# **GPT: Improving Language Understanding by Generative Pre-Training**



### 1. Introduction

대부분의 딥러닝 모델은 labeled된 데이터를 바탕으로 지도학습을 하는데, 이는 레이블이 지정되지 않은 데이터(unlabeled data)보다 훨씬 적은 수이기 때문에 unlabeled data의 언어 정보를 활용한다면 훈련에 필요한 시간과 비용을 절약할 수 있다.

but, unlabeled data에 대하여 단어 수준 이상의 정보를 활용하는 것이 힘든 이유는 크게 두가지 문제점 때문이다.

- 1. 어떤 목적함수(optimization objective)가 효과적인지 알 수 없다.
- 2. 모델에서 학습된 표현(representation)을 다양한 NLP task로 transfer하는데 가장 효율적인 방법이 정해지지 않았다.

본 논문에서는 unsupervised pre-training + supervised fine-tuning을 결합한 semi-supervised된 접근법을 다룬다. → 미세한 조정만 거치면 광범위한 task에 보편적으로 적용할 수 있는 universal한 representation을 학습하는 것이 이 모델의 목표!

#### 제안하는 모델은 2단계로 나뉘어지는데

- 1단계: 신경망의 초기 매개변수를 학습(pre-trained)하기 위해 unlabeled data에 언어 모델링 목적함수(language modeling objective)를 사용. → 이 목적함수에 대해서는 뒤에서 자세히 수식이 나옴.
- 2단계: 이렇게 얻은 parameter를 supervised objective를 사용하여 fine-tuning한 후 특정한 task에 적용시킴.

또한, 해당 모델에서는 Transformer 구조를 사용했는데, 다양한 task에서 잘 작동할 뿐만 아니라 텍스트의 길이가 길어지면, 효과가 안 좋아지는 (long term memory dependency) RNN 구조의 문제점도 해결할 수 있기 때문이다. → Transformer의 스타일 덕분에 사전 학습된 모델의 아키텍처를 최소한으로 변형하면서 효과적으로 fine-tuning이 가능하다.

네가지 유형의 language understanding task에 대한 평가를 수행했고, 범용모델이 각 작업에 특화된 모델의 성능을 능가했음.

### 2. Related work

#### Semi-supervised learning for NLP

지난 몇년간 연구자들은 unlabeled된 말뭉치가 다양한 과제에서 성능을 향상시켜 줄 것이라는 장점을 발견했지만, 그동안은 주로 단어 수준 표현을 학습할 뿐이었다. 최근의 연구는 unlabeled data로부터 단어 수준 이상(문장수준, 구 수준)의 임베딩으로 정보를 학습하려하고 있다.

#### **Unsupervised pre-training**

목표가 지도학습 목적함수를 수정하는 것이 아닌 좋은 초기화 지점을 찾는 것일 때, 비지도 사전학습은 준지도학습의 특별한 경우가 된다. 후속연구에서 사전학습이 정규화처럼 동작하 게 함이 알려지면서 다양한 분야에 활용되고 있다.

GPT와 가장 유사한 연구는 신경망을 언어모델링 목적함수를 사용하여 사전학습시키고 지도 학습으로 목표 과제에 맞춰 미세조정하는 것을 포함하고 있다. 하지만, 이들 모델의 pre-training하는 구간이 언어적 정보를 포착하는데 있어 도움을 주긴 하지만 LSTM의 사용으로 인해 예측이 좁은 범위에 한정된다. GPT는 Transformer를 사용함으로써 넓은 범위에 걸친 언어적 구조와 정보를 학습할 수 있게 하였고, 나아가 다양한 과제에 사용할 수 있게 되었다.

#### **Auxiliary training objectives**

보조 학습 목적함수(auxiliary objective)를 추가하는 것은 준지도학습의 대안적인 형태이다. 이를 추가하여 여러 연구에서 성능 향상을 목격하였고, 본 연구에서도 auxiliary objective를 사용하지만, 이미 unsupervised pre-training 단계에서 여러 언어적 특징들을 학습한걸 확인할 수 있었다.

### 3. Framework

학습은 두 단계로 구성됨.

- 1. 대규모 텍스트 말뭉치에서 대용량 언어 모델 학습하는 것
- 2. fine-tuning 단계로, 라벨링된 데이터를 사용하여 discriminative task에 모델을 적용

### 3.1 Unsupervised pre-training

레이블링 되지 않은 말뭉치의 tokens  $U = \{u1, ..., un\}$ 가 주어지면, standard LM을 사용해 다음과 같은 likelihood를 최대화하는 방향으로 학습 진행

$$L_1(\mathcal{U}) = \sum_{i} \log P(u_i|u_{i-k}, \dots, u_{i-1}; \Theta)$$

식 1) k=윈도우 크기, P=파라미터 θ에 대해 계산됨, 모든 파라미터는 SGD방식으로 학습됨.

transformer의 변형 중 하나인 multi-layer transformer decoder를 사용! multi-headed self-attention 연산을 모든 입력 토큰에 대해서 수행하고, 해당 결과를 position-wise feedforward layer의 입력으로 제공

$$h_0 = UW_e + W_p$$
 
$$h_l = \texttt{transformer\_block}(h_{l-1}) \forall i \in [1, n]$$
 
$$P(u) = \texttt{softmax}(h_n W_e^T)$$

식 2) U=token의 context vector, n=레이어의 개수, W\_e=토큰을 임베딩하는 matrix, W\_p=position embedding matrix

(처음 h\_0에는 필요한 해당 token을 position embedding으로 순서 값을 정해줌 → 계속 해서 transformer\_block에 넣어줘서 학습을 진행 → 결과 P(u)는 학습된 마지막 값을 행렬 곱하여 text dictionary만큼의 softmax로 다음 단어를 뽑아냄)

### 3.2 Supervised fine-tuning

위의 식 1을 통해서 pre-training을 하고 나서, 학습된 파라미터는 target task에 맞게 fine-tuning함.

레이블링된 데이터셋 C를 사용한다고 가정하고 이는 입력 x1,x2,...,xm과 레이블 y로 구성됨

입력들은 pre-trained 된 모델의 입력으로 제공되고 마지막 transformer block의 출력 인 h\_l\_m으로 출력됨.

이 출력은  $W_y$ 를 파라미터로 하는 linear output layer의 입력으로 제공되어 y(=레이블)를 예측하게 됨.

$$P(y|x^1,\ldots,x^m) = \operatorname{softmax}(h_l^m W_y).$$

식 4를 최소화하도록 학습

$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m).$$

식 4)

Language modeling을 fine-tuning 과정에서 보조 objective로 사용했을 때 ,supervised model의 generalization을 향상 + 빠르게 수렴할 수 있도록 함. weight  $\lambda$ 에 대해 식 5와 같은 방식으로 최적화 진행

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

식 5)

⇒ Fine-tuning 과정에서 추가적으로 필요한 파라미터는 linear output layer를 구성하는 W\_y, delimiter를 위한 임베딩뿐임.

# 3.3 Task-specific input transformations



Figure 1: (**left**) Transformer architecture and training objectives used in this work. (**right**) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

text classification과 같은 tast들은 위에서 언급한 방법대로 할 수 있다. 하지만 question answering이나 textual entailment는 여러 개의 문장이 필요하기 때문에, Figure 1처럼 delimiter로 각 sentence를 구분하여 하나로 연결하는 방식을 사용한다

Textual entailment : 전체 p와 가정 h를 구분자 \$로 연결하였다.

Similarity : 두 개의 텍스트 사이에 순서가 없으므로 텍스트 두 개를 다른 순서로 이어붙여 총 2개를 입력으로 사용하고, 이는 각각 Transformer에 입력으로 사용된다.

Quenstion Answering and Commonsense Reasoning : 문맥 문서 z, 질문 q, 가능한 답변 ak라고 하면, [z; q; \$; ak]로 연결되고 입력의 갯수는 답변의 갯수만큼 생성된다.

# 4. Experiments

### 4.1 Setup

Table 1: A list of the different tasks and datasets used in our experiments.

| Task                       | Datasets                                                                |
|----------------------------|-------------------------------------------------------------------------|
| Natural language inference | SNLI [5], MultiNLI [66], Question NLI [64], RTE [4], SciTail [25]       |
| Question Answering         | RACE [30], Story Cloze [40]                                             |
| Sentence similarity        | MSR Paraphrase Corpus [14], Quora Question Pairs [9], STS Benchmark [6] |
| Classification             | Stanford Sentiment Treebank-2 [54], CoLA [65]                           |

Unsupervised pre-training : dataset으로 다양한 분야의 미출판 책에 대한 내용을 포함 하는 BooksCorpus를 사용. alternative dataset은 ELMO에서 사용한 Word Bechmark Model specifications:

| Parameter          | Descrption                                             |
|--------------------|--------------------------------------------------------|
| State<br>dimension | decoder: 768, inner state: 3072                        |
| Batch size         | 64 random sample $	imes$ 512 token/sample              |
| Schedule           | 100 epochs,                                            |
| Optimizer          | Adam                                                   |
| Learning Rate      | 0~2000 step까지 2.5e-4까지 증가, 이후 cosine 함수를 따라 0으로 서서히 감소 |
| warmup_steps       | 4000                                                   |
| Regularization     | L2(w=0.01)                                             |
| Activation         | GELU(Gaussian Error Linear Unit)                       |

Fine-tunning details : Unsupervised pre-training와 hyperparameter 동일. p=0.1의 dropout 추가

learning rate 6.25e-5, batchsize 32, 3 epochs, learning rate decay는 warmup을 포함해 학습당 0.2%, 람다는 0.5로 세팅

### 4.2 Supervised fine-tuning

supervised task(자연어추론NLI, 질의응답, 의미 유사성, 문서분류)에 대해 평가를 진행, 일부는 GLUE benchmark에 포함되어 있음

### Natural Language Inference - 자연어 추론

Table 2: Experimental results on natural language inference tasks, comparing our model with current state-of-the-art methods. 5x indicates an ensemble of 5 models. All datasets use accuracy as the evaluation metric.

| Method                                  | MNLI-m      | MNLI-mm | SNLI | SciTail | QNLI | RTE  |
|-----------------------------------------|-------------|---------|------|---------|------|------|
| ESIM + ELMo [44] (5x)                   | -           | -       | 89.3 | -       | -    | -    |
| CAFE $[58]$ $(5x)$                      | 80.2        | 79.0    | 89.3 | -       | -    | -    |
| Stochastic Answer Network $[35]$ $(3x)$ | <u>80.6</u> | 80.1    | -    | -       | -    | -    |
| CAFE [58]                               | 78.7        | 77.9    | 88.5 | 83.3    |      |      |
| GenSen [64]                             | 71.4        | 71.3    | -    | -       | 82.3 | 59.2 |
| Multi-task BiLSTM + Attn [64]           | 72.2        | 72.1    | -    | -       | 82.1 | 61.7 |
| Finetuned Transformer LM (ours)         | 82.1        | 81.4    | 89.9 | 88.3    | 88.1 | 56.0 |

• 문맥적 함의 알아내는 것, 한 쌍의 문장들 읽고 entailment, contradiction, neutral 인지 관계 파악

#### 이전 결과에 비해 엄청 발전한 결과

• 정부 보고서(MNLI): 1.5%

• 과학시험(SciTail): 5%

• 위키피디아 기사(QNLI): 5.8%

• Image caption(SNLI): 0.6%

→ 다수의 문장, 언어적 모호성 파악하는데 좋다!

- 뉴스 기사(RTE): 적은 양의 데이터 사용, biLSTM의 61.7%보다 낮은 56%의 정확도
- 많은 데이터 사용하면 multi-task training에서도 좋은 결과 얻지 않을까?ㅎㅎ

### Question answering and commonsense reasoning - 질의 응답, 상 식적 추론

Table 3: Results on question answering and commonsense reasoning, comparing our model with current state-of-the-art methods.. 9x means an ensemble of 9 models.

| Method                          | Story Cloze | RACE-m      | RACE-h      | RACE |
|---------------------------------|-------------|-------------|-------------|------|
| val-LS-skip [55]                | 76.5        | -           | -           | -    |
| Hidden Coherence Model [7]      | <u>77.6</u> | -           | -           | -    |
| Dynamic Fusion Net [67] (9x)    | -           | 55.6        | 49.4        | 51.2 |
| BiAttention MRU [59] (9x)       | -           | <u>60.2</u> | <u>50.3</u> | 53.3 |
| Finetuned Transformer LM (ours) | 86.5        | 62.9        | 57.4        | 59.0 |

- RACE 데이터셋(중고등학교 영어 시험 지문 + 질문) 사용[5.7%]
- Story Cloze Test [8.9%]
- → 넓은 범위에 걸친 문맥 정보도 잘 포착해냄

#### Semantic Similarity - 의미 유사성

Table 4: Semantic similarity and classification results, comparing our model with current state-of-theart methods. All task evaluations in this table were done using the GLUE benchmark. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

| Method                                                                        | Classification |              | Seman        | GLUE         |              |              |
|-------------------------------------------------------------------------------|----------------|--------------|--------------|--------------|--------------|--------------|
|                                                                               | CoLA (mc)      | SST2 (acc)   | MRPC<br>(F1) | STSB (pc)    | QQP<br>(F1)  |              |
| Sparse byte mLSTM [16]                                                        | -              | 93.2         | -            | -            | -            | -            |
| TF-KLD [23]                                                                   | -              | -            | 86.0         | -            | -            | -            |
| ECNU (mixed ensemble) [60]                                                    | -              | -            | -            | <u>81.0</u>  | -            | -            |
| Single-task BiLSTM + ELMo + Attn [64]<br>Multi-task BiLSTM + ELMo + Attn [64] | 35.0<br>18.9   | 90.2<br>91.6 | 80.2<br>83.5 | 55.5<br>72.8 | 66.1<br>63.3 | 64.8<br>68.9 |
| Finetuned Transformer LM (ours)                                               | 45.4           | 91.3         | 82.3         | 82.0         | 70.3         | 72.8         |

- 두 문장이 비슷하냐 아니냐 by rephrasing 알아보고, p이면 q이다 논리 이해, 문장구조 모호성 알아보고
- Microsoft Paraphrase corpus(MRPC), Quora Question Pairs(QQP), Semantic Textual Similarity benchmark(STS-B) 데이터 사용
- STS-B: 1%p 높음
- QQP: Single-task BiLSTM + ELMO + Attn 보다 4.2% 더 높음

#### Classification - 분류

Table 4: Semantic similarity and classification results, comparing our model with current state-of-theart methods. All task evaluations in this table were done using the GLUE benchmark. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

| Method                                                                        | Classif      | ication      | Seman        | GLUE         |              |              |
|-------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                                                               | CoLA (mc)    | SST2 (acc)   | MRPC<br>(F1) | STSB (pc)    | QQP<br>(F1)  |              |
| Sparse byte mLSTM [16]                                                        | -            | 93.2         | -            | -            | -            | -            |
| TF-KLD [23]                                                                   | -            | -            | 86.0         | -            | -            | -            |
| ECNU (mixed ensemble) [60]                                                    | -            | -            | -            | 81.0         | -            | -            |
| Single-task BiLSTM + ELMo + Attn [64]<br>Multi-task BiLSTM + ELMo + Attn [64] | 35.0<br>18.9 | 90.2<br>91.6 | 80.2<br>83.5 | 55.5<br>72.8 | 66.1<br>63.3 | 64.8<br>68.9 |
| Finetuned Transformer LM (ours)                                               | 45.4         | 91.3         | 82.3         | 82.0         | 70.3         | 72.8         |

- Corpus of Linguistic Acceptability(CoLA): 문장의 문법적 오류 여부에 대한 전문 가의 평가 + 학습된 모델의 언어적 편향 테스트 → 45.4
- Stanford Sentiment Treebank(SST-2): 표준 이진 분류 → 91.3% 정확도 (나름 경 쟁력 있음)
- 전체 GLUE에 대해서 72.8점 얻음 🤤

#### 실험 결과 요약

12개의 데이터셋 중 9개에서 가장 좋은 결과를 얻음

STS-B(5.7k train ex) 같은 작은 데이터셋 ~ SNLI(550k train ex) 같은 큰 데이터셋까지 다 잘 됨

# 5. Analyis



#### 1. Impact of number of layers transferred

본 논문은 다양한 개수의 layer를 unsupervised pre-training 에서 supervised target task로 transfer 할 때의 성능을 분석했다. 왼쪽 그래프는 MutliNLI와 RACE 에서의 성능을 나타낸다.

- Transfer 하는 층의 개수가 많을수록 성능이 향상
- Layer 12 이후로는 성능이 수렴하는 양상을 보임

→ pre-trained model의 각 층이 target task를 해결하기 위한 다양한 특성들을 각각 학습한다는 것을 알 수 있다.

#### 2. Zero-shot Behaviors

Language model pre-training이 효과적인 이유에 대한 한 가설은 language model의 성능을 향상시키기 위해서 다양한 nlp task를 학습한다는 것이다. 오른쪽 표에서 Supervised fine-tuning을 하지 않고, pre-training 만의 성능을 확인할 수 있다.

- Pre-training을 더 많이 할수록 다양한 task의 성능이 함께 증가
- → language modeling을 수행하면서 다양한 nlp task 를 위한 특성들을 함께 학습

#### 3. Ablation studies

| Method                                                                   | Avg. Score                  | CoLA<br>(mc)                | SST2<br>(acc)               | MRPC<br>(F1)                | STSB<br>(pc)                | QQP<br>(F1)          | MNLI<br>(acc)        | QNLI<br>(acc)        | RTE (acc)            |
|--------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|
| Transformer w/ aux LM (full)                                             | 74.7                        | 45.4                        | 91.3                        | 82.3                        | 82.0                        | 70.3                 | 81.8                 | 88.1                 | 56.0                 |
| Transformer w/o pre-training<br>Transformer w/o aux LM<br>LSTM w/ aux LM | 59.9<br><b>75.0</b><br>69.1 | 18.9<br><b>47.9</b><br>30.3 | 84.0<br><b>92.0</b><br>90.5 | 79.4<br><b>84.9</b><br>83.2 | 30.9<br><b>83.2</b><br>71.8 | 65.5<br>69.8<br>68.1 | 75.7<br>81.1<br>73.7 | 71.2<br>86.9<br>81.1 | 53.8<br>54.4<br>54.6 |

동일한 모델에 대해서 다양한 task 실험을 진행했다.

 Fine-tuning 과정에서 보조적인 LM task( Auxiliary Objective(sub-task)) 유무의 비교 :

데이터셋이 큰 경우 이런 보조적인 objective의 영향을 많이 받지만, 작은 데이터셋의 경우는 영향을 적게 받는다는 것을 알 수 있다.(데이터셋이 클수록(QQP, MNLI, QNLI, RTE) auxiliary task가 성능 개선에 영향이 더 크며, 작을수록(CoLA, SST2, MRPC, STSB) auxiliary task없이 학습하는 것이 오히려 나음)

- → Fine-tuning은 데이터 셋이 클 때 더 효과적임
- Transformer의 사용 여부:

성능을 확인하기 위해서 transformer 대신 2048개의 unit으로 구성된 한 개의 LSTM 층을 추가했다. 평균적으로 5.6 점 정도의 점수 하락을 보였다. (MRPC 데이터셋에 대해서는 LSTM이 더 좋은 성능을 보임)

• pre-training 여부 비교 :

기존의 모델을 바로 supervised target task에 학습시킨 경우 성능을 확인했다. Pre-training을 진행하지 않은 경우, 모든 task에 대해서 성능이 떨어진다는 것(약 15%)을 확인할 수 있었다. (여기서 pre-training을 사용하지 않는다는 것은 unsupervised pre-training에 사용되는 구조를 모두 넘겨버리는 것을 말한다. 즉, supervised부분만 사용하는 것)

## 6. Conclusion

- 본 논문은 생성적 사전학습과 특정과제에 특화된 미세조정을 통해 학습된, 과제에 대해 별다른 지식이 없으며 자연어이해 능력이 뛰어난 단일 모델(framework)를 소개한다.
- 넓은 분야의 다양한 말뭉치에 대해 사전학습을 진행하여 중요한 일반지식과 질답, 의미유사성 평가, 함의 확인, 문서분류 등의 task에서 성공적으로 전이되는 장거리 의존성을 처리하는 능력을 학습하여 12개 중 9개의 과제에 대해 state-of-the-art를 달성하였다.
- 본 논문은 상당한 성능향상이 정말로 가능하며 어떤 모델(Transformers)과 dataset(장거리 의존성을 포함하는 텍스트)가 이 접근법에 가장 좋은지에 대한 조언을 제공한다.