

Lecture-09: More on BSTs and Midtern#1 (Hand Out) Now to add (4)?

→ if not, let v be the last node searched. (node v has atmost 1 child
 → if y < v.x, make new node for y and set as left child of x.

→ if y>v.n, make new node for y and set y as right child of n

how long does this take?
 O(depth) = O(height)
 of tree

-> first find node a storing y

@ How to remove (y)?

→ 3 cases: (1) vis leaf
(2) vhas one child

(3) V has 2 children

Gase 2 (1 child): Assume v. left # null, v. right == null
set v. left. parent = v. parent (sim. other
case)

(u) Assume v == v. parent. left [sim. other case]

(u) Assume v == v. pavent. left [sim. other case]

set v. pavent. left = v. left

Case 3 on next page

Case 3 (2 children)
choice: replace the value of v with smallest to value larger than v.
Larger than U.
-> What node w stores this value?
 go to right child of v go to left decendants until no left left.
· go to left decendants until no left left.
-> this node is w.
· coby the value w to v (v, n = w.n)
• remove the node w (at most 1 child) either case 1/2.
· how long does this take?
- O(depth) = O(height) of tree) = O(height)
Questions:
1. how many element/nodes can a binary tree of
<u>Questions:</u> 1. how many element/nodes can a binary tree of height h store? (2 ⁿ⁺¹ -1)
2 Min Height of RT with nodes & (log (n+1)-1)