

Enhancing Breast Cancer Treatment Response Prediction with Single-Cell RNA Sequencing and Large Language Models

Yiming (Emmett) Peng¹, Victoria Truong¹, Aoqi Xie¹, Yu Shi¹

¹Dalla Lana School of Public Health, University of Toronto

Project Highlights

- Developed PRECISE, a novel framework that uses large language models and cell-type-specific markers to predict treatment response.
- Outperforms existing models, including Seuratbased pipelines and published benchmarks (e.g., PD-L1, InteractPrint).
- Demonstrates consistent accuracy across independent datasets.

Background and Objectives

Background

Accurately predicting breast cancer treatment response can increase pathologic complete response (pCR) rates, an indicator of potential cure, and reduce unnecessary toxicity.

Challenges

- The substantial heterogeneity of breast cancer can only be fully captured through single-cell RNA sequencing (scRNA-seq) data.
- Existing prediction models often rely on bulk-level features and overlook cell-type-specific signals that may drive treatment response.

Objectives

Develop a predictive framework that uses cell-typespecific marker genes from scRNA-seq data to improve treatment response (pCR) prediction in breast cancer.

Discovery and Validation Datasets

Discovery Dataset – Bassez et al. Cohort (2021)

- Sample size: 29 patients (9 achieve pCR, 20 did not).
- scRNA-seq dimensions: 157,760 cells \times 25,291 genes.
- Bulk gene expression data: aggregated from the scRNA-seq data using PRECISE model.

Validation Dataset – I-SPY2 Trial Cohort Treated with anti-PD1 Treatment

- Sample size: 69 patients (31 achieve pCR, 38 did not).
- Bulk gene expression data dimensions: 69 patients × 19,134 genes.

Figure 1. Sampling process of the discovery dataset (modified from Bassez et al., 2021).

Methods

PRECISE Framework (Prediction of REsponse using Cell-type Inference and Single-cell Embedding)

Figure 2. Overview of the PRECISE framework, which leverages large language models and cell-type-specific markers for treatment outcome prediction.

- Use large language models (LLMs) to generate cell-level embeddings.
- Cluster cells and identify marker genes per cell type using Louvain algorithm and Seurat.
- Cell type—specific marker genes are used to predict pCR.

Workflow 1: Generating Cell Embeddings with LLMs

Figure 3. Workflow for generating cell-level embeddings from single-cell RNA-seq data using LLMs.

- Sparse expression matrix transformed into ranked gene lists per cell.
- Gene lists converted into sentences for LLM input.
- Resulting embeddings capture complex cell-level patterns.

Workflow 2: Predicting Treatment Outcomes from Bulk Gene Expression

Figure 4. Workflow for predicting treatment outcomes using bulk gene expression derived from single-cell RNA-seq and PRECISE-identified marker genes.

- Gene expression averaged within groups to generate pseudo-bulk profiles.
- PRECISE-identified marker genes used for classification.

Results

- PRECISE's macrophage marker genes achieved high AUCs across all four settings, outperforming Seurat-derived markers (**Figure 5**).
- PRECISE outperformed PD-L1 and T Cell InteractPrint baselines with AUCs of 0.861 (Bassez) and 0.917 (I-SPY2) (**Figure 6**).
- PRECISE offers reliable uncertainty estimates via conformal prediction, with few low-confidence cases near the 0.5 threshold (**Figure 7**).

Figure 5. Cell type-specific treatment response prediction performance across models and datasets (LASSO).

Figure 7. Quantifying prediction uncertainty with conformal prediction: macrophage markers in I-SPY2 trial.

Figure 6. Comparison of PRECISE macrophage-based prediction with existing published models.

(a, b) ROC curves from PRECISE using macrophage markers on the Bassez dataset (a) and I-SPY2 trial (b).

(c, d) ROC curves from Xu et al., Cell Reports Medicine (2024), comparing T Cell InteractPrint and PD-L1 Expression on the same datasets.

Conclusions

- PRECISE improves treatment outcome prediction, outperforming published models and clinically used approaches across datasets.
- PRECISE consistently outperforms the Seurat pipeline, with embedding-based features from foundation models generalizing well across datasets.

Limitation and Future Work

- Reproduce PD-L1 Expression and InteractPrint pipelines for statistical comparison.
- Analyze top marker genes for biological and clinical relevance.

References and Acknowledgements

Special thanks to the Hu Lab for their invaluable support and guidance.

SSC Conference 2025 Poster Presentation