Total No. of Pages: I

Roll No.

SECOND SEMESTER

MID SEMESTER EXAMINATION

B. Tech (All Branches).

(February- 2014)

		AP-113 Applied Physics-II (Gro	oup A & D)
Time : 1:30 Hours			Max. Marks: 20
Note:		e questions le missing data, if any.	
1.(a)). Define Compton	effect. Derive an expression for the ch	ange in wavelength of photon that i
scattered through an angle "\" by a particle of rest mass mo-			(3 M)
		deuteron have same kinetic energy. Which I	has longer wavelength?
			(2 M)
ear	a). What do you us mot be the solution	nderstand by well-behaved wave function. so of schrodinger equation? Why?	Which of the following wave functions
	$\Psi = A \operatorname{Sec} x$	(2). $\Psi = A \exp(x^2)$	(3 M)
-	h) If a particle in a	one dimensional back to the co	nditions

U(x)=0 for 0 < x < a= ∞ for x≤0 and x≥a

then show that the energy of such a particle would be discrete.

3. (a). Show that an electromagnetic wave moving in free space moves with a velocity equal to light velocity and derive its energy density value in free space.

If the average distance between sun and earth is 1.5 x 10¹¹ meter, then calculate how much energy that the earth will receive from sun. (Power radiated by sun = 3.8 x 10²⁶ Watt)

(2 M)

4. (a). If a 4 KW laser beam is focused by a lens into cross-sectional area about 10-6 cm², then what is the value of average pointing vector and the amplitude of the magnetic field. Assuming LASER as a light almost perfectly source gives parallel beam intensity. (3 M)

(b). An electromagnetic wave with average pointing vector 1.08 W/m² falls normally on an absorbing mass of 10⁻³ g/cm² and of specific heat 0.2 cal/g°C. Calculate the rate at which the temperature of the absorber rises. (Assume that there no heat loss).