

2024년 상반기 K-디지털 트레이닝

UML - 클래스 다이어그램

[KB] IT's Your Life

💟 UML의 클래스 표현

○ 세 부분으로 나누어진 박스로 표현

클래스 이름	
속성	
메서드	

■ 속성과 메서드는 관심에 따라 생략 가능

학생

-이름 -전공

-학번

-과목

+수강하다()

☑ 접근 제어자

접근 제어자	표시	설명
public	+	어떤 클래스의 객체에서든 접근 가능
private	-	이 클래스에서 생성된 객체들만 접근 가능
protected	#	이 클래스와 동일 패키지에 있거나 상속 관계에 있는 하위 클래스의 객 체들만 접근 가능
package	~	동일 패키지에 있는 클래스의 객체들만 접근 가능

☑ 객체 간의 관계

관계	설명
연관 관계 (association)	클래스들이 개념상 서로 연결되었음을 나타낸다. 실선이나 화살표로 표시하 며 보통은 한 클래스가 다른 클래스에서 제공하는 기능을 사용하는 상황일 때 표시한다.
일반화 관계 (generalization)	객체지향 개념에서는 상속 관계라고 한다. 한 클래스가 다른 클래스를 포함 하는 상위 개념일 때 이를 IS-A 관계라고 하며 UML에서는 일반화 관계로 모델링한다. 속이 빈 화살표를 사용해 표시한다.
집합 관계 (composition, aggregation)	클래스들 사이의 전체 또는 부분 같은 관계를 나타낸다. 집약eggregation 관계 와 합성composition 관계가 존재한다.
의존 관계 (dependency)	연관 관계와 같이 한 클래스가 다른 클래스에서 제공하는 기능을 사용할 때 를 나타낸다. 차이점은 두 클래스의 관계가 한 메서드를 실행하는 동안과 같 은, 매우 짧은 시간만 유지된다는 점이다. 점선 화살표를 사용해 표시한다.
실체화 관계 (realization)	책임들의 집합인 인터페이스와 이 책임들을 실제로 실현한 클래스들 사이의 관계를 나타낸다. 상속과 유사하게 빈 삼각형을 사용하며 머리에 있는 실선 대신 점선을 사용해 표시한다.

♡ 연관관계

- 연관된 클래스 상에 실선을 그어 표시
- 두 클래스 상이의 관계가 명확한 경우에 이름을 사용하지 않아도 됨

아담하다 Professor Student

💟 연관 관계에서의 역할

- 클래스 바로 옆 연관 관계를 나타내는 선 가까이 기술
- 역할 이름은 연관된 클래스의 객체들이 서로를 참조할 수 있는 속성의 이름으로 활용

🗸 다중성 표현

다중성 표기	의미
1	엄밀하게 1
*	0 또는 그 이상
0*	0 또는 그 이상
1*	1 이상
01	0 또는 1
25	2 또는 3 또는 4 또는 5
1, 2, 6	1 또는 2 또는 6
1, 35	1 또는 3 또는 4 또는 5

Professor	1	상담하다	1*	Student
	-advisor	-stu	dent	Student

🗸 양방향, 단방향 연관 관계

- 양방향 연관 관계
 - 두 클래스를 연경한 선에 화살표를 사용하지 않음
 - 서로의 존재를 인지
- 단방향 연관 관계
 - 한쪽으로만 방향성이 있는 관계
 - 한 쪽은 알지만 다른 쪽은 상대방의 존재를 모른다는 의미

- 💟 연관 클래스
 - 연관 관계에 추가할 속성이나 행위가 있을 때 사용

🗸 연관 클래스

- 사건 이력(event history) 표현
- 대출 이력

💟 의존 관계

- 한 클래스에서 다른 클래스를 사용하는 경우
 - 클래스의 속성에서 참조
 - 연산의 인자로 참조
 - 메소드의 지역 개체로 참조

🗸 의존 관계

- 연산의 인자나 메소드의 지역 개체로 참조
 - 찰나적 관계

```
public class Car {
    ...

public void fillGas(GasPump p) {
    p.getGas(amount);
    ...
}
```


💟 집합 관계

- 집약(aggregation): 약결합 loosely-coupled
 - 전체를 나타내는 객체와 부분을 나타내는 개체의 라이프 타임이 독립적
 - 부분을나타내는 객체를 다른 객체와 공유 가능
 - 빈 마름보로 표시

o 합성(composition): 강결합 tightly-coupled

- 전체를 나타내는 객체에 부분을 나타내는 개체의 라이프 타임이 종속적
- 전체 객체가 사라지면 부분 객체도 사라짐
- 채워진 마름보로 표시

🕜 일반화

- 일반화는 상속
- o 일반화는 "is a kind of"관계
 - 세탁기 is a kind of 가전 제품
 - TV is a kind of 가전 제품
 - 식기세척기 is a kind of 가전 제품

○ 인터페이스와 실체화 관계

- 인터페이스란 책임이다.
 - 리모콘의 책임은 가전 기기를 켜거나 끄거나 볼륨을 높이거나 낮춘다
- 어떤 공통되는 능력이 있는 것들을 대표하는 관점

