1 Proposer un modèle de connaissance et de comportement

1.1 Établir un modèle de connaissance par des fonctions de transfert

Exercice 1 - La Seine Musicale*

B2-04 Pas de corrigé pour cet exercice.

Soit le schéma-blocs suivant.

Question 1 En considérant que la perturbation $C_{pert}(p)$ est nulle, déterminer $H_f(p) = \frac{\Omega_m(p)}{\Omega_c(p)}$ sous forme canonique.

Question 2 Exprimer la fonction de transfert $H_r(p) = \frac{\Omega_m(p)}{C_{pert}(p)}$ en la mettant sous la forme : $H_r(p) = -\frac{\alpha \left(1 + \tau p\right)}{1 + \gamma p + \delta p^2}$. Exprimer α, τ, γ et δ en fonction des dif-

férents paramètres de l'étude.

Question 3 Exprimer $X_{ch}(p)$ en fonction de $\Omega_m(p)$ et $C_{pert}(p)$.

Corrigé voir ??.

1.2 Déterminer les caractéristiques d'un solide ou d'un ensemble de solides indéformables

Exercice 2 - Parallélépipède*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède de cotés a, b et c et de masse m est donnée en son centre d'iner-

tie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$$
 avec $A = m \frac{b^2 + c^2}{12}$,

$$B = m \frac{a^2 + c^2}{12}$$
, $C = m \frac{a^2 + b^2}{12}$.
Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{2} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir ??.

Exercice 3 - Parallélépipède percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \overrightarrow{k}) de rayon R et de hauteur H et de masse m est donnée en

son centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\left(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\right)}$$
 avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

La matrice d'inertie d'un parallélépipède rectangle de cotés a, b et c et de masse m est donnée en son

centre d'inertie par
$$I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{(i,j,k)}}$$
 avec son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{\overrightarrow{(i,j,k)}}$

$$A = m \frac{b^2 + c^2}{12}$$
, $B = m \frac{a^2 + c^2}{12}$, $C = m \frac{a^2 + b^2}{12}$. Soit la pièce suivante.

On pose
$$\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$$

On pose $\overrightarrow{OA} = \frac{a}{3} \overrightarrow{x} + \frac{c}{2} \overrightarrow{z}$. **Question 1** Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G, en A puis O.

Corrigé voir ??.

Exercice 4 - Cylindre percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \vec{k}) de rayon R et de hauteur H et de masse m est donnée en

rayon
$$R$$
 et de hauteur H et de masse m est donnée en son centre d'inertie par $I_G(1) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{pmatrix}_{(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})}$ avec

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

On pose
$$\overrightarrow{OA} = -\frac{R}{2}\overrightarrow{x}$$
.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir ??.

Exercice 5 - Cylindre percé*

B2-10 Pas de corrigé pour cet exercice.

La matrice d'inertie d'un cylindre d'axe (G, \vec{k}) de rayon R et de hauteur H et de masse m est donnée en

$$A = m\left(\frac{R^2}{4} + \frac{H^2}{12}\right)$$
 et $C = m\frac{R^2}{2}$.

Soit la pièce suivante.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en G puis en O.

Corrigé voir ??.

Exercice 6 - Disque**

B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique μ .

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en O.

Corrigé voir ??.

Exercice 7 - Disque**

B2-10 Pas de corrigé pour cet exercice.

Soit un secteur de disque de rayon R, d'épaisseur négligeable et de masse surfacique μ . Il est percé d'un trou de rayon r tel que $\overrightarrow{OA} = \frac{3}{4}R\overrightarrow{x}$.

Question 1 Déterminer la position du centre d'inertie G du solide.

Question 2 Déterminer la matrice d'inertie du solide en O.

Corrigé voir ??.

1.3 Proposer un modèle cinématique à partir d'un système réel ou d'une maquette numérique Exercice 8 – Mouvement T – *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$.

Question 3 Retracer le schéma cinématique pour $\lambda = -20 \, \text{mm}$.

Corrigé voir ??.

Exercice 9 - Mouvement R *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{r}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \pi$ rad.

Corrigé voir ??.

Exercice 10 - Mouvement TT - *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\lambda = 10 \, \text{mm}$ et $\mu = 10 \, \text{mm}$.

Question 3 *Retracer le schéma cinématique pour* $\lambda = 0 \, \text{mm}$ *et* $\mu = 20 \, \text{mm}$.

Corrigé voir ??.

Exercice 11 - Mouvement RR *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec L = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{2}$ rad et $\varphi = \pi$ rad.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\varphi = -\frac{\pi}{4}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta = \frac{3\pi}{4}$ rad et $\varphi = 0$ rad.

Corrigé voir ??.

Exercice 12 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir ??.

Exercice 13 - Mouvement RT *

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta = \frac{\pi}{4}$ rad et $\lambda(t) = 20$ mm.

Question 3 Retracer le schéma cinématique pour $\theta = \frac{-\pi}{4}$ rad et $\lambda(t) = -20$ mm.

Corrigé voir ??.

Exercice 14 - Mouvement RR 3D ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \frac{\pi}{2}$ rad et $\varphi(t) = \frac{\pi}{2}$ rad.

Corrigé voir ??.

Exercice 15 - Mouvement RR 3D **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique en 3D pour $\theta(t) = \pi$ rad et $\varphi(t) = -\frac{\pi}{4}$ rad.

Corrigé voir ??.

Exercice 16 - Mouvement RT - RSG ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad et $\lambda(t) = 20$ mm. On notera I_1 le point de contact entre 0 et 1.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} \ rad \ et \ \lambda(t) = 30 \, \text{mm. On notera } I_2 \ le \ point \ de contact \ entre \ \mathbf{0} \ et \ \mathbf{1}. \ On \ précisera \ la \ position \ des \ points \ I_{0,0} \ et \ I_{0,1}, \ points \ résultants \ de \ la \ rupture \ de \ contact \ lors \ du passage \ de \ \theta(t) \ de \ 0 \ a \ \frac{\pi}{2}.$

Corrigé voir ??.

Exercice 17 – Pompe à palettes **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 *Retracer le schéma cinématique pour* $\theta(t) = 0$ *rad.*

Question 3 Retracer le schéma cinématique pour $\theta(t) = \pi rad$.

Question 4 En déduire la course de la pièce 2.

Corrigé voir ??.

Exercice 18 - Pompe à pistons radiaux ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad$.

Question 5 En déduire la course de la pièce 2.

Corrigé voir ??.

Exercice 19 - Système bielle manivelle ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, R = 10 mm et L = 20 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2}$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 4 En déduire la course de la pièce 3.

Corrigé voir ??.

Exercice 20 – Système de transformation de mouvement $\star\star$

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 4 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Question 5 En déduire la course de la pièce 3.

Corrigé voir ??.

Exercice 21 - Barrière Sympact ** B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad$.

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2}$ rad.

Corrigé voir ??.

Exercice 22 - Barrière Sympact **

B2-12 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC}=H$ $\overrightarrow{j_0}$ et $\overrightarrow{CB}=R$ $\overrightarrow{i_1}$. De plus, $H=120\,\mathrm{mm},\,R=40\,\mathrm{mm}$ $BI=10\,\mathrm{mm}.$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{2} rad.$

Corrigé voir ??.

Exercice 23 - Poussoir **

B2-12 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L \overrightarrow{i_0} + H \overrightarrow{j_0}$. De plus, $H = 120 \,\text{mm}, L = 40 \,\text{mm}.$

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{4} rad.$

Question 3 Retracer le schéma cinématique pour $\theta(t) = -\frac{\pi}{4} rad.$

Corrigé voir ??.

Exercice 24 - Système 4 barres ***

B2-12 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\text{mm}$; $\overrightarrow{OC} = -d \overrightarrow{x_0} e \overrightarrow{y_0}$ avec $d = 89.5 \,\text{mm}$ et e =160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta_1(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta_1(t) = -\frac{\pi}{2} rad.$

Question 4 En déduire la course angulaire (θ_4) de la pièce 3.

Corrigé voir ??.

Exercice 25 - Maxpid ***

B2-12 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a = 107,1 \,\mathrm{mm},\ b = 80 \,\mathrm{mm},\ c = 70 \,\mathrm{mm},$ $d = 80 \,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Retracer le schéma cinématique pour $\theta(t) = 0$ rad.

Question 3 Retracer le schéma cinématique pour $\theta(t) = \frac{\pi}{2} rad.$

Question 4 En déduire la course de λ .

Corrigé voir ??.

1.4 Modéliser la cinématique d'un ensemble de solides

Exercice 26 - Mouvement T - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$.

Question 1 Quel est le mouvement de 1 par rapport à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir ??.

Exercice 27 - Mouvement R *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \,\mathrm{mm}$.

Question 1 *Quel est le mouvement de* 1 *par rapport* à 0.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **1** par rapport à **0**.

Corrigé voir ??.

Exercice 28 - Mouvement TT - *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Quel est le mouvement de **2** par rapport à **0**.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un cercle de centre A et de rayon R.

Question 3 Donner les expressions de $\lambda(t)$ et $\mu(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\lambda(t)$, $\mu(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 29 - Mouvement RR *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point C.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point C dans le mouvement de **2** par rapport à **0**.

On souhaite que le point C réalise un segment entre les points [-25, 25] et [25, 25].

Question 3 Donner les expressions de $\theta(t)$ et $\varphi(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\varphi(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 30 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \,\mathrm{m\,s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 31 - Mouvement RT *

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

On souhaite que le point B réalise un segment entre les points [-25,25] et [25,25].

Question 3 Donner les expressions de $\theta(t)$ et $\lambda(t)$ permettant la réalisation de cette trajectoire à la vitesse $v = 0.01 \, \mathrm{m \, s^{-1}}$.

Question 4 En utilisant Python, tracer $\theta(t)$, $\lambda(t)$ et la trajectoire générée.

Corrigé voir ??.

Exercice 32 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir ??.

Exercice 33 - Mouvement RR 3D **

C2-05

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Donner l'ensemble des positions accessibles par le point B.

Question 2 Donner l'équation horaire (trajectoire en fonction du temps) du point B dans le mouvement de **2** par rapport à **0**.

Corrigé voir ??.

Exercice 34 - Mouvement T - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$.

Question 1 *Donner le torseur cinématique* $\{\mathcal{V}(1/0)\}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 1/0)$.

Corrigé voir ??.

Exercice 35 - Mouvement R *

B2-13

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$.

Question 1 Déterminer $V(B \in 1/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(1/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 1/0)$.

Corrigé voir ??.

Exercice 36 - Mouvement TT - *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 37 - Mouvement RR *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_1}$ avec $L = 15 \, \text{mm}$.

Question 1 Déterminer $\overline{V(C \in 2/0)}$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 38 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point C*.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 39 - Mouvement RT *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 40 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 *Déterminer* $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 41 - Mouvement RR 3D *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm.

Question 1 Déterminer $V(C \in 2/0)$ par dérivation vectorielle ou par composition.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point C.

Question 3 Déterminer $\Gamma(C \in 2/0)$.

Corrigé voir ??.

Exercice 42 - Mouvement RT - RSG ** B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I.

Question 1 Déterminer $V(B \in 2/0)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 3 *Déterminer* $\Gamma(B \in 2/0)$.

Corrigé voir ??.

Exercice 43 – Pompe à palettes * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre

 $\lambda(t)$ i_1 . De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(2/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir ??.

Exercice 44 – Pompe à pistons radiaux * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$. De plus, e = 10 mm et R = 20 mm. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

Question 1 Donner le torseur cinématique $\{ \mathcal{V}(2/0) \}$ au point B.

Question 2 Déterminer $\Gamma(B \in 2/0)$.

Corrigé voir ??.

Exercice 45 - Système bielle manivelle * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CB} = L \overrightarrow{i_2}$. De plus, $R = 10 \,\text{mm}$ et $L = 20 \,\text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**).

Question 1 *Donner le torseur cinématique* $\{ \sqrt[4]{(2/0)} \}$ *au point B*.

Question 2 Déterminer $\Gamma(C \in 2/0)$

Corrigé voir ??.

Exercice 46 – Système de transformation de mouvement \star

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, $R = 30 \, \text{mm}$ et $H = 40 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**).

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(3/0) \}$ *au point B*.

Question 2 Déterminer $\Gamma(B \in 3/0)$.

Corrigé voir ??.

Exercice 47 - Barrière Sympact **

B2-13 Pas de corrigé pour cet exercice. Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$, $R = 40 \, \text{mm}$ $BI = 10 \, \text{mm}$.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**).

Question 1 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 2 Donner le torseur cinématique $\{ \mathcal{V}(3/2) \}$ au point B.

Corrigé voir ??.

Exercice 48 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice **??**). On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_1}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(1/0) \}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G \in 1/0)$.

Corrigé voir ??.

Exercice 49 - Maxpid ***

B2-13 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a = 107.1 \,\text{mm}$, $b = 80 \,\text{mm}$, $c = 70 \,\text{mm}$, $d = 80 \,\text{mm}$. Le pas de la vis est de 4 mm.

Il est possible de mettre la loi entrée-sortie sous la forme *** (voir exercice ??).

On définit le point G tel que $\overrightarrow{OG} = L\overrightarrow{x_4}$.

Question 1 *Donner le torseur cinématique* $\{ \mathcal{V}(4/0) \}$ *au point G*.

Question 2 *Déterminer* $\Gamma(G \in 4/0)$.

Corrigé voir ??.

1.5 Modéliser une action mécanique Exercice 50 – La Seine Musicale *

B2-14 Pas de corrigé pour cet exercice.

On choisit de représenter une demi-voile, de repère $\mathcal{R}_v\left(O;\overrightarrow{x_v},\overrightarrow{y_v},\overrightarrow{z}\right)$, par une portion de demi-sphère (**??**). On pourra remarquer qu'il n'y a pas de mouvement relatif entre les repères $\mathcal{R}_{C_G}\left(C_G;\overrightarrow{x_{C_G}},\overrightarrow{y_{C_G}},\overrightarrow{z}\right)$ et $\mathcal{R}_v\left(O;\overrightarrow{x_v},\overrightarrow{y_v},\overrightarrow{y_v},\overrightarrow{z}\right)$, associé à la demi-voile. On rappelle que $\overrightarrow{OC_G}=R\overrightarrow{y_{C_G}}$, avec R le rayon moyen de la voie de roulement.

FIGURE 1 – Paramétrage de la surface totale et élémentaire en coordonnées sphériques de la demi-voile

La figure **??** présente l'orientation du vent par rapport au plan de symétrie de la demi-voile dans le plan $(\overrightarrow{x_v}, \overrightarrow{y_v})$. La densité d'effort surfacique du vent sur la demi-voile, pour une vitesse de $9 \, \text{m s}^{-1}$, est noté $\overrightarrow{f}_{\text{vent}} = f \overrightarrow{u}$ avec $f = 54.7 \, \text{N m}^{-2}$, l'orientation de \overrightarrow{u} étant définie par l'angle constant $\alpha = (\overrightarrow{x_v}, \overrightarrow{u})$.

La base associée au système de coordonnées sphériques (r,θ,φ) est $(\overrightarrow{e_r},\overrightarrow{e_\theta},\overrightarrow{e_\varphi})$. La position du point P appartenant à la demi-voile est définie par $\overrightarrow{OP}=R\overrightarrow{e_r}$ avec R le rayon moyen de la voie de roulement $(R=22,75\,\mathrm{m})$. L'angle azimutal φ évolue entre $-\frac{\pi}{8}$ et $\frac{\pi}{8}$ et l'élévation θ

évolue entre 0 et $\frac{\pi}{2}$. On précise que, dans le cas présenté **??**, la surface élémentaire en coordonnées sphériques est notée $dS = R^2 \sin \theta d\theta d\phi$.

FIGURE 2 – Paramétrage angulaire

Question 1 Exprimer l'effort élémentaire du vent sur la demi-voile s'appliquant au point P sur la surface dS, noté $\overrightarrow{dF}_{vent}$.

Question 2 Déterminer par intégration l'expression du moment de l'action mécanique du vent selon l'axe $(O, \overline{z}), \overline{\mathcal{M}(O, vent \rightarrow demi-voile)} \cdot \overline{z}$ s'opposant à la rotation de la voile autour de l'axe (O, \overline{z}) en fonction de R, f et a.

Question 3 On définit F_{vent} tel que $(\overrightarrow{OC_G} \land F_{vent} \overrightarrow{x_{C_G}})$. $\overrightarrow{z} = \overline{\mathcal{M}(O, vent \rightarrow demi-voile)} \cdot \overrightarrow{z}$. En déduire l'expression de F_{vent} l'effort du vent au point C_G s'opposant au déplacement du chariot central.

Afin de modéliser le déplacement de la voile dans le cas le plus défavorable, on souhaite déterminer la valeur maximale de $|F_{\rm vent}|$.

Question 4 *Pour quelle valeur de* α *cet effort est-il maximal? Déterminer la valeur maximale de* $|F_{vent}|$.

Corrigé voir ??.

2 Proposer une démarche de résolution

2.1 Proposer une démarche permettant la détermination d'une action mécanique inconnue ou d'une loi de mouvement – PFS

Exercice 51 - Mouvement T - *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide 1. On note G le centre d'inertie de 1 tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin pneumatique positionné entre 1 et 0

permet de maintenir 1 en équilibre. On souhaite prendre en compte les frottements secs dans la liaison glissière.

Question 1 Réaliser le graphe d'analyse en faisant ap-

paraître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer l'effort que doit développer le vérin pour maintenir 1 en équilibre.

Corrigé voir ??.

Exercice 52 - Mouvement R *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$. La liaison pivot est motorisée par un moteur modélisée dont l'action mécanique sur $\mathbf{1}$ est donnée par $\overrightarrow{C_m} = C_m \, \overrightarrow{k_0}$. On note m_1 la masse du solide 1 et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \, \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer l'effort que doit développer le moteur pour maintenir 1 en équilibre.

Corrigé voir ??.

Exercice 53 - Mouvement TT - *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1, et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de 2 et m_2 sa masse.

Un vérin électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un vérin électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les efforts que doivent développer chacun des vérins pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 54 - Mouvement RR *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2} L \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer les couples que doivent développer chacun des moteurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 55 - Mouvement RT *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G₁ désigne le centre d'inertie de 1 et AG₁ = L₁ i

 , on note m₁ la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un vérin électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 56 - Mouvement RT *

B2-14

B2-15

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un vérin électrique positionné entre 0 et 1 permet de maintenir 1 en équilibre. Un moteur électrique positionné entre 1 et 2 permet de maintenir 2 en équilibre.

L'accélération de la pesanteur est donnée par $\overline{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Simplifier les torseurs dans l'hypothèse des problèmes plans.

Question 4 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 57 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

Exercice 58 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H \overrightarrow{j_1}$, on note m_1 la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet de maintenir **1** en équilibre. Un moteur électrique positionné entre **1** et **2** permet de maintenir **2** en équilibre.

L'accélération de la pesanteur est donnée par $\overline{g} = -g \overline{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Donner le torseur de chacune des actions mécaniques.

Question 3 Proposer une démarche permettant de déterminer le couple et l'effort que doivent développer chacun des actionneurs pour maintenir le mécanisme en équilibre.

Corrigé voir ??.

2.2 Proposer une démarche permettant la détermination d'une action mécanique inconnue ou d'une loi de mouvement – PFD

Exercice 59 - Mouvement T - *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide 1. On note G le centre d'inertie de 1 tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin positionné entre 1 et 0 permet d'actionner la pièce 1. On souhaite prendre en compte les frottements secs dans la liaison glissière.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de **1** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 60 - Mouvement R *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \mathrm{mm}$. La liaison pivot est motorisée par un moteur modélisée dont l'action mécanique sur $\mathbf{1}$ est donnée par $\overrightarrow{C_m} = C_m \, \overrightarrow{k_0}$. On note m_1 la masse du solide $\mathbf{1}$ et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \, \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer la loi du mouvement de **1** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 61 - Mouvement TT - *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de **1**, et m_1 sa masse. $G_2 = C$ désigne le centre d'inertie de **2** et m_2 sa masse.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 62 - Mouvement RR *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec L = 15 mm. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de 1;
- G_2 désigne le centre d'inertie de **2** et $\overrightarrow{BG_2} = \frac{1}{2}L\overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 63 - Mouvement RT *

B2-14

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de 1;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2**.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un vérin électrique positionné entre **1** et **2** permet d'actionner le solide **2**

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 64 - Mouvement RT *

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G₂ = C désigne le centre d'inertie de 2, on note m₂ la masse de 2.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 65 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- G₁ = B désigne le centre d'inertie de 1, on note m₁ la masse de 1;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2**.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de **1** et de **2** par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Exercice 66 - Mouvement RR 3D **

B2-14

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et | $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1}$ = $H\overrightarrow{j_1}$, on note m_1 la masse de 1;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2

Un moteur électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un moteur électrique positionné entre 1 et 2 permet d'actionner le solide 2. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à

Corrigé voir ??.

Exercice 67 - Mouvement RT - RSG **

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} =$ $\lambda(t)$ $\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1}$ = $-\ell \overrightarrow{i_1}$, on note m_1 la masse de 1; • $G_2 = B$ désigne le centre d'inertie de 2, on note m_2
- la masse de 2.

Un ressort exerce une action mécanique entre les points $A ext{ et } B.$

Question 1 Réaliser le graphe d'analyse en faisant apparaître l'ensemble des actions mécaniques.

Question 2 Proposer une démarche permettant de déterminer les loi de mouvement de 1 et de 2 par rapport à \mathcal{R}_0 .

Corrigé voir ??.

Mettre en œuvre une démarche de résolution analytique

Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 68 - Pompe à palettes *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} =$ $\lambda(t) \overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre **0** et **2** en *B* est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour e = $10 \,\mathrm{mm} \, et \, e = 15 \,\mathrm{mm}.$

Question 6 En utilisant Python, tracer le débit instan $tané de la pompe pour un tour de pompe pour <math>e = 10 \,\mathrm{mm}$ pour une pompe à 5 pistons (5 branches 1+2). On prendra une section de piston 2 de 1 cm² et une fréquence de rotation de $\dot{\theta}(t) = 100 \,\mathrm{rad}\,\mathrm{s}^{-1}$.

Corrigé voir ??.

Exercice 69 - Pompe à pistons radiaux * C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, $e = 10 \, \mathrm{mm}$ et $R = 20 \, \mathrm{mm}$. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du piston est $=S=1\,\mathrm{cm}^2$.

Corrigé voir ??.

Exercice 70 – Système bielle manivelle **

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \text{rad s}^{-1}$, on prendra $R = 10 \, \text{mm}$ et $L = 10 \, \text{mm}$, puis $L = 20 \, \text{mm}$ et $L = 30 \, \text{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Corrigé voir ??.

Exercice 71 - Pompe oscillante *

C2-06

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre D = 10 mm.

Corrigé voir ??.

Exercice 72 - Barrière Sympact *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir ??.

Exercice 73 - Barrière Sympact avec galet **

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\varphi(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant la condition de roulement sans glissement au point I, déterminer $\gamma(t)$ et $\dot{\gamma}(t)$.

Question 5 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir ??.

Exercice 74 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, $H = 120\,\mathrm{mm}$, $L = 40\,\mathrm{mm}$.

Question 1 *Tracer le graphe des liaisons.*

Question 2 *Exprimer* $\mu(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir ??.

Exercice 75 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec $d = 89.5 \,\mathrm{mm}$ et $e = 160 \,\mathrm{mm}$;

1. Les éventuelles erreur de texte font partie intégrante de la difficulté :).

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir ??.

Exercice 76 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 Exprimer $\dot{\theta}(t)$ en fonction de $\dot{\lambda}(t)$.

Question 4 Exprimer $\theta(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator **1**.

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir ??.

Exercice 77 - Variateur de Graham 1 * * *

D'après ressources de Michel Huguet.

B2-13

C2-05

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

On note
$$\overrightarrow{AJ} = -L \overrightarrow{i_0} + \frac{d_3}{2} \overrightarrow{j_2}$$
 et $\overrightarrow{KJ} = -\ell \overrightarrow{i_2} + \frac{d_2}{2} \overrightarrow{j_2}$.

Soit $\mathcal{R} = (A; \overrightarrow{i_0}, \overrightarrow{j_0}, \overrightarrow{k_0})$ un repère lié au bâti **0** du variateur. L'arbre moteur 1 et l'arbre récepteur 3 ont une liaison pivot d'axe $(A, \overrightarrow{i_0})$ avec le bâti **0**. On pose $\overline{\Omega(1/0)} = \omega_1 \overrightarrow{i_0}$

et $\overrightarrow{\Omega(3/0)} = \overrightarrow{\omega_3} \overrightarrow{i_0}$. Soit $\mathcal{R}_1 = \left(A; \overrightarrow{i_0}, \overrightarrow{j_1}, \overrightarrow{k_1}\right)$ et $\mathcal{R}_2 = \left(B; \overrightarrow{i_2}, \overrightarrow{j_2}, \overrightarrow{k_1}\right)$ deux repères liés respectivement à $\mathbf{1}$ et $\mathbf{2}$ tels que \overrightarrow{AB} ait même direction que $\overrightarrow{j_1}$. On pose $\alpha = (\overrightarrow{i_1}, \overrightarrow{i_2})$ constant.

Le satellite **2** a une liaison pivot d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ avec 1. 2 est un tronc de cône de révolution d'axe $(\overrightarrow{B}, \overrightarrow{i_2})$ de demi angle au sommet α . On pose $\Omega(S_2/S_1) = \omega \overrightarrow{i_2}$.

La génératrice de **2** du plan $(O, \overrightarrow{i_0}, \overrightarrow{j_1})$ la plus éloignée de l'axe $(O, \overrightarrow{i_0})$ est parallèle à $\overrightarrow{i_0}$. Notons d sa distance à l'axe $(O, \overrightarrow{i_0})$

2 roule sans glisser au point I, sur une couronne 4, immobile par rapport à 0 pendant le fonctionnement. Le réglage du rapport de variation s'obtient en déplaçant 4 suivant l'axe (O, i_0) .

Soit K le centre de la section droite du tronc de cône passant par I. On pose $\overline{BI} = \lambda j_2$. À l'extrémité de ${\bf 2}$ est fixée une roue dentée de *n* dents, d'axe $(B, \overline{i_2})$, qui engrène avec une couronne dentée intérieure d'axe $(A, \overline{i_0})$, de n_2 dents, liée à 3.

Question 1 *Tracer le graphe des liaisons.*

Question 2 En exprimant que **2** roule sans glisser sur **4** au point I, déterminer ω en fonction de ω_1 , d et λ .

Question 3 Quelle relation obtient-on entre ω_1 , ω_3 et ω en exprimant l'engrènement des deux roues dentées? (c'est à dire que 2 et 3 roulent sans glisser l'un sur l'autre

Question 4 En déduire le rapport de variation $\frac{\omega_3}{\omega_1}$ du *mécanisme en fonction de* λ , d_2 , d_3 *et d*.

Question 5 Tracer la courbe représentative du rapport de variation $\frac{\omega_3}{2}$ du mécanisme en fonction de λ , sachant que $\frac{n}{n_3} = \frac{d_1}{d_3}$, $d = 55\,\mathrm{mm}$ et que λ varie entre $\lambda_{mini} = 12\,\mathrm{mm}$ et la valeur $\lambda_{maxi} = 23\,\mathrm{mm}$.

Corrigé voir ??.

Exercice 78 - Variateur à billes *****

B2-13

C2-05

Pas de corrigé pour cet exercice. C2-06

Soit le schéma suivant.

Question 1 Tracer le graphe des liaisons. Question 2 Déterminer la loi entrée – sortie.

Corrigé voir ??.

Déterminer les relations entre les grandeurs géométriques ou cinématiques

Exercice 79 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Question 3 Donner une relation géométrique entre Z_1 , Z_2 et Z_3 permettant de garantir le fonctionnement du train d'engrenages.

Corrigé voir ??.

Exercice 80 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre

de dents des roues dentées.

Question 3 Donner une relation géométrique entre Z_1 , Z_{21} , Z_{22} et Z_4 permettant de garantir le fonctionnement du train d'engrenages.

Corrigé voir ??.

Exercice 81 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre

de dents des roues dentées.

Corrigé voir ??.

Exercice 82 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{4/0}}{\omega_{1/0}}$ en fonction du nombre

de dents des roues dentées.

Corrigé voir ??.

Exercice 83 - Cheville robot NAO*

A3-05

C2-06

On s'intéresse ici à la cheville NAO. On cherche à savoir si, à partir du moteur retenu par le constructeur, la chaîne de transmission de puissance permet de vérifier les exigences suivantes :

- exigence 1.1.1.1 : la vitesse de roulis doit être inférieure à 42 tr/min;
- exigence 1.1.1.2 : la vitesse de tangage doit être inférieure à 60 tr/min.

La fréquence de rotation des moteurs permettant chacun des deux mouvements est de 8300 tr/min.

Pour la chaîne de transmission de tangage on donne le nombre de dents et le module de chaque roue dentée :

- pignon moteur : $Z_m = 20, M_m = 0,3$;
- grand pignon 1 : $Z_1 = 80$, $M_1 = 0,3$;
- petit pignon 1 : $Z'_1 = 25$, $M'_1 = 0, 4$;
- grand pignon 2 : $Z_2 = 47$, $M_2 = 0, 4$;
- petit pignon 2 : $Z'_2 = 12$, $M'_2 = 0,4$;
- grand pignon 3 : $Z_3 = 58$, $M_3 = 0, 4$;
- petit pignon 3 : $Z_3' = 10$, $M_3' = 0.7$;
- roue de sortie : $Z_T = 36$, $M_T = 0, 7$.

Pour la chaîne de transmission du roulis on donne le nombre de dents et le module de chaque roue dentée :

- pignon moteur : $Z_m = 13, M_m = 0,3$;
- grand pignon 1 : $Z_1 = 80$, $M_1 = 0, 3$;
- petit pignon 1 : $Z'_1 = 25$, $M'_1 = 0,4$;
- grand pignon 2 : $Z_2 = 47$, $M_2 = 0, 4$;
- petit pignon 2 : $Z'_2 = 12$, $M'_2 = 0,4$;

- grand pignon 3 : $Z_3 = 58$, $M_3 = 0, 4$;
- petit pignon 3 : $Z'_3 = 10$, $M'_3 = 0.7$;
- roue de sortie 3 : $Z_R = 36$, $M_R = 0, 7$.

Question 1 Quels doivent être les rapports de réductions des transmissions par engrenage afin de respecter les exigences 1.1.1.1 et 1.1.1.2?

Question 2 Dans le cas de l'axe de tangage, remplir le tableau suivant :

Question 3 Dans le cas de l'axe de tangage, déterminer le diamètre de chaque roue dentée.

Question 4 Dans le cas de l'axe de tangage, réaliser le schéma cinématique minimal.

Question 5 Calculer le rapport de transmission de la chaîne de transmission de l'axe de tangage? L'exigence 1.1.1.2 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Question 6 Calculer le rapport de transmission de la chaîne de transmission de l'axe de roulis? L'exigence 1.1.1.1 est-elle respectée? Si non, quelle(s) solution(s) de remédiation pourrait-on proposer?

Corrigé voir ??.

Exercice 84 - Train simple *

D'après Florestan Mathurin.

A3-05

C2-06

On s'intéresse au réducteur équipant la roue arrière motrice et directionnelle d'un chariot élévateur de manutention automoteur à conducteur non porté.

Données: $z_{27} = 16$ dents, $z_{35} = 84$ dents, $z_5 = 14$ dents, $z_{11} = 56$ dents, $z_{16} = 75$ dents.

Question 1 Identifier les classes d'équivalence cinématique sur le dessin d'ensemble.

Question 2 Construire le schéma cinématique du réducteur dans le même plan que le dessin.

Question 3 Compléter le tableau donnant les caractéristiques des roues et pignons.

Repère de la roue	Module m (mm)	Nombre de dents Z	Diamètre primitif D (mm)
27			, ,
35	1,5		
5			
11	1,5		
16			

Question 4 Après avoir proposé un paramétrage, indiquer dans quel sens tourne la roue si le moteur 28 (31) tourne dans le sens positif.

Question 5 *Pour une vitesse de* 1500 tr/min *en sortie de moteur, déterminer la vitesse de rotation de la roue. Le diamètre de la roue est de* 150 mm. *Quelle est la vitesse du véhicule?*

Corrigé voir ??.

Exercice 85 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer $\frac{\omega_{3/0}}{\omega_{1/0}}$ en fonction du nombre de dents des roues dentées.

Corrigé voir ??.

Exercice 86 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir ??.

Exercice 87 - Train simple *

A3-05

C2-06

Soit le train épicycloïdal suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir ??.

Exercice 88 - Train simple *

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer ω_{40} en fonction de ω_{30} et ω_{10} .

Question 3 On suppose que ω_{40} est bloqué. Exprimer le rapport $\frac{\omega_{30}}{\omega_{10}}$.

Corrigé voir ??.

Exercice 89 – Poulie Redex * *D'après ressources de Stéphane Genouël.*

C2- Mettre en œuvre une démarche de résolution analytique

A3-05

C2-06

Soit le train d'engrenages suivant.

Question 1 Tracer le graphe des liaisons.

Question 2 Déterminer littéralement, en fonction des nombres de dents, la loi E/S du système (c'est-à-dire le rapport de transmission).

Corrigé voir ??.

Exercice 90 - Train simple *

A3-05

C2-06 Pas de corrigé pour cet exercice.

Soit le système de transmission suivant.

Question 1 Donner les rapports de chacun des 4 étages de réduction.

Corrigé voir ??.

Exercice 91 - Centrifugeuse des boues *

A3-05

C2-06

La chaîne cinématique est représentée sur la figure suivante.

La séquence de lancement de la centrifugeuse se déroule en trois phases :

- mise en marche du premier moteur M_{tambour} jusqu'à ce que le tambour 1 atteigne sa vitesse de consigne de 2 000 tours/min. Le moteur M_{rel} est à l'arrêt;
- mise en marche du deuxième moteur $M_{\rm rel}$ jusqu'à ce que la vitesse différentielle de 2 tours/min soit atteinte entre le tambour 1 et la vis 3. La vis 3 tourne ainsi plus vite que le tambour 1;
- la boue liquide est ensuite introduite.

Question 1 Déterminer la fréquence de rotation de la vis (par rapport au bâti) lors de la phase de lancement.

Corrigé voir ??.

Exercice 92 – Train simple * *D'après documentation E Mazet.*

A3-05

C2-06 Pas de corrigé pour cet exercice.

On s'intéresse à la chaîne de transmission de puissance du Control'X dont un modèle est donné dans la figure ci-dessous.

On note:

- **0** : le bâti auquel est encastré une couronne de rayon primitif *R_b* ;
- 1 : le pignon de sortie du moteur de rayon primitif R_m :
- 2 : un des 3 satellites du réducteur épicycloïdal de rayon primitif R_s ;
- 3 : le porte-satellite auquel est encastré une poulie de rayon R_p ;
- 5: le chariot de masse M encastré à la courroie 4 considérée inextensible. On note $v = V(D \in 5/0)$.
- 3: le seconde poulie de rayon R_p ;

Question 1 Déterminer la relation entre $\omega(1/0)$ et v.

Corrigé voir ??.

Exercice 93 - Train simple *

A3-05

C2-06

On s'intéresse à la chaîne de transmission de puissance d'un tracteur Fendt. Cette dernière est composée d'un moteur (et d'une pompe) hydraulique (Mh) ainsi que d'un moteur thermique MAN (Mm).

Le moteur MAN a pour but de fournir de la puissance à la pompe hydraulique et au tracteur (récepteur R). On donne ci-dessous le schéma de la transmission.

Les rayons des pignons sont les suivants : $R_{12}=60$, $R_{1M}=33$, $R_2=30$, $R_{32}=120$, $R_{3P}=54$, $R_M=54$, $R_M'=48$, $R_R=42$, $R_R'=48$.

Une étude antérieure a permis d'établir que $\frac{\omega(Ph/0)}{\omega(Mh/0)} = \frac{2y}{x} \text{ avec } x \in [0,71;1] \text{ et } y \in [0;1].$

La fréquence de rotation du moteur Man est de 1900 tr/min.

Question 1 Déterminer la relation entre $\omega(1/0)$, $\omega(3/0)$ et $\omega(4/0)$.

Question 2 Montrer que la relation entre la rotation du moteur hydraulique et le moteur Man peut se mettre sous la forme : $\frac{\omega(M\,h/0)}{\omega(M\,m/0)} = -\frac{Ax}{B\,R_p\,y + C\,x} \ où \ on \ explicitera \ A, \ B \ et \ C.$

Corrigé voir ??.

Exercice 94 – Système vis-écrou * D'après ressources Pole Chateaubriand – Joliot-Curie.

A3-05 C2-06

Soit la chaîne de transmission suivante.

Le schéma du restituteur actif est donné ci-dessous. Le pas de la vis est $p_v = 10$ mm. Le diamètre de la poulie 2 est le double de celui de la poulie 1.

Question 1 Sur le schéma cinématique, repasser chaque solide d'une couleur différente.

Question 2 Réaliser la chaîne d'énergie-puissance partielle en définissant les noms des transmetteurs et les grandeurs d'entrée et de sortie cinématiques.

Question 3 Définir la loi entrée-sortie entre la vitesse de translation du piston 3 et la vitesse de rotation du moteur 1.

Corrigé voir ??.

Exercice 95 – Train simple * *D'après ressources Pole Chateaubriand – Joliot-Curie.*

A3-05

C2-06 Pas de corrigé pour cet exercice.

L'usinage est une opération de transformation d'un produit par enlèvement de matière. Cette opération est à la base de la fabrication de produits dans les industries mécaniques. La génération d'une surface par enlèvement de matière est obtenue grâce à un outil muni d'au moins une arête coupante. Les différentes formes de pièces sont obtenues par des translations et des rotations de l'outil par rapport à la pièce.

On s'intéresse ici à l'axe Y qui met en mouvement le coulisseau 1, sur lequel est fixée l'outil, par rapport au bâti 0. Le coulisseau 1 est mis en mouvement par un moteur électrique qui délivre un couple moteur $C_m(t)$.

Modèle cinématique

On note p le pas de vis.

Question 1 Tracer le graphe des liaisons.

Question 2 Définir la loi entrée-sortie entre la vitesse de translation du coulisseau et la vitesse de rotation du moteur.

Corrigé voir ??.

Exercice 96 - Treuil de levage * D'après ressources Pole Chateaubriand - Joliot-Curie.

A3-05

C2-06 Pas de corrigé pour cet exercice.

On s'intéresse à un treuil dont le modèle cinématique est donné ci-dessous.

On note Z_2 le nombre de dents de la roue dentée de l'arbre 2. On note l'arbre intermédiaire 3 et Z_{3a} et Z_{3b} les nombres de dents de ses deux roues dentées. On note R le rayon du tambour 4 sur lequel s'enroule sans glisser un câble et Z_4 le nombre de dents de sa roue dentée.

Question 1 Déterminer la relation entre v_{51} la vitesse de déplacement de la charge par rapport au bâti et ω_{21} la vitesse de rotation du moteur.

Question 2 On note J_2 , J_3 , J_4 l'inertie des pièces 2, 3 et 5. On note M_5 la masse du solide 5. Donner la masse équivalente ramenée « à la translation » de la masse. Donner l'inertie équivalente ramenée à l'arbre d'entrée 2.

Corrigé voir ??.

3.3 Déterminer les actions mécaniques en dynamique dans le cas où le mouvement est imposé.

Exercice 97 - Mouvement T - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$. On note m_1 la masse du solide et $I_B(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & -D_1 \\ 0 & -D_1 & C_1 \end{pmatrix}$.

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir ??.

Exercice 98 - Mouvement R *

C2-08

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec R = 20 mm. On note m_1 la masse du solide 1, B son centre

d'inertie et
$$I_G(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathfrak{B}_1}.$$

Méthode 1 - Déplacement du torseur dynamique

Question 1 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}\$ en B.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Méthode 2 – Calcul en A

Question 3 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Masse ponctuelle

On fait maintenant l'hypothèse que la masse est ponctuelle et concentrée en *B*.

Question 4 Exprimer le torseur cinétique $\{\mathscr{C}(1/0)\}$ en B.

Question 5 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B puis en A.

Corrigé voir ??.

Exercice 99 - Mouvement TT - *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. De plus :

• $G_1 = B$ désigne le centre d'inertie de 1, on note m_1

sa masse et
$$I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$$
;

• $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2

sa masse et
$$I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$$

Question 1 Exprimer les torseurs cinétiques $\{\mathscr{C}(1/0)\}\$ et $\{\mathscr{C}(2/0)\}\$.

Question 2 Exprimer les torseurs dynamiques $\{\mathcal{D}(1/0)\}\$ et $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 En déduire $\{\mathcal{D}(1+2/0)\}\$ en B.

Corrigé voir ??.

Exercice 100 - Mouvement RR *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \, \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2}\overrightarrow{Ri_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}\overrightarrow{Li_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Exprimer le torseur dynamique $\{\mathcal{D}(2/0)\}\$ en B.

Question 3 Déterminer $\delta(A, 1+2/0) \cdot \vec{k_0}$

Corrigé voir ??.

Exercice 101 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en A.

Question 2 Déterminer $\overrightarrow{\delta(A,1+2/0)} \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Exercice 102 - Mouvement RT *

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = R \overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1=B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1)=\begin{pmatrix}A_1&0&0\\0&B_1&0\\0&0&C_1\end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{_{\mathcal{R}_-}}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}\$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Corrigé voir ??.

Exercice 103 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\omega}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta(A, 1+2/0)} \cdot \overrightarrow{i_0}$

Corrigé voir ??.

Exercice 104 - Mouvement RR 3D **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = H \overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}}$.

Question 1 Exprimer le torseur dynamique $\{\mathcal{D}(1/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta}(A, 1+2/0) \cdot \overrightarrow{j_0}$

Corrigé voir ??.

Exercice 105 - Mouvement RT - RSG **

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ tel que $AG_1' = -\ell \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Question 1 Déterminer $\overrightarrow{R_d(2/0)} \cdot \overrightarrow{i_1}$ **Question 2** Déterminer $\overrightarrow{\delta}(I, 1+2/0) \cdot \overrightarrow{k_0}$

Corrigé voir ??.

Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus

Exercice 106 - Mouvement T - *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$. On note m_1 la masse du solide 1. On note G le centre d'inertie de 1 tel que $\overrightarrow{BG} = \ell \overrightarrow{j_1}$. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{i_0}$. Un vérin positionné entre 1 et 0 permet d'actionner la pièce 1. On souhaite prendre en compte les frottements secs dans la liaison glissière.

Question 1 Dans le but d'obtenir la loi de mouvement, appliquer le théorème de la résultante dynamique au solide 1 en projection sur $\overrightarrow{i_0}$.

Corrigé voir ??.

Exercice 107 - Mouvement R *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20\,\mathrm{mm}$. La liaison pivot est motorisée par un moteur modélisée dont l'action mécanique sur $\mathbf{1}$ est donnée par $\overrightarrow{C_m} = C_m \overrightarrow{k_0}$. On note m_1 la masse du solide $\mathbf{1}$ et B son centre d'inertie. La pesanteur est telle que $\overrightarrow{g} = -g \overrightarrow{j_0}$. On note m_1 la masse du solide $\mathbf{1}$, B son centre d'inertie et

$$I_G(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & A_1 & 0 \\ 0 & 0 & A_1 \end{pmatrix}_{\mathfrak{B}_1}.$$

Question 1 Dans le but d'obtenir la loi de mouvement, appliquer le théorème du moment dynamique au solide **1** au point A en projection sur $\overrightarrow{k_0}$.

Corrigé voir ??.

Exercice 108 – Mouvement II – * C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On note $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_0}$ et $\overrightarrow{BC} = \mu(t) \overrightarrow{j_0}$. $G_1 = B$ désigne le centre d'inertie de 1,et

$$m_1$$
 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$; $G_2 = C$ dé-

signe le centre d'inertie de **2** et m_2 sa masse et $I_{G_2}(2)$ =

$$\begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathfrak{B}_2}.$$

Un vérin électrique positionné entre 0 et 1 permet d'actionner le solide 1. Un vérin électrique positionné entre 1 et 2 permet d'actionner le solide 2.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur j_0 puis le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur $\overrightarrow{i_0}$

Corrigé voir ??.

Exercice 109 - Mouvement RR *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ avec $R = 20 \, \text{mm}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$ avec $L = 15 \, \text{mm}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = \frac{1}{2}R\overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2}\overrightarrow{L}\overrightarrow{i_2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overrightarrow{k_0}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$

Corrigé voir ??

Exercice 110 - Mouvement RT *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t) \overrightarrow{i_1}$. De plus :

- G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$. Un moteur électrique a

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{\tilde{1}}$ permet d'actionner le solide $\mathbf{1}$. Un vérin électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$

Corrigé voir ??.

Exercice 111 - Mouvement RT *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

- $G_1=B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1)=\begin{pmatrix}A_1&0&0\\0&B_1&0\\0&0&C_1\end{pmatrix}_{\mathscr{B}_1}$;
- $G_2 = C$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}$.

Un vérin électrique positionné entre **0** et **1** permet d'actionner le solide **1**. Un moteur électrique positionné entre **1** et **2** permet d'actionner le solide **2**.

L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overrightarrow{k_0}$ puis le théorème de la résultante dynamique à l'ensemble **1+2** en projection sur $\overrightarrow{i_0}$

Corrigé voir ??.

Exercice 112 - Mouvement RR 3D **

B2-14

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell \overrightarrow{i_2} + r \overrightarrow{j_2}$. On note $R + \ell = L = 20 \, \text{mm}$ et $r = 10 \, \text{mm}$. De plus :

- $G_1 = B$ désigne le centre d'inertie de 1, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1}$;
- G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point A en projection sur $\overrightarrow{i_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overrightarrow{k_0}$

Corrigé voir ??.

Exercice 113 – Mouvement RR 3D ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H \overrightarrow{j_1} + R \overrightarrow{i_1}$ et $\overrightarrow{BC} = L \overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overline{AG_1} = H$ $\overrightarrow{j_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$; • $G_2 = C$ désigne le centre d'inertie de 2, on note m_2
- $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un moteur électrique positionné entre $\mathbf{0}$ et $\mathbf{1}$ permet d'actionner le solide $\mathbf{1}$. Un moteur électrique positionné entre $\mathbf{1}$ et $\mathbf{2}$ permet d'actionner le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème du moment dynamique au solide **2** au point B en projection sur $\overline{k_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point A en projection sur $\overline{j_0}$

Corrigé voir ??.

Exercice 114 - Mouvement RT - RSG ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{IA} = R \overrightarrow{j_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus R = 15 mm. On fait l'hypothèse de roulement sans glissement au point I. De plus :

- G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = -\ell \overrightarrow{i_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) =$ $\begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{B}_1};$ • $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2
- la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Un ressort exerce une action mécanique entre les points A et B.

Question 1 Dans le but d'obtenir les lois de mouvement, appliquer le théorème de la résultante dynamique au solide **2** en projection sur $\overrightarrow{i_1}$ puis le théorème du moment dynamique à l'ensemble **1+2** au point I en projection $sur \vec{k_0}$

Corrigé voir ??.

Déterminer la loi de mouvement dans le cas où les efforts extérieurs sont connus - TEC

Exercice 115 - Pompe à palettes *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} =$ $\lambda(t)$ i. De plus e = 10 mm et R = 20 mm. Le contact entre 0 et 2 en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe). De plus, on note:

- et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{BG_2} = -\ell \overrightarrow{i_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\infty}$ sa ma-

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{i_1}$ l'action du fluide sur **2** (le fluide agissant sur les solides **1** et **2**). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les diffé-

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble 1+2.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble 1+2.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 116 - Pompe à pistons radiaux *

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre 1 et 2 en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre 0 et 2. De plus, on note :

- $G_1=B$ le centre d'inertie du solide $\mathbf{1},\ m_1$ sa masse et $I_{G_1}(1)=\begin{pmatrix}A_1&0&0\\0&B_1&0\\0&0&C_1\end{pmatrix}_{\mathscr{R}_1}$ sa matrice d'inertie; G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2}=\ell\overrightarrow{j_0}$, m_2 sa masse et $I_{G_2}(2)=\begin{pmatrix}A_2&0&0\\0&B_2&0\\0&0&C_2\end{pmatrix}_{\mathscr{R}_2}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{j_0}$ l'action du fluide sur 2 (le fluide agissant sur les solides 1 et 2) et $F_r \overrightarrow{j_0}$ l'action du ressort sur 2 (un ressort étant positionné entre les solides 0 et 2 afin d'assurer le maintien du contact entre 1 et 2 en I). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 117 - Système bielle manivelle **

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, on note :

- $G_1 = A$ le centre d'inertie du solide $\mathbf{1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = \frac{L}{2} \overrightarrow{i_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathscr{R}_2}$ sa ma-
- trice d'inertie;
 G_3 le centre d'inertie du solide $\mathbf{3}$ tel que $\overrightarrow{CG_3} = L_3 \overrightarrow{j_0}$, m_3 sa masse et $I_{G_3}(2) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathscr{R}_3}$ sa ma-

trice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1, $F_h \overrightarrow{j_0}$ l'action du fluide sur 3. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 118 - Pompe oscillante *

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 10 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$. De plus, on note :

- G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{AG_1} = \frac{R}{2} \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = \ell \overrightarrow{i_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathscr{R}_2}$ sa matrice d'inertie:
- G_3 le centre d'inertie du solide $\mathbf{3}$ tel que $\overrightarrow{BG_3} = -a \overrightarrow{i_2}$, m_3 sa masse et $I_{G_3}(2) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathscr{R}_3}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide **2**, $F_h \overrightarrow{i_2}$ l'action du fluide sur **3** (le fluide agissant sur le solides **2** et **3**). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 119 - Barrière Sympact * C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$. De plus, on note :

• G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{CG_1} = \frac{R}{2} \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa ma-

trice d'inertie; • G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{G_2} = a \overrightarrow{i_2} + A_2 = 0$

$$b \overrightarrow{j_2}$$
, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa

matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1 et $C_r \overrightarrow{k_0}$ le couple exercé par un ressort de torsion agissant sur les solides 0 et 2). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 120 – Barrière Sympact avec galet ** C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$. De plus, on note :

• G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{CG_1} = \frac{R}{2} \overrightarrow{i_1}$, $m_1 \text{ sa masse et } I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix} \text{ sa ma-}$

trice d'inertie;

• G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{G_2} = a \overrightarrow{i_2} + b \overrightarrow{j_2}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}$ sa

matrice d'inertie;

• $G_3 = B$ le centre d'inertie du solide $\mathbf{3}$, m_3 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_2}$ sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide $\mathbf{1}$ et $C_r \overrightarrow{k_0}$ le couple exercé par un ressort de torsion agissant sur les solides $\mathbf{0}$ et $\mathbf{2}$). L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2+3/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 121 - Poussoir *

C2-09

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, H = 120 mm, L = 40 mm. De plus, on note :

- G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{AG_1} = R \overrightarrow{i_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa ma-
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{CG_2} = -\ell b \overrightarrow{j_0}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{R}_2}$

sa matrice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide $\mathbf{1}$ et $F_h \overrightarrow{j_0}$ l'action d'un fluide sur le solide $\mathbf{2}$. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{j_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2**.

Question 4 *Déterminer* \mathcal{E}_c (1+2/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 122 - Système 4 barres **

C2-09 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a \overrightarrow{x_1} f \overrightarrow{y_1}$ avec $a = 355 \,\mathrm{mm}$ et $f = 13 \,\mathrm{mm}$;
- $\overrightarrow{AB} = b \overrightarrow{x_2}$ avec $b = 280 \,\mathrm{mm}$;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec d = 89.5 mm et e = 160 mm. De plus, on note :
 - G_1 le centre d'inertie du solide $\mathbf{1}$ tel que $\overrightarrow{OG_1} = L\overrightarrow{x_1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathscr{R}_1}$ sa matrice d'inertie;

• G_2 le centre d'inertie du solide **2** tel que $\overrightarrow{AG_2} = \frac{b}{2} \overrightarrow{x_2}$,

$$m_2$$
 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\Re_2}$ sa ma-

trice d'inertie;

• G_3 le centre d'inertie du solide **3** tel que $\overrightarrow{CG_3} = \frac{c}{2} \overrightarrow{x_3}$,

$$m_3$$
 sa masse et $I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\Re_2}$ sa ma-

trice d'inertie.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{z_0}$.

On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice ??.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3**.

Question 4 *Déterminer* $\mathcal{E}_c(1+2+3/0)$.

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.

Exercice 123 - Maxpid ***

C2-09 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},\ d=80\,\mathrm{mm}$. Le pas de la vis est de 4 mm. De plus, on note :

- $G_1 = B$ le centre d'inertie du solide $\mathbf{1}$, m_1 sa masse et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathcal{R}_1}$ sa matrice d'inertie;
- G_2 le centre d'inertie du solide $\mathbf{2}$ tel que $\overrightarrow{BG_2} = L\overrightarrow{x_1}$, m_2 sa masse et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathscr{R}_2}$ sa matrice d'inertie;
- $G_3 = C$ le centre d'inertie du solide **3**, m_3 sa masse

et
$$I_{G_3}(3) = \begin{pmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{pmatrix}_{\mathcal{R}_3}$$
 sa matrice d'inertie;

• G_4 le centre d'inertie du solide $\mathbf{4}$ tel que $\overrightarrow{DG_4} = L_4\overrightarrow{x_4}$, m_4 sa masse et $I_{G_4}(4) = \begin{pmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{pmatrix}_{\mathcal{R}_4}$ sa matrice d'inertie;.

On note $C_m \overrightarrow{k_0}$ le couple moteur agissant sur le solide 1. L'accélération de la pesanteur est donnée par $\overrightarrow{g} = -g \overrightarrow{y_0}$. On rappelle que la loi entrée sortie est donnée par la relation *** établie à l'exercice **??**.

Question 1 Tracer le graphe d'analyse en indiquant l'ensemble des actions mécaniques agissant sur les différents solides.

Question 2 Déterminer l'ensemble des puissances intérieures à l'ensemble **1+2+3+4**.

Question 3 Déterminer l'ensemble des puissances extérieures à l'ensemble **1+2+3+4**.

Question 4 *Déterminer* \mathcal{E}_c (1+2+3+4/0).

Question 5 Déterminer la loi de mouvement en appliquant le théorème de l'énergie cinétique.

Corrigé voir ??.