SFWR ENG 4003

Kemal Ahmed Dr. Deza Fall 2015

Contents

Li	near	1
	Converting constraints to equalities	
	e.g.)	
	Simplex Method	
	Simplex week out	

Linear

Linear Program: an optimization problem in which the objective function is linear and each constraint is a linear inequality or equality

Decision variables: describe our choices that are under our control

Objective function: describes a criterion that we wish to max/minimize; doesn't have an in/equality e.g. max 40x + 30y

Constraints: describe the limitations that restrict our choices for our decision variables, always *inequalities*.

Converting constraints to equalities

Slack variable: equation variable greater than constraint, added **Surplus variable**: equation variable less than constraint, subtracted

Hyperplane: a hyperplane in R^x is a shape in R^{x-1} , e.g. line in R^2

Optimal Solution:

Standard form: when you take inequalities and use slack variables to turn them into equalities.

- Note: all variables need to be ≥ 0.
- All remaining constraints are expressed as equality constraints.

e.g.)

$$2x_1 + 4x_2 - x_3 - x_4 \ge 1$$

 $2x_1 + 4x_2 - x_3 - x_4 + s = 1$

Simplex Method

Simplex Method: useful for solving linear optimization problems cheaply

- Cannot be done with strict inequalities, i.e. when there is no possibility of being equal
- Can only work if your objective function is in *standard form*

Simplex Tableau: visual representation of stuff