Probabilistic Reasoning Over Time CS 470 Introduction To Artificial Intelligence

Daqing Yi

Department of Computer Science Brigham Young University

Outline

- Temporal Inference
 - Dynamic model
 - Applications
- Markov Process
 - Markov assumption
 - Markov model
- Bayesian Filter
 - Hidden Markov Model
- Application : Mapping
 - Grid filter

Outline

- Temporal Inference
 - Dynamic model
 - Applications
- - Markov assumption
 - Markov model
- - Hidden Markov Model
- - Grid filter

Dynamic model

Temporal Inference

•000

Static model

Dynamic model

Reasoning over time

Application

Robotic Mapping

Reasoning over time

Application

Temporal Inference

0000

Robotic Localization

Reasoning over time

Application

Health Monitoring

Outline

- Temporal Inference
 - Dynamic model
 - Applications
- Markov Process
 - Markov assumption
 - Markov model
- Bayesian Filter
 - Hidden Markov Model
- 4 Application : Mapping
 - Grid filter

Markov process

- Dynamic model $P(X_t \mid X_0, \dots, X_{t-1})$
- Markov assumption: the current state depends on only a finite fixed number of previous states
- Markov process $P(X_t \mid X_0, \dots, X_{t-1}) = P(X_t \mid X_{t-K}, \dots, X_{t-1})$

Markov process

• First-order Markov Process $P(X_t \mid X_{t-1})$

• Second-order Markov Process $P(X_t \mid X_{t-1}, X_{t-2})$

• a chain-structured Bayesian network

- initial state $P(X_1)$
- transition model $P(X_t \mid X_{t-1})$
- conditional independence

Example: Rain

- Observation model $P(E_t \mid X_0, \dots, X_t, E_0, \dots, E_{t-1})$ What you can observe at time t depends on
 - previous states X_0, \cdots, X_t
 - previous observation E_0, \cdots, E_{t-1}
- Markov assumption $P(E_t \mid X_t)$

Inference

- Filtering $P(X_t \mid E_1, \dots, E_t)$ estimate current state
- Prediction $P(X_{t+k} \mid E_1, \dots, E_t), k > 0$ forecasting
- Smoothing $P(X_k \mid E_1, \dots, E_t), 0 \le k \le t$ smooth data
- Estimation arg $\max_{\mathbf{X}_1, \dots, \mathbf{X}_t} P(X_1, \dots, X_t \mid E_1, \dots, E_t)$ Speech recognition

Outline

- 1 Temporal Inference
 - Dynamic model
 - Applications
- 2 Markov Process
 - Markov assumption
 - Markov model
- Bayesian Filter
 - Hidden Markov Model
- 4 Application : Mapping
 - Grid filter

Hidden Markov Model

- observation z
- "hidden" state x
- transition model $P(x_k \mid x_0, \dots, x_{k-1}) = P(x_k \mid x_{k-1})$
- observation model

$$P(z_k \mid x_0, \cdots, x_k) = P(z_k \mid x_k)$$

Recursive Bayesian Estimation

Recursive Bayesian Estimation

• Prediction (priori)

$$P(x_k \mid z_1, \cdots, z_{k-1}) \longleftarrow P(x_{k-1} \mid z_1, \cdots, z_{k-1})$$

- Use transition model to predict
- Update (posteriori)

$$P(x_k \mid z_1, \cdots, z_k) \longleftarrow P(x_k \mid z_1, \cdots, z_{k-1})$$

Use new observation to update the prediction

Question?

- $P(x_k \mid z_1, \dots, z_{k-1}) = P(x_k \mid z_{k-1})$?
- $P(x_k \mid z_1, \cdots, z_k) = P(x_k \mid z_k)?$

Prediction

$$P(x_k \mid z_1, \cdots, z_{k-1}) = \int P(x_k \mid x_{k-1}) P(x_{k-1} \mid z_1, \cdots, z_{k-1}) dx_{k-1}$$

- transition model $P(x_k \mid x_{k-1})$
- previous posterior $P(x_{k-1} \mid z_1, \dots, z_{k-1})$

Update

$$P(x_k \mid z_1, \dots, z_k) = \frac{P(z_k \mid x_k)P(x_k \mid z_1, \dots, z_{k-1})}{P(z_k \mid z_1, \dots, z_{k-1})}$$

=\alpha P(z_k \cap x_k)P(x_k \cap z_1, \dots, z_{k-1})

- measurement model $P(z_k \mid x_k)$ (Likelihood)
- current prior $P(x_k \mid z_1, \dots, z_{k-1})$
- \bullet normalization factor α

Define

- $bel(x_k) = P(x_k \mid z_1, \cdots, z_k)$
- $\hat{bel}(x_k) = P(x_k \mid z_1, \dots, z_{k-1})$

Simplification

Prediction

$$\hat{bel}(x_k) = \int P(x_k \mid x_{k-1}) bel(x_{k-1}) dx_{k-1}$$

Update

$$bel(x_k) = \alpha P(z_k \mid x_k) \hat{bel}(x_k)$$

Consider system input u

- transition model $P(x_k \mid x_{k-1}, u_k)$
- $bel(x_k) = P(x_k | z_1, \dots, z_k, u_1, \dots, u_k)$
- $\hat{bel}(x_k) = P(x_k \mid z_1, \dots, z_{k-1}, u_1, \dots, u_{k-1})$

Consider system input u

Prediction

$$\hat{bel}(x_k) = \int P(x_k \mid x_{k-1}, u_k) bel(x_{k-1}) dx_{k-1}$$

Update

$$bel(x_k) = \alpha P(z_k \mid x_k) \hat{bel}(x_k)$$

Outline

- Temporal Inference
 - Dynamic model
 - Applications
- 2 Markov Process
 - Markov assumption
 - Markov model
- Bayesian Filter
 - Hidden Markov Model
- Application : Mapping
 - Grid filter

map discretization

binary Bayes filter with static state

- binary state : x and $\neg x$
- static state : x does not change over time
- belief in state at time k: $bel(x_k) = P(x_k \mid z_1, \dots, z_k)$

Prediction

$$\hat{bel}(x_k) = \sum_{x_{k-1}} P(x_k \mid x_{k-1}) bel(x_{k-1})$$

static state
$$\longrightarrow \hat{bel}(x_k) = bel(x_{k-1})$$

Update

$$bel(x_k) = \alpha_k P(z_k \mid x_k) \hat{bel}(x_k)$$

Simplification

$$bel(x_k) = \alpha_k P(z_k \mid x_k) bel(x_{k-1})$$

- a cell in grid $s_{i,j} \in S$
- the occupancy of the cell $\{s_{i,j} = \text{occupied or } s_{i,j} = \neg \text{occupied}\}$
- the observation of the cell $\{o_{i,j} = \text{occupied or } o_{i,j} = \neg \text{occupied}\}$

posteriori $P(s_{i,i} \mid O)$

- priori $P(s_{i,j} = \text{occupied})$ and $P(s_{i,j} = \neg \text{occupied})$
- likelihood
 - $P(o_{i,j} = \text{occupied} \mid s_{i,j} = \text{occupied})$
 - $P(o_{i,j} = \neg \text{occupied} \mid s_{i,j} = \text{occupied})$
 - $P(o_{i,j} = \text{occupied} \mid s_{i,j} = \neg \text{occupied})$
 - $P(o_{i,i} = \neg \text{occupied} \mid s_{i,i} = \neg \text{occupied})$