Full proof of Nash Theorem in high dimensions

By using Brouwer's fixed point theorem

Reference:

- A Tutorial on the Proof of the Existence of Nash Equilibria
 - Albert Xin Jiang, Kevin Leyton-Brown, November 09, 2007
 - Department of Computer Science, University of British Columbia

1

Contents

- Prove Sperner's lemma by Mathematical induction.
 - Introduce Simplex
 - Proving of Sperner's lemma
- Prove Brouwer's fixed point theorem by Sperner's lemma.

- Prove the existence of NE by Brouwer's fixed point theorem.
 - Introduce the Nash equilibrium (NE)
 - Proving existence of NE

Proof of Sperner's lemma

By using mathematical induction

Some Definition

- Convex combination:
 - For a vector: $x = (x_0, x_1, ..., x_n)$ and a nonnegative scalars $\lambda_0, ..., \lambda_n, \sum_{i=0}^n \lambda_i = 1$
 - The vector: $\sum_{i=0}^{n} \lambda_i x_i$ is the convex combination of x.
- Affine independence:

The set X: $\{x_0, x_1, ..., x_n\}$ is Affine independent if the set $\{x_1 - x_0, x_2 - x_0, ..., x_n - x_0\}$ is linearly independent.

Simplex

- n Simplex ("Triangle" in n-dimensions):
 - set of all convex n-simplex combinations of the affinely independent set of vectors.
 - $(x_0, x_1, ..., x_n) = \{\sum_{i=0}^n \lambda_i x_i : \forall i \in \{0, ..., n\}, \lambda_i \ge 0 \text{ and } \sum_{i=0}^n \lambda_i = 1\}$
 - n Standard Simplex:
 - $\{\sum_{i=1}^n y_i = 1 \mid \forall i , y_i > 0 \}$ (The triangle that constructed by $\{0, e_1, e_2, \dots e_n\}$)
- A point y in the Simplex T with the vertices $\{x_0, x_1, ..., x_n\}$:
 - $y = \sum_{i=0}^{n} \lambda_i x_i$ (convex combination of vertices.

Simplicial subdivision and proper labeling

- A simplex (T) is divided to a set of small simplexes $(\{T_i\})$:
 - $\bigcup_{T_i \in T} T_i = T$
 - When 2 T_i overlap, the intersection must be an entire **face** of both subsimplexes.
 - => an (n-1)-face of an n-subsimplex in a simplicially subdivided:
 - either on an (n-1)-face of T_n
 - or the **intersection** of two *n*-subsimplexes.
- $\chi(y) := \{i : \lambda_i > 0\}$
 - The indices of vertices that "constructs" it.
- $L: V \rightarrow \{0, \dots, n\}$
 - V: the set of all distinct vertices of all the subsimplexes)
 - Proper labeling : $L(y) \in \chi(y)$
 - => the opposition (n-1)-face of one vertex won't contain its index.

Completely labeling

• A subsimplex is completely labeled if L assumes completely labeled subsimplex all the values $0, \ldots, n$ on its set of vertices

Sperner's lemma

- Let $T_n = (x_0, ..., x_n)$ be simplicially subdivided
- *L*: a **proper labeling** function

Then there are an odd number of completely labeled subsimplexes in the subdivision

Proof (by mathematical induction)

- T_0 : only possible simplicial subdivision is $\{x_0\}$
 - $L(x_0) = 0:1$ completely labeled subsimplex
 - Satisfied

- Assume that T_{n-1} satisfied this lemma. Then for T_n :
 - T_n 's face is an (n-1)-simplex
 - By the assumption, it has odd number of completely labeled subsimplexes in the subdivision.

Sperner's lemma

- Walk:
 - Begin from *b*:
 - an (n-1) subsimplex with label $\{0,1,\ldots,n-1\}$ on the face of T_n
 - $\exists ! d \in n$ subsimplex, d has b as one of its face.
 - $ver(d) = ver(b) \cap an extra point z$.
 - If *z*. *label* is *n*:
 - *d* has the labels (0,1, ..., *n*)
 - a completely labeled subsimplex!
 - Else:
 - d.labels contains (0, ..., n-1)
 - Only one of the labels (j) is repeated, and the label n is missing.
 - $\exists ! e \neq b \in (n-1)$ -subsimplex that is a face of d and bears the labels $(0, \ldots, n-1)$.
 - because each (n-1)-face of d is defined by all but one of d's vertices.
 - b': the unique other n-subsimplex having e as a face
 - If b' is intersection : walk into it.
 - Else : b' is an (n-1)-face on T_n , stop.

Proof (by mathematical induction)

- The walk ends:
 - At a completely labeled n-subsimplex: (1)
 - Find a completely labeled subsimplexes

- At a (n-1)-subsimplex with labels $(0,\ldots,n-1)$ on the face T_{n-1} (2):
 - Since the labels are from proper labeling method, start point and end point are at same (n-1)-face indeed.
 - These walks can be backward ! => once an (s,t) show up, (t,s) is a walk, too.
 - paired! (Even number)
- The assumption : T_{n-1} has an odd number of completely labeled subsimplexes in the subdivision.
 - i.e. has an odd number of the subsimplexes with label $(0, \dots, n-1)$
 - T_n has an odd(all) even(case (2)) = odd (case (1)) number of completely labeled n-subsimplex.

Proof of Brouwer's fixed point theorem

by Sperner's lemma

Brouwer's fixed point theorem

```
Let f: \triangle m \to \triangle m be continuous. (\triangle m: a standard simplex) \{\sum_{i=1}^n y_i = 1 \mid \forall i , y_i > 0 \}
```

f has a fixed point.

That is, there exists some $z \in \triangle m$ such that f(z) = z

constructing a proper labeling

 $f: \triangle m \rightarrow \triangle m$ be continuous. ($\triangle m$: a standard simplex)

- ullet constructing a proper labeling of \triangle m
 - Let $\epsilon > 0$, simplicially subdivide $\triangle m$:
 - Distance of any two points in the same m-subsimplex $\leq \epsilon$
 - A proper labeling function $L(v) \in \chi(v) \cap f_i(v) \leq v_i$
 - Can be any label i such that $v_i > 0$ and f weakly decreases the i^{th} component of v.

To show that L is well-defined (by contradiction)

- $L(v) \in \chi(v) \cap f_i(v) \le v_i$
- Assume $f_i(v) > v_i$ for all $i \in \chi(v)$:
 - Δm standard simplex: $\sum_{j \in \chi(v)} v_j = \sum_{i=1}^m v_i = 1$

•
$$f_j(v) > v_j$$
 for all $j \in \chi(v)$:
$$\sum_{j \in \chi(v)} f_j(v) > \sum_{j \in \chi(v)} v_j = \sum_{i=1}^m v_i = 1$$

$$\Rightarrow \sum_{j \in \chi(v)} f_j(v) > 1$$

- However, the results of f are in standard simplex, $\sum_{j \in \chi(v)} f_j(v) = 1$
- Contradiction => L is well-defined
- *L* is a legal proper labeling function

Proof (by Sperner's lemma)

- Since *L* is a legal proper labeling function :
 - By Sperner's lemma, there is at least one completely labeled subsimplex

$$p_0 \cdots p_m$$
 such that $f_i(p_i) \leq p_i$ for each i

- consider the sequence of centroids of completely labeled subsimplexes:
 - Since \triangle m is compact, there is a convergent subsequence.
 - A limit $z: p_i \rightarrow z$ for all i
- f is continuous $\Rightarrow f_i(z) \le z_i$ for all $i \Rightarrow f(z) \le z$
 - Otherwise, $1 = \sum_i f_i(z_i) < \sum_i z_i = 1$ contradiction

Note

• The situation to prove the existence of NE is on simplotope (a Cartesian product of simplexes), which is the Homeomorphism of simplex.

- Brouwer's fixed point theorem can extend to simplotope.
 - (The detail proof is in reference)

Proof the existence of NE

by Brouwer's fixed point theorem

A (finite, n-person) normal-form game

- *N*: n players, indexed by *i*
- $A = (A_1, ..., A_n), A_i$: a finite set of actions available to player i
 - $a = (a_1, a_2, ..., a_n) \in A$ is a pure strategy profile
- $u = (u_1, ..., u_n), u_i$: utility function for player i
- Mixed strategy:
 - For player i, S_i : $\Pi(A_i)$: set of all probability distributions over A_i
 - Mixed strategy profile: $s \in S = S_1 \times S_2 \times \cdots \times S_n$ (Cartesian product for all players)
 - $s_t(a_j)$: The probability that taking an action a_j under profile s_t ,

Utility for a player under mixed strategy

• For a mixed stragtegy profile $s \in S$, :

•
$$u_i(s) = \sum_{a \in A} [u_i(a) \prod_{j=1}^n s_j(a_j)]$$

• Utility under fixed strategy x the probability of the profile happens.

Best Response(BR) and NE

- BR_i to the profile s_{-i} :
 - A mixed strategy $s^* \in S_i \ u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i})$ for all strategies $s_i \in S_i$
- Nash equilibrium:
 - A strategy profile $s = (s_1, ..., s_n)$ is a Nash equilibrium if, for all agents i, s_i is a best response to s_{-i} .
 - i.e. No one can gain more expected utility by a unilateral change of strategy if the strategies of the others remain unchanged

Existence of NE

• Given a strategy profile $s \in S$, for all $i \in N$ and $a_i \in A_i$:

•
$$\phi_{i,a_i}(s) = \max\{0, u_i(a_i, s_{-i}) - u_i(s)\}$$

• $f: S \to S$ by f(s) = s' (finding new strategy profile s') where $s_i'(a_i) = \frac{s_i(a_i) + \phi_{i,a_i}(s)}{\sum_{b_i \in A_i} s_i(b_i) + \phi_{i,b_i}(s)} = \frac{s_i(a_i) + \phi_{i,a_i}(s)}{1 + \sum_{b_i \in A_i} \phi_{i,b_i}(s)}$

f: continuous (since each ϕ is continuous) S: convex and compact $\Rightarrow f$ has at least one fixed point (s = s')

- (Brouwer's fixed point theorem for simplotope)
- At least exist one NE for a finite, n-person normal-form game

Thanks