Лабораторная работа 2

Математическое моделирование

Якушевич Артём Юрьевич

Содержание

1	Целі	ь работ	ы	5	
2	Зада	ание		6	
	2.1	1. Запі	ись уравнения, описывающего движение катера, с начальными усло-		
		виями	для двух случаев	6	
	2.2	2. Пос	троение траектории движения катера и лодки для двух случаев	6	
	2.3	3. Нахождение точки пересечения траектории катера и лодки			
3	Выполнение лабораторной работы				
		3.0.1	Рассуждения и вывод дифференциальных уравнений	7	
		3.0.2	1. Принимаем за $t_0=0, x_0=0$ - место нахождения лодки брако-		
			ньеров в момент обнаружения, $x_0=k$ - место нахождения катера		
			береговой охраны относительно лодки браконьеров в момент об-		
			наружения лодки	7	
		3.0.3	2. Введем полярные координаты. Считаем, что полюс - это точка		
			обнаружения лодки браконьеров $x_0(\theta=x_0=0)$, а полярная		
			ось r проходит через точку нахождения катера береговой охраны		
			(рис. 3.1)	7	
		3.0.4	3. Траектория катера должна быть такой, чтобы и катер, и лодка		
			все время были на одном расстоянии от полюса $ heta$, только в этом		
			случае траектория катера	8	
	3.1	Постр	рение траектории движения катера и лодки для двух случаев и точки	Ū	
		пересечения			
				9	
4	Выв	олы		12	

List of Tables

List of Figures

3.1	Положение катера и лодки в начальный момент времени	7
3.2	Разложение скорости катера	ç
3.3	Константа	10
3.4	Движение катера охранников	10
3.5	Первый случая	10
3.6	Второй случая	10
3.7	Движение лодки браконьеров и полярные коорлинаты	11
3.8	График для первого случая	11
3.9	График для второго случая	11

1 Цель работы

Рассмотреть один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска.

2 Задание

- 2.1 1. Запись уравнения, описывающего движение катера, с начальными условиями для двух случаев
- 2.2 2. Построение траектории движения катера и лодки для двух случаев
- 2.3 3. Нахождение точки пересечения траектории катера и лодки

3 Выполнение лабораторной работы

- 3.0.1 Рассуждения и вывод дифференциальных уравнений
- 3.0.2 1. Принимаем за $t_0=0, x_0=0$ место нахождения лодки браконьеров в момент обнаружения, $x_0=k$ место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки.
- 3.0.3 2. Введем полярные координаты. Считаем, что полюс это точка обнаружения лодки браконьеров $x_0(\theta=x_0=0)$, а полярная ось г проходит через точку нахождения катера береговой охраны (рис. 3.1)

Figure 3.1: Положение катера и лодки в начальный момент времени

3.0.4 3. Траектория катера должна быть такой, чтобы и катер, и лодка все время были на одном расстоянии от полюса θ , только в этом случае траектория катера

пересечется с траекторией лодки. Поэтому для начала катер береговой охраны должен двигаться некоторое время прямолинейно, пока не окажется на том же расстоянии от полюса, что и лодка браконьеров. После этого катер береговой охраны должен двигаться вокруг полюса удаляясь от него с той же скоростью, что и лодка браконьеров. ### 4. Чтобы найти расстояние х (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии х от полюса. За это время лодка пройдет х, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как $\frac{x}{v}$ или $\frac{k-x}{2v}$ (во втором случае $\frac{x+k}{2v}$). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние х можно найти из следующего уравнения: $\frac{x}{v}=\frac{k-x}{2v}$ в первом случае или $\frac{x}{v}=\frac{k+x}{2v}$ во втором. Отсюда мы найдем два значения $x_1=rac{k}{3}$ и $x_2=k$, задачу будем решать для двух случаев. ### 5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и $v_ au$ - тангенциальная скорость. (рис. 3.2)

Figure 3.2: Разложение скорости катера

Радиальная скорость - это скорость, с которой катер удаляется от полюса, $v_r = \frac{\mathrm{d} r}{\mathrm{d} t}.$ Нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем $\frac{\mathrm{d}r}{\mathrm{d}t}=v$. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости $rac{{
m d} heta}{{
m d} t}$ на радиус r, $v_ au=rrac{{
m d} heta}{{
m d} t}$. Из рисунка видно: Она равна произведению угловои скорости $_{
m dt}$ по расти, $_{
m dt}$, $_{
m dt}$ (учитывая, что радиальная скорость равна v). Тогда получаем $r_{
m dt}^{
m d\theta}=\sqrt{3}v$. ### 6. Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений $\begin{cases} \frac{\mathrm{d}r}{\mathrm{d}t}=v\\ r\frac{\mathrm{d}\theta}{\mathrm{d}t}=\sqrt{3}v \end{cases}$ с начальными условиями $\begin{cases} \theta_0=0\\ r_0=x_1 \end{cases}$

 $egin{dcases} heta_0 = -\pi \ r_0 = x_2 \end{cases}$. Исключая из полученной системы производную по t, можно перейти к

следующему уравнению: $\frac{\mathrm{d}r}{\mathrm{d}\theta}=\frac{r}{\sqrt{3}}$ Начальные условия остаются прежними. Решив это уравнение, вы получите траекторию движения катера в полярных координатах.

3.1 Построение траектории движения катера и лодки для двух случаев и точки пересечения

Задам расстояние своего варинта k=17.4 и константу $fi=rac{3\pi}{4}.$ (рис. 3.3)

Figure 3.3: Константа

Следующие строки описывают движение катера охранников. (рис. 3.4)

Figure 3.4: Движение катера охранников

Для первого случая зададим r0 и решим дифференциальное уравнение. (рис. 3.5)

Figure 3.5: Первый случая

Для второго момента зададим r0_2 и решим дифференциальное уравнение.(рис. 3.6)

Figure 3.6: Второй случая

Следующие строки описывают движение лодки браконьеров и перевод декартовые координаты в полярные. (рис. 3.7)

Движение лодки браконьеров

```
In [13]: def f2(t):
    xt=math.tan(fi)*t
    return xt

In [14]: t = np.arange(0, 20, 1)

In [20]: r2 = np.sqrt(t*t + f2(t)*f2(t))

In [21]: tetha2 = (np.tan(f2(t)/t))**-1
```

Figure 3.7: Движение лодки браконьеров и полярные коорлинаты

Далее строим график. Движение охраны и браконьеров для первого случая. (рис. 3.8)

Figure 3.8: График для первого случая

А этот - движение охраны и браконьеров для второго случая. (рис. 3.9)

Движение катера охраны со второй скоростью

Figure 3.9: График для второго случая

4 Выводы

Я научился решать задачу о погоне на примере построения математической модели на языке Python а также взаимодействовать с проэктом Jupyter.