

华中科技大学

《数理方程与特殊函数》考试试卷(A卷)

考试方式: _ 闭卷_ 考试日期: _				期:		_ 考	试时长	:: <u>150</u>	分钟	
	院((系): _				专业班	级:			
	学	号:			:	姓	名:			
	题号		_	=	四	五	六	七	八	总分
	得分									

得 分	
评卷人	

一 (满分 15 分) 用分离变量法求解如下定解问题:

$$\begin{cases} u_{tt} = u_{xx}, & 0 < x < 2, & t > 0, \\ u_x(0,t) = 0, & u_x(2,t) = 0, \\ u(x,0) = 0, & u_t(x,0) = 1 + 6\pi \cos(3\pi x). \end{cases}$$

得 分	
评卷人	

二 **(满分 10 分)** 设 a 是正常数, 用固有函数展开法求解如下 定解问题:

$$\begin{cases} u_t = a^2 u_{xx} + 5\sin(5\pi x), & 0 < x < 1, \ t > 0, \\ u(0,t) = 0, & u(1,t) = 0, \\ u(x,0) = 0. \end{cases}$$

得 分	
评卷人	

三 (满分 15 分) 求解如下具有非齐次边界条件的定解问题:

$$\begin{cases} u_{xx} + u_{yy} = \sin x, & 0 < x < \frac{\pi}{2}, & 0 < y < \pi, \\ u(0, y) = -1, & u_x(\frac{\pi}{2}, y) = 1, \\ u_y(x, 0) = 0, & u(x, \pi) = x - 1. \end{cases}$$

得 分	
评卷人	

四 (满分 10 分) 设 a 是正常数, 利用行波法求解如下定解问题:

$$\begin{cases} u_{tt} = a^2 u_{xx}, & x > 0, \ t > 0, \\ u|_{t=0} = \varphi(x), & u_t|_{t=0} = 0, \ x \geqslant 0, \\ u_x|_{x=0} = 0. \end{cases}$$

得 分	
评卷人	

五 (满分 15 分) 用拉普拉斯变换求解如下问题:

$$\begin{cases} u_{tt} = u_{xx} + \cos t, & x > 0, \quad t > 0, \\ u(0,t) = 0, & \lim_{x \to +\infty} u_x(x,t) = 0, \\ u(x,0) = 0, & u_t(x,0) = 0. \end{cases}$$

提示:
$$\mathcal{L}^{-1}[F(s)e^{-as}] = \begin{cases} f(t-a), & t \ge a, \\ 0, & 0 < t < a. \end{cases}$$
, $\mathcal{L}^{-1}[\frac{s}{s^2+a^2}] = \cos at$.

得 分	
评卷人	

六 (满分 10 分) 用傅里叶变换求解如下问题:

$$\begin{cases} u_t = a^2 u_{xx} + 3t^2 u, & -\infty < x < +\infty, & t > 0, \\ u(x,0) = \phi(x). \end{cases}$$

[提示:
$$\mathcal{F}^{-1}[e^{-\lambda^2 t}] = \frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}$$
.]

得 分	
评卷人	

七 (满分 15 分) (第1小题5分, 第2小题10分.)

1. 用试探法求解环域内的 Laplace 方程:

$$\begin{cases} \Delta u(r,\theta) = 0, & 1 < r < 2, 0 \le \theta \le 2\pi, \\ u|_{r=1} = 0, & u|_{r=2} = 1. \end{cases}$$

2. 设 Ω 为三维空间中的有界区域, 若 u 是 Ω 中的二阶连续可微函数且满足: $\Delta u \geq 0$, 试证明: 对 Ω 中的任意一个以 M_0 为心, 以 a 为半径的球 $B_a(M_0)$, Γ_a 是 $B_a(M_0)$ 的边界, 都有

$$u(M_0) \leqslant \frac{1}{4\pi a^2} \int \int_{\Gamma_a} u dS.$$

得 分	
评卷人	

八 (满分 10 分) 用分离变量法求解如下问题(若答题区域不 够,可在背面答题):

$$\begin{cases} u_t = 4(u_{rr} + \frac{1}{r}u_r - \frac{4}{r^2}u), & 0 < r < 1, \quad t > 0, \\ u(1,t) = 0, \quad |u(0,t)| < +\infty, \\ u(r,0) = 1 - r^2. \end{cases}$$

$$\not\exists \vec{x} : \frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x), \quad \frac{d}{dx}[x^{-n} J_n(x)] = -x^{-n} J_{n+1}(x), \quad J_0(0) = 1, \\ J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{r} J_n(x).$$

提示:
$$\frac{d}{dx}[x^n J_n(x)] = x^n J_{n-1}(x)$$
, $\frac{d}{dx}[x^{-n} J_n(x)] = -x^{-n} J_{n+1}(x)$, $J_0(0) = 1$, $J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$.