Homework 1, CEGE 4352 Groundwater Modeling, 2018

Problem 1

A well will be placed near a river of infinite length; the head along the river is ϕ_0 . The head at a distance L from the river bank is measured at ϕ_1 . The hydraulic conductivity in the aquifer is k; the aquifer is unconfined. The y -axis is along the river bank. The well will be placed at z=-d, its radius is r_w and its discharge is Q.

Note: submit narrative in pdf form electronically, submit Matlab®code, including run script. The report must include your plots obtained from Matlab®. Note: All analysis must be done in terms of complex variables. Create the contour plots using the contouring routine provided.

Questions:

- 1. Determine an expression for the rate of uniform flow Q_{x0} , using the flow case without well.
- Present an expression for both the complex potential and the discharge function
- 3. Program both the complex potential and the discharge function for each individual item needed in your solution, including functions to convert heads to potentials and back.
- 4. Produce three flow nets by contouring the complex potential for the following three cases, where
 - $\phi_0 = 15 \text{ m}, \phi_1 = 18.5 \text{ m}.$
 - L = 1000 m, d = 175 m
 - k = 10 m/day.
 - $r_w = 0.2 \text{ m}$

Contour the modulus of the discharge function for the three cases listed above. The discharge Q_{\max} is defined as πdQ_{x0} and $Q=aQ_{\max}$, where

- (a) Case 1: a = 0.6
- (b) Case 2: a = 1
- (c) Case 3: a = 1.5