Calculator programmes for CASIO fx-50FH II

Created by Mr. Francis Hung. Last updated: 2 July 2023.

(1) Quadratic formula for
$$ax^2 + bx + c = 0$$
, $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

MODE MODE 6 3 4 AC 4 (CMPLX) 2

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	В	(14)	x^2	(15)	_
(16)	4	(17)	A	(18)	С	(19)	\rightarrow	(20)	D
(21)	4	(22)	((23)	√((24)	D	(25))
(26)	_	(27)	В	(28))	(29)	١	(30)	2
(31)	÷	(32)	A	(33)	\rightarrow	(34)	X	(35)	4
(36)	-	(37)	Ans	(38)	_	(39)	В	(40)	Т
(41)	A	(42)	\rightarrow	(43)	Y	(44)	4	(45)	-
(46)	D	(47)		(48)	4	(49)	÷	(50)	A
(51)	\rightarrow	(52)	M						

Press MODE 1 (COMP) to exit the progamme mode.

Example To solve $2x^2 - 3x + 1 = 0$ and find the minimum of $y = 2x^2 - 3x + 1$

Example 10 301ve 2x 3x 1	o and find the minimum of y	2λ 3λ 1
Key sequences	Display	Explanation
Prog P4	A? 0	Enter into P4 CMPLX mode
2 EXE -3 EXE 1 EXE	$B^2 - 4AC \rightarrow D$ 1. Disp	Discriminant D = 1
EXE	1. _{Disp}	x = 1
EXE	1J2 _{Disp}	$y = \frac{1}{2}$
EXE	-1_18	$Minimum = -\frac{1}{8}$

Press MODE 1 (COMP) to exit the progamme mode.

Example To solve $-x^2 + x - 3 = 0$ and find the maximum of $y = -x^2 + x - 3$

Example 10 301VC $x + x = 3$	o and find the maximum of y	Λ ' Λ J
Key sequences	Display	Explanation
Prog P4	A? 2	Enter into P4 CMPLX mode
-1 EXE 1 EXE -3 EXE	$B^2 - 4AC \rightarrow D$ -11. Disp	Discriminant D = −11
EXE	1 1 2 _{Disp}	
SHIFT EXE	-1.658312395 <i>i</i>	$x = \frac{1}{2} - 1.658312395i$
EXE	0.5 Disp	
SHIFT EXE	1.658312395 <i>i</i>	$y = \frac{1}{2} + 1.658312395i$
EXE	-11_14	$Maximum = -\frac{11}{4}$

Press MODE 1 (COMP) to exit the progamme mode.

- (2) To solve the simultaneous equations : $\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$
- (2.1) Transform the equation into $\begin{cases} x + \frac{b}{a}y = \frac{c}{a} \\ x + \frac{e}{d}y = \frac{f}{d} \end{cases}$
- (2.2) Press the following keys: MODE 5 1 (Lin) SHIFT 9 1 EXE AC

(2.3) Then the solutions are: SHIFT 2.1 \blacktriangleright 1 a EXE solution of x

SHIFT 2.1 \triangleright 2 b EXE solution of *y*

(2.4) Press MODE COMP to return to the normal mode.

Example To solve
$$\begin{cases} x + 2y = 3 \\ 4x + 5y = 6 \end{cases}$$
; first transform it into
$$\begin{cases} x + 2y = 3 \\ x + \frac{5}{4}y = \frac{3}{2} \end{cases}$$
.

Key sequences	Display	Explanation
MODE 5 1	0.	Enter into REG Lin Mode
SHIFT 9 1 EXE AC	0.	Clear the Stat memory
2,3 DT	Line = 1.	
1.25 , 1.5 DT	Line = 2.	
SHIFT 2 1 ▶ ▶ 1 EXE	a -1.	x = -1
SHIFT 2 1 ▶ ▶ 2 EXE	b 2.	y = 2

Press MODE 1 (COMP) to exit the REG Lin mode.

(3) To solve a triangle ABC. ①A.S.A.②A.A.S.③S.S.S.④S.A.S.⑤S.S.A.

MODE MODE 6 3 1 AC 2 2

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?	(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	cos	(14)	_	(43)	1	(16)	\rightarrow	(17)	D	(18)	:	(19)	Lbl	(20)	0
(21)	:	(22)	?	(23)	\rightarrow	(24)	M	(25)	:	(26)	M	(27)	=	(28)	1	(29)	\Rightarrow	(30)	Goto
(31)	1	(32)	:	(33)	If	(34)	M	(35)	=	(36)	2	(37)	:	(38)	Then	(39)	D	(40)	_
(41)	A	(42)	_	(43)	В	(44)	\rightarrow	(45)	X	(46)	<u> </u>	(47)	В	(48)	\rightarrow	(49)	A	(50)	:
(51)	С	(52)	\rightarrow	(53)	В	(54)	:	(55)	X	(56)	\rightarrow	(57)	С	(58)	:	(59)	Goto	(60)	1
(61)	:		IfEnd	(63)	:	(64)	If	(65)	M	(66)	=	(67)	3	(68)	3	(69)	Then	(70)	cos-
(71)	((72)	В	(73)	x^2	(74)	+	(75)	С	(76)	x^2	(77)	_	(78)	A	(79)	x^2	(80))
(81)	÷	(82)	((83)	2	(84)	В	(85)	С	(86)	\rightarrow	(87)	X	(88)	4	(89)	cos-	(90)	(
(91)	С	(92)	_	(93)	В	(94)	cos((95)	X	(96))	(97))	(98)	L	(99)	A	(100)	\rightarrow
(101)	Y	(102)	4	(103)	D	(104)	_	(105)	X	(106)	_	(107)	Y	(108)	1	(109)	Goto	(110)	9
(111)	:	(112)	IfEnd	(113)	:	(114)	If	(115)	M	(116)	=	(117)	4	(118)	:	(119)	Then	(120)	√(
(121)	A	(122)	x^2	(123)	+	(124)	С	(125)	x^2	(126)	_	(127)	2	(128)	A	(129)	С	(130)	cos(
(131)	В	(132)	\rightarrow	(133)	X	(134)	4	(135)	cos-	(136)	((137)	X	(138)	x^2	(139)	+	(140)	С
(141)	x^2	(142)	_	(143)	A	(144)	x^2	(145))	(146)	J	(147)	((148)	2	(149)	С	(150)	X
(151)	\rightarrow	(152)	Y	(153)	1	(154)	D	(155)	_	(156)	В	(157)	_	(158)	Y	(159)	1	(160)	Goto
(161)	9	(162)	:	(163)	IfEnd	(164)	:	(165)	M	(166)	=	(167)	5	(168)	\Rightarrow	(169)	Goto	(170)	3
(171)	:	(172)	Goto	(173)	0	(174)	:	(175)	Lbl	(176)	1	(177)	:	(178)	D	(179)	_	(180)	Α
(181)	_	(182)	С	(183)	\rightarrow	(184)	X	(185)	:	(186)	((187)	M	(188)	_	(189)	1	(190))
(191)	((192)	M	(193)	_	(194)	5	(195))	(196)	((197)	M	(198)	_	(199)	6	(200))
(201)	=	(202)	0	(203)	\Rightarrow	(204)	X	(205)	1	(206)	В	(207)	sin((208)	A	(209))	(210)	J
(211)	sin((212)	X	(213)	1	(214)	В	(215)	sin((216)	С	(217))	(218)	L	(219)	sin((220)	X
(221)	\rightarrow	(222)	Y	(223)	:	(224)	((225)	M	(226)	_	(227)	1	(228))	(229)	((230)	M
(231)	_	(232)	2	(233))	(234)	=	(235)	0	(236)	\Rightarrow	(237)	Y	(238)	4	(239)	If	(240)	M
(241)	=	(242)	6	(243)	:	(244)	Then	(245)	X	(246)	_	(247)	С	(248)	\rightarrow	(249)	A	(250)	4
(251)	Goto	(252)	1	(253)	:	(254)	Else	(255)	Goto	(256)	9	(257)	:	(258)	IfEnd	(259)	:	(260)	Lbl
(261)	3	(262)	:	(263)	В	(264)	≥	(265)	D	(266)	J	(267)	2	(268)	\Rightarrow	(269)	Goto	(270)	4
(271)	:	(272)	Goto	(273)	5	(274)	:	(275)	Lbl	(276)	4	(277)		(278)	If	(279)	A	(280)	S
(281)	В	(282)	:	(283)	Then	(284)	0	(285)	1	(286)	:	(287)	Goto	(288)	9	(289)	••	(290)	Else
(291)	1	(292)	4	(293)	D	(294)	_	(295)	C	(296)	_	(297)	sin-	(298)	В	(299)	sin((300)	С
(301))	(302)		(303)	A	(304)	\rightarrow	(305)	A	(306)	1	(307)	Goto	(308)	0	(309)	:	(310)	Lbl
<mark>(311)</mark>	5	(312)	:	(313)	If	(314)	В	(315)	sin((316)	С	(317))	(318)	>	(319)	A	(320)	:
(321)	Then	(322)	0	(323)	1	(324)	Goto	(325)	9	(326)	:	(327)	Else	(328)	Goto	(329)	6	(330)	:
(331)	IfEnd	(332)	:	(333)	Lbl	(334)	6	(335)	:	(336)	If	(337)	В	(338)	sin((339)	С	(340))
(341)	=	(342)	A	(343)	:	(344)	Then	(345)	1	(346)	4	(347)	cos	(348)	A	(349)	١	(350)	В
(351)	\rightarrow	(352)	A	(353)	1	(354)	Goto	(355)	1	(356)	:	(357)	Else	(358)	Goto	(359)	7	(360)	:
(361)	IfEnd	(362)	:	(363)	Lbl	(364)	7	(365)	:	(366)	A	(367)	\rightarrow	(368)	Y	(369)	:	(370)	D
(371)	_	(372)	С	(373)	_	(374)	sin-	(375)	В	(376)	sin((377)	C	(378))	(379)	L	(380)	A
(381)	\rightarrow	(382)	A	(383)	:	(384)	If	(385)	Y	(386)	≥	(387)	В	(388)	:	(389)	Then	(390)	1
(391)	4	(392)	A	(393)	1	(394)	Goto	(395)	1	(396)	:	(397)	Else	(398)	2	(399)	4	(400)	A
(401)	4	(402)	6	(403)	\rightarrow	(404)	M	(405)	:	(406)	Goto	(407)	1	(408)	:	(409)	IfEnd	(410)	:
(411)	Lbl	(412)	9																

Press MODE 1 (COMP) to exit the progamme mode.

Example 1 To solve ABC. Given $\angle A = 50^{\circ}$, c = AB = 8, $\angle B = 70^{\circ}$. ①A.S.A.

Key sequences	Display	Explanation		
Prog P2	A? 0.	Enter into Proramme P2		
50 EXE 8 EXE 70 EXE	D? 0.	$\angle A = 50^{\circ}, M = 8, \angle B = 70^{\circ}$		
1 EXE	60. _{Disp}	Enter into \bigcirc A.S.A., $\angle C = 60^{\circ}$		
EXE	7.076415447 _{Disp}	X = a = 7.076415447		
EXE	8.680508601 _{Disp}	Y = b = 8.680508601		

Example 2 To solve *ABC*. Given $\angle A = \frac{\pi}{3}$, $\angle B = 0.75$ rad. a = BC = 8. ②A.A.S.

Key sequences	Dis	splay	Explanation		
SHIFT MODE 2	R	0.	Enter into Radian mode		
Prog P2	A ?	0.	Enter into Proramme P2		
π J 3 EXE 0.75 EXE 8 EXE	D?	0.	$\angle A = \frac{\pi}{3}, \angle B = 0.75 \text{ rad.}, X = a = 8$		
2 EXE	1.34439	5102. _{Disp}	Enter into ②A.A.S., $\angle C = 1.344395102$ rad.		
EXE	6.296709145 Disp		Y = b = 6.296709145		
EXE	9.00186	55524 _{Disp}	M = c = 9.001865524		

Press SHIFT MODE 1 to return to degree MODE.

Example 3 To solve ABC. Given a = 3, b = 5, c = 7. ③S.S.S.

Key sequences	Display	Explanation	
Prog P2	$A^? 0.$	Enter into Proramme P2	
3 EXE 5 EXE 7 EXE	D? 0.	A = 3, B = 5, C = 7	
3 EXE	21.7867893 _{Disp}	Enter into $\Im S.S.S., X = \angle A = 21.7867893^{\circ}$	
EXE	38.2132107 Disp	$Y = \angle B = 38.2132107^{\circ}$	
EXE	120. _{Disp}	$M = \angle C = 120^{\circ}$	

Example 4 To solve *ABC*. Given a = 3, $\angle C = 120^{\circ}$, b = 5. \triangle S.A.S.

Key sequences	Display	Explanation	
Prog P2	A? 0.	Enter into Proramme P2	
3 EXE 120 EXE 5 EXE	D? 0.	$A = b = 3, B = a = 3, M = \angle C = 120^{\circ}$	
4 EXE	7. _{Disp}	Enter into \oplus S.A.S., $M = c = 7$	
EXE	21.7867893 Disp	$X = \angle A = 21.7867893^{\circ}$	
EXE	38.2132107 Disp	$Y = \angle B = 38.2132107^{\circ}$	

Example 5 To solve *ABC*. Given b = 4, c = 2, $\angle B = 30^{\circ}$. \$S.S.A.

Key sequences	Display	Explanation		
Prog P2	$A^? 0.$	Enter into Proramme P2		
4 EXE 2 EXE 30 EXE	$\mathbf{D}^{?}$ 0.	$Y = b = 4, M = c = 2, \angle B = 30^{\circ}$		
5 EXE	1. Disp	Enter into SS.S.A., One traingle can be formed		
EXE	A 135.5224878 _{Disp}	∠ <i>A</i> = 135.5224878°		
EXE	C 14.47751219 _{Disp}	∠ <i>C</i> = 14.47751219°		
EXE	5.605034154 Disp	X = a = 5.605034154		

Example 6 To solve *ABC*. Given b = 1, c = 4, $\angle B = 60^{\circ}$. \$S.S.A.

Key sequences	Dis	play	Explanation
Prog P2	A ?	0.	Enter into Proramme P2
1 EXE 4 EXE 60 EXE	D?	0.	$Y = b = 1, M = c = 4, \angle B = 60^{\circ}$
5 EXE	0.	Disp	Enter into SS.S.A., No traingle can be formed

Example 7 To solve *ABC*. Given b = 3, c = 4, $\angle B = 30^{\circ}$. \$S.S.A.

Key sequences	Display	Explanation		
Prog P2	$A^{?}$ 0.	Enter into Proramme P2		
3 EXE 4 EXE 30 EXE	D? 0.	$Y = b = 3, M = c = 4, \angle B = 30^{\circ}$		
5 EXE	2. _{Disp}	Enter into SS.S.A., Two traingles can be formed		
EXE	A 108.1896851 Disp	∠ <i>A</i> = 108.1896851°		
EXE	C 41.8103149 _{Disp}	∠ <i>C</i> = 41.8103149°		
EXE	5.700169593 _{Disp}	X = a = 5.700169593		
EXE	A 11.8103149 Disp	Second answer $\angle A = 11.8103149^{\circ}$		
EXE	C 138.1896851 _{Disp}	Second answer $\angle C = 138.1896821^{\circ}$		
EXE	X 1.228033638 _{Disp}	Second answer $X = a = 1.228033638$		

(4) Find the centre, radius of a circle $x^2 + y^2 + Dx + Ey + F = 0$; and the length of tangent from (x_0, y_0) .

MODE MODE 6 3 2 AC 2 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	D	(12)	:	(13)	-	(14)	A	(15)	J
(16)	2	(17)	\rightarrow	(18)	С	(19)	4	(20)	-
(21)	В	(22)	Д	(23)	2	(24)	4	(25)	(
(26)	Ans	(27)	x^2	(28)	+	(29)	С	(30)	x^2
(31)	_	(32)	D	(33))	(34)	\rightarrow	(35)	M
(36)	4	(37)	?	(38)	\rightarrow	(39)	X	(40)	:
(41)	?	(42)	\rightarrow	(43)	Y	(44)	:	(45)	(
(46)	X	(47)	x^2	(48)	+	(49)	Y	(50)	x^2
(51)	+	(52)	A	(53)	X	(54)	+	(55)	В
(56)	Y	(57)	+	(58)	D	(59))		

Press MODE 1 (COMP) to exit the progamme mode.

Example Find the centre, radius of $x^2 + y^2 + 10x - 8y + 5 = 0$; and the length of tangent from (3, -2)

		8 8 (-) /		
Key sequences	Display	Explanation		
Prog P2	A? 0.	Enter into Proramme P2		
10 EXE -8 EXE 5 EXE	-5. Disp	D = 10, E = -8, F = 5		
EXE	4. _{Disp}	Centre = $(-5, 4)$		
EXE	6. _{Disp}	Radius = 6		
EXE	$X^{?}$ 0.			
3 EXE -2 EXE	8.	Length of tangent = 8		

Example Find the centre, radius of $4x^2 + 4y^2 - 12x + 16y + 21 = 0$; and the length of tangent from (2, -2). Convert the equation of circle into: $x^2 + y^2 - 3x + 4y + \frac{21}{4} = 0$ first.

Key sequences	Display	Explanation		
Prog P2	$A^{?} 0.$	Enter into Proramme P2		
-3 EXE 4 EXE $\frac{21}{4}$ EXE	3_12 Disp	$D = -3$, $E = 4$, $F = \frac{21}{4}$		
EXE	-2. _{Disp}	Centre = $\left(\frac{3}{2}, -2\right)$		
EXE	1. _{Disp}	Radius = 1		
EXE	$X^{?}$ 0.			
2 EXE -2 EXE	Math ERROR	(2, -2) lies inside the circle Length of tangent does not exist		

(5) Polynomial division $(ax^4 + bx^3 + cx^2 + dx + e) \div (fx + g)$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	?
(26)	\rightarrow	(27)	Y	(28)	:	(29)	-	(30)	Y
(31)	ل	(32)	X	(33)	\rightarrow	(34)	Y	(35)	:
(36)	A	(37)	١	(38)	X	(39)	4	(40)	Ans
(41)	Y	(42)	+	(43)	В	(44)	L	(45)	X
(46)	4	(47)	Ans	(48)	Y	(49)	+	(50)	C
(51)	ل	(52)	X	(53)	4	(54)	Ans	(55)	Y
(56)	+	(57)	D	(58)	١	(59)	X	(60)	4
(61)	Ans	(62)	X	(63)	Y	(64)	+	(65)	M

Press MODE 1 (COMP) to exit the progamme mode.

Remark: If the polynomial is of degree = 3, a = 0.

Example $(4x^4 + 8x^2 + 2x - 1) \div (2x - 1)$

Example $(1x + 0x + 2x + 1) \cdot (1$				
Key sequences	Display	Explanation		
Prog P4	$A^{?}$ 0.	Enter into Proramme P4		
4 EXE 0 EXE 8 EXE 2 EXE -1 EXE 2 EXE -1 EXE	2. Disp	A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 2, Y = g = -1		
EXE	1. Disp			
EXE	9_2 _{Disp}			
EXE	13_4 _{Disp}	Quotient = $2x^3 + 1x^2 + \frac{9}{2}x + \frac{13}{4}$		
EXE	9_4	Remainder = $\frac{9}{4}$		

(6) Polynomial division $(ax^4 + bx^3 + cx^2 + dx + e) \div (x^2 + fx + g)$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	?
(26)	\rightarrow	(27)	Y	(28)	:	(29)	-	(30)	X
(31)	\rightarrow	(32)	X	(33)	:	(34)	ı	(35)	Y
(36)	\rightarrow	(37)	Y	(38)	:	(39)	A	(40)	4
(41)	В	(42)	+	(43)	A	(44)	X	(45)	\rightarrow
(46)	В	(47)	4	(48)	C	(49)	+	(50)	X
(51)	Ans	(52)	+	(53)	A	(54)	Y	(55)	\rightarrow
(56)	С	(57)	4	(58)	D	(59)	+	(60)	X
(61)	Ans	(62)	+	(63)	В	(64)	Y	(65)	4
(66)	M	(67)	+	(68)	С	(69)	Y		

Press MODE 1 (COMP) to exit the programme mode. **Remark:** If the degree of dividend = 3, a = 0. **Example** $(4x^4 + 8x^2 + 2x - 1) \div (x^2 + 3x - 2)$

Key sequences	Display	Explanation		
Prog P4	$A^? 0.$	Enter into Proramme P4		
4 EXE 0 EXE 8 EXE 2 EXE -1 EXE 3 EXE -2 EXE	4. Disp	A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 3, Y = g = -2		
EXE	-12. _{Disp}			
EXE	52 Disp	$Quotient = 4x^2 - 12x + 52$		
EXE	-178 _{Disp}			
EXE	103	Remainder = $-178x + 103$		

If the divisor is $px^2 + fx + g$, where $p \ne 0$, change it into $x^2 + \frac{f}{p}x + \frac{g}{p}$ and divide the quotient by p.

Example $(4x^4 + 7x^3 - 16x^2 - 2x + 7) \div (2x^2 + x - 1)$. First change into $x^2 + \frac{1}{2}x - \frac{1}{2}$.

Key sequences	Display	y	Explanation		
Prog P4	$\mathbf{A}^{?}$	0.	Enter into Proramme P4		
4 EXE 0 EXE 8 EXE 2 EXE -1	4. _{Disp}		A = 4, B = 0, C = 8, D = 2, M = -1, X = f = 0.5, Y = g = -0.5		
EXE 0.5 EXE -0.5 EXE	2		NI = -1, X = J = 0.3, Y = g = -0.3		
EXE	-2. Disp)			
EXE	11 Disp		$Quotient = \frac{1}{2} \left(4x^2 - 2x + 11 \right)$		
EXE	-4.5 _{Dis}	p			
EXE	4.5		Remainder = $-4.5x + 4.5$		

(7) Newton's Method to find the approximate root $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ Polynomials up to degree 4

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	M	(20)	:
(21)	?	(22)	\rightarrow	(23)	X	(24)	:	(25)	Lbl
(26)	1	(27)	:	(28)	((29)	3	(30)	A
(31)	X	(32)	^((33)	4	(34))	(35)	+
(36)	2	(37)	В	(38)	X	(39)	x^3	(40)	+
(41)	С	(42)	X	(43)	x^2	(44)	_	(45)	M
(46))	(47)	ل	(48)	((49)	4	(50)	A
(51)	X	(52)	x^3	(53)	+	(54)	3	(55)	В
(56)	X	(57)	x^2	(58)	+	(59)	2	(60)	С
(61)	X	(62)	+	(63)	D	(64))	(65)	\rightarrow
(66)	Y	(67)	4	(68)	If	(69)	Abs((70)	Y
(71)		(72)	X	(73))	(74)	≥	(75)	1
(76)	EXP	(77)		(78)	1	(79)	0	(80)	:
(81)	Then	(82)	Y	(83)	\rightarrow	(84)	X	(85)	:
(86)	Goto	(87)	1	(88)	:	(89)	IfEnd		

Press MODE 1 (COMP) to exit the progamme mode.

Example To find the approximate root of $f(x) = x^4 + 6x^3 + 3x^2 - 26x - 24 = 0$, inital guess = 1.5

	1(00)				
Key sequences	Disp	olay	Explanation		
Prog P4	$\mathbf{A}^{?}$	0.	Enter into Proramme P4		
1 EXE 6 EXE 3 EXE -26 EXE -24 EXE	X?	0.	A = 1, B = 6, C = 3, D = -26, M = -24		
1.5 EXE	2.336148	3649 _{Disp}	1st approximation = 2.336148649		
EXE	2.059893	3868 _{Disp}	2nd approximation = 2.059893868		
EXE	2.002375	5203 _{Disp}	3rd approximation = 2.002375203		
EXE	2.00000	394 _{Disp}	4th approximation = 2.00000394		

(8) To evaluate a 3×3 determinant: $\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$.

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	X	(20)	:
(21)	?	(22)	\rightarrow	(23)	Y	(24)	:	(25)	?
(26)	\rightarrow	(27)	M	(28)	:	(29)	В	(30)	Y
(31)	M	(32)	_	(33)	M	(34)	X	(35)	C
(36)	:	(37)	?	(38)	\rightarrow	(39)	M	(40)	:
(41)	Ans	(42)	+	(43)	D	(44)	M	(45)	С
(46)	-	(47)	M	(48)	Y	(49)	A	(50)	:
(51)	?	(52)	\rightarrow	(53)	M	(54)	:	(55)	Ans
(56)	+	(57)	A	(58)	X	(59)	M	(60)	-
(61)	M	(62)	D	(63)	В				

Press MODE 1 (COMP) to exit the progamme mode.

Example To evaluate $\begin{vmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 1 & 2 & 1 \end{vmatrix}$.

Key sequences	Dis	play	Explanation
Prog P4	$\mathbf{A}^{?}$	0.	Enter into Proramme P4
1 EXE 2 EXE 3 EXE 0 EXE 1 EXE 4 EXE 1 EXE 2 EXE 1 EXE	-:	2.	The value of determinant = -2

(9) To find the vector cross product $(a\vec{i} + b\vec{j} + c\vec{k}) \times (d\vec{i} + e\vec{j} + f\vec{k})$

MODE MODE 6 3 4 AC 4 1

(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	С	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	?	(18)	\rightarrow	(19)	X	(20)	:
(21)	?	(22)	\rightarrow	(23)	Y	(24)	:	(25)	В
(26)	Y	(27)	_	(28)	С	(29)	X	(30)	4
(31)	С	(32)	D	(33)		(34)	A	(35)	Y
(36)		(37)	A	(38)	X	(39)	_	(40)	В
(41)	D								

Press MODE 1 (COMP) to exit the progamme mode.

Example To find $(3\vec{i}-4\vec{j}) \times (-\frac{3}{4}\vec{i}+5\vec{j}+\vec{k})$

Key sequences	Display	Explanation		
Prog P4	A? 0.	Enter into Proramme P4		
3 EXE -4 EXE 0 EXE -0.75 EXE 5 EXE 1 EXE	-4. Disp	coefficient of $\vec{i} = -4$		
EXE	-3. Disp	coefficient of $\vec{j} = -3$		
EXE	12.	coefficient of $\vec{k} = 12$		

answer is $-4\vec{i} - 3\vec{j} + 12\vec{k}$

(10) To solve $f(x) = ax^3 + bx^2 + cx + d = 0$, where $a \ne 0$ and a, b, c, d may be complex numbers.

Calculator Programme for Casio fx-50FH II MODE MODE 6 3 3 AC 3 (CMPLX) 2

									,
(1)	?	(2)	\rightarrow	(3)	A	(4)	:	(5)	?
(6)	\rightarrow	(7)	В	(8)	:	(9)	?	(10)	\rightarrow
(11)	C	(12)	:	(13)	?	(14)	\rightarrow	(15)	D
(16)	:	(17)	В	(18)	x^3	(19)		(20)	9
(21)	L	(22)	2	(23)	A	(24)	((25)	В
(26)	C	(27)		(28)	3	(29)	D	(30)	A
(31)	\rightarrow	(32)	D	(33)	:	(34)	В	(35)	x^2
(36)	_	(37)	3	(38)	A	(39)	С	(40)	\rightarrow
(41)	C	(42)	:	(43)	$\sqrt{}$	(44)	D	(45)	x^2
(46)		(47)	С	(48)	x^3	(49)	:	(50)	Ans
(51)		(52)	D	(53)		(54)	2	(55)	Ans
(56)	((57)	Ans	(58)	=	(59)	D	(60)	\rightarrow
(61)	D	(62)	:	(63)	∛((64)	Abs((65)	Ans
(66)	\Rightarrow	(67)	Ans	(68)	_	(69)	((70)	3
(71)	x^{-1}	(72)	arg((73)	D	(74)	\rightarrow	(75)	D
(76)	:	(77)	While	(78)	1	(79)	:	(80)	Abs(
(81)	D	(82)	\Rightarrow	(83)	D	(84)	+	(85)	C
(86)	L	(87)	D	(88)	:	(89)	((90)	Ans
(91)		(92)	В	(93))	(94)	J	(95)	(
(96)	3	(97)	A	(98)	4	(99)	D	(100)	×
(101)	1	(102)		(103)	5	(104)	!	(105)	0
(106)	\rightarrow	(107)	D	(108)	:	(109)	WhileEnd		

Press MODE 1 (COMP) to exit the progamme mode.

Remark: to press the degree symbol °: Press Shift Ans 1.

Programme demonstration To solve $x^3 - 6x - 9 = 0$

Key sequences	Display	Explanation						
AC Prog P3	A? 0.	Enter into P3 CMPLX mode						
1 EXE 0 EXE -6 EXE -9 EXE	3. Disp	A = 1, B = 0, C = -6, D = -9, 1st ans. = 3						
EXE	-1.5 _{Disp} R⇔I							
SHIFT EXE	0.866025403 _{i Disp} ^{R⇔I}	2nd answer = $-1.5 + 0.866025403i$						
EXE	-1.5 _{Disp} R⇔I							
SHIFT EXE	-0.866025403 _{i Disp} R⇔I	3rd answer $M = -1.5 - 0.866025403i$						

Press AC and then MODE 1 to exit the programme mode and the CMPLX mode.

To solve $x^2 + 2x + 3 = 0$. Multiply the equation by X to give $x^3 + 2x^2 + 3x = 0$.

Remaining steps are the same, discard the first answer X = 0. Press MODE 1 to exit CMPLX mode.