OminibotHV 底層通訊與小車運動學

By Bill

2023/08/25

OminibotHV -通訊封包格式(接收/回授)

- 數據回授封包格式
 - 這裡還有一個地方需要注意,設定機器人硬體或是系統的原始資料,皆是浮點型的資料(float),因為浮點型資料使用串口傳輸不方便,所以這四個資料在發送之前先將浮點數放大一千倍(保留小數點後三位),再將放大後的浮點數強制轉換成 short 型資料,最後在發送前將 short 型數據拆分成兩個 8 位元的數據。相應的,下位機端(STM32)在接收到資料後,需要將接收到的數據兩個 8 位元資料合併後轉換為 short 型,在縮小一千倍來進行單位的轉換。

• STM32接收數據封包格式(14 char) - <u>系統配置</u>

無單位量

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B (省)	命令 模式 0x23 ('#')	馬達 方向 定義_ 高位	編碼 器方 定 義_位 八位	馬達PW 輸出值	/M最大	馬達PW 輸出值	/M最小	編碼器I (pulse p rotation	er	預留		BBC 校驗 位	幀尾 0x7D (' } ')
字節大小	char	char	Sh	ort		ort 7199)		ort 7199)	Sh	ort	Sho (C		char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

舉例說明:

馬達方向定義只用到低八位(M4/M3/M2/M1),0為正轉,1為反轉。

EX: 0x02, M2反轉, 其餘正轉

編碼器方向定義,同馬達方向定義(E4/E3/E2/E1)。

EX:

0 0 1 0

• STM32接收數據封包格式(14 bytes) - 小車尺寸參數配置

單位:mm

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B (' { ')	命令 模式 0x24 ('\$ ')	小車輪 (Wheel		小車軸 (Axle Sp		馬達齒 (Gear Ra		輪子直往 (Wheel Diamete		預留		BBC 校驗 位	幀尾 0x7D ('} ')
字節大小	char	char	Sh	ort	Sh	ort	Sh	ort	Sh	ort	Sh	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

• STM32接收數據封包格式(14 bytes) - 小車PID參數配置

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B ('{ ')	命令 模式 0x40 (' @ ')	POS_Kp (需要放 倍)		POS_Ki (需要放 倍)	大100	POS_Kd (需要放 倍)		VEL_Kp (需要放 倍)	大100	VEL_Ki (需要放 倍)	大100	BBC 校驗 位	幀尾 0x7D ('} ')
字節大小	char	char	Sho	ort	Sh	ort	Sh	ort	Sh	ort	Sho	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

單位:放大100倍

單位:放大100倍

單位:放大100倍

- 舉例KUBOT參數設定說明(最大速度只有 0.368 m/s):
 - mobptr-> MotorDir=0x00;
 - mobptr-> EncoderDir = 0x02;
 - mobptr->Divisor_Mode = 4;
 - mobptr->GearRatio = 139;
 - mobptr->WheelEncoderPrecision = Divisor_Mode * 973;
 - mobptr->WheelDiameter = 0.160f;
 - mobptr->TrackSpacing = 0.240f;
 - mobptr->AxleSpacing = 0.0f;
 - mobptr->PWM_DutyCy_Max = 7056; //set pwm max duty cycle to 98%
 - mobptr->PWM_DutyCy_Min = 1440; //set pwm min duty cycle to 20%

• 舉例KUBOT參數設定說明(最大速度只有 0.368 m/s):

```
    mobptr->pid_pos[0] = 30.0f;
    mobptr->pid_pos[1] = 10.5f;
    mobptr->pid_pos[2] = 0.0f;
    mobptr->pid_vel[0] = 30.5f;
    mobptr->pid_vel[1] = 10.5f;
    //位置控制參數KP
    //速度控制參數KP
    //速度控制參數KI
```

- 舉例小車系統配置:
 - 7B 23 00 02 1B 90 05 A0 03 CD 00 00 BA 7D({# 0 2 7056 1440 973 0})
- 舉例小車尺寸參數配置:
 - 7B 24 00 F0 00 00 00 8B 00 A0 00 00 84 7D(**\$ 240 0 139 160 0** B **}**)
- 舉例小車PID參數配置:
 - 7B 40 0B B8 04 1A 00 00 0B B8 04 1A 3B 7D({@ 3000 1050 0 3000 1050 B})
 - ({ @ 6000 1050 0 6000 1050 B})

• STM32接收數據封包格式- **運動控制配置**

單位:mm/s或是1000*rad/s

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B ('{ ')	命令模 式 ('%' '&')	控制模 式(停 止/位 置/速 度)	小車型 別	X方向 速度或 A馬達 速率_ 高八位	X方向 速度或 A馬達 速率_ 低八位	Y方向 速度或 B馬達 速率_ 高八位	Y方向 速度或 B馬達 速率_ 低八位	z方向 速度或 C馬達 速率_ 高八位	z方向 速度或 C馬達 速率_ 低八位	W方向 速度或 D馬達 速率_ 高八位	W方向 速度或 D馬達 速率_ 低八位	BBC 校 驗位	幀尾 0x7D ('} ')
字節大小	char	char	char	char	sh	ort	sho	ort	sh	ort	sh	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

- STM32接收數據封包格式 命令模式選擇(由上層的ROS決定)
 - 0x23(#) : 小車運動系統配置
 - 0x24 (\$) : 小車運動學參數配置
 - 0x25(%) : 小車速度控制模式(Vx, Vy, Vz)
 - 0x26 (&) : 小車各馬達獨立控制 with 編碼器(M1, M2, M3, M4)
 - 0x40 (@): 小車PID參數
- STM32接收數據封包格式 小車型別(由上層的ROS決定)
 - 0x02 : TWODDMOBILE (ex: kubot)
 - 0x03:OMINIMOBILE (ex: 三輪智慧機器人)
 - 0x04 : MECANUMMOBILE(ex: rosky2, racingrat)
 - 0x05 : FOURWDMOBILE(rosky1)

STM32接收數據封包格式 - 控制模式

FORCESTOP : 0 (強制停止)

POSITIONCTRL: 1 (位置控制)

VELOCITYCTRL: 2 (速度控制)

• 舉例說明:

- X軸·+200mm/s · 7B **25** 02 **05** 00 **C8** 00 00 00 00 00 **91** 7D
- 停止・0mm/s7B 25 02 05 00 00 00 00 00 00 00 00 59 7D
- X軸·-200mm/s · 7B **25** 02 **05 FF 38** 00 00 00 00 00 **9E** 7D
- 馬達M1 · +200mm/s · 7B 26 02 **05 00 C8** 00 00 00 00 00 **92** 7D
- _ 馬達M4 · -200mm/s · 7B 26 02 **05** 00 00 00 00 00 **FF 38 9D** 7D

車體ROSKY1做 速度控制

車體ROSKY1做 馬達速度控制

Block Check Character Calculator

• 舉例說明:

- X軸 · +200mm/s · 7B **25** 02 **02 00 C8** 00 00 00 00 00 **96** 7D
- 停止,0mm/s · 7B **25** 02 **02** 00 00 00 00 00 00 00 **5E** 7D
- X軸 · -200mm/s · 7B **25** 02 **02 FF 38** 00 00 00 00 00 **99** 7D
- 馬達M1/M2 · +100mm/s · 7B 26 02 02 00 64 00 64 00 00 00 00 5D 7D
- 馬達M1/M2 · -200mm/s · 7B 26 02 02 FF 38 FF 38 00 00 00 00 5D 7D

KUBOT車體做 線性速度控制

KUBOT馬達做 旋轉速度控制

Block Check Character Calculator

- STM32回授數據封包格式 命令模式選擇(由上層的ROS決定)
 - 0x33('3'):回授小車運動系統配置
 - 0x34('4'):回授小車運動學參數配置
 - 0x35('5'):回授小車速度控制模式(Vx, Vy, Vz)
 - 0x36('6'):回授小車各馬達獨立控制 with 編碼器(M1, M2, M3, M4)
 - 0x50 ('P'):回授小車PID參數

• STM32回授數據封包格式- 速度控制配置

單位:mm/s或是1000*rad/s

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B (' { ')	命令模 式 0x35/0 x36 (' 5 ' ' 6 ')	控制模 式(位 置/速 度/ 停 止)	小車型 別	X方向 速度或 A馬達 速率_ 高八位	X方向 速度或 A馬達 速率_ 低八位	Y方向 速度或 B馬達 速率_ 高八位	Y方向 速度或 B馬達 速率_ 低八位	z方向 速度或 c馬達 速率_ 高八位	z方向 速度或 c馬達 速率_ 低八位	W方向 速度或 D馬達 速率_ 高八位	W方向 速度或 D馬達 速率_ 低八位	BBC 校 驗位	幀尾 0x7D ('} ')
字節大小	char	char	char	char	sh	ort	sh	ort	sh	ort	sh	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

• STM32回授數據封包格式(14 char) - **系統配置**

無單位量

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B (' { ')	命令 模式 0x33 ('3')	馬達 方向 定義_ 高八 位	編碼 器方 定 義_位 八位	馬達PW 輸出值	/M最大	馬達PW輸出值	/M最小	編碼器I (pulse p rotation	er	預留		BBC 校驗 位	幀尾 0x7D (' } ')
字節大小	char	char	Sh	ort		ort o 7199)	Sho (min to	ort o 720)	Sh	ort	Sho (C		char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

• STM32回授數據封包格式(14 bytes) - 小車尺寸參數配置

單位:mm

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B (' { ')	命令 模式 0x34 (' 4 ')	小車輪頭 (Wheel		小車軸 (Axle Sp		馬達齒 (Gear Ra		輪子直往 (Wheel Diamete		預留		BBC 校驗 位	幀尾 0x7D ('} ')
字節大小	char	char	Sh	ort	Sh	ort	Sh	ort	Sh	ort	Sho	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

• STM32回授數據封包格式(14 bytes) - 小車PID參數配置

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B ('{ ')	命令 模式 0x50 (' P ')	POS_Kp (需要放 倍)		POS_Ki (需要放 倍)	大100	POS_Kd (需要放 倍)		VEL_Kp (需要放 倍)	大100	VEL_Ki (需要放 倍)	大100	BBC 校驗 位	幀尾 0x7D ('} ')
字節大小	char	char	Sho	ort	Sh	ort	Sh	ort	Sh	ort	Sho	ort	char	char
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

單位:放大100倍

單位:放大100倍

單位:放大100倍

- 舉例讀回小車系統配置:
 - 7B 33 00 00 00 00 00 00 00 00 00 48 7D({30000B})
- 舉例讀回小車尺寸參數配置:
 - 7B 34 00 00 00 00 00 00 00 00 00 4F 7D({ 4 0 0 0 0 0 B })
- 舉例讀回小車PID參數配置:
 - 7B 50 00 00 00 00 00 00 00 00 00 2B 7D({P0000B})

• STM32回授數據封包格式(mm/s & 放大1000)

數據	Tx[0]	Tx[1]	Tx[2]	Tx[3]	Tx[4]	Tx[5]	Tx[6]	Tx[7]	Tx[8]	Tx[9]	Tx[10]	Tx[11]	Tx[12]	Tx[13]
內容	幀頭 0x7B	預留	x方向 速度_ 高八位	x方向 速度_ 低八位	Y方向 速度_ 高八位	Y方向 速度_ 低八位	Z方向 速度_ 高八位	Z方向 速度_ 低八位	x軸加速度_ 高八位	x軸加速度_ 低八位	Y軸加 速度_ 高八位	Y軸加速度_ 低八位	z軸加 速度_ 高八位	z軸加速度_ 低八位
字節大小	char	char	sh	ort	sh	ort	sho	ort	sh	ort	sh	ort	sh	ort
陣列 位置	0	1	2	3	4	5	6	7	8	9	10	11	12	13

• STM32回授數據封包格式(放大1000)

數據	Tx[14]	Tx[15]	Tx[16]	Tx[17]	Tx[18]	Tx[19]	Tx[20]	Tx[21]	Tx[22]	Tx[23]	Tx[24]	Tx[25]	Tx[26]	Tx[27]
内容	X方向 角速度 高八位	X方向 角速度 低八位	Y方向 角速度 高八位	Y方向 角速度 低八位	Z方向 角速度 高八位	Z方向 角速度 低八位	四元數 W方向 高八位	四元數 W方向 低八位	四元數 X方向 高八位	四元數 X方向 低八位	四元數 Y方向 高八位	四元數 Y方向 低八位	四元數 Z 方向 高八位	四元數 Z 方向 低八位
字節大小	sh	ort	sh	ort										
陣列 位置	14	15	16	17	18	19	20	21	22	23	24	25	26	27

- STM32回授數據封包格式
 - 這裡還有一個地方需要注意,機器人 XYZ 三軸線性速度、加速度計、角速度計、四元數方位值以及電池電壓的原始資料是浮點型的資料(float),因為浮點型資料使用串口傳輸不方便,所以這四個資料在發送之前先將浮點數放大一千倍(保留小數點後三位),再將放大後的浮點數強制轉換成 short 型資料,最後在發送前將short 型數據拆分成兩個 8 位元的數據。相應的,上位機端在接收到資料後,需要將接收到的數據兩個 8 位元資料合併後轉換為short 型,在縮小一千倍來進行單位的轉換。

數據	Tx[28]	Tx[29]	Tx[30]	Tx[31]
內容	電壓_ 高八位	電壓_ 低八位	BBC 校驗 位	幀尾 0x7D
字節大小	sh	ort	char	char
陣列 位置	28	29	30	31

OminibotHV板 – QC功能測試範例程式(4輪小車)

- 確認硬體接線和開關
 - PWR_ON(開啟電源)
 - MODE_ON(OLED才會顯示)
- 參數設定
 - 四輪小車系統配置
- 觀察OLED
 - 四輪小車運動控制


```
class ominibothy:
   def __init__(self,
                 port = '/dev/ominibot',
                 baud = 115200,
                 divisor mode = 3,
                 motor direct = 2,
                 encoder direct = 0,
                 motor pwm max = 5200,
                 motor_pwm_min = 720,
                 encoder ppr = 390,
                 wheel space = 110,
                 axle_space = 0,
                 gear ratio = 30,
                 wheel diameter = 60,
                 pos kp = 3000,
                 pos_ki = 1050,
                 pos_kd = 0,
                 vel kp = 3000,
                 vel ki = 1050):
```


OminibotHV板 -QC功能測試範例程式(4輪小車)

- 第一步,依序執行四輪小車系統配置:
 - 1) 7B 23 **05 00** 10 00 02 D0 01 86 00 00 **18** 7D({# **0 2 4096 720 390 0**})
 - 2) 7B 24 00 F0 00 00 00 8B 00 A0 00 00 **84** 7D(**\$ 240 0 139 160 0** B **}**)
 - 3) 7B 40 0B B8 04 1A 00 00 0B B8 04 1A **3B** 7D({@ 3000 1050 0 3000 1050 B})
- 第二步,四輪小車運動控制:
 - 1) X軸·+200mm/s · 7B 25 02 05 00 C8 00 00 00 00 00 91 7D
 - 2) 停止·0mm/s · 7B 25 02 **05** 00 00 00 00 00 00 00 **59** 7D
 - 3) X軸·-200mm/s · 7B 25 02 **05 FF 38** 00 00 00 00 00 **9E** 7D
 - 4) 馬達M1·+200mm/s·7B 26 02 05 00 C8 00 00 00 00 00 92 7D
 - 5) 馬達M2·+200mm/s·7B 26 02 05 00 00 00 C8 00 00 00 00 92 7D
 - 6) 馬達M3 · +200mm/s · 7B 26 02 05 00 00 00 00 00 C8 00 00 92 7D
 - 7) 馬達M4·+200mm/s·7B 26 02 05 00 00 00 00 00 00 C8 92 7D

OminibotHV - FLASH讀寫控制

Stm32範例程式(九) - FLASH讀寫控制

• FLASH存儲起始位址: 0x0801FC00

數 據	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]
內容	小車 型別 (1~4)	控制 模式 (1~2)	位置 PID_P 值	位置 PID_I 值	位置 PID_ D值	速度 PID_P 值	速度 PID_I 值	速度 PID_ D值	PWM _最 大值	PWM _最 小值	預留	預留
字節大小	word	word	word	word	word	word	word	word	word	word	word	word
陣列位置	0	1	2	3	4	5	6	7	8	9	10	11

OminibotHV -小車正/逆運動學

OminibotHV - 小車正/逆運動學(兩輪差速)

• 小車運動速度與各馬達速率輸出的轉換關係

OminibotHV - 小車正/逆運動學(兩輪差速)

• 小車運動速度與各馬達速率輸出的轉換關係

$$\begin{bmatrix} V_{x} \\ \omega_{z} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{d} & \frac{1}{d} \end{bmatrix} \begin{bmatrix} V_{L} \\ V_{R} \end{bmatrix}$$
$$\begin{bmatrix} V_{L} \\ V_{R} \end{bmatrix} = \begin{bmatrix} 1 & \frac{-d}{2} \\ 1 & \frac{d}{2} \end{bmatrix} \begin{bmatrix} V_{x} \\ \omega_{z} \end{bmatrix}$$

```
void Drive_Motor(float vx, float vz)
{
    Target_Left = vx - vz * WIDTH_OF_ROBOT / 2.0f; //计算出左轮的目标速度
    Target_Right = vx + vz * WIDTH_OF_ROBOT / 2.0f; //计算出右轮的目标速度
}
```

以上语句是通过机器人的 X 和 Z 轴方向的速度求两个电机的目标速度大小(运动学逆解),其中 WIDTH OF ROBOT 是两个车轮直线距离的宏定义。

OminibotHV - 小車正/逆運動學(四輪差速)

- 前輪和後輪的速度是同步的
- 點COG為車體幾何中心點
- 點ICR為車體作圓周運動的中心點,大小與角速度相關
- **底盤速度瞬心在COM點**,但COM與COG不一定重合
- d_i : 四个轮子到 ICR 的距离ightarrow

轮子的实际速度 v_i : 侧向滑动速度 v_{iy} 和预设目标速度 v_{ix} 的合成速度 i=1,2,3,4 在模型中底盘的速度瞬心在质心 COM 处,而 COM 和 COG 往往是不重合的。 φ 整个底盘的运动速度:用 COM 位置处的线速度 v_c 和角速度 ω_c 表示 φ

- dc: COM 到 ICR 的距离←
- c: 底盘中左轮、右轮轴距↩
- a: 点 COM 与底盘后端之间距离↩
- b: 点 COM 与前端之间的距离↩

CSDN @K.Fire浑身是肝

OminibotHV - 小車正/逆運動學(四輪差速)

$$\begin{bmatrix} V_{cx} \\ \omega_c \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{c} \end{bmatrix} \begin{bmatrix} V_L \\ V_R \end{bmatrix}$$
$$\begin{bmatrix} V_L \\ V_R \end{bmatrix} = \begin{bmatrix} 1 & \frac{-c}{2} \\ 1 & \frac{c}{2} \end{bmatrix} \begin{bmatrix} V_{cx} \\ \omega_c \end{bmatrix}$$

② C语言实现

```
void Drive_Motor(float vx, float vy, float vz) 平衡小車這邊有問題
{

    MotorTarget. A = (vx-vz*(Wheel_spacing+Wheel_axlespacing));
    MotorTarget. B = (vx-vz*(Wheel_spacing+Wheel_axlespacing));
    MotorTarget. C = (vx+vz*(Wheel_spacing+Wheel_axlespacing));
    MotorTarget. D = (vx+vz*(Wheel_spacing+Wheel_axlespacing));
    VR
```

Wheel_axlespacing 为小车(前后)轴距参数, Wheel_spacing 为小车(左右)轮趾

参数。

OminibotHV - 小車正/逆運動學(麥克拉姆輪)

A. Mobile Platform with 4 Mecanum Wheels

A typical configuration of a Mecanum wheeled platform consists of 4 wheels (see Fig. 4). The positions of the wheels

注意輪子的位置

Installation of the Wheels

with respect to the robot frame can be defined as $\delta_i = 0$ and $l_i = \sqrt{a^2 + b^2}$. This leads to the configuration parameters shown in table I. These parameters in in conjunction with (8) yield to the inverse kinematics

$$\begin{pmatrix} \dot{\varphi}_1 \\ \dot{\varphi}_2 \\ \dot{\varphi}_3 \\ \dot{\varphi}_4 \end{pmatrix} = \boldsymbol{J} \begin{pmatrix} \dot{x}_{\mathrm{R}} \\ \dot{y}_{\mathrm{R}} \\ \dot{\theta} \end{pmatrix}, \text{ with } \boldsymbol{J} = \begin{bmatrix} 1 & 1 & (a+b) \\ 1 & -1 & -(a+b) \\ 1 & 1 & -(a+b) \\ 1 & -1 & (a+b) \end{bmatrix}$$

OminibotHV - 小車正/逆運動學(麥克拉姆輪)

• 根據ROSKY2的電路設計定義

$$\begin{bmatrix} V_{x} \\ V_{y} \\ W \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ \frac{1}{a+b} & \frac{-1}{a+b} & \frac{1}{a+b} & \frac{-1}{a+b} \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix}$$
$$\begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \end{bmatrix} = \begin{bmatrix} 1 & 1 & (a+b) \\ 1 & -1 & -(a+b) \\ 1 & -1 & (a+b) \\ 1 & 1 & -(a+b) \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \\ W \end{bmatrix}$$

OminibotHV - 小車正/逆運動學(全向輪)

• 小車運動速度與各馬達速率輸出的轉換關係

CIRCUS PI

OminibotHV - 小車正/逆運動學(全向輪)

- 小車運動速度與各馬達速率輸出的轉換關係
 - 全向輪不與地面打滑,同時地面有足夠摩擦力;
 - 電機**軸線中心**正是底盤重心;
 - 各輪之間是絕對的互成**120°安裝**。

$$\begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix} = \begin{bmatrix} \frac{-\sqrt{3}}{2} & \frac{1}{2} & L \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & L \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & L \\ 0 & -1 & L \end{bmatrix} \begin{bmatrix} V_{x} \\ V_{y} \\ W_{z} \end{bmatrix}$$

$$\begin{bmatrix} V_{x} \\ V_{y} \\ W_{z} \end{bmatrix} = \begin{bmatrix} \frac{-\sqrt{3}}{3} & \frac{\sqrt{3}}{3} & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{-2}{3} \\ \frac{1}{3L} & \frac{1}{3L} & \frac{1}{3L} \end{bmatrix} \begin{bmatrix} V_{a} \\ V_{b} \\ V_{c} \end{bmatrix}$$