Geomatic Techniques to Support Phytosanitary Products Tests whithin the EPPO Standard Framework

Samuele Bumbaca

University of Turin

July 17, 2025

Presentation Structure (40 minutes)

- Introduction & Background (20 minutes)
 - Research problem and motivation
 Theoretical framework
 - Methodology overview
- 2 Three Case Studies (18 minutes total)
 - Plant Counting (6 minutes)
 - Phytotoxicity Scoring (6 minutes)
 - Anomaly Detection (6 minutes)
- Conclusions & Future Work (2 minutes)

Current Limitations in Agricultural Statistics

Traditional Approach Issues:

- Human-dependent blocking: Environmental variability assessment relies on experimenter experience
- A priori identification: Must identify variance sources BEFORE data collection
- Limited statistical power: When assumptions fail, must resort to non-parametric tests
- Regulatory requirements: EPPO standards demand R² > 0.85 performance

The Challenge:

How can we capture environmental variability mathematically rather than through human judgment?

The Missing Link: Spatial Coordinates

Geostatistical Methods Advantages:

- ✓ Mathematical modeling of environmental variability
- ✓ Post-hoc analysis no need for prior knowledge
- √ Superior performance in handling spatial heterogeneity
- √ EPPO recognized approach

Current Barrier:

- × Requires spatially referenced observations
- Traditional manual assessments lack coordinates
- Implementation gap in practical field trials

Central Research Question

Can geomatics technologies provide spatially referenced observations that enable geostatistical analysis within EPPO-compliant Plant Protection Product trials?

Specific Objectives:

- Establish minimum dataset requirements for digital data collection
- ② Demonstrate feasibility across all EPPO variable types
- 3 Validate performance against traditional methods
- Provide practical implementation guidelines

European Plant Protection Organization (EPPO)

Key Standards:

- \bullet PP 1/152(4): Design and analysis of efficacy evaluation trials
 - PP 1/333(1): Digital technology adoption guidelines

Variable Types in EPPO Assessments:

- Continuous/Discrete: Plant counts, measurements
- **2** Ordinal: Severity scales (0-100%), damage ratings
- 3 Binary/Nominal: Healthy/diseased, disease classification

Benchmark: $R^2 > 0.85$ compared to manual assessment

PPP Development & Regulation

PPP Categories:

- Fungicides
- Insecticides
- Herbicides
- Plant growth regulators
- Acaricides
- Acariciaes
- Nematicides

Critical Evaluation Needs:

- Efficacy: Does it work?
- Selectivity: Is it safe for crops?
- Environmental impact: Side

effects?

Technical Arsenal

Core Technologies:

- Photogrammetry: 3D model generation from 2D images
- Spectral Imaging: Multi/hyperspectral sensors
- Machine Learning: Object detection, classification, regression
- GNSS/UAV: Precise spatial positioning

[Technology diagram would go here]

Study 1: Automated Plant Counting

Problem Statement:

Manual plant counting is:

- Time-consuming: Hours per plot
- Subjective: Inter-observer variability
- Error-prone: Missed or double-counted plants
- Non-spatial: No coordinate information

[Plant counting example image]

Solution Approach:

- UAV photogrammetry
- Deep learning object detection
- Automatic spatial referencing
- $R^2 > 0.85$ validation

Minimum Dataset Findings

Architecture	Images Needed	R²
RT-DETR (Transformer-mixed)	60	0.89
YOLOv8 (CNN)	110	0.87
YOLOv5 (CNN)	130	0.86
Few-shot models	N/A	< 0.85
Zero-shot models	N/A	< 0.85

Table: Performance comparison across architectures

Critical Finding:

NO out-of-distribution trained model achieved $R^2 > 0.85$ In-domain training data is essential for agricultural applications

Thank You

Questions & Discussion

Contact Information:

Samuele Bumbaca

University of Turin

Email: samuele.bumbaca@unito.it

Key Publications:

- "On the Minimum Dataset Requirements..." Remote Sensing (2025)
- Supporting Screening of New Plant Protection Products..." -Agronomy (2024)
- 3 "Anomaly Detection for Plant Disease Classification" In preparation