Algoritmos de Busca em Tabelas

Dentre os vários algoritmos fundamentais, os algoritmos de busca em tabelas estão entre os mais usados. Considere por exemplo um sistema de banco de dados. As operações de busca e recuperação dos dados são bastante freqüentes. Considere também os programas "buscadores" da Internet (Google, Yahoo, etc.). Em todos eles são usados de alguma maneira os algoritmos básicos de busca em tabelas ou arquivos.

Vamos estudar os métodos internos de busca, isto é, os dados estão em tabelas na memória. No caso de arquivos há outras variáveis a se considerar. O tempo de acesso aos setores do disco envolve operações mecânicas (movimento do braço e rotação) que podem ser muito mais significativos que o tempo gasto pelo algoritmo. Mas de maneira geral, se um algoritmo é bom para se efetuar busca em tabelas na memória, sempre pode ser adaptado para funcionar também com arquivos.

Busca sequencial

Consiste em varrer uma tabela a procura de um determinado elemento, verificando ao final se o mesmo foi ou não encontrado.

A função busca abaixo, procura elemento igual a x num vetor a de n elementos, devolvendo -1 se não encontrou ou o índice do primeiro elemento igual a x no vetor. É claro que pode haver mais de um elemento igual a x.

```
int busca(int a[], int n, int x) {
  int i;
  for (i = 0; i < n; i++)if (a[i] == x) return i;
  /* foi até o final e não encontrou */
  return -1;
}</pre>
```

Existem várias maneiras de se fazer o algoritmo da busca, por exemplo:

```
int busca(int a[], int n, int x) {
   int i = 0;
   while (i < n && a[i] != x) i++;
   /* verifica se parou porque chegou ao fim ou encontrou um igual */
   if (i == n) return -1; /* chegou ao final */
   return i; /* encontrou um igual */
}</pre>
```

Fica como exercício, reescrever a função busca de outras formas, usando o comando for, o comando while e o comando do while da linguagem C.

Busca Sequencial – análise do algoritmo

Considere a função **busca** do programa acima. Quantas vezes a comparação (a[i] == x) é executada?

```
máximo = \mathbf{n} (quando não encontra ou quando \mathbf{x} = \mathbf{a}[\mathbf{n}-1])
mínimo = \mathbf{1} (quando \mathbf{x} = \mathbf{a}[0])
médio = (\mathbf{n}+1)/2
```

Há uma hipótese importante considerada para se chegar ao número médio de (n+1)/2. Temos que supor que a quantidade de comparações pode ser 1, 2, 3, ..., n com a mesma probabilidade.

De qualquer forma, o algoritmo é O (n).

Assim, esse algoritmo pode ser até bom quando n é pequeno, mas quando n é grande, a demora é inevitável. Suponha por exemplo uma tabela com 1.000.000 de elementos. Se cada repetição demorar cerca de 100 microssegundos, o tempo para uma busca poderá chegar a quase 2 minutos.

Uma melhoria pode ser feita na busca seqüencial, quando existem elementos que podem ocorrer com maior freqüência. Colocá-los no início da tabela, pois serão encontrados com menos comparações.

Suponha agora que a probabilidade do elemento procurado ser a[i] é pi.

 Σ pi (0<=i<n) é a probabilidade de x estar na tabela.

 Σ pi < 1 se existe alguma chance de x não estar na tabela.

 $1 - \Sigma$ pi é a probabilidade de x não estar na tabela.

```
O número médio de comparações será então: 1.p0 + 2.p1 + 3.p2 + ... + n.p(n-1) + n.(1 - \Sigma pi)
```

Se os elementos mais procurados estão no início da tabela, o número médio de comparações é menor. Basta verificar a fórmula acima.

Busca sequencial em tabela ordenada

Quando a tabela está ordenada (por exemplo, em ordem crescente dos elementos), uma melhoria pode ser feita. Se durante o processo de busca, encontrarmos um elemento que já é maior que x, não adianta continuar procurando, pois todos os outros serão também maiores.

```
int busca(int a[], int n, int x) {
   int i;
   for (i = 0; i < n; i++) {
      if (a[i] == x) return i; /* encontrou */
      if (a[i] > x) return -1; /* não adianta continuar procurando */
   /* foi até o final e não encontrou */
   return -1;
}
Ou ainda,
int busca(int a[], int n, int x) {
   int i = 0;
   while (i < n \&\& a[i] < x) i++;
   /* verifica se parou porque chegou ao fim ou encontrou um igual */
   if (i == n) return -1; /* cheqou ao final */
   if (a[i] == x) return i; /* achou */
   return -1; /* encontrou um maior então não adianta procurar mais */
```

Porém, existe uma solução muito melhor quando a tabela está ordenada.

Busca binária em tabela ordenada

Lembre-se de como fazemos para procurar uma palavra no dicionário. Não vamos verificando folha a folha (busca seqüencial). Ao contrário, abrimos o dicionário mais ou menos no meio e daí só há três possibilidades:

- a) A palavra procurada está na página aberta
- b) A palavra está na parte esquerda do dicionário
- c) A palavra está na parte direita do dicionário

Caso não ocorra a situação (a), repetimos o mesmo processo com as páginas da parte direita ou da parte esquerda, onde a palavra tem chance de ser encontrada. Em cada comparação eliminamos cerca de metade das páginas do dicionário.

Em se tratando de uma tabela, isso pode ser sistematizado da seguinte forma:

- a) Testa com o elemento do **meio** da tabela;
- b) Se for igual, termina o algoritmo porque encontrou o elemento;
- c) Se o elemento do meio é maior, repete o processo considerando a tabela do inicio até o meio 1;
- d) Se o elemento do meio é menor, repete o processo considerando a tabela do **meio** + 1 até o final;

Se o elemento não está na tabela, chegará o momento em que a tabela restante terá zero elementos que é o outro critério de parada do algoritmo.

Observe que se ocorreu a situação (c) ou (d), a tabela foi reduzida à metade.

Vamos então ao algoritmo:

```
int buscabinaria(int a[], int n, int x) {
   int inicio = 0, final = n-1, meio;
   /* procura enquanto a tabela tem elementos */
   while (inicio <= final) {
       meio = (inicio + final) / 2;
       if (a[meio] == x) return meio;
       if (a[meio] > x) final = meio -1; /* busca na parte de cima */
       else inicio = meio + 1; /* busca na parte de baixo */
   }
   /* foi até o final e não encontrou */
   return -1;
}
```

O programa testa a função buscabinaria. Dado n, gere uma sequência ordenada de números com rand(), imprima a sequência gerada e efetue várias buscas até ser digitado um número negativo. Acrescentamos um printf na buscabinaria, para explicitar cada uma das iterações.

```
#include <stdio.h>
#include <stdlib.h>
int buscabinaria(int a[], int n, int x) {
   int inicio = 0, final = n-1, meio;
   /* procura enquanto a tabela tem elementos */
   while (inicio <= final) {</pre>
         printf("\ninicio = %3d final = %3d", inicio, final);
         meio = (inicio + final) / 2;
         if (a[meio] == x) return meio;
         if (a[meio] > x) final = meio -1; /* busca na parte de cima */
         else inicio = meio + 1; /* busca na parte de baixo */
   /* foi até o final e não encontrou */
   return -1;
}
void geravet(int v[], int k) {
   /* gera vetor em ordem crescente com k elementos usando rand() */
   int i;
   srand(9999);v[0] = rand()%100;
   for (i = 1; i < k; i++) v[i] = v[i-1] + rand()%100;
void impvet(int v[], int k) {
```

```
/* imprime vetor com k elementos */
   int i;
   for (i = 0; i < k; i++) printf("%6d", v[i]);
int main() {
  int vet[1000], n, kk, x;
  /* ler n */
 printf("entre com n:");
  scanf("%d", &n);
  /* gera o vetor e imprime */
  geravet(vet, n);
  impvet(vet, n);
  /* ler vários números até encontrar um negativo e procurar no vetor */
  printf("\nentre com o valor a ser procurado:");
  scanf("%d", &x);
  while (x \ge 0) {
      if ((kk = buscabinaria(vet, n, x)) >= 0)
           printf("\n*** encontrado na posicao %3d", kk);
      else printf("\n*** nao encontrado");
      printf("\nentre com o valor a ser procurado:");
      scanf("%d", &x);
  }
Veja o que será impresso. Em especial, veja como o inicio e final da tabela se comportam dentro da
buscabinaria.
entre com n:15
    91 186 206
                           349
                                 354
                                       417 505
                                                   562
                                                         613 712 783
                     261
803 866
         939
entre com o valor a ser procurado: 354
inicio = 0 final = 14
inicio = 0 final =
                       6
inicio = 4 final =
*** encontrado na posicao
entre com o valor a ser procurado:803
inicio = 0 final = 14
inicio = 8 final = 14
inicio = 12 final = 14
inicio = 12 final = 12
*** encontrado na posicao 12
entre com o valor a ser procurado:500
inicio = 0 final = 14
inicio = 0 final =
inicio = 4 final =
                       6
inicio = 6 final =
*** nao encontrado
entre com o valor a ser procurado: 613
inicio = 0 final = 14
inicio = 8 final = 14
inicio = 8 final = 10
*** encontrado na posicao
```

```
entre com o valor a ser procurado:12345
inicio =
          0 \text{ final} = 14
inicio =
         8 final = 14
inicio = 12 final =
inicio = 14 final = 14
*** nao encontrado
entre com o valor a ser procurado: 939
inicio = 0 final =
         8 final = 14
inicio =
inicio = 12 final = 14
inicio = 14 final = 14
*** encontrado na posicao 14
entre com o valor a ser procurado:-1
```

Exercícios:

Considere a seguinte tabela ordenada:

```
2 5 7 11 13 17 25
```

- 1) Diga quantas comparações serão necessárias para procurar cada um dos 7 elementos da tabela?
- 2) Diga quantas comparações serão necessárias para procurar os seguintes números que não estão na tabela 12, 28, 1, 75, 8?

E se a tabela tivesse os seguintes elementos:

```
2 5 7 11 13 17 25 32 35 39
```

- 1) Diga quantas comparações serão necessárias para procurar cada um dos 10 elementos da tabela?
- 2) Diga quantas comparações serão necessárias para procurar os seguintes números que não estão na tabela 12, 28, 1, 75, 8?

Outras formas de busca binária - 1

Quando a quantidade de elementos da tabela (n = final - inicio + 1) é impar, o resultado de (inicio+final) /2 fornece exatamente o elemento do meio da tabela. Na próxima repetição temos então 2 tabelas exatamente com n/2 elementos.

Quanto n é par, isso não ocorre e a parte inferior da tabela fica com n/2 elementos enquanto que a parte superior fica com n/2-1 elementos.

Na verdade não é necessário se escolher exatamente o elemento do meio. O elemento do meio é a melhor escolha, pois as duas partes da tabela ficam reduzidas quase que exatamente à metade. Veja o exercício 2 abaixo.

Outras formas de busca binária - 2

Outra forma de se pensar o algoritmo de busca binária, é usar o fato que a tabela tem um primeiro elemento (base) e um tamanho (n). A cada repetição compara-se o elemento procurado com o elemento médio da tabela (x == a[base + n/2]?). Se encontrar termina. Se x > a[base+n/2] o elemento procurado deve estar acima e a nova base fica sendo (base + n/2 + 1) e n fica n/2. Se x < a[base+n/2] o elemento procurado deve estar abaixo, a base permanece a mesma e n fica n/2. Inicialmente a base é zero e o algoritmo termina quando n fica zero, isto é, a tabela terminou e não encontramos o elemento procurado.

Exercício – escreva a função buscabinaria2, usando esse algoritmo.

Busca binária recursiva

O algoritmo de busca binária pode também ser implementado de forma recursiva.

Observe que a cada repetição, realizam-se as mesmas operações numa tabela menor.

A versão recursiva é especialmente interessante. Comparamos com o elemento médio da tabela. Se for igual, a busca termina. Se for maior, fazemos a busca binária na tabela superior, senão fazemos busca binária na tabela inferior. A busca termina quando a tabela tiver zero elementos. Observe que a tabela superior vai do elemento médio mais 1 até o final e a tabela inferior vai do início até o elemento médio menos 1.

```
int BBR(int a[], int inicio, int final, int x) {
   int k;
   if (inicio > final) return -1;
   k = (inicio + final) / 2;
   if (a[k] == x) return k;
   if (a[k] > x) return BBR(a, inicio, k - 1, x);
   return BBR(a, k + 1, final, x);
}
```

Exercício – Considerando agora a versão acima (**Outras formas de busca binária – 2**), escreva a função BBR2 na forma recursiva.

Busca binária - extrair mais informações do algoritmo

Podemos extrair mais informações do algoritmo de busca binária, além do resultado se achou ou não achou. Quando não encontramos o elemento, a busca termina, nas proximidades de onde o elemento deveria estar. Suponha que desejamos encontrar o lugar onde o elemento deveria estar se fossemos inseri-lo na tabela. Exemplos:

i	0	1	2	3	4	5	6	7	8
A[i]	12	15	18	18	18	20	25	38	44

```
binariaP(23, A, 9) devolve 6
binariaP(17, A, 9) devolve 2
binariaP(15, A, 9) devolve 1
binariaP(18, A, 9) devolve 2
binariaP(55, A, 9) devolve 9
binariaP(12, A, 9) devolve 0
binariaP(10, A, 9) devolve 0
```

De uma forma geral, se **binariaP**(x, a, n) devolve k, então de a[0] até a[k] todos são <u>menores</u> que x e de a[k] até a[n-1] todos são maiores ou iguais a x.

Esta versão tem duas aplicações interessantes:

- Se é necessário inserir um elemento que ainda não está na tabela, a busca devolve exatamente o lugar em que ele deverá ser inserido. É claro que para isso vamos ter que deslocar todos abaixo dele para abrir espaço.
- 2) Quando há elementos repetidos na tabela, a busca devolve exatamente o primeiro igual. Todos os outros iguais estarão após ele.

```
/* procura x em a[0] até a[n-1] e devolve
    0 se x<= a[0]
    n se x > a[n-1]
    R se a[R-1] < x <= a[R] */
int binariaP(int x, int * a, int n) {
    int M, L, R;
    if (x <= a[0]) return 0;
    if (x > a[n-1]) return n;
    L = 0; R = n-1;
    while (R - L > 1) {
        M = (R + L) / 2;
        if (x <= a[M]) R = i; else L = i;
    }
    return R;
}</pre>
```

Para saber se achou ou não:

```
k = binariaP(z, b, m);
if (k < m \&\& b[k] == z) {achou} else {não achou} ou
if (k == m \mid \mid b[k] \mid = z) {não achou} else {achou}
```

Busca binária - análise simplificada

Considere agora a primeira versão da busca binária:

```
int buscabinaria(int a[], int n, int x) {
   int inicio = 0, final = n-1, meio;
   /* procura enquanto a tabela tem elementos */
   while (inicio <= final) {
        meio = (inicio + final) / 2;
        if (a[meio] == x) return meio;
        if (a[meio] > x) final = meio -1; /* busca na parte de cima */
        else inicio = meio + 1; /* busca na parte de baixo */
   }
   /* foi até o final e não encontrou */
   return -1;
}
```

A comparação (a [meio] == x) é o comando significativo para a análise do tempo que esse algoritmo demora, pois representa a quantidade de repetições que serão feitas até o final do algoritmo. O tempo consumido pelo algoritmo é proporcional à quantidade de repetições (comando while). Como a cada repetição uma comparação é feita, o tempo consumido será proporcional à quantidade de comparações.

Quantas vezes a comparação (a [meio] == x) é efetuada?

Mínimo = 1 (encontra na primeira)

Máximo = ?

 $M\'{e}dio = ?$

Note que a cada iteração a tabela fica dividida ao meio. Assim, o tamanho da tabela é: $N_1 N/2_1 N/4_1 N/8_1 ...$

A busca terminará quando o tamanho da tabela chegar a zero, ou seja, no menor k tal que $N < 2^k$. Portanto o número máximo é um número próximo de lg N (lg N é log na base 2).

Uma maneira um pouco mais consistente. Vamos analisar quando N é da forma 2 ^k – 1 (1, 3, 7, 15, 31, ...) Para este caso, a tabela fica sempre dividida em:

N, N/2, N/4, N/8,..., 15,7,3,1 – sempre com a divisão por 2 arredondada para baixo.

Serão feitas exatamente k repetições até que a tabela tenha um só elemento.

Como estamos interessados num limitante superior, caso N não seja desta forma, podemos considerar N o menor N' tal que N'>N e que seja da forma 2^k-1 .

 $N=2^k-1$ então o número máximo de repetições será k=lg (N+1).

Assim, o algoritmo é O (lg N).

É um resultado surpreendente. Suponha uma tabela de 1.000.000 de elementos. O número máximo de comparações será lg (1.000.001) = 20. Compare com a busca seqüencial, onde o máximo seria 1.000.000 e mesmo o médio seria 500.000. Veja abaixo alguns valores típicos para tabelas grandes.

N	lg (N+1)
100	7
1.000	10
10.000	14
100.000	17
1.000.000	20
10.000.000	24
100.000.000	27
1.000.000.000	30

Será que o número médio é muito diferente da média entre o máximo e o mínimo? Vamos calculá-lo, supondo que sempre encontramos o elemento procurado. Note que quando não encontramos o elemento procurado, o número de comparações é igual ao máximo. Assim, no caso geral, a média estará entre o máximo e a média supondo que sempre vamos encontrar o elemento.

Supondo que temos N elementos e que a probabilidade de procurar cada um é sempre 1/N.

Vamos considerar novamente $N = 2^k - 1$ pelo mesmo motivo anterior.

Como fazemos 1 comparação na tabela de N elementos, 2 comparações em 2 tabelas de N/2 elementos, 3 comparações em 4 tabelas de N/4 elementos, 4 comparações em 8 tabelas de N/8 elementos, e assim por diante.

=
$$1.1/N + 2.2/N + 3.4/N + ... + k.2^{k-1}/N$$

=
$$1/N$$
 . $\sum i.2^{i-1}$ (i=1,k)

$$= 1/N$$
 . $((k-1).2^k + 1)$ (a prova por indução está abaixo)

Como $N=2^k-1$ então k=lg (N+1)

$$= 1/N$$
 . ((lg (N+1) - 1) . (N+1) + 1)

$$= 1/N$$
 . $((N+1).lq (N+1) - N)$

$$= (N+1)/N$$
 . lg $(N+1)$ - 1 ~ lg $(N+1)$ - 1

Resultado novamente surpreendente. A média é muito próxima do máximo.

Prova por indução:
$$\sum i.2^{i-1}$$
 (i=1,k) = (k-1).2 + 1

Verdade para k = 1

Supondo verdade para k, vamos calcular para k+1.

$$\sum i.2^{i-1}$$
 (i=1,k+1) = $\sum i.2^{i-1}$ (i=1,k) + (k+1).2^k
= (k-1).2^k + 1 + (k+1).2^k
= k.2^{k+1} + 1

Exercícios:

1. Dada uma tabela com 5 elementos x1,x2,x3,x4,x5 com as seguintes probabilidades de busca:

a) Calcule o número médio de comparações no algoritmo de busca seqüencial para a tabela com os elementos na seguinte ordem:

b) Idem supondo a seguinte distribuição

Neste caso o elemento procurado pode não estar na tabela

Considere a seguinte tabela ordenada:

- 3) Diga quantas comparações serão necessárias para procurar cada um dos 7 elementos da tabela?
- 4) Diga quantas comparações serão necessárias para procurar os seguintes números que não estão na tabela 12, 28, 1, 75, 8?

2. Considere a seguinte modificação do algoritmo busca binária.

A função entre (inicio, fim) é uma função que devolve um número aleatório entre inicio e fim.

- a) Está correta?
- b) Diga qual o número mínimo e o número máximo de vezes que a comparação (v[i] == x) é efetuada e em qual situação ocorre.
- c) O que acontece se a função devolver n/3?
- 3. Escreva um algoritmo de busca ternária, isto é, a cada passo calcular m1=n/2 e m2=2*n/3. A tabela então fica dividida em 3 partes (esquerda, meio e direita). Daí basta comparar com m1 e m2. Se não for igual o elemento deve estar em uma das 3 partes. A cada passo a tabela fica dividida por 3.
- 4. A busca ternária é melhor que a busca binária?