ACCQ 205 - Courbes algébriques

1 Corps et extensions de corps

Anneaux, algèbres, corps, idéaux premiers et maximaux et corps des fractions

On considère les anneaux commutatifs sauf précision contraire.

Def. Soit k un anneau. Une k-algèbre (commutative) est un anneau A muni d'un morphisme d'anneaux $\varphi_A \colon k \to A$, appelé **morphisme structural** de l'algèbre, dont l'image est contenue dans le centre de A.

Formellement une k-algèbre est le couple (A, φ_A) mais on le réduit souvent à la donnée de φ_A . De façon équivalente une k-algèbre est un k-module qui est muni d'une multiplication k-bilinéaire qui en fait un anneau.

Def. Un **morphisme de** k-**algèbres** est un morphisme d'anneaux $\psi: A \to B$ tel que $\varphi_B = \psi \circ \varphi_A$. Ce sont aussi les applications k linéaires qui préservent la multiplication.

Rem. Une Z-algèbre est exactement la même chose qu'un anneau.

En pratique k est généralement un corps et A est donc un k-ev muni d'une multiplication k-bilinéaire qui en fait un anneau.

Def. Un élément a d'un anneau A est dit **régulier** si $x \mapsto ax$ est injectif, i.e. $ax = 0 \implies x = 0$ (il est inversible si bijectivité de l'application). A est dit **intègre** si tous les éléments sauf 0 sont réguliers, i.e. $0 \ne 1$ et $\forall a, b \in A \setminus \{0\}, ab = 0 \implies a = 0$ ou b = 0. Par convention l'anneau nul n'est pas intègre.

Def. Un idéal $\mathfrak p$ d'un anneau A est dit **premier** lorsque l'anneau quotient $A/\mathfrak p$ est intègre, i.e. $\mathfrak p \neq A$ et $\forall a,b \in A, ab \in \mathfrak p \implies a \in \mathfrak p$ ou $b \in \mathfrak p$.

Prop. Dans un anneau A, l'ensemble A^{\times} des inversibles est un groupe, aussi appelé groupe des **unités de** A.

Def. Un **corps** est un anneau k dans lequel $k^* = k \setminus \{0\}$. C'est équivalent à dire que k a deux idéaux qui sont $\{0\}$ et lui-même. C'est en particulier un anneau intègre. Par convention l'anneau nul n'est pas un corps.

Def. Un idéal m d'un anneau A est dit **maximal** si A/m est un corps. De façon équivalente $m \ne A$ et m est maximal pour l'inclusion parmi les idéaux différents de A.

Prop. Un idéal maximal est premier.

Ex. Dans un anneau factoriel A, un idéal de la forme (f) avec $f \in A$ est premier ssi f est nul ou irréductible.

Lem (Principe maximal de **Hausdorff**). Soit $\mathcal{F} \subset \mathcal{P}(A)$ non vide et tel que, pour tout partie $\mathcal{I} \subset \mathcal{F}$ non vide totalement ordonnée par l'inclusion, $\exists F \in \mathcal{F}, \bigcup_{i \in \mathcal{I}} I \subset F$. Alors il existe $M \in \mathcal{F}$ maximal pour l'inclusion.

Prop. Dans un anneau A, tout idéal strict (autre que A) est inclus dans un idéal maximal.

Def. Un élément x d'un anneau A est dit **nilpotent** lorsque $\exists n \in \mathbb{N}, x^n = 0$. Si 0 est le seul élément nilpotent, A est dit réduit.

Prop. Dans un anneau, l'ensemble des éléments nilpotents est un idéal appelé **nilradical** de l'anneau. C'est aussi l'intersection des idéaux premiers de l'anneaux. Le quotient de l'anneau par son nilradical est réduit.

Def. Soit *A* un anneau intègre. On définit le **corps des fractions** de *A*, $Frac(A) = \left\{\frac{a}{q} \mid a \in A, q \in A \setminus \{0\}\right\}$ en convenant d'identifier $\frac{a}{q}$ avec $\frac{a'}{q'}$ lorsque aq' = a'q.

Prop. Soit A un anneau intègre, K un corps et $\varphi: A \to K$ un morphisme d'anneau injectif. Alors il existe un unique morphisme de corps $\hat{\varphi}$: Frac $(A) \to K$ qui prolonge φ et il est donné par $\hat{\varphi}\left(\frac{a}{q}\right) = \frac{\varphi(a)}{\varphi(q)}$.

Def. Le corps des fractions de l'anneau des polynômes $k[t_1,...,t_n]$ est appelé corps des fractions rationnelles et noté $k(t_1,...,t_n)$.

Prop. Soit *k* un corps et *K* une *k*-algèbre de dimension finie intègre. Alors *K* est un corps.

Lem (de **Gauß**). Soit *A* un anneau factoriel et *K* son corps des fractions. Alors :

- (i) A[t] est factoriel,
- (ii) $f \in A[t]$ est irréductible ssi f est constant et irréductible dans A, ou bien f est primitif, i.e. irréductible dans K[t] et le pgcd dans A de ses coefficients vaut 1.

Algèbres engendrée, extensions de corps

Def. Soit A une k-algèbre et $(x_i)_{i \in I}$ famille de A. La k-algèbre engendrée $k[x_i]_{i \in I}$ dans A par les x_i est l'intersection de toutes les sous-k-algèbres de A contenant les x_i . C'est la plus petite sous-k-algèbre contenant les x_i . Elle est dite **de type fini** si I est fini.

On peut aussi décrire $k[x_i]_{i \in I}$ comme l'ensemble de tous les éléments de A qui peuvent être obtenus à partir de 1 et des x_i par les opérations \times , \cdot et +.

Def. Une **extension de corps** est un morphisme d'anneaux $k \to K$ entre corps (K est une k-algèbre qui est un corps). On note $k \subseteq K$ ou K/k et l'on dit que k est un **sous-corps** de K.

Def. Soit $k \subseteq K$ une extension de corps et $(x_i)_{i \in I}$ une famille de K. La **sous-extension engendrée** (dans K) par les x_i , notée $k(x_i)_{i \in I}$, est l'intersection de tous les sous-corps de K contenant k et les x_i . C'est le plus petit corps intermédiaire contenant les x_i . Elle est dite **de type fini** si I est fini.

Ce sont les valeurs des fractions rationnelles à coefficients dans k évaluées en des x_i .

Prop. Une sous-extension d'une extension de corps de type fini est de type fini. Mais une sous-algèbre d'une algèbre de type fini n'est pas, en général, de type fini!

Extension algébrique et degré

Def. Soit $k \subseteq K$ est une extension et $x \in K$. L'extension $k \subseteq k(x)$ est dite **monogène**.

Avec ce x, on définit $\varphi \colon egin{array}{ccc} k[t] & \to & K \\ P & \mapsto & P(x) \end{array}$ le morphisme d'évaluation, le seul à envoyer l'indéterminée t sur

x. Alors $Ker(\varphi)$ est un idéal de k[t] et l'on est dans l'un des deux cas suivants :

- φ est injectif, x est **transcendant** sur k, φ se prolonge de manière unique en une extension de corps $k(t) \to K$, et l'image de k(t) (corps des fractions rationnelles) est k(x) (extension).
- ou Ker (φ) est engendré par $\mu_x \in k[t]$ unitaire, appelé **polynôme minimal** de x et x est dit **algébrique**. Alors $\varphi(k[t])$ s'identifie à la k-algèbre $k[t]/(\mu_x)$ de dimension $\deg(\mu_x)$, appelé **degré** de x.

Rem. Les algébriques de degré 1 sur *k* sont exactement les éléments de *k*.

Rem. Si $k \subseteq k' \subseteq K$, le polynôme minimal d'un $x \in K$ sur k' divise celui sur k.

Def. Soit $\mu \in k[t]$ unitaire irréductible. Le **corps de rupture** de μ sur k est $k[t]/(\mu)$.

Def. Une extension de corps $k \subseteq K$ est dite **algébrique** (« au-dessus » de k, ou « sur » k) lorsque chaque élément de K est algébrique sur k.

Def. Un corps k est **algébriquement clos** si sa seule extension algébrique est lui-même. Cela revient à dire que les seuls polynômes unitaires irréductibles dans k[t] sont les t-a.

Def. Soit $k \subseteq K$ une extension de corps. Considérant K comme un k-ev, sa dimension (finie ou infinie) est notée [K:k] et appelée **degré** de l'extension. Une extension de degré fini est dite **finie**.

Prop. L'extension monogène $k \subseteq k(x)$ est finie si et seulement si x est algébrique sur k, et dans ce cas $k(x) \simeq k[t]/(\mu_x)$ et $[k(x):k] = \deg(\mu_x) = \deg(x)$.

Prop. Soit $k \subseteq K \subseteq L$ deux extensions imbriquées. Alors [L:k] = [K:k][L:K].

Cor. • Une extension $k \subseteq k(x_1,...,x_n)$, $n \in \mathbb{N}$ avec $x_1,...,x_n$ algébriques est finie et a une base comme k-ev formée de monômes en les $x_1,...,x_n$ (i.e. de la forme $x_1^{r_1} \cdots x_n^{r_n}$).

- Une extension est finie si et seulement si elle est à la fois algébrique et de type fini.
- Une extension de corps engendrée par une famille quelconque d'éléments algébriques est algébrique. Donc les sommes, différences, produits et inverses de quantités algébriques sur *k* le sont aussi.
- Si $k \subseteq K$ et $K \subseteq L$ sont algébriques alors $k \subseteq L$ l'est.

Def. Soit $k \subseteq K$ une extension de corps. Le corps des éléments de K algébriques sur k est appelé **fermeture** algébrique de k dans K. Si c'est précisément k, on dit que k est algébriquement fermé dans K.

Prop. Un corps algébriquement clos est algébriquement fermé dans toute extension (mais pas l'inverse en général).

Rem. Soit K algébrique au-dessus de k et t_1, \ldots, t_n des indéterminées. Alors $K(t_1, \ldots, t_n)$ est algébrique sur $k(t_1, \ldots, t_n)$.

Extensions linéairement disjointes

Def. Soit $k \subseteq K$ et $k \subseteq L$ deux extensions contenues dans une même troisième M. On dit qu'elles sont **linéairement disjointes** lorsque toute famille d'éléments de K linéairement indépendante sur K est encore linéairement indépendantes sur L en tant que famille d'éléments de M.

Rem. Cette condition est symétrique et l'on a $K \cap L = k$. On appelle **composé** de K et L le sous-corps de M engendré par K et $L: K.L = k(K \cup L) = K(L) = L(K)$.

Prop. Soit $k \subseteq K$ et $k \subseteq L$ deux extensions contenues dans une troisième M et (v_j) une base de K comme k-ev. Alors K et L sont linéairement disjoints si et seulement si (v_i) est encore linéairement indépendante sur L quand on la voit comme une famille d'éléments de M.

Prop. Soit $k \subseteq K$ $k \subseteq L$ deux extensions, l'une algébrique, contenues dans M. Alors K.L est le sous-k-ev $\text{Vect}(\{xy, x \in K, y \in L\})$ de M et toute base de K sur k est encore une base de K.L sur L.

Cor. On a [K.L:L] = [K:k] et $[K.L:k] = [K:k] \cdot [L:k]$.

Prop. Soit $k \subseteq K$ une extension de corps et t_1, \ldots, t_n des indéterminées. Alors les extensions $k \subseteq K$ et $k \subseteq k(t_1, \ldots, t_n)$ sont linéairement disjointes dans $K(t_1, \ldots, t_n)$. Si de plus K est algébrique sur k, alors toute base de K comme k-ev est une base de $K(t_1, \ldots, t_n)$ comme $k(t_1, \ldots, t_n)$ -ev.

Bases et degré de transcendance

Def. Soit $k \subseteq K$ une extension de corps. Une famille finie $x_1, \ldots, x_n \in K$ est dite **algébriquement indépendante** sur k lorsque le seul polynôme $P \in k[t_1, \ldots, t_n]$ tel que $P(x_1, \ldots, x_n) = 0$ est le polynôme nul. En particulier, chacun des x_i est transcendant sur k, et un unique $x \in K$ est algébriquement indépendant sur k si et seulement s'il est transcendant sur k. Une famille infinie est algébriquement indépendante si toute sous-famille finie l'est.

Def. Base de transcendance : famille $(x_i)_{i \in I}$ de K algébriquement indépendante sur k telle que K est algébrique au-dessus de l'extension $k(x_i)_{i \in I}$.

Rem. Des indéterminées $t_1, ..., t_n$ sont algébriquement indépendantes et si $x_1, ..., x_n$ sont algébriquement indépendants alors $k(x_1, ..., x_n)$ s'identifie à $k(t_1, ..., t_n)$ et l'extension $k \subseteq k(x_1, ..., x_n)$ est dite **transcendante pure**.

Prop. Soit $k \subseteq K$ une extension de corps. On a :

- Toute famille de *K* algébriquement indépendante sur *k* se complète en une base de transcendance de *K* sur *k*.
- De toute famille qui engendre *K* en tant qu'extension de corps de *k*, ou même qui engendre un corps intermédiaire *E* au-dessus duquel *K* est algébrique, on peut extraire une base de transcendance.
- (lemme d'échange) Soit $z_1,...,z_n$ une base de transcendance finie de K sur k et $t \in K$ tel que $z_1,...,z_l,t$ soit algébriquement indépendants sur k pour un certain $l \ge 0$. Alors $\exists j \in [[l+1;n]]$ tel qu'en remplaçant z_j par t dans $z_1,...,z_n$ on obtienne encore une base de transcendance.
- Deux bases de transcendance de *K* sur *k* ont toujours le même cardinal.

Def. Soit $k \subseteq K$ une extension. Le cardinal d'une base de transcendance de K sur k est le **degré de transcendance** de K sur k, noté deg. $\operatorname{tr}_k(K)$ (nul ssi l'extension est algébrique).

Prop. Soit $k \subseteq K \subseteq L$ une tour d'extensions. Alors deg. $\operatorname{tr}_k(L) = \operatorname{deg.tr}_k(K) + \operatorname{deg.tr}_K(L)$.

Prop. Soit $k \subseteq k' \subseteq K$ une tour d'extensions avec k' algébrique sur k. Alors si $(x_i)_{i \in I}$ est une famille de K algébriquement indépendants sur k, ils le sont encore sur k'. De plus, toute base de k' comme k-ev est encore une base de $k'(x_i)_{i \in I}$ sur $k(x_i)_{i \in I}$, et $[k'(x_i)_{i \in I}] = [k' : k]$.

Corps de rupture, corps de décomposition et clôture algébrique

Def. Soit K un corps et $\mu \in K[t]$ irréductible. On appelle **corps de rupture** de μ sur K une extension $K \subseteq L$ telle que μ admette une racine $x \in K$ pour laquelle L = K(x).

Prop. Soit *K* un corps et $\mu \in K[t]$ irréductible. Alors :

- (i) Il existe un corps de rupture de μ sur K, à savoir $K[t]/(\mu)$.
- (ii) Soit $K \subseteq L$ un corps de rupture de μ sur K avec L = K(x) et $K \subseteq L'$ une extension dans laquelle μ a une racine x'. Alors il existe un unique morphisme de corps $\varphi \colon L \to L'$ tel que $\varphi_{|K} = \operatorname{Id}_K$ et $\varphi(x) = x'$.
- (iii) Si, en plus de (ii), $K \subseteq L'$ est aussi un corps de rupture de μ sur K, φ est un isomorphisme.

Def. Soit K un corps et $f \in K[t]$. On appelle **corps de décomposition** de f sur K une extension $K \subseteq L$ telle que f soit scindé sur L. Pour une famille (f_i) de polynômes, il s'agit d'une extension de K dans laquelle tous les f_i sont scindés, et qui est engendrée en tant que corps par l'ensemble de toutes les racines de tous les f_i .

Prop. Soit K un corps et (f_i) une famille quelconque de K[t]. Alors :

- (i) Il existe un corps de décomposition des f_i sur K.
- (ii) Soit $K \subseteq L$ un corps de décomposition des f_i sur K et $K \subseteq L'$ une extension dans laquelle tous les f_i sont scindés. Alors il existe un unique morphisme de corps $\psi \colon L \to L'$ tel que $\psi_{|K} = \operatorname{Id}_K$.
- (iii) Si f_j dans la famille est irréductible et x, x' sont racines de f_j dans L et L' respectivement, on peut choisir ψ tel que $\psi(x) = x'$.
- (iv) Si $K \subseteq L'$ est aussi un corps de décomposition des f_i sur K, tout ψ comme en (ii) est un isomorphisme.

Def. Soit K un corps. On appelle **clôture algébrique** de K, notée K^{alg} , une extension $K \subseteq L$ algébrique telle que tout polynôme de K[t] soit scindé sur L.

Rem. Un corps est algébriquement clos si et seulement si il est égal à sa propre clôture algébrique.

Rem. Une clôture algébrique de K est égal au corps de décomposition de tous les polynômes de K[t].

Th (de **Steinitz**). Soit K un corps quelconque. Alors il existe une clôture algébrique de K et, si L et L' sont deux clôtures algébrique de K, il existe un isomorphisme entre elles qui soit l'identité sur K. Enfin, une clôture algébrique est algébriquement close.

Éléments et extensions algébriques séparables

Def. Caractéristique d'un corps k: plus petit entier p égal à 0 dans k, ou 0 s'il n'en existe pas.

Def. Si k est de caractéristique p > 0 on définit le **Frobenius** d'exposant p: application Frob_p : $\begin{cases} k \to k \\ x \mapsto x^p \end{cases}$. C'est un morphisme de corps, i.e. $(x+y)^p = x^p + y^p$ et $(xy)^p = x^p y^p$. On note k^p son image (sous-corps de k).

Def. Soit k un corps et $f \in k[t]$. On dit que f est **séparable** s'il est premier avec sa dérivée f'. C'est équivalent à avoir des racines simples dans une extension où f est scindé. Si f est irréductible celà revient à $f' \neq 0$.

Prop. Si k est de caractéristique p=0, tout polynôme irréductible est séparable. Si p>0 tout $f\in k[t]$ s'écrit de façon unique sous la forme $f(t)=f_0(t^{p^e})$ avec $e\in \mathbb{N}$ et $f'_0\neq 0$. Dans ce cas, si f est séparable e=0, et si f est irréductible alors f_0 l'est aussi.

Lem. Soit k de caractéristique p > 0 et $h \in k[t]$ tel que $\exists i \in [[1;p]], h^i \in k^p[t]$. Alors $h \in k^p[t]$.

Prop. Soit k de caractéristique p > 0, $f_0 \in k[t]$ unitaire irréductible et $f(t) := f_0(t^{p^e})$ où e > 0. Alors f est réductible (i.e. non irréductible) si et seulement si $f_0 \in k^p[t]$. Dans ce cas, on a aussi $f \in k^p[t]$.

Def. Soit $k \subseteq K$ une extension de corps. Un élément $x \in K$ algébrique sur k est dit **séparable** (sur k) si son polynôme minimal l'est.

Rem. En caractéristique 0, tout algébrique est séparable. En caractéristique p, $\forall x$ algébrique, $\exists ! e$ tel que x^{p^e} soit séparable, de degré $\deg(x)/p^e$. En particulier, si $p \nmid \deg(x)$, x est séparable.

Prop. Soit $k \subseteq K$ une extension de caractéristique p > 0 et $x \in K$ algébrique sur k. Exactement l'un des deux cas suivants se produit :

- x est séparable, le polynôme minimal de x^p sur k est dans $k^p[t]$, $deg(x^p) = deg(x)$ et $k(x) = k(x^p)$,
- x n'est pas séparable, le polynôme minimal de x^p sur k n'est pas dans $k^p[t]$ et $\deg(k^p) = \deg(x)/p$.

Def. Une extension $k \subseteq K$ algébrique est dite **séparable** lorsque tout élément de K est séparable sur k.

Prop. Soit $k \subseteq K$ une extension de corps finie de caractéristique p telle que K^p engendre K comme k-ev. Alors K est séparable sur k.

Prop. Soit $k \subseteq K$ une extension et $x_1, ..., x_n \in K$ tel que $\forall i \in [[1; n]], x_i$ est algébriques séparable sur $k(x_1, ..., x_{i-1})$. Alors $k(x_1, ..., x_n)$ est séparable sur k.

Cor. Soit $K = k(x_i)_{i \in I}$ avec les x_i algébriques séparables sur k. Alors tout K est algébrique séparable sur k.

Cor. Soit $k \subseteq K \subseteq L$ une tour d'extensions algébriques. Si K est séparable sur k et L est séparable sur K, alors L est séparable sur k.

Rem. Soit $k \subseteq K$ une extension. L'extension de k engendrée par les éléments de K algébriques séparables sur k est exactement l'ensemble de ces mêmes éléments, appelé **fermeture séparable** de k dans K. La fermeture séparable de k dans une clôture algébrique de k s'appelle **clôture séparable** de k. Si k est égal à sa clôture séparable on qu'il est **séparablement clos**.

Rem. Une extension $k \subseteq K$ telle que k soit égal à sa propre fermeture séparable dans K est dite **purement** inséparable. C'est la cas si et seulement si, en notant p > 0 la caractéristique, le polynôme minimal sur k d'un élément quelconque de K est de la forme $t^{p^e} - c$ où $c \in k$.

Corps parfaits, théorème de l'élément primitif

Def. Un corps k de caractéristique p est dit **parfait** lorsque, soit p = 0, soit p > 0 et $k^p = k$.

Prop. Un corps k est parfait si et seulement si toute extension algébrique de k est séparable.

Prop. Soit $k \subseteq K$ une extension algébrique avec k parfait. Alors K est aussi parfait.

Th (de l'élément primitif). Soit $K = k(x_1, ..., x_n)$ avec $x_1, ..., x_n$ algébriques sur k et $x_2, ..., x_n$ séparables sur k. Alors l'extension $k \subseteq K$ est monogène, i.e. $\exists y \in K, K = k(y)$.

Cor. Toute extension finie séparable est monogène, en particulier toute extension finie d'un corps parfait.

Prop. Soit k un corps parfait et $k \subseteq K$ une extension de type fini. Alors $\exists x_1, ..., x_{d+1} \in K, K = k(x_1, ..., x_{d+1})$ avec $x_1, ..., x_d$ algébriquement indépendants sur k et x_{d+1} algébrique séparable sur $k(x_1, ..., x_d)$.

Théorie de Galois

Def. Soit $K \subseteq L$ une extension algébrique. Deux éléments $x, x' \in L$ sont dits **conjugués** s'ils ont le même polynôme minimal sur K. C'est une relation d'équivalence qui définit des **classes de conjugaisons**.

Prop. Deux éléments $x, x' \in L$ sont conjugués lorsque tout polynôme de K[t] qui s'annule sur l'un s'annule sur l'autre.

Rem. Si x est séparable, son polynôme minimal sur K est à racines simples dans K^{alg} , donc il admet deg(x) conjugués.

Def. Une extension $K \subseteq L$ est dite **normale** si elle vérifie une des propriétés équivalentes suivantes :

- (i) tout conjugué sur K dans L^{alg} d'un élément de L est encore dans L,
- (ii) tout polynôme irréductible sur K qui a une racine dans L est scindé sur L,
- (iii) *L* est corps de décomposition d'une famille de polynômes sur *K*,
- (iv) l'image de tout morphisme de corps $L \to L^{\text{alg}}$ qui soit l'identité sur K est égale à L.

Def. Une extension algébrique est galoisienne si elle est à la fois normale et séparable.

Def. Soit $K \subseteq L$ une extension galoisienne. On appelle **groupe de Galois** de l'extension, noté $Gal(K \subseteq L)$, l'ensemble des automorphismes de L au-dessus de K, i.e. les automorphismes de L qui soient l'identité sur K. Lorsque $L = K^{\text{sep}}$ (clôture séparable), on dit que $Gal(K \subseteq L) = Gal(K) = \Gamma_K$ est le groupe de Galois **absolu** de K.

$$Ex$$
. $Gal(\mathbf{R} \subseteq \mathbf{C}) = \{Id_{\mathbf{C}}; x \mapsto \bar{x}\} \text{ et } Gal(\mathbf{F}_p \subseteq \mathbf{F}_{p^d}) = \{Frob_p^i, 0 \leqslant i \leqslant d-1\}.$

Th. Soit $K \subseteq L$ une extension galoisienne et $G := Gal(K \subseteq L)$. Alors :

- si $K \subseteq L$ est finie, alors G est fini et Card(G) = [L : K],
- si $x \in L$ est fixé par tous les éléments de G alors $x \in K$.

De plus, si on appelle $\Phi \colon E \mapsto \operatorname{Gal}(E \subseteq L)$ qui a un corps intermédiaire $K \subseteq E \subseteq L$ associe le groupe de Galois de l'extension $E \subseteq L$ (galoisienne) vu comme sous-groupe de G, on a :

- Φ est une injection (décroissante pour l'inclusion), si $K \subseteq L$ est finie c'est une bijection,
- un inverse à gauche est $H \mapsto \text{Fix}(H) = \{x \in L \mid \forall \sigma \in H, \sigma(x) = x\},\$
- $\Phi(E)$ est distingué dans G ssi $K \subseteq E$ est galoisienne, auquel cas $Gal(K \subseteq E) = G/\Phi(E)$,
- $\Phi(E_1.E_2) = \Phi(E_1) \cap \Phi(E_2)$, et si $K \subseteq L$ est finie, $\Phi(E_1 \cap E_2)$ est le ss-gr de G engendré par $\Phi(E_1)$ et $\Phi(E_2)$.

Def. Le **groupe de Galois d'un polynôme séparable** f sur un corps K est le groupe des permutations des racines de f qui définissent un automorphisme du corps de décomposition.

Rem. Pour *L* galoisienne sur *K*, les orbites $\{\sigma(x), \sigma \in \text{Gal}(K \subseteq L)\}$ sont exactement les classes d'équivalence pour la relation "être conjugué sur *K*".

Th. Soit *L* un corps, *G* un groupe fini d'automorphismes de *L* et $K = \text{Fix}_L(G) = \{x \in L \mid \forall \sigma \in G, \sigma(x) = x\}$. Alors $K \subseteq L$ est une extension galoisienne de groupe de Galois *G* et [L:K] = Card(G).

Th. Soit *G* un groupe, *L* un corps et $\chi_1, ..., \chi_n$ des caractères de *G* dans *L* (i.e. des morphismes $G \to L^{\times}$) deux à deux disctincts. Alors les $\chi_1, ..., \chi_n$ sont linéairement indépendants en tant qu'applications $G \to L$.

2 Le Nullstellensatz et les fermés de Zariski

Anneaux nothérien

Def. Un idéal *I* d'un anneau *A* est de **type fini** s'il est engendré par un nombre fini d'éléments (équivalent à être de type fini en tant que sous-module de *A*).

Def. Un anneau A est dit **noethérien** lorsque tout idéal I de A est de type fini.

Rem. Un quotient d'un anneau noethérien est noethérien.

Th (de la base de Hilbert). Si A est un anneau noethérien, alors l'anneau A[t] des polynômes à une indéterminée sur A est noethérien.

Cor. Soit k un corps ou un anneau noethérien. Alors l'anneau $k[t_1, ..., t_n]$ des polynômes en n indéterminées sur k est un anneau noethérien, et plus généralement toute k-algèbre de type fini (comme k-algèbre) $k[x_1, ..., x_n]$ est un anneau noethérien.

Idéaux maximaux d'anneaux de polynômes

Lem. Soit k un corps algébriquement clos et K une extension. On suppose que $h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$ ont un zéro commun dans K (i.e $\exists z_1, \ldots, z_n \in K, \forall i, h_i(z_1, \ldots, z_n = 0)$). Alors ils en ont un dans k.

Not. Soit k un corps et $(x_1, ..., x_n) \in k^n$. On note

$$\mathbf{m}_{(x_1,\ldots,x_n)} := \{ f \in k[t_1,\ldots,t_n] \mid f(x_1,\ldots,x_n) = 0 \} = (t_1-x_1,\ldots,t_n-x_n).$$

Prop. Soit k un corps algébriquement clos. Les idéaux maximaux de $k[t_1,...,t_n]$ sont exactement les idéaux $\mathfrak{m}_{(x_1,...,x_n)}$.

Prop (lemme de Zariski). Soit k un corps et K une extension de type fini comme k-algèbre. Alors k est en fait une extension finie.

Le Nullstellensatz

Prop (Nullstellensatz faible). Soient $h_1, ..., h_m \in k[t_1, ..., t_n]$ avec k algébriquement clos. Si $h_1, ..., h_m$ n'engendrent pas l'idéal unité, alors ils ont un zéro commun dans $k : \exists x_1, ..., x_n \in k, \forall i, h_i(x_1, ..., x_n) = 0$.

Prop (Nullstellensatz fort). Soient $g, h_1, \ldots, h_m \in k[t_1, \ldots, t_n]$ avec k algébriquement clos. Si g s'annule sur tous les zéros commun de h_1, \ldots, h_m alors $\exists l \in \mathbb{N}, g^l \in (h_1, \ldots, h_m)$ (idéal engendré).

Fermés de Zariski

Def. Un idéal r d'un anneau A est dit radical lorsque A/r est réduit, i.e $\forall x \in A, \forall n \in \mathbb{N}, x^n \in \mathbb{r} \implies x \in \mathbb{r}$.

Def. Soit *I* un idéal de *A*. Le **radical de** *I* est $\sqrt{I} = \{x \in A \mid \exists n \in \mathbb{N}, x^n \in I\}$. C'est un idéal radical.

Un idéal premier, et a fortiori un idéal maximal, est en particulier un idéal radical.

Dans ce qui suit on note k un corps et k^{alg} une clôture algébrique.

Not. Soit $\mathscr{F} \subset k[t_1,\ldots,t_n]$. On pose $Z(\mathscr{F}) := \{(x_1,\ldots,x_d) \in (k^{\mathrm{alg}})^d \mid \forall f \in \mathscr{F}, f(x_1,\ldots,x_d) = 0\}.$

Def. On appelle **fermé de Zariski** tout ensemble de la forme $Z(\mathcal{F})$.

Rem. Z est décroissante pour l'inclusion et on peut toujours supposer que F est un idéal radical.

Def. Un fermé de Zariski de la forme $Z(f) = Z(\{f\})$ est appelé une **hypersurface**.

Rem. Le vide, $(k^{alg})^d$ et les singletons sont des fermés de Zariski.

Not. Soit $E \subset (k^{\text{alg}})^d$. On pose $J(E) := \{ f \in k[t_1, ..., t_n] \mid \forall (x_1, ..., x_d) \in E, f(x_1, ..., x_d) = 0 \}$.

Rem. J(E) est un idéal radical, J est décroissante pour l'inclusion, $J(E) = \bigcap_{x \in E} \mathfrak{N}_x$ où $\mathfrak{N}_x = J(\{x\})$ et en particulier $J(E) \neq k[t_1, \ldots, t_d] \iff E = \emptyset$. De plus $J((k^{\text{alg}})^d) = \{0\}$.

Prop. Soit $E \subset (k^{\text{alg}})^d$ et $\mathscr{F} \subset k[t_1, ..., t_d]$. On a $E \subset Z(\mathscr{F}) \iff \mathscr{F} \subset J(E)$.

Prop. Une partie $E \subset (k^{\text{alg}})^d$ vérifie $E = Z(\mathcal{J}(E))$ si et seulement si c'est un fermé de Zariski.

Prop. Soit I un idéal de $k[t_1,...,t_d]$ et $E \subset (k^{\text{alg}})^d$. Alors $\mathcal{J}(Z(I)) = \sqrt{I}$ et $Z(\mathcal{J}(E))$ est le plus petit fermé de Zariski défini sur k qui contient E. De plus, Z et \mathcal{J} définissent des bijections réciproques décroissantes entre idéaux radicaux de $k[t_1,...,t_d]$ et fermés de Zariski de $(k^{\text{alg}})^d$ définis sur k.

Def. Les éléments de $Z(I) \cap k^d$ sont appelés **points rationnels** de Z(I). Ceux dans $Z(I) \cap ((k^{\text{alg}})^d \setminus k^d)$ sont appelés **points géométriques**. Enfin on appelle **point fermé** les $Z(\mathfrak{m})$ avec \mathfrak{m} un idéal maximal de $k[t_1, \ldots, t_d]$ et $I \subset \mathfrak{m}$.

Def. Le corps $\varkappa_{\mathfrak{m}} = k[t_1, \ldots, t_d]/\mathfrak{m}$ s'appelle **corps résiduel** de $Z(\mathfrak{m})$. La classe modulo \mathfrak{m} d'un polynôme s'appelle **évaluation** du polynôme en $Z(\mathfrak{m})$ et $[\varkappa_{\mathfrak{m}} : k]$ est appelé **degré** de $Z(\mathfrak{m})$.

3 Corps de courbes algébriques

Définitions

Def. Soit k un corps. Un **corps de fonctions** K de dimension n sur k est une extension de corps de k de type fini et de degré de transcendance n sur k. Pour n = 1 on parle de **corps de fonctions de courbe** sur k.

Par abus de langage on dit que *K* est une courbe (algébrique) sur *k*.

Def. Droite projective sur k, notée \mathbf{P}_k^1 ou \mathbf{P}^1 : courbe simple donnée par k(t) le corps des fractions rationnelles.

Anneaux de valuation

Def. Soit K un corps. Un **anneau de valuation** de K est un sous-anneau R de K vérifiant $\forall x \in K, x \in R$ ou $x^{-1} \in R$. Il est dit non-trivial si $R \neq K$. Lorsque $k \subset R$ est un sous-corps de K, on dit que R est un anneau de valuation au-dessus de k.

Rem. R est intègre et $K = \operatorname{Frac}(R) \to \operatorname{on}$ parle d'anneau de valuation dans l'absolu pour un anneau de valuation de son corps des fractions.

Def. Soit $x, y \in K$. On dit que :

- x est plus valué que y si $\exists z \in R, x = yz$,
- x et y ont la même valuation si $\exists z \in R^{\times}, x = yz$.

Ceci définit une relation d'équivalence dont les classes sont appelées **valuations** et notées $v_R(x)$ ou v(x). On note $v(0) = \infty$ mais cette classe est mise à part et on ne considère généralement pas qu'il s'agisse d'une valuation.

Rem. On a défini une relation d'ordre total sur les valuations (plus ∞ qui est le plus grand élément).

Not. On définit v(x) + v(y) = v(xy) et $\forall c \in \mathbb{R}^{\times}, v(c) = v(1) = 0$.

Def. Soit $\Gamma := K^{\times}/R^{\times}$ l'ensemble des valuations. Le groupe abélien $(\Gamma, +)$ est appelé **groupe des valuations** (ou des **valeurs**) de R.

Def. Si $\Gamma = \mathbf{Z}$, i.e. est engendré par un unique élément, on dira que R est un anneau de valuation **discrète**.

Prop. Soit *R* un anneau de valuation de *K*. On a :

- (i) $v(x) = \infty \iff x = 0$
- (ii) v(xy) = v(x) + v(y)
- (iii) $v(x+y) \geqslant \min\{v(x), v(y)\}$
- (iv) $v(x + y) = \min\{v(x), v(y)\}\ \text{si}\ v(x) = v(y)$

De plus $v(K^{\times}) = \Gamma$ et $R = \{x \in K \mid v(x) \ge 0\}$.

Ex. Soit K = k(t) et h un polynôme unitaire irréductible sur k. On pose, pour $f \in k[t]$, $v_h(f)$ est l'exposant de la plus grande puissance de h qui divise f. Si $g \in k[t] \setminus \{0\}$, $v_h\left(\frac{f}{g}\right) = v_h(f) - v_h(g)$. Alors v_h vérifie les conditions ci-dessus et atteint 1 en h. De plus R est l'ensemble des fractions rationnelles sans h facteur du dénominateur.

Ex. Soit p premier et $K = \mathbb{Q}$. Pour $m \in \mathbb{Z}$, on pose $v_p(m)$ la valuation p-adique de m, i.e. l'exposant de la plus grande puissance de q qui divise m. Si $\frac{n}{m} \in \mathbb{Q}$, $v_p\left(\frac{n}{m}\right) = v_p(n) - v_p(m)$. Alors v_p vérifie les conditions ci-dessus et atteint 1 en p. De plus R est l'ensemble des rationnels dont le dénominateur réduit n'est pas multiple de p.

Rem. Si A est un anneau intègre et $v: A \to \mathbb{Z} \cup \{\infty\}$ vérifie (i), (ii) et (iii) alors il existe une unique fonction $v: \operatorname{Frac}(A) \to \mathbb{Z} \cup \{\infty\}$ qui prolonge le v donné sous les mêmes conditions, à savoir $v: \frac{x}{y} \mapsto v(x) - v(y)$ où $y \neq 0$. Si, de plus, v est positive sur A alors $A \subset R$ ou R est l'anneau de la valuation.

Def. Un anneau *R* est dit **local** s'il vérifie l'une des propriétés équivalentes suivantes :

- (i) R a un unique idéal maximal,
- (ii) le complémentaire de R^{\times} dans R est un idéal (forcément maximal),
- (iii) pour tout $x \in R$, soit x est inversible, soit 1 cx est inversible pour tout $c \in R$.

Prop. Un anneau de valuation est un anneau local. Son idéal maximal est $\mathfrak{m}_v = \{x \in R \mid v(x) > 0\}$.

Def. On note parfois \mathcal{O}_v l'anneau de valuation associé à la valuation v. Le corps $\varkappa_v = \mathcal{O}_v/\mathfrak{m}_v$ s'appelle **corps résiduel** de la valuation v.

Prop. Si v est une valuation au-dessus de k (corps de base) alors \varkappa_v est une extension de k. Son degré (s'il est fini) s'appellera degré sur k de la valuation v.

Def. Soit K un corps de fonction de courbe sur k. Une valuation non triviale au-dessus de k sur un corps K de fonctions de k s'appelle une **place** de K (ou de la courbe C telle que K = k(C)). On note $\mathcal{V}_{K/k}$ ou \mathcal{V}_C l'ensemble de ces places.

Prop. Soit K un corps, $A \subset K$ un sous-anneau et $\mathfrak p$ un idéal premier de A. Alors il existe un anneau de valuation R de K tel que $A \subset R \subset K$ et $\mathfrak m \cap A = \mathfrak p$ où $\mathfrak m$ est l'idéal maximal de R.

Cette proposition sert à construire des valuations "centrées" sur un idéal premier p qu'on s'est donné.

Prop. Soit K un corps et $A \subset K$ un sous-anneau. Alors $B := \bigcap_{A \subset R \subset K} R$ (avec R anneau de valuation de K) est exactement l'ensemble des $x \in K$ entiers (algébriques) sur A au sens où il existe $f \in A[t]$ unitaire, non constant, à coefficients dans A tels que f(x) = 0. B est donc un sous-anneau de K et s'appelle **fermeture intégrale** de A dans K, ou **clôture intégrale** lorsque $K = \operatorname{Frac}(A)$. En particulier, si K est un sous-corps de K alors K est la fermeture algébrique de K dans K.

Prop. Soit \mathcal{O}_v un anneau de valuation discrète de valuation v. Un élément $t \in \mathcal{O}_v$ engendre \mathfrak{m} en tant qu'idéal si et seulement si v(t) = 1. Il est appelé **uniformisante** de \mathcal{O}_v et pour un tel t fixé (il en existe) :

- tout $x \neq 0$ de K a une représentation unique sous la forme $x = ut^r$ avec $u \in \mathcal{O}_v^{\times}$ et $r \in \mathbb{Z}$, avec r = v(x),
- tout idéal $I \neq \{0\}$ de \mathcal{O}_v est l'idéal $\mathfrak{m}^r = \{x \in \mathcal{O}_v \mid v(x) \ge r\}$ engendré par t^r pour un certain $r \in \mathbb{N}$.

Places des courbes

Lem. Soit K un corps de fonctions de courbes sur k et v une valuation de K au-dessus de k. Alors :

- (i) Si x vérifie $v(x) \neq 0$ et $v(x) < \infty$ alors x est transcendant sur k et le corps K est fini sur k(x).
- (ii) Si $x_1, ..., x_n$ vérifient $0 < v(x_1) < v(x_2) < \cdots < v(x_n) < \infty$, alors $x_1, ..., x_n$ sont linéairement indépendants sur $k(x_n)$, et en particulier le degré $[K:k(x_n)]$ (fini) est supérieur ou égal à n.
- (iii) Si x vérifie $0 < v(x) < \infty$ alors $[\varkappa_v : k] \le [K : k(x)]$.

Prop. Soit *K* un corps de fonctions de courbe sur *k*. Alors toutes les places de *K* sont discrètes.

Dans ce cas \varkappa_v est une extension finie, donc algébrique, de k. Le degré $[\varkappa_v:k]$ s'appelle aussi degré de la place v. S'il vaut 1, i.e. $\varkappa_v=k$, v est dite rationnelle. C'est notamment le cas si v est algébriquemet clos.

Def. Soit K un corps de fonctions de courbe sur k. Si $f \in K$ et $v \in \mathcal{V}_K$ on peut définir l'**évaluation** de f en v

$$f(v) \in \varkappa_v, \quad f(v) = \left\{ \begin{array}{ll} \text{la classe de } f \in \mathcal{O}_v \text{ modulo } \mathfrak{m}_v \text{ lorsque } v(f) \geqslant 0 \\ \text{le symbole spécial } \infty \text{ (pas celui de } v(0)) \text{ lorsque } v(f) = 0 \end{array} \right.$$

Dans le cas $f(v) = \infty$ on dit que f a un **pôle** en v. On a trois possibilités exclusives :

$$v(f) > 0 \iff f(v) = 0 \iff f \in \mathfrak{m}_v$$
 $f \text{ a un z\'ero en } v$
 $v(f) < 0 \iff f(v) = \infty \iff f \notin \mathcal{O}_v$ $f \text{ a un p\^ole en } v$
 $v(f) = 0 \iff f(v) \in \varkappa_v^{\times} \iff f \in \mathcal{O}_v^{\times}$

v(f) est appelé multiplicité du zéro de f en v, et -v(f) multiplicité du pôle. Si v(f) = 1, f est appélé **paramètre** local pour K en v (comme uniformisante).

Prop. La fermeture algébrique \tilde{k} de k dans K peut s'appeler **corps des constantes** et coïncide avec $\{f \in K \mid \forall v \in \mathcal{V}_K, v(f) = 0\}$, ces fonctions f étant dites **constantes**. On a alors l'équivalence suivante :

```
f n'est pas constante \iff f est transcendante \iff \exists v \in \mathcal{V}_K où f ait un pôle \iff f n'est pas nulle et \exists v \in \mathcal{V}_K où f ait un zéro
```

Rem. Tous les corps résiduels \varkappa_v sont des extensions de \tilde{k} . Notamment $[\tilde{k}:k]$ divise tous les $\deg(v) = [\varkappa_v:k]$ et, en particulier, s'il existe une place **rationnelle**, i.e. telle que $\deg(v) = 1$, ou simplement deux places de degrés premiers entre eux, on a $\tilde{k} = k$.

Les places de la droite projective

Soit $h \in k[t]$ unitaire et irréductible, $v_h(f)$ pour $f \in k[t]$ l'exposant de h dans la décomposition de f en polynômes irréductibles et $\forall f,g \in k[t], v_h\left(\frac{f}{g}\right) = v_h(f) - v_h(g)$.

Prop. Le corps résiduel \varkappa_h de la place v_h est le corps de rupture k[t]/(h) de h sur k.

Rem. La valeur de f en la place v_{ξ} , définie comme v_h où $h = t - \xi, \xi \in k^{\text{alg}}$, peut s'identifier à la valeur $f(\xi)$ dans le corps $k(\xi) = k[t]/(h)$.

Rem. Une autre valuation non-triviale de k(t) au-dessus de k est v_{∞} : $\frac{f}{g} \mapsto \deg(g) - \deg(f)$.

Prop. Soit k un corps. Alors les places du corps k(t) sont exactement v_{∞} et les places v_h .

Rem. Lorsque k est algébriquement clos, les places de \mathbf{P}_k^1 s'identifient donc aux éléments de k ($x \in k$ est identifié à $f \in k(t) \mapsto v_x(f)$) plus l'élément ∞ (correspondant à la valuation v_∞).

L'indépendance des valuations

L'identité du degré

Diviseurs sur les courbes

Espaces de Riemann-Roch

Différentielles de Kähler

Def. Soit k un anneau et A une k-algèbre. On appelle espace des **différentielles de Kähler** de A sur k, noté $\Omega^1_{A/k}$, le A-module engendré par les symboles dx pour $x \in A$, soumis aux relations suivantes :

- (i) d: $A \rightarrow \Omega^1_{A/k}$ est linéaire, i.e. $\forall x, x' \in A, d(x + x') = dx + dx'$ et $\forall c \in k, \forall x \in A, d(cx) = c dx$,
- (ii) $\forall x, y \in A, d(xy) = x dy + y dx$.

Donc $\Omega^1_{A/k}$ est le quotient du A-module libre de base $\{dx, x \in A\}$ par le sous-module engendré par les relations ci-dessus.

Prop. Soit K une extension de corps de k de type fini. Les propriétés suivantes sont équivalentes :

- si la caractéristique est p > 0 alors, dans K, les corps K^p et k sont linéairement disjoints sur k^p ,
- il existe une base de transcendance $(t_1, ..., t_n)$ pour laquelle K est (algébrique) séparable sur $k(t_1, ..., t_n)$. Lorsque ces conditions sont vérifiées on dit que K est **séparable**. On dit aussi que $(t_1, ..., t_n)$ est une base de transcendance **séparante**.

Rem. Toute extension de corps en caractéristique 0 est séparable.

Prop. Si K = k(C) est le corps des fractions d'une courbe sur un corps k et qu'au moins une des hypothèses suivantes est satisfaite :

- le corps de base *k* est parfait,
- la courbe *C* est irréductible.

alors l'extension K est séparable.

Prop. Soit K une extension de corps de k de type fini et séparable. Soit (t_1,\ldots,t_n) une base de transcendance séparante. Alors $\Omega^1_{K/k}$ est un K-espace vectoriel de base $\mathrm{d}t_1,\ldots,\mathrm{d}t_n$. Réciproquement, si $t_1,\ldots,t_n\in K$ sont tels que $\mathrm{d}t_1,\ldots,\mathrm{d}t_n$ sont linéairement indépendants sur K, alors ils sont une base de transcendance séparante.

Théorème de Riemann-Roch Points et places Revêtements de courbes