07. 6. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 7月 7日

出 願 番 号 Application Number:

特願2003-192589

[ST. 10/C]:

Applicant(s):

1.341

[JP2003-192589]

出 願 人

株式会社村田製作所

REC'D 29 JUL 2004

WIPO PO

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 7月15日

特許庁長官 Commissioner, Japan Patent Office 1) (1)

【書類名】

特許願

【整理番号】

M330405

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

CO4B 35/46

H01B 3/12

【発明者】

【住所又は居所】

京都府長岡京市天神二丁目26番10号 株式会社村田

製作所内

【氏名】

【発明者】

【住所又は居所】

京都府長岡京市天神二丁目26番10号 株式会社村田

製作所内

【氏名】

村木 智則

【特許出願人】

【識別番号】

000006231

【氏名又は名称】 株式会社村田製作所

【代表者】

村田 泰隆

【代理人】

【識別番号】

100096910

【弁理士】

【氏名又は名称】 小原 隆

【電話番号】

045 (476) 5454

【手数料の表示】

【予納台帳番号】

064828

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約魯 1

ページ: 2/E

【プルーフの要否】 要

【書類名】明細書

【発明の名称】 誘電体セラミック組成物及び積層セラミックコンデンサ

【特許請求の範囲】

【請求項2】 積層された複数の誘電体セラミック層と、これらの誘電体セラミック層間に配置された内部電極と、これらの内部電極に電気的に接続された外部電極とを備え、上記誘電体セラミック層は、請求項1に記載の誘電体セラミック組成物によって形成されてなることを特徴とする積層セラミックコンデンサ

【請求項3】 上記内部電極は、ニッケル、ニッケル合金、銅、及び銅合金から選択される少なくとも一種類の導電性材料によって形成されてなることを特徴とする請求項2に記載の積層セラミックコンデンサ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、誘電体セラミック組成物及び積層セラミックコンデンサに関し、誘電体セラミック層を 1 μ m程度に薄層化することができる誘電体セラミック組成物及び積層セラミックコンデンサに関する。

[0002]

【従来の技術】

従来のこの種の誘電体セラミック組成物としては、例えば特許文献 1、特許文献 2、特許文献 3 及び特許文献 4 において提案されたものが知られている。

[0003]

特許文献1、特許文献2及び特許文献3では非還元性誘電体磁器組成物がそれぞれ提案されている。これらの非還元性誘電体磁器組成物は、基本的には、主成分として92.0~99.4モル%のBaTiO3、0.3~4モル%のRe2O3(ReはTb、Dy、Ho、Erの中から選択される少なくとも一種の希土類元素)及び0.3~4モル%のCo2O3を含有し、副成分として0.2~4モル%のBaO、0.2~3モル%のMnO及び0.5~5モル%のMgOを含有している。

[0004]

上記各非還元性誘電体磁器組成物は、それぞれ低酸素分圧下であっても、組織が半導体化せず焼成することができ、且つ誘電率が3000以上、絶縁抵抗が1 ogIRで11.0以上であり、更に誘電率の温度特性が25℃の容量値を基準として-55℃~125℃の広い範囲にわたって±15%の範囲内にあることを満足する。

[0005]

また、特許文献 4 では誘電体セラミック組成物及び積層セラミックコンデンサが提案されている。この誘電体セラミック組成物は、主成分としてチタン酸バリウムを含有し、副成分としてRe(Reは、Y、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm及びYbの中から選択される少なくとも一種の希土類元素)、Ca、Mg及びSiの各元素を含有している。この誘電体セラミック組成物の組成式は、100Bam TiO3+aReO3/2+bCaO+cMgO+dSiO2(但し、係数100、a、b、c、dはモル比を表す)で表される。そして、係数100、a、b、c及びdは、それぞれ $0.990 \le m \le 1.030$ 、 $0.5 \le a \le 6.0$ 、 $0.10 \le b \le 5.00$ 、 $0.010 \le c \le 1.000$ 、 $0.05 \le d \le 2.00$ の関係を満足する。

[0006]

上記誘電体セラミック組成物は、誘電率が3000以上、JIS規格における B特性及びEIA規格におけるX7R特性を満足し、高温高電圧下における絶縁 抵抗の加速寿命が長いため、薄層化しても信頼性に優れている。 [0007]

【特許文献1】

特開平5-9066号公報(特許請求の範囲及び段落[0009])

【特許文献2】

特開平5-9067号公報(特許請求の範囲及び段落[0009])

【特許文献3】

特開平5-9068号公報(特許請求の範囲及び段落 [0009])

【特許文献4】

特願2001-39765号公報 (特許請求の範囲及び段落 [0066]、[0067])

[0008]

【発明が解決しようとする課題】

しかしながら、近年のエレクトロニクスの発展に伴い、電子部品の小型化が急速に進行し、積層セラミックコンデンサも小型化、大容量化の傾向が顕著になってきている。ところが、従来の誘電体セラミック組成物は、低い電界強度下で使用されることを前提として設計されてきたため、薄層、即ち高い電界強度下で使用すると、絶縁抵抗値、絶縁耐力及び信頼性が極端に低下するという課題があった。このため、従来の誘電体セラミック組成物の場合には、セラミック誘電体層を薄層化する際に、その薄層化の程度に応じて定格電圧を下げる必要があった。

[0009]

また、特許文献 1 ~特許文献 4 において提案された誘電体セラミック組成物の場合には、この誘電体セラミック組成物を用いて誘電体セラミック層を構成することにより信頼性に優れた積層セラミックコンデンサを提供することができるが、誘電体セラミック層が 1 μ m程度まで薄層化した場合には積層セラミックコンデンサとしての信頼性を確保することが難しいという課題があった。

[0010]

0℃の範囲内の静電容量の変化率が±10%以内)を満足し、比抵抗が10¹¹ Ωm以上と高く、しかも加速信頼性試験(150℃、DC電界強度10V/μm)に対する平均故障寿命が100時間以上と信頼性の高い誘電体セラミック組成物及び積層セラミックコンデンサを提供することを目的としている。

[0011]

【課題を解決するための手段】

本発明の請求項1に記載の誘電体セラミック組成物は、組成式が100(Ba1-xCax)mTiO3+aMnO+bCuO+cSiO2+dRe2O3(但し、係数100、a、b、c、dはモル比を表し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選択される少なくとも一種の元素)で表される誘電体セラミック組成物であって、上記組成式のm、x、a、b、c及びdは、それぞれ、0. $990 \le m \le 1$. 030、0. $04 \le x \le 0$. 20、0. $01 \le a \le 5$ 、0. $05 \le b \le 5$ 、0. $2 \le c \le 8$ 、0. $05 \le d \le 2$. 5 の関係を満足することを特徴とするものである。

[0012]

また、本発明の請求項2に記載の積層セラミックコンデンサは、積層された複数の誘電体セラミック層と、これらの誘電体セラミック層間に配置された内部電極と、これらの内部電極に電気的に接続された外部電極とを備え、上記誘電体セラミック層は、請求項1に記載の誘電体セラミック組成物によって形成されてなることを特徴とするものである。

[0013]

本発明の請求項3に記載の積層セラミックコンデンサは、請求項2に記載の発明において、上記内部電極は、ニッケル、ニッケル合金、銅、及び銅合金から選択される少なくとも一種類の導電性材料によって形成されてなることを特徴とするものである。

[0014]

【発明の実施の形態】

以下、図1を参照しながら本発明の一実施形態について説明する。本実施形態の積層セラミックコンデンサ1は、例えば図1に示すように、複数層(本実施形

態では5層)の誘電体セラミック層2及びこれらの誘電体セラミック層2間にそれぞれ配置された複数の第1、第2内部電極3A、3Bを有する積層体と、これらの内部電極3A、3Bに電気的に接続され且つ積層体の両端に形成された第1、第2外部電極4A、4Bとを備えている。

[0015]

第1内部電極3Aは、図1に示すように、誘電体セラミック層2の一端(同図の左端)から他端(右端)の近傍まで延び、第2内部電極3Bは誘電体セラミック層2の右端から左端の近傍まで延びている。第1、第2内部電極3A、3Bは導電性材料によって形成されている。この導電性材料としては、例えば、ニッケル、ニッケル合金、銅、銅合金の中から選択されるいずれか一種の卑金属を好ましく用いることができる。また、内部電極の構造欠陥を防止するために、導電性材料に加えてセラミック粉末を少量添加しても良い。

[0016]

また、第1外部電極4Aは、図1に示すように、積層体内の第1内部電極3Aに電気的に接続され、第2外部電極4Bは積層体内の第2内部電極3Bに電気的に接続されている。第1、第2外部電極4A、4Bは、従来公知のAg、Pd、これらの両者の合金、銅等の種々の導電性材料によって形成することができる。また、第1、第2外部電極4A、4Bの形成手段は、従来公知の各手段を適宜採用することができる。

[0017]

而して、誘電体セラミック層 2 は本実施形態の誘電体セラミック組成物によって形成されている。この誘電体セラミック組成物は、100 (Ba $_{1-x}$ Ca $_{x}$) $_{m}$ TiO $_{3}$ +aMnO+bCuO+cSiO $_{2}$ +dRe $_{2}$ O $_{3}$ の組成式で表される複合酸化物として構成されている。この誘電体セラミック組成物の各組成の係数 100、a、b、c、dはそれぞれモル比を表し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選択される少なくとも一種の希土類元素を表している。また、組成式における、m、x、a、b、c及びdは、それぞれ、0. $990 \le m \le 1$. 030、0. $04 \le x \le 0$. 20、0. $01 \le a \le 5$ 、0. $05 \le b \le 5$ 、0. $2 \le c \le 8$ 、0. $05 \le d \le 2$. 5 の関係を満

足するものである。

[0018]

 $(Ba_{1-x}Ca_x)_{m}TiO_3$ は、チタン酸バリウムのBaイオンの一部がCaによって置換されたものである。Baイオンに対するCaイオンの置換量xが 0.04(置換率 4%)未満では高温負荷試験での平均故障時間が 100 時間より短くなり、また、この置換量xが 0.20(置換率 20%)を超えると誘電率が 3000より低く、また誘電率温度変化率が $\pm 10\%$ を超えて悪くなるため好ましくない。また、 $Ba_{1-x}Ca_x$ とTiの比($m=Ba_{1-x}Ca_x$ /Ti)が 0.990未満では比抵抗が $10^{1.1}\Omega$ mより低くなり、また、mが 1.000 の 00 を超えると誘電率が 00 の 00 の

[0019]

また、100の($Ba_{1-x}Ca_x$) $_mTiO_3$ に対するMnO量aが0.01未満では比抵抗が $10^{11}\Omega$ mより低く、また、aが5を超えると誘電率温度変化率が $\pm 10\%$ を超えて悪く、比抵抗が $10^{11}\Omega$ mより低くなるため好ましくない。

[0020]

CuO量bが0.05未満では平均故障時間が100時間より短くなり、また、bが5を超えると誘電率温度変化率が±10%を超えて悪くなるため好ましくない。

[0021]

SiO2量cが0.2未満では誘電率が3000より低く、誘電損失tanδが5%より大きく、誘電率温度変化率が±10%を超えて悪くなり、しかも平均故障時間が100時間より短くなり、また、cが8を超えると誘電率温度変化率が10%以上と悪く、平均故障時間が100時間より短くなるため好ましくない

[0022]

更に、Re2O3量dが0.05未満では平均故障時間が100時間より短くなり、また、dが2.5を超えると誘電率温度変化率が±10%を超えて悪くな

るため好ましくない。また、複数種類の希土類元素 R e を含む場合には、複数種類の希土類元素 R e の合計のモル比が d になる。

[0023]

上記誘電体セラミック組成物の原料粉末の製造方法としては、上記(Bal-xCax)mTiO3で表わされる化合物を実現することができる方法であれば、特に制限されず、いかなる製造方法であっても良い。

[0024]

例えば、 $BaCO_3$ と TiO_2 と $CaCO_3$ とを混合する工程と、この混合物を熱処理することにより $BaCO_3$ と TiO_2 と $CaCO_3$ とを反応させる工程によって、(Ba_{1-x} Ca_x) $_m$ TiO_3 で表わされる化合物を製造することができる。

[0025]

また、($Ba_{1-x}Ca_x$) $_mTiO_3$ で表わされる化合物と、添加成分であるMn、Cu、Si、Re(但し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybの中から選択される少なくとも一種の元素)の各酸化物を混合する工程により、誘電体セラミック組成物の原料粉末を製造することができる。

[0026]

また、(Bal-xCax) $_mTiO3$ で表わされる化合物の製造には、水熱合成法、加水分解法、あるいはゾルゲル法等の湿式合成法を用いることができる

[0027]

また、添加成分であるMn、Cu、Si、Re(但し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybの中から選択される少なくとも一種の元素)の各酸化物は、本発明に係る誘電体セラミックを構成することができるものであれば、酸化物粉末に制限されるものではなく、アルコキシドや有機金属等の溶液や、炭酸化物を用いても良く、これらによって得られる特性は何等損なわれるものではない。

[0028]

[0029]

そして、上記誘電体セラミック組成物を用いることによって、誘電体セラミック層の厚みが 1μ m程度に薄層化しても、誘電率が 3000 以上と高く、誘電損失が 5% 以下と小さく、誘電率温度特性が B 特性($\pm 10\%$ 以内)を満足し、比抵抗が 10^{11} Ω m以上と高く、しかも加速信頼性試験、即ち高温負荷試験に対する平均故障寿命が 100 時間以上と信頼性の高い積層セラミックコンデンサを得ることができる。従って、誘電体セラミック層を μ m程度まで薄層化しても定格電圧を下げる必要がなく、今後の更なる小型化、大容量化に対応することができる積層セラミックコンデンサを得ることができる。

[0030]

また、本実施形態の積層セラミックコンデンサの場合には、還元性雰囲気で焼成することができるため、ニッケル、ニッケル合金、銅、銅合金などの卑金属を用いて内部電極を形成することができる。

[0031]

【実施例】

次に、具体的な実施例に基づいて本発明を説明する。

実施例1

本実施例では、まず誘電体セラミック組成物の原料粉末を調製した後、この原料粉末を用いて積層セラミックコンデンサを作製した。それにはまず、出発原料として、高純度のTiO2、BaCO3及びCaCO3を準備し、これら出発原料を、Ti、Ba、Caが下記表1の試料A~Nに示す含有量となるように秤量した後、これらを混合し、粉砕することによって粉末を得た。この粉末を乾燥した後、1000℃以上の温度で加熱し、平均粒径0.20μmで下記表1に試料A~Nで示す組成の(Ba、Ca)TiO3粉末を原料粉末として合成した。また、他の原料粉末としてCuO粉末、MnCO3粉末、SiO2粉末及びRe2O3粉末(但し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybの中から選択される少なくとも一種の元素)を準備した。尚、下記表1に

[0032]

【表1】

- ('n	9			·C	a	١	т	i	Oз	
•		a	1	-,		d v	,,	m I	1	U3	

粉末種	x	m
*A	0. 038	1.003
*B	0. 22	1.005
*C	0.08	0.988
*D	0. 10	1.032
E	0.08	1.001
F.	0.042	1.001
G	0.05	1. 011
H.	0.08	1. 004
I,	0.14	1.007
J	0.17	1. 02
K	0. 19	1.005
, L .	0.08	0.992
M	0.08	1.015
N	0.08	1.027

[0033]

次いで、上記各粉末原料を、下記表 2 及び下記表 3 に示す組成になるように秤量して配合し、試料No.1~No.69となる配合物を得た。更に、これらの配合物を、1000~1050℃の範囲で 2 時間熱処理を行って仮焼物を得た。これらの仮焼物にポリビニルブチラール系バインダ及びエタノール等の有機溶剤をそれぞれ加え、ボールミルにより湿式混合してセラミックスラリーを調製した。これらのセラミックスラリーをドクターブレード法によりシート状に成形し、それぞれの厚みが1.4 μ mの矩形のセラミックグリーンシートを得た。次いで、これらのセラミックグリーンシート上に、ニッケル(Ni)を主体とする導電性ペーストを印刷し、内部電極を形成するための導電性ペースト膜を形成した。この導電性ペースト膜は一端がセラミックグリーンシートの一端まで引き出され、その他端がセラミックグリーンシートの他端には引き出されていない。尚、下記表2において、*印を付した試料No.1~No.12は、x、m、a、b、c、dのいずれかが本発明の限定範囲から外れている試料である。

[0034]

【表2】

 $100(Ba_{1-x}Ca_{x})_{m}TiO_{3}+aMnO+bCuO+cSiO_{2}+dRe2O_{3}$

試料番号	希土類 元素種	使用粉末	ж	m	a	ь	С	d
*No. 1	Y	A	0, 038	1.003	0, 200	0.400	2.00	0. 5
*No. 2	Y	В	0. 22	1. 005	0. 200	0.400	2.00	0. 5
*No. 3	Y	C	0. 08	0. 988	0. 200	0.400	2.00	0.5
* No. 4	Y	D	0.10	1. 032	0, 200	0.400	2.00	0.5
*No. 5	Ÿ	E	0. 08	1.001	0.005	0.400	2.00	0. 5
*No. 6	Y	Ē	0. 08	1. 001	5. 200	0.400	2.00	0. 5
*No. 7	Y	E	0.08	1. 001	0, 200	0.04	2.00	0.5
*No. 8	Y	E	0.08	1. 001	0. 200	5. 300	2.00	0.5
*No. 9	Y	E	0.08	1. 001	0, 200	0.400	0. 10	0.5
*No.10	Y	E	0.08	1. 001	0. 200	0.400	8. 20	0.5
*No.11	Y	E	0.08	1. 001	0, 200	0.400	2.00	0.04
* No.12	Y	E	0.08	1, 001	0. 200	0.400	2.00	2.6
No.13	Y	F	0.042	1. 001	0. 200	0.400	2.00	0.5
No.14	Y	G	0.05	1. 011	0. 200	0.400	2.00	0.5
No.15	Y	Н	0.08	1, 004	0. 200	0.400	2.00	0.5
No.16	Y	I.	0.14	1. 007	0. 200	0.400	2.00	0.5
No.17	Y	J	0.17	1. 02	0. 200	0.400	2.00	0.5
No.18	Y	К	0.19	1.005	0. 200	0.400	2.00	0.5
N ₀ 19	Y	L	0.08	0. 992	0. 200	0.400	2.00	0. 5
No.20	Y	M	0.08	1. 015	0. 200	0.400	2.00	0.5
No.21	Y	N	0.08	1. 027	0.200	0.400	2.00	0.5
No.22	Y	E	0.08	1. 001	0.012	0.400	2.00	0.5
No.23	Y	E	0.08	1. 001	0.100	0.400	2.00	0. 5
No.24	Y	E	0.08	1. 001	0.400	0.400	2.00	0. 5
No.25	Y	Е	0.08	1.001	0.700	0.400	2.00	0.5
No.26	Y	E	0.08	1.001	1.000	0.400	2.00	0. 5
No.27	Y	E	0.08	1. 001	2.000	0.400	2.00	0.5
No.28	Y	E	0.08	1.001	3. 500	0.400	2.00	0.5
No.29	Y	E	0.08	1.001	4.800	0.400	2.00	0.5
Na.30	Y	E	0.08	1. 001	0. 200	0.055	2.00	0.5
No.31	Y	E	0.08	1.001	0. 200	0. 100	2.00	0.5
No.32	Y	E	0.08	1. 001	0. 200	0.700	2.00	0.5
No.33	Y	E	0.08	1.001	0. 200	1.000	2.00	0.5
No.34	Y	E	0.08	1.001	0. 200	2.500	2.00	0.5
No.35	Y	E	0.08	1.001	0. 200	4.700	2.00	0.5

[0035]

【表3】

 $100(Ba_{1-x}Ca_x)_mTiO_3+aMnO+bCuO+cSiO_2+dRe2O_3$.

下海報 次末 次末 次末 次末 次本 次本 次本 次本		GI-AC G	.,						
Na37 Y E 0.08 1.001 0.200 0.400 0.50 0.5 Na38 Y E 0.08 1.001 0.200 0.400 1.00 0.5 Na39 Y E 0.08 1.001 0.200 0.400 4.00 0.5 Na40 Y E 0.08 1.001 0.200 0.400 6.00 0.5 Na41 Y E 0.08 1.001 0.200 0.400 7.80 0.5 Na42 Y E 0.08 1.001 0.200 0.400 2.00 0.5 Na43 Y E 0.08 1.001 0.200 0.400 2.00 0.5 Na44 Y E 0.08 1.001 0.200 0.400 2.00 0.2 Na44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na45 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na45 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na46 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na48 Sm E 0.08 1.001 0.200 0.400 2.00 2.45 Na48 Sm E 0.08 1.001 0.200 0.400 2.00 2.45 Na50 Eu E 0.08 1.001 0.200 0.400 2.00 1.5 Na51 Eu E 0.08 1.001 0.200 0.400 2.00 1.5 Na52 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 Na53 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 Na55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na54 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na56 D y E 0.08 1.001 0.200 0.400 2.00 1.5 Na57 D y E 0.08 1.001 0.200 0.400 2.00 1.5 Na58 H o E 0.08 1.001 0.200 0.400 2.00 1.5 Na56 D y E 0.08 1.001 0.200 0.400 2.00 1.5 Na57 D y E 0.08 1.001 0.200 0.400 2.00 1.5 Na58 H o E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 Na67 Y Gd E 0.08 1.001 0.200 0.400 2.00 1.5 Na68 D y Y b E 0.08 1.001 0.200 0.400 2.00 1.5	試料番号			x	m	a	b	С	đ
Na 38 Y E 0.08 1.001 0.200 0.400 1.00 0.5 Na 39 Y E 0.08 1.001 0.200 0.400 4.00 0.5 Na 40 Y E 0.08 1.001 0.200 0.400 6.00 0.5 Na 41 Y E 0.08 1.001 0.200 0.400 7.80 0.5 Na 42 Y E 0.08 1.001 0.200 0.400 2.00 0.205 Na 43 Y E 0.08 1.001 0.200 0.400 2.00 0.2 Na 44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na 45 Y E 0.08 1.001 0.200 0.400 2.00 0.7 Na 45 Y E 0.08 1.001 0.200 0.400 2.00 1 Na 46 Y E 0.08 1.001 0.200 0.400 2.00 2 Na 47 Y E 0.08 1.001 0.200 0.400 2.00 2 Na 48 Sm E 0.08 1.001 0.200 0.400 2.00 2.45 Na 49 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 E u E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 50 F b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 Na 60 F F E 0.08 1.001 0.200 0.400 2.00 1.5	№36	Y	E	0.08	1.001	0. 200	0.400	0. 25	0.5
No.39 Y E 0.08 1.001 0.200 0.400 4.00 0.5 No.40 Y E 0.08 1.001 0.200 0.400 6.00 0.5 No.41 Y E 0.08 1.001 0.200 0.400 7.80 0.5 No.41 Y E 0.08 1.001 0.200 0.400 2.00 0.055 No.42 Y E 0.08 1.001 0.200 0.400 2.00 0.205 No.43 Y E 0.08 1.001 0.200 0.400 2.00 0.2 No.44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 No.45 Y E 0.08 1.001 0.200 0.400 2.00 1 No.46 Y E 0.08 1.001 0.200 0.400 2.00 1 No.46 Y E 0.08 1.001 0.200 0.400 2.00 2.00 1 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2.00 2.45 No.49 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 F D E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 F F E 0.08 1.001 0.200 0.400	No.37	Y	E	0. 08	1.001	0. 200	0.400	0. 50	0. 5
No.40 Y E 0.08 1.001 0.200 0.400 6.00 0.5 No.41 Y E 0.08 1.001 0.200 0.400 7.80 0.5 No.42 Y E 0.08 1.001 0.200 0.400 2.00 0.055 No.43 Y E 0.08 1.001 0.200 0.400 2.00 0.2 No.44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 No.45 Y E 0.08 1.001 0.200 0.400 2.00 1.7 No.46 Y E 0.08 1.001 0.200 0.400 2.00 1.7 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2.00 1.0 No.49 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 E u E 0.08 1.001 0.200 0.400 2.00 1.5 No.51 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.51 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No.52 G d E 0.08 1.001 0.200 0.400 2.00 0.5 No.53 G d E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 T b E 0.08 1.001 0.200 0.400 2.00 0.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 No.58 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 T m E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y b E 0.08 1.001 0.200 0.400 2.00 1.5	No.38	Y	E	0. 08	1.001	0. 200	0.400	1.00	0. 5
No.41 Y E 0.08 1.001 0.200 0.400 7.80 0.5 No.42 Y E 0.08 1.001 0.200 0.400 2.00 0.055 No.43 Y E 0.08 1.001 0.200 0.400 2.00 0.2 No.44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 No.45 Y E 0.08 1.001 0.200 0.400 2.00 1 No.46 Y E 0.08 1.001 0.200 0.400 2.00 2 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2 No.48 Sm E 0.08 1.001 0.200 0.400 2.00 2.45 No.48 Sm E 0.08 1.001 0.200 0.400 2.00 2.5 No.50 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.51 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.52 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.53 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Yb E 0.08 1.001 0.200 0.400 2.00 0.5	No. 39	Y	E	0. 08	1.001	0. 200	0.400	4. 00	0.5
No. 42 Y E 0.08 1.001 0.200 0.400 2.00 0.055 No. 43 Y E 0.08 1.001 0.200 0.400 2.00 0.2 No. 44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 No. 45 Y E 0.08 1.001 0.200 0.400 2.00 1 No. 46 Y E 0.08 1.001 0.200 0.400 2.00 2 No. 47 Y E 0.08 1.001 0.200 0.400 2.00 2 No. 47 Y E 0.08 1.001 0.200 0.400 2.00 2.45 No. 48 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 Eu E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No. 51 E u E 0.08 1.001 0.200 0.400 2.00 0.5 No. 53 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 No. 54 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 No. 56 D y E 0.08 1.001 0.200 0.400 2.00 1.5 No. 57 D y E 0.08 1.001 0.200 0.400 2.00 0.5 No. 58 H o E 0.08 1.001 0.200 0.400 2.00 1.5 No. 59 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 H o E 0.08 1.001 0.200 0.400 2.00 0.5	No.40	Y	E	0. 08	1.001	0. 200	0.400	6. 00	0.5
No.43	No. 41	Y	E	0. 08	1. 001	0. 200	0.400	7.80	0. 5
No.44 Y E 0.08 1.001 0.200 0.400 2.00 0.7 No.45 Y E 0.08 1.001 0.200 0.400 2.00 1 No.46 Y E 0.08 1.001 0.200 0.400 2.00 2 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2.45 No.48 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No.49 Sm E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.51 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.52 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.53 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.54 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.58 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No.59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No.50 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 No.58 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No.59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No.60 Er E 0.08 1.001 0.200 0.400 2.00 1.5 No.61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 No.62 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 No.63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 No.64 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 No.65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 1.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 4.50 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 4.50 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 4.50 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 4.50	No. 42	Y	E	0.08	1.001	0. 200	0.400	2.00	0. 055
No.45 Y E 0.08 1.001 0.200 0.400 2.00 1 No.46 Y E 0.08 1.001 0.200 0.400 2.00 2 No.47 Y E 0.08 1.001 0.200 0.400 2.00 2.45 No.48 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No.49 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.51 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No.52 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.53 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No.54 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No.59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No.50 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No.56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No.58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No.59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No.60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 No.61 Er E 0.08 1.001 0.200 0.400 2.00 0.5 No.62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No.64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.65 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 0.5 No.66 Y, G d E 0.08 1.001 0.200 0.400 2.00 0.5	No. 43	Y	E	0.08	1.001	0. 200	0.400	2.00	0.2
Na 46 Y	No. 44	Y	E	0.08	1.001	0.200	0.400	2.00	0.7
No. 47 Y E 0.08 1.001 0.200 0.400 2.00 0.5 No. 48 Sm E 0.08 1.001 0.200 0.400 2.00 0.5 No. 49 Sm E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 Eu E 0.08 1.001 0.200 0.400 2.00 0.5 No. 51 Eu E 0.08 1.001 0.200 0.400 2.00 1.5 No. 52 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No. 53 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 No. 53 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No. 57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No. 57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 No. 59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No. 59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 No. 50 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 No. 50 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 No. 50 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No. 50 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 No. 50 No.	No. 45	Y	E	0.08	1.001	0. 200	0.400	2.00	1
Na 48	No. 46	Y	-E	0.08	-1.001	0.200	0.400	2.00	2
Na 49	No. 47	Y	E.	0.08	1.001	0. 200	0.400	2.00	2. 45
Na 50	No. 48	Sm	Е	0. 08	1.001	0. 200	0.400	2.00	0.5
Na 51 Eu E 0.08 1.001 0.200 0.400 2.00 1.5 Na 52 Gd E 0.08 1.001 0.200 0.400 2.00 0.5 Na 53 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 Na 54 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 Na 55 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 Na 56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na 57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na 58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na 59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na 60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na 61 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na 62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na 63 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na 64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na 65 Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 66 Y, Gd E 0.08 1.001 0.200 0.400 2.00 3.5 Na 67 Y, Gd E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 3.5 Na 69 Dy, Yb E 0.08	No.49	Sm	E	0.08	1. 001°	0.200	0.400	2.00	1.5.
Na 52 G d E 0.08 1.001 0.200 0.400 2.00 0.5 Na 53 G d E 0.08 1.001 0.200 0.400 2.00 1.5 Na 54 T b E 0.08 1.001 0.200 0.400 2.00 0.5 Na 55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na 56 D y E 0.08 1.001 0.200 0.400 2.00 0.5 Na 57 D y E 0.08 1.001 0.200 0.400 2.00 0.5 Na 58 H o E 0.08 1.001 0.200 0.400 2.00 0.5 Na 59 H o E 0.08 1.001 0.200 0.400 2.00 0.5 Na 60 E r E 0.08 1.001 0.200 0.400 2.00 0.5 Na 61 E r E 0.08 1.001 0.200 0.400 2.00 0.5 Na 62 T m E 0.08 1.001 0.200 0.400 2.00 0.5 Na 63 T m E 0.08 1.001 0.200 0.400 2.00 0.5 Na 64 Y b E 0.08 1.001 0.200 0.400 2.00 0.5 Na 65 Y b E 0.08 1.001 0.200 0.400 2.00 0.5 Na 66 Y, G d E 0.08 1.001 0.200 0.400 2.00 0.5 Na 67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na 68 D y, Y b E 0.08 1.001 0.200 0.400 2.00 各0.5	No. 50	Eu°	E	0. 08	1.001	0. 200	0.400	2. 00	0.5
Ma53 Gd E 0.08 1.001 0.200 0.400 2.00 1.5 Na54 Tb E 0.08 1.001 0.200 0.400 2.00 0.5 Na55 Tb E 0.08 1.001 0.200 0.400 2.00 1.5 Na56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na57 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na59 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na66 Y, Gd E 0.08 1.001 0.200 0.400 2.00 0.5 Na67 Y, Gd E 0.08 1.001 0.200 0.400 2.00 各0.25 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.25	No. 51	Eu	.E.	0.08	1.001	0. 200	0.400	2. 00	1.5
Na54 T b E 0.08 1.001 0.200 0.400 2.00 0.5 Na55 T b E 0.08 1.001 0.200 0.400 2.00 1.5 Na56 D y E 0.08 1.001 0.200 0.400 2.00 0.5 Na57 D y E 0.08 1.001 0.200 0.400 2.00 1.5 Na58 H o E 0.08 1.001 0.200 0.400 2.00 0.5 Na59 H o E 0.08 1.001 0.200 0.400 2.00 1.5 Na60 E r E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 E r E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 T m E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 T m E 0.08 1.0	No. 52	Gd	E	0.08	1.001	0. 200	0.400	2.00	0.5
Na55 Tb E 0.08 1.001 0.200 0.400 2.00 1.5 Na56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 Na58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001	№ 53	Gd	E	0.08	1.001	0. 200	0.400	2.00	1.5
Na56 Dy E 0.08 1.001 0.200 0.400 2.00 0.5 Na57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 Na58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na65 Yb E 0.08 1.001	No.54	Тb	E	0.08	1.001	0.200	0.400	2.00	0.5
Na.57 Dy E 0.08 1.001 0.200 0.400 2.00 1.5 Na.58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na.59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 Na.60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na.61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na.62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na.63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na.64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na.65 Yb E 0.08 1.001 0.200 0.400 2.00 各0.20 Na.67 Y, Gd E 0.08 <t< td=""><td>No.55</td><td>T b_</td><td>E</td><td>0. 08</td><td>1.001</td><td>0. 200</td><td>0.400</td><td>2.00</td><td>1.5</td></t<>	No.55	T b_	E	0. 08	1.001	0. 200	0.400	2.00	1.5
Na58 Ho E 0.08 1.001 0.200 0.400 2.00 0.5 Na59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 4.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 40.25 Na67 Y, G d E 0.08 1.0	N ₀ .56	Dу	E	0.08	1.001	0.200	0.400	2.00	0.5
Na59 Ho E 0.08 1.001 0.200 0.400 2.00 1.5 Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 4.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08	No.57	Dу	E	0.08	1.001	0. 200	0.400	2.00	1. 5
Na60 Er E 0.08 1.001 0.200 0.400 2.00 0.5 Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	No.58	Η̈́o	E	0. 08	1.001	0. 200	0.400	2. 00	0.5
Na61 Er E 0.08 1.001 0.200 0.400 2.00 1.5 Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	№59	Но	E	0. 08	1.001	0.200	0.400	2.00	1.5
Na62 Tm E 0.08 1.001 0.200 0.400 2.00 0.5 Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	No.60	Er	E	0.08	1.001	0. 200	0.400	2.00	0.5
Na63 Tm E 0.08 1.001 0.200 0.400 2.00 1.5 Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, G d E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	Na61	Er	E	0.08	1.001	0. 200	0.400	2.00	1.5
Na64 Yb E 0.08 1.001 0.200 0.400 2.00 0.5 Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, Gd E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, Gd E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	Na62	Tm	E	0.08	1.001	0.200	0.400	2. 00	0.5
Na65 Yb E 0.08 1.001 0.200 0.400 2.00 1.5 Na66 Y, Gd E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y, Gd E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	No.63	Tm	E	0.08	1.001	0. 200	0.400	2.00	1.5
Na66 Y,Gd E 0.08 1.001 0.200 0.400 2.00 各0.25 Na67 Y,Gd E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy,Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	No.64	Υb	E	0.08	1.001	0. 200	0.400	2.00	0.5
Na67 Y, G d E 0.08 1.001 0.200 0.400 2.00 各1 Na68 Dy, Y b E 0.08 1.001 0.200 0.400 2.00 各0.5	No.65	Y b	E	0.08	1.001	0. 200	0.400	2.00	1.5
Na68 Dy, Yb E 0.08 1.001 0.200 0.400 2.00 各0.5	No.66	Y, G d	E	0.08	1.001	0. 200	0.400	2.00	
	No.67	Y, G d	E	0.08	1.001	0.200	0.400	2.00	各1
	No.68	Dy, Yl	E	0.08	1.001	0. 200	0.400	2.00	各0.5
	Na.69			0.08	1.001	0. 200	0.400	2.00	各0.5

[0036]

然る後、同一種の複数枚のセラミックグリーンシートを、上述の導電性ペースト膜の引き出されている側が互い違いになるように積層し、これを導電性ペースト膜の形成されていないセラミックグリーンシートで挟持、圧着して積層体を得た。この積層体を N_2 雰囲気で350 C の温度に加熱し、バインダを分解させた後、酸素分圧 $10^{-9}\sim10^{-12}$ MPaのH2ガス、N2ガス及びH2Oガスからなる還元雰囲気中において下記表4及び下記表5に示す温度で2時間焼成した。

[0037]

試料番号	焼成温度	誘電率	髂贯損失	誘電率温度	比抵抗	平均故障
P-11 TH 7	(°C)	(E)	tanδ	変化率(%)	Log p	時間(hr)
	(0)	()	(%)		(ρ:Ωm)	
* No. 1	1150	3420	4.1	-7. 1	11.5	20
* No. 2	1150	2700	4. 2	-11. 1	11.5	40
*No. 3	1150	3200	3. 5	-7.5	9. 3	測定不可
* No. 4	1150	2400	12. 5	-12. 8	9. 5	測定不可
* No. 5	1150	3100	4. 3	-9. 4	9. 4	測定不可
* No. 6	1100	3280	5.8	-12. 1	10. 5	20
*No. 7	1250	3310	4. 4	-7. 2	11.5	10
*No. 8	1150	3380	4. 1	-12. 3 ·	11. 4	150
*No. 9	1150	2400	7.8	-12. 5	9. 5	15
*No.10	1150	3250	4. 1	-11.8	11.5	40
*No.11	1150	3250	4. 2	-6. 5	11. 3	5
*No.12	1150	3600	4.8	-11. 2	11.2	120
No.13	1150	3450	4.4	7.5	11.4	110
No.14	1150	3500	4.7	-7. 2	11.3	140
No.15	1150	3620	4.8	-6. 9	11.4	170
No.16	1159	3400	4.1	-6. 1	11.2	230
No.17	1150	3210	3.7	, ¯ −8. 5	11.3	150
No.18	1150	3150	3.4	-9. 1	11.5	115
No.19	1150	3210	3.8	-7.8	11. 1	110
No.20	1150	3150	3.7	-8.5	11.3	130
No.21	1150	3200	3.4	-8. 9	11.5	140
No.22	1150	3230	4.2	-5. 4	11.1	115
No.23	1150	3300	4. 1	-6. 1	11.3	120
No.24	1150	3310	3.7	-5.8	11.5	140
No.25	1150	3250	3.6	-5. 7	11.3	160
No.26	1125	3380	3.6	-6. 5	11. 1	175
No.27	1125	3250	3.3	-7.8	11.4	200
No.28	1100	3280	3. 1	-8.8	11.5	170
No.29	1100	3300	3. 2	-9.4	11.4	120
No.30	1150	3100	3.8	-8. 1	11.3	105
No.31	1150	3280	3. 2	-7.5	11. 1	130
No.32	1150	3300	4.1	-7.2	11. 2	170
No.33	1150	3350	3.8	-7.5	11.5	150

[0038]

試料番号	焼成温度	誘電率	誘電損失		比抵抗	平均故障 時間(hr)
	(℃)	(E)	tan δ (%)	変化率(%)	$\log \rho$ ($\rho: \Omega m$)	h4161 (UL)
N. D.A	1150	3310	3, 5	-9.0	11. 4	160
No.34			3. 2	-9.6	11.3	150
No.35	1150	3120	4.5	-9. 0 -9. 1	11.1	110
N ₀ 36	1175	3050	4. 1	- 9. 1 -8. 5	11. 3	130
No.37	1175	3200	3.5	-8. 1	11. 2	150
No.38	1150	3300		-7. 5	11. 4	150
No.39	1150	3350	3.1	-7. 5 -8. 1	11. 1	130
No. 40	1100	3500	3.8		11.1	115
No.41	1100	3320	3.7	-8.5	11. 5	110
No. 42	1150	3380	4. 1	-7.1	11. 4	115
No.43_	1150	3350	4.0	-7.5		
No.44	1150	3370	3.5	-7.8	11.4	120
No. 45	1150	3250	3.1	-8.5	11.3	150
.No. 46	1150	3100	3.8	-8.8	11.1	210
No. 47	1150	3050	4. 5	-9.5	11.1	230
∩ No. 48	1150	3310	4.3	-8.3	11.4	,110
No.49	1150	3070	3.5	-9.4	11.2	170
No. 50	1150	3290	4.2	-8.5	11.5	115
No.51	1150	3090	3. 2	-9. 2	11.3	185
No. 52	1150	3300	4. 1	-7.7	11.4	120
No.53	1150	3100	3. 3	-9.6	11. 1	190
No.54	1150	3450	4. 2	-8.0	11.3	120
N₀55	1175	3210	3. 3	-9. 4	11. 2	195
N₀.56	1150	3300	4. 3	-8. 1	11.4	110
No.57	1150	3100	3. 2	-9. 1	11.1	220
No.58	1150	3330	4. 1	-7.8	11.5	115
No.59	1150	3060	3. 5	-9. 2	11. 1	240
No.60	1150	3320	4.3	-7.7	11. 3	115
No.61	1150	3050	3. 1	-9. 6	11. 1	190
No.62	1150	3310	4. 4	-7.8	11. 4	110
No.63	1150	3050	3. 1	-9.2	11. 1	180
No.64	1150	3380	4.5	-7.5	11. 5	120
No.65	1150	3120	3.0	-9.4	11. 1	185
No.66	1150	3450	4. 2	-7.9	11.4	110
No.67	1150	3110	3. 1	-9. 1	11. 1	200
No.68	1150	3450	4.3	-7.7	11.5	115
No.69	1150	3100	3. 2	-9.5	11. 1	195

[0039]

焼成後の積層体の両端面にB $_2$ O $_3$ -S $_i$ O $_2$ -B $_a$ O系のガラスフリットを含有する銀ペーストを塗布し、N $_2$ 雰囲気中において $_6$ O $_0$ Cの温度で銀ペーストを焼き付け、内部電極と電気的に接続された外部電極を形成し、本発明の誘電体セラミック組成物からなる積層セラミックコンデンサを得た。

[0040]

このようにして得られた積層セラミックコンデンサ(試料 $No.1 \sim No.69$)の外形寸法は、幅が $5.0 \, mm$ 、長さが $5.7 \, mm$ 、厚さが $2.4 \, mm$ であり、内部電極間に介在する誘電体セラミック層の厚みが $1.0 \, \mu \, m$ であった。また

[0041]

そして、これらの試料 $No.1 \sim No.69$ それぞれについて以下の積層セラミックコンデンサの性能を示す電気的特性を測定した。

静電容量 C 及び誘電損失 t a n δ は、自動ブリッジ式測定器を用いて J I S 規格 5 1 0 2 に従って測定した後、得られた静電容量 C から誘電率 ε を算出し、その結果を上記表 4 及び上記表 5 に示した。

[0042]

また、絶縁抵抗 I R を測定するために、絶縁抵抗計を用い、 4 V の直流電圧を 1 分間印加し、 +25 $\mathbb C$ で絶縁抵抗 I R を測定した後、比抵抗 ρ を算出し、その 結果を 1 o g ρ として上記表 4 及び上記表 5 に示した。

[0043]

[0044]

高温負荷試験として、温度150 \mathbb{C} において10 \mathbb{V} の直流電圧を印加し、その絶縁抵抗 \mathbb{I} \mathbb{R} \mathbb{C} \mathbb{C}

[0045]

上記表 4 及び上記表 5 に示す測定結果から明らかなように、誘電体セラミック組成物の各組成が本発明の範囲内にある誘電体セラミック組成物からなる積層セラミックコンデンサ(試料No.13~No.69)のいずれの場合にも、誘電体セラミック層の厚みが $1~\mu$ m程度に薄層化しているにも拘わらず、高温負荷試験に対する平均故障寿命が 1~0~0時間以上と長く信頼性が高く、しかも、誘電率 ϵ が 3~0~0~0以上と高い上に誘電損失 $t~a~n~\delta$ が 5~0~0以下と小さく、誘電率温度変

化率がB特性($\pm 10\%$ 以内)を満足し、比抵抗 ρ が $10^{11}\Omega$ m($10g\rho$ で 11)以上と高く、信頼性の高い積層セラミックコンデンサであることが判った

[0046]

また、試料 $No.66 \sim No.69$ の場合のように、二種の希土類元素の酸化物を合わせた量 dが100の(Ba、Ca) TiO_3 に対して $0.05 \leq d \leq 2.5$ の範囲にあれば、誘電体セラミック層の厚みが 1μ m程度に薄層化しても、試料 $No.13 \sim No.65$ と同様に優れた電気的特性を有する積層セラミックコンデンサを得ることができる。

[0047]

○ これに対して、上記表 4 中の試料 N o. 1 ~ N o. 1 2 の測定結果からも明らかなように、いずれか一種の酸化物の組成が本発明の限定範囲を満足していなければ、他の組成比が全て本発明の限定範囲を満たしていても、以下で説明するように積層セラミックコンデンサとしての性能が劣っていることが判った。

[0048]

 $(Ba_{1-x}Ca_{x})_{m}TiO_{3}$ の Ba_{1} のBa

[0049]

また、 $Ba_{1-x}Ca_x/Ti$ の比mが0.990未満の粉末種Cを用いた試料No.3の場合には、比抵抗の対数値9.3で比抵抗が $10^{11}\Omega$ mより低く、また平均故障時間は測定できないほど悪かった。また、この比mが1.03を超える粉末種Dを用いた試料No.4の場合には、誘電率 ϵ が2400で3000より低く、誘電損失 $tan\delta$ が12.5%と5%よりも悪く、誘電率温度変化率が<math>-12.8%で $\pm10\%$ より悪く、しかも平均故障時間が測定できないほど悪かった。

MnO量 a が 100 の $(Ba_{1-x}Ca_x)$ m TiO_3 に対してモル比で 0 . 0 1 未満の試料 No . 5 の場合には、比抵抗が 10^{11} Ω m より低く、また平均 故障時間は測定できないほど悪かった。また、この量 a がモル比で 5 を超える試料 No . 6 の場合には、誘電率温度変化率が-12 . 1% で $\pm 10\%$ より悪く、比抵抗が 10^{11} Ω m より低く、しかも平均故障時間が 20 時間と極めて短かった。

[0051]

CuO量bがモル比で0.05未満の試料No.7の場合には、平均故障時間が10時間と極めて短かった。また、この量bがモル比で<math>5を超える試料No.8の場合には、誘電率温度変化率が-12.3%で ±10 %より悪かった。

[0052]

[0053]

Re2O3量 d モル比で0.05未満の試料No.11の場合には、平均故障時間が5時間と極めて短かった。また、この量 d がモル比で2.5を超える試料No.12の場合には、誘電率温度変化率が-11.2%と悪かった。

[0054]

尚、本発明は上記実施例に何等制限されるものではなく、本発明の精神に反しない限り、本発明に包含される。例えば、希土類元素は複数の中から少なくとも一種選択して用いるが、複数種の希土類元素を用いる場合にはこれらの複数種の酸化物の合計量 d が 0.05 ≤ d ≤ 2.5条件を満たせば良い。

[0055]

【発明の効果】

本発明の請求項1~請求項3に記載の発明によれば、誘電体セラミック層の厚

みが $1\,\mu$ m程度に薄層化しても、誘電率が $3\,0\,0\,0$ 以上と高く、誘電損失が $5\,\%$ 以下と小さく、誘電率温度特性が B特性を満足し、比抵抗が $1\,0^{\,1\,1}\,\Omega$ m以上と高く、しかも加速信頼性試験($1\,5\,0\,\%$ 、DC電界強度 $1\,0\,\%$ / μ m)に対する平均故障寿命が $1\,0\,0$ 時間以上と信頼性の高い誘電体セラミック組成物及び積層セラミックコンデンサを提供することができる。

【図面の簡単な説明】

【図1】

本発明の積層セラミックコンデンサの一実施形態を示す断面図である。

【符号の説明】

- 1 積層セラミックコンデシサ
- 2 誘電体セラミック層
- 3A、3B 内部電極
- 4A、4B 外部電極

図面

【図1】

【書類名】 要約書

【要約】

【課題】 誘電体セラミック層が 1 μ m程度まで薄層化した場合には積層セラミックコンデンサとしての信頼性を確保することが難しい。

【解決手段】 本発明の誘電体セラミック組成物は、組成式が100($Ba_{1-x}Ca_{x}$) $_{m}TiO_{3}+a$ M $_{n}O+b$ CuO+cSiO $_{2}$ +dRe $_{2}O_{3}$ (但し、係数100、a、b、c、dはモル比を表し、ReはY、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選択される少なくとも一種の元素)で表される誘電体セラミック組成物であって、上記組成式のm、x、a、b、c及びdは、それぞれ、 $0.990 \le m \le 1.030$ 、 $0.04 \le x \le 0.20$ 、 $0.01 \le a \le 5$ 、 $0.05 \le b \le 5$ 、 $0.2 \le c \le 8$ 、 $0.05 \le d \le 2.50$ 関係を満足することを特徴とする。

【選択図】 図1

特願2003-192589

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-192589

受付番号

5 0 3 0 1 1 2 2 4 8 0

書類名

特許願

担当官

第五担当上席

0094

作成日

平成15年 8月 6日

<認定情報・付加情報>

【提出日】

平成15年 7月 7日

特願2003-192589

出願人履歴情報

識別番号

[000006231]

1. 変更年月日

1990年 8月28日

[変更理由]

新規登録

住 所

京都府長岡京市天神二丁目26番10号

氏 名 株式会社村田製作所