Algoritmos Estrutura de Dados

Marcelo Lobosco DCC/UFJF

Algoritmos de Ordenação

Parte 2 – Aula 04

Agenda

- Algoritmos de Ordenação
 - Insert Sort
 - Loop Invariante
 - Crescimento de funções

v.

- Primeiro algoritmo: ordenação por inserção
 - Entrada: Sequência de n números $(a_1, a_2, ..., a_n)$
 - Saída: Uma permutação (reordenação) da sequência de entrada (a'₁, a'₂, ..., a'_n), tal que a'₁<= a'₂<= ... <= a'_n
 - Números que desejamos ordenar conhecidos como chaves

- Primeiro algoritmo: ordenação por inserção
 - Método parecido com a ordenação de cartas de um baralho
 - Inicialmente m\u00e3o vazia; cartas viradas com face para baixo
 - Uma carta da pilha tirada e seu lugar na mão encontrado

.

- Algoritmo INSERTION-SORT
 - Arranjo A[1..n] passado como parâmetro
 - Números ordenados no local: reorganizados dentro do arranjo A
 - Ao terminar, arranjo A conterá a sequência de saída ordenada

```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1 ... j - 1].

4 i \leftarrow j - 1

5 while i > 0 and A[i] > key

6 do A[i + 1] \leftarrow A[i]

7 i \leftarrow i - 1

8 A[i + 1] \leftarrow key
```

Algoritmos de Ordenação

Algoritmo INSERTION-SORT

v

- Algoritmo INSERTION-SORT
 - Índice j indica a "carta atual"
 - No início de cada iteração do loop for, o subarranjo que consiste nos elementos A[1 .. j-1] está ordenado
 - Equivale a mão atualmente ordenada
 - Já o arranjo A[j+1 .. n] corresponde à pilha de cartas ainda na mesa
 - De fato, arranjo A [1 .. j-1] corresponde aos elementos que estavam originalmente nas posições de 1 a j-1, mas agora em sequência ordenada
 - Loop invariante

- Loop invariante nos ajuda a entender porque um algoritmo é correto
 - Devemos demonstrar três coisas sobre um loop invariante:
 - Inicialização: ele é verdadeiro antes da primeira iteração do loop
 - Manutenção: se for verdadeiro antes de uma iteração do loop, ele permanecerá verdadeiro antes da próxima iteração
 - Término: quando o loop termina, o invariante nos fornece uma propriedade útil que ajuda a mostrar que o algoritmo é correto

м.

- Quando as duas primeiras propriedades são válidas, o loop invariante é verdadeiro antes de toda iteração do loop
- Semelhante a indução matemática: passo básico equivale a inicialização e etapa indutiva a manutenção
- Témino talvez seja a etapa mais importante, pois estamos usando o loop invariante para mostrar a correção do algoritmo
 - Difere da indução, visto que etapa indutiva usada indefinidamente

м.

- Vejamos como propriedades válidas para a ordenação por inserção:
 - Inicialização: devemos mostrar que ele é verdadeiro antes da primeira iteração do loop, ou seja, j = 2. Subarranjo A[1 .. j-1] consiste apenas de A[1], o elemento original de A quando passado como parâmetro. Além disso, esse subarranjo é obviamente ordenado. Assim, o loop invariante é válido antes da primeira iteração do loop.

- Vejamos como propriedades válidas para a ordenação por inserção (cont.):
 - Manutenção: devemos demonstrar que cada iteração mantém o loop invariante. Informalmente, corpo do loop for exterior funciona deslocando-se A[j-1], A[j-2], e daí por diante, uma posição à direita, até ser encontrada a posição adequada para A[j] (linhas 4 a 7), e nesse ponto A[j] é inserido (linha 8). Um tratamento mais formal nos obrigaria a analisar o loop while interno, mas por ora não vamos nos prender a esse formalismo.

- Vejamos como propriedades válidas para a ordenação por inserção (cont.):
 - Término: finalmente examinamos o que ocorre quando o loop termina. Loop for termina quando j excede n, ou seja, quando j = n + 1. Substituindo j por n+1 no enunciado do loop invariante, temos que o subarranjo A[1 .. n] consiste nos elementos originalmente contidos em A[1..n], mas em sequência ordenada. Contudo, o subarranjo A[1..n] é o arranjo inteiro! Desse modo, o arranjo inteiro é ordenado, o que significa que o algoritmo é correto.

- Análise da ordenação por inserção
 - □Tempo de INSERTION-SORT depende da entrada
 - Mesmo para distintas entradas do mesmo tamanho, tempo pode variar
 - Depende de quanto entradas já ordenadas
 - Assim, tempo de execução é uma função do tamanho da entrada
 - Tamanho da entrada depende do problema que está sendo estudado
 - Tempo de execução: número de operações ou etapas executadas

- Análise da ordenação por inserção (cont.)
 - □Por ora, custo de execução da i-ésima linha igual a c_i, onde c_i é uma constante
 - □Loop executado n-1 vezes
 - Contador j iniciado em 2
 - Mas veja que instrução de teste para fim do loop é executado uma vez a mais
 - □Veja ainda que número de vezes que loop de deslocamento é executado é uma função da entrada
 - Depende de quão ordenado vetor já esteja
 - t_j representa número de vezes que loop é executado na iteração j

Análise da ordenação por inserção (cont.)

INSERTION-SORT(A) cost		cost	times
1	for $j \leftarrow 2$ to $length[A]$	c_1	n
2	$\mathbf{do}\ key \leftarrow A[j]$	C2	n-1
3	\triangleright Insert $A[j]$ into the sorted		
	sequence $A[1j-1]$.	0	n-1
4	$i \leftarrow j-1$	c_4	n-1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	$\mathbf{do}\ A[i+1] \leftarrow A[i]$	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	$i \leftarrow i - 1$	C7	$\sum_{j=2}^{n} (t_j - 1)$
8	$A[i+1] \leftarrow key$	C8	n-1

- Análise da ordenação por inserção (cont.)
 - □ Tempo de execução do algoritmo é a soma dos tempos de execução para cada instrução executada

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

□No melhor caso, quando arranjo já ordenado, número de vezes que teste do loop (t_j) executado igual a 1, para todo valor de j

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_8 (n-1)$$

= $(c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8)$.

- Análise da ordenação por inserção (cont.)
 - Pior caso ocorre quando arranjo ordenado em ordem decrescente. Neste caso, t_j igual a j (lembre-se da comparação final para saída do loop)
 - □Assim:

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{j=2}^{n} t_j + c_6 \sum_{j=2}^{n} (t_j - 1) + c_7 \sum_{j=2}^{n} (t_j - 1) + c_8 (n-1).$$

$$T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \left(\frac{n(n-1)}{2} - 1\right) + c_6 \left(\frac{n(n-1)}{2}\right) + c_7 \left(\frac{n(n-1)}{2}\right) + c_8 (n-1)$$

$$= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right) n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right) n$$

$$- (c_2 + c_4 + c_5 + c_8).$$

м.

- Análise da ordenação por inserção (cont.)
 - Podemos observar que, no melhor caso, tempo de execução é uma função linear de n e, no pior caso, é uma função quadrática de n
 - A princípio vamos nos concentrar na descoberta do pior caso. Três motivos:
 - Por ser o limite superior de execução para qualquer entrada: algoritmo nunca demorará mais tempo
 - Pior caso ocorre com bastante frequência
 - Caso médio é quase tão ruim quanto pior caso e pode ser difícil calcular
 - Temos de levar em conta as probabilidades de ocorrência das instâncias

м

Análise de algoritmos

Encontrar o tempo médio da busca de um elemento x numa lista de n elementos

```
Algoritmo: Busca_Seqüencial(L, x)
L[n+1] = x;
i = 1;
enquanto L[i] \neq x faça
i = i + 1;
imprima i; // posição de x
Tempo médio T_{M} = \sum_{1 \leq i \leq m}^{p(E_{i})T(E_{i})} T(E_{i})
m : número total de instâncias de tamanho n
```

.

- As instâncias podem ser classificadas em n+1 classes distintas:
 - \square E₁ = L tal que L[1] = x,
 - \square E₂ = L tal que L[2] = x , ...
 - \square E_n = L tal que L[n] = x,
 - $\square E_{n+1} = L \text{ tal que } x \notin L$
- Probabilidade de cada instância ocorrer
 - \square p(E_i) = 1/(n+1), \forall i = 1,..., n+1
- Tempo para cada instância (número de comparações)
 - $\Box t(E_i) = i, \forall i = 1,...,n+1$

$$T_M(n) = \sum_{i=1}^{n+1} p(E_i) \cdot t(E_i) = \sum_{i=1}^{n+1} \frac{1}{(n+1)} \cdot i = \frac{1}{(n+1)} \cdot \frac{(n+1)(n+2)}{2} = \frac{n+2}{2}$$
 comparações

.

- Análise da ordenação por inserção (cont.)
 - □ Podemos fazer mais simplificações na busca do tempo de execução de INSERTION_SORT
 - □ Já havíamos ignorado o custo real de cada instrução ao usarmos constantes c_i para representar esses custos
 - □ Tempo de execução no pior caso pode ser reescrito como an² + bn + c, onde a, b e c dependem dos custos de instrução c_i
 - □ Assim, podemos ignorar os próprios custos abstratos c_i
 - Entretanto, podemos considerar apenas o termo de mais alta ordem, an²
 - Termos de baixa ordem insignificantes para grandes valores de n

- Análise da ordenação por inserção (cont.)
 - Da mesma forma, podemos ignorar a constante **a**
 - Visto que fatores constantes s\u00e3o menos significativos do que a taxa de crescimento na determina\u00e7\u00e3o da efici\u00e9ncia computacional para grandes entradas
 - Portanto, ordenação por inserção tem tempo de execução do pior caso igual a Θ(n²)
 - Algoritmos mais eficiente que outro se sua ordem de crescimento mais baixa

Crescimento de Funções

- Ordem de crescimento do tempo de execução de um algoritmo
 - Permite caracterização simples da eficiência do algoritmo
 - Permite comparar desempenho relativo de algoritmos alternativos
 - Podemos calcular tempo de execução exato, mas não vale o esforço: constantes multiplicativas e termos de mais baixa ordem dominados pelos efeitos do próprio tamanho da entrada

Crescimento de Funções

- Eficiência Assintótica: quando observamos apenas entradas grandes o suficiente
 - Estamos preocupados com modo como tempo de execução aumenta com tamanho de entrada no limite
 - Algoritmo assintoticamente mais eficiênte será a melhor escolha para todas as entradas, exceto talvez as muito pequenas
 - □Utilizamos notação assintótica

- Notação Θ
 - Denotamos por $\Theta(g(n))$ o conjunto de funções $\Theta(g(n)) = \{ f(n): existem constantes positivas <math>c_1$, c_2 , e n_0 tais que $0 <= c_1 g(n) <= f(n) <= c_2 g(n)$ para todo $n >= n_0 \}$
 - Ou seja, uma função f(n) pertence ao conjunto $\Theta(g(n))$ se existem constantes c_1 e c_2 que a mantenham limitada entre c_1 .g(n) e c_2 .g(n) para um valor suficientemente grande de n
 - □Em geral, usamos $f(n) = \Theta(g(n))$ ao invés de $f(n) \in \Theta(g(n))$

- Notação Θ
 - \square Exemplo: $1/2.n^2 3n = \Theta(n^2)$
 - □Para isso devemos definir constantes c_1 , c_2 e n_0 tais que; $c_1.n^2 <= 1/2.n^2 3n <= c_2.n^2$ para todo $n >= n_0$
 - □P. ex., podemos escolher os valores c_1 = 1/14, c_2 = 1/2 e n_0 =7
 - Existem outras opções para as constantes, mas o importante é que existe alguma opção

v

- Notação O
 - Usada quando temos apenas um limite assintótico superior
 - Denotamos por O(g(n)) o conjunto de funções $O(g(n)) = \{ f(n): existem constantes positivas c e <math>n_0$ tais que $0 \le f(n) \le cg(n)$ para todo $n \ge n_0$
 - Ou seja, uma função f(n) pertence ao conjunto O(g(n)) se existe constante c que a mantenha limitada a c.g(n) para um valor suficientemente grande de n

- Notação O
 - \square Veja que f(n) = Θ (g(n)) implica f(n) = O(g(n))
 - Com a notação O, podemos descrever o tempo de execução de um algoritmo apenas inspecionando sua estrutura global

м

Notação Assintótica

Exemplo

- \Box T(n) = 3n² + 4n + 50 é O(n²)
- □ Basta encontrar duas constantes c e N, tal que T(n) \leq c.n², \forall n \geq N
- □ Com c = 57, temos $3n^2 + 4n + 50 \le 57n^2$, $\forall n \ge 1 = N$
- □ Pode-se mostrar também que $T(n) = 3n^2 + 4n + 50$ é $O(n^3)$ ou $O(n^4)$, entretanto estamos interessados no menor limite superior possível

- Notação Ω
 - □ Fornece limite assintótico inferior
 - Denotamos por $\Omega(g(n))$ o conjunto de funções $\Omega(g(n)) = \{ f(n): existem constantes positivas c e <math>n_0$ tais que $0 \le cg(n) \le f(n)$ para todo $n \ge n_0$
 - Ou seja, uma função f(n) pertence ao conjunto $\Omega(g(n))$ se existe constante c que limite c.g(n) a f(n) para um valor suficientemente grande de n

- Notação Ω
 - $\Box T(n) = n^4 n \in \Omega(n^4)$
 - □Basta encontrar duas constantes c e n tal que n^4 8n >= c. n^4 , para todo n >= N
 - □Para c = 1/2, temos n⁴ n >= 1/2.n⁴, para todo n >= 3 = N
 - □Pode-se mostrar também que $T(n) = n^4-8n$ é $O(n^3)$ ou $O(n^2)$, entretanto estamos interessados no maior limite inferior

.

Notação Assintótica

Para duas funções quaisquer f(n) e g(n), temos $f(n) = \Theta(g(n))$ se e somente se f(n) = O(g(n)) e $f(n) = \Omega(g(n))$

м

Notação Assintótica

- Operações com a notação O
 - $\Box f(n) = O(f(n))$
 - \Box c.O(f(n)) = O(f(n)), c = constante
 - $\Box O(f(n)) + O(f(n)) = O(f(n))$
 - \square O(O(f(n))) = O(f(n))
 - \Box O(f(n)) + O(g(n)) = O(max{ f(n), g(n)})
 - \square O(f(n)).O(g(n)) = O(f(n).g(n))
 - \Box f(n).O(g(n)) = O(f(n).g(n))

Técnicas para Análise de Complexidade de Algoritmos

- Comandos simples, atribuições, incrementos, decrementos, ifs, elses
 - ☐ Tempo constante: O(1)
- Blocos for

```
for i = 1 to n do ....... n vezes
v[i] \leftarrow 0; \dots O(1)
```

• Complexidade (tempo): T(n) = n.O(1) = O(n)

```
for i = 1 to n do ...... n vezes
```

```
for j = 1 to n do ...... n vezes

M[i][j] = 0; ..... O(1)
```

• Complexidade $T(n) = n.O(n) = O(n^2)$

м.

Técnicas para Análise de Complexidade de Algoritmos

Teste

Exemplo

```
if M[i,i] == 0 then for i = 1 to n do for j = 1 to n M[i][j] = 0; O(n^2)
```

else

for
$$i = 1$$
 to $n M[i][j] = 1;$

O(n)

Complexidade $T(n) = O(n^2)$

Técnicas para Análise de Complexidade de Algoritmos

Regra das Somas

Se um algoritmo *A* se divide em duas partes independentes A_1 e A_2 , onde A_1 de complexidade $T_1(n) \in O(f(n))$ e A_2 de complexidade $T_2(n)$ $\in O(g(n)) \Rightarrow T(n) = T1(n) + T2(n) = O(\max\{f(n),$ g(n)}) será a complexidade de A.

Regra do Produto

complexidade de A.

Se um algoritmo *A* contém dois "aninhamentos" A_1 e A_2 , onde A_1 de complexidade $T_1(n)$ $\in O(f(n))$ e A_2 de complexidade $T_2(n) \in O(g(n))$ \Rightarrow T(n) = T1(n).T2(n) = O(f(n).g(n)) será a

w

Técnicas para Análise de Complexidade de Algoritmos

Exemplos

```
p = 0; O(1)

for i = 1 to n do

if mod(i, 2) = 0 then

p = p + i*i; O(1)

O(1)
```

Complexidade: $T(n) = O(max\{1, n\}) = O(n)$

```
para i=1 até n faça

v[i]=i;

para j = 2 até n faça

p=v[i] * j;
O( max{1, n} ) = O(n)
```

Complexidade: $T(n) = n.O(n) = O(n^2)$

Técnicas para Análise de Complexidade de Algoritmos

Exemplos:

```
para i = 1 até n faça

para j = 1 até n faça

M[i, j] = 0;
para k = 1 até n faça
M[i, j] = M[i, j] + A[i, k]* B[k, j];
O(n^2)
```

Complexidade: $T(n) = n.O(n^2) = O(n^3)$

w

Técnicas para Análise de Complexidade de Algoritmos

Exemplos

```
if n = 0 then p = a[0]; O(1) else
```

```
p=a[0]; O(1)

y=x;

for i = 1 to n do

p = p + a[i] * y; O(n)

y=y * x;
```

Complexidade: T(n) = O(n)

м.

Técnicas para Análise de Complexidade de Algoritmos

Exemplos

```
for i = 1 to n-1 do

for j = n downto i+1 do

if V[j-1] > V[j] then

temp = V[j-1];

V[j-1] = V[j];

V[j] = temp;
```

i n° de vezes que o For interno é executado

1
$$n-1$$
2 $n-2$
3 $n-3$
-Total:
$$\sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} = O(n^2)$$

$$\vdots$$

$$n-1$$
1

v

Técnicas para Análise de Complexidade de Algoritmos

Exemplos:

```
for i = 1 to n-1 do

Soma = 0;

for j = i to n do

S = S + V[j];

if S > Smax then

Smax \leftarrow S;

i\_max \leftarrow i;

j\_max \leftarrow j;
```

i	nº de vezes que o For interno é executado
1	n
2	n-1
3	n n-1 n-2 Total: $\sum_{k=1}^{n} k = \frac{n(n+1)}{2} = O(n^2)$:
•	•
'n	: 1

- Existem vários modos de projetar algoritmos
- Ordenação por inserção usou abordagem incremental
- Outra forma de projetar algoritmo de ordenação: usando abordagem "dividir e conquistar"
 - Desmembram problema em vários subproblemas semelhantes ao problema original, mas menores em tamanho
 - Problemas resolvidos recursivamente
 - Algoritmos chamam a si mesmos uma ou mais vezes para lidar com subproblemas intimamente relacionados
 - Soluções combinadas para criar uma solução para o problema original

- Abordagem "dividir e conquistar" envolve três passos em cada nível da recursão
 - □ Dividir: desmembra problema em determinado número de subproblemas
 - Conquistar: resolve os problemas recursivamente
 - Se tamanhos dos subproblemas forem pequenos o bastante, problema resolvido de modo direto
 - Combinar: soluções obtidas combinadas para criar uma solução para o problema original

- Algoritmo de ordenação por intercalação (merge sort) obedece o paradigma dividir e conquistar
 - □ Dividir: sequência de n elementos dividida em duas subsequências de n/2 elementos cada uma
 - Conquistar: classifica as duas subsequências recursivamente, utilizando a própria ordenação por intercalação
 - Quando sequência de comprimento um, não há trabalho a ser feito
 - Combinar: faz a intercalação das duas sequências ordenadas, de modo a produzir a resposta ordenada

w

- Para executar a intercalação, usamos procedimento auxiliar MERGE(A, p, q, r)
 - □ A é o arranjo, e p, q e r são índices de enumeração dos elementos do arranjo tais que p <= q < r
 - □ Procedimento pressupõe que subarranjos A[p .. q] e A[q+1 .. r] estejam ordenados
 - □ Seu papel é o de intercala-los (mescla-los) para formar único subarranjo ordenado A[p .. r]
 - \square Procedimento leva tempo $\Theta(n)$, onde n = r p + 1

- MERGE(A, p, q, r) funciona como a seguir
 - Imagine duas pilhas de cartas ordenadas, com a face voltada para cima
 - □ Carta de menor valor em cima
 - Escolhe-se menor das duas cartas com a face voltada para baixo na pilha de saída
 - Repete-se essa operação até que uma das pilhas vazias
 - Demais cartas da outra pilha simplesmente colocadas sobre a pilha de saída
 - ☐ A cada passo computacional, estamos verificando apenas duas cartas superiores
 - Como executamos no máximo n passos básicos, intercalação demorará um tempo Θ(n)

```
MERGE(A, p, q, r)
 1 \quad n_1 \leftarrow q - p + 1
 2 \quad n_2 \leftarrow r - q
 3 create arrays L[1..n_1+1] and R[1..n_2+1]
 4 for i \leftarrow 1 to n_1
           do L[i] \leftarrow A[p+i-1]
 6 for j \leftarrow 1 to n_2
 7 do R[j] \leftarrow A[q+j]
 8 L[n_1+1] \leftarrow \infty
 9 R[n_2+1] \leftarrow \infty
10 i \leftarrow 1
11 j \leftarrow 1
12 for k \leftarrow p to r
13
           do if L[i] \leq R[j]
14
                   then A[k] \leftarrow L[i]
15
                         i \leftarrow i + 1
16
                  else A[k] \leftarrow R[j]
17
                         j \leftarrow j + 1
```

- MERGE(A, p, q, r) usa sentinela
 - Contém valor especial que empregamos para simplificar o código
 - □ No nosso caso, evita a necessidade de verificar se pilha está vazia
 - □ Valor infinito utilizado, de modo que ele nunca poderá ser o menor valor
 - A menos que ambas as pilhas tenham suas sentinelas expostas
 - Mas quando isso ocorre, todas as cartas já colocadas na pilha de saída
 - Contudo, como já sabemos que r-p+1 cartas serão colocadas sobre a pilha, podemos parar após esse número de passos

v

- MERGE(A, p, q, r) mantém o loop invariante
 - □ No início de cada iteração do último loop for, subarranjo A[p..k-1] contém os k-p menores elementos de L[1.. n_1 +1] e R[1.. n_2 +1] em sequência ordenada
 - □ Inicialização: antes da primeira iteração do loop, k = p. Neste caso, subarranjo A[p .. k-1] está vazio, portanto contém os k-p=0 menores elementos de L e R e, como i = j = 1, tanto L[i] quanto R[j] são os menores elementos do arranjo, ainda não copiados de volta para A
 - □ Manutenção: vamos supor primeiro que L[i] <= R[j]. Então L[i] é o menor elemento ainda não copiado de volta em A. Como A[p..k-1] contém os k-p menores elementos, depois da linha 14 copiar L[i] em A[k], o subarranjo A[p..k] conterá os k-p+1 menores elementos. Incremento de k e i mantém loop invariante. Semelhante se L[i] > R[j].

М

- MERGE(A, p, q, r) mantém o loop invariante (cont.)
 - Término: no término, k = r + 1. Pelo loop invariante, subarranjo A[p..k-1], ou seja, A[p..r], contém os k-p=r-p+1 menores elementos de L[1..n₁+1] e R[1..n₂+1] em sequência ordenada. Os arranjos L e R contêm juntos n₁+n₂+2 = q-p+1+r-q+2=r-p+3. Assim, todos os elementos, exceto os dois maiores, foram copiados de volta em A. Os dois maiores elementos são as sentinelas

- Podemos agora usar MERGE como sub-rotina no algoritmo de ordenação por intercalação
- MERGE-SORT(A,p,r) ordena os elementos de A[p..r]
- Se p >= r, subarranjo tem no máximo um elemento e consequentemente já está ordenado
- Caso contrário, etapa de divisão calcula índice q que divide A[p..r] em dois arranjos: A[p..q] e A[q+1..r]


```
MERGE-SORT(A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```


Figure 2.4 The operation of merge sort on the array $A = \langle 5, 2, 4, 7, 1, 3, 2, 6 \rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

- Análise do algoritmo dividir e conquistar
 - Quando algoritmo contém chamada recursiva, seu tempo de execução frequentemente pode ser descrito por equação de recorrência
 - Descreve tempo de execução global sobre um problema de tamanho n em termos do tempo de execução sobre entradas menores
 - Recorrência no caso de algoritmo dividir e conquistar se baseia nos três passos do paradigma básico

- Análise do algoritmo dividir e conquistar (cont.)
 - Se tamanho do problema for pequeno o bastante, p.ex. n <=c, a solução direta demorará um tempo constante
 - Consideraremos Θ=1
 - Vamos supor que problema seja dividido em a subproblemas, cada um dos quais com 1/b do tamanho original
 - No nosso caso, a = 2 e b = 2
 - Se tempo D(n) levado para dividir problema e C(n) para combinar soluções, obteremos a recorrência

Análise do algoritmo dividir e conquistar (cont.)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le c, \\ aT(n/b) + D(n) + C(n) & \text{otherwise.} \end{cases}$$

- Análise da ordenação por intercalação
 - MERGE-SORT funciona para número de elementos impares
 - Contudo, análise facilitada se fizermos suposição de que tamanho do problema é potência de dois
 - Cada passo de dividir produzirá duas subsequências de tamanho n/2

- Análise da ordenação por intercalação (cont.)
 - Dividir: Etapa de dividir calcula ponto médio do subarranjo, o que demora um tempo constante. Logo, D(n) = Θ(1)
 - Conquistar: Resolvemos recursivamente dois subproblemas, cada um com tamanho n/2. Eles contribuem com 2.T(n/2) para o tempo de execução. Logo a = 2 e b = 2.
 - Combinar: Já vimos que MERGE leva tempo $\Theta(n)$. Logo $C(n) = \Theta(n)$
 - Quando somamos C(n) e D(n), obtemos uma função linear de n, ou seja, Θ(n)

w

Projeto de algoritmos

Análise da ordenação por intercalação (cont.)

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

- Vamos por ora entender intuitivamente a solução da recorrência acima
- Vamos reescrever a recorrência como

$$T(n) = \begin{cases} c & \text{if } n = 1, \\ 2T(n/2) + cn & \text{if } n > 1, \end{cases}$$

 Onde c representa o tempo exigido para resolver problemas de tamanho 1, bem como para a etapa de combinar

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

×

- Árvore têm lg n de altura, e lg n + 1 níveis
- Complexidade do algoritmo: cn * (lg n + 1) = cn.lg n + cn = Θ(n lg n)
- Complexidade menor do que do algoritmo de inserção, quando entrada n grande o suficiente

v.

Técnicas para Análise de Complexidade de Algoritmos

- Algoritmo Recursivo
 - Contém, em sua descrição, uma ou mais chamadas a si mesmo
- Exemplo: calcular o fatorial de um número n

```
FAT(n : inteiro) : inteiro;
início
se n = 0 então
FAT = 1
senão
FAT = n * FAT(n - 1);
fim;
```

```
<u>FAT(n : inteiro) : inteiro;</u>
início
   Se n = 0 então
                          O(1)
                          O(1)
      FAT = 1
                                T(n) = ?
   Senão
      FAT = n * FAT(n - 1);
Fim;
                                     T(n-1)
```

Se
$$n = 0$$
, $T(n) = 1$
Caso contrário, $T(n) = 1 + T(n-1)$

Análise de Algoritmos Recursivos

Desenvolvendo a fórmula de recorrência

$$T(n) = \begin{cases} 1, & se & n=0 \\ 1+T(n-1), & se & n>0 \end{cases}$$
 (condição de parada) (fórmula de recorrência)

- \Box T(n) = 1 + T(n 1) = 1 + (1 +T(n - 2)) = 1 + (1 +(1 +T(n - 3)))
- □Generalizando:
 - T(n) = k + T(n k) ...(*)
 - Condição de parada: T(0) = 1,
 - Fazemos $n k = 0 \rightarrow k = n$
 - Substituindo em (*): T(n) = n + 1 = O(n)

- Exemplo: Torres de Hanói
 - Deslocar os n discos do pino A para o pino C usando o pino B
 - □Só um disco pode ser movimentado de cada vez
 - Um disco maior não pode ser colocado sobre um disco menor
 - Realizar o menor número de movimentos

w

```
HANOI(n, A, C, B);
Início
  se n = 1 então move disco n de A para C ----O(1)
   senão
                                                       T(n)
                               T(n-1)
   HANOI(n-1, A, B, C);
   move disco n de A para C;
   HANOI(n-1, B, C, A);
                               T(n-1)
Fim;
```

$$T(n) = \begin{cases} 1, & \text{se } n=1 \\ 2.T(n-1) + 1, & \text{se } n > 1 \end{cases}$$

Análise de Algoritmos Recursivos

Desenvolvendo a fórmula de recorrência:

□Substituindo em (*):

$$T(n) = 2^{n-1} + 2^{n-2} + ... + 2^{1} + 2^{0}$$
. Por soma dos termos da PG: $T(n) = 2^{n} - 1 = O(2^{n})$

w

```
MERGE-SORT(A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

w

Algoritmo de Ordenação por Intercalação

- Assim:
 - \Box T(1) = 0, se n = 1 (base da recursão)
 - \Box T(n) = T(\neg n/2 \neg) + T(\lfloor n/2 \rfloor) + n, se n > 1 (fórmula de recorrência)
- Para n potência de dois temos: T(rn/2₁) = T(ln/2₁) = T(n/2).
 Assim:

 $T(n) = 2^{\lg n}.T(n / 2^{\lg n}) + \lg n . n = n T(1) + n \lg n = n \lg n$

$$T(n) = 2.T(n/2) + n = 2.[2.T(n/4) + n/2] + n =$$

$$= 2.[2.\{2.T(n/8) + n/4\} + n/2] + n$$

$$= 8T(n/8) + 3n$$

$$= 2^3.T(n/2^3) + 3n = ... = 2^k. T(n/2^k) + kn$$
Condição de parada: $n/2^k = 1 \Rightarrow$ (aplicando log_2) $k = lg n$

M.

Algoritmo de Ordenação por Intercalação

- Para qualquer n temos:
 - $\square 2^{k-1} \le n \le 2^k, k > 0$
 - □ Se n ≤ 2^k : T(n) ≤ T(2^k) = 2^k .log 2^k (**)
 - □ Se $2^{k-1} \le n$: $\log 2^{k-1} \le \log n$
 - $^{\bullet}$ k − 1 ≤ log n
 - $k \le log n + 1$
 - □Substituindo em (**): $T(n) \le 2^{\log n + 1} \cdot \log 2^{\log n + 1} = 2n\log n + 2n$
 - $\therefore \forall$ n inteiro, T(n) = O(nlog n)

- Árvore de Recursão
 - Maneira gráfica de visualizar a estrutura de chamadas recursivas do algoritmo
 - Cada nó da árvore é uma instância (chamada recursiva)
 - Se uma instância chama outras, estas são representadas como nós-filhos
 - Cada nó é rotulado com o tempo gasto apenas nas operações locais (sem contar as chamadas recursivas)

Análise de Algoritmos Recursivos

Vamos revisitar o exemplo do Mergesort

10

- Observamos que cada nível de recursão efetua no total n passos
- Como há lg n + 1 níveis de recursão, o tempo total é dado por n lg n + n, o mesmo que encontramos na solução por iteração

1

- Teorema Mestre (simplificado)
 - □Fórmulas de recorrência provenientes de algoritmos do tipo Dividir-para-Conquistar são muito semelhantes
 - □Algoritmos tendem a dividir o problema em a partes iguais, cada uma de tamanho b vezes menor que o problema original
 - Quando trabalho executado em cada instância da recursão é uma potência de n, pode-se usar teorema que nos dá diretamente a complexidade assintótica do algoritmo
 - □Teorema Mestre pode resolver recorrências cujo caso geral é da forma T(n)=a T (n/b) + n^k

- Teorema Mestre (cont).
 - Dadas as constantes a >= 1 e b >= 1 e uma recorrência da forma T(n)=a T (n/b) + n^k , então:
 - Caso 1: se a > b^k então $T(n) = \Theta(n^{\log_b a})$
 - Caso 2: se a = b^k então $T(n) = \Theta(n^k \log n)$
 - Caso 3: se a < b^k então $T(n) = \Theta(n^k)$
 - □ Assumimos que n é uma potência de b e que o caso base T(1) tem complexidade constante

100

- Teorema Mestre: Exemplos
 - \square MergeSort: T(n)=2T(n/2)+ n
 - a=2, b=2, k=1.
 - caso 2 se aplica e $T(n) = \Theta(n \log n)$
 - \Box T(n)=3T(n/2)+ n²
 - a=3, b=2, k=2
 - caso 3 se aplica (3<22) e T(n) = $\Theta(n^2)$
 - \Box T(n)=2T(n/2)+ n log n
 - Teorema mestre (simplificado ou completo) não se aplica
 - Pode ser resolvida por iteração

Próxima aula...

Algoritmos de Ordenação

Heapsort