

STATG019 – Selected Topics in Statistics 2015

Lecture 2

The Support Vector Machine

Course organization

In-Course-Assessment

Two take-home ICA, one on kernels, one on point processes

Each counts 50% towards your final grade

Handing out: no.1 on Feb 9, no.2 on Mar 23 (on moodle)

Submission: no.1 on Mar 4, no.2 on Apr 29 (via moodle/TurnitIn)

Further details will be announced via the moodle news forum

Tutorials and/or practical sessions

Thursday, 11am - 1pm

location varies

Given topic survey: next tutorial will be mainly on kernlab with R

Please install R and kernlab on your laptops (cluster rooms are full)

We do not have a room yet for tomorrow – do you know of any place?

Did you try the exercises? What do you think about them?

A short overview of the kernel SVM

the Support Vector Machine

Input:
$$x_1, ..., x_N \in \mathbb{R}^n, y_1, ..., y_N \in \{-1, +1\}$$

Output: separator/decision function

$$f(x) = \operatorname{sgn}\left(b + w^{\top}x\right)$$

$$w = \sum_{i=1}^N \alpha_i y_i x_i$$
 solves a QP involving $X^\top X$ $\alpha_i, 1 \leq i \leq N$ are "dual" variables

"Kernelized", non-linear variant:

$$f(x) = \operatorname{sgn}\left(b + \sum_{i=1}^{N} \alpha_i k(x_i, x)\right) = \alpha^{\top} \kappa(x)$$

 α solves a QP involving kernel matrix and vector

$$K = (k(x_i, x_j))_{ij} \qquad \kappa(x) = (k(x_i, x))_i$$

The linear Support Vector Machine

(V. Vapnik, 1993)

The support vector machine

Goal: linearly separate two classes of points with maximum margin

Mathematically:

find a hyperplane
$$H = \{z \in \mathbb{R}^n : \langle a, z \rangle = c\}$$

a the normal vector c the offset

separating the green and the orange points

with the largest symmetric margin of $\pm \eta$

$$\langle a, x \rangle \geq c + \eta$$
 for all orange points x

$$\langle a, x \rangle \leq c - \eta$$
 for all green points x

For data $x_1, \ldots, x_N \in \mathbb{R}^n$ and labels $y_1, \ldots, y_N \in \{-1, 1\}$

This can be reformulated as the optimization problem

$$\max_{\mathbf{a}, \mathbf{c}, \boldsymbol{\eta}} \quad \text{s.t.} \quad y_i \cdot (\langle \mathbf{a}, x_i \rangle - \mathbf{c}) \ge \boldsymbol{\eta}$$
 for all $1 < i < N$

Issue: overparamterization!

 a, c, η can be multiplied by common factor

Solution: make substitutions $w:=rac{a}{\eta}, \quad b:=rac{c}{\eta}$ thus $\eta=rac{\|a\|}{\|w\|}=rac{1}{\|w\|}$

to obtain
$$\max_{\substack{\pmb{w},\pmb{b}}} \ \frac{1}{\|\pmb{w}\|} \quad \text{s.t.} \ \ y_i \cdot (\langle \pmb{w},x_i \rangle - \pmb{b}) \geq 1$$
 for all $1 \leq i \leq N$

Issue: objective function inverse of square root bad optimization behaviour

Solution: replace $\max_{w,b} \frac{1}{\|w\|}$ by the equivalent $\min_{w,b} \langle w, w \rangle = \|w\|^2$

"support vectors"

kernel vector

The support vector machine

Goal: linearly separate two classes of points with maximum margin

Quadratic optimization program:

For data
$$x_1,\dots,x_N\in\mathbb{R}^n$$
 and labels $y_1,\dots,y_N\in\{-1,1\}$
$$\min_{\pmb{w},\pmb{b}}\ \frac{1}{2}\|\pmb{w}\|^2$$
 s.t. $y_i\cdot(\langle\pmb{w},x_i\rangle-\pmb{b})\geq 1$ for all $1\leq i\leq N$

margin is
$$\pm \frac{1}{\|w\|}$$

hyperplane is
$$H = \{z \in \mathbb{R}^n : \langle \mathbf{w}, z \rangle = \mathbf{b} \}$$

To an unseen data point $x \in \mathbb{R}^n$ assign the label $\operatorname{sgn}(\langle \mathbf{w}, x \rangle - \mathbf{b})$

"Naïve" Kernelization (Chapelle, 2006):

Replace
$$x_i$$
 by $\phi(x_i)$ and w by $\sum_{i=1}^N \alpha_i \phi(x_i)$ (w is of this for obtain:
$$\min_{\alpha} \ \frac{1}{2} \ \alpha^\top \cdot K \cdot \alpha \qquad \qquad \text{where} \qquad I$$
 s.t. $y_i \cdot (\alpha^\top \kappa(x_i) - b) \geq 1$ for all $1 \leq i \leq N$

This is a convex optimization problem in α

(w is of this form by the representer theorem) where $k(y,z)=\langle\phi(y),\phi(z)\rangle$ $K=(k(x_i,x_j))_{ij}$ kernel matrix $\kappa(x)=(k(x_i,x))_i$ empirical

The following is about an alternative ("dual" SVM) which is more popular for historical reasons.

Start with an optimization program "primal program"

$$\min_{x \in \mathbb{R}^n} f(x)$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is the loss function to be minimized

s.t.
$$g(x) \le 0$$
 (component-wise)

where $g: \mathbb{R}^n \to \mathbb{R}^N$ are N boundary conditions x^* optimal solution (assumed to exist)

Definition: the *Lagrangian* for the above problem is

$$L(x,\alpha) := f(x) + \alpha^{\top} g(x)$$
 $L: \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}$

$$L: \mathbb{R}^n \times \mathbb{R}^N \to \mathbb{R}$$

the Lagrange dual function is

$$W(\alpha) := \inf_{x \in \mathbb{R}^n} L(x, \alpha)$$

$$W:\mathbb{R}^N o \mathbb{R}$$

the (Lagrange) dual program is

$$\max_{\alpha \in \mathbb{R}^N} W(\alpha)$$

s.t.
$$\alpha \geq 0$$

 α^* optimal solution (one can show: exists)

Proposition: it holds that $W(\alpha^*) \leq f(x^*)$ "duality gap"

Theorem (Slater): If the primal problem is *convex*, i.e., if f and g are, and there is $x \in \mathbb{R}^N$ such that g(x) < 0, then

$$W(\alpha^{\star}) = L(x^{\star}, \alpha^{\star}) = f(x^{\star})$$

"strong duality holds"

primal program

$$\min_{x \in \mathbb{R}^n} \ f(x)$$
 s.t. $g(x) \leq 0$

$$L(x,\alpha) := f(x) + \alpha^{\top} g(x)$$
$$W(\alpha) := \inf_{x \in \mathbb{R}^n} L(x,\alpha)$$

dual program

$$\max_{lpha \in \mathbb{R}^N} W(lpha)$$
 s.t. $lpha \geq 0$

Theorem (Slater): If the primal problem is *convex*, i.e., if f and g are,

and there is $x \in \mathbb{R}^N$ such that g(x) < 0, then

$$W(\alpha^{\star}) = L(x^{\star}, \alpha^{\star}) = f(x^{\star})$$

"strong duality holds"

Observation: $L(x,\alpha)$ is convex for fixed α

so hopefully x^* can be efficiently obtained as the minimum of $L(x, \alpha^*)$ in x

Example 1: linearly constrained linear program

primal program

$$\begin{aligned} & \min_{x \in \mathbb{R}^n} \ \langle c, x \rangle \\ & \text{s.t.} \quad A \cdot x \leq b \\ & c \in \mathbb{R}^n, A \in \mathbb{R}^{N \times n} \end{aligned}$$

$$L(x,\alpha) = c^{\top}x + \alpha^{\top} \cdot (Ax - b)$$
$$= (c^{\top} + \alpha^{\top}A)x - \alpha^{\top}b$$
$$= -\alpha^{\top}b, \quad c = A^{\top}\alpha$$

$$W(\alpha) = \left\{ \begin{array}{ll} -\alpha^\top b, & c = A^\top \alpha \\ -\infty & \text{otherwise} \end{array} \right.$$

dual program

$$\min_{\alpha \in \mathbb{R}^N} \left\langle b, \alpha \right\rangle$$
 s.t. $\alpha \geq 0$
$$A^\top \alpha = c$$

primal program

$$\min_{x \in \mathbb{R}^n} \ f(x)$$
 s.t. $g(x) \le 0$

$$L(x,\alpha) := f(x) + \alpha^{\top} g(x)$$
$$W(\alpha) := \inf_{x \in \mathbb{R}^n} L(x,\alpha)$$

dual program

$$\max_{\alpha \in \mathbb{R}^N} \, W(\alpha)$$
 s.t. $\alpha \geq 0$

Example 2: the support vector machine

primal program

$$\min_{(w,b)\in\mathbb{R}^{n+1}} \ \frac{1}{2} \langle w,w\rangle \quad \text{s.t.} \quad y_i \cdot (\langle w,x_i\rangle - b) \geq 1 \quad \text{for all } 1 \leq i \leq N \\ \quad \text{note: this is a convex program} \\ L((w,b),\alpha) = \frac{1}{2} \|w\|^2 + \sum_{i=1}^N \left[\alpha_i - \alpha_i y_i (\langle w,x_i\rangle - b)\right]$$

due to convexity, minimizer is zero of first derivatives:

$$\frac{\partial L}{\partial w} = w - \sum_{i=1}^{N} \alpha_i y_i x_i \qquad \frac{\partial L}{\partial b} = \sum_{i=1}^{N} \alpha_i y_i \qquad \text{implies } w^\star = \sum_{i=1}^{N} \alpha_i^\star y_i x_i \qquad \text{(compare representer theorem!)}$$

implies
$$w^{\star} = \sum_{i=1}^{N} \alpha_i^{\star} y_i x_i$$
 (compare representer theorem!)

therefore
$$W(\alpha) = L\left(\sum_{i=1}^{N} \alpha_i y_i x_i, b, \alpha\right) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \cdot x_i^\top x_j$$
 (if $\frac{\partial L}{\partial b} = 0$, othw. $-\infty$)

dual program
$$\max_{\alpha \in \mathbb{R}^N} W(\alpha)$$
 s.t. $\alpha \geq 0$, $0 = \sum_{i=1}^N \alpha_i y_i$

Kernelizable!

The kernel Support Vector Machine

'support vectors"

The kernel support vector machine

The linear support vector machine

For data $x_1, \ldots, x_N \in \mathbb{R}^n$ and labels $y_1, \ldots, y_N \in \{-1, 1\}$

Primal formulation:

$$\min_{\boldsymbol{w},\boldsymbol{b}} \ \frac{1}{2} \|\boldsymbol{w}\|^2 \quad \text{ s.t.} \quad y_i \cdot (\langle \boldsymbol{w}, x_i \rangle - \boldsymbol{b}) \geq 1 \quad \text{for all } 1 \leq i \leq N$$

Dual formulation:

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \cdot x_i^{\top} x_j$$

s.t.
$$\alpha \ge 0$$
, $0 = \sum_{i=1}^{N} \alpha_i y_i$

Obtain
$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i$$
,

s.t.
$$\alpha \geq 0$$
, $0 = \sum_{i=1}^{N} \alpha_i y_i$ Obtain $\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i x_i$, $\mathbf{b} = \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{w}^\top x_i - y_i \right)$

Predicted label is $y(x) := \operatorname{sgn} (\langle \mathbf{w}, x \rangle - \mathbf{b})$

The Kernel SVM

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \cdot k(x_i, x_j) \qquad \text{s.t.} \quad \alpha \geq 0, \quad 0 = \sum_{i=1}^{N} \alpha_i y_i$$

$$= \|\alpha\|_{\mathbf{D}} - \frac{1}{2} \cdot \alpha^\top \tilde{K} \alpha \qquad \text{where} \quad \tilde{K} = (y_i y_j k(x_i, x_j))_{ij} \quad \text{(this is a psd kernel matrix)}$$

Obtain
$$b = \frac{1}{N} \sum_{i=1}^{N} k(w, x_i) - y_i$$

Obtain
$$\mathbf{b} = \frac{1}{N} \sum_{i=1}^{N} k(w, x_i) - y_i$$
 Predict sgn $\left(\alpha^{\top} \tilde{\kappa}(x) - \mathbf{b}\right)$ where $\tilde{\kappa}(x) = \left(y_i k(x_i, x)\right)_i$

Intuition on the non-linear kernel SVM

For data
$$x_1,\dots,x_N\in\mathbb{R}^n$$
 and labels $y_1,\dots,y_N\in\{-1,\frac{1}{N}\}$
$$\widetilde{K}=(y_iy_jk(x_i,x_j))_{ij}$$

$$\max_{\alpha}W(\alpha)=\|\alpha\|_1-\frac{1}{2}\cdot\alpha^\top\widetilde{K}\alpha \quad \text{ s.t. } \alpha\geq 0, \quad 0=\sum_{i=1}^N\alpha_iy_i \qquad \widetilde{\kappa}(x)=(y_ik(x_i,x))_i$$
 Obtain $\mathbf{b}=\frac{1}{N}\sum_{i=1}^Nk(w,x_i)-y_i \quad \text{ Predict } y(x):=\operatorname{sgn}\left(\alpha^\top\widetilde{\kappa}(x)-\mathbf{b}\right)$

Observation: separator is manifold of form $\mathcal{M} = \{z : \alpha^{\top} \tilde{\kappa}(z) = b\}$

For polynomial kernel: $\alpha^{\top}\tilde{\kappa}(z)$ is a polynomial $\sum \pm \alpha_i \left(\langle z, x_i \rangle\right)^d$ "sparse Waring form"

For Gaussian kernel:
$$\alpha^{\top} \tilde{\kappa}(z) = \sum_{i=1}^{N} \pm \alpha_i \exp\left(\frac{\|z - x_i\|^2}{2\sigma^2}\right)$$
 due to feature space infinite: α often not very sparse (though many entries will be

(though many entries will be small)

A dictionary of kernel Support Vector Classifiers

name	how it differs from the vanilla-SVM	pros/cons	type in R kernlab-ksvm
(hard-margin) SVC	The original formulation (previous slide)	Very outlier sensitive, solution may not exist. Don't use.	C-svc set C=0
soft-margin SVC or C-SVC (Cortes, Vapnik)	$\begin{split} \min_{w,b,\xi} \frac{1}{2} \ w\ ^2 + C \sum_{i=1}^N \xi_i \text{ s.t. } y_i \cdot (\langle w, x_i \rangle - b) &\geq 1 - \xi_i \\ \xi_i &\geq 0 \\ \text{data points can lie outside the margin} \\ \text{but violation is punished infinitesimally by } C \end{split}$	Working horse of support vector classification. P: easy, sparse solution C: somewhat outlier sensitive	C-svc
nu-SVC (Schölkopf et al)	$ \min_{w,\xi,\rho,b} \frac{1}{2} \ w\ ^2 - \nu \rho + \frac{1}{2} \sum_{i=1}^N \xi_i \qquad \text{parameter } \nu \in (0,1) \\ \text{s.t. } y_i \cdot (\langle w, x_i \rangle - b) \geq \rho - \xi_i \qquad \rho \geq 0 \\ \text{data points can lie outside the margin} \\ \text{fraction of violations of margin} \\ \text{is hard-bounded above by } \nu $	support vector classification which emphasizes number of outliers above severity P: good for severe outliers C: tends to overfit more	nu-svc
bound- constraint SVC (Mangasarian et al)	$\min_{w,b,\xi} \frac{1}{2} \ w\ ^2 + \frac{1}{2} b^2 + C \sum_{i=1}^N \xi_i \qquad \text{otherwise same as C-SVC}$ equivalent to homogenous & no intercept	minor variant of C-SVC P: can be worth trying C: sometimes it isn't	C-bsvc
multi-class SVC	Weston/Watkins: sum of C-SVC $(\langle w, x_i \rangle - b)_{c(i)} \geq (\langle w, x_i \rangle - b + 2 - \xi_i)_{\neg c(i)}$ Crammer/Singer: $\min_{M, \xi} \frac{\beta}{2} \ M\ _F^2 + \sum_{i=1}^N \xi_i$	better than naïve one-vs-one or one-vs-all multiclassifiers W/W-risk is closer to C-SVC C/S-risk is closer to nu-SVC	kbb-svc spoc-svc

Regression and Outlier Detection with the SVM

Kernel support vector regression

Classification: For data $x_1, \ldots, x_N \in \mathbb{R}^n$ and labels $y_1, \ldots, y_N \in \{-1, 1\}$

learn a classifier f such that $f(x_i) \approx y_i$

Regression: For data $x_1, \ldots, x_N \in \mathbb{R}^n$ and labels $y_1, \ldots, y_N \in \mathbb{R}$

learn a regressor f such that $f(x_i) \approx y_i$

Idea: instead of mis-classification, penalize $||f(x_i) - y_i||$ with a margin

C-SVC:
$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{N} \xi_i$$
 s.t. $y_i \cdot (\langle w, x_i \rangle - b) \ge 1 - \xi_i$ $\xi_i \ge 0$

$$\mathbf{eps\text{-SVR:}} \min_{w,b,\xi^+,\xi^-} \frac{1}{2} \|w\|^2 + \frac{C}{N} \sum_{i=1}^N \left[\xi_i^+ + \xi_i^- \right] \qquad \text{parameters} \\ C, \varepsilon \in \mathbb{R}^+$$

s.t.
$$(\langle w, x_i \rangle - b) - y_i \le \varepsilon + \xi_i^+, \quad \xi_i^+ \ge 0$$

 $y_i - (\langle w, x_i \rangle - b) \le \varepsilon + \xi_i^-, \quad \xi_i^- \ge 0 \quad \text{for all } 1 \le i \le N$

nu-SVR = eps-SVR + nu-SVC

$$\min_{w,b,\xi^+,\xi^-} \frac{1}{2} \|w\|^2 + C \left(\nu \varepsilon + \frac{1}{N} \sum_{i=1}^N \left[\xi_i^+ + \xi_i^- \right] \right) \quad \begin{array}{c} \text{parameters} \\ C,\varepsilon \in \mathbb{R}^+ \\ \nu \in (0,1) \end{array}$$

s.t.
$$(\langle w, x_i \rangle - b) - y_i \le \varepsilon + \xi_i^+, \quad \xi_i^+ \ge 0$$

 $y_i - (\langle w, x_i \rangle - b) \le \varepsilon + \xi_i^-, \quad \xi_i^- \ge 0$

parameters
$$C, \varepsilon \in \mathbb{R}^+$$
 $\nu \in (0, 1)$

bound-constraint SVR $= eps-SVR + b^2$

kernlab-ksvm:

eps-svr, nu-svr, eps-bsvr

Novelty detection with the one-class SVM

Classification: For data $x_1, \ldots, x_N \in \mathbb{R}^n$ and labels $y_1, \ldots, y_N \in \{-1, 1\}$ learn a classifier f such that $f(x_i) \approx y_i$

Novelty detection: Most data $x_1, \ldots, x_N \in \mathbb{R}^n$ so far are "normal" Learn a classifier that is able to identify "abnormal" points

Idea: "normal" points should be separated from origin by boundary (with slack)

C-SVC:
$$\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^N \xi_i$$
 s.t. $y_i \cdot (\langle w, x_i \rangle - b) \ge 1 - \xi_i$ $\xi_i \ge 0$
1-SVC: $\min_{w,\xi,\rho} \frac{1}{2} \|w\|^2 - \rho + \frac{1}{\nu \cdot N} \sum_{i=1}^N \xi_i$ parameter $\nu \in (0,1)$

1-SVC:
$$\min_{w,\xi,\rho} \frac{1}{2} \|w\|^2 - \rho + \frac{1}{\nu \cdot N} \sum_{i=1}^{N} \xi_i$$
 parameter $\nu \in (0,1)$

$$\text{s.t.} \quad \langle w, x_i \rangle \geq \rho - \xi_i, \quad \xi_i \geq 0 \quad \text{for all } 1 \leq i \leq N$$

 $\nu = \text{ upper bound on training points past the margin}$

Outlier score = distance to "normal" side $d(z) = \frac{w^{\top}x - \rho}{\|u\|}$

1-SVC after kernelization:

$$\min_{\alpha} \frac{1}{2} \alpha^{\top} K \alpha \qquad \text{and} \quad d(z) = \frac{\alpha^{\top} \kappa(x) - \rho}{\sqrt{\alpha^{\top} K \alpha}} \qquad \text{where} \qquad \frac{K = (k(x_i, x_j))_{ij}}{\kappa(x) = (k(x_i, x))_i}$$

s.t. $0 \le \alpha \le \frac{1}{u\dot{N}}$, $\|\alpha\|_1 = 1$ kernlab-ksvm: one-svc

improved variants exist (but not in R)

Using the SVM in kernlab

Support vector learning in kernlab

```
ksvm encapsulates all methods of support vector learning discussed today
Prior to use, kernlab has to be loaded with library(kernlab)
```

usage for training:

```
svmmodel <- ksvm(vartopredict~.,data=traindata,...)
trains a SVM, stored in the output variable svmmodel of type ksvm</pre>
```

important parameters for ksvm:

```
type determines the kind of learning machine, e.g. "C-svc"
```

kernel determines the kernel used, e.g. "rbf-dot"

kpar a list of kernel parameters, e.g. list(sigma=1)

C, nu, epsilon regularization parameters for the various methods

output contains model as alpha, b, alphaindex:

usage for prediction:

```
predicted <- predict(svmmodel, testdata)
yields a vector predicted of predictions for testdata</pre>
```

```
Documentation: http://cran.r-project.org/web/packages/kernlab/kernlab.pdf
```

Type help(ksvm) or example(ksvm) for more details and examples

Methods for model selection

Major issue:

In kernels and in the support vector learning methods, there are regularisation parameters to choose, such as

 σ in Gaussian k. C in C-SVC ν in nu-SVC ε in SVR etc.

for ksvm:

error estimation by k-fold cross-validation by setting param. cross = k estimated cross-validation error is returned as cross

cross-validation for class probabilities with parameter prob.model = T cross-validation for other parameters must be done manually (e.g. cvTools)

Outlook

Lecture 1: Introduction to kernels

Main concepts and theoretical results, learning guarantees Kernel PCA and kernel ridge regression Some notes on R and kernlab

Lecture 2: the kernel support vector machine

The linear support vector machine, duality
Hard- and soft-margin two-class SVM
The one-class SVM
Support vector regression

Lecture 3: Gaussian processes and kernel learning

Potential further lecture topics:

Algorithms: kernel discriminants, kernel k-means, kernel quantile regression kernel CCA, kernel MMD, kernel relevance vector machine Large-scale learning with kernels, subset methods and Nyström-approximation Combinatorial kernels: string kernels, graph kernels
Invariance kernels

Vapnik-Chervonenkis learning theory

Outlier detection, novelty detection On-line kernel learning

Next week: Gaussian Processes

