Initialization of Constrained LASSO path

안승환 2019년 9월

¹Department of Statistics University of Seoul

Problem

Constrained lasso problem with only equality constraints:

minimize
$$L(\beta) + \rho ||\beta||_1$$
 subject to $\mathbf{A}\beta = 0$ (1)

(We could think of $L(\beta)$ as $\frac{1}{2}||\mathbf{y} - \mathbf{X}\beta||_2^2$.) Since we perform path following in the decreasing direction, an initializing value for the parameter ρ is needed.

$$(\mathbf{y} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{A} \in \mathbb{R}^{m \times p})$$

Problem

As $\rho \to \infty$, the solution ${\boldsymbol{\beta}}$ to the original problem is given by

minimize
$$||\boldsymbol{\beta}||_1$$
 subject to $\mathbf{A}\boldsymbol{\beta}=0$

And obviously, the solution $\hat{\beta}$ for the above problem is 0_p .

KKT condition

The stationarity condition of KKT conditions is as follows:

$$\nabla L(\beta) + \rho sign(\beta) + \mathbf{A}^T \lambda = 0_p$$

, where $\lambda \in \mathbb{R}^m$ is lagrangian multiplier and $sign(\beta)$ is the subgradient of $||\beta||_1$. And $|sign(\beta)| \leq 1_p$, we can transform above condition as follows:

$$|\nabla L(\boldsymbol{\beta}) + \mathbf{A}^T \lambda| \le \rho \mathbf{1}_{\boldsymbol{\rho}}$$

4

Lemma

For fixed ρ , β , let $\mathcal{E}_{\rho}(\beta) = \{\lambda \in \mathbb{R}^m : |\nabla L(\beta) + \mathbf{A}^T \lambda| \leq \rho \mathbf{1}_p\}$, and let $\rho_{max} = \inf\{\rho \in \mathbb{R} : \mathcal{E}_{\rho}(\beta) \neq \varnothing\}$. Then for $\rho < \rho_{max}$, $\beta = \mathbf{0}_p$ is not solution of (1).

Corollary

The minimizer of (1) for a ρ is $\beta=0_p$ if and only if $\rho\geq\rho_{max}$, where ρ_{max} is the optimal solution of (3). And also, we can get the solution λ_{max} corresponding to ρ_{max} by (3).

minimize
$$\rho$$
 subject to $z = \mathbf{A}^T \lambda$
$$z \le -X^T y + \rho 1$$

$$z \ge -X^T y - \rho 1$$

$$\rho \ge 0$$
 (3)

Active Set

So, we can initialize active set A as follows:

$$\mathcal{A} = \{j : |\nabla L(\beta)_j + a_j^T \lambda_{max}| = \rho_{max}\}$$

where $\mathbf{A} = [a_1, \cdots a_p]$.

Because If we decrease ρ very little as $\rho < \rho_{max}$, $\hat{\beta}_j = 0$ cannot be the coefficient of optimal solution (1) for predictor x_j . So, predictor x_j must be activated as ρ decreasing.

7

Uniqueness of λ

 λ_{\max} is the unique solution to (3) if the solution for $\mathbf{A}_{\mathcal{A}}^T \tilde{\lambda} = 0$ is only $\tilde{\lambda} = 0$. ($\Leftrightarrow \mathbf{A}_{\mathcal{A}}^T$ is full column).

Because we can formulate an equation for predictors which are set on boundaries of the stationarity condition(which compose active set A) as follows:

$$|
abla L(eta)_{\mathcal{A}} + \mathbf{A}_{\mathcal{A}}^T (\lambda_{max} + \tilde{\lambda})| =
ho_{max} 1_{\mathcal{A}}$$

Q) What happens if do NOT activate all the violated predictors (A)?

Let $L(\beta) = \frac{1}{2}||\mathbf{y} - \mathbf{X}\beta||_2^2$. Given ρ_{max} , λ_{max} , we want $\mathcal{B}(\subseteq \mathcal{A})$, $\Delta \rho$, $\frac{d}{d\rho}\beta_{\mathcal{B}}$, and $\frac{d}{d\rho}\lambda_{\mathcal{B}}$ such that satisfy following conditions(stationarity condition from KKT conditions, and the equality constraint):

$$\begin{split} -\mathbf{X}_{:\mathcal{B}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}})) & + \\ (\rho_{max} - \Delta \rho) sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}}) + \mathbf{A}_{:\mathcal{B}}^{T}(\lambda_{max} - \Delta \rho \frac{d}{d\rho} \lambda) & = & 0 \\ |\mathbf{X}_{:\mathcal{B}^{C}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}})) - \mathbf{A}_{:\mathcal{B}^{C}}^{T}(\lambda_{max} - \Delta \rho \frac{d}{d\rho} \lambda)| & \leq & (\rho_{max} - \Delta \rho) \mathbf{1}_{|\mathcal{B}^{C}|} \\ \mathbf{A}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}}) & = & 0 \end{split}$$

9

 ρ is in decreasing direction, so $\Delta \rho > 0$. And the moving direction of β is must be maintained. So,

$$\mathit{sign}(eta_{\mathcal{B}}^{(0)} - \Delta
ho rac{d}{d
ho} eta_{\mathcal{B}}) = \mathit{sign}(eta^{(0)})$$

. From corollary, we have following:

$$\begin{aligned} -\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \rho_{\mathsf{max}}\mathsf{sign}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}}(\lambda_{\mathsf{max}}) &= 0 \\ |\mathbf{X}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) - \mathbf{A}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\lambda_{\mathsf{max}}| &\leq \rho_{\mathsf{max}}\mathbf{1}_{|\mathcal{B}^{\mathcal{C}}|} \\ \mathbf{A}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)} &= 0 \end{aligned}$$

Finally, we get

$$\begin{split} \mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \beta_{\mathcal{B}} - \Delta \rho sign(\beta_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{T} \Delta \rho \frac{d}{d\rho} \lambda &= 0 \\ \mathbf{A}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \beta_{\mathcal{B}} &= 0 \\ |\mathbf{X}_{:\mathcal{B}^{C}}^{T} \mathbf{X}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \beta_{\mathcal{B}} + \mathbf{A}_{:\mathcal{B}^{C}}^{T} \Delta \rho \frac{d}{d\rho} \lambda| &\leq \Delta \rho \mathbf{1}_{|\mathcal{B}^{C}|} \end{split}$$

Let's focus on first two equations:

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \frac{d}{d\rho} \beta_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ \mathbf{0} \end{bmatrix}$$

And,

$$\begin{bmatrix} \frac{d}{d\rho} \beta_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}^{-1} \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$

(Assumption 1) $\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathcal{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathcal{T}} \\ \mathbf{A}_{:\mathcal{B}} & \mathbf{0} \end{bmatrix}$ is invertible if rows of $\mathbf{A}_{:\mathcal{B}}$ are linearly independent.

 $\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}}$ is invertible.

$$\begin{bmatrix} (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}Z^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} & (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}Z^{-1} \\ Z^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} & -Z^{-1} \end{bmatrix} \begin{bmatrix} sign(\beta_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$

where $Z = \mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ and here, inverse of Z means not only its inverse but also its generalized inverse.

Therefore,

$$\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} = \left((\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}Z^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} \right) \operatorname{sign}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)})$$

If $\frac{d}{d\rho}\beta_{\mathcal{B}}\approx 0$, for new active set \mathcal{B} , there is no direction to move $\beta_{\mathcal{B}}$ that satisfies KKT conditions.

If not, we check $\frac{d}{d\rho}\beta_{\mathcal{B}}$ and $\frac{d}{d\rho}\lambda$ for following condition:

$$|\mathbf{X}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}}\frac{d}{d\rho}\beta_{\mathcal{B}}+\mathbf{A}_{:\mathcal{B}^{\mathcal{C}}}^{\mathsf{T}}\frac{d}{d\rho}\lambda|\leq 1_{|\mathcal{B}^{\mathcal{C}}|}$$

(And it is easily shown that for all \mathcal{B} , above inequality is satisfied).

(Trivial: If $A_{:B}$ is invertible,

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & \mathbf{A}_{:\mathcal{B}}^{-1} \\ (\mathbf{A}_{:\mathcal{B}}^{\mathsf{T}})^{-1} & -(\mathbf{A}_{:\mathcal{B}}^{\mathsf{T}})^{-1} \mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}} \mathbf{A}_{:\mathcal{B}}^{-1} \end{bmatrix}.$$

So, $\frac{d}{d\rho}oldsymbol{eta}_{\mathcal{B}}=0$ and there is no direction to move.)

From

$$\frac{d}{d\rho}\beta_{\mathcal{B}} = \left((\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{\mathsf{T}}Z^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}})^{-1} \right) \operatorname{sign}(\beta_{\mathcal{B}}^{(0)})$$

$$= \left((\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}}\mathbf{X}_{:\mathcal{B}})^{-1}(\mathbf{I} - W) \right) \operatorname{sign}(\beta_{\mathcal{B}}^{(0)})$$

where

$$\mathbf{W} = \mathbf{A}_{:\mathcal{B}}^{T} Z^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1} = \mathbf{A}_{:\mathcal{B}}^{T} (\mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^{T})^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1}$$

. Also, let m is the number of constraints.

Where
$$\mathcal{B} = \mathcal{A}$$
 ($|\mathcal{B}| = m + 1$)

• $\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ is invertible. So, $\mathbf{A}_{:\mathcal{B}}$ is right-invertible, and $\mathbf{A}_{:\mathcal{B}}^T$ is left-invertible. And let $\mathbf{A}_{:\mathcal{B}}\mathbf{A}_{:\mathcal{B}}^{-1} = \mathbf{I}$, and $\mathbf{A}_{:\mathcal{B}}^{-T}\mathbf{A}_{:\mathcal{B}}^T = \mathbf{I}$ with their right and left inverses.

$$\mathbf{Z} = \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{A}_{:\mathcal{B}}^{-\mathsf{T}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}}) \mathbf{A}_{:\mathcal{B}}^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}})^{-1}$$

$$\neq \mathbf{I}$$

The order of left and right inverse matrix product is changed, so $\frac{d}{d\rho}\beta_{\mathcal{B}} \neq 0$.

Uniqueness of ${\cal A}$

Where $|\mathcal{B}| = m$

• If $|\mathcal{B}| = m$, $\mathbf{A}_{:\mathcal{B}}$ is invertible (by Assumption 1)

$$\mathbf{Z} = \mathbf{A}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{A}_{:\mathcal{B}}^{-\mathsf{T}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}}) \mathbf{A}_{:\mathcal{B}}^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{\mathsf{T}} \mathbf{X}_{:\mathcal{B}})^{-1}$$

$$= \mathbf{I}$$

Therefore, $\frac{d}{d\rho}\beta_{\mathcal{B}}=0$.

Where $|\mathcal{B}| < m$

• If $\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ is NOT invertible (See Appendix 1) So, we use generalized inverse.

(**Assumption 2**: columns of $A_{:B}$ are linearly independent.)

$$\mathbf{Z} = \mathbf{A}_{:\mathcal{B}}^{T} (\mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^{T})^{-} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1}$$
$$= \mathbf{I}$$

where (**A**) $^-$ means generalized inverse of matrix **A**. Therefore, $\frac{d}{d\rho}\beta_{\mathcal{B}}=0.$

Appendix 1

1. For $H \in \mathbb{R}^{m \times n}$, HH^T is not invertible, where m > n

proof)

The columns of H^T are linearly dependent. So, there exists $x \neq 0$ such that $H^Tx = 0$. $HH^Tx = 0$ and this means 0 is an eigenvalue of HH^T . Therefore, $|HH^T| = 0$ and HH^T is nonsingular. (The determinant of matrix is the product of eigenvalues of the matrix).

Appendix 2

2. Why
$$|A| = m + 1$$
?

For setting initial active set, we solve following problem and find predictors which set on the boundary of inequalities. And these predictors are chose for initial active set.

minimize
$$\rho$$
 subject to $z = \mathbf{A}^T \lambda$
$$z \le -X^T y + \rho 1$$

$$z \ge -X^T y - \rho 1$$

$$\rho \ge 0$$
 (4)

Appendix 2

And we can change problem (4) to the problem having same purpose (get initial active set) as following:

Find λ , and minimum ρ such that

$$\begin{bmatrix} \mathbf{A}_{\mathcal{A}}^{\mathsf{T}} & \pm 1_{|\mathcal{A}|} \end{bmatrix} \begin{bmatrix} \lambda \\ \rho \end{bmatrix} = \begin{bmatrix} -\mathbf{X}_{\mathcal{A}}^{\mathsf{T}} y \end{bmatrix}$$

And predictors of $\mathcal{A}^{\mathcal{C}}$ are set between inequalities. The unknown variable $\begin{bmatrix} \lambda \\ \rho \end{bmatrix}$ is m+1 dimension. So, when $|\mathcal{A}|=m+1$, this linear programming has unique solution(?).

(Application of this property: If you want to activate only q predictors at the initialization step, then you should set q-1 constraints (it means $A \in \mathbb{R}^{q-1 \times p}$).