Name:	Nicht bestanden: □
Vorname:	
Matrikelnummer:	Endnote:

Fakultät Agrarwissenschaften und Landschaftsarchitektur (AuL)

Klausurfragen Bio Data Science

für Pflichtmodule

im 1. & 2. Semester B.Sc./M.Sc.

(Prüfungsleistung der Wahlpflichtmodule ist die Portfolioprüfung)

Prüfer: Prof. Dr. Jochen Kruppa-Scheetz Fakultät für Agrarwissenschaften und Landschaftsarchitektur j.kruppa@hs-osnabrueck.de

»Sommersemester 2025«

"The test of a student is not how much she or he knows, but how much the student wants to know." — Alice W. Rollins

•••• •• •• •• ••

1

Alex studiert im 3. Semester und wiederholt das Modul, da er im ersten Jahr andere Prioritäten für sich gesetzt hat. Das musste sein, da er sich ziemlich im Abitur verausgabt hat. Darüber hinaus war die WG auch eher auf Party angelegt. Alex hofft jetzt über Pünktlichkeit wieder in die Bahn zu kommen. Dafür steht er jetzt immer um 5 Uhr auf! Freunde von ihm beschreiben ihn eher als extrovertiert. Er kennt Paula noch aus der Schulzeit und er überlegt, ob nicht beide Mal nach Mallorca sollten.

Nach zwei Semestern Studium an der Universität Osnabrück war es dann Jessica doch viel zu theoretisch. Etwas angewandtes sollte es sein, wo sie auch eine Fähigkeit lernt, die frau nutzen kann. Deshalb hat sich Jessica an der Hochschule eingeschrieben. Hoffentlich lernt sie etwas nützliches, wo andere für Geld geben würden. Wer nützlich ist, ist wertvoll. Ihr Traum ist ja eine Hundeschule aufzumachen. Die großen Parties hat sie immer gemieden. Sie ist lieber mit ihrer Hündin im Teuteburgerwald.

Das ist jetzt der letzte Versuch mit einem Studium. Wenn es nicht klappt dann überlegt Jonas das Programm der IHK zu Ausbildungsvermittlung zu nutzen. Aber eine Runde gibt er sich noch. Struktur ist eigentlich das Wichtigste und diesmal hat er sich alle Altklausuren der Fachschaft besorgt. Dann ist er auch noch gleich der Fachschaft beigetreten um mehr Informationen abzugreifen. Und er versucht nicht seine Zeit mit Alex zu verdaddeln oder in der Fachschaft bei einem Bier oder so...

Nächstes Semester geht es nach Kanada davon hat er schon auf der Berufsschule geträumt. Deshalb konzentriert er sich sehr auf die Prüfungen. Ein Schiff ist im Hafen sicher, aber dafür ist es nicht gebaut worden. Das International Faculty Office der Fakultät Agrarwissenschaften und Landschaftsarchitektur hat super geholfen, aber es waren einiges an Unterlagen. Jetzt hofft er, dass Tina dann doch noch mitkommt. Aber sonst macht er das eben alleine. Obwohl das eher nicht so seine Art ist. Vielleicht sollte er sich mal einen Tipp bei Tina holen, sie wirkt sehr entschlossen.

Nach der Ausbildung wollte Nilufar eigentlich gleich anfangen zu arbeiten, aber nach einem Praktikum und der Probezeit stellte sie fest, dass es ohne einen Hochschulabschluss schwer wird Führungsverantwortung zu übernehmen. Mit Menschen kann sie schon immer und dann auch eigene Projekte mit anderen verwirklichen, dass ist doch was. Mit dem notwendigen Abschluss sollte der Start um so einfacher sein. Dann ist sie keine Befehlsempfängerin mehr sondern gibt die Marschrichtung vor. Schon jetzt koordiniert Nilufar das Studium von anderen.

Paula möchte die Welt zu einem besseren Ort machen. Wenn da nicht die anderen Mitmenschen wären. Paula muss das Modul nochmal wiederholen, da es dann am Ende des Semesters zu viel für sie wurde. Eine Lerngruppe hätte geholfen, aber das ist dann gar nicht so einfach eine zu finden. Zwar kennt sie schon Nilufar, aber Nilufar ist ihr manchmal zu forsch. Ihr schwant aber, dass alleine das Studium sehr schwer werden wird. Das Abitur war schon so ein Lernhorror, das möchte sie nicht nochmal. Alex sieht sie da als Vorbild.

Sommer, Sonne, Natur. Das ist es was Steffen mag. Raus in die Komune und die Natur genießen. Leider hat Steffen noch andere Bedürfnisse, die ein Einkommen benötigen. Da Studierte mehr verdienen, würde dann in Teilzeit auch mehr rausspringen. Wenn er dann privat was anbauen kann, dann spart er gleich doppelt. Leider sind viele seiner Kommilitonen total verkrampfte Karrieristen. Es geht nur ums Äußere. Dabei verliert sich Steffen gerne im Prozess. Das hat auch seinen Schulabschluss etwas verzögert. Steffen lässt sich eben Zeit.

Wille war es, die es Tina hierher gebracht hat und Wille wird es sein, die Tina dann auch zum Abschluß treibt. Nach einem Rückschlag muss Tina jetzt einige Module wiederholen, damit sie dann auch fertig wird. Ab und zu ist sie schwach gewesen und das hat dann Zeit gekostet. Das Tina es dann manchmal übertreibt, weiß sie nur zu gut, aber irgendwie muss die Kontrolle ja erhalten bleiben? Insbesondere, wenn sie mal wieder die Nacht durchgefeiert hat, verachtet Tina sich. Dann baut Nilufar sie dann bei einem Tee wieder auf.

Für Yuki war es nicht einfach. Teilweise war die Krankheit sehr hinderlich, dann war es Yuki selber. Dann muss man auch wieder auf die Beine kommen und es dauert eben seine Zeit. Aber immerhin hat Yuki es jetzt den Abschluss gekriegt und hat einen Studienplatz. Jetzt heißt es in den Rhythmus kommen und schauen, was noch so passiert. Immerhin hat Yuki schon eine kleine Gruppe gefunden, in der Yuki dann Hilfe findet. Ist aber auch sehr unübersichtlich so ein Studium. Steffen ist immer super entspannt.

Erlaubte Hilfsmittel

- Normaler Taschenrechner ohne Möglichkeit der Kommunikation mit anderen Geräten! Ausdrücklich kein Handy!
- Eine DIN A4-Seite als beidseitig, selbstgeschriebene, handschriftliche Formelsammlung. Keine digitalen Ausdrucke!
- Die Verwendung eines roten Farbstiftes ist nicht gestattet! Korrekturfarbe!
- You can answer the questions in English without any consequences.

Endnote

_____ von 20 Punkten sind aus den Multiple Choice Aufgaben erreicht.

_____ von 71 Punkten sind aus den Rechen- und Textaufgaben erreicht.

_____ von 91 Punkten in Summe.

Es wird folgender Notenschlüssel angewendet.

Punkte	Note
87.0 - 91.0	1,0
82.5 - 86.5	1,3
78.0 - 82.0	1,7
73.5 - 77.5	2,0
69.0 - 73.0	2,3
64.5 - 68.5	2,7
60.0 - 64.0	3,0
55.5 - 59.5	3,3
51.0 - 55.0	3,7
45.5 - 50.5	4,0

Es ergibt sich eine Endnote von _____.

Multiple Choice Aufgaben

- Pro Multipe Choice Frage ist *genau* eine Antwort richtig.
- Übertragen Sie Ihre Kreuze in die Tabelle auf dieser Seite.

	A	В	С	D	Е	✓
Aufgabe 1						
Aufgabe 2						
Aufgabe 3						
Aufgabe 4						
Aufgabe 5						
Aufgabe 6						
Aufgabe 7						
Aufgabe 8						
Aufgabe 9						
Aufgabe 10						

• Es sind ____ von 20 Punkten erreicht worden.

Rechen- und Textaufgaben

Aufgabe	11	12	13	14	15	16	17
Punkte	9	8	10	12	10	10	12

• Es sind ____ von 71 Punkten erreicht worden.

Multiple Choice Aufgaben

Die Multiple Choice Aufgaben unterliegen dem Zufall. Die Reihenfolge der Antworten ist zufällig. Die Fragen und Antworten sind semantisch zufällig und haben somit verschiedene Textvarianten. Insbesondere die reinen Textaufgaben haben verschiedene Textvarianten. Die Semeantik mag sich unterscheiden, die Inhalte sind aber gleich.

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Programmieren in R

1. Aufgabe

	e wissenschaftliche Orginalquellen sind in Englisch verfasst. Jetzt finden Sie heraus, dass auch \mathbb{R} nur in engli- er Sprache funktioniert. Warum ist das so?
A 🗆	Programmiersprachen können nur englische Begriffe verarbeiten. Zusätzliche Pakete können zwar geladen werden, aber meist funktionieren diese Pakete nicht richtig. Deutsch ist International nicht bedeutend genug.
В□	Programmiersprachen haben Probleme mit Umlauten und Sonderzeichen der deutschen Sprache. Daher ist die Nutzung in Deutsch in den AGBs von \P untersagt.
C 🗆	Alle Funktionen und auch Anwendungen sind in \P in englischer Sprache. Die Nutzung von deutschen Wörtern ist nicht schick und das ist zu vermeiden.
D 🗆	Die \P Pakete sind nur in englischer Sprache verfasst. Das ist aber nicht der Hauptgrund, denn \P hat wie alle Programmiersprachen Probelem mit Umlauten und Sonderzeichen.
E 🗆	Es gibt keinen Grund nicht auch deutsche Wörter zu verwenden. Es ist ein Stilmittel.
2. /	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	n wir ein Experiment in 😱 auswerten wollen, dann müssen die Daten in Excel in einem besimmten Format elegt werden. Wir sprechen auch vom Long-Format. Welche Aussage zum Long-Format ist richtig?
A 🗆	Das Long-Format beschreibt in den Spalten die Beobachtungen sowie in den Zeilen die <i>unabhängigen</i> Beobachtungen.
В□	In den Zeilen finden sich die experimentellen Faktoren (X) sowie die Messwerte (Y) . In den Spalten finden sich dann die einzelnen Beobachtungen.
C 🗆	Wichtig ist, dass sich in den Zeilen die Beobachtungen finden und in den Spalten die Variablen, wie die Messwerte (Y) sowie die experimentellen Faktoren (X) .
D 🗆	In den Spalten finden sich die einzelnen Beobachtungen und in den Zeilen die gemessenen Variablen (Y) sowie die experimentellen Faktoren (X) .
E□	In den Spalten sind die Beobachtungen in den Zeilen die Variablen, wie die Messwerte und experiementellen Faktoren.
3. /	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	rer Abschlussarbeit wollen Sie zu Beginn eine explorativen Datenanalyse (EDA) in 😱 rechnen. Dafür gibt es generelle Abfolge von Prozessschritten. Welche ist hierbei die richtige Reihenfolge?
A 🗆	Die Funktionsreihenfolge ist wie folgt: read_excel() -> mutate() -> ggplot(). Dabei ist bei der Transformation der Daten darauf zu achten, dass keine Faktoren erstellt werden.
В□	Für eine explorativen Datenanalyse (EDA) in R müssen wir als erstes die Daten über read_excel() einlesen. Danach müssen wir schauen, dass wir die Spalten richtig über mutate() transformiert haben. Insbesondere müssen Variablen mit Kategorien in einen Faktor umgewandelt werden. Am Ende nutzen wir die Funktion ggplot() für die eigentlich EDA.
C 🗆	Wir lesen die Daten ein und mutieren die Daten. Dabei ist wichtig, dass wir nicht das Paket tidyverse nutzen, da dieses Paket veraltet ist. über die Funktion library(tidyverse) entfernen wir das Paket von der Analyse.

(2 Punkte)

D 🗆	Wir transformieren die Spalten über mutate() in ein tibble und können dann über ggplot() uns die Abbildungen erstellen lassen. Dabei beachten wir das wir keine Faktoren in den Daten haben.
E 🗆	Wir lesen als erstes die Daten über read_excel() ein, transformieren die Spalten über mutate() in die richtige Form und können dann über ggplot() uns die Abbildungen erstellen lassen. Wichtig ist, dass wir keine Faktoren sondern nur numerische Variablen vorliegen haben.
Des	skriptive Statistik & Explorative Datenanalyse
4.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik
Bere	echnen Sie den Mittelwert und Standardabweichung von y mit 12, -1, 9, 9 und 11.
A 🗆	Es berechnet sich 8 +/- 5.2
B 🗆	Es berechnet sich 8 +/- 27
C 🗆	Sie erhalten 8 +/- 2.28
D 🗆	Es ergibt sich 7 +/- 13.5
E 🗆	Es berechnet sich 9 +/- 27
5. <i>i</i>	Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik
	eben ist y mit 18, 20, 14, 15, 24, 8, 13, 21, 26, 6 und 63. Berechnen Sie den Median, das 1^{st} Quartile sowie 3^{rd} Quartile.
A 🗆	Es berechnet sich 19 [14; 23]
В□	Sie erhalten 18 [11; 22]
c 🗆	Sie erhalten 18 [13; 24]
D 🗆	Es ergibt sich 18 +/- 13
E 🗆	Es ergibt sich 21 +/- 13
6. <i>i</i>	Aufgabe (2 Punkte)
Um	Inhalt folgender Module: Mathematik & Statistik • Angewandte Statistik für Bioverfahrenstechnik die Standardabweichung zu berechnen müssen wir folgende Rechenoperationen durchführen.
A 🗆	Den Mittelwert berechen, dann die absoluten Abstände zum Mittelwert aufsummieren. Die Fallzahl $(n-1)$ entsprechend gewichten.
B 🗆	Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl $(n-1)$. Als letzten Schritt ziehen wir die quadratische Wurzel.
C 🗆	Wir berechnen erst den Mittelwert und dann die quadratischen Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl $(n-1)$.
D 🗆	Wir berechnen erst den Mittelwert und dann die absoluten Abstände zu dem Mittelwert. Diese quadratischen Abstände summieren wir auf und teilen am Ende durch die Fallzahl ($n-1$).
E 🗆	Als erstes berechnen wir den Mittelwert. Dann bilden wir die Summe der quadratischen Abstände zu dem Mittelwert. Abschließend subtrahieren wir die Fallzahl $(n-1)$.

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Der Barplot stellt folgende statistische Maßzahlen in einer Abbildung dar. Damit gehört der Barplot zu einem der am meisten genutzten statistischen Verfahren zur Visualisierung von Daten.

- **A** □ Den Median und die Standardabweichung.
- **B** □ Den Mittelwert sowie den Median und die Streuung.
- **C** □ Der Barplot stellt die Mittelwerte und die Varianz dar.
- **D** □ Den Median und die Quartile.
- **E** □ Den Mittelwert und die Standardabweichung.

8. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Nachdem Sie in einem Feldexperiment zu Leistungssteigerung von Erbsen durchgeführt haben, berechnen Sie den Mittelwert und den Median. Der Mittelwert ist \bar{y} gleich 18.1 t/ha und als Median ergibt sich \tilde{y} gleich 13.8 t/ha. Welche Aussage ist richtig?

- **A** □ Nach der Betrachtung der Werte <u>unterscheiden</u> sich Mittelwert und Median <u>nicht</u>. Sie haben Varianzhomogenität vorliegen. Sie können künstlich Outlier zufügen um die Daten auszuwerten.
- **B** □ Der Mittelwert und der Median <u>unterscheiden</u> sich. Daher müssen Sie schauen, ob Sie einen Outlier in den Daten vorliegen haben.
- C □ Nach der Betrachtung der Werte <u>unterscheiden</u> sich Mittelwert und Median <u>nicht</u>. Die Daten können so verwendet werden wie sie vorliegen. Es gibt keinen Outlier.
- **D** \square Nach Ihrer Betrachtung der Werte <u>unterscheiden</u> sich Mittelwert und Median <u>nicht</u>. Die Daten können also so nicht verwendet werden. Es gibt mindestens Outlier n-1 Ausreißer in den Daten.
- **E** □ Da sich der Mittelwert und der Median <u>unterscheiden</u>, ist der Datensatz nicht zu verwenden. Mittelwert und Median müssen gleich sein.

9. Aufgabe (2 Punkte)

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Im Folgenden sehen Sie ein Normalverteilung dargestellt. Welche Aussage zu der Normalvererteilung und der Standardabweichung σ ist richtig?

- **A** □ Dargestellt ist eine Standardnormalverteilung.
- **B** \square Die Fläche zwischen -1σ und 1σ ist 0.95 und 95% der Beobachtungen liegen somit zwischen $\bar{y} \pm \sigma$ in der obigen Verteilung.
- **C** \square Die Fläche unter der Kurve entspricht dem Signifikanzniveau α von 5%. Damit ist die Standardabweichung σ gleich 1 in der obigen Abbildung.
- **D** \square Es liegen 95% der Beobachtungen zwischen $\bar{y} \pm 2\sigma$. Angezeigt durch die Fläche zwischen -2σ und 2σ in der obigen Verteilung.
- **E** \square Die Fläche rechts von 2 σ ist der p-Wert mit $Pr(D|H_0)$ in der obigen Abbildung.

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

	einem Boxplot können Sie sehr gut die Verteilung von Daten visualisieren. Die empfohlene Mindestanzahl an Dachtungen ist dabei?
A 🗆	Damit wir hier sauber eine Abbilung von einem
B 🗆	1 Beobachtung.
C 🗆	Wir sollten eine Beobachtung mindestens pro Gruppe vorliegen haben.
D 🗆	Die untere Grenze liegt bei einer Beobachtung.
E 🗆	Die untere Grenze liegt bei zwei bis fünf Beobachtungen.
11.	Aufgabe (2 Punkte) Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik
mino	n der Durchführung Ihres Feldexperiments wollen Sie eine ANOVA rechnen. Dafür muss aber Ihr Messwert zudestens approximativ einer Normalverteilung folgen. Welche der drei Abbildungen erlaubt Ihnen abzuschätzen, ie eine Normalverteilung in Ihrem Endpunkt vorliegen haben?
A 🗆	Boxplot, Densityplot, Violinplot
B 🗆	Histogramm, Scatterplot, Boxplot
C 🗆	Violinplot, Scatterplot, Barplot
D 🗆	Barplot, Mosaicplot, Violinplot
E 🗆	Scatterplot, Mosaicplot, Boxplot
12.	Aufgabe (2 Punkte)
Anna	Wollen eine ANOVA im Anschluss an Ihr Feldexperiment rechnen. Dafür muss Ihr gemessener Endpunkt die Jahme einer Normalverteilung genügen. Zur Überprüfung können Sie folgende Visualisierung nutzen. Welche prechende Regel zur Abschätzung der Annahme einer Normalverteilung kommt zur Anwendung?
	Wir erstellen uns für jede Behandlung einen Boxplot und schauen, ob die Box und damit das IQR für jede Behandlung gleich groß ist.
В□	Einen Boxplot. Der Median, dargestellt als Linie, muss in der Mitte des IQR, dargestellt durch die Box, liegen.
C 🗆	Einen Violinplot. Der Bauch der Violine muss hierbei einen höhren Wert annehmen als der Steg der Violine. Dann kann die Annahme einer Normalverteilung angenommen werden.
D 🗆	Einen Dotplot. Die Punkte müssen sich wie an einer Perlenschnurr audreihen. Eine Abweichung führt zur Ablehnung der Annahme einer Normalverteilung.
E 🗆	In einer explorativen Datanalyse nutzen wir den Violinplot. Dabei sollte der Bauch am Rand liegen. Dann können wir von einer Normalverteilung ausgehen.
Sta	tistische Testtheorie
13.	Aufgabe (2 Punkte)
Sie h	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik naben den mathematischen Ausdruck $Pr(D H_0)$ vorliegen, welche Aussage ist richtig?
A 🗆	$Pr(D H_0)$ ist die Wahrscheinlichkeit der Alternativehypothese und somit $1-Pr(H_A)$
В□	Die Wahrscheinlichkeit für die Nullhypothese, wenn die Daten wahr sind.
C 🗆	Die Wahrscheinlichkeit der Daten unter der Nullhypothese in der Grundgesamtheit.
D 🗆	$Pr(D H_0)$ beschreibt die Wahrscheinlichkeit die Teststatistik T_D aus den Daten D zu beobachten, wenn die Nullhypothese wahr ist.
E 🗆	$Pr(D H_0)$ stellt die Wahrscheinlichkeit die Teststatistik T zu beobachten dar, wenn die Nullhypothese falsch ist.

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

In fast allen wissenschaftlichen Disziplinen liegt der Grenzwert für das Signifikanzniveau α bei 5%. Wieso wurde dieser Konsens über die Signifikanzschwelle in dieser Form getroffen?

- **A** □ Der Wert ergab sich aus einer Auswertung von 1042 wissenschaftlichen Veröffentlichungen zwischen 1914 und 1948. Der Wert 5% wurde in 28% der Veröffentlichungen genutzt. Daher legte man sich auf diese Zahl fest.
- **B** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α historisch gewählt. Damit ist $\alpha = 5\%$ eine Kulturkonstante.
- **C** \square Im Rahmen eines langen Disputs zwischen Neyman und Fischer wurde $\alpha = 5\%$ festgelegt. Leider werden die Randbedingungen und Voraussetzungen an statistsiche Modelle heute immer wieder ignoriert.
- **D** □ Der Begründer der modernen Statistik, R. Fischer, hat die Grenze simuliert und berechnet. Dadurch ergibt sich dieser optimale Cut-Off.
- **E** \square Da Wissenschaftler eine Schwelle für die statistische Testentscheidung benötigen wurde α in einer großen Konferenz 1945 gewählt. Damit ist $\alpha = 5\%$ eine Kulturkonstante mit einem Rank einer Naturkonstante.

15. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Das statistische Testen basiert auf dem Falsifikationsprinzip. Es besagt,

- **A** □ ... dass Fehlerterme in statistischen Modellen nicht verifiziert werden können.
- **B** □ ... dass Annahmen an statistische Modelle meist falsch sind.
- C □ ... dass ein schlechtes Modell durch ein schlechteres Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.
- **D** □ ... dass ein minderwertes Modell durch ein minderwertiges Modell ersetzt wird. Es gilt das Verifikationsprinzip nach Karl Popper.
- **E** □ ... dass ein schlechtes Modell durch ein weniger schlechtes Modell ersetzt wird. Die Wissenschaft lehnt ab und verifiziert nicht.

16. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Betrachten wir die Teststatistik aus einem abstrakteren Blickwinkel. Beim statistischen Testen wird das extitsignal mit dem extitnoise aus den Daten D zu einer Teststatistik T_D verrechnet. Welche der Formel berechnet korrekt die Teststatistik T_D ?

- **A** \square Es gilt $T_D = \frac{\text{noise}}{\text{signal}}$. Der Effekt noise wird mit der Varianz signal gewichtet.
- **B** \square Bei der Berechnung der Teststatistik T_D gewichten wir den Effekt signal mit der Varianz noise. Wir können verallgemeinert $T_D = \frac{signal}{noise}$ schreiben.
- **C** \square Es gilt $T_D = signal \cdot noise$. Der Effekt signal wird mit der Varianz noise gewichtet.
- **D** \square Es gilt $T_D = signal/noise$. Der Effekt noise wird mit der Varianz signal gewichtet.
- **E** \square Bei der Berechnung der Teststatistik T_D gewichten wir den Effekt signal mit der Varianz noise. Wir können verallgemeinert $T_D = signal/noise^2$ schreiben.

17. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Sie haben ein Signifikanzniveau α gleich 5% vorliegen. Welche Aussage zusammen mit dem p-Wert ist richtig?

- **A** \square Wir machen ein Aussage über die Flächen unter der Kurve der Teststatistik der Hypothese H_0 und über die Flächen unter den Kurve der Teststatistik der Hypothese H_A . Dabei werden Wahrscheinlichkeiten vergleichen, die durch die Flächen unter der Kurve der beiden Testverteilungen repräsentiert werden.
- **B** □ Wir vergleichen die Effekte des *p*-Wertes mit den Effekten der Signifikanzschwelle unter der Annahme der Nullhypothese. Dabei gilt, dass wir die Nullhypothese nur ablehnen können anhand des Falsifikationsprinzips.

C 🗆	Wir vergleichen mit dem p -Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die Flächen unter der Kurve der Teststatistik, wenn die H_0 gilt.
D 🗆	Wir vergleichen mit dem p -Wert und dem Signifikanzniveau α Wahrscheinlichkeiten und damit die absoluten Werte auf einem Zahlenstrahl, wenn die H_0 gilt.
E 🗆	Wir vergleichen mit dem p -Wert und dem Signifikanzniveau α absolute Werte auf einem Zahlenstrahl und damit den Unterschied der Teststatistiken, wenn die H_0 gilt.
18.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
Die I	die Testtheorie besser zu verstehen, mag es manchmal sinnvoll sein ein Beispiel aus dem Alltag zu wählen. Ergebnisse der Analyse durch einen statistischen Test können auch in grobe Analogie zur Wettervorhersage acht werden. Welche Aussage trifft am ehesten zu?
A 🗆	In der Analogie der Regenwahrscheinlichkeit in einem bestimmten Gebiet: ein statistischer Test gibt die Wahrscheinlichkeit für ein Ereignis in einem Experiment mit den Daten D wieder und lässt sich kaum verallgemeinern.
B 🗆	In der Analogie der Maximaltemperatur: Was ist der maximale Unterschied zwischen zwei Gruppen. Wir erhalten hier eine Aussage über die Spannweite und den maximalen Effekt.
C 🗆	In der Analogie der Regenwahrscheinlichkeit: ein statistischer Test gibt die Wahrscheinlichkeit für das Auftreten eines Ereignisses wieder. Die Stärke des Effektes wird nicht wiedergeben.
D 🗆	In der Analogie der Durchschnittstemperatur: Wie oft tritt ein Effekt durchschnittlich ein? Wir erhalten eine Wahrscheinlichkeit für die Effekte. Zum Beispiel, wie hoch ist die Wahrscheinlichkeit für einen Mittelwert als Durchschnitt.
E 🗆	In der Analogie der Sonnenscheindauer: Wie lange kann mit einem entsprechenden Effekt gerechnet werden? Die Wahrscheinlichkeit für den Effekt gibt der statistische Test wieder.
19.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	rer Forschungsarbeit wollen Sie eine Aussage über ein untersuchtes Individuum treffen. Dazu nutzen Sie einen stischen Test. Erhalten Sie eine valide Aussage aus einem statistischen Test?
A 🗆	Nein, wir können ein untersuchtes Individuum nicht mit einem t-Test auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Effekt als Quelle der Relevanz nutzen.
B 🗆	Weder eine Ausssage über die Population noch über das Individuum ist mit einem statistischen Test möglich. Wir erhalten eine Aussage über ein Experiment.
C 🗆	Nein, ein untersuchtes Individuum können wir mit einem statistischen Test nicht auswerten. Wir erhalten keine Aussage zum Individuum.
D 🗆	Nein, wir können ein untersuchtes Individuum nicht mit einer ANOVA auswerten. Wir erhalten keine Aussage zum Individuum. Wir können aber den Test adjustieren und so die Auswertung ermöglichen.
E 🗆	Ja, ein untersuchtes Individuum können wir mit einem statistischen Test auswerten. Wir erhalten dann eine Aussage zum Individuum.
20.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	rechnen einen statistischen Test und erhalten neben dem p-Wert noch einen Effekt wiedergegeben. Welche

- **A** □ Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Zum Beispiel den mittleren Unterschied zwischen zwei Gruppen aus einem t-Test. Damit ist der Effekt direkt mit dem Begriff der Relevanz verbunden. Die Entscheidung über die Relevanz trifft der Forschende unabhängig von der Signifikanz eines statistischen Tests.
- **B** \square Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Moderen Algorithmen liefern keine Effekte mehr sondern nur noch bedingte Wahrscheinlichkeiten. Der Effekt spielt in der modernen Statistik keine Rollen mehr.

C 🗆	
	Der Effekt eines statistischen Tests beschreibt die biologisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
D 🗆	Der Effekt eines statistischen Tests beschreibt den Output oder die Wiedergabe eines Tests in einem Computer.
E	Der Effekt eines statistischen Tests beschreibt die mathematisch interpretierbare Ausgabe eines Tests. Damit ist der Effekt direkt mit dem Begriff der Signifikanz verbunden. Die Entscheidung über die Signifikanz trifft der Forschende unabhängig von der Relevanz eines statistsichen Tests.
21.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
Stati	nd Fischer entwickelte Anfang des letzten Jahrhunderts als Grundlage für das experimentelle Design in der istik die Randomisierung. Warum ist die Randomisierung für die Entscheidung anhand einer statistischen Ausung so wichtig?
A 🗆	Randomisierung ist die direkte Folge von Strukturgleichheit. Die Strukturgleichheit erlaubt es erst von der Stichprobe auf die Grundgesamtheit zurückzuschliessen.
В□	Strukturgleichheit ist durch Randomisierung gegeben. Leider hilft die Randomisierung noch nicht um von der Stichprobe auf die Grundgesamtheit zu schließen. Deshalb wurde das Falsifikationsprinzip entwickelt.
C 🗆	Randomisierung erlaubt erst die Varianzen zu schätzen. Ohne eine Randomisierung ist die Berechnung von Mittelwerten und Varianzen nicht möglich. Dadurch lässt sich erst ein Experiment auswerten.
D 🗆	Strukturgleichheit ist durch Randomisierung gegeben. Somit kann von der Stichprobe auf die Grundgesamtheit geschlossen werden
E□	Randomisierung war bis 1952 bedeutend, wurde dann aber in Folge besserer Rechnerleistung nicht mehr verwendet. Aktuelle Statistik nutzt keine Randomisierung mehr.
22.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	statistischer Test benötigt für die richtige Durchführung Hypothesen <i>H</i> , sonst ist der Test nicht zu interpretieren. Ihe Aussage ist richtig?
A 🗆	
	Mit der Nullhypothese H_A und der Alternativehypothese H_0 gibt es zwei Hypothesen, die aber selten genutzt werden.
B 🗆	
	werden. Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen
C 🗆	werden. Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel-
C 🗆	werden. Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative-hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen
C	werden. Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative-hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte)
C D	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
C D D E	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie chtig?
C D D E	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bloverfahrenstechnik • Angewandte Statistik und Versuchswesen • Blostatistik versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie
C □ D □ E □ 23. Sie vist ri	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie chtig?
C D D	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative-hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestellung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik Statistik Angewandte Statistik für Bioverfahrenstechnik + Angewandte Statistik und Versuchswesen • Biostatistik versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie chtig? H_0 beibehalten obwohl die H_0 falsch ist
C D D D D D D D D D	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H _{pro} und H _{contra} bezeichnet. Die Hypothesen H ₀ und H _A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H ₀ und der Alternativehypothese H _A oder H ₁ gibt es zwei Hypothesen. Aufgabe (2 Punkte) Versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie chtig? H ₀ beibehalten obwohl die H ₀ falsch ist Fire without alarm, dem β-Fehler als Analogie eines Rauchmelders.
C	Ein statistisches Hypothesenpaare gibt es. Zum einen die Nullhypothese und zum anderen die Alternative- hypothese. Es ist aber nur notwendig die Alternative anzugeben, da die Nullhypothese nicht beim Testen benötigt wird. Es gibt ein statistisches Hypothesenpaar mit der Hypothese für und gegen die wissenschaftliche Fragestel- lung. Die Hypothesen werden H_{pro} und H_{contra} bezeichnet. Die Hypothesen H_0 und H_A sind rein prosarischer Natur und bilden keinen mathematischen Hintergrund ab. In der Statistik wird die wissenschaftliche Fragestellung getestet. Daher stehen auch die verständlichen Hypothesen im Mittelpunkt der biologischen Interpretation. Mit der Nullhypothese H_0 und der Alternativehypothese H_A oder H_1 gibt es zwei Hypothesen. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik * Statistik * Angewandte Statistik für Bloverfahrenstechnik * Angewandte Statistik und Versuchswesen * Blostatistik Versuchen folgende Aussage richtig in die Analogie der statistischen Testtheorie zu setzen. Welche Analogie chtig? H_0 beibehalten obwohl die H_0 falsch ist Fire without alarm, dem β-Fehler als Analogie eines Rauchmelders. Fire without alarm, dem β-Fehler als Analogie von Rauch im Haus.

	Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik
	esen eine wissenschaftliche Arbeit, die damit wirbt, dass Effekte und Signifikanz nicht separat dargestellt sind Iern in einer statistischen Maßzahl zusammen. Welche Aussage ist richtig?
A 🗆	Die Teststatistik. Durch den Vergleich von T_c zu T_k ist es möglich die H_0 abzulehnen. Die Relevanz ergibt sich aus der Fläche rechts vom dem T_c -Wert.
В□	Das OR. Als Chancenverhältnis gibt es das Verhältnis von Relevanz und Signifikanz wieder.
C 🗆	Der p-Wert. Durch den Vergleich mit α lässt sich über die Signifikanz entscheiden und der β -Fehler erlaubt über die Power eine Einschätzung der Relevanz.
D 🗆	Einem Konfidenzintervall. Das Konfidenzinterval bringt durch eine Visualisierung und zwei Intervallgrenzer die Möglichkeit mit, eine Relevanzschwelle neben der definierten Signifikanzschwelle zu definieren.
E□	Das Δ . Durch die Effektstärke haben wir einen Wert für die Relevanz, die vom Anwender bewertet werder muss. Da Δ antiproportional zum p-Wert ist, bedeutet auch ein hohes Δ ein sehr kleinen p-Wert.
25.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik
	er Bio Data Science wird häufig mit sehr großen Datensätzen gerechnet. Historisch ergibt sich nun ein Problem der Auswertung der Daten und deren Bewertung hinsichtlich der Signifikanz. Welche Aussage ist richtig?
A 🗆	Aktuell werden immer größere Datensätze erhoben. Dadurch wird auch die Varianz immer höher was automatisch zu mehr signifikanten Ergebnissen führt.
В□	Mehr Fallzahl in Datensätzen bedeutet mehr signifikante Ergebnisse, da in mehr Daten auch mehr Informationen beinhaltet sind. Deshalb lohnen sich riesige Datensätze, die durch die vielen signifikanten Ergebnisse auch eine Menge an relevanten Erkenntnissen liefern.
C 🗆	Eine erhöhte Fallzahl führt automatisch zu mehr signifikanten Ergebnissen auch wenn der Effekt klein ist und damit nicht relevant. Dadurch sind die Informationen zur Signifikanz in riesigen Datensätzen schwer zu verwerten, da fast alle Vergleiche signifikant sind.
D 🗆	Big Data ist ein Problem der parametrischen Statistik. Parameter lassen sich nur auf kleinen Datensätzer berechnen, da es sich sonst nicht mehr um eine Stichprobe im engen Sinne der Statistik handelt.
E□	Riesige Datensätz haben mehr Fallzahl was zur α -Inflation führt. Durch eine Adjustoerung kann dem Problem entgegengewirkt werden.
26.	Aufgabe (2 Punkte)
	Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik
	ahmen Ihrer Abschlussarbeit werten Sie ein Experiment mit Ferkel aus. Es geht um die Leistungssteigerung Ferkelproduktion. Sie messen jeweils die Gewichtszunahme der Ferkel. Die Ferkel einer Muttersau sind dabei
A 🗆	Untereinander abhängig, wenn die Mütter ebenfalls miteinander verwandt sind. Erst die Abhängigkeit 2 Grades wird in der Statistik modelliert.
В□	Je nach Stallanlage kommt eine andere Analyse in Betracht. Eine allgemeine Aussage über Ferkel und Sauer lässt sich statistisch nicht treffen.
C 🗆	Untereinander abhängig. Die Ferkel stammen von einem Muttertier und haben vermutliche eine ähnliche Varianzstruktur.

D □ Die Ferkel stammen von der gleichen Sau und sind somit untereinander unabhängig.

E □ Untereinander unabhängig. Sollten die Mütter verwandt sein, so ist die Varianzstruktur ähnlich und muss

modelliert werden.

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Nachdem Sie einen t-Test gerechnet haben stehen Ihnen verschiedene statistische Maßzahlen zu Verfügung um eine Entscheidung gegen die Nullhypothese zu treffen. Sie entscheiden sich anhand des 95%-Konfidenzintervalls eine Entscheidung zu treffen.

- **A** \square Liegt das berechnete Intervall über dem kritische Wert $T_{\alpha=5\%}$, dann kann die Nullhypothese nicht abgelehnt werden.
- **B** \square Ist $Pr(D|H_0)$ kleiner als das Signifikanzniveau α gleich 5% dann wird die Nullhypothese H_0 abgelehnt.
- ${f C} \ \square$ Das Signifikanzniveauintervall α ist gleich 5% und damit muss das berechnete Intervall unter dem Signifikanzniveauintervall α liegen, dann kann die Nullhypothese nicht abgelehnt werden.
- **D** □ Wir betrachten das Ganze Intervall des 95%-Konfidenzintervalls. Liegt die Null mit in dem Intervall, dann kann die Nullhypothese abgelehnt werden.
- **E** \square Ist T_D höher als der kritische Wert $T_{\alpha=5\%}$ dann wird die Nullhypothese H_0 abgelehnt.

28. Aufgabe (2 Punkte)

Inhalt folgender Module: Biostatistik

Welche Aussage über die Power ist richtig?

- A 🗆 Die Power ist nicht in der aktuellen Testthorie mehr vertreten. Wir rechnen nur noch mit dem Fehler 1. Art.
- **B** \square Die Power beschreibt die Wahrscheinlichkeit die H_A abzulehnen. Wir testen die Power jedoch nicht.
- ${f C} \ \square$ Die Power wird berechnet und ist keine Eigenschaft des Tests. Die Power wird auf 80% gesetzt und beschreibt mit welcher Wahrscheinlichkeit H_0 bewiesen wird
- **D** \square Die Power $1-\beta$ wird auf 80% gesetzt. Damit liegt die Wahrscheinlichkeit für die H_0 bei 20%.
- **E** \square Die Power $1-\beta$ wird auf 80% gesetzt. Alle statistischen Tests sind so konstruiert, dass die H_A mit 80% bewiesen wird.

Statistische Tests für Gruppenvergleiche

29. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Welche Aussage über den t-Test im Allgmeinen ist richtig? Berücksichtigen Sie den Welch t-Test wie auch den Student t-Test!

- **A** □ Der t-Test vergleicht zwei oder mehr Gruppen indem die Mittelwerte miteinander verglichen werden.
- **B** □ Der t-Test ist ein Vortest der ANOVA und basiert daher auf dem Vergleich von Streuungsparametern
- **C** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen.
- **D** \square Der t-Test testet generell zu einem erhöhten α -Niveau von 20%.
- **E** □ Der t-Test vergleicht die Mittelwerte von zwei Gruppen unter der strikten Annahme von Varianzhomogenität. Sollte keine Varianzhomogenität vorliegen, so gibt es keine Möglichkeit den t-Test in einer Variante anzuwenden.

30. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Sie rechnen einen gepaarten t-Test, da Ihre Beobachtungen verbunden sind. Welche der folgenden Aussagen ist richtig?

- **A** □ Wenn die Beobachtungen unabhängig voneinander sind, rechnen wir einen gepaarten t-Test. Messen wir wiederholt an dem gleichen Tier oder Pflanze dann bilden wir das Produkt zwischen den zwei Messpunkten.
- **B** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir die Differenz zwischen den beiden Zeitpunkten. Auf den Differenzen rechnen wir den gepaarten t-Test.

- **C** □ Der gepaarte t-Test nutzt die Varianz der Beobachtungen jeweils paarweise und bildet dafür eine verbundene Stichprobe. Dieser Datensatz *d* dient dann zur Differenzbildung.
- **D** □ Der gepaarte t-Test wird gerechnet, wenn die Beobachtungen abhängig voneinander sind. Wir messen jede Beobachtung nur einmal und berechnen dann die Differenz zu dem Mittel der anderen Beobachtungen.
- **E** □ Abhängige Beobachtungen müssen gesondert in einem gepaarten t-Test modelliert werden. Wenn wiederholt an dem gleichen Tier oder Pflanze gemessen wird, dann bilden wir den Quotienten zwischen den beiden Zeitpunkten. Auf den Quotienten rechnen wir den gepaarten t-Test.

Inhalt folgender Module: Mathematik & Statistik • Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Die folgende Abbildung enthält die Daten aus einer Studie zur Bewertung der Wirkung des Mikronährstoff Sulfit auf den Ertrag in t/ha von Weizen im Vergleich zu einer Kontrolle. Der Versuch wurde in 13 Parzellen pro Gruppe durchgeführt. Welche Aussage im Bezug auf eine statistische Auswertung ist richtig?

Behandlung mit Mikronährstoff

- **A** □ Es liegt ein signifikanter Unterschied vor. Der Effekt liegt bei -0.1.
- **B** □ Die Barplots deuten auf ein signifikanten Unterschied. Der Effekt liegt vermutlich bei -1.
- **C** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -1 unter einer groben Abschätzung. Wir müssen aber eine ANOVA rechnen um den Effekt wirklich bestimmen zu können.
- **D** □ Nach Betrachtung des Barplots liegt kein signifikanter Unterschied vor. Der Effekt kann nicht bei einem t-Test aus Barplots bestimmt werden.
- **E** □ Die Barplots deuten auf keinen signifikanten Unterschied. Der Effekt liegt vermutlich bei -1 unter einer groben Abschätzung.

32. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Sie führen paarweise t-Tests für alle Vergleiche der verschiedenen Rapssorten in Ihrem Experiment durch. Nach der Adjustierung für multiples Testen ist kein p-Wert unter der α -Schwelle. Ihr Experiment beinhaltet fünf Rapssorten und eine ANOVA ergibt p=0.049 für den Ertrag. Sie schauen sich auch die rohen, unadjustierten p-Werte an und finden hier als niedrigsten p-Wert $p_{3-2}=0.053$. Welche Aussage ist richtig?

- **A** □ Das Beispiel kann so nicht auftreten, da die ANOVA und die t-Tests algorithmisch miteinander verschränkt sind.
- **B** □ Die adjustierten p-Werte deuten in die richtige Richtung. Zusammen mit den nicht signifikanten rohen p-Werten ist von einem Fehler in der ANOVA auszugehen.
- **C** □ Der Fehler liegt in den t-Tests. Wenn eine ANOVA signifikant ist, dann muss zwangsweise auch ein t-Test signifikant sein.
- **D** ☐ Hier kommt der Effekt der stiegenden Fallzahl auf die Anzahl an signifikante Ergebnisse zu tragen. Da die ANOVA auf weniger Fallzahl testet als die paarweisen t-Tests, kann die ANOVA schwerer einen signifikanten Unterscheid nachweisen.
- **E** □ Das ist kein Wunder. Die ANOVA testet auf der gesamten Fallzahl und die paarweisen t-Tests verlieren immer eine oder mehr Gruppen als Fallzahl. Mit steigender Fallzahl sind mehr signifikante Unterschiede zu erwarten. Die p-Werte unterscheiden sich numerisch auch kaum.

ANOVA 33. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik Aus einem Feldversuch ergibt sich die Notwendigkeit der Berechnung einer einfaktoriellen ANOVA. Es ergibt sich ein $\eta^2 = 0.78$. Welche Aussage ist richtig? **A** \square Der Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird, wird durch das η^2 beschrieben. **B** \square Die Berechnung von n^2 ist ein Wert für die Interaktion in der einfaktoriellen ANOVA. **C** \square Das n^2 ist die Korrelation der ANOVA. Mit der Ausnahme, dass $n^2 = 0$ der beste Wert ist. **D** \square Das n^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen nicht erklärt wird. Somit der Rest an nicht erklärbarer Varianz. **E** \square Der Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird, wird durch das $1-\eta^2$ beschrieben. 34. Aufgabe Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik **A** \square Es werden 20% der Varianz durch den Versuch erklärt. Das η^2 beschreibt den Anteil der Varianz, der durch Fehler in der Versuchsdurchführung entsteht. **B** \square Mit dem n^2 lässt sich auf die Qualität der Randomisierung und damit der Strukturgleichheit zwischen der Grundgesamtheit und der Stichprobe schließen. Es gilt dabei die Regel, dass ein η^2 -Wert von 1 zu bevorzugen **C** \square Es werden 80% der Varianz durch die Behandlung erklärt. Das n^2 beschreibt den Anteil der Varianz, der von den unterschiedlichen Behandlungsbedingungen nicht erklärt wird. **D** \square Das n^2 beschreibt den Anteil der Varianz, der von den Behandlungsbedingungen erklärt wird. Daher werden 20% der Varianz erklärt. **E** \square Das η^2 beschreibt den Anteil der Varianz, der durch den Forschenden entsteht. Es gilt die Regel, dass ca. 70% der Varianz eines Versuches durch die Versuchsdurchführung entstehen sollen. 35. Aufgabe (2 Punkte) Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik Eine einfaktorielle ANOVA berechnet eine Teststatistik um zu die Nullhypothese abzulehnen. Welche Aussage über die Teststatistik der ANOVA ist richtig? **A** □ Die ANOVA berechnet die F-Statistik indem die MS des Fehlers durch die MS der Behandlung geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese abgelehnt werden.

- B 🗆 Die ANOVA berechnet die T-Statistik aus der Multiplikation der MS Behandlung mit der MS der Fehler. Wenn die F-Statistik genau 0 ist, kann die Nullhypothese nicht abgelehnt werden.
- C □ Die ANOVA berechnet die T-Statistik indem den Mittelwertsunterschied der Gruppen simultan durch die Standardabweichung der Gruppen teilt. Wenn die T-Statistik höher als 1.96 ist, kann die Nullhypothese abgelehnt werden.
- **D** Die ANOVA berechnet die F-Statistik indem die MS der Behandlung durch die MS des Fehlers geteilt werden. Wenn die F-Statistik sich der 0 annähert kann die Nullhypothese nicht abgelehnt werden.
- **E** □ Die ANOVA berechnt die F-Statistik aus den SS Behandlung geteilt durch die SS Fehler.

36. Aufgabe (2 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Viele statistische Verfahren nutzen eine Teststatistik um eine Aussage über den Zusammenhang zwischen der Grundgesamthat und der Stichprobe abzubilden. Ein statistisches Testwerkzeug ist hierbei die ANOVA. Die ANOVA rechnet dabei...

A □ ... den Unterschied zwischen der Varianz ausgelöst durch alle Behandlungsgruppen und der Varianz aus globalen Behandlungsguppen der Kontrollen. Wenn die ANOVA nicht signifikant ist, muss ein Posthoc-Test ausgeschlossen werden.

- **B** □ ... den Unterschied zwischen der Varianz aus verschiedenen Behandlungsguppen und der Varianz über alle Behandlungsgruppen. Wenn die ANOVA signifikant ist, muss über einen Posthoc-Test nachgedacht werden um den signifikanten Unterschied in den Gruppen exakt zu bestimmen.
- **C** □ ... den Unterschied zwischen der Mittelwerte und der Varianz aus verschiedenen Behandlungsguppen. Wenn die ANOVA signifikant ist, ist bekannt welcher Vergleich konkret unterschiedlich ist.
- **D** □ ... den Unterschied zwischen der F-Statistik anhand der Varianz der Gruppen. Wenn die F-Statistik exakt 0 ist, kann die Nullhypothese abgelehnt werden.
- **E** □ ... den Unterschied zwischen zwei paarweisen Mittelwerten aus verschiedenen Behandlungsguppen. Wenn die signifikant ist, ist daher bekannt welcher Vergleich konkret unterschiedlich ist.

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Ein Versuch wurde an 65 Tieren durchgeführt, wobei jedes Tier eine von drei Vitamin-C-Dosen (0.5, 1 und 1.5 mg/Tag) über eine von zwei Verabreichungsmethoden erhielt. Die folgende Abbildung enthält die Daten aus diesem Versuch zur Bewertung der Wirkung von Vitamin C auf das Zahnwachstum bei Hasen. Welche Aussage ist richtig, wenn Sie eine zweifaktorielle ANOVA rechnen?

- **A** \square Es liegt eine mittlere bis starke Interaktion vor ($p \le 0.05$).
- **B** \square Mit ($p \le 0.05$) liegt keine Interaktion vor.
- **C** \square Das Bestimmtheitsmaß R^2 ist klein.
- **D** \square Eine Korrelation liegt vor ($p \le 0.05$).
- **E** \square Keine Korrelation liegt vor $(p \ge 0.05)$.

Multiple Gruppenvergleiche

38. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Sie haben folgende unadjustierten p-Werte gegeben: 0.03, 0.89, 0.01 und 0.34. Sie adjustieren die p-Werte nach Bonferroni. Welche Aussage ist richtig?

- **A** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0075, 0.2225, 0.0025 und 0.085. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **B** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.12, 1, 0.04 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen.
- **C** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.0075, 0.2225, 0.0025 und 0.085. Die adjustierten p-Werte werden zu einem α -Niveau von 1.25% verglichen.
- **D** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.12, 3.56, 0.04 und 1.36. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.
- **E** \square Nach der Bonferroni-Adjustierung ergeben sich die adjustierten p-Werte von 0.12, 1, 0.04 und 1. Die adjustierten p-Werte werden zu einem α -Niveau von 5% verglichen.

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Sie rechnen einen PostHoc-Test. Nun sollen Sie ein *CLD* erstellen. Was bedeutet dieser Fachbegriff und welche folgende Beschreibung der Interpretation ist korrekt?

- **A** □ Compound letter display. Gleichheit in dem Outcomes wird durch den gleichen Buchstaben oder Symbol dargestellt. Teilweise ist die Interpretation des Verbunds (eng. compound) herausfordernd, da wir ja nach dem Unterschied suchen.
- **B** □ Contrast letter display. Unterschiede in den Behandlungen werden durch den gleichen Buchstaben oder Symbol dargestellt. Die Interpretation des CLD führt häufig in die Irre.
- C □ Compact letter display. Gleiche Buchstaben zeigen Gleichheit in den Behandlungen. Die Interpretation ist deshalb sehr intuitiv und einfach. Darüber hinaus ist damit das CLD auch auf einer Linie mit der Testtheorie, da wir ja auch dort die Gültigkeit der Nullhypothese nachweisen. Wir suchen ja Gleichheit.
- **D** □ Compact letter display. Teilweise ist die Interpretation des CLD schwierig, da wir ja nach Unterschieden suchen aber nur Gleichheit in den Buchstaben sehen. Die Gleichheit der Behandlungen wird durch gleiche Buchstaben dargestellt.
- **E** □ Compact line display. Gleichheit in den Behandlungen wird durch den gleichen Buchstaben oder Symbol dargestellt. Früher wurden keine Buchstaben sondern eine durchgezogene Linie verwendet. Bei mehr als drei Gruppen funktioniert die Linie aber graphisch nicht mehr.

40. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

In Ihrer Bachelorarbeit müssen Sie einen Feldversuch auswerten. Nachdem Sie die zweifaktorielle ANOVA gerechnet haben und keine signifikante Interaktion vorliegt, wollen Sie jetzt einen Posthoc-Test rechnen. Welches R Paket nutzen Sie dafür am besten?

- **A** □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem {emmeans} Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- **B** Das R Paket {hmisc} erlaubt die Durchführung eines multiplen Gruppenvergleichs aus verschiedenen Modellen heraus. Aus einem hmisc Objekt lässt sich recht einfach das CLD erstellen und so über Barplots eine schnelle Interpration der statistischen Auswertung durchführen.
- C □ Das R Paket {Im}. Das Paket {Im} erstellt selbstständig Konfidenzintervalle und entsprechende p-Werte. Da wir in dem Paket nicht adjustieren müssen, ist es bei Anwendern sehr beliebt.
- D □ Das R Paket {ggplot}. Wir erhalten hier sofort eine Visualisierung der Daten. Anhand der Visualisierung lässt sich eine explorative Datenanalyse durchführen, die gleichwertig zu einem Posthoc-Test ist.
- **E** □ Das R Paket {emmeans} erlaubt die Durchführung eines multiplen Gruppenvergleichs. Aus einem emmeans Objekt lässt sich leider kein CLD erstellen. Dennoch ist das Paket einfach zu bedienen und wird deshalb genutzt. Die Interpretation der statistischen Auswertung wird über einen Barplot abgebildet.

41. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Bei einem multiplen Vergleich oder Posthoc Test kann es zu einer Besonderheit beim statistischen Testen kommen. Wie nennt man diese Besonderheit beim statistischen Testen und wie kann man mit ihr umgehen?

- **A** \square Beim multiplen Testen kann es zu einer β-Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 20%. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Bonferroni das bekanneste Verfahren ist.
- **B** \square Die Adjustierung der p-Werte nach Bonferroni erlaubt es gegen die β -Inflation vorzugehen, die häufig beim multiplen Testen auftritt. Das globale Powerniveau liegt nicht mehr bei 80% sondern sehr viel niedriger.
- ${f C}$ Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel niedriger, bei ca. 1%. Es kommt zu einer α -Hyperinflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.
- \mathbf{D} \square Beim multiplen Testen kann es zu einer α -Inflation kommen. Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern weit darunter. Daher müssen die p-Werte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der p-Werte nach Welch das bekanneste Verfahren ist.
- **E** \square Das globale Signifikanzniveau liegt nicht mehr bei 5% sondern sehr viel höher. Es kommt zu einer α-Inflation. Dagegen kann mit der Adjustierung der p-Werte nach Bonferroni vorgegangen werden.

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

In einem Feldversuch haben Sie einen Behandlungsfaktor mit mehreren Leveln vorliegen. Sie rechnen einen multiplen Vergleich. Vorher hatten Sie eine einfaktorielle ANOVA mit einem signifikanten Ergebnis vorliegen. Welche Aussage ist richtig?

- **A** \square Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nach Bonferroni adjustiert werden. Dafür wird der Effekt mit der Anzahl an Vergleichen k multipliziert. Dies geschiet analog zu den p-Werten.
- **B** □ Wenn ein multipler Test gerechnet wird, dann muss der Effekt Δ nicht adjustiert werden. Bei einem Effekt im multiplen Testen handelt es sich um eine Wahrscheinlichkeit für das Auftreten der Nullhypothese.
- C □ Beim multiplen Testen kann es zu einer Effektüberschätzung (Δ-Inflation) kommen. Daher müssen die Effekte angepasst werden. Dies geschieht nicht händisch sondern intern in den angewendeten Algorithmen.
- ${\bf D}$ \square Beim multiplen Testen muss der Effekt, wie der Mittelwertsunterschied Δ aus einem t-Test, nicht adjusiert werden.
- **E** □ Beim multiplen Testen kann es zu einer Δ-Inflation kommen. Das globale Effektniveau liegt nicht mehr bei 20%. Daher müssen die Effekte entsprechend adjustiert werden. Hierfür gibt es verschiedene Verfahren, wobei das Verfahren zur Adjustierung der Effekte nach Bonferroni das bekanneste Verfahren ist.

Lineare Regression & Korrelation

43. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Im Allgemeinen gibt es zwei mögliche Ziele für ein Regressionsmodell. Wir können eine Vorhersagemodell oder ein kausales Modell rechnen. Welche Aussage ist für ein prädiktives Modell richtig?

- **A** □ Ein prädiktives Modell schliesst grundsätzlich lineare Modell aus. Es muss ein Graph gefunden werden, der alle Punkte beinhaltet. Erst dann kann das *R*² berechnet werden.
- **B** \square Wenn ein prädiktives Modell gerechnet werden soll dann kann dies auf dem gesamten Datensatz geschehen. Das Ziel ist es einen Zusammenhang von X auf Y zu modellieren. Wie wirken sich die Einflussvariablen Y auf die gemessenen Endpunkte $X = x_1, ..., x_p$ aus?
- C ☐ Ein prädiktives Modell benötigt mindestens eine Fallzahl von über 100 Beobachtungen und darf keine fehlenden Werte beinhalten. Die Varianzkomponenten müssen homogen sein.
- **D**

 Ein prädiktives Modell basiert auf einem Traingsdatensatz und einem Testdatensatz. Auf dem Trainingsdatensatz wird das Modell trainiert und auf dem Testdatensatz validiert.
- **E** \square Ein prädiktives Modell möchte die Zusammenhänge von X auf Y modellieren. Hierbei geht es um die Effekte von X auf Y. Man sagt, wenn x_1 um 1 ansteigt ändert sich Y um einen Betrag β_1 .

44. Aufgabe (2 Punkte)

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen approximativ einer Normalverteilung folgen. Sie können einen QQ-Plot für die visuelle Überprüfung der Annahme an die Residuen nutzen. Welche Aussage ist richtig?

- **A** □ Wir betrachten die Gerade und dabei insbesondere die beiden Enden der Gerade. Hier sollten die Punkte auf der Geraden liegen, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- **B** □ Wir betrachten die Gerade und dabei insbesondere die beiden Enden der Gerade in dem IQR, also dem ersten und dritten Quartile. Hier sollten die Punkte auf der Geraden liegen, dann ist die Annahme an die Normalverteilung der Residuen erfüllt.
- C □ Wir betrachten die Gerade. Wenn die Punkte einigermaßen gleichmäßig um die Gerade verteilt liegen, dann gehen wir von normalverteilten Residuen aus. Dies ist hier nicht der Fall. Wir haben keine normalverteilten Residuen vorliegen.
- **D** □ Die Annahme der normalverteilten Residuen ist erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden und Korrelation ist negativ.
- **E** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Die Punkte liegen zum überwiegenden Teil nicht auf der Geraden.

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Sie berechnen in Ihgrer Abschlussarbeit den Korrelationskoeffizienten ρ . Welche Aussage über den Korrelationskoeffizienten ρ ist richtig?

- **A** \square Korrelationskoeffizienten ρ liegt zwischen 0 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ einheitslos und kann als Standardisierung verstanden werden.
- **B** \square Der Korrelationskoeffizienten ρ liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ρ als standardisierte Steigung zu verstehen, wenn eine Standardisierung durchgeführt wurde. Diese Adjustierung nach Fischer muss am Anschluß der Berechnung der Korrelation durchgeführt werden.
- ${f C} \ \square$ Der Korrelationskoeffizienten ho liegt zwischen -1 und 1. Darüber hinaus ist der Korrelationskoeffizienten ho einheitslos und kann als standardisierte Steigung verstanden werden.
- D □ Der Korrelationskoeffizienten ρ zeigt keinen Zusammenhang zwischen zwei Variablen x und y bei einem Wert von 0. Einen negativen Zusammenhang Richtung -1 und somit auch einen positiven Zusammenhang Richtung 1. Je größer die Zahl allgemein, desto stärker der Effekt.
- **E** \square Der Korrelationskoeffizienten ρ ist eine standardisierte, statistische Maßzahl, die zwischen 0 und 1 liegt. Dabei ist Korrelationskoeffizienten ρ einheitslos. Eine Signifikanz kann nicht nachgewiesen werden.

46. Aufgabe (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Nach der Modellierung einer Regression stellt sich die Frage, ob die Residuen (.resid) gleichmäßig um die gefitte Gerade liegen. Sie können folgende Abbildung für die visuelle Überprüfung der Residuen nutzen. Welche Aussage ist richtig?

- **A** □ Die Annahme der normalverteilten Residuen ist nicht erfüllt. Vereinzelte Punkte liegen oberhalb bzw. unterhalb der Geraden um die 0 Linie weiter entfernt. Ein klares Muster ist zu erkennen.
- **B** □ Die Punkte müssen gleichmäßig in dem negativen Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Die Analyse ist gescheitert.

C 🗆	Die Annahme der normalverteilten Residuen ist erfüllt. Es ist ein Muster zu erkennen und wir können damit auf die Signifkanz von $x_1,,x_p$ schließen.		
D 🗆	Die Annahme der normalverteilten Residuen ist erfüllt. Kein Muster ist zu erkennen und keine Outlier beobachten.		
E 🗆	Die Punkte müssen gleichmäßig, mit ähnlichen Abständen, in dem positiven wie auch negativen Bereich liegen. Dies ist hier klar nicht der Fall. Einzelne Ausreißer können beobachtet werden. Wir können mit dem Model so nicht rechnen und müssen erst die auffälligen Werte gesondert betrachten.		
47.	Aufgabe (2 Punkte) Inhalt folgender Module: Biostatistik		
so ri der <i>i</i>	ner lineren Regression kann es vorkommen, dass der Effekt repräsentiert durch den β Koeffizienten nicht chtig von der Größenordnung zu dem p-Wert passen will. So liefert eine Untersuchung des Einflusses von PO_2 -Konzentration in $[\mu g]$ im Wasser auf das Wachstum in $[kg]$ an Spitzkohl folgende Effekte und p-Werte: 051 als p-Wert und einen β_{PO_2} Koeffizienten von 7.4×10^{-6} . Welche Aussage ist richtig?		
A 🗆	Das Gewicht und die PO_2 -Konzentration korrelieren sehr stark, deshalb wird der β_{PO_2} Koeffizient sehr klein. Mit einer ANOVA kann für die Korrelation korrigiert werden und der Effektschätzer passt dann zum p-Wert.		
B 🗆	Die Fallzahl ist zu klein angesetzt. Je kleiner die Fallzahl ist, desto höher ist die Teststatsitik und damit auch der p -Wert kleiner. Wir brauchen also mehr Fallzahl um den geringen Effekt noch signifikant zu krigen.		
C 🗆	Wenn der Effekt β_{PO_2} sehr klein ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{PO_2} in y . Daher ist hier mit einer anderen Einheit in den Daten zu rechnen, so dass wir hier einen besser formatierten Effekt sehen. Der p-Wert stammt aus einer einheitslosen Teststatistik.		
D 🗆	Wenn der Effekt β_{PO_2} winzig ist, dann kann es an einer falsch gewählten Einheit liegen. Der Anstieg von einer Einheit in X führt ja zu einer Änderung von β_{PO_2} in x . Wir müssen daher die Einheit von y entsprechend anpassen.		
E 🗆	Die Einheit der PO_2 -Konzentration ist zu klein gewählt. Dadurch sehen wir den sehr kleinen p -Wert. Der p -Wert und die Einheit von der PO_2 -Konzentration hängen antiproportional zusammen.		
48.	Aufgabe (2 Punkte) Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik		
Rech	vollen nach der explorativen Datenanalyse (EDA) Ihre Daten in der Abschlussarbeit auswerten. Nach einiger Bereche finden Sie heraus, dass Sie zuerst die Daten mit der Funktion lm() in R modellieren müssen. Welche Bendung folgt drauf?		
A 🗆	Ist die Einflussvariable X numerisch so werden die Gruppenmittelwerte geschätzt und eine anschließende ANOVA sowie multipler Gruppenvergleich mit {emmeans} ist möglich.		
B 🗆	Die Funktion $lm()$ in \mathbb{R} wird klassischerweise für die nicht-lineare Regression genutzt. Ist die Einflussvariable X numerisch so werden die Gruppenmittelwerte geschätzt.		
C 🗆	Die Funktion $lm()$ in \P ist der erste Schritt für einen Gruppenvergleich. Danach kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion $lm()$ werden die Gruppenmittelwerte bestimmt.		
D 🗆	Die Funktion $lm()$ in \P ist der letzte Schritt für einen Gruppenvergleich. Vorher kann eine ANOVA oder aber ein multipler Vergleich in {emmeans} gerechnet werden. In der Funktion $lm()$ werden die Gruppenvarianzen bestimmt.		
E 🗆	Neben der klassichen Verwendung der Funktion lm() in der linearen Regression kann auch ein Gruppenvergleich gerechnet werden. Dafür müssen aber alle Faktoren aus den Daten entfernt und numerisht umgewandelt werden. Dann kann das R Paket {emmeans} genutzt werden um die Korrelation zu berechnen. Eine Adjustierung ist dann nicht mehr notwendig.		

Inhalt folgender Module: Biostatisti

In Ihrer Abschlussarbeit haben Sie neben den klassischen normalverteilten Endpunkte, wie Trockgewicht und Wuchshöhe noch den Infektionsstatus und Zähldaten erhoben. Um diese nicht normalverteilten Endpunkte auszuwerten nutzen Sie das *generalisierte lineare Modell (GLM)*. Welche Aussage ist richtig?

- A □ In ist mit dem generalisierten linearen Modell (GLM) eine Modellierung implementiert, die neben der klassischen Normalverteilung auch die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann.
 B □ Das GLM ist eine allgemeine Erweiterung der linearen Regression auf die Normalverteilung.
 C □ Das generalisierte lineare Modell (GLM) erlaubt auch weitere Verteilungsgruppen für das X bzw. die Einflussvariablen in einer linearen Regression zu wählen.
- **D** □ In **R** ist mit dem *generalisierten linearen Modell (GLM)* eine Modellierung implementiert, die die Poissonverteilung für Zähldaten oder die Binomialverteilung für 0/1-Daten modellieren kann. Weitere Modellierungen sind in **R** auch mit zusätzlich geladenen Paketen nicht möglich.
- **E** □ Das GLM ist ein faktisch maschineller Lernalgorithmus, der selstständig die Verteilungsfamilie für Y wählt.

50. Aufgabe (2 Punkte)

Inhalt folgender Module: Biostatistik

Sie führen ein Experiment zur Behandlung von Klaueninfektionen bei Rinder durch. Bei 5 Tieren finden Sie eine Erkrankung der Klauen vor und 8 Tiere sind gesund. Welche Aussage über den Effektschätzer Odds ratio ist richtig?

- **A** □ Das Verhältnis der Anteile Odds ratio ergibt ein Anteilsverhältnis von 0.38. Wir sind am Anteil der Kranken interessiert.
- **B** □ Es ergibt sich ein Odds ratio von 0.38, da es sich um eine Chancenverhältnis handelt.
- **C** □ Der Anteil der Gesunden wird berechnet. Da es sich um ein Anteil handelt ergibt sich ein Odds ratio von 0.38.
- **D** □ Da es sich um ein Chancenverhältnis handelt ergibt sich ein Odds ratio von 2.6.
- **E** □ Es ergibt sich ein Odds ratio von 0.62, da es sich um eine Chancenverhältnis handelt

Teil I.

Programmieren in R

51. Aufgabe

(9 Punkte)

Inhalt folgender Module: Mathematik & Statistik • Statistik

Grundlegende Kenntnisse der Programierung in Plessica muss ihrer Abschlussarbeit mit arbeiten. Deshalb sitzt sie jetzt mit Ihnen zusammen und hat einige Fragen zu den Grundlagen in an Sie! Na dann wollen Sie mal helfen. Immerhin will ihre Betreuerin, dass genutzt wird.

Jessica: Was ist der Unterschied zwischen dem RStudio und R? (1 Punkt)

Sie antworten:

Jessica: Es gibt ja in R unter anderem library() und Packages. Was ist de Unterschied und wozu brauche ich die? (1 Punkt)

Sie antworten:

Jessica: Jetzt sehe ich wieder diese Tilde (~) in R. Wo brauchen wir diese denn nochmal? (1 Punkt) Sie antworten:

Jessica: Was ist eigentlich ein Faktor in 😱? (1 Punkt)

Sie antworten:

Jessica: Wie war nochmal der Name der Funktion in dem wir in R Daten intern abspeichern? Was waren da nochmal die Vorteile? (1 Punkt)

Sie antworten:

Jessica: Wie heißen nochmal die beiden R Pakete, die wir fast immer laden, wenn wir R nutzen wollen? (1 Punkt) Sie antworten:

Jessica: Ich habe doch die Spalte mutiert und geändert. Warum sehe ich das in R aber mein Datensatz ändert sich nicht? (1 Punkt)

Sie antworten:

Jessica: Wie sieht der Pipe-Operator aus und was ist seine Funktion? Gerne mit Beispiel! (1 Punkt)

Sie antworten:

Jessica: Gibt es einen Vorteil von der Nutzung von 😱 ? (1 Punkt)

Sie antworten:

Fortgeschrittene Kenntnisse der Programierung in R 'Hm...am Ende ist dann R eigentlich gar nicht so schwer, wenn ich Hilfe habe.', meint Jonas stolz und lacht Sie an. Nur leider kennt er sich überhaupt nicht mit R aus! Das heißt, Sie müssen hier einmal Rede und Antwort stehen und helfen. Sonst wird es für Jonas dann in seiner Hausarbeit nichts mit der Auswertung und Abgabe. Das kann auch keine Lösung für Jonas und Sie sein. Immerhin haben Sie schon so viel gelernt.

Jonas fragt: Ich hatte mir eine Analogie für das R Paket {ggplot} gemerkt. Wie war noch gleich die Analogie und das damit verbundene Prinzip von {ggplot}? (2 Punkte)

Sie antworten:

Jonas fragt: Datumsangaben sind schwierig, da es nur ein gültiges Format gibt, was zwischen Programmen funktioniert. Wie lautet das Format? (1 Punkt)

Sie antworten:

Jonas fragt: Wozu war nochmal die Funktion mutate() gut? (1 Punkt)

Sie antworten:

Jonas fragt: Wie verbindet {ggplot} die einzelnen Ebenen einer Abbildung? (1 Punkt)
Sie antworten:

Jonas fragt: Wenn ich die Spalten in Excel benenne, was muss ich da beachten? (1 Punkt)

Sie antworten:

Jonas fragt: Wenn ich Daten in R mit Gruppen eingelesen habe, welche Funktion nutze ich dann meistens als erstes und warum muss ich das machen? Was muss ich da machen? (2 Punkte)

Sie antworten:

Jonas fragt: Ich habe den Faktor f_1 und f_2 und möchte den Faktor f_1 getrennt in jedem Level des Faktors f_2 auszuwerten. Wie geht das in der Funktion emmeans ()? (1 Punkt)

Sie antworten:

Teil II.

Deskriptive Statistik & Explorative Datenanalyse

53. Aufgabe (8 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Zerforschen des Barplots Jonas steht vor einem ersten Problem, denn wenn es nach seiner Betreuer geht, soll er in einem einer Klimakammer Brokoli auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Stricken. Ein wunderbares Hobby um sich drin zu verlieren und Abstand zu bekommen. Jonas denkt gerne über Stricken nach. Das heißt erstmal überlegen für Jonas. Aus den Boxen wummert Iron Maiden und sein Mund ist verklebt von Snickers. 'Herrlich', denkt Jonas. Die Behandlung werden verschiedene Düngestufen (*ctrl*, *low* und *high*) sein. In seiner Exceldatei wird er den Messwert (Y) *Trockengewicht* als *drymatter* aufnehmen. Vorab soll Jonas aber eimal die folgenden Barplots seiner Betreuer nachbauen, damit er den R Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Wenn die Erschöpfung nicht wäre, ja dann wäre wohl vieles möglich für Jonas! Aber so..

Leider kennt sich Jonas mit der Erstellung von Barplots in \mathbf{R} nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen der drei Barplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 3. Erstellen Sie einen beispielhaften Datensatz im 😱 üblichen Format, aus dem die drei Barplots *möglicherweise* erstellt wurden! (2 Punkte)
- 4. Kann Jonas einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Visualisierung des Barplots Paula steht vor einem ersten Problem, denn wenn es nach ihrer Betreuerin geht, soll sie in einem einem Gewächshausexperiment Erdbeeren auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Am Ende dann doch besser Harry Potter. Wunderbar. Eine echte Ablenkung für Paula. Die Behandlung waren verschiedene Lichtstufen (none, 200lm und 600lm). In ihrer Exceldatei hat sie den Outcome (Y) *Frischegewicht* als *freshmatter* aufgenommen. Nun soll Paula die Daten eimal als Barplots in einer Präsentation visualisieren, damit ihrer Betreuerin wieder klar wird, was sie eigentlich nochmal gemacht hat und was für ein Ergbnis in einem statistischen Test zu erwarten wäre. Wäre da nicht noch etwas. Eine echte Herausforderung für sie war schon immer der Perfektionismus gewesen. Ein leidiges Lied. Aber egal. Einfach mal raus um zu Fechten. Ohne Ziel und Uhr. Das ist was für Paula.

treatment	freshmatter
200lm	40.4
none	8.5
200lm	50.3
600lm	20.6
600lm	30.6
200lm	53.5
200lm	54.6
none	46.5
none	34.9
200lm	48.5
600lm	24.5
none	38.6

Leider kennt sich Paula mit der Erstellung von Barplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichnen Sie in *einer* Abbildung die Barplots für die Behandlung von Erdbeeren! Beschriften Sie die Achsen entsprechend!**(4 Punkte)**
- 3. Beschriften Sie einen Barplot mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Paula keinen Effekt zwischen den Behandlungen von Erdbeeren erwarten würde, wie sehen dann die Barplots aus? Antworten Sie mit einer Skizze der Barplots! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Zerforschen des Boxplots Yuki steht vor einem ersten Problem, denn wenn es nach seinem Betreuer geht, soll er in einem einem Freilandversuch Brokoli auswertet. Soweit eigentlich alles passend. Besser wäre was anderes gewesen. Yuki liebt Orchideen. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Das heißt erstmal überlegen für Yuki. Yuki schmeißt noch eine Handvoll Reese's Peanut Butter Cups in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von London Grammar. Die Behandlung werden verschiedene Bewässerungstypen (*low, mid* und *high*) sein. In seiner Exceldatei wird er den Endpunkt (Y) *Ertrag* als *yield* aufnehmen. Vorab soll Yuki aber eimal die folgenden Boxplots seinem Betreuer nachbauen, damit er den R Code schonmal für später vorliegen hat. Damit geht das Problem schon los. Yuki und die Faulheit, eine unendliche Geschichte mit kniffeligen Wendungen.

Leider kennt sich Yuki mit der Erstellung von Boxplots in R nicht aus. Deshalb braucht er bei der Visualisierung Ihre Hilfe!

- 1. Erstellen Sie eine Tabelle mit den statistischen Maßzahlen aus der obigen Abbildung der drei Boxplots! Beachten Sie die korrekte Darstellungsform der statistischen Maßzahlen! (3 Punkte)
- 2. Beschriften Sie einen der Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Kann Yuki einen Unterschied zwischen den Behandlungen erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Visualisierung des Boxplots Boxplots sind bedeutend in der Darstellung von wissenschaftlichen Ergebnissen. Leider hat sich Nilufar nicht gemerkt, welche statistischen Maßzahlen für einen Boxplot erhoben werden müssen. Besser wäre was anderes gewesen. Am Ende dann doch besser Hip Hop. Wunderbar. Eine echte Ablenkung für Nilufar. Das ist in soweit doof, da nach ihrer Betreuerin nun Boxplots aus ihren Daten gebaut werden sollen, bevor es mit dem statistischen Testen weitergeht. Anhand von Boxplots lässt sich eine Aussage über die Varianzhomogenität über die Behandlungsgruppen treffen. Die Behandlung für Brokoli waren verschiedene Substrattypen (*torf* und 70*p*30*n*). Erfasst wurde von Nilufar als Outcome (Y) *Ertrag*. Nilufar hat dann *yield* in ihrer Exceldatei eintragen. Aber nur in passender Atmospäre! Schon dutzende Male gesehen: Star Trek. Aber immer noch großartig zusammen mit Takis Blue Heat.

treatment	drymatter
torf	21.6
70p30n	29.3
torf	27.2
70p30n	36.6
70p30n	23.5
torf	31.2
torf	26.7
torf	26.3
70p30n	26.6
70p30n	15.0
torf	25.7
70p30n	35.6
70p30n	27.1
torf	31.7
70p30n	26.1

Leider kennt sich Nilufar mit der Erstellung von Boxplots nicht aus. Deshalb braucht sie bei der Visualisierung Ihre Hilfe!

- 1. Zeichnen Sie in *einer* Abbildung die beiden Boxplots für die zwei Behandlungen von Brokoli! Beschriften Sie die Achsen entsprechend! **(5 Punkte)**
- 2. Wie ist Ihr Vorgehen, wenn Sie eine gerade Anzahl an Beobachtungen pro Gruppe haben? (1 Punkt)
- 3. Beschriften Sie einen der beiden Boxplots mit den gängigen statistischen Maßzahlen! (2 Punkte)
- 4. Wenn Sie *keinen Effekt* zwischen den Behandlungen von Brokoli erwarten würden, wie sehen dann die beiden Boxplots aus? *Antworten Sie mit einer Skizze der Boxplots!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung des Histogramm für kategoriale Daten In ihrer Hausarbeit möchte Yuki gerne die Daten aus einem Gewächshausexperiment mit Lauch in einem Histogramm darstellen. Das Histogramm erlaubt ihr dabei Rückschlüsse auf die Verteilung über das Outcome (Y) zu treffen. 'Hm...', Reese's Peanut Butter Cups und London Grammar. Das ist und bleibt die beste Kombination zum Nachdenken für Yuki. In seinem Experiment hat Yuki die Läsionen auf den Blättern gezählt. Es wäre einfacher, wenn da nicht noch was wäre. Wenn die Faulheit nicht wäre, ja dann wäre wohl vieles möglich für Yuki! Aber so.. Wenn London Grammar ertönt, dann sucht das Minischwein schleunigst Schutz unter dem Sofa. Yuki schüttelt den Kopf.

Die Läsionen auf den Blättern: 4, 2, 2, 0, 6, 5, 2, 2, 4, 3, 2, 5, 4, 3, 6, 3, 6, 3, 5, 7, 2, 1, 4, 3, 8, 4, 0, 4, 3, 3, 6, 4, 0, 1

Leider kennt sich Yuki mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 3. Ergänzen Sie die absoluten und relativen Häufigkeiten in der Abbildung! (1 Punkt)
- 4. Berechnen Sie aus den Daten die Wahrscheinlichkeit gleich oder mehr als die Anzahl 5 zu beobachten! (1 Punkt)
- 5. Berechnen Sie aus den Daten die Chance gleich oder mehr als die Anzahl 5 zu beobachten! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung des Histogramm für kontinuierliche Daten Jessica schmeißt noch eine Handvoll Schokobons in ihren Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von David Bowie. Jessica betrachtet die folgenden Daten nach einem Leistungssteigerungsversuch mit Schweinen. In dem Experiment wurden die mittlere Anzahl an weißen Blutkörperchen gezählt. Nach der Meinung ihrem Betreuer muss als erstes geschaut werden, wie diese verteilt sind. Also welcher statistischen Verteilung die mittlere Anzahl an weißen Blutkörperchen folgen. Dazu soll Jessica ein Histogramm verwenden. Dann hätte man auch einen guten Überblick über das Outcome (Y). Es wäre einfacher, wenn da nicht noch was wäre. Jessica und der Mangel, eine unendliche Geschichte mit kniffeligen Wendungen. Wenn David Bowie ertönt, dann sucht die Hündin schleunigst Schutz unter dem Sofa. Jessica schüttelt den Kopf.

Die mittlere Anzahl an weißen Blutkörperchen: 12.2, 8.4, 8.2, 10.4, 8.3, 7.8, 6.6, 9.8, 10.4, 8.2, 6.7, 9.1, 11.7, 10.5, 11.3, 4.6, 11.9, 12.9, 7.5, 10.4, 11.4, 5.2, 9.3, 9.8, 12.7

Leider kennt sich Jessica mit der Erstellung von Histogrammen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Zeichen Sie ein Histogramm um die Verteilung der Daten zu visualisieren! (3 Punkte)
- 2. Erläutern Sie Ihr Vorgehen um ein Histogramm für kontinuierliche Daten zu zeichnen! (2 Punkte)
- 3. Beschriften Sie die Achsen der Abbildung! (2 Punkte)
- 4. Ergänzen Sie die relativen Häufigkeiten in der Abbildung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung des Scatterplots Tina liest laut: 'Wenn zwei kontinuierliche Variablen vorliegen, können diese in einer exploartiven Datenanalyse...'. Tina stoppt. 'Hm...', Katjes und Tocotronic. Das ist und bleibt die beste Kombination zum Nachdenken für Tina. Was waren noch gleich kontinuierliche Variablen? In ihrer Abschlussarbeit hatte sie ein Stallexperiment im Emsland durchgeführt. Dabei ging es um den Zusammenhang zwischen Gewichtszuwachs in der 1LW und durchschnittlicher Tagestemperatur [C/d] im groben Kontext von Fleischrindern. Nun stellt sich die Frage für sie, ob es überhaupt einen Zusammenhang zwischen den gemessenen Variablen gibt. Dafür war eine explorative Datenanalyse gut! Wenn die Wut nicht wäre, ja dann wäre wohl vieles möglich für Tina! Aber so.. Dann was anderes. Wenn Indiana Jones läuft, dann ist die Spinne nicht mehr da. Aber jetzt braucht sie mal Entspannung!

Durchschnittlicher Tagestemperatur [C/d]	Gewichtszuwachs in der 1LW
23.8	22.7
28.3	23.1
25.9	16.4
24.4	21.2
25.0	20.4
23.6	17.0
24.2	23.2
25.5	16.9
26.8	20.9
24.8	23.7
27.5	24.0

Leider kennt sich Tina mit der Erstellung einer explorativen Datenanalyse für kontinuierliche Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen entsprechend! (4 Punkte)
- 2. Schätzen Sie eine Gerade durch die Punkte! (1 Punkt)
- 3. Beschriften Sie die Gerade mit den gängigen statistischen Maßzahlen! Geben Sie die numerischen Zahlenwerte mit an! (3 Punkte)
- 4. Wenn *kein* Effekt von *x* auf *y* vorhanden wäre, wie würde die Gerade verlaufen und welche Werte würden die statistischen Maßzahlen annehmen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik

Visualisierung des Mosaicplots Zwei kategoriale Variablen darzustellen ist nicht so einfach. Mark hatte erst über einen Mittelwert nachgedacht, dann aber die Idee verworfen. Wäre da nicht noch was anderes. Eine echte Herausforderung für ihn war schon immer die Unsicherheit gewesen. Ein leidiges Lied. Dabei hatte er sich in ein Freilandversuch im Wendland zum einen die Behandlung Mechanische Bearbeitung [ja/nein] und zum anderen die Messung Frischegewicht über Zielwert [ja/nein] im Kontext von Erdbeeren angeschaut. Jetzt möchte seine Betreuerin erstmal die langen Tabellen mit ja/nein in einer explorativen Datenanalyse zusammengefasst bekommen. Sonst geht es bei seinem Projektbericht nicht weiter. Was super nervig ist. Um zu Reiten geht Mark dann später nochmal raus. Echte Entspannung.

Mechanische	Frischegewicht
Bearbeitung	über Zielwert
ja	nein
ja	ja
nein	nein
ja	ja
ja	nein
ja	ja
nein	ja
nein	ja
ja	nein
nein	nein
nein	ja
nein	ja
nein	ja
nein	nein
nein	ja

Mechanische	Frischegewicht
Bearbeitung	über Zielwert
ja	nein
ja	nein
nein	ja
ja	ja
nein	ja
nein	nein
ja	nein
ja	nein
ja	nein
nein	ja
ja	nein
nein	ja
ja	ja
nein	ja
nein	nein

Leider kennt sich Mark mit der Erstellung einer explorativen Datenanalyse für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Stellen Sie den Zusammenhang zwischen den beiden kategorialen Variablen in einer zusammenfassenden Tabelle dar! (3 Punkte)
- 2. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (3 Punkte)
- 3. Berechnen Sie die Verhältnisse in der Visualisierung! Welche Annahme haben Sie getroffen? (2 Punkte)
- 4. Wenn kein Effekt von der Behandlung vorliegen würde, wie würde die Tabelle und die Visualisierung aussehen? (2 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung von Verteilungen 'Was soll das denn jetzt schon wieder sein? Drei Boxplot, die auf der Seite liegen?', entfährt es Jessica und schaut dabei Yuki an. 'Keine Ahnung. Es ist bestimmt wieder so ein Lernziel mit der Verteilung und so.', meint Yuki sichtlich genervt und mampft noch ein paar Reese's Peanut Butter Cups. 'Du weißt doch wie es heißt, *Frei ist, wer missfallen kann.*¹', merkt Jessica nickend an. Die beiden schauen angestrengt auf die drei Boxplots. Das Ziel ist es zu verstehen, wie eine Verteilung anhand eines Boxplots bewertet werden kann. Yuki und die Faulheit machen die Sache nicht einfacher.

Jetzt brauchen Jessica und Yuki Ihre Hilfe bei der Abschätzung einer Verteilung anhand von Boxplots um ihre Arbeit dann in diesem Semester noch abschließen zu können.

- 1. Zeichnen Sie über die Boxplots die entsprechende zugehörige Verteilung! (3 Punkte)
- 2. Zeichnen Sie unter die Boxplots die entsprechende zugehörige Beobachtungen als Stiche! (3 Punkte)
- 3. Wie viel Prozent der Beobachtungen fallen in das IQR? Ergänzen Sie die Abbildung entsprechend um den Bereich! (2 Punkte)
- 4. Wie viel Prozent der Beobachtungen fallen in $\bar{y}\pm 1s$ und $\bar{y}\pm 2s$ unter der Annahme einer Normalverteilung? (2 Punkte)

¹Oschmann, A. (2024) Mädchen stärken: Stärken fördern, Selbstwert erhöhen und liebevoll durch Krisen begleiten. Goldegg Verlag

Teil III.

Statistisches Testen & statistische Testtheorie

62. Aufgabe (9 Punkte)

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

unten in den Fragen. Einfach selber lesen...'.

Grundgesamtheit und experimentelle Stichprobe 'Schnapspraline?', räuspert sich das Känguruh und schaukelt in der Wippe. Mark und Alex schauen erschrocken auf. 'Ähm, das ist hier eine Klausuraufgabe...', merkt Mark mit leicht schrägen Blick an. 'Ich mache hier ein Praktikum und schreibe Teile der Aufgaben.', gähnt das Känguruh. 'Also, ich glaube das ist so nicht gedacht. Und das sind die Schnapspralinen für den Geburtstag meiner Oma!', ruft Alex. 'Pillepalle! Meins, deins, das sind doch alles bürgerliche Kategorien!', entgegnet das Känguruh und liest von einem zerknitterten Stück Papier ab: 'Was ist der Unterschied zwischen dem Einen und dem Anderen. Steht alles

Leider kennen sich Mark und Alex mit der Grundgesamtheit und der Stuchprobe überhaupt nicht aus. Daher sind Sie gefragt!

- 1. Nennen Sie das statistische Verfahren und zwei konkrete Beispiele zur Durchführung um von einer Grundgesamtheit auf eine Stichprobe zu gelangen! (3 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen Stichprobe und Grundgesamtheit an einem Schaubild! Beschriften Sie das Schaubild entsprechend! *Nutzen Sie hierfür als Veranschaulichung ein aussagekräftiges Beispiel!* (3 Punkte)
- 3. Erweitern Sie das Schaubild um die Entstehung von $Pr(D|H_0)!$ Nutzen Sie hierfür als Veranschaulichung ein aussagekräftiges Beispiel! (3 Punkte)

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Das Nullritual - Die statistische Testtheorie 'Columbo ist der beste Film, den es gibt.', meint Mark. Alex entgegnet, 'Ich empfehle ja immer allen Alien.'Die beiden sind im Zoo und diskutieren, ob Pinguine Knie haben. Eigentlich wollten beide nochmal die statistische Testheorie durchgehen, sind dann aber auf abenteuerlichen Wege im Zoo gelandet. Mark starrt wie hypnotisiert auf einen strullenden Elefanten und stopt die Zeit.² 'Du bist so peinlich.', entfährt es Alex und schmeißt sich noch ein paar überteuerte Gummibärchen rein.

Leider kennen sich Mark und Alex mit statistischen Testtheorie, auch Null-Ritual genannt, überhaupt nicht aus. Geschweige denn mit der Visualisierung als Kreuztabelle.

1. Tragen Sie folgende statistische Fachbegriffe zur statistischen Testtheorie korrekt eine selbst erstellte Kreuztabelle ein! (3 Punkte)

H₀ wahr 5% (Unbekannte) Wahrheit H₀ abgelehnt

2. Ergänzen Sie Ihre erstellte Kreuztabelle um vier weitere, passende Fachbegriffe zur statistischen Testtheorie! (2 Punkte)

Die Entscheidungsfindung durch einen statistischen Test kann auch durch die Analogie zu einem Feuermelder abgebildet werden. Dabei symbolisiert der Feuermelder den statistischen Test und es soll getestet werden, ob ein Feuer ausgebrochen ist.

- 3. In der Analogie des Feuermelders, wie lautet der α -Fehler? (1 Punkt)
- 4. In der Analogie des Feuermelders, wie lautet der β -Fehler? (1 Punkt)
- 5. Wenn der Feuermelder einmal pro Tag messen würde, wie oft würde der Feuermelder mit einem α von 5% in einem Jahr Alarm schlagen? Begründen Sie Ihre Antwort! (2 **Punkte**)

Klausurfragen Bio Data Science

²Yang, P. J., et al. (2014). Duration of urination does not change with body size. Proceedings of the National Academy of Sciences, 111(33), 11932-11937.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung der Teststatistik T_D **und dem p-Wert** Tina und Jessica wollten eigentlich einen Flug nach Mallorca buchen, sind jetzt aber dann doch dazu übergegangen nochmal die Aufgaben für die Statistikklausur durchzugehen. 'Kannst du mir nochmal an einer Visualisierung erklären, wie der Zusammenhang zwischen der Teststatistik aus den Daten T_D und dem p-Wert ist? Ich habe hier zig Fachbegriffe, kriege die abr nicht zusammen...', fragt Tina. Jessica zuckt mit den Schultern. So genau hatte Jessica jetzt auch nicht aufgepasst. Da hilft dann eventuell das YouTube Video weiter. Tina mapmft Katjes und fragt sich, was das alles soll.

Leider kennen sich Tina und Jessica mit der Visualisierung der Teststatistik T_D und dem p-Wert überhaupt nicht aus und brauchen dahr Ihre Hilfe!

Beachten Sie, dass im Folgenden <u>keine numerisch korrekte Darstellung</u> verlangt wird! Es gilt Erkennbarkeit vor Genauigkeit!

- 1. Ergänzen Sie eine beschriftete x-Achse! (1 Punkt)
- 2. Ergänzen Sie " $\bar{y}_1 = \bar{y}_2$ "! (1 Punkt)
- 3. Ergänzen Sie "A = 0.95"! (1 Punkt)
- 4. Zeichnen Sie $T_{\alpha=5\%}$ in die Abbildung! (1 Punkt)
- 5. Zeichnen Sie das Signifikanzniveau α in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Zeichnen Sie $-T_D$ in die Abbildung! (1 Punkt)
- 7. Zeichnen Sie einen signifikant p-Wert in die Abbildung! Begründen Sie Ihre Antwort! (2 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung des 95% Konfidenzintervalls 'So, was haben wir gemacht? Wir haben einen t-test für den Vergleich der Mittelwerte gerechnet.', meint Tina. Jonas schaut fragend. 'Hatten wir nicht alles zu einer Kontrolle verglichen? Das war doch so!', ruft Jonas laut aus. 'Wir haben doch als Messwert *Pilzbefall nach Fungizid* erhoben.', stellt Tina fest. Jetzt haben beide das Problem, die möglichen 95% Konfidenzintervalle zu interpretieren.

Leider kennen sich Tina und Jonas mit der Visualisierung des 95% Konfidenzintervall überhaupt nicht aus.

- Beschriften Sie die untenstehende Abbildung mit der Signifikanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Ergänzen Sie eine in den Kontext passende Relevanzschwelle! Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Skizieren Sie in die untenstehende Abbildung sechs einzelne Konfidenzintervalle (a-f) mit den jeweiligen Eigenschaften! (6 Punkte)
 - (a) Ein nicht signifikantes, nicht relevantes 95% Konfidenzintervall
 - (b) Ein signifikantes, relevantes 99% Konfidenzintervall.
 - (c) Ein 95% Konfidenzintervall mit niedriger Varianz s_p in der Stichprobe als der Rest 95% der Konfidenzintervalle
 - (d) Ein signifikantes, relevantes 95% Konfidenzintervall
 - (e) Ein signifikantes, nicht relevantes 95% Konfidenzintervall
 - (f) Ein 95% Konfidenzintervall mit höherer Varianz s_p in der Stichprobe als der Rest der 95% Konfidenzintervalle

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl Es regnet. Wie immer. Aber dafür sind Jonas und Mark ja auch in Regenbrück zum Lernen verabredet. Gibt es dafür ein besseres Wetter? Eine große Kanne Kaffee und Berge von Snickers liegen bereit und warten darauf gegessen zu werden. Jonas liest laut vor:

Beim statistischen Testen gibt es einen Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl. Gegeben sei die Formel für den Student t-Test auf den die folgenden Überlegungen basieren sollen. Welche Auswirkung hat die Änderungen der jeweiligen statistischen Maßzahl des Effekts Δ , der Streuung s und der Fallzahl n auf die Teststistik T_D , den p-Wert $Pr(D|H_0)$ sowie dem Konfidenzintervall $KI_{1-\alpha}$?

Mark hebt die Augenbraue. 'Mir ist kalt und es zieht bei dir. Ich bleibe dabei. Wir sollten erstmal Columbo schauen, bis dein Backofen hier mal die küche geheizt hat. Den Film habe ich doch extra mitgebracht! Genauso wie die Pizza!' Jonas ist der Idee nicht abgeneigt und auch das Meerschweinchen kommt in die Küche um sich zu wärmen.

Leider kennen sich Jonas und Mark mit dem Zusammenhang zwischen dem Effekt, der Streuung sowie der Fallzahl überhaupt nicht aus.

- 1. Visualisieren Sie den Zusammenhang zwischen der Teststatiatik T_D und dem p-Wert $Pr(D|H_0)$ für sich verändernde T_D -Werte! Geben Sie dafür ein numerisches Beispiel in dem Sie drei T_D -Werte und deren Einfluss auf den p-Wert vergleichen! (3 Punkte)
- 2. Füllen Sie die untenstehende Tabelle aus in dem Sie die Änderung der statistischen Maßzahlen auf die Teststatistik, den p-Wert sowie das Konfidenzintervall in einem Wort oder Symbol beschreiben! (4 Punkte)

	T_D	$Pr(D H_0)$	$KI_{1-\alpha}$		T_D	$Pr(D H_0)$	KI_{1-lpha}
Δ ↑				Δ↓			
<i>s</i> ↑				s ↓			
<i>n</i> ↑				n ↓			

3. Visualisieren Sie ein 95%-iges Konfidenzintervall im Vergleich zu einem 90%-igen Konfidenzintervall! Begründen Sie Ihre Visualisierung anhand der Formel des Konfidenzintervalls des t-Tests mathematisch! (3 Punkte)

Teil IV.

Der Student t-Test & Welch t-Test

67. Aufgabe (9 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Berechnung des Student t-Test oder Welch t-Test Der t-Test. Alex erschaudert. Wenn die Gefälligkeit nicht wäre, ja dann wäre wohl vieles möglich für Alex! Aber so.. Ein mächtiges Werkzeug ist der t-Test in den Händen desjenigen, der ein normalverteiltes Outcome (Y) hat. Aber erstmal überhaupt den t-Test rechnen können. Wie sah das Experiment von Alex überhaupt aus? Alex schmeißt noch eine Handvoll Gummibärchen in seinen Rachen. Im Hintergrund klirrt leise der Spiegel zum Sound von Abba. Alex hat ein Stallexperiment mit Hühnern durchgeführt um eine neue technische Versuchsanlage zu testen. Bei dem Pilotexperiment mit sehr geringer Fallzahl ($n_1 = n_2 = 3$) wurde die Behandlung Ernährungszusatz (ctrl und fedX) an den Hühnern getestet und dabei wurde geschaut, ob der Versuch überhaupt technisch klappen könnte. Gemessen hat Alex dann als Messwert Protein/Fettrate [%/kg]. Warum der Versuch im Oldenburger Land für seiner Hausarbeit stattfinden musste, ist ihm bis heute ein Rätsel. Egal. Gibt es jetzt einen Zusammenhang zwischen der Behandlung und Protein/Fettrate [%/kg]?

Ernährungszusatz	Protein/Fettrate
dose	22.2
dose	11.7
ctrl	22.4
dose	10.7
ctrl	20.4
ctrl	16.8

Leider kennt sich Alex mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 2. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 3. Treffen Sie mit $T_{\alpha=5\%} = 2.04$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 5. Formulieren Sie eine Antwort an Alex über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Berechnung des Student t-Test 'Der t-Test testet einen normalverteilten Messwert (Y).', liest Mark laut. Das hilft jetzt auch nur bedingt weiter. Wenn die Unsicherheit nicht wäre, ja dann wäre wohl vieles möglich für Mark! Aber so.. Laut seiner Betreuerin ist zwar ihm Messwert Frischegewicht [kg/ha] normalverteilt, aber wie rechnet er jetzt einen t-Test? Für seine Abschlussarbeit musste er ein Feldexperiment mit Lauch im Emsland durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll er auch noch testen, ob die Behandlung Lichtstufen (none und 600lm) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Schon dutzende Male gesehen: Columbo. Aber immer noch großartig zusammen mit Marzipankugeln.

Lichtstufen	Frischegewicht
600lm	27.8
600lm	31.5
600lm	20.6
600lm	23.2
600lm	17.9
600lm	30.3
none	35.2
600lm	23.6
none	32.6
none	24.9
none	23.2
none	27.3
600lm	35.3
none	24.3
600lm	27.1
600lm	13.0
none	33.3
none	16.3
600lm	33.1
none	30.8
none	24.7
none	32.4

Leider kennt sich Mark mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht er bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Student t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%} = 1.84$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie den Effekt des Student t-Tests! (1 Punkt)
- 6. Wenn Sie einen Unterschied zwischen den Behandlungsgruppen erwarten würden, wie groß wäre dann der mindeste Effekt? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Formulieren Sie eine Antwort an Mark über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Berechnung des Welch t-Test 'Der t-Test testet ein normalverteiltes Outcome (Y).', liest Jessica laut. Das hilft jetzt auch nur bedingt weiter. Eine echte Herausforderung für sie war schon immer der Mangel gewesen. Ein leidiges Lied. Laut ihrem Betreuer ist zwar ihr Messwert Schlachtgewicht [kg] normalverteilt, aber wie rechnet sie jetzt einen t-Test? Für ihrer Hausarbeit musste sie einen Leistungssteigerungsversuch mit Schweinen in der Uckermark durchführen. Als wäre das nicht schon anstrengend genug gewesen. Jetzt soll sie auch noch testen, ob die Behandlung Lüftungssystem (*keins* und *vorhanden*) ein signifikantes Ergebnis liefert. Hm..., was entspannendes wäre gut. Hm, lecker Schokobons und dazu dann im Hintergrund Herr der Ringe laufen lassen.

Lüftungssystem	Schlachtgewicht
vorhanden	46.4
vorhanden	42.6
vorhanden	26.7
vorhanden	44.5
keins	24.6
keins	29.5
vorhanden	37.2
keins	37.6
keins	45.1
vorhanden	37.0
keins	40.9
keins	31.2
vorhanden	51.0
vorhanden	26.4
keins	34.8
keins	32.4
keins	35.2
keins	36.8
vorhanden	35.1
vorhanden	43.1
vorhanden	38.9

Leider kennt sich Jessica mit der Berechnung eines t-Tests überhaupt nicht aus. Deshalb braucht sie bei der Berechnung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Bestimmen Sie die Teststatistik T_D eines Welch t-Tests! (3 Punkte)
- 4. Treffen Sie mit $T_{\alpha=5\%}=2.86$ eine Aussage zur Nullhypothese! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechnen Sie das 90% Konfidenzintervall. Welche Annahmen haben Sie getroffen? (2 Punkte)
- 6. Nennen Sie den statistischen Grund, warum Sie sich zwischen einem Student t-Test und einem Welch t-Test entscheiden müssen! (1 Punkt)
- 7. Formulieren Sie eine Antwort an Jessica über das Ergebnis Ihrer statistischen Analyse! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Interpretation des t-Tests in **R** - die Teststatistik und der p-Wert Steffen und Alex sind bei Jessica um sich Hilfe in **R** zu holen. Im Hintergrund wummert David Bowie. Die beiden hatten zwar schon erste Kontakte mit **R** sind sich aber unsicher bei der Interpetierung der Ausgabe eines t-Tests für ihren gemeinsamen Versuch. Es würde auch besser funktionieren, wenn Jessica nicht der Mangel im Weg stehen würde und Alex nicht das Problem hätte die Romantik zu händeln. In einer Hausarbeit haben beide zusammen Kartoffeln untersucht. Dabei ging es um den Zusammenhang zwischen der Behandlung Düngestufen (*ctrl* und *high*) und dem Messwert Proteingehalt [g/kg]. Der Versuch wurde in einem Gewächshausexperiment im Oldenburger Land durchgeführt. Nach der Betreuerin ist der Messwert Proteingehalt [g/kg] normalverteilt und ein t-Test passt daher. Das wird jetzt nicht mehr angezweifel...Jessica überlegt, ob sie die beiden nicht noch auf den Film *Herr der Ringe* einlädt.

```
##
## Two Sample t-test
##
## data: Proteingehalt by Düngestufen
## t = -0.49344, df = 15, p-value = 0.6289
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -12.722708 7.939374
## sample estimates:
## mean in group ctrl mean in group high
## 34.17500 36.56667
```

Helfen Sie Jessica bei der Interpretation des t-Tests! Sonst geht es auch für Steffen und Alex nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizzieren Sie eine Abbildung in der Sie T_D , $Pr(D|H_0)$, A=0.95, sowie $T_{\alpha=5\%}=|2.13|$ einzeichnen! **(4 Punkte)**
- 5. Beschriften Sie die Abbildung! (1 Punkt)
- 6. Berechnen Sie den Effekt des t-Tests! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Interpretation des t-Tests in R- das 95% Konfidenzintervall 'Programmieren ist wie eine Sprache lernen. Man muss es nur machen, dann wird man mit der Zeit immer besser!', gibt Paula zwinkernd zu Protokoll. Ein paar Mal hat sie schon der Perfektionismus gehindert weiterzumachen. Das hilft jetzt Tina und Jessica nur bedingt, da beide jetzt die Ausgabe interpretieren müssen und nicht vor drei Wochen, wo noch Zeit gewesen wäre. Beide mampfen konzentriert Katjes und Schokobons in sich hinein. Die beiden hatten im Emsland einen Versuch mit Hühnern in einem Leistungssteigerungsversuch durchgeführt. Das war schon anstrengend genug! 'Wir haben Schlachtgewicht [kg] gemessen, vielleicht hilft das ja...', meint Jessica leicht genervt. Alle starren auf die Rausgabe des t-Tests. Im Hintergrund wummert White Lies und man versteht kaum sein eigenes Wort. Jessica hofft, dass die Ratte von Paula beruhigend wirkt.

```
##
## Two Sample t-test
##
## data: Schlachtgewicht by Flüssignahrung
## t = -3.509, df = 20, p-value = 0.002209
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## -19.872815 -5.054457
## sample estimates:
## mean in group ctrl mean in group flow
## 19.89091 32.35455
```

Helfen Sie Paula bei der Interpretation des t-Tests! Sonst geht es auch für Tina und Jessica nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Skizieren Sie das sich ergebende 95% Konifidenzintervall! (2 Punkte)
- 5. Beschriften Sie die Abbildung und das 95% Konfidenzintervall entsprechend! (2 Punkte)
- 6. Interpretieren Sie den Effekt des 95% Konifidenzintervalls! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Interpretation des t-Tests in **R**- die Visualisierung Almería. Spanien. Sonne und Strand. Yuki und Mark haben ihren gemeinsamen Auslandsaufenthalt sichtlich genossen. Dann hatte sich auch noch angeboten ihre Abschlussarbeit gemeinsam in Almería durchzuführen. Es hätte sogar noch bessser funktionieret, wenn Nilufar nicht die Erwartung ein paar Mal im Weg gestanden hätte und Mark nicht das Problem gehabt hätte die Faulheit zu händeln. Nun müssen jetzt alle Daten in **R** ausgewertet werden, da **R** international der Standard in der Datenauswertung ist und die Betreuer in Spanien nur **R** können. Während beide Nilufar Oliven mit Takis Blue Heat füttern, hoffen Yuki und Mark mehr Informationen von Nilufar über die seltsame **R** Ausgabe des t-Tests. Immerhin erinnern beide sich an die Behandlung Lüftungssystem (*keins* und *vorhanden*) und das es um Puten ging. Im Hintergrund wummert Deichkind und Fotos zeigen Nilufar mit dem Hobby Hip Hop.

```
##
## Two Sample t-test
##
## data: Fettgehalt by Lüftungssystem
## t = 4.6661, df = 14, p-value = 0.0003638
## alternative hypothesis: true is not equal to [condensed]
## 95 percent confidence interval:
## 12.33348 33.31652
## sample estimates:
## mean in group keins mean in group vorhanden
## 46.875 24.050
```

Helfen Sie Nilufar bei der Interpretation des t-Tests! Sonst geht es auch für Yuki und Mark nicht weiter.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Liegt ein signifikanter Unterschied zwischen den Gruppen vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 4. Berechnen Sie den Effekt des t-Tests! (1 Punkt)
- 5. Skizzieren Sie die sich ergebenden Barplots! (2 Punkte)
- 6. Skizzieren Sie die sich ergebenden Boxplot! Welche Annahmen an die Daten haben Sie getroffen? Begründen Sie Ihre Antwort! (2 Punkte)

Teil V.

Die einfaktorielle & zweifaktorielle ANOVA

73. Aufgabe (11 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Visualisierung der einfaktoriellen ANOVA 'Als erstes visualiseren wir unsere Daten und dann können wir schon abschätzen, ob unser Gruppenvergleich in der ANOVA signifikant werden würde?', Steffen schaut Tina fragend an und hofft auf eine positive Regung im Gesicht. Wird aber enttäuscht. Die beiden hatten sich auf einem Konzert von Tocotronic kennengelernt. Tina tut sich auch sehr schwer mit der einfaktoriellen ANOVA. Beide waren im Oldenburger Land um einen Leistungssteigerungsversuch mit Hühnern durchzuführen. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Elterlinie (*Standard*, *Yray* und *Xray*) und dem Messwert Protein/Fettrate [%/kg] gibt. Später wird noch Indiana Jones geguckt. Tina befürwortet das!

Elterlinie	Protein/Fettrate
Xray	33
Yray	25
Yray	25
Standard	31
Standard	29
Standard	30
Standard	31
Standard	30
Xray	36
Xray	35
Yray	27
Yray	24
Yray	27
Xray	39
Yray	24
Xray	36

Leider kennen sich Steffen und Tina mit Darstellung einer einfaktoriellen ANOVA überhaupt nicht aus.

- 1. Erstellen Sie eine Visualisierung der Datentabelle! Beschriften Sie die Abbildung! (2 Punkte)
- 2. Benennen Sie die Visualisierung mit dem korrekten, statistischen Fachbegriff! (1 Punkt)
- 3. Zeichnen Sie folgende statistischen Maßzahlen passend ein!
 - Den globalen Mittelwert β_0 (1 Punkt)
 - Die Mittelwerte der einzelnen Behandlungsstufen (1 Punkt)
 - Die Mittelwertsdifferenz der einzelnen Behandlungsstufen mit $\beta_{Standard}$, β_{Yray} und β_{Xray} (1 Punkt)
 - Die Residuen oder Fehler mit ϵ (1 Punkt)
- 4. Liegt ein vermutlicher signifikanter Unterschied vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Schätzen Sie die Effekte der Behandlungsstufen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Ergebnistabelle der einfaktoriellen ANOVA 'Uff... die einfaktorielle ANOVA. Und wie füllen wir jetzt die Tabelle der ANOVA aus und schauen, ob da was signifikant ist?', Mark hebt die Augenbraue. 'Das ist eine sehr gute Frage. Ich glaube man kann alles in der Tabelle relativ einfach mit wenigen Informationen berechnen.', meint Jessica dazu. Da hilft die Hündin von Jessica auch nur bedingt. Mark hatte sich in ein Stallexperiment verschiedene Zandern angeschaut. Dabei ging es herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Bestandsdichte (standard, eng, weit und kontakt) und dem Messwert Protein/Fettrate [%/kg] gibt. Nachher wollen sich beide noch mit dem Hobby Warhammer von Jessica beschäftigen. Kennt Mark noch nicht, klingt aber interessant.

Leider kennen sich Mark und Jessica mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe, die Hündin reicht als Hilfe nicht aus!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3				
error	20	589.71			
Total	23	5457.83			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.1$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Berechen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Die einfaktoriellen ANOVA und der Student t-Test Tina und Paula schauen sich etwas entnervt an. Gemeinsam schreiben die beiden ihre Abschlussarbeit und sollen nun als erstes einmal die Daten mit eine einfaktoriellen ANOVA auswerten damit abgeschätzt werden kann, ob überhaupt signifikante Ergebnisse in den multipen Gruppenvergleichen zu erwarten sind. Deshalb erstmal Smarties mampfen, die Paula mitgebracht hat. Nun möchte erstmal ihre Betreuung der Arbeit eine ANOVA Tabelle sehen. Was immer da auch drin zu erkennen sein mag. Tina schaut Paula sehen erstmla gar nichts. Die beiden waren im Teuteburgerwald um ein Gewächshausexperiment mit Brokkoli durchzuführen. Dabei haben Tina und Paula den Messwert Frischegewicht [kg/ha] unter der Behandung Düngestufen (*ctrl*, low, mid und high) ermittelt. Später wollen die beiden dann noch raus um zu Fechten.

Leider kennen sich Tina und Paula mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Düngestufen	3	3439.66			
Error	22	412.95			

- 4. Schätzen Sie den p-Wert der Tabelle mit $F_{\alpha=5\%}=3.05$ ab. Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Was bedeutet ein signifikantes Ergebnis in einer einfaktoriellen ANOVA? (1 Punkt)
- 6. Berechnen Sie einen Student t-Test für den vermutlich signifikantesten Gruppenvergleich anhand der untenstehenden Tabelle mit $T_{\alpha=5\%} = 2.03$. Begründen Sie Ihre Auswahl! (3 Punkte)

Düngestufen	Fallzahl (n)	Mittelwert	Standardabweichung
ctrl	7	1.86	3.80
low	6	15.33	3.93
mid	6	33.33	5.13
high	7	9.29	4.42

7. Gegebenen der ANOVA Tabelle war das Ergebnis des Student t-Tests zu erwarten? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik • Statistik • Angewandte Statistik für Bioverfahrenstechnik

Die einfaktorielle ANOVA in 'Uff... die einfaktorielle ANOVA und **R**. Nicht so einfach... Was sagt mir jetzt die Ausgabe der ANOVA und wo sehe ich, ob da was signifikant ist?', denkt Paula und hebt die Augenbraue. Paula hatte sich ein Freilandversuch mit Kartoffeln angeschaut. Als wäre das nicht alles schon schwer genug. Eine echte Herausforderung für sie war schon immer der Perfektionismus gewesen. Ein leidiges Lied. Dabei ging es beim Experiment herauszufinden, ob es einen Zusammenhang zwischen der Behandlung Düngestufen (*ctrl*, *low*, *mid* und *high*) und dem Messwert Trockengewicht [kg/ha] gibt. Nun möchte ihre Betreuerin ihrer Abschlussarbeit erstmal eine ANOVA sehen und die Ergebnisse präsentiert bekommen. Und eigentlich will sie ja was anderes... Schon dutzende Male gesehen: Jagd auf roter Oktober. Aber immer noch großartig zusammen mit Smarties.

```
## Analysis of Variance Table
##

## Response: Trockengewicht
## Df Sum Sq Mean Sq F value Pr(>F)
## Düngestufen 3 4788.2 1596.08 59.529 2.906e-11
## Residuals 24 643.5 26.81
```

Leider kennen sich Paula mit Berechnung einer einfaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (2 Punkte)
- 4. Berechnen Sie den Effektschätzer η^2 . Was sagt Ihnen der Wert von η^2 aus? (2 Punkte)
- 5. Skizzieren Sie eine Abbildung, der dem obigen Ergebnis der einfaktoriellen ANOVA näherungsweise entspricht! (3 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Ergebnistabelle der zweifaktoriellen ANOVA In einen Leistungssteigerungsversuch wurden Schweinen mit dem Behandlung Bestandsdichte (*standard*, *eng*, *weit* und *kontakt*) sowie der Behandlung Ernährungszusatz (*ctrl* und *getIt*) untersucht. Es wurde als Messwert Protein/Fettrate [%/kg] bestimmt. Mark ahnte schon, dass es komplexer wird, als er mit seiner Abschlussarbeit angefangen hat. Das es jetzt aber so kompliziert wird, hätte er jetzt aber auch nicht gedacht. Mark kratzt sich am Kopf. Mark mampft aus Frust noch eine Handvoll Marzipankugeln. Eventuell muss er dann doch nochmal Hilfe in der statistischen Beratung holen. Jetzt versucht er es aber erstmal selber. Und eigentlich wollte Mark doch noch seinem Hobby nachgehen! Mark liebt Geocaching. Darin kann er sich wirklich verlieren und immer wieder neu begeistern.

Leider kennen sich Mark mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Füllen Sie die unterstehende einfaktorielle ANOVA Ergebnistabelle aus! (3 Punkte)

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bestandsdichte	3	1.61			
Ernährungszusatz	1	102.52			
Bestandsdichte:Ernährungszusatz	3	451.73			
Error	18	389.36			

4. Schätzen Sie den p-Wert der Tabelle ab. Begründen Sie Ihre Antwort! (3 Punkte)

	<i>F</i> _{α=5%}
Bestandsdichte	4.26
Ernährungszusatz	3.40
Bestandsdichte:Ernährungszusatz	5.23

- 5. Was bedeutet ein signifikantes Ergebnis in einer zweifaktoriellen ANOVA? (2 Punkte)
- 6. Was sagt der Term Bestandsdichte: Ernährungszusatz aus? Interpretieren Sie das Ergebnis! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Die zweifaktorielle ANOVA in In ein Stallexperiment wurden Zandern mit der Behandlung Bestandsdichte (*standard*, *eng*, *weit* und *kontakt*) sowie der Behandlung Ernährungszusatz (*ctrl* und *getIt*) untersucht. Es wurde als Messwert Protein/Fettrate [%/kg] bestimmt. Jetzt starrt Paula mit auf die Ausgabe einer zweifaktoriellen ANOVA. Leider starrt ihr Betreuer in der gleichen Art Paula zurück an. Das wird ein langer Nachmmittag, denkt sie sich und kreuselt ihren Mund. 'Und was machen wir jetzt?' entfährt es ihr überrascht entnervt. Immerhin war geht es ja um ihre Abschlussarbeit. Paula hätte doch nichts mit Zandern machen sollen. Zandern – was soll das auch bedeutendes sein? Eigentlich wollte Paula nachher noch einen Film schauen. Wenn Jagd auf roter Oktober läuft, dann ist die Ratte nicht mehr da. Aber jetzt braucht sie mal Entspannung!

```
## Analysis of Variance Table
##

Response: Protein/Fettrate
##

Bestandsdichte

2 328.62 164.311 10.3722 0.001008

## Ernährungszusatz

1 84.26 84.260 5.3190 0.033203

## Bestandsdichte:Ernährungszusatz

2 155.61 77.806 4.9116 0.019852

## Residuals

1 8 285.15 15.841
```

Leider kennt sich Paula mit Berechnung einer zweifaktoriellen ANOVA überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Interpretieren Sie das Ergebnis der einfaktoriellen ANOVA! (3 Punkte)
- 4. Zeichnen Sie eine Abbildung, der dem obigen Ergebnis der zweifaktoriellen ANOVA näherungsweise entspricht! (5 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Interaktion in der zweifaktoriellen ANOVA 'Mit der zweifaktoriellen ANOVA lässt sich die Interaktion zwischen den beiden Behandlungen nachweisen!', ihr Betreuer scheint die zweifaktoriellen ANOVA zu verstehen. Warum jetzt sie jetzt nochmal alles wiederkäuen muss, wird Paula echt nicht so klar. Wenn es doch so klar ist? Paula war im Wendland und hatte dort einen Versuch in einer Klimakammer mit Erbsen durchgeführt. Die Komune wo sie untergekommen war, war cool gewesen. Nur jetzt muss eben das Experiment fertig ausgewertet werden. Es liegt anscheinend eine signifikante Interaktion vor? Paula hatte zwei Behandlungen auf Erbsen angewendet. Einmal Lüftungssysteme (*ctrl*, *storm*, *thunder* und *tornado*) sowie als zweite Behandlung Genotypen (*AA*, und *BB*). Gemessen wurde der Messwert (Y) Chlorophyllgehalt (SPAD-502Plus) [SPAD]. Jetzt muss das hier zu einem Ende kommen! Eigentlich wollte Paula nachher noch einen Film schauen. Wenn Jagd auf roter Oktober läuft, dann ist die Ratte nicht mehr da. Aber jetzt braucht sie mal Entspannung!

Leider kennen sich Paula und ihr Betreuer mit der zweifaktoriellen ANOVA überhaupt nicht aus. Geschweige denn mit der Interpretation einer Interaktion. Deshalb braucht sie bei der Erstellung Ihre Hilfe, sonst wird es heute Abend mit seinem Hobby Harry Potter nichts mehr!

- 1. Visualisieren Sie folgende mögliche Interaktionen zwischen den Behandlungen! Beschriften Sie die Abbildung! (4 Punkte)
 - a) Keine Interaktion liegt vor.
 - b) Eine schwache Interaktion liegt vor.
 - c) Eine starke Interaktion liegt vor.
- 2. Erklären Sie den Unterschied zwischen den verschiedenen Interaktionen! (2 Punkte)
- 3. Welche statistische Maßzahl betrachten Sie für die Bewertung der Interaktion? (1 Punkt)
- 4. Skizzieren Sie die notwendigen Funktionen in R für eine Post-hoc Analyse! (2 Punkte)
- 5. Wenn eine signifikante Interaktion in den Daten vorliegt, wie ist dann das weitere Vorgehen? Berücksichtigen Sie auch die Funktion emmeans ()! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Zusammenhang zwischen der ANOVA und dem t-Test Die Katze dreht durch und verwüstet Alexs Palme zu kleinen Schnetzeln. Aber dafür hat er jetzt keine Zeit. Alex muss verstehen wie die Formeln der ANOVA und des t-Tests miteinander zusammen hängen und was das verbindene Konzept ist. Alex dreht Abba lauter, damit die Katze sie nicht mehr stört. Die Palme leidet still. Was hat Alex eigentlich gemacht? In ein Stallexperiment wurden Hühnern mit der Behandlung Genotypen (*AA*, *AB* und *BB*) sowie der Behandlung Bestandsdichte (*standard* und *kontakt*) untersucht. Das hilft der Palme auch nicht mehr. Aber das ist nicht das einzige Problem von Alex. Wenn die Gefälligkeit nicht wäre, ja dann wäre wohl vieles möglich für Alex! Aber so..

Gegebene Formeln

$$F_D = \frac{MS_{treatment}}{MS_{error}} \quad T_D = \frac{\bar{y}_1 - \bar{y}_2}{s_p \cdot \sqrt{2/n_g}}$$

Leider kennen sich Alex mit dem Zusammenhang zwischen der ANOVA und dem t-Test nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Welche statistische Maßzahl testet der t-Test, welche die ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 2. Erklären Sie den Zusammenhang zwischen der F_D Statistik und T_D Statistik! (2 Punkte)
- 3. Visualisieren Sie in einer 2x2 Tafel den Zusammenhang von MS_{treatment} und MS_{error}! (2 Punkte)
- 4. Beschriften Sie die erstellte 2x2 Tafel mit signifikant und nicht signifikant! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Nennen Sie das numerische Minimum der F-Statistik F_D! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn die F-Statistik F_D minimal ist, welche Aussage erhalten Sie über die Nullhypothese? Begründen Sie Ihre Antwort! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Zusammenhang zwischen der ANOVA und dem Post-hoc-Test 'Mit der einfaktoriellen ANOVA lassen sich flott die Gruppen in einer Behandlungen vergleichen, wenn wir normalverteilte Daten und Varianzhomogenität vorliegen haben!', seine Betreuerin scheint die einfaktoriellen ANOVA zu verstehen. Warum jetzt er jetzt nochmal alles wiederkäuen muss, wird Yuki echt nicht so klar. Wenn es doch so klar ist? 'Wir haben jetzt bei der ANOVA einen p-Wert mit 0.052 raus sowie eine F-Statistik F_D mit 1.2 berechnet. Nach den Boxplots müsste sich eigentlich ein Unterschied zwischen 30p20n und 40p60n ergeben. Der Unterschied ist in {emmeans} auch signifikant mit einem p-Wert von 0.049. Wie kann das sein?', fragt Yuki etwas provokant und dreht London Grammar leiser. Yuki war im Emsland und hatte dort ein Feldexperiment mit Brokkoli durchgeführt. Die Komune wo er untergekommen war, war cool gewesen. Dort gab es selbstgemachte Reese's Peanut Butter Cups aus Vollkorn! Nur jetzt muss eben das Experiment fertig ausgewertet werden. Yuki hatte eine Behandlungen Substrattypen (torf, 40p60n, 30p20n und 70p30n) auf Brokkoli angewendet. Gemessen wurde der Messwert (Y) Frischegewicht [kg/ha]. Dabei wurden die Daten D erhoben. Jetzt muss das hier zu einem Ende kommen! Yuki hat schon genug Probleme. Wenn die Faulheit nicht wäre, dann wäre es einfacher.

Leider kennen sich Yuki und seine Betreuerin mit der Interpretation einer ANOVA überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe und die Zeit wird knapp.

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Was bedeutet eine signifkante ANOVA für die beobachteten Daten D? (1 Punkt)
- 4. Visualisieren Sie den Unterschied zwischen Varianzhomogenität und Varianzheterogenität anhand der Daten *D*! Beschriften Sie die Abbildung! **(2 Punkte)**
- 5. Visualisieren Sie für die Daten *D* die Verletzung der Annahme der Varianzhomogenität der ANOVA unter zu Hilfenahme von Boxplots! Beschriften Sie die Abbildung! **(2 Punkte)**
- 6. Welche Auswirkung hat die Verletzung der Annahme der Varianzhomogenität für die Teststatistik F_D der ANOVA? Begründen Sie Ihre Antwort! (2 Punkte)
- 7. Erklären Sie abschließend die Diskrepanz zwischen den Ergebnis der ANOVA und dem paarweisen Gruppenvergleich in {emmeans}! (2 Punkte)

Teil VI.

Multiple Gruppenvergleiche

82. Aufgabe (12 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Adjustierung multipler Vergleiche In ein Gewächshausexperiment mit Kartoffeln wurde die Behandlung Düngestufen (*ctrl*, *low*, *mid* und *high*) gegen die Ergebnisse einer früheren Studie von Almar et al. (2012) verglichen. Im Rahmen des Experiments haben Alex und Paula verschiedene Student t-Tests für den Mittelwertsvergleich für den Messwert Chlorophyllgehalt (SPAD-502Plus) [SPAD] gerechnet. Es ergab sich dann die folgende Tabelle der rohen p-Werte für die Vergleiche zu Almar et al. (2012). Jetzt sollen die beiden einmal schauen, was in den Daten so drin ist.

Rohen p-Werte	Adjustierte p-Werte	Nullhypothese ablehnen?
0.0700		
0.2300		
0.0012		
0.0120		

Leider kennen sich Alex und Paula mit der Adjustierung von p-Werten und dem Signifikanzniveau α überhaupt nicht aus. Deshalb brauchen die beiden bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Füllen Sie die Spalte Adjustierte p-Werte nach der Bonferoni-Methode aus! (2 Punkte)
- 4. Entscheiden Sie, ob nach der Adjustierung die Nullhypothese abgelehnt werden kann! Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Wie ist Ihr Vorgehen, wenn Sie anstatt der p-Werte das Signifikanzniveau α adjustieren? (2 Punkte)
- 6. Erklären Sie warum die p-Werte oder das Signifikanzniveau α bei multiplen Vergleichen adjustiert werden müssen! (2 Punkte)
- 7. Würden Sie die Adjustierung der p-Werte oder die Adjustierung des Signifikanzniveaus α vorziehen? Begründen Sie Ihre Antwort! **(2 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung des Compact Letter Displays (CLD) Nilufar hatte in ihrer Abschlussarbeit ein Gewächshausexperiment durchgeführt. Soweit so gut. Dabei hat sie sich mit Spargel beschäftigt. Angeblich der neueste heiße Kram... aber das ist wiederum was anderes. So richtig mitgenommen hat Nilufar das Thema dann doch nicht. Hat sie sich doch mit Düngestufen (*ctrl*, *low*, *mid* und *high*) und Trockengewicht [kg/ha] schon eine Menge an Daten angeschaut. Nach ihrer Betreuerin soll sie nun ein CLD bestimmen. Weder weiß sie was ein CLD ist, noch war ihr erster Gedanke mit Köln und die LGBTQ Community richtig...

Behandlung	Compact letter display
ctrl	В
low	Α
mid	AB
high	Α

Leider kennen sich Nilufar mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand des Compact letter display (CLD) ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD) zu den Barplots! (1 Punkt)
- 5. Erklären Sie einen Vorteil und einen Nachteil des Compact letter display (CLD)! (2 Punkte)
- 6. Erstellen Sie eine Matrix mit den paarweisen *p*-Werten eines Student t-Tests, die sich näherungsweise aus dem *Compact letter display (CLD)* ergeben würde! Begründen Sie Ihre Antwort! **(3 Punkte)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Berechnung des Compact Letter Displays (CLD) anhand von t-Tests Alex betrachtet in sich gekehrt die Poster vor dem Büro von sein Betreuer. Viele der explorativen Abbildungen sagen ihm etwas. Die Barplots und die Boxplots könnte er dann schon nachbauen. Das macht ihn dann zuversichtlich die Abschlussarbeit auch hinzukriegen. Etwas komischer sind die seltsamen Buchstaben über den Barplots. Alex betrachtet ein Poster das sich mit Erbsen beschäftigt. Genotypen (00, *AA*, *AB* und *BB*) und Trockengewicht [kg/ha] wurden dort bestimmt. So richtig schlau, wird er daraus nicht. Als erstes müsse müsse man die Gruppen nach absteigender Effektstärke sortieren, liest Alex im Methodenteil und ist dann noch verwirrter als vorher schon.

Genotypen	Fallzahl (n)	Mittelwert	Standardabweichung
00	8	5.05	2.62
AA	7	13.04	2.44
AB	8	7.81	2.21
BB	9	14.64	2.88

Leider kennen sich Alex mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich ergebenden Barplots! (1 Punkt)
- 4. Berechnen Sie die Matrix der p-Werte anhand von Student t-Tests! Nutzen Sie hierfür ein globales s_p sowie eine gemittelte Fallzahl n für die Berechnung der Teststatistik! (4 Punkte)
- 5. Ergänzen Sie das *Compact letter display (CLD)* zu den gezeichneten Barplots! Begründen Sie Ihre Antwort! **(4 Punkte)**
- 6. Interpretieren Sie das Compact letter display (CLD) für Alex! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Berechnung des Compact Letter Displays (CLD) anhand der Matrix der p-Werte 'Das Problem ist, dass DataTab eben keine CLD kann. Die bräuchten wir dann schon dringend für unser Poster!', merkt seine Betreuerin mit Nachdruck an. Alex neigt den Kopf. 'Das wussten wir nicht vorher?', entfährt es ihm leicht entnervt. Da schaut seine Betreuerin seltsam betroffen. Hilft jetzt auch so gar nicht. Alex hatte sich zwei Variablen mit Düngestufen (ctrl, low, mid und high) und Frischegewicht [kg/ha] in einen Versuch in einer Klimakammer mit Erdbeeren angeschaut. Jetzt möchte er eigentlich fertig werden und nicht nochmal alles neu in quand {emmeans} machen. Dabei hatte er schon echt ne Menge in im Wendland gemacht. Dann eben per Hand aus der Matrix der p-Wert. Alex muss sich echt zusammenreißen.

	ctrl	low	mid	high
ctrl	1.0000000	0.6110427	0.0185605	0.9734194
low	0.6110427	1.0000000	0.0040059	0.6365229
mid	0.0185605	0.0040059	1.0000000	0.0173690
high	0.9734194	0.6365229	0.0173690	1.0000000

Leider kennen sich Alex mit dem *Compact letter display (CLD)* überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistischen Hypothesen! (1 Punkt)
- 3. Zeichnen Sie die sich anhand der Matrix der p-Werte ergebenden Barplots! (2 Punkte)
- 4. Ergänzen Sie das Compact letter display (CLD)! Begründen Sie Ihre Antwort! (4 Punkte)
- 5. Interpretieren Sie das Compact letter display (CLD) für er! (2 Punkte)

Teil VII.

Der Chi-Quadrat-Test & Der diagnostische Test

86. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik

Den Chi-Quadrat-Test berechnen Am Ende war es für Jessica in ihrem Projektbericht dann doch kein normalverteiltes Outcome. Das was jetzt etwas doof, da er sich auf eine ANOVA gefreut hatte. Dann noch schnell David Bowie auf das Ohr und los gehts. Prinzipiell ginge das auch irgendwie, aber nun möchte ihr Betreuer gerne einen \mathcal{X}^2 -Test auf einer $2x^2$ -Kreuztabelle berechnet bekommen. Jessica hatte sich in ein Freilandversuch n=152 Beobachtungen von Maiss angeschaut. Dabei hat sie als Behandlung *Kl-gesteuert [ja/nein]* bestimmt und zum anderen die Variable *Proteingehalt im Zielbereich [ja/nein]* ermittelt. Jetzt muss Jessica mal schauen, wie sie das jetzt rechnet. Eigentlich wollte Jessica nachher noch zum Sport. Einfach mal raus um Rad zu fahren. Ohne Ziel und Uhr. Das ist was für Jessica.

24	41	
43	44	

Leider kennt sich Jessica mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 4. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 5. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=3.83!$ Begründen Sie Ihre Antwort! **(2 Punkte)**
- 6. Skizzieren Sie in einer Abbildung die \mathcal{X}^2 -Verteilung, wenn die H_0 wahr ist! Ergänzen Sie $\mathcal{X}^2_{\alpha=5\%}$ und \mathcal{X}^2_D in der Abbildung! Beachten Sie folgenden Informationen zur \mathcal{X}^2 -Verteilung. Die \mathcal{X}^2 -Verteilung hat ein Maxima bei $\mathcal{X}^2=4$ sowie ein Minima bei $\mathcal{X}^2=8$. (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik

Den Chi-Quadrat-Test in einem Fragebogen berechnen Yuki hatte sich gleich von Beginn an in ihrer Hausarbeit für eine Umfrage im Marketing interessiert. Jetzt geht es um den Haupt- und Nebenerwerb von Erlebnishöfen in Norddeutschland. Viele Höfe haben angefangen auch Großkatzen zu halten, damit mehr Kunden auf die Höfe kommen. Für den Verband der Großkatzenbesitzer e.V. möchte sie nun einen Fragebogen zur Zukunftsfähigkeit Schritt für Schritt auswerten. Dabei teilt sie zuerst die Antwortenden in die beiden Gruppen 'Höfe mit Großkatzen [ja]' und 'Höfe mit Großkatzen [nein]' ein. Daraufhin möchte sie für folgende Frage *f4verband* einmal auswerten, ob es einen Unterschied zwischen den beiden Höfen mit oder ohne Großkatzen gibt.

Sehen Sie die Haltung von Großkatzen als eine kulturelle Bereicherung?

Yuki krazt sich an ihrem Kopf. Wie soll man eine Tabelle mit so vielen Zahlen sinnvoll auswerten? Schnell noch ein paar Reese's Peanut Butter Cups einwerfen und los gehts!

f4verband	trifft gar nicht zu	trifft nicht zu	weder noch	trifft zu	trifft voll zu	
ja	15	28	12	9	2	
nein	2	11	29	21	11	

Leider kennt sich Yuki mit der Berechnung eines \mathcal{X}^2 -Test auf einer Frage in einem Fragebogen überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Berechnen Sie die Teststatistik \mathcal{X}_D^2 eines Chi-Quadrat-Test! *Ignorieren Sie Zellbelegungen kleiner gleich fünf in der Berechnung von* \mathcal{X}_D^2 ! **(2 Punkte)**
- 4. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}^2_{\alpha=5\%}=23.83!$ Begründen Sie Ihre Antwort! **(2 Punkte)**
- 5. Visualisieren Sie die 2x5 Kreuztabelle *ohne* die Berücksichtigung der Antwortkategorie 'weder noch'! **(2 Punkte)**
- 6. Berechnen Sie den Effektschätzer Cramers V auf der 2x5 Kreuztabelle! (1 Punkt)
- 7. Interpretieren Sie den berechneten Effektschätzer *Cramers V* unter Berücksichtigung der Fragestellung! **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik

Den Chi-Quadrat-Test mit Effektmaß berechnen Tina hat sich ein Herz gefasst und war für ihrer Hausarbeit in die Niederlande gegangen. Das war eine super Zeit in der sie viel gelernt hat. Klar gab es auch die ein oder andere Besonderheit, aber das gehört hier eher nicht hin. Dann noch schnell Tocotronic auf das Ohr und los gehts. Tina ist schon eine ganze Zeit im Büro, da ihr Betreuer möchte, dass sie jetzt auf ihren Daten mit n=154 Beobachtungen von Lamas einen \mathcal{X}^2 -Test rechnet. Das ginge, da sie als Behandlung Automatische Fütterung [ja/nein] bestimmt und zum anderen die Variable Fettgehalt erreicht [ja/nein] ermittelt hat. Wie genau, das ist jetzt eine andere Frage. Eigentlich wollte Tina nachher noch einen Film schauen. Das Verrückte ist, dass die Spinne Indiana Jones wirklich liebt. Das ist Tina sehr recht, denn sie braucht Entspannung.

56	11	
43	44	

Leider kennt sich Tina mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht sie bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Berechnen Sie die Teststatistik eines Chi-Quadrat-Test! (2 Punkte)
- 4. Treffen Sie eine Entscheidung im Bezug zu der Nullhypothese gegeben einem $\mathcal{X}_{\alpha=5\%}^2=4.56!$ Begründen Sie Ihre Antwort! (2 **Punkte**)
- 5. Berechnen Sie den Effektschätzer Cramers V auf der 2x2 Kreuztabelle! (1 Punkt)
- 6. Welchen Wertebereich kann der Effektschätzer *Cramers V* annehmen? Wann liegt kein Effekt und wann ein starker Effekt vor? **(2 Punkte)**
- 7. Interpretieren Sie den berechneten Effektschätzer *Cramers V* unter Berücksichtigung der Fragestellung! **(1 Punkt)**

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik

Den Chi-Quadrat-Test konzeptionell verstehen 'Der \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet.', liest Jonas in seiner Mitschrift. So richtig helfen tut ihm das jetzt eherlichweise dann doch nicht. Dann noch schnell Snickers zur Stärkung und los gehts. Jonas hatte sich in ein Stallexperiment n=165 Beobachtungen von Milchvieh angeschaut. Dabei hat er als Behandlung Ökologisch [ja/nein] bestimmt und zum anderen die Variable *Prote-in/Fettrate im Zielbereich* [ja/nein] ermittelt. Am Ende möchte dann sein Betreuer gerne einen \mathcal{X}^2 -Test auf einer 2x2-Kreuztabelle berechnet bekommen. Am Ende des Tages möchte er dann noch sein Hobby Stricken genießen. Das muss auch mal sein!

		84
		81
97	68	165

Leider kennt sich Jonas mit der Berechnung eines \mathcal{X}^2 -Test für kategoriale Daten überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Ergänzen Sie die Tabelle um die fehlenden Informationen! (1 Punkt)
- 3. Ergänzen Sie die Felder innerhalb der 2x2 Kreuztabelle, so dass *ein* signifikanter Effekt zu erwarten wäre! (2 Punkte)
- 4. Begründen Sie Ihr Vorgehen an der Formel des Chi-Quadrat-Tests. Erklären Sie Ihr Vorgehen an einem Beispiel! (2 Punkte)
- 5. Visualisieren Sie den Zusammenhang zwischen den beiden kategorialen Variablen! (2 Punkte)
- 6. Was ist die Mindestanzahl an Beobachtungen je Zelle? Wenn in einer der Zellen weniger Beobachtungen auftreten, welchen Test können Sie anstatt des Standard Chi-Quadrat-Tests anwenden? (2 Punkte)

Teil VIII.

Lineare Regression & Korrelation

90. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen

Visualisierung der linearen Regression 'Ich glaube du bringst da was durcheinander. Wir nutzen zwar auch für die ANOVA die Funktion lm() aber hier wollen wir, glaube ich, eine Gerade durch die Punkte zeichnen.', merkt Yuki an. 'Ich sehe keine Punkte...', antwortet Jonas sichtlich übernächtigt. 'Wir müssen die Daten ja auch erst visualisieren!', spricht Yuki sehr deutlich und langsam. Die beiden hatten ein Feldexperiment in der Uckermark mit Lauch durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlichen Anteil an Ton [%/I] und Chlorophyllgehalt (SPAD-502Plus) [SPAD]. Jetzt wollen sie erstmal schauen, ob es einen Zusammenhang gibt.

Durchschnittlichen Anteil an Ton [%/l]	Chlorophyllgehalt (SPAD-502Plus) [SPAD]
18.5	25.9
16.6	23.1
12.7	21.2
13.4	17.6
21.7	27.6
13.2	21.5
7.1	13.5
19.8	25.8
14.2	21.6
9.7	16.3
14.8	20.9

Leider kennen sich Yuki und Jonas mit der linearen Regression für kontinuierliche Daten überhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung für die Datentabelle. Beschriften Sie die Achsen! (2 Punkte)
- 3. Schätzen Sie die Regressionsgleichung aus der obigen Abbildung ab! (2 Punkte)
- 4. Beschriften Sie die Grade mit den statistischen Maßzahlen der linearen Regressionsgleichung! (2 Punkte)
- 5. Liegt ein Zusammenhang zwischen x und y vor? Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Wenn kein Zusammenhang zu beobachten wäre, wie würde die Grade aussehen? *Antworten Sie mit einer Skizze der Geraden!* (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen

Interpretation der Ergebnisse einer linearen Regression 'Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen!', ruft Jonas. 'Ich sehe nur zwei Zeilen und keine Punkte. Wie soll ich da denn jetzt eine Gerade durchzeichnen?', fragt Jessica. Jonas atmet schwer ein und starrt auf die Rausgabe der Funktion lm(). Die beiden hatten ein Kreuzungsexperiment im Emsland mit Fleischrindern durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Bewegungsscore [Movement/h] und Schlachtgewicht [kg]. Jetzt will die Betreuung von den beiden einmal die Visualisierung der Daten und auch gleich noch die lineare Regression gerechnet bekommen. Das haben beide in Regression wie soll das jetzt gehen?

term	estimate	std.error	t statistic	p-value
(Intercept)	2.42	1.81		
Durchschnittlicher Bewegungsscore	0.06	0.18		

Leider kennen sich Jonas und Jessica mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Erstellen Sie eine Visualisierung der lm()-Ausgabe. Beschriften Sie die Achsen! (2 Punkte)
- 3. Beschriften Sie die Visualisierung mit den statistischen Maßzahlen der der lm()-Ausgabe! (2 Punkte)
- 4. Formulieren Sie die Regressionsgleichung! (1 Punkt)
- 5. Ergänzen Sie die t Statistik in der lm()-Ausgabe! (2 Punkte)
- 6. Ergänzen Sie den p-Wert in der lm()-Ausgabe mit $T_{\alpha=5\%}=1.96!$ (2 Punkte)
- 7. Interpretieren Sie den p-Wert im Kontext der wissenschaftlichen Fragestellung! (1 Punkt)
- 8. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Interpretation der Ergebnisse einer linearen Regression in R 'Hä? Was ist denn das? Das wird ja immer wilder! Hatten wir das als Aufgabe eine lineare Regression zu rechnen? Wir bauen aus kontinuierlichen Daten eine Abbildung und interpretieren diese dann?', fragt Nilufar. Steffen schaut fragend zurück. 'Keine Ahnung... das ist jetzt jedenfalls keine Abbildung von irgendwas sondern eine Rausgabe mit ganz wilden Bezeichnungen...', antwortet Steffen leicht angespannt. Die beiden hatten ein Feldexperiment in der Uckermark mit Lauch durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Niederschlag [ml/w] und Trockengewicht [kg/ha]. Jetzt haben die beiden eigentlich alles zusammen. Eigentlich..., denn mit der Rausgabe haben beide jetzt ein Problem.

```
##
## Call:
## Trockengewicht ~ Durchschnittlicher_Niederschlag
## Residuals:
##
        Min
                  10
                       Median
                                    30
## -2.16366 -0.93116 0.09933 0.73837
                                        2.13990
##
## Coefficients:
##
                                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                     1.7039
                                                1.1670
                                                          1.46
                                                                   0.153
## Durchschnittlicher_Niederschlag
                                     0.1368
                                                0.1169
                                                          1.17
                                                                   0.250
## Residual standard error: 1.164 on 34 degrees of freedom
## Multiple R-squared: 0.03872, Adjusted R-squared:
## F-statistic: 1.37 on 1 and 34 DF, p-value: 0.25
```

Leider kennen sich Nilufar und Steffen mit der linearen Regression für kontinuierliche Daten in Rüberhaupt nicht aus. Deshalb brauchen beide bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Wie groß ist der Effekt im Kontext der wissenschaftlichen Fragestellung? (2 Punkte)
- 3. Interpretieren Sie die p-Werte im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 4. Visualisieren Sie die Verteilung der Residuen! (2 Punkte)
- 5. Ist die Annahme der Normalverteilung erfüllt? Begründen Sie die Antwort! (2 Punkte)
- 6. Erklären Sie kurz den Begriff R-squared! Was sagt Ihnen der Wert aus? (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Interpretation der Ergebnisse einer Korrelationsanalyse in Wichtig ist es, dass wir jetzt eine Gerade durch die Punkte zeichnen...', denkt Jonas. 'Ich sehe nur Kauderwelsch und keine Punkte. Ich glaube das war jetzt doch eine Korrelation, die ich rechnen sollte. Und warum überhaupt? War das unsere Fragestellung?', denkt sich Jonas. Jonas atmet schwer ein und starrt auf die Ausgabe der Funktion cor.test(). Das hilft alles nur begrenzt. Das Verrückte ist, dass das Meerschweinchen Mission Impossible wirklich liebt. Das ist Jonas sehr recht, denn er braucht Entspannung. Jonas hatte ein Gewächshausexperiment im Wendland mit Spargel durchgeführt. Dabei wurden die beiden folgenden Variablen gemessen: durchschnittlicher Niederschlag [ml/w] und Trockengewicht [kg/ha]. Jetzt will die Betreuung von ihm die Interpretierung der Daten in Form einer Korrelation berechnet bekommen. Das hat Jonas in gemacht, aber wie soll das jetzt gehen? Das mit der Interpretation? Jonas und die Erschöpfung, eine unendliche Geschichte mit kniffeligen Wendungen.

```
##
## Pearson's correlation
##
## data: Durchschnittlicher Niederschlag and Trockengewicht
## t = 0.84307, df = 8, p-value = 0.4237
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4194084 0.7757545
## sample estimates:
## cor
## 0.2856495
```

Leider kennt sich Jonas mit der Korrelationsanalyse in 😱 überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Erstellen Sie eine Visualisierung für den Korrelationskoeffizienten! Beschriften Sie die Abbildung! (2 Punkte)
- 4. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 5. Interpretieren Sie den Korrelationskoefizienten hinsichtlich des Effekts und der Signifikanz! Begründen Sie Ihre Antwort! (2 Punkte)
- 6. Visualisieren Sie das 95% Konfidenzintervall! Beschriften Sie die Abbildung! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Visualisierung der Korrelation und des Bestimmtheitsmaßes 'Im Folgenden sind die drei leeren Abbildungen zu füllen.', liest Jonas und denkt nach. Jonas kennt sich nur begrenzt bis gar nicht mit der linearen Regresion und Korrelation aus. Dafür mit etwas anderem. Jonas liebt Stricken. Darin kann er sich wirklich verlieren und immer wieder neu begeistern. Aber das hilft hier auch nur so halb. Daher mampft er noch ein paar Snickers

Leider kennt sich Jonas mit der Korrelationsanalyse und der linearen Regression überhaupt nicht aus. Deshalb braucht er bei der Auswertung Ihre Hilfe!

- 1. Zeichnen Sie für die ρ -Werte eine Gerade in die entsprechende Abbildung! (3 Punkte)
- 2. Zeichnen Sie für die R^2 -Werte die entsprechende Punktewolke um die Gerade! (3 Punkte)
- 3. Nennen Sie die zwei Eigenschaften des Korrelationskoeffizienten! (2 Punkte)
- 4. Interpretieren Sie die R²-Werte für die jeweilige Gerade! (2 Punkte)
- 5. Warum müssen Sie ein R^2 -Wert berechnen, wenn Sie die einfachere Möglichkeit der visuellen Überprüfung haben? Begründen Sie Ihre Antwort! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Statistik • Angewandte Statistik für Bioverfahrenstechnik • Angewandte Statistik und Versuchswesen • Biostatistik

Schätzen der Korrelation und des Bestimmtheitsmaßes 'Was soll das heißen?', fragt sich Yuki und schaut müde auf den Bildschirm. Gestern hatte sie noch sehr lange Matrix geschaut und nun überkommt sie immer wieder bleiernde Müdigkeit. 'Was soll das heißen, dass ich ρ -Werte oder R^2 -Werte abschätzen soll?' kratzt sich Yuki am Kopf. Alles überhaupt nicht einfach und da helfen dann auch keine Reese's Peanut Butter Cups mehr...

Leider kennt sich Yuki mit der Korrelationsanalyse und der linearen Regression überhaupt nicht aus. Deshalb braucht sie bei der Auswertung Ihre Hilfe!

- 1. Schätzen Sie die ρ -Werte in den Abbildungen! (2 Punkte)
- 2. Schätzen Sie die R²-Werte in den Abbildungen! (2 Punkte)
- 3. Interpretieren Sie die R²-Werte für die jeweilige Gerade! (2 Punkte)
- 4. Was ist der optimale R^2 -Wert im Kontext einer wissenschaftlichen Fragestellung? Begründen Sie Ihre Antwort an einem Beispiel! (2 Punkte)
- 5. Was ist der optimale ρ -Wert im Kontext einer wissenschaftlichen Fragestellung? Begründen Sie Ihre Antwort an einem Beispiel! **(2 Punkte)**
- 6. Erklären Sie die Aussage "Correlation does not imply causation!" an einem Beispiel! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Visualisierung des Regressionskreuzes Gelangweilt schaut das Känguruh auf und schmeißt sich eine Schnapspraline in den Rachen. 'Ich dachte nur in Bayern hat man es mit Kreuzen...', stöhnt es gelangweilt. Jessica hätte einfach nicht die Tür aufmachen sollen ohne zu schauen, ob es wirklich ihr Lerngruppe ist. Jetzt hat sie den Salat oder die Schnapspraline. 'Du bist angesapnnt', bemerkt das Känguruh. 'Ich glaube nicht, dass sowas hilft.' Jessica klappt den Laptop zu und flüchtet auf die Toilette. Was hatte ihr Gruppe nochmal gemacht? Genau ein Gewächshausexperiment mit Erdbeeren und es wurde Anzahl Läsionen auf den Blättern gemessen. Das Känguru begann damit seine Musiksammlung mit David Bowie extrem laut aufzudrehen.

Leider kennt sich Jessica mit dem Kontext der linearen Regression überhaupt nicht aus. Deshalb braucht sie bei der Auswertung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Zeichen Sie die Zeile des Regressionskreuzes für den Endpunkt mit <u>drei</u> Feldern! Beschriften Sie die Abbildung! **(4 Punkte)**
- 3. Ergänzen Sie die entsprechenden statistische Methoden zur Analyse in jedem Feld! (2 Punkte)
- 4. Formulieren Sie die Nullhypothese für die statistische Methode in jedem Feld! (2 Punkte)
- 5. Ergänzen Sie die entsprechenden Funktionen in 😱 zur Analyse in jedem Feld! (2 Punkte)
- 6. Welchen Effekt erhalten Sie in jedem Feld? Geben Sie ein Beispiel! (2 Punkte)

Teil IX.

Experimentelles Design

97. Aufgabe (16 Punkte)

Inhalt folgender Module: Angewandte Statistik und Versuchswesen • Biostatistik

Einfache experimentelle Designs Neuer Versuch neues Glück! Steffen und Yuki sind bei Nilufar um sich Hilfe für eine Versuchsplanung in \mathbb{R} zu holen. Im Hintergrund läuft viel zu laut Star Trek. Daher hat das Huhn schon lange reißaus genommen. In dem neuen Versuch geht es um den Zusammenhang zwischen der Behandlung Elterlinie (ctrl, Standard, Yray und Xray) und dem Messwert Fettgehalt [%/kg] in Milchvieh. Der Versuch soll in einem Stallexperiment in der Uckermark durchgeführt werden. Immerhin ist der Messswert normalverteilt, was einges einfacher macht. Was es nicht so einfacher macht ist, dass Steffen noch als zusätzliche Herausforderung etwas anderes umtreibt: die Romantik. Im ersten Schritt überlegt Nilufar ein einfaches experimentelles Design zu probieren. Daher entscheiden sich alle drei für ein *Complete randomized design (CRD)*. Ob es das jetzt einfacher macht?

Leider kennen sich Nilufar, Steffen und Yuki mit dem *Complete randomized design (CRD)* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie das statistische Hypothesenpaar! (1 Punkt)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (3 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (2 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Begründen Sie Ihre Antwort! (2 Punkte)

Inhalt folgender Module: Biostatistik

Fortgeschrittene experimentelle Designs Die Katze macht mal wieder Randale in Alexs Zimmer und rennt davon! Jonas und Jessica sind bei Alex in im Wendland wo der neue, bessere Versuch stattfinden soll. Dabei soll in einem Gewächshausexperiment im Wendland mit Erdbeeren durchgeführt werden. Auf dem Tisch stapeln sich Gummibärchen aus Vollkorndinkelmehl. Eine Spezialtät der Komune hier. Jonas hasst Vollkorn wie Schokobons geliebt werden. In dem neuen Versuch geht es um den Zusammenhang zwischen der Behandlung Lüftungssysteme (ctrl, storm, thunder und tornado) sowie Bewässerungstypen (ctrl, und high) sowie vier Blöcken und dem Messwert Frischegewicht [kg/ha]. Immerhin ist der Messswert normalverteilt, was einges einfacher macht. Was es nicht so einfacher macht ist, dass Jessica als zusätzliche Herausforderung noch der Mangel mitgebracht hat. Daher entscheiden sich alle drei für ein Randomized complete block design. 'Naja, so viel einfacher ist es dann doch nicht...', merkt Jessica an und sucht die Katze.

Leider kennen sich Alex, Jonas und Jessica mit dem *Randomized complete block design* überhaupt nicht aus. Deshalb brauchen die Drei bei der Erstellung Ihre Hilfe!

- 1. Formulieren Sie die wissenschaftliche Fragestellung! (1 Punkt)
- 2. Formulieren Sie die statistische Hypothesenpaare! (2 Punkte)
- 3. Skizzieren Sie das faktorielle Versuchsdesign! (3 Punkte)
- 4. Skizzieren Sie eine Datentabelle für das faktorielle Versuchsdesign in 😱! (2 Punkte)
- 5. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise für eine ANOVA! Skizzieren Sie die notwendige Funktionen in R! (4 Punkte)
- 6. Skizzieren Sie die weitere Datenanalyse hinsichtlich eines multiplen Gruppenvergleiches! (2 Punkte)
- 7. Skizzieren Sie eine mögliche Abbildung im Kontext der wissenschaftlichen Fragestellung! Beschriften Sie die Abbildung! (3 Punkte)
- 8. Ergänzen Sie zu der Abbildung ein mögliches Ergebnis des multiplen Gruppenvergleichs! Welche Annahme hinsichtlich der Modellierung haben Sie getroffen? Begründen Sie Ihre Antwort! (3 Punkte)

Teil X.

Forschendes Lernen

Zerforschen einer wissenschaftlichen Veröffentlichung

Das forschende Lernen basiert zum einen auf den folgenden wissenschaftlichen Veröffentlichungen. Für die Prüfung wird die vertiefende Kenntnis der folgenden Veröffentlichungen vorausgesetzt.

- Sánchez, M., et al. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation. Scientia Horticulturae, 304, 111320. [Link]
- Petersen, F., et al. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. [Link]
- Wu, G., et al. (2004). Arginine nutrition in neonatal pigs. The Journal of Nutrition, 134(10), 2783S-2790S. [Link]
- Graham, J., E., et al. (2024) Stock assessment models overstate sustainability of the world's fisheries. Science 385, 860-865. [Link]

In der Prüfung erhalten Sie <u>keinen Auszug</u> der wissenschaftlichen Veröffentlichung! Die Veröffentlichungen werden als <u>bekannt</u> in der Prüfung vorgesetzt. Sie haben sich vorab Notizen und Anmerkungen auf Ihrem Spickzettel gemacht.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Zerforschen einer wissenschaftlichen Veröffentlichung Mark hält die wissenschaftliche Veröffentlichung Sánchez, M., et al. (2022). Hoverfly pollination enhances yield and fruit quality in mango under protected cultivation unter einem Schnaufen in die Luft. 'Worum geht es denn eigentlich in dieser Arbeit?', fragt er stirnrunzelnd und wirft die Arme in die Luft, da hilft dann auch nicht mehr die beruhigende Wirkung von Andrea Berg. Mark soll die Veröffentlichung nutzen um das eigene Experiment zu planen. Als eine Vorlage sozusagen. Daher möchte sein Betreuer, dass er einmal die Veröffentlichung sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden. Das wird dann vermutlich heute Abend nichts mehr mit seinem Hobby Geocaching. Der Hamster schaut mitleidig.

Leider kennt sich Mark mit dem Lesen einer wissenschaftlichen Veröffentlichung mit Fokus auf die Statistik überhaupt nicht aus. Deshalb braucht er bei der Erstellung Ihre Hilfe! Glücklicherweise kennen Sie die wissenschaftliche Veröffentlichung schon im Detail und können sofort helfen.

- 1. Erläutern Sie die wissenschaftliche Fragestellung der wissenschaftlichen Veröffentlichung anhand des OCAR Prinzips nach Schimel (2012)³ (4 Punkte)
- 2. Nennen Sie die untersuchten Endpunkte in der wissenschaftlichen Veröffentlichung! Wie lautet der primäre Endpunkt? (2 Punkte)
- 3. Erstellen Sie das statistische Modell in der in 😱 üblichen Schreibweise! (2 Punkte)
- 4. Nennen Sie eine Auswahl an bedeutenden statistischen Maßzahlen in der wissenschaftlichen Veröffentlichung! (1 Punkt)
- 5. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Signifikanz für den primären Endpunkt! (2 Punkte)
- 6. Interpretieren Sie die Hauptaussage der wissenschaftlichen Veröffentlichung hinsichtlich der Effektstärke für den primären Endpunkt! (2 Punkte)
- 7. Diskutieren Sie die ökonomische Relevanz der Hauptaussage der wissenschaftlichen Veröffentlichung im Bezug auf Signifikanz und Effektstärke für den primären Endpunkt! (1 Punkt)
- 8. Skizzieren Sie für den primären Endpunkt den sich ergebenden Datensatz in **Q** für eine ausgewählte Abbildung! **(2 Punkte)**
- 9. Skizzieren Sie einen möglichen Versuchsplan für den primären Endpunkt! (2 Punkte)
- 10. Schätzen Sie die benötigte Fallzahl für ein zukünftiges Experiment anhand der Ergebnisse in der wissenschaftlichen Veröffentlichung für den primären Endpunkt! (2 Punkte)

³Schimel, J. (2012). Writing science: how to write papers that get cited and proposals that get funded. OUP USA.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Biostatistik

Zerforschen eines wissenschaftlichen Datensatzes Unter einem langen Schnaufen starrt Nilufar auf den wissenschaftlichen Datensatz *in der Tabelle 1* in ihrem Laptop. Insgesamt wurden *n* Beobachtungen erhoben. 'Worum geht es denn eigentlich in diesem Datensatz?', fragt sie sich kopfschüttelnd und mampft noch ein paar Takis Blue Heat. Nilufar soll die Datentabelle nutzen um das eigene Experiment zu planen und eine Blaupause zu haben. Als eine Vorlage sozusagen, die sie nur noch ausfüllen muss. Daher möchte ihre Betreuerin, dass sie einmal die Daten sinnvoll zusammenfasst. Das sollte dann doch etwas aufwendiger werden. Das wird dann vermutlich heute Abend nichts mehr mit Star Trek.

f_1	f ₂	x ₁	y 1	у ₂
< >	< >	< >	< >	< >
1	1	2.3	10.1	0
1	1	4.1	13.1	0
1	1	5.7	16.5	1
1	1	3.4	14.6	0
1	2	2.8	12.1	1
1	2	6.1	13.4	1
:	÷	:	:	i
1	2	1.9	9.6	0

Nilufar füllt sich mit der Analyse der Daten in der Tabelle 1 überfordert. Deshalb braucht sie bei der Auswertung Ihre Hilfe! Glücklicherweise kennen Sie den wissenschaftlichen Datensatz aus Ihren eigenen Analysen schon im Detail und können sofort helfen.

Beantworten Sie die folgenden Fragen anhand eines selbst gewählten Beispiels!

Allgemeiner Aufgabenteil

- 1. Ergänzen Sie die Eigenschaften der Spalten in der Form eines tibbles! (2 Punkte)
- 2. Skizzieren Sie die übergeordneten Analysebereiche der Statistik passend zur obigen Datentabelle! Beschriften Sie die Abbildungen! (4 Punkte)
- 3. Formulieren Sie zwei mögliche wissenschaftliche Fragestellungen in Form einer PowerPoint Folie aus der obigen Datentablle! (2 Punkte)

Spezieller Aufgabenteil für die Variablen x_1 und y_1

- 4. In welchen der übergeordneten Analysebereiche der Statistik gehört die Auswertung Ihres Endpunktes? Begründen Sie Ihre Antwort! (2 Punkte)
- 5. Skizzieren Sie eine ikonische Abbildung für Ihren Endpunkt im Kontext der wissenschaftlichen Fragestellung! (2 Punkte)
- 6. Erstellen Sie das statistische Modell in der in Rüblichen Schreibweise! (1 Punkt)
- 7. Skizzieren Sie die Datenanalyse für Ihren Endpunkt! (4 Punkte)
- 8. Auf welche Eigenschaft der Daten müssen Sie für Ihre statistische Analyse im Besonderen achten? Erklären Sie eine mögliche Lösung in der Modellierung! Begründen Sie Ihre Antwort! (2 Punkte)
- 9. Welche statistische Maßzahlen können Sie berichten? Begründen Sie Ihre Antwort! (1 Punkt)

Teil XI.

Mathematik

101. Aufgabe (10 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Herodot – der Schimmel aus Ivenack Die Lerngruppe *Die Pantoffeltieren* bestehend aus Nilufar, Jessica, Alex und Tina waren auf Exkursion in Brandenburg und haben dort Folgendes erarbeitet. Während der Besetzung Mecklenburgs durch die Franzosen kamen Napoleon die Geschichten des berühmten Apfelschimmels Herodot aus Ivenack zu Gehör. Herodot lief zwar niemals Rennen, war aber eines der berühmtesten Pferde dieser Zeit. Napoleon selbst gab den Auftrag, diesen Schimmel durch die Armee nach Frankreich zu bringen. Der Legende nach sollen Arbeiter den Schimmel im hohlen Stamm einer 1000-jährigen Eiche aus Ivenack vor den Franzosen versteckt haben. Doch Herodot verriet sein Versteck durch lautes Wiehern, woraufhin die französische Armee den Schimmel beschlagnahmte und nach Frankreich führte⁴. Jetzt wollen die vier herausfinden: "Konnten die Ivenacker den Apfelschimmel Herodot vor dem Zugriff von Napoleon in der 1000-jährigen Eiche verstecken?"

Helfen Sie der Lerngruppe *Die Pantoffeltieren* bei der Beantwortung der Forschungsfrage! Gehen Sie von einem radialen Wachstum der 1000-jährigen Eiche von 0.8mm pro Jahr aus. Es ist bekannt, dass die Eiche im Jahr 2022 einen Umfang von 12m in Brusthöhe hatte.

- 1. Wie groß war der Durchmesser in m der Eiche im Jahr 1805 als Herodot in der Eiche versteckt werden sollte? **(2 Punkte)**
- 2. Skizzieren Sie in einer Abbildung einen linearen Zusammenhang und einen exponentiellen Zusammenhang für das Wachstum der 1000-jährigen Eiche. Erklären Sie die Auswirkungen der Entscheidung für linear oder exponentiell auf Ihre Berechnungen! (2 Punkte)

Herodot hatte eine Schulterhöhe von 180cm, eine Breite von 75cm sowie eine Länge von 250cm.

3. Berechnen Sie das effektive Volumen von Herodot in m^3 , welches Herodot in der 1000-jährigen Eiche einnehmen würde! (2 Punkte)

Es wurde berichtet, dass sich Herodot in der 1000-jährigen Eiche *mitblutigerNase* um die eigene Achse drehen konnte.

- 4. Berechnen Sie die Dicke der Eichenwand in *cm*! Verdeutlichen Sie Ihre Berechnungen an einer aussagekräftigen Skizze für Pferd und Eiche! **(2 Punkte)**
- 5. Unter einer Dicke der Eichenwand von 30*cm* bricht die Eiche zusammen. Beantworten Sie die Forschungsfrage! Begründen Sie Ihre Antwort! **(2 Punkte)**

⁴Die Quelle der Inspiration für die Aufgabe war eine Fahrt an die Ostsee und folgender Artikel: Entdecke das erste Nationale Naturmonument Deutschlands - Ivenacker Eichen und Hutewald

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

RESIST!

Von Töpfen auf Tischen Die Projektgruppe *I* bestehend aus Jonas, Tina, Paula und Mark hat sich zusammengefunden um den ersten Versuch zu planen. In einem Experiment wollen sie die Wuchshöhe von 120 Sonnenblumen bestimmen. Bevor die Vier überhaupt mit dem Experiment beginnen können, gibt es aber ein paar Abschätzungen über die Kosten und den Aufwand zu treffen. Zum einen müssen sie die Sonnenblumen einpflanzen und müssen dafür Substrat bestellen. Zum anderen muss die Projektgruppe die Sonnenblumen auch bewegen und in ein Gewächshaus platzieren. Die Töpfe für die Keimung haben einen Durchmesser von 9cm und eine Höhe von 10cm. Der Kubikmeterpreis für Torf liegt bei 310 EUR.

Helfen Sie der Projektgruppe I bei der Planung des Versuches!

- 1. Skizzieren Sie den Versuchsplan auf zwei Tischen im Gewächshaus! (2 Punkte)
- Berechnen Sie die benötigte Anzahl an Pflanztöpfen, wenn Sie Randpflanzen mit berücksichtigen wollen! (1
 Punkt)
- 3. Berechnen Sie die benötigte (a) Pflanztopffläche in m^2 sowie die (b) Tischflche in m^2 gegeben der Anzahl an Pflanztöpfen inklusive Randpflanzen am Anfang der Keimungsphase! **(4 Punkte)**
- 4. Berechnen Sie die benötigte Menge an Torf in Liter *l*, die Sie für das Befüllen der Pflanztöpfe benötigen! Gehen Sie von *einem Zylinder* für die Pflanztöpfe aus! **(2 Punkte)**
- 5. Berechnen Sie die Kosten in EUR für Ihre Torfbestellung! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

RESIST!

Solar- & Biogasanlagen Alex bringt ein neues, tolles Projekt mit in die Lerngruppe *Die Kühe auf dem Deich* bestehend aus ihm, Paula, Jonas sowie Tina. Um die Energiekosten seines Betriebes zu senken, will er eine Solaranlage auf den Rinderstall montieren lassen. Dafür hat er seinen Stall ausgemessen und findet folgende Maße wieder. Die vordere Seite des Rinderstall hat eine Höhe h_{ν} von 7m. Die hintere Seite des Rinderstall hat eine Höhe h_{b} von 9.5m. Der Rinderstall hat eine Tiefe t von 12m und eine Breite b von 60m. 'Sag mal Alex, ist das eine Matheaufgabe oder rechnen wir hier gerade für dich kostenlos als menschliche Computer Sachen für deinen Betrieb?', fragt Jonas mit erhobenenen Augenbrauen. Tina und Paula nicken zustimmend.

Wenn die Lerngruppe nicht will, dann müssen Sie bei der Planung helfen!

- 1. Skizzieren Sie den Rinderstall auf dem die Solaranlage montiert werden soll! Ergänzen Sie die Angaben für die Höhen h_V , h_b , die Tiefe t und die Breite b des Stalls! (2 **Punkte**)
- 2. Berechnen Sie die Fläche der schrägen, neuen Solaranlage auf dem Rinderstall! (3 Punkte)

Ebenfalls plant Alex eine neue Biogasanlage für seinen Betrieb. Der neue Methantank hat einen Radius r von 1.2m. Leider gibt es ein paar bauliche Beschränkungen auf dem Grundstück. Das Fundament des zylindrischen Methantanks kann nur ein Gewicht von maximal 15t aushalten bevor der Tank wegbricht. Alex rechnen eine Sicherheitstoleranz von 25% ein beinhaltend das Gewicht des Methantanks. In flüssiger Form hat Methan bei -80° C eine Dichte von $235kg/m^3$. Bei -100° C hat Methan eine Dichte von $300kg/m^3$. Alex betreibt seine Anlage bei -95° C.

- 3. Extrapolieren Sie die effektive Dichte des Methans in dem Methantank! Welche Annahme haben Sie getroffen? (1 Punkt)
- 4. Berechnen Sie wie viel Kubikmeter m^3 in den Methantank gefüllen werden können, bevor das Fundament nachgibt! (2 **Punkte**)
- 5. Berechnen Sie die maximale Höhe h_{max} in m für den gefüllten Methantank mit dem Radius r, bevor das Fundament wegbricht! (2 **Punkte**)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Stichworte: Riesenfaultier • Evolution der Avocado • Bluetooth • Blauzahn • Colonia Dignidad • ODESSA • Rattenlinie • Adolf Eichmann

Aligatorenbirnen und Blaubeeren "Sind Sie ein Riesenfautier oder warum kaufen Sie so viele Aligatorenbirnen?", spricht es hinter Ihnen. Irritiert drehen Sie sich um und blicken in das puderrote Gesicht von Alex. "Wieso?", entfährt es Ihnen und Sie bereuen sogleich die Frage. Sofort werden Sie zu einem Whiteboard voller roter Schnüre geschliffen und müssen folgenden mathematischen untermauerten Argumenten im Aldi über sich ergehen lassen. Da kommen Sie nicht mehr raus, also können Sie auch gleich mitmachen. Das Problem liegt in Chile⁵. Tja, die Deutschen und Südamerika.

Zuerst werden Ihre Fähigkeiten getestet, der Mathematik folgen zu können. Oder berechnen Sie gerade den Einkauf von Alex?

- 1. Wenn 5 Blaubeerschalen 9.45 Euro kosten, wie viel kosten 7 Schalen? (2 Punkte)
- 2. Wenn Sie die 7 Blaubeerschalen gekauft haben, wie viele Aligatorbirnen zu je 1.79 EUR können Sie sich dann noch für 100 EUR leisten? (1 Punkt)

Das Whiteboard beinhaltet folgende Liste mit Informationen zum Wasserverbrauch bei der Produktion von Gemüse aus Chile. Seltsam, was man so alles in einem Aldi über Gemüse erfährt.

- Ein Kilo Strauchtomaten benötigt 190l Wasser. Eine Strauchtomate wiegt 100 125g.
- Ein Kilo Salat benötigt 130l Wasser. Ein Salatkopf wiegt 320 490g.
- Ein Kilo Avocado benötigt 980l Wasser. Eine Avocado wiegt 120 420g.
- Ein Kilo Blaubeeren benötigt 880l Wasser. Eine Blaubeere wiegt 3.1 3.5g.
- 3. Berechnen Sie den Wasserverbrauch für die Produktion für jeweils eine Strauchtomate, einem Salat, einer Avocado und einer Blaubeeren. Stellen Sie das Ergebnis als Tabelle dar! (3 Punkte)

Chile exportiert im großem Ausmaß Blaubeeren und Avocados. In dem Exportjahr 2024 blieben die Erträge von Blaubeeren mit 9×10^4 t in dem prognostizierten Rahmen. Die Menge steigerte sich um 6.8%. Die Exporte für Avocados fielen in dem gleichen Zeitraum um 23.8% auf 2.1×10^5 t.

4. Wie viele Liter Wasser hat Chile in dem Exportjahr 2023 exportiert? (2 Punkte)

Chile ist eines der wenigen Länder der Welt, die ihr Wasser komplett privatisiert haben. Derzeit sind nur drei Prozent des Wassers des Landes für den häuslichen Verbrauch vorgesehen. In den Dörfern der Anbauregionen versorgen Tankwagen die Bevölkerung jede Woche mit Wasser, es gibt etwa 48 Liter Wasser pro Kopf für den täglichen Bedarf. In *Deutschland* liegt der Verbrauch bei 9 - 14 Liter pro Spülgang und 8 - 17 Liter pro Spülmaschinenlauf.

5. Mit der rationierten Wassermenge aus Chiles Anbaugebieten können Sie in *Deutschland* wie oft Ihren Bedarf stillen? (1 Punkt)

Das alles hätten Sie nicht von Alex erwartet. Ganz schön viele Informationen wurden da zusammengetragen.

6. Nennen Sie eine *Daten*quelle im Internet, wo Sie mehr Informationen zu landwirtschaftlichen Daten oder klimatischen, wirtschaftlichen und gesellschaftlichen Daten erhalten! (1 Punkt)

⁵Die Quelle der Inspiration für die Aufgabe waren folgende Reportagen: "'Bis zum letzten Tropfen"' in AMNESTY – Magazin der Menschenrechte vom August 2021 und "'Wasserknappheit in Chile: Eine Folge der Privatisierung?"' in Die Welternährung dem Fachjournal der Welthungerhilfe vom April 2022.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

 $\textbf{Stichworte:} \ \, \textbf{Kardaschow-Skala \bullet Dyson-Sphäre \bullet Hohlerde \bullet Entropie \bullet Proton} \ \, r_P = 1.7 \times 10e - 15 \bullet \text{Wasserstoff} \ \, r_H = 5.3 \times 10e - 11 \, \text{Masserstoff} \, r_H = 5.3 \times 10e - 10$

Die Dampfnudelerde "Was für einen Unsinn!", rufen Sie. Jetzt haben Sie auf Empfehlung von von Jonas kostbaren Schlaf prokrastiniert um einem Ernährungswissenschaftler auf YouTube über die Erde als Dampfnudel zu lauschen. Irgendwie passt es dann doch mit der Analogie. Übermüdet müssen Sie darüber nachdenken, warum vor 65 Millionen Jahren die Dinosaurier - so groß sie auch waren - nicht von der Schwerkraft zu Boden gerissen wurden. Hat der Dampfplauderer etwa recht und war die Schwerkraft vor Millionen von Jahren eine andere? Sind deshalb alle Lebewesen auf der Erde *heutzutage* so viel kleiner, weil die Schwerkraft größer ist als damals? War die Erde kleiner und hatte weniger Masse? Oder ist es nur ein Rechenfehler wie bei der Theorie der Hohlerde von Edmond Halley aus dem 17.–18. Jahrhundert? Müde reiben Sie sich die Augen. So wird es nichts mehr mit dem Schlafen, dann können Sie auch mal etwas rechnen⁶.

Betrachten wir die Schwerkraft oder Gewichtskraft, die auf Lebewesen damals und heute gewirkt haben soll. Nehmen Sie für die Fallbeschleunigung g der Erde heutzutage einen Wert von 9.78m/s^2 an. Im Weiteren hat die Erde einen ungefähren Durchmesser von $1.2742 \times 10^4 \text{km}$ und eine mittlere Dichte ρ von 5.44g/cm^3 . Das Gewicht von einem heute lebenden Waldelefanten mit 2.7 t liegt bei 6t und das Gewicht von einem Tyrannosaurus rex (T. rex) bei 4.5 t bis 8t.

- 1. Welchen Durchmesser müsste die Erde vor 65 Millionen Jahren gehabt haben, wenn Dinosaurier und Elefanten die gleiche Gewichtskraft $\overrightarrow{F_G}$ damals und heute erfahren hätten? Beantworten Sie die Frage anhand der folgenden Teilaufgaben!
 - a) Berechnen Sie die Fallbeschleunigung von vor 65 Millionen Jahren unter der obigen Annahme gleich wirkender Gewichtskraft $\overrightarrow{F_G}$ auf Elefant und Dinosaurier! (1 Punkt)
 - b) Berechnen Sie Masse der heutigen Erde! (2 Punkte)
 - c) Schließen Sie über die Masse auf den Durchmesser der Erde vor 65 Millionen Jahren! (2 Punkte)
- 2. Beantworten Sie die Eingangsfrage mit 1-2 Antwortsätzen! (1 Punkt)

Die Distanz zwischen Sonne und Erde entspricht 1.01 astronomische Einheiten (AE). Die Einheit 1 AE wird mit 1.48×10^8 km angegeben. Der massebehaftete Sonnenwind besteht aus 87% Wasserstoffkernen mit einer molaren Masse von 1.08g/mol, 11% Heliumkernen mit 4.01g/mol sowie 2% weiteren Atomkernen mit 89.32g/mol. Die Teilchendichte bei Eintritt in die Erdatmosphäre liegt zwischen 0.4 bis 100 Teilchen cm $^{-3}$ pro Sekunde mit einer mittleren Teilchendichte von 8cm $^{-3}$ pro Sekunde.

Lösen Sie den folgenden Aufgabenteil mit einer aussagekräftigen Skizze!

- 3. Berechnen Sie die Anzahl an massebehafteten Teilchen des Sonnenwindes, die die gesamte Erde pro Sekunde treffen! (2 Punkte)
- 4. Berechnen Sie die Masse, die die Erde pro Jahr durch die *massebehafteten* Teilchen des Sonnenwind zunimmt! (2 Punkte)

⁶Die Quelle der Inspiration für die Aufgabe war folgender Artikel: "Skeptische Anmerkungen — Die Erde als Dampfnudel" in Der Humanistische Pressedienst

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

'Entschuldigung, ist das Ihre Feder in meinem Auge?' So hört man häufiger höfliche Puten in Mastställen sagen. Das ist natürlich etwas ungünstig, den dann kommt es zu Picken und Kannibalismus. Denn wenn der Nachbar nervt, dann muss zu Maßnahmen gegriffen werden. Kennt jeder aus einer mittelmäßigen Wohngemeinschaft. Das wollen Steffen, Yuki, Nilufar und Tina aber als vorsorgliche Puten-Halter:innen nicht⁷. Gemeinsam sind die Vier in einer Projektgruppe gelandet. Betrachten wir also gemeinsam einmal das Platzangebot (eng. *space allowance*, abk. *SA*) der Puten für vier Tätigkeiten und versuchen die notwendige Fläche zu optimieren. Wie immer gibt es dafür eine mathematische Formel:

$$SA = \sum_{i=1}^{n} (A_i \times PB_i)$$
 $A_i = \pi \times (r_i + R_i)^2$

mit

- SA dem benötigten Platzangebot aller aufsummierten Verhalten i.
- Ai dem benötigten Platz für ein Verhalten i.
- PBi dem Anteil des Auftretens eines Verhaltens i.
- r_i dem Radius Pute plus dem benötigten Radius für das Verhalten i.
- Ri dem notwendigen Abstand zu den Nachbarn für das Verhalten i.
- i dem Verhalten: (1) standing, (2) walking, (3) wingflapping und (4) wing/leg stretching.

In der folgenden Tabelle 1 sind die Werte für r_i , R_i und PB_i für ein spezifisches Verhalten i aus drei wissenschaftlichen Veröffentlichungen dargestellt.

	Aldridge et al. (2021)	Baxter et al. (2022)	Jabcobs et al. (2019)
standing	37cm; 15cm; 8.9%	42cm; 7cm; 4.5%	29cm; 32cm; 10.1%
walking	51cm; 31cm; 1.8%	39cm; 26cm; 5.2%	25cm; 36cm; 2.1%
wingflapping	25cm; 20cm; 6.2%	45cm; 26cm; 3.2%	30cm; 28cm; 3.2%
wing/leg stretching	45cm; 41cm; 7.3%	13cm; 45cm; 1.2%	19cm; 21cm; 0.8%

Leider kennen sich die Vier nicht so gut mit der Berechnung aus! Daher brauchen die Vier Ihre Hilfe!

- 1. Skizzieren Sie die Werte r_i , R_i und A_i für zwei nebeneinander agierende Puten für ein Verhalten i. Nutzen Sie hierfür vereinfachte geometrische Formen! (2 **Punkte**)
- 2. Erstellen Sie eine zusammenfassende Tabelle mit den mittleren Werten für r, R und PB aus der obigen Tabelle 1 für die jeweiligen Verhalten! (3 **Punkte**)
- 3. Ergänzen Sie eine Spalte mit dem benötigten Platz A für das jeweilige Verhalten, welches sich aus den mittleren Werten ergibt! (1 Punkt)
- 4. Berechnen Sie das benötigte Platzangebot SA für alle betrachteten Verhalten! (1 Punkt)
- 5. Sie entnehmen der Literatur folgende Aussage zur Verteilung der Puten in der Fläche A: "Assuming, that the animals will optimally and equally distribute in an area A, we observe a small part, which is not covered. This area is called ω and is calculated with $\omega = \frac{A}{0.9069}$." Veranschaulichen Sie die Fläche ω in einer aussagekräftigen Abbildung! (1 Punkt)
- 6. Ein Tier braucht Platz für sich selbst. Berechnen Sie nun die Körperfläche α , die ein Tier einnimmt. Welche Annahmen haben Sie für die Berechnung der Körperfläche getroffen? (2 **Punkte**)

⁷Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftliche Artikel: EFSA Panel on Animal Health and Welfare, et al. (2023) Welfare of broilers on farm. EFSA Journal 21.2.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Nelken von den Molukken Paula und Tina waren gemeinsam in Berlin und sitzen nun im IC nach Amsterdam um zurück nach Osnabrück zu fahren. 'Weißt du was ich mich frage?', entfährt es Paula ziemlich plötzlich, so dass Tina die Katjes aus dem Mund fallen. 'Nein, und ehrlich gesagt bin ich auch ziemlich müde...'. Das ist jetzt aber Paula egal, denn sie möchte folgende Sachlage diskutieren. Und Paula hat jetzt 3 Stunden Zeit. Plus Verspätung. In der Ausstellung *Europa und das Meer* im Deutschen Historischen Museum in Berlin gab es folgendes Zitat über die Probleme der frühen Hochseeschifffahrt.

»Ohne ausreichende Zufuhr von Vitamin C stellen sich nach 50 Tagen die ersten Symptome ein; die ersten Toten sind nach 70 Tagen zu beklagen; nach 100 Tagen rafft die Skorbut eine ganze Schiffsbesatzung dahin«

Ferdinand Magellan stach im Jahre 1519 in See um eine Passage durch den südamerikanischen Kontinent zu finden. Zu seiner Flotte gehörten fünf Schiffe - das Flaggschiff Trinidad, die San Antonio, die Victoria, die Concepciön und die Santiago - mit einer Besatzung von insgesamt 245 Mann.

- 1. Stellen Sie den Verlauf der Anzahl an Matrosen auf einem Schiff der Flotte in der Form einer Überlebenszeitkurve dar! Beschriften Sie die Achsen entsprechend! (2 Punkte)
- 2. Was ist die Besonderheit der Überlebenszeitkurve? Begründen Sie Ihre Antwort! (2 Punkte)
- 3. Schätzen Sie die Überlebenswahrscheinlichkeit nach 90 Tagen aus Ihrer Abbildung ab! (1 Punkt)

Der Chronist an Bord der Trinidad, Antonio Pigafetta, schrieb in seinem Bericht '[...] Um nicht Hungers zu sterben, aßen wir das Leder, mit dem die große Rahe zum Schutz der Taue umwunden war.' Insbesondere die Mannschaft der Concepciön erlitt große Verluste durch die Skrobut bei der Überquerung des Pazifiks, da durch Erkundungsfahrten weniger Zeit blieb, um wilden Sellerie aufzunehmen. Wilder Sellerie enthält $8000\mu g/50g$ Vitamin C. Der Bedarf liegt bei 115mg pro Tag für Männer.

- 3. Berechnen Sie die notwendige Menge in *t* an aufzunehmenden wilden Sellerie auf die Concepciön für die ununterbrochene Fahrt von drei Monate und 24 Tage über den Pazifik! **(3 Punkte)**
- 4. Skizzieren Sie die Überlebenszeitkurve für die Concepciön im Vergleich zu der Überlebenszeitkurve der Trinidad! Beschriften Sie die Achsen! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Event Horizon – Am Rande des Universums Paula ist bei Tina um gemeinsam *Event Horizon – Am Rande des Universums* zu streamen. Das war jetzt nicht die beste Idee. Denn Paula kann Horror überhaupt nicht ab. Deshalb flüchtet sie sich in Logik um ihre Emotionen zu bändigen. Tina mampft ungerührt Katjes. Folgenden Gedankengang nutzt Paula um dem Film zu entkommen. Die Sonne hat eine aktuelle, angenommene Masse von 2×10^{29} kg. Wenn die Sonne nun am Ende ihrer Lebenszeit zu einem schwarzen Loch mit dem Radius von 3000m kollabiert, wird die Sonne 45% der aktuellen Masse verloren haben. Ein Lichtteilchen mit der Masse m_f und der Fluchtgeschwindigkeit v_f will dem schwarzen Loch entkommen. An folgende Formeln erinnert sich Paula für die kinetische Energie des Lichtteilchens E_{kin} und der Graviationsenergie des schwarzen Lochs E_{grav} 8.

$$E_{kin} = \frac{1}{2} m_f v_f^2 \qquad E_{grav} = \frac{G m_s m_f}{r_s}$$

mit

- m_f , gleich der Masse [kg] des fliehenden Objektes
- $\dot{m_s}$, gleich der Masse [kg] des stationären Objekts
- r_s, gleich dem Radius [m] des stationären Objekts
- G, gleich der Gravitationskonstante mit $6.674 \cdot 10^{-11} m^3 (kg \cdot s^2)^{-1}$

Im Folgenden wollen wir Paula bei der Ablenkung helfen und uns mit der Frage beschäftigen, ob das Lichtteilchen der Gravitation des schwarzen Lochs entkommen kann.

- 1. Geben Sie die Formel für die Fluchtgeschwindigkeit v_f an! (2 Punkte)
- 2. Überprüfen Sie Ihre umgestellte Formel nach v_f anhand der Einheiten! (1 Punkt)
- 3. Berechnen Sie die notwendige Fluchtgeschwindigkeit v_f des Lichtteilchens mit den angegebenen Informationen! (2 Punkte)
- 4. Gehen Sie von einer Lichtgeschwindigkeit von $2.9 \times 10^8 m/s$ aus. Kann das Lichtteilchen der Gravitation des schwarzen Lochs entkommen? Begründen Sie Ihre Antwort! (2 **Punkte**)
- 5. Stellen Sie den Zusammenhang zwischen dem sich verringernden Radius r des schwarzen Lochs bei gleichbleibender Masse m_s und der notwendigen Fluchtgeschwindigkeit v_f in einer Abbildung dar! Erstellen Sie dafür eine Datentabelle mit fünf Werten für den Radius r! (3 Punkte)

⁸Die Quelle der Inspiration für die Aufgabe war ein Montagnachtfilm: Event Horizon – Am Rande des Universums

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Stichworte: Great filter • SETI • WOW-Signal • 5-Sigma • Voyager 1 • Voyager 2

Das Fermi Paradoxon Jessica und Yuki wandern durch den Teuteburgerwald um mal vom Studium runterzukommen. 'Kennst du eigentlich Enrico Fermi?', fragt Jessica und fährt ohne die Antwort abzuwarten fort, 'Er war ein berümter Kernphysiker! Enrico Fermi diskutierte 1950 auf dem Weg zum Mittagessen im Los Alamos National Laboratory mit seinen Kollegen angebliche UFO-Sichtungen und fragte schließlich: »Where is everybody?«. Warum seien weder Raumschiffe anderer Weltraumbewohner noch andere Spuren extraterrestrischer Technik zu beobachten?'. Yuki schaut sie irritiert und interessiert an. Die beiden hat das Problem gepackt. Deshalb wollen Jessica und Yuki das Paradoxon mal mathematisch untersuchen! Wie lange würde eine außerirdische Zivilisation benötigen um die gesamte Milchstraße zu besuchen, wenn das maximale Reisetempo die Geschwindigkeit der Voyager 1 Sonde wäre?⁹

Die beiden treffen folgende Annahmen. Eine außerirdische Zivilisation schickt drei Voyager 1 ähnliche Sonden mit der Geschwindigkeit von $6.0523 \times 10^4 km/h$ los um sich auf den erreichten Planeten selbst zu replizieren. Nach 750 Jahren ist die Replikation abgeschlossen und wiederum drei Sonden werden ausgesendet. Gehen Sie von 7.81 Lichtjahren als mittlerer Abstand der Sterne in der Milchstraße aus. Es gibt 10^{11} Sterne in der Milchstraße. Nehmen Sie eine Lichtgeschwindigkeit von $2.8 \times 10^8 m/s$ an.

- 1. Skizzieren Sie in einer Abbildung die ersten drei Schritte der Vervielfältigung der Sonden in der Galaxie! Beschriften Sie die Abbildung mit der Dauer und der Anzahl an Sonden für jeden Schritt der Vervielfältigung! (4 Punkte)
- 2. Berechnen Sie die theoretische Anzahl an Vervielfältigungsschritten die benötigt werden um mit einem einzigen Vervielfältigungsschritt die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 3. Berechnen Sie die Dauer, die eine außerirdische Zivilisation annährungsweise benötigt um die gesamten Sterne der Milchstraße mit Sonden zu besuchen! (2 Punkte)
- 4. Bei einem vermutetet Alter der Erde von 4.3×10^9 Jahren, wie oft war dann eine Sonde einer außerirdischen Zivilisation schon zu Besuch? Korrigieren Sie Ihre Antwort mit dem Wissen, dass sich die Kontinentalplatten einmal alle 9×10^7 Jahre vollständig im Erdinneren umgewandelt haben! (2 Punkte)

⁹Die Quelle der Inspiration für die Aufgabe war folgender Wikipediaeintrag: Fermi-Paradoxon

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Pyramiden bauen Es stehen die niedersächsichen Pyramidentage an! Sie und Nilufar sind auf abenteuerlichen Wegen für den Bau der Pyramiden zuständig. Zu allem Überfluss handelt es sich auch noch eine *Reenactment* Veranstaltung. Thema der diesjährigen Pyramidentage sind die Pyramiden von Meroe, die den Königen und Königinnen des historischen Reiches von Kusch in Nubien, dem heutigen Sudan, als Grabstätten dienten. Die Pyramiden in Meroe fallen durch ihren steilen Winkel von 73 Grad im Vergleich zu den ägyptischen Pyramiden mit 52 Grad auf. Die durchschnittliche Seitenlänge der Grundfläche einer Pyramide beträgt 33 Königsellen. Eine Königselle misst 52.2cm.

Lösen Sie diese Aufgabe mit Hilfe einer Skizze der Pyramide. Bezeichnen Sie Seiten und die Winkel der Pyramide entsprechend!

- 1. Bei der Königspyramide von Meroe soll eine Seitenlänge der Grundfläche 33 Königsellen lang sein. Welche Höhe der Königspyramide in *m* ergibt sich? **(1 Punkt)**
- 2. Die Außenflächen der Pyramide soll begrünt werden. Für die Bepflanzung muss eine 7cm dicke Torfschicht auf die Pyramide aufgebracht werden. Berechnen Sie die ungefähre Menge an benötigten Torf in m³! (2 Punkte)

Wie in jedem guten *Reenactment* gibt es viel Oberschicht, aber nur 3 Sklaven, die Ihnen und Nilufar bei dem Befüllen der Pyramide mit Schutt zu Seite stehen. Leider haben Ihre Sklaven zu allem Überfluss auch noch chronische Knieschmerzen entwickelt, als die Sklaven von der anstehenden Aufgabe erfahren haben. Gehen Sie daher von einer Effizienz der Sklaven von 80% aus. In eine Schubkarre passen 100 Liter.

- 3. Wie oft müssen Ihre maladen Sklaven die Rampe mit der Schubkarre zur Spitze der Pyramide hochfahren um die Pyramide mit Schutt zu füllen? (1 Punkt)
- 4. Berechnen Sie die Länge der Rampe zur Spitze der Pyramide mit einem Anstellwinkel von 12°! (2 Punkte)
- 5. Wie weit reicht Ihre Rampe vom Fuß der Pyramide in die niedersächsiche Landschaft? (2 Punkte)

Bei der Besichtigung der Pyramide teilt Ihnen der leicht übergewichtige Pharao (Nebenberuf *Mittelständler*) mit, das die Pyramide zu steil sei und somit nicht in die niedersächsiche Landschaft passen würde. Sie müssen nochmal ran.

6. Die Grundfläche der Pyramide ändert sich nicht. Berechnen Sie die Änderung der Höhe in Königsellen, wenn sich der Anstellwinkel der Pyramide um 6° ändert! (2 Punkte)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Geocaching – Von Satelliten und Plastikdosen Es ist Wochenende und das Wetter ist *sweet*. Alex und Yuki schwingen sich auf ihre Cachermobile um mit 17km/h, geleitet von modernster Satellietentechnologie und einem Supercompter aus dem Jahr 2000 in den Händen, Plastikdosen in der Natur und an sehenswerten Orten zu finden. Alex und Yuki wollen diesmal endlich die abwärts Terrainchallenge durchführen. Die Reihenfolge der Caches nach Terrainwertung gibt daher die von den beiden abzufahrenden Orte vor. Die Terrain- und Schwierigkeitswertungen laufen von 1 (leichteste Wertung) bis 5 (schwierigste Wertung) in 0.5 Schritten. Folgende Informationen zu den Orten und den entsprechenden Caches stehen Alex und Yuki für die Planung der Route zu Verfügung¹⁰.

Ort	Cache	Wertung (S T G)
Α	GCXUZVQ	4.0 4.5 Klein
В	GCJS77B	2.0 2.5 Mikro
С	GCUZQ6I	4.5 1.0 Mikro
D	GCCV7NC	3.5 3.5 Normal
Е	GCWMCQV	1.0 3.0 Normal

Im Weiteren sind den beiden folgende Informationen zu den Entfernungen der Orte zugänglich. Der Entfernungsvektor \overrightarrow{AB} ist 6km. Im Weiteren ist Ihnen der Entfernungsvektor \overrightarrow{CB} mit 6.5km bekannt. Der Entfernungsvektor \overrightarrow{BE} ist das 1.5-fache des Entfernungsvektor \overrightarrow{CB} . Wenn Sie von dem Ort A den Ort C anpeilen, so liegt der Ort B ungefähr 40° nördlich. Wenn Sie von dem Ort C den Ort B anpeilen, so liegt der Ort D ungefähr 55° östlich. Vom Ort B betrachtet, bilden die Orte C und D einen rechten Winkel am Ort B. Der Ort B liegt auf gerader Linie zwischen den Orten C und E. Somit liegt der Ort E nördlich von B. Die Strecke zwischen A und E ist nicht passierbar. Sie starten an dem Ort B Ihre Cachertour.

Leider sind die beiden sehr schlecht im Navigieren und Entfernungen ausrechnen. Die beiden brauchen Ihre Hilfe!

- 1. Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Orte und Caches. Bezeichnen Sie die Strecken und die Winkel Ihrer Skizze entsprechend! **(5 Punkte)**
- 2. Welche Strecke in km legen Sie bei der Bewältigung der abwärts Terrainchallenge zurück? (2 Punkte)
- 3. Gehen Sie von einer zusätzlichen Suchzeit in Stunden für die Caches an den jeweiligen Orten zur reinen Reisezeit mit Ihrem Cachermobil aus. Die Suchzeit in Stunden für jeden einzelnen Cache wird durch die Funktion

 $Suchzeit = 0.2 + 0.18 \cdot Schwierigkeit$

beschreiben. Wie lange in Stunden benötigen Sie um die abwärts Terrainchallenge zu erfüllen? (3 Punkte)

¹⁰Die Quelle der Inspiration für die Aufgabe war folgende Tätigkeit: Geocaching – Mach mit bei der weltweit größten Schatzsuche.

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Stichworte: Brot aus Luft • Walöl • Haber-Bosch-Verfahren • 1. Weltkrieg • 40% N im menschlichen Körper • Positivisl

Die atmende Wand und Brot aus Luft Als Kellerkind¹¹ vom Dorf will Yuki das Ausmaß der Radonbelastung in ihrem Kellerzimmer bestimmen und lüften daher nicht. Passt schon. Spart dann auch Energie und lüften wird sowieso überschätzt. Während einer Messperiode von 7:00 Uhr bis 21:00 bestimmt sie dreimal automatisch die Radonbelastung in ihrem Kellerraum in Bq/m^3 . Es ergibt sich folgende Abbildung¹². Leider helfen die Messwerte Yuki überhaupt nicht weiter. Sie müssen also helfen!

1. Wie lange dauert es in Stunden bis Sie eine kritische Belastung von $280Bq/m^3$ in Ihrem ungelüfteten Kellerraum erreicht haben? (2 Punkte)

Radon zerfällt mit einer Halbwertszeit von 3.5d zu Polonium. Polonium wiederum zerfällt mit einer Halbwertszeit von 160d zu Blei. Nur Radon und Polonium tragen zur radioaktiven Strahlenbelastung bei.

2. Wie lange dauert es in Stunden bis Ihre kritische Radonbelastung von $280Bq/m^3$ auf unter $90Bq/m^3$ gefallen ist? **(4 Punkte)**

Folgende Tabelle enthält die Informationen zur Zusammensetzung der normalen Umgebungsluft.

	Vol-%	M [g/mol]	ppm
Stickstoff	77.1	28.4	
Sauerstoff	20.45	16.5	
Kohlenstoffdioxid	0.029	12.1	

3. Rechnen Sie die Volumenprozente (Vol-%) der Umgebungsluft in die entsprechenden ppm-Werte um und ergänzen Sie die berechneten ppm-Werte in die Tabelle! (1 Punkt)

Während Yuki ihr etwas pappiges Toastbrot mampfen kommt Yuki die Dokumentation über Brot aus Luft in den Sinn. Yuki denkt darüber ein wenig nach. Für die Umwandlung von Stickstoff N_2 mit Wasserstoff H_2 zu Ammoniak NH_3 gilt folgende Reaktionsgleichung¹³:

$$N_2 + 3H_2 \rightarrow 2NH_3$$

Ein Mol eines beliebigen Gases hat bei normalen Umweltbedingungen ein Volumen von 22.4 Liter.

- 4. Welche Masse an Ammoniak in Kilogramm kg können Sie aus einem Kubikmeter m^3 Luft unter normalen Umweltbedingungen gewinnen? (2 Punkte)
- 5. Wie viel Ammoniak in mol erhalten Sie aus einem Kubikmeter Luft? (1 Punkt)

¹¹Tocotronic - Electric Guitar als passende Untermalung für diese Aufgabe.

¹²Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Atmende Wand

¹³Die Quelle der Inspiration für die Aufgabe war folgender Artikel: Haber-Bosch-Verfahren – Brot aus Luft

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Armee der Finsternis Der Studentenjob von Alex war nach Ladenschluss bei Kaufland die Regale einzuräumen. Dabei ist Alex in der Auslage der Sonderangebote das Necronomicon¹⁴ in die Hände gefallen. Nun ist er eine Magierin der Zeichen geworden! Also eigentlich kann Alex nur Mathe und das dämliche Necronomicon hat ihn in die Vergangenheit geschleudert... aber gut, was tut man nicht alles im Jahr 35 n. Chr. für den neuen Lehnsherren Henry dem Roten. Alex baut natürlich einen Schrottkugelturm um sich den Horden der Finsternis mit genug Schrott erwehren zu können! Alex stehen zwei mächtige magische Formeln zur Unterstützung zu Verfügung. Leider wird das nicht reichen, deshalb müssen Sie hier auch noch durch Zeit und Raum helfen!

$$E_{kin} = \frac{1}{2} \cdot m \cdot v^2$$
 $E_{pot} = m \cdot g \cdot h$

mit

- m, gleich der Masse [kg] des Objekts
- h, gleich der Höhe [m] des ruhenden Objekts
- v, gleich der Geschwindigkeit [m/s] des Objekts
- g, gleich der Erdbeschleunigung mit 9.81 $\frac{m}{c^2}$

Als erstes müssen Sie die Höhe des zu bauenden Schrottkugelturmes bestimmen. Hierfür ist wichtig zu wissen, dass sich die Bleitropfen mit einem Gewicht von 20mg zu gleichförmigen Bleitropfen bei einer Geschwindigkeit von 12m/s bilden.

1. Wie hoch müssen Sie den Schrottkugelturm bauen lassen, damit sich runde Bleikugeln durch die Fallgeschwindigkeit von 12m/s bilden? (3 Punkte)

Ihre erstellten Schrottkugeln sind leider zu groß und somit sind zu wenige Schrottkugeln in einer Ladung. Damit können Sie die Armee der Finsternis nicht aufhalten. Die Sachlage müssen Sie einmal mathematisch untersuchen.

- 2. Nennen Sie die beiden geometrischen Formen aus denen sich näherungsweise ein Tropfen zusammensetzt! Erstellen Sie eine beschriftete Skizze des Tropfens! (2 Punkte)
- 3. Sie messen eine Länge des Tropfens von 4.1mm. Die Löcher im Sieb erlauben ein Tropfendurchmesser von 1.5mm. Welchen Durchmesser in mm haben Ihre produzierten Bleikugeln? (3 Punkte)

Sie haben jetzt die 1.2×10^6 Bleikugeln zusammen. Blei hat eine Dichte von $12.63 g/cm^3$.

4. Wie schwer in Kilogramm kg sind die 1.2×10^6 produzierten Bleikugeln, die Sie jetzt auf die Burgmauer transportieren müssen? (1 Punkt)

Am Ende müssen Sie noch die Produktion von dem Bleischrott im Turm optimieren.

5. Wie groß in cm^2 ist Ihr quadratisches Sieb am oberen Ende des Turms, wenn Sie pro Fall ca. 1100 Bleikugeln produzieren wollen und die Bleikugel im Fall 0.8cm Abstand haben müssen? (1 **Punkt**)

¹⁴Ein wirklich gefährliches Buch ist: *Du bist genug: Vom Mut, glücklich zu sein* von Fumitake Koga und Ichiro Kishimi

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Armee der Kaninchen Leider hat es bei Tina mit der Surfschule in Down Under nicht geklappt. War vielleicht auch nicht *so* die beste Idee... aber dafür hat Tina eine neue Eingebung! Oder wie es Mike Tyson zugeschrieben wird: »Ich wurde nie niedergeschlagen, ich war immer am Aufstehen!«. Daher macht Tina jetzt einen Großhandel mit Kaninchenfleisch und damit dem teuersten Fleisch in Australien auf. Moment, hopsen hier nicht, seit Thomas Austin im Jahr 1875 ungefähr 26 Kaninchen entlassen hat, Millionen von Kaninchen rum? Wieso ist das Kaninchenfleisch dann so exklusiv? Tina wird stutzig und frag Sie, dem mal mathematisch nachzugehen!¹⁵

Forscherinnen fand folgende Sättigungsfunktion für das jährliche Wachstum der gesamten Kaninchenpopulation im westlichen Australien.

$$f(t) = 1.1 \times 10^{10} - 10^9 \cdot 2.2^{-0.15 \cdot t + 2.7}$$

- 1. Skizzieren Sie die Sättigungsfunktion annäherungsweise in einer Abbildung! (1 Punkt)
- 2. Wie viele Kaninchen können nach der Sättigungsfunktion maximal im westlichen Australien leben? Ergänzen Sie den Wert in Ihrer Abbildung! (2 Punkte)
- 3. Wie viele Millionen Kaninchen leben nach der Sättigungsfunktion nach 6 Jahren auf dem australischen Kontinent? (1 Punkt)

Um den Kaninchen Einhalt zu gebieten wurde das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) in 14 Kaninchen ausgebracht. Da die Kaninchen keine Maßnahmen gegen die Ausbreitung vornehmen können, verläuft die Ausbreitung mit einem wöchentlichen Wachstumsfakor von 1.6 nach folgender Formel.

$$N(t) = N(0) \cdot a^t$$

3. Wie viele Wochen benötigen die Viren um theoretisch die gesamte Kaninchenpopulation nach 4 Jahren Wachstum zu durchseuchen? (1 Punkt)

Das Myxoma Virus und das RHDV töten 99.7% der Kaninchenpopulation innerhalb weniger Wochen.

4. Wie lange in Jahren dauert es bis eine Kaninchenpopulation nach einer Viruspandemie wieder auf 70% der gesättigten Kaninchenpopulation angewachsen ist? (2 Punkte)

Thomas Austin entließ die Kaninchen im äußersten Süden von Australien. Australien hat eine West-Ost-Ausdehnung von 4000km und eine Nord-Süd-Ausdehnung von knapp 3700km. Die Kaninchen breiten sich radial mit einer Geschwindigkeit von 8.8km pro Jahr aus.

5. Wie lange dauert es in Jahren bis die Kaninchen jeden Ort in Australien erreicht haben? Lösen Sie die Aufgabe unter der Verwendung einer schematischen Skizze! (2 Punkte)

Eine jährliche Impfung gegen das Myxoma Virus und das Rabbit Haemorrhagic Disease Virus (RHDV) kosten 11\$ pro Tier und der durchführende Arzt verlangt ca. 35\$ pro Tier.

6. In Ihrem Stall leben 800 Mastkaninchen. Mit welchen jährlichen Zusatzkosten für die Impfungen der Kaninchen müssen Sie daher kalkulieren? (1 Punkt)

¹⁵Die Quelle der Inspiration für die Aufgabe war der folgendes YouTube Video: Incredible Stories – Why don't they eat wild rabbits in Australia? They have millions of them! The reason is surprising...

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Ostfriesland. Unendliche Weiten. Wir schreiben das Jahr 2025. Dies sind die Abenteuer des Schafs Frida und Yuki. Grünes Gras unter Yukis Füßen und ein strammer Wind im Gesicht, egal wohin er schaut. Ein schmatzendes Geräusch ertönt unter Yuki. Yuki sinniert, sollte er seine weiten Graslandschaften jetzt schon düngen? Dafür benötigt Yuki die *Grünlandtemperatur*! Die Grünlandtemperatur (GLT) ist die Summe aller positiven Tagesmitteltemperaturen seit Jahresbeginn. Ab einer GLT von 200° kann mit der Stickstoffdüngung begonnen werden. Yuki sieht nicht ein, Geld für einen Agrarmetrologen zu bezahlen, wenn auch Sie mitrechnen können. Also rechnen Sie beide mit folgenden Informationen zu Monatsmultiplikatoren des GLT-Wertes: Januar mit 0.5×, Februar mit 0.8× und März mit 1.2×. Sie haben noch im letzten Jahr folgende Temperaturen gemessen.

Datum	C°
01. Jan 2024	0.4
01. Feb 2024	1.5
01. Mrz 2024	3.5
01. Apr 2024	4.3

- 1. Erstellen Sie eine Skizze aus den Informationen aus der Temperaturtabelle! (1 Punkt)
- 2. Stellen Sie die linearen Funktionen $f_1(t)$, $f_2(t)$ und $f_3(t)$ aus der obigen Temperaturtabelle auf! (1 Punkt)
- 3. Bestimmen Sie die Stammfunktionen $F_1(t)$, $F_2(t)$ und $F_3(t)$ für Ihre linearen Funktionen aus der obigen Temperaturtabelle! (1 **Punkt**)
- 4. Osterglocken beginnen ab einer GLT von 190°C zu blühen. An welchem Tag im 1. Quartal des Jahres 2024 war dies der Fall? *Ignorieren Sie ein eventuelles Schaltjahr in Ihrer Berechnung.* **(4 Punkte)**

Auf dem Weg zu Yukis Jonagoldplantage werden Sie beide auf dem Trecker von einer Gruppe elektrifizierter Renter abgedrängt. Der Trecker muss wieder aus dem Graben! Frida und die elektrifizierten Rentner ziehen an zwei, separaten Seilen. Dabei zieht Frida mit 120N. Die elektrifizierter Renter bringen eine Kraft von 190N auf.

Lösen Sie diese Aufgabe mit Hilfe einer aussagekräftigen Skizze der Kraftvektoren. Bezeichnen Sie die Kraftvektoren und die Winkel Ihrer Skizze entsprechend!

- 5. Im ersten Versuch legen Sie das Seil für Frida lotrecht über einen Ast oberhalb des Treckers. Die Rentner ziehen in einer geraden Linie über die Böschung hinweg am anderen Seil. Welche Kraft wird aufgebracht? (2 Punkte)
- 6. Im zweiten Versuch ziehen Frida und die Rentner mit einem 40° Winkel mit ihrem Seil an dem Trecker. Welche Kraft wird aufgebracht? (2 Punkte)
- 7. Mit welcher Beschleunigung ziehen Sie den 1.5t schweren Trecker jeweils aus dem Graben, wenn $F = m \cdot a$ gilt? (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

In der Kartonagenfabrik Yuki, Alex, Mark und Jonas sitzen im Bus. Wenn man sich zu spät anmeldet, dann ist die Exkursion nicht so toll. Yuki hatte den Anderen in der Lerngruppe zu spät Bescheid gesagt. 'Was denn, bin ich eure Nanny oder was?!', entfährt es Yuki nachdem die vorwurfsvollen Blicke schon eine Weile auf ihm lasten. Also geht es eben mit Rektor Skinner und Mrs. Krabappel in die Kartonagenfabrik. Wie schon im vorherigen Semester... In der Kartonagenfabrik angekommen erfahren die Vier, dass die Kartons zum Versand von Nägeln nicht hier zusammengebautwerden sondern das sich die Endfertigung in Flint, Michigan befindet. Unter anderem wird dort der berühmte Doppelt gewellte, 8-mal-gefaltete, 0.7mm, 40-cm-Karton durch Falzung hergestellt. Beim letzten Mal war Rektor Skinner die Stimmung zu schlecht und deshalb geht es erst nach Hause, wenn ein paar Aufgaben gelöst sind. Martin gefällt das. An dem Vorrat an Zigaretten von Mrs. Krabappel meinen alle wenig Zuversicht zu erkennen.

Jetzt heißt es Kartons optimieren, wenn Sie auch nochmal nach Hause wollen. Warum jetzt *Sie* mit dabei sind, lassen wir mal weg. Der nun zu optimierende, flache Karton hat eine Länge von 40cm und eine Breite von 20cm. Die Kartonagenmaschine in Flint soll dann einen quadratischen Eckenausschnitt der Länge x falzen.

- 1. Erstellen Sie eine Skizze des Karton*blatt*rohlings! Beschriften Sie die Skizze mit den entsprechenden Längenangaben (1 Punkt)
- 2. Berechnen Sie die Falztiefe x für ein maximales Volumen des flachen Kartons! (3 Punkte)
- 3. Welches Volumen in Liter ergibt sich mit der von Ihnen berechneten Falztiefe x? (1 Punkt)
- 4. Sie wollen noch einen bündig mit dem Boden abschließenden Deckel für den Karton stanzen lassen. Wie groß ist die Fläche des Kartondeckel*blatt*rohlings in *cm*²? **(2 Punkte)**

Rektor Skinner möchte sich gerne wieder in seinem Vorgarten aufhalten und nicht die ganze Zeit von Bart mit Erdnüssen beworfen werden. Deshalb möchte er einen geräumigen Teil seines Vorgartens einzäunen. Ein Teil der Umzäunung bildet seine Vorderhauswand. Wegen Lieferschwierigkeiten stehen Rektor Skinner nur 90m Zaun zu Verfügung. Auch hier sollen Sie mal helfen, sonst fährt der Bus Sie nicht nach Hause. Sie wollen nun die maximale Fläche des abgeschirmten Vorgartens in Abhängigkeit der Seitenlängen bei der Verwendung von 90m Zaun bestimmen!

- 5. Welche Seitenlängen für den Zaun ergeben sich für die maximale Fläche des abgeschirmten Vorgartens? (2 Punkte)
- 6. Berechnen Sie die Fläche des abgeschirmten Vorgartens! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Ein Pfund Insekten, bitte! 'Das wird wohl häufiger gehört werden, wenn wir die Menschheit mit Proteinen ausreichend ernähren wollen 16 .', merkt Jessica an. Die Lerngruppe um Tina, Jonas und Steffen sind bei Jessica um mal was außergewöhnliches zu essen. Um den Sinn der Nahrungsumstellung zu verdeutlichen, vergleicht Jessica einmal Deutschland mit Nigeria. Nigeria hat eine der am schnellsten wachsenden Bevölkerungen der Welt und wird vermutlich im Jahr 2100 zu den Top 5 der bevölkerungsreichsten Länder zählen. Im Jahr 2020 leben ca. 8.4×10^7 Menschen in Deutschland und ca. 1.8×10^8 Menschen in Nigeria. Mit den Informationen wollen Sie und Jessica mit der Überzeugungsarbeit anfangen und dann eine Prognose für den Fleischkonsum im Jahr 2050 zu treffen.

Im Folgenden ist Abbildung des Fleischkonsums im Jahr 2020 in Deutschland und Nigeria in [kg] einmal dargestellt.

- 1. Stellen Sie den Fleischkonsum in Deutschland und Nigeria im Jahr 2020 *pro Kopf* in einer aussagekräftigen Tabelle dar! **(2 Punkte)**
- 2. Ergänzen Sie in der Tabelle eine Spalte in der Sie für den Fleischkonsum in Nigeria auf Deutschland normieren, daher ins Verhältnis Nigeria/Deutschland, setzen! (1 Punkt)

In der nächsten Abbildung finden Sie die CO₂-Emission in [kg] nach Lebensmittel, die durch die Produktion entsteht, abgebildet.

3. Stellen Sie in einer Tabelle die Treibhausgasemissionen an CO_2 pro Kopf, die durch den Fleischkonsum in Deutschland und Nigeria im Jahr 2020 entstehen, dar! Ergänzen Sie auch hier das Verhältnis Nigeria zu Deutschland! (2 Punkte)

¹⁶Die Quelle der Inspiration für die Aufgabe war der folgende Artikel aus dem Spiegel: Acht Milliarden - sind wir bald zu viele Menschen auf der Erde?

In der folgenden Abbildung sehen Sie die Bevölkerungsentwicklung [Millionen] in Nigeria von 1950 bis ins Jahr 2030 fortgeführt.

- 4. Schätzen Sie graphisch die zu erwartende Bevölkerung [Millionen] in Nigeria im Jahr 2050, die sich anhand der Informationen aus der Abbildung ergibt!
 - a) Ohne Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
 - b) Unter Berücksichtigung der Covid-19-Pandemie! (1 Punkt)
- 5. Berechnen Sie den geschätzten Fleischkonsum von Nigeria im Jahr 2050 unter der Annahme 60%-iger Angleichung der Lebensbedingungen zu Deutschland im Jahr 2020! (1 Punkt)
- 6. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria im Jahr 2050 im Vergleich zum Jahr 2020, der sich durch den angeglichenen Fleischkonsum ergibt! (1 Punkt)
- 7. Berechnen Sie die prozentuale Steigerung der Treibhausgasemissionen an CO_2 in Nigeria, wenn die gesamte Proteinaufnahme durch Insekten ersetzt würde! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Stichworte: Immunsystem – Muskel vs. Interpol • Inzidenz • Prävalenz

Tödliche Seuche AIDS – Die rätselhafte Krankheit Irritiert legt Paula die historische Ausgabe des Spiegels aus den 80zigern beiseite. Paula und Yuki sind bei ihrem Hausarzt und wollen einen AIDS-Test machen lassen. Woanders leider keinen Termin gekriegt... Immerhin denken die beiden über Nachwuchs nach und da geht es eben nur durch ungeschützten Sex. Was wissen Paula und Yuki nun aber über AIDS und dem diagnostischen AIDS-Test, den die beiden nun machen werden? Leider zu wenig. Da brauchen dann Paula und Yuki mal wieder Ihre Hilfe bei der Interpretation eines diagnostischen Tests!

Die Prävalenz von AIDS bei einem Menschen in Europa wird mit 0.75% angenommen. In 90% der Fälle ist ein HIV-Test positiv, wenn der Patient erkrankt ist. In 0.5% der Fälle ist ein HIV-Test positiv, wenn der Patient *nicht* erkrankt ist und somit gesund ist. Sie stutzen. Wie wahrscheinlich ist es denn eigentlich an AIDS erkrankt zu sein (K^+) , wenn Sie einen positiven AIDS-Test vorliegen haben (T^+) ? Gehen Sie für die folgenden Berechnungen von $n = 4 \times 10^4$ Patienten mit einem diagnostischen Test für AIDS aus. Sie nehmen sich also einen Kuli und fangen an auf der historischen Ausgabe des Spiegels zu rechnen¹⁷.

- 1. Welche Wahrscheinlichkeit Pr wollen Sie berechnen? (1 Punkt)
- 2. Zeichnen Sie einen Häufigkeitsdoppelbaum zur Bestimmung der gesuchten Wahrscheinlichkeit *Pr*! (2 Punkte)
- 3. Beschriften Sie den Häufigkeitsdoppelbaum, mit denen Ihnen bekannten Informationen zu der AIDS Erkrankung und dem AIDS-Test! (1 Punkt)
- 4. Füllen Sie den Häufigkeitsdoppelbaum mit den sich ergebenden, absoluten Patientenzahlen n aus! (2 Punkte)
- 5. Berechnen Sie die gesuchte Wahrscheinlichkeit Pr! (1 Punkt)

Bei dem folgenden Arztgespräch erfahren Paula und Yuki, dass beim diagnostischen Testen *True Positives (TP)*, *True Negatives (TN)*, *False Positives (FP)* und *False Negatives (FN)* auftreten. Das verstehen beiden so noch nicht und deshalb stellen Sie für Paula und Yuki den Zusammenhang in einer 2x2 Kreuztabelle dar.

- 6. Tragen Sie TP, TN, FP und FN in eine 2x2 Kreuztablle ein. Beschriften Sie die Tabelle entsprechend! (1 Punkt)
- 7. Berechnen Sie die Sensitivität und Spezifität des diagnostischen Tests für AIDS! Füllen Sie dafür die 2x2 Kreuztabelle mit den Informationen aus dem Häufigkeitsdoppelbaum aus! (2 Punkte)
- 8. Was beschreibt die Sensitivität und die Spezifität im Bezug auf die Gesunden und Kranken? Stellen Sie beide diagnostische Maßzahlen als Wahrscheinlichkeiten *Pr* dar! **(2 Punkte)**

¹⁷Die Quelle der Inspiration für die Aufgabe war der folgende wissenschaftlicher Artikel: Binder et al. (2022) Von Baumdiagrammen über Doppelbäume zu Häufigkeitsnetzen – kognitive überlastung oder didaktische Unterstützung? Journal für Mathematik-Didaktik, 1-33

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Network-Marketing oder Schneeballschlacht! Steffen, Tina und Mark sitzen bei Jessica und hören sich etwas über Network-Marketing an. Jessica ist jetzt im Network-Marketing tätig. 'Jetzt reicht es. Wir sind eine Lerngruppe und du versuchst uns hier abzuziehen!', poltert Steffen und fährt fort, 'Ich erklär dir mal, wie falsch du liegst!'. Eine Möglichkeit, leicht Geld zu verdienen, ist es anderen Menschen für Geld zu versprechen, wie man leicht reich werden kann. Am besten natürlich ohne viel Aufwand und ortsunabhängig. Schnell ein YouTube-Werbevideo gedreht und auf geht es mit unserem Network-Marketing. Aber Moment, wie funktioniert Network-Marketing eigentlich und was hat das alles mit einer Schneeballschlacht zu tun? Steffen und Sie wollen hier einmal in die Untiefen des »passiven Einkommens« abtauchen und die Lerngruppe vor Schlimmeren bewahren¹⁸!

Das Jahr 2023 war das erfolgreichste Jahr in der Geschichte von KH Gesund und Schön Components (KH-GSC). Das Unternehmen steigerte den Umsatz um rund 27 Prozent von 280 Millionen Euro im Jahr 2022. Doch wie viel kommt bei den Partnern an? Laut KH-GSC habe das Unternehmen 3.3×10^5 aktive Partner.

- 1. Berechnen Sie zuerst den Umsatz der Firma KH-GSC im Jahr 2023! (1 Punkt)
- 2. Wie viel von dem Umsatz im Jahr 2023 wird im Durchschnitt von jedem aktiven Partner erwirtschaftet? (1 Punkt)
- 3. Welche *monatlicher* Umsatz ergibt sich dadurch im Durchschnitt für jeden aktiven Partner bei einer direkten Provision von 30%? **(1 Punkt)**

Das von Jessica zu vermarkende Produkt, hinter dem Jessica voll steht, kostet 100EUR pro Einheit im Direktverkauf. Die direkte Provision für die erste Stufe beträgt 35%. Für die zweite, dritte und vierte Stufe betragen die indirekten Provisionen jeweils 2.5%, 1.5% und 1%. Jeder von Jessica angeworbener »Partner« wirbt wiederum vier Partner für sich selbst an. Pro Monat werden im Schnitt zwei Einheiten vom Produkt verkauft. Jessica will nun 3200EUR im Monat passiv – also durch indirekte Provisionen – erwirtschaften. Kann das klappen? Sie sind zusammen mit Steffen skeptisch.

4. Ergänzen Sie die folgende Tabelle mit den obigen Informationen! (2 Punkte)

Stufe	Anzahl Partner	Umsatz/Stufe	Provision
1	Sie selber		
2			
3			
4			

5. Wie viele Partner müssen Sie auf der 2 Stufe anwerben um Ihr passives Einkommen durch indirekte Provision zu erreichen? Wie viele Menschen arbeiten am Ende indirekt für Sie? Stellen Sie den Zusammenhang graphisch dar! (3 Punkte)

Jessica musste zum Einstieg bei KH-GSC Einheiten des Produkts für 4000EUR kaufen. Diese Einheiten kann Jessica nur direkt verkaufen. Das ganze Wohnzimmer ist voll davon. Leider musste Jessica den Kauf über einen Kredit über 6% p.a. über 36 Monate finanzieren. Sie schütteln den Kopf und klären Jessica über Zinsen auf.

- 6. Berechnen Sie die Gesamtsumme, die Sie als Kredit abbezahlen müssen! (2 Punkte)
- 7. Wie viele Einheiten müssen Sie pro Monat verkaufen um die anfallenden Zinsen durch die direkte Provision zu erwirtschaften? (1 Punkt)
- 8. Wie lange in Monaten benötigen Sie um den Kredit durch die direkte Provision abzubezahlen? (1 Punkt)

¹⁸Die Quellen der Inspiration für die Aufgabe waren folgendes YouTube Video: Simplicissimus – Die meistgesuchte Betrügerin der Welt und der Artikel: Deutschlandfunk Kultur – Die Illusion, schnell reich zu werden

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Höhlen & Drachen Nilufar, Alex und Steffen sitzen bei Paula nachdem sich alle begeistert in der Serie *Stranger Thinks* verloren haben. Alle drei wollen jetzt einmal bei Paula *Höhlen & Drachen* ausprobieren. Um Geld zu sparen, das Zeug kostet echt, wurde etwas an den Regeln gebastelt. Schnell stellen die Drei fest, dass hier ganz schön viele unterschiedliche Würfel durch die Gegend fliegen. Daher müssen Sie sich jetzt einiges an Fragen klären damit Paula nicht so alleine ist.

In dem Spiel hat Nilufar nun auf einmal 6 zwölfseitige Würfel (6d12) zum würfeln in der Hand. Wenn Nilufar eine 12 würfelt, hat Nilufar einen Erfolg.

- 1. Berechnen Sie die Wahrscheinlichkeit genau 4 Erfolge zu erzielen! (2 Punkte)
- 2. Berechnen Sie die Wahrscheinlichkeit keinen Erfolg zu erzielen! (1 Punkt)

Alex betrachtet nun aufmerksam die ausufernden Ausrüstungstabellen. Alex wird aber geholfen und muss sich jetzt nur zwischen der Axt oder dem Schwert entscheiden.

3. Würden Sie die Axt mit zwei zwölfseitigen Würfeln (2d12) als Schaden oder das Schwert mit einem achtseitigen Würfel plus 4 (1d8+4) als Schaden bevorzugen? Begründen Sie Ihre Antwort mathematisch! (1 Punkt)

Jetzt wird es immer wilder, da Alex und Steffen sich jetzt überlegen müssen, wie wahrscheinlich es ist, dass der Rettungswurf gegen den zaubernden Hexer funktioniert. Alex und Steffen haben folgende Wahrscheinlichkeiten gegeben. Die Wahrscheinlichkeit für das Ereignis A, der Rettungswurf ist erfolgreich, ist Pr(A) = 0.7, die Wahrscheinlichkeit für das Ereignis B, der Zauberwurf des Hexers ist erfolgreich, ist Pr(B) = 0.7. Sie haben aber mitgezählt und festgestellt, dass in 50 von 100 Fällen der Rettungswurf bei einem erfolgeichen Zauber funktioniert hat

- 4. Erstellen Sie eine 2x2 Kreuztabelle mit den Ereignissen A und B sowie den Gegenereignissen \bar{A} und \bar{B} mit einen $\Omega=100$. Beachten Sie hierbei die entsprechenden Wahrscheinlichkeiten für die Ereignisse A und B! (2 **Punkte**)
- 5. Bestimmen Sie $Pr(A \cap B)$! (1 Punkt)
- 6. Erstellen Sie ein Baumdiagramm mit den passenden Informationen aus der 2x2 Kreuztabelle! (2 Punkte)
- 7. Bestimmen Sie Wahrscheinlichkeit Pr(A|B), dass Ihr Rettungswurf gelingt, wenn der Hexer erfolgreich gezaubert hat! (1 Punkt)

Geben Sie grundsätzlich Formeln und Rechenweg zur Lösung der Teilaufgaben mit an!

Inhalt folgender Module: Mathematik & Statistik

Retrocheck im TV Das war zu viel für Mark gestern. Die Lerngruppe mit Jessica und Nilufar ging viel zu lang. Während er wegdämmert, kommen in ihm seltsame Bilder hoch. 'Und hier ist sie wieder, die Show der fantastischen Preise. Seien Sie mit dabei, wenn es wieder heißt: Der Preis ist heiß!', ertönt es und Mark fragt sich, ob er nicht doch lieber bezahlter Gast bei Barbara Salesch hätten sein sollten. Aber Mark braucht das Geld und jetzt heißt es Spielschows farmen! Erstmal eine Kaffemaschine von Mitropa gewinnen. Ein Kandidat gewinnt die Kaffeemaschine von Mitropa, wenn nicht alle Kandidaten überbieten (eng. *outbid*). Mit Ihnen bilden Jessica und Nilufar das Team der drei Kandidaten. Mark braucht dringend Ihre Hilfe in seinen Wahnträumen. Sie gehen wie in *Interception* rein!¹⁹

Name	P(win)	P(outbid)
Jessica	0.2	0.076
Nilufar	0.2	0.11

- 1. Mit welcher Wahrscheinlichkeit gewinnen Sie die Kaffeemaschine von Mitropa, wenn keiner der Kandidaten überbietet? (1 Punkt)
- 2. Wenn Ihre überbietungswahrscheinlichkeit *P(outbid)* bei 0.02 liegt, mit welcher Wahrscheinlichkeit gewinnt *keiner* die Kaffeemaschine von Mitropa? **(1 Punkt)**

Glücksrad für Arme auf der Kirmes! Leider hat es für Maren Gilzer nicht gereicht. Deshalb sind Sie jetzt mit Mark auf der Kirmes und spielen mit Catwoman um das große Geld. Das Glücksrad hat 22 Felder. Sie beide drehen das Glücksrad zweimal. Auf 8 Feldern gewinnen Mark und Sie 3000EUR sonst 1500EUR. Ganz schön viel Geld und ganz schön zwielichtig hier...

- 3. Skizzieren Sie das Glücksrad und ergänzen Sie die Wahrscheinlichkeiten! (1 Punkt)
- 4. Zeichnen Sie das zugehörige Baumdiagramm für das zweimalige Drehen! Ergänzen Sie die Wahrscheinlichkeiten und die entsprechenden Ereignisse (2 Punkte)
- 5. Mir welcher Wahrscheinlichkeit gewinnen Sie 4500EUR? (1 Punkt)

Im Fiebertraum von Mark reisen sie beide im Zug nach Köln um bei »Geh aufs Ganze!« mitzuspielen. Mark und Sie schaffen es tatsächlich ins Finale und können als Hauptgewinn ein Auto hinter einer der drei Türen gewinnen. Und was braucht man mehr als ein Auto in einem Fiebertraum?

- 6. Bevor die Show beginnt, wird das Auto hinter eine zufällig bestimmte Tür gestellt. Mit welcher Wahrscheinlichkeit wird jeweils eine der drei Türen ausgewählt? Zeichnen Sie ein Baumdiagramm! (1 Punkt)
- 7. Mit welcher Wahrscheinlichkeit wählen Sie sofort die Tür mit dem Auto? Erweitere Sie das Baumdiagramm entsprechend! (1 Punkt)
- 8. Der Moderator öffnet nun eine der nicht gewählten Türen, aber natürlich nicht die mit dem Auto. Mit welcher Wahrscheinlichkeit steht das Auto hinter der anderen Tür? Erweitern Sie das Baumdiagramm entsprechend! (2 Punkte)
- 9. Lösen Sie nun das »Ziegenproblem«! Berechne Sie dazu die Wahrscheinlichkeiten der einzelnen Pfade. Lohnt sich ein Wechsel der anfangs gewählte Tür? Begründen Sie Ihre Antwort mathematisch! (2 Punkte)

¹⁹South Park Inception Spoof – Wunderbare South Park Folge

Teil XII.

Angewandte Nutztier- und Pflanzenwissenschaften (M.Sc.)

122. Aufgabe (6 Punkte)

Vergleichen Sie die Standardabweichung mit dem Standardfehler und grenzen Sie die beiden Kennzahlen voneinander ab.

123. Aufgabe (8 Punkte)

Ihnen liegt folgendes Varianzanalysemodell mit der üblichen Beschreibung zur Auswertung des Merkmals fett- und eiweißkorrigierte Milchleistung pro Kuh und Jahr in kg vor:

$$Y_{ijkl} = \mu + Var_i + EKA_i + VarEKA_{ij} + V_k + b(L_{ij} - L) + e_{ijkl}$$

mit

- Yijkl: I-te Beobachtung
- μ: Populationsmittel
- Vari: fixer Effekt der i-ten Variante (i: Kontrolle, Versuchsgruppe 1, Versuchsgruppe 2)
- EKA_j: fixer Effekt der j-ten Erstkalbealtergruppe (j: EKA ≤ 25 Monate, EKA > 25 Monate)
- VarEKAii: fixer Effekt der Interaktion Variante x Erstkalbealtergruppe
- V_k: zufälliger Effekt des Vaters
- $b(L_{ii} L)$: lineare Kovariable Laktationsnummer
- eijkl: zufälliger Restfehler

Erläutern Sie anhand dieses Beispiels die Begriffe fixer Effekt, Interaktion, zufälliger Effekt und Kovariable und grenzen Sie diese Begriffe voneinander ab.

124. Aufgabe (6 Punkte)

Wie bestimmen Sie die richtige Stichprobengröße? Welche Kennzahlen / statistische Maßzahlen benötigen Sie dabei und nennen Sie die Voraussetzungen.

Teil XIII.

Lösungen

Die folgenden Lösungen sind absolut ein Entwurf und können Fehler enthalten. Daher immer mit Vorsicht genießen. Im Weiteren ist das Runden so eine Sache. Deshalb wird es vermutlich auch Abweichungen geben. Damit leben wir dann aber alle.

Mathematik

Herodot – der Schimmel aus Ivenack

1)	3)	4)	5)
$d_{1805} = 347.25cm$	$V_{eff} = 1.69m^3$	$s_{Eiche} = 48.63cm$	$s_{Platz} = 18.63cm$

Herodot – der Schimmel aus Ivenack

1)	3)	4)	5)
$d_{1805} = 347.25cm$	$V_{eff} = 1.69m^3$	$s_{Eiche} = 48.63cm$	$s_{Platz} = 18.63cm$