National Water Conditions

UNITED STATES
Department of the Interior
Geological Survey

CANADA
Department of the Environment
Water Resources Branch

DECEMBER 1984

Streamflow was in the normal range or above that range in most of the United States and southern Canada during December. Below-normal flows persisted in parts of Nova Scotia, the Atlantic Coastal States, Saskatchewan, British Columbia, and Hawaii. Flows decreased into the below-normal range in parts of southwestern Canada, Washington, Oregon, California, Wyoming, Nebraska, Virginia, the Carolinas, and Georgia.

Warm temperatures, melting snow, and heavy rains at the end of the month combined to cause floods with recurrence intervals of 75 years or greater in southwestern New Mexico and 100 years or greater just east of Lake Ontario in New York. Estimated property damage was five to ten million dollars in New Mexico and about 1,000 people were evacuated from their homes in Oswego County, New York.

STREAMFLOW CONDITIONS DURING DECEMBER 1984

Streamflow generally increased seasonally in Nova Scotia, New Hampshire, Vermont, New York, Connecticut, Massachusetts, Rhode Island, in the Coastal States from New Jersey to South Carolina, and in West Virginia, Ohio, Indiana, Michigan, Arkansas, and Arizona. Monthly mean flows remained in the above-normal range in parts of Quebec, Kentucky, Illinois, Wisconsin, Minnesota, South Dakota, Nebraska, Iowa, Missouri, Arkansas, and in most States from the Rocky Mountains to the Sierra Nevada/Cascade Range. Mean flows increased into the above-normal range in Oklahoma and parts of adjacent States, and in parts of Quebec and New York. Mean flows at index sites on the Humboldt River at Palisades, Nevada and on the Snake River at Weiser, Idaho have remained in the above-normal range for 30 consecutive months, illustrating the overall wet trend in the West during the last 2 to 3 years. Monthly mean flow of the North Platte River above Seminoe Reservoir near Sinclair, Wyoming (drainage area 8,134 square miles) was 620 cfs (cubic feet per second), the highest for the month in 46 years of record, the second consecutive record-breaking month, and the 8th consecutive month of flows in the above-normal range at that site. Monthly mean discharge of 5,761 cfs on the Colorado River near Cisco, Utah (drainage area 24,100 square miles) was also the highest of record (73 years) for the second consecutive month, and remained in the above-normal range for the 20th consecutive month. These record-breaking monthly mean flows occurred despite seasonal decreases in streamflow in both Wyoming and Utah.

In contrast, streamflow decreased seasonally in western Florida where the monthly mean flow of 84 cfs and the daily mean flow of 63 cfs on December 26 at the Peace River at Arcadia, Florida (drainage area 1,367 square miles) were lowest for December in 53 years of record. and marked the 4th consecutive month of record low flows. Streamflows also generally decreased in Tennessee, Wisconsin, Minnesota, the Dakotas, most States from Nebraska westward to the coast, southwestern Canada, Alaska, and Puerto Rico. Flows were variable elsewhere in the United States and southern Canada. Monthly mean flows remained in the below-normal range in parts of Hawaii, southwestern Canada, Ontario, the Atlantic Provinces, Maine, Massachusetts, New York and Coastal States southward to Maryland, the Carolinas, and Florida. During December, mean flows decreased into the below-normal range in parts of Rhode Island, Long Island, N.Y., Virginia, Nebraska, Colorado, California, Oregon, Washington, and southwestern Canada.

Floods on eastern shore tributaries to Lake Ontario in New York occurred between December 29-31 with recurrence intervals of about 100 years or greater at five gaging stations in the area and similar floods occurred in southwestern New Mexico on December 28 (see accompanying table and maps). Warm temperatures, snowmelt, and heavy rains were all contributing factors for the floods in both areas which resulted in about 1,000 persons being evacuated from their homes in Oswego County, New York, and estimated flood damages of five to ten million dollars in New Mexico. Flood stages, as designated by the National Weather Service, were exceeded on many rivers and small streams in West Virginia, Kentucky, Illinois, Minnesota, Missouri, Arkansas, Mississippi, Louisiana, Texas, California, New Mexico, and parts of Nevada, Arizona, Wisconsin, Michigan, Indiana, Ohio, Pennsylvania, and Vermont with minor to moderate flooding affecting mainly lowlands and agricultural

Streamflow at the 12 index gaging stations in Wyoming, Colorado, and Utah averaged about twice the long-term median flow with 11 of the 12 sites in the above-normal range. The Great Salt Lake rose 0.35 foot to an elevation of 4,208.65 feet above mean sea level, 2.75 feet higher than a year ago, and only 2.95 feet lower than the alltime high elevation of record set in 1873.

The combined flow of the three largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia rivers—was 1,094,500 cfs during December, about the same as last month, and 33 percent above the long-term average. Monthly means were in the above-normal range for both the St. Lawrence and Mississippi rivers. These three large river systems account for runoff from more than half of the conterminous United States, and provide a useful check on the status of the Nation's surface-water resources.

Contents of selected reservoirs generally declined in Maine, New Jersey, South Carolina, Alabama, the Tenessee Valley, Wisconsin, and Minnesota but remained close to, or above average, in the Tennessee Valley, Wisconsin, and Minnesota. Both changes in contents and month-end contents varied widely in the rest of the nation, but most reservoirs in California, Arizona, Wyoming, and Oklahoma were above average. Many reservoirs remained below average in Texas.

CONTENTS

Streamflow during December 1984 (map)						
Streamflow conditions during December 1984			 			
Cround water and diling beauty 1994			 			
Ground-water conditions during December 1984.			 	 		
USADIE CONTENTS OF SElected reservoirs near end of December 1984						
Usable contents of selected reservoirs and reservoir systems, November 1982 to December 1984 (g	ranhe		 			
Flow of large rivers during December 1984	rapiis	,	 			
Flow of large rivers during December 1984			 			
Dissolved solids and water temperatures for December at downstream sites on six large rivers			 	 		
Precipitation infecast for lanuary 1985						
Flood characteristics of urban watersheds in the United States (abstract)			 	 		
The Contract of Grand Water sine us in the Content States (abstract)			 	 		
Total precipitation, December 1984			 			
Explanation of data			 	 		

FLOOD DATA FOR SELECTED SITES IN NEW YORK AND NEW MEXICO, DECEMBER 1984

WRD station number	Stream and place of determination	Drainage	Period	Maximum fl kn	ood previous	Maximum during present flood							
		area (square	of known		Stage	Dis-		Stage	Disch	Recur-			
		miles)	floods	Date	(feet)	charge (cfs)	Date	(feet)	Cfs	Cfs per square mile	interval (years)		
				NEW YORK									
	STREAMS TRIBUTAR	RY TO LA	KE ONTAI	RIO									
04242500	East Branch Fish Creek at Taberg.	188	1923-	June 22, 1972	11.71	14,500	Dec. 29	12.8	15,000	80	100		
04250750	Sandy Creek near Adams.	128	1957-	Apr. 4, 1963	11.01	11,800	29	10.63	10,000	78	100		
04252500	Black River near Boonville.	304	1911-	Apr. 18, 1982	11.31	12,800	30	11.4	14,800	49	>100		
04256000	Independence River at Donnattsburg.	88.7	1942-	Apr. 18, 1982	9.73	5,530	30	13.27	10,000	113	>100		
04260500	Black River at Watertown.	1,874	1920-	Mar. 16, 1977	12.98	39,600	31	13.1	41,000	22	100		
				NEW MEXIC	0								
09430500	GILA RIVER BASIN Gila River near Gila	1,864	1914,	Dec. 18, 1978	12.5	32,400	Dec. 28	12.3	31,000	17	>100		
09431500	Gila River near	2.829	1927- 1904-55.	Dec. 19, 1978	29.8	48,800	28	21.0	30,100	11	75		
	Redrock.		1962-										
09444000	San Francisco River near Glenwood.	1,653	1927-	Oct. 20, 1972	16.61	24,000	28	13.8	17,900	11	75		

Locations of stream-gaging stations in New Mexico and New York described in table of peak stages and discharges.

SURFACE WATER - MONTHLY MEAN DISCHARGE IN KEY STREAMS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

GROUNDWATER CONDITIONS DURING DECEMBER 1984

Ground-water levels continued to rise in most of the Northeast. (See map.) However, in parts of coastal New England and New Jersey and on Long Island, New York, levels changed only slightly or declined. Levels near the end of December remained below seasonal averages in much of Maine, New Hampshire, and southern Connecticut. Elsewhere in the northeast, levels did not have a consistent high or low pattern and were mostly within an average range of levels for this time of year. Levels were reported to be above average in some observation wells in central and western New York State.

In the Southeastern States, ground-water levels rose in Kentucky and in most wells in Mississippi, and declined in Virginia; trends were mixed in other States. Water levels were above average in Kentucky, and mixed with respect to average in other reporting States. A new high ground-water level for December was reached in Kentucky, and a new low level for December was noted in the key well in Memphis, Tennessee, despite a slight net rise during the month.

Map shows ground-water storage near end of December and change in ground-water storage from end of November to end of December.

MONTH-END GROUND-WATER LEVELS IN KEY WELLS

Unshaded area indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES—DECEMBER 1984

Aquifer and location	Water level in feet with ref- erence to land-	Departure from average	Net change level in fee		Year records	Remarks
	surface datum	in feet	Last month	Last year	began	
Glacial drift at Hanska, south-central						
Minnesota	-7.44	+1.00	-0.23	+2.68	1942	
Glacial drift at Roscommon in north-central						
part of Lower Peninsula, Michigan	-4.35	+0.51	+0.02	-0.22	1935	
Glacial drift at Marion, Iowa	-3.36	+3.06	+0.88	-0.75	1941	
Glacial drift at Princeton in northwestern						
Illinois	-8.95	+4.96	+0.79	-2.45	1943	
Petersburg Granite, southeastern Piedmont						
near Fall Zone, Colonial Heights, Virginia	-17.89	-1.96	-0.24	-1.35	1939	
Glacial outwash sand and gravel, Louisville,						
Kentucky (U.S. well no. 2)	-16.83	+8.97	+0.26	+1.03	1946	
500-foot sand aquifer near Memphis,	20.00			1100	22.10	
Tennessee (U.S. well no. 2)	-103.97	-15.14	+0.01	-0.34	1941	December low
Granite in eastern Piedmont Province.	100157	10.11	.0.01	0.51	1241	December 10 W
Chapel Hill, North Carolina (U.S.						
well no. 5)	-40.77	+2.82	-0.92	+1.10	1931	
Sparta Sand in Pine Bluff industrial	-40.77	12.02	-0.92	71.10	1931	
area, Arkansas	-228.90		-1.00		1958	
Eutaw Formation in the City of	-220.90		-1.00		1936	
	10.0	126	.10	1.0	1052	
Montgomery, Alabama (U.S. well no. 4)	-19.0	+2.6	+1.8	-1.6	1952	
Limestone aquifer on Cockspur Island,	22.20				1000	
Savannah area, Georgia (U.S. well no. 6)	-32.20	+5.87	+0.82	+0.30	1956	
Sand and gravel in Puget Trough,						
Tacoma, Washington	-100.48	+10.01	+0.40	+0.90	1952	
Pleistocene glacial outwash gravel, North Pole,						
northern Idaho (U.S. well no. 3)	-454.1	+7.4	+0.5	+2.2	1929	
Snake River Group: southwestern Snake						
River Plain aquifer, at Eden, Idaho	-121.3	-4.1	-1.4	+1.4	1957	
Alluvial valley fill in Flowell area, Millard						
County, Utah (U.S. well no. 9)	-0.60	+28.66	+0.80	+23.20	1929	
Alluvial sand and gravel, Platte River Valley,						
Ashland, Nebraska (U.S. well no. 6)	-4.70	+1.53	+0.10	+0.84	1935	
Alluvial valley fill in Steptoe Valley,						
Nevada	-8.32	+4.84	+0.26	+1.61	1950	Alltime high.
Pleistocene terrace deposits in Kansas						
River valley, at Lawrence, north-				1		
eastern Kansas	-20.35	+0.63	+0.25	+0.87	1953	
Alluvium and Paso Robles clay, sand, and		1		10101	1,00	
gravel, Santa Maria Valley, California	-96.74	+49.57	+0.23	+13.64	1957	Alltime high.
Valley fill, Elfrida area, Douglas, Arizona	-50.74	147.57	10.23	13.04	1,557	Themic mgii.
(U.S. well no. 15)	-106.3	-27.6	+0.5	+2.3	1951	
Hueco bolson, El Paso area, Texas	-262.45	-17.27	+0.45	-1.72	1965	December low
Evangeline aquifer, Houston area, Texas	-312.80	-11.98	-1.27	-5.45	1965	December low
Evangemie aquiter, mouston area, rexas	~312.00	-11.98	-1.27	-3.43	1903	

In the central and western Great Lakes States, ground-water levels rose in Ohio and in most of Iowa, and declined in most wells in Minnesota. Trends were mixed in other reporting States. Water levels were close to average in Wisconsin, Indiana, and Ohio, mostly above average in Iowa, and mixed with respect to average in Minnesota and Michigan. No new extremes were reported.

In the Western States, ground-water levels rose in Washington, Nebraska, and New Mexico, and declined in North Dakota. Trends were mixed in other Western States. Water levels were above average in Washington and Nebraska, and below average in Texas. Levels were mixed with respect to average in other States. New high ground-water levels for December were set in a key well in Idaho and in two key wells in Utah, although each of these wells showed a slight net decline during the month. Again, despite net rises during the month, two key wells in Kansas, and a well each in New Mexico and Texas, recorded new December lows. A new alltime high water level in 28 years of record was reached in the Santa Maria well in southern California, and an alltime high level was set for the second consecutive month in the Steptoe Valley well in Nevada in 34 years of record.

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF DECEMBER 1984

[Contents are expressed in percent of reservoir capacity. The usable storage capacity of each reservoir is shown in the column headed "Normal maximum."]

Reservoir rincipal uses:	Pe		of norm	al		Reservoir Principal uses: F-Flood control	P	ercent ma:	al	N	
:Flood control Irrigation 4Municipal 2-Power RRecreation VIndustrial	End of Dec. 1984	of Dec.	Average for end of Dec.	End of Nov. 1984	Normal maximum (acre-feet) ^a	I – Irrigation M – Municipal P – Power R – Recreation W – Industrial	End of Dec. 1984	of	Average for end of Dec.	End of Nov. 1984	Normal maximum (acre-feet) ^a
NOVA SCOTIA Rossignol, Mulgrave, Falls Lake, St.						NEBRASKA Lake McConaughy (IP)	82	87	71	85	1,948,000
Margaret's Bay, Black, and Ponhook Reservoirs (P)		38	50	23	b226,300	OKLAHOMA Eufaula (FPR) Keystone (FPR)	113	80 78	82 90	102 73	2,378,000 661,000
Allard (P)	74 79	56 70	58 65	75 79	280,600 6,954,000	Keystone (FPR) Tenkiller Ferry (FPR) Lake Altus (FIMR) Lake O'The Cherokees (FPR)	129 7 107	90 39 87	91 48 79	110 7 92	628,200 133,000 1,492,000
MAINE even reservoir systems (MP)	38	78	58	43	4,098,000	OKLAHOMA TEXAS Lake Texoma (FMPRW)	. 97	95	90	91	2,722,000
NEW HAMPSHIRE First Connecticut Lake (P) Lake Francis (FPR) Lake Winnipesaukee (PR)	58 61 56	65 82 88	58 70 62	62 61 53	76,450 99,310 165,700	TEXAS Bridgeport (IMW) Canyon (FMR) International Amistad (FIMPW) International Falcon (FIMPW)	61 81 58	76 88 77	46 76 85	55 81 68	386,400 385,600 3,497,000
VERMONT Iarriman (P)	76 86	87 86	59 67	70 78	116,200 57,390	Possum Kingdom (IMPRW)	. 86	90	78 85 97 28	33 101 84 29	2,668,000 1,788,000 570,200 307,000
MASSACHUSETTS Cobble Mountain and Borden Brook (MP)	62	78	72	63	77,920	Toledo Bend (P)	. 88 . 9 . 69 . 35	102	82 32 84 38	88 9 70 35	4,472,000 177,800 268,000 796,900
NEW YORK Great Sacandaga Lake (FPR) Indian Lake (FMP) New York City reservoir system (MW).	. 52 82 56	56 84 70	52 61	48 64 52	786,700 103,300 1,680,000			79	78	58	1,144,000
NEW JERSEY Wanaque (M)	. 54	101	71	61	85,100	Fort Peck (FPR)	. 86		84	88 84	18,910,000 3,451,000
PENNSYLVANIA Allegheny (FPR). Pymatuning (FMR). Raystown Lake (FR). Lake Wallenpaupack (PR).	35 83 67 52	55 81 68 79	34 81 53 56	32 91 66 48	1,180,000 188,000 761,900 157,800		. 69 . 94 . 52 . 42	88 57 48	55 84	82 94 67 55 92	1,052,000 5,022,000 676,100 359,500 245,600
MARYLAND Baltimore municipal system (M)	. 94	95	84	93	261,900	IDAHO Roise River (4 reservoirs) (FIP)	50	70		53	1,235,00
NORTH CAROLINA Bridgewater (Lake James) (P) Narrows (Badin Lake) (P) High Rock Lake (P)	. 90 . 91 . 14	96 97 71	77 94 61	91 86 32	288,800 128,900 234,800	IDAHO—WYOMING		58	50	60 34	238,50 1,561,00 4,401,00
SOUTH CAROLINA Lake Murray (P)	79			78 74	1,614,000 1,862,000		. 80	79	75	88 79	802,00 421,30
SOUTH CAROLINA—GEORGIA Clark Hill (FP)	. 47	83	53	50	1,730,000	Keyhole (F)	4	1 26	43	71	193,80 3,056,00
GEORGIA Burton (PR) Sinclair (MPR) Lake Sidney Lanier (FMPR)	. 69 . 88 . 54	97	74	82 67 53	214,000	John Martin (FIR)	6	4 6	54	63 66 85	
ALABAMA Lake Martin (P)	. 71	95	60	79	1,375,00	COLORADO RIVER STORAGE PROJECT Lake Powell; Flaming Gorge, Fontenelle, Navajo, and Blue Mesa					
Clinch Projects: Norris and Melton Hill Lakes (FPR). Douglas Lake (FPR). Hiwassee Projects: Chatuge, Nottely,	. 12	32	31 11	33 20		Reservoirs (IFPR)			0		
Hiwassee, Apalachia, Blue Ridge, Ocoee 3, and Parksville Lakes (FPR) Holston Projects: South Holston, Watauga,	. 44	54	38	54	1,012,00	Bear Lake (IPR) CALIFORNIA Folsom (FIP)		0 8	0 54	61	
Boone, Fort Patrick Henry, and Cherokee Lakes (FPR) Little Tennessee Projects: Nantahala,	. 38	36	32	41	2,880,00	Folsom (FIP) Hetch Hetchy (MP) Disabella (FIR) Pine Flat (FI) Clair Engle Lake (Lewiston) (P)	4	9 7	3 26	55	568,10 1,001,0
Thorpe, Fontana, and Chilhowee Lakes (FPR)		51	39	42	1,478,00	Clair Engle Lake (Lewiston) (P) Lake Almanor (P) Lake Berryessa (FIMW) Millerton Lake (FI)	8	8 8 4 9 6 10 18 8	3 49	87	1,036,0
Chippewa and Flambeau (PR)	7					O Shasta Lake (FIPR)	7	71 7	8 68	73	4,377,0
MINNESOTA Mississippi River headwater system (FMR)	2	3 20	6 23	20	6 1,640,00	Lake Tahoe (IPR)			37 48		
NORTH DAKOTA Lake Sakakawea (Garrison) (FIPR)	8	6 8	7 85	8	8 22,700,00				94 70		
SOUTH DAKOTA Angostura (1)	7	8 5			3 185,20	San Carlos (IP) ARIZONA		82	98 19	7	2 935,1
Belle Fourche (I). Lake Francis Case (FIP) Lake Oahe (FIP). Lake Sharpe (FIP).	1 8	7 6	1 56	8	8 4,834,00 3 22,530,00	Salt and Verde River system (IMPR)			82 39 68 79		

a1 acre-foot = 0.0436 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second day.
bThousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage).

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS, NOVEMBER 1982 TO DECEMBER 1984

FLOW OF LARGE RIVERS DURING DECEMBER 1984

			Mean	December 1984								
Station number	Stream and place of determination	Drainage area (square miles)	annual discharge through September 1980 (cubic feet per second)	Monthly mean dis- charge (cubic feet per second)	Percent of median monthly discharge, 1951-80	Change in dis- charge from previous month (percent)		harge near of month Million gallons per day	Date			
01014000	St. John River below Fish River at											
	Fort Kent, Maine	5,690	9,647	3,939	80	-30	2,800	1,810	31			
01318500	Hudson River at Hadley, N.Y	1,664	2,909	3,280	132	+120	15,500	10,020	31			
01357500	Mohawk River at Cohoes, N.Y	3,456 6,780	5,734 11,750	6,710 7,198	128 62	+131 +103	20,000 11,000	13,000 7,100	31			
01463500 01570500	Delaware River at Trenton, N.J Susquehanna River at Harrisburg, Pa	24,100	34,530	47,200	138	+280	40,800	26,370	31			
01646500	Potomac River near Washington, D.C.	11.560	111,490	12,500	125	+125	12,000	7,800	31			
02105500	Cape Fear River at William O. Huske Lock near Tarheel, N.C.	4,810	5,005	1,900	49	+40	1,320	853	31			
02131000 02226000	Pee Dee River at Peedee, S.C Altamaha River at	8,830	9,851	5,070	68	+36	3,920	2,534	28			
02320500	Doctortown, Ga	13,600 7,880	13,880 6,987	5,171 3,500	65 109	+23	3,670 3,300	2,371 2,130	31 31			
02358000	Apalachicola River at Chattahoochee, Fla	17,200	22,570	14,270	84	+27	14,340	9,268	27			
02467000	Tombigbee River at Demopolis lock and dam near Coatopa, Ala	15,400	23,300	21,834	107	+90	5,750	3,720	31			
02489500	Pearl River near Bogalusa, La	6,630	9,768	13,700	250	+81	4,500	2,910	31			
03049500	Allegheny River at Natrona, Pa	11,410	119,480	25,610	98	-22	31,800	20,550	26			
03085000	Monongahela River at Braddock, Pa	7,337	112,510	20,150	136	+51	27,700	17,900	21			
03193000	Kanawha River at Kanawha	0 267	12 500	12 120	95	+35	25 200	16,350	27			
03234500	Falls, W. Va	8,367 5,131	12,590 4,547	13,130 4,615	114	+43	25,300 3,720	2,404	27 28			
03294500	Ohio River at Louisville, Ky ²	91,170	116,000	168,000	130	+53	251,420	162,497	26			
03377500	Wabash River at Mount Carmel, Ill	28,635	27,220	37,500	163	+56	52,600	34,000	31			
03469000	French Broad River below Douglas Dam, Tenn	4,543	6,798	6,961	106	+142						
04084500	Fox River at Rapide Croche Dam, near Wrightstown, Wis ²	6,150	4,163	4,236	118	-11	1,728	1,117	24			
04264331	St. Lawrence River at Cornwall, Ontario—near Massena, N.Y ³	299,000	242,700	260,800	109	-2	240,000	155,000	31			
02NG001 05082500	St. Maurice River at Grand Mere, Quebec	16,300	25,150	17,000	128	+20	18,600	12,020	31			
05082500	Red River of the North at Grand Forks, N. Dak	30,100	2,551	1,476	128	-28	1,520	982	31			
	Rapids, Minn	19,400		8,600	87	+12	8,200	5,300	21			
05330000	Minnesota River near Jordan, Minn	16,200		3,620		-42	2,600	1,680				
05331000 05365500	Mississippi River at St. Paul, Minn Chippewa River at Chippewa			11,885		-41	12,000	7,760				
05407000	Falls, Wis	5,600		4,137		-6 -29	5,240 13,000	3,386 8,400				
05446500	Rock River near Joslin, Ill			7,230		-28	7,800	5,040				
05474500 06214500	Mississippi River at Keokuk, Iowa Yellowstone River at	119,000		62,300		-38	120,100	77,620				
06024500	Billings, Mont	11,796		2,869		-30	3,400					
06934500 07289000	Missouri River at Hermann, Mo		1	86,150		-23	170,000					
07331000	Vicksburg, Miss ⁴	7,202	1,368	754,742 2,185		+3	877,000 250					
08276500	Rio Grande below Taos Junction Bridge, near Taos, N. Mex			597		-11	650					
09315000	Green River at Green River, Utah			5,156		-18	4,800					
11425500	Sacramento River at Verona, Calif	21.257	18.820	28,100	135	+23	17,500		31			
13269000	Snake River at Weiser, Idaho	69,200	18,050	22,090	143	-18	2,312	1,494	30			
13317000	Salmon River at White Bird, Idaho	13,550	11,250	4,830	104	-21	5,010	3,238	29			
13342500	Clearwater River at Spalding, Idaho	9,570	15,480	4,450	70	-25	12,600	8,140	30			
14105700	Dalles, Oreg ⁵	237,000		79,800		-23	140,000					
14191000 15515500				39,600		-33	24,500					
08MF005	Fraser River at Hope, British	25,600	23,460	6,290	93	-46	6,000	3,900	26			
JUMI 00J	Columbia	83,800	96,290	31,920	73	-34	24,505	15,837	31			

Adjusted.

Records furnished by Corps of Engineers.

Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges ahown are considered to be the same as discharge at Ogdensburg, N.Y. when adjusted for storage in Lake St. Lawrence.

Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.

Discharge determined from information furnished by Bureau of Reclamation, Corps of Engineers, and Geological Survey.

DISSOLVED SOLIDS AND WATER TEMPERATURES, DECEMBER 1984, AT DOWNSTREAM SITES ON SIX LARGE RIVERS

Station number	Station name	December	Stream discharge	Dissolved concentr		Dis	Water temperatureb				
		data of following calendar	during month	onth Mini-		Mean	Mini- mum	Maxi- mum	Mean,	Mini-	Maxi-
		years	Mean (cfs)	mum (mg/L)	mum (mg/L)	(te	(tons per day)		in °C	mum, in °C	in °C
01463500	Delaware River at Trenton, N.J. (Morrisville, Pa.)	1984 1944-83 (Extreme y	7,200 13,170 r) c11,650	62 (1983)	136 138 (1980)	2,040	1,450 631 (1964)	3,170 20,500 (1973)	5.0	2.5	7.5 12.0
04264331	St. Lawrence River at Cornwall, Ontario, near Massena, N.Y. (median streamflow at Ogdensburg, N.Y.)	1984 1975-83 (Extreme y	261,000 262,100	165 163 (1978)	167 170 (1975)	117,000 118,000	111,000 88,000 (1978)	119,000 139,000 (1981)	5.0 3.0	4.0 0.5	7.5 8.0
07289000	Mississippi River at Vicksburg, Miss.	1984 1975 –83 (Extreme y	*755,000 675,900 r) 1°495,500	153 (1978)	295 (1980)	376,200	131,000 (1976)	683,000 (1982)	7.5	0.5	13.0
03612500	Ohio River at lock and dam 53, near Grand Chain, Ill. (streamflow station at Metropolis, Ill.)	1984 1954–83 (Extreme y	468,000 319,400	148 138 (1962)	197 362 (1969)		182,000 21,300 (1980)	237,000 469,000 (1977)		5.5	9.0 14.0
06934500	Missouri River at Hermann, Mo. (60 miles west of St. Louis, Mo.)	1984 1975 –83 (Extreme y	86,200 68,590	295 222 (1982)	496 770 (1978)	98,000 67,200	73,000 34,600 (1980)	141,000 237,000 (1982)		1.5	7.5 14.0
14128910	Columbia River at Warrendale, Oreg. (streamflow station at The Dalles, Oreg.)	1984 1975 – 83 (Extreme y	158,000 157,900	111 82 (1975)	128 120 (1983)	50,100 45,300	34,200 22,800 (1978)	60,600 77,300 (1980)			7.5 10.5

^aDissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance. bTo convert ${}^{\circ}$ C to ${}^{\circ}$ F: $[(1.8 \times {}^{\circ}\text{C}) + 32] = {}^{\circ}$ F. ${}^{\circ}$ Median of monthly values for 30-year reference period, water years 1951-80, for comparison with data for current month. *Dissolved-solids and water-temperature records are not available for December.

(From Monthly and Seasonal Weather Outlook Published by National Weather Service)

FLOOD CHARACTERISTICS OF URBAN WATERSHEDS IN THE UNITED STATES

The abstract and illustration are from the report, Flood characteristics of urban watersheds in the United States, by V. B. Sauer, W. O. Thomas, Jr., V. A. Stricker, and K. V. Wilson, U.S. Geological Survey Water-Supply Paper 2207, 63 pages, 1983. This report may be purchased for \$3.00 from Eastern Distribution Branch, Text Products Section, U.S. Geological Survey, 604 S. Pickett St., Alexandria, VA 22304 (check or money order payable to U.S. Geological Survey); or from Superintendent of Documents, Government Printing Office, Washington, D. C. 20402 (payable to Superintendent of Documents).

ABSTRACT

A nationwide study of flood magnitude and frequency in urban areas was made for the purpose of reviewing available literature, compiling an urban flood data base, and developing methods of estimating urban floodflow characteristics in ungaged areas. The literature review contains synopses of 128 recent publications related to urban floodflow. A data base of 269 gaged basins in 56 cities and 31 States, including Hawaii, contains a wide variety of topographic and climatic characteristics, land-use variables, indices of urbanization, and flood-frequency estimates. (See figure 1.)

Three sets of regression equations were developed to estimate flood discharges for ungaged sites for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years. Two sets of regression equations are based on seven independent parameters and the third is based on three independent parameters. The only difference in the two sets of seven-parameter equations is the use of basin lag time in one and the lake and reservoir storage in the other. Of primary importance in these equations is an independent estimate of the equivalent rural discharge for the ungaged basin. The equations adjust the equivalent rural discharge to an urban condition. The primary adjustment factor, or index of urbanization,

is the basin development factor, a measure of the extent of development of the drainage system in the basin. This measure includes evaluations of storm drains (sewers), channel improvements, and curb-and-gutter streets.

The basin development factor is statistically very significant and offers a simple and effective way of accounting for drainage development and runoff response in urban areas. Percentage of impervious area is also included in the seven-parameter equations as an additional measure of urbanization and apparently accounts for increased runoff volumes. This factor is not highly significant for large floods, which supports the generally held concept that imperviousness is not a dominant factor when soils become more saturated during large storms. Other parameters in the seven-parameter equations include drainage area size, channel slope, rainfall intensity, lake and reservoir storage, and basin lag time. These factors are all statistically significant and provide logical indices of basin conditions. The three-parameter equations include only the three most significant parameters: rural discharge, basin-development factor, and drainage area size.

All three sets of regression equations provide unbiased estimates of urban flood frequency. The seven-parameter regression equations without basin lag time have average standard errors of regression varying from ±37 percent for the 5-year flood to ±44 percent for the 100-year flood and ±49 percent for the 500-year flood. The other two sets of regression equations have similar accuracy. Several tests for bias, sensitivity, and hydrologic consistency are included which support the conclusion that the equations are useful throughout the United States. All estimating equations were developed from data collected on drainage basins where temporary in-channel storage, due to highway embankments, was not significant. Consequently, estimates made with these equations do not account for the reducing effect of this temporary detention storage.

Figure 1.—Location of metropolitan areas included in the nationwide urban flood-frequency study.

(From Weekly Weather and Crop Bulletin published by National Weather Service and Department of Agriculture.)

NATIONAL WATER CONDITIONS

December 1984

Based on reports from the Canadian and U.S. Field offices; completed January 10, 1985.

TECHNICAL STAFF

Thomas G. Ross, Editor Hai C. Tang, Associate Editor Carroll W. Saboe Allen Sinnott John C. Kammerer Krishnaveni V. Sarma Sandra L. Holmes

PREPARATION

Lois C. Fleshmon Sharon L. Peterson Daphne L. Chinn

GRAPHICS

Frances B. Davison Carolyn L. Moss Leslie J. Robinson Joan M. Rubin

The National Water Conditions is published monthly. Subscriptions are free on application to the National Water Conditions, U.S. Geological Survey, MS 419, Reston, Virginia 22092.

EXPLANATION OF DATA

Cover map shows generalized pattern of streamflow for the month based on 18 index stream-gaging stations in Canada and 164 index stations in the United States. Alaska and Hawaii inset maps show streamflow only at the index gaging stations that are located near the points shown by the arrows.

Streamflow for the current month is compared with flow for the same month in the 30-year reference period, 1951-80. Streamflow is considered to be below the normal range if it is within the range of the low flows that have occurred 25 percent of the time (below the lower quartile) during the reference period. Flow is considered to be above the normal range if it is within the range of the high flows that have occurred 25 percent of the time (above the upper quartile). Shorter reference periods are used for the Puerto Rico index stations because of the limited records available.

Flow higher than the lower quartile but lower than the upper quartile is described as being within the normal range. In the National Water Conditions, the median is obtained by ranking the 30 flows for each month of the reference period in their order of magnitude; the highest flow is number 1, the lowest flow is number 30, and the average of the 15th and 16th highest flows is the median. One-half of the time you would expect the flows for the month to be below the median and one-half of the time to be above the median.

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year

Statements about ground-water levels refer to conditions near the end of the month. The water level in each key observation well is compared with average level for the end of the month determined from the entire past record for that well or from a 30-year reference period, 1951-80. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data for December are given for six stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominantly of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at time of low flow.

UNITED STATES
DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY
NATIONAL CENTER, STOP 419
RESTON, VIRGINIA 22092

OFFICIAL BUSINESS

Return this sheet to above address, if you do NOT wish to receive this material , or if change of address is needed (indicate change, including ZIP code).

POSTAGE AND FRES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413

FIRST CLASS

SPECIAL PROCESSING DEPT
MARCIA KOZLOWSKI
XEROX/UNIVERSITY MICROFILMS
ANN ARBOR
MI HOLDS

THE P

