Primer Examen - NP-Completitud Complejidad y Optimización

Escuela de Ingeniería de Sistemas y Computación

${f Nombre:}_{f c}$	
Código:_	

0 en caso contrario.

El problema $Subset\ Sum(SS)$

- Entrada: Un conjunto $\mathcal{M} = \{m_1, m_2, \dots, m_n\}$ de n números, y una constante C.
- Salida: 1 si existe un subconjunto M' de M tal que

$$\sum_{m \in M'} m = C$$

El problema de Partición (PRT)

- Entrada: Un conjunto de enteros positivos $\mathcal{A} = \{a_1, a_2, \dots, a_p\}$.
- Salida: 1 si existe una partición de \mathcal{A} , es decir dos conjutnos \mathcal{A}_1 , \mathcal{A}_2 tales que $\mathcal{A}_1 \cap \mathcal{A}_2 = \emptyset$ y $\mathcal{A}_1 \cup \mathcal{A}_2 = \mathcal{A}$, tales que

$$\sum_{a_i \in \mathcal{A}_1} a_i = \sum_{a_i \in \mathcal{A}_2} a_i.$$

El objetivo de este examen es demostrar que \mathcal{PRT} es NP-Completo.

1. Entendimos los problemas [30 pts.]

a) [2 pts.] Cual es la salida de SS para la entrada $n = 7, M = \{700, 500, 1900, 100, 1200, 800, 1400\}, C = 3300.$

1

b) [2 pts.] Cual es la salida de SS para la entrada $n = 5, \mathcal{M} = \{70, 50, 190, 80, 140\}, C = 520.$

c) [2 pts.] Cual es la salida de \mathcal{PRT} para la entrada $\mathcal{A} = \{80, 30, 10, 60, 120\}.$

1_

d) [2 pts.] Cual es la salida de \mathcal{PRT} para la entrada $\mathcal{A} = \{25, 26, 19, 13\}.$

REDC

e) [6 pts.] Describa una instancia de tamaño 7 de \mathcal{PRT} para la que la respuesta sea positiva.

£ 1, 2, 3, 4, 5, 6, 213

f) [5 pts.] Describa una instancia de tamaño 7 de PRT para la que la respuesta sea negativa.

g) [5 pts.] Describa una instancia de tamaño 7 de SS para la que la respuesta sea positiva.

h) [6 pts.] Describa una instancia de tamaño 7 de SS para la que la respuesta sea negativa.

- 2. [70 pts.] Demuestre que PRT es NP-completo, suponiendo que SS lo es. Es decir:
 - a) [10 pts.] Demuestre que \mathcal{PRT} es NP

Dado que PRT tiene un conjunto M de n elementos, tal que debo seleccionar dos subconjuntos que cumplan la condición, el número de enumeraciones posibles es 2^n, Entonces la complejidad de encontrar dos subconjunto O(2^n)

- b) [60 pts.] Demuestre que PRT es NP-Hard:
 - Escoja entre las tres reduc-1) [**10** pts.] ciones siguientes la que utilizará para su demostración.

RedA $\mathcal{PRT} \leq \mathcal{SS}$ Dado $\mathcal{A} = \{a_1, a_2, \dots, a_p\},\$ construya $\mathcal{M} = \{m_1, m_2, \dots, m_n\}, \text{ tal}$ que n = p y $m_i = a_i$, para i = 1..n, y

$$C = \begin{cases} \frac{\sum_{i=1}^{n} a_i}{2} & \text{Si } \sum_{i=1}^{n} a_i \text{ es par} \\ 1 + \sum_{i=1}^{n} a_i & \text{Si no} \end{cases}$$

 \prec \mathcal{PRT} Dado \mathcal{M} RedB SS $\{m_1, m_2, \ldots, m_n\}$ y C, construya $\mathcal{A} =$ $\{\underline{a_1, a_2, \dots, a_n, a_{n+1}, a_{n+2}}\}, a_i = m_i,$ para $i = 1...n, a_{n+1} = 2(\sum_{i=1}^n m_i) - C$ $y \ a_{n+2} = (\sum_{i=1}^{n} m_i) + C$

RedC SSPRT Dado M = $\{m_1, m_2, \dots, m_n\}$ y C, construya $= \{a_1, a_2, \dots, a_n, a_{n+1}, a_{n+2}\},\$

= m_i , para i = 1..n, $a_i - m_i$, $a_{n+1} = (\sum_{i=1}^n m_i) - C$ y $a_{n+2} = C$

Escojo

Justifique porqué descarta cada una de las

otras dos:
Descarto
D 10 reduction Descarto Red C porque:

- 2) [10 pts.] Muestre que entiende la reducción, es decir:
 - a' [5 pts.] Para la instancia positiva del problema del lado izquierdo muestre claramente la instancia que le corresponde según la reducción, y verifique que ésta sea una instancia positiva para el problema del lado derecho.

b' [5 pts.] Para la instancia negativa del problema del lado izquierdo muestre claramente la instancia que le corresponde según la reducción, y verifique que ésta sea una instancia negativa para el problema del lado derecho.

- 3) [30 pts.] Demuestre que la reducción es correcta, es decir:
 - a' [15 pts.] Demuestre que las instancias positivas del problema del lado izquierdo se reducen siempre en instancias positivas del problema del lado derecho.

b' [15 pts.] Demuestre que las instancias negativas del problema del lado izquierdo se reducen siempre en instancias negativas del problema del lado derecho.

4) [10 pts.] Demuestre que la reducción se hace en tiempo polinomial.

