Statistical Language Models Jurafsky & Martin, Ch 6, Appendix A.1, and additional material

CSE 597: Natural Language Processing

Outline

- 1. Formalization: random variables and the Markov assumption
- 2. Quantifying uncertainty
- 3. Estimating the parameters of a statistical LM
- 4. Jurafsky & Martin slides
 - a. Berkeley Restaurant Corpus: Slides 17-21
 - b. Evaluation & Perplexity; Visualization: Slides 28-37

Statistical Language Models

CSE 597: Natural Language Processing

Formalizing Statistical Language Models

Probabilistic Language Modeling

Goal: model the probability of a specific sequence of words:

$$P(W) = P(W_1, W_2, W_3, W_4, W_5, ...W_n)$$

Or: model the probability of a word, given previous words

A language model computes either of these by assuming

- W is a random variable ranging over sequences of words in English
- Each $w_i \in W$ is a value of W, or an event of a word occurring

Random Variables

- Variables in probability theory are called random variables
 - \circ Uppercase names for the variables, e.g., P(A=true)
 - \circ Lowercase names for the values, e.g., P(a) is an abbreviation for A=true
- ullet A random variable is a function from a domain of possible worlds $oldsymbol{arOmega}$ (or sample space) to a range of values
 - Functions map values from the input domain to the output range
 - Again: a random variable is a function

Markov Assumption

- Russian statistician Andrei Markov
- Each state depends on a fixed finite number of prior states
- Future is **conditionally independent** of the past
- A Markov chain is a Bayesian network that incorporates time (temporal sequences of states)

Random Variables Indexed over Time

- Assume: fixed, constant, discrete time steps t
- Notation: $X_{a:b} = X_a, X_{a+1}, ..., X_{b-1}, X_b$
- \bullet Markov assumption: random variable $X_{_t}$ depends on bounded subset of $X_{_{0:t-1}}$

First-order Markov Process

$$X_{t-2}$$
 X_{t-1} X_{t} X_{t+1} X_{t+2} X_{t+2} Y_{t+2} Y_{t+2

- Bayesian network over time
 - \circ Random variables ... X_{t-2} , X_{t-1} , X_t , X_{t+1} , X_{t+2} ...
 - Directed edges for conditional independence
- ullet Each state X_t is conditioned on the preceding state X_{t-1}

$$P(X_t|X_{0:t-1}) = P(X_t|X_{t-1})$$

Second Order Markov Process

Each time step X_t is conditioned on the two preceding states X_{t-2} , X_{t-1}

Formalization of a Markov Chain (Statistical LM)

$$Q = q_1q_2 \dots q_N$$
 a set of N states
$$A = a_{11}a_{12} \dots a_{n1} \dots a_{nn}$$
 a transition probability matrix A , each a_{ij} representing the probability of moving from state i to state j , s.t.
$$\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$$
 an initial probability distribution over states. π_i is the probability that the Markov chain will start in state i . Some states j may have $\pi_j = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

- Q is the random variable for words w at times t
- A is the probability matrix of **conditional** probabilities $P(w_{t+1}|w_t)$
- π is the **prior** probabilities of words w, i.e., $P(q_1) = w$

Statistical Language Models

CSE 597: Natural Language Processing

Quantifying Uncertainty

Probabilities of Elementary Events

- The sample space Ω consists of an exhaustive set of mutually exclusive possibilities
 - Example: two words in a row,
- Every $\omega_{i} \subseteq \Omega$ is assigned a probability (elementary event in the sample space of possible worlds): $P(\omega_i)$
 - $0 \leq P(\omega_i) \leq 1$
- Assuming Ω is finite ($w_1,..., w_n$) we require

 - Because Ω is an exhaustive set of mutually exclusive possibilities

Prior versus Conditional Probabilities

- Prior probability: probability of an event from the sample space, with no conditioning evidence
 - **P**(roll of 2 dice sums to 11) = P((5, 6)) + P((6,5)) = 1/36 + 1/36 = 1/18
 - \circ $P(w_1, w_2, w_3, w_4, w_5) = P("Students like to try to")$
- Conditional (or posterior) probability of an event conditioned on the occurrence of an earlier event
 - $OP(Die_2=6|Die_1=5)=1/6$

Product Rule of Conditional Probabilities

$$P(a|b) = \frac{P(a \land b)}{P(b)}$$

$$P(Die_2 = 6|Die_1 = 5) = \frac{P(Die_2 = 6 \land Die_1 = 5)}{P(Die_1 = 5)}$$

$$P(a \wedge b) = P(a|b)P(b)$$

Independence

Random variables X and Y are independent iff:

$$P(X,Y) = P(X)P(Y)$$

$$P(X|Y) = P(X)$$

$$P(Y|X) = P(Y)$$

- Taking any independence into account is essential for efficient probabilistic reasoning
- Unfortunately, complete independence is rare
- Fortunately, assuming conditional independence works well in practice

Conditional Independence

Random variables X and Y are **conditionally** independent given Z iff

$$P(X|Y,Z) = P(X|Z)$$

$$P(Y|X,Z) = P(Y|Z)$$

$$P(X \land Y|Z) = P(X|Z)P(Y|Z)$$

Chain Rule of Probabilities

• Generalizes the product rule:

$$P(B|A) = \frac{P(A,B)}{P(A)}$$
$$P(A,B) = P(A)P(B|A)$$

To any number of variables in the joint probability distribution

$$P(A, B, C, D) = P(A) P(B|A) P(C|A, B) P(D|A, B, C)$$

$$P(X_1, X_2, \dots, X_n) = P(X_1) P(X_2|X_1) P(X_3|X_1, X_2) \dots P(X_n|X_1, X_2, \dots, X_{n-1})$$

Chain Rule Applied to Language Modeling

$$P(w_1, w_2, \dots, w_n) = P(w_1) \prod_i P(w_i | w_{i-1}, w_{i-2}, \dots, w_{i-1})$$

- P("Students like to try to") = P(Students, like, to, try, to)
 - = P(Students) P(like|Students) P(to|Students, like) . . .

Markov Rule Applied to Chain Rule for LM

$$P(w_1, w_2, \dots, w_n) = P(w_1) \prod_i P(w_i | w_{i-1}, w_{i-2}, \dots, w_{i-1})$$

Can be approximated by a tri-gram language model

$$P(w_1, w_2, \dots, w_n) = \prod_{i} P(w_i | w_{i-1}, w_{i-2})$$

Or a bi-gram language model. Why not a unigram model?

Connecting the Formalization to Probability

- Q represents the length n word sequences
- \boldsymbol{A} represents the probabilities $P(w_i|w_{i-1})$
 - For a bigram markov chain LM
 - What would be needed for a trigram LM?
- π represents the probabilities P(w₄)

$$Q = q_1 q_2 \dots q_N$$

$$A = a_{11} a_{12} \dots a_{n1} \dots a_{nn}$$

$$\pi = \pi_1, \pi_2, ..., \pi_N$$

Language Has Long Distance Dependencies

Number agreement between grammatical subject and verb, for example:

The **computers** which I just bought for the machine room on the 5th floor **have** crashed. The **computer** which I just bought for the machine room on the 5th floor **has** crashed.

- Statistical language modeling cannot handle LDDs
- A statistical LM still works well enough: It is easier to get good estimates for a simpler wrong model (fewer parameters, e.g., bigram probabilities) than a more complicated more correct model

Statistical Language Models

CSE 597: Natural Language Processing

Estimating the Parameters of a Bigram Statistical LM

Building a Statistical Language Model

- ullet Collect a large corpus of text (e.g., webscale) C
- All the observed word sequences are the data for the two parameters of the model: A and π

Building a Statistical Language Model

- 1. Create V(ocabulary) from C
 - a. a list of the unique words in the corpus
 - b. Add a <s> (start) and </> (end) tokens to every sentence, and add <s> and </s> to V
- 2. π applies only to $\langle s \rangle$: $P(\langle s \rangle_1) = 1$
- 3. Unigram frequencies: For every v_i in V, compute count(v_i)
- 4. For every sequence of two words v_i , v_j , compute count(v_i , v_j)
- 5. $P(\boldsymbol{v}_{j} | \boldsymbol{v}_{i}) = count(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}) / count(\boldsymbol{v}_{i})$

Example

```
<s> I am Sam </s>
```

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Unigram counts

<s>(3), </s>(3), am(2), and(1), do(1), eggs(1), green(1), ham(1), I(3), like(1), not(1), Sam(2)

Bigrams > once <s>,I(2), I,am(2),

P(I <s>)</s>	2/3
P(Sam <s>)</s>	1/3
P(am I)	2/3
P(do I)	1/3
P(Sam am)	1/2
P(am)	1/2
P(I Sam)	1/2

