Bidang Fokus :Energi – Energi Baru dan Terbarukan

Luaran :Publikasi di Prosiding Internasional Terindeks

Scopus / Clarivate Analytics

Kode/Rumpun Ilmu : Teknik Lingkungan

PROPOSAL PENELITIAN UNGGULAN HIBAH BERSAING DANA RKAT FAKULTAS TEKNIK UNDIP TAHUN ANGGARAN 2021

KAJIAN POTENSI REFUSE DERIVED FUEL (RDF) SEBAGAI ENERGI ALTERNATIF TERBARUKAN DARI PENAMBANGAN TPA JATIBARANG

TIM PENGUSUL

Mochamad Arief Budihardjo, S.T., M.Eng.Sc., Ph.D

NIP. 197409302001121002

Dr. Ir. Eflita Yohana, MT

NIP. 196204281990012001

Bimastyaji Surya Ramadan

NIP. 199203242019031016

Muhammad Fillah Qoyyimul Haq

NIM. 21080119130042

Choirul Basyar

NIM. 21080119420009

DEPARTEMEN TEKNIK LINGKUNGAN FAKULTAS TEKNIK UNIVERSITAS DIPONEGORO TAHUN 2021

HALAMAN PENGESAHAN PROPOSAL PENELITIAN UNGGULAN

Judul Penelitian : Kajian Potensi *Refuse Derived Fuel* (RDF) Sebagai

Energi Alternatif Terbarukan dari Penambangan TPA

Jatibarang

Luaran Penelitian : Publikasi di Jurnal Terindeks Scopus EUREKA,

Physics and Engineering (Q2) SJR 0.17 dan draft MoU dengan School of Design and Environment, National

University of Singapore

Ketua Peneliti

a. Nama Lengkap : Mochamad Arief Budihardjo, S.T., M.Eng.Sc., Ph.D.

b. NIP/NIDN : 197409302001121002

c. Jabatan Fungsional : Lektor Kepala d. Departemen : Teknik Lingkungan

e. Nomor HP : 0811297437

f. E-mail : m.budihardjo@ft.undip.ac.id

Anggota Penelitian (1)

a. Nama Lengkap : Dr. Ir. Eflita Yohana, MT b. NIP/NIDN : 196204281990012001

c. Departemen : Teknik Mesin d. Nomor HP : 085201207619

Anggota Penelitian (2)

a. Nama Lengkap : Bimastyaji Surya Ramadan, ST., MT

b. NIP/NIDN : 199203242019031016 c. Departemen : Teknik Lingkungan d. Nomor HP : 082225539719

Anggota Mahasiswa : 1. M. Fillah Qoyyimul Haq NIM. 21080119130042

2. Choirul Basyar NIM. 21080119420009

Lama Penelitian : 7 (tujuh) bulan

Sumber Dana : RKAT Fakultas Teknik Undip Tahun 2021

Semarang, 25 Februari 2021

Ketua Peneliti,

Mochamad Arief Budihardjo, S.T., M.Eng.Sc., Ph.D.

NIP. 197409302001121002

ABSTRAK

TPA Jatibarang merupakan TPA terbesar di Jawa Tengah dengan luasan 46 Ha dan memiliki 4 zona yaitu dua zona aktif dan dua zona pasif. Zona 3 dan 4 merupakan zona aktif yang masih menerima sampah, sedangkan zona 1 dan 2 sudah ditutup pada tahun 2019 serta dimanfaatkan gas metannya sebagai PLTSa. Pemanfaatan ini akan menyisakan timbunan sampah yang dapat ditambang untuk dimanfaatkan menjadi Refuse Derived Fuel (RDF). Pada pembuatan RDF, fraksi sampah yang mudah terbakar pada umumnya dilakukan reduksi ukuran lalu dikeringkan supaya dapat digunakan sebagai bahan bakar. zona pasif TPA Jatibarang memiliki potensi menjadi bahan baku RDF sebab melewati batas nilai kalor minimal sebagai bahan baku RDF yakni minimal 2-2,5 kkal/ton. Pengambilan sampel sampah tidak dilakukan di zona pasif satu dan zona pasif dua karena sudah ditutup dengan geomembran, sehingga dilakukan di zona antara yang memiliki usia hampir sama dengan zona pasif satu dan zona pasif dua, dengan pengambilan sampel pada kedalaman 2-3 m. Sampel yang diambil dipilih dengan metode coning and quartering. Teknik sampling densitas sampah menggunakan acuan Testing of Waste Compaction Density in Landfills (EPA, 1995). Pengambil sampel sampah dilakukan di tiga titik berbeda di zona antara yang memiliki usia hampir sama dengan zona pasif satu dan zona pasif dua. Output dari penelitian ini adalah 1 artikel yang diterbitkan di Jurnal Terindeks Scopus EUREKA, Physics and Engineering (Q2) SJR 0.17 dan draft MoU dengan School of Design and Environment, National University of Singapore. Penelitian ini diharapkan dapat mengatasi permasalahan sampah di TPA Jatibarang dan meminimalisir dampak dari kondisi yang diakibatkan kegiatan TPA sebelumnya dengan memanfaatkan sampah zona pasif satu dan zona pasif dua menjadi Refuse Derived Fuel (RDF).

DAFTAR ISI

HALAN	MAN PENGESAHANi
DAFTA	R ISIii
RINGK	ASAN
BAB 1.	PENDAHULUAN
1.1.	Latar Belakang
1.2.	Perumusan Masalah
1.3.	Tujuan
1.4.	Manfaat
1.5.	Urgensi
BAB 2.	TINJAUAN PUSTAKA
2.1.	State of the Art Penelitian
2.2.	Refuse Derived Fuel (RDF)
2.2	.1 Jenis-Jenis Refuse Derived Fuel (RDF)
2.2	.2 Nilai Kalor6
2.2	.3 Proses Pembuatan RDF
2.3.	Analytical Hierarchy Process (AHP) dengan Software Expert Choice 7
2.4.	Studi Kelayakan
2.5.	Peta Jalan Penelitian
BAB 3.	METODE PENELITIAN
3.1.	Lokasi Pelaksanaan Penelitian
3.2.	Teknik Pengumpulan Data
3.3.	Pelaksanaan Penelitian
3.4.	Teknik Analisis Data

3.5.	Luaran	15
3.6.	Indikator Capaian	15
BAB 4.	BIAYA DAN JADWAL PENELITIAN	16
4.1.	Anggaran Penelitian	16
4.2.	Jadwal Penelitian	16
DAFTA	R PUSTAKA	17
LAMPI	RAN	19
Lamp	oiran A. Justifikasi Anggaran Penelitian	19
Lamp	oiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	20
Lamp	oiran C. Biodata Ketua dan Anggota Dosen dan Mahasiswa	21
Lamp	oiran D. Surat Pernyataan Ketua Peneliti	35

BAB 1. PENDAHULUAN

1.1. Latar Belakang

Kota Semarang memiliki jumlah penduduk sebanyak 1.786.114 jiwa (Badan Pusat Statistik Kota Semarang, 2020) dan terus meningkat tiap tahunnya. Pertumbuhan jumlah penduduk selaras dengan bertambahnya timbulan sampah yang dihasilkan. Pada tahun 2018 Kota Semarang menghasilkan timbulan sampah sebanyak 1.270 ton/hari dan sampah yang ditimbun di TPA Jatibarang sebanyak 850 ton/hari (Kementerian Lingkungan Hidup dan Kehutanan, 2018). Penerapan pengelolaan timbulan sampah yang belum optimal menyebabkan gunungan sampah dan memunculkan permasalahan (Kardono, 2007).

TPA Jatibarang merupakan TPA terbesar di Jawa Tengah dengan luasan 46 Ha dan memiliki 4 zona yaitu dua zona aktif dan dua zona pasif. Zona 3 dan 4 merupakan zona aktif yang masih menerima sampah, sedangkan zona 1 dan 2 sudah ditutup pada tahun 2019 serta dimanfaatkan gas metannya sebagai PLTSa. Pemanfaatan ini akan menyisakan timbunan sampah yang dapat ditambang untuk dimanfaatkan menjadi *Refuse Derived Fuel (RDF)*.

Refuse Derived Fuel (RDF) adalah hasil proses pemisahan limbah padat fraksi sampah mudah terbakar dan tidak mudah terbakar seperti metal dan kaca, RDF mampu mereduksi jumlah sampah dan menjadi co-combustion, bahan bakar sekunder industri semen dan industri pembangkit listrik (Rania, 2019). Menurut Bimantara (2012) dalam pembuatan RDF, fraksi sampah yang mudah terbakar pada umumnya dilakukan reduksi ukuran lalu dikeringkan supaya dapat digunakan sebagai bahan bakar. Menurut Hutabarat (2018) zona pasif TPA Jatibarang memiliki potensi menjadi bahan baku RDF sebab melewati batas nilai kalor minimal sebagai bahan baku RDF yakni minimal 2-2,5 kkal/ton.

Pemanfaatan RDF dari sampah hasil penambangan TPA belum banyak diaplikasikan sebagai sumber energi. Dengan demikian dibutuhkan suatu studi kelayakan mengenai solusi mengatasi sampah terdekomposisi di zona pasif 1 dan 2 TPA Jatibarang serta timbunan sampah masuk dengan cara dimanfaatkan

kembali menjadi *Refuse Derived Fuel Plant (RDF)* yang ditinjau dari aspek teknis, lingkungan, dan finansial. Studi kelayakan ini diharapkan dapat menjadi acuan pengolahan sampah di TPA Jatibarang.

Luaran dari penelitian inni adalah diterbitkan ke Jurnal Terindeks *Scopus* EUREKA, Physics and Engineering (Q2) SJR 0.17 dan draft MoU dengan School of Design and Environment, National University of Singapore. NUS memiliki peringkat 11th di dunia dan yang pertama di Asia. Departemen Teknik Lingkungan telah mengundang Prof. Lam Khee Poh, Dekan dari School of Design and Environment pada tahun 2019 sebagai pembicara dalam INCRID yang diadakan oleh Departemen Teknik Lingkungan. Beliau telah menyatakan setuju untuk mengadakan kerja sama baik dalam kerja sama riset maupun akademik di Fakultas Teknik. Melalui kegiatan penelitian ini, diharapkan rencana kerja sama tersebut dapat terealisasi dan tertuang di dalam MoU yang akan dibuat sebagai luaran dari penelitian ini.

1.2. Perumusan Masalah

- 1. Bagaimana kondisi eksisting zona pasif satu dan zona pasif dua?
- 2. Bagaimana kelayakan teknis Refuse Derived Fuel (RDF) Plant di TPA Jatibarang?
- 3. Bagaimana kelayakan lingkungan Refuse Derived Fuel (RDF) Plant di TPA Jatibarang?
- 4. Bagaimana kelayakan finansial Refuse Derived Fuel (RDF) Plant di TPA Jatibarang?

1.3. Tujuan

- Mengetahui dan menganalisis kondisi eksisting zona pasif satu dan zona pasif dua.
- Menganalisis kelayakan teknis Refuse Derived Fuel (RDF) Plant di TPA Jatibarang.
- 3. Menganalisis kelayakan lingkungan Refuse Derived Fuel (RDF) Plant di TPA Jatibarang.

4. Menganalisis kelayakan finansial Refuse Derived Fuel (RDF) Plant di TPA Jatibarang.

1.4. Manfaat

- 1. Menambah wawasan dan ilmu pengetahuan tentang Refuse Derived Fuel (RDF), serta sarana bagi peneliti untuk mengaplikasikan ilmu pengetahuan yang telah didapat dari perkuliahan.
- 2. Sebagai bahan masukan dan pertimbangan dalam memanfaatkan sampah zona pasif satu dan zona pasif dua menjadi Refuse Derived Fuel (RDF) guna mengatasi permasalahan sampah di TPA Jatibarang dan meminimalisir dampak dari kondisi yang diakibatkan kegiatan TPA sebelumnya

1.5. Urgensi

Timbulan sampah di TPA Jatibarang terus meningkat tiap tahunnya, pada tahun 2018 sebanyak 850 ton/hari. Ditambah dengan timbunan sampah dari pemanfaatan gas metan sebagai PLTSa pada zona pasif 1 dan 2. Penambangan menjadi Refuse Derived Fuel (RDF) yang merupakan proses pemisahan limbah padat fraksi sampah mudah terbakar dan tidak mudah terbakar seperti metal dan kaca menjadi bahan bakar dapat dilakukan untuk mereduksi sampah yang dihasilkan. Namun, pemanfaatan RDF dari sampah hasil penambangan TPA belum banyak diaplikasikan sebagai sumber energi. Oleh karena itu, studi kelayakan mengenai RDF *plant* dengan memanfaatkan sampah hasil penambangan menjadi bahan bakar ditinjau dari aspek teknis, lingkungan, dan finansial diharapkan dapat mereduksi sampah dan menjadi acuan pengolahan sampah di TPA Jatibarang.

BAB 2. TINJAUAN PUSTAKA

2.1. State of the Art Penelitian

Penelitian sebelumnya yang relevan dengan penelitian ini yaitu Penelitian mengenai RDF telah dilakukan Hutabarat et al. (2018) yang mengkaji Potensi Sampah *Combustible* pada Zona Pasif TPA Jatibarang Semarang sebagai Bahan Baku RDF. Sampah yang diambil berasal dari kedalaman 0-1 m, 1-2 m, dan 2-3 m dan nilai kalor rendah (NKR) bervariasi setiap kedalaman sampah, yakni 3,5 kkal/ton sampai dengan 4,25 kkal/ton. Hasil ini menunjukkan bahwa sampah zona pasif TPA Jatibarang memiliki potensi menjadi bahan baku RDF sebab melewati batas nilai kalor minimal sebagai bahan baku RDF yakni minimal 2-2,5 kkal/ton.

Penelitian kedua yang relevan dilakukan oleh Rania dkk (2019). Penelitian ini bertujuan untuk mengetahui seberapa besar potensi limbah 4K1P (Kertas, Kayu, Kain, Karet / Kulit dan Plastik) untuk diolah menjadi RDF, dan seberapa optimal nilai kalor RDF akan digunakan sebagai bahan bakar pirolisis insinerator pada Pembangkit Tenaga Sampah di TPA Murareja, Kabupaten Tegal. Dari penelitian tersebut didapatkan nilai kalor hasil uji briket RDF sebesar 3.973,45 kcal/kg, dimana melebihi nilai kalor optimal yang dibutuhkan incinerator pirolisis sebesar 3.248,809 kcal/kg. Dengan ini dapat disimpulkan bahwa briket RDF tersebut dapat dimanfaatkan menjadi bahan bakar incinerator pirolisis.

Penelitian yang relevan lainnya juga dilakukan Rotheut & Quicker (2017) tentang *Energetic Utilisation of Refuse Derived Fuels from Landfill Mining*. Penelitian tersebut mengkaji tentang pemanfaatan sampah hasil penambangan menjadi RDF. Hasil penelitian menunjukkan bahwa sampah yang sudah terdekomposisi memungkinkan dijadikan RDF. Namun, karena hasil sampah penambangan didominasi sampah *non-combustible* maka perlu dicampur dengan sampah baru dengan perbandingan 1:10.

2.2. Refuse Derived Fuel (RDF)

Refuse Derived Fuel merupakan salah satu teknologi pengolahan sampah yang mengubah sampah menjadi bahan yang lebih bernilai yaitu bahan bakar. Menurut Cheremisinoff (2003), yang dimaksud dengan Refuse Derived Fuel atau

RDF adalah hasil proses pemisahan sampah padat antara fraksi sampah mudah terbakar (combustible fraction) dan tidak mudah terbakar (non combustible fraction) seperti metal dan kaca. RDF dihasilkan dari terpisahnya fraksi yang memiliki nilai kalor yang tinggi dari proses pemisahan Municipal Solid Waste (MSW). Produksi Refuse Derived Fuel (RDF) bertujuan untuk mengubah fraksi sampah yang mudah terbakar dari limbah padat perkotaan untuk dijadikan bahan bakar (Gendebien et al., 2003). RDF merupakan bahan bakar yang berasal dari proses pencacahan sampah dan pengurangan kadar air. Wujud dari RDF ini dapat berupa bentuk apa adanya dari hasil pencacahan (fluff), pellet, maupun bentuk batu bata (brick). Sampah yang dapat dijadikan RDF hanyalah komponen yang dapat terbakar, sementara komponen lainnya yang tidak terbakar harus terlebih dahulu disisihkan. Pengurangan kadar air merupakan suatu keuntungan karena akan meningkatkan nilai kalor dari produk yang dihasilkan. Kadar air dari suatu sampah sangat mempengaruhi lamanya pemanasan dari sampah yang akan diolah menjadi RDF (Bimantara, 2012).

2.2.1 Jenis-Jenis Refuse Derived Fuel (RDF)

Jenis-jenis RDF dapat diklasifikan dalam tujuh tipe yang terdapat dalam American Society for Testing Material (ASTM) E 856 Standard Definitions of Therms and Abbreviations Relating to Physical and Chemical Characteristic of Refuse Derived Fuel (Nithikul, 2007), yakni sebagai berikut:

1. RDF-1

RDF-1 merupakan RDF yang berasal dari MSW atau sampah yang digunakan langsung dari bentuk terbuangnya tanpa sampah dengan ukuran yang besar dan tebal.

2. RDF-2

RDF-2 ialah MSW atau sampah yang diproses manjadi partikel kasar dengan atau tanpa logam besi (ferrous metal). Subkategori dari RDF-2 merupakan serpihan RDF, RDF-2 biasa disebut juga sebagai coarse RDF atau c-RDF.

3. RDF-3

Yang dimaksud dengan RDF-3 adalah bahan bakar yang dicacah yang berasal dari MSW yang kemudian diproses memisahkan logam, kaca dan bahan anorganik lainnya. RDF-3 biasa disebut sebagai Fluff RDF.

4. RDF-4

RDF-4 berasal dari fraksi sampah yang dapat dibakar (combustible) yang diolah menjadi bentuk serbuk. RDF-4 disebut juga sebagai dust RDF atau pRDF.

5. RDF-5

RDF-5 merupakan bahan bakar yang dihasilkan dari fraksi sampah yang dapat dibakar dan dipadatkan menjadi bentuk pellet, slags, cubettes, briket, dan sebagainya (disebut juga dengan densified RDF atau d-RDF).

6. RDF-6

RDF-6 merupakan RDF dalam bentuk cair atau liquid RDF. RDF-6 disebut juga sebagai RDF slurry.

7. RDF-7

RDF-7 adalah RDF dalam bentuk gas atau disebut juga sebagai RDF synthetic gas (syngas). RDF-7 berasal dari sampah yang dapat dibakar.

Sampah yang diolah menjadi RDF umumnya merupakan sampah yang dilihat berdasarkan beberapa parameter, seperti nilai kalor dan kadar air (Cheremisinoff, 2003).

2.2.2 Nilai Kalor

Nilai kalor adalah sejumlah energi yang dilepaskan per unit massa atau per unit volume dari suatu material atau bahan ketika material tersebut habis terbakar (ANSI/ASABE, 2011). Terdapat dua jenis nilai kalor, yaitu:

- 1. Nilai Kalor Atas (Highest Heating Value/HHV). Nilai Kalor Atas (NKA) atau HHV ialah kalor yang dihasilkan oleh pembakaran sempurna satu satuan berat bahan bakar padat atau cair, atau satu satuan volume bahan bakar gas, pada tekanan tetap, apabila semula air yang mula-mula berwujud cair setelah pembakaran mengembun kemudian menjadi cair kembali.
- 2. Nilai Kalor Bawah (Lowest Heating Value/LHV). Nilai Kalor Bawah (NKB) adalah kalor yang besarnya sama dengan nilai kalor atas dikurangi kalor yang diperlukan air yang terkandung dalam bahan bakar dan air yang terbentuk dari pembakaran bahan bakar.

Menurut Damanhuri dan Padmi (2019) suatu bahan dapat dijadikan sebagai bahan atau sumber panas jika memiliki nilai kalor minimal 2-2,5 kcal/ton.

2.2.3 Proses Pembuatan RDF

Proses pembuatan RDF secara umum menurut McDougall et al. (2001) sebagai berikut.

- a. Penyimpanan sampah (Waste Reception and Storage) Sampah dipisahkan dari material-material yang tidak diinginkan seperti kayu, mesin mobil, dan lainlain.
- b. Pengayakan sampah (Waste Liberation and Screening) Material yang terlalu halus dan material berukuran besar dipisahkan pada tahap ini. Material yang terlalu halus mengandung kadar air yang tinggi serta mengandung bahanbahan organik. Sementara material berukuran besar (>500 mm) seperti kertas, papan, dan plastik film yang berukuran besar. Sisa material dari proses ini dapat digunakan sebagai cude cRDFatau cRDF (cRDF kasar/cRDF tipe A).
- c. Penghalusan bahan baku (Fuel Refining) Pada tahap ini dilakukan reduksi ukuran, klasifikasi, dan pemisahan magnetis. Reduksi ukuran bertujuan agar material menjadi fraksi yang ringan dan padat dengan alat pencacah (shredder) atau hammer mill. Pemisahan berat jenis atau proses klasifikasi dibutuhkan untuk memisahkan fraksi berat (metal, plastik tebal) dari fraksi ringan yang dapat dibakar (kertas, plastik film) yang selanjutnya akan dibentuk menjadi RDF. Sedangkan pemisahan magnetis dilakukan untuk membuang logam besi dari fraksi berat. Sementara fraksi yang ringan digunakan bersama sisa dari pemisahan magnetis fraksi berat untuk membentuk cRDF (cRDF tipe B).
- d. Fuel Preparation Dalam proses ini terlihat perbedaan antara proses pembuatan cRDF dan dRDF. Pada proses ini dilakukan konversi fuel rich fraction (flok) menjadi ke bentuk yang lebih padat dan kering dengan mencacah ulang, lalu mengeringkannya dan membentuknya menjadi butiran-butiran (pellet).
- e. Fuel Storage and Quality Control Apabila sudah dalam bentuk pellet dan kering, dRDF dapat disimpan sebelum digunakan. Namun sebaliknya, cRDF harus sesegera mungkin dibakar setelah diproduksi.

2.3. Analytical Hierarchy Process (AHP) dengan Software Expert Choice

Analytical Hierarchy Process adalah suatu metode pendukung keputusan yang dikembangkan oleh Thomas L. Saaty. Model pendukung keputusan ini akan menguraikan masalah multi kriteria menjadi suatu hierarki. Maksud dari hierarki

disini adalah suatu representasi dari sebuah permasalahan dalam suatu struktur multilevel dimana level pertama adalah tujuan, kriteria, hingga level terakhir dari alternatif (Saaty, 1990). Expert Choice (EC) adalah sebuah software yang digunakan sebagai salah satu alat (tool) untuk membantu dalam penentuan keputusan oleh para pengambil keputusan. Software EC menawarkan beberapa fasilitas, meliputi input data-data kriteria, beberapa alternatif pilihan, dan penentuan tujuan. EC didasarkan pada metode Analytic Hierarchy Process (Handayani, 2015). Tahapan metode AHP dengan bantuan expert choice menurut Handayani (2015) adalah sebagai berikut:

- a. Intelligent
- b. Modelling
- c. Choice

2.4. Studi Kelayakan

Studi kelayakan menurut merupakan penelitian mengenai layak atau tidak sebuah proyek dilaksanakan, yang bertujuan mengkaji apakah proyek mencapai hasil yang direncanakan atau tidak. Menurut Kementrian Pekerjaan Umum dan perumahan Rakyat (2017), kelayakan proyek dapat ditinjau dari beberapa aspek, untuk hal ini studi kelayakan ditinjau dari segi teknis, lingkungan dan ekonomi

1. Studi kelayakan teknis

Maksud dari dilakukannya analisis teknis ialah untuk mengetahui tingkat kelayakan proyek dari aspek teknis. Aspek teknis yang dimaksud adalah tinjauan investasi dari sudut pandang teknis dengan tujuan agar proyek yang akan dibangun diharapkan memenuhi aspek teknis sehingga akan memudahkan dalam perencanaan, operasional dan pemeliharaannya nanti. Kriteria dalam analisis ini terdiri atas kapasitas proyek, analisis permintaan, lokasi proyek termasuk ketersediaan lahan serta data-data penunjang, desain teknis dan teknologi yang digunakan ditinjau dari segi teknis, lingkungan dan ekonomi.

2. Studi kelayakan lingkungan

Studi kelayakan dalam analisis lingkungan, hal ini bertujuan untuk mengetahui resiko dampak lingkungan sejak tahap pra konstruksi, konstruksi dan pasca konstruksi. Maksud dari analisis aspek lingkungan yaitu agar proyek yang dilaksanakan tidak menimbulkan dampak lingkungan, walaupun terjadi dampak lingkungan, hal tersebut sudah diminimalisir.

3. Studi kelayakan finansial

Aspek ekonomi merupakan tinjauan investasi dari sudut pandang pemerintah atau masyarakat. Analisis aspek ekonomi bertujuan agar terjadinya efisiensi ekonomi dari proyek yang akan dibangun oleh pemerintah diharapkan Studi kelayakan menurut merupakan penelitian mengenai layak atau tidak sebuah proyek dilaksanakan, yang bertujuan mengkaji apakah proyek mencapai hasil yang direncanakan atau tidak. Menurut Kementrian Pekerjaan Umum dan perumahan Rakyat (2017), kelayakan proyek dapat ditinjau dari beberapa aspek, untuk hal ini studi kelayakan ditinjau dari segi teknis, lingkungan dan ekonomi.

2.5. Peta Jalan Penelitian

Penelitian ini difokuskan pada timbunan sampah untuk dimanfaatkan menjadi Refuse Derived Fuel (RDF), maka diperlukan studi kelayakan RDF Plant di TPA Jatibarang. Pada tahap pertama (2021), penelitian difokuskan pada pengambilan sampel pada kedalaman 3m, mengetahui nilai kalor sampah zona 1 dan 2 dan sampah masuk TPA Jatibarang, dan analisis nilai kalor RDF dan sampah yang masuk ke TPA dengan menganalisis komposisi dan nilai kalor. Tahap kedua (2022) difokuskan pada analisis aspek kelayakan yang meliputi aspek kelayakan teknis, aspek kelayakan lingkungan, dan aspek kelayakan finansial. Tahap ketiga (2023) penelitian diaplikasikan pada TPST sebagai uji coba untuk diaplikasikan pada TPA. Waktu yang diperlukan untuk mempublikasikan artikel pada masing-masing jurnal tersebut adalah 6 bulan dari awal submit sampai dipublikasikan. Peta jalan penelitian yang akan dilakukan telah dirancang dalam jangka pendek untuk penelitian 3 tahun ke depan.

Gambar 2.1. Peta Jalan Penelitian

BAB 3. METODE PENELITIAN

3.1. Lokasi Pelaksanaan Penelitian

Penelitian ini akan dilaksanakan di Laboratorium Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro. Pada penelitian ini dilakukan pengulangan penelitian sebanyak 3 kali (triplo) untuk memperoleh reabilitas dan validitas data yang diambil dari setiap variable. Triplo dilakukan dengan mengkondisikan semua variable dan alat ukur yang sama.

3.2. Teknik Pengumpulan Data

Penelitian ini diawali dengan pengumpulan data primer dan sekunder, yaitu:

1. Pengumpulan Data Primer

Data primer adalah data atau keterangan yang diperoleh di lapangan yang nantinya diolah dan dievaluasi secara deskriptif dan dianalisa untuk mendapatkan data-data sekunder. Data-data primer yang dibutuhkan dalam penelitian ini antara lain:

- a. Pengambilan sampel untuk mengetahui komposisi sampah zona pasif satu dan zona pasif dua.
- b. Pengambilan sampel untuk mengetahui densitas sampah zona pasif satu dan zona pasif dua.
- c. Data teknis zona TPA Jatibarang (seperti luas dan ketinggian/kedalaman).
- d. Kuesioner metode Analytical Hierarchy Process (AHP) untuk pemilihan teknologi pengeringan RDF.
- e. Dokumentasi lokasi.

2. Pengumpulan Data Sekunder

Data sekunder merupakan data yang diperoleh dengan membaca dan mempelajari referensi literatur terdahulu yang terkait untuk digunakan sebagai pedoman dalam pembahasan suatu masalah.

Data-data tersebut berupa:

- a. Masterplan pengelolaan sampah Kota Semarang.
- b. Peta denah TPA Jatibarang.
- c. Nilai kalor sampah zona 1 dan 2 dan sampah masuk TPA Jatibarang.
- d. Harga satuan bahan bangunan dan upah Kota Semarang menurut Peraturan Walikota Semarang Nomor 35 Tahun 2019.
- e. Spesifikasi dan harga alat-alat yang diperlukan

2.

3.3. Pelaksanaan Penelitian

1. Teknik Sampling Komposisi Sampah

Teknik sampling komposisi sampah menggunakan metode pengambilan dan pengukuran contoh timbulan dan komposisi sampah perkotaan merujuk SNI 19-3964-1994 tentang Metode Pengambilan dan Pengukuran Contoh Timbulan dan Komposisi Sampah Perkotaan. Pengambilan sampel tidak dilakukan di zona pasif satu dan zona pasif dua karena sudah ditutup dengan geomembran, sehingga dilakukan di zona antara yang memiliki usia hampir sama dengan zona pasif satu dan zona pasif dua, dengan pengambilan sampel pada kedalaman 2-3 m. Sampel yang diambil dipilih dengan metode coning and quartering. Tahapan sampling komposisi sampah zona pasif sebagai berikut:

- a. Sampah diambil dengan bantuan excavator di kedalaman 2-3 m.
- b. Sampah hasil galian dikerucutkan (coning) lalu dipipihkan dengan bantuan kaki atau sekop.
- c. Sampel tersebut dibagi menjadi empat bagian (quartering) dan dua bagian berseberangan dicampur, lalu dua bagian lainnya dibuang. Dua bagian yang dicampur tersebut merupakan sampel yang digunakan.
- d. Sampah dari sampel hasil coning dan quartering ditimbang dan dicatat beratnya.
- e. Sampah dipilah menjadi beberapa jenis, seperti fine material (hasil dekomposisi sampah organik yang sudah menyerupai tanah), plastik, kain, karet/kulit, kertas, kayu, logam, gelas/kaca, batu, dan lainnya.
- f. Setiap jenis sampah ditimbang dan dicatat beratnya.

g. Persentase setiap jenis sampah dapat dihitung dengan membandingkan terhadap berat total sampah.

2. Teknik Sampling Densitas Sampah Zona Pasif

Teknik sampling densitas sampah menggunakan acuan Testing of Waste Compaction Density in Landfills (EPA, 1995). Pengambil sampel sampah dilakukan di tiga titik berbeda di zona antara yang memiliki usia hampir sama dengan zona pasif satu dan zona pasif dua. Tahapan sampling densitas sampah ialah sebagai berikut:

- a. Sampah diambil dengan bantuan alat berat excavator di kedalaman 2-3
 m. Sampah yang diambil untuk menjadi sampel merupakan galian terakhir (scope terakhir) di kedalaman 2-3 m.
- b. Sampah galian terakhir tersebut kemudian ditimbang dan dicatat beratnya.
- c. Lubang galian sampah diisi dengan sekam padi sampai ketinggian 1 meter dari dasar galian. Untuk mengetahui volume sekam padi yang digunakan dapat menggunakan kardus, sehingga dapat diketahui seberapa banyak volume sekam padi yang dimasukkan dimana 1 sak sekam padi setara dengan 2,5 kardus berukuran 39,5 x 27,5 x 18,2 cm.
- d. Volume galian sampah dianggap sama dengan volume sekam padi yang dimasukkan.
- e. Densitas sampah zona pasif dihitung menggunakan data berat sampah galian dan volume galian dengan rumus

$$\rho =$$

3.4. Teknik Analisis Data

- 1. Menganalisis Kondisi Eksisting Wilayah Studi
 - a. Kondisi eksisting TPA Jatibarang
 - b. Sarana dan prasarana persampahan di TPA Jatibarang

- 2. Menganalisis sampah di zona pasif satu dan zona pasif dua
 - Penetuan uji desikasi membutuhkan lapisan dewatered sludge murni dan berbagai variasi komposit yang disesuaikan dengan penelitian sebelumnya oleh Nurfayza (2020) sebagai berikut :
 - a. Komposisi sampah di zona pasif satu dan zona pasif dua
 - Volume sampah yang ada di zona pasif satu dan zona pasif dua dengan rumus
 - Volume galian = Luas Zona x Tinggi Zona
 - c. Karakteristik sampah zona pasif satu dan zona pasif dua
 - d. Analisis nilai kalor RDF berdasarkan kajian literatur
- Menganalisis Sampah Masuk TPA dengan Menganalisis Komposisi dan Nilai
- Menganalisis Aspek Kelayakan

4.

- a. Aspek Kelayakan Teknis
 - Penilaian meliputi kelayakan penambangan sampah zona pasif satu dan zona pasif dua menurut Peraturan Menteri Pekerjaan Umum Nomor 3 tahun 2013, analisis pasar, analisis jumlah produksi RDF, merencanakan konsep teknis RDF *Plant*, menentukan teknologi pengeringan dengan metode *Analytical Hierarchy Process* (AHP) yang dianalisis dengan *software Expert Choice V11*, dan kebutuhan luas lahan untuk RDF *Plant*.
- b. Aspek Kelayakan Lingkungan
 - Penilaian aspek kelayakan lingkungan berisikan identifikasi dampak yang ditimbulkan dari penambangan zona pasif dan penggunaan RDF
- c. Aspek Kelayakan Finansial
 - Aspek kelayakan finansial meliputi NPV, *Payback Period*, IRR, dan analisis sensitivitas dari RDF Plant di TPA Jatibarang.

3.5. Luaran

Riset ini dilakukan untuk memanfaatkan sampah zona pasif satu dan zona pasif dua menjadi Refuse Derived Fuel (RDF) guna mengatasi permasalahan sampah di TPA Jatibarang dan meminimalisir dampak dari kondisi yang diakibatkan kegiatan TPA sebelumnya. Hasil penelitian ini akan dipublikasi pada Jurnal Terindeks *Scopus* EUREKA, Physics and Engineering (Q2) SJR 0.17 dan draft MoU dengan School of Design and Environment, National University of Singapore

3.6. Indikator Capaian

Indikator keberhasilan dari penelitian ini adalah publikasi di Jurnal Terindeks *Scopus* minimal Q3 dan terinisiasinya kerja sama dalam bentuk MoU maupun MoA.

BAB 4. BIAYA DAN JADWAL PENELITIAN

4.1. Anggaran Penelitian

No	Jenis Pengeluaran	Biaya yang Diusulkan
1	Honorarium di luar dosen peneliti	Rp. 6.000.000,-
2	Belanja barang / bahan habis pakai	Rp. 23.400.000,-
3	Belanja barang non operasional	Rp. 600.000,-
Jumlah		Rp. 30.000.000,-

4.2. Jadwal Penelitian

Penelitian ini akan dilaksanakan selama 7 bulan yang disajikan pada tabel berikut.

No	Jenis Kegiatan	Bu	Bulan					
		1	2	3	4	5	6	7
1	Kajian pustaka dan persiapan alat dan							
	bahan							
2	Uji pendahuluan nilai kalor sampah zona 1							
	dan 2							
3	Review hasil uji pendahuluan dan							
	persiapan eksperimen utama							
4	Uji nilai kalor							
5	Perhitungan data							
6	Data analisis, penyiapan manuskrip dan							
	laporan penelitian							
7	Submit manuskrip ke seminar internasional							
8	Pemaparan laporan penelitian dan seminar							

DAFTAR PUSTAKA

- ANSI/ASABE 2011. ANSI / ASABE S593.1 JAN2011 Terminology and Definitions for Biomass Production, Harvesting and Collection, Storage, Processing, Conversion and Utilization. ASABE Standards.
- Bimantara, C.A. 2012. Analisa Potensi Refuse Derived Fuel (RDF) dari Sampah Unit Pengolahan Sampah (UPS) di Kota Depok (Studi Kasus UPS Grogol, UPS Permata Regency, UPS Cilangkap).
- Cheremisinoff 2003. Handbook of Solid Waste Management and Waste

 Minimization Technologies. Tersedia di

 https://www.scribd.com/read/282485025/Handbook-of-SolidWasteManagement-and-Waste-Minimization-Technologies [Accessed 6
 Oktober 2020].
 - Damanhuri, E. dan Padmi, T. 2019. Pengelolaan Sampah Terpadu.ITB Press. Bandung.
- Gendebien, a., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J., Davis, R., Giegrich, J., Fehrenback, H., Gromke, U., del Bufalo, N. & Hogg, D. 2003. Refuse Derived Fuel, Current Practice and Perspectives. Current Practice, (July): 1–219.
- Handayani, R.I. 2015. Pemanfaatan Aplikasi Expert Choice Sebagai Alat Bantu Dalam Pengambilan Keputusan. None, 11(1): 53–59. Tersedia di http://ejournal.nusamandiri.ac.id/index.php/pilar/article/view/412/362.
- Hutabarat, I.N., Priyambada, I.B., Samudro, G., Lokahita, B., Syafrudin, S., Wardhana, I.W. & Hadiwidodo, M. 2018. Potensi Material Sampah Combustible pada Zona Pasif TPA Jatibarang Semarang sebagai Bahan Baku RDF (Refuse Derived Fuel). Jurnal Teknik Mesin, 7(1): 24.
- Kementerian Lingkungan Hidup dan Kehutanan 2018. Sistem Informasi Pengelolaan Sampah Nasional. 2018. Tersedia di http://sipsn.menlhk.go.id/?q=3atsph&field_f_wilayah_tid= 1476&field_kat_kota_tid = All&field_periode_id_t id=2168 [Accessed 4 Oktober 2020].
- Kardono 2007. Integrated Solid Waste Management in Indonesia. Proceedings of International Symposium on EcoTopia Science 2007.

- McDougall, F.R., White, P.R., Franke, M. & Hindle, P. 2001. Integrated Solid Waste Management: a Life Cycle Inventory. Oxford: Blacwell Science.
- Nithikul, J. 2007. Potential of Refuse Derived Fuel Production. Evaluation, Master of(December): 2005–2008.
- Rakyat, K.P.U. dan P. 2017. Modul 4 Kelayakan Lingkungan Dan Sosial.
- Rotheut, M. & Quicker, P. 2017. Energetic utilisation of refuse derived fuels from landfill mining. Waste Management, 62: 101–117. Tersedia di http://dx.doi.org/10.1016/j.wasman.2017.02.002.
- Saaty, T.L. 1990. The Analytic Hierarchy Process: Planning, Priority Setting,
 Resource Allocation. Tersedia di
 https://books.google.co.id/books/about/The_Analytic_Hierarchy_Process.
 ht ml?id=lfDXAAAAMAAJ&redir_esc=y [Accessed 29 November 2020].

LAMPIRAN

Lampiran A. Justifikasi Anggaran Penelitian

No	Keterangan	Volume	Satuan	Harga Satuan	Total
I	Belanja Honorarium	1	•		•
	Honorarium asisten peneliti 1	30	ОН	Rp 100.000,00	Rp 3.000.000,00
	Honorarium asisten peneliti 2	30	ОН	Rp 100.000,00	Rp 3.000.000,00
II	Belanja Barang / Bahan Habis	s Pakai	•		•
	Pembelian kertas HVS 80 gr	7	rim	Rp 70.000,00	Rp 490.000,00
	Penggandaan laporan	6	dokumen	Rp 100.000,00	Rp 600.000,00
	Sekam padi	60	sak	Rp 15.000,00	Rp 900.000,00
	Sarung tangan lateks	5	box	Rp 200.000,00	Rp 1000.000,00
	Masker	4	box	Rp 223.250,00	Rp 893.000,00
	Trash bag	5	buah	Rp 100.000,00	Rp 500.000,00
	Bensin (Pertamina Dex)	60	liter	Rp 10.200,00	Rp 612.000,00
	Uji kadar air	13	sampel	Rp 35.000,00	Rp 455.000,00
	Uji kadar volatil	13	sampel	Rp 60.000,00	Rp 780.000,00
	Uji kadar abu	13	sampel	Rp 50.000,00	Rp 650.000,00
	Uji fixed karbon	13	sampel	Rp 65.000,00	Rp 845.000,00
	Uji Nilai Kalor	13	sampel	Rp 80.000,00	Rp 1.040.000,00
	Kertas saring	10	buah	Rp 170.000,00	Rp 1.700.000,00
	Excavator	5	hari	Rp 300.000,00	Rp 1.500.000,00
	Paket Internet 20 Gb	4	buah	Rp 200.000,00	Rp 800.000,00
	Flash disk 124 Gb	2	buah	Rp 300.000,00	Rp 600.000,00
	Catridge Warna	3	buah	Rp 345.000,00	Rp 1.035.000,00
	Publikasi	1		Rp 6.500.000,00	Rp 6.500.000,00
	Proofread dan Plagiarism	1		Rp 2.500.000,00	Rp 2.500.000,00
III	Belanja Modal	•	1		•
	Cawan petri	18	Buah	Rp 20.000,00	Rp 360.000,00
	Clamp	6	Buah	Rp 25.000,00	Rp 150.000,00
	Gunting	6	Buah	Rp 15.000,00	Rp 90.000,00
	Jumlah				Rp30.000.000,00

Lampiran B. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No.	Nama	Instansi	Bidang ilmu	Alokasi waktu (jam/minggu)	Uraian
1	M. Arief Budiharjo, S.T, M.Eng,Sc, PhD	Teknik Lingkungan FT Undip	Manajemen Sampah	4 jam/minggu (selama 28 minggu)	Merancan desain penelitian, analisis dan intrepretasi hasil, kontrol laporan penelitian
2	Dr. Ir. Eflita Yohana, MT	Teknik Mesin FT Undip	Mesin	3 jam/minggu (selama 28 minggu)	intrepretasi hasil
3	Bimastyaji Surya Ramadan, S.T., M.T.	Teknik Lingkungan FT Undip	Manajemen Sampah dan Pengelolaan Kualitas Udara	3 jam/minggu (selama 28 minggu)	Merancang desain penelitian, analisis dan intrepretasi hasil, kontrol laporan penelitian
4	Muhammad Fillah Qoyyimul Haq (NIM. 21080119130042)	Teknik Lingkungan FT Undip	Manajemen Sampah	3 jam/minggu (selama 28 minggu)	Pelaksana penelitian
5	Choirul Basyar (NIM. 21080119420009)	Teknik Lingkungan FT Undip	Manajemen Sampah	3 jam/minggu (selama 28 minggu)	Pelaksana penelitian

Lampiran C. Biodata Ketua dan Anggota Dosen dan Mahasiswa

A. Ketua Peneliti

Bukti Penulis Utama melakukan Publikasi di Jurnal Berdampak Tinggi Sebagai *Corresponding Author* dan Penulis Pertama

	Nama lengkap	Mochamad Arief Budihardjo, ST, MEng Sc., Phd.
2	Jenis kelamin	Laki-laki
3	Gelar akademik	Lektor
4	NIP	197409302001121 002
5	NIDN	0030097402
6	Tempat dan tanggal lahir	Semarang, 30 September 1974
7	E-mail	m.budihardjo@ft.undip.ac.id, mariefb@gmail.com
8	Nomor telp / HP	0811297437
9	Alamat kantor	Program Studi Teknik Lingkungan FT UNDIP
		Jl. Prof. Soedarto, SH Tembalang Semarang
10	Nomor telp kantor	024-76480678
11	Pembimbing akademik	S-1 = 45 student; $S-2 = -$ student; $S-3 = -$ student
12	Pengalaman mengajar	Manajemen sampah, ekonomi lingkungan, pengantar
		ilmu rekayasa lingkungan

Pengalaman Akademik

	Sarjana	Master	Doktor
Universitas	Undip Semarang	Griffith University,	Curtin University,
		Queensland	Western Australia
Field of Science	Civil Engineering	Environmental	Geoenvironmental

	Sarjana	Master	Doktor
		Engineering and	Engineering
		Science	
Lama studi	1993 – 1998	2000 - 2001	2011 – 2016
Judul Tesis	Design of navigation	Study of	Geoenvironmental
	lock in Klambu	Vermiculture and	Study on Solid Waste
	Dam, Grobogan	Biodegradation	Landfill Liner
	Regency	Activities of	
		Earthworms on	
		Some Kitchen	
		Wastes	
Supervisor	Professor Joetata	Dr. Sunil Herat	Professor Hamid
	Hadihardaja		Nikraz

Pengalaman Riset

No	Year	Research title	Budget		
			Sources	Amount	(million
				Rp)	
1	2017	The Benefit Impact of Air Pollution	DIPA FT	20	
		Reduction through Flyover Development	UNDIP		
		and ATCS Implementation at			
		Intersections			

Pengalaman Pengabdian Masyarakat

No	Year	Research title	Budget	
			Sources	Amount (million
				Rp)
1	2017	Penerapan Program Biopori dan	DIPA FT	20
		Sosialisasi Pemanenan Air Hujan di	UNDIP	
		Kelurahan Srondol Wetan, Kecamatan		
		Banyumanik, Kota Semarang		

Publikasi 5 Tahun Terakhir

No	Title	Journal	Volume/No/
			Yr
1	Experimental Setup for Investigation of	International Journal of	Vol. 1(3):
	Internal Erosion in Geosynthetic Clay	Biological, Ecological	113–116,
	Liners.	and Environmental	Year 2012
		Sciences (IJBEES)	
2	A Review of Key Factors on	International Journal of	Vol. 1(3):
	Geosynthetic Clay Liners' Performance	Biological, Ecological	117–119,
	as Liner System.	and Environmental	Year 2012

No	Title	Journal	Volume/No/ Yr
		Sciences (IJBEES)	
3	Land Subsidence: The Presence of Well and Clay Layer in Aquifer.	Australian Journal of Basic & Applied Sciences	Vol. 8(6): 217–224, Year 2012
4	Prediction of Heavy Metal Contamination from Landfill: Lead and Chromium.	Australian Journal of Basic & Applied Sciences	Vol. 8(7): 207–214, Year 2014
5	Study of Scale Effect on Strength Characteristic of Stabilised Composite with Sewage Sludge – Part A: Preliminary Study.	Construction and Building Materials	Vol. 80: 339–345, Year 2015
6	Study of Scale Effect on Strength Characteristic of Stabilised Composite with Sewage Sludge – Part B: Critical Investigation.	Construction and Building Material	Vol. 80: 346– 350, Year 2015
7	Investigation of Seismic Footing Settlement Due to Subsidence for the Sand Aquifer with Pumping Wells Using PLAXIS.	Journal of Applied Sciences	Vol. 15: 232– 239, Year 2015
8	Footing Under Static Loading: Land Subsidence.	American Journal of Applied Sciences	Vol. 12(1): 58–63, Year 2015
9	A Review of the Stabilisation Techniques on Expansive Soils	Australian Journal of Basic & Applied Sciences	Vol. 9(7): 541–548, Year 2015
10	The Effect of Upflow Velocity and Influent Concentration to COD Removal on UASB Reactor Treating Domestic Wastewater	ARPN Journal of Engineering and Applied Sciences	Vol. 10(14), pp. 5908- 5918, Year 2015
11	Shear Strength Evaluation of Bentonite Stabilised with Recycled Materials	Journal of GeoEngineering	Vol. 13 (1): 27-35, Year 2016
12	Experimental Evaluation of Construction Waste and Ground Granulated Blast Furnace Slag as Alternative Soil Stabilisers	Geotechnical and Geological Engineering	Vol. 34(6)2016:17 07-1722, Year 2016
13	The Influence of Salt Solution on Morphological Changes in a Geosynthetic Clay Liner	Advances in Materials Science and Engineering	Vol. 2016, No. 6349407, Year 2016
14	Cobalt-exchanged Natural Zeolite Catalysts for Catalytic Oxidation of	Journal of Water Process Engineering	Vol. 12, pp. 47-51, Year

No	Title	Journal	Volume/No/
			Yr
	Phenolic Contaminants in Aqueous		2016
	Solutions		

Pengalaman Seminar 5 Tahun Terakhir

No	Conference	Title	Place	Date
1	International Conference on	Preliminary	Phuket, Thailand	December 18–
	Civil and Architectural	Investigation of		19. 2012
	Applications (ICCAA'2012)	the GCL's		
		Boiling toward		
		An Upward		
		Water Flow		
2	International Conference on	Geosynthetic	Phuket, Thailand	December 18–
	Civil and Architectural	Clay Liner as		19. 2012
	Applications (ICCAA'2012)	Landfill's		
		Leachate Barrier		
3	International Conference on	Study on the	Phuket, Thailand	December 18–
	Civil and Architectural	GCL's Response		19. 2012
	Applications (ICCAA'2012)	to Hydraulic		
		Uplift		
4	The 7th World Congress on	Application of	Beijing, China	May 19-22,
	Particle Technology	Wood to Sand-		2014
	(WCPT7)	slag and its		
		Effect on Soil		
		Strength		
5	The 7th World Congress on	Investigation of	Beijing, China	May 19-22,
	Particle Technology	the Strength of		2014
	(WCPT7)	Carbon-sand		
		Mixture		

Semarang, 25 Februari 2021

Mochamad Arief Budihardjo, S.T., M.Eng. Sc., Ph.D.

NIP.197409302001121002

B. Anggota Peneliti Pertama

A. Data Diri

1 Nama : Dr. Ir. Eflita Yohana, MT

2 Jenis Kelamin : Perempuan

3 Jabatan Fungsional : Lektor

4 NIP/NIK/Identitas Lainnya : 196204281990012001

5 NIDN : 0028056209

6 Tempat, Tanggal Lahir : Lirik- Rengat, 28-04-1962

7 E-mail : efnan2003@gmail.com

8 Nomor Telepon / HP : 085201207619

9 Alamat Kantor : FAKULTAS TEKNIK

Jalan Prof. Soedarto, Tembalang, Kota Semarang,

Jawa Tengah 50275

10 Nomor Telepon / Faks : 085201207619

B. Riwayat Pendidikan

RINCIAN	S-1	S-2	S-3
Nama Perguruan Tinggi	Universitas Brawijaya	Universitas Gadjah Mada	Pukyong National University Busan, Korea Selatan
Bidang Ilmu	Teknik Mesin	Teknik Mesin	Mechanical Engineering
Tahun Masuk - Lulus	1981 - 1987	1997 - 2000	2004 - 2011
Judul Skripsi/Tesis/Desertasi	Turbin Uap Satu Tingkat Penggerak Gilingan Tebu	Karakteristik Aliran Fluida Dilatan	A Study on Prediction of Heat Transfer and Mass Transfer in a Solar Desiccant System
Pembimbing / Promotor	Ir. Hifni Ir. Hifni	Dr. Ir. Indarto, DEA Dr. Ir. Indarto, DEA	Prof. Choi Kwang Hwan Prof. Choi Kwang Hwan

C. Pengalaman Penelitian Dalam 5 Tahun Terakhir

Nic	Tahun	Judul Penelitian	Status	Pendanaan	
110	Tanun	Judui Penentian	Status	Sumber Dana	Jumlah
1	2018	THE APPLICATION CYCLONE EQUIPPED OF THE VIBRO-DEHUMIDIFICATION ABSORPTION DRYING PROCESS IN THE PRODUCTION OF HIGH CATECHIN GREEN TEA CTC POWDER	Ketua	Internal Universitas	Rp. 60.000.000,00
2	2018	REFINING MINYAK SAWIT UNTUK REDUKSI SENYAWA 3-MCPD MELALUI BIOADSORPSI DENGAN TANDAN KOSONG SAWIT TERMODIFIKASI	Anggota	Kemenristekdikti	Rp. 150.000.000,00

3	2018	Development of innovative design of texturing and hydrophobic coating – a study on a newly developed technologies towards "green bearing"	Anggota	Internal Universitas	Rp. 390.000.000,00
4	2017	Simulasi CFD Untuk Menghitung Kecepatan Udara Maximal Pada Proses Pengeringan Teh Hijau Menggunakan Fluidizied Bed Dryer	Ketua	Internal Fakultas	Rp. 10.000.000,00
5	2017	Development of an artificial reef knockdown system for shore protection – A novel concept towards multipurpose sustainable solutions	Anggota	Internal Universitas	Rp. 70.000.000,00
6	2016	PENGEMBANGAN PRODUKSI POWDER TEH HIJAU CTC MELALUI FLUIDIZED BED DRYER DENGAN TEKNIK DEHUMIDEFIKASI MENGGUNAKAN LIQUID DESSICANT	Ketua	Internal Universitas	Rp. 20.000.000,00
7	2016	Characterization and Propersties of Heat Affected Zone Q&T Plate Steel With MGMAW	Anggota	Internal Universitas	Rp. 10.000.000,00
8	2015	Pengaruh Variasi Temperatur Udara Masuk Pada Sistem Regenerator Menggunakan Liquid Desiccant	Ketua	Internal Fakultas	Rp. 15.000.000,00
9	2015	Pengembangan Produksi Super Biodisel Kontinyu dari Minyak Kemiri Sunan Melalui Proses Distilasi Reaktif	Anggota	Kemenristekdikti	Rp. 90.000.000,00
10	2015	Austenite Temperature Optimization to Obtain Fine Marten-site Structure on Q&T Steel	Anggota	Internal Universitas	Rp. 10.000.000,00
11	2015	Pengembangan Teknologi Pencairan Dan Penyimpanan Biogas Cair Dengan Alat Penukar Kalor Cryogenic	Ketua	Kemenristekdikti	Rp. 162.230.000,00
12	2015	Pengembangan Teknik Dehumidifikasi Absorpsi Pada Fluidized Bed Dryer Untuk Produksi Teh Hijau Kaya Polifenol	Ketua	Internal Fakultas	Rp. 30.000.000,00

D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir

No	Tahun	Judul Penelitian	C44	Pendanaan	
140	Tanun		Status	Sumber Dana	Jumlah
1	2018	PROGRAM KONVERSI BIOGAS MENJADI ENERGI LISTRIK PADA KAMPUNG TEMATIK SAPI PERAH DI KELURAHAN GEDAWANG KECAMATAN BANYUMANIK KOTA SEMARANG	Anggota	Internal Fakultas	Rp. 63.000.000,00
2	2018	Sosialisasi Pemanfaatan Minyak Mentah Sebagai Bahan Bakar Alternatif Pengecoran Kuningan	Anggota	Lainnya	Rp. 2.500.000,00
3	2018	Pelatihan Audit Energi Bagi Pelaku Usaha Bengkel Mesin di Sukoharjo, Jawa Tengah	Anggota	Lainnya	Rp. 5.500.000,00

4	2018	Pelatihan Perawatan Sistem Air Conditioning Bagi Masyarakat di Sekitar Kampus UNDIP Tembalang	Anggota	Internal Fakultas	Rp. 2.500.000,00
5	2018	Pelatihan Pembuatan Lampu Emergensi berbahan Limbah Elektronika di Pondok Pesantren Uswatun Khasanah Mangunharja	Anggota	Internal Fakultas	Rp. 5.000.000,00
6	2015	IbM Pemanfaatan Minyak Mentah Sebagai Bahan Bakar Alternatif Pengecoran Kuningan di Daerah Juwana, Pati, Jawa Tengah	Anggota	Kemenristekdikti	Rp. 50.000.000,00

E. Publikasi Jurnal Dalam 5 Tahun Terakhir

No	Tahun	Judul Publikasi Jurnal	Status	Identitas Jurnal	Status Jurnal
1	2017	The optimization of sunan pecan oil process production as biodiesel by reactive distillation using response surface methodology method	Penulis ke 2	Advanced Science Letters, American Scientific Publishers ISSN 1742-6596 Vol. 23 / No. 6	Jurnal Internasional Terindeks Scopus, Thomson (SCI, SSCI)
2	2017	CFD Analysis of Dehumidification Characteristics of Cross Flow Dehumidifier with Calcium Chloride as Liquid Desiccant	Penulis ke 1	International Journal of Applied Engineering Research ISSN 0973-4562 Vol. 12 / No. 7 https://www.ripublication	Jurnal Internasional Terindeks Scopus, SCI, SSCI
3	2016	ANALISA PERHITUNGAN EFISIENSI CIRCULATING WATER PUMP 76LKSA-18 PEMBANGKIT LISTRIK TENAGA UAP MENGGUNAKAN METODE ANALITIK	Penulis ke 1	ROTASI ISSN 2406-9620 Vol. 18 / No. 1 http://ejournal.undip.ac	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)
4	2016	ANALISIS TOTAL EFISIENSI HRSG (HEAT RECOVERY STEAM GENERATOR) PADA COMBINE CYCLE POWER PLANT (CCPP) 120 MW PT. KRAKATAU DAYA LISTRIK	Penulis ke 1	ROTASI ISSN 2406-9620 Vol. 18 / No. 2 http://ejournal.undip.ac	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)
5	2016	A study of slip position on improving the hydrodynamic lubrication performance of single-textured bearing using a mass conserving numerical approach	Penulis ke 2	International Journal of Engineering and Technology ISSN 0975-4024 Vol. 8 / No. 2 http://www.enggjournals.c	Jurnal Internasional Terindeks Scopus, SCI, SSCI
6	2016	"ANALISIS CFD DISTRIBUSI TEMPERATUR DAN KELEMBABAN RELATIF PADA PROSES DEHUMIDIFIKASI SAMPLE HOUSE DENGAN KONSENTRASI LIQUID DESSICANT 60% DAN SUHU LIQUID DESSICANT 10°C"	Penulis ke 1	Jurnal Teknik Mesin ISSN 2303-1972 Vol. 4 / No. 2 http://ejournal-s1.undip	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)

7	2016	SIMULASI DISTRIBUSI TEMPERATUR DAN KELEMBABAN RELATIF PADA RUANG STEAMER DENGAN MENGGUNAKAN METODE COMPUTATIONAL FLUID DYNAMICS	Penulis ke 1	Jurnal Teknik Mesin ISSN 2303-1972 Vol. 4 / No. 1 http://ejournal-s1.undip	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)
8	2016	Effect of Temperature and Relative Humidity on the Performance of Steamer Using Computational Fluid Dynamic (CFD)	Penulis ke 1	International Journal of Engineering and Technology ISSN 0975-4024 Vol. 8 / No. 4 DOI: 10.21817/ijet/2016/v	Jurnal Internasional Terindeks Scopus, SCI, SSCI
9	2016	ANALISIS EFISIENSI SIKLUS COMBINE CYCLE POWER PLANT (CCPP) GAS TURBINE GENERATOR TERHADAP BEBAN OPERASI PT KRAKATAU DAYA LISTRIK	Penulis ke 1	ROTASI ISSN 2406-9621 Vol. 18 / No. 4 http://ejournal.undip.ac	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)
10	2016	ANALISIS NUMERIK DAN VALIDASI KASUS KAVITASI POMPA SENTRIFUGAL MISSION MAGNUM I MENGGUNAKAN CFD	Penulis ke 1	ROTASI ISSN 2406-9620 Vol. 18 / No. 3 http://ejournal.undip.ac	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)
11	2015	ANALISIS PENGARUH KEKENTALAN FLUIDA AIR DAN MINYAK KELAPA PADA PERFORMANSI POMPA SENTRIFUGAL	Penulis ke 1	Jurnal Teknik Mesin ISSN 2303-1972 Vol. 3 / No. 2 http://ejournal-s1.undip	Jurnal Nasional Tidak Terakreditasi (Mempunyai ISSN)

F. Penulisan Buku Dalam 5 Tahun Terakhir

Tidak ada riwayat.

G. Pemakalah Forum Ilmiah Dalam 5 Tahun Terakhir

No	Tahun	Judul	Forum	Status	Tingkat Forum
1	2016	CFD Analysis of Temperature Distribution and Relative Humidity in Humidifying Sample House with Liquid Desiccant Concentration of 50% and Temperature of 10°C	International Conference on Energy, Environment and Information System 2016 (ICENIS 2016) School of Postgraduate Studies Diponegoro University Grand Candi Hotel Semarang	Pemakalah Biasa	Tingkat Internasional
2	2015	The Simulation of Temperature Distribution and Relative Humidity with Liquid Concentration of 50% Using Computational Fluid Dynamics	INTERNATIONAL CONFERENCE OF CHEMICAL AND MATERIAL ENGINEERING (ICCME) 2015: Green Technology for Sustainable Chemical Products and Processes Department of Chemical Engineering, Faculty of Engineering, Diponegoro University Grand Candi Hotel Semarang	Pemakalah Biasa	Tingkat Internasional

H. HKI Dalam 5 Tahun Terakhir

No	Tahun	Judul	Identitas	Status
1	2016	8. 8	Paten Sederhana No. Pendaftaran : S00201606703 No.HKI : -	Terdaftar

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Iptek bagi Desa Binaan Undip (IDBU).

Semarang, 25 Februari 2021 Pengusul

Dr. Ir. Eflita Yohana, MT

NIP. 196204281990012001

C. Anggota Peneliti Kedua

Nama Lengkap : Bimastyaji Surya Ramadan
 NIP 199203242019031016
 Place and Date of Birth : Sukoharjo, 24 Maret 1992

4. Departement : Department of Environmental Engineering

5. Faculty : Engineering Faculty6. Institution : Universitas Diponegoro

7. Tlp/Faks 082225539719

8. E-mail : bimastyaji@live.undip.ac.id

9. Address : Dinar Mas XII/28 Meteseh Tembalang Semarang

10. Education Background

Education	S1 (Bachelor)	S2 (Master)
Department	Environmental Engineering	Environmental Engineering
Institution	Universitas Diponegoro	Institut Teknologi Bandung
Graduated Year	2014	2017

11. Non-Academic Experiences

Name			Organization	Period
Head	of	Public	Keluarga mahasiswa islam pascasarjana	2017 – 2018
Relation			ITB	

12. Profesional Training

Year	Training	Institution	Period
2015	Workshop and Seminar Peningkatan	Pusat Penelitian	2 day
	Kinerja Fuel Cell	Fisika LIPI	
2015	Departure Preparation Batch 38	Indonesia	6 day
	Indonesia Endowment Fund and	Endowment Fund	
	Education	and Education	
2016	Smart Technology Training and	The University of	10 day
	Seminar for The Development of	Kitakyushu	
	Low Carbon Society		
2017	Dasar-Dasar AMDAL Training	PPLH UNS	5 day
2018	Pelatihan Applied Approach	LP2MP Universitas	48 hours
	Training	Diponegoro	
2018	Indonesian Professional Engineers	Persatuan Insinyur	6 jam
	Association Professional Engineer	Indonesia (PII)	
	Workshop		

13. Professional Certification

	No	Certification	Period
Ī	1	Expertise Certification: Ahli Teknik Lingkungan – Muda	2017- 2020
	2	Certification Dasar-dasar AMDAL: AMDAL A	2017-Now

14. Profesional Organization

Organization Name	Period
Member of the Indonesian Engineers Association	2018-Now

15. Community Development Experiences

No	Community Development	Role	Year
1	Increased Income of the Thekelan Community with Waste	Member	2018
	Banks		
2	Socialization of Making Biopori Appropriate for Housewives	Member	2018
	in the Neighborhood RT RT 04 RW 12, Kelurahan Meteseh,		
	Tembalang District, Semarang		
3	"Drinking Water Quality Testing, Tekelan Hamlet, Batur	Member	2018
	Village, Getasan District, Semarang Regency" in Tekelan		
	Hamlet, Batur Village, Getasan District, Semarang Regency		

16. Article Publication (Journal, Proceeding, Book Chapter)

Year	Title/Link	Journal	
2019	Potential Use of Banana Plant (Musa spp.) as Bio-sorbent	Published in E3S	
	Materials for Controlling Gaseous Pollutants	Web of	
		Conferences	
2019	Waste Valorization using Compost Microbial Fuel Cells	Submitted to	
	(cMFCs): Recent Trends and Status	Waste	
		Management	
2019	Understanding Informal Actors of Plastic Waste Recycling in	Submitted to	
	Semarang City	Environmental	
		Research	
		Management	
2019	Potential Use of Biogas to Initiate Low Carbon Society in	Submitted to IOP	
	Thekelan Village - Indonesia	Conference Series	
2019	Greenhouse Gas Estimation of Plastic Waste Reverse Logistic	Submitted to IOP	
	Networks System in Semarang City	Conference Series	
2019	Reconstructing Waste Bank as Community-Based Sustainable	Submitted to	
	Waste Management in Developing Country: a Case Study in	Journal of	
	Semarang City, Indonesia	Environmental	
		Management	
2019	Assessment of Greenhouse Gas (GHG) Emissions from	Submitted to	
	Integrated Solid Waste Management in Semarang City	Environmental	
		Research	
		Management	

Year	Title/Link	Journal
2019	Potential Use of Banana Plant (Musa spp.) as Bio-sorbent	Published in E3S
	Materials for Controlling Gaseous Pollutants	Web of
		Conferences
2019	Waste Valorization using Compost Microbial Fuel Cells	Submitted to
	(cMFCs): Recent Trends and Status	Waste
		Management
2019	Understanding Informal Actors of Plastic Waste Recycling in	Submitted to
	Semarang City	Environmental
		Research
		Management
2019	Potential Use of Biogas to Initiate Low Carbon Society in	Submitted to IOP
	Thekelan Village - Indonesia	Conference Series
2019	Greenhouse Gas Estimation of Plastic Waste Reverse Logistic	Submitted to IOP
	Networks System in Semarang City	Conference Series
2019	Reconstructing Waste Bank as Community-Based Sustainable	Submitted to
	Waste Management in Developing Country: a Case Study in	Journal of
	Semarang City, Indonesia	Environmental
		Management
2019	Assessment of Greenhouse Gas (GHG) Emissions from	Submitted to
	Integrated Solid Waste Management in Semarang City	Environmental
		Research
		Management
2019	Enhanced Remediation of Hydrocarbons Contaminated Soil	Submitted to
	using Electrokinetic – Landfarming Processes	Journal of
		Engineering and
		Technological
		Sciences
2019	Potential Recovery of Lapindo Volcanic Mud (LVM) as	Submitted to
	Advanced Material and Valuable Product: a Mini Review	Journal of
		Environmental
		Management
2018	An effective cerium (III) ions removal method using sodium	Journal of Water
	alginate-coated magnetite (Alg-Fe ₃ O ₄) nanoparticles.	Supply: Research
	https://doi.org/10.2166/aqua.2018.086	and Technology
2018	An Overview of Surfactant Enhanced Electrokinetic	Journal of
	Bioremediation Process in Low Permeability Soil.	Environmental
	https://doi.org/10.1016/j.jenvman.2018.04.065	Management 218,
		309-321
2017	Challenges and opportunities of microbial fuel cells (MFCs)	MATEC Web of
	technology development in Indonesia.	Conferences 101,
	https://doi.org/10.1051/matecconf/201710102018	02018 (2017).
2017	Integrating Electrokinetic and Bioremediation Process for	E3S Web o

Year	Title/Link	Journal
2019	Potential Use of Banana Plant (Musa spp.) as Bio-sorbent	Published in E3S
	Materials for Controlling Gaseous Pollutants	Web of
		Conferences
2019	Waste Valorization using Compost Microbial Fuel Cells	Submitted to
	(cMFCs): Recent Trends and Status	Waste
		Management
2019	Understanding Informal Actors of Plastic Waste Recycling in	Submitted to
	Semarang City	Environmental
		Research
		Management
2019	Potential Use of Biogas to Initiate Low Carbon Society in	Submitted to IOP
	Thekelan Village - Indonesia	Conference Series
2019	Greenhouse Gas Estimation of Plastic Waste Reverse Logistic	Submitted to IOP
	Networks System in Semarang City	Conference Series
2019	Reconstructing Waste Bank as Community-Based Sustainable	Submitted to
	Waste Management in Developing Country: a Case Study in	Journal of
	Semarang City, Indonesia	Environmental
		Management
2019	Assessment of Greenhouse Gas (GHG) Emissions from	Submitted to
	Integrated Solid Waste Management in Semarang City	Environmental
		Research
		Management
	Treating Oil Contaminated Low Permeability Soil.	Conferences 31
	https://www.e3s-	03005.
	conferences.org/articles/e3sconf/abs/2018/06/e3sconf_icenis2	
	018 03005/e3sconf icenis2018 03005.html	
2016	The influence of environmental campaign on public	Scientific Journal
	awareness in maintaining the cleanliness and waste reduction	of PPI UKM.
	program: a case study of Bandung City.	Kuala Lumpur:
	http://www.kemalapublisher.com/index.php/ppi-	Malaysia.
	ukm/article/view/161	

17. Seminar Experience

No	Year	Seminar Name	Article Title	Role
1	2017	The 5th International Symposium	An Overview of Surfactant	Speaker
		on Environmental Analytical	Enhanced Electrokinetic	
		Chemistry.	Bioremediation Process in	
			Low Permeability Soil	
2	2017	The 2 nd International Conference	Integrating Electrokinetic and	Speaker
		on Energy, Environmental and	Bioremediation Process for	
		Information System (ICENIS	Treating Oil Contaminated	
		2017), Universitas Diponegoro,	Low Permeability Soil	

No	Year	Seminar Name	Article Title	Role
		Semarang		
3	2017	The 7 th Annual Basic Science International Conference,	Plant Microbial Fuel Cells (P-MFCs): Green	Speaker
		Universitas Brawijaya, Malang	Technology for Achieving Sustainable Water and Energy	
4	2016	Seminar Nasional Peran Ahli Ilmu Lingkungan dalam Pembangunan Berkelanjutan Indonesia Homecoming Day 35 PSIL Universitas Indonesia		Speaker

Semarang, 25 Februari 2021

Bimastyaji Surya Ramadan, S.T., M.T.

Lampiran D. Surat Pernyataan Ketua Peneliti

SURAT PERNYATAAN

Yang bertanda tangan di bawah ini.

Nama : Mochamad Arief Budihardjo, S.T., M.Eng.Sc., Ph.D.

NIP / NIDN : 197409302001121002 / 0030097402

Jabatan Fungsional : Lektor Kepala

Alamat : Program Studi Teknik Lingkungan FT UNDIP Jl. Prof.

Soedarto, SH Tembalang, Semarang

Dengan ini menyatakan bahwa proposal penelitian saya dengan judul "Kajian Potensi *Refuse Derived Fuel* (RDF) Sebagai Energi Alternatif Terbarukan dari Penambangan TPA Jatibarang" yang diusulkan pada skema Penelitian Unggulan Kerjasama QS100 Fakultas Teknik Tahun Anggaran 2021/2022 bersifat original dan belum pernah dibiayai oleh lembaga / sumber dana lain. Selain itu, usul penelitian ini bebas dari tindakan plagiat.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penugasan yang sudah diterima ke Fakultas Teknik, Universitas Diponegoro.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Semarang, 25 Februari 2021 Yang menyatakan,

Mochamad Arief Budihardjo, S.T., M.Eng.Sc., Ph.D. NIP/NIDN. 197409302001121002 / 0030097402