

05506006 โครงสร้างข้อมูล

Lecture 1: Introduction to Data Structure and Algorithms ดร.รุ่งรัตน์ เวียงศรีพนาวัลย์

เค้าโครงการบรรยาย

- ความหมายของโครงสร้างข้อมูล
- ประเภทของโครงสร้างข้อมูล
- Abstract Data Type
- อัลกอริทึม (ขั้นตอนวิธี)
 - อัลกอรีทีมคืออะไร
 - PseudoCode และผังงาน
 - การวัดประสิทธิภาพของอัลกอริทึม
 - Big Oh Notation
 - ตัวอย่างการเรียงแบบเลือก
 - การคิด Big Oh ของการเรียงแบบเลือก โดยนับจำนวนครั้งของการสลับที่และเปรียบเทียบ

โครงสร้างข้อมูลคืออะไร

- วิธีการเฉพาะในการจัดการข้อมูลคอมพิวเตอร์เพื่อให้สามารถใช้งานคอมพิวเตอร์ (โปรแกรม คอมพิวเตอร์) อย่างมีประสิทธิภาพ
 - คอมพิวเตอร์ -> หน่วยความจำ/ดิสก์ (แต่ในชั้นเรียนนี้จะเน้นที่หน่วยความจำ)
- a particular way of organizing <u>data</u> in a computer so that it can be used <u>efficiently</u>. [wiki]
- Is the study of how the information is organized in a computer, how it can be manipulated and how it can be organized
- การศึกษาว่าข้อมูลถูกจัดการ จัดเก็บ จัดเรียง และเรียกใช้อย่างมีประสิทธิภาพอย่างไรใน คอมพิวเตอร์

ข้อมูล และ

ประเภทของข้อมูล: 1. Built-in (Primitive) Data Type

- ข้อมูลจะถูกเก็บไว้ในที่ใดที่หนึ่งในหน่วยความจำ
- ปกติจะอ้างถึงผ่านตัวแปร
- ข้อมูลเป็นได้ทั้งตัวเลข ตัวอักษร เรียกประเภทของข้อมูลว่า Data Type (ชนิดข้อมูล)
- ตัวอย่างชนิดข้อมูลในจาวา
 - เก็บจำนวนเต็ม
 - เก็บจำนวนจริง.....
 - เก็บตัวอักษร
- ชนิดข้อมูลที่ยกตัวอย่างเหล่านี้จัดเป็นโครงสร้างข้อมูลที่ทางภาษาโปรแกรมคอมพิวเตอร์เตรียมไว้ให้
 - เราเรียกโครงสร้างข้อมูลแบบนี้ว่า Built in Data Structure หรือ Primitive Data Structure

ประเภทของข้อมูล:

2. User Defined Data Structure

- แต่ข้อมูลที่จัดเก็บมีมากกว่าที่ทางภาษาโปรแกรมเตรียมไว้ เช่น การจัดเก็บข้อมูลนักศึกษาซึ่งมีทั้ง รหัสนักศึกษา (จำนวนเต็ม) ชื่อ นศ หรือ ข้อมูลคะแนนของนักศึกษาในวิชา จำนวน 10 คน ฯลฯ จึงมีความต้องการ โครงสร้างข้อมูลที่ตอบสนองความต้องการที่เพิ่มขึ้นมานี้
- นักวิทยาการคอมพิวเตอร์จึงมีการพัฒนาโครงสร้างข้อมูล จาก Built in Data Structure เป็น โครงสร้างข้อมูล ที่มีความซับซ้อนมากขึ้น
- ตัวอย่างเช่น โครงสร้างข้อมูลประเภทลิ้งค์ลิสต์ (Link List) โครงสร้างข้อมูลแบบกองซ้อน (หรือสแตค Stack) โครงสร้างข้อมูลแบบคิว (Queue) โครงสร้างข้อมูลแบบต้นไม้ และ โครงสร้างข้อมูลแบบกราฟ เป็น ต้น
- โครงสร้างข้อมูลที่ถูกพัฒนาขึ้นมานี้จะจัดอยู่ในกลุ่ม User Defined Data Structure หรือ Non-Primitive Data Structure
 - ภาษาโปรแกรมไม่มีให้
 - ผู้ใช้ต้องพัฒนาขั้นตอนวิธีขึ้นมาในการใช้งาน

ตัวอย่างโครงสร้างข้อมูล

รูปแสดงประเภทของข้อมูล

Abstract Data Types (ADTs)

- Operations คือ สิ่งที่ข้อมูลนั้นๆ
 - ตัวอย่างเช่น ข้อมูล ชนิดจำนวนเต็ม (int) Operations คือ บวก ลบ คูณ หาร
- ในการสร้างโครงสร้างข้อมูลขึ้นมาใหม่มีกระบวนการและองค์ประกอบหลักคือ
 - 1. Declaration of Data: ต้องมีการกำหนดชนิดข้อมูลใหม่ขึ้นมา
 - Declaration of Operations: มีการบอกว่าผู้ใช้สามารถทำอะไรกับข้อมูลนี้ได้บ้าง => ตัว
 ดำเนินการ (Operations)
 (1 และ 2 เป็นสิ่งที่ในทุก Data

Structure มีเหมือนกัน เลยเรียกการ
กำหนดว่า Abstract Data Types

3. ทำการเขียนคำสั่ง สั่งโปรแกรมให้ทำงานตามฟังก์ชันของแต่ละ Operation

ตัวอย่างโครงสร้างข้อมูลในการกล่าวถึงแบบ ADT

- ยกตัวอย่างโครงสร้างข้อมูลแบบคิว
- โครงสร้างข้อมูลนี้เหมาะกับงานที่จะจัดการข้อมูล ตามลำดับ (ข้อมูลที่บันทึกก่อนจะถูกจัดการก่อน) เช่น การจองตั๋วหนัง ตั๋วรถไฟ การส่งไฟล์ให้ปรินท์ เตอร์ทำการพิมพ์

• ชนิดของข้อมูล

- Queue
- มีลักษณะ First-In-First-Out FIFO
- Operation
 - 1. สร้างคิว
 - 2. เพิ่มข้อมูลลงไปในคิว
 - 3. ลบข้อมูลออกจาก
- สร้างคิวอย่างไร เพิ่มหรือลบข้อมูลออกจากคิวทำ อย่างไร ADT จะไม่กล่าวถึง (จะไปกล่าวถึงใน ขั้นตอนการสร้างโครงสร้างข้อมูลใหม่นี้ขึ้นมา จริงๆ)

Abstract Data Type

- ADT เป็น First Step สำหรับ Data Structure ใหม่
 - เช่น ADT คิว Type คิว, Operations : เพิ่มข้อมูลลงคิว ลบข้อมูลออกจากคิว คิวว่างหรือไม่ คิวเต็มหรือยัง
- เมื่อได้ ADT แล้ว จึงต้องทำการ implement ด้วยภาษาโปรแกรมที่เลือกใช้งาน
- ในโลกนี้มีภาษาโปรแกรมหลายภาษา
 - ถ้ามี 10 ภาษา ก็ต้องสร้าง(implement) 10 แบบ ใช่หรือไม่
 - ถ้าวันนี้ใช้ จาวา อีก 10 ปีมีภาษาใหม่ ชื่อ จีวี่ แล้วเราต้องทำการสร้างคิวด้วยภาษาใหม่ทุกครั้งเลยใช่หรือไม่
 - ถ้าใช่ ในการสร้างด้วยภาษาจีวี่ ต้องคิดใหม่ทำใหม่ทั้งหมดชนิดเริ่มจากศูนย์ ใช่หรือไม่ (หรือใช้โครงเดิมได้)
- ในการสร้างบ้านต้องมี
 - แบบบ้าน
 - ขั้นตอนในการสร้าง 1. ลงเสาเซ็ม 2. เทพื้น เสร็จ
 - อิฐ หิน ดิน ทราย เสาเข็ม คาน เปลี่ยนยี่ห้อ แบบบ้าน และขั้นตอนหลักๆ ก็คงเดิม)
- ในการ implement โครงสร้างข้อมูลเป็นโปรแกรม ก็ต้องมีขั้นตอนที่ไม่ว่าจะใช้ภาษาโปรแกรมไหนก็ต้องทำเหมือนกัน
- เราเรียกขั้นตอนนี้ Algorithms หรือ ขั้นตอนวิธี

อัลกอริทึม: จงเขียนขั้นตอนในการทอดไข่เจียว 1 จาน

เตรียมไข่และเครื่องปรุง

อัลกอริทึม (ขั้นตอนวิธี) การทอดไข่เจียว 1 จาน

%E0%A4%C5%E7%B4%C5%D1%BA&id=yaGNIwmpeALHCEWS

อัลกอริทึม: คำถาม

Q1: ถ้าครูให้นักศึกษาเขียนขั้นตอนการทำไข่เจียวเป็น ภาษาอังกฤษ ภาษาจีน ภาษารวันดา ;p โดยใช้ Google Translator นักศึกษาจะทำได้หรือไม่

Q2: ถ้าทำทำอย่างไร

O3: ถ้านักศึกษาเขียนขั้นตอนการทำไข่เจียวได้ครบถ้วนกระบวนการ แล้วคนรวันดา จะทอดไข่เจียวแล้ว ได้ไข่ดาวหรือไม่ ?

Q3: ถ้าเปลี่ยน ไข่ไก่ เป็น ไข่เป็ด ไข่นกกระทา ไข่นกกระจอกเทศ ขั้นตอนการทำไข่เจียวจะเปลี่ยนแปลงหรือไม่

Q4: ถ้าเปลี่ยนจากชอสหยั่นหว่อหยุ่น เป็น ชอสแม็กกี้ ขั้นตอนจะเปลี่ยนแปลงหรือไม่

Q5: ถ้าเปลี่ยนจากเตาแก๊สเป็นเตาถ่าน ขั้นตอนจะเปลี่ยนแปลงหรือไม่

O6: ให้นักศึกษาลองเขียนผังงานของขั้นตอนการทำไข่เจียว

ให้นักศึกษา เขียนขั้นตอนการทอดไข่เจียวเป็นผังงาน

อัลกอริทึม: ความหมายของอัลกอรึทึมหรือขั้นตอนวิธี

- ชุดคำสั่งที่นำไปสู่การแก้ปัญหา
- มีการกำหนดลำดับในการทำงาน
- มีจำนวนคำสั่งที่จำกัด
- ซึ่งแต่ละคำสั่งมีความชัดเจนในตัวเอง
- สามารถกระทำได้โดยใช้ทรัพยากร (resource) ที่จำกัด
- ภายในเวลา (time) ที่จำกัด
- เช่น การเรียงข้อมูล การเดินทางจากคณะวิทยาศาสตร์ไปคณะ วิศวะ หรือ แม้กระทั่ง การทอดไข่เจียว ;)
- ทางคอมพิวเตอร์เรียกขั้นตอนการ ทำงาน ก่อนนำมาเขียนโปรแกรม ว่า ขั้นตอนวิธีหรืออัลกอริทึม (Algorithm)
- นักคอมพิวเตอร์จะอธิบาย อัลกอริทึมให้คนทั่วไปเข้าใจโดย ไม่อิงกับภาษาโปรแกรมผ่านทาง Pseudocode หรือ ผังงาน

Pseudocode คืออะไร

• การเขียนขั้นตอนวิธีเป็นภาษามนุษย์ที่นักคอมพิวเตอร์เข้าใจ ;p

```
SummationofTwoNumber
Begin
Read X;
Read Y;
Calculate X+Y;
Print X+Y;
End
```

```
SummationofTenNumber
Begin
sum=0;
Loop 10 times
Read X;
Sum = Sum+X;
End Loop
Print Sum;
End
```

```
SummationofTenNumber
Begin
    sum=0; i =0;
    Loop while i<10
    Read X;
    Sum = Sum+X;
    i=i+1;
    End Loop
End</pre>
```

PseudoCode จะไม่อิงกับภาษาโปรแกรมใด

```
SummationofTwoNumber
Begin
Read X;
Read Y;
Calculate X+Y;
Print X+Y;
End
PSeudoCode
```

201102000

```
public class SummationofTwoNumber {
15
         public static void main (String [] args)
16
17
             int X.Y.sum;
18
             Scanner in = new Scanner(System.in);
19
             System.out.print("Enter X:"):
20
             X = in.nextInt();
21
             System.out.print("Enter Y:");
22
             Y = in.nextInt();
23
24
             System.out.print ("Summation of X+Y: ");
             System.out.println (X+Y);
25
26
```

```
SummationofTenNumber
                                      Begin
                                            sum=0;
                                           Loop 10 times
                                              Read X:
                                              Sum = Sum + X;
                                            End Loop
                                            Print Sum;
     public class JavaApplication2 {
                                                                      #include "stdio.h"
        public static void main(String[] args) {
                                                                           int X, i=0, sum=0;
18
19
20
21
22
23
24
25
26
27
            int sum=0; int i=0; int X;
                                                               5
                                                                           while (i<10)
            Scanner in = new Scanner(System.in);
                                                               6
            while (i<10)
                                                                               printf("%d.Enter X:".i):
                                                                               scanf ("%d", &X);
                System.out.print(i + ".Enter X: ");
                                                               9
                                                                               sum = sum+X;
                X = in.nextInt();
                                                              10
                                                                               1++:
                                                              11
                1++:
                                                                           printf("Summation = %d", sum)
                                                              13
           System.out.println("Summation = "+ sum);
```

อัลกอริทึม (2)

- ชอฟต์แวร์ หรือ โปรแกรมคอมพิวเตอร์คือ
 เครื่องมือในการแก้ปัญหาต่างๆ เพื่อให้ได้คำตอบที่
 รวดเร็ว ถูกต้องกว่าที่มนุษย์สามารถทำได้ หรือใช้
 อำนวยความสะดวกให้กับมนุษย์
- ขั้นตอนวิธีไม่ได้ถูกใช้แค่ในการสร้าง Data Structure เท่านั้น แต่ใช้เป็นต้นแบบในการเขียน โปรแกรมในการแก้ปัญหาต่างๆ
- ชอฟต์แวร์ หรือ โปรแกรมที่ดี จึงควรมีขั้นตอนวิธี
 (อัลกอริทึม) ที่ดีในการแก้ปัญหา
- คำถาม แล้วรู้ได้อย่างไรว่าอัลกอริทึมดี

คำตอบ

- อัลกอริทึมที่ดี
- ต้องเข้าใจง่าย ง่ายต่อการเขียนโปรแกรม ง่ายต่อ การแก้ไขปรับปรุง
- ต้องใช้ทรัพยากรของคอมพิวเตอร์อย่างมี ประสิทธิภาพ
- คำถาม (ต่อ) รู้ได้อย่างไรว่าอัลกอริทึมมี ประสิทธิภาพ วัดจากอะไร

ประสิทธิภาพของอัลกอรีทึม

การวัดประสิทธิภาพของโปรแกรมจะวัดจากประสิทธิภาพของอัลกอรีทึม

1. เนื้อที่ที่ใช้งาน

2. เวลาที่อัลกอริทึมทำงาน

- 2.1 จับเวลาในการทำงาน
- ปัญหา ความไม่ยุติธรรม
- คนที่ใช้คอมพิวเตอร์ เร็ว และ แรงกว่า แม้อัลกอริทึมไม่ดี แต่อาจทำงานเร็วกว่า คนที่ใช้ คอมพิวเตอร์ที่ช้า
- คนที่อิมพลีเม้นท์ด้วยภาษาซี ย่อมได้เปรียบกว่าภาษาจาวาเพราะภาษาซีทำงานเร็วกว่า
- คนที่มีข้อมูลมากกว่า การทำงานย่อมใช้เวลามากกว่า
- ดังนั้นการใช้เวลาน้อยกว่าไม่ได้หมายความว่าจะมีอัลกอริทึมที่ดีกว่าเสมอ
- 2.2 นับจำนวนคำสั่งในการทำงาน

ข้อดี แก้ปัญหาเรื่องคอมพิวเตอร์ แรง เร็วไม่เท่ากัน แต่ยังไม่แก้ปัญหาเรื่องจำนวนข้อมูลที่มากกว่าใช้เวลา มากกว่า (ภาษาสแตหคือข้อมลยังไม่ Normalize)

- การ Normalize
 ข้อมูลเพื่อวัด
 ประสิทธิภาพของ
 อัลกอริทึมไม่ว่า
 ข้อมูลจะมีขนาดไม่
 เท่ากัน
- ทำได้โดยการหา Big
 Oh ของ อัลกอริทึม
- Big Oh คืออะไร

ขั้นตอนการหา Big Oh ของอัลกอริทึม

```
1. ทำการนับจำนวน statement ในอัลกอริทีม
```

2. หาสมการ f(n) ของจำนวน statement n คือ จำนวนข้อมูลเข้า

ตย f(n) = 2n+1; => <mark>จำนวน input 2 ค่า จำนวน statement = 5</mark>

f(n) = 4n² + 5n+6; => จำนวน input 2 ค่า จำนวน statement = 32

(ลองคิดในกรณี input เป็น 1000000 ค่า)

3. เมื่อได้ f(n) แล้ว สนใจแต่พจน์ที่มีดีกรีสูงสุด

f(n) = 2n+1; => 2n

 $f(n) = 4n^2 + 5n+6 \Rightarrow 4n^2$

4. ตัดสัมประสิทธิ์ข้างหน้าทิ้งจะได้ดีกรีของ Big Oh อัลกอริทึม

f(n) = 2n+1; => 2n => n $f(n) = 4n^2 + 5n+6 => 4n^2 => n^2$

5. จะได้ Big Oh ดังนี้

f(n) = 2n+1; => O(n) => Big Oh order n $f(n) = 4n^2 + 5n+6 => O(n^2)$ Big Oh order n^2

การหา Big Oh: 1. การนับจำนวน statement 1

ในการที่จะหา Big Oh ได้นั้น นักศึกษาต้องนับจำนวนครั้งของ statement ในการเปรียบเทียบและกำหนดค่า

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: 1. การนับจำนวน statement 2

การหา Big Oh: การนับจำนวน statement 4

```
* จงนับ Statement ใน Pseudocode นี้

| Begin | Sum =0; | i=0; |
| Loop 2 times | Print i; |
| Sum = Sum+i; | i=i+1; |
| End Loop | Print Sum ; |
| End
```

- ให้นักศึกษาเปลี่ยนจาก 2 เป็น 10 100 1000 และ นับจำนวนครั้ง
- ถ้า 2 เปลี่ยนเป็น n จะได้กี่ครั้ง

การหา Big Oh: การนับจำนวน statement 4

```
• จงนับ Statement ใน Pseudocode นี้
   Begin
      Sum = 0;
      i=0;
      j=0;
      Loop 3 times
          Loop 2 times
              Print i,j;
              Sum = Sum+i+j;
              i =i +1;
          End Loop
                              // au Loop 2 times
          j=j+1;
                             //৭u Loop 3 times
      End Loop
      Print Sum;
```

• จงนับ Statement ใน Pseudocode นี้ Begin Sum = 0;i=0; j=0; Loop 3 times Loop 2 times Print i,j; Sum = Sum+i+j;i = i + 1;End Loop // all Loop 2 times j=j+1; End Loop //au Loop 3 times Print Sum; End

Methods to compute the step count Ex.1

	steps/execu	ution	
Statement	s/e	Frequency	Total steps
int i;	0	0	0
int sum=0;	1	0	1
for(i=0; i <n; i++)<="" td=""><td></td><td></td><td></td></n;>			
sum = sum+i;	1	n	n
Total			2n+2

Methods to compute the step count Ex.2

• ตย การบวก Matrix

steps/execution

Statement	s/e	Frequency	Total steps
for(i=0; i <row; i++)<br="">for(j=0; j<col; j++)<="" td=""><td>1</td><td>row+1</td><td>row+1</td></col;></row;>	1	row+1	row+1
c[i][j] = a[i][j]+b[i][j];	1	row(col)	row(col)
Total	2*rc	w*col + 2*rov	v +1

เมื่อได้จำนวนครั้งทั้งหมดที่ อัลกอริทีมทำงานแล้ว นำค่านี้ ไปวัดประสิทธิภาพได้อย่างไร => ใช้ Big O

Growth Functions

• Big Oh ใช้บอก อัตราการโต (Growth Rate) ของอัลกอริทึมเมื่อจำนวนข้อมูล (input) มีมากขึ้น

• Growth rate ของอัลกอริทึม คือ อัตราการเพิ่มขึ้นของเวลาที่ใช้ในการประมวลผลซึ่งจะแปลผันตรงกับขนาดของ

อินพุต

• แบ่งเป็น

• O(1): constant

• O(n): linear

• O(n²): quadratic

• O(n³): cubic

• O(2ⁿ): exponential

• O(log n)

O(n log n)

ปกติ สมมติฐานการใช้ Big O คือ input มีขนาดใหญ่ (มีจำนวนมาก)

ให้นักศึกษาคำนวณเวลาที่ใช้ในการประมวลผลต่อไปนี้ 1

```
• จากหน้า 10 เวลาทั้งหมดที่ใช้คือ 2n+2 วินาที
```

- ถ้า จำนวนอินพุต n = 10 ใช้เวลา =>
- n= 20 ใช้เวลา =>
- n= 100 ใช้เวลา =>
- n= 1.000.000 =>

• ถ้า algo หนึ่งใช้เวลาในการประมวลผลเป็น 2n²+3n+1 วินาที

- ถ้า จำนวนอินพุต n = 10 ใช้เวลา =>
- n= 20 ใช้เวลา =>
- n= 100 ใช้เวลา =>
- n= 1,000,000 =>

ให้นักศึกษาคำนวณเวลาที่ใช้ในการประมวลผลต่อไปนี้ ॥

- จากหน้า 10 เวลาทั้งหมดที่ใช้คือ 3n³ + 1 วินาที
 - ถ้า จำนวนอินพุต n = 10 ใช้เวลา =>
 - n= 20 ใช้เวลา =>
 - n= 100 ใช้เวลา =>
 - n= 1.000.000 =>

• ถ้า algo หนึ่งใช้เวลาในการประมวลผลเป็น 2n⁴ วินาที

- ถ้า จำนวนอินพุต n = 10 ใช้เวลา =>
- n= 20 ใช้เวลา =>
- n= 100 ใช้เวลา =>
- n= 100 เซเลดา =2
- n= 1,000,000 =>

Plot of Growth Functions

Times on a 1 billion instruction per second computer

n	f(n)=n	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$
10	.01µs	.03µs	.1μs	1µs	10µs	10sec	1µs
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	1sec
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3mi
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr
1,000	1.00µs	9.96µs	1ms	1sec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr	
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr	
,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr	
				6			
		s m	us = microse ns = millisectect = seconds in = minutes hr = hours d = days yr = years	cond = 10^{-6} s ond = 10^{-3} se			

นอกจากขนาดของข้อมูลเข้า (input) แล้ว มีปัจจัยอื่นที่มีผลในการวัดประสิทธิภาพ ของอัลกอริทึมหรือไม่

- ให้นักศึกษาเรียงข้อมูลจากน้อยไปมากของข้อมูลจำนวน 3 ชุด แต่ละชุดมี 5 จำนวน โดยให้ใช้วิธีการเดียวกันในการ
 เรียง นักศึกษาคิดว่าข้อมูลใดจะเรียงได้ เร็วที่สุด โดยเฉลี่ย หรือ ช้าที่สุด ตามลำดับ
 - A. 12345
 - B. 54321
 - C. 31542

ก.A B C ข.A C B ค.B C A ง. ไม่มีข้อใดถูก

สรุป

- ความซับซ้อนของอัลกอริทึมวัดจากจำนวนครั้งในการทำการเปรียบเทียบหรือกำหนดค่าในอัลกอริทึมแบ่งเป็น 3 กรณี คือ
 - กรณีที่ดีที่สุด (Best Case) คือ จำนวนครั้งในการเ<mark>ปรียบเทียบและกำหนดค่าที่น้อยที่สุด</mark>
 - กรณีเฉลี่ย (Average Case) จำนวนครั้งโดยเฉลี่ยที่ใช้ในการเปรียบเทียบและกำหนดค่า
 - กรณีที่แย่ที่สุด (Worst Case) จำนวนครั้งที่ใช้ในการเปรียบเทียบและกำหนดค่าที่มากที่สุด
- ปกติในการเปรียบเทียบ Big Oh ของอัลกอริทึมจะสนใจ
 - Worst case
 - บอก upper bound ขอบบนของเวลาที่ใช้ (running time)
 - absolute guarantee (ใช้เวลามากที่สุดเท่านี้)
 - Average case
 - ให้ค่า running time ตามที่หวัง
 - มีประโยชน์ สุ่ม อินพุตให้โอกาสถูกเลือกเท่าๆกัน (Random (equally likely) inputs) Real-life inputs
 - แต่ปัญหาคือ การหาค่าเฉลี่ย อย่างไรคือเฉลี่ย

ตย Selection Sort: รอบที่ 1

รอบที่ 1: เป้าหมายหาข้อมูลตำแ	หน่งแ	.รก (เ	D)								ก่อ	นเปรียบเทียบ	หลั	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9		mlocation		lacation
ให้ min = 42, mlocation=0	42	23	74	11	65	58	94	36	99	87		miocation		miocation
1.เปรียบเทียบ min กับ 23		23									42	0	23	1
2.เปรียบเทียบ min กับ 74			74								23	1	23	1
3.เปรียบเทียบ min กับ 11				11							23	1	11	3
4.เปรียบเทียบ min กับ 65					65						11	3	11	3
5.เปรียบเทียบ min กับ 58						58					11	3	11	3
6.เปรียบเทียบ min กับ 94							94				11	3	11	3
7.เปรียบเทียบ min กับ 36								36			11	3	11	3
8.เปรียบเทียบ min กับ 99									99		11	3	11	3
9.เปรียบเทียบ min กับ 100										87	11	3	11	3
สลับที่ข้อมูลในตำแหน่งที่ 3 และ	11			43										
ดำแหน่งที่ 1	111			43										
จำนวนครั้งในการสลับที่				0					จำ	นวน	ครั้งใ	นการเปรียบเห็	วียบ	9
ผลลัพธ์ของรอบที่ 1	11	23	74	43	65	58	94	36	99	87				

ตย Selection Sort: รอบที่ 2

รอบที่ 2: เป้าหมายหาข้อมูลดำแห	นงที่ส	สอง ((1)								ก่อ	นเปรียบเทียบ	หล้	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9				
ให้ min = 23, mlocation=1	11	23	74	43	65	58	94	36	99	87	min	mlocation	min	miocatio
1.เปรียบเทียบ min กับ 74			74								23	1	23	1
2.เปรียบเทียบ min กับ 43				43							23	1	23	1
3.เปรียบเทียบ min กับ 65					65						23	1	23	1
4.เปรียบเทียบ min กับ 58						58					23	1	23	1
5.เปรียบเทียบ min กับ 94							94				23	1	23	1
6.เปรียบเทียบ min กับ 36								36			23	1	23	1
7.เปรียบเทียบ min กับ 99									99		23	1	23	1
8.เปรียบเทียบ min กับ 87										87	23	1	23	1
23 อยู่ตำแหน่งที่ 1 แล้วเลยไม่														
ต้องสลับที่														
จำนวนครั้งในการสลับที่				0					จำ	นวน	ครั้งใ	นการเปรียบเ <i>ท</i> ี	เียบ	:
ผลลัพธ์ของรอบที่ 2	11	23	74	43	65	58	94	36	99	87				

ตย Selection Sort: รอบที่ 3

รอบที่ 3: เป้าหมายหาข้อมูลตำแห	นงที่ส	สาม ((2)								ก่อ	นเปรียบเทียบ	หลั	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9		mlocation		lessties
ให้ min = 74, mlocation=2	11	23	74	43	65	58	94	36	99	87		miocation		miocation
1.เปรียบเทียบ min กับ 43				43							74	2	43	3
2.เปรียบเทียบ min กับ 65	ĺ				65						43	3	43	3
3.เปรียบเทียบ min กับ 58						58					43	3	43	3
4.เปรียบเทียบ min กับ 94							94				43	3	43	3
5.เปรียบเทียบ min กับ 36								36			43	3	36	7
6.เปรียบเทียบ min กับ 99	ĺ								99		36	7	36	7
7.เปรียบเทียบ min กับ 87	ĺ									87	36	7	36	7
สลับที่ข้อมูลในตำแหน่งที่ 2 และ	ĺ		74					36						
ตำแหน่งที่ 7			74					30						
จำนวนครั้งในการส ลับที่				1					จำ	นวน	ครั้งใ	นการเปรียบเห	เียบ	
ผลลัพธ์ของรอบที่ 3	11	23	36	43	65	58	94	74	99	87				

ตย Selection Sort: รอบที่ 4

รอบที่ 4: เป้าหมายหาข้อมูลตำ	แหน่งท	าสี (:	3)								ก่อ	นเปรียบเทียบ	หลั	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9		mlocation		
ให้ min = ,mlocation=	11	23	36	43	65	58	94	74	99	87		miocation		miocatio
1.เปรียบเทียบ min กับ 65											43	3		
2.เปรียบเทียบ min กับ 58														
3.เปรียบเทียบ min กับ 94														
4.เปรียบเทียบ min กับ 36														
5.เปรียบเทียบ min กับ 99														
6.เปรียบเทียบ min กับ 87														
ข้อมูลในตำแหน่งที่ 3 และ ตำแหน่งที่				43										
จำนวนครั้งในการสลับที่									จำ	นวน	ครั้งใ	นการเปรียบเท็	เียบ	
ผลลัพธ์ของรอบที่ 4	11	23	36	43	65	58	94	74	99	87				

ตย Selection Sort: รอบที่ 5

, , , , , , , , , , , , , , , , , , ,		T a	2	3	-	5	6	7	8					
	0	1		3	4	Э	О	′	0	9	min	mlocation	min	mlocation
ให้ min =	11	23	36											
1. เปรียบเทียบ min กับ														
2. เปรียบเทียบ min กับ														
3.เปรียบเทียบ min กับ														
4. เปรียบเทียบ min กับ														
5.เปรียบเทียบ min กับ 87														
ข้อมูลในตำแหน่งที่ และ														
ตำแหน่งที ่														
จำนวนครั้งในการสลับที ่					•				จำ	นวน	ครั้งใ	นการเปรียบเข	ายบ	
ผลลัพธ์ของรอบที่ 5	11	23	36											

ตย Selection Sort: รอบที่ 6

รอบที่ 6 : เป้าหมายหาข้อมูลตำเ	เหน่งที่	เหก ((5)			l					ก่อ	นเปรียบเทียบ	หล้	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9		mlocation		mlocation
ให้ min = ,mlocation=	11	23	36									miocation		mocation
ข้อมูลในตำแหน่งที่ และ														
ทำแหน่งที่														
จำนวนครั้งในการส ลับที่		•							จำ	นวน	ครั้งใ	นการเปรียบเห	ายบ	
ผลลัพธ์ของรอบที่ 6	11	23	36											

ตย Selection Sort: รอบที่ 8 และ รอบที่ 9

	0	7	2	3	4	5	6	7	8	9	min	mlocation	min	mlocation
ให้ min = , mlocation=	11	23	36											
1														
ข้อมูลในตำแหน่งที่ และ	-										_			
· .														
ตำแหน่งที่											<u> </u>			
จำนวนครั้งในการส ลับที ่									จำ	นวน	ครั้งใ	นการเปรียบเา	กียบ	
ผลลัพธ์ของรอบที่ 7	11	23	36											

ตย Selection Sort: รอบที่ 8 และ รอบที่ 9

รอบที่ 8: เป้าหมายหาข้อมูลตำแ	หน่งทั	18 (7)								ก่อ	นเปรียบเทียบ	หล้	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9	min	mlocation	min	mlocation
ให ้ min = , mlocation=	11	23	36									illocation		iniocation
	_													
ข้อมูลในตำแหน่งที่ และ	-					-								
ดำแหน่งที่														
จำนวนครั้งในการส ลั บที่									จำ	นวน	ครั้งใ	นการเปรียบเห	ายบ	
ผลลัพธ์ของรอบที่ 8	11	23	36											
รอบที่ 9: เป้าหมายหาข้อมูลตำแ	หน่งที่	เก้า (8)								ก่อ	นเปรียบเทียบ	หล้	ังเปรียบเทียบ
	0	1	2	3	4	5	6	7	8	9				
ให้ min = ,mlocation=	11	23	36								min	miocation	min	mlocation
ข้อมูลในตำแหน่งที่ และ														
ตำแหน่งที่														
จำนวนครั้งในการสลับที่									จำ	นวน	ครั้งใ	นการเปรียบเห	า ียบ	
ผลลัพธ์ของรอบที่ 9	44	22	36											

ตย จำนวนครั้งในการสลับที่และเปรียบเทียบ

• จากโจทย์ตัวอย่าง แต่ละรอบเปรียบเทียบและสลับที่กี่ครั้ง

รอบที่	จำนวนครั้งในการสลับที	จำนวนครั้งในการเปรียบเทียบ
1		
2		
3		
4		
5		
6		
7		
8		
9		
รวม		

แบบฝึกหัด (ส่งในห้อง)

- จงเรียงข้อมูลต่อไปนี้ด้วย Selection Sort จากน้อยไปหามาก
- 1. 586 789 34 190 220
- 2. 10 20 30 40 50
- 3. 50 40 30 20 10

เขียนทุกขั้นตอนตามตัวอย่าง

- 4. ให้สรุปจำนวนครั้งในการเปรียบเทียบและสลับที่ของแต่ละกรณี ถ้าข้อมูลมี n ตัว
- | | 5. จงเขียนขั้นตอนวิธีในการเรียบแบบเลือก

อ้างอิง

- [1] Wikipedia https://en.wikipedia.org/wiki/Data_structure
- [2] Data Structure Using C++ By N. Jayalakshmi