Memory management

CS143A: Principles of operating systems - Fall '17

UC Irvine, California

xv6 memory management ¹

¹kalloc.c

xv6 memory management 1

· A linked-list of free pages

¹kalloc.c

xv6 memory management 1

- · A linked-list of free pages
- Constant allocation time O(1)

¹kalloc.c

xv6 memory management ¹

- · A linked-list of free pages
- Constant allocation time O(1)

Problem?

• Memory wastage: We use 4KiB for storing a pointer (4 bytes)

1

¹kalloc.c

• Use a single-bit for a page (0 - occupied, 1 - free)

- Use a single-bit for a page (0 occupied, 1 free)
- Linear allocation time O(n)

- Use a single-bit for a page (0 occupied, 1 free)
- Linear allocation time O(n)

Problems?

- External Fragmentation: Inability to service a request despite having free memory
- · Linear scan takes time

Buddy allocator

Buddy allocator

Buddy allocator

· Maintains a list of blocks of various sizes

• Allocation strategy - split

- · Allocation strategy split
 - Find a free block in the desired list

- · Allocation strategy split
 - · Find a free block in the desired list
 - · If not, split a higher order block size ($2^2 = 2^1 \cdot 2^1$)

- · Allocation strategy split
 - · Find a free block in the desired list
 - If not, split a higher order block size $(2^2 = 2^1 \cdot 2^1)$
- Free strategy coalesce

- · Allocation strategy split
 - · Find a free block in the desired list
 - If not, split a higher order block size $(2^2 = 2^1 \cdot 2^1)$
- Free strategy coalesce
 - · Coalesce if the buddy block is free

- · Allocation strategy split
 - · Find a free block in the desired list
 - If not, split a higher order block size $(2^2 = 2^1 \cdot 2^1)$
- Free strategy coalesce
 - Coalesce if the buddy block is free

Problem?

Internal Fragmentation: Minimum allocation unit is a page

Slab allocator

Slab allocator

- · Solve internal fragmentation allocate objects of any size
- · Maintain an object cache to save time
- · Align object to hardware cacheline boundaries for efficiency

Slab allocator

kmalloc - table of caches

Zones

Memory architectures

Uniform memory access(UMA)

Non-Uniform memory access(NUMA)

Nodes

Physical memory

Memory organization hierarchy (Linux)

- Nodes (struct pglist_data)
 - · Abstraction of memory on each memory controller
- · Zonelists (struct zonelists)
 - · List of fallback zones in other nodes if allocation fails
- · Zones (struct zone)
 - · x86 ZONE DMA, ZONE NORMAL, ZONE HIGHMEM
 - · x64 ZONE_DMA, ZONE_DMA32, ZONE_NORMAL
- Pages (struct page)
 - Managed by buddy allocator
- · Small-sized objects
 - Slab allocator (struct kmem_cache), kmalloc

