Tema d'esame di Algoritmi e Strutture Dati I 25/06/2007

Tempo a disposizione: 3 ore.

1. [6 punti] Si supponga che $h(n) = \Theta(t(n))$ e che $f(n)/h(n) = \Theta(g(n))$. Si dimostri la verità o la falsità della seguente affermazione:

$$\frac{f^2(n)}{h(n)t(n)} = \Theta(g^2(n))$$

2. [7 punti] Sia data la seguente equazione di ricorrenza:

$$T(n) = \begin{cases} 1 & \text{se } n = 1 \\ 15 T(n/4) + n^2 \log n & \text{se } n > 1 \end{cases}$$

Trovare la stima asintotica più vicina possibile a T(n).

3. [11 punti] Scrivere un algoritmo ricorsivo efficiente che, dato un albero binario di ricerca T e un due valori k_1 e k_2 (con $k_1 \le k_2$), cancelli da T tutti nodi con chiavi comprese tra k_1 e k_2 e restituisca il numero di nodi cancellati dall'albero.

Non è ammesso l'uso di passaggio di parametri per riferimento né l'impiego di variabili globali.

4. [6 punti] Un tour di Eulero in un grafo orientato $G = \langle V, E \rangle$ è un percorso ciclico che attraversa ogni arco una e una sola volta. Un tour di Eulero in un grafo orientato G esiste se il grado entrante di ogni vertice è uguale al suo grado uscente. Si scriva un algoritmo che, dato un grafo orientato G, verifichi se esista o meno un tour di Eulero in tempo $\Theta(|V| + |E|)$.