ПЛК73

Контроллер программируемый логический

руководство по эксплуатации

Контроллер программируемый логический

ОВЕН ПЛК73

Руководство по эксплуатации КУВФ.421445.017 РЭ

Содержание

Введение	
1 Назначение контроллера ПЛК73	
2 Технические характеристики и условия эксплуатации	
2.1 Технические характеристики контроллера	
2.2 Условия эксплуатации	
2.3 Помехоустойчивость и помехоэмиссия	
3 Устройство и особенности конструкции	
3.1 Конструкция контроллера	
3.2 Функциональная схема	
3.3 Цифровые входы	
3.4 Аналоговые входы	
3.4.1 Назначение	
3.4.2 Термометры сопротивления	
3.4.3 Термоэлектрические преобразователи (термопары)	
3.4.4 Активные преобразователи	
3.4.5 Резистивные датчики	
3.5 Выходные устройства	
3.6 Интерфейсы связи	
3.6.1 Интерфейс RS-232	
3.6.2 Интерфейс RS-485	
3.6.3 Интерфейс связи с модулем МР1	30
3.6.4 Интерфейс связи RS-232 DBGU	30
3.7 Человеко-машинный интерфейс	31
3.7.1 Жидкокристаллический индикатор	31
3.7.2 Встроенный звуковой излучатель	
3.7.3 Клавиатура	
3.7.4 Встроенные светодиоды	
4 Использование по назначению	
5 Меры безопасности	
6 Монтаж и подготовка к работе	
6.1 Установка контроллера	
6.2 Монтаж внешних связей	
6.3 Указания по монтажу	
6.4 Пробный пуск	46
6.5 Диагностика и устранение неисправностей	
7 Эксплуатация контроллера	
7.1 Работа с ЖКИ	
7.2 Часы реального времени	
8 Смена встроенного программного обеспечения	
9 Техническое обслуживание	
10 Требования к маркировке	
11 Упаковка контроллера	
12 Комплектность	
13 Транспортирование и хранение	
14 Гарантийные обязательства	
Приложение А. Габаритные и установочные размеры	53

Приложение Б. Схемы подключения	.55
Приложение В. Схемы подключаемых кабелей	.62
Приложение Г. Назначение контактов клеммной колодки прибора	.64
Приложение Д. Коды ошибок контроллера	.65
Приложение Е. Коды ошибок измерителя	.67
Приложение Ж. Подключение термометров сопротивления по двухпроводной	
CXEME	.70
Приложение И. Отсоединение клеммных колодок	.71
Приложение К. Замена интерфейсной платы в контроллерее	.73
Пист регистрации изменений	

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством, конструкцией, работой и техническим обслуживанием контроллера программируемого логического ОВЕН ПЛК73 (далее по тексту также именуемого «контроллер ПЛК73», или «контроллер», или «ПЛК73»).

Контроллер ПЛК73 соответствует требованиям ГОСТ Р 52931–2008, ГОСТ Р 51840–2001 и ГОСТ Р 51841–2001.

Контроллер выпускается в различных исполнениях, отличающихся типом встроенных выходных устройств, предназначенных для управления внешними исполнительными механизмами и устройствами, количеством и типом интерфейсов связи, и различными лицензионными ограничениями на размер памяти области вводавывода программы контроллера ПЛК73.

Исполнению контроллера соответствует следующее условное обозначение:

ПЛК73-ККККХХХХ-Ү,

где X – тип встроенного выходного устройства.

Y – тип лицензионного соглашения на размер памяти области ввода-вывода.

Типы выходных элементов Х:

- О выходной элемент отсутствует;
- \mathbf{P} реле электромагнитное;
- К оптопара транзисторная n-p-n-типа;
- С оптопара симисторная:
- Т выход для управления внешним твердотельным реле;
- **И** цифроаналоговый преобразователь «параметр ток 4...20 мА»;
- У цифроаналоговый преобразователь «параметр – напряжение 0...10 В».

Тип лицензионного ограничения на размер памяти области ввода-вывода:

- L искусственное ограничение в 360 байт;
- М ограничение в 600 байт.

Примечания:

- 1. Контроллер ПЛК73 может иметь в своем составе от четырех до восьми встроенных выходных устройств, может комплектоваться, по требованию заказчика, выходными устройствами одного или различных типов. Выходные устройства с номерами 1 4 всегда имеют тип «К», а выходные устройства с номерами 5 8 могут иметь различный тип или отсутствовать. Требуемые выходные устройства с номерами 5 8 должны быть перечислены при заказе контроллера ПЛК73 с указанием конкретных типа и места монтажа выходного элемента.
- 2. Первыми четырьмя выходными элементами всегда должны быть элементы типа «К».

Пример записи обозначения контроллера ПЛК73 в документации другой продукции, где он может быть применен:

Программируемый логический контроллер ПЛК73-ККККРРУУ-L.

Пример сокращенного обозначения прибора при его заказе:

ПЛК73-ККККРРУУ-L.

Указанные примеры соответствуют прибору, оснащенному в качестве выходных устройств четырьмя оптопарами транзисторного n-p-n-типа (выходы 1, 2, 3, 4), электромагнитными реле (выходы 5, 6) и двумя ЦАП «параметр – напряжение 0...10 В» (выходы 7, 8), ограничение области ввода-вывода 360 байт.

Для заказа доступны следующие исполнения прибора:

ПЛК73-ККККОООО-L

ПЛК73-ККККОООО-М

ПЛК73-КККККККК-L

ПЛК73-КККККККК-М

ПЛК73-ККККРРРР-L

ПЛК73-ККККРРРР-М

ПЛК73-ККККРРИИ-L

ПЛК73-ККККРРИИ-М

ПЛК73-ККККРРУУ-L

ПЛК73-ККККРРУУ-М

ПЛК73-ККККИИИИ-L

ПЛК73-ККККИИИИ-М

ПЛК73-ККККУУУУ-L

ППК73-ККККУУУУ-М

Внимание! Для заказа других наборов выходов необходимо обращаться в группу технической поддержки по телефону (495) 221-60-64 или электронному адресу support@owen.ru.

Контроллер ПЛК73 может иметь до трех последовательных интерфейсов связи. Конфигурация интерфейсов определяется установленной в прибор «Интерфейсной платой». В комплект поставки контроллера ПЛК73 уже входит установленная в нем «Интерфейсная плата ПИ73-0», которая содержит только один последовательный интерфейс — с прибором «МР1». При необходимости, возможно изменить (расширить) набор встроенных интерфейсов, для этого необходимо дополнительно сделать заказ одной из указанных в таблице «Интерфейсных плат»:

Сокращенное обозначение интерфейсной платы	Встроенные интерфейсы
ПИ73-1	Интерфейс RS-232 – 1шт;

ПИ73-2	Интерфейс RS-485 – 1шт;
ПИ73-3	Интерфейс RS-232 – 2шт;
ПИ73-4	Интерфейс RS-232 – 1шт; Интерфейс RS-485 – 1шт;
ПИ73-5	Интерфейс RS-485 – 2шт;

Примечание: Все указанные в данной таблице интерфейсные платы имеют также встроенный интерфейс с прибором «МР1».

Пример записи обозначения интерфейсной платы ПИ73 в документации другой продукции, где он может быть применен:

Интерфейсная плата ПИ73-3.

Пример сокращенного обозначения интерфейсной платы при ее заказе:

ПИ73-3.

Примечание – Информация о размере области памяти ввода-вывода и ее распределении содержится в разделе «Конфигурирование области ввода-вывода ПЛК» руководства пользователя «Программирование программируемых логических контроллеров ОВЕН ПЛК63 и ПЛК73», размещенного на компакт-диске, входящем в комплект поставки контроллера.

Используемые термины и сокращения			
AWG	-	(American Wire Gauge) – американский стандарт типоразмеров медных проводов, в котором их геометрические размеры (диаметр провода) обозначается цифровым кодом от 1 до 50.	
CoDeSys	-	(Controllers Development System) – программное обеспечение, специализированная среда программирования логических контроллеров. Торговая марка компании 3S-Smart Software Solutions GmbH.	
Modbus	_	открытый протокол обмена по сети RS-485, разработан компанией ModiCon, в настоящий момент поддерживается независимой организацией Modbus-IDA (www.modbus.org).	
POU	-	(Program Organization Unit) – программный компонент CoDeSys: программа, функция или функциональный	

блок.

Retain-память — энергонезависимая память для хранения значений Re-

tain-переменных пользовательской программы.

Retain-переменные – переменные пользовательской программы, значения

которых сохраняются при выключении питания контрол-

лера.

АЦП – аналого-цифровой преобразователь.

ВУ – выходное устройство.

ЖКИ – жидкокристаллический индикатор.

Конфигуратор ПЛК – (PLC-Configuration) – редактор CoDeSys, в котором опре-

деляется состав аппаратных средств, а так же произво-

дится настройка параметров ввода/вывода.

 НСХ
 –
 номинальная статическая характеристика.

 НТД
 –
 нормативно-техническая документация.

ПК – персональный компьютер.

ПЛК – программируемый логический контроллер.

ПО – программное обеспечение.

Пользовательская – программа, созданная в среде CoDeSys пользователем.

программа программа, созданная в среде сорезув пользователем. контроллера (или лицом, производящим его начальное

программирование).

РП – руководство пользователя «Программирование про-

граммируемых логических контроллеров ОВЕН ПЛК63 и

ПЛК73».

РЭ – руководство по эксплуатации.

ТП — термопара (преобразователь термоэлектрический).

TC – термометр сопротивления.

ЦАП – цифроаналоговый преобразователь.

Целевой файл – (Target-файл) – файл или набор файлов, поставляемых

производителем, содержащий информацию о ресурсах контроллера, количестве входов и выходов, интерфейсах и т.д. Инсталлируются в CoDeSys для сообщения ей

данной информации.

Цифровой вход ти-

па 1

 для измерительных сигналов, получаемых от механических контактов коммутационной аппаратуры, например,

реле, кнопок, выключателей и др.

Цифровой вход ти-

па 2

 для измерительных сигналов, получаемых от электронных устройств переключения, например двухпроводных

переключателей.

ЧМИ – человеко-машинный интерфейс.

Категория используемой нагрузки (по ГОСТ Р 50030.1–2000) для типичной области применения:

АС-15 – для переменного тока: управление электромагнитными нагрузками;

DC-13 – для постоянного тока: управление электромагнитами постоянного тока.

1 Назначение контроллера ПЛК73

Контроллер предназначен для создания систем автоматизированного управления технологическим оборудованием в энергетике, на транспорте, в т.ч. железнодорожном, в различных областях промышленности, жилищно-коммунального и сельского хозяйства.

Контроллер ПЛК73 может быть применен на промышленных объектах, подконтрольных Ростехнадзору.

Логика работы ПЛК73 определяется потребителем в процессе программирования контроллера. Программирование осуществляется с помощью программного обеспечения CoDeSys 2.3 (версии 2.3.9.9). При этом поддерживаются все языки программирования, указанные в МЭК 61131-3.

Документация по программированию контроллера и работе с программным обеспечением CoDeSys приведена на компакт-диске, входящем в комплект поставки.

Контроллер может быть использован как:

- специализированное устройство управления выделенным локализованным объектом;
- устройство мониторинга локализованного объекта в составе комплексной информационной сети;
- специализированное устройство управления и мониторинга группой локализованных объектов в составе комплексной информационной сети.

В контроллере реализованы следующие функции:

- выполнение пользовательской программы работы контроллера (созданной в среде «CoDeSys 2.3»);
- снятие измеренных значений со встроенных аналоговых и дискретных входов с последующей передачей их в пользовательскую программу;
- управление встроенными ВУ контроллера из пользовательской программы;
- расширение количества выходных устройств с использованием модуля MP1, подключаемого к контроллеру по специальному интерфейсу;
- обмен данными по интерфейсам RS-485 и RS-232;
- отображение символьных данных, формируемых в пользовательской программе, на ЖКИ;
- отображение прочих данных, формируемых в пользовательской программе, на шести встроенных светодиодах;
- отсчет реального времени встроенными часами с автономным источником питания;
- настройка параметров функционирования встроенных входов, выходов и прочего периферийного оборудования контроллера и сохранение значений конфигурационных параметров в энергонезависимой памяти:
 - изменение значений конфигурационных параметров контроллера на ЖКИ с помощью встроенной клавиатуры;
 - изменение значений параметров из среды программирования CoDeSys.

2 Технические характеристики и условия эксплуатации

2.1 Технические характеристики контроллера

Основные технические характеристики контроллера ПЛК73 приведены в таблицах 2.1 - 2.3.

Таблица 2.1 – Общие технические характеристики

Наименование	Значение (свойства)
Питание	
Напряжение питания, В	
постоянного тока	от 150 до 300 (номинальное 220)
переменного тока (4763 Гц)	от 90 до 264 (номинальное 110/220)
Потребляемая мощность, не более	
для постоянного тока, Вт	12
для переменного тока, ВА	18
Параметры встроенного вторичного ис-	
точника питания	
выходное напряжение, В	24±3
ток, мА, не более	180
Цифровые (дискретные) входы	
Количество входов	8
Тип входов по ГОСТ Р 52931-2008	1и2
Напряжение питания входов, В	24±3
Максимальный входной ток дискретного	
входа, мА не более	11 (при напряжении питания 30 В)
Уровень сигнала «логической единицы»	
для постоянного напряжения, В (ток в	
цепи)	1530 (не менее 4,5 мА)
Уровень сигнала «логического нуля» для	
постоянного напряжения, В (ток в цепи)	35 (не более 1,5 мА)
Минимальная длительность импульса,	
воспринимаемого входом, мс	5
Максимальная частота сигнала, пода-	
ваемого на дискретный вход	1000 Гц (при скважности 0,5)
Подключаемые входные устройства	– коммутационные устройства (контакты
	кнопок, выключателей, герконов, реле и т.п.);
	– датчики, имеющие на выходе транзи- стор n-p-n–типа с открытым коллектором
	или p-n-p-типа;
	– дискретные сигналы 24±3 В
Гальваническая развязка	групповая
·	(по 4 входа в группе: 1–4 и 5–8)
Электрическая прочность изоляции, В	1500 (между группами и др. цепями)
Аналоговые входы	
Количество аналоговых входов	8

Наименование	Значение (свойства)
Тип подключаемых датчиков	ТС, ТП, унифицированные сигналы тока
	или напряжения, см. таблицу 2.2
Полное время преобразования входного	
сигнала:	
– ТС, с, не более	0,8
– ТП с включенной компенсацией хо-	
лодного спая, датчики с унифицирован-	
ными сигналами постоянного напряже-	
ния и тока с, не более	0,4
Период выборки для 8 входов:	
– ТС, с, не более	6,4
– ТП и датчики с унифицированными	
сигналами постоянного напряжения и	
тока, с, не более	3,2
Предел допускаемой основной приве-	
денной погрешности при измерении, %:	
-TΠ	±0,5
– ТС и датчики с унифицированными	
сигналами постоянного напряжения	
и тока	±0,25
Максимальная приведенная погрешность	
во всем температурном диапазоне, %:	
- ΤΠ	1,375
– ТС и датчики с унифицированными	
сигналами постоянного напряжения	
и тока	0,688
Разрядность АЦП, бит	15
Метод преобразования	$\Sigma\Delta$ (сигма-дельта преобразование)
Метод линеаризации	внутренний, полиномами 3 порядка
Входной импеданс:	
– ТС, кОм, не менее	100
– ТП и датчики с унифицированными	
сигналами постоянного напряжения,	
кОм, не менее	100
– датчики с унифицированными сигна-	
лами постоянного тока, Ом	$100,0 \pm 0,1$ (внешний шунтирующий рези-
	стор)
Степень подавления помех общего вида	_
с частотой 50Гц, дБ	80
Дискретные выходы (контакты электро	
Количество релейных выходных каналов	от 1 до 4 (выходы DO5DO8)
Гальваническая развязка	индивидуальная
Электрическая прочность изоляции, В	1500

Наименование	Значение (свойства)			
Максимальный ток, коммутируемый кон-	– 1 (для переменного напряжения не			
тактами реле, А, не более	более 250 B и соs ϕ > 0,4 – нагрузка для			
1 , ,	категории использования АС-15 по			
	FOCT P 50030.1–2000).			
	– 4 (для переменного напряжения не			
	более 250 B и соs ϕ > 0,8 – нагрузка для			
	категории использования АС-15 по			
	ГОСТ P 50030.1–2000).			
	– 4 (для постоянного напряжения не более			
	100 В – нагрузка для категории использова-			
	ния DC-13 по ГОСТ Р 50030.1–2000)			
Время переключения контактов реле из				
состояния «лог. 0» в «лог. 1» и обрат-				
но, мс, не более	50			
Механический ресурс реле, циклов пере- - 300 000 при максимальной к				
ключения, не менее	руемой нагрузке;			
	– 500 000 при коммутации нагрузки ме-			
нее половины от максимальной.				
Дискретные выходы (оптопары транзис				
Количество выходных каналов	от 4 до 8 (DO1DO8)			
Гальваническая развязка	Индивидуальная			
Электрическая прочность изоляции, В				
Максимальный коммутируемый ток, мА,	500 В между выходами			
не более	, 400 (при напряжении не более 60 В посто- янного тока – нагрузка для категории ис-			
He dollee	пользования DC-13 по ГОСТ Р 50030.1–2000)			
Время переключения выхода из состоя-	Пользования ВС-13 Пот ОСТТ 30030.1—2000)			
ния «лог. 0» в состояние «лог. 1» и об-				
ратно, мс, не более	20 (выходы DO1DO8)			
Дискретные выходы (оптопары симист				
Количество выходных каналов	от 1 до 4 (DO5DO8)			
Гальваническая развязка	Индивидуальная			
Электрическая прочность изоляции, В	1500 В от схемы прибора;			
	500 В между выходами			
Максимальный коммутируемый ток, мА,				
не более	ного тока – нагрузка для категории ис-			
	пользования АС-15 по ГОСТ Р 50030.1–2000)			
Время переключения выхода из состоя-				
ния «лог. 0» в состояние «лог. 1» и об-				
ратно, мс, не более 20 (выходы DO5DO8)				
Дискретные выходы (внешнее твердотельное реле)				
Количество выходных каналов	от 1 до 4 (DO5DO8)			

Наименование	Значение (свойства)		
Гальваническая развязка	отсутствует		
Выходное напряжение, В	от 4 до 6, в зависимости от сопротивле-		
·	ния нагрузки		
Максимальный выходной ток, мА, не бо-			
лее	50 мА		
Время переключения выхода из состоя-			
ния «лог. 0» в состояние «лог. 1» и об-			
ратно, мс, не более	20 (выходы DO5DO8)		
Аналоговые выходы (ЦАП «параметр – I	напряжение 010 В»)		
Количество выходных каналов	от 1 до 4 (DO5DO8)		
Гальваническая развязка	групповая		
Электрическая прочность изоляции, В	1500 B		
Диапазон выходного сигнала, В	от 0 до плюс 10		
Сопротивление нагрузки, Ом, не менее	2000		
Предел основной приведенной погреш-			
ности, %	±0,5		
Максимальная приведенная погрешность			
во всем температурном диапазоне, %	±0,85		
Разрядность ЦАП, бит	10		
Значение наименьшего значащего раз-			
ряда, мВ	9,76		
Максимальная емкостная нагрузка, мкФ,			
не более	1,0		
Выходной импеданс, Ом, не более	1		
Полное время преобразования выходно-			
го сигнала, мс	100		
Напряжение внешнего источника пита-			
ния, В	от 15 до 27		
Потребляемый ток, мА, не более	10		
Нелинейность выходного сигнала, %, не			
более	0,45		
Пульсация входного сигнала, %, не бо-			
лее	0,05		
Аналоговые выходы (ЦАП «параметр –			
Количество выходных каналов	от 1 до 4 (DO5DO8)		
Гальваническая развязка	индивидуальная		
Электрическая прочность изоляции, В	1500 B		
Диапазон выходного сигнала, мА	от 4 до 20		
Сопротивление нагрузки, Ом, не более	900		
Предел основной приведенной погреш-			
ности, %	±0,5		
Максимальная приведенная погрешность	0.005		
во всем температурном диапазоне, %	±0,885		

Наимонованию Значению (свойства)				
Наименование			Значение (свойства) 10	
Разрядность ЦАП, бит			10	
Значение наименьшего значащего разряда, мкА		его значащего раз-	11,72	
	HOU MHUM	тивная нагрузка,	11316	
мкГн, не бо		тивпая пагрузка,	50	
		, МОм, не менее	10	
		разования выходно-		
го сигнала		расования выходно	100	
		о источника питания, В	от 15 до 27, питание от токовой петли	
		цного сигнала, %, не	, , , , , , , , , , , , , , , , , , , ,	
более		,	0,41	
Пульсация	входного	сигнала, %, не более	0.05	
			раметры см. таблицу 2.3)	
Интерфейс			RS-485; RS-232	
Режим раб	оты интер	фейсов	Master, Slave	
RS-485	Количест	ГВО	от 0 до 2	
	Гальвані	ическая развязка	индивидуальная	
	Электрич	ческая прочность, В	1500	
RS-232	Количест	ГВО	от 0 до 2	
	Гальвані	ическая развязка	индивидуальная	
	Электрич	ческая прочность, В	300	
Ресурсы и	1 дополни	тельное оборудован	ие	
Центральн	ый процес	сор	RISC-процессор на базе ядра ARM-7, 32	
			разряда, 50 МГц	
		и (EEPROM), байт	448	
		памяти для хране-	10	
ния переменных программ, кб				
		ения программ, кб	280	
Объем пам	ияти ввода	а-вывода, байт	600 для ПЛК73-М	
			360 для ПЛК73-L	
	ное время	выполнения цикла		
ПЛК, мс		T_	1	
Часы реал	ьного	Тип элемента пи-	, 25	
времени		тания	литиевый, CR2032	
		Ресурс, лет	7	
		Емкость, мАч	210	
		Погрешность точ-		
		ности хода, сек. в		
	<u> </u>	сутки, не более	3	
Встроеннь	Ш	Частота, Гц	От 10 до 15 000, настаивается в про-	
звуковой		F	грамме контроллера	
излучатель Громкость, Дб		громкость, до	70 (при частоте 3200Гц)	

Окончание таблицы 2.1

Наименование	Значение (свойства)
Подключение внешних дополнительных	
дискретных выходных элементов через	
прибор МР1 (подключаемый по внутрен-	
ней шине)	8 штук
Элементы человеко-машинного интерф	ейса
Тип дисплея	Текстовый монохромный ЖКИ с подсвет-
	кой
Количество знакомест (символов)	4 × 16
Количество светодиодов	6
Количество кнопок	9
Общие сведения	
Тип корпуса в форм-факторе под авто-	Корпус для щитового крепления
матный щит	
Габаритные размеры (ВхШхГ), мм	(168×137×55)±1
Масса, кг, не более	0,5
Степень защиты корпуса (со стороны	IP55
лицевой панели) по ГОСТ 14254-96	
Средняя наработка на отказ, ч	100 000
Средний срок службы, лет	8

Таблица 2.2. Используемые на входе первичные преобразователи (датчики)

Наименование	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной по- грешности, %	
Термометры сопротивления по ГОСТ Р 8.625–2006 или термопреобразователи сопротивления по ГОСТ 6651–94				
Pt 50 (α ^{*)} =0,00385 °C ⁻¹)	−200…+750 °C	0,1 °C		
50 Π (α=0,00391 °C ⁻¹)	−200…+750 °C	0,1 °C		
Cu 50 (α=0,00426 °C ⁻¹)	−50+200 °C	0,1 °C		
50 M (α=0,00428 °C ⁻¹)	−190…+200 °C	0,1 °C		
Pt 100 (α=0,00385 °C ⁻¹)	−200…+750 °C	0,1 °C		
100 Π (α=0,00391 °C ⁻¹)	−200…+750 °C	0,1 °C	±0,25	
Cu 100 (α=0,00426 °C ⁻¹)	−50+200 °C	0,1 °C		
100 M (α=0,00428 °C ⁻¹)	−190…+200 °C	0,1 °C		
Pt 500 (α=0,00385 °C ⁻¹)	−200+650 °C	0,1 °C		
500 Π (α=0,00391 °C ⁻¹)	−200…+650 °C	0,1 °C		
Pt 1000 (α=0,00385 °C ⁻¹)	−200+650 °C	0,1 °C		

Окончание таблицы 2.2

Наименование	Диапазон измерений	Значение единицы младшего разряда	Предел основной приведенной по- грешности, %		
1000 Π (α=0,00391 °C ⁻¹)	–200+650 °C	0,1 °C	±0,25		
Ni 1000 (α=0,00617 °C ⁻¹)	−60+180 °C	0,1 °C			
Термоэлектрические преобразователи по ГОСТ Р 8.585–2001					
TXK (L)	−200+800 °C	0,1 °C	±0,5		
TXA (K)	−200+1300 °C	0,1 °C			
Унифицированные сигналы по ГОСТ 26.011–80					
токовый 0 20 мА	0100 %	0,1 %	±0,25		
токовый 4 20 мА	0100 %	0,1 %			
токовый 0 5 мА	0100 %	0,1 %			
напряжения 01 В	0100 %	0,1 %			
Резистивные датчики					
резистивный (40 900 Ом)	0100 %	0,1 Ом	±0,25		
резистивный (0,04 2 кОм)	0100 %	0,1 Ом			

Примечания

^{*)} α – температурный коэффициент TC – отношение разницы сопротивлений датчика, измеренных при температуре 100 и 0°C, к его сопротивлению, измеренному при 0°C (R_0), деленное на 100°C и округленное до пятого знака после запятой.

^{**)} Для работы с контроллером могут быть использованы только изолированные термоэлектрические преобразователи с незаземленными рабочими спаями.

Таблица 2.3 – Интерфейсы связи и программирования

Интерфей- сы связи	Протоколы (тип связи и особенности работы)	Формат передачи данных	Скорости передачи	Длина кабеля, м, не более	Тип рекомен- дуемого кабеля
RS-485**	OBEH, ModBus- ASCII/RTU	7 или 8 бит, четность есть \нет\не исполь- зуется, 1 или 2 стоп бита	1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	1200*	КИПЭВ 1×2×0,6 ТУ 16.К99-008— 2001 или анало- гичный
RS-232**	OBEH, ModBus- ASCII/RTU,	7 или 8 бит, четность есть \нет\не исполь- зуется, 1 или 2 стоп бита	1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 115200 бит/с	3	КС1 или КС2 — для связи с при- борами или др. кабели, выпол- ненные в соот- ветствии с реко- мендациями Приложения В
RS-232 DBGU	GateWay (про- токол CoDeSys), ин- терфейс для смены прошив- ки контроллера	7 или 8 бит, четность есть \нет\не исполь- зуется, 1 или 2 стоп бита	в режиме Slave: 115200 бит/с	3	КС1 — для связи с CoDeSys; КС1 и КС2 — для смены прошивки контроллера и для связи с программой ти- ражирования

^{*} Максимальная длина зависит от скорости обмена.

Примечание – Критерий правильного функционирования интерфейсов связи контроллера – не более 1 % ошибок на любой из скоростей.

2.2 Условия эксплуатации

- 2.2.1 В части требований условий эксплуатации контроллер ПЛК73 соответствует ГОСТ Р 51841–2001, раздел 4.
 - 2.2.2 Контроллер ПЛК73 эксплуатируется при следующих условиях:
 - закрытые взрывобезопасные помещения или шкафы электрооборудования без агрессивных паров и газов;
 - температура окружающего воздуха от минус 10 до +55 °C;
 - верхний предел относительной влажности воздуха не более 80 % при температуре не более +35 °C и более низких температурах без конденсации влаги;
 - атмосферное давление от 84 до 106,7 кПа;
 - высота над уровнем моря не более 2000 м;

^{**} Наличие интерфейсов RS-232 и RS-485 и их количество зависит от установленной в контроллере «Интерфейсной платы», в базовом комплекте поставки данных интерфейсов нет.

- допустимая степень загрязнения 1 (несущественные загрязнения или наличие только сухих непроводящих загрязнений).
- 2.2.3 По устойчивости к климатическим воздействиям при эксплуатации контроллер ПЛК73 соответствует группе исполнения В4 в соответствии с ГОСТ Р 52931—2008 и категории УХЛ4 по ГОСТ 15150—69.
- 2.2.4 По устойчивости к механическим воздействиям при эксплуатации контроллер ПЛК73 соответствует группе исполнения N2 в соответствии с ГОСТ Р 52931—2008 (частота вибрации от 10 до 55 Гц).
- 2.2.5 По устойчивости к воспламенению и распространению пламени FV1 корпус контроллера соответствует ГОСТ Р 51841–2001, разделу 6.

2.3 Помехоустойчивость и помехоэмиссия

- 2.3.1 Контроллер отвечает требованиям по устойчивости к воздействию помех в соответствии с ГОСТ Р 51841 и ГОСТ Р 51522 для оборудования класса А.
- 2.3.2 По уровню излучения радиопомех (помехоэмиссии) контроллер соответствует нормам, установленным для оборудования класса Б по ГОСТ Р 51318.22 (СИСПР 22–97).
 - 2.3.3 Контроллер устойчив к колебаниям и провалам напряжения питания:
 - для переменного тока в соответствии с требованиями ГОСТ Р 51317.4.11;
 - для постоянного тока в соответствии с ГОСТ Р 51841 длительность прерывания до 10 мс включительно, длительность интервала от 1 с и более.
 - 2.3.4 Контроллер устойчив к воздушному электростатическому разряду ±8 кВ.
- 2.3.5 Контроллер устойчив к радиочастотному электромагнитному полю напряженностью до 10 В/м в полосе частот от 80 до 1000 МГц.
- 2.3.6 Порты питания контроллера устойчивы к наносекундным импульсным помехам напряжением до 2 кВ.
- 2.3.7 Порты ввода-вывода контроллера устойчивы к наносекундным импульсным помехам напряжением до 1 кВ.
- 2.3.8 Порты питания контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 2 кВ.
- 2.3.9 Порты ввода-вывода контроллера устойчивы к микросекундным импульсным помехам большой мощности напряжением до 1 кВ.
- 2.3.10 Порты питания и ввода-вывода контроллера устойчивы к кондуктивным помехам с уровнем 3 В в полосе частот от 150 кГц до 80 МГц.

3 Устройство и особенности конструкции

3.1 Конструкция контроллера

- 3.1.1 Контроллер ПЛК73 изготавливается в сборном пластмассовом корпусе, предназначенном для крепления на щит управления. Габаритный и установочный чертежи приведены в Приложении А.
- 3.1.2 На рисунке 3.1 представлен контроллер ПЛК73, приведены разъемные соединения, элементы индикации и управления.

а) верхняя стенка корпуса

б) лицевая панель корпуса

в) задняя стенка корпуса

Рисунок 3.1 – Контроллер ПЛК73. Разъемные соединения, элементы индикации и управления

3.1.3 На лицевой (передней) панели корпуса расположены элементы индикации и управления (см. рисунок 3.1 б), на верхней и нижней стенках корпуса расположены защелки крепления прибора на щит управления. На верхней и задней стенках корпуса рационально (удобно для пользования) размещены разъемные соединения контроллера, через которые осуществляется подключение всех внешних связей.

Примечание – Открывать корпус для подключения внешних связей не требуется.

3.1.4 На верхней стенке корпуса располагаются:

- порт интерфейса RS-232 DBGU (подробнее см. п. 3.6.4), предназначенный для связи со средой CoDeSys и программой тиражирования, а также для обновления встроенного программного обеспечения контроллера. К порту RS-232 DBGU подсоединяется кабель «КС1», входящий в комплект поставки ПЛК. Схема кабеля приведена в Приложении В;
- движковый DIP-переключатель, используемый только при обновлении встроенного программного обеспечения контроллера, может быть заклеен наклейкой.

3.1.5 На задней стенке корпуса располагаются:

- клеммные колодки для подсоединения цепей питания (сети), клеммы встроенного источника питания 24 В (выходное напряжение), который может быть использован для питания активных аналоговых датчиков, дискретных входов, аналоговых выходов;
- клеммные колодки для подсоединения восьми аналоговых входов;
- клеммные колодки для подсоединения восьми выходов;
- клеммные колодки для подключения восьми дискретных датчиков (входов);
- съемная клеммная колодка для подключения прибора MP1 (схема подключения приведена в Приложении Б);

При наличии установленной в контроллер «Интерфейсной платы ПИ73-X» (кроме «Интерфейсной платы ПИ73-0», входящей в комплект поставки) в зависимости от ее исполнения на задней стенке корпуса располагаются:

- от нуля до двух съемных клеммных колодок для подсоединения кабеля связи по интерфейсу RS-485, подробнее см. п. 3.6.2;
- от нуля до двух разъемов для подсоединения кабеля связи по интерфейсу RS-232, подробнее см. п. 3.6.1. В качестве кабеля связи может выступать кабель «КС1», «КС2» или другие кабели, выполненные в соответствии с рекомендациями Приложения В.
- 3.1.6 Контроллер имеет встроенные аппаратные часы реального времени, питающиеся от автономного источника питания. Характеристики часов реального времени приведены в таблице 2.1.
 - О задании значения часов реального времени с помощью кнопок см. п. 7.2.
 - О замене источника питания часов реального времени см. раздел 9.

3.2 Функциональная схема

Функциональная схема контроллера представлена на рисунке 3.2.

Рисунок 3.2 – Функциональная схема прибора

3.3 Цифровые входы

- 3.3.1 ПЛК73 имеет восемь цифровых (дискретных) входов. Контакты разъема выведены на клеммы, см. рисунок 3.1 (в) (боковая клемма слева). Номера контактов и расположение интерфейсных линий приведены в Приложении Б (рисунок Б.15) и Приложении Г. Обработка значений с входов осуществляется пользовательской программой ПЛК.
 - 3.3.2 Дискретные входы используются для:
 - контроля состояния внешнего оборудования;
 - диагностики работоспособности системы;
 - подключения внешних устройств управления состоянием контроллера.

- 3.3.3 Дискретные входы предназначены для подключения контактных датчиков типа «сухой контакт» или транзисторные ключи (N-P-N-типа и P-N-Р-типа). В качестве датчиков типа «сухой контакт» могут быть использованы различные выключатели, кнопки, концевые выключатели, контакты реле и т.д.
- 3.3.4 Сигналы на дискретные входы формируются в результате замыкания (размыкания) внешних контактов.
- 3.3.5 Для дискретных входов можно задавать логику обработки и время задержки переключения дискретных входов. Подробнее о настройке дискретных входов см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

Внимание! Новые значения параметров логики обработки и время задержки дискретных входов вступают в силу после перезагрузки прибора.

3.4 Аналоговые входы

3.4.1 Назначение

Контроллер имеет восемь аналоговых универсальных входов, осуществляющих:

- опрос значений с первичных преобразователей,
- обработку полученных данных и преобразование их в физические единицы,
- передачу данных в специальную область памяти область входов, для дальнейшего использования в пользовательской программе.

К аналоговым входам напрямую может подключаться широкий спектр датчиков (общий список подключаемых датчиков приведен в таблице 2.2):

- термометры сопротивления, см. п. 3.4.2;
- термоэлектрические преобразователи (термопары), см. п. 3.4.3;
- активные преобразователи с выходным аналоговым сигналом в виде постоянного напряжения или тока), см. п. 3.4.4;
- резистивные датчики, см. п. 3.4.5.

Градуировки датчиков расположены в памяти прибора. Пользователю достаточно просто указать тип подключаемого датчика. Выбор подключаемого датчика, настройка опроса датчиков и получение результатов производится с ЖКИ или из среды CoDeSys. Подробнее о настройке см. раздел «Конфигурирование области вводавывода ПЛК» в РП.

Важно: В случае возникновения ошибки измерения (обрыв, КЗ...) расшифровки кодов ошибок и рекомендации по действиям пользователя см. Приложение Е.

Время опроса одного датчика приведено в таблице 2.1.

Опрос датчиков и обработка их сигналов измерительным устройством осуществляется последовательно по замкнутому циклу.

Включение любого датчика в список опроса производится автоматически после задания типа. При установке параметра «Тип датчика» в значение «Нет датчика», – датчик из списка опроса исключается. Подробнее об установке см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

Важно:

- если аналоговый вход не используется, то рекомендуется установить настройку «Нет датчика» (подробнее см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП);
- к прибору в любой последовательности к любым входам подключаются любые типы датчиков;
- при использовании активных датчиков следует иметь в виду, что «минусовые» клеммы аналоговых входов в ПЛК73 объединены между собой;
- запрещена подача напряжения, превышающего 1 В, на любой из аналоговых входов, т.к. это может вывести прибор из строя. Датчики с выходным сигналом 0(4)...20 мА требуют обязательного подключения дополнительного резистора.

3.4.2 Термометры сопротивления

Термометры сопротивления применяются для измерения температуры окружающей среды в месте установки датчика. Принцип действия таких датчиков основан на существовании у ряда металлов воспроизводимой и стабильной зависимости активного сопротивления от температуры. В качестве материала для изготовления ТС в промышленности чаще всего используется специально обработанная медная или платиновая проволока. Выходные параметры ТС определяются их номинальными статическими характеристиками, стандартизованными ГОСТ Р 8.625–2006.

Основными параметрами НСХ являются: начальное сопротивление датчика R_0 , измеренное при температуре $0^{\circ}C$, температурный коэффициент сопротивления α , определяемый как отношение разницы сопротивлений датчика, измеренных при температуре 100 и $0^{\circ}C$, к его сопротивлению, измеренному при $0^{\circ}C$ (R_0), деленное на $100^{\circ}C$ и округленное до пятого знака после запятой. В связи с тем, что НСХ термометров сопротивления — функции нелинейные (для датчиков с медной проволокой — в области отрицательных температур, а для датчиков с платиновой проволокой — во всем температурном диапазоне), в контроллере предусмотрена линеаризация результатов измерений.

Во избежание влияния сопротивления соединительных проводов на результаты измерения температуры, подключение датчика к контроллеру следует производить по трехпроводной схеме. При такой схеме к одному из выводов ТС подключаются одновременно два провода, соединяющих его с контроллером, а к другому выводу — третий соединительный провод. Для полной компенсации влияния соединительных проводов на результаты измерений необходимо, чтобы их сопротивления были равны друг другу.

Примечание — Возможно подключение 1000-омных ТС также по двухпроводной схеме (например, с целью использования уже имеющихся на объекте линий связи). Однако при этом отсутствует компенсация сопротивления соединительных проводов и поэтому может наблюдаться некоторая зависимость показаний прибора от колебаний температуры проводов. При использовании двухпроводной схемы при подготовке прибора к работе выполняются действия, указанные в Приложении Ж.

Схемы подключения к контроллеру аналоговых датчиков приведены в Приложении Б.

3.4.3 Термоэлектрические преобразователи (термопары)

Термоэлектрические преобразователи (термопары), также применяются для измерения температуры. Термопары, в отличие от термометров сопротивления, обладают меньшими габаритами чувствительного элемента и, как следствие, меньшей теплоемкостью и большим быстродействием, а также имеют более широкий диапазон измеряемых температур. Их использование ограничивается более низкой точностью измерения, большей стоимостью, необходимостью подключения к прибору с использованием специальных термокомпенсационных проводов, низкой максимально допустимой длиной подключения, а также низкой помехозащищенностью линий связи датчик - прибор.

Принцип действия ТП основан на эффекте Зеебека, в соответствии с которым нагревание точки соединения двух разнородных проводников вызывает на противоположных концах этой цепи возникновение электродвижущей силы – термоЭДС. Величина термоЭДС изначально определяется химическим составом проводников и зависит от температуры нагрева.

НСХ термопар различных типов стандартизованы ГОСТ Р 8.585-2001. Так как характеристики всех ТП в той или иной степени являются нелинейными функциями, в контроллере предусмотрены средства для линеаризации показаний. Точка соединения разнородных проводников называется рабочим спаем ТП, а их концы - свободными концами или, иногда, холодным спаем. Рабочий спай ТП располагается в месте, выбранном для контроля температуры, а свободные концы подключаются к измерительному контроллеру. Если подключение свободных концов непосредственно к контактам ПЛК73 не представляется возможным (например, из-за их удаленности друг от друга), то соединение ТП с контроллером необходимо выполнять при помощи компенсационных термоэлектродных проводов или кабелей, с обязательным соблюдением полярности их включения. Необходимость применения таких проводов обусловлена тем, что ЭДС термопары зависит не только от температуры рабочего спая, но также и от температуры ее свободных концов, величину которой контролирует встроенный в контроллер датчик. При этом использование термоэлектродных кабелей позволяет увеличить длину проводников термопары и «перенести» ее свободные концы к клеммнику ПЛК73.

Внимание! Для работы с контроллером могут быть использованы только ТП с изолированными и незаземленными рабочими спаями, так как отрицательные выводы их свободных концов объединены между собой внутри ПЛК73.

3.4.4 Активные преобразователи

Активные преобразователи с выходным аналоговым сигналом применяются в соответствии с назначением датчика для измерения различных физических параметров. Выходными сигналами таких датчиков могут быть изменяющееся по линейному закону напряжение постоянного тока и величина самого тока.

Питание активных токовых датчиков должно осуществляться от внешнего или встроенного блока питания $24 \pm 3~B.$

Подключение датчиков с выходным сигналом в виде постоянного напряжения (0...1,0 В) может осуществляться непосредственно к входам контроллера, а датчиков с выходным сигналом в виде тока — только после установки шунтирующего резистора сопротивлением 100 Ом (погрешность не более 0,1 %). В качестве шунта рекомендуется использовать высокостабильные резисторы с минимальным значением температурного коэффициента сопротивления, например C2-29B.

Примечание – При работе с активными преобразователями в приборе осуществляется масштабирование шкалы измерения. После масштабирования контролируемые физические величины отображаются непосредственно в единицах их измерения (атмосферах, килопаскалях, метрах и т. д.).

Для каждого такого датчика необходимо установить диапазон измерения:

- нижняя граница диапазона измерения соответствует минимальному уровню выходного сигнала датчика;
- верхняя граница диапазона измерения соответствует максимальному уровню выходного сигнала датчика.

Внимание! При использовании активных датчиков следует иметь в виду, что «минусовые» клеммы аналоговых входов в ПЛК73 объединены между собой.

3.4.5 Резистивные датчики

Датчики резистивного типа используются в некоторых запорно-регулирующих клапанах в качестве датчика положения. В датчиках этого типа в качестве чувствительного элемента используется резистор переменного сопротивления, ползунок которого механически связан с регулирующей частью исполнительного механизма.

Также они могут подключаться к контроллеру в качестве эмулятора реальных датчиков температуры для организации стендов или отладочных макетов.

Контроллер ПЛК73 способен обрабатывать сигналы датчиков резистивного типа двух вариантов исполнения – с сопротивлением до 900 Ом и до 2 Ком.

Внимание! Для выявления сигнала короткого замыкания резистора или проводки, контроллер считает сигнал ниже 40 Ом коротким замыканием.

3.5 Выходные устройства

Выходные устройства предназначены для передачи выходного управляющего сигнала на исполнительные механизмы.

Контроллер имеет до 8 встроенных выходных устройств. ВУ могут быть двух типов: дискретные и аналоговые. Типы выходных устройств определяются на стадии заказа прибора.

Типы ВЭ и их характеристики приведены в разделе 2. Схемы подключения ВУ приведены в Приложении Б.

Дискретное ВУ — электромагнитное реле, транзисторная оптопара, оптосимистор, твердотельное реле — используется для управления (включения/выключения) нагрузкой либо непосредственно, либо через более мощные управляющие элементы, такие как пускатели, твердотельные реле, тиристоры или симисторы.

Электромагнитное реле (выход «Р») предназначено для коммутации силовых цепей напряжением не более 250 В и рабочим током не более 8 А (см. рисунок Б.9).

Транзисторная оптопара (выход «К») применяется, как правило, для управления низковольтным реле (не более 60 В при токе не более 400 мА). Во избежание выхода из строя транзистора из-за большого тока самоиндукции параллельно обмотке внешнего реле необходимо устанавливать диод VD1 (см. рисунок Б.10).

Транзисторный ключ (выход «Т») предназначен для прямого подключения к прибору в качестве нагрузки твердотельного реле (выходное напряжение от 4 до 6 В, постоянный ток не более 25 мА) (см. рисунок Б.13).

Внимание — Максимальная длина соединительного кабеля между прибором с выходом T и твердотельным реле не должна превышать 3 м.

Оптосимистор (выход «С») имеет внутреннюю схему перехода через ноль и включается в цепь управления мощного симистора или пары встречно-параллельно включенных тиристоров через ограничивающий резистор R1 (см. рисунки Б.11, Б.12). Величина сопротивления резистора определяет ток управления симистора. Нагрузочная способность выхода — ток не более 50 мА при переменном напряжении не более 250 В.

Для предотвращения пробоя тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC цепочку (R2C1).

Дискретное ВУ («Р», «К», «С», «Т») имеет два мгновенных состояния: «вкл.» и «выкл.». Выходы могут быть также запрограммированы на работу в качестве генераторов ШИМ. Характеристики генерируемых импульсов представлены в таблице 3.1.

. аолица от		
Режим работы дискретного выхода	Характеристики	
Простой дискретный	Частота импульсов не более 1,5 кГц,	
выход	определяется длительностью цикла ПЛК	
ШИМ	Период от 10 мс до 36 с, точность при длительности периода от 10 до 50 мс составляет 0,2 %,	
	при длительности свыше 50 мс составляет 0.1 %	

Таблица 3.1

Аналоговое ВУ представляет собой цифро-аналоговый преобразователь, позволяющий формировать аналоговый сигнал постоянного тока или напряжения.

Формирователь токового сигнала (выход И) преобразует на активной нагрузке Rн значение на выходе в токовый сигнал 4...20 мА (см. рисунок 3.3).

Рисунок 3.3 - Схема подключения нагрузки к ВУ типа «И»

ВУ питается от внешнего либо встроенного источника питания постонапряжения. Сопротивление нагрузки Rн зависит от напряжения источника питания Uп и выбирается из графика (см. рисунок 3.4). В том случае, если для измерения токового сигнала используется измерительный шунт Ru и его номинал меньше необходимого сонагрузки, используется противления добавочный ограничивающий резистор Rorp, сопротивление которого вычисляется из соотношения:

Rorp = RH - Ru

Рисунок 3.4 – График зависимости Rн

Типовые соотношения: $U\pi = 12 \text{ B}$, RH = Ru = 100 OM; $U\pi = 24 \text{ B}$, RH = 700 OM (Ru = 100 OM, Rorp = 620 OM).

Внимание.

- 1. Напряжение источника питания ЦАП не должно быть более 30 В.
- 2. Допускается применение резистора с величиной сопротивления, отличающейся от рассчитанной не более чем на ± 10%.

Формирователь сигнала постоянного напряжения (выход У) преобразует значение на выходе в сигнал напряжения 0...10 В. Сопротивление нагрузки Rн, подключаемой к ЦАП, должно быть в диапазоне от 2 до 10 кОм. Выходы «У» питаются от встроенного источника питания и все гальванически связаны между собой и со встроенным источником питания 24В (рисунок Б.7).

Аналоговое управление осуществляется по прямо-пропорциональному закону (т.е. 4 мА или 0 В соответствует выходному сигналу «0», а 20 мА или 10 В соответствует выходному сигналу «1»).

Параметр **Безоп.сост.{N}** определяет состояние соответствующего ВУ, когда основная программа не функционирует (загрузка прибора, «зависание» и т.д.). Используется для поддержания определенного уровня сигнала на ВУ в аварийном ре-

жиме контроллера. Задается в долях единицы с точностью 0,001. Используется как для аналоговых, так и для дискретных ВУ.

Параметры ВУ можно устанавливать в ручном режиме управления с передней панели или по сети. При этом необходимо предусмотреть средства прекращения управления ВУ из пользовательской программы, т.к. в противном случаи введенное в режиме ручного управления значение будет заменено значением из пользовательской программы.

Подробное описание параметров, определяющих работу выходных элементов, приведено в разделе «Конфигурирование области ввода-вывода ПЛК» в РП.

В контроллере ПЛК73 предусмотрено расширение количества выходных элементов, используя модуль MP1, подключаемый к контроллеру по специальному интерфейсу. Расположение интерфейса показано на рисунке 3.1 (внизу задней стенки корпуса - четырехконтактная съемная клемма). Подробнее о работе с модулем MP1 см. п. 3.6.3.

3.6 Интерфейсы связи

В контроллере ПЛК73 может быть установлена интерфейсная плата с модулями интерфейсов RS-485 и RS-232 для организации работы по стандартным протоколам ОВЕН и ModBus, в базовой комплектации интерфейсов RS-485 и RS-232 нет. Информация по заказу дополнительных интерфейсных плат приведена во введении к настоящему руководству, а инструкция по установке интерфейсной платы в Приложении И.

Интерфейс RS-232 DBGU предназначен для связи со средой программирования CoDeSys, с программой тиражирования, а также для обновления встроенного программного обеспечения контроллера.

3.6.1 Интерфейс RS-232

Контроллер может иметь от нуля до двух встроенных портов RS-232 (тип разъема: RJ12). Схемы расположения интерфейсных линий в разъемах представлены в Приложении В.

Порт предназначен для организации связи с OPC-сервером, а также с другими устройствами по интерфейсу RS-232 по протоколам: OBEH и ModBus в режимах Master или Slave.

Для подключения к ПЛК различных устройств с интерфейсом RS-232 (внешней панели оператора, расходомеров, электросчетчиков, считывателей штрих-кодов) используется кабель КС2, который необходимо подключить к прибору до включения питания ПЛК. Схема кабеля приведена в Приложении В на рисунке В.2.

По умолчанию порт настроен на работу в режиме Slave. Контроллер, анализируя запрос, автоматически определяет протокол, и формирует ответ по заданному протоколу.

При работе в режиме Slave настройки порта задаются с ЖКИ и из среды CoDeSys (см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП).

По умолчанию порт RS-232 имеет следующие сетевые настройки:

скорость: 115200 бит/с;длина слова данных: 8 бит;контроль четности: отсутствует;

адрес: 16.

Список параметров, которые можно опросить, и действия при добавлении параметров для опроса см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

Перевод интерфейса RS-232 в режим Master и дальнейшая работа в этом режиме осуществляется с помощью специализированных библиотек функциональных блоков, подключенных и используемых при создании пользовательской программы в среде программирования «CoDeSys». Настройки интерфейса задаются в функциях библиотеки, см. руководства по применению библиотек программных компонентов для ОВЕН ПЛК в части описания интерфейса библиотеки функциональных блоков для работы с протоколом ModBus и интерфейса библиотеки функциональных блоков для работы с протоколом Овен.

Если порт RS-232 настроен для работы в режиме Master и требуется связаться по нему в режиме Slave, то следует при включении питания ПЛК удерживать нажатой кнопку «ПУСК/СТОП», — это останавливает запуск пользовательской программы и перевод порта в режим Master.

3.6.2 Интерфейс RS-485

Контроллер может иметь от нуля до двух встроенных портов RS-485. Контакты разъема выведены на съемные двухконтактные клеммы на задней панели корпуса прибора. Названия контактов и расположение интерфейсных линий приведены в Приложении Б на рисунке Б.15.

Порт предназначен для организации связи с OPC-сервером, а также с другими устройствами по интерфейсу RS-485 по протоколам: OBEH и ModBus в режимах Master или Slave.

Для подключения к ПЛК других устройств с интерфейсом RS-485 (внешней панели оператора, расходомеров, электросчетчиков, считывателей штрих-кодов) используется кабель «витая пара».

По умолчанию порт настроен на работу в режиме Slave. Контроллер, анализируя запрос, автоматически определяет протокол, и формирует ответ по заданному протоколу.

При работе в режиме Slave настройки порта задаются с ЖКИ и из среды CoDeSys (см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП).

По умолчанию порт RS-485 имеет следующие сетевые настройки:

скорость: 115200 бит/с;

длина слова данных: 8 бит;

контроль четности: отсутствует;

адрес: 16.

Список параметров, которые можно опросить, и действия при добавлении параметров для опроса см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

Перевод интерфейса RS-485 в режим Master и дальнейшая работа в этом режиме осуществляется с помощью специализированных библиотек функциональных блоков, подключенных и используемых при создании пользовательской программы в среде программирования «CoDeSys». Настройки интерфейса задаются в функциях библиотеки, см. руководства по применению библиотек программных компонентов для ОВЕН ПЛК в части описания интерфейса библиотеки функциональных блоков для работы с протоколом ModBus и интерфейса библиотеки функциональных блоков для работы с протоколом Овен.

Если порт RS-485 настроен для работы в режиме Master и требуется связаться по нему в режиме Slave, то следует при включении питания ПЛК удерживать нажатой кнопку «ПУСК/СТОП», — это останавливает запуск пользовательской программы и перевод порта в режим Master.

3.6.3 Интерфейс связи с модулем МР1

Интерфейс предназначен для подключения к контроллеру модуля MP1 по внутренней шине, что позволяет увеличить количество выходных устройств на 8 дискретных (ключевых) выходных устройств в различных комбинациях:

- электромагнитное реле 4 A, 220 B;
- транзисторные оптопары 400 мА, 60 В;
- симисторные оптопары 0,5 A, 250 B;
- для управления твердотельным реле 4...6 В, 50 мА.

Схема подключения модуля МР1 к контроллеру ПЛК73 представлена в Приложении Б на рисунке Б.14.

Переключение состояний выходных устройств МР1 может осуществляться не чаще, чем 13,5 раз в секунду.

ВАЖНО! Так как у MP1 нет безопасного состояния выходных элементов и он находиться под управлением ПЛК73, то к прибору MP1 следует подключать оборудование, не отвечающее за важные процессы.

ВАЖНО! Питание ПЛК73 и МР1 должно осуществляться от одного источника питания, для того, чтобы при отключении питания оно пропало на обоих приборах и прибор МР1 не остался без управления.

3.6.4 Интерфейс связи RS-232 DBGU

Контроллер имеет встроенный порт RS-232 DBGU (тип разъема: RJ12). Порт предназначен для:

- связи контроллера со средой программирования CoDeSys;
- смены встроенного программного обеспечения контроллера на новую версию, либо восстановления встроенного программного обеспечения при нарушениях работы контроллера.
- связи контроллера с программой тиражирования. Подробнее о программе тиражирования см. раздел «Программа тиражирования» в РП;

Для связи контроллера со средой программирования CoDeSys используется кабель КС1 (поставляется в комплекте с контроллером), который необходимо подключить к ПЛК до включения питания. Схема кабеля приведена в Приложении В на рисунке В.1. Для смены программного обеспечения контроллера может быть использован кабель КС1 или КС2.

Внимание!

- 1. Порт предназначен исключительно для сервисных целей. Запрещается подключать к нему любые устройства на этапе наладки и эксплуатации, кроме ПК для установки связи со средой программирования СоDeSys или с программой тиражирования или для смены программного обеспечения контроллера.
- 2. При обновлении встроенного программного обеспечения время будет сброшено, и его необходимо переустановить.
- При обновлении встроенного программного обеспечения значения всех конфигурационных параметров будут сброшены. После обновления необходимо выполнить сброс EEPROM и сконфигурировать прибор заново.
- 4. Значения параметров, сохраненные программой тиражирования из старого варианта встроенного программного обеспечения, записать (перенести) в новый вариант будет невозможно. При необходимости использования значений параметров из старого варианта, необходимо сохранить прежнюю конфигурацию при помощи программы тиражирования заново.

3.7 Человеко-машинный интерфейс.

3.7.1 Жидкокристаллический индикатор

Контроллер имеет встроенный 4-х строчный 16-ти разрядный ЖКИ, позволяющий:

- отображать «состояние» входов и задавать значения выходов контроллера;
- отображать и редактировать значения параметров пользовательской программы;
- визуально отслеживать изменение значений параметров пользовательской программы.

Подробнее с ресурсами отображения можно ознакомиться в разделе «Использование ЖКИ» РП и в руководстве по применению библиотек программных компонентов для ОВЕН ПЛК в части описания функциональных блоков библиотек работы с ЖКИ ППК73.

В ПЛК73 реализована возможность изменения яркости подсветки и контрастности индикатора, см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

3.7.2 Встроенный звуковой излучатель

Контроллер имеет встроенный звуковой излучатель, позволяющий:

- сигнализировать о подключении питания к контроллеру:
- сигнализировать о нажатии пользователем кнопок на лицевой панели контроллера,
- создавать специализированные программные средства сигнализации о прохождении процесса, обеспечивающие управление динамиком из пользовательской программы.

Для управления звуковым излучателем используется библиотека ФБ Owen_specific_tools.lib.

3.7.3 Клавиатура

Контроллер имеет встроенную клавиатуру с 9 кнопками: Пуск\стоп, Выход, Альт, Ввод, Вверх, Вниз, F1, F2, F3;

Кнопки могут использоваться для переключения между режимами индикации и задания значений конфигурационных параметров, см. раздел 7 (Подробнее об этом см. в РП).

Назначение кнопок F1, F2, F3 определяется программой пользователя, см. раздел 7 (Подробнее об этом см. в РП).

С целью обращения внимания обслуживающего персонала на нажатие кнопок на лицевой панели в контроллере предусмотрена функция «Звук», определяющая возможность звуковой сигнализации по факту нажатия какой-либо кнопки пленочной клавиатуры путем подачи сигнала встроенного звукового излучателя. Данная функция может быть отключена. Подробнее о включении \ отключении функции «Звук» см. раздел «Конфигурирование области ввода-вывода ПЛК» в РП.

3.7.4 Встроенные светодиоды

Контроллер имеет 6 встроенных светодиодов: K1, K2, K3, K4, K5 и K6, которые позволяют создавать специализированные программные средства сигнализации о прохождении процесса, обеспечивающие управление светодиодами из пользовательской программы. Подробнее см. раздел 7 (Подробнее об этом см. в РП).

4 Использование по назначению

Перед использованием контроллер ПЛК73 необходимо запрограммировать, т.е. создать пользовательскую программу. После создания пользовательская программа может быть сохранена в энергонезависимой памяти контроллера и запускаться на выполнение после включения питания или перезагрузки, — см. раздел «Сохранение программы в памяти контроллера» в РП.

Программирование осуществляется с помощью ПО CoDeSys 2.3 (версии 2.3.9.9). Для связи со средой программирования CoDeSys используется интерфейс RS-232 DBGU контроллера, – см. раздел «Проект. Установка связи с ПЛК» в РП.

На рисунке 4.1 приведен пример подключения контроллера к ПК для программирования через интерфейс RS-232. При этом используется кабель программирования КС1, входящий в комплект поставки. Кабель включается в гнездо (RS-232 DBGU), расположенное на верхней панели корпуса контроллера (см. рисунок 3.1). Ответная часть кабеля подключается к СОМ-порту ПК.

Рисунок 4.1 – Вариант подключения к ПК для программирования контроллера через порт RS-232 DBGU

Внимание! Подключение кабеля программирования КС1 осуществляется при отключенном питании ПЛК73 и ПК (или хотя бы одного из этих устройств). Если отключение питания контроллера и ПК невозможно, то в первую очередь кабель подключается к ПЛК73, затем к СОМ-порту ПК; предварительно следует коснуться ме-

таллической частью соединителя кабеля металлического корпуса СОМ-порта ПК для выравнивания электрических потенциалов контроллера и ПК. Невыполнение этих требований может привести к повреждению СОМ-порта ПК.

Подробно программирование контроллера описано в РП, представленном на компакт-диске из комплекта поставки на реализуемые контроллеры в составе комплекса пользовательской документации и программных средств для ОВЕН ПЛК73.

Для удобства пользователя на компакт-диске реализована система навигации по структуре пакета пользовательских документов и программных средств для ОВЕН ПЛК73, позволяющая вызывать и просматривать необходимые документы и устанавливать программное обеспечение, необходимое для функционирования ПЛК.

Время реакции входов/выходов

Время реакции зависит от типов применяемых входов/выходов. Аналитическое выражение для определения времени полного отклика контроллера (Тоткл) имеет вид

Тоткл = Твх + 2Тцикла + Твых.

где **Твх** – время реакции входа на изменение физического сигнала (включая фильтрацию). По умолчанию значения для цифровых входов — 5,0 мс, для аналоговых входов — 100 мс (в таблице 2.1 данный параметр называется, для цифрового входа называется «Минимальная длительность импульса, воспринимаемого дискретным входом»);

Тцикла — время цикла ПЛК. Установленное значение по умолчанию — 1 мс (стабилизированное). Настраивается в окне «Конфигурация ПЛК (PLC Configuration)» ПО CoDeSys. Длительность цикла можно узнать, подключив модуль статистики, — он подробно описан в РП;

Твых – задержка на срабатывание выхода. Значения для релейных выходов – 50 мс; для обычных транзисторных выходов – 20 мс (в таблице 2.1 данный параметр называется «Время переключения из состояния «0» в состояние «1» и обратно»).

Примеры расчета времени полного отклика контроллера для разных вариантов использования входов и выходов приведены ниже.

Пример 1: максимально быстрый отклик может быть реализован при использовании цифровых входов и транзисторных выходов при установленном минимальном значении времени цикла ПЛК:

Тоткл = Tвх + 2Тцикла + Tвых = $5 + 2 \times 0,25 + 20 = 25,5$ мс.

Пример 2: наиболее медленный отклик может быть реализован при использовании аналоговых входов и выходов при установленном фиксированном значении (по умолчанию) времени цикла ПЛК:

Тоткл = Tвх + 2Tцикла + Tвых = $100 + 2 \times 1 + 100 = 202$ мс.

Цифровой фильтр для входных аналоговых сигналов

Для ослабления влияния внешних импульсных помех на эксплуатационные характеристики контроллера в программу его работы введена цифровая фильтрация

результатов измерений. Фильтрация осуществляется независимо для каждого аналогового входа, задается параметрами «Пост. Фильтра» и «Полоса фильтра». Фильтрация проводится в два этапа.

На первом этапе фильтрации из текущих измерений входных параметров отфильтровываются значения, имеющие явно выраженные «провалы» или «выбросы». Для этого в контроллере осуществляется непрерывное вычисление разности между результатами двух последних измерений одного и того же входного параметра, выполненных в соседних циклах опроса, и сравнение ее с заданным предельным отклонением. Если вычисленная разность превышает заданный предел, то результат, полученный в последнем цикле опроса, считается недостоверным, дальнейшая обработка его приостанавливается и производится повторное измерение. Если недостоверный результат был вызван воздействием помехи, то повторное измерение подтвердит этот факт, и ложное значение аннулируется.

Такой алгоритм обработки результатов измерений позволяет защитить контроллер от воздействия единичных импульсных и коммутационных помех, возникающих на производстве при работе силового оборудования.

Величина предельного отклонения результатов двух соседних измерений задается пользователем в параметре «Полоса фильтра» индивидуально для всех датчиков в единицах измеряемых ими физических величин.

В общем случае при выборе «Полосы фильтра» следует иметь в виду, что чем меньше ее заданное значение, тем лучше помехозащищенность аналогового входа, но при этом (из-за возможных повторных измерений) хуже реакция контроллера на быстрое фактическое изменение входного параметра. Во избежание повторных измерений при задании «Полосы фильтра» следует руководствоваться максимальной скоростью изменения контролируемого параметра, а также рассчитанной (см. таблицу 2.1) периодичностью опроса. При необходимости данный фильтр может быть отключен установкой в параметре «Полоса фильтра» значения «0».

На втором этапе фильтрации осуществляется сглаживание (демпфирование) полученных на первом этапе результатов измерений в случае их возможной остаточной флуктуации.

Передаточная функция звена, осуществляющего преобразование входного сигнала на этом этапе фильтрации, по своим параметрам соответствует фильтру низких частот первого порядка с постоянной времени τ .

При поступлении на вход такого фильтра скачкообразного сигнала его выходной сигнал через время, равное t, изменится на величину 0,64 от амплитуды скачка; через время, равное 2t, — на величину 0,88; через время, равное 3t, — на величину 0,95 и т.д. по экспоненциальному закону.

«Постоянная времени фильтра» τ задается пользователем в секундах для всех аналоговых входов при установке параметра «**Пост. фильтра**». При задании параметра «**Пост. фильтра**» следует иметь в виду, что увеличение его значения улучшает помехозащищенность аналоговых входов, но одновременно увеличивает его инерционность. Реакция контроллера на быстрые изменения входной величины замедляется.

При необходимости данный фильтр может быть отключен установкой в параметре «**Пост. фильтра**» значения «0». Временные диаграммы работы цифровых фильтров представлены на рисунке 4.2.

Рисунок 4.2 – Временные диаграммы работы цифровых фильтров показаний датчика

5 Меры безопасности

- 5.1 По способу защиты от поражения электрическим током контроллер ПЛК73 соответствует классу II по ГОСТ 12.2.007.0-75.
- 5.2 При эксплуатации и техническом обслуживании необходимо соблюдать требования ГОСТ 12.3.019-80, «Правил эксплуатации электроустановок потребителей» и «Правил охраны труда при эксплуатации электроустановок потребителей».
- 5.3 Открытые контакты клемм контроллера при эксплуатации находятся под напряжением величиной до 250 В. Любые подключения к контроллеру и работы по его техническому обслуживанию производятся только при отключенном питании контроллера и подключенных исполнительных механизмов.
- 5.4 Не допускается попадание влаги на контакты выходных соединителей и внутренние элементы контроллера. Запрещается использование контроллера при наличии в атмосфере кислот, щелочей, масел и иных агрессивных веществ.
- 5.5 Подключение, регулировка и техническое обслуживание контроллера ПЛК73 должны производиться только квалифицированными специалистами, изучившими настоящее руководство по эксплуатации.

6 Монтаж и подготовка к работе

6.1 Установка контроллера

- 6.1.1 При монтаже контроллеров необходимо учитывать меры безопасности, представленные в разделе 5.
- 6.1.2 При монтаже для контроллера предварительно подготавливается место на щите управления. Конструкция щита должна обеспечивать защиту контроллера от попадания в него влаги, грязи и посторонних предметов.

Установка контроллера на щите управления

осуществляется в следующей последовательности:

- 1. Производится подготовка на щите места для установки контроллера в соответствии с размерами, приведенными в Приложении А.
- Контроллер устанавливается на щите управления, используя для его крепления монтажные элементы, входящие в комплект поставки прибора.
- 3. Прибор вставляется в специально подготовленное отверстие на лицевой панели щита (см. Приложение A).
- 4. Вставляются фиксаторы из комплекта поставки в пазы на верхней (см. рисунок 3.1) и нижней стенках прибора (аналогично рисунку 3.1).
- 5. Завинчиваются винты M4 x 35 из комплекта поставки в отверстиях каждого фиксатора так, чтобы прибор был плотно прижат к лицевой панели щита.

6.2 Монтаж внешних связей

6.2.1 Общие требования к монтажным проводам

Для обеспечения надежности электрических соединений рекомендуется использовать только многожильные медные кабели сечением не более 1,5 мм², концы которых перед подключением необходимо зачистить на длину 5 мм, с таким расчетом, чтобы срез изоляции плотно прилегал к клеммной колодке, т. е. чтобы оголенные участки провода не выступали за ее пределы. Для гибкого (многожильного) провода следует использоваться обжимные вилочные наконечники (например, типа НВИ1,5-3, рисунок 6.2).

Рисунок 6.2 – Подготовка многожильного провода для монтажа с наконечником

Входные цепи управления:

Максимальное сечение проводов, подключаемых к клеммам при монтаже жестким или гибким проводом -1.5 мм² (соответствует 16 AWG).

Минимальное сечение проводов, подключаемых к клеммам управления 0,25 мм².

Цепи питания и выходные:

Максимальное сечение проводов, подключаемых к клеммам при монтаже жестким или гибким проводом - 1,5 мм 2 (или 2×0,75 мм 2 для жесткого провода) (соответствует 16 AWG).

Минимальное сечение проводов, подключаемых к клеммам 0,25 мм².

Клеммы контроллера следует затягивать с усилием 1,95 кг/см.

Внимание! Не следует укладывать сигнальные провода в один жгут или короб с силовыми проводами. Для защиты цепей от влияния внешних наводимых помех рекомендуется применять экранированные кабели.

6.2.2 Подключение питания

6.2.2.1 Питание контроллера следует осуществлять от сетевого фидера, не связанного непосредственно с питанием мощного силового оборудования. Во внешней цепи рекомендуется установить выключатель, обеспечивающий отключение контроллера от сети и плавкие предохранители на ток 1,0 А.

Питание каких-либо устройств от сетевых контактов контроллера запрещается. Номера контактов подключения питания приведены в Приложении Г.

6.2.3 Подключение входов и выходов

- 6.2.3.1 Подключение источников сигналов и датчиков ко входам, а также подключение исполнительных механизмов к выходам осуществляются в соответствии со схемами, приведенными в Приложении Б.
- 6.2.3.2 Релейные и транзисторные выходы не имеют внутренней защиты от перегрузки. По этой причине следует использовать элементы защиты, показанные на рисунках Б.9, Б.10 (Приложение Б).
- 6.2.3.3 Для индуктивных нагрузок, например, при использовании контакторов или магнитных клапанов, управляемых постоянным напряжением, необходимо всегда использовать безынерционные диоды. Эти диоды часто устанавливаются в управляемые устройства заранее. Если же они не установлены, то необходимо обеспечить их монтаж.
- 6.2.3.4 Если индуктивные нагрузки включаются релейными выходами с переменным напряжением, следует предусмотреть RC-цепочку, снижающую пиковое напряжение при включении нагрузки и, благодаря этому, защищающую контакты реле от повреждений при искровом разряде.
- 6.2.3.5 При использовании встроенного источника питания 24 В для питания активных аналоговых датчиков, дискретных входов, аналоговых выходов следует учитывать особенности применения:
 - питание выходов типа «У» всегда осуществляется от встроенного источника питания, соединение линий питания производится при изготовлении контроллера.

Примечание. Все выходы У и встроенный источник питания 24 В между собой гальванически связаны.

б) суммарный потребляемый от источника ток не должен превышать 180 мА (выход типа «И» потребляет не более 20,1 мА, выход типа «У» – не более 10 мА, дискретный вход – не более 9 мА).

Внимание! Не допускается питание от одного источника одновременно активных аналоговых датчиков, дискретных входов и датчиков, аналоговых выходов в любых комбинациях, так как в этом случае появляется гальваническая связь между ними.

6.2.4 Подключение датчиков

6.2.4.1 Схемы подключения датчиков к ПЛК73 приведены на рисунках Б.1 - Б.6 в Приложении Б.

6.2.4.2 Подключение термометров сопротивления.

В ПЛК73 используется трехпроводная схема подключения термометров сопротивления. При такой схеме к одному из выводов ТС подключаются одновременно два провода, соединяющих его с прибором, а к другому выводу – третий соединительный провод (см. рисунок Б.2 в Приложении Б).

Внимание! Сопротивления всех трех соединительных проводов должны быть равны – не более 15 Ом, при этом используются провода равной длины – не более 100 м. В противном случае результаты измерений могут быть неточными.

Примечание – Допускается соединение термометров сопротивления 1000 Ом с прибором и по двухпроводной схеме. При этом длина соединительных проводов должна быть не более 100 метров, а сопротивление каждой жилы – не превышать 15,0 Ом. Подробнее см. Приложение Ж.

6.2.4.3 Подключение термоэлектрических преобразователей (термопар).

- 6.2.4.3.1 Подключение термопар к ПЛК73 производится с помощью специальных компенсационных (термоэлектродных) проводов, изготовленных из тех же самых материалов, что и термопара. Допускается также использовать провода из металлов с термоэлектрическими характеристиками, которые в диапазоне температур 0...100 °C аналогичны характеристикам материалов электродов термопары.
- 6.2.4.3.2 При соединении компенсационных проводов с термопарой и прибором соблюдается полярность (см. схему подключения, рисунок Б.6 в Приложении Б).

При нарушении вышеуказанных условий могут возникать значительные погрешности при измерении!

6.2.4.3.3 Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

Внимание! Рабочие спаи термопар должны быть электрически изолированы друг от друга и от внешнего оборудования! Запрещается использовать термопары с неизолированным рабочим спаем.

- 6.2.4.4 Подключение активных датчиков, имеющих унифицированный выходной сигнал тока или напряжения.
- 6.2.4.4.1 Активные датчики с выходным сигналом в виде постоянного напряжения (0...1 В) подключаются непосредственно к входным контактам прибора. Для использования активных датчиков с выходным сигналом 0...10 В необходимо применить модуль РД-10 производства ОВЕН, устанавливаемый на аналоговом

входе.

- 6.2.4.4.2 Активные датчики с выходным сигналом в виде тока (0...5 мА, 0...20 мА или 4...20 мА) могут подключаться к прибору только после установки внешнего шунтирующего резистора (см. рисунок Б.5 в Приложении Б). Резистор должен быть прецизионным (типа C2-29B, C5-25 и т.п., мощностью не менее 0.25 Вт, сопротивлением 100 Ом \pm 0.1 %) и высокостабильным во времени и по температуре (ТКС не хуже 25x10-6 1/°C). Данные резисторы можно приобрести в отделе продаж фирмы OBEH.
- 6.2.4.4.3 Для питания нормирующих преобразователей необходим дополнительный источник постоянного напряжения U_n . На рисунке E.5 в Приложении E.5 показана схема подключения датчиков с унифицированным выходным сигналом E.5 мА к приборам по двухпроводной линии. Значение напряжения E.5 ма указывается в технических характеристиках нормирующего преобразователя и, как правило, лежит в диапазоне E.5 ма E.
- 6.2.4.4.4 Во избежание влияния помех на измерительную часть прибора линию связи прибора с датчиком рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба.

Внимание! «Минусовые» входы датчиков в приборе электрически объединены между собой. Для питания активных датчиков возможно использование встроенного в ПЛК73 источника питания 24 В постоянного тока.

6.2.4.5 Подключение резистивных датчиков.

Подключение резистивного датчика осуществляется по двухпроводной или по трехпроводной схеме. Схемы подключения резистивного датчика ко входу прибора представлены на рисунках Б.2 и Б.3 в Приложении Б.

6.2.5 Подключение внешних устройств управления

Цепи ВУ имеют гальваническую изоляцию от всей остальной схемы прибора. Исключение составляет выход «Т» для управления внешним твердотельным реле. В этом случае гальваническую изоляцию обеспечивает само твердотельное реле.

6.2.5.1 Подключение нагрузки к ВЭ типа «транзисторная оптопара» (тип «К»).

Транзисторная оптопара применяется, как правило, для управления низковольтным электромагнитным или твердотельным реле (до 60 В постоянного тока).

Схема подключения для ВЭ типа «К» приведена на рисунке Б.10 в Приложении Б.

Примечание. Во избежание выхода из строя транзистора из-за большого тока самоиндукции, параллельно обмотке реле устанавливается диод VD1, рассчитанный на ток 1 A и напряжение 100 B.

6.2.5.2 Подключение нагрузки к ВЭ типа «симисторная оптопара» (тип «С»).

Оптосимистор включается в цепь управления мощного симистора через ограничивающий резистор R1 (схема подключения для ВУ типа «С» приведена на рисунке Б.11 в Приложении Б). Значение сопротивления резистора определяет величина тока управления симистора и может быть рассчитано по формуле

R1 [OM] =(30 [B]/lynp [A]) \pm 20%.

Оптосимистор может также управлять парой встречно-параллельно включенных тиристоров VS1 и VS2 (рисунок Б.12 в Приложении Б). Для предотвращения пробоя

тиристоров из-за высоковольтных скачков напряжения в сети к их выводам рекомендуется подключать фильтрующую RC цепочку (R2C1).

6.2.5.3 Подключение нагрузки к ВЭ типа «ЦАП 4...20 мА» (тип «И»).

Для работы ЦАП 4...20 мА используется внешний источник питания постоянного тока, номинальное значение напряжения которого U_n рассчитывается следующим образом:

$$\begin{split} &U_{n.min} < U_{n} < U_{n.max} \; ; \\ &U_{n.min} = 10 \; B + 0.02 \; A * R_{_{H}} \; ; \\ &U_{n.max} = U_{n.min} + 2.5 \; B, \end{split}$$

где U_{Π} – номинальное напряжение источника питания, B;

U_{п.min} – минимально допустимое напряжение источника питания, В;

 ${f U}_{n.max}$ – максимально допустимое напряжение источника питания, В;

R_н – сопротивление нагрузки ЦАП, Ом.

Если по какой-либо причине напряжение источника питания ЦАП, находящегося в распоряжении пользователя, превышает расчетное значение $U_{n.max}$, то последовательно с нагрузкой необходимо включить ограничительный резистор (схема подключения для ВУ типа «И» приведена на рисунке Б.8 в Приложении Б), сопротивление которого $R_{\text{огр}}$ рассчитывается по формулам:

где $R_{\text{огр.ном}}$ – номинальное значение ограничительного резистора, кОм;

 $R_{\text{огр.min}}$ – минимально допустимое значение ограничительного резистора, кОм;

 $R_{orp,max}$ – максимально допустимое значение ограничительного резистора, кОм;

Іцап._{max} — максимальный выходной ток ЦАП, мА;

Внимание! Напряжение источника питания ЦАП не должно превышать 36 В.

Для питания ВУ типа «ЦАП 4...20 мА» возможно использование встроенного в ПЛК73 источника питания 24 В постоянного тока.

6.2.5.4 Подключение нагрузки к ВУ типа «ЦАП 0...10 В» (тип «У»).

Для работы ЦАП 0...10 В используется внутренний источник питания постоянного тока (схема подключения для ВУ типа «У» приведена на рисунке Б.7 в Приложении Б). Сопротивление нагрузки $R_{\scriptscriptstyle H}$, подключаемой к ЦАП, должно быть не менее 2 кОм.

Все выходы «У» прибора питаются от одного встроенного источника питания, они гальванически связаны между собой.

Внимание! При наличии в приборе выходов типа «У» использование встроенного источника питания для питания иных цепей не допускается.

6.2.5.5 Подключение к ВУ для управления твердотельным реле (тип «Т»).

Выходной элемент «Т» выдает напряжение от 4 до 6 В для управления внешним твердотельным реле. Схема подключения для ВУ типа «Т» приведена на рисунке Б.13 в Приложении Б.

Данный тип выходного элемента не оснащен внутренней гальванической изоляцией. Гальваническую развязку прибора и подключенного исполнительного механизма обеспечивает само твердотельное реле. Длина линии подключения к выходу T не должна превышать 3 м. Внутри выходного элемента установлен ограничительный резистор $R_{\text{огр}}$ номиналом 100 Ом.

6.2.6 Подключение интерфейса RS-485

При наличии интерфейсов RS-485 подключение выполняется по двухпроводной схеме витой парой проводов с соблюдением полярности. Монтаж следует производить при отключенном напряжении питания всех устройств сети RS-485. Длина линии связи должна быть не более 1200 м. Провод А подключается к выводу А2 или А1 контроллера, провод В подключается к выводу В2 или В1 контроллера, соответственно.

Примечание — Обозначение контактов интерфейса RS-485 в приборах производства других фирм может быть следующим: контакту A соответствует обозначение «Data+», контакту B — «Data-».

Для согласования интерфейса RS-485 с устройствами с интерфейсом RS-232 необходимо использовать преобразователи RS485\RS232 типа AC3M или подобные.

Внимание! При включении контроллера в сеть RS-485 ПЛК73 в качестве Master (ведущего прибора), в него встроены резисторы, определяющие состояние линии при отсутствии передачи. В связи с этим не допускается включать в один сегмент сети RS-485 более 6 контроллеров ПЛК73, даже если они настроены на работу в режиме Slave (ведомый прибор). При необходимости включить более 6 контроллеров ПЛК73 в сеть RS485 или разделить сеть на несколько сегментов следует использовать усилители/повторители интерфейса RS-485 типа AC5 (см. рисунок 6.3).

Рисунок 6.3 – Пример схемы подключений в сеть более 6-ти ПЛК73 (AC5 – повторитель сигнала разработки OBEH)

6.2.7 Подключение к интерфейсу RS-232

Подключение осуществляется стандартным кабелем КС2 «ПЛК-Панель» (не входит в комплект поставки, приобретается отдельно), кабелем для программирования (кабель КС1 из комплекта поставки) или кабелем, изготовленным по схеме, приведенной в Приложении В. Подключение необходимо производить при отключенном напряжении питания контроллера и подключаемого устройства. Длина кабеля не должна превышать трех метров.

6.2.8 Подключение к интерфейсу RS-232 DBGU

Подключение осуществляется кабелем для программирования КС1, входящим в комплект поставки. Кабель подключается к разъему RS-232 DEBUG на верхней панели контроллера, ответную часть кабеля следует вставить в COM-порт компьютера.

Возможный вариант структуры соединений контроллера при его работе в системе управления показан на рисунке 6.4.

6.2.9 Подключение съемных клеммных колодок

Для удобства подключений клеммные колодки ПЛК73 являются съемными (см. Приложение И), как на боковых стенках контроллера, так и на задней.

Для отсоединения клеммных колодок на задней стенке контроллера (MP1 или RS-485) следует потянуть их в сторону от прибора.

Для отсоединения клеммных колодок на боковых стенках контроллера необходимо снять заднюю крышку контроллера (вывинтив винты), а затем вывинтить винты колодок и снять колодки в направлении, указанном на рисунке 3.1 стрелками.

6.3 Указания по монтажу

Подключение контроллера следует выполнять по схемам, приведенным в Приложении Б, соблюдая при этом нижеизложенную последовательность проведения операций.

- Подключить линии связи «контроллер-датчики» к первичным преобразователям.
- 2) Подключить линии связи «контроллер-датчики» к входам ПЛК73.
- 3) Подключить к выходам контроллера исполнительные механизмы.

Модули ввода/вывода Мх110

Рисунок 6.4 – Пример структуры соединений при использования ПЛК в системе

4) Подключить линии интерфейсов RS-485, RS-232 и MP1.

- На неиспользуемые при работе контроллера измерительные входы установить перемычки.
- 6) Произвести подключение ПЛК73 к источнику питания контроллера.

После выполнения указанных работ контроллер готов к дальнейшему использованию.

6.4 Пробный пуск

- 6.4.1 Если ПЛК находился длительное время при температуре ниже минус $10~^{\circ}$ С, то перед включением и началом работ с ПЛК необходимо выдержать его в помещении с температурой, соответствующей рабочему диапазону (от минус $10~^{\circ}$ С), в течение не менее $30~^{\circ}$ Мин.
- 6.4.2 Перед подачей питания на ПЛК следует проверить правильность подключения напряжения и его уровень. Для исполнений с питанием переменным током:
 - при пониженном напряжении (ниже 90 В) контроллер работать не будет (отключится – точный порог отключения не регламентируется);
 - при превышении напряжения (более 264 B) возможен выход ПЛК из строя.

Для моделей с питанием от источника постоянного напряжения:

- при напряжении ниже 150 В работа контроллера не гарантируется (контроллер прекращает функционировать, однако, из строя не выходит);
- при превышении напряжения питания уровня 300 В возможен выход ПЛК из строя.
- 6.4.3 При подаче на ПЛК напряжения питания допустимого диапазона на лицевой стороне корпуса начинает светиться ЖКИ.
- 6.4.4 После включения питания контроллер перезагрузится, при этом кратковременно включатся звуковой сигнализатор и начинает светиться ЖКИ. Если в контроллер была загружена пользовательская программа, она сразу начинает исполняться.
- 6.4.5 Если после включения питания выполнение программы не началось, необходимо проверить наличие в памяти ПЛК программы и следовать инструкциям раздела 6.5.

6.5 Диагностика и устранение неисправностей

- 6.5.1 Состояние контроллера отображают сообщения, появляющиеся на ЖКИ на его передней панели. Коды ошибок контроллера и измерителя (расшифровка текстовой информации об ошибках) приведены в Приложениях Д и Е вместе с рекомендациями необходимых действий пользователя на возникающие ошибки.
- 6.5.2 Проверить работоспособность входов и выходов контроллера можно из среды CoDeSys, задавая состояния соответствующих цепей согласно РП.

Перед подключением контроллера к CoDeSys необходимо инсталлировать в среду **Target-файл** контроллера, выбрать канал связи и установить необходимые параметры канала связи. Подробно процедура подключения контроллера к среде CoDeSys описана в РП.

7 Эксплуатация контроллера

После программирования и монтажа контроллера при запуске, он автоматически начинает выполнять пользовательскую программу, загруженную в энергонезависимую память контроллера. Управление входами, выходами, интерфейсами происходит в соответствии с алгоритмом, заложенным в эту программу.

7.1 Работа с ЖКИ

Работа с ЖКИ реализуется в программе с помощью специальных библиотек функциональных блоков. Отражение функционирования ПЛК на ЖКИ называется Рабочим режимом индикации. Данные можно выводить на несколько экранов. Управление с помощью кнопок в рабочем режиме индикации показано на рисунке 7.1. Более подробно работа с рабочим режимом индикации и использование библиотек описаны в разделе «Работа с ЖКИ ПЛК» РП и в руководствах по применению библиотек программных компонентов для ОВЕН ПЛК» в части описания функциональных блоков библиотек работы с ЖКИ ПЛК73.

Также в процессе работы контроллера возможно задавать значения: параметров конфигурации периферийного оборудования (входов, выходов и т.д.), пользовательских параметров (уставок, аварийных порогов, коэффициентов ПИД-регуляторов и т.д.). Данный режим называется Конфигурационным режимом индикации. Управление с помощью кнопок в конфигурационном режиме индикации показано на рисунке 7.1. Подробнее о задании значений конфигурационных параметров описано в разделе «Конфигурирование области ввода-вывода ПЛК» в РП. После входа в Конфигурационный режим индикации в нижних двух строках индикатора будут отображаться переменные из Рабочего режима индикации.

Существует еще третий, специальный режим работы ЖКИ, — Отладочный режим индикации. Он необходим пользователю для возможной перезагрузки прибора и для просмотра кода ошибки при возникновении таковой. Расшифровка кодов ошибки приведена в Приложении Д. Данный режим также предназначен для проведения технологических манипуляций с контроллером при его производстве и поверке (в этом руководстве не рассматривается).

В дополнение к основным функция кнопок в контроллере имеются еще дополнительные сочетания кнопок:

- Для того, чтобы пользовательская программа не запускалась, следует, удерживая кнопку , включить питание контроллера. Это может понадобиться, например, для того, чтобы программа не занимала СОМ-порт (подробнее см. п. 3.6.1) или при неправильном функционировании прибора, когда выполнение кода приводит к постоянной перезагрузке прибора.

Режимы индикации и сочетания кнопок, переключающие их, представлены на рисунке 7.1.

Рисунок 7.1 – Диаграмма переходов между режимами индикации ПЛК

7.2 Часы реального времени

Задание значения часов реального времени производится с ЖКИ контролера из меню **Конфигурация / Доп. параметры / Время и дата**. Этот параметр задается на двух экранах – на первом экране указывается **Дата**, а на втором экране указывается **Время**. Параметр **Дата** задается в формате ДД.ММ.ГГ. Переход курсора осуществляется кнопками илы + или илы + ...

Параметр Время задается в формате ЧЧ:ММ:СС.

8 Смена встроенного программного обеспечения

В контроллере имеется возможность смены встроенного программного обеспечения контроллера. Программирование ядра контроллера осуществляется через порт RS-232 DBGU (интерфейс для связи со средой CoDeSys и обновления встроенного программного обеспечения) контроллера с помощью кабеля прошивки КС1 или кабеля КС2, а также специальной программы «Мастер прошивки ПЛК73».

Программы обновления встроенного программного обеспечения доступны на сайте www.owen.ru и находятся на компакт-диске из комплекта поставки. Для проведения обновления пользователю необходимо запустить программу «Мастер прошивки ПЛК73» и следовать последовательно появляющимся указаниям.

После смены встроенного программного обеспечения необходимо заново загрузить в контроллер пользовательскую программу.

9 Техническое обслуживание

- 9.1 При выполнении работ по техническому обслуживанию контроллера следует соблюдать меры безопасности, изложенные в разделе 5.
- 9.2 Технический осмотр контроллера проводится обслуживающим персоналом не реже одного раза в 6 месяцев и включает в себя выполнение следующих операций:
 - очистку корпуса и клеммных колодок контроллера от пыли, грязи и посторонних предметов;
 - проверку качества крепления контроллера на щите управления;
 - проверку качества подключения внешних связей;
 - проверку функционирования элемента питания встроенных часов контроллера (см. п. 7.2).

Обнаруженные при осмотре недостатки следует немедленно устранить.

9.3 Замену элемента питания встроенных часов контроллера необходимо производить каждые 6 лет с момента изготовления контроллера или последней замены. Также элемент питания требуется заменить в случае выявления сброса встроенных часов контроллера при отключении питания.

Последовательность выполнения замены элемента следующая:

- 1) Отключить питание контроллера и подключенных к нему устройств;
- Если к съемным колодкам и разъемам на задней стенке контроллера подключены линии связи, то необходимо отсоединить съемные колодки с подключенными линиями связи, потянув их в сторону от прибора, а также отсоединить кабели от разъемов RJ-12;
- Снять заднюю крышку корпуса, для чего поочередно вывинтить отверткой четыре винта из задней крышки (см. рисунок 3.1 в Приложении 3);
- 4) Извлечь использованный элемент питания:
- 5) Установить новый элемент питания типа CR2032;
- 6) Собрать корпус прибора:
- 7) Включить питание прибора, настроить часы контроллера;
- 8) Выключить питание контроллера;
- 9) Через время не менее 20 сек включить питание и проверить работу часов.

10 Требования к маркировке

- 10.1 На корпусе контроллера или прикрепленных к нему табличках должны быть нанесены:
 - наименование или условное обозначение контроллера и вариант его исполнения:
 - степень защиты по ГОСТ 14254:
 - род питающего тока и напряжение питания;
 - потребляемая мощность;
 - класс защиты от поражения электрическим током по ГОСТ 12.2.007.0;
 - знак соответствия по ГОСТ Р 50460;
 - заводской номер прибора и год выпуска.
- 10.2 На потребительскую тару должна быть нанесена маркировка, содержащая следующие сведения:
 - наименование прибора;
 - заводской номер прибора и год выпуска.

11 Упаковка контроллера

11.1 Упаковка контроллера производится в соответствии с ГОСТ 23088–80 в потребительскую тару, выполненную из коробочного картона по ГОСТ 7933–89.

12 Комплектность

12.1 Комплект поставки контроллера приведен в таблице 12.1.

Таблица 12.1

Наименование	Количество
1. Контроллер ПЛК73 *	1 шт.
2. Кабель КС1	1 шт.
3. Паспорт	1 экз.
4. Руководство по эксплуатации	1 экз.
5. Гарантийный талон	1 экз.
6. Компакт-диск с предоставляемыми пользователю доку-	
ментацией и программными средствами для ОВЕН ПЛК73	1 экз.
* Исполнение в соответствии с заказом	

12.2 Изготовитель оставляет за собой право внесения дополнений в комплектность контроллера. Полная комплектность указывается в паспорте на контроллер.

13 Транспортирование и хранение

- 13.1 Контроллеры транспортируются в закрытом транспорте любого вида. Крепление тары в транспортных средствах должно производиться согласно правилам, действующим на соответствующих видах транспорта.
- 13.2 Условия транспортирования должны соответствовать условиям 5 по ГОСТ 15150–69 при температуре окружающего воздуха от минус 25 до +55 °C с соблюдением мер защиты от ударов и вибраций.
- 13.3 Перевозка осуществляется в транспортной таре поштучно или в контейнерах.
- 13.4 Условия хранения в таре на складе изготовителя и потребителя должны соответствовать условиям 1 по ГОСТ 15150–69. В воздухе не должны присутствовать агрессивные примеси. Контроллеры следует хранить на стеллажах.

14 Гарантийные обязательства

- 14.1 Изготовитель гарантирует соответствие контроллера требованиям ТУ при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 14.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 14.3 В случае выхода контроллера из строя в течение гарантийного срока при соблюдении пользователем условий эксплуатации, транспортирования, хранения и монтажа предприятие изготовитель обязуется осуществить его бесплатный ремонт или замену.
- 14.4 Порядок передачи контроллера в ремонт содержатся в паспорте и в гарантийном талоне.

Приложение А. Габаритные и установочные размеры

Рисунок А.1 – Габаритный и установочный чертежи корпуса для крепления на щит управления

Рисунок А.2 – Расстояние до стенок корпуса ПЛК при монтаже для обеспечения вентиляции

Приложение Б. Схемы подключения

Рисунок Б.1 – Подключение датчиков к дискретным входам

Примечания:

- 1) Группы входов DI1...DI4 и DI5...DI8 гальванически развязаны.
- 2) Можно использовать встроенный блок питания: один общий или два разных.
- 3) При использовании одного БП клеммы SS1 и SS2 необходимо объединить.

Рисунок Б.2 – Подключение термометра сопротивления или резистивного датчика по трехпроводной схеме

Рисунок Б.3 – Подключение резистивного датчика по двухпроводной схеме

Рисунок Б.4 – Подключение активного датчика с выходом в виде напряжения 0...1 В

Рисунок Б.5 – Подключение активного датчика с токовым выходом 0...5 мА или 0(4)...20 мА (Rш = 100,0 Oм \pm 0,1%)

Рисунок Б.6. – Схема подключения термопары (термоэлектрического преобразователя)

Рисунок Б.7 - Схема подключения нагрузки к ВЭ типа «У». Rн > 2 кОм

Рисунок Б.8 - Схема подключения нагрузки к ВЭ типа «И»

Рисунок Б.9 - Схема подключения нагрузки к ВЭ типа «Р»

а) для выходов DO1 - DO4

б) для выходов DO5 - DO8

Рисунок Б.10 — Схема подключения нагрузки к ВЭ типа «К» (диод VD должен быть рассчитан на напряжение 100 В и ток 1 А)

Примечания:

- 1) Группы выходов DO1...DO2 и DO3...DO4 гальванически развязаны, выходы DO5...DO8 гальванически развязаны;
- 2) Для выходов DO1...DO4 можно использовать встроенный блок питания: один общий или два разных.
 - 3) При использовании для выходов одного БП необходимо объединить:
 - для DO1...DO4 клеммы COM1 и COM2;
 - для DO5...DO8 клеммы DOxA (+).

Рисунок Б.11 - Схема подключения нагрузки к ВЭ типа «С»

Рисунок Б.12 – Схема подключения нагрузки к ВЭ типа «С» двух тиристоров, подключенных встречно-параллельно (R2=47... 68 Ом, C1=0.1мкф×630 В)

Рисунок Б.13 – Схема подключения нагрузки к ВЭ типа «Т»

Рисунок Б.14 – Схема подключения модуля МР1 к ПЛК73

Рисунок Б.15 – Схема расположения и назначения клемм на ПЛК73 (вид на заднюю стенку корпуса)

Примечание:

Интерфейсы RS-485 и RS-232 в комплект поставки не входят, интерфейсная плата с различными комбинациями интерфейсов заказывается отдельно.

Приложение В. Схемы подключаемых кабелей

Рисунок В.1 – Схема кабеля программирования КС1, входящего в комплект поставки

Рисунок В.2 – Схема кабеля программирования КС2

Рисунок В.3 – Схема кабеля для подключения ПЛК73 к порту RS-232

Примечания

- 1) Для подключения может использоваться готовый кабель КС2 «ПЛК-Панель», приобретается отдельно.
- 2) Кабель программирования КС1, входящий в комплект поставки, предназначен для подключения к ПК и не может быть использован для подключения к порту RS-232 DBGU других устройств.

Приложение Г. Назначение контактов клеммной колодки прибора

Номер контакта	Назначение	Номер контакта	Назначение	
1	Питание (Сеть) (220V)	25	Общий для выходов 1, 2 (СОМ1)	
2	Питание (Сеть) (220V)	26	Выход 1 (DO1)	
3	Источник напряжения минус 24 В (0V)	27	Выход 2 (DO2)	
4	Источник напряжения плюс 24 В (24V)	28	Выход 3 (DO3)	
5	Вход 1-1 (АІ1-1)	29	Выход 4 (DO4)	
6	Вход 1-2 (АІ1-2)	30	Общий для выходов 3, 4 (COM2)	
7	Вход R (AI-R)	31	Выход 5A (DO5A) (+)	
8	Вход 2-1 (АІ2-1)	32	Выход 5B (DO5B) (-)	
9	Вход 2-2 (АІ2-2)	33	Выход 6A (DO6A) (+)	
10	Вход 3-1 (АІЗ-1)	34	Выход 6В (DO6В) (-)	
11	Вход 3-2 (АІЗ-2)	35	Выход 7А (DO7A) (+)	
12	Вход R (AI-R)	36	Выход 7В (DO7В) (-)	
13	Вход 4-1 (АІ4-1)	37	Выход 8А (DO8A) (+)	
14	Вход 4-2 (АІ4-2)	38	Выход 8В (DO8В) (-)	
15	Вход 5-1 (АІ5-1)	39	Питание дискретных входов 1 - 4 (SS1)	
16	Вход 5-2 (АІ5-2)	40	Дискретный вход 1 (DI1)	
17	Вход R (AI-R)	41	Дискретный вход 2 (DI2)	
18	Вход 6-1 (АІ6-1)	42	Дискретный вход 3 (DI3)	
19	Вход 6-2 (АІ6-2)	43	Дискретный вход 4 (DI4)	
20	Вход 7-1 (АІ7-1)	44	Дискретный вход 5 (DI5)	
21	Вход 7-2 (АІ7-2)	45	Дискретный вход 6 (DI6)	
22	Вход R (AI-R)	46	Дискретный вход 7 (DI7)	
23	Вход 8-1 (АІ8-1)	47	Дискретный вход 8 (DI8)	
24	Вход 8-2 (АІ8-2)	48	Питание дискретных входов 5 - 8 (SS2)	

Приложение Д. Коды ошибок контроллера

Код ошибки	Расшифровка ошибки	Что делать пользователю		
0	Отсутствует ошибка Перезагрузка при включении питания	Можно продолжать работу		
2	Выход из sleep	Неправильный график снижения напряжения питания. Возможно, имеется аппаратная проблема. При неоднократном проявлении рекомендуется отправить контроллер в ремонт		
3	Произошла перезагруз- ка сторожевым тайме- ром, обусловленная зависанием	Проверить программу CoDeSys на наличие ошибок.		
4	Soft reset	Произошла перезагрузка пользователем нажатием 3-х кнопкок на клавиатуре контроллера либо перезагрузка была вызвана из программы CoDeSys		
5	User reset	Перезагрузка по появлению сигнала на ножке Reset ЦП. Этот сигнал может быть наведен сильной помехой либо паразитными утечками на плате (например, в случае наличия влаги внутри корпуса). Просушить контроллер, если не помогает — отправить в ремонт		
6	Перезагрузка по сигналу BrownOut	Нарушение режима питания схемы контроллера. При неоднократном проявлении рекомендуется отправить контроллер в ремонт		
401	Ошибка взаимодействия с EEPROM			
402	Ошибка записи в EEPROM	Эти ошибки могут быть обусловлены либо ошибкой в программе CoDeSys, связанной, например, со слишком частыми обращениями к памяти EEPROM контроллера, либо нарушением функций работы		
403	Ошибка чтения из EEPROM	самого EEPROM. В последнем случае необходимо отправить кон- троллер в ремонт		
404	Ошибка работы EEPROM			
500	Заголовок конфигурации повреждён	Программа CoDeSys в контроллер записана некорректно и её необходимо обновить.		
501	Слишком много уровней конфигурации	Ошибка в программе CodeSys, создано слишком много уровней вложенности при создании пользовательских параметров. Ее необходимо устранить. Разрешено не более 6 уровней вложенности.		
600	Ошибка вспомогательного процессора дисплея	Отправить контроллер в ремонт		
601	Ошибка вспомогательного процессора аналоговых входов/выходов	Отправить контролер в ремонт		
1001	Дерево конфигурации содержит ошибки	 Ошибка в программе CoDeSys при создании пользовательских па- раметров, которую необходимо устранить 		

Ошибки с кодом 0...6 являются не критичными, индицируются на ЖКИ в отладочном режиме только по запросу пользователя и не сопровождаются звуковой сигнализацией. Переход в отладочный режим осуществляется комбинацией кнопок Выход+Альт+Ввод. Ошибки с кодами большими 400 являются критичными. Работа программы контроллера останавливается, контроллер переходит в режим индикации кода ошибок на экране, сопровождающийся звуковой сигнализацией.

Приложение Е. Коды ошибок измерителя

Коды ошибок измерителя (расшифровка текстовой информации об ошибках измерителя) приведены в таблице E.1.

Таблица Е.1 – Расшифровка текстовой информации об ошибках измерителя

Код	Текст на ЖКИ	Расшифровка	Действия пользователя
0	Ошибка имерит.	Измеренное значение заведомо не верно	Внутренняя ошибка прибора. Перезагрузить прибор, если не помогает – отправить в ремонт.
6	Нет дан- ных	Нет данных измерения	Подождать 35 сек.
7	Датчик отключён	Датчик отключен	Включить соответствующий вход в параметре конфигурация \ аналоговые вх \ Тип входа х (х=18).
8	Высокая t ХС ТП	Велика температура холодного спая, регистрирующего температуру прибора	Температура прибора не со- ответствует условиям экс- плуатации, – привести в нор-
9	Низкая t ХС ТП	Мала температура холодного спая, регистрирующего температуру прибора	му; Ошибка калибровки, – про- вести калибровку заново; Аппаратная ошибка, – пере- запустить прибор, если не помогает, – обратиться в ре- монт.
а	Значение велико	Вычисленное значение слишком велико	Неправильно установлен тип датчика, — проверить, установить правильно; Датчик ненадежно подключен, — проверить надежность крепления датчика; Датчик неисправен, — заменить; Датчик измеряет температуру выше допускаемой, — выбрать другой датчик; Аппаратная ошибка, — перезапустить прибор, если не помогает, — обратиться в ремонт.

Код	Текст на ЖКИ	Расшифровка	Действия пользователя		
b	Значение мало	Вычисленное значение слишком мало	Неправильно установлен тип датчика, — проверить, установить правильно; Датчик ненадежно подключен, — проверить надежность крепления датчика; Датчик неисправен, — заменить; Датчик измеряет температуру ниже допускаемой, — выбрать другой датчик; Аппаратная ошибка, — перезапустить прибор, если не помогает, — обратиться в ремонт.		
С	Короткое зам.	Короткое замыкание (данная индикация не возникает при КЗ с датчиком на входе типа «тер- мопара» или «унифицированный датчик по напряжению и току»)	Замкнуты накоротко входы прибора, – устранить; Неправильно подключен датчик, – устранить; Неправильно выбран тип датчика, – поменять in-t; Датчик неисправен, – заменить; Аппаратная ошибка, – перезапустить прибор, если не помогает, – обратиться в ремонт.		
d	Обрыв датчика	Обрыв датчика (данная индикация не возникает при обрыве «унифицированного датчика по напряжению и току»)	Датчик не подключен к соответствующему входу, - подключить; Датчик неправильно подключен, — подключить правильно; Неправильно выбран тип датчика, — поменять in-t; Датчик неисправен, — заменить; Аппаратная ошибка, — перезапустить прибор, если не помогает, — обратиться в ремонт.		

Код	Текст на ЖКИ	Расшифровка	Действия пользователя		
е	Нет связи с АЦП	Отсутствие связи с АЦП	Внутренняя Аппаратная ошибка, – перезапустить прибор, если не помогает, – обратиться в ремонт.		
f	Ошибка калибр.	Некорректный калибровочный ко- эффициент	Не проведена калибровка, – провести калибровку; Калибровка проведена некорректно, – провести калибровку; Неисправен прибор, - обратиться в ремонт.		

Приложение Ж. Подключение термометров сопротивления по двухпроводной схеме

Ж.1 Как указывалось ранее, применяемые в качестве датчиков термометры сопротивления должны соединяться с аналоговыми входами ПЛК73 по трехпроводной схеме, использование которых нейтрализует влияние сопротивления соединительных проводов на результаты измерения. Однако в технически обоснованных случаях (например, когда установка прибора производится на объектах, оборудованных ранее проложенными монтажными трассами) такое соединение может быть выполнено и по двухпроводной схеме. Такое соединение рекомендуется применять для высокоомных датчиков (500, 1000 Ом).

При использовании двухпроводной схемы следует помнить, что показания прибора в некоторой степени будут зависеть от изменения температуры среды, окружающей линию связи «датчик-прибор». Пример подключения термометра сопротивления к контактам «Вход1» приведен на рисунке Б.3.

При использовании двухпроводной схемы перед началом эксплуатации прибора необходимо выполнить действия, указанные в п. Ж.2...Ж.8.

- Ж.2 Произвести подключение датчика по двухпроводной схеме к соответствующему входу прибора, аналогично тому, как это указано на рисунке Б.3.
- Ж.3 Подключить к линии связи «датчик-прибор» (к противоположным от прибора концам линии) вместо термометра магазин сопротивления типа Р4831 (или подобный ему с классом точности не хуже 0,05).
- Ж.4 Установить на магазине значение, равное сопротивлению термометра при температуре 0 °C (50,000,100000 или 1000,000 Ом в зависимости от типа применяемого датчика).
- Ж.5 Подать питание на прибор и на соответствующем канале по показаниям индикатора зафиксировать величину отклонения температуры от значения 0,0 °С. Полученное отклонение всегда должно иметь положительное значение, а величина его будет зависеть от сопротивления линии связи «датчик-прибор».
- Ж.6 Установить для данного датчика в параметре «Смещение входа» коэффициент коррекции равный значению, зафиксированному при выполнении работ по п. Ж.5 (отклонение показаний индикатора от 0,0 °C), но взятому с противоположным знаком, т.е. со знаком минус.

Пример. После подключения ко входу канала термометра сопротивления по двухпроводной схеме и выполнения работ по п. Ж.5 на индикаторе зафиксированы показания 12,6 °C. Для компенсации сопротивления линии связи в программируемом параметре «Смещение входа» датчика канала следует установить значение — **012.6**.

Ж.7 Проверить правильность задания коррекции; для этого следует, не изменяя сопротивления на магазине, перевести прибор в режим РАБОТА и убедиться, что показания на соответствующем канале индикатора равны 0 °С (с абсолютной погрешностью не хуже 0,2 °С). При необходимости эти операции следует выполнить для остальных каналов измерения.

Приложение И. Отсоединение клеммных колодок

- И.1 Для отсоединения клеммных колодок MP1 и RS-485 (клеммных колодок RS-485 может не быть в контроллере) на задней стенке контроллера необходимо выполнить следующее:
 - 1) отключить питание контроллера и подключенных к нему устройств;
 - 2) потянуть колодки в сторону от прибора.
- И.2 Для отсоединения клеммных колодок на боковых стенках контроллера следует руководствоваться рисунком И.1:
 - 1) отключить питание контроллера и подключенных к нему устройств;
- 2) если к съемным колодкам и разъемам на задней стенке контроллера подключены линии связи, то необходимо отсоединить съемные колодки с подключенными линиями связи, потянув их в сторону от прибора, а также отсоединить кабели RS-232 от разъемов RJ-12 (разъемов RS-232 может не быть в контроллере);
- 3) снять заднюю крышку корпуса, для чего поочередно вывинтить отверткой четыре винта из задней крышки (см. рисунок И.1);
 - 4) выкрутить по два фиксирующих винта из каждой колодки;
- 5) поддеть колодки отверткой с двух боковых сторон и снять в направлении, указанном на рисунке И.1 стрелкой;
 - И.3 Сборку производить в обратной последовательности.

Рисунок И.1 – Отсоединение клеммных колодок с боковых стенок контроллера

Приложение К. Замена интерфейсной платы в контроллере

Для определенности, в данном приложении предполагается, что в контроллере установлена интерфейсная плата ПИ73-0 (базовая) и требуется ее заменить на другую. Если в контроллере установлена не ПИ73-0, и требуется ее заменить, то действия будут аналогичными.

- К.1 Для замены интерфейсной платы в контроллере необходимо выполнить следующее:
 - 1) отключить питание контроллера и подключенных к нему устройств;
- 2) отсоединить съемную колодку MP1 на задней стенке контроллера, потянув ее в сторону от прибора;
- 3) снять заднюю крышку корпуса, для чего поочередно вывинтить отверткой четыре винта из задней крышки (см. рисунок К.1);
- 4) вывинтить 4 пластиковых винта из интерфейсной платы ПИ73-0 и отсоединить плату от межплатного разъема в направлении, указанном на рисунке К.1 стрелкой:
- 5) установить новую интерфейсную плату на место старой, при этом необходимо проконтролировать, чтобы все контакты межплатного разъема были соединены со всеми контактами разъема на интерфейсной плате;

Внимание -

При неправильной установке интерфейсной платы – контроллер может выйти из строя после включения его питания.

- 6) завинтить 4 пластиковых винта в новую интерфейсную плату, контролируя усилие;
- 7) перед тем как устанавливать заднюю крышку корпуса ее необходимо доработать, для этого необходимо вырезать в ней окна под разъемы интерфейсов RS-232 и RS-485 в соответствии с таблицей К.1:
- 8) установить заднюю крышку корпуса, а также съемные колодки интерфейсов MP1 и RS-485 (если есть), проверив что съемные колодки свободно устанавливаются и удаляются из доработанной задней крышки корпуса, а разъёмы интерфейсов RS-232 (если есть) свободно входят в окна задней крышки:
 - 9) поочередно завинтить отверткой четыре винта в заднюю крышку корпуса.

Таблица К.1 – Доработка задней крышки корпуса под разъемы интерфейсов

Наименование интерфейсной платы	Схема доработок задней крышки корпуса (вырезаемое окно выделено частой пунктирной линией)	Встроенные интерфейсы (слева направо)	
ПИ73-1	MP1 RS-485/ RS-485/ RS-232 RS-232 W X Y Z B1 A1 B2 A2	MP1, отсутствует, RS- 232	
ПИ73-2	MP1 RS-485/ RS-485/ RS-232 RS-232 W X Y Z B1 A1 B2 A2	MP1, RS-485, отсутст- вует	
ПИ73-3	MP1 RS-485/ RS-485/ RS-232 RS-232 W X Y Z B1 A1 B2 A2	MP1, RS-232, RS-232	
ПИ73-4	MP1 RS-485/ RS-485/ RS-232 RS-232 W X Y Z B1 A1 B2 A2	MP1, RS-485, RS-232	

Продолжение табл. К.1

Примечание -

Доработка выполняется по схеме, соответствующей устанавливаемой интерфейсной плате ножом, скальпелем или другим подходящим инструментом.

Рисунок К.1 – Замена интерфейсной платы

Лист регистрации изменений

№ из-	Номера листов (стр.)			Всего	Дата	Подпись	
мене- ния	измен.	заменен	новых	аннулир.	листов (стр.)	внесе- ния	

Центральный офис:

111024, Москва, 2-я ул. Энтузиастов, д. 5, корп. 5 Тел.: (495) 221-60-64 (многоканальный)

Факс: (495) 728-41-45

www.owen.ru Отдел сбыта: sales@owen.ru

Группа тех. поддержки: support@owen.ru

Рег. № 1019 Зак. №