VAN (086761) - Exercise 1

Kiril Reznik 347527541 | Maor Atar - 307834036

January 28, 2024

Basic Probability

Question 1

Consier a random vector x with a Gaussian distribution :

$$x \sim \mathcal{N}\left(\mu_x, \Sigma_x\right)$$

(a) An explicit expression for p(x)

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}||x-\mu||_{\Sigma}^{2}\right)}$$

where $\|\cdot\|_{\Sigma}$ is the Mahalanobis norm, defined as: $\|x\|_{\Sigma} = x^T \Sigma^{-1} x$

(b) Consider a linear transformation y = Ax + b, assuming A is invertible. Show that y is normally distributed and compute it's mean and covariance.

Gaussian invariant under Linear Transformations

Using that when A is invertible we have the relation:

$$f_Y(y) = \frac{f_x\left(A^{-1}(y-b)\right)}{|\det A|}$$

so,

$$f_{Y}(y) = \frac{f_{x}\left(A^{-1}(y-b)\right)}{|\det A|}$$

$$= \frac{exp\left(-\frac{1}{2}\left(A^{-1}(y-b) - \mu_{x}\right)^{T} \Sigma_{x}^{-1}\left(A^{-1}(y-b) - \mu_{x}\right)\right)}{\sqrt{\det(2\pi\Sigma_{x})} |\det A|}$$

$$= \frac{exp\left(-\frac{1}{2}\left(y - (A\mu_{x} + b)\right)^{T} A^{-T} \Sigma_{x}^{-1} A^{-1}\left(y - (A\mu_{x} + b)\right)\right)}{\sqrt{\det(2\pi\Sigma_{x}) \det(A^{T} A)}}$$

$$= \frac{exp\left(-\frac{1}{2}\left(y - (A\mu_{x} + b)\right)\left(A\Sigma_{x} A^{T}\right)^{-1}\left(y - (A\mu_{x} + b)\right)^{T}\right)}{\sqrt{\det(2\pi A\Sigma_{x} A^{T})}}$$

1 - Because A is invertible we have that $A^T \Sigma A$ is invertible too so we can close it with the same parentheses.

We got that Y's density function is of the with the form above (q1a) and therefore is a gaussian with mean $A\mu_x + b$ and covarivace $A^T \Sigma A$.

We can show that these are the right moments with another way:

MeanT

Using the linearity of the mean in 1D we get that: $(a^i \text{ is } A\text{'s row})$

$$\mathbb{E}(y_i) \stackrel{1}{=} \mathbb{E}(\langle a^i, x \rangle + b^i) \stackrel{2}{=} \langle a^i, \mathbb{E}(x) \rangle + b^i$$

- 1 Definition of y.
- 2 Mean's lineartiy in every coordinate of x

Therefore, we get for y:

$$\mathbb{E}\left(y\right) = A\mathbb{E}\left(x\right) + b$$

Covariance

We'll show that:

$$Cov\left(y\right) = A^{T}Cov\left(x\right)A$$

for every i, j we have:

$$Cov(y) = \mathbb{E}\left[\left(y - \mathbb{E}(y)\right)\left(y - \mathbb{E}(y)\right)^{T}\right] = \mathbb{E}\left[yy^{T} - \mathbb{E}(y)y^{T} + \mathbb{E}(y)\mathbb{E}(y)^{T} - y\mathbb{E}(y)^{T}\right]$$
$$= \mathbb{E}\left(yy^{T}\right) - \mathbb{E}(y)\mathbb{E}(y)^{T} + \mathbb{E}(y)\mathbb{E}(y)^{T} - \mathbb{E}(y)\mathbb{E}(y)^{T} = \mathbb{E}\left(yy^{T}\right) - \mathbb{E}(y)\mathbb{E}(y)^{T}$$

The second equation is just opening the parentheses and then using that mean is linear in 1D and mean of a multi-variate Random vector is just the mean on its coordinates and a mean on $\mathbb{E}(y)$ is simply $\mathbb{E}(y)$ therefore for example $\mathbb{E}(y\mathbb{E}(y)^T) = \mathbb{E}(y)\mathbb{E}(y^T)$.

Now, using mean's linearity as proved before we get:

$$\mathbb{E}\left(\left(Ax+b\right)\left(Ax+b\right)^{T}\right) - \mathbb{E}\left(Ax+b\right)\mathbb{E}\left(Ax+b\right)^{T} = \mathbb{E}\left(Axx^{T}A^{T} + Axb^{T} + bx^{T}A^{T} + bb^{T}\right) - \left(A\mathbb{E}\left(x\right) + b\right)\left(A\mathbb{E}\left(x\right) + b\right)^{T} = A\mathbb{E}\left(xx^{T}\right)A^{T} + A\mathbb{E}\left(x\right)b^{T} + b\mathbb{E}\left(x^{T}\right)A^{T} + bb^{T} + -A\mathbb{E}\left(x\right)\mathbb{E}\left(x\right)^{T}A^{T} - A\mathbb{E}\left(x\right)b^{T} - b\mathbb{E}\left(x\right)^{T}A^{T} - bb^{T} = A\mathbb{E}\left(xx^{T}\right)A^{T} - A\mathbb{E}\left(x\right)\mathbb{E}\left(x\right)^{T}A^{T} = A\mathbb{E}\left(x\right)^{T}A^{T} = A\mathbb{$$

(c)

We don't have here a complete solution but rather some thought.

Option 1 - make H "invertible"

Every matrix has a finite number of eigen values so we take λ to be one that **isn't** H's eigen value. thus we have that $H - \lambda I$ is invertible. Since, if it wasn't invertible, it means there's a vector $x \neq 0$ so that $(H - \lambda I)x = 0 \rightarrow Hx = \lambda x$ means that x is an eigen vector and λ is an eigen value, contradiction. so we have that:

$$y = Hx + \lambda Ix - \lambda Ix + b \rightarrow y = (H - \lambda I)x + \lambda Ix + b$$

but from the previous question we know that $(H - \lambda I) x \sim \mathcal{N}\left((H - \lambda I) \mu_x, (H - \lambda I) \Sigma_x (H - \lambda I)^T\right)$ and $\lambda I x + b \sim \mathcal{N}\left(\lambda \mu_x + b, \lambda^2 \Sigma_x\right)$. So, we just need to show that the sum of two normal distributed random variable is normal distributed with sum over the mean and the covariance: means:

$$\mu_y = (H - \lambda I) \mu_x + \lambda \mu_x = H \mu_x$$

$$\Sigma_y = (H - \lambda I) \Sigma_x (H - \lambda I)^T + \lambda^2 \Sigma_x$$

$$= H \Sigma_x H^T - \lambda H \Sigma_x - \lambda (H \Sigma_x)^T + \lambda^2 \Sigma_x$$

Option 2 - Marginalization

$$p(y) = \int_{x} p(y \mid x) \cdot p(x)$$

And we have from the previous question:

Question 2 |

Let $p(x) \sim \mathcal{N}(x_0, \Sigma_{x_0})$ be a prior distribution over $x \in \mathbb{R}^n$ with known mean x_0 and covariance Σ_{x_0} . Consider a measurement z = Hx + v where H is known the measurement model and v is a gaussian noise with zero mean and known covriance R.

(a) A posteriori probability function

Option 1:

Using Bayes we have:

$$p(x \mid z) = p(z \mid x) \cdot p(x) \frac{1}{p(z)}$$

and by the total probability theorem we have

$$p(z) = \int_{x} p(z \mid x) p(x)$$

therefore:

$$(\star): p(x \mid z) = \frac{p(z \mid x) \cdot p(x)}{\int_{x'} p(z \mid x') p(x')}$$

But we have p(x) and $p(z \mid x)$:

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}||x-\mu||_{\Sigma}^{2}\right)}$$

and $z \mid x \sim \mathcal{N}(Hx, R)$:

$$p(z \mid x) = \det(2\pi R)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}||z - Hx||_R^2\right)}$$

So we just need to plug it in equation (\star) .

(b) An expresion for the MAP and $p(x \mid z)$ mean and covariance

The MAP is:

$$\operatorname{argmax}_{x} p\left(x \mid z\right)$$

We notice that

$$p(x \mid z) = p(z \mid x) \cdot p(x) \frac{1}{p(z)} = \eta \cdot p(z \mid x) \cdot p(x)$$

$$= \eta \cdot \det(2\pi \Sigma_z)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}\|z - \mu_z\|_{\Sigma_z}^2\right)} \cdot \det(2\pi \Sigma_x)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}\|x - \mu_x\|_{\Sigma_x}^2\right)}$$

$$= \eta \cdot \det\left(4\pi^2 \Sigma_z \Sigma_x\right)^{-\frac{1}{2}} e^{-\frac{1}{2}\left(\|z - \mu_z\|_{\Sigma_z}^2 + \|x - \mu_x\|_{\Sigma_x}^2\right)}$$

It means the $p(x \mid z)$ is of the form $\eta e^{-\frac{1}{2}f}$ where f is a quadratic equation so it's a Normal distributation. Now we'll find its Mean and Covariance.

Before we do that we mention that the maximum value of a normal distribution is obtained in the mean. so the MAP is actually the mean.

In addition for a normal distribution

$$p(x) = \det(2\pi\Sigma)^{-\frac{1}{2}} e^{\left(-\frac{1}{2}||x-\mu||_{\Sigma}^{2}\right)}$$

With denoting $f = -\frac{1}{2} ||x - \mu||_{\Sigma}^2$ we have that:

$$f'(\mu) = 0$$

$$f'' = \Sigma^{-1}$$

So, we back to our density function $p(x \mid z)$ we have the deriving the power $||z - \mu_z||_{\Sigma_z}^2 + ||x - \mu_x||_{\Sigma_x}^2$ once and setting it to zero will give us the mean and twice will gives us the Σ^{-1} .

First we write:

$$||z - \mu_z||_{\Sigma_z}^2 + ||x - \mu_x||_{\Sigma_x}^2 = ||z - Hx||_R^2 + ||x - \mu_x||_{\Sigma_x}^2$$
$$= ||R^{-1/2}(Hx - z)||_2^2 + ||\Sigma_x^{-1/2}(x - \mu_x)||_2^2$$

So, we drive and set to zero:

$$\begin{split} \|R^{-1/2}Hx - R^{-1/2}z\|_2^2 + \|\Sigma_x^{-1/2}x - \Sigma_x^{-1/2}\mu_x\|_2^2 &= 0 \\ 2\left(R^{-1/2}H\right)^T \left(R^{-1/2}Hx - R^{-1/2}z\right) + 2\Sigma_x^{-T/2}\left(\Sigma_x^{-1/2}x - \Sigma_x^{-1/2}\mu_x\right) &= 0 \\ H^TR^{-1}\left(Hx - z\right) + \Sigma_x^{-1}\left(x - \mu_x\right) &= 0 \\ \Sigma_x^{-1}x + H^TR^{-1}Hx - H^TR^{-1}z - \Sigma_x^{-1}\mu_x &= 0 \\ \Sigma_x^{-1}x + H^TR^{-1}Hx &= H^TR^{-1}z + \Sigma_x^{-1}\mu_x \\ x &= \left(H^TR^{-1}H + \Sigma_x^{-1}\right)^{-1}\left(H^TR^{-1}z + \Sigma_x^{-1}\mu_x\right) \end{split}$$

so

$$x = (H^T R^{-1} H + \Sigma_x^{-1})^{-1} (H^T R^{-1} z + \Sigma_x^{-1} \mu_x)$$

And deriving it again we get:

$$(\Sigma_x^{-1}x + H^TR^{-1}Hx - H^TR^{-1}z - \Sigma_x^{-1}\mu_x)' = \Sigma_x^{-1} + H^TR^{-1}H$$

So the covariance is:

$$\Sigma_x^{-1} + H^T R^{-1} H$$

Finally we have:

$$\mathcal{N}\left(\mu = \left(H^{T}R^{-1}H + \Sigma_{x}^{-1}\right)^{-1}\left(H^{T}R^{-1}z + \Sigma_{x}^{-1}\mu_{x}\right), \Sigma = \Sigma_{x}^{-1} + H^{T}R^{-1}H\right)$$

Hands-on Excercises

Question 1

(a) Rotations

We just need to multiply the 3 matrices:

(b) Rotation matrix

The rotation matrix from Body to global for $\psi = \pi/7, \theta = \pi/5, \phi = \pi/4$ is:

```
R = \begin{bmatrix} 0.7288913 & 0.6812907 & -0.0676648 \\ -0.35101932 & 0.45676743 & 0.81741497 \\ 0.58778525 & -0.5720614 & 0.5720614 \end{bmatrix}
```

Our code print:

```
Question 1b:
Rotation Matrix for yaw 25.714285714285715 pitch 36.0 roll 45.0

[[ 0.72889913     0.68126907 -0.0676648 ]
        [-0.35101932     0.45674743     0.81741497]
        [ 0.58778525 -0.5720614     0.5720614 ]]
```

(c) Rotation Matrix to Euler angles

Code can be seen in function

Theory

Multiplying all the 3 matrices we get: (Note that these matrix performing a rotation clock-wise)

$$\begin{split} R_z\left(\psi\right)R_y\left(\theta\right)R_x\left(\phi\right) &= \begin{bmatrix} \cos\left(\psi\right) & \sin\left(\psi\right) & 0 \\ -\sin\left(\psi\right) & \cos\left(\psi\right) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\left(\theta\right) & 0 & -\sin\left(\theta\right) \\ 0 & 1 & 0 \\ \sin\left(\theta\right) & 0 & \cos\left(\theta\right) \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\left(\phi\right) & \sin\left(\phi\right) \\ 0 & -\sin\left(\phi\right) & \cos\left(\phi\right) \end{bmatrix} \\ &= \begin{bmatrix} \cos\left(\psi\right) & \sin\left(\psi\right) & 0 \\ -\sin\left(\psi\right) & \cos\left(\psi\right) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\left(\theta\right) & \sin\left(\theta\right) \sin\left(\phi\right) & -\sin\left(\theta\right) \cos\left(\phi\right) \\ 0 & \cos\left(\phi\right) & \sin\left(\phi\right) \\ \sin\left(\theta\right) & -\sin\left(\phi\right) \cos\left(\phi\right) & \cos\left(\phi\right) \end{bmatrix} \\ &= \begin{bmatrix} \cos\left(\psi\right) \cos\left(\theta\right) & \cos\left(\psi\right) \sin\left(\theta\right) \sin\left(\phi\right) + \sin\left(\psi\right) \cos\left(\phi\right) & -\cos\left(\psi\right) \sin\left(\theta\right) \cos\left(\phi\right) + \sin\left(\psi\right) \sin\left(\phi\right) \\ -\sin\left(\psi\right) \cos\left(\theta\right) & -\sin\left(\psi\right) \sin\left(\theta\right) \sin\left(\phi\right) + \cos\left(\psi\right) \cos\left(\phi\right) & \sin\left(\psi\right) \sin\left(\theta\right) \cos\left(\phi\right) + \cos\left(\psi\right) \sin\left(\phi\right) \\ \sin\left(\theta\right) & -\sin\left(\phi\right) \cos\left(\theta\right) & \cos\left(\phi\right) & \cos\left(\phi\right) & \cos\left(\phi\right) \end{bmatrix} \end{split}$$

And that equals to the given $R_{3\times 3}$ matrix.

From this we can see that:

$$\theta = \sin^{-1}\left(R_1^3\right)$$

So we have 2 options:

We have 2 options. $\theta_1 = \sin^{-1}(R_1^3)$ and $\theta_2 = -\pi - \theta_1$. We use $-\pi$ because it's clock-wise. And now we'll separate into 2 cases,

 $cos(\theta) \neq 0$:

we can compute the rest with, let's compute ϕ :

$$\frac{R_2^3 = -\sin\left(\phi\right)\cos\left(\theta\right)}{R_3^3 = \cos\left(\phi\right)\cos\left(\theta\right)} \to \tan\left(\phi\right) = -\frac{R_2^3}{R_3^3} \to \phi = \arctan\left(\frac{-R_2^3}{R_3^3}\right)$$

But arctan has 2 options. We Notice that because the rotation matrix values are fixed and we have two options for θ we get that:

- 1. if $-\frac{R_2^2}{\cos\theta}<0$ that we must have that $\phi\in[-\pi,0]$
- 2. else: $\phi \in [0, \pi]$

To avoid devisions we can write the condition $R_2^3 \cdot \cos \theta > 0$ and we notice that $\cos(\theta) = -\cos(-\pi - \theta)$ so when for one option for θ we now what are the angles for θ_2 . so:

- 1. if $-\frac{R_2^3}{\cos\theta_1} < 0$ that we must have that $\phi_1 \in [-\pi, 0]$ and $\phi_2 \in [0, \pi]$
- 2. else: $\phi_1 \in [0, \pi]$ and $\phi_2 \in [-\pi, 0]$

We can do the same for ψ :

$$\begin{aligned} R_1^1 &= \cos \left(\psi \right) \cos \left(\theta \right) \\ R_1^2 &= -\sin \left(\psi \right) \cos \left(\theta \right) \end{aligned} \rightarrow \tan \left(\psi \right) = \frac{-R_1^2}{R_1^1} \rightarrow \phi = \arctan \left(\frac{-R_1^2}{R_1^1} \right) \end{aligned}$$

1. if $-\frac{R_1^2}{\cos\theta_1} < 0$ that we must have that $\psi_1 \in [-\pi, 0]$ and $\psi_2 \in [0, \pi]$

2. else: $\psi_1 \in [0, \pi]$ and $\psi_2 \in [-\pi, 0]$

and

$$cos(\theta) = 0$$
:

It means that $\theta = \frac{\pi}{2} OR \frac{3\pi}{2}$.

If $\theta = \frac{\pi}{2}$:

$$= \begin{bmatrix} 0 & \cos(\psi)\sin(\phi) + \sin(\psi)\cos(\phi) & -\cos(\psi)\cos(\phi) + \sin(\psi)\sin(\phi) \\ 0 & -\sin(\psi)\sin(\phi) + \cos(\psi)\cos(\phi) & \sin(\psi)\cos(\phi) + \cos(\psi)\sin(\phi) \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \sin(\psi + \phi) & -\cos(\psi + \phi) \\ 0 & \cos(\psi + \phi) & \sin(\psi + \phi) \\ 1 & 0 & 0 \end{bmatrix}$$

So we have,

$$\psi + \phi = \tan^{-1} \left(\frac{R_2^1}{R_2^2} \right)$$
$$\psi + \phi = \tan^{-1} \left(-\frac{R_3^2}{R_3^1} \right)$$

So:

This linear system has an infinite solutions. So we can choose ψ to be whatever we want (including 0) and we get that $\phi_1 = \tan^{-1}\left(\frac{R_2^1}{R_2^2}\right)$ and $\phi_2 = \pi - \tan^{-1}\left(\frac{R_2^1}{R_2^2}\right)$. and else:

$$= \begin{bmatrix} 0 & -\cos(\psi)\sin(\phi) + \sin(\psi)\cos(\phi) & \cos(\psi)\cos(\phi) + \sin(\psi)\sin(\phi) \\ 0 & \sin(\psi)\sin(\phi) + \cos(\psi)\cos(\phi) & -\sin(\psi)\cos(\phi) + \cos(\psi)\sin(\phi) \\ -1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & \sin(\psi - \phi) & \cos(\psi - \phi) \\ 0 & \cos(\psi - \phi) & -\sin(\psi - \phi) \\ -1 & 0 & 0 \end{bmatrix}$$

Same as above we get:
$$\phi_1 = -\tan^{-1}\left(\frac{R_2^1}{R_2^2}\right) \text{ and } \phi_2 = \pi + \tan^{-1}\left(\frac{R_2^1}{R_2^2}\right)$$

Implementation

Can be found at the implementation python file in the rot mat to euler angles(rot mat) function.

(d)

For the matrix:

$$R = \begin{bmatrix} 0.813797681 & 0.440969611 & 0.378522306 \\ 0.46984631 & 0.882564119 & 0.0180283112 \\ -0.342020143 & 0.163175911 & 0.925416578 \end{bmatrix}$$

Is:

$$\begin{pmatrix} \phi \\ \theta \\ \psi \end{pmatrix} = \begin{pmatrix} -10 \\ -20 \\ -30 \end{pmatrix} or \begin{pmatrix} 170 \\ -160 \\ 150 \end{pmatrix}$$

Quesion 1d:

Two possible angle values:

-10.000000078920193 -19.99999980143038 -29.99999998990158 169.99999992107982 -160.00000001985697 150.00000001009843

Question 2

We want to calculate the transformation from Global to Camera, Means we want: $R_G^C, t_{C \to G}^C$. We are given R_G^C and $t_{C \to G}^G$ and we have that:

$$t^c_{C \to G} = R^C_G t^G_{C \to G}$$

So, our desired matrix is:

$$\begin{bmatrix} \ell^C \\ 1 \end{bmatrix} = \begin{pmatrix} R_G^C & R_G^C t_{C \to G}^G \\ 0 & 1 \end{pmatrix} \begin{bmatrix} \ell^G \\ 1 \end{bmatrix}$$

Result:

$$\ell^C = \begin{pmatrix} -555.2033 \\ 351.31482 \\ 450 \end{pmatrix}$$

```
Quesiton 2:
l_cam is:
[[-555.20335297]
[ 351.31482926]
[ 450. ]]
```

Question 3 | An autonomous ground vehicle (robot) is commanded to move forward by 1 meter each time step. Due to imperfect control system, the robot instead moves forward by 1.01 meter and also rotates by 1 degree.

(a)

In a 2D scenario, the pose of a robot is represented by a 3-element vector: $(x, y, \vartheta)T$, where (x, y) represents the position coordinates, and ϑ represents the orientation angle.

Translation is relative to robot's frame, therefore $t = (0,1)^T$ - We assume that "forward" means in the Y'th Global CS direction. Commanded:

$$T_k^{k+1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Actual (assuming angle's error is counter clock-wise):

$$T_k^{k+1} = \begin{bmatrix} \cos(1) & -\sin(1) & 0\\ \sin(1) & \cos(1) & 1.01\\ 0 & 0 & 1 \end{bmatrix}$$

(b)

Evolution of robot pose for 10 steps using pose composition. In terms of x-y position and orientation angle for consecutive times k, k + 1:

Notice that the heading is actually the image of e_2 under the transformation so it'll be R_1 (means the first column). We thought that "Forward" means in the Y direction.

