

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் Field Work Centre தவணைப் பரீட்சை, நவம்பர் - 2018 Term Examination, November - 2018

தரம் :- 12 (2020)

இணைந்த கணிதம்

நேரம் :- 3 மணித்தியாலங்கள்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்ட நேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக் கூடியதாக இரு பகுதிகளையும் இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்த கணிதம்							
பகுதி	வினா எண்	கிடைத்த புள்ளிகள்						
	1							
	2							
	3							
	4							
A	5	0.55						
A	6							
	7							
	8							
	9							
	10							
	11							
	12							
	13							
В	14							
В	15							
	16							
	17							
	மொத்தம்							
	•							

	பகுதி – A
(1)	$\sqrt{\frac{x^2-36}{x}} + \sqrt{\frac{x}{x^2-36}} = 7$ எனக் ஐத் தீர்க்க.
	2r \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(2)	$rac{2x}{x-2} \leq 1$ ஐத் திருப்திசெய்யும் x இன் பெறுமான வீச்சைக்காண்க.

(3)	$\frac{\log x}{3} =$	$=\frac{\log y}{4}=$	$\frac{\log z}{35}$	எனின்	x^5	y ⁵ =	<i>z</i> எனக்	் காட்(டுக.			
			•••••		•••••	•••••						
	•••••		•••••		•••••	•••••	•••••					
	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••			•••••	
	•••••		•••••		•••••	•••••				•••••	•••••	
	•••••		•••••	•••••	•••••	•••••	•••••			•••••		•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••		•••••
	•••••											
	•••••				•••••						• • • • • • • • • • • • • • • • • • • •	
	•••••											
	•••••				•••••							
(4)	f(x) =	$= -x^2 -$	(b +	(2)x +	(b -	- 1)	என்னுட	ம் சாi	ர்பானது	எப்பொழுத	நும் ப	மறையாவதந்கு
		г Сивјиг										
					<u></u> ,							

(5)	$\tan(A-B)=rac{1}{4}$, $\tan(A+B)=rac{1}{3}$ எனக் கொள்வோம் $2A$ ஐ $(A+B)$, $(A-B)$ இன்
	சார்பில் எழுதுவதன் மூலம் $ an 2A = rac{7}{11}$ எனக் காட்டுக.
(6)	$0< \propto <rac{\pi}{2}$ இற்கு $\cos \propto =rac{4}{5}$ எனவும், $rac{\pi}{2} இற்கு \sin eta=rac{5}{13} எனவும்$
	கோள்வோம். cos(α +β) இன் பெறுமானத்தைக் காண்க.

(7)	O,A,B,C என்பன நான்கு ஒரு தளப்புள்ளிகள் $\overrightarrow{OA}=\underline{a}$, $\overrightarrow{OB}=2\underline{a}-\underline{b}$, $\overrightarrow{OC}=\underline{b}$ எனின்
	$\overrightarrow{AB},\overrightarrow{BC}$ ஐ கண்டு A,B,C ஒரு நேர்கோட்டுப் புள்ளிகள் எனக்காட்டுக.
(8)	$\underline{a}=2\sqrt{3}i+2j$ $\underline{b}=-3\sqrt{3}i+3j$ எனின் \underline{a} , \underline{b} இற்கு இடைப்பட்ட கோணத்தை
	எண்ணிப் பெருக்கத்தை பய <mark>ன்ப</mark> டுத்தி காண்க.
	எணணிப பெருக்கத்தை பயன்படுத்தி காணக்.

(9)	10 <i>N</i> , 6 <i>N</i> எ பருமனையும்	யிசைகள் திசைை	துணிக்கை யயும் காண்	ஒன்றில் rக.	60°	கோணத்தில்	தாக்கும்	போது	ഖിതെബപ്പണിൽ
	•••••	•	•	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••			•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••
				•••••	•••••				
		• • • • • • • • • • • • • • • • • • • •		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••
					•••••				
					•••••				
	////								
(10)	$A \downarrow_{60}$			E	3				
		0							
		¥ 20							
	இழைகள் O	A, OB @	இவள்ள இழு	ളമെക്കണ്ട	ாக் க	ாண்க.			
		•	•	••••••	•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•
	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
				•••••	•••••			•••••	
					•••••				
					•••••				
	•••••								
	•••••	• • • • • • • • • • • • • • • • • • • •			•••••	•••••		•••••	•••••
				•••••	•••••			•••••	•••••

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும் Field Work Centre

சுவனைப் பரீட்சை, நவம்பர் - 2018

Term Examination, November - 2018

தரம் :- 12 (2020)

இணைந்த கணிதம்

பகுதி – B

- (11) (a) $x + \frac{1}{x} = a$ ஆயின் $x^2 + \frac{1}{x^2}$, $x^3 + \frac{1}{x^3}$ இன் பெறுமானங்களை a சார்பாகக் காண்க. மேலேயுள்ள முடிவுகளை மட்டும் பயன்படுத்தி $x^5 + \frac{1}{x^5} = a \ (a^4 - 5a^2 + 5)$ எனக் காட்டுக.
 - **(b)** $\frac{y+z-x}{4} = \frac{z+x-y}{5} = \frac{x+y-z}{6}$ எனின் $\frac{x}{11} = \frac{y}{10} = \frac{z}{9}$ எனக் காட்டுக
 - (c) a,b என்பன நேர் எண்களாகவும் $a,b \neq 1$ ஆகவும் இருக்க. $\log_a b = \frac{1}{\log_b a}$ எனக் காட்டுக. $\log b = \frac{1}{\log_b a}$ என்ற பயன்படுத்தி $\log_5 x^2 + \log_{5x} \left(\frac{5}{x}\right) = 1$ என்ற சமன்பாட்டைத் தீர்க்க.
 - (\mathbf{d}) $\sqrt{5x-9}+1=x$ என்ற சமன்பாட்டைத் தீர்க்க.
- (12) (a) $a,b,c \in \mathcal{R} \& a \neq \bigcirc$ எனக் கொள்வோம். சமன்பாடு $ax^2 + bx + c = \bigcirc$ இன் பிரித்துக்காட்டியை a,b,c என்பவற்றின் சார்பில் எழுதி இதிலிருந்து இச்சமன்பாட்டின் மூலங்கள் மெய்யானவையாயின் $\left(\frac{b}{2}\right)^2 \geq ac$ எனக் காட்டுக.

(b)

- i) $a,b \in \mathcal{R} \& a \neq \odot$ எனக் கொள்வோம் சமன்பாடு $ax^2 + (a+b)x + b = \odot$ இனது மூலங்கள் மெய்யானவை எனக் காட்டுக. இம்மூலங்கள் \propto , β எனின் $\propto +\beta, \propto \beta$ ஆகியவற்றை a,b என்பவற்றில் எழுதுக.
- ii) $\frac{(\alpha+1)}{\beta} + \frac{(\beta+1)}{\alpha} = \frac{(b-a)}{a}$ எனக் காட்டுக. $\frac{(\alpha+1)}{\beta}$, $\frac{(\beta+1)}{\alpha}$ இனை மூலகங்ளாக கொண்ட சமன்பாட்டை a,b இன் சார்பில் காண்க. $\alpha=\beta$ எனின் a=b எனக் காட்டுக.

- (13) (a) $f(x) = 2x^3 + x^2 2x + 1$ எனக் கொள்வோம். $\frac{f(x)}{(x-1)(x+1)}$ இனைப்பகுதிப்பின்னமாக்குக. இதிலிருந்து f(x) இனை $x^2 1$ ஆல் வகுக்கவரும் ஈ.வு, மீதியினைக் காண்க.
 - (b) $f(x) = x^4 + ax^3 2x^2 + bx + c$ எனக் கொள்வோம். f(x) இன் ஒரு காரணி (x+1) எனவும் f(x) இனை $x^2 + 2x 3$ ஆல் வகுக்க வரும் மீதி -7x 11 எனவும் தரப்படின் a,b,c யின் பெறுமானங்களைக் காண்க. a,b,c யின் இப் பெறுமானங்களுக் p,q ஒருமைகளாக இருக்கும் f(x) ஐ $f(x) = (x+p)^2 (x+1)$ (x+q) என்னும் வடிவத்தில் இருக்கத்தக்கவாறு p,q இன் பெறுமானங்களைக் காண்க.
- (14) (a) பின்வரும் சர்வசமன்பாடுகளை நிறுவுக.

i)
$$\frac{1}{1-\cos\theta} + \frac{1}{1+\cos\theta} = 2\cos\theta e^2\theta$$

ii)
$$\frac{\cos\theta}{1+\sin\theta} = \tan\left(\frac{\pi}{4} - \frac{\theta}{2}\right)$$

iii)
$$\frac{1+\sin 2\theta + \cos 2\theta}{1+\sin 2\theta - \cos 2\theta} = \cot \theta$$

iv)
$$\frac{\sin^2 \theta}{1 - \cos \theta} - \frac{\cos^2 \theta}{1 + \sin \theta} = \cos \theta + \sin \theta$$

- (b) $\theta=18^\circ$ எனின் $\sin 2\theta=\cos 3\theta$ எனக் காட்டுக. இதிலிருந்து $\sin 18^\circ=\frac{\sqrt{5}-1}{4}$ எனக் காட்டுக.
- (15) (a) tan(A + B) இன் விரிவை எழுதுக. இதிலிருந்து

i)
$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

ii)
$$an 3A = rac{3 an A - an^3 A}{1 - 3 an^2 A}$$
 எனவும் நிறுவுக. $an^2 rac{\pi}{8} + 2 an rac{\pi}{8} - 1 = 0$ என்பதையும் $an^3 rac{\pi}{12} - 3 an^2 rac{\pi}{12} - 3 an rac{\pi}{12} + 1 = 0$ என்பதையும் உய்த்தறிக.

2

(b)
$$x = \sec \theta - \tan \theta$$
 $y = \cos \sec \theta + \cot \theta$ எனின் $xy + x - y + 1 = 0$ எனக் காட்டுக.

(c) $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$ எனக் காட்டுக.

(16) (a) \propto , β என்பன எண்ணிகளாகவும் \underline{a} , \underline{b} என்பன பூச்சியமற்ற சமாந்தரமற்ற காவிகளாகவும் இருக்க $\propto g + \beta \ \underline{b} = \underline{\bigcirc}$ எனின் $\propto = \bigcirc$, $\beta = \bigcirc$ எனவும் காட்டுக.

ABCD ஓர் இணைகரம் M.N என்பன முறையே AB,BC என்பவற்றின் நடுப்புள்ளிகளாகும். AN உம் PDM உம் ஒன்றையொன்று PDM இடைவெட்டுகின்றன.

 $\overrightarrow{AB}=2\underline{a}$, $\overrightarrow{AD}=2\underline{b}$ எனத்தரப்பட்டுள்ளது.

- \overrightarrow{AN} \overrightarrow{MD} என்பவற்றை \underline{a} , \underline{b} இல் காண்க.
- ii) $AL=\lambda\,AN,\;ML=MD$ எனத்தரப்படும் போது \overrightarrow{AL} , \overrightarrow{ML} ஐ எழுதி λ,μ ஐ காண்க.
- iii) அதிலிருந்து *AN,MD* ஒன்றை ஒன்று வெட்டும் விகிதங்களைக் காண்க.
- (b) AB விட்டம் O வை மையமாகவுள்ள வட்டத்தில் C பரிதியிலுள்ள புள்ளி $\overrightarrow{OA} = \underline{a}, \overrightarrow{OC} = \underline{b}$ எனக் கொண்டு \overrightarrow{AC} , \overrightarrow{BC} என்பவந்றை $\underline{a},\underline{b}$ ல் எழுதி எண்ணிப் பெருக்கத்தை உபயோகித்து $A\hat{C}B = \frac{\pi}{2}$ எனக் காட்டுக.

(17) (a)

- P,Q என்னும் விசைகள் $rac{\pi}{2}$, $rac{ heta}{n},rac{\pi}{2}- heta$ இடைப்பட்ட கோணங்களில் தாக்கும் போது விளையுள் விசைகள் முறையே R,nR , (n+2)R எனின் $an heta=\left(rac{n+3}{n-1}
 ight)$ எனக் காட்டுக.
- (2P+6), (4P+6), (4P
- (b) ABCD ஒரு சதுரம் CD யின் நடுப்புள்ளி \in ஆகும். $AB,AD,\in A,CA$ வழியே எழுத்துகள் குறிக்கும் ஒழுங்கு வரிசையில் 16,20,P,Q,N விசைகள் தாக்குகின்றன. இவ்விசைத்தொகுதி சமநிலையிலிருப்பின் P,Q இன் பெறுமானங்களைக் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

