FUNDAMENTOS E ARQUITETURA DE COMPUTADORES

51/2021

M.A.P.A.

QUESTÃO - 01

1. Pegue os quatro últimos números do seu RA, ignore o dígito.

2. Converta esse número para binário (com 16 bits/dígitos). Suas contas devem aparecer na resolução.

RA/2	=	RESTO
2977/2	= 1488	1
1488/2	= 744	0
744/2	= 372	0
372/2	= 186	0
186/2	= 93	0
93/2	= 46	1
46/2	= 23	0
23/2	= 11	1
11/2	= 5	1
5/2	= 2	1
2/2	= 1	0
1/2	= 0	1

 $2977_{(10)} = 0000\ 1011\ 1010\ 0001_{(2)}$

3. Monte uma tabela-verdade para 4 entradas (A, B, C e D). Sua tabela terá, obrigatoriamente, 16 linhas de combinações de entradas.

Α	В	С	D
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

4. Pegue o número binário de 16 bits que você obteve no passo 2 e preencha a coluna de saída (S) com esses dígitos, em ordem.

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

5. A partir da sua tabela-verdade, desenhe a expressão lógica equivalente à tabela (não é necessário simplificar a expressão).

Para obtermos uma expressão booleana a partir da tabela verdade:

- 1° Precisamos definir quantas entradas tem o circuito, no caso acima são quatro.
- 2° Precisamos definir o número de combinações possíveis, no caso acima é 4², então vamos ter 16 possibilidades que vai de (0 a 15)
- 3° Montar a expressão se baseando apenas nas saídas que são iguais a 1.

OBS: As saídas iguais a 0 são formadas automaticamente pela lógica do circuito

Α	В	С	D	S	
0	0	0	0	0	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	0	
0	1	0	0	1	~A.B.~C.~D
0	1	0	1	0	
0	1	1	0	1	~A.B.C.~D
0	1	1	1	1	~A.B.C.D
1	0	0	0	1	A.~B.~C.~D
1	0	0	1	0	
1	0	1	0	1	A.~B.C.~D
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	A.B.C.D

S=(-A.B.-C.-D)+(-A.B.C.-D)+(-A.B.C.D)+(A.-B.-C.-D)+(A.-B.C.-D)+(A.B.C.D)

6. Desenhe o circuito equivalente à expressão obtida.

S = (-A.B.-C.-D) + (-A.B.C.-D) + (-A.B.C.D) + (A.-B.-C.-D) + (A.-B.C.-D) + (A.B.C.D)

