African Financial Crisis

Objectives of this exploration is to make conclusions on the state of Africa economy backed up by available data using relevant charts to demonstrate trends.

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import random
         %matplotlib inline
In [ ]:
In [2]:
         df = pd.read_csv('african_crises.csv')
         df.head()
Out[2]:
                  cc3
                       country
                               year systemic_crisis
                                                   exch_usd
                                                             domestic_debt_in_default sovereign_ex
             case
                                                                                 0
                  DZA
                               1870
                                                    0.052264
               1
                        Algeria
                                                 1
          1
               1
                  DZA
                        Algeria
                               1871
                                                    0.052798
                                                                                 0
          2
               1 DZA
                        Algeria
                               1872
                                                 0
                                                    0.052274
                                                                                 0
                        Algeria 1873
          3
               1 DZA
                                                    0.051680
                                                                                 0
               1 DZA
                        Algeria 1874
                                                    0.051308
                                                                                 0
         df.dtypes
In [3]:
Out[3]: case
                                                  int64
                                                object
         cc3
         country
                                                object
                                                  int64
         year
         systemic_crisis
                                                  int64
                                               float64
         exch usd
         domestic_debt_in_default
                                                  int64
         sovereign external debt default
                                                  int64
         gdp_weighted_default
                                               float64
         inflation_annual_cpi
                                               float64
         independence
                                                  int64
         currency crises
                                                  int64
         inflation crises
                                                  int64
         banking crisis
                                                object
         dtype: object
```

In [4]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1059 entries, 0 to 1058
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	case	1059 non-null	int64
1	cc3	1059 non-null	object
2	country	1059 non-null	object
3	year	1059 non-null	int64
4	systemic_crisis	1059 non-null	int64
5	exch_usd	1059 non-null	float64
6	<pre>domestic_debt_in_default</pre>	1059 non-null	int64
7	<pre>sovereign_external_debt_default</pre>	1059 non-null	int64
8	<pre>gdp_weighted_default</pre>	1059 non-null	float64
9	<pre>inflation_annual_cpi</pre>	1059 non-null	float64
10	independence	1059 non-null	int64
11	currency_crises	1059 non-null	int64
12	inflation_crises	1059 non-null	int64
13	banking_crisis	1059 non-null	object
d+vn	os: $float64(3)$ int64(8) object(2)	•

dtypes: float64(3), int64(8), object(3)

memory usage: 116.0+ KB

In [5]: df.tail()

Out[5]:

	case	cc3	country	year	systemic_crisis	exch_usd	domestic_debt_in_default	soverei
1054	70	ZWE	Zimbabwe	2009	1	354.8	1	
1055	70	ZWE	Zimbabwe	2010	0	378.2	1	
1056	70	ZWE	Zimbabwe	2011	0	361.9	1	
1057	70	ZWE	Zimbabwe	2012	0	361.9	1	
1058	70	ZWE	Zimbabwe	2013	0	361.9	1	
4								

In [6]: df['country'].unique()

```
In [7]: df_Algeria = df[df['country']=='Algeria']
    df_Angola = df[df['country']=='Angola']
    df_CAR = df[df['country']=='Central African Republic']
    df_Ivr = df[df['country']=='Ivory Coast']
    df_Egypt = df[df['country']=='Egypt']
    df_Kenya = df[df['country']=='Kenya']
    df_Mauritius = df[df['country']=='Mauritius']
    df_Morocco = df[df['country']=='Morocco']
    df_Nigeria = df[df['country']=='Nigeria']
    df_SA = df[df['country']=='South Africa']
    df_Tun = df[df['country']=='Tunisia']
    df_Zam = df[df['country']=='Zambia']
    df_Zimb = df[df['country']=='Zimbabwe']
```

In [8]: df_Algeria.head()

Out[8]:

	case	cc3	country	year	systemic_crisis	exch_usd	domestic_debt_in_default	sovereign_ex
0	1	DZA	Algeria	1870	1	0.052264	0	
1	1	DZA	Algeria	1871	0	0.052798	0	
2	1	DZA	Algeria	1872	0	0.052274	0	
3	1	DZA	Algeria	1873	0	0.051680	0	
4	1	DZA	Algeria	1874	0	0.051308	0	

```
In [10]: for i in lis:
              print(df[i].unique())
              print(i)
          [ 1 2 10 15 19 35 38 40 45 56 63 69 70]
         case
          ['Algeria' 'Angola' 'Central African Republic' 'Ivory Coast' 'Egypt'
           'Kenya' 'Mauritius' 'Morocco' 'Nigeria' 'South Africa' 'Tunisia' 'Zambia'
           'Zimbabwe']
         country
          [1 0]
          systemic_crisis
          [0 1]
         {\tt domestic\_debt\_in\_default}
          [0 1]
          sovereign_external_debt_default
          [0 1]
          independence
          [0 1 2]
          currency_crises
          [0 1]
          inflation_crises
          ['crisis' 'no_crisis']
         banking_crisis
In [11]: | countries = df['country'].unique()
```

In [30]: sns.heatmap(df.corr())

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x7bb62567f0>


```
In [15]: countries = df['country'].unique()
```

```
In [16]: #df[df.country == 'Algeria']['year']
df[df.country =='Algeria'][['year','exch_usd','banking_crisis']]
```

Out[16]:

	year	exch_usd	banking_crisis
0	1870	0.052264	crisis
1	1871	0.052798	no_crisis
2	1872	0.052274	no_crisis
3	1873	0.051680	no_crisis
4	1874	0.051308	no_crisis
80	2010	74.943700	no_crisis
81	2011	76.056300	no_crisis
82	2012	78.102500	no_crisis
83	2013	78.148701	no_crisis
84	2014	87.970698	no_crisis

85 rows × 3 columns

```
In [25]:
           sns.set(style='darkgrid')
           plt.figure(figsize=(20,20))
           start = 1
           for item in countries:
                plt.subplot(5,3, start)
                start = start + 1
                col="#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])
                sns.lineplot(x=df[df.country == item]['year'], y = 'exch_usd', data=df, co
           lor=col)
                plt.scatter(x=df[df.country == item]['year'], y = df[df.country == item][
            'exch_usd'], color=col, s=28)
                plt.title(f"{item} year of independence {np.min(df[np.logical_and(df.count
           ry==item,df.independence==1)]['year'])}",
                color=col)
           plt.tight_layout()
           plt.show()
                      Algeria year of independence 1968
                                                       Angola year of independence 1975
                                                                             100
                     South Africa year of independence 1910
                                            psn 200
400
150
                      Zimbabwe year of independence 1965
             250
            psn 200
400 400 150
```

```
In [19]: np.min(df[np.logical_and(df.country=='Algeria',df.independence==1)]['year'])
Out[19]: 1968
```

```
In [26]:
         'inflation_annual_cpi'
          sns.set(style='darkgrid')
          plt.figure(figsize=(20,20))
          start = 1
          for item in countries:
              plt.subplot(5,3, start)
              start = start + 1
              col="#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])
              sns.lineplot(x=df[df.country == item]['year'], y = 'inflation_annual_cpi',
          data=df, color=col)
              plt.scatter(x=df[df.country == item]['year'], y = df[df.country == item][
          'inflation_annual_cpi'], color=col, s=28)
              plt.title(f"{item} year of independence {np.min(df[np.logical_and(df.count
          ry==item,df.independence==1)]['year'])}",
              color=col)
          plt.tight_layout()
          plt.show()
                                                                 흥<sub>1125</sub>
                                                                  75
```

```
In [20]: | col="#"+''.join([random.choice('0123456789ABCDEF') for j in range(6)])
```

```
In [21]: col
Out[21]: '#285BF3'
In [23]: from pandas import DataFrame
In []:
```