

Statistical Error

A.E. AKSENTEV

IKP, Forschungszentrum Jülich, Germany National Research Nuclear University «MEPhI», Russia

03/06/17

Methodology

When put into an electromagnetic field, the particle spin begins to precess according to the T-BMT equation:

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S}$$

$$\vec{\Omega} = -\frac{e}{m} \left\{ \vec{G} \vec{B} + \left(\frac{1}{\gamma^2 - 1} - \vec{G} \right) (\vec{\beta} \times \vec{E}) + \frac{\eta}{2} (\vec{E} + \vec{\beta} \times \vec{B}) \right\}$$
MDM EDM

By measuring the beam's polarization, we can determine the frequency

$$\vec{\Omega}^{\pm} = \vec{\Omega}_{MDM} \pm \vec{\Omega}_{EDM}$$

Comparing the CW vs CCW frequencies, determine $\,\Omega_{EDM}\,$

Problem statement

$$N(t) = N_0 \cdot \left(1 + P \cdot e^{-t/\tau_d} \cdot \sin\left(\omega \cdot t + \varphi\right)\right) + \varepsilon_t$$

Two aspects

Goals

- Under what conditions sampling modulation is beneficial
- How much modulation is appropriate
- At what point measurement is no longer informative

Spread

$$\sum f(t_i) = n_{\varepsilon/zc} \cdot x_{01} \cdot \frac{\exp\left(-\frac{\pi}{\omega \tau_d} n_{zc}\right) - 1}{\exp\left(-\frac{\pi}{\omega \tau_d}\right) - 1}$$

$$t(z) = \tau_d \cdot \ln\left(\frac{1}{1-z}\right)$$

FI limit (%)	Reached (×τ _d)	SNR@3% error
95	3.0	1.7
90	2.3	3.3
70	1.2	10.0
50	0.7	16.5

Simulation

Modulation

Decoherence

$$S(t) = \sum_{i} \sin(\omega_{i} \cdot t + \varphi_{i})$$

Ways to proceed

- 1. Find the correct model specification
- 2. Make the frequency spectrum small enough so that the data fit sufficiently well to a simpler model
 - Sextupoles to reduce X- & Y-emittance sizes
 - RF for better momentum resolution