TD 1 : Espaces vectoriels normés

Exercice 1: Dire si les applications suivantes sont des normes sur \mathbb{R}^2 en justifiant vos réponses :

1. $N_1:(x;y) \longmapsto |3x+5y|$

 $2. N_2: (x;y) \longmapsto |xy|.$

3. $N_3:(x;y) \longmapsto |3x| + |5y|$.

4. $N_4: (x;y) \longmapsto \sqrt{x^2 + 2xy + 5y^2}$.

Exercice 2: Soient N_1 et N_2 deux normes sur un espace vectoriel E. On pose $N = \max(N_1, N_2)$. Montrer que N est une norme sur E.

Exercice 3: Soit a, b > 0. On pose, pour tout $(x, y) \in \mathbb{R}^2$, $N(x, y) = \sqrt{a^2x^2 + b^2y^2}$.

- 1. Prouver que N est une norme.
- 2. Déterminer le plus petit nombre p > 0 tel que $N \le p||.||_2$ et le plus grand nombre q tel que $q||.||_2 \le N$.

Exercice 4: On définit une application sur $\mathcal{M}_n(\mathbb{R})$ par

$$\forall A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R}), \quad N(A) = n \max_{i,j} |a_{i,j}|.$$

- 1. Montrer que N est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que N vérifie

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \ N(AB) \leq N(A)N(B).$$

Exercice 5: Soit $E = \mathcal{C}([0,1],\mathbb{R})$. Soient N_1, N_2 et N_∞ les applications de E dans \mathbb{R}^+ définies par

$$N_1(f) = \int_0^1 |f(t)| dt, \qquad N_2(f) = \left(\int_0^1 |f(t)|^2 dt\right)^{1/2} \quad \text{ et } \quad N_\infty(f) = \sup_{x \in [0,1]} |f(x)|.$$

- 1. Vérifier qu'il s'agit de 3 normes sur E. Démontrer qu'elles ne sont pas équivalentes deux à deux.
- 2. On définit

$$N(f) = |f(0)| + N_{\infty}(f')$$
 et $N'(f) = N_{\infty}(f) + N_{\infty}(f')$.

Démontrer que N et N' sont deux normes équivalentes sur E. Sont-elles équivalentes à N_{∞} ?

Exercice 6: Soit $E = \mathbb{R}[X]$. Pour tout $P = \sum_{i=0}^{p} a_i X^i$ dans $\mathbb{R}[X]$, on définit :

$$N_1(P) = \sum_{i=0}^{p} |a_i|, \qquad N_2(P) = \left(\sum_{i=0}^{p} |a_i|^2\right)^{1/2} \quad \text{et} \quad N_\infty(P) = \max_i |a_i|.$$

Vérifier qu'il s'agit de 3 normes sur $\mathbb{R}[X]$. Sont-elles équivalentes deux à deux?

Exercice 7: On munit $E = \mathbb{R}[X]$ des normes données par les relations

$$N_1(P) = \int_0^1 |P(t)| dt$$
 et $N_{\infty}(P) = \sup_{t \in [0,1]} |P(t)|$

et l'on considère la suite $(X^n)_{n\in\mathbb{N}}$ d'éléments de E.

- 1. Vérifier que la suite $(X^n)_{n\in\mathbb{N}}$ est bornée pour N_{∞} et converge vers 0 pour la norme N_1 .
- 2. Comparer N_1 et N_{∞} .
- 3. En déduire que, bien que bornée, la suite $(X^n)_{n\in\mathbb{N}}$ ne possède pas de valeur d'adhérence pour N_{∞} .