Vorlesung Analysis II

July 4, 2025

Teil 3: Gewöhnliche Differentialgleichungen

1n20: Spezielle explizite DGLn 2.Ordnung

Stichworte explizite DGL 2.Ordnung ohne y und ohne x

Stichworte: [Hoffmann], Kapitel 7.6/7

20.1. Einleitung: Wir behandeln zwei spezielle Beispiele für DGLn 2. Ordnung, die sich durch geeignete Substitution in eine DGL 1. Ordnung überführen lässt.

20.2. <u>Def.:</u> Eine DGL der Art y"=f(x,y') (*), ist eine <u>explizite DGL 2.Ordnung ohne y.</u>

20.3. <u>Vorgehen:</u> Substitution z=y' führt auf z'=f(x,z), also eine <u>explizite DGL 1.Ordnung</u>. Eine Lösung z dieser DGL liefert y als Stammfunktion zu z.

20.4. Bsp.: $y" = \sqrt{1 + y'^2}$, mit z=y' erhalten wir $z' = \sqrt{1 + z^2}$ bzw. $\frac{z'}{\sqrt{1 + z^2}} = 1$. Die l.s. ist aber die Ableitung von $\arcsin(z)$, An14.12. Mit $c \in \mathbb{R}$ folgt $\arcsin(z) = x + c$, also $z = \sinh(x + c)$ und $y(x) = \cos h(x + c) + d$, $c, d \in \mathbb{R}$ Konstanten.

20.5. Def.: Eine DGL der Art y''=f(y,y') ist eine explizite DGL 2.Ordnung ohne x.

20.6. <u>Vorgehen:</u> Substitution p=p(y)=y', also y''=p'(y)y'=p'(y)p, man erhält die DGL 1. Ordnung pp'(y)=f(y,p), für $p \neq 0$ also: $p'(y)=\frac{f(y,p)}{p}$ +. Ist p Lösung von +, so ist in IVen, in denen $p(n) \neq 0$ ist: $\int_{-p}^{y(x)} \frac{d\eta}{p(\eta)} + C$ [$aus1 = \frac{y'}{p}$] woraus sich unter geeigneten Voraussetzung y(x) ergibt.