Lecture 22: trees CARTS - Classification and regression trees Repression Trees Basic idea! (1) break up X-space in to 2) fit a simple model on early recountle (predict the mean of trains ys in each rectangle) · 45 C= y+97 0 y7 C2 = 44 $\hat{y} = \hat{f}(x) = C_i \text{ if } x \in R_i$

We can defne the RSS if we make this split as
$RSS(j,t) = RSS(R_1(j,t)) + RSS(R_2(j_1t))$
$= \sum (y_1 - c_1)^2 + \sum (y_1 - c_2)^2$
(in R(i,t)) (Similar Jen
Cin R ₁ (j ₁ t) weah of ys in R ₁ (j ₁ t)
Algorithm to choose j and t
1) For each var j search over possible to and calc. 1255(j,t)
2) Choose jack t flut minimize RSS (j, t)
3) recursively do this for each half space.
·
unen do me stop?
-> too mony splits danger is overfitting
-> too few danger is under fitting
Bad stoatesy very greedy approach ad spit
Bad strategy very greedy approach ad spit intil RSS fulls below some threshold
problem: a bad split might lead to
proposition, a violation

	an even better split later
bet	er approach;
	1) grow a really longe tree (overfit) (2) reduce its size by pruning
	2) reduce its size by pruning
kide'	. a tree T, is called a subtree of
	To if I can get T, by "collapsing"
	part of T2
Ey	$\frac{1}{2}$
	a leaf no de
In t	satticular use "cost-complexity pruning"
	$C_{\alpha}(T) = RSS(T) + \alpha(T)$
	2 size of tree
	leaf nodes

possible splits.

Cat vars just add a "missing data nicely.

Cat vars just add a "missing" category

Numeric vars. Keep track of "surragate"

Splits i.e. splits using after

vars that have similar divisions

I due use surragate of var is missing.