Park	Seonchie	, park	
Preface			
Seoncheol Park			
Seoncheol Park			
	Seonche 21'		
	oncheol Park		
Sec	יחטיי	nork	-ncheol*

Park	Seonches	, park	
Seoncheol P			
Seonches			
Seoncher			
Seoffer			
cheol Park			
conc			
Seon			
oncheol Park			
CP(
, park			
Seoncheol Park			
	Seoncheol Park Pa	ort I park	
ol Park	Sec	ncheol Park	
Seoncheol Park	ı park		
	Seoncheol Park In	tro Se	
Seoncheol Park		Ero Seoncheol Park	
Seoncheo			
Seoncheol Park			
Seonche			
Seoncheol Park			
ark			
Seoncheol Pa			
l Park			
[Pair			
Seoncheol			
ieol Park			
6011			
Seonch			
ncheol Park			
ncheot .			
		3	
	Seoncheol Park		
	Seonche	park	-ncheol'

1 Introduction • 회귀분석(regression analysis): 설명변수와 반응변수 사이의 함수관계를 알아내는 통계적 방법 • 용어의 역사: Galton의 Regression toward the mean란 말에서부터 유래함 Seoncheol Park 1.1 Galton's data Seoncheol Park Q. 아버지와 아들 사이의 키 상관관계? library(HistData) Seonche xx = GaltonFamilies\$midparentHeight yy = GaltonFamilies\$childHeight plot(xx, yy, xlab="Father", ylab="Child", main="Galton's data") Seoncheol Seonche of Park

Galton's data Seoncheol P Seoncheol Park Seoncheol Park seon che 0 008 ncheol Pa താം തെയാ താ Seoncheol Pa 8 8 0 000 Child 8eoncheol Park ၃ ထ_ဝစ Seoncloo of ೲ Seoncheol Park ക 8-000 0000000 O •Seoncheol Park 0 0 00 Park^o seont seoncheol 72¹ 64 66 68 74 Father Figure 1.1: Figure: Galton's dataset Seoncheol F Seonchegl Park

Park	Seonches	, park	
Seoncheol Parl			
Seonches			
ol Park			
Seoncheol F			
Seonche			
cheol Park			
Seonche:			
Seoficin			
oncheol Park			
on(
Seons			
Seoncheol Park		Seonche	
Seo	oncheol Park Par	Seonche	
.17		t II park	
Seoncheol Park			
200	Simple Lines	ar Regression	
r\V	Somple Emica	eoncheol P	
Seoncheol Park			
50			
, park			
Seoncheol Park			
, park			
Seoncheol Park			
ark			
ı park			
Seoncheol Park			
l Park			
. I Pa			
Seoncheol Pa			
ieol Park			
160.			
Seoncheol Seoncheol			
ncheol Park			
UCINO .			
Seonch			
	Seonche	6	
eoner.		6 Seoncheol	
Seoncheol Park			
	_{eoncheol Park}		
S	SOUCHER	nork	ancheol

2 Simple Linear Regression Seoncheol Park

2.1 Regression analysis

- \mathbf{Goal} : Find a linear relationship between an explanatory variable (X) and a response variable (Y)
- Assumptions of Park
- Seoncheol Park 1. Linearity

$$E(Y|X=x) = \beta_0 + \beta_1 x$$

- $E(Y|X=x)=\beta_0+\beta_1 x$ 2. Y|x follows a normal distribution 3. Constant variance
- Seoncheol P3. Constant variance

$$\operatorname{Var}(Y|X=x)=\sigma^2<\infty$$

- 4. Explanatory variable X is a fixed variable (not random)
- 5. Response variable Y is a random variable with measurement error $\varepsilon \sim (0,\sigma^2)$
- · Simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \quad \text{or} \quad Y = \beta_0 + \beta_1 X + \varepsilon$$
 Seencheout and the second park

2.2 Ordinary least squares (OLS)

With n data points $(x_i,y_i)_{i=1}^n$, our goal is to find the $\mbox{\bf best}$ linear fit of the data

, our goal is to find the **best** l
$$(x_i, \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i)_{i=1}^n$$

Q. What is the **best** fit?

Gauss가 제안한 방식은 다음의 ordinary least squares (OLS)이다. heal Park

$$(\hat{\beta}_0,\hat{\beta}_1) = \underset{\beta_0,\beta_1}{\arg\min} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$
 seen the of Park

Exercise 2.1 (Least absolute deviation (LAD)). Least absolute deviation (LAD)에 대해 조 Seoncheol Park 사해보자.

위의 식을 풀기 위해 각각을 eta_0, eta_1 로 미분 후 0이 되는 \hat{eta}_0, \hat{eta}_1 을 찾는 전략을 이용하게 되는데, 여기서 **정규방정식(normal equation)**을 얻게 된다.

 $\begin{cases} -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) &= 0 \\ -\frac{2}{n} \sum_{i=1}^{n} x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) &= 0 \end{cases}$

Seonche ol Park

Park	Seonche	, park	
Seoncheol Park			
Seonches			
cheol Park			
Seoncheol Seoncheol			
Seonaria			
oncheol Park			
.ori			
Seonor			
Seoncheol Park			
Seor	ncheol Park Part	Seoncheol	
Seol	Part	bark	
Seoncheol Park	Seon		
Seo	ingar Model	Asymptotics	
٠١٠.	anicai ividuei	Asymptotics	
Seoncheol Park			
260.			
- 1/2			
Seoncheol Park			
50			
, park			
Seoncheol Park			
ark			
Seoncheol Park			
l Park			
, parl			
Seoncheol Parl			
leol Park			
leor.			
Seoncheol F			
ncheol Park			
ncheo.			
	Seoncheg		
	oncheol Park	nork 50-	ncheol

3 Asymptotic Theory for Least Squares

Theorem 3.1 (Random sampling assumption (Hansen (2022) Definition 1.2)). The variables (Y_i, X_i) are a random sample if they are mutually independent and identically distributed (i.i.d.) across i = 1, ..., n.

Theorem 3.2 (Best linear predictor 관련 assumption (Hansen (2022) Assumption 2.1)).

- 1. $E[Y^2] < \infty$
- seoncheol Park 2. $E\|X\|^2 < \infty$
 - 3. $Q_{XX} = E[XX^T]$ is positive definite

이 가정의 처음 두 개는 X,Y가 유한한 평균과 분산, 공분산을 갖음을 의미한다. 세 번째는 Q_{XX} 의 column들이 linearly independent하고 역행렬이 존재함을 보장한다.

 $(Q_{XX}$ 가 positive definite일 때 linearly independence는 찾아볼 것)

위의 random sampling과 finite second moment assumption을 가져간채로 least squares esconditimation에 대한 assumption을 다시 정리한다. (Hansen (2022) Assumption 7.1)

- 1. The variables (Y_i, X_i) , $i=1,\ldots,n$ are i.i.d. Seoncheol Park
- 2. $E[Y^2] < \infty$.
- $3. E \|X\|^2 < \infty.$
 - 4. $Q_{XX} = E[XX^T]$ is positive definite.

3.1 Consistency of Least Squares Estimator

이 절의 목표는 $\hat{\beta}$ 가 β 에 consistent함을

- 1. weak law of large numbers (WLLN)
- 2. continuous mapping theorem (CMT)

을 이용해 보이는 것이다. (Hansen (2022) 7.2)

Derivation을 다음과 같은 요소들로 구성된다. 이 Park

- 1. OLS estimatior가 sample moment들의 집합의 연속함수로 표현될 수 있다.
- 2. WLLN을 이용해 sample moments가 population moments에 converge in probability 함을 보인다.
- 3. CMT를 이용해 연속함수에서 converges in probability가 보존됨을 보장한다

그렇다면 먼저 OLS estimator를 다음과 같이 sample moments $\hat{Q}_{XX}=rac{1}{n}\sum_{i=1}^n X_iX_i^T$ 와 $\hat{Q}_{XX}=rac{1}{n}\sum_{i=1}^n X_iY_i$ 의 함수로 쓸 수 있다.

$$\hat{\beta} = \left(\frac{1}{n}\sum_{i=1}^n X_iX_i^T\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n X_iY_i\right) = \hat{Q}_{XX}^{-1}\hat{Q}_{XY}$$

 (Y_i,X_i) 가 mutually i.i.d. 라는 가정은 (Y_i,X_i) 로 구성된, 예를 들면 $X_iX_i^T$ 와 X_iY_i 가 i.i.d. 임을 의미한다. 이들은 또한 앞선 Assumption 7.1에 의해 finite expectation을 갖는다. 이러한 조건 하에서, $n \to \infty$ 일 때 WLLN은

$$\hat{Q}_{XX} = \frac{1}{n} \sum_{i=1}^{n} X_i X_i^T \overset{p}{\to} E[XX^T] = Q_{XX}, \quad \hat{Q}_{XY} = \frac{1}{n} \sum_{i=1}^{n} X_i Y_i \overset{p}{\to} E[XY] = Q_{XY}.$$

그 다음 continuous mapping theorem을 써서 $\hat{eta} o eta$ 임을 보일 수 있다는 것이다. $n o \infty$ 일 Second 때,

$$\hat{\beta} = \hat{Q}_{XX}^{-1} \hat{Q}_{XY} \xrightarrow{p} Q_{XX}^{-1} Q_{XY} = \beta.$$

Stochastic order notation으로 다음과 같이 쓸 수 있다.

$$\hat{\beta} = \beta + o_p(1)_{\text{seoncheol Park}}$$

3.2 Asymptotic Normality

Asymptotic normality를 다룰 때에는

- 1. 먼저 estimator를 sample moment의 함수로 쓰는 것으로부터 시작한다.
- 2. 그리고 그것들 중 하나가 zero-mean random vector의 sum으로 표현될 수 있고 이는 CLT를 적용 가능케 한다.

우선 $\hat{eta}-eta=\hat{Q}_{XX}^{-1}\hat{Q}_{Xe}$ 라고 두자. 그리고 이를 \sqrt{n} 에 곱하면 다음 표현을 얻을 수 있다.

$$\sqrt{n}(\hat{\beta} - \beta) = \left(\frac{1}{n} \sum_{i=1}^{n} X_i X_i^T\right)^{-1} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_i e_i\right).$$

즉 normalized and centered estimator $\sqrt{n}(\widehat{\beta}-\beta)$ 는 (1) sample average의 함수 $\left(\frac{1}{n}\sum_{i=1}^n X_i X_i^T\right)^{-1}$ 과 normalized sample average $\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i e_i\right)$ 의 곱으로 쓸 수 있다.

Seoncheol Park 그러면 뒷부분은 E[Xe]=0이고 이것의 k imes k 공분산함수를 다음과 같이 둘 수 있다. k

Seencheol
$$\Omega = E[(Xe)(Xe)^T] = E[XX^Te^2]$$
. Seencheol

 Ω 으라는 가정 하에 $X_i e_i$ 는 i.i.d. mean zero, 유한한 분산을 갖고 CLT에 의해

$$\frac{1}{\sqrt{n}} \sum_{i=1}^n X_i e_i \overset{d}{\to} \mathcal{N}(0,\Omega).$$

Seoncheon (2022) Assumption 7.2)

- 1. The variables $(Y_i,X_i), i=1,\ldots,n$ are i.i.d.
- seonche 2. $E[Y^4] < \infty$.
 - 3. $E\|X\|^4 < \infty$.
 - 4. $Q_{XX} = E[XX^T]$ is positive definite.

 $\Omega<\infty$ 임을 보이려면 jl번째 원소 $E[X_jX_le^2]$ 이 유한함을 보이면 될 것이다. Properties of Linear Projection Model (Hansen (2022) Theorem 2.9.6) (If $E|Y|^r<\infty$ and $E|X|^r<\infty$ for $r\geq 2$, then $E|e|^r<\infty$)을 이용해 위의 2, 3번 조건에 의해 $E[e^4]<\infty$ 임을 보일 수 있다. 그러면 expectation inequality에 의해 Ω 의 jl번째 원소는 다음과 같이 bounded 된다.

$$|E[X_j X_l e^2]| \leq E|X_j X_l e^2| = E[|X_j||X_l|e^2].$$

Stochastic order notation으로 다음과 같이 쓸 수 있다.

$$\mathrm{Se}^{\widehat{\beta}} = \beta + O_p(n^{-1/2}).$$

4 Asymptotic Theory for Quantile Regression eoncheol Park 4.1 Basics Seoncheol Park Check function $\begin{aligned} & \underset{\rho_{\tau}(x)}{\text{Park}} \\ & \rho_{\tau}(x) = x(\tau - I\{x < 0\}) = \begin{cases} -x(1-\tau), & x < 0 \\ x\tau, & x \geq 0 \end{cases} \end{aligned}$ $\mathrm{Seon}\psi_{\tau}(x) = \frac{d}{dx}\rho_{\tau}(x) = \tau - I\{x < 0\}, \quad x \neq 0.$ Seonched Park

Park	Seonches	, park	
Seoncheol			
olPark			
ach			
Seoffer			
cheol Park			
c 201			
Seur			
oncheol Park			
S			
, park			
Seoncheol Park			
	Seoncheol Park	ort IV	
, al Park		ort IV Park	
Seoncheol Park		- ce6	ncheol Park
Non	linear and No	nparametric	Models Seonched
Seoncheol Park		Seoncheol Park	
Seonches			
Seoncheol Park			
Seonche			
Seoncheol Park			
seom			
Seoncheol P			
l Park			
[Pai.			
Seoncher			
leol Park			
1601,			
Seono			
ncheol Park			
ncheo.			
Sec			
eoncheol Park		nggl Park	
eonches		114 Seonche	
Seoncheol Park			
	Seoncheol Park		
	Seonches	nork.	ncheol

5 Boosting

5.1 Boosting: 개요

- Boosting의 가장 큰 특징: base learner를 sequentially하게 fitting함
- Base learner로는 weak learner를 사용: tree를 예로 들면 한 번 정도 split한 tree를 base learner로 사용

Seoncheol Pa https://www.uio.no/studier/emner/matnat/math/STK-IN4300/h22/slides/lect10_modified.pdf seoncheol

5.2 AdaBoost Seoncheol

5.3 Gradient boosting

Seonc 부스팅 공부할 만한 자료: https://mlcourse.ai/book/topic10/topic10_gradient_boosting.h Seoncheol Pa

5.3.1 L^2 boosting

Reference: https://mdporter.github.io/DS6030/lectures/boosting.pdf

6 커널회귀

6.1 RKHS

Seoncheol Park 어떤 n imes p 행렬 A가 있을 때 이것의 column space를 C(A)라고 하자.

Ronald Christensen은 아래 $C(XX^T)=C(X)$ 의 결과를 the fundamental theorem of reproducing kernel Hilbert spaces라고 부른다.

Definition 6.1 (Two column spaces are equiv). For any matrix X, $C(XX^T) = C(X)$.

Proof. Clearly $C(XX^T)\subset C(X)$, so we need to show that $C(X)\subset C(XX^T)$. Let $x\in C(X)$. Then x=Xb for some b. Write $b=b_0+b_1$, where $b_0\in C(X^T)$ and $b1\perp C(X^T)$. Clearly, $Xb_1=0$, so we have $x=Xb_0$. But $b_0=X^Td$ for some d; so $x=Xb_0=XX^Td$ and $x\in C(XX^T)$.

Definition 6.2 (Equivalent Linear Models). If $Y=X_1\beta_1+e_1$ and $Y=X_2\beta_2+e_2$ are two models for the same dependent variable vector Y, the models are **equivalent** if $C(X_1)=C(X_2)$.

Since $C(X)=C(XX^T)$, this implies that the linear models $Y=X\beta_1+e_1$ and $Y=XX^T\beta_2+e_2$ are equivalent.

RKHS는 p-벡터 x_i 를 s-벡터 ϕ_i 로 $\phi_i=\left[\phi_0(x_i),\cdots\phi_{s-1}(x_i)\right]^T$ 로 변환시킨다. X를 x_i^T 들이 행으로 구성된 행렬로 보면 똑같은 논리로 ϕ_i^T 가 행으로 구성된 행렬 Φ 를 생각할 수 있다. $X^X=\left[x_i^Tx_j\right]$ 를 x_i 들의 inner products로 만드는 $n\times n$ 행렬로 보면 RKHS는 **reproducing kernel** $R(\cdot,\cdot)$ 이 존재해

$$\tilde{R} \equiv [R(x_i,x_j)] = [\phi_i^T D(\eta)\phi_j] = \Phi D(\eta)\Phi^T$$

가 ϕ_i 들의 n imes n inner product matrix이며 $D(\eta)$ 가 positive definite diagonal matrix가됨을 말해준다. $D(\eta)$ 가 positive definite diagonal matrix이므로 PA책 Theorem B.22에 의해 $D(\eta) = QQ^T$ 인 정방행렬 Q가 존재할 것이고 the fundamental theorem of reproducing

kernel Hilbert spaces에 따라 s가 유한하면 $C[\Phi D(\eta)\Phi^T]=C(\Phi)$ 일 것이다. 따라서 rk 모 Seoncheol Park $Y= ilde{R}\gamma+e$ 를 적합하는 것은 다음의 비모수모형 형 seonch

$$Y = \tilde{R}\gamma + \epsilon$$

$$Y = \Phi \beta + \epsilon$$

를 적합하는 것과 같다. 즉 rk 모형은 $eta=D(\eta)\Phi^T\gamma$ 로 reparametrization한 것이다. 특별히 rk 모형을 이요해 예측하는 것은 다음과 같이 하면 되다

$$\hat{y}(x) = \left[R(x,x_1), \dots, R(x,x_n)\right] \hat{\gamma}.$$

 Φ 를 가지고 linear structure를 적합하는 것이나 n imes n 행렬 $ilde{R}$ 을 이용해 적합하는 것이나 같을 것이고 이를 kernel trick이라 한다.

Theorem 6.1 (Hilbert space가 RKHS가 되기 위한 조건). A Hilbert space is a RKHS iff the evaluation functionals are continuous evaluation functionals are continuous.

Seonche 6.2 Kernel Trick

Kernel trick의 가장 큰 장점은 알려진 함수 $R(\cdot,\cdot)$ 을 쓰므로 $ilde{R}$ 을 만들어내기 쉽다는 것이다. 반대로 $\phi_j(\cdot)$ 함수들에서 s를 specify하는 것은 시간이 더 걸릴 것이다.

또한 n imes s 행렬 Φ 는 s 가 크면 이상해지는데, \tilde{R} 은 항상 n imes n 이 되어 s 가 너무 커질때 이상해지거나 s가 너무 작을때 단순화되는 것을 막아준다.

 $s \geq n$ 이고 x_i 들이 distinct (같은 값을 갖는 x들이 없다는 뜻)라면 \tilde{R} 은 $n \times n$ 이고 $\operatorname{rank} n$ 인 행렬이며 이것은 saturated model (데이터 수 만큼 모수가 있는 모형)을 만든다. LS estimate는 fitted value가 obs와 같은 자료를 만들 것이며 d.f는 0이 될 것이다. 즉 overfitting이 있는 것인데, 그래서 보통 kernel trick은 penalized (regularized) estimation과 같이 사용하게 된다.

 $s\geq n$ 일 때에는 다른 $R(\cdot,\cdot)$ 을 선택한다 하더라도, 같은 $C(ilde{R})$ 을 주어 같은 모형을 주는 셈이 된다. 즉 같은 least squares fits를 준다. 그러나 parametrization을 다르게 하고 거기에 penalty를 주는 방식 (ridge, LASSO 등)으로 다른 fitted value를 만들어낼 수 있다.

사용하려고 하는 ϕ_j 함수들을 다 알고 있을 경우, rk를 쓰는 이득이 었다. 그러나 ϕ_j 를 다루기 어렵거나 $s=\infty$ 일 경우에는 rks가 도움이 될 것이다.

다음은 많이 쓰이는 rks들을 정리해 놓았다. $\|u-v\|$ 에만 의존하는 rk들을 **radial basis function** Seoncheol Park rk라고 부른다.이