

Lecture 5 Air Quality:

Air Pollution Modeling

Harish C. Phuleria CESE, IIT Bombay

Email: phuleria@iitb.ac.in

accumulation rate = input rate +sources - output rate - decay

$$V\frac{dC}{dt} = S + C_aIV - CIV - KCV$$

Choice of instruments is a function of its cost, intended analysis, time resolution, portability, ease of use

Recap 2

viable impactor

Size Distribution

Ultrafine Condensation Particle Counter

Recap 3

- Three type of sources: point, line, & area
- Atmospheric mixing and dispersion is governed by

meteorology

- Horizontal
 - Wind speed and direction
- Vertical
 - Temperature
- Atmosphere cools with height
 - Dry (adiabatic) lapse rate

$$\Gamma = -\frac{dT}{dz} = -1.00 \, ^{\circ}\text{C}/100 \text{ m}$$

 Effect of actual lapse rate on vertical mixing

Recap 4

 Extreme case of stability when lapse rate is actually <u>positive</u>, leads to temperature inversion prevents nearly all upward mixing

Adiabatic

Today's Learning Objectives!

To learn about air quality modeling methods

Why are we doing all of this?

- If we want to set up a new industry, it implies adding a new source of pollutant(s)
- This source is PERMITTED to emit after it has applied the Best Available Control Technology (BACT) on their processes
- AFTER leaving the chimney, the concentrations on ground is determined by the meteorology

Why are we doing all of this?

Therefore,

- If we want to know WHERE to put the new industry
- If we want to know the pollution levels under the worst case scenario of STABLE conditions and low wind speeds
- If we want to know what height does the chimney need to be

Modeling air quality

- Gaussian Plume (Dispersion) Model (GPM) is used to estimate the ground level concentrations for pollutants coming from a chimney
- Inputs to GPM
 - Height of chimney and Source strength
 - Wind rose data
 - Atmospheric stability of the region

Point Source Gaussian Plume Model

Masters & Ela, 2008

Point Source Gaussian Plume Model

Masters & Ela, 2008

GPM: Model Structure & Assumptions

- pollutants released from a "virtual point source"
- advective transport by wind
- dispersive transport (spreading) follows normal (Gaussian) distribution away from trajectory
- constant emission rate
- wind speed constant with time and elevation
- pollutant is conservative (no reaction)
- terrain is flat and unobstructed
- uniform atmospheric stability

Point Source GPM: Mathematical expression

$$C(x, y, 0) = \left[\frac{Q}{\pi s_y s_z u_H}\right] \left[\exp\left[-\frac{1}{2}\left(\frac{y}{s_y}\right)^2\right]\right] \left[\exp\left[-\frac{1}{2}\left(\frac{H}{s_z}\right)^2\right]\right]$$

```
Where,
```

```
C = downwind concentration at ground level (\mu g/m^3)
```

Q = emission rate of pollutant (μ g/s)

 $s_{yy} s_z$ = plume standard deviations (m)

u = wind speed (m/s)

x, y, z = distances (m)

H = Effective Stack Height (m)

Point Source GPM: Effective Stack Height

$$H = h + \Delta H$$

where,
$$H$$
 = Effective stack height (m)
 h = height of physical stack (m)
 ΔH = plume rise (m)

Holland's formula

$$\Delta H = \frac{v_s d}{u} \left[1.5 + \left(2.68 \times 10^{-3} \left(P \left(\frac{T_s - T_a}{T_s} \right) d \right) \right]$$

where, v_s = stack velocity (m/s)

d = stack diameter (m)

u = wind speed (m)

P = atmospheric Pressure, millibars

 T_s = stack gas temperature ($^{\circ}$ K)

 $T_a = air temperature (°K)$

Holland's formula, however, does not take into account the meteorology of the atmosphere, and good for certain atmospheric E conditions only

... ug.2017

Point Source GPM: Stability Categories

TABLE 11-6	Key to Stabilit	y Categories				
Surface Wind Speed (at 10 m) (m·s ⁻¹)	Day ^a Incoming Solar Radiation			Nighta		
	Strong	Moderate	Slight	Thinly Overcast or $\geq \frac{4}{8}$ Low Cloud	$\leq \frac{3}{8}$ Cloud	
<2	A	A-B	В			
2–3	A-B	В	С	Е	F	
3–5	В	В-С	С	. D	E	
5–6	С	C-D	D	D	D	
>6	С	D	D	D	D	

A Extremely Unstable

D Neutral

B Moderately Unstable

E Slightly Stable

C Slightly Unstable

F Moderately Stable

Point Source GPM: Horizontal Dispersion (s_y)

Point Source GPM: Vertical Dispersion (s_z)

Point Source GPM: Vertical & horizontal Dispersion (sy, s_z)

$$\sigma_{\rm y}=a\,x^{0.894}$$

$$\sigma_z = cx^d + f$$

TABLE 7.0	HIGHER TO PROPER WAS AND ADDRESS OF THE PARTY OF THE PART
Values of the Constants a, c, d	and f for Use in (7.47) and (7.48)

cost Silver VI		$x \le 1 \text{ km}$			$x \ge 1 \text{ km}$		
Stability	a	C	d	f	c	d	f
Λ	213	440.8	1.941	9.27	459.7	2.094	-9.6
В	156	106.6	1.149	3.3	108.2	1.098	2.0
C	104	61.0	0.911	0	61.0	0.911	0
D	68	33.2	0.725	-1.7	44.5	0.516	-13.0
	50.5	22.8	0.678	-1.3	55.4	0.305	-34.0
F	34	14.35	0.740	-0.35	62.6	0.180	-48.6

Note: The computed values of σ will be in meters when x is given in kilometers.

Source: Martin, 1976.

TADIE 7 0

Point Source GPM: Wind Speed Correction

 Unless the wind speed at the virtual stack height is known, it must be estimated from the ground wind speed

$$u_2 = u_1 \left(\frac{z_2}{z_1}\right)^p$$

where
$$u_x$$
 = wind speed at elevation z_x
 p = empirical constant

TABLE 11-8 Stability Class	Exponent p Values for Rural and Urban Regimes							
	Rural	Urban	Stability Class	Rural	Urban			
A	0.07	0.15	, D	0.15	0.25			
В	0.07	0.15	Е	0.35	0.30			
C	0.10	0.20	, F	0.55	0.30			

Point Source GPM: Effect of atmospheric stability classification

For a given stack height, maximum ground level pollutant concentration observed for very unstable atmosphere and reaches a maximum nearer to the source/earlier in time compared to other atmospheric stabilities.

Masters & Ela, 2008

Point Source GPM: Effect of effective stack height

For a given atmospheric stability, maximum ground level pollutant concentration observed for lower effective stack height and reaches a maximum nearer to the source/earlier in time compared to sources with higher effective stack heights

Gaussian dispersion model estimates may have an uncertainty up to 50% due to several assumption involved

Masters & Ela, 2008

ES 200/ 17.Aug.2017

Point Source GPM

Example!

A stack in an urban area is emitting 80 g/s of NO. It has an effective stack height of 100m. The wind speed is 4 m/s at 10 m. It is a clear summer day with the sun nearly overhead. Estimate the ground level concentration at:

- a. 2 km downwind on the centerline, and
- b. 2 km downwind, 0.1 km off the centerline.

1. Determine stability class

Assume wind speed is 4 m/s at ground surface. Description suggests strong solar radiation.

hence stability class is **B**

clear summer day with the sun nearly overhead; wind speed 4 m/s at 10 m.

TABLE 11-6

Key to Stability Categories

Surface Wind Speed (at 10 m) (m · s ⁻¹)	Daya			Nighta		
	Strong	oming Solar Radiat Moderate	Slight	Thinly Overcast or $\geq \frac{4}{8}$ Low Cloud	≤ 3/8 Cloud	
<2	A	A-B	В			
2–3	Д-В	В	С	E	F	
3–5	(B)	В-С	С	. D	E	
5–6	C	C-D	D	D	D	
>6	С	D	D	D	D	

Estimate the wind speed at the effective stack height
 Note: effective stack height given – no need to calculate using Holland's formula

TABLE 11-8	Exponent p Values for Rural and Urban Regimes							
Stability Class	Rural	Urban	Stability Class	Rural	Urban			
A	0.07	0.15	, D	0.15	0.25			
В	0.07	(0.15)	Е	0.35	0.30			
С	0.10	0.20	, F	0.55	0.30			

$$u_2 = u_1 \left(\frac{z_2}{z_1}\right)^p = 4 \left(\frac{100}{10}\right)^{0.15} = 5.65 \,\text{m/s}$$

3. Determine σ_y and σ_z

3. Determine σ_y and σ_z $\sigma_y = 290$

3. Determine σ_y and σ_z $\sigma_z = 220$

4. Determine concentration using the Eqn.

a.
$$x = 2000, y = 0$$

$$C(2000,0) = \frac{80}{\pi(290)(220)(5.6)} \exp\left[-\frac{1}{2} \left(\frac{0}{290}\right)^2\right] \exp\left[-\frac{1}{2} \left(\frac{100}{220}\right)^2\right]$$

$$C(2000,0) = 6.37 \times 10^{-5} \text{ g/m}^3 = 63.7 \,\mu\text{g/m}^3$$

4. Determine concentration using the Eqn.

b.
$$x = 2000$$
, $y = 0.1$ km (= 100m)

$$C(2000,100) = \frac{80}{\pi(290)(220)(5.6)} \exp\left[-\frac{1}{2} \left(\frac{100}{290}\right)^2\right] \exp\left[-\frac{1}{2} \left(\frac{100}{220}\right)^2\right]$$

$$C(2000,0) = 6.00 \times 10^{-5} \text{ g/m}^3 = 60 \,\mu\text{g/m}^3$$

Line Source Dispersion Model

 Useful in certain conditions where source is distributed along a line with continuous emissions

 Hence, ground level conc. of pollutant at a distance perpendicular distance x can be obtained by:

Where

q = emission rate per unit distance along the line (g/m-s)

Area Source Model

- Useful for distributed sources spread over an area
- e.g. Box model for an airshed over a city
- Pollutants are assumed to be uniformly mixed in the box

If we assume the pollutant is conservative, then

$$\begin{pmatrix}
\text{Rate of change of} \\
\text{pollution in the box}
\end{pmatrix} = \begin{pmatrix}
\text{Rate of pollution} \\
\text{entering the box}
\end{pmatrix} - \begin{pmatrix}
\text{Rate of pollution} \\
\text{leaving the box}
\end{pmatrix}$$

Area Source Model

• If we assume the pollutant is conservative, then

$$LWH\frac{dC}{dt} = q_sLW + WHuC_{in} - WHuC$$

```
where

C = \text{pollutant concentration in the airshed, mg/m}^3

C_{\text{in}} = \text{concentration in the incoming air, mg/m}^3

q_s = \text{emission rate per unit of area, mg/s-m}^2

H = \text{mixing height, m}

L = \text{length of airshed, m}

W = \text{width of airshed, m}

u = \text{average windspeed against one edge of the box, m/s}
```

• Hence the steady state solution of the above equation, by simply setting dC/dt=0, is:

$$C(\infty) = \frac{q_s L}{uH} + C_{\rm in}$$

Area Source Model

$$LWH\frac{dC}{dt} = q_sLW + WHuC_{in} - WHuC$$

 The time-dependent change in the pollutant concentration in the city can be obtained by following:

$$C(t) = \left(\frac{q_s L}{uH} + C_{\text{in}}\right)(1 - e^{-ut/L}) + C(0)e^{-ut/L}$$

where, C(0) is the concentration in the airshed at t=0

 If we assume incoming wind blow relatively no pollution in the box, C(0)=0 then:

$$C(t) = \frac{q_s L}{uH} (1 - e^{-ut/L})$$

Reminder!!!

Quiz next week

Syllabus: All covered until Mon, 14.08

ES 200/ 17.Aug.2017

Home work !!!

- Do you have an air quality monitoring station in your city?
 If not, in the nearest city? What is the current status of air quality there?
- In the last 5 years or decade has the air quality improved or worsened? Why?
- Please do this **by Thu, 17.08**; we will discuss in the class!

Please spend 3 mins. and fill the google form that was shared over moodle; discussion will be held on Mon, 21.08!

ES 200/ 17.Aug.2017 35