

Modèle système dynamique pour l'analyse de la menace

Tithnara Nicolas SUN

Philippe Dhaussy (Lab-STICC) Lionel Van Aertryck (DGA-MI) Ciprian Teodorov (Lab-STICC)

11/10/2018

Sommaire

- Contexte
- Problématique
- Avancement
 - Réification de la surface d'attaque
 - Aspect dynamique et exécution
- Conclusion
 - Bilan
 - Perspectives

Sommaire

- Contexte
- Problématique
- Avancement
 - Réification de la surface d'attaque
 - Aspect dynamique et exécution
- Conclusion
 - Bilan
 - Perspectives

Lab-STICC COITICALE Stratégie attaque-défense

RAFT

- Relations
- Acteurs
- Fonctions
- Tensions

Pimca

[1]

Contexte Modélisation d'attaque

Arbres d'Attaque:

[2][3]

Contexte Théorie de la cyber-défense

Moving Target Defense [4]

Contexte Quelques limites

• Stratégie attaque-défense

- Manque de formalisation (Dessin + langage naturel)
- PimCA mieux, mais pas dynamique
- Subjectif, besoin de standardiser

Modélisation d'attaque

- Statique par rapport à l'évolution du système
- Point de vue partiel

Moving Target Defense

- Modélisation très générique, orientée réseau
- Besoin d'un parallèle applicatif

Problématique

- Nécessité d'une vue système holistique
 - Point de vue opérationnel
 - •Ressources hétérogènes

Modèle système dynamique pour l'analyse de la menace

Axes de recherche

Modèle système dynamique pour l'analyse de la menace

Réification de la surface d'attaque

Axes de recherche

Modèle système dynamique pour l'analyse de la menace

Réification de la surface d'attaque

Aspect dynamique et exécution

Axes de recherche

Modèle système dynamique pour l'analyse de la menace

Réification de la surface d'attaque

Aspect dynamique et exécution

Diagnostic & métrique

Sommaire

- Contexte
- Problématique
- Avancement
 - · Réification de la surface d'attaque
 - Aspect dynamique et exécution
- Conclusion
 - Bilan
 - Perspectives

Avancement

Réification de la Surface d'Attaque

A)Terminologie

B)STIX

C) Modèle système

Surface d'attaque :

Ensemble des **points d'entrée** et des **points de communication** qu'un système possède avec l'extérieur.[5]

Zone de contention entre l'attaquant & la défense.

<u>Attaquant, Threat Actor, Adversaire:</u>

Entité ayant pour objectif de nuire au système. [6][7]

<u> Vulnérabilité, Faille :</u>

Erreur ou faiblesse de conception, d'implémentation ou de fonctionnement. [6][7]

Menace, Threat:

Adversaire motivé et capable d'exploiter une vulnérabilité. [6][7]

Définition ambiguë : Expression d'une intention de nuire / Indication d'une telle intention.

<u>Attaque</u>, <u>Incident</u>:

Acte malveillant, moyen [séquence d'actions] d'exploiter une vulnérabilité. [6][7]

<u>Cyber Threat Intelligence</u>:

Connaissance sur les adversaires, leurs motivations, leurs intentions et leurs méthodes, collectée, analysée et partagée entre différents agents à différents niveaux pour protéger les biens critiques. [8]

Avancement

Réification de la Surface d'Attaque

A) Définitions

B)STIX

C) Modèle système

Avancement

Réification de la Surface d'Attaque

A) Terminologie

B)STIX

C)Modèle système

Modèle Système

Sommaire

- Contexte
- Problématique
- Avancement
 - Réification de la surface d'attaque
 - Aspect dynamique et exécution
- Conclusion
 - Bilan
 - Perspectives

Avancement

Aspect Dynamique & Exécution

A)Théorie des jeux

B) Exécution

C)Implémentation

Théorie des jeux [11]:

Domaine mathématique s'intéressant aux problèmes de décisions entre différents joueurs qui sont conscients de leurs interactions. Tous les joueurs sont supposés rationnels.

<u>leu :</u>

Ensemble de stratégies et de gains de tous les joueurs.

Att\Déf	X	Y	Z
A	+ \-	-10\+10	+ \-
В	+6\-6	+6\-6	-4\+4
С	-4\+4	-4\+4	+6\-6

Avancement

Aspect Dynamique & Exécution

A) Théorie des jeux

B)Exécution

C)Implémentation

Exécution vers le Model checking

Model checking [10]:

Exécution exhaustive

Propriétés à vérifier

Echange de clés de Diffie-Hellman [14] :

Avancement

Aspect Dynamique & Exécution

A) Théorie des jeux

B) Exécution

C) Implémentation

46

Implémentation

Implémentation

Implémentation (à venir)

Conclusion

50

Conclusion Bilan

Réification de la surface d'attaque

- Terminologie
- STIX

Aspect dynamique

- Théorie des jeux
- Simulation

Mise en œuvre

- Modèle
- Actions
- Intégration dans un cadre logiciel de simulation

Conclusion Bilan

Formations:

Rentrée des doctorants MathSTIC 2 Soutenances de thèse (Théotime Bollengier, Fadi Obeid) Séminaire poster de l'équipe MOCS Journée des doctorants de l^{ère} année du Lab-Sticc

Formation LaTeX par la pratique par Vincent LE GARREC Encadrement de TD Base de données Encadrement de Projet Informatique Python

Conclusion Perspectives (court terme)

- Compatibilité avec OBP2
- Enrichissement du modèle
- Traitement d'un autre cas d'étude
- Démarrage d'une dynamique de publication

Conclusion Perspectives (moyen terme)

- Diagnostic & métrique
- Génération d'arbres d'attaques à partir de scénario
- Estimation de gain pour le calcul de stratégie (Théorie des jeux)

Conclusion Perspectives (long terme)

- STIX & la surface d'attaque
- Asymétrie inhérente à la cyber-sécurité
 - Initiative de l'attaquant (proactif)
 - Préparation et/ou remédiation du défenseur (passif/réactif)

Merci de votre attention

11/10/2018

Bibliographie

- [1] Redefining the Center of Gravity in Joint Force Quarterly (JFQ) issue 59 / Dale C. Eikmeier / Washington D.C. USA / 2010
- [2] Attack Modeling for Information Security and Survivability / Andrew P. Moore, Robert J. Ellison, Richard C. Linger/ Software Engineering Institute, Carnegie Mellon University, USA / Mars 2001
- [3] Is my attack tree correct? / Maxime Audinot, Sophie Pinchinat, & Barbara Kordy / IRISA Rennes, University Rennes 1, INSA Rennes, France / Août 2017
- [4] Towards a Theory of Moving Target Defense / Rui Zhuang, Scott A. DeLoach, Xinming Ou /Kansas State University, Manhattan, USA / 2014
- [5] Analyse et réduction de la surface d'attaque / Mickael Dorigny / <u>https://www.information-security.fr/</u> / 19 Décembre 2015
- [6] Towards Threat, Attack, and Vulnerability Taxonomies / Dennis Hollingworth / Network Associates laboratories USA / 2003
- 57

Bibliographie

- [7] Trust in Cyberspace / Fred B. Schneider / Committee on Information Systems Trustworthiness, Washington, D.C. USA / 1999
- [8] Definitive Guide to Cyber Threat Intelligence / Jon Friedman, Mark Bouchard, CISSP / CyberEdge Group Annapolis, USA / 2015
- [9] Standardizing Cyber Threat Inteligence Information with the Structured Threat Information eXpression (STIX) / Sean Barnum / The MITRE Corporation / 20 Février 2014
- [10] Introduction to Embedded Systems A Cyber-Physical Systems Approach / Edward Ashford Lee, Sanjit Arunkumar Seshia / The MIT Press / Cambridge, Massachusetts, USA / 2017
- [11] CyberWar Games: Strategic Jostling Among Traditional Adversaries / Sanjay Goel, Yuan Hong / University of New York, New York, USA / 2015
- [12] Contribution à la modélisation et la vérification formelle par model checking Symétries pour les Réseaux de Petri temporels. Systèmes embarqués / Pierre-Alain Bourdil / INSA de Toulouse / 2015.

Bibliographie

- [13] Using Model Checking to Analyze Network Vulnerabilities / Ronald W. Ritchey & Paul Ammann / National Security Team Booz Allen & Hamilton & Information and Software Engineering Department George Mason University / Virginia /2000
- [14] New Directions in Cryptography / Whitfield Diffie, Martin E. Hellman / IEEE Transactions on Information Theory / Novembre 1976

59