Computer Graphics

Prof. Feng Liu Fall 2016

http://www.cs.pdx.edu/~fliu/courses/cs447/

10/19/2016

Last time

- More 2D Transformations
- Homogeneous Coordinates
- □ 3D Transformations
- □ The Viewing Pipeline

Today

- Perspective projection
- ☐ Homework 2 due in class today
- □ In-class Middle-Term
 - Wednesday, Nov. 2
 - Close-book exam
 - Notes on 1 page of A4 or Letter size paper
 - To-know list available online

Graphics Pipeline

Defining Cameras

- ☐ View Space is the *camera's* local coordinates
 - The camera is in some location
 - The camera is looking in some direction
 - It is tilted in some orientation
- It is inconvenient to model everything in terms of View Space
 - Biggest problem is that the camera might be moving we don't want to have to explicitly move every object too
- We specify the camera, and hence View Space, with respect to World Space
 - How can we specify the camera?

Specifying a View

- The location of View Space with respect to World Space
 - A point in World Space for the origin of View Space, (e_x, e_y, e_z)
- □ The direction in which we are looking: gaze direction
 - Specified as a vector: (g_x, g_y, g_z)
 - This vector will be normal to the image plane
- A direction that we want to appear up in the image
 - $lacktriangleq (up_x, up_y, up_z)$, this vector does not have to be perpendicular to g
- □ We also need the size of the view volume *l,r,t,b,n,f*
 - Specified with respect to the eye and image plane, not the world

General Orthographic

Getting there...

- We wish to end up in View Space, so we need a coordinate system with:
 - A vector toward the viewer, View Space z
 - A vector pointing right in the image plane, View Space x
 - A vector pointing up in the image plane, View Space y
 - The origin at the eye, View Space (0,0,0)
- We must:
 - Say what each of these vectors are in World Space
 - Transform points from the World Space into View Space
 - We can then apply the orthographic projection to get to Canonical View Space, and so on

View Space in World Space

- □ Given our camera definition, in World Space:
 - Where is the origin of view space? It will transform into $(0,0,0)_{view}$
 - What is the normal to the view plane, w? It will become z_{view}
 - How do we find the right vector, Ω ? It will become x_{view}
 - How do we find the up vector, v? It will become y_{view}
- Given these points, how do we do the transformation?

View Space

- \square The origin is at the eye: (e_x, e_y, e_z)
- \Box The normal vector is the normalized viewing direction $\mathbf{w} = -\hat{\mathbf{g}}$
- ☐ We know which way up should be, and we know we have a right handed system, so $u=up\times w$, normalized: $\hat{\mathbf{u}}$
- ☐ We have two vectors in a right handed system, so to get the third: $v=w\times u$

World to View

- \square We must translate so the origin is at (e_x, e_y, e_z)
- □ To complete the transformation we need to do a rotation
- After this rotation:
 - The direction u in world space should be the direction (1,0,0) in view space
 - The vector ν should be (0,1,0)
 - The vector w should be (0,0,1)
- ☐ The matrix that does the rotation is:
 - It's a "change of basis" matrix

$$\begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ w_{x} & w_{y} & w_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

All Together

We apply a translation and then a rotation, so the result is:

$$\mathbf{M}_{world \rightarrow view} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_y & v_z & 0 \\ w_x & w_y & w_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} u_x & u_y & u_z & -\mathbf{u} \bullet \mathbf{e} \\ v_x & v_y & v_z & -\mathbf{v} \bullet \mathbf{e} \\ w_x & w_y & w_z & -\mathbf{w} \bullet \mathbf{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

☐ And to go all the way from world to screen:

$$\mathbf{M}_{world \rightarrow canonical} = \mathbf{M}_{view \rightarrow canonical} \mathbf{M}_{world \rightarrow view}$$
 $\mathbf{X}_{canonical} = \mathbf{M}_{world \rightarrow canonical} \mathbf{X}_{world}$

Graphics Pipeline

OpenGL and Transformations

- OpenGL internally stores two matrices that control viewing of the scene
 - The GL_MODELVIEW matrix is intended to capture all the transformations up to view space
 - The GL_PROJECTION matrix captures the view to canonical conversion
- You also specify the mapping from the canonical view volume into window space
 - Directly through a glViewport function call
- Matrix calls, such as glRotate, multiply some matrix M onto the current matrix C, resulting in CM
 - Set view transformation first, then set transformations from local to world space - last one set is first one applied
 - This is the convenient way for modeling, as we will see

Graphics Pipeline

GL_MODELVIEW GL_PROJECTION glViewport

OpenGL Camera

- The default OpenGL image plane has u aligned with the x axis, v aligned with y, and n aligned with z
 - Means the default camera looks along the negative z axis
 - Makes it easy to do 2D drawing (no need for any view transformation)
- ☐ glortho(...) sets the view->canonical matrix
 - Modifies the GL PROJECTION matrix
- ☐ gluLookAt (...) sets the world->view matrix
 - Takes an image center point, a point along the viewing direction and an up vector
 - Multiplies a world->view matrix onto the current GL_MODELVIEW matrix
 - You could do this yourself, using glMultMatrix (...) with the matrix from the previous slides

Typical Usage

```
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(l, r, b, t, n, f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(ex,ey,ez,cx,cy,cx,ux,uy,uz);
```

- ☐ GLU functions, such as gluLookAt (...), are not part of the core OpenGL library
 - They can be implemented with other core OpenGL commands
 - For example, gluLookAt(...) uses glMultMatrix(...) with the matrix from the previous slides
 - They are not dependent on a particular graphics card

Left vs Right Handed View Space

- You can define **u** as right, **v** as up, and **n** as toward the viewer: a right handed system $u \times v = w$
 - Advantage: Standard mathematical way of doing things
- ☐ You can also define u as right, v as up and n as into the scene: a left handed system v×u=w
 - Advantage: Bigger n values mean points are further away
- OpenGL is right handed
- Many older systems, notably the Renderman standard developed by Pixar, are left handed

Graphics Pipeline

Review

- ☐ View Space is a coordinate system with the viewer looking down the -z axis, with x to the right and y up
- The World->View transformation takes points in world space and converts them into points in view space
- The Projection matrix, or View->Canonical matrix, takes points in view space and converts them into points in Canonical View Space
 - Canonical View Space is a coordinate system with the viewer looking along -z, x to the right, y up, and everything to be drawn inside the cube [-1,1]x[-1,1]x[-1,1] using parallel projection

Perspective Projection

Abstract camera model box with a small hole in it Pinhole cameras work in practice

Distant Objects Are Smaller

Parallel lines meet

Vanishing points

- □ Each set of parallel lines (=direction) meets at a different point: The vanishing point for this direction
 - Classic artistic perspective is 3-point perspective
- Sets of parallel lines on the same plane lead to collinear vanishing points: the horizon for that plane
- □ Good way to spot faked images

Basic Perspective Projection

- We are going to temporarily ignore canonical view space, and go straight from view to window
- Assume you have transformed to view space, with x to the right, y up, and z back toward the viewer
- Assume the origin of view space is at the center of projection (the eye)
- □ Define a focal distance, d, and put the image plane there (note d is negative)
 - You can define d to control the size of the image

Basic Perspective Projection

- \square If you know $P(x_v, y_v, z_v)$ and d, what is $P(x_s, y_s)$?
 - Where does a point in view space end up on the screen?

Basic Case

Similar triangles gives:

$$\frac{x_s}{d} = \frac{x_v}{z_v} \qquad \frac{y_s}{d} = \frac{y_v}{z_v}$$

Simple Perspective Transformation

- Using homogeneous coordinates we can write:
 - Our next big advantage to homogeneous coordinates

$$\begin{bmatrix} x_s \\ y_s \\ d \end{bmatrix} \equiv \begin{bmatrix} x_v \\ y_v \\ z_v \\ z_v / d \end{bmatrix}$$

$$\begin{bmatrix} x_s \\ y_s \\ d \end{bmatrix} \equiv \begin{bmatrix} x_v \\ y_v \\ z_v \\ z_v \end{bmatrix} \qquad \mathbf{P}_s = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1/d & 0 \end{bmatrix} \mathbf{P}_v$$

Parallel Lines Meet?

- \square Parallel lines are of the form: $\mathbf{x} = \mathbf{x}_0 + t\mathbf{d}$
 - Parametric form: \mathbf{x}_0 is a point on the line, t is a scalar (distance along the line from \mathbf{x}_0) and \mathbf{d} is the direction of the line (unit vector)
 - Different x₀ give different parallel lines
- Transform and go from homogeneous to regular:

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix} + t \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{f} & 0 \end{bmatrix} \begin{bmatrix} x_d \\ y_d \\ z_d \\ 0 \end{bmatrix} = f \begin{bmatrix} \frac{x_0 + tx_d}{z_0 + tz_d} \\ \frac{y_0 + ty_d}{z_0 + tz_d} \\ 1 \end{bmatrix}$$
The it can take a set as a factor of the set of the set

General Perspective

- The basic equations we have seen give a flavor of what happens, but they are insufficient for all applications
- They do not get us to a Canonical View Volume
- They make assumptions about the viewing conditions
- □ To get to a Canonical Volume, we need a Perspective Volume ...

Perspective View Volume

- Recall the orthographic view volume, defined by a near, far, left, right, top and bottom plane
- The perspective view volume is also defined by near, far, left, right, top and bottom planes - the *clip planes*
 - Near and far planes are parallel to the image plane: $z_v = n$, $z_v = f$
 - Other planes all pass through the center of projection (the origin of view space)
 - The left and right planes intersect the image plane in vertical lines
 - The top and bottom planes intersect in horizontal lines

Clipping Planes

Where is the Image Plane?

- Notice that it doesn't really matter where the image plane is located, once you define the view volume
 - You can move it forward and backward along the z axis and still get the same image, only scaled
- The left/right/top/bottom planes are defined according to where they cut the near clip plane
- Or, define the left/right and top/bottom clip planes by the field of view

Field of View

Assumes a symmetric view volume

Perspective Parameters

- We have seen several different ways to describe a perspective camera
 - Focal distance, Field of View, Clipping planes
- The most general is clipping planes they directly describe the region of space you are viewing
- For most graphics applications, field of view is the most convenient
 - It is image size invariant having specified the field of view, what you see does not depend on the image size
- You can convert one thing to another

Focal Distance to FOV

- You must have the image size to do this conversion
 - Why? Same d, different image size, different FOV

OpenGL

- ☐ gluPerspective(...)
 - Field of view in the y direction, FOV, (vertical field-of-view)
 - Aspect ratio, a, should match window aspect ratio
 - Near and far clipping planes, n and f
 - Defines a symmetric view volume
- □ glFrustum(...)
 - Give the near and far clip plane, and places where the other clip planes cross the near plane
 - Defines the general case
 - Used for stereo viewing, mostly

gluPerspective to glFrustum

- □ As noted previously, glu functions don't add basic functionality, they are just more convenient
 - So how does gluPerspective convert to glFrustum?
 - Symmetric, so only need t and /

Perspective Projection Matrices

- We want a matrix that will take points in our perspective view volume and transform them into the orthographic view volume
 - This matrix will go in our pipeline before an orthographic projection matrix

Mapping Lines

- We want to map all the lines through the center of projection to parallel lines
 - This converts the perspective case to the orthographic case, we can use all our existing methods
- The relative intersection points of lines with the near clip plane should not change
- ☐ The matrix that does this looks like the matrix for our simple perspective case

General Perspective

$$\mathbf{M}_{P} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & (n+f)/n & -f \\ 0 & 0 & 1/n & 0 \end{bmatrix} \equiv \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- ☐ This matrix leaves points with *z=n* unchanged
- It is just like the simple projection matrix, but it does some extra things to z to map the depth properly
- We can multiply a homogenous matrix by any number without changing the final point, so the two matrices above have the same effect

Complete Perspective Projection

☐ After applying the perspective matrix, we map the orthographic view volume to the canonical view volume:

$$\mathbf{M}_{view->canonical} = \mathbf{M}_{O} \mathbf{M}_{P} = \begin{bmatrix} \frac{2}{(r-l)} & 0 & 0 & \frac{-(r+l)}{(r-l)} \\ 0 & \frac{2}{(t-b)} & 0 & \frac{-(t+b)}{(t-b)} \\ 0 & 0 & \frac{2}{(n-f)} & \frac{-(n+f)}{(n-f)} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & (n+f) & -nf \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{M}_{world \rightarrow canonical} = \mathbf{M}_{view \rightarrow canonical} \mathbf{M}_{world \rightarrow view}$$

$$\mathbf{x}_{canonical} = \mathbf{M}_{world \rightarrow canonical} \mathbf{x}_{world}$$

Near/Far and Depth Resolution

- It may seem sensible to specify a very near clipping plane and a very far clipping plane
 - Sure to contain entire scene
- But, a bad idea:
 - OpenGL only has a finite number of bits to store screen depth
 - Too large a range reduces resolution in depth wrong thing may be considered "in front"
 - See Shirley for a more complete explanation
- Always place the near plane as far from the viewer as possible, and the far plane as close as possible

OpenGL Perspective Projection

- For OpenGL you give the distance to the near and far clipping planes
- ☐ The total perspective projection matrix resulting from a glFrustum call is:

$$\mathbf{M}_{OpenGL} = \begin{bmatrix} \frac{2|n|}{(r-l)} & 0 & \frac{(r+l)}{(r-l)} & 0\\ 0 & \frac{2|n|}{(t-b)} & \frac{(t+b)}{(t-b)} & 0\\ 0 & 0 & \frac{\left(|n|+|f|\right)}{\left(|n|-|f|\right)} & \frac{2|f||n|}{\left(|n|-|f|\right)}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Next Time

- Clipping
- □ Rasterization