

Parallel DBSCAN on Spark

Group 12: Wang Jianming

Zhang Xinyue

Xing Zhenghao

Fu Chennan

2020/11/24

Introduction to DBSCAN

Naive parallel DBSCAN

- Naive partition
- Local DBSCAN
- Merge

Optimization on partition

- Reduce-boundry based partition
- Content based partition

Conclusion

Local DBSCAN algorithm

Concepts:

 ϵ (Eps) — the given radius MinPts — the given minimal points if MinPts = 4:

Core idea:

- 1. select a data point p arbitrarily from the data set.
- 2. determine whether p is a core point by Eps and MinPts.If p is a core point, find all the data point which are **density-reachable from p** to form a cluster. If not, select another point to do the same steps as before.

Matrix DBSCAN algorithm

- Introduction: Build a matrix to hold all those point-pair distance value instead of computing every time.
- Pros: In principle, the computational cost could be reduced by half, which is not big algorithm-wise improvement, but a giant increase in engineering, especially it comes to big data problem.

Parallel Matrix DBSCAN algorithm

Two Dimensional Example: (x, y)

Partition:

- define partition number
- 2. define partition block position in the space
 - a. find the minimum x and y and find the maximum x and y
 - b. add eps to upper bound and minus eps to lower bound
 - c. divide the whole area into corresponding partition id (p_id)
- 3. build rdds (pid, dataset_points) by judging whether the points is in the partition area or n

Local DBSCAN:

- 1. each rdd will execute a matrix DBSCAN
- 2. each execution will return ((partition_dataset, core_point list), local_tags)

Merge:

- 1. update local tag list into global tag list
- 2. return final global tag list

Parallel Matrix DBSCAN algorithm——Partition

partition number: 4 eps (epsilon): 3 MinPts (minimum points): 2

Define partition block position in the space

Parallel Matrix DBSCAN algorithm——Local Matrix DBSCAN

partition number: 4 eps (epsilon): 3 MinPts (minimum points): 2

Points in the red shadow area will have multiple labels

Parallel Matrix DBSCAN algorithm——Local Matrix DBSCAN

partition number: 4 eps (epsilon): 3 MinPts (minimum points): 2

Parallel Matrix DBSCAN algorithm——Merge

partition number: 4 eps (epsilon): 3 MinPts (minimum points): 2

Using local labels to update global labels for all clusters

Optimization on partition——R tree

B-tree:

A self-balancing tree data structure

R-tree:

A tree data structures used for spatial access methods

Optimization on partition——R tree (Boundary-based Strategy)

Reduce the amount of edge points

Make sure workload of each worker as balanced as possible

Optimization on partition——R tree (Boundary-based Strategy)

Set max points number in partition - maxpoints

As for y-axis:

minimize Score = |# in br1 - # in br2| * (# in Black part)

Optimization on partition——R tree (Boundary-based Strategy)

Max points number in partition - maxpoints

Put final br1 & br2 to queue (right hand)

Take out the leftmost mbr in the queue in turn to do the above calculation

Optimization on partition——R tree (Cost-based Strategy)

Goal: Make the workload (# of points) of partitioned region as balanced as possible.

Conclusion

D31

Partition Number	4	8	10	Partition Number	4	8	10
Naive	1179ms	797ms	808ms	Naive	26410ms	19415ms	18483ms
Parallel Matrix DBSCAN	422ms	385ms	380ms	Parallel Matrix DBSCAN	6730ms	5590ms	4564ms
Rtree - rbp	360ms	330ms	289ms	Rtree - rbp	7993ms	5722ms	5328ms
Rtree - cbp	308ms	284ms	271ms	Rtree - cbp	6977ms	5652ms	5164ms

Conclusion

- Performance
- Sclability
- Bottle neck (Master)
- Know your data

Future Work:

Now: using number of points to measure workload when doing partition

Future: using the real cost (maybe considering density) of DBSCAN to measure workload

More expreiments on large volume datasets with large partitions

Partition Number	4	8	10	Partition Number	4	8	10
Naive	1179ms	797ms	808ms	Naive	26410ms	19415ms	18483ms
Parallel Matrix DBSCAN	422ms	385ms	380ms	Parallel Matrix DBSCAN	6730ms	5590ms	4564ms
Rtree - rbp	360ms	330ms	289ms	Rtree - rbp	7993ms	5722ms	5628ms
Rtree - cbp	308ms	284ms	271ms	Rtree - cbp	6977ms	5652ms	5264ms

Reference

- [1] DBSCAN Wikipedia. https://en.wikipedia.org/wiki/DBSCAN
- [2] Guttman, A. (1984). R-trees: a dynamic index structure for spatial searching. ACM SIGMOD International Conference on Management of Data.
- [3] Huang, Fang &. Zhu, Qiang &. Zhou, Ji &. Tao, Jian &. Zhou, Xiaocheng &. Jin, Du &. Tan, Xicheng &. Wang, Lizhe. (2017). Research on the Parallelization of the DBSCAN Clustering Algorithm for Spatial Data Mining Based on the Spark Platform. Remote Sensing. 9. 10.3390/rs9121301.
- [4] He, Yaobin & Tan, Haoyu & Luo, Wuman & Feng, Shengzhong & Fan, Jianping. (2014). MR-DBSCAN: a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Frontiers of Computer Science. 8. 10.1007/s11704-013-3158-3.
- [5] Chernishev, G &. Smirnov, K &. Fedotovsky, P &. Erokhin, G &. Cherednik, K. (2013). To Sort or not to Sort: The Evaluation of R-Tree and B+-Tree in Transactional Environment with Ordered Result Set Requirement. SYRCoDIS.
- [6] Clustering basic benchmark. http://cs.joensuu.fi/sipu/datasets/
- [7] Phnix-wu, Full analysis of spatial data index RTree, https://blog.csdn.net/wzf1993/article/details/79547037, 2018/03/12.