Pre-Calculus Individual 2019

Benjamin Franklin Tournament

1. Given
$$f(x) = 3x^2 - 15x + 3$$
 and $g(x) = x^2 + 20$, find $g(f(2))$.

- 2. Given $\frac{x^2-x-2}{x-2}$, find \underline{all} asymptotes (vertical, horizontal, oblique).
- 3. Given $\log_3 \frac{9^x}{243^y} = 1$ and $\log_2 \frac{32^y}{16^x} = 7$. Find 2x + y + 10.
- 4. $f(x) = \frac{3x^2 + 7x 8}{\sqrt{x^3 + 6x 11}}$. Find f(2).
- 5. Find the center and radius: $x^2 + y^2 6x 6y + 38 = 64$.
- 6. Given $\tan(\theta) = \frac{20}{21}$, $\frac{x}{29} = \cos(\theta)$, $\frac{y}{29} = \sin(\theta)$, and that x and y are both positive integers, what is 2x + 4y?
- 7. Jonathan the Cat runs a business selling packs of catnip for \$0.50, packs of nutritional yeast for \$0.25 to neighborhood cats. He sells 14 packs total and makes \$4.50. How many packs of nutrional yeast did he sell?
- 8. $f(x) = 4x^2 + 2x + 1$, g(x) = 5x. Find f(3) g(4) + f(g(1)).
- 9. Given the following triangle, what is 2a 8?

Note: Figure not drawn to scale.

10. Solve for
$$[0 \le \theta < 360]$$
.

$$\tan^2 \theta - 1 = -2 \tan^2 \theta$$

- 11. Find the average rate of change of $g(x) = x^2$ over the interval [-6,3].
- 12. Simplify: $\cos(-4\theta)\cos(-2\theta) \sin(-4\theta)\sin(-2\theta)$
- 13. Divide $\frac{4x^2-19}{x+2}$. Write your answer in fraction form.
- 14. In an experiment, the probability that event A occurs is 3/8 and the probability that event B occurs is 5/7. If A and B are independent events, what is the probability that A and B both occur?
- 15. Bruce throws a basketball launched at a velocity of $20~\mathrm{m/s}$ in a direction making an angle of 60° upward with the horizontal. What is the maximum height reached by the basketball? (It follows parabolic trajectory). The equation for a projectile is

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$
, $a = -10$, $v = at$

Answers

- 1. 245
- 2. no asymptotes
- 3. $\frac{1}{5}$
- 4. 6
- 5. center: (3,3) radius: $2\sqrt{11}$
- 6. 122
- 7. 10
- 8. 134
- 9. -2
- 10. $\theta = \frac{\pi}{6}, \frac{7\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$
- 11. -3
- 12. $\cos 6\theta$
- 13. $4x 8 \frac{3}{x+2}$
- 14. $\frac{15}{56}$
- 15. 15 meters