STAT2001/3101 Peer Learning Session 3:

Challenge Question

- 1. Let X follow a univariate standard normal distribution. Let $Y = \exp(X + 1)$ and compute the pdf of Y. Also compute the moments $\mathbb{E}[Y^k]$ for $k \in \mathbb{N}$. Hint: The solution for the moments requires only one or two lines of algebra.
- 2. Define a continuous random variable Z with pdf

$$f_Z(z) = f_Y(z) \cdot (1 + \sin(2\pi(-1 + \log z))), \qquad z \in (0, \infty)$$

and show that its moments $\mathbb{E}[Z^k]$ are the same as those of Y.

Hint: the integral of an even function f multiplied by an odd function g is zero, i.e. $\int_{-\infty}^{\infty} f(x)g(x)dx = 0$, if f is absolutely integrable, i.e. $\int_{-\infty}^{\infty} |f(x)|dx < \infty$, and |g| is bounded, i.e. there exists a C > 0 such that |g(x)| < C for all $x \in \mathbb{R}$. [7]

3. Explain how identical sequences of moments would normally imply that the moment generating functions M_Y and M_Z are identical. Explain how this implies that the moment generating function M_Y cannot be defined on an open interval including zero.