# Simulation Result For Three-Level Intercept Model With Low Prevalence

The mean prevalence for this simulation is 12 %

Shafayet Khan Shafee

07 September 2023

## Histograms for $log(\widehat{MOR})$



Figure 1: Hospitals = 20, Doctors = 10, Patients = 5



Figure 2: Hospitals = 20, Doctors = 10, Patients = 15



Figure 3: Hospitals = 20, Doctors = 10, Patients = 30



Figure 4: Hospitals = 20, Doctors = 30, Patients = 5



Figure 5: Hospitals = 20, Doctors = 30, Patients = 15



Figure 6: Hospitals = 20, Doctors = 30, Patients = 30



Figure 7: Hospitals = 40, Doctors = 10, Patients = 5



Figure 8: Hospitals = 40, Doctors = 10, Patients = 15



Figure 9: Hospitals = 40, Doctors = 10, Patients = 30



Figure 10: Hospitals = 40, Doctors = 30, Patients = 5



Figure 11: Hospitals = 40, Doctors = 30, Patients = 15



Figure 12: Hospitals = 40, Doctors = 30, Patients = 30

#### Simulation Result Table for MOR of Second Level

| $L^1$ | $M^2$ | $N^3$ | $\widehat{eta_0}$ | $\widehat{eta_1}$ | $\widehat{eta_2}$ | $\widehat{\sigma^2_{u_{jk}}}$ | $\widehat{\sigma_{v_k}^2}$ | $\widehat{MOR}_1$ | Rel.<br>Bias<br>(%) | $\widehat{SE}_{MOR}$ | Sim. $\widehat{SE}_{MOR}$ | Ratio <sup>4</sup> | Coverage <sup>5</sup> (95%) | $Model$ $Conv^6$ |
|-------|-------|-------|-------------------|-------------------|-------------------|-------------------------------|----------------------------|-------------------|---------------------|----------------------|---------------------------|--------------------|-----------------------------|------------------|
| 20    | 10    | 5     | -4.12             | 1.75              | 0.69              | 1.96                          | 2.18                       | 3.85              | -0.18               | 1.34                 | 1.35                      | 0.99               | 0.94                        | 0.98             |
| 20    | 10    | 15    | -4.09             | 1.74              | 0.67              | 1.87                          | 2.24                       | 3.70              | -3.99               | 1.15                 | 1.16                      | 0.99               | 0.91                        | 1.00             |
| 20    | 10    | 30    | -4.08             | 1.75              | 0.67              | 1.94                          | 2.32                       | 3.79              | -1.77               | 1.12                 | 1.12                      | 1.00               | 0.93                        | 1.00             |
| 20    | 30    | 5     | -4.04             | 1.72              | 0.66              | 1.72                          | 2.18                       | 3.51              | -9.04               | 1.16                 | 1.16                      | 1.00               | 0.86                        | 1.00             |
| 20    | 30    | 15    | -4.08             | 1.74              | 0.67              | 1.87                          | 2.27                       | 3.68              | -4.38               | 1.08                 | 1.08                      | 1.00               | 0.88                        | 1.00             |
| 20    | 30    | 30    | -4.09             | 1.75              | 0.67              | 1.93                          | 2.32                       | 3.76              | -2.33               | 1.07                 | 1.07                      | 1.00               | 0.92                        | 1.00             |
| 40    | 10    | 5     | -4.08             | 1.73              | 0.66              | 1.83                          | 2.21                       | 3.66              | -5.01               | 1.21                 | 1.23                      | 0.99               | 0.90                        | 1.00             |
| 40    | 10    | 15    | -4.07             | 1.75              | 0.67              | 1.89                          | 2.35                       | 3.72              | -3.58               | 1.11                 | 1.11                      | 1.00               | 0.92                        | 1.00             |
| 40    | 10    | 30    | -4.09             | 1.75              | 0.67              | 1.94                          | 2.39                       | 3.77              | -2.08               | 1.08                 | 1.08                      | 1.00               | 0.93                        | 1.00             |
| 40    | 30    | 5     | -4.02             | 1.72              | 0.66              | 1.69                          | 2.18                       | 3.46              | -10.17              | 1.11                 | 1.11                      | 1.00               | 0.78                        | 1.00             |
| 40    | 30    | 15    | -4.09             | 1.75              | 0.67              | 1.88                          | 2.29                       | 3.70              | -3.93               | 1.06                 | 1.06                      | 1.00               | 0.88                        | 1.00             |
| 40    | 30    | 30    | -4.08             | 1.75              | 0.67              | 1.92                          | 2.36                       | 3.76              | -2.51               | 1.05                 | 1.05                      | 1.00               | 0.89                        | 1.00             |

Note:

$$^{4} \; \text{Ratio} = \; \frac{\widehat{SE}_{MOR}}{Simulation \; \widehat{SE}_{MOR}}$$

 $<sup>^{1}</sup>$  Number of Hospital

 $<sup>^2</sup>$  Number of Doctors

 $<sup>^3</sup>$  Number of patients

<sup>&</sup>lt;sup>5</sup> Confidence Interval Coverage Probability

 $<sup>^6</sup>$  Model Convergence (Ratio of 1000 runs to the runs required to get 1000 converged cases)

 $<sup>^{\</sup>ast}$  The mean prevalence for this simulation is 12%

 $<sup>^{\</sup>dagger}$  True  $MOR_1$  is 3.85

 $<sup>^\</sup>ddagger$  True  $\sigma^2_{u_{jk}}$  is 2

<sup>§</sup> True  $\sigma_{v_k}^2$  is 2.5

 $<sup>\</sup>P$  True Values of  $\beta_0=-4.1,\,\beta_1=1.75,\,\beta_2=0.67$ 

#### Simulation Result Table for MOR of Third Level

| $\mathrm{L}^1$ | $M^2$ | $N^3$ | $\widehat{eta_0}$ | $\widehat{eta_1}$ | $\widehat{eta_2}$ | $\widehat{\sigma^2_{u_{jk}}}$ | $\widehat{\sigma_{v_k}^2}$ | $\widehat{MOR}_2$ | Rel.<br>Bias<br>(%) | $\widehat{SE}_{MOR}$ | Sim. $\widehat{SE}_{MOR}$ | $\mathrm{Ratio}^4$ | Coverage <sup>5</sup> (95%) | Model Conv <sup>6</sup> |
|----------------|-------|-------|-------------------|-------------------|-------------------|-------------------------------|----------------------------|-------------------|---------------------|----------------------|---------------------------|--------------------|-----------------------------|-------------------------|
| 20             | 10    | 5     | -4.12             | 1.75              | 0.69              | 1.96                          | 2.18                       | 7.19              | -5.00               | 1.39                 | 1.42                      | 0.98               | 0.89                        | 0.98                    |
| 20             | 10    | 15    | -4.09             | 1.74              | 0.67              | 1.87                          | 2.24                       | 7.04              | -6.97               | 1.26                 | 1.28                      | 0.98               | 0.86                        | 1.00                    |
| 20             | 10    | 30    | -4.08             | 1.75              | 0.67              | 1.94                          | 2.32                       | 7.26              | -3.97               | 1.24                 | 1.25                      | 0.99               | 0.89                        | 1.00                    |
| 20             | 30    | 5     | -4.04             | 1.72              | 0.66              | 1.72                          | 2.18                       | 6.68              | -11.66              | 1.25                 | 1.28                      | 0.98               | 0.80                        | 1.00                    |
| 20             | 30    | 15    | -4.08             | 1.74              | 0.67              | 1.87                          | 2.27                       | 7.04              | -6.95               | 1.21                 | 1.22                      | 0.99               | 0.85                        | 1.00                    |
| 20             | 30    | 30    | -4.09             | 1.75              | 0.67              | 1.93                          | 2.32                       | 7.21              | -4.65               | 1.20                 | 1.21                      | 1.00               | 0.87                        | 1.00                    |
| 40             | 10    | 5     | -4.08             | 1.73              | 0.66              | 1.83                          | 2.21                       | 6.91              | -8.66               | 1.25                 | 1.26                      | 0.99               | 0.87                        | 1.00                    |
| 40             | 10    | 15    | -4.07             | 1.75              | 0.67              | 1.89                          | 2.35                       | 7.19              | -4.95               | 1.18                 | 1.21                      | 0.98               | 0.86                        | 1.00                    |
| 40             | 10    | 30    | -4.09             | 1.75              | 0.67              | 1.94                          | 2.39                       | 7.32              | -3.26               | 1.17                 | 1.18                      | 0.99               | 0.89                        | 1.00                    |
| 40             | 30    | 5     | -4.02             | 1.72              | 0.66              | 1.69                          | 2.18                       | 6.57              | -13.10              | 1.17                 | 1.19                      | 0.99               | 0.75                        | 1.00                    |
| 40             | 30    | 15    | -4.09             | 1.75              | 0.67              | 1.88                          | 2.29                       | 7.05              | -6.75               | 1.15                 | 1.16                      | 0.99               | 0.84                        | 1.00                    |
| 40             | 30    | 30    | -4.08             | 1.75              | 0.67              | 1.92                          | 2.36                       | 7.24              | -4.27               | 1.14                 | 1.14                      | 1.00               | 0.89                        | 1.00                    |

Note:

$$^{4} \ {\rm Ratio} = \ \frac{\widehat{SE}_{MOR}}{Simulation \ \widehat{SE}_{MOR}}$$

 $<sup>^{1}</sup>$  Number of Hospital

 $<sup>^2</sup>$  Number of Doctors

<sup>&</sup>lt;sup>3</sup> Number of patients

<sup>&</sup>lt;sup>5</sup> Confidence Interval Coverage Probability

 $<sup>^6</sup>$  Model Convergence (Ratio of 1000 runs to the runs required to get 1000 converged cases)

 $<sup>^{\</sup>ast}$  The mean prevalence for this simulation is 12%

 $<sup>^{\</sup>dagger}$  True  $MOR_2$  is 7.56

 $<sup>^\</sup>ddagger$  True  $\sigma^2_{u_{jk}}$  is 2

<sup>§</sup> True  $\sigma_{v_k}^2$  is 2.5

 $<sup>\</sup>P$  True Values of  $\beta_0=-4.1,\,\beta_1=1.75,\,\beta_2=0.67$ 

### Simulation Result Table All Together

|       |       |       |                   |                   |                   |                               |                            |                 |                     | МО                   | $R_1$                |                    |                             | $MOR_2$         |                     |                      |                           |                    |                |                                         |
|-------|-------|-------|-------------------|-------------------|-------------------|-------------------------------|----------------------------|-----------------|---------------------|----------------------|----------------------|--------------------|-----------------------------|-----------------|---------------------|----------------------|---------------------------|--------------------|----------------|-----------------------------------------|
| $L^1$ | $M^2$ | $N^3$ | $\widehat{eta_0}$ | $\widehat{eta_1}$ | $\widehat{eta_2}$ | $\widehat{\sigma^2_{u_{jk}}}$ | $\widehat{\sigma^2_{v_k}}$ | $\widehat{MOR}$ | Rel.<br>Bias<br>(%) | $\widehat{SE}_{MOR}$ | $\widehat{SE}_{MOR}$ | $\mathrm{Ratio}^4$ | Coverage <sup>5</sup> (95%) | $\widehat{MOR}$ | Rel.<br>Bias<br>(%) | $\widehat{SE}_{MOR}$ | Sim. $\widehat{SE}_{MOR}$ | Ratio <sup>4</sup> | Coverage (95%) | <sup>5</sup> Model<br>Conv <sup>6</sup> |
| 20    | 10    | 5     | -4.12             | 1.75              | 0.69              | 1.96                          | 2.18                       | 3.85            | -0.18               | 1.34                 | 1.35                 | 0.99               | 0.94                        | 7.19            | -5.00               | 1.39                 | 1.42                      | 0.98               | 0.89           | 0.98                                    |
| 20    | 10    | 15    | -4.09             | 1.74              | 0.67              | 1.87                          | 2.24                       | 3.70            | -3.99               | 1.15                 | 1.16                 | 0.99               | 0.91                        | 7.04            | -6.97               | 1.26                 | 1.28                      | 0.98               | 0.86           | 1.00                                    |
| 20    | 10    | 30    | -4.08             | 1.75              | 0.67              | 1.94                          | 2.32                       | 3.79            | -1.77               | 1.12                 | 1.12                 | 1.00               | 0.93                        | 7.26            | -3.97               | 1.24                 | 1.25                      | 0.99               | 0.89           | 1.00                                    |
| 20    | 30    | 5     | -4.04             | 1.72              | 0.66              | 1.72                          | 2.18                       | 3.51            | -9.04               | 1.16                 | 1.16                 | 1.00               | 0.86                        | 6.68            | -11.66              | 1.25                 | 1.28                      | 0.98               | 0.80           | 1.00                                    |
| 20    | 30    | 15    | -4.08             | 1.74              | 0.67              | 1.87                          | 2.27                       | 3.68            | -4.38               | 1.08                 | 1.08                 | 1.00               | 0.88                        | 7.04            | -6.95               | 1.21                 | 1.22                      | 0.99               | 0.85           | 1.00                                    |
| 20    | 30    | 30    | -4.09             | 1.75              | 0.67              | 1.93                          | 2.32                       | 3.76            | -2.33               | 1.07                 | 1.07                 | 1.00               | 0.92                        | 7.21            | -4.65               | 1.20                 | 1.21                      | 1.00               | 0.87           | 1.00                                    |
| 40    | 10    | 5     | -4.08             | 1.73              | 0.66              | 1.83                          | 2.21                       | 3.66            | -5.01               | 1.21                 | 1.23                 | 0.99               | 0.90                        | 6.91            | -8.66               | 1.25                 | 1.26                      | 0.99               | 0.87           | 1.00                                    |
| 40    | 10    | 15    | -4.07             | 1.75              | 0.67              | 1.89                          | 2.35                       | 3.72            | -3.58               | 1.11                 | 1.11                 | 1.00               | 0.92                        | 7.19            | -4.95               | 1.18                 | 1.21                      | 0.98               | 0.86           | 1.00                                    |
| 40    | 10    | 30    | -4.09             | 1.75              | 0.67              | 1.94                          | 2.39                       | 3.77            | -2.08               | 1.08                 | 1.08                 | 1.00               | 0.93                        | 7.32            | -3.26               | 1.17                 | 1.18                      | 0.99               | 0.89           | 1.00                                    |
| 40    | 30    | 5     | -4.02             | 1.72              | 0.66              | 1.69                          | 2.18                       | 3.46            | -10.17              | 1.11                 | 1.11                 | 1.00               | 0.78                        | 6.57            | -13.10              | 1.17                 | 1.19                      | 0.99               | 0.75           | 1.00                                    |
| 40    | 30    | 15    | -4.09             | 1.75              | 0.67              | 1.88                          | 2.29                       | 3.70            | -3.93               | 1.06                 | 1.06                 | 1.00               | 0.88                        | 7.05            | -6.75               | 1.15                 | 1.16                      | 0.99               | 0.84           | 1.00                                    |
| 40    | 30    | 30    | -4.08             | 1.75              | 0.67              | 1.92                          | 2.36                       | 3.76            | -2.51               | 1.05                 | 1.05                 | 1.00               | 0.89                        | 7.24            | -4.27               | 1.14                 | 1.14                      | 1.00               | 0.89           | 1.00                                    |

Note:

$$^{4}\; \text{Ratio} = \; \frac{\widehat{SE}_{MOR}}{Simulation\; \widehat{SE}_{MOR}} \label{eq:alpha}$$

 $<sup>^{1}</sup>$  Number of Hospital

<sup>&</sup>lt;sup>2</sup> Number of Doctors

<sup>&</sup>lt;sup>3</sup> Number of patients

<sup>&</sup>lt;sup>5</sup> Confidence Interval Coverage Probability

 $<sup>^{6}</sup>$  Model Convergence (Ratio of 1000 runs to the runs required to get 1000 converged cases)

 $<sup>^{\</sup>ast}$  The mean prevalence for this simulation is 12%

 $<sup>^\</sup>dagger$  True  $MOR_1$  is 3.85

 $<sup>^\</sup>ddagger$  True  $MOR_2$  is 7.56

<sup>§</sup> True  $\sigma^2_{u_{jk}}$  is 2

 $<sup>\</sup>P$  True  $\sigma^2_{v_k}$  is 2.5

<sup>\*\*</sup> True Values of  $\beta_0 = -4.1, \, \beta_1 = 1.75, \, \beta_2 = 0.67$