1 Comparison of Auction Algorithms

1.1 Nima-McAfee Auction

Algorithm 1: Nima-McAfee Auction

```
1 Sort sellers ascending: v_1^S < v_2^S < \cdots < v_n^S
2 buyers descending: v_1^B > v_2^B > \cdots > v_m^B
3 Find largest L and K satisfying: v_L^B \ge v_L^S, and \sum_{i=1}^L q_{B_i} \le \sum_{i=1}^K q_{S_i}
4 \gamma \leftarrow \frac{1}{2}(v_{L+1}^S + v_{K+1}^B)
5 if \gamma \in [v_L^S, v_K^B] then
6 \Theta_{\Pr} \leftarrow \min(\sum_{i=1}^L q_{B_i}, \sum_{i=1}^K q_{S_i})
7 | Set uniform trade price: p = \gamma
8 else
9 \Theta_{Pr} \leftarrow \min(\sum_{i=1}^{L-1} q_{B_i}, \sum_{i=1}^{K-1} q_{S_i})
10 | Set buyer price: p_B = v_L^B, and seller price: p = v_L^S
```

1.2 SBBA Auction

Algorithm 2: SBBA Auction (Strongly Budget Balanced)

```
1 Sort buyers descending: b_1 \geq b_2 \geq \cdots \geq b_n

2 Sort sellers ascending: s_1 \leq s_2 \leq \cdots \leq s_n

3 Find largest k s.t. b_k \geq s_k

4 if s_{k+1} \leq b_k then

5 | Set price p \leftarrow s_{k+1}

6 | Trade all k matched pairs at price p

7 else

8 | Set price p \leftarrow b_k

9 | Randomly exclude one seller among cheapest k sellers

10 | Trade remaining k-1 matched pairs at price p
```

1.3 MUDA Auction

Algorithm 3: MUDA Double Auction (Segal-Halevi et al. [?])

- 1 Randomly partition buyers into two groups: B_1, B_2
- 2 Randomly partition sellers into two groups: S_1, S_2
- **3** Compute prices: $p_1 \leftarrow$ market-clearing price for (B_1, S_1)
- 4 $p_2 \leftarrow$ market-clearing price: (B_2, S_2)
- 5 Cross-match at computed prices:
 - Match buyers B_1 with sellers S_2 at price p_2
 - Match buyers B_2 with sellers S_1 at price p_1

2 Comparative Market Design Analysis

• Price Formation:

- Nima-McAfee: Uses the midpoint between the marginal unsuccessful buyer and seller valuations; sometimes results in a surplus.
- SBBA: Uses a single uniform price, strongly budget balanced; may randomly exclude one seller.
- MUDA: Uses random market partitioning and computes two cross-market prices, ensuring truthful behavior.

• Budget Balance:

- Nima-McAfee: Weakly budget-balanced; can leave surplus.
- **SBBA:** Strongly budget-balanced; no surplus left.
- MUDA: Budget-balanced in expectation due to random partitions.

Truthfulness: All algorithms ensure truthfulness.