CIND820: Big Data Analytics Project

Topic Modeling of the Parliament of Canada Hansard Debate Records (2006-2023)

Student: Colin Lacey
Student ID: 501176114

Supervisor: Professor Ceni Babaoglu

Date of Presentation: 01 April 2024

Toronto Metropolitan University

Parliament of Canada Hansard Debate Records: Project Objectives

Conduct topic modeling on the debate records using three different algorithms:

- 1. Will the application of unsupervised topic modeling produce meaningful insights into patterns and trends in Hansard debate records?
- 2. How relevant and meaningful are the identified topics from these models?
- 3. What are the general advantages and limitations of the different topic model algorithms, LDA, HDP and BERTopic?

Hansard Debate Records: Data Source & Formatting Files

- House of Commons' Hansard archives
- Un-indexed debate records from the start of the 39th Parliament up to the current 44th Parliament (Apr 2006-Dec 2023)
 - Period of time covers several election cycles and two Prime Ministers.
 - (YYYYmmdd-HAN###-E.pdf) = 20230323-HAN172-E.pdf
- Dataset is comprised of:
 - 1972 PDF documents
 - 155,385 pages (median of 80p/doc)
 - 128,933,818 words

Research Methodology

- 1. The identification of the data source and the collection of raw data (initial formatting)
- 2. Pre-processing the information and extracting text
- 3. Development of the LDA, HDP and BERTopic models
- 4. Exploratory Data Analysis including visualization and creation of a data frame with relevant attributes
- 5. Model Evaluation

Completed many iterative cycles through methodology, including developing python script using samples of dataset to test out functionality

Exploratory Analysis

Preprocessed Text – Support LDA and HDP Models

Assessment of ideal number of topics for LDA Model

LDA Coherence Score vs Topic for Different Iterations

Model	1 st Iteration (s=200, default		3rd Iteration (s=1972, improved training	
	parameters)	parameters)	parameters)	
LDA	0.3209934375	0.7010199998587691	0.628447487531789	

HDP Coherence Score vs Topic for Different Iterations

HDP Overall Coherence Values

		2 nd Iteration (s=1972, improved training parameters, 38 topics)
HDP	0.31535182848347443	0.3194660065275221

LDA Topics

HDP Topics

Topic Model	Top 30 Keywords
LDA	ontario, commonsdeb, parliamentari, constitu, associ, alberta, qubec, saskatchewan, young, debat, name, common, calgari, manitoba, theminist, lukiwski, affair, tom, tion, english, indigen, parliamentarysecretarytotheminist, hawn, translat, ment, polit, paul, ing, david, britishcolumbia
HDP	work, right, need, support, order, want, commonsdeb, nation, make, english, tax, country, like, quebec, industri, know, translat, issu, question, import, ontario, say, new, commun, mani, health, first, take, us, busi

BERTopic – General Observations

Hierarchical Clustering

Limitations – Computing Power and Duration

Computing power	Preprocessing Text	Train LDA	Train HDP	Train BERTopic
Apple M1 (8 CPU cores,	4 hrs, 17 mins, 8s	31 mins, 32s	35 mins, 29s	*Kernel Failed*
16 GB RAM, no GPU)				
NVIDIA A6000x2 (16 CPU	6hrs, 23mins, 35s	1hr, 3min, 24s	15mins, 10s	Gather text:
cores, 90 GB RAM, 40 GB				1hr, 12mins, 36s
GPU)				
,				Fit model:
				1min, 32s

Computing power		Evaluating LDA overall	Evaluating HDP topic coherence values (38	Evaluating HDP overall coherence
	values (7 topics)	coherence	topics)	
Apple M1 (8 CPU cores,	7 mins, 30s	1 min, 35s	54 mins, 8s	1 hr, 2mins, 48s
16 GB RAM, no GPU)				
NVIDIA A6000x2 (16 CPU	9 mins, 13s	1 min, 43s	1hr, 6mins, 30s	1 hr, 12min, 33s
cores, 90 GB RAM, 40 GB				
GPU)				

Future Considerations: n-grams, stop words, stability and model parameters

	Document	Dominant Topic	Topic Keywords	Unigrams	Bigrams	Trigrams
0	20170130- HAN129-E.pdf	6	regard, inform, statist, question, tabl, inclu	aa, aandc, aandcinac, aban, abandon, abdic, ab	aa amount, aandc indigenousand, aandcinac iden	aa amount iap, aandc indigenousand northern, a
1	20200420- HAN034-E.pdf	0	busi, need, work, health, question, help, make	aaron, aarontuck, abandon, abandonedw, abandon	aaron tuck, aarontuck greg, abandon parliament	aaron tuck jolen, aarontuck greg jami, abandon
2	20230602- HAN205-E.pdf	5	point, mr, deputi, order, assist, question, ca	abil, abilityof, abit, abl, aboard, aboultaif,	abil better, abil extern, abil feed, abil fina	abil better review, abil extern depth, abil fe
3	20120307- HAN091-E.pdf	1	job, common, make, debat, question, want, elec	abandon, abdic, abil, abitibitmiscamingu, abl,	abandon inshor, abandon veteran, abdic democra	abandon inshor fisheri, abandon veteran first,
4	20131126- HAN024-E.pdf	5	question, say, offic, parti, know, duffi, ask,	aballot, abandon, abdic, abeauti, abet, abett,	aballot sacrifici, abandon mental, abdic respo	aballot sacrifici lamb, abandon mental health,

Revisiting Research Questions

- 1. Will the application of unsupervised topic modeling produce meaningful insights into patterns and trends in Hansard debate records?
- 2. How relevant and meaningful are the identified topics from these models?
- 3. What are the general advantages and limitations of the different topic model algorithms, LDA, HDP and BERTopic?

