Easy Lesson Plan Template¹

- P = Pretest (think essential questions)
- O = Objectives (measurable see Bloom's taxonomy)
- C = Catch (hook, anticipatory set, etc... use different senses, not a question)
- A = Activity (procedure of what the students should do)
- R = Review (how will students go over what they've learned?)
- A = Assessment (formative and/or summative)
- P = Posttest (same as pretest for comparison purposes)
- S = Standards (Wyoming, NGSS, etc...) showcasing crosscutting concepts²

Pretest Questions	1.If you roll a fair die 10 times, what is the probabilty of rolling two 3's?2. If you roll a fair die 5 times, what is the probabilty of rolling two 3's?
	3. At a certain intersection, the light for eastbound traffic is red for 15 seconds, yellow for 5 seconds, and green for 30 seconds. Find the probability that out of the next eight eastbound cars that arrive randomly at the light, exactly three will be stopped by a red light.
Objectives	*Students will differentiate between simple and binomial probabilities by computing probabilities of each type. *Students will use mathematical and computational thinking to solve problems.
Catch	I will use an andruino with six LEDs and a digital dice program running to catch the attention of students.
Activity	Students will build the andruino set-up (attached handouts) to simulate different scenarios of rolling a die. Students will record the experimental probabilities of unique problems that will lead to the binomial probability of these event.
Review	Each student will create a probability scenario (with success and failure). Then students will work in teams of 4 to solve each others problems.
Assessments	I will work with students to check for understanding and to clarify and questions or misconceptions. The posttest questions will provide an adequate exit-slip.

¹ Please add/attach any handouts for this activity to the end of this template

 $^{^2\} http://ngss.nsta.org/CrosscuttingConceptsFull.aspx$

RAMPED – Summer 2016

Posttest Questions (same as pretest questions)	 1.If you roll a fair die 10 times, what is the probabilty of rolling two 3's? 2. If you roll a fair die 5 times, what is the probabilty of rolling two 3's? 3. At a certain intersection, the light for eastbound traffic is red for 15
	seconds, yellow for 5 seconds, and green for 30 seconds. Find the probability that out of the next eight eastbound cars that arrive randomly at the light, exactly three will be stopped by a red light.
Standards	*Use permutations and combinations to compute probabilities of compound events and solve problems. *Use probability to evaluate outcomes of decisions.
Crosscutting Concepts from NGSS	Patterns Systems and System Models