Structured Matrix Completion with Applications to Genomic Data Integration

Aaron Jones

Duke University BIOSTAT 900

October 14, 2016

Reference

Tianxi Cai, T. Tony Cai & Anru Zhang (2016) Structured Matrix Completion with Applications to Genomic Data Integration, Journal of the American Statistical Association, 111:514, 621-633, DOI: 10.1080/01621459.2015.1021005

Overview

- Introduction
 - Genomic Data Integration
 - Structured Matrix Completion
- 2 Methodology
 - Exact Low-Rank Matrix
 - Approximate Low-Rank Matrix
 - Known "Rank" r
 - Unknown "Rank" r
- Theoretical Analysis
- Simulation
- 6 Application

Genomic Data Integration

- In genomics, often analyze data drawn from multiple studies/sources
 - E.g., combine separate studies conducted using different architecture
 - E.g., funding for NGS in a subset of patients, but SNP chip for the rest
 - E.g., may have other data for some patients (miRNA, methylation)
- Complete case analysis reduces power, and may bias associations
- The observed data are full rows (patients) and columns (loci) of the data matrix A; the missing data form a rectangular submatrix of A
 - Take advantage of the missingness structure to impute missing values

Structured Matrix Completion

• For $p_1 \times p_2$ matrix A, observe $m_1 < p_1$ rows and $m_2 < p_2$ columns:

$$A = \begin{bmatrix} m_2 & p_2 - m_2 \\ A_{11} & A_{12} \\ A_{21} & (A_{22}) \end{bmatrix} \quad \begin{array}{c} m_1 \\ p_1 - m_1 \end{array}$$

- Goal: fill in the missing block A_{22} , given fully observed A_{11} , A_{12} , A_{21}
- \bullet Problem: A_{22} could be anything, without some assumptions about A
- Solution: Assume A is approximately low-rank sensible in genomics

Exact Low-Rank Matrix

Proposition 1: Suppose A is of rank r, the SVD of A_{11} is $A_{11} = U\Sigma V^T$, where $U \in \mathbb{R}^{p_1 \times r}, \Sigma \in \mathbb{R}^{r \times r}$, and $V \in \mathbb{R}^{p_2 \times r}$. If

$$\operatorname{rank}([\begin{array}{cc} A_{11} & A_{12} \end{array}]) = \operatorname{rank}\left(\left[\begin{array}{c} A_{11} \\ A_{21} \end{array}\right]\right) = \operatorname{rank}(A) = r,$$

then $rank(A_{11}) = r$ and A_{22} is exactly given by

$$A_{22} = A_{21}(A_{11})^{\dagger}A_{12} = A_{21}V(\Sigma)^{-1}U^{T}A_{12}.$$

• Simple, analytic solution, but $(A_{11})^{\dagger}$ is not continuous in A_{11} , so this method does not give approximate A_{22} for approximately low-rank A

Approximate Low-Rank Matrix

- Definition: A is approximately rank r if there is a significant gap between the rth and (r+1)th singular values, $\sigma_r(A)$ and $\sigma_{r+1}(A)$, and the tail $\left(\sum_{k\geq r+1}\sigma_k^q(A)\right)^{1/q}$ is small.
- Let $A = U\Sigma V$ be the SVD of an approximately low-rank matrix A and partition $U \in \mathbb{R}^{p_1 \times p_1}, \Sigma \in \mathbb{R}^{p_1 \times p_2}, V \in \mathbb{R}^{p_2 \times p_2}$ into blocks as

$$U = \begin{bmatrix} r & p_1 - r \\ U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \quad m_1 \\ p_1 - m_1$$

$$\Sigma = \begin{bmatrix} \Sigma_1 & 0 \\ 0 & \Sigma_2 \end{bmatrix} \quad r \\ p_1 - r$$

$$V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} \quad m_2 \\ p_2 - m_2$$

Approximate Low-Rank Matrix

$$\begin{split} A &= U \Sigma V^{T} \\ &= \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} \Sigma_{1} & 0 \\ 0 & \Sigma_{2} \end{bmatrix} \begin{bmatrix} V_{11}^{T} & V_{21}^{T} \\ V_{12}^{T} & V_{22}^{T} \end{bmatrix} \\ &= \begin{bmatrix} U_{11} \\ U_{21} \end{bmatrix} \Sigma_{1} \begin{bmatrix} V_{11}^{T} & V_{21}^{T} \end{bmatrix} + \begin{bmatrix} U_{12} \\ U_{22} \end{bmatrix} \Sigma_{2} \begin{bmatrix} V_{12}^{T} & V_{22}^{T} \end{bmatrix} \\ &= \begin{bmatrix} U_{11} \Sigma_{1} V_{11}^{T} & U_{11} \Sigma_{1} V_{21}^{T} \\ U_{21} \Sigma_{1} V_{11}^{T} & U_{21} \Sigma_{1} V_{21}^{T} \end{bmatrix} + \begin{bmatrix} U_{12} \Sigma_{2} V_{12}^{T} & U_{12} \Sigma_{2} V_{22}^{T} \\ U_{22} \Sigma_{2} V_{12}^{T} & U_{22} \Sigma_{2} V_{22}^{T} \end{bmatrix} \\ &= A_{\max(r)} + A_{-\max(r)}, \end{split}$$

where $A_{\max(r)}$ is a rank-r approximation to A with the largest r singular values, and $A_{-\max(r)}$ has small singular values. Then by Proposition 1:

$$U_{21}\Sigma_1 V_{21}^T = (U_{21}\Sigma_1 V_{11}^T)(U_{11}\Sigma_1 V_{11}^T)^{-1}(U_{11}\Sigma_1 V_{21}^T)$$

Known "Rank" r

- ullet Define the notation $M_{ullet k}:=\left[egin{array}{c} M_{1k} \ M_{2k} \end{array}
 ight]$ and $M_{kullet}:=\left[egin{array}{c} M_{k1} & M_{k2} \end{array}
 ight]$
- When r is known, we can estimate A_{22} by estimating $U_{\bullet 1}$ and $V_{\bullet 1}$ using the r principal components of $A_{\bullet 1}$ and $A_{1\bullet}$ as described below:

Algorithm 1 Structured Matrix Completion with a Known "Rank" r

- **1** Input: $A_{11} \in \mathbb{R}^{m_1 \times m_2}, A_{12} \in \mathbb{R}^{(p_1 m_1) \times m_2}, A_{21} \in \mathbb{R}^{m_1 \times (p_2 m_2)}$
- ② Calculate the SVD of $A_{\bullet 1}=U^{(1)}\Sigma^{(1)}V^{(1)T}, A_{1 \bullet}=U^{(2)}\Sigma^{(2)}V^{(2)T}$
- ullet Estimate the column space of U_{11} and V_{11} by $\hat{M}=U_{[,1:r]}^{(2)}, \hat{N}=V_{[,1:r]}^{(1)}$
- Estimate A_{22} as $\hat{A}_{22} = A_{21} \hat{N} (\hat{M}^T A_{11} \hat{N})^{-1} \hat{M}^T A_{12}$
 - ullet Problem: Algorithm 1 assumes r is known, but r is generally unknown
- Solution: First estimate r with some \hat{r} , then run Algorithm 1 using \hat{r}

Unknown "Rank" r

The algorithm to recover A_{22} when r is unknown has three steps:

1 Rotate $A_{\bullet 1}$ and $A_{1 \bullet}$ by SVD to move significant factors to the front:

$$A_{\bullet 1} = U^{(1)} \Sigma^{(1)} V^{(1)T}, A_{1 \bullet} = U^{(2)} \Sigma^{(2)} V^{(2)T}$$

$$\implies Z = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} = \begin{bmatrix} U^{(2)T} A_{11} V^{(1)} & U^{(2)T} A_{12} \\ A_{21} V^{(1)} & A_{22} \end{bmatrix}$$

- (a) heatmap of block-wise A
- (b) heatmap of block-wise Z after rotation

Figure 1. Illustrative example with $A \in \mathbb{R}^{30 \times 30}$, $m_1 = m_2 = 10$. (A darker block corresponds to larger magnitude.)

Unknown "Rank" r

- ② If A were exactly rank-r, the $[r+1,\ldots,m_1]$ rows and $[r+1,\ldots,m_2]$ columns of Z would be zero, but they are nonzero (yet small) due to the perturbation $A_{\max(r)}$. So, since we want $A_{\max(r)}$, the best rank-r approximation to A, ignore these rows/columns and use the first r.
 - However, r is unknown, so estimate it by the largest \hat{r} such that $Z_{11,[1:\hat{r},1:\hat{r}]}$ is nonsingular and $\sigma_1(Z_{21,[1:\hat{r},1:\hat{r}]}Z_{11,[1:\hat{r},1:\hat{r}]}^{-1}) \leq 2\sqrt{\frac{p_1}{m_1}}$.
- **3** As before, estimate A_{22} as $\hat{A}_{22} = \hat{Z}_{22} = Z_{21,[,1:\hat{r}]}Z_{11,[1:\hat{r},1:\hat{r}]}^{-1}Z_{12,[1:\hat{r},]}$

Unknown "Rank" r

Algorithm 2 Structured Matrix Completion with an Unknown "Rank" r

- Input: $A_{11} \in \mathbb{R}^{m_1 \times m_2}$, $A_{12} \in \mathbb{R}^{(p_1 m_1) \times m_2}$, $A_{21} \in \mathbb{R}^{m_1 \times (p_2 m_2)}$, thresholding level T_R (or T_C)
- ② Calculate the SVD of $A_{\bullet 1} = U^{(1)} \Sigma^{(1)} V^{(1)T}, A_{1 \bullet} = U^{(2)} \Sigma^{(2)} V^{(2)T}$
- **3** Calculate $Z_{11} = U^{(2)T}A_{11}V^{(1)}, Z_{12} = U^{(2)T}A_{12}, Z_{21} = A_{21}V^{(1)}$
- **3** Estimate the column space of U_{11} and V_{11} by $\hat{M}=U_{[,1:r]}^{(2)}, \hat{N}=V_{[,1:r]}^{(1)}$
- **5** For $s = \min(m_1, m_2), \ldots, 2, 1$:
 - Calculate $D_{R,s} = Z_{21,[,1:s]}Z_{11,[1:s,1:s]}^{-1}$ (or $D_{C,s} = Z_{11,[1:s,1:s]}^{-1}Z_{12,[1:s,]}$)
 - If $Z_{11,[1:s,1:s]}$ is not singular and $\sigma_1(D_{R,s}) \leq T_R$ (or $\sigma_1(D_{C,s}) \leq T_C$): • $\hat{r} = s$
- **o** If \hat{r} is still unassigned, then $\hat{r} = 0$
- **©** Estimate A_{22} as $\hat{A}_{22}=\hat{Z}_{22}=Z_{21,[,1:\hat{r}]}Z_{11,[1:\hat{r},1:\hat{r}]}^{-1}Z_{12,[1:\hat{r},]}$

Theoretical Analysis

- The paper presents upper and lower bounds for the estimation errors of Algorithms 1 & 2, so the optimal rate of recovery can be given for certain classes of approximately low-rank matrices
- There are also probability bounds on the estimation errors for fixed *A* and random rows/columns observed, and also for random *A*

Simulation

- Fix $p_1 = p_2 = 1000, m_1 = m_2 = 50$
- Choose singular values as $\{1, \stackrel{r-2}{\dots}, 1, g^{-1}1^{-1}, g^{-1}2^{-1}, \dots\}$
- Vary gap ratio g = 1, 2, ..., 10, rank r = 4, 12, 20

• Algorithm improves as r gets smaller and $g=rac{\sigma_r(A)}{\sigma_{r+1}(A)}$ gets larger

Simulation

- Fix $p_1 = p_2 = 1000, m_1 = m_2 = 50$
- Choose singular values as $\{j^{-\alpha}: j=1,2,\ldots,\min(p_1,p_2)\}$
- ullet Vary lpha between 0.3 and 2, and $T_R=c\sqrt{rac{p1}{m1}}$ for c between 1 and 6

- \bullet Algorithm does well if α is not too small and improves as α gets larger
- ullet The paper identifies c=2 as the recommended optimal value

Simulation

- Fix $p_1 = p_2 = 1000$
- Choose singular values as $\{j^{-\alpha}: j=1,2,\ldots,\min(p_1,p_2)\}$
- Vary α between 0.6 and 2, and $m_1 = m_2 = 50$ or 100
- Compare SMC to constrained nuclear norm minimization (NNM)

 SMC outperforms NNM in approximately low-rank matrices with rectangular missingness

Application

	m ₂ =426	p ₂ -m ₂ =799	_	
TCGA Training Set (n=230)	Gene Expression Markers	miRNA Expression Markers	_ m ₁ =230	
TCGA Test Set (n=322)	Gene Expression Markers	?		
Tothill Study (n=285)	Gene Expression Markers	?	p ₁ -m ₁ =919	
Dressman Study (n=117)	Gene Expression Markers	?	- p ₁ -m ₁ -919	
Bonome Study (n=195)	Gene Expression Markers	?		

(a) Integrate	d analysis with imputed miRNA versus single logHR			study with observed miRNA SE			<i>p</i> -Value		
	Ori.	SMC	NNM	Ori.	SMC	NNM	Ori.	SMC	NNM
G miRNA ₁ PC miRNA ₂ PC	0.067 0.012 0.023	0.143 0.019 0.018	0.168 0.013 0.005	0.041 0.009 0.014	0.034 0.006 0.009	0.028 0.012 0.014	0.104 0.218 0.092	0.000 0.001 0.039	0.283 0.725

- Imputing the missing miRNA expression levels reduces the standard errors and increases power
- Adding the imputed miRNA significantly improves the predictive ability of the model