Ideas from Literature Review

7 May 2025

Extracting more features by post-processing

Flow vectors

Movement of keypoints (body joints) between consecutive frames, captures direction and speed of motion for each joint.

Angles Between Anchor Joints

Angles between sets of three body joints that form triangles. The paper does not list a fixed set of joint triplets explicitly.

Normalized Distance Vectors

Distances between key joints normalized to remove scale differences

SIFT (Scale-Invariant Feature Transform)

- Extract robust local keypoint descriptors from the image that are invariant to scale, rotation, and illumination. Helps maintain consistent keypoint detection even when the camera moves or zooms in/out.
- In this paper SIFT is applied to the grayscale version of each frame (Rani & Devarakonda, 2022).

LoG (Laplacian of Gaussian)

- Rani and Devarakonda (2022) applied LoG to a distance transform image (DT), where background pixels represent their distance from the nearest foreground joint.
- LoG helps cluster pixels around joints.
- Only stable maxima are kept → more accurate joint center estimates.

Cosine Similarity

 The angular similarity between two poses: the student's pose vector and the tutor's pose vector.

CNN-LSTM (Classification)

From Rani and Devarakonda (2022):

CNN Block:

- Conv layer C-1: 3×3 filters + ReLU.
- Conv layers C-2 and C-3 (similar structure).
- Pooling: 2×2 kernel (P-1).
- Output: Flatten + Dense (512 units).

LSTM Block (Standard (vanilla) LSTM):

- Receives flattened CNN features as input.
- Transforms to time-sequence data.
- 54-neuron Dense layer follows LSTM.

Classifier: Dense layer followed by 25% Dropout and softmax for final classification into 8 dance classes.

Training Details:

- 65 Eochs
- Batch size: 32
- input size: (48 frames, 2048 features)
- Didn't state Optimizer and Loss Function

LSTM-Based Classification Model (Sequence Learning)

From Srivastava, Umrao, and Yadav (2024):

Sequential Model:

- LSTM layer 1: 64 units, return_sequences=True, activation='relu'
- LSTM layer 2: 128 units, return_sequences=True, activation='relu'
- LSTM layer 3: 64 units, activation='relu'
- Dense layer 1: 64 units, activation='relu'
- Dense layer 2: 32 units, activation='relu'
- Output layer: Dense, 10 units (for 10 yoga pose classes), activation='softmax'

Training Details:

- Input shape: (30, 1662) → 30 time steps, 1662 features per frame
- Optimizer: Adam; Loss: Categorical Cross Entropy; Epochs: 100; Batch size: 16

References

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L. Y., & Kot, A. C. (2019). Ntu rgb+ d 120: A large-scale benchmark for 3d human activity understanding. *IEEE transactions on pattern analysis and machine intelligence*, *42*(10), 2684-2701.

Rani, C. J., & Devarakonda, N. (2022). An effectual classical dance pose estimation and classification system employing convolution neural network–long short term memory (CNN-LSTM) network for video sequences. *Microprocessors and Microsystems*, *95*, 104651.

Srivastava, R. P., Umrao, L. S., & Yadav, R. S. (2024). Real-time yoga pose classification with 3-D Pose Estimation Model with LSTM. *Multimedia Tools and Applications*, *83*(11), 33019-33030.