Теометрия в компьютерных приложениях

Лекция 4: Элементы общей топологии

Богачев Николай Владимирович

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applications

31 августа 2017 г.

5. Элементы общей топологии

5.1. Определения.

Определение

Множество X с выделенным семейством au его подмножеств называется топологическим пространством, если

(1)
$$\emptyset, X \in \tau$$
; (2) $A, B \in \tau \Rightarrow A \cap B \in \tau$; (3) $\forall \alpha \ X_{\alpha} \in \tau \Rightarrow \bigcup_{\alpha} X_{\alpha} \in \tau$.

Множества из au называются открытыми, а само au топологией.

Примеры

- $(1) \; au = (\emptyset, X)$ минимальная (тривиальная) топология
- (2) $au = 2^X$ максимальная (дискретная) топология
- (3) топология метрического пространства (стандартный пример \mathbb{R}^n).

Определение

Топологическое пространство (X, τ) называется отделимым или хаусдорфовым, если для всяких двух различных точек $x, y \in X$ найдутся такие непересекающиеся открытые множества A и B, что $x \in A$, $y \in B$.

Примеры

- (1) $au = (\emptyset, X)$ минимальная (тривиальная) топология не является хаусдорфовой
- (2) $\tau = 2^X$ максимальная (дискретная) топология хаусдорфова
- (3) метрические пространства всегда хаусдорфовы.

Определение

Основные понятия, аналогичные понятиям из топологии в \mathbb{R}^n .

- Замкнутое множество дополнение к которому открытое;
- Точка x называется предельной для множества $A \subset X$, если во всяком открытом множестве, содержащем эту точку, есть элемент из A, отличный от x;
- Точка $a \in A$ называется изолированной точкой множества A, если у нее есть окрестность, в которой нет других точек из A;
- Замыкание \overline{A} множества A есть пересечение всех замкнутых множеств, содержащих A. Ясно, что \overline{A} получается из A добавлением всех предельных точек;
- ullet Если $\overline{A}=X$, то A называют всюду плотным в X.
- Отображение топологических пространств $f: X \to Y$ называется непрерывным в точке $x \in X$, если для всякого открытого $V \subset Y$, такого что $f(x) \in V$, найдется такое открытое $U \subset X$, что $f(U) \subset V$.

Определение

- ullet f: X o Y непрерывно, если оно непрерывно в каждой точке.
- Отображение $f: X \to Y$ гомеоморфизм, если оно биективно, непрерывно и имеет непрерывную обратную функцию.
- Множество в хаусдорфовом пространстве называется компактным (или компактом), если из всякого его покрытия открытыми множествами можно выбрать конечное подпокрытие.

Список литературы

- [1] Иванов, Тужилин
- [2] Иванов, Тужилин
- [3] Фоменко
- [4] Тайманов