4.3 - Spänningsföljaren

4.3.1 - Introduktion

- Vi har tidigare sett hur man går tillväga för att konstruera spänningsförstärkare med hög förstärkning, lågt brus och låg distorsion, främst via användning av strömspeglar samt kaskadkopplingar. Vi har också sett exempel på hur man kan använda kaskadkopplade förstärkarsteg för att öka spänningsförstärkares bandbredd.
- I förra kapitlet konstruerades och analyserades spänningsförstärkare i form utav GE-steg samt GS-steg, där skillnaden mellan dem är att GE-steg är konstruerade med en BJT-transistor på ingången, medan GS-steg är konstruerade med en MOSFET-transistor på ingången. Som vi såg så medför GE-steg vanligtvis runt tio gånger högre förstärkningsfaktor G än motsvarande GS-steg, på grund av BJT-transistorers högre transkonduktans g_m.
- En nackdel med GE-steg är dock deras relativt låga inresistans. En lösning för att erhålla både mycket hög förstärkning samt hög inresistans är att använda teleskopiskt kaskadkopplade GSsteg, som konstruerades i förra kapitlet. Sådana GS-steg medför mycket hög spänningsförstärkning och samtidigt inresistans som går mot oändlighet.
- I detta kapitel skall vi dock gå igenom hur inresistansen kan ökas på GE-steg samt övriga förstärkarsteg där högre inresistans behövs via ett förstärkarsteg som kallas spänningsföljare.
- Som exempel, genom att placera spänningsföljare framför GE-stegets ingång så kommer GE-stegets inresistans öka kraftigt, samtidigt som förstärkarstegets bandbredd ökar på ungefär samma sätt som vid användning av kaskadkopplade spänningsförstärkare.
- Spänningsföljare kan också användas som slutsteg, på grund av dess höga strömförstärkning och låga utresistans. Därmed så kan spänningsföljare användas för att öka utströmmen (via minskad utresistans) på ett förstärkarsteg, exempelvis för att driva en högtalare.
- Vid högre utströmmar så krävs dock mer avancerade spänningsföljare, s.k. klass-AB slutsteg, för att inte effektförlusterna skall bli för höga. Vi kommer gå igenom sådana spänningsföljare i kapitel 4.5 – Slutsteget.

Förbättrad emitterföljare, där en enkel strömspegel används i stället för en emitterresistor, vilket medför högre förstärkningsfaktor G samt inresistans R_{IN} .

Enkelt klass-AB slutsteg, som driver en last med resistansen R_L . Notera att både transistor Q2 med emitterresistor R_{E4} samt transistor Q1 med emitterresistor R_{E3} utgör var sin emitterföljare med olika polaritet.

Enkel emitterföljare.

GE-steg, där en enkel emitterföljare används på ingången för att öka inresistansen samt minimera Millereffektens påverkan på GE-steget, vilket leder till lägre distorsion.

Efter att ha läst detta kapitel så förväntas läsaren kunna:

- Rita sourceföljarens småsignalmodell och ur denna kunna härleda formel för dess förstärkningsfaktor och utresistans.
- Rita emitterföljarens småsignalmodell och ur denna kunna härleda formel för dess förstärkningsfaktor samt in- och utresistans.
- Känna till för- och nackdelar med de två typerna av spänningsföljare.
- Kunna konstruera välfungerande source- samt emitterföljare med strömspeglar som last och Darlingtonpar samt kunna ansluta dessa spänningsföljare till spänningsförstärkare utan problem med att inresistansen på spänningsförstärkaren är för låg.
- Kunna placera överströmsskydd samt Millerkondensator mellan spänningsförstärkaren och sourceföljarens ingång.

Kapitlets upplägg

- I detta kapitel skall vi gå igenom hur man konstruerar spänningsföljare med både BJT- och MOSFET-transistorer för att öka
 inresistansen på förstärkarsteg. Vi kommer börja med att gå igenom emitterföljaren, alltså spänningsföljare konstruerade
 med BJT-transistorer på ingången. Vi börjar med enklare varianter, för att gradvis utveckla dessa till förbättrade varianter
 med bättre egenskaper.
- Först går vi igenom emitterföljarens småsignalmodell och ur denna härleder vi formel för dess förstärkningsfaktor samt inoch utresistans. Därefter går vi igenom hur man konstruerar enkla emitterföljare i diskreta kretsar, som sedan utvecklas med så kallade Darlingtonpar, överströmsskydd samt Millerkondensatorer.
- Därefter behandlas så kallade förbättrade emitterföljare, vilket är emitterföljare med strömspeglar som last. Först introduceras den förbättrade emitterföljarens småsignalmodell och ur denna härleder vi formel för dess förstärkningsfaktor samt in- och utresistans. Därefter så går vi igenom hur man konstruerar förbättra emitterföljare i diskreta kretsar. Slutligen tillsätts även överströmsskydd samt Millerkondensatorer till dessa steg.
- Därefter går vi igenom MOSFET-transistorns motsvarighet till emitterföljaren, den så kallade sourceföljaren. Vi börjar med att introducera sourceföljaren och dess egenskaper.
- Därefter härleds formler sourceföljarens förstärkningsfaktor G samt utresistans R_{UT} (eftersom sourceföljarens inresistans R_{IN} är nästintill oändlig så behöver denna inte analyseras).
- Därefter behandlas förbättrade sourceföljare, alltså sourceföljare med strömspeglar som last. Först introduceras den förbättrade sourceföljarens småsignalmodell och ur denna härleder vi formel för dess förstärkningsfaktor G samt utresistans R_{UT}. Därefter går vi igenom hur sådana sourceföljare konstrueras i diskreta kretsar med strömspeglar och transistorer.
- Slutligen presenterar CMOS-sourceföljare, som skiljer sig lite mot sourceföljare med diskreta transistorer, då CMOS-transistorers body vanligtvis ansluts till jord istället för source för att minska brus. Därmed blir CMOS-sourceföljare mycket känsliga för den så kallade bodyeffekten, vilket medför minskad förstärkningsfaktor G samt utresistans R_{UT}.
- Vi går också igenom hur en CMOS-sourceföljare med en enkel CMOS-strömspegel kan konstrueras, exempelvis i form av CMOS-transistorernas respektive W/L-ratio, utefter effektbudget samt transistorernas parametrar. I detta avsnitt används inga resistorer, utan endast transistorer, vilket vanligtvis är fallet inom IC-design.

4.3.2 - Spänningsföljarens egenskaper

- Med väldigt få undantag (exempelvis spänningsförstärkare i högfrekvenskretsar), så är det
 positivt att ingångsresistansen på förstärkarsteg är så hög som möjligt, främst på grund av
 minskad effektförbrukning samt att påverkan av utresistans från signalgeneratorer eller
 tidigare steg elimineras.
- För att öka inresistansen så används därför vanligtvis någon typ av spänningsföljare. En bra spänningsföljare har följande kriterier:

1. Hög inresistans R_{IN}:

 Spänningsföljare placeras ofta på ingången till andra förstärkarsteg, såsom differentialförstärkare, spänningsförstärkare samt i vissa fall slutsteg, för ökad inresistans med minimal påverkan på efterföljande stegs förstärkningsfaktor.

2. Förstärkningsfaktor G mycket nära ett:

 Signalerna blir i princip oförändrade, då signalstyrkan förblir på i princip samma nivå efter att ha passerat passerar spänningsföljaren. Därmed så leder en välkonstruerad spänningsföljare till försumbar signalförlust.

3. Låg utresistans R_{UT}:

 På grund av sin låga utresistans så kan spänningsföljare används som strömförstärkare i form av slutsteg. Vanligtvis används dock mer avancerade spänningsföljare för detta ändamål, för ökad verkningsgrad. Slutsteg kommer behandlas i senare kapitel.

4.3.3 - Spänningsföljarens uppbyggnad

- Spänningsföljarens uppbyggnad kan jämföras med spänningsförstärkaren, då dessa i sin grundform är väldigt lika. Det finns dock tre skillnader dem emellan:
- **1.** Spänningsföljarens utgång är placerad i ingångstransistorns emitter/source, medan spänningsförstärkarens utgång är placerad i ingångstransistorns kollektorn/drain, se figuren nedan.
- 2. Spänningsföljare innehåller vanligtvis inte någon kollektorresistor/drainresistor, då detta innehåller någon funktion i spänningsföljaren.
- 3. I vissa fall, särskilt inom högspänningsapplikationer, är det vanligt att spänningsföljarens kollektor/drain är ansluten till jord istället för den positiva matningsspänningen V_{CC}/V_{DD}. Detta görs främst för att skydda transistorn mot höga spänningar.

Spänningsförstärkare med en sourceföljare på ingången, vilket medför att inresistansen ökar från ca $50-250~\Omega$ upp till hundratals $T\Omega$, en klar förbättring som är mycket enkel att konstruera. Denna konstruktion lämpar sig särskilt väl på OP-förstärkares ingångar.

Jämförelse mellan en spänningsförstärkare (GE-steg) och en spänningsföljare (emitterföljare).

Utgångens placering är mycket viktig för förstärkarstegets funktion och avgör om förstärkarsteget förstärker spänningen eller ökar inresistansen/ökar utströmmen (spänningsföljare används också i slutsteg, men med lite mer avancerad konstruktion).

4.3.4 - Emitterföljaren

- BJT-transistorns variant av spänningsföljaren heter emitterföljare och innehar generellt sett en förstärkningsfaktor G nära ett, moderat till hög inresistans R_{IN} (beroende på lasten i emittern) samt låg utresistans R_{UT}.
- Jämfört med sourceföljaren, alltså MOSFET-transistorns motsvarighet till emitterföljaren, så innehar emitterföljaren högre förstärkningsfaktor G samt lägre utresistans R∪T.
- En nackdel med emitterföljaren är dock att dess inresistans R_{IN} generellt sett är mycket lägre än motsvarande sourceföljare. Detta problem kan dock till viss grad kompenseras för genom att används så kallade förbättrade emitterföljare, se mer information nedan.
- Emitterföljare kan enkelt konstrueras med endast en BJT-transistor samt en emitterresistor R_E, se figuren till höger, som trots den enkla konstruktionen innehar goda egenskaper.

Enkel emitterföljare, som trots dess enkla konstruktion innehar goda egenskaper.

- Dock kan båda förstärkningsfaktorn G samt inresistansen R_{IN} enkel ökas genom att ersätta emitterresistor R_E med en strömspegel, se figuren nedan till vänster. Då bildas en så kallad förbättrad emitterföljare.
- Emitterföljarens inresistans R_{IN} kan ökas ytterligare genom att placera ytterligare en transistor på ingången, se transistor Q4 i figuren nedan till höger.

Förbättrad emitterföljare, vilket medför högre förstärkningsfaktor G samt inresistans R_{IN} än den enkla emitterföljaren ovan. Samtidigt förblir utresistansen R_{UT} i princip samma.

Emitterföljare med
Darlingtonpar på ingången,
vilket medför kraftigt ökad
inresistans R_{IN} samt i princip
oförändrad
förstärkningsfaktor G samt
utresistans R_{UT}.

Den enkla emitterföljarens parametrar:

- Innan olika typer av emitterföljare skall analyseras, så kan det vara fördelaktigt att känna till den enkla emitterföljarens parametrar och hur de relaterar till komponenterna och storheterna i kretsen.
- Därefter kan samband enklare ses varför mer avancerade emitterföljare medför förbättrade egenskaper.
- Förstärkningsfaktorn G på emitterföljaren till höger kan approximeras med formeln

$$G \approx \frac{R_E}{r_e + R_E},$$

Enkel emitterföljare.

där R_E är emitterresistorns resistans och re är BJT-transistorns inbyggda emitterresistans, som kan beräknas med formeln

$$r_e = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom emitterföljaren, mätt i milliAmpere (mA).

• Som exempel, en kollektorström I_C på 0,5 mA, vilket är normalt i samband med emitterföljare, medför att r_e blir 52 Ω , eftersom

$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

 Vi vill att emitterföljarens förstärkningsfaktor G hamnar så nära ett som möjligt. Eftersom emitterresistorn R_E vanligtvis är mycket större än de inbyggda emitterresistansen r_e så blir emitterföljarens förstärkningsfaktor G ungefär lika med ett, eftersom

$$G \approx \frac{R_E}{r_e + R_E} \approx \frac{R_E}{R_E} = 1$$

- Genom att ersätta emitterresistorn R_E med en strömspegel så kan emitterföljarens förstärkningsfaktor G hamna mycket nära ett. Sådana emitterföljare, som kallas förbättrade emitterföljare, kommer genomgås senare i kapitlet.
- Precis som för inresistansen på GE-steg så är emitterföljarens inresistans R_{IN} ungefär lika med summan av resistanserna i emittern, vilket är $r_e + R_E$, multiplicerat med BJT-transistorns förstärkningsfaktor h_{FE} :

$$R_{IN} \approx (r_e + R_E) h_{FE}$$

där r_e är BJT-transistorns inbyggda emitterresistans, R_E är emitterresistorns resistans och h_{FE} är BJT-transistorns strömförstärkningsfaktor.

• Emitterföljarens utresistans R_{UT} är ungefär lika med ingångstransistorns inbyggda emitterresistans r_e:

$$R_{UT} \approx r_e$$

• Emitterföljarens utresistans R_{UT} är därmed mycket låg, vilket möjliggör att lågohmiga laster, såsom högtalare, kan drivas effektivt.

4.3.5 - Härledning av emitterföljarens förstärkningsfaktor G

- Emitterföljarens förstärkningsfaktor G härleds på samma sätt som för GE-steget. På grund av dess annorlunda uppbyggnad så blir dock förstärkningsfaktorn mycket lägre, vilket vi kommer se nedan.
- Vi ritar ut emitterföljarens småsignalschema nedan till vänster. Matningsspänningarna V_{CC} samt V_{EE} kortslut och bas-emitterspänningen U_{BE} ersätts med spänningsfallet $r_{e}I_{C}$.
- Som synes i småsignalschemat nedan så utgör emitterresistor R_E samt BJT-transistorns utresistans r_0 en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med utsignalen ΔU_{UT}) och jord åt det andra.
- Därmed så kan kretsen förenklas genom att ersätta resistanserna R_E och r_o med ersättningsresistansen $R_E//r_o$, som placeras i emittern, se den högra figuren nedan.
- $\bullet \quad \mbox{ Vidare kan antagandet göras transistorns utresistans } r_0 \mbox{ är mycket större än } R_E :$

Vi utgår från en enkel emitterföljare för att rita dess ekvivalenta småsignalmodell nedan.

$$r_o \gg R_E$$
,

vilket medför att r₀ kan försummas, då

$$R_E//r_o \approx R_E$$

I praktiken kan BJT-transistorns utresistans r_o försummas då en enkel emitterföljare används, eftersom r_o i praktiken är mycket större än emitterresistor R_E , vilket medför att parallellresistansen R_E / r_o blir ungefär lika med R_E .

• Som vanligt gäller att emitterföljarens förstärkningsfaktor G är lika med ration av dess in- och utsignal i småsignalschemat:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

där ΔU_{IN} och ΔU_{UT} är in- respektive utspänningen i småsignalschemat.

• Som vanligt så kan skillnaden mellan kollektorströmmen I_C och emitterströmmen I_E försummas, då skillnaden dem emellan är väldigt liten:

$$I_C \approx I_E$$

 En formel för utspänningen ΔU_{UT} kan härledas med Kirchhoffs spänningslag, genom att beräkna från ΔU_{UT} till jord via emittern:

$$\Delta U_{UT} - R_E I_C = 0 ,$$

vilket kan transformeras till

$$\Delta U_{UT} = R_E I_C$$

 Därefter kan en formel härledas för inspänningen ΔU_{IN}, återigen med Kirchhoffs spänningslag, genom att beräkna från ΔU_{IN} ned till jord via emittern:

$$\Delta U_{IN} - r_e I_C - R_E I_C = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = r_e I_C + R_E I_C$$

$$\begin{array}{c} \text{Vi negligerar skillnaden} \\ \text{mellan strömmarna } I_{C} \text{ och } I_{E}. \\ \\ \hline \Delta U_{IN} - R_{E}I_{C} = 0 \\ \rightarrow \Delta U_{UT} = R_{E}I_{C} \\ \hline \Delta U_{IN} = (r_{e} + R_{E})I_{C} \\ \\ \hline G = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{R_{E}I_{C}}{(r_{e} + R_{E})I_{C}} = \frac{R_{E}}{r_{e} + R_{E}} \end{array}$$

Emitterföljarens småsignalmodell, med BJT-transistorns utresistans r_o försummad.

$$\Delta U_{IN} = (r_e + R_E)I_C$$

• Därefter kan en formel för emitterföljarens förstärkningsfaktor G härledas via de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{R_E I_C}{(r_e + R_E)I_C'}$$

där kollektorströmmen Ic kan elimineras ut högerledet, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G \approx \frac{R_E}{r_e + R_E},$$

där R_E är emitterresistorns resistans och r_e är BJT-transistorns inbyggda emitterresistans.

Vi kan anta att emitterresistorn R_E är mycket större än BJT-transistorns inbyggda emitterresistans r_e:

$$R_E \gg r_e$$

vilket medför att förstärkningsfaktorn G blir ungefär lika med ett, eftersom

$$G \approx \frac{R_E}{r_e + R_E} \approx \frac{R_E}{R_E} = 1$$

- Det är önskvärt att emitterföljarens förstärkningsfaktor G hamnar så nära ett som möjligt, för att inte emitterföljaren skall leda till signifikanta signalförluster.
- Emitterföljarens funktion är antingen att öka inresistansen R_{IN} på förstärkarsteg (genom att placera emitterföljaren på förstärkarstegets ingång) eller att minska utresistansen R_{UT} på förstärkarsteg (genom att placera emitterföljaren på förstärkarstegets utgång) så att utsignalen inte blir försvagad om eventuell last har låg resistans. Emitterföljaren används alltså aldrig för att förstärka utspänningen.

• GE-stegets utgång är placerad i kollektorn, vilket möjliggör en förstärkningsfaktor på flera tusen eller mer, medan emitterföljarens utgång är placerad i emittern, vilket medför en förstärkningsfaktor som i bästa fall hamnar mycket nära ett.

Jämförelse mellan GE-stegets och emitterföljarens småsignalschema samt härledningar av förstärkningsfaktorn på respektive förstärkarsteg.

• Notera att emitterföljarens förstärkningsfaktor skiljer sig avsevärt mot GE-stegets, trots att den enda skillnaden mellan stegen är placeringen av utgången, se figuren ovan.

Emitterföljarens förstärkningsfaktor G i lastat tillstånd:

- I lastat tillstånd, alltså då en last R_L är placerad på emitterföljarens utgång, exempelvis inresistansen från ett efterföljande förstärkarsteg, så kommer emitterföljarens förstärkningsfaktor G minska. Hur mycket beror på lastens storlek R_L i förhållande till emitterresistorn R_E.
- Om lastresistansen R_L är mycket högre än storleken på emitterresistor R_E, så kommer emitterföljarens förstärkningsfaktor G förbli i princip opåverkad. Dock om lastresistansen R_L är ungefär lika stor eller lägre än R_E så kommer emitterföljarens förstärkningsfaktor G i bästa fall halveras och i värsta fall närma sig noll, vilket indikerar en signalförlust mellan 50 − 100 %.
- Som en tumregel så behöver lastresistansen R_L vara minst tio gånger högre än storleken på emitterresistor R_E för att inte emitterföljarens förstärkningsfaktor G skall minska till en betydande grad.
- Om det inte är möjligt att öka lastresistansen R_L så kan kollektorströmmen I_C genom emitterföljaren ökas, då detta medför att en mindre emitterresistor kan användas. Samtidigt minskar BJT-transistorns inbyggda emitterresistans r_e samt dess utresistans r_o med ökad kollektorström, vilket leder till att lastresistansen RL inte kommer begränsa emitterföljarens förstärkningsfaktor G till lika hög grad.

Lastresistansen R_L utgör en parallellkoppling med emitterresistorn R_E samt BJT-transistorns utresistans r_o . Beroende på lastresistansen R_L så kommer därmed emitterföljarens förstärkningsfaktor G variera stort; om lastresistansen R_L är väldigt hög så blir ersättningsresistansen R_E / r_o // R_L ungefär lika med R_E / r_o , som med största sannolikhet blir ungefär lika med R_E , då BJT-transistorns utresistans r_o kan antas vara mycket högre än storleken på emitterresistor R_E . Då blir förstärkningsfaktorn i normala fall ungefär lika med ett, vilket är önskvärt.

Däremot om lastresistansen R_L är mycket låg så bli parallellresistansen R_E // r_o // R_L ungefär lika med R_L , vilket leder till att förstärkningsfaktorn minskar. Om det finns möjlighet så bör åtgärder vidtas för att R_L skall ha en resistans som är minst tio gånger högre än emitterresistor R_E .

Om det inte finns möjlighet att höja lastresistansen R_L , så kan kollektorströmmen I_C genom emitterföljaren ökas, vilket leder till att en mindre emitterresistor R_E kan användas. Samtidigt minskar BJT-transistorns inbyggda emitterresistans r_e samt dess utresistans r_o med ökad kollektorström I_C , vilket leder till att lastresistansen R_L inte kommer begränsa emitterföljarens förstärkningsfaktor G till lika hög grad.

- För att förenkla härledningen av emitterföljarens förstärkningsfaktor G i lastat tillstånd så kan emitterföljarens ekvivalenta småsignalmodell i lastat tillstånd ritas ut, se den vänstra figuren ovan. Matningsspänningarna Vcc och VEE kortsluts, samtidigt som bas-emitterspänningen UBE ersätts med spänningsfallet relc.
- In- och utsignalen U_{IN} och U_{UT} ersätts också med deras motsvarigheter i småsignalschemat ΔU_{IN} och ΔU_{UT}. Slutligen ritas också BJT-transistorns utresistans r_o ut i schemat, som är ansluten till utgången (här ΔU_{UT}) på ena hållet och jord på det andra.
- I kretsen finns fyra resistanser, emitterresistansen R_E , lastresistansen R_L samt BJT-transistorns inbyggda emitterresistans r_e respektive dess utresistans r_o . Notera i den vänstra figuren ovan att de tre resistanserna R_E , R_L och r_o utgör en parallellkoppling, eftersom alla tre är anslutna till ΔU_{UT} åt ena hållet och till jord på det andra, vilket medför att de samma spänningsfall över sig ($\Delta U_{UT} 0 = \Delta U_{UT}$). Därmed kan småsignalschemat förenklas genom att dessa resistanser ersätts med ersättningsresistansen $R_E/(r_o//R_L)$, vilket betyder att småsignalschemat kan ritas om till den högra figuren ovan.

 Återigen kan den lilla skillnaden mellan kollektorströmmen Ic och kollektorströmmen IE försummas, då detta förenklar beräkningarna samtidigt som skillnaden är obetydlig:

$$I_C \approx I_E$$

• För att härleda en formel för ΔU_{IN} så kan Kirchhoffs spänningslag användas. Genom att genomföra en beräkning ett varv i kretsen, från inspänningen ΔU_{IN} ned till jord via emittern, så erhålls följande formel:

$$\Delta U_{IN} - r_e I_C - (R_E //r_o //R_L) I_C = 0$$
,

vilket kan transformeras till

$$\Delta U_{IN} = r_e I_C + (R_E//r_o//R_L)I_C$$

Genom att bryta ut kollektorströmmen I_C så erhålls sedan formeln

$$\Delta U_{IN} = (r_e + R_E //r_o //R_L)I_C$$

 Även utspänningen ΔU_{UT} kan härledas med Kirchhoffs spänningslag, via en beräkning ett varv i kretsen, från ΔU_{UT} till jord via emittern, så erhålls formeln

$$\Delta U_{UT} - (R_E//r_o//R_L)I_C = 0,$$

Som kan transformeras till

$$\Delta U_{UT} = (R_E//r_o//R_L)I_C$$

 Därefter kan emitterföljarens förstärkningsfaktor G i lastat tillstånd härledas utifrån de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{(R_E//r_o//R_L)I_C}{(r_e + R_E//r_o//R_L)I_C}$$

där kollektorströmmen Ic kan elimineras ur högerledet, då denna förekommer i både täljare samt nämnare i högerledet, vilket medför att

$$G pprox rac{R_E//r_o//R_L}{r_e + R_E//r_o//R_L}$$

där G är emitterföljarens förstärkningsfaktor, R_E är emitterresistorn, r_o är BJT-transistorns utresistans, R_L är lastresistansen och r_e är BJT-transistorns inbyggda emitterresistans.

Vi kan med säkerhet anta att BJT-transistorns utresistans r₀ är mycket högre än emitterresistorns resistans Rɛ:

$$r_o \gg R_E$$
,

vilket medför att ersättningsresistansen R_E//r_o blir ungefär lika med R_E, eftersom

$$R_E//r_o = \frac{R_E * r_o}{R_E + r_o} \approx \frac{R_E * r_o}{r_o} = R_E$$

• Därmed så emitterföljarens förstärkningsfaktor G i lastat tillstånd approximeras till

$$G \approx \frac{R_E//R_L}{r_e + R_E//R_L}$$

 Efter detta så kan inga mer förenklingar genomföras utan exakta värden på emitterresistor R_E samt lastresistansen R_L. I fallet ovan så kommer emitterföljarens förstärkningsfaktor G variera stort beroende på lastresistansen R_L:s storlek i förhållande till emitterresistor R_E. Två olika scenarier kan förutsättas, se nedan.

Scenario 1: Lastresistansen R_L är mycket högre än storleken på emitterresistorn R_E:

• Om lastresistansen R_L är mycket högre än storleken på emitterresistorn R_E (minst tio gånger högre):

$$R_L \gg R_E$$
,

så kommer ersättningsresistansen RE//RL bli ungefär lika med RE, eftersom

$$R_E//R_L = \frac{R_E * R_L}{R_E + R_L} \approx \frac{R_E * R_L}{R_L} = R_E$$

Detta leder till att emitterföljarens förstärkningsfaktor G blir ungefär samma som i olastat tillstånd, eftersom

$$G \approx \frac{R_E//R_L}{r_e + R_E//R_L} \approx \frac{R_E}{r_e + R_E}$$

Scenario 2: Lastresistansen RL är mindre eller ungefär lika med storleken på emitterresistorn RE:

• Om lastresistansen R_L mindre än eller ungefär lika med emitterresistorn R_E så kommer ersättningsresistansen R_E // R_L bli mindre än R_E . Som exempel, om R_L och R_E hade varit exakt lika stora:

$$R_L = R_E$$

så hade ersättningsresistansen R_E//R_L blivit hälften av värdet på en av dem, eftersom

$$R_E//R_L = \frac{R_E * R_L}{R_E + R_L}$$

• Eftersom

gäller då att

$$R_L = R_E$$

$$R_E / / R_L = \frac{R_E * R_E}{R_F + R_F} = \frac{{R_E}^2}{2R_F} = \frac{R_E}{2}$$

- Detta medför också att emitterföljarens förstärkningsfaktor G minskar. Hur mycket beror på storleksskillnaden mellan BJT-transistorns inbyggda emitterresistans re och ersättningsresistansen Re//RL; ju mindre skillnad mellan dessa, desto lägre blir förstärkningsfaktorn.
- Under förutsättning att lastresistansen R_L samt emitterresistorn R_E är lika stora så gäller dock att

$$G pprox rac{R_E//R_L}{r_e + R_E//R_L} pprox rac{\left(rac{R_E}{2}
ight)}{r_e + rac{R_E}{2}},$$

vilket indikerar minskad förstärkningsfaktor.

4.3.6 - Härledning av emitterföljarens inresistans RIN

 Emitterföljarens inresistans R_{IN} kan beräknas via inspänningen ΔU_{IN} i småsignalschemat:

$$R_{IN} = \frac{\Delta U_{IN}}{I_{IN}},$$

där inströmmen I_{IN} är detsamma som basströmmen I_B , som flödar på emitterföljarens ingång:

$$I_{IN} = I_R$$

Emitterföljarens småsignalmodell.

• Därmed gäller att

$$R_{IN} = \frac{\Delta U_{IN}}{I_B}$$

- För att härleda en formel för inspänningen ΔU_{IN}, så ritas emitterföljarens småsignalschema upp, se den vänstra figuren ovan. Matningsspänningen V_{CC}/V_{EE} kortsluts och BJT-transistorns utresistans r₀ ritas ut, ansluten mellan emitterföljarens utgång (via ΔU_{UT}).
- Därefter ersätts BJT-transistorns bas-emitterspänning U_{BE} med spänningsfallet r_el_C, där r_e är BJT-transistorns inbyggda emitterresistans och I_C är kollektorströmmen som flödar genom emitterföljaren.
- Slutligen ersätts emitterföljarens in- och utsignal med deras motsvarigheter ΔU_{IN} samt ΔU_{UT} i småsignalschemat. Som synes i den vänstra figuren ovan så utgör emitterresistor R_E samt BJT-transistorns utresistans r_o en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra.
- Därmed är spänningsfallet över R_E och r_0 samma ($\Delta U_{UT} 0 = \Delta U_{UT}$), vilket medför att de kan ersättas med resistansen R_E // r_0 , placerad i emittern. Därmed kan småsignalschemat ritas om till den högra figuren ovan.
- Notera att spänningsfallet över ersättningsresistansen R_E//r₀ är ΔU_{UT} 0 = ΔU_{UT}, vilket är lika mycket som föll över R_E samt r₀ i det ursprungliga småsignalschemat ovan till vänster. Detta indikerar att det förenklade småsignalschemat ovan till höger är korrekt.
- En formel för inspänningen ΔU_{IN} kan enkelt härledas via beräkning med Kirchhoffs spänningslag, från ingången (via ΔU_{IN}) ned till jord via emittern, se det förenklade småsignalschemat ovan till höger.
- För enkelhets skull så försummar vi skillnaden mellan kollektor- och emitterströmmen Ic samt IE:

$$I_C \approx I_E$$

Summan av samtliga spänningar och spänningsfall ett varv till jord är lika med noll, i enlighet med Kirchhoffs spänningslag.
 Därmed gäller att

$$U_{IN} - r_e I_C - (R_E//r_o)I_C \approx 0,$$

vilket kan transformeras till

$$U_{IN} \approx r_e I_C + (R_E//r_o)I_C$$

Genom att bryta ut kollektorströmmen Ic så erhålls formeln

$$\Delta U_{IN} \approx (r_e + (R_E//r_o))I_C$$

där r_e samt r_o är BJT-transistorns inbyggda emitterresistans respektive utresistans, R_E är emitterresistorn och I_C är kollektorströmmen som flödar genom emitterföljaren.

• Därefter kan vi använda den härledda formeln för ΔU_{IN} för att härleda en approximation för emitterföljarens inresistans R_{IN}:

$$R_{IN} pprox rac{(r_e + R_E//r_o)I_C}{I_B}$$

• Som vi har sett tidigare så gäller följande förhållande mellan kollektorströmmen Ic samt basströmmen I в:

$$I_C = h_{FE} * I_B,$$

där hfe är BJT-transistorns strömförstärkningsfaktor.

• Genom att ersätta kollektorströmmen I_C med motsvarande basström I_B i formeln för emitterföljarens inresistans R_{IN}, så erhålls approximationen

$$R_{IN} pprox rac{(r_e + R_E//r_o) * h_{FE} * I_B}{I_B},$$

där basströmmen IB förekommer i både täljaren och nämnaren, vilket innebär att denna kan försummas.

Därmed gäller att

$$R_{IN} \approx (r_e + R_E//r_o) * h_{FE}$$
,

där r_o , r_e samt h_{FE} är BJT-transistorns utresistans, inbyggda emitterresistans samt strömförstärkningsfaktor och R_E är emitterföljarens emitterresistor.

• BJT-transistorns utresistans r₀ kan antas vara mycket högre än emitterresistor RE:

 $r_o \gg R_E$

vilket medför att ro kan försummas, då

$$R_E//r_o = \frac{R_E * r_o}{R_E + r_o} \approx \frac{R_E * r_o}{r_o} = R_E$$

• Därmed kan emitterföljarens inresistans R_{IN} ytterligare approximeras till

$$R_{IN} \approx (r_e + R_E) * h_{FE}$$

där r_e samt h_{FE} är BJT-transistorns inbyggda emitterresistans samt strömförstärkningsfaktor och R_E är emitterföljarens emitterresistor.

- Notera att formeln ovan inte utgör en exakt formel. Istället är det en ackurat approximation, där BJT-transistorns utresistans r₀ samt skillnaden mellan kollektorströmmen lշ samt emitterströmmen lɛ har försummats.
- För att erhålla en exakt formel för emitterföljarens inresistans R_{IN}, så måste vi ta med den lilla skillnaden mellan kollektorsamt emitterströmmen I_C samt I_E:

$$I_C \neq I_E$$
,

då

$$I_E = I_C + I_B,$$

där I_B är basströmmen på emitterföljarens ingång, som är mycket mindre än både kollektor- samt emitterströmmen I_C och I_E , då

$$I_C = h_{FE} * I_B$$

samt

$$I_E = (h_{FE} + 1) * I_B,$$

där hfe är BJT-transistorns strömförstärkningsfaktor.

- Vi måste ha i åtanke att emitterströmmen I_E flödar genom emittern. Därmed så flödar I_E genom resistansen R_E//r₀ i småsignalschemat.
- Därefter kan en ny formel härledas för inspänningen ΔU_{IN} med Kirchhoffs spänningslag, genom att beräkna från ΔU_{IN} ned till jord via emittern:

$$\Delta U_{IN} - r_e I_C - (R_E / / r_o) I_E = 0$$
,

vilket kan transformeras till

$$\Delta U_{IN} = r_e I_C + (R_E //r_o) I_E$$

• Genom att ersätta kollektor- respektive emitterströmmen I_C samt I_E med motsvarande basström I_B:

$$I_C = h_{FE} * I_B$$

samt

$$I_E = (h_{FE} + 1) * I_B,$$

så ser vi att

$$\Delta U_{IN} = r_e * h_{FE} * I_B + (R_E//r_o) * (h_{FE} + 1) * I_B$$

• Genom att bryta ut basströmmen I_B så erhålls formeln

$$\Delta U_{IN} = [r_e * h_{FE} + (R_E//r_o) * (h_{FE} + 1)] * I_B$$

• Därefter kan ett exakt uttryck för emitterföljarens inresistans R_{IN} härledas:

$$R_{IN} = \frac{\Delta U_{IN}}{I_B} = \frac{[r_e * h_{FE} + (R_E//r_o) * (h_{FE} + 1)] * I_B}{I_B},$$

där basströmmen IB kan elimineras, då denna förekommer i både täljaren och nämnaren.

Emitterföljarens inresistans R_{IN} kan därmed beräknas med formeln

$$R_{IN} = r_e * h_{FE} + (R_E / / r_o) * (h_{FE} + 1),$$

där r_e , r_o och h_{FE} är BJT-transistorns inbyggda emitterresistans, utresistans respektive strömförstärkningsfaktor och R_E är emitterföljarens emitterresistor.

- Skillnaden mot den tidigare approximationen är mycket liten. Vid senare beräkningar så kommer vi därför anta att kollektoroch emitterströmmen I_C samt I_E är lika stora i resten av kapitlet, då skillnaden är försumbar, samtidigt som beräkningarna blir lättare.
- Därefter kan vi se hur approximation sker via formeln ovan.
- För det första kan BJT-transistorns strömförstärkningsfaktor hfe antas vida överstiga ett:

$$h_{FE}\gg 1$$
,

vilket medför att

$$h_{FE} + 1 \approx h_{FE}$$

• Därmed kan emitterföljarens inresistans R_{IN} approximeras till

$$R_{IN} \approx r_e * h_{FE} + (R_E//r_o) * h_{FE}$$
,

där strömförstärkningsfaktor h_{FE} kan brytas ut, vilket innebär att

$$R_{IN} \approx (r_e + R_E //r_o) * h_{FE}$$

• Vidare kan BJT-transistorns utresistans ro antas vara mycket högre än emitterresistor RE:

$$r_o \gg R_E$$
,

vilket medför att ro kan försummas, då

$$R_E//r_o = \frac{R_E * r_o}{R_E + r_o} \approx \frac{R_E * r_o}{r_o} = R_E$$

• Därmed kan emitterföljarens inresistans R_{IN} ytterligare approximeras till

$$R_{IN} \approx (r_e + R_E) * h_{FE}$$

vilket är identiskt med vad som erhölls tidigare med förenklade beräkningar, där BJT-transistorns utresistans r_0 samt skillnaden mellan kollektor- och emitterströmmen I_C samt I_E försummas.

• Genom att försumma skillnaden mellan kollektor- och emitterströmmen I_C samt I_E, så slapp vi dock härleda den exakta formeln för emitterföljarens inresistans R_{IN}, för att sedan förenkla denna via approximationer. Istället kunde en approximation göras direkt, där vi sedan kunde försumma BJT-transistorns utresistans r_o.

Emitterföljarens inresistans R_{IN} i lastat tillstånd:

• Emitterföljarens inresistans R_{IN} i lastat tillstånd kan approximeras med formeln

$$R_{IN} \approx (r_e + R_E //R_L) * h_{FE}$$

där r_e är BJT-transistorns inbyggda emitterresistans, R_E är emitterresistorn, R_L är lastresistansen och h_{FE} är BJT-transistorns strömförstärkningsfaktor.

• Om lastresistansen R_L är lågohmig i förhållande till emitterresistor R_E:

$$R_E \gg R_L$$
,

så kommer ersättningsresistansen R_E//R_L närma sig R_L, då

$$R_E//R_L = \frac{R_E * R_L}{R_E + R_L} \approx \frac{R_E * R_L}{R_E} = R_L,$$

vilket medför att

$$R_{IN} \approx (r_e + R_L) * h_{FE}$$

- Lågohmig last kan därmed medföra kraftigt sänkt inresistans R_{IN} jämfört med i olastat tillstånd.
- Däremot om lastresistansen R_L är högohmig i förhållande till emitterresistor R_E:

$$R_L \gg R_E$$
,

så kan lastresistansen R₁ försummas, då

$$R_E//R_L = \frac{R_E * R_L}{R_E + R_L} \approx \frac{R_E * R_L}{R_L} = R_E,$$

vilket medför att inresistansen R_{IN} förblir i princip opåverkad av lasten, då

$$R_{IN} \approx (r_e + R_E) * h_{FE}$$

• Emitterföljarens inresistans R_{IN} i lastat tillstånd är mycket enkel att härleda via dess ekvivalenta småsignalschema, se den vänstra figuren nedan. Matningsspänningarna V_{CC} samt V_{EE} kortsluts och bas-emitterspänningen U_{BE} på 0,65 V ersätts med spänningsfallet r_elc.

Småsignalschema för en lastad emitterföljare. Eftersom emitterresistor R_E , BJT-transistorns utresistans r_o samt lastresistansen R_L utgör en parallellkoppling så kan vi förenkla småsignalschemat till den högra figuren ovan.

Lastad emitterföljare. Lasten kan leda till att emitterföljarens inresistans R_{IN} minskar lastresistansen R_L inte är mycket högre än emitterresistor R_E .

Om det är möjligt att kontrollera lastresistansens storlek, helt eller delvis, så bör vi sikta på att R_L bör sättas minst tio gånger högre än emitterresistor R_E .

- Notera i den vänstra figuren ovan att emitterresistor R_E, BJT-transistorns utresistans r₀ samt lastresistansen R_L utgör en parallellkoppling, eftersom dessa resistanser är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed kan dessa ersättas med ersättningsresistansen R_E//r₀//R_L placerad i emittern.
- Vi kan därmed rita om småsignalschemat till den högra figuren ovan, som kommer användas för beräkning av emitterföljarens inresistans R_{IN} i lastat tillstånd.
- Som vi såg tidigare gäller att

$$R_{IN} = \frac{\Delta U_{IN}}{I_{IN}},$$

där ΔU_{IN} är inspänningen i småsignalschemat och inströmmen I_{IN} är detsamma som basströmmen I_B, som flödar på emitterföljarens ingång:

$$I_{IN} = I_B$$

• Därmed gäller att emitterföljarens inresistans R_{IN} i lastat tillstånd kan beräknas med formeln

$$R_{IN} = \frac{\Delta U_{IN}}{I_B}$$

• För enkelhets skull så försummar vi skillnaden mellan kollektor- och emitterströmmen Ic samt IE:

$$I_C \approx I_E$$

och noterar att förhållandet mellan kollektorströmmen Ic samt basströmmen IB är följande:

$$I_C = h_{FE} * I_B,$$

där hfe är BJT-transistorns strömförstärkningsfaktor.

- Summan av samtliga spänningar och spänningsfall ett varv till jord är lika med noll, i enlighet med Kirchhoffs spänningslag.
 Därmed gäller att summan av inspänningen ΔU_{IN}, spänningsfallet r_el_C mellan BJT-transistorns bas och emitter samt spänningsfallet (R_E//r_o//R_L)I_E över resistansen R_E//r_o//R_L i emittern, som approximeras till (R_E//r_o//R_L)I_C, är ungefär lika med noll
- Därmed gäller att

$$\Delta U_{IN} - r_e I_C - (R_E//r_o//R_L)I_C \approx 0,$$

som kan transformeras till

$$\Delta U_{IN} \approx r_e I_C + (R_E//r_o//R_L)I_C$$

Genom att bryta ut kollektorströmmen Ic så erhålls formeln

$$\Delta U_{IN} \approx (r_e + (R_E//r_o//R_L))I_C$$
,

där r_e samt r_o är BJT-transistorns inbyggda emitterresistans respektive utresistans, R_E är emitterresistorn, R_L är lastresistansen och I_C är kollektorströmmen som flödar genom emitterföljaren.

• Därefter kan en approximation för emitterföljarens inresistans R_{IN} i lastat tillstånd härledas:

$$R_{IN} pprox rac{(r_e + R_E//r_o//R_L)I_C}{I_B}$$

• Genom att ersätta kollektorströmmen I_C med motsvarande basström I_B i formeln för emitterföljarens inresistans R_{IN}, så erhålls approximationen

$$R_{IN} \approx \frac{(r_e + R_E //r_o //R_L) * h_{FE} * I_B}{I_B},$$

där basströmmen I_B förekommer i både täljaren och nämnaren, vilket innebär att denna kan försummas.

Därmed gäller att

$$R_{IN} \approx (r_e + R_E//r_o//R_L) * h_{FE}$$

där r_e och h_{FE} är BJT-transistorns inbyggda emitterresistans respektive strömförstärkningsfaktor och R_E är emitterföljarens emitterresistor.

• BJT-transistorns utresistans r₀ kan antas vara mycket högre än emitterresistor R_E:

 $r_o \gg R_E$,

vilket medför att ro kan försummas, då

$$R_E//r_o = \frac{R_E * r_o}{R_E + r_o} \approx \frac{R_E * r_o}{r_o} = R_E$$

• Därmed kan emitterföljarens inresistans R_{IN} i lastat tillstånd ytterligare approximeras till

$$R_{IN} \approx (r_e + R_E//R_L) * h_{FE}$$

där r_e samt h_{FE} är BJT-transistorns inbyggda emitterresistans samt strömförstärkningsfaktor, R_E är emitterresistorn och R_L är lastresistansen.

• Som vi såg tidigare så måste vi ta med den lilla skillnaden mellan kollektor- samt emitterströmmen I_C samt I_E för att härleda en exakt formel för emitterföljarens inresistans R_{IN} i lastat tillstånd,

 $I_C \neq I_E$,

då

$$I_E = I_C + I_B,$$

där IB är basströmmen som flödar på emitterföljarens ingång.

- Vi måste ha i åtanke att emitterströmmen I_E flödar genom emittern. Därmed så flödar I_E genom resistansen R_E//r_o//R_L i småsignalschemat.
- Därefter kan en ny formel härledas för inspänningen ΔU_{IN} med Kirchhoffs spänningslag, genom att beräkna från ΔU_{IN} ned till jord via emittern:

$$\Delta U_{IN} - r_e I_C - (R_E / / r_o / / R_L) I_E = 0$$

vilket kan transformeras till

$$\Delta U_{IN} = r_e I_C + (R_E //r_o //R_L) I_E$$

• Genom att ersätta kollektor- respektive emitterströmmen I_C samt I_E med motsvarande basström I_B:

 $I_C = h_{FE} * I_B$

samt

$$I_E = (h_{FE} + 1) * I_B,$$

så erhålls formeln

$$\Delta U_{IN} = r_e * h_{FE} * I_B + (R_E / / r_o / / R_L) * (h_{FE} + 1) * I_B$$

• Formeln ovan kan förenklas genom att bryta ut basströmmen IB, vilket medför att

$$\Delta U_{IN} = [r_e * h_{FE} + (R_E / / r_o / / R_L) * (h_{FE} + 1)] * I_B$$

• Därefter kan ett exakt uttryck för emitterföljarens inresistans R_{IN} i lastat tillstånd härledas:

$$R_{IN} = \frac{\Delta U_{IN}}{I_B} = \frac{[r_e * h_{FE} + (R_E//r_o//R_L) * (h_{FE} + 1)] * I_B}{I_B},$$

där basströmmen IB kan elimineras, då denna förekommer i både täljaren och nämnaren.

• Emitterföljarens inresistans R_{IN} i lastat tillstånd kan därmed beräknas med formeln

$$R_{IN} = r_e * h_{FE} + (R_E / / r_o / / R_L) * (h_{FE} + 1),$$

där r_e , r_o och h_{FE} är BJT-transistorns inbyggda emitterresistans, utresistans respektive strömförstärkningsfaktor, R_E är emitterföljarens emitterresistor och R_L är lastresistansen.

• Formeln ovan kan enkelt approximeras. Först och främst kan BJT-transistorns strömförstärkningsfaktor h_{FE} antas vida överstiga ett:

$$h_{FE}\gg 1$$
,

vilket medför att

$$h_{FE} + 1 \approx h_{FE}$$

• Därmed kan emitterföljarens inresistans R_{IN} i lastat tillstånd approximeras till

$$R_{IN} \approx r_e * h_{FE} + (R_E//r_o//R_L) * h_{FE}$$

där strömförstärkningsfaktor hfe kan brytas ut, vilket innebär att

$$R_{IN} \approx (r_e + R_E //r_o //R_L) * h_{FE}$$

• Därefter kan BJT-transistorns utresistans r₀ antas vara mycket högre än emitterresistor R_E:

$$r_o \gg R_E$$
,

vilket innebär att ro kan försummas, då

$$R_E / / r_o = \frac{R_E * r_o}{R_E + r_o} \approx \frac{R_E * r_o}{r_o} = R_E$$

• Därmed kan emitterföljarens inresistans R_{IN} i lastat tillstånd ytterligare approximeras till

$$R_{IN} \approx (r_e + R_E //R_L) * h_{FE}$$

där r_e och h_{FE} är transistorns inbyggda emitterresistans respektive strömförstärkningsfaktor, R_E är emitterresistorn och R_L är lastresistansen.

• Som vi kommer se kan emitterföljarens inresistans R_{IN} ökas kraftigt via användning av så kallade Darlingtonpar och strömspeglar, samtidigt som förstärkningsfaktorn G samt utresistansen R_{UT} förblir i princip opåverkade.

4.3.7 - Härledning av emitterföljarens utresistans R∪T

• Emitterföljarens utresistans Rut kan generellt sett approximeras med formeln

$$R_{UT} \approx r_e$$
,

där re är BJT-transistorns inbyggda emitterresistans.

- Detta kan enkelt demonstreras. För att beräkna emitterföljarens utresistans R_{UT} så ritar vi ut dess ekvivalenta småsignalschema se den vänstra figuren nedan. Båda matningsspänningar V_{CC} samt V_{EE} samt insignalen U_{IN} kortsluts. BJTtransistorns utresistans r_o ritas ut mellan dess emitter och jord. Därefter ersätts utsignalen U_{UT} med dess motsvarighet i småsignalschemat, vilket är ΔU_{UT}.
- Eftersom insignalen U_{IN} är kortsluten så är BJT-transistorns bas ansluten till jord, vilket även gäller dess kollektor. När basen och kollektorn har samma potential (här 0 V), så är transistorn diodkopplad, vilket medför att den kan ersättas med resistansen r_e//r_o.
- Småsignalschemat kan därefter ritas om till den mittersta figuren nedan, där två resistanser återstår. Notera att de två resistanserna re//ro samt RE utgör en parallellkoppling, då de är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med ΔU_{UT} 0 = ΔU_{UT} och de kan ersättas med resistansen RE//re//ro, placerad i emittern.
- Därefter kan småsignalschemat ritas om till den högra figuren nedan, där endast en resistans återstår. Som vi snart kommer se så är denna resistans lika med emitterföljarens utresistans R_{UT}:

$$R_{UT} = R_E / / r_e / / r_o$$

där R_E är emitterresistorns resistans och r_e samt r₀ är BJT-transistorns inbyggda emitterresistans respektive utresistans.

Emitterföljarens småsignalschema för beräkning av utresistansen R_{UT} . Genom att förenkla småsignalschemat, så kan R_{UT} enkelt fastställas.

 $\bullet \quad \mbox{Vi använder det f\"{o}renklade småsignaschemat ovan till h\"{o}ger. Emitterf\"{o}ljarens utresistans R_{UT} kan h\"{a}rledas med formeln$

$$R_{UT} = \frac{\Delta U_{UT}}{I_{UT}},$$

där ΔU_{UT} är utspänningen ur småsignalschemat och I_{UT} är utströmmen i småsignalschemat, vilket är kollektorströmmen I_C:

$$I_{UT} = I_C$$

• Därmed gäller att

$$R_{UT} = \frac{\Delta U_{UT}}{I_C}$$

• En formel kan härledas för ΔUυτ via Kirchhoffs spänningslag, med beräkning från ΔUυτ ned till jord:

 $\Delta U_{UT} - (R_E//r_e//r_o)I_C = 0,$

vilket kan transformeras till

$$\Delta U_{UT} = (R_E//r_e//r_o)I_C$$

• Därmed kan en formel för emitterföljarens utresistans Ru⊤ härledas:

$$R_{UT} = \frac{\Delta U_{UT}}{I_C} = \frac{(R_E//r_e//r_o)I_C}{I_C},$$

där kollektorströmmen Ic kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$R_{UT} = R_E / / r_e / / r_o,$$

där R_E är emitterresistorns resistans och re samt r₀ är BJT-transistorns inbyggda emitterresistans respektive utresistans.

BJT-transistorns utresistans r₀ kan antas vara mycket högre än dess inbyggda emitterresistans r_e:

$$r_o \gg r_e$$
,

vilket medför att BJT-transistorns utresistans ro kan försummas, då

$$r_o / / r_e = \frac{r_o * r_e}{r_o + r_e} \approx \frac{r_o * r_e}{r_o} = r_e$$

Därmed kan emitterföljarens utresistans R_{UT} approximeras till

$$R_{IIT} \approx R_E / / r_e$$

• Förutsatt att emitterresistor R_E är korrekt dimensionerat så kan denna antas vara mycket högre än BJT-transistorns inbyggda emitterresistans r_e:

$$R_E \gg r_e$$
,

vilket medför att även emitterresistor RE kan försummas, då

$$R_E//r_e = \frac{R_E * r_e}{R_E + r_e} \approx \frac{R_E * r_e}{R_E} = r_e$$

Därmed kan emitterföljarens utresistans R_{UT} approximeras till

$$R_{UT} \approx r_e$$
,

där re är BJT-transistorns inbyggda emitterresistans re, som kan beräknas med formeln

$$r_e = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom emitterföljaren, mätt i mA.

• Som en tumregel kan kollektorströmmen I_C sättas till 0,5 mA, vilket innebär att BJT-transistorns inbyggda emitterresistans r_e och därmed emitterföljarens utresistans R_{UT} hamnar omkring 52 Ω , då

$$R_{UT} \approx r_e = \frac{26}{0.5} = 52 \,\Omega$$

Emitterföljarens utresistans Rut i lastat tillstånd:

- I lastat tillstånd så kommer lastresistansen R_L samt emitterresistor R_E utgöra en parallellkoppling, som därför kan ersättas med ersättningsresistansen R_E//R_L. I övrigt så beräknas emitterföljarens utresistans R_{UT} precis som i olastat tillstånd.
- Därmed gäller att emitterföljarens utresistans R_{UT} i lastat tillstånd kan approximeras till

$$R_{UT} \approx r_e //R_L$$
,

där re är BJT-transistorns inbyggda emitterresistans och R_L är lastresistansen.

- Detta kan enkelt demonstreras. Emitterföljarens ekvivalenta småsignalschema i lastat tillstånd ritas därför ut, se figuren längst till vänster nedan, där matningsspänningarna V_{CC} samt V_{EE} samt insignalen U_{IN} kortsluts, BJT-transistorns utresistans r_o ritas ut mellan dess emitter och jord och utsignalen U_{UT} ersätts med dess motsvarighet i småsignalschemat ΔU_{UT}.
- Notera att emitterresistor R_E samt lastresistans R_L utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med $\Delta U_{UT} 0 = \Delta U_{UT}$ och de kan ersättas med resistansen R_E/R_L , placerad i emittern.
- Småsignalschemat kan därefter ritas om till figuren näst längst till vänster nedan. Eftersom insignalen U_{IN} är kortsluten så är BJT-transistorns bas ansluten direkt till jord, vilket också gäller dess kollektor, då matningsspänningen V_{CC} är kortsluten.
 Därmed är BJT-transistorn diodkopplad, då basen och kollektorn innehar samma potential (0 V). Därmed kan BJT-transistorn ersättas med resistansen r_e//r_o, placerad i kollektorn.
- Småsignalschemat kan därefter ritas om till figuren näst längst till höger nedan, där två resistanser återstår. Notera att de två resistanserna $r_e//r_o$ samt $R_E//R_L$ utgör en parallellkoppling, då de är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med $\Delta U_{UT} 0 = \Delta U_{UT}$ och de kan ersättas med resistansen $R_E//r_e//r_o//R_L$, placerad i emittern.
- Småsignalschemat kan sedan ritas om till figuren längst till höger nedan, där endast en resistans återstår. Som vi såg tidigare så utgör denna resistans emitterföljarens utresistans, vilket medför att

$$R_{UT} = R_E / / r_e / / r_o / / R_L$$

där R_E är emitterresistorns resistans, r_e samt r_o är BJT-transistorns inbyggda emitterresistans respektive utresistans och R_L är lastresistansen.

Ekvivalent småsignalmodell för emitterföljaren i lastat tillstånd. Genom att förenkla kretsen i steg från vänster till höger, så kan emitterföljarens utresistans R_{UT} beräknas till $R_E//r_e//r_e//r_e$, som vanligtvis kan approximeras till $r_e//R_L$.

- Detta kan enkelt demonstreras med Ohms lag samt Kirchhoffs spänningslag.
- Vi använder det förenklade småsignaschemat ovan till höger. Emitterföljarens utresistans R∪T kan härledas med formeln

$$R_{UT} = \frac{\Delta U_{UT}}{I_{UT}},$$

där ΔU_{UT} är utspänningen ur småsignalschemat och I_{UT} är utströmmen i småsignalschemat, vilket är kollektorströmmen I_C:

$$I_{UT} = I_C$$

• Därmed gäller att

$$R_{UT} = \frac{\Delta U_{UT}}{I_C}$$

En formel kan härledas för ΔU_{UT} via Kirchhoffs spänningslag, med beräkning från ΔU_{UT} ned till jord:

$$\Delta U_{UT} - (R_E / / r_e / / r_o / / R_L) I_C = 0$$
,

vilket kan transformeras till

$$\Delta U_{UT} = (R_E//r_e//r_o//R_L)I_C$$

• Därmed kan en formel för emitterföljarens utresistans R_{UT} i lastat tillstånd härledas:

$$R_{UT} = \frac{\Delta U_{UT}}{I_C} = \frac{(R_E//r_e//r_o//R_L)I_C}{I_C},$$

där kollektorströmmen Ic kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$R_{UT} = R_E / / r_e / / r_o / / R_L,$$

där R_E är emitterresistorns resistans, r_e samt r_o är BJT-transistorns inbyggda emitterresistans respektive utresistans och R_L är lastresistansen.

• BJT-transistorns utresistans r_o kan antas vara mycket högre än dess inbyggda emitterresistans r_e:

$$r_o \gg r_e$$
,

vilket medför att BJT-transistorns utresistans ro kan försummas, då

$$r_o / / r_e = \frac{r_o * r_e}{r_o + r_e} \approx \frac{r_o * r_e}{r_o} = r_e$$

Därmed kan emitterföljarens utresistans R_{UT} i lastat tillstånd approximeras till

$$R_{UT} \approx R_E / / r_e / / R_L$$

• Förutsatt att emitterresistor R_E är korrekt dimensionerat så kan denna antas vara mycket högre än BJT-transistorns inbyggda emitterresistans r_e:

$$R_E \gg r_e$$

vilket medför att även emitterresistor R_E kan försummas, då

$$R_E//r_e = \frac{R_E * r_e}{R_E + r_e} \approx \frac{R_E * r_e}{R_E} = r_e$$

• Därmed kan emitterföljarens utresistans R_{UT} i lastat tillstånd approximeras till

$$R_{UT} \approx r_e / / R_L$$

där re är BJT-transistorns inbyggda emitterresistans re och RL är lastresistansen.

 Dock är storleken på lastresistansen R_L i förhållande till BJT-transistorns inbyggda emitterresistans r_e okänd. Vad som dock är känt är emitterföljarens utresistans R_{UT} antingen kommer förbli ungefär samma som i olastat tillstånd eller minska på grund av storleken på R_L, men den kommer inte öka. Därmed kan två scenarier analyseras, se nedan.

1. Lastresistansen R_L är mycket högre än den inbyggda emitterresistansen r_e:

• Om lastresistansen R_L är åtminstone tio gånger större än den inbyggda emitterresistansen r_e:

så kan R∟ försummas, då

$$R_L \gg r_e$$
,

$$r_e//R_L = \frac{r_e * R_L}{r_e + R_L} \approx \frac{r_e * R_L}{R_L} = r_e$$

Om lastresistansen R_L är högohmig så gäller därmed att

$$R_{UT} \approx r_e$$
,

precis som i olastat tillstånd.

2. Lastresistansen R_L är mindre eller ungefär lika med den inbyggda emitterresistansen r_e:

 Däremot om lastresistansen R_L istället är mindre eller lika med BJT-transistorns inbyggda emitterresistans r_e, så kommer emitterföljarens utresistans R_{UT} minska på grund av lasten. Som exempel, om R_L och r_e är lika stora

$$R_L = r_e$$
,

så kommer emitterföljararens utresistans Rut halveras jämfört med i olastat tillstånd, då

$$r_e//R_L = \frac{r_e * R_L}{r_e + R_L} = \frac{r_e^2}{2r_e} = \frac{r_e}{2}$$

Därmed gäller att

$$R_{UT} \approx \frac{r_e}{2}$$

 Om lasten istället är mycket lågohmig så att lastresistansen R_L vid understiger med BJT-transistorns inbyggda emitterresistans r_e:

$$R_L \ll r_e$$
,

så kommer utresistansen R_{UT} minska kraftigt, då

$$r_e//R_L = \frac{r_e * R_L}{r_e + R_L} \approx \frac{r_e * R_L}{r_e} = R_L,$$

vilket innebär att emitterföljarens utresistans Rut kan approximeras till lastens resistans RL:

$$R_{UT}\approx R_L$$

• Eftersom BJT-transistorns inbyggda emitterresistans r_e vanligtvis är låg vid moderata strömmar och r_e vida överstiger lastresistansens storlek R_L , så kan emitterföljarens utresistans R_{UT} i detta fall antas vara mycket låg.

Kollektorströmmens påverkan på effektförbrukningen:

- Det vi bör tänka på är dock att om vi ökar kollektorströmmen I_C som flödar genom emitterföljaren så ökar även effektförbrukningen P.
- Kollektorströmmen I_C kommer flöda kontinuerligt vid drift, oavsett om vi har en insignal eller inte i de typer av emitterföljare vi har sett hittills.
- För att hålla nere effektförbrukningen P, samtidigt som emitterföljaren fungerar väl så emitterföljarens kollektorström I_C som tumregel sättas till ca 0,5 mA om detta är möjligt:

$$I_C = 0.5 \, mA$$

• Då blir emitterföljarens utresistans R_{UT} ungefär lika med 52 Ω, eftersom

där
$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52~\Omega$$

- Om det skulle vara så att vi behöver sänka emitterföljarens utresistans R_{UT} så kan vi givetvis höja kollektorströmmen I_C , dock till bekostnad av ökad effektförbrukning P.
- Som exempel så används emitterföljaren ofta i slutsteg för att sänka utresistansen Rut på en förstärkare, exempelvis en OP-förstärkare.

Spänningsförstärkare med ett klass-AB slutsteg på utgången. Klass-AB slutsteget består i grund och botten av två spegelvända emitterföljare, som medför i princip lika goda egenskaper som den vanliga emitterföljaren (klass-A slutsteget) men halva effektförbrukningen.

- I effektförstärkare används vanligtvis en kollektorström I_C på ca 50 100 mA eller mer i slutsteget, även utan insignal.
- Detta medför givetvis mycket hög effektförbrukning P, ifall så kallade klass-A slutsteg används, alltså slutsteg som är uppbyggda såsom de emitterföljare vi har sett här.
- För att minska effektförbrukningen P i effektförstärkare så används därför oftast så kallade klass-AB slutsteg, som vi kommer gå igenom senare.
- Kortfattat så består klass-AB slutsteg av två spegelvända emitterföljare, där resistorer eller dioder används för att se till att en av emitterföljarna alltid leder när förstärkaren är igång, även utan insignal.
- Med klass-AB slutsteget så kan i princip lika bra egenskaper och låg distorsion som en vanlig emitterföljare erhållas, men halva effektförbrukningen P.
- I småsignalförstärkare, där strömmarna är mycket små, kan man dock använda vanliga emitterföljare (klass-A slutsteg) utan betydande effektförluster.

4.3.8 - Användning av Darlingtonpar för ökad inresistans R_{IN}:

- Emitterföljarens inresistans R_{IN} kan enkelt ökas genom att ytterligare en transistor placeras på dess ingång, se emitterföljaren till höger. Därmed bildas ett så kallat Darlingtonpar, bestående av transistor Q1 och Q2.
- Emitterföljarens inresistans R_{IN} med Darlingtonpar på ingången kan approximeras till

$$R_{IN}\approx (r_{e2}+R_E)h_{FE1}h_{FE2},$$

där r_{e2} är transistor Q2:s inbyggda emitterresistans, R_E är emitterresistorns resistans och h_{FE1} samt h_{FE2} är strömförstärkningsfaktorn på respektive transistor i Darlingtonparet.

• Emitterföljarens förstärkningsfaktor G samt utresistans R_{UT} blir i princip oförändrade trots Darlingtonparet:

Enkel emitterföljare med Darlingtonpar på ingången.

$$G \approx \frac{R_E}{r_{e2} + R_E}$$

samt

$$R_{UT} \approx r_{e2}$$
,

där re2 är transistor Q2:s inbyggda emitterresistans och RE är emitterresistorns resistans.

Härledning av emitterföljarens förstärkningsfaktor G med Darlingtonpar på ingången:

- För att härleda emitterföljarens förstärkningsfaktor G, så kan emitterföljarens småsignalschema ritas ut, se den vänstra figuren nedan. Matningsspänningarna V_{CC} samt V_{EE} kortsluts, transistorernas respektive utresistans r₀₁ samt r₀₂ ritas ut. Emitterföljarens in- och utsignal U_{IN} samt U_{UT} ersätts med deras motsvarigheter i småsignalschemat, ΔU_{IN} samt ΔU_{UT}.
- Därefter ersättas transistorernas respektive bas-emitterspänning U_{BE1} och U_{BE2} ersätts med spänningsfallet $r_{e1}I_{C1}$ samt $r_{e2}I_{C2}$, där transistor Q2:s kollektorström I_{C2} är lika med emitterföljarens kollektorström I_{C} :

$$I_{C2} = I_C$$

- Därmed gäller att spänningsfallet mellan transistor Q2:s bas och emitter i småsignalmodellen är lika med relc.
- Samma förhållande gäller för transistor Q2:s emitterström IE2, som är lika med emitterföljarens emitterström IE:

$$I_{E2} = I_E$$

Ekvivalent småsignalmodell för emitterföljaren med Darlingtonpar Q1 och Q2 på ingången. Emitterresistor R_E samt transistor Q2:s utresistans r_{o2} utgör en parallellkoppling i den vänstra figuren och kan därför ersättas med resistansen R_E/r_{o2} , placerad i emittern, såsom i den högra figuren.

- I småsignalmodellen nedan till vänster så utgör emitterresistor R_E samt transistor Q2:s utresistans r₀₂ en parallellkoppling,
 då de är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra.
- Därmed är spänningsfallet över R_E och r_{o2} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$), vilket medför att de kan ersättas med resistansen $R_E / / r_{o2}$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till den högra figuren nedan, där resistansen R_E//r₀₂ är placerad i emittern.
- För att förenkla beräkningarna i kretsen så noterar vi förhållandet mellan transistor Q1: bas- och kollektorström I_{B1} respektive I_{C1}:

$$I_{C1} = I_{B1}h_{FE1},$$

där h_{FE1} är transistor Q1:s strömförstärkningsfaktor.

• Vidare gäller att förhållandet mellan transistor Q1: bas- och emitterström I_{B1} respektive I_{E1} är följande:

$$I_{E1} = I_{B1}(1 + h_{FE1})$$

Eftersom transistor Q1:s strömförstärkningsfaktor hfel kan antas vida överstiga ett:

$$h_{FE1}\gg 1$$
,

så kan emitterströmmen IE1 approximeras till

$$I_{E1} \approx I_{B1} h_{FE1}$$
,

vilket är identiskt med kollektorströmmen Ic1. Därmed gäller att

$$I_{E1} \approx I_{C1}$$
,

vilket är anledningen till att skillnaden dem emellan vanligtvis försummas.

• På grund av att en viss del av emitterströmmen I_{E1} kommer flöda genom transistor Q1:s utresistans r₀₁, så måste vi räkna med att transistor Q2:s basström I_{B2} är något mindre än transistor Q1.s emitterström I_{E1}, då

$$I_{E1}=I_{B2}+I_X,$$

där Ix är strömmen som flödar genom transistor Q1:s utresistans ro1.

Formeln ovan kan transformeras till

$$I_{B2}=I_{E1}-I_X,$$

där strömmen I_X som flödar genom transistor Q1:s utresistans r_{o1} kan beräknas med formeln

$$I_X = \frac{\Delta U_{IN} - r_{e1} I_{C1}}{r_{o1}},$$

som kan approximeras till noll, då transistor Q1:s utresistans rol kan antas vara mycket hög:

$$r_{o1} \gg \Delta U_{IN} - r_{e1}I_{C1}$$

• Därmed gäller att strömmen Ix blir ungefär lika med noll, då

$$I_X = \frac{\Delta U_{IN} - r_{e1}I_{C1}}{r_{o1}} \approx 0$$

Därmed kan strömmen Ix genom transistor Q1 försummas, då

$$I_{E1} = I_{B2} + I_X \approx I_{B2} + 0 = I_{B2}$$

• Därmed gäller att

$$I_C = I_{B2}h_{FE2} \approx I_{E1}h_{FE2}$$

samt

$$I_E = I_{B2}(1 + h_{FE2} + 1) \approx I_{E1}(1 + h_{FE2})$$

• Som vi såg kan skillnaden mellan transistor Q1:s kollektor- och emitterström I_{C1} samt I_{E1} försummas:

$$I_{C1} \approx I_{E1}$$
,

vilket även gäller för transistor Q2:s kollektor- och emitterström Ic2 samt IE2:

$$I_{C2} \approx I_{E2}$$

som är lika med emitterföljarens kollektor- respektive emitterström Ic samt IE, vilket innebär att

$$I_C \approx I_E$$

- Därefter kan emitterföljarens förstärkningsfaktor G härledas via formler för in- och utspänningen i småsignalschemat, ΔU_{IN} samt ΔU_{UT}.
- Vi börjar med att härleda ΔU_{IN} genom att beräkna med Kirchhoffs spänningslag, från insignalen ΔU_{IN} till jord via transistor
 Q2:s emitter:

$$\Delta U_{IN} - r_{e1}I_{C1} - r_{e2}I_C - (R_E//r_{o2})I_C = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = r_{e1}I_{C1} + r_{e2}I_{C} + (R_{E}//r_{o2})I_{C}$$

• För kollektorströmmen Ic genom emitterföljaren gäller att

$$I_C = I_{B2} h_{FE2},$$

där transistor Q2:s basström I_{B2} är ungefär lika med transistor Q1:s kollektorström I_{C1} :

$$I_{B2} \approx I_{C1}$$

som i sin tur är lika med

$$I_{C1} = I_{B1}h_{FE1}$$

• Därmed kan emitterföljarens kollektorström Ic approximeras till

$$I_C \approx I_{B1} h_{FE1} h_{FE2}$$
,

där IB1 är transistor Q1:s basström och hFE1 samt hFE2 är transistor Q1:s samt Q2:s respektive strömförstärkningsfaktor.

Därmed gäller att emitterföljarens insignal i småsignalschemat ΔU_{IN} kan approximeras till

$$\Delta U_{IN} \approx r_{e1} * I_{B1} h_{FE1} + r_{e2} * I_{B1} h_{FE1} h_{FE2} + (R_E//r_{o2}) * I_{B1} h_{FE1} h_{FE2}$$

• Genom att bryta ut transistor Q1:s basström I_{B1} så kan approximationen ovan transformeras till

$$\Delta U_{IN} \approx [r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}] * I_{B1}$$

• Därefter kan en formel för emitterföljarens utsignal ΔU_{UT} i småsignalschemat härledas. Detta kan enkelt åstadkommas med användning av Kirchhoffs spänningslag, där beräkning genomförs från utsignalen ΔU_{UT} ned till jord via emittern:

$$\Delta U_{UT} - (R_E//r_{o2})I_C \approx 0,$$

vilket kan transformeras till

$$\Delta U_{IJT} \approx (R_E//r_{o2})I_C$$

 Som vi såg tidigare gäller att kollektorströmmen I_C är lika med transistor Q2:s basström I_{B2} multiplicerat med dess strömförstärkningsfaktor h_{FE2}:

$$I_C = I_{B2} h_{FE2},$$

där transistor Q2:s basström I_{B2} är ungefär lika med transistor Q1:s basström I_{B1} multiplicerat med dess strömförstärkningsfaktor h_{FE1} :

$$I_{B2} \approx I_{B1} h_{FE1}$$

Därmed gäller att kollektorströmmen Ic genom emitterföljaren kan approximeras till

$$I_C \approx I_{R1} h_{FF1} h_{FF2}$$

vilket medför att utsignalen i småsignalschemat ΔU_{UT} kan approximeras till

$$\Delta U_{UT} \approx (R_E//r_{o2})h_{FE1}h_{FE2} * I_{B1}$$

 Därefter kan emitterföljarens förstärkningsfaktor G med Darlingtonpar på ingången härledas via de framtagna approximationerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{(R_E//r_{o2})h_{FE1}h_{FE2} * I_{B1}}{[r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}] * I_{B1}}$$

där transistor Q1:s basström IB1 kan elimineras, då denna förekommer i både täljare och nämnare.

Därmed gäller att

$$G \approx \frac{(R_E//r_{o2})h_{FE1}h_{FE2}}{r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}}$$

Produkten hFE1hFE2 av transistorernas respektive strömförstärkningsfaktor kan brytas ut ur nämnaren, vilket medför att

$$G \approx \frac{(R_E//r_{o2})h_{FE1}h_{FE2}}{\left(\frac{r_{e1}}{h_{FE2}} + r_{e2} + R_E//r_{o2}\right)h_{FE1}h_{FE2}},$$

• Eftersom hFE1hFE2 förekommer i både täljare och nämnare kan denna produkt sedan elimineras, vilket medför att

$$G pprox rac{R_E / / r_{o2}}{rac{r_{e1}}{h_{FE2}} + r_{e2} + R_E / / r_{o2}}$$

Vidare kan transistor Q2:s utresistans r₀₂ antas vara mycket högre än emitterresistor R_E:

$$r_{o2}\gg R_E$$
,

vilket medför att

$$R_E / / r_{o2} = \frac{R_E * r_{o2}}{R_E + r_{o2}} \approx \frac{R_E * r_{o2}}{r_{o2}} = R_E$$

• Därmed kan emitterföljarens förstärkningsfaktor G med Darlingtonpar på ingången approximeras till

$$G \approx \frac{R_E}{\frac{r_{e1}}{h_{FE2}} + r_{e2} + R_E}$$

Vidare kan vi anta att summan r_{e2} + R_E är mycket högre än r_{e1}/h_{FE2}:

$$r_{e2} + R_E \gg \frac{r_{e1}}{h_{FE2}},$$

vilket medför att täljaren kan förenklas:

$$\frac{r_{e1}}{h_{EF2}} + r_{e2} + R_E \approx r_{e2} + R_E$$

Emitterföljarens förstärkningsfaktor G med Darlingtonpar på ingången kan därmed approximeras till

$$G \approx \frac{R_E}{r_{e2} + R_E},$$

där R_E är emitterresistorns resistans och r_{e2} är transistor Q2:s inbyggda emitterresistans.

Härledning av emitterföljarens inresistans R_{IN} med Darlingtonpar på ingången:

• Emitterföljarens inresistans R_{IN} kan beräknas med formeln

$$R_{IN} = \frac{\Delta U_{IN}}{I_{IN}},$$

där ΔU_{IN} är inspänningen i småsignalschemat och inströmmen I_{IN} är lika med transistor Q1:s basström:

Därmed gäller att

$$I_{IN}=I_{B1}$$

$$R_{IN} = \frac{\Delta U_{IN}}{I_{B1}}$$

• Tidigare härleddes följande approximation för inspänningen ΔU_{IN} i småsignalschemat:

$$\Delta U_{IN} \approx [r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}] * I_{B1}$$

Därmed kan emitterföljarens inresistans R_{IN} med Darlington par på ingången härledas:

$$R_{IN} = \frac{\Delta U_{IN}}{I_{B1}} \approx \frac{\left[r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}\right] * I_{B1}}{I_{B1}},$$

där transistor Q1:s basström IB1 kan elimineras, då denna förekommer i både täljare och nämnare.

• Därmed gäller att

$$R_{IN} \approx r_{e1}h_{FE1} + r_{e2}h_{FE1}h_{FE2} + (R_E//r_{o2})h_{FE1}h_{FE2}$$

• Produkten h_{FE1}h_{FE2} av transistorernas respektive strömförstärkningsfaktor kan brytas ut ur högerledet, vilket medför att

$$R_{IN} pprox \left(rac{r_{e1}}{h_{FF2}} + r_{e2} + R_E / / r_{o2} \right) h_{FE1} h_{FE2}$$

• Vidare kan vi anta att summan re2 + RE är mycket högre än re1/hFE2:

$$r_{e2} + R_E \gg \frac{r_{e1}}{h_{EF2}},$$

vilket medför att

$$\frac{r_{e1}}{h_{FE2}} + r_{e2} + R_E \approx r_{e2} + R_E$$

• Därmed kan formeln för emitterföljarens inresistans R_{IN} ovan approximeras till

$$R_{IN} \approx (r_{e2} + R_E//r_{o2})h_{FE1}h_{FE2}$$

• Transistor Q2:s utresistans r_{o2} kan antas vara mycket högre än emitterresistor R_E :

$$r_{o2} \gg R_E$$

vilket medför att ro2 kan försummas, då

$$R_E / / r_{o2} = \frac{R_E * r_{o2}}{R_E + r_{o2}} \approx \frac{R_E * r_{o2}}{r_{o2}} = R_E$$

• Därmed kan emitterföljarens inresistans R_{IN} med Darlingtonpar approximeras till

$$R_{IN} \approx (r_{e2} + R_E) h_{FE1} h_{FE2}$$

• Förutsatt att emitterresistor R_E har dimensionerats korrekt i enlighet med tumregeln

$$R_E = \frac{220}{I_{C(mA)}},$$

där I_C är kollektorströmmen som flödar genom GE-steget, så kommer emitterresistor R_E vara ca nio gånger högre transistor Q2:s inbyggda emitterresistans r_{e2} :

då

$$r_{e2} = \frac{26}{I_{C(mA)}},$$

 $R_E \approx 9r_{e2}$

vilket innebär att

$$\frac{R_E}{r_{e2}} = \frac{\left(\frac{220}{I_{C(mA)}}\right)}{\left(\frac{26}{I_{C(mA)}}\right)},$$

där I_{C(mA)} kan elimineras, då denna förekommer i både täljare och nämnare.

Därmed gäller att

$$\frac{R_E}{r_{e2}} = \frac{220}{26} \approx 9,$$

som kan transformeras till

$$R_E \approx 9r_{e2}$$

 Därmed kan transistor Q2:s inbyggda emitterresistans r_{e2} försummas utan större avvikelser i approximationen ovan, vilket innebär att

$$R_{IN} \approx R_E h_{FE1} h_{FE2}$$
,

där R_E är GE-stegets emitterresistor och h_{FE1} samt h_{FE2} är strömförstärkningsfaktorn på respektive transistor i Darlingtonparet.

4.3.9 - Tillämpningar med enkla emitterföljare för ökad inresistans på förstärkarsteg

- Den enklaste typen av emitterföljare består endast av en BJT-transistor och en emitterresistor R_E. Figuren till höger visar en spänningsförstärkare med en emitterföljare på dess ingången för att öka spänningsförstärkarens inresistans.
- Ett bra riktvärde på kollektorströmmen Ic som flödar genom emitterföljaren är ca 0,5 mA.
- Notera att emitterföljarens kollektor är jordad i figuren till höger istället för att anslutas till den positiva matningsspänningen V_{CC}. Anledningen till detta är att BJT-transistorn kollektoremitterspänning U_{CE} i detta fall hade blivit mycket hög, vilket hade kunnat skada transistorn.
- Om matningsspänningen V_{CC}/V_{EE} var mycket lägre än \pm 50 V, exempelvis \pm 2 V, så hade dock BJT-transistorns kollektor utan problem kunnat anslutas till den positiva matningsspänningen V_{CC} .
- Notera i spänningsförstärkaren till höger att spänningsförstärkarens emitterresistor $R_{E,VAS}$ dimensioneras så att spänningsfallet över denna blir 0,22 V. Samtidigt faller 0,65 V mellan transistorns bas och emitter. Därmed så faller 0,22 + 0,65 = 0,87 V över emitterföljarens emitterresistor $R_{E,EF}$.
- För en kollektorström I_C på 0,5 mA genom emitterföljaren så sättas denna $R_{E,EF}$ till ca 1,8 $k\Omega$, då

$$R_{E,EF} = \frac{0.87}{0.5m} = 1.74 \ k\Omega$$

GE-steg med en enkel emitterföljare på ingången.

• Närmaste värde i E12-serien är 1,8 kΩ, som vi därmed använder:

$$R_{EEF} = 1.8 k\Omega$$

• Denna emitterföljare fungerar rätt bra, trots dess enkla konstruktion. Emitterföljarens förstärkningsfaktorn G hamnar nära ett, inresistansen R_{IN} blir minst 40 k Ω (förmodligen högre, runt 100 k Ω) och utresistansen R_{UT} blir ungefär 52 Ω .

- I efterföljande exempel kommer vi gå igenom hur man dimensionerar emitterföljare på spänningsförstärkares ingångar.
- För att efterlikna ett verkligt scenario så kommer vi även dimensionera själva spänningsförstärkaren och se hur vi kan modifiera dessa förstärkarsteg för att ökad inresistans samt förstärkningsfaktor.
- Figuren nedan visar ett exempel på ett GE-steg med en kaskadkopplad strömspegel som last samt en emitterföljare på ingången. Notera att dimensioneringen är relativt enkel och ger goda resultat. Dock kan vi givetvis förbättra egenskaperna, vilket vi kommer se senare.

Dimensionering av ett GE-steg som innehar en kaskadkopplad strömspegel som last för ökad förstärkning samt en enkel emitterföljare på ingången för att öka inresistansen.

Beräkning av emitterföljarens inresistans RIN,EF:

I detta fall så består emitterföljarens lastresistans R_L av spänningsförstärkarens inresistans R_{IN,VAS}:

$$R_L = R_{IN,VAS}$$

Emitterföljarens inresistans R_{IN,EF} är i detta fall lika med

$$R_{IN,EF} \approx (r_{e,EF} + R_{E,EF}//R_L) * h_{FE,EF},$$

där $r_{e,EF}$ är den inbyggda emitterresistansen på emitterföljarens ingångstransistor, $R_{E,EF}$ är emitterföljarens emitterresistor R_L är lastresistansen och $h_{FE,EF}$ är strömförstärkningsfaktorn på emitterföljarens ingångstransistor (som i värstafallscenariot är lika med 50).

- Vi har sett i ett flertal exempel tidigare att vi måste ha lastresistansen R_L i åtanke, då denna kan medföra att
 emitterföljarens inresistans R_{IN,EF} minskar. Vi bör därför se till att lastresistansen R_L, som i detta fall är
 spänningsförstärkarens inresistans R_{IN,VAS}) är tillräckligt hög för att inte emitterföljarens inresistans R_{IN,EF} skall minska till en
 signifikant grad.
- Det bästa vore givetvis att lastresistansen R_L/spänningsförstärkarens inresistans R_{IN,VAS} är oändligt hög, såsom är fallet ifall spänningsförstärkaren vore ett GS-steg. I detta fall blir det dock svårt att erhålla mycket hög inresistans, då efterföljande spänningsförstärkare består av ett GE-steg, vilket betyder att en BJT-transistor används på dess ingång.
- Dessutom hade inte en emitterföljare varit nödvändigt på ingången till ett GS-steg, då inresistansen redan är mycket hög.
 Dock hade emitterföljaren fortfarande minskat påverkan av Millereffekten, men detta hade kunna åstadkommas genom att kaskadkoppla GS-steget istället, samtidigt som detta hade lett till ökad förstärkningsfaktor.
- Vid en kollektorström I_C på 0,5 mA så blir den inbyggda emitterresistansen $r_{e,EF}$ på emitterföljarens ingångstransistor lika med 52 Ω , eftersom

$$r_{e,EF} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Emitterföljarens emitterresistor R_{E,EF} sattes tidigare till 1,8 kΩ:

$$R_{E,EF} = 1.8 k\Omega$$

- Därefter måste emitterföljarens lastresistans R_L, som inte är något annat än spänningsförstärkarens ingångsresistans R_{IN,VAS}, beräknas. I detta fall är R_L lika med spänningsförstärkarens totala emitterresistans, r_{e,VAS} + R_{E,VAS}, multiplicerat med strömförstärkningsfaktorn på spänningsförstärkarens ingångstransistor, h_{FE,VAS}, som i värstafallscenariot kan antas vara 50.
- Därmed kan emitterföljarens lastresistans R_L beräknas med formeln

$$R_L = R_{IN,VAS} \approx (r_{e,VAS} + R_{E,VAS}) * h_{FE,VAS},$$

där $r_{e,VAS}$ är den inbyggda emitterresistansen på spänningsförstärkarens ingångstransistor, $R_{E,VAS}$ är spänningsförstärkarens emitterresistor och $h_{FE,VAS}$ är strömförstärkningsfaktorn på spänningsförstärkarens ingångstransistor-

• Därmed så blir den inbyggda emitterresistansen $r_{e,VAS}$ på spänningsförstärkarens ingångstransistor vid en kollektorström I_c på 10 mA lika med 2,6 Ω , eftersom

$$r_{e,VAS} = \frac{26}{I_{C(mA)}} = \frac{26}{10} = 2,6 \ \Omega$$

• Som synes i kretsen ovan så är emitterresistor R_{E,VAS} i spänningsförstärkaren satt till 22 Ω:

$$R_{EVAS} = 22 \Omega$$

• Vi utför beräkningen i värstafallscenariot, vilket betyder att strömförstärkningsfaktor h_{FE,VAS} på spänningsförstärkarens ingångstransistor antas vara 50:

$$h_{FEVAS} = 50$$

Genom att sätta in värden i formeln för emitterföljarens lastresistans R_I/spänningsförstärkarens inresistans R_IN,VAS ovan så ser vi att emitterföljarens lastresistans, det vill säga spänningsförstärkarens inresistans, är lika med 1,23 kΩ i värstafallscenariot, eftersom

$$R_L = R_{IN,VAS} \approx \left(\frac{26}{10} + 22\right) * 50 = 1,23 \text{ } k\Omega$$

Därefter kan emitterföljarens inresistans R_{IN,EF} i värstafallscenariot beräknas:

$$R_{IN,EF} \approx (r_{e,EF} + R_{E,EF}//R_L) * h_{FE,EF} \approx (52 + 1.8k//1.23k) * 50 = 38.6 k\Omega$$

Resultatet ovan indikerar att emitterföljaren kan antas ha en inresistans R_{IN,EF} runt 40 kΩ som minst/i värstafallscenariot.
 Om respektive strömförstärkningsfaktor h_{FE} vore 100 istället för 50 så hade lastresistansen R_L varit dubbelt så stor, det vill säga 2,46 kΩ, och emitterföljarens inresistans R_{IN,EF} hade istället blivit

$$R_{IN.EF} \approx (r_{e.EF} + R_{E.EF} / / R_L) * h_{FE.EF} \approx (52 + 1.8k / / 2.46k) * 100 \approx 110 k\Omega$$

- Sammanfattat så är emitterföljarens inresistans R_{IN,EF} starkt beroende av BJT-transistorernas respektive strömförstärkningsfaktor h_{FE,EF} samt h_{FE,VAS}, som kan variera stort mellan olika exemplar av samma modell. Därmed bör vi ta det säkra före det osäkra och göra vad vi kan för att öka emitterföljarens inresistans vid behov. Det finns ett par knep att ta till
- I nästa avsnitt kommer det enklaste knepet behandlas, som inte består av något annat än att placera en extra transistor på
 emitterföljarens ingång och därmed bilda ett så kallat Darlingtonpar, vilket ökar den totala inresistansen med en faktor på
 minst 50, vilket hade medfört att emitterföljarens inresistans R_{IN,EF} hade uppgått till minst 1,93 MΩ. Vi kommer därefter
 även placera ett Darlingtonpar på spänningsförstärkarens ingång, vilket också medför ökad inresistans.

Beräkning av emitterföljarens utresistans RUT, EF:

 Emitterföljarens utresistans R_{UT,EF} är mycket enkel att beräkna, då emitterföljarens lastresistans R_L är relativt hög; det är ungefär lika med den inbygga emitterresistansen på emitterföljarens ingångstransistor r_{e,EF} (som är lika med 26 dividerat med kollektorströmmen mätt i mA. För en kollektorström på 0,5 mA blir därmed emitterföljarens utresistans R_{UT,EF} ungefär lika med 52 Ω, då

$$R_{UT,EF} \approx r_{e,EF} = \frac{26}{0.5} = 52 \,\Omega$$

 Egentligen bör vi ta med emitterföljarens lastresistans R_L i ekvationen ovan då denna utgör en parallellkoppling med r_{e,EF}, men som vi såg tidigare så är denna lika med minst 1,23 kΩ, vilket medför att

$$R_{UT.EF} \approx r_{e.EF}//R_L = 52//1,23k \approx 50 \Omega$$

• Därmed så kan vi försumma lastresistansen så länge denna är mycket högre än re,EF, vilket vi bör se till.

Beräkning av emitterföljarens förstärkningsfaktor GEF:

- För att beräkna emitterföljarens förstärkningsfaktor G_{EF} så måste vi också ha spänningsförstärkarens inresistans sett från emitterföljarens utgång i åtanke, då denna utgör en parallellkoppling med emitterföljarens emitterresistor.
- Som vi kommer se senare så kan emitterföljarens förstärkningsfaktor G_{EF} höjas avsevärt genom att öka spänningsförstärkarens inresistans samt genom att ersätta emitterföljarens emitterresistorn med en strömspegel.
- Emitterföljarens förstärkningsfaktor GEF kan beräknas med formeln:

$$G_{EF} pprox rac{R_{E,EF}//R_L}{r_{e,EF} + R_{E,EF}//R_L}$$

där $R_{E,EF}$ är emitterföljarens emitterresistor, R_L är emitterföljarens lastresistans och $r_{e,EF}$ är den inbyggda emitterresistansen på emitterföljarens ingångstransistor.

Emitterresistor R_{E,EF} sattes tidigare till 1,8 kΩ:

$$R_{E,EF} = 1.8 k\Omega$$
,

lastresistansen R_L består i detta fall av spänningsförstärkaren inresistans R_{IN,VAS}:

$$R_L = R_{IN,VAS}$$

• Vid en kollektorström I_C på 10 mA genom spänningsförstärkaren så blir dess inresistans R_{IN,VAS} i värstafallscenariot lika med 1,23 kΩ, eftersom

$$R_{IN,VAS} = \left(\frac{26}{10} + 22\right) * 50 = 1,23 \ k\Omega$$

• Därmed gäller att

$$R_L = R_{INVAS} = 1.23 k\Omega$$

• Den inbyggda emitterresistansen $r_{e,EF}$ på emitterföljarens ingångstransistor är vid en kollektorström I_C på 0,5 mA genom emitterföljaren lika med 52 Ω , då

$$r_{e,EF} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

Vi kan därmed beräkna emitterföljarens förstärkningsfaktor GEF:

$$G_{EF} \approx \frac{1.8k//1.23k}{52+1.8k//1.23k} \approx 0.93$$

• En förstärkningsfaktor runt 0,93 indikerar en signalförlust på ca 7 %. Trots den enkla konstruktionen så blir alltså emitterföljarens förstärkningsfaktor GEF relativt hög. Dock hade den enkelt kunnat höjas till mycket nära ett genom att ersätta emitterresistorn med en strömgenerator samt genom att höja spänningsförstärkarens inresistans, vilket vi kommer göra senare.

Enkel emitterföljare med Darlingtonpar på emitterföljarens ingång:

- Emitterföljaren vi såg tidigare blev hade en inresistans $R_{IN,EF}$ på ca 100 k Ω , vilket kan anses vara hyfsat högt.
- För att öka emitterföljarens inresistsans R_{IN,EF} ytterligare hade en extra transistor kunnat placerats på emitterföljarens ingång, såsom i figuren till höger. Låt oss kalla transistorn på ingången/den första transistorn i Darlingtonparet för Q1, samtidigt som den andra transistorn i Darlingtonparet kallas Q2.
- De två transistorerna på ingången skall ha samma polaritet, i detta fall NPN. Emittern på den extra transistorn kopplas samman med basen på transistorn på ingången, medan deras kollektorer sammankopplas till samma punkt.
- De två transistorerna bildar därmed ett så kallat Darlingtonpar och medför att emitterföljarens inresistans R_{IN,EF} ökar med en faktor av den tillsatta transistorns strömförstärkningsfaktor h_{FE1}, som varierar mellan 50–250 mellan olika exemplar.
- Dock kan en strömförstärkningsfaktor h_{FE} på 100 antas vara ett ungefärligt genomsnittsvärde. Oftast beräknas dock i värstafallscenariot (h_{FE} på 50), vilket medför att emitterföljarens inresistans R_{IN,EF} antas öka med en faktor 50.
- Eftersom insignalerna nu passerar två BJT-transistorer så räknar vi även med två inbyggda emitterresistanser r_{e,EF} i formeln för emitterföljarens inresistans R_{IN,EF}, som i lastat tillstånd nu blir

$$R_{IN,EF} \approx (2r_{e,EF} + R_{E,VAS}//R_L)h_{FE1} * h_{FE2}$$
,

där $r_{e,EF}$ är den inbyggda emitterresistansen på respektive transistor på emitterföljarens ingång, $R_{E,VAS}$ är emitterföljarens emitterresistor, R_L är emitterföljarens lastresistans och h_{FE1} samt h_{FE2} är strömförstärkningsfaktorn på respektive transistor i Darlingtonparet.

Emitterföljare med Darlingtonpar på ingången, vilket medför att inresistansen ökar med en faktor på minst 50, förmodligen mer (beroende på den extra transistorns strömförstärkningsfaktor h_{FE1}, som vanligtvis ligger mellan 50–250).

- I Darlingtonparet är en resistor på 10 kΩ placerad mellan transistor Q2:s bas och emitter. Denna resistor används för att öka Darlingtonparets switchhastighet genom att sätta transistor Q1:s kollektorström I_{C1} till ett lagom värde, vilket i detta fall är ca 0,065 mA, det vill säga ungefär en tiondel av kollektorströmmen I_{C2} genom Q2, som är resten av kollektorströmmen I_C genom emitterföljaren, alltså ca 0,5 mA.
- Annars så blir Darlingtonparet långsamt, på grund av att om transistor Q1:s kollektorström blir mycket hög så hade den "stulit" en stor del av transistorn Q2:s basström, vilket hade lett till att det hade tagit tid för transistor Q1 att aktivera transistor Q2.
- Eftersom denna resistor är placerad mellan basen och emittern på den andra transistorn i Darlingtonparet så kommer spänningsfallet över denna resistor vara ca 0,65 V. Eftersom vi använder en resistor på 10 k Ω så kommer kollektorströmmen I_{C1} genom den första transistorn i Darlingtonparet bli ca 0,065 mA, eftersom

$$I_{C1} = \frac{0,65}{10k} = 0,065 \ mA$$

• Denna resistor kan ha ett värde mellan $100~\Omega$ - $10~k\Omega$ beroende på applikation. Resistorn bör inte sno för mycket att den andra transistorns basström, så den bör inte vara för stor. En bra tumregel är att denna resistor sätts till ca $100~\Omega$ där relativt stora strömmar används, exempelvis i slutsteg på effektförstärkare, och ca $1-10~k\Omega$ när mindre strömmar används, exempelvis på ingången till spännings- och differentialförstärkare.

 Darlingtonparet medför att emitterföljarens inresistans ökar med en faktor av den extra transistorns strömförstärkningsfaktor, det vill säga minst 50. Så om inresistansen tidigare i värsta fall var ca 37 kΩ tidigare så blir den nu i värsta fall ca 37k * 50 ≈ 1,85 MΩ!

Darlingtonparets påverkan på emitterföljarens förstärkningsfaktor GE.EF:

- Emitterföljarens förstärkningsfaktor G_{EF} blir något lägre vid användning av ett Darlingtonpar på ingången, eftersom insignalen passerar två BJT-transistorer på ingången.
- Förstärkningsfaktorn G_{EF} på emitterföljarens till höger, med Darlingtonpar på ingången samt spänningsförstärkarens inresistans R_{IN,VAS} som last, kan beräknas med formeln:

$$G_{EF} \approx \frac{R_{E,EF}//R_L}{2r_{e,EF}+R_{E,EF}//R_L},$$

där G_{EF} är förstärkningsfaktorn, $R_{E,EF}$ är emitterföljarens emitterresistor, som är lika med 1,8 k Ω , R_L är emitterföljarens lastresistans/spänningsförstärkaren inresistans, som tidigare beräknades till 1,23 k Ω , och $2r_{e,EF}$ är summan av de inbyggda emitterresistanserna på BJT-transistorerna i Darlingtonparet, som båda är lika med 26 dividerat på kollektorströmmen som flödar genom dem.

Som vi strax kommer se så kommer de inbyggda emitterresistanserna $r_{e,EF}$ på BJT-transistorerna i Darlingtonparet bli lika stora, oavsett storleken på strömmarna som flödar genom dem, vilket är anledningen till att vi nu räknar med 2 * $r_{e,EF}$ istället för bara 1 * $r_{e,EF}$ som tidigare.

• Tidigare så behövde vi endast beräkna med den inbyggda emitterresistansen r_e på ingångstransistorn, som är lika med 52 Ω vid en kollektorström på 0,5 mA, eftersom

$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Nu när vi har två BJT-transistorer på ingången så måste vi räkna med två inbyggda emitterresistanser, som vi kan kalla r_{e1} och r_{e2} , där r_{e1} samt r_{e2} är den inbyggda emitterresistansen på den första respektive den andra BJT-transistorn i Darlingtonparet.

När vi använder ett Darlingtonpar på emitterföljarens ingång så minskar emitterföljarens förstärkningsfaktor G_{EF} något.

Vi~kommer~senare~se~hur~denna påverkan blir försumbar ifall vi ökar lastresistansen R_L samt använder en förbättrad emitterföljare, det vill säga en emitterföljare där emitterresistor R_E ersätts med en strömspegel.

• Emitterföljarens kollektorström I_C är totalt 0,5 mA, som kommer fördela sig mellan de två BJT-transistorerna i Darlingtonparet, för att sedan summeras ihop och flöda genom emitterföljarens emitterresistor R_{E,EF}:

$$I_C = I_{C1} + I_{C2} = 0.5 \, mA$$

 Vid satte tidigare resistorn i Darlingtonparet till 10 kΩ. Som vi såg tidigare så blir spänningsfallet över denna resistor lika med 0,65 V, eftersom den är placerad mellan basen och emittern på den andra transistorn i Darlingtonparet. Detta medför att kollektorströmmen genom denna resistor, som vi kan kalla I_{C1}, lika med 0,065 mA, eftersom

$$I_{C1} = \frac{0,65}{10k} = 0,065 \ mA$$

• Därmed blir den inbyggda emitterresistansen re1 på den första transistorn i Darlingtonparet lika med 400 Ω, eftersom

$$r_{e1} = \frac{26}{I_{C1(mA)}} = \frac{26}{0,065} = 400 \,\Omega$$

- Resten av de 0,5 mA som flödar genom emitterföljaren, alltså 0,5m 0,065m = 0,435 mA, kommer flöda genom den andra transistorn i Darlingtonparet.
- Därmed så blir den inbyggda emitterresistansen r_{e2} på den andra transistorn i Darlingtonparet lika med ca 59,8 mA,
 eftersom

$$r_{e2} = \frac{26}{I_{C2(mA)}} = \frac{26}{0.435} \approx 59.8 \,\Omega$$

• Vi såg tidigare att emitterföljarens förstärkningsfaktor GEF i olastat tillstånd kan beräknas med formeln

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{R_E I_C}{(r_e + R_E)I_C} = \frac{R_E}{r_e + R_E}$$

där R_E är emitterföljarens emitterresistor och r_e är den inbyggda emitterresistansen på ingångstransistorn i vanliga fall utan Darlingtonpar, där vi nu räknar med två sådana (2 r_e), eftersom vi har två BJT-transistorer på emitterföljarens ingång.

ΔU_{UT} påverkas inte av Darlingtonparet, eftersom detta sitter på ingången. Därmed så förändras inte ΔU_{UT}:

$$\Delta U_{UT} = R_E I_C$$

• Dock måste vi härleda en ny formel ΔU_{IN}, där vi tar de två inbyggda emitterresistanserna r_{e1} och r_{e2} samt de två kollektorströmmarna som flödar genom dem (I_{C1} och I_{C2}) i åtanke. Vi ersätter därmed spänningsfallet r_eI_C med r_{e1}I_{C1} + r_{e2}I_{C2}:

$$\Delta U_{IN} - r_{e1}I_{C1} - r_{e2}I_{C2} - R_EI_C = 0 \rightarrow \Delta U_{IN} = r_{e1}I_{C1} + r_{e2}I_{C2} + R_EI_C$$

Båda spänningsfall rellcloch rellcl kommer bli lika stora, det vill säga 26 mV, eftersom

$$r_{e1}I_{C1} = 400 * 0.065m = 26 \text{ mV}$$

samt

$$r_{e2}I_{C2} \approx 59.8 * 0.435m = 26 \text{ mV}$$

• Detta medför att vi kan förenkla formeln för ΔU_{IN} genom att summera ovanstående spänningsfall till 2r_{e2}l_{C2}:

$$r_{e1}I_{C1} = r_{e2}I_{C2}$$

vilket medför att

$$r_{e1}I_{C1} + r_{e2}I_{C2} = 2r_{e2}I_{C2}$$

• Genom att sätta in detta i formeln för inspänningen ΔU_{IN} så erhålls följande:

$$\Delta U_{IN} = r_{e1}I_{C1} + r_{e2}I_{C2} + R_EI_C = r_{e2}I_{C2} + r_{e2}I_{C2} + R_EI_C = 2r_{e2}I_{C2} + R_EI_C$$

• Därefter kan en ny formel härledas för emitterföljarens förstärkningsfaktor GEF i olastat tillstånd:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{R_E I_C}{(2r_e + R_E)I_C} = \frac{R_E}{2r_e + R_E}$$

Vi kan också enkelt visa att spänningsfallet 2re2lc2 är dubbelt så mycket som spänningsfallet relc var tidigare utan
 Darlingtonpar:

$$2r_{e2}I_{C2} = 2 * 26m = 52 \, mV$$

samtidigt som

$$r_e I_C = 52 * 0.5m = 26 mV$$
,

vilket medför att

$$2r_{e2}I_{C2} = 2r_{e}I_{C}$$

• Därmed kan vi förenkla formeln för ΔU_{IN} genom att ersätta spänningsfallet 2r_{e2}lc₂ med 2r_elc:

$$\Delta U_{IN} = 2r_{e2}I_{C2} + R_EI_C = 2r_eI_C + R_EI_C = (2r_e + R_E)I_C$$

• Därefter kan en ny formel härledas för emitterföljarens förstärkningsfaktor GEF i olastat tillstånd:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{R_E I_C}{(2r_e + R_E)I_C} = \frac{R_E}{2r_e + R_E'}$$

där R_E är emitterföljarens emitterresistor och r_e är den inbyggda emitterresistansen på ingångstransistorn i vanliga fall utan Darlingtonpar, där vi nu räknar med två sådana ($2r_e$), eftersom vi har två BJT-transistorer på emitterföljarens ingång.

• Emitterföljarens förstärkningsfaktor G_{EF} i lastat tillstånd med Darlingtonpar på ingången blir samma som i olastat tillstånd, fast med lastresistansen R_L parallellkopplad med emitterföljarens emitterresistor R_E. Därmed gäller att

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{R_E//R_L}{2r_e + R_E//R_L},$$

där R_E är emitterföljarens emitterresistor, R_L är lastresistansen och r_e är den inbyggda emitterresistansen på ingångstransistorn i vanliga fall utan Darlingtonpar, där vi nu räknar med två sådana ($2r_e$), eftersom vi har två BJT-transistorer på emitterföljarens ingång.

• Vi kan därmed beräkna emitterföljarens förstärkningsfaktor G_{EF} i vår tidigare krets med Darlingtonpar på ingången. Vi såg tidigare att emitterföljarens emitterresistor $R_{E,EF}$ är lika med 1,8 k Ω och lastresistansen är lika med 1,23 k Ω :

$$R_E = 1.8 \ k\Omega$$

$$R_L = 1,23 k\Omega$$

• Vi såg också tidigare att den inbyggda emittersistansen r_e på emitterföljarens ingångtransistor utan Darlingtonpar vid en kollektorström på 0,5 mA är lika med 52 Ω , eftersom

$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

 Därmed så blir förstärkningsfaktorn G_{EF} på emitterföljaren med Darlingtonpar på ingången i lastat tillstånd ungefär lika med 0,88, eftersom

$$G_{EF} \approx \frac{1.8k//1.23k}{52 + 52 + 1.8k//1.23k} \approx 0.88,$$

vilket är ungefär 5 % lägre än utan Darlingtonpar på ingången.

Överströmsskydd:

- Ibland kan kollektorströmmen I_{C,VAS} som flödar genom en spänningsförstärkare bli för hög. Anta att spänningsförstärkare till höger används inuti en OPförstärkare.
- Om spänningsförstärkarens kollektorström I_{C,VAS} vanligtvis ligger omkring 10–20 mA, men på grund av något fel ökar till 50–100 mA, så kan detta leda till att strömmen genom efterföljande steg (vanligtvis ett slutsteg) blir mycket hög, vilket kan leda till värmeutveckling och brand.
- För att inte strömmen genom exempelvis ett slutsteg skall bli för hög så bör vi se till att stoppa eventuella strömökningar innan den hinner påverka slutsteget. För detta ändamål kan vi använda så kallade överströmsskydd inuti förstärkaren, se figuren till höger.
- Man kan enkelt installera ett överströmsskydd i spänningsförstärkarens emitter genom att placera en BJT-transistor över en dess emitterresistor R_{E,VAS}, se figuren till höger. Vid normal drift så kommer denna transistor vara strypt och därmed inaktiv.
- Om strömmen genom spänningsförstärkaren av någon anledning blir för hög så kommer spänningsfallet över spänningsförstärkarens emitterresistor R_{E,VAS} öka. När spänningsfallet över R_{E,VAS} ökat till ca 0,65 V så kommer överströmsskyddstransistorn börja leda.
- Transistorns kollektor är placerad på så sätt av den kommer "stjäla" basström från föregående stegs utgång. Därmed så kommer strömmen in på spänningsförstärkarens bas minska, vilket också minskar kollektorströmmen I_{C,VAS} som flödar genom spänningsförstärkaren.
- När kollektorströmmen Ic, VAS genom spänningsförstärkaren har minskat tillräckligt mycket så kommer spänningsfallet över emitterresistor Re, vas understiga 0,65 V, vilket medför att överströmstransistorn slutar leda, vilket i sin tur leder till att I_{C,VAS} inte längre begränsas. Därmed så fungerar BJT-transistorn som ett mycket simpelt överströmsskydd, som säkerhetsställer att strömmen genom spänningsförstärkaren inte blir för hög.
- I figuren till höger så har spänningsförstärkaren (GE-steget) en emitterresistor R_{E,VAS} på 22 Ω. Kollektorströmmen I_{C,VAS} genom spänningsförstärkaren är satt till ca 10 mA i vilopunkten, vilket medför att spänningsfallet över emitterresistor R_{E,VAS} blir ca 22 * 10m = 220 mV, alltså 0,22 V.
- Notera att spänningsfallet över R_{E,VAS} också är lika med spänningen in på överströmsskyddets bas; för att överströmsskyddet skall aktiveras så måste basspänningen uppgå till minst 0,65 V, vilket betyder att spänningsfallet över R_{E,VAS} också måste vara uppgå till minst 0,65 V för att aktiva överströmsskyddet.
- Eftersom spänningsfallet över R_{E,VAS} är ca 0,22 V i vilopunkten så kommer inte överströmsskyddet aktiveras, eftersom spänningen in på överströmsskyddets bas med råge understiger 0,65 V.

spänningsförstärkaren ökar till omkring 0,65 / 22 \approx 30 mA.

GE-steg med emitterföljare på ingången för att öka inresistansen. I detta fall så är ett överströmsskydd i form av en BJT-transistor placerad över GE-steget emitterresistor R_{E,VAS}, se längst ned till höger i figuren ovan. Om strömmen genom spänningsförstärkaren blir för hög så kommer denna överströmsskyddstransistor börja leda, vilket leder till att den "stjäl" basström från emitterföljarens ingång.

Därmed så minskar emitterföljarens kollektorström kraftigt, vilket leder till att spänningsförstärkarens basström minskar, vilket i sin tur leder till att den för höga kollektorströmmen genom GE-steget minskar. När denna ström har minskat till relativt normala nivåer så kommer överströmsskyddstransistorn sluta leda. Därmed så hålls strömmen genom GE-steget inom normala nivåer.

- Om kollektorströmmen I_{C,VAS} som flödar genom spänningsförstärkaren hade ökat så hade alltså även spänningsfallet över emitterresistor R_{E,VAS} ökat. Anta att kollektorströmmen ökar till 20 mA. Då hade spänningsfallet över spänningsförstärkarens emitterresistor blivit ca 22 * 20m = 440 mV, alltså 0,44 V.
- Eftersom spänningen in på överströmsskyddets bas fortfarande understiger 0,65 V så hade överströmsskyddet fortfarande inte aktiverats.
- Anta nu att kollektorströmmen I_{C,VAS} istället ökar till 30 mA. Då hade spänningsfallet över spänningsförstärkarens emitterresistor R_{E,VAS} blivit ca 22 * 30m = 660 mV, alltså 0,66 V. Då hade överströmsskyddet aktiverats och börjat "stjäla" ström från emitterföljarens ingång, vilket kortfattat hade sänkt strömmarna i kretsen. Först och främst hade då emitterföljarens basström I_{B,EF} och därmed även dess kollektorström I_{C,EF} minskat, vilket i sin tur hade medfört att spänningsförstärkarens basström I_{B,VAS} samt kollektorström I_{C,VAS} hade minskat, vilket är målet med överströmsskyddet.
- När spänningsförstärkarens kollektorström I_{C,VAS} sedan minskar så kommer överströmsskyddet inaktiveras. Som exempel, när I_{C,VAS} har minskat något, till exempelvis 28 mA, så kommer spänningsfallet över spänningsförstärkarens emitterresistor R_{E,VAS} (och därmed även spänningen in på överströmsskyddets bas) minska till 22 * 25m = 550 mV, alltså 0,55 V. Då kommer överströmsskyddet sluta leda, vilket leder till att spänningsförstärkarens kollektorström I_{C,VAS} inte kan överstiga ca 30 mA i denna krets.

Introduktion till enkel Millerkompensation för stabilitet i förstärkare vid högre frekvenser:

- En förstärkares stabilitet minskar generellt sett med ökad frekvens, för att bli mycket instabil vid höga frekvenser, särskilt om förstärkaren samtidigt har mycket hög förstärkning. Därför används ofta olika metoder att hålla förstärkaren stabil, s.k. frekvenskompensation.
- Inuti OP-förstärkare så placeras därför vanligtvis en kondensator (ibland flera), även känd som Millerkondensator eller kompensationskondensator, mellan emitterföljarens ingång och spänningsförstärkarens utgång, för att hålla förstärkaren stabil genom att sänka förstärkningen med ökad frekvens på insignalerna.
- Millerkondensatorn används för att utnyttja den s.k. Millereffekten, som uppstår på grund av interna kapacitanser och medför att förstärkaren har en övre gränsfrekvens där förstärkningen upphör. Ovanför denna gränsfrekvens så fungerar alltså inte förstärkaren.
- Millerkondensatorn ser till att förstärkningen gradvis minskar vid ökad frekvens genom att utgöra ett motstånd som minskar ju högre frekvensen är. Detta medför att mer och mer ström kan passera denna kondensator istället för att gå in på emitterföljarens bas. Därmed så "stjäl" Millerkondensatorn emitterföljarens basström vid högre frekvenser, vilket leder till att emitterföljarens kollektorström minskar, vilket i sin tur medför att spänningsförstärkarens bas- och kollektorström minskar.
- Genom att använda Millerkompensation så ökar vi alltså stabiliteten vid ökad frekvens genom att minska förstärkarens effektiv samt simpel att applicera. interna förstärkning, för att vid mycket höga frekvenser eliminera förstärkningen totalt. I senare kapitel när vi dimensionerar en hel OP-förstärkare skall vi gå igenom hur man beräknar ett lämpligt värde på denna kondensator. Dock så är 100 pF ett bra startvärde och kan fungera bra i de flesta fall.

$$C_c = 100 \ pF$$

Detta avsnitt bör endast ses som en kort introduktion till kompensationsmetoder, där vi går igenom den enklaste formen av Millerkompensation. Denna metod är mycket enkel och effektiv, men det finns andra något mer komplexa kompensationsmetoder som kan användas. Vi kommer gå igenom mer avancerad Millerkompensation, såsom tvåpolskompensation, i senare kapitel.

Den enklaste metoden av Millerkompensation är den vanligaste metoden för frekvenskompensation och är mycket

4.3.10 - Förbättrade emitterföljare

- Förbättrade emitterföljare innebär att en strömgenerator, såsom en strömspegel, används som last istället för en emitterresistor, se figuren till höger. Som vi kommer se senare så kan strömspegelns utresistans r_{o,CM} antas vara så pass hög att denna kan försummas vid beräkning av emitterföljarens egenskaper.
- Förbättrade emitterföljare möjliggör en förstärkningsfaktor GEF mycket nära ett:

$$G_{EF} \approx 1$$

Som exempel, för emitterföljaren till höger gäller att

$$G_{EF} pprox rac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}},$$

där $r_{o,CM}$ är strömspegelns utresistans och r_{o3} samt r_{e3} är transistor Q3:s utresistans respektive dess inbyggda emitterresistans.

• Strömspegelns utresistans r_{o,CM} kan antas vara mycket högre än transistor Q3:s utresistans r_{o3}:

$$r_{o,CM} \gg r_{o3}$$
,

VEE

Förbättrade emitterföljare

möjliggör förstärkningsfaktor G_{EF}

nära ett, hög inresistans R_{IN.EF} samt

låg utresistans R_{UT,EF}.

 $\mathsf{K}_{\mathsf{REF}}$

OUUT

vilket medför att

$$r_{o,CM}//r_{o3} = \frac{r_{o,CM} * r_{o3}}{r_{o,CM} + r_{o3}} \approx \frac{r_{o,CM} * r_{o3}}{r_{o,CM}} = r_{o3}$$

 Därmed kan strömspegelns utresistans r_{o,CM} försummas vid beräkning av emitterföljarens förstärkningsfaktor G_{EF}, vilket innebär att

$$G_{EF} \approx \frac{r_{o3}}{r_{e3} + r_{o3}}$$

• Vidare kan transistor Q3:s utresistans r₀₃ antas vara mycket högre än dess inbyggda emitterresistans rø₃:

$$r_{o3}\gg r_{e3},$$

så kan förstärkningsfaktorn GEF approximeras till ett, då

$$G_{EF} pprox rac{r_{o3}}{r_{e3} + r_{o3}} pprox rac{r_{o3}}{r_{o3}} = 1$$

Den förbättrade emitterföljaren möjliggör hög inresistans R_{IN,EF}, som kan approximeras med formeln

$$R_{IN.EF} \approx r_{o.CM}//r_{o3} * h_{FE3}$$

 $\label{eq:continuous} \mbox{d\"{a}r} \ r_{\text{O,CM}} \ \mbox{\"{a}r} \ s t \ \mbox{\"{o}mspege} \\ \mbox{elns} \ \mbox{och} \ r_{\text{O3}} \ \mbox{samt} \ h_{\text{FE3}} \ \mbox{\"{a}r} \ \mbox{transistor} \ \mbox{Q3:s} \ \mbox{utresistans} \ \mbox{respektive} \ \mbox{str\"{o}mf\"{o}rst\"{a}rkningsfaktor}.$

• Som vi såg tidigare kan strömspegelns utresistans r_{0,CM} antas vara mycket högre än transistor Q3:s utresistans r₀₃:

$$r_{o,CM} \gg r_{o3}$$

vilket medför att

$$r_{o,CM}//r_{o3} \approx r_{o3}$$

 Därmed kan strömspegelns utresistans r_{o,CM} också försummas vid beräkning av emitterföljarens inresistans R_{IN,EF}, vilket innebär att

$$R_{IN.EF} \approx r_{o3} * h_{FE3}$$

Transistor Q3:s utresistans r₀₃ kan approximeras med formeln

$$r_{o3} \approx \frac{U_A}{I_C}$$

där U_A är transistorns Earlyspänning och I_C är kollektorströmmen som flödar genom transistorn.

• Som vi har sett tidigare så kan kollektorströmmen Ic genom emitterföljarens sättas till ca 0,5 mA de flesta tillämpningar:

$$I_C = 0.5 \, mA$$

Vi kan anta att transistor Q3 har en Earlyspänning U_A på 100 V. Vid en kollektorström I_C på 0,5 mA, så kan därför transistor
 Q3:s utresistans r₀₃ också antas vara 200 kΩ, eftersom

$$r_{o3} \approx \frac{U_A}{I_C} = \frac{100}{0.5m} = 200 \ k\Omega$$

• Vi kan anta att transistor Q3:s strömförstärkningsfaktor hfe3 är 50, vilket gäller i värstafallscenariot:

$$h_{FE3} = 50$$

Därmed kan emitterföljarens inresistans R_{IN,EF} i värstafallscenariot approximeras till

$$R_{IN,EF} \approx r_{o3} * h_{FE3} = 200k * 50 = 10 M\Omega$$

• Emitterföljarens utresistans Rut, EF kan beräknas med formeln

$$R_{UT.EF} = r_{o.CM} / / r_{o3} / / r_{e3}$$
.

där r_{o,CM} är strömspegelns utresistans, och r_{o3} samt r_{e3} är transistor Q3:s utresistans respektive inbyggda emitterresistans.

• Som tidigare kan strömspegelns utresistans ro,CM antas vara mycket högre än transistor Q3:s utresistans ro3:

$$r_{o.CM} \gg r_{o.3}$$

vilket medför att

$$r_{o.CM}//r_{o3} \approx r_{o3}$$

• Därmed kan strömspegelns utresistans ro,CM försummas, vilket innebär att

$$R_{UT,EF} \approx r_{o3}//r_{e3}$$

Vidare kan transistor Q3:s utresistans r₀₃ antas vara mycket högre än dess inbyggda emitterresistans rℯ₃:

$$r_{o3} \gg r_{e3}$$
,

vilket innebär att ro3 kan försummas, då

$$r_{o3}//r_{e3} = \frac{r_{o3} * r_{e3}}{r_{o3} + r_{e3}} \approx \frac{r_{o3} * r_{e3}}{r_{o3}} = r_{e3}$$

• Därmed kan den förbättrade emitterföljarens utresistans Rut, EF approximeras till

$$R_{UT,EF} \approx r_{e3}$$

vilket är i identiskt med de enkla emitterföljare vi såg tidigare.

- Vi kan därmed anta att strömspegelns höga utresistans ro,cm i praktiken inte påverkar emitterföljarens utresistans Rut,ef.
- Transistor Q3:s inbyggda emitterresistans re3 kan beräknas med formeln

$$r_{e3} = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom transistorn, mätt i mA.

• Vid en kollektorström I_C på 0,5 mA, så uppgår transistor Q3:s inbyggda emitterresistans r_{e2} till 52 Ω, då

$$r_{e3} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \ \Omega$$

• Därmed kan den förbättrade emitterföljarens utresistans R_{UT,EF} approximeras till 52 Ω, eftersom

$$R_{UT,EF} \approx r_{e3} = 52 \,\Omega$$

vilket även är fallet för de enkla emitterföljare vi såg tidigare. Förbättrade emitterföljare besitter dock högre förstärkningsfaktor G_{EF} samt inresistans R_{IN}, vilket medför att sådana emitterföljare föredras i praktiken.

4.3.11 - Härledning av den förbättrade emitterföljarens förstärkningsfaktor GEF

- Vi kan enkelt en formel f\u00f6r emitterf\u00f6ljarens f\u00f6rst\u00e4rkningsfaktor Gef genom att rita ut dess sm\u00e1signalschema, se den v\u00e4nstra figuren nedan. Vi kortsluter den positiva och negativa matningssp\u00e4nningen V_{CC} respektive V_{EE} samt ers\u00e4tter transistor Q3:s bas-emittersp\u00e4nning U_{BE} = 0,65 V med sp\u00e4nningsfallet r_{e3}I_C. Vi ers\u00e4tter \u00e4ven in- och utsp\u00e4nningen U_{IN} sant U_{UT} med deras motsvarighet i sm\u00e4signalmodellen, \u00e4U_{IN} samt \u00e4U_{UT}.
- Därefter så ritar vi ut den sidan av strömspegeln som ingår i emitterföljaren. Strömspegelns referenskretsen ingår inte i själva emitterföljaren och påverkar därför inte förstärkningsfaktorn. Därför ritas inte denna ut i småsignalmodellen. Transistor Q1:s bas kortsluts därmed i småsignalschemat.
- För att förenkla småsignalschemat nedan till vänster så kan strömspegeln inklusive emitterresistor R_{E1} ersättas med dess ekvivalenta utresistans r_{O,CM}. Vi kan därefter rita om småsignalschemat till den mittersta figuren nedan.
- Efter förenklingen ser vi att strömspegelns utresistans r_{0,CM} samt transistor Q3:s utresistans utgör en parallellkoppling, då dessa är anslutna till jord åt ena håller och samma punkt åt det andra, en punkt de delar med utsignalen ΔU_{UT}.
- Därmed är spänningsfallet över resistanserna $r_{0,CM}$ samt r_{03} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$) och de kan därför ersättas med resistansen $r_{0,CM}/r_{03}$, placerad i emittern. Notera att spänningsfallet över denna ersättningsresistans fortfarande är $\Delta U_{UT} 0 = \Delta U_{UT}$, vilket indikerar att förenklingen är ekvivalent.
- Slutligen kan småsignalschemat ritas om till figuren till höger nedan, där endast en resistans i emittern återstår. Via detta förenklade småsignalschema så kan sedan emitterföljarens förstärkningsfaktor GEF enkelt härledas.

Genom att förenkla den förbättrade emitterföljarens småsignalschema till den grad att endast en resistans återstår, så kan emitterföljarens förstärkningsfaktor G_{EF} enkelt härledas via formler för ΔU_{IN} samt ΔU_{UT} .

• Emitterföljarens förstärkningsfaktor G_{EF} är lika med ration av in- och utspänningen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}}$$

Därmed måste formler för ΔU_{IN} samt ΔU_{UT} i småsignalschemat härledas. Vi börjar med att köra Kirchhoffs spänningslag från inspänningen ΔU_{IN} ned till jord för att härleda en formel för ΔU_{IN}. Skillnaden mellan emitterströmmen I_E och kollektorströmmen I_C försummas:

$$I_E \approx I_C$$

vilket innebär att kollektorströmmen I_C antas flöda genom emittern. Därmed gäller att

$$\Delta U_{IN} - r_{e3}I_C - (r_{o,CM}//r_{o3})I_C = 0,$$

som kan transformeras till

$$\Delta U_{IN} = r_{e3}I_C + (r_{o,CM}//r_{o3})I_C$$

• Genom att bryta ut strömmen Ic så erhålls följande formel:

$$\Delta U_{IN} = (r_{e3} + r_{o,CM}//r_{o3})I_C$$

- Vi härleder sedan en formel för utspänningen ΔU_{UT} genom att beräkna med Kirchhoffs spänningslag, från ΔU_{UT} till jord via emittern.
- Summan av utspänningen ΔU_{UT} samt spänningsfallet (r_{o,CM}//r_{o,3}) är lika med noll, vilket innebär att

$$\Delta U_{UT} - \left(r_{o,CM}//r_{o3}\right)I_C = 0.$$

som kan transformeras till

$$\Delta U_{IIT} = (r_{o.CM}//r_{o.3})I_{C}$$

Därefter kan vi härleda en formel för emitterföljarens förstärkningsfaktor GEF:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{(r_{o,CM}//r_{o3})I_C}{(r_{e3} + r_{o,CM}//r_{o3})I_C}$$

där kollektorströmmen Ic kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}}$$

där G är förstärkningsfaktorn, $r_{o,CM}$ är strömspegelns utresistans och r_{o3} samt r_{e3} är transistor Q3:s utresistans respektive dess inbyggda emitterresistans.

Härledning samt beräkning av strömspegelns utresistans ro,CM:

- För att beräkna strömspegelns utresistans r_{o,CM} så kan ett småsignalschema speciellt anpassat för beräkning av utresistans användas, se den vänstra figuren nedan. In- och utspänningen kortsluts och en spänningskälla U_X placeras på utgången, Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Notera att transistor Q1:s inbyggda basresistans r_{π1} samt emitterresistor R_{E1} utgör en parallellkoppling, då dessa är anslutna till samma punkt på ena sidan och anslutna till jord på andra sidan. Därmed är spänningsfallet över de båda resistanserna samma.
- R_{E1} samt $r_{\pi 1}$ kan därför ersättas med en resistor, vars resistans är lika med R_{E1}// $r_{\pi 1}$, placerad i emittern. Därmed kan småsignalschemat ritas om till den högra figuren nedan.

Småsignalschema för att beräkna strömspegelns utresistans $r_{o,CM}$. Transistor Q1:s inbyggda basresistans $r_{\pi 1}$ samt emitterresistor R_{E1} utgör en parallellkoppling och kan därför ersättas med resistansen $R_{E1}//r_{\pi 1}$, placerad i emittern.

För att underlätta beräkningen av strömspegelns utresistans r_{0,CM} så införs beteckningarna R₁ och R₂ i småsignalschemat,
 där R₁ är resistansen i strömspegelns emitter och R₂ är resistansen i strömspegelns kollektor. Därmed gäller att

$$R_1 = R_{E1} / / r_{\pi 2}$$

$$R_2 = r_{o1}$$

För att underlätta beräkningarna så inför vi beteckningarna R_1 och R_2 , där R_1 är resistansen i strömspegelns emitter och R_2 är resistansen i strömspegelns kollektor.

• Därefter utför vi beräkningarna. Strömspegelns utresistans r_{o,CM} kan beräknas med följande formel:

$$r_{o,CM} = \frac{U_X}{I_X},$$

där Ux är (den tillsatta) spänningskällan på utgången (i kollektorn) och Ix är strömmen som flödar genom kollektorn.

Vi kör Kirchhoffs spänningslag för att härleda en formel för spänningen U_x.
 Genom att beräkna från kollektorn till jord via emittern så erhålls formeln

$$U_x - R_2 * I_0 - R_1 * I_x = 0,$$

som kan transformeras till

$$U_x = R_2 * I_0 + R_1 * I_x$$

• Vi använder sedan Kirchhoffs strömlag för att härleda en formel för strömmen I_0 . Som synes så är strömmen I_X lika med summan av strömmarna I_0 samt U_{BE1}/r_{e1} , vilket medför att

Strömspegelns utresistans r_{o,CM} kan beräknas ur ovanstående småsignalschema med Kirchhoffs lagar samt Ohms lag.

$$I_x = I_0 + \frac{U_{BE1}}{r_{e1}},$$

som kan transformeras till

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}}$$

• Därefter härleder vi en formel för transistor Q1:s bas-emitterspänning U_{BE1} via Kirchhoffs spänningslag. Genom att beräkna från basen till jord via emittern så kan följande formel erhållas:

$$-U_{RE1}-R_1I_x=0,$$

vilket medför att

$$U_{BE1} = -R_1 * I_x$$

• Därmed gäller att

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}} = I_x + \frac{R_1 * I_x}{r_{e1}}$$

• Genom att bryta ut strömmen Ix så erhålls formeln

$$I_0 = I_x \left[1 + \frac{R_1}{r_{e1}} \right],$$

som sedan kan sättas in i den tidigare framtagna formeln för Ux, vilket medför att

$$U_x = R_2 * I_0 + R_2 * I_x = R_2 * I_x \left[1 + \frac{R_1}{r_{e1}} \right] + R_1 * I_x$$

där strömmen Ix kan brytas ut, vilket medför att

$$U_{x} = I_{X} \left[R_{2} \left(1 + \frac{R_{1}}{r_{e1}} \right) + R_{1} \right]$$

• Därefter kan en formel för strömspegel utresistans ro,cm härledas ur den framtagna formeln för Ux ovan, då

$$r_{o,CM} = \frac{U_X}{I_X},$$

vilket medför att

$$r_{o,CM} = \frac{U_X}{I_X} = \frac{I_X \left[R_2 \left(1 + \frac{R_1}{r_{e1}} \right) + R_1 \right]}{I_X},$$

där strömmen Ix kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$r_{o,CM} = R_2 \left(1 + \frac{R_1}{r_{e1}} \right) + R_1$$

• Därefter ersätts beteckningarna R₁ och R₂ med de egentliga resistanserna:

$$R_1 = R_{E1} / / r_{\pi 1}$$

samt

$$R_2 = r_{o1}$$

vilket medför att

$$r_{o,CM} = r_{o1} \left(1 + \frac{R_{E1}//r_{\pi 1}}{r_{e1}} \right) + R_{E1}//r_{\pi 1},$$

som är ekvivalent med

$$r_{o,CM} = r_{o1} + r_{o1} * \frac{R_{E1}//r_{\pi 1}}{r_{e1}} + R_{E1}//r_{\pi 1}$$

där r_{01} är transistor Q1:s utresistans, R_{E1} är emitterresistorn i strömspegeln och $r_{\pi 1}$ samt r_{e1} är transistor Q1:s inbyggda basrespektive emitterresistans.

· Formeln ovan kan transformeras till

$$r_{o,CM} = R_{E1} / / r_{\pi 1} \left(1 + \frac{r_{o1}}{r_{e1}} \right) + r_{o1}$$

• Kollektorströmmen Ic samt referensströmmen IREF genom strömspegelns referenskrets är lika stora:

$$I_C = I_{REF}$$

• Vid en kollektorström I_C på 0,5 mA, så bör R_{E1} samt R_{E2} sättas till omkring 440 Ω, då

$$R_{E1} = R_{E2} = \frac{220}{I_{C(mA)}} = \frac{220}{0.5} = 440 \ \Omega$$

• Närmaste värde i E12-serien är 470 Ω, vilket vi väljer att använda:

$$R_{E1} = R_{E2} = 470 \Omega = 0.47 k\Omega$$

För en kollektorström I_C på 0,5 mA så blir transistor Q1:s inbyggda emitterresistans r_{e1} lika med 52 Ω, då

$$r_{e1} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Vidare gäller att transistor Q1:s inbyggda basresistans $r_{\pi 1}$ kan beräknas med formeln

$$r_{\pi 1} = r_{e1} * h_{FE1},$$

 $\label{eq:continuous} \mbox{där} \; r_{\text{e}1} \; \mbox{ar} \; transistor \; \mbox{Q1:s inbyggda emitterresistans} \; r_{\text{e}1} \; \mbox{och} \; h_{\text{FE}1} \; \mbox{är} \; \mbox{dess strömförstärkningsfaktor}.$

- Som vi har sett tidigare så varierar BJT-transistorers strömförstärkningsfaktor h_{FE} stort mellan olika exemplar av samma modell. Allt mellan 50 – 250 är normalt, där 100 kan ses som ett normalvärde.
- Givet att transistor Q1:s strömförstärkningsfaktor h_{FE1} är lika med 100 så bör r_{π1} hamnar tunt 5,2 kΩ, då

$$r_{\pi 1} = r_{e1} * h_{FE1} = 52 * 100 = 5.2 \ k\Omega$$

• Därmed kan ersättningsresistansen $R_{E1}//r_{\pi 1}$ approximeras beräknas:

$$R_{E1}//r_{\pi 1} = \frac{R_{E1} * r_{\pi 1}}{R_{E1} + r_{\pi 1}} = \frac{0.47k * 5.2k}{0.47k + 5.2k} \approx 0.43 k\Omega,$$

vilket motsvarar ca 430 Ω:

$$R_{E1}//r_{\pi 1} \approx 430 \,\Omega$$

• Transistorernas respektive utresistans ro kan approximeras med formeln

$$r_o \approx \frac{U_A}{I_c}$$

där r₀ respektive transistor utresistans, UA är dess Earlyspänning och Ic är kollektorströmmen som flödar genom emitterföljaren.

• Vi antar att samtliga transistorer i kretsen har en Earlyspänning U_A på 100 V, vilket kan ses som ett genomsnittligt värde för diskreta transistorer:

$$U_A = 100 V$$

• Vid en kollektorström I_C på 0,5 mA så kan transistorernas respektive utresistans antas ligga runt 200 kΩ, då

$$r_{o1} = r_{o2} = r_{o3} \approx \frac{100}{0.5m} = 200 \ k\Omega$$

• Därefter kan strömspegelns utresistans approximeras;

$$r_{o,CM} = R_{E1} / / r_{\pi 1} \left(1 + \frac{r_{o1}}{r_{e1}} \right) + r_{o1} \approx 430 \left(1 + \frac{200k}{52} \right) + 200k,$$

vilket är ekvivalent med

$$r_{o,CM} \approx 430(1+3.85k) + 200k \approx 1.86 M\Omega$$

• Notera att vi enkelt hade fått ett relativt ackurat resultat genom att utnyttja tumregeln med en emitterfaktor EF på tio:

$$r_{o.CM} \approx r_{o1} * EF$$
,

där ro1 är transistor Q1:s utresistans och EF är strömspegelns emitterfaktor.

• Strömspegelns emitterfaktor EF indikerar med hur stor faktor som emitterresistor R_{E1} (samt R_{E2}) höjer den totala emitterresistansen i strömspegeln och kan beräknas med formeln

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}}$$

• Strömspegelns emitterfaktor EF kan därmed antas hamna runt tio, eftersom

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}} = \frac{470 + 52}{52} \approx 10$$

• Därmed kan strömspegelns utresistans $r_{o,CM}$ antas ligga runt 2 M Ω vid en kollektorström I_C på 0,5 mA samt en emitterfaktor EF på tio, då

$$r_{0.CM} \approx r_{0.1} * EF = 200k * 10 = 2 M\Omega$$

Beräkning av förstärkningsfaktorn GEF:

• Tidigare härleddes följande formel för emitterföljarens förstärkningsfaktor GEF:

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}}$$

där $r_{o,CM}$ är strömspegelns utresistans och r_{o3} samt r_{e3} är transistor Q3:s utresistans respektive dess inbyggda emitterresistans.

• Strömspegelns utresistans r_{o,CM} beräknades tidigare via småsignalmodell till 1,86 MΩ:

$$r_{o.CM} \approx 1,86 M\Omega$$

 $\bullet \quad \text{Transistor Q3:s utresistans r_{o3} kan antas ligga omkring 200 kΩ vid en typisk Earlyspänning U_A på 100 V, eftersom r_{o3} kan antas ligga omkring 200 kΩ vid en typisk Earlyspänning U_A på 100 V, eftersom r_{o3} kan antas ligga omkring r_{o

$$r_{o3} \approx \frac{U_A}{I_C} = \frac{100}{0.5m} \approx 200 \ k\Omega$$

• För en kollektorström I_C på 0,5 mA så blir transistor Q3:s inbyggda emitterresistans r_{e3} lika med 52 Ω, då

$$r_{e3} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

Därmed gäller att

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}} \approx \frac{1,86M//200k}{52 + 1,86M//200k'}$$

där

$$1,86M//200k = \frac{1,86M * 200k}{1.86M + 200k} \approx 180 k\Omega$$

• Därmed ser vi att emitterföljarens förstärkningsfaktor GEF hamnar mycket nära ett, då

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}} \approx \frac{180k}{52 + 180k} \approx 1$$

Approximation av strömspegelns utresistans r_{o,CM}:

• För att förenkla beräkningarna så kan strömspegelns utresistans ro,cm approximeras med via en enkel formel:

$$r_{o,CM} \approx r_{o1} * EF$$
,

där ro1 är transistor Q1:s utresistans och EF är strömspegelns emitterfaktor.

• Transistor Q1:s utresistans ro1 kan antas ligga omkring 200 kΩ vid en typisk Earlyspänning UA runt 100 V, då

$$r_{o1} \approx \frac{U_A}{I_C} = \frac{100}{0.5m} = 200 \ k\Omega$$

• Strömspegelns emitterfaktor EF kan beräknas med formeln

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}},$$

där emitterresistor R_{E1} sattes till 470 Ω med tumregeln

$$R_{E1} = \frac{220}{I_{C(mA)}} = \frac{220}{0.5} = 440 \,\Omega,$$

där 470 Ω är närmaste värde i E12-serien:

$$R_{E1} = 470 \Omega$$

• Transistor Q1:s inbyggda emitterresistans re1 kan antas vara 52 Ω vid en kollektorström Ic på 0,5 mA, eftersom

$$r_{e1} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Därmed hamnar strömspegelns emitterfaktor EF runt tio, då

$$EF = \frac{470 + 52}{52} \approx 10$$

• Därmed kan strömspegelns utresistans $r_{o,CM}$ antas ligga runt 2 M Ω vid en kollektorström I_C på 0,5 mA samt en emitterfaktor EF på tio, då

$$r_{o,CM} \approx r_{o1} * EF = 200k * 10 = 2 M\Omega$$

Förstärkningsfaktor GEF i lastat tillstånd:

- I lastat tillstånd så måste vi även ta med lastens resistans R_L i åtanke, som är ansluten till emitterföljarens utgång.
- Precis som förut så kan vi enkel härleda en formel för den förbättrade emitterföljarens förstärkningsfaktor G_{EF} genom att rita dess småsignalschema, se den vänstra figuren nedan.
- Vi kortsluter den positiva och negativa matningsspänningen samt ersätter transistor Q3:s bas-emitterspänning UBE2 = 0,65 V med spänningsfallet re3lc.
- Vi ersätter även in- och utspänningen U_{IN} sant U_{UT} med deras motsvarighet i småsignalmodellen, ΔU_{IN} samt ΔU_{UT} .
- Därefter så ritar vi ut den sida av strömspegeln som ingår i emitterföljaren; referenskretsen ingår därmed inte.

Förbättrad emitterföljare i lastat tillstånd.

- Det första vi gör är att ersätta strömspegeln, inklusive emitterresistor R_{E1} med ekvivalent ersättningsresistans r₀,cм.
- Därefter kan småsignalschemat ritas om till figuren näst längst till vänster nedan. Vi ser då att strömspegelns utresistans $r_{o,CM}$ samt lastresistansen R_L utgör en parallellkoppling, då båda är anslutna till ΔU_{UT} åt ena hållet och jord åt det andra, vilket medför att spänningsfallet över dessa är lika med $\Delta U_{UT} 0 = \Delta U_{UT}$. Därmed kan $r_{o,CM}$ samt R_L ersättas med ekvivalent ersättningsresistans $r_{o,CM}//R_L$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan. Notera att ersättningsresistansen $r_{0,CM}//R_L$ samt transistor Q3:s utresistans r_{03} utgör en parallellkoppling, då dessa är anslutna till ΔU_{UT} åt ena hållet och jord åt det andra, vilket medför att spänningsfallet över dessa är lika med $\Delta U_{UT} 0 = \Delta U_{UT}$.
- På grund utav parallellkopplingen så kan vi ersätta $r_{0,CM}//R_L$ samt r_{03} med ersättningsresistansen $r_{0,CM}//r_{03}//R_L$, placerad i emittern. Notera att spänningsfallet över denna ersättningsresistans fortfarande är lika med $\Delta U_{UT} 0 = \Delta U_{UT}$, vilket låg över samtliga resistanser i det ursprungliga småsignalschemat längst till vänster nedan. Detta indikerar att förenklingen av småsignalschemat har skett korrekt.
- Vi kan sedan rita om småsignalschemat till figuren längst till höger nedan, där endast en resistans, $r_{0,CM}//r_{03}//R_L$, återstår. Därefter kan härledning av emitterföljarens förstärkningsfaktor G_{EF} härledas.

Genom att stegvis förenkla emitterföljarens småsignalschema i lastat tillstånd till den grad att endast en resistans återstår, så kan emitterföljarens förstärkningsfaktor G_{EF} enkelt härledas.

• Som vi tidigare har sett så gäller att emitterföljarens förstärkningsfaktor G_{EF} är lika med ration av in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}}$$

- Därmed måste formler härledas för ΔU_{IN} samt ΔU_{UT}, vilket kan genomföras via Kirchhoffs spänningslag.
- Vi använder det förenklade småsignalschemat till höger för härledningen.
- Vi börjar med att köra Kirchhoffs spänningslag från inspänningen ΔU_{IN} ned till jord för att härleda en formel för ΔU_{IN} :

$$\Delta U_{IN} - r_{e3}I_C - (r_{o,CM}//r_{o3}//R_L)I_C = 0,$$

som kan transformeras till

$$\Delta U_{IN} = r_{e3}I_C + (r_{o,CM}//r_{o3}//R_L)I_C$$

• Genom att bryta ut kollektorströmmen Ic, så erhålls formeln

$$\Delta U_{IN} = \left(r_{e3} + r_{o,CM}//r_{o3}//R_L\right)I_C$$

Den förbättrade emitterföljarens förenklade småsignalschema i lastat tillstånd.

• Vi härleder sedan en formel för utspänningen ΔU_{UT} med Kirchhoffs spänningslag, från ΔU_{UT} till jord via emittern:

$$\Delta U_{UT} - \left(r_{o,CM}//r_{o3}//R_L\right)I_C = 0,$$

som kan transformeras till

$$\Delta U_{UT} = (r_{o,CM}//r_{o3}//R_L)I_C$$

• Därefter kan en formel härledas för emitterföljarens förstärkningsfaktor GEF i lastat tillstånd:

$$G_{EF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} \approx \frac{(r_{o,CM}//r_{o3}//R_L)I_C}{\left(r_{e3} + r_{o,CM}//r_{o3}//R_L\right)I_C} = \frac{r_{o,CM}//r_{o3}//R_L}{r_{e3} + r_{o,CM}//r_{o3}//R_L}$$

där $r_{0,CM}$ är strömspegelns utresistans, r_{03} samt r_{e3} är transistor Q3:s utresistans respektive inbyggda emitterresistans och R_L är lastresistansen.

4.3.12 - Härledning av den förbättrade emitterföljarens inresistans RIN,EF

• Som vi har sett tidigare så kan en given emitterföljarens inresistans R_{IN,EF} beräknas med formeln

$$R_{IN,EF} = \frac{\Delta U_{IN}}{I_{IN}},$$

där ΔU_{IN} är insignalen i småsignalschemat och I_{IN} är emitterföljarens inström, vilket är lika med transistor Q3:s basström I_{B3} :

$$I_{IN} = I_{B3}$$

vilket innebär att

$$R_{IN,EF} = \frac{\Delta U_{IN}}{I_{B3}},$$

Förbättrad emitterföljare.

- Vi kortsluter den positiva och negativa matningsspänningen V_{CC} respektive V_{EE} samt ersätter transistor Q3:s basemitterspänning U_{BE} = 0,65 V med spänningsfallet r_{e3}I_C. Vi ersätter även in- och utspänningen U_{IN} sant U_{UT} med deras motsvarighet i småsignalmodellen, ΔU_{IN} samt ΔU_{UT}.
- Därefter så ritar vi ut den sidan av strömspegeln som ingår i emitterföljaren. Strömspegelns referenskretsen ingår inte i själva emitterföljaren och påverkar därför inte förstärkningsfaktorn. Därför ritas inte denna ut i småsignalmodellen.
 Transistor Q1:s bas kortsluts därmed i småsignalschemat.
- Slutligen ersätts emitterföljarens in- och utsignal med deras motsvarigheter ΔU_{IN} samt ΔU_{UT} i småsignalschemat.

Den förbättrade emitterföljarens småsignalschema, som kan förenklas till den grad att endast en resistans återstår, se figuren till höger, vilket förenklar beräkningarna.

- För att förenkla småsignalschemat ovan till vänster så kan strömspegeln inklusive emitterresistor R_{E1} ersättas med dess ekvivalenta utresistans r_{O,CM}. Vi kan därefter rita om småsignalschemat till den mittersta figuren ovan.
- Efter förenklingen ser vi att strömspegelns utresistans $r_{0,CM}$ samt transistor Q3:s utresistans utgör en parallellkoppling, då dessa är anslutna till jord åt ena håller och samma punkt åt det andra, en punkt de delar med utsignalen ΔU_{UT} .
- Därmed är spänningsfallet över resistanserna $r_{0,CM}$ samt r_{03} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$) och de kan därför ersättas med resistansen $r_{0,CM}//r_{03}$, placerad i emittern. Notera att spänningsfallet över denna ersättningsresistans fortfarande är $\Delta U_{UT} 0 = \Delta U_{UT}$, vilket indikerar att förenklingen är ekvivalent.

- Slutligen kan småsignalschemat ritas om till den högra figuren ovan, där endast en resistans i emittern återstår. Via detta förenklade småsignalschema så kan en formel för insignalen ΔU_{IN} enkelt härledas.
- Vi använder Kirchhoffs spänningslag och beräknar från emitterföljarens insignal ΔU_{IN} ned till jord. Som tidigare så försummas skillnaden mellan emitterströmmen I_E och kollektorströmmen I_C som flödar igenom emitterföljaren:

$$I_E \approx I_C$$

vilket innebär att kollektorströmmen Ic kan antas flöda genom emittern. Därmed gäller att

$$\Delta U_{IN} - r_{e3}I_C - (r_{o,CM}//r_{o3})I_C = 0,$$

som kan transformeras till

$$\Delta U_{IN} = r_{e3}I_C + (r_{o,CM}//r_{o3})I_C$$

Genom att bryta ut strömmen I_C så erhålls följande formel:

$$\Delta U_{IN} = \left(r_{e3} + r_{o,CM} / / r_{o3}\right) I_C$$

där r_{e3} och r_{o3} är transistor Q3:s inbyggda emitterresistans respektive utresistans, $r_{o,CM}$ är strömspegelns utresistans och I_C är kollektorströmmen som flödar genom emitterföljaren.

• Därmed kan R_{IN,EF} approximeras till

$$R_{IN,EF} = \frac{\Delta U_{IN}}{I_{B3}} \approx \frac{\left(r_{e3} + r_{o,CM}//r_{o3}\right)I_C}{I_{B3}},$$

Som bekant så gäller följande samband mellan transistor Q3:s kollektorström Ic3 samt dess basström IB3:

$$I_{C3} = h_{FE3} * I_{B3},$$

där h_{FE3} är transistor Q3:s strömförstärkningsfaktor.

• Vi noterar också att transistor Q3:s kollektorström Ic3 i detta fall lika med kollektorströmmen Ic genom emitterföljaren:

$$I_{C3}=I_C$$
,

vilket medför att

$$I_C = h_{FE3} * I_{B3}$$

• Genom att ersätta kollektorströmmen I_C med motsvarande basström I_{B3} i approximationen för den förbättrade emitterföljarens inresistans i lastat tillstånd R_{IN,EF} ovan, så erhålls följande:

$$R_{IN,EF} pprox rac{\left(r_{e3} + r_{o,CM} / / r_{o3}\right) * h_{FE3} * I_{B3}}{I_{B3}},$$

där transistor Q3:s basström I_{B3} förekommer i både täljaren och nämnaren, vilket innebär att denna kan försummas.

Därmed gäller att

$$R_{IN,EF} \approx \left(r_{e3} + r_{o,CM}//r_{o3}\right) * h_{FE3}$$

där r_{o3} , r_{e3} samt h_{FE3} är transistor Q3:s utresistans, inbyggda emitterresistans samt strömförstärkningsfaktor, $r_{o,CM}$ är strömspegelns utresistans och R_L är lastresistansen.

• Strömspegelns utresistans r_{o,CM} kan antas vara mycket högre än transistor Q3:s utresistans r_{o3}:

$$r_{o,CM}\gg r_{o3}$$
,

vilket medför att ro,CM kan försummas, då

$$r_{o,CM}//r_{o3} = \frac{r_{o,CM} * r_{o3}}{r_{o,CM} + r_{o3}} \approx \frac{r_{o,CM}//r_{o3}}{r_{o,CM}} = r_{o3}$$

• Därmed kan den förbättrade emitterföljarens inresistans R_{IN,EF} i lastat tillstånd ytterligare approximeras till

$$R_{IN,EF} \approx (r_{e3} + r_{o3}) * h_{FE3},$$

där r_{o3}, r_{e3} samt h_{FE3} är transistor Q3:s utresistans, inbyggda emitterresistans respektive strömförstärkningsfaktor.

Inresistans R_{IN,EF} i lastat tillstånd:

- Som vi har sett tidigare så måste vi även ta med eventuell lastresistans R_L på emitterföljarens utgång i åtanke.
- Även i lastat tillstånd så kan den förbättrade emitterföljarens inresistans R_{IN,EF} beräknas med formeln

$$R_{IN,EF} = \frac{\Delta U_{IN}}{I_{IN}},$$

där ΔU_{IN} är insignalen i småsignalschemat och I_{IN} är emitterföljarens inström, som är lika med transistor Q3:s basström I_{B3} :

$$I_{IN} = I_{B3}$$

vilket innebär att

$$R_{IN,EF} = \frac{\Delta U_{IN}}{I_{R3}},$$

Förbättrad emitterföljare i lastat tillstånd.

- Därmed måste en formel för inspänningen ΔU_{IN} härledas, vilket kan åstadkommas via den förbättrade emitterföljarens småsignalschema i lastat tillstånd, se figuren längst till vänster nedan.
- Vi kortsluter den positiva och negativa matningsspänningen samt ersätter transistor Q3:s bas-emitterspänning U_{BE2} = 0,65 V med spänningsfallet r_{e3}I_C. Därefter ritar vi ut den sida av strömspegeln som ingår i emitterföljaren, alltså transistor Q1 samt emitterresistor R_{E1}. Strömspegelns referenskrets exkluderas därmed ut småsignalschemat. Slutligen ersätts in- och utspänningen U_{IN} sant U_{UT} med deras motsvarighet i småsignalmodellen, ΔU_{IN} samt ΔU_{UT}.

Genom att stegvis förenkla emitterföljarens småsignalschema i lastat tillstånd till den grad att endast en resistans återstår, så kan emitterföljarens insignal i småsignalschemat ΔU_{IN} enkelt härledas.

- Det första vi gör är att ersätta strömspegeln, inklusive emitterresistor RE1 med ekvivalent ersättningsresistans ro,cm.
- Därefter kan småsignalschemat ritas om till figuren näst längst till vänster ovan. Vi ser då att strömspegelns utresistans $r_{0,CM}$ samt lastresistansen R_L utgör en parallellkoppling, då båda är anslutna till ΔU_{UT} åt ena hållet och jord åt det andra, vilket medför att spänningsfallet över dessa är lika med $\Delta U_{UT} 0 = \Delta U_{UT}$. Därmed kan $r_{0,CM}$ samt R_L ersättas med ekvivalent ersättningsresistans $r_{0,CM}//R_L$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till figuren näst längst till höger ovan. Notera att ersättningsresistansen $r_{0,CM}//R_L$ samt transistor Q3:s utresistans r_{03} utgör en parallellkoppling, då dessa är anslutna till ΔU_{UT} åt ena hållet och jord åt det andra, vilket medför att spänningsfallet över dessa är lika med $\Delta U_{UT} 0 = \Delta U_{UT}$.
- På grund utav parallellkopplingen så kan vi ersätta $r_{o,CM}//R_L$ samt r_{o3} med ersättningsresistansen $r_{o,CM}//r_{o3}//R_L$, placerad i emittern.
- Vi kan sedan rita om småsignalschemat till figuren längst till höger ovan, där endast en resistans, $r_{0,CM}//r_{03}//R_L$, återstår. Därefter kan en formel för emitterföljarens insignal i småsignalschemat ΔU_{IN} härledas.

- Vi använder det förenklade småsignalschemat till höger för härledningen.
- För enkelhets skull, så försummas återigen skillnaden mellan kollektor- och emitterströmmen I_C samt I_E som flödar igenom emitterföljaren:

$$I_C \approx I_E$$

• Vi beräknar med Kirchhoffs spänningslag från inspänningen ΔU_{IN} ned till jord för att härleda en formel för ΔU_{IN} :

$$\Delta U_{IN} - r_{e3}I_C - (r_{o,CM}//r_{o3}//R_L)I_C \approx 0$$
,

som kan transformeras till

$$\Delta U_{IN} \approx r_{e3}I_C + (r_{o.CM}//r_{o3}//R_L)I_C$$

Genom att bryta ut kollektorströmmen Ic, så erhålls formeln

$$\Delta U_{IN} pprox (r_{e3} + r_{o,CM}//r_{o3}//R_L)I_C$$
,

där r_{e3} samt r_{o3} är transistor Q3:s inbyggda emitterresistans samt utresistans, $r_{o,CM}$ är strömspegelns utresistans, R_L är lastresistansen och I_C är kollektorströmmen som flödar genom emitterföljaren.

• Ur ovanstående approximation, så kan den förbättrade emitterföljarens inresistans i lastat tillstånd R_{IN,EF} beräknas:

$$R_{IN,EF} pprox rac{\left(r_{e3} + r_{o,CM}//r_{o3}//R_L\right)I_C}{I_{B3}},$$

Som bekant så gäller följande samband mellan transistor Q3:s kollektorström Ic3 samt dess basström IB3:

$$I_{C3}=h_{FE3}*I_{B3},$$

där h_{FE3} är transistor Q3:s strömförstärkningsfaktor.

• Vi noterar också att transistor Q3:s kollektorström Ic3 i detta fall lika med kollektorströmmen Ic genom emitterföljaren:

$$I_{C3}=I_C$$
,

vilket medför att

$$I_C = h_{FE3} * I_{B3}$$

• Genom att ersätta kollektorströmmen I_C med motsvarande basström I_{B3} i approximationen för den förbättrade emitterföljarens inresistans i lastat tillstånd R_{IN,EF} ovan, så erhålls följande:

$$R_{IN,EF} pprox rac{\left(r_{e3} + r_{o,CM} / / r_{o3} / / R_L\right) * h_{FE3} * I_{B3}}{I_{B3}},$$

där transistor Q3:s basström I_{B3} förekommer i både täljaren och nämnaren, vilket innebär att denna kan försummas.

• Därmed gäller att

$$R_{IN.EF} \approx (r_{e3} + r_{o.CM} / / r_{o3} / / R_L) * h_{FE3}$$

där r_{03} , r_{e3} samt h_{FE3} är transistor Q3:s utresistans, inbyggda emitterresistans samt strömförstärkningsfaktor, $r_{0,\text{CM}}$ är strömspegelns utresistans och R_L är lastresistansen.

• Strömspegelns utresistans r_{o,CM} kan antas vara mycket högre än transistor Q3:s utresistans r₀3:

$$r_{o,CM} \gg r_{o3}$$

vilket medför att ro,CM kan försummas, då

$$r_{o,CM}//r_{o3} = \frac{r_{o,CM} * r_{o3}}{r_{o,CM} + r_{o3}} \approx \frac{r_{o,CM}//r_{o3}}{r_{o,CM}} = r_{o3}$$

● Därmed kan den förbättrade emitterföljarens inresistans R_{IN,EF} i lastat tillstånd ytterligare approximeras till

$$R_{IN,EF} \approx (r_{e3} + r_{o3}//R_L) * h_{FE3}$$

där r_{o3} , r_{e3} samt h_{FE3} är transistor Q3:s utresistans, inbyggda emitterresistans respektive strömförstärkningsfaktor och R_L är lastresistansen.

Darlingtonpar på ingången för ökad inresistans R_{IN,EF}:

- Som vi har sett tidigare så kan emitterföljarens inresistans R_{IN,EF} kan enkelt ökas genom att ytterligare en transistor placeras på emitterföljarens ingång, se transistor Q4 i figuren till höger. Samtidigt förblir förstärkningsfaktorn G_{EF} samt utresistansen R_{UT,EF} i princip opåverkade.
- Vi såg tidigare att emitterföljarens inresistans R_{IN,EF} utan Darlingtonpar kan approximeras till

$$R_{IN,EF} \approx r_{o,CM}//r_{o3} * h_{FE3}$$

där $r_{o,CM}$ är strömspegelns utresistans, r_{o3} samt h_{FE3} är transistor Q3:s utresistans respektive strömförstärkningsfaktor.

- Darlingtonparet kan antas öka emitterföljarens inresistans R_{IN,EF} med en faktor av transistor Q4:s strömförstärkningsfaktor h_{FE4}.
- Med Darlingtonpar på ingången så kan därmed den förbättrade emitterföljarens inresistans R_{IN,EF} approximeras med formeln

$$R_{IN,EF} \approx r_{o,CM}//r_{o3} * h_{FE3} * h_{FE4}$$
,

Förbättrad emitterföljare med ett Darlingtonpar på ingången för ökad inresistans R_{IN,EF}.

där $r_{0,CM}$ är strömspegelns utresistans, r_{03} är transistor Q3:s utresistans och h_{FE3} samt h_{FE4} är strömförstärkningsfaktorn på respektive transistor Q3 och Q4 i Darlingtonparet.

- Som vi har sett tidigare så varierar BJT-transistorers strömförstärkningsfaktorer kraftigt mellan olika exemplar, där värden mellan 50 250 är normalt, varav en faktor 100 räknas som ett medelvärde och en faktor 50 räknas som värstafallscenariot.
- I värstafallscenariot kan transistor Q4:s strömförstärkningsfaktor h_{FE4} antas vara 50:

$$h_{FE4} = 50$$
,

vilket medför en ökning av emitterföljarens inresistans R_{IN,EF} med en faktor 50.

• Som vi har sett tidigare så kan strömspegelns utresistans $r_{0,CM}$ försummas vid beräkning av emitterföljarens inresistans $R_{IN,EF}$, då $r_{0,CM}$ kan antas vara mycket högre än transistor Q3:s utresistans r_{03} :

$$r_{o,CM} \gg r_{o3}$$

• Detta medför att

$$r_{o,CM}//r_{o3} = \frac{r_{o,CM} * r_{o3}}{r_{o,CM} + r_{o3}} \approx \frac{r_{o,CM} * r_{o3}}{r_{o,CM}} \approx r_{o3}$$

Därmed kan emitterföljarens inresistans R_{IN,EF} med Darlingtonpar på ingången approximeras till

$$R_{IN,EF} \approx r_{o3} * h_{FE3} * h_{FE4}$$

där r_{o3} är transistor Q3:s utresistans och h_{FE3} samt h_{FE4} är strömförstärkningsfaktorn på respektive transistor Q3 och Q4 i Darlingtonparet.

• Som vi har sett tidigare så medför Darlingtonparet att emitterföljarens förstärkningsfaktor G_{EF} minskar något, då insignalen nu passerar två emittrar istället för en, vilket innebär att

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{e4} + r_{o,CM}//r_{o3}},$$

där $r_{o,CM}$ är strömspegelns utresistans, r_{o3} är transistor Q3:s utresistans och r_{e3} samt r_{e4} är den inbyggda emitterresistansen på respektive transistor Q3 och Q4 i Darlingtonparet.

• Dock kan vi anta att summan av de inbyggda emitterresistanserna $r_{e3} + r_{e4}$ i Darlingtonparet är mycket mindre än ersättningsresistansen $r_{o,CM}//r_{o3}$:

$$r_{e3} + r_{e4} \ll r_{o,CM}//r_{o3}$$
,

vilket innebär att förstärkningsfaktorn GEF ändå hamnar mycket nära ett, då

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{e4} + r_{o,CM}//r_{o4}} \approx \frac{r_{o,CM}//r_{o3}}{r_{o,CM}//r_{o3}} = 1$$

- Därmed innebär Darlingtonparet bestående av transistor Q3 och Q4 på emitterföljarens ingång att inresistansen R_{IN,EF} ökar kraftigt, samtidigt som förstärkningsfaktorn G_{EF} förblir ungefär samma som tidigare.
- Emitterresistor R_{E3} placeras i transistor Q3:s emitter för att sätta kollektorströmmen I_{C4} till lagom nivåer. Som en tumregel kan kollektorströmmen I_{C4} genom transistor Q4 sättas till ca 10 % 20 % av transistor Q3:s kollektorström I_{C3}:

$$0.1 * I_{C3} \le I_{C4} \le 0.2 * I_{C3}$$

• I detta fall flödar emitterföljarens kollektorström Ic genom transistor Q3, vilket innebär att transistor Q3:s kollektorström Ic3 är samma som kollektorströmmen Ic, som tidigare sattes till 0,5 mA:

$$I_{C3} = I_C = 0.5 \, mA$$

vilket innebär att transistor Q4:s kollektorström Ic4 bör sättas mellan 50 – 100 μA, då

$$I_{C4,min} \approx 0.1 * I_{C3} = 0.1 * 0.5m = 50 \,\mu A$$

samt

$$I_{C4 max} \approx 0.2 * I_{C3} = 0.2 * 0.5m = 100 \,\mu A$$

Därmed gäller att

$$50\mu \le I_{C4} \le 100\mu$$

• Utan emitterresistor R_{E4}, så hade transistor Q4 upptagit i princip hela transistor Q3:s kollektorström I_{C3} / emitterföljarens emitterström I_C, vilket hade inneburit att transistor Q3:s switchtid hade ökat kraftigt. Detta betyder att det hade tagit tid för transistor Q4 att gå från strypt till ledande tillstånd.

4.3.13 - Härledning av den förbättrade emitterföljarens utresistans Rut, EF

• Den förbättrade emitterföljarens utresistans R_{UT,EF} kan approximeras med formeln

$$R_{UT,EF} \approx r_{e3}$$
,

där r_{e3} är transistor Q3:s inbyggda emitterresistans.

- För att demonstrera detta kan den förbättrade emitterföljarens ekvivalenta småsignalschema för beräkning av utresistansen R_{UT,EF} ritas ut, se figuren längst till vänster.
- Båda matningsspänningar V_{CC} samt V_{EE} samt insignalen U_{IN} kortsluts. Transistor Q3:s utresistans r₀₃ ritas ut mellan dess emitter och jord. Därefter ritar vi ut den sida av strömspegeln som ingår i emitterföljaren, alltså transistor Q1 samt emitterresistor R_{E1}. Strömspegelns referenskrets exkluderas därmed ut småsignalschemat.

Förbättrad emitterföljare.

- Det första vi gör är att ersätta strömspegeln, inklusive emitterresistor R_{E1} med ekvivalent ersättningsresistans $r_{o,CM}$.
- Därefter kan småsignalschemat ritas om till figuren näst längst till vänster nedan. Eftersom insignalen U_{IN} är kortsluten så är transistor Q3:s bas ansluten till jord, vilket även gäller dess kollektor. Att basen och kollektorn har samma potential (här 0 V) medför att transistor Q3 är diodkopplad och kan därför ersättas med resistansen r_{e3}//r_{o3}.
- Småsignalschemat kan därefter ritas om figuren näst längst till höger nedan, där endast två resistanser återstår. Notera att de två resistanserna $r_{O,CM}$ samt $r_{e3}//r_{o3}$ utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med $\Delta U_{UT} 0 = \Delta U_{UT}$ och de kan ersättas med resistansen $r_{O,CM}//r_{e3}//r_{o3}$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till den högra figuren nedan, där endast en resistans återstår. Som vi snart kommer se så är denna resistans lika med emitterföljarens utresistans R_{UT,EF}:

$$R_{UT} = r_{o.CM} / / r_{e3} / / r_{o3}$$

där r_{0,CM} är strömspegelns utresistans och r_{e3} samt r_{o3} är transistor Q3:s inbyggda emitterresistans respektive utresistans.

Ekvivalent småsignalschema för beräkning av den förbättrade emitterföljarens utresistans $R_{UT,EF}$. Genom att förenkla småsignalschemat från vänster till höger så kan $R_{UT,EF}$ enkelt fastställas.

• Vi använder det förenklade småsignaschemat ovan till höger. Den förbättrade emitterföljarens utresistans R_{UT,EF} kan härledas med formeln

$$R_{UT,EF} = \frac{\Delta U_{UT}}{I_{UT}},$$

där ΔU_{UT} är utspänningen ur småsignalschemat och I_{UT} är utströmmen i småsignalschemat, vilket är kollektorströmmen I_C :

$$I_{IIT} = I_C$$

Därmed gäller att

$$R_{UT,EF} = \frac{\Delta U_{UT}}{I_C}$$

Förenklat småsignalschema för beräkning av den förbättrade emitterföljarens utresistans R_{UT.EF}.

• En formel kan härledas för ΔUυτ via Kirchhoffs spänningslag, med beräkning från ΔUυτ ned till jord:

$$\Delta U_{UT} - (r_{o,CM}//r_{e3}//r_{o3})I_C = 0,$$

vilket kan transformeras till

$$\Delta U_{UT} = \left(r_{o,CM}//r_{e3}//r_{o3}\right)I_C$$

Därmed kan en formel för den förbättrade emitterföljarens utresistans R_{UT,EF} härledas:

$$R_{UT,EF} = \frac{\Delta U_{UT}}{I_C} = \frac{\left(r_{o,CM}//r_{e3}//r_{o3}\right)I_C}{I_C},$$

där kollektorströmmen Ic kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$R_{UT,EF} = r_{o,CM} / / r_{e3} / / r_{o3}$$

 $\label{eq:continuous} \mbox{d\"{a}r} \ r_{o,\text{CM}} \ \mbox{a}r \ s tr\"{o}m spegelns \ utresistans \ och \ r_{e3} \ s amt \ r_{o3} \ \mbox{a}r \ transistor \ Q3:s \ inbyggda \ emitterresistans \ respektive \ utresistans.$

Ersättningsresistansen r_{o,CM}//r_{o3} kan antas vara mycket högre än transistor Q3:s inbyggda emitterresistans r_{e3}:

$$r_{0.CM}//r_{03} \gg r_{e3}$$

vilket medför att ro, CM//ro3 kan försummas, då

$$r_{o,CM}//r_{e3}//r_{o3} = (r_{o,CM}//r_{o3})//r_{e3} = \frac{(r_{o,CM}//r_{o3}) * r_{e3}}{(r_{o,CM}//r_{o3}) + r_{e3}} \approx \frac{(r_{o,CM}//r_{o3}) * r_{e3}}{(r_{o,CM}//r_{o3})} = r_{e3}$$

• Därmed kan den förbättrade emitterföljarens utresistans Rut, EF approximeras till

$$R_{UT,EF} \approx r_{e3}$$
,

där re₃ är transistor Q3:s inbyggda emitterresistans, som kan beräknas med formeln

$$r_{e3} = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom emitterföljaren, mätt i mA.

• Därmed kan den förbättrade emitterföljarens utresistans R_{UT,EF} alternativt approximeras med formeln

$$R_{UT,EF} \approx \frac{26}{I_{C(mA)}}$$

Utresistans R_{UT,EF} i lastat tillstånd:

- I lastat tillstånd så kommer lastresistansen R_L utgöra en parallellkoppling med emitterföljarens utgång. I övrigt så beräknas den förbättrade emitterföljarens utresistans R_{UT,EF} på samma sätt som i olastat tillstånd.
- Därmed gäller att utresistansen lastat tillstånd R_{UT,EF} på den förbättrade emitterföljaren till höger kan approximeras till

$$R_{UT.EF} \approx r_{e3}//R_L$$

där re₃ är transistor Q3:s inbyggda emitterresistans och RL är lastresistansen.

• Detta kan enkelt demonstreras via den förbättrade emitterföljarens ekvivalenta småsignalschema, se figuren längst till vänster nedan. För att rita ut detta så kortsluts matningsspänningarna V_{CC} samt V_{EE} samt insignalen U_{IN} , transistor Q3:s utresistans r_{o3} ritas ut mellan dess emitter och jord.

Förbättrad emitterföljare i lastat tillstånd.

Därefter ritar vi ut den sida av strömspegeln som ingår i emitterföljaren, alltså transistor
 Q1 samt emitterresistor R_{E1}. Strömspegelns referenskrets exkluderas därmed ut småsignalschemat. Slutligen ersätts utsignalen U_{UT} ersätts med dess motsvarighet i småsignalschemat, vilket är ΔU_{UT}.

Ekvivalent småsignalmodell för den förbättrade emitterföljaren i lastat tillstånd. Genom att förenkla kretsen i steg från vänster till höger, så kan emitterföljarens utresistans $R_{UT,EF}$ beräknas till $r_{o,CM}//r_{e3}//R_{L}$, som vanligtvis kan approximeras till $r_{e3}//R_{L}$.

- Den förbättrade emitterföljarens småsignalschema för beräkning av utresistansen R_{UT,EF} är utritat i figuren längst till vänster ovan. Det första vi gör är att ersätta strömspegeln, inklusive emitterresistor R_{E1} med dess ekvivalenta ersättningsresistans r_{O,CM}.
- Därefter kan småsignalschemat ritas om till figuren näst längst till vänster ovan. Notera att strömspegelns utresistans $r_{o,CM}$ samt lastresistans R_L utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med $\Delta U_{UT} 0 = \Delta U_{UT}$ och de kan ersättas med resistansen $r_{o,CM}//R_L$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till den mittersta figuren ovan. Eftersom insignalen U_{IN} är kortsluten så är transistor
 Q3:s bas ansluten till jord, vilket även gäller dess kollektor. Att basen och kollektorn har samma potential (här 0 V) medför att transistor Q3 är diodkopplad och kan därför ersättas med resistansen r_{e3}//r_{o3}.
- Småsignalschemat kan därefter ritas om figuren näst längst till höger ovan, där endast två resistanser återstår, $r_{o,CM}//R_L$ samt $r_{e3}//r_{o3}$. Notera att de två resistanserna utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra. Därmed är spänningsfallet över både resistanser lika med $\Delta U_{UT} 0 = \Delta U_{UT}$ och de kan ersättas med resistansen $r_{o,CM}//r_{e3}//r_{o3}//R_L$, placerad i emittern.
- Därefter kan småsignalschemat ritas om till den högra figuren nedan, där endast en resistans återstår, som är lika med den förbättrade emitterföljarens utresistans R_{UT,EF} i lastat tillstånd, vilket enkelt kan demonstreras med Ohms lag.

 Vi använder det förenklade småsignaschemat till höger. Den förbättrade emitterföljarens utresistans i lastat tillstånd R_{UT,EF} kan härledas med formeln

$$R_{UT,EF} = \frac{\Delta U_{UT}}{I_{UT}},$$

där ΔU_{UT} är utspänningen ur småsignalschemat och I_{UT} är utströmmen i småsignalschemat, vilket är kollektorströmmen I_C :

Därmed gäller att

Förenklat småsignalschema för beräkning av den förbättrade emitterföljarens utresistans R_{UT,EF} i lastat tillstånd.

$$R_{UT} = \frac{\Delta U_{UT}}{I_C}$$

En formel kan härledas för ΔUυτ via Kirchhoffs spänningslag, med beräkning från ΔUυτ ned till jord:

 $\Delta U_{UT} - (r_{o,CM} / / r_{e3} / / r_{o3} / / R_L) I_C = 0,$

vilket kan transformeras till

$$\Delta U_{IIT} = (r_{0.CM} / / r_{e3} / / r_{o3} / / R_L) I_C$$

• Därmed kan en formel för emitterföljarens utresistans R_{UT} i lastat tillstånd härledas:

$$R_{UT,EF} = \frac{\Delta U_{UT}}{I_C} = \frac{(r_{o,CM}//r_{e3}//r_{o3}//R_L)I_C}{I_C},$$

där kollektorströmmen Ic kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$R_{UT.EF} = r_{o.CM} / / r_{e3} / / r_{o3} / / R_{L}$$

där $r_{0,CM}$ är strömspegelns utresistans, r_{e3} samt r_{o3} är transistor Q3:s inbyggda emitterresistans respektive utresistans och R_L är lastresistansen.

• Storleken på lastresistansen R_L är okänd, men ersättningsresistansen r_{o,CM}//r_{o3} kan antas vara mycket högre än transistor Q3:s inbyggda emitterresistans r_{e3}:

$$r_{o.CM}//r_{o3} \gg r_{e3}$$

vilket medför att r₀,CM//r₀₃ kan försummas, då

$$r_{o,CM}//r_{e3}//r_{o3} = (r_{o,CM}//r_{o3})//r_{e3} = \frac{(r_{o,CM}//r_{o3}) * r_{e3}}{(r_{o,CM}//r_{o3}) + r_{e3}} \approx \frac{(r_{o,CM}//r_{o3}) * r_{e3}}{(r_{o,CM}//r_{o3})} = r_{e3}$$

Därmed kan den förbättrade emitterföljarens utresistans R_{UT,EF} approximeras till

$$R_{UT,EF} \approx r_{e3}//R_L$$

där $r_{\text{e}3}$ är transistor Q3:s inbyggda emitterresistans och R_{L} är lastresistansen.

- Beroende på storleken på lastresistansen R_L i förhållande till transistor Q3:s inbyggda emitterresistans r_{e3}, så kommer den förbättrade emitterföljarens utresistans R_{UT,EF} hamna mycket nära transistor Q3:s utresistans r_{o3}. Om lastresistansen R_L är låg så kommer R_{UT,EF} minska något, vilket vanligtvis är positivt.
- Som vi har sett tidigare så leder dock lågohmiga laster till att förstärkningsfaktorn G_{EF} minskar, vilket inte är önskvärt. Därför bör lastresistansen R_L hållas hög om möjligt.

4.3.14 - Konstruktion av en förbättrad emitterföljare

- Den förbättrade emitterföljaren till höger skall dimensioneras så att en kollektorström I_C på
 0,5 mA flödar genom den. Matningsspänningen V_{CC}/V_{EE} är satt till ± 20 V.
- Emitterresistorer R_{E1} samt R_{E2} i strömspegeln samt referensresistor R_{REF} skall dimensioneras efter specifikationerna.
- Emitterresistorer RE1 samt RE2 används för att minska brus och distorsion i strömspegeln.
- Större emitterresistorer medför lägre brus och distorsion, men också högre spänningsfall över resistorerna, vilket minskar utsignalens U_{UT}:s maximala topp-till-topp-värde något, då en del av den negativa matningsspänningen V_{EE} måste falla över emitterresistorerna.
- Som vi har sett tidigare så bör spänningsfallet U_E över emitterresistorer R_{E1} samt R_{E2} sättas till ca 220 mV:

Förbättrad emitterföljare.

$$U_F \approx 220 \, mV$$

vilket ger en bra kompromiss mellan minskat brus och distorsion, samtidigt som minskningen av utsignalens topp-till-toppvärde som emitterresistorerna medför begränsas.

- Lämpliga värden på emitterresistorer R_{E1} samt R_{E2} kan beräknas med Ohms lag.
- För emitterresistor R_{E1} gäller att

$$R_{E1} = \frac{U_E}{I_C},$$

där U_E är spänningsfallet över R_{E1} och I_C är kollektorströmmen som flödar genom emitterföljaren.

• För emitterresistor R_{E2} gäller istället att

$$R_{E2} = \frac{U_E}{I_{REF}},$$

där UE är spänningsfallet över RE2 och IREF är referensströmmen som flödar igenom strömspegelns referenskrets.

• Dock är kollektorströmmen I_C en kopia av referensströmmen I_{REF}, vilket medför att dessa strömmar är lika stora:

$$I_{REF} = I_{C}$$

- Det är via referensresistor R_{REF} som storleken på referensströmmen I_C fastställs. Därefter kopieras denna ström över till den högra sidan av strömspegeln, som är placerad i emitterföljarens emitter. Denna kopia utgör därför kollektorströmmen I_C genom emitterföljaren.
- Därmed gäller att

$$R_{E2} = \frac{U_E}{I_{REF}} = \frac{U_E}{I_C},$$

vilket indikerar att emitterresistorer R_{E1} samt R_{E2} skall sättas till samma värde, då spänningsfallet U_E över dessa är samma, samtidigt som strömmarna som flödar genom dem (I_C respektive I_{REF}) är lika stora.

• Vid en kollektorström Ic på 0,5 mA, så bör emitterresistorer RE1 samt RE2 sättas till omkring 440 Ω, då

$$R_{E1} = R_{E2} = \frac{U_E}{I_C} \approx \frac{220m}{0.5m} = 440 \ \Omega$$

• Närmaste värde i E12-serien är 470 Ω, vilket därmed används:

$$R_{E1} = R_{E2} = 470 \,\Omega$$

- Därefter återstår att dimensionera referensresistor R_{REF}, som avgör storleken på kollektorströmmen I_C genom emitterföljaren.
- Ett lämpligt värde på referensresistor R_{REF} kan beräknas med Ohms lag:

$$R_{REF} = \frac{U_{REF}}{I_{REF}},$$

där U_{REF} är spänningsfallet över R_{REF} och I_{REF} är strömmen som flödar igenom strömspegelns referenskrets.

Eftersom kollektorströmmen I_C som flödar igenom emitterföljaren skall bli 0,5 mA, så måste referensströmmen I_{REF} sättas till
 0,5 mA, då

$$I_{REF} = I_C = 0.5 \, mA$$

• Spänningsfallet UREF över referensresistor RREF kan beräknas via Kirchhoffs spänningslag. Genom att beräkna mot strömmens riktning från den negativa matningsspänningen VEE upp till jord via resistor RREF, så kan följande formel erhållas:

$$V_{EE} + U_E + U_{RE1} + U_{REF} = 0$$
,

där V_{EE} är den negativa matningsspänningen, U_E är spänningsfallet över emitterresistor R_{E1} , U_{BE1} är bas-emitterspänningen mellan transistor Q1:s bas och emitter och U_{REF} är spänningsfallet över referensresistor R_{REF} .

- Eftersom vi genomförde beräkningen mot strömmarnas riktning (som flödar uppifrån till ned), så beräknas samtliga spänningsfall som positiva (då spänningsfallens polaritet är från plus- till minuspolen i strömmens riktning).
- Formeln ovan kan transformeras till

$$U_{REF} = -V_{EE} - U_E - U_{BE1},$$

som är ekvivalent med

$$U_{REF} = -(V_{EE} + U_E + U_{RE1})$$

• Matningsspänningen V_{EE} är satt till -2 V:

$$V_{EE} = -2 V$$

• Spänningsfallet U_E över emitterresistor R_{E1} sattes tidigare till omkring 220 mV:

$$U_E \approx 220 \ mV$$

• För att erhålla ett mer ackurat värde på spänningsfallet U_E , så kan Ohms lag användas. Emitterresistor R_{E1} sattes till 470 Ω och kollektorströmmen I_C som flödar genom emitterföljaren är satt till 0,5 mA. Därmed blir spänningsfallet U_E lika med 235 mV, då

$$U_E = R_{E1} * I_C = 470 * 0.5m = 235 \, mV,$$

vilket motsvarar 0,235 V:

$$U_E = 0.235 V$$

• Transistor Q1:s bas-emitterspänning UBE1 kan antas ligga omkring 0,65 V, vilket är ett normalvärde för en BJT-transistor:

$$U_{BE1} \approx 0.65 V$$

• Därmed blir spänningsfallet U_{REF} lika med 1,115 V, då

$$U_{REF} = -(V_{EE} + U_E + U_{BE1}) = -[(-2) + 0.235 + 0.65] = -(-1.115) = 1.115 V$$

• För en referensström IREF på 0,5 mA, så bör resistor RREF sättas till ca 2,23 kΩ, då

$$R_{REF} = \frac{U_{REF}}{I_{RFF}} = \frac{1,115}{0,5m} = 2,23 \text{ k}\Omega$$

Närmaste värde i E12-serien är 2,2 kΩ, som därmed används:

$$R_{REF} = 2.2 k\Omega$$

- Därefter kan emitterföljarens förstärkningsfaktor G_{EF} samt in- och utresistans R_{IN} respektive R_{UT} beräknas. Antag att vi i detta fall vill genomföra beräkningen med högre precision än tidigare, vilket medför att strömspegelns utresistans r_{o,CM} samt transistor Q3:s utresistans respektive inbyggda emitterresistans måste beräknas.
- Som vi såg tidigare så kan emitterföljarens förstärkningsfaktor GEF beräknas med formeln

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}},$$

där $r_{o,CM}$ är strömspegelns utresistans och r_{o3} samt r_{e3} är transistor Q3:s utresistans respektive dess inbyggda emitterresistans.

• Strömspegelns utresistans ro,CM kan approximeras med formeln

$$r_{o,CM} \approx r_{o1} * EF$$
,

där r₀₁ är transistor Q1:s utresistans och EF är strömspegelns emitterfaktor.

• Transistor Q1:s utresistans r₀₃ kan approximeras med formeln

$$r_{o1} \approx \frac{U_A}{I_C}$$

• Som vi har sett tidigare så kan kollektorströmmen Ic genom emitterföljarens sättas till ca 0,5 mA de flesta tillämpningar:

$$I_C = 0.5 mA$$

• Vi kan anta att transistor Q1 har en Earlyspänning U_A på 100 V. Vid en kollektorström I_C på 0,5 mA, så kan därför transistor Q1:s utresistans r_{01} antas vara 200 k Ω , eftersom

$$r_{o1} \approx \frac{U_A}{I_C} = \frac{100}{0.5m} = 200 \ k\Omega$$

 Strömspegelns emitterfaktor EF indikerar med hur stor faktor som emitterresistor R_{E1} (samt R_{E2}) höjer den totala emitterresistansen i strömspegeln och kan beräknas med formeln

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}},$$

 $\label{eq:continuous} \mbox{där R_{E1} \"{a}r storleken på respektive emitterresistor i strömspegeln och r_{e1} \"{a}r transistor Q1:s inbyggda emitterresistans.}$

• Emitterresistorer R_{E1} samt R_{E2} i strömspegeln sattes tidigare till 470 Ω:

$$R_{E1}=R_{E2}=470\,\Omega$$

Transistor Q1:s inbyggda emitterresistans rel kan beräknas med formeln

$$r_{e1} = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom transistorn, mätt i mA.

• Vid en kollektorström Ic på 0,5 mA, så uppgår transistor Q1:s inbyggda emitterresistans re1 till 52 Ω, då

$$r_{e1} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Strömspegelns emitterfaktor EF kan därmed antas hamna runt tio, eftersom

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}} = \frac{470 + 52}{52} \approx 10$$

• Därmed kan strömspegelns utresistans $r_{o,CM}$ antas ligga runt 2 M Ω vid en kollektorström I_C på 0,5 mA samt en emitterfaktor EF på tio, då

$$r_{o.CM} \approx r_{o1} * EF = 200k * 10 = 2 M\Omega$$

Notera att emitterfaktor EF lika gärna kan beräknas på referenssidan av strömspegeln. Då gäller att

$$EF = \frac{R_{E2} + r_{e2}}{r_{e2}},$$

där RE2 är storleken på respektive emitterresistor i strömspegeln och re2 är transistor Q1:s inbyggda emitterresistans.

Transistor Q2:s inbyggda emitterresistans r_{e2} kan beräknas med formeln

$$r_{e2} = \frac{26}{I_{REF(mA)}},$$

där I_{REF(mA)} är referensströmmen som flödar genom strömspegelns referenskrets, mätt i mA.

• Som vi såg tidigare gäller att referensströmmen I_{REF} som flödar genom strömspegelns referenskrets är lika stor som kollektorströmmen I_C genom emitterföljaren, alltså 0,5 mA:

$$I_{RFF} = I_C = 0.5 \, mA$$

• Vid en referensström I_{REF} på 0,5 mA, så uppgår transistor Q2:s inbyggda emitterresistans r_{e2} till 52 Ω, då

$$r_{e2} = \frac{26}{I_{REF(mA)}} = \frac{26}{0.5} = 52 \,\Omega,$$

vilket innebär en emitterfaktor EF runt tio, då

$$EF = \frac{R_{E2} + r_{e2}}{r_{e2}} = \frac{470 + 52}{52} \approx 10$$

 Vi kan anta att även transistor Q3 har en Earlyspänning U_A på 100 V. Vid en kollektorström I_C på 0,5 mA, så kan därför transistor Q3:s utresistans r_{o3} också antas vara 200 kΩ, eftersom

$$r_{o3} \approx \frac{U_A}{I_C} = \frac{100}{0.5m} = 200 \ k\Omega$$

Transistor Q3:s inbyggda emitterresistans re3 kan beräknas med formeln

$$r_{e3} = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar genom transistorn, mätt i mA.

• Vid en kollektorström Ic på 0,5 mA, så uppgår transistor Q3:s inbyggda emitterresistans re3 till 52 Ω, då

$$r_{e3} = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Därmed kan emitterföljarens förstärkningsfaktor GEF beräknas:

$$G_{EF} = \frac{r_{o,CM}//r_{o3}}{r_{e3} + r_{o,CM}//r_{o3}} \approx \frac{2M//200k}{52 + 2M//200k'}$$

där

$$r_{o,CM}//r_{o3} \approx 2M//200k = \frac{2M * 200k}{2M + 200k} \approx 182 \, k\Omega$$

Därmed gäller att emitterföljarens förstärkningsfaktor GEF uppgår till ca 0,998, då

$$G_{EF} \approx \frac{182k}{52 + 182k} \approx 0.998$$

• Emitterföljarens inresistans R_{IN,EF} kan approximeras med formeln

$$R_{INEF} \approx r_{oCM}//r_{o3} * h_{FE3}$$

 $\label{eq:continuous} \mbox{d\"{a}r} \; r_{\text{O,CM}} \; \mbox{\"{a}r} \; s t \mbox{\"{c}mspege} \\ \mbox{elns} \; utresistans \; och \; r_{\text{O3}} \; s amt \; h_{\text{FE3}} \; \mbox{\"{a}r} \; t \\ \mbox{ransistor} \; Q3 : s \; utresistans \; respektive \; s t \mbox{\'{c}mf\"{o}rst\"{a}rkningsfaktor}.$

• Ersättningsresistansen r_{o,CM}//r_{o3} approximerades tidigare till 182 kΩ:

$$r_{o.CM}//r_{o.3} \approx 2M//200k \approx 182 k\Omega$$

• Vi kan anta att transistor Q3:s strömförstärkningsfaktor hfe3 är 50, vilket gäller i värstafallscenariot:

$$h_{FE3}=50$$

• Därmed kan emitterföljarens inresistans R_{IN,EF} i värstafallscenariot approximeras till 9,1 MΩ, då

$$R_{INFF} \approx 182k * 50 = 9.1 M\Omega$$

- Notera att vi tidigare beräknade $R_{IN,EF}$ till 10 M Ω i värstafallscenarion via approximationer, där strömspegelns utresistans $r_{o,CM}$ försummades, vilket indikerar över 90 % precision.
- Ett Darlingtonpar kan också placeras på emitterföljarens ingång för ökad inresistans, såsom figuren till höger, vilket medför att emitterföljarens inresistans R_{IN,EF} ökar med en faktor av transistor Q4:s strömförstärkningsfaktor h_{FE4}.
- Inresistansen R_{IN,EF} på emitterföljaren med Darlingtonpar på ingången till höger kan approximeras med formeln

$$R_{IN,EF} \approx r_{o3} * h_{FE3} * h_{FE4}$$
,

där r_{03} är transistor Q3:s utresistans och h_{FE3} samt h_{FE3} är strömförstärkningsfaktorn på respektive transistor i Darlingtonparet.

• Transistorernas respektive strömförstärkningsfaktor h_{FE3} samt h_{FE3} kan antas vara 50 i värstafallscenariot:

$$h_{FE3} = h_{FE4} = 50$$
,

men kan uppgå till en faktor 250, beroende på exemplar. Dock antar vi värstafallscenariot, alltså en faktor 50, för säkerhets skull.

- Vi kan därmed anta att Darlingtonparet medför att emitterföljarens inresistans R_{IN,EF} ökar med en faktor på minst 50.
- Tidigare approximerades emitterföljarens inresistans R_{IN,EF} till ca 9,1 MΩ i värstafallscenariot:

$$R_{IN,EF} \approx r_{o3} * h_{FE3} \approx 182k * 50 \approx 9.1 M\Omega$$

• Med Darlingtonpar på ingången så ökar dock inresistansen $R_{IN,EF}$ med en faktor på minst 50, vilket medför att $R_{IN,EF}$ i värstafallscenariot kan approximeras till 455 $M\Omega$, eftersom

$$R_{IN.EF} \approx r_{o3} * h_{FE3} * h_{FE4} \approx 182k * 50 * 50 \approx 455 M\Omega$$

Genom att placera ett Darlingtonpar på emitterföljarens ingång, så ökar dess inresistans R_{IN,EF} med en faktor 50–250 (beroende på transistor Q4:s strömförstärkningsfaktor h_{FE4}). Samtidigt kommer emitterföljarens förstärkningsfaktor G_{EF} samt utresistans R_{UT,EF} förbli i princip oförändrade.

 Om vi hade antagit att båda transistorer Q3 och Q4 i Darlingtonparet istället hade en strömförstärkningsfaktor h_{FE} på 100 så hade inresistansen istället hamnat omkring 1,82 GΩ, då

$$R_{IN,EF} \approx r_{o3} * h_{FE3} * h_{FE4} \approx 182k * 100 * 100 \approx 1,82 G\Omega$$

- Med största sannolikhet så hade emitterföljarens inresistans $R_{\text{IN},\text{EF}}$ hamnat omkring 1 G Ω med Darlingtonparet på emitterföljarens ingång.
- Emitterföljarens förstärkningsfaktor G_{EF} hade minskat något, då vi nu måste räkna med två inbyggda emitterresistanser, transistor Q3:s samt Q4:s inbyggda emitterresistans r_{e3} respektive r_{e4}:

$$G_{EF} \approx \frac{r_{o3}}{r_{e3} + r_{e4} + r_{o3}}$$

Dock kan transistor Q3:s utresistans r₀₃ antas vara mycket större än summan av de inbyggda emitterresistanserna r₆₃ samt
 r₆₄:

$$r_{o3} \gg r_{e3} + r_{e4}$$

vilket medför att re3 och re4 kan försummas, då

$$r_{e3} + r_{e4} + r_{o3} \approx r_{o3}$$

• Därmed hamnar emitterföljarens förstärkningsfaktor GEF mycket nära ett även med Darlingtonpar på ingången, då

$$G_{EF} \approx \frac{r_{o3}}{r_{e3} + r_{e4} + r_{o3}} \approx \frac{r_{o3}}{r_{o3}} = 1$$

Emitterföljarens utresistans Rut, EF kan sedan beräknas med formeln

$$R_{UT,EF} = r_{o,CM} / / r_{o3} / / r_{e3}$$
.

 $\label{eq:continuous} \mbox{d\"{a}r} \; r_{\text{O,CM}} \; \mbox{\"{a}r} \; s tr\"{o} m s pegelns \; utresistans, \; och \; r_{\text{O}3} \; s amt \; r_{\text{e}3} \; \mbox{\"{a}r} \; transistor \; Q3:s \; utresistans \; respektive \; inbyggda \; emitterresistans.$

• Ersättningsresistansen r_{o,CM}//r_{o3} beräknades tidigare till ca 182 kΩ:

$$r_{o,CM}//r_{o3} \approx 182 k\Omega$$

och transistor Q3:s inbyggda emitterresistans r_{e3} beräknades tidigare till 52 Ω .

$$r_{e3} \approx 52 \, \Omega$$

• Därmed gäller att

$$R_{UTFF} \approx 182k//52$$
,

där

$$182k//52 = \frac{182k * 52}{182k + 52} \approx 52 \,\Omega$$

• Vi ser därmed att ersättningsresistansen r_{o,CM} kan försummas vid beräkning av emitterföljarens utresistans R_{UT,EF}, vilket ha r observerats tidigare:

$$R_{UT.EF} \approx r_{e3} = 52 \Omega$$

4.3.15 - Spänningsföljare för ökad bandbredd samt minskad distorsion i förstärkarsteg

- Som nämnts tidigare så är transistorer väldigt känsliga mot den så kallade Millereffekten, vilket för BJT-transistorer innebär att en viss intern kapacitans C_{BC} mellan dess bas och kollektor leder till distorsion samt minskad förstärkningsfaktor G vid ökad frekvens.
- Bas-kollektorkapacitansen CBC utgör en impedans ZBC, som kan beräknas med formeln

$$Z_{BC} = \frac{1}{sC_{BC}},$$

där s är den så kallade frekvensparametern, som är lika med insignalens frekvens f multiplicerat med 2π :

$$s=2\pi f$$

vilket innebär att

$$Z_{BC} = \frac{1}{2\pi f \, C_{BC}}$$

 Därmed ser vi att bas-kollektorkapacitansen C_{BC}:s impedans Z_{BC} är omvänt proportionerlig med insignalens frekvens f:

$$Z_{BC} \sim \frac{1}{f}$$

vilket innebär att vid låga frekvenser, så kommer ZBC gå mot oändlighet:

$$\lim_{f \to 0} Z_{BC} \sim \lim_{f \to 0} \frac{1}{f} = \frac{1}{"0"} = \infty,$$

där lim betyder gränsvärde och "0" i täljaren innebär att frekvensen f är mycket nära noll.

Däremot vid mycket höga frekvenser, så kommer Z_{BC} gå mot noll, då

$$\lim_{f\to\infty} Z_{BC} \sim \lim_{f\to\infty} \frac{1}{f} = \frac{1}{\infty} = 0$$

- Impedansen Z_{BC} kommer alltså minska linjärt med ökad frekvens, vilket medför att mer och mer av GE-stegets kollektorström kan passera mellan BJT-transistorns bas och kollektor istället för genom transistorn. Därmed bildas en återkopplad loop mellan basen och kollektorn, på samma sätt som återkoppling används inom reglerteknik, exempelvis i OP-förstärkarkopplingar.
- Figuren nedan demonstrerar denna loop, där återkopplingsfaktor K indikerar hur mycket av utsignalen U_{UT} som återkopplas till inspänningen U_{IN} och G är GE-stegets förstärkningsfaktor.

Illustration av den återkopplade loop, som uppstår på grund av Millereffekten i en BJT-transistor. Återkopplingsfaktor K är omvänt proportionerlig med insignalens frekvens f, vilket medför minskad closed-loop-förstärkning G_{CL} med ökad frekvens f.

GE-steg med BJT-transistorns bas-kollektorkapacitans C_{BC} utritad.

På grund av C_{BC} bildas en återkopplad loop som medför minskad förstärkningsfaktor G med ökad frekvens f.

• Closed-loop-förstärkningen G_{CL} är ration mellan in- och utsignalen U_{IN} och U_{UT} när loopen är sluten, vilket medför att:

$$G_{CL} = \frac{U_{UT}}{U_{IN}},$$

där G_{CL} är closed-loop-förstärkningen och U_{IN} samt U_{UT} är GS-stegets in- respektive utsignal.

Genom att sätta in de tidigare härledda formlerna för in- och utsignalen U_{UT} så kan en formel för closed-loop-förstärkningen
 GCL härledas:

$$G_{CL} = \frac{U_{UT}}{U_{IN}} = \frac{(U_{IN} - K * U_{UT}) * G}{U_{IN}} = \frac{U_{IN} * G - U_{UT} * KG}{U_{IN}},$$

vilket medför att

$$G_{CL} = G - \frac{U_{UT}}{U_{IN}} * KG = G - G_{CL} * KG$$

• Formeln ovan kan sedan transformeras till

$$G_{CL} + G_{CL} * KG = G,$$

där closed-loop-förstärkningen GCL kan brytas ut i vänsterledet, vilket medför att

$$G_{CL}(1+KG)=G$$

 Därefter kan en formel härledas för closed-loop-förstärkningen G_{CL} genom att dividera med 1 + K * G i vänster- och högerled, vilket ger formeln

$$G_{CL} = \frac{G}{1 + KG'}$$

där G_{CL} är OP-förstärkarens closed-loop-förstärkning, G är GE-stegets förstärkningsfaktor och K är återkopplingsfaktorn, som orsakas av bas-kollektorkapacitansen impedans Z_{BC} .

• Återkopplingsfaktorn K kan ligga mellan noll upp till ett:

$$0 \le K \le 1$$
,

där noll innebär ingen återkoppling och ett innebär full återkoppling.

• Vid låga frekvenser, runt likström, så utgör impedansen Z_{BC} ett oändligt motstånd, vilket medför att ingen återkoppling sker. Då blir återkopplingsfaktor K noll:

$$\lim_{f\to 0}K=0,$$

vilket medför att closed-loop-förstärkningen GcL är lika med GE-stegets förstärkningsfaktor G, då

$$\lim_{f \to 0} G_{CL} = \lim_{f \to 0} \frac{G}{1 + KG} = \frac{G}{1 + 0 * G} = G$$

- Millereffekten har därmed mycket liten påverkan vid låga frekvenser.
- Ju högre frekvens f en given insignal har, desto lägre blir impedansen Z_{BC}, vilket medför att mer och mer återkoppling sker. Vid mycket höga frekvenser så blir återkopplingsfaktor K lika med ett:

$$\lim_{f \to \infty} K = 1$$

• En återkopplingsfaktor K på ett medför att closed-loop-förstärkningen Gcl går mot ett, då

$$\lim_{f \to \infty} G_{CL} = \lim_{f \to \infty} \frac{G}{1 + KG} = \frac{G}{1 + 1 * G} = \frac{G}{1 + G}$$

• Vi kan anta att GE-stegets förstärkningsfaktor G vida överstiger ett:

 $G\gg 1$,

vilket medför att

$$\lim_{f \to \infty} G_{CL} = \frac{G}{1+G} \approx \frac{G}{G} = 1$$

- Därmed ser vi att GE-stegets closed-loop-förstärkning G_{CL} kommer minska vid ökad frekvens, oavsett storleken på dess förstärkningsfaktor G. Därmed gäller att vid en viss frekvens f, så kommer GE-steget förstärkning att upphöra, vilket innebär BJT-transistorns bandbredd BW minskar.
- Vi kan också undersöka den olinjära bas-kollektorström I_{BC}, som flödar genom bas-kollektorkapacitansen C_{BC} (vid växelström) och orsakar distorsion. Strömmen I_{BC} kan beräknas med formeln

$$I_{BC} = C_{BC} * \frac{du_{BC}}{dt},$$

där I_{BC} är strömmen som flödar genom kondensatorn, C_{BC} är kondensatorns kapacitans och du $_{BC}$ /dt är förändringen i spänningsfallet U_{BC} över kondensator C_{BC} .

 Spänningsfallet U_{BC} över kondensator C_{BC} är spänningsskillnaden mellan bas- och kollektorspänningen U_B respektive U_C:

$$U_{BC} = U_B - U_C$$

 Millereffekten påverkar dock inte emitterföljare, eftersom BJT-transistorns kollektor ansluts direkt till matningsspänningen Vcc, vilket leder till att kollektorspänningen Uc hålls konstant, se figuren till höger:

$$U_C = V_{CC}$$

• Emitterföljarens basspänning U_B kan beräknas via matningsspänningen V_{EE} spänningsfallet $R_E I_E$ över emitterresistor R_E samt bas-emitterspänningen U_{BE} mellan BJT-transistorns bas och emitter:

Emitterföljare med BJT-transistorns interna bas-kollektor C_{BC} utritad.

$$U_B = V_{EE} + R_E I_E + U_{BE},$$

där emitterströmmen I_E är ungefär lika med kollektorströmmen I_C genom GE-steget:

$$I_E \approx I_C$$

och bas-emitterspänningen UBE mellan BJT-transistorns bas och emitter, hålls i princip konstant vid 0,65 V över tid:

$$U_{BE} \approx 0.65 V$$

Därmed gäller att

$$U_B \approx V_{EE} + R_E I_C + 0.65$$

 Eftersom matningsspänningen V_{EE}, spänningsfallet R_E|_E ≈ R_E|_C samt bas-emitterspänningen U_{BE} ≈ 0, 65 V hålls i princip konstant över tid, hålls basspänningen också U_B konstant över tid. • Eftersom både basspänningen U_B samt kollektorspänningen U_C hålls i princip konstant över tid, så blir förändringen du_{BC}/dt av bas-kollektorspänningen U_{BC} över tid ungefär lika med noll:

$$\frac{du_{BC}}{dt}\approx 0,$$

vilket innebär att bas-kollektorströmmen IBC som flödar genom bas-kollektorkapacitansen CBC går mot noll, då

$$I_{BC} = C_{BC} * \frac{du_{BC}}{dt} \approx C_{BC} * 0 = 0$$

- Detta medför en kraftig minskning av den distorsion som bas-kollektorströmmen I_{BC} orsakar, då denna är mycket olinjär på grund av att bas-kollektorkapacitansen C_{BC} är mycket olinjär.
- Därmed blir emitterföljare inte påverkade av bas-kollektorkapacitansen CBC.
- Figuren till höger visar ett GE-steg, där en förbättrad emitterföljare är placerad framför dess ingång för ökad inresistans samt minskad påverkan av Millereffekten, vilket innebär minskad distorsion samt ökad bandbredd BW.
- Det är bas-kollektorkapacitansen C_{BC4} på GE-stegets ingångstransistor Q4 som orsakar Millereffekten i GE-steget. C_{BC4} har en viss impedans Z_{BC4}, som kan beräknas med formeln

$$Z_{BC4} = \frac{1}{sC_{BC4}},$$

där s är den så kallade frekvensparametern, som är proportionerlig med insignalernas frekvens f:

$$s \sim f$$

 Av formeln ovan ser vi att bas-kollektorkapacitansen C_{BC4} samt dess impedans Z_{BC4} är omvänt proportionerliga:

$$Z_{BC4} \sim \frac{1}{C_{BC4}},$$

som kan transformeras till

$$C_{BC4} \sim \frac{1}{Z_{BC4}}$$

GE-steg med en förbättrad emitterföljare på ingången, vilket leder till ökad inresistans $R_{IN,EF}$ samt minskad påverkan av transistor Q4:s baskollektorkapacitans C_{BC4} .

vilket innebär att en ökning av Z_{BC4} medför en minskning av bas-kollektorkapacitansen C_{BC4} . Som vi snart kommer se så medför emitterföljaren en ökning av Z_{BC4} , vilket medför minskad påverkan av bas-kollektorkapacitansen C_{BC4} .

• Emitterföljarens inresistans R_{IN,EF} kan approximeras till

$$R_{IN.EF} \approx r_{o.CM} / / R_{IN.VAS} * h_{FE1}$$

där $R_{\text{IN},\text{EF}}$ samt $R_{\text{IN},\text{VAS}}$ är emitterföljarens respektive GE-stegets inresistans, $r_{\text{O},\text{CM}}$ strömspegelns utresistans och $h_{\text{FE}1}$ är transistor Q1:s strömförstärkningsfaktor.

• Strömspegelns utresistans ro,cm kan antas vara mycket högre än GE-stegets inresistans RIN,VAS:

$$r_{o.CM} \gg R_{IN.VAS}$$

• Därmed kan strömspegelns utresistans ro,CM försummas, då

$$r_{o,CM}//R_{IN,VAS} = \frac{r_{o,CM} * R_{IN,VAS}}{r_{o,CM} + R_{IN,VAS}} \approx \frac{r_{o,CM} * R_{IN,VAS}}{r_{o,CM}} = R_{IN,VAS}$$

vilket innebär att användning av en förbättrad emitterföljare på GE-stegets ingång medför en ungefärlig ökning av inresistansen R_{IN,VAS} med en faktor h_{FE1} av strömförstärkningsfaktorn på emitterföljarens ingångstransistor Q1:

$$R_{IN,EF} \approx R_{IN,VAS} * h_{FE1}$$

Detsamma gäller för bas-kollektorkapacitansens impedans Z_{BC4}, som också ökar med ungefär en faktor h_{FE1}:

$$Z_{EF} \approx Z_{RC4} * h_{FE1}$$

där Z_{EF} är bas-kollektorkapacitansens impedans sedd från emitterföljarens ingång. Eftersom impedansen Z_{EF} ökar, så kommer mindre ström I_{BC4} passera kondensator C_{BC4} vid en given frekvens f, vilket medför att återkopplingsfaktorn K vi såg tidigare i den återkopplade loopen kommer vara lägre vid en given frekvens och därmed uppnå ett högre upp i frekvens. Därmed ökar GE-stegets bandbredd BW.

• Impedansen Zef samt bas-kollektorkapacitansen Cef sedd från emitterföljarens ingång har följande samband:

$$Z_{EF} = \frac{1}{sC_{FF}},$$

där s är den tidigare nämnda frekvensparametern.

• Vi såg tidigare att bas-kollektorkapacitansen CBC4 samt dess impedans ZBC4 har följande samband:

$$Z_{BC4} = \frac{1}{sC_{BC4}}$$

• Eftersom Zef är lika med Zcb4 multiplicerat med transistor Q1:s strömförstärkningsfaktor hfe1:

$$Z_{EF} \approx Z_{BC4}*h_{FE1},$$
 så gäller att
$$\frac{1}{sC_{EF}} \approx \frac{1}{sC_{BC4}}*h_{FE1},$$
 vilket är ekvivalent med
$$\frac{1}{sC_{EF}} \approx \frac{h_{FE1}}{sC_{BC4}},$$
 som kan transformeras till
$$sC_{EF} \approx \frac{sC_{BC4}}{h_{EE1}}$$

• Eftersom frekvensparametern förekommer i både vänster- och högerled kan denna elimineras ur formeln, vilket medför att

$$C_{EF} \approx \frac{C_{BC4}}{h_{FE1}}$$

• Därmed ser vi att påverkan av transistor Q4:s bas-kapacitans C_{BC4} minskar med en faktor h_{FE1} av emitterföljarens ingångstransistor h_{FE1}, som kan antas ligga mellan en faktor 50 – 250:

$$50 \le h_{FE1} \le 250$$

• Användning av en emitterföljare på ingången medför därmed ökad bandbredd BW samt minskad distorsion i GE-steget.

4.3.16 - Sourceföljaren

- MOSFET-transistorns motsvarighet till emitterföljaren kallas sourceföljaren. Skillnaden mellan source- och emitterföljaren är att sourceföljaren innehar en MOSFET-transistor på ingången, se figuren till höger, medan emitterföljare innehar en emitterföljare på ingången.
- Source- och emitterföljare fungerar på samma sätt, men deras egenskaper är något olika.
- Om vi jämför en sourceföljare med motsvarande emitterföljare i en diskret krets så kommer sourceföljaren ha mycket högre inresistans R_{IN}, men dess förstärkningsfaktor G kommer vara något lägre, samtidigt som dess utresistans R_{UT} kommer vara ungefär tio gånger högre, på grund av MOSFET-transistorns lägre transkonduktans g_m.
- Sourceföljaren kan, precis som kaskadkopplade spännings- och differentialförstärkare, minska påverkan av den så kallade Millereffekten, som MOSFET-transistorer, primärt diskreta sådana, är mycket känsliga mot, på grund av en stor andel intern kapacitans C_{GD} mellan gate och drain, se figuren till höger.

- Gate-drainkapacitansen C_{GD} är olinjär, till skillnad mot en diskret kondensator, vilket betyder att dess reaktans 1/(sC_{GD}) inte minskar i proportion med ökad frekvens.
 Därmed kan C_{GD} leda till ojämn förstärkning, vilket i sin tur medför distorsion.
- Millereffekten påverkar dock inte sourceföljare, då drainspänningen är konstant, antingen genom att drain ansluts direkt till en matningsspänning eller jordas.
- Gate-drainkapacitansen C_{GC} utgör ett motstånd som minskar med ökad frekvens och bildar en feedback-loop mellan förstärkarstegets gate och drain, lite som feedbackloopen på en OP-förstärkare. Eftersom motståndet minskar med ökad frekvens så kommer mer och mer ström kunna passera mellan gate och drain istället för MOSFETtransistorn.
- Detta leder till förminskad spänningsförstärkning vid ökad frekvens, som medför att MOSFET-transistorns bandbredd minskar. Därmed så kommer förstärkningsfaktorn på förstärkarsteg uppbyggda med MOSFET-transistorer (förutom spänningsföljare) minska kraftigt med ökad frekvens.
- Detta leder i sin tur till att drainsidan av gate-drainkapacitansen C_{GC} hålls konstant, vilket medför att C_{GC} utgör ett motstånd som går mot oändlighet. Detta leder i sin tur till att strömmen som flödar mellan gate och drain närmar sig noll. Därmed så har gate-drainkapacitansen C_{GD}:s olinjariteter minimal påverkan på sourceföljare.

Sourceföljare med sourceresistor R_S som last. För högre förstärkningsfaktor så bör sourceresistorn ersättas med en strömspegel.

Sourceföljare med MOSFETtransistorns interna gatedrainkapacitans C_{GD} utritad. Notera att drainsidan av C_{GD} kopplas direkt till matningsspänningen V_{DD} .

Detta medför att drainspänningen U_D är konstant (likström), vilket i sin tur leder till att C_{GD} förbikopplas och har ingen påverkan på sourceföljaren.

Sourceföljare med jordad drain.

Sourceföljaren i korthet:

• Sourceföljarens inresistans R_{IN} kan antas gå mot oändlighet, då en MOSFET-transistor används på ingången:

$$R_{IN} = \infty$$

- I praktiken betyder detta en inresistans R_{IN} som kan uppgå till hundratals ΤΩ!
- Förstärkningsfaktorn G på den enkla sourceföljaren ovan till höger kan beräknas med formeln

$$G = \frac{R_S}{\frac{1}{g_m} + R_S},$$

där $1/g_m$ är inversen till MOSFET-transistorns transkonduktans och R_S är storleken på sourceresistorn.

Enkel sourceföljare med matningsspänning V_{DD}/V_{SS} på \pm 5 V och drainström I_D på 0,5 mA.

Under förutsättning att sourceresistor R_S är mycket högre än inversen till MOSFET-transistorns transkonduktans 1/g_m:

$$R_S \gg \frac{1}{g_m}$$

så kommer sourceföljarens förstärkningsfaktor G närma sig ett, eftersom

$$G = \frac{R_S}{\frac{1}{g_m} + R_S} \approx \frac{R_S}{R_S} = 1$$

- Dock är detta inte alltid fallet, främst då MOSFET-transistorer generellt sett har relativt låg transkonduktans g_m, vilket medför att 1/g_m blir relativt hög. Då kommer sourceföljarens förstärkningsfaktor G minska.
- Som exempel, anta att en sourceföljare skall användas till en krets, där en matningsspänning V_{DD}/V_{SS} på ± 5 V används, se figuren till höger. Sourceföljarens drainström I_D skall sättas till ca 0,5 mA:

$$I_D = 0.5 mA$$

• Transkonduktansen g_m är proportionerlig med drainströmmen I_D.

$$g_m \sim I_D$$

• En genomsnittlig diskret MOSFET-transistor kan antas ha en transkonduktans g_m på 4 mS vid en drainström I_D på 1 mA. Därmed gäller att g_m kan antas vara 2 mS vid en drainström I_D på 2 mA:

$$g_m = 2 mS$$

Detta kan enkelt demonstreras. Transkonduktans på en given MOSFET-transistor kan beräknas med formeln

$$g_m = \frac{2I_D}{U_{GS} - U_T},$$

där g_m är transkonduktansen, I_D är drainströmmen, U_{GS} är gate-sourcespänningen och U_T är MOSFET-transistorns tröskelspänning.

 MOSFET-transistorn som används för att konstruera sourceföljare kan antas ha en tröskelspänning U_T på 2,5 V:

$$U_T = 2.5 V$$

samt en gate-sourcespänning U_{GS} på 3 V vid normal drift:

$$U_{GS} = 3 V$$

• Därmed blir transkonduktansen g_m lika med 2 mS vid en drainström I_D på 0,5 mA, då

$$g_m = \frac{2I_D}{U_{GS} - U_T} = \frac{2 * 0.5m}{3 - 2.5} = \frac{1m}{0.5} = 2 mS$$

• Vi dimensionerar sedan sourceföljaren i vilopunkten, alltså utan insignal. Genom att använda Kirchhoffs spänningslag från insignalen U_{IN} via gate-sourcespänningen U_{GS} till utsignalen så kan följande formel erhållas:

Genom att använda Kirchhoffs spänningslag samt Ohms lag kan sourceresistor R_S enkelt dimensioneras.

$$U_{IN}-U_{GS}-U_{UT}=0,$$

vilket kan transformeras till

$$U_{UT} = U_{IN} - U_{GS}$$

• I vilopunkten så är insignalen U_{IN} lika med noll, samtidigt som gate-sourcespänningen U_{GS} kan antas vara 3 V vid drift. Därmed bör utsignalen U_{UT} sättas till -3 V i vilopunkten, då

$$U_{UT} = U_{IN} - U_{GS} = 0 - 3 = -3 V$$

• Kirchhoffs spänningslag kan även användas från utsignalen U_{UT} via spänningsfallet R_SI_D över sourceresistor R_S till den negativa matningsspänningen V_{SS}:

$$U_{UT} - U_S - V_{SS} = 0,$$

vilket kan transformeras till

$$U_S = U_{UT} - V_{SS}$$

• Eftersom den negativa matningsspänningen V_{SS} är satt till -5 V, samtidigt som utspänningen U_{UT} är satt till -3 V i vilopunkten, så bör spänningsfallet U_S över sourceresistor R_S sättas till 2 V, då

$$U_S = U_{UT} - V_{SS} = -3 - (-5) = 2 V$$

 För att beräkna ett lämpligt värde på sourceresistor R_S så kan Ohms lag användas. Spänningsfallet U_S över sourceresistorn R_S är lika med resistansen R_S multiplicerat med strömmen som flödar genom R_S, vilket är drainströmmen I_D:

$$U_S = R_S * I_D,$$

vilket kan transformeras till

$$R_S = \frac{U_S}{I_D}$$

• För en drainström I_D på 0,5 mA så bör därmed sourceresistor R_S sättas till 4 k Ω för ett spänningsfall U_S på 2 V i vilopunkten, då

Färdigdimensionerad sourceföljare i vilopunkten (utan insignal).

$$R_S = \frac{2}{0.5m} = 4 k\Omega$$

• Närmaste värde i E12-serien är 3,9 k Ω , vilket vi väljer att använda:

$$R_{\rm S} = 3.9 \ k\Omega$$

Drainströmmen I_D blir då ca 0,51 mA, eftersom

$$I_D = \frac{U_S}{R_S} = \frac{2}{3.9k} \approx 0.51 \ mA$$

• För en transkonduktans g_m på 2 mS samt en sourceresistor R_S på 3,9 kΩ, så kan sourceföljarens förstärkningsfaktor G antas ligga runt 0,89, då

$$G = \frac{R_S}{\frac{1}{a_m} + R_S} = \frac{3.9k}{\frac{1}{2m} + 3.9k} \approx 0.89$$

- Detta indikerar en signalförlust på ca 11 %, vilket är relativt mycket.
- Sourceföljare har relativt låg utresistans, dock vanligtvis tio gånger högre än motsvarande emitterföljare. Sourceföljarens utresistans R_{UT} är ungefär lika med inversen till transkonduktansen, det vill säga 1/g_m:

$$R_{UT} \approx \frac{1}{g_m}$$

• Som nämndes tidigare så kan transkonduktansen g_m på en genomsnittlig NMOS-transistor antas vara 2 mS vid en drainström I_D på 0,5 mA MOSFET-transistor (samt hälften för motsvarande PMOS-transistor). Därmed så gäller att utresistansen R_{UT} på sourceföljaren ovan kan antas ligga runt 500 Ω , då

$$R_{UT} \approx \frac{1}{g_m} = \frac{1}{2m} = 500 \,\Omega$$

- Som en tumregel så bör drainströmmen I_D som flödar genom en given sourceföljare sättas till omkring 0,5 mA i diskreta förstärkarsteg. Högre drainström, exempelvis 1 mA medför en halverad utresistans (ca 250 Ω), då transkonduktansen g_m fördubblas till 4 mS.
- Dock medför ökad drainström att effektförbrukningen i en given krets ökar. Därför brukar en drainström I_D på omkring 0,5 mA användas i diskreta kretsar, då detta leder till relativt låga förlusteffekter, samtidigt som sourceföljaren fungerar väl och utresistansen hålls relativt låg.
- Däremot i integrerade kretsar, där strömmarna vanligtvis ligger i området μA, så användas dock vanligtvis mycket lägre ström än 0,5 mA, exempelvis 10 μA, vilket leder till ökad utresistans.
- Dock kan CMOS-transistorernas W/L-ratio (ratio mellan kanalbredd och kanallängd) justeras för att öka transkonduktansen g_m, vilket leder till minskad utresistans. Därmed så kan utresistansen hållas relativt låg i integrerade kretsar, trots att mycket små strömmar används.

4.3.17 - Härledning av sourceföljarens förstärkningsfaktor G

- Sourceföljarens förstärkningsfaktor G kan enkelt härledas genom att rita det ekvivalenta småsignalschemat, se figuren till höger.
- Notera att MOSET-transistorns utresistans r_o samt sourceresistor R_S utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (den punkt som de delar med ΔU_{UT}) och jord åt det andra. Detta medför att småsignalschemat till höger kan förenklas genom att R_S samt r_o ersätts med ersättningsresistansen R_S//r_o.
- Därefter kan småsignalschemat ritas om till den nedre figuren till höger, där resistansen Rs//ro är placerade i source.
- Sourceföljarens förstärkningsfaktor G är lika med ration mellan in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}}$$

• En formel för ΔU_{IN} kan enkelt härledas via Kirchhoffs spänningslag, genom beräkning från insignalen ΔU_{IN} till jord via MOSFET-transistorns gate-drainövergång samt ersättningsresistansen $R_S//r_0$ i source, se figuren till höger:

$$\Delta U_{IN} - \frac{I_D}{g_m} - (R_S / / r_o) I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = \frac{I_D}{g_m} + (R_S//r_o)I_D$$

• Genom att bryta ut drainströmmen I_D så erhålls följande formel:

$$\Delta U_{IN} = I_D \left(\frac{1}{g_m} + R_S / / r_o \right)$$

• Därefter härleds en formel för ΔU_{UT} med Kirchhoffs spänningslag, genom beräkning från utsignalen ΔU_{UT} till jord via ersättningsresistansen Rs//r₀ i source:

$$\Delta U_{IIT} - (R_S//r_o)I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{UT} = (R_S//r_o)I_D$$

Slutligen kan sourceföljarens förstärkningsfaktor G härledas ut de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{(R_S//r_o)I_D}{I_D \left(\frac{1}{g_m} + R_S//r_o\right)'}$$

där drainströmmen ID kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G = \frac{R_S//r_o}{\frac{1}{g_m} + R_S//r_o},$$

där R_S är sourceresistorn, r_o är MOSFET-transistorns utresistans och $1/g_m$ är inversen till MOSFET-transistorns transkonduktans g_m .

Sourceföljarens småsignalmodell. Sourceresistor R_S samt MOSFET-transistorns utresistans r_o utgör en parallellkoppling och kan därför ersättas med $R_S//r_o$, placerad i source.

Förenklat småsignalschema, där sourceresistor R_S samt MOSFET-transistorns utresistans r_o har blivit ersatta med $R_S//r_o$, vilket förenklar beräkning av sourceföljarens förstärkningsfaktor G.

• Vanligtvis är MOSFET-transistorns utresistans r₀ mycket högre än storleken på sourceresistor R₅:

$$r_o \gg R_S$$
,

vilket medför att ersättningsresistansen R_S//r_o blir ungefär lika med R_S, då

$$R_S / / r_o = \frac{R_S * r_o}{R_S + r_o} \approx \frac{R_S * r_o}{r_o} = R_S$$

 Därmed har MOSFET-transistorns utresistans r₀ mycket liten påverkan på sourceföljarens förstärkningsfaktor G och kan negligeras, eftersom

$$G = \frac{R_S//r_o}{\frac{1}{g_m} + R_S//r_o} \approx \frac{R_S}{\frac{1}{g_m} + R_S}$$

• Därmed kan den enkla sourceföljarens förstärkningsfaktor G approximeras till

$$G \approx \frac{R_S}{\frac{1}{g_m} + R_S}$$

där Rs är storleken på sourceresistorn och 1/gm är inversen till MOSFET-transistorns transkonduktans gm.

- Därmed ser vi att för enkla sourceföljare, så kan MOSFET-transistorns utresistans r_o försummas, då denna vanligtvis är mycket högre än storleken på sourceresistor R_s. Detta medför att r_o har minimal påverkan på kretsen, vilket vi tidigare har sett även är fallet på enkla GS-steg.
- Dock kan MOSFET-transistorns utresistans r_o inte alltid negligeras, såsom i förbättrade sourceföljare, där sourceresistor R_S ersätts med någon typ av strömspegel för ökad resistans i source och därmed högre förstärkningsfaktor G. I sådana kretsar så kan strömspegelns utresistans r_{o,CM} med stor sannolikhet vara ungefär lika stor eller större än r_o, vilket medför att både r_{o,CM} samt r_o kommer påverka sourceföljarens förstärkningsfaktor G.

Sourceföljarens förstärkningsfaktor G i lastat tillstånd:

- I lastat tillstånd så är en given lastresistans R_L placeras på sourceföljarens utgång, se den högra figuren.
- För att härleda sourceföljarens förstärkningsfaktor G i lastat tillstånd så börjar vi med att rita ut dess småsignalschema i lastat tillstånd, se den vänstra figuren nedan.
 Matningsspänningarna V_{DD} samt V_{SS} kortsluts, gate-sourcespänningen U_{GS} ersätts med dess motsvarighet I_D/g_m och in- samt utsignalen U_{IN} respektive U_{UT} ersätts med deras motsvarigheter i småsignalschemat, ΔU_{IN} och ΔU_{UT}.
- Det är lätt att se direkt att R_L är parallellkopplad med sourceresistor R_S, då båda är anslutna till samma potential, ΔU_{UT} på ena hållet och jord åt den andra. Därmed kan R_S och R_L ersättas med ersättningsresistansen R_S//R_L, placerad i source.
 Småsignalschemat kan sedan ritas om till den mittersta figuren nedan.
- Notera även att MOSFET-transistorns utresistans r_o är ansluten till potentialen ΔU_{UT} åt ena hållet och jord åt det andra. Därmed så utgör resistanserna $R_S//R_L$ samt r_o en parallellkoppling och kan därmed ersättas med ersättningsresistansen $R_S//R_L//r_o$.

Sourceföljare i lastat tillstånd. En lastresistans R_L är därmed placerad på dess utgång, vilket kan leda till minskad förstärkningsfaktor G, beroende på lastresistansens storlek.

• För att efterlikna en enkel sourceföljare så mycket som möjligt, så kan ersättningsresistansen R_s//R_L//r₀ placeras i source. Därmed kan småsignalschemat ritas om till den högra figuren nedan.

Småsignalschema för en lastad sourceföljare. Sourceresistor R_S , lastresistans R_L samt MOSFET-transistorns utresistans r_0 utgör en parallellkoppling $R_S//R_L//r_0$, och kan därför ersättas med ersättningsresistansen $R_S//R_L//r_0$, placerad i source.

• Därefter kan sourceföljarens förstärkningsfaktorn G beräknas som i olastat tillstånd. Som vi tidigare har sett så gäller det att sourceföljarens förstärkningsfaktor G är lika med ration mellan in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

där ΔU_{IN} kan enkelt härledas via Kirchhoffs spänningslag, genom beräkning från insignalen ΔU_{IN} till jord via MOSFET-transistorns gate-drainövergång samt ersättningsresistansen $R_S//R_L/r_o$ i source, se den högra figuren ovan:

$$\Delta U_{IN} - \frac{I_D}{g_m} - (R_S //R_L //r_o)I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = \frac{I_D}{g_m} + (R_S//R_L//r_o)I_D,$$

där drainströmmen ID kan brytas ut, vilket ger

$$\Delta U_{IN} = I_D \left(\frac{1}{g_m} + R_S //R_L //r_o \right)$$

• Därefter kan ΔU_{UT} härledas via Kirchhoffs spänningslag, genom beräkning från utsignalen ΔU_{UT} till jord via ersättningsresistansen R_S//r_o i source, se figuren till höger:

$$\Delta U_{UT} - (R_S//R_L//r_o)I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{UT} = (R_S / / R_L / / r_o) I_D$$

 Slutligen kan sourceföljarens förstärkningsfaktor G härledas ut de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{(R_S//R_L//r_o)I_D}{I_D\left(\frac{1}{g_m} + R_S//R_L//r_o\right)'},$$

Förenklat småsignalschema för sourceföljaren i lastat tillstånd.

där drainströmmen I_D kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$G = \frac{R_S//R_L//r_o}{\frac{1}{g_m} + R_S//R_L//r_o},$$

där R_S är sourceresistorn, R_L är lastresistansen, r_0 är MOSFET-transistorns utresistans och $1/g_m$ är inversen till MOSFET-transistorns transkonduktans g_m .

Vi kan som tidigare anta att MOSFET-transistorns utresistans r₀ mycket högre än storleken på sourceresistor R₅:

$$r_o \gg R_S$$
,

vilket medför att ersättningsresistansen R_S//r_o blir ungefär lika med R_S, då

$$R_S / / r_o = \frac{R_S * r_o}{R_S + r_o} \approx \frac{R_S * r_o}{r_o} = R_S$$

• Därmed kan MOSFET-transistorns utresistans r_o försummas, vilket medför att sourceföljarens förstärkningsfaktor G kan approximeras till

$$G \approx \frac{R_S//R_L}{\frac{1}{g_m} + R_S//R_L}$$

- I detta fall kan vikten av att eventuell lastresistans R_L är högohmig, särskilt i förhållande till sourceresistor R_S, demonstreras.
- Om lastresistansen R_L är mycket högohmig så gäller att

$$R_L \gg R_S$$

Då blir ersättningsresistansen R₅//RL ungefär lika med R₅, då

$$R_S//R_L = \frac{R_S * R_L}{R_S + R_I} \approx \frac{R_S//R_L}{R_I} = R_S$$

 Därmed kan lastresistansen R_L försummas, vilket medför att sourceföljarens förstärkningsfaktor G kan beräknas som i olastat tillstånd, då

$$G \approx \frac{R_S//R_L}{\frac{1}{g_m} + R_S//R_L} \approx \frac{R_S}{\frac{1}{g_m} + R_S}$$

• Däremot om lastresistansen R∟är lågohmig så gäller att

$$R_L \ll R_S$$

• Då blir ersättningsresistansen R_S//R_L ungefär lika med R_L, då

$$R_S//R_L = \frac{R_S * R_L}{R_S + R_L} \approx \frac{R_S//R_L}{R_S} = R_L$$

• I detta fall kan alltså sourceresistor Rs försummas, vilket medför att sourceföljarens förstärkningsfaktor G kan approximeras till

$$G \approx \frac{R_S//R_L}{\frac{1}{g_m} + R_S//R_L} \approx \frac{R_L}{\frac{1}{g_m} + R_L}$$

- Ju lägre lastresistansen R_L är i förhållande till inversen till MOSFET-transistorns transkonduktans g_m desto lägre blir förstärkningsfaktorn G.
- Som exempel, anta att R_L och 1/g_m är lika stora:

$$\frac{1}{g_m} = R_L,$$

vilket medför att

$$\frac{1}{q_m} + R_L = R_L + R_L = 2R_L$$

så kan sourceföljarens förstärkningsfaktor G approximeras till 0,5, då

$$G \approx \frac{R_L}{\frac{1}{g_m} + R_L} = \frac{R_L}{2R_L} = 0.5$$

- Resultatet indikerar en signalförlust på 50 %, vilket i de flesta fall är oacceptabelt.
- Däremot om lastresistansen R_L är mycket lågohmig så kan vi anta att inversen till MOSFET-transistorns transkonduktans g_m
 är mycket större än R_L:

$$\frac{1}{g_m} \gg R_L,$$

vilket medför att

$$\frac{1}{g_m} + R_L \approx \frac{1}{g_m}$$

• Då kan sourceföljarens förstärkningsfaktor G vidare approximeras till

$$G \approx \frac{R_L}{\frac{1}{g_m} + R_L} \approx \frac{R_L}{\left(\frac{1}{g_m}\right)}$$

 $\bullet \quad \text{Eftersom } R_L \, \text{\"{ar} mycket mindre \"{a}n 1/g_m s\^{a} kan sourcef\"{o}ljarens f\"{o}rst\"{a}rkningsfaktor G t\"{a}nkas g\^{a} mot noll:}$

$$G \approx \frac{R_L}{\left(\frac{1}{g_m}\right)} \approx 0,$$

då

$$\frac{1}{g_m} \gg R_L$$

4.3.18 - Härledning av sourceföljarens in- och utresistans

• Sourceföljarens inresistans R_{IN} kan antas gå mot oändlighet, då insignalen U_{IN} är direkt ansluten till gate på en MOSFET-transistor se figuren till höger:

$$R_{IN} = \infty$$

- För att härleda en formel för sourceföljarens utresistans R_{UT} så kan dess småsignalschema ritas ut, med insignalen ΔU_{IN} kortsluten, se den vänstra figuren nedan.
- Som synes nedan så är MOSFET-transistorn diodkopplad, då både dess gate samt drain är anslutna till jord, vilket medför att dessa har samma potential.
- Diodkopplade MOSFET-transistorer kan ersättas med ersättningsresistansen (1/g_m)//r_o, där 1/g_m är inversen till MOSFET-transistorns transkonduktans och r_o är dess utresistans. Därmed kan småsignalschemat ritas om till den mittersta figuren nedan, där MOSFET-transistorn har blivit ersatt av en resistor med resistansen (1/g_m)//r_o.

Enkel sourceföljare.

Sourceföljarens småsignalschema för beräkning av utresistansen R_{UT} . MOSFET-transistorn är diodkopplad, se den vänstra figuren och kan därför ersättas med $(1/g_m)//r_o$, se den mittersta figuren.

Därefter utgör sourceresistor R_S samt $(1/g_m)//r_o$ en parallellkoppling, som kan ersättas med $(1/g_m)//r_o//R_S$, se den högra figuren. Därefter återstår endast en resistans, vilket är lika med sourceföljarens utresistans R_{UT} .

- I det mittersta småsignalschemat ovan så kan man direkt se att de ersättningsresistansen (1/g_m)//r₀ samt sourceresistor Rs är parallellkopplade, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) samt jord åt det andra.
 Detta medför att de två resistanserna kan ersättas med en resistor vars resistans är lika med (1/g_m)//R₅//r₀.
- Småsignalschemat kan sedan ritas om till den högra figuren ovan, där endast en resistor återstår. Denna resistor är lika med sourceföljarens utresistans R_{UT}.
- Därmed gäller att

$$R_{UT} = \frac{1}{g_m} / / R_S / / r_o$$

I de flesta fall så är MOSFET-transistorns utresistans r₀ mycket högre än inversen till dess transkonduktans 1/gm:

$$r_o \gg \frac{1}{g_m}$$

• Detta medför att den diodkopplade MOSFET-transistorns ersättningsresistans (1/gm)//ro är ungefär lika med 1/gm, då

$$\frac{1}{g_m} / / r_o = \frac{\frac{1}{g_m} * r_o}{\frac{1}{g_m} + r_o} \approx \frac{\frac{1}{g_m} * r_o}{r_o} = \frac{1}{g_m}$$

- Därmed kan MOSFET-transistorns utresistans r₀ försummas vid beräkning av sourceföljarens utresistans.
- Sourceföljarens utresistans R_{UT} kan därför approximeras till

$$R_{UT} \approx \frac{1}{g_m} / / R_S$$

• Under förutsättning att sourceresistor R_S har dimensionerats korrekt eller har blivit ersatt med en strömspegel, så kan vi anta att R_S är mycket högre än inversen till MOSFET-transistorns transkonduktans 1/g_m:

 $R_S \gg \frac{1}{g_m}$

vilket medför att

$$\frac{1}{g_m} / / R_S = \frac{\frac{1}{g_m} * R_S}{\frac{1}{g_m} + R_S} \approx \frac{\frac{1}{g_m} * R_S}{R_S} = \frac{1}{g_m}$$

 Därmed kan sourceresistor R_S vanligtvis försummas vid beräkning av sourceföljarens utresistans R_{UT}. Detta medför att sourceföljarens utresistans R_{UT} kan approximeras till

$$R_{UT} \approx \frac{1}{g_m}$$

där $1/g_m$ är inversen till MOSFET-transistorns transkonduktans.

• Sourceföljarens utresistans Rut kan härledas med Ohms lag via det förenklade schemat ovan:

$$R_{UT} = \frac{\Delta U_{UT}}{I_{UT}},$$

där ΔU_{UT} är sourceföljarens utsignal i småsignalschemat ovan och utströmmen I_{UT} är lika med drainströmmen I_D, som flödar genom sourceföljaren:

$$I_{IIT}=I_{D}$$

vilket medför att

$$R_{UT} = \frac{\Delta U_{UT}}{I_D}$$

• Notera att spänningsfallet $[(1/g_m)//R_S//r_o] * I_D$ över ersättningsresistansen $(1/g_m)//R_S//r_o$ är lika med utspänningen ΔU_{UT} i småsignalschemat. Därmed gäller att

$$\left(\frac{1}{g_m}//R_S//r_o\right) * I_D = \Delta U_{UT}$$

Genom att transformera formeln ovan så kan sourceföljarens utresistans R_{UT} härledas:

$$R_{UT} = \frac{\Delta U_{UT}}{I_D} = \frac{\left(\frac{1}{g_m} // R_S // r_o\right) * I_D}{I_D},$$

där drainströmmen ID kan elimineras, då denna förekommer i både täljaren och nämnaren. Därmed gäller att

$$R_{UT} = \frac{1}{g_m} // R_S // r_o,$$

som kan approximeras till

$$R_{UT} pprox rac{1}{g_m}$$

- Därmed ser vi att sourceföljarens utresistans R_{UT} är relativt låg, vilket är positivt för att kunna driva lågohmiga laster.
- Som nämnts tidigare så kan en genomsnittlig NMOS-transistor tänkas ha en transkonduktans g_m på 4 mS vid en drainström I_D på 1 mA (2 mS för motsvarande PMOS-transistor), vilket medför en utresistans R_{UT} runt 250 Ω , då

$$R_{UT} pprox \frac{1}{q_m} = \frac{1}{4m} = 250 \,\Omega$$

• Som nämnts tidigare så faller också MOSFET-transistorns transkonduktans g_m proportionerligt med minskad drainström I_D . Vid en drainström I_D på 0,5 mA så kan därför transkonduktansen g_m tänkas minska till 2 mS, vilket medför en utresistans R_{UT} runt 500 Ω , då

$$R_{UT} \approx \frac{1}{a_m} = \frac{1}{2m} = 500 \,\Omega$$

- Givetvis kan sourceföljarens utresistans R_{UT} sänkas genom att öka drainströmmen I_D. Samtidigt leder detta till ökad effektförbrukning, så detta är en avvägning som måste göras för varje enskilt fall.
- Som ett alternativ kan givetvis en emitterföljare användas, som kan tänkas ha en utresistans R_{UT} som är tio gånger lägre än motsvarande sourceföljare vid samma kollektorström I_C/drainström I_D. Detta beror på att BJT-transistorn på emitterföljarens ingång innehar ungefär tio gånger högre transkonduktans g_m än motsvarande MOSFET-transistor, vilket enkelt kan demonstreras.
- En BJT-transistors transkonduktans g_m är lika med inversen till dess inbyggda emitterresistans r_e:

$$g_m = \frac{1}{r_e},$$

där re kan beräknas med formeln

$$r_e = \frac{26}{I_{C(mA)}},$$

där I_{C(mA)} är kollektorströmmen som flödar igenom emitterföljaren, mätt i mA.

• Vid en kollektorström I_C på 0,5 mA så hamnar BJT-transistorns inbyggda emitterresistans r_e runt 52 Ω, då

$$r_e = \frac{26}{I_{C(mA)}} = \frac{26}{0.5} = 52 \,\Omega,$$

vilket motsvarar en transkonduktans gm på ca 19,23 mS, då

$$g_m = \frac{1}{r_e} = \frac{1}{52} \approx 19,23 \text{ mS},$$

vilket är ca tio gånger högre än transkonduktans gm på motsvarande MOSFET-transistor vid samma drainström lb.

• Därmed kan emitterföljarens utresistans R_{UT} vid en kollektorström I_C på 0,5 mA tänkas ligga runt 52 Ω, då

$$R_{UT} pprox rac{1}{g_m} pprox rac{1}{19,23m} = 52 \,\Omega,$$

vilket är ca tio gånger lägre än motsvarande sourceföljare vid en drainström I₂ på 0,5 mA.

 En nackdel med emitterföljaren är dock dess inresistans R_{IN}, som är kraftigt begränsad jämfört med motsvarande sourceföljare. Som vi har sett tidigare så finns dock åtgärder som kan vidtas för att öka emitterföljarens inresistans R_{IN}, såsom strömspeglar och Darlingtonpar. Avvägningar bör därför göras för att välja vilken spänningsföljare som lämpar sig bäst för ett givet ändamål.

Sourceföljarens utresistans RuT i lastat tillstånd:

- En formel för sourceföljarens utresistans R_{UT} i lastat tillstånd kan härledas via dess ekvivalenta småsignalschema ritas ut, med insignalen U_{IN} kortsluten, se den vänstra figuren nedan.
- Som synes nedan så utgör sourceresistor R_S samt lastresistans R_L en parallellkoppling, vilket medför att dessa kan ersättas med en resistor vars resistans är lika med $R_S//R_L$. Vi kan sedan rita om småsignalschemat till figuren näst längst till vänster nedan.
- Precis som i olastat tillstånd så är MOSFET-transistorn på sourceföljarens ingång.
 diodkopplad, då både dess gate samt drain är anslutna till jord, vilket medför att dessa har samma potential.

Enkel sourceföljare i lastat tillstånd.

 Därmed kan MOSFET-transistorn ersättas med en resistor vars resistans är lika med (1/g_m)//r_o, där 1/g_m är inversen till MOSFET-transistorns transkonduktans och r_o är dess utresistans. Småsignalschemat kan sedan ritas om till figuren näst längst åt höger nedan.

Sourceföljarens småsignalschema för beräkning av utresistans $R_{\rm UT}$ i lastat tillstånd, som kan beräknas genom att förenkla småsignalschemat tills endast en resistor återstår, se den högra figuren ovan. Kvarvarande resistans $(1/g_m)/R_{\rm S}/R_{\rm L}/r_{\rm o}$ är lika med sourceföljarens utresistans $R_{\rm UT}$ i lastat tillstånd.

- I småsignalschemat näst längst till höger så kan man enkel se att de två kvarvarande resistanserna e $(1/g_m)//r_o$ samt R_s/R_L , då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) samt jord åt det andra. Detta medför att de två resistanserna kan ersättas med en resistor vars resistans är lika med $(1/g_m)//R_s//R_L//r_o$.
- Småsignalschemat kan sedan ritas om till den högra figuren ovan, där endast en resistor återstår, som är lika med sourceföljarens utresistans R_{UT} i lastat tillstånd. Därmed gäller att

$$R_{UT} = \frac{1}{g_m} / / R_S / / R_L / / r_o$$

där $1/g_m$ är inversen till MOSFET-transistorns transkonduktans, R_S är storleken på sourceresistorn, R_L är lastresistansen och r_0 är MOSFET-transistorns utresistans.

• Som vi har sett tidigare så är MOSFET-transistorns utresistans r₀ vanligtvis mycket högre än inversen till dess transkonduktans 1/g_m:

$$r_o \gg \frac{1}{g_m}$$

vilket medför att den diodkopplade MOSFET-transistorns ersättningsresistans (1/g_m)//r_o kan approximeras till 1/g_m, då

$$\frac{1}{g_m} / / r_o = \frac{\frac{1}{g_m} * r_o}{\frac{1}{g_m} + r_o} \approx \frac{\frac{1}{g_m} * r_o}{r_o} = \frac{1}{g_m}$$

• Därmed kan MOSFET-transistorns utresistans r_0 försummas vid beräkning av sourceföljarens utresistans, oavsett storleken på lastresistansen R_L .

• Sourceföljarens utresistans R_{UT} i lastat tillstånd kan därmed approximeras till

$$R_{UT} \approx \frac{1}{g_m} / / R_S / / R_L$$

Vidare kan vi anta att sourceresistor Rs är mycket högre än inversen till MOSFET-transistorns transkonduktans 1/gm:

$$R_S \gg \frac{1}{g_m}$$

förutsatt att Rs har dimensionerats korrekt eller har blivit ersatt med en strömspegel, vilket medför att

$$\frac{1}{g_m} / / R_S = \frac{\frac{1}{g_m} * R_S}{\frac{1}{g_m} + R_S} \approx \frac{\frac{1}{g_m} * R_S}{R_S} = \frac{1}{g_m}$$

• I normalfallet så kan alltså även sourceresistor R_S försummas vid beräkning av sourceföljarens utresistans R_{UT}, oavsett lastresistansen R_L:s storlek. Detta medför att sourceföljarens utresistans R_{UT} i lastat tillstånd kan approximeras till

$$R_{UT} \approx \frac{1}{g_m} / / R_L$$

där $1/g_m$ är inversen till MOSFET-transistorns transkonduktans och R_L är lastresistansen.

• Även lastresistansen R_L kan försummas om denna vida överstiger inversen till MOSFET-transistorns transkonduktans 1/g_m:

 $R_L \gg \frac{1}{g_m}$

då detta medför att

$$\frac{1}{g_m} / / R_L = \frac{\frac{1}{g_m} * R_L}{\frac{1}{g_m} + R_L} \approx \frac{\frac{1}{g_m} * R_L}{R_L} = \frac{1}{g_m}$$

• Vid högohmig last, alltså då lastresistansen R_L är hög, så kan därmed sourceföljarens utresistans R_{UT} approximeras som i olastat tillstånd:

$$R_{UT} \approx \frac{1}{g_m}$$

 Däremot om lastresistansen R_L är lågohmig, så kommer sourceföljarens utresistans R_{UT} minska. Som exempel, anta att R_L är mycket lägre än inversen till MOSFET-transistorns transkonduktans 1/g_m:

$$R_L \ll \frac{1}{g_m}$$

• Då gäller att sourceföljarens utresistans R_{UT} kan approximeras till lastresistansen R_L, då

$$R_{UT} pprox rac{1}{g_m} / / R_L = rac{rac{1}{g_m} * R_L}{rac{1}{g_m} + R_L} pprox rac{rac{1}{g_m} * R_L}{\left(rac{1}{g_m}
ight)} = R_L$$

• Därmed ser vi att lågohmiga laster kan minska sourceföljarens utresistans R_{UT}, vilket oftast inte är en nackdel. Som vi såg tidigare så minskar dock även sourceföljarens förstärkningsfaktor G, vilket innebär signalförluster. Därför bör eventuell lastresistans R_L hållas hög om det är möjligt.

4.3.19 - Förbättrade sourceföljare för ökad förstärkningsfaktor G

- Sourceföljarens förstärkningsfaktor G kan ökas genom att använda en strömspegel som last istället för sourceresistor, se figuren till höger.
- Beroende på applikation så kan sourceföljarens drain jordas ifall denna skall används på ingången till exempelvis en spänningsförstärkare eller differentialförstärkare, för att minska drain-sourcespänningen U_{DS} något. Detta påverkar varken förstärkningsfaktor, ineller utresistans.
- Däremot om sourceföljaren däremot används som buffer på ingången till ett slutsteg så hade utsignalens topp-till-topp-värde minskat kraftigt om drain jordats.
- I sådana fall hade det varit mer fördelaktigt att ansluta sourceföljarens drain till den positiva matningsspänningen V_{DD} eller till en specifik punkt på slutstegets fördrivare, vilket vi kommer se senare. För sådana tillämpningar kan mycket robusta MOSFET-transistorer behövas, vilket kan kosta mer.
- Antag att sourceföljaren till höger skall konstrueras, såsom figuren till höger, där drainströmmen I_D skall sättas till 0,5 mA och matningsspänningen V_{DD}/V_{SS} är satt till ±30 V.
- I detta fall så används en strömspegel bestående av transistor Q1 och Q2 för att öka sourceföljarens förstärkningsfaktor G. MOSFET-transistorn på ingången betecknas M3 och dess utresistans r₀₃.

Sourceföljare med enkel strömspegel som last, vilket leder till ökad förstärkningsfaktor G, samtidigt som in- och utresistansen R_{IN} samt R_{UT} förblir i princip oförändrade.

 I praktiken så utgör endast den högra sidan av strömspegeln bestående av transistor Q1 ett motstånd i sourceföljaren, medan vänstersidan bestående av transistor Q2 samt referensresistor R_{REF} endast utgör en referenskrets som sätter drainströmmen I_D till 0,5 mA.

Kortfattat beräkning av sourceföljarens parametrar:

• Som vi snart kommer se så kan sourceföljarens förstärkningsfaktor G i detta fall beräknas med formeln

$$G = \frac{r_{o,CM}//r_{o3}}{\frac{1}{g_{m3}} + r_{o,CM}//r_{o3}},$$

där $r_{0,CM}$ är strömspegelns utresistans (CM står för *Current Mirror*, alltså strömspegel), r_{03} är MOSFET-transistor M3:s utresistans och $1/g_{m3}$ är inversen till dess transkonduktans g_{m3} .

- Som vi tidigare sett så kan en genomsnittlig NMOS-transistor antas ha en transkonduktans g_m på 4 mS vid en drainström I_D på 1 mA, där g_m minskar linjärt med minskad I_D.
- Därmed kan transistor M3:s transkonduktans g_{m3} antas ligga omkring 2 mS vid en drainström I_D på 0,5 mA:

$$g_{m3} = 2 \, mS$$

• Motsvarande PMOS-transistor kan tänkas inneha hälften så hög transkonduktans vid samma drainström I_D, vilket innebär en transkonduktans g_m på 2 mS vid en drainström I_D på 1 mA.

Transistorernas respektive utresistans r₀ kan approximeras med formeln

$$r_o \approx \frac{U_A}{I_D}$$

där rorespektive transistor utresistans, UA är dess Earlyspänning och ID är drainströmmen som flödar genom sourceföljaren.

• Vi kan anta att samtliga transistorer i kretsen har en Earlyspänning U_A på 100 V, vilket kan ses som ett genomsnittligt värde för diskreta transistorer:

$$U_A = 100 V$$

Vid en drainström I₀ på 0,5 mA så kan transistorernas respektive utresistans r₀ antas ligga runt 200 kΩ, då

$$r_o \approx \frac{100}{0.5m} = 200 \ k\Omega,$$

vilket medför att

$$r_{o1} = r_{o2} = r_{o3} \approx 200 \ k\Omega$$

• Som vi såg tidigare i kapitel 4.2 – Spänningsförstärkaren, så innebär emitterresistorerna R_{E1} samt R_{E2} i strömspegeln att den enkla strömspegelns utresistans r_{0,CM}, som i normalfallet är lika med transistor Q1:s utresistans r₀₁, ökar med emitterfaktorn EF, som vanligtvis är tio:

$$r_{o,CM} \approx r_{o1} * EF$$
,

där r₀₁ är transistor Q1:s utresistans och EF är strömspegelns emitterfaktor, som blir ungefär tio då emitterresistorer Rɛ₁ samt Rɛ₂ dimensioneras så att spänningsfallet över dem ligger omkring 220 mV:

$$EF \approx 10$$

• Därmed kan strömspegelns utresistans r_{o,CM} antas vara tio gånger högre än transistor Q1:s utresistans r_{o1}:

$$r_{o.CM} \approx 10 * r_{o.1}$$

vilket enkelt kan demonstreras.

• Strömspegelns emitterfaktor EF indikerar med hur stor faktor som emitterresistorer R_{E1} samt R_{E2} höjer den totala emitterresistansen på respektive sida av strömspegeln. Eftersom de två sidorna av strömspegeln är identiska så kan emitterfaktorn beräknas på en av sidorna. Vi väljer därför högersidan, som är ansluten till transistor Q1. Där gäller att

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}},$$

där R_{E1} är emitterresistorn ansluten till transistor Q1 och r_{e1} är transistor Q1:s inbyggda emitterresistans, som kan beräknas med formeln

$$r_{e1} = \frac{26}{I_{D(mA)}},$$

där I_{D(mA)} är drainströmmen I_D mätt i mA.

• För en drainström I_D på 0,5 mA så blir därmed r_{e1} 52 Ω , då

$$r_{e1} = \frac{26}{I_{D(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

• Emitterresistorer R_{E1} samt R_{E2} används för att minska brus samt öka strömspegelns utresistans r_{0,CM}. Förutsatt att dessa resistorer dimensioneras så att ca 220 mV faller över dem så kommer strömspegelns utresistans r_{0,CM} öka med en faktor tio, vilket vi kommer se nedan.

• Vid en drainström I_D på 0,5 mA, så bör R_{E1} samt R_{E2} sättas till omkring 440 Ω, då

$$R_{E1} = R_{E2} = \frac{220}{I_{D(mA)}} = \frac{220}{0.5} = 440 \ \Omega$$

• Närmaste värde i E12-serien är 470 Ω , vilket vi väljer att använda:

$$R_{E1} = R_{E2} = 470 \,\Omega$$

• Strömspegelns emitterfaktor EF kan antas hamna runt tio, eftersom

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}} = \frac{470 + 52}{52} \approx 10$$

 Därmed kan strömspegelns utresistans r_{o,CM} antas ligga runt 2 MΩ vid en drainström I_D på 0,5 mA samt en emitterfaktor EF på tio, då

$$r_{o.CM} = r_{o...} * EF = 200k * 10 = 2 M\Omega$$

Därefter kan sourceföljarens förstärkningsfaktor G beräknas:

$$G = \frac{r_{o,CM}//r_{o3}}{\frac{1}{g_{m3}} + r_{o,CM}//r_{o3}} = \frac{2M//200k}{\frac{1}{2m} + 2M//200k},$$

där

$$2M//200k = \frac{2M * 200k}{2M + 200k} \approx 182 k\Omega,$$

vilket medför att

$$G = \frac{182k}{500 + 182k} \approx 0,997$$

- Eftersom r_{o,CM}//r_{o3} är så mycket högre än inversen 1/g_{m3} till MOSFET-transistorns transkonduktans g_{m3}, så blir sourceföljarens förstärkningsfaktorn alltså nästan lika med ett. Signalförlusten ligger i detta fall runt 0,27 %, vilket kan försummas!
- Sourceföljarens inresistans R_{IN} kan som vanligt antas gå mot oändlighet (då insignalen är direkt ansluten till MOSFET-transistorns gate):

$$R_{IN} = \infty$$

• Sourceföljarens utresistans R_{UT} kan som vanligt approximeras till

$$R_{UT} \approx \frac{1}{g_m}$$

där 1/gm är inversen till MOSFET-transistorns transkonduktans.

• Eftersom en NMOS-transistor används på sourceföljarens ingång, där drainströmmen I_D är satt till 0,5 mA, så kan transkonduktansen g_m antas ligga runt 2 mS, vilket innebär en utresistans på runt 500 Ω, då

$$R_{UT} \approx \frac{1}{g_m} = \frac{1}{2m} = 500 \,\Omega$$

Härledning av den förbättrade sourceföljarens förstärkningsfaktor G:

- För att härleda en formel sourceföljarens förstärkningsfaktor G så kan dess småsignalschema ritas ut, se den vänstra figuren nedan.
- Matningsspänningen V_{SS} samt strömspegelns referenskrets kortsluts och gatesourcespänningen U_{GS} ersätts med spänningsfallet I_D/g_{m3}, där g_{m3} är MOSFET-transistor M3:s transkonduktans.
- Slutligen ersätts in- och utspänningen U_{IN} samt U_{UT} med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN} samt ΔU_{UT} .
- Småsignalschemat nedan till vänster kan förenklas genom att strömspegelns ersätts av dess ekvivalenta utresistans r_{o,CM}, där CM står för *Current Mirror*, alltså strömspegel.
 Småsignalschemat kan sedan ritas om till den mittersta figuren nedan.
- Som synes i den mittersta figuren nedan så utgör transistor M3:s utresistans r_{03} samt strömspegelns utresistans $r_{0,CM}$ en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet, tillsammans med ΔU_{UT} , samtidigt som de är anslutna till jord åt andra hållet.

Förbättrad sourceföljare, där en enkel strömspegel används som last.

- Därmed är spänningsfallet över $r_{0,CM}$ samt r_{03} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$), vilket medför att de kan tänkas vara parallellkopplade och kan därför ersättas med en resistor, vars resistans är lika med $r_{0,CM}//r_{03}$, placerad i source.
- Därefter kan småsignalschemat ritas om till den högra figuren nedan. Notera att när resistansen r_{o,CM}//r_{o3} placeras i source så blir spänningsfallet över denna fortfarande lika ΔU_{UT}, vilket tidigare var fallet för r_{o,CM} samt r_{o3}. Detta indikerar att det ekvivalenta småsignalschemat nedan till höger är korrekt.
- Efter att ha förenklat småsignalschemat till den högra figuren nedan, så kan sourceföljarens förstärkningsfaktor G härledas via formler för in- och utsignalen ΔU_{IN} samt ΔU_{UT}.

Småsignalschema för sourceföljaren ovan. Genom att stegvis förenkla småsignalschemat från den vänstra till den högra figuren, så kan sourceföljarens förstärkningsfaktor G sedan härledas genom att härleda formler för ΔU_{IN} samt ΔU_{UT}.

• Som vanligt gäller att sourceföljarens förstärkningsfaktor G är lika med ration av in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}}$$

• Därmed måste formler härledas för ΔU_{IN} samt ΔU_{UT} , vilket enkelt kan genomföra med Kirchhoffs spänningslag.

- Vi använder det förenklade småsignalschema som togs fram tidigare, som också visas till höger, för att härleda formler för sourceföljarens in- och utsignal ΔU_{IN} samt ΔU_{UT} i småsignalschemat.
- Insignalen ΔU_{IN} kan enkelt härledas via Kirchhoffs spänningslag, genom beräkning från insignalen ΔU_{IN} till jord via MOSFET-transistorns gate-drainövergång samt ersättningsresistansen r_{o,CM}//r_{o3} i source.
- Därmed gäller att

$$\Delta U_{IN} - \frac{I_D}{g_{m3}} - (r_{o,CM}//r_{o3})I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = \frac{I_D}{g_{m3}} + (r_{o,CM}//r_{o3})I_D,$$

där drainströmmen ID kan brytas ut, vilket ger

$$\Delta U_{IN} = I_D \left(\frac{1}{g_{m3}} + r_{o,CM} / / r_{o3} \right)$$

• Därefter kan ΔU_{UT} härledas via Kirchhoffs spänningslag, genom beräkning från utsignalen ΔU_{UT} till jord via ersättningsresistansen $r_{0,CM}//r_{03}$ i source, se figuren ovan till höger:

$$\Delta U_{UT} - (r_{o,CM}//r_{o3})I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{UT} = (r_{o,CM}//r_{o3})I_D$$

• Sourceföljarens förstärkningsfaktor G kan sedan härledas ut de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{(r_{o,CM}//r_{o3})I_{D}}{I_{D}(\frac{1}{g_{m3}} + r_{o,CM}//r_{o3})},$$

där drainströmmen ID kan elimineras, då denna förekommer i både täljare och nämnare, vilket medför att

$$G = \frac{r_{o,CM}//r_{o3}}{\frac{1}{g_{m3}} + r_{o,CM}//r_{o3}},$$

där $r_{o,CM}$ är strömspegelns utresistans, r_{o3} är MOSFET-transistorns utresistans och $1/g_{m3}$ är inversen till MOSFET-transistorns transkonduktans g_{m3} .

• Därmed måste strömspegelns utresistans $r_{o,CM}$ beräknas. Tidigare approximerades $r_{o,CM}$ via transistor Q1:s utresistans r_{o1} , som antogs ligga omkring 200 k Ω , samt strömspegelns emitterfaktor EF, som antogs vara tio, i enlighet med formeln

$$r_{o,CM} \approx r_{o1} * EF \approx 200k * 10 = 2 M\Omega$$

• I detta exempel skall en formel för r_{o,CM} härledas via dess ekvivalenta småsignalmodell. Ur denna formel beräknas sedan r_{o,CM}. Vi kommer då se att approximationen ovan ger ett ackurat värde med en felmarginal under 10 %, samtidigt som uträkningarna förenklas avsevärt.

Förenklat småsignalschema för den förbättrade sourceföljaren ovan.

Härledning samt beräkning av strömspegelns utresistans ro,CM:

- För att beräkna strömspegelns utresistans r_{o,CM} så kan ett småsignalschema speciellt anpassat för beräkning av utresistans användas, se den vänstra figuren nedan. In- och utspänningen kortsluts och en spänningskälla U_X placeras på utgången, Vi ritar därefter ut det vänstra småsignalschemat nedan.
- Notera att transistor Q1:s inbyggda basresistans $r_{\pi 1}$ samt emitterresistor R_{E1} utgör en parallellkoppling, då dessa är anslutna till samma punkt på ena sidan och anslutna till jord på andra sidan. Därmed är spänningsfallet över de båda resistanserna samma.
- R_{E1} samt $r_{\pi 1}$ kan därför ersättas med en resistor, vars resistans är lika med R_{E1}// $r_{\pi 1}$, placerad i emittern. Därmed kan småsignalschemat ritas om till den högra figuren nedan.

Småsignalschema för att beräkna strömspegelns utresistans $r_{o,CM}$. Transistor Q1:s inbyggda basresistans $r_{\pi 1}$ samt emitterresistor R_{E1} utgör en parallellkoppling och kan därför ersättas med resistansen $R_{E1}//r_{\pi 1}$, placerad i emittern.

• För att underlätta beräkningen av strömspegelns utresistans r_{0,CM} så införs beteckningarna R₁ och R₂ i småsignalschemat, där R₁ är resistansen i strömspegelns emitter och R₂ är resistansen i strömspegelns kollektor. Därmed gäller att

$$R_1 = R_{E1} / / r_{\pi 2}$$
$$R_2 = r_{o1}$$

För att underlätta beräkningarna så inför vi beteckningarna R_1 och R_2 , där R_1 är resistansen i strömspegelns emitter och R_2 är resistansen i strömspegelns kollektor.

• Därefter utför vi beräkningarna. Strömspegelns utresistans ro,CM kan beräknas med följande formel:

$$r_{o,CM} = \frac{U_X}{I_X},$$

där Ux är (den tillsatta) spänningskällan på utgången (i kollektorn) och Ix är strömmen som flödar genom kollektorn.

Vi kör Kirchhoffs spänningslag för att härleda en formel för spänningen Ux.
 Genom att beräkna från kollektorn till jord via emittern så erhålls formeln

$$U_x - R_2 * I_0 - R_1 * I_x = 0,$$

som kan transformeras till

$$U_x = R_2 * I_0 + R_1 * I_x$$

 Vi använder sedan Kirchhoffs strömlag för att härleda en formel för strömmen I₀. Som synes så är strömmen I_x lika med summan av strömmarna I₀ samt U_{BE1}/r_{e1}, vilket medför att

Strömspegelns utresistans r_{o,CM} kan beräknas ur ovanstående småsignalschema med Kirchhoffs lagar samt Ohms lag.

$$I_x = I_0 + \frac{U_{BE1}}{r_{e1}},$$

som kan transformeras till

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}}$$

• Därefter härleder vi en formel för transistor Q1:s bas-emitterspänning U_{BE1} via Kirchhoffs spänningslag. Genom att beräkna från basen till jord via emittern så kan följande formel erhållas:

vilket medför att

$$-U_{BE1}-R_1I_x=0,$$

$$U_{RE1} = -R_1 * I_x$$

Därmed gäller att

$$I_0 = I_x - \frac{U_{BE1}}{r_{e1}} = I_x + \frac{R_1 * I_x}{r_{e1}}$$

• Genom att bryta ut strömmen Ix så erhålls formeln

$$I_0 = I_x \left[1 + \frac{R_1}{r_{a1}} \right],$$

som sedan kan sättas in i den tidigare framtagna formeln för Ux, vilket medför att

$$U_x = R_2 * I_0 + R_2 * I_x = R_2 * I_x \left[1 + \frac{R_1}{r_{c1}} \right] + R_1 * I_x$$

där strömmen Ix kan brytas ut, vilket medför att

$$U_x = I_X \left[R_2 \left(1 + \frac{R_1}{r_{e1}} \right) + R_1 \right]$$

• Därefter kan en formel för strömspegel utresistans ro,CM härledas ur den framtagna formeln för Ux ovan, då

$$r_{o,CM} = \frac{U_X}{I_X},$$

vilket medför att

$$r_{o,CM} = \frac{U_X}{I_X} = \frac{I_X \left[R_2 \left(1 + \frac{R_1}{r_{e1}} \right) + R_1 \right]}{I_X},$$

där strömmen Ix kan elimineras, då denna förekommer i både täljare och nämnare. Därmed gäller att

$$r_{o,CM} = R_2 \left(1 + \frac{R_1}{r_{e1}} \right) + R_1$$

• Därefter ersätts beteckningarna R₁ och R₂ med de egentliga resistanserna:

$$R_1 = R_{E1} / / r_{\pi 1}$$

samt

$$R_2 = r_{o1}$$
,

vilket medför att

$$r_{o,CM} = r_{o1} \left(1 + \frac{R_{E1}//r_{\pi 1}}{r_{e1}} \right) + R_{E1}//r_{\pi 1},$$

som är ekvivalent med

$$r_{o,CM} = r_{o1} + r_{o1} * \frac{R_{E1}//r_{\pi 1}}{r_{e1}} + R_{E1}//r_{\pi 1}$$

där r_{01} är transistor Q1:s utresistans, R_{E1} är emitterresistorn i strömspegeln och $r_{\pi 1}$ samt r_{e1} är transistor Q1:s inbyggda basrespektive emitterresistans.

Formeln ovan kan transformeras till

$$r_{o,CM} = R_{E1} / / r_{\pi 1} \left(1 + \frac{r_{o1}}{r_{e1}} \right) + r_{o1}$$

• Kollektorströmmen Ic genom strömspegelns är lika med drainströmmen ID som flödar genom sourceföljaren:

$$I_C = I_D$$

• Vid en drainström I_D på 0,5 mA, så bör R_{E1} samt R_{E2} sättas till omkring 440 Ω, då

$$R_{E1} = R_{E2} = \frac{220}{I_{D(mA)}} = \frac{220}{0.5} = 440 \ \Omega$$

• Närmaste värde i E12-serien är 470 Ω, vilket vi väljer att använda:

$$R_{E1} = R_{E2} = 470 \Omega = 0.47 k\Omega$$

• För en drainström I_D på 0,5 mA så blir transistor Q1:s inbyggda emitterresistans r_{e1} lika med 52 Ω, då

$$r_{e1} = \frac{26}{I_{D(mA)}} = \frac{26}{0.5} = 52 \,\Omega$$

Vidare gäller att transistor Q1:s inbyggda basresistans r_{π1} kan beräknas med formeln

$$r_{\pi 1}=r_{e1}*h_{FE1},$$

där re1 är transistor Q1:s inbyggda emitterresistans re1 och hFE1 är dess strömförstärkningsfaktor.

- Som vi har sett tidigare så varierar BJT-transistorers strömförstärkningsfaktor h_{FE} stort mellan olika exemplar av samma modell. Allt mellan 50 – 250 är normalt, där 100 kan ses som ett normalvärde.
- Givet att transistor Q1:s strömförstärkningsfaktor h_{FE1} är lika med 100 så bör $r_{\pi 1}$ hamnar tunt 5,2 k Ω , då

$$r_{\pi 1} = r_{e1} * h_{FE1} = 52 * 100 = 5.2 \ k\Omega$$

• Därmed kan ersättningsresistansen $R_{E1}//r_{\pi 1}$ approximeras beräknas:

$$R_{E1}//r_{\pi 1} = \frac{R_{E1} * r_{\pi 1}}{R_{E1} + r_{\pi 1}} = \frac{0.47k * 5.2k}{0.47k + 5.2k} \approx 0.43 k\Omega,$$

vilket motsvarar ca 430 Ω:

$$R_{E1}//r_{\pi 1} \approx 430 \,\Omega$$

Transistorernas respektive utresistans r_o kan approximeras med formeln

$$r_o \approx \frac{U_A}{I_D}$$

där r₀ respektive transistor utresistans, UA är dess Earlyspänning och ID är drainströmmen som flödar genom sourceföljaren.

 Vi antar att samtliga transistorer i kretsen har en Earlyspänning U_A på 100 V, vilket kan ses som ett genomsnittligt värde för diskreta transistorer:

$$U_A = 100 V$$

Vid en drainström I_D på 0,5 mA så kan transistorernas respektive utresistans antas ligga runt 200 kΩ, då

$$r_{o1} = r_{o2} = r_{o3} \approx \frac{100}{0.5m} = 200 \ k\Omega$$

Därefter kan strömspegelns utresistans approximeras till 1,86 MΩ, då

$$r_{o,CM} = R_{E1} / / r_{\pi 1} \left(1 + \frac{r_{o1}}{r_{e1}} \right) + r_{o1} \approx 430 \left(1 + \frac{200k}{52} \right) + 200k,$$

vilket är ekvivalent med

$$r_{oCM} \approx 430(1 + 3.85k) + 200k \approx 1.86 M\Omega$$

• Notera att vi enkelt hade fått ett relativt ackurat resultat genom att utnyttja tumregeln med en emitterfaktor EF på tio:

$$r_{o,CM} \approx r_{o1} * EF$$
,

där ro1 är transistor Q1:s utresistans och EF är strömspegelns emitterfaktor.

• Strömspegelns emitterfaktor EF indikerar med hur stor faktor som emitterresistor R_{E1} (samt R_{E2}) höjer den totala emitterresistansen i strömspegeln och kan beräknas med formeln

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}}$$

• Strömspegelns emitterfaktor EF kan därmed antas hamna runt tio, eftersom

$$EF = \frac{R_{E1} + r_{e1}}{r_{e1}} = \frac{470 + 52}{52} \approx 10$$

 Därmed kan strömspegelns utresistans r_{o,CM} antas ligga runt 2 MΩ vid en drainström I_D på 0,5 mA samt en emitterfaktor EF på tio, då

$$r_{o.CM} \approx r_{o.1} * EF = 200k * 10 = 2 M\Omega$$

Beräkning av den förbättrade sourceföljarens förstärkningsfaktor G:

- Som vi tidigare sett så kan en genomsnittlig NMOS-transistor antas ha en transkonduktans g_m på 4 mS vid en drainström I_D på 1 mA, där g_m minskar linjärt med minskad I_D.
- Därmed kan transistor M3:s transkonduktans g_{m3} antas ligga omkring 2 mS vid en drainström I_D på 0,5 mA:

$$g_{m3} = 2 \, mS$$

Därefter kan sourceföljarens förstärkningsfaktor G beräknas:

$$G = \frac{r_{o,CM}//r_{o3}}{\frac{1}{g_{m3}} + r_{o,CM}//r_{o3}} \approx \frac{1,86M//200k}{\frac{1}{2m} + 1,86M//200k},$$

där

$$1,86M//200k = \frac{1,86M * 200k}{1.86M + 200k} \approx 180 k\Omega,$$

vilket medför att

$$G \approx \frac{180k}{500 + 180k} \approx 0.997$$

• Eftersom r_{0,CM}//r₀₃ är så mycket högre än inversen 1/g_{m3} till MOSFET-transistorns transkonduktans g_{m3}, så blir strömförstärkningsfaktorn alltså nästan lika med ett. Signalförlusten ligger i detta fall runt 0,27 %, vilket kan försummas!

Härledning samt beräkning av den förbättrade sourceföljarens in- och utresistans R_{IN} samt R_{UT}:

• Sourceföljarens inresistans R_{IN} kan som vanligt antas gå mot oändlighet, då insignalen U_{IN} går in på MOSFET-transistor M3:s gate:

$$R_{IN} = \infty$$

- En formel för sourceföljarens utresistans R_{UT} kan härledas via dess ekvivalenta småsignalschema, fast med insignalen ΔU_{IN} kortsluten, se den vänstra figuren nedan.
- Till att börja med så kan strömspegeln ersättas med dess ekvivalenta utresistans r_{o,CM}. Därefter kan småsignalschemat ritas om till figuren näst längst till vänster nedan.
- Som synes i figuren nästa till vänster nedan så är MOSFET-transistor M3 diodkopplad, då både gate samt drain är anslutna till jord, vilket medför att dessa anslutningar har samma potential, vilket innebär att transistor M3 kan ersättas med dess ekvivalenta utresistans (1/g_{m3})//r_{o3}. Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan.

Sourceföljarens småsignalschema för härledning av dess utresistans R_{UT} . Genom att gradvis förenkla småsignalschemat tills endast en resistor återstår så kan en formel för R_{UT} fastställas.

- I figuren näst längst till höger ovan så ser man att MOSFET-transistor M3:s ersättningsresistans (1/g_{m3})//r_{o3} samt strömspegelns utresistans r_{o,CM} utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra.
- Därmed är spänningsfallet över resistanserna $(1/g_{m3})//r_{o3}$ samt $r_{o,CM}$ samma $(\Delta U_{UT} 0 = \Delta U_{UT})$, vilket medför att de kan ersättas med en resistor vars resistans är lika med $(1/g_{m3})//r_{o3}//r_{o,CM}$, placerad i source. Notera att spänningsfallet över denna ersättningsresistans också är $\Delta U_{UT} 0 = \Delta U_{UT}$.
- Småsignalschemat kan sedan ritas om till figuren längst till höger ovan, där endast en resistor återstår. Denna resistor är lika med sourceföljarens utresistans Rut.
- Därmed gäller att

$$R_{UT} = \frac{1}{g_{m3}} / / r_{o3} / / r_{o,CM},$$

där $1/g_{m3}$ är inversen till MOSFET-transistor M3:s transkonduktans g_{m3} , r_{o3} är transistor M3:s utresistans och $r_{o,CM}$ är strömspegelns utresistans.

Tidigare fastställdes att MOSFET-transistor M3:s transkonduktans g_{m3} kan antas vara 2 mS vid en drainström I_D på 0,5 mA:

vilket medför att

$$g_{m3}=2\ mS$$

$$\frac{1}{g_{m3}} = \frac{1}{2m} = 500 \ \Omega$$

 Som vi såg tidigare så kan MOSFET-transistor M3:s utresistans r₀₃ antas vara 200 kΩ vid en drainström I₀ på 0,5 mA, förutsatt att dess Earlyspänning U₄ ligger omkring 100 V:

$$r_{o3} \approx 200 k\Omega$$

• Strömspegelns utresistans r_{o,CM} beräknades tidigare till ca 1,86 MΩ:

$$r_{o.CM} \approx 1,86 M\Omega$$

• Eftersom strömspegelns utresistans r_{o,CM} är mycket högre än inversen till MOSFET-transistor M3:s transkonduktans 1/g_{m3}:

$$r_{o.CM}\gg \frac{1}{g_{m3}}$$

så kan ro,CM försummas vid beräkning av sourceföljarens utresistans Rut, då

$$\frac{1}{g_{m3}} / / r_{o,CM} = \frac{\frac{1}{g_{m3}} * r_{o,CM}}{\frac{1}{g_{m3}} + r_{o,CM}} \approx \frac{\frac{1}{g_{m3}} * r_{o,CM}}{r_{o,CM}} = \frac{1}{g_{m3}}$$

• Detta kan också demonstreras med de tidigare fastställda värdena:

$$\frac{1}{g_{m3}} // r_{o,CM} \approx 500 // 1,86M = \frac{500 * 1,86M}{500 + 1,86M} \approx 499,9 \Omega$$

• Sourceföljarens utresistans R_{UT} kan därför approximeras till

$$R_{UT} \approx \frac{1}{g_{m3}} / / r_{o3}$$

• Även MOSFET-transistor M3:s utresistans r₀₃ är mycket högre än inversen till dess transkonduktans 1/g_{m3}:

$$r_{o3}\gg \frac{1}{g_{m3}}$$

vilket medför att

$$\frac{1}{g_{m3}} / / r_{o3} = \frac{\frac{1}{g_m} * r_{o3}}{\frac{1}{g_{mm}} + r_{o3}} \approx \frac{\frac{1}{g_{m3}} * r_{o3}}{r_{o3}} = \frac{1}{g_{m3}}$$

• Detta kan också demonstreras med de tidigare fastställda värdena:

$$\frac{1}{g_{m3}} / / r_{o3} \approx 500 / / 200k = \frac{500 * 200k}{500 + 200k} \approx 498.8 \,\Omega$$

Därmed gäller att sourceföljarens utresistans Ru⊤ kan approximeras till

$$R_{UT} \approx \frac{1}{g_{m3}} = 500 \,\Omega$$

där 1/g_{m3} är inversen till MOSFET-transistorns transkonduktans.

- Detta resultat indikerar att eventuella utresistanser från transistorer och strömspeglar vanligtvis kan försummas vid beräkning av sourceföljarens utresistans R_{UT}. Det som avgör storleken på R_{UT} är framförallt inversen till transkonduktansen 1/g_m på sourceföljarens ingångstransistor, vilket i detta fall är transistor M3.
- Lågohmiga laster kan också sänka R_{U™} något, men i normala fall är eventuell lastresistans R_L så pass hög att denna kan försummas.

Beräkning av lämpligt värde på referensresistor R_{REF} i strömspegeln:

Ohms lag kan används för att beräkna ett lämpligt värde på referensresistor RREF i strömspegeln:

$$R_{REF} = \frac{U_{REF}}{I_{REF}},$$

där U_{REF} är spänningsfallet över R_{REF} och I_{REF} är strömspegelns referensström, som är lika stor som drainströmmen $I_{D,SF}$ som flödar genom sourceföljaren:

$$I_{REF} = I_{D,SF} = 0.5 \, mA$$

 Spänningsfallet U_{REF} över referensresistor R_{REF} kan beräknas med Kirchhoffs spänningslag. Genom att utföra en beräkning från den negativa matningsspänningen V_{SS} upp till jord via resistor R_{E1} i strömspegeln samt R_{REF} så erhålls följande formel:

$$V_{SS} + U_{RE1} + 0.65 + U_{REF} = 0$$
,

vilket kan transformeras till

$$U_{REF} = -(V_{SS} + U_{RE1} + 0.65),$$

- Emitterresistor R_{E1} (samt R_{E2}) dimensionerades tidigare för ett spänningsfall U_{RE1} (samt U_{RE2}) runt 220 mV vid en drainström I_{D,SF} på 0,5 mA. Det närmaste värdet i E12-serien valdes, vilket är 470 Ω, alltså 0,47 kΩ.
- Det exakta spänningsfallet U_{RE1} kan sedan beräknas med Ohms lag till 0,235 V, då

$$U_{RE1} = R_{E1} * I_{D,SF} = 0.47k * 0.5m = 0.235 V$$

• Matningsspänningen Vss är satt till -30 V:

$$V_{SS} = -30 V$$

Därmed blir spänningsfallet U_{REF} lika med 29,13 V, eftersom

$$U_{REF} = -(-30 + 0.235 + 0.65) = -(-29.115) V = 29.115 V$$

• För en referensström I_{REF} på 0,5 mA krävs en referensresistor R_{REF} på 58,23 kΩ, då

$$R_{REF} = \frac{U_{REF}}{I_{REF}} = \frac{29,115}{0,5m} = 58,23 \text{ k}\Omega$$

• Närmaste värde i E12-serien är 56 k Ω , som vi därmed använder:

$$R_{RFF} = 56 k\Omega$$

- Referensströmmen I_{REF} och därmed även drainströmmen I_{D,SF} genom sourceföljaren blir då något högre än 0,5 mA, men detta bör inte göra något.
- Förutsatt att

$$I_{REF} = I_{D.SF}$$

samt att

$$U_{REF} = R_{REF} * I_{REF}$$

och

$$U_{RE1} = R_{RE1} * I_{D,SF} = R_{RE1} * I_{REF}$$
,

så kan en kontrollräkning av IREF genomföras via Kirchhoffs spänningslag:

$$V_{SS} + U_{RE1} + 0.65 + U_{REF} = 0$$

• Formeln ovan kan transformeras till

$$V_{SS} + R_{RE1} * I_{REF} + 0.65 + R_{REF} * I_{REF} = 0$$

Genom att bryta ut referensströmmen IREF så erhålls formeln

$$V_{SS} + 0.65 + I_{REF} * (R_{RE1} + R_{REF}) = 0,$$

vilket kan transformeras till

$$I_{REF} * (R_{RE1} + R_{REF}) = -V_{SS} - 0.65 = -(V_{SS} + 0.65),$$

som medför att

$$I_{REF} = -\frac{V_{SS} + 0.65}{R_{RE1} + R_{REF}}$$

• Emitterresistor R_{E1} sattes tidigare till 470 Ω , vilket motsvarar 0,47 k Ω :

$$I_{REF} = 0.47 k\Omega$$

• Vid en matningsspänning V_{SS} på -30 V samt en referensresistor R_{REF} på 56 kΩ blir då referensströmmen I_{REF} ca 0,52 mA, då

$$I_{REF} = -\frac{-30 + 0.65}{0.47k + 56k} \approx 0.52 \, mA$$

4.3.20 - Exempel på konstruktion av en spänningsförstärkare med sourceföljare på ingången

- Figuren till höger visar ett exempel på en färdigkonstruerat spänningsförstärkare med sourceföljare på ingången, där GE-steget ingår som andra steget i en OP-förstärkare. Vi skall här gå igenom tillvägagångssättet för konstruktionen.
- Matningsspänningen är satt ± 50 V och vi siktar på en kollektorström I_{C,VAS} på ca 22 mA i GE-steget, som vi genererar via en strömspegel. Att vi siktar på 22 mA istället för 20 mA beror på att det i praktiken är lättare att få mer exakta värden på samtliga emitterresistorer, då vi siktar på ett spänningsfall på ca 220 mV över respektive emitterresistor.
- Spänningsförstärkaren skall ha tillräckligt stor emitterresistor för att minimera distorsion. Samtliga strömspeglar skall också ha tillräckligt stora emitterresistorer för att minimera brus och distorsion, utan att utsignalens toppvärde blir lidande.

1. Konstruera sourceföljaren:

- Som vanligt så siktar vi på en drainström I_{D,SF} på 0,5 mA genom sourceföljaren, som genereras via en strömspegel. I detta exempel så använder vi en enkel strömspegel med emitterresistorer.
- Sourceföljarens drain jordas i detta fall för att minska drain-sourcespänningen
 U_{DS} vid drift.
- Vi kommer senare beräkna sourceföljarens förstärkningsfaktor G_{SF} samt utresistans R_{UT,SF} i lastat tillstånd. För enkelhet skull kan vi dock börja med ett fåtal approximationer.

$$G_{SF} \approx 1$$

• Sourceföljarens inresistans R_{IN,SF} kan som vanligt antas gå mot oändlighet:

$$R_{IN,SF} = \infty$$

• Vi antar som vanligt att MOSFET-transistor M3:s transkonduktans är ca 4 mS vid en drainström I_D på 1 mA och därmed 2 mS vid en drainström på 0,5 mA:

$$g_{m3} = 2 mS$$

• Därmed kan sourceföljarens utresistans $R_{UT,SF}$ approximeras till 500 Ω , då

$$R_{UT,SF} \approx \frac{1}{g_{m3}} = \frac{1}{2m} = 500 \,\Omega$$

• För att minimera brus och distorsion så används två lika stora emitterresistorer R_{E1} samt R_{E2} i sourceföljarens strömspegel. Som en tumregel så siktar vi på att ca 220 mV faller över dessa. Eftersom drainströmmen I_{D,SF} som flödar genom emitterresistorerna skall hamna runt 0,5 mA så bör vi alltså använda emitterresistorer runt 440 Ω, eftersom

$$R_{E1} = R_{E2} \approx \frac{220m}{I_{D,SF}} = \frac{220m}{0.5m} = 440 \ \Omega$$

Spänningsförstärkare med sourceföljare på ingången.

• Närmaste värde i E12-serien är 470 Ω, vilket vi väljer att använda.

$$R_{E1}=R_{E2}=470\,\Omega$$

 För att beräkna ett lämpligt värde på referensresistor R_{REF,SF} i sourceföljaren så måste spänningsfallet över denna resistor beräknas. Vi vet redan att referensströmmen I_{REF,SF} som skall flöda genom denna resistor är 0,5 mA, eftersom drainströmmen I_{D,SF} som flödar genom sourceföljaren, utgör en kopia av I_{REF,SF} och skall sättas till 0,5 mA:

$$I_{REF,SF} = I_{D,SF} = 0.5 mA$$

- För att beräkna spänningsfallet över referensresistorn R_{REF,SE} så använder vi Kirchhoffs spänningslag, där vi går från den negativa matningsspänningen V_{SS} upp till referensresistorn via strömspegeln. Vi börjar med att räkna från den negativa matningsspänningen V_{SS}, som är lika med -50 V.
- För att göra det enkelt för oss själva så räknar vi som om vi beräknade från den positiva matningsspänningen V_{CC}, det vill säga vi beräknar att matningsspänningen är 50 V. Av dessa 50 V så faller ca 220 mV, eller rättare sagt 0,22 V, över emitterresistorerna R_{E1} samt R_{E2} i strömspegeln. Det faller också 0,65 V mellan basen och emittern på respektive transistor i strömspegeln.
- Resterande spänning faller över referensresistor R_{REF,SF}. Därmed så kan vi enkelt beräkna ett lämpligt värde på R_{REF,SF} med Ohms lag:

$$R_{REF,SF} \approx \frac{50 - 0.22 - 0.65}{0.5m} \approx \frac{49.1}{0.5m} = 98.2 \text{ } k\Omega$$

• Närmaste värde i E12-serien är 100 kΩ, som vi därmed använder.

$$R_{REF,SF} = 100 k\Omega$$

2. Konstruera Darlingtonparet på spänningsförstärkarens ingång:

• Sourceföljarens utresistans $R_{UT,SF}$ kan antas vara ca 500 Ω vid en drainström $I_{D,SF}$ på 0,5 mA. Vi måste se till att spänningsförstärkarens inresistans $R_{IN,VAS}$ är minst tio gånger högre än sourceföljarens utresistans, det vill säga minst 5 k Ω :

$$R_{IN,VAS} \geq 5 k\Omega$$

- Ifall R_{IN,VAS} understiger 5 kΩ kommer sourceföljarens förstärkningsfaktor G_{SF} minska kraftigt, vilket leder till signalförluster.
- Som synes ovan betecknas spänningsförstärkarens inresistans R_{IN,VAS}, där R_{IN} står för inresistans och VAS står för Voltage
 Amplifier Stage, alltså spänningsförstärkare. Ett Darlingtonpar bestående av transistor Q4 och Q5 används för att öka R_{IN,VAS}.
- Spänningsförstärkarens inresistans R_{IN,VAS} kan beräknas med formeln

$$R_{IN,VAS} \approx (r_{e5} + R_{E,VAS}) * h_{FE4} * h_{FE5}$$

där r_{e5} är transistor Q5:s inbyggda emitterresistans, $R_{E,VAS}$ är spänningsförstärkarens emitterresistor och h_{FE4} samt h_{FE5} är strömförstärkningsfaktorn på respektive transistor i Darlingtonpararet, som båda kan antas vara 100:

$$h_{FE4} = h_{FE5} \approx 100$$

• Transistor Q5:s inbyggda emitterresistans re5 kan beräknas med formeln

$$r_{e5} = \frac{26}{I_{C,VAS(mA)}},$$

där I_{C,VAS(mA)} är kollektorströmmen som flödar igenom spänningsförstärkaren, mätt i mA.

• Vid en kollektorström $I_{C,VAS}$ på 22 mA genom spänningsförstärkaren så kan transistor Q5:s inbyggda emitterresistans r_{e5} antas ligga runt 1,2 Ω , eftersom

$$r_{e5} = \frac{26}{I_{C,VAS(mA)}} = \frac{26}{22} \approx 1.2 \,\Omega$$

• Spänningsförstärkarens emitterresistor R_{E,VAS}, bör sättas till ett värde så att ca 220 mV faller över denna vid en kollektorström I_{C,VAS} på 22 mA. Därmed kan ett lämpligt värde på R_{E,VAS} beräknas med formeln

$$R_{E,VAS} = \frac{220}{I_{C,VAS(mA)}},$$

där I_{C,VAS(mA)} är kollektorströmmen som flödar igenom spänningsförstärkaren, mätt i mA.

Vid en kollektorström I_{C,VAS} på 22 mA genom spänningsförstärkaren så bör emitterresistor R_{E,VAS} sättas till 10 Ω, eftersom

$$R_{E,VAS} = \frac{220}{I_{C,VAS(mA)}} = \frac{220}{22} = 10 \ \Omega$$

Därefter kan spänningsförstärkarens inresistans R_{IN,VAS} uppskattas:

$$R_{IN,VAS} \approx (r_{e5} + R_{E,VAS}) * h_{FE4} * h_{FE5} \approx (1,2+10) * 100 * 100 \approx 112 k\Omega$$

- Därmed kan R_{IN,VAS} antas ligga omkring 112 kΩ, vilket är mer än 20 gånger högre än det fastställda minimumvärdet på 5 kΩ.
- I Darlingtonparet så en resistor på 1 kΩ mitt emellan de två transistorerna, mellan den andra transistorns bas och emitter.
 Denna resistor används för att sätta strömmen genom den extra transistorn (till ca 0,65 mA) och därmed öka
 Darlingtonparets switchhastighet. Annars så blir Darlingtonparet långsamt, eftersom det tar lite tid för Q1 att aktivera Q2.
- Denna resistor kan ha ett värde mellan $100 \Omega 1k\Omega$ beroende på applikation. Resistorn bör inte sno för mycket att den andra transistorns basström, så den bör inte vara för stor. En bra tumregel är att denna resistor sätts till ca 100Ω där relativt stora strömmar används, exempelvis i slutsteg på effektförstärkare, och ca $1 k\Omega$ när mindre strömmar används, exempelvis på ingången till spännings- och differentialförstärkare.
- I detta fall, där relativt små strömmar används (strömmarna ligger i området 0,5–22 mA), så sätter vi resistorn i
 Darlingtonparet till 1 kΩ. Detta värde är i princip alltid lämpligt att använda på Darlingtonpar, förutom i vissa slutsteg, där
 strömmarna kan ligga i området hundratals milliAmpere upp till flera Ampere vid drift. I sådana tillämpningar lämpar sig en
 resistans på 100 Ω bättre.

3. Beräkna sourceföljarens förstärkningsfaktor GSF:

- För att härleda en formel sourceföljarens förstärkningsfaktor G_{SF} i lastat tillstånd så kan dess småsignalschema ritas ut, se den vänstra figuren nedan.
- Matningsspänningen V_{SS} samt strömspegelns referenskrets kortsluts och gatesourcespänningen U_{GS} ersätts med spänningsfallet I_D/g_{m3} , där g_{m3} är MOSFETtransistor M3:s transkonduktans.
- Slutligen ersätts in- och utspänningen U_{IN} samt U_{UT} med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN} samt ΔU_{UT} .
- Småsignalschemat nedan till vänster kan förenklas genom att strömspegelns ersätts av dess ekvivalenta utresistans r_{o,CM}.
- Småsignalschemat kan sedan ritas om till figuren näst längst till vänster nedan.
 Som synes så är strömspegelns utresistans r_{o,CM} samt lastresistansen R_L
 parallellkopplade, vilket medför att dessa kan ersättas med en resistor, vars resistans är lika med r_{o,CM}//R_L.

Sourceföljare i lastat tillstånd.

- Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan. Som synes så utgör transistor M3:s utresistans r_{o3} samt ersättningsresistansen $r_{o,CM}//R_L$ en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet, tillsammans med ΔU_{UT} , samtidigt som de är anslutna till jord åt andra hållet.
- Därmed är spänningsfallet över $r_{o,CM}//R_L$ samt r_{o3} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$), vilket medför att de kan tänkas vara parallellkopplade och kan därför ersättas med en resistor, vars resistans är lika med $r_{o,CM}//r_{o3}//R_L$, placerad i source.
- Därefter kan småsignalschemat ritas om till figuren längst till höger nedan. Notera att när ersättningsresistansen r_{o,CM}//r_{o3}//R_L placeras i source så blir spänningsfallet över denna fortfarande lika ΔU_{UT}, vilket tidigare var fallet för samtliga resistanser r_{o,CM}, r_{o3} samt R_L i det ursprungliga småsignalschemat längst till vänster nedan. Detta indikerar att det ekvivalenta småsignalschemat nedan till höger är korrekt.
- Efter att ha förenklat småsignalschemat till den högra figuren nedan, så kan sourceföljarens förstärkningsfaktor G_{SF} i lastat tillstånd härledas via formler för in- och utsignalen ΔU_{IN} samt ΔU_{UT} .

Småsignalschema för sourceföljaren i lastat tillstånd ovan. Genom att stegvis förenkla småsignalschemat från den vänstra till den högra figuren, så kan sourceföljarens förstärkningsfaktor G_{SF} sedan härledas genom att härleda formler för ΔU_{IN} samt ΔU_{UT}.

• Som vanligt gäller att sourceföljarens förstärkningsfaktor G_{SF} är lika med ration av in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G_{SF} = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

där formler för ΔU_{IN} samt ΔU_{UT} enkelt kan härledas med Kirchhoffs spänningslag.

- Figuren till höger visar det förenklade småsignalschema som togs fram tidigare, som kommer användas för att härleda formler för sourceföljarens in- och utsignal ΔU_{IN} samt ΔU_{UT} i småsignalschemat.
- Insignalen ΔU_{IN} kan enkelt härledas via Kirchhoffs spänningslag, genom beräkning från insignalen ΔU_{IN} till jord via MOSFET-transistorns gate-drainövergång samt ersättningsresistansen $r_{o,CM}//r_{o3}//R_L$ i source.
- Därmed gäller att

$$\Delta U_{IN} - \frac{I_D}{g_{m3}} - (r_{o,CM}//r_{o3}//R_L)I_D = 0,$$

In .

 $\Delta U_{IN} = \frac{I_D}{g_{m3}} + \left(r_{o,CM}//r_{o3}//R_L\right)I_D,$

$$\Delta U_{IIT} - (r_{oCM} / / r_{o3} / / R_L) I_D = 0$$

vilket kan transformeras till

vilket kan transformeras till

$$\Delta U_{UT} = (r_{o,CM}//r_{o3}//R_L)I_D$$

• Sourceföljarens förstärkningsfaktor G_{SF} kan sedan härledas ut de framtagna formlerna för ΔU_{IN} samt ΔU_{UT}:

$$G_{SF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{\left(r_{o,CM}//r_{o3}//R_L\right)I_D}{\left(\frac{1}{g_{m3}} + r_{o,CM}//r_{o3}//R_L\right)I_D},$$

där drainströmmen ID kan elimineras, då denna förekommer i både täljare och nämnare, vilket medför att

$$G_{SF} = \frac{r_{o,CM}//r_{o3}//R_L}{\frac{1}{a_{m2}} + r_{o,CM}//r_{o3}//R_L},$$

där $r_{o,CM}$ är strömspegelns utresistans, r_{o3} är MOSFET-transistorns utresistans, R_L är lastresistansen och $1/g_{m3}$ är inversen till MOSFET-transistorns transkonduktans g_{m3} .

• Transistorernas respektive utresistans ro kan approximeras med formeln

$$r_o \approx \frac{U_A}{I_{D,SF}}$$

där r₀ respektive transistor utresistans, UA är dess Earlyspänning och ID,SF är drainströmmen som flödar genom sourceföljaren.

• Vi kan anta att samtliga transistorer i kretsen har en Earlyspänning U_A på 100 V, vilket kan ses som ett genomsnittligt värde för diskreta transistorer:

$$U_A = 100 V$$

Förenklat småsignalschema för sourceföljaren i lastat tillstånd.

• Vid en drainström I_{D,SF} på 0,5 mA så kan transistorernas respektive utresistans r₀ antas ligga runt 200 kΩ, då

$$r_o \approx \frac{U_A}{I_{D,SF}} = \frac{100}{0.5m} = 200 \ k\Omega,$$

vilket medför att

$$r_{o1} = r_{o2} = r_{o3} \approx 200 \ k\Omega$$

• Som vi tidigare har sett kan strömspegelns utresistans $r_{o,CM}$ approximeras via transistor Q1:s utresistans r_{o1} , som antogs ligga omkring 200 k Ω , samt strömspegelns emitterfaktor EF, som antogs vara tio, i enlighet med formeln

$$r_{o.CM} \approx r_{o1} * EF$$
,

vilket indikerar att strömspegelns utresistans r_{o,CM} kan antas ligga omkring 2 MΩ, då

$$r_{o.CM} \approx 200k * 10 = 2 M\Omega$$

- Approximationen ovan kan antas vara relativt ackurat, med en felmarginal under 10 %, samtidigt som uträkningarna förenklas avsevärt. För exakt härledning och beräkning av r_{o,CM} med småsignalmodell, se föregående avsnitt 4.3.19.
- Som vi tidigare sett så kan en genomsnittlig NMOS-transistor antas ha en transkonduktans g_m på 4 mS vid en drainström I_D på 1 mA, där g_m minskar linjärt med minskad I_D.
- Därmed kan transistor M3:s transkonduktans g_{m3} antas ligga omkring 2 mS vid en drainström I_D på 0,5 mA:

$$g_{m3} = 2 \, mS$$

• Därefter kan sourceföljarens förstärkningsfaktor GsF beräknas via de tidigare framtagna storheterna:

$$G_{SF} = \frac{r_{o,CM}//r_{o3}//R_L}{\frac{1}{q_{m2}} + r_{o,CM}//r_{o3}//R_L} \approx \frac{2M//200k//112k}{\frac{1}{2m} + 1,86M//200k//112k},$$

där

$$2M//200k = \frac{2M * 200k}{2M + 200k} \approx 182 \, k\Omega,$$

vilket medför att

$$G_{SF} \approx \frac{182k//112k}{500 + 182k//112k} \approx 0,997,$$

där

$$182k//112k = \frac{182k * 112k}{182k + 112k} \approx 69,3 k\Omega$$

• Därmed gäller att sourceföljarens förstärkningsfaktor G_{SF} i lastat tillstånd hamnar omkring 0,99, då

$$G_{SF} \approx \frac{69.3k}{500 + 69.3k} \approx 0.993$$

• Resultatet indikerar en signalförlust på endast 0,7 %, trots lasten.

4. Beräkna sourceföljarens in- och utresistans R_{IN,SF} samt R_{UT,SF}:

• Sourceföljarens inresistans R_{IN,SF} behöver inte beräknas, utan kan som vanligt antas gå mot oändlighet, eftersom insignalen U_{IN} går in på MOSFET-transistor M3:s gate:

$$R_{IN.SF} = \infty$$

- En formel för sourceföljarens utresistans R_{UT,SF} i lastat tillstånd kan härledas via dess ekvivalenta småsignalschema, fast med insignalen ΔU_{IN} kortsluten, se figuren längst till vänster nedan.
- Till att börja med så kan strömspegeln ersättas med dess ekvivalenta utresistans r_{o,CM}. Därefter kan småsignalschemat ritas om till figuren näst längst till vänster nedan.
- Som synes så är strömspegelns utresistans r_{o,CM} samt lastresistansen R_L parallellkopplade, vilket medför att dessa kan ersättas med en resistor, vars resistans är lika med r_{o,CM}//R_L.
- Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan. Notera att MOSFET-transistor M3 är diodkopplad, då både gate och drain är anslutna till jord, vilket medför att dessa anslutningar har samma potential, vilket innebär att transistor M3 kan ersättas med dess ekvivalenta utresistans (1/g_{m3})//r_{o3}. Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan.

Sourceföljarens småsignalschema för härledning av dess utresistans $R_{UT,SF}$ i lastat tillstånd. Genom att gradvis förenkla småsignalschemat tills endast en resistor återstår så kan en formel för $R_{UT,SF}$ fastställas.

- I figuren näst längst till höger ovan så ser man att MOSFET-transistor M3:s ersättningsresistans $(1/g_{m3})//r_{o3}$ samt ersättningsresistansen $r_{o,CM}//R_L$ utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra.
- Därmed är spänningsfallet över resistanserna $(1/g_{m3})//r_{o3}$ samt $r_{o,CM}//R_L$ samma $(\Delta U_{UT} 0 = \Delta U_{UT})$, vilket medför att de kan ersättas med en resistor vars resistans är lika med $(1/g_{m3})//r_{o3}//r_{o,CM}//R_L$ placerad i source. Notera att spänningsfallet över denna ersättningsresistans också är $\Delta U_{UT} 0 = \Delta U_{UT}$.
- Småsignalschemat kan sedan ritas om till figuren längst till höger ovan, där endast en resistor återstår. Denna resistor är lika med sourceföljarens utresistans R_{UT,SF}.
- Därmed gäller att

$$R_{UT,SF} = \frac{1}{g_{m3}} / / r_{o3} / / r_{o,CM} / / R_L$$

där $1/g_{m3}$ är inversen till MOSFET-transistor M3:s transkonduktans g_{m3} , r_{o3} är transistor M3:s utresistans, $r_{o,CM}$ är strömspegelns utresistans och R_L är lastresistansen.

• Tidigare fastställdes att MOSFET-transistor M3:s transkonduktans gm₃ kan antas vara 2 mS vid en drainström ID på 0,5 mA:

$$g_{m3}=2 mS$$

vilket medför att

$$\frac{1}{g_{m3}} = \frac{1}{2m} = 500 \,\Omega$$

• Som vi såg tidigare så kan MOSFET-transistor M3:s utresistans r_{o3} antas vara 200 k Ω vid en drainström I_D på 0,5 mA, förutsatt att dess Earlyspänning U_A ligger omkring 100 V:

$$r_{o3} \approx 200 \, k\Omega$$

• Strömspegelns utresistans r_{o,CM} approximerades tidigare till 2 MΩ:

$$r_{o,CM} \approx 2 M\Omega$$

• Eftersom strömspegelns utresistans r_{o,CM} är mycket högre än inversen till MOSFET-transistor M3:s transkonduktans 1/g_{m3}:

$$r_{o.CM} \gg \frac{1}{g_{m3}}$$

så kan r_{o,CM} försummas vid beräkning av sourceföljarens utresistans R_{UT,SF}, då

$$\frac{1}{g_{m3}} / / r_{o,CM} = \frac{\frac{1}{g_{m3}} * r_{o,CM}}{\frac{1}{g_{m3}} + r_{o,CM}} \approx \frac{\frac{1}{g_{m3}} * r_{o,CM}}{r_{o,CM}} = \frac{1}{g_{m3}}$$

• Sourceföljarens utresistans R_{UT,SF} i lastat tillstånd kan därför approximeras till

$$R_{UT,SF} \approx \frac{1}{g_m} / / r_{o3} / / R_L$$

• Även MOSFET-transistor M3:s utresistans r₀₃ är mycket högre än inversen till dess transkonduktans 1/g_{m3}:

$$r_{o3}\gg \frac{1}{g_{m3}},$$

vilket medför att

$$\frac{1}{g_{m3}} / / r_{o3} = \frac{\frac{1}{g_m} * r_{o3}}{\frac{1}{g_m} + r_{o3}} \approx \frac{\frac{1}{g_{m3}} * r_{o3}}{r_{o3}} = \frac{1}{g_{m3}}$$

• Därmed gäller att sourceföljarens utresistans Rut,sf kan approximeras med formeln

$$R_{UT,SF} \approx \frac{1}{g_{m3}} / / R_L$$

där 1/g_{m3} är inversen till MOSFET-transistorns transkonduktans och R_L är lastresistansen.

- Som vi har sett tidigare så kan alltså eventuella utresistanser från transistorer och strömspeglar vanligtvis kan försummas vid beräkning av sourceföljarens utresistans R_{UT,SF}.
- Lastresistansen R_L, som i detta fall består av spänningsförstärkarens inresistsans R_{IN,VAS}, beräknades tidigare till ca 112 kΩ:

$$R_L = R_{IN,VAS} \approx 112 \ k\Omega$$

 Även lastresistansen R_L kan försummas i detta fall, då denna är mycket högre än inversen till MOSFET-transistor M3:s transkonduktans 1/g_{m3}:

$$R_L \gg \frac{1}{g_{m3}}$$

Detta medför att

$$\frac{1}{g_{m3}} / / R_L = \frac{\frac{1}{g_{m3}} * R_L}{\frac{1}{g_{m3}} + R_L} \approx \frac{\frac{1}{g_{m3}} * R_L}{R_L} = \frac{1}{g_{m3}}$$

• Sourceföljarens utresistans Rut, SF i lastat tillstånd kan därför, precis som vanligt, approximeras till

$$R_{UT,SF} \approx \frac{1}{g_{m3}}$$

• Då transkonduktansen g_{m3} antas vara 2 mS vid en drainström I_D på 0,5 mA, så kan alltså $R_{UT,SF}$ approximeras till ca 500 Ω , eftersom

$$R_{UT,SF} \approx \frac{1}{g_{m3}} = \frac{1}{2m} = 500 \,\Omega$$

4.3.21 - CMOS-sourceföljare

- Sourceföljare förekommer även i CMOS-teknologi, främst för minskad utresistans R_{UT} på förstärkarsteg, exempelvis för att driva en lågohmig last, eller för att ändra spänningsnivån på signaler; via ingångstransistorns gate-sourcespänning U_{GS} (för NMOStransistorer)/source-gatespänningen U_{SG} (för PMOS-transistorer), så kan spänningsnivån på en given signal antingen ökas eller minskas.
- En nackdel med sourceföljare konstruerade med CMOS-teknologi är att förstärkningsfaktorn G blir begränsad till en faktor runt 0,8, på grund av Bodyeffekten, vilket innebär en signalförlust på ca 20 %.
- För CMOS-sourceföljare men en PMOS-transistor på ingången, så kan ingångstransistorns body anslutas direkt till source utan problem, vilket eliminerar Bodyeffekten. Dessvärre är detta inte möjligt för CMOS-sourceföljare med en NMOStransistor på ingången, såsom figuren till höger, NMOS-transistorns interna konstruktion.
- Som vi har sett tidigare så blir MOSFET-transistorer påverkade av Bodyeffekten då transistorns body och source innehar olika spänningspotential U_B samt U_S, vilket medför en spänningsskillnad U_{BS} mellan body och source, som kallas body-sourcespänning:

CMOS-sourceföljare med en strömspegel som last.

$$U_{BS}=U_B-U_S,$$

där U_B och U_S är spänningspotentialen på MOSFET-transistorns body respektive source.

• I diskreta kretsar så brukar en given MOSFET-transistors body anslutas direkt till source, vilket innebär att body och source innehar samma potential:

$$U_R = U_S$$
,

• vilket innebär att body-sourcespänningen UBS/spänningsskillnaden mellan body och source blir noll, då

$$U_{BS} = U_B - U_S = 0$$

I sådana fall har Bodyeffekten ingen påverkan på MOSFET-transistorn.

Minnesregel:

Om en given MOSFET-transistors body ansluts direkt till source, så kommer body- samt sourcepotentialen U_B respektive U_S vara samma, vilket innebär att body-sourcespänningen $U_{BS} = U_B - U_S$ är lika med noll, som medför att påverkan av Bodyeffekten blir obefintlig:

$$U_{BS} = 0 \rightarrow Ingen \, påverkan \, av \, Bodyeffekten$$

• På CMOS-transistorer brukar dock body anslutas till jord/matningsspänningarna istället för direkt till source, för att minska brus. Om någon typ av motstånd används i source, så kommer MOSFET-transistorns body och source inneha olika potential:

$$U_B \neq U_S$$
,

vilket innebär att body-sourcespänningen UBS inte längre är noll, då

$$U_{RS} = U_R - U_S \neq 0$$

• Då kommer CMOS-transistorn bli påverkad av Bodyeffekten.

• CMOS-transistorns tröskelspänning U_T är proportionerlig med body-sourcespänningen U_{BS}:

$$U_T \sim U_{BS}$$
,

vilket innebär att ökad body-sourcespänning U_{BS} medför ökad tröskelspänning U_T.

• Främst tar detta uttryck i att MOSFET-transistorns effektiva transkonduktans ökar något, från gm1 till gm2, där

$$g_{m1} = g_m$$

och

$$g_{m2}=g_m+g_{mb},$$

där gm och gmb är MOSFET-transistorns transkonduktans respektive body-transkonduktans.

En given MOSFET-transistors body-transkonduktans gmb ligger vanligtvis runt en fjärdedel av dess transkonduktans gm:

$$g_{mb} \approx 0.25 g_m$$

• I praktiken kan därför den effektiva transkonduktansen på en given MOSFET-transistor påverkad av Bodyeffekten antas öka med en faktor 1,25, eftersom

$$g_{m2} = g_m + g_{mb} \approx g_m + 0.25g_m = 1.25g_m$$

• För spänningsförstärkare medför detta något högre förstärkningsfaktor G samt ökad utresistans R_{UT}, men för sourceföljare, så sker det motsatta; Bodyeffekten leder till att förstärkningsfaktorn G_{SF} minskar från ca ett ned till ca 0,8, vilket innebär en signalförlust på ca 20 %.

$$G_{SF} \approx 0.8$$

- Att sourceföljarens förstärkningsfaktor G_{SF} minskar till hög grad beror på att dess utgång är placerad i source, vilket medför att inversen 1/(g_{mb}) till ingångstransistorns body-transkonduktansen g_{mb} utgör en lastresistans på sourceföljaren.
- För CMOS-sourceföljaren vi såg tidigare så gäller att dess förstärkningsfaktor G_{SF} kan beräknas med formeln

$$G_{SF} = \frac{r_{o1}//r_{o3}//\frac{1}{g_{mb3}}}{\frac{1}{g_{m3}} + r_{o1}//r_{o3}//\frac{1}{g_{mb3}}},$$

där r_{o1} är transistor M1:s utresistans och r_{o3} , $1/g_{m3}$ samt $1/g_{mb3}$ är transistor M3:s utresistans, transkonduktans samt body-transkonduktans, se småsignalschemat till höger.

Småsignalschema för beräkning av CMOS-sourceföljarens förstärkningsfaktor G_{SF}.

Vi kan anta att ersättningsresistansen ro1//ro3 är mycket högre än inversen till body-transkonduktansen 1/(gmb3):

$$r_{o1}//r_{o3} \gg \frac{1}{g_{mb3}}$$

• Därmed kan ro1//ro3 försummas, då

$$r_{o1}//r_{o3}//\frac{1}{g_{mb3}} = (r_{o1}//r_{o3})//\frac{1}{g_{mb3}} = \frac{(r_{o1}//r_{o3}) * \frac{1}{g_{mb3}}}{(r_{o1}//r_{o3}) + \frac{1}{g_{mb3}}} \approx \frac{(r_{o1}//r_{o3}) * \frac{1}{g_{mb3}}}{r_{o1}//r_{o3}} = \frac{1}{g_{mb3}}$$

CMOS-sourceföljarens förstärkningsfaktor G_{SF} kan därför approximeras till

$$G_{SF} pprox rac{\left(rac{1}{g_{mb3}}
ight)}{rac{1}{g_{m3}} + rac{1}{g_{mb3}}}$$

Under förutsättning att transistor Q3:s body-transkonduktans gmb3 är ungefär en fjärdedel av transkonduktansen gm3:

$$g_{mb3} \approx 0.25 g_{m3}$$

så kan GSF vidare approximeras till

$$G_{SF} pprox rac{\left(rac{1}{0.25g_{m3}}
ight)}{rac{1}{g_{m3}} + rac{1}{0.25g_{m3}}},$$

som kan transformeras till

$$G_{SF} \approx \frac{\left(\frac{1}{0,25g_{m3}}\right) * \frac{4}{4}}{\frac{1}{g_{m3}} + \frac{1}{0,25g_{m3}} * \frac{4}{4}} = \frac{\left(\frac{4}{g_{m3}}\right)}{\frac{1}{g_{m3}} + \frac{4}{g_{m3}}} = \frac{\left(\frac{4}{g_{m3}}\right)}{\left(\frac{5}{g_{m3}}\right)}$$

• Genom att multiplicera med g_{m3} i både täljare och nämnare så erhålls följande:

$$G_{SF} pprox rac{\left(rac{4}{g_{m3}}
ight)}{\left(rac{5}{g_{m3}}
ight)} * rac{g_{m3}}{g_{m3}} = rac{\left(rac{4}{g_{m3}} * g_{m3}
ight)}{\left(rac{5}{g_{m3}} * g_{m3}
ight)} = rac{4}{5},$$

vilket indikerar en förstärkningsfaktor GSF runt 0,8, då

$$G_{SF} \approx \frac{4}{5} \approx 0.8$$

• Samtidigt minskar CMOS-sourceföljarens utresistans Rut, SF med ca 20 %, från

$$R_{UT,SF1} \approx \frac{1}{g_{m3}}$$

$$R_{UT,SF2} \approx \frac{1}{g_{m3} + g_{mb3}} \approx \frac{1}{g_{m3} + 0.25g_{m3}} = \frac{1}{1.25g_{m3}},$$

$$\frac{1}{1.25} = 0.8,$$

där

ned till

vilket medför att

$$R_{UT,SF2} \approx \frac{1}{1,25} * \frac{1}{g_{m3}} = 0.8 * \frac{1}{g_{m3}} = \frac{0.8}{g_{m3}}$$

- Som vi såg tidigare vid beräkning av sourceföljarens förstärkningsfaktor G_{SF} via ekvivalent småsignalmodell, så utgör inversen till transistor M3:s body-transkonduktans 1/(g_{mb3}) en last på sourceföljarens utgång, vilket leder till minskad utresistans.
- CMOS-sourceföljarens utresistans R_{UT,SF} kan beräknas med formeln

$$R_{UT,SF} = r_{o1} / / r_{o3} / / \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}}$$

där r_{o1} är transistor M1:s utresistans och r_{o3} , $1/(g_{m3})$ samt $1/(g_{mb3})$ är transistor M3:s utresistans, transkonduktans samt body-transkonduktans, se småsignalschemat till höger.

Småsignalschema för beräknings av CMOS-sourceföljarens utresistans R_{UT,SF}.

• Vi kan anta att r₀₁//r₀₃ är mycket högre 1/(g_{mb3})//1/(g_{mb3}):

$$(r_{o1}//r_{o3}) \gg \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right),$$

vilket medför att ro1//ro3 kan försummas, då

$$(r_{o1}//r_{o3})//\left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right) = \frac{(r_{o1}//r_{o3}) * \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)}{(r_{o1}//r_{o3}) + \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)} \approx \frac{(r_{o1}//r_{o3}) * \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)}{r_{o1}//r_{o3}} = \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right) = \left(\frac{1}{g_{m3}}/\sqrt{\frac{1}{g_{mb3}}}\right) = \left(\frac{1}{g_{m3}}/$$

• Därmed så gäller att

$$R_{UT,SF} \approx \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}}$$

där

$$\frac{1}{g_{m3}} / / \frac{1}{g_{mb3}} = \frac{1}{g_{m3} + g_{mb3}}$$

Därmed kan CMOS-sourceföljarens utresistans Rut,s
 ∈ approximeras till

$$R_{UT,SF} \approx \frac{1}{g_{m3} + g_{mb3}}$$

Under förutsättning att

$$g_{mb3} \approx 0.25 g_{m3}$$
,

så kan R_{UT,SF} avrundas till

$$R_{UT,SF} \approx \frac{1}{g_{m3} + g_{mb3}} \approx \frac{1}{g_{m3} + 0.25g_{m3}} = \frac{1}{1.25g_{m3}} = \frac{0.8}{g_{m3}}$$

• Sourceföljarens inresistans R_{IN,SF} kan dock som vanligt antas gå mot oändlighet, då insignalen U_{IN} är ansluten till transistor M3:s gate:

$$R_{IN,SF} = \infty$$

Härledning av CMOS-sourceföljarens förstärkningsfaktor GsF:

- För att härleda en formel CMOS-sourceföljarens förstärkningsfaktor G_{SF} så kan dess småsignalschema ritas ut, se den vänstra figuren nedan.
- I detta fall tas påverkan av Bodyeffekten i beaktande, då transistorernas body ansluts till jord för att minska brus, istället för source, som är vanligast för diskreta transistorer.
- Dessvärre medför detta att Bodyeffekten kommer påverka sourceföljaren till den grad att dess förstärkningsfaktor G_{SF} kan antas minska till ca 0,8, vilket indikerar en signalförlust på 20 %.
- Matningsspänningen V_{SS} samt strömspegelns referenskrets kortsluts och gatesourcespänningen U_{GS} ersätts med spänningsfallet I_D/g_{m3}, där g_{m3} är CMOS-transistor M3:s transkonduktans.
- Referenssidan av strömspegeln kortsluts, så att endast transistor Q1 samt dess utresistans r_{o1} kvarstår. Slutligen ersätts in- och utspänningen U_{IN} samt U_{UT} med deras motsvarigheter i småsignalschemat, vilket är ΔU_{IN} samt ΔU_{UT} .

Sourceföljare konstruerad med CMOS-teknologi. Förstärkningsfaktorn G begränsas till ca 0,8 på grund av Bodyeffekten.

- För det första så kan transistor Q1 ersätts med dess utresistans ro1.
- Småsignalschemat kan sedan ritas om till figuren näst längst till vänster nedan. Notera att inversen till transistor M3:s bodytranskonduktans $1/(g_{mb3})$ utgör en last på sourceföljaren, parallellkopplad med transistor Q1:s utresistans r_{o1} . Därmed kan dessa resistanser ersättas med en resistor, vars resistans är lika med $r_{o1}/(1/(g_{mb3}))$.
- Småsignalschemat kan sedan ritas om till figuren näst längst till höger nedan. Som synes så utgör transistor M3:s utresistans r_{o3} samt ersättningsresistansen $r_{o1}/(1/(g_{mb3}))$ en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet, tillsammans med ΔU_{UT} , samtidigt som de är anslutna till jord åt andra hållet.
- Därmed är spänningsfallet över $r_{01}/((1/(g_{mb3})))$ samt r_{03} samma ($\Delta U_{UT} 0 = \Delta U_{UT}$), vilket medför att dessa resistanser kan tänkas vara parallellkopplade och kan därför ersättas med en resistor, vars resistans är lika med $r_{01}/(r_{03})/((1/(g_{mb3})))$, placerad i source.
- Därefter kan småsignalschemat ritas om till figuren längst till höger nedan. Notera att när ersättningsresistansen r₀₁//r₀₃//(1/(g_{mb3})) placeras i source så blir spänningsfallet över denna fortfarande lika ΔU_{UT}, vilket tidigare var fallet för samtliga resistanser r₀₁, r₀₃ samt 1/(g_{mb3}) i det ursprungliga småsignalschemat längst till vänster nedan. Detta indikerar att det ekvivalenta småsignalschemat nedan till höger är korrekt.
- Efter att ha förenklat småsignalschemat till den högra figuren nedan, så kan sourceföljarens förstärkningsfaktor G_{SF} i lastat tillstånd härledas via formler för in- och utsignalen ΔU_{IN} samt ΔU_{UT} .

Småsignalschema för sourceföljaren med body-effekt inkluderad. Genom att stegvis förenkla småsignalschemat från den vänstra till den högra figuren, så kan sourceföljarens förstärkningsfaktor G_{SF} sedan härledas genom att härleda formler för ΔU_{IN} samt ΔU_{UT} .

• Som vanligt gäller att sourceföljarens förstärkningsfaktor G_{SF} är lika med ration av in- och utsignalen ΔU_{IN} samt ΔU_{UT} i småsignalschemat:

$$G_{SF} = \frac{\Delta U_{UT}}{\Delta U_{IN}},$$

där formler för ΔU_{IN} samt ΔU_{UT} enkelt kan härledas med Kirchhoffs spänningslag.

- Figuren till höger visar det förenklade småsignalschema som togs fram tidigare, som kommer användas för att härleda formler för sourceföljarens in- och utsignal ΔU_{IN} samt ΔU_{UT} i småsignalschemat.
- Insignalen ΔU_{IN} kan enkelt härledas via Kirchhoffs spänningslag, genom beräkning från insignalen ΔU_{IN} till jord via CMOS-transistorns gate-drainövergång samt ersättningsresistansen $r_{o1}/r_{o3}/(1/g_{mb3})$ i source.

$$\Delta U_{IN} - \frac{I_D}{g_{m3}} - \left(r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{IN} = \frac{I_D}{g_{m3}} + \left(r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)I_D,$$

där drainströmmen I₀ kan brytas ut, vilket ger

$$\Delta U_{IN} = I_D \left(\frac{1}{g_{m3}} + r_{o1} / / r_{o3} / / \frac{1}{g_{mb3}} \right)$$

 Därefter kan ΔU_{UT} härledas via Kirchhoffs spänningslag, genom beräkning från utsignalen ΔU_{UT} till jord via ersättningsresistansen r_{o1}//r_{o3}//(1/g_{mb3}) i source, se figuren ovan till höger:

$$\Delta U_{UT} - \left(r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)I_D = 0,$$

vilket kan transformeras till

$$\Delta U_{UT} = \left(r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)I_D$$

• Sourceföljarens förstärkningsfaktor G_{SF} kan sedan härledas ut de framtagna formlerna för ΔU_{IN} samt ΔU_{UT} :

$$G_{SF} = \frac{\Delta U_{UT}}{\Delta U_{IN}} = \frac{\left(r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)I_{D}}{I_{D}\left(\frac{1}{g_{m3}} + r_{o1}//r_{o3}//\frac{1}{g_{mb3}}\right)'}$$

där drainströmmen I_D kan elimineras, då denna förekommer i både täljare och nämnare, vilket medför att

$$G_{SF} = \frac{r_{o1}//r_{o3}//\frac{1}{g_{mb3}}}{\frac{1}{g_{m3}} + r_{o1}//r_{o3}//\frac{1}{g_{mb3}}},$$

där r_{01} samt r_{03} är transistor M1:s samt transistor M3:s respektive utresistans och g_{m3} samt g_{mb3} är transistor M3:s transkonduktans respektive body-transkonduktans.

Förenklat småsignalschema för en sourceföljare påverkad av Bodyeffektenen.

• Ersättningsresistansen r₀₁//r₀₃ för transistorernas utresistans r₀₁ samt r₀₃ kan antas vara mycket större än inversen till transistor M3:s body-transkonduktans g_{mb3}:

$$r_{o1}//r_{o3} \gg \frac{1}{g_{mb3}}$$

vilket medför att

$$(r_{o1}//r_{o3}) //\frac{1}{g_{mb3}} = \frac{(r_{o1}//r_{o3}) * \frac{1}{g_{mb3}}}{(r_{o1}//r_{o3}) + \frac{1}{g_{mb3}}} \equiv \frac{(r_{o1}//r_{o3}) * \frac{1}{g_{mb3}}}{(r_{o1}//r_{o3})} \approx \frac{1}{g_{mb3}}$$

• Därmed kan sourceflöjarens förstärkningsfaktor approximeras till

$$G_{SF} \approx \frac{\left(\frac{1}{g_{mb3}}\right)}{\frac{1}{g_{m3}} + \frac{1}{g_{mb3}}}$$

• Genom att multiplicera med gmb3 i både täljare och nämnare:

$$G_{SF} pprox rac{\left(rac{1}{g_{mb3}}
ight)}{rac{1}{g_{m3}} + rac{1}{g_{mb3}}} * rac{g_{mb3}}{g_{mb3}} = rac{\left(rac{g_{mb3}}{g_{mb3}}
ight)}{g_{mb3} * \left(rac{1}{g_{m3}} + rac{1}{g_{mb3}}
ight)},$$

så kan approximationen ovan förenklas till

$$G_{SF} \approx \frac{1}{g_{mb3} \left(\frac{1}{g_{m3}} + \frac{1}{g_{mb3}}\right)}$$

• För att de två talen 1/g_{m3} samt 1/g_{mb3} skall erhålla en gemensam nämnare så kan vi multiplicera deras respektive nämnare, vilket att den nya nämnaren blir g_{mb3})(g_{m3} + g_{mb3}):

$$\frac{1}{g_{m3}} + \frac{1}{g_{mb3}} = \frac{g_{mb3}}{g_{m3} * g_{mb3}} + \frac{g_{m3}}{g_{m3} * g_{mb3}} = \frac{g_{m3} + g_{mb3}}{g_{mb3} * g_{m3}},$$

Därmed gäller att

$$G_{SF} pprox rac{1}{g_{mb3} \left(rac{1}{g_{m3}} + rac{1}{g_{mb3}}
ight)} = rac{1}{g_{mb3} \left(rac{g_{m3} + g_{mb3}}{g_{mb3} * g_{m3}}
ight)}$$

vilket är ekvivalent med

$$G_{SF} \approx \frac{1}{\left(\frac{g_{m3} + g_{mb3}}{g_{m3}}\right)}$$

Genom att multiplicera med gm3 i både täljare och nämnare kan formeln ovan transformeras till

$$G_{SF} pprox rac{1}{\left(rac{g_{m3} + g_{mb3}}{g_{m3}}
ight)} * rac{g_{m3}}{g_{m3}} = rac{g_{m3}}{g_{m3} + g_{mb3}}$$

• Som vanligt kan vi anta att transistor M3:s body-transkonduktans gmb3 är ungefär en fjärdedel av transkonduktansen gm₃:

$$g_{mh3} \approx 0.25 g_{m3}$$

vilket innebär att sourceföljarens förstärkningsfaktor GSF hamnar omkring 0,8, då

$$G_{SF} \approx \frac{g_{m3}}{g_{m3} + g_{mb3}} = \frac{g_{m3}}{g_{m3} + 0.25g_{m3}} = \frac{1}{1.25} = 0.8$$

- Resultatet indikerar en signalförlust på ca 20 %, vilket är relativt mycket. Av denna anledning så används vanligtvis sourceföljare endast när detta är nödvändigt i CMOS-kretsar, såsom när en lågohmig last skall drivas.
- Dessutom så betyder inte nödvändigtvis signalförluster orsakade av sourceföljaren att OP-förstärkarens closedloopförstärkning G_{CL} blir låg, särskilt inte om föregående förstärkarsteg innehåller kaskadkopplingar samt kaskadkopplade
 strömspeglar, såsom är fallet i teleskopiskt kaskadkopplade GS-steg. Som exempel, om en OP-förstärkares closed-loopförstärkning är relativt moderat, såsom 100 000, så kan användning av en sourceföljare tänkas minska denna till 80 000,
 vilket fortfarande är relativt högt.

Härledning samt beräkning av sourceföljarens in- och utresistans R_{IN} samt R_{UT}:

• Sourceföljarens inresistans R_{IN,SF} kan som vanligt antas gå mot oändlighet, då insignalen U_{IN} går in på MOSFET-transistor M3:s gate:

$$R_{IN,SF} = \infty$$

- En formel för sourceföljarens utresistans R_{UT,SF} i lastat tillstånd kan härledas via dess ekvivalenta småsignalschema, fast med insignalen ΔU_{IN} kortsluten, se figuren längst till vänster nedan.
- Till att börja med så kan strömspegeln ersättas med dess ekvivalenta utresistans r_{o,CM}. Därefter kan småsignalschemat ritas om till figuren näst längst till vänster nedan.
- Som synes så är strömspegelns utresistans r_{o,CM} samt lastresistansen R_L parallellkopplade, vilket medför att dessa kan ersättas med en resistor, vars resistans är lika med r_{o,CM}//R_L.
- Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan. Notera att MOSFET-transistor M3 är diodkopplad, då både gate och drain är anslutna till jord, vilket medför att dessa anslutningar har samma potential, vilket innebär att transistor M3 kan ersättas med dess ekvivalenta utresistans (1/g_{m3})//r_{o3}. Därefter kan småsignalschemat ritas om till figuren näst längst till höger nedan.

Sourceföljarens småsignalschema för härledning av dess utresistans $R_{UT,SF}$ i lastat tillstånd. Genom att gradvis förenkla småsignalschemat tills endast en resistor återstår så kan en formel för $R_{UT,SF}$ fastställas.

- I figuren näst längst till höger ovan så ser man att MOSFET-transistor M3:s ersättningsresistans (1/g_{m3})//r_{o3} samt ersättningsresistansen r_{o,CM}//R_L utgör en parallellkoppling, då dessa är anslutna till samma punkt åt ena hållet (tillsammans med ΔU_{UT}) och jord åt det andra.
- Därmed är spänningsfallet över resistanserna $(1/g_{m3})//r_{o3}$ samt $r_{o,CM}//R_L$ samma $(\Delta U_{UT} 0 = \Delta U_{UT})$, vilket medför att de kan ersättas med en resistor vars resistans är lika med $(1/g_{m3})//r_{o3}//r_{o,CM}//R_L$ placerad i source. Notera att spänningsfallet över denna ersättningsresistans också är $\Delta U_{UT} 0 = \Delta U_{UT}$.

- Småsignalschemat kan sedan ritas om till figuren längst till höger ovan, där endast en resistor återstår. Denna resistor är lika med sourceföljarens utresistans R_{UT,SF}.
- Därmed gäller att

$$R_{UT,SF} = \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}} / / r_{o1} / / r_{o3},$$

där g_{m3} , g_{mb3} samt r_{o3} är transistor M3:s utresistans, transkonduktans samt body- transkonduktans och r_{o1} är transistor M1:s utresistans.

• Ersättningsresistansen $r_{o1}//r_{o3}$ för transistorernas utresistans r_{o1} samt r_{o3} kan antas vara mycket större än ersättningsresistansen $[1/(g_{mb3})]/[1/(g_{mb3})]$:

$$r_{o1}//r_{o3} \gg \frac{1}{g_{m3}}//\frac{1}{g_{mb3}}$$

• Därmed kan ro1 samt ro3 försummas, då:

$$(r_{o1}//r_{o3})//\left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right) = \frac{(r_{o1}//r_{o3}) * \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)}{(r_{o1}//r_{o3}) + \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)} \approx \frac{(r_{o1}//r_{o3}) * \left(\frac{1}{g_{m3}}//\frac{1}{g_{mb3}}\right)}{(r_{o1}//r_{o3})} = \frac{1}{g_{m3}}//\frac{1}{g_{mb3}},$$

vilket innebär att

$$R_{UT,SF} \approx \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}}$$

Vidare gäller att

$$\frac{1}{g_{m3}} / / \frac{1}{g_{mb3}} = \frac{\frac{1}{g_{m3}} * \frac{1}{g_{mb3}}}{\frac{1}{g_{m3}} + \frac{1}{g_{mb3}}} = \frac{\left(\frac{1}{g_{m3}g_{mb3}}\right)}{\frac{1}{g_{m3}} + \frac{1}{g_{mb3}}},$$

där nämnaren kan förenklas till

$$\frac{1}{g_{m3}} + \frac{1}{g_{mb3}} = \frac{1 * g_{mb3}}{g_{m3}g_{mb3}} + \frac{1 * g_{m3}}{g_{m3}g_{mb3}} = \frac{g_{m3} + g_{mb3}}{g_{m3}g_{mb3}},$$

vilket medför att

$$R_{UT,SF} pprox rac{1}{g_{m3}} / / rac{1}{g_{mb3}} = rac{\left(rac{1}{g_{m3}g_{mb3}}
ight)}{\left(rac{g_{m3}+g_{mb3}}{g_{m3}g_{mb3}}
ight)}$$

• Approximationen ovan kan förenklas att multiplicera med gm3gmb3 i både täljare och nämnare:

$$R_{UT,SF} \approx \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}} = \frac{\left(\frac{1}{g_{m3}g_{mb3}}\right)}{\left(\frac{g_{m3}+g_{mb3}}{g_{m3}g_{mb3}}\right)} * \frac{g_{m3}g_{mb3}}{g_{m3}g_{mb3}} = \frac{\left(\frac{g_{m3}g_{mb3}}{g_{m3}g_{mb3}}\right)}{\left(g_{m3}g_{mb3} * \frac{g_{m3}+g_{mb3}}{g_{m3}g_{mb3}}\right)} = \frac{1}{g_{m3}+g_{mb3}}$$

Därmed gäller att

$$R_{UT,SF} \approx \frac{1}{g_{m3}} / / \frac{1}{g_{mb3}} = \frac{1}{g_{m3} + g_{mb3}}$$

• Eftersom body-transkonduktansen gmb3 kan antas vara en fjärdedel av transkonduktansen gm3:

$$g_{mh3} \approx 0.25 g_{m3}$$

så kan sourceföljarens utresistans R_{UT,SF} approximeras till

$$R_{UT,SF} \approx \frac{1}{g_{m3} + g_{mb3}} \approx \frac{1}{g_{m3} + 0.25g_{m3}} = \frac{1}{1.25g_{m3}}$$

• Tidigare såg vi att sourceföljarens utresistans R_{UT,SF} utan påverkan av Bodyeffekt kunde härledas med formeln

$$R_{UT,SF,utan\ Bodyeffekten} \approx \frac{1}{g_{m3}}$$

- Ovanstående approximationer indikerar att Bodyeffekten medför en minskning av sourceföljarens utresistans R_{UT,SF} med en faktor 1,25. Detta kan också demonstreras med ett exempel.
- Tidigare fastställdes att CMOS-transistor M3:s transkonduktans g_{m3} kan antas vara 2 mS vid en drainström I_D på 0,5 mA:

$$g_{m3} = 2 mS$$

• Sourceföljarens utresistans $R_{UT,SF}$ utan påverkan av Bodyeffekten kan då approximeras till 500 Ω , då

$$R_{UT,SF,utan\;Bodyeffekten} \approx \frac{1}{g_{m3}} = \frac{1}{2m} = 500\;\Omega$$

• Vid påverkan av Bodyeffekten så minskar dock R_{UT,SF} till 400 Ω, då

$$R_{UT,SF} pprox rac{1}{g_{m3} + g_{mb3}} pprox rac{1}{1,25g_{m3}} = rac{1}{1,25*2m} = 400 \ \Omega$$

 Därmed ser vi att sourceföljarens utresistans R_{UT,SF} kan antas minska med ca 20 % på grund av Bodyeffekten, vilket oftast är positivt. Dock minskar också förstärkningsfaktorn G_{SF} ungefär lika mycket, vilket är icke önskvärt.

4.3.22 - Exempel på konstruktion av CMOS-sourceföljare

- Sourceföljaren till höger skall konstrueras efter följande specifikationer:
- En total effektförbrukning P_{TOT} som inte får överstiga 1 mW.
- Matningsspänningen V_{DD}/V_{SS} är satt till ± 2 V.
- CMOS-transistorerna har följande data:

NMOS:

- Transkonduktansparameter: $\mu_n C_{ox} = 100 \, \mu A/V^2$
- Tröskelspänning: U_™ = 0,5 V

PMOS:

- Transkonduktansparameter: $\mu_p C_{ox} = 50 \, \mu A/V^2$
- Tröskelspänning: U_{TP} = 0,5 V
- CMOS-transistorernas kan antas ha en Earlyspänning UA på 20 V:

CMOS-sourceföljare med enkel strömspegel som last.

- Vi skall välja lämplig W/L-ratio på respektive transistor och beräkna sourceföljarens förstärkningsfaktor G_{SF} samt utresistans R_{UT,SF} samt beräkna in- och utsignalens topp-till-topp-värde.
- Transistor M3 utgör sourceföljarens ingångstransistor, M1 och M2 utgör en enkel strömspegel och den diodkopplade transistorn M4 används som referensmotstånd för att generera en referensström I_{REF}.
- För att utsignalen topp-till-toppvärde skall bli begränsad så lite som möjligt så bör transistor M1-M3:s respektive minimumvärde på drain-sourcespänningen U_{DS,min} sättas till 0,1 V, vilket kräver relativt hög W/L-ratio på transistorerna.

1. Beräkning av strömbudget I_{TOT} samt strömmar I_D och I_{REF} genom sourceföljaren:

- Det första vi gör är att beräkna hur hög ström I_{TOT} som kan tillhandhållas vid specificerat krav på den totala effektförbrukningen P_{TOT} i sourceföljaren.
- Den totala effektförbrukningen P_{TOT} i kretsen kan beräknas med Ohms lag:

$$P_{TOT} = (V_{DD} - V_{SS}) * I_{TOT},$$

där V_{DD} och V_{SS} är positiv respektive negativ matningsspänning och I_{TOT} är strömbudgeten i sourceföljaren.

• Formeln ovan kan transformeras till

$$I_{TOT} = \frac{P_{TOT}}{(V_{DD} - V_{SS})}$$

Givet att den totala effektförbrukningen Pτοτ i sourceföljaren inte får överstiga 1 mW:

$$P_{TOT} \leq 1 \ mW$$
,

så får strömbudgeten Ιτοτ i sourceföljaren inte överstiga 250 μA, då

$$I_{TOT} = \frac{P_{TOT}}{(V_{DD} - V_{SS})} \le \frac{1m}{(2 - (-2))} = \frac{1m}{4} = 250 \ \mu A$$

Därmed har vi en strömbudget Iτοτ på 250 μA:

$$I_{TOT} \leq 250 \,\mu A$$

Vi kan fördela strömbudgeten I_{TOT} mellan sourceföljaren (via transistor M1 samt M3) samt referenskretsen (via transistor M2 och M4):

$$I_{TOT} = I_D + I_{REF}$$
,

där ID är drainströmmen som flödar genom sourceföljaren och IREF är referensströmmen som flödar genom referenskretsen.

• Som en tumregel kan ca 90 % av strömbudgeten läggas på drainströmmen I_D genom sourceföljaren:

$$I_D \approx 0.9 * I_{TOT}$$

vilket medför en drainström I_D runt 225 μA, då

$$I_D \approx 0.9 * I_{TOT} = 0.9 * 250 = 225 \,\mu A$$

• För att säkerhetsställa att kravet på effektförbrukningen inte överskrids, så kan drainströmmen I_D göras något mindre än ovanstående värde, exempelvis 220 μA:

$$I_D \approx 220 \,\mu A$$

Resterande 10 % av strömbudgeten I_{TOT} kan läggas på strömmen I_{REF} genom referenskretsen. Detta medför en ström I_{REF} på ca 25 μA, då

$$I_{REF} \approx 0.1 * I_{TOT} = 0.1 * 250 = 25 \,\mu A$$

 För att minimera risken att effektförbrukningen överskrids, så kan referensströmmen I_{REF} göras något mindre än ovanstående värde, exempelvis 20 μA:

$$I_{RFF} \approx 20 \, \mu A$$

Därmed gäller att den totala strömmen i kretsen I_{TOT} hamnar omkring 240 μA, då

$$I_{TOT} = I_D + I_{REF} \approx 220 \mu + 20 \mu = 240 \mu A$$

vilket understiger den tidigare bestämda strömbudgeten med ca 10 µA.

• Samtliga CMOS-transistorer i sourceföljaren måste arbeta i mättat tillstånd under drift. I mättat tillstånd kan drainströmmen I_D som flödar genom en given NMOS-transistor beräknas med formeln

$$I_D = \mu_n C_{ox} \left(\frac{W}{L}\right)_N (U_{GS} - U_{TN})^2,$$

där $\mu_n C_{ox}$ är NMOS-transistorns transkonduktansparameter, $(W/L)_N$ är ration mellan transistorns kanalbredd samt kanallängd, U_{GS} är dess gate-sourcespänning och U_{TN} är dess tröskelspänning.

• Formeln ovan kan transformeras till

$$\left(\frac{W}{L}\right)_{N} = \frac{I_{D}}{\mu_{n}C_{ox}(U_{GS} - U_{TN})^{2}},$$

- Vid gränsen mellan det mättade och triodområdet så uppnås minvärdet UDS, min på drain-sourcespänningen UDS. Att ha låg UDS, min, såsom 0,1 V, medför ökad topp-till-toppvärdet på utsignalerna samt ökad förstärkningsfaktor G.
- För att kunna uppnå U_{DS,min} så måste CMOS-transistorernas W/L-ratio dimensioneras korrekt, vilket kan göras via en kombination av formeln ovan samt vetskap om att vid gränsen mellan det mättade området och triodområdet så gäller att

$$U_{DS.min} = U_{GS} - U_{TN}$$

• Därmed kan en given NMOS-transistorns W/L-ratio beräknas med formeln:

$$\left(\frac{W}{L}\right)_{N} = \frac{I_{D}}{\mu_{n} C_{ox} U_{DS min}^{2}},$$

där W/L är ration mellan transistorns kanalbredd samt kanallängd, I_D är drainströmmen, $\mu_n C_{ox}$ är NMOS-transistorns transkonduktansparameter och $U_{DS,min}$ är minvärdet på transistorns drain-sourcespänning.

• Transistor M1 samt M3 i sourceföljaren är NMOS-transistorer med en transkonduktansparameter $\mu_n C_{ox}$ på 100 μ A/V², i enlighet med specifikationerna:

$$\mu_n C_{ox} = 100 \, \mu A/V^2$$

Drainströmmen I_D genom sourceföljaren sattes tidigare till ca 220 μA:

$$I_D \approx 220 \,\mu A$$

CMOS-sourceföljare med relevanta spänningar och strömmar utritade.

• Transistor M1:s samt M3:s respektive minvärde på drain-sourcespänningen, U_{DS1,min} samt U_{DS3,min} sätts till 0,1 V, för att maximera utsignalens topp-till-topp-värde U_{UT,max}, se figuren ovan till höger.

$$U_{DS1.min} = U_{DS3.min} = 0.1 V$$

• Vi beräknar på transistor M1 och har i åtanke att transistor M3 skall ha identiska dimensioner. För att erhålla ett minimumvärde $U_{DS1,min}$ på 0,1 V så bör transistor M1 inneha en W/L-ratio på ca 220 μ m /10 μ m, då

$$\left(\frac{W}{L}\right)_{1} = \frac{I_{D}}{\mu_{n}C_{ox}U_{DS1\ min}^{2}} \approx \frac{220\mu}{100\mu * 0.1^{2}} = \frac{220\ \mu m}{1\ \mu m},$$

Detta gäller även transistor M3, eftersom

$$\left(\frac{W}{L}\right)_3 = \left(\frac{W}{L}\right)_1 \approx \frac{220 \ \mu m}{1 \ \mu m}$$

 Transistor M2 är diodkopplad, då dess gate och drain är ihopkopplade, se figuren ovan. Därmed gäller att dess drainsourcespänning U_{DS} är lika med dess gate-sourcespänning U_{GS2}:

$$U_{DS2} = U_{GS2}$$

Därmed gäller att

$$U_{DS2} > U_{GS2} - U_{TN},$$

vilket innebär att transistor M2 alltid arbetar i det mättade området och U_{DS2,min} går inte att applicera på denna transistor, då

$$U_{DS2 min} \neq U_{GS2} - U_{TN}$$

• Som synes i figuren till höger så tillhör transistor M1 och M2 samma strömspegel. Därmed bör deras respektive gatesourcespänning U_{GS1} samt U_{GS2} vara identiska:

$$U_{GS2} = U_{GS1}$$

• Transistor M1:s gate-sourcespänning U_{GS1} sattes tidigare till 0,6 V:

$$U_{GS1} = 0.6 V$$

• Därmed bör även UGS2 sättas till 0,6 V, då

$$U_{GS2} = U_{GS1} = 0.6 V$$

- För att beräkna en lämplig W/L-ratio på transistor M2, så måste vi ha i åtanke om att dess parametrar, såsom dess transkonduktansparameter samt strömmen som flödar igenom den.
- Eftersom transistor M2 är en NMOS-transistor så gäller att dess transkonduktansparameter $\mu_n C_{ox}$ är 100 μ A/V², i enlighet med specifikationerna:

$$\mu_n C_{ox} = 100 \, \mu A/V^2$$
,

• Eftersom transistor M2 är placerade på referenssidan av strömspegeln så flödar referensströmmen I_{REF} genom denna, som tidigare sattes till ca 20 μA:

$$I_{REF} \approx 20 \,\mu A$$

Därmed bör transistor M2:s W/L-ratio sättas till omkring 20 μm / 1 μm, då

$$\left(\frac{W}{L}\right)_2 = \frac{I_{REF}}{\mu_n C_{ox} (U_{GS2} - U_{TN})^2} \approx \frac{20 \,\mu}{100 \,\mu * (0.6 - 0.5)^2} = \frac{20 \,\mu m}{1 \,\mu m},$$

Spänningsfallet U_{SG4} kan beräknas via Kirchhoffs spänningslag, från V_{SS} upp till jord via U_{SG2} samt U_{SG4} .

- För att beräkna en lämplig W/L-ratio på PMOS-transistor M4, så behöver vi beräkna dess source-gatespänning U_{SG4}. Detta kan enkelt genomföras med Kirchhoffs spänningslag, beräknat från den negativa matningsspänningen V_{SS} upp till jord via transistor M2 samt M4, se figuren ovan till höger.
- Därmed kan följande formel härledas

som kan transformeras till

$$U_{SG4} = -V_{SS} - U_{GS2},$$

 $V_{SS} + U_{GS2} + U_{SG4} = 0$

där

$$V_{SS} = -2 V$$

samt

$$U_{GS2} = 0.6 V$$

Därmed gället att referenstransistor M4 bör ha en source-gatespänning U_{SG4} på 1,4 V, då

$$U_{SG4} = -V_{SS} - U_{GS2} = -(-2) - 0.6 = 2 - 0.6 = 1.4 \text{ V}$$

• För att beräkna en lämplig W/L-ratio på transistor M4, så kan vi använda oss utav formeln för referensströmmen I_{REF} som flödar genom den:

$$I_{REF} = \mu_p C_{ox} \left(\frac{W}{L}\right)_4 (U_{GS4} - U_{TP})^2,$$

där $\mu_p C_{ox}$ är transistor M4:s transkonduktansparameter, (W/L)₄ är ration mellan dess kanalbredd samt kanallängd, U_{SF4} är dess source-gatespänning och U_{TP} är dess tröskelspänning.

· Formeln ovan kan transformeras till

$$\left(\frac{W}{L}\right)_4 = \frac{I_{REF}}{\mu_p C_{ox} (U_{SG4} - U_{TP})^2},$$

• Eftersom referenstransistor M4 används som ett motstånd så är denna diodkopplad, vilket medför att dess sourcedrainspänning U_{SD4} är lika med dess source-gatespänning U_{SG4}, alltså 1,4 V, då

$$U_{SD4} = U_{SG4} = 1.4 V$$

• Då U_{SD4} samt U_{SG4} är lika stora (1,4 V), så kommer transistor M4 alltid arbetar i det mättade området, då

$$U_{SD4} > U_{SG4} - U_{TP}$$

• Detta innebär att transistor M4:s source-drainspänning U_{SD4} i detta fall skall ligga på konstant 1,4 V, vilket medför att M4 aldrig arbetar på gränsen till det mättade området. Därmed är U_{SD4,min} irrelevant, då

$$U_{SD4.min} \neq U_{SG4} - U_{TP}$$

Dock är overdrive-spänningen U_{SG4} – U_{TP} relevant, där

$$U_{SG4} - U_{TP} = 1.4 - 0.5 = 0.9 V,$$

då transistor M4:s tröskelspänning U_{TP} är lika med 0,5 V, i enlighet med specifikationerna.

• Transistor M4 är en PMOS-transistor och har i därmed en transkonduktansparameter $\mu_p C_{ox}$ på 50 μ A/V², i enlighet med specifikationerna:

$$\mu_p C_{ox} = 50 \ \mu A/V^2$$

• Referensströmmen I_{REF} genom referenskretsen sattes tidigare till ca 20 μA :

$$I_{REF} \approx 20 \, \mu A$$

• För att erhålla en source-gatespänning U_{SG4} på 1,4 v så bör transistor M4:s W/L-ratio sättas till ca 44 μm /81 μm, då

$$\left(\frac{W}{L}\right)_4 = \frac{I_{REF}}{\mu_p C_{ox} (U_{SG4} - U_{TP})^2} \approx \frac{22\mu}{50\mu * (1.4 - 0.5)^2} = \frac{44 \ \mu m}{81 \ \mu m}$$

Färdigkonstruerad sourceföljare med respektive transistors W/L-ratio utskriven.

2. Beräkning av CMOS-sourceföljarens förstärkningsfaktor GsF:

 Som vi sett tidigare så kan CMOS-sourceföljarens förstärkningsfaktor G_{SF} beräknas med formeln

$$G_{SF} = \frac{r_{o1}//r_{o3}//\frac{1}{g_{mb3}}}{\frac{1}{g_{mb3}} + r_{o1}//r_{o3}//\frac{1}{g_{mb3}}},$$

där r_{o1} är transistor M1:s utresistans och r_{o3} , g_{m3} samt g_{mb3} är transistor M3:s utresistans, transkonduktans och body-transkonduktans, se småsignalschemat nedan till höger.

• Utresistansen r_o på en given CMOS-transistor kan som vanligt beräknas med formeln

$$r_o \approx \frac{U_A}{I_D}$$

där UA är transistorns Earlyspänning och ID är strömmen som flödar genom dess drain.

• Samtliga transistorers Earlyspänning U_A kan antas vara 20 V, i enlighet med specifikationerna:

$$U_A = 20 V$$

• Eftersom strömmen I_D som flödar genom sourceföljaren ligger omkring 220 μA:

$$I_D \approx 220 \,\mu A$$

så ligger transistor M1:s samt M3:s respektive utresistans $r_{\text{o}1}$ respektive $r_{\text{o}3}$ runt 91 k Ω , då

$$r_{o1} = r_{o3} \approx \frac{U_A}{I_D} \approx \frac{20}{220\mu} \approx 91 \ k\Omega$$

• Transistor M3:s transkonduktans g_{m3} kan beräknas med formeln

$$g_{m3} = \frac{2I_D}{U_{GS3} - U_{TN}},$$

där I_D är strömmen som flödar genom dess drain och $U_{GS3} - U_{TN}$ är transistor M3:s så kallade overdrive-spänning, där U_{GS3} är dess gate-sourcespänning och U_{TN} är dess tröskelspänning.

Strömmen I_D som flödar genom transistor M3:s drain är lika med strömmen genom sourceföljaren, som ligger omkring 220 μA:

$$I_D \approx 220 \,\mu A$$

• För att beräkna transistor M3:s overdrive-spänning U_{GS3} − U_{TN} så kan vi använda oss av formeln

$$U_{DS3,min} = U_{GS3} - U_{TN},$$

som gäller vid gränsen mellan det mättade området och triodområdet.

• Transistor M3:s minvärde på drain-sourcespänningen UDS3,min sattes tidigare till 0,1 V:

$$U_{DS3,min}=0.1\,V$$

CMOS-sourceföljare.

Ekvivalent småsignalschema för CMOS-sourceföljaren ovan.

• Därmed gäller att transistor M3:s overdrive-spänning U_{GS3} − U_T är lika med 0,1 V, då

$$U_{DS3 \, min} = U_{GS3} - U_{TN} = 0.1 \, V$$

• Formeln ovan kan transformeras till

$$U_{GS3} = U_{DS3,min} + U_{TN}$$

• Eftersom transistor M3:s tröskelspänning U™ ligger omkring 0,5 V så är gate-sourcespänningen UGS3 lika med 0,6 V, då

$$U_{GS3} = U_{DS3,min} + U_{TN} = 0.1 + 0.5 = 0.6 V$$

Därmed ser vi att transistor M3:s transkonduktans g_{m3} är ungefär lika med 4,4 mS, eftersom

$$g_{m3} = \frac{2I_D}{U_{GS3} - U_{TN}} \approx \frac{2 * 220 \mu}{0.6 - 0.5} = 4.4 \text{ mS}$$

• Transistor M3:s body-transkonduktans gmb3 kan antas vara ungefär en fjärdedel av dess transkonduktans gm3:

$$g_{mb3} \approx 0.25 * g_{m3}$$

Därmed kan body-transkonduktansen gmb3 antas ligga omkring 1,1 mS, då

$$g_{mb3} \approx 0.25 * g_{m3} \approx 0.25 * 4.4m = 1.1 \text{ mS}$$

• Därmed kan sourceföljarens förstärkningsfaktor GSF beräknas:

$$G_{SF} \approx \frac{91k//91k//\frac{1}{1,1m}}{\frac{1}{4.4m} + 91k//91k//\frac{1}{1.1m}} \approx \frac{91k//91k//0,91k}{0,23k + 91k//91k//0,91k'}$$

där

$$91k//91k = \frac{91k * 91k}{91k + 91k} = \frac{91^2}{2 * 91k} = \frac{91k}{2} = 45,5 k\Omega,$$

vilket medför att

$$G_{SF} \approx \frac{45,5k//0,91k}{0,23k + 45,5k//0,91k}$$

där

$$45,5k//0,91k = \frac{45,5k * 0,91k}{45,5k + 0,91k} \approx \frac{45,5k * 0,91k}{45,5k} = 0,91 k\Omega$$

• Därmed ser vi att sourceföljarens förstärkningsfaktor G_{SF} hamnar omkring 0,8, då

$$G_{SF} \approx \frac{0.91k}{0.23k + 0.91k} \approx 0.8$$

• Sourceföljarens utresistans $R_{UT,SF}$ kan som vanligt antas vara lika med inversen till summan av transistor M3:s transkonduktans g_m samt body-transkonduktans g_{mb3} , vilket i detta fall innebär ca 180 Ω , så

$$R_{UT,SF} \approx \frac{1}{g_{m3}+g_{mb3}} \approx \frac{1}{4,4m+1,1m} \approx 0,18 \; k\Omega = 180 \; \Omega$$

3. Beräkning av insignalens min- och maxvärde U_{IN,min} samt U_{IN,max}:

- En formel för inspänningen U_{IN} kan härledas genom att beräkna med Kirchhoffs spänningslag från GS-stegets ingång (transistor M1:s gate) ned till den negativa matningsspänningen V_{SS} vid transistor M3:s gate-sourcespänning U_{GS3} samt transistor M1:s drain-sourcespänning U_{DS1}, se figuren till höger.
- Därmed kan följande formel härledas:

$$U_{IN} - U_{GS3} - U_{DS1} = V_{SS}$$

som kan transformeras till

$$U_{IN} = V_{SS} + U_{GS3} + U_{DS1}$$

där V_{SS} är den negativa matningsspänningen, U_{GS3} är transistor M3:s gate-sourcespänning, U_{DS1} är transistor M1:s drain-sourcespänning.

Den negativa matningsspänningen V_{SS} är satt till -2 V:

$$V_{SS} = -2 V$$

För att beräkna insignalens minvärde U_{IN,min}, så kan Kirchhoffs spänningslag användas, där beräkning sker från U_{IN} ned till V_{SS} via U_{GS3} samt U_{DS1}.

Transistorer M1 samt M3 är dimensionerade för att arbeta på gränsen mellan det mättade området och triodområdet.
 Därmed gäller att

$$U_{DS1.min} = U_{GS1} - U_{TN},$$

där

$$U_{DS1,min} = 0.1 V$$

Samtidigt gäller att

$$U_{DS3,min} = U_{GS3} - U_{TN},$$

som kan transformeras till

$$U_{GS3} = U_{DS3.min} + U_{TN}$$

• Eftersom U_{DS3,min} är satt till 0,1 V:

$$U_{DS3.min} = 0.1 V$$

och NMOS-transistorernas tröskelspänning U™ är 0,5 V, i enlighet med specifikationerna:

$$U_{TN} = 0.5 V$$
,

så gäller att gate-sourcespänningen U_{GS3} mellan transistor M3:s gate och source är lika med 0,6 V, då

$$U_{GS3} = U_{DS3.min} + U_{TN} = 0.1 + 0.5 = 0.6 V$$

Därmed gäller att inspänningens minvärde U_{IN,min} är lika med -1,3 V, då

$$U_{IN,min} = V_{SS} + U_{GS3} + U_{DS1,min} = -2 + 0.6 + 0.1 = -1.3 V$$

• För att fastställa inspänningens maxvärde $U_{\rm IN,max}$, så kan vi genomföra en beräkning från transistor M3:s gate upp till den positiva matningsspänningen $V_{\rm DD}$ via transistor M3:s gatesourcespänning $U_{\rm GS3}$ respektive dess drain-sourcespänning $U_{\rm DS3}$. Därmed gäller att $U_{\rm IN}-U_{\rm GS3}+U_{\rm DS3}=V_{\rm DD}$,

som kan transformeras till

$$U_{IN} = V_{DD} + U_{GS3} - U_{DS3},$$

där V_{DD} är den positiva matningsspänningen och U_{GS3} samt U_{DS3} är transistor M3:s gatesourcespänning respektive drain-sourcespänning.

• Den positiva matningsspänningen V_{DD} är satt till 2 V:

$$V_{DD} = 2 V$$

 Som vi såg tidigare är transistor M3 dimensionerad för att arbeta på gränsen mellan det mättade området och triodområdet. Då gäller att

$$U_{DS3,min} = U_{GS3} - U_{TN},$$

som kan transformeras till

$$U_{GS3} = U_{DS3.min} + U_{TN},$$

där U_{DS3,min} är satt till 0,1 V:

$$U_{DS3,min} = 0.1 V$$

och NMOS-transistorernas tröskelspänning U™ är 0,5 V, i enlighet med specifikationerna:

$$U_{TN} = 0.5 V$$
,

vilket medför att gate-sourcespänningen U_{GS3} mellan transistor M3:s gate och source är lika med 0,6 V, då

$$U_{GS3} = U_{DS3,min} + U_{TN} = 0.1 + 0.5 = 0.6 V$$

Vi ser då att inspänningens maxvärde kan uppgå till 2,5 V, då

$$U_{IN,max} = V_{DD} + U_{GS3} - U_{DS3,min} = 2 + 0.6 - 0.1 = 2.5 V$$

• Därmed gäller att inspänningen U_{IN} kan ligga mellan -1,3 V upp till 2,5 V utan att någon av transistorerna lämnar det mättade området:

$$-1.3 V \le U_{IN} \le 2.5 V$$

För att beräkna utsignalens maxvärde $U_{IN,max}$, så kan Kirchhoffs spänningslag beräkna från U_{IN} via U_{GS3} , därefter upp till V_{DD} via U_{DS3} .

4. Beräkning av utsignalens min- och maxvärde UUT,min samt UUT,max:

- För att fastställa utspänningens minimumvärde U_{UT,min} så kan beräkning genomföras från utgången ned till den negativa matningsspänningen V_{SS} via transistor M1:s drainsourcespänning U_{DS1}, se figuren till höger.
- Därmed gäller att

$$U_{UT} - U_{DS1} = V_{SS},$$

som kan transformeras till

$$U_{UT} = V_{SS} + U_{DS1}$$

• När utsignalen U_{UT} når sitt minvärde så kommer U_{DS1} uppnå sitt minimumvärde, vilket är 0,1 V:

$$U_{DS1,min} = 0.1 V$$

• Därmed ser vi att utsignalens minvärde UUT,min är lika med -1,9 V, då

$$U_{UT,min} = V_{SS} + U_{DS1} = -2 + 0.1 = -1.9 V$$

- För att fastställa utsignalens maxvärde U_{UT,max}, så kan beräkning genomföras från utgången (U_{UT}) upp till den positiva matningsspänningen V_{DD} via transistor M3:s drainsourcespänning U_{DS3}.
- Därmed kan följande formel härledas:

$$U_{UT} + U_{DS3} = V_{DD},$$

som kan transformeras till

$$U_{IIT} = V_{DD} - U_{DS3}$$

$$U_{DS3,min}=0.1\,V$$

• Därmed kan formeln ovan transformeras för att gälla för utsignalens maxvärde U_{UT,max}:

$$U_{UT.max} = V_{DD} - U_{DS3.min}$$

Därmed ser vi att utsignalens maxvärde U_{UT,max} är 1,9 V, då

$$U_{UT.max} = V_{DD} - U_{DS3.min} = 2 - 0.1 = 1.9 V$$

Därmed gäller att

$$-1.9 V \le U_{UT} \le 1.9 V$$

Utsignalens minvärde U_{UT,min} kan beräknas med Kirchhoffs spänningslag, där beräkning sker från U_{UT} ned till V_{SS} via U_{DS1}.

Utsignalens maxvärde U_{UT,max} kan beräknas med Kirchhoffs spänningslag, där beräkning sker från U_{UT} upp till V_{DD} via U_{DS3}.