Kolorowanie wierzchołkowe grafów

Dominik Lau

20 grudnia 2022

1 Definicje

Kolorowanie wierzchołkowe grafu - takie przypisanie jego wierzchołkom kolorów, żeby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru.

- $\chi(G)$ liczba chromatyczna grafu, ile kolorów potrzeba conajmniej, żeby go pokolorować
- $D_A(n)$ funkcja dobroci dla algorytmu A, największy stosunek wyniku algorytmu do wyniku optymalnego
- SHC(A)- dość trudne grafy, grafy dla których algorytm A czasem daje wynik optymalny a czasem się myli
- HC(A) trudne graf, y grafy dla których algorytm A zawsze się myli
- $\omega(G)$ liczba klikowa grafu G, rozmiar największej kliki

2 Oszacowania

2.1 Dolne

Dla dowolnego grafu o $\omega(G)=\omega$ mamy $\chi(G)\geq\omega$. Różnica może być dowolnie duża, np. grafy Mycielskiego

2.2 Górne

Dla dowolnego grafu o $\Delta(G) = \Delta$ mamy $\chi(G) \leq \Delta + 1$.

Tw. Brooksa: $\chi(G) = \Delta + 1$ tylko dla grafów pełnych i cykli nieparzystych.

Dla grafów planarnych mamy $\chi(G) \leq 4.$

3 Funkcja dobroci

$$D_A(n) = \max_{G, |V(G)| = n} \frac{A(G)}{OPT(G)}$$

W kolorowaniu najlepszą funkcją jest $D_A(n) = 1$, najgorszą $D_A(n) = n$ (bo taki wynik daje algorytm trywialny kolorujący wszystkie wierzchołki na różne kolory).

4 SL - smallest last

4.1 Działanie algorytmu

Złożoność - O(n+m)

Pseudokod

```
def SL(G):
 G2 = copy(G)
 kolejnosc = []
 while n(G2) != 0:
  v = wierzcholek_o_min_deg(G2)
  kolejnosc.push_front(v)
 G2 = G2 - v
```

4.2 Przypadki pozytywne

SL optymalnie koloruje drzewa, ponieważ zostawia liście na koniec.

inne optymalne: drzewa, cykle półpozytywne (funkcja dobroci ${\rm O}(1)$): grafy Johnsona, grafy Mycielskiego, grafy planarne

4.3 Trudne grafy

min(SHC(A)) = PRYZMA

min(HC(A)) = PRYZMOID

4.4 Funkcja dobroci

Dla grafu Colmena Moora CM_k (poniżej CM_3)

SL użyje k-kolorów (k \sim n) mimo, że jest to graf dwudzielny $\rightarrow D_{SL}(n) = O(n)$

5 LF - largest first

5.1 Działanie algorytmu

Złożoność - O(n+m)

Pseudokod

```
def LF(G):
kolejnosc = wierzcholki_od_max_deg_do_min_deg(G)
pokoloruj_zachlannie(G,kolejnosc)
```

5.2 Trudne/dość trudne grafy

 $min(SHC(A)) = P_6$

min(HC(A)) = KOPERTA

5.3 Funkcja dobroci

Najgorszy przypadek zachodzi dla grafów Jordana $J_k.$ Poniżej J_4 .

LF pokoloruje je $k = \frac{n}{2}$ kolorami $\rightarrow D_{LF}(n) = n/4 = O(n)$.

6 Grafy planarne

Algorytm SL koloruje grafy planarne co najwyżej 6 kolorami. Z czego to wynika?

7 Inne

 ${\bf W}$ ogólności oba algorytmy nie kolorują optymalnie grafów dwudzielnych.

Graf "jajca"

Jest to graf dwudzielny, dość trudny dla SL (może mylić się o 1), który LF koloruje optymalnie.

Graf "poczwórne jajca"

Jest to graf dwudzielny, dość trudny dla SL (może się mylić o 2), który LF koloruje optymalnie.