

# 2025 年数理经济学笔记

授课: 杨佳楠老师

作者:徐靖 组织:PKU

时间: Febuary 27, 2025

声明:请勿用于个人学习外其他用途!



# 目录

| 第1章 | Topology of $\mathbb{R}^N$ Metric Spaces |                                                        | 1 |
|-----|------------------------------------------|--------------------------------------------------------|---|
| 1.1 |                                          |                                                        | 1 |
|     | 1.1.1                                    | Definition of Metric Spaces                            | 1 |
|     | 1.1.2                                    | Examples of metrics in $\mathbb{R}^N$                  | 1 |
| 1.2 | Convergence of sequences                 |                                                        | 1 |
|     | 1.2.1                                    | Definition of Convergence                              | 1 |
|     | 1.2.2                                    | Cauchy Sequences and Complete Metric Spaces            | 2 |
|     | 1.2.3                                    | Example: Cauchy Sequence Not Convergent in $\mathbb Q$ | 2 |
|     | 1.2.4                                    | Properties of Convergent Sequences in $\mathbb{R}^N$   | 2 |
|     | 1.2.5                                    | Properties of Sequences in $\mathbb{R}^N$              | 2 |
|     | 1.2.6                                    | Limit Superior and Limit Inferior                      | 2 |
| 1.3 | Topological properties                   |                                                        | 3 |
|     | 1.3.1                                    | Open and Closed Sets                                   | 3 |
|     | 1.3.2                                    | Interior, Closure, and Boundary of Sets                | 3 |
|     | 1.3.3                                    | Bounded Sets and Compact Sets in $\mathbb{R}^N$        | 3 |
| 1.4 | Contin                                   | uous functions                                         | 4 |
|     | 1.4.1                                    | Cluster Points in Metric Spaces                        | 4 |
|     | 1.4.2                                    | Limits of Functions at Cluster Points                  | 4 |
|     | 1.4.3                                    | Continuity of Functions                                | 4 |
|     | 1.4.4                                    | Bolzano-Weierstrass Theorem                            | 5 |
|     | 1.4.5                                    | Semicontinuity                                         | 5 |
|     | 1.4.6                                    | Lipschitz Continuity                                   | 5 |

## 第1章 Topology of $\mathbb{R}^{N1}$

#### **Keywords** □ Topology 拓扑 □ Lipschitz continuity 利普希茨连续 □ semicontinuity 半连续 ■ Metric Space 度量空间 ☐ Convergence 收敛 ■ Bolzano-Weierstrass Theorem 博尔扎诺-魏尔斯 ■ interior 内部 特拉斯定理 □ Heine-Borel Theorem 海涅-波雷尔定理 □ closure 闭包 ■ boundary 边界 □ Contraction Mapping Theorem 压缩映射定理 □ compact set 紧集 □ Intermediate Value Theorem 中值定理 □ cluster point 聚点

### 1.1 Metric Spaces

#### 1.1.1 Definition of Metric Spaces

#### 定义 1.1

Let X be a set. A function  $d: X \times X \to \mathbb{R}$  is called a **metric** (or **distance**) on X if :

- 1. (positivity)  $d(x,y) \ge 0$  for all  $x,y \in X$  and d(x,y) = 0 if and only if x = y.
- 2. (symmetry) d(x,y) = d(y,x) for all  $x, y \in X$ .
- 3. (triangle inequality)  $d(x,y) \le d(x,z) + d(z,y)$  for all  $x,y,z \in X$ .

A set X together with a metric d is called a **metric space**, denoted by (X, d).

### **1.1.2** Examples of metrics in $\mathbb{R}^N$

- Euclidean metric:  $d(x,y) = \sqrt{\sum_{i=1}^{N} (x_i y_i)^2}$ .
- $L^p$  metric (for  $p \ge 1$ ):  $d(x,y) = (\sum_{i=1}^N |x_i y_i|^p)^{1/p}$ .
- Sup norm (when  $p = \infty$ ):  $d(x, y) = \max_{i=1}^{N} |x_i y_i|$ .

## 1.2 Convergence of sequences

#### 1.2.1 Definition of Convergence

#### 定义 1.2

Let (X, d) be a metric space. A sequence  $\{x_n\}$  in X is said to **converge** to a point  $x \in X$  if for every  $\epsilon > 0$ , there exists an integer N such that  $d(x_n, x) < \epsilon$  for all  $n \ge N$ . In this case, we write  $\lim_{n \to \infty} x_n = x$ . A sequence that converges is called **convergent**, otherwise it is called **divergent**.

 $<sup>^{1}</sup>$ 点集拓扑对应数分高代这一级别的数学基础课, 只有 sms 和图班的同学学过, 所以我简单记一下, 无需关注证明, 数理经济学只用到结论

#### 定义 1.3

When metric space is  $\mathbb{R}^N$ , we say that  $\{x_n\}$  is **bounded** if there exists a real number M such that  $||x_k|| \leq M$  for all n.

#### 1.2.2 Cauchy Sequences and Complete Metric Spaces

- Cauchy sequence: A sequence  $\{x_n\}$  in a metric space (X,d) is called a Cauchy sequence if for every  $\epsilon > 0$ , there exists an integer N such that  $d(x_n, x_m) < \epsilon$  for all  $n, m \ge N$ .
- Complete metric space: A metric space (X, d) is called **complete** if every Cauchy sequence in X converges to a point in X.

#### 定理 1.1

Any convergent sequence in a metric space is a Cauchy sequence.

### $\Diamond$

### **1.2.3** Example: Cauchy Sequence Not Convergent in Q

Consider the metric space  $(\mathbb{Q}, d)$ , where d(x, y) = |x - y|.

**Fibonacci sequence**: Let  $\{F_k\}$  be the Fibonacci sequence, defined by

$$F_1 = F_2 = 1, F_{k+1} = F_k + F_{k-1}, k \ge 2$$

A Special Sequence: Define  $a_k = \frac{F_{k+1}}{F_k}$ . Then  $\{a_k\}$  is a Cauchy sequence in  $\mathbb{Q}$  but does not converge in  $\mathbb{Q}$ .

### 1.2.4 Properties of Convergent Sequences in $\mathbb{R}^N$

Consider  $\mathbb{R}^N$  with the Euclidean metric. Let  $\{x_n\}$  and  $\{y_n\}$  be two sequences.

- Preservation of Addition/Subtraction: If  $\lim_{n\to\infty} x_n = x$  and  $\lim_{n\to\infty} y_n = y$ , then  $\lim_{n\to\infty} (x_n \pm y_n) = x \pm y$ .
- Preservation of Multiplication: If  $\lim_{n\to\infty} x_n = x$  and  $\lim_{n\to\infty} y_n = y$ , then  $\lim_{n\to\infty} (x_n \cdot y_n) = x \cdot y$ .
- Preservation of Division: If  $\lim_{n\to\infty} x_n = x$  and  $\lim_{n\to\infty} y_n = y \neq 0$ , then  $\lim_{n\to\infty} \frac{x_n}{y_n} = \frac{x}{y}$ .
- Preservation of Inequality: If  $\lim_{n\to\infty} x_n = x$  and  $\lim_{n\to\infty} y_n = y$ , then  $x_n \leq y_n$  for all n implies  $x \leq y$ .

## **1.2.5** Properties of Sequences in $\mathbb{R}^N$

性质 A convergent sequence in  $\mathbb{R}^N$  is bounded.

A sequence  $\{x_{n_k}\}$  is called a **subsequence** of  $\{x_n\}$  if  $n_1 < n_2 < n_3 < \cdots$ .

性质 subsequences of a convergent sequence in  $\mathbb{R}^N$  also converge to the same limit.

#### 1.2.6 Limit Superior and Limit Inferior

#### 定义 1.4

Let  $\{x_n\}$  be a sequence in  $\mathbb{R}^N$ . The **limit superior** of  $\{x_n\}$  is defined by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left( \sup_{k \ge n} x_k \right)$$

The **limit inferior** of  $\{x_n\}$  is defined by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left( \inf_{k \ge n} x_k \right)$$



### 1.3 Topological properties

### 1.3.1 Open and Closed Sets

#### 定义 1.5

In a metric space (X,d), a set  $U\subset X$  is called **open** if for every  $x\in U$ , there exists an  $\epsilon>0$  such that  $B(x,\epsilon)\subset U$ . A set  $F\subset X$  is called **closed** if its complement  $F^c\stackrel{\mathrm{def}}{=} X\backslash F$  is open.

#### 性质 For open sets:

- 1. The union of any collection of open sets is open.
- 2. The intersection of finitely many open sets is open.

#### For closed sets:

- 1. The intersection of any collection of closed sets is closed.
- 2. The union of finitely many closed sets is closed.

#### 1.3.2 Interior, Closure, and Boundary of Sets

#### 定义 1.6

The **interior** of a set  $A \subset X$  is defined as:

$$\operatorname{int}(A) = \bigcup \{U \subset A : U \text{ is open}\}\$$

The **closure** of a set  $A \subset X$  is defined as:

$$\overline{A} = \bigcap \{F \supset A : F \text{ is closed}\}\$$

The **boundary** of a set  $A \subset X$  is defined as:

$$\partial A = \overline{A} \setminus \operatorname{int}(A)$$

#### 命题 1.1

- $A \subset X$  is open if and only if  $\partial A \subset A$ .
- $A \subset X$  is closed if and only if  $\partial A \subset A$ .

### 1.3.3 Bounded Sets and Compact Sets in $\mathbb{R}^N$

#### 定义 1.7

A set  $A \subset \mathbb{R}^N$  is called **bounded** if there exists a real number M such that  $||x|| \leq M$  for all  $x \in A$ .

A set  $A \subset \mathbb{R}^N$  is called **compact** if for any sequence  $\{x_n\}$  in A, there exists a subsequence  $\{x_{n_k}\}$  that converges to a point in A.

#### 定理 1.2 (Heine-Borel Theorem)

In  $\mathbb{R}^N$ , a set A is compact if and only if it is closed and bounded.

### 1.4 Continuous functions

#### 1.4.1 Cluster Points in Metric Spaces

#### 定义 1.8

Let (X,d) be a metric space and  $A \subset X$ . A point  $x \in X$  is called a **cluster point** of A if for every  $\epsilon > 0$ , there exists a point  $y \in A$  such that  $d(x,y) < \epsilon$  and  $x \neq y$ .

Equivalently, x is a cluster point of A if there exists a sequence  $\{x_n\}$  in A such that  $\lim_{n\to\infty} x_n = x$  and  $x_n \neq x$  for all n.

#### 1.4.2 Limits of Functions at Cluster Points

#### 定义 1.9

Let (X,d) and  $(Y,\rho)$  be metric spaces,  $A\subset X$ ,  $f:A\to Y$ , and x be a cluster point of A. We say that f has a **limit**  $y\in Y$  at x if for every  $\epsilon>0$ , there exists a  $\delta>0$  such that  $\rho(f(x_0),y)<\epsilon$  for all  $x_0\in A$  such that  $0< d(x_0,x)<\delta$ .

Equivalently, using neighborhoods: f has a limit y at x if for every neighborhood V of y, there exists a neighborhood U of x such that  $f(U \cap A) \subset V$ .

#### 性质

- 1.  $\lim_{x\to \bar{x}} f(x) = f(\bar{x})$  if and only if for every sequence  $\{x_n\}$  in A such that  $\lim_{n\to\infty} x_n = \bar{x}$ , we have  $\lim_{n\to\infty} f(x_n) = f(\bar{x})$ .
- 2. If f has a limit at x, then the limit is unique.

#### 1.4.3 Continuity of Functions

#### 定义 1.10

Let (X, d) and  $(Y, \rho)$  be metric spaces, and  $f: X \to Y$ .

ullet f is continuous at  $\bar{x} \in X$  if:

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in X, d(x, \bar{x}) < \delta \Rightarrow \rho(f(x), f(\bar{x})) < \varepsilon$$

Equivalently:

$$\forall \varepsilon > 0, \exists \delta > 0 : f(B_{\delta}(\bar{x})) \subseteq B_{\varepsilon}(f(\bar{x}))$$

 $\bullet$  f is **continuous on** X (or simply **continuous**) if:

 $\forall \bar{x} \in X, f \text{ is continuous at } \bar{x}$ 

#### 命题 1.2

Let (X, d) and  $(Y, \rho)$  be metric spaces,  $f: X \to Y$ , and  $x \in X$ . The following are equivalent:

- 1. f is continuous at x.
- 2. For every sequence  $\{x_n\}$  in X such that  $\lim_{n\to\infty} x_n = x$ , we have  $\lim_{n\to\infty} f(x_n) = f(x)$ .
- 3. For every open set  $V \subset Y$ ,  $f^{-1}(V)$  is open in X.

#### 1.4.4 Bolzano-Weierstrass Theorem

#### 定理 1.3 (Bolzano-Weierstrass Theorem)

If  $K \subset \mathbb{R}^N$  is compact and nonempty, and  $f: K \to \mathbb{R}^M$  is continuous, then :

- 1. f(K) is compact.
- 2. f attains its maximum and minimum on K.

#### 1.4.5 Semicontinuity

#### 定义 1.11

For  $f: \mathbb{R}^N \to \mathbb{R}^M$ :

• f is upper semicontinuous at x if :

$$f(x) \le \limsup_{y \to x} f(y)$$
 for all  $x \in \mathbb{R}^N$ 

 $\bullet$  f is **lower semicontinuous** at x if:

$$f(x) \ge \liminf_{y \to x} f(y)$$
 for all  $x \in \mathbb{R}^N$ 

注 f is upper semicontinuous  $\Leftrightarrow -f$  is lower semicontinuous.

#### 定理 1.4 (Extrema of semicontinuous Functions)

Let  $K \subset \mathbb{R}^N$  be compact and  $f: K \to \mathbb{R}$  be upper semicontinuous. Then f attains its maximum on K. If f is lower semicontinuous, then f attains its minimum on K.

#### 1.4.6 Lipschitz Continuity

#### 定义 1.12

A function  $f: \mathbb{R}^N \to \mathbb{R}^M$  is called **Lipschitz continuous** if there exists a constant K > 0 such that:

$$||f(x) - f(y)|| \le K||x - y||$$
 for all  $x, y \in \mathbb{R}^N$ 

where K is called the **Lipschitz constant** of f. If K < 1, then f is called a **contraction mapping**.

 $\stackrel{>}{\succeq}$  Lipschitz continuity implies uniform continuity, but the converse is not true. For example,  $f(x) = x^2$ .

#### 定理 1.5 (Contraction Mapping Theorem)

Let (X,d) be a complete metric space and  $f:X\to X$  be a contraction mapping. Then f has a unique fixed point  $x^* \in X$ , i.e.,  $f(x^*) = x^*$ .

#### 定理 1.6 (Intermediate Value Theorem)

Let  $f: D \to \mathbb{R}$  be a continuous function and  $D \subset \mathbb{R}$ . If:

- $[a,b] \subset D$  (closed interval)
- y is between f(a) and f(b)

then there exists a point  $c \in [a, b]$  such that f(c) = y.