Logical Operators

Math 251

Formal Propositional Logic

Syntax

- set of **propositional variables**: p, q, r, etc. (like legal identifiers)
- set of **logical operators**: \land , \lor , \neg , etc.
 - operator: input(s) and output are same type of object
 - * logical operators have propositions as both input and output
 - * different formal logics might allow different lists of operators
 - arity: number of inputs to the operator
 - Examples

```
* 1-ary (unary): \neg
* 2-ary (binary): \land, \lor, \rightarrow, \leftrightarrow, etc.
```

- syntactic rules for combining propositions with operators
 - atomic propositions: every propositional variable is a proposition
 - T and F are propositions (can think of as 0-ary operators or constants)
 - if p is a proposition and * is unary, then *p is a proposition
 - if p and q are propositions and * is binary op, then (p*q) is a proposition
 - if $p_1, \ldots p_k$ are propositions and * is k-ary, then $*(p_1, p_2, \ldots p_k)$ is a proposition

Two optional pieces of syntax

- Extra parens allowed
 - if p is a proposition, then (p) is a proposition
- Some parens can be omitted.
 - Precedence rules allow us to omit some parens without ambiguity.
 - Precedence Order:

```
* negation (not): ¬
* conjunction (and): ∧
* disjunction (or): ∨
* other 2-ary: →, ↔, etc.
```

- Better safe than sorry: use parens to make sure things are clear

Semantics

Truth Assignments

- A declaration of which atomic propositions are true/false is called a **truth assignment**
- To know whether a proposition is true, we only need to know which of the atomic propositions are true the rest is determined by the semantics of the operators

Truth Tables

- A formal mechanism for determining whether a complex (non-atomic) proposition is TRUE or FALSE given a particular truth assignment.
- In particular, truth tables are used to say precisely what each logical operator "means".
- Note: Informal logic can be ambiguous, but formal logic is unambiguous (given its specification).

\overline{p}	q	$p \wedge q$	$p \lor q$	$p \rightarrow q$
$\overline{\mathrm{T}}$	Τ	Т	Т	Т
\mathbf{T}	\mathbf{F}	\mathbf{F}	${ m T}$	\mathbf{F}
\mathbf{F}	${ m T}$	\mathbf{F}	${ m T}$	${ m T}$
F	F	F	F	Τ

See the text for additional details about the semantics of common logical operators.

Exercises

- 1. Use the precedence of logical opertors to rewrite each proposition fully parenthesized:
 - a. $\neg p \land \neg q \leftrightarrow r$
 - b. $\neg p \to q \land r$
 - c. $p \vee \neg q \rightarrow r$
 - d. $a \wedge b \vee \neg c \rightarrow d \rightarrow e \wedge \neg f$

(Don't ever write propositions without parens like this.)

- 2. How many unary operators are there?
- 3. Build a truth tables for (a) $(p \lor q) \to p$, (b) $p \lor (q \to p)$, (c) $(p \lor q) \to r$.
- 4. How many rows does a truth table have? (What does the answer depend on?)
- 5. How many binary logical operators are there?
- 6. For a proposition of the form $p \to q$, we have the following three related propositions:
 - converse: $q \to p$
 - inverse: $\neg p \rightarrow \neg q$
 - contrapositive: $\neg q \rightarrow \neg p$

Which of the converse, contrapositive, and inverse are equivalent to the original? (What does it mean to be equivalent?)

- 7. Build a truth table for "not p but q"
- 8. Build a truth table for "p unless q"
- 9. Translate the following English sentences into formal propositional logic. (Begin by assigning a propositional variable to each atomic proposition.)
 - a. You may have desert if you eat your vegetables.
 - b. You may have desert only if you eat your vegetables.
 - c. You may have desert if and only if you eat your vegetables.
 - d. You may not ride the roller coaster if you are under 4 feet tall unless you are older than 16 years old.