Elektriskā lauka intensitāte	$N/C \Leftrightarrow V/m$	$ec{E}=ec{F}/q=kst Q:(arepsilonst\ R^2)=U/d;ec{E}\geq 0$
Q	Elektriskā lauka avota lādiņš	C	$Q=ec{E}*arepsilon*R^2/k=ec{F}/ec{E}$
θ	Leņķis starp $ec{E}_{ ext{kop.}}$ un asi, paralēli kādai $ec{E}_i$	۰	$ heta = rccos(ec{E}_i/ec{E}_{ m kop.})$
d	Attālums starp plāksnēm	m	$d=U/ec{E}=C*S/arepsilon_0$
s	Lādiņa ceļš	m	$s=v^2/2a$
v	Lādiņa ātrums	m/s	$v=\sqrt{2as}$
U	Spriegums	V	$U=ec{E}*d=q/C$
$arepsilon_0$	Dielektriskā konstante	F/m	$arepsilon_0 = 8,85*10^{-12}$
C	Kapacitāte	F	$C=arepsilon st arepsilon_0 st S/d = q/U$
q	Lādiņš kondensatorā	C	q = C * U
S	Kondensatora plāksnes laukums	m^2	$S=C*d/arepsilon_0$
A	Darbs	J	$A = F*d*\cos\alpha$
d	Daļiņas pārvietojums	m	$d = A/(F*\cos\alpha)$
ϕ	Elektriskais potenciāls	V	$W_{ m pot.}/q$

Elektrostatika. Formulu lapa

Apzīmējums	Mērījumu priekšmets	SI mērvienība	Formulas
$W_{ m pot.}$	Lādēta ķerm. pot. en. homog. laukā	J	$W_{ m pot.} = q*E*d = q*U$
E	Potenciāls homogēnā laukā	J	E=U/d
ϕ	Elektriskais potenciāls punktam	V	$\phi = k*q/R$
E	Enerģija kondesnatorā	J	$E=0,5CV^2$
$W_{ m kond.}$	Kondensatorā uzkrāta el. lauka en.	J	$W_{ m kond.}=qU/2= \ { m C}U^2/2=q/(2C)$
F	Pievilkšanas spēks starp virsmām	N	F=q*E/2

Pieraksts	Mērvienības prefikss	Papildreizinātājs	$oldsymbol{E}$ -formāts
Tera	Т	10^{12}	E12
Giga	G	10^{9}	E9
Mega	M	10^{6}	E6
Kilo	k	10^{3}	E3
Hekto	h	10^{2}	E2
Deka	da	10^{1}	E1
Deci	d	10^{-1}	E-1
Centri	С	10^{-2}	E-2
Mili	m	10^{-3}	E-3
Mikro	μ	10^{-6}	E-6
Nano	n	10^{-9}	E-9
Piko	p	10^{-12}	E-12

$$...,5678*10^{+n} = ..._{\bigcirc}5678 \ \leftarrow n ext{ reizes}$$
 $1234,...*10^{-n} = 1234_{\bigcirc}... \ \rightarrow n ext{ reizes}$

😇 Kā to dara PRO:

$$..., 5678*10^{+n} = ... 5678*10^{n-k} \ _{\leftarrow k \text{ reizes}} \ 1234,...*10^{-n} = 1234,...*10^{k-n} \ _{\rightarrow k \text{ reizes}}$$

Elektrostatika. Formulu lapa 3