Workshop 3: solutions for week 4

1. I claim that f'(1) = 5. Proof: Given any $\varepsilon > 0$, let $\delta = \varepsilon/2$. Then for all $x \in \mathbb{R}$ with $0 < |x - 1| < \delta$,

$$\left| \frac{f(x) - f(1)}{x - 1} - 5 \right| = \left| \frac{2x^2 + x - 3}{x - 1} - 5 \right|$$

$$= \left| (2x + 3) - 5 \right|$$

$$= 2|x - 1|$$

$$< 2\delta$$

$$= \varepsilon$$

Hence

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 5,$$

so f is differentiable at 1 (with f'(1) = 5).

- 2. (a) $\forall x \in D, f(x) \leq f(c)$. D could be any set. In particular, it need not be a subset of \mathbb{R} .
 - (b) We can deduce that $f'(b) \ge 0$. Proof: Let x_n be any sequence in [a, b) converging to b. Since

$$\lim_{x \to b} \frac{f(x) - f(b)}{x - b} = f'(b),$$

the sequence

$$z_n = \frac{f(x_n) - f(b)}{x_n - b} \to f'(b)$$

(Theorem 2.14). But f attains a maximum at b, so for all $n \in \mathbb{Z}^+$, $f(x_n) \le f(b)$. Further, $x_n \in [a,b)$ so $x_n < b$. Hence, for all n, $f(x_n) - f(b) \le 0$ and $x_n - b < 0$, so $z_n \ge 0$. Hence, $f'(b) = \lim z_n \ge 0$ (Proposition 1.7).

3. (a)

(b) I claim that f is differentiable at 0, and f'(0) = 1.

Proof: By Theorem 2.14, it suffices to show that, for all sequences (x_n) in (0,1] such that $x_n \to 0$,

$$\frac{f(x_n) - f(0)}{x_n - 0} = \frac{f(x_n)}{x_n} \to 1.$$

To prove this, note that, for all $x \in (0,1)$, there exists some (unique) $n \in \mathbb{Z}^+$ such that $x \in (1/(n+1), 1/n]$. Then

$$f(x) = \frac{1}{n} \ge x,$$

and

$$x > \frac{1}{n+1}$$

$$\Rightarrow \frac{1}{x} < n+1$$

$$\Rightarrow n > \frac{1}{x} - 1 = \frac{1-x}{x}$$

$$\Rightarrow f(x) = \frac{1}{n} < \frac{x}{1-x}.$$

Hence, for all $x \in (0, 1)$,

$$x \le f(x) < \frac{x}{1 - x}.$$

[Aside: can you see this on your graph? Add the curves y = x and y = x/(1-x).] Hence

$$1 \le \frac{f(x_n)}{x_n} < \frac{1}{1 - x_n}$$

and so $f(x_n)/x_n \to 1$ by the Squeeze Rule and the Algebra of Limits.

- (c) Bounded? Yes, above by 1, below by 0
 - Differentiable? No. for example, it's discontinuous at 1/2, so can't be differentiable at 1/2.
 - Continuous? No, as already observed.
 - Surjective? No. Since it's bounded and has codomain \mathbb{R} , it can't be surjective. For example, it never attains the value -2.
 - Injective? No. For example f(3/4) = f(1) = 1.
 - Monotonic? Yes, it's increasing. Note that this means that for all $x, y \in [0, 1]$, if x < y then $f(x) \le f(y)$. (Note the non-strict inequality.)