

Chandra Krintz

Computer Science Dept. Univ. of California, Santa Barbara

KDT Mind Meld Mar. 5, 2012

AppScale

- A cloud platform
 - Distributed system that provides a complete runtime stack
 - ▶ Upload (Python, Java, Go, ...) programs and web services
 - Providing scalable program-level abstractions via well-defined interfaces
 - Different storage options, user management, tasking, messaging,...
 - ▶ Automates configuration, distributed deployment
- Executes over
 - Virtualized cluster resources (requires manual VM instantiation)
 - Infrastructure-as-a-Service (automatically)
 - ▶ Amazon EC2, Eucalyptus, any IaaS with euca2ools support
 - Isolation at either/both the VM and process level

- Open source
 - Facilitate research into the next generation of
 - ▶ Cloud runtime systems, services, applications, technologies
 - Engender a community of users
 - Leverage and integrate wide variety of popular open source technologies
 - ▶ HTTP proxies, applications servers, load balancers, databases, multimedia, communications, distributed locking, messaging, programming models (mapreduce)...
 - ▶ Emerging research: StochKit, KDT, ...

- Open source
- Automate configuration/deployment of distributed apps
 - Broaden participation in use of cloud systems
 - Increase programmer productivity: cloud/web/distributed apps
 - Reduce the overhead of using popular distributed open source technologies

- Open source
- Automate configuration/deployment of distributed apps
- Portability for cloud applications
 - Provide a universal set of APIs
 - Over different cloud fabrics
 - Without application modification
 - "Write Once, Run Anywhere (WORA)" for the cloud
 - Eliminate lock-in to any single public cloud vendor
 - Encourage cost competition
 - Investigate and facilitate hybrid cloud use

- Open source
- Automate configuration/deployment of distributed apps
- Portability for cloud applications
- For a wide range of applications and application domains
 - Using different programming languages & programming models
 - Multiple domains:
 - Web service based
 - Computationally intensive (HPC)
 - Data analytics

- Open source
- Automate configuration/deployment of distributed apps
- Portability for cloud applications
- For a wide range of applications and application domains
- Mirror public cloud technology "standard"
 - Scalable, efficient, fault resilient, and elastic
 - API compatiblity with "standard"
 - Google App Engine (GAE)
 - Engender user community from an existing one
 - Real applications written by others to evaluate
 - Portable API for popular cloud services
 - Data access/storage, mail/messaging, task execution, monitoring
 - VM management (coordination with IaaS layer)

Google App Engine (GAE)

GAE: Upload to Google Public Cloud

From GAE to AppScale

Your local cluster resources (virtualized and/or managed via Eucalyptus) or Amazon EC2

APIs

	GAE	AppScale
Datastore	BigTable/Megastore	Cassandra HBase Hypertable MemcacheDB MongoDB MySQL Cluster Redis Voldemort Amazon SimpleDB

APIs

	GAE	AppScale	
Datastore	BigTable/Megastore	Open Source Alternatives	
Blobstore	Proprietary	Tornado + Datastore	
Memcache	Proprietary Memcache	memcached	
XMPP	Google Talk	ejabberd	
Channel API	Google Talk	ejabberd and Strophe.js	
Images	Picassa	Google SDK	
URL Fetch	Proprietary	Google SDK	
Task Queues, Cron	Proprietary	RabbitMQ	
Mail	Google Mail	Sendmail	
MapReduce	Task Queues, Pipeline	Task Queues, Hadoop	
VMInstance Control		Euca2ools	
Cloud configuration		Neptune 🍄	
HPC and data analytics		Neptune enabling MPI, UPC, Erlang, X10, StochKit, KDT,	

Neptune

- Domain-specific programming language and runtime
 - Extensions to the Ruby programming language
- Automating deployment of non-GAE (non-web-service) application code
- Facilitates deployment of apps from other app domains
 - HPC

- Data analysis
- Graph processing
- Written in any programming language
 - ▶ Python, Java, Go, Ruby, C/C++, Erlang, ...
- Supported toolkits (Neptune *types*)
 - ▶ MPI, UPC, X10, StochKit, KDT
 - ▶ MapReduce (Hadoop, Hive)
- Runtime integrates with and leverages AppScale

Using Neptune

- Deploy an AppScale cloud; place code
- On any machine with Ruby and Neptune (gem) write/run job specification
 - Storage (code and data) can be local filesystem, AppScale datastore, Google Bigtable, Amazon S3, Walrus (Eucalyptus), ...

```
neptune :type => :mpi,

:code => "/code/ring",

:nodes_to_use => 32,

:output => "/output/ring"
```


Using Neptune

- Deploy an AppScale cloud; place code
- On any machine with Ruby and Neptune (gem) write/run job specification
 - Storage (code and data) can be local filesystem, AppScale datastore, Google Bigtable, Amazon S3, Walrus (Eucalyptus), ...

```
neptune :type => :kdt,

:code => "/code/Graph500.py",

:nodes_to_use => 16,

:output => "/output/graph500"
```


AppScale Software Stack

_	jabberd (xmpp channel support)	Blobstore	Task Q	memcached	Neptune runtime	
Routing (Nginx and HAProxy)				TUTILITIE		
AppController and AppServer(s)			HPC/Analytics Toolkits			
H A D	A (API, plug-in, automatic configuration and deployment support)					
O O P	O Datastore (HBase or Hypertable)			Datastore (Casaandra MyCO), Chuston		
HDFS			•	(Cassandra, MySQL Cluster, Voldemort, MongoDB, MemcacheDB, Redis,)		

AppScale Deployment

- Available as
 - A virtual machine image
 - ▶ Eucalyptus compatible: precluding our need to support all Linux distributions and virtualization layers
 - An Amazon EC2 AMI
 - Open source (automated AppScale image installation)
- Tool set for command-line cloud deployment
 - Inspired by AWS tools for instance management
 - ▶ Run, describe, terminate instances
 - Automates deployment & configuration of all components

AppScale software stack
(all AppScale components)

Operating System
(Ubuntu Lucid)

AppScale VM image (on disk, prior to instantiation)

AppScale as a Deployed VM Instance

- AppScale roles (specify via a YAML config file, or use defaults)
 - AppController, AppLoadBalancer, AppServer, AppDB
 - Cloud status monitor, ZooKeeper, Neptune runtime/agent, TaskQ master/agent, logging master/agent
 - Custom, Open (for fast elasticity)

AppScale Cloud Deployment

Summary

- AppScale is an open source distributed execution platform for a wide range of applications
 - Automatically deploys complex distributed technologies
 - Investigate different domains, programming systems, cloud technologies and services
- API-compatibility with GAE
 - GAE apps run over AppScale without modification
- IaaS-portable API/deployment for HPC and data analytics
- Hybrid cloud support
 - Automatic use of different public clouds and their services
- Many research directions to investigate
 - Runtime systems, OS/virtualization, dist computing, optimization
 - Cloud (cost models/estimation, scaling/elasticity, hybrids)

Thanks!

- Students and Visitors!
 - Vaibhav Arora, Maciej Baranski, Chris Bunch, Navyasri Canumalla, Jovan Chohan, Navraj Chohan, Nupur Garg, Anand Gupta, Shashank Hedge, Matt Hubert, Jonathan Kupferman, Puneet Lakhina, Yiming Li, Nagy Mostafa, Yoshihide Nomura (Fujitsu), Kowshik Prakasam, Raviprakash Ramanujam, Andres Riofrio, Sujay Sundaram, Bing Wei, Michal Weigel
- Support
 - Google, IBM, NSF, NIH

http://www.cs.ucsb.edu/~ckrintz

http://appscale.cs.ucsb.edu/

Backup Slides

AppScale Cloud Default Deployment

AppScale Cloud Default Deployment

AppScale Cloud Default Deployment

- - AppController (AC), AppLoadBalancer (ALB), AppServer (AS), AppDB (DBM,DBS)
 - Cloud status/monitors (CS), ZooKeeper (ZK), Neptune server (NS), TaskQ master/agent (TQM,TQA)

UCSB■ Custom, Open

Private cloud - Public cloud

Private cloud K - Private cloud J

Public cloud (zone A) - Public cloud (zone B)

Public cloud vendor X - Public cloud vendor Y

Private cloud - Public cloud

Private cloud K - Private cloud J

Public cloud (zone A) - Public cloud (zone B)

Public cloud vendor X - Public cloud vendor Y

AppScale Interoperability & Hybrid Support

- GAE applications: over AppScale or GAE
- Datastore support via database support layer
 - AppScale native (plugins), AWS SimpleDB, AWS S3, GAE Bigtable
- Task Q support
 - AppScale native (rabbitMQ), AWS SQS, Microsoft Azure, GAE
- Task agent support
 - Web service and background (non-GAE) process on-premise
 - Python, Ruby, Java, Go, R, C/C++
 - Python, Java, Go

& over AWS

over GAE

- High-performance toolkits (not GAE compatible)
 - MPI, UPC, X10, StochKit, KDT
 - MapReduce (Hadoop), Hive support (offline analytics)

