DIP Assignment - 3

Question 2 Solution

- 1. Created predictions on frequencies of 40, 60 and 80 in the results. While running the code parameter of cutoff_frequency needs to be given.
- 2. Padding has been done accordingly as required and made image larger
- 3. Log absolute Fourier transform for all filtered and original image are displayed as required
- 4. Comparision of results and observations are marked at the end

Original Image

Image Fourier Transform

A) Ideal Low pass filter with cutoff frequency

1. Frequency = 40

2. Frequency = 60

3. Frequency = 80

B) Gaussian Low pass filter with cutoff frequency

1. Frequency = **40**

2. Frequency = 60

3. Frequency = 80

Observations

Increasing cut-off frequency (ideal low pass filter) or sigma (Gaussian low pass filter) makes higher frequency components visible.

Ideal Low Pass Filter:

- 1. Presence of ringing artifacts near sharp transitions in images.
- 2. Result of complete elimination of high frequencies beyond cut-off frequency due to ringing artifacts.

Gaussian Low Pass Filter:

- 1. Absence of ringing artifacts.
- 2. Weakens higher frequencies instead of complete elimination.