The claimed invention is:

5

10

15

1. A compound of formula (Ia), (Ib), or (Ic):

or a pharmaceutically acceptable salt, prodrug, tautomer, hydrate or solvate thereof, wherein:

R¹ is a saturated, unsaturated, or aromatic C₃-C₂₀ mono-, bi- or polycyclic ring optionally containing at least one heteroatom selected from the group consisting of N, O and S, wherein R¹ can optionally be further independently substituted with at least one moiety independently selected from the group consisting of: carbonyl, halo, halo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkyl, perhalo(C₁-C₆)alkoxy, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, hydroxy, oxo, mercapto, (C₁-C₆)alkylthio, (C₁-C₆)alkoxy, (C₅-C₁₀)aryl or (C₅-C₁₀)heteroaryl, (C₅-C₁₀)aryloxy or (C₅-C₁₀)heteroaryloxy, (C₅-C₁₀)ar(C₁-C₆)alkyl or (C₅-C₁₀)heteroar(C₁-C₆)alkyl, (C₅-C₁₀)heteroar(C₁-C₆)alkoxy, HO-(C=O)-, ester, amido, ether, amino, amino(C₁-C₆)alkyl, (C₁-C₆)alkylamino(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₁-C₆)alkylamino, cyano, nitro, carbamoyl, (C₁-C₆)alkylcarbonyl,

```
(C_1-C_6)alkoxycarbonyl, (C_1-C_6)alkylaminocarbonyl, (C_5-C_{10})arylcarbonyl, (C_5-C_{10})arylcarbonyl, (C_5-C_{10})arylcarbonyl, (C_5-C_{10})arylcarbonyl, (C_1-C_6)alkylsulfonyl, and (C_5-C_{10})arylsulfonyl;
```

each R³ is independently selected from the group consisting of: hydrogen, halo, halo(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, 5 perhalo(C₁-C₆)alkyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic, (C_3-C_{10}) cycloalkyl, hydroxy, (C_1-C_6) alkoxy, perhalo (C_1-C_6) alkoxy, phenoxy, (C₅-C₁₀)heteroaryl-O-, (C₅-C₁₀)heterocyclic-O-, (C₃-C₁₀)cycloalkyl-O-, (C_1-C_6) alkyl-S-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkyl-NH-SO₂-, O₂N-, NC-, amino, $Ph(CH_2)_{1-6}HN-$, $(C_1-C_6)alkyl HN-$, $(C_1-C_6)alkylamino$, $[(C_1-C_6)alkyl]_2$ -amino, 10 (C₁-C₆)alkyl-SO₂-NH-, amino(C=O)-, aminoO₂S-, (C₁-C₆)alkyl-(C=O)-NH-, $(C_1-C_6)alkyl-(C=O)-[(((C_1-C_6)alkyl)-N]-, phenyl-(C=O)-NH-,$ phenyl-(C=O)- $[((C_1-C_6)alkyl)-N]$ -, $(C_1-C_6)alkyl-(C=O)$ -, phenyl-(C=O)-, (C_5-C_{10}) heteroaryl-(C=O)-, (C_5-C_{10}) heterocyclic-(C=O)-, (C_3-C_{10}) cycloalkyl-(C=O)-, HO-(C=O)-, $(C_1-C_6)alkyl-O-(C=O)-$, $H_2N(C=O)-$, $(C_1-C_6)alkyl-NH-(C=O)-$, 15 $[(C_1-C_6)alkyl]_2-N-(C=O)-$, phenyl-NH-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)-$, (C_5-C_{10}) heteroaryl-NH-(C=O)-, (C_5-C_{10}) heterocyclic-NH-(C=O)-, (C_3-C_{10}) C_{10})cycloalkyl-NH-(C=O)- and (C_1 - C_6)alkyl-(C=O)-O-;

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R³ is optionally substituted by at least one substituent independently selected from (C₁-C₆)alkyl, (C₁-C₆)alkoxy, halo(C₁-C₆)alkyl, halo, H₂N-, Ph(CH₂)₁₋₆HN-, and (C₁-C₆)alkylHN-;

s is an integer from one to five;

and

25

R⁶ is selected from the group consisting of hydrogen, (C₁-C₆)alkyl,

(C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, (C₅-C₁₀)heteroaryl, (C₅-C₁₀)heterocyclic,

(C₃-C₁₀)cycloalkyl, (C₁-C₆)alkyl-(SO₂)-, phenyl-(SO₂)-, H₂N-(SO₂)-,

```
(C_1-C_6)alkyl-NH-(SO_2)-, ((C_1-C_6)alkyl)<sub>2</sub>N-(SO_2)-, phenyl-NH-(SO_2)-,
            (phenyl)_2N-(SO_2)-, (C_1-C_6)alkyl-(C=O)-, phenyl-(C=O)-, (C_5-C_{10})heteroaryl-(C=O)-,
            (C_5-C_{10})heterocyclic-(C=O)-, (C_3-C_{10})cycloalkyl-(C=O)-, (C_1-C_6)alkyl-O-(C=O)-,
            (C_5-C_{10})heterocyclic-O-(C=O)-, (C_3-C_{10})cycloalkyl-O-(C=O)-, H_2N-(C=O)-,
            (C_1-C_6)alkyl-NH-(C=O)-, phenyl-NH-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-,
 5
            (C<sub>5</sub>-C<sub>10</sub>)heterocyclic-NH-(C=O)-, (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl-NH-(C=O)-,
            ((C_1-C_6)alkyl)_2N-(C=O)-, (phenyl)_2N-(C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-(C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-((C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-C_6)alkyl)-N]-(((C_1-
            (C_5-C_{10})heteroaryl-[((C_1-C_6)alkyl)-N]-(C=O)-,
            (C_5-C_{10})heterocyclic-[((C_1-C_6)alkyl)-N]-(C=O)-, and
            (C_3-C_{10})cycloalkyl-[((C_1-C_6)alkyl)-N]-(C=O)-;
10
                            where alkyl, alkenyl, alkynyl, phenyl, benzyl, heteroaryl, heterocyclic,
             cycloalkyl, alkoxy, phenoxy, amino of R<sup>6</sup> is optionally substituted with at least one
             moiety independently selected from the group consisting of halo, (C<sub>1</sub>-C<sub>6</sub>)alkyl,
             (C2-C6)alkenyl, (C2-C6)alkynyl, perhalo(C1-C6)alkyl, (C3-C10)cycloalkyl, phenyl,
             benzyl, (C<sub>5</sub>-C<sub>10</sub>)heterocyclic, (C<sub>5</sub>-C<sub>10</sub>)heteroaryl, (C<sub>1</sub>-C<sub>6</sub>)alkyl-SO<sub>2</sub>-, formyl, NC-,
15
             (C_1-C_6)alkyl-(C=O)-, (C_3C_{10})cycloalkyl-(C=O)-, phenyl-(C=O)-,
             (C_5-C_{10})heterocyclic-(C=O)-, (C_5-C_{10})heteroaryl-(C=O)-, HO-(C=O)-,
             (C_1-C_6)alkyl-O-(C=O)-, (C_3-C_{10})cycloalkyl-O-(C=O)-,
             (C<sub>5</sub>-C<sub>10</sub>)heterocyclic-O-(C=O)-, (C<sub>1</sub>-C<sub>6</sub>)alkyl-NH-(C=O)-,
             (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl-NH-(C=O)-, phenyl-NH-(C=O)-,
20
             (C_5-C_{10})heterocyclic-NH-(C=O)-, (C_5-C_{10})heteroaryl-NH-(C=O)-,
             ((C_1-C_6)alkyl)_2-N-(C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-(C=O)-, hydroxy,
             (C<sub>1</sub>-C<sub>6</sub>)alkoxy, perhalo(C<sub>1</sub>-C<sub>6</sub>)alkoxy, (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl-O-, phenoxy,
             (C_5-C_{10})heterocyclic-O-, (C_5-C_{10})heteroaryl-O-, (C_1-C_6)alkyl-(C=O)-O-,
             (C_3-C_{10})cycloalkyl-(C=O)-O-, phenyl-(C=O)-O-, (C_5-C_{10})heterocyclic-(C=O)-O-,
 25
             (C<sub>5</sub>-C<sub>10</sub>)heteroaryl-(C=O)-O-, O<sub>2</sub>N-, amino, (C<sub>1</sub>-C<sub>6</sub>)alkylamino,
             ((C_1-C_6)alkyl)_2-amino, formamidyl, (C_1-C_6)alkyl-(C=O)-NH-,
              (C<sub>3</sub>-C<sub>10</sub>)cycloalkyl-(C=O)-NH-, phenyl-(C=O)-NH-,
              (C<sub>5</sub>-C<sub>10</sub>)heterocyclic-(C=O)-NH-, (C<sub>5</sub>-C<sub>10</sub>)heteroaryl-(C=O)-NH-,
              (C_1-C_6)alkyl-(C=O)-[((C_1-C_6)alkyl)-N]-, phenyl-(C=O)-[(C_1-C_6)alkyl-N]-,
 30
              (C1-C6)alkyl-SO2NH-, (C3-C10)cycloalkyl-SO2NH-, phenyl-SO2NH-,
```

(C₅-C₁₀)heterocyclic-SO₂NH- and (C₅-C₁₀)heteroaryl-SO₂NH-;

wherein the phenyl or heteroaryl moiety of a R^6 substituent is optionally further substituted with at least one radical independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, perfluoro (C_1-C_6) alkyl and perfluoro (C_1-C_6) alkoxy,

with the proviso that R¹ is not a naphthyl or phenyl; and

with the proviso that when R¹ is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members containing up to three N atoms, said N is other than -NH or -NC₁₋₆alkyl or if said N is -NH or -NC₁₋₆alkyl, then R¹ must be further substituted; and

with the proviso that when R¹ is a phenyl fused with an aromatic or non-aromatic cyclic ring of 5-7 members containing 1-3 heteroatoms independently selected from O and S, then R¹ must be further substituted.

15 2. A compound of claim 1, wherein R¹ is

3. A compound of claim 1, wherein R^1 is

5

10

4. A compound of claim 1, wherein R¹ is

5. A compound of claim 1, wherein R^{l} is

6. A compound of claim 1, wherein R¹ is

5

10

7. A compound of claim 1, wherein R^1 is

$$\mathbb{R}^{2a}$$
 \mathbb{N}
 $\mathbb{$

8. A compound of claim 1, wherein R^1 is

10

15

20

- 5 9. A compound of claim 1, wherein s is one to two; R^3 is hydrogen or (C_1-C_6) alkyl; and R^6 is H, (C_1-C_6) alkyl, or (C_3-C_{10}) cycloalkyl.
 - 10. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
 - 11. A method of preventing or treating a TGF-related disease state in an animal or human comprising the step of administering a therapeutically effective amount of a compound of claim 1 to the animal or human suffering from the TGF-related disease state.

12. A method of claim 11, wherein said TGF-related disease state is selected from the group consisting of cancer, glomerulonephritis, diabetic nephropathy, hepatic fibrosis, pulmonary fibrosis, intimal hyperplasia and restenosis, scleroderma, and dermal scarring.