Groupes, algorithmique et combinatoire: cours 2015

Laurent HAYEZ

Date de création: 30 septembre 2015

Dernière modification: 4 novembre 2015

Table des matières

I.	Ol	ojets	3
0.	Motivations		4
	0.1.	Algorithmes et combinatoire?	4
		Problèmes de Dehn	5
		0.2.1. Problème de l'égalite (PE)	5
		0.2.2. Problème des mots (PM)	5
1.	Groupes libres		6
		Propriété universelle du groupe libre (PU)	7
2.	Pré	sentations de groupes	8
3.	Problèmes de Dehn		
	3.1.	Les problèmes de Dehn pour les groupes libres	9
		3.1.1. Problème de conjugaison pour les groupes libres	10
		3.1.2. Problème de l'isomorphisme pours les groupes libres	10
4.	Propriétés du groupe libre		12
	4.1.	Observations	13
	4.2.	Groupes libres dans la nature	13
5.	Introduction à la topologie algébrique 16		16
	5.1.	Groupe fondamental d'un espace topologique	16
		5.1.1. Lacets	16
		5.1.2. Groupe fondamental	17
		5.1.3. Propriétés du groupe fondamental	18
	5.2.	Produits libres	21
	5.3.	Théorème de Van Kampen (version simple)	21
	5.4.	Revêtements	23
6	Tra	neformations do Tiotzo	28

Première partie Objets

Chapitre 0.

Motivations

Définition 0.1. Soit G un groupe muni d'une loi "·". G est un **groupe** si

- 1. il existe un élément neutre $e \in G$;
- 2. pour chaque élément $g \in G$, il existe un inverse g^{-1} ;
- 3. \cdot est associative : $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.

- Exemples 0.2. 1. $G = \{e\}$. 2. $G = (\mathbb{Z}, +)$. 3. $G = \mathbb{Z}/n\mathbb{Z}$. 4. $G = S_3$ le groupe des symétries d'un triangle. 5. $G = D_4$ le groupe des symétries d'un carré.

0.1. Algorithmes et combinatoire?

Chaque groupe G admet un présentation

$$G = \langle X|R \rangle$$

où $X \subset G$ est une partie génératrice et R est un ensemble de relations.

- Exemples 0.3. 1. $\mathbb{Z} = \langle a = 1 | \rangle$. 2. $S_3 = \langle t_1, t_2 | t_1^2 = e = t_2^2, (t_1 t_2)^3 = e \rangle$. 3. $D_4 = \langle x, y | x^2 = y^4 = (xy)^2 = e \rangle$. 4. $\mathbb{Z}/7\mathbb{Z} = \langle x | x^7 = e \rangle$.

Attention : la présentation n'est pas unique, car par exemple $\mathbb{Z} = \langle a, b | b = 1 \rangle$.

0.2. Problèmes de Dehn

0.2.1. Problème de l'égalite (PE)

Existe-t-il un algorithme permettant de décider pour tout couple de mots (u, v) sur X (pour un groupe $G = \langle X|R\rangle$) s'ils représentent le même élément du groupe $(u =_G v)$? Par exemple, soit $G = \langle x, y, z|x^2yx^{-1}z = x^3y^3\rangle$. Est-ce que $xyx^{-1}z =_G zx^2y^{-1}z$? Ou par exemple dans S_3 , est-ce que $t_1t_2t_1^3t_2 =_{S_3}t_2t_1$? En fait, oui car

$$t_1 t_2 t_1^3 t_2 = t_1 t_2 t_1 t_1^2 t_2$$

$$= t_1 t_2 t_1 t_2$$

$$= t_2^{-1} t_1 - 1$$

$$= t_2 t_1.$$

$$t_1^2 = e$$

$$(t_1 t_2)^3 = e$$

$$t_1 = t_1^{-1}, t_2 = t_2^{-1}$$

0.2.2. Problème des mots (PM)

Existe-t-il un algorithme permettant de décider pour tout mot w sur X si $w =_G e$? Si $G = \langle X | R \rangle$, on peut dessiner son graphe de Cayley, qui est un espace métrique. Les sommets de ce graphe sont $\{g \in G\}$ et les arêtes sont $\{(g, gx) : g \in G, x \in X\}$.

Exemples 0.4. 1. Considérons par exemple

$$S_3 = \{e, (12) = t_1, (23) = t_2, (13) = t_3, (123) = t_4, (132) = t_5\}.$$

On a $X = \{t_1, t_2\}$. Le graphe de Cayley est

2. Considérons $\mathbb{Z} = \langle 2, 3|2+2+2=3+3 \rangle$. Dessinons son graphe de Cayley.

En fait on dit que ce groupe est quasi-isométrique à $\mathbb{Z} = \langle 1|-\rangle$.

Chapitre 1.

Groupes libres

Soit A un alphabet, fini ou infini.

- On considère l'ensemble des mots de longueur finie sur $A \cup A^{-1}$ (on introduit pour chaque nouvelle lettre $a \in A$ une nouvelle lettre a^{-1}).
- Un mot est **réduit** s'il ne contient aucune expression de la forme aa^{-1} ou $a^{-1}a$, $a \in A$.
- Le **mot vide** est réduit et se note 1 (ou ε ou e,...).

Définition 1.1. Le **groupe libre sur** A, noté $\mathbb{F}(A)$ est l'ensemble des mots réduits sur $A \cup A^{-1}$. Ceci définit $\mathbb{F}(A)$ comme ensemble. Pour avoir un groupe il faut définir le produit : c'est la concaténation/réduction. On écrit deux mots réduits bouts à bouts, puis on réduit en supprimant les apparitions de aa^{-1} ou $a^{-1}a$. Avec ce produit, $\mathbb{F}(A)$ est un groupe.

Si $A = \{a_1, \ldots, a_n\}$, on note $\mathbb{F}_n = \mathbb{F}(A)$ et on parle du **groupe libre de rang** n.

Exercice 1.1. Montrer que $\mathbb{F}_1 = \mathbb{Z}$. En fait, on a $A = \{a\}$, donc les mots sont $aaa \cdots a^{-1}$, c'est-à-dire a^n ou a^{-n} .

Remarque 1.2. $\mathbb{F}_1 = \mathbb{Z}$ et \mathbb{F}_n (n > 1) ont des propriétés très différentes.

Définition 1.3. Soit X un alphabet fini. Le **monoïde libre** sur X, noté M(X), est l'ensemble des mots sur X avec le produit donné par la concaténation. Soit $X = A \cup A^{-1}$. Nous pouvons poser sur M(X) la relation d'équivalence suivante : $w_1 \sim w_2 \iff$ après réduction, $w_1 = w_2$. Le quotient $M(X)/\sim$ est le **groupe libre** $\mathbb{F}(A)$, où l'inverse de la classe d'équivalence de $x_1^{\varepsilon_1} \cdots x_n^{\varepsilon_n}$ est la classe d'équivalence de $x_n^{-\varepsilon_n} \cdots x_1^{-\varepsilon_1}$ avec $\varepsilon_i \in \mathbb{Z}$ pour tout i. L'opération est la concaténation (la réduction est implicite).

On fait souvent l'abus de language suivant : on va identifier un mot réduit avec sa classe d'équivalence.

Proposition 1.4. 1. $\mathbb{F}(A)$ est un groupe (von Dyck, 1882).

2. La définition 1.1 est équivalente à la définition 1.3.

Preuve. 1. • Le neutre est le mot vide, noté ε ou $1_{\mathbb{F}(A)}$.

- L'inverse de $a_1^{\varepsilon_1} \cdots a_n^{\varepsilon_n}$ est $a_n^{-\varepsilon_n} \cdots a_1^{-\varepsilon_1}$.
- L'opération de concaténation et réduction est associative (exercice)
- 2. Exercice.

Question: pourquoi dit-on que $\mathbb{F}(A)$ est libre sur A?

Réponse : car tout mot réduit sur A représentant l'élément neutre est le mot vide (exercice). Alors il n'y a pas de relation entre les lettres dans A, et $\mathbb{F}(A)$ à la présentation $\langle a_1, a_2, \ldots, a_n | - \rangle$.

1.1. Propriété universelle du groupe libre (PU)

Soit G un groupe et $f: A \to G$ une application. Alors il existe un unique homomorphisme φ tel que le diagramme suivant commute.

Ceci signifie que toute application $f: A \to G$ s'étend en un unique homomorphisme $\varphi: \mathbb{F}(A) \to G$ où pour $w = a_{i_1}^{\varepsilon_1} \cdots a_{i_n}^{\varepsilon_n}$ on pose $\varphi(w) = f(a_{i_1})^{\varepsilon_1} \cdots f(a_{i_n})^{\varepsilon_n}$ avec $\varepsilon_i \in \mathbb{Z}$. En particulier, si A est une partie génératrice de G (par exemple A = G), on voit que $\mathbb{F}(A)$ se surjecte sur G et ceci nous donne le théorème suivant, qui est très important.

Théorème 1.5. Tout groupe est quotient d'un groupe libre.

Preuve. Si A est une partie génératrice d'un groupe G, par le premier théorème d'isomorphisme, il existe un isomorphisme tel que $\varphi : \mathbb{F}(A) \to G$ implique que $\mathbb{F}(A)/\ker \varphi \cong \operatorname{Im} \varphi = G$.

Chapitre 2.

Présentations de groupes

Soit $R \subset \mathbb{F}(A)$. La fermeture normale N(R) ou $\triangleleft R \triangleright$ ou $gp_{\mathbb{F}(A)}(R)$ dans $\mathbb{F}(A)$ est définie par

$$\bigcap_{\substack{N \lhd \mathbb{F}(A) \\ R \subset N}} N.$$

Il faut vérifier que

- $N(R) \triangleleft \mathbb{F}(A)$;
- $N(R) = \left\{ \prod_{r_{ij} \in R} w_{ij} r_{ij}^{\varepsilon_j} w_{ij}^{-1} \right\}$ où $\varepsilon_j = \pm 1, r_{ij} \in R$ et $w_{ij} \in \mathbb{F}(A)$.

C'est en fait le plus petit sous-groupe normal contenant R.

Si G a une partie génératrice A, d'après la PU on a $G \cong \mathbb{F}(A)/\ker \varphi$ où $\varphi : \mathbb{F}(A) \xrightarrow{\text{surj.}} G$. Alors si ker $\varphi = \triangleleft R \triangleright$, on dit que G est donné par la présentation $\langle A|R \rangle$. Les éléments de A sont les **générateurs** et les éléments de R sont les **relateurs**.

Remarques 2.1. 1. Si $|A| < +\infty$, on dit que G est finiment engendré.

2. Si $|A| < +\infty$ et $|R| < +\infty$, on dit que G est finiment présenté.

1. Si S est un ensemble et $R \subset \mathbb{F}(S)$, la présentation $\langle S|R\rangle$ Remarques 2.2. définit un **unique groupe** (à isomorphisme près), le groupe $G = \mathbb{F}(S) / \triangleleft R \triangleright$.

4

2. Un groupe admet une infinité de présentations.

Exemples 2.3. 1. Le groupe trivial : $T = \langle x | x = 1 \rangle$, $T = \langle a, b | a = b = 1 \rangle$.

- (Z²,+) = ⟨a,b|ab = ba⟩ où a = (1,0) et b = (0,1).
 F₂ = ⟨a,b|-⟩.
 Z/rZ×Z/sZ = C_r×C_s = ⟨x,y|x^r = 1, y^s = 1, xy = yx⟩ = F(x,y)/ ⊲ x^r, y^s, [x,y] > où [x,y] = xyx⁻¹y⁻¹ = 1 est le commutateur.
- 5. $G = \langle X|R \rangle$, $H = \langle Y|S \rangle$, $G \times H = \langle X \cup Y|R \cup S, xy = yx, x \in X, y \in Y \rangle$.

Chapitre 3.

Problèmes de Dehn

Supposons que G soit donné par une présentation finie $\langle S|R\rangle$.

- (1) (PM) Problème des mots : soit $w \in \mathbb{F}(S)$. Est-ce que $w =_G 1$?
- (1') (PE) Problème de l'égalité des mots : soient $w_1, w_2 \in \mathbb{F}(S)$, est-ce que $w_1 =_G w_2 \iff w_1 w_2^{-1} =_G 1$?
- (2) (PC) Problème de conjugaison : soient $w, v \in \mathbb{F}(S)$. Est-ce qu'il existe $g \in \mathbb{F}(S)$ tel que $g^{-1}wg =_G v$?
- (3) (PI) Problème de l'isomorphisme : soit $G_1 = \langle S_1 | R_1 \rangle$ et $G_2 = \langle S_2 | R_2 \rangle$ des présentations finies. Est-ce que $G_1 \cong G_2$?

La réponse à ces trois problèmes est qu'ils sont insolubles : il n'existe pas d'algorithme pour décider s'il y a une solution pour les trois questions (Adyan, Novikov-Boone, 1950-1960).

Exemple 3.1. Soit
$$G = \langle x, y | x^2 y^3 = x^3 y^4 = 1 \rangle$$
. On a que $x^3 y^4 = 1 = x(x^2 y^3) y = xy$, donc $x = y^{-1}$ et $y = x^{-1}$. Ainsi $x^2 y^3 = x^2 (x^{-1})^3 = x^{-1} = 1$, d'où $x = y = -1$. Ainsi G est le groupe trivial!

Proposition 3.2. Le problème des mots et le problème de conjugaison sont des invariants algébriques, ie pour deux présentations finies $\langle S_1|R_1\rangle$, $\langle S_2|R_2\rangle$ d'un même groupe G, on a que les problème des mots pour $\langle S_1|R_1\rangle$ est résoluble ssi le problème des mots pour $\langle S_2|R_2\rangle$ est résoluble (pour PE aussi).

Preuve. Exercice. L'idée est que si on peut exprimer un mot dans S_1 , on peut aussi l'exprimer dans S_2 .

3.1. Les problèmes de Dehn pour les groupes libres

Soit $A = \{a, b, c, \ldots\}$, et $\mathbb{F}(A)$ le groupe libre sur A.

- 1. Problème des mots : soit $w =_{\mathbb{F}(A)} 1 \iff$ après réductions, w est le mot vide. $caa^{-1}b^{-2}b^2c^{-1} = 1$ (ou ε) par réductions.
- (1') Problème d'égalité : w_1, w_2 deviennent w'_1, w'_2 après réduction et on a que $w_1 =_{\mathbb{F}(A)} w_2 \iff w'_1 \equiv w'_2$.

3.1.1. Problème de conjugaison pour les groupes libres

Définition 3.3. Si $w \in \mathbb{F}(A)$ et $w = ava^{-1}$ avec $a \in A$ et $v \in \mathbb{F}(A)$, l'opération $w \xrightarrow{\text{c. réd.}} v$ (enlever les a et a^{-1}) s'appelle **réduction cyclique de** w.

Exemple 3.4.
$$w = a^{-1}bca^2b^{-1}a \xrightarrow{c.} bca^2b^{-1} \xrightarrow{c.} ca^2$$
.

Définition 3.5. Un mot w est cycliquement réduit s'il n'a pas une forme $w = ava^{-1}$, $a \in A$, $v \in \mathbb{F}(A)$.

Définition 3.6. Deux mots v, w sont **conjugués cycliques** s'il existe des mots α et β tels que $w = \alpha\beta$ et $v = \beta\alpha$.

Exemple 3.7. $w = aab^{-1}c$. Un conjugué cyclique est $ab^{-1}ca$, en continuant on a $b^{-1}ca^2$, etc...

L'algorithme pour résoudre le problème de conjugaison est le suivant. Soient w_1 et w_2 deux mots. On commence par faire la réduction cyclique des deux mots pour obtenir w_1' et w_2' sont donc cycliquement réduits. Si w_1' et w_2' sont conjugués cycliques, alors il existe g tel que $gw_1g^{-1} = w_2$.

Exemple 3.8. Soient $w_1 = cabc^{-1}$ et $w_2 = abbab^{-1}a^{-1}$. On effectue la réduction cyclique :

$$w_1 \xrightarrow{c} ab$$
, $w_2 \xrightarrow{c} bbab^{-1} \xrightarrow{c} ba$.

ab et ba sont conjugués cycliques, donc w_1 et w_2 sont conjugués. À la fin on obtient que

$$w_1 = (cab^{-1}a^{-1})w_2(cab^{-1}a^{-1})^{-1},$$

ainsi $g = cab^{-1}a^{-1}$.

3.1.2. Problème de l'isomorphisme pours les groupes libres

Pour deux présentations $\langle X_1|R_1\rangle$ et $\langle X_2|R_2\rangle$, il n'y pas d'algorithme pour résoudre le problème de l'isomorphisme.

Mais ici on sait qu'on a deux groupes libres.

Théorème 3.9. Soient X, Y deux ensembles (finis ou infinis). On a que $\mathbb{F}(X) \cong \mathbb{F}(Y) \iff |X| = |Y| \ (|X| = |Y| \ s'il \ y \ a \ une \ bijection \ f : X \to Y).$

Preuve. " \Rightarrow ": Supposons qu'on ait une bijection $f: X \to Y$. Alors il existe g = X $f^{-1}: Y \to X$. Par la propriété universelle, on a $\tilde{f}: X \to \mathbb{F}(Y)$, $i_X: X \to \mathbb{F}(X)$ et il existe un unique homomorphisme $\varphi: \mathbb{F}(X) \to \mathbb{F}(Y)$. Même chose pour Y on prend \tilde{g} , i_Y et ψ .

Alors $\psi \circ \varphi : \mathbb{F}(X) \to \mathbb{F}(X)$ est une extension de i_X . Par l'unicité dans la propriété universelle, $\psi \circ \varphi = id_{\mathbb{F}(X)}$.

De même $\varphi \circ \psi : \mathbb{F}(Y) \to \mathbb{F}(Y)$ est égal à $id_{\mathbb{F}(Y)}$. Donc φ et ψ sont des isomorphismes et ainsi $\mathbb{F}(X) \cong \mathbb{F}(Y)$.

- " \Leftarrow ": Si $\mathbb{F}(X) \cong \mathbb{F}(Y)$, alors |X| = |Y|. Soit $N(X) = \langle g^2 | g \in \mathbb{F}(X) \rangle$. Montrons que N(X) est un sous-groupe normal. La partie sous-groupe est claire, il reste donc à montrer qu'il est normal. $gh^2g^{-1} = (ghg^{-1})(ghg^{-1}) = (ghg^{-1})^2 \in N(x)$ (ce n'est pas la preuve complète, mais c'est l'idée). Ainsi $N(x) \triangleleft \mathbb{F}(X)$ et $\mathbb{F}(X)/N(X)$ est un groupe abélien, un 2-groupe, ie $x^2 = 1 \forall x \in \mathbb{F}(X)/N(X)$.
 - 1. $(qN)^2 = qNqN = q^2N = N$ ce qui montre que c'est un 2-groupe.
 - 2. $(xy)^2 = 1 \implies xyxy = 1 \implies xy = y^{-1}x^{-1} = yx$ car les éléments sont d'ordre 2, ce qui montre que $\mathbb{F}(X)/N(X)$ est abélien.

Notons $V(X)=\mathbb{F}(X)/N(X)=\underbrace{\mathbb{Z}/2\mathbb{Z}\oplus\cdots\oplus\mathbb{Z}/2\mathbb{Z}}_{|X|}$ car chaque élément engendre un groupe cyclique d'ordre 2. Ainsi V est $\mathbb{Z}/2\mathbb{Z}$ -espace vectoriel avec base X

et de dimension |X|.

Comme $\mathbb{F}(X) \cong \mathbb{F}(Y)$ on a que $\mathbb{F}(X)/N(X) \cong \mathbb{F}(Y)/N(Y) \implies V(X) \cong$ $V(Y) \Longrightarrow |X| = |Y|$ car deux espaces vectoriels isomorphes ont des bases de mêmes cardinalités.

Chapitre 4.

Propriétés du groupe libre

Proposition 4.1. Si $|A| \ge 2$, le centre de $\mathbb{F}(A)$ est trivial (ex), $Z(G) = \{g \in G | gh = hg \forall h \in G\}$.

Preuve. " \supset ": Cette inclusion est triviale, car l'élément neutre commute avec tout élément et ainsi $\{1\} \subset Z(\mathbb{F}(A))$.

"c": On va montrer la contraposée, c'est-à-dire que si $g \in \mathbb{F}(A)$ avec $g \neq 1, g \notin Z(\mathbb{F}(A))$. Si $g = a_{i_1}^{\varepsilon_1} \cdots a_{i_n}^{\varepsilon_n}$, avec $\varepsilon_i \neq -\varepsilon_{n+1-i}$ pour tout i, et $\varepsilon_1 \neq -\varepsilon_{n-2}$ (pour qu'il n'y ait pas de réductions possible dans g). On pose

$$h = a_{i_n}^{-\varepsilon_n} a_{i_{n-1}}^{-\varepsilon_{n-1}} a_{i_1}^{\varepsilon_1} \cdots a_{i_{n-1}}^{\varepsilon_{n-1}}.$$

Ainsi, on a

$$gh=a_{i_1}^{\varepsilon_1}\cdots a_{i_n}^{\varepsilon_n}a_{i_n}^{-\varepsilon_n}a_{i_{n-1}}^{-\varepsilon_{n-1}}a_{i_1}^{\varepsilon_1}\cdots a_{i_{n-2}}^{\varepsilon_{n-2}}=a_{i_1}^{\varepsilon_1}\cdots a_{i_{n-2}}^{\varepsilon_{n-2}}a_{i_1}^{\varepsilon_1}\cdots a_{i_{n-2}}^{\varepsilon_{n-2}}=\left(a_{i_1}^{\varepsilon_1}\cdots a_{i_{n-2}}^{\varepsilon_{n-2}}\right)^2,$$

$$hg = a_{i_n}^{-\varepsilon_n} a_{i_{n-1}}^{-\varepsilon_{n-1}} a_{i_1}^{\varepsilon_1} \cdots a_{i_{n-2}}^{\varepsilon_{n-2}} a_{i_1}^{\varepsilon_1} \cdots a_{i_n}^{\varepsilon_n}$$

et $hg \neq gh$ car h et g sont irréductibles, et ne se réduisent quand on les multiplie car $\varepsilon_1 \neq -\varepsilon_{n-2}$ par hypothèse.

Proposition 4.2. $Si |A| \ge 2$, $\mathbb{F}(A)$ est sans torsion (ex), (torsion : $\exists g \in G, n \ge 2 \in \mathbb{N}$ $tq \ g^n = 1$).

Preuve. Exercice

Théorème 4.3 (DE NIELSEN-SCHREIER, 1927). Tout sous-groupe d'un groupe libre est libre.

Théorème 4.4 (VERSION QUANTITATIVE DE NIELSEN-SCHREIER). si H est un sous-groupe d'indice k de \mathbb{F}_n , alors $H \cong \mathbb{F}_{k(n-1)+1}$.

4.1. Observations

- 1. $\mathbb{F}_2 \hookrightarrow \mathbb{F}_n$, $n \ge 2$. Par exemple $\mathbb{F}_2 = \langle a, b \rangle \hookrightarrow \langle a_1, a_2, \dots, a_n \rangle$.
- 2. L'autre direction "fonctionne" aussi, ie $\mathbb{F}_n \hookrightarrow F_2$, $n \geq 2$. Ainsi \mathbb{F}_2 contient les groupes libres de rang n pour chaque $n \in \mathbb{N}$.

Exemple 4.5. Soit $\mathbb{F}_2 = \langle a, b \rangle$ et $\mathbb{F}_n = \langle a_1, a_2, \dots, a_n \rangle$ et

$$f: \mathbb{F}_n \to \mathbb{F}_2, a_i \mapsto a^{-i}ba^i.$$

Alors f est un homomorphisme. On doit montrer que f est injective, c'est-à-dire pour chaque mot réduit $a_{i_1}^{r_1} \dots a_{i_m}^{r_m}$) dans \mathbb{F}_n où $a_{i_j} \in \{a_1, \dots, a_n\}, r_i \in \mathbb{Z}, i_j \neq i_{j+1}$. On va montrer que $f(a_{i_1}^{r_1} \dots a_{i_m}^{r_m} \neq_{\mathbb{F}_2} 1$.

On a que

$$f(a_{i_1}^{r_1}\dots a_{i_m}^{r_m}) = a^{-i_1}b^{r_1}a^{i_1}a^{-i_2}b^{r_2}a^{i_2}\cdots a^{i_m} \neq_{\mathbb{F}_2} 1$$

car, par exemple, $i_1 \neq i_2$ ainsi il y a des réductions, mais ça ne se réduit pas au mot vide.

4.2. Groupes libres dans la nature

Il y a des groupes libres partout!

Proposition 4.6. Le sous-groupe de $SL_2(\mathbb{Z})$ engendré par $l = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ et $r = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ est libre de rang 2.

La preuve utilise le Lemme du Ping-Pong.

Lemme 4.7 (DU PING-PONG, Klein, 1880). Soit G un groupe, $\alpha, \beta \in G$. On suppose que G agit sur un ensemble E ayant deux parties $X, Y \neq \emptyset$, $tq \ X \cap Y = \emptyset$ et

- $\forall m \in \mathbb{Z} \setminus \{0\}, \ \alpha^m \cdot y \in X \ pour \ tout \ y \in Y,$
- $\forall m \in \mathbb{Z} \setminus \{0\}, \ \beta^m \cdot x \in Y \ pour \ tout \ x \in X.$

Alors $\langle \alpha, \beta \rangle \cong \mathbb{F}_2$.

Preuve (DU LEMME DU PING-PONG). Soit m un mot réduit sur α, β . m est de la forme

1. $m = \alpha^{h_1} \beta^{k_1} \cdots \beta^{k_{n-1}} \alpha^{h_n}$ avec $h_i, k_i \in \mathbb{Z} \setminus \{0\}$. Alors supposons que m = G 1. Ainsi

FIGURE 4.1. – Illustration du Lemme du Ping-Pong

 $m \cdot Y = Y$.

$$\alpha^{h_1} \cdots \beta^{k_{n-1}} \alpha^{h_n} \cdot Y \subseteq \alpha^{h_1} \cdots \beta^{k_{n-1}} \cdot X \subseteq \alpha^{h_1} \cdots \alpha^{k_{n-1}} \cdot Y \subseteq \cdots \subseteq \alpha^{h_1} \cdot Y \subseteq X.$$

ainsi $m \cdot Y \subset X$, ce qui est une contradiction.

- 2. $m = \beta^{k_1} \cdots \beta^{k_n}$, donc $\alpha^{-h_1} m \alpha^{h_1}$ est comme au point 1 et ainsi $\alpha^{-h_1} m \alpha^{h_1} \neq_G 1$ ainsi $m \neq_G 1$.
- 3. Si $m = \alpha^{h_1} \cdots \beta^{k_n}$, pour $h_0 \neq h_1$ on regarde $\alpha^{-h_0} (\alpha^{h_1} \cdots \beta^{k_n}) \alpha^{h_0}$ qui est comme au point 1. Donc $m \neq_G 1$
- 4. $m = \beta^{k_1} \cdots \alpha^{h_n}$ et on fait la même preuve qu'au point 3.

Ainsi $m \neq 1$ et $\langle \alpha, \beta \rangle \cong \mathbb{F}_2$.

Preuve (DE 4.6). Exercice.

Début de la preuve : on regarde $E = \mathbb{R}^2$ et on regarde l'action de $SL_2(\mathbb{Z})$ sur \mathbb{R}^2 .

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

où · représente l'action (on prend simplement la multiplication). On ne va pas utiliser seulement des points, mais des droites vectorielles. On prend la droite qui passe par l'origine et $(x,y) \in \mathbb{R}^2$ et on regarde l'image de cette droite par l'action, qui est aussi une droite vectorielle. On peut considérer l'action sur l'ensemble des

droites vectorielles dans \mathbb{R}^2 qui est l'espace projectif de dimension 1, \mathbb{PR}^1 (une droite projective peut être vue comme "demi-cercle" où A=B). Il faut donc montrer que X et Y satisfont l'hypothèse du Lemme du Ping-Pong.

Remarque 4.8. On trouve des groupes libres très souvent dans les groupes linéaires.

Théorème 4.9 ("Alternative de Tietze", 1971). Soit G un groupe linéaire, c'est- \dot{a} -dire un sous-groupe de $GL_n(\mathbb{C})$ pour un certain $n \geq 1$. On a l'alternative :

- ou bien G est virtuellement résoluble ;
- ou bien G contient \mathbb{F}_2 comme sous-groupe.

Exemple 4.10. Considérons Homeo(\mathbb{R}) = { $\varphi : \mathbb{R} \to \mathbb{R} \mid \varphi$ est continue et bijective}. Homeo(\mathbb{R}) contient beaucoup de groupes libres.

$$\begin{cases} f(x) = x^p, & p \text{ premier impair,} \\ g(x) = x + 1. \end{cases}$$

Alors $\langle f(x), g(x) \rangle \cong \mathbb{F}_2$ (la preuve est très difficile).

Chapitre 5.

Introduction à la topologie algébrique

À tout espace topologique X raisonnable, on associe des groupes.

Une propriété fondamentale est qu'à toute application continue $f: X \to Y$ correspond un homomorphisme de groupes $f_*: F(X) \to F(Y)$.

5.1. Groupe fondamental d'un espace topologique

5.1.1. Lacets

Définition 5.1. Soit X un espace topologique. Un **arc** dans X est une application continue $\gamma: [0,1] \to X$, $t \mapsto \gamma(t)$, où $\gamma(0)$ est l'**origine** de γ et $\gamma(1)$ est l'**extrémité** de γ .

Un arc peut être inversé:

$$\check{\gamma}(t) = \gamma(1-t).$$

Deux arcs γ, δ peuvent être composés si l'origine de δ est l'extrémité de γ .

$$(\gamma \delta)(t) = \begin{cases} \gamma(2t) & \text{si } 0 \le t \le \frac{1}{2}, \\ \delta(2t - 1) & \text{si } \frac{1}{2} \le t \le 1. \end{cases}$$

Pour avoir une composition toujours bien définie, on se restreint aux **lacets**, c'est-à-dire les arcs tels que $\gamma(0) = \gamma(1) = x_0$. Si $x_0 = \gamma(0) = \gamma(1)$, on dit que γ est **basée en** x_0 .

En 1901, Poincaré (1854-1912) a eu l'idée que, si on regarde les lacets à déformation continue près, on obtient un groupe, qui détecte la présence de "trous" dans X.

Définition 5.2. Soient γ_0 , γ_1 deux lacets basés en x_0 . Une **homotopie** de γ_0 à γ_1 est une application continue

$$F:[0,1]\times[0,1]\to X$$

telle que

$$\begin{cases} F(0,t) = \gamma_0(t), & \forall t \in [0,1], \\ F(s,0) = F(s,1) = x_0, & \forall s \in [0,1], \\ F(1,t) = \gamma_1(t), & \forall t \in [0,1]. \end{cases}$$

FIGURE 5.1. – Exemple d'homotopie

Si on pose $\gamma_s(t) = F(s,t)$, on voit que $(\gamma_s)_{s \in [0,1]}$ est une famille continue de lacets qui interpole entre γ_0 et γ_1 .

Définition 5.3. Deux lacets γ_0 et γ_1 (basés en x_0) sont **homotopes** s'il existe une homotopie de γ_0 à γ_1 , et dans ce cas on écrit $\gamma_0 \sim \gamma_1$. On écrit le lacet trivial basé en $x_0 \in \varepsilon_{x_0}$. Si $\gamma \sim \varepsilon_{x_0}$, on dit que γ est homotope à zéro.

Proposition 5.4. Pour les lacets basés en $x_0 \in X$, la relation "être homotope" est une relation d'équivalence. On note $[\gamma]$ la classe d'équivalence de γ .

Preuve. Exercice.

5.1.2. Groupe fondamental

Théorème 5.5 (-DÉFINITION). On note $\Pi_1(X, x_o)$ l'ensemble des classes d'homotopie des lacets de X basés en x_o . Avec la multiplication $[\gamma][\delta] = [\gamma \delta]$, $\Pi_1(X, x_0)$ est un groupe, appelé groupe fondamental de X (en x_0).

L'élément neutre est $[\varepsilon_{x_0}]$ et l'inverse de $[\gamma]$ est $[\check{\gamma}]$.

Preuve. On vérifie d'abord que, si $\gamma_0 \sim \gamma_1$, $\delta_0 \sim \delta_1$ alors $\gamma_0 \delta_0 \sim \gamma_1 \delta_1$, c'est-à-dire que la multiplication est bien définie. On a donc que $[\gamma_0] = [\gamma_1]$ et $[\delta_0 = \delta_1] \Rightarrow [\gamma_0 \delta_0] = [\gamma_1 \delta_1]$.

Soient F et G deux homotopies de γ_0 à γ_1 et de δ_0 à δ_1 respectivement. Une homotopie de $\gamma_0\delta_0$ à $\gamma_1\delta_1$ est donnée par

$$H(s,t) = \begin{cases} F(s,2t) & \text{si } 0 \le t \le \frac{1}{2}, \ s \in [0,1] \\ G(s,2t-1) & \text{si } \frac{1}{2} \le t \le 1, \ s \in [0,1] \end{cases}$$

FIGURE 5.2. – Exemple d'homotopies ayant des classes d'équivalence différentes (le rond est un "trou")

(à vérifier).

Il faut encore montrer que :

- $\varepsilon_{x_o} \gamma \sim \gamma \sim \gamma \varepsilon_{x_0}$;
- $\gamma \check{\gamma} \sim \varepsilon_{x_0}$;
- associativité : si γ_0 , γ_1 , γ_2 sont trois lacets basés en x_0 , $\gamma_0(\gamma_1\gamma_2) \sim (\gamma_0\gamma_1)\gamma_2$.

5.1.3. Propriétés du groupe fondamental

Rappel: Un espace est connexe par arcs si deux points peuvent être joints par un arc.

Proposition 5.6. $Si\ X$ est connexe par arc, alors

$$\Pi_1(X,x_0) \cong \Pi_1(X,y_0) \ \forall x_0,y_0 \in X.$$

Conséquence 5.7. Si X est connexe par arcs, on peut parler du groupe fondamental de X, noté $\Pi_1(X)$.

Preuve. Exercice. Dessin de l'idée de la preuve :

Ainsi pour passer de $\gamma \in \Pi_1(X, x_0)$ à un élément de $\Pi_1(X, y_0)$, on prend $\check{\alpha}\gamma\alpha$.

Définition 5.8. Un espace X (connexe par arcs) est **simplement connexe** si $\Pi_1(X) = 0$ (ou {1}). C'est-à-dire que tout lacet dans X est homotope à ε_{x_0} .

Exemples 5.9. 1. Un tel ensemble de \mathbb{R}^n est simplement connexe :

2. Les arbres sont simplements connexes :

3. L'ensemble suivant est homéomorphe à $[0,1] \times [0,1]$.

4. Pour $n \geq 2$, la sphère \mathbb{S}^n est simplement connexe (S^1 n'est pas simplement connexe).

 \star

Proposition 5.10. Soit $f: X \to Y$ une application continue, avec $y_0 = f(x_0)$. On pose $f_*: \Pi_1(X, x_0) \to \Pi_1(Y, y_0), [\gamma] \mapsto [f \circ \gamma]$. Alors f_* est un homomorphisme de groupes.

De plus,

- 1. $si\ f: X \to Y, \ g: Y \to Z \ sont \ continues \ avec \ y_0 = f(x_0) \ et \ z_0 = g(y_0), \ alors \ (g \circ f)_* = g_* \circ f_*;$
- 2. $id_X: X \to X$, alors $(id_X)_* = Id_{\Pi_1(X,x_0)}$.

Preuve. Exercice.

Théorème 5.11. On a que

$$\Pi_1(S^1) \cong \mathbb{Z}$$

Preuve. Difficile, et long.

Exemples 5.12. 1. Soit Π^2 le tore. En découpant le long de a_1 et a_2 , on obtient un carré. Ceci montre que $[a_1a_2a_1^{-1}a_2^{-1}] = 1$ dans $\Pi_1(\Pi^2)$. Ainsi $\Pi_1(\Pi^2) = \mathbb{Z}^2$. Si on enlève à Π^2 un petit disque ouvert D, le bord de D est $a_1a_2a_1^{-1}a_2^{-1}$ dans $\Pi_1(X)$, où $X = \Pi^2 \setminus D$. En fait, $\Pi_1(X) \cong \mathbb{F}_2 = \langle a_1, a_2 \rangle$ (\mathbb{F}_2 est le groupe libre).

2. On a que $\Pi_1(\Sigma_2) = \langle a_1, a_2, b_1, b_2 | [a_1, a_2][b_1, b_2] = 1 \rangle$.

5.2. Produits libres

0

Définition 5.13. Soient A et B deux groupes. Le **produit libre**, noté G = A * B est l'ensemble des mots de la forme

$$a_1b_1a_2b_2\cdots a_kb_k, k \in \mathbb{N}, a_i \in A, b_i \in B$$

et
$$a_2, \ldots, a_k \neq \varepsilon_A$$
 et $b_1, \ldots, b_{k-1} \neq \varepsilon_B$.

Donc G est l'ensemble des mots obtenus en alternant un élément non trivial d'un groupe, un élément non trivial de l'autre, etc.

Exemple 5.14. 1. $\mathbb{Z} * \mathbb{Z} = \mathbb{F}_2 = \langle a, b \rangle$.

- 2. En général, $\mathbb{F}_k * \mathbb{F}_m \cong \mathbb{F}_{k+m}$.
- 3. Soit D_{∞} le groupe dihédral infini, c'est le sous-groupe des isométries de \mathbb{R} engendré par deux symétries centrales. Alors

$$D_{\infty} \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$$

où $\mathbb{Z}/2\mathbb{Z} = \langle s_1 \rangle$ et $\mathbb{Z}/2\mathbb{Z} = \langle s_2 \rangle$. En effet, prenons

On voit que pour tout $s_{i_1} \cdots s_{i_k}$ avec $i_j \neq i_{j+1}$, on a $s_{i_1} \cdots s_{i_k} \neq 0$, ainsi $s_{i_1} \cdots s_{i_k} \neq \varepsilon_{D_{\infty}}$.

Lemme 5.15 (DU PING-PONG, 2ÈME VERSION). Soient G_1, G_2 des sous-groupes de Sym(X). On suppose que $|G_1| \ge 2$, $|G_2| \ge 3$. S'il existe deux parties $A_1, A_2 \subset X$ telles que $A_i \ne \emptyset$, $A_1 \notin A_2$ avec

- $g_1(A_1) \subseteq A_2 \forall g_1 \in G_1 \setminus \{id\};$
- $g_2(A_2) \subseteq A_1 \forall g_2 \in G_2 \setminus \{id\},$

alors le sous-groupe engendré par $G_1 \cup G_2$ dans Sym(X) est isomorphe à $G_1 * G_2$.

5.3. Théorème de Van Kampen (version simple)

Théorème 5.16 (DE VAN KAMPEN). Soit X un espace connexe par arcs. On suppose que $X = U \cup V$ où

- U et V sont des ouverts connexes par arcs;
- $U \cap V$ est simplement connexe et non vide.

Alors $\Pi_1(X) \cong \Pi_1(U) * \Pi_1(V)$ (produit libre des groupes fondamentaux).

Exemples 5.17. 1. Le bouquet à deux cercles. Si $X = U \cup V$, on a $U \cap V = \{x\}$.

Le groupe fondamental est

$$\Pi_1(X) = \Pi_1(U) * \Pi_1(V) = \mathbb{Z} * \mathbb{Z} = \mathbb{F}_2.$$

2. Si (X, x_o) et (Y, Y_0) sont deux espaces pointés (car on a donné des points), le **wedge** ou **joint** de X et Y est $X \wedge Y = X \cup Y/x_0 = y_0$. Si x_0, y_0 possèdent des voisinages simplement connexes, alors

$$\Pi_1(X \wedge Y) = \Pi_1(X, x_0) * \Pi_1(Y, y_0).$$

Par exemple si on prend $X = S^1$ et $Y = \Pi^2$, on obtient la chose suivante pour $X \wedge Y$.

3. On appelle B_n le bouquet de n cercles. Alors

$$\Pi_1(B_n) = \mathbb{F}_n = \langle a_1, \dots, a_n \rangle.$$

Plus généralement, si X = (V, E) et un graphe connexe avec n = |V|, m = |E| vu comme espace topologique en identifiant chaque arête à une copie de [0, 1], alors

$$\Pi_1(X) \cong \mathbb{F}_{m-n+1}$$
.

Par exemple si G est le graphe suivant :

$$\Pi_1(G) = \mathbb{F}_{6-4+1} = \mathbb{F}_3.$$

En effet, soit \mathcal{T} un **arbre maximal** de X (un **arbre maximal** est un sousgraphe de X, sans circuit passant par tous les sommets). En contractant \mathcal{T} sur un point, on obtient un bouquet à m-n+1 cercles, car \mathcal{T} a n-1 arêtes.

Ci-dessus on a des arbres maximaux, car il reste 3 arêtes quand on contracte les arêtes vertes (on obtient donc un bouquet à 3 arêtes, dont le Π_1 est \mathbb{F}_3).

5.4. Revêtements

Tous les espaces sont supposés connexes par arcs et localement connexes par arcs.

Définition 5.18. Un triplet (X,Y,p), noté $\stackrel{Y}{\underset{X}{\downarrow}}p$ est un **revêtement** de X si :

- p est une application continue surjective $Y \to X$.
- Pour tout $x \in X$, $p^{-1}(X)$ est discret dans Y.
- Tout $x \in X$ possède un **voisinage trivialisant** U_x , c'est-à-dire un voisinage connexe par arcs tel que $p^{-1}(U_x)$ est homéomorphe à $p^{-1}(x) \times U_X$, par un homéomorphisme $h_x : p^{-1}(U_x) \to p^{-1} \times U_x$ tel que le diagramme suivant commute (où p_2 est la projection sur le 2ème facteur).

$$p^{-1}(U_x) \xrightarrow{h_x} p^{-1}(x) \times U_x$$

$$p\Big|_{p^{-1}(U_x)} \qquad U_x$$

L'image mentale d'un revêtement est celle de la "pile d'assiettes".

On dira que $_{X}^{Y}p$ est un revêtement à n feuillets si $\#p^{-1}(x) = n$, et a une infinité de feuillets si $\#p^{-1}(x) = \infty$.

Exemples 5.19. 1. Soit $X = \{z \in \mathbb{C} \mid |z| = 1\}$. Alors l'espace Y peut être représenté par une hélice, mais $Y = \mathbb{R}$. Alors $p : \mathbb{R} \to \S^1$ est défini par $p(t) = e^{2\pi i t}$ et $\frac{Y}{X}p$ est un revêtement car p est surjective. Si $z = e^{2\pi i \varphi}$, alors $p^{-1}(z) = \varphi + \mathbb{Z}$ est discret dans \mathbb{R} . Enfin, si $z = e^{2\pi i \varphi} \in S^1$, $U_z = S^1 \setminus \{-z\}$ (tout le cercle sauf le point opposé à z) est un voisinage de z, et $p^{-1}(U_z) = \mathbb{R} \setminus \{\varphi + (2k + 1)\pi, k \in \mathbb{Z}\} \cong \mathbb{Z} \times U_z$ car $\mathbb{Z} = p^{-1}(z)$. On ne prend pas les multiples impairs de π car on ne veut pas $z + \pi, z - \pi, z + 3\pi, \ldots$ dans le revêtement.

- 2. Soit $X = S^1$, $Y = S^1$ et $p: S^1 \to S^1$, $z \mapsto z^n$ avec n > 0 et un revêtement à n feuillets. On parcourt le cercle n fois, et on arête au même point qu'on a commencé.
- 3. Si x est un bouquet à deux boucles, alors $Y_{1,n}$ défini comme suit est un revêtement à n feuillets. $Y_{1,\infty}$ a une infinité de feuillets. Y_2 vu comme \mathbb{Z}^2 (le réseau à coordonnées entières) est aussi un revêtement à une infinité de feuillets.

Lemme 5.20. Soit $\mathop{\downarrow}\limits_{X}^{Y} p$ un revêtement. Soit Z un espace connexe et soient $f_0, f_1 : Z \to Y$ deux applications continues avec $p \circ f_0 = p \circ f_1$. Alors $\{z \in Z | f_o(z) = f_1(z)\} = \emptyset$ ou Z.

Preuve. Exercice.

Lemme 5.21 (RELÈVEMENT DES CHEMINS). Soient $x_0 \in X$, $y_0 \in p^{-1}(x)$. Pour tout chemin $\alpha : [0,1] \to X$ avec $\alpha(0) = x_0$, il existe un unique chemin $\tilde{\alpha} : [0,1] \to Y$ avec $\tilde{\alpha}(0) = y_0$ et $p \circ \tilde{\alpha} = \alpha$. On appelle $\tilde{\alpha}$ le **relèvement** de α .

Preuve. Commençons par montrer l'unicité. Elle résulte du Lemme 5.20. Supposons que Z = [0,1] et que $\tilde{\alpha}_0$ et $\tilde{\alpha}_1$ sont deux relèvements de α , $\tilde{\alpha}_0$, $\tilde{\alpha}_1 : Z = [0,1] \to Y$ avec $\tilde{\alpha}_0(0) = \tilde{\alpha}_1(0) = y_0$. Alors par le Lemme 5.20, on a que $\tilde{\alpha}_0(z) = \tilde{\alpha}_1(z)$ pour tout $z \in Z$.

La partie existence est en exercice.

Lemme 5.22 (RELÈVEMENT DES HOMOTOPIES). Soient $\alpha_0, \alpha_1 : [0,1] \to X$ avec $\alpha_0(0) = \alpha_1(0) = x_0$ et $\alpha_0(1) = \alpha_1(1)$. Soient $\tilde{\alpha_0}, \tilde{\alpha_1}$ les relevés par y_0 . Si $\alpha_0 \sim \alpha_1$ dans X, alors $\tilde{\alpha_0} \sim \tilde{\alpha_1}$ et ont la même extrémité.

Preuve. cf. feuille annexe.

Ш

Théorème 5.23. Soient ${}_{X}^{Y}p$ un revêtement, $y_0 \in p^{-1}(x_0)$. Alors

$$p_*:\Pi_1(Y,y_0)\to\Pi_1(X,x_0)$$

est injective (si $f: X \to Y$, on définit $f_*: \Pi_1(X, x_0) \to \Pi_1(Y, y_0)$ par $[\gamma] \to [f \circ \gamma]$). Ainsi $p_*(\Pi_1(Y, y_0))$ est un sous-groupe de $\Pi_1(X, x_0)$. **Preuve.** Soit $[\tilde{\alpha}] \in \Pi_1(Y, y_0)$ avec $p_*[\tilde{\alpha}] = [\varepsilon_{x_0}]$. Par le Lemme 5.21, $\tilde{\alpha}$ est l'unique relèvement de $\alpha = p \circ \tilde{\alpha}$ (et ε_{y_0} est l'unique relèvement de ε_{x_0}). Par le Lemme 5.22, une homotopie entre α et ε_{x_0} se relève en une homotopie entre $\tilde{\alpha}$ et ε_{y_0} , donc $[\tilde{\alpha}] = [\varepsilon_{y_0}]$, ce qui montre que p_* est injective.

Ce théorème nous dit qu'un revêtement de X nous donne un sous-groupe de $\Pi_1(X)$. On a aussi une réciproque qui est le théorème suivant.

Théorème 5.24. Soit X connexe par arcs, localement connexe par arcs (graphe). Alors pour H un sous-groupe de $\Pi_1(X, x_0)$, il y a un revêtement $\mathop{\downarrow}_X^{X_H} p$ tel que

$$p_*(\Pi_1(X_H, \tilde{x_0})) \cong H.$$

Ceci veut dire que pour un sous-groupe de $\Pi_1(X)$, on peut trouver un revêtement de X.

Remarque 5.25. 1. X_H est unique à isomorphisme près!

2. On a donc un dictionnaire entre revêtements et sous-groupes de $\Pi_1(X)$.

Théorème 5.26 (DE NIELSEN-SCHREIER). Soit F_n le groupe libre avec n générateurs, et soit H un sous-groupe de F_n . Alors

- 1. H est libre;
- 2. $si[F_n:H] = k \ (index \ de \ H \ dans \ F_n), \ alors \ H \cong F_{k(n-1)+1}, \ c'est-à-dire \ que \ H$ est libre $sur\ k(n-1)+1$ générateurs.

Pour la deuxième partie de la preuve, on a besoin de la proposition suivante.

Proposition 5.27. Le nombre de feuilles ${}_{\dot{X}}^{Y}p$ est égal à

$$[\Pi_1(X,x_0) : p_*(\Pi_1(Y,y_0))].$$

Preuve. Exercice 1, série 6.

Preuve (DU THÉORÈME DE NIELSEN-SCHREIER). 1. F_n libre peut être vu comme le groupe fondamental d'un bouquet à n cercles. Pour chaque sous-groupe H de F_n , on a par le Théorème 5.24 un revêtement X_H tel que $p_*(\Pi_1(X_H)) = H$. On a vu que p_* est injective, donc on a vraiment l'isomorphisme $\Pi_1(X_H) \cong H$. Tout revêtement d'un graphe est un graphe, alors X_H est aussi un graphe. Mais le groupe fondamental d'un graphe est toujours libre, et ainsi H est libre.

2. Soit \mathbb{F}_n le groupe fondamental d'un bouquet à n boucles. Pour H un sous-

groupe de \mathbb{F}_n , il y a un revêtement X_H tel que $\Pi_1(X_H) \cong H$. Si $[\mathbb{F}_n : H] = k$, par la proposition 1 on a que X_H est un revêtement à k feuillets de X. Ainsi X_H est un graphe à k sommets et $k \cdot n$ arêtes. Ainsi $H = \Pi_1(X_H) \cong \mathbb{F}_{kn-k+1} = \mathbb{F}_{k(n-1)+1}$ où kn est le nombre d'arête et k est le nombre de sommets.

Exemple 5.28. Soit n = 2. Alors \mathbb{F}_2 est le groupe fondamental du bouquet à deux boucles, qu'on appelle a_1 et a_2 . Pour k = 3, on a le revêtement X_H suivant :

 X_H a k sommets de degré 2n et a $\frac{k\cdot 2n}{2}=k\cdot n$ arêtes.

Chapitre 6.

Transformations de Tietze

Définition 6.1. Soit $\langle X_1, \dots, X_n | \underbrace{r_1, \dots, r_m}_{R} \rangle$ une présentation finie d'un groupe G.

Les transformations suivantes, appelées **transformation de Tietze** , changent la présentation sans changer le groupe.

Algorithm 6.1 Première transformation de Tietze

 T_1 ou R^+ : Ajouter à la présentation de G un relateur r_{m+1} qui appartient à la clotûre normale de R (notée \overline{R} , $\triangleleft R \triangleright$ ou $gp_G(R)$).

Soit $r_{m+1} \in \overline{R} \setminus R : \langle X|R \rangle \xrightarrow{R^+, T_1} \langle X|R \cup \{r_{m+1}\} \rangle$.

Exemple 6.2. Considérons $\mathbb{Z}^2 = \langle a, b | aba^{-1}b^{-1} \rangle \xrightarrow{R^+} \langle a, b | [a, b], [a, b]^2 \rangle$.

Algorithm 6.2 Deuxième transformation de Tietze

 R^- : Opération inverse de R^+ .

Soit $r \in R \setminus \overline{R \setminus \{r\}}$. Alors $\langle X|R \rangle \xrightarrow{R^-} \langle X|R \setminus \{r\} \rangle$.

Algorithm 6.3 Troisième transformation de Tietze

 X^+ : Ajouter à la présentation de G un générateur x_{n+1} ainsi qu'une relation $x_{n+1} = w(x_1, \ldots, x_n)$ (un mot sur x_1, \ldots, x_n).

 $\langle X|R\rangle \xrightarrow{X^+} \langle X, x_{n+1}|R \cup \{x_{n+1}w^{-1}(x_1, \dots, x_n)\}\rangle$

Exemple 6.3. Soit $G = \langle x, y | xyx = yxy \rangle$. C'est le groupe fondamental du noeud

Algorithm 6.4 Quatrième transformation de Tietze

 X^- : Opération inverse de X^+ .

Soit $y \in X$, $w \in \langle X \setminus \{y\} \rangle$ et $y^{-1}w$ est le seul mot dans R qui contient y. Alors $\langle X|R \rangle \xrightarrow{X^-} \langle X \setminus \{y\}|R \setminus \{y^{-1}w\} \rangle$.

de trèfle. On va utiliser les transformations de Tietze. On a

$$\begin{split} \langle x,y|xyx = yxy \rangle & \xrightarrow{X^+} \langle x,y,a,b|xyx = yxy,a = xy,b = xyx \rangle \\ & \xrightarrow{R^+} \langle x,y,a,b|xyx = yxy,a = xy,b = xyx,x = a^{-1}b,y = b^{-1}b^{-1}a^2,a^3 = b^2 \rangle \quad a^3 = xyxyxy \\ & \xrightarrow{R^-} \langle x,y,a,b|a^3 = b^2,x = a^{-1}b,y = b^{-1}a^2 \rangle \\ & \xrightarrow{X^-} \langle a,b|a^3 = b^2 \rangle. \end{split}$$

Cette dernière présentation correspond au produit libre amalgamé.

*

Proposition 6.4 (DE TIETZE). Les transformations de Tietze ne changent pas le groupe.

Preuve (POUR X^+). Supposons que $G = \langle X|R \rangle$, y est un symbole qui n'est pas dans X, et w(X) un mot réduit de $\mathbb{F}(X)$. On veut montrer que $\langle X, y|R \cup \{y^{-1}w(X)\}\rangle \cong \langle X, R \rangle = G$.

Soit $\varphi: \mathbb{F}(X) \to G$ l'homomorphisme donné par la propriété universelle des groupes libres. Le groupe libre $\mathbb{F}(X,y)$ sur $X \cup \{y\}$ est engendré librement par $X \cup \{y^{-1}w(X)\}$. C'est-à-dire que $\mathbb{F}(X \cup \{y\}) = \mathbb{F}(X \cup \{y^{-1}w(X)\})$. C'est vrai car à partir de $y^{-1}w(X)$, on peut obtenir y (cette inclusion est sensée être facile), et à partir de y on peut obtenir $y^{-1}w(X)$. Ainsi on a

$$X \cup \{y^{-1}w(x)\} \hookrightarrow \mathbb{F}(x,y) = \mathbb{F}(X \cup \{y^{-1}w(X)\}.$$

Il y a un unique homomorphisme $\varphi^1 : \mathbb{F}(x,y) \to G$ tel que $\varphi^1(x) = \varphi(x)$ et $\varphi^1(y^{-1}w(X)) = 1$ pour $x \in X$.

$$X \cup \{y^{-1}\omega(X)\} \longrightarrow \mathbb{F}(X,y) = \mathbb{F}(X \cup \{y^{-1}\omega(X)\})$$

$$\downarrow^{f} \qquad \qquad \downarrow^{\chi}$$

$$G \longleftarrow \mathbb{F}(X)$$

 $(f(x) = x \text{ si } x \in X \text{ et } 1 \text{ si } x = y^{-1}\omega(X))$. L'homomorphisme $\varphi^1 : \mathbb{F}(X, y) \to G$ se factorise comme $F(X, y) \xrightarrow{\chi} \mathbb{F}(X) \xrightarrow{\varphi} G$ où $\chi(x) = x$ pour tout $x \in X$ et $\chi(y) = w(x)$. Alors φ^1 est surjective et

$$\ker \varphi^1 = \chi^{-1}(\varphi^{-1}(1)) = \chi^{-1}(gp_{\mathbb{F}(X)}R) = gp_{\mathbb{F}(X,y)}(R \cup \{y^{-1}w(X)\}).$$

Ainsi par le premier théorème d'isomorphisme, on a que

$$G \cong \mathbb{F}(x,y)/\ker \varphi^1 = \langle X, y | R \cup \{y^{-1}w(X)\} \rangle.$$

Théorème 6.5 (DE TIETZE). Soient $\mathcal{P}_1 = \langle X|R \rangle$ et $\mathcal{P}_2 = \langle Y|S \rangle$ des présentations finies pour un groupe G. Alors il existe une suite finie de transformations de Tietze qui transforment \mathcal{P}_1 en \mathcal{P}_2 .

Preuve. cf. feuille annexe. G est donné par \mathcal{P}_1 et \mathcal{P}_2 . Alors chaque $x \in X$ peut être écrit comme un mot sur Y, et on note x(Y). Alors X(Y) représente tous les mots sur Y qui décrivent les éléments de X. De la même manière, on définit y(X) et Y(X).

On commence avec \mathcal{P}_1 et on utilise les transformations suivantes (voir feuille annexe).

Intuitivement, on ajoute tous les générateurs Y et on enlève tous les générateurs X. On utilise les transformations $R^+|X|+|R|+|Y|+|S|$ fois et $R^-2(|R|+|Y|)$ fois. Donc il y a un nombre fini de transformations de \mathcal{P}_1 à \mathcal{P}_2 .

Corollaire 6.6. On peut énumérer toutes les présentations finies d'un groupe G à partir d'une présentation quelconque pour G.

Proposition 6.7. Si le groupe G a une présentation finie $\langle X_1|R\rangle$ et une présentation infinie $\langle X_2|S\rangle$ où S est infini, alors il existe un entier n tel que $\langle X_2|s_1,\ldots,s_n\rangle$ est une présentation finie pour G.

Chapitre 7.

Index

Arbre

```
maximal, 21
Bouquet
   à n cercles, 21
   à deux cercles, 21
Connexe
   par arcs, 18
   simplement, 19
Lemme
   du Ping-Pong
     2nde version, 20
Produit libre, 20
Proposition
   de Tietze, 26
Relèvement
   d'homotopies, 23
   de chemins, 23
Revêtement, 22
   à n feuillets, 22
Théorème
   de Tietze, 27
   de Nielsen-Schreier, 24
   de Van Kampen, 21
Transformation de Tietze, 25
Voisinage
   trivialisant, 22
```