

GLOBAL FEATURE REPRESENTATION USING SQUEEZE, EXCITE AND AGGREGATION NETWORKS (SEANET)

Akhilesh Pandey*, S. Balasubramanian, Gunasekar D, Karam Kulung Rai, Darshan Gera

* akhilesh.sssihl@gmail.com

Outline

- ☐ Introduction
- ☐ Motivation
- ☐ Proposed architecture
- ☐ Results and analysis
- ☐ Conclusion

Introduction

Continuous evolvement in Deep Learning models

- ☐ InceptionNet (ILSVRC 2014)
 - ✓ uses a set of filters of different sizes at different layers
- □ VGGNet (1st runner up ILSVRC 2014)
 - ✓ fixes some hyper-parameters like #filters, activation functions etc. thereby eliminating the need of fine-tuning
- ☐ ResNet (ILSVRC 2015)
 - ✓ learns a residual mapping to ease training
- □ SENet (ILSVRC 2017)
 - ✓ emphasizes on importance of feature maps

4

Motivation

This is a fundamental work on architectural design.

- ☐ Previous architectures does not focus on redundancies across feature maps
- ☐ Aggregating RGB to grayscale reduces the redundancies across feature maps at the same time restores important ones
- ☐ Extending the idea of batchnormalization
- ☐ We add aggregate layer to SE-block to get SEANet

- ☐ Uses Squeeze-Excitation(SE) block
- □Squeeze: Extracting global information using global avg pooling
- □Excite: Learns weights
 corresponding to channels and
 multiply the output with the learned
 weights

HxWxC

Proposed Architecture

SEANet

- Based on SENet (SENet is based on ResNet-20)
- ☐ Uses Aggregate block after SE-block of each Res-block
 - ➤ Incoming feature maps are divided into groups of k features where k is the aggregation factor
 - Each group is down sampled to a single feature map using aggregate operation
- ☐ Aggregation operation sum, mean, max etc

We use sum as aggregation operation and k = 4

_

Proposed Architecture

Aggregate operation

Advantages of Aggregation

- ☐ Minimized redundancies in feature representations
- ☐ A global representation across feature maps is obtained
- ☐ With sum as aggregate operator significant flow of gradient takes place
- ☐ Significant improvement in performance

9

$Implementation\\ details$

- ☐ Trained on Titan-X GPU
- ☐ Implemented using PyTorch 0.4 framework
- ☐ Codes are available at https://github.com/akhilesh-pandey/SEANet-pytorch

Results and Analysis

Validation accuracy on CIFAR-10 and CIFAR-100 datasets

Results & Analysis cont.

Classification error(%)

1. Comparison with

ResNet
(Won ILSVRC in 2015)

Architecture	CIFAR-10	CIFAR-100
SEANet	4.3	21.33
Res-20	8.6	32.63
Res-32	7.68	30.2
Res-44	6.43	26.85
Res-56	6.84	26.2
Res-110	6.34	26.67

Results & Analysis cont.

2. Comparison with SENet (Won ILSVRC 2017)

Classification error(%)

Architecture	CIFAR-10	CIFAR-100
SEANet	4.3	21.33
SENet	7.17	30.45

Result & Analysis cont.

3. Comparison with other state-of-the-art EncapNet (2018)

Classification error(%)

Architecture	CIFAR-10	CIFAR-100
SEANet	4.3	21.33
EncapNet	4.55	26.77
EncapNet+	3.13	24.01
EncapNet++	3.10	24.18

Conclusion

- ✓ Proposed a new architecture SEANet
- ✓ Reduces feature redundancies
- ✓ Uses aggregate layer after SE-block
- ✓ Reduces error by 2% and 3% more compared to ResNet and SENet respectively on CIFAR-10
- ✓ Reduces error by 6% and 9% more compared to ResNet and SENet respectively on CIFAR-100
- ✓ Outperforms the latest EncapNet and both its variants EncapNet+ and EncapNet++ on CIFAR-100 dataset by around 2%.

