SSE316:云计算技术 Cloud Computing Technology

陈壮彬 软件工程学院

https://zbchern.github.io/sse316.html

数据中心网络

- ❖ 数据中心应用及流量
- ❖ 数据中心网络架构基本特点
- ❖ Fat-tree 网络架构

数据中心网络

- ❖ 数据中心应用及流量
- ❖ 数据中心网络架构基本特点
- ❖ Fat-tree 网络架构

早期数据中心

1961, Information Processing Center at the National Bank of Arizona

数据中心

Facebook、谷歌、亚马 逊等在多地建立了自己 的大规模数据中心

数据中心应用

- 数据中心通常运行两种类型的应用
 - ✓面向外部的服务(e.g., 向用户提供网页浏览)
 - ✓内部计算(e.g., 基于 MapReduce 的网页索引)

外部用户访问网页

user requests from the Internet

内部计算

Distributed Storage

Map Tasks Reduce Tasks Distributed Storage

南北向流量(North-south Traffic)

- 外部客户端和数据中心之间的交互式查询与响应
- 由前端 web 服务器、中端应用程序服务器和后端数据库处理

东西向流量(East-west Traffic)

- 数据中心服务器之间的流量
- "大数据"计算中的通信

为什么要区分不同方向的流量?

- 对于数据中心网络设计和管理非常重要,因为它们具有不同的特征和需求
 - ✓ 南北向流量通常需要更高的带宽和更强的安全性,因为它涉及到数据中心与外部网络之间的数据传输
 - ✓而东西向流量则更注重低延迟和高吞吐量,因为它涉及到数据中心内部服务器之间的通信,如数据库查询和应用程序交互等

流量特点

Web search, data mining (Microsoft) [Alizadeh 2010]

数据中心网络

- ❖ 数据中心应用及流量
- ❖ 数据中心网络架构基本特点
- ❖ Fat-tree 网络架构

数据中心网络架构

数据中心内部的网络拓扑结构,包括各种网络设备和它们之间的连接方式

它是数据中心的基础架构之一,对数据中心的性能、可靠性和可扩展性都有很大的影响

数据中心网络:一个大型交换机

RX

数据中心网络:一个大型交换机

RX

数据中心网络设计要求

高设备利用率

采用良好的架构和虚 拟化技术进行系统和 数据中心整合,优化资 源利用率、简化管理

绿色节能

通过先进的供电和散 热技术,降低数据中 心的能耗

高可用性

当网络故障或升级时, 网络能够正常运行,对 网络的性能影响不大

自动化管理

云数据中心应是24×7 小时无人值守并可远 程管理的

数据中心网络架构

• 以机架(Rack)形式组织服务器(Server)

- 以机架(Rack)形式组织的服务器(Server)
- ·每个机架都有一个机架(Top of Rack, ToR)交换机

- 以机架(Rack)形式组织的服务器(Server)
- •每个机架都有一个机架(Top of Rack, ToR)交换机
- 汇聚 (Aggregation) 交换机互连 ToR 交换机

Top-Of-Rack (TOR) - Network Connectivity Architecture

- 以机架(Rack)形式组织的服务器(Server)
- ·每个机架都有一个机架(Top of Rack, ToR)交换机
- 汇聚 (Aggregation) 交换机互连 ToR 交换机
- 通过核心(Core)交换机连接到外部
 - 其他数据中心、互联网和其他网络

二分带宽(Bisection bandwidth)

- 将网络分成两个相等的部分
- 两部分之间的最小带宽就是二分带宽
- 是衡量网络性能的一个重要指标
- 完全二分带宽: 具有 N 个节点的网络的完全二分带宽是单个链路带宽的 N/2 倍
 - ✓ 两部分的任何节点都可以全速通信

完全二分带宽

Scale up方法实现完全二分带宽

Scale up方法的问题

- ·以 Scale up 方法实现完全二分带宽的问题就是贵
 - ✓需要昂贵/非商用的交换机和链路
- 解决方法
 - ✓超额订购(Oversubscription),即节点抢用带宽,并不总以全速通信,网络中的超额订购率—般为 2.5:1 (400 Mbps)到 8:1 (125 Mbps)
 - ✓更优的网络架构

超额订购

Oversubscription需要特定的算法来减少阻塞

更优的网络架构

26

数据中心网络

- ❖ 数据中心应用及流量
- ❖ 数据中心网络架构基本特点
- ❖ Fat-tree 网络架构

大量新的网络架构被提出

为了适应新型应用的需求,数据中心网络需要在低成本的前提下满足高扩展性、低配置开销、健壮性和节能的要求

网络 拓扑	规 模	带宽	容错性	扩展性	布线 复杂性	成 本	兼容 性	配置 开销	流量 隔离	灵活 性
FatTree	中	中	中	中	较高	较高	高	较高	无	低
VL2	大	大	中	中	较高	较高	中	较高	无	中
OSA	/]\	大	差	中	较低	较高	低	中	无	高
WDCN	/]\	大	较好	中	较低	中	中	中	无	高
DCell	大	较大	较好	较好	高	较高	中	较高	无	较高
FiConn	大	较大	较好	较好	较高	中	中	较高	无	较高
BCube	/]\	大	好	较好	高	较高	中	较高	无	较高
MDCube	大	大	较好	较好	高	高	中	较高	无	较高

传统的网络三层架构

传统三层架构的问题

- 使用 spanning tree protocol
 - ✓避免数据包循环
 - ✓忽略备用路径
- 存在的问题
 - ✓单点故障
 - ✓拓扑层次越高,超额订购率越高

Fat-tree 网络架构

- 基础设施由廉价设备组成✓每个端口支持与端主机相同的速度
- 如果数据包分布到不同路径,则所有设备都能全速传输
- *k* 端口的 fat-tree 可以支持 *k*³/4 个主机

Fat-tree架构(1)

Fat-tree架构(2)

k-ary fat-tree :

- ✓ 每个交换机有 k 个端口, 网络包含 k 个 pod
- ✓ 每个 pod 包含两层交换机 (edge 和 aggregation), 每层有 k/2 个
- ✓ 每个 edge 交换机分别与 k/2 个主机和 k/2 个 aggregation 交换机相连
- ✓ 网络中共有 $(k/2)^2$ 个 core 交换机,所有 core 交换机的第 i 个端口连接第 i 个 pod
- ✓ Aggregation 交换机的端口以 k/2 的划窗连接 core 交换机
- ✓ 能支持 $k^3/4$ 个主机,当 k=4 时, $k^3/4=4^3/4=16$

简单 Fat-tree 架构的优缺点

- 简单 Fat-tree 架构的优点
 - ✓所有交换机相同,可使用廉价的商用机降低成本
 - ✓任意两个主机有 (k/2)² 条最短路径, oversubscription ratio 低
- 简单 Fat-tree 架构的缺点
 - ✓OSPF (Open Shortest Path First)协议可能仅使用二层的一条最短路径
 - ✓如果三层盲目地利用多条最短路径,则可能需要对数据包进行重排序

改进 Fat-tree 架构

A Scalable, Commodity Data Center Network Architecture

Mohammad Al-Fares malfares@cs.ucsd.edu

Alexander Loukissas aloukiss@cs.ucsd.edu

Amin Vahdat vahdat@cs.ucsd.edu

Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92093-0404

SIGCOMM ' 08

两级路由表

SCHOOL SOFT WARE ENGINE

- 第一级是前缀查找
 - ✓用于将拓扑向下路由到端主机
- 第二级是后缀查找
 - ✓用于向核心路由
 - ✓扩散和分散交通
 - ✓通过对相同的端主机使用相同的端口来维护数据包顺序

两级路由表例子

Prefix	Output port
10.2.0.0/24	0
10.2.1.0/24	1
0.0.0.0/0	

Suffix	Output port
0.0.0.2/8	2
0.0.0.3/8	3

10.2.2.1 的路由表。目的地IP地址为10.2.1.2的传入数据包在端口1上转发,而目的地IP名称为10.3.0.3的数据包则在端口3上转发。

二级路由表算法步骤

IP地址编排

- Pod 交换机 IP 地址: 10. pod. switch. 1
 - ✓ pod 表示 pod ID ([0,k-1])
 - ✓ switch 表示 pod 内的 switch ID([0,k-1]),从左到右,从下到上

Pod 1

IP地址编排

SCOOL OF TWARE ENGINEER

- Core 交换机的 IP 地址: 10. k. j. i
 - ✓j 和 i 表示交换机在 $(k/2)^2$ core 交换机网格中的坐标,每个在区间 [1,(k/2)]

IP地址编排

- 主机的 IP 地址: 10. pod. switch. ID
 - ✓ ID 表示主机在子网中的 ID ([2,k/2+1])
 - ✓每个 edge 交换机负责 /24 子网中的 k/2 个主机, k < 256

路由表生成(1)

Aggregation 交換机路由表

```
1 foreach pod \ x \ in \ [0, k-1] \ do
      foreach switch z in [(k/2), k-1] do
          foreach subnet i in [0, (k/2) - 1] do
              addPrefix(10.x.z.1, 10.x.i.0/24, i);
          end
          addPrefix(10.x.z.1, 0.0.0.0/0, 0);
          foreach host ID i in [2, (k/2) + 1] do
              addSuffix(10.x.z.1, 0.0.0.i/8,
              (i-2+z)mod(k/2) + (k/2);
          end
      end
10
11 end
```

路由表生成(2)

• Edge 交换机路由表

```
foreach pod x in [0, k-1] do
      foreach switch z in [0, (k/2) - 1] do
          addPrefix(10.x.z.1, 0.0.0.0/0, 0);
          foreach host ID i in [2, (k/2) + 1] do
             addSuffix(10.x.z.1, 0.0.0.i/8,
             (i-2+z)mod(k/2) + (k/2);
          end
      end
10
11 end
```

路由表生成(3)

· Core 交换机路由表

```
      1 foreach j in [1, (k/2)] do

      2 foreach i in [1, (k/2)] do

      3 foreach destination pod x in [0, (k/2) - 1] do

      4 addPrefix(10.k.j.i, 10.x.0.0/16, x);

      5 end

      6 end

      7 end
```

两级路由表分析

- 能根据 IP 地址充分利用多条最短路径,但主机粒度的路由可能导致网络流冲突
- 路由规则固定,不能根据网络负载情况动态调整

流粒度的路由改进(1)

- 流分类(Flow classification)
 - ✓消除本地阻塞
 - √识别同一流的后续数据包,并在同一传出端口上转发它们
 - ✓ Edge 交换机定期重新分配流量的输出端口,以最大限度地减少不同端口的总流量之间的差异

流粒度的路由改进(2)

- 流调度(Flow scheduling)
 - 消除全局阻塞
 - 大流才是决定网络对分带宽的关键
 - Edge 交换机检测大流并发送信号给中央调度器
 - 调度器分配大流路径, 防止大流共享相同的链接

网络容错(1)

网络容错(2)

此部分故障则 agg 交换机通知 edge 交换机避免通过其 发送数据,edge 交换机标记此路径 不可用

此部分故障则主机 无法发送数据,可 采用冗余 edge 交 换机

Pod₀

网络容错(3)

网络容错(4)

此部分故障则 agg 交 换机通知 core 交换机 避免通过其发送数据, core 交换机进而通知 其他 agg 交换机

谢谢

陈壮彬 软件工程学院

https://zbchern.github.io/sse316.html