Lecture 11:

CNNs in Practice

Administrative

- Midterms are graded!
 - Pick up now
 - Or in Andrej, Justin, Albert, or Serena's OH
- Project milestone due today, 2/17 by midnight
 - Turn in to Assignments tab on Coursework!
- Assignment 2 grades soon
- Assignment 3 released, due 2/24

Midterm stats

Mean: 75.0 Median: 76.3 Stand

N: 311 **Max:** 103.0

Standard Deviation: 13.2

Midterm stats

[We threw out TF3 and TF8]

Midterm stats

Midterm Stats

Bonus mean: 0.8

Last Time

Recurrent neural networks for modeling sequences

Vanilla RNNs

$$egin{aligned} h_t &= anh(W_{hh}h_{t-1} + W_{xh}x_t) \ \ y_t &= W_{hy}h_t \end{aligned}$$

LSTMs

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \operatorname{sigm} \\ \operatorname{sigm} \\ \operatorname{sigm} \\ \tanh \end{pmatrix} W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

$$c_t^l = f \odot c_{t-1}^l + i \odot g$$

$$h_t^l = o \odot \tanh(c_t^l)$$

Last Time

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA:

I'll drink it.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(A) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(A) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_{X}}).$$

When in this case of to show that $Q \to C_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since $S = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,...,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0} = \mathcal{F}_{x_0} = \mathcal{F}_{\mathcal{X},...,0}$.

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that $\mathfrak p$ is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Sampling from RNN language models to generate text

Last Time

CNN + RNN for image captioning

Interpretable RNN cells

Today

Working with CNNs in practice:

- Making the most of your data
 - Data augmentation
 - Transfer learning
- All about convolutions:
 - How to arrange them
 - How to compute them fast
- "Implementation details"
 - GPU / CPU, bottlenecks, distributed training

- Change the pixels without changing the label
- Train on transformed data
- VERY widely used

1. Horizontal flips

2. Random crops/scales

Training: sample random crops / scales

2. Random crops/scales

Training: sample random crops / scales ResNet:

- Pick random L in range [256, 480]
- Resize training image, short side = L
- Sample random 224 x 224 patch

2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- Resize training image, short side = L
- Sample random 224 x 224 patch

Testing: average a fixed set of crops

2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

- Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation 3. Color jitter

Simple:

Randomly jitter contrast

Data Augmentation 3. Color jitter

Simple:

Randomly jitter contrast

Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- 2. Sample a "color offset" along principal component directions
- 3. Add offset to all pixels of a training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

4. Get creative!

Random mix/combinations of:

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

A general theme:

- 1. **Training**: Add random noise
- 2. **Testing**: Marginalize over the noise

Data Augmentation

Dropout

DropConnect

Batch normalization, Model ensembles

Data Augmentation: Takeaway

- Simple to implement, use it
- Especially useful for small datasets
- Fits into framework of noise / marginalization

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

CNN Features off-the-shelf: an Astounding Baseline for Recognition [Razavian et al, 2014]

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition [Donahue*, Jia*, et al., 2013]

	DeCAF ₆	DeCAF ₇
LogReg	40.94 ± 0.3	40.84 ± 0.3
SVM	39.36 ± 0.3	40.66 ± 0.3
Xiao et al. (2010)	38.0	

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	?
quite a lot of data	Finetune a few layers	?

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Takeaway for your projects/beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there.
- 2. Transfer learn to your dataset

Caffe ConvNet library has a "Model Zoo" of pretrained models: https://github.com/BVLC/caffe/wiki/Model-Zoo

All About Convolutions

All About Convolutions Part I: How to stack them

Suppose we stack two 3x3 conv layers (stride 1) Each neuron sees 3x3 region of previous activation map

Question: How big of a region in the input does a neuron on the second conv layer see?

Question: How big of a region in the input does a neuron on the second conv layer see?

Answer: 5 x 5

Question: If we stack **three** 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Question: If we stack **three** 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Answer: 7 x 7

Question: If we stack **three** 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Answer: 7 x 7

Three 3 x 3 conv gives similar representational power as a single 7 x 7 convolution

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

three CONV with 3 x 3 filters

Number of weights:

Number of weights:

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

three CONV with 3 x 3 filters

Number of weights:

$$= C \times (7 \times 7 \times C) = 49 C^{2}$$

Number of weights:

$$= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$$

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

three CONV with 3 x 3 filters

Number of weights:

$$= C \times (7 \times 7 \times C) = 49 C^{2}$$

Number of weights:

$$= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$$

Fewer parameters, more nonlinearity = GOOD

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

three CONV with 3 x 3 filters

Number of weights:

 $= C \times (7 \times 7 \times C) = 49 C^{2}$

Number of multiply-adds:

Number of weights: $= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$

Number of multiply-adds:

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights:

$$= C \times (7 \times 7 \times C) = 49 C^{2}$$

Number of multiply-adds:

$$= (H \times W \times C) \times (7 \times 7 \times C)$$

$$= 49 \text{ HWC}^2$$

three CONV with 3 x 3 filters

Number of weights:

$$= 3 \times C \times (3 \times 3 \times C) = 27 C^{2}$$

Number of multiply-adds:

$$= 3 \times (H \times W \times C) \times (3 \times 3 \times C)$$

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

three CONV with 3 x 3 filters

Number of weights:

 $= C \times (7 \times 7 \times C) = 49 C^{2}$

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Number of multiply-adds:

= 49 HWC²

Number of multiply-adds:

= 27 HWC²

Less compute, more nonlinearity = GOOD

Why stop at 3 x 3 filters? Why not try 1 x 1?

Why stop at 3 x 3 filters? Why not try 1 x 1?

$$\begin{array}{c} \text{H x W x C} \\ \text{Conv 1x1, C/2 filters} & \\ \text{H x W x (C / 2)} \end{array}$$

1. "bottleneck" 1 x 1 conv to reduce dimension

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C

Conv 1x1, C/2 filters
$$\downarrow$$

H x W x (C / 2)

Conv 3x3, C/2 filters \downarrow

H x W x (C / 2)

- 1. "bottleneck" 1 x 1 conv to reduce dimension
- 2. 3 x 3 conv at reduced dimension

Why stop at 3 x 3 filters? Why not try 1 x 1?

- 1. "bottleneck" 1 x 1 conv to reduce dimension
- 2. 3 x 3 conv at reduced dimension
- 3. Restore dimension with another 1 x 1 conv

[Seen in Lin et al, "Network in Network", GoogLeNet, ResNet]

Why stop at 3 x 3 filters? Why not try 1 x 1?

Still using 3 x 3 filters ... can we break it up?

Still using 3 x 3 filters ... can we break it up?

$$\begin{array}{c} & \text{H x W x C} \\ \text{Conv 1x3, C filters} & & \\ & \text{H x W x C} \\ \text{Conv 3x1, C filters} & & \\ & \text{H x W x C} \end{array}$$

Still using 3 x 3 filters ... can we break it up?

More nonlinearity, fewer params less compute!

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, "Rethinking the Inception Architecture for Computer Vision"

How to stack convolutions: Recap

- Replace large convolutions (5 x 5, 7 x 7) with stacks of 3 x 3 convolutions
- 1 x 1 "bottleneck" convolutions are very efficient
- Can factor N x N convolutions into 1 x N and N x 1
- All of the above give fewer parameters, less compute, more nonlinearity

All About Convolutions Part II: How to compute them

There are highly optimized matrix multiplication routines for just about every platform

Can we turn convolution into matrix multiplication?

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Feature map: H x W x C

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Repeat for all columns to get (K²C) x N matrix (N receptive field locations)

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Elements appearing in multiple receptive fields are duplicated; this uses a lot of memory

Repeat for all columns to get (K²C) x N matrix (N receptive field locations)


```
template <typename Dtype>
void ConvolutionLayer<Dtype>::Forward_qpu(const vector<Blob<Dtype>*>& bottom,
                                                                                      Case study:
     vector<Blob<Dtype>*>* top) {
 for (int i = 0; i < bottom.size(); ++i) {
   const Dtype* bottom_data = bottom[i]->gpu_data();
                                                                                      CONV forward in Caffe
   Dtype* top_data = (*top)[i]->mutable_gpu_data();
   Dtype* col_data = col_buffer_.mutable_gpu_data();
                                                                                      library
   const Dtype* weight = this->blobs_[0]->gpu_data();
   int weight_offset = M_ * K_;
   int col_offset = K_ * N_;
   int top_offset = M_ * N_;
   for (int n = 0; n < num ; ++n) {
     // im2col transformation: unroll input regions for filtering
     // into column matrix for multiplication
     im2col_gpu(bottom_data + bottom[i]->offset(n), channels_, height_,
                                                                                      im2col
         width_, kernel_h_, kernel_w_, pad_h_, pad_w_, stride_h_, stride_w_,
         col_data);
     // Take inner products for groups.
     for (int a = 0; a < aroup ; ++a) {
       caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, K_,
         (Dtype)1., weight + weight_offset * g, col_data + col_offset * g,
                                                                                      matrix multiply: call to
         (Dtype)0., top_data + (*top)[i]->offset(n) + top_offset * g);
                                                                                      cuBLAS
     // Add bias.
     if (bias term )
       caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, num_output_,
           N_, 1, (Dtype)1., this->blobs_[1]->gpu_data(),
           bias multiplier .qpu data(),
           (Dtype)1., top_data + (*top)[i]->offset(n));
                                                                                      bias offset
```

```
def conv_forward_strides(x, w, b, conv_param):
 N, C, H, W = x.shape
 F, _, HH, WW = w.shape
 stride, pad = conv_param['stride'], conv_param['pad']
 # Check dimensions
 assert (W + 2 * pad - WW) % stride == 0, 'width does not work'
 assert (H + 2 * pad - HH) % stride == 0, 'height does not work'
 # Pad the input
 p = pad
  x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant')
 # Figure out output dimensions
 H += 2 * pad
 W += 2 * pad
 out_h = (H - HH) / stride + 1
 out w = (W - WW) / stride + 1
 # Perform an im2col operation by picking clever strides
  shape = (C, HH, WW, N, out_h, out_w)
  strides = (H * W, W, 1, C * H * W, stride * W, stride)
  strides = x.itemsize * np.array(strides)
  x_stride = np.lib.stride_tricks.as_strided(x_padded,
                shape=shape, strides=strides)
  x cols = np.ascontiguousarray(x_stride)
  x_{cols.shape} = (C * HH * WW, N * out_h * out_w)
 # Now all our convolutions are a big matrix multiply
  res = w.reshape(F, -1).dot(x_cols) + b.reshape(-1, 1)
 # Reshape the output
  res.shape = (F, N, out h, out w)
 out = res.transpose(1, 0, 2, 3)
 # Be nice and return a contiguous array
 # The old version of conv_forward_fast doesn't do this, so for a fair
 # comparison we won't either
 out = np.ascontiguousarray(out)
  cache = (x, w, b, conv_param, x_cols)
  return out, cache
```

Case study: fast_layers.py from HW

im2col

matrix multiply: call np.dot (which calls BLAS)

Implementing convolutions: FFT

Convolution Theorem: The convolution of f and g is equal to the elementwise product of their Fourier Transforms:

$$\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$$

Using the Fast Fourier Transform, we can compute the Discrete Fourier transform of an N-dimensional vector in O (N log N) time (also extends to 2D images)

Implementing convolutions: FFT

- 1. Compute FFT of weights: F(W)
- 2. Compute FFT of image: F(X)
- 3. Compute elementwise product: F(W) F(X)
- 4. Compute inverse FFT: $Y = F^{-1}(F(W) \circ F(X))$

Implementing convolutions: FFT

FFT convolutions get a big speedup for larger filters Not much speedup for 3x3 filters =(

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation

Implementing convolution: "Fast Algorithms"

Naive matrix multiplication: Computing product of two N x N matrices takes O(N³) operations

Strassen's Algorithm: Use clever arithmetic to reduce complexity to $O(N^{log2(7)}) \sim O(N^{2.81})$

$$\begin{array}{lll} \mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} & \mathbf{M}_1 := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) \\ & \mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} & \mathbf{C}_{1,1} = \mathbf{M}_1 + \mathbf{M}_4 - \mathbf{M}_5 + \mathbf{M}_7 \\ \mathbf{B} = \begin{bmatrix} \mathbf{B}_{1,1} & \mathbf{B}_{1,2} \\ \mathbf{B}_{2,1} & \mathbf{B}_{2,2} \end{bmatrix} & \mathbf{M}_3 := \mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) & \mathbf{C}_{1,2} = \mathbf{M}_3 + \mathbf{M}_5 \\ & \mathbf{M}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) & \mathbf{C}_{2,1} = \mathbf{M}_2 + \mathbf{M}_4 \\ & \mathbf{C}_{2,1} = \mathbf{M}_2 + \mathbf{M}_4 \end{bmatrix} \\ \mathbf{C} = \begin{bmatrix} \mathbf{C}_{1,1} & \mathbf{C}_{1,2} \\ \mathbf{C}_{2,1} & \mathbf{C}_{2,2} \end{bmatrix} & \mathbf{M}_6 := (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}) \\ & \mathbf{M}_7 := (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}) \end{array} & \mathbf{C}_{2,2} = \mathbf{M}_1 - \mathbf{M}_2 + \mathbf{M}_3 + \mathbf{M}_6 \end{array}$$

From Wikipedia

Implementing convolution: "Fast Algorithms"

Similar cleverness can be applied to convolutions

Lavin and Gray (2015) work out special cases for 3x3 convolutions:

Polutions:
$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

$$g = \begin{bmatrix} g_0 & g_1 & g_2 \end{bmatrix}^T$$

$$g = \begin{bmatrix} g_0 & g_1 & g_2 \end{bmatrix}^T$$

$$B^{T} = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

$$G = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -1 \end{bmatrix}$$

$$g = \begin{bmatrix} g_{0} & g_{1} & g_{2} \end{bmatrix}^{T}$$

$$d = \begin{bmatrix} d_{0} & d_{1} & d_{2} & d_{3} \end{bmatrix}^{T}$$

Lavin and Gray, "Fast Algorithms for Convolutional Neural Networks", 2015

Implementing convolution: "Fast Algorithms"

Huge speedups on VGG for small batches:

N	cuDNN		F(2x2,3x3)		Speedup
	msec	TFLOPS	msec	TFLOPS	Speedup
1	12.52	3.12	5.55	7.03	2.26X
2	20.36	3.83	9.89	7.89	2.06X
4	104.70	1.49	17.72	8.81	5.91X
8	241.21	1.29	33.11	9.43	7.28X
16	203.09	3.07	65.79	9.49	3.09X
32	237.05	5.27	132.36	9.43	1.79X
64	394.05	6.34	266.48	9.37	1.48X

Table 5. cuDNN versus $F(2 \times 2, 3 \times 3)$ performance on VGG Network E with fp32 data. Throughput is measured in Effective TFLOPS, the ratio of direct algorithm GFLOPs to run time.

N	cuDNN		F(2x2,3x3)		Chardun
	msec	TFLOPS	msec	TFLOPS	Speedup
1	14.58	2.68	5.53	7.06	2.64X
2	20.94	3.73	9.83	7.94	2.13X
4	104.19	1.50	17.50	8.92	5.95X
8	241.87	1.29	32.61	9.57	7.42X
16	204.01	3.06	62.93	9.92	3.24X
32	236.13	5.29	123.12	10.14	1.92X
64	395.93	6.31	242.98	10.28	1.63X

Table 6. cuDNN versus $F(2 \times 2, 3 \times 3)$ performance on VGG Network E with fp16 data.

Computing Convolutions: Recap

- im2col: Easy to implement, but big memory overhead
- FFT: Big speedups for small kernels
- "Fast Algorithms" seem promising, not widely used yet

Implementation Details

Spot the CPU!

Spot the CPU!

"central processing unit"

Spot the GPU!

"graphics processing unit"

Spot the GPU!

"graphics processing unit"

VS

NVIDIA is much more common for deep learning

CEO of NVIDIA:

Jen-Hsun Huang

(Stanford EE Masters 1992)

GTC 2015:

Introduced new Titan X GPU by bragging about AlexNet benchmarks

CPU

Few, fast cores (1 - 16) Good at sequential processing

GPU

Many, slower cores (thousands)
Originally for graphics
Good at parallel computation

GPUs can be programmed

- CUDA (NVIDIA only)
 - Write C code that runs directly on the GPU
 - Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower :(
- Udacity: Intro to Parallel Programming https://www.udacity. com/course/cs344
 - For deep learning just use existing libraries

GPUs are really good at matrix multiplication:

GPUs are really good at convolution (cuDNN):

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Even with GPUs, training can be slow

VGG: ~2-3 weeks training with 4 GPUs

ResNet 101: 2-3 weeks with 4 GPUs

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html

Multi-GPU training: More complex

Alex Krizhevsky, "One weird trick for parallelizing convolutional neural networks"

Google: Distributed CPU training

Data parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]

Google: Distributed CPU training

Data parallelism

Model parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]

Google: Synchronous vs Async

Abadi et al, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems"

Bottlenecks

to be aware of

GPU - CPU communication is a bottleneck.

CPU data prefetch+augment thread running

while

GPU performs forward/backward pass

CPU - disk bottleneck

Hard disk is slow to read from

=> Pre-processed images stored contiguously in files, read as raw byte stream from SSD disk Moving parts lol

GPU memory bottleneck

Titan X: 12 GB <- currently the max

GTX 980 Ti: 6 GB

e.g.

AlexNet: ~3GB needed with batch size 256

- 64 bit "double" precision is default in a lot of programming
- 32 bit "single" precision is typically used for CNNs for performance

Lecture 11

- 64 bit "double" precision is default in a lot of programming
- 32 bit "single" precision is typically used for CNNs for performance
 - Including cs231n homework!

```
class FullyConnectedNet(object):
 A fully-connected neural network with an arbitrary number of hidden layers,
 ReLU nonlinearities, and a softmax loss function. This will also implement
 dropout and batch normalization as options. For a network with L layers,
  the architecture will be
 {affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax
 where batch normalization and dropout are optional, and the {...} block is
 repeated L - 1 times.
 Similar to the TwoLayerNet above, learnable parameters are stored in the
  self.params dictionary and will be learned using the Solver class.
 def __init__(self, hidden_dims, input_dim=3*32*32, num_classes=10,
               dropout=0, use batchporm=Falso
              weight scale-ie-, dtype=np.float32.
                                                    seed=None):
```

Prediction: 16 bit "half" precision will be the new standard

- Already supported in cuDNN
- Nervana fp16 kernels are the fastest right now
- Hardware support in next-gen NVIDIA cards (Pascal)
- Not yet supported in torch =(

AlexNet (One Weird Trick paper) - Input 128x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	92	29	62
CuDNN[R3]-fp16 (Torch)	cudnn.SpatialConvolution	96	30	66
CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	96	32	64

OxfordNet [Model-A] - Input 64x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	529	167	362
Nervana-fp32	ConvLayer	590	180	410
CuDNN[R3]-fp16 (Torch)	cudnn.SpatialConvolution	615	179	436

GoogleNet V1 - Input 128x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	283	85	197
Nervana-fp32	ConvLayer	322	90	232
CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	431	117	313

Lecture 1

How low can we go?

Gupta et al, 2015:

Train with 16-bit fixed point with stochastic rounding

CNNs on MNIST

Gupta et al, "Deep Learning with Limited Numerical Precision", ICML 2015

How low can we go?

Courbariaux et al, 2015:

Train with 10-bit activations, 12-bit parameter updates

Courbariaux et al, "Training Deep Neural Networks with Low Precision Multiplications", ICLR 2015

How low can we go?

Courbariaux and Bengio, February 9 2016:

- Train with 1-bit activations and weights!
- All activations and weights are +1 or -1
- Fast multiplication with bitwise XNOR
- (Gradients use higher precision)

Courbariaux et al, "BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1", arXiv 2016

Implementation details: Recap

- GPUs much faster than CPUs
- Distributed training is sometimes used
 - Not needed for small problems
- Be aware of bottlenecks: CPU / GPU, CPU / disk
- Low precison makes things faster and still works
 - 32 bit is standard now, 16 bit soon
 - o In the future: binary nets?

Recap

- Data augmentation: artificially expand your data
- Transfer learning: CNNs without huge data
- All about convolutions
- Implementation details