

Predictive Analytics

- -Bosch Production Line Performance example
- -Sine Wave prediction using LSTM

Intel® Confidential — INTERNAL LISE ONLY

Overview

Topics include:

- Pre-requisites
- Introduction to Pandas, Numpy, Matplotlib
- About the Dataset and features
- Data Preprocessing
- Build the Model and Train
- Inference
- Conclusion

Pre-requisites

Option 1: Using DevCloud

- Access to DevCloud
- Jupyter Notebook with Anaconda for Python Libraries

Option 2: Running Locally

Jupyter Notebook with Anaconda for Python Libraries

Toolset for DevCloud:

Intel® Distribution for Python

Comes with

- Accelerated performance from Intel's Math Kernel Library (MKL)
- Also contains Data Analytics Acceleration Library (DAAL), Message Passing Interface (MPI), and Threading Building Blocks (TBB)

Toolset:

- Jupyter notebooks: interactive coding and visualization of output
- NumPy, SciPy, Pandas: numerical computation
- Matplotlib, Seaborn: data visualization
- Scikit-learn: machine learning

Introduction to Pandas

- Library for computation with tabular data
- Mixed types of data allowed in a single table
- Columns and rows of data can be named
- Advanced data aggregation and statistical functions

Source: http://pandas.pydata.org/

Introduction to Pandas

Basic data structures

Pandas Series Creation and Indexing

Use data from step tracking application to create a Pandas Series

Code

```
>>> 0 3620
1 7891
2 9761
3 3907
4 4338
5 5373
Name: steps, dtype: int64
```


Pandas Series Creation and Indexing

Add a date range to the Series

print(step counts)

Code

.

```
>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
Freq: D, Name: steps,
dtype: int64
```


Pandas Series Creation and Indexing

Select data by the index values

Code

```
# Just like a dictionary
print(step_counts['2015-04-01'])

# Or by index position--like an array
print(step_counts[3])

# Select all of April
print(step_counts['2015-04'])
```

Output

>>> 3907

>>> 3907

>>> 2015-04-01 3907 2015-04-02 4338 2015-04-03 5373

Freq: D, Name: steps,

Pandas Data Types and Imputation

Data types can be viewed and converted

Code

```
# View the data type
print(step_counts.dtypes) >>> int64

# Convert to a float
step_counts = step_counts.astype(np.float)

# View the data type
print(step counts.dtypes) >>> float64
```


Pandas Data Types and Imputation

Invalid data points can be easily filled with values

Code

```
# Create invalid data
step_counts[1:3] = np.NaN

# Now fill it in with zeros
step_counts = step_counts.fillna(0.)
# equivalently,
# step_counts.fillna(0., inplace=True)

print(step_counts[1:3])
```

Output

>>> 2015-03-30 0.0 2015-03-31 0.0 Freq: D, Name: steps, dtype: float64

Pandas DataFrame Creation and Methods

DataFrames can be created from lists, dictionaries, and Pandas Series

Code

Output

>>>

	0	1
0	3620	10.7
1	7891	0.0
2	9761	NaN
3	3907	2.4
4	4338	15.3
5	5373	10.9

Pandas DataFrame Creation and Methods

Labeled columns and an index can be added

Code

Output

Walking Cycling
2015-03-29 3620 10.7
2015-03-30 7891 0.0
2015-03-31 9761 NaN
2015-04-01 3907 2.4
2015-04-02 4338 15.3
2015-04-03 5373 10.9

Indexing DataFrame Rows

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by index name
print(activity df.loc['2015-04-01'])
```

Output

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01, dtype: float64

Indexing DataFrame Rows

DataFrame rows can be indexed by row using the 'loc' and 'iloc' methods

Code

```
# Select row of data by integer position
print(activity df.iloc[-3])
```

Output

>>> Walking 3907.0 Cycling 2.4

Name: 2015-04-01, dtype: float64

Indexing DataFrame Columns

DataFrame columns can be indexed by name

Code

```
# Name of column
print(activity_df['Walking'])
```

Output

```
>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
```

Freq: D, Name: Walking,

Indexing DataFrame Columns

DataFrame columns can also be indexed as properties

Code

```
# Object-oriented approach
print(activity df.Walking)
```

Output

>>> 2015-03-29 3620 2015-03-30 7891 2015-03-31 9761 2015-04-01 3907 2015-04-02 4338 2015-04-03 5373

Freq: D, Name: Walking,

Indexing DataFrame Columns

DataFrame columns can be indexed by integer

Code

```
# First column
print(activity_df.iloc[:,0])
```

Output

```
>>> 2015-03-29 3620
2015-03-30 7891
2015-03-31 9761
2015-04-01 3907
2015-04-02 4338
2015-04-03 5373
Freq: D, Name: Walking,
```


Reading Data with Pandas

CSV and other common filetypes can be read with a single command

```
# The location of the data file
filepath = 'data/Iris Data/Iris Data.csv'
# Import the data
data = pd.read csv(filepath)
# Print a few rows
print(data.iloc[:5])
```

>>> sepal_length sepal_width petal_length petal_width species 0 5.1 3.5

1.4 0.2 Iris-setosa 1 4.9 3.0 1.4 0.2 Iris-setosa 2 4.7 3.2 1.3 0.2 Iris-setosa 3 4.6 3.1 1.5 0.2 Iris-setosa 4 5.0

1.4

Iris-setosa

Assigning New Data to a DataFrame

Data can be (re-)assigned to a DataFrame column

Code

Output

>>> petal_width species sepal_area

0 0.2 Iris-setosa 17.85

1 0.2 Iris-setosa 14.70

2 0.2 Iris-setosa 15.04

3 0.2 Iris-setosa 14.26

4 0.2 Iris-setosa 18.00

Applying a Function to a DataFrame Column

Functions can be applied to columns or rows of a DataFrame or Series

Code

	petal_width	species	abbrev
0	0.2	Iris-setosa	setosa
1	0.2	Iris-setosa	setosa
2	0.2	Iris-setosa	setosa
3	0.2	Iris-setosa	setosa
4	0.2	Iris-setosa	setosa

Concatenating Two DataFrames

Two DataFrames can be concatenated along either dimension

Code

Output

 petal_length
 petal_width
 species

 0
 1.4
 0.2
 Iris-setosa

 1
 1.4
 0.2
 Iris-setosa

 148
 5.4
 2.3
 Iris-virginica

 149
 5.1
 1.8
 Iris-virginica

Aggregated Statistics with GroupBy

Using the groupby method calculated aggregated DataFrame statistics

Code

```
>>> species
   Iris-setosa 50
   Iris-versicolor 50
   Iris-virginica 50
   dtype: int64
```


Pandas contains a variety of statistical methods—mean, median, and mode

Code

```
# Mean calculated on a DataFrame
print(data.mean())

# Median calculated on a Series
print(data.petal_length.median())

# Mode calculated on a Series
print(data.petal_length.mode())
```

```
>>> sepal_length 5.843333
    sepal_width 3.054000
    petal_length 3.758667
    petal_width 1.198667
    dtype: float64

>>> 4.35

>>> 0 1.5
    dtype: float64
```


Standard deviation, variance, SEM and quantiles can also be calculated

Code

Standard deviation, variance, SEM and quantiles can also be calculated

Code

```
>>> 1.76442041995
3.11317941834
0.144064324021

>>> sepal_length 4.3
sepal_width 2.0
petal_length 1.0
petal_width 0.1
Name: 0, dtype: float64
```


Multiple calculations can be presented in a DataFrame

Code

print(data.describe())

Output

>>>

sepal_length sepal_width petal_length petal_width count 150.000000 150.000000 150.000000 150.000000 5.843333 3.054000 3.758667 1.198667 mean 1.764420 0.828066 0.433594 0.763161 std 4.300000 2.000000 1.000000 0.100000 min 1.600000 25% 5.100000 2.800000 0.300000 5.800000 3.000000 4.350000 1.300000 50% 75% 6.400000 3.300000 5.100000 1.800000 7.900000 6.900000 2.500000 4.400000 max

Sampling from DataFrames

DataFrames can be randomly sampled from

Code

Output

	petal_length	petal_width	species
73	4.7	1.2	Iris-versicolor
18	1.7	0.3	Iris-setosa
118	6.9	2.3	Iris-virginica
78	4.5	1.5	Iris-versicolor
76	4.8	1.4	Iris-versicolor

SciPy and NumPy also contain a variety of statistical functions.

Introduction to Numpy

- Library for manipulating Large arrays and matrices of numeric data
- Functions available to perform standard vector and matrix multiplication
- Methods for working with polynomials and derivatives
- Provides routines for discrete fourier transformation and more complex linear algebra operations

Source: https://docs.scipy.org/doc/numpy/

Numpy Arrays - Basics

Every element in a Numpy array must be of the same type

Code

import numpy as np

```
a = np.array([1, 4, 5, 8], float)
a
# Multidimensional arrays
a = np.array([[1, 2, 3], [4, 5, 6]], float)
a
# slicing the array
a[1,:]
a.Shape
a.Dtype
len(a) (returns the length of first axis)
```


Numpy Arrays - Basics

Code

```
# in statement used to test values present
in an array
2 in a
# reshaping arrays
a = np.array(range(10), float)
a
a = a.reshape((5, 2))
a
#Other operations
tolist() -- Create list from arrays
tostring() - raw data array to binary string
```


Numpy Arrays - Operations

Filling, flatten, transpose and concatenate operations on arrays

Code

```
a = array([1, 2, 3], float)
a.fill(0)

a = np.array([[1, 2, 3], [4, 5, 6]], float)
a.flatten()
a.transpose()

a = np.array([1,2], float)
b = np.array([3,4,5,6], float)
c = np.array([7,8,9], float)
np.concatenate((a, b, c))
```


Numpy Arrays – Array Mathematics

Standard mathematical operations are applied on an element by element basis on arrays

Code

```
a = np.array([1,2,3], float)
b = np.array([5,2,6], float)
a + b
a - b
a * b
b / a
a % b
b**a
a = np.zeros((2,2), float)
# other mathematical functions
Abs(), sign(), sqrt(), log(), log10(),
exp(), sin(), cos(), tan(), arcsin(),
arcos(), arctan(), sinh(), cosh(), tanh(),
arcsinh(), arccosh(), and arctanh(),
floor(), ceil(), rint(), sum(), prod()
```


Numpy Arrays – Array Mathematics

Extracting whole-array properties

Code

```
a = np.array([2, 4, 3], float)
a.sum()
a.prod()
a.mean()
a.var()
a.std()
a.argmin()
a.argmax()
a.sort()
a = np.array([1, 1, 4, 5, 5, 5, 7], float)
a.unique()
a = np.array([[1, 2], [3, 4]], float)
a.diagonal()
```

```
>>> 9
>>> 24
>>> 3
>>> 0.6666
>>> 0.8164
>>> 2
>>> 4
>>> array([2,3,4])
>>> array([ 1., 4., 5., 7.])
>>> array([ 1., 4.])
```


Numpy Arrays – Vector and Matrix mathematics

Functions for Vector and Matrix multiplications

Code

```
a = np.array([1, 2, 3], float)
b = np.array([0, 1, 1], float)
np.dot(a, b)
a = np.array([[0, 1], [2, 3]], float)
b = np.array([2, 3], float)
c = np.array([[1, 1], [4, 0]], float)
np.dot(b, a)
np.dot(a, b)
np.dot(a, c)
np.dot(c, a)
#Numpy comes with many built in routines for linear algebra calculations and statistics
```

Output

>>> 5.0

Visualization Libraries

Visualizations can be created in multiple ways:

- Matplotlib
- Pandas (via Matplotlib)
- Seaborn
 - Statistically-focused plotting methods
 - Global preferences incorporated by Matplotlib

Basic Scatter Plots with Matplotlib

Scatter plots can be created from Pandas Series

Code

Basic Scatter Plots with Matplotlib

Multiple layers of data can also be added

Code

Histograms with Matplotlib

Histograms can be created from Pandas Series

Code

plt.hist(data.sepal_length, bins=25)

Customizing Matplotlib Plots

Every feature of Matplotlib plots can be customized

Code

Incorporating Statistical Calculations

Statistical calculations can be included with Pandas methods

Code

Statistical Plotting with Seaborn

Joint distribution and scatter plots can be created

Code

import seaborn as sns

Statistical Plotting with Seaborn

Correlation plots of all variable pairs can also be made with Seaborn

Code

sns.pairplot(data, hue='species', size=3)

About Bosch Dataset

- Represents measurements of parts moving through production lines
- Each part has a unique ld. The Response variable value decides the quality control outcome of the part
- The data consists of large number of anonymized features
- Features represented as Lxx_Sxxx_Fxxxx
- E.g. L3_S50_F4245. Feature number 4245 measured in line 3, station 50
- Data is organized into separate files by feature type numerical, categorical and date
- Date feature provide timestamp when the feature was taken viz, L0_S0_D1 is the time when the L0 S0 F0 was taken

The data is organized into the following files for train and test:

- train numeric.csv & test numeric.csv the training and test set numeric features
- train categorical.csv & test categorical.csv the training and test set categorical features
- train date.csv & test date.csv the training and test set date features

Reading Data with Pandas

Reading Numeric data

Code

The location of the data file

filepath =

'~/data/bosch_data/train_numeric.csv'

Import the data

df_numeric = pd.read_csv(filepath)

Print a few rows

print(df_numeric.head())

Output

>>>

	ld	L0_S0_F0	L0_S0_F2	L0_S0_F4	L0_S0_F6	L0_S0_F8	L0_S0_F10	L0_S0_F12	L0_S0_F14	L0_S0_F16	
0	4	0.030	-0.034	-0.197	-0.179	0.118	0.116	-0.015	-0.032	0.020	
1	6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2	7	0.088	0.086	0.003	-0.052	0.161	0.025	-0.015	-0.072	-0.225	
3	9	-0.036	-0.064	0.294	0.330	0.074	0.161	0.022	0.128	-0.026	
4	11	-0.055	-0.086	0.294	0.330	0.118	0.025	0.030	0.168	-0.169	

Reading Data with Pandas

Reading date data

Code

```
# The location of the data file
filepath =
'~/data/bosch_data/train_date.csv'

# Import the data
df_date = pd.read_csv(filepath)

# Print a few rows
print(df_date.head(10))
```

		ld	L0_S0_D1	L0_S0_D3	L0_S0_D5	L0_S0_D7	L0_S0_D9	L0_S0_D11	L0_S0_D13	L0_S0_D15	L0_S0_D17	
>>>	0	4	82.24	82.24	82.24	82.24	82.24	82.24	82.24	82.24	82.24	
	1	6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	2	7	1618.70	1618.70	1618.70	1618.70	1618.70	1618.70	1618.70	1618.70	1618.70	
	3	9	1149.20	1149.20	1149.20	1149.20	1149.20	1149.20	1149.20	1149.20	1149.20	
	4	11	602.64	602.64	602.64	602.64	602.64	602.64	602.64	602.64	602.64	
	5	13	1331.66	1331.66	1331.66	1331.66	1331.66	1331.66	1331.66	1331.66	1331.66	
	6	14	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	7	16	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	8	18	517.64	517.64	517.64	517.64	517.64	517.64	517.64	517.64	517.64	
	9	23	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

Reading Data with Pandas

Code

df_numeric.iloc[1:10, 300:310]

>>>

>>>

df_date.iloc[1:10, 300:310]

	L1_S24_F1386	L1_S24_F1391	L1_S24_F1396	L1_S24_F1401	L1_S24_F1406	L1_S24_F1411	L1_S24_F1416	L1_S24_F1421	L1_S24_F1426	L1_S24_F1431
1	NaN									
2	NaN									
3	NaN									
4	NaN									
5	NaN									
6	NaN									
7	NaN									
8	NaN									
9	NaN									

ı	.1_\$24_D1151	L1_S24_D1153	L1_\$24_D1155	L1_S24_D1158	L1_S24_D1163	L1_S24_D1168	L1_\$24_D1171	L1_S24_D1173	L1_\$24_D1175	L1_S24_D1178
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
5	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Data Preprocessing

- Total number of Numeric features : 968
- Response = 1 for defective item
- Response = 0 for non-defective item
- Date data has 1157 columns
- More than 80% of date columns have missing values
- Most of the stations possess the same timestamp
- Evaluate Numeric feature data for Not a Number(NAN)
- Find the columns that have only NANs
- Find columns that have some NANs
- Impute Data into columns with NANs using mean value

Data Split

Separate the Features and response as X and y

```
X = df_numeric[features].values
y = df_numeric["Response"].values
```

Train and test split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```


Performance measures (tailored for this dataset)

Confusion matrix

		Predicted			
		Negatives (0)	Positives (1)		
ctual	Negatives (0)	TN	FP		
Act	Positives (1)	FN	TP		

Terms

- 1. True Positives(TP) Actual class was 1(True) and Predicted class is also 1 (True)
- 2. True Negatives(TN) Actual class was 0(False) and Predicted class is also 0 (False)
- 3. False Positives(FP) Actual class was 0(False) and Predicted class is 1(True)
- 4. False Negatives(FN) Actual class was 1(True) and Predicted class is 0(False)

Performance measures

		Predicted			
		Negatives (0)	Positives (1)		
Actual	Negatives (0)	TN	FP		
Act	Positives (1)	FN	TP		

- Metrics considered to decide the feature selection method for classification
 - 1. Accuracy = $\frac{TP+TN}{TP+FP+FN+TN}$ (No. of correct predictions/Total predictions)
 - 2. Precision = $\frac{TP}{TP+FP}$ (No. of correct positive predictions/Total positive predictions)
 - 3. Recall $=\frac{TP}{TP+FN}$ (No. of relevant positive predictions/Total actual positives)
 - 4. F1 Score = $2 \times Precision \times Recall/(Precision + Recall)$
 - 5. Support Number of samples of the true response that lie in each class

Feature Selection

- Using Ensemble methods to select the features that contribute to the Prediction
 - 1.Extra Trees Classifier
 - 2.Random Forest Classifier
 - 3. Gradient Boosting Classifier

Feature Selection

Selection using Extra Trees Classifier

xt = ExtraTreesClassifier(n_estimators=10, verbose=2)

Prediction = xt.predict(X_test)

Classification Report

Accuracy: 99.425

Response	Precision	Recall	F1-Score	support
0	0.994	1.000	0.997	353069
1	0.688	0.005	0.011	2056
Avg/Total	0.992	0.994	0.991	355125

Top 20 Features based on Extra Trees results

Feature Selection

Selection using Random Forest Classifier

rfc = RandomForestClassifier(n_estimators=10, verbose=2)

Prediction = rfc.predict(X_test)

Classification Report

Accuracy: 99.4249912002

Response	Precision	Recall	F1-Score	support
0	0.994	1.000	0.997	353069
1	0.590	0.022	0.043	2056
Avg/Total	0.992	0.994	0.992	355125

Top 20 Features based on Random Forest results

Feature Selection (contd..)

Selection using Gradient Boosting Classifier

gbc = GradientBoostingClassifier(n_estimators=10, verbose=2)

Prediction = gbc.predict(X_test)

Classification Report

Accuracy: 99.4340021119

Response	Precision	Recall	F1-Score	support
0	0.995	1.000	0.997	353069
1	0.634	0.053	0.098	2056
Avg/Total	0.992	0.994	0.992	355125

Top 20 Features based on Gradient Boost results

Model Training and Inference

- Merge Key features from the Random Forest and Gradient Boosting classifiers
 - filtered_feature_list = list(set(rf_selectfrommodel + gb_selectfrommodel)
- Create a new Data frame with the selected features (subset)
 - X_new = df_numeric[filtered_feature_list].values
- Split the new data frame to train and test
 - X_new_train, X_new_test = train_test_split(X_new, test_size=0.3)
- Models evaluated for training and Inference
 - 1. Random Forest
 - 2. Gradient Boost
 - 3. LinearSVC

Model Training and Inference – Random Forest

Train and test with Random Forest Classifier

rf_model = RandomForestClassifier(n_estimators=100, verbose=2)

rf_model.fit(X_new_train, y_train)

prediction = rf_model.predict(X_new_test)

Classification Report

Accuracy: 99.4354100669

Response	Precision	Recall	F1-Score	support
0	0.994	1.000	0.997	353069
1	0.892	0.028	0.055	2056
Avg/Total	0.994	0.994	0.992	355125

The precision at 89.2%, Random Forest is a reasonably good model with less false positives.

Model Training and Inference – Gradient Boost

Train and test with Gradient Boosting Classifier

gb_model = GradientBoostingClassifier(n_estimators=100, verbose=2)

gb_model.fit(X_new_train, y_train)

prediction = gb_model.predict(X_new_test)

Classification Report

Accuracy: 99.4280887012

Response	Precision	Recall	F1-Score	support
0	0.994	1.000	0.997	353069
1	0.577	0.046	0.085	2056
Avg/Total	0.992	0.994	0.992	355125

The precision at 57.7%, Gradient Boost has high false positives compared with Random Forest

Model Training and Inference – LinearSVC

Train and test with Linear Support Vector Machine

lsvm_model = LinearSVC(verbose=2)

lsvm_model.fit(X_new_train, y_train)

prediction = lsvm_model.predict(X_new_test)

Classification Report

Accuracy: 99.4227384724

Response	Precision	Recall	F1-Score	support
0	0.994	1.000	0.997	353069
1	0.650	0.006	0.013	2056
Avg/Total	0.992	0.994	0.991	355125

The precision at 65%, LinearSVC has high false positives compared with Random Forest

Recurrent Neural Networks

Learning from persisted information - Understanding from previous state

The module A gets input X_i and a looped information from previous modules in the network

The module A is a repeating throughout the network

Operate on Sequences of vectors: Sequences in the input, the output, or both

Recurrent Neural Networks

Long Short Term Memory(LSTM) Networks

RNNs fail to handle long term dependencies

In RNN usually the repeating module A has a simple structure consisting of a single layer

LSTM's designed to remember information for a long periods

In LSTMs the repeating module consists of 4 interacting layers

Read the Sine Wave input

series = pd.read_csv('sine-wave.csv', header=None)

series.head(4)

pyplot.plot(series.values)
pyplot.show()

First n data points used as Input (X) to predict y1 the n+1 data point

Use the window between 1 to n+1 data points as input to predict y2 the n+2 data point

Use a 2 layered LSTM architecture to make the prediction

First 50 point wave plot

pyplot.plot(series.values[:50])
pyplot.show()

Fix the moving window size to 50 -> Keep shifting the entire column and concatenate to the series

Data Split

```
Split the series data set into train and test

Train data at 80% and Test data at 20%

Take first 50 data points as X and 51st point at y

Create X and y train and test sets

nrow = round(0.8*series.shape[0])

train = series.iloc[:nrow, :]

test = series.iloc[nrow:,:]

train_X = train.iloc[:,:-1]

train_y = train.iloc[:,-1]

test_X = test.iloc[:,:-1]
```

LSTM Model with sample code

```
model = Sequential()
model.add(LSTM(input_shape = (50,1), output_dim= 50, return_sequences = True))
model.add(Dropout(0.5))
model.add(LSTM(256))
```


Train and predict

```
Compile the model

model.compile(loss="mse", optimizer="adam")

Train and predict

model.fit(train_X,train_y,batch_size=512,nb_epoch=3,validation_split=0.1)

preds = model.predict(test_X)

actuals = test_y

mean_squared_error(actuals,preds)

Out [38]: 0.003095152635107611
```


Plot actual vs predicted

pyplot.plot(preds)
pyplot.show()

pyplot.plot(actuals)
pyplot.plot(preds)
pyplot.show()

