Análise de Séries Temporais Adequação dos modelos ARMA/ARIMA

José Augusto Fiorucci

Resíduos do modelo ARMA(p,q)

Modelo ARMA(p,q)

$$x_t = \alpha + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

em que $\beta = (\alpha, \phi_1, \dots, \phi_p, \theta_1, \dots, \theta_q)'$ é o vetor de parâmetros e $\{\varepsilon_t\}$ é um ruido branco com média zero e variância σ^2 .

Equivalentemente, podemos escrever

$$x_t = \mu_{t|t-1} + \varepsilon_t$$

$$\mu_{t|t-1} = \alpha + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

Assim

$$\varepsilon_t = x_t - \mu_{t|t-1}$$

em que $\mu_{t|t-1}$ é função dos parâmetros, isto é, $\mu_{t|t-1} = \mu_{t|t-1}(\beta)$.

Logo se x_1,\ldots,x_n é a série observada e $\widehat{\beta}$ é a estimativa de β , então os resíduos do modelo são dados por

$$\varepsilon_t(\widehat{\beta}) = x_t - \mu_{t|t-1}(\widehat{\beta})$$

para $t = 1, \ldots, n$.

Adequação do modelo

- Suposições sobre $\{\varepsilon_t\}$
 - Média zero, $E[\varepsilon_t] = 0, \ t = 1, 2, 3, \dots$
 - Variância constante, $Var[\varepsilon_t] = \sigma^2, \ t = 1, 2, 3, \dots$
 - Covariância nula, $Cov[\varepsilon_t, \varepsilon_{t+h}] = 0, \ h \neq 0, \ t = 1, 2, 3, \dots$
 - "Normalidade"
 - Caso paramétrico
 - Especialmente importante em previsões intervalares (será visto a frente)
- De modo geral, o modelo estará bem ajustado se a série de resíduos satisfizer todas as hipóteses levantadas sobre $\{\varepsilon_t\}$.
 - Entre os modelos que atendem esses critérios, deve-se escolher o mais parcimonioso.

Média

Variância

• Autocovariância/Autocorrelação

Aderência

Estacionariedade

Teste KPSS

Kwiatkowski D, Phillips PCB, Schmidt P and Shin Y (1992), "Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root", Journal of Econometrics 54:159-178

• Teste de Phillips-Perron

Phillips, P.C.B. and Perron, P. (1988), "Testing for a unit root in time series regression", Biometrika, 72(2), 335-346.

Teste ADF

Dickey DA and Fuller WA (1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root", Journal of the American Statistical Association 74:427-431.

Obs: Disponíveis no pacote tseries do R. Comandos: kpss.test(), adf.test(), pp.test().

- Testes de indepêndencia:
 - Hipóteses:

$$H_0: \ \rho(1) = \rho(2) = \cdots = \rho(m) = 0$$

 $H_1: \ \text{pelo menos um differente de zero}$

- Teste de Box-Pierce (Box, G. E. P.; Pierce, D. A. (1970))
 - Estatística:

$$Q = n \sum_{h=1}^{m} \widehat{\rho}(h)^{2}$$

em que $\widehat{\rho}(h)$ é a autocorrelação amostral com lag h.

- Sob H_0 , como $\sqrt{n}\,\widehat{\rho}(h)\sim^{\mathfrak{d}} N(0,1)$, segue que $Q\sim^{\mathfrak{d}}\chi_m^2$. Portanto, com nível de significância α , rejeita-se H_0 se $Q>\chi_{m,1-\alpha}^2$.
- Teste de Ljung-Box (Ljung, G. M. & Box, G. E. P. (1978))
 - Estatística:

$$Q = n(n+2)\sum_{h=1}^{m} \widehat{\rho}(h)^2/(n-h)$$

• Sob H_0 , pode-se mostrar que $Q \sim^a \chi_m^2$. Portanto, com nível de significância α , rejeita-se H_0 se $Q > \chi_{m,1-\alpha}^2$.

- Testes de indepêndencia (continuação):
 - O teste de Ljung-Box é mais recente e apresenta melhores resultados, especialmente para séries com poucas observações;
 - Quando empregado nos resíduos dos modelos ARMA(p,q), as refências sugerem que utilizar $Q\sim\chi^2_{m-p-q}$ traz melhores resultados.
 - Neste caso, obviamente deve-se garantir que m > p + q.
 - Geralmente escolhe-se m ≈ 15.
 - No R utilize Box.test() para ambos os testes.

- Testes de Aderência:
 - Normalidade
 - Teste de Shapiro-Wilk
 - No R: shapiro.test()
 - Outras distribuições
 - Teste de Kolmogorov-Smirnov
 - No R: ks.test()

Parcimônia

- De modo geral, quando dois ou mais modelos da mesma família atendem todas as hipóteses é preferível escolher aquele com menos parâmetros
- Os critérios de parcimônia fazem um balanço entre a qualidade do ajuste e o grau de complexidade do modelo
 - Critério de informação de Akaike

$$AIC = 2k - 2\log(L(\widehat{\beta}, \widehat{\sigma^2}))$$

em que, k denota o número de parâmetros do modelo e $L(\widehat{\beta},\widehat{\sigma^2})$ a função de verossimilhança ajustada.

AIC corrigido para pequenas amostras

$$AICc = AIC + (2k^2 + 2k)/(n - k - 1)$$

 em ambos os casos, deve-se escolher o modelo com menor valor do critério escolhido.

