WIPO

PCT

ÖSTERREICHISCHES PATENTAMT

A-1200 Wien, Dresdner Straße 87

PCT/AT 2004/000309

Kanzleigebühr € 67,00 Schriftengebühr € 234,00

Aktenzeichen A 1174/2004

Das Österreichische Patentamt bestätigt, dass

die Firma Sanochemia Pharmazeutika AG in A-1090 Wien, Boltzmanngasse 11,

am 12. Juli 2004 eine Patentanmeldung betreffend

"Neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2] benzazepin, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung von Arzneimitteln",

überreicht hat und dass die beigeheftete Beschreibung mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung übereinstimmt.

> Österreichisches Patentamt Wien, am 15. September 2004

> > Der Präsident:

i. A.

REPRESENTATION OF THE PROPERTY OF THE P

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

K. BRUNŽAK

BEER & PARTNER PÄTENTANWÄLTE KEG 1070 Wien, Lindengasse 8

(51) Int. Cl.:

	, 0 0	√2 ∞20	6000	<u>ه</u> (ΑŢ	000	0	
		KD/K s	ě č		6	ດ	0 0	,
	0 0	. 0	èè		0	e e	ר ח כ	
	00	0000	S.C.	0	0	000	c	1
(11)	Nr.		1	O	DO	@		

AT PATENTSCHRIFT

(73	Patentinhaber: Sanochemia Pharmazoutika AC
·	- Canochoma Hamazeulka AG
	Wien (AT)
(54	Titel der Anmeldung:
	deren Herstellung sowie deren Verwondung zur Herstellung zur
	Titel der Anmeldung: Neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2] benzazepin, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung von Arzneimitteln
(61)	Zusatz zu Patent Nr.
(66)	Umwandlung von GM
4==-	
(62)	gesonderte Anmeldung aus (Teilung):
(30)	Priorität(on): Populiili Ö. 1
(,	Priorität(en): Republik Österreich (AT), 2003 09 29, A 1538/2003, beansprucht
(70)	
(72)	Erfinder:
•	
(22) (21)	Anmeldetag, Aktenzeichen:
	2004 07 12 ,
(60)	Abhängigkeit:
(42)	Beginn der Patentdauer:
	Längste mögliche Dauer:
(45)	
(45)	Ausgabetag:
(56)	Entgegenhaltungen, die für die Routeilung der Date die
·	Entgegenhaltungen, die für die Beurteilung der Patentierbarkeit in Betracht gezogen wurden:

Die Erfindung betrifft neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2] benzazepin, Verfahren zu deren Herstellung sowie deren Verwendung zur Herstellung von Arzneimitteln.

Zu dem eingangs genannten Verbindungstyp zählen unter anderem auch Galanthaminderivate.

Galanthamin ist ein tetracyclisches Alkaloid, welches zur Gruppe der reversibel wirkenden Cholinesterasehemmstoffe gehört und auch als Wirkstoff in der Alzheimertherapie - siehe Neurologist 9, 235, 2003; Clinical Geriatrics 9(11), 55, 2001 - Anwendung findet. Es ist weiters der Literatur bekannt, dass Strukturanaloga natürlich vorkommenden Galanthamin unterschiedliche chemische Eigenschaften aufweisen - siehe Proc. Chem. Soc. 357, 1964. Somit führt eine Veränderung der räumlichen Anordnung von Substituenten an einem asymmetrischen Kohlenstoffatom zu einer signifikanten Änderung der pharmakologischen Eigenschaften - siehe Farmakol. Alkaloidov Serdech. Glikozidov 96, 1971, Russ. Hinsichtlich pharmakologische Eigenschaften insbesondere die räumliche Anordnung am Kohlenstoff Galanthamin-Grundkörpers maßgeblich.

Trotzdem eine Vielzahl von Verfahren zur Herstellung Galanthamin bekannt ist, war es bisher nicht möglich, optisch aktive vorgenannten 6-Epianaloga von natürlich vorkommenden Derivate der oder synthetischem Galanthamin herzustellen, weil die zur Synthese benötigten optisch aktiven Zwischenprodukte, das sind 11-Demethyl-6epigalanthamine, nicht zugänglich waren. Chirale Trennungen des 11-Demethyl-Galanthamin und 11-Demethyl-Bromgalanthamin beispielsweise in der WO-A-96/12692, WO-A-97/40049 und WO-A-01/74820 beschrieben. Das (-)-11-Demethyl-Galanthamin kann aus Pflanzenextrakt - sieh Nat. Prod. Sci. 4, 148, 1998 - oder auf synthetischem Weg siehe US-A-5958903, WO-A-03/080623, WO-A-97/03987) - aus (-)-Galanthamin erhalten werden. Lediglich aus Phytochemistry 34, 1656, 1993 ist es bekannt, im Milligrammbereich ein racemisches Gemisch eines 1-Brom-Derivates von 11-Demethyl-epigalanthamin einem Pflanzenextrakt zu gewinnen.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Beitrag für die Bereitstellung von (+) und auch (-) -11-Demethyl-6-epigalanthamin zu liefern, welcher auch eine effiziente Verwendung im Industriemaßstab ermöglichen soll.

Erfindungsgemäß werden neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2] benzazepin mit der allgemeinen Formel Ia bzw. Ib

sowie deren Salze vorgeschlagen, wobei

- Ia optisch aktive (-) Derivate des Galanthamin und Ib optisch aktive (+)-Derivate des Galanthamin sind, die in zu einander spiegelbildlich räumlicher Anordnung vorliegen, und worin
- Y_1 und Y_2 wechselweise H oder OH,
- X = H oder Br sind und
- Z_1 = eine Gruppe mit folgender Formeldarstellung

$$(CH_{2})^{n} \qquad (CH_{2})^{n} \qquad (CH_$$

ist, worin

- $R_1 = H$, Cl, Br, J, F, OH, geradkettiges oder verzweigtes (C_1-C_6) alkyl, geradkettiges oder verzweigtes (C_1-C_6) alkyloxy, NO_2 , NR_2R_3 ,
- $R_2 = R_3 = H$, geradkettiges oder verzweigtes (C_1-C_6) alkyl
- W = H, O, S
- n = 0, 1-6 sind,

und worin

• Z_1 gleich H ausschließlich für die Verbindungen 1, 3, 13 und 24

ist, wobei die Verbindungen 1 und 13 (-)-Derivate des 6-Epi-Norgalanthamins und die Verbindungen 3 und 24 (+)-Derivate des 6-Epi-Norgalanthamins sind, und worin

Z₁ ausschließlich für die Verbindung 29 gleich Hydroxypropyl

und

Z₁ ausschließlich für die Verbindung 26 gleich Ethyl

und

ullet Z_1 ausschließlich für folgende Verbindungen

gleich Methyl ist, und wobei die Verbindungen 29, 31 und 55 (+)-Derivate des Galanthamin und die Verbindungen 26, 28 und 56 (+)-Epi-Derivate des Galanthamin sind.

Erfindungsgemäß erfolgt die Herstellung der Verbindungen Ia und durch Umwandlung von natürlichem und auch synthetischem Ib Demethyl-Galanthamin in die entsprechenden 6-Epianaloga. Behandlung mit verdünnter Säure ist dieses Verfahren auch für die Herstellung von optisch aktiven Derivaten des 11-Demethyl-6epigalanthamin geeignet, weil während der Herstellung Konfiguration in der Position 6 geändert wird, wogegen die beiden anderen Asymmetriezentren 4a und 8a unverändert bleiben.

Ausgehend von diesen optisch aktiven Ausgangsmaterialien stellt die Erfindung ein effizientes und industriell anwendbares Verfahren zur Herstellung von optisch aktiven Derivaten des (-)-Epi-galanthamin und auch des optisch aktiven (+)-Epigalanthamin zu Verfügung. Durch Anwendung der Erfindung können nicht nur die in der Natur vorkommenden (-)-Derivate, sondern auch die in der Natur nicht vorkommenden (+)-Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2] benzazepin auf synthetischem Weg hergestellt werden.

Das erfindungsgemäße Verfahren hat den Vorteil, dass die Konfigurationsumwandlungen sowohl bei den natürlichen als auch bei den in der Natur nicht vorkommenden Derivaten mit den optisch aktiven Analogen des Galanthamin und nicht mit den Analogen des 6-EpiGalanthamins durchgeführt werden. Durch diese Methode können nach einmaliger Racemattrennung alle 4 Derivate, nämlich N-Demethyl-Analoge des (-)-Galanthamin, des (+)-Galanthamin sowie (-)-6-Epigalanthamin und (+)-6-Epigalanthamin hergestellt werden.

Die Erfindung betrifft weiters neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2]benzazepin mit der allgemeinen Formel Ic

und deren Salze, worin

- X gleich H oder Br,
- Z_2 gleich H, geradkettiges oder verzweigtes (C_1 - C_6) alkyl, geradkettiges oder verzweigtes (C_2 - C_7) alkenyl, geradkettiges oder verzweigtes (C_2 - C_7) alkinyl und
- Y_3 gleich geradkettiges oder verzweigtes (C_1-C_6) alkyl, phenyl, geradkettiges oder verzweigtes (C_1-C_6) alkylphenyl, nitrophenyl, chlorphenyl, bromphenyl, aminophenyl, hydroxyphenyl

ist.

Die Verbindungen mit der allgemeinen Formel Ic sind insofern von Bedeutung als auch diese eine pharmakologische Wirkung zeigen, was aus folgender Übersichtstabelle zu ersehen ist, worin "AchE" – Acetylcholinesterase, "BchE" – Butyriylcholinesterase und IC50 jene Konzentration bedeutet, bei der eine 50 %ige Hemmung eintritt.

Beispi	al .		Acond		
Nr	Struktur	stered	Acetyl- cholinesteras IC-50 (µM		
1	H ₃ C ² OH	(-) epi		> 100	(4aS,6S,8S)-1-Bromo-4a,5,9,10,11,12- hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol,
2	н,с-О	(-) epi	51	> 100	(4aS,6S,8aS)-1-Bromo-6-hydroxy-3-methoxy-4a,5,9,10-tetrahydro-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-thiocarbonic acid allylamide
3	HO	(+) epi	> 100	> 100	(4aR, 6R,8R)-1-Bromo-4a,5,9,10,11,12- hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol,
4	H ₂ C - N - CH ₃	(+) epi	> 100	> 100	(4aR,6R,8aR)-1-Bromo-4a,5,9,10- tetrahydro-6-hydroxy-3-methoxy-6H- [1]benzofuro-[3a,3,2-ef][2]benzazepin- 11(12H)-thiocarbonic acid methylamide
5	on the same	(+)	> 100	66	1-[(4aR,6S,8aR)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yi]-3-(1- pyrrolidyl)propan-1-on
6	O-CH ₃	(+)	> 100	19	(4aR,6S,8aR)-11-Benzyl-1-bromo- 4a,5,9,10,11,12-Hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-8-ol
7	MC-10-01,	(+)	89	> 100	1-[(4aR,6S,8aR)-1-Bromo-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl]-2-(4-methylpiperazinyl)ethan-1-on
8	H,C, H-C, H-C, H-C, H,	(+)	> 100	31	(4aR,6R,8aR)-11-(3-(4-methylpiperazine)-1- yl-propyl)-3-methoxy-5,6,9,10,11,12- hexahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-6-ol , Trihydrochloride
9		(+)	> 100	> 100	Methyl-4-((4aR,6S,8aR)-1-Bromo- 4a,5,9,10,11,12-hexahydro-6-hydroxy-3- methoxy-6H-benzofuro[3a,3,2- ef][2]benzazepin-11-yl)gamma-oxo-butyrate
10	H ₃ N N CH ₃	(+)	> 100	> 100	(4aR, 6S, 8aR)-11-(4-aminopropyl)-3- methoxy-5,6,9,10,11,12-hexahydro-4aH- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol, Methansulfonate
11	M,C H, N CH,	(+)	> 100	> 100	4aR,6S,8aR)-1-Bromo-4a,5,9,10-tetrahydro- 6-hydroxy-3-methoxy-6H-[1]benzofuro- 3a,3,2-ef][2]benzazepine-11(12H)- hlocarbonic acid methylamide
12	H,c-O	(-)	> 100	11 [f	4aS,6R,8aS}-1-Bromo-6-hydroxy-3- nethoxy-4a,5,9,10-tetrahydro-6H- 1]benzofuro[3a,3,2-ef][2]benzazepin- 1(12H)-thlocarbonic acid allylamide

	r		·		
13	H ₂ C O	(-) epi	15	0,56	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
14	H,c OH OH CH,	(-) epi	> 100	> 100	(4aS,6S,8aS)-6-Hydroxy-3-methoxy- 4a,5,9,10-tetrahydro-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin- 11(12H)-thiocarbonic acid methylamide
15	H,C-O-OH	(-) epi	84	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-11-(2-(morpholin-4-yl)-ethyl)- 3-methoxy-6H-[1]benzofuro[3a,3,2- ef][2]benzazepin-6-ol
16	н,с-о-	(-) epi	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-(2- pyrimidinyl)-6H-[1]benzofuro[3a,3,2- ef][2]benzazepin-6-ol
17	н,с-он сн,	(-) epi	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-(2-methyl- prop-2-enyi)-6H-[1]benzofuro[3a,3,2- ef][2]benzazepin-6-oI
18	н,с-о он	(-) epi	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-propargyl-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
19	H ₂ C-OH	(-) epl	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-benzoyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
20	н,с-о Н	(-) epi	> 100	> 100	(4aS,6S,8aS)-6-Hydroxy-3-methoxy- 4a,5,9,10-tetrahydro-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin- 11(12H)-thiocarbonic acid allylamide
21	H,C-O NH,	(-) epi	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10-Tetrahydro-6- hydroxy-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin- 11(12H)-carboxamid
22	н _с с-о	(-) epi	6	20	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-(3-Methylbut- 2-en-1-yl)-6H-[1]benzofuro[3a,3,2- ef][2]benzazepin-6-ol
23	H,C-O HOH	(-) epi	49	10	(4aS,6S,8aS)-1-Bromo-11-(4- brombenzyl)-4a,5,9,10,11,12- Hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
24	HO	(+) epi	> 100	> 100	(4aR,6R,8R)-4a,5,9,10,11,12- Hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol,
25	HOW CH,	(+) epi	> 100	> 100	(4aR,6R,8aR)-4a,5,9,10-Tetrahydro-6- hydroxy-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin- 11(12H)-carboxamid

			8		20 0000 FF 65
26	H ₃ C N	н, (+) ер	oi > 100	> 100	(4aR,6R,8aR)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-ethyl-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
27	HO	(+) ep	si > 100	. > 100	Methyl (4aR,6R,8aR)-N11-cyano-6-hydroxy-3-methoxy-4a,5,9,10-letrahydro-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-carboximidothioat
28	H-CI H-CI H-CI H-CI	(+) ep	l > 100	> 100	(4aR,6R,8aR)- 4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a,3,2-ef][2]benzazepln-6-amin, Dihydrochloride
29	HO NO CH,	(+)	> 100	> 100	(4aR,6S,8aR)-11-(3-hydroxypropyl)-3- methoxy-5,6,9,10,11,12-hexahydro-4aH- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
30	H ₂ N N O CH ₃	(+)	> 100	> 100	(4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carbothloamide
31	H ₂ C CH ₃	(+)	> 100	> 100	(4aS,6S,8aS)-4a,5,9,10,11,12- Hexahydro-3-methoxy-11-benzoyl-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
32	H-CI CH	(-)	0,1	0,36	2-{(4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl}-1-methyl-1-{3-phenoxyphenyl}-ethane Hydrochloride
33	H,c ° H	(-)	27	> 100	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-benzoyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
34	H ₂ C-O NH ₂	(-)	> 100	78	2-((4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl)acetamide
35	N.C. O. N.E. O.	(-)	0,19	0,4	3-[(4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl]-2-methyl-1(-4- methyl-phenyl)propan-1-on, Hydrochloride
36	H ₂ C-0 H	(-)	11	> 100	1-[(4aS,6R,8aS)-6-hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl]-2-(1- plperidyl)ethane-1-on
37	H,c.0 H	(-)	> 100		(4aS,6R,8aS)-3-methoxy-11-(2-pyrimidinyl)- 5,6,9,10,11,12-hexahydro-4aH- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol

			9		
38	H,c-0 H	(-)	5,3	2,4	1-[(4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl]-3-(1- pyrrolidyl)propan-1-on
39	н,с-о-	(-)	> 100	> 100	(((4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6, hydroxy-3-methoxy-6H-benzofuro[3a,3,2- ef][2]benzazepin-11yl)gamma-oxo-butyric acid
40	H-CI NH GI	(-)	1,1	1,3	1-((4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl)-2-[2-(2,6- dichloranllino)]-phenylethane
41	H,c-0 H	(-)	9,5	30	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3- methoxy-11-(4-bromo-benzoyl)-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
42	H ₃ C.O OH CI	(-)	> 100	> 100	(4aS,6R,8aS)-11-(4,6-dlchloro-1,3,5,-trlazin- 2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro- 4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6- ol
43	H _O C-O Br	(-)	0,016	0,0006	(4aS,6R,8aS)-11-(4-Brombenzyl)- 4a,5,9,10,11,12-Hexahydro-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
44	H,C-0 1 N 10 ~ CH3	(-)	8,8	42	Ethyl-2-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)acetate
45	H,c-OH	(-)			2-((4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-{1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yi)acetic acid
46	H-Cl CH ₂ CH ₃	(-)	1,1	0,34	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-(2-methyl-prop-2-enyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-8-ol, Hydrochloride
47	H-CI N-CH,	(-)	2,6	51	Ethyl-3-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanoate, Hydrochloride
48	H,C. OH	(-)	4,9	3,8	1-((4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl]-2-(4- morpholinyl)ethan-1-on
49	H,C-O-CH,	(-)	5,6	40	1-[(4aS,6R,8aS)-6-Hydroxy-3-methoxy- 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yl]-2- (diethylamino)ethan-1-on
50		(-)	0,036	0,61	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-[3-(1-piperidinyl)butyl]-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-ol, (+) Di-O-p-toluoyl tartrate,

51	H,C-0 N N N	(-)	33	57	3-((4aS,6R,8aS)-1-bromo-6-hydroxy-3- methoxy-5,6,9,10-tetrahydro-4aH- [1]benzofuro[3a,3,2-ef][2]benzazepin- 11(12H)-yl)propanenitrile
52	HC-O-H	1	1,3	2,1	(4aS,6R,8aS)-11-((3-dimethylamino)propyl)- 3-methoxy-5,6,9,10,11,12-hexahydro-4aH- [1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
53	H,c-0 H	(-)	1,3	> 100	(4aS,6R,8aS)-N11-cyclohexyl-6-hydroxy-3-methoxy-5,6.9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-carbonoc acid isopropylamide
54	H ₂ C OH	(-)	51	> 100	1-[(4aS,6R,8aS)-6-hydroxy-3-methoxy- 5,6,9,10-letrahydro-4aH-[1]benzofuro[3a,3,2- ef][2]benzazepin-11(12H)-yi]-2-chlorethan-1- on
55	Br O CH ₃	(+)	> 100	> 100	(4aR, 6S, 8aR)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10-tetrahydro-6H-benzofuro[3a, 3, 2-ef][2]benzazepinium Bromlde
56	H ₃ C N _{Br} -	(+) epi	> 100	> 100	(4aR, 6R, 8aR)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10-tetrahydro-6H-benzofuro[3a, 3, 2-ef][2]benzazepinium Bromide
57	H,C OH	(-)	>100	2,7	(4aS,6R,8aS)-1-Bromo-4a,5,9,10,11,12-hexahydro-11-(2-(morpholin-4-yl)-ethyl)-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
58	HO CH,	(+)	>100	53	(4aR,6R,8aRS)-1-Bromo-4a,5,9,10,11,12-hexahydro-11-(2-(morpholin-4-yl)-ethyl)-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
59	H,C - CH,	(-)	52	25	(4aS,8aS)-D5,6-4a,5,9,10,11,12-Hexahydro- 11-methyl-3-methoxy-6-phenyl-6H- [1]benzofuro[3a,3,2-ef][2]benzazepine
60	H ₃ C-O	(-)	. 80	200	(4aS,8aS)-D5,6-4a,5,9,10,11,12-Hexahydro-6,11-dimethyl-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine
- 61	H ₂ C-O	(-)	>100	9	(4aS,8aS)-D5,6-4a,5,9,10,11;12-Hexahydro- 6-(Isopropyl)-11-methyl-3-methoxy-6H- [1]benzofuro[3a,3,2-ef][2]benzazepine

Anhand der IC_{50} - Werte lässt sich die pharmakologische Wirkung der erfindungsgemäßen Verbindungen Ia, Ib sowie Ic nachweisen.

Demgemäß betrifft die Erfindung ebenso Arzneimittel, welche eine oder mehrere der erfindungsgemäßen Verbindungen Ia, Ib oder Ic als pharmazeutischen Wirkstoff enthalten.

Die Erfindung betrifft weiters die Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung der Alzheimer schen Krankheit und verwandter Demenzzustände, für die Behandlung der Parkinson schen der Huntington'schen Krankheit (Chorea), für Behandlung von Multipler Sklerose oder amyotropher Lateralsklerose, für die Behandlung von Epilepsie, von Folgen eines Schlaganfalls oder eines Schädel-Hirn-Traumas, für die Behandlung und Prophylaxe der Folgen diffusen Sauerstoff- und Nährstoffmangels im Gehirn, wie sie nach Hypoxie, Anoxie, Asphyxie, Herzstillstand, Vergiftungen, nach einer Narkose sowie nach Komplikationen bei schweren Geburten am Säugling beobachtet werden, für die prophylaktische apoptotischer Degeneration in Neuronen, die durch lokale Radio- oder Chemotherapie von Gehirntumoren geschädigt wurden bzw. werden.

Die Erfindung betrifft weiters die Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung der bakteriellen Meningitis, für die Behandlung von Erkrankungen mit apoptotischer Komponente, besonders im Gefolge von amyloid-assoiziierter Zelldegeneration sowie für die Behandlung von Diabetes mellitus, insbesondere, wenn die Krankheit mit Amyloiddegeneration der Inselzellen einhergeht.

Weiters betrifft die Erfindung die Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung oder präventive Behandlung von postoperativem Delir und/oder subsyndronalem postoperativem Delir.

Die folgenden Beispiele zeigen mögliche Synthesewege zur Bereitstellung der erfindungsgemäßen Verbindungen Ia, Ib und Ic:

Beispiel 1

(4aS, 6S, 8S) - 1 - Bromo - 4a, 5, 9, 10, 11, 12 - hexahydro - 3 - methoxy - 6H - [1] benzofuro [3a, 3, 2 - ef] [2] benzazepin - 6 - ol, (Ia Y₁ = H, Y₂ = OH, X = Br, Z₁ = H)

g (-)-Brom-Norgalanthamin, welches gemäß WO-A-97/40049 der hergestellt wurde, werden in 800 2 % HCl-Lösung unter ml Rückflusskühlung bei Siedetemperatur gerührt. Nach 3 Stunden wird die Reaktionsmischung abgekühlt, mit Ammoniak-Lösung basisch eingestellt und mit 3x300 ml Chloroform extrahiert. Die vereinigten org. Phasen werden über Natriumsulfat getrocknet. Das Trocknungsmittel abfiltriert und das Filtrat in Vakuum eingedampft.

Ausbeute: 14,9 g (75 % d. Th)

Smp: 198-203 °C

R_f: 0,25 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (CDCl₃): δ 6.85 (s, 1H), 6.10 (d, 1H), 5.82 (d, 1H), 4.59 (m, 2H), 4.49 (d, 1H), 3.83 (d,1H), 3,80 (s, 3H), 3.30 (dd, 1H), 3.22 (dt, 1H), 2.72 (d, 1H), 1.88 (m, 2H), 1,71(t, 1H); ATP-NMR (CDCl₃): δ 146.8 (s) 143.9 (s) 134.2 (s), 132.4 (d), 131.5 (s), 126.3 (d), 115.4 (d), 112,5 (s), 88.6 (d), 62.7 (d), 56.2 (q), 52.4 (t), 49.2 (s), 46.9 (t) 40.6 (t), 32.1 (t);

Beispiel 2

 $(4as, 6s, 8as) -1 - Bromo -6 - hydroxy -3 - methoxy -4a, 5, 9, 10 - tetrahydro -6H - \\ [1]benzofuro[3a, 3, 2 - ef][2]benzazepin -11(12H) - thiocarbonic acid allylamide (Ia Y₁=H, Y₂=OH, X=Br, <math>Z_1=C_4H_5NS$)

2,0 g (5,6 mmol) (-)-Epi-bromNorgalanthamin (Ia Y_1 =H, Y_2 =OH, X=Br, Z_1 =H) werden in 60 ml Tetrahydrofuran gelöst, mit 0,6 ml Allylisothiocyanat versetzt und unter Rückflusskühlung bei 60 °C gerührt. Nach 40 Stunden wird das Lösungsmittel unter Vakuum abdestilliert und der Rückstand aus Chloroform n-Hexan kristallisiert.

Ausbeute: 2,28 g (76 % d. Th)

Smp: 199-207 °C

R_f: 0,75 (Chloroform:MeOH=9:1)

 1 H-NMR (CDCl₃): δ 6.88 (s, 1H), 6.05 (d, 1H), 5.90 (m, 2H), 5.53 (d, 1H), 5.19 (d,1H), 5.10 (d, 1H), 4.64 (b, 2H), 4.50 (d, 1H), 4.31 (m, 1H), 4.19 (m,1H), 3,88 (s, 3H), 3.55 (t, 1H), 2.77 (m, 1H), 2.30 (t, 1H), 2.08 (b, 1H), 1.92 (d, 1H), 1,78 (dt, 1H); ATP-NMR (CDCl₃): δ 180.8 (s), 148.2 (s) 145.7 (s) 134.3 (s), 133.9 (d), 133.5 (d), 125.7 (d), 125.3 (s), 117.9 (s), 115.4 (d), 112,3 (s), 89.0

(d), 63.3 (d), 56.7 (q), 52.0 (d), 49.5 (2t), 49.3 (s), 36.8 (t), 32.3 (t);

Beispiel 3

(4aR, 6R, 8aR) -1-Bromo-4a, 5, 9, 10, 11, 12-hexahydro-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol (Ib $Y_1=H$, $Y_2=OH$, X=Br, $Z_1=H$) (+)-Brom-Norgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, werden in 800 ml 2 용 HC1-Lösung Rückflusskühlung bei der Siedetemperatur gerührt. Nach 3 Stunden wird Reaktionsmischung abgekühlt, mit CC Ammoniak-Lösung eingestellt und mit 3x300 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet. Trocknungsmittel wird abfiltriert und das Filtrat Vakuum eingedampft.

Ausbeute: 15,5 g (78 % d. Th)

Smp: 103-205 °C

R_f: 0,25 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (CDCl₃): δ 6.88 (s, 1H), 6.07 (d, 1H), 5.82 (d, 1H), 4.59 (m, 2H), 4.51 (d, 1H), 3.83 (d,1H), 3,80 (s, 3H), 3.28 (d, 1H), 3.22 (t, 1H), 2.78 (d, 1H), 1.91 (m, 2H), 1,73(t, 1H); ATP-NMR (CDCl₃): δ 146.8 (s) 143.9 (s) 134.2 (s), 132.4 (d), 131.5 (s), 126.3 (d), 115.4 (d), 112,5 (s), 88.6 (d), 62.7 (d), 56.2 (q), 52.4 (t), 49.2 (s), 46.9 (t) 40.6 (t), 32.1 (t);

Beispiel 4

 $\label{eq:continuous} \begin{tabular}{ll} (4aR, 6R, 8aR) -1 - Bromo - 4a, 5, 9, 10 - tetrahydro - 6 - hydroxy - 3 - methoxy - 6H - \\ [1] benzofuro - [3a, 3, 2 - ef] [2] benzazepin - 11 (12H) - thiocarbonic acid methylamide (Ib Y1=H, Y2=OH, X=Br, Z1=C2H4NS) \\ \end{tabular}$

1,96 g (+)-Epi-bromNorgalanthamin (Ib $Y_1=H$, $Y_2=OH$, X=Br, $Z_1=H$) und 0,7 g Methylisothiocyanat werden in 50 ml Toluol bei Rückflusstemperatur gerührt. Nach 16 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert und der Rückstand mit 200 ml 2N HCl und mit 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt.

Dás Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 1,4 g (54 % d. Th)

Smp: 80-88 °C

R_f: 0,45 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 8.35 (b, 1H, N-H), 6.99 (s, 1H), 6.01 (b, 1H), 5.72 (d, 1H), 4.98 (d, 1H), 4.61 (b, 1H), 4.29 (m, 1H), 3.79 (d, 1H), 3,74 (s, 3H), 2.90 (d, 3H), 2.51 (d, 1H), 2.48 (t, 1H), 1.98 (t, 1H), 1.81 (m, 2H), 1,65 (t, 1H); ATP-NMR (DMSO): δ 182.0 (s), 147.7 (s) 144.6 (s) 134.4 (s), 133.8 (d), 128.6 (s), 126.8 (d), 116.4 (d), 113,5 (s), 88.5 (d), 62.0 (d), 56.8 (q), 49.2 (t), 40.0 (s), 36.5 (t) 33.7 (q), 32.4 (t);

Beispiel 5

1-[(4aR, 6S, 8aR)-6-Hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl]-3-(1-pyrrolidyl)propan-1-on (Ib Y_1 =OH, Y_2 =H, X=Br, Z_1 =C₇H₁₂NO)

(+)-BromNorgalanthamin , welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 1,0 ml Triethylamin und 0,6 ml Brompropionsäurechlorid werden in 100 ml Tetrahydrofuran bei 0 gerührt. Nach min wird die Reaktionsmischung mit Kaliumcarbonat und 0,6 ml Pyrrolidin versetzt und bei 90 weitergerührt. Nach 17 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 50 ml Wasser und 50 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2×50 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform: MeOH: Ammoniak-Lösung=90:9:1) gereinigt.

Ausbeute: 1,88 g (69,3 % d. Th)

Smp: 80-85 °C

 $R_f: 0,4 \text{ (Chloroform:MeOH:Ammoniak-L\"osung=}90:9:1)$

 $^{1}\text{H-NMR}$ (CDCl₃): δ 6.90 (s, 1H), 6.07 (dd, 1H), 5.18 (d, 1H), 4.59 (m, 2H), 4.31 (d, 1H), 4.18 (m,1H), 3,80 (s, 3H), 3.78 (d, 1H), 3.22 (t,

1H), 2.90 (m, 3H), 2.68 (m, 3H), 2.6-2.35 (m, 8H), 2.01 (dd, 1H), 1,89 (dt, 1H);

ATP-NMR (CDCl₃): δ 171.4 (s), 146.5 (s), 144.9 (s), 133.6 (s), 128.8 (d), 127.3 (s), 126.0 (d), 115.7 (d), 112,8 (s), 88.3 (d), 61.6 (d), 56.2 (q), 54.2 (2t), 51.8 (t), 51.4 (t) 49.0 (s), 44.5 (t), 35.6 (t), 33.0 (t), 29.6 (t)23.4 (2t);

Beispiel 6

4aR, 6S, 8aR) -11-Benzyl-1-bromo-4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-6H[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ib Y_1 =OH, Y_2 =H, X=Br, Z_1 =C₁H₇)

(+)-BromNorgalanthamin, welches WO-A-97/40049 gemäß der hergestellt wurde, sowie 4,0 g Kaliumcarbonat und 0,71 ml Benzylbromid werden in 40 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 3 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert und der Rückstand mit 60 ml. 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat vereinigten organischen Die extrahiert. Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Produkt wird säulenchromatographisch (Chloroform: MeOH=99:1) gereinigt.

Ausbeute: 1,76 g (69,8 % d. Th) gelbes \ddot{O} 1 R_f: = 0,75 (Chloroform:MeOH=:99:1)

¹H-NMR (DMSO): δ 7.28 (m, 5H), 6.92 (s, 1H), 6.18 (d, 1H), 5.85 (dd, 1H), 4.59 (b, 1H), 4.35 (d, 1H), 4.12 (m, 2H), 3,78 (s, 3H), 3.64 (d, 1H), 3.55 (d, 1H), 2.98 (d, 1H), 2.52 (s, 2H), 2.27 (d, 1H), 2,09 (m, 2H);

ATP-NMR (DMSO): δ 146.9 (s), 144.6 (s), 139.7 (s) 135.0 (s), 129.5 (d), 129.5 (2d), 129.0 (2d), 128.7 (s), 127.7 (d), 127.4 /d), 116.3 (d), 113,3 (s), 87.7 (d), 60.5 (d), 56.7 (q), 56.4(t) 51.2 (t), 49.3 (s), 39.9 (t) 34.2 (t), 31.6 (t);

Beispiel 7

1-[(4aR,6S,8aR)-1-Bromo-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl]-2-(4-methylpiperazinyl)ethan-1-on (Ib Y_1 =OH, Y_2 =H, X=Br, Z_1 =C₇H₁₃N₂O)

2,0 (+)-BromNorgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 3,92 g Kaliumcarbonat werden in 50 Tetrahydrofuran gerührt und die Suspension mittels Eisbad auf 0°C gekühlt. Nach dem Zutropfen von 0,48 ml Chloracetylchlorid wird noch 30 min bei 0 °C gerührt und danach 1,4 ml N-Methylpiperazin zugegeben. Nach 48 Stunden Rückfluss wird abkühlen gelassen, zugegeben und mit 3x40 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden mit Natriumsulfat getrocknet eingedampft. Der Rückstand wird säulenchromatographisch (Chloroform: MeOH: Ammoniak-Lösung=95:4,5:0,5) gereinigt.

Ausbeute: 0,7 g (17,9 % d. Th.) weißer Schaum R_f : 0,42 (Chloroform:MeOH:Ammoniak-Lösung =90:9:1)

¹H-NMR (CDCl₃): δ 6.88 (s, 1H), 6.05 (dd, 1H), 5.94 (d, 1H), 5.59 (d, 1H), 4.58 (b, 1H), 4.31 (d, 1H), 4.12 (t, 1H), 3.85 (s, 3H), 3,83 (d, 1H), 3.30 (d, 1H), 3.21 (m, 1H), 3.03 (d, 1H), 2.71 (d, 1H), 2.42 (m, 8H), 2.29 (s, 3H), 2.04 (dd, 1H), 1,95 (dd, 1H), 1,78 (d, 1H); ATP-NMR (CDCl₃): δ 169.9 (s), 146.9 (s) 144.9 (s) 133.4 (s), 129.1 (d), 128.3 (s), 126.6 (d), 116.3 (d), 113.4 (s), 88.8 (d), 62.0 (d), 61.4 (t) 56.6 (q), 55.4 (2t), 53.7 (2t), 52.0 (s), 49.5 (t), 46.6 (q), 45.2 (t), 35.9 (t), 30.1 (t);

Beispiel 8

 $\label{eq:continuous} $$(4aR,6R,8aR)-11-(3-(4-methylpiperazine)-1-yl-propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol, Trihydrochloride (Ib Y1=OH, Y2=H, X=Br, Z1=C7H17N2)$

Stufe 1

(+)-BromNorgalanthamin, 2g welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 5,6 ml 1-Brom-3-Chlorpropan und Kaliumcarbonat werden in 10 ml Acetonitril bei 80 °C 4,5 Stunden lang gerührt. Nach der Filtration des Kaliumcarbonats werden 70 ml Wasser zugesetzt, mit 2N HCl angesäuert und 2mal mit je 30 ml Ethylacetat extrahiert. Die wässrige Phase wird mit 2N Natriumhydroxid-Lösung eingestellt und 2mal mit je 50 ml Dichlormethan ausgeschüttelt. Nach dem Abtrennen des Lösungsmittels verblieben 1,12g

(46 % d. Th) gelbliches Öl. Das Produkt wurde sofort weiterverarbeitet.

Stufe 2

1,1g N-(3-Chlorpropy1)-(+)-Bromnorgalanthamin (Stufe 1), 2,85 ml N-Methylpiperazin und 2,1 g Kaliumcarbonat werden in 8 ml Acetonitril bei 90 °C 3 Stunden lang gerührt. Das Kaliumcarbonat wird abfiltriert, und die Lösung eingedampft. Die erhaltenen 2,27 g werden an 170 g Chloroform: Methanol: Ammoniak-Kieselgel mit dem Laufmittel Lösung=90:9:1 gesäult. produkthaltigen Fraktionen Die eingedampft, der Rückstand in 15 ml Ether gelöst und bei 0 °C mit etherischer HCl angesäuert. Nach dem Abfiltrieren und zweimaligem bei 30 °C Waschen mit jе 5 ml Ether wird das Produkt Vakuumtrockenschrank bei 50 mbar 16 Stunden getrocknet.

Ausbeute: 440 mg (32 % d. Th.) weiße Kristalle

Smp: 220-238 °C

R_f: 0,37 (Chloroform:Methanol:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 7.19 (s, 1H), 6.21 (d, 1H), 5.89 (d, 1H), 4.89 (d, 1H), 4.70 (b, 1H), 4.55 (d, 1H), 4.09 (b, 1H), 3.81 (s, 3H), 3.01-3.80 (m, 12H), 2.80 (m, 3H), 2.02 (s, 3H), 2.31 (m, 2H), 2.08 (m, 2H)1,85 (b, 1H);

ATP-NMR (DMSO): 8 172.7 (s), 147.3 (s) 146.3 (s) 134.8 (s), 132.1 (d), 131.9 (d), 125.7 (d), 117.1 (d), 115.0 (s), 87.4 (d), 65.7 (2t), 65.0 (2t), 60.1 (d), 53.2 (q), 49.9 (d), 48.2 (d), 43.7 (s), 42.8 (q), 41.1 (d), 41.0 (d), 40.9 (d), 31.4 (t);

Beispiel 9

Methyl-4-((4aR,6S,8aR)-1-Bromo-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl)gamma-oxo-butyrate (Ib Y_1 =OH, Y_2 =H, X=Br, Z_1 =C₅H₇O₃)

Stufe 1:

2,0 g (+)-BromNorgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 1,18 ml Triethylamin und 0,6 g Bernsteinsäureanhydrid werden in 70 ml Tetrahydrofuran bei 75 °C intensiv gerührt. Nach 30 min wird die Reaktionsmischung abgekühlt, das Lösungsmitten im Vakuum abdestilliert, und der Rückstand mit 100 ml 2N HCl und mit 50 ml Ethylacetat versetzt. Nach dem Abtrennen der

organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Ausbeute: 1,91 g gelblicher Schaum

Stufe 2:

1,91 g Schaum, wie gemäß Stufe 1 hergestellt, werden in 20 ml Methanol aufgelöst, mit 0,6 ml Dimethylsulfat versetzt und bei Raumtemperatur (RT) gerührt. Nach 24 Stunden wird das Reaktionsgemisch mit 50 ml Wasser und mit 40 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x30 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Ethylacetat) gereinigt.

Ausbeute: 0,54 g (24,3 % d. Th) farbloses \ddot{o} 1 R_f: 0,35 (Ethylacetat)

¹H-NMR (DMSO): δ 7.25 (s, 1H), 6.12 (d, 1H), 5.81 (m, 1H), 5.01 (d, 1H), 4.69 (d, 1H), 4.51 (d, 1H), 4.42 (m, 1H), 4.09 M, 1H), 3.78 (s, 3H), 3.53 (s, 3H), 3.29 (m, 1H), 2.77 (m, 1H), 2.52 (m, 3H), 2.28 (d, 1H), 2.04 (m, 1H), 1,85 (m, 1H), 1.69 (m, 1H); ATP-NMR (DMSO): δ 173.6 (s), 170.7 (s), 147.4 (s), 144.7 (s), 134.3 (s), 129.6 (d), 128.3 (s), 127.2 (d), 116.2 (d), 111.9 (s), 87.4 (d), 60.2 (d), 56.8 (q), 52.0 (q), 51.2 (t), 49.3 (s), 46.2 (t) 39.9 (t),37.0 (t), 31.2 (t), 28.7 (t);

Beispiel 10

Stufe 1:

2,0 g (+)-BromNorgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 7,2 ml 1-Brom-3-chlorpropan und 5,0 g Kaliumcarbonat werden in 10 ml Acetonitril bei Raumtemperatur gerührt. Nach 19 Stunden wird der Niederschlag abfiltriert, und das Filtrat mit 80 ml Wasser, 25 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x40 ml

Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Ausbeute: 1,5 g farbloser Schaum.

Stufe 2:

1,5 g Schaum, wie in Stufe 1 hergestellt, werden in 15 ml Methanol aufgelöst, mit 15 g NH₄Cl, mit 150 ml 25%er Ammoniak-Lösung versetzt Raumtemperatur gerührt. Nach 18 Stunden Reaktionsmischung mit 400 ml Wasser und 75 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x75 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Der Rückstand wird in 5 ml Tetrahydrofuran aufgelöst und Methansulfonsäure bis рΗ 1 angesäuert. Der entstandene Niederschlag wird abgetrennt, mit Tetrahydrofuran nachgewaschen und im Vakuumtrockenschrank getrocknet.

Ausbeute: 1,3 g (71 % d. Th)

Smp: 63-67 °C

R_f: 0,15 (Chloroform:MeOH:Ammoniak-Lösung = 0:18:2)

¹H-NMR (DMSO): δ 7.88 (b, 2H, NH₂), 6.85 (s, 1H), 6.19 (d, 1H), 5.89 (d, 1H), 4.70 (d, 1H), 4.60 (b, 1H), 4.48 (b, 1H), 4.18 (m, 1H), 3.80 (s, 3H), 3.70 (m, 1H), 3.59 (b, 2H), 3.42 (m, 2H), 2.88 (b, 2H), 2.52 (m, 1H), 1.91- 2.34 (m, 4H); ATP-NMR (DMSO): δ 147.3 (s) 145.6 (s) 133.6 (s), 130.4 (d), 126.5 (s), 123.6 (d), 112.9 (d), 112,1 (s), 87.3 (d),67.9 (2t), 60.4 (d), 56.5 (q), 49.8 (t), 40.9 (t), 40.8 (s), 37.3 (t) 31.7 (t), 25.9 (t);

Beispiel 11

 $\label{eq:continuous} \begin{tabular}{ll} (4aR, 6S, 8aR) -1 - Bromo - 4a, 5, 9, 10 - tetrahydro - 6 - hydroxy - 3 - methoxy - 6H - \\ [1] benzofuro - [3a, 3, 2 - ef] [2] benzazepine - 11 (12H) - thiocarbonic acid methylamide (Ib Y1 = OH, Y2 = H, X = Br, Z1 = C2 H4 NS) \\ \end{tabular}$

2,0 g (+)-BromNorgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 0,7 g Methylisothiocyanat werden in 50 ml Toluol bei Rückflusstemperatur gerührt. Nach 16 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert, und der Rückstand mit 200 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird

die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 2,2 g (93 % d. Th)

Smp: 98-102 °C

 $R_{f}: 0,7 \text{ (Chloroform:MeOH:Ammoniak-Lösung = } 90:9:1)$

¹H-NMR (DMSO): δ 7.38 (b, 1H, NH), 6.97 (s, 1H), 6.07 (d, 1H), 5.80 (dd, 1H), 4.51 (b, 1H), 4.37 (m, 2H), 4.09 (d, 1H), 3.80 (m, 1H), 3,72 (s, 3H), 3.31 (b, 1H), 2.81 (s, 3H), 2.28 (d, 1H), 2.02 (d, 1H), 1.85 (t, 1H), 1,61(d, 1H);

ATP-NMR (DMSO): δ 182.0 (s), 147.5 (s) 144.7 (s) 134.0 (s), 129.4 (d), 128.6 (s), 127.6 (d), 116.4 (d), 113.2 (s), 87.3 (d), 60.2 (d), 56.8 (q), 57.1 (t), 49.1 (s), 48.4 (t) 36.7 (t), 33.7 (q), 31.2 (t);

Beispiel 12

 $(4aS, 6R, 8aS) - 1 - Bromo - 6 - hydroxy - 3 - methoxy - 4a, 5, 9, 10 - tetrahydro - 6H - \\ [1]benzofuro[3a, 3, 2 - ef][2]benzazepin - 11(12H) - thiocarbonic acid allylamide (Ia Y₁=OH, Y₂=H, X=Br, Z₁=C₄H₆NS)$

2,0 g (-)-BromNorgalanthamin, welches gemäß der WO-A-97/40049 hergestellt wurde, sowie 0,6 ml Allylisothiocyanat werden in 60 ml Tetrahydrofuran bei Rückflusstemperatur gerührt. Nach 9 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert, und der Rückstand säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt.

Ausbeute: 2,14 g (83,5 % d. Th)

Smp: 175-179 °C

R_f: 0,45 (Chloroform:MeOH=:9:1)

¹H-NMR (DMSO): δ 7.41 (b, 1H, NH), 6.95 (s, 1H), 6.06 (d, 1H), 5.76 (m, 2H), 5.08 (t, 2H), 4.42 (m, 3H), 4.09 (m, 2H), 3.83 (m, 1H), 3,72 (s, 3H), 2,51 (d, 2H), 2.28 (d, 1H), 2.05 (d, 1H), 1.88 (t, 2H), 1,76(t, 1H);

ATP-NMR (DMSO): δ181 3 (s) 147 5 (s) 144 8 (c) 136 1 (d) 134 0 (t)

ATP-NMR (DMSO): δ 181.3 (s), 147.5 (s) 144.8 (s), 136.1 (d), 134.0 (s), 129.4 (d), 128.2 (s), 127.5 (d), 116.3 (d), 116.3 (s), 113,1 (d), 87.3

(d), 60.2 (d), 56.8 (q), 49.0 (t), 48.8 (s), 41.0 (t) 40.9 (t), 36.7 (t), 31.1 (t);

Beispiel 13

(4aS, 6S, 8aS) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-6H-[1]benzofuro[3a, 3, 2-ef] [2]benzazepin-6-ol (Ia Y₁=H, Y₂=OH, X=H, Z₁=H)

lg (-)-Norgalanthamin , welches gemäß der W-A-00/174820 hergestellt wurde, wird in 80 ml 2 %-iger HCl gelöst und 3 Stunden bei Rückfluss gerührt. Das Reaktionsgemisch auf Raumtemperatur abkühlen gelassen, wässriger Ammoniak-Lösung basisch eingestellt mit konzentrierter, und 3x mit je 30 ml Chloroform extrahiert. Die vereinigten organischen getrocknet, filtriert und Phasen werden über Natriumsulfat eingedampft. Die erhaltenen 1,06 g werden an 80 g Kieselgel mit dem Laufmittel Chloroform: Methanol: Ammoniak-Lösung=90:9:1 säulenchromatographisch gereinigt, und die erhaltenen, produkthältigen Fraktionen eingedampft.

Ausbeute: 690 mg (69 % d. Th.) weißes Pulver

Smp: 151-155

R_f: 0,29 (Chloroform:Methanol:Ammoniak-Lösung=90:9:1)

53.8 (t), 49.0 (s), 47.5 (t) 39.7 (t), 32.9 (t);

¹H-NMR (CDCl₃): δ 6.65 (d, 1H), 6.49 (d, 1H), 6.02 (d, 1H), 5.65 (d, 1H), 4.48 (b, 1H), 4.25 (m, 1H), 3.85 (d, 1H), 3.74 (d, 1H), 3,65 (s, 3H), 3.15 (dd, 1H), 3.03 (m, 1H), 2.43 (m, 1H), 1.79 (m, 2H), 1,63 (t, 1H); ATP-NMR (CDCl₃): δ 147.6 (s),143.8 (s), 135.1 (s), 134.2 (s), 133.3 (d), 127.3 (d), 120.3 (d), 112.0 (d), 88.7 (d), 62.2 (d), 56.4 (q),

Beispiel 14

(4aS,6S,8aS)-6-Hydroxy-3-methoxy-4a,5,9,10-tetrahydro-6H-[1]benzofuro [3a,3,2-ef][2]benzazepin-11(12H)-thiocarbonic acid methylamide (Ia Y_1 =H, Y_2 =OH, X=H, Z_1 =C₄H₈NO)

2,32 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$) und 0,9 ml Isopropylisocyanat werden in 150 ml Toluol bei Rückflusstemperatur gerührt. Nach 16 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert, und der

Rückstand mit 200 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischenPhase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt.

Ausbeute: 1,49 g (49,1 % d. Th)

Smp:182-186 °C

R_f: 0,5 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (CDCl₃): δ 6.69 (b, 2H), 5.98 (d, 1H), 5.81 (d, 1H), 4.61 (m, 2H), 4.48 (d, 1H), 4.32 (d, (1H), 4.21 (d, 1H), 3,89 (m, 1H), 3.87 (s, 3H), 3.42 (t, 1H), 2.79 (d, 1H), 2.01 (dt, 1H), 1.79 (dd, 1H), 1.61 (d, 1H), 1.11 (d, 3H), 0,98 (d, 3H); 13 C-NMR (CDCl₃): δ 157.0 (s), 148.3 (s) 144.8 (s) 132.9 (d), 132.8 (s), 129.4 (d), 126.4 (d), 120.0 (d), 111.3 (d), 88.8 (d), 63.3 (d), 56.3 (q), 51.8 (t), 48.8 (s), 46.0 (t), 42.9 (d), 37.7 (t), 32.6 (t), 23.9 (q), 23.6 (q);

Beispiel 15

(4aS, 6S, 8aS) - 4a, 5, 9, 10, 11, 12-Hexahydro-11-(2-(morpholin-4-yl)-ethyl)-3-methoxy-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ia Y₁=H, Y₂=OH, X=H, Z₁=C₆H₁₂NO)

1,55 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$), 2,35 g Kaliumcarbonat und 1,11 g N-(2-Chlorethyl)-morpholin Hydrochlorid werden in 30 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 48 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert, und der Rückstand mit 200 ml 2N 40 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit Ammoniak-Lösung basisch eingestellt und mit 3x40 ml Ethylacetat extrahiert. vereinigten organischen Phasen werden über Natriumsulfat getrocknet, und unter Vakuum eingeengt. Produkt Das säulenchromatographisch (Chloroform:MeOH=9:1) gereinigt.

Ausbeute: 0,51 g (23,3 % d. Th) weißer Schaum

R_f: 0,5 (Chloroform:MeOH=:9:1)

¹H-NMR (CDCl₃): δ 6.69 (d, 1H), 6.57 (d, 1H), 6.07 (d, 1H), 5.78 (d, 1H), 4.61 (m, 2H), 4.18 (d, 1H), 4.35 (s, 3H), 3.80 (d, 1H), 3,65 (m, 4H), 3.31 (t, 1H), 3.09 (d, 1H), 2.69 (d, 1H), 2.57 (m, 2H), 2.50 (m, 5H), 2.28 (b, 1H), 2.19 (t, 1H), 1.72 (t, 1H), 1.59 (d, 1H); 13 C-NMR (CDCl₃): δ 146.7 (s) 143.9 (s) 133.0 (s), 131.8 (d), 129.4 (d), 126.4 (d), 121.5 (d), 110.9 (d), 88.4 (d), 66.8 (2t), 63.0 (d), 57.7 (d), 57.1 (q), 55.8 (t), 54.1 (2t), 52.1 (s), 48.3 (t), 47.9 (t), 33.5 (t), 32.4 (t);

Beispiel 16

2,0 g (-)-Epi-Norgalanthamin (Ia Y_1 =H, Y_2 =OH, X=H, Z_1 =H), 2,45 g NaHCO₃ und 0,88 2-Chlorpyrimidin q werden in 120 ml Ethanol bei Rückflusstemperatur gerührt. Nach 44 Stunden die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 120 ml Wasser und 200 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird wässrige Phase mit 2x100 ml Ethylacetat extrahiert. vereinigten organischen Phasen werden über Natriumsulfat getrocknet, und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt.

Ausbeute: 1,24 g (48,2 % d. Th)

Smp: 223-226 °C

R_f: 0,65 (Chloroform:MeOH=9:1)

 1 H-NMR (DMSO): δ 8.30 (d, 2H), 6.72 (d, 1H), 6.65 (d, 1H), 6.54 (t, 1H), 6.20 (d, 1H), 5.72 (d, 1H), 5.29 (d, 1H), 5.08 (d, 1H), 4.79 (d, 1H), 4.48 (m, 2H), 4.25 (m, 1H), 3.68 (s, 3H), 2.45 (m, 1H), 1.95 (t, 1H), 1.78 (d, 1H), 1.65 (t, 1H); 13 C-NMR (DMSO): δ 161.1 (s), 158.8 (s), 147.9 (s), 144.1 (s) 133.6 (s), 133.5 (2d), 130.6 (d), 126.9 (d), 122.1 (d), 111.9 (d), 110.7 (d), 88.4 (d), 62.2 (d), 56.4 (q), 48.8 (t), 45.5 (s), 41.0 (t), 36.5 (t), 32.8 (t);

Beispiel 17

 $(4aS, 6S, 8aS) - 4a, 5, 9, 10, 11, 12 - Hexahydro - 3 - methoxy - 11 - (2 - methyl - prop - 2 - enyl) - 6H - [1] \\ benzofuro [3a, 3, 2 - ef] [2] \\ benzazepin - 6 - ol (I Y_1 = H, Y_2 = OH, X = H, Z_1 = C_4H_7)$

2,0 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H)$, 2,02 q Kaliumcarbonat, 1,27 g Kaliumjodid und 0,85 ml 3-Chlor-2-methyl-1propen werden in 80 ml Aceton bei Rückflusstemperatur gerührt. Nach 48 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert und der Rückstand mit 200 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit 30%-iger Natriumhydroxid-Lösung basisch eingestellt und mit Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Produkt wird säulenchromatographisch (Chloroform: MeOH=95:5) gereinigt.

Ausbeute: 1,8 g (75,1 % d. Th) harziges \ddot{o} 1 R_f: 0,65 (Chloroform:MeOH=95:5)

¹H-NMR (CDCl₃): δ 6.72 (d, 1H), 6.53 (d, 1H), 6.11 (d, 1H), 5.82 (d, 1H), 4.85 (d, 2H), 4.60 (m, 1H), 4.54 (b,1H), 4.09 (d, 1H), 3.87 (s, 3H), 3.67 (d, 1H), 3,32 (t, 1H), 3.05 (m, 2H), 2.83 (d, 1H), 2.18 (dt, 1H), 1.93 (b, 1H), 1.65 (s, 3H), 1.71 (d, 1H), 1.59 (d, 1H); ¹³C-NMR (CDCl₃): δ 146.7 (s) 143.9 (s) 133.0 (s), 131.8 (d), 129.4 (d), 126.4 (d), 121.5 (d), 110.9 (d), 88.4 (d), 66.8 (2t), 63.0 (d), 57.7 (d), 57.1 (q), 55.8 (t), 54.1 (2t), 52.1 (s), 48.3 (t), 47.9 (t), 33.5 (t), 32.4 (t);

Beispiel 18

 $(4aS, 6S, 8aS) - 4a, 5, 9, 10, 11, 12 - Hexahydro - 3 - methoxy - 11 - propargyl - 6H - \\ [1]benzofuro[3a, 3, 2 - ef][2]benzazepin - 6 - ol (Ia Y₁ = H, Y₂ = OH, X = H, Z₁ = C₃H₃)$

2,6 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$), 6,1 g Kaliumcarbonat, 3,64 g Kaliumjodid und 1,47 ml 3-Brom-1-propin werden in 150 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 12 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert, und der Rückstand mit 300 ml 2N HCl und mit 100 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit Ammoniak-

Lösung basisch eingestellt und mit 3x100 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 0,8 g (26,1% d. Th)

Smp: 157-160 °C

R_f: 0,45 (Chloroform:MeOH=95:5)

 $^{1}\text{H-NMR}$ (CDCl₃): δ 6.65 (d, 1H), 6.58 (d, 1H), 6.08 (d, 1H), 5.85 (d, 1H), 4.72 (m, 1H), 4.65 (b, 1H), 4.12 (d, 1H), 3.87 (s, 3H), 3.79 (d, 1H), 3,38 (s, 2H), 3.31 (m, 1H), 3.20 (d, 1H), 2.45 (b, 1H), 2.31 (s, 1H), 2.10 (dt, 1H), 1.72 (m, 2H); $^{13}\text{C-NMR}$ (CDCl₃): δ 146.7 (s) 143.9 (s) 132.9 (s), 131.9 (d), 128.5 (s), 126.4 (d), 121.6 (d), 111.0 (d), 88.4 (d), 79.5 (s), 72.9 (t), 63.0 (d), 58.0 (t), 55.9 (q), 51.7 (t), 48.0 (t), 43.9 (s), 34.9 (t), 32.3 (t);

Beispiel 19

 $\label{eq:continuous} $$ (4as,6s,8as)-4a,5,9,10,11,12-\text{Hexahydro-3-methoxy-11-benzoyl-6H-} $$ [1]$ benzofuro[3a,3,2-ef][2]$ benzazepin-6-ol (Ia Y_1=H, Y_2=OH, X=H, Z_1=C_7H_5O) $$$

2,0 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H)$, Kaliumcarbonat und 0,9 ml Benzoylchlorid werden in 50 ml Acetonitril Rückflusstemperatur gerührt. Nach einer Stunde Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel Vakuum abdestilliert und der Rückstand mit 100 ml Wasser und Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit 2x40 ml 1N HCl und 1x20 ml gesättigte NaCl-Lösung (brine) gewaschen, über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Der Rückstand wird aus 2-Butanon kristallisiert.

Ausbeute: 1,5 g (54 % d. Th)

Smp: 198-199 °C

R_f: 0,4 (Chloroform:MeOH:Ammoniak-Lösung=95:4,5:0,5)

¹H-NMR (DMSO): δ 7.61 (m, 4H), 7,18 (d, 1H), 6.69 (m, 2H), 6.12 (d, 1H), 5.78 (b, 1H), 4.61 (b, 2H), 4.28 (b, 2H), 3.71 (s, 3H), 3.53 (m, 1H), 3.52 (m, 2H), 1.92 (m, 2H), 1,63 (m, 2H); (DMSO): δ170.2 (s) 147.1 (s) 143. 5 (s), 136.6 (s), 132.9 (s), 132.7 (d), 128.7 (s), 128.0 (d), 126.2 (d), 126.0 (d), 125.8 (d), 125.5 (d), 120.8 (d), 119.3 (d), 111.3 (d), 87.4 (d), 61.1 (d), 55.4 (q), 53.1 (t), 48.1 (s), 47.3 (t), 43.1 (t), 31.8 (t);

Beispiel 20

(4aS, 6S, 8aS) -6-Hydroxy-3-methoxy-4a, 5, 9, 10-tetrahydro-6H[1]benzofuro[3a, 3, 2-ef] [2]benzazepin-11(12H)-thiocarbonic acid allylamide (Ia Y_1 =H, Y_2 =OH, X=H, Z_1 =C $_7$ H $_5$ O)

1,5 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$) und 0,6 ml Allylisothiocyanat werden · in 50 ml Tetrahydrofuran Rückflusstemperatur gerührt. Nach 3 Stunden wird die Reaktionsmischung Raumtemperatur abgekühlt und das Lösungsmittel unter Vakuum abdestilliert. Der Rückstand säulenchromatographisch wird (Chloroform:MeOH=97:3) gereinigt.

Ausbeute: 1,9 g (92 % d. Th) weisser Schaum R_f : 0,25 (Chloroform:MeOH=97:3)

 1 H-NMR (CDCl₃): δ 6.67 (m, 2H), 6.01 (d, 1H), 5.88 (m, 2H), 5.50 (b, 1H), 5.31 (d, 1H), 5.09 (t, 2H), 4.02 (d, 1H), 4.61 (m, 2H), 4.23 (m, 2H), 3.85 (s, 3H), 3,60 (t, 1H), 2.78 (d, 1H), 2.22 (t, 1H), 1.88 (d, 1H), 1.75 (t, 1H); ATP-NMR (DMSO): δ 181.6 (s), 148.7 (s) 145.3 (s) 134.2 (d), 132.8 (d), 126.8 (s), 126.4 (d), 1120.3 (d), 117.2 (s), 111.5 (d), 88.7 (d), 63.4 (d), 56.4 (q), 54.0 (t), 51.4 (s), 48.9 (t), 48.7 (t), 36.7 (t), 32.4 (t);

Beispiel 21

(4aS, 6S, 8aS) -4a, 5, 9, 10-Tetrahydro-6-hydroxy-3-methoxy-6H- [1]benzofuro[3a, 3, 2-ef] [2]benzazepin-11(12H)-carboxamid (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=CH_2NO$)

2,2 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$) und 1,05 g Natriumcyanid werden in 112 ml Wasser bei Raumtemperatur gerührt und

mit 16 ml 2N HCl portionsweise versetzt. Nach 24 Stunden wird der ausgefallene Niederschlag abfiltriert, mit 2x2 ml Wasser nachgewaschen und im Vakuumtrockenschrank 18 Stunden bei 50 °C getrocknet.

Ausbeute: 0,56 g (22 % d. Th)

Smp: 168-173 °C

R_f: 0,25 (Chloroform:MeOH=9:1)

 1 H-NMR (DMSO): δ 6.62 (d, 1H), 6.49 (d, 1H), 6.00 (d, 1H), 5.58 (d, 1H), 4.47 (b, 1H), 4.26 (t, 1H), 3.85 (d, 1H), 3.72 (d, 1H), 3.70 (s, 3H), 3.09 (m, 2H), 2.45 (m, 2H), 1.75 (m, 1H), 1.59 (t, (1H); 13 C-NMR (DMSO): δ 147.6 (s) 143.8 (s) 135.1 (s), 134.2 (s), 133.3 (d), 127.2 (d), 120.3 (d), 112.0 (d), 88.7 (d), 62.2 (d), 56.4 (q), 53.8 (t), 49.0 (s), 47.4 (t), 41.1 (t), 32.9 (t);

Beispiel 22

2,0 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$), 2,02 g Kaliumcarbonat und 1,0 ml 3,3-Dimethylallylbromid werden in 80 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 48 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 200 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit Ammoniak-Lösung basisch eingestellt und mit 3x100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=9:1) gereinigt.

Ausbeute: 1,93 g (77 % d. Th)

Smp: 36-48 °C

R_f: 0,2 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (DMSO): δ 6.63 (d, 1H), 6.48 (d, 1H), 6.01 (d, 1H), 5.67 (d, 1H), 3.25 (m, 1H), 3.04 (d, 1H), 4.49 (s, 1H), 4.24 (b, 1H), 3.99 (d, 1H), 3.71 (s, 3H), 3.58 (d, 1H), 3.21 (t, 1H), 3.10 (m, 2H), 2.48 (m, 2H), 2.01 (dt, 1H), 1,68 (s, 3H), 1.62 (dt, 1H), 1.43 (s, 3H);

 13 C-NMR (DMSO): δ 147.1 (s), 144.0 (s) 134.4 (s), 133.5 (d), 130.6 (s), 126.7 (d), 123.2 (d), 121.1 (d), 112.1 (d), 88.7 (d), 62.2 (d), 57.8 (s), 56.3 (q), 51.8 (t), 50.4 (s), 48.6 (t), 41.0 (t), 40.0 (t), 39.7 (t) 26.6 (q), 18.8 (q);

Beispiel 23

2,0 g (-)-Epi-Norgalanthamin (Ia $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$), Kaliumcarbonat und 1,92 g 4-Brombenzylbromid werden Tetrahydrofuran bei Raumtemperatur gerührt. Nach 12 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, der Niederschlag abfiltriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 1,81 g (56 % d. Th)

Smp: 77-100 °C

R_f: 0,3 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 7.47 (d, 2H), 7.21 (d, 2H), 6.68 (d, 1H), 6.39 (d, 1H), 6.08 (d, 1H), 5.69 (d, 1H), 3.98 (d, 1H), 4.56 (b, 1H), 4.11 (d, 1H), 3.71 (s, 3H), 4.50 (m, 3H), 3.32 (m, 1H), 2.95 (d, 1H), 2.49 (m, 1H), 2.13 (t, 1H), 1.62 (t, 1H), 1.48 (d, 1H);

¹³C-NMR (DMSO): δ 147.3 (s), 144.2 (s), 139.6 (s) 134.2 (s), 133.6 (d), 131.9 (2d), 131.6 (2d), 130.2 (s), 126.6 (d), 121.8 (d), 120.6 (s), 112.2 (d), 88.6 (d), 62.2 (d), 57.6 (t), 55.3 (q), 51.6 (t), 48.7 (s), 41.0 (t), 34.0 (t), 33.0 (t);

Beispiel 24

(4aR, 6R, 8R) - 4a, 5, 9, 10, 11, 12 - Hexahydro-3-methoxy-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ib Y₁=H, Y₂=OH, X=H, Z₁=H)

10 g (+)-Norgalanthamin , welches gemäß der WO-A-01/74820 hergestellt wurde, werden in 400 ml 2 %-iger HCl-Lösung unter Rückflusskühlung bei Siedetemperatur gerührt. Nach 3 Stunden wird die Reaktionsmischung abgekühlt, mit cc Ammoniak-Lösung basisch eingestellt und der ausgefallene Niederschlag abgetrennt.

Ausbeute: 7,6 g (76 % d. Th)

Smp: 166-168 °C

 $R_f: 0,2$ (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (CDCl₃): δ 6.70 (d, 1H), 6.62 (d, 1H), 6.00 (d, 1H), 5.78 (d, 1H), 4.68 (b, 2H), 3.95 (d, 1H), 3.85 (d, 1H), 3.79 (s, 3H), 3.32 (d, 1H), 3.20 (t, 1H), 2.75 (m, 1H), 1.90 (d, 1H), 1.82 (dt, 1H), 1.59 (dt, 1H); 13 C-NMR (CDCl₃): δ 147.5 (s) 144.2 (s) 133.5 (s), 133.4 (s), 132.5 (d), 126.9 (d), 120.5 (d), 111.2 (d), 88.9 (d), 63.0 (d), 56.3 (q), 54.1 (t), 49.0 (s), 47.6 (t), 41.4 (t), 32.7 (t);

Beispiel 25

2,2 g (+)-Epi-norgalanthamin (Ib $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$) werden in 112 ml bidestilliertem Wasser gelöst, mit 2N HCl auf pH=3 eingestellt, 1,05g NaOCN zugegeben, und der pH-Wert neuerlich mit 2N HCl auf 3 eingestellt. Das Reaktionsgemisch wird 20 Stunden bei Raumtemperatur gerührt, der entstandene Niederschlag abfiltriert und bei 50 mbar und 60 °C im Vakuumtrockenschrank 20 Stunden lang getrocknet. Die erhaltenen 2,2g an Rohprodukt werden in 15 ml MeOH durch Erhitzen auf Rückfluss gelöst, eine Stunde im Eisbad gerührt und filtriert.

Ausbeute: 1,1g (43,2 % d. Th.) weiße Kristalle

FP: 208-214°C

R_f.: 0,45 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (DMSO): δ 6.72 (d, 1H), 6.68 (d, 1H), 6.08 (d, 1H), 5.87 (b, 2H, NH2), 5.69 (d, 1H), 5.00 (d, 1H), 4.59 (d, 1H), 4.48 (s, 1H), 4.28 (m, 1H), 4.11 (m, 1H), 3.71 (s, 3H), 3.38 (m, 2H), 2.49 (m, 2H), 1.88 (dt, 1H), 1.62 (m, 2H); 13 C-NMR (DMSO): δ 158.3 (s), 147.8 (s), 144.2 (s) 133.6 (d), 133.5 (s), 131.1 (s), 126.8 (d), 121.3 (d), 112.0 (d), 88.5 (d), 62.2 (d), 56.4 (q), 48.7 (t), 45.5 (s), 41.0 (t), 37.9 (t), 32.8 (t);

Beispiel 26

(4aR, 6R, 8aR) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-ethyl-6H-[1]benzofuro[3a, 3, 2-ef] [2]benzazepin-6-ol (Ib Y₁=H, Y₂=OH, X=H, Z₁=C₂H₅)

1,35 g (+)-Epi-Norgalanthamin (Ib $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$), 2,0 g Kaliumcarbonat und 0,8 ml Ethylbromid werden in 50 ml Tetrahydrofuran bei Rückflusstemperatur gerührt. Nach 70 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 50 ml Wasser und mit 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH:Ammoniak-Lösung=95:4,5:0,5) gereinigt.

Ausbeute: 1,0 g (67,2 % d. Th)

Smp: 135-136 °C

R_f: 0,2 (Chloroform: MeOH: Ammoniak-Lösung=95:4,5:0,5)

¹H-NMR (DMSO): δ 6.63 (d, 1H), 6.50 (d, 1H), 6.05 (d, 1H), 5.68 (d, 1H), 4.95 (b, 1H), 4.48 (s, 1H), 4.27 (b, 1H), 4.02 (d, 1H), 3.72 (s, 3H), 3.68 (d, 1H), 3.29 (t, 1H), 3.08 (d, 1H), 2.41 (m, 2H), 2.03 (t, 1H), 1.62 (t, 1H), 1.57 (d, 1H), 0.91 (t, 3H); (DMSO): δ 147.2 (s) 144.0 (s) 134.1 (s), 133.5 (d), 130.3 (s), 126.7 (d), 121.8 (d), 112.1 (d), 88.6 (d), 62.2 (d), 56.9 (d), 56.3 (q), 51.7 (t), 48.7 (s), 45.5 (t), 33.7 (t), 33.0 (t), 13.5 (q);

Beispiel 27

Methyl (4aR, 6R, 8aR) -N11-cyano-6-hydroxy-3-methoxy-4a, 5, 9, 10-tetrahydro-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-carboximidothioat (Ik Y_1 =H, Y_2 =OH, X=H, Z_1 =C₂H₅)

2,5 g (+)-Epi-Norgalanthamin (Ib $Y_1=H$, $Y_2=OH$, X=H, $Z_1=H$) und 1,05 g Dimetyl-N-cyandithioiminocarbonat werden in 80 ml Ethanol und 20 ml Dimethylformamid bei Rückflusstemperatur gerührt. Nach 21 Stunden wird Reaktionsmischung auf Raumtemperatur abgekühlt das Lösungsmittel im Vakuum abdestilliert. Der Rückstand wird säulenchromatographisch (Chloroform: MeOH=98:2) gereinigt.

Ausbeute: 0,72 g (20,5 % d. Th)

Smp: 78-79 °C

R_f: 0,35 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 6.72 (m, 2H), 6.12 (d, 1H), 5.72 (d, 1H), 5.05 (m, 2H), 6.19 (m, 2H), 4.26 (b, 1H), 3.72 (s, 3H), 3.32 (b, 1H), 2.62 (s, 3H), 2.49 (m, 1H), 1.89 (m, 2H), 1.65 (m, 1H); (DMSO): δ 148.0 (s), 144.9 (s) 134.1 (d), 133.0 (s), 127.3 (s), 126.3 (d), 121.7 (d), 115.5 (s), 115.0 (s), 112.3 (d), 88.2 (d), 62.0 (d), 56.4 (q), 48.4 (t), 41.0 (s), 40.9 (t), 40.8 (t), 32.7 (t), 16.6 (q);

Beispiel 28

(4aR, 6R, 8aR) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a, 3, 2-ef][2]benzazepin-6-amin, Dihydrochloride

3,0 g (+)-Galanthamin, hergestellt nach Kametani, Heterocycles 4, 1111, 1976, sowie 3,3 g Triphenylphosphin und Stickstoffwasserstoffsäure (1,06 mol/lit in Benzol) werden in 225 ml Tetrahydrofuran aufgelöst, bei Raumtemperatur mit 7,0 mlAzodicarbonsäurediethylester (40 % in Toluol) versetzt und intensiv gerührt. Nach 20 Stunden wird die Reaktionsmischung mit 150 ml 2N HCl versetzt, eine Stunden intensiv gerührt, die organische abgetrennt, und die wässrige Phase mit 2x50 ml Ethylacetat gewaschen. Der pH-Wert der wässrigen Phase wird mit Ammoniak-Lösung auf gestellt und die trübe Suspension mit 3x80 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das wird säulenchromatographisch (Chloroform: MeOH: Ammoniak-Lösung=95:4,5:0,5) gereinigt. Das erhaltene Öl wird in Isopropanol aufgelöst und das Hydrochlorid-Salz aus etherischer HCl gefällt.

Ausbeute: 1,54 g (41 % d. Th)

Smp: 235-250 °C

R_f: 0,45 freie Base (Chloroform:MeOH:Ammoniak-Lösung=95:4,5:0,5)

 1 H-NMR (CDCl₃): δ 6.69 (d, 1H), 6.60 (d, 1H), 6.21 (d, 1H), 5.75 (d, 1H), 4.62 (b, 1H), 4.37 (m, 1H), 4.08 (d, 1H), 3.89 (s, 3H), 3.67 (d, 1H), 3.29 (t, 1H), 3.09 (d, 1H), 2.81 (m, 1H), 2.41 (s, 3H), 2.22 (dt, 1H), 1.85 (dt, 1H), 1.67 (d, 1H);

 $^{13}\text{C-NMR}$ (CDCl₃): δ 146.9 (s) 144.3 (s) 132.8 (s), 129.8 (s), 129.3 (d), 126.9 (d), 122.1 (d), 111.5 (d), 87.9 (d), 60.8 (d), 56.3 (q), 54.4 (t), 53.8 (q), 48.6 (s), 42.5 (d), 34.7 (t), 29.1 (t);

Beispiel 29

(4aR, 6S, 8aR) - 11 - (3-hydroxypropyl) - 3-methoxy - 5, 6, 9, 10, 11, 12-hexahydro - 4aH - [1]benzofuro[3a, 3, 2-ef][2]benzazepin - 6-ol (Ib Y₁=OH, Y₂=H, X=H, Z₁=C₃H₇O)

1,3 g (+)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 2,6 g Kaliumcarbonat und 0,65 ml 3-Brom-1-propanol werden in 70 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 48 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel unter Vakuum abdestilliert und der Rückstand mit 90 ml Wasser und mit 40 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x30 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=9:1) gereinigt.

Ausbeute: 0,86 g (54,5 % d. Th) harziges \ddot{O} 1 R_f: 0,45 (Chloroform:MeOH=9:1)

 1 H-NMR (CDCl₃): δ 6.66 (m, 2H), 6.05 (m, 2H), 4.59 (b, 1H), 4.14 (m, 1H), 4.09 (d, 1H), 3.95 (d, 1H), 3.81 (s, 3H), 3.79 (t, 2H), 3.31 (m, 2H), 2.75 (m, 3H), 2.05 (m, 2H), 1.78 (m, 1H), 1.59 (m, 2H); 13 C-NMR (CDCl₃): δ 146.2 (s) 144.7 (s) 133.5 (s), 128.7 (s), 128.2 (d), 127.0 (d), 122.7 (d), 111.6 (d), 89.1 (d), 64.8 (t), 62.4 (d), 57.8 (d), 56.3 (q), 52.4 (t), 52.1 (t), 48.7 (s), 33.3 (t), 30.3 (t), 27.9 (t);

Beispiel 30

(4aS, 6R, 8aS) -6-hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH- [1]benzofuro[3a, 3, 2-ef] [2]benzazepine-11(12H)-carbothioamide (Ib Y_1 =OH, Y_2 =H, X=H, Z_1 =CH₂NO)

2,2 g (+)-Norgalanthamin , welches gemäß der WO-A-01/74820 hergestellt wurde, werden in 112 ml bidestilliertem Wasser gelöst, mit 2N HCl auf pH=3 eingestellt, 1,05g NaOCN zugegeben und der pH-Wert

neuerlich mit 2N HCl auf 3 eingestellt. Das Reaktionsgemisch wird 20 Stunden bei Raumtemperatur gerührt, mit konz. Ammoniak-Lösung basisch eingestellt und 3x mit je 40 ml Dichlormethan ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und eingedampft. Die erhaltenen 2,5 g werden an 170 g Kieselgel mit dem Laufmittel Chloroform:Methanol=95:5 säulenchromatographisch gereinigt, und die gereinigten Fraktionen eingedampft.

Ausbeute: 1,08 g (42,4%d. Th.) weiße Kristalle

FP: 101-114°C

 R_{f} : 0,29 (Chloroform:MeOH=95:5)

¹H-NMR (DMSO): δ 6.75 (d, 1H), 6.69 (d, 1H), 6.08 (d, 1H), 5.87 (b, 2H, NH2), 5.78 (dd, 1H), 5.60 (d, 1H), 4.54 (b, 1H), 4.22 (m, 2H), 4.05 (m, 1H), 3.70 (s, 3H), 3.39 (m, 1H), 2.29 (d, 1H), 2.05 (dd, 1H), 1.78 (t, 1H), 1.60 (d, 1H); ¹³C-NMR (DMSO): δ 158.3 (s), 147.6 (s), 144.2 (s) 133.1 (d), 131.1 (s), 129.0 (d), 127.8 (d), 121.1 (d), 111.9 (d), 87.3 (d), 60.6 (d), 56.4 (q), 51.0 (t), 48.6 (s), 45.5 (t), 38.1 (t), 31.6 (t);

Beispiel 31

(4aS, 6S, 8aS) -4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-benzoyl-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol

Stufe 1

Eine Lösung von 6,0 g (+)-Galanthamin, hergestellt nach Kametani, Heterocycles 4, 1111, 1976), in 42 ml Eisessig wird mit einer Mischung von 12,7 ml Salpetersäure und 21 ml Eisessig bei 0-5 °C tropfenweise versetzt. Nach 15 min wird die Reaktionsmischung auf 100 ml Wasser getropft, der pH-Wert mit Ammoniak-Lösung auf 12 gestellt und mit 100 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 3x50 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 1,47 g (19,4 % d. Th) braunes \ddot{O} 1 R_f: 0,25 (Chloroform:MeOH=95:5)

Stufe 2

1,47 g des aus Stufe 1 erhaltenen Produktes, 2,94 g Zinkpulver und 1,47 g CaCl₂ werden in 44 ml Ethanol und 22 ml Wasser bei Rückflusstemperatur gerührt. Nach 3 Stunden wird der erhaltene Niederschlag abfiltriert und das Lösungsmittel abdestilliert. Das Produkt wird säulenchromatographisch (Chloroform:MeOH:Ammoniak-Lösung=90:9:1) gereinigt.

Ausbeute: 0,36 g (43,4 % d. Th)

Smp: 166-167 °C

R_f: 0,3 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 6.18 (s, 1H), 6.04 (d, 1H), 5.78 (dd, 1H), 4.41 (b, 2H, NH2), 4.33 (b, 1H), 4.01 (d, 1H), 3.82 (d, 1H), 3.58 (s, 3H), 3.55 (d, 1H), 3.18 (t, 1H), 2.87 (d, 1H), 2.28 (s, 3H), 2.22 (d, 1H), 1.98 (d, 1H), 1.89 (t, 1H), 155 (d, 1H); $^{13}\text{C-NMR} \text{ (DMSO)}: δ 158.3 (s), 147.6 (s), 144.2 (s) 133.1 (d), 131.1 (s), 129.0 (d), 127.8 (d), 121.1 (d), 111.9 (d), 87.3 (d), 60.6 (d), 56.4 (q), 51.0 (t), 48.6 (s), 45.5 (t), 38.1 (t), 31.6 (t);$

Beispiel 32

2-((4aS, 6R, 8aS)-6-Hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH[1]benzofuro[3a, 3, 2-ef] [2]benzazepin-11(12H)-yl)-1-methyl-1-(3-phenoxyphenyl)-ethane Hydrochloride (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₁₅H₁₅O)

Stufe 1

3,63 g (+/-)-2-[3-Phenoxyphenyl]-1-propansäure werden in 20 ml Tetrahydrofuran gelöst, 700 mg Lithiumaluminiumhydrid zugegeben und 1 Stunde bei Raumtemperatur gerührt. Danach werden vorsichtig 50 ml Wasser zugetropft, 1 Stunde gerührt und filtriert. Das klare Filtrat wird 3mal mit je 20 ml Ethylacetat extrahiert, die vereinigten organischen Phasen mit Natriumsulfat getrocknet, filtriert und das Lösungsmittel abgezogen.

Ausbeute: 2,4 g (70 % d. Th.) farbloses $\ddot{O}1$ R_f.. 0,36 (Petrolether: Ethylacetat=4:1)

Stufe 2

3,15 g Triphenylphosphin werden in 90ml Tetrahydrofuran gelöst, 0,6ml Brom zugetropft und zur entstandenen Suspension 2,4 g (+/-)-2-[3-

Phenoxyphenyl]-1-propanol aus Stufe 1 in festem Zustand zugegeben. Nach 30 Minuten werden 100 ml Wasser zugegeben, 3mal mit je 30 ml Ethylacetat extrahiert, die organischen Phasen vereinigt, über Natriumsulfat getrocknet, filtriert und das klare Filtrat durch eine kurze Kieselgelsäule gesaugt. Nach Abdampfen des Lösungsmittels werden 2.7 g (88 % d. Th.) eines farblosen Öles erhalten. Das entstandene (+/-)-2-[3-Phenoxyphenyl]-1-Brompropan wurde sofort für die nächste Stufe verwendet.

Stufe 3

(-)-Norgalanthamin HCl, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 4g 3-(1-Brom-2-Propyl).-diphenylether 9,97g Kaliumcarbonat werden in 53 ml Acetonitril bei 85°C 40 Stunden lang gerührt. Die Suspension wird in 10 ml Wasser gegossen und 3mal mit je 30 ml Ethylacetat extrahiert. Nach dem Trocknen der organischen Phase über Natriumsulfat wird diese filtriert und eingedampft und die erhaltenen 4,5 a an 400 g Kieselgel mit Ethylacetat säulenchromatographisch gereinigt. Die produkthaltigen Fraktionen werden vom Lösungsmittel befreit, in 50 ml Diethylether aufgenommen, und das Hydrochlorid mit etherischer HCl ausgefällt.

Ausbeute: 1,5 g (19 % d. Th.)

Smp: 109-115°C

 R_f .: 0,67 (Ethylacetat)

 1 H-NMR (CDCl₃): δ 7.35 (m, 2H), 7.24 (m, 1H), 7.13 (m, 1H), 7.00 (m, 2H), 6.89 (m, 3H), 6.62 (m, 2H), 6.04 (m, 2H), 4.60 (b, 1H), 4.14 (m, 2H), 3.85 (s, 3H), 3.77 (t, 1H), 3.38 (m, 1H), 3.12 (m, 1H), 2.91 (m, 1H), 2.70 (m, 2H), 2.48 (m, 1H), 1.99 (m, 2H), 1.48 (m, 1H), 1,25 (m, 3H); 13 C-NMR (CDCl₃): δ 157.3 (s), 157.2 (s), 157.0 (s), 148.3 (s), 148.2 (s), 145.8 (s) 144.0 (s) 133.2 (s), 133.1 (s), 129.9 (s), 129.6 (d), 129.5 (d), 129.4 (d), 127.5 (d), 127.4 (d), 127.0 (d), 123.0 (d), 122.9 (d), 122.2 (d), 122.1 (d), 121.9 (d), 121.8 (d), 118.7 (d), 118.6 (d), 111.0 (d), 88.7 (d), 62.1 (d), 58.0 (t), 57.0 (t), 55.9 (q), 52.3 (t), 51.2 (t), 48.5 (s), 48.4 (s), 37.9 (d), 37.7 (d), 32.8 (t), 32.5 (t), 29.9 (t), 20.0 (q), 19.5 (q);

Beispiel 33

(4aS, 6R, 8aS) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-benzoyl-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₂H₅O)

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, wird in 50 ml Acetonitril unter leichtem Erwärmen aufgelöst und abgekühlt. Die Reaktionsmischung wird mit Kaliumcarbonat 0,9 und Benzoylchlorid ml versetzt und bei Raumtemperatur weitergerührt. Nach einer Stunde wird das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 50 ml Wasser und Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 3x20 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit 2x20 ml 1N HCl und 1x20 ml Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Der Rückstand wurde aus 2-Butanon und tert.-Butylmethylether (MTBE) kristallisiert.

Ausbeute: 1,76 g (63,7 % d. Th)

Smp: 152-154 °C

R_f: 0,75 (Chloroform:MeOH:Ammoniak-Lösung=95:4,5:0,5)

 1 H-NMR (DMSO): δ 7.39 (m, 4H), 7.11 (d, 1H), 6.72 (b, 1H), 6.63 (d, 1H), 6.09 (m, 1H), 5.81 (b, 1H), 4.62 (d, 1H), 4.55 (b, 1H), 4.31 (m, 2H), 4.09 (d, 1H), 3.71 (s, 3H), 3.48 (m, 1H), 2.32 (t, 1H), 2.09 (m, 1H), 1.89 (b, 1H), 1.70 (m, 1H); 13 C-NMR (DMSO): δ171.0 (s) 147.8 (s) 144.5 (s), 137.5 (s), 133.3 (s), 130.1 (d), 129.7 (s), 129.4 (d), 129.3 (d), 129.0 (d), 127.7 (d). 127.5 (d), 121.6 (d), 120.3 (d), 112.3 (d), 87.3 (d), 60.5 (d), 56.4 (q), 54.2 (t), 48.5 (s), 44.0 (t), 37.4 (t), 31.4 (t);

Beispiel 34

2-((4aS, 6R, 8aS)-6-Hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl)acetamide (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₂H₄NO)

3,0 g (-)-Norgalanthamin HCl, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 3,0 g Kaliumcarbonat und 1,4 g 2-Bromacetamid werden in 50 ml Acetonitril unter Rückfluss gerührt. Nach 3 Stunden

wird der erhaltene Niederschlag warm abfiltriert, das Lösungsmittel im Vakuum entfernt und der Rückstand aus Ethanol auskristallisiert.

Ausbeute: 1,74 g (54,4 % d. Th)

Smp: 107-113 °C

R_f: 0,5 (Chloroform:MeOH:Ammoniak-Lösung=89:10:1)

¹H-NMR (DMSO): δ 7.18 (d, 2H, NH2), 6.71 (d, 1H), 6.52 (d, 1H), 6.07 (d, 1H), 5.81 (dd, 1H), 4.48 (b, 1H), 4.27 (d, 1H), 4.19 (d, 1H), 4.05 (b, 1H), 3.71 (s, 3H), 3.63 (d, 1H), 3.28 (t, 1H), 3.00 (d, 1H), 2.88 (d, 1H), 2.27 (d, 1H), 2.06 (m, 1H), 1.93 (t, 1H), 1.46 (d, 1H); 13 C-NMR (DMSO): δ 173.2 (s), 147.1 (s), 144.3 (s) 133.6 (s), 130.2 (s), 129.2 (d), 127.7 (d), 121.9 (d), 112.1 (d), 87.6 (d), 60.8 (d), 58.5 (t), 56.4 (q), 56.3 (t), 52.6 (s), 48.6 (t), 35.1 (t), 31.7 (t);

Beispiel 35

3-[(4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-y1]-2-methyl-1(-4-methyl-phenyl)propan-1-on, Hydrochloride (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C $_{11}$ H $_{13}$ O)

6,0 g (-)-Norgalanthamin HCl, welches gemäß der WO-A-017/4820 hergestellt wurde, sowie 3,3 g 4-Methylpropiophenon, 6,0 ml 1,3-Dioxolan und 0,2 ml 2N HCl werden unter Rückfluss gerührt. Nach 3 Stunden wird das Lösungsmittel abdestilliert und der Rückstand mit 100 ml Wasser und mit 50 ml Ethylacetat versetzt. Der pH-Wert wässrigen Phase wird mit Ammoniak-Lösung auf 9 eingestellt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 3x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden mit 1x20 ml gesättigter NaCl-Lösung (brine) und 1x20 ml Wasser gewaschen, über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt und das Produkt durch Säulenchromatographie (Ethylacetat : n Hexan=1:1 zu 8:2) gereinigt. Die erhaltene Substanz wird in Ethylacetat aufgenommen und das Hydrochlorid-Salz mit etherischer HCl gefällt.

Ausbeute: 4,4 g (48 % d. Th)

Smp: 143-151 °C

R_f: 0,4 (Chloroform:MeOH=97:3)

¹H-NMR (CDCl₃): δ 7.84 (m, 2H), 7.26 (m, 2H), 6.68 (m, 2H), 6.05 (m, 2H), 4.61 (b, 1H), 4.14 (m, 2H), 3.86 (s, 3H), 3.71 (m, 2H), 3.34 (m,

1H), 3.12 (m, 2H), 2.69 (d, 1H), 2.55 (m, 1H), 2.30 (m, 4H), 2.03 (m, 2H), 1.49 (d, 1H), 1.15 (m, 3H);

 $^{13}\text{C-NMR}$ (CDCl₃): δ 203.4 (s), 145.9 (s), 144.2 (s) 143.8 (s), 134.4 (s), 133.3 (s), 129.7 (s), 129.3 (d), 129.2 (d), 128.4 (d), 128.3 (d), 127.6 (d), 126.9 (d), 122.0 (d), 111.1 (d), 88.7 (d), 62.1 (d), 57.8 (t), 55.9 (q), 54.1 (t), 52.2 (t), 48.5 (s), 39.1 (d), 32.9 (t), 29.9 (t), 21,6 (q), 16.5 (q);

Beispiel 36

1-[(4aS, 6R, 8aS)-6-hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl]-2-(1-piperidyl)ethane-1-on (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C $_7$ H $_1$ 2NO)

3,0 g (-)-Norgalanthamin , welches gemäß der WO-A-017/4820 hergestellt wurde, sowie 1,86 ml Triethylamin und 0,6 ml Chroracetylchlorid werden in 150 ml Tetrahydrofuran bei 0 °C gerührt. Nach 10 min wird die Reaktionsmischung mit 3,0 g Kaliumcarbonat und 0,93 ml Piperidin versetzt und bei 90 °C weitergerührt. Nach 48 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 50 ml Wasser und 50 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x30 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 2,06 g (47,1 % d. Th) harziges \ddot{O} 1 R_f: 0,3 (Chloroform:MeOH=:9:1)

 1 H-NMR (CDCl₃): δ 6.69 (m, 2H), 5.98 (m, 2H), 5.19 (d, 1H), 4.56 (b, 1H), 4.37 (d, 1H), 4.15 (d, 1H), 3.80 (s, 3H), 3.27 (d, 1H), 3.18 (m, 1H), 2.89 (d, 1H), 2.69 (d, 1H), 2.41 (m, 5H), 2.06 (d, 1H), 1.91 (m, 1H), 1.75 (d, 1H), 1.50 (m, 4H), 1.39 (b, 1H); 13 C-NMR (CDCl₃): δ 196.5 (s), 146.8 (s), 144.6 (s), 132.5 (s), 128.7 (s), 128.0 (s),128.2 (d), 126.5 (d), 122.0 (d), 111.3 (d), 88.4 (d), 62.3 (t), 61.8 (d), 55.9 (d), 55.8 (q), 55.6 (t), 52.2 (s), 45.0 (t), 38.6 (t), 35.7 (t), 29.9 (t), 25.8 (t), 23.9 (t);

Beispiel 37

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-017/4820 hergestellt wurde, sowie 2,45 g NaHCO $_3$ und 0,88 ml 2-Chlorpyrimidin werden in 120ml Ethanol bei Siedetemperatur gerührt. Nach 44 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 120 ml Wasser und 100 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x100 ml Ethylacetat vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt

Ausbeute: 1,26 g (49 % d. Th)

Smp: 232-235 °C

R_f: 0,7 (Chloroform:MeOH:Ammoniak-Lösung=89:10:1)

 1 H-NMR (DMSO): δ 8.28 (m, 2H), 6.78 (d, 1H), 6.69 (d, 1H), 6.58 (t, 1H), 6.23 (d, 1H), 5.82 (dd, 1H), 5.25 (d, 1H), 4.66 (d, 1H), 4.52 (d, 1H), 4.30 (b, 1H), 4.11 (b, 1H), 3.80 (s, 3H), 3.73 (m, 1H), 2.28 (d, 1H), 2.02 (d, 1H), 1.81 (t, 1H), 1.72 (d, 1H); 13 C-NMR (DMSO): δ 161.2 (s), 158.7 (d), 147.6 (s), 144.1 (s) 133.3 (s), 130.6 (s), 129.0 (2d), 128.0 (d), 121.9 (d), 112.0 (d), 110.7 (d), 87.2 (d), 60.6 (d), 56.4 (q), 51.3 (t), 48.7 (s), 45.5 (t), 36.6 (t), 31.5 (t);

Beispiel 38

1-[(4aS, 6R, 8aS)-6-Hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl]-3-(1-pyrrolidyl)propan-1-on (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C $_7$ H $_1$ NO)

2,0 g.(-)-Norgalanthamin, welches gemäß der WO-A-017/4820 hergestellt wurde, sowie 0,86 ml Triethylamin und 0,76 ml 3-Brompropionsäurechrorid werden in 130 ml Aceton bei Raumtemperatur gerührt. Nach 60 min wird das Lösungsmittel abdestilliert und der Rückstand mit 100 ml 2N HCl-Lösung und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Mutterlauge mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen

werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Der ölige Rückstand wird in 50 ml Acetonitril aufgenommen, mit 5 ml Pyrrolidin versetzt und bei Siedetemperatur gerührt. Nach 8 Stunden wird das Reaktionsgemisch abgekühlt, das Lösungsmittel im Vakuum entfernt, und der Rückstand mit 30 ml 25 %-iger Ammoniak-Lösung und 30 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen wird die wässrige Mutterlauge mit 2x30 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. wird säulenchromatographisch (Chloroform: MeOH: Ammoniak-Lösung=89:10:1) gereinigt.

Ausbeute: 1,4 g (48,0 % d. Th)

Smp: 56-63 °C

R_f: 0,25 (Chloroform:MeOH:Ammoniak-Lösung=89:10:1)

 1 H-NMR (DMSO): δ 6.81 (b, 2H), 6.71 (d, 1H), 6.65 (d, 1H), 6.15 (d, 1H), 5.79 (dd, 1H), 4.68 (d, 1H), 4.60 (d, 1H), 4.45 (m, 2H), 4.08 (b, 1H), 3.75 (s, 3H), 3.43 (b, 1H), 2.25 (m, 1H), 2.70 (m, 1H), 2.59 (m, 1H), 2.38 (m, 6H), 2.06 (d, 1H), 1.82 (t, 1H), 1.62 (m, 4H); 13 C-NMR (DMSO): δ 171.3 (s), 147.9 (s), 144.6 (s) 133.0 (s), 129.7 (s), 129.2 (d), 127.7 (d), 121.5 (d), 112.1 (d), 87.4 (d), 60.6 (d), 56.4 (q), 52.3 (2t), 48.6 (s), 46.5 (t), 44.5 (t), 39.2 (t), 37.2 (t), 32.8 (t), 31.5 (t), 23.9 (2t);

Beispiel 39

((4as, 6R, 8as)-4a, 5, 9, 10, 11, 12-Hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a, 3, 2-ef][2]benzazepin-11-yl)gamma-oxo-butyric acid (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₄H₅O₃)

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-017/4820 hergestellt wurde, sowie 1,53 ml Triethylamin und 0,76 g Bersteinsäureanhydrid werden in 70 ml Tetrahydrofuran bei Siede-Temperatur gerührt. Nach einer Stunde wird das Lösungsmittel abdestilliert, der Rückstand mit 100 ml 1N HCl und 100 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt.

Ausbeute: 1,4 g (51,28 % d. Th)

Smp: 156-158 °C

R_f: 0,7 (Ethylacetat:Ameisensäure=99:1)

¹H-NMR (DMSO): δ 11.95 (b, 1H, OH), 6.81 (b, 1H), 6.71 (dd, 1H), 6.12 (d, 1H), 5.85 (dd, 1H), 4.68 (d, 1H), 4.60 (d, 1H), 4.43 (m, 2H), 4.09 (b, 1H), 3.71 (s, 3H), 2.25 (t, 1H), 2.89 (m, 1H), 2.35 (m, 3H), 2.09 (m, 2H), 1.80 (b, 1H), 1.65 (m, 1H); (a) (DMSO): δ 174.8 (s), 171.2 (s), 147.9 (s), 144.6 (s) 133.0 (s), 129.5 (s), 129.2 (d), 127.7 (d), 121.4 (d), 112.1 (d), 87.3 (d), 60.6 (d), 56.3 (q), 51.9 (t), 48.6 (s), 46.4 (t), 39.7 (t), 31.5 (t), 29.8 (t), 28.5 (t);

Beispiel 40

Stufe 1

6,75 g o-(2,6)-Dichloranilino)-phenethylalkohol, welches gemäß der DE -A-2007700 hergestellt wurde, werden zu einer Suspension von 7,12 g Triphenylphosphin und 1,36 ml Brom in 100 ml Tetrahydofuran bei Raumtemperatur portionsweise zugegeben. Nach einer halben werden 100 ml Wasser zugesetzt, 3mal mit je 25 ml Ethylacetat extrahiert, die organische Phase über Natriumsulfat getrocknet, filtriert und bis auf 40 ml eingeengt. Nach Zugabe von 100 ml n-Hexanund Rühren im Eisbad für eine halbe Stunde wird das ausgefallene Triphenylphosphinoxid abfiltriert. Das klare Filtrat wird über eine kurze Kieselgelsäule filtriert und das Lösungsmittel abdestilliert. Es verblieben 8,2 g eines gelblichen Öles, das ohne weitere Reinigung direkt in die nächste Stufe eingesetzt wurde.

Stufe 2

g (-)-Norgalanthamin HCl, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 2,7g (2,6-Dichlorphenyl)-2-(2-Bromethyl)phenylamin und 4,72 g Kaliumcarbonat werden in 25 ml Acetonitril bei Raumtemperatur 24 Stunden lang gerührt. Danach wird die Suspension in 100 ml Wasser gegossen und 3mal mit je 30 ml Ethylacetat extrahiert. Trocknen der organischen Phase über Natriumsulfat und anschließendem Filtrieren wird das Lösungsmittel abdestilliert. Die erhaltenen werden an 200 Kieselgel g mit säulenchromatographisch gereinigt, und die produkthältigen Fraktionen

eingedampft. Eine Fällung des Hydrochloridsalzes mit etherischer HCl der verbliebenen 800 mg in 15 ml Diethylether bei 0°C liefern 830 mg, die aus 30 ml Ethanol umkristallisiert wurden.

Ausbeute: 700 mg (16 % d. Th.) weiße Kristalle

Smp: 163-165 °C

 R_{f} : 0,5 (Chloroform: MeOH= 9:1)

¹H-NMR (CDCl₃): δ 7.42 (b, 1H, NH), 7.35 (d, 2H), 7.13 (dd, 1H), 7.05 (td, 1H), 7.01 (t, 1H), 6.88 (td, 1 H), 6.64 (d, 1H), 6.56 (d, 1H), 6.40 (d, 1H), 6.10 (d, 1H), 6.03 (dd, 1H), 4.63 (m, 1H), 4.22 (d, 1H), 4.16 (m, 1H), 4.03 (d, 1H), 3.78 (s, 3H), 3.48 (td, 1H), 3.29 (dt, 1H), 2.89 (m, 4H), 2.71 (ddd, 1H), 2.42 (b, 1H, OH), 2.13 (td, 1H), 2.01 (ddd, 1H), 1.51 (ddd, 1H); 13 C-NMR (CDCl₃): δ 145.8 (s), 144.2 (s), 142.8 (s), 137.9 (s), 133.2 (s), 139.5 (s), 130.5 (d), 130.3 (s), 128.8 (d), 128.5 (s),127.7 (d), 126.8 (d), 126.7 (d), 124.1 (d), 122.3 (d), 120.9 (d), 116.3 (d); 110.9 (d), 88.7 (d), 62.0 (t), 57.3 (t), 55.7 (q), 52.5 (t), 52.0 (t), 48.4 (s), 32.5 (t), 30.7 (t), 29.9 (t);

Beispiel 41

(4aS, 6R, 8aS) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-(4-bromo-benzoyl)-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₁₁H₁₃O)

g (-)-Norgalanthamin , welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 4,0 g Kaliumcarbonat und 1,65 Brombenzoesäurechlorid werden in 70 ml Acetonitril bei temperatur gerührt. Nach 3 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 100 ml Wasser und 100 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Produkt wird säulenchromatographisch Das (Chloroform: MeOH=95:5) gereinigt

Ausbeute: 3,3 g (99 % d. Th)

Smp: 98-112 °C

 $R_f: 0.35$ (Chloroform: MeOH=9:1)

 1 H-NMR (CDCl₃): δ 7.51 (d, 2H), 7.13 (d, 2H), 6.65 (d, 1H), 6.24 (d, 1H), 6.08 (td, 1H), 5.98 (d, 1H), 4.90 (b, 1H), 4.68 (b, 1H), 4.42 (s, 1H), 4.18 (d, 1H), 3.85 (s, 3H), 3.45 (m, 1H), 2.73 (dt, 1H), 2.10 (m, 2H), 1.93 (d, 1H), 1.71 (b, 1H); 13 C-NMR (CDCl₃): δ 170.9 (s), 147.2 (s), 145.0 (s), 135.5 (s), 133.1 (s), 131.8 (2d), 128.9 (2d), 182.5 (d), 128.4 (s), 126.8 (d), 124.3 (s), 121.0 (d), 112.0 (d), 88.8 (d), 62.2 (t), 56.3 (q), 54.9 (t), 48.7 (s), 44.5 (t), 36.6 (t), 30.2 (t);

Beispiel 42

Eine Lösung von 1,32 g Cyanurchlorid in 32 ml Aceton wird auf 70 ml Eiswasser gegossen und bei 0 °C mit 2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, Reaktionsmischung wird mit 4,0 ml 2N Natriumhydroxid-Lösung versetzt Siede-temperatur gerührt. Nach 40 Stunden wird Reaktionsgemisch auf Raumtemperatur gekühlt und mit 60 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Mutterlauge mit 2x60 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt

Ausbeute: 1,58 g (51 % d. Th)

Smp: 245-149 °C

R_f: 0,75 (Chloroform:MeOH=9:1)

¹H-NMR (DMSO): δ 6.79 (b, 2H), 6.19 (d, 1H), 5.81 (dd, 1H), 5.12 (d, 1H), 4.79 (d, 1H), 4.58 (d, 1H), 4.49 (b, 1H), 4.10 (b, 1H), 3.79 (m, 1H), 3.72 (s, 3H), 2.29 (d, 1H), 2.09 (m, 1H), 1.80 (m, 2H); ¹³C-NMR (DMSO): δ 170.0 (s), 169.9 (s), 164.3 (s), 147.9 (s), 144.7 (s) 132.9 (s), 129.4 (d), 127.6 (d), 127.5 (s), 121.8 (d), 112.2 (d), 87.0 (d), 60.4 (d), 56.4 (q), 52.1 (t), 48.5 (s), 46.6 (t), 40.0 (t), 31.4 (t);

Beispiel 43

(4aS, 6R, 8aS) - 11 - (4-Brombenzyl) - 4a, 5, 9, 10, 11, 12 - Hexahydro-3-methoxy-6H-[1] benzofuro[3a, 3, 2-ef] [2] benzazepin-6-ol (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₇H₆Br)

3,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 3,0 g Kaliumcarbonat und 2,5 g 4-Brombenzylbromid werden in 70 ml Acetonitril bei Raumtemperatur gerührt. Nach 24 Stunden wird das Lösungsmittel unter Vakuum entfernt und der Rückstand mit 100 ml Wasser und 40 ml Ethylacetat versetzt. Nach dem Abtrennen wird die wässrige mit organischen Phase Mutterlauge Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform: MeOH=99:1) gereinigt

Ausbeute: 3,0 g (70,2 % d. Th)

Smp: 148-149 °C

R_f: 0,8 (Chloroform:MeOH=9:1)

¹H-NMR (CDCl₃): δ 7.53 (d, 2H), 7.18 (d, 2H), 6.65 (d, 1H), 6.40 (d, 1H), 6.15 (d, 1H), 6.03 (d, 1H), 4.68 (b, 1H), 4.12 (m, 1H), 3.85 (s, 3H), 3.66 (d, 1H), 3.61 (s, 2H), 3.41 (t, 1H), 3.18 (d, 1H), 2.71 (dd, 1H), 2.44 (d, 1H), 2.15 (dd, 1H), 2.03 (dd, 1H), 1.65 (d, 1H); 13 C-NMR (CDCl₃): δ 146.3 (s), 144.5 (s), 138.4 (s), 133.7 (s), 131.8 (2d), 131.0 (2d), 129.8 (s), 128.1 (d), 127.2 (d), 122.5 (d), 121.2 (s), 111.6 (d), 89.2 (d), 62.5 (t), 57.7(t), 56.3 (q), 56.0 (t), 52.2 (t), 48.9 (s), 33.9 (t), 30.4 (t);

Beispiel 44

Ethyl-2-((4as,6R,8as)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)acetate (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₄H₇O₂)

2,0 g. (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 4,0 g Kaliumcarbonat und 1,0 ml Bromessigsäureethylester werden in 50 ml Tetrahydrofuran bei Raumtemperatur gerührt. Nach 16 Stunden wird der Niederschlag abfiltriert, das Filtrat mit 100 ml Wasser und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Mutterlauge mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über

Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (reines Ethylacetat) gereinigt.

Ausbeute: 1,46 g (55,5 % d. Th)

Smp: 75-78 °C

R_f: 0,8 (Ethylacetat)

¹H-NMR (DMSO): δ 6.69 (d, 1H), 6.49 (d, 1H), 6.08 (d, 1H), 5.80 (dd, 1H), 4.49 (b, 1H), 4.21 (m, 2H), 4.08 (m, 2H), 3.75 (s, 3H), 3.68 (m, 1H), 3.32 (m, 2H), 2.23 (d, 1H), 3.00 (d, 1H), 2.28 (d, 1H), 2.07 (td, 1H), 1.93 (t, 1H), 1.58 (d, 1H), 1.18 (t, 3H); (DMSO): δ 171.4 (s), 147.1 (s), 144.2 (s), 133.6 (s), 130.1 (s), 129.2 (d), 127.8 (d), 121.7 (d), 112.2 (d), 87.7 (d), 60.7 (d), 60.6 (t), 58.0 (t), 56.3 (q), 54.6 (t), 52.5 (t), 48.6 (s), 35.1 (t), 31.9 (t), 15.0 (q);

Beispiel 45

2-((4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)acetic acid (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₂H₃O₂)

Stufe 1

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 4,0 g Kaliumcarbonat und 1,0 ml Bromessigsäureethylester werden in 50 ml Tetrahydrofuran bei Raumtemperatur gerührt. Nach 16 Stunden wird der Niederschlag abgetrennt, das Lösungsmittel unter Vakuum entfernt und der Rückstand mit 100 ml Wasser und 50 ml Ethylacetat versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Mutterlauge mit 2x50 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Man erhält 2,8 g schaumartiges Material.

Stufe2

1,6 g des aus Stufe 1 erhaltenen Produktes werden in 24 ml Ethanol aufgelöst, mit 3,2 ml 2N Natriumhydroxid-Lösung versetzt und bei Raumtemperatur gerührt. Nach 30 min wird die klare Lösung mit 4,8 g IRA-120 Ionenaustauscher versetzt und noch 10 min weitergerührt. Der Ionenaustauscher wird abfiltriert, das Filtrat im Vakuum eingeengt und

der Rückstand aus einer Mischung von Methanol und tert.-Butyl-methylether (MTBE) auskristallisiert.

Ausbeute: 0,8 g weißes Pulver

Smp: 144-161 °C

R_f: 0,2 (Chloroform:MeOH=6:4)

 1 H-NMR (DMSO): δ 6.69 (d, 1H), 6.49 (d, 1H), 6.08 (d, 1H), 5.80 (dd, 1H), 4.49 (b, 1H), 4.21 (m, 2H), 4.08 (m, 2H), 3.75 (s, 3H), 3.68 (m, 1H), 3.32 (m, 2H), 2.23 (d, 1H), 3.00 (d, 1H), 2.28 (d, 1H), 2.07 (td, 1H), 1.93 (t, 1H), 1.58 (d, 1H), 1.18 (t, 3H); 13 C-NMR (DMSO): δ 171.4 (s), 147.1 (s), 144.2 (s), 133.6 (s), 130.1 (s), 129.2 (d), 127.8 (d), 121.7 (d), 112.2 (d), 87.7 (d), 60.7 (d), 60.6 (t), 58.0 (t), 56.3 (q), 54.6 (t), 52.5 (t), 48.6 (s), 35.1 (t), 31.9 (t), 15.0 (q);

Beispiel 46

(4aS, 6R, 8aS) - 4a, 5, 9, 10, 11, 12-Hexahydro-3-methoxy-11-(2-methyl-prop-2-enyl)-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol, Hydrochloride (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₂H₃O₂)

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 2,02 g Kaliumcarbonat, 1,27 g Kaliumjodid und 0,85 ml 3-Chlor-2-methyl-1-propen werden in 80 ml Aceton bei Rückflusstemperatur gerührt. Nach 4 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 200 ml 2N HCl und 50 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit 30%-iger Natriumhydroxid-Lösung basisch eingestellt und mit 3x100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt. Das erhaltene Öl wird in Ethanol aufgelöst und das Hydrochlorid-Salz mit etherischer HCl ausgefällt.

Ausbeute: 2,38 g (99 % d. Th)

Smp: 233-234 °C

R_f: 0,8 (Chloroform:MeOH:Ammoniak-Lösung=89:10:1)

¹H-NMR (DMSO): δ 6.88 (d, 1H), 6.70 (d, 1H), 6.17 (d, 1H), 5.93 (d, 1H), 5.39 (d, 1H), 5.20 (d, 1H), 4.62 (m, 2H), 4.28 (m, 1H), 4.12 (b, 1H), 3.95 (b, 1H), 3.81 (s, 3H), 3.62 (m, 3H), 2.29 (d, 1H), 2.10 (d, 2H), 1.93 (d, 3H), 1.58 (d, 1H); $^{13}C-NMR \text{ (DMSO)}: δ 147.4 \text{ (s)}, 145.8 \text{ (s)}, 136.5 \text{ (s)}, 134.1 \text{ (s)}, 130.9 (d), 126.3 (d), 123.5 (d), 122.6 (s), 112.8 (d), 87.4 (d), 67.9 (t), 64.2 (t), 57.7 (d), 56.6 (t), 56.4 (q), 50.5 (t), 47.6 (s), 31.9 (t), 26.0 (t), 22.2 (q);$

Beispiel 47

Ethyl-3-((4aS, 6R, 8aS)-6-hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl)propanoate, Hydrochloride (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₅H₉O₂)

0,55 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 0,3 ml Acrylsäureethylester werden in 20 ml abs. Ethanol bei Rückflusstemperatur gerührt. Nach 72 Stunden wird das Lösungsmittel abdestilliert und das Produkt säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt. Das erhaltene Öl wird in Chloroform aufgelöst und das Hydrochlorid-Salz mit etherischer HCl ausgefällt.

Ausbeute: 0,5 g (60,6 % d. Th) R_f: 0,6 (Chloroform:MeOH=95:5)

¹H-NMR (DMSO): δ 6.88 (d, 1H), 6.70 (d, 1H), 6.17 (d, 1H), 5.93 (d, 1H), 5.39 (d, 1H), 5.20 (d, 1H), 4.62 (m, 2H), 4.28 (m, 1H), 4.12 (b, 1H), 3.95 (b, 1H), 3.81 (s, 3H), 3.62 (m, 3H), 2.29 (d, 1H), 2.10 (d, 2H), 1.93 (d, 3H), 1.58 (d, 1H); $^{13}C-NMR$ (DMSO): δ 147.4 (s), 145.8 (s), 136.5 (s), 134.1 (s), 130.9 (d), 126.3 (d), 123.5 (d), 122.6 (s), 112.8 (d), 87.4 (d), 67.9 (t), 64.2 (t), 57.7 (d), 56.6 (t), 56.4 (q), 50.5 (t), 47.6 (s), 31.9 (t), 26.0 (t), 22.2 (q);

Beispiel 48

3,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 1,86 ml Triethylamin und 0,9 ml Chroracetylchlorid werden in 150 ml Tetrahydrofuran bei 0 °C gerührt. Nach 10 min wird die Reaktionsmischung mit 3,0 g Kaliumcarbonat und 1,2 ml Morpholin versetzt und bei 90 °C weitergerührt. Nach 60 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 50 ml Wasser und 50 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x30 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt.

Ausbeute: 2,5 g (56,8 % d. Th)

Smp: 92-101 °C

R_f: 0,45 (Chloroform:MeOH=9:1)

 1 H-NMR (CDCl₃): δ 6.67 (m, 2H), 6.01 (m, 2H), 4.99 (d, 1H), 4.63 (d, 1H), 4.55 (b, 1H), 4.37 (d, 1H), 4.12 (b, 1H), 3.82 (s, 3H), 3.67 (m, 4H), 3.25 (d, 1H), 3.14 (m, 2H), 3.00 (d, 1H), 2.48 (m, 4H), 2.01 (dd, 1H), 1.88 (t, 1H), 1.75 (d, 1H); 13 C-NMR (CDCl₃): δ 169.2 (s), 147.3 (s), 145.0 (s), 132.9 (s), 128.9 (s), 128.8 (d), 126.8 (d), 122.4 (d), 111.7 (d), 88.7 (d), 67.1 (2t), 62.1 (d), 56.3 (q), 54.1 (2t), 52.7 (t), 48.7 (s), 45.5 (t), 38.9 (t), 36.1 (t), 30.3 (t);

Beispiel 49

1-[(4aS, 6R, 8aS) -6-Hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef] [2]benzazepin-11(12H)-yl]-2-(diethylamino)ethan-1-on (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₆H₁₂NO)

3,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 1,86 ml Triethylamin und 0,9 ml Chroracetylchlorid werden in 150 ml Tetrahydrofuran bei 0 °C gerührt. Nach 10 min wird die Reaktionsmischung mit 3,0 g Kaliumcarbonat und 0,75 ml Diethylamin versetzt und bei 90 °C weitergerührt. Nach 24 Stunden wird das Lösungsmittel abdestilliert, der Rückstand mit 50 ml Wasser und 50 ml Chloroform versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Phase mit 2x30 ml Chloroform extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und

im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=95:5) gereinigt.

Ausbeute: 2,0 g (48,5 % d. Th)

Smp: 114-126 °C

R_f: 0,45 (Chloroform:MeOH=9:1)

¹H-NMR (CDCl₃): δ 6.68 (m, 2H), 6.01 (m, 2H), 5.19 (d, 1H), 4.60 (m, 1H), 4.33 (d, 1H), 4.09 (b, 1H), 3.78 (s, 3H), 3.37 (d, 1H), 3.21 (m, 1H), 2.95 (d, 1H), 2.64 (m, 3H), 2.49 (m, 3H), 2.03 (dd, 1H), 1.92 (t, 1H), 1.75 (d, 1H), 1.01 (m, 6H); (CDCl₃): δ 170.8 (s), 147.2 (s), 145.0 (s), 132.9 (s), 129.1 (s), 128.6 (d), 126.9 (d), 121.0 (d), 111.7 (d), 88.7 (d), 62.3 (d), 56.3 (t), 56.2 (q), 52.4 (t), 48.7 (2t), 47.8 (s), 38.9 (t), 36.1 (t), 30.3 (t), 12.0 (2q);

Beispiel 50

Stufe 1:

4,1 g 4-Brombutansäurepiperidinamid (17,5 mmol) werden in 100 ml Acetonitril gelöst. Zu dieser Lösung werden 3,8 g (-) Norgalanthamin Hydrochlorid, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 9,7g Kaliumcarbonat zugegeben und 30 Stunden bei 80°C gerührt. Nach dem Abfiltrieren des Kaliumcarbonats wird das Lösungsmittel abdestilliert und der Rückstand in 100 ml Toluol und 100 ml 1n HCl aufgenommen. Die wässrige Phase wird mit 30%iger Natriumhydroxidbasisch eingestellt und 3x mit jе 40 ml Ethylacetat ausgeschüttelt. Die vereinigten organischen Phasen werden Natriumsulfat getrocknet, filtriert und eingedampft. Die erhaltenen 4,4 g an braunem Öl werden an 200 g Kieselgel mit dem Laufmittel Chloroform: Methanol= 98:2 säulenchromatographisch gereinigt. Ausbeute: 1,6 g (30 % d. Th.)

Stufe 2:

3,6 g Stufe 1 werden in 50ml Tetrahydrofuran gelöst, auf $0^{\circ}C$ gekühlt und 705 mg Lithiumaluminiumhydrid in Portionen während 20 Minuten

zugegeben. Nach beendeter Zugabe wird auf Raumtemperatur erwärmt und 1,5 Stunden gerührt. Die Reaktion wird tropfenweise mit Wasser gequencht, der entstandene Niederschlag abfiltriert und mit Tetrahydrofuran gewaschen. Nach dem Trocknen der Lösung Natriumsulfat wird diese filtriert und das Lösungsmittel abgezogen. Die erhaltenen 3,4 g werden an 200 g Kieselgel mit dem Laufmittel Chloroform: Methanol: Ammoniak-Lösung=90:9:1 gesäult. Die erhaltenen 2,4 g werden in 80 ml Ethylacetat gelöst und mit 2,5 g (+)-Di-p-toluyl-D-Weinsäure in 30ml Ethylacetat gefällt, filtriert und mit 10 ml Ethylacetat gewaschen.

Ausbeute: 4,4 g (78,7 % d. Th.) farblose Kristalle

¹H-NMR (CDCl₃): δ 6.67 (d, 1H), 6.61 (d, 1H), 6.12 (d, 1H), 6.01 (dd, 1H), 4.63 (m, 1H), 4.15 (m, 2H), 3.88 (s, 3H), 3.82 (d, 1H), 3.35 (d, 1H), 3.18 (d, 1H), 2.70 (dd, 1H), 2.49 (m, 4H), 2.31 (m, 4H), 2.02 (m, 4H), 1.71 (m, 4H), 1.49 (m, 5H); $^{13}\text{C-NMR} \text{ (CDCl}_3\text{)}: δ 146.1 (s), 144.4 (s), 133.5 (s), 129.9 (s), 127.9 (d), 127.4 (d), 122.4 (d), 111.5 (d), 89.1 (d), 66.1 (t), 62.5 (d), 59.7 (t), 58.3 (t), 56.2 (q), 54.9 (2t), 51.9 (t), 48.8 (s), 33.4 (t), 30.3 (t), 26.3 (2t), 26.0 (t), 25.1 (t), 24.9 (t);$

Beispiel 51

3-((4aS, 6R, 8aS)-1-bromo-6-hydroxy-3-methoxy-5, 6, 9, 10-tetrahydro-4aH-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-11(12H)-yl)propanenitrile (Ia Y_1 =OH, Y_2 =H, X=H, Z_1 =C₃H₄N)

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 2,0 g CaCl2 und 0,5 ml Acrylnitril werden in 200 ml Ethanol bei Siedetemperatur gerührt. Nach 8 Stunden Lösungsmittel abdestilliert, der Rückstand in 500 aufgenommen und mit 3x200 ml Ethylacetat extrahiert. Die wässrige Mutterlauge wird mit 25%-iger Ammoniak-Lösung basisch eingestellt und mit 3x 200 ml Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und im Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform: MeOH=9:1) gereinigt.

Ausbeute: 1,7 g (62 % d. Th)

Smp: 69-72 °C

R_f: 0,45 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (CDCl₃): δ 6.67 (d, 1H), 6.60 (d, 1H), 6.06 (d, 1H), 5.98 (dd, 1H), 4.69 (b, 1H), 4.21 (d, 1H), 4.10 (m, 1H), 3.82 (s, 3H), 3.79 (d, 1H), 3.45 (t, 1H), 3.27 (d, 1H), 2.80 (m, 2H), 2.67 (dd, 1H), 2.43 (m, 2H), 1.99 (m, 2H), 1.59 (d, 1H); $^{13}\text{C-NMR} \text{ (CDCl}_3): δ 146.5 (s), 144.8 (s), 133.4 (s), 129.0 (s), 128.3 (d), 126.9 (d), 122.4 (d), 119.3 (s), 111.7 (d), 89.0 (d), 62.3 (d), 57.4 (t), 56.3 (q), 52.1 (t), 48.9 (s), 47.0 (t), 33.5 (t), 30.4 (t), 17.2 (t);$

Beispiel 52

(4aS, 6R, 8aS) - 11 - ((3-dimethylamino)propyl) - 3-methoxy - 5, 6, 9, 10, 11, 12-hexahydro - 4aH - [1]benzofuro [3a, 3, 2-ef] [2]benzazepin - 6-ol (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₅H₁₂N)

3,0 g (-)-Norgalanthamin HCl, welches gemäß WO-A-01/74820 der hergestellt wurde, sowie 5,0 q Kaliumcarbonat und 2,1 q Dimethylaminopropylchlorid HCl werden 70 ml in Acetonitril Siedetemperatur gerührt. Nach 28 Stunden wird der Niederschlag abfiltriert und das Lösungsmittel im Vakuum entfernt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=9:1) gereinigt.

Ausbeute: 2,35 g g (59,8 % d. Th) braunes \ddot{O} 1 R_f: 0,35 (Chloroform:MeOH=9:1)

(t), 30.7 (t), 25.8 (t);

¹H-NMR (DMSO): δ 6.67 (d, 1H), 6.60 (d, 1H), 6.11 (d, 1H), 5.94 (dd, 1H), 4.59 (b, 1H), 4.13 (m, 2H), 3.82 (s, 3H), 3.78 (d, 1H), 3.21 (m, 11H), 2.52 (m, 2H), 2.29 (m, 1H), 2.05 (d, 1H), 2.65 (m, 2H), 1.51 (d, 1H); $^{13}C-NMR \ (DMSO): δ 146.3 \ (s), 144.2 \ (s), 133.5 \ (s), 129.8 \ (s), 128.0 (d), 127.5 (d), 122.2 (d), 111.6 (d), 88.7 (d), 61.9 (d), 58.0 (t), 57.8 (t), 56.2 (q), 52.0 (t), 50.0 (t), 48.7 (s), 45.7 (2q), 33.4$

Beispiel 53

(4aS, 6R, 8aS) - N11 - cyclohexyl - 6 - hydroxy - 3 - methoxy - 5, 6, 9, 10 - tetrahydro-4aH - [1]benzofuro[3a, 3, 2 - ef] [2]benzazepin - 11 (12H) - carbonoc acid isopropylamide (Ia Y₁=OH, Y₂=H, X=H, Z₁=C₇H₁₂NO)

2,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 0,92 g Cyclohexylisocyanat werden in 100 ml Toluol aufgelöst und bei Siedetemperatur gerührt. Nach 5 Stunden wird das Lösungsmittel im Vakuum abdestilliert, und der Rückstand mit 200 ml 2 N HCl und 100 ml Diethylether versetzt. Nach dem Abtrennen der organischen Phase wird die wässrige Mutterlauge mit 25 %-iger Ammoniak-Lösung basisch eingestellt und mit 3x100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und das Lösungsmittel wird unter Vakuum abdestilliert. Der Rückstand wird aus Ethanol kristallisiert.

Ausbeute: 1,97 g (67,5 % d. Th)

Smp: 168-170

R_f: 0,6 (Chloroform:MeOH=9:1)

¹H-NMR (CDCl₃): δ 6.69 (d, 1H), 6.62 (d, 1H), 5.95 (m, 2H), 4.57 (b, 1H), 4.46 (d, 1H), 4.31 (d, 2H), 4.12 (b, 1H), 3.80 (s, 3H), 3.41 (m, 1H), 3.32 (t, 1H), 2.63 (d, 1H), 2.03 (dd, 1H), 1.91 (d, 2H), 1.70 (d, 2H), 1.55 (m, 2H), 1.25 (m, 2H), 1.09 (m, 2H), 0.95 (m, 2H); 13 C-NMR (CDCl₃): δ 156.9 (s), 147.3 (s), 145.0 (s), 132.9 (s), 129.6 (s), 128.4 (d), 126.9 (d), 120.7 (d), 111.5 (d), 88.8 (d), 62.2 (d), 56.3 (q), 52.0 (t), 49.6 (d), 48.9 (t), 46.0 (s), 36.9 (t), 34.2 (t), 33.9 (t), 30.2 (t), 26.0 (t), 25.2 (t), 25.1 (t);

Beispiel 54

 $\label{eq:continuous} $$1-[(4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl]-2-chlorethan-1-on (Ia Y_1=OH, Y_2=H, X=H, Z_1=C_2H_2ClO)$

Eine Lösung von 3,0 g (-)-Norgalanthamin, welches gemäß der WO-A-01/74820 hergestellt wurde, sowie 1,9 ml Triethylamin in 150 ml Tetrahydrofuran wird bei 0 °C mit 0,93 ml Chloracetylchrorid versetzt. Nach 10 min wird das Lösungsmittel im Vakuum entfernt, der Rückstand mit 100 ml Wasser, 10 ml 2 N Salzsäure versetzt und mit 3x 30 ml Diethylether exrahiert Die vereinigten organischen Phasen werden

über Natriumsulfat getrocknet, filtriert und das Lösungsmittel wird unter Vakuum abdestilliert.

Ausbeute: 1,42 g (37,1 % d. Th)

Smp: 88-90 °C

R_f: 0,8 (Chloroform:MeOH=9:1)

¹H-NMR (CDCl₃): δ 6.73 (m, 2H), 6.02 (m, 2H), 4.69 (d, 1H), 4.65 (d, 1H), 4.52 (d, 1H), 4.19 (d, 1H), 4.09 (m, 2H), 3.95 (d, 1H), 3.85 (s, 3H), 3.30 (t, 1H), 2.73 (d, 1H), 2.09 (dd, 1H), 1.91 (d, 1H), 1.71 (d, 1H); ¹³C-NMR (CDCl₃): δ 166 .5 (s), 147.5 (s), 145.5 (s), 132.8 (s), 129.0 (s), 128.2 (d), 126.5 (d), 122.6 (d), 111.7 (d), 88.8 (d), 62.2 (d), 56.4 (q), 53.4 (t), 48.7 (d), 46.0 (s), 41.9 (t), 35.9 (t), 30.2

Beispiel 55

(t);

(4aR, 6S, 8aR) -6-Hydroxy-3-methoxy-11-methyl-4a, 5, 9, 10-tetrahydro-6H-benzofuro[3a, 3, 2-ef][2]benzazepinium Bromide

Eine Lösung von 2,0 g (+)-Galanthamin, hergestell nach Kametani, Heterocycles 4, 1111, 1976, in 20 ml Chloroform wird intensiv gerührt und mit einer Lösung von 1,26 g N-Bromsuccinimid in 20 ml Chloroform tropfenweise bei Raumtemperatur versetzt. Nach einer Stunde wird der gebildete Niederschlag abgetrennt, mit Chloroform gewaschen und im Vakuumtrockenschrank bei 50 °C getrocknet. Das Produkt wird aus Ethanol umkristallisiert.

Ausbeute: 2,28 g (90,2 % d. Th)

Smp: 223-229 °C

R_f: 0,2 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 9.15 (s, 1H), 7.57 (d, 1H), 7.20 (d, 1H), 5.89 (dd, 1H), 5.72 (d,1H), 4.67 (b,1H), 4.61 (d, 1H), 4.13 (m, 3H), 3.95 (s, 3H), 3.80 (s, 3H), 2.35 (d, 1H), 2.15 (m, 2H); (a) (DMSO): δ 167.3 (d), 151.3 (s), 146.2 (s), 136.9 (s), 133.0 (d), 129.8 (d), 126.4 (d), 115.0 (s), 112.9 (d), 86.9 (d), 58.9 (d), 56.4 (q), 54.0 (t), 51.5 (t), 45.9 (q), 40.7 (t), 31.1 (t), 29.7 (t);

Beispiel 56

(4aR, 6R, 8aR)-6-Hydroxy-3-methoxy-11-methyl-4a,5,9,10-tetrahydro-6H-benzofuro[3a, 3, 2-ef][2]benzazepinium Bromide

Zu einer intensiv gerührten Lösung von 2,0 g (+)-EpiGalanthamin, hergestellt nach J. Chem. Soc. 806, 1962, in 80 ml Chloroform werden 1,35 g N-Bromsuccinimid bei Raumtemperatur zudosiert. Nach einer Stunde wird der gebildete Niederschlag abgetrennt, mit Chloroform gewaschen und im Vakuumtrockenschrank bei 50 °C getrocknet. Das Produkt wird aus Ethanol umkristallisiert.

Ausbeute: 2,09 g (82,7 % d. Th)

Smp: 236-244 °C

R_f: 0,2 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

¹H-NMR (DMSO): δ 9,15 (s, 1H), 7.58 (d, 1H), 7.20 (d, 1H), 5.85 (dd, 1H), 5.74 (d, 1H), 5.15 (d, 1H), 4.79 (b, 1H), 4.30 (m, 1H), 4.13 (m, 2H), 3.93 (s, 3H), 3.80 (s, 3H), 2.55 (d, 1H), 2.20 (m, 1H), 1.73 (dt, 1H);

 13 C-NMR (DMSO): δ 168.1 (d), 152.1 (s), 147.3 (s), 138.1 (s), 135.4 (d), 133.9 (d), 126.9 (d), 116.0 (s), 113.9 (d), 88.9 (d), 61.7 (d), 57.3 (q), 55.1 (t), 52.3 (t), 47.1 (q), 41.0 (t), 32.3 (t), 31.7 (t);

Beispiel 57

4aS, 6R, 8aS) -1-Bromo-4a, 5, 9, 10, 11, 12-hexahydro-11-(2-(morpholin-4-yl)-ethyl) -3-methoxy-6H-[1]benzofuro[3a, 3, 2-ef][2]benzazepin-6-ol (Ia, Y_1 =OH, Y_2 =H, X=Br, Z_1 = $C_6H_{12}NO$)

2,0 g (-)-BromNorgalanthamin (Ia $Y_1=OH$, $Y_2=H$, X=Br, $Z_1=H$), 2,35 g Kaliumcarbonat und 1,11 g N-(2-Chlorethyl)-morpholin Hydrochlorid werden in 30 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 48 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 200 ml 2N HCl und . 40 ml Ethylacetat versetzt. Nach dem Abtrennen wird die organische Phase entsorgt. Die wässrige Phase wird mit Ammoniak-Lösung basisch eingestellt und mit 3x40 ml Ethylacetat extrahiert. vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert Produkt und im Vakuum eingeengt. Das wird säulenchromatographisch (Chloroform: MeOH=95:5) gereinigt.

Ausbeute: 1,39 g (53 % d. Th), weißer Schaum R_f : 0,2 (Chloroform:MeOH:Ammoniak-Lösung=90:9:1)

 1 H-NMR (DMSO): δ 6.91 (s, 1H), 6.15 (d, 1H), 6.03 (dd, 1H), 4.51 (b, 1H), 4.41 (d, 1H), 4.16 (b, 1H), 4.05 (d, 1H), 3.85 (s, 3H), 3.71 (t, 4H), 3.39 (t, 1H), 3.15 (d, 1H), 2.69 (m, 3H), 2.51 (m, 5H), 2.03 (m, 3H), 1.55 (d, 1H); 13 C-NMR (CDCl₃): δ 145.9 (s), 144.7 (s), 134.6 (s), 128.5 (d), 128.4 (s), 127.4 (d), 116.3 (d), 114.9 (s), 89.2 (d), 67.3 (2t), 62.3 (d), 57.3 (2t), 56.6 (q), 56.6 (t), 54.6 (2t), 52.6 (t), 49.4 (t), 33.6 (t), 30.2 (t);

Beispiel 58

(4aR, 6R, 8aRS) - 1 - Bromo - 4a, 5, 9, 10, 11, 12 - hexahydro - 11 - (2 - (morpholin - 4 - yl) - ethyl) - 3 - methoxy - 6H - [1] benzofuro [3a, 3, 2 - ef] [2] benzazepin - 6 - ol (Ib, Y₁ = OH, Y₂ = H, X = Br, Z₁ = C₆H₁₂NO)

3,0 g (+)-BromNorgalanthamin (Ib Y_1 =OH, Y_2 =H, X=Br, Z_1 =H), 4,8 g Kaliumcarbonat und 1,47 g N-(2-Chlorethyl)-morpholin Hydrochlorid werden in 30 ml Acetonitril bei Rückflusstemperatur gerührt. Nach 22 Stunden wird die Reaktionsmischung auf Raumtemperatur abgekühlt, das Lösungsmittel im Vakuum abdestilliert und der Rückstand mit 100 ml Wasser und 40 ml Ethylacetat versetzt. Nach dem Abtrennen wird die wässrige Phase mit 3x40 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Laufmittel 96 % Ethanol) gereinigt.

Ausbeute: 1,9 g (48 % d. Th) Smp 58-64 °C R_{ℓ} : 0,2 (96 % Ethanol)

 1 H-NMR (DMSO): δ 6.99 (s, 1H), 6.12 (d, 1H), 5.82 (dd, 1H), 4.55 (b, 1H), 4.37 (b, 1H), 4.20 (d, 1H), 4.05 (m, 2H), 3.79 (s, 3H), 3.51 (m, 4H), 3.32 (d, 1H), 3.28 (d, 1H), 2.99 (d, 1H), 2.51 (m, 2H), 2.35 (m, 4H), 2.25 (d, 1H), 2.00 (m, 2H), 1.49 (d, 1H); 13 C-NMR (CDCl₃): δ 146.9 (s), 144.6 (s), 134.9 (s), 129.6 (d), 128.7 (s), 127.4 (d), 116.3 (d), 113.3 (s), 87.8 (d), 67.1 (2t), 60.5 (d), 57.1 (2t), 56,7 (q), 55.9 (t), 54.5 (2t), 52.2 (t), 49.4 (t), 34.0 (t), 31.7 (t);

Beispiel 59

 $(4aS,8aS)-\Delta^{5,6}-4a$, 5, 9, 10, 11, 12-Hexahydro-11-methyl-3-methoxy-6-phenyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine (Ic, Y₃=Phenyl, X=H, Z₂= CH₃)

Zu einer Mischung von 1,16 g Magnesium in 15 ml Tetrahydrofuran werden 3,35 ml Brombenzol getropft. Das entstandene Reaktionsgemisch wird eine Stunde intensiv gerührt, mit einer Lösung von 3,0 g (-) Narwedin, hergestellt gemäß EP-A-0787115, in 50 ml Tetrahydrofuran versetzt und weiter gerührt. Nach 2 Stunden werden 60 ml Wasser und 40 ml 2N HCl zur Reaktionsmischung getropft und die entstandene Suspension wird bei Reaktionsmischung gerührt. Nach 50 min wird die Raumtemperatur abgekühlt, der pH-Wert mit Ammoniak-Lösung auf 9 eingestellt und mit 3x100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=99:1) gereinigt.

Ausbeute: 1,8 g (49 % d. Th), farbloser Schaum R_f : 0,35 (Chloroform:MeOH=99:1)

 1 H-NMR (CDCl₃): δ 7.50 (d, 2H), 7.39 (m, 3H), 6.65 (b, 2H), 6.42 (d, 1H), 6.33 (m, 2H), 5.00 (d, 1H), 4.28 (d, 1H), 3.89 (s, 3H), 3.75 (d, 1H), 3.51 (t, 1H), 3.09 (d, 1H), 2.41 (s, 3H), 2.13 (dt, 1H), 1.79 (dd, 1H); 13 C-NMR (CDCl₃): δ 148.2 (s), 144.3 (s), 139.8 (s), 139.5 (s), 131.6 (s), 131.2 (d), 130.0 (s), 129.0 (2d), 128.6 (d), 126.6 (2d), 123.2 (d), 122.2 (d), 116.1 (d), 110.7 (d), 86.5 (d), 60.8 (t), 56.2 (q), 54.5 (t), 48.7 (t), 42.2 (q), 35.4 (t);

Beispiel 60

 $(4aS, 8aS) - \Delta^{5,6} - 4a, 5, 9, 10, 11, 12 - Hexahydro - 6, 11 - dimethyl - 3 - methoxy - 6H - [1]benzofuro [3a, 3, 2 - ef] [2]benzazepine (Ic, Y₃=CH₃, X=H, Z₂= CH₃)$

Eine Lösung von 2,04 g (-) Narwedin, hergestellt gemäß EP-A-0787115, in 60 ml Tetrahydrofuran wird mit 10,0 ml Methylmagnesiumbromid in Diethylether tropfenweise versetzt und bei Raumtemperatur gerührt. Nach 45 min werden 60 ml Wasser und 20 ml 2N HCl zur Reaktionsmischung getropft, und die entstandene Suspension wird bei 60 °C gerührt. Nach

50 min wird die Reaktionsmischung auf Raumtemperatur abgekühlt, der pH-Wert mit Ammoniak-Lösung auf 9 eingestellt und mit 3x100 ml Ethylacetat extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet, filtriert und unter Vakuum eingeengt. Das Produkt wird säulenchromatographisch (Chloroform:MeOH=98:2) gereinigt.

Ausbeute: 2,18 g (72 % d. Th), farbloser Schaum R_f : 0,5 (Chloroform:MeOH=99:1)

 1 H-NMR (CDCl₃): δ 6.57 (m, 2H), 6.01 (d, 1H), 5.87 (d, 1H), 5.69 (m, 1H), 4.80 (d, 1H), 4.15 (d, 1H), 3.80 (s, 3H), 3.68 (d, 1H), 3.34 (t, 1H), 3.01 (d, 1H), 2.41 (s, 3H), 2.09 (dt, 1H), 1.91 (s, 3H), 1.71 (dd, 1H);

 13 C-NMR (CDCl₃): δ 148.2 (s), 144.2 (s), 136.6 (s), 131.8 (s), 130.2 (s), 130.0 (d), 125.2 (d), 121.9 (d), 115.3 (d), 110.5 (d), 88.9 (d), 60.8 (t), 56.2 (q), 54.6 (t), 48.5 (t), 42.4 (q), 35.4 (t), 22.2 (q);

Beispiel 61

 $(4aS,8aS)-\Delta^{5,6}-4a,5,9,10,11,12-Hexahydro-6-(isopropyl)-11-methyl-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine (Ic, Y₃=Isopropyl, X=H, Z₂= CH₃)$

Zu 220 mg Magnesiumspäne in 1.5 ml absolutem Tetrahydrofuran werden unter Stickstoffatmosphäre 0.66 ml 2-Brompropan zugetropft. 15 Minuten nach dem Start der Grignardreaktion wird unter Eiskühlung eine Lösung von 500 mg Narwedin, hergestellt gemäß EP-A-787115, absolutem Tetrahydrofuran zugetropft und bei Raumtemperatur gerührt. Nach 2 Stunden wird das Reaktionsgemisch unter Eis-Kühlung mit 30 ml Wasser hydrolysiert, mit 2 N Salzsäure angesäuert und bei 60°C 30 min gerührt. Anschließend wird die Lösung mit konzentrierter, Ammoniak-Lösung basisch eingestellt und dreimal mit jе 30 Essigsäureethylester extrahiert. Die vereinigten organischen Phasen einmal . mit gesättigter wässriger. Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet filtriert und eingedampft. Produkt wird säulenchromatographisch (Chloroform:MeOH=97:3) gereinigt.

Ausbeute: 399 mg (69 % d. Th), ölige Substanz

 $R_f: 0,55$ (Chloroform:MeOH=97:3)

¹H-NMR (CDCl₃): δ 1,76-1,81 (m, 6H), 1,64 (ddd, 1H), 2,13 (ddd, 1H), 1,97 (ddd, 1H), 2,37 (ddd, 1H), 3,06 (ddd, 1H), 3,31 (ddd, 1H), 2,48 (s, 3H), 3,80 (s, 3H), 3,66 (d, 1H), 4,10 (d, 1H), 4,62 (b, 1H), 5,76 (d, 1H), 6,51 (d, 1H), 6,56 (d, 1H), 6,61 (d, 1H)

¹³C-NMR (CDCl₃): δ 19,8 (q), 20,7 (q), 26,3 (t), 34,8 (t), 48,1 (s), 53,9 (t), 41,9 (q), 55,6 (q), 60,6 (t), 128,8 (s), 89,0 (d), 122,9 (d), 110,6 (d), 121,1 (d), 121,4 (s), 124,4 (d), 130,8 (s), 133,6 (s), 143,7 (s), 146,3 (s),

Zusammenfassend kann gesagt werden, dass sich die neuen Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro[3a,3,2][2]benzazepin mit den allgemeinen Formeln Ia, Ib und Ic nicht nur in effizienter Weise mit der gewünschten optischen Reinheit im Industriemaßstab herstellen lassen, sondern dass sich diese aufgrund ihrer pharmakologischen Wirkung auch für die Herstellung von Arzneimitteln für die Behandlung verschiedenster Krankheitsbilder, insbesondere von Erkrankungen des zentralen Nervensystems (ZNS) geeignet sind.

Wien, 12. Juli 2004

Sanochemia Pharmazeutika AG vertreten durch:

PATENTANWALTE DIPL.-ING. MANFRED BEER DIPL.-ING. REINHARD HEHENBERGER threes

Dr. Karin Dungler (Ausweis Nr. 419)

12. Juli 2004 W5-206000-pAT

Sanochemia Pharmazeutika AG in Wien (AT)

Patentansprüche:

1. Neue Derivate des 4a,5,9,10,11,12-Hexahydro-benzofuro [3a,3,2][2]benzazepin mit der allgemeinen Formel Ia bzw. Ib

und deren Salze, wobei

- Ia optisch aktive (-) Derivate des Galanthamin und Ib optisch aktive (+)-Derivate des Galanthamin sind, die in zu einander spiegelbildlich räumlicher Anordnung vorliegen, und worin
- Y₁ und Y₂ wechselweise H oder OH,
- X = H oder Br sind und
- \bullet Z₁ = eine Gruppe mit folgender Formeldarstellung

$$N-CH_3$$
 $N-CH_3$ $N-CH_2$ $N-CH_2$ $N-CH_3$ $N-CH_2$ $N-CH_3$ N

2

ist, worin

- R_1 = H, Cl, Br, J, F, OH, geradkettiges oder verzweigtes (C_1 - C_6) alkyl, geradkettiges oder verzweigtes (C_1 - C_6) alkyloxy, NO_2 , NR_2R_3 ,
- $R_2 = R_3 = H$, geradkettiges oder verzweigtes (C_1-C_6) alkyl
- W = H, O, S
- n = 0, 1-6 sind,

und worin

ullet Z $_1$ gleich H ausschließlich für die Verbindungen 1, 3, 13 und 24

ist, wobei die Verbindungen 1 und 13 (-)-Derivate des 6-Epi-Norgalanthamin und die Verbindungen 3 und 24 (+)-Derivate des 6-Epi-Norgalanthamin sind, und worin

ullet Z₁ ausschließlich für die Verbindung ${f 29}$ gleich Hydroxypropyl

und

ullet Z₁ ausschließlich für die Verbindung ${f 26}$ gleich Ethyl

und

• Z₁ ausschließlich für folgende Verbindungen

gleich Methyl ist, und wobei die Verbindungen 29, 31 und 55 (+)-Derivate des Galanthamin und die Verbindungen 26, 28 und 56 (+)-Epi-Derivate des Galanthamin sind.

2. Neue Derivate des 4a,5,9,10,11,12-Hexahydrobenzofuro [3a,3,2][2]benzazepin mit der allgemeinen Formel Ic

$$H_3C$$
 N
 Z_2
Ic

und deren Salze, worin

- X gleich H oder Br,
- Z_2 gleich H, geradkettiges oder verzweigtes (C_1 - C_6) alkyl, geradkettiges oder verzweigtes (C_2 - C_7) alkenyl, geradkettiges oder verzweigtes (C_2 - C_7) alkinyl und
- Y_3 gleich geradkettiges oder verzweigtes (C_1-C_6) alkyl, phenyl, geradkettiges oder verzweigtes (C_1-C_6) alkylphenyl, nitrophenyl, chlorphenyl, bromphenyl, aminophenyl, hydroxyphenyl

ist.

- 3. Verfahren zur Herstellung von Verbindungen nach Anspruch 1, dadurch gekennzeichnet, dass ein optisch aktives 11-Norgalanthamin-Derivat mit verdünnter Säure, vorzugsweise mit verdünnter Salzsäure behandelt wird.
- 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein optisch aktives 11-Norgalanthamin-Derivat durch Behandlung mit verdünnter Säure in ein 6 Epi-Derivat des Galanthamin umgewandelt wird.
- 5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass bei der Säurebehandlung die räumliche Anordnung am Kohlenstoffatom 6 verändert wird, wogegen die räumliche Anordnung an den asymmetrischen Kohlenstoffatomen 4a und 8a unverändert bleibt.
- 6. Verfahren zur Herstellung von Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Alkylierungs- oder Acylierungsreaktionen in einem Lösungsmittel ausgewählt aus der Gruppe

Toluol, Acetonitril, Ethanol, Aceton, 2-Butanon, Dimethylformamid oder Chloroform durchgeführt werden.

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass durch Alkylierung in einer mehrstufigen Grignard-Reaktion die Verbindungen mit der allgemeinen Formel Ic aus den entsprechenden (-) Narwedin-Bausteinen hergestellt werden.
 - 8. Verfahren zur Herstellung der Verbindungen 1, 3, 13 und 24

dadurch gekennzeichnet, dass die entsprechenden Ausgangsverbindungen auf Basis von Norgalanthamin in Gegenwart einer Base umgesetzt werden.

- 9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass als Base Natriumhydrogencarbonat, Kaliumcarbonat, Natriumhydroxid, Kaliumhydroxid, Triethylamin oder Pyridin sowie Mischungen daraus eingesetzt werden.
- 10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Base in einer Menge zwischen 5 und 20 Gew.% bezogen auf 100 Gew.% Ausgangsprodukt eingesetzt wird.
- 11. Arzneimittel enthaltend eine oder mehrere Verbindungen Ia, Ib oder Ic als pharmazeutischen Wirkstoff.
- 12. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren' Säureadditionssalze zum Herstellen eines Arzneimittels für Behandlung der Alzheimer'schen Krankheit und verwandter Demenzzustände.
- 13. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen Arzneimittels eines für die Behandlung der Parkinson'schen Krankheit.
- 14. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung der Huntington'schen Krankheit (Chorea).
- 15. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren

Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung von Multipler Sklerose.

- 16. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung der amyotrophen Lateralsklerose.
- 17. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung von Epilepsie.
- 18. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in reiner Form oder in Form ihrer pharmazeutisch annehmbaren Säureadditionssalze zum Herstellen eines Arzneimittels für die Behandlung der Folgen eines Schlaganfalls.
- 19. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in pharmazeutisch annehmbaren reiner Form oder in Form ihrer die Herstellen eines Arzneimittels für Säureadditionssalze zum Behandlung der Folgen eines Schädel-Hirn-Traumas.
- 20. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in annehmbaren pharmazeutisch oder in Form ihrer reiner Form Arzneimittels für eines Herstellen Säureadditionssalze zum Prophylaxe der Folgen diffusen Sauerstoff-Behandlung und Nährstoffmangels im Gehirn, wie sie nach Hypoxie, Anoxie, Asphyxie, einer Narkose nach Vergiftungen, Herzstillstand, Komplikationen bei schweren Geburten am Säugling beobachtet werden.
- 21. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in annehmbaren pharmazeutisch Form ihrer reiner oder in Form für die Arzneimittels Säureadditionssalze Herstellen eines zum prophylaktische Behandlung apoptotischer Degeneration in Neuronen, die durch lokale Radio- oder Chemotherapie von Gehirntumoren geschädigt wurden bzw. werden.
- 22. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in pharmazeutisch annehmbaren Form ihrer reiner Form oder in für die Herstellen eines Arzneimittels zum Säureadditionssalze Behandlung der bakteriellen Meningitis.
- 23. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in annehmbaren ihrer pharmazeutisch Form oder in Form reiner Arzneimittels für die Herstellen eines Säureadditionssalze zum Behandlung von Erkrankungen mit apoptotischer Komponente, besonders im Gefolge von amyloid-assoiziierter Zelldegeneration.

- 24. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in pharmazeutisch annehmbaren oder in Form ihrer Form für Arzneimittels Säureadditionssalze zum Herstellen eines Behandlung von Diabetes mellitus, insbesondere, wenn die Krankheit mit Amyloiddegeneration der Inselzellen einhergeht.
- 25. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in pharmazeutisch annehmbaren ihrer in Form Form oder Arzneimittels für Herstellen eines Säureadditionssalze zum subsyndronalem und/oder Delir postoperativem Behandlung von postoperativem Delir.
- 26. Verwendung einer oder mehrerer Verbindungen Ia, Ib oder Ic in pharmazeutisch annehmbaren ihrer oder in Form reiner für Arzneimittels Säureadditionssalze zum Herstellen eines präventive Behandlung von postoperativem Delir und/oder subsyndronalem post-operativem Delir.

Sanochemia Pharmazeutika AG vertreten durch:

PATENTANWÄLTE DIPL.-ING. MANFRED BEER DIPL.-ING. REINHARD HEHENBERGER durch:

Dr. Karin Dungler (Ausweis Nummer 419)

			Rec	eived Date of IA: _	
	O at Bank		PR	ORITY CLAIM D.	ATE:
I.A. Number: E	POH 9095	·			
RO closed for business on:			ISA: AT CN EP KR US others		
No. of sheets over	30:	No. of claims:	6	No. of sheets of N	MSL:
IZANGUALOE	Description	n & Claims: 9	en	Figure & Draw	ings: A
	Request:	<u> </u>	 	Declarations: Form: 156	
	Abstract &	Drawings:		MSL: yes /.	no
					
Box of the request 1				dress for Notifi	ication
Request for transm				Yes	
Treatment:	CIP	CON	UM	+UM	PP
	I	HADLIN	E SCREEN		
CODE	· · · · · · · · · · · · · · · · · · ·	OMMENTS			-i
			Day	· Month	Year
	int.				<u>- </u>
ISA/202 date of rece					
Warning on screen /	Remarks:	·		٠.	•
		·			
		SE ORDER	MICNIE		
Form: <u>301</u> + A	nnex	Pred Sub	e limit for nat cautionary des mission of pri itation to corre	ional phase signations ority document(s ect/can cel priority) v da1e(s)
(304 0016	ease specify pric	ority number, if	necessary:		
307 17	7 337			INPUT by: CD.	<u>E</u>
				Date:	

.

.

PCT/AT2004/000309

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.