

2. 불 논리

Boolean Logic

불Boolean 논리문Logic Sentences

- 핵심 문장 Atomic sentences
- 복합 문장 Complex sentences
 - 불Boolean 논리연산자connectives로 연결된 문장
 - 논리연산자의 종류
 - 논리곱 conjunction, and : ^
 - 논리합 disjunction, or: ∨
 - 논리역 negation, not : ¬

논리역Negation 논리연산자: ¬

- 구문Syntax
 - P가 문장이면 ¬P도 문장이다
 - 전위prefix, 단항unary
- □ Semantics
 - $\neg P$ is true <u>if and only if</u> P is false
 - 진리표 Truth Table:

Р	¬P
true	false
false	true

- Game: Wittgenstein's World에서 놀아보자
- ¬¬¬¬Between(e,d,f)

논리곱Conjunction 논리연산자 : ^

- 구문Syntax
 - P가 문장이고 Q가 문장이면 P∧Q도 문장이다
 - 중위infix, 이항binary
- □ Semantics
 - P∧Q is true <u>if and only if</u> both P and Q are true.
 - 진리표Truth Table:

Р	Q	P∧Q
true	true	true
true	false	false
false	true	false
false	false	false

- Game: Claire's World에서 놀아보자
 - ¬Cube(a) ∧ ¬Cube(b) ∧ ¬Cube(c)

논리합Disjunction 논리연산자: >

- 구문Syntax
 - P가 문장이고 Q가 문장이면 P√Q도 문장이다
 - 중위Infix, 이항binary
- <u>○</u> □ | Semantics
 - P∨Q is true <u>if and only if</u> P is true or Q is true (or both are true).
 - 진리표 Truth Table:

Р	Q	P∨Q
true	true	true
true	false	true
false	true	true
false	false	false

- Game: Ackermann's World에서 놀아보자
 - Cube(c) $\vee \neg$ (Cube(a) \vee Cube(b))

트랜지스터, 논리 회로, 집적 회로

CSE1007 논리학

모호성Ambiguity과 해결사 '괄호'

- 모호한_{Ambiguous} 문장
 - 예1: Home(max) ∨ Home(claire) ∧ Happy(carl)
 - 예2: ¬Home(claire) ∧ Home(max)
 - 왜 모호하냐? 둘 다 어떻게 묶느냐에 따라서 의미가 달라진다!
- 모호성의 해결책은?
 - 적절한 위치에 괄호를 두른다.
 - 예1
 - Home(max) ∨ (Home(claire) ∧ Happy(carl))
 - (Home(max) ∨ Home(claire)) ∧ Happy(carl)
 - 예2
 - ¬Home(claire) ∧ Home(max)
 - ¬(Home(claire) ∧ Home(max))
- 우선순위:¬∧∨

알아두면 좋은 법칙들Laws

- 이중 논리역_{Double Negation}의 법칙 ¬¬P ⇔ P for all P
- DeMorgan의 법칙

```
\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q) for all P and Q \neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q) for all P and Q
```

배울 개념 3가지

- 논리적 진리 Logical truth
- 논리적 동일 Logical equivalence
- 논리적 결과 Logical consequence

불 논리문을 해석하는 방법 ⇒ 진리표Truth Table 이용

- 진리표는 Boole 소프트웨어로 쉽게 만들 수 있다.
- 연습: 진리표를 만들어 봅시다.

```
P ∨ ¬P

(A ∧ B) ∨ ¬C

¬(A ∧ (¬A ∨ (B ∧ C))) ∨ B

P ∧ Q ∧ R

여기서 A, B, C, P, Q, R은 핵 문장을 나타내는 이름이다.
```

논리적 진리성(필연성) Logical Truth(Necessity)

- 논리적으로 가능한 모든 상황에서 문장이 참이면, 그 문장은 논리적으로 진리 logically true 또는 논리적으로 필연 logically necessary 이라고 한다.
- 어떤 경우에도 참일 수밖에 없는 문장을 <u>항진 [Electrology</u> 이라고 한다.
 - 진리표Truth Table에서 모든 행이 true 값을 가진다.
 - 따라서 <u>TT-진리(</u>필연)라고도 한다.
 - 예: P ∨ ¬P
- Tarski's World의 어떤 world에서도 문장이 참이 되면, 그 문장은
 <u>TW-진리(</u>필연)라고 한다.

CSE1007 논리학

- 문장이 항진이면 논리적으로 진리(필연)이다.
- 그러나, 논리적으로 진리(필연)이라고 다 항진은 아니다.

논리적 가능성Logical Possibility

- 문장이 논리적으로 참이 되는 환경 또는 상황 또는 세상이 존재하면, 그 문장은 논리적으로 <u>가능logically possible</u>하다고 한다.
- 진리표를 만들어서 참이 되는 행이 하나라도 존재하면, 그 문장은 TT-가능
 TT-Possible 하다고 한다.
- Tarski's World에서 참이 되는 world가 하나라도 존재하면, 그 문장은 <u>TW-가능</u>TW-Possible 하다고 한다.
- 논리적 가능 vs. TW-가능
 - TW-가능한 문장은 모두 논리적으로도 가능하다.
 - 그러나 논리적으로 가능하지만, TW-가능하지 않은 문장은 존재한다.
 - 예: ¬(Tet(b) ∨ Cube(b) ∨ Dodec(b))

항진적 동일 Tautological Equivalence

- 두 문장이 항진적으로 동일하다 iff **통합 진리표**의 모든 행이 동일하다.
- 예: ¬(A∧B) <u>vs</u> ¬A∨¬B

Α	В	A ^ B	¬(A ∧ B)	¬А	¬В	¬A ∨ ¬B
Т	Τ	Т	F	F	F	F
Т	F	F	Т	F	1	Τ
F	\vdash	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

: 항진적으로 동일하다!

• 예: ¬((A ∨ B) ∧ ¬C) <u>vs</u> (¬A ∧ ¬B) ∨ C

А	В	С	A∨B	¬ C	(A∨B) ∧¬ C	¬((A∨B)∧¬C)	¬ A	¬В	¬ A ∧¬B	(¬A∧¬B)∨C
Т	Τ	Τ	Т	F	F	Т	F	F	F	Т
Т	Т	F	Т	Т	Т	F	F	F	F	F
Т	F	Τ	Т	F	F	Т	F	T	F	Т
Т	F	F	Т	Т	Т	F	F	T	F	F
F	Т	Τ	Т	F	F	Т	Т	F	F	Т
F	Т	F	Т	Т	Т	F	T	F	F	F
F	F	Τ	F	F	F	Т	T	T	Т	Т
F	F	F	F	Т	F	Т	Т	T	T	Т

:. 항진적으로 동일하다!

논리적 동일성 Logical Equivalence

- a = b ^ Cube(a) 와 a = b ^ Cube(b) 는 논리적으로 동일하다
- 증명:
 - a = b ^ Cube(a)가 참이라고 가정하자. 그러면 a = b 도 참이고 Cube(a)도 참이다.
 a와 b는 같으므로 (= 제거규칙) Cube(b)도 참이다. 따라서 a = b ^ Cube(b)도 참이다.
 따라서 a = b ^ Cube(a)가 참이라면, a = b ^ Cube(b)도 참이라고 논리적으로 유추해낼 수 있다.
 - 거꾸로 a = b ∧ Cube(b)가 참이라고 가정하자. 그러면 b = a 도 참이다.
 그런데 b와 a는 같으므로 (= 제거규칙) Cube(a)도 참이다. 따라서 a = b ∧ Cube(a)도 참이다.
 따라서 a = b ∧ Cube(b)가 참이라면, a = b ∧ Cube(a)도 참이라고 논리적으로 유추해낼 수 있다.
 - 양쪽 방향으로 모두 서로를 논리적으로 유추해낼 수 있으므로 두 문장은 논리적으로 동일하다.

항진적 동일 vs. 논리적 동일

- 두 문장이 항진적으로 동일하면 논리적으로도 동일하다.
- 그러나, 논리적으로 동일하지만 항진적으로 동일하지 않을 수 있다.
 - 예: 아래 두 문장은 논리적으로는 동일하지만 항진적으로는 동일하지 않다.

```
a = b \wedge Cube(a) vs a = b \wedge Cube(b)
```

헐!?! 통합 진리표를 그려보자.

a = b ∧ Cube(a) 와 a = b ∧ Cube(b) 가 항진적으로 동일한가?

a=b	Cube(a)	Cube(b)	a=b ∧ Cube(a)	a=b ∧ Cube(b)
Т	Т	Т	Т	Т
Т	Т	F	T	F
Т	F	Т	F	T
Т	F	F	F	F
F	Т	Т	F	F
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

어!?! 다르네!! 왜 그렇지?

논리적 결과 Logical consequence / 항진적 결과 Tautological Consequence

- P₁,...,P_n,Q가 모두 문장이라고 하자. 그러면,
- Q는 P₁,...,P_n의 <u>논리적 결과</u>이다 <u>iff</u>
 P₁,...,P_n를 모두 참이라고 가정하면 Q가 참이 된다.
- Q는 P₁,...,P_n의 <u>항진적 결과</u>이다 <u>iff</u>
 진리표에서 P₁,...,P_n이 모두 true인 행은 Q도 true이다.

예: 통합 진리표를 이용한 항진적 결과의 판정

Α	В	A∧B	A∨B
Т	Τ	Т	Т
Т	Ŧ	F	Т
F	Т	F	Т
F	F	F	F

A∨B는 A∧B의 항진적 결과tautological consequence이다.

- = A∨B는 A∧B의 논리적 결과logical consequence이다.
- = A∧B는 A∨B를 논리적으로 암시logically implies 한다

A^B는 A>B의 항진적 결과가 아니다.

= A∨B는 A∧B를 논리적으로 암시하지 않는다.

논리적 결과 Logical Consequence

- Q가 P₁,...,P_n의 항진적 결과이면, Q가 P₁,...,P_n의 <u>논리적 결과</u>이다.
- 증명:
 - Q가 P들의 논리적 결과가 아니면 항진적 결과도 아님을 증명한다.
 - Q가 P들의 논리적 결과가 아니라고 가정하자. 그러면 논리적 결과의 정의에 의해서, P는 참이지만 Q가 거짓이 되는 경우가 있음이 틀림없다.
 - 이 상황에서 P와 Q를 구성하는 핵 문장들의 진리 값을 결정할 수 있을 것이다.
 - 이 값들에 해당되는 행이 P와 Q에 대한 통합 진리표에 존재하며, 그 행에서 P는 T로,
 - Q는 F로 표시될 수 밖에 없을 것이다. 따라서 Q는 P들의 항진적 결과가 아니다.

논리적 결과인데 항진적 결과가 아닌 경우

• 문장 a = c은

논리적 결과이다.

• 그러나,

$$(a = b \land b = c)$$

항진적 결과는 아니다.

• 왜 그런지 통합 진리표를 그려서 밝혀보자.

a=b	b=c	a=c	a=b ∧ b=c	a=c
T	Т	Τ	Т	Т
Т	Т	F	Т	F
Т	F	Т	F	Т
T	F	F	F	F
F	Т		F	Т
F	Т	F	F	F
F	F	T	F	Т
F	F	F	F	F

예를 몇 개 더 볼까?

Boole 소프트웨어로 통합 진리표를 만들어 보고, 결론이 전제의 항진적 결과인지 검사해보자.

Fitch에서의 논리적 결과

- Taut Con: Tautological Consequence
 - ✓ 항진적 결과
- FO Con : First-Order Consequence
 - ✓ 논리적 결과: 항진적 결과 뿐 아니라 =을 이해함
- Ana Con : Analytic Consequence
 - ✓ 분석적 결과: 논리적 결과 뿐 아니라 Tarski's World의 술어를 이해함
- Fitch에서 다음 파일을 열고 놀아보자.
 - ✓ Taut Con 1
 - ✓ Taut Con 2

정리: 논리적 결과 vs. 논리적 동일/논리적 진리

- 문장 P가 Q의 논리적 결과이고, Q가 P의 논리적 결과이면, P와 Q는 논리적으로 동일하다.
- 전제에 상관없이 논리적 결과가 되는 문장은 논리적으로 진리이다.