NOME:_____TURMA

Universidade do Porto

Faculdade de Engenharia Licenciatura em Engenharia Electrotécnica e de Computadores

Sistemas Digitais (1999/2000)

1ª chamada - 14/Junho/1999

Duração: 2h 30m, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- **1** Considere a sequência de dígitos 10101
- a) Diga qual é o seu valor se essa sequência representar:
 - i) um número inteiro em base 2 com 6 bits e em complemento para dois
 - ii) um número inteiro em base 2 com 5 bits e complemento para dois
 - iii) um número inteiro sem sinal em base 2
- **b)** Determine o número com 6 bits representado em complemento para dois, que adicionado ao número 10101 representado em complemento para dois com 5 bits, dá o resultado -2. Efectue as operações aritméticas em binário que achar convenientes.

NOME: TURMA

2 - Considere a função booleana F(A,B,C;D):

$$F(A,B,C,D) = (\overline{B} + A).(\overline{B} + C + D).(B + C + \overline{D})$$

a) Represente F(A,B,C,D) no mapa de Karnaugh junto e obtenha a representação de F na forma simplificada <u>soma de produtos</u>. Indique convenientemente os agrupamentos de uns ou zeros que considerou para construir a expressão simplificada. <u>Sugestão</u>: note que não é necessário construir a tabela de verdade para representar a função dada no mapa de Karnaugh!

b) Considere agora uma função G(A,B,C,D) que é idêntica a F, excepto no termo ABCD=1101 em que é indiferente. Construa um circuito minimizado utilizando apenas portas lógicas NOR de 2 ou 3 entradas que realize a função G(A,B,C,D).

NOME: TURMA

3 - Pretende-se construir uma máquina de estados de Moore com uma entrada X e duas saídas S1 e S0. A saída S1 toma o valor 1 quando é detectada na entrada X a sequência 10111; a saída S0 toma o valor 1 quando é detectada na entrada X a sequência 10110. As sequências a detectar podem ser parcialmente sobrepostas da forma que se exemplifica na figura:

a) A figura representa um diagrama de transição de estados incompleto para a máquina de Moore referida. Complete-o indicando claramente as transições de estado, condições de transição de estado ou valores para as saídas S1 e S0 que faltam.

b) Mantendo o modelo de máquina de Moore, modifique o diagrama de transição de estados de forma a que sejam apenas detectadas sequências não sobrepostas, i.e. sempre que é detectada uma sequência válida, só é iniciada a pesquisa de uma nova sequência com o primeiro bit a seguir à última sequência detectada (ver figura)

c) Mostre que se a máquina de estados referida em b) for implementada como uma máquina de Mealy é possível reduzir o número de estados.

NOME: _____TURMA _

4 - A figura seguinte representa a tabela de transição de estados de uma máquina de Mealy.

	Entrada X			
Estado S	X=0	X=1		
А	в, 0	A , 1		
В	C , 1	в, 1		
С	A , 1	C , 0		

Estado S	Q1,Q0		
А	1 0		
В	0 1		
C	1 1		

próximo estado S*, saída Z

a) Codificando os estados da forma que se indica na figura, preencha a tabela da figura com as funções lógicas que produzem o próximo estado Q1*,Q0* e a saída Z do circuito. Considere que as variáveis de estado são realizadas com *flip-flops* do tipo D e que se pretende minimizar a complexidade do circuito lógico resultante.

Q1	Q0	Х	Q1*	Q0*	Z

b) Implemente a função Q0* utilizando um multiplexador 4 ÷1 (com 2 linhas de selecção) e inversores.

NOME:_____TURMA

- Pretende-se gerar, utilizando um *universal shift-register* 74x194 (ver tabela), a seguinte sequência:

a) Construa o circuito que gere a sequência pretendida nas saídas QA,QB,QC,QD do *shift-register*. Note que a sequência apresentada pode ser gerada por deslocamentos sucessivos de um bit. <u>Sugestão</u>: para além do 74194, basta utilizar um inversor...

b) Mostre que alterações teria de introduzir no circuito para que uma entrada X permita seleccionar entre a sequência anterior (quando X=0) e a sequência seguinte (para X=1):

<u>Sugestão</u>: construa primeiro o circuito que implementa a nova sequência e só depois procure combinar os dois circuitos introduzindo a entrada X.

 $\bf 6$ - O circuito da figura representa um inversor CMOS cuja saída está ligada à entrada de um circuito digital X. A ligação entre os dois circuitos apresenta uma resistência R e a entrada do circuito X pode ser representada pelo paralelo de uma resistência R_L e um condensador C_L , como se mostra na figura.

Explique justificando, de que forma o valor da resistência R afecta:

i) Os níveis lógicos na entrada do circuito X (ponto A)

ii) A potência fornecida pela fonte de tensão Vdd.

iii) Os tempos de subida e de descida da tensão V_A na entrada do circuito X

NOME:_____TURMA

