

Prep Math 140 Selection of Problems

Calculus 2 (McGill University)

Scan to open on Studocu

McGill MATH 140 Final Exam (Selection of problems)

APRIL 2006

*
$$\lim_{x \to \infty} x - \sqrt{x^4 - 4x} = \lim_{x \to \infty} (x - \sqrt{x^4 - 4x})(x + \sqrt{x^4 - 4x})$$

Thank you for attending a PREP 101 session! Best of luck !!

$$= \lim_{x \to \infty} \frac{x^2 - x^4 + 4x}{x + \sqrt{x^4}\sqrt{1 - \frac{4}{x^3}}} = \lim_{x \to \infty} \frac{x^4 \left(-1 + \frac{1}{x^2} + \frac{4}{x^3}\right)}{x + x^2\sqrt{1 - \frac{4}{x^3}}}$$

antoine.prep101@gmail.com

$$= \lim_{x \to \infty} \frac{x^{4}\left(-1 + \frac{1}{x^{2}} + \frac{4}{x^{3}}\right)}{x^{2}\left(\frac{1}{x} + \sqrt{1 - \frac{4}{x^{3}}}\right)} = \lim_{x \to \infty} \frac{-x^{2}}{1} = -\infty$$

$$\begin{array}{ccc}
* & \lim_{x \to 0} & \frac{x^2 + 1}{1 - \cos 2x} & = & \frac{1}{0^+} = +\infty
\end{array}$$

*
$$\lim_{x\to 0} \frac{x^2+1}{1-\cos 2x} = \frac{1}{0^+} = +\infty$$
 (Note as $x\to 0^+$ or $x\to 0^-$ cos $x\to 1^-$ so $1-\cos x\to 0^+$)

*
$$\lim_{\alpha \to \ln 2} \frac{e^{2u} + e^{u} - b}{e^{2u} + 6e^{u} - 16} = \lim_{\alpha \to \ln 2} \frac{(e^{u} + 3)(e^{u} - 2)}{(e^{u} + 2)(e^{u} + 8)} = \frac{2+3}{2+8} = \frac{5}{10} = \frac{1}{2}$$

(Note:
$$e^{\ln 2} = 2$$
)

$$\begin{array}{cccc}
\times & \lim_{X \to -\infty} \frac{\cosh 2x + \sinh 2x}{\left(\cosh x + \sinh x\right)^2} &= \lim_{X \to -\infty} \frac{e^{2x} + e^{-2x} + e^{2x} - e^{-2x}}{\left(e^{x} + e^{-x} + e^{x} - e^{-x}\right)^2}
\end{array}$$

$$= \lim_{x \to -\infty} \frac{e^{2x}}{e^{2x}} = 1$$

* The surface area of a sphere is increasing at 5 cm²/sec. How fast is the volume changing when $r = 10 \, \text{cm}$?

$$S'=8\pi r.r'\Rightarrow r'=\frac{S'}{8\pi r}=\frac{5}{8\pi(10)}=\frac{1}{16\pi}$$
 cm/s $\left(S'=\frac{dS}{dt}, r'=\frac{dr}{dt}\right)$

$$\frac{dV}{dt} = 4\pi Y^2 \frac{dY}{dt} = 4\pi (100) \cdot \frac{1}{16\pi} = 25 \text{ cm}^3/\text{sec}.$$

* A cylinder is such that its top and bottom are dishs of radius r, its role has area $2\pi rh$ (h=height of cylinder), and its volume is 54π cm³.

Find the dimensions of the cylinder that was the least amount of material.

But
$$V = \pi r^2 \cdot h = 54\pi \implies h = \frac{54\pi}{\pi r^2} = \frac{54}{r^2}$$

So amount of material = $S(r) = 2\pi r^2 + 2\pi r \cdot \frac{54}{r^2} = 2\pi r^2 + \frac{108\pi}{r}$

$$S'(r) = 4\pi r - \frac{108\pi}{r^2} = 0 \Rightarrow 4\pi r = \frac{108\pi}{r^2} \Rightarrow r^2 = 27 \Rightarrow r = \sqrt{27} = 3\sqrt{3}$$

$$S''(r) = 4\pi + \frac{216\pi}{r^3}$$
 $S''(\sqrt{27}) > 0$ => $r = \sqrt{27}$ gives Minimum surface.
 $h = \frac{54}{r^2} = \frac{54}{27} = 2 \text{ cm}$.

APRIL 2007

x find a polynomial $f(x) = Ax^3 + bx^2 - Bx$ such that f has a local maximum at $x = -1 \notin a$ on injection pt at $\alpha = 1$ or show that no such polynomial exists.

 $\int_{-\frac{\pi}{A}}^{2} (x) = 3Ax^{2} + 12x - B$ $\int_{-\frac{\pi}{A}}^{2} (x) = 6Ax + 12 = 0 \implies x = -\frac{2}{A} \quad \text{(the only possible night)}$ $\Rightarrow -\frac{2}{A} = 1 \implies A = -2$

100: $(x) = -6x^2 + 12x - B$

X=-1 gives a local mox \Rightarrow X=-1 critical value \Rightarrow $\int_{-6}^{6}(-1)=0$ $-6-12-B=0 \Rightarrow B=-18$

Now verify that in this case x=-1 gives local max and \underline{NOT} local min.

$$-6x^{2}+12x+18=-6(x^{2}-2x-3)=-6(x-3)(x+1)$$

$$-6x^{2}+12x+18=-6(x^{2}-2x-3)=-6(x-3)(x+1)$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-1 3$$

$$-$$

 \Rightarrow $f(x) = -2x^3 + 6x^2 + 18x$

* Let
$$J(x) = |3-x|$$
 show that J is not differentiable at $x = 3$

$$\int_{x\to3}^{(3)} = \lim_{x\to3} \frac{f(x) - f(3)}{x-3} = \lim_{x\to3} \frac{|3-x| - 0}{x-3} = \lim_{x\to3} \frac{|3-x|}{x-3}$$

$$\times$$
 Show that $\frac{1+\tanh x}{1-\tanh x} = e^{2x}$

$$\frac{1 + \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}}{1 - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}} = \frac{e^{x} + e^{-x} + e^{x} - e^{-x}}{e^{x} + e^{-x} - e^{x} + e^{-x}} = \frac{2e^{x}}{2e^{-x}} = e^{x} \cdot e^{x} = e^{2x}.$$

*
$$\lim_{x \to \infty} \left(1 - \frac{2}{x} + \frac{7}{x^{2}} \right)^{x}$$
 Let $y = \left(1 - \frac{2}{x} + \frac{7}{x^{2}} \right)^{x}$
 $\Rightarrow \ln y = x \ln \left(1 - \frac{2}{x} + \frac{7}{x^{2}} \right)$
 $\lim_{x \to \infty} \ln y = \lim_{x \to \infty} x \ln \left(1 - \frac{2}{x} + \frac{1}{x^{2}} \right) = \lim_{x \to \infty} \frac{1}{1 - \frac{2}{x} + \frac{1}{x^{2}}} \cdot \left(\frac{2}{x^{2}} - \frac{14}{x^{3}} \right)$
 $= \lim_{x \to \infty} \frac{1}{1 - \frac{2}{x} + \frac{1}{x^{2}}} = \lim_{x \to \infty} \frac{1}{1 - \frac{2}{x} + \frac{1}{x^{2}}} \cdot \left(\frac{2}{x^{2}} - \frac{14}{x^{3}} \right) \left(-x^{3} \right)$
 $= \lim_{x \to \infty} \frac{1}{1 - \frac{2}{x} + \frac{1}{x^{2}}} = -2$.

 $\Rightarrow \lim_{x \to \infty} y = e^{-2}$.

* Find the horizontal argm. of
$$g(x) = 2 \tanh x + 1$$

$$\lim_{x \to \infty} 2 \tanh x + 1 = \lim_{x \to \infty} 2 \left(\frac{e^{x} - e^{-3x}}{e^{x} + e^{-x}} \right) + 1$$

$$= \lim_{x \to \infty} 2 \left(\frac{e^{x} \left(1 - e^{-2x} \right)}{e^{x} \left(1 + e^{-2x} \right)} \right) + 1 = 2 + 1 = 3$$
(Some providur for $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} 2 \left(\frac{e^{-x} \left(\frac{e^{x} - 1}{e^{x} + 1} \right)}{e^{-x} \left(\frac{e^{x} + 1}{e^{x} + 1} \right)} \right) + 1 = -1$

$$\implies y = -1 \text{ H.A. at } -\infty, y = 3 \text{ H.A. at } \infty$$
This document is available on $\lim_{x \to -\infty} 3 + 2 = 3 \text{ H.A. at } -\infty$