Math 235 Reference

Definition 1 (Vector Space) A vector space over \mathbb{F} is a set V together with an operation $+: V \times V \to V$ (vector addition) so that for all $\mathbf{x}, \mathbf{y} \in V$, $\mathbf{x} + \mathbf{y} \in V$ and an operation $\cdot: \mathbb{F} \times V \to V$ (scalar multiplication) so that for all $s \in \mathbb{F}, \mathbf{x} \in V$, $s \cdot \mathbf{x} \in V$. The vector space axioms are:

- 1. $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in V, \ \mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$
- 2. $\exists \mathbf{0} \in V \text{ such that } \mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x} \text{ for all } \mathbf{x} \in V$
- 3. $\forall \mathbf{x} \in V$, there exists $(-\mathbf{x}) \in V$ such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$
- 4. $\forall \mathbf{x}, \mathbf{y} \in V, \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$
- 5. $\forall \mathbf{x} \in V \text{ and } s, t \in \mathbb{F}, \ s(t\mathbf{x}) = (st)\mathbf{x}$
- 6. $\forall \mathbf{x} \in V \text{ and } s, t \in \mathbb{F}, (s+t)\mathbf{x} = s\mathbf{x} + t\mathbf{x}$
- 7. $\forall \mathbf{x}, \mathbf{y} \in V \text{ and } s \in \mathbb{F}, s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y}$
- 8. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$

Theorem 1 Let V be a vector space over \mathbb{F} . Then,

- 1. The zero vector in V is unique
- 2. The additive inverse of any vector in V is uniquely determined

Definition 2 (Subspace) Let V be a vector space over \mathbb{F} and $U \subset V$ a subset. We call U a subspace of V if U, endowed with the addition and scalar multiplication from V, is itself a vector space over \mathbb{F} .

Theorem 2 (Subspace Test) Let V be a vector space over \mathbb{F} and let U be a subset of V. Then U is a subspace of V if and only if the following three conditions hold:

- 1. U is non-empty
- 2. For all $\mathbf{u}_1, \mathbf{u}_2 \in U$, $\mathbf{u}_1 + \mathbf{u}_2 \in U$ (closure under addition)
- 3. For all $\alpha \in \mathbb{F}$ and $\mathbf{u} \in U$, $\alpha \mathbf{u} \in U$ (closure under scalar multiplication)

Corollary 2.1 Let V be a vector space over \mathbb{F} and suppose that U is a subspace of V. Then $\mathbf{0} \in U$.

Definition 3 (Span) Let $S = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ be a subset of a vector space V over \mathbb{F} . Define the span of S by

$$Span(S) = \{t_1\mathbf{v}_1 + ... + t_k\mathbf{v}_k : t_1, ..., t_k \in \mathbb{F}\}.$$

A vector of the form $t_1\mathbf{v}_1 + ... + t_k\mathbf{v}_k$ is called a linear combination of vectors $\mathbf{v}_1, ..., \mathbf{v}_k$. By convention, $Span(\emptyset) = \{\mathbf{0}\}.$

Theorem 3 Let $S = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ be a subset of vector space V. Then Span(S) is a subspace of V.

Definition 4 (Spanning Set) A set of vectors $S = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ in a vector space V is a spanning set for V if Span(S) = V. We also say that S spans V.

Definition 5 (Linearly Independent) A set of vectors $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ in a vector space V is linearly independent if the only solution to the equation

$$t_1\mathbf{v}_1 + \dots + t_k\mathbf{v}_k = \mathbf{0}$$

is $t_1 = ... = t_k = 0$. Otherwise, the set is linearly dependent. By convention, the empty set is linearly independent.

Definition 6 (Basis) A basis for a vector space V is a linearly independent subset that spans V.

Theorem 4 Every vector space has a basis.

Theorem 5 Let V be a vector space over \mathbb{F} and suppose that $V = Span(\{\mathbf{v}_1, ..., \mathbf{v}_n\})$. If $\{\mathbf{u}_1, ..., \mathbf{u}_k\}$ is a linearly independent set in V, then $k \leq n$.

Theorem 6 Let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ and $\mathcal{C} = \{\mathbf{u}_1, ..., \mathbf{u}_k\}$ both be bases of a vector space V. Then k = n.

Definition 7 (Dimension) The dimension of a vector space V, $\dim(V)$, is the size of any basis for V.

Theorem 7 Let V be an n-dimensional vetor space over \mathbb{F} . Then

- 1. A set of more than n vectors in V must be linearly dependent
- 2. A set of fewer than n vectors in V cannot span V
- 3. A set with exactly n vectors in V is a spanning set for V if and only if it is linearly independent

Theorem 8 Let V be a finite-dimensional vector space over \mathbb{F} and let W be a subspace of V. Then $\dim(V) \leq \dim(W)$ with equality if and only if W = V.

Theorem 9 Let V be a vector space and let $S = \{\mathbf{v}_1, ..., \mathbf{v}_k\}$ be a subset of V and let U = Span(S). Then every vector in U can be expressed in a unique way as a linear combination of the vectors in S if and only if S is linearly independent.

Theorem 10 (Unique Representation Theorem) Let V be a vector space and let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be a basis of V. Then for all $\mathbf{v} \in V$, there exist unique scalars $x_1, ..., x_n \in \mathbb{F}$ such that

$$\mathbf{v} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$

Definition 8 (Ordered Basis) Let V be a vector space over \mathbb{F} . An ordered basis for V is a basis $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for V together with a fixed ordering.

Definition 9 (Coordinate Vector) Let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be an ordered basis for vector space V. If $\mathbf{x} \in V$ is written as $\mathbf{x} = x_1\mathbf{v}_1 + ... + x_n\mathbf{v}_n$, then the coordinate vector of \mathbf{x} with respect to \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = [x_1, ..., x_n]^T.$$

Theorem 11 Let V be a vector space over \mathbb{F} with ordered basis \mathcal{B} . Then

1.
$$[\mathbf{x} + \mathbf{y}]_{\mathcal{B}} = [\mathbf{x}]_{\mathcal{B}} + [\mathbf{y}]_{\mathcal{B}}$$

2.
$$[t\mathbf{x}]_{\mathcal{B}} = t[\mathbf{x}]_{\mathcal{B}}$$

for all $\mathbf{x}, \mathbf{y} \in V$ and $t \in \mathbb{F}$.

Definition 10 (Linear Transformation) If V and W are vector spaces over \mathbb{F} , a function $L: V \to W$ is called a linear transformation if it satisfies

1.
$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y})$$

2.
$$L(t\mathbf{x}) = tL(\mathbf{x})$$

for all $\mathbf{x}, \mathbf{y} \in V$ and $t \in \mathbb{F}$.

Definition 11 (Range and Kernel) Let $L: V \to W$ be a linear transformation. The range of L is

$$Range(L) = \{L(\mathbf{x}) \in W : \mathbf{x} \in V\}$$

and the kernel (or nullspace) of L is

$$Ker(L) = \{ \mathbf{x} \in V : L(\mathbf{x}) = \mathbf{0} \}$$

Theorem 12 Let V and W be vector spaces over \mathbb{F} and let $L:V\to W$ be a linear transformation. Then

- 1. $L(\mathbf{0}) = \mathbf{0}$
- 2. Range(L) is a subspace of W
- 3. Ker(L) is a subspace of V

Definition 12 (Rank and Nullity) Let V and W be vector spaces over \mathbb{F} . The rank of a linear map $L: V \to W$ is the dimension of the range of L. The nullity of L is the dimension of the kernel of L.

Theorem 13 (Rank-Nullity Theorem) Let V and W be vector spaces over \mathbb{F} with $\dim(V) = n$. Let $L: V \to W$ be a linear map. Then

$$rank(L) + nullity(L) = n.$$

Theorem 14 Let V be an n-dimensional vector space with ordered basis \mathcal{B} . Let W be an m-dimensional vector space with ordered basis \mathcal{C} . Then, for every linear map $L: V \to W$, there exists an $m \times n$ matrix A such that $[L(\mathbf{v})]_{\mathcal{C}} = A[\mathbf{v}]_{\mathcal{B}}$ for all $\mathbf{v} \in V$. Conversely, every $m \times n$ matrix A defines a linear map $L: V \to W$ by $[L(\mathbf{v})]_{\mathcal{C}} = A[\mathbf{v}]_{\mathcal{B}}$.

Corollary 14.1 Let V be a vector space with ordered basis $\mathcal{B} = \{\mathbf{b}_1, ..., \mathbf{b}_n\}$. Let W be a vector space with ordered basis $\mathcal{C} = \{\mathbf{c}_1, ..., \mathbf{c}_m\}$. Let $L: V \to W$ be a linear map. Then the $m \times n$ matrix A of the linear map L is given by

$$_{\mathcal{C}}[L]_{\mathcal{B}} = [[L(\mathbf{b}_1)]_{\mathcal{C}}, ..., [L(\mathbf{b}_n)]_{\mathcal{C}}]$$

If $L: V \to V$, then we write $[L]_{\mathcal{B}} = {}_{\mathcal{B}}[L]_{\mathcal{B}}$.

Theorem 15 Let V, U, W be vector spaces over \mathbb{F} with bases $\mathcal{B}, \mathcal{C}, \mathcal{D}$ respectively. Let $L: V \to U$ and $M: U \to W$ be linear maps. Then

$$_{\mathcal{D}}[M \circ L]_{\mathcal{B}} = _{\mathcal{D}}[M]_{\mathcal{C}} _{\mathcal{C}}[L]_{\mathcal{B}}.$$

Definition 13 (Column space and nullspace) Let $A \in M_{m \times n}(\mathbb{F})$. The column space of A, Col(A), is the span of the columns of A. The rank of A is the dimension of its column space. The nullspace of A, Null(A), is the set of all $\mathbf{v} \in \mathbb{F}^n$ such that $A\mathbf{v} = \mathbf{0}$. The nullity of A is the dimension of its nullspace.

Theorem 16 Let $L: V \to W$ be a linear map with bases \mathcal{B} and \mathcal{C} for bases V and W. Let $A = {}_{\mathcal{C}}[L]_{\mathcal{B}}$.

- 1. $\mathbf{v} \in Ker(L)$ if and only if $[\mathbf{v}]_{\mathcal{B}} \in Null(A)$
- 2. $\mathbf{w} \in Range(L)$ if and only if $[\mathbf{w}]_{\mathcal{C}} \in Col(A)$

Definition 14 (Change of Coordinates Matrix) Let V be a finite dimensional vector space, and let \mathcal{B} and \mathcal{C} be two bases for V. The change of coordinates matrix $_{\mathcal{C}}\mathcal{I}_{\mathcal{B}}$ is the matrix $_{\mathcal{C}}[id]_{\mathcal{B}}$, where $id:V \to V$ is the identity map.

Theorem 17 Let V be a finite dimensional vector space with bases \mathcal{B} and \mathcal{C} . Then $_{\mathcal{C}}\mathcal{I}_{\mathcal{B}} = (_{\mathcal{B}}\mathcal{I}_{\mathcal{C}})^{-1}$

Theorem 18 Let $L: V \to W$ be a linear map between two finite-dimensional vector spaces V and W. Suppose \mathcal{B} and \mathcal{B}' are ordered bases for V and that \mathcal{C} and \mathcal{C}' are ordered bases for W. Then

$$_{\mathcal{C}'}[L]_{\mathcal{B}'} = _{\mathcal{C}'}\mathcal{I}_{\mathcal{C}}\,_{\mathcal{C}}[L]_{\mathcal{B}}\,_{\mathcal{B}}\mathcal{I}_{\mathcal{B}'}$$

Theorem 19 (Injective and Surjective) Let $L: V \to W$ be a linear map between vector spaces and let $\mathbf{v}_1, \mathbf{v}_2 \in V$.

- We say L is injective if $L(\mathbf{v}_1) = L(\mathbf{v}_2)$ implies $\mathbf{v}_1 = \mathbf{v}_2$
- We say L is surjective if Range(L) = W

Theorem 20 A linear map $L: V \to W$ is injective if and only if $Ker(L) = \{0\}$.

Theorem 21 Let $L:V\to W$ be a linear map between finite-dimensional vector spaces. Then

- 1. L is injective if and only if nullity(L) = 0
- 2. L is surjective if and only if rank(L) = dim(W)

Definition 15 (Isomorphism) Let $L: V \to W$ be a linear map. If L is injective and surjective, we say L is an isomorphism. We say that two vector spaces V and W are isomorphic and write $V \cong W$, if there is an isomorphism $L: V \to W$.

Theorem 22 A linear map $L: V \to W$ is an isomorphism if and only if there exists a unique linear map $L^{-1}: W \to V$ such that $L \circ L^{-1}(\mathbf{w}) = \mathbf{w}$ for all $\mathbf{w} \in W$ and $L^{-1} \circ L(\mathbf{v}) = \mathbf{v}$ for all $\mathbf{v} \in V$. In this case we call L^{-1} the inverse linear map to L.

Theorem 23 Let $L: V \to W$ be an isomorphism. Let \mathcal{B} be a basis for V and \mathcal{C} a basis for W. Then $_{\mathcal{C}}[L]_{\mathcal{B}}$ is an invertible matrix and $(_{\mathcal{C}}[L]_{\mathcal{B}})^{-1} = _{\mathcal{B}}[L^{-1}]_{\mathcal{C}}$.

Theorem 24 Let $L:V\to W$ be a linear map between two finite-dimensional vector spaces. Then

- 1. If $\dim(V) < \dim(W)$, L cannot be surjective
- 2. If $\dim(V) > \dim(W)$, L cannot be injective
- 3. If $\dim(V) = \dim(W)$, L is injective if and only if L is surjective

Theorem 25 Suuppose V and W are finite dimensional vector spaces over the same field. Then V and W are isomorphic if and only if $\dim(V) = \dim(W)$.

Theorem 26 Let V be an n-dimensional vector space over \mathbb{F} . Then $V \cong \mathbb{F}^n$.

Definition 16 (Linear Operator) A linear map $T: V \to W$ is a linear operator if V = W.

Definition 17 (Eigenvector and Eigenvalue) Let $L: V \to V$ be a linear operator. A non-zero vector $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \lambda \mathbf{v}$ for $\lambda \in \mathbb{F}$ is called an eigenvector of L. The number λ is called an eigenvalue of L.

Definition 18 (Eigenspace) Let $L: V \to V$ be a linear operator and let $\lambda \in \mathbb{F}$ be an eigenvalue of L. The eigenspace of L corresponding to λ is

$$E_{\lambda}(L) = \{ \mathbf{v} \in V : L(\mathbf{v}) = \lambda \mathbf{v} \}.$$

Theorem 27 Let $L: V \to V$ be linear operator and let $\lambda \in \mathbb{F}$ be an eigenvalue of L. The eigenspace of L corresponding to λ is a subspace of V.

Theorem 28 Let $L: V \to V$ be a linear operator on a finite-dimensional vector space V over \mathbb{F} , and let $\lambda \in \mathbb{F}$ be an eigenvalue of L. If \mathcal{B} is an ordered basis for V and if $A = [L]_{\mathcal{B}}$, then the eigenspace of A corresponding to λ is $Null(A - \lambda I)$.

Definition 19 (Characteristic Polynomial of a Matrix) Let $A \in M_{n \times n}(\mathbb{F})$. The characteristic polynomial of A is the polynomial in λ is given by $C_A(\lambda) = \det(A - \lambda I)$.

Theorem 29 Let $A \in M_{n \times n}(\mathbb{F})$. The eigenvalues of A are the values of $\lambda \in \mathbb{F}$ that are solutions to the equation $\det(A - \lambda I) = 0$. That is, they are the roots of the characteristic polynomial of A that lie in \mathbb{F} .

Theorem 30 If A is an $n \times n$ matrix with entries in \mathbb{F} , then the characteristic polynomial of A is a polynomial of degree n with coefficients in \mathbb{F} .

Corollary 30.1 Let $A \in M_{n \times n}(\mathbb{C})$. Then A has n (possibly repeated) eigenvalues in \mathbb{C} .

Theorem 31 Let $A \in M_{n \times n}(\mathbb{C})$. Then

- 1. The determinant of A is the product of eigenvalues of A, where each eigenvalue is repeated according to its multiplicity.
- 2. The trace of A is the sum of eigenvalues of A, where each eigenvalue is repeated according to its multiplicity.

Definition 20 (Diagonalizable Operator) Let V be a finite-dimensional vector space over \mathbb{F} . A linear operator $L:V\to V$ is diagonalizable if there exists an ordered basis \mathcal{D} for V such that $[L]_{\mathcal{D}}$ is a diagonal matrix. We say that the basis \mathcal{D} diagonalizes L.

Theorem 32 Let $L: V \to V$ be a linear operator and let \mathcal{B} and \mathcal{C} be ordered bases for V. Then

$$[L]_{\mathcal{B}} = ({}_{\mathcal{C}}\mathcal{I}_{\mathcal{B}})^{-1}[L]_{\mathcal{C}} {}_{\mathcal{C}}\mathcal{I}_{\mathcal{B}}$$

Definition 21 (Similar) If B and C are $n \times n$ matrices such that $B = P^{-1}CP$ for some invertible matrix $P \in M_{n \times n}(\mathbb{F})$, then we say B is similar to C over \mathbb{F} .

Theorem 33 Let $A, B \in M_{n \times n}(\mathbb{F})$. If A is similar to B over \mathbb{F} , then A and B have the same characteristic polynomial, eigenvalues, determinant, trace, rank, and nullity.

Definition 22 (Diagonalizable Matrix) A matrix $A \in M_{n \times n}(\mathbb{F})$ is diagonlizable over \mathbb{F} if there exists an invertible matrix $P \in M_{n \times n}(\mathbb{F})$ such that $P^{-1}AP = D$ where D is a diagonal matrix.

Theorem 34 A $n \times n$ matrix A is diagonalizable if and only if there exists a basis $\mathcal{D} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for \mathbb{F}^n such that each \mathbf{v}_i is an eigenvector for A. If such a basis \mathcal{D} exists, and if we let $P = [\mathbf{v}_1, ..., \mathbf{v}_n]$ be the matrix whose columns are the vectors in \mathcal{D} , then

$$P^{-1}AP = D = diag(\lambda_1, ..., \lambda_n)$$

where λ_i is the eigenvalue corresponding to the eigenvector \mathbf{v}_i .

Theorem 35 Suppose $\lambda_1, ..., \lambda_k \in \mathbb{F}$ are distinct eigenvalues of a square matrix $A \in M_{n \times n}(\mathbb{F})$ with corresponding eigenvectors $\mathbf{v}_1, ..., \mathbf{v}_k$. Then $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ is linearly independent.

Theorem 36 If $A \in M_{n \times n}(\mathbb{F})$ has n distinct eigenvalues, then A is diagonalizable over \mathbb{F} .

Definition 23 (Algebraic and Geometric Multiplicity) Let $A \in M_{n \times n}(\mathbb{F})$ and let $\lambda \in \mathbb{F}$ be an eigenvalue of A, The algebraic multiplicity of λ is the multiplicity of λ as a root of the characteristic polynomial of A. The geometric multiplicity of λ is defined to be the dimension of the eigenspace $E_{\lambda}(A) = Null(A - \lambda I)$.

Theorem 37 Suppose $\lambda_1, ..., \lambda_k \in \mathbb{F}$ are distinct eigenvalues of a matrix $A \in M_{n \times n}(\mathbb{F})$ and let $\{\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, ..., \mathbf{v}_{i,m_i}\}$ be a basis for the eigenspace corresponding to λ_i . Then the union of these bases is a linearly independent subset of \mathbb{F}^n .

Theorem 38 Let $A \in M_{n \times n}(\mathbb{F})$ and let $\lambda \in \mathbb{F}$ be an eigenvalue of A. Then

 $1 \leq geometric\ multiplicity\ of\ \lambda \leq algebraic\ multiplicity\ of\ \lambda \leq n.$

Theorem 39 (Diagonalizability Test) Let $A \in M_{n \times n}(\mathbb{F})$. Suppose that the characteristic polynomial of A factors over \mathbb{F} as

$$C_A(\lambda) = (\lambda - \lambda_1)^{a_{\lambda_1}} ... (\lambda - \lambda_k)^{a_{\lambda_k}} h(\lambda)$$

where $\lambda_1, ..., \lambda_k$ are all the distinct eigenvalues in \mathbb{F} with corresponding algebraic multiplicities $a_{\lambda_1}, ..., a_{\lambda_k}$ and $h(\lambda)$ is a polynomial in λ that has no roots in \mathbb{F} . Then A is diagonalizable over \mathbb{F} if and only if $h(\lambda)$ is a constant polynomial and for all i = 1, ..., k,

algebraic multiplicity of λ_i = geometric multiplicity of λ_i

Theorem 40 (Diagonalization of an Operator Algorithm) To diagonalize linear operator $L: V \to V$:

- 1. Pick any basis \mathcal{B} for V and determine matrix $A = [L]_{\mathcal{B}}$
- 2. Compute and factor the characteristic polynomial $C_A(\lambda)$ to find eigenvalues $\lambda_1, ..., \lambda_k$. Let a_i denote the algebraic multiplicity of λ_i . If $a_1 + ... + a_k \neq n$, conclude that A is not diagonalizable over \mathbb{F} .
- 3. Otherwise, determine a basis \mathcal{B}_i for each eigenspace $E_{\lambda_i}(A)$ for i = 1, ..., k. Let $g_i = \dim E_{\lambda_i}$ denote the geometric multiplicity of λ_i .
- 4. A is diagonalizable if and only if $a_i = g_i$ for i = 1, ..., k
- 5. If A is diagonalizable, then $\mathcal{D} = \mathcal{B}_1 \cup ... \cup \mathcal{B}_k$ is a basis for \mathbb{B}^n consisting of eigenvectors of $A_{\dot{\mathcal{E}}}$ If P is the matrix whose columns are the vectors in \mathcal{D} , then $D = P^{-1}AP$ is a diagonal matrix. The diagonal entries of D are λ_1 (listed a_1 times),..., λ_k (listed a_k times). The order of eigenvalues matches the order in which their corresponding eigenvectors occur as columns in P.
- 6. To determine a basis for V that diagonalizes L, take each of the vectors in \mathcal{D} , view it as a coordinate vector in \mathbb{F}^n with respect to the basis \mathcal{B} from step 1, and thereby convert it into a vector in V. The set of all these vectors is then the desired basis for V.

Definition 24 (Inner Product) Let V be a vector space over \mathbb{F} . An inner product is a function

$$\langle,\rangle:V\times V\to\mathbb{F}$$

such that for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$, $\alpha \in \mathbb{F}$,

- 1. $\langle \mathbf{v}, \mathbf{w} \rangle = \overline{\langle \mathbf{w}, \mathbf{v} \rangle}$
- 2. $\alpha \langle \mathbf{v}, \mathbf{w} \rangle = \langle \alpha \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$. If $\langle \mathbf{v}, \mathbf{v} \rangle = 0$, then $\mathbf{v} = \mathbf{0}$

A vector space alongside an inner product is called an inner product space. Property 1 is called conjugate symmetry. Property 2 and 3 are called linearity in the first argument. Property 4 is called positive definiteness.

Theorem 41 Let V be an inner product space. For all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{F}$,

- 1. $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$
- 2. $\langle \mathbf{v}, \alpha \mathbf{w} \rangle = \overline{\alpha} \langle \mathbf{v}, \mathbf{w} \rangle$
- 3. $\langle \mathbf{v}, \mathbf{u} + \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$

Theorem 42 Every finite-dimensional vector space admits an inner product.

Definition 25 (Norm (Length)) Let **v** be a vector in an inner product space V. The norm (or length) of **v** is defined

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Definition 26 (Orthogonal) Let V be an inner product space. We say \mathbf{v} is orthogonal to \mathbf{w} and write $\mathbf{v} \perp \mathbf{w}$ if $\langle \mathbf{v}, \mathbf{w} \rangle = 0$.

Theorem 43 (Pythagorean Theorem) Let V be an inner product space. Suppose $\mathbf{v} \perp \mathbf{w}$. Then

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2$$

Theorem 44 Let V be an inner product space and let $\mathbf{v}, \mathbf{w} \in V$ such that $\mathbf{v} \neq \mathbf{w}$. Then \mathbf{v} is orthogonal to

$$\mathbf{v} - \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$$

Theorem 45 (Cauchy-Schwarz Inequality) Let V be an inner product space. Then

$$|\langle \mathbf{v}, \mathbf{w} \rangle| \le ||\mathbf{v}|| ||\mathbf{w}||$$

for all $\mathbf{v}, \mathbf{w} \in V$ with equality if and only if \mathbf{v} and \mathbf{w} are scalar multiples of each other.

Definition 27 (Angle) Let V be a real inner product space. The angle θ between two non-zero vectors \mathbf{v} and \mathbf{w} in V is defined by

$$\cos(\theta) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|},$$

that is, θ is a unique real number in the interval $[0, \pi]$.

Theorem 46 Let V be an inner product space. For all $\mathbf{v}, \mathbf{w} \in V$ and $\alpha \in \mathbb{F}$,

- 1. $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$
- 2. $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$
- 3. $\|\mathbf{v}\| \ge 0$, and $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$

Definition 28 (Distance) Let V be an inner product space and let $\mathbf{v}, \mathbf{w} \in V$. The distance between \mathbf{v} and \mathbf{w} is defined

$$dist(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

Definition 29 (Orthogonal Set) A set $\{\mathbf{v}_1,...,\mathbf{v}_k\}$ in an inner product space is called orthogonal if $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ whenever $i \neq j$.

Definition 30 (Unit Vector) A vector \mathbf{v} in an inner product space is a unit vector if $\|\mathbf{v}\| = 1$.

Definition 31 (Orthonormal Set) A set $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ in an inner product space is an orthonormal set if it is an orthogonal set and if each vector in the set is a unit vector.

Definition 32 (Normalization) Let \mathbf{v} be a non-zero vector in an inner product space. The normalization of \mathbf{v} is the vector

$$\hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

Theorem 47 Suppose $\{\mathbf{v}_1,...,\mathbf{v}_k\}$ is orthogonal and $\mathbf{v}_i \neq \mathbf{0}$ for all i. Then $\{\mathbf{v}_1,...,\mathbf{v}_k\}$ is linearly independent.

Definition 33 (Orthogonal Basis) A set $\{\mathbf{v}_1,...,\mathbf{v}_k\}$ in an inner product space V is an orthogonal basis if it is a basis for V and it is an orthogonal set.

Theorem 48 Let V be an inner product space and let $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$ be a basis for V. If $\mathbf{x} \in V$ is given by $\mathbf{x} = x_1\mathbf{v}_1 + ... + x_n\mathbf{v}_n$, then

1. If \mathcal{B} is an orthogonal basis, then

$$x_i = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \text{ for } 1 \le i \le n$$

2. If \mathcal{B} is an orthonormal basis, then

$$x_i = \langle \mathbf{x}, \mathbf{v}_i \rangle \text{ for } 1 \leq i \leq n$$

Definition 34 (Projection and Perpendicular) Let V be an inner product space, and let $\mathbf{v}, \mathbf{w} \in V$ with $\mathbf{w} \neq \mathbf{0}$. The projection of \mathbf{v} onto \mathbf{w} is defined to be the vector

$$proj_{\mathbf{w}}(\mathbf{v}) = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{w}\|^2} \mathbf{w}.$$

We also define the perpendicular vector of \mathbf{v} with respect to \mathbf{w} by

$$perp_{\mathbf{w}}(\mathbf{v}) = \mathbf{v} - proj_{\mathbf{w}}(\mathbf{v})$$

Theorem 49 (Gram-Schmidt Orthogonolization Procedure) Let V be an inner product space with basis $\{\mathbf{v}_1,...,\mathbf{v}_n\}$. To obtain an orthogonal basis for V, define $\mathbf{w}_1,...,\mathbf{w}_n$ as follows:

$$\begin{aligned} \mathbf{w}_1 &= \mathbf{v}_1 \\ \mathbf{w}_2 &= \mathbf{v}_2 - proj_{\mathbf{w}_1} \mathbf{v}_2 \\ \mathbf{w}_3 &= \mathbf{v}_3 - proj_{\mathbf{w}_1} \mathbf{v}_3 - proj_{\mathbf{w}_2} \mathbf{v}_3 \\ &\vdots \\ \mathbf{w}_n &= \mathbf{v}_n - proj_{\mathbf{w}_1} \mathbf{v}_n - \dots - proj_{\mathbf{w}_{n-1}} \mathbf{v}_n \end{aligned}$$

Then $\{\mathbf{w}_1, ..., \mathbf{w}_n\}$ is an orthogonal basis for V.

Theorem 50 Let W be a subspace of a finite-dimensional inner product space V. Then we can find an orthogonal basis $\{\mathbf{w}_1,...,\mathbf{w}_k,\mathbf{n}_1,...,\mathbf{n}_l\}$ for V such that $\{\mathbf{w}_1,...,\mathbf{w}_k\}$ is an orthogonal basis for W.

Definition 35 (Orthogonal Complement) Let V be an inner product space and let $W \subset V$ be a subspace. The orthogonal complement of W is the set

$$W^{\perp} = \{ \mathbf{v} \in V : \langle \mathbf{v}, \mathbf{w} \rangle = 0 \text{ for all } \mathbf{w} \in W \}$$

Theorem 51 Let V be an inner product space and let $W \subset V$ be a subspace.

- 1. W^{\perp} is a subspace of V
- 2. $W \cap W^{\perp} = \{ \mathbf{0} \}$

Theorem 52 Let V be a finite-dimensional inner product space and let $W \subset V$ be a subspace. Then

- 1. If $\{\mathbf{w}_1,...,\mathbf{w}_k\}$ is a spanning set for W, then $\mathbf{v} \in W^{\perp}$ if and only if $\langle \mathbf{v},\mathbf{w}_i \rangle = 0$ for all $1 \leq i \leq k$
- 2. If $\mathcal{B} = \{\mathbf{w}_1, ..., \mathbf{w}_k\}$ is an orthogonal basis for W, then there exists an orthogonal basis $\mathcal{C} = \{\mathbf{n}_1, ..., \mathbf{n}_k\}$ for W^{\perp} such that $\mathcal{B} \cup \mathcal{C}$ is an orthogonal basis for V
- 3. $\dim(V) = \dim(W) + \dim(W^{\perp})$
- 4. $(W^{\perp})^{\perp} = W$

Theorem 53 (Orthogonal Decomposition) Let W be a subspace of a finite-dimensional inner product space V. Then every $\mathbf{v} \in V$ can be written as $\mathbf{v} = \mathbf{p} + \mathbf{r}$ where $\mathbf{p} \in W$ and $\mathbf{r} \in W^{\perp}$ are uniquely determined by \mathbf{v} . Moreover, if $\mathcal{B} = \{\mathbf{w}_1, ..., \mathbf{w}_k\}$ is an orthogonal basis for W, then \mathbf{p} is given by

$$\mathbf{p} = \sum_{i=1}^{k} proj_{\mathbf{w}_i}(\mathbf{v}).$$

Definition 36 (Projection and Perpendicular onto a Subspace) Let V be an inner product space and let $W \subset V$ be a subspace. Let $\{\mathbf{w}_1,...,\mathbf{w}_k\}$ be an orthogonal basis for W. Let $\mathbf{v} \in V$. The projection of \mathbf{v} onto W and the perpendicular vector of \mathbf{v} with respect to W are defined to be

$$proj_W(\mathbf{v}) = \sum_{i=1}^k proj_{\mathbf{w}_i}(\mathbf{v}) \text{ and } perp_W(\mathbf{v}) = \mathbf{v} - proj_W(\mathbf{v}).$$

Theorem 54 Let V be a finite-dimensional inner product space, W a subspace of V and $\mathbf{v} \in V$. Let $\mathcal{V} = \{\mathbf{w}_1, ..., \mathbf{w}_k\}$ be an orthogonal basis for W and let

$$\mathbf{p} = \sum_{i=1}^{k} proj_{\mathbf{w}_i}(\mathbf{v}).$$

- 1. If $C = \{\mathbf{u}_1, ..., \mathbf{u}_k\}$ is an orthogonal basis for W, then $\sum_{i=1}^k proj_{\mathbf{u}_i}(\mathbf{v}) = \mathbf{p}$
- 2. For all $\mathbf{w} \in W$, $\|\mathbf{v} \mathbf{p}\| \le \|\mathbf{v} \mathbf{w}\|$
- 3. If $\|\mathbf{v} \mathbf{p}\| = \|\mathbf{v} \mathbf{w}\|$ for some $\mathbf{w} \in W$, then $\mathbf{w} = \mathbf{p}$

Definition 37 (Least Squares Solution) Let $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$. The vector $\mathbf{s} \in \mathbb{R}^n$ is called a least squares solution to $A\mathbf{x} = \mathbf{b}$ if it is a solution to the system $A\mathbf{x} = \mathbf{p}$ where $\mathbf{p} = proj_{Col(A)}(\mathbf{b})$.

Theorem 55 Let $A \in M_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^m$. The vector $\mathbf{s} \in \mathbb{R}^n$ is a least squares solution to $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$.

Theorem 56 Let $X \in M_{m \times n}(\mathbb{R})$. Then $X^T X \in M_{n \times n}(\mathbb{R})$ is invertible if and only if the columns of X are linearly independent.

Definition 38 (Adjoint) If $A \in M_{n \times n}(\mathbb{F})$, the adjoint of A is the matrix $\overline{A^T} \in M_{n \times n}(\mathbb{F})$. It is denoted A^* .

Theorem 57 Let $P \in M_{n \times n}(\mathbb{F})$. Equip \mathbb{F}^n with the standard inner product. Then, the following properties are equivalent:

- The columns of P form an orthonormal basis for \mathbb{F}^n
- $P^* = P^{-1}$
- The rows of P form an orthonormal basis for \mathbb{F}^n

Definition 39 (Unitary Matrix) A matrix $U \in M_{n \times n}(\mathbb{F})$ is called a unitary matrix if $U^* = U^{-1}$.

Definition 40 (Orthogonal Matrix) A matrix $Q \in M_{n \times n}(\mathbb{R})$ is called a (real) orthogonal matrix if $Q^T = Q^{-1}$.

Theorem 58 Let $U \in M_{n \times n}(\mathbb{F})$ be a unitary matrix and consider \mathbb{F}^n with the standard inner product. Then:

- 1. $\langle U\mathbf{v}, U\mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{w} \rangle$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$
- 2. $||U\mathbf{v}|| = ||\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{F}^n$

Theorem 59 Let $A, B \in M_{n \times n}(\mathbb{F})$. Then

- 1. $(A+B)^* = A^* + B^*$
- 2. $(AB)^* = B^*A^*$
- 3. $(A^*)^* = A$
- 4. $(\alpha A)^* = \bar{\alpha} A^*$ for all $\alpha \in \mathbb{F}$

Theorem 60 (The Fundamental Property of the Adjoint of a Matrix) Let $A \in M_{n \times n}(\mathbb{F})$. Equip \mathbb{F}^n with the standard inner product. Then, for all $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$,

$$\langle A\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, A^*\mathbf{w} \rangle$$

Theorem 61 (Schur's Triangulization Theorem) Let $A \in M_{n \times n}(\mathbb{C})$. There is a unitary matrix $U \in M_{n \times n}(\mathbb{C})$ and an upper-triangular matrix $T \in M_{n \times n}(\mathbb{C})$ such that

$$U^*AU = T = \begin{bmatrix} \lambda_1 & * & * \\ 0 & \ddots & * \\ 0 & 0 & \lambda_n \end{bmatrix}.$$

The diagonal entries of T are the complex eigenvalues of A repeated according to multiplicity. If A has real coefficients and all n eigenvalues of A are in \mathbb{R} , then U and T can be chosen to have real coefficients too.

Theorem 62 (Cayley-Hamilton Theorem) Let $A \in M_{n \times n}(\mathbb{C})$. Then $C_A(A) = \mathbf{0}_{n \times n}$ where $C_A(\lambda)$ is the characteristic polynomial of A.

Definition 41 (Orthogonally Diagonalizable) A matrix $A \in M_{n \times n}(\mathbb{R})$ is said to be orthogonally diagonalizable if there is a real orthogonal matrix $Q \in M_{n \times n}(\mathbb{R})$ such that $Q^T A Q$ is diagonal.

Definition 42 (Unitarily Diagonalizable) A matrix $A \in M_{n \times n}(\mathbb{C})$ is said to be unitarily diagonalizable if there is a unitary matrix $U \in M_{n \times n}(\mathbb{C})$ such that U^*AU is diagonal.

Theorem 63 (Criterion for Orthogonal and Unitary Diagonalizability) Let $A \in M_{n \times n}(\mathbb{R})$.

- A is orthogonally diagalizable if and only if there is a basis for \mathbb{R}^n consisting of orthonormal eigenvectors of A
- A is unitarily diagaonalizable if and only if there is a basis for \mathbb{C}^n consisting of orthonormal eigenvectors of A

Definition 43 (Normal, Self-adjoint, Symmetric) A matrix $A \in M_{n \times n}(\mathbb{F})$ is said to be normal if $AA^* = A^*A$. A matrix $A \in M_{n \times n}(\mathbb{F})$ is said to be self-adjoint if $A = A^*$. Note that if $A \in M_{n \times n}(\mathbb{R})$ and is self-adjoint, then in fact we have $A = A^T$ and we say that A is (real) symmetric.

Theorem 64 (Spectral Theorem for Self-adjoint Matrices) A square matrix in $M_{n\times n}(\mathbb{C})$ is self-adjoint if and only if it is unitarily diagonalizable and if its eigenvalues are all real.

Theorem 65 (Spectral Theorem for Symmetric Matrices) A square matrix in $M_{n\times n}(\mathbb{R})$ is symmetric if and only if it is orthogonally diagonalizable.

Theorem 66 (Spectral Theorem for Normal Matrices) A square matrix in $M_{n\times n}(\mathbb{C})$ is normal if and only if it is unitarily diagonalizable.

Theorem 67 Let $A \in M_{n \times n}(\mathbb{F})$ be a normal matrix. Equip \mathbb{F}^n with the standard inner product. Then

- 1. For all $\mathbf{x} \in \mathbb{F}^n$, $||A\mathbf{x}|| = ||A^*\mathbf{x}||$
- 2. If $\mathbf{x} \in \mathbb{F}^n$ is an eigenvector for A with eigenvalue λ , then \mathbf{x} is an eigenvector for A^* with eigenvalue $\bar{\lambda}$
- 3. If \mathbf{x} and \mathbf{y} in \mathbb{F}^n are eigenvectors of A with distinct eigenvalues λ and μ , then \mathbf{x} is orthogonal to \mathbf{y}

Theorem 68 (Algorithm for Unitary Diagonalization of a Normal Matrix) To unitarily diagonalize a normal matrix $A \in M_{n \times n}(\mathbb{F})$:

- 1. Diagonalize A as usual obtaining $D = diag(\lambda_1, ..., \lambda_n)$ and a basis of eigenvectors for \mathbb{F}^n
- 2. Perform the Gram-Schmidt procedure on the bases of each of the eigenspaces E_{λ_i} of A, obtaining orthonormal bases for the eigenspaces
- 3. Take the union of the orthonormal bases to obtain $\mathcal{D} = \{\mathbf{w}_1, ..., \mathbf{w}_n\}$ which is an orthonormal basis of eigenvectors for \mathbb{F}^n . Order the base so that the orthonormal basis for E_{λ_1} is followed by the orthonormal basis for E_{λ_2} , etc.
- 4. Let $U = [\mathbf{w}_1, ..., \mathbf{w}_n]$. Then U is unitary and $U^*AU = D$ with D as in step 1.

Theorem 69 (Characterization of Inner Products in Terms of Matrices) Let V be a vector space over \mathbb{F} with basis $\mathcal{B} = \{\mathbf{g}_1, ..., \mathbf{g}_n\}$, and let $A \in M_{n \times n}(\mathbb{F})$. Then

$$\langle \mathbf{v}, \mathbf{w} \rangle = [\mathbf{w}]_{\mathcal{B}}^* A[\mathbf{v}]_{\mathcal{B}}$$

where $\mathbf{v}, \mathbf{w} \in V$ defines an inner product on V if and only if $A = A^*$ and all the eigenvalues of A are positive. Furthermore, if \langle , \rangle is an inner product of V, then there is a self-adjoint matrix A such that $\langle \mathbf{v}, \mathbf{w} \rangle = [\mathbf{w}]_{\mathcal{B}}^* A[\mathbf{v}]_{\mathcal{B}}$ for all $\mathbf{v}, \mathbf{w} \in V$. Explicitly, this matrix is given by

$$A = \begin{bmatrix} \langle \mathbf{g}_1, \mathbf{g}_1 \rangle & \dots & \langle \mathbf{g}_n, \mathbf{g}_1 \rangle \\ \vdots & \ddots & \vdots \\ \langle \mathbf{g}_1, \mathbf{g}_n \rangle & \dots & \langle \mathbf{g}_n, \mathbf{g}_n \rangle \end{bmatrix}$$

Definition 44 (Gram Matrix) Let V be a finite-dimensional inner product space over \mathbb{F} with inner product \langle,\rangle and basis $\mathcal{B} = \{\mathbf{g}_1,...,\mathbf{g}_n\}$. The Gram matrix of \langle,\rangle with respect to \mathcal{B} is the matrix

$$A = egin{bmatrix} \langle \mathbf{g}_1, \mathbf{g}_1
angle & \dots & \langle \mathbf{g}_n, \mathbf{g}_1
angle \\ dots & \ddots & dots \\ \langle \mathbf{g}_1, \mathbf{g}_n
angle & \dots & \langle \mathbf{g}_n, \mathbf{g}_n
angle \end{bmatrix}$$

Theorem 70 (Spectral Theorem for Operators) Let $L: V \to V$ be a linear operator on a finite-dimensional inner product space over \mathbb{F} . Let \mathcal{B} be an orthonormal basis for V and let $A = [L]_{\mathcal{B}}$. Then

- 1. If $\mathbb{F} = \mathbb{C}$, there is an orthonormal basis for V consisting of eigenvectors of L if and only if A is normal
- 2. If $\mathbb{F} = \mathbb{R}$, there is an orthonormal basis for V consisting of eigenvectors of L if and only if A is symmetric

Definition 45 (Quadratic Form) A (real) quadratic form in the variables $\mathbf{u} = (u_1, ..., u_n)$ is a polynomial of the form

$$Q(\mathbf{u}) = \sum_{i,j=1}^{n} a_{ij} u_i u_j$$

where $a_{ij} \in \mathbb{R}$.

Definition 46 (Definiteness) A quadratic form $Q(\mathbf{u})$ is said to be

- Positive definite if $Q(\mathbf{u}) > 0$ for all non-zero $\mathbf{u} \in \mathbb{R}^n$
- Positive semi-definite if $Q(\mathbf{u}) \geq 0$ for all $\mathbf{u} \in \mathbb{R}^n$
- Negative definite if $Q(\mathbf{u}) \leq 0$ for all $\mathbf{u} \in \mathbb{R}^n$
- Negative semi-definite if $Q(\mathbf{u}) \leq 0$ for all $\mathbf{u} \in \mathbb{R}^n$
- Indefinite if there exist $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $Q(\mathbf{u}) > 0$ and $Q(\mathbf{v}) < 0$

Theorem 71 Let $Q(\mathbf{u}) = \sum_{i,j=1}^{n} a_{ij} u_i u_j$ be a quadratic form. If we let A be the $n \times n$ matrix whose (i,j)th entry is $\frac{a_{ij} + a_{ji}}{2}$, then

$$Q(\mathbf{u}) = \mathbf{u}^T A \mathbf{u}.$$

Definition 47 (Matrix Associated to a Quadratic Form) The matrix $A \in M_{n \times n}(\mathbb{R})$ in the previous theorem is called the matrix associated to the quadratic form $Q(\mathbf{u})$.

Theorem 72 Let $A \in M_{n \times n}(\mathbb{R})$ be the matrix associated to the quadratic form $Q(\mathbf{u})$. Then A is symmetric.

Theorem 73 (Classification of Quadratic Forms) Let $Q(\mathbf{u})$ be a quadratic form with associated matrix A. Let $\lambda_1, ..., \lambda_n$ be the eigenvalues of A. Then

- 1. $Q(\mathbf{u})$ is positive definite if and only if $\lambda_i > 0$ for all $1 \le i \le n$
- 2. $Q(\mathbf{u})$ is positive semi-definite if and only if $\lambda_i \geq 0$ for all $1 \leq i \leq n$
- 3. $Q(\mathbf{u})$ is negative definite if and only if $\lambda_i < 0$ for all $1 \le i \le n$
- 4. $Q(\mathbf{u})$ is negative semi-definite if and only if $\lambda_i \leq 0$ for all $1 \leq i \leq n$
- 5. $Q(\mathbf{u})$ is indefinite if and only if $\lambda_i > 0$ and $\lambda_j < 0$ for some $1 \le i, j \le n$

Theorem 74 Let $A \in M_{n \times n}(\mathbb{F})$. Then A^*A is an $n \times n$ self-adjoint matrix and its eigenvalues are non-negative real numbers.

Definition 48 (Singular Values and Vectors) Let $A \in M_{n \times n}(\mathbb{F})$. The singular values of A are the non-negative square-roots $\sigma_i = \sqrt{\lambda_i}$ of the eigenvalues λ_i of A^*A . The corresponding eigenvectors of A^*A are called the singular vectors of A.

Theorem 75 Let $A \in M_{n \times n}(\mathbb{F})$ and let $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$ be singular vectors of A corresponding to the singular values σ_1 and σ_2 . If $\sigma_1 \neq \sigma_2$, then \mathbf{x} and \mathbf{y} are orthogonal.

Theorem 76 Let $A \in M_{n \times n}(\mathbb{F})$. Then $Null(A^*A) = Null(A)$.

Theorem 77 Let $A \in M_{n \times n}(\mathbb{F})$. The number of non-zero singular values of A is equal to rank(A) where each repeated singular value is counted according to its multiplicity.

Theorem 78 (Singular Value Decomposition of Matrices) Let $A \in M_{n \times n}(\mathbb{F})$ be a matrix of rank r with non-zero singular values $\sigma_1 \geq ... \geq \sigma_r > 0$. Then there exist unitary matrices $U \in M_{m \times m}(\mathbb{F})$ and $V \in M_{n \times n}(\mathbb{F})$ such that

$$A = U\Sigma V^*$$

where Σ is the $m \times n$ matrix whose entries are

$$\Sigma_{ij} = \begin{cases} \sigma_i & i = j \le r \\ 0 & otherwise \end{cases}.$$

If A is real, then U and V can be chosen to be orthogonal matrices.

Definition 49 (Singular Value Decomposition) A decomposition $A = U\Sigma V^*$ of the type occurring in the previous theorem is called a singular value decomposition of A.

Theorem 79 (Algorithm for Finding an SVD for a Matrix) Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix of rank r. To find an SVD for A:

- 1. Find eigenvalues $\lambda_1 \leq ... \leq \lambda_n$ and a corresponding set of orthonormal eigenvectors $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ for A^*A
- 2. Set $\sigma_i = \sqrt{\lambda_i}$ for $i \leq r$
- 3. Set $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ for $i \leq r$. If r < m, extend $\{\mathbf{u}_1, ..., \mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1, ..., \mathbf{u}_r, \mathbf{u}_{r+1}, ..., \mathbf{u}_m\}$ of \mathbb{F}^m
- 4. Set $V = [\mathbf{v}_1, ..., \mathbf{v}_n]$ and $U = [\mathbf{u}_1, ..., \mathbf{u}_m]$ and let Σ be the $m \times n$ matrix defined in Theorem 78.

Then U and V are unitary square matrices and $A = U\Sigma V^*$.

Theorem 80 Let $A \in M_{m \times n}(\mathbb{F})$. Then $Col(A)^{\perp} = Null(A^*)$.

Theorem 81 (Singular Value Decomposition of Linear Maps) Let $L: W_1 \to W_2$ be a linear map between finite-dimensional inner product spaces of dimensions n and m respectively. If r = rank(A), there exists orthonormal bases \mathcal{B} and \mathcal{C} for W_1 and W_2 and an $r \times r$ diagonal matrix D such that

$$_{\mathcal{C}}[L]_{\mathcal{B}} = \begin{bmatrix} D & 0_{r \times (n-r)} \\ 0_{(m-r) \times r} & 0_{(m-r) \times (n-r)} \end{bmatrix}$$

Definition 50 (Compact SVD) Let $A \in M_{m \times n}(\mathbb{F})$ be a rank r matrix with singular value decomposition $A = U\Sigma V^*$. Let r = rank(A); Σ will have r nonzero entries along its diagonal. By deleting all 0 rows and columns from Σ , we get Σ_r . Let U_r and V_r be the matrices formed from the first r columns of U and V. Then

$$A = U_r \Sigma_r V_r^*$$

is called a compact singular value decomposition of A.

Theorem 82 Let $A \in M_{m \times n}(\mathbb{F} \text{ have rank } r \text{ and compact SVD } A = U_r \Sigma_r V_r^*$ where $\Sigma_r = diag(\sigma_1, ..., \sigma_r)$ and $U = [\mathbf{u}_1, ..., \mathbf{u}_r]$ and $V = [\mathbf{v}_1, ..., \mathbf{v}_r]$. Then

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^* + \dots + \sigma_r \mathbf{u}_r \mathbf{v}_r^*.$$

Definition 51 (Rank k **Truncation)** Let $A \in M_{m \times n}(\mathbb{F})$ be a rank r matrix with singular values $\sigma_1 \geq ... \geq \sigma_r > 0$ and compact SVD $A = U_r \Sigma_r V_r^*$ where $U = [\mathbf{u}_1, ..., \mathbf{u}_r]$ and $V = [\mathbf{v}_1, ..., \mathbf{v}_r]$. Let $k \leq r$ be a positive integer. The rank k truncation of A is

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^* + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^*.$$

Theorem 83 Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix of rank r with rank-k truncation

$$A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^* + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^*.$$

Then:

- 1. $A = A_r$
- 2. $rank(A_k) = k$
- 3. $||A A_k|| \le \sum_{i=k+1}^r \sigma_i$ where $||X|| = \sqrt{tr(X^*X)}$ is the norm induced by the Frobenius inner product.

Theorem 84 (Eckart-Young Theorem) Let $A \in M_{m \times n}(\mathbb{F})$ and let A_k be the rank-k truncation of A. Let $B \in M_{m \times n}(\mathbb{F})$ be an arbitrary rank k matrix. Then

$$||A - B|| \ge ||A - A_k||.$$

Definition 52 (Pseudoinverse) Let $A \in M_{m \times n}(\mathbb{F})$ be a matrix of rank r with $SVD \ A = U\Sigma V^*$. The pseudoinverse of A is the $n \times m$ matrix

$$A^\dagger = V \Sigma^\dagger U^*$$

where Σ^{\dagger} is the $n \times m$ matrix whose (i,j)th entry is $\frac{1}{\sigma_i}$ for $i = j \leq r$ and 0 otherwise.

Theorem 85 (Minimal Norm Solutions) Consider the system of linear equations $A\mathbf{x} = \mathbf{b}$ where $A \in M_{m \times n}(\mathbb{F})$ and $\mathbf{b} \in \mathbb{F}^m$. Let $\mathbf{x}_0 = A^{\dagger}\mathbf{b}$. Then

- 1. If $A\mathbf{x} = \mathbf{b}$ is consistent, then \mathbf{x}_0 is a solution to the system. Moreover, it is the solution of minimal norm; if \mathbf{x} is any solution to the system, $\|\mathbf{x}\| \geq \|\mathbf{x}_0\|$ with equality if and only if $\mathbf{x} = \mathbf{x}_0$
- 2. If $A\mathbf{x} = \mathbf{b}$ is inconsistent, then \mathbf{x}_0 is a least squares solution. Moreover, it is the least squares solution of minimal norm.