Vector Tools for Computer Graphics

Computer Graphics

Basic Definitions

- Points specify <u>location</u> in space (or in the plane).
- Vectors have <u>magnitude</u> and <u>direction</u> (like velocity).

Points ≠ Vectors

Basics of Vectors

Vector as displacement:

v is a vector from point P to point Q.

The **difference** between two points is a vector: $\mathbf{v} = Q - P$

Another way:

The **sum** of a point and a vector is a point : P + **v** = Q

Operations on Vectors

Addition

$$a + b$$

$$\mathbf{a} = (3,5,8), \mathbf{b} = (-1,2,-4)$$

$$\mathbf{a} + \mathbf{b} = (2,7,4)$$

Multiplication be scalars

sa

$$\mathbf{a} = (3,-5,8), s = 5$$

$$5\mathbf{a} = (15, -25, 40)$$

operations are done componentwise

Operations on vectors

Multiplication by scalar

Operations on vectors

Subtraction

Properties of vectors

Length or size

$$\mathbf{W} = (W_1, W_2, \dots, W_n)$$

$$|\mathbf{w}| = \sqrt{w_1^2 + w_2^2 + ... + w_n^2}$$

Unit vector

$$\hat{\mathbf{a}} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

- The process is called normalizing
- Used to refer direction

The standard unit vectors: i = (1,0,0), j = (0,1,0) and k = (0,0,1)

Dot Product

The dot product \mathbf{d} of two vectors $\mathbf{v} = (v_1, v_2, ..., v_n)$ and $\mathbf{w} = (w_1, w_2, ..., w_n)$:

Properties

- 1. Symmetry: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$
- 2. Linearity: $(\mathbf{a}+\mathbf{c}) \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{b}$
- 3. Homogeneity: $(sa) \cdot b = s(a \cdot b)$
- 4. $|\mathbf{b}|^2 = \mathbf{b} \cdot \mathbf{b}$

Application of Dot Product

Angle between two unit vectors **b** and **c**

Two vectors **b** and **c** are <u>perpendicular</u> (orthogonal/normal) if $\mathbf{b} \cdot \mathbf{c} = 0$

2D perp Vector

Which vector is perpendicular to the 2D vector $\mathbf{a} = (a_x, a_y)$?

Let
$$\mathbf{a} = (a_x, a_y)$$
.
Then
 $\mathbf{a}^{\perp} = (-a_y, a_x)$
is the
counterclockwise
perpendicular to \mathbf{a} .

Rotation in 2d

- v
- We want to rotate a 2d vector v counterclockwise by an angle A
- First we determine perp(v), v[⊥]
- Then we scale \mathbf{v} by $\cos \mathbf{A}$ and scale \mathbf{v}^{\perp} by $\sin \mathbf{A}$ and take their sum

Rotation in 3d

- We want to rotate a 3d vector I counterclockwise with respect to a 3d unit vector r by an angle A, where I and r are perpendicular to each other
- First we determine the vector u, that is perpendicular to both I and
 r and have a length equal to that of I
- So, u = r X I
- Then we scale I by cosA and scale u by sinA and take their sum

* note that, this method is applicable only in cases where the axis of rotation and the vector which is to be rotated are perpendicular to each other

Orthogonal Projection

- We want to decompose the vector c into two vectors, one along the direction of a unit vector v and another along perp(v)
- The length of the orthogonal projection of c along v is c.v
 (as v is a unit vector)
- Thus the component (or orthogonal projection) of c along v is (c.v)v
- So the component of c along perp(v) is c-(c.v)v

Reflection [13]

- Here m is the orthogonal projection of a along n
- m equals (a.n)n as n is a unit vector

Cross Product

- Also called vector product.
- Defined for 3D vectors only.

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

Properties

- 1. Antisymmetry: $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$
- 2. Linearity: $(\mathbf{a} + \mathbf{c}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{b}$
- 3. Homogeneity: $(sa) \times b = s(a \times b)$

Geometric Interpretation of Cross Product

- 1. aXb is perpendicular to both a and b
- 2. | aXb | = area of the parallelogram defined by a and b

Representing Lines [11][12]

2 types of representations:

- 1. Two point form
- 2. Parametric representation

Parametric Representation of a Line

Planes in 3D

- 4 fundamental forms
 - Three-point form
 - Parametric representation
 - Point normal form
 - Equation

Parametric Representation of Plane

Point Normal Form of a Plane

Representations of Plane [13]

Equation of a Plane [1][2][3][4]

- ax + by + cz + d = 0 is the standard equation of a plane in 3d
- If $sqrt(a^2 + b^2 + c^2) = 1$, then it is called the normalized form
- In the normalized form, |d| equals the distance of the plane from the origin

What about distance from an arbitrary point?

How to convert between equation and the other forms?

Line-Plane Intersection [8]

- Plane: ax + by + cz + d = 0
- Line: P + tV
- Determine the specific value of t (say t') for which the equation of the plane is satisfied, i.e., the point on the line lies on the plane

Line-Line Intersection [5][6][7]

- Four possible cases:
 - Coincident
 - Parallel
 - Not parallel and do not intersect
 - Not parallel and intersect

Line-Line Intersection

- $L_1: P_1 + tV_1$
- L_2 : $P_2 + sV_2$
- Parallel if V₁ and V₂ are in the same or opposite direction (i.e., the angle between them are 0 degree or 180 degree)
- Coincident if they are parallel and have at least one point in common
- If they are not parallel, how to decide whether they intersect or not?

Line-Line Intersection

- If they are not parallel, how to decide whether they intersect or not?
- One solution
 - Generate three equations for two unknowns
 - Solve the first two equations to find a solution
 - Check whether the solution satisfies the third equation
- Another solution
 - Check whether $(P_1 P_2).(V_1 \times V_2) = 0$
 - If lines intersect this condition must hold
 - If lines do not intersect, is it sure not to hold?

Plane-Plane Intersection [9][10]

- Intersection is a line
- So we need two points on the line, or one point and the direction
- How to get a point on the intersecting line?
- How to get the direction of the intersecting line?

Plane-Plane Intersection

- How to get a point on the intersecting line?
 - Imagine another plane not parallel to any of the given planes, for example the plane z = 0 (the XY plane)
 - Now solve three plane equations to find their common intersection point

Plane-Plane Intersection

- How to get the direction of the intersecting line?
- Consider the planes in point-normal form
 - Plane 1: P₁, n₁
 - Plane 2: P₂, n₂
- n₁ and n₂ are both perpendicular to the intersecting line
- So the direction of the line of intersection is along n₁ X n₂

Links

- [1] http://www.songho.ca/math/plane/plane.html
- [2] http://mathinsight.org/distance_point_plane
- [3] https://www.youtube.com/watch?v=gw-4wltP5tY
- [4] https://www.youtube.com/watch?v=7rIFO8hct9g
- [5] https://www.youtube.com/watch?v=nKVCvY-FW5Q
- [6] https://www.youtube.com/watch?v=bJ56Xr9081k
- [7] https://www.youtube.com/watch?v=r5DwyBFxD7Q
- [8] https://www.youtube.com/watch?v=Td9CZGkqrSg
- [9] https://www.youtube.com/watch?v=SoSTdgqknvY
- [10] https://www.youtube.com/watch?v=LpardiBTAvU

Links

- [11] https://www.youtube.com/watch?v=FILbI7DB0SM
- [12] https://www.youtube.com/watch?v=nZ2mS5M4fcQ
- [13] (textbook) Chapter 4, Computer Graphics using OpenGL (2nd edition) by Francis S Hill, Jr.