进程管理习题

一、单项选择题

1、设与某资源关联的记录型信号量初值为 1,当前值为 -3。则当前因等待使用该资源而处于阻塞态的进程个数为。
A. 1 B. 0 C. 3 D. 4
2、当一个进程处于()状态时,称其为等待(或阻塞)状态。
A. 它正等待中央处理机 B. 它正等待合作进程的一个消息
C. 它正等待分给它一个时间片 D. 它正等待进入内存
3、下面关于线程的叙述中,正确的是()。
A. 不论是系统支持线程还是用户级线程, 其切换都需要内核的支持。
B. 线程是资源的分配单位, 进程是调度和分配的单位。
C. 不管系统中是否有线程, 进程都是拥有资源的独立单位。
D. 在引入线程的系统中, 进程仍是资源分配和调度分派的基本单位。
4、资源的按序分配策略可以破坏条件。
A. 互斥使用资源 B. 占有且等待资源 C. 非抢夺资源 D. 循环等待资源
5、下列选项中,会导致用户进程从用户态切换到内核态的操作是
I.整数除以零 II. sin()函数调用 III. read系统调用
A. 仅I、II B. 仅I、III C. 仅II、III D. I、II和III
6、下列关于银行家算法的叙述中,正确的是
A. 银行家算法可以预防死锁 B. 当系统处于安全状态时,系统中一定无死锁进程
A. 取打多异伍里以映的允映 D. 日总统处于女主机论时,总统中"走儿处顿赶住

C. 当系统处于不安全状态时,系统中一定会出现死锁进程

D. 银行家算法破坏了死锁必要条件中的"请求和保持"条件

4,这里5为最高优先级。下列各种调度算法中,其平均进程周转时间为14minf	 的是
A. 时间片轮转调度算法 B. 优先级调度算法	
C. 先来先服务调度算法 D. 最短作业优先算法	
8、可以被多个进程在任意时刻共享的代码必须是。	
A. 顺序代码 B. 机器语言代码 C. 不能自身修改的代码 D. 无转移指令代码	
9、设m为同类资源数,n为系统中并发线程数。当n个进程共享m个互斥资源时,每个	·进程
的最大需求是w;则下列情况会出现系统死锁的是:	
A. m=2, n=1, w=2 B. m=2, n=2, w=1 C. m=4, n=3, w=2 D. m=4, n=2, w=3	
TENDER MENT CONTROL TO THE MENT OF A LONG TO THE MENT OF THE MENT	
10、 下列调度算法中,不可能导致饥饿现象的是:	I. N.
A. 时间片轮转 B. 静态优先级调度 C. 非抢占式作业优先 D. 抢	5 式 短
作业优先	
11、 某系统有n台互斥使用的同类设备,3个并发进程,最多分别需要3,4,5台设	A =1
11、 某系统有n台互斥使用的同类设备,3个并发进程,最多分别需要3,4,5台设确保系统不会发生死锁的设备数n最少为:	台 ,
A. 9 B. 10 C. 11 D. 12	
12、 下列指令中,不能在用户态执行的是:	
A. trap 指令 B. 跳转指令 C. 压栈指令 D. 关中断指令	
13、 一个进程调用了阻塞式系统调用read()进行读磁盘操作,操作完成后,操作	F系统
针对该进程必须做的是:	
A. 修改进程状态为就绪态 B. 降低进程优先级	
C. 进程分配用户内存空间 D. 增加进程的时间片大小	
设系统中有三种类型的资源(A、B、C),它们的资源数量分别是17、5、20,五个进程	(P1,
P2, P3, P4, P5)。在 T0 时刻系统状态如下表所示,系统采用银行家算法实施死锁避免	策略。
进程 最大资源需求量 已分配资源数量	

7、有5个批处理任务A、B、C、D、E几乎同时到达一个计算中心。它们预计运行的时间分

别是 10min、6min、2min、4min 和 8min。其优先级(由外部设定)分别为 3、5、2、1 和

	A	В	С	A	В	С
P1	5	5	9	2	1	2
P2	5	3	6	4	0	2
Р3	4	0	11	4	0	2
P4	4	2	5	2	0	4
P5	4	2	4	3	1	4

- 14、 在T0时刻若进程P2请求资源(0,3,4),是否能实施分配?为什么?
 - A. 不可以, 因为无足够资源完成分配。
 - B. 不可以,因为分配后进入不安全状态。
 - C. 可以,分配后存在安全序列 P4->P2->P5->P3->P1。
 - D. 可以,分配后存在安全序列 P2->P5->P4->P1->P3。

假定在单道批处理环境下有5个作业,各作业进入系统的时间和估计运行时间如下表所示:

作业	进入系统时间	估计运行时间(分钟)
1	8:00	40
2	8:20	30
3	8:30	12
4	9:00	18
5	9:10	5

15、 如果应用最短作业优先的作业调度算法,则作业的平均周转时间为 分钟。

A. 50.3 B. 77.4 C. 37.2 D. 43.4

16、 某系统正在执行三个进程 P1、P2 和 P3,各进程的计算(CPU)时间和 I/0 时间比 例如下表所示。

进程	计算时间	I/0时间
P1	90%	10%
P2	50%	50%
Р3	15%	85%

为提高系统资源利用率,合理的进程优先级设置应为

A. P1>P2>P3 B. P3>P2>P1 C. P2>P1=P3 D. P1>P2=P3

17、 中断处理和子程序调用都需要压栈以保护现场,中断处理一定会保存而子程序调

用不需要保存的是

- A. 程序计数器
- B. 程序状态字寄存器
- C. 通用数据寄存器
- D. 通用地址寄存器
- 18、 有 5 个批处理任务 A、B、C、D、E 几乎同时到达一个计算中心。它们预计运行的时 间分别是 10min、6min、2min、4min 和 8min。其优先级(由外部设定)分别为 3、5、2、 1 和 4, 这里 5 为最高优先级。下列各种调度算法中, 其平均进程周转时间为 14min 的 是
 - A. 时间片轮转调度算法 B. 优先级调度算法
 - C. 先来先服务调度算法 D. 最短作业优先算法
- 19、 一个多道批处理系统中仅有P1和P2两个作业, P2比P1晚5 ms到达。它们的计算和 I/0操作顺序如下:
 - P1: 计算 60 ms, I/O 80 ms, 计算 20 ms
 - P2: 计算 120 ms, I/O 40 ms, 计算 40 ms

若不考虑调度和切换时间,则完成两个作业需要的时间最少是

- A. 240 ms B. 260 ms C. 340 ms D. 360ms

- 20、 若某单处理器多进程系统中有多个就绪态进程,则下列关于处理机调度的叙述中 错误的是
 - A. 在进程结束时能进行处理机调度 B. 创建新进程后能进行处理机调度
- - C. 在进程处于临界区时不能进行处理机调度
 - D. 在系统调用完成并返回用户态时能进行处理机调度
- 21、 下列关于进程和线程的叙述中,正确的是
 - A. 不管系统是否支持线程,进程都是资源分配的基本单位
 - B. 线程是资源分配的基本单位,进程是调度的基本单位
 - C. 系统级线程和用户级线程的切换都需要内核的支持
 - D. 同一进程中的各个线程拥有各自不同的地址空间
- 22、 下列关于银行家算法的叙述中,正确的是
 - A. 银行家算法可以预防死锁
 - B. 当系统处于安全状态时,系统中一定无死锁进程

- C. 当系统处于不安全状态时,系统中一定会出现死锁进程
- D. 银行家算法破坏了死锁必要条件中的"请求和保持"条件
- 23、 若一个用户过程通过read系统调用读取一个磁盘文件中的数据,则下列关于此过 程的叙述中, 正确的是
 - I. 若该文件的数据不在内存,则该进程进入睡眠等待状态
 - II. 请求 read 系统调用会导致 CPU 从用户态切换到核心态
 - III. read 系统调用的参数应包含文件的名称

 - A. 仅I、II B. 仅I、III C. 仅II、III D. I、II和III
- 24、 假设5个进程P0、P1、P2、P3、P4的共享3类资源R1、R2、R3,这些资源总数分别 为18、6、22。T0时刻的资源分配情况如下表所示,此时存在的一个安全序列是

进程	己分	分配资	源	资源	最大	需求
	R1 R2		R3	R1	R2	R3
P0	3	2	3	5	5	10
P1	4	0	3	5	3	6
P2	4	0	5	4	0	11
Р3	2	0	4	4	2	5
P4	3	2	4	4	2	4

A. PO, P2, P4, P1, P3

B. P1, P0, P3, P4, P2

C. P2, P1, P0, P3, P4

D. P3, P4, P2, P1, P0

- 25、 设有3个进程共享一个互斥段,如果最多允许有2个进程同时进入互斥段,则所采 用的信号量的初值应是():
 - A. 2 B. 3 C. 1 D. 0
- 两个进程合作完成一个任务。在并发执行中,一个进程要等待其合作伙伴发来消 26 息,或者建立某个条件后再向前执行,这种制约性合作关系被称为进程的()。
 - A. 同步 B. 互斥 C. 调度 D. 执行
- 27、 设备分配问题中,算法实现时,同样要考虑安全性问题,防止在多个进程进行设 备请求时,因相互等待对方释放所占设备所造成的()现象。

- A. 瓶颈 B. 碎片 C. 系统抖动 D. 死锁
- 28、 下列进程状态的转换中,哪一个是不正确的()。
 - A. 就绪->运行 B. 运行->就绪 C. 就绪->阻塞 D. 阻塞->就绪
- 29、 在多进程的系统中,为了保证公共变量的完整性,各进程应互斥进入临界区。所 谓临界区是指。
 - A. 一个缓冲区 B. 一段数据区 C. 同步机制 D. 一段程序

假设系统中有4个进程和4个可分配资源,当前分配和最大需求如下表所示, 已知资源的最大拥有量为 E=(12,9,5,4)。系统采用银行家算法实施死锁避免策略。

进程		当前资源	原分配量		最大资源需求量			
<i>江作</i> 王	资源1	资源 2	资源 3	资源 4	资源 1	资源 2	资源 3	资源 4
进程1	4	3	2	1	11	3	2	2
进程 2	1	2	2	1	1	8	2	1
进程 3	3	2	0	1	5	2	1	2
进程4	2	1	0	0	6	3	1	2

- 30、 在当前时刻若进程2请求资源(0,1,0,0),是否能实施分配?若能,给出安全序 列。
 - A. 不能分配, 因为分配后不存在安全序列。
 - B. 不能分配, 因为资源不足。
 - C. 能分配,分配后存在安全序列 3->4->2->1
 - D. 能分配, 分配后存在安全序列 3->4->1->2

有 6 个 CPU 密集型批处理作业 A、B、C、D、E 和 F, 几乎同时被提交。预计运行时间分 别为12,6,2,4,8和2分钟。对于下列每种调度算法,忽略进程切换的开销,计算其平 均进程周转时间。

- 31、 设进程A-F的优先级分别为4,6,3,2,5和1,其中1为最高优先级。则采用优先 级调度算法,平均进程周转时间为____。
- A. 16.33分钟 B.14.33分钟 C. 14分钟 D. 23.33分钟
- 32、 采用先来先服务调度算法,按照A、B、C、D、E和F的顺序运行。则平均进程周转 时间为。
 - A. 16.33分钟 B. 14.33分钟 C. 14分钟 D. 23.33分钟

- 33、 采用最短作业优先调度算法,平均进程周转时间为 。

- A. 16.33分钟 B.14.33分钟 C. 14分钟 D. 23.33分钟
- 34, 某单CPU系统中有输入和输出设备各1台,现有3个并发执行的作业,每个作业的输 入、计算和输出时间均分别为2ms、3ms和4ms,且都按输入、计算和输出的顺序执行, 则执行完3个作业需要的时间最少是。
 - A. 15ms B. 17ms C. 22ms D. 27ms

- 35 系统中有3个不同的临界资源R1、R2和R3,被4个进程P1、P2、P3和P4共享。各进 程对资源的需求为: P1申请R1和R2, P2申请R2和R3, P3申请R1和R3, P4申请R2。若系 统出现死锁,则处于死锁状态的进程数至少是。
 - A. 1 B. 2 C. 3 D. 4
- 进程P1和P2均包含并发执行的线程,部分伪代码描述如下所示: 36

```
进程 P1
    int x=0;
    Thread1(){
      int a; a=1; x+=1;
    Thread2(){
      int a; a=2; x+=2;
    }
```

```
讲程 P2
    int x=0;
   Thread3(){
      int a; a=x; x+=3;
    Thread2(){
    int b; b=x; x+=4;
    }
```

下列选项中,需要互斥执行的操作是。

A. a=1 与 a=2 B. a=x 和 b=x C. x+=1 与 x+=2 D. x+=1 与 x+=3

假设系统中有4个进程和1个可分配资源,当前分配和最大需求如下表所示,已知资源 的总量为100。系统采用银行家算法实施死锁避免策略。

进程	进程 当前资源分配量 最大			
进程1	20	50		
进程 2	15	50		

进程3	30	50
进程4	10	50

- 37、 在当前时刻若进程2请求该资源数量为10,是否能实施分配?若能,给出安全序列。
 - A. 不能分配, 因为分配后不存在安全序列。
 - B. 不能分配, 因为资源不足。
 - C. 能分配, 分配后存在安全序列 3->4->2->1
 - D. 能分配,分配后存在安全序列 3->4->1->2

二、简答题

- 1、你需要在一个很古老的 UNIX 上编写支持多线程的程序,它的内核不支持线程,内核代码也未公开,所以很难改造内核。请问如何解决这个问题?
- 2、在 UNIX 中父进程通过 fork()产生与自己一模一样的子进程,请问执行什么系统调用后, 子进程才拥有自己独立的新代码段。这个系统调用的返回值是如何规定的?
- 3、当检测到死锁发生时,如果必须杀死一个进程以解除死锁,请问以什么标准来选择被杀 死的进程比较合理?
- 4、在一单道批处理系统中,一组作业的提交时刻和运行时间如下表所示。试计算一下三种作业调度算法的平均周转时间 T 和平均带权周转时间 W。(1)先来先服务;(2)短作业优先(3)高响应比优先。作业提交时刻和运行时间如下表

作业提交时刻和运行时间表

作业	提交时刻	运行时间
1	8.0	1.0
2	8.5	0.5
3	9.0	0.2
4	9.1	0.1

5、设系统中有 3 种类型的资源(A, B, C)和 5 个进程(P1, P2, P3, P4, P5), A 资源的数量为 17, B 资源的数量为 5, C 资源的数量为 20。在 T0 时刻系统状态表如下表所示。

T0 时刻系统状态

进程	最大资源需求量				已分配资源量	
	A	В	С	A	В	С
P1	5	5	9	2	1	2
P2	5	3	6	4	0	2
P3	4	0	11	4	0	5
P4	4	2	5	2	0	4
P5	4	2	4	3	1	4
剩余资源	. A	A	В		C	
数	2	2	3	3	3	3

系统采用银行家算法试试死锁避免策略。

- (1) T0 时刻是否为安全状态?若是,请给出安全序列。
- (2) 在 T0 时刻若进程 P2 请求资源(0,3,4),是否能实施资源分配?为什么?
- (3) 在(2)的基础上, 若进程 P4 请求资源(2,0,1), 是否能实施资源分配?为什么?
- (4) 在(3)的基础上, 若进程 P1 请求资源(0,2,0), 是否能实施资源分配?为什么?
- 6、某系统有 R1, R2, R3 共 3 类资源, 在 T0 时刻 P1, P2, P3 和 P4 这 4 个进程对资源 的 占 用 和 需 求 情 况 见 下 表 , 此 刻 系 统 可 用 资 源 向 量 为 (2,1,2)

T0 时刻系统状态

	最大资源需求量			已分配资源数量			
	R1	R2	R3		R1	R2	R3
P1	3	2	2		1	0	0
P2	6	1	3		4	1	1
P3	3	1	4		2	1	1
P4	4	2	2		0	0	2

问题: (1)将系统中各种资源总量和此刻各进程对各资源的需求数目用向量或矩阵表示出来

- (2)如果此时 P1, P2 均发出资源请求向量 Request (1, 0, 1),为了保持系统的安全性 应该如 何分配资源?说明你所采用策略的原因。
- (3) 如果(2) 中两个请求立刻得到满足后,系统此刻是否处于死锁状态?
- 7、设有 3 个进程 P、Q、R,它们共享 10 个同类资源,P、Q、R 进程的资源最大需求量依次为 4、7 和 8。现假定它们对资源的请示序列如下表所示:

进程运行顺序及申请资源情况

步骤	进程	申请资源数
1	P	2
2	Q	4
3	R	2
4	Q	2
5	R	2
6	P	2

为了避免死锁,系统分配资源时采用银行家算法。如果申请资源得不到满足,进程就转入阻塞态。根据上述信息,试描述各步骤结束时,申请资源的进程是得到满足,还是转入阻塞状态,为什么?(起始状态:各进程均不拥有资源,无进程处于阻塞态)

- 8、分时操作系统中进程调度算法中对普通进程常常采用的是优先级轮转法,请问如何保证不会有进程因为优先级太低而饥饿?
- 9、死锁是一种对操作系统正常运行危害很大的现象,但是大多数死锁的解决方法只停留在理论探讨中,无法应用于实际的操作系统系统。请列举中哪些方法是实际操作系统中采用的应对死锁的可行方法。如果操作系统发现死锁已经发生,应如何应对使造成的损失较小?
- 10、 假定下面的 C 语言程序在 UNIX 系统上运行,并且所有系统调用都能成功完成。其中 "pthread_create(&t, NULL, bar, NULL);"的功能是创建一个新线程来执行函数 bar,并返回线程对象标识 t。 "pthread_join(t,NULL);"的功能是等待线程 t 结束。 试问此程序在运行过程中会打印出多少个"hello"?需要说明分析过程。

```
#include <sys/types.h>
#include <unistd.h>
#include <pthread.h>
#include <stdio.h>
static int counter = 1;
static void* bar(void *ignore) {
    counter--;
    if(counter==0) {
        fork();
        printf("hello\n");
```

```
    return NULL;

}

static void foo() {
    pthread_t t;
    if(fork() == 0) {
        fork();
        pthread_create(&t, NULL, bar, NULL);
        printf("hello\n");
        pthread_join(t, NULL);
    }
}

int main() {
    foo();
    printf("hello\n");
    return 0;
}
```

三、PV题

- 1、读者——写者问题。读者-写者问题为数据库访问建立了一个模型。例如,一个系统,其中有许多竞争的进程试图读写其中的数据,多个进程同时读是可以接受的,但如果一个进程正在更新数据库,则所有的其他进程都不能访问数据库,即使读操作也不行。分别写出读者优先、写者优先和公平竞争三种情况下的程序。
- 2、有一个理发师,一把理发椅和N把供等候理发的顾客坐的椅子。如果没有顾客,则理 发师便在理发师椅子上睡觉;当一个顾客到来时,必须唤醒理发师进行理发;如果理 发师正在理发时又有顾客来到,则如果有空椅子可坐,他就坐下来等,如果没有空椅 子,他就离开。为理发师和顾客各编一段程序(伪代码)描述他们的行为,要求不能 带有竞争条件。
- 3、 吸烟者问题。三个吸烟者在一间房间内,还有一个香烟供应者。为了制造并抽掉香烟,每个吸烟者需要三样东西:烟草、纸和火柴。供应者有丰富的货物提供。三个吸烟者中,第一个有自己的烟草,第二个有自己的纸,第三个有自己的火柴。供应者将

两样东西放在桌子上,允许一个吸烟者进行对健康不利的吸烟。当吸烟者完成吸烟后唤醒供应者,供应者再放两样东西(随机地)在桌面上,然后唤醒另一个吸烟者。试为吸烟者和供应者编写程序解决问题。

- 4、 面包师问题。面包师有很多面包和蛋糕,由n 个销售人员销售。每个顾客进店后先取一个号,并且等着叫号。当一个销售人员空闲下来,就叫下一个号。请分别编写销售人员和顾客进程的程序。
- 5、桌子上有一只盘子,最多可容纳两个水果,每次只能放入或取出一个水果。爸爸专向盘子放苹果(apple),妈妈专向盘子中放桔子(orange);儿子专等吃盘子中的桔子,女儿专等吃盘子中的苹果。请用P、V操作来实现爸爸、妈妈、儿子、女儿之间的同步与互斥关系。
- 6、 有一个仓库,可以存放A和B两种产品,仓库的存储空间足够大,但要求:
 - (1)一次只能存入一种产品(A或B);
 - (2)-N<(A产品数量-B产品数量)<M。

其中,N和M是正整数。试用"存放A"和"存放B"以及P、V操作描述产品A与产品B的入库过程。

- 7、三个进程P1、P2、P3 互斥使用一个包含N(N>0)个单元的缓冲区。P1 每次用produce() 生成一个正整数并用put()送入缓冲区某一空单元中;P2 每次用getodd()从该缓冲区中取出一个奇数并用countodd()统计奇数个数;P3 每次用geteven()从该缓冲区中取出一个偶数并用counteven()统计偶数个数。请用信号量机制实现这三个进程的同步与互斥活动,并说明所定义信号量的含义。要求用伪代码描述。
- 8、在天津大学与南开大学之间有一条弯曲的小路,这条路上每次每个方向上只允许一辆自行车通过。但其中有一个小的安全岛M,同时允许两辆自行车停留,可供两辆自行车已从两端进入小路的情况下错车使用。如图所示。下面的算法可以使来往的自行车均可顺利通过。其中使用了4个信号量,T代表天大路口资源,S代表南开路口资源,L代表从天大到安全岛一段路的资源,K代表从南开到安全岛一段路的资源。程序如下,请在空白位置处填写适当的PV操作语句,每处空白可能包含若干个PV操作语句。

begin

t:=1;s:=1;1:=1;k:=1;

cobegin

从天大到南开的进程

begin

____(1)____

通过L路段;

进入安全岛M;

____(2)____

通过K路段

____(3)____

end

从南开到天大的进程

begin

略,与"从天大到南开的进程"相反。

end

coend

end

9、 有桥如下图所示,车流如箭头所示,桥上不允许两车交汇,但允许同方向多辆车依次通过(即桥上可以有多个同方向的车)。用P、V操作实现交通管理以防止桥上堵塞。

10、用 P、V 操作和信号量实现下图中的前趋关系。其中 S1~S5 是 5 个具有同步关系的进程。

11、设有两个优先级相同的进程 P1 和 P2,共享 x、y、z 三个变量,执行代码见下表。信号 量 s1 和 s2 的初值均为 0。试问 P1、P2 并发执行后,x、y、z 的值各是多少?给出解题过程。

进程 P1	进程 P2
y=1;	x=1;
y=y+2;	x=x+2;
V(s1);	P(s1);
z=y+1;	x=x+y;
P(s2);	V(s2);
y=z+y;	z=x+z;

12、进程 A、B、C、D 为一组合作进程,其前趋图如下图所示,请在下面的程序代码片断中, 对信号量赋初值,并增加 P、V 操作完成进程间同步。

Semaphore s1=__(1)___, s2=___(2)___, s3=__(3)__, s4=__(4)__;

Process A:
{
 A's body
 V(s1);
 V(s1);
}

Process B:
{
 ___(5)___
 B's body
 ___(6)___
}

Process C:
{
 __(7)__
 C's body
 __(8)__
}

Process D:
{
 P(s3);
 P(s4);
 D's body
}