Disclaimer

This document is an exam summary that follows the slides of the *Introduction to Machine Learning* lecture at ETH Zurich. The contribution to this is a short summary that includes the most important concepts, formulas and algorithms. This summary was created during the spring semester 2018. Due to updates to the syllabus content, some material may no longer be relevant for future versions of the lecture. This work is published as CC BY-NC-SA.

I do not guarantee correctness or completeness, nor is this document endorsed by the lecturers. Feel free to point out any erratas. For the full LATEX source code, consider github.com/ymerkli/eth-summaries.

Basics	Gradient Descent	Kernels $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}; x_i^T x_j \to k(x_i, x_j)$	Multi-class Hinge Loss
P(X,Y) = P(X Y)P(Y) = P(Y X)P(X)	1. Start arbitrary $w_o \in \mathbb{R}$	Reformulating the perceptron	$l_{MC-H}(w^{(1)},,w^{(c)};x,y) =$
P(X,Y Z) = P(X Y,Z)P(Y Z)	2. For i do $w_{t+1} = w_t - \eta_t \nabla R(w_t)$	Ansatz: $w = \sum_{j=1}^{n} \alpha_j y_j x_j$	$\max_{j \in \{[1,,c] \setminus y\}} (0,1 + \max w^{(j)T} x - w^{(y)T} x)$
P(X,Y Z) = P(Y X,Z)P(X Z)	Expected Error (True Risk) Assumption: data set generated iid: $R(w) =$	$w^* = \min_{\mathbf{w} \in \mathbb{R}^d} \sum_{i=1}^n \max[0, -y_i \mathbf{w}^T x_i]$	Neural Networks
P(X,Y,Z) = P(X Y,Z)P(Y Z)P(Z) X,Y iid:P(X,Y Z) = P(X Z)P(Y Z)	Assumption: data set generated nd. $K(w) = \int P(x,y)(y-w^Tx)^2 \partial x \partial y = \mathbb{E}_{x,y}[(y-w^Tx)^2]$	$\Leftrightarrow \alpha^* = \min_{\alpha \in \mathbb{N}} \sum_{i=1}^n \max[0, -\sum_{j=1}^n \alpha_j y_i y_j x_i^T x_j]$	$F(x) = \sum_{i=1}^{k} w_i^{(2)} \phi(\sum_{j=1}^{m} w_{ij}^{(1)} x_j) = W^{(2)} \phi(W^{(1)} x)$
$P(X = x) = \sum_{y' \in Y} P(X = x, Y = y')$		Kernelized Perceptron	$F(x) = \phi^{(L)}(W^{(L)}\phi^{(L-1)}(W^{(L-1)}(\phi^{(1)}(W^{(1)}x))))$
$iid \cdot P(X_1 - X_2 Y) = \prod_{i=1}^{n} P(X_2 Y)$	$R_D(w) = \frac{1}{ D } \sum_{(x,y) \in D(y-w^Tx)^2}$ (estimating error) Gaussian/Normal Distribution	1. Initialize $\alpha_1 = \dots = \alpha_n = 0$	Learning features
$\mathbb{E}_{x}[X] = \begin{cases} \int x \cdot p(x) dx & \mathbb{E}_{x}[f(x)] = \\ \sum_{x} x \cdot p(x) & f(x) = \\ f(x) & f(x) = \end{cases}$	σ = standard deviation, σ^2 = var., μ = mean:	2. For $t = 1, 2, \dots$ do	Parametr. feat. maps & optimize over params:
$\mathbb{E}_{x}[X] = \begin{cases} \int dx & f(x) = -x \\ \sum_{x} x \cdot p(x) & \int f(x) \cdot p(x) \partial x \end{cases}$, , , , ,	Pick data $(x_i, y_i) \in_{u.a.r} D$ Predict $\hat{y} = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x_i))$	$w^* = \operatorname{argmin}_{\mathbf{w}, \theta} \sum_{i=1}^{n} l(y_i; \sum_{j=1}^{m} w_j \phi(x_i, \bar{\theta}_j))$
$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2})$		One possibility: $\phi(x, \theta) = \varphi(\theta^T x) = \varphi(z)$ Activation functions
$\sigma_X^2 = Var[X] = \mathbb{E}[(X - \mu_X)^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$	$f(x_1, ., x_k) = \frac{1}{\sqrt{(2\pi)^k \Sigma }} exp(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu))$	If $\hat{y} \neq y_i$ set $\alpha_i^{(t)} = \alpha_i^{(t-1)} + \eta_t \operatorname{else}: \alpha_i^{(t)} = \alpha_i^{(t-1)}$	Sigmoid: $\varphi(z) = \frac{1}{1 + exp(-z)}$; $\varphi'(z) = (1 - \varphi(z)) \cdot \varphi(z)$
$p(Z X,\theta) = \frac{p(X,Z \theta)}{p(X \theta)}$	Ridge regression	Predict new point x: $\hat{y} = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$ Perceptron and SVM	$Tanh_{[-1,1]}: \varphi(z) = tanh(z) = \frac{exp(z) - exp(-z)}{exp(z) + exp(-z)}$
* * * * *	Regularization: $\min_{i=1}^{n} \sum_{j=1}^{n} (y_i - w^T x_i)^2 + \lambda w _2^2$	Perceptron: $\min \sum_{i=1}^{n} \max\{0, -y_i \alpha^T k_i\}$	ReLu: $\varphi(z) = max(z, 0)$
$ln(x) \le x - 1, x > 0; x _2 = \sqrt{x^T x}; \nabla_x x _2^2 = 2x$	w $i=1$	SVM: $k_i = [y_1 k(x_i, x_1),, y_n k(x_i, x_n)]$:	Forward propagation
$f(x) = x^T A x$; $\nabla_x f(x) = (A + A^T) x$	Closed form solution: $w^* = (X^TX + \lambda I)^{-1}X^Ty$	$\min \sum_{i=1}^{n} \max\{0, 1 - y_i \alpha^T k_i\} + \lambda \alpha^T D_y K D_y \alpha$	For each unit j on input layer, set value $v_j = x_j$
$D_{KL} = \mathbb{E}_p[log(\frac{p(x)}{q(x)})]; D_{KL}(P Q) = \sum_{x \in X} P(x)$	Gradient: $\nabla_w \hat{R}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i + 2\lambda w$	α	For each layer $l = 1 : L - 1$: For each unit j
$\log \frac{P(x)}{O(x)} = \int_{-\infty}^{+\infty} p(x) \log \frac{p(x)}{g(x)} dx$ always nonneg	i=1 Standardization	Prediction: $y = sign(\sum_{j=1}^{n} \alpha_j y_j k(x_j, x))$	on layer l set its value $v_j = \varphi(\sum_{i \in Layer_{l-1}} w_{j,i} v_i)$
	Goal: each feature: $\mu = 0$, unit σ^2 : $\tilde{x}_{i,j} = \frac{(x_{i,j} - \hat{\mu}_j)}{\hat{\sigma}}$	Properties of kernel $k(x,y) = \phi(x)^T \phi(y)$ k must be symmetric: $k(x,y) = k(y,x)$	For each unit j on output layer, set its value
Orth: A: $A^{-1} = A^T$, $AA^T = A^TA = A _2^2 = I$	3	Kernel matrix must be positive semi-definite.	$f_j = \sum_{i \in Layer_{L-1}} w_{j,i} v_i \text{ resp. } \vec{f} = W^{(L)} v^{(L-1)}$
$det(A) \in \{+1, -1\}, A \in \mathbb{R}^{n \times n}, (A^{-1})^T = (A^T)^{-1}$	$\hat{\mu}_j = \frac{1}{n} \sum_{i=1}^n x_{i,j}, \hat{\sigma}_j^2 = \frac{1}{n} \sum_{i=1}^n (x_{i,j} - \hat{\mu}_j)^2$	positive semi-definite matrices	Predict $y_j = f_j$ for reg. / $y_j = sign(f_j)$ for class.
$rank(A) = n, det(A) \neq 0$	Classification Perceptron $y = sign(f(x)) = sign(w^Tx)$	$M \in \mathbb{R}^{n \times n}$ is psd $\Leftrightarrow \forall x \in \mathbb{R}^n : x^T M x \ge 0 \Leftrightarrow$	Backpropagation For each unit j on the output layer L :
$\mathbf{Inv:} A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix};$	Perceptron loss is convex and not differentia-	all eigenvalues of M are positive: $\lambda_i \ge 0$ k Nearest Neighbor classifier	- Compute error signal: $\delta_i^{(L)} = \ell_i'(f_i)$
Deriv: $\frac{\partial}{\partial x}b^Tx = \frac{\partial}{\partial x}x^Tb = b, \frac{\partial}{\partial x}x^Tx = \frac{\partial}{\partial x} x _2^2 =$	ble, but gradient is informative.	$y = sign(\sum_{i=1}^{n} y_i[x_i \text{ among k nn of } x])$	
3 8	$l_P(w; y_i, x_i) = \max\{0, -y_i w^T x_i\}$	Examples of kernels on \mathbb{R}^d	- For each unit i on layer $L-1$: $\frac{\partial l}{\partial w^{(L)}} = \delta_j^{(L)} v_i^{(L-1)}$
$2x, \frac{\partial}{\partial x}(x^T A x) = (A^T + A)x, \frac{\partial}{\partial x}(b^T A x) =$	$w^* = \operatorname{argmin_w} \sum_{i=1}^{n} l_p(w; y_i, x_i)$	Linear kernel: $k(x, y) = x^T y$	For each unit j on hidden layer $l = \{L-1,,1\}$:
$A^{T}b, \frac{\partial}{\partial X}(c^{T}Xb) = c^{T}b, \frac{\partial}{\partial X}(c^{T}X^{T}b) = bc^{T}$	$\nabla_{w} l_{p}(w; y_{i}, x_{i}) = (-y_{i}x_{i})1[y_{i}w^{T}x_{i} < 0]$	Polynomial kernel: $k(x,y) = (x^Ty + 1)^d$	- Error sig: $\delta_j^{(l)} = \varphi'(z_j^{(l)}) \sum_{i \in Layer_{l+1}} w_{i,j}^{(l+1)} \delta_i^{(l+1)}$
Eigdec: $A, Q \in \mathbb{R}^{n \times n}, A = Q\Lambda Q^{-1}, \Lambda = diag(\lambda_i)$	Stochastic Gradient Descent (SGD)	Gaussian kernel: $k(x, y) = exp(- x - y _2^2/h^2)$	$\sum_{i=1}^{l} \frac{1}{i!} \frac{1}{i!$
$Q = [v_1,, v_n], (\text{col's are e-vec.})$ if all $\lambda_i \ge 0 : A^{-1} = Q\Lambda^{-1}Q^{-1}, \Lambda^{-1} = diag(\frac{1}{\lambda_i})$	1. Start at an arbitrary $w_0 \in \mathbb{R}^d$ 2. For $t = 1, 2,$ do:	Laplacian kernel: $k(x, y) = exp(- x - y _1/h)$	- For each unit i on layer $l-1$: $\frac{\partial l}{\partial w_{i,i}^l} = \delta_j^{(l)} v_i^{(l-1)}$
- 174	Pick data point $(x', y') \in_{u.a.r.} D$	Kernel engineering $k_1(x,y)+k_2(x,y)$; $k_1(x,y)+k_2(x,y)$; $c\cdot k_1(x,y)$, $c>0$;	Learning with momentum
if $A = A^T$ (symm.) and $x^T A x \ge 0 \forall x \ne 0 \rightarrow psd$ SVD: $X \in \mathbb{R}^{n \times p}, U \in \mathbb{R}^{n \times n}, S \in \mathbb{R}^{n \times p}, V \in \mathbb{R}^{p \times p}$	$\underline{w}_{t+1} = w_t - \eta_t \nabla_w l(w_t; x', y')$	$f(k_1(x,y))$, where f is a polynomial with posi-	$a \leftarrow m \cdot a + \eta_t \nabla_W l(W; y, x); W \leftarrow W - a$
$X = USV^{T} = \sum_{k=1}^{rank(X)} \sigma_{k,k} u_{k}(v_{k})^{T} d^{T} u = v^{T} v = 1$	Perceptron Alg: SGD with Perceptron loss	tive coefficients or the exponential function	Clustering k-mean
$X^{T}X = VS^{T}U^{T}USV^{T} = VS^{T}SV^{T} = V\Sigma V^{T}$	Support Vector Machine Hinge loss: $l_H(w; x, y) = max\{0, 1 - yw^Tx\}$	Kernelized linear regression	Loss: $\hat{R}(\mu) = \hat{R}(\mu_1,, \mu_k) = \sum_{i=1}^n \min_{j \in \{1,, k\}} x_i - \mu_j _2^2$
$\Sigma = diag(\sigma_1^2,, \sigma_n^2); \sigma_i^2 = \lambda_i; \forall \lambda_i \ge 0$	Goal: Max. a "band" around the separator.	Ansatz: $w^* = \sum_i \alpha_i x$	$\hat{u} = \operatorname{argmin} \hat{P}(u) : \text{pop. convey.} \mathcal{O}(ND)$
Gauss CDF:	$w^* = \operatorname{argmin} \frac{1}{n} \sum_{i=1}^{n} (\max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2)$	Parametric: $w^* = \underset{w}{\operatorname{argmin}} \sum_{i} (w^T x_i - y_i)^2 + \lambda w _2^2$	P*
$\Phi(u,v)$ $\int_{0}^{u} M(v,v) dv \Phi(u-v,0,1)$	$g_i(w) = \max\{0, 1 - y_i w^T x_i\} + \lambda w _2^2$	$= \operatorname{amin}_{\alpha} \ \alpha^{T} K - y\ _{2}^{2} + \lambda \alpha^{T} K \alpha, \alpha^{*} = (K + \lambda I)^{-1} y$	Algorithm (Lloyd's heuristic):
Convex: $g(x)$ is convex $\Leftrightarrow x_1, x_2 \in \mathbb{R}, \lambda \in [0, 1]$:	$g_i(w) = \max\{0, 1 - y_i w x_i\} + \lambda w _2$	Prediction: $y = w^{*T}x = \sum_{i=1}^{n} \alpha_i^* k(x_i, x)$	Initialize cluster centers $\mu^{(0)} = [\mu_1^{(0)},, \mu_k^{(0)}]$
$g''(x) > 0 g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$	$\nabla_w g_i(w) = \begin{cases} -y_i x_i + 2\lambda w & \text{, if } y_i w^T x_i < 1\\ 2\lambda w & \text{, if } y_i w^T x_i \ge 1 \end{cases}$	Imbalance Cost Sensitive Classification	While still changes in assignments:
2 3 3 3 3 3 3 3 3 3 3	Multi-Class Classification	Replace loss by: $l_{CS}(w; x, y) = c_v l(w; x, y)$	$z_i = \underset{j \in \{1, \dots, k\}}{\operatorname{argmin}} \ x_i - \mu_j^{(t-1)}\ _2^2; \ \mu_j^{(t)} = \frac{1}{n_j} \sum_{i: z_i = j} x_i$
Regression	Confidence \rightarrow Distance from Decision Bound.	Metrics (convention: positive = rare)	
$Linear Regression f(x) = w^T x$	$y = \operatorname{amin}_{i \in \{1,.,c\}} f_i(x), f_i(x) = \widetilde{w_i}^T x, \widetilde{w_i} = \frac{w_i}{\ w_i\ _2}$	Accuracy= $\frac{\text{\#correct predictions}}{\text{\#all predictions}} = \frac{TP+TN}{TP+TN+FP+FN}$,	k-mean++: - Start with random data point as center
Error: $\hat{R}(w) = \sum_{i=1}^{n} (y_i - w^T x_i)^2 = Xw - y _2^2$	OvA: $\hat{y}_i = \operatorname{argmax}_{j \in \{1,.,c\}} w_j^T x_i$; C bin. classif	$Precision = \frac{\#correct' + 'predictions}{\#all' + 'predictions} = \frac{TP}{TP + FP}$	- Add centers 2 to k randomly, proportionally
$w^* = \operatorname{argmin}_{w} \sum_{i=1}^{n} (y_i - w^T x_i)^2$	OvO: Train $\frac{c(c-1)}{2}$ bin. classif., one for each pair	Recall=TPR= $\frac{TP}{TP+FN} = \frac{TP}{n_+}$, FPR= $\frac{FP}{TN+FP} = \frac{FP}{n}$	to squared distance to closest selected center
Closed form: $w^* = (X^T X)^{-1} X^T y$, $X \in \mathbb{R}^{n \times d}$	(: :) Mating a large with an act a saiting and liti	Recall=1PK= $\frac{1}{TP+FN} = \frac{1}{n_+}$, $PPK = \frac{1}{TN+FP} = \frac{1}{n}$	for $j = 2$ to k : i_j sampled with prob.
$\nabla_{w} \hat{R}(w) = -2 \sum_{i=1}^{n} (y_i - w^T x_i) \cdot x_i = 2X^T (Xw - y)$	ons wins (slower, but no confidence needed)	F1 score = $\frac{2TP}{2TP+FP+FN} = \frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$	$P(i_j = i) = \frac{1}{2} \min_{1 \le l < j} x_i - \mu_l _2^2; \mu_j \leftarrow x_{i_j}$
		riecision Recall	•

Dimension Reduction	$\nabla_w l(w) = \frac{(-y_i x_i)}{1 + exp(+y_i w^T x_i)} = P(Y = -y x, w)(-y_i x_i)$	$P(D p) = \prod_{i=1}^{n} p^{1[y_i=+1]} (1-p)^{1[y_i=-1]}$	3)\$\theta\$ should minimize neg log-likelihood:
Principal component analysis (PCA)	Example: MLE for logistic regression	$= p^{n_+} (1-p)^{n}$, where $n_+ = \#$ of $y = +1$	$\theta^* = \underset{\theta}{\min} L(D; \theta) = \underset{\theta}{\min} - \sum_i \log \sum_j w_j P(x_i \theta_j)$
Given: $D = \{x_1,, x_n\} \subset \mathbb{R}^d, 1 \le k \le d$	$\operatorname{argmax}_{\mathbf{W}} P(y_{1:n} \mathbf{w}, x_{1:n})$	$\frac{\partial}{\partial p} log P(D p) = n_{+} \frac{1}{p} - n_{-} \frac{1}{1-p} \stackrel{!}{=} 0 \Rightarrow p = \frac{n_{+}}{n_{+} + n_{-}}$	Ex: $P(x \theta) = \sum_i w_i \mathcal{N}(x; \mu_i, \Sigma_i), P(z_i = j) = w_j$
$\sum_{d \times d} = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^T, \ \mu = \frac{1}{n} \sum_{i=1}^{n} x_i = 0 \ !!$	$= \operatorname{argmin}_{w} - \sum_{i=1}^{n} \log P(y_{i} w, x_{i})$	Example MLE for $P=(x y)$	$\Sigma w_i = 1$, $P(z, x) = w_z \mathcal{N}(x \mu_z, \Sigma_z)$
Sol.: $(W, z_1,, z_n) = \operatorname{argmin} \sum_{i=1}^n Wz_i - x_i _2^2$,	$= \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{w}^T x_i))$	Assume: $P(X = x_i y) = \mathcal{N}(x_i; \mu_{i,y}, \sigma_{i,y}^2)$	Gaussian-Mixture Bayes classifiers Estimate class prior P(x): Est, cand distr. for
where $W \in \mathbb{R}^{d \times k}$ is orthogonal, $W^* = (v_1 v_k)$ w/ v_i evec. of Σ and evals $\lambda_1 \ge \ge \lambda_d \ge 0$.	$\hat{R}(w) = \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i))$ (neg log l. f.) Logistic regression and regularization	Given: $D_{x_i y} = \{x, \text{ s.t. } x_{j,i} = x, y_j = y\}$	Estimate class prior $P(y)$; Est. cond. distr. for
Projections $z_1,,z_n \in \mathbb{R}^k$ are given by	$\min \sum_{i=1}^{n} log(1 + exp(-y_i w^T x_i)) + \lambda(w _1 or w _2^2)$	Thus MLE yields: $\hat{\mu}_{i,y} = \frac{1}{n_v} \sum_{x \in D_{x,i,v}} x$;	each class: $P(x y) = \sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$
$z_i = W^T x_i$ where $\Sigma = \sum_{i=1}^d \lambda_i v_i v_i^T$,	w	3 40	$P(y x) = \frac{1}{P(x)}p(y)\sum_{j=1}^{k_y} w_j^{(y)} \mathcal{N}(x; \mu_j^{(y)}, \Sigma_j^{(y)})$
Kernel PCA	SGD for logistic regression Update $w \leftarrow w + \eta_t yx \hat{P}(Y = -y w,x)$	$\hat{\sigma}_{i,y}^2 = \frac{1}{n_y} \sum_{x \in D_{x_i y}} (x - \hat{\mu}_{i,y})^2$ Deriving decision rule	Hard-EM algorithm
For general $k \ge 1$, the Kernel PC are given by	L2 regularized logistic regression:		Initialize parameters $\theta^{(0)}$
$\alpha^{(1)},,\alpha^{(k)} \in \mathbb{R}^n$, where $\alpha^{(i)} = \frac{1}{\sqrt{\lambda_i}} v_i$ is obtained	Update $w \leftarrow w(1 - 2\lambda \eta_t) + \eta_t yx \hat{P}(Y = -y w,x)$	$P(y x) = \frac{1}{Z}P(y)P(x y), Z = \sum_{y} P(y)P(x y)$	E 4 1 5 . D 1: -4 -1 f1
from: $K = \sum_{i=1}^{n} \lambda_i v_i v_i^T$, $\lambda_1 \ge \ge \lambda_d \ge 0$	Multiclass Logistic Regression	$y = \operatorname{argmax}_{y'} P(y' x) = \operatorname{argmax}_{y'} P(y') \prod_{i=1}^{d} P(x_i y)$ = $\operatorname{argmax}_{y'} log P(y') + \sum_{i=1}^{d} log P(x_i y')$	E: $z_i^{(t)} = \operatorname{argmax}_z P(z x_i, \theta^{(t-1)}) =$
Point <i>x</i> projected as $z \in \mathbb{R}^k$: $z_i = \sum_{j=1}^n \alpha_j^{(i)} k(x, x_j)$	$P(Y = i x, w_1,, w_c) = exp(w_i^T x) / \sum_{j=0}^{c} exp(w_j^T x)$ Bayesian decision theory	Gaussian Naive Bayes classifier	= $\operatorname{argmax}_{z} P(z \theta^{(t-1)}) P(x_{i} z, \theta^{(t-1)}) =$ = $\operatorname{argmax}_{z} w_{z}^{(t-1)} \mathcal{N}(x_{i} \mu_{z}^{(t-1)}, \Sigma_{z}^{(t-1)})$
Autoencoders $f_1: \mathbb{R}^d o \mathbb{R}^k$, $f_2: \mathbb{R}^k o \mathbb{R}^d$	- Conditional distribution over labels $P(y x)$	Indep. feat. giv. Y: $P(X_1,,X_n Y) = \prod_{i=1}^{d} P(X_i Y)$	= $\underset{\sim}{\operatorname{argmax}} w_z^2$ $\mathcal{N}(x_i \mu_z)$, \mathcal{L}_z) M: Compute the MLE as for the Gaussian B.
Try to learn identity function: $x \approx f(x; \theta)$	- Set of actions \mathcal{A} - Cost function $C: Y \times \mathcal{A} \to \mathbb{R}$	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y = y)}{n}$	class.: $\theta^{(t)} = \operatorname{argmax}_{\theta} P(D^{(t)} \theta)$
$f(x;\theta) = f_2(f_1(x_1;\theta_1);\theta_2); f_1 : \text{en-}, f_2 : \text{decoder}$ d input, d output units, 1 layer w/ $k < d$ units	Pick action that minimizes the expected cost: $a^* = \operatorname{argmin}_{a \in \mathcal{A}} \mathbb{E}_v[C(y, a) x] = \sum_v P(y x)C(y, a)$	MLE for feature distr.: $\hat{P}(x_i y_i) = \mathcal{N}(x_i; \hat{\mu}_{y,i}, \sigma_{y,i}^2)$	Special case: fix $w_z = \frac{1}{k}$, spher. cov. $\Sigma_z = \sigma^2 \mathbb{I}$
$W^* = \operatorname{argmin}_{\mathbf{w}} \sum_{i=1}^{n} x_i - W^{(2)} \varphi(W^{(1)} x^{(i)}) _{2}^{2}$	$\mathbb{E}_{y}[C(y,+) x] = P(- x)C(-,+);$	$\hat{\mu}_{y,i} = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} x_{j,i}$	⇒ k-means: E: $z_i^{(t)} = \operatorname{argmin}_z x_i - \mu_z^{(t-1)} _2^2$
$\varphi(z) = z : NNA = PCA, w^{(1)} = PCA(x) = w^{(2)^T}$	$\mathbb{E}_{y}[C(y,-) x] = P(+ x)C(+,-);$	$\sigma_{y,i}^2 = \frac{1}{\text{Count}(Y=y)} \sum_{j:y_j=y} (x_{j,i} - \hat{\mu}_{y,i})^2$	M : $\mu_j^{(t)} = \frac{1}{n_j} \sum_{i: z_i^{(t)} = j} x_i$
Probability Modeling	$\mathbb{E}_{y}[C(y,D) x] = P(+ x)C_{d+} + P(- x)C_{d-}$	Prediction given new point x:	Soft-EM algorithm: While not converged
Assumption: Data set is generated iid Find $h: X \to Y$ that minimizes pred. error	Optimal decision for logistic regression	$y = \operatorname{argmax}_{y'} \hat{P}(y' x) = \operatorname{argmax}_{y'} \hat{P}(y') \prod_{i=1}^{d} \hat{P}(x_i y_i)$	E-step: For each i and j calculate $\gamma_i^{(t)}(x_i)$
$R(h) = \int P(x,y)l(y;h(x))\partial x \partial y = \mathbb{E}_{x,y}[l(y;h(x))]$	$a^* = \operatorname{argmin}_{y} \hat{P}(y x) = \operatorname{sign}(w^T x)$	Categorical Naive Bayes Classifier	
$h^*(x) = \mathbb{E}[Y X=x]$ for $R(h) = \mathbb{E}_{x,y}[(y-h(x))^2]$	Doubtful logistic regression Est. cond. distr.: $\hat{P}(y x) = Ber(y; \sigma(\hat{w}^T x))$	MLE class prior: $\hat{P}(Y = y) = p_y = \frac{Count(Y = y)}{n}$	$\gamma_j^t(x_i) = P(Z_i = j x_i, \theta_t) = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j, \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j, \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t) P(Z_i = j, \theta_t)}{P(x_i; \theta_t)} = \frac{P(x_i Z_i = j, \theta_t)}{$
Prediction: $\hat{v} = \hat{\mathbb{E}}[Y X=x] = \int \hat{P}(y X=x)y dy$	Action set: $A = \{+1, -1, D\}$: Cost function:	MLE for feature distr.: $\hat{P}(X_i = c Y = y) = \theta_{c v}^{(i)}$	$= \frac{w_j P(x \Sigma_j, \mu_j)}{\Sigma_l w_l P(x \Sigma_l, \mu_l)} = \frac{w_j \mathcal{N}(x;\Sigma_j, \mu_j)}{\Sigma_l w_l \mathcal{N}(x;\Sigma_l, \mu_l)}$
Maximum Likelihood Estimation (MLE)	$C(y,a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1,-1\} \\ c & \text{if } a = D \end{cases}$	$\theta_{c y}^{(i)} = \frac{Count(X_i = c, Y = y)}{Count(Y = y)}$, Pred: $y = \operatorname{amax}_{y'} \hat{P}(y' x)$	$Q(\theta; \theta^{(t-1)}) = \mathbb{E}_{y_{1:n}}[\log P(x_{1:n}, y_{1:n} \theta) x_{1:n}, \theta^{(t-1)}]$
Choose a particular parametric form $\hat{P}(Y X,\theta)$	$C(y,a) = \begin{cases} c & \text{if } a = D \end{cases}$	$C_{c y} = C_{ount}(Y=y)$, Fred. $y = amaxy T(y x)$	$= \mathbb{E}_{y_{1:n}}[\log \prod_{i=1}^{n} P(x_i, y_i \theta) x_{1:n}, \theta^{(t-1)}] =$
$\theta^* = \underset{\theta}{\max} \hat{P}(y_{1:n} x_{1:n}, \theta) \stackrel{\text{iid}}{=} \underset{\theta}{\max} \prod_{i=1}^n \hat{P}(y_i x_i, \theta)$	$\rightarrow a^* = y \text{ if } \hat{P}(y x) \ge 1 - c$, D otherwise	Discr fnc: $f(x) = log \frac{P(y=1 x)}{P(y=-1 x)}; p(x) = \frac{1}{1+exp(-f(x))}$ Gaussian Bayes Classifier	$= \sum_{i=1}^{n} \mathbb{E}_{y_i} [\log P(x_{1:n}, y_i; \theta) x_i, \theta^{(t-1)}] =$
$= \operatorname{amin}_{\theta}^{\theta} - \sum_{i=1}^{n} \log \hat{P}(y_i x_i, \theta)$	Linear regression Est. cond. distr.: $\hat{P}(y x, w) = \mathcal{N}(y; w^T x, \sigma^2)$	MLE for class prior: $\hat{P}(Y = y) = \hat{p}_y = \frac{\text{Count}(Y = y)}{n}$	$\sum_{i=1}^{n} \sum_{j=1}^{k} P(y_i = j x_i, \theta^{(t-1)}) \log(P(x_i, y_i = j; \theta))$
Ex: $y_i \sim \mathcal{N}(w^T x_i, \sigma^2) : w^* = \operatorname{amin}_{\mathbf{w}} \Sigma_i^n (y_i - w^T x_i)$	Est. Cond. distr. $F(y x,w) = \mathcal{N}(y,w x,o)$ $\mathcal{A} = \mathbb{R}; C(y,a) = (y-a)^2$	MLE for class prior: $P(Y = y) = p_y = \frac{n}{n}$ MLE for feature distr.: $\hat{P}(x y) = \mathcal{N}(x; \hat{\mu}_v, \hat{\Sigma}_v)$	$= \sum_{i=1}^{n} \sum_{j=1}^{k} \gamma_{j}^{t}(x_{i}) \log(P(y_{i} = j)P(x_{i} y_{i} = j;\theta))$
Bias/Variance/Noise	$ \Rightarrow a^* = \mathbb{E}_v[y x] = \int \hat{P}(y x) dy = \hat{w}^T x $		If constraint $\sum_{j=1}^{m} P(y_i = j; \theta) = 1$ (m: #labels):
$Prediction error = Bias^2 + Variance + Noise$	Asymmetric cost for regression	$\hat{\boldsymbol{\mu}}_{\boldsymbol{y}} = \frac{1}{\text{Count}(Y=\boldsymbol{y})} \sum_{i:y_i=\boldsymbol{y}} \boldsymbol{x}_i \in \mathbb{R}^d$	$\rightarrow \mathcal{L}(\theta, \lambda) = Q(\theta; \theta^{(t-1)}) + \lambda(\Sigma_i^m P(y_i = j) - 1)$
Maximum a posteriori estimate (MAP) Introduce bias by expressing assumption	Est. cond. distr.: $\hat{P}(y x) = \mathcal{N}(\hat{y}; \hat{w}^T x, \sigma^2)$	$\hat{\Sigma}_y = \frac{1}{\text{Count}(Y=y)} \sum_{i:y_i=y} (x_i - \hat{\mu}_y)(x_i - \hat{\mu}_y)^T \in \mathbb{R}^{d \times d}$	M-step: Fit clusters to weighted data points:
through a Bayesian prior $w_i \sim \mathcal{N}(0, \beta^2)$	$\mathcal{A} = \mathbb{R}; C(y,a) = c_1 \max(y-a,0) + c_2 \max(a-y,0)$	Fisher's linear discriminant analysis (LDA; c=2)	Genrl: $\theta^{(t)} = \operatorname{argmax}_{\theta} Q(\theta; \theta^{(t-1)}), \gamma_i^t(x_i) fixed!$
Bayes: $P(w x, y) = \frac{P(w x)P(y x, w)}{P(y x)} = \frac{P(w)P(y x, w)}{P(y x)}$	$\rightarrow a^* = \hat{w}^T x + \sigma \Phi^{-1}(\frac{c_1}{c_1 + c_2}), \Phi: Gaussian CDF$	Assume: $p = 0.5$; $\hat{\Sigma}_{-} = \hat{\Sigma}_{+} = \hat{\Sigma}$	
assume w indep. of x: $\operatorname{argmax}_{w} P(y x) = P(y x)$	Discriminative vs. Generative Modeling Discriminative models: aim to estimate $P(y x)$	discriminant f.: $f(x) = log \frac{p}{1-p} + \frac{1}{2} [log \frac{ \Sigma }{ \hat{\Sigma}_+ }]$	$w_j^{(t)} \leftarrow \frac{1}{n} \sum_{i=1}^n \gamma_j^{(t)}(x_i); \mu_j^{(t)} \leftarrow \frac{\sum_{i=1}^n \gamma_j^{(t)}(x_i)x_i}{\sum_{i=1}^n \gamma_i^{(t)}(x_i)}$
$= \operatorname{argmin}_{w} - \log P(w) - \log P(y x, w) + const.$	G. m.: aim to estimate joint distribution $P(y,x)$	$+((x-\hat{\mu}_{-})^{T}\hat{\Sigma}_{-}^{-1}(x-\hat{\mu}_{-}))-((x-\hat{\mu}_{+})^{T}\hat{\Sigma}_{+}^{-1}(x-\hat{\mu}_{+}))]$	•-•)
= $\operatorname{argmin}_{\mathbf{w}} \lambda \mathbf{w} _{2}^{2} + \sum_{i=1}^{n} (y_{i} - \mathbf{w}^{T} x_{i})^{2}$, $\lambda = \frac{\sigma^{2}}{\beta^{2}}$	Typical approach to generative modeling:	Predict: $y = sign(f(x)) = sign(w^T x + w_0)$	$\Sigma_{j}^{(t)} \leftarrow \frac{\sum_{i=1}^{n} \gamma_{j}^{(t)}(x_{i})(x_{i} - \mu_{j}^{(t)})(x_{i} - \mu_{j}^{(t)})^{T}}{\sum_{i=1}^{n} \gamma_{i}^{(t)}(x_{i})} \{+ \nu^{2} \mathbb{I}\}$
$(-2ramay D(w) \prod D(w x,w)$ assuming poise	- Estimate prior on labels $P(y)$ - Estimate cond. distr. $P(x y)$ for each class y	$w = \hat{\Sigma}^{-1}(\hat{\mu}_+ - \hat{\mu}); \ w_0 = \frac{1}{2}(\hat{\mu}^T \hat{\Sigma}^{-1} \hat{\mu} \hat{\mu}_+^T \hat{\Sigma}^{-1} \hat{\mu}_+)$ Outlier Detection	SSL w/ GMMs: labeled p.: y_i : $\gamma_i^{(t)}(x_i) = 1[j = y_i]$
P(y x, w) iid Gaussian, prior $P(w)$ Gaussian)	- Obtain predictive distr. using Bayes' rule:	$P(x) = \sum_{y=1}^{c} P(y)P(x y) = \sum_{y} \hat{p}_{y} \mathcal{N}(x \hat{\mu}_{y}, \hat{\Sigma}_{y}) \le \tau$	unl. p.: $\gamma_i^{(t)}(x_i) = P(Z = j x_i, \mu^{(t-1)}, \Sigma^{(t-1)}, w^{(t-1)})$
Logistic regression Assume iid Bernoulli noise instead of Causs	$P(y x) = \frac{P(y)P(x y)}{P(x)} = \frac{P(x,y)}{P(x)}, P(x) = \sum_{y} P(x,y)$	Latent: Missing Data (Gaussian distr.) Mixture modeling $P(x \theta) = P(x u, \nabla, u)$	Additions: small variance & high bias \rightarrow too
Assume iid Bernoulli noise instead of Gauss. $P(y x, w) = Ber(y; \sigma(w^T x)) = \frac{1}{1 + exp(-yw^T x)}$	Example MLE for P(y) Want: $P(Y = 1) = p$, $P(y = -1) = 1 - p$	Mixture modeling $P(x \theta) = P(x \mu; \Sigma, w)$ 1)Model each cluster j as prob. distr. $P(x \theta_i)$	simple model
$l_{logistic}(w; x_i, y_i) = log(1 + exp(-y_i w^T x_i))$	Want: $P(Y = 1) = p, P(y = -1) = 1 - p$ Given: $D = \{(x_1, y_1),, (x_n, y_n)\}$	2)data iid, lklh.: $P(D \theta) = \prod_{i=1}^{n} \sum_{j=1}^{k} w_j P(x_i \theta_j)$	CNN filter output size: $L = \frac{n+2p-f}{s} + 1$