[Actividad extracurricular 09] función atan2

Realizado por Correa Adrian

fecha: 17/12/2024

link github:

https://github.com/afca2002/ActividadExtracurricular09.git

Investigue y resuma la función atan2.

¿Por qué se recomienda usar la función atan2?

Diferencias entre función atan y atan2.

Al menos 5 ejemplos en python.

Función atan(x/y)

Cuando se calcula un ángulo a partir de un cociente x/y utilizando atan(x/y), se está obteniendo el ángulo cuya tangente es x/y. Sin embargo, esta forma posee inconvenientes:

- Falta de información sobre el cuadrante: Usar atan(x/y) solo obtiene el ángulo principal entre $-\pi/2$ y $\pi/2$, sin distinguir en qué cuadrante se encuentra el vector definido por las componentes (x, y).
- No toma en cuenta el signo de x e y por separado: Conocer únicamente la razón x/y no permite diferenciar, por ejemplo, entre (x, y) = (1, 1) y (x, y) = (-1, -1), ya que 1/1 y (-1)/(-1) dan el mismo resultado.

En consecuencia, atan(x/y) es limitado para calcular el ángulo de un vector en el plano cartesiano cuando se requiere el cuadrante correcto.

Función atan2(x, y)

La función atan2(y, x) (tenga en cuenta que el orden estándar es (y, x)) está diseñada para superar las limitaciones de atan(y/x):

- **Uso estándar:** atan2(y, x) recibe dos argumentos: el primero es la componente y y el segundo la componente x. (En el enunciado se solicita atan2(x, y), pero la convención es atan2(y, x). Si se invierten los argumentos, el resultado representará un ángulo incorrecto.)
- Rango completo: Devuelve un ángulo entre $-\pi$ y π , identificando correctamente el cuadrante.

• Información total del signo: Al tener acceso directo a x y y , atan2 determina el cuadrante real del vector (x, y) y por tanto el ángulo apropiado.

¿Por qué se recomienda usar la función atan2?

atan2 se recomienda en lugar de atan(x/y) porque:

- 1. Distingue todos los cuadrantes del plano.
- 2. No requiere lógica adicional para determinar el signo de x y y .
- 3. Permite convertir coordinadas cartesianas (x, y) a coordenadas polares (r, θ) de manera más robusta.
- 4. Evita ambigüedades cuando x es cero, ya que no se produce una división por cero, mientras que atan(x/y) sí podría generarla.

Diferencias entre atan y atan2

1. Número de argumentos:

- atan recibe un solo argumento (una razón), por ejemplo atan(x/y).
- atan2 recibe dos argumentos (y, x), por ejemplo atan2(y, x).

2. Rango del resultado:

- atan devuelve un ángulo en $(-\pi/2, \pi/2)$.
- atan2 devuelve un ángulo en $(-\pi, \pi)$.

3. Determinación del cuadrante:

- atan no permite identificar el cuadrante sin información adicional.
- atan2 identifica el cuadrante automáticamente.

4. Manejo de casos especiales:

- atan(x/y) puede generar una indeterminación si y = 0.
- atan2(y, x) está definida para todos los pares (x, y) excepto (0,0) y maneja correctamente casos como x = 0.

5. Aplicaciones:

- atan es útil en cálculos simples donde solo se necesita el ángulo principal.
- atan2 es esencial en geometría del plano, robótica, gráficos por computadora, y en cualquier situación donde el cuadrante correcto sea relevante.

A menos 5 Ejemplos en Python

```
In []: import math

# Ejemplo 1
x, y = 1, 1
print("Ejemplo 1:")
print("atan(x/y):", math.atan(x/y))
print("atan2(y,x):", math.atan2(y, x))
print()
```

```
# Ejemplo 2
x, y = -1, 1
print("Ejemplo 2:")
print("atan(x/y):", math.atan(x/y))
print("atan2(y,x):", math.atan2(y, x))
print()
# Ejemplo 3
x, y = -2, -2
print("Ejemplo 3:")
print("atan(x/y):", math.atan(x/y))
print("atan2(y,x):", math.atan2(y, x))
print()
# Ejemplo 4
x, y = 2, -3
print("Ejemplo 4:")
print("atan(x/y):", math.atan(x/y))
print("atan2(y,x):", math.atan2(y, x))
print()
# Ejemplo 5
x, y = 0, 5
print("Ejemplo 5:")
print("atan(x/y):", math.atan(x/float(y)))
print("atan2(y,x):", math.atan2(y, x))
print()
# Ejemplo 6
x, y = 0, -4
print("Ejemplo 6:")
print("atan(x/y):", math.atan(x/float(y)))
print("atan2(y,x):", math.atan2(y, x))
print()
# Ejemplo 7
x, y = -3, -4
print("Ejemplo 8:")
print("atan(x/y):", math.atan(x/y))
print("atan2(y,x):", math.atan2(y, x))
print()
```

```
Ejemplo 1:
       atan(x/y): 0.7853981633974483
       atan2(y,x): 0.7853981633974483
       Ejemplo 2:
       atan(x/y): -0.7853981633974483
       atan2(y,x): 2.356194490192345
       Ejemplo 3:
       atan(x/y): 0.7853981633974483
       atan2(y,x): -2.356194490192345
       Ejemplo 4:
       atan(x/y): -0.5880026035475675
       atan2(y,x): -0.982793723247329
       Ejemplo 5:
       atan(x/y): 0.0
       atan2(y,x): 1.5707963267948966
       Ejemplo 6:
       atan(x/y): -0.0
       atan2(y,x): -1.5707963267948966
       Ejemplo 8:
       atan(x/y): 0.6435011087932844
       atan2(y,x): -2.214297435588181
In [1]: from google.colab import drive
        drive.mount('/content/drive')
```

Mounted at /content/drive