

Beregning av DOP langs norsk vei med fjellskygge effekter

10. Okt 2024 Sommerprosjekt av Sindre Havn

Kilde: https://lex.dk/Romsdalen

Globale GDOP verdier

Kilde (2019):

https://www.researchgate.net/publication/336358523_Preliminary_ Availability_Assessment_of_Multi-GNSS_A_Global_Scale_Analysis

GDOP = satellitt-geometri

$$d_{ai} = \frac{a_i - a}{\sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2}}, \quad a = x, y, or z$$
 (3.3)

$$J = \begin{bmatrix} d_{x1} & d_{y1} & d_{z1} & 1 \\ d_{x2} & d_{y2} & d_{z2} & 1 \\ \vdots & \vdots & \vdots & 1 \\ d_{xn} & d_{yn} & d_{zn} & 1 \end{bmatrix}$$
(3.4)

$$Q = \begin{bmatrix} J^T J \end{bmatrix}^{-1} = \begin{bmatrix} \sigma_x^2 & \sigma_{xy} & \sigma_{xz} & \sigma_{xt} \\ \sigma_{xy} & \sigma_y^2 & \sigma_{yz} & \sigma_{yt} \\ \sigma_{xz} & \sigma_{yz} & \sigma_z^2 & \sigma_{zt} \\ \sigma_{xt} & \sigma_{yt} & \sigma_{zt} & \sigma_t^2 \end{bmatrix}$$
(3.5)

$$GDOP \triangleq \sqrt{trace(Q)}$$
 (3.6)

and

$$GDOP^2 = HDOP^2 + VDOP^2 + TDOP^2$$
(3.7)

where x_i , y_i , z_i represents the *i*th satellite position and x, y, z describe the receiver's position. $HDOP \triangleq \sqrt{\sigma_x^2 + \sigma_y^2}$, $VDOP \triangleq \sqrt{\sigma_y^2}$, and $TDOP \triangleq \sqrt{\sigma_t^2}$

Kilde:

https://trepo.tuni.fi/bitstream/handle/10024/132157/TampierJaraFelipe.pdf?sequence=2

https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)

WGDOP = Posisjonsfeil

$$H = \begin{bmatrix} e_{11} & e_{12} & e_{13} & 1 \\ e_{21} & e_{22} & e_{23} & 1 \\ \vdots & \vdots & \vdots & \vdots \\ e_{n1} & e_{n2} & e_{n3} & 1 \end{bmatrix} \qquad e_{i1} = \frac{\hat{x} - X_i}{\hat{r}_i} \qquad e_{i2} = \frac{\hat{y} - Y_i}{\hat{r}_i} \qquad e_{i3} = \frac{\hat{z} - Z_i}{\hat{r}_i} \qquad W = \begin{bmatrix} 1/\sigma_1^2 & 0 & 0 & 0 & 0 \\ 0 & 1/\sigma_2^2 & 0 & 0 & 0 \\ 0 & 0 & 1/\sigma_3^2 & 0 & 0 \\ 0 & 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 0 & 1/\sigma_n^2 \end{bmatrix}$$

$$\hat{r}_i = \sqrt{(\hat{x} - X_i)^2 + (\hat{y} - Y_i)^2 + (\hat{z} - Z_i)^2}$$

 $\sigma_i^2 = 1/k_i$, i = 1,....n are variances of measurement errors. According to the formula above, WGDOP is given by the trace of the inverse of the H^TWH matrix:

$$WGDOP = \sqrt{tr(H^TWH)^{-1}}$$
(3)

Kilde:

https://www.researchgate.net/publication/270659318_Weighted_Geometric_Dilution_of_Precision_Calculations_with_Matrix_Multiplication

σ - verdier

Brukt i koden fra github

GNSS	BDS	GPS	GLONASS	Galileo		
SISE (m)	0.7	1.0	2.3	8.0		
UEE (m)	1.6	1.6	1.6	1.6		
UERE (m)	1.7	1.9	2.8	1.8		

Kilde: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9002469/

$$W = \mathbf{R}^{-1} = egin{pmatrix} 1/\sigma_{y_1}^2 & & & & \ & \ddots & & & \ & & 1/\sigma_{y_n}^2 \end{pmatrix} \qquad (6)$$

Data er fra 2022 – nyere satelitter er skutt opp og UERE varierer fra kilde til kilde

Alternativ SISRE data I rapport

(2024): https://www.sciencedirect.com/science/article/abs/pii/S0273117724000

<u>954</u>

https://gssc.esa.int/navipedia/index.php?title=Best_Linear_Unbiased_Minimum-Variance_Estimator_(BLUE)

where $\sigma_{v_i}^2$ comes from the uncertainty of the different error sources (satellite clocks, ephemeris, ionosphere, troposphere, multipath and receiver noise):

$$\sigma_{y_i}^2 \equiv \sigma_{UERE_i}^2 = \sigma_{clk_i}^2 + \sigma_{eph_i}^2 + \sigma_{iono_i}^2 + \sigma_{tropo_i}^2 + \sigma_{mp_i}^2 + \sigma_{noise_i}^2$$
 (7)

Posisjonerings metoder

Kilde: https://garrett.seepersad.org/post/positioning_techniques/

Kilde: https://cgrsc.ca/resources/gnss-augmentation/

Beste kilder på å forklare (W)GDOP:

- https://snl.no/DOP_-_satellittgeometri
- https://www.researchgate.net/publication/258400682_Calculat ion_of_Weighted_Geometric_Dilution_of_Precision
- https://gssc.esa.int/navipedia/index.php?title=Best_Linear_Un biased_Minimum-Variance_Estimator_(BLUE)
- https://gssc.esa.int/navipedia/index.php?title=Parameters_adjustment

Videre korrigering av DOP?

Dersom man vil garantere inverterbar matrise i databehandling (bruke kovariansene videre) => Symmetrisk matrise

By combing GDOP with weighted scheme, WGDOP can be expressed as Equation (3). In order to guarantee the matrix H^TWH is a symmetric one in later operation, we refreshed the formulation above:

$$WGDOP = \sqrt{tr(H^TWH)^{-1}} = \sqrt{tr(H^TW^{\frac{1}{2}}W^{\frac{1}{2}}H)^{-1}} = \sqrt{tr(W^{\frac{1}{2}}HH^TW^{\frac{1}{2}})^{-1}}$$
(4)

Kilde:

https://www.researchgate.net/publication/270659318_Weighted_Geometric_Dilution_of_Precision_Calculations_with_Matrix_Multiplication

Steg 1: Last opp data

- Vegkurven E136_S8_17 er stykkedelt når den er lastet ned fra vegkart.no
- .dem filene har egendefinerte terrengprofiler (se langs sidene)

Steg 2: Kjør jupyter notebook

- 1. Vegstrekningene samles til èn, og .dem filene slås sammen.
- Observasjonspunkt blir samplet etter gitt intervall, og projektert på terrengkartet.
- 3. Skyline blir beregnet I obersvasjonspunktene og lagret som .csv filer.

Steg 3: Kjør DOP kode på horisontkurver og observasjonspunkt

- Vegstrekningene samles til èn, og .dem filene slås sammen.
- Observasjonspunkt blir samplet etter gitt intervall, og projektert på terrengkartet.
- Skyline blir beregnet I obersvasjonspunktene og lagret som .csv filer.

Satellitt banedata

– celestrak.org/NORAD/elements

R723

GNSS

Current as of 2024 Oct 07 22:05:35 UTC (Day 281)

Latest GP (TLE format) Data

Element Set Age (days)								
0-5	5-10	10-15	15-20	20-25	25-30	> 30		

Show 25 ♥ entries Search:

	International Designator	NORAD Catalog ≜ Number	Name 💠	Period (minutes)	Inclination (degrees)	Apogee Height 🖕 (km)	Perigee Height 🔶 (km)	Eccentricity 👇	Latest Data 👇	GP Age (days)
	1997-035A 🖹	24876	GPS BIIR-2 (PRN 13) Q	717.98	55.71	20,408	19,957	0.0084912		0.97
	2000-025A 🖹	26360	GPS BIIR-4 (PRN 20) Q	717.95	54.76	20,286	20,077	0.0039497		0.58
	2000-040A 🖹	26407	GPS BIIR-5 (PRN 22) Q	717.98	55.03	20,560	19,805	0.0142033	∄ №	0.61
	2003-005A 🖹	27663	GPS BIIR-8 (PRN 16) Q	717.96	55.06	20,550	19,813	0.0138672		0.33
	2003-010A 🖹	27704	GPS BIIR-9 (PRN 21) Q	717.96	55.07	20,860	19,504	0.0255410	₫ №	0.33
	2004-009A 🖹	28190	GPS BIIR-11 (PRN 19) Q ⊞	718.00	55.36	20,446	19,920	0.0098877		0.54
	2004-045A 🖹	28474	GPS BIIR-13 (PRN 02) 🔾 🖽	717.98	55.40	20,619	19,745	0.0164513		0.32
	2005-036A 🖹	28868	CRE (WAAS/PRN 138) Q ⊞	1,436.09	2.72	35,797	35,775	0.0002611	∄ *G△	0.56
	2005-038A 🖹	28874	GPS BIIRM-1 (PRN 17) Q ⊞	717.93	55.40	20,546	19,816	0.0137437		1.08
	2005-044A 🖹	28899	IOR-W (EGNOS/PRN 126) Q	1,436.10	4.31	35,798	35,776	0.0002586	∄ *G∞	0.64
	2006-042A 🖹	29486	GPS BIIRM-2 (PRN 31) Q ⊞	717.94	54.68	20,460	19,903	0.0104814		0.50
	2006-052A 🖹	29601	GPS BIIRM-3 (PRN 12) Q ⊞	717.94	55.10	20,407	19,956	0.0085021		0.75
	2007-047A 🖹	32260	GPS BIIRM-4 (PRN 15) Q ⊞	717.99	53.67	20,606	19,760	0.0159211		0.44
	2007-052A 🖹	32275	COSMOS 2433 (720) 🔾 🎛	675.73	65.89	19,143	19,116	0.0005363		0.56
2	2007-052B 🖹	32276	COSMOS 2432 (719) 🔾 🎛	675.73	65.90	19,155	19,105	0.0009706		0.41
EFN.	2007-062A 🖹	32384	GPS BIIRM-5 (PRN 29) 🔾 🎛	718.01	55.55	20,258	20,109	0.0028076	₽ ₩	0.44
	2007-065A 🖹	32393	COSMOS 2434 (721) 🔾 🎛	675.73	64.32	19,135	19,125	0.0001810		0.36
	2007-065C 🖹	32395	COSMOS 2436 (723) 🔾 🎛	675.74	64.33	19,173	19,087	0.0016702		0.36
	2008-012A 🖹	32711	GPS BIIRM-6 (PRN 07) Q ⊞	717.95	54.45	20,685	19,678	0.0189570		1.03
	2009-043A 🖹	35752	GPS BIIRM-8 (PRN 05) Q ⊞	717.98	55.77	20,331	20,033	0.0056021		0.53
	2009-070A 🖹	36111	COSMOS 2456 (730) 🔾 🎛	675.73	64.67	19,133	19,126	0.0001395		1.15
:08	2009-070B 🖹	36112	COSMOS 2457 (733) 🔾 🎛	675.74	64.65	19,146	19,114	0.0006251		0.32
	2010-007C 🖹	36402	COSMOS 2460 (732) 🔾 🎛	675.72	65.74	19,136	19,123	0.0002386		1.65
	2010-022A 🖹	36585	GPS BIIF-1 (PRN 25) Q	718.00	54.41	20,492	19,873	0.0116558		0.52
	2010-036A 🖹	36828	BEIDOU-2 IGSO-1 (C06) Q	1,436.41	54.25	35,965	35,621	0.0040753	= *G.∞	0.47

Validering av satellitt posisjoner

https://www.gnssplanning.com/#/skyplot GPS over møterom kl 14

Eksempel

Tors, 10 Okt 2024 09.15 UTC Lat/Long: 62.3981961,8.0124574

GDOP kl 9.15-11.15

Veien videre – validering og optimalisering

- **1. Hvor ofte** (tid) skal DOP beregnes?
- 2. Følger satelittene **periodiske baner** over samme punkt på jorda, slik at man gjenbruke utregninger for et gyldighets vindu?
- **3.** Hvilken avstand langs vegkurven bør DOP utregnes?
- 4. Løs skyline bug.
- 5. Bestem satelitt støy σ = UERE, for konstellasjon, med banehøyder? eller egen for hver satelitt?
- 6. Er terrengmodellen gyldig for beregning av horisontkurve i bebygde områder eller ved skog?
- 7. Hvilken vinkel-oppløsning egner seg for beregning av horisontkurve?
- **8.** Multipath effekter fra dalside eller høye flate bygg?

