

1) Let 
$$f(z) = Am(z) + B$$
., Since  $\emptyset \in [0, \alpha]$  and  $0 < \alpha < \pi$ ,  
then  $0 \le \emptyset < \pi$ .

For the choice of In(z) is on the principle branch & E(-7,7).

Since we don't include  $\chi=\pi$ , we make sure the region between the plates don't have any branch-cut discontinities, and so will be holomorphic on the region between the plates.

2) 
$$f(re^{i\varphi}) = Alm(re^{i\varphi}) + B = Almr + Ai\varphi + B = (Amr + B) + i(A\varphi)$$

Boundary Conditions:  $f(r, \alpha) = V_B$  &  $f(r, 0) = V_A$ 
 $f(re^{i\alpha}) = (Am(r) + B) + i(A\alpha) = V_A + i(A\alpha) = V_B \Rightarrow A = i(\frac{V_A - V_B}{\alpha})$ 
 $f(re^{io}) = Alm(r) + B = V_A \Rightarrow B = V_A - i(\frac{V_A - V_B}{\alpha}) m(r)$ 
 $f(z) = i(\frac{V_A - V_B}{\alpha}) (im(r) - \varphi - iln(r)) + V_A$ 

$$f(re^{i\phi}) = \frac{V_B - V_A}{\alpha} \phi + V_A \leftarrow Independent of r > uniform on conductors$$



