

Crossover Distortion

> Crossover Distortion:

- Quantified by ϕ (refer to the diagram)
- **Expressed as:**

$$\phi = \sin^{-1}(V_{\gamma}/V_{M})$$

V_M: Amplitude of the input signal

- Appears four times over a complete cycle
- Parameterized by a term known as the Total Crossover Distortion (TCD), expressed in percent: $TCD = (2\phi/\pi) \times 100\%$
- This distortion becomes more acute as $V_M \checkmark$
- For $V_M \leq V_{\gamma}$, no output $(V_o = 0 \text{ always})$

• MOS Implementation:

- ➤ Working principle
 absolutely similar to
 BJT implementation
- $ightharpoonup Only exception that V_{γ} replaced by V_{TN} and $V_{TP}$$
- \triangleright **Q-point**: $V_i = V_o = 0$
- > Both devices suffer from body effect issue

Circuit Schematic

- $\gt V_{TN}$ and V_{TP} function of V_o
 - ⇒ VTC significantly nonlinear
 - ⇒ Output shows more distortion
- $\triangleright V_i$ can't be more than V_{DD} or less than V_{SS}
 - $\Rightarrow V_o$ can't have rail-to-rail swing
- ➤ Also, *MOS devices* are *inherently much*poorer than their BJT counterparts in terms of current carrying capability
 - ⇒ Makes this stage quite a poor choice (needs extremely large W/L ratios)

• Class AB Push-Pull Output Stage:

- ➤ In a *Class B* stage, *Crossover Distortion* arises because the transistors are *absolutely cold* in the *standby state*, i.e., *dead off*
- If instead, these are prebiased at the verge of conduction, but not quite turned on, then a slight swing of the input either way can make one of these transistors turn on and either supply current to the load or pull current away from the load
- > This is the whole idea behind a Class AB stage

- Either of the output transistors remain on for complete half cycles
- Thus, it's a mixture of Class A and Class B operation
- ➤ Hence, it's called *Class AB Push-Pull Stage*
- > Eliminates Crossover Distortion completely
- > Obvious fallout:
 - Dissipation of standby power
- > Extremely popular topology and widely used
- > Efficiency drops slightly as compared to a pure Class B stage

• BJT Implementation:

- ightharpoonup Needs additional circuitry $(I_O-Q_3-Q_4)$
- $ightharpoonup Q_3$ - Q_4 diode-connected transistors and both are biased by the same current I_Q
- This produces a *DC bias* V_{BIAS} between the *bases*of Q_1 - Q_2

Circuit Schematic