Remark. All rings are commutative and unital.

1 Bases and Generating Sets

Definition 1.0.1. Let M be an R-module. Elements $\alpha_1, \ldots, \alpha_n \in M$ define a map $R^n \to M$. We say that,

- (a) $\{\alpha_1,\ldots,\alpha_n\}$ are R-linearly independent or simply independent if the map $\mathbb{R}^n\to M$ is injective
- (b) $\{\alpha_1, \ldots, \alpha_n\}$ span M if $\mathbb{R}^n \to M$ is surjective
- (c) $\{\alpha_1, \ldots, \alpha_n\}$ is a basis of M if $\mathbb{R}^n \to M$ is an isomorphism.

1.1 The Case for Vector Spaces

Lemma 1.1.1. Let V be a finitely generated k-module. Then V has a basis i.e. $V \cong k^n$.

Proof. Since M is finitely generated, there is a spaning set defining a surjection $k^n \to V$. However,

2 Modules over a PID

Theorem 2.0.1. Let A be a PID. Every submodule of a free module of rank n is free of rank at most n.

Proof. We proceed by induction on n. For n=1 we consider submodules $I \subset R$ which are ideals. Since R is a PID then I=(a) for some $a \in A$ and thus $I \cong R$ or I=(0) since R is a domain proving the claim. Now we assume the claim for n. Consider a submodule $M \subset R^{n+1}$. Write $R^{n+1} = R \oplus R^n$ and consider the projection $\pi: R^{n+1} \to R^n$. Then $N = \pi(M) \subset R^n$ is a free module of rank at most n by the induction hypothesis. Furthermore the map $\pi|_M: M \to N$ gives an exact sequence,

$$0 \longrightarrow \ker \pi|_{M} \longrightarrow M \longrightarrow N \longrightarrow 0$$

but N is free and thus projective so this exact sequence splits givign,

$$M \cong N \oplus \ker \pi|_{M}$$

Furthermore, $\ker \pi|_M = M \cap (R \oplus 0) \subset R$ so again because R is a PID we find $\ker \pi|_M$ is a free module of rank at most 1. Thus,

$$M = N \oplus \ker \pi|_{M}$$

is a free module of rank at most n+1.

Definition 2.0.2. Let R be a PID and M a finite free A-module, $M' \subset M$ a submodule. A basis $\{v_1, \ldots, v_n\}$ of M and a basis $\{a_1v_1, \ldots, a_mv_m\}$ of M' with $a_i \in R \setminus \{0\}$ and $m \leq n$ are called a pair of aligned bases. Such a bair of bases gives a map in the category of product modules,

$$\begin{array}{ccc} R^m & ----> & R^n \\ \downarrow^{\sim} & & \downarrow^{\sim} \\ M' & \longleftarrow & M \end{array}$$

Lemma 2.0.3. Let R be a PID. Any finite free R-module with a nonzero submodule $M' \subset M$ of rank $m \leq n$ admit a pair of aligned bases. Thus there is a basis $v_1, \ldots, v_n \in M$ and nonzero $a_1, \ldots, a_m \in A$ such that,

$$M = Av_1 + \dots + Av_n$$
 and $M' = Aa_1v_1 + \dots + Aa_mv_m$

Proof. We proceed by induction on the rank n of M. For n = 1 we have $M' \subset R$ is an ideal and thus M' = Aa since R is a PID giving aligned bases $\{1\}$ and $\{a\}$. Now we assume the claim for n - 1 and let M be a free R-module of rank n.

Consider the poset of ideas $S = \{\varphi(M') \mid \varphi \in \operatorname{Hom}_R(M, R)\}$ ordered with respect to inclusion. Because R is Noetherian S contains a maximal element $I = \varphi_0(M')$ for some $\varphi_0 \in \operatorname{Hom}_R(M, R)$. Furthermore, since R is a PID, I = (a) for some $a \in R$. Thus we must have $a = \varphi_0(v')$ for some $v' \in M'$. For any $\varphi \in \operatorname{Hom}_R(M, R)$ consider $a_{\varphi} = \varphi(v')$. Since R is a PID, $(a_{\varphi}) + (a) = (d)$ so we can write $xa_{\varphi} + ya = d$ and thus $(x\varphi + y\varphi_0)(v') = d$ meaning that $(a) \subset (d) \subset (x\varphi + y\varphi_0)(M')$ but (a) = I is maximal in S so we must have (a) = (d) and thus $a_{\varphi} \in (a)$. Therefore we have shown,

$$\{\varphi(v') \mid \varphi \in \operatorname{Hom}_R(M,R)\} \subset (a) = I$$

Choose a basis $e_1, \ldots, e_n \in M$ and write,

$$v' = c_1 e_1 + \dots + c_n e_n$$
 for $c_1, \dots, c_n \in R$

Then consider the dual basis $\{e_i^* \in \operatorname{Hom}_R(M, R)\}$ such that $e_i^*(e_j) = \delta_{ij}$. Then $e_i^*(v') = c_i \in (a)$ so we can write $c_i = ab_i$ for $b_i \in R$. Let,

$$v = b_1 e_1 + \dots + b_n e_n$$

and thus v' = av. Then $\varphi(v') = a$ so $a\varphi_0(v) = a$ so $\varphi_0(v) = 1$ since R is a domain. Therefore, $\varphi_0 : M \to R$ is surjective. Since R is a free and thus projective R-module, the sequence,

$$0 \longrightarrow \ker \varphi_0 \longrightarrow M \xrightarrow{\varphi_0} R \longrightarrow 0$$

splits with $R \to M$ via $1 \mapsto v$ so $M = Rv \oplus \ker \varphi_0$ as an internal direct sum. Simultaneously, $\varphi_0(M') = Ra$ so we get an exact sequence,

$$0 \longrightarrow \ker \varphi_0 \longrightarrow M \xrightarrow{\varphi_0} R \longrightarrow 0$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$0 \longrightarrow \ker \varphi_0|_{M'} \longrightarrow M' \xrightarrow{\varphi_0} Ra \longrightarrow 0$$

splits with $Ra \to M'$ via $a \mapsto av = v'$. Therefore, we get compatible decompositions i.e. an inclusion,

$$M = \ker \varphi_0 \oplus R$$

$$\uparrow$$

$$M' = \ker \varphi_0|_{M'} \oplus Ra$$

in the category of products defined by the inclusions $\ker \varphi_0|_{M'} \subset \ker \varphi_0$ and $Ra \subset R$. Then $\ker \varphi_0|_{M'} \subset \ker \varphi_0$ are free modules of rank n-1 and m-1 respectively so by the induction hypothesis, $\ker \varphi_0$ and $\ker \varphi_0|_{M'}$ have aligned bases $\{v_2, \ldots, v_n\}$ and $\{a_2v_2, \ldots, a_mv_m\}$ for $a_2, \ldots, a_m \in R$. Then, $\{v, v_2, \ldots, v_n\}$ and $\{av, a_2v_2, \ldots, a_mv_m\}$ give aligned bases for $M' \subset M$.

Theorem 2.0.4 (Structure Theorem for Modules over a PID). Let R be a PID and M a finitely generated R-module. Then,

$$M \cong R^r \oplus R/(a_1) \oplus \cdots \oplus R/(a_n)$$

Proof. Since M is finitely generated, there is a map $\varphi: \mathbb{R}^n \to M$. Then $\ker \varphi \subset \mathbb{R}^n$ is a free module of rank $m \leq n$. Therefore, we get an exact sequence,

$$0 \longrightarrow R^m \longrightarrow R^n \longrightarrow M \longrightarrow 0$$

We can choose aligned bases for $R^m \cong \ker \varphi \subset R^n$ so that the map $R^m \to R^n$ is in the category of products i.e. represented by a diagonal matrix such that $e_i \mapsto a_i e_i$ for i = 1, ..., m. Therefore,

$$M \cong \frac{R \oplus \cdots \oplus R}{Ra_1 \oplus \cdots \oplus Ra_m} = R/(a_1) \oplus \cdots \oplus R/(a_m) \oplus R^{n-m}$$