Problem 28

Matrix elements of spin 1 operator $\hat{S}_{\mathbf{n}} = \mathbf{n} \cdot \hat{\mathbf{S}}$ in $|m; \mathbf{z}\rangle \equiv |j = 1, m; \mathbf{z}\rangle$ basis form 3×3 matrix

$$\hat{S}_{\mathbf{n}} = \begin{pmatrix} \langle 1; \mathbf{z} | \hat{S}_{\mathbf{n}} | 1; \mathbf{z} \rangle & \langle 1; \mathbf{z} | \hat{S}_{\mathbf{n}} | 0; \mathbf{z} \rangle & \langle 1; \mathbf{z} | \hat{S}_{\mathbf{n}} | -1; \mathbf{z} \rangle \\ \langle 0; \mathbf{z} | \hat{S}_{\mathbf{n}} | 1; \mathbf{z} \rangle & \langle 0; \mathbf{z} | \hat{S}_{\mathbf{n}} | 0; \mathbf{z} \rangle & \langle 0; \mathbf{z} | \hat{S}_{\mathbf{n}} | -1; \mathbf{z} \rangle \\ \langle -1; \mathbf{z} | \hat{S}_{\mathbf{n}} | 1; \mathbf{z} \rangle & \langle -1; \mathbf{z} | \hat{S}_{\mathbf{n}} | 0; \mathbf{z} \rangle & \langle -1; \mathbf{z} | \hat{S}_{\mathbf{n}} | -1; \mathbf{z} \rangle \end{pmatrix}.$$

Find this matrix and verify that $[\hat{S}_{\mathbf{x}},\hat{S}_{\mathbf{y}}]=i\hbar\,\hat{S}_{\mathbf{z}}.$

Problem 29

- (a) Unit vectors \mathbf{n} and \mathbf{n}' enter the expectation value $\langle J_{\mathbf{n}}^k \rangle_{m,\mathbf{n}'}$ via their dot product $\mathbf{n} \cdot \mathbf{n}'$ [see, e.g., Sec. 3.2.3 in the Lecture Notes]. Modify the results of Problem 26 to obtain $\langle J_{\mathbf{n}} \rangle_{m,\mathbf{n}'}$ and $\langle J_{\mathbf{n}}^2 \rangle_{m,\mathbf{n}'}$ for arbitrary \mathbf{n} and \mathbf{n}' .
- (b) Verify that for spin 1/2 the relations obtained in part (a) yield $\langle S_{\mathbf{n}} \rangle_{\mathbf{n}'} = (\hbar/2)(\mathbf{n} \cdot \mathbf{n}')$ and $\langle S_{\mathbf{n}}^2 \rangle_{\mathbf{n}'} = (\hbar/2)^2$, where \mathbf{n}' is the Bloch vector.
- (c) Write down $\langle S_{\mathbf{n}} \rangle_{m,\mathbf{n}'}$ and $\langle S_{\mathbf{n}}^2 \rangle_{m,\mathbf{n}'}$ for spin 1.

Problem 30

The Hamiltonian of spin 1 particles placed in a time-independent magnetic field reads

$$H = \omega \mathbf{n} \cdot \hat{\mathbf{S}}, \quad \mathbf{n} = \frac{1}{\sqrt{2}} (\mathbf{x} + \mathbf{z}).$$

Given that at t = 0 the spins are in the state

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|+1\rangle - |-1\rangle),$$

where $|\pm 1\rangle$ are eigenvectors of $\hat{S}_{\mathbf{z}}$ with eigenvalues $\pm \hbar$, find the probability $\mathcal{P}(t)$ that a measurement of $S_{\mathbf{z}}$ at arbitrary t > 0 will find $S_{\mathbf{z}} = 0$.

Suggestion: use the relation $\hat{R}(\theta \mathbf{n}) = \hat{\mathbb{1}} - i \sin \theta (\hat{S}_{\mathbf{n}}/\hbar) - (1 - \cos \theta)(\hat{S}_{\mathbf{n}}/\hbar)^2$ derived in Problem 28(b).

Problem 31

The Hamiltonian is given by $\hat{H} = \varepsilon \begin{pmatrix} 1 & i\sqrt{3} \\ -i\sqrt{3} & -1 \end{pmatrix}$, where ε has units of energy.

- (a) Solve the eigenvalue problem for \hat{H} and write the evolution operator $\hat{T}(t) = e^{-it\hat{H}/\hbar}$ in terms of eigenvectors of \hat{H} .
- (**b**) Observable A corresponds to the operator $\hat{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Write the "dressed" operator $\hat{A}_t = \hat{T}^{\dagger}(t)\hat{A}\hat{T}(t)$ in the basis of eigenvectors of \hat{H} found in part (a).

(c) Evaluate the expectation value $\langle A \rangle_t$ given that $|\psi(0)\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Problem 32

A delta-pulse is described by the Hamiltonian

$$\hat{H}(t) = \hat{H}_0 + \hat{V}\delta(t/t_0),$$

where the operators \hat{H}_0 and \hat{V} are independent of time and the parameter t_0 has units of time.

Find the evolution operator $\hat{T}(+0,-0)$ relating state vectors immediately before/after the pulse.

Suggestion: replace the delta-function $\delta(t/t_0)$ in $\hat{H}(t)$ with

$$f_{\tau}(t) = \begin{cases} t_0/2\tau, & |t| < \tau, \\ 0, & |t| > \tau \end{cases}$$

[so that $\delta(t/t_0) = \lim_{\tau \to +0} f_{\tau}(t)$], evaluate $\hat{T}(\tau, -\tau)$, and take the limit $\tau \to +0$.