Detailed Report on Network Cable Preparation, IP Configuration, and Network Tools

Bachelor of Technology Computer Science and Engineering

Submitted By

NAME – ABHIRUP BAG ROLL NUMBER – 13000122082 DEPARTMENT – CSE(B1) SEMESTER – 6 PAPER – Computer Networks Lab (PCC-CS692)

February 2025

Techno Main EM-4/1, Sector-V, Salt Lake Kolkata- 700091 West Bengal India

Table of Contents

1. Introduction

2. CAT-5/CAT-6 Cable Preparation with RJ-45 Connector

- 2.1 Tools Required
- 2.2 Wiring Standards (TIA/EIA-568A & TIA/EIA-568B)
- 2.3 Straight-Through vs. Crossover Cabling
- 2.4 Steps to Crimp an RJ-45 Connector

3. IP Address Configuration on Windows and Linux

- 3.1 Static IP Configuration
- 3.2 DHCP Configuration

4. Network Tools and Commands

- 4.1 ipconfig (Windows)
- 4.2 if config (Linux)
- 4.3 ip
- 4.4 hostname
- 4.5 ping
- 4.6 netstat
- 4.7 route
- 4.8 traceroute / tracert
- 4.9 tcpdump
- 4.10 Wireshark

5. Conclusion

6. References

Detailed Report on Networking Concepts and Tools

1. CAT-5/CAT-6 Cable Preparation with RJ-45 Connector

A. Introduction

CAT-5 and CAT-6 cables are twisted pair cables used in networking for connecting devices like computers, routers, and switches. These cables use RJ-45 connectors for termination.

B. Tools Required

- i) CAT-5/CAT-6 cable
- ii) RJ-45 connectors
- iii) Crimping tool
- iv) Cable stripper
- v) Network tester

C. Wiring Standards

There are two standards for Ethernet cabling:

- (a) TIA/EIA-568A (T568A)
- **(b)**TIA/EIA-568B (T568B)

D. Used for connecting different devices (PC to switch, switch to router). The wire order remains the same on both ends.

- i) Straight-through cable: Used to connect different types of devices (e.g., PC to switch, switch to router).
- **ii)** Crossover cable: Used to connect similar devices (e.g., PC to PC, switch to switch).

Straight-Through Wiring (T568B Standard)

Pin	Colour
1	Orange-White

2	Orange
3	Green-White
4	Blue
5	Blue-White
6	Green
7	Brown-White
8	Brown

Crossover Wiring (T568A on One End, T568B on Other)

Pin (End 1 - T568A)	Pin (End 2 - T568B)
1 (Green-White)	1 (Orange-White)
2 (Green)	2 (Orange)
3 (Orange-White)	3 (Green-White)
4 (Blue)	4 (Blue)
5 (Blue-White)	5 (Blue-White)
6 (Orange)	6 (Green)
7 (Brown-White)	7 (Brown-White)
8 (Brown)	8 (Brown)

E. Steps to Crimp an RJ-45 Connector

- i) Strip about 1 inch of the cable's outer sheath.
- ii) Untwist and arrange the wires according to the desired standard.
- iii) Insert the wires into the RJ-45 connector.
- iv) Use the crimping tool to secure the connector.
- v) Test the cable using a network tester.

2. IP Address Configuration (Static and DHCP) on Linux and Windows

A. Windows Configuration

- i) Static IP Configuration
 - (a) Open Control Panel → Network and Sharing Centre → Change adapter settings.
 - (b) Right-click on the network adapter \rightarrow Properties.
 - (c) Select "Internet Protocol Version 4 (TCP/IPv4)" → Properties.
 - (d)Select "Use the following IP address" and enter details.
 - (e) Click "OK" to apply changes.

ii) DHCP Configuration

- (a) Follow steps 1-3 above.
- (b) Select "Obtain an IP address automatically".
- (c) Click "OK" to apply changes.

iii) Linux IP Configuration

- (a) Static IP Configuration (Ubuntu/Debian)
 - Open Terminal.

• Edit network configuration:

```
sudo nano /etc/netplan/00-installer-config.yaml
```

• Add the following:

```
network:
    ethernets:
    eth0:
        dhcp4: no
        addresses: [192.168.1.100/24]
        gateway4: 192.168.1.1
        nameservers:
        addresses: [8.8.8.8, 8.8.4.4]
    version: 2
```

• Save and exit. Restart the network service:

```
sudo netplan apply
```

(b) DHCP Configuration

• Modify /etc/netplan/00-installer-config.yaml

```
network:
   ethernets:
    eth0:
     dhcp4: true
   version: 2
```

• Apply changes:

```
sudo netplan apply
```

3. Important Network Tools and Commands

A. ipconfig (Windows)

Displays network configuration details.

ipconfig /all

Example output:

IPv4 Address: 192.168.1.100

Subnet Mask: 255.255.255.0

Default Gateway: 192.168.1.1

B. ifconfig (Linux)

Displays network interface information.

iconfig

Example output:

```
abhirup ~ via C v13.3.0-gcc took 1s
X ifconfig
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1400
       inet 172.31.240.53 netmask 255.255.240.0 broadcast 172.31.255.255
       inet6 fe80::215:5dff:feaa:b4c4 prefixlen 64 scopeid 0x20<link>
       ether 00:15:5d:aa:b4:c4 txqueuelen 1000 (Ethernet)
       RX packets 822 bytes 540053 (540.0 KB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 443 bytes 49210 (49.2 KB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 40069 bytes 53568550 (53.5 MB)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 40069 bytes 53568550 (53.5 MB)
        TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

C. ip (Linux)

Displays and configures IP addresses.

```
abhirup ~ via C v13.3.0-gcc took 0s
> ip a
 1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
     link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
     inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever
     inet 10.255.255.254/32 brd 10.255.255.254 scope global lo
        valid_lft forever preferred_lft forever
     inet6 ::1/128 scope host
        valid lft forever preferred lft forever
 2: eth0: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1400 qdisc mq state UP group default qlen 1000
     link/ether 00:15:5d:aa:b4:c4 brd ff:ff:ff:ff:ff
     inet 172.31.240.53/20 brd 172.31.255.255 scope global eth0
        valid_lft forever preferred_lft forever
     inet6 fe80::215:5dff:feaa:b4c4/64 scope link
        valid lft forever preferred lft forever
```

D. hostname

Displays or sets the system's hostname.

E. ping

Tests network connectivity.

Example:

ping 10.10.101.135

```
abhirup ~ via C v13.3.0-gcc took 0s
> ping 10.10.101.135
PING 10.10.101.135 (10.10.101.135) 56(84) bytes of data.
--- 10.10.101.135 ping statistics ---
10 packets transmitted, 0 received, 100% packet loss, time 9791ms
```

F. netstat

Displays network connections and statistics.

```
abhirup ~ via C v13.3.0-gcc took 0s
> netstat -tulnp
(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address
                                           Foreign Address
                                                                  State
                                                                              PID/Program name
          0
                0 127.0.0.1:43433
                                           0.0.0.0:*
                                                                  LISTEN
                                                                              22172/node
          0
                0 127.0.0.54:53
                                           0.0.0.0:*
                                                                  LISTEN
tcp
tcp
          0
               0 127.0.0.53:53
                                           0.0.0.0:*
                                                                  LISTEN
                 0 10.255.255.254:53
                                           0.0.0.0:*
                                                                   LISTEN
          0
tcp
                 0 127.0.0.54:53
                                           0.0.0.0:*
udp
          0
udp
          0
                 0 127.0.0.53:53
                                           0.0.0.0:*
                                           0.0.0.0:*
udp
          0
                 0 10.255.255.254:53
udp
          0
                 0 127.0.0.1:323
                                           0.0.0.0:*
          0
                 0 ::1:323
udp6
```

G. route

Displays/manages routing table.

```
abhirup ~ via C v13.3.0-gcc took @s
> route -n
Kernel IP routing table
Destination
                                 Genmask
                                                  Flags Metric Ref
                                                                      Use Iface
                 Gateway
0.0.0.0
                 172.31.240.1
                                 0.0.0.0
                                                  UG
                                                        0
                                                               0
                                                                        0 eth0
172.31.240.0
                 0.0.0.0
                                 255.255.240.0
                                                        0
                                                               0
                                                                        0 eth0
```

H.traceroute (Linux) / tracert (Windows)

Traces the route packets take to a destination.

```
abhirup ~ via C v13.3.0-gcc took @s
> traceroute google.com
 traceroute to google.com (142.250.194.110), 64 hops max
       172.31.240.1 0.538ms 0.545ms 0.365ms
   2
       192.168.129.135 7.558ms
                                 4.332ms
                                          3.566ms
   3
   4
       *
   5
   6
   7
   8
   9
  10
       * * ^C
```

I. tcpdump

Captures and analyzes network traffic (Linux).

```
abhirup ~ via C v13.3.0-gcc took 0s

> tcpdump -i eth0
tcpdump: eth0: You don't have permission to perform this capture on that device
(socket: Operation not permitted)
```

J. Wireshark

Graphical tool for analyzing network packets.

4. Open Wireshark.

A GUI-based network packet analyzer.

- Open Wireshark.
- Select the network interface.
- Start packet capture.
- Apply filters (e.g., tcp.port == 80).

5. Conclusion

This report covered the preparation of network cables, IP address configuration, and essential networking tools. Understanding these basics is crucial for network administration and troubleshooting.

6. References

- ANSI/TIA-568.2-D (TIA)
- IEEE 802.3 (IEEE)
- RFC 791 (IETF)
- RFC 2131 (IETF)
- RFC 792 (IETF)
- Microsoft Official Documentation (Microsoft Docs)
- Linux Man Pages
- Wireshark User Guide (Wireshark Docs)