Exercice 3 : Mise en équation et résolution de circuits linéaires en régime variable - Conditions initiales non nulles **

On considère le circuit de la figure ci-dessous.

A $t=0^-$, l'interrupteur K est en position 1, le condensateur est donc initialement chargé.

A t=0, on bascule l'interrupteur K en position 2, le condensateur se décharge alors dans le reste du circuit (composé d'une résistance et d'une bobine).

Partie: 1 - Résolution temporelle

Question

1) Donner les conditions initiales $v_C(0^+)$ et $rac{dv_C}{dt}(0^+)$.

Solution

Question

2) Établir l'équation différentielle qui régit l'évolution de la tension $v_c(t)$ aux bornes du condensateur C.

Indice

Solution

Question

3) Résoudre l'équation différentielle pour trouver l'expression de $v_C(t)$.

On donne les valeurs suivantes : $E=10\,V$, $R=100\,\Omega$, $C=10\,\mu F$ et $L=0,1\,H$.

Indice

Solution

Question

4) Déterminer la pseudo-période de $v_C(t)$.

Indice

Solution

Partie : 2- Résolution avec le formalisme de la transformée de Laplace ***

L'objectif de cette partie est de redémontrer les résultats obtenus précédemment en utilisant cette fois-ci le formalisme de la transformée de Laplace.

Question *

5) Faire le schéma équivalent du circuit avec le formalisme de la transformée de Laplace pour t>0 en précisant les notations utilisées pour chaque grandeur électrique.

Indice

Solution

6) Utiliser les théorèmes généraux pour établir l'expression de $V_C(p)$ en fonction de R, L, Cet E.

Méthode?

Solution

Question *

7) Retrouver l'expression de $V_C(p)$ à partir de l'équation différentielle obtenue à la question 2) avec les conditions initiales déterminées à la question 1).

Méthode?

Solution

Question

- 8) L'objectif de cette question est de déterminer $v_C(t)$ à partir de l'expression de $V_C(p)$, en calculant sa transformée de Laplace inverse. Pour cela, on se propose de suivre les questions intermédiaires.
- 8) a) Est-ce que l'expression de $V_C(p)$ est écrite sous la forme d'une somme d'éléments simples? Si non, effectuer une décomposition en éléments simples.
- 8) b) Réécrire l'expression de $V_C(p)$ pour la mettre sous la forme suivante :

$$V_C(p) = A \cdot rac{p+lpha}{\left(p+lpha
ight)^2 + \omega^2} + B \cdot rac{\omega}{\left(p+lpha
ight)^2 + \omega^2}$$
 où $p_1 = -lpha - j \cdot \omega$ et

 $p_2 = -\alpha + j \cdot \omega$ sont les racines du dénominateur et A et B sont deux constantes à déterminer.

8) c) Calculer la transformée de Laplace inverse de $V_C(p)$. Comparer le résultat obtenu avec celui de la question 3).

Solution 8) b)
Solution 8) c)

Partie: 3- Simulation

Question

9) A l'aide d'Octave, résoudre l'équation différentielle obtenue à la question 2) avec les conditions initiales obtenues à la question 1).

Résolution d'équation différentielle avec Octave ?

Solution

Question

10) A l'aide d'Octave, tracer $v_C(t)$. Pour cela, on complétera le script réalisé à la question précédente.

Indice

Solution

Question

11) Utiliser Octave pour calculer les transformées de Laplace inverse de $V_C(p)$ en utilisant l'expression obtenue à la question 6).

On utilisera la fonction *pretty* pour mettre en forme l'affichage de l'expression.

Tracer $v_C(t)$, on comparera au résultat obtenu à la question précédente.

Calcul de la transformée de Laplace inverse avec Octave ?

Syntaxe de pretty?

Solution