

Eficiencia de Algoritmos

Para el desarrollo backend

¿Por qué analizar los algoritmos?

Predecir el rendimiento.

Comparar algoritmos.

Proveer garantía.

En resumen: Evitar bugs de rendimiento.

Ejemplo: Ordenamiento

client gets poor performance because programmer did not understand performance characteristics

Análisis de Eficiencia

¿De qué depende la eficiencia?

Hardware: CPU, RAM, cache, ...

Software: compilador, intérprete, ...

Sistema: S.O., redes, otras apps, ...

Algoritmo

Datos de entrada

Análisis de Eficiencia

¿De qué depende la eficiencia?

Hardware: CPU, RAM, cache, ...

Software: compilador, intérprete, ...

Sistema: S.O., redes, otras apps, ...

Algoritmo

Datos de entrada

Independiente

del sistema

dependiente

del sistema

Función de Tiempo (empírico)

Usando las librerías adecuadas podemos medir cuanto tiempo tardan nuestros programas en ejecutarse.

Y realizando el experimento repetidamente podemos incluso encontrar una *función de tiempo* que represente la relación entre los *datos de entrada* y el *tiempo de ejecución*.

Ejemplo: Suma 2

Función de Tiempo (teórico)

Despreciando todos los factores dependientes del sistema, podemos definir una función de tiempo dependiente sólo del tamaño de la entrada de datos.

Veamos el siguiente código y calculemos la cantidad de operaciones

```
int count = 0; for (int i = 0; i < N; i++) for (int j = i+1; j < N; j++) if (a[i] + a[j] == 0) count++; 0+1+2+\ldots+(N-1) \ = \ \frac{1}{2}N(N-1)
```

Función de Tiempo (teórico)

Cuando i es 0, j va de 1 a N-1, cuando i es 1, j va de 2 a N-1. Es decir cuando i es 0, se hacen N-1 operaciones, cuando i es 1 se hacen N-2 operaciones, así hasta cuando i es N-2 y sólo hace 1 operación. Esto es:

$$(N-1)+(N-2)+(N-3)+...+3+2+1=(N-1)*N/2$$

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
   if (a[i] + a[j] == 0)
      count++;</pre>
```

Notación Asintótica: notación O

Debemos encontrar una función F(N) que siempre sea mayor a nuestra función de tiempo T(N).

Teníamos:

$$T(N) = N * (N-1)/2 = N^2/2 - N/2$$

Observamos que conforme crece N, cada vez es más despreciable el valor de N/2 respecto a $N^2/2$. Por tanto hacemos $T(N) = N^2/2$. Entonces podemos definir una función $F(N) = k * N^2$, con k > 1/2 que siempre será mayor a T(N). Se dice que la función T(N) es de complejidad O(F(N)) esto es $O(N^2)$.

Orden de crecimiento

1, $\log N$, N, $N \log N$, N^2 , N^3 , and 2^N suffices to describe the order of growth of most common algorithms.

Orden de crecimiento

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	Гоор	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N 2	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N 3	cubic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }	triple loop	check all triples	8
2N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Referencias

Algorithms 4th Edition – Robert Sedgewick and Kevin Wayne Problemas y Algoritmos – Luis E. Vargas Azcona Course Algorithms Part I – Coursera, Princeton University