## **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 100 compute nodes are available.

Program started at Sun Aug 13 11:14:38 2017

Program finished at Sun Aug 13 12:35:19 2017 [Runtime:0000:01:20:41]



## **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 949156198

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

1

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0 \*

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy:

Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings:

Long chain

Number of chains1Recorded steps [a]50000Increment (record every x step [b]200Number of concurrent chains (replicates) [c]2

Visited (sampled) parameter values [a\*b\*c] 20000000

Number of discard trees per chain (burn-in) 10000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50 1.00

Swapping interval is 1

Print options:

Data file: infile.0.8

Haplotyping is turned on:

Output file: outfile\_0.8\_0.5

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_0.8\_0.5
Print data: No

Print genealogies [only some for some data type]:

## Data summary

Data file: infile.0.8
Datatype: Sequence data
Number of loci: 100

| T TOTTIBET T | 01 1001. |               |                          | 100 |
|--------------|----------|---------------|--------------------------|-----|
| Mutation     | model:   |               |                          |     |
| Locus Su     | ublocus  | Mutationmodel | Mutationmodel parameters |     |
| 1            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 2            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 3            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 4            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 5            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 6            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 7            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 8            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 9            | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 10           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 11           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 12           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 13           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 14           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 15           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 16           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 17           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 18           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 19           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 20           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 21           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 22           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 23           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 24           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 25           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 26           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 27           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 28           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 29           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 30           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 31           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 32           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |
| 33           | 1        | Jukes-Cantor  | [Basefreq: =0.25]        |     |

[Basefreq: =0.25]

Jukes-Cantor

1

34

| 35 | 1      | Jukes-Cantor | [Pagefreg: -0.25]                      |
|----|--------|--------------|----------------------------------------|
| 36 | 1<br>1 | Jukes-Cantor | [Basefreq: =0.25]<br>[Basefreq: =0.25] |
| 37 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 38 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 39 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 40 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 41 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 42 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 43 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 44 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 45 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 46 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 47 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 48 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 49 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 50 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 51 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 52 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 53 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 54 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 55 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 56 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 57 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 58 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 59 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 60 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 61 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 62 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 63 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 64 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 65 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 66 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 67 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 68 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 69 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 70 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 71 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 72 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 73 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 74 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 75 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 76 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 77 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 78 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
| 79 | 1      | Jukes-Cantor | [Basefreq: =0.25]                      |
|    |        |              |                                        |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |
| 1         |       | 0000         |                   |        |
| 1 2       | 1     | 0000         |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| 21 | 10000 |  |
|----|-------|--|
| 22 | 10000 |  |
| 23 | 10000 |  |
| 24 | 10000 |  |
| 25 | 10000 |  |
| 26 | 10000 |  |
| 27 | 10000 |  |
| 28 | 10000 |  |
| 29 | 10000 |  |
| 30 | 10000 |  |
| 31 | 10000 |  |
| 32 | 10000 |  |
| 33 | 10000 |  |
| 34 | 10000 |  |
| 35 | 10000 |  |
| 36 | 10000 |  |
| 37 | 10000 |  |
| 38 | 10000 |  |
| 39 | 10000 |  |
| 40 | 10000 |  |
| 41 | 10000 |  |
| 42 | 10000 |  |
| 43 | 10000 |  |
| 44 | 10000 |  |
| 45 | 10000 |  |
| 46 | 10000 |  |
| 47 | 10000 |  |
| 48 | 10000 |  |
| 49 | 10000 |  |
| 50 | 10000 |  |
| 51 | 10000 |  |
| 52 | 10000 |  |
| 53 | 10000 |  |
| 54 | 10000 |  |
| 55 | 10000 |  |
| 56 | 10000 |  |
| 57 | 10000 |  |
| 58 | 10000 |  |
| 59 | 10000 |  |
| 60 | 10000 |  |
| 61 | 10000 |  |
| 62 | 10000 |  |
| 63 | 10000 |  |
| 64 | 10000 |  |
| 65 | 10000 |  |
|    |       |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
|------------|-----------|---|-------|-------|-------|-------------|
| 98         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 99         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 100        | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| Population |           | ı | 1.000 | 1.000 | Locus | Gene copies |
| 1 Romans   |           |   |       |       | 1     | 10          |
| 1 Roman    | 5110111_0 |   |       |       | 2     | 10          |
|            |           |   |       |       | 3     | 10          |
|            |           |   |       |       | 4     | 10          |
|            |           |   |       |       | 5     | 10          |
|            |           |   |       |       | 6     | 10          |
|            |           |   |       |       | 7     | 10          |
|            |           |   |       |       | 8     | 10          |
|            |           |   |       |       | 9     | 10          |
|            |           |   |       |       | 10    | 10          |
|            |           |   |       |       | 11    | 10          |
|            |           |   |       |       | 12    | 10          |
|            |           |   |       |       | 13    | 10          |
|            |           |   |       |       | 14    | 10          |
|            |           |   |       |       | 15    | 10          |
|            |           |   |       |       | 16    | 10          |
|            |           |   |       |       | 17    | 10          |
|            |           |   |       |       | 18    | 10          |
|            |           |   |       |       | 19    | 10          |
|            |           |   |       |       | 20    | 10          |
|            |           |   |       |       | 21    | 10          |
|            |           |   |       |       | 22    | 10          |
|            |           |   |       |       | 23    | 10          |
|            |           |   |       |       | 24    | 10          |
|            |           |   |       |       | 25    | 10          |
|            |           |   |       |       | 26    | 10          |
|            |           |   |       |       | 27    | 10          |
|            |           |   |       |       | 28    | 10          |
|            |           |   |       |       | 29    | 10          |
|            |           |   |       |       | 30    | 10          |
|            |           |   |       |       | 31    | 10          |
|            |           |   |       |       | 32    | 10          |
|            |           |   |       |       | 33    | 10          |
|            |           |   |       |       | 34    | 10          |
|            |           |   |       |       | 35    | 10          |
|            |           |   |       |       | 36    | 10          |
|            |           |   |       |       | 37    | 10          |
|            |           |   |       |       | 38    | 10          |
|            |           |   |       |       | 39    | 10          |
|            |           |   |       |       | 40    | 10          |
|            |           |   |       |       | →U    | 10          |

|   | 1  | 10 |
|---|----|----|
| 4 | 2  | 10 |
| 4 | 3  | 10 |
| 4 | 4  | 10 |
| 4 | 5  | 10 |
| 4 | 6  | 10 |
|   | 7  | 10 |
|   | 8  | 10 |
|   | .9 | 10 |
|   | 0  | 10 |
|   | 1  | 10 |
|   | 2  | 10 |
|   | 3  | 10 |
|   | 4  | 10 |
|   | 5  | 10 |
|   | 6  | 10 |
|   | 7  | 10 |
|   |    |    |
|   | 8  | 10 |
|   | 9  | 10 |
|   | 0  | 10 |
|   | 1  | 10 |
|   | 2  | 10 |
|   | 3  | 10 |
|   | 4  | 10 |
|   | 5  | 10 |
|   | 6  | 10 |
|   | 7  | 10 |
|   | 8  | 10 |
| 6 | 9  | 10 |
| 7 | 0  | 10 |
| 7 | 1  | 10 |
| 7 | 2  | 10 |
| 7 | 3  | 10 |
|   | 4  | 10 |
|   | 5  | 10 |
|   | 6  | 10 |
|   | 7  | 10 |
|   | 8  | 10 |
|   | 9  | 10 |
|   | 0  | 10 |
|   | 1  | 10 |
|   | 2  | 10 |
|   | 3  | 10 |
|   | 4  | 10 |
|   | 5  | 10 |
|   |    |    |

|                          | 86       | 10 |  |
|--------------------------|----------|----|--|
|                          | 87       | 10 |  |
|                          | 88       | 10 |  |
|                          | 89       | 10 |  |
|                          | 90       | 10 |  |
|                          | 91       | 10 |  |
|                          | 92       | 10 |  |
|                          | 93       | 10 |  |
|                          | 94       | 10 |  |
|                          | 95       | 10 |  |
|                          | 96       | 10 |  |
|                          | 97       | 10 |  |
|                          |          |    |  |
|                          | 98       | 10 |  |
|                          | 99       | 10 |  |
|                          | 100      | 10 |  |
| Total of all populations | 1        | 10 |  |
|                          | 2        | 10 |  |
|                          | 3        | 10 |  |
|                          | 4        | 10 |  |
|                          | 5        | 10 |  |
|                          | 6        | 10 |  |
|                          | 7        | 10 |  |
|                          | 8        | 10 |  |
|                          | 9        | 10 |  |
|                          | 10       | 10 |  |
|                          | 11       | 10 |  |
|                          | 12       | 10 |  |
|                          | 13       | 10 |  |
|                          | 14       | 10 |  |
|                          | 15       | 10 |  |
|                          | 16       | 10 |  |
|                          | 17       | 10 |  |
|                          | 18       | 10 |  |
|                          | 19       | 10 |  |
|                          | 20       | 10 |  |
|                          | 21       | 10 |  |
|                          | 22       | 10 |  |
|                          | 23       | 10 |  |
|                          | 23<br>24 |    |  |
|                          |          | 10 |  |
|                          | 25       | 10 |  |
|                          | 26       | 10 |  |
|                          | 27       | 10 |  |
|                          | 28       | 10 |  |
|                          | 29       | 10 |  |
|                          | 30       | 10 |  |
|                          |          |    |  |

|    |   | 10 |
|----|---|----|
| 3  |   | 10 |
|    |   | 10 |
|    |   | 10 |
| 3  | 4 | 10 |
| 3  | 5 | 10 |
| 3  | 6 | 10 |
| 3  | 7 | 10 |
|    |   | 10 |
| 3: |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
|    |   | 10 |
|    |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
| 4  |   | 10 |
| 5  |   | 10 |
| 5  |   | 10 |
|    |   | 10 |
|    |   |    |
|    |   | 10 |
|    |   | 10 |
| 5: |   | 10 |
|    |   | 10 |
| 5  |   | 10 |
| 5. |   | 10 |
| 5  |   | 10 |
| 6  |   | 10 |
| 6  |   | 10 |
| 6. |   | 10 |
|    |   | 10 |
| 6  |   | 10 |
| 6  |   | 10 |
| 6  |   | 10 |
|    |   | 10 |
| 6  |   | 10 |
| 6  |   | 10 |
| 70 | 0 | 10 |
| 7  | 1 | 10 |
| 7: | 2 | 10 |
| 7: | 3 | 10 |
| 74 |   | 10 |
| 79 |   | 10 |
|    |   |    |

| 76   | 10 |
|------|----|
| 77   | 10 |
| 78   | 10 |
| 79   | 10 |
| 80   | 10 |
| 81   | 10 |
| 82   | 10 |
| 83   | 10 |
| 84   | 10 |
| 85   | 10 |
| 86   | 10 |
| 87   | 10 |
| 88   | 10 |
| 89   | 10 |
| 90   | 10 |
| 91   |    |
|      | 10 |
| 92   | 10 |
| 93   | 10 |
| 94   | 10 |
| 95   | 10 |
| 96   | 10 |
| 97   | 10 |
| 98   | 10 |
| 99   | 10 |
| 100  | 10 |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
|      |    |
| <br> |    |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.03180 | 0.04447 | 0.04790 | 0.04953 | 0.05153 | 0.04497 | 0.08258 |
| 2     | $\Theta_1$ | 0.02773 | 0.04160 | 0.04770 | 0.04953 | 0.05147 | 0.04290 | 0.07348 |
| 3     | $\Theta_1$ | 0.03147 | 0.04427 | 0.04777 | 0.04940 | 0.05147 | 0.04443 | 0.08039 |
| 4     | $\Theta_1$ | 0.02773 | 0.04260 | 0.04777 | 0.04940 | 0.05140 | 0.04277 | 0.07409 |
| 5     | $\Theta_1$ | 0.03107 | 0.04360 | 0.04790 | 0.04973 | 0.05160 | 0.04477 | 0.08143 |
| 6     | $\Theta_1$ | 0.03160 | 0.04327 | 0.04777 | 0.04973 | 0.05153 | 0.04450 | 0.08033 |
| 7     | $\Theta_1$ | 0.02993 | 0.04380 | 0.04777 | 0.04940 | 0.05153 | 0.04397 | 0.07702 |
| 8     | $\Theta_1$ | 0.02947 | 0.04267 | 0.04770 | 0.04967 | 0.05147 | 0.04390 | 0.07700 |
| 9     | $\Theta_1$ | 0.02807 | 0.04280 | 0.04763 | 0.04927 | 0.05140 | 0.04297 | 0.07454 |
| 10    | $\Theta_1$ | 0.02787 | 0.04267 | 0.04763 | 0.04933 | 0.05140 | 0.04283 | 0.07313 |
| 11    | $\Theta_1$ | 0.03033 | 0.04340 | 0.04790 | 0.04987 | 0.05160 | 0.04457 | 0.08259 |
| 12    | $\Theta_1$ | 0.03073 | 0.04093 | 0.04763 | 0.05000 | 0.05153 | 0.04423 | 0.07899 |
| 13    | $\Theta_1$ | 0.02900 | 0.04280 | 0.04770 | 0.04967 | 0.05153 | 0.04397 | 0.07927 |
| 14    | $\Theta_1$ | 0.03207 | 0.04353 | 0.04783 | 0.04960 | 0.05160 | 0.04477 | 0.08123 |
| 15    | $\Theta_1$ | 0.02987 | 0.04287 | 0.04777 | 0.04967 | 0.05153 | 0.04410 | 0.07968 |
| 16    | $\Theta_1$ | 0.03180 | 0.04353 | 0.04783 | 0.04973 | 0.05153 | 0.04477 | 0.08134 |
| 17    | $\Theta_1$ | 0.02880 | 0.04253 | 0.04777 | 0.04967 | 0.05147 | 0.04370 | 0.07718 |
| 18    | $\Theta_1$ | 0.03120 | 0.04367 | 0.04790 | 0.04987 | 0.05160 | 0.04483 | 0.08040 |
|       |            |         |         |         |         |         |         |         |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 11:14:38]

| 19 | $\Theta_1$ | 0.03340 | 0.04413 | 0.04790 | 0.05000 | 0.05153 | 0.04523 | 0.08448 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.03193 | 0.04420 | 0.04777 | 0.04953 | 0.05153 | 0.04483 | 0.08187 |
| 21 | $\Theta_1$ | 0.02993 | 0.04273 | 0.04777 | 0.04960 | 0.05147 | 0.04403 | 0.07829 |
| 22 | $\Theta_1$ | 0.02667 | 0.04100 | 0.04763 | 0.04940 | 0.05133 | 0.04243 | 0.07086 |
| 23 | $\Theta_1$ | 0.03287 | 0.04387 | 0.04783 | 0.04973 | 0.05153 | 0.04503 | 0.08227 |
| 24 | $\Theta_1$ | 0.03093 | 0.04333 | 0.04777 | 0.04967 | 0.05160 | 0.04457 | 0.08077 |
| 25 | $\Theta_1$ | 0.03227 | 0.04433 | 0.04790 | 0.04987 | 0.05167 | 0.04543 | 0.08395 |
| 26 | $\Theta_1$ | 0.03187 | 0.04367 | 0.04797 | 0.04980 | 0.05167 | 0.04483 | 0.08273 |
| 27 | $\Theta_1$ | 0.03113 | 0.04327 | 0.04783 | 0.04980 | 0.05153 | 0.04443 | 0.08061 |
| 28 | $\Theta_1$ | 0.02867 | 0.04327 | 0.04770 | 0.04947 | 0.05147 | 0.04343 | 0.07676 |
| 29 | $\Theta_1$ | 0.03160 | 0.04387 | 0.04790 | 0.04980 | 0.05160 | 0.04503 | 0.08377 |
| 30 | $\Theta_1$ | 0.02753 | 0.04253 | 0.04770 | 0.04933 | 0.05140 | 0.04277 | 0.07273 |
| 31 | $\Theta_1$ | 0.03227 | 0.04380 | 0.04783 | 0.04987 | 0.05153 | 0.04490 | 0.08180 |
| 32 | $\Theta_1$ | 0.02953 | 0.04253 | 0.04770 | 0.04967 | 0.05147 | 0.04377 | 0.07699 |
| 33 | $\Theta_1$ | 0.03393 | 0.04467 | 0.04790 | 0.04980 | 0.05167 | 0.04583 | 0.08554 |
| 34 | $\Theta_1$ | 0.03080 | 0.04313 | 0.04777 | 0.04967 | 0.05160 | 0.04437 | 0.08207 |
| 35 | $\Theta_1$ | 0.02687 | 0.04207 | 0.04770 | 0.04940 | 0.05133 | 0.04237 | 0.07270 |
| 36 | $\Theta_1$ | 0.02813 | 0.04187 | 0.04770 | 0.04960 | 0.05147 | 0.04310 | 0.07437 |
| 37 | $\Theta_1$ | 0.03080 | 0.04427 | 0.04783 | 0.04960 | 0.05167 | 0.04443 | 0.08142 |
| 38 | $\Theta_1$ | 0.02767 | 0.04260 | 0.04763 | 0.04927 | 0.05133 | 0.04277 | 0.07095 |
| 39 | $\Theta_1$ | 0.02960 | 0.04313 | 0.04777 | 0.04967 | 0.05153 | 0.04383 | 0.07994 |
| 40 | $\Theta_1$ | 0.02733 | 0.04140 | 0.04770 | 0.04953 | 0.05153 | 0.04277 | 0.07309 |
| 41 | $\Theta_1$ | 0.02767 | 0.04180 | 0.04763 | 0.04953 | 0.05147 | 0.04310 | 0.07516 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.03113 | 0.04367 | 0.04777 | 0.04973 | 0.05160 | 0.04483 | 0.08286 |
| 43    | $\Theta_1$ | 0.03260 | 0.04400 | 0.04783 | 0.04967 | 0.05160 | 0.04517 | 0.08329 |
| 44    | $\Theta_1$ | 0.02973 | 0.04360 | 0.04770 | 0.04933 | 0.05147 | 0.04377 | 0.07832 |
| 45    | $\Theta_1$ | 0.03127 | 0.04313 | 0.04783 | 0.04967 | 0.05160 | 0.04437 | 0.08002 |
| 46    | $\Theta_1$ | 0.03160 | 0.04333 | 0.04797 | 0.04980 | 0.05153 | 0.04450 | 0.08242 |
| 47    | $\Theta_1$ | 0.03100 | 0.04347 | 0.04770 | 0.04960 | 0.05160 | 0.04470 | 0.08021 |
| 48    | $\Theta_1$ | 0.02633 | 0.04100 | 0.04763 | 0.04953 | 0.05140 | 0.04230 | 0.07331 |
| 49    | $\Theta_1$ | 0.03113 | 0.04333 | 0.04783 | 0.04980 | 0.05153 | 0.04450 | 0.08164 |
| 50    | $\Theta_1$ | 0.02820 | 0.04193 | 0.04777 | 0.04960 | 0.05147 | 0.04317 | 0.07372 |
| 51    | $\Theta_1$ | 0.03413 | 0.04427 | 0.04783 | 0.04960 | 0.05153 | 0.04557 | 0.08664 |
| 52    | $\Theta_1$ | 0.03273 | 0.04513 | 0.04783 | 0.04953 | 0.05173 | 0.04550 | 0.08550 |
| 53    | $\Theta_1$ | 0.03107 | 0.04347 | 0.04783 | 0.04973 | 0.05153 | 0.04470 | 0.08084 |
| 54    | $\Theta_1$ | 0.03100 | 0.04333 | 0.04777 | 0.04967 | 0.05153 | 0.04450 | 0.08043 |
| 55    | $\Theta_1$ | 0.02987 | 0.04260 | 0.04777 | 0.04967 | 0.05160 | 0.04383 | 0.07977 |
| 56    | $\Theta_1$ | 0.02800 | 0.03867 | 0.04770 | 0.05013 | 0.05140 | 0.04310 | 0.07328 |
| 57    | $\Theta_1$ | 0.02927 | 0.04227 | 0.04770 | 0.04960 | 0.05153 | 0.04350 | 0.07806 |
| 58    | $\Theta_1$ | 0.03000 | 0.04300 | 0.04783 | 0.04980 | 0.05167 | 0.04417 | 0.08033 |
| 59    | $\Theta_1$ | 0.02040 | 0.03653 | 0.04670 | 0.04833 | 0.05073 | 0.03763 | 0.05456 |
| 60    | $\Theta_1$ | 0.02967 | 0.04280 | 0.04777 | 0.04973 | 0.05160 | 0.04403 | 0.07847 |
| 61    | $\Theta_1$ | 0.03427 | 0.04427 | 0.04797 | 0.04980 | 0.05160 | 0.04550 | 0.08501 |

| 62 | $\Theta_1$ | 0.03187 | 0.04113 | 0.04777 | 0.05013 | 0.05153 | 0.04463 | 0.08184 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.03060 | 0.04320 | 0.04790 | 0.04980 | 0.05160 | 0.04443 | 0.08037 |
| 64 | $\Theta_1$ | 0.02453 | 0.03980 | 0.04757 | 0.04927 | 0.05127 | 0.04123 | 0.06566 |
| 65 | $\Theta_1$ | 0.02980 | 0.04300 | 0.04777 | 0.04967 | 0.05167 | 0.04423 | 0.07968 |
| 66 | $\Theta_1$ | 0.02747 | 0.04180 | 0.04763 | 0.04953 | 0.05147 | 0.04310 | 0.07404 |
| 67 | $\Theta_1$ | 0.03093 | 0.04347 | 0.04790 | 0.04980 | 0.05160 | 0.04463 | 0.08270 |
| 68 | $\Theta_1$ | 0.03093 | 0.04360 | 0.04777 | 0.04973 | 0.05160 | 0.04483 | 0.08046 |
| 69 | $\Theta_1$ | 0.02967 | 0.04287 | 0.04777 | 0.04960 | 0.05153 | 0.04410 | 0.07937 |
| 70 | $\Theta_1$ | 0.02720 | 0.04233 | 0.04770 | 0.04933 | 0.05133 | 0.04250 | 0.07183 |
| 71 | $\Theta_1$ | 0.03293 | 0.04427 | 0.04790 | 0.04980 | 0.05173 | 0.04543 | 0.08315 |
| 72 | $\Theta_1$ | 0.02813 | 0.04293 | 0.04777 | 0.04940 | 0.05140 | 0.04310 | 0.07246 |
| 73 | $\Theta_1$ | 0.02947 | 0.04247 | 0.04777 | 0.04967 | 0.05140 | 0.04370 | 0.07910 |
| 74 | $\Theta_1$ | 0.03260 | 0.04400 | 0.04797 | 0.04993 | 0.05167 | 0.04510 | 0.08350 |
| 75 | $\Theta_1$ | 0.03260 | 0.04380 | 0.04790 | 0.04973 | 0.05160 | 0.04503 | 0.08242 |
| 76 | $\Theta_1$ | 0.02700 | 0.04120 | 0.04763 | 0.04947 | 0.05140 | 0.04250 | 0.07192 |
| 77 | $\Theta_1$ | 0.03380 | 0.04447 | 0.04777 | 0.04967 | 0.05160 | 0.04563 | 0.08479 |
| 78 | $\Theta_1$ | 0.03167 | 0.04353 | 0.04790 | 0.04987 | 0.05160 | 0.04470 | 0.08128 |
| 79 | $\Theta_1$ | 0.02853 | 0.04180 | 0.04770 | 0.04953 | 0.05147 | 0.04310 | 0.07321 |
| 80 | $\Theta_1$ | 0.03073 | 0.04333 | 0.04783 | 0.04973 | 0.05167 | 0.04457 | 0.08038 |
| 81 | $\Theta_1$ | 0.02900 | 0.04227 | 0.04777 | 0.04960 | 0.05140 | 0.04350 | 0.07762 |
| 82 | $\Theta_1$ | 0.02953 | 0.04387 | 0.04783 | 0.04953 | 0.05147 | 0.04403 | 0.07853 |
| 83 | $\Theta_1$ | 0.03060 | 0.04347 | 0.04790 | 0.04993 | 0.05167 | 0.04457 | 0.08241 |
| 84 | $\Theta_1$ | 0.03140 | 0.04327 | 0.04783 | 0.04967 | 0.05167 | 0.04457 | 0.08267 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.03073 | 0.04307 | 0.04777 | 0.04967 | 0.05153 | 0.04430 | 0.07854 |
| 86    | $\Theta_1$ | 0.02973 | 0.04293 | 0.04777 | 0.04967 | 0.05153 | 0.04417 | 0.07906 |
| 87    | $\Theta_1$ | 0.03233 | 0.04400 | 0.04777 | 0.04973 | 0.05153 | 0.04517 | 0.08302 |
| 88    | $\Theta_1$ | 0.02933 | 0.04260 | 0.04777 | 0.04967 | 0.05153 | 0.04390 | 0.07805 |
| 89    | $\Theta_1$ | 0.03087 | 0.04333 | 0.04777 | 0.04973 | 0.05160 | 0.04457 | 0.08033 |
| 90    | $\Theta_1$ | 0.02840 | 0.04220 | 0.04777 | 0.04967 | 0.05153 | 0.04343 | 0.07733 |
| 91    | $\Theta_1$ | 0.03267 | 0.04420 | 0.04790 | 0.04987 | 0.05160 | 0.04537 | 0.08329 |
| 92    | $\Theta_1$ | 0.03173 | 0.04380 | 0.04770 | 0.04973 | 0.05167 | 0.04497 | 0.08250 |
| 93    | $\Theta_1$ | 0.02933 | 0.04267 | 0.04770 | 0.04960 | 0.05153 | 0.04397 | 0.07869 |
| 94    | $\Theta_1$ | 0.02767 | 0.04260 | 0.04770 | 0.04927 | 0.05140 | 0.04277 | 0.07366 |
| 95    | $\Theta_1$ | 0.02633 | 0.04187 | 0.04763 | 0.04933 | 0.05140 | 0.04243 | 0.07197 |
| 96    | $\Theta_1$ | 0.02873 | 0.04227 | 0.04770 | 0.04967 | 0.05147 | 0.04350 | 0.07623 |
| 97    | $\Theta_1$ | 0.03073 | 0.04327 | 0.04770 | 0.04960 | 0.05153 | 0.04430 | 0.07969 |
| 98    | $\Theta_1$ | 0.03067 | 0.04313 | 0.04777 | 0.04973 | 0.05153 | 0.04437 | 0.08130 |
| 99    | $\Theta_1$ | 0.03047 | 0.04300 | 0.04783 | 0.04973 | 0.05153 | 0.04423 | 0.07876 |
| 100   | $\Theta_1$ | 0.02967 | 0.04287 | 0.04783 | 0.04973 | 0.05153 | 0.04410 | 0.07942 |
| All   | $\Theta_1$ | 0.00687 | 0.00880 | 0.01030 | 0.01147 | 0.01393 | 0.01037 | 0.09931 |

#### Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |  |  |  |  |  |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |
|                                                                                                             |  |  |  |  |  |

## Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| _ocus | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15223.87 | -14894.64 | -14944.44 | -15008.26 |
| 2     | -14180.03 | -13973.56 | -14024.95 | -14099.65 |
| 3     | -14550.20 | -14236.92 | -14275.95 | -14344.71 |
| 4     | -15538.24 | -15113.36 | -15139.80 | -15212.47 |
| 5     | -14663.43 | -14356.43 | -14405.04 | -14470.50 |
| 6     | -15350.66 | -14807.15 | -14814.00 | -14878.82 |
| 7     | -14597.33 | -14293.66 | -14335.78 | -14406.45 |
| 8     | -14277.11 | -14091.77 | -14151.09 | -14222.80 |
| 9     | -14127.35 | -13944.59 | -14002.83 | -14075.42 |
| 10    | -14379.39 | -14105.04 | -14146.61 | -14220.67 |
| 11    | -16346.58 | -15700.90 | -15698.18 | -15758.50 |
| 12    | -14801.93 | -14532.63 | -14584.96 | -14654.24 |
| 13    | -14719.28 | -14424.98 | -14470.88 | -14539.63 |
| 14    | -14607.03 | -14368.84 | -14428.13 | -14493.35 |
| 15    | -15201.41 | -14802.54 | -14837.23 | -14901.86 |
| 16    | -16300.00 | -15289.18 | -15209.01 | -15275.61 |
| 17    | -14945.48 | -14681.80 | -14729.80 | -14802.48 |
| 18    | -14370.06 | -14146.14 | -14204.92 | -14270.88 |
| 19    | -16282.92 | -15469.21 | -15429.66 | -15493.08 |
| 20    | -14669.82 | -14360.75 | -14408.65 | -14471.77 |
| 21    | -16275.95 | -15495.38 | -15464.84 | -15529.98 |
| 22    | -14078.60 | -13903.42 | -13960.26 | -14035.67 |
| 23    | -14987.77 | -14524.04 | -14544.87 | -14606.59 |
| 24    | -14495.52 | -14280.92 | -14338.94 | -14405.55 |
| 25    | -15347.68 | -14748.55 | -14741.87 | -14807.70 |
| 26    | -15443.63 | -14916.92 | -14929.31 | -14992.20 |
| 27    | -15432.33 | -14771.78 | -14750.99 | -14818.44 |
| 28    | -14547.88 | -14253.04 | -14297.82 | -14366.24 |
| 29    | -36244.49 | -24422.57 | -22359.54 | -22443.03 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 11:14:38]

| 30 | -15609.29 | -14760.67 | -14699.08 | -14773.11 |
|----|-----------|-----------|-----------|-----------|
| 31 | -14600.47 | -14306.58 | -14357.39 | -14420.21 |
| 32 | -14477.37 | -14185.72 | -14223.82 | -14296.26 |
| 33 | -19390.77 | -18116.64 | -18028.14 | -18084.24 |
| 34 | -20960.30 | -18817.11 | -18568.39 | -18627.89 |
| 35 | -14060.12 | -13900.57 | -13958.57 | -14034.06 |
| 36 | -14433.05 | -14138.88 | -14177.52 | -14251.22 |
| 37 | -16784.89 | -16018.16 | -15997.50 | -16059.74 |
| 38 | -14264.38 | -14042.62 | -14092.47 | -14167.80 |
| 39 | -15167.75 | -14789.28 | -14827.24 | -14891.30 |
| 40 | -14100.88 | -13924.54 | -13981.25 | -14055.12 |
| 41 | -15171.42 | -14724.80 | -14741.13 | -14814.33 |
| 42 | -15035.42 | -14644.78 | -14678.96 | -14744.65 |
| 43 | -15229.99 | -14791.74 | -14816.01 | -14879.96 |
| 44 | -14312.64 | -14105.78 | -14165.94 | -14233.70 |
| 45 | -15209.76 | -14746.00 | -14768.91 | -14832.34 |
| 46 | -15898.76 | -15063.10 | -15016.20 | -15080.02 |
| 47 | -15008.70 | -14478.34 | -14480.83 | -14548.48 |
| 48 | -14110.02 | -13953.20 | -14009.80 | -14086.12 |
| 49 | -14396.45 | -14189.53 | -14253.16 | -14315.93 |
| 50 | -14576.69 | -14339.39 | -14391.54 | -14464.63 |
| 51 | -49967.05 | -32076.62 | -28950.88 | -29009.02 |
| 52 | -22869.38 | -19599.25 | -19150.99 | -19201.51 |
| 53 | -14625.89 | -14282.40 | -14320.01 | -14385.99 |
| 54 | -14339.59 | -14133.59 | -14194.81 | -14260.86 |
| 55 | -27628.76 | -23838.65 | -23329.20 | -23392.24 |
| 56 | -15373.40 | -14637.25 | -14596.90 | -14670.57 |
| 57 | -14510.59 | -14282.95 | -14332.49 | -14404.46 |
| 58 | -15150.37 | -14747.57 | -14777.10 | -14844.51 |
| 59 | -13935.10 | -13775.45 | -13822.47 | -13908.52 |
| 60 | -14300.40 | -14098.99 | -14155.28 | -14225.15 |
| 61 | -15756.66 | -14965.10 | -14925.46 | -14990.05 |
| 62 | -14623.79 | -14324.17 | -14369.83 | -14433.79 |
| 63 | -14614.12 | -14318.04 | -14362.24 | -14430.05 |
| 64 | -14073.60 | -13897.74 | -13951.18 | -14029.94 |
| 65 | -14369.57 | -14122.63 | -14176.00 | -14242.45 |
| 66 | -14116.47 | -13927.97 | -13983.11 | -14059.01 |
| 67 | -14696.14 | -14376.53 | -14423.98 | -14486.73 |
| 68 | -14822.31 | -14450.27 | -14481.92 | -14549.32 |
| 69 | -14683.25 | -14365.58 | -14405.83 | -14476.27 |
| 70 | -14098.07 | -13923.31 | -13980.81 | -14055.45 |
| 71 | -15789.45 | -15063.89 | -15042.64 | -15104.07 |
| 72 | -14335.20 | -14056.60 | -14096.20 | -14172.83 |
| 73 | -14488.97 | -14237.58 | -14289.03 | -14359.06 |
| 74 | -15071.31 | -14613.06 | -14638.04 | -14698.47 |
|    |           |           |           |           |

| 75  | -14653.17   | -14367.84   | -14419.22   | -14482.89   |
|-----|-------------|-------------|-------------|-------------|
| 76  | -14058.49   | -13899.52   | -13957.04   | -14032.92   |
| 77  | -15053.98   | -14729.07   | -14782.52   | -14839.61   |
| 78  | -15632.45   | -14854.80   | -14816.36   | -14881.24   |
| 79  | -14306.26   | -14040.98   | -14084.55   | -14158.48   |
| 80  | -14532.64   | -14233.96   | -14280.32   | -14346.64   |
| 81  | -14182.80   | -13996.61   | -14055.90   | -14127.43   |
| 82  | -14302.30   | -14091.09   | -14146.70   | -14216.86   |
| 83  | -17104.37   | -15962.63   | -15870.95   | -15932.36   |
| 84  | -15073.98   | -14770.72   | -14823.25   | -14884.75   |
| 85  | -14499.78   | -14192.08   | -14235.40   | -14301.76   |
| 86  | -14750.00   | -14332.06   | -14353.36   | -14422.34   |
| 87  | -15640.26   | -15192.03   | -15223.20   | -15286.10   |
| 88  | -14351.94   | -14163.42   | -14224.72   | -14295.03   |
| 89  | -14537.21   | -14269.09   | -14319.49   | -14390.75   |
| 90  | -14187.01   | -14000.51   | -14061.33   | -14130.19   |
| 91  | -15281.68   | -14742.14   | -14753.85   | -14814.11   |
| 92  | -14945.06   | -14580.64   | -14617.62   | -14681.06   |
| 93  | -26847.77   | -22850.12   | -22256.67   | -22356.36   |
| 94  | -14596.28   | -14227.35   | -14247.82   | -14324.66   |
| 95  | -14801.86   | -14444.87   | -14475.56   | -14549.43   |
| 96  | -14584.47   | -14237.31   | -14269.61   | -14340.84   |
| 97  | -14790.87   | -14454.83   | -14494.78   | -14562.63   |
| 98  | -14647.04   | -14336.07   | -14380.62   | -14446.18   |
| 99  | -14489.49   | -14196.27   | -14237.31   | -14309.27   |
| 100 | -19803.67   | -17442.00   | -17130.64   | -17195.94   |
| All | -1588579.71 | -1507571.63 | -1503039.69 | -1509868.15 |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 99.672319]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets. In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods,

Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

## Acceptance ratios for all parameters and the genealogies

| Parameter              | Accepted changes                            | Ratio              |
|------------------------|---------------------------------------------|--------------------|
| $\Theta_1$ Genealogies | 382939117/399972646<br>178345043/1600027354 | 0.95741<br>0.11146 |

## MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter              | Autocorrelation    | Effective Sampe Size     |
|------------------------|--------------------|--------------------------|
| $\Theta_1$ Genealogies | 0.56577<br>0.25980 | 2787204.41<br>6041672.17 |

## Average temperatures during the run

# Chain Temperatures 1 0.00000

2 0.00000

3 0.000004 0.00000

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou tes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No warning was recorded during the run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |