

CLASSIFICATION DES CATÉGORIES DE PRODUITS LORS D'UN BLACK-FRIDAY

Par HAMANI Khalil

Travail réalisé

- Classification de la catégorie d'un produit
 - Models utilisés : SVM, Arbre de décision, forêt aléatoire
- Régression sur le coût de la transaction
 - Models utilisés : Régression linéaire, par Arbre de décision, par forêt aléatoire

■ 1 ligne = 1 transaction

- 1 ligne = 1 transaction
- Que pourrait-on faire avec ?

- 1 ligne = 1 transaction
- Que pourrait-on faire avec ?
 - Classifications utiles : Age, Catégorie du produit

- 1 ligne = 1 transaction
- Que pourrait-on faire avec ?
 - Classifications utiles : Age, Catégorie du produit
 - Classifications inutiles : Sexe, Occupation (signification inconnue), État civil

- 1 ligne = 1 transaction
- Que pourrait-on faire avec ?
 - Classifications utiles : Age, Catégorie du produit
 - Classifications inutiles : Sexe, Occupation (signification inconnue), État civil
 - Régression : Coût de la transaction

- 1 ligne = 1 transaction
- Que pourrait-on faire avec ?
 - Classifications utiles : Age, Catégorie du produit
 - Classifications inutiles : Sexe, Occupation (signification inconnue), État civil
 - Régression : Coût de la transaction
 - Clusturing: Faire de la recommandation sur les produits

Classification des catégories des produits

- Nettoyage du dataset (pré-traitements)
- Encodage
- Entrainement
- Mesures de performances

Outils utilisés

Classification de la catégorie

Pré-traitements (Catégorie)

ut[3]:												
		User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Produc
	0	1000001	P00069042	F	0-17	10	Α	2	0	3	NaN	
	1	1000001	P00248942	F	0-17	10	Α	2	0	1	6.0	
	2	1000001	P00087842	F	0-17	10	Α	2	0	12	NaN	
	_	1000001	P00085442	_	0-17	10	Α	2	0	12	14.0	

Remplissage des vides par des 0

bf	<pre>bf_df.fillna(0).head()</pre>													
	User_ID	Product_ID	Gender	Age	Occupation	City_Category	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Product_			
0	1000001	P00069042	F	0-17	10	Α	2	0	3	0.0				
1	1000001	P00248942	F	0-17	10	Α	2	0	1	6.0				
2	1000001	P00087842	F	0-17	10	Α	2	0	12	0.0				
3	1000001	P00085442	F	0-17	10	Α	2	0	12	14.0				
4	1000002	P00285442	М	55+	16	С	4+	0	8	0.0				

Pré-traitements (Catégorie)

Encodage des catégories

```
    Catégorie 1 = {1, ..., 18} => Catégorie 1 = {A, ..., R}
    Catégorie 2 = {2, ..., 18} => Catégorie 1 = {B, ..., R, 0}
    Catégorie 3 = {3, ..., 18} => Catégorie 1 = {C, ..., R, 0}
```

- Concaténation des catégories
 - Product_Category : Catégorie 1 + Catégorie 2 + Catégorie 3
 - Exemple :
 - Catégorie 1 : 1 => A
 - Catégorie 2 : 2 => B => Product_Category : ABC
 - Catégorie 3 : 3 => C

*On a jusqu'ici 235 catégories

Pré-traitements (Catégorie)

- Suppression des doublons par combinaison
 - Exemple : Les catégories suivantes sont considérées comme étant la même catégorie
 - DEF, EDF, EFD, DFE, FDE, FED
- Après ce pré-traitement le nombre de catégories est resté le même i.e. 235

Pré-traitements (User_ID)

■ Tout simplement supprimé pour cause d'impretinence

Encodage

- Séquenciel et par ordre d'apparition : 0, 1, 2, 3... N pour toutes les colonnes à l'exception du coût de la transaction
- Le coût de la transaction a été encodé en utilisant un normalisation par Minimum (=0) et Maximum (=1)

BQ0HNQAE0 C00HO0 HJ0 EIN G00HMOP00 AHP DEI ABNEQ0LNQEHQEFK AN0ABPKMPOP0 R00 ANQHIN AMPAENCO0FHOKO0 FHJFHMFHPBENABHJP0 HOPLQ0 DELJM0 FJ0

Division du dataset

■ Division du dataset en 70% train et 30% test avec l'option shuffle pour prendre au hazard et non de manière séquentielle

Classification (SVM)

■ Précision moyenne : 0.2%

■ Recall moyen: 0.6%

Classification (SVM)

■ Précision moyenne : 0.2%

■ Recall moyen: 0.6%

Classification (Arbre de décision)

Accuracy: 97% (Is this overfiting?!!!)

■ Précision moyenne : 93.7%

■ Recall moyen: 93.5%

Classification (Arbre de décision)

Profondeur plafonnée à 27

Accuracy: 93%

■ Précision moyenne : 92.3%

■ Recall moyen: 87.5%

Classification (Forêt aléatoire)

■ Accuracy: 42%

■ Précision moyenne : 25.4%

■ Recall moyen: 19.7%

```
1. in precision : 0
0. in precision : 31
1. in recall : 0
0. in recall : 31
```

Classification (Forêt aléatoire)

■ Accuracy: 42%

■ Précision moyenne : 25.4%

■ Recall moyen: 19.7%

Regression sur le coût d'une transaction

- Pré-traitements
- Encodage
- Entrainement
- Mesures de performances

Pré-traitements

Lecture du DataSet

```
bf df = pd.read csv("./BlackFriday.csv")
In [30]:
          bf_df = bf_df.fillna(0)
          bf df.head()
Out[30]:
          ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_3 Purchase
                  F 0-17
                                10
                                              Α
                                                                     2
                                                                                                   3
         142
                                                                                                                   0.0
                                                                                                                                    0.0
                                                                                                                                            8370
                                                                                                                                   14.0
                                                                                                                                           15200
         142
                  F 0-17
                                10
                                                                     2
                                                                                 0
                                                                                                                   6.0
                  F 0-17
                                                                                                  12
                                                                                                                                           1422
                                10
                                                                                                                   0.0
                                                                                                                                    0.0
                  F 0-17
                                                                                                  12
                                10
                                                                                 0
                                                                                                                  14.0
                                                                                                                                    0.0
                                                                                                                                            1057
                  M 55+
                                             С
                                                                                                   8
                                16
                                                                                 0
                                                                                                                   0.0
                                                                                                                                    0.0
                                                                                                                                            7969
In [31]: bf df["Product Category 2"] = bf df["Product Category 2"].astype(int)
          bf df["Product Category 3"] = bf df["Product Category 3"].astype(int)
          bf_df = bf_df.drop(columns=["User_ID"])
          bf df.head()
Out[31]:
          _ID Gender Age Occupation City_Category Stay_In_Current_City_Years Marital_Status Product_Category_1 Product_Category_2 Product_Category_3 Purchase
         )42
                  F 0-17
                                10
                                              Α
                                                                     2
                                                                                 0
                                                                                                   3
                                                                                                                    0
                                                                                                                                     0
                                                                                                                                           8370
                                                                     2
                                                                                                                    6
         142
                  F 0-17
                                10
                                              Α
                                                                                 0
                                                                                                                                     14
                                                                                                                                           15200
         342
                  F 0-17
                                10
                                                                                 0
                                                                                                  12
                                                                                                                    0
                                                                                                                                           1422
         42
                  F 0-17
                                10
                                              Α
                                                                     2
                                                                                 0
                                                                                                  12
                                                                                                                   14
                                                                                                                                     0
                                                                                                                                            1057
                  M 55+
                                16
                                                                                                                                           7969
In [32]: bf df.to csv("./BlackFriday Price Preprocessed.csv", index=False)
```

Encodage

Encodage

Régression linéaire

■ Score: 0.6%

Linear Regression

Entrainement

```
In [16]: reg = LinearRegression()
    reg = train_model(reg, X_train, y_train)
    Model entrainé en : 00:00:00
```

Mesures de performances

```
In [17]: reg.score(X_test, y_test)
Out[17]: 0.05994041393878746
```

Régression par arbre de décision

- Pas de limitation sur la profondeur de l'arbre :
 - Score: 43%
- Après limitation de la profondeur à 13 :
 - Score: 68%

Régression par forêt aléatoire

- Pas de limitation sur la profondeur de l'arbre:
 - Score: 43%
- Après limitation de la profondeur à 13 :
 - Score: 70%

*Nombre d'arbres = 200