Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МЭИ»

Институт Радиотехники и электроники им. В.А. Котельникова Кафедра электроники и наноэлектроники

Лабораторная работа

по дисциплине

Современные методы исследования поверхности полупроводников Тема: Резерфордовское обратное рассеяние

Студент гр. ЭР-05м-21		Маринин Н.С	
Jr-03M-21		таринин 11.	
	(подпись)		
Преподаватель		Баринов А.Д.	
	(полпись)		

1. Оглавление

2.	Исход	ные данные	3
3.	Задани	ие	4
4.	Расчёт	<u> </u>	5
Д	ля кажд	строить кривые зависимости сечения торможения от ого из элементов плёнки и подложки, а также для м подложки на одном графике в диапазоне энергий о	атериала самой
4	.2. Пос	стройте спектр обратного рассеяния, укажите особен	нности спектра
(начало, і	конец, высоту и ширину)	7
	4.2.1.	Металл IN	9
	4.2.2.	Плёнка VO2	10
	4.2.3.	Подложка Ga2O3	12
	4.2.4.	Построение спектра	14

2. Исходные данные

№	ФИО студента	Подложка	Плёнка	Толщина плёнки <i>t</i> , нм	Металл	Ион
8	Маринин Н.С.	Ga2O3	VO2	200	In	¹ He ⁺

Константы:

Элементарный электрический заряд: $e=1.6\,\cdot 10^{-19}$ Кл

Молярная масса электронов: $m_0 = 0.00055$ г/моль

Число Авогадро: $N_A = 6.022 \cdot 10^{23} \text{моль}^{-1}$

Коэффициент пропорциональности: $k_c = 9 \cdot 10^9 \, \mathrm{m}/\Phi$

Параметры элементов и материалов:

	He	In	V	0	Ga	VO2	Ga2O3
Атомный номер Z	2	49	23	8	31		
Молярная масса М, г/моль	4	115	51	16	70	83	188
Плотность р, г/см3	0.0001	7.31	-1	-1	-1	4.34	6.44

3. Задание

Ионы $^4{\rm He^+}$ с энергией $E_0=2.5~{\rm M}$ эВ бомбардируют поверхность плёнки VO2 толщиной $t=250~{\rm hm}$, напылённой на подложку Ga2O3 и сверху покрытой тонким слоем металла In.

Ток пучка ионов $I_0=10$ мкА, длительность бомбардировки $\tau=30$ сек. Угол рассеяния составляет $\theta=170^\circ$. Площадь приёмного окна детектора составляет A=0.1 см 2 , расстояние от мишени до детектора L=5 см. Разрешение детектора принять равным $\delta E_d=20$ кэВ. Энергия нулевого канала $E_{n0}=0.1$ МэВ, ширина канала $\Delta E_n=5$ кэВ.

Рисунок 1 Подложка Ga2O3 с напылённой на неё плёнкой VO2 и покрытой сверху тонким слоем металла In

4. Расчёт

4.1. Построить кривые зависимости сечения торможения от энергии иона для каждого из элементов плёнки и подложки, а также для материала самой плёнки и подложки на одном графике в диапазоне энергий от 0,5 до 3 МэВ

Средняя энергия возбуждения электрона:

$$I = n \cdot Z \tag{1}$$

где n меняется от 10 до 12 в зависимости от Z атома.

По формуле (1):

	In	\mathbf{V}	Ga	О	VO2	Ga2O3
I, 3B	490	253	341	96	390	860

Зависимость сечения торможения от энергии E иона ${}^{4}\text{He}^{+}$ для элементов плёнки и подложки (Z и I — для соответствующего элемента):

$$\varepsilon(E) = k_c^2 \cdot \frac{2\pi \cdot Z_H^2 \cdot e^4}{E} \cdot Z \cdot \frac{M_H}{m_0} \cdot ln\left(\frac{4 \cdot m_0 \cdot E}{M_{He} \cdot I}\right) \tag{2}$$

Исходя их формулы (2) и используя правило Брегга, получаем зависимость сечения торможения от энергии Еиона ${}^{4}\text{He}^{+}$ для материала самой плёнки и подложки соответственно:

$$\varepsilon_{VO2}(E) = \varepsilon_V(E) + 2\varepsilon_O(E)$$
 и $\varepsilon_{Ga2O3}(E) = 2\varepsilon_{Ga}(E) + 3\varepsilon_O(E)$ (3)

По формулам (2) и (3) построим зависимости сечения торможения от энергии иона:

Рисунок 2 Зависимость сечения торможения от энергии иона для плёнки VO2

4.2. Постройте спектр обратного рассеяния, укажите особенности спектра (начало, конец, высоту и ширину)

Ниже приведены формулы для расчета всего необходимого в данном расчёте:

Количество падающих ионов: $Q = \frac{I_0 \cdot \tau}{e} = 1.875 \cdot 10^{15}$.

Вероятность рассеяния в телесный угол: $\Omega = \frac{A}{L^2} = 4 \cdot 10^{-3}$ ср.

Концентрация атомов мишени:

$$N = \frac{N_A}{M} \cdot \rho \tag{4}$$

Кинематический фактор(М- молярная масса атомов мишени):

$$K = \left(\frac{\cos\theta + \sqrt{|\mu^2 - \sin\theta^2|}}{1 + \mu}\right)^2 \tag{5}$$

где μ - отношение массы элементов к массе атома гелия.

Энергия после соударения:

$$E = E_0 \cdot K \tag{6}$$

Формула Резерфорда для расчёта сечения рассеяния при $M >> M_{\text{HE}}$ и поправка:

$$\frac{d\sigma}{d\Omega} = k_c^2 \cdot \left(\frac{Z_H \cdot Z \cdot e^2}{4 \cdot E}\right)^2 \cdot \left(\sin\frac{\theta}{2}\right)^{-4} \quad \text{и} \quad 2 \cdot \left(\frac{M_{He}}{M}\right)^2$$
 (7)

Выход рассеяния (высота спектра):

$$Y = \frac{d\sigma}{d\Omega} \cdot \Omega \cdot Q \cdot N \cdot t = \frac{d\sigma}{d\Omega} \cdot \Omega \cdot Q \cdot (N)^{\frac{2}{3}}$$
(8)

Скорость потерь энергии:

$$\frac{dE}{dx} = \varepsilon \cdot N \tag{9}$$

где сечения торможения вычисляется по (2)

Коэффициент энергетических потерь обратного рассеяния:

$$[S] = K \cdot \frac{dE}{dx_{E_{BX}}} + \frac{1}{|\cos \theta|} \cdot \frac{dE}{dx_{E_{BMX}}}$$
(10)

Ширина спектра:

$$\Delta E = [S] \cdot t = [S] \cdot N_s = [S] \cdot N^{2/3}$$
(11)

Левая граница спектра:

$$E_2 = E_1 - \Delta E \tag{12}$$

Разрешение по энергии:

$$\delta E^2 = \delta E_d^2 + \delta E_s^2 \tag{13}$$

где $\delta E_{\scriptscriptstyle S}$ – разрешение от страгглинга.

4.2.1. Металл IN

Плёнка металла очень тонкая, следовательно, толщиной пренебрегают.

Воспользовавшись вышеизложенными формулами получим следующие параметры:

(4) концентрация атомов мишени:
$$N_{ln} = 3.82 \cdot 10^{22} \text{ cm}^{-3}$$

(5) кинематический фактор:
$$K_{In} = 0.871$$

(6) Энергия после соударения:
$$E_{In} = 2.177 \text{ МэВ}$$

(7) сечение рассеяния при энергии
$$E=E_0$$
: $\frac{d\sigma}{d\Omega_{In}}=2.667 \frac{\text{барн}}{\text{ср}}$

(8) выход рассеяния:
$$Y_{In} = 2.268 \cdot 10^4$$

Разрешение по энергии: $\delta E^2 = \delta E_d^2 + \delta E_s^2$, так как толщина металла бесконечно мала и равна нулю, то разрешением по энергии от страгглинга δE_s можно пренебречь, тогда: $\delta E = \delta E_d = 20$ кэВ.

4.2.2. Плёнка VO2

Воспользовавшись вышеизложенными формулами получим следующие параметры:

$$\varepsilon_V(E_0) = 59.252 \frac{9 \text{B} \cdot \text{cm}^2}{10^{15} \text{ atom}}$$

$$\varepsilon_0(E_0) = 34.472 \frac{{}_{9}{\rm B} \cdot {}_{\rm CM}^2}{10^{15} \, {}_{\rm ATOM}}$$

$$\varepsilon_{VO2}(E_0) = 91.725 \frac{9B \cdot cm^2}{10^{15} \text{ atom}}$$

$$\varepsilon_V(E_1) = 65.952 \; \frac{{}_{9\mathrm{B\cdot cm}^2}}{10^{15} \; \mathrm{atom}}$$

$$\varepsilon_0(E_1) = 55.298 \frac{9B \cdot cm^2}{10^{15} \text{ atom}}$$

$$\varepsilon_{VO2}(E_1) = 121.25 \; \frac{_{9\text{B} \cdot \text{cm}^2}}{_{10^{15} \; \text{atom}}}$$

$$N_{VO2} = 3.14 \cdot 10^{22} \,\mathrm{cm}^{-3}$$

$$N_V = 1.047 \cdot 10^{22} \text{cm}^{-3}$$

$$N_0 = 2.093 \cdot 10^{22} \text{cm}^{-3}$$

$$K_V=0.732$$

$$K_0=0.363$$

$$E_{V1} = 1.829 \text{ M} \ni \text{B}$$

$$E_{01} = 0.906 \,\mathrm{M}\mathrm{s}\mathrm{B}$$

$$\frac{d\sigma}{d\Omega_V} = 0.832 \; \frac{\text{барн}}{\text{ср}}$$

$$\frac{d\sigma}{d\Omega_O} = 0.361 \, \frac{\text{барн}}{\text{ср}}$$

$$Y_V = 1.633 \cdot 10^6$$

$$Y_0 = 1.416 \cdot 10^6$$

$$\frac{dE}{dx}_{VO2E_0} = 28.798 \frac{9B}{\dot{A}}$$

$$\frac{dE}{dx_{VO2E_1}} = 38.068 \frac{9B}{\dot{A}}$$

(10) коэффициент энергетических потерь: $S_V = 59.728 \frac{9B}{A}$

$$S_0 = 49.101 \frac{_{9B}}{A}$$

(11) ширина спектра: $\Delta E_V = 0.149 \text{ M} \ni \text{B}$

$$\Delta E_0 = 0.123 \text{ M} \cdot \text{B}$$

(12) левая граница спектра: $E_{V2} = 1.68 \text{ M}$ эВ

$$E_{O2} = 0.784 \text{ M} \ni \text{B}$$

(14) разрешение по энергии: $\delta E = 20.059 \text{ кэВ}$

4.2.3. Подложка Ga2O3

При расчете сечения торможения необходимо учесть потерю энергии на торможении в плёнке, и брать значение энергии не E_0 , а $E_0^{'}$:

$$E_{0}^{'}=E_{0}-E_{loss}$$
, где $E_{loss}=rac{dE}{dx_{thinfilm,E_{0}}}\cdot t_{f}$ (14)

Также изменится и формула расчёта энергии после соударения:

$$E_{1} = K \cdot E_{0}^{'} - \frac{1}{|\cos \theta|} \cdot \frac{dE}{dx_{thinfilm, E_{0}^{'}}} \cdot t_{f}$$

$$\tag{15}$$

Далее формулами воспользовавшись вышеизложенными получим следующие параметры:

$$\varepsilon_{Ga}(E_0') = 66.223 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{10^{15} \, arom}}$$

$$\varepsilon_{G}(E_0') = 33.067 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{10^{15} \, arom}}$$

$$\varepsilon_{Ga203}(E_0') = 99.29 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{_{10^{15} \, arom}}}$$

$$\varepsilon_{Ga203}(E_1) = 69.541 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{_{10^{15} \, arom}}}$$

$$\varepsilon_{Ga}(E_1) = 58.408 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{_{10^{15} \, arom}}}$$

$$\varepsilon_{Ga203}(E_1) = 127.95 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{_{10^{15} \, arom}}}$$

$$\varepsilon_{Ga203}(E_1) = 127.95 \, \frac{\mathrm{_{3B\cdot cm^2}}}{\mathrm{_{10^{15} \, arom}}}$$

$$W_{Ga203} = 2.061 \cdot 10^{22} \, \mathrm{cm^{-3}}$$

$$N_{Ga} = 8.246 \cdot 10^{21} \, \mathrm{cm^{-3}}$$

$$N_0 = 1.237 \cdot 10^{22} \, \mathrm{cm^{-3}}$$

$$N_0 = 1.237 \cdot 10^{22} \, \mathrm{cm^{-3}}$$

$$K_{Ga} = 0.796$$

$$K_{Ga} = 0.363$$

$$E_{Ga1} = 1.83 \, \mathrm{M}\mathrm{_{3B}}$$

$$(\mathrm{_{10} \, Bas a \, rpahula \, cnextpa)}$$

$$E_{O1} = 0.779 \, \mathrm{M}\mathrm{_{3B}}$$

(правая граница спектра)

(7) сечение рассеяния:
$$\frac{d\sigma}{d\Omega_{Ga}} = 1.511 \frac{\text{барн}}{\text{ср}}$$

$$\frac{d\sigma}{d\Omega_O}=0.489~\frac{\mathrm{барн}}{\mathrm{cp}}$$

(8) выход рассеяния:
$$Y_{Ga} = 4.626 \cdot 10^3$$

$$Y_0 = 1.962 \cdot 10^3$$

(9) скорость потерь энергии:
$$\frac{dE}{dx_{Ga2O3E_0}} = 20.47 \frac{_{9B}}{\dot{A}}$$

$$\frac{dE}{dx}_{Ga2O3E_1} = 26.38 \frac{9B}{A}$$

(10) коэффициент энергетических потерь:
$$S_{Ga} = 41.76 \frac{_{9B}}{A}$$

$$S_0 = 34.207 \frac{{}^{9B}}{\dot{A}}$$

(11) ширина спектра:
$$\Delta E_{Ga} = 0.104 \text{ M} \ni \text{B}$$

$$\Delta E_{O} = 0.855 \, \text{МэВ}$$

(12) левая граница спектра:
$$E_{Ga2} = 1.725 \text{ M} \Rightarrow \text{B}$$

$$E_{02} = 6.932 \text{ МэВ}$$

(13) высота спектра:
$$H_{Ga} =$$

(14) разрешение по энергии:
$$\delta E = 20 \text{ кэВ}$$

4.2.4. Построение спектра

Для построения спектра необходимо учитывать, что поток ионов регистрируется детектором с конечными параметрами приёма, а именно:

Разрешение детектора: $\delta E_d = 20 \text{ кэВ}$

Энергия нулевого канала: $E_{n0} = 0.1 \text{ M} \ni \text{B}$

Ширина канала: $\Delta E_n = 5$ кэВ.

Поэтому необходимо произвести перерасчёт с учётом данных параметров по каналам.

Граница канала по границе спектра:

$$n_{1,2} = ceil\left(\frac{E_{1,2} - E_{n0}}{\Delta E_n}\right) \tag{16}$$

Также для построения используется распределение Гаусса:

$$\rho(n,\mu,\sigma) = \frac{1}{\sqrt{2\pi \cdot \sigma^2}} \cdot exp\left[-\frac{1}{2} \frac{(n-\mu)^2}{\sigma^2} \right]$$
 (17)

где математическое ожидание берётся равным границе спектра, дисперсия $\sigma = \frac{\delta E}{\Delta E_n}$.

Итоговая функция для построения:

$$Y_{nspectr}(n) = \overline{Y} \cdot \rho(n, n, \sigma) \cdot \left(\frac{\overline{n}}{n}\right)^2, n_2 < n < n_1$$

$$Y_{nspectr}(n) = \overline{Y} \cdot \rho(n, n_2, \sigma), n \le n_2$$

$$Y_{nspectr}(n) = \overline{Y} \cdot \rho(n, n_1, \sigma) \cdot \left(\frac{\overline{n}}{n_1}\right)^2, n \ge n_2$$

 \overline{Y} - среднее значение выхода рассеяния, что использует в своём вычислении среднюю энергию (по схожей формуле вычисляется и \overline{n}):

$$E_{av} = E_2 + \Delta E/2 \tag{18}$$

Рисунок 3 Общий спектр обратного рассеяния по каналам