7.2

Wir beweisen per Gegenbeweis und nehmen hierzu an, dass L_1 kontextfrei ist. So lässt sich das Pumping-Lemma anwenden und es gibt eine kontextfreie Grammatik G_1 mit k Variablen und rechter Regelseite der Länge $\leq k$ die L_1 erzeugt. Zerteilt man ein $z \in L(G_1)$, sodass z = uvwxy gilt und setzt man nun die Variablen $u := w := x := y := \epsilon$, so ist keine der Bedingungen des Pumping-Lemmas verletzt und es gilt:

$$z \in L_1 \Rightarrow z \in L(G_1) \iff z = uvwxy = v \iff \exists k \in \mathbb{N} : k \text{ ist prim } \land v = a^k$$
 (1)

Wenden wir nun das Pumping-Lemma an, so muss ebenfalls gelten

$$v^2 \in L(G_1) \iff \exists k' : k' \text{ ist prim } \wedge v^2 = a^{k'}$$
 (2)

Da dieses $k'=k\cdot 2$ sein müsste ist dies keine Primzahl mehr, es gibt also einen Widerspruch

7.3

Wir beweisen per Gegenbeweis und nehmen hierzu an, dass L_2 kontextfrei ist. So lässt sich das Pumping-Lemma anwenden und es gibt eine kontextfreie Grammatik G_2 mit k Variablen und rechter Regelseite der Länge $\leq k$ die L_2 erzeugt. Zerteilt man ein $z \in L(G_2)$, sodass z = uvwxy gilt und setzt man nun die Variablen $u := y := \epsilon$, v := ab, w := a und x := b, so ist keine der Bedingungen des Pumping-Lemmas verletzt und es gilt:

$$v^2wx^2 = abababb \notin L(G_2) \iff v^2wx^2 \notin L_2$$
 (3)

Dies ist ein Widerspruch zum Pumping-Lemma.

7.4