## Análise de Algoritmos

KT 5.5 e CLRS 28.2

Essas transparências foram adaptadas das transparências do Prof. Paulo Feofiloff e do Prof. José Coelho de Pina.

#### Segmento de soma máxima

Um segmento de um vetor A[1..n] é qualquer subvetor da forma A[e..d].

Problema: Dado um vetor A[1..n] de números inteiros, determinar um segmento A[e..d] de soma máxima.

#### Entra:



## Segmento de soma máxima

Um segmento de um vetor A[1..n] é qualquer subvetor da forma A[e..d].

Problema: Dado um vetor A[1..n] de números inteiros, determinar um segmento A[e..d] de soma máxima.

#### Entra:

#### Sai:

A[e ...d] = A[3...7] é segmento de soma máxima. A[3...7] tem soma 187.

# Solução de divisão-e-conquista



## Algoritmo de divisão-e-conquista

```
Setermina soma máxima de um seg. de A[p ... d].
     SEG-MAX-DC (A, p, d)
           se p = d então devolva \max(0, A[p])
          q \leftarrow \lfloor (p+d)/2 \rfloor
           maxesq \leftarrow SEG-MAX-DC(A, p, q)
            maxdir \leftarrow SEG-MAX-DC(A, q+1, d)
      5
            max2esq \leftarrow soma \leftarrow A[q]
      6
            para i \leftarrow q - 1 decrescendo até p faça
                 soma \leftarrow soma + A[i]
      8
                 max2esq \leftarrow max(max2esq, soma)
      9
            max2dir \leftarrow soma \leftarrow A[q+1]
     10
            para f \leftarrow q + 2 até d faça
     11
                 soma \leftarrow soma + A[f]
     12
                 max2dir \leftarrow max(max2dir, soma)
     13
            maxcruz \leftarrow max2esq + max2dir
            devolva \max(maxesq, maxcruz, maxdir)
     14
```

# Correção

#### Verifique que:

- maxesq é a soma máxima de um segmento de A[p ...q];
- maxdir é a soma máxima de um segmento de A[q+1...d]; e
- maxcruz é a soma máxima de um segmento da forma A[i...f] com  $i \le q$  e  $q+1 \le f$ .

Conclua que o algoritmo devolve a soma máxima de um segmento de A[p ... d].

#### Consumo de tempo

Se a execução de cada linha de código consome 1 unidade de de tempo o consumo total é:

| linha | todas as execuções da linha |                                                                   |                                                      |  |  |
|-------|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------|--|--|
| 1-2   | =                           | 2                                                                 | $=\Theta(1)$                                         |  |  |
| 3     | =                           | $T(\left\lceil \frac{n}{2} \right\rceil)$                         | $=T(\left\lceil \frac{n}{2}\right\rceil)$            |  |  |
| 4     | =                           | $T(\lfloor \frac{n}{2} \rfloor)$                                  | $=T(\lfloor \frac{n}{2} \rfloor)$                    |  |  |
| 5     | =                           | 1                                                                 | $=\Theta(1)$                                         |  |  |
| 6     | =                           | $\left\lceil \frac{n}{2} \right\rceil + 1$                        | $=\Theta(n)$                                         |  |  |
| 7-8   | =                           | $\left\lceil \frac{n}{2} \right\rceil$                            | $=\Theta(n)$                                         |  |  |
| 9     | =                           | 1                                                                 | $=\Theta(1)$                                         |  |  |
| 10    | =                           | $\lfloor \frac{n}{2} \rfloor + 1$                                 | $=\Theta(n)$                                         |  |  |
| 11-12 | =                           | $\left\lfloor \frac{n}{2} \right\rfloor$                          | $=\Theta(n)$                                         |  |  |
| 13-14 | =                           | $\overline{2}$                                                    | $=\Theta(1)$                                         |  |  |
| total | =                           | $T(\lfloor \frac{n}{2} \rfloor) + T(\lfloor \frac{n}{2} \rfloor)$ | $\left\lfloor \frac{n}{2} \right\rfloor + \Theta(n)$ |  |  |

Algoritmos – p. (

## Consumo de tempo

T(n) :=consumo de tempo quando n = d - p + 1

Na análise do consumo de tempo do SEG-MAX-DC chegamos a (já manjada) recorrência com ⊖ do lado direito:

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$$

Solução assintótica: T(n) é  $\Theta(n \lg n)$ .

# Cara da solução

#### Solução



# Solução indutiva



#### Algoritmo linear

Determina um segmento de soma máxima de A[1...n] (por Jay Kadane).

```
SEG-MAX-1 (A, n)
       somamax \leftarrow 0
 2 e \leftarrow 0 d \leftarrow -1 > A[e ... d] é vazio
 i \leftarrow 1
 4 soma \leftarrow 0
 5
       para f \leftarrow 1 até n faça
             se som a + A[f] < 0
                   então i \leftarrow f + 1 soma \leftarrow 0
                   senão soma \leftarrow soma + A[f]
 8
 9
             se soma > somamax então
10
                   somamax \leftarrow soma \quad e \leftarrow i \quad d \leftarrow f
11
       devolva e, d e somamax
```

# Correção

#### Verifique que:

- somamax é a soma de A[e ... d].
- ▶ A[i...f-1] é um segmento de soma máxima que termina em f-1.
- soma é a soma de A[i ... f 1].

Conclua que o algoritmo devolve a soma máxima de um segmento de  $A[1 \dots n]$ .

## Consumo de tempo

Se a execução de cada linha de código consome 1 unidade de tempo o consumo total é:

| linha | toc    | as as execuções       | da linha     |
|-------|--------|-----------------------|--------------|
| 1-2   | =      | 2                     | $=\Theta(1)$ |
| 3-4   | =      | 2                     | $=\Theta(1)$ |
| 5     | =      | n+1                   | $=\Theta(n)$ |
| 6     | =      | n                     | $=\Theta(n)$ |
| 7-8   | =      | n                     | $=\Theta(n)$ |
| 9     | =      | n                     | $=\Theta(n)$ |
| 10    | $\leq$ | n                     | = O(n)       |
| 11    | =      | 1                     | $=\Theta(1)$ |
| total | =      | $\Theta(4n+3) + O(n)$ | $\Theta(n)$  |

#### **Conclusões**

O consumo de tempo do algoritmo SEG-MAX-3 é  $\Theta(n^3)$ .

O consumo de tempo do algoritmo SEG-MAX-2 é  $\Theta(n^2)$ .

O consumo de tempo do algoritmo SEG-MAX-DC é  $\Theta(n \lg n)$ .

O consumo de tempo do algoritmo SEG-MAX-1 é  $\Theta(n)$ .

#### **Técnicas**

- Evitar recálculos. Usar espaço para armazenar resultados a fim de evitar recalculá-los (SEG-MAX-2, SEG-MAX-1, programação dinâmica).
- Divisão-e-conquista. Os algoritmos Mergesort e SEG-MAX-2 utilizam uma forma conhecida dessa técnica.
- Algoritmos incrementais/varredura. Como estender a solução de um subproblema a uma solução do problema (SEG-MAX-1).
- Delimitação inferior. Bons projetistas de algoritmos só dormem em paz quando sabem que seus algoritmos são o melhor possível (SEG-MAX-1).

#### Multiplicação de inteiros gigantescos

n := número de algarismos.

Problema: Dados dois números inteiros X[1..n] e Y[1..n] calcular o produto  $X \cdot Y$ .

Entra: Exemplo com n = 12



## Multiplicação de inteiros gigantescos

n := número de algarismos.

Problema: Dados dois números inteiros X[1..n] e Y[1..n] calcular o produto  $X \cdot Y$ .

Entra: Exemplo com n = 12

6

3



9

9

8

Sai:



#### Algoritmo do ensino fundamental



O algoritmo do ensino fundamental é  $\Theta(n^2)$ .

#### Divisão e conquista



$$X \cdot Y = A \cdot C \times 10^n + (A \cdot D + B \cdot C) \times 10^{\lceil n/2 \rceil} + B \cdot D$$

 $A \ \boxed{3} \ \boxed{1} \quad B \ \boxed{4} \ \boxed{1} \quad C \ \boxed{5} \ \boxed{9} \quad D \ \boxed{3} \ \boxed{6}$ 

$$A \ \boxed{3} \ \boxed{1} \qquad B \ \boxed{4} \ \boxed{1} \qquad C \ \boxed{5} \ \boxed{9} \qquad D \ \boxed{3} \ \boxed{6}$$

$$X \cdot Y = A \cdot C \times 10^4 + (A \cdot D + B \cdot C) \times 10^2 + B \cdot D$$
  
 $A \cdot C = 1829$   $(A \cdot D + B \cdot C) = 1116 + 2419 = 3535$   
 $B \cdot D = 1476$ 

$$A \cdot C$$
 1 8 2 9 0 0 0 0 0  $(A \cdot D + B \cdot C)$  3 5 3 5 0 0  $B \cdot D$  1 4 7 6  $X \cdot Y =$  1 8 6 4 4 9 7 6

#### Algoritmo de Multi-DC

Algoritmo recebe inteiros X[1..n] e Y[1..n] e devolve  $X \cdot Y$ .

```
MULT(X,Y,n)
        se n=1 devolva X \cdot Y
  2 q \leftarrow \lceil n/2 \rceil
 3 A \leftarrow X[q+1..n] B \leftarrow X[1..q]
  4 C \leftarrow Y[q+1..n] D \leftarrow Y[1..q]
  5 E \leftarrow \mathsf{MULT}(A, C, \lfloor n/2 \rfloor)
  6 F \leftarrow \mathsf{MULT}(B, D, \lceil n/2 \rceil)
  7 G \leftarrow \mathsf{MULT}(A, D, \lceil n/2 \rceil)
  8 H \leftarrow \mathsf{MULT}(B, C, \lceil n/2 \rceil)
        R \leftarrow E \times 10^n + (G + H) \times 10^{\lceil n/2 \rceil} + F
10
        devolva R
```

T(n) =consumo de tempo do algoritmo para multiplicar dois inteiros com n algarismos.

## Consumo de tempo

```
todas as execuções da linha
        = \Theta(1)
    = \Theta(1)
 3 = \Theta(n)
 \mathbf{4} = \Theta(n)
 5 = T(|n/2|)
 6 = T(\lceil n/2 \rceil)
 7 = T(\lceil n/2 \rceil)
 8 = T(\lceil n/2 \rceil)
    = \Theta(n)
 10
     = \Theta(n)
total = T(\lfloor n/2 \rfloor) + 3T(\lceil n/2 \rceil) + \Theta(n)
```

## Consumo de tempo

#### Sabemos que

$$T(n) = T(\lfloor n/2 \rfloor) + 3T(\lceil n/2 \rceil) + \Theta(n)$$

está na mesma classe ⊖ que a solução de

$$T'(1) = 1$$
  
 $T'(n) = 4T'(n/2) + n$  para  $n = 2, 2^2, 2^3, ...$ 

| n     | 1 | 2 | 4  | 8   | 16  | 32   | 64   | 128   | 256    | 512    |
|-------|---|---|----|-----|-----|------|------|-------|--------|--------|
| T'(n) | 1 | 6 | 28 | 120 | 496 | 2016 | 8128 | 32640 | 130816 | 523776 |

#### **Conclusões**

$$T'(n)$$
 é  $\Theta(n^2)$ .

$$T(n)$$
 é  $\Theta(n^2)$ .

O consumo de tempo do algoritmo MULT é  $\Theta(n^2)$ .

Tanto trabalho por nada . . . Será?!?

Olhar para números com 2 algarismos (n=2).

Suponha  $X=a\,b$  e  $Y=c\,d$ . Se cada multiplicação custa R\$ 1,00 e cada soma custa R\$ 0,01, quanto custa  $X\cdot Y$ ?

Olhar para números com 2 algarismos (n=2).

Suponha X = ab e Y = cd. Se cada multiplicação custa R\$ 1,00 e cada soma custa R\$ 0,01, quanto custa  $X \cdot Y$ ? Eis  $X \cdot Y$  por R\$ 4,03:

$$X \cdot Y = ac \times 10^{2} + (ad + bc) \times 10^{1} + bd$$

Olhar para números com 2 algarismos (n=2).

Suponha X = ab e Y = cd. Se cada multiplicação custa R\$ 1,00 e cada soma custa R\$ 0,01, quanto custa  $X \cdot Y$ ? Eis  $X \cdot Y$  por R\$ 4,03:

$$X \cdot Y = ac \times 10^2 + (ad + bc) \times 10^1 + bd$$

Solução mais barata?

Olhar para números com 2 algarismos (n=2).

Suponha X = ab e Y = cd. Se cada multiplicação custa R\$ 1,00 e cada soma custa R\$ 0,01, quanto custa  $X \cdot Y$ ? Eis  $X \cdot Y$  por R\$ 4,03:

$$X \cdot Y = ac \times 10^2 + (ad + bc) \times 10^1 + bd$$

Solução mais barata?

Gauss faz por R\$ 3,06!

# $X \cdot Y$ por apenas R\$ 3,06

| X                      |    | a       | b  |
|------------------------|----|---------|----|
| Y                      |    | c       | d  |
|                        |    | ad      | bd |
|                        | ac | bc      |    |
| $\overline{X \cdot Y}$ | ac | ad + bc | bd |

## $X \cdot Y$ por apenas R\$ 3,06

$$(a+b)(c+d) = ac + ad + bc + bd \Rightarrow$$
$$ad + bc = (a+b)(c+d) - ac - bd$$

$$g = (a+b)(c+d)$$
  $e = ac$   $f = bd$   $h = g - e - f$ 

$$X \cdot Y$$
 (por R\$ 3,06) =  $e \times 10^2 + h \times 10^1 + f$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2 \quad Y = 2 \quad X \cdot Y = 4$$

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   $ac = 4$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   
 $ac = 4$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 1 \quad Y = 3 \quad X \cdot Y = 3$$

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   $ac = 4$   $bd = 3$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = ?$   
 $ac = 4$   $bd = 3$   $(a+b)(c+d) = ?$ 

$$X = 3 \quad Y = 5 \quad X \cdot Y = 15$$

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 21$$
  $Y = 23$   $X \cdot Y = 483$   
 $ac = 4$   $bd = 3$   $(a+b)(c+d) = 15$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 33$$
  $Y = 12$   $X \cdot Y = ?$   $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 33$$
  $Y = 12$   $X \cdot Y = 396$   
 $ac = 3$   $bd = 6$   $(a+b)(c+d) = 18$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = 396$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = 396$   $(a+b)(c+d) = ?$ 

$$X = 54$$
  $Y = 35$   $X \cdot Y = ?$   $ac = ?$   $bd = ?$   $(a+b)(c+d) = ?$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = 396$   $(a+b)(c+d) = ?$ 

$$X = 54$$
  $Y = 35$   $X \cdot Y = 1890$   
 $ac = 15$   $bd = 20$   $(a+b)(c+d) = 72$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = ?$   
 $ac = 483$   $bd = 396$   $(a+b)(c+d) = 1890$ 

$$X = 2133$$
  $Y = 2312$   $X \cdot Y = 4931496$   
 $ac = 483$   $bd = 396$   $(a+b)(c+d) = 1890$ 

### Algoritmo Multi

Algoritmo recebe inteiros X[1...n] e Y[1...n] e devolve  $X \cdot Y$  (Karatsuba e Ofman).

```
KARATSUBA (X, Y, n)
       se n \leq 3 devolva X \cdot Y
 2 q \leftarrow \lceil n/2 \rceil
 3 A \leftarrow X[q+1..n] B \leftarrow X[1..q]
 4 C \leftarrow Y[q+1..n] D \leftarrow Y[1..q]
 5 E \leftarrow \mathsf{KARATSUBA}(A, C, \lfloor n/2 \rfloor)
 6 F \leftarrow \mathsf{KARATSUBA}(B, D, \lceil n/2 \rceil)
 7 G \leftarrow \mathsf{KARATSUBA}(A+B,C+D,\lceil n/2 \rceil + 1)
 8 H \leftarrow G - F - E
      R \leftarrow E \times 10^n + H \times 10^{\lceil n/2 \rceil} + F
10
        devolva R
```

T(n) =consumo de tempo do algoritmo para multiplicar dois inteiros com n algarismos.

### Consumo de tempo

```
linha todas as execuções da linha
        = \Theta(1)
    =\Theta(1)
  3 = \Theta(n)
  \mathbf{4} = \Theta(n)
  5 = T(|n/2|)
  6 = T(\lceil n/2 \rceil)
  7 = T(\lceil n/2 \rceil + 1)
  8 = \Theta(n)
    = \Theta(n)
     = \Theta(n)
 10
total = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil + 1) + \Theta(n)
```

### Consumo de tempo

#### Sabemos que

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil + 1) + \Theta(n)$$

### está na mesma classe ⊖ que a solução de

$$T'(1) = 1$$
  
 $T'(n) = 3T'(n/2) + n$  para  $n = 2, 2^2, 2^3, ...$ 

### Recorrência

#### Considere a recorrência

$$R(1) = 1$$
 $R(2) = 1$ 
 $R(3) = 1$ 
 $R(n) = 3R(\lceil \frac{n}{2} \rceil + 1) + n$  para  $n = 4, 5, 6...$ 

### Recorrência

#### Considere a recorrência

$$R(1) = 1$$
 $R(2) = 1$ 
 $R(3) = 1$ 
 $R(n) = 3R(\lceil \frac{n}{2} \rceil + 1) + n$  para  $n = 4, 5, 6...$ 

Vamos mostra que R(n) é  $O(n^{\lg 3})$ . Isto implica que T(n) é  $O(n^{\lg 3})$ .

Vou mostrar que  $R(n) \le 31 (n-3)^{\lg 3} - 6n$  para n = 4, 5, 6, ...

| n                      | 1 | 2 | 3 | 4 | 5  | 6   | 7   | 8   | 9   | 10   |
|------------------------|---|---|---|---|----|-----|-----|-----|-----|------|
| R(n)                   | 1 | 1 | 1 | 7 | 26 | 27  | 85  | 86  | 90  | 91   |
| $31(n-3)^{\lg 3} - 6n$ | * | * | * | 7 | 63 | 119 | 237 | 324 | 473 | 5910 |

Vou mostrar que  $R(n) \le 31 (n-3)^{\lg 3} - 6n$  para n = 4, 5, 6, ...

|                        |   |   |   |   |    |     |     | 8   |     |      |
|------------------------|---|---|---|---|----|-----|-----|-----|-----|------|
| R(n)                   | 1 | 1 | 1 | 7 | 26 | 27  | 85  | 86  | 90  | 91   |
| $31(n-3)^{\lg 3} - 6n$ | * | * | * | 7 | 63 | 119 | 237 | 324 | 473 | 5910 |

#### Prova:

Se 
$$n = 4$$
, então  $R(n) = 7 = 31(n-3)^{\lg 3} - 6n$ .

Prova: (continuação) Se  $n \geq 5$  vale que

$$R(n) = 3R(\lceil n/2 \rceil + 1) + n$$

$$\stackrel{\text{hi}}{\leq} 3(31(\lceil n/2 \rceil + 1 - 3)^{\lg 3} - 6(\lceil n/2 \rceil + 1)) + n$$

$$\leq 3(31(\frac{(n+1)}{2} - 2)^{\lg 3} - 6(\frac{n}{2} + 1)) + n$$

$$= 3(31(\frac{(n-3)}{2})^{\lg 3} - 3n - 6) + n$$

$$= 3(31\frac{(n-3)^{\lg 3}}{2^{\lg 3}} - 3n - 6) + n$$

$$= 3 \cdot 31\frac{(n-3)^{\lg 3}}{3} - 9n - 18 + n$$

$$= 31(n-3)^{\lg 3} - 6n - 2n - 18$$

$$< 31(n-3)^{\lg 3} - 6n = \Theta(n^{\lg 3})$$

### **Conclusões**

$$R(n) \notin \Theta(n^{\lg 3}).$$

Logo 
$$T(n)$$
 é  $\Theta(n^{\lg 3})$ .

O consumo de tempo do algoritmo KARATSUBA é  $\Theta(n^{\lg 3})$  (1,584 <  $\lg 3$  < 1,585).

### Mais conclusões

Consumo de tempo de algoritmos para multiplicação de inteiros:

Jardim de infância  $\Theta(n \, 10^n)$ 

Ensino fundamental  $\Theta(n^2)$ 

Karatsuba e Ofman'60  $O(n^{1.585})$ 

Toom e Cook'63  $O(n^{1.465})$ 

(divisão e conquista; generaliza o acima)

Schönhage e Strassen'71  $O(n \lg n \lg \lg n)$ 

(FFT em aneis de tamanho específico)

Fürer'07  $O(n \lg n 2^{O(\log^* n)})$ 

### Ambiente experimental

A plataforma utilizada nos experimentos é um PC rodando Linux Debian ?.? com um processador Pentium II de 233 MHz e 128MB de memória RAM.

Os códigos estão compilados com o gcc versão 2.7.2.1 e opção de compilação -O2.

As implementações comparadas neste experimento são as do algoritmo do ensino fundamental e do algoritmo KARATSUBA.

O programa foi escrito por Carl Burch:

http://www-2.cs.cmu.edu/~cburch/251/karat/.

## Resultados experimentais

| n   | Ensino Fund. | KARATSUBA |
|-----|--------------|-----------|
| 4   | 0.005662     | 0.005815  |
| 8   | 0.010141     | 0.010600  |
| 16  | 0.020406     | 0.023643  |
| 32  | 0.051744     | 0.060335  |
| 64  | 0.155788     | 0.165563  |
| 128 | 0.532198     | 0.470810  |
| 256 | 1.941748     | 1.369863  |
| 512 | 7.352941     | 4.032258  |

Tempos em  $10^3$  segundos.

### Multiplicação de matrizes

Problema: Dadas duas matrizes X[1 ... n, 1 ... n] e Y[1 ... n, 1 ... n] calcular o produto  $X \cdot Y$ .

Os algoritmo tradicional de multiplicação de matrizes consome tempo  $\Theta(n^3)$ .

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$$

$$r = ae + bg$$

$$s = af + bh$$

$$t = ce + dg$$

$$u = cf + dh$$

Solução custa R\$ 8,04

(1)

### Divisão e conquista



$$R = AE + BG$$

$$S = AF + BH$$

$$T = CE + DG$$

$$U = CF + DH$$

### Algoritmo de Multi-Mat

Algoritmo recebe inteiros X[1..n] e Y[1..n] e devolve  $X \cdot Y$ .

```
MULTI-M (X, Y, n)

1 se n = 1 devolva X \cdot Y

2 (A, B, C, D) \leftarrow \mathsf{PARTICIONE}(X, n)

3 (E, F, G, H) \leftarrow \mathsf{PARTICIONE}(Y, n)

4 R \leftarrow \mathsf{MULTI-M}(A, E, n/2) + \mathsf{MULTI-M}(B, G, n/2)

5 S \leftarrow \mathsf{MULTI-M}(A, F, n/2) + \mathsf{MULTI-M}(B, H, n/2)

6 T \leftarrow \mathsf{MULTI-M}(C, E, n/2) + \mathsf{MULTI-M}(D, G, n/2)

7 U \leftarrow \mathsf{MULTI-M}(C, F, n/2) + \mathsf{MULTI-M}(D, H, n/2)

8 P \leftarrow \mathsf{CONSTROI-MAT}(R, S, T, U)

9 devolva P
```

T(n) =consumo de tempo do algoritmo para multiplicar duas matrizes de n linhas e n colunas.

### Consumo de tempo

### linha todas as execuções da linha

total = 
$$8T(n/2) + \Theta(n^2)$$

### Consumo de tempo

As dicas no nosso estudo de recorrências sugeri que a solução da recorrência

$$T(n) = 8T(n/2) + \Theta(n^2)$$

está na mesma classe 🖯 que a solução de

$$T'(1) = 1$$
  
 $T'(n) = 8T'(n/2) + n^2$  para  $n = 2, 2^2, 2^3, ...$ 

| n     | 1 | 2  | 4   | 8   | 16   | 32    | 64     | 128     | 256      |
|-------|---|----|-----|-----|------|-------|--------|---------|----------|
| T'(n) | 1 | 12 | 112 | 960 | 7936 | 64512 | 520192 | 4177920 | 33488896 |

#### Considere a recorrência

$$R(1) = 1$$
  
 $R(\mathbf{n}) = 8R(\lceil \frac{n}{2} \rceil) + n^2$  para  $n = 2, 3, 4, \dots$ 

Verifique por indução que  $R(n) \le 20(n-1)^3 - 2n^2$  para  $n=2,3,4\ldots$ 

| n                  | 1  | 2  | 3   | 4   | 5    | 6    | 7    | 8    |
|--------------------|----|----|-----|-----|------|------|------|------|
| R(n)               | 1  | 12 | 105 | 112 | 865  | 876  | 945  | 960  |
| $20(n-1)^3 - 2n^2$ | -2 | 12 | 142 | 508 | 1230 | 2428 | 4222 | 6732 |

### **Conclusões**

$$R(n) \notin \Theta(n^3)$$
.

Conclusão anterior+Exercício 
$$\Rightarrow$$
  $T(n)$  é  $\Theta(n^3)$ .

O consumo de tempo do algoritmo MULTI-M é  $\Theta(n^3)$ .

# Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \times \left(\begin{array}{cc} e & f \\ g & h \end{array}\right) = \left(\begin{array}{cc} r & s \\ t & u \end{array}\right)$$

## Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} r & s \\ t & u \end{pmatrix}$$

$$p_1 = a(f - h) = af - ah$$

$$p_2 = (a + b)h = ah + bh$$

$$p_3 = (c + d)e = ce + de$$

$$p_4 = d(g - e) = dg - de$$

$$p_6 = (b-d)(g+h) = bg + bh - dg - dh$$

 $p_5 = (a+d)(e+h) = ae + ah + de + dh$ 

$$p_7 = (a - c)(e + f) = ae + af - ce - cfd$$

(4)

## Strassen: $X \cdot Y$ por apenas R\$ 7,18

$$p_1 = a(f - h) = af - ah$$
  
 $p_2 = (a + b)h = ah + bh$   
 $p_3 = (c + d)e = ce + de$   
 $p_4 = d(g - e) = dg - de$   
 $p_5 = (a + d)(e + h) = ae + ah + de + dh$   
 $p_6 = (b - d)(g + h) = bg + bh - dg - dh$   
 $p_7 = (a - c)(e + f) = ae + af - ce - cfd$ 

$$r = p_5 + p_4 - p_2 + p_6 = ae + bg$$

$$s = p_1 + p_2 = af + bh$$

$$t = p_3 + p_4 = ce + dg$$

$$u = p_5 + p_1 - p_3 - p_7 = cf + dh$$

### Algoritmo de Strassen

```
STRASSEN (X, Y, n)
       se n = 1 devolva X \cdot Y
       (A, B, C, D) \leftarrow \mathsf{PARTICIONE}(X, n)
       (E, F, G, H) \leftarrow \mathsf{PARTICIONE}(Y, n)
       P_1 \leftarrow \mathsf{STRASSEN}(A, F - H, n/2)
 5
      P_2 \leftarrow \mathsf{STRASSEN}(A+B,H,n/2)
      P_3 \leftarrow \mathsf{STRASSEN}(C+D,E,n/2)
 6
      P_4 \leftarrow \mathsf{STRASSEN}(D, G - E, n/2)
       P_5 \leftarrow \mathsf{STRASSEN}(A+D,E+H,n/2)
 8
       P_6 \leftarrow \mathsf{STRASSEN}(B-D,G+H,n/2)
 9
      P_7 \leftarrow \mathsf{STRASSEN}(A-C,E+F,n/2)
10
11
       R \leftarrow P_5 + P_4 - P_2 + P_6
12
      S \leftarrow P_1 + P_2
      T \leftarrow P_3 + P_4
13
14
      U \leftarrow P_5 + P_1 - P_3 - P_7
       devolva P \leftarrow \text{CONSTROI-MAT}(R, S, T, U)
15
```

# Consumo de tempo

| linha | toc | las as execuções da linha |
|-------|-----|---------------------------|
| 1     | =   | $\Theta(1)$               |
| 2-3   | =   | $\Theta(n^2)$             |
| 4-10  | =   | $7, T(n/2) + \Theta(n^2)$ |
| 11-14 | =   | $\Theta(n^2)$             |
| 15    | =   | $\Theta(n^2)$             |
| total |     | $7T(n/2) + \Theta(n^2)$   |
|       |     |                           |

### Consumo de tempo

As dicas no nosso estudo de recorrências sugeri que a solução da recorrência

$$T(n) = 7T(n/2) + \Theta(n^2)$$

está na mesma classe 🖯 que a solução de

$$T'(1) = 1$$
  
 $T'(n) = 7T'(n/2) + n^2$  para  $n = 2, 2^2, 2^3, ...$ 

|   | n     | 1 | 2  | 4  | 8   | 16   | 32    | 64     | 128     | 256      |
|---|-------|---|----|----|-----|------|-------|--------|---------|----------|
| • | T'(n) | 1 | 11 | 93 | 715 | 5261 | 37851 | 269053 | 1899755 | 13363821 |

#### Considere a recorrência

$$R(1) = 1$$
  
 $R(\mathbf{n}) = 7R(\lceil \frac{n}{2} \rceil) + n^2$  para  $n = 2, 3, 4, \dots$ 

Verifique por indução que  $R(n) \le 19(n-1)^{\lg 7} - 2n^2$  para  $n=2,3,4\ldots$ 

$$2,80 < \lg 7 < 2,81$$

| n                        | 1  | 2  | 3   | 4   | 5   | 6    | 7    | 8    |
|--------------------------|----|----|-----|-----|-----|------|------|------|
| R(n)                     |    |    |     |     |     |      |      |      |
| $19(n-1)^{\lg 7} - 2n^2$ | -1 | 11 | 115 | 327 | 881 | 1657 | 2790 | 4337 |

### **Conclusões**

$$R(n) \notin \Theta(n^{\lg 7}).$$

$$T(n) \in \Theta(n^{\lg 7}).$$

O consumo de tempo do algoritmo STRASSEN é  $\Theta(n^{\lg 7})$  (2,80 <  $\lg 7 <$  2,81).

### Mais conclusões

Consumo de tempo de algoritmos para multiplicação de matrizes:

Ensino fundamental  $\Theta(n^3)$ 

Strassen  $\Theta(n^{2.81})$ 

. . .

Coppersmith e Winograd  $\Theta(n^{2.38})$