第二十三届全国青少年信息学奥林匹克联赛初赛

提高组 C++语言试题

竞赛时间: 2017年10月14日14:30~16:30

选手注意:

•	试题纸共有10页,	答题纸共有2页,	满分 100 分。	请在答题纸上作答,	写
	在试题纸上的一律	无效。			

- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资 料。
- 角

一、 选项	单项选择题(共)	15 }	题,每题 1.5 分	,共	计 22.5 分; 每	事题有.	且仅有一个正确
	从()年开始 2020						2023
	在 8 位二进制补码 43						
	分辨率为 1600 x9 2812 .5KB						
	2017年10月1日 星期三						星期二
	设 G 是有 n 个结 才能使得 G 变成 m – n + 1	一棵	树。				
	若某算法的计算。 T(N) = 2T(N / 2) + T(1) = 1 则该算法的时间。 O(N)	N log 复杂	g N 度为()。		O(N log ² N)	D.	O(N²)
	表达式 a * (b + c) a b c d * + *					D.	b + c * a * d
	由四个不同的点 [。] 32	_	的简单无向连通 35	i图fi C.) . D.	41

同的分配方案。 A. 60	B.	84	C.	96	D.	120
10. 若 f[0] = 0, f[1] = 1, f[n + 1] = (f[n] + f[n - 1]) / 2,则随着 i 的增大,f[i]将接近于()。						
A. 1/2	B.	2/3	C.	$\frac{\sqrt{5}-1}{2}$	D.	1
11. 设 A 和 B 是两个数组,请问任何 ()次比较。						
A. \mathbf{n}^2	B.	n log n	C.	2n	D.	2n-1
12. 在 n (n ≥ 3) 枚 和果只有一架天 不合格的硬币的	平可	以用来称重且称	尔重的	的硬币数没有阿	艮制,	或质量过重), 下面是找出这枚
a. $A \leftarrow X \cup Y$ b. $A \leftarrow Z$ c. $n \leftarrow A $						
 if W(X) ≠ then else if n>2 then gets if n=2 then f 	to 1 E取 若相	_ A 中 1 枚硬币与 等,则 A 中剩	X), V	V(Y)分别为 X 上硬币比较,若	或Y	的重量
正确的填空顺序 A. b, c, a			C.	c, a, b	D.	a, b, c
13. 有正实数构成的第一行的数为 a ₁ a ₂₁ , a ₂₂ ; ···第 n 名 开始,每一行的下一行的两个数法找出一条从 a ₁	1; 第 亍的 ³ 数 a _i	5二行的数从左3 数为 a n1, a n2, ···, ; 只有两条边可以 ; 和 a (i+1)(j+1)。用表	到右(a nn。 以分: 功态;	依次为 从 a ₁₁ 别通向 规划算 <i>a</i> _{n1}	<i>a</i> ₃₁	a ₁₁ 21 a ₂₂ a ₃₂ a ₃₃

9. 将7个名额分给4个不同的班级,允许有的班级没有名额,有()种不

个数的路径, 使得该路径上的数之和达到最大。

令 C[i,j]是从 a₁₁ 到 a_{ij} 的路径上的数的最大和,并且 C[i,0]=C[0,j]=0, 则 C[i,j]=()。

- A. $\max\{C[i-1,j-1], C[i-1,j]\} + a_{ij}$
- B. C[i-1,j-1] + C[i-1,j]
- C. $\max\{C[i-1,j-1], C[i-1,j]\} + 1$
- D. $\max\{C[i,j-1],C[i-1,j]\} + a_{ij}$
- 14. 小明要去南美洲旅游,一共乘坐三趟航班才能到达目的地,其中第1个航班 准点的概率是 0.9, 第 2 个航班准点的概率为 0.8, 第 3 个航班准点的概率为 0.9。如果存在第 i 个 (i=1,2) 航班晚点,第 i+1 个航班准点,则小明将赶不 上第 i+1 个航班, 旅行失败; 除了这种情况, 其他情况下旅行都能成功。请 问小明此次旅行成功的概率是()。
 - A. 0.5
- B. 0.648
- C. 0.72
- D. 0.74

15. 欢乐喷球: 儿童游乐场有个游戏叫"欢 乐喷球",正方形场地中心能不断喷出 彩色乒乓球,以场地中心为圆心还有一 个圆形轨道,轨道上有一列小火车在匀 速运动,火车有六节车厢。假设乒乓球 等概率落到正方形场地的每个地点,包 括火车车厢。小朋友玩这个游戏时,只 能坐在同一个火车车厢里,可以在自己 的车厢里捡落在该车厢内的所有乒乓 球,每个人每次游戏有三分钟时间,则 一个小朋友独自玩一次游戏期望可以 得到()个乒乓球。假设乒乓球喷 出的速度为2个/秒,每节车厢的面积 是整个场地面积的 1/20。

- A. 60
- B. 108
- C. 18 D. 20
- 二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确 选项,多选或少选均不得分)
- 1. 以下排序算法在最坏情况下时间复杂度最优的有()。
 - A. 冒泡排序 B. 快速排序 C. 归并排序 D. 堆排序

- 2. 对于入栈顺序为 a, b, c, d, e, f, g 的序列,下列()不可能是合法的出栈序 列。
 - A. a, b, c, d, e, f, g

B. a, d, c, b, e, g, f

C. a, d, b, c, g, f, e

D. g, f, e, d, c, b, a

- 3. 下列算法中, ()是稳定的排序算法。
- A. 快速排序 B. 堆排序 C. 希尔排序 D. 插入排序
- 4. 以下是面向对象的高级语言的有()。
 - A. 汇编语言 B. C++ C. Fortran D. Java

- 以下和计算机领域密切相关的奖项有()。
- A. 奥斯卡奖B. 图灵奖C. 诺贝尔奖D. 王选奖

三、问题求解(共2题,每题5分,共计10分)

1. 如右图所示, 共有 13 个格子。对任何一个格子进行一 次操作,会使得它自己以及与它上下左右相邻的格子中 的数字改变(由1变0,或由0变1)。现在要使得所 有的格子中的数字都变为 0, 至少需要 次操 作。

		1		
	0	0	1	
0	1	0	0	1
	0	1	1	
		0		

2. 如下图所示, A 到 B 是连通的。假设删除一条细的边的代价是 1, 删除一条 粗的边的代价是 2, 要让 A、B 不连通,最小代价是____(2分),最 小代价的不同方案数是____(3分)。(只要有一条删除的边不同,就 是不同的方案)

四、阅读程序写结果(共4题,每题8分,共计32分)

1. #include <iostream> using namespace std;

> int g(int m, int n, int x) { int ans = 0; int i; if (n == 1)

```
return 1;
       for (i = x; i <= m / n; i++)
           ans += g(m - i, n - 1, i);
       return ans;
   }
   int main() {
       int t, m, n;
       cin >> m >> n;
       cout << g(m, n, 0) << endl;</pre>
       return 0;
   }
   输入: 8 4
   输出: _____
2. #include <iostream>
   using namespace std;
   int main() {
       int n, i, j, x, y, nx, ny;
       int a[40][40];
       for (i = 0; i < 40; i++)
           for (j = 0; j < 40; j++)
              a[i][j] = 0;
       cin >> n;
       y = 0; x = n - 1;
       n = 2 * n - 1;
       for (i = 1; i <= n * n; i++) {
           a[y][x] = i;
          ny = (y - 1 + n) \% n;
          nx = (x + 1) \% n;
           if ((y == 0 \&\& x == n - 1) || a[ny][nx] != 0)
              y = y + 1;
          else { y = ny; x = nx; }
       for (j = 0; j < n; j++)
          cout << a[0][j] << " ";
       cout << endl;</pre>
       return 0;
   }
   输入: 3
```

```
3. #include <iostream>
   using namespace std;
   int n, s, a[100005], t[100005], i;
   void mergesort(int 1, int r) {
       if (1 == r)
          return;
       int mid = (1 + r) / 2;
       int p = 1;
       int i = 1;
       int j = mid + 1;
       mergesort(1, mid);
       mergesort(mid + 1, r);
       while (i <= mid && j <= r) {
          if (a[j] < a[i]) {
              s += mid - i + 1;
              t[p] = a[j];
              p++;
              j++;
          else {
              t[p] = a[i];
              p++;
              i++;
          }
       while (i <= mid) {
          t[p] = a[i];
          p++;
          i++;
       while (j <= r) {
          t[p] = a[j];
          p++;
          j++;
       for (i = l; i <= r; i++)
          a[i] = t[i];
   }
   int main() {
```

```
cin >> n;
      for (i = 1; i <= n; i++)
          cin >> a[i];
      mergesort(1, n);
      cout << s << endl;
      return 0;
   }
   输入: 6
        2 6 3 4 5 1
   输出: _____
4. #include <iostream>
   using namespace std;
   int main() {
      int n, m;
      cin >> n >> m;
      int x = 1;
      int y = 1;
      int dx = 1;
      int dy = 1;
      int cnt = 0;
      while (cnt != 2) {
          cnt = 0;
          x = x + dx;
          y = y + dy;
          if (x == 1 || x == n) {
             ++cnt;
              dx = -dx;
          if (y == 1 || y == m) {
              ++cnt;
              dy = -dy;
          }
       }
      cout << x << " " << y << endl;
      return 0;
   }
   输入1:43
   输出 1: _____(2分)
   输入 2: 2017 1014
```

```
输出 2: _____(3分)
输入 3: 987 321
输出 3: ____(3分)
```

五、完善程序(共2题,每题14分,共计28分)

1. (大整数除法)给定两个正整数p和q,其中p不超过10¹⁰⁰,q不超过100000, 求p除以q的商和余数。(第一空2分,其余3分) 输入,第一行是p的位数n,第二行是正整数p,第三行是正整数q。

输入: 第一行是p的位数n,第二行是正整数p,第三行是正整数q。输出: 两行,分别是p除以q的商和余数。

```
#include <iostream>
using namespace std;
int p[100];
int n, i, q, rest;
char c;
int main() {
   cin >> n;
   for (i = 0; i < n; i++) {
       cin >> c;
       p[i] = c - '0';
   cin >> q;
   rest = (1);
   i = 1;
   while ((2) && i < n) {
       rest = rest * 10 + p[i];
       i++;
   if (rest < q)
       cout << 0 << endl;
   else {
       cout << (3)
       while (i < n) {
           rest = (4)
           i++;
           cout << rest / q;</pre>
       }
       cout << endl;</pre>
   }
```

2. (最长路径)给定一个有向无环图,每条边长度为 1,求图中的最长路径长度。(第五空 2 分,其余 3 分)

输入:第一行是结点数 \mathbf{n} (不超过 $\mathbf{100}$)和边数 \mathbf{m} ,接下来 \mathbf{m} 行,每行两个整数 \mathbf{a} , \mathbf{b} , 表示从结点 \mathbf{a} 到结点 \mathbf{b} 有一条有向边。结点标号从 $\mathbf{0}$ 到(\mathbf{n} - $\mathbf{1}$)。

输出:最长路径长度。

提示: 先进行拓扑排序, 然后按照拓扑序计算最长路径。

```
#include <iostream>
using namespace std;
int n, m, i, j, a, b, head, tail, ans;
int graph[100][100]; // 用邻接矩阵存储图
int degree[100]; // 记录每个结点的入度
                   // 记录以各结点为终点的最长路径长度
int len[100];
                   // 存放拓扑排序结果
int queue[100];
int main() {
   cin >> n >> m;
   for (i = 0; i < n; i++)
      for (j = 0; j < n; j++)
          graph[i][j] = 0;
   for (i = 0; i < n; i++)
      degree[i] = 0;
   for (i = 0; i < m; i++) {
      cin >> a >> b;
      graph[a][b] = 1;
          (1)
   tail = 0;
   for (i = 0; i < n; i++)
      if (<u>(2)</u>) {
          queue[tail] = i;
          tail++;
   head = 0;
   while (tail < n - 1) {
      for (i = 0; i < n; i++)
          if (graph[queue[head] ][i] == 1) {
                 (3);
```

```
if (degree[i] == 0) {
                  queue[tail] = i;
                  tail++;
               }
   ans = 0;
   for (i = 0; i < n; i++) {
       a = queue[i];
       len[a] = 1;
       for (j = 0; j < n; j++)
           if (graph[j][a] == 1 && len[j] + 1 > len[a])
               len[a] = len[j] + 1;
       if (___(5)__)
           ans = len[a];
   cout << ans << endl;</pre>
   return 0;
}
```