A BOTTOM-UP APPROACH TO JOB RECOMMENDATION SYSTEM (RecSys Competition 2016)

Stoyan Eftimov Hrizantema Stancheva

PROBLEM

Recommender Systems held during 15-19th September 2016, Boston @ MIT & IBM

RecSys Challenge:

- Build a job recommendation system for XING
- Given a XING user, the goal is to predict those job postings that a user will positively interact with (e.g. click, bookmark)

Q

PREMIUM

Events

Comments and likes

Jobs we think you'll like

DevOps Engineer (m/f) for Data... XING AG

Projektleiter (m/w) im Bereich... adesso AG

> 16 more job recommendations

Software Architekt (m/w) mit d... adesso AG

(Senior) Consultant Data Wareh... empiricus GmbH - Agentur für I...

Share something with your contacts

What's new?

DATACETO

V	A	11	1)	1)

ı	U	S	e	r	S	

Job roles

Career level

Discipline

Industry

Country

Region

Work experience

Education

Items

Title

Creation time

Discipline

Interactions

Interaction_type

User_ID

Item_ID

Time

Industry

Country

Region

Type of employment

Tags

INTERACTIONS DATA

- Purely focus on interactions
- 1 user clicked on the item
- 2 user bookmarked the item on XING
- 3 user clicked the reply button or application form button
- 4 user deleted the recommendation
 - Issues:

Data is sparse and doesn't include all users

Not every user has at least 30 positive interactions

Leverages the notion

User-user similarity

Item-item similarity

Challenges:

Sparsity

Definition of Similarity

- For similarity, we use K-Means clustering with cosine similarity
- Impute the interaction of user u with item i as average of interactions of other users v, in the same cluster, weighted by cosine similarity

How to we know if two items or users are similar?

K-means Clustering

- Number of clusters: 100, 1K, 5K
- Distance measure : Euclidean distance
- Library: SciPy.kmeans2

Cosine Similarity

- Similarity (U i , U j) = U i .U j / |U i | |U j |
- Similarity (I i , I j) = I i .I j / |I i | |I j |

Q: What are we using?

A: Both. Cosine similarity, but limited to the cluster

SCORING

• Given a user, score each job and finally rank based on score:

```
Score = w1(Interaction score) + w2(no. of overlaps in user job-roles and item-titles) + w3 (I[career level match]) + w4 (I[discipline IDs match]) + w5(I[industry IDs match] + w6 (I[regions match])
```

• Weights

```
Heuristic: w1 = 1, w2 = 100, w3 = 10, w4 = 12, w5 = 10, w6 = 5 & w7 = 2
```

• Linear Regression: Learn the weights

EVALUATIONS

0.	
Score	Rank
26,857.38	100
85,491.27	81
180,112.15	72
279,062.28	48
456,487.86	23
468,767.08	20
473,758.10	20
	26,857.38 85,491.27 180,112.15 279,062.28 456,487.86 468,767.08

CONCLUSION