平成 27 年度 博士前期課程 入試問題 (解答)

1 アルゴリズムとプログラミング

(1-1)

【出力結果】

1 4 8

1 2 3

3 3 3

3

(1-2)

ループが 1 回実行されるたびに探索範囲が $\frac{1}{2}$ となるので,ループが実行される最大の回数を m とすると, $2^m \geq N$ を満たす m のうち最小の整数が答えとなる.

$$2^{m} \ge 1000$$
$$\log_{2} 2^{m} \ge \log_{2} 1000$$
$$m \ge 9.97$$
$$\therefore m_{ans} = 10$$

よって,10回

(1-3)

A[1] = 1, A[2] = 2, A[3] = 3, A[4] = 4, N = 4, x = 4 とする.

すると, (left, mid, right) の遷移が,

(1, 2, 4)

(2, 3, 4)

(3, 3, 4)

(3, 3, 4)

٠٠٠

のように (3,3,4) で無限ループが発生し、プログラムが終了せず"正しく結果が出力されない".

(2-1)

sack[i][j]	j=0	j=1	j=2	j=3	j=4	j=5	j=6	j=7	j=8	j=9	j=10	j=11	j=12	j=13	j=14	j=15
i=0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
i=1	0	-1	20	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
i=2	0	-1	20	-1	-1	-1	30	-1	50	-1	-1	-1	-1	-1	-1	-1
i=3	0	-1	20	-1	-1	-1	30	-1	50	-1	-1	-1	45	-1	65	-1
i=4	0	-1	25	-1	45	-1	30	-1	55	-1	75	-1	45	-1	70	-1

(2-2)

- (ア) sack[i][index] value[i]
- (イ) sack[i-1][index size[i]] とか

(7) sack[i][index]

(⟨⟨) sack[i-1][index - size[i]] + value[i]

など、sack[i][index] - value[i] == sack[i-1][index - size[i]] と等価になるような式ならなんでも

2 計算機システムとシステムプログラム

(1-1)

0.625 をどんどん 2 倍にしていく.

- 0.625
- 1.25 ... 1
- 0.5 ... 0
- 1.0 ... 1

よって、
$$0.625 = [0.101]_2$$

(1-2)

すべて、 $(-1)^s \times 2^{e-15} \times [1.f]_2$ の形に変換する.

- (b) 5
 $$\begin{split} 5 &= [101]_2 \\ 5 &= (-1)^0 \times 2^{17-15} \times [1.01]_2 \ \, \& \, \flat \, , \\ s &= 0, \ e = 17 = 10001_2, \ f = 0100000000_2 \\ \& &> & \checkmark, \ \, \textbf{0100010100000000} \end{split}$$
- (c) 0.125 $0.125 = [0.001]_2$ $0.125 = (-1)^0 \times 2^{12-15} \times [1.0]_2 \ \sharp \ \mathfrak{h},$ $s = 0, \ e = 12 = 01100_2, \ f = 00000000000_2$ $\sharp \supset \mathcal{T}, \ 0011000000000000$
- (d) 0.1

 $0.1 = [0.0001100110011001...]_2$ $[0.0001100110011001]_2 = (-1)^0 \times 2^{11-15} \times [1.100110011001...]_2$ ここで、無限小数となるので、仮数部の最下位ビットが 0 か 1 かを判別する.

- (a) 最下位ビットが 0 の時 $(-1)^0 \times 2^{11-15} \times [1.1001100110]_2 = 0.0999756$ |0.1-0.0999756| = 0.0000244
- (b) 最下位ビットが1の時 $(-1)^0 \times 2^{11-15} \times [1.1001100111]_2 = 0.100037 \\ |0.1-0.100037| = 0.000037$

よって、最下位ビットは誤差の小さかった 0 となる。 $s=0,\ e=11=01011_2,\ f=1001100110_2$ よって、0010111001100110

(2-1)

読み書きの速度 or 容量がわかればその順番に並べられる.

(x)レジスタ \rightarrow (オ)1 次キャッシュメモリ \rightarrow (イ)2 次キャッシュメモリ \rightarrow (P) 主記憶装置 \rightarrow (p) 補助記憶装置

答え:(エ)(オ)(イ)(ア)(ウ)

(2-2)

- (a) (キ) 補助記憶装置
- (b) (オ) 仮想アドレス
- (c) (サ) 実アドレス
- (d) (キ) 補助記憶装置
- (e) (イ) スワップイン
- (f) (キ) 補助記憶装置
- (g) (ク) スワップアウト
- (h) (コ) ページング
- (i) (カ) セグメンテーション

(2-3)

LRU	0	1	2	3	3	4	2	1	0	5	1	2
ページ枠 0	0	0	0	0	0	4	4	4	4	(5)	5	5
ページ枠 1		1	1	1	1	1	1	1	1	1	1	1
ページ枠 2			2	2	2	2	2	2	2	2	2	2
ページ枠 3				3	3	3	3	3	0	0	0	0

FIFO	0	1	2	3	3	4	2	1	0	5	1	2
ページ枠 0	0	0	0	0	0	4	4	4	4	4	4	2
ページ枠 1		1	1	1	1	1	1	1	0	0	0	0
ページ枠 2			2	2	2	2	2	2	2	(5)	5	5
ページ枠 3				3	3	3	3	3	3	3	1	1

(2-4)

処理時間が短くなる方:(イ)

(P) の方は,配列 A へのアクセスが," $(x) \to (x+W) \to (x+2W) \to ...$ " となり,空間的局所性が乏しいが,(A) の方は,配列 A へのアクセスが," $(0+yW) \to (1+yW) \to (2+yW) \to ...$ " となり,連続した領域をアクセスするので空間的局所性が非常に高くページフォールトが発生する回数が少なくなり,(A) の方が処理時間が短くなる.

3 離散構造

(1-1-1)

(b) 充足可能

$$(p(a) \land p(b)) \to \forall x \ p(x)$$
$$= \neg (p(a) \land p(b)) \lor \forall x \ p(x)$$
$$= \neg p(a) \lor \neg p(b) \lor \forall x \ p(x)$$

解釈 I_1 として,

C:
$$a = 0, b = 1$$

F: なし

P:
$$p(x) & x > 0$$

のとき真

解釈 I_2 として,

C:
$$a = 1, b = 2$$

F: なし

P:
$$p(x) \ \ \ \ x > 0$$

(1-1-2)

(b) 充足可能

$$\forall x (p(x) \lor q(x)) \to (\forall x \ p(x) \lor \forall x \ q(x))$$
$$= \neg (\forall x (p(x) \lor q(x))) \lor (\forall x \ p(x) \lor \forall x \ q(x))$$
$$= \exists x (\neg p(x) \land \neg q(x)) \lor \forall x \ p(x) \lor \forall x \ q(x)$$

解釈 I3 として,

C: なし

F: なし

P:
$$p(x) \not \sim x \leq 0, q(x) \not \sim x \leq 0$$

のとき真

解釈 I4 として,

C: なし

F: なし

P: p(x) & $x \ge 1$, q(x) & x == 0

のとき偽となる.

(1-1-3)

(a) 恒真

※述語論理式の性質より

(1-2-1)

$$\begin{split} \neg E &= \neg \left((A \land B \land C) \to D \right) \\ &= \neg \left(\neg A \lor \neg B \lor \neg C \lor D \right) \\ &= A \land B \land C \land \neg D \\ &= \forall x \forall y \left(p(x,y) \to p(y,x) \right) \land \forall x \forall y \forall z \left((p(x,y) \land p(y,z)) \to p(x,z) \right) \land \forall x \exists y \ p(x,y) \land \exists z \ \neg p(z,z) \\ &= \exists v \forall x \exists w \forall y \forall z \left\{ (\neg p(x,y) \lor p(y,x)) \land (\neg p(x,y) \lor \neg p(y,z) \lor p(x,z)) \land p(x,w) \land \neg p(v,v) \right\} \end{split}$$

(1-2-2)

$$\neg E$$
 を $v \leftarrow a, w \leftarrow f(x)$ に置き換える。
$$\neg E' = \forall x \forall y \forall z \left\{ (\neg p(x,y) \lor p(y,x)) \land (\neg p(x,y) \lor \neg p(y,z) \lor p(x,z)) \land p(x,f(x)) \land \neg p(a,a) \right\}$$

(1-2-3) 下図より, ¬E' は充足不能

(2-1-1) 成立する

(2-1-2) 成立しない

(2-1-3) 成立する

(2-2) 下図より, $|R_{P(A)}|=8$

(2-3)

要素数 n の集合 B が要素数 n-1 の集合 A において,A $R_{P(A)}$ B を満たす 2 項関係の個数は n 個である.また,自分自身に反射する分も考慮すると,|A|=n のときの, $|R_{P(A)}|$ は,

$$|R_{P(A)}| = 2^n + \sum_{i=1}^n (i \times {}_nC_i)$$

= $2^{n-1}(n+2)$

(2-4)

|A|=n のとき,要素数 m の集合 A が要素数 m 以上の集合 B において, $A\ R_{P(A)}^*\ B$ を満たす 2 項関係の個数は 2^{n-m} 個である. よって,|A|=n のときの, $|R_{P(A)}^*|$ は,

$$|R_{P(A)}^*| = \sum_{i=0}^n (2^{n-i} \times {}_nC_i)$$

= 3^n

4 計算理論

(1-1)

反射性:任意の状態 $p \in Q$ において、 $\hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(p,w) \in F$ は自明である。よって、反射性を有する。

対称性: $_xR_y \rightarrow _yR_x$ を示す.

任意の状態 $p \in Q, q \in Q$ において, $p \simeq q$ が成り立つとき, $\hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(q,w) \in F$ を満たす.そのとき, $\hat{\delta}(q,w) \in F \Leftrightarrow \hat{\delta}(p,w) \in F$ も明らかに成り立つので, $q \simeq p$ も成り立つ.

よって、 $p \simeq q \rightarrow q \simeq p$ より、対称性を有する.

推移性: $_xR_y \wedge _yR_z \rightarrow _xR_z$ を示す.

任意の状態 $p \in Q, q \in Q, r \in Q$ において, $(p \simeq q) \land (q \simeq r)$ が成り立つとき, $\hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(q,w) \in F$ と, $\hat{\delta}(q,w) \in F \Leftrightarrow \hat{\delta}(r,w) \in F$ を満たす.

そのとき、 $\hat{\delta}(p,w) \in F \Leftrightarrow \hat{\delta}(r,w) \in F$ も明らかに成り立つので、 $p \simeq r$ も成り立つ.

よって、 $(p \simeq q) \land (q \simeq r) \rightarrow (p \simeq r)$ より、推移性を有する.

以上より、反射性、対称性、推移性を有するので、 \simeq はQ上で同値関係となる。

【別解?】

 \simeq は \Leftrightarrow により定義されており、 \Leftrightarrow は反射性・対称性・推移性を有しているので、 \simeq も反射性・対称性・推移性を有する。よって、 \simeq は Q 上で同値関係となる。

(1-2)

 M_1 の状態数を最小にした時の各状態の割り当てが同値類となる.

よって、同値類は {a, b}, {c}, {d}, {e, f}, {g}, {h, i}

(1-3)

(1-2) をもとに状態遷移図を作成する.

但し、初期状態は $\{a,b\}$ 、受理状態は $\{a,b\}$

(1-4)

オートマトン M_2 が状態数が最小でないと仮定する. (背理法)

すると、 M_2 の 6 状態の中で区別不能な状態が 1 組以上存在することになる.

ここで、 M_2 の状態遷移関数を $\hat{\delta}_2$ 、受理状態の集合を F_2 とする.

 $\hat{\delta}_2(\{a,b\},010) \in F_2$

 $\hat{\delta}_2(\{c\}, 010) \notin F_2$

 $\hat{\delta}_2(\{d\}, 010) \notin F_2$

 $\hat{\delta}_2(\{e, f\}, 010) \notin F_2$

 $\hat{\delta}_2(\{g\}, 010) \notin F_2$

 $\hat{\delta}_2(\{h,i\},010) \notin F_2$

より、 $\{a,b\}$ は他の状態と区別可能である.

 $\hat{\delta}_2(\{c\}, 000) \in F_2$

 $\hat{\delta}_2(\{d\},000) \notin F_2$

 $\hat{\delta}_2(\{e, f\}, 000) \notin F_2$

 $\hat{\delta}_2(\{g\},000) \notin F_2$

 $\hat{\delta}_2(\{h,i\},000) \notin F_2$

より、 $\{c\}$ は他の状態と区別可能である.

 $\hat{\delta}_2(\{d\},00) \in F_2$

 $\hat{\delta}_2(\{e,f\},00) \notin F_2$

 $\hat{\delta}_2(\{g\},00) \notin F_2$

 $\hat{\delta}_2(\{h,i\},00) \notin F_2$

より、 $\{d\}$ は他の状態と区別可能である.

 $\hat{\delta}_2(\{e, f\}, 10) \in F_2$

 $\hat{\delta}_2(\{g\}, 10) \notin F_2$

 $\hat{\delta}_2(\{h,i\},10) \notin F_2$

より、 $\{e,f\}$ は他の状態と区別可能である.

 $\hat{\delta}_2(\{g\},1) \in F_2$

 $\hat{\delta}_2(\{h,i\},1) \notin F_2$

より、 $\{g\}$, $\{h,i\}$ は他の状態と区別可能である。

以上より、すべての状態が区別可能であるので矛盾が生じる。よって、仮定が誤っているので、背理法により オートマトン M_2 の状態数が最小である。

(2-1), (2-2)

- (a) 12
- (b) 6
- (c) a
- (d) b (複数解答あり)
- (e) b
- (f) b^{K-2} (複数解答あり)
- (g) uv^iwx^iy
- (h) aaaaA₁bbbb
- (i) $A_1 \rightarrow aA_1b$
- (j) c^K
- (1) v,x に記号 a または b(もしくは両方) が含まれるので、文 vwy に含まれる記号 a,b の数が c の数未満となるからである.
- (m) 終端記号 a を含まない
- (n) a,b,c 全てを含む
- (o) |vwx| > K となり、条件(i) に反するからである.

| 6 電子回路と論理設計

(1-1)

(1-2)

状態遷移表

	入	力			x = 0			x = 1	
状態	Q_2	Q_1	Q_0	Q_2^+	Q_1^+	Q_0^+	Q_2^+	Q_1^+	Q_0^+
S0	0	0	0	0	0	1	0	1	1
S1	0	0	1	0	1	1	0	1	1
S2	0	1	1	1	1	1	1	1	0
S3	1	1	1	1	1	0	1	1	0
S4	1	1	0	1	0	0	0	0	0
S5	1	0	0	0	0	0	0	0	0

状態遷移表からカルノー図を作成し、最簡積和形を導出する.

 $Q_2^+ = Q_1 \bar{x} + Q_1 Q_0$

 $Q_1^+ = Q_0 + \bar{Q_2}x$

 $Q_0^+ = \bar{Q_2}\bar{Q_1} + \bar{Q_2}\bar{x}$

 Q_2^+ のカルノー図

$Q_0 x$ $Q_2 Q_1$	00	01	11	10
00				
01	х	x	1	1
11	1		1	1
10			х	х

 Q_1^+ のカルノー図

$Q_0 x$ $Q_2 Q_1$	00	01	11	10
00		1	1	1
01	x	X	1	1
11			1	1
10			x	х

 Q_0^+ のカルノー図

$Q_0 x$ $Q_2 Q_1$	00	01	11	10
00	1	1	1	1
01	х	x		1
11				
10			x	x

(1-3)

(1-2) で求めた再簡積和系の論理式を NAND の形に変換する.

$$Q_2^+ = Q_1 \bar{x} + Q_1 Q_0 = \overline{\overline{Q_1 \overline{x}} \cdot \overline{Q_1 Q_0}}$$

$$Q_1^+ = Q_0 + \overline{Q}_2 x = \overline{Q}_0 \cdot \overline{\overline{Q}_2 x}$$

$$Q_1^+ = Q_0 + \bar{Q}_2 x = \overline{\overline{Q_0} \cdot \overline{\overline{Q_2}x}}$$

$$Q_0^+ = \bar{Q}_2 \bar{Q}_1 + \bar{Q}_2 \bar{x} = \overline{\overline{\overline{Q_2} \cdot \overline{Q_1}} \cdot \overline{\overline{Q_2} \cdot \overline{x}}}$$

これをもとに回路を作成すると以下のようになる.

(1-4)

この順序回路の最小動作周期 T は、 $3T_N + T_S$ となる。(それぞれの D-FF の出力に NAND をかましている分も考慮する)

 $f=rac{1}{T}$ より、最大動作周波数は $rac{1}{3T_N+T_S}[ext{Hz}]$

(2-1)

- (a) p
- (b) n
- (c) しきい電圧
- (d) 電子
- (e) 空乏層
- (f) NOT

(2-2)

図 5 (NAND と等価)

A	В	X
0	0	V_{dd}
0	V_{dd}	V_{dd}
V_{dd}	0	V_{dd}
V_{dd}	V_{dd}	0

図 6 (OR と等価)

A	В	X
0	0	0
0	V_{dd}	V_{dd}
V_{dd}	0	V_{dd}
V_{dd}	V_{dd}	V_{dd}