Wstęp do matematyki olimpijskiej

Teoria i zadania

Indukcja matematyczna

Przykład 1

Wykazać, że dla każdej liczby dodatniej całkowitej n zachodzi nierówność

$$2^n \geqslant n+1$$
.

Rozwiązanie

Dla n=1 mamy $2^n=2=n+1$, a więc postulowana nierówność istotnie zachodzi. Załóżmy, że dla pewnej liczby dodatniej całkowitej k zachodzi nierówność $2^k\geqslant k+1$. Zauważmy, że wówczas

$$2^{k+1} = 2 \cdot 2^k \geqslant 2 \cdot (k+1) = 2k+2 \geqslant k+2.$$

Wykazaliśmy, że jeśli postulowana nierówność zachodzi dla pewnej dodatniej liczby całkowitej k, to zachodzi również dla liczby k+1. Skoro zachodzi ona dla n=1, to zachodzi również dla $1+1=2,\ 2+1=3,\ 3+1=4,\ldots$ – wszystkich liczb naturalnych.

Alternatywnym, ale równoważnym, sposobem zakończenia rozwiązania powyższego przykładu jest rozpatrzenie najmniejszego naturalnego n, dla którego teza nie zachodzi. A więc dla n-1 nierówność musi zachodzić, chyba że n=1. Ale w tym przypadku sprawdzamy, że teza zachodzi. Skoro dla n-1 teza jest prawdziwa, a dla n już nie, to otrzymujemy sprzeczność z wcześniej poczyniona obserwacja.

Zasada indukcji matematycznej

Metodę dowodzenia zastosowaną w ostatnim akapicie powyższego rozwiązania nazywamy zasadą indukcji matematycznej.

Formalizując, dowód indukcyjny zdania logicznego Z(n) dla dowolnej dodatniej liczby całkowitej n składa się z dwóch części:

- 1. Baza indukcji sprawdzenie prawdziwości zdania Z(1).
- 2. Krok indukcyjny udowodnienie, że jeśli zachodzi zdanie Z(k) to zachodzi Z(k+1).

Indukcję matematyczną da się wykorzystać poza algebrą. Pokażemy jedno jego zastosowanie kombinatoryczne. Ale najpierw musimy zdefiniować kilka pojęć z teorii grafów.

Grafy i ścieżki Hamiltona

Grafem nazywamy pewien zbiór wierzchołków na płaszczyźnie, które są połączone krawędziami. Ścieżką nazywamy ciąg parami różnych krawędzi pewnego grafu, z których dwie kolejne mają wspólny wierzchołek. Ścieżką Hamiltona nazwamy ścieżkę, która przechodzi przez każdy wierzchołek dokładnie raz.

Graf posiada ścieżkę Hamiltona – zaznaczono ją strzałkami

Graf nie posiada ścieżki Hamiltona

Przykład 2

Zdefinujmy ciąg grafów $(G_n)_{n\geqslant 1}$ w następujący sposób.

- \bullet Graf G_1 jest grafem złożonym z dwóch połączonych ze sobą wierzchołków,
- Graf G_{i+1} dla $i \ge 2$ otrzymujemy poprzez połączenie dwóch grafów G_i , aby każdy wierzchołek z jednego z tych grafów był połączony z dokładnie jednym wierzchołkiem z drugiego z tych grafów.

Wykazać, że graf G_{2020} ma ścieżkę Hamiltona.

Uwaga

Można zauważyć, że G_n to w istocie n-wymiarowy hipersześcian.

Rozwiązanie

Wykażemy, że teza jest prawdziwa dla każdego $n \geqslant 1$. Co więcej wykażemy, że ścieżka Hamiltona może zaczynać się w każdym z wierzchołków G_n .

Zauważmy, że dla n=1 teza jest oczywista – ścieżka złożona z jednej krawędzi spełnia warunki zadania.

Załóżmy, że dla G_n istnieje ścieżka Hamiltona. Wykażemy, że istnieje ona dla G_{n+1} . Graf G_{n+1} składa się z dwóch połączonych ze sobą cześci izomorficznych z grafem G_n – nazwijmy je A oraz B. Oznaczmy wierzchołki G_{n+1} kolejno jako $a_1, a_2, ..., a_{2^n}$ – cześć A oraz $b_1, b_2, ..., b_{2^n}$ – część B, przy czym a_i jest połączone właśnie z b_i .

Ścieżka Hamiltonowska w grafie G_{n+1} będzie się składać z 3 cześći:

- Na mocy założenia istnieje ścieżka zaczynająca się w a_1 przechodząca przez wszystkie wierzchołki A. Możemy ją przejść od tyłu. Wówczas przejdziemy wszystkie wierzchołki częsci A kończąc w a_1 .
- Następnie przedziemy krawędzią między a_1 i b_1 do części B.
- Na mocy założenia z punktu b_1 da się poprowadzić ścieżkę, która przejdzie przez każdy z wierzchołków części B dokładnie raz.

Łatwo zauważyć, że podany sposób przejścia grafu G_{n+1} tworzy ścieżkę Hamiltonowską.

Wykazać, że suma miar kątów w n-kącie wypukłym wynosi $(n-2)\cdot 180^{\circ}$.

Zadanie 2

Wykazać, że dla każdej dodatniej liczby całkowitej n zachodzi toższamość

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Zadanie 3

Dana jest nastepująca gra, zwana wieżami Hanoi. Na początku ułożono n dysków na jednej igle tak jak na rysunku. W każdym ruchu gracz może przemieścić dysk, wraz z wszystkimi dyskami nań leżącymy, na inną igłę, przy czym dysk ten nie może zostać położony na dysk o innej średnicy. Wykazać, że gracz jest w stanie przenieść wszystkie dyski na trzecią igłę.

Zadanie 4

W przestrzeni danych jest $n \geqslant 3$ punktów, że żadne trzy z nich nie leżą na jednej prostej. Każde dwa z tych punktów połączono odcinkiem o kolorze zielonym lub czerwonym. Wykazać, że można wybrać tak jeden z tych kolorów, aby każde dwa z danych punktów były połączone odcinkiem lub łamaną tego koloru.

Zadanie 5

Dany jest ciąg liczb rzeczywistych

$$a_0 \neq 0, 1, \quad a_1 = 1 - a_0, \quad a_{n+1} = 1 - a_n(1 - a_n).$$

Wykazać, że dla wszystkich n

$$a_1 a_2 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right) = 1.$$

Wykazać, że planszę o wymiarach $2^n\times 2^n$ dla pewnego $n\geqslant 1$ z usuniętym jednym z rogów da się przykryć pewną liczbą Lklocków(takich jak na rysunku). Klocki można obracać.

Zadanie 7

Niech n będzie nieparzystą liczbą naturalną, a liczby $x_1,\ x_2,\ ...,\ x_n$ będa parami różne. Dla każdych dwóch liczb x_i oraz x_j zapisano na tablicy wartość bezwzględną ich różnicy. Wykazać, że można podzielić zapisane liczby na dwa zbiory o równej sumie.

Równania funkcyjne

Przykład 1

Znajdź wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$, równanie

$$f(x+y) = f(x) - f(y).$$

Rozwiązanie

Zauważmy, że skoro dane równanie jest spełnione dla wszystkich liczb rzeczywistych x i y to jest spełnione w szczególności dla x=y=0. Wówczas

$$f(0) = f(0) - f(0) = 0.$$

Podstawiając do wyjściowej równości x = 0 otrzymujemy

$$f(y) = f(0) - f(y).$$

Na mocy wyżej wykazanej zależności f(y) = 0 mamy

$$f(y) = -f(y)$$
$$f(y) = 0.$$

Wykazaliśmy, że f(x) = 0 dla wszystkich liczb rzeczywistych x. Pozostaje sprawdzić, że istotnie taka funkcja spełnia warunki zadania. Zauważmy, że wówczas

$$f(x + y) = 0 = f(x) - f(y).$$

Metodę, polegająca na podstawianiu szczególnych wartości do danego równania, jest najważniejszym narzędziem w walce z równaniami funkcyjnymi. Często, aby zadania rozwiązać, należy użyć jej kilka lub nawet kilkanaście razy.

Należy zaznaczyć, że bardzo często rozwiązując równanie funkcyjne, wyznacza się zbiór funkcji, które mogą spełniać dane równanie. Jednak często nie oznacza to, że muszą one go spełniać, gdyż podstawianie zazwyczaj nie jest przejściem równoważnym. Dlatego należy zawsze w swoim rozwiązaniu zawrzeć sprawdzenie tego, czy otrzymane funkcje istotnie działają. Brak takiego sprawdzenie w większości przypadków skutkuje obniżeniem oceny za dane zadanie.

Przykład 2

Znajdź wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$ równanie

$$f(2f(x) + f(y)) = 2x + f(y).$$

Rozwiązanie

Rozwiązanie rozpoczniemy od wykazania następującego lematu.

<u>Lemat 1.</u> Dla każdego $a \in \mathbb{R}$ istnieje $x \in \mathbb{R}$, że f(x) = a.

Podstawmy $\frac{a-f(y)}{2}$ w miejsce zmiennej x

$$f\left(f\left(\frac{a-f(y)}{2}\right)+f(y)\right)=2(\frac{a-f(y)}{2})+f(y)=a.$$

Zauważmy, że z otrzymanej równości wynika teza lematu – liczbę a można wybrać dowolnie, zaś po prawej stronie otrzymamy argument, dla którego funkcja przyjmie tę wartość.

Korzystając z lematu, podstawmy w miejsce y taką liczbę a, aby f(a) = -2f(a). Wówczas

$$f(0) = 2x - 2f(x)$$

$$f(x) = x + \frac{1}{2}f(0).$$

Podstawiając do powyższej równowści x=0 otrzymujemy, że f(0)=0. Stąd

$$f(x) = x + \frac{1}{2}f(0) = x.$$

Sprawdzamy, że funkcja f(x) = x istotnie spełnia warunki zadania.

W powyższym rozumowaniu kluczowe było wykazanie, że dana funkcja przyjmuje wszystkie wartości rzeczywiste – inaczej mówiąc jest surjeckją. Mogliśmy także wykazać więcej, mianowicie, że dana funkcja jest różnowartościowa. Zakładając, że f(a) = f(b) dla pewnych liczb a, b podstawiamy w miejsce (x,y) kolejno (a,0) i (b,0) otrzymując

$$f(2f(a) + f(y)) = 2a + f(y)$$
 oraz $f(2f(b) + f(y)) = 2b + f(y)$.

Na mocy wyżej założonej równości lewe strony obu zależności są sobie równe. Stąd prawe również, skąd a=b. Implikacja $f(a)=f(b) \implies a=b$ jest równoważna temu, że funkcja f jest różnowartościowa.

W większości rozwiązań funkcyjnych konieczne będzie wykonanie wielu "sztampowych" podstawień i spróbować wykazać własności funkcji – chociażby te wspomniane wyżej. Niekiedy do rozwiązania zadania potrzebny będzie błyskotliwy pomysł czy niesztampowe połączenie faktów. W innych zaś przypadkach samo rzetelne i uważne próbowanie znanych trików może okazać się wystarczające.

Zadanie 1

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x) + f(y) = f(xy).$$

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x - f(y)) = 1 - x - y.$$

Zadanie 3

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x^2y) = f(xy) + yf(f(x) + y).$$

Zadanie 4

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$2f(x) + f(1-x) = x^2.$$

Zadanie 5

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x + y) = f(f(x)) + y + 1.$$

Zadanie 6

Znajdź wszystkie funkcje różnowartościowe $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równość

$$f(f(x) + y) = f(x + y) + 1.$$

Zadanie 7

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ nierówność

$$f(x^2 + y) + f(y) \ge f(x^2) + f(x)$$
.

Zadanie 8

Znajdź wszystkie funkcje $\mathbb{Z} \to \mathbb{Z}$ spełniające dla wszystkich $x \in \mathbb{Z}$ równanie

$$f(f(x)) = x + 1.$$

Zadanie 9

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x)f(y) = f(x - y).$$

Udowodnij, że nie istnieje taka funkcja $f:\mathbb{R}\longrightarrow\mathbb{R},$ że dla dowolnych liczb rzeczywistych x,y zachodzi równość:

$$f(f(x) + 2f(y)) = x + y.$$

Bijekcje i bajki kombinatoryczne

W tym rozdziale będziemy analizować różne zbiory i relacje między nimi. W części zadań trzeba będzie pokazać, że pewne dwa zbiory mają tyle samo elementów. Jedną z metod dowodzenia tego typu stwierdzeń jest połączenie elementów danych zbiorów w pary. Takie przyporządkowanie nazywamy bijekcją.

Aby stwierdzić czy przyporządkowanie jest bijekcją wystarczy sprawdzić, czy każdy element jednego zbioru jest przyporządkowany do *dokładnie* jednego elementu drugiego zbioru. Poniżej dwa przykłady przyporządkowania, które nie jest bijekcją.

Przykład 1

Dla pewnej liczby całkowitej n jej podziałem nazwiemy takie liczby $(a_1,...,a_t)$, że

$$n = a_1 + a_2 + \dots + a_t$$
$$a_1 \geqslant a_2 \geqslant a_3 \geqslant \dots \geqslant a_t \geqslant 0.$$

Niech n, k będą dodatnimi liczbami całkowitymi. Wykazać, że liczba podziałów n, które składają się dokładnie z k liczb jest równa liczbie podziałów n, takich, że największy składnik każdego z nich jest równy dokładnie k.

Rozwiązanie

Weźmy dowolny podział liczby n. Niech $n=a_1+a_2+\ldots+a_t$. Rozpatrzmy jego reprezentację graficzną zwaną diagramem Ferrera. Poniżej narysowano diagram Ferrera dla podziału 12=4+4+3+1. W każdym kolejnym wierszu znajduje się tyle kropek, ile wynosi kolejny składnik z podziału.

Zastanówmy się co znaczą założenia zadania w języku rozpatrywanych diagramów. Jeśli w podziałe jest dokładnie k liczb, to diagram Ferrera będzie składał się dokładnie z k wierszy. Jeśli największy składnik podziału jest równy k, to kolumn będzie dokładnie k.

Zauważmy, że patrząc na dowolny diagram Ferrera "od góry" – traktujemy kolumny jako wiersze i vice versa – otrzymamy inny diagram Ferrera. W podanym przykładzie z podziału 12 = 4 + 4 + 3 + 1 otrzymamy w ten sposób podział 12 = 4 + 3 + 3 + 2.

Jeśli diagram Ferrera przedstawiał podział n, który składa się dokładnie z k liczb, to podział otrzymany w powyższy sposób ma największy składnik każdego z nich jest równy dokładnie k. Obie z tych własności są równoważne temu, że diagram na k wierszy.

Powyższe przyporządkowanie łączy elementy danych w zadaniu zbiorów w pary – dokładnie jeden podział pierwszego rodzaju z dokładnie jednym podziałem drugiego rodzaju. Rysując diagram dla pewnego podziału otrzymamy dokładnie jeden podział z drugiego zbioru, więc to parowanie jest dobre. Stąd wynika, że rozpatrywane zbiory mają tyle samo elementów.

Pokazaliśmy, że pewne dwa zbiory mają tę samą liczbę elementów. Teraz spróbujemy za pomocą kombinatoryki udowodnić równość algebraiczną.

Przykład 2

Wykazać, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k} 2^k = 3^n.$$

Rozwiązanie

Na imprezę przyszło n matematyczek. Każda z nich wzięła kapelusz, czapkę lub przyszła bez okrycia głowy. Obliczmy ile różnych wariantów nakryć głowy mogło się zdarzyć na dwa sposoby.

- 1. Każda z dziewczyn mogła wybrać jedną z trzech opcji ubioru, było ich n, więc liczba możliwości wynosi 3^n .
- 2. Przyjmijmy, że n-k dziewczyn nie przyniosło żadnego nakrycia głowy. Wówczas możemy wybrać te dziewczyny na $\binom{n}{n-k}=\binom{n}{k}$ sposobów. Następnie każda z pozostałych k dziewczyn wybrała jedno z dwóch dostępnych nakryć głowy. Więc mogą to zrobić na 2^k sposobów. Z reguły mnożenia wynika, że dla ustalonej liczby k jest dokładnie $\binom{n}{k}2^k$ wariantów. Sumując po wszystkich k otrzymujemy $\sum_{k=0}^n\binom{n}{k}2^k$.

Obliczając jedną rzecz na dwa sposoby otrzymaliśmy liczby, które muszą być równe.

Rozumowania podobne do powyższego nazywane są bajkami kombinatorycznymi.

Zadanie 1

Dane są liczby całkowite n i k. Wykaż, że

$$\sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}.$$

Wyznacz liczbę podzbiorów zbioru $\{1,2,3,...,10\}$, których suma wynosi co najmniej 27.

Zadanie 3

Udowodnić, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Zadanie 4

Dana jest liczba pierwsza $p \ge 3$. Niech A_k oznacza zbiór permutacji $(a_1, a_2, ..., a_p)$ zbioru $\{1, 2, 3, ..., p\}$, dla których liczba

$$a_1 + 2a_2 + 3a_3 + \dots + pa_p - k$$

jest podzielna przez p. Wykazać, że zbiory A_1 , A_2 mają tyle samo elementów.

Zadanie 5

Wykaż, że dla dowolnych dodatnich liczb całkowitych n, k liczba (kn)! jest podzielna przez liczbę $(n!)^k \cdot k!$.

Zadanie 6

Dana jest liczba całkowita n. Niech T_n oznacza liczbę takich podzbiorów zbioru $\{1,2,3,...,n\}$, że ich średnia arytmetyczna jest liczbą całkowitą. Wykazać, że liczba T_n-n jest parzysta.

Zadanie 7

Niech n, k, r będą dodatnimi liczbami całkowitymi. Wykaż, że

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}.$$

Liczby pierwsze i reszty z dzielenia

Ten rozdział będzie nieco bardziej teoretyczny niż poprzednie. Zadania także będą trudniejsze – zachęcamy do skorzystania ze wskazówek i głębokiego przestudiowania rozwiązań. Chcemy wyrobić u czytelnika intuicję dotyczącą działań na resztach z dzielenia przez pewną liczbę pierwszą. Od czytelniczki/czytelnika wymaga się, aby znał własności kongruencji – opisano je chociażby w Gazetce OMJ "Kwadrat" nr 7.

We wszystkich poniższych zadaniach przez a,b będziemy oznaczać liczby całkowite, zaś przez p dowolną liczbę pierwszą. Przez x|y będziemy oznaczać fakt, że liczba x jest dzielnikiem liczby y.

Twierdzenie 1

Jeśli liczba ab jest podzielna przez p, to wówczas co najmniej jedna z liczba, b jest podzielna przez p.

Zauważmy, że założenie o pierwszości liczby p jest konieczne. Chociażby liczba $4 \cdot 9 = 36$ dzieli się przez 6, ale żadna z liczb 4, 9 nie jest podzielna przez 6.

Zachęcamy do samodzielnej próby wykazania poniższych lematów. Poniżej, czcionką odwróconą, zapisano wskazówki.

Lemat 1

Udowodnić, że jeśli $x^2 \equiv 1 \pmod{p}$ dla pewnej liczby pierwszej p, to

$$x \equiv 1 \pmod{p}$$
 lub $x \equiv -1 \pmod{p}$.

Podpowiedź: Zapisz założenia i tezę zadania bez użycia modulo.

Dowód

Zauważamy, że zapis $x^2 \equiv 1 \pmod p$ jest równoważny zapisowi

$$p \mid x^2 - 1 = (x - 1)(x + 1).$$

Skoro p jest liczbą pierwszą, to na mocy Twierdzenia 1 $p \mid x-1$ lub $p \mid x+1$, a to jest równoważne temu, co było do wykazania.

Lemat 2

Liczba a nie jest podzielna przez p. Udowodnić, że istnieje taka dodatnia liczba całkowita k, że

$$a^k \equiv 1 \pmod{p}$$
.

Podpowiedź: Udowodnij, że istnieją takie r i s, że $a^r \equiv a^s \pmod{p}$.

Dowód

Rozpatrzmy ciąg (1, a^1 , a^2 , a^3 , ...) . Zauważamy, że ma on nieskończenie wiele elementów, a reszt z dzielenia przez p jest skończenie wiele. Z Zasady Szufladkowej Dirichleta mamy więc, że istnieją takie liczby r oraz s – załóżmy, że $r\geqslant s$ – że

$$a^r \equiv a^s \pmod{p}$$
.

Jest to równoważne temu, że

$$p \mid a^s(a^{r-s} - 1).$$

Skoro a nie jest podzielna przez p, to $p \mid a^{r-s} - 1$, to zachodzi $a^{r-s} \equiv 1 \pmod{p}$.

Odwrotności modulo p

Z Lematu 2 można wywnioskować, że dla każdej liczby a, która nie jest podzielna przez p istnieje pewna liczba $b \in \{1, 2, ..., p-1\}$, że

$$ab \equiv 1 \pmod{p}$$
.

Wystarczy wziąć $b = a^{k-1} \mod p$.

Wykażemy teraz, że w zbiorze $\{1,2,...,p-1\}$ jest dokładnie jedna taka liczba b. Załóżmy, że dla pewnych $b,c\in\{1,2,...,p-1\}$

$$ab \equiv ac \equiv 1 \pmod{p}$$
.

Wówczas

$$p|ab - ac = a(b - c) \implies p|b - c,$$

gdyż liczba a nie jest podzielna przez p. Skoro $b, c \in \{1, 2, ..., p-1\}$, to

$$-p < b - c < p.$$

Skoro p|b-c, to b-c=0, czyli b=c.

Przyjmiemy, że liczba b jest odwrotnością liczby a modulo p. Zapiszemy $b=a^{-1}\pmod{p}$.

Lemat 3

Dla dowolnej liczby a, która nie jest podzielna przez p ciąg

$$(a \pmod{p}, 2a \pmod{p}, 3a \pmod{p}, ..., (p-1) \cdot a \pmod{p})$$

jest permutacją ciągu

$$(1, 2, 3, ..., p-1).$$

Podpowiedź: Wykaż, że $ai \not\equiv aj$ (mod p), jeśli $i \not\equiv i$ (mod p).

Dowód

Pokażmy, że jeśli $i \not\equiv j \pmod{p}$, to $ai \not\equiv aj \pmod{p}$. Załóżmy, że

$$ai \equiv aj \pmod{p}$$

dla pewnych i, j. Skoro p nie dzieli a, to istnieje odwrotność a modulo p. Mnożąc obie strony przez a^{-1} – lub równoważnie dzieląc przez a otrzymujemy

$$i \equiv j \pmod{p}$$
,

co dowodzi postulowanej implikacji.

Rozpatrzmy liczby a, 2a, (p-1)a. Oczywiście żadna z nich nie jest podzielna przez p. Z tego, że tych liczb jest p-1, niezerowych reszt z dzielenia przez p również jest p-1, oraz te liczby dają parami różne reszty niezerowe z dzielenia przez p, wynika teza.

Małe twierdzenie Fermata

Dana jest liczba a, która nie jest podzielna przez p. Wykazać, że

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Dowód

Korzystając z poprzedniego lematu mamy, że ciąg

$$(a \pmod{p}, 2a \pmod{p}, 3a \pmod{p}, ..., (p-1) \cdot a \pmod{p})$$

jest permutacją ciągu

$$(1, 2, 3, ..., p-1).$$

Skoro te ciągi zawierają te same elementy modulo p, tylko, że w innej kolejności, to iloczyny tych elementów będą dawały taką samą resztę z dzielenie przez p. Więc

$$1 \cdot 2 \cdot 3 \cdot \dots \cdot (p-1) = a \cdot 2a \cdot 3a \cdot \dots \cdot (p-1)a \pmod{p},$$
$$(p-1)! \equiv a^{p-1}(p-1)! \pmod{p}.$$

Zauważmy, że $(p-1)! \not\equiv 0 \pmod{p}$. Mnożać przystawanie stronami przez odwrotność liczby (p-1)! otrzymujemy tezę.

Zadanie 1

Dana jest liczba pierwsza p. Udowodnić, że istnieje taka liczba całkowita n, że

$$2^n \equiv n \pmod{p}$$
.

Zadanie 2

Dana jest liczba pierwsza $p \geqslant 3$. Niech

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

dla pewnych dodatnich liczb całkowitych a, b. Udowodnić, że p|a.

Zadanie 3

Udowodnij, że istnieje n, dla którego $2^n + 3^n + 6^n \equiv 1 \pmod{p}$.

Zadanie 4

Wykazać, że zachodzi przystawanie

$$(p-1)! \equiv -1 \pmod{p}.$$

Nierówności między średnimi

Zakładamy, że czytelniczka/czytelnik zna metodę dowodzenia nierówności poprzez zwinięcie do kwadratu. Zaprezentujemy jedno twierdzenie – nierówność między średnimi – oraz kilka metod pracy z nierównoścami.

Nierówności między średnimi

Dane są dodatnie liczby rzeczywiste $a_1, a_2, a_3, ..., a_n$. Średnią kwadratową nazywamy wartość

$$QM = \sqrt{\frac{a_1^2 + a_2^2 + \dots + a_n^2}{n}}.$$

Średnią arytmentyczną nazywamy wartość

$$AM = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

Średnią geometryczną nazywamy wartość

$$GM = \sqrt[n]{a_1 a_2 \dots a_n}.$$

Średnia harmoniczna nazywamy wartość

$$HM = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

Wówczas zachodzą nierówności

$$QM \geqslant AM \geqslant GM \geqslant HM$$

przy czym równość w którymkolwiek przypadku zachodzi wtedy i tylko wtedy, gdy

$$a_1 = a_2 = \dots = a_n$$
.

Skróty QM, AM, GM, HM pochodzą z języka angielskiego i oznaczają odpowiednio $quadratic\ mean$, $arithmetic\ mean$, $geometric\ mean$, $harmonic\ mean$. Zaprezentujemy dowód jednej z podanych nierówności. Pozostałe są nieco bardziej złożone, więc nie będziemy ich przytaczać.

Dowód nierówności między średnimi arytmetyczną a geometryczną

Cześć 1. Dowód n=2.

Chcemy wykazać, że zachodzi nierówność

$$\frac{a_1 + a_2}{2} \geqslant \sqrt{a_1 a_2}.$$

Jest ona równoważna prawdziwej nierówności

$$a_1 - 2\sqrt{a_1 a_2} + a_2 = (\sqrt{a_1} - \sqrt{a_2})^2 \geqslant 0.$$

Cześć 2. Dowód dla n postaci $n = 2^k$, $k \in \mathbb{Z}_{\geq 0}$.

Będziemy indukować się po k. Dla k=0 nierówność jest oczywista. Załóżmy, że zachodzi dla k, wykażemy, że zachodzi dla k+1. Zauważmy, że

$$\frac{a_1 + a_2 + \dots + a_{2^{k+1}}}{2^{k+1}} = \frac{1}{2} \left(\frac{a_1 + a_2 + \dots + a_{2^k}}{2^k} + \frac{a_{2^k+1} + a_{2^k+2} + \dots + a_{2^{k+1}}}{2^k} \right)$$

Korzystając z założenia indukcyjnego – to jest nierówności dla $n=2^k$ mamy

$$\frac{a_1 + a_2 + \ldots + a_{2^k}}{2^k} \geqslant \sqrt[2^k]{a_1 a_2 \ldots a_{2^k}}$$

$$\frac{a_{2^k + 1} + a_{2^k + 2} + \ldots + a_{2^{k+1}}}{2^k} \geqslant \sqrt[2^k]{a_{2^k + 1} a_{2^k + 2} \ldots a_{2^{k+1}}}$$

Zauważmy teraz, że na mocy znanej nierówności $a + b \ge 2\sqrt{ab}$ mamy

$$\frac{1}{2} \left(\sqrt[2^k]{a_1 a_2 ... a_{2^k}} + \sqrt[2^k]{a_{2^k + 1} a_{2^k + 2} ... a_{2^{k + 1}}} \right) \geqslant \sqrt[2^{k + 1}]{a_1 a_2 ... a_{2^{k + 1}}}$$

Łaczac powyższe nierówności dowód nierówności dla n będacej potega liczby 2.

Cześć 3. Z faktu, że nierówność zachodzi dla $n \ge 2$ wynika, że zachodzi dla n-1.

Oznaczmy

$$AM = \frac{a_1 + a_2 + \dots + a_{n-1}}{n-1}$$
 oraz $GM = \sqrt[n-1]{a_1 a_2 \dots a_{n-1}}$.

Skoro nierówność zachodzi dla liczby n to mamy

$$AM = \frac{(n-1)AM + AM}{n} = \frac{a_1 + a_2 + \dots + a_{n-1} + AM}{n} \geqslant \sqrt[n]{a_1 a_2 \dots a_{n-1} \cdot AM}.$$

Podnosząc powyższą równość do n potęgi stronami otrzymujemy

$$(AM)^n \geqslant a_1 a_2 ... a_{n-1} AM,$$

 $(AM)^{n-1} \geqslant a_1 a_2 ... a_{n-1},$
 $AM \geqslant {}^{n-1} \sqrt{a_1 a_2 ... a_{n-1}} = GM,$

co należało wykazać.

Pozostaje zauważyć, że z części 3 i 4 wynika nierówność dla dowolnego n. Możemy bowiem rozpatrzyć takie k, że $2^k > n$ i zastosować $2^k - n$ razy implikację z części czwartej.

Przykład 1

Udowodnić, że dla dowolnych liczb dodatnich $a,\,b$ i $c,\,$ dla których a+b+c=1 zachodzi nierówność

$$\sqrt{2a+1} + \sqrt{2b+1} + \sqrt{2c+1} \leqslant \sqrt{15}$$
.

Rozwiązanie

Stosując nierówność miedzy średnimi: arytmetyczną i kwadratową otrzymujemy

$$\sqrt{\frac{\left(\sqrt{2a+1}\right)^2 + \left(\sqrt{2b+1}\right)^2 + \left(\sqrt{2c+1}\right)^2}{3}} \geqslant \frac{\sqrt{2a+1} + \sqrt{2b+1} + \sqrt{2c+1}}{3}.$$

Lewa strona powyższej równości jest równa

$$\sqrt{\frac{\left(\sqrt{2a+1}\right)^2 + \left(\sqrt{2b+1}\right)^2 + \left(\sqrt{2c+1}\right)^2}{3}} = \sqrt{\frac{2a+1+2b+1+2c+1}{3}} = \sqrt{\frac{5}{3}}.$$

Łącząc powyższe nierówności otrzymujemy

$$\sqrt{2a+1} + \sqrt{2b+1} + \sqrt{2c+1} \leqslant \sqrt{\frac{5}{3}} \cdot 3 = \sqrt{15}.$$

Przykład 2

Wykazać, że dla dowolnych dodatnich liczb rzeczywistych a, b, c i d, dla których zachodzi równość a+b+c+d=4 prawdziwa jest nierówność

$$\frac{a}{a^3+4} + \frac{b}{b^3+4} + \frac{c}{c^3+4} + \frac{d}{d^3+4} \leqslant \frac{4}{5}.$$

Rozwiązanie

Wykażemy, że dla dowolnej liczby x zachodzi nierówność

$$\frac{x}{x^3+4} \leqslant \frac{2x+3}{25}.$$

Istotnie mamy bowiem

$$25x \leqslant (2x+3)(x^3+4) = 2x^4 + 3x^3 + 8x + 12,$$
$$17x \leqslant 2x^4 + 3x^3 + 12,$$
$$x = \sqrt[17]{(x^4)^2 \cdot (x^3)^3 \cdot 1^{12}} \leqslant \frac{2x^4 + 3x^3 + 12}{17}.$$

Ostatnia zależność jest prawdziwa na mocy nierówności miedzy średnią arytmetyczną i geometryczną.

Korzystając z powyższej nierówności otrzymujemy

$$\frac{a}{a^3+4} + \frac{b}{b^3+4} + \frac{c}{c^3+4} + \frac{d}{d^3+4} \leqslant \frac{2a+3}{25} + \frac{2b+3}{25} + \frac{2c+3}{25} + \frac{2d+3}{25} = \frac{4}{5}.$$

Przykład 3

Dane są dodatnie liczby rzeczywiste $a_1, a_2, a_3, ..., a_n$, że ich suma wynosi 1. Wyznaczyć największą możliwą wartość wyrażenia

$$a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2.$$

18

Rozwiązanie

W powyższym zadaniu narzuca się skorzystanie z nierówności miedzy średnimi. Jednak jeśli czytelniczka/czytelnik próbował je rozwiązać, to może zobaczyć, że takie próby kończą się niepowodzeniem.

Niezwykle pomocne w ocenieniu, czy metoda szacowania przez średnie pozwoli rozwiązać zadanie jest zobaczenie na przypadek, w którym zachodzi równość lub osiągane jest ekstremum. W tym zadaniu narzucają się dwie kandydatury, które są warte sprawdzenia:

$$a_1 = 1, \ a_2 = \dots = a_n = 0 \quad \text{oraz} \quad a_1 = a_2 = a_3 = \dots = a_n = \frac{1}{n}.$$

Spróbujemy wykazać, że

$$1 \geqslant a_1^2 + a_2^2 + a_3^2 + \dots + a_n^2$$
.

We wszystkich nierównościach między średnimi równość zachodzi wtedy i tylko wtedy, gdy wszystkie a_i są sobie równe. W innym przypadku nierówność jest ostra. Zaś w powyższej nierówności równość zachodzi wtedy, kiedy wszystkie liczby nie są równe. Wykonując szacowanie za pomocą średnich na tych liczbach otrzymamy, że dla $a_1=1,\,a_2=\ldots=a_n=0$ zachodzi ostra nierówność. A tak być nie może, bo wówczas zachodzi równość. Dlatego musimy spróbować innych metod.

Istotnie, wystarczy zauważyć, że zachodzi nierówność

$$a_1^2 + a_2^2 + \dots + a_n^2 \le (a_1 + a_2 + \dots + a_n)^2 = 1.$$

Podobne rozumowanie mogło być pomocne przy rozwiązywaniu Przykładu 2. Wówczas równość zachodzi dla a=b=c=d=1. Załóżmy, że wpadliśmy na pomysł użycia nierówności AM-GM w mianowniku. Wówczas

$$\frac{a}{a^3+4} + \frac{b}{b^3+4} + \frac{c}{c^3+4} + \frac{d}{d^3+4} \leqslant \frac{a}{4a^{\frac{3}{2}}} + \frac{b}{4b^{\frac{3}{2}}} + \frac{c}{4c^{\frac{3}{2}}} + \frac{d}{4d^{\frac{3}{2}}} = \frac{1}{8\sqrt{a}} + \frac{1}{8\sqrt{b}} + \frac{1}{8\sqrt{c}} + \frac{1}{8\sqrt{d}},$$

co dla a=b=c=d=1 jest większe od $\frac{5}{4}$. Więc to szacowanie nie doprowadzi nas do rozwiązania zadania, gdyż nierówność

$$\frac{1}{8\sqrt{a}} + \frac{1}{8\sqrt{b}} + \frac{1}{8\sqrt{c}} + \frac{1}{8\sqrt{d}} \leqslant \frac{5}{4}$$

nie jest prawdziwa.

Zadanie 1

Wykazać, że dla dowolnej liczby rzeczywistej x zachodzi

$$x^2 + \frac{1}{x} \geqslant \frac{3}{2}\sqrt[3]{2}.$$

Dane są takie dodatnie liczby rzeczywiste $a_1,\ a_2,\ a_3,\ ...,\ a_n,$ że $a_1a_2a_3...a_n=1.$ Wykazać, że

$$(a_1 + a_2)(a_2 + a_3) \cdot \dots \cdot (a_{n-1} + a_n)(a_n + a_1) \ge 2^n$$
.

Zadanie 3

Udowodnić, że dla dowolnych dodatnich liczb rzeczywistych zachodzi nierówność

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \geqslant \frac{3}{2}.$$

Zadanie 4

Dane są takie dodatnie liczby rzeczywiste $a,\,b,\,c,$ że abc=1. Wykazać, że

$$a^2 + b^2 + c^2 \geqslant a + b + c$$
.

Zadanie 5

Udowodnić, że dla dowolnych liczb rzeczywistych a, b, c zachodzi nierówność

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} \geqslant \frac{3a+2b-c}{4}.$$

Konstrukcje

W tym rozdziale będziemy obracać się wokół zadań, które polegają na konstruowaniu pewnych obiektów, spełniających pewne warunki. Najpierw przyjrzymy się zadaniu, w którym mamy wyznaczyć pewne maksimum. W takiej sytuacji musimy zarówno pokazać przykład, że maksimum jest osiągane, jak i udowodnić, że nie da się osiągnąć większej wartości.

Przykład 1

Wyznaczyć maksymalną liczbę skoczków, które można umieścić na szachownicy 8×8 , aby żadne dwa z nich się nie biły.

Rozwiązanie

Wykażemy, że szukaną liczbą jest 32.

Najpierw pokażemy, że istotnie można postawić tyle skoczków na szachownicy. Zauważmy, że rozpatrując standardowe kolorowanie szachownicy i stawiając skoczki na każdym z 32 pól jednego koloru, żadne dwa z nich nie będą się biły.

Podzielmy szachownice na 8 prostokątów o wymiarach 4×2 – takich jak na rysunku. Wykażemy, że wewnątrz każdego prostokąta mogą stanąć co najwyżej cztery skoczki. Istotnie – numerując pola tak jak na rysunku, nie jest możliwe aby na obu polach z tym samym numerem stały skoczki. Więc na całej szachownicy mogą stanąć co najwyżej $8 \cdot 4 = 32$ skoczki.

W powyższym zadaniu konieczne było zarówno udowodnienie, że nie da się postawić więcej niż 32 skoczków, jak i wykazanie, że istnieje szukane ustawienie 32 skoczków. W tego typu problemach warto uważnie poszukać maksymalnego ustawienia, gdyż w przypadku jego przeoczenia, nasze próby dowodzenia, że znaleziona konfiguracja jest maksymalna będą bezsensowne.

Przykład 2

Niech S(k) oznacza sume cyfr liczby k w zapisie dziesiętnym. Dodatnią liczbę całkowitą n nazwiemy piękną jeśli zachodzi równość $S(n)=S(n^2)$. Wyznaczyć wszystkie wartości jakie przymuje S(n) dla liczb pięknych n.

Rozwiązanie

W rozwiązaniu poniższego zadania potrzebna będzie obserwacja, że suma cyfr liczby k daje taką samą resztę z dzielenia przez 9 jak liczba k. Mamy

$$n^2 \equiv S(n^2) = S(n) \equiv n \pmod{9}$$
.

Zauważam, że jest to możliwe jedynie dla $n \equiv 0, 1 \pmod{9}$ – wystarczy sprawdzić wszystkie możliwe n. Stad $S(n) \equiv 0, 1 \pmod{9}$.

Po otrzymaniu powyższej obserwacji można postawić hipotezę, że dla wszystkich liczb dodatnich postaci $k \equiv 0,1 \pmod 9$ istnieje liczba piękna n, że S(n)=k. Aby zweryfikować, czy hipoteza ma sens warto sprawdzić, czy jest ona prawdziwa dla kilku małych wartości k. Łatwo sprawdzić, że liczby 9 i 10 są piękne oraz S(9)=9 i S(10)=1. Poszukując większych wartości S(n) dla liczb pięknych otrzymujmey S(99)=18 i S(199)=19. Łatwo też sprawdzić, że 99 i 199 są piękne. Te obserwacje, poczynione na kilku najmniejszych wartościach, naprowadzają nas na dalszą część rozwiązania.

Rozpatrzmy liczbę $a = 10^{k+1} - 1$. Wówczas

$$S(a) = S(\underbrace{99...9}_{k+1}) = 9(k+1) = S(\underbrace{99...9}_{k} \\ 8\underbrace{00...0}_{k} \\ 1) = S(10^{2k+2} - 2 \cdot 10^{k+1} + 1) = S(a^{2}).$$

Następnie weźmy liczbę $b = 2 \cdot 10^{k+1} - 1$. Wówczas

$$S(b) = S(1\underbrace{99...9}_{k}) = 9k + 1 = S(3\underbrace{99...9}_{k-1} 6\underbrace{00...0}_{k-1} 1) = S(4 \cdot 10^{2k+2} - 4 \cdot 10^{k+1} + 1) = S(b^2).$$

Zauważamy, że dla dowolnej dodatniej liczby całkowiej k liczby a, b są piękne oraz S(a) = 9(k+1) i S(b) = 9k+1.

Łącząc powyższe wnioski otrzymujemy, że szukanymi liczbami są wszystkie dodatnie liczby całkowite dające resztę 0 lub 1 z dzielenia przez 9.

Konstruowanie małych przykładów często, choć nie zawsze, pomaga postawić hipotezy co do przypadków ogólnych. Dlatego, gdy nie umiemy rozwiązać zadania, warto spróbować zobaczyć na szczególne, niewielkie przypadki.

Przykład 3

Wykazać, że istnieje nieskończony ciąg liczb naturalnych taki, że żaden wyraz tego ciągu i żadna suma dowolnej liczby wyrazów tego ciągu nie jest potęgą liczby naturalnej o wykładniku całkowitym większym od 1.

Rozwiązanie

Kluczową obserwacją, która pozwoli nam rozwiązać to zadanie jest fakt, że jeśli pewna liczba naturalna n jest podzielna przez pewną liczbę pierwszą p, ale nie jest podzielna przez p^2 , to nie może być ona potęgą liczby całkowitej. Istotnie, bowiem jeśli $n=a^k$ dla pewnych liczb naturalneh $a, k \ge 2$ to jeśli $p \mid a^k$, to $p \mid a$, czyli $p^k \mid a^k = n$.

Niech $p_1=2,\ p_2=3,\ p_3=5,\ \dots$ będzie ciągiem kolejnych liczb pierwszych. Rozpatrzmy ciąg $\{a_n\}_{n\geqslant 1}$ dany jako

$$a_i = (p_1 p_2 ... p_i)^2 \cdot p_{i+1}.$$

Wówczas jeśli $i_1 < i_2 < ... < i_s$, to każda z liczb $a_{i_2},\ a_{i_3},\ ...,\ a_{i_s}$ jest podzielna przez $p_{i_1+1}^2$. Zaś liczba a_{i_1} jest podzielna przez p_{i_1+1} , ale nie jest podzielna przez $p_{i_1+1}^2$. Stąd suma

$$a_{i_1} + a_{i_2} + a_{i_3} + \dots + a_{i_s}$$

równiez ma tę własność, więc nie może być potęga liczby całkowitej.

Zadanie 1

Wykazać, że można pokolorować 40 pól na nieskończonej szachownicy, tak, aby nie istniał prostokąt utworzony z pól tej szachownicy zawierający dokładnie 20 pokolorowanych pól.

Zadanie 2

Udowodnij, że punkty płaszczyzny można tak pokolorować dziewięcioma kolorami, aby żadne dwa punkty odległe o 1 nie były tego samego koloru.

Zadanie 3

Wykazać, że każdy trójkąt można podzielić na 3000 czworokątów wypukłych, tak, aby każdy z nich dało się wpisać w okrąg oraz opisać na okręgu.

Zadanie 4

Wykazać, że można pokolorować każdą dodatnią liczbę całkowitą na jeden z 1000 kolorów, tak aby

- każdy z kolorów był użyty nieskończenie wiele razy;
- dla dowolnych takich liczb całkowitych a, b, c, że ab = c, pewne dwie spośród nich sa jednakowego koloru.

Zadanie 5

Łódka może zabrać w rejs po jeziorze dokładnie 7 osób. Udowodnij. że można tak zaplanować rejsy 49-osobowej wycieczki, aby każdych dwóch uczestników płynęło ze sobą dokładnie raz.

Zadanie 6

Jaś zapisał pewną skończoną liczbę liczb rzeczywistych na tablicy. Następnie zaczął wykonywać ruchy. W każdym ruchu wybiera dwie równe liczby $a,\,a,\,$ zmazuje je i zapisuje liczby $a+100,\,a+2020.$ Rozstrzygnąć, czy Jaś może zapisać na początku takie liczby, że będzie mógł wykonywać ruchy w nieskończoność.

Wielomiany

Definicje

Wyrażenie algebraiczne postaci

$$W(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

dla pewnych liczb rzeczywistych $a_n \neq 0, a_1, a_2, ..., a_{n-1}$.

- \bullet Liczbę n nazywamy stopniem tego wielomianu i oznaczamy jako deg W = n.
- Współczynnikami nazywamy liczby $a_0, a_1, ..., a_n$.
- Współczynnik przy najwyższej potędze x w tym przypadku a_n nazywamy $współczynnikiem\ wiodącym$.
- Gdy współczynnik wiodacy jest równy 1 to powiemy, że wielomian jest unormowany.
- Liczbę α , dla której zachodzi równość $W(\alpha)=0$ nazywamy pierwiastkiem wielomianu W.

Na początku zachęcamy do samodzielnego zmierzenia się z poniższym zadaniem. Jego rozwiązanie wyrobi intuicję co do działania dzielenia wielomianów.

Przykład 1

Znaleźć wszystkie nieujemne liczby całkowite n, dla których liczba $n^5 + 3n^2 + 1$ jest podzielna przez liczbę $n^2 + 2$.

Rozwiązanie

Zauważmy, że zachodza równości

$$\frac{n^5 + 3n^2 + 1}{n^2 + 1} = \frac{n^3(n^2 + 1) - n^3 + 3n^2 + 1}{n^2 + 1} = n^3 + \frac{-n^3 + 3n^2 + 1}{n^2 + 1} =$$

$$= n^3 + \frac{-n(n^2 + 1) + 3n^2 + n + 1}{n^2 + 1} = n^3 - n + \frac{3n^2 + n + 1}{n^2 + 1} =$$

$$= n^3 - n + \frac{3(n^2 + 1) + n - 2}{n^2 + 1} = n^3 - n + 3 + \frac{n - 2}{n^2 + 1},$$

z czego wynika, że liczba $\frac{n^5+3n^2+1}{n^2+1}$ będzie całkowita wtedy i tylko wtedy, gdy liczba $\frac{n-2}{n^2+1}$ będzie całkowita. Gdy n=0 to rozpatrywana liczba jest całkowita. Łatwo wykazać, że dla $n\neq 0$ zaachodzi nierówność $n^2+1>|n-2|$. Stąd moduł liczby $\frac{n-2}{n^2+1}$ jest mniejszy od 1. Jeśli więc ma on być całkowity, to musi być on równy zeru. Jest to prawdą jedynie dla n=2.

Otrzymaliśmy więc, że szukana podzielność zachodzi jedynie dla n=0 i n=2.

To co w istocie dokonało się w powyższym rozwiązaniu to jest podzielenie wielomianu $n^5 + 3n^2 + 1$ przez wielomian $n^2 + 1$. Ideą było wyciąganie takich liczb przed ułamek, aby stopień wielomianu w mianowniku spadał. Istotnie – najpierw w mianowniku był

wielomian $n^5 + 3n^2 + 1$, następnie $3n^2 + n + 1$, aż w końcu n - 2. Zauważmy, że nie jesteśmy w stanie otrzymać w podobny sposób wielomianu o niższym stopniu.

Otrzymaliśmy zależność

$$n^5 + 3n^2 + 1 = (n^3 - n + 3)(n^2 + 1) + (n - 2).$$

Wielomian n-2 nazwiemy resztą z dzielenia wielomianu n^5+3n^2+1 przez n^2+1 . Teraz sformalizujemy nasze intuicje.

Twierdzenie 1

Dane są wielomiany o współczynnikach rzeczywistych W(x) i P(x). Wówczas istnieją takie wielomiany o współczynnikach rzeczywistych G(x) i R(x), że

$$W(x) = G(x) \cdot P(x) + R(x),$$

oraz deq R < deq P.

Dowód

Rozpatrzmy takie przedstawienie W(x) w postaci

$$W(x) = G(x) \cdot P(x) + R(x),$$

gdzie deg~R jest najmniejsze możliwe. Jeżeli deg~R < deg~P to zachodzi teza. Rozpatrzmy przypadek, gdy $deg~R \geqslant deg~P$. Niech deg~P = n oraz deg~R = n + k. Przyjmijmy

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

$$R(x) = b_{n+k}x^{n+k} + b_{n+k-1}x^{n+k-1} + \dots + b_1x + b_0.$$

Zauważmy, że wielomiany R(x) oraz $\frac{b_{n+k}}{a_n}x^kP(x)$ mają równe stopień i współczynnik wiodący. Odejmując je od siebie skróci się on, stąd wielomian $R(x) - \frac{b_{n+k}}{a_n}x^kP(x)$ ma mniejszy stopień niż wielomian R(x). Możemy zapisać

$$W(x) = \left(G(x) + \frac{b_{n+k}}{a_n}x^k\right) \cdot P(x) + \left(R(x) - \frac{b_{n+k}}{a_n}x^k\right),$$

co przeczy temu, że stopień R był minimalny.

Wielomian R nazywamy reszta z dzielenia wielomianu W przez P.

Powiemy, że wielomian W jest podzielny przez wielomian P, jeśli reszta z rozpatrywanego dzielenia wynosi 0. Równoważnie istnieje wielomian G, że

$$W(x) = P(x) \cdot G(x)$$
.

Twierdzenie 2 (Bézout)

Dany jest wielomian W(x) oraz taka liczba rzeczywista α , dla której zachodzi równość $W(\alpha) = 0$. Wówczas W(x) jest podzielny przez $x - \alpha$.

Dowód

Rozpatrzmy dzielenie wielomianu W(x) przez wielomian x-a. Możemy zapisać

$$W(x) = G(x) \cdot (x - \alpha) + R(x).$$

Wiemy, że deg R < 1, czyli R jest stałą. Przymijmy R(x) = c. Mamy wówczas

$$W(x) = G(x) \cdot (x - \alpha) + c.$$

Podstawmy $x = \alpha$

$$0 = W(\alpha) = G(x) \cdot (\alpha - \alpha) + c = c.$$

Stąd c=0, czyli możemy zapisać W w postaci

$$W(x) = (x - \alpha) \cdot G(x),$$

co było do wykazania.

Niech $\alpha_1, \alpha_2, ..., \alpha_n$ będą parami różnymi pierwiastkami pewnego wielomianu W(x). Wówczas

$$W(x) = (x - \alpha_1)W_1(x)$$

dla pewnego wielomianu $W_1(x)$. Zauważmy, że $\alpha_2,...,\alpha_n$ będa pierwiastkami $W_1(x)$, gdyż

$$0 = W(\alpha_i) = (\alpha_i - \alpha_1)W_1(\alpha_i),$$

a pierwiastki są parami różne. Możemy więc kontynuować wyciąganie pierwiastków i otrzymać w ten sposób poniższe twierdzenie.

Twierdzenie 3

Jeśli wielomian W(x) ma n pierwiastków rzeczywistych $\alpha_1, \alpha_2, ..., \alpha_n$ to wówczas można go zapisać w postaci

$$W(x) = (x - \alpha_1)(x - \alpha_2) \cdot \dots \cdot (x - \alpha_n)Q(x),$$

dla pewnego wielomianu Q(x), takiego, że $deg\ Q + n = deg\ W$. W szczególności jeśli W jest stopnia n to Q(x) jest stałą.

Wniosek

Wielomian stopnia n o współczynnikach rzeczywistych, który nie jest stale równy zero, może mieć co najwyżej n różnych pierwiastków rzeczywistych.

Twierdzenie 4

Dane są wielomiany o współczynnikach rzeczywistych P(x) i Q(x) stopnia co najwyżej n. Istnieje n+1 liczb rzeczwysitych $\alpha_1,\alpha_2,...,\alpha_{n+1}$, takich, że dla każdego $i\in\{1,2,3,...,n\}$ zachodzi równość

$$P(\alpha_i) = Q(\alpha_i).$$

Wówczas P(x) = Q(x) dla dowolnej liczby rzeczywistej x.

Dowód

Rozpatrzmy wielomian

$$W(x) = P(x) - Q(x).$$

Liczby $\alpha_1, \alpha_2, ..., \alpha_{n+1}$ sa jego pierwiastkami. Ma więc on co najmniej n+1 pierwiastków i stopień n. Z wyżej przestawionego wniosku wynika więc, że jest to wielomian zerowy. Stąd P(x) - Q(x) = 0 dla każdego x, a to trzeba było wykazać.

Krotność pierwiastków

Jeśli wielomian W da się zapisać w formie

$$W(x) = (x - \alpha_1)^{k_1} (x - \alpha_2)^{k_2} \cdot \dots \cdot (a - \alpha_n)^{k_n},$$

gdzie $\alpha_1, \alpha_2, ..., \alpha_n$ są parami różne to powiemy, że pierwiastek α_i ma krotnośc równą k_i . Mówienie o zbiorze pierwiastków nie ma większego sensu, gdyż struktura zbióru nie przewiduje czegoś takiego jak element występujący kilkukrotnie. Stąd zdefiniujmy multizbiór analogicznie do zbioru, z tym, że jeden element może należeć do niego kilka razy. Będziemy mówić o multizbiorach pierwiastków.

Równość wielomianów

Następujące warunki równości wielomianów są sobie równoważne, tj. gdy zachodzi jeden, to zachodzą wszystkie:

- wielomiany przyjmują równe wartości dla każdej liczby rzeczywistej,
- współczynniki obu wielomianów przy tych samych potęgach są równe,
- multizbiory pierwiastków rzeczywistych są sobie równe.

Wykazanie, że powyższe warunki są równoważne pozostawiamy czytelnikowi, jeśli ma chęć. Po zapoznaniu się z powyższą teorią powinno być to dość łatwe. Przejdźmy teraz do pierwszego nietrywialnego zastosowania wielomianów.

Przykład 2

Dla liczb rzeczywistych a, b zachodzi ab = cd i a + b = c + d. Wykazać, że $\{a, b\} = \{c, d\}$.

Rozwiązanie

Rozpatrzmy wielomiany

$$P_1(x) = (x - a)(x - b) = x^2 - (a + b)x + ab,$$

$$P_2(x) = (x - c)(x - d) = x^2 - (c + d)x + cd.$$

Zauważmy, że na mocy założeń mają one równe współczynniki. Stąd te wielomiany są sobie równe, toteż mają równe multizbiory pierwiastków.

Dla unormowanego wielomianu drugiego stopnia o pierwiastkach a i b współczynniki wyniosą kolejno 1, -(a+b) oraz ab. Tę obserwacje można uogólnić do Wzorów Viete'a. Poniżej wyprowadzamy je dla wielomianów trzeciego stopnia. Dla większych stopnie wyprowadzenie jest analogiczne.

Wzory Viete'a dla wielomianu stopnia trzeciego

Dany jest wielomian

$$W(x) = a_3(x - \alpha_1)(x - \alpha_2)(x - \alpha_3) = a_3x^3 + a_2x^2 + a_1x + a_0.$$

Wówczas

$$-a_3(x_1 + x_2 + x_3) = a_2,$$

$$a_3(x_1x_2 + x_1x_3 + x_2x_3) = a_1,$$

$$-a_3x_1x_2x_3 = a_0,$$

lub równoważnie

$$x_1 + x_2 + x_3 = -\frac{a_2}{a_3},$$

$$x_1x_2 + x_1x_3 + x_2x_3 = \frac{a_1}{a_3},$$

$$x_1x_2x_3 = -\frac{a_0}{a_3}.$$

Zadanie 1

Dany jest niezerowy wielomian W(x) o współczynnikach rzeczywistych, dla którego zachodzi równość

$$(x+1)W(x) = (x-2)W(x+1).$$

Wykazać, że każdy pierwiastek rzeczywisty W(x) jest liczbą całkowitą.

Zadanie 2

Wykazać, że jeśli liczby rzeczywiste a, b, c spełniają

$$\begin{cases} abc = 1 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c. \end{cases}$$

to co najmniej jedna liczba spośród a, b, c jest równa 1.

Zadanie 3

Niech $n \ge 1$ będzie pewną liczbą całkowitą. Wykazać, że wielomian $x^{1001} + x + 1$ jest podzielny przez $x^2 + x + 1$.

Zadanie 4

Dany jest pewien wielomian P(x). Wykazać, że istnieje wielomian Q(x), że zachodzi równość

$$Q(x+1) - Q(x) = P(x).$$

Dany jest wielomian W(x) o współczynnikach całkowitych. Wykazać, że jeśli przyjmuje on dla czterech różnych liczb całkowitych wartość 5, to dla żadnego całkowitego argumentu nie przyjmuje wartości 8

Zadanie 6

Paweł i Tomek grają w grę. Paweł ma pewien wielomian W(x) o współczynnikach dodatnich całkowitych stopnia n. Tomek go nie zna, a chce poznać. Może w tym celu wykonywać ruchy. W każdym ruchu może wybrać pewną dodatnią liczbę całkowitą k, być może biorąc pod uwagę co się stało we wcześniejszych ruchach, a nastepnie Tomek podaje mu wartość W(k). Wyznaczyć, w zależności od n, najmniejszą liczbę ruchów, w której Tomek, niezależnie od wybranego wielomianu, jest w stanie poznać wszystkie jego współczynniki.

Zadanie 7

Rozstrzygnąć, czy istnieje wielomian 1000 stopnia, którego współczynniki należą do zbioru $\{-1,1\}$ oraz ma on 1000 pierwiastków rzeczywistych.

Grafy

W rozdziale o indukcji matematycznej wprowadziliśmy pojęcie grafu. Przypominając, jest to zbiór wierzchołków, z których niektóre są połączone krawędzią. Najpierw zdefiniujmy garść pojęć, których będziemy używać.

Definicje

- Ścieżka to ciąg, niekoniecznie parami różnych, wierzchołków $v_1, v_2, v_3, ..., v_t$, że każde dwa kolejne są połączone krawędzią.
- Cykl to ciąg, niekoniecznie parami różnych, wierzchołków $v_1, v_2, v_3, ..., v_t$, że zarówno każde dwa kolejne wierzchołki, jak i v_1 oraz v_t są połączone krawędzią.
- Stopniem wierzchołka nazywamy liczbę krawędzi z niego wychodzących.
- Graf nazywamy spójnym, jeśli dla dowolnych dwóch wierzchołków istnieje ścieżka, która zaczyna się w pierwszym i kończy w drugim. Kolokwialnie mówiąc, graf jest jedną całością, a nie składa się z kilku rozłącznych części.
- Zbiór n wierzchołków, spośród których każde dwa wierzchołki są połączone krawędzią nazywamy klikq i oznaczamy go jako K_n .
- Graf składający się z dwóch grup zawierających kolejno a i b wierzchołków, tak, że dwa wierzchołki są ze sobą połączone wtedy i tylko wtedy, gdy są w innych grupach, nazywamy grafem dwudzielnym i oznaczamy jako $K_{a,b}$.

Uwaga

Często można spotkać się z innymi definicjami cyklu i ścieżki – niekiedy przyjmuje się, że zawierają każdy z wierzchołków dokładnie raz. Niemniej jednak będzie to doprecyzowane w zadaniu.

Grafy, które są spójne i nie zawierają żadnego cyklu nazywamy *drzewami*. Mają one kilka równoważnych definicji, o czym mówi poniższe twierdzenie.

Twierdzenie 1

Dany jest graf spójny G, który ma n wierzchołków. Następujące warunki są sobie równoważnie

- G nie zawiera żadnego cyklu,
- w grafie jest dokładnie n-1 krawędzi,
- pomiędzy dowolnymi dwoma wierzchołkami istnieje dokładnie jedna ścieżka, która nie przechodzi przez żaden wierzchołek więcej niż raz.

Dowód

Zauważmy, że dla n=1 teza jest oczywista. Załóżmy, że $n\geqslant 1$. Najpierw wykażemy, że każdego z tych warunków wynika istnienie wierzchołka o stopniu 1.

Załóżmy nie wprost, że każdy wierzchołek ma stopień co najmniej 2. Wówczas można łatwo obliczyć, że krawędzi jest co najmniej $\frac{2\cdot n}{2}=n$, czyli pierwszy warunek nie może zajść.

Wybierzmy pewien wierzchołek i rozpocznijmy w nim spacer po grafie. Z wierzchołka, w którym będziemy, wybierzemy krawędź, którą jeszcze nie szliśmy. Algorytm zakończymy, gdy trafimy w ten sposób do wierzchołka, w którym jeszcze nie byliśmy. Skoro stopień każdego grafu wynosi 2, to nigdy nie utkniemy w żadnym z wierzchołków. Jeśli tak się stanie, to znaczy, że weszliśmy do tego wierzchołka co najmniej raz, a wtedy kończymy spacer. W taki sposób otrzymujemy cykl. Łatwo zauważyć, że z istnienia cyklu wynika istnienie dwóch ścieżek między dowolnymi jego dwoma wierzchołkami.

Rozpatrzmy więc wierzchołek o stopniu 1. Usuwając go wraz z krawędzią otrzymam graf o n-1 wierzchołkach. W ten sposób nie zmieni się prawdziwość żadnego z warunków – wierzchołek o stopniu 1 nie może być częścią ani cyklu, ani dwóch ścieżek. Relacja liczby krawędzi do liczby cykli zostanie zachowana. Możemy więc skorzystać z zasady indukcji matematycznej i otrzymujemy tezę.

Przykład 1

Dany jest prostokąt $m \times n$. Pokolorowano w nim m+n pól. Wykazać, że da się wybrać pewne z pokolorowanych pól, tak, aby w każdej kolumnie i w każdym wierszu liczba wybranych pól była parzysta.

Rozwiązanie

Rozpatrzmy graf, w którym wierzchołkami będą wiersze i kolumny. Jeśli pole zostało pokolorowane, to połaczymy przyporządkowane mu wiersz i kolumnę. Otrzymany graf ma m+n wierzchołków i m+n krawędzi, czyli musi zawierać cykl. Wybierając przyporządkowane jego krawędziom pola otrzymujemy zbiór spełniający warunki zadania.

Ścieżkę, która przechodzi każdą z krawędzi dokładnie raz nazywamy ścieżką Eulera na cześć szwajcarskiego matematyka Leonharda Eulera. Okazuje się, że stwierdzenie, czy w danym grafie istnieje ścieżka Eulera jest dość łatwe dzięki poniższemu twierdzeniu.

Twierdzenie 2

Dany jest graf spójny o $n \ge 2$ wierzchołkach. Wówczas cykl Eulera istnieje, wtedy i tylko wtedy, gdy stopień każdego z wierzchołków jest liczbą parzystą.

Dowód

Najpierw wykażemy, że cykl może istnieć tylko w takim wypadku. Przechodząc tą ścieżką, do każdego wierzchołka wejdziemy tyle samo razy, ile z niego wyjdziemy. Stąd więc każdy wierzchołek ma parzysty stopień, gdyż krawędzi "wejściowych" i "wyjściowych" jest tyle samo.

Dowód, że gdy każdy ze stopni jest parzysty, to takowy cykl musi istnieć, jest nieco trudniejszy. Będziemy rozumować indukcyjnie po sumie liczby wierzchołków i krawędzi.

Zauważmy, że skoro graf jest spójny, to stopień żadnego z wierzchołków nie wynosi 0 – jest to co najmniej 2. Rozumując podobnie jak w dowodzie Twierdzenia 1 wykazujemy, że w rozpatrywanym grafie istnieje cykl – nazwijmy go \mathcal{C} .

Usuńmy ten cykl z grafu. Nie musi pozostać spójny – podzieli się on na pewne spójne składowe. Niemniej jednak każda ze składowych zawiera pewien wierzchołek \mathcal{C} . Na mocy założenia indukcyjnego w każdej z nich istnieje cykl Eulera.

Możemy połączyć te cykle w jeden duży cykl. Wykażemy, że dwa rozłączne krawędziowo cykle o wspólnym wierzchołku możemy połaczyć w jeden większy cykl. Korzystając z tego faktu posklejamy cykle po kolei ze sobą.

Załóżmy, że wspólnym wierzchołkiem cykli \mathcal{A} i \mathcal{B} jest pewien wierzchołek c. Wówczas startując z wierzchołka c, najpierw przechodzimy cykl \mathcal{A} . Wrócimy wtedy do wierzchołka c. Wówczas przejdziemy cykl \mathcal{B} . W taki sposób otrzymamy jeden cykl.

Poniżej przestawiono rysunki poglądowe. Aby były czytelne, cykle przechodzą przez każdy wierzchołek dokładnie raz. Niemniej jednak w dowodzie takiego założenia nie poczyniliśmy.

Zadanie 1

W pewnym grafie każdy wierzchołek ma stopień co najmniej 100. Wykazać, że w tym grafie istnieje ścieżka o długości co najmniej 101.

Zadanie 2

W pewnym kraju jest n miast, przy czym każde dwa są połączone drogą albo torami kolejowymi. Pewien turysta planuje wyruszyć z pewnego miasta, odwiedzić każde miasto dokładnie raz, a następnie powrócić do wyjściowego miasta. Wykazać, że może tak wybrać wyjściowe miasto i tak zaplanować swoją trasę, aby zmienić środek transportu co najwyżej raz.

W pewnym turnieju bierze udział 40 drużyn. Pierwszego dnia każda z drużyn rozegrała jeden mecz. Drugiego dnia również. Wykazać, że istnieje pewne 20 drużyn, takich, że każde dwie spośród nich jeszcze nie grały ze sobą meczu.

Zadanie 4

W pewnym turnieju bierze udział 40 drużyn. Pierwszego dnia każda z drużyn rozegrała jeden mecz. Drugiego dnia również. Wykazać, że istnieje pewne 20 drużyn, takich, że każde dwie spośród nich jeszcze nie grały ze sobą meczu.

Zadanie 5

W pewnym grafie o n wierzchołkach ich stopnie wynoszą odpowiednio $d_1, d_2, ..., d_n$. Udowodnić, że istnieje taki podzbiór co najmniej $\sum_{i=1}^n \frac{1}{1+d_i}$ jego wierzchołków, że żadne dwa z nich nie są połączone krawędzią.

Zadanie 6

Hydra składa się z pewnej liczby głów, z której niektóre są połączone szyjami. Herkulers może odciąć wszystkie szyje wychodzące z pewnej głowy, jednak wówczas z tamtej głowy wyrastają szyję, którą łączą ją z głowami, z którymi nie była ona wcześnie połączona. Hydra jest pokonana, gdy rozpada się na dwie rozłączne części. Wyznaczyć najmniejsze N, że Herkules jest w stanie pokonać dowolną hydrę składającą się ze $100\,$ szyi.

Podpowiedzi 1

Indukcja matematyczna

- 1. Przeprowadź rozumowanie indukcyjne po liczbie wierzchołków n.
- **2**. Sprawdź, że równość zachodzi dla n=1. Załóż, że równość zachodzi dla n i spróbuj wykazać ja dla n+1.
- **3**. Przeprowadź indukcję po liczbie *n*. Skorzystaj dla wszystkich początkowych dysków poza najniżej położonym.
- 4. Rozpatrz n+1 punktów i zobacz co się stanie jeśli usuniemy jeden z nich.
- 5. Spróbuj wykazać tezę inducją po n. Aby to zrobić, trzeba będzie wykazać indukcyjnie inną równość pomocniczą.
- **6**. Spróbuj podzielić planszę $2^{n+1} \cdot 2^{n+1}$ na kilka części.
- 7. Zastosuj indukcję co 2.

Równania funkcyjne

- 1. Podstaw y = 0.
- **2**. Przyjmij x = f(y).
- **3**. Wykaż, że f(0) = 0.
- 4. Podstaw 1 x pod x.
- **5**. Skorzystaj z danego równania dla x = 0.
- **6**. Podstaw y = -x.
- 7. Przymij x = 0.
- 8. Podstaw f(x) w miejsce x.
- **9**. Podstaw: x = y = 0 oraz x = y.
- 10. Wykaż, że f jest różnowartościowa.

Bijekcje i bajki kombinatoryczne

- ${\bf 1}.$ Na ile sposobów spośród nosób możesz wybrać drużynę i mianować jedego z jej członków kapitanem?
- 2. Suma liczb rozpatrywanego zbioru wynosi 55.
- **3**. Podzielmy 2n osób na dwie grupy po n osób. Załóżmy, że z pierwszej grupy wybieramy k osób. Na ile sposobów możesz to zrobić?

- 4. "Jeśli pewna permutacja należy do A_1 , to jeśli pomnożymy wszystkie jej elementy przez 2, to będzie należała do A_2 ." To stwierdzenie nie jest poprawne, ale wyraża pomysł na to zadanie.
- 5. Rozpatrz liczbę podziałów kn osób na k grup po n osób. Nie bierz pod uwagę żadnej kolejności grup, ani kolejności osób w grupie.
- 6. Zbiory, których średnia arytmetyczna jest liczbą całkowitą, zawierające więcej niż 1 element podziel na pary.
- 7. Wykaż, że obie strony równości to liczba słów, które składają się z n+1 liter A oraz r liter B.

Liczby pierwsze i reszty z dzielenia

- 1. Weź n podzielne przez p-1.
- **2**. Przemnóż obie strony przez b(p-1)!.
- 3. Podstaw n = p k dla pewnej konkretnej liczby całkowitej k.
- 4. Podziel zbiór $\{1, 2, 3, ..., p-1\}$ na pary liczb (a, b), dla których $ab \equiv 1 \pmod{p}$.

Nierówności między średnimi

- 1. Skorzystaj z AM-GM dla trzech liczb.
- 2. Przeszacuj każdy z nawiasów z osobna.
- 3. Przekształć nierówność zanim skorzystasz ze średnich.
- 4. Zauważ, że $a^2 \geqslant 2a 1$.
- 5. Dodaj coś do obu stron, aby prawa stona równości była ładna.

Konstrukcje

- 1. Niech pokolorowane pola tworzą kwadrat.
- 2. Podziel płaszczyzne na kratki.
- 3. Podziel trójkat na mniej takich czworokatów.
- 4. Rozpatrz rozkłady na czynniki pierwsze.
- 5. Rozpatrz planszę 7×7 , na której każde pole reprezentuje pewną osobę.
- **6**. Spróbuj rozwiązać zadania dla a + 1 i a + 2.

Wielomiany

- 1. Załóż nie wprost, że istnieje pewne niecałkowite α , że $W(\alpha) = 0$.
- 2. Rozpatrz wielomian o pierwiastkach a, b i c.
- 3. Wykaż, że dla każdej dodatniej liczby całkowitej n wielomian $x^{3n-1} + x + 1$ jest podzielny przez wielomian $x^2 + x + 1$.
- 4. Przeprowadź indukcję po stopniu P.
- **5**. Rozpatrz wielomian Q(x) = W(x) 5.
- $\mathbf{6}$. Wykaż, że Tomek jest w stanie, niezależnie od n wygrać w 2 ruchach.
- 7. Taki wielomian nie istnieje. Skorzystaj z podobnego pomysłu co we wzorach Viete'a we wstepie teoretycznym.

Wielomiany

- 1. Rozpatrz najdłuższą ścieżkę w grafie i spróbuj ją wydłużyć.
- 2. Skorzystaj z indukcji matematycznej.
- 3. Rozpatrz graf, w którym wierzchołkami będa drużyny. Połączymy je czerwoną krawędzią, gdy grały mecz pierwszego dnia, zieloną, gdy drugiego.
- 4. Wykaż, że mając pewien graf z pewnym kolorowaniem, to wybierając dwa dowolne wierzchołki u oraz v jesteśmy w stanie zmienić parzystość liczby kolorowych krawędzi wychodzących z nich, nie naruszając tej liczby dla innych wierzchołków.
- 5. Wybierz jeden wierzchołek, następnie usuń wszystkich jego sąsiadów. Powtarzaj taki krok z otrzymanym grafem, aż wszystkie wierzchołki zostaną usunięte. Wybierając mądrze wierzchołki możemy zrobić to tak, że wybierzemy ich odpowiednio dużo.
- **6.** Odpowiedzia jest N=10.

Podpowiedzi 2

Indukcja matematyczna

- 1. Rozpatrz trójkat tworzony przez trzy kolejne wierzchołki n-kata.
- **2**. Odejmij stronami teze zadania dla n+1 i n.
- 3. Z założenia indukcyjnego możemy przenieść wszystkie dyski, poza najniżej położonym, na drugą igłę. Należy zauważyć, że dysk, którego nie używamy nie przeszkodzi w wykonaniu takiego przełożenia.
- 4. Co mówi założenie indukcyjne? Rozpatrz przypadek, gdy z wyróżnionego punktu wychodza krawędzie różnych kolorów.
- **5**. Wykaż, że dla każdej liczby n zachodzi równość $a_{n+1} = 1 a_1 a_2 a_3 \cdot ... \cdot a_n$.
- 6. Podziel planszę na cztery części na pomocą dwóch prostych.
- 7. Usuń dwie liczby i podziel na dwa zbiory o równej sumie elementów.

Równania funkcyjne

- 1. *
- 2. Zauważ, że f jest funkcja liniowa.
- **3**. Podstaw x = 0 i y = -f(0).
- 4. Otrzymane równanie tworzy z równaniem wyjściowym układ równań.
- 5. Wykaż, że f(x) = x + a dla pewnej liczy a.
- 6. Zauważ, że wartość wyrażania f(x) x musi być stała. Skorzystaj z różnowartościowości f.
- 7. Przyjmij y=0.
- 8. Zauważ, że f(x+1) = f(f(f(x))) = f(x) + 1.
- 9. Wyk
onaj podstawienie x=0. Wykaż, że f(x+y)=f(x-y).
- 10. Załóż, że f(a) = f(b) i wykaż, że a = b.

Bijekcje i bajki kombinatoryczne

- 1. Na ile sposobów możesz to zrobić, jeśli założysz, że drużyna składa się z k osób?
- 2. Połącz zbiory w pary, tak, aby zbiór spełniający warunki zadania był połączony ze zbiorem, który ich nie spełnia.
- 3. *

- 4. Znajdź taką funkcję f ze zbioru $\{1,2,3,...,p\}$ w zbiór $\{1,2,3,...,p\}$, że dla każdego x zachodzi równość $f(x) \equiv 2x \pmod{p}$.
- 5. Wykaż, że takich podziałów jest $\frac{(kn)!}{(n!)^k \cdot k!}$.
- 6. Zauważ, że zbiór może zawierać i nie zawierać swojej średniej arytmentycznej.
- 7. Przyjmij, że na miejscu n + k + 1 znajduje się ostatnia litera A.

Liczby pierwsze i reszty z dzielenia

- 1. Wykaż, że jeśli n dzieli się przez p-1, to $2^{p-1} \equiv 1 \pmod{p}$.
- **2.** Zauważ, że dzielenie przez i to jest mnożenie przez i^{-1} .
- **3**. Podstaw n = p 2.
- 4. Zauważ, że każda liczba poza -1 i 1 będzie w parze z dokładnie jedną inną liczbą. Dlaczego 1 i -1 nie mają tej własności.

Nierówności między średnimi

- 1. Skorzystaj z tej nierówności dla liczb, których iloczyn wyniesie 1.
- **2**. Udowodnij teze dla n=2.
- 3. Zauważ, że $\frac{a}{b+c} + 1 = \frac{a+b+c}{b+c}$.
- **4**. Wykaż, że $a + b + c \geqslant 3$.
- 5. Skorzystaj z najprosztej postaci nierówności AM-GM dla 2 liczb.

Konstrukcje

- 1. *
- 2. Podziel płaszczyznę na kratki o przekatnej długości 1.
- 3. Podziel trójkąt na 3 takie czworokąty.
- 4. Zauważ, że jeśli p jest liczbą pierwszą i $p \mid c$, to $p \mid a$ lub $p \mid b$.
- 5. Rozpatrz wszystkie kolorowania powstające w następujący sposób. Kolorujemy dowolna pola w najniższym i drugim najniższym wierszu. Załóżmy, że są to pola a-te i a+k-te(być może k<0). Wówczas w trzeciej kolumnie pokolorujemy pole $a+2k\pmod{7}$, w czwartej $a+3k\pmod{7}$ itd.
- **6.** Zauważ, że w zadaniu z a + 1 i a + 2 działają liczby 1, 2, 1.

Wielomiany

- **1**. Podstaw $x = \alpha$.
- 2. Wykaż, że 1 jest pierwiastkiem rozpatrywanego wielomianu.
- 3. Rozpatrz różnicę wielomianów $x^{3n-1} + x + 1$ dla n + 1 i n.
- 4. Weź wielomian $a((x+1)^{n+1}-x^{n+1})$ dla pewnej stałej a. Zobacz na jego stopień i współczynnik wiodący.
- 5. Skorzystaj z twierdzenia Bezouta.
- 6. Rozpatrz $W(10^k)$ dla bardzo dużego k. Spróbuj zrobić to dla jakichś konkretnych wielomianów.
- 7. Wykaż, że $a_1 a_2 \cdot ... \cdot a_{1000}$, $\sum_{1 \le i \le 1000} a_i$ oraz $\sum_{1 \le i \le j \le 1000} a_i a_j$ są równe -1 lub 1.

Wielomiany

- 1. Rozpatrz pierwszy wierzchołek tej ścieżki.
- 2. Z założenia indukcyjnego istnieje cykl o długości n-1, który spełnia warunki zadania. Wykaż, że można do niego dołożyć usunięty w celu indukcji wierzchołek, aby cykl dalej spełniał warunki zadania.
- 3. Wykaż, że ten graf to pewna liczba rozłącznych cykli.
- 4. Dla danych wierzchołków $u,\,v,$ zmień stan wszystkich krawędzi na ścieżce miedzy u i v.
- 5. Wybieraj wierzchołek o największym stopniu.
- **6.** Mając dany wierzchołek, ucinając wszystkich jego sąsiadów, Herkules rozspójni graf.

Podpowiedzi 3

Indukcja matematyczna

- Skorzystaj z faktu, że suma kątów w trójkącie wynosi 180° oraz z założenia indukcyjnego.
- 2. *
- 3. *
- 4. Zauważ, że jeśli z wyróżnionego punktu wychodza np. tylko czerwone odcinki, to pomiędzy dowolnymi dwoma punktami da się przejść odcinkami czerwonymi.
- 5. Wykaż tezę indukcyjnie za pomocą założenia i udowodnionej równości. Zauważ, że

$$a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) =$$

$$= \cdot a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right) + a_1 a_2 a_3 \dots a_n.$$

- 6. Podziel plansze na 1 L-klocek i cztery części, które można pokryć na mocy założenia indukcyjnego.
- 7. Zauważ, że suma liczb

$$(x_{2k+3}-x_{2k+1},x_{2k+3}-x_{2k},\cdots,x_{2k+3}-x_{k+2})\cup(x_{2k+2}-x_{k+1},\cdots,x_{2k+2}-x_1),$$
jest równa sumie liczb

$$(x_{2k+3} - x_{2k+2}) \cup (x_{2k+2} - x_{2k+1}, x_{2k+2} - x_{2k}, \cdots, x_{2k+3} - x_{k+2}) \cup (x_{2k+3} - x_{k+1}, \cdots, x_{2k+3} - x_1).$$

Równania funkcyjne

- 1. *
- **2**. Oblicz wartość f(0).
- 3. Podstaw x = 0.
- 4. *
- 5. Wstaw f(x) = x + a do wyjściowego równania w celu obliczenia a.
- 6. Rozumuj podobnie jak w poprzednim zadaniu.
- 7. Wywnioskuj z obu nierówności, że f jest funkcją stałą.
- 8. Wykaż, że f(x) = x + f(0). W tym celu korzystaj z całkowitości x.
- 9. Z tego, że f(x+y) = f(x-y) wywnioskuj, że f jest funkcją stałą.
- 10. Zamień x i y miejscami w danym równaniu.

Bijekcje i bajki kombinatoryczne

- 1. Przesumuj wartość z poprzedniej wskazówki po wszystkich możliwych k, aby otrzymać całkowitą liczbę możliwości.
- 2. Zauważ, że jeśli zbiór A spełnia warunki zadania, to zbiór $\{1,2,3,...,10\}-A$ ich nie spełnia.
- **3**. *
- 4. Połącz w pary permutacje (a_i) i $(f(a_i))$. Wykaż, że to parowanie jest poprawne.
- 5. Ustaw kn osób w kolejce na (kn)! sposobów, a następnie pierwsze n osób dać do jednej grupy, drugie n osób do drugiej, itd. Z ilu kolejek można uzyskać ten sam podział?
- 6. Ile jest rozpatrywanych zbiorów, których nie podzieliliśmy w pary.
- 7. *

Liczby pierwsze i reszty z dzielenia

- 1. Podstaw n = k(p-1). Zauważ, że $2^n \equiv 1 \pmod{p}$.
- **2.** Zauważ, że zbiory $\{1, 2, 3, ..., p-1\}$ i $\{1^{-1}, 2^{-1}, 3^{-1}, ..., (p-1)^{-1}\}$ są sobie równe. Stąd suma ich elementów jest równa.
- 3. Zauważ, że $\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1$.
- 4. Skoro wspomniane parowanie istnieje, to $2 \cdot 3 \cdot ... \cdot (p-2) \equiv 1 \pmod{p}$, bo możemy podzielić te liczby na pary, z których każda zredukuje się do liczby 1.

Nierówności między średnimi

- 1. Skorzystaj z niej dla liczb $x^2, \frac{x}{2}, \frac{x}{2}$
- **2.** Zauważ, że $a_i + a_{i+1} \ge 2\sqrt{a_i a_{i+1}}$.
- 3. Skorzystaj z nierówności AM-HM.
- 4. *
- **5**. Zauważ, że $\frac{a^2}{a+b} + \frac{a+b}{4} \geqslant a$.

Konstrukcje

1. *

- 2. Pokoloruj wnętrze każdej z kratek, jej dolną krawędź bez prawego wierzchołka i lewą krawędź bez górnego wierzchołka na jeden kolor przypisany do danej kratki.
- 3. Rozpatrz środek okręgu wpisanego i jego rzuty na boki trójkąta.
- 4. Pokoloruj liczbę na kolor odpowiadający jej najmniejszemu dzielnikowi pierwszemu. Zadbaj o to, żeby użyć 1000 kolorów.
- Wykaż, że mając dwa pola będące w jednym kolorowaniu jesteśmy w stanie jednoznacznie odtworzyć całe kolorowanie.
- **6.** Rozpatrz liczby a, a + 1, a + 2, ..., a + 2019 oraz a, a + 1, a + 2, ..., a + 100.

Wielomiany

- 1. Wykaż, że W(x) musiałby mieć nieskończenie wiele pierwiastków.
- **2**. Oblicz P(1).
- 3. Zauważ, że z wspomnianej wcześniej różnicy możesz wyciągnąć x^3-1 przed nawias.
- 4. Skorzystaj z założenia indukcyjnego dla $P(x) a((x+1)^{n+1} x^{n+1})$. Rozpatrz takie a, by było to możliwe.
- 5. Zauważ, że 3 = Q(5) ma co najmniej 4 parami różne dzielniki.
- **6**. *
- 7. Wykaż, że $\sum_{1 \le i \le 1000} a_i^2 = 3$.

Wielomiany

- Zauważ, że pierwszy wierzchołek tej ścieżki jest połączony z pewnym wierzchołkiem spoza niej.
- 2. Rozpatrz przypadki: gdy cykl jest jednokolorowy, gdy jest kolor, który występuje raz, oraz gdy każdy z kolorów występuje dwukrotnie.
- 3. Wykaż, że każdy cykl ma parzystą długość.
- 4. Skorzystaj z tego, że liczba wierzchołków w grafie jest parzysta
- 5. Wykaż, że przy każdym kroku rozpatrywana suma spada co najwyżej o 1.
- 6. Trzeba jeszcze pokazać, że istnieje graf, którego nie da się rozspójnić w 9 ruchach. Rozpatrz graf $K_{a,b}$.

Rozwiązania

Indukcja matematyczna

Zadanie 1

Wykazać, że suma miar katów w n-kacie wypukłym wynosi $(n-2) \cdot 180^{\circ}$.

Zauważmy, że dla n=3 teza jest znanym faktem – mianowicie suma kątów w trójkącie wynosi 180° .

Załóżmy, że dla każdego n-kąta wypukłego suma jego kątów wynosi $(n-2)\cdot 180^\circ$. Rozpatrzmy dowolny n+1-kąt wypukły. Zauważmy, że ma on więcej niż trzy wierzchołki, więc możemy "odciąć" trójkąt złożony z trzech kolejnych wierzchołków. Podzielimy w ten sposób n+1 kąt na n-kąt i trójkąt. Korzystając z wypukłości rozpatrywanego wielokąta możemy zauważyć, że suma miar jego kątów wewnętrznych jest sumą miar kątów obu tych wielokątów. Wynosi więc ona

$$(n-2) \cdot 180^{\circ} + 180^{\circ} = (n-1) \cdot 180^{\circ},$$

czego należało dowieść.

Zadanie 2

Wykazać, że dla każdej dodatniej liczby całkowitej n zachodzi toższamość

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Sprawdzamy, że dla n=1 postulowana równość zachodzi. Załóżmy, że równość

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

zachodzi dla pewnej liczby n. Chcemy wykazać tezę dla n+1, czyli

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Zauważmy, że sprowadza się ona do wykazania toższamości

$$\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = \frac{(n+1)(n+2)(2n+3)}{6}.$$

Przekształcając powyższą równość równoważnie otrzymujemy kolejno

$$n(n+1)(2n+1) + 6(n+1)^2 = (n+1)(n+2)(2n+3),$$

$$2n^3 + 3n^2 + n + 6(n+1)^2 = 2n^3 + 9n^2 + 13n + 6,$$

$$6(n+1)^2 = 6n^2 + 12n + 6,$$

$$(n+1)^2 = n^2 + 2n + 1.$$

Prawdziwość ostatniej równości dowodzi tezy.

Zadanie 3

Dana jest nastepująca gra, zwana wieżami Hanoi. Na początku ułożono n dysków na jednej igle tak jak na rysunku. W każdym ruchu gracz może przemieścić dysk, wraz z wszystkimi dyskami nań leżącymy, na inną igłę, przy czym dysk ten nie może zostać położony na dysk o innej średnicy. Wykazać, że gracz jest w stanie przenieść wszystkie dyski na trzecią igłę.

Tezę wykażemy indukcją po n. Zauważmy, że dla n=1 teza jest oczywista – wystarczy po prostu przełożyć dysk na trzecią igłę.

Załóżmy, że jesteśmy w stanie przełożyć n-1 dysków z pierwszej igły na trzecią. Możemy oczywiście zauważyć, że jest to równoważne chociażby możliwości przełożenia ich z igły pierwszej na drugą.

Przełożenia n dysków dokonujemy w następujący sposób:

- 1. Przekładamy n-1 dysków z góry pierwszej igły na drugą igłę. Zauważmy, że dysk o największym rozmiarze nie przeszkadza nam skorzystać z założenia indukcyjnego, gdyż nie uniemożliwi on wykonania żadnego ruchu.
- 2. Dysk pozostawiony na pierwszej igle przekładamy na igłę ostatnią.
- 3. Przekładamy n-1 dysków z drugiej igły na trzecią. Analogicznie zauważamy, że obecność jednego dysku na trzeciej igle nie jest problemem.

Zadanie 4

W przestrzeni danych jest $n \ge 3$ punktów, że żadne trzy z nich nie leżą na jednej prostej. Każde dwa z tych punktów połączono odcinkiem o kolorze zielonym lub czerwonym. Wykazać, że można wybrać tak jeden z tych kolorów, aby każde dwa z danych punktów były połączone odcinkiem lub łamana tego koloru.

Dla n=3 mamy trójkąt. Wybierając kolor, na który pomalowano co najmniej dwa odcinki odcinki, postulowana własność będzie spełniona.

Załóżmy, że dla teza zachodzi dla n punktów. Rozpatrzmy zbiór n+1 punktów. Wyróżnijmy pewien punkt P. Punktów poza P jest dokładnie n, więc na mocy założenia istnieje kolor – bez straty ogólności czerwony – że pomiędzy kążdymi dwoma punktami poza P istnieje łamana tego koloru.

Na rysunku zamiast kolorów użyto podziału na linię ciągła i przerywaną.

Rozpatrzmy dwa przypadki:

- 1. Punkt P jest połączony czerwoną krawędzią z pewnym innym punktem Q. Wówczas wybierając dowolny punkt X, na mocy założenia wiemy, że istnieje czerwona ścieżka między X i Q. Dokładając do niej odcinek między P i Q otrzymujemy ścieżkę między P oraz X. Wykazaliśmy, że istnieje ścieżka między punktem P i każdym innym punktem. Łącząc to z faktem, że na mocy założenia indukcyjnego taka ścieżka istnieje między każdą inną parą punktów, otrzymujemy, że dla koloru czerwonego teza jest spełniona.
- 2. Punkt P jest połączony z każdym innym punktem niebieskim odcinkiem. Wówczas łatwo zauważyć, że pomiędzy każda parą punktów możemy przejść jednym albo dwoma niebieskimi odcinkami przechodzącymi przez punkt P.

Zadanie 5

Dany jest ciąg liczb rzeczywistych

$$a_0 \neq 0, 1, \quad a_1 = 1 - a_0, \quad a_{n+1} = 1 - a_n(1 - a_n).$$

Wykazać, że dla wszystkich n

$$a_1 a_2 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + ... + \frac{1}{a_n} \right) = 1.$$

Na początku wykażemy indukcyjnie, że dla każdego n zachodzi równość

$$a_{n+1} = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_n.$$

Równośc dla n = 0 zachodzi na mocy założeń.

Załóżmy, że

$$a_n = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_{n-1}.$$

Skoro $a_{n+1} = 1 - a_n(1 - a_n)$, to otrzymujemy

$$a_{n+1} = 1 - a_n(1 - a_n) = 1 - a_n \cdot a_1 a_2 a_3 \cdot \dots \cdot a_{n-1} = 1 - a_1 a_2 a_3 \cdot \dots \cdot a_n.$$

Wieć na mocy zasady indukcji matematycznej postulowana równość zachodzi.

Teraz przejdziemy do udowodnienia tezy.

Dla n=1 jest ona oczywista.

Załóżmy, że zachodzi równość

$$a_1 a_2 a_3 ... a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + ... + \frac{1}{a_n} \right) = 1.$$

Chcemy wykazać, że

$$a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) = 1.$$

Przekształcamy powyższą równość korzystając z założenia

$$\begin{aligned} a_1 a_2 a_3 \dots a_n a_{n+1} \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} + \frac{1}{a_{n+1}} \right) &= \\ &= a_{n+1} \cdot a_1 a_2 a_3 \dots a_n \left(\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_3} + \dots + \frac{1}{a_n} \right) + a_1 a_2 a_3 \dots a_n = \\ &= a_{n+1} + a_1 a_2 a_3 \dots a_n = 1 - a_1 a_2 a_3 \dots a_n + a_1 a_2 a_3 \dots a_n = 1. \end{aligned}$$

Zadanie 6

Wykazać, że planszę o wymiarach $2^n \times 2^n$ dla pewnego $n \geqslant 1$ z usuniętym jednym z rogów da się przykryć pewną liczbą L klocków(takich jak na rysunku). Klocki można obracać.

Zauważmy, że plansza 2×2 z usuniętym rogiem jest w istocie L-klockiem, więc da się ją pokryć.

Załóżmy, że dla planszy $2^{n-1} \times 2^{n-1}$ istnieje szukane pokrycie. Pokrycie dla planszy $2^n \times 2^n$ kontruujemy następująco. Dzielimi plansze dwiema prostymi na trzy jednakowe części i czwartą taką samą, tylko bez rok. Kładziemy jeden klocek na środku tak jak na rysunku. Wówczas plansza jest podzielona na cztery jednakowe puste części, które na mocy założenia indukcyjnego można pokryć.

Niech n będzie nieparzystą liczbą naturalną, a liczby $x_1, x_2, ..., x_n$ będa parami różne. Dla każdych dwóch liczb x_i oraz x_j zapisano na tablicy wartość bezwzględną ich różnicy. Wykazać, że można podzielić zapisane liczby na dwa zbiory o równej sumie.

Przez multizbiór rozumiemy zbiór w którym jeden element może występować kilka razy.

Załóżmy, że $x_1 \geqslant x_2 \geqslant ... \geqslant x_n$.

Wykażemy tezę dla n=3. Podział na zbiory $\{x_1-x_2,x_2-x_3\}$ oraz $\{x_1-x_3\}$ spełnia warunki zadania.

Załóżmy, że teza zachodzi dla 2n+1, wykażemy ją dla 2n+3. Rozpatrzmy szukany podział multizbioru różnic zbioru $\{x_1,x_2,...,x_{2n+1}\}$ na multizbiory A i B o równej sumie elementów.

Dorzucamy do multizbioru A liczby

$$(x_{2k+3}-x_{2k+1},x_{2k+3}-x_{2k},\cdots,x_{2k+3}-x_{k+2})\cup(x_{2k+2}-x_{k+1},\cdots,x_{2k+2}-x_1),$$

a do multizbioru B liczby

$$(x_{2k+3} - x_{2k+2}) \cup (x_{2k+2} - x_{2k+1}, x_{2k+2} - x_{2k}, \cdots, x_{2k+3} - x_{k+2}) \cup (x_{2k+3} - x_{k+1}, \cdots, x_{2k+3} - x_1).$$

Łatwo sprawdzić, że suma dorzuconych elementów jest równa.

Równania funkcyjne

Zadanie 1

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x) + f(y) = f(xy).$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest f(x) = 0.

Podstawmy y = 0:

$$f(x) + f(0) = f(0),$$

czyli f(x) = 0 dla każdego x. Łatwo sprawdzić, że ta funkcja spełnia warunki zadania.

Zadanie 2

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x - f(y)) = 1 - x - y.$$

Podstawmy x = f(y). Otrzymamy

$$f(0) = 1 - f(y) - y,$$

$$f(y) = -y + (1 - f(0)).$$

Podstawmy y=0 do powyższej zależności. Wówczas łatwo obliczyć, że $f(0)=\frac{1}{2}$. Czyli $f(x)=-x+\frac{1}{2}$. Ta funkcja istotnie spełnia warunki zadania, gdyż

$$f(x - f(y)) = f(y) - x + \frac{1}{2} = 1 - y - x.$$

Zadanie 3

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$ równanie

$$f(x^2y) = f(xy) + yf(f(x) + y).$$

Odpowiedź. Funkcja f(x) = x jest jedynym rozwiązaniem.

Podstawmy x=0 i y=-f(0). Otrzymamy $f(0)^2=0$, czyli f(0)=0. Podstawmy x=0:

$$0 = y f(f(0) + y) = y f(y)$$

Dla niezerowego y mamy f(y) = 0. Sprawdzamy, że funkcja f(x) = 0 spełnia warunki zadania. Łącząc powyższe wnioski otrzymujemy, że jedyni funkcja f(x) = 0 spełnia warunki zadania.

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x, y \in \mathbb{R}$ równanie

$$2f(x) + f(1-x) = x^2.$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest $f(x)=\frac{2x^2-(1-x)^2}{3}.$

Podstawmy 1 - x za x. Otrzymamy

$$2f(1-x) + f(x) = 2(1-x)^2.$$

Z równaniem z zadania tworzy to układ równań ze zmiennymi f(x) i f(1-x). Wyliczamy $f(x) = \frac{2x^2 - (1-x)^2}{3}$. Wystarczy teraz tylko sprawdzić, że ta funkcja spełnia warunki zadania.

Zadanie 5

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x + y) = f(f(x)) + y + 1.$$

Odpowiedź. f(x) = x - 1 jest jedynym rozwiązaniem danego równania.

Podstawmy x = 0:

$$f(y) = f(f(0)) + 1 + y,$$

czyli f(x) = x + a dla pewnego stałego a. Podstawmy te funkcję do wyjściowego równania

$$x + y + a = x + 2a + y + 1.$$

Mamy a=-1. Łatwo sprawdzić, że funkcja f(x)=x-1 spełnia warunki zadania.

Zadanie 6

Znajdź wszystkie funkcje różnowartościowe $\mathbb{R}\to\mathbb{R}$ spełniające dla wszystkich $x,y\in\mathbb{R}$ równość

$$f(f(x) + y) = f(x + y) + 1.$$

Odpowiedź. Jedyną funkcją spełniającą warunki zadania jest f(x) = x + 1.

Podstawmy y = -x. Otrzymamy

$$f(f(x) - x) = f(0) + 1.$$

Zauważmy, że prawa strona równości jest stała. Z różnowartościowości f wynika, że wartość f(x)-x jest stała. Czyli f(x)-x=a dla pewnego a. Wstawiamy f(x)=x+a do wyjściowego równania

$$x + y + 2a = x + y + a + 1$$
,

wiec a = 1. Skad f(x) = x+1 – możemy sprawdzić, że ta funkcja spełnia warunki zadania.

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ nierówność

$$f(x^2 + y) + f(y) \ge f(x^2) + f(x)$$
.

Podstawmy x = 0

$$f(y) \geqslant f(0)$$
.

Podstawmy y = 0

$$f(x^2) + f(0) \ge f(x^2) + f(x),$$

czyli $f(0) \ge f(x)$. Łącząc oba wnioski otrzymuję

$$f(0) \geqslant f(x) \geqslant f(0),$$

czyli f(x) = f(0). Innymi słowy f jest funkcją stałą. Łatwo zauważyć, że taka funkcja spełnia warunki zadania.

Zadanie 8

Znajdź wszystkie funkcje $\mathbb{Z} \to \mathbb{Z}$ spełniające dla wszystkich $x \in \mathbb{Z}$ równanie

$$f(f(x)) = x + 1.$$

Odpowiedź. Szukane funkcje nie istnieją.

Zauważmy, że zachodzą równości

$$f(f(f(x))) = f(x+1)$$

$$f(f(f(x))) = f(x) + 1$$

Z tego otrzymujemy równość:

$$f(x) = f(x-1) + 1$$

Skoro działamy w liczbach całkowitych to możemy wywnioskować, że

$$f(x) = f(x-1) + 1 = f(x-2) + 2 = \dots = x + f(0).$$

Podstawmy równość f(x) = x + f(0) do f(f(x)) = x + 1:

$$x + 1 = f(f(x)) = x + 2f(0),$$

czyli $f(0) = \frac{1}{2}$. Sprzeczność. Takie funkcje nie istnieją.

Zadanie 9

Znajdź wszystkie funkcje $\mathbb{R} \to \mathbb{R}$ spełniające dla wszystkich $x,y \in \mathbb{R}$ równanie

$$f(x)f(y) = f(x - y).$$

Odpowiedź. Daną zależność spełniają funkcje f(x) = 1 i f(x) = 0.

Podstawmy x = y = 0. Wtedy otrzymujemy

$$f(0)^2 = f(0) \implies f(0) \in \{0, 1\}.$$

Podstawmy x = y

$$f(x)^2 = f(0).$$

Jeśli f(0) = 0, to f(x) = 0. Łatwo sprawdzić, że funkcja zerowa spełnia warunki zadania. Zobaczmy, co jeśli x = y oraz f(0) = 1:

$$f(x)^2 = f(0) = 1$$

Czyli f(x) jest równe -1 lub 1 dla każdego x. Podstawmy x=0

$$f(y) = f(-y).$$

Zauważmy, że

$$f(x - y) = f(x)f(y) = f(x)f(-y) = f(x + y).$$

Weźmy 2 dowolne liczby a i b. Biorąc $x=\frac{a+b}{2}$ oraz $y=\frac{a-b}{2}$ otrzymamy

$$f(x+y) = f(x-y) \implies f(a) = f(b).$$

Skoro a i b były dowolne to f jest funkcją stałą, czyli f(x) = 1. Łatwo sprawdzić, że ta funkcja również spełnia warunki zadania. Czyli tę zależność spełniają funkcje f(x) = 1 i f(x) = 0. Sprawdzamy, że istotnie one działają.

Zadanie 10

Udowodnij, że nie istnieje taka funkcja $f:\mathbb{R}\longrightarrow\mathbb{R}$, że dla dowolnych liczb rzeczywistych x,y zachodzi równość:

$$f(f(x) + 2f(y)) = x + y.$$

 $\underline{\text{Lemat 1}}$ Funkcja f jest różnowartościowa

Załóżmy, że f(a) = f(b). Podstawmy, x = a oraz x = b

$$f(f(a) + 2f(y)) = a + y$$
 oraz $f(f(b) + 2f(y)) = b + y$.

Skoro f(a) = f(b), to

$$f(f(a) + 2f(y)) = f(f(b) + 2f(y)),$$

a więc a + y = b + y, czyli a = b. A więc f istotnie jest różnowartościowa.

Zauważamy, że zachodzą równości

$$f(f(x) + 2f(y)) = x + y$$
 oraz $f(f(y) + 2f(x)) = x + y$.

Czyli

$$f(f(x) + 2f(y)) = f(f(y) + 2f(x)).$$

Skoro f jest różnowartościowa, to

$$f(x) + 2f(y) = f(y) + 2f(x),$$

więc f(x) = f(y) dla wszystkich liczb x, y. Czyli f musiałaby być funkcją stałą, a to jest oczywista sprzeczność z danym równaniem.

Bijekcje i bajki kombinatoryczne

Zadanie 1

Dane są liczby całkowite n i k. Wykaż, że

$$\sum_{k=0}^{n} k \cdot \binom{n}{k} = n \cdot 2^{n-1}.$$

Spośród n osób będziemy chcieli wybrać drużynę i mianować jednego jej członka kapitanem. Wykażemy, że wyrażenia po obu stronach równości są liczbą możliwości takiego wyboru.

Wybierając najpierw kapitana – możemy go wybrać na n sposobów – a następnie dobierając mu zawodników – których można wybrać na 2^{n-1} sposobów, gdyż wybieramy dowolny podzbiór n-1 osób – otrzymamy $n\cdot 2^{n-1}$ osób.

Przyjmijmy, że w drużynie wraz z kapitanem jest k osób. Możliwości wyboru k osób spośród n jest $\binom{n}{k}$, a opcji wyboru kapitana spośród tych k osób jest dokładnie k. Stąd też dla dowolnego k liczba wariantów wynosi $k \cdot \binom{n}{k}$. Sumując po wszystkich możliwych k otrzymujemy, że łączna liczba możliwości wynosi $\sum_{k=0}^{n} k \cdot \binom{n}{k}$.

Zadanie 2

Wyznacz liczbę podzbiorów zbioru $\{1,2,3,...,10\}$, których suma wynosi co najmniej 27.

Odpowiedź. Szukana liczba podzbiorów wynosi $2^9 = 512$.

Zauważmy, że suma wszystkich elementów tego zbioru wynosi 55. Dla każdego podzbioru A zdefiniujmy jego dopełnienie jako pozbiór $\{1,2,3,...,10\}-A$. Składa się on z wszystkich elementów nie występujących w A. Dla przykładu dopełnieniem zbioru $\{1,2,4,7,8,9\}$ będzie zbiór $\{3,5,6,10\}$.

Zauważmy, że suma elementów dowolnego podzbioru i jego dopełnienia wynosi 55. Więc dokładnie jeden z tych zbiorów ma sumę elementów większą lub równą 27. Podzielmy wszystkie rozpatrywane pozdbiory na pary zawierające dwa zbiory będące swoim dopełnieniem. Z powyższej obserwacji wynika, że dokładnie połowa podzbiorów – po jednym z każdej pary – będzie spełniać warunki zadania. Jest więc ich $\frac{1}{2} \cdot 2^{10} = 2^9 = 512$.

Udowodnić, że dla wszystkich dodatnich liczb całkowitych n, k zachodzi równość

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Prawa strona równości jest równa liczbie sposobów wyboru n spośród 2n osób.

Podzielmy te 2n osób na dwie grupy po n osób. Załóżmy, że z pierwszej grupy wybieramy k osób. Możemy tego dokonać na $\binom{n}{k}$ sposobów. Z drugiej grupy wybieramy n-k osób – mamy $\binom{n}{n-k} = \binom{n}{k}$ możliwości. Dla ustalonego k możemy dokonać wyboru na $\binom{n}{k}^2$ sposobów. Sumując po wszystkich k otrzymujemy lewą stronę równości.

Zadanie 4

Dana jest liczba pierwsza $p \ge 3$. Niech A_k oznacza zbiór permutacji $(a_1, a_2, ..., a_p)$ zbioru $\{1, 2, 3, ..., p\}$, dla których liczba

$$a_1 + 2a_2 + 3a_3 + \dots + pa_p - k$$

jest podzielna przez p. Wykazać, że zbiory A_1 , A_2 mają tyle samo elementów.

Ideą poniższego rozwiązania jest fakt, że jak mamy pewną permutację z A_1 , pomnożymy każdy jej z elementów przez 2, to otrzymamy permutację z A_2 . Jako, że mnożąc liczbę większą od $\frac{1}{2}p$ przez 2 wylecimi ze zbioru $\{1,2,3,...,p\}$ to zamiast mnożenia przez 2 użyjemy funkcji danej wzorem

$$f(x) = \begin{cases} 2x & \text{dla } x < \frac{1}{2}p\\ 2x - p & \text{dla } x > \frac{1}{2}p. \end{cases}$$

Zauważmy, że $f(x) \equiv 2x \pmod{p}$.

W ten sposób przyporządkujemy każdemu elementowi ze zbioru A_1 dokładnie 1 element ze zbioru A_2 . Czy może się jednak tak zdarzyć, że pewien element z A_2 zostanie w ten sposób przyporządkowany nie do jednego, a do innej liczby elementów z A_1 ? Wykażemy, że nie.

Mianowicie pokażemy, że z dowolnego elementu A_2 możemy odzyskać dokładnie jedną przyporządkowaną mu permutację z A_1 . Zdefiniujmy "dzielenie przez 2 modulo p" wzorem

$$g(x) = \begin{cases} \frac{1}{2}x & \text{dla x parzystych} \\ \frac{1}{2}(x-p) & \text{dla x nieparzystych.} \end{cases}$$

Mamy $2g(x) \equiv x \pmod{p}$. Zauważmy, że jest to funkcja odwrotna do f – tj. f(g(x)) = x. Zauważmy, że

$$(a_1, a_2, ..., a_p) \in A_2 \iff (g(a_1), g(a_2), ..., g(a_p)) \in A_1.$$

Pozostaje zauważyć, że to permutacja (a_i) była przyporządkowana do permutacji $(g(a_i))$. Jest tak, bo $f(g(a_i)) = a_i$. Stąd podane parowanie było poprawne, czyli istotnie zbiory A_1 i A_2 są równoliczne.

Uwaqa

Kluczowym faktem w powyższym rozumowaniu było istnienie funkcji odwrotnej do funkcji f zdefiniowanej dla każdego elementu zbioru $\{1, 2, ..., p\}$.

Zadanie 5

Wykaż, że dla dowolnych dodatnich liczb całkowitych n, k liczba (kn)! jest podzielna przez liczbę $(n!)^k \cdot k!$.

Rozpatrzmy liczbę podziałów kn osób na k grup po n osób. Nie bierzemy pod uwagę żadnej kolejności grup, ani kolejności osób w grupie.

Możemy ustawić kn osób w kolejce na (kn)! sposobów, a następnie pierwsze n osób dać do jednej grupy, drugie n osób do drugiej, itd.

Każdą z k grup możemy ustawić w kolejności na n! sposobów. Te grupy możemy ustawić w kolejności na k! sposobów. W ten sposób z jednego podziału na grupu możemy uzyskać dokładnie $(n!)^k \cdot k!$ kolejek.

Więc liczba podziałów na grupy wynosi $\frac{(kn)!}{(n!)^k \cdot k!}$. Skoro jest ona całkowita, to musi zachodzić rozpatrywana podzielność.

Zadanie 6

Dana jest liczba całkowita n. Niech T_n oznacza liczbę takich podzbiorów zbioru $\{1,2,3,...,n\}$, że ich średnia arytmetyczna jest liczbą całkowitą. Wykazać, że liczba T_n-n jest parzysta.

Zauważmy, że zbiory, których średnia arytmetyczna jest liczbą całkowitą, zawierające więcej niż 1 element da się podzielić na pary. Mianowicie zbiory S i S' o średniej arytmetycznej elementów równej a będa w jednej parze jeśli jeden z tych zbiorów zawiera a, drugi nie zawiera, a poza tym mają te same elementy.

 T_n będzie takiej parzystości jak liczba niesparowanych zbiorów. Są to wszystkie zbiory jednoelementowe – jest ich n. Stąd T_n-n jest liczba parzystą.

Zadanie 7

Niech n, k, r będą dodatnimi liczbami całkowitymi. Wykaż, że

$$\sum_{k=0}^{r} \binom{n+k}{k} = \binom{n+r+1}{r}.$$

Wykażemy, że obie strony równości to liczba słów, które składają się zn+1 liter A oraz r liter B. Z jednej strony możemy wybrać na r sposobów pozycje liter B, a na pozostałych miejscach ustawić litery A. Stąd tych słów jest $\binom{n+r+1}{r}$.

Przyjmijmy, że na miejscu n+k+1 znajduje się ostatnia litera A. Na n+k poprzednich miejsc znajdzie się n liter A i k liter B. Możemy je więc ustawić na $\binom{n+k}{k}$ sposobów. Po ostatniej literze A będą same litery B, więc nie mamy wyboru. Stąd dla ustalonego k jest $\binom{n+k}{k}$ sposobów. Sumując po wszystkich możliwych k otrzymujemy lewą stronę równości.

Liczby pierwsze i reszty z dzielenia

Zadanie 1

Dana jest liczba pierwsza p. Udowodnić, że istnieje taka liczba całkowita n, że

$$2^n \equiv n \pmod{p}$$
.

Weźmy n = k(p-1). Wówczas

$$2^{k(p-1)} \equiv (2^{p-1})^k \equiv 1^k \equiv 1 \pmod{p},$$

zaś

$$n \equiv k(p-1) \equiv -k \pmod{p}$$
.

Wystarczy wziąć k = p - 1, aby teza zachodziła.

Zadanie 2

Dana jest liczba pierwsza $p \ge 3$. Niech

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1} = \frac{a}{b}$$

dla pewnych dodatnich liczb całkowitych a, b. Udowodnić, że p|a.

Przemnóżmy obie strony przez $b \cdot (p-1)!$. Mamy wtedy

$$b(p-1)! + \frac{b(p-1)!}{2} + \frac{b(p-1)!}{3} + \dots + \frac{b(p-1)!}{p-1} = a(p-1)!.$$

Zauważmy, że

$$a(p-1)! \equiv b(p-1)! + \frac{b(p-1)!}{2} + \frac{b(p-1)!}{3} + \dots + \frac{b(p-1)!}{p-1} \equiv$$

$$\equiv b(p-1)! + b(p-1)! \cdot 2^{-1} + b(p-1)! \cdot 3^{-1} + \dots + b(p-1)! \cdot (p-1)^{-1} \equiv$$

$$\equiv b(p-1)!(1^{-1} + 2^{-1} + \dots + (p-1)^{-1}) \pmod{p}.$$

Funkcja, która przyporządkowuje każdej niezerowej reszcie jej odwrotność modulo p jest bijekcją(przyjmuje wszystkie wartości przeciwdziedziny i jest różnowartościowa). Czyli cały zbiór $\{1,\ 2,\ 3,\ ...,\ p-1\}$ zostanie przekształcony na samego siebie. Zauważamy więc, że suma odwrotności wszystkich niezerowych reszt modulo p to suma wszystkich możliwych reszt modulo p, czyli

$$1^{-1} + 2^{-1} + \dots + (p-1)^{-1} = 1 + 2 + 3 + \dots + (p-1) = \frac{p(p-1)}{2}.$$

Zauważamy, że powyższa suma jest podzielna przez p. Jest ona równa a(p-1)!. Skoro (p-1)! nie jest podzielna przez p, stąd to liczba a jest podzielna przez p.

Udowodnij, że istnieje n, dla którego $2^n + 3^n + 6^n \equiv 1 \pmod{p}$.

Weźmy n = p - 2. Wówczas mamy

$$2^{p-2} + 3^{p-2} + 6^{p-2} \equiv \frac{2^{p-1}}{2} + \frac{3^{p-1}}{3} + \frac{6^{p-1}}{6} \equiv \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \equiv 1 \pmod{p}$$

Zadanie 4

Wykazać, że zachodzi przystawanie

$$(p-1)! \equiv -1 \pmod{p}.$$

Zauważmy, że każda liczba w zbiorze $\{1,\ 2,\ 3,\ ...,\ p-1\}$ ma swoją odwrotność. Jak dowodzi Lemat 1 jedynymi liczbami, które są swoimi odwrotnościami są -1 i 1. Czyli reszty ze zbioru $\{2,...,p-2\}$ można pogrupować w pary postaci $(a,\ a^{-1})$ – liczba i jej odwrotność.

Jeśli wymnożymy wszystkie liczby ze zbioru $\{1, 2, 3, ..., p-1\}$, elementy z par zredukują się do 1. Skoro każdy element jest w jakiejś parze, to cały iloczyn

$$(p-2)\cdot(p-3)\cdot\ldots\cdot3\cdot2$$

zredukuje się do liczby 1. Stąd

$$(p-1)! \equiv (p-1) \cdot (p-2)! \equiv (p-1) \cdot 1 \equiv -1 \pmod{p}.$$

Nierówności między średnimi

Zadanie 1

Wykazać, że dla dowolnej liczby rzeczywistej x zachodzi

$$x^2 + \frac{1}{x} \geqslant \frac{3}{2}\sqrt[3]{2}.$$

Korzystając z nierówności między średnią arytemetyczną i geometryczną dla liczb $x^2,\frac{x}{2},\frac{x}{2}$ otrzymujemy

$$\frac{x^2 + \frac{1}{x}}{3} = \frac{x^2 + \frac{x}{2} + \frac{x}{2}}{3} \geqslant \sqrt[3]{x^2 \cdot \frac{x}{2} \cdot \frac{x}{2}} = \sqrt[3]{\frac{1}{4}},$$

z czego wprost wynika teza.

Zadanie 2

Dane są takie dodatnie liczby rzeczywiste $a_1,\ a_2,\ a_3,\ ...,\ a_n,$ że $a_1a_2a_3...a_n=1.$ Wykazać, że

$$(a_1 + a_2)(a_2 + a_3) \cdot \dots \cdot (a_{n-1} + a_n)(a_n + a_1) \ge 2^n$$

Korzystając z nierówności miedzy średnią arytmetyczną a geometryczną mamy

$$a_i + a_{i+1} \geqslant 2\sqrt{a_i a_{i+1}}.$$

Robiąc tak dla każdego nawiasu otrzymujemy, że

$$(a_1 + a_2)(a_2 + a_3) \cdot \dots \cdot (a_{n-1} + a_n)(a_n + a_1) \geqslant 2\sqrt{a_1 a_2} \cdot 2\sqrt{a_2 a_3} \cdot \dots \cdot 2\sqrt{a_{n-1} a_n} \cdot 2\sqrt{a_n a_1} = 2^n a_1 a_2 \cdot \dots \cdot a_n = 2^n.$$

Zadanie 3

Udowodnić, że dla dowolnych dodatnich liczb rzeczywistych zachodzi nierówność

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \geqslant \frac{3}{2}.$$

Przekształcamy tezę równoważnie dodając 3 do obu stron

$$\begin{aligned} \frac{a}{b+c} + 1 + \frac{b}{a+c} + 1 + \frac{c}{a+b} + 1 &\geqslant \frac{9}{2}, \\ \frac{a+b+c}{b+c} + \frac{a+b+c}{a+c} + \frac{a+b+c}{a+b} &\geqslant \frac{9}{2}, \\ (a+b+c) \left(\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b} \right) &\geqslant \frac{9}{2}. \end{aligned}$$

Zauważmy, że z nierówności miedzy średnią arytmetyczną i harmoniczną wynika

$$\frac{\frac{1}{b+c} + \frac{1}{a+c} + \frac{1}{a+b}}{3} \geqslant \frac{9}{(b+c) + (a+c) + (a+b)} = \frac{9}{2(a+b+c)},$$

co jest równoważne nierówności, którą chcieliśmy wykazać.

Zadanie 4

Dane są takie dodatnie liczby rzeczywiste $a,\,b,\,c,$ że abc=1. Wykazać, że

$$a^2 + b^2 + c^2 \ge a + b + c$$
.

Zauważmy, że zachodzą nierówności

$$(a-1)^2 + (b-1)^2 + (c-1)^2 \ge 0$$

$$a^2 + b^2 + c^2 + 3 \ge 2a + 2b + 2c$$
.

Z nierówności między średnią arytmetyczną i geometryczną mamy

$$\frac{a+b+c}{3} \geqslant \sqrt[3]{abc} = 1,$$

$$a+b+c \geqslant 3$$
.

Dodając dwie otrzymane nierówności stronami udowadniamy tezę.

Zadanie 5

Udowodnić, że dla dowolnych liczb rzeczywistych a, b, c zachodzi nierówność

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} \geqslant \frac{3a+2b-c}{4}.$$

Zauważmy, że z nierówności między średnią arymtetyczną i geometryczną dla liczb $\frac{a^2}{a+b}$ oraz $\frac{a+b}{4}$ otrzymujemy

$$\frac{a^2}{a+b} + \frac{a+b}{4} \geqslant a.$$

Analogicznie mamy

$$\frac{a^2}{a+b} + \frac{b+c}{4} \geqslant b.$$

Dodając te dwie równości stronami otrzymujemy

$$\frac{a^2}{a+b} + \frac{a^2}{a+b} + \frac{a+b}{4} + \frac{b+c}{4} \geqslant a+b,$$

$$\frac{a^2}{a+b} + \frac{b^2}{b+c} \geqslant \frac{3a+2b-c}{4},$$

co było do wykazania.

Konstrukcje

Zadanie 1

Wykazać, że można pokolorować 40 pól na nieskończonej szachownicy, tak, aby nie istniał prostokąt utworzony z pól tej szachownicy zawierający dokładnie 20 pokolorowanych pól.

Rozpatrzmy kolorowanie takie jak na rysunku - pola, w które wpisano literę są pomalowane.

Zauważmy, że jeśli pewien prostokąt nie przykrywa żadnego pola z literą o, to może zawierać co najwyżej 18 pokolorowanych pól. Jeśli zawiera tylko jedną, to może zawierać ich co najwyżej 19. Jeśli zaś zawiera on w całości pewną "krawędź" pokolorowanego prostokąta, to albo zawiera nieparzystą liczbę pól, albo zawiera je wszystkie. Więc szukany prostokat nie istnieje.

Zadanie 2

Udowodnij, że punkty płaszczyzny można tak pokolorować dziewięcioma kolorami, aby żadne dwa punkty odległe o 1 nie były tego samego koloru.

Podzielmy płaszczyznę na kratkę, tak że przekątna każdej kratki ma długość 1. Kolorujemy wszystkie punkty wewnątrz kratki, jej dolną krawędź bez prawego wierzchołka i jej lewą krawędź bez górnego wierzchołka na kolor przypisany według sposobu zademonstrowanego na lewym rysunku.

7	8	9	7	8	9
4	5	6	4	5	6
1	2	3	1	2	3
1	_	_	1	_	_
7	8	9	7	8	9
$\frac{7}{4}$	8 5	$\frac{9}{6}$	$\frac{7}{4}$	8 5	6

Łatwo zauważyć, że takie kolorowanie spełnia warunki zadania.

Wykazać, że każdy trójkąt można podzielić na 3000 czworokątów wypukłych, tak, aby każdy z nich dało się wpisać w okrąg oraz opisać na okręgu.

Na początku wykażemy, że każdy trójkąt można podzielić na 3 takie czworokąty. Rozpatrzmy dowolny trójkąt ABC. Niech I to będzie środek okręgu weń wpisanego, a punkty D, E i F to będą rzuty I odpowiednio na boki BC, CA i AB. Zauważmy, że AI = IF (promienie okręgu) oraz AF = AE (odcinki styczne). Stąd AF + IE = AE + IF, czyli czworokąt AFIE da się opisać na okręgu. Mamy też, że kąty $\not AFI$ i $\not AEI$ są proste, czyli czworokąt AFIE da się wspiać w okrąg. Analogicznie rozumujemy dla czworokątów BDIF oraz CEID.

Wystarczy więc podzielić wyjściowy trójkąt na 1000 trójkątów jak na rysunku 1, a następnie każdy z tych trójkątów podzielić na 3 szukane czworokąty.

Zadanie 4

Wykazać, że można pokolorować każdą dodatnią liczbę całkowitą na jeden z 1000 kolorów, tak aby

- każdy z kolorów był użyty nieskończenie wiele razy;
- dla dowolnych takich liczb całkowitych a, b, c,że ab = c, pewne dwie spośród nich sa jednakowego koloru.

Przyjmijmy $p_1 = 2$, $p_2 = 3$, ... jako kolejne liczby pierwsze. Liczbę 1 kolorujemy dowolnym kolorem. Niech p_i to będzie najmniejszy dzielnik pierwszy pewnej liczby n. Wówczas jeśli $i \ge 1000$ kolorujemy n kolorem o numerze i. W przeciwnym wypadku kolorujemy go kolorem o numerze 1000.

Wykażemy, że podane kolorowanie spełnia warunki zadania. Łatwo zauważyć, że każdy z kolorów będzie użyty nieskończenie wiele razy. Załóżmy więc, że ab=c. Jeśli jedna z liczb a,b jest równa jeden, to pozostałe są równe, więc w szczególności są tego samego koloru. Niech p będzie najmniejszym dzielnikiem liczby abc. Wówczas, skoro ab=c liczba p musi dzielić co najmniej dwie spośród a,b,c. Z minimalności p mamy, że wyznaczy ona jednakowy kolor obu tym liczbom.

Łódka może zabrać w rejs po jeziorze dokładnie 7 osób. Udowodnij. że można tak zaplanować rejsy 49-osobowej wycieczki, aby każdych dwóch uczestników płynęło ze sobą dokładnie raz.

Zinterpretujmy te 49 osób jako planszę 7 na 7, gdzie każdemu polu przyporządkowana jest jedna osoba. Rozpatrzmy wszystkie kolorowania powstające w następujący sposób. Kolorujemy dowolna pola w najniższym i drugim najniższym wierszu. Załóżmy, że są to pola a-te i a+k-te(być może k<0). Wówczas w trzeciej kolumnie pokolorujemy pole $a+2k\pmod{7}$, w czwartej $a+3k\pmod{7}$ itd. Przykładowe kolorowanie dla a=2 i k=2 jest na rysunku.

Rozpatrzmy wszystkie takie kolorowania i dla każdego weźmy osoby przyporządkowane pokolorowanym polom na rejs. Wykażemy, że dowolne dwa pola są jednocześnie pokolorowane w dokładnie jednym kolorowaniu. Przyjmijmy, że te dwa pola są oddalone o $y \neq 0$ wierszy w pionie i x kolumn w poziomie. Zauważmy, że wówczas musi zajść $x \equiv yk \pmod{7}$, co jest prawdą dla dokładnie jednego k. Skoro k jest jednoznacznie wyznaczone i znamy położenie jednego pola z kolorowania, to możemy odtworzyć położenie wszystkich. Skoro z dwóch pól możemy jednoznacznie odtworzyć kolorowanie, do którego oba należą, to teza jest prawdziwa.

Zadanie 6

Jaś zapisał pewną skończoną liczbę liczb rzeczywistych na tablicy. Następnie zaczął wykonywać ruchy. W każdym ruchu wybiera dwie równe liczby $a,\,a,\,$ zmazuje je i zapisuje liczby $a+100,\,a+2000.$ Wykazać, że Jaś może zapisać na początku takie liczby, że będzie mógł wykonywać ruchy w nieskończoność.

Załóżmy, że dla pewnej liczb całkowitych a zapisano liczby

$$a, a + 1, a + 2, ..., a + 2019$$
 oraz $a, a + 1, a + 2, ..., a + 100.$

Zauważmy, że wykonując ruch dla a otrzymujemy analogiczną konfigurację dla a+1. Wypisując na starcie taką konfigurację chociażby dla a=0 Jaś będzie w stanie wykonywać ruchy w nieskończoność.

Wielomiany

Zadanie 1

Dany jest niezerowy wielomian W(x) o współczynnikach rzeczywistych, dla którego zachodzi równość

$$(x+1)W(x) = (x-2)W(x+1).$$

Wykazać, że każdy pierwiastek rzeczywisty W(x) jest liczbą całkowitą.

Załóżmy nie wprost, że istnieje pewna liczba niecałkowita α , dla której zachodzi równość $W(\alpha) = 1$. Wstawiając $x = \alpha$ do wyjściowego równania otrzymujemy

$$(\alpha + 1)W(\alpha) = (\alpha - 2)W(\alpha + 1),$$

$$0 = (\alpha - 2)W(\alpha + 1).$$

Skoro liczba α nie była całkowita, to $\alpha - 2 \neq 0$. Stąd $W(\alpha + 1) = 0$.

Wykazaliśmy, że jeśli α jest niecałkowitym pierwiastkiem, to również $\alpha+1$ jest niecałkowitym pierwiastkiem. Więc liczby

$$\alpha$$
, $\alpha + 1$, $\alpha + 2$, $\alpha + 3$, ...

są pierwiastkami W(x). Zaś każdy niezerowy wielomian może mieć skończenie wiele pierwiastków – co najwyżej tyle, ile wynosi jego stopień – co daje sprzeczność.

Zadanie 2

Wykazać, że jeśli liczby rzeczywiste a, b, c spełniają

$$\begin{cases} abc = 1 \\ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c. \end{cases}$$

to co najmniej jedna liczba spośród a, b, c jest równa 1.

Rozpatrzmy wielomian

$$P(x) = (x - a)(x - b)(x - c) = x^{3} - (a + b + c)x^{2} + (ab + bc + ca)x - abc =$$

$$= x^{3} - (a + b + c)x^{2} + abc \cdot \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)x - 1 =$$

$$= x^{3} - (a + b + c)x^{2} + (a + b + c)x - 1.$$

Chcemy wykazać, że liczba 1 jest pierwiastkiem tego wielomianu. Zauważmy więc, że

$$P(1) = 1^3 - (a+b+c) \cdot 1^2 + (a+b+c) \cdot 1 - 1 = 0.$$

Skoro 1 jest pierwiastkiem P(x), to należy on do multizbioru $\{a, b, c\}$.

Niech $n \ge 1$ będzie pewną liczbą całkowitą. Wykazać, że wielomian $x^{1001} + x + 1$ jest podzielny przez $x^2 + x + 1$.

Wykażemy indukcyjnie, że dla każdej dodatniej liczby całkowitej n wielomian $x^{3n-1}+x+1$ jest podzielny przez wielomian x^2+x+1 . Dla n=1 te wielomiany są sobie równe, więc podzielność zachodzi.

Zauważmy, że

$$(x^{3(n+1)-1} + x + 1) - (x^{3n-1} + x + 1) = x^{3n-1}(x^3 - 1) = x^{3n-1}(x - 1)(x^2 + x + 1).$$

Prawa strona równości jest podzielna przez wielomian x^2+x+1 . Stąd jeśli $x^{3n-1}+x+1$ jest podzielne przez x^2+x+1 to $x^{3(n+1)-1}+x+1$ również. Więc z zasady indukcji matematycznej wynika postulowana własność. Wstawiając n=334 otrzymujemy tezę.

Zadanie 4

Dany jest pewien wielomian P(x). Wykazać, że istnieje wielomian Q(x), że zachodzi równość

$$Q(x+1) - Q(x) = P(x).$$

Tezę wykażemy indukując się po stopniu wielomianu P. Jeśli jego stopień wynosi 0, to znaczy P(x) = c dla pewnej stałej c, to biorąc Q(x) = cx otrzymujemy

$$Q(x+1) - Q(x) = c(x+1) - cx = c.$$

Załóżmy, że dla wielomianów o stopniu nie większym niż n-1 zachodzi teza. Wykażemy, że jeśli $deg\ P=n$ to szukane Q istnieje. Zauważmy, że wielomian

$$(x+1)^{n+1} - x^{n+1} = \sum_{i=0}^{n} {n+1 \choose i} x^{i}$$

jest wielomianem stopnia n. Taki sam stopień ma P, więc istnieje taka liczba rzeczywista a, że

$$a\left((x+1)^{n+1}-x^{n+1}\right)$$
 oraz $P(x)$

mają równy współczynnik wiodący. Stąd

$$P(x) - a((x+1)^{n+1} - x^{n+1})$$

ma stopień mniejszy od n, czyli na mocy założenia indukcyjnego istnieje takie $Q_1(x)$, że

$$Q_1(x+1) - Q_1(x) = P(x) - a((x+1)^{n+1} - x^{n+1}),$$

równoważnie

$$(Q_1(x+1) + a(x+1)^{n+1}) - (Q_1(x) + ax^{n+1}) = P(x).$$

Biorąc $Q(x) = Q_1(x) + ax^{n+1}$ otrzymujemy tezę.

Dany jest wielomian W(x) o współczynnikach całkowitych. Wykazać, że jeśli przyjmuje on dla czterech różnych liczb całkowitych wartość 5, to dla żadnego całkowitego argumentu nie przyjmuje wartości 8

Przyjmijmy, że

$$W(a_1) = W(a_2) = W(a_3) = W(a_4) = 5$$
 oraz $W(b) = 8$.

dla pewnych liczb całkowitych a_1 , a_2 , a_3 , a_4 . Rozpatrzmy wielomian

$$Q(x) = W(x) - 5.$$

Wówczas liczby a_1 , a_2 , a_3 , a_4 są jego pierwiastkami. Na mocy twierdzenia Bézouta możemy napisać

$$Q(x) = (x - a_1)(x - a_2)(x - a_3)(x - a_4) \cdot R(x)$$

dla pewnego wielomianu R. Zauważmy, że R(x) musi mieć współczynniki całkowite. W przeciwnym wypadku, rozpatrzając wspołczynnik niecałkowity przy najwyższej możliwej potędze, przemnożony przez x^4 otrzymalibyśmy, że Q(x) też ma współczynnik niecałkowity. Zauważmy, że

$$3 = W(b) - 5 = Q(5) = (5 - a_1)(5 - a_2)(5 - a_3)(5 - a_4) \cdot R(b).$$

Liczby $5-a_1$, $5-a_2$, $5-a_3$, $5-a_4$ są parami różnem. Stąd co najmniej dwie z nich nie są równe -1 ani 1. Stąd wartość bezwzględna ich iloczynu nie może być liczbą pierwszą, w szczególności być równa 3.

Zadanie 6

Paweł i Tomek grają w grę. Paweł ma pewien wielomian W(x) o współczynnikach dodatnich całkowitych stopnia $n \ge 1$. Tomek go nie zna, a chce poznać. Może w tym celu wykonywać ruchy. W każdym ruchu może wybrać pewną dodatnią liczbę całkowitą k, być może biorąc pod uwagę co się stało we wcześniejszych ruchach, a nastepnie Tomek podaje mu wartość W(k). Wyznaczyć, w zależności od n, najmniejszą liczbę ruchów, w której Tomek, niezależnie od wybranego wielomianu, jest w stanie poznać wszystkie jego współczynniki.

Załóżmy, że Tomek po wykonaniu pierwszego ruchu dowiedział się, że W(a)=2a. Wówczas nie może rozróżnić czy W(x)=2a czy W(x)=2x. Stąd aby być w stanie poznać wielomian niezależnie od tego, jaki on jest, Tomek będzie potrzebował co najmniej 2 ruchów. Wykażemy, że niezależnie od n, Tomek jest w stanie tego dokonać w 2 ruchach. Strategia składa się z 2 punktów:

- Tomek pyta Pawła o wartość W(2). Skoro współczynniki W są dodatnie, to łatwo wykazać, że W(2) jest większe od największego współczynnika wielomianu W.
- Następnie pyta go o wartość d = W(W(2)). Otrzyma liczbę

$$a_n d^n + a_{n-1} d^{n-1} + \dots + a_1 d + a_0.$$

Jest to wartość liczby o kolejnych cyfrach a_n , a_{n-1} , ..., a_1 , a_0 w systemie liczbowym o podstawie d. Korzystamy tu z faktu, że a_n , a_{n-1} , ..., a_1 , $a_0 < d$. Zamieniając otrzymaną liczbę na liczbę w systemie o podstawie d kolejne cyfry będą współczynnikami danego wielomianu.

Uwaqa

W lepszym zrozumieniu idei może posłużyć przykład. Weźmy wielomian

$$W(x) = 21x^3 + 4x + 5.$$

Wiemy, że

$$W(100) = 21000405.$$

W zapisie dziesiętnym pokazały nam się kolejne współczynniki W(x).

Zadanie 7

Rozstrzygnąć, czy istnieje wielomian 1000 stopnia, którego współczynniki należą do zbioru $\{-1,1\}$ oraz ma on 1000 pierwiastków rzeczywistych.

Wykażemy, że szukany wielomian nie istnieje. Przyjmijmy, że ma on pierwiastki a_1 , a_2 , ..., a_{1000} . Wówczas jest on postaci

$$W(x) = a(x - a_1)(x - a_2) \cdot \dots \cdot (x - a_{1000}).$$

Wymnażając te nawiasy możemy zauważyć, że wyraz wolny wynosi $a_1a_2 \cdot ... \cdot a_{1000}$, współczynnik przy x będzie równy $\sum_{1 \leqslant i \leqslant 1000} a_i$, zaś współczynnik przy x^2 wyniesie $\sum_{1 \leqslant i \leqslant 1000} a_i a_j$. Na mocy założeń są one równe ± 1 . Mamy

$$\sum_{1 \leqslant i \leqslant 1000} a_i = \pm 1,$$

$$\left(\sum_{1 \leqslant i \leqslant 1000} a_i\right)^2 = 1,$$

$$\sum_{1 \leqslant i \leqslant 1000} a_i^2 + 2 \sum_{1 \leqslant i \leqslant j \leqslant 1000} a_i a_j = 1.$$

Jeśli $\sum_{1\leqslant i< j\leqslant 1000}a_ia_j=1,$ to na mocy powyższej równości mielibyśmy, że suma kwadratów jest ujemna. Stąd $\sum_{1\leqslant i< j\leqslant 1000}a_ia_j=-1,$ czyli

$$\sum_{1 \leqslant i \leqslant 1000} a_i^2 = 1 - 2 \sum_{1 \leqslant i < j \leqslant 1000} a_i a_j = 3.$$

Na mocy nierówności między średnią arytmetyczną i geometryczną mamy

$$\frac{3}{1000} = \frac{\sum_{1 \le i \le 1000} a_i^2}{1000} \geqslant \sqrt[1000]{|a_1 a_2 \cdot \dots \cdot a_{1000}|^2} = 1,$$

co daje nam sprzeczność.

Grafy

Zadanie 1

W pewnym grafie każdy wierzchołek ma stopień co najmniej 100. Wykazać, że w tym grafie istnieje ścieżka o długości co najmniej 101.

Rozpatrzmy najdłuższą ścieżkę w tym grafie i załóżmy nie wprost, że jest ona długości nie większej niż 100. Wierzchołek początkowy tej ścieżki V jest połączony z co najmniej 101 wierzchołkami. Co najwyżej 99 z nich leży na rozpatrywanej ścieżce – 100 wierzchołków z wyłączeniem V. Stąd V jest połączony z pewnym wierzchołkiem spoza ścieżki – możemy więc wydłużyć tę ścieżkę o tego sąsiada. Przeczy to maksymalności długości tej ścieżki.

Wydłużamy ścieżkę V-1-2-3 o X.

Zadanie 2

W pewnym kraju jest $n \geqslant 3$ miast, przy czym każde dwa są połączone drogą albo torami kolejowymi. Pewien turysta planuje wyruszyć z pewnego miasta, odwiedzić każde miasto dokładnie raz, a następnie powrócić do wyjściowego miasta. Wykazać, że może tak wybrać wyjściowe miasto i tak zaplanować swoją trasę, aby zmienić środek transportu co najwyżej raz.

Przekłóżmy zadanie na język teorii grafów. Miasta będa wierzchołkami, połączenie kolejowe niebieską krawędzią, a połączenie drogowe czerwoną.

Wykażemy tezę indukcyjnie. Zauważmy, że dla n=3 jest ona trywialna. Gdy wszystkie krawędzie są tego samego koloru, to dowolne przejście spełnia warunki zadania. Gdy tak nie jest, to zaczynamy w wierzchołku, w którym schodzą się dwie krawędzie różnych kolorów i przechodzimy przez wszystkie krawędzie.

Wyróżnijmy pewien wierzchołek v. Wszystkie inne wierzchołki tworzą graf, który ma n-1 wierzchołków, a więc możemy skorzystać z założenia indukcyjnego. Załóżmy, że krawędzie $d_1d_2,\,d_2d_3,\,...,\,d_{k-1}d_1$ tworzą cykl spełniający warunki zadania. Gdy cykl ten jest jednokolorowy, to jeśli wstawimy v między d_1 i d_2 , to tak otrzymany cykl będzie spełniał założenia.

Rozpatrzmy przypadek, w którym istnieje kolor \mathcal{K} , że tylko jedna krawędź jest koloru x. Załóżmy, bez straty ogólności, że d_1d_2 jest koloru \mathcal{K} , a inne krawędzie są innego koloru. Wtedy cykl d_1v , vd_2 , d_2d_3 , ..., $d_{k-1}d_1$ spełnia warunki zadania.

Teraz przyjrzyjmy się przypadkowi, w którym każdy z kolorów wystepuje co najmniej dwukrotnie na rozpatrywanym cyklu. Załóżmy więc bez straty ogólności, że d_1d_2 i d_2d_3 są czerwone, a d_3d_4 i d_4d_5 są niebieskie. Przyjmijmy, również bez straty ogólności, że vd_3 jest czerwona. Wtedy cykl d_1d_2 , d_2d_3 , d_3v , vd_4 , d_4d_5 , ..., $d_{k-2}d_{k-1}$, $d_{k-1}d_1$ spełnia warunki zadania.

Zadanie 3

W pewnym turnieju bierze udział 40 drużyn. Pierwszego dnia każda z drużyn rozegrała jeden mecz. Drugiego dnia również. Wykazać, że istnieje pewne 20 drużyn, takich, że każde dwie spośród nich jeszcze nie grały ze sobą meczu.

Rozpatrzmy graf, w którym wierzchołkami będą drużyny. Krawedź będzie istnieć wtedy i tylko wtedy, gdy drużyny odpowiadające jej końcą rozegrały ze sobą mecz. Zauważmy, że warunek z zadania jest równoważny faktowi, że stopień każdego wierzchołka jest równy 2.

Wybierzmy pewien wierzchołek i rozpocznijmy w nim spacer po grafie. Będziemy przechodzić do następnych wierzchołków krawędziami, którymi jeszcze nie szliśmy. Łatwo zauważyć, że musimy w ten sposób otrzymać cykl, w którym każdy wierzchołek odwiedzamy co najwyżej raz. Skoro stopień każdego z wierzchołków wynosi 2, to żaden z wierzchołków tego cyklu nie ma krawędzi łączącej go z jakimkolwiek wierzchołkiem spoza tego cyklu. Wykonując analogiczne spacery startując z nieodwiedzonych jeszcze wierzchołków - o ile takowe istnieją - otrzymamy, że graf jest sumą rozłącznych cykli.

Pokolorujmy każdą z krawędzi na czerwono, jeśli mecz odbył się pierwszego dnia, lub na zielono, jeśli odbył się drugiego dnia. Zauważmy, że z każdego wierzchołka wychodzi jedna zielona i jedna czerwona krawędź. Stąd w każdym cyklu krawędzie na przemian: zielona, czerwona, zielona, czerwona, ... itd. Stąd każdy z cykli jest parzystej długości.

W każdym z cykli długości parzystej możemy wybrać połowę jego wierzchołków, aby żadne dwa z nich nie grały ze sobą meczu. Wybierając takie wierzchołki dla każdego z cykli otrzymamy połowę wierzchołków z całego grafu, które nie są połączone ze sobą. Odpowiadające im 20 drużyn spełniają warunki zadania.

Dany jest graf spójny zawierający parzystą liczbę wierzchołków. Wykazać, że możemy pokolorować niektóre z jego krawędzi, aby z każdego wierzchołka wychodziła nieparzysta liczba pokolorowanych krawędzi.

Rozpatrzmy dwa wierzchołki u i v. Skoro graf jest spójny, to istnieje różnowierzchołkowa ścieżka między tymi wierzchołkami. Zmieńmy stan – z pokolorowanej na niepokolorowaną i na odwrót – każdej z krawędzi na tej ścieżce. Zauważmy, że parzystość liczby kolorowych krawędzi wychodzących z każdego wierzchołka wewnątrz ścieżki nie ulegnie zmianie. Natomiast parzystość liczby kolorowych krawędzi wychodzących z u i z v się zmieni. Czyli jesteśmy w stanie zmienić parzystość liczby kolorowych krawędzi wychodzących z dowolnych dwóch wierzchołków. Skoro liczba wierzchołków w grafie jest liczbą parzystą, to możemy podzielić je w dowolny sposób na pary i zastosować wskazany wyżej algorytm dla każdej z nich. W ten sposób uzyskamy szukane kolorowanie.

Zadanie 5

W pewnym grafie o n wierzchołkach ich stopnie wynoszą odpowiednio $d_1, d_2, ..., d_n$. Udowodnić, że istnieje taki podzbiór co najmniej $\sum_{i=1}^n \frac{1}{1+d_i}$ jego wierzchołków, że żadne dwa z nich nie są połączone krawędzią.

Rozpatrzmy wierzchołek o największym stopniu. Wyróżnijmy go i usuńmy go wraz ze wszystkimi sąsiadującymi wierzchołkami. Bez straty ogólności $d_1\geqslant d_2\geqslant ...\geqslant d_{d_1+1}$ to będą stopnie usuniętych wierzchołków. Wówczas rozpatrywana suma ułamków zmniejszy się o sumę

$$\sum_{i=0}^{d_1+1} \frac{1}{d_i+1} \geqslant \sum_{i=0}^{d_1+1} \frac{1}{d_1+1} = 1.$$

Także po usunięciu tych wierzchołków inne stopnie mogą się zmniejszyć, ale to jeszcze bardziej zmniejszy naszą sumę.

Wykazaliśmy, że usuwając pewien wierzchołek i jego sąsiadów, zmiejszamy rozpatrywaną sumę o co najwyżej 1. Powtarzając ten algorytm, wykonamy co najmniej $\sum_{i=1}^{n} \frac{1}{1+d_i}$ usunięć. Biorąc pod uwagę wyróżnione wierzchołki otrzymamy zbiór spełniający warunki zadania.

Zadanie 6

Hydra składa się z pewnej liczby głów, z której niektóre są połączone szyjami. Herkulers może odciąć wszystkie szyje wychodzące z pewnej głowy, jednak wówczas z tamtej głowy wyrastają szyję, którą łączą ją z głowami, z którymi nie była ona wcześnie połączona. Hydra jest pokonana, gdy rozpada się na dwie rozłączne części. Wyznaczyć najmniejsze N, że Herkules jest w stanie pokonać dowolną hydrę składającą się ze $100\,$ szyi.

Wykażemy, że N=10. Oczywiście rozpatrzamy dany problem w języku teorii grafów. Rozpatrzmy dwa przypadki.

Jeśli istnieje wierzchołek o stopnie nie większym niż 10, to Herkules może odciąć każdego z jego sąsiadów i wówczas ten wierzchołek nie będzie miał już żadnych sąsiadów. W ten sposób może osiągnąć swój cel.

Załóżmy teraz, że każdy wierzchołek ma stopień co najmniej 11. Oznaczmy liczbę wierzchołków jako K. Wówczas liczba krawędzi wynosi co najmniej $\frac{11K}{2}$. Skoro jest ona równa 100, to otrzymujemy $K \leq 18$. Zauważmy, że po wykonaniu odcięcia wierzchołka o stopniu co najmniej 11, będzie on miał stopień co najwyżej 18-11-1=6. Wówczas stosując procedurę analogiczną do poprzedniego prypadku otrzymamy 6+1=7 łacznych cieć.

Pozostaje wskazać przykład grafu, którego nie da rozciąć się w mniej niż 10 ruchach. Zauważmy, że graf $K_{a,b}$ może zostać przekształcony na jeden z grafów $K_{a-1,b+1}$ lub $K_{a+1,b-1}$. Rozpatrując graf $K_{10,10}$ otrzymujemy szukany przykład.