Theory of Markov Chains Monte Carlo

Some basics

Introduction

- ▶ What is Markov chain Monte Carlo (MCMC)?
 - \triangleright Run an ergodic Markov chain with invariant distribution π ,
 - Use sample averages from this Markov chain to compute expectations
- We need a π invariant Markov Probability kernel K

Reading List

- ► Tierney (1994) Markov Chains for Exploring Posterior Distributions. Ann. Statist.
- ► Gelman, Gilks, & Roberts (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. Probab.
- ▶ Roberts & Rosenthal (2004). General state space Markov chains and MCMC algorithms. Probab. surv., 1, 20-71

Preliminaries

▶ We want to compute expectations:

$$\pi(\varphi) = \int_{\mathcal{X}} \varphi(x) \pi(dx)$$

• where π is a target distribution on \mathcal{X} :

$$\pi(dx) = \frac{\gamma(x)}{Z} dx$$

with Z unknown.

► MCMC sampling procedure:

$$X_0 \sim \nu, X_1 \sim K(X_0, \cdot), X_2 \sim K(X_1, \cdot), \ldots, X_N \sim K(X_{N-1}, \cdot), \ldots$$

approximation:

$$\widehat{\pi}(\varphi) = \frac{1}{N} \sum_{i=1}^{N} \varphi(X_i)$$

Introduction to MCMC

- ▶ What principles does it make sense to invoke for $\widehat{\pi}(\varphi)$?
- 1. convergence of K^n to π in some sense (e.g. L^2 , total variation norm, Wasserstein distance,...)
- 2. SLLN $\widehat{\pi}(\varphi) \to_{N \to \infty} \pi(\varphi)$ for $\varphi \in L^1(\pi)$
- 3. CLT for $\sqrt{N}(\widehat{\pi}(\varphi) \pi(\varphi)) \to \mathcal{N}(0, \sigma^2), \ \varphi \in L^2(\pi)$,
 - 3.1 CLT variance useful to characterise asymptotic sampling error in $\widehat{\pi}(\varphi)$
 - 3.2 can be used to derive measure of Effective Sample Size

Outline

- We will relate with theory of Markov Chains in general spaces
 - (...,Revuz 75, Nummelin 84, Kipnis & Varhadhan 86, Meyn & Tweedie 92,)
- ▶ Given K and x_0 , one typically checks
 - $ightharpoonup \pi$ is unique invariant distribution
 - irreducibility, aperiodicity, reversibility
- Want to study convergence of $\widehat{\pi}(\varphi)$
 - Harris recurrence
 - ightharpoonup speed of convergence w.r.t x_0 (**geometric ergodicity**)
- Significant MCMC theory relate with tuning K in various contexts
 - e.g. diffusive limits of Roberts et. al.

Stochastic differential equations (SDE) for sampling

Consider the following (overdampled) Langevin Ito-SDE

$$dX_t = \frac{1}{2}\nabla \log \gamma(X_t)dt + dB_t \tag{1}$$

- ▶ The stationary distribution for X_t is π
 - \blacktriangleright rate of convergence to equilibrium depends on the tails of π
- If one could sample exactly $X_0, X_{t_1}, X_{t_2},...$ for $0 < t_1 < t_2 < ...$ then this is a MCMC procedure
- Of course this is rarely possible so one needs to resort to numerical approximations for solving SDEs.

SDEs for optimisation

One can use also "annealing"

$$dX_t = \nabla \log \gamma(X_t) dt + \sqrt{2\beta_t^{-1}} dB_t$$
 (2)

- If $\beta_t = \beta$ the stationary distribution π^{β}
- ► Want to invoke a Laplace or annealing principle (Hwang 81)

$$\pi^{eta_t} o \delta_{\mathsf{X}^*}$$
 or $rac{1}{\mathit{n}^*} \sum_{i=1}^{\mathit{n}^*} \delta_{\mathsf{X}^*_i}$

- Simulated annealing uses $\beta_t \propto \log t$ so that $X_t \stackrel{\mathbb{P}}{\to} x^*$ for large t.
 - starting β_t lower earlier in time balances exploration/exploitation trade-off
 - ► Many papers: Gidas, Kushner, Geman+Hwang, Hwang+Sheu, Holley+Kusuoka+Stroock

Metropolis Hastings

Resulting Markov transition kernel:

$$K(x, dy) = \alpha(x, y)Q(x, dy) + \delta_x(dy) \int (1 - \alpha(x, y))Q(x, dy)$$

▶ aking densities w.r.t dx: let dQ = qdx

$$\alpha(x,y) = \begin{cases} 1 \wedge \frac{\gamma(y)q(y,x)}{\gamma(x)q(x,y)} & \gamma(x)q(x,y) > 0\\ 0 & \gamma(x)q(x,y) = 0 \end{cases}$$

Reversibility of K with π holds

$$\pi(dx)K(x,dy) = \pi(dy)K(y,dx)$$

Understanding MCMC

- More formulations for $\alpha(x,y)$ are possible to result to a reversible Markov chain w.r.t π
 - e.g. Barker, Liu book p114
 - MH acceptance ratio is most efficient (Peskun-Tierney ordering)
- Reversibility implies

$$\pi K = \pi$$

ightharpoonup is π a unique invariant distribution?

Understanding MCMC: some questions

Does $\widehat{\pi}(\varphi)$ converge to $\pi(\varphi)$ and how fast?

- 1. is π unique?
- 2. (ergodicity)does $P^n(x_0, \cdot)$ converges to $\pi(\cdot)$?
- 3. (rate of convergence) how fast?
- 4. (initialisation) does choice of x_0 matter?
- ▶ What additional conditions are needed to establish 1-4?

Basic properties for a Markov kernel K

- 1. **Irreducibility** (controllability) means every part of state space can be reached
 - ightharpoonup or all the support of π here
- 2. **Aperiodicity** means the state trajectory cannot go through a repeated cycle of subsets $A_1, ..., A_T$ w.p.1
- 3. **Recurrence:** for each B with $\pi(B) > 0$

$$\begin{split} \mathbb{P}_{x_0}\left[X_n \in B \text{ i.o.}\right] &> 0, \quad \forall x_0 \in \mathcal{X} \\ \mathbb{P}_{x_0}\left[X_n \in B \text{ i.o.}\right] &= 1, \quad \text{for } \pi \text{ almost all } x_0 \end{split}$$

i.e. all states can (or will) be visited infinitely often

 \blacktriangleright In general 1-3 are used to establish existence & uniqueness of π

Short answers on ergodicity

- ▶ MCMC case: If in addition to $\pi K = \pi$, K is also irreducible and aperiodic
 - \blacktriangleright π is unique
 - $K^n(x_0,\cdot) \to_{n\to\infty} \pi$, in total variation, for π -almost all x_0 and then $\widehat{\pi}(\varphi) \to \pi(\varphi)$ is a bit "weak"
- ▶ Convergence holds for π -almost all x_0
 - this is not satisfying as often it is not easy to pick the "right" initial condition
 - need to require more than irreducibility and aperiodicity for π-invariant K

Short answers on ergodicity

- Typical requirement
 - ► Harris recurrence:
 - $ightharpoonup \mathbb{P}_{x_0}[X_n \in B \text{ i.o.}] = 1, \quad \forall x_0 \in \mathcal{X}$
 - there is a small set with a.s. finite hitting times (see below)
 - ▶ then $K^n(x_0,\cdot) \to_{n\to\infty} \pi$, in total variation, for all $x_0 \in \mathcal{X}$
 - ▶ SLLN $\widehat{\pi}(\varphi) \to \pi(\varphi)$ a.s. for all $x_0 \in \mathcal{X}$ and $\pi(|\varphi|) < \infty$.
- ► MH case:
 - \blacktriangleright π -irreducibility implies Harris recurrence

Short answers on rates of convergence

- Basics on convergence properties of Markov chains useful
 - ergodicity requires

$$\|K^n(x_0,\cdot)-\pi\| \le r(x_0,n), \quad r(x_0,n) \to_{n\to\infty} 0$$

▶ In MCMC $r(x_0, n)$ depends on x_0 directly and also on π , \mathcal{X} , Q

Short answers on rates of convergence

- ▶ Different types of ergodic behaviour
 - **P** polynomial: there exists a $\kappa(x) > 1$ and p > 1 s.t. for all r < p

$$||K^n(x_0,\cdot)-\pi|| \leq \kappa(x_0)n^{-r},$$

geometric ergodicity: there exist a $\lambda \in (0,1)$ and V(x) s.t.

$$||K^n(x_0,\cdot)-\pi|| \leq V(x_0)\lambda^n,$$

- uniform ergodicity $r(x, n) \to 0$ uniformly on x as $n \to \infty$
- General results can be obtained for general classes of MCMC, e.g. MH, Independence sampler, Gibbs, MwG, HMC....

Some definitions for general state spaces

- A chain is ϕ -irreducible if there exists a non-zero measure ϕ on $\mathcal X$ s.t for all $A \in \mathcal X$ with $\phi(A) > 0$, and for all $x \in \mathcal X$, there exists a positive integer n such that $K^n(x,A) > 0$.
 - ightharpoonup common example for \mathbb{R}^d is Lebegue measure
 - here we will use $\phi = \pi$
- A set C is small if there exists an integer m, a constant ϵ and a probability measure μ s.t.

$$K^m(x,A) \ge \epsilon \mu(A), \quad \forall x \in C \text{ and } A \text{ s.t. } \phi(A) > 0$$

- small sets are used to extend notion of atoms in discrete state spaces
- every set A with $\phi(A) > 0$ contains a small set
- \blacktriangleright here will assume m=1

Detour with discrete states

Lets consider a singleton state x^* and set $\mu = 1_{y=x^*}$ and $\mathcal{K}(x,x^*) \geq \epsilon$ so

$$K \geq \epsilon \mu$$

- ▶ Try to solve $\pi K = \pi$ and note null space of K I is non trivial
- ► Try instead to invert

$$\pi \left(I - \left(K - \epsilon \mu \right) \right) = \epsilon \mu$$

to get

$$\pi = \epsilon \mu G$$

where

$$G = \sum_{n \geq 0} \left(K - \epsilon \mu \right)^n$$

Detour with discrete states

ightharpoonup Some calcutions give characterisation of π

$$\pi(x) = \frac{\mathbb{E}_{x^*} \left[\sum_{n=0}^{\tau^*-1} 1_{X_n = x} \right]}{\mathbb{E}_{x^*} \left[\tau^* \right]} = \frac{\rho(x)}{\rho(\mathcal{X})}$$

with $\rho = \mu G$ and $\tau^* = \min_{n \geq 1} \{X_n = x^*\}$.

▶ need $\rho(\mathcal{X}) < \infty$ i.e. recurrence

▶ For general state spaces will use small set C instead of x^*

Stability and small sets

- One would like establish stability (recurrence) by checking the return times to a small set C.
 - ▶ define stopping times $\tau_C = \min_{n \ge 1} \{X_n \in C\}$
- A weak requirement for existence of an invariant measure π is to check whether

$$\sup{}_{x \in C} \mathbb{E}_{x} \left[\tau_{C} \right] < M < \infty$$

- Convergence result is quite weak.
 - $ightharpoonup K^n(x_0,\cdot) \to_{n\to\infty} \pi$, holds for $x_0 \in \{x: V(x) < \infty\}$

Stability and drift conditions

- Equivalently can verify Foster's condition:
 - ▶ there exists a $V \ge 0$ with $V(x') < \infty$ for some x' s.t.

$$KV(x) \le -1 + V(x) + b1_{x \in C}$$
 $x \in \mathcal{X}$

This is a Lyapunov type approach

Stability and drift conditions

Figure: An illustration of Lyapunov function, here $\Delta = K - I$. Source: S. Meyn (2007) Control Techniques for Complex Networks

Harris recurrence and ergodicity

► Strengthen by requiring Harris recurrence: for a small set *C*

$$\mathbb{P}_{x_0} \left[\tau_C < \infty \right] = 1, \quad \forall x_0 \in \mathcal{X}$$

- ▶ Then $K^n(x_0, \cdot) \to_{n \to \infty} \pi$, holds for $x_0 \in \mathcal{X}$
- ► Harris recurrence is equivalent to sample averages converging (SLLN)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{i=1}^N\varphi(X_i)=\int\varphi(y)\pi(dy)\quad a.s.\ \forall x\in\mathcal{X}.\varphi\in L^1(\pi)$$

A primer on Markov chains: geometric ergodicity

- ▶ Plain ergodicity is not sufficient here: we want chain to converge fast!
- ▶ Recall **geometric ergodicity**: there exist a $\lambda \in (0,1)$ and V s.t.

$$||K^n(x_0,\cdot)-\pi|| \le MV(x_0)\lambda^n$$

- This can be shown by requiring either
 - ▶ For some small set C, there exist $M < \infty$ and $\kappa > 1$

$$\sup_{x \in C} \mathbb{E}_x \left[\kappa^{\tau_C} \right] < M$$

or Foster-Lyapunov drift condition holds: there exists a $V \ge 1$ with $V(x') < \infty$ for some x' s.t.

$$KV(x) \le (1-\beta)V(x) + b1_{x \in C} \quad x \in \mathcal{X}$$

• (Geometric ergodicity holds for all $x_0 \in \{x : V(x) < \infty\}$)

Back to MCMC

- There are also drift conditions like above for polynomial rates
- Showing geometric ergodicity typically requires finding a V
 - typical candidate π^{-p} , $p \in (0,1)$
- Many popular algorithms fail to be geometrically ergodic
 - \blacktriangleright either due to structure of π or poor design of Q
 - ightharpoonup could be expressed via return times to sets of support of π .
 - Example: long excursions in the tails, or certain points to where the transition kernel sticks
- Metropolis Hastings
 - is rarely uniformly ergodic for unbounded state spaces.
 - is geometrically ergodic if and only if the tails π are bounded by $a \exp(-b|x|)$ for positive a and b.

Quiz

Let $\pi(x) = \exp(-x)$ and $q(x) = k \exp(-kx)$. Consider two cases: k = 0.01 and k = 5 and implement an independence sampler. Which case is bettter and why? It turns out one case is uniformly ergodic and another not geometrically ergodic. Which is which?

Measuring efficiency: CLT

 \triangleright $v(\varphi, K)$ is the CLT variance

$$v(\varphi, K) = \mathbb{V}ar_{\pi}[\varphi] + 2\sum_{i \geq 1} \mathbb{C}ov[\varphi(X_0), \varphi(X_i)]$$

- \blacktriangleright If K is reversible spectral methods are applicable:
 - Kipnis and Varadhan (1986).
 - Let $\varphi \in L^2(\pi)$ and $\pi(\varphi) = 0$.
 - if $v(\varphi, K) = \lim_{n \to \infty} \frac{1}{n} \mathbb{V} ar_K \left[\sum_{i=1}^n \varphi(X_i) \right] < \infty$ then CLT holds
- ▶ If K is reversible and geometrically ergodic one can show the same CLT for all $\varphi \in L^2$
- ▶ There are extensions for non-reversible case: Toth 86

Measuring efficiency: CLT

- CLT variance was used to define
 - ▶ the integrated auto-correlation time for φ

$$au_{arphi} = rac{v(arphi, P)}{\mathbb{V}ar_{\pi}\left[arphi
ight]} \ = 1 + 2\sum_{i \geq 1} Cor\left[arphi(X_0), arphi(X_i)
ight]$$

or effective sample size

$$\mathit{ESS} = \frac{\mathit{N}}{\tau_\varphi}$$

- ► Also useful for ordering different MCMC algorithms
 - Low $v(\varphi, P)$ means also higher efficiency asymptotically (Peskun-Tierney ordering)

Measuring efficiency: expected square jumping distance

 One diagnostic is expected square jumping distance. Use samples to approximate

$$ESJD = E\left[(X_n - X_{n-1})^2 \right]$$

i.e. just look at first order correlation and linear test functions

- ► ESJD looks like a diffusion quadratic variation
- ▶ Is there a link with continuous time MCMC and accept reject schemes such as MH?

Diffusions and rescaling

Consider

$$dX_t = \frac{1}{2} \Sigma \nabla \log \pi(X_t) dt + \Sigma^{1/2} dB_t$$

- \triangleright Σ can be viewed as a speed-up function for the time scale
- ▶ (Roberts & Rosenthal 12) If we have K_1 and K_2 with Σ_1 and Σ_2 resp. and $\Sigma_1 \leq \Sigma_2$ then

$$v(\varphi, K_1) \geq v(\varphi, K_2)$$

i.e. the faster the scale better!

Diffusive limits for MH

- Why is all this relevant?
- Let $x = (x^1, \dots, x^d)$ and allow d to grow.
- ► Consider the target

$$\pi = \prod_{i=1}^d f(x^i)$$

- Let $(X_n; n \ge 0)$ be a MH output with $Q(x, \cdot) = \mathcal{N}(x, \frac{\varrho^2}{d}I)$ initialised at $\nu = \pi$
- ► Then look at the process

$$Z_t = X^1_{[td]}$$

Diffusive limits for MH

▶ (Roberts, Gelman & Gillks 97) At the limit Z_t with d obeys

$$dZ_t = h(\varrho)\nabla \log f(Z_t)dt + h(\varrho)^{1/2}dB_t$$

with

$$h(\varrho) = \varrho^2 2\Phi(-\frac{\varrho I^{\frac{1}{2}}}{2}) = \varrho^2 \alpha(\varrho) = \frac{4}{I} \Phi^{-1} (\alpha(\varrho))^2 \alpha(\varrho)$$

with $\alpha(\varrho)$ being the limiting acceptance rate and $I = \mathbb{E}_f \left[\nabla \log f(X)^2 \right]$.

The scaling problem for Metropolis chains

► Higher speed is better in terms of Peskun ordering so numerical maximisation gives universal constants

$$\alpha(\varrho) = 0.234 \quad \varrho = 0.488$$

- Practioners have realised range of these numbers much quicker!
- ➤ This is a very elegant theory and can be applied to many different contexts leading to justification of desired numbers for acceptance ratio
 - see work of Roberts, Rosenthal, Beskos, Breyer, Neal, Sherlock, Bedard, Thiery, Stuart, Pillai
- Similar diffusive limits appeared earlier by Gelfand & Mitter in 91 JOTA paper.

Discussion

- ► This is just an introduction, many more topics are very useful and important
 - mixing, coupling, splitting, Wasserstein distances, functional inequalities,...
 - minorisation can be restrictive tool
- Not all MCMC algorithms are guaranteed to have good convergence properties
 - this will depend on method used and ingredients
 - for MH: π , Q that construct K
- Understaning from theory often
 - comes later than intuition from observing behaviour in practice
 - and with many conditions...