Zestaw 1

1. Niech funkcja $f: \mathbb{R} \to \mathbb{R}$ będzie dana wzorem

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Sprawdź, że jest ona różniczkowalna w każdym punkcie i oblicz jej pochodną.

2. Przy założeniu, że pochodna funkcji f w punkcie x_0 istnieje, oblicz granicę

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$

Czy z istnienia tej granicy wynika istnienie pochodnej $f'(x_0)$?

- **3.** Na paraboli $y=x^2$ zaznaczono dwa punkty o odciętych $x_1=1$ i $x_2=3$. Wyznacz równanie stycznej do tej paraboli, która jest równoległa do siecznej przechodzącej przez te punkty.
- 4. Parabola o równaniu $y=ax^2+bx+c$ przechodzi przez punkt (1,2) i jest styczna do prostej y=x w początku układu współrzędnych. Znajdź wartości a,b i c.
- 5. Rozważmy dowolną styczną do hiperboli $y=\frac{3}{x}$. Sprawdź, że odcinek tej stycznej zawarty między osiami współrzędnych dzieli się na połowy w punkcie styczności.
- **6.** Znajdź wszystkie styczne do paraboli $y = x^2 x$, przechodzące przez punkt o współrzędnych (1, -1).
- 7. Znajdź wszystkie stycznie do hiperboli $y=\frac{x}{x+1}$ przechodzące przez punkt o współrzędnych (1,2).
- 8. Udowodnij, że styczna do krzywej $y=x^3$ w dowolnym punkcie $A(a,a^3)$ dla a>0 przecina się z tą krzywą w jeszcze jednym punkcie, w którym nachylenie wykresu jest cztery razy większe od nachylenia w A.
- 9. Wykorzystując wzór na pochodną funkcji $x\mapsto x^n$ dla $n\in\mathbb{N},$ wyprowadź wzór na pochodną funkcji $x\mapsto\sqrt[n]{x}.$
- 10. Ze wzoru na pochodną funkcji odwrotnej wyprowadź wzór na pochodną arc tg.