Cadeira de Sistemas Digitais - Ano Letivo 2018/2019

Relatório do Trabalho Final: Controle de semáforos

Daniel Salvador – nº 43123

Diogo Solipa – nº 43071

Abel – nº 42941

Índice

Introdução	3
Razões da utilização de dois modelos ASM	4
Modelos ASM	5
Entradas, Saídas, Estados e tabelas de codificação	ε
Tabelas do display de sete segemntos	7
Escolha do flip-flop JK e razões dessa escolha	7
Flip-Flops JK para as entradas da codificação dos peões	8
Mapas de Karnaugh das saídas dos controladores de veículos e respetivas equações	9
Mapas de Karnaugh dos flip-flops dos controladores de veículos e respetivas equações	10
Mapas de Karnaugh das saídas do display de sete segmentos e equações reduzidas dos respetivos mapas	11
Mapas de Karnaugh das flip-flops dos controladores de veículos e respetivas equações	13
Mapas de Karnaugh das saídas dos controladores de veículos e respetivas equações	16
Representação do circuito no Logisim	19
Representação do circuito do controlador do semáforo dos veículos	19
Representação do circuito do controlador do semáforo dos peões	20
Representação do display de sete segmentos	21
Conclusão	22

Introdução

Neste trabalho foi-nos pedido para criar um sistema de controlo para um conjunto de semáforos que contêm um sensor para regulamentar a velocidade dos veículos ao mesmo tempo que se possa interligar ao semáforo dos peões para resultar num bom funcionamento de um sistema de semáforos, que tem como principal objetivo dirigir o trânsito dessa zona específica.

Nós decidimos tentar resolver este problema, já que é através destas questões que nós, enquanto estudantes em geral, conseguimos aprender a utilizar o nosso conhecimento de Sistemas Digitais para outras situações da vida real, tal como esta.

Este trabalho foi dividido de acordo com as nossas dificuldades nesta cadeira ao mesmo tempo que comunicamos uns com os outros enquanto realizamos essas tarefas. Isto foi realizado desta forma para podermos entender o que cada um nós estaria a executar para na apresentação podermos saber tudo o que foi realizado no nosso trabalho.

Razões da utilização de dois modelos ASM

Também nos foi pedido para separar o controlador de semáforos completo em dois módulos independentes, isto é, construir um controlador individual para o semáforo de peões e outro para o semáforo de veículos, o que significa que sejam necessários dois modelos ASM.

Isto é realizado desta maneira, porque como já referido no início foi-nos pedida a configuração de dois sistemas separados e para além disso pensamos que é um método mais fácil de resolver um problema complexo como este.

Modelos ASM

Modelo ASM para o controlador do semáforo dos veículos

Legenda (para este circuito e para as tabelas do trabalho):

VM - Vermelho

AM - Amarelo

VE - Verde

Tabelas de codificação

Entradas: Botão (B) OU Sensor de Velocidade (S) (1 entrada)

Saídas: S0, S1, S2, S3, S4, S5, S6 (Display de sete segmentos)

Número de estados: 7 (Estados correspondentes ao display de sete segmentos)

Número de Flip Flops para codificar os estados: 3 (um flip-flop para cada bit)

Tabela da codificação das cores dos semáforos dos veículos (Tabela 1):

Entradas					Saídas			Flip-flops JK				
SB	P	Q	n	Qn -	- 1							
		<i>X</i> 1	<i>X</i> 0	<i>X</i> 1	<i>X</i> 0	S0=VM	S1=AM	S2=VE	J1	<i>K</i> 1	JO	<i>K</i> 0
0	-	0	0	0	0	0	0	1	0	-	0	-
1	-	0	0	0	1	0	0	1	0	-	1	-
-	-	0	1	1	0	0	1	0	1	-	-	1
-	-	1	0	1	1	0	1	0	-	0	1	-
-	0	1	1	1	1	1	0	0	-	0	-	0
-	1	1	1	0	0	1	0	0	-	1	-	1

Tabelas de codificação dos peões (Tabela 2):

	Entradas									Saíd	as	
S		(Qn			Qn	1 + 1					
	<i>X</i> 3	<i>X</i> 2	<i>X</i> 1	X0	<i>X</i> 3	X2	<i>X</i> 1	<i>X</i> 0	VM	AM	VE	P
0	0	0	0	0	0	0	0	0	1	0	1	0
1	0	0	0	0	0	0	0	1	1	0	1	0
-	0	0	0	1	0	0	1	0	1	1	0	0
-	0	0	1	0	0	0	1	1	1	1	0	0
-	0	1	0	0	0	1	0	0	1	0	0	0
-	0	1	0	0	0	1	0	1	0	0	1	0
-	0	1	0	1	0	1	1	0	0	0	1	0
-	0	1	1	0	0	1	1	1	0	0	1	0
-	0	1	1	1	1	0	0	0	0	0	1	0
-	1	0	0	0	1	0	0	1	0	0	1	0
-	1	0	0	1	1	0	1	0	0	0	1	0
-	1	0	1	0	1	0	1	1	0	0	1	0
-	1	0	1	1	1	1	0	0	0	0	1	0
-	1	1	0	0	1	1	0	1	0	0	1	0
-	1	1	0	1	1	1	1	0	0	1	0	0
-	1	1	1	0	0	0	0	0	0	1	0	0

(Falta os flip-flops JK que estão presentes na página 8)

Tabelas do display de sete segmentos do controlador de semáforos dos peões (Tabela 3)

A escolha das codificações foram feitas em base do estado actual do semáforo dos automóveis.

En	tradas		Q	n			Qn	+1					Saídas			
Xn	Xn + 1	<i>X</i> 3	<i>X</i> 2	<i>X</i> 1	<i>X</i> 0	<i>X</i> 3	<i>X</i> 2	<i>X</i> 1	<i>X</i> 0	а	b	С	d	e	f	\boldsymbol{g}
f	g	0	1	0	1	0	1	1	0	1	1	1	1	1	1	1
g	h	0	1	1	0	0	1	1	1	1	1	1	0	0	0	0
h	i	0	1	1	1	1	0	0	0	1	0	1	1	1	1	1
i	j	1	0	0	0	1	1	0	1	1	0	1	1	0	1	1
j	k	1	0	0	1	1	0	1	0	0	1	1	0	0	1	1
	m	1	0	1	0	1	0	1	1	1	1	1	1	0	0	1
m	n	1	0	1	1	1	1	0	0	1	1	0	1	1	0	1
n	0	1	1	0	0	1	1	0	1	0	1	1	0	0	0	0
0	р	1	1	0	1	1	1	1	0	1	1	1	1	1	1	0

(Falta os flip-flops JK para o display de sete segmentos presentes na página seguinte)

Escolha do Flip-Flop JK e razões dessa escolha

A razão de escolhermos o flip-flop JK deve-se à sua facilidade de construção. Apesar da construção dos mapas de Karnaugh seja mais longa em termos de quantidade, as expressões extraídas pelos mapas serão mais simples obtendo assim um menor número de variáveis, o que consequentemente irá tornar a extensão no circuito menor e a sua implementação usando o kit didático mais simples com menor quantidade de fios e portas. (Tabela 3)

Qn	Qn + 1	J	K
0	0	0	ı
0	1	1	-
1	0	-	1
1	1	-	0

Flip-Flops JK para as entradas da codificação dos peões apresentado na Tabela 1 (Tabela 3)

	Entradas									Fli	p-Flop	s JK				
S		Q	n			Qn	+ 1									
	<i>X</i> 3	X2	<i>X</i> 1	X0	<i>X</i> 3	<i>X</i> 2	X1	X0	J3	К3	J2	К2	J1	K1	JO	K0
0	0	0	0	0	0	0	0	0	0	-	0	-	0	-	0	-
1	0	0	0	0	0	0	0	1	0	-	0	-	0	-	1	-
-	0	0	0	1	0	0	1	0	0	-	0	-	1	-	-	1
-	0	0	1	0	0	0	1	1	0	-	0	-	-	0	1	-
-	0	0	1	1	0	1	0	0	0	-	1	-	1	1	-	1
-	0	1	0	0	0	1	0	1	0	-	-	0	0	-	1	-
-	0	1	0	1	0	1	1	0	0	-	-	0	1	-	-	1
-	0	1	1	0	0	1	1	1	0	-	-	0	-	0	1	-
-	0	1	1	1	1	0	0	0	1	-	-	0	-	1	-	1
-	1	0	0	0	1	0	0	1	-	0	0	-	0	-	1	-
-	1	0	0	1	1	0	1	0	-	0	0	-	1	-	-	1
-	1	0	1	0	1	0	1	1	-	0	0	-	-	0	1	-
-	1	0	1	1	1	1	0	0	-	0	1	-	-	1	-	1
-	1	1	0	0	1	1	0	1	-	1	-	0	0	-	1	-
-	1	1	0	1	1	1	1	0	-	1	-	1	0	-	-	1

Mapas de Karnaugh das saídas dos controladores dos veículos e equações reduzidas dos respetivos mapas

S0 = VM

$SB P \setminus X1X0$	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	0	0	1	0
10	0	0	1	0

$$S0 = VM = X1X0$$

$$S1 = AM$$

SB P\X1XO	00	01	11	_10_
00	0	1	0	1
01	0	1	0	1
11	0	1	0	1
10	0	1	0	1

$$S1 = AM = \overline{X1}X0 + X1\overline{X0} = X1 \oplus X2$$

$$S2 = VE$$

SBPX1X0	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	1	0	0	0
10	1	0	0	0

$$S2 = VE = \overline{X1} \overline{X0}$$

Mapas de Karnaugh dos flip-flops dos controladores dos veículos e equações reduzidas dos respetivos mapas

		J1									
SB P\X1X0	00	01	11	10							
00	0	1	-	-							
01	0	1	-	-							
11	0	1	-	-							
10	0	1	-	-							
	1	J1 = X0									
<i>K</i> 1											
SB P\X1XO	00	01	11	10							
00	-		0	0							
01	-	-	1	0							
11	-	-	1	0							
10	-	-	1	0							
K1 = PX0											
		J0									
SB P\X1XO	00	01	11	10							
00	0	-	-	1							
01	0	-	-	1							
11	1	-	-	1							
10	1	-	-	1							
		J0 = S + X	1								
		<i>K</i> 0									
SB P\X1XO	00	01	11	10							
00	-	1	0	-							
01	-	1	1	-							
11	-	1	1	-							
10	-	1	0	-							
	•	$K0 = \overline{X1} +$	P								

Mapas de Karnaugh das saídas do display de sete segmentos e equações reduzidas dos respetivos mapas

 \boldsymbol{e}

X0X1\X2X3	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	1	0	0
10	0	0	1	0

 $e = X0\overline{X1}X2X3 + X1X2\overline{X3} + \overline{X0}X1X3$

f

X0X1\X2X3	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	0	0	0
10	1	1	0	0

 $f = X0\overline{X}\overline{1}\overline{X}\overline{2} + \overline{X}\overline{0}X\overline{1}X\overline{3}$

 \boldsymbol{g}

<i>X0X1\X2X3</i>	00	01	11	10
00	0	0	0	0
01	0	1	1	0
11	0	0	0	0
10	1	1	1	1

 $g = \overline{X0}X1X3 + X0\overline{X1}$

Mapas de Karnaugh dos flip-flops do controlador dos peões e equações reduzidas dos respetivos mapas

		J3(S=0)		
X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	-	-	-	-
10	-	-	-	-
	1	J3(S=1)		
X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	0	0	1	0
11	-	-		-
10	-	-	-	-
	J3 =	$= X2X1\overline{X0}S + X2X$	1X0S	
		K3(S=0)		
		K3(3=0)		
X3X2\X1X0	00	K3(3-0) 01	11	10
X3X2\X1X0 00	00		11	10 -
	00 - -		11 - -	10 - -
00	-	-	- - -	10 - - 1
00 01	-	01 - -	- - - 0	-
00 01 11	- - 0	01 - - 0	- - -	- - 1
00 01 11	- - 0	01 - - 0 0	- - -	- - 1
00 01 11 10	- - 0 0	01 - 0 0 K3(S = 1)	- - - 0	- - 1 0
00 01 11 10 X3X2\X1X0	- - 0 0	01 - 0 0 K3(S = 1)	- - - 0	- - 1 0
00 01 11 10 X3X2\X1X0 00	- - 0 0	01 - 0 0 K3(S = 1)	- - - 0	- - 1 0
00 01 11 10 X3X2\X1X0 00 01	- - 0 0	01 0 0 K3(S = 1) 01	- - - 0	- - 1 0

J2(S=0)					
X3X2\X1X0	00	01	11	10	
00	0	0	1	0	
01	-	-	-	-	
11	-	-	-	-	
10	0	0	1	-	
	•	J2(S=1)			
X3X2\X1X0	00	01	11	10	
00	0	0	1	0	
01	-	-	-	-	
11	-	-	-	-	
10	0	0	1	-	
		$J2 = X1X0\bar{S} + X1X0$	S		
		K2(S=0)			
X3X2\X1X0	00	01	11	10	
00	-	-	-	-	
01	0	0	1	0	
11	0	0	-	1	
10	-	-	-	-	
		K2(S=1)			
X3X2\X1X0	00	01	11	10	
00	-	-	-	-	
01	0	0	1	0	
11	0	0	-	1	
10	-	-	-	-	
	$K2 = X1X0\bar{S} + X3X1\bar{S} + X1X0S + X3X1S$				
J1(S=0)					
X3X2\X1X0	00	01	11	10	
00	0	1	-	-	
01	0	1	-	-	

		J1(S=1)		
X3X2\X1X0	00	01	11	10
00	0	1	-	-
01	0	1	-	-
11	0	1	-	-
10	0	1	-	-
	1	$J1 = X0\bar{S} + X$	0.5	
		K1(S=0)		
X3X2\X1X0	00	01	11	10
00	-	-	1	0
01	-	-	1	0
11	-	-	-	1
10	-	-	-	0
		K1(S=1)		
X3X2\X1X0	00	01	11	10
00	-	-	1	0
01	-	-	1	0
11	-	-	-	1
10	-	-	1	0
	K1 = X0	$0\bar{S} + X3X2\bar{S} + X$	X0S + X3X2S	
		J0(S=0)		
X3X2\X1X0	00	01	11	10
00	0		-	1
01	1	-	-	1
11	1	-	-	0
10	1	-	-	1
J0(S=1)				
X3X2\X1X0	00	01	11	10
00	1	1	-	1
01	1	-	-	1
11	1	-	-	0
10	1	-	-	1
J0	$= X3\overline{X2}\bar{S} + X$	$72\overline{X1}\overline{S} + \overline{X3}X1\overline{S} +$	$-X3\overline{X2}S + \overline{X1}$	$S + \overline{X3}S$

K 0 (S= 0)					
X3X2\X1X0	00	01	11	10	
00	-	1	1	-	
01	-	1	1	-	
11	-	1	-	-	
10	-	1	1	-	
K0(S=1)					
X3X2\X1X0	00	01	11	10	
00	-	1	1	-	
01	-	1	-	-	
11	-	1	-	-	
10	-	1	1	-	
I	K0 = 1				

Mapas de Karnaugh das saídas do controlador dos peões e equações reduzidas dos respetivos mapas

			VM(S=0)		
X3X2\X1X0		00	01	11	10
00		1	1	1	1
01		0	0	0	0
11		0	0	-	1
10		0	0	0	0
	1		VM(S=1)		
X3X2\X1X0		00	01	11	10
00		1	1	1	1
01		0	0	0	0
11		0	0	-	1
10		0	0	0	0
	\ VM	$= \overline{X3} \overline{X}$	$\overline{1}\overline{S} + X3X2X1\overline{S} + \overline{X3}\overline{X}$	$\overline{2}S + X3$	X2X1S

AM	(\$	=	0)
ויות		_	\mathbf{v}

<i>X3X2\X1X0</i>	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	-	0
10	0	0	0	0
	I	AM(S=1)		
X3X2\X1X0	00	01	11	10
X3X2\X1X0 00	00	01	11 0	10 0
	I			
00	0	0	0	0
00 01	0 0	0 0	0	0

P(S=0)

X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	-	1
10	0	0	0	0
ļ		D(C-1)		

P(S=1)

X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	0	0	-	1
10	0	0	0	0

 $P = X3X2X1X0S + X3X2X1X0\bar{S}$

VE(S=0)

X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	-	0
10	1	1	1	1

VE(S=1)

X3X2\X1X0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	-	0
10	1	1	1	1

 $P = \overline{X3}X2\overline{S} + X3\overline{X2}\overline{S} + \overline{X3}X2S + X3\overline{X2}S$

Representação do circuito no Logisim

Representação do circuito do controlador do semáforo dos veículos

Representação do controlador do semáforo dos peões

Representação do display de sete segmentos

Conclusão

Através deste trabalho, conseguimos entender qual a importância deste tipo de trabalhos para a nossa carreira profissional enquanto estudantes desta universidade. Para as dificuldades que encontramos a tentar alcançar alcançamos o objetivo pretendido no nosso trabalho – fazer dois sistemas de controlo de semáforos que se interligassem um com o outro através de um controlador— ao mesmo tempo que esclarecemos todas as dúvidas que inicialmente tínhamos sobre esta matéria dos flip-flops. O Logisim final não funciona completamente, pois após uma implementação bem sucedida do Display de 7 segmentos, do botão/sensor de velocidade e do circuito dos Veículos , a implementação do circuito dos peões tem um erro, pois os flip-flops estão sempre a "0" ou seja, os estados não estão a avançar., mesmo assim o circuito sozinho funciona na perfeição se qualquer um dos flip-flops for manualmente ativado. Por consequente falha em corrigir o erro. Lamentamos pela falta de capacidade na correção do problema, mas esperamos ter corrigido o mesmo a tempo da apresentação. De qualquer forma avaliamos o trabalho de forma bastante positiva pois requiriu um grande esforço conjunto, perante problemas em cima da hora, e em como trabalhar sobre stress .