Package 'UAHDataScienceSF'

February 18, 2025

Type Package

Version 1.0.0	
Title Interactive Statistical Learning Functions	
Description An educational toolkit for learning statistical concepts through interactive exploration. Provides functions for basic statistics (mean, variance, etc.) and probability distributions with step-by-step explanations and interactive learning modes. Each function can be used for simple calculations, detailed learning with explanations, or interactive practice with feedback.	
License MIT + file LICENSE	
Imports stats, magick (>= 2.7.3), crayon (>= 1.3.4)	
Suggests knitr, rmarkdown	
Config/testthat/edition 3	
VignetteBuilder knitr	
Encoding UTF-8	
RoxygenNote 7.3.2	
NeedsCompilation yes	
Author Carlos Javier Hellin Asensio [aut], Jose Manuel Gomez Caceres [aut], Dennis Monheimius [aut], Eduardo Benito [aut], Juan Jose Cuadrado [aut], Andriy Protsak Protsak [aut, cre], Universidad de Alcala de Henares [cph]	
Maintainer Andriy Protsak Protsak <andriy.protsak@edu.uah.es></andriy.protsak@edu.uah.es>	
Repository CRAN	
Date/Publication 2025-02-18 11:10:07 UTC	
Contents	
absolute_acum_frequency	2

24

osolute_frequency	3
verage_deviation	4
nomial	5
nisquared	6
ovariance	7
/	8
awVector	8
sher	9
eometric_mean	10
etUserAction	
armonic_mean	
itImages	
place	
ean	
edian	
ode	
ormal	
earson	
ercentile	
pisson	
nartile	
lative_acum_frequency	
lative_frequency	
andard_deviation	
tudent	
riance	23

absolute_acum_frequency

Absolute Accumulated Frequency Function

Description

This function calculates the absolute accumulated frequency of a value in a numeric vector.

Usage

Index

```
absolute_acum_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

V	Οp	tıonal	numeric	vector	(no	t need	ed	tor	ınterac	tive	mode	3)
---	----	--------	---------	--------	-----	--------	----	-----	---------	------	------	----

x Optional numeric value to count (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

absolute_frequency 3

Value

The absolute accumulated frequency of x in v (for non-interactive mode)

Examples

```
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
absolute_acum_frequency(data, value)

# Learning mode
absolute_acum_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
absolute_acum_frequency(interactive = TRUE)
}</pre>
```

absolute_frequency

Absolute Frequency Function

Description

This function calculates the absolute frequency of a value in a numeric vector.

Usage

```
absolute_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

v Optional numeric vector (not needed for interactive mode)

x Optional numeric value to count (not needed for interactive mode)

Logical, if TRUE shows step-by-step explanationinteractiveLogical, if TRUE enables interactive practice mode

Value

The absolute frequency of x in v (for non-interactive mode)

4 average_deviation

Examples

```
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
absolute_frequency(data, value)

# Learning mode
absolute_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
absolute_frequency(interactive = TRUE)
}</pre>
```

average_deviation

Average Absolute Deviation Function

Description

This function calculates the average absolute deviation of a numbers vector.

Usage

```
average_deviation(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The average absolute deviation of the vector (for non-interactive mode)

```
data <- c(7,2,5,7,1,4,12)
# Simple calculation
average_deviation(data)
# Learning mode
average_deviation(data, learn = TRUE)
# Interactive mode</pre>
```

binomial_ 5

```
if(interactive()){
average_deviation(interactive = TRUE)
}
```

binomial_

Binomial Distribution Function

Description

This function calculates the binomial distribution probability.

Usage

```
binomial_(n = NULL, x = NULL, p = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

n	Optional number of trials (not needed for interactive mode)
x	Optional number of successes (not needed for interactive mode)
p	Optional probability of success (not needed for interactive mode)
learn	Logical, if TRUE shows step-by-step explanation
interactive	Logical, if TRUE enables interactive practice mode

Value

The binomial probability (for non-interactive mode)

```
n <- 3
x <- 2
p <- 0.7

# Simple calculation
binomial_(n, x, p)

# Learning mode
binomial_(n, x, p, learn = TRUE)

# Interactive mode
if(interactive()){
binomial_(interactive = TRUE)
}</pre>
```

6 chisquared

- 1-	· -		ared
$c_{\rm r}$	115	CH I	aren

Chi-squared Distribution Function

Description

This function calculates the chi-squared statistic between two groups.

Usage

```
chisquared(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x	Optional first vector (not needed for interactive mode)
у	Optional second vector (not needed for interactive mode)
learn	Logical, if TRUE shows step-by-step explanation
interactive	Logical, if TRUE enables interactive practice mode

Value

The chi-squared statistic (for non-interactive mode)

```
x <- c(70,75,74,72,68,59)
y <- c(74,77,70,80,72,76)

# Simple calculation
chisquared(x, y)

# Learning mode
chisquared(x, y, learn = TRUE)

# Interactive mode
if(interactive()){
chisquared(interactive = TRUE)
}</pre>
```

covariance 7

covariance

Covariance Function

Description

This function calculates the covariance between two vectors of numbers.

Usage

```
covariance(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

X	Optional first numeric vector (not needed for interactive mode)
у	Optional second numeric vector (not needed for interactive mode)
learn	Logical, if TRUE shows step-by-step explanation
interactive	Logical, if TRUE enables interactive practice mode

Value

The covariance between the two vectors (for non-interactive mode)

```
data <- c(10,4,5,7,3,4,1)
data2 <- c(1,8,3,4,4,5,7)

# Simple calculation
covariance(data, data2)

# Learning mode
covariance(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
covariance(interactive = TRUE)
}</pre>
```

8 drawVector

CV

Coefficient of Variation Function

Description

This function calculates the coefficient of variation of a numbers vector.

Usage

```
cv(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The coefficient of variation of the vector (for non-interactive mode)

Examples

```
data <- c(10,4,5,7,3,4,1)
# Simple calculation
cv(data)
# Learning mode
cv(data, learn = TRUE)
# Interactive mode
if(interactive()){
cv(interactive = TRUE)
}</pre>
```

drawVector

Draw Vector Function

Description

This function prints all the elements of a vector

Usage

```
drawVector(buffer)
```

fisher 9

Arguments

buffer A vector of elements to be printed

Value

No return value, prints to screen

Examples

```
## Not run:
data <- c(1:12)
drawVector(data)
## End(Not run)</pre>
```

fisher

Fisher's F Distribution Function

Description

This function calculates the F statistic between two groups.

Usage

```
fisher(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

y Optional first vector (not needed for interactive mode)
 y Optional second vector (not needed for interactive mode)
 learn Logical, if TRUE shows step-by-step explanation
 interactive Logical, if TRUE enables interactive practice mode

Value

The F statistic (for non-interactive mode)

```
x <- c(70,75,74,72,68,59)
y <- c(74,77,70,80,72,76)

# Simple calculation
fisher(x, y)

# Learning mode
fisher(x, y, learn = TRUE)</pre>
```

10 geometric_mean

```
# Interactive mode
if(interactive()){
fisher(interactive = TRUE)
}
```

geometric_mean

Geometric Mean Function

Description

This function calculates the geometric mean of a numeric vector. Can be used in three modes: simple calculation, learning mode with step-by-step explanation, or interactive mode for practice.

Usage

```
geometric_mean(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation

interactive Logical, if TRUE enables interactive practice mode

Value

The geometric mean of the vector (for non-interactive mode)

```
data <- c(5,21,12,7,3,9,1)
# Simple calculation
geometric_mean(data)

# Learning mode
geometric_mean(data, learn = TRUE)

# Interactive mode
if(interactive()){
geometric_mean(interactive = TRUE)
}</pre>
```

getUserAction 11

getUserAction

Get User Action Function

Description

This function gets the buffer introduced by the user. Typically a numerical vector.

Usage

```
getUserAction()
```

Value

A vector entered by the user

Examples

```
## Not run:
vector <- getUserAction()
## End(Not run)</pre>
```

harmonic_mean

Harmonic Mean Function

Description

This function calculates the harmonic mean of a numbers vector.

Usage

```
harmonic_mean(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The harmonic mean of the vector (for non-interactive mode)

12 laplace

Examples

```
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
# Simple calculation
harmonic_mean(data)
# Learning mode
harmonic_mean(data, learn = TRUE)
# Interactive mode
if(interactive()){
harmonic_mean(interactive = TRUE)
}</pre>
```

initImages

Initialize Images Function

Description

This function displays an image from the package resources.

Usage

```
initImages(image_name)
```

Arguments

 $image_name$

Name of the image file in inst/images

Value

No return value

laplace

Laplace's Rule Function

Description

This function calculates Laplace's Rule for a probability experiment.

Usage

```
laplace(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)
```

mean_ 13

Arguments

X	Optional first vector (not needed for interactive mode)
у	Optional second vector (not needed for interactive mode)
learn	Logical, if TRUE shows step-by-step explanation
interactive	Logical, if TRUE enables interactive practice mode

Value

The probability according to Laplace's Rule (for non-interactive mode)

Examples

```
data <- 3
data2 <- c(1,2,3,4,5,6)

# Simple calculation
laplace(data, data2)

# Learning mode
laplace(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
laplace(interactive = TRUE)
}</pre>
```

mean_

Statistical Mean Function

Description

This function calculates the arithmetic mean of a numeric vector. Can be used in three modes: simple calculation, learning mode with step-by-step explanation, or interactive mode for practice.

Usage

```
mean_(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanationinteractive Logical, if TRUE enables interactive practice mode

Value

The arithmetic mean of the vector

14 median_

Examples

```
# Simple calculation
data <- c(1,2,2,5,10,4,2)
mean_(data)

# Learning mode
mean_(data, learn = TRUE)

# Interactive mode
if(interactive()){
mean_(interactive = TRUE)
}</pre>
```

median_

Median Function

Description

This function calculates the median of a numbers vector.

Usage

```
median_(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The median of the vector (for non-interactive mode)

```
data <- c(1,3,2,5,12,4,4,2,9)
# Simple calculation
median_(data)
# Learning mode
median_(data, learn = TRUE)
# Interactive mode
if(interactive()){
median_(interactive = TRUE)
}</pre>
```

mode_

mode_

Mode Function

Description

This function calculates the mode of a numbers vector.

Usage

```
mode_(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The mode of the vector (for non-interactive mode)

Examples

```
data <- c(5,21,12,7,3,9,1)
# Simple calculation
mode_(data)
# Learning mode
mode_(data, learn = TRUE)
# Interactive mode
if(interactive()){
mode_(interactive = TRUE)
}</pre>
```

normal

Normal Distribution Function

Description

This function calculates the normal distribution probability density.

Usage

```
normal(x = NULL, learn = FALSE, interactive = FALSE)
```

pearson pearson

Arguments

x Optional numeric value (not needed for interactive mode)

Logical, if TRUE shows step-by-step explanationinteractiveLogical, if TRUE enables interactive practice mode

Value

The normal probability density (for non-interactive mode)

Examples

```
x <- 0.1
# Simple calculation
normal(x)
# Learning mode
normal(x, learn = TRUE)
# Interactive mode
if(interactive()){
normal(interactive = TRUE)
}</pre>
```

pearson

Pearson Correlation Function

Description

This function calculates the Pearson correlation coefficient between two vectors of numbers.

Usage

```
pearson(x = NULL, y = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional first numeric vector (not needed for interactive mode)
 y Optional second numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The Pearson correlation coefficient between the two vectors (for non-interactive mode)

percentile 17

Examples

```
data <- c(10,4,5,7,3,4,1)
data2 <- c(1,8,3,4,4,5,7)

# Simple calculation
pearson(data, data2)

# Learning mode
pearson(data, data2, learn = TRUE)

# Interactive mode
if(interactive()){
pearson(interactive = TRUE)
}</pre>
```

percentile

Percentile Function

Description

This function calculates the percentiles of a numeric vector.

Usage

```
percentile(x = NULL, p = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

p Numeric value between 0 and 1 for percentile calculation (not needed for inter-

active mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The percentile value (for non-interactive mode)

```
data <- c(1,4,3,3,2,5,7,12)
# Simple calculation
percentile(data, 0.3)
percentile(data, 0.3, learn = TRUE)</pre>
```

poisson_

```
if(interactive()){
percentile(interactive = TRUE)
}
```

poisson_

Poisson Distribution Function

Description

This function calculates the Poisson distribution probability.

Usage

```
poisson_(k = NULL, lam = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

k Optional number of occurrences (not needed for interactive mode)

lam Optional expected value lambda (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation

interactive Logical, if TRUE enables interactive practice mode

Value

The Poisson probability (for non-interactive mode)

```
lam <- 2
k <- 3

# Simple calculation
poisson_(k, lam)

# Learning mode
poisson_(k, lam, learn = TRUE)

# Interactive mode
if(interactive()){
poisson_(interactive = TRUE)
}</pre>
```

quartile 19

quartile

Quartiles Function

Description

This function calculates the quartiles of a numeric vector.

Usage

```
quartile(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The quartiles of the vector (for non-interactive mode)

Examples

```
data <- c(1,2,2,5,10,4,2)

# Simple calculation
quartile(data)

# Learning mode
quartile(data, learn = TRUE)

# Interactive mode
if(interactive()){
quartile(interactive = TRUE)
}</pre>
```

relative_acum_frequency

Relative Accumulated Frequency Function

Description

This function calculates the relative accumulated frequency of a value in a numeric vector.

20 relative_frequency

Usage

```
relative_acum_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

v Optional numeric vector (not needed for interactive mode)

x Optional numeric value to count (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The relative accumulated frequency of x in v (for non-interactive mode)

Examples

```
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
relative_acum_frequency(data, value)

# Learning mode
relative_acum_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
relative_acum_frequency(interactive = TRUE)
}</pre>
```

relative_frequency

Relative Frequency Function

Description

This function calculates the relative frequency of a value in a numeric vector.

Usage

```
relative_frequency(v = NULL, x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

v Optional numeric vector (not needed for interactive mode)

x Optional numeric value to count (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

standard_deviation 21

Value

The relative frequency of x in v (for non-interactive mode)

Examples

```
data <- c(1,4,3,3,2,5,7,12,1,2,3,12)
value <- 12

# Simple calculation
relative_frequency(data, value)

# Learning mode
relative_frequency(data, value, learn = TRUE)

# Interactive mode
if(interactive()){
relative_frequency(interactive = TRUE)
}</pre>
```

standard_deviation

Standard Deviation Function

Description

This function calculates the standard deviation of a numbers vector.

Usage

```
standard_deviation(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanation interactive Logical, if TRUE enables interactive practice mode

Value

The standard deviation of the vector (for non-interactive mode)

```
data <- c(1,5,3,7,10,4,2)
# Simple calculation
standard_deviation(data)</pre>
```

22 tstudent

```
# Learning mode
standard_deviation(data, learn = TRUE)
# Interactive mode
if(interactive()){
standard_deviation(interactive = TRUE)
}
```

tstudent

Student's t Distribution Function

Description

This function calculates the t-statistic for sample data.

Usage

```
tstudent(
  x = NULL,
  u = NULL,
  s = NULL,
  n = NULL,
  learn = FALSE,
  interactive = FALSE
)
```

Arguments

X	Optional sample mean (not needed for interactive mode)
u	Optional population mean (not needed for interactive mode)
S	Optional standard deviation (not needed for interactive mode)
n	Optional sample size (not needed for interactive mode)
learn	Logical, if TRUE shows step-by-step explanation
interactive	Logical, if TRUE enables interactive practice mode

Value

The t-statistic (for non-interactive mode)

```
x <- 52.9
u <- 50
s <- 3
n <- 10
```

variance 23

```
# Simple calculation
tstudent(x, u, s, n)

# Learning mode
tstudent(x, u, s, n, learn = TRUE)

# Interactive mode
if(interactive()){
tstudent(interactive = TRUE)
}
```

variance

Variance Function

Description

This function calculates the variance of a numbers vector.

Usage

```
variance(x = NULL, learn = FALSE, interactive = FALSE)
```

Arguments

x Optional numeric vector (not needed for interactive mode)

learn Logical, if TRUE shows step-by-step explanationinteractive Logical, if TRUE enables interactive practice mode

Value

The variance of the vector (for non-interactive mode)

```
data <- c(10,4,5,7,3,4,1)
# Simple calculation
variance(data)
# Learning mode
variance(data, learn = TRUE)
# Interactive mode
if(interactive()){
variance(interactive = TRUE)
}</pre>
```

Index

```
absolute_acum_frequency, 2
absolute_frequency, 3
average\_deviation, 4
binomial_{-}, 5
chisquared, 6
covariance, 7
cv, 8
drawVector, 8
fisher, 9
{\tt geometric\_mean}, \\ 10
getUserAction, 11
harmonic_mean, 11
initImages, 12
laplace, 12
mean_, 13
median_, 14
mode_, 15
normal, 15
pearson, 16
percentile, 17
poisson_, 18
quartile, 19
relative_acum_frequency, 19
relative\_frequency, 20
standard_deviation, 21
tstudent, 22
variance, 23
```