Part 2: Network Analysis - Visualization & Measures

Felix Z. Hoffmann

Jupyter notebook at: https://github.com/Felix11H/spp-workshop-lecture-network-measures (https://github.com/Felix11H/spp-workshop-lecture-network-measures)

Tools for network analysis

NetworkX

NetworkX

- Python based
- community driven
- most accesible tool (pip install..)
- support for directed graphs lacking

Tools for network analysis

graph-tool

- Python interface, algorithms implemented in C++, making use of Boost Graph Library
- dedicated maintainer (Tiago de Paula Peixoto)
- can be difficult to install
- great support for working with directed graphs

Many more

- Zenlib, Python, http://zen.networkdynamics.org/)
- Brain Connectivity Toolbox, MATLAB, https://sites.google.com/site/bctnet/ (https://sites.google.com/site/bctnet/)
- Brain Analysis using Graph Theory (BRAPH), MATLAB, http://braph.org/ (http://braph.org/)
- •

```
In [1]: from IPython.core.display import HTML
         HTML(""
         <style>
         .column {
           float: left;
           width: 33.33%;
           padding: 5px;
         /* Clear floats after image containers */
         .row::after {
           content: "";
           clear: both;
           display: table;
         </style>
         """)
 Out[1]:
In [2]: %matplotlib inline
         import networkx as nx
         import matplotlib.pyplot as pl
         import lib.directed_watts_strogatz as dws
         import numpy as np
         import graph_tool.all as gt
         from lib.nx2qt import nx2qt
         Introduction to NetworkX
In [4]: %matplotlib inline
In [5]: import networkx as nx
         q = nx.Graph()
         q.add nodes from(['A', 'B', 'C'])
In [9]: q.nodes()
Out[9]: NodeView(('C', 'A', 'B'))
In [10]: q.add edges from([('A','B'), ('B','C'),('C','A')])
In [11]: q.edges()
Out[11]: EdgeView([('C', 'A'), ('C', 'B'), ('A', 'B')])
         Introduction to NetworkX
```

In [12]: pl.axis('off')
 nx.draw_networkx(g, node_color = 'white')

In [13]: h = nx.DiGraph()

do not neeed to add nodes explicitly
h.add edges from([('A','B'), ('B','C'),('C','A')])

Introduction to NetworkX

In [14]: pl.axis('off')
nx.draw networkx(h, node color = 'white')


```
In [3]:
        def make_graphs(N=50,p=0.2):
            g_edr = nx.gnp_random_graph(N,p, directed=True)
            g_smw = nx.from_numpy_array(dws.watts_strogatz(N, p, 0.1, directed=True
                                         create using=nx.DiGraph())
            #g scf = nx.scale_free_graph(N)
            x = gt.price network(N, m=N*p, c=0.1)
            x.save('main.gml')
            g_scf=nx.read_gml('main.gml', label='id')
            return (g_edr, g_smw, g_scf)
        def make_graphs_gt(N=50,p=0.2):
            graphs = make graphs(N)
            gts = []
            for g in graphs:
                gt_s.append(nx2gt(g))
            gt_s[-1] = gt.price_network(N, m=N*p, c=0.1)
            gt s[-1].save('main.gml')
            return gt_s
        def shuffle nodes(g):
            mapping = dict()
            N = g.number_of_nodes()
            xx=np.arange(N)
            np.random.shuffle(xx)
            for i in range(N):
                mapping={**mapping, **{i:xx[i]+N}}
            h = nx.relabel nodes(g, mapping, copy=False)
            return h
```

Analyzing networks - Visualization

```
In [5]: nets = make_graphs(N=100)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(20, 10));
    for g,ax in zip(nets,axs):
        g = shuffle_nodes(g)
        A=nx.to_numpy_matrix(g)
        ax.imshow(A, aspect='equal', cmap='Greys', interpolation='nearest')
```


Analyzing networks

```
In [6]: nets = make_graphs(N=24)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(40, 20));
    for g,ax in zip(nets,axs):
        g=shuffle_nodes(g)
        ax.set_aspect('equal')
        nx.draw_circular(g, ax=ax)
    pl.tight layout()
```


Analyzing networks

```
In [4]: nets = make_graphs(p=0.1)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(20, 10));
    for g,ax in zip(nets,axs):
        g=shuffle_nodes(g)
        nx.draw(g, ax=ax)
```


Network measures

- global measures pertaining the complete graph
- local measures for a single node (often look at distributions of local node measures or averages)
- regional measures for groups of nodes in a graph

Connection density

$$connection density = \frac{realized connections}{possible connections}$$

```
In [33]: nets = make_graphs(N=1000)
    for g in nets:
        print("N:", nx.number of nodes(q), "\t", "density:", nx.density(q))
```

N: 1000 density: 0.1994644644644647 N: 1000 density: 0.20014914914914 N: 1000 density: 0.18008008008008008

Connection density in neural circuits

Local cortical circuits

0.05-0.25 -- Song et al. (2005), Lefort et al. (2009), Perin et al. (2011)

Connection density in neural circuits

Table 2. Excitatory Synaptic Connectivity and uEPSP Amplitudes in the Mouse C2 Barrel Column							
		Presynaptic					
Postsynaptic		L2	L3	L4	L5A	L5B	L6
L2	P (found/tested)	9.3% (88/950)	12.1% (22/182)	12.0% (25/208)	4.3% (9/209)	0.96% (1/104)	0% (0/50)
	mean ± SEM	$0.64 \pm 0.06 \text{ mV}$	0.71 ± 0.15 mV	$0.98 \pm 0.24 \text{ mV}$	$0.52 \pm 0.13 \text{ mV}$	0.21 mV	
	median	0.46 mV	0.59 mV	0.58 mV	0.52 mV		
	range	0.08 – 3.88 mV	0.04 - 2.67 mV	0.07 – 5.54 mV	0.08 – 1.09 mV		
L3	P (found/tested)	5.5% (10/183)	18.7% (96/513)	14.5% (25/172)	2.2% (2/89)	1.8% (3/167)	0% (0/64)
	mean ± SEM	$0.44 \pm 0.09 \text{ mV}$	$0.78 \pm 0.07 \text{ mV}$	$0.58 \pm 0.13 \text{ mV}$	0.67 mV	$0.26 \pm 0.08 \text{ mV}$	
	median	0.35 mV	0.48 mV	0.35 mV		0.32 mV	
	range	0.09 - 1.02 mV	0.08 - 2.76 mV	0.07 - 3.33 mV	0.15 - 1.19 mV	0.10 - 0.35 mV	
L4	P (found/tested)	0.96% (2/208)	2.4% (4/170)	24.3% (254/1046)	0.7% (2/275)	0.7% (1/137)	0% (0/94)
	mean ± SEM	0.31 mV	$0.36 \pm 0.09 \text{ mV}$	$0.95 \pm 0.08 \text{ mV}$	0.48 mV	0.17 mV	
	median		0.31 mV	0.52 mV			
	range	0.18 – 0.45 mV	0.22 - 0.61 mV	0.06 – 7.79 mV	0.22 - 0.74 mV		
L5A	P (found/tested)	9.5% (20/211)	5.7% (5/87)	11.6% (32/276)	19.1% (178/934)	1.7% (3/174)	0.6% (1/160)
	mean ± SEM	$0.55 \pm 0.10 \text{ mV}$	$0.93 \pm 0.26 \text{ mV}$	$0.54 \pm 0.09 \text{ mV}$	$0.66 \pm 0.06 \text{ mV}$	$0.24 \pm 0.09 \text{ mV}$	0.08 mV
	median	0.40 mV	1.09 mV	0.38 mV	0.37 mV	0.19 mV	
	range	0.08 - 2.03 mV	0.08 - 1.54 mV	0.06 - 1.98 mV	0.05 - 5.24 mV	0.11 - 0.41 mV	
L5B	P (found/tested)	8.3% (9/108)	12.2% (20/164)	8.1% (11/136)	8.0% (14/175)	7.2% (40/555)	2% (2/100)
	mean ± SEM	$0.22 \pm 0.04 \text{ mV}$	1.01 ± 0.24 mV	$0.88 \pm 0.25 \text{ mV}$	$0.88 \pm 0.36 \text{ mV}$	$0.71 \pm 0.19 \text{ mV}$	0.30 mV
	median	0.20 mV	0.51 mV	0.44 mV	0.60 mV	0.29 mV	
	range	0.09 - 0.47 mV	0.06 - 4.05 mV	0.07 - 2.61 mV	0.13 - 5.45 mV	0.08 - 7.16 mV	0.12 - 0.48 mV
L6	P (found/tested)	0% (0/50)	0% (0/61)	3.2% (3/93)	3.2% (5/158)	7.0% (7/100)	2.8% (15/532)
	mean ± SEM			2.27 ± 1.72 mV	0.28 ± 0.09 mV	$0.49 \pm 0.16 \text{ mV}$	$0.53 \pm 0.19 \text{ mV}$
	median			0.96 mV	0.27 mV	0.43 mV	0.26 mV
	range			0.17 - 5.67 mV	0.06 - 0.58 mV	0.14 - 1.36 mV	0.09 - 3.00 mV

Lefort et al. (2009)

Connection density in neural circuits

Brain area networks

Mouse

- 0.35-0.53 -- Oh et al. (2014), computational model
- 0.73 -- Ypma and Bullmore (2014), re-analysis
- 0.97 -- Gămănuţ et al. (2018)

Macaque

• 0.66 --- Markov et al. (2014)

In- and out-degree distributions - local measure

In [12]: q = simple qraph()

In [15]: a.in degree('A'), a.out degree('A')

Out[15]: (3, 2)

In- and out-degree distributions - local measure

In-degree of a node is the number of incoming connections

 $\mbox{\bf Out-degree}$ of a node is the number of outgoing connections

In undirected graphs

In-degree = out-degree

Consistency: Equal number of "heads" and "tails" across graph matches

$$\sum_{v \in V} \deg^-(v) = \sum_{v \in V} \deg^+(v)$$

In-degree distributions

```
In [8]: pl.style.use('ggplot')
```

```
In [9]: nets = make_graphs(N=1000)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(10, 5));
    for g,ax in zip(nets,axs):
        ax.hist([x[1] for x in g.in_degree()], bins=20)
    pl.tight layout()
```


Out-degree distributions

```
In [10]: fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(10, 5));
    for g,ax in zip(nets,axs):
        ax.hist([x[1] for x in g.out_degree()], bins=20)
    pl.tight layout()
```


Degree distributions in the brain - Theoretical studies

Roxin (2011)

Effect of broadening in-degree and out-degree distributions in recurrent networks

Martens et al. (2017)

Anti-correlated degree distributions increased network stability and had highest performance in detecting stimuli

Degree distributions in the brain - Martens et al. (2017)

B: Stimulation of 3 (top) or 6 (bottom) neurons

Martens et al. (2017)

Clustering - local measure

from social network analysis: How many of my friends are friends?

$$c_i = \frac{\text{# of pairs of } v_i \text{ friends who are friends}}{\text{# of pairs of } v_i \text{'s friends}}$$

```
In [4]: def simple_graph1():
            G = nx.DiGraph()
            G.add_nodes_from([1,2,3])
            {\tt G.add\_edges\_from(}
                 [(1, 2), (1, 3), (2, 3)])
            pl.axis('off')
            nx.draw_networkx(G, node_color = 'white', edge_color='black')
            return nx2gt(G)
        def simple_graph2():
            G = nx.DiGraph()
            G.add_nodes_from([1,2,3])
            G.add_edges_from(
                 [(1, 2), (1, 3), (2, 3), (3,2)])
            pl.axis('off')
            nx.draw_networkx(G, node_color = 'white', edge_color='black')
            return nx2gt(G)
        def simple_graph3():
            G = nx.DiGraph()
            G.add_nodes_from([1,2,3,4])
            G.add_edges_from(
                 [(1, 2), (1, 3), (1, 4), (3, 2), (3, 4)])
            pl.axis('off')
            nx.draw_networkx(G, node_color = 'white', edge_color='black')
            return G
```

Clustering

In [6]: g = simple_graph1()
list(gt.local clustering(g, undirected=False))

Out[6]: [0.5, 0.0, 0.0]

Clustering

In [8]: g = simple_graph2()
list(qt.local clustering(q, undirected=False))

Out[8]: [1.0, 0.0, 0.0]

Clustering

In [37]: q = simple qraph3()

In [35]: q=nx2qt(q)

In [36]: list(qt.local clustering(q, undirected=False))

Out[36]: [0.33333333333333, 0.0, 0.0, 0.0]

Clustering

The local clustering coefficient c_i is defined as

$$c_i = \frac{|\{e_{jk}\}|}{k_i(k_i-1)} : \ v_j, v_k \in N_i, \ e_{jk} \in E$$

where k_i is the out-degree of vertex i, and

$$N_i = \{v_j : e_{ij} \in E\}$$

is the set of out-neighbors of vertex i.

Watts and Strogatz (1998)

Clustering

```
In [42]: nets = make_graphs_gt(N=1000)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(10, 5));
    for g,ax in zip(nets,axs):
        print(gt.global_clustering(g)[0])
        ax.hist(list(gt.local_clustering(g, undirected=False)))
    pl.tight layout()
    0.36015931086427566
    0.6516422332814018
    0.4867316470895883
```


Shortest Paths

In [51]: G = simple graph()


```
In [53]: nx.shortest path(G, 'A', 'G')
```

Out[53]: ['A', 'B', 'F', 'D', 'G']

```
In [54]: nx.shortest path length(G,'A','G')
```

Out[54]: 4

Shortest Paths

```
In [68]: g=gt.Graph()
    g.add_vertex(3);
    g.add_edge(g.vertex(0),g.vertex(1))
    g.add_edge(g.vertex(1),g.vertex(2))
    counts, bins = gt.distance_histogram(g)
    print(np.mean((bins[1:]+1)*counts/sum(counts)))
1.11111111111
```


Shortest Paths - Handling unconnected pairs

several methods suggested:

- does not contribute to average path length
- distance = 0
- distance = N
- distance = ∞

Modularity - regional measure

review: Sporns and Betzel (2016)

graph tool cookbook on modularity: https://graph-tool.skewed.de/static/doc/dev/demos/inference/inference.html?highlight=partition)

networkx communities https://networkx.github.io/documentation/stable/reference/algorithms/community.html)
https://networkx.github.io/documentation/stable/reference/algorithms/community.html)

graph tool modularity documentation https://graph-tool.skewed.de/static/doc/dev/ /inference.html#graph tool.inference.modularity (https://graph-tool.skewed.de/static/doc/dev/inference.html#graph tool.inference.modularity)

```
In [7]: def simple graph1():
                 G = nx.DiGraph()
                  G.add nodes from(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
                 G.add_edges_from(
                       [('A', 'B'), ('B', 'C'), ('C', 'A'), ('C', 'E'), ('C', 'D'), ('B', ('C', 'A'), ('B', 'E'), ('G', 'H'), ('H', 'I') ('A', 'G'), ('D', 'B'),
                         ('H','J'), ('J','G'), ('H','G'), ('E','C'), ('E','A'), ('F','J'),
                 pl.axis('off')
                  nx.draw networkx(G, node color = 'white', edge color='black')
                  return nx2qt(G)
            def simple graph2():
                 G = nx.DiGraph()
                  #G.add edges from(
                 # [('A', 'E'), ('A', 'F'), ('A', 'D'), ('B', 'D'), ('D', 'C'),
# ('C', 'A'), ('B', 'E'), ('A', 'E'), ('F', 'G'), ('G', 'H'), ('H', 'I'),
                  # ('B', 'I')])
                 G.add nodes from(['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'])
                 G.add_edges_from(
                       N_Cages_Trom(
[('A', 'B'), ('B', 'C'), ('C', 'A'), ('C', 'E'), ('C', 'D'), ('B', ('C', 'A'), ('B', 'E'), ('A', 'I'), ('F', 'G'), ('G', 'H'), ('H', 'I') ('A', 'G'), ('D', 'B'), ('H', 'J'), ('E', 'C'), ('E', 'A'), ('F', 'J'),
                  pl.axis('off')
                 nx.draw_networkx(G, node_color = 'white', edge_color='black')
                  return nx2gt(G)
            def simple graph3():
                 G = nx.DiGraph()
                 G.add nodes from(['A', 'B', 'C', 'D'])
                 G.add_edges_from(
                      [('A', 'B'), ('B', 'A'), ('C', 'B'), ('C', 'A'), ('B', 'C'), ('A', 'C'), ('D', 'E'), ('E', 'D'), ('F', 'E'), ('F', 'D'), ('E', 'F'), ('D', 'F')
                 pl.axis('off')
                  nx.draw networkx(G, node color = 'white', edge color='black')
                  return nx2gt(G)
            def simple_graph4():
                 G = nx.DiGraph()
                 G.add_nodes_from(['A', 'B', 'C', 'D', 'E', 'F','G','H','I'])
                 G.add edges from(
                    [('A', 'B'), ('B', 'A'), ('C', 'B'), ('C', 'A'), ('B','C'), ('A','C') ('D', 'E'), ('E', 'D'), ('F', 'E'), ('F', 'D'), ('E','F'), ('D','F') ('G', 'H'), ('H', 'G'), ('I', 'H'), ('I', 'G'), ('H','I'), ('G','I')
                  pl.axis('off')
```

In [14]: q = simple qraph1()

Modularity

More formally

$$Q = \frac{1}{2E} \sum_{r} e_{rr} - \frac{e_r^2}{2E}$$

where

- ullet E is the total number of edges
- ullet e_{rs} is the number of edges which fall between vertices in communities s and r, or twice that number if r=s
- $\bullet \ e_r = \sum_s e_{rs}$.

Newman (2006)

Modularity

```
In [97]: g = simple_graph1()
    prt1 = g.new_vertex_property('int32_t')

for v in map_to_vertex(['A', 'B', 'C', 'D', 'E']):
        prt1[v]=0

for v in map_to_vertex(['F', 'G', 'H', 'I', 'J']):
        prt1[v]=1

gt.modularity(g,prt1)
```

Out[97]: 0.4452479338842975

Modularity

```
In [85]: g = simple_graph1()
    gid = g.vertex_properties['id']
    prt2 = g.new_vertex_property('int32_t')

for v in map_to_vertex(['A', 'C', 'G']):
        prt2[v]=0

for v in map_to_vertex(['F', 'H', 'I','J']):
        prt2[v]=1

for v in map_to_vertex(['D', 'B', 'E']):
        prt2[v]=2
    gt.modularity(g,prt2)
```

Out[85]: 0.0712809917355372

Modularity

```
In [103]: g = simple_graph2()
    prt1 = g.new_vertex_property('int32_t')

for v in map_to_vertex(['A', 'B', 'C', 'D', 'E']):
        prt1[v]=0
    for v in map_to_vertex(['F', 'G', 'H', 'I', 'J']):
        prt1[v]=1

gt.modularity(g,prt1)
```

Out[103]: 0.4049586776859504

Modularity - different $Q_{ m max}$ for increasing c

In [11]: q = simple graph3()


```
In [14]: prt1 = g.new_vertex_property('int32_t')

for v in map_to_vertex(['A', 'B', 'C']):
    prt1[v]=0
for v in map_to_vertex(['D','E','F']):
    prt1[v]=1
```

In [15]: qt.modularity(q.prt1)

Out[15]: 0.5

Modularity - different $Q_{ m max}$ for increasing c

In [26]: q = simple qraph4()


```
In [28]: prt1 = g.new_vertex_property('int32_t')

for v in map_to_vertex(['A', 'B','C']):
    prt1[v]=0

for v in map_to_vertex(['D', 'E', 'F']):
    prt1[v]=1

for v in map_to_vertex(['G', 'H', 'I']):
    prt1[v]=2
```

In [29]: qt.modularity(q,prt1)

Out[29]: 0.666666666666666

Modularity - different $Q_{ m max}$ for increasing c

$$Q_{\text{max}} = 1 - \frac{1}{c}$$

See also for example Du et al. (2008).

Modularity - optimal partition?

Can try to maximize modularity o modularity maximization

Alternatively → fit stochastic block models

Stochastic block model parameters:

- The number *n* of vertices;
- a partition of the vertex set $\{1,\ldots,n\}$ into disjoint subsets C_1,\ldots,C_r
- a symmetric $r \times r$ matrix P of edge probabilities.

Then: Any two vertices $u \in C_i$ and $v \in C_j$ are connected by an edge with probability P_{ij} .

Modularity - stochastic block model

Advantage: More flexibility than modularity maximization

Consider

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.8 \end{bmatrix}$$

Both modularity maximization and stochastic block model resolve communities.

However for

$$P = \begin{bmatrix} 0.8 & 0.2 \\ 0.2 & 0.1 \end{bmatrix}$$

communities detected well by block model but not by modularity maximization (edges out of community more likely for send block)

Modularity - stochastic block model

In [32]: q = simple qraph1()


```
In [41]: state = gt.minimize_blockmodel_dl(g)
b = state.get_blocks()

gid = g.vertex_properties['id']
print([(aid[q.vertex(i)],b[i]) for i in range(10)])

[('E', 0), ('G', 1), ('B', 0), ('J', 1), ('D', 0), ('C', 0), ('A', 0), ('H', 1), ('F', 1), ('I', 1)]
```

Modularity - stochastic block model

In [39]: state.draw();

Modularity - stochastic block model

```
In [40]: e = state.get_matrix()
pl.matshow(e.todense())
```

Out[40]: <matplotlib.image.AxesImage at 0x7f14d08fb940>

Modularity in brain networks

review: Sporns and Betzel (2016)

C. elegans

→ resulting communities resemble the functional organization of nervous system (e.g. Jarrel et al. (2012))

Macaque

 \rightarrow Hilgetag et al. (2000) using optimal set analysis (OSA) before Q modularity was introduced, Harriger et al. 2012 with Q modularity, mostly agreeing with communities identified previously

Analyzing networks - Visualization

```
In [42]: nets = make_graphs(N=100)
fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(20, 10));
for g,ax in zip(nets,axs):
    g = shuffle_nodes(g)
    A=nx.to_numpy_matrix(g)
    ax.imshow(A, aspect='equal', cmap='Grevs', interpolation='nearest')
```

Analyzing networks - Visualization

```
In [43]: nets = make_graphs(N=100)
    fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(20, 10));
    for g,ax in zip(nets,axs):
        #g = shuffle_nodes(g)
        A=nx.to_numpy_matrix(g)
        ax.imshow(A, aspect='equal', cmap='Grevs', interpolation='nearest')
```


References (1/3)

- Hilgetag, C.-C., Burns, G. A. P. C., O'Neill, M. A., Scannell, J. W. & Young, M. P. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philosophical Transactions of the Royal Society of London B: Biological Sciences 355, 91–110 (2000).
- 2. Harriger, L., Heuvel, M. P. van den & Sporns, O. Rich Club Organization of Macaque Cerebral Cortex and Its Role in Network Communication. PLOS ONE 7, e46497 (2012).
- 3. Jarrell, T. A. et al. The Connectome of a Decision-Making Neural Network. Science 337, 437–444 (2012).
- 4. Du, H., White, D. R., Ren, Y. & Li, S. A normalized and a hybrid modularity. Draft paper, eclectic. ss. (2008).
- 5. Newman, M. E. J. Modularity and community structure in networks. PNAS 103, 8577–8582 (2006).

References (2/3)

- 1. Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
- 2. Sporns, O. & Betzel, R. F. Modular Brain Networks. Annu. Rev. Psychol. 67, 613-640 (2016).
- 3. Martens, M. B., Houweling, A. R. & Tiesinga, P. H. E. Anti-correlations in the degree distribution increase stimulus detection performance in noisy spiking neural networks. J Comput Neurosci 42, 87–106 (2017).
- 4. Markov, N. T. et al. A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex. Cereb Cortex 24, 17–36 (2014).
- Ypma, R. J. F. & Bullmore, E. T. Statistical Analysis of Tract-Tracing Experiments Demonstrates a Dense, Complex Cortical Network in the Mouse. PLOS Computational Biology 12, e1005104 (2016).

References (3/3)

- 1. Oh, S. W. et al. A mesoscale connectome of the mouse brain. Nature 508, 207-214 (2014).
- 2. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).
- 3. Lefort, S., Tomm, C., Floyd Sarria, J.-C. & Petersen, C. C. H. The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex. Neuron 61, 301–316 (2009).
- 4. Roxin, A. The Role of Degree Distribution in Shaping the Dynamics in Networks of Sparsely Connected Spiking Neurons. Front Comput Neurosci 5, (2011).
- 5. Song, S., Sjöström, P. J., Reigl, M., Nelson, S. & Chklovskii, D. B. Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. PLoS Biol 3, e68 (2005).
- 6. Perin, R., Berger, T. K. & Markram, H. A synaptic organizing principle for cortical neuronal groups. PNAS 108, 5419–5424 (2011).

Other - Resources - Exercises?

C Elegans data set in graph tool: "celegansneural" in https://graph-tool.skewed.de/static/doc/collection.html) /doc/collection.html (https://graph-tool.skewed.de/static/doc/collection.html)

Overflow

```
In [ ]: # overflow
        nets = make_graphs_gt(N=50)
        #pl.switch_backend('cairo')
        #fig, (axs) = pl.subplots(nrows=1, ncols=3, figsize=(20, 10));
        #for g,ax in zip(nets,axs):
        #fig=pl.figure()
        #ax=fig.add_subplot(111)
        for k in range(3):
            pos=gt.random layout(nets[-2],0)
            gt.graph draw(nets[-2],pos=pos)#, mplfig=ax);
        #fig.savefig('new.png')
        N = 1000
        p = 0.01
        g=nx.scale_free_graph(N)
        in_degrees = [x[1] for x in g.in_degree()]
        xmin,xmax = np.min(in_degrees), np.max(in_degrees)
        bins=np.logspace(np.log10(xmin), np.log10(xmax),num=50)
        print(bins)
        pl.hist(in_degrees, bins=bins)
        pl.xscale('log')
        pl.vscale('log')
```