Some useful equations to fit your observing goals to your instrument				Types of Telescopes	
		to your matrament		Refractors	
Maximum Useful Magnification	=	60 X Power per inch of Aperture		Galilean	It uses a convex objective lens and a concave eyepiece lens. Galilean telescopes produce upright images. Invented by Johannes Kepler in 1611, is an improvement on Galileo's design. It uses a convex lens
Magnification		Focal Length of Telescope		керенин	as the eyepiece instead of Galileo's concave one.
	=	Focal Length of Eyepiece		Reflectors	
Dawes Limit - Theoretical Resolving Limit of Telescope				Newtonian	Invented by the British scientist Sir Isaac Newton (1643-1727), using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope.
Resolving Power		4.56	Canada of Aus		
Seconds of Arc	=	Aperture (Inches)	Seconds of Arc	Cassegrain	The classic Cassegrain configuration uses a parabolic reflector as the primary while the secondary mirror is hyperbolic.
Resolving Power Seconds of Arc	=	11.6 Aperture (cm)	Seconds of Arc	Ritchey-Chrétien	Invented by George Willis Ritchey and Henri Chrétien in the early 1910s, is a specialized Cassegrain reflector which has two hyperbolic mirrors (instead of a parabolic primary). It is free of coma and
Note: Resolving power is a theoretical limit only. There are many other factors that effect the resolving power of any instrument					spherical aberration at a nearly flat focal plane if the primary and secondary curvature are properly figured, making it well suited for wide field and photographic observations
f/stop	_	Focal Length of Telescope			
1/5ιορ	_	Aperture of Primary		Catadioptric	A catadioptric optical system is one where refraction and reflection are combined in
					an optical system
Actual FoV	=	Apparent Field of View			
(degrees)		Magnification (of eyepiece	attached to OTA)	Schmidt-Cassegrain	Combines a cassegrain reflector's optical path with a Schmidt corrector plate to make a compact astronomical instrument that uses simple spherical surfaces.
Exit Pupil	=	Eyepiece Focal Length			
Zinti dipi		f/stop of OTA		Maksutov	The Maksutov is a catadioptric telescope design that combines a spherical mirror with a full diameter weakly negative meniscus lens at the entrance pupil (commonly called a "corrector plate" or "meniscus corrector shell") in a design that takes advantage of all the surfaces being nearly "spherically symmetrical".
It is useful to have a spread sheet with all these equations for each instrument you have along with the eyepiece specifications when coupled with the instrument.				Maksutov Cassergrain	Maksutov's design notes from 1941 explored the possibility of a 'folded' Cassegrain-type construction with a secondary silvered "spot" on the convex side of the meniscus facing the primary mirror
				"New fandangled stuff"	Celestron HD range - Meade ACF range
Listing the specs of yo	ur instru	uments helps on those nights when eve	ry thing freezes up		
including your brain, and someone asks you,				This is he was was a	a complete list of the different types of telegrapes this list is some of the server
"What is the magnification of that?"				•	a complete list of the different types of telescopes, this list is some of the more
Have such a spread sheet also illustrates where potential new purchases would be beneficial to your current setup or if you are better suited to yet another telescope.				prom	inent telescopes used by amateur and professional astronomers.