We are analyzing the Exploratory Data Analysis on kaggle data set: World Happiness Report up to 2020.

We will explain the happiness indexes of different different country of the world and explain the data in a statistics method

Data Source: https://www.kaggle.com/mathurinache/world-happiness-report

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

In [2]:

```
data = pd.read_csv("2015.csv")
data
```

Out[2]:

	Country	Region	Happiness Rank	Happiness Score	Standard Error	Economy (GDP per Capita)	Family	Health (Life Expectancy)	Freedom	Trust (Government Corruption)	Generosity	Dys Res
0	Switzerland	Western Europe	1	7.587	0.03411	1.39651	1.34951	0.94143	0.66557	0.41978	0.29678	2.5
1	Iceland	Western Europe	2	7.561	0.04884	1.30232	1.40223	0.94784	0.62877	0.14145	0.43630	2.7
2	Denmark	Western Europe	3	7.527	0.03328	1.32548	1.36058	0.87464	0.64938	0.48357	0.34139	2.4
3	Norway	Western Europe	4	7.522	0.03880	1.45900	1.33095	0.88521	0.66973	0.36503	0.34699	2.4
4	Canada	North America	5	7.427	0.03553	1.32629	1.32261	0.90563	0.63297	0.32957	0.45811	2.4
										•••	•••	
153	Rwanda	Sub- Saharan Africa	154	3.465	0.03464	0.22208	0.77370	0.42864	0.59201	0.55191	0.22628	0.6
154	Benin	Sub- Saharan Africa	155	3.340	0.03656	0.28665	0.35386	0.31910	0.48450	0.08010	0.18260	1.6
155	Syria	Middle East and Northern Africa	156	3.006	0.05015	0.66320	0.47489	0.72193	0.15684	0.18906	0.47179	0.3
156	Burundi	Sub- Saharan Africa	157	2.905	0.08658	0.01530	0.41587	0.22396	0.11850	0.10062	0.19727	1.8
157	Togo	Sub- Saharan Africa	158	2.839	0.06727	0.20868	0.13995	0.28443	0.36453	0.10731	0.16681	1.5

158 rows × 12 columns

In [3]:

```
print(data.shape)
```

(158, 12)

We are having 158 rows which indicate the country and 12 column which indicates the essential details of the country

In [4]:

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 158 entries, 0 to 157
Data columns (total 12 columns):
                                    Non-Null Count Dtype
 # Column
 0 Country
                                    158 non-null
                                                    object
                                   158 non-null object
 1 Region
                                   158 non-null int64
 2 Happiness Rank
                                   158 non-null
    Happiness Score
                                                   float64
 3
                                  158 non-null
158 non-null
    Standard Error
                                                    float64
    Economy (GDP per Capita)
                                                    float64
                                   158 non-null
 6 Family
                                                  float64
 7 Health (Life Expectancy)
                                  158 non-null float64
                                   158 non-null float64
 8 Freedom
    Trust (Government Corruption) 158 non-null
                                                    float64
 10 Generosity
                                    158 non-null
                                                    float64
 11 Dystopia Residual
                                   158 non-null
                                                    float64
dtypes: float64(9), int64(1), object(2)
memory usage: 14.9+ KB
We need to check null values in dataset
In [5]:
print("Is there any null value in dataset:",data.isnull().values.any())
Is there any null value in dataset: False
In [6]:
print("We need to check the null in detail:",data.isnull().sum())
We need to check the null in detail: Country
Region
Happiness Rank
                                 Λ
Happiness Score
Standard Error
                                 0
Economy (GDP per Capita)
                                 0
Family
Health (Life Expectancy)
Freedom
Trust (Government Corruption)
Generosity
                                 Ω
Dystopia Residual
dtype: int64
We got confirmation there is no null values
We are have to create the bar chart in order to happiness score
In [7]:
import plotly.express as px
fig = px.bar(data,x = 'Country', y= 'Happiness Score', height = 800)
fig.update layout(title = 'Arrangment of countries in descending order of happiness', titlefont size
=20)
fig.show()
```

We found the better arrangement of country in order to happiness score

We are have to create the bar chart in order to happiness rank

```
In [8]:
```

```
fig = px.bar(data,x ='Country', y = 'Happiness Rank',height=800)
fig.update_layout(title = "Arrangment of Country in descending order of Happiness Rank")
fig.show()
```

We can identitfy the happiness rank and happiness score both are following the opposite direction. If the happiness rank is low that's means happiness score is having high value

```
In [9]:
```

```
fig = px.pie(data,values = 'Economy (GDP per Capita)',names = 'Region',title = 'Region Wise economy
',height=650)
fig.show()
```

We found the continent of Europe has a good score of GDP per Capita compared to others. Australian has least score GPD per Capita

In [10]:

```
import plotly.graph_objects as go
fig = go.Figure()
x0 = data['Economy (GDP per Capita)'].values
x1 = data['Health (Life Expectancy)'].values
x2 = data['Trust (Government Corruption)'].values
x3 = data['Dystopia Residual'].values

fig.add_trace(go.Histogram(x=x0))
fig.add_trace(go.Histogram(x=x1))
fig.add_trace(go.Histogram(x=x2))
fig.add_trace(go.Histogram(x=x3))

#overlay both histogram
fig.update_layout(barmode='overlay')
fig.update_traces(opacity=1)
fig.show()
```

In [11]:

```
fig = px.bar(data,x='Country',y = 'Family',color = 'Health (Life Expectancy)',height=800)
fig.update_layout(title = 'Family Vs Heath Factors',titlefont_size=20)
fig.show()
```

We found the highest life Expectency "Iceland Country" and lowest life expectency "Togo"

In [12]:

```
fig = px.bar(data,x = 'Country',y = 'Freedom',color = 'Health (Life Expectancy)',height=800)
fig.update_layout(title = 'Country Vs Freedom',titlefont_size=20)
fig.show()
```

We found the highest freedom for Norway Country where life Expectancy 0.88521 and least freedom for Greece Country where Life Expectancy 0.88213

```
In [13]:
```

```
fig = px.line(data,x = 'Freedom',y = 'Health (Life Expectancy)',color = 'Region')
fig.show()
```

Freedom of people regarding health concerns is maximum in Southeastern Asia

Correlation matrix denotes a score of correlation among various parameters of the dataset

In [14]:

```
import seaborn as sns
plt.figure(figsize=(10,8))
sns.heatmap(data.corr())
```

Out[14]:

<matplotlib.axes._subplots.AxesSubplot at 0x212ef3eac88>

Conclusion:

Hence from this project we can see that family, happiness and health depends a lot on GDP an d government trust.

Happiness depends on Health, Money and Trust.So the countries like Switzerland, Iceland and Singapore have a greater

happiness count than most other countries. African countries like Burundi and Togo have a l ower happiness count.