Quantitative Trading Strategies

Haixiang Zhu

Finance Area, Department of Economics, Stony Brook University

Outline

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

Quantitative Trading

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

Academia

- Modern Portfolio Theory (MPT), Markowitz (1952, 1959)
- M&M Theorem, Modigliani and Miller (1958)
- CAPM, Sharpe (1964)
- Efficient Captial Market, Fama (1970)
- B-S Option Pricing Model, Black and Scholes (1973)
- Arbitrage Pricing Pheory (APT), Ross (1976)
- B-L Gobal Portfolio Optimization Model, Black and Litterman (1992)
- FF3, Fama & French (1993)
- FF5, Fama & French (2015)

	Risk/portfolio management	Derivatives pricing
Goal	model the future	extrapolate the present
Environment	real probability $\mathbb P$	risk-neutral probability $\mathbb Q$
Processes	discrete-time series	continuous-time martingales
Dimension	large	low
Tools	multivariate statistics	Ito calculus, PDE's
Challenges	estimation	$\operatorname{calibration}$
Business	buy-side	sell-side

Quantitative Trading

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

6/32

Learning Tips

- Quantconnect: Alternative for Quantopian
- Quantiacs
- Blueshift

8/32

Quantitative Trading

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

9/32

Smart Beta

Along with the concept of factor/style investing, Smart Beta becomes a hop topic in the last few years.

Definition (Smart Beta Strategies)

Smart beta strategies are designed to add value by systematically selecting, weighting, and rebalancing portfolio holdings on the basis of factors or characteristics other than market capitalization.

Why is it so disruptive to the business of traditional active management?

- simple and rule-based
- transparent
- lower fees

Smart Beta Model

$$E(R^e) = \alpha + \beta' \lambda$$

where

 $\lambda: risk premium$

 $\beta: {\rm risk} \ {\rm exposure}$

 α : pricing error

Performance of classic factors in China's market (2004/01-2020/10)

Descriptive Statistics

	MKT_RF	SMB	HML	RMW	\mathbf{CMA}	UMD	\mathbf{ME}	ROE	INV
count	202	202	202	202	202	202	202	202	202
mean	0.92	0.64	0.06	0.32	-0.28	0.04	0.86	0.73	0.02
std	7.98	4.81	3.89	3.46	2.35	4	4.18	3.47	2.06
\min	-25.14	-20.10	-14.76	-8.72	-11.69	-13.23	-19.46	-9.42	-9.63
25%	-3.45	-2.30	-1.94	-1.48	-1.80	-2.30	-1.55	-1.38	-1.10
50%	1.04	0.40	0.05	0.08	-0.45	0.03	0.87	0.71	-0.15
75%	4.87	3.64	2.07	1.95	1.17	2.54	3.51	2.74	1.26
max	28.58	19.36	19.30	16.45	5.69	13.14	18.27	15.24	6.66
t-stat	1.65	1.90	0.22	1.32	-1.70	0.16	2.94	2.97	0.16

Diego Zhu Quant DoE Stony Brook 13/32

How to combine?

• Reasearch: e.g. Altman's Z-score (1968)

$$\begin{split} Z_{score} = & 1.2 \cdot \frac{\text{Working capital}}{\text{Total assets}} + 1.4 \cdot \frac{\text{Retained Earnings}}{\text{Total assets}} + 3.3 \cdot \frac{\text{EBIT}}{\text{Total assets}} \\ & + 0.6 \cdot \frac{\text{Market value of equity}}{\text{Book value of total liabilities}} + 0.999 \cdot \frac{\text{Sales}}{\text{Total assets}} \end{split}$$

- IC: $\operatorname{corr}(\beta_{-1}, R^e)$
- IR: $\frac{Mean_{IC}}{Std_{IC}}$

Quantitative Trading

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

Asset Allocation

- 1952, Markowitz's Mean-Variance optimization (MVO)
 Improvement: incoporating macro data to estimate expected return and CVaR as alternative risk measure
- 1990, Fischer Black & Robert Litterman, Goldman Sachs, B-L Model
- 1996, Ray Dalio, Bridgewater, All Weather Strategy 55% fixed income, 30% stocks and 15% real assets
- 2005 Edward Qian, PanAgora, Risk Parity Model

Risk Parity Model

The risk contribution for each asset i is given by

$$RC_i = w_i \frac{\partial \sigma_p}{\partial w_i} = w_i \frac{(\sum w)_i}{\sqrt{w' \Sigma w}}$$

Solution

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} \left(\frac{\sqrt{w' \Sigma w}}{n} - RC_i \right)^2$$

Black-Litterman Model

First, consider the implied excess equilibrium return

$$\Pi = \delta \Sigma \cdot w_{mkt}$$

where

 δ : risk aversion coefficient

 Σ : covariance matrix of excess returns

 w_{mkt} : market capitalization weight

Black-Litterman Model (cont'd)

Then compute the posterior expected return

$$E(R) = [(\tau \Sigma)^{-1} + P'\Omega^{-1}P]^{-1}[(\tau \Sigma)^{-1}\Pi + P'\Omega^{-1}Q]$$

where

 τ : scalar

P: view matrix

Q: view vector

 Ω : diagonal covariance matrix with entries of the uncertainty within each view

Black-Litterman Model (cont'd)

After that, compute the posterior covariance matrix

$$\Sigma_p = \Sigma + (\tau \Sigma)^{-1} + P' \Omega^{-1} P]^{-1}$$

Finally, plugging updated expected return and covariance matrix back in MVO.

Market Timing/GTAA

Summary of Risky Assets

- U.S. Equity: 10
- Global ex U.S. Equity: 19
- Fixed Income: 6
- Real Assets: 7

Strategy

• Define signal:
$$Signal_t = \frac{MAMOM_t(12)}{Vol_t(12)} = \frac{\frac{P_t}{MA_t(13)} - 1}{Std_t(12)}$$

where $MA_t(13) = Mean(P_t, P_{t-1}, \dots, P_{t-12})$

- Portfolio Sort: select top n(15) cross-sectional assets
- Risk control (thereshold: 0): remove assets whose signal < 0

Market Timing/GTAA (2000/1-2020/9)

22 / 32

Quantitative Trading

A Brief History

Learning Tips

Smart Beta Strategy

Asset Allocation Strategy

AI-driven Strategy

AI-driven

- Stock Selection
- Qlib
- FinRL

Research from HTSC

Feature Selection

Total Factors: 72

• Valuation factors: 5

• Size factors: 2

• Growth factors: 8

• Quality factors: 2

• Size factors: 8

• Leverage factors: 2

• Risk factors: 6

• Liquidity factors: 6

• Technical indicators: 15

• Momentum factors: 9

• Earnings Expectation: 9

Data Cleaning

• Winsorization: MAD

• Normalization: Z-Score

• Neutralization: Cap + Style(Industry)

Algorithm (lb: Months)	Annualized Return	Benchmark (CSI300)	Excess Return	Sharpe Ratio	Max Draw- down
LSTM(36)	27.11%	5.51%	21.60%	0.99	-20.44%
XGBoost(12)	18.42%	2.25%	16.17%	0.69	-35.82%
LR(36)	19.63%	5.51%	14.12%	0.75	-20.93%
SVM(12)	20.89%	2.25%	18.64%	0.77	-37.73%
GaussianNB(12)	13.82%	2.25%	11.57%	0.58	-32.57%
RF(12)	17.44%	2.25%	15.19%	0.66	-31.57%

FinRL

Diego Zhu Quant DoE Stony Brook 29/32

Figure:	Qlib built-in Al Model	(qlib.contrib.model)
Category		Model
Linear		Linear (parameter: "ols", "nnls", "ridge" or "lasso")
Boosting		LightGBM
		Catboost
		XGBoost
Time series based NN		GRU
		LSTM
		ALSTM
		SFM
		TFT
GNN		GATs
Other NN		MLP
		DNN

32 / 32