Linear Programming (Simplex LP) PuLP?

Asked 4 years, 2 months ago Active 4 years, 2 months ago Viewed 4k times

4

In Python only, and using data from a Pandas dataframe, how can I use Pulp to solve linear programming problems the same way I can in Excel? How much budget should be allocated to each Channel under the New Budget column so we maximize the total number of estimated successes? I'm really looking for a concrete example using data from a dataframe and not really high-level advice.

Problem Data Setup

	Channel	30-day Cost	Trials	Success	Cost Min	Cost Max	New Budget
0	Channel1	1765.21	9865	812	882.61	2647.82	0
1	Channel2	2700.00	15000	900	1350.00	4050.00	0
2	Channel3	2160.00	12000	333	1080.00	3240.00	0

This is a **Maximization** problem.

The *objective function* is:

```
objective_function = sum((df['New Budget']/(df['30-day Cost']/df['Trials']))*
(df['Success']/df['Trials']))
```

The *constraints* are:

- 1. The sum of df['New Budget'] must equal 5000
- 2. The New Budget for a given channel can go no lower than the Cost Min
- 3. The New Budget for a given channel can go no higher than the Cost Max

Any ideas how to translate this pandas dataframe solver linear problem using PuLP or any other solver approach? The end-result would be what you see in the image below.

d	Α	В	С	D	E	F	G	Н
	Channel	30-day Cost	Trials	Success	Cost Min	Cost Max	New Budget	Est. Successes
	Channel1	\$1,765.21	9,865	812	\$882.61	\$2,647.82	\$2,570.00	1,182
	Channel2	\$2,700.00	15,000	900	\$1,350.00	\$4,050.00	\$1,350.00	450
	Channel3	\$2,160.00	12,000	333	\$1,080.00	\$3,240.00	\$1,080.00	167
,		\$6,625.21				1	\$5,000.00	7 1,799
1	Solver Parar	meters						X
			_					
1	Se <u>t</u> Ob	ojective:	SHS	55				

By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy. Policy, and our Terms of Service.

X

1 of 1 1/1/2020, 3:18 AM