

INSA – Gaussian processes

Continuity and differentiability of sample functions

Andrés F. López-Lopera

The French Aerospace Lab ONERA, France Information Processing and Systems Department (DTIS) Multidisciplinary Methods, Integrated Concepts (M2CI) Research Unit

Introduction

- · Regularity assumptions can be encoded in kernel functions:
 - periodicity, smoothness, stationarity, isotropy, ...

(left) Matérn covariance functions, (right) GP samples [Rasmussen and Williams, 2005]

1

Notation and preliminary remarks

- · Let Y_t be a stochastic process (e.g. a GP): $\{Y(t), t \in \mathbb{R}\}$
- · In the following, we assume that Y_t is centred, i.e. $\mathbb{E}\{Y_t\} = 0$
 - Otherwise, we consider $Z_t = Y_t \mathbb{E}\{Y_t\}$ instead
- · We denote $k(t, t') = \text{cov}\{Y_t, Y_{t'}\}$ the covariance function
 - We assume stationary kernels $k(\tau) := k(t, t + \tau)$ (abuse of notation)

Notation and preliminary remarks

Definition (Finite 2nd order moments)

A stochastic process Y_t has finite 2nd order moments if for all $t \in \mathbb{R}$:

$$\mathbb{E}\{|Y_t|^2\}<\infty.$$

This implies that $\mathbb{E}\{Y_t\}$ and $\mathbb{E}\{Y_tY_{t'}\}$ are well defined for all $t, t' \in \mathbb{R}$.

- · We denote L^2 the set of r.v's with finite 2nd order moments
- \cdot In the following, L^2 is a *Hilbert space* (3rd lecture), with inner product:

$$\langle X, Y \rangle = \mathbb{E} \left\{ XY \right\}.$$

· We can also denote $k(t, t') = \langle Y_t, Y_{t'} \rangle$ since Y_t is a centred

Outline

- 1. Sample functions properties in quadratic mean
- 2. Sample function properties

Sample functions properties in quadratic mean

Sample functions properties in quadratic mean

- \cdot There is no simple relationship between the covariance function k of a stochastic process Y and the **smoothness** of its realizations
- · However, one can relate k to quadratic mean properties of Y:
 - Convergence
 - Continuity
 - Differentiability

Convergence in quadratic mean

Definition (Convergence in quadratic mean)

Let $\{X_n\}_{n=1}^{\infty}$ be a random sequence, with r.v's X_1, X_2, \ldots defined on the same probability space as a r.v. Y. Define $\mathbb{E}\left\{|X_n|^2\right\} < \infty$ (finite variances). $\{X_n\}$ converges in quadratic mean (q.m.), $X_n \xrightarrow{q.m.} X$, if there exists Y such that:

$$||X_n - Y||_{L^2} \to 0$$
 (i.e. $\mathbb{E}\left\{|X_n - Y|^2\right\} \to 0$)

Theorem (Loeve criterion)

 $\{X_n\}$ converge in q.m. iif $\mathbb{E}\{X_nX_m\} = \langle X_n, X_m \rangle$ converges to a finite limit c when $n, m \to \infty$ (independently).

Convergence in quadratic mean

Proof.

· The "if" part follows from

$$\mathbb{E}\{|X_n - X_m|^2\} = \mathbb{E}\{[X_n - X_m][X_n - X_m]\}$$

$$= \mathbb{E}\{X_n X_n\} + \mathbb{E}\{X_m X_m\} - 2\mathbb{E}\{X_n X_m\}$$

$$= c + c - 2c = 0$$

· The "only if" part follows from

$$\mathbb{E}\left\{X_{n}X_{m}\right\} \to \mathbb{E}\left\{XX\right\} = \mathbb{E}\left\{\left|X\right|^{2}\right\}.$$

Continuity in quadratic mean

Definition (Continuity in quadratic mean)

A stochastic process Y_t is said to be continuous in q.m. at $t = t_0$ if

$$Y_t \xrightarrow{q.m.} Y_{t_0}$$
.

Proposition

- 1. Y_t is continuous in q.m. at $t = t_0$ iif k(u, v) is continuous at (t_0, t_0)
- 2. If k(u, v) is continuous at every diagonal point (t, t), then Y_t is continuous everywhere.

Proof hints.

- 1. For the "if" part, compute the expression $\mathbb{E}\left\{(Y_{t+\tau} Y_t)^2\right\}$
 - For the "iff" part, use the equality

$$k(t+\tau,t+\nu) - k(t,t) = \langle Y_{t+\tau} - Y_t, Y_{t+\nu} - Y_t \rangle$$
$$+ \langle Y_{t+\tau} - Y_t, Y_t \rangle + \langle Y_{t+\nu} - Y_t, Y_t \rangle$$

2. Use (1) and continuity of $\langle \cdot, \cdot \rangle$

Differentiability in quadratic mean

Definition (Differentiability in quadratic mean)

 Y_t is differentiable in q.m. at t if $\frac{Y_{t+h}-Y_t}{h}$ converge in q.m.

Proposition

- 1. If $\frac{\partial^2 k}{\partial u \partial v}$ exists at (t,t), then Y_t is differentiable in q.m. at t.
- 2. If $\frac{\partial^2 k}{\partial u \partial v}$ exists for every (t,t), then $\frac{\partial k}{\partial u}(u,v)$ and $\frac{\partial^2 k}{\partial u \partial v}(u,v)$ exist everywhere and we have:

$$\operatorname{cov}\left\{Y'_{u}, Y_{v}\right\} = \frac{\partial k}{\partial u}(u, v)$$
 and $\operatorname{cov}\left\{Y'_{u}, Y'_{v}\right\} = \frac{\partial^{2} k}{\partial u \partial v}(u, v)$

Proof hints.

- 1. Apply Loeve criterion to $Z_n = \frac{Y_{t+h_n} Y_t}{h_n}$ for any sequence $h_n \to 0$
- 2. For the 1st derivative, use (1) and compute $\langle \frac{Y_{u+h}-Y_u}{h}, Y_v \rangle$. Then, develop $\langle \frac{Y_{u+h}-Y_u}{h}, \frac{Y_{v+h}-Y_v}{h} \rangle$

ONERA

Differentiability in quadratic mean

Exercise.

- 1. Show that if $\frac{\partial^4 k}{\partial^2 u \partial^2 v}$ exist at (t, t), then Y_t is twice diff. in q.m. at t.
- 2. In addition, if $\frac{\partial^4 k}{\partial^2 u \partial^2 v}$ exists at every (t, t), then all the derivatives written below exist everywhere and we have:

$$\begin{aligned} & \operatorname{cov}\left\{Y_u'',Y_v\right\} = \frac{\partial^2}{\partial u^2}k(u,v) \\ & \operatorname{cov}\left\{Y_u'',Y_v'\right\} = \frac{\partial^3}{\partial u^2\partial v}k(u,v) \\ & \operatorname{cov}\left\{Y_u'',Y_v''\right\} = \frac{\partial^4}{\partial u^2\partial v^2}k(u,v) \end{aligned}$$

2nd order stationary processes

Definition (2nd order stationary processes)

 Y_t is 2nd order stationary if for any t, τ , $\mathbb{E} \{Y_t\}$ and $\operatorname{cov} \{Y_t, Y_{t+\tau}\}$ do not depend on t.

· If Y_t is a centred process, then Y_t is stationary if k(t, t') is a function of t - t' (see also the definition from 1st lecture).

2nd order stationary processes

Proposition (Continuity and differentiability)

Let Y_t *be a stationary stochastic process.*

- 1. Y_t is continuous in q.m. at $t = t_0$ iif $k(\tau)$ is continuous at 0. In this case, Y_t is continuous everywhere.
- 2. If $k^{2p}(\tau)$ exists in an open set containing 0, then Y_t is differentiable in q.m. at order p everywhere.

Proof hint. Show that the local properties of $k(\tau)$ at 0 imply the same properties to k(u, v) at the diagonal points.

Sample functions properties in quadratic mean

Challenges

- \cdot Continuity or differentiability in q.m. do not necessarily imply sample function continuity or differentiability.
- · However, they can be easily related to stationary covariance functions

Equivalence

Definition (Equivalence)

We say that Y_t and Z_t are equivalent if they have the same finite-dimensional distributions for all $t \in \mathbb{R}$:

$$P(\{Y_t=Z_t\})=1$$

Remarks.

- This implies that two equivalent processes have the same family of finite-dimensional distributions
- Two equivalent processes do NOT have necessarily the same sample functions properties

Equivalence

Example.

· Let Y_t and Z_t two stochastic processes defined over [0, 1] by:

$$Y(t) = 0 \quad \forall t$$

$$Z(t) = \begin{cases} 1, & \text{if } t = \tau \text{ for } \tau \in [0, 1] \\ 0, & \text{otherwise} \end{cases}$$

· Then Y_t and Z_t have the same finite-dimensional distributions but

$$P({Y_t \text{ is continuous in } [0,1]}) = 1$$

 $P({Z_t \text{ is continuous in } [0,1]}) = 0$

Theorem (Sample function continuity- Kolmogorov's theorem)

Let Y_t be a stochastic process defined over [0,1]. Suppose that, for all $t, t+h \in [0,1]$,

$$P(\{|Y_{t+h}-Y_t|\geq g(h)\})\leq q(h),$$

where g and q are even functions of h, non increasing as $h \downarrow 0$, and such that

$$\sum_{n=1}^{\infty} g(2^{-n}) < \infty \quad and \quad \sum_{n=1}^{\infty} 2^n q(2^{-n}) < \infty.$$

Then, there exists an equivalent stochastic process Z_t whose sample functions are, with probability one, continuous in [0,1].

Proof. See [Cramér and Leadbetter, 1967]

Corollary

If with the notation above we have

$$\mathbb{E}\{|Y_{t+h} - Y_t|^p\} \le c \frac{|h|}{|\log|h||^{1+r}},$$

where p < r and c are positive constants, the conclusion of the theorem holds.

Proof.

- · Consider $g(h) := |\log |h||^{-b}$ with 1 < b < r/p and the Markov inequality: $P(|X| \ge a) \le \mathbb{E}\{|X|^p\}/a^p$.
- · By applying the Kolmogorov's theorem, we have

$$P(\{|Y_{t+h} - Y_t| \ge g(h)\}) \le c \frac{|h|}{|\log|h||^{1+r-bp}} = q(h)$$

· Since b > 1, then

$$\sum_{n=1}^{\infty} g(2^{-n}) = \sum_{n=1}^{\infty} \frac{1}{|\log(2^{-n})|^b} = \frac{1}{(n \log 2)^b} < \infty$$

· Since 1 + r - bp > 1, then

$$\sum_{n=1}^{\infty} 2^n q(2^{-n}) = \sum_{n=1}^{\infty} \frac{c}{|\log(2^{-n})|^{1+r-bp}} = \sum_{n=1}^{\infty} \frac{c}{[n \log(2)]^{1+r-bp}} < \infty$$

Theorem (Stochastic processes with finite 2nd order moments)

Let Y_t be a stochastic process defined with finite second moments. If for all $t, t + h \in [a, b]$ the difference

$$\Delta_h^2 k(t,t) := k(t+h,t+h) - k(t+h,t) - k(t,t+h) - k(t,t)$$

satisfies the inequality $\Delta_h^2 k(t,t) < c \frac{|h|}{|\log |h||^q}$, with q > 3 and c > 0, then Y_t is equivalent to a stochastic process which, with probability one, is sample continuous.

Theorem (Stationary processes)

Let Y_t be a stationary stochastic process. If k''(0) exists, then Y_t is equivalent to a stochastic process which, with probability one, is sample continuous, i.e. $Y_t \in C$.

Proof hint. Apply Corollary with p = 2.

Theorem (Sample function differentiability)

Let Y_t be a stochastic process defined over [0,1]. Suppose that the hypothesis of Kolmogorov's theorem hold, and that, for all $t - h, t, t + h \in [0,1]$,

$$P(\{|Y_{t+h} + Y_{t-h} - 2Y_t| \ge g_1(h)\}) \le q_1(h),$$

where g_1 and q_1 are even functions of h, non increasing as $h\downarrow 0$, and such that

$$\sum_{n=1}^{\infty} 2^n g_1(2^{-n}) < \infty \quad and \quad \sum_{n=1}^{\infty} 2^n q_1(2^{-n}) < \infty.$$

Then, Y_t is equivalent to a process which, with probability one, has continuous sample function derivatives in [0, 1].

Proof. See [Cramér and Leadbetter, 1967].

Corollary

If the conditions of the corollary of the Kolmogorov's theorem are satisfied, and if

$$\mathbb{E}\left\{\left|Y_{t+h} + Y_{t-h} - 2Y_{t}\right|^{p}\right\} \le c \frac{|h|^{1+p}}{|\log|h||^{1+r}},$$

where p < r and c are positive constants, the conclusion of the theorem holds.

Proof hint. Apply the Markov inequality.

Theorem (Stochastic processes with finite 2nd order moments)

Let Y_t be a stochastic process defined with finite second moments. If for all t, t+h, the 4th difference $\Delta_h^4 k(t,t)$ satisfies the inequality $\Delta_h^4 k(t,t) < c \frac{\|h\|^3}{\|\log |h|\|^q}$, with q>3 and c>0, then Y_t is equivalent to a stochastic process which, with probability one, has continuous sample function derivatives.

Theorem (Stationary processes)

Let Y_t be a stationary stochastic process. If $k^{(4)}(0)$ exists, then Y_t is equivalent to a stochastic process which, with probability one, has C^1 sample functions.

Proof hint. Apply Corollary with p = 2.

Theorem (Differentiability in high orders)

There are analogous results. In particular, if Y_t is a stationary stochastic process and if $k^{(2k+2)}(0)$ exists, then Y_t is equivalent to a process which, with probability one, has C^k sample functions.

Effects of 1D stationary kernels in GP samples

1D stationary kernel	$k_{\sigma^2,\ell}(au)$	Class
Exponential	$\sigma^2 \exp\left\{-\frac{ au }{\ell}\right\}$	С
Matérn 3/2	$\sigma^2 \left(1 + \sqrt{3} \frac{ \tau }{a}\right) \exp \left\{-\sqrt{3} \frac{ \tau }{a}\right\}$	\mathcal{C}^1
Matérn 5/2	$\sigma^2 \left(1 + \sqrt{5} \frac{ \tau }{\ell} + \frac{5}{3} \frac{\tau^2}{\ell^2} \right) \exp \left\{ -\sqrt{5} \frac{ \tau }{\ell} \right\}$	\mathcal{C}^2
Squared Exponential (SE)	$\sigma^2 \exp\left\{-\frac{1}{2}\frac{ au^2}{\ell^2}\right\}$	\mathcal{C}^{∞}

Conclusions

- · Continuity and differentiability in quadratic mean have been studied
 - They do not imply sample function continuity or differentiability
 - They can be related to stationary covariance functions
- \cdot Sample function continuity/differentiability can be shown but at the cost of technicality

References

- Harald Cramér and M. Ross Leadbetter. Stationary and Related Stochastic Processes Sample Function Properties and Their Applications. Wiley, 1967.
- Marc G. Genton. Classes of kernels for machine learning: A statistics perspective. *Journal of Machine Learning Research*, 2001.
- Carl E. Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. MIT Press, 2005.
- Michael L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.
- A. M. Yaglom. Correlation Theory of Stationary and Related Random Functions. Springer, 1987.

