

Prof. Dr. J. Giesl
M. Hark

Notes:

- Please solve these exercises in **groups of four!**
- The solutions must be handed in **directly before** (very latest: at the beginning of) the exercise course on Wednesday, 26.06.2019, 14:30, in lecture hall **AH I**. Alternatively you can drop your solutions into a box which is located right next to Prof. Giesl's office (until 30 minutes before the exercise course starts).
- Please write the **names** and **immatriculation numbers** of all students on your solution. Also please staple the individual sheets!

Exercise 1 (Transformation to Simple Haskell):

(7 points)

The data structure List a is defined by

```
data List a = Nil | Cons a (List a)
```

Transform the following HASKELL-expression to an equivalent simple HASKELL-expression using the transformation rules (1)-(9) from the lecture. Please give all intermediate expressions and indicate in each step which transformation rule was used. You may apply rules to several identical subterms simultaneously.

```
let length Nil = 0
    length (Cons x xs) = 1 + length xs
in length xs
```

Please simplify the intermediate expressions according to the following rules:

- (i) if (isa_{n-tuple} exp) then exp1 else exp2 should be replaced by exp1 for any $n \geq 0$.
- (ii) (\var->exp1) exp should be replaced by exp1', where exp1' results from exp1 by replacing all (free) occurrences of var by exp.

Exercise 2 (Substitutions):

$$(2 + 2 + 3 = 7 \text{ points})$$

Identify the free variables of the following lambda terms t_1 , t_2 , and t_3 , and also apply the three substitutions $\sigma_1 = [x/\lambda x.x \ y]$, $\sigma_2 = [y/v \ y]$, and $\sigma_3 = [z/\lambda z.x \ z]$, respectively, to each of these terms (so that you obtain in total 9 possibly different lambda terms $t_i\sigma_j$ with $i,j \in \{1,2,3\}$):

- a) $t_1 = \lambda y.x \ (\lambda x.y \ x)$
- b) $t_2 = \lambda x.(\lambda y.x \ y) \ x \ y$
- c) $t_3 = \lambda y.(\lambda z.z \ x \ y) \ z \ y$

Exercise 3 (β -reduction):

$$(2 + 4 = 6 \text{ points})$$

a) Give all reduction sequences with \rightarrow_{β} starting with the following term:

$$(\lambda x \ y.x \ y) \exp ((\lambda x \ z.mult \ x \ (mult \ z \ z)) \ 3 \ 2)$$

b) Give all reduction sequences with \rightarrow_{β} with at most 3 steps starting with the following term:

$$(\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))) (\lambda y. y)$$

Hints:

• You can save space by representing the reduction sequences as directed graphs. For example, $t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} t_4$, $t_1 \rightarrow_{\beta} t_2 \rightarrow_{\beta} t_5$, and $t_1 \rightarrow_{\beta} t_3 \rightarrow_{\beta} t_5$ can be represented as:

- In a), you may abbreviate exp to e and mult to m to save space.
- In b), you may write A_f instead of $\lambda x.f$ $(x\ x)$, B instead of $\lambda y.y$ and C instead of $\lambda x.x\ x$ to save space. The start term could then be represented as $(\lambda f.A_f\ A_f)\ B$. Furthermore, the term $\lambda x.(\lambda y.y)\ (x\ x)$ can be abbreviated to A_B .

Exercise 4 (Confluence):

$$(2+2+2+2=8 \text{ points})$$

- a) Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ be the natural numbers with the standard relation >. Indicate whether the following properties hold. Explain your solution!
 - For any $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that m is a normal form of n w.r.t. >.
 - \bullet > is confluent.
- **b)** Let $\mathbb{N} = \{0, 1, 2, \ldots\}$ be the natural numbers with the following relation \succ : $m \succ n$ if there is some $0 < r \in \mathbb{N}$ with $m = r \cdot n$, i.e., n divides m.

Indicate whether the following properties hold. Explain your solution!

- For any $n \in \mathbb{N}$ there is an $m \in \mathbb{N}$ such that m is a normal form of n w.r.t. \succ .
- \succ is confluent.
- c) Let \mathbb{Z} be the integers with the standard relation >.

Indicate whether the following properties hold. Explain your solution!

- For any $z \in \mathbb{Z}$ there is a $q \in \mathbb{Z}$ such that q is a normal form of z w.r.t. >.
- \bullet > is confluent.
- d) Let $\operatorname{Pot}_{\neq\emptyset}(\mathbb{Z})$ be the set of nonempty subsets of the integers with the relation \subsetneq : $A \subsetneq B$ whenever $A \neq B$ and A is a subset of B.

Indicate whether the following properties hold. Explain your solution!

- For any $\emptyset \neq A \subseteq \mathbb{Z}$ there is a $B \subseteq \mathbb{Z}$ such that B is a normal form of A w.r.t. \subseteq .
- \subseteq is confluent.