

REPASO PARCIAL 1

(1) Dado el siguiente modelo relacional:

Relación DEPORTISTA

cod_deportista	nombre	apellidos
10012	Lidia	Jordan
10013	Sergio	Garcia
10043	Teresa	Nadie
29349	Luis	Perez
20972	Ángel	Castaño

Relación JUEGA

cod_deportista	cod_deporte
10012	1
10013	4
10012	2
10012	3
10013	3
20972	4
20972	3

Relación DEPORTE

	cod_deporte	nombre_deporte
1		golf
2		baloncesto
3		rugby
4		balonmano

Escribe usando solo operadores de álgebra relacional la operación que obtenga la relación derivada:

- (a) con los atributos nombre y apellidos del deportista, conteniendo las tuplas de los deportistas que no juegan a 'balonmano'
- (b) conteniendo el atributo de cod_deportista y que contenga las tuplas de aquellos deportistas que juegan a la vez al deporte 3 y al deporte 4

(2) Dado el siguiente modelo relacional:

Relación R

Α	В	С
1	1	1
1	1	2
2	3	3
1	3	3
1	1	3
2	3	1

Relación S

Α	В
1	1
1	3
5	5

Relación T

В	Н
1	а
1	С
2	b

- (a) Escribe el contenido en forma tabular de la relación derivada de realizar un outer join sobre los atributos comunes de relaciones anteriores: $S \bowtie T$
- (b) Escribe el contenido en forma tabular de la relación derivada de realizar una proyección sobre la unión externa por la izquierda de las relaciones anteriores R y T: Π_4 (R \bowtie T)
- (3) Simplificación de dependencias funcionales:

Considerando el conjunto de atributos T y las siguientes dependencias funcionales L:

$$T = \{A,B,C,D,E,F,G\}$$

L:

 $E \rightarrow CA$,

 $B \rightarrow DE$

 $A \rightarrow CFB$,

 $AB \rightarrow CE$

(a) Descomponer la relación R(T,L) en un esquema 3NF usando el algoritmo de Ullman. Aplicar la simplificación de dependencias, con eliminación de redundancias, y cálculo del cierre y de la clave, sobre el conjunto de dependencias funcionales R(T,L), según lo visto en los ejemplos de clase.

JULIO 19

La relación universal R(T,L), donde:

 $T = \{A,F,M,N,C,P,J\}$

L: $\{AFM \rightarrow N, AN \rightarrow C, JM \rightarrow C\}$

Describe un modelo muy simple para seleccionar posibles colaboradores en distintos proyectos entre los estudiantes de un centro. A partir de la Relación Universal propuesta, diseñar una base de datos relacional destinada a contener los datos requeridos. Este diseño debe ser "lossless-join" y preservar las dependencias, por lo que debe realizarse usando el Algoritmo de Ullman.

Valoración de cada parte del diseño:

Extracción a partir de L de un recubrimiento Determinación de una clave: Subesquemas: no redundante equivalente: 5 puntos 4 puntos 1 punto

Ejercicios álgebra relacional:

Tenemos el siguiente esquema relacional de base de datos:

CLIENTES (**num cliente**, nombre, direccion, telefono, poblacion)

PRODUCTO (cod producto, descripcion, precio)

VENTA (id venta, num cliente, cod producto, cantidad)

donde num_cliente es clave foránea de CLIENTES.num_cliente donde cod_producto es clave foránea de PRODUCTO.cod_producto

Sobre ella se realizan los siguientes ejercicios:

- [1] Realizar una consulta que muestre el nombre de los clientes de Palencia
- [2] Indicar el código y descripción de los productos cuyo código coincida con su descripción
- [3] Obtener el nombre de los clientes junto con el identificador de venta y la cantidad vendida, de aquellos productos de los que se vendieron más de 500 unidades
- [4] Nombre de los clientes de la tabla Clientes que no aparecen en la tabla de ventas (Clientes que no han comprado nada)
- [5] Nombre de los clientes que han comprado todos los productos de la empresa
- [6] Identificador de las ventas cuya cantidad supera a la cantidad vendida en la venta número 18
- [7] Productos que no se han comprado nunca en Palencia
- [8] Productos que se han vendido tanto en Palencia como en Valladolid
- [9] Poblaciones a las que hemos vendido todos nuestros productos

Imaginemos que añadimos la tabla de facturas que se relaciona con la de ventas, de modo que a la tabla de ventas le añadimos el número de factura con la que se relaciona. En la tabla de factura indicamos la fecha, el número y si se pagó o no (un 1 significa pagado, un 0 que no está pagada). Cada factura se corresponde con varias ventas y con un solo cliente, para lo cual se varía el diseño:

FACTURA(<u>num factura</u>, fecha, pagada, num cliente)

VENTA(id venta, cod producto, num factura, cantidad)

donde num_cliente es clave foránea de CLIENTES.num_cliente donde cod producto es clave foránea de PRODUCTO.cod producto

- [10] Obtener el nombre de los clientes que tienen alguna factura sin pagar
- [11] Clientes que han pagado todas sus facturas