OPERASI HIMPUNAN

1. Irisan (intersection)

Notasi: $A \cap B = \{x \mid x \in A \text{ dan } x \in B\}$

Contoh:

Jika $A = \{2,3,4,5\}$ dan $B = \{3,4,5,6\}$. Maka $A \cap B = \{3,4,5\}$

Jika A = $\{3,4,5\}$ dan B = $\{1,2,6\}$. Maka A\cap B = $\phi/\{\}$

2. Gabungan (union)

Notasi: $A \cup B = \{x \mid x \in A \text{ atau } x \in B\}$

Contoh:

Jika
$$A = \{2,3,4,5\} dan B = \{3,4,5,6\}$$

Maka
$$A \cup B = \{2,3,4,5,6\}$$

3. Komplemen (complement)

Notasi: $A^c = \{x \mid x \in U, x \notin A\}$

Contoh:

$$S = \{1, 2, 3, 4, 5, 6, 7\}$$

 $A = \{3, 4, 5\}$

$$A^c = \{1, 2, 6, 7\}$$

4. Selisih (difference)

Notasi: $A-B = \{x \mid x \in A \text{ dan } x \notin B\} = A \cap B'$

Contoh:

Jika $A = \{2,3,4,5\} dan B = \{3,4,5,6\}$

Maka $A-B = \{2\}$

4. Beda Setangkup (Symmetric Difference)

Notasi:

 $A \oplus B = \{x \mid x \in A, x \notin B \text{ dan } x \in B, x \notin A\}$

Contoh:

Jika A = $\{1, 2, 3, 4, 5\}$ dan B = $\{2, 3, 5, 7, 11\}$ Maka A \bigoplus B = $\{1, 4, 7, 11\}$

PERKALIAN KARTESIAN

- 1. Jika A dan B merupakan himpunan berhingga, maka: $|A \times B| = |A| \cdot |B|$.
- 2. Pasangan berurutan (a, b) berbeda dengan (b, a), dengan kata lain (a, b) \neq (b, a).
- 3. Perkalian kartesian tidak komutatif, yaitu $A \times B \neq B \times A$ dengan syarat A atau B tidak kosong.
- 4. Jika $A = \emptyset$ atau $B = \emptyset$, maka $A \times B = B \times A = \emptyset$

PERKALIAN KARTESIAN

Diberikan himpunan A dan B. Perkalian kartesian himpunan A dan B, disimbolkan AxB, ialah himpunan yang terdiri dari semua pasangan berurutan (a,b) dengan a anggota A, b anggota B.

Contoh:

$$A = \{x,y,z\} \text{ dan } B = \{1,2,3\}$$

$$AxB = \{\{x,1\},\{x,2\},\{x,3\},\{y,1\},\{y,2\},\{y,3\},\{z,1\},\{z,2\},\{z,3\}\}\}$$

$$BxA = \{\{1,x\},\{1,y\},\{1,z\},\{2,x\},\{2,y\},\{2,z\},\{3,x\},\{3,y\},\{3,z\}\}\}$$

HUKUM HIMPUNAN

$$A \cup \emptyset = A$$

$$-A \cap U = A$$

2. Hukum *null*/dominasi:

$$A \cap \emptyset = \emptyset$$

$$A \cup U = U$$

3. Hukum komplemen:

$$-A \cup \overline{A} = U$$

$$_{-}$$
 $A \cap ^{\overline{A}} = \emptyset$

4. Hukum idempoten:

$$A \cup A = A$$

$$-A \cap A = A$$

HUKUM HIMPUNAN

_	TT 1		1 .	
-	111/21	1122 112	volusi:	
			VOILIST.	
	A A COAL		. · OICEL	

$$-\overline{(\overline{A})} = A$$

6. Hukum penyerapan (absorpsi):

$$A \cup (A \cap B) = A$$

$$-A \cap (A \cup B) = A$$

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

8. Hukum asosiatif:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

9. Hukum distributif:

$$-A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$-A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

10. Hukum De Morgan:

$$_{-}\overline{A\cap B}=\overline{A}\cup\overline{B}$$

$$_{-}\overline{A\cup B}=\overline{A}\cap\overline{B}$$

11. Hukum 0/1

$$\overline{\varnothing} = U$$

$$-\overline{U}=\emptyset$$

CONTOH

Buktikan pernyataan berikut menggunakan hukum himpunan! $(A \cap B) \cup (A \cap B') = A \cap (B \cup B') \quad \text{(Hukum Distributif)}$ $= A \cap U \quad \text{(Hukum Komplemen)}$ $= A \quad \text{(Hukum Identitas)}$

CONTOH

```
A U (A U B)' = A U B'

A U (A' \cap B') = A U B' (Hk. De Morgan)

(A U A') \cap (A U B') = A U B' (Hk. Distributif)

U \cap (A U B') = A U B' (Hk. Komplemen)

(A U B') = A U B' (HK. Identitas)
```


PRINSIP DUALITAS

Misalkan S adalah suatu persamaan (*identity*) yg melibatkan himpunan dan operasi-operasi seperti \cap , \cup , dan komplemen. Jika S* diperoleh dari S dengan mengganti $\cap \to \cup$, $\cup \to \cap$, $\emptyset \to U$, $U \to \emptyset$, sedangkan komplemen dibiarkan seperti semula, maka persamaan S* juga benar dan disebut dual dari persamaan S.

HUKUM DUALITAS

Hukum identitas:	Dualnya:	
$A \cup \emptyset = A$	$A \cap U = A$	
Hukum null/dominasi:	Dualnya:	
$A \cap \emptyset = \emptyset$	$A \cup U = U$	
Hukum komplemen :	Dualnya:	
$A \cup \overline{A} = U$	$A \cap \overline{A} = \emptyset$	
4. Hukum idempoten:	Dualnya:	
$A \cup A = A$	$A \cap A = A$	
Hukum penyerapan :	Dualnya:	
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$	
		5

HUKUM DUALITAS

6.	Hukum komutatif:	Dualnya:
	$A \cup B = B \cup A$	$A \cap B = B \cap A$
7.	Hukum asosiatif:	Dualnya:
	$A \cup (B \cup C) = (A \cup B) \cup C$	$A \cap (B \cap C) = (A \cap B) \cap C$
8.	Hukum distributif:	Dualnya:
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
9.	Hukum De Morgan:	Dualnya:
	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
10.	Hukum 0/1	Dualnya:
		$\overline{\mathbf{U}} = \emptyset$
	2-0	

