Topología: Relación de problemas del Tema 1

Grado en Matemáticas, Doble Grado en Física y Matemáticas, Doble Grado en Ing. Informática y Matemáticas Universidad de Granada

Curso 2023-2024

1. Sea (X,d) un espacio métrico. Prueba que la aplicación $\widetilde{d}:X\times X$ \mathbb{R} dada por

$$\widetilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} \quad \forall x,y \in X$$

es una distancia en X. Prueba que $\mathcal{T}_d = \mathcal{T}_{\tilde{d}}$

2. Sea (X,d) un espacio métrico. Prueba que la aplicación $\widetilde{d}:X\times X$ –

$$\widetilde{d}(x,y) = \min\{1, d(x,y)\} \quad \forall x, y \in X$$

 $\widetilde{d}(x,y)=\min\{1,d(x,y)\}\quad \forall x,y\in X$ es una distancia en X. Prueba que $\mathcal{T}_d=\mathcal{T}_{\widetilde{d}}.$

3. Sea (X,d) un espacio métrico y $x_0 \in X$. Prueba que la aplicación $d': X \times X \longrightarrow \mathbb{R}$ dada por $d'(x,y) = \begin{cases} 0 & \text{si } x = y \ , \\ d(x,x_0) + d(x_0,y) & \text{si } x \neq y \ , \end{cases}$

$$d'(x,y) = \begin{cases} 0 & \text{si } x = y, \\ d(x,x_0) + d(x_0,y) & \text{si } x \neq y, \end{cases}$$

es una distancia en X. Si (X,d) es el espacio métrico euclídeo a d' se le denomina distancia de correos.

4. Consideremos la siguiente aplicación $d: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ dada por

$$d((x_1, x_2), (y_1, y_2)) = \begin{cases} |y_2 - x_2| & \text{si } x_1 = y_1, \\ |x_2| + |y_1 - x_1| + |y_2| & \text{si } x_1 \neq y_1. \end{cases}$$

Demuestra que d es una distancia en \mathbb{R}^2 y calcula las bolas abiertas y cerradas de (\mathbb{R}^2, d) . A d se le denomina distancia del río en la jungla o distancia del ascensor.

- 5. Consideremos la distancia discreta d_{disc} en \mathbb{R}^n . Prueba que no existe ninguna norma $\|\cdot\|:\mathbb{R}^n\to[0,+\infty[$ en \mathbb{R}^n tal que $d_{\|\cdot\|}=d_{disc}$.
- 6. Consideremos la norma $\|\cdot\|_1$ en \mathbb{R}^n . Prueba que no existe ninguna forma bilineal simétrica definida positiva $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ tal que $\|\cdot\|_g = \|\cdot\|_1$.
- 7. Encuentra todas las topologías de un conjunto con dos elementos.

- 8. Estudia si (X, \mathcal{T}) es un espacio topológico en los siguentes casos:
 - a) $X = \mathbb{N} \ y \ \mathcal{T} = \{\emptyset, X\} \cup \{\{1, \dots, n\} \mid n \in \mathbb{N}\}.$
 - b) $X = \mathbb{R} \ y \ \mathcal{T} = \{(-\infty, b) \mid b \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}.$
 - c) $X = \mathbb{R} \ y \ \mathcal{T} = \{(-\infty, b] \mid b \in \mathbb{R}\} \cup \{\varnothing, \mathbb{R}\}.$
 - d) X un conjunto, A, B subconjuntos no vacíos de X y $\mathcal{T} = \{\emptyset, A, B, X\}$.
 - e) X un conjunto, $A \subset X$ tal que $\emptyset \neq A \neq X$ y $\mathcal{T} = \mathcal{P}(A) \cup \{X\}$.
 - f) $X = \{f : [0,1] \to \mathbb{R}\}\$ y $\mathcal{T} = \{\emptyset\} \cup \{A \subset X \mid \exists f \in \mathcal{C}^0([0,1],\mathbb{R}) \cap A\}.$
- 9. Sea X un conjunto infinito y $x_0 \in X$. Prueba que

$$\mathcal{T} = \{ U \subset X \mid x_0 \notin U \} \cup \{ U \subset X \mid X \setminus U \text{ es finito} \}$$

es una topología sobre X, a la que llamaremos **topología fuerte en un punto**.

- 10. Dado $n \in \mathbb{N}$ denotaremos U_n al conjunto de los divisores de n. En \mathbb{N} se considera la siguiente familia de subconjuntos $\mathcal{T} \subset \mathcal{P}(\mathbb{N})$ dada por $U \in \mathcal{T}$ si y solo si $U_n \subset U$, para todo $n \in U$. Prueba que:
 - a) \mathcal{T} es una topología en \mathbb{N} .
 - b) $\mathcal{B} = \{U_n \mid n \in \mathbb{N}\}$ es una base de \mathcal{T} .
- 11. En $H^+ = \{(x,y) \in \mathbb{R}^2 \mid y \geq 0\}$ se considera la familia

$$\mathcal{B} = \{ B((x,y),\varepsilon) \mid y > 0, \varepsilon \in]0,y[\} \cup \{ (x,0) \cup B((x,y),y) \mid y > 0 \}$$

Prueba que existe una única topología \mathcal{T} en H^+ tal que \mathcal{B} es una base para \mathcal{T} . A este espacio topológico se le conoce como **semiplano de Moore**.

- 12. Sean \mathcal{T} y \mathcal{T}' dos topologías de un conjunto X. Demuéstrese que la familia $\mathcal{T} \cap \mathcal{T}'$, formada por los abiertos comunes a ambas, es también una topología de X. ¿ Es la unión de dos topologías una topología?
- 13. En $(\mathbb{R}, \mathcal{T}_u)$ los intervalos que son abiertos son los de la forma (a, b), para $a \leq b$, $(a, +\infty)$, $(-\infty, b)$ y $(-\infty, \infty) = \mathbb{R}$ y los que son cerrados son de la forma [a, b], para $a \leq b$, $[a, +\infty)$ y $(-\infty, b]$.
- 14. Prueba que el conjunto $U = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ es un abierto en $(\mathbb{R}^2, \mathcal{T})$ mientras que $C = \{(x, y) \in \mathbb{R}^2 \mid x \geq 0\}$ es un cerrado que no es abierto.
- 15. Sea X un conjunto no vacío y $\{A_i\}_{i\in I}$ una partición de X. Demuestrar que existe una única topología \mathcal{T} en X tal que $\{A_i\}_{i\in I}$ es base de \mathcal{T} . Prueba que todo abierto de \mathcal{T} es un cerrado.
- 16. Sobre \mathbb{R} consideramos la siguiente familia de subconjuntos:

$$\mathcal{T} = \{ U \cup V \mid U \in \mathcal{T}_u , \ V \subseteq \mathbb{R} \setminus \mathbb{Q} \}$$

Se pide:

- a) Prueba que \mathcal{T} es una topología sobre \mathbb{R} que contiene a la topología usual \mathcal{T}_u . El espacio topológico $(\mathbb{R}, \mathcal{T})$ recibe el nombre de **recta diseminada**.
- b) Prueba que los intervalos [a, b] y [c, d) con $d \in \mathbb{R} \setminus \mathbb{Q}$ son cerrados en $(\mathbb{R}, \mathcal{T})$.
- c) Calcula una base de entornos de $x \in \mathbb{R}$ en $(\mathbb{R}, \mathcal{T})$.
- d) Calcula el interior, la clausura y la frontera de los intervalos [0,1] y $[0,\sqrt{2}[$ en $(\mathbb{R},\mathcal{T}).$
- e) Calcula el interior, la clausura y la frontera de $\{x\}$ en $(\mathbb{R}, \mathcal{T})$ para todo $x \in \mathbb{R}$.
- 17. Sobre \mathbb{R} consideramos la siguiente familia de subconjuntos:

$$\mathcal{B} = \left\{ \left(x - \frac{1}{n}, x + \frac{1}{n} \right) \bigcup (n, +\infty) \mid x \in \mathbb{R}, n \in \mathbb{N} \right\}$$

- a) Prueba que existe una única topología \mathcal{T} en \mathbb{R} tal que \mathcal{B} es una base de \mathcal{T} .
- b) Calcula una base de entornos en $x \in \mathbb{R}$ de \mathcal{T} no trivial.
- c) Prueba que $(1, +\infty)$ es un abierto de \mathcal{T} pero $(-\infty, 1)$ no lo es.
- d) Prueba que $\mathcal{T} \subsetneq \mathcal{T}_u$, donde \mathcal{T}_u es la topología usual en \mathbb{R} .
- a) Prueba que $\mathcal{T} \subsetneq \mathcal{T}_u$, donde \mathcal{T}_u es la topología usual en \mathbb{R} . e) Calcula la clausura, el interior y la frontera de los conjuntos $(-\infty, 2]$ y $[2, +\infty)$.
- 18. Sea (X, \mathcal{T}) un espacio topológico y sea \mathcal{B} una base de \mathcal{T} . Prueba que, para cada punto $x \in X$, la familia: $\mathcal{B}_x = \{B \in \mathcal{B} \mid x \in B\}$

$$\mathcal{B}_x = \{ B \in \mathcal{B} \mid x \in B \}$$

es una base de entornos abiertos del punto α

- 19. En \mathbb{R}^2 se considera para cada $z \in \mathbb{R}^2$, la familia $\mathcal{B}_z = \{\{z\} \cup A_{\varepsilon}\}_{{\varepsilon}>0}$, donde A_{ε} es una bola abierta de centro z y radio ε a la que se han quitado un número finito de radios. Demuestra que \mathcal{B}_z es una base de entornos para alguna topología \mathcal{T} en \mathbb{R}^2 . $(\mathbb{R}^2, \mathcal{T})$ recibe el nombre de plano agrietado.
- 20. Sea (X, \mathcal{T}) un espacio topológico, $x \in X$ y sea \mathcal{B}_x una base de entornos de x. Prueba que la familia $\widetilde{\mathcal{B}}_x = \{\mathring{B} \mid B \in \mathcal{B}_x\}$ es una base de entornos abiertos del punto x.
- 21. En el espacio topológico $(\mathbb{R}, \mathcal{T}_S)$ de la recta de Sorgenfrey calcula la clausura de los siguientes subconjuntos: \mathbb{N} , \mathbb{Z} , \mathbb{Q} , (a,b], [a,b), $A = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ y $B = \left\{-\frac{1}{n} \mid n \in \mathbb{N}\right\}$.
- 22. En $(\mathbb{R}, \mathcal{T}_{CF})$ calcula la clausura, el interior y la frontera de $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ y $\{0, 1\}$.
- 23. Calcula los puntos de acumulación y los puntos aislados del subconjunto A en los siguientes casos:
 - a) (X, \mathcal{T}_t) y $A \subseteq X$ con $\sharp A \geq 2$.
 - b) (X, \mathcal{T}_D) y $A \subseteq X$.
 - c) (X, \mathcal{T}_{CF}) y $A \subseteq X$ finito.
 - d) $(\mathbb{R}, \mathcal{T}_S)$ y A = (0, 1].
- 24. ¿Para qué espacios topológicos (X, \mathcal{T}) se cumple que X es el único subconjunto denso?

- 25. Sea (X, \mathcal{T}) un espacio topológico y D un subconjunto denso de (X, \mathcal{T}) . Demuestra que para todo subconjunto abierto $A \subset X$ se tiene $\overline{D \cap A} = \overline{A}$.
- 26. Prueba que en $(\mathbb{R}^n, \mathcal{T}_u)$ se verifica:
 - a) $\overline{B(x,\varepsilon)} = \overline{B}(x,\varepsilon)$.
 - b) $\operatorname{int}(\overline{B}(x,\varepsilon)) = B(x,\varepsilon).$
 - c) $\partial \overline{B}(x,\varepsilon) = \partial B(x,\varepsilon) = S(x,\varepsilon)$.

¿Son ciertas las igualdades anteriores en todo espacio métrico?

- 27. Un subconjunto A de un espacio topológico (X,\mathcal{T}) se dice frontera si $A\subset \partial A$. Demuestra que:
 - a) A es frontera \iff $\mathring{A} = \emptyset \iff \overline{X \setminus A} = X$.
 - b) En $(\mathbb{R}, \mathcal{T}_u)$, \mathbb{Q} y $\mathbb{R} \mathbb{Q}$ son conjuntos frontera.
- 28. Un conjunto A de un espacio topológico (X, \mathcal{T}) se dice enrarecido si $\overline{A} = \emptyset$. Demuestra que:
 - a) Si A es enrarecido, A es frontera.
 - b) Un subconjunto frontera y cerrado es enrarecido.
 - c) Si $U \in \mathcal{T}$, entonces ∂U es enrarecido.
 - d) Todo subconjunto cerrado y enrarecido es frontera de un abierto.
- 29. Demuestra que todo subconjunto cerrado de $(\mathbb{R}^2, \mathcal{T}_u)$ es la frontera de algún subconjunto de \mathbb{R}^2 .
- 30. Sea (X, \mathcal{T}) un espacio topológico y $\{A_i\}_{i \in I}$ una familia de subconjuntos de X tal que $\bigcup_{i \in I} \operatorname{int}(A_i) = X$. Entonces $U \in \mathcal{T}$ si y solo si $U \cap A_i \in \mathcal{T}_{A_i}$, $\forall i \in I$.
- 31. Sea (X, \mathcal{T}) un espacio topológico y $A \subset X$ un subconjunto no vacío. Sea $a \in A$ y \mathcal{B}_a una base de entornos de a en (X, \mathcal{T}) . Prueba que la familia

$$(\mathcal{B}_A)_a = \{ B \cap A \mid B \in \mathcal{B}_a \}$$

es una base de entornos de a en (A, \mathcal{T}_A) .

- 32. Sea (X, \mathcal{T}) un espacio topológico, $A \subset X$ un subconjunto no vacío y $B \subset A$. Prueba que:
 - a) $\operatorname{int}_X(B) \cap A \subset \operatorname{int}_A(B)$. Da un ejemplo de que en general no se tiene la igualdad.
 - b) $\operatorname{fr}_A(B) \subset A \cap \operatorname{fr}_X(B)$. Da un ejemplo de que en general no se tiene la igualdad.
- 33. Consideremos el conjunto $A = [-1,0) \cup (0,2) \cup \{3\}$ de \mathbb{R} con la topología $(\mathcal{T}_u)_A$ inducida en A por \mathcal{T}_u .
 - a) Estudia si los conjuntos $\{3\}$ y (0,2) son abiertos o cerrados en $(A,(\mathcal{T}_u)_A)$.

- b) Comprueba si $[-1, -\frac{1}{2}]$ es entorno de -1 en $(A, (\mathcal{T}_u)_A)$.
- c) Calcula la clausura de [-1,0) en $(A,(\mathcal{T}_u)_A)$.
- 34. Si (X, d) es un espacio métrico y $A \subset X$ es un subconjunto no vacío, se define d_A : $A \times A \longrightarrow \mathbb{R}$ como $d_A(x, y) = d(x, y)$, $\forall x, y \in A$. Prueba que:
 - a) (A, d_A) es un espacio métrico.
 - b) $(\mathcal{T}_d)_A = \mathcal{T}_{d_A}$, es decir la topología inducida en A por \mathcal{T}_d coincide con la topología asociada a d_A .
- 35. Sea (X, \mathcal{T}) un espacio topológico. Diremos que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a un punto $x\in X$ si para todo entorno $V\in\mathcal{N}_x$, existe $n_0\in\mathbb{N}$ tal que $x_n\in V$ para todo $n\geq n_0$. Si la sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a x escribiremos $x\in\lim_{n\to\infty}x_n$ y diremos que x es un límite de la sucesión $\{x_n\}_{n\in\mathbb{N}}$. Prueba las siguientes afirmaciones:
 - a) En un espacio topológico Hausdorff, una sucesión convergente tiene un único límite.
 - b) Sea (X, \mathcal{T}) un espacio topológico, $\{x_n\}_{n\in\mathbb{N}}$ una sucesión en $X, x\in X$ y \mathcal{B}_x una base de entornos de x. Entonces $x\in\lim_{n\to\infty}x_n$ si y solo si para todo $B\in\mathcal{B}_x$, existe $n_0\in\mathbb{N}$ tal que $x_n\in B$ para todo $n\geq n_0$.
 - c) En un espacio (X, \mathcal{T}_t) con la topología trivial cualquier sucesión en X converge a todos los puntos de X (una sucesión puede converger a más de un punto).
 - d) Sea (X, d) un espacio métrico, $\{x_n\}_{n\in\mathbb{N}}$ una sucesión en X y $x\in X$. Entonces $\{x_n\}_{n\in\mathbb{N}}$ converge a x (en (X, \mathcal{T}_d)) si y solo si para todo $\varepsilon>0$, existe $n_0\in\mathbb{N}$ tal que $d(x, x_n)<\varepsilon$ para todo $n\geq n_0$.
 - e) En el espacio topológico $(\mathbb{R}, \mathcal{T}_{CN})$ prueba que una sucesión $\{x_n\}_{n\in\mathbb{N}}$ converge a $x\in\mathbb{R}$ si y solo si existe $n_0\in\mathbb{N}$ tal que $x_n=x$ para todo $n\geq n_0$.
 - f) Sea (X, \mathcal{T}) un espacio topológico y $A \subset X$ un subconjunto no vacío. Supongamos que existe $\{a_n\}_{n\in\mathbb{N}}$ una sucesión de puntos en A que converge a un punto $x\in X$. Entonces $x\in\overline{A}$.
 - g) Sea (X, \mathcal{T}) y $A \subset X$ un subconjunto no vacío. Si $x \in A$ entonces para cualquier sucesión de puntos $\{x_n\}_{n \in \mathbb{N}}$ que converge a x, existe $n_0 \in \mathbb{N}$ tal que $x_n \in A$ para $n \geq n_0$.
 - h) Sea (X, \mathcal{T}) un espacio topológico 1AN, $A \subset X$ un subconjunto no vacío y $x \in \overline{A}$. Entonces existe una sucesión de puntos de A que converge a x. Da un contraejemplo de que esto no tiene por qué ser cierto si (X, \mathcal{T}) no es 1AN.
 - i) Sea (X, \mathcal{T}) un espacio topológico 1AN y $A \subset X$ un subconjunto no vacío. Supongamos que para cualquier sucesión de puntos $\{x_n\}_{n\in\mathbb{N}}$ que converge a x, existe $n_0 \in \mathbb{N}$ tal que $x_n \in A$ para $n \geq n_0$. Entonces $x \in \mathring{A}$.
- 36. Prueba que la recta de Sorgenfrey es un espacio de Hausdorff y 1AN pero no es 2AN.
- 37. Sobre \mathbb{R} consideramos la siguiente familia de subconjuntos:

$$\mathcal{B} = \{ [a, b] \mid a < b, a \in \mathbb{Q}, b \in \mathbb{R} \setminus \mathbb{Q} \} .$$

Se pide:

a) Prueba que existe una única topología \mathcal{T} en \mathbb{R} tal que \mathcal{B} es una base de \mathcal{T} .

- b) Calcula una base de entornos en $x \in \mathbb{R}$ de \mathcal{T} no trivial.
- c) Prueba que $\mathcal{T}_u \subsetneq \mathcal{T}$, donde \mathcal{T}_u es la topología usual en \mathbb{R} . ¿Es $(\mathbb{R}, \mathcal{T})$ un espacio topológico T_2 ?
- d) Calcula la clausura, el interior y la frontera de los conjuntos [0,1), $[0,\sqrt{2}]$ y \mathbb{Q} .
- e) Prueba que \mathbb{Z} es un subconjunto discreto de $(\mathbb{R}, \mathcal{T})$.
- f) Estudia si $(\mathbb{R}, \mathcal{T})$ es un espacio topológico 1AN o 2AN.

