

Inference for Multiple Regression

Yifan 7hu

Iowa State University

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating a

Standardized Residuals

Interence for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean

responses Multiple mean

Standardized

Inference for Mean

Multiple Regression: a Review

Inference for Multiple Regression

▶ Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

► The *p* coefficients *b*₀, *b*₁,..., *b*_{*p*-1} are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0, b_1, \ldots, b_{p-1}) = \sum_{i=1}^{n} (y_i) - b_0 + b_1 x_{i,1} + \cdots + b_{p-1} x_{i,p-1})^2$$

In practice, we make a computer find the coefficients for us. This class uses JMP.

Formalizing the multiple regression model

Now, we'll work with a formal multiple regression model:

$$Y_{i} = \underbrace{\left[\beta_{0} + \beta_{1} x_{1,i} + \beta_{2} x_{2,i} + \dots + \beta_{p-1} x_{p-1,i}\right]}_{\uparrow \quad \downarrow (\gamma_{i})} + \underbrace{\varepsilon_{i}}_{\downarrow \downarrow (\gamma_{i})}$$

• Assume $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n \sim \text{iid } N(0, \sigma^2)$.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Outline

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2

Standardized

Inference for Mean

Estimating σ^2

Now, the residuals are of the form:

estimated wring

We estimate the variance with the <u>surface-fitting</u> <u>sample variance</u>, also called <u>mean squared error</u> (MSE):

$$s_{SF}^2 = \frac{1}{n-p} \sum_{i} e_i^2$$

- ▶ The estimated standard deviation is $s_{SF} = \sqrt{s_{SF}^2}$.
- Note: the line fitting sample variance s_{LF}^2 is the special case of s_{CF}^2 for p=2.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean

- Consider a chemical plant that makes nitric acid from ammonia.
- 2. We want to predict stack loss (y, 10 times the % ammonia that escapes from the absorption column) using:
 - x_1 : air flow, the rate of operation of the plant
 - $\overline{x_2}$, inlet temperature of the cooling water
 - x_3 : $(\% \text{ circulating acid } 50\%) \times 10$

, turripror	ota ort i			
i, Observation Number	x_{1i} , Air Flow	x_{2i} , Cooling Water Inlet Temperature	x_{3i} , Acid Concentration	y _i , Stack Loss
1	80	27	88	37
2	62	22	87	18
3	62	23	87	18
4	62	24	93	19
5	62	24	93	20
6	58	23	87	15
7	58	18	80	14
8	58	18	89	14
9	58	17	88	13
10	58	18	82	11
11	58	19	93	12
12	50	18	89	8
13	50	18	86	7
14	50	19	72	8
15	50	19	79	8
16	50	20	80	9
(17)	56	20	82	15

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2

tandardized esiduals

interence for $eta_0,eta_1,\ldots,eta_{p-1}$

Inference for Mean Responses

Individual mean

Multiple mean responses

Standardized Residuals

Multiple

Estimating σ^2

Inference for Mean

Term	Estimate	Std Error	t Ratio	Prob>ltl
Intercept	-37.65246	4.732051	-7.96	<.0001*
x1	0.7976856	0.067439	11.83	<.0001*
x2	0.5773405	0.165969	3.48	0.0041*
x3	-0.06706	0.061603	-1.09	0.2961

 $\hat{y}_i = -37.65 + 0.797x_{1,i} + 0.577x_{2,i} - 0.067x_{3,i}$

▶ Effect Tests

▼ Residual by Predicted Plot

- $s_{SF}^2 = 1.569$ ("Mean Square Error", blue)
- $s_{SF} = \sqrt{1.569} = 1.25$, also under "Root Mean Square Error" (red).

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ^2 Standardized

standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Interence for Mean Responses

responses Multiple mean

Standardized

Yifan Zhu

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{n-1}$

Inference for Mean Responses

Individual mean responses

responses
Multiple mean

- As with simple linear regression, $Var(e_i)$ is not constant even though $Var(\varepsilon_i) = \sigma^2$.
- ▶ There are some constants $a_1, a_2, ..., a_n$ such that:

$$Var(e_i) = \begin{bmatrix} \overline{a_i} \sigma^2 \\ \Rightarrow \\ \sqrt{\overline{a_i}(e)} \end{bmatrix} \sim \mu(o, 1).$$

Hence, we compute the standardized residuals as:

$$\underbrace{e_{i}^{*}}_{SFVa_{i}} = \underbrace{e_{i}}_{approximately} \underbrace{e_{i}^{*}}_{N(0,1)}$$

In practice, $\underline{a_1}, \dots, \underline{a_n}$ are hard to compute. We'll make JMP do all the hard work.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_p$

Inference for Mean Responses

Individual mean responses

Multiple mean responses

Standardized residuals.

0 0		stackloss.jmp					
▼ stackloss.jmp ▶	•	x1	x2	х3	у	Studentized Resid y	
	1	80	27	88	37	1.6699301413	
	2	62	22	87	18	-0.559158154	
	3	62	23	87	18	-1.057298349	
	4	62	24	93	19	-0.391146767	
	5	62	24	93	20	0.5321959564	
	6	58	23	87	15	-0.928385357	
	7	58	18	80	14	0.3282961878	
	8	58	18	89	14	0.8586448878	
	9	58	17	88	13	0.4481300771	
	10	58	18	82	11	-2.228855416	
	11	58	19	93	12	-1.227567579	
	12	50	18	89	8	1.2152152611	
T 0 1 (510)	13	50	18	86	7	0.1241939003	
Columns (5/0)	14	50	19	72	8	-0.394983744	
x1 x2	15	50	19	79	8	0.0849968417	
▲ x2 ▲ x3	16	50	20	80	9	0.5271747049	
V V	17	56	20	82	15	1.6133138635	
Studentized Resid							

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized

Residuals
Inference for

 $\overline{eta_0}, \overline{eta_1}, \ldots, \overline{eta_{p-1}}$

Responses
Individual mean

Distributions

▼ Studentized Resid y

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating σ

Standardized Residuals

Interence for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Outline

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating o

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean responses

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{n-1}$

Our formal model is:

$$Y_i = \underline{\beta_0} + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \cdots + \underline{\beta_{p-1}} x_{p-1,i} + \varepsilon_i$$

Our estimated model is:

$$\widehat{y}_i = b_0 + b_1 x_{1,i} + b_2 x_{2,i} + \dots + b_{p-1} x_{p-1,i}$$

How close are the estimates to their true values?

Inference for $\beta_0, \beta_1, \dots, \beta_p$

► Under our model assumptions: > unbiased estimator.

$$[b_I] \sim N(\underline{\beta_I}, \underline{d_I}\sigma^2)$$

for some positive constant d_{I} , $I=0,1,2,\ldots,p-1$. That means: $b_{I}-\beta_{I} = b_{I}-\beta_{I} = b_{I}-\beta_{I}-\beta_{I} = b_{I}-\beta_{I}-\beta_{I} = b_{I}-\beta_{I}-\beta_{I} = b_{I}-\beta_{I}-\beta_{I}-\beta_{I}-\beta_{I}= b_{I}-\beta_{I}-\beta_{I}-\beta_{I}-\beta_{I}-\beta_{I}= b_{I}-\beta_{I}$ ► That means:

▶ A test statistic for testing H_0 : $\beta_l = \#$ is:

$$T = \frac{b_l - \#}{s_{SF}\sqrt{d_l}} = \frac{b_l - \#}{\widehat{SD}(b_l)} \sim t_{n-p}$$

▶ A 2-sided $1 - \alpha$ confidence interval for β_I is:

$$b_l \pm t_{n-p, 1-\alpha/2} \left[s_{SF} \sqrt{d_l} \right]$$

i.e.,

$$b_l \pm t_{n-p, 1-\alpha/2} \left(\widehat{\widehat{SD}(d_l)}\right)$$

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Standardized

Inference for

 $\beta_0, \beta_1, \ldots, \beta_{n-1}$

Inference for Mean Responses

- n = 17
- \triangleright x_1 : air flow, the rate of operation of the plant
- x_2 , inlet temperature of the cooling water
- x_3 : (% circulating acid 50%)×10

▼ Param	Parameter Estimates					
Term	Estimate	Std Error	t Ratio	Prob>ltl		
Intercept	-37.65246	4.732051	-7.96	<.0001*		
→x1	0.7976856	0.067439	11.83	<.0001*		
x2	0.5773405	0.165969	3.48	0.0041*		
x3	-0.06706	0.061603	-1.09	0.2961		
			1	tatietis		

- Test $H_0: \beta_1 = 1$ vs. $H_a: \beta_1 < 1$ using $\alpha = 0.1$.
- Test $H_0: \beta_3 = 0$ vs. $H_a: \beta_3 \neq 0$ by hand ($\alpha = 0.05$), and compare your t statistic to the one in the output table.
- 3. Construct and interpret a 2-sided 99% confidence interval for β_3 .
- Construct and interpret a 1-sided lower 90% confidence interval for β_2

Answers: 1

- 1. $H_0: \beta_1 = 1, H_a: \beta_1 < 1$
- $2. \quad \alpha = 0.1$
- 3. I use the test statistic:

$$T = \underbrace{\left| \frac{\widehat{b_1} - \widehat{\underbrace{1}}}{\widehat{\widehat{SD}}(b_1)} \right|}_{\mathbf{r}}$$

- I assume:
 - \vdash H_0 is true.
 - The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \dots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- Under the assumptions, $T \sim t_{n-p} = t_{17-4} = (t_{13})$
- ▶ I will reject H_0 if $T < t_{13,\alpha} = t_{13,0.1} = -1.35$.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating o

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

4. The observed test statistic:

$$t = \underbrace{\frac{0.7977 - 1}{0.06744}}_{\substack{\text{Sp} (\text{J}_{1})}} = \underbrace{-3.00}_{\substack{\text{Sp} (\text{J}_{1})}}$$

- 5. With $t = -3 < -1.35 = t_{13,0.1}$, we reject H_0 and conclude H_a .
- 6. There is enough evidence to conclude that the true slope on airflow is less than 1 unit stack loss / unit airflow. With each unit increase in airflow and all the other covariates held constant, we expect stack loss to increase by less than one unit.

Multiple Regression: a Review

6.

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

- 1. $H_0: \beta_3 = 0, H_a: \beta_3 \neq 0$
- 2. $\alpha = 0.05$
- 3. I use the test statistic:

$$T = \frac{b_3 - 0}{\widehat{SD}(b_3)}$$

- ▶ I assume:
 - H_0 is true.
 - ▶ The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \dots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- Under the assumptions, $T \sim t_{n-p} = t_{17-4} = t_{13}$.
- ▶ I will reject H_0 if |T| $t_{13,1-\alpha/2} = t_{13,0.975} = 2.16$.

Multiple Regression: a Review

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

$$t=rac{-0.06706-0}{0.0616}=-1.089$$
 (agrees with the "t Ratio")

- 5. With |t| = 1.089 < 2.16, we fail to reject H_0 .
- 6. There is not enough evidence to conclude that the true slope on circulating acid (shifted and scaled) is nonzero. With each unit increase acid and all the other covariates held constant, there is no evidence that the stack loss should change.

Multiple Regression: a Review

Standardized

Residuals
Inference for

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

► For a confidence level of 99%, $\alpha = 0.01$ and so $t_{n-p,1-\alpha/2} = t_{13,0.995} = 3.012$.

$$(\widehat{b_3}) - \widehat{b_1} + \underbrace{t_{n-p,1-\alpha/2}} \cdot \widehat{SD}(b_3), \widehat{b_3} + \underbrace{t_{n-p,1-\alpha/2}} \cdot \widehat{SD}(b_3))$$

$$= (-0.06706 - 3.012 \cdot 0.0616, -0.06706 + 3.012 \cdot 0.0616)$$

$$= (-0.2525, 0.1185) - \underbrace{contains zero}_{\text{vojear the ox } o = contains}$$

► We're 99% confident that, for every unit increase in acid with all other covariates held constant, stack loss increases by anywhere from -0.2525 units to 0.1185 units. ✓ wear stack learn

Multiple Regression: a Review

c.

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

Multiple mean responses

For a confidence level of 90%, $\alpha = 0.1$ and so $t_{n-p,1-\alpha/2} = t_{13,0.95} = 1.77$.

$$\underbrace{(b_2)}_{t_{n-p,1-\alpha/2}} \cdot \widehat{SD}(b_2), \underbrace{(b_2)}_{t_{n-p,1-\alpha/2}} \cdot \widehat{SD}(b_2))
= \underbrace{(0.5573 - 1.77)}_{0.166}, \underbrace{0.166}_{0.5573}, \underbrace{1.77}_{0.166}, \underbrace{0.166}_{0.5573}$$

$$= \underbrace{(0.26348, 0.8511)}_{0.8511}$$

We're 90% confident that, for every 1-degree increase in temperature with all other covariates held constant, stack loss increases by anywhere from 0.26348 units to 0.8511 units.

Multiple Regression: a Review

Standardized

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Characterist

Standardized Residuals

Inference for $\beta_0, \beta_1, \dots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses

- mean response at x = (X1, X2... , Xp.)
- We want to estimate the mean response at the set of covariate values, $(x_1, x_2, \dots, x_{p-1})$ $u_{y|x} = b_0 + b_1 x_1 + \dots + b_{p-1} x_{p-1}$
- Under the model assumptions, the estimated mean response, $\widehat{\mu}_{v|x}$ at $\mathbf{x} = (x_1, x_2, \dots, x_{p-1})$ is normally distributed with:

Figure of Expersion
$$E(\widehat{\mu}_{y|x}) = \mu_{y|x} = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$

$$Var(\widehat{\mu}_{y|x}) = \sigma^2 A(x)^2$$

for some constant A(x). (different for different x)

When we do inference for an individual Under the model assumptions:

$$Z = \frac{\widehat{\mu}_{y|x} - \widehat{\mu}_{y|x}}{\widehat{OA(x)}} \underbrace{N(0,1)} T = \frac{\widehat{\mu}_{y|x} - \widehat{\mu}_{y|x}}{\widehat{\mu}_{y|x} - \widehat{\mu}_{y|x}} t_{n-p}$$

A test statistic for testing $H_0: \mu_{v|x} = \#$ is:

$$\frac{\widehat{\mu}_{Y|X} - \cancel{\#}}{|\overline{s_{SF}A(X)}|} \rightarrow se(\widehat{\mu}_{Y|X}).$$

which has a t_{n-p} distribution under H_0 .

- A 2-sided, 1α confidence interval for $\mu_{y|x}$ in compact form is $\widehat{\mu}_{y|x} \pm |t_{n-p,1-\alpha/2}|$ ssf A(x).
- Note: $s_{SF}A(x) = SD(\widehat{\mu}_{v|x})$, which you can get directly from JMP output.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized Residuals

Inference for Mean Responses Individual mean

Inference for

Standardized

Residuals

Inference for Mean

Individual mean responses

▶ I will use JMP to compute a 2-sided 95% confidence interval around the mean response at point 3: $x_1 = 62, x_2 = 23, x_3 = 87, y = 18.$

LStilliatilig

Standardized Residuals

 $\beta_0, \beta_1, \dots, \beta_{p-1}$

Responses
Individual mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

LStillatilig

Standardized Residuals

 $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Responses
Individual mean

Multiple mean responses

sec moly). Mylx • • **x**1 x2 хЗ StdErr Pred y ٧ Predicted y 27 1.0461642094 1 80 88 35.849282687 2 62 22 87 18.671300496 0.35771273 (3) 62 23 87 19.248640953 0.417845385 4 24 19.423620349 0.6295687471 62 93 5 24 0.6295687471 62 93 19.423620349 6 58 23 87 15 16.057898713 0.5204068064 7 58 18 80 14 13.640617664 0.6090546656 8 58 18 89 13.037076072 0.5582571612 9 58 17 88 13 12.526795792 0.6739851764 10 58 18 82 11 13.50649731 0.5519432283 11 58 19 93 12 13.346175822 0.6055705716 12 50 18 89 6.6555915917 0.5876767248 13 50 18 86 6.8567721223 0.4891659484 14 50 19 72 8.3729550563 0.8232400377 15 50 19 79 7.903533818 0.5302896274 16 50 20 80 8.4138140985 0.5769617708 17 56 20 82 13.065807105 0.3632418427 Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized

Residuals

Inference for Mean

Individual mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Standardized

Residuals
Inference for

Inference for Mean Responses

Individual mean responses Multiple mean

With $t_{n-p,1-\alpha/2} = t_{13,0.975} = 2.16$ the confidence interval is:

 $\underbrace{(\widehat{\mu}_{y|x})}_{=(19.2486-2.16\cdot0.4178, 19.2486+2.16\cdot0.4178)} = (18.346, 20.151)$

▶ We're 95% confident that when the air flow is 62, the temperature is 23 degrees, and the adjusted percentage of circulating acid is 87, the true mean stack loss is anywhere between 18.346 and 20.151 units.

Review

Standardized Residuals

Inference for Mean Responses

Multiple mean responses

Simutaneous C.2. P(Mylx & Ix for x at the same time) = 1-0

▶ The multiple $1 - \alpha$ confidence interval formula for $\mu_{y|x_1,...,x_{p-1}}$ is:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \underbrace{\sqrt{p \cdot F_{p, \ n-p, \ 1-\alpha}}}_{\text{Se} \ (\widehat{\mathcal{M}}_{y|_{\mathcal{Z}}})} | S_{SF} \cdot A(\mathbf{x}) |_{\text{Se} \ (\widehat{\mathcal{M}}_{y|_{\mathcal{Z}}})}$$

- We'll make JMP do all the work for us.
- ▶ First, we'll need to write $\widehat{SD}(\widehat{\mu}_{v|x}) = s_{SF} \cdot A(x)$ and write the interval as:

$$\widehat{\widehat{\mu}_{y|x}} \neq \sqrt{p \cdot F_{p, n-p, 1-\alpha}} \cdot \widehat{\widehat{SD}(\widehat{\mu}_{y|x})}$$

Inference for Multiple Regression

- ▶ With p parameters and 95% confidence intervals, $F_{p, n-p, 1-\alpha} = F_{4,13,0.95} = 3.18.$
- ► The multiple confidence interval becomes:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{4 \cdot 3.18} \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

i.e.,

 $ightharpoonup \widehat{\mu}_{v|x}$ and $\widehat{SD}(\widehat{\mu}_{v|x})$ vary from point to point.

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Estimating o

Standardized Residuals

 $\beta_0, \beta_1, \dots, \beta_{p-1}$ Inference for Mean

Responses

Individual mean

Multiple mean responses

Inference for Multiple Regression

Yifan Zhu

Multiple Regression: a Review

Latinating

Standardized Residuals

 $\beta_0, \beta_1, \dots, \beta_{p-1}$ Inference for Mean

Responses

Individual mean

Multiple mean responses

► The columns, "Lower bd" and "Upper bd", give the endpoints for the confidence intervals.

			, ,				
x1	x2	х3	у	Predicted y	StdErr Pred y	Lower bd	Upper bd
80	27	88	37	35.849282687	1.0461642094	32.114476459	39.58408891
62	22	87	18	18.671300496	0.35771273	17.39426605	19.94833494
62	23	87	18	19.248640953	0.417845385	17.756932929	20.74034897
62	24	93	19	19.423620349	0.6295687471	17.176059922	21.67118077
62	24	93	20	19.423620349	0.6295687471	17.176059922	21.67118077
58	23	87	15	16.057898713	0.5204068064	14.200046414	17.91575101
58	18	80	14	13.640617664	0.6090546656	11.466292508	15.81494282
58	18	89	14	13.037076072	0.5582571612	11.044098007	15.03005413
58	17	88	13	12.526795792	0.6739851764	10.120668712	14.93292287
58	18	82	11	13.50649731	0.5519432283	11.536059986	15.47693463
58	19	93	12	13.346175822	0.6055705716	11.184288881	15.50806276
50	18	89	8	6.6555915917	0.5876767248	4.557585684	8.753597499
50	18	86	7	6.8567721223	0.4891659484	5.1104496867	8.60309455
50	19	72	8	8.3729550563	0.8232400377	5.4339881219	11.31192199
50	19	79	8	7.903533818	0.5302896274	6.0103998483	9.796667787
50	20	80	9	8.4138140985	0.5769617708	6.3540605768	10.4735676
56	20	82	15	13.065807105	0.3632418427	11,769033727	14.36258048