Forza elastica

- Forza che origina dalla deformazione dei corpi. Molti corpi si comportano in modo *elastico* per piccole deformazioni rispetto all'equilibrio.
- E' una forza variabile, il cui modulo è proporzionale allo spostamento rispetto alla posizione a riposo
- Legge di Hooke: F(x) = -kx x è l'allungamento o compressione della molla rispetto alla lunghezza di equilibrio, k è detta costante della molla e si misura in N/m.

Moto armonico

Se tendiamo o comprimiamo una molla con una massa a un estremo e poi la lasciamo andare, la massa oscillerà avanti e indietro (trascuriamo gli attriti). Questa oscillazione è chiamata *moto armonico (semplice)*.

Ad ogni istante, lungo x: F=ma ma F=-kx da cui

$$ma = m\frac{d^2x}{dt^2} = -kx$$

(a) x = 0(b) $\overrightarrow{F}_s = 0$ (c) x = 0

ovvero

$$\frac{d^2x(t)}{dt^2} = -\frac{k}{m}x(t) = -\omega^2x(t)$$

dove si è introdotto $\omega^2 = \frac{k}{m}$, ovvero $\omega = \sqrt{\frac{k}{m}}$ (frequenza angolare).

Dinamica del moto armonico

La soluzione generale dell'equazione del moto armonico, $\frac{d^2x(t)}{dt^2}=-\omega^2x(t)$, è

$$x(t) = A\cos(\omega t + \phi)$$
 da cui

$$v(t) = \frac{dx(t)}{dt} = -A\omega\sin(\omega t + \phi),$$

$$a(t) = \frac{d^2x(t)}{dt^2} = -A\omega^2\cos(\omega t + \phi) = -\omega^2x(t)$$

Periodo dell'oscillazione: $T=2\pi/\omega$

Frequenza dell'oscillazione: $f = \omega/2\pi$.

Ampiezza massima dell'oscillazione: $|x_{max}| = A$. Velocità massima:

 $|v_{max}| = \omega A$. Accelerazione massima: $|a_{max}| = \omega^2 A = \omega^2 |x_{max}|$.

La fase ϕ e l'ampiezza A sono determinate dalle *condizioni iniziali*.

Da notare che ω non dipende dall'ampiezza delle oscillazioni!

Moto armonico sotto forza costante

Cosa succede in presenza di forza elastica e di una forza costante?

Esempio: molla verticale con massa attaccata, in posizione $y_1(t)$.

La condizione di equilibrio ci dà $-ky_0 - P = 0$ (P = mg è la forza peso) ovvero la massa scende a quota $y_0 = -P/k$. L'equazione del moto:

$$m\frac{d^2y_1(t)}{dt^2} = -ky_1(t) - P$$

con un cambio di variabile $y_1=y_2-y_0$ ritorna identica a quella del moto armonico semplice. Il centro delle oscillazioni è solo traslato di -P/k. Vale per ogni forza costante.

Forze in sistemi di riferimento non inerziali

Se il sistema di riferimento \mathcal{SM} (non inerziale) è in moto rettilineo, con accelerazione \vec{a}_t , rispetto al sistema di riferimento (inerziale) \mathcal{SL} :

$$\vec{a} = \vec{a}' + \vec{a}_t$$

Se il moto relativo è di rotazione con velocità angolare $\vec{\omega}$:

$$\vec{a} = \vec{a}' - \omega^2 \vec{r}_\perp + 2\vec{\omega} \times \vec{v}'$$

Nel sistema inerziale, vale la legge di Newton $m\vec{a}=\vec{F}$. Nel sistema non inerziale, come si applica la legge di Newton?

Forze apparenti

Nel sistema \mathcal{SM} possiamo scrivere: $m\vec{a}' = \vec{F} - \vec{F}_t' + \vec{F}_c'$, dove \vec{F}_t' e \vec{F}_c' sono forze apparenti. In particolare,

- ullet per moto relativo rettilineo , $\vec{F}_t'=m\vec{a}_t$, dove \vec{a}_t è l'accelerazione di \mathcal{SM} rispetto a \mathcal{SL}
- Per moto relativo rotatorio, $\vec{F}_t' = \omega^2 \vec{r}_\perp$ è nota come forza centrifuga, $\vec{F}_c' = -2\vec{\omega} \times \vec{v}'$ è nota come forza di Coriolis

Anche in un sistema non inerziale vale la legge di Newton, ma oltre alle forze "fisiche", derivanti da interazioni fra particelle (qui indicate da \vec{F}) si debbono considerare forze "apparenti" (qui indicate da \vec{F}_t' e \vec{F}_c') che derivano dalla non-inerzialità del sistema di riferimento.