

Funções binárias

Sistemas Digitais 2016/2017

Pedro Salgueiro pds@di.uevora.pt

Aritmética e códigos binários

Sumário

- Álgebra de Boole binária
 - Álgebra de Boole
 - Álgebra de Boole binária
 - Tabelas de verdade
 - Propriedades e Teoremas
- Representação de funções
 - Representação Algébrica
 - Logigrama
 - Tabela de verdade
- Formas canónicas
 - Soma de Mintermos
 - Produto de Maxtermos
- Conjunto Universal de funções
- Exercícios

Algebra de Boole binária

Algebra de Boole

- Definide por George Boole em 1854
- Conceitos básicos
 - Variável com 2 valores possíveis
 - VERDADE (TRUE)
 - FALSO (FALSE)
- 3 operadores
 - E (AND)
 - OU (OR)
 - NÃO (NOT)

Variáveis e funções booleanas

- Variável booleana
 - Toma valores do conjunto {V, F}
 - Exemplos: x, A, z₅, w
- Função booleana de n variáveis
 - Aplicação do conjunto { V, F }ⁿ no conjunto { V, F }
 - exemplo: $f(x_1, x_2, ..., x_n)$

Algebra de Boole binária

- É a adaptação da álgebra de Boole aos circuitos digitais
 - Proposta por Claude Shannon em 1938
- Como um circuito digital tem dois estados possíveis
 - LOW: 0
 - HIGH: 1
- Foi proposto o seguinte mapeamento
 - FALSO $\rightarrow 0$
 - VERDADEIRO → 1

Conceitos básicos

- Variável binária
 - Toma valores do conjunto {0,1}
 - Exemplos: A, B, C, ...
- Função binária de *n* variáveis
 - A aplicação do conjunto {0,1}ⁿ no conjunto {0,1}
 - Exemplo: $f(x_1, x_2, ..., x_n)$
- Operadores
 - Complemento: ~,
 - Soma lógica: +
 - Produto lógico: ·

Funções de 1 variável

- Funções constantes
 - f(x) = 1
 - f(x) = 0
- Função identidade
 - f(x) = x
- Função complemento (negação, NÃO, NOT)
 - $f(x) = \overline{x}$
 - Se $x=1 \to f(x) = 0$
 - Se x=0 → f(x) = 1

Funções de 2 variáveis

- Funções constantes
 - f(x,y) = 1
 - f(x,y) = 0
- Função identidade
 - f(x,y) = x
 - f(x,y) = y
- Função complemento (negação, NÃO, NOT)
 - $f(x,y) = \overline{x}$
 - $f(x,y) = \overline{y}$

- Soma lógica (OU, OR)
 - $\bullet \quad f(x,y) = x + y$
 - f(x,y) = 1
 - quando x=1 ou y=1, quando pelo menos uma variável é 1
- Produto lógico (E, AND)
 - $f(x,y) = x \cdot y$
 - f(x,y) = 1
 - quando x=1 e y=1, quando ambas as variável são 1

Funções de 2 variáveis

- NOR (Negated OR)
 - $f(x,y) = \overline{x+y}$
 - É o complemento da função OR
- NAND (Negated AND)
 - $f(x,y) = \overline{x \cdot y}$
 - É o complemento da função AND

- XOR (eXclusive OR)
 f(x,y) = x ⊕ y
 f(x,y) = 1
 quando x ≠ y
- EQ (Equivalence)
 - Também conhecida como XNOR (Negated XOR)

•
$$f(x,y) = x \cdot y$$

- $f(x,y) = 1$

- quando x = y
- é o complemento da função XOR

Funções com mais de 2 variáveis

- AND
 - f(k, l, ...,z) = k · l · ... · z
 É 1 quando todas as variáveis são 1
- OR
 - f(k, l, ...,z) = k + l + ... + z
 É 1 quando pelo menos uma variável é 1
- XOR
 - f(k, l, ...,z) = k ⊕ l ⊕ ... ⊕ z
 É 1 quando um número impar de variáveis é 1
- NAND

•
$$f(k, l, ..., z) = \overline{k \cdot l \cdot ... \cdot z}$$

- NOR

•
$$f(k, 1, ..., z) = \overline{k + 1 + ... + z}$$

- XNOR

•
$$f(k, l, ..., z) = \overline{k \oplus l \oplus ... \oplus z}$$

Álgebra de Boole binária

Tabela de verdade

- É uma representação em extensão
 - Indica o valor da função para cada valor possível da variável
- Funções de 1 variável
 - Função constante 0

X	f(x) = 0
0	0
1	0

Função constante 1

Х	f(x)=1
0	1
1	1

Função identidade

X	f(x) = x
0	0
1	1

• Função complemento

X	$f(x) = \overline{x}$
0	1
1	0

Álgebra de Boole binária

Tabelas de verdade

Funções de 2 variáveis

Existem 16 funções diferentes

X	у	\int_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

$$- f_0(x,y) = 0$$

$$- f_{15}(x,y) = 1$$

$$- f_{15}(x,y) = x$$

$$- f_{10}(x,y) = y$$

$$- f_3(x,y) = \overline{x}$$

$$- f_5(x,y) = \overline{y}$$

NOT x

NOTy

$$- f_8(x,y) = x \cdot y$$

$$- f_{14}(x,y) = x + y$$

$$- f_1(x,y) = \overline{x+y}$$

$$- f_7(x,y) = \overline{x \cdot y}$$

$$- f_6(x,y) = x \oplus y$$

$$- f_5(x,y) = \overline{x \oplus y}$$

Nº de funções distintas

- 1 variável
 - 4 funções
 - 1 variável → 2 valores possíveis (2¹)
 - $-4=2^{2^1}$
- 2 variáveis
 - 16 funções
 - 2 variáveis → 4 valores possíveis (2²)
 - $-16 = 2^{2^2}$
- ...
- n variáveis
 - 2^{2ⁿ} funções (n variáveis → 2ⁿ valores possíveis)

Álgebra de Boole binária

Propriedades e Teoremas

Convenções

- Precedência
 - produto lógico > soma lógica
 - $A + B \cdot C = A + (B \cdot C)$
- Omissão do operador lógico
 - $AB = A \cdot B$
- Um literal é uma variável ou o seu complemento

Álgebra de Boole binária

Propriedades e Teoremas

Propriedades das Funções

- Comutativa
 - $A \cdot B = B \cdot A$
 - A + B = B + A
- Associativa
 - $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
 - (A + B) + C = A + (B + C)
- Distributiva
 - $\bullet \quad A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
 - $A + B \cdot C = (A + B) \cdot (A + C)$

Álgebra de Boole binária Propriedades e Teoremas

- Elemento neutro

- $A \cdot 1 = A$
- A + 0 = A
- Elemento absorvente
 - $A \cdot 0 = 0$
 - A + 1 = 1
- Complemento
 - $A \cdot \overline{A} = 0$
 - $A + \overline{A} = 1$

Álgebra de Boole binária

Teoremas principais

- Idempotência
 - \bullet $A \cdot A = A$
 - A + A = A
- Dupla negação
 - $\overline{A} = A$
- Leis de DeMorgan
 - $\overline{A \cdot B} = \overline{A} + \overline{B}$
 - $\overline{A + B} = \overline{A} \cdot \overline{B}$

Álgebra de Boole binária

Propriedades e Teoremas

Outros teoremas

- Absorção
 - $A + A \cdot B = A$
 - $\bullet \quad A \cdot (A + B) = A$
- Redundância
 - $A + \overline{A} \cdot B = A + B$
 - $A \cdot (\overline{A} + B) = A \cdot B$
- Adjacência
 - $A \cdot B + A \cdot \overline{B} = A$
 - $(A + B) \cdot (A + \overline{B}) = A$

Álgebra de Boole binária Propriedades e Teoremas

Propriedades do XOR – OU-exclusivo

- Comutativa
 - $A \oplus B = B \oplus A$
- Associativa
 - $A \oplus (B \oplus C) = (A \oplus B) \oplus C$
- Outra
 - A ⊕ 0 = A
 - $A \oplus 1 = \overline{A}$
 - $A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}$
 - $\overline{A \oplus B} = \overline{A} \oplus B = A \oplus \overline{B}$

Representação de funções Representação Algébrica

Representação algébrica

- Utiliza expressões booleanas
- Várias expressões podem representar a mesma função
 - Passa-se de uma para as outras através de manipulações algébricas
- Exemplo
 - $F(A, B, C) = AB + A\overline{C} = A(B + \overline{C})$
 - A 2^a expressão é obtida utilizando a distributividade do produto em relação à soma

Formas de representação

- Forma normal disjuntiva ou soma de produtos
 - $F = AB + A\overline{C}$
- Forma normal conjuntiva ou produto de somas
 - $F = A(B + \overline{C})$
- Forma mista
 - $G = AB + \overline{A}BC(X + Y)$
- Nota
 - É sempre possível obter as formas normais!

Representação de funções Logigrama

Representação através de Logigrama

- Representação através de simbologia gráfica
 - Conjunto de entradas, uma saída e componentes
- Conjunto de entradas
 - Variáveis da função
- Saída
 - Valor da função
- Componentes
 - Circuitos lógicos
 - Ligações

Representação de funções Logigrama

Porta lógica

- Representação gráfica de cada função lógica básica

NAND

XOR

OR

NOR

XNOR

NOT

- O nº de entradas pode ser estendido para um número de n ≥ 2, excepto o NOT que apenas tem uma entrada

Circuito lógico

- Um circuito lógico é construído ligando as saídas das portas lógicas à entrada de outras conforme a função a implementar
- $F(A,B,C) = AB + A\overline{C}$

Representação de funções Tabela de verdade

Representação através de Tabela de verdade

- É única para cada função
- Estrutura
 - n + 1 colunas
 - *n* para as variáveis booleanas
 - 1 para o resultado da função
 - 2ⁿ linhas
 - 1 para cada combinação possível de valores das variáveis

- Exemplo
 - $F(A,B,C) = AB + A\overline{C}$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Representação de funções Tabela de verdade

Construção das linhas da tabela de verdade

- N variáveis → 2ⁿ linhas
- Começa-se por preencher a variável mais à esquerda
 - as primeiras 2ⁿ/2 linhas têm valor 0
 - as ultimas têm valor 1
- Preenche-se depois a variável à direita
 - as primeiras 2ⁿ / 4 linhas têm valor 0
 - as seguintes 2ⁿ / 4 linhas têm valor 0
 - repete-se o procedimento para as restantes 2ⁿ / 2 linhas
- Vai-se repetindo o procedimento. A última variável tem, alternadamente os valores 0 e 1 em cada linha

Representação de funções Tabela de verdade

Exemplo: 3 variáveis

- 3 variáveis → 8 linhas

Α	В	С
0		
0		
0		
0		
1		
1		
1		
1		

Α	В	С
0	0	
0	0	
0	1	
0	1	
1	0	
1	0	
1	1	
1	1	

Α	B	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Representação de funções Tabela de verdade

Leitura da tabela de verdade

- Cada linha corresponde a um produto lógico de todos os literais
 - F é 1 quando

-
$$(A,B,C) = (1,0,0)$$
, ou seja $A \overline{B} \overline{C} = 1$
- $(A,B,C) = (1,0,0)$, ou seja $A \overline{B} \overline{C} = 1$
- $(A,B,C) = (1,0,0)$, ou seja $A \overline{B} C = 1$

• Ou seja

$$- F = A \overline{B} \overline{C} + A B \overline{C} + A B C$$

Por manipulação algébrica

$$F = A \overline{B} \overline{C} + A B \overline{C} + A B C$$

$$= A \overline{C} (\overline{B} + B) + A B C$$

$$= A \overline{C} + A B C$$

$$= A (\overline{C} + B C)$$

$$= A (\overline{C} + B)$$

$$= A \overline{C} + A B$$

Α	В	С	H
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Representação de funções Tabela de verdade

Escrita da tabela de verdade

- Analisar os casos em que a função é 1

$$- G(A,B,C) = \overline{A} \overline{B} \overline{C} + \overline{A} B + A$$

- G é 1 quando

•
$$\overline{A} \overline{B} \overline{C} = 1$$
, ou seja, $(A,B,C) = (0,0,0)$

•
$$\overline{A} B = 1$$
, ou seja, $(A,B,C) = (0,1,0)$
 $(A,B,C) = (0,1,1)$

•
$$A = 1$$
, ou seja, $(A,B,C) = (1,0,0)$
 $(A,B,C) = (1,0,1)$
 $(A,B,C) = (1,1,0)$
 $(A,B,C) = (1,1,1)$

Α	В	С	G
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Representação de funções Tabela de verdade

Escrita da tabela de verdade

- Para funções mais complexas, pode-se gerar as tabelas de funções parciais para construir a função final
- $G(A,B,C) = \overline{A} \, \overline{B} \, \overline{C} + \overline{A} \, B + A$

Α	В	С	$\overline{A}\overline{B}\overline{C}$	$\overline{A}B$	A	G
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	0	0	1	1
1	1	1	0	0	1	1

Formas canónicas

Soma de mintermos

Soma de mintermos

Mintermo ou termo minimal

- Produto que envolve todos os literais
- Corresponde a uma linha da tabela de verdade

Soma de mintermos

- Soma de produtos onde todos os factores são mintermos
- Cada mintermo está associado a um 1 da tabela

- Também conhecida como

- 1ª Forma canónica
- Forma canónica disjuntiva
- Forma canónica AND-OR
- Cada função tem uma única forma canónica disjuntiva!

Soma de mintermos

Representação decimal

- Ao numerar as linhas, cada mintermo pode ser referido através das respectiva linha linha da tabela de verdade
 - Soma de mintermos

$$-F = A\overline{B}\overline{C} + AB\overline{C} + ABC$$

Representação decimal

$$- F = m_4 + m_6 + m_7$$

$$- F = \sum m(4,6,7)$$

	Α	В	С	F	
0	0	0	0	0	m_{o}
1	0	0	1	0	$m_{_1}$
2	0	1	0	0	m_2
3	0	1	1	0	m_3
4	1	0	0	1	$m_{_4}$
5	1	0	1	0	m_{5}
6	1	1	0	1	m_{6}
7	1	1	1	1	m_{7}

Formas canónicas

Produto de Maxtermos

Produto de Maxtermos

Maxtermo ou termo maximal

- Soma que envolve todos os literais
- Corresponde a uma linha da tabela de verdade

Produto de maxtermos

- Produto das somas onde todas as parcelas são maxtermos
- Cada maxtermo está associado a um 0 da tabela

- Também conhecida como:

- Segunda forma canónica
- Forma canónica conjuntiva
- Forma canónica OR-AND
- Cada função tem uma forma canónica única!

Formas canónicas

Produto de Maxtermos

Representação decimal

- Cada maxtermo é construído utilizando uma função
 - É 0 para uma linha da tabela em que a função é zero
 - É 1 para as restantes linhas
- Produto de maxtermos

•
$$F = G1 \cdot G2 \cdot G3 \cdot G4 \cdot G5$$

$$- G1 = A + B + C$$

$$- G2 = A + B + \overline{C}$$

$$-G3 = A + \overline{B} + C$$

$$-G4 = A + \overline{B} + \overline{C}$$

$$- G5 = \overline{A} + B + \overline{C}$$

Representação decimal

$$- F = M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_5$$

$$- F = \prod M(0, 1, 2, 3, 5)$$

Α	В	С	F	$G_{_1}$	G ₂	G ₃	G ₄	G ₅	
0	0	0	0	0	1	1	1	1	M_{o}
0	0	1	0	1	0	1	1	1	M_{1}
0	1	0	0	1	1	0	1	1	M_2
0	1	1	0	1	1	1	0	1	M_3
1	0	0	1	1	1	1	1	1	M_4
1	0	1	0	1	1	1	1	0	M_5
1	1	0	1	1	1	1	1	1	M_6
1	1	1	1	1	1	1	1	1	M_7

Soma de Maxtermos

Mintermos e Maxtermos

- Para qualquer função booleana de n variáveis
 - $m_i = \overline{M}_i$
 - $M_i = \overline{M}_i$, $com 0 \le i \ge 2^{n-1}$
- No entanto,
 - se a função possui m_i, na primeira forma canónica, não pode conter M_i
- Exemplo
 - $F(A,B,C) = AB + A\overline{C}$
 - $F = m_4 + m_6 + m_7 = A \overline{B} \overline{C} + A B \overline{C} + A B C$
 - $F = M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_5$ = $(A + B + C) (A + B + \overline{C}) (A + \overline{B} + C) (A + \overline{B} + \overline{C}) (\overline{A} + B + \overline{C})$

Conjunto universal de funções

Conjunto universal de funções

- Conjunto Universal ou Completo
 - É um conjunto de funções booleanas (básicas) que permite representar qualquer função booleana simples
- {AND, OR, NOT}
 - 1ª e 2ª formas canónicas
- {NAND}
- {NOR}

Conjunto universal de funções

Conjunto universal {NAND}

- AND

- OR

Conjunto universal {NOR}

Outra simbologia usada

Exercícios

Exercícios

- 1. Determine a expressão mais simples na forma normal disjuntiva da função
 - a) $f(A, B, C) = (\overline{A} + B)(A + C)(B + C)$
- 2. Desenhe a tabela de verdade e logigrama das funções seguintes e identifique as correspondentes formas canónicas
 - a) $f(A, B, C) = A(\overline{B} + \overline{C}(\overline{B} + D))$
 - b) $g(A, B, C) = \overline{AC} + BC$
- 3. Numere os seguintes mintermos e maxtermos
 - a) A + B
 - b) A B \overline{C}
 - c) $A\overline{B}C\overline{D}$
- 4. Desenhe o logigrama da função $f(A, B, C) = (A \oplus C) B + \overline{B}C + AC$ utilizando apenas
 - a) AND, OR e NOT
 - b) NANDs
 - c) NORs