# Забавные факты по теории вероятностей

Источник: Чернова Н.И., Теория вероятностей

Авторы заметок: Хоружий Кирилл

**От**: 18 мая 2021 г.

# Содержание

| 1 | Oci                                | Основные понятия теории вероятностей            |    |  |  |  |  |  |  |
|---|------------------------------------|-------------------------------------------------|----|--|--|--|--|--|--|
|   | 1.1                                | Элементы комбинаторики                          | 3  |  |  |  |  |  |  |
|   | 1.2                                | События и операции над ними                     | 3  |  |  |  |  |  |  |
|   | 1.3                                | Дискретное пространство элементарных исходов    | 3  |  |  |  |  |  |  |
|   | 1.4                                | Дискретное пространство элементарных исходов    | 4  |  |  |  |  |  |  |
|   | 1.5                                | Геометрическая вероятность                      | 4  |  |  |  |  |  |  |
| 2 | Aĸ                                 | Аксиоматика теории вероятностей                 |    |  |  |  |  |  |  |
|   | 2.1                                | Алгебра и $\sigma$ -алгебра событий             | 5  |  |  |  |  |  |  |
|   | 2.2                                | Мера и вероятностная мера                       | 5  |  |  |  |  |  |  |
| 3 | Усл                                | Условная вероятность и независимость            |    |  |  |  |  |  |  |
|   | 3.1                                | Условная вероятность                            | 6  |  |  |  |  |  |  |
|   | 3.2                                | (3) Операции с вероятностями                    | 7  |  |  |  |  |  |  |
|   | 3.3                                | Независимость событий                           | 7  |  |  |  |  |  |  |
|   | 3.4                                | Формула полной вероятности                      | 7  |  |  |  |  |  |  |
|   | 3.5                                | Формула Байеса                                  | 7  |  |  |  |  |  |  |
| 4 | Cxe                                | Схема Бернулли                                  |    |  |  |  |  |  |  |
|   | 4.1                                | Распределение числа успехов в $n$ испытаниях    | 8  |  |  |  |  |  |  |
|   | 4.2                                | Номер первого успешного испытания               | 8  |  |  |  |  |  |  |
|   | 4.3                                | Независимые испытания с несколькими исходами    | 8  |  |  |  |  |  |  |
|   | 4.4                                | Теорема Пуассона для схемы Бернулли             | 9  |  |  |  |  |  |  |
| 5 | Слу                                | Случайные величины и их распределения           |    |  |  |  |  |  |  |
|   | 5.1                                | Случайные величины                              | 9  |  |  |  |  |  |  |
|   | 5.2                                | Распределения случайных величин                 | 9  |  |  |  |  |  |  |
|   | 5.3                                | Функция распределения                           | 10 |  |  |  |  |  |  |
|   | 5.4                                | (3) Примеры дискретных распределений            | 10 |  |  |  |  |  |  |
|   | 5.5                                | (3) Примеры абсолютно непрерывных распределений | 11 |  |  |  |  |  |  |
|   | 5.6                                | Свойства функций распределения                  | 12 |  |  |  |  |  |  |
|   | 5.7                                | Свойства нормального распределения              | 12 |  |  |  |  |  |  |
| 6 | Пре                                | еобразования случайных величин                  | 13 |  |  |  |  |  |  |
|   | 6.1                                | Измеримость функций от случайных величин        | 13 |  |  |  |  |  |  |
|   | 6.2                                | Распределения функций от случайных величин      | 13 |  |  |  |  |  |  |
| 7 | <b>Х</b> Многомерные распределения |                                                 |    |  |  |  |  |  |  |
|   | 7.1                                | Совместное распределение                        | 13 |  |  |  |  |  |  |
|   | 7.2                                | Типы многомерных распределений                  | 13 |  |  |  |  |  |  |
|   | 7.3                                | Примеры многомерных распределений               | 14 |  |  |  |  |  |  |
|   | 7.4                                | Независимость случайных величин                 | 14 |  |  |  |  |  |  |
|   | 7.5                                | Функции от двух случайных величин               | 14 |  |  |  |  |  |  |

| 8  | Чис | словые характеристики распределений                           | 15 |
|----|-----|---------------------------------------------------------------|----|
|    | 8.1 | Математическое ожидание случайной величины                    | 15 |
|    | 8.2 | Свойства математического ожидания                             |    |
|    | 8.3 | Дисперсия и моменты старших порядков                          |    |
|    | 8.4 | Свойства дисперсии                                            |    |
|    | 8.5 | Математические ожидания и дисперсии стандартных распределений |    |
|    | 8.6 | Другие числовые характеристики распределений                  |    |
|    | 8.7 | Производящие функции                                          |    |
|    | 8.8 | Вычисление моментов через производящие функции                |    |
| 9  | Чис | словые характеристики зависимости                             | 18 |
|    | 9.1 | Ковариация двух случайных величин                             | 18 |
|    | 9.2 | Коэффициент корреляции                                        |    |
| 10 | Xaı | рактеристические функции                                      | 19 |
|    | -   | Определение и примеры                                         | 19 |
|    |     | Свойства характеристических функций                           |    |
| 11 | Cxc | одимость последовательностей случайных величин                | 19 |
|    |     | Определение и примеры                                         |    |
| 12 | Koı | нтрольная работа №2                                           | 20 |

# 1 Основные понятия теории вероятностей

### 1.1 Элементы комбинаторики

Для начала подружимся с комбинаторикой, взяв некоторую её проекцию на теорвер

**Thr 1.1.** Пусть множества  $A = \{a_1, \ldots, a_k\}$  состоит из k элементов, а множество  $B = \{b_1, \ldots, b_m\}$  – из m элементов. Тогда можно образовать равно  $k \cdot m$  пар  $(a_i, b_j)$ .

**Thr 1.2.** Общее количество различных наборов при выборе k элементов из n **без** возвращения и c учётом порядка равняется

$$A_n^k = n \cdot (n-1) \cdot \ldots \cdot (n-k+1) = \frac{n!}{(n-k)!},$$

 ${\it где}\ A_n^k$  называется числом размещений из n элементов  $no\ k$  элементов.

**Thr 1.3.** Общее количество различных наборов при выборе k элементов из n **без** возвращения и **без** учета порядка равняется

$$C_n^k = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!},$$

где число  $C_n^k$  называется числом сочетаний из n элементов по k элементов.

**Thr 1.4.** Общее количество различных наборов при выборе k элементов из n с возвращением и без учёта порядка равняется

$$C_{n+k-1}^k = C_{n+k-1}^{n-1}.$$

### 1.2 События и операции над ними

**Def 1.5.** Пространством элементарных исходов называют множество  $\Omega$ , содержащее все возможные взаимоисключающие результаты данного случайного эксперимента. Элементы множества  $\Omega$  называются элементарными исходами и обозначаются  $\omega$ .

**Def 1.6.** Событиями называются подмножества  $\Omega$ . Говорят, что произошло событие A, если эксперимент завершился одним из элементарных исходов, входящих в множество A.

Вообще в силу таких определений события и множества оказываются очень похожими, так что определены операции объединения, пересечения, дополнения, а также взятия противоположного  $\bar{A} = \Omega \backslash A$ . Также можно выделить достоверное событие  $\Omega$  и невозможное  $\varnothing$ .

События A и B называются *несовместными*, если они не могут произойти одновременно:  $A \cap B = \emptyset$ . События  $A_1, \ldots, A_n$  называются *попарно несовместными*, если несовместны любые два из них:  $A_i \cap A_j = \emptyset$ ,  $\forall i \neq j$ . Говорят, что событие A влечет событие B ( $A \subseteq B$ ), если  $A \Rightarrow B$ .

### 1.3 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество  $\Omega$  конечно или счётно:  $\Omega = \{\omega_1, ..., \omega_n, ...\}$ .

**Def 1.7.** Сопоставим каждому элементарному исходу  $\omega_i$  число  $p_i \in [0,1]$  так, чтобы  $\sum p_i = 1$ . Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где в случае  $A = \emptyset$  считаем P(A) = 0.

**Def 1.8** (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероятностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
(1.1)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка  $(n^k)$ , выбора без возвращения и с учётом порядка  $(A_n^k)$ , а также выбора без возвращения и без учёта порядка  $(C_n^k)$ , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядка уже не описывается классической вероятностью.

#### Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где  $n\leqslant N$ . Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число  $\operatorname{card}\Omega=C_N^n$ . Пусть  $A_k$  – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно  $C_K^k$  способов выбрать k белых шаров из K, и  $C_{N-K}^{n-k}$  способов выбрать n-k черных шаров из N-K. Тогда  $\operatorname{card}A_k=C_K^kC_{N_K}^{n-k}$ ,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

### 1.4 Дискретное пространство элементарных исходов

Пространство элементарных исходов назовём дискретным, если множество  $\Omega$  конечно или счётно:  $\Omega = \{\omega_1, ..., \omega_n, ...\}$ .

**Def 1.9.** Сопоставим каждому элементарному исходу  $\omega_i$  число  $p_i \in [0,1]$  так, чтобы  $\sum p_i = 1$ . Вероятностью события A называют число

$$P(A) = \sum_{\omega_i \in A} p_i,$$

где в случае  $A = \emptyset$  считаем P(A) = 0.

**Def 1.10** (Классическое определение вероятности). Говорят, что эксперимент описывается *классической вероятностной моделью*, если пространство его элементарных исходов состоит из конечного числа равновозможных исходов. Для любого события верно, что

$$P(A) = \frac{\operatorname{card} A}{\operatorname{card} \Omega}.$$
(1.2)

Эту формулу называют классическим определением вероятности.

Тут стоит вспомнить три схемы из модели с урнами: схема выбора с возвращением и с учётом порядка  $(n^k)$ , выбора без возвращения и с учётом порядка  $(A_n^k)$ , а также выбора без возвращения и без учёта порядка  $(C_n^k)$ , описываются классической вероятностной моделью. А вот схема выбора с возвращением и без учёта порядка уже не описывается классической вероятностью.

### Пример с гипергеометрическим распределением

Из урны, в которой K белых и N-K чёрных шаров, наудачу и без возвращения вынимают n шаров, где  $n\leqslant N$ . Термин «наудачу» означает, что появление любого набора из n шаров равновозможно. Найти вероятность того, что будет выбрано k белых и n-k чёрных шаров.

Результат – набор из n шаров. Общее число card  $\Omega = C_N^n$ . Пусть  $A_k$  – событие, состоящее в том, что в наборе окажется k белых и n-k черных. Есть ровно  $C_K^k$  способов выбрать k белых шаров из K, и  $C_{N-K}^{n-k}$  способов выбрать n-k черных шаров из N-K. Тогда card  $A_k = C_K^k C_{N_K}^{n-k}$ ,

$$P(A_k) = \frac{\operatorname{card} A_k}{\operatorname{card} \Omega} = \frac{C_K^k C_{N_K}^{n-k}}{C_N^n}.$$

Этот набор вероятностей называется гипергеометрическим распределением вероятностей.

#### 1.5 Геометрическая вероятность

**Def 1.11.** Пусть некоторая область  $\Omega \subset \mathbb{R}^k$  такая, что  $\mu(\Omega)$  конечна. Пусть эксперимент состоит из равновероятного выбора случайной точки в области  $\Omega$ . *Геометрическое определение вероятности*:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Если для точки выполнены условия геометрического определения, то говорят, что точка равномерно распределена в  $\Omega$ .

# 2 Аксиоматика теории вероятностей

### 2.1 Алгебра и $\sigma$ -алгебра событий

**Def 2.1.** Множество  $\mathcal{A}$ , элементами которого являются некоторые подмножества  $\Omega$  называют *алгеброй*, если оно удовлетворяет следующим условиям:

- А1)  $\Omega \in \mathcal{A}$  (алгебра содержит достоверные события);
- А2) если  $A \in \mathcal{A}$ , то  $\bar{A} \in \mathcal{A}$  (вместе с любым множеством алгебра содержит противоположное к нему);
- А3) если  $A \in \mathcal{A}$  и  $B \in \mathcal{A}$ , то  $A \cup B \in \mathcal{A}$  (вместе с любыми двумя множествами алгебра содержит их объединение).

Вообще из A1 и A2 следует, что  $\emptyset = \bar{\Omega} \in \mathcal{A}$ . Пункт A3 экстраполируется на любой конечный набор. Кстати, объединение можно заменить (в силу закона де Моргана) на пересечение:

$$xy \in \mathcal{A} \quad \Leftrightarrow \quad \overline{xy} \in \mathcal{A} \quad \Leftrightarrow \quad \overline{x} + \overline{y} \in \mathcal{A}.$$

**Thr 2.2** (закон де Моргана). Для множеств x, y верно, что

$$\overline{x+y} = \overline{x} \cdot \overline{y}, \qquad \overline{xy} = \overline{x} + \overline{y},$$

 $e \partial e \ xy = x \cap y, \ x + y = x \cup y.$ 

В случае счётного пространства элементарных исходов A3 алгебры оказывается недостаточно, так приходим к  $\sigma$ -алгебре:

- **Def 2.3.** Множество  $\mathcal{F}$ , элементами которого являются некоторые подмножества  $\Omega$  называется  $\sigma$ -алгеброй, если выполнены следующий условия:
- S1)  $\Omega \in \mathcal{F}$  (алгебра содержит достоверные события);
- S2) если  $A \in \mathcal{F}$ , то  $\bar{A} \in \mathcal{F}$  (вместе с любым множеством алгебра содержит противоположное к нему);
- S3) если  $\{A_i\} \in \mathcal{F}$ , то  $\cup_i A_i \in \mathcal{F}$  (вместе с любым *счетным* набором событий  $\sigma$ -алгебра содержит их объединение).
- **Def 2.4.** Минимальной  $\sigma$ -алгеброй, содержащей набор множеств  $\mathcal{U}$ , называется пересечение всех  $\sigma$ -алгебр, содержащих  $\mathcal{U}$ .
- **Def 2.5.** Минимальная  $\sigma$ -алгебра, содержащая множество  $\mathcal{U}$  всех интервалов на вещественной прямой называется борелевской сигма-алгеброй в  $\mathbb{R}$  и обозначается  $\mathfrak{B}(\mathbb{R})$ .

Итак, оказался определен специальный класс  $\mathcal{F}$  подмножеств  $\Omega$ , названный  $\sigma$ -алгеброй событий. Применение счетного числа любых операция к множествам из  $\mathcal{F}$  снова дает множество из  $\mathcal{F}$ . Событиями будем называть только множества  $A \in \mathcal{F}$ .

### 2.2 Мера и вероятностная мера

**Def 2.6.** Пусть  $\Omega$  – некоторое непустое множество  $\mathcal{F}$  –  $\sigma$ -алгебра его подмножеств. Функция

$$\mu \colon \mathcal{F} \mapsto \mathbb{R} \cap [0, +\infty) \cup \{+\infty\}$$

называется *мерой* на  $(\Omega, \mathcal{F})$ , если она удовлетворяет условиям

- $\mu$ 1)  $\mu(A) \geqslant 0$  для любого множества  $A \in \mathcal{F}$ ;
- $\mu$ 2)  $\forall$  счетного  $\{A_i\} \in \mathcal{F}$  таких, что  $A_i \cap A_j = \emptyset$ ,  $\forall i \neq j$  мера их объединения равна сумме их мер:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

Последнее свойство называют *счётное аддитивностью* или  $\sigma$ -аддитивностью меры.

Thr 2.7 (свойство непрерывности меры). Пусть дана убывающая последовательность  $B_1 \supseteq B_2 \supseteq B_2 \supset B_3 \supset \dots$  множеств из  $\mathcal{F}$ , причем  $\mu(B_1) < \infty$ . Пусть  $B = \bigcap_i^\infty B_i$ . Тогда  $\mu(B) = \lim_{n \to \infty} \mu(B_n)$ .

**Def 2.8.** Пусть  $\Omega$  – непустое множество,  $\mathcal{F}$  –  $\sigma$ -алгебра его подмножеств. Мера  $\mu \colon \mathcal{F} \mapsto \mathbb{R}$  называется *нормированной*, если  $\mu(\Omega) = 1$ . Другое название нормированной меры – *вероятность*.

**Def 2.9.** Пусть  $\Omega$  – пространство элементарных исходов,  $\mathcal{F}$  –  $\sigma$ -алгебра его подмножеств (событий). Вероятностью или вероятностной мерой на  $(\Omega, \mathcal{F})$  называется функция

$$P \colon \mathcal{F} \mapsto \mathbb{R}$$

обладающая свойствами

- P1)  $P(A) \ge 0$  для любого события  $A \in \mathcal{F}$ ;
- P2) для любого счётного набора nonapho несовместных событий  $\{A_i\} \in \mathcal{F}$  имеет равенство

$$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{k=1}^{\infty} P(A_i);$$

Р3) вероятность достоверного события равна единице:  $P(\Omega) = 1$ .

Свойства (Р1) – (Р3) называют аксиомами вероятности.

**Def 2.10.** Тройка  $\langle \Omega, \mathcal{F}, P \rangle$ , в которой  $\Omega$  – пространство элементарных исходов,  $\mathcal{F}$  –  $\sigma$ -алгебра его подмножеств и P – вероятная мера на  $\mathcal{F}$ , называется вероятностным пространством.

Вообще, для вероятности верны следующие свойства

- 1.  $P(\emptyset) = 0$ .
- 2. Для любого конечного набора попарно несовместных событий  $A_1, \ldots, A_n \in \mathcal{F}$  имеет место равенство  $P(A_1 \cup \ldots \cup A_n) = P(A_1) + \ldots + P(A_n)$ .
- 3.  $P(\bar{A}) = 1 P(A)$ .
- 4. Если  $A \subseteq B$ , то  $P(B \setminus A) = P(B) P(A)$ .
- 5.  $A \subseteq B$ , to  $P(A) \leqslant P(B)$ .
- 6.  $P(A_1 \cup ... \cup A_n) \leq \sum_{i=1}^n P(A_i)$ .

И это всё, конечно, хорошо, но если мы хотим что-то посчитать, то

**Thr 2.11** (Формула включения-исключения). Для вероятности, в частности для двух событий, верно, что  $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ 

и, обобщая, для объединения п множеств

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i A_j) + \sum_{i < j < m} P(A_i A_j A_m) - \ldots + (-1)^{n-1} P(A_1 A_2 \ldots A_n).$$

# 3 Условная вероятность и независимость

## 3.1 Условная вероятность

 ${f Def 3.1.}$  Условной вероятностью события A при условии, что произошло событие B, называется число

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

которое само собой определено только при P(B) = 0.

**Thr 3.2.** Ecau P(B) > 0 u P(A) > 0, mo

$$P(A \cap B) = P(B) P(A|B) = P(A) P(B|A).$$

**Thr 3.3.** Для любых событий  $A_1, ..., A_n$  верно равенство:

$$P(A_1 ... A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 A_2) \cdot ... \cdot P(A_n | A_1 ... A_{n-1})$$

если все участвующие в нём условные вероятности определены.

### 3.2 (3) Операции с вероятностями

**Thr 3.4.** Вероятность произведения (совмещения) двух зависимых событий равна произведению вероятностей одного из них на условную вероятность другого, вычисенную в предположении, что первое событие уже наступило:

$$P(AB) = P(A) P_A(B) = P(A) P(B|A).$$

Con 3.5. Для конечного числа зависимых событий верна формула:

$$P(A_1 \cdot A_2 \cdot \ldots \cdot A_k) = P(A_1) P_{A_1}(A_2) P_{A_1,A_2}(A_3) \dots P_{A_1...A_{k-1}}(A_k).$$

#### 3.3 Независимость событий

**Def 3.6.** События A и B называются *независимыми*, если  $P(A \cap B) = P(A) P(B)$ .

Из этого определения вытекают следующие леммы.

**Lem 3.7.** Пусть P(B) > 0. Тогда события A и B независимы тогда и только, когда P(A|B) = P(A).

**Lem 3.8.** Пусть A и B несовместны. Тогда независимыми они будут только в том случае, если P(A) = 0 или P(B) = 0.

Другими словами несовместные события не могут быть независимыми. Зависимость между ними – просто причинно-следственная: если  $A \cap B = \emptyset$ , то  $A \subseteq \bar{B}$ , т.е. при выполнении A события B не npoucxodum.

**Lem 3.9.** Если события A и B независимы, то независимы и события A и  $\bar{B}$ ,  $\bar{A}$  и B,  $\bar{A}$  и  $\bar{B}$ .

**Def 3.10.** События  $A_1, \ldots, A_n$  называются *независимыми в совокупности*, если для любого  $1 \le k \le n$  и любого набора различных меж собой индекс  $1 \le i_1 < \ldots < i_k \le n$  имеет место равенство

$$P(A_{i_1} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot \ldots \cdot P(A_{i_k}).$$

### 3.4 Формула полной вероятности

**Def 3.11.** Конечный или счётный набор попарно несовместных событий  $\{H_i\}$  таких, что  $P(H_i) > 0 \ \forall i \ u \cup_i H_i = \Omega$ , называется *полной группой событий* или разбиением пространства  $\Omega$ . Также события, образующие полную группу событий, часто называют *гипотезами*.

При подходящем выборе гипотез для любого события A могут быть сравнительно просто вычислены  $P(A|H_i)$  и, собственно,  $P(H_i)$ . Как посчитать вероятность события A?

**Thr 3.12** (формула полной вероятности). Пусть дана полная группа событий  $\{H_i\}$ . Тогда вероятность любого события A может быть вычислена по формуле

$$P(A) = \sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i).$$

#### 3.5 Формула Байеса

Thr 3.13 (формула Байеса). Пусть  $\{H_i\}$  – полная группа событий, и A – некоторое событие, P(A) > 0. Тогда условная вероятность того, что имело место событие  $H_k$ , если в рещультате эксперимента наблюдалось событие A, может быть вычислена по формуле

$$P(H_k|A) = \frac{P(H_k) \cdot P(A|H_k)}{\sum_{i=1}^{\infty} P(H_i) \cdot P(A|H_i)}.$$
(3.1)

**Def 3.14.** Вероятности  $P(H_i)$ , вычисленные заранее, до проведения эксперимента, называют априорными вероятностями. Условные вероятности  $P(H_i|A)$  называют апостериорными вероятностями.

Формула Байеса позволяет переоценить заранее известные вероятности после того, как получено знание о результате эксперимента. Эта формула находит многочисленные применения в экономике, статистике, социлогии и т.п

 $<sup>^{1}</sup>$  a 'priori – « до опыта ».

 $<sup>^2</sup>a$ 'priori – « после опыта »

# 4 Схема Бернулли

### 4.1 Распределение числа успехов в *n* испытаниях

**Def 4.1.** Схемой Бернулли называется последовательность независимых в совокупности испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех  $\checkmark$  в одном испытании происходит с вероятностью  $p \in (0,1)$ , а неудача  $\checkmark$ — с вероятностью q = 1 - p.

В испытаниях схемы Бернулли независимость в совокупности испытаний означает, что при любом n независимы в совокупности события успехов в каждом событие.

Эти события принадлежат одному и тому же пространству элементарных исходов, полученному декартовым произведением бесконечного числа двухэлементных множеств  $\{\checkmark, X\}$ :

$$\Omega = \{(a_1, a_2, \dots, a_n) \mid a_i \in \{ \checkmark, X \}, n \in \mathbb{Z}_+ \}.$$

Далее количество успехов для n испытаний схемы Бернулли будем называть  $\nu_n$ . Заметим, что  $\nu_n \in \mathbb{Z}_+ \cap [0, n]$ .

**Thr 4.2** (формула Бенулли). При любом k = 0, 1, ..., n имеет место равенство:

$$P(\nu_n = k) = C_n^k p^k q^{n-k}.$$

**Def 4.3** ( $\mathfrak{D}$ ). Набор чисел  $\{C_n^k p^k q^{n-k}, k=0,1,\ldots,n\}$  называется биномиальным распределением.

### 4.2 Номер первого успешного испытания

Далее, для схемы Бернулли, введем величину  $\tau \in \mathbb{Z}_+ \cap [1, +\infty)$  равную номеру перого успешного испытания.

**Thr 4.4.** Вероятность того, что первый успех произойдёт в испытании с номером  $k \in \mathbb{N} \cap [1, +\infty)$ , равна  $P(\tau = k) = pq^{k-1}$ .

**Def 4.5** ( $\mathfrak{D}$ ). Набор чисел  $\{pq^{k-1} \mid k=1,2,\ldots\}$  называется *геометрическим* распределением вероятностей.

**Thr 4.6** («Нестарение» геометрического распределения). Пусть  $P(\tau = k) = pq^{k-1} \ \forall k \in \mathbb{N}$ . Тогда для любых неотрицательных целых n u k имеет место равенство:

$$P(\tau > n + k \mid \tau > n) = P(\tau > k).$$

Другими название – свойство отсутствия последствия.

### 4.3 Независимые испытания с несколькими исходами

Теперь рассмотрим схему независимых испытаний независимых испытаний уже не с двумя, а с болбшим количество возможных результатов в каждом испытании.

Пусть возможны m исходов, i-й исход в одном испытании случается с вероятностью  $p_i$ , где  $\sum_i p_i = 1$ . Через  $P(n_1, \ldots, n_m)$  обозначим вероятность того, что в n независимых испытаниях первый исход случится  $n_1$  раз,  $\ldots$ , m-исход –  $n_m$  раз.

**Thr 4.7.** Для любого n и любых неотрицательных целых чисел  $\{n_i\}$ , сумма которых равна n, верна формула

$$P(n_1, ..., n_m) = \frac{n!}{n_1! ... n_m!} p_1^{n_1} \cdot ... \cdot p_m^{n_m}.$$

**Def 4.8** (**②**). Набор чисел

$$\left\{ \frac{n!}{n_1! \dots n_m!} p_1^{n_1} \cdot \dots \cdot p_m^{n_m} \mid n = 1, 2, \dots \right\}$$

называется мультиномиальным (полиномиальным) распределением.

### 4.4 Теорема Пуассона для схемы Бернулли

Сформулируем теорему о приближенном вычислении вероятности иметь k успехов в большом числе испытаний Бернулли с маленькой вероятностью успеха p.

**Thr 4.9** (теорема Пуассона). Пусть  $n \to \infty$  и  $p_n \to 0$  так, что  $np_n \to \lambda > 0$ . Тогда для любого  $k \geqslant 0$  вероятность получить k успехов в n испытаниях схемы Бернулли c вероятностью успеха  $p_n$ 

$$P(\nu_n = k) = C_n^k p_n^k (1 - p_n)^{n-k} \rightarrow \frac{\lambda^k}{k!} e^{-\lambda}. \tag{4.1}$$

то есть стремится к величине  $\lambda^k e^{-\lambda}/k!$ .

**Def 4.10** (**2**). Набор чисел

$$\left\{ \frac{\lambda^k}{k!} e^{-\lambda} \mid k = 0, 1, 2, \dots \right\}$$

называется распределением Пуассона с параметром  $\lambda > 0$ .

Для всех этих распределений можно посчитать вектора средних и матрицы ковариации.

# 5 Случайные величины и их распределения

### 5.1 Случайные величины

Пусть задано вероятностное пространство  $\langle \Omega, \mathcal{F}, P \rangle$ .

**Def 5.1.** Функция  $\xi: \Omega \to \mathbb{R}$  называется *случайное величиной*, если для любого борелевского множества  $B \in \mathfrak{B}(\mathbb{R})$  множество  $\xi^{-1}(B)$  является событием, т.е принадлежит  $\sigma$ -алгебре  $\mathcal{F}$ .

Множество  $\xi^{-1}(B) = \{\omega \mid \xi(\omega) \in B\}$ , состоящее из элементарных исходов  $\omega$ , называется *полным прообразом множества* B. Можно немного другим способом сформулировать требования к величине:

**Def 5.2.** Функция  $\xi \colon \Omega \mapsto \mathbb{R}$  называется случайной величиной, если для любых веществиных a < b множество  $\{\omega \colon \xi(\omega) \in (a,b)\} \in \mathcal{F}$ 

принадлежит  $\sigma$ -алгебре.

#### 5.2 Распределения случайных величин

**Def 5.3.** *Распределением* случайной величины  $\xi$  называется вероятностная мера  $\mu(B) = P(\xi \in B)$  на множестве борелевских подмножеств  $\mathbb{R}$ .

Можно представить себе распределение случайной величины  $\xi$  как соответствие между множествами  $B \in \mathfrak{B}(\mathbb{R})$  и вероятностями  $P(\xi \in B)$ .

**Def 5.4.** Если две функции  $\xi$  и  $\eta$  отличаются на множестве меры нуль, при этом имеют одинаковое распределение, то говорят, что  $\xi$  и  $\eta$  совпадают *почти наверное*:  $P(\xi = \eta) = 1$ .

**Def 5.5.** Случайная велчина  $\xi$  имеет *дискретное* распределение, если существует конечный, или счётный набор чисел  $\{a_i\}$  такой, что

$$P(\xi = a_i) > 0 \quad \forall i,$$
 
$$\sum_{i=1}^{\infty} P(\xi = \alpha_i) = 1.$$

Значения эти называют *атомами*:  $\xi$  имеет атом в точке x, если  $P(\xi = x) > 0$ .

Если случайная величина  $\xi$  имеет дискретное распределение, то для любого  $B \subseteq \mathbb{R}$ 

$$P(\xi \in B) = \sum_{a_i \in B} P(\xi = a_i).$$

Вообще дискретные распредления удобно задавать вероятностной таблицей

**Def 5.6.** Случайная величина  $\xi$  имеет *абсолютно непрерывно* распределение, если существует неотрицательная функция  $f_{\varepsilon}(x)$  такая, что для любого борелевского множества B имеет место равенство:

$$P(\xi \in B) = \int_{B} f_{\xi}(x) \, dx.$$

Функцию  $f_{\xi}(x)$  называют плотностью распределения величины  $\xi$ .

**Thr 5.7.** Плотность распределения обладает свойствами:

(f1) 
$$f_{\xi}(x) \geqslant 0 \quad \forall x,$$
 (f2)  $\int_{-\infty}^{+\infty} f_{\xi}(t) dt = 1.$ 

**Thr 5.8.** Если функция f обладает свойствами (f1) u (f2), то существует вероятностное пространство u случаяная величина  $\xi$  на нём, для которой f является плотностью распределения.

Ещё бывает сингулярное распределение $^3$ , смешанные варианты, и всё ( $\Pi e \delta e \epsilon approved$ ).

### 5.3 Функция распределения

Хотелось бы найти некоторый универсальный способ для описания распределения.

**Def 5.9.** Функцией распределения случайной величины  $\xi$  называется функция  $F_{\xi} \colon \mathbb{R} \mapsto [0,1]$ , при каждом  $x \in \mathbb{R}$  равная вероятности случайной величине  $\xi$  принимать значения, меньшие x:

$$F_{\xi}(x) = P(\xi < x) = P\{\omega \mid \xi(\omega) < x\}.$$

Далее перечислены основные дискретные и абсолютно непрерывные распределения и найдены их функции распределения.

### 5.4 (3) Примеры дискретных распределений

**Вырожденное распределение.** Для удобства вводят *вырожденное распределение*, когда возможен единственный результат при  $P(\xi = c) = 1$ , тогда функция распрееления имеет вид

$$F_{\xi}(x) = P(\xi < x) = P(c < x) = \begin{cases} 0, & x \le x, \\ 1, & x > c. \end{cases}$$

В таком случае принято писать, что  $\xi \in I_c$ .

**Распределение Бернулли**. Говорят про *распределение Бернулли* с параметром p ( $\xi \in B_p$ ), если  $\xi$  принимает значения 1 и 0 с вероятностью p и 1-p соответственно. Случайная величина  $\xi$  с таким распределением равна *числу упехов* в одном испытании схемы Бернулли с вероятностью успеха p. Функция распредления случайной величины  $\xi$  тогда равна

$$F_{\xi}(x) = P(\xi < x) = \begin{cases} 0, & x \le 0, \\ 1 - p, & 0 < x \le 1, \\ 1, & x > 1. \end{cases}$$

**Биномиальое распределение.** Говорят, что случайная величина  $\xi$  имеет биномиальное распределение с параметрами  $n \in \mathbb{N}$  и  $p \in (0,1)$ , и пишут  $\xi \in B_{n,p}$ , если  $\xi$  принимает значения  $k=0,\ldots,n$  с вероятностями  $P(\xi=k)=C_n^k p^k (1-p)^{n-k}$ . Случайная величиная с таким распределением имеет смысл числа успехов в n исыпытаниях схемы Бернулли с вероятностью успеха p.

Геометрическое распределение. Говорят, что случайная величина  $\tau$  имеет геометрическое распределение с параметром  $p \in (0,1)$ , и пишут  $\tau \in G_p$ , если  $\tau$  принимает значения  $k=1,2,3,\ldots$  с вероятностями  $P(\tau=k)=p(1-p)^{k-1}$ . Случайная величина с таким распределением имеет смысл номера первого успешного испытания в схеме Бернулли с вероятностью успеха р.

**Распрееление Пуассона**. Говорят, что случайная величина  $\xi$  имеет распределение Пуассона с параметром  $\lambda > 0$ , и пишут  $\xi \in \Pi_{\lambda}$ , если  $\xi$  принимает значения  $k = 0, 1, \dots$  с вероятностью  $P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}$ . Иначе распределение Пуассона называют распределением числа редких событий.

Гипергеметрическое распределение. Говорят, что случайная величина  $\xi$  имеет гипергеометрическое распределение с параметрами  $N,\ n\leqslant N$  и  $K\leqslant N,$  если  $\xi$  принимает целые значения k такие, что  $0\leqslant k\leqslant K,$   $0\leqslant n-k\leqslant N_K,$  с вероятностями  $\mathrm{P}(\xi=k)=C_K^kC_{N_K}^{n-k}/C_N^n.$  Случайная величина с таким распределением имеет смысл числа белых шаров среди n шаров, выбранных наудачу и без возвращения из урны, содержащей K белых и N-K не белых.

 $<sup>^{3}</sup>$ На континуальном множестве меры нуль.

### 5.5 (3) Примеры абсолютно непрерывных распределений

**Равномерное распределение**. Говорят, что  $\xi$  имеет равномерное распределение на отрезке [a,b] ( $\xi \in U_{a,b}$ ), если плотность распределения  $\xi$  постоянна на отрезке [a,b] и равна нуля вне него:

$$f_{\xi}(x) = \begin{cases} (b-a)^{-1}, & x \in [a,b], \\ 0, & x \notin [a,b]. \end{cases}$$

Площадь под графиком этой функции равна единице,  $f_{\xi} \geqslant 0$ , так что  $f_{\xi}(x)$  действительно плотность.

Легко теперь посчитать функцию распределения величины  $\xi$ :

$$F_{\xi}(x) = P(\xi < x) = \int_{-\infty}^{x} f_{\xi}(t) dt = \begin{cases} 0, & x < a; \\ \frac{x - a}{b - a}, & a \le x \le b, \\ 1, & x > b, \end{cases}$$

что вполне логично. График функции распределения и плотности распределения приведен ниже.



Рис. 1: Плотность и функция распределения  $U_{a,b}$ 

**Показательное распределение**. Говорят, что  $\xi$  имеет показательное (экспоненциальное) распределение с параметром  $\alpha > 0$  ( $\xi \in E_{\alpha}$ ), если  $\xi$  имеет следующую плотность распределения:

$$f_{\xi}(x) = \begin{cases} 0, & x < 0, \\ \alpha e^{-\alpha x}, x \geqslant 0. \end{cases}$$

Функция распределения случайной величины  $\xi$  непрерывна:

$$F_{\xi}(x) = P(\xi < x) = \begin{cases} 0, & x < 0, \\ 1 - e^{-\alpha x}, & x \ge 0. \end{cases}$$

Стоит заметить, что показательное распределение является единственным абсоютно непрерывным распределением, для которого выполнено свойство «нестарения» (а-ля геоетрическое):

**Thr 5.10.** Пусть  $\xi \in E_{\alpha}$ . Тогда для любых x, y > 0 верно, что  $P(\xi > x + y \mid \xi > x) = P(\xi > y)$ .

**Нормальное распределение**. Говорят, что  $\xi$  имеет *нормальное* (гауссовское) распределение с параметрами  $a, \sigma^2$ , где  $a \in \mathbb{R}, \sigma > 0$  ( $\xi \in N_{a,\sigma^2}$ ), если  $\xi$  имеет плотность распределения вида

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right), \quad x \in \mathbb{R}.$$
 (5.1)

Это действительно функция распределения, ведь вспоминая интеграл Пуассона

$$I = \int_{-\infty}^{+\infty} e^{-x^2/2} \, dx = \sqrt{2\pi},$$

нетрудно заменой переменных свести  $\int f_{\xi}(x) dx$  к I.

**Def 5.11.** Нормальное распределение  $N_{0,1}$  называется *стандартным нормальным* распределением.

Для функции распределения нормального закона  $N_{a,\sigma^2}$  далее будет использоваться  $\Phi_{a,\sigma^2}(x)$  для функции распределения нормального закона  $N_{a,\sigma^2}$ .

**Распределение Коши**. Говорят, что  $\xi$  имеет распределение Коши с параметрами  $a \in \mathbb{R}, \ \sigma > 0 \ (\xi \in \mathcal{C}_{a,\sigma}),$  если  $\xi$  имеет следующую плотность распределения:

$$f_{\xi}(x) = \frac{1}{\pi} \frac{\sigma}{\sigma^2 + (x - a)^2}, \quad \forall x \in \mathbb{R}.$$

Плотность распределения Коши симметрична относительно x=a и похожа на нормальное, но с более толыстыми хвостами на  $\pm\infty$ . Функция распределения случайной величины  $\xi$  с распределением Коши равна

$$F_{\xi}(x) = \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x-a}{\sigma}\right).$$

Гамма-распределение. Распределение Парето.

### 5.6 Свойства функций распределения

**Общие свойства функций распределения**. Функцией распределения случайной величины  $\xi$  мы назвали функцию  $F_{\xi}(x) = P(\xi < x)$ .

Thr 5.12. Любая функция распределения обладает свойствами

- F1) она не убвает;
- F2) в прелелах  $x \to -\infty$ ,  $u x \to +\infty$  равна 0 u 1 соответственно;
- F3) она в любой точке непрерывна слева.

**Thr 5.13.** Если функция  $F: \mathbb{R} \mapsto [0,1]$  удовлетворяет свойствам (F1)-(F3), то F есть функция распределения некоторой случайной величины  $\xi$ , т.е. найдётся вероятностное пространство  $\langle \Omega, \mathcal{F}, P \rangle$  и случайная величина  $\xi$  на нём такая, что  $F(x) \equiv F_{\xi}(x)$ .

**Lem 5.14.** любой точке  $x_0$  разница  $F_{\xi}(x_0+0) - F_{\xi}(x_0)$  равна  $P(\xi=x_0)$ :

$$F_{\xi}(x_0 + 0) = F_{\xi}(x_0) + P(\xi = x_0) = P(\xi \le x_0).$$

**Lem 5.15.** Для любой случайной величины  $\xi$ 

$$P(a \leqslant \xi < b) = F_{\xi}(b) - F_{\xi}(a).$$

**Функция распределения дискретного распределения**. Как мы поним, функция распределения может быть найдена по талице распределения, как сумма  $F_{\xi}(x) = P(\xi < x) = \sum_{k} P(\xi = a_k)$ , где  $a_k < x$ .

**Lem 5.16.** Случайная величина  $\xi$  имеет дискретное распределение тогда и только тогда, когда функция распределения  $F_{\xi}(x)$  имеет в точках  $a_i$  скачки с величиной  $p_i = P(\xi = a_i) = F_{\xi}(a_i + 0) - F_{\xi}(a_i)$ , и растёт только за счёт скачков.

Свойства абсолютно непрерывного распределения. Пусть слу- чайная величина  $\xi$  имеет абсолюлютно непрерывное распределение с плотностью  $f_{\xi}(t)$ . Тогда функция распределения может быть найдена, как интеград.

**Lem 5.17.** Если случайная величина  $\xi$  имеет абсолютно непрерывное распределение, то её функция распределения всюду непрерывна. Более того её функция распределенеия дифференцируема почти всюду:  $f_{\xi}(x) = F'_{\xi}(x) = d_x F_{\xi}(x)$ .

Функция распределения сингулярного распределения.

Функция распределения смешанного распределения.

#### 5.7 Свойства нормального распределения

**Lem 5.18.** Для любого  $x \in \mathbb{R}$  справедливо соотношение:

$$\Phi_{a,\sigma^2}(x) = \Phi_{0,1}\left(\frac{x-a}{\sigma}\right).$$

Аналогичное утверждение для случайных величичн: если  $\xi \in \mathcal{N}_{a,\sigma^2}$ , то  $\eta = \frac{\xi - a}{\sigma} \in \mathcal{N}_{0,1}$ . Более того, если  $\xi \in \mathcal{N}_{a,\sigma^2}$ , то

$$P(x_1 < \xi < x_2) = \Phi_{a,\sigma^2}(x_2) - \Phi_{a,\sigma^2}(x_2) = \Phi_{0,1}\left(\frac{x_2 - a}{\sigma}\right) - \Phi_{0,1}\left(\frac{x_1 - a}{\sigma}\right).$$

В общем вычисления любых вероятностей для нормального распределения сводятся к вычислению  $\Phi_{0,1}(x)$ , которое обладает следующими свойствами:

- $\Phi_{0,1}(0) = 0.5$ ,  $\Phi_{0,1}(-x) = 1 \Phi_{0,1}(x)$ .
- Если  $\xi \in \mathbb{N}_{0,1}$ , то для любого x > 0, верно что  $\mathbb{P}(|\xi| < x) = 1 2\Phi_{0,1}(-x) = 2\Phi_{0,1}(x) 1$ .

# 6 Преобразования случайных величин

### 6.1 Измеримость функций от случайных величин

Пусть на векторном пространстве  $(\Omega, \mathcal{F}, P)$  задана случайная величина  $\xi$ .

**Thr 6.1.** Пусть  $\xi$  – случайная величина, а  $g: \mathbb{R} \mapsto \mathbb{R}$  – борелевская функция, т.е. такая, что для всякого борелевского множества B его прообраз  $g^{-1}(B)$  есть снова борелевское множество. Тогда  $g(\xi)$  – случайная величина.

### 6.2 Распределения функций от случайных величин

**Линейные и монотонные преобразования.** Если с дискретными распределениями всё понятно, то с абсолютно непрерывными чуть интереснее, о них дальше и поговорим. Пусть случайная величина  $\xi$  имеет функцию распределения  $F_{\xi}(x)$  и плотность распределения  $f_{\xi}(x)$ . Построим с помощью борелевской функции  $g \colon \mathbb{R} \to \mathbb{R}$  случайную величину  $\eta = g(\xi)$ ,и найдём плотность распределения (если она существует).

**Thr 6.2.** Пусть  $\xi$  имеет функцию распределения  $F_{\xi}(x)$  и плотность распределения  $f_{\xi}(x)$ , и постоянная а отлична от нуля. Тогда случайная величина  $\eta = a\xi + b$  имеет плотность распределения

$$f_{\eta}(x) = \frac{1}{|a|} f_{\xi} \left( \frac{x-b}{a} \right).$$

**Квантильное преобразование**. Полезно уметь строить случайные величины с заданным распределением по равномерно распределенной случайной величине.

**Thr 6.3.** Пусть функция распределения  $F(x) = F_{\xi}(x)$  непрерывна. Тогда случайная величина  $\eta = F(\xi)$  имеет равномерное на отрезке [0,1] распределение.

Thr 6.4 (alarm). Пусть  $\eta \in U_{0,1}$ , а F – произвольная функция распределения. Тогда случайная величина  $\xi = F^{-1}(\eta)$  («квантильное преобразование» над  $\eta$ ) имеет функцию распределения F.

Как следствие, для  $\eta \in U_{0,1}$  ,верны следующие утверждения:

$$-\frac{1}{\alpha}\ln(1-\eta) \in \mathcal{E}_{\alpha}, \quad a + \sigma \operatorname{tg}(\pi \eta - \pi/2) \in \mathcal{C}_{\alpha,\sigma}, \quad \Phi_{0,1}^{-1}(\eta) \in \mathcal{N}_{0,1}.$$

# 7 ХМногомерные распределения

#### 7.1 Совместное распределение

Пусть случайные величины  $\xi_1, \ldots, \xi_n$  заданы на одном вероятностном пространстве  $\langle \Omega, \mathcal{F}, P \rangle$ .

**Def 7.1.** Функция

$$F_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n) = P(\xi_1 < x_1, \dots, \xi_n < x_n)$$
 (7.1)

называется функцией распределения вектора  $(\xi_1, \dots, \xi_n)$  или функцией *совместного* распределения случайных величины  $\xi_1, \dots, \xi_n$ .

### 7.2 Типы многомерных распределений

Далее рассмотрим два типичных случая, когда совместное распределение либо дискретно, либо непрерывно. Сингулярное распределение не является редкостью: стоит выбрать отрезок на плоскости.

**Def 7.2.** Случайные величины  $\xi_1$ ,  $\xi_2$  имеют *дискретное* совместное распределение, если существует конечный или счётный набор пар числе  $\{a_i, b_i\}$  такой, что

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} P(\xi_1 = a_i, \ \xi_2 = b_j) = 1.$$

Таблицу, на пересечении i-й строки и j-го столбца которых стоит  $P(\xi_1 = a_i, \xi_2 = b_j)$ , называют таблицей совместного распределения случайных величин  $\xi_1$  и  $\xi_2$ .

**Def 7.3.** Случайные величины  $\xi_1$ ,  $\xi_2$  имеют *абсолютно непрерывное* совместное распредеение, если существует неотрицательная функция  $f_{\xi_1,\xi_2}(x,y)$  такая, что для любого множества  $B \in \mathfrak{B}(\mathbb{R}^2)$  имеет место равенство

$$P((\xi_1, \xi_2) \in B) = \iint_B f_{\xi_1, \xi_2}(x, y) dx dy.$$

Функция  $f_{\xi_1,\xi_2}(x,y)$  называется плотностью совместного распределения случайных величин  $\xi_1$  и  $\xi_2$ .

Если случайные величины  $\xi_1$  и  $\xi_2$  имеют абсолютно непрерывное совместное распределение, то для любых  $x_1, x_2$  имеет место равенство

$$F_{\xi_1,\xi_2}(x_1,x_2) = P(\xi_1 < x_1, \ \xi_2 < x_2) = \int_{-\infty}^{x_1} \left( \int_{-\infty}^{x_2} f_{\xi_1,\xi_2}(x,y) \, dy \right) \, dx.$$

По функции совместного распределения его плотность находится как смешанная частная производная:

$$f_{\xi_1,\xi_2}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{\xi_1,\xi_2}(x,y)$$

для почти всех (x, y).

**Thr 7.4.** Если случайные величины  $\xi_1$  и  $\xi_2$  имеютабсолютно непреывное совместное распределение с плотностью f(x,y), то  $\xi_1$  и  $\xi_2$  в отдельности также имеют абсолютно непрерывное распределение с плотностями:

$$f_{\xi_1}(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy;$$
  $f_{\xi_2}(y) = \int_{-\infty}^{+\infty} f(x, y) \, dx.$ 

### 7.3 Примеры многомерных распределений

Многомерное нормальное распределение. Пусть  $\Sigma > 0$  — положительно определенная симметричная матрица. Говорят, что вектор  $(\xi_1, \dots, \xi_n)$  имеет многомерное нормально распределение  $N_{\overrightarrow{a}, \Sigma}$  с вектором средних a и матрицей ковариации  $\Sigma$ , если плотность совместного распределения  $f_{\xi_1, \dots, \xi_n}(x_1, \dots, x_n)$  равна

$$f_{\xi}(\boldsymbol{x}) = \frac{1}{\sqrt{\det \Sigma} (\sqrt{2\pi})^n} \exp \left( -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{a})^{\mathrm{T}} \cdot \Sigma^{-1} \cdot (\boldsymbol{x} - \boldsymbol{a}) \right)$$

В частном случае, когда  $\Sigma$  – диагональная матрица с элементами  $\sigma_1^2,\dots,\sigma_n^2$  на диагонали, совместная плотность превращается в произведение плотностей нормальных величин. Вообще это равенство означает независимость величин  $\xi_1,\dots,\xi_n$ .

### 7.4 Независимость случайных величин

**Def 7.5.** Случайные величины  $\xi_1, \dots, \xi_n$  называются *независимыми* (в совокупности), если *для любого* набора борелевских множеств  $B_1, \dots, B_n \in \mathfrak{B}(\mathbb{R})$  имеет место равенство

$$P(\xi_1 \in B_1, \dots, \xi_n \in B_n) = P(\xi_1 \in B_1) \cdot \dots \cdot P(\xi_n \in B_n).$$

Определение независимости можно сформулировать в терминах функций распределения.

**Def 7.6.** Случайные величины  $\xi_1, \ldots, \xi_n$  независимы (в совокупности), если для любых  $x_1, \ldots, x_n$  имеет место равенство

$$F_{\xi_1,\dots,\xi_n}(x_1,\dots,x_n) = F_{\xi_1}(x_1)\cdot\dots\cdot F_{\xi_n}(x_n).$$

Thr 7.7. Случайные величины  $\xi_1, \ldots, \xi_n$  с абсолютно непрерывными распределениями независимы (в совокупности) тогда и только тогда, когда плотность их совместного распределения существует и равна произведению плотностей, т.е.для любых  $x_1, \ldots, x_n$  имеет место равенство:

$$f_{\xi_1,...,\xi_n}(x_1,...,x_n) = f_{\xi_1}(x_1) \cdot ... \cdot f_{\xi_n}(x_n).$$

### 7.5 Функции от двух случайных величин

Пусть  $\xi_1$  и  $\xi_2$  – случайные величины с плотностью совместного распределения  $f_{\xi_1,\xi_2}(x_1,x_2)$ , и задана борелевская функция  $g\colon \mathbb{R}^2 \mapsto \mathbb{R}$ . Требуется найти функцию (и плотность, если повезет) распределения случайной величины  $\eta = g(\xi_1,\xi_2)$ .

**Thr 7.8.** Пусть  $x \in \mathbb{R}$ , и область  $D_x \subseteq \mathbb{R}^2$  состоит из точек (u,v) таких, что g(u,v) < x. Тогда случайная величина  $\eta = g(\xi_1,\xi_2)$  имеет функцию распределения

$$F_{\eta}(x) = P(g(\xi_1, \xi_2) < x) = P((\xi_1, \xi_2) \in D_x) = \iint_{D_x} f_{\xi_1, \xi_2}(u, v) \, du \, dv.$$

Если  $\xi_1$  и  $\xi_2$  независимы, то распределение  $g(\xi_1, \xi_2)$  полностью определяется частными распределениями величин  $\xi_1$  и  $\xi_2$ .

**Thr 7.9** (формула свёртки). Если случайные величины  $\xi_1$  и  $\xi_2$  независимы и имеют абсолютно непрерывные распределения с плотностями  $f_{\xi_1}(u)$  и  $f_{\xi_2}(v)$ , то плотность распределения суммы  $\xi_1 + \xi_2$  существует и равна «свёртке» плотностей  $f_{\xi_1}$  и  $f_{\xi_2}$ :

$$f_{\xi_1+\xi_2}(t) = \int_{-\infty}^{+\infty} f_{\xi_1}(u) f_{\xi_2}(t-u) du = \int_{-\infty}^{+\infty} f_{\xi_2}(u) f_{\xi_1}(t-u) du.$$
 (7.2)

# 8 Числовые характеристики распределений

#### 8.1 Математическое ожидание случайной величины

Далее будет использовать термин *математического оэсидания*, и также можно встретить наименования: *среднее значение*, *первый момент*.

**Def 8.1.** *Математическим ожиданием*  $E(\xi)$  случайной величины  $\xi$  с дискретным распределением называется *число* 

$$E(\xi) = \sum_{k} a_{k} p_{k} = \sum_{k} a_{k} P(\xi = a_{k}),$$

если данный ряд абсолютно сходится, т.е. если  $\sum_i |a_i| p_i < +\infty$ . В противном случае говорят, что математическое ожидание *не существует*.

**Def 8.2.** *Математическим ожиданием*  $E(\xi)$  случайное величины  $\xi$  с абсолютно непрерывным распределением с плотностью распределения  $f_{\xi}(x)$  называется *число* 

$$E(\xi) = \int_{-\infty}^{+\infty} x f_{\xi}(x) \, dx,$$

если этот интеграл абсолютно сходится, т.е. если  $\int |x| f_{\xi}(x) dx < +\infty$ .

#### 8.2 Свойства математического ожидания

Далее всегда предполагается, что матожидание существует.

(E1) Для  $\forall$  борелевской  $g: \mathbb{R} \mapsto \mathbb{R}$ , для дискретного и непрерывного распределения, при существующем Е:

$$\operatorname{E} g(\xi) = \sum_{k} g(a_k) \operatorname{P}(\xi = a_k), \qquad \operatorname{E} g(\xi) = \int_{-\infty}^{+\infty} g(x) f_{\xi}(x) dx.$$

- (Е3) Матожидание линейно по константам:  $E(c\xi) = c E(\xi)$ .
- (E4) Матожидание суммы любых случайных величин равно сумме их матожиданий:  $E(\xi + \eta) = E(\xi) + E(\eta)$ .
- (Е7) Если  $\xi$  и  $\eta$  независимы и их матожидания существуют, то  $E(\xi\eta) = E(\xi) \cdot E(\eta)$ .

### 8.3 Дисперсия и моменты старших порядков

**Def 8.3.** Пусть  $E |\xi|^k < +\infty$ . Число  $\nu_k = E \, \xi^k$  называется моментом порядка k, или k-м моментом случайной величины  $\xi$ , число  $E |\xi|^k$  называется абсолютным k-м моментом. Число  $E [\xi - E(\xi)]^k$  называется центральным k-м моментом,  $E |\xi - E(\xi)|^2$  – абсолютным центральным k-м моментом.

**Def 8.4.** Число  $D(\xi) = E(\xi - E \xi)^2$  (центральный момент второго порядка) называется *дисперсией* случайной величины  $\xi$ . Другими словами, это «среднее значение квадрата отклонения случайной величины  $\xi$  от своего среднего».

**Def 8.5.** Число  $\sigma = \sqrt{D\xi}$  называют *среднеквадратичным отклонением* случайной величины  $\xi$ .

Thr 8.6 (неравенство Йенсена). Пусть вещественнозначная функция g выпукла. Тогда для любой случайной величины  $\xi$  с конечным первым моментом верно неравенство

$$E g(\xi) \geqslant g(E \xi),$$

где для вогнутых функций знак неравенства меняется на противоположный.

**Lem 8.7.** Если  $\mathbf{E} |\xi|^t < \infty$ , то для любого 0 < s < t верно, что

$$\sqrt[s]{\mathrm{E}\,|\xi|^s} \leqslant \sqrt[t]{\mathrm{E}\,|\xi|^t}.$$

Также из неравенства Йенсена вытекает ряд удобных неравенств:

$$E e^{\xi} \geqslant e^{E \xi}$$
. ...

## 8.4 Свойства дисперсии

Во всех свойствах ниже предполагается существование вторых моментов случайных величин.

(D1) Дисперсия может быть вычислена по формуле  $D\xi = E\xi^2 - (E\xi)^2$ .

$$D\xi = E(\xi - E\xi)^2 = /a = E\xi/ = E(\xi^2) - 2a E\xi + a^2 = E\xi^2 - (E\xi)^2.$$

- (D2) Считая c константной:  $D(c\xi) = c^2 D \xi$ .
- (D3) Дисперсия нетрицательна: D  $\xi \geqslant 0$ , более того обращается в ноль, только при  $\xi = \text{const}$  почти наверное.
- (D4)  $D(\xi + c) = D \xi$ .
- (D5) Если  $\xi$  и  $\eta$  независимы, то  $D(\xi + \eta) = D\xi + D\eta$ . Вообще верна формула

$$D(\xi + \eta) = D\xi + D\eta + 2(E(\xi\eta) - E\xi E\eta). \tag{8.1}$$

(D6) Минимум среднеквадратичного отклонения  $\xi$  от точек числовой прямой есть D $\xi$ :

$$D \xi = E(\xi - E \xi)^2 = \min_{a} E(\xi - a)^2.$$

### 8.5 Математические ожидания и дисперсии стандартных распределений

Посчитаем несколько характерных значений для различных распределений:

| Имя                 | $\mathrm{E}\xi$ | $\mathrm{E}\xi^2$           | $D\xi$                |
|---------------------|-----------------|-----------------------------|-----------------------|
| $B_{1,p}$           | p               | p                           | pq                    |
| $G_p$               | 1/p             |                             | $qp^{-2}$             |
| $\Pi_{\lambda}$     | $\lambda$       | $\lambda^2 + \lambda$       | $\lambda$             |
| $U_{a,b}$           | (a + b)/2       | $\frac{1}{3}(a^2+ab+b^2)$   | $\frac{1}{12}(b-a)^2$ |
| $N_{0,1}$           | 0               | 1                           | 1                     |
| $N_{a,\sigma}$      | a               |                             | $\sigma^2$            |
| $\mathrm{E}_{lpha}$ | $1!/\alpha^1$   | $2!/\alpha^2$ $ \not\equiv$ | $1/\alpha^2$          |
| $C_{0,1}$           | ∄               | ∌                           | ∄                     |

#### 8.6 Другие числовые характеристики распределений

Далее кратко познакомимся с другими показателями из статистики.

**Def 8.8.** Meduanoù распределения случайной величины  $\xi$  называется любое из чисел  $\mu$  таких, что

$$P(\xi\leqslant\mu)\geqslant\frac{1}{2},~~P(\xi\geqslant\mu)\geqslant\frac{1}{2}.$$

Обобщая, приходим к понятию квантили уровня  $\delta \in (0,1)$ , так назывется решение уравнения  $P(x_{\delta}) = \delta$ , где  $x_{\delta}$  отрезает площадь  $\delta$  слева от себя и  $1 - \delta$  справа.

Вообще ещё есть такой зоопарк, что квантили уровней кратных 0.01 в прикладной статистике называют процентилями, кратных 0.1 - deцилями, кратных  $0.25 - \kappa вартилями$ .

**Def 8.9.** *Модой* абсолютно непрерывного распределения называют любую точку локального максимума плотности распределения. Для дискретных распределений модой считают любое значение  $a_i$ , вероятность которого больше соседних.

Для описания унимодеальных распределений используют следующие величины:

Def 8.10. Коэффициентом асимметрии распределения с конечным третьим моментом называют число

$$\beta_1 = \mathrm{E}\left(\frac{x-a}{\sigma}\right)^3,$$

где  $a = E \xi$ , а  $\sigma = \sqrt{D\xi}$ .

Для симметричных распределений коэффициент асимметрии равен нулю, если  $\beta_1 > 0$ , то график плотности имеет более крутой наклон слева, и более пологий справа.

Def 8.11. Коэффициентом эксцесса распределения с конечным четвертым моментом называется число

$$\beta_2 = \mathbb{E}\left(\frac{\xi - a}{\sigma}\right) - 3,$$

где  $a = E \xi$ , а  $\sigma = \sqrt{D\xi}$ .

Для нормального распределения  $\beta_2=0$ , при  $\beta_2>0$  плотность распределения имеет более острую вершину, чем у нормального распределения.

### 8.7 Производящие функции

Дискретные величины, рассмотренные раннее, принимают только целые значения  $X=0,1,\ldots$  Нахождение числовых характеристик упрощается, если рассматреть производящие функции.

**Def 8.12.** Производящей функцией дискретной целочисленной случайной величины  $\xi$  с законом распределения  $P(\xi = k) = p_k$ , где  $k = 0, 1, \ldots$  называется функция, заданная степенным рядом

$$E(s^{\xi}) = P(s) = p_0 + p_1 s + p_2 s^2 + \dots,$$
(8.2)

который сходится по крайней мере для  $|s| \leq 1$ .

**Thr 8.13.** Производящая функция суммы независимых случайных величин  $\xi$  и  $\eta$  равна произведению производящих функций слагаемых

$$P_{\xi+\eta}(s) = P_{\xi}(s) \cdot P_{\eta}(s). \tag{8.3}$$

Так например для биномиального распределения производящая функция примет вид

$$P(s) = (q + ps)^n.$$

А для геометрического закона распределения

$$P(s) = ps + pqs^{2} + pq^{2}s^{3} + \dots = \frac{ps}{1 - qs}.$$

В случае же Пуассона

$$P(s) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} s^k = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda s)^k}{k!} = e^{-\lambda} e^{\lambda s} = e^{\lambda(s-1)}.$$

**Thr 8.14.** Сумма независимых случайных величин, распределенных по закону Пуассона, распределена по тому же закону.

**Thr 8.15.** Для дискретной случайной величины  $\xi$  с производящей функцией P(s) выполняются следующие требования:

$$E(\xi) = P'_s(1), \qquad D(\xi) = P''_{s,s}(1) + P'_s(1) - [P'_s(1)]^2.$$
 (8.4)

### 8.8 Вычисление моментов через производящие функции

**Def 8.16.** Производящей функцией моментов случайной величины  $\xi$  называют математическое ожидание случайной величины  $e^{s\xi}$ , где s – действительный параметр:

$$\psi_{\xi}(s) = \mathcal{E}(e^{s\xi}). \tag{8.5}$$

**Thr 8.17.** Если случайная величина  $\xi$  имеет начальный момент порядка n, то производящая функция  $\psi_{\xi}(s)$  n раз дифференцируема по s, u для всех  $k \leqslant n$  выполняется соотношение

$$\nu_k = \psi_{\xi}^{(k)}(0). \tag{8.6}$$

Действительно, разлагая функции моментов в ряд Маклорена, можно получить её разложение в ряд с начальными моментами

$$\psi_{\xi}(s) = 1 + \nu_1 s + \frac{\nu_2}{2!} s^2 + \dots$$

# 9 Числовые характеристики зависимости

### 9.1 Ковариация двух случайных величин

Дисперсия суммы двух случайных величин равна

$$D(\xi + \eta) = D \xi + D \eta + 2 (E(\xi \eta) - E(\xi) E(\eta)).$$

Величина  $E(\xi \eta) - E \xi E \eta = 0$ , если  $\xi$  и  $\eta$  независимы, но это верно только в одну сторону, поэтому эту величину используют как «индикатор наличия зависимости» между двумя случайными величинами.

**Def 9.1.** *Ковариацией*  $cov(\xi, \eta)$  случайных величин  $\xi$  и  $\eta$  называется число

$$cov(\xi, \eta) = E[(\xi - E\xi)(\eta - E\eta)]. \tag{9.1}$$

Для ковариации справедливы следующие равенства:

$$cov(\xi, \eta) = E(\xi\eta) - E(\xi)E(\eta); \quad cov(\xi, \xi) = D(\xi); \quad cov(\xi, \eta) = cov(\eta, \xi); \quad cov(c\xi, \eta) = c cov(\xi, \eta).$$

Lem 9.2. Дисперсия суммы нескольких случайных величин вычисляется по формуле:

$$D(\xi_1 + \dots + \xi_n) = \sum_{i=1}^n D(\xi_i) + \sum_{i \neq j} \text{cov}(\xi_i, \xi_j) = \sum_{i,j} \text{cov}(\xi_i, \xi_j).$$
(9.2)

Если ковариация  $cov(\xi, \eta) \neq 0$ , то  $\xi$  и  $\eta$  зависимы. Найти совместное распределение бывает сложнее, чем посчитать  $E(\xi \eta)$ , поэтому, если повезет, и  $E(\xi \eta) \neq E(\xi) E(\eta)$ , то, не находя совместное распределение, мы обнаружим зависимость  $\xi$  и  $\eta$ , не находя их совсметного распределения. Это очень хорошо.

Однако есть проблема – ковариация не безразмерно, поэтому большие значения ковариции не говорят о более сильной зависимости. Хотелось бы как-то отнормировать  $cov(\xi, \eta)$ , получив «безразмерную» величину. Так мы приходим к коэффициенту корреляции.

### 9.2 Коэффициент корреляции

**Def 9.3.** Коэффициентом корреляции  $\rho(\xi,\eta)$  случайных величин  $\xi$  и  $\eta$ , дисперсии которых существуют и отличны от нуля, называется число

$$\rho(\xi, \eta) = \frac{\text{cov}(\xi, \eta)}{\sqrt{D \xi} \sqrt{D \eta}}.$$
(9.3)

Можно наполнить это достаточно глубоким смыслом. На самом деле это «косинус угла» между двумя элементами  $\xi - \operatorname{E} \xi$  и  $\eta - \operatorname{E} \eta$  гильбертова пространства, образованного случайными величинами с нулевым матожиданием и конечным вторым моментом. Пространство набжено скалярным произведением  $\operatorname{cov}(\xi,\eta)$  и «нормой», равной корню из дисперсии, или  $\sqrt{\operatorname{cov}(\xi,\xi)}$ .

**Thr 9.4.** Коэффициент корреляции обладает свойствами:

- 1) если  $\xi$  и  $\eta$  независимы, то  $\rho(\xi, \eta) = 0$ ;
- 2)  $\operatorname{scer} \partial a |\rho(\xi,\eta)| \leq 1$ ;
- 3)  $|\rho(\xi,\eta)| = 1$  тогда и только тогда, когда  $\xi$  и  $\eta$  почти наверное линейно связаны.

**Def 9.5.** Стандартизацией случайной величины называется преобразование

$$\hat{\xi} = \frac{\xi - E(\xi)}{\sqrt{D(\xi)}}.$$
(9.4)

В терминах стандартизации чуть проще записывается коэффициент корреляции:

$$\rho(\xi,\eta) = \mathrm{E}\left(\hat{\xi} \cdot \hat{\eta}\right).$$

**Def 9.6.** Говорят, что  $\xi$  и  $\eta$  отрицательно коррелированы, если  $\rho(\xi,\eta) < 0$ ; положительно коррелированы, если  $\rho(\xi,\eta) > 0$ ; некоррелированы, если  $\rho(\xi,\eta) = 0$ .

**Lem 9.7.** Для любых случайных величин  $\xi$  и  $\eta$  с конечной и ненулевой дсперсией при любых постоянных  $a \neq 0$  и b имеет место равенство

$$\rho(\alpha \xi + b, \eta) = \operatorname{sign}(a) \cdot \rho(\xi, \eta). \tag{9.5}$$

Разобрать пример 67 и далее.

# 10 Характеристические функции

### 10.1 Определение и примеры

**Def 10.1.** Функция  $\varphi_{\xi}(t) = \mathbb{E}\left(e^{it\xi}\right)$  вещественной переменной t называется xapaктеричтической функцией случайной величины  $\xi$ .

Например, если характеристическая функция имеет стандратное нормальное распределение, то её характеристическая функция равна

$$\varphi_{\xi}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{itx} e^{-x^2/2} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-t^2/2} \int_{-\infty}^{+\infty} e^{-(x-it)^2/2} d(x-it) = e^{-t^2/2}.$$

# 10.2 Свойства характеристических функций

- (Ф1). Характеристическая функция всегда существует:  $|\varphi_{\xi}(t)| = |\operatorname{E} e^{it\xi}| \leq 1$ .
- $(\Phi 2)$ . По харакетристической функции однозначно восстанавливается распределение. Например, если модуль характеристической функции интегрируем на всей прямой, то

$$f_{\xi}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-itx} \varphi_x(t) dt.$$

 $(\Phi 3)$ . Характерестическая функция случайной величины  $a+b\xi$  связана с характеристической функцией случайной величины  $\xi$  равенством

$$\varphi_{a+b\xi}(t) = \operatorname{E} e^{it(a+b\xi)} = e^{ita} \operatorname{E} (i(tb)\xi) = e^{ita} \varphi_{\xi}(tb).$$

 $(\Phi 4)$ . Характеристическая функция суммы независимых случайных величин равна произведению характеричтических функций слагаемых: если случайные величины  $\xi$  и  $\eta$  независимы, то

$$\varphi_{\xi+\eta}(t) = \operatorname{E} e^{it(\xi+\eta)} = \operatorname{E}(e^{it\xi}) \operatorname{E}(e^{it\eta}) = \varphi_{\xi}(t)\varphi_{\eta}(t).$$

Собственно, это очень простой и приятный инструмент для доказательства *устойчивости* распределений. Чем надо было бы и воспользоваться.

 $(\Phi 5)$ . Пусть существует момент порядка  $k \in \mathbb{N}$  случайной величины  $\xi$ . Тогда характеристическая функция  $\varphi_{\xi}(t)$  непрерывно дифференцируема k раз и её k-я производная в ny-ne связана с моментом порядка k равенством

$$\varphi_{\xi}^{(k)}(0) = \left(\frac{d^k}{dt^k} \operatorname{E} e^{it\xi}\right) \bigg|_{t=0} = \left(\operatorname{E} i^k \xi^k e^{it\xi}\right) \bigg|_{t=0} = i^k \operatorname{E}(\xi^k).$$

**Lem 10.2.** Для случайной величины  $\xi$  со стандартным нормальным распределением момент чёного порядка 2k равен

$$E(\xi^{2k}) = (2k-1)!! = (2k-1) \cdot (2k-3) \cdot \dots \cdot 3 \cdot 1.$$

Все моменты нечётных порядков существуют и равны нулю.

Как только появились производные высших порядков, самое время разложить функцию в ряд Тейлора:  $(\Phi 6)$ . Пусть существует момент порядка  $k \in \mathbb{N}$  случайной величина  $\xi$ , тогда характеричтическая функция  $\varphi_{\xi}(t)$  в окрестности точки t=0 разлагается в ряд Тейлора

$$\varphi_{\xi}(t) = \varphi_{\xi}(0) + \sum_{j=1}^{k} \frac{t^{j}}{j!} \varphi_{\xi}^{(j)}(0) + o(|t^{k}|) = 1 + \sum_{j=1}^{k} \frac{i^{j} t^{j}}{j!} \operatorname{E}(\xi^{j}) + o(|t^{k}|).$$

Thr 10.3 (теорема о непрерывно соответствии). Случайные величины  $\xi_n$  слабо сходятся к случайной величине  $\xi$  тогда и только тогда, когда для любого t характеристические функции  $\varphi_{\xi-b}(t)$  сходятся к характеристической функции  $\varphi_{\xi}(t)$ .

# 11 Сходимость последовательностей случайных величин

### 11.1 Определение и примеры

Плотность многомерного нормального распределения:

$$f_{\xi}(\boldsymbol{x}) = \left[ (\sqrt{2\pi})^n \sqrt{\det \Sigma} \right]^{-1} \cdot \exp\left( -\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{\mu}) \right),$$

где  $\Sigma$  – симметричная, положитеьно определенная матрица.

# 12 Контрольная работа №2

### Первая задача

Вероятность выпадения решки равна  $p_0 = 0.42$ . Монетка подброшена 1000 раз, и решка выпала 360 раз. Сколько раз необходимо подрбросить такую же монетку, чтобы доля выпавших решек отличалась от  $p_0$  менее, чем в первые 1000 бросков с вероятностью  $p_1 = 0.95$ .

**Thr 12.1** (ЦПТ Ляпунова). Пусть  $\xi_1, \xi_2, \ldots$  – независимые и одинакоово распределенные случайные величины с конечной и ненулевой дисперсией:  $0 < D \xi_1 < \infty$ . Тогда имеет место слабая сходимость

$$\frac{S_n - n \to \xi_1}{\sqrt{n \to \xi_1}} \underset{n \to \infty}{\to} N_{0,1}, \quad S_n = \xi_1 + \ldots + \xi_n.$$

nocnedoвameльности центрированных и нормированных сумм случайных величин  $\kappa$  стандартному нормальному распределению.

Точнее  $S_n$  стремится к  $N_{a,\sigma^2}$ , где в пределах данной задачи верно, что  $A=n \to \xi_1=0.42n$ , а  $\sigma=\sqrt{n \to \xi_1}=\sqrt{n0.42(1-0.42)}=\sqrt{npq}$ .

По условиям задачи требуется попадание в интервал [a,b] = [0.36n, 0.48n]. Тогда

$$\int_a^b \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-A)^2}{2\sigma^2}\right) = \Phi\left(\sqrt{n}\frac{A-a}{\sqrt{2pq}}\right) = 0.95, \quad \Rightarrow \quad n = \frac{2X^2pq}{(A-a)^2} = 260,$$

где X = 1.38 можно найти по таблице.

### Вторая задача

Известно, что ковариационная матрица случайного вектора  $(X, Y, Z)^{\mathrm{T}}$  равна

$$M = \begin{pmatrix} 2 & -1 & \lambda \\ -1 & 2 & 1 \\ \lambda & 1 & 3 \end{pmatrix}.$$

Хочется найти все возможные значения  $\lambda$ , а также  $\lambda$ , соответсвующий минимальной вариации величины  $\xi = X + \lambda Y - 2Z$ .

Для начала поймём возможные значения  $\lambda$ : матрица неотрицательно определена, а значит, по критерию Сильвестра:

$$\det M = 7 - 2\lambda - 2\lambda^2 > 0, \quad \Rightarrow \left/ \lambda_{1,2} = \frac{1}{2} \left( -1 \pm \sqrt{15} \right) \right/ \Rightarrow \quad \lambda \in \left[ -\frac{1}{2} - \frac{\sqrt{15}}{2}; -\frac{1}{2} + \frac{\sqrt{15}}{2} \right].$$

Теперь можем найти оптимальное значение  $\lambda$  для  $\boldsymbol{\xi} = X + \lambda Y - 2Z = (1, \lambda, -2)^{\mathrm{T}}$  в базисе (X, Y, Z):

$$\boldsymbol{\xi}^{\mathrm{T}} M \boldsymbol{\xi} = 2 \lambda^2 - 10 \lambda + 14 = 2 \left( \lambda - \frac{5}{2} \right)^2 + \frac{3}{2}, \quad \Rightarrow \quad \lambda = \frac{5}{2}.$$

Однако можно заметить, что верхняя граница  $(-1+\sqrt{15})/2\approx 1.44<2.5$ , следовательно минимум достигается на правой границе  $\lambda_{\rm opt}=\frac{1}{2}\left(-1+\sqrt{15}\right)$ .

### Третья задача

Известно, что X и Z независимы их плотность вероятности может быть задана, как

$$f_X(x) = 5I_{x>0}e^{-5x}, \quad f_Z(z) = 5I_{z>0}e^{-5z}.$$

Считая  $U = \min(X; Z), V = \max(X, Z),$  найдём ковариацию U и V.

## Четвертая задача

Известно, что плотность распределения переменной Y дана

$$f_Y(y) = C \exp(-y^2 + 4y - 10), \quad y \in \mathbb{R}.$$

Найдём константу C, а также матожидание и дисперсию Y.

Заметим, что  $f_Y(y) = C \exp\left(-(y-2)^2 - 6\right) = \frac{C}{e^6} \exp\left(-(y-2)^2\right)$ , – нормальное распределение с ЕY = a = 2. Осталось найти

$$\int_{-\infty}^{+\infty} \frac{C}{e^6} \exp\left(-(y-2)^2\right) dy = \sqrt{\pi} C e^{-6} = 1, \quad \Rightarrow \quad C = \frac{e^6}{\sqrt{\pi}}.$$

Итого, распределение перепишется в виде

$$f_{\xi}(y) = \frac{1}{\sqrt{2\pi}\sqrt{\frac{1}{2}}} \exp\left(-\frac{(y-2)^2}{2(\frac{1}{\sqrt{2}})^2}\right),$$

собственно D $Y = \sigma^2 = 1/2$ .

### Пятая задача

Случайный величины  $X_1, \dots, X_{100}$  независимы и одинаково распределены, в частности с N(0,4). Найдём распределение вектора  $(Y,Z)^{\mathrm{T}}$ , где  $Y=X_{61}+X_{62}+\dots+X_{100}$ , и  $Z=X_1+X_2+\dots+X_{80}$ .