Exercise 2

2.3

First Question part a

```
a <- c(5, 12, 32, 50, 10000)
a
```

First Question part b

```
b <- 1:100
  [1]
        1
             2
                 3
                      4
                          5
                               6
                                   7
                                       8
                                            9
                                               10
                                                    11
                                                        12
                                                             13
                                                                 14
                                                                      15
                                                                          16
                                                                              17
                                                                                   18
 [19]
            20
                21
                                      26
                                                    29
                                                                      33
       19
                     22
                         23
                             24
                                  25
                                           27
                                               28
                                                        30
                                                             31
                                                                 32
                                                                          34
                                                                              35
                                                                                   36
 [37]
       37
            38
                39
                    40
                         41
                             42
                                  43
                                      44
                                           45
                                               46
                                                    47
                                                        48
                                                             49
                                                                 50
                                                                      51
                                                                          52
                                                                              53
                                                                                   54
 [55]
       55
            56
                57
                     58
                         59
                              60
                                  61
                                      62
                                           63
                                               64
                                                    65
                                                        66
                                                             67
                                                                 68
                                                                      69
                                                                          70
                                                                              71
                                                                                   72
 [73]
       73
            74
                75
                         77
                                                    83
                    76
                             78
                                  79
                                      80
                                           81
                                               82
                                                        84
                                                             85
                                                                 86
                                                                     87
                                                                          88
                                                                              89
                                                                                   90
 [91]
       91
           92
                93
                    94
                         95
                             96
                                  97
                                      98
                                           99 100
```

OR

```
b <- seq(1, 100)
b
```

```
[1]
       1
           2
                3
                    4
                         5
                             6
                                  7
                                      8
                                           9
                                              10
                                                  11
                                                       12
                                                           13
                                                               14
                                                                    15
                                                                         16
                                                                             17
                                                                                  18
[19]
      19
          20
               21
                   22
                        23
                            24
                                 25
                                     26
                                         27
                                              28
                                                  29
                                                       30
                                                           31
                                                                32
                                                                    33
                                                                         34
                                                                             35
                                                                                  36
[37]
      37
               39
                   40
                            42
                                     44
                                                                             53
          38
                        41
                                 43
                                          45
                                              46
                                                  47
                                                       48
                                                            49
                                                                50
                                                                    51
                                                                         52
                                                                                  54
[55]
      55
          56
               57
                   58
                        59
                            60
                                 61
                                     62
                                         63
                                              64
                                                  65
                                                       66
                                                           67
                                                                68
                                                                    69
                                                                         70
                                                                             71
                                                                                  72
[73]
      73
          74
               75
                   76
                            78
                                79
                                     80
                                         81
                                              82
                                                  83
                                                       84
                                                                86
                                                                                  90
                       77
                                                           85
                                                                    87
                                                                         88
                                                                             89
[91]
      91
          92
               93
                   94
                        95
                            96
                                 97
                                     98
                                         99 100
```

OR

```
b <- seq(1, 100, by=1)
b
```

```
[1]
           2
                             6
                                 7
                3
                    4
                         5
                                      8
                                          9
                                              10
                                                  11
                                                       12
                                                           13
                                                               14
                                                                    15
                                                                        16
                                                                             17
                                                                                 18
       1
[19]
      19
          20
               21
                   22
                       23
                            24
                                 25
                                     26
                                         27
                                              28
                                                  29
                                                       30
                                                           31
                                                               32
                                                                    33
                                                                             35
                                                                                 36
                                                                        34
[37]
      37
          38
               39
                   40
                       41
                            42
                                 43
                                     44
                                         45
                                              46
                                                  47
                                                       48
                                                           49
                                                               50
                                                                    51
                                                                        52
                                                                             53
                                                                                 54
[55]
      55
          56
              57
                   58
                       59
                            60
                                 61
                                     62
                                         63
                                              64
                                                  65
                                                       66
                                                           67
                                                               68
                                                                    69
                                                                        70
                                                                             71
                                                                                 72
[73]
      73
          74
               75
                   76
                       77
                                     80
                                                  83
                                                                        88
                                                                                 90
                            78
                                79
                                         81
                                              82
                                                      84
                                                           85
                                                               86
                                                                    87
                                                                             89
[91]
      91
          92
               93
                   94
                       95
                            96
                                97
                                     98
                                         99 100
```

OR

```
b <- seq(1, 100, length.out = 100)
b</pre>
```

```
[1]
        2
              4
                 5
                     6
                        7
                            8
                              9 10 11 12 13 14
                                                  15 16 17 18
    1
          3
[19]
   19
       20
           21 22 23 24 25
                           26 27
                                  28
                                     29
                                        30
                                            31
                                               32
                                                  33 34 35
                                                            36
[37]
    37
        38 39 40 41 42 43
                           44
                              45
                                  46
                                     47
                                        48
                                            49
                                               50
                                                  51 52 53
                                                            54
[55] 55 56 57
                     60
                           62
                                                  69 70 71
                                                            72
              58 59
                        61
                              63
                                  64
                                     65
                                        66
                                            67
                                               68
[73] 73 74 75
              76
                 77
                    78 79 80 81 82
                                     83 84
                                           85 86
                                                  87 88 89
                                                            90
[91] 91 92 93 94 95 96 97 98 99 100
```

First Question part c

```
c <- seq(2, 100, by=2)
c
```

```
[1]
            6
                   10
                      12
                          14
                             16
                                 18
                                    20
                                                   28
                                                      30 32 34 36
[20] 40 42 44 46
                   48
                      50
                          52
                             54
                                 56
                                     58
                                        60
                                            62
                                               64 66 68 70 72 74
[39] 78
        80
            82
               84
                   86
                      88
                          90
                             92
                                 94
                                        98 100
```

First Question part d

```
d <- rep(c(3, 6, 9), c(10, 20, 30))
d</pre>
```

Second Question

```
e <- seq(1, 10, by=1)
e
```

```
[1] 1 2 3 4 5 6 7 8 9 10
```

OR

```
e <- 1:10
e
```

[1] 1 2 3 4 5 6 7 8 9 10

OR

```
e <- seq(1, 10, length.out = 10)
e

[1] 1 2 3 4 5 6 7 8 9 10
```

Third Question

```
f <- rep(1:4, times=3)
f</pre>
```

$[1] \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4$

[15] 3.872983 4.000000 4.123106

Fourth Question

```
n <- 1:100
sqrt_n <- sqrt(n)</pre>
sqrt_n
  [1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490
                                                              2.645751
  [8] 2.828427 3.000000 3.162278 3.316625
                                           3.464102 3.605551
                                                              3.741657
 [15] 3.872983 4.000000 4.123106 4.242641 4.358899 4.472136
                                                              4.582576
 [22]
     4.690416 4.795832 4.898979 5.000000 5.099020 5.196152
                                                              5.291503
 [29] 5.385165 5.477226 5.567764 5.656854 5.744563 5.830952 5.916080
 [36] 6.000000 6.082763 6.164414 6.244998 6.324555 6.403124 6.480741
 [43] 6.557439 6.633250 6.708204 6.782330 6.855655 6.928203 7.000000
 [50]
      7.071068 7.141428 7.211103 7.280110 7.348469 7.416198
                                                             7.483315
 Γ57]
     7.549834 7.615773 7.681146 7.745967 7.810250 7.874008 7.937254
 [64] 8.000000 8.062258 8.124038 8.185353 8.246211 8.306624 8.366600
 [71] 8.426150 8.485281 8.544004 8.602325 8.660254 8.717798 8.774964
 [78] 8.831761 8.888194 8.944272 9.000000 9.055385 9.110434 9.165151
 [85] 9.219544 9.273618 9.327379 9.380832 9.433981 9.486833 9.539392
 [92] 9.591663 9.643651
                        9.695360 9.746794 9.797959 9.848858 9.899495
 [99] 9.949874 10.000000
```

OR

```
sqrt_n <- sqrt(1:100)
sqrt_n

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
[8] 2.828427 3.000000 3.162278 3.316625 3.464102 3.605551 3.741657</pre>
```

4.242641 4.358899

4.472136

4.582576

 [29]
 5.385165
 5.477226
 5.567764
 5.656854
 5.744563
 5.830952
 5.916080

 [36]
 6.000000
 6.082763
 6.164414
 6.244998
 6.324555
 6.403124
 6.480741

 [43]
 6.557439
 6.633250
 6.708204
 6.782330
 6.855655
 6.928203
 7.000000

[22] 4.690416 4.795832 4.898979 5.000000 5.099020 5.196152 5.291503

[50] 7.071068 7.141428 7.211103 7.280110 7.348469 7.416198 7.483315

```
      [57]
      7.549834
      7.615773
      7.681146
      7.745967
      7.810250
      7.874008
      7.937254

      [64]
      8.000000
      8.062258
      8.124038
      8.185353
      8.246211
      8.306624
      8.366600

      [71]
      8.426150
      8.485281
      8.544004
      8.602325
      8.660254
      8.717798
      8.774964

      [78]
      8.831761
      8.888194
      8.944272
      9.000000
      9.055385
      9.110434
      9.165151

      [85]
      9.219544
      9.273618
      9.327379
      9.380832
      9.433981
      9.486833
      9.539392

      [92]
      9.591663
      9.643651
      9.695360
      9.746794
      9.797959
      9.848858
      9.899495

      [99]
      9.949874
      10.000000
```

OR

```
sqrt_n <- sqrt(seq(1, 100))
sqrt_n

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751
[8] 2.828427 3.000000 3.162278 3.316625 3.464102 3.605551 3.741657</pre>
```

```
[15]
     3.872983 4.000000 4.123106
                                 4.242641
                                           4.358899
                                                    4.472136
                                                              4.582576
[22]
    4.690416 4.795832 4.898979 5.000000
                                           5.099020 5.196152
                                                             5.291503
[29]
    5.385165 5.477226
                        5.567764 5.656854
                                          5.744563 5.830952
                                                             5.916080
    6.000000 6.082763
[36]
                        6.164414
                                 6.244998
                                           6.324555
                                                    6.403124
                                                              6.480741
[43]
    6.557439 6.633250
                        6.708204 6.782330 6.855655 6.928203
                                                             7.000000
[50]
    7.071068 7.141428
                       7.211103 7.280110 7.348469 7.416198 7.483315
[57]
     7.549834 7.615773 7.681146 7.745967 7.810250 7.874008 7.937254
[64]
    8.000000 8.062258 8.124038 8.185353 8.246211 8.306624
                                                             8.366600
[71]
    8.426150 8.485281 8.544004 8.602325 8.660254 8.717798
                                                             8.774964
```

- [78] 8.831761 8.888194 8.944272 9.000000 9.055385 9.110434 9.165151 [85] 9.219544 9.273618 9.327379 9.380832 9.433981 9.486833 9.539392
- [92] 9.591663 9.643651 9.695360 9.746794 9.797959 9.848858 9.89 [99] 9.949874 10.000000

Fifth Question

```
g \leftarrow seq(1, 100, by = 0.4)
```

```
[1] 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6
[16] 7.0 7.4 7.8 8.2 8.6 9.0 9.4 9.8 10.2 10.6 11.0 11.4 11.8 12.2 12.6
[31] 13.0 13.4 13.8 14.2 14.6 15.0 15.4 15.8 16.2 16.6 17.0 17.4 17.8 18.2 18.6
[46] 19.0 19.4 19.8 20.2 20.6 21.0 21.4 21.8 22.2 22.6 23.0 23.4 23.8 24.2 24.6
[61] 25.0 25.4 25.8 26.2 26.6 27.0 27.4 27.8 28.2 28.6 29.0 29.4 29.8 30.2 30.6
[76] 31.0 31.4 31.8 32.2 32.6 33.0 33.4 33.8 34.2 34.6 35.0 35.4 35.8 36.2 36.6
[91] 37.0 37.4 37.8 38.2 38.6 39.0 39.4 39.8 40.2 40.6 41.0 41.4 41.8 42.2 42.6
[106] 43.0 43.4 43.8 44.2 44.6 45.0 45.4 45.8 46.2 46.6 47.0 47.4 47.8 48.2 48.6
[121] 49.0 49.4 49.8 50.2 50.6 51.0 51.4 51.8 52.2 52.6 53.0 53.4 53.8 54.2 54.6
[136] 55.0 55.4 55.8 56.2 56.6 57.0 57.4 57.8 58.2 58.6 59.0 59.4 59.8 60.2 60.6
[151] 61.0 61.4 61.8 62.2 62.6 63.0 63.4 63.8 64.2 64.6 65.0 65.4 65.8 66.2 66.6
[166] 67.0 67.4 67.8 68.2 68.6 69.0 69.4 69.8 70.2 70.6 71.0 71.4 71.8 72.2 72.6
[181] 73.0 73.4 73.8 74.2 74.6 75.0 75.4 75.8 76.2 76.6 77.0 77.4 77.8 78.2 78.6
[196] 79.0 79.4 79.8 80.2 80.6 81.0 81.4 81.8 82.2 82.6 83.0 83.4 83.8 84.2 84.6
[211] 85.0 85.4 85.8 86.2 86.6 87.0 87.4 87.8 88.2 88.6 89.0 89.4 89.8 90.2 90.6
[226] 91.0 91.4 91.8 92.2 92.6 93.0 93.4 93.8 94.2 94.6 95.0 95.4 95.8 96.2 96.6
[241] 97.0 97.4 97.8 98.2 98.6 99.0 99.4 99.8
```

2.6 Filtering vectors based on conditions

11)

```
x \leftarrow c(80, 39, NA, 51, 51, 11, NA, NA, NA, 100, 80, 70)
a).
nonMissings <- x[!is.na(x)] # since is.na command gives us whether the value is a missing value or not
nonMissings
[1] 80 39 51 51 11 100 80 70
b).
missingsOdd <- x[(x %% 2) != 0] # since missing values are already not even numbers
missingsOdd
[1] 39 NA 51 51 11 NA NA NA
c).
odd <- x[!is.na(x) & (x \% 2) != 0] # extracting only the values which are not odd
#ignoring missing values
odd
[1] 39 51 51 11
d).
x \leftarrow c(80, 39, NA, 51, 51, 11, NA, NA, NA, 100, 80, 70)
notIn <- x[!is.na(x) &!(x %in% 1:50)] # extracting only the values which not in the set 1:50
notIn
[1] 80 51 51 100 80 70
```

2.7 Modify a vector

12)

```
age \leftarrow c(20, 30, 40, 41, 32, 32, 25, NA, NA, -4, -6, 9999, 10000)
a).
a <- replace(age, which(age < 0), NA) # assigning NA to negative values
[1]
      20
           30
                 40
                      41
                           32
                                32
                                     25
                                          NA
                                               NA
                                                     NA
                                                          NA
                                                             9999
Γ13 10000
b).
age <- c(20, 30, 40, 41, 32, 32, 25, NA, NA, -4, -6, 9999, 10000)
age [age < 0] <- 0 # assigning zero for all negative values
valid <- age[age %in% 1:100] # extracting the valid responses
mean(valid, rm.na=TRUE)
[1] 31.42857
13)
set.seed(17620212)
b \leftarrow rnorm(100)
 [11] -1.203312799 1.510436562 0.219368378 -0.642429444 -0.373969124
[16] -0.239829685 -0.186344734 0.517975563 -1.256355393 1.067433297
[26] -0.001345883 -1.022893025 -0.908602635 0.502535054 0.315929086
[31] 1.294309571 -0.303323749 -0.322819573 -1.377566743 2.714915313
[36] -0.512573266 1.342424819 -0.457104082 -1.593015886 -0.202338403
[41] 1.079678527 0.456102666 1.504041202 0.378318229 -0.289765109
[46] 1.019989890 0.665591385 -1.076213455 0.272375584 0.545493842
[51] 0.052391342 -0.402364688 0.152662598 -1.486745812 0.102018231
[56] -0.024357072  0.068276667  0.075642814  0.379600455  -0.988308679
 \begin{bmatrix} 66 \end{bmatrix} \quad 0.752256616 \quad 0.039189614 \quad -0.939203562 \quad -0.419716046 \quad 0.084067026
```

```
[71] -1.081303093 0.780827145 0.207575277 0.733234796 -0.660969465
  [76] \quad 1.649316796 \quad 0.491550464 \quad -0.864054075 \quad -0.919522275 \quad -0.727913488 
 [81] 1.197400462 -1.645388340 1.704924934 -1.650667045 0.377823148
 [86] 1.436377659 -1.143144414 0.789086285 1.049357974 2.163786809
 [91] 1.626306920 1.317779758 1.647449733 0.588881226 -0.177613835
 [96] 0.081191404 0.093051240 1.202918954 -1.783424334 0.725816313
a).
b[1:5] <- 1 # changing the first five values to 1
  [6] 0.289002107 0.258796402 0.982174159 0.378628085 0.015035037
 [11] -1.203312799 1.510436562 0.219368378 -0.642429444 -0.373969124
 [16] -0.239829685 -0.186344734 0.517975563 -1.256355393 1.067433297
 [21] 1.035128935 -1.016002843 0.830122365 0.427420672 0.170429825
 [26] -0.001345883 -1.022893025 -0.908602635 0.502535054 0.315929086
 [31] 1.294309571 -0.303323749 -0.322819573 -1.377566743 2.714915313
 [36] -0.512573266 1.342424819 -0.457104082 -1.593015886 -0.202338403
 [41] 1.079678527 0.456102666 1.504041202 0.378318229 -0.289765109
 [46] 1.019989890 0.665591385 -1.076213455 0.272375584 0.545493842
  [51] \quad 0.052391342 \quad -0.402364688 \quad 0.152662598 \quad -1.486745812 \quad 0.102018231 
 [61] 0.701330674 -0.491165150 1.494498791 -1.773934043 -0.460454009
  \begin{bmatrix} 66 \end{bmatrix} \quad 0.752256616 \quad 0.039189614 \quad -0.939203562 \quad -0.419716046 \quad 0.084067026 
 [76] \quad 1.649316796 \quad 0.491550464 \quad -0.864054075 \quad -0.919522275 \quad -0.727913488
 [81] 1.197400462 -1.645388340 1.704924934 -1.650667045 0.377823148
 [86] 1.436377659 -1.143144414 0.789086285 1.049357974 2.163786809
 [91] 1.626306920 1.317779758 1.647449733 0.588881226 -0.177613835
 [96] 0.081191404 0.093051240 1.202918954 -1.783424334 0.725816313
b).
length(b) # length of the vector b
[1] 100
b[96:100] <- 0 # changing last five values to 0
 [6] 0.289002107 0.258796402 0.982174159 0.378628085 0.015035037
 [11] -1.203312799 1.510436562 0.219368378 -0.642429444 -0.373969124
 [16] -0.239829685 -0.186344734 0.517975563 -1.256355393 1.067433297
 [21] 1.035128935 -1.016002843 0.830122365 0.427420672 0.170429825
 [26] -0.001345883 -1.022893025 -0.908602635 0.502535054 0.315929086
 [31] 1.294309571 -0.303323749 -0.322819573 -1.377566743 2.714915313
```

```
[36] -0.512573266 1.342424819 -0.457104082 -1.593015886 -0.202338403
[41] 1.079678527 0.456102666 1.504041202 0.378318229 -0.289765109
Г461
    1.019989890 0.665591385 -1.076213455 0.272375584 0.545493842
[51] 0.052391342 -0.402364688 0.152662598 -1.486745812 0.102018231
[56] -0.024357072 0.068276667
                          [61] 0.701330674 -0.491165150 1.494498791 -1.773934043 -0.460454009
    0.752256616  0.039189614  -0.939203562  -0.419716046  0.084067026
[71] -1.081303093 0.780827145 0.207575277 0.733234796 -0.660969465
[76]
    1.649316796 0.491550464 -0.864054075 -0.919522275 -0.727913488
[81]
    1.197400462 -1.645388340 1.704924934 -1.650667045 0.377823148
[86] 1.436377659 -1.143144414 0.789086285
                                     1.049357974 2.163786809
[91] 1.626306920 1.317779758 1.647449733 0.588881226 -0.177613835
```

c).

```
b[b > 0.5] \leftarrow 1  # assigning 1 to values grater than 0.5 b
```

```
[6] 0.289002107 0.258796402 1.000000000 0.378628085
                                               0.015035037
[11] -1.203312799 1.000000000
                          0.219368378 -0.642429444 -0.373969124
[16] -0.239829685 -0.186344734
                         1.000000000 -1.256355393
                                               1.000000000
[21] 1.000000000 -1.016002843 1.000000000 0.427420672 0.170429825
[26] -0.001345883 -1.022893025 -0.908602635 1.000000000 0.315929086
[31] 1.000000000 -0.303323749 -0.322819573 -1.377566743 1.000000000
[36] -0.512573266 1.000000000 -0.457104082 -1.593015886 -0.202338403
[41] 1.000000000 0.456102666 1.000000000 0.378318229 -0.289765109
[46] 1.000000000 1.000000000 -1.076213455 0.272375584 1.000000000
[51] 0.052391342 -0.402364688 0.152662598 -1.486745812 0.102018231
[61] 1.000000000 -0.491165150 1.000000000 -1.773934043 -0.460454009
   1.000000000 0.039189614 -0.939203562 -0.419716046 0.084067026
[71] -1.081303093 1.000000000 0.207575277 1.000000000 -0.660969465
[76]
    1.000000000 0.491550464 -0.864054075 -0.919522275 -0.727913488
[81]
    1.000000000 -1.645388340 1.00000000 -1.650667045 0.377823148
[86]
    1.000000000 -1.143144414
                          1.000000000
                                    1.000000000 1.000000000
[91]
    1.00000000 1.000000000
                          1.000000000
                                     1.00000000 -0.177613835
[96]
```

```
b[b < 0.5] <- 0 # assigning 0 to values less than 0.5 b
```

d).

```
set.seed(17620212)
b <- rnorm(100)
b[b > 0.5] <- 1
b[b \le 0.5] < 0
    [1] 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1
##
##
   b[b == 0] \leftarrow "MALE"
b[b == 1] <- "FEMALE"
    [1] "FEMALE" "MALE"
                        "MALE"
                                "MALE"
                                         "MALE"
                                                 "MALE"
                                                         "MALE"
                                                                 "FEMALE"
    [9] "MALE"
                                                 "MALE"
##
                "MALE"
                        "MALE"
                                "FEMALE" "MALE"
                                                         "MALE"
                                                                 "MALE"
##
   [17] "MALE"
                "FEMALE" "MALE"
                                "FEMALE" "FEMALE" "MALE"
                                                         "FEMALE" "MALE"
##
   [25] "MALE"
                "MALE"
                        "MALE"
                                "MALE"
                                        "FEMALE" "MALE"
                                                         "FEMALE" "MALE"
   [33] "MALE"
                "MALE"
                        "FEMALE" "MALE"
                                        "FEMALE" "MALE"
                                                         "MALE"
##
                                                                 "MALE"
   [41] "FEMALE" "MALE"
                        "FEMALE" "MALE"
                                         "MALE"
                                                 "FEMALE" "FEMALE" "MALE"
##
   [49] "MALE"
                "FEMALE" "MALE"
                                "MALE"
##
                                         "MALE"
                                                 "MALE"
                                                         "MALE"
                                                                 "MALE"
##
   [57] "MALE"
                "MALE"
                        "MALE"
                                "MALE"
                                        "FEMALE" "MALE"
                                                         "FEMALE" "MALE"
   [65] "MALE"
                "FEMALE" "MALE"
                                "MALE"
                                         "MALE"
                                                 "MALE"
                                                         "MALE"
                                                                 "FEMALE"
##
                "FEMALE" "MALE"
   [73] "MALE"
                                "FEMALE" "MALE"
                                                 "MALE"
                                                         "MALE"
##
                                                                 "MALE"
   [81] "FEMALE" "MALE"
##
                        "FEMALE" "MALE"
                                        "MALE"
                                                 "FEMALE" "MALE"
                                                                 "FEMALE"
## [89] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "MALE"
                                                                 "MALE"
##
  [97] "MALE"
                "FEMALE" "MALE"
                                "FEMALE"
b <- ifelse(b == 0, "MALE", "FEMALE")</pre>
  [1] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [9] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [17] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [25] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [33] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [41] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [49] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [57] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [65] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [73] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [81] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [89] "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE" "FEMALE"
 [97] "FEMALE" "FEMALE" "FEMALE"
```

Or else this can be done by using the following method as well.

```
# b <- replace(b, which(b==0), "MALE")
# b <- replace(b, which(b==1), " FEMALE")
```

2.8

i) Enter confirmed cases in table 1 to a vector.

```
confirmed_cases <- c(29631, 1151, 1104, 1073, 879, 830, 771, 492, 468, 459, 405, 337, 331,
                     295, 261, 218, 213, 210, 141, 136, 119, 109, 107, 91, 85, 80, 58, 49,
                     49, 36, 18, 18, 10, 1) # Initialize the vector
confirmed_cases # Print the vector
 [1] 29631 1151 1104 1073
                               879
                                     830
                                           771
                                                  492
                                                        468
                                                              459
                                                                    405
                                                                          337
[13]
       331
             295
                                            141
                                                  136
                                                              109
                                                                    107
                                                                           91
                   261
                         218
                               213
                                     210
                                                        119
[25]
       85
              80
                    58
                          49
                                49
                                      36
                                            18
                                                   18
                                                         10
                                                                1
length(confirmed_cases) # To check the length of the vector
[1] 34
is.vector(confirmed_cases) # To check if it is a vector
[1] TRUE
is.integer(confirmed_cases) # To check if it is a vector of integers
[1] FALSE
class(confirmed cases)
[1] "numeric"
typeof(confirmed_cases)
[1] "double"
# To check whether all confirmed cases are recorded by checking Total given in Table 1
sum(confirmed_cases)
[1] 40235
```

[1] 10200

ii) Name the elements by province/regions/cities in China.

Modifying the names of an existing vector

Hubei	Guangdong	Zhejiang	Henan
29631	1151	1104	1073
Hunan	Anhui	Jiangxi	Jiangsu
879	830	771	492
Chongqing	Shandong	Sichuan	Beijing
468	459	405	337
Heilongjiang	Shanghai	Fujian	Hebei
331	295	261	218
Shaanxi	Guangxi	Yunnan	Hainan
213	210	141	136
Shanxi	Guizhou	Liaoning	Tianjin
119	109	107	91
Gansu	Jilin	Inner Mongolia	Ningxia
85	80	58	49
Xinjiang	Hong Kong SAR	Qinghai	Taipei and environs
49	36	18	18
Macao SAR	Xizang		
10	1		

- iii) Write Rcodes to answer the following questions.
- a) Which province/region/city has the highest number of confirmed cases?

 Method 1:

```
# To get the province/ region/ city which has the highest value from the vector which.max(confirmed_cases)
```

Hubei 1

Method 2:

```
max(confirmed_cases) # To get the the maximum value/ highest value from the vector
```

[1] 29631

```
# If equal return as TRUE
# If not return as FALSE
# Check whether each value of the vector and return whether the value is equal to
# the maximum value or not
confirmed_cases == max(confirmed_cases)
```

Hubei	Guangdong	Zhejiang	Henan
TRUE	FALSE	FALSE	FALSE
Hunan	Anhui	Jiangxi	Jiangsu
FALSE	FALSE	FALSE	FALSE
Chongqing	Shandong	Sichuan	Beijing
FALSE	FALSE	FALSE	FALSE
Heilongjiang	Shanghai	Fujian	Hebei
FALSE	FALSE	FALSE	FALSE
Shaanxi	Guangxi	Yunnan	Hainan
FALSE	FALSE	FALSE	FALSE
Shanxi	Guizhou	Liaoning	Tianjin
FALSE	FALSE	FALSE	FALSE
Gansu	Jilin	Inner Mongolia	Ningxia
FALSE	FALSE	FALSE	FALSE
Xinjiang	Hong Kong SAR	Qinghai	Taipei and environs
FALSE	FALSE	FALSE	FALSE
Macao SAR	Xizang		
FALSE	FALSE		

```
# To select an element which equal to the condition
confirmed_cases[confirmed_cases == max(confirmed_cases)]
```

Hubei 29631

b) Number of confirmed cases reported in Hebei, China.

```
confirmed_cases['Hebei'] # To select the element with a specific name
```

Hebei 218

c) Total number of confirmed cases reported in China.

```
sum(confirmed_cases) # To get the total
```

[1] 40235

d) Number of cases reported in the capital of China.

confirmed_cases['Beijing'] # To select the element with a specific name

Beijing 337

e) Number of cases reported in Inner Mongolia.

confirmed_cases['Inner Mongolia'] # To select the element with a specific name

Inner Mongolia

58