6.27

(1)
$$[2^5 \times \frac{11}{16}] + [2^4 \times (-\frac{9}{16})]$$

 $[2^5 \times 11/16]$ 所补尾补 = 00,101; 00.101100 $[2^4 \times (-9/16)]$ 所补尾补 = 00,100; 11.011100

①对阶: [24×(-9/16)]阶补尾补= 00,100; 11. 011100= 00,101; 11.001110

②尾数求和: 00.101100 + 11.001110 = 00.011010

③规格化: 00,101; 00.011010 = 00,100; 00.110100

④舍入: 无需

⑤溢出:无

最终结果为 x+y=00,100; 00.110100=24×13/16=13

(2)
$$[2^{-3} \times \frac{13}{16}] - [2^{-4} \times (-\frac{5}{8})]$$

[x] 阶补尾补=11,101; 00.110100 [-y] 阶补尾补=11,100; 00.101000

①对阶: [-y] 阶补尾补=11,101; 00.010100

②尾数相减: 00.110100+00.010100 = 01.001000

③规格化 11,101; 01.001000 = 11,110; 00.100100

④舍入: 无需

⑤溢出:无

最终结果为 x-y=11,010; 00.100100=2-2×9/16=9/64

(3)
$$[2^3 \times \frac{13}{16}] \times [2^4 \times (-\frac{9}{16})]$$

[x]阶补尾补=00,011; 00.110100 [y]阶补尾补=00,100; 11.011100

①阶码相加: 00,011+00,100=00,111

②尾数相乘: [Sx]补=00.110100 [-Sx]补=11.001100 [Sy]补=1.011100

补码一位乘

部分积	乘数	yi+1	操作
00.00000	1.01110 <u>0</u>	0	->1
00.00000	01.0111 <u>0</u>	0	->1
00.00000	001.011 <u>1</u>	0	+[-Sx]补
+11.001100			
11.001100			->1
11.100110	0001.01 <u>1</u>	1	->1
11.110011	00001.0 <u>1</u>	1	->1
11.111001	100001. <u>0</u>	1	+[Sx]补
+00.110100			
00.101101			->1
00.010110	110000 <u>1</u> .	0	+[-Sx]补
+11.001100			
11.100010	110000		最后一步不移位

[Sx×Sy]补=11.100010 110000

③规格化: 00,111; 11.100010 110000 = 00,110; 11.000101 100000

④舍入: 采取 0 舍 1 入法得[x×y]_{阶补尾补}=00,110; 11.000110

⑤溢出:无

最终结果为 x×y=00,110; 11.111010=2⁶×(-3/32)

(4)
$$[2^6 \times (-\frac{11}{16})] \div [2^3 \times (-\frac{15}{16})]$$

[x]阶补尾补=00,110; 11,101100 [y]阶补尾补=00,011; 11.111100

①阶码相减: 00,110-00,011=00,110+11,101=00,011

②尾数相除: [Sx]补=11.101100 [Sy]补=11.000100 [-Sy]补=00.111100

补码加减交替法

z 被除数 (余数)	商	操作
11.101100	0.000000	z、Sy 同号
+00.111100		+[-Sy]补
00.010000	0.	异号,上商0

00.100000		1<-
+11.000100		+[Sy]补
11.100100	0.1	同号,上商1
11.001000		1<-
+00.111100		+[-Sy]补
00.000100	0.10	异号,上商0
00.001000		1<-
+11.000100		+[Sy]补
11.001100	0.101	同号,上商1
10.011000		1<-
+00.111100		+[-Sy]补
11.010100	0.1011	同号,上商1
10.101000		1<-
+00.111100		+[-Sy]补
11.100100	0.10111	同号,上商1
11.001000		1<-
+00.111100		+[-Sy]补
00.000100	0.101111	末位恒置 1

[Sx÷Sy]补=0.101111

③规格化 00,011; 00.101111 已经是规格化数

④舍入: 无需

⑤溢出:无

最终结果为 x÷y=00,011; 00.101111=23×47/64

(5)
$$[2^3 \times (-1)] \times [2^{-2} \times \frac{57}{64}]$$

[x]阶补尾补=00,011; 11.000000 [y]阶补尾补=11,110; 00.111001

①阶码相加: 00,011+11,110=00,001

②尾数相乘: [Sx]补=11.000000 [-Sx]补=01.000000 [Sy]补=0.111001

补码一位乘

部分积	乘数	yi+1	操作
00.00000	0.11100 <u>1</u>	0	+[-Sx]补
+01.000000			
01.000000			->1

00.100000	00.1110 <u>0</u>	1	+[Sx]补
+11.000000			
11.100000			->1
11.110000	000.111 <u>0</u>	0	->1
11.111000	0000.11 <u>1</u>	0	+[-Sx]补
+01.000000			_
00.111000			->1
00.011100	00000.1 <u>1</u>	1	->1
00.001110	000000. <u>1</u>	1	->1
00.000111	000000 <u>0</u> .	1	+[Sx]补
+11.000000			
11.000111	000000		最后一步不移位

[Sx×Sy]补=11.000111 000000

③规格化: 00,001; 11.100010 110000 = 00,110; 11.000101 100000

④舍入: 采取 0 舍 1 入法得[x×y]阶补尾补=00,110; 11.000110

⑤溢出: 无

最终结果为 x×y=00,110; 11.111010=2⁶×(-3/32)

(6)
$$[2^{-6} \times (-1)] \div [2^{7} \times (-\frac{1}{2})]$$

[x]阶补尾补=11,010; 11,000000 [y]阶补尾补=00,111; 11.100000

①阶码相减: 11,010-00,111=00,110+11,001=11,111

②尾数相除: [Sx]补=11,000000 [Sy]补=11.100000 [-Sy]补=00.100000

补码加减交替法

z 被除数 (余数)	商	操作
11.000000	0.000000	z、Sy 异号
+11.100000		+[Sy]补
10.100000	1.	同号,上商1
01.000000		1<-
+00.100000		+[-Sy]补
01.100000	1.0	异号,上商0
11.000000		1<-
+11.100000		+[Sy]补
10.100000	1.01	同号,上商1

01.000000		1<-
+00.100000		+[-Sy]补
01.100000	1.010	异号,上商0
11.000000		1<-
+11.100000		+[Sy]补
10.100000	1.0101	同号,上商1
01.000000		1<-
+00.100000		+[-Sy]补
01.100000	1.01010	异号,上商 0
11.000000		1<-
+11.100000		+[Sy]ネト
10.100000	1.010101	末位恒置 1

[Sx÷Sy]补=1.010101

③规格化 11,111; 11.010101 已经是规格化数

④舍入: 无需

⑤溢出:无

最终结果为 x÷y=11,001; 11.101011=2⁻¹×(-43/64)

 $(7)3.3125+6.125=53/16+49/8=2^2\times53/64+2^3\times49/64$

[x] _{阶补尾补}=00,010; 00.110101 [y] _{阶补尾补}=00,011; 00.110001

①对阶: [x]阶补尾补= 00,010; 00.110101= 00,011; 00.011010

②尾数求和: 00.011010 + 00.110001 = 01.001011

③规格化: 00,011; 01.001011 = 00,100; 00.100101

④舍入: 无需

⑤溢出:无

最终结果为 x+y= 00,100; 00.100101=24×37/64

 $(8)14.75-2.4375=59/4-39/16=24\times59/64-22\times39/64$

[x] _{阶补尾补}=00,100; 00.111011 [y] _{阶补尾补}=00,010; 00.100111

①对阶: [y]阶补尾补= 00,010; 00.100111= 00,100; 00.001001

②尾数相减: 00.111011 - 00.001001 = 00.111011+11.110111=00.110010

③规格化: 00,100; 00.110010 已经是规格化数

④舍入: 无需

⑤溢出:无

最终结果为 x-y= 00,100; 00.110010=24×25/32

6.31

若采用双重分组跳跃进位链

完成加法总时间=4×2.5ty=10ty=300ns=0.3μs < 0.6μs

进位链框图及电路框图:

