2]:	<pre>import numpy as np import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline</pre>					
3	<pre>* import data set kidney stones kidney_stones = pd.read_csv('kidney-stone-dataset.csv') kidney_stones.head() Unnamed: 0 gravity ph osmo cond urea calc target 0 0 1.021 4.91 725 14.0 443 2.45 0</pre>					
	2 2 1.008 7.20 321 14	0.0 296 4.49 0 1.9 101 2.36 0 2.6 224 2.15 0 7.5 91 1.16 0				
B]: (kidney_stones.shape (90, 8) kidney_stones.dtypes					
g p o c u c	Unnamed: 0 int64 gravity float64 ph float64 osmo int64 cond float64 urea int64 calc float64 target int64 dtype: object					
5]:	Unnamed: 0 gravity pl count 90.000000 90.000000 90.000000 mean 44.500000 1.017952 6.036655					
	std 26.124701 0.006780 0.711803 min 0.000000 1.005000 4.760000 25% 22.250000 1.012258 5.536520 50% 44.500000 1.018000 5.936243 75% 66.750000 1.023000 6.490000 max 89.000000 1.034000 7.940000	187.000000 5.100000 10.00000 411.500000 14.150000 148.25000 7 572.000000 21.177172 231.50000	0 0.170000 0.000000 0 1.412500 0.000000 0 3.230000 0.500000 0 5.965127 1.000000			
6]: U g p	kidney_stones.isna().sum() Unnamed: 0					
7]:	cond 0 urea 0 calc 0 target 0 dtype: int64 kidney_stones.info() <class 'pandas.core.frame.datafr<="" td=""><td>ame'></td><td></td><td></td><td></td><td></td></class>	ame'>				
R D	RangeIndex: 90 entries, 0 to 89 Data columns (total 8 columns): # Column Non-Null Count 0 Unnamed: 0 90 non-null 1 gravity 90 non-null 2 ph 90 non-null 3 osmo 90 non-null 4 cond 90 non-null	Dtype int64 float64 float64 int64 float64				
d m	5 urea 90 non-null 6 calc 90 non-null 7 target 90 non-null dtypes: float64(4), int64(4) memory usage: 5.8 KB kidney_stones.target.value_coun	int64 float64 int64 ts()				
	1 45 Name: target, dtype: int64 drop additional index from the dataset kidney_stones.drop('Unnamed: 0', axis = 1, inplace = True)					
0]: _	Kituney_Scones					
. 8	3 1.011000 5.510000 408 12.600000 224 2.150000 0 4 1.005000 6.520000 187 7.500000 91 1.160000 0 85 1.021452 5.556081 756 24.241481 367 7.669120 1 86 1.016501 6.900257 549 20.549790 204 5.775256 1					
8	87 1.032754 5.443491 1085 23.188653 88 1.023870 5.106433 325 12.124689 89 1.013723 6.308943 472 16.907792 0 rows × 7 columns	9 50 0.781620 1				
]:	visualize the data using seasons.pairplot(kidney_stones, hue					
gravity	1025 - 1020 - 1015 - 1010 -				(C)	03 03 04 04 04
	1.005 - 8.0 - 7.5 - 7.0 - 6.5 - 5.					
	5.5					
OSTITO	1000 - 800 - 600 - 400 -					
	35 - 30 - 25 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -					
	600 - 500 - 400 - 200 -					
	100 - 12 - 10 -					
	8 - 					
W	the data is clean, no empty cells and ve are predicting a category					-5 0 5 10 15 calc
	<pre># import random seed np.random.seed(42) from sklearn import svm from sklearn.model_selection im #create the data features and 1 X = kidney_stones.drop('target' y = kidney_stones.target # split data into training and</pre>	<pre>abel , axis = 1)</pre>				
	<pre>X_train, X_test, y_train, y_tes # instantiate the data clf = svm.SVC() # fit the train and test data i clf.fit(X_train, y_train)</pre>	t = train_test_split(X,y, tes	st_size = 0.2)			
3]:	# check the model score using to clf.score(X_train, y_train), cl	f.score(X_test, y_test)				
	# use the naive_bayes model from sklearn.naive_bayes import # instantiate the model	GaussianNB				
in	gnb = GaussianNB()	b.score(X_test, y_test)				
in	<pre># fit the data into the model gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn</pre>					
in]:]: d	<pre>gnb.fit(X_train, y_train);</pre>	.11111112)				
in]: []: (d in]:	<pre>gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222, 0.611111111 did not work as well</pre>					
in]: []: []: R]: []: []: []: []: []: []: []: []: []:	<pre>gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.722222222222222222, 0.611111111 did not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model</pre>	ndomForestClassifier				
in]: []: () () () []: []: () []: () () () () () () () () () (<pre>gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222, 0.611111111 did not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl</pre>	ndomForestClassifier f.score(X_test, y_test) port cross_val_score	38889])			
in]: (d in]: (! (!]: (!]: (!]: (!]: (!]: (!]: (!]: (!]: (!]:	gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888	38889])			
in]: (d in]: []: (d in]: []: []: []: []: []: []: []:	<pre>gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222</pre>	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y)				
in	<pre>gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222</pre>	f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score,	dtype=int64) dtype=int64)			
in : (d in	gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.722222222222222222222, 0.611111111 Idid not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.83333333333333333) # check the cross_val_score from sklearn.model_selection im cross_val_score(clf, X, y) array([0.77777778, 0.7777778, 6] # check the mean of the scores cro_val = cross_val_score(clf, np.mean(cro_val) 0.8 # check the predictions y_pred = clf.predict(X_test) y_pred array([0, 0, 1, 1, 0, 0, 1, 0, 6] # check the precision, accuracy from sklearn.metrics import acc # evaluate the classifier print(f'Recall: frecall_score(y_test, y) Classifier metrics on kidney_sto Accuracy: 83.33% Precision: 0.7142857142857143	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) y, 0, 1, 0, 1, 1, 0, 0, 1, 0] y, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)*100:.2f}% score(y_test, y_pred)}') _test, y_pred)}') _pred)}')	dtype=int64) dtype=int64) recall_score, f1_score			
in (in (in (in) (in)	gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.722222222222222222, 0.611111111 Bid not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.8333333333333333) # check the cross_val_score from sklearn.model_selection im cross_val_score(clf, x, y) array([0.77777778, 0.777777778, 0.77777778, 0.777777778, 0.777777778, 0.777777778, 0.777777778, 0.77777778, 0.77777778, 0.777777778, 0.777777778, 0.777777778, 0.77777778, 0.77777778, 0.77777778, 0.77777778, 0.77777778, 0.777777778, 0.77777778, 0.77777778, 0.77777778, 0.777777778, 0.777777778, 0.77777778, 0.77777778, 0.77777778, 0.77777778, 0.77777778, 0.77777778, 0.777777778, 0.77777778, 0.77777778, 0.77777778, 0.777	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)*100:.2f}% score(y_test, y_pred)}') rest, y_pred)}') ine data set fusion_matrix	dtype=int64) dtype=int64) recall_score, f1_score			
in 4]: 6]: 6]: 7]: (Approximately a proximately a pro	gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)*') _re(y_test, y_pred)}') _pred)}') ine data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e,	dtype=int64) dtype=int64) recall_score, f1_score			
in () () () () () () () () () (gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.722222222222222222, 0.611111111 did not Work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.833333333333333333) # check the cross_val_score from sklearn.model_selection im cross_val_score(clf, X, y) array([0.7777778, 0.7777778, 6] # check the mean of the scores cro_val = cross_val_score(clf, np.mean(cro_val) 0.8 # check the predictions y_pred = clf.predict(X_test) y_pred array([0, 0, 1, 1, 0, 0, 1, 0, 6] # check the precision, accuracy from sklearn.metrics import acc # evaluate the classifier print('Accuracy: {accuracy_sco print(f'Precision: {precision_ print(f'Recall: {recall_score(y_ print(f'Precision: {precision_ print(f'Fi: {fl_score(y_test, y)} Classifier metrics on kidney_sto Accuracy: 83.33% Recall: 0.8333333333333333333333333333333333333	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)*') _re(y_test, y_pred)}') _pred)}') ine data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e,	dtype=int64) dtype=int64) recall_score, f1_score			
in	gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 1, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)*') _re(y_test, y_pred)}') _pred)}') ine data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e,	dtype=int64) dtype=int64) recall_score, f1_score			
in () () () () () () () () () (gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222222222222222222222222	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)}') _pred)}') nne data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e, e)	dtype=int64) dtype=int64) recall_score, f1_score			
in 4]: 4]: 6 6]: R 7]: (gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222, 0.61111111 # did not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.833333333333333) # check the cross_val_score from sklearn.model_selection imcross_val_score(clf, x, y) array([0.7777778, 0.77777778, 0.7777778, 0.77777778, 0.7777778, 0.7777778, 0.7777778, 0.777777778, 0.77777778, 0.777777778, 0.777777778, 0.777777778, 0.77777778, 0.77777778, 0.777777778, 0.777777778, 0.777777778, 0.777777778, 0.777777777777777777777777777777777777	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)}') _retst, y_pred)}') _retet, y_pred)}') _pred)}') pne data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e, e) e)	dtype=int64) dtype=int64) recall_score, f1_score			
in () () () () () () () () () (gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (0.7222222222222222, 0.61111111 # did not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.833333333333333) # check the cross_val_score from sklearn.model.selection imcross_val_score(clf, X, y) array([0.7777778, 0.77777778, 0.7777778, 0.77777778, 0.7777778, 0.7777778, 0.777777778, 0.77777778, 0.777777777777777777777777777777777777	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)}') _retst, y_pred)}') _retet, y_pred)}') _pred)}') pne data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e, e) e)	dtype=int64) dtype=int64) recall_score, f1_score			
in () () () () () () () () () (gnb.fit(X_train, y_train); # check the scores gnb.score(X_train, y_train), gn (e.72222222222222222, 0.611111113 did not work as well mprove the model # use randomforestclassifier from sklearn.ensemble import Ra # instantiate the model clf = RandomForestClassifier() # fit the data into the model clf.fit(X_train, y_train) RandomForestClassifier() # check the scores clf.score(X_train, y_train), cl (1.0, 0.83333333333333) # check the cross_val_score from sklearn.model_selection im cross_val_score(clf, X, y) array([0.7777778, 0.7777778, 0. # check the mean of the scores cro_val = cross_val_score(clf, np.mean(cro_val) 9.8 # check the predictions y_pred = clf.predict(X_test) y_pred array([0, 0, 1, 1, 0, 0, 1, 0, 0] # check the precision, accuracy from sklearn.metrics import acc # evaluate the classifier print('Classifier metrics on kidney_stc accuracy: 83.33% precision: 0.7142857142857143 Recall: 0.83333333333334 Fit: 0.7692307692307692 # check the confusion_matrix conf_mat array([[10, 2],	ndomForestClassifier f.score(X_test, y_test) port cross_val_score 0.77777778, 0.94444444, 0.8888 X, y) 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 0, 0, 1, 0, 1, 1, 0, 0, 0, 0] 1, f1, recall score uracy_score, precision_score, dney_stone data set') re(y_test, y_pred)}') _retst, y_pred)}') _retet, y_pred)}') _pred)}') pne data set fusion_matrix est, y_pred) ing seaborn heatmap ize = (3,3)) e, e) e)	dtype=int64) dtype=int64) recall_score, f1_score			