Sergio E. Garcia Tapia Algorithms by Sedgewick and Wayne (4th edition) [SW11] November 10th, 2024

3.1: Symbol Tables

Exercise 1. Write a client that creates a symbol table mapping letter grades to numerical scores, as in the table below, then reads from standard input a list of letter grades and computes and prints the GPA (the average of the numbers corresponding to the grades).

Solution. See com.segarciat.algs4.ch3.sec1.ex01.GPA

Exercise 2. Develop a symbol-table implementation ArrayST that uses an (unordered) array as the underlying data structure to implement our basic symbol-table API.

Solution. See com.segarciat.algs4.ch3.sec1.ex02.ArrayST.

Exercise 3. Develop a symbol-table implementation of OrderedSequentialSearchST that uses an ordered linked list as the underlying data structure to implement our ordered symbol-table API.

Solution. See com.segarciat.algs4.ch3.sec1.ex03.OrderedSequentialSearchST.

Exercise 4. Develop Time and Event ADTs that allow processing of data as in the example illustrated on page 367.

Solution. See com.segarciat.algs4.ch3.sec1.ex04.Time. The class is immutable, and it it implements Comparable<Time>, so that it has a natural order. I was unclear about what an Event ADT would include, so I did not provide an implementation for this ADT.

Exercise 5. Implement size(), delete(), and keys() for SequentialSearchST.

Solution. See com.segarciat.algs4.ch3.sec1.ex05.SequentialSearchST.

Exercise 6. Give the number of calls to put() and get() issued by FrequencyCounter, as a function of the number W of words and the number D of distinct words in the input.

Solution. The following assumes that the minimum length accepted for a word is 1,.

During the first phase, the program builds the symbol tables by processing all W words. For each word, there is a call to contains(), for a total of W such calls. Since a call to put() is made regardless of the result, there are W calls to put() during this phase. Each result of false from the call to contains() corresponds to a distinct word, so there are D such outcomes. Thus, there are W - D direct calls to get() in the branch

of the if-else, where get() is used to retrieve the count of a previously-seen word. Note also that each call to contains() leads to a call to get(), accounting for W more calls.

In the second phase, one addition call to put() is made, which enters the empty string, so that there are now D+1 keys in the symbol table. In the loop, 2 calls to get() are made in each iteration, for a total of 2(D+1) calls. A final call to get() is made after the loop.

Thus, if f is the number of calls made to put(), and g is the number of calls made to get(), then

$$f(W, D) = W + 1$$

$$g(W, D) = W + (W - D) + 2(D + 1) + 1$$

$$= 2W + D + 3$$

Exercise 7. What is the average number of distinct keys that FrequencyCounter will find among N random nonnegative integers less than 1,000, for $N = 10, 10^2, 10^3, 10^4, 10^5,$ and 10^6 ?

Solution. Consider the random experiment of picking N integers at random, where each integer is between 0 and 999, and is chosen independently of the other. Then each outcome is an N-tuple, where each component is an integer between 1 and 1,000. Let X be a random variable that counts the number of distinct keys in an N-tuple. Then X is a discrete random variables, whose values range from 1 through min $\{N, 1000\}$.

Consider the number of outcomes with X = k distinct integers. If k is not an integer, or $k > \min\{N, 1000\}$, or $k \le 0$, then there are 0 such outcomes. Otherwise, we can count in two steps:

- (i) Choose k distinct integers. There are $\binom{1000}{k}$ ways of doing this, for $1 \le k \le 1000$, and 0 for k > 1000.
- (ii) Having chosen the k distinct keys, there are $\binom{N}{k} \cdot k!$ possible positions for them.
- (iii) To ensure k distinct integers, each of the remaining integers must be one of the k integers we have seen before. Since there are N-k positions to fill, and k integers to choose from, there are k^{N-k} ways to do this (we repeat an experiment of choosing among k values a total of N-k times).

By the multiplication principle of counting, we find that there are $\binom{1000}{k} \cdot \binom{N}{k} \cdot k^{N-K}$ ways to choose k distinct integers when choosing a total of N integers. There are a total of 1000^N outcomes. Since every outcome is equally likely, the probability of an outcome having k distinct keys is therefore equal to:

$$P(\{X = k\}) = \frac{\binom{1000}{k} \cdot \binom{N}{k} \cdot k! \cdot k^{N-k}}{1000^N}, \quad 1 \le k \le \min\{1000, N\}, \quad N \text{ fixed.}$$

Unfortunately, writing a closed form for this is difficult, and so is evaluating it as-is, and it's hard to verify its correctness. My goal was then to compute the expectation as:

$$E[X] = \sum_{k=1}^{\min\{N,1000\}} P(\{X = k\})$$

I found an alternative approach in this Stack Overflow answer by qwr. The idea is to let $A = \{0, ..., 999\}$, the set of numbers that we choose from (sample) at random, and the let X_j be an indicator random variable. That is, if we sample N elements from A, then $X_j = 1$ if j is in the sample, and 0 otherwise, where $j \in A$.

The idea is that we have a collection of random variables X_0, \ldots, X_{999} , and since we sample at random. Then, by defining $X = \sum_{j=0}^{999} X_j$, we obtain a random variable X that gives the number of distinct keys in the sample. Then, we use the fact that the expectation is linear (regardless of independence), meaning:

$$E[X] = E\left[\sum_{j=0}^{999} X_j\right] = \sum_{j=0}^{999} E[X_j]$$

Therefore, this reduces the problem of finding the expectation of X (the average number of distinct values in a sample) to finding the expectation of the indicator random variables. The latter turns out to be simple, and user \mathtt{dwr} argues as follows. Consider the number of ways to choose a sample of N items without j in it. There are 1000-1 other numbers, and N numbers to choose (with replacement), so this amounts to $(1000-1)^N$ choices. Meanwhile, there's 1000^N ways to choose N integers from the sample.

Thus,

$$P({X_j = 0}) = \frac{999^N}{1000^N}$$

which means that

$$P({X_j = 1}) = 1 - \left(\frac{999}{1000}\right)^N$$

Now the expectation of X_j is simple:

$$E[X_j] = 0 \cdot P(\{X_j = 0\}) + 1 \cdot P(\{X_j = 1\}) = 1 - \left(\frac{999}{1000}\right)^N$$

Hence, by linearity of expectation:

$$E[X] = 1000 \cdot \left(1 - \left(\frac{999}{1000}\right)^{N}\right)$$

Now, plugging in the different N values:

See com.segarciat.algs4.ch3.sec1.ex07.AverageDistinct, which verifies these results.

References

[SW11] Robert Sedgewick and Kevin Wayne. *Algorithms*. 4th ed. Addison-Wesley, 2011. ISBN: 9780321573513.