Joaquin Rodrigo Ramírez Mendoza

2 Puntos

1. Demuestra que la propiedad "es bipartita" es una propiedad hereditaria de las gráficas.

Sea G una gráfica simple bipartita, entonces acepta particiones (X,Y) tales que X y Y son independientes; y sea S un subconjunto de los vértices de G, entonces tenemos los siguientes casos.

Si $S \subseteq X$ donde $X \neq \emptyset$: es claro que todos los vértices de G[S] son independientes por definición de conjunto independiente de X pues no hay arístas que conecten a los vértices $u,v \in X$ y por definición S contine las aristas de las adyacencias de u,v pero como no hay ninguna se tiene que $E_S = \emptyset$ por lo que G[S] acepta biparticiones pues todos los vértices son independientes.

Si $S \subseteq Y$: es análogo para al anterior ya que Y también es un conjunto independiente, entonce los vértices de S son independientes y G[S], por lo que G[S] es independiente.

Si $S \subseteq X \cup Y$, es claro que $S_X := S \cap X$ es una bipartición de S pues los vértices que viven en él son independientes, i.e., si $u,v \in S_X$ entonces $uv \in E_{S_X}$ pero u,v son independientes entre sí por lo que no hay aristas que los incidan, por lo que $uv \notin E_{S_X}$ lo que implica que $uv \notin E_G$ y lo mismo pasa para $S_Y := S \cap Y$, por lo que (S_X, S_Y) es una bipartición de G pues se tiene que si $u,v \in S_X$ y $x,y \in S_Y$ implica que $uv \notin S_X$ y $xy \notin S_Y$ por lo que $uv,xy \notin E_G$ y todas las aristas en G[S] son adtyacentes entre vértices de S_X y S_Y , lo que implica que G[S] sea bipartita, pues se puede dividir en los subconjuntos independientes S_X, S_Y .

Entonces la bipartición es hereditaria.