1 Matrizen

symmetrisch
$$A^T = A$$
, $AB = BA$, quadratisch

schiefsymmetrisch
$$A^T = -A$$

hermitesch
$$A^H = A$$
, quadratisch

unitär
$$A^H A = I_n$$
 also $A^{-1} = A^H$, Zeilen- und Spaltenvektoren orthonormal

orthogonal
$$A^T A = I_n \text{ also } A^{-1} = A^T$$

1.1 Regulär

Sei $A^{m\times n}$ mit m Gleichungen und n Unbekannten $\mathbf{regul\"{a}r}$ mit Rang r:

- \bullet A ist quadratisch
- \bullet r=n
- A ist invertierbar
- ullet Die Zeilen- und Kolonnenvektoren sind linear unabhängig und erzeugen \mathbb{E}^m bzw. \mathbb{E}^n
- 0 ist kein Eigenwert
- $det(A) \neq 0$
- $\ker A = \{0\}$
- \bullet Die lineare Abbildung A ist bijektiv
- für jedes b in Ax = b gibt es genau eine Lösung
- die Kolonnen bilden eine Basis

1.2 Inverse

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$B = \operatorname{diag}(2, 3, 4, 5) \Rightarrow B^{-1} = \operatorname{diag}(1/2, 1/3, 1/4, 1/5)$$

1.3 Permutation

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 3 & 3 \\ 1 & 1 & 1 \end{pmatrix}$$

1.4 Operationen

 $A \cdot B = C$ ist definiert, falls A gleichviele Kolonnen hat wie B Zeilen. C hat dann gleichviele Zeilen wie A und gleichviele Kolonnen wie B.

$$(\alpha A)B = \alpha (AB) = A(\alpha)B$$
$$(\alpha + \beta)A = \alpha A + \beta A$$
$$(A + B)C = AC + BC$$
$$(\alpha A)^{T} = \alpha A^{T}$$
$$(A + B)^{T} = A^{T} + B^{T}$$
$$(AB)^{T} = B^{T}A^{T}$$

2 LR-Zerlegung

Grundsatz:
$$Ax = b$$
, $PA = LR \Rightarrow Lc = Pb$, $Rx = c$

wobei R A nach Gauss aufgelöst ist, und L die Inverse der Zeilensubtraktionen hält

Pivotierung: Nullen oder relativ kleine Zahlen können als Pivot nicht gebraucht werden. Man benutzt normalerweise die **Kolonennmaximumstrategie** (wählt immer das betragsmässig grösste Element in der Spalte aus).

3 Vektorräume

3.1 Vektor

 $\begin{array}{ll} \textbf{L\"{a}nge, 2-Norm} & \quad ||x|| :\equiv \sqrt{\langle x,x\rangle} \\ \textbf{Winkel} & \quad \varphi = \arccos(\frac{\langle x,y\rangle}{||x|| ||y||} \end{array}$

3.2 Orthonormalbasen

Unterraum von span S mit $S = a_1, ..., a_2$ aufgespannt bzw. die Menge aller

Linearkombinationen von S

 $\mathbf{Erzeugendensystem}$ die Menge S

Basis linear unabhängiges Erzeugendensystem

Dimension die Anzahl Basisvektoren

3.3 Skalarprodukt

linear $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$

 $\langle x, \alpha y \rangle = \alpha \langle x, y \rangle$

symmetrisch $\langle x, y \rangle = \langle y, x \rangle$ positiv definit $\langle x, x \rangle \geq 0$

 $\langle x, x \rangle = 0 \Rightarrow x = 0$

3.4 Norm

positiv definit $||x|| \ge 0$

 $||x|| = 0 \Rightarrow x = 0$

Homogenität $||\alpha x|| = |\alpha|||x||$

Dreiecksungleichung $||x+y|| \le ||x|| + ||y||$

3.5 Orthogonaliserungsverfahren

$$\begin{split} b_1 &= \frac{a_1}{||a_1||} \\ \tilde{b}_2 &= a_2 - \langle b_1, a_2 \rangle b_1 \\ b_2 &= \frac{\tilde{b}_2}{||\tilde{b}_2||} \\ \tilde{b}_3 &= a_3 - \langle b_1, a_3 \rangle b_1 - \langle b_2, a_3 \rangle b_2 \\ b_3 &= \frac{\tilde{b}_3}{||\tilde{b}_2||} \end{split}$$

4 Lineare Abbilungen

Sei $F: X \mapsto Y$ mit dim X = n und dim Y = m heisst **linear**, falls:

$$F(x + \tilde{x}) = Fx + F\tilde{x}, \ F(\gamma x) = \gamma(Fx)$$

Matrixdarstellung A, so dass F(x) = Ax

Kern $\{x \in X; Fx = 0\}$, alle Vektoren in X, die auf 0 zeigen **Bild** alle Vektoren in Y, die von X mit F erreicht werden

Rang $F :\equiv \dim \operatorname{im} F$

Dimension des Kolonnenraums Dimension des Zeilenraums

Kolonnenraum im $A = \mathcal{R}(A)$, der von den Kolonnen von F aufgespannte Unter-

raum

Nullraum $\ker A = \mathcal{N}(A)$

Aus der **Dimensionsformel** dim X – dim ker F = Rang F folgt, falls F:

injektiv keine Kollisionen

Kolonnenvektoren linear unabhängig

Rang $F = \dim X$ ker $F = \{0\}$

 $\mathbf{surjektiv}$ es wird jedes Element in Y erreicht

Rang $F = \dim Y$

bijektiv, d.h. Isomorphismus Rang $F = \dim X = \dim Y$

bijektiv, d.h. Automorphismus Rang $F = \dim X$

 $\ker F = 0$

4.1 Bestimmung der Basis für Kern/Bild

1. Gauss anwenden

2. Basis des Bildes

(a) Alle linear unabhängigen Kolonnenvektoren (alle mit Pivot)

3. Basis des **Kerns**

(a) Setze Fx = 0

(b) Berechne von freien Variablen abhängige Lösung

(c) Klammere freie Variablen aus

BEISPIEL TODO

4.2 Bestimmung der Abbildungsmatrix

Grundsatz: Die Kolonnen von A sind die Koordinatenvektoren der Bilder der Basisvektoren.

gegeben:
$$\mathcal{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathcal{B}' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x - 3y \\ x - 2y + z \end{pmatrix}$$

gesucht: Abbildungsmatrix A bez Ãijglich (\mathcal{B},\mathcal{B}'

Grundsatz anwenden:
$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = \begin{pmatrix} 2\\1 \end{pmatrix} = 1 \begin{pmatrix} 2\\1 \end{pmatrix} + 0 \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$f\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} -3\\-2 \end{pmatrix} = -1 \begin{pmatrix} 2\\1 \end{pmatrix} - 1 \begin{pmatrix} 1\\1 \end{pmatrix}$$

$$f\begin{pmatrix} 0\\0\\1 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} = -1 \begin{pmatrix} 2\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\1 \end{pmatrix}$$

Matrix formen: $A = \begin{pmatrix} 1 & -1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$

4.3 Transformation

$$x \in X \qquad \xrightarrow{F} \qquad y \in Y$$

$$\kappa_X \downarrow \uparrow \kappa_X^{-1} \qquad \kappa_Y \downarrow \uparrow \kappa_Y^{-1} \qquad \text{(Koordinatenabbildung bzgl. "alten" Basen)}$$

$$\boldsymbol{\xi} \in \mathbb{E}^n \qquad \xrightarrow{\mathbf{A}} \qquad \boldsymbol{\eta} \in \mathbb{E}^m \qquad \text{(Koordinatenbzgl. "alten" Basen)}$$

$$\mathbf{T}^{-1} \downarrow \uparrow \mathbf{T} \qquad \mathbf{S}^{-1} \downarrow \uparrow \mathbf{S} \qquad \text{(Koordinatenbzgl. "alten" Basen)}$$

$$\boldsymbol{\xi}' \in \mathbb{E}^n \qquad \xrightarrow{\mathbf{B}} \qquad \boldsymbol{\eta}' \in \mathbb{E}^m \qquad \text{(Koordinatenbzgl. "koordinatenbzgl. "koordinatenbzgl." (Koordinatenbzgl. "neuen" Basen)}$$

Es gilt also

$$y = F x, \quad \boldsymbol{\eta} = \mathbf{A} \boldsymbol{\xi}, \quad \boldsymbol{\xi} = \mathbf{T} \boldsymbol{\xi}', \quad \boldsymbol{\eta} = \mathbf{S} \boldsymbol{\eta}', \quad \boldsymbol{\eta}' = \mathbf{B} \boldsymbol{\xi}'.$$
(5.49)

Diesen Formeln oder dem Diagramm entnimmt man, dass für die Abbildungsmatrix \mathbf{B} , die die Abbildung F bezüglich den "neuen" Basen in \mathbb{E}^m und \mathbb{E}^n beschreibt, gilt

$$\mathbf{B}\,\boldsymbol{\xi}'=\boldsymbol{\eta}'=\mathbf{S}^{-1}\,\boldsymbol{\eta}=\mathbf{S}^{-1}\,\mathbf{A}\,\boldsymbol{\xi}=\mathbf{S}^{-1}\,\mathbf{A}\,\mathbf{T}\,\boldsymbol{\xi}'$$

Da $\boldsymbol{\xi}'$ beliebig ist, ergibt sich

$$\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{T}, \qquad \mathbf{A} = \mathbf{S}\mathbf{B}\mathbf{T}^{-1}.$$
 (5.50)

Aus Satz 5.16 folgt im übrigen wegen Rang $S^{-1} = Rang T = n$, dass Rang B = Rang A ist, und in ähnlicher Weise folgt aus Korollar 5.10, dass Rang F = Rang A ist:

Im Falle einer linearen Abbildung von X in sich, ist natürlich Y = X, $\kappa_Y = \kappa_X$, $\mathbf{S} = \mathbf{T}$. Aus (5.50) wird damit

$$\mathbf{B} = \mathbf{T}^{-1}\mathbf{A}\mathbf{T}, \qquad \mathbf{A} = \mathbf{T}\mathbf{B}\mathbf{T}^{-1}.$$
 (5.52)

5 Projektionen

Projektion Orthogonalprojektion

lineare Abbildung für die gilt $P^2 = P$

- 1. Projektion für die gilt ker $P \perp \text{im } P$
 - 2. P ist quadratisch
 - 3. I P ist orthogonaler Projektor
 - $4. P^T = P$

$$P_A :\equiv A(A^H A)^{-1} A^H$$

 $P_Q :\equiv QQ^H$ falls Kolonnen von Q orthonormal

5.1 Methode der kleinsten Quadrate

Beispiel 7.4 Seite 7-7 im Skript

5.2 QR-Zerlegung

Grundsatz: A = QR

$$\text{mit} \quad q_1 := \frac{a_1}{||a_1||}, \ \tilde{q}_k := a_k - \sum_{j=1}^{k-1} q_j \langle q_j, \ a_k \rangle, q_k := \frac{\tilde{q}_k}{||\tilde{q}_k||}$$

$$r_{11} :\equiv ||a_1||, \ r_{jk} :\equiv \langle q_j, a_k \rangle, \ r_{kk} :\equiv ||\tilde{q}_k||$$

gegeben:
$$A = \begin{pmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
 Gram-Schmidt:
$$r_{11} = ||a_1||, \ q_1 = \frac{a_1}{||a_1||} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$r_{12} = q_1^T a_2 = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix} = 3$$

$$\tilde{q}_2 = (I - q_1 q_1^T) a_2 = a_2 - r_{12} q_1 = \begin{pmatrix} -5/2 \\ 5/2 \\ 5/2 \\ -5/2 \end{pmatrix}$$

$$r_{22} = ||\tilde{q}_2|| = 5$$

$$q_2 = \frac{\tilde{q}_2}{||\tilde{q}_2||} = \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}$$

$$\tilde{q}_3 = (I - q_1 q_1^T)(I - q_2 q_2^T) a_3$$
 und so weiter...

Lösung:
$$Q = (q_1, q_2, q_3), \ R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{22} \end{pmatrix}$$

6 Determinante

Es gilt:

- $\det A = 0 \Rightarrow Ax = b$ ist nicht lösbar
- A hat eine Zeile lauter Nullen $\Rightarrow \det A = 0$
- A hat zwei gleiche Zeilen $\Rightarrow \det A = 0$
- A ist eine Diagonalmatrix \Rightarrow det A = Produkt der Diagonalelemente
- A ist eine Dreiecksmatrix \Rightarrow det A = Produkt der Diagonalelemente

6.1 Identitäten

$$\det(\gamma A) = \gamma^n \det A$$

$$\det(AB) = \det A \cdot \det B$$

$$\det(A^{-1}) = \det(A)^{-1} \quad \text{falls A regul\"ar}$$

$$\det(A^T) = \det(A)$$

$$\det(A^H) = \det(A)$$

- 6.2 Berechnung
- **6.3** Dimension 2×2

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - cb$$

6.4 Dimension 3×3

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = (aei + dhc + gbf) - (gec + dbi + ahf)$$

6.5 Allgemeine Dimension $n \times n$

Grundsatz:
$$\det A = a_{kl} \mathcal{K}_{kl}$$

wobei $\mathcal{K}_{kl} :\equiv (-1)^{k+l} \det A_{[k,l]}$

Tipp: Wähle die Zeile/Spalte aus mit den meisten Nullen.

gegeben:
$$A = \begin{pmatrix} 1 & 3 & 5 & 1 \\ 2 & 4 & 6 & 3 \\ 3 & 6 & 4 & 2 \\ 1 & 5 & 3 & 1 \end{pmatrix}$$
 entwickeln nach der 2. Zeile: $\mathcal{K}_{21} = (-1)^3 \begin{vmatrix} 3 & 5 & 1 \\ 6 & 4 & 2 \\ 5 & 3 & 1 \end{vmatrix} = -12$
$$\mathcal{K}_{22} = (-1)^4 \begin{vmatrix} 1 & 5 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 1 \end{vmatrix} = -2$$

$$\mathcal{K}_{23} = (-1)^5 \begin{vmatrix} 1 & 3 & 1 \\ 3 & 6 & 2 \\ 1 & 5 & 1 \end{vmatrix} = -2$$

$$\mathcal{K}_{24} = (-1)^6 \begin{vmatrix} 1 & 3 & 5 \\ 3 & 6 & 4 \\ 1 & 5 & 3 \end{vmatrix} = 28$$

Lösung: det
$$A = a_{21}\mathcal{K}_{21} + a_{22}\mathcal{K}_{22} + a_{23}\mathcal{K}_{23} + a_{24}\mathcal{K}_{24}$$

= $2(-12) + 4(-2) + 6(-2) + 3(28) = 40$

7 Eigenwerte und -vektoren

Betrachte eine lineare Abbildung $F: V \mapsto V, x \mapsto Fx$:

Eigenvert $\lambda \in \mathbb{E}$, so dass $Fv = \lambda v$ **Eigenvektor** $v \in V, v \neq 0$, so dass $Fv = \lambda v$

Eigenraum gehört zu spezifischem Eigenwert $E_{\lambda} := \{v \in V; Fv = \lambda v\}$

Spektrum $\sigma(F)$, Menge aller Eigenwerte von F

7.1 Berechnung der Eigenwerte

Grundsatz: $E_{\lambda} = \ker (F - \lambda I) = \det(F - \lambda I)$

gegeben:
$$A = \begin{pmatrix} 5 & -1 & 3 \\ 8 & -1 & 6 \\ -4 & 1 & -2 \end{pmatrix}$$

char. Polynom:
$$\det(A - \lambda I) = \begin{vmatrix} 5 - \lambda & -1 & 3 \\ 8 & -1 - \lambda & 6 \\ -4 & 1 & -2 - \lambda \end{vmatrix} = -\lambda(\lambda^2 - 2\lambda + 1) = \mathcal{X}_A(\lambda)$$

Nullstellen finden: $\lambda_1 = 1, \ \lambda_2 = 1, \ \lambda_3 = 0$

Eigenwerte: $\sigma(A) = \{1, 2, -1\}$

7.2 Berechnung der Eigenvektoren

Eigenwerte in A einsetzen

4	-1	3	0
8	-2	6	0
-4	1	-3	0

5	-1	3	0
8	-1	6	0
-4	1	-2	0

$$\Rightarrow v_1 = \begin{pmatrix} 1\\4\\0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 0\\3\\1 \end{pmatrix}, \ v_3 = \begin{pmatrix} -1\\-2\\1 \end{pmatrix}$$

7.3 Spektralzerlegung

Grundsatz: $AV = V\Lambda \Leftrightarrow A = V\Lambda V^{-1}$

gegeben:
$$A = \begin{pmatrix} -7 & 2 & -6 \\ 12 & -2 & 12 \\ 12 & -3 & 11 \end{pmatrix}$$

Eigenwerte bestimmen: $\lambda_1 = 1, \ \lambda_2 = 2, \ \lambda_3 = -1$

$$\Rightarrow \Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Eigenvektoren bestimmen: $v_1 = \begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

Eigenbasis:
$$V = (v_1|v_2|v_3) = \begin{pmatrix} 1 & 0 & -1 \\ 4 & 3 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

Bemerkung: A muss diagonalisierbar sein, d.h. die **geometrische Vielfachheit** der Eigenwerte muss mit der **algebraischen Vielfachheit** übereinstimmen.

9

7.4 Hauptachsentransformation

gegeben:
$$Q(x_1, x_2, x_3) = 221x_1^2 + 144x_1x_2 + 480x_1x_3 + 179x_2^2 + 360x_2x_3 + 100x_3^2$$

Matrix formen:
$$A = \begin{pmatrix} 221 & 72 & 240 \\ 72 & 179 & 180 \\ 240 & 180 & 100 \end{pmatrix}$$

$$\begin{array}{llll} \textbf{Spektralzerlegung:} & A = \begin{pmatrix} 0.6 & 0.48 & 0.64 \\ -0.8 & 0.36 & 0.48 \\ 0 & -0.8 & 0.6 \end{pmatrix} \begin{pmatrix} 125 & 0 & 0 \\ 0 & -125 & 0 \\ 0 & 0 & 500 \end{pmatrix} \begin{pmatrix} 0.6 & -0.8 & 0 \\ 0.48 & 0.36 & -0.8 \\ 0.64 & 0.48 & 0.6 \end{pmatrix}$$

neue Koordinaten:
$$\tilde{x}_1 = 0.6x_1 - 0.8x_2$$

$$\tilde{x}_2 = 0.48x_1 + 0.36x_2 - 0.8x_3$$

$$\tilde{x}_3 = 0.64x_1 + 0.48x_2 + 0.6x_3$$

Hauptachsendarstellung: $Q(x) = Q(\tilde{x}) = 125\tilde{x}_1^2 - 125\tilde{x}_2^2 + 500\tilde{x}_3^2$

8 Singulärwertzerlegung

Grundsatz:
$$A = U\Sigma V^T$$

$$\text{mit} \quad \Sigma :\equiv \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix}, \ \Sigma_r = \text{diag}\{\sigma_1,...,\sigma_r\}, \text{wobei } \sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r$$

wobei
$$\Sigma$$
 hat die gleiche Dimension wie A

$$AA^T = U\Sigma_m^2 U^T, \ A^TA = V\Sigma_n^2 V^T$$

$$\{u_1,...,u_r\}$$
 ist Basis von im $A \equiv \mathcal{R}(A)$

$$\{v_1, ..., v_r\}$$
 ist Basis von im $A^T \equiv \mathcal{R}(A^T)$

$$\{u_{r+1},...,u_m\}$$
 ist Basis von ker $A^H \equiv \mathcal{N}(A^H)$

$$\{v_{r+1},...,v_n\}$$
 ist Basis von ker $A \equiv \mathcal{N}(A)$

gegeben:
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$$

$$A^T A$$
 und AA^T berechnen: $B = A^T A = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}$, $C = AA^T = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

Eigenwerte berechnen:
$$\sigma(B) = \{6,1\}, \ \sigma(C) = \{0,1,6\}$$

Grundsatz anwenden:
$$\Sigma = \begin{pmatrix} \sqrt{6} & 0 \\ 0 & \sqrt{1} \\ 0 & 0 \end{pmatrix}$$
, da $\sigma(B)$ mit $|\sigma(B)| = 2$ passt

Eigenvektoren berechnen: $V = (b_1|b_2), U = (c_1|c_2|c_3)$

8.1 Spektralnorm

$$||A||_2 = \sigma_1$$

8.2 Konditionszahl

$$\mathcal{K}(A) = ||A||_2 ||A^{-1}||_2$$

10

Die Spektralnorm einer Matrix entspricht dem maximalen Singulärwert.

9 Differentialgleichungen

9.1 Erster Ordnung, homogen, linear, konstante Koeffizienten

Grundsatz:
$$y(t) = Ve^{t\Lambda}c$$

mit $c = V^{-1}y_0$

gegeben:
$$\dot{y}_1(t) = -2y_1(t) + 2y_3(t)$$

 $\dot{y}_2(t) = -2y_1(t) - 3y_2$
 $\dot{y}_3(t) = -3y_3(t)$
 $y_1(0) = 0, \ y_2(0) = 0, y_3(0) = 1$
Matrix formen: $A = \begin{pmatrix} -2 & 0 & 2 \\ -2 & -3 & -4 \\ 0 & 0 & -3 \end{pmatrix}, \ y_0 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
Spektralzerlegung: $A = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} -2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ -2 & -1 & -4 \end{pmatrix}$
Grundsatz anwenden: $c = \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$
 $y(t) = \begin{pmatrix} 1 & -2 & 0 \\ -2 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} e^{-2t} & 0 & 0 \\ 0 & e^{-3t} & 0 \\ 0 & 0 & e^{-3t} \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -4 \end{pmatrix}$
Lösung: $y(t) = \begin{pmatrix} 2e^{-2t} - 2e^{-3t} \\ -4e^{-2t} + 4e^{-3t} \\ e^{-3t} \end{pmatrix}$

9.2 Höhere Ordnung, homogen, linear, konstante Koeffizienten

Grundsatz: zu System 1. Ordnung umschreiben

gegeben:
$$\ddot{x}(t) - \dot{x}(t) - 2x(t) = 0$$
 $x(0) = 3, \ \dot{x}(0) = 0$
umformen: $y_1(t) = x(t), \ y_2(t) = \dot{x}(t)$
 $\dot{y}_1 = y_2$
 $\dot{y}_2 = 2y_1 + y_2$
 $y_1(0) = 3, \ y_2(0) = 0$
Matrix formen: $A = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}, y_0 = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$
System 1. Ordnung lösen: $y(t) = \begin{pmatrix} 2e^{-t} & e^{2t} \\ -2e^{-t} & 2e^{2t} \end{pmatrix}$
Lösung: $x(t) = x(t) = y_1(t) = 2e^{-t} + e^{2t}$

Maschinenzahlen 10

gegeben: $x = \pm 0.bbb \times 2^{\pm bb}$

grösste positive Zahl: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}, \frac{7}{8} \times 2^3 = 7$ Maschinengenauigkeit: $2^{-3} = \frac{1}{8}$