Database Systems

Lab 6

Today

- Recap
- Sort & Join Cost Estimation

Select

Trade-offs: *selectivity* is important

Bad, but not always the worst

External Sort

```
Pass 0: output B-page files
```

Pass 1: output **B(B-1)-page** files Pass 2: output **B(B-1)²-page** files

. . .

Pass $\lceil \log_{B-1} \lceil (N/B) \rceil \rceil$: output **N-page** files

```
# passes: 1 + \lceil \log_{B_{-1}} \lceil (N/B) \rceil \rceil passes
```

One pass: 2.N

Total cost: $2.N.(1+\lceil \log_{B-1} \lceil (N/B) \rceil \rceil)$

Join Recap

Example

R = 100,000 S = 40,000 B(R) = 1,000 B(S) = 500 M = 100

Algorithm	Cost	Time
Nested Loop	B(S) + S .B(R)	40,000,500 I/Os = 4000s
Block Nested Loop	B(S) + B(R).ΓB(S)/(M-2)	6,500 I/Os = 0.65s
Sort Merge	B(S) + B(R) + sort(R) + sort(S)	5,849 I/Os = 0.58s
Grace Hash	3(B(R) + B(S))	4,500 I/Os = 0.45s

Given 2 relations R and S.

- R has 100 pages, 100 records per page.
- S has 50 pages, 50 records per pages. Suppose we have 20 buffer frames.

[Q1] What is the I/O cost of joining R and S with nested loop join, using S as outer relation.

[Q2] Same as Q1, but with block nested loop join

Notation

|R|, |S|: # tuples in R, S

B(R), B(S): # pages for R,S M: buffer size

Suppose you need to sort 108-page file using 4 buffer frames, using external sort.

[Q1] How many passes are needed?

[Q2] What is the total IO cost?

[Q3] What is the smallest number of buffer frames needed to sort the file in 2 passes?

Suppose you have 10,000 buffer frames to sort a relation R, and R has 186 pages.

How many I/O does it cost?

Index Join

for each tuple in R
search index of S, output matches

Suppose you have 2 relations:

- R: 20,000 tuples; 25 tuples fit in a block
- S: 45,000 tuples; 30 tuples fit in a block
- Buffer size M=30
- R is sorted

[Q1]: What is the cost of sort-merge join the two relations?

[Q2]: Suppose that S has an *unclustered* B+-tree index on the join attribute, and the entire index is in memory.

What's the cost of the Index Join algorithm above. Assume each tuple in R matches with **k** tuples in S