Рекурсии

1 Ханойские башни

Начнем обсуждение этой темы с задачи о Ханойских башнях. Головоломка "Ханойские башни" состоит из трёх стержней, на один из которых нанизано несколько колец. Все кольца имеют разный диаметр и расположены снизу вверх по убыванию диаметра.

За один ход разрешается снять верхнее кольцо с любого стержня и переместить его на другой стержень. При этом запрещается класть кольцо на кольцо меньшего диаметра.

Вот один из возможных алгоритмов. Пронумеруем кольца сверху вниз числами от 1 до n. Пусть нам нужно переложить n колец с первого стержня на третий. Будем рассуждать по индукции.

Если n=1, то решение задачи очевидно.

Пусть мы умеем перекладывать любое количество колец, меньшее n. Тогда n колец можно переложить следующим образом.

- 1. Перекладываем верхние n-1 колец с первого стержня на второй.
- 2. Перекладываем последнее (самое большое) кольцо с первого стержня на третий.
- 3. Перекладываем n-1 колец со второго стержня на третий.

Попробуем написать процедуру, печатающую последовательность перекладываний согласно описанному алгоритму.

Обратите внимание: наша процедура вызывает сама себя (но с другими параметрами). Так, Hanoi(2, 1,2,3) вызывает Hanoi(1, 1,3,2) и Hanoi(1, 3,2,1).

Определение. Процедуры, вызывающие себя в процессе работы называются *рекурсивными*.

Для того, чтобы программа не зацикливалась, рекурсивная процедура должна содержать *терминальное условие* — условие, при котором новых вызовов функции не происходит. В нашем случае таким условием служит условие n=1. Уже при n=3 последовательность вызовов функций будет довольно сложной, но мы пока не будем углубляться в механизмы работы рекурсии, а перейдем к следующей задаче.

2 Наибольший общий делитель

Всех вас в свое время на уроках математики учили находить наибольший общий делитель двух чисел. Для этого нужно было первым делом разложить их на простые множители. Сейчас мы рассмотрим другой алгоритм, который и реализовывать проще, да и работает он быстрее. Он основан на следующем свойстве НОД:

```
НОД(а,b)=НОД(а-b,b) при а≥b.
```

Это свойство несложно доказать. Если d – делитель чисел а и b, то на d делится и разность чисел а и b. Обратно, если d является делителем чисел a-bи b, то и их сумма (a-b)+b=а делится на d. Таким образом, всякий общий делитель чисел а и b является общим делителем чисел a-b и b, и наоборот. Поэтому и наибольшие делители у этих пар чисел совпадают. Пользуясь этой формулой, можно легко написать рекурсивную функцию для вычисления НОД. Надо лишь не забывать про терминальное условие.

Работу алгоритам можно еще ускорить, если воспользоваться формулой

```
HOД(a,b) = HOД(a mod b,b).
```

Алгоритм вычисления НОД по этой формуле называют *алгоритмом Евклида*. Заметим, что эта формула верна для всех а и b, но если a
b, то a mod b = a и формула вырождается в тривиальную. Чтобы обойтись без процедуры
swap, можно пользоваться формулой НОД(a,b)=HOД(b, a mod b).

3 Возведение в степень

Формулировка задачи очень проста: требуется возвести число а в степень n. Проще всего, конечно, умножить число a на себя нужное число раз. Этот алгоритм потребует n-1 умножений. Можно ли существенно ускорить, этот алгоритм? Оказывается, да. Заметим, что если мы хотим вычислить, например, a^{10} , то, вычислив на некотором шаге a^5 , можно умножить его на себя u, тем самым, сэкономить несколько умножений. Такой трюк можно использовать для любой четной степени, что позволяет написать формулы, аналогичные формуле из предыдущей задачи:

Эта формула позволяет написать рекурсивную функцию вычисления степени (не забывая о терминальном условии n=1).

Итак, подведём некоторые итоги.

- Рекурсия это прием программирования, при котором функция (процедура) вызывает сама себя.
- Для того, чтобы этот процесс вызовов не зацикливался, в функции обязательно должно быть *терминальное условие* при выполнении такого условия процесс рекурсивных вызовов прерывается.
- Любой рекурсивный алгоритм можно реализовать и не прибегая к рекурсии, но рекурсия позволяет записывать многие алгоритмы в более простой форме. При этом рекурсивные алгоритмы обычно более требовательны к ресурсам (памяти), чем нерекурсивные.

Задача №199. НОД

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

		Язык	Free Pasc al	GN U C	GN U C++	Delp hi	Jav a	PH P	Pyth on 2.7	Mon o C#	Rub	Pyth on 3.1	Hask ell
Ограничение по времени, <i>сек</i>	1	Min время, <i>с</i> ек	0.002	0.00	0.00	0.00 4	0.11 9	0.01 8	0.024	0.04 3	0.04	0.048	0.005
Ограничение по памяти, мегаб айт	6 4	Среднее время, <i>с</i> ек	0.01	0.00 9	0.01 4	0.01	0.41 2	0.01 8	0.043	0.06 7	0.04	0.063	0.005
		Верных решени й	284	9	482	48	39	1	3	18	1	30	2

Даны два числа. Найти их наибольший общий делитель.

Входные данные

Вводятся два натуральных числа, не превышающих 10^9 .

Выходные данные

Выведите НОД введенных чисел.

Примеры

входные данные

9 12

выходные данные

3

Задача №200. Площадь комнаты

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

		Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Mono C#	Python 3.1	Haskell
Ограничение по времени, <i>сек</i>	1	Min время, <i>сек</i>	0.001	0.004	0.002	0.004	0.158	0.044	0.049	0.004
Ограничение по памяти, <i>мегабайт</i>	64	Среднее время, <i>сек</i>	0.006	0.006	0.013	0.011	0.441	0.078	0.081	0.022
		Верных решений	108	5	188	21	5	2	22	3

Требуется вычислить площадь комнаты в квадратном лабиринте.

Входные данные

В первой строке вводится число N – размер лабиринта (3 <= N <= 10). В следующих N строках задан лабиринт ('.' – пустая клетка, '*' – стенка). И наконец, последняя строка содержит два числа – номер строки и столбца клетки, находящейся в комнате, площадь которой необходимо вычислить. Гарантируется, что эта клетка пустая и что лабиринт окружен стенками со всех сторон.

Выходные данные

Требуется вывести единственное число – количество пустых клеток в данной комнате.

Примеры

входные данные

```
5
****

**. *

*. *

*. *

*. **

****

2 4
```

выходные данные

3

Задача №1414. Фишки

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Темы :: Лучшие решения :: Источники

Ограничение по	1	Язык	Free	GNU	GNU	Dolphi	lava	Dorl	Python	Haskell
времени, <i>сек</i>	'	ИЗЫК	Pascal	С	C++	Deibili	Java		3.1	пазкен

Ограничение по памяти, <i>мегабайт</i>	64	Min время, <i>сек</i>	0.002	0.004	0.002	0.003	0.119	0.01	0.052	0.005
		Среднее время, <i>сек</i>	0.004	0.007	0.013	0.01	0.216	0.039	0.099	0.006
		Верных решений	39	3	107	22	3	2	7	2

Дана полоска из клеток, пронумерованных от 1 до *N*. На каждом ходе разрешено поставить фишку на клетку (если её там еще нет) или снять фишку с клетки (если она там есть). При этом, можно выбрать не любую клетку, а только клетку под номером 1 или клетку, следующую за самой первой фишкой. Изначально полоска пуста. Требуется занять все клетки.

Входные данные

С клавиатуры вводится натуральное число N ($1 \le N \le 10$).

Выходные данные

Требуется вывести последовательность номеров клеток, с которыми совершается действие. Если фишка снимается, то номер клетки должен выводиться со знаком минус. Количество действий не должно превышать 10^4 . Если существует несколько возможных решений задачи, то разрешается вывести любое.

Примеры

Ввод	Вывод
3	1 2 -1 3 1

Примеры

входные данные

3

выходные данные

Задача №1470. Спиралька

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Ограничение по времени, <i>сек</i>	1	HSPIK	Free Pascal	GNU C	GNU C++	Delphi	Java	Python 2.7	Mono C#	Python 3.1
Ограничение по памяти, <i>мегабайт</i>	641	Min время, <i>сек</i>	0.002	0.002	0.002	0.002	0.118	0.025	0.045	0.047

Среднее время, <i>сек</i>	0.006	0.004	0.01	0.013	0.233	0.025	0.099	0.166
Верных решений	139	4	217	48	16	1	5	22

Выведите двумерный массив, размерами $N \times N$, заполненный числами от единицы до N^2 по спирали. Числовая спираль начинается в левом верхнем углу и закручивается по часовой стрелке.

Входные данные

Входной файл содержит единственное число $1 \le N \le 10$.

Выходные данные

Выведите N^2 чисел – заполненный по спирали массив.

Примеры

входные данные

1

выходные данные

1

входные данные

2

выходные данные

1 2

4 3

входные данные

3

выходные данные

1 2 3

8 9 4

7 6 5

Задача №153. N-е число Фибоначчи

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Perl	Mono C#	Python 3.1	Haskell
Min время, <i>сек</i>	0.001	0.002	0.001	0.002	0.117	0.685	0.044	0.046	0.021
Среднее время, <i>сек</i>	0.017	0.014	0.014	0.022	0.296	0.713	0.075	0.454	0.077
Верных решений	441	10	583	287	20	4	8	13	3

Максимальное время работы на одном тесте: 1 секунда

Последовательностью Фибоначчи называется последовательность чисел a_0 , a_1 , ..., a_n , ..., где $a_0 = 0$, $a_1 = 1$, $a_k = a_{k-1} + a_{k-2}$ (k > 1).

Требуется найти *N*-е число Фибоначчи.

Примечание. В программе запрещается использовать циклы.

Входные данные

На вход программы поступает целое неотрицательное число N ($N \leq 30$).

Выходные данные

Требуется вывести *N*-е число Фибоначчи.

Примеры

входные данные

3

выходные данные

2

Задача №154. НОД (рекурсивный вариант)

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Python 2.7	Mono C#	Python 3.1
Min время, <i>сек</i>	0.001	0.001	0.001	0.002	0.117	0.008	0.044	0.048
Среднее время, <i>сек</i>	0.014	0.003	0.015	0.014	0.292	0.035	0.056	0.091
Верных решений	311	8	634	287	59	4	7	12

Максимальное время работы на одном тесте: 1 секунда

Даны два натуральных числа A и B. Требуется найти их наибольший общий делитель.

Примечание. В программе запрещается использовать циклы.

Входные данные

Вводятся два натуральных числа A и B (A, $B \le 10^9$).

Выходные данные

Требуется вывести НОД А и В.

Примеры

входные данные

12 42

выходные данные

6

Задача №155. Генератор

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Python 2.7	Python 3.1
Min время, <i>сек</i>	0.009	0.039	0.036	0.034	0.269	0.26	0.184
Среднее время, сек	0.054	0.048	0.146	1.044	0.852	0.26	0.426
Верных решений	155	7	244	161	11	1	13

Максимальное время работы на одном тесте: 2 секунды

Даны два натуральных числа N и K. Требуется вывести все цепочки x_1 , x_2 , ..., x_N такие, что x_i - натуральное и $1 \le x_i \le K$.

Входные данные

Вводятся два натуральных числа N и K (N, $K \le 6$).

Выходные данные

Выведите все требуемые цепочки в произвольном порядке – по одной на строке. Никакая цепочка не должна встречаться более одного раза.

Примеры

входные данные

2 3

выходные данные

1	1			
1	2			
1	3			
2	1			
2	2			
2	3			
3	1			
3	2			
3	3			

Задача №156. Без массивов

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Mono C#	Python 3.1	Haskell
Min время, <i>сек</i>	0.001	0.002	0.001	0.003	0.125	0.041	0.047	0.006
Среднее время, <i>сек</i>	0.005	0.003	0.006	0.016	0.289	0.042	0.074	0.006
Верных решений	333	12	539	203	24	2	19	1

Максимальное время работы на одном тесте: 1 секунда

Дано натуральное число N и последовательность из N элементов. Требуется вывести эту последовательность в обратном порядке.

Примечание. В программе запрещается объявлять массивы и использовать циклы (даже для ввода и вывода).

Входные данные

В первой строке входных данных содержится натуральное число N ($N \le 10^3$). Во второй строке через пробел идут N целых чисел, по модулю не превосходящих 1000, – элементы последовательности.

Выходные данные

Требуется вывести заданную последовательность в обратном порядке.

Примеры

входные данные

2 3 4

выходные данные

4 3

Задача №157. Монетки

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Python 3.1	Haskell
Min время, <i>сек</i>	0.18	0.02	0.004	0.128	0.327	1.034	0.261
Среднее время, сек	0.478	0.075	0.29	0.481	0.51	1.034	0.37
Верных решений	27	2	118	28	4	1	7

Максимальное время работы на одном тесте: 1 секунда

В Волшебной стране используются монетки достоинством A_1 , A_2 ,..., A_M . Волшебный человечек пришел в магазин и обнаружил, что у него есть ровно по две монетки каждого достоинства. Ему нужно заплатить сумму N. Напишите программу, определяющую, сможет ли он расплатиться без сдачи.

Входные данные

На вход программы сначала поступает число N ($1 <= N <= 10^9$), затем - число M (1 <= M <= 15) и далее M попарно различных чисел A_1 , A_2 ,..., A_M ($1 <= A_i <= 10^9$).

Выходные данные

Сначала выведите K - количество монет, которое придется отдать Волшебному человечку, если он сможет заплатить указанную сумму без сдачи. Далее выведите K чисел, задающих достоинства монет. Если решений несколько, выведите вариант, в котором Волшебный человек отдаст наименьшее возможное количество монет. Если таких вариантов несколько, выведите любой из них.

Если без сдачи не обойтись, то выведите одно число 0. Если же у Волшебного человечка не хватит денег, чтобы заплатить указанную сумму, выведите одно число -1 (минус один).

Примеры

входные данные

```
100 6
11 20 30 40 11 99
```

выходные данные

```
3
40 30 30
```

Задача №158. Сумма кубов

Данные вводятся с клавиатуры или из файла input.txt, выводятся на экран или в файл output.txt. Первые тесты не всегда совпадают с примерами из условия.

:: Результаты :: Вопросы :: Посылки :: Разбор :: Темы :: Лучшие решения :: Источники

Язык	Free Pascal	GNU C	GNU C++	Delphi	Java	Python 3.1	Haskell
Min время, сек	0.001	0.008	0.002	0.005	0.272	0.06	0.035
Среднее время, сек	0.246	0.205	0.261	0.349	0.474	0.06	0.22
Верных решений	38	5	94	31	5	1	7

Известно, что любое натуральное число можно представить в виде суммы не более чем четырех квадратов натуральных чисел. Вася решил придумать аналогичное утверждение для кубов - он хочет узнать, сколько кубов достаточно для представления любого числа. Его первая рабочая гипотеза - восемь.

Выяснилось, что почти все числа, которые Вася смог придумать, представляются в виде суммы не более чем восьми кубов. Однако число 239, например, не допускает такого представления. Теперь Вася хочет найти какие-либо другие такие числа, а также, возможно, какую-либо закономерность в представлениях всех остальных чисел, чтобы выдвинуть гипотезу относительно вида всех чисел, которые не представляются в виде суммы восьми кубов.

Помогите Васе написать программу, которая проверяла бы, возможно ли представить данное натуральное число в виде суммы не более чем восьми кубов натуральных чисел, и если это возможно, то находила бы какое-либо такое представление.

Входные данные

Вводится натуральное число $N <= 2*10^9$.

Выходные данные

Требуется вывести не более восьми натуральных чисел, кубы которых в сумме дают N. Если искомого представления не существует, то в выходной файл необходимо вывести слово IMPOSSIBLE.

Примеры

входные данные

239

выходные данные

IMPOSSIBLE

входные данные

17

выходные данные

2 2 1