```
In [1]: import pandas as pd
import warnings
warnings.filterwarnings("ignore")
```

In [2]: data=pd.read_csv("/home/placement/Downloads/fiat500.csv")

In [3]: data.describe()

Out[3]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price
count	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000	1538.000000
mean	769.500000	51.904421	1650.980494	53396.011704	1.123537	43.541361	11.563428	8576.003901
std	444.126671	3.988023	1289.522278	40046.830723	0.416423	2.133518	2.328190	1939.958641
min	1.000000	51.000000	366.000000	1232.000000	1.000000	36.855839	7.245400	2500.000000
25%	385.250000	51.000000	670.000000	20006.250000	1.000000	41.802990	9.505090	7122.500000
50%	769.500000	51.000000	1035.000000	39031.000000	1.000000	44.394096	11.869260	9000.000000
75%	1153.750000	51.000000	2616.000000	79667.750000	1.000000	45.467960	12.769040	10000.000000
max	1538.000000	77.000000	4658.000000	235000.000000	4.000000	46.795612	18.365520	11100.000000

In [4]: data.head()

Out[4]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700

Out[5]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1538 rows × 6 columns

In [6]: data2=pd.get_dummies(data1)
data2

Out[6]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1538 rows × 8 columns

```
In [7]: data2.shape
Out[7]: (1538, 8)
In [8]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [9]: y
Out[9]: 0
          8900
          8800
          4200
     2
     3
          6000
      4
          5700
     1533
          5200
     1534
          4600
     1535
          7500
     1536
          5990
          7900
     1537
     Name: price, Length: 1538, dtype: int64
```

In [11]: x_test.head(5)

Out[11]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
481	51	3197	120000	2	0	1	0
76	62	2101	103000	1	0	1	0
1502	51	670	32473	1	1	0	0
669	51	913	29000	1	1	0	0
1409	51	762	18800	1	1	0	0

```
In [12]: x_train.head(5)
```

Out[12]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
527	51	425	13111	1	1	0	0
129	51	1127	21400	1	1	0	0
602	51	2039	57039	1	0	1	0
331	51	1155	40700	1	1	0	0
323	51	425	16783	1	1	0	0

```
In [13]: y_test.head(5)
Out[13]: 481
                 7900
         76
                 7900
         1502
                 9400
         669
                 8500
         1409
                 9700
         Name: price, dtype: int64
In [14]: y_train.head(5)
Out[14]: 527
                9990
         129
                9500
         602
                7590
         331
                8750
         323
                9100
         Name: price, dtype: int64
```

```
In [15]: from sklearn.linear model import LinearRegression
         reg=LinearRegression()
         reg.fit(x train,y train)
Out[15]:
          ▼ LinearRegression
          LinearRedression()
In [16]: y pred=reg.predict(x test)
         y_pred
                                                                  7770.52280413,
                 10011.26407146, 10402.02002918,
                                                  9945.08219601.
                 8840.08397206,
                                 9916.27565791, 10287.45603992,
                                                                  9964.3213269 ,
                 8403.51255128,
                                 9345.81907605,
                                                  8521.46225147,
                                                                  9743.68712672,
                 9791.34520178,
                                                                  7354.16762745,
                                 9779.16293972,
                                                  6753.27416058,
                 8760.24542762,
                                  9923.66596418,
                                                  9812.92276721, 10466.90125415,
                 8163.46726237,
                                 6659.46839415,
                                                  9987.65677522,
                                                                  8866.7826029
                 9952.37340054, 10187.72427693, 10231.39378767, 10091.11325493,
                 9365.98570732, 10009.10088406,
                                                  9141.00566394, 10099.11667176,
                 7803.77049829,
                                  6009.84398185,
                                                  8800.33824151, 10237.60733785,
                 5609.98366311, 10097.61555355,
                                                  9684.99946572,
                                                                  7644.67379732,
                 9276.37891542,
                                 7371.5492091 ,
                                                 10287.98873148, 10067.26428381,
                10552.64805598,
                                  9966.72383894, 10068.46126756,
                                                                  6232.53552963,
                10584.55044373,
                                  9965.98687522, 10529.44404458,
                                                                  9602.67646085,
                 9665.77720284,
                                  6186.06948587,
                                                  8073.87436253, 10345.58323918,
                 6344.74803956,
                                 7361.62678204, 10058.57116223,
                                                                  6792.219309
                                                                  8709.36468047,
                                 5261.45936067,
                 7897.72464823,
                                                  4540.24137423,
                 6882.0117409 ,
                                 7406.73353952,
                                                  6795.61189392,
                                                                  7047.27998963,
                  9945.33400083,
                                  8856.93910595,
                                                  9378.02074127, 10389.561154
                 10092.46332921, 10381.52000388,
                                                  9723.92466625,
                                                                   5996.3331428
In [17]: from sklearn.metrics import r2 score
         r2 score(y test,y pred)
```

Out[17]: 0.8415526986865394

```
In [18]: from sklearn.metrics import mean_squared_error
    mean_squared_error(y_pred,y_test)

Out[18]: 581887.727391353

In [19]: Results=pd.DataFrame(columns=['price','predicted'])
    Results['price']=y_test
    Results['predicted']=y_pred
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[19]:

	index	price	predicted	ID
0	481	7900	5867.650338	0
1	76	7900	7133.701423	1
2	1502	9400	9866.357762	2
3	669	8500	9723.288745	3
4	1409	9700	10039.591012	4
5	1414	9900	9654.075826	5
6	1089	9900	9673.145630	6
7	1507	9950	10118.707281	7
8	970	10700	9903.859527	8
9	1198	8999	9351.558284	9

```
In [20]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='price',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[20]: []


```
In [ ]: #linear regression end
In [21]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge_regressor.fit(x_train, y_train)
Out[21]:
          ▶ GridSearchCV
          ▶ estimator: Ridge
                ► Ridge
In [22]: ridge regressor.best params
Out[22]: {'alpha': 30}
In [23]: ridge=Ridge(alpha=30)
         ridge.fit(x train,y train)
         y pred ridge=ridge.predict(x test)
In [24]: from sklearn.metrics import mean squared error
         Ridge Error=mean squared error(y pred ridge,y test)
         Ridge Error
Out[24]: 579521.7970897449
```

localhost:8888/notebooks/combine.ipynb

```
In [25]: from sklearn.metrics import r2_score
r2_score(y_test,y_pred_ridge)
```

Out[25]: 0.8421969385523054

```
In [26]: Results=pd.DataFrame(columns=['Actual','predicted'])
Results['Actual']=y_test
Results['predicted']=y_pred_ridge
Results=Results.reset_index()
Results['ID']=Results.index
Results.head(10)
```

Out[26]:

	index	Actual	predicted	ID
0	481	7900	5869.741155	0
1	76	7900	7149.563327	1
2	1502	9400	9862.785355	2
3	669	8500	9719.283532	3
4	1409	9700	10035.895686	4
5	1414	9900	9650.311090	5
6	1089	9900	9669.183317	6
7	1507	9950	10115.128380	7
8	970	10700	9900.241944	8
9	1198	8999	9347.080772	9

```
In [28]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[28]: []


```
In [ ]: #ridge regression ends
In [29]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         elastic = ElasticNet()
         parameters = {'alpha': alpha}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic_regressor.fit(x_train, y_train)
Out[29]:
                                             GridSearchCV
          GridSearchCV(estimator=ElasticNet().
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20, 301})
                                       ▶ estimator: ElasticNet
                                             ▶ ElasticNet
In [30]: elastic_regressor.best_params_
Out[30]: {'alpha': 0.01}
In [31]: elastic=ElasticNet(alpha=.01)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
```

```
In [32]: from sklearn.metrics import mean_squared_error
    elastic_Error=mean_squared_error(y_pred_elastic,y_test)
    elastic_Error

Out[32]: 581390.7642825295

In [33]: from sklearn.metrics import r2_score
    r2_score(y_test,y_pred_elastic)

Out[33]: 0.841688021120299

In [34]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[34]:

	index	Actual	predicted	ID
0	481	7900	5867.742075	0
1	76	7900	7136.527402	1
2	1502	9400	9865.726723	2
3	669	8500	9722.573593	3
4	1409	9700	10038.936496	4
5	1414	9900	9653.407122	5
6	1089	9900	9672.438692	6
7	1507	9950	10118.075470	7
8	970	10700	9903.219809	8
9	1198	8999	9350.750929	9

```
In [35]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[35]: []

In []: #elastic regression ends