Apunts d'estructures algrebraiques

ALEIX TORRES I CAMPS

Jordi Guardia (jordi.guardia-rubies@upc.edu), Anna Rio i Santi Molina (Martí Oller)

1 Introducció

Definició 1. Una operació en un conjunt A és una aplicació $\phi: A \times A \to A$

Possibles propietats de les operacions

- 1. (PC) Propietat commutativa (o abeliana) $\forall a, b \in A \ \phi(a, b) = \phi(b, a)$.
- 2. (PA) Propietat associativa $\forall a, b, c \in A \ \phi(a, \phi(b, c)) = \phi(\phi(a, b), c)$.
- 3. (EN) Element neutre $\exists e \in A$ tal que $\forall a \in A\phi(e, a) = \phi(a, e) = a$.

Clarament, l'element neutre és únic. En efecte, si n'existisin 2 elements neutres, e i e', aleshores $e = \phi(e, e') = e'$, amb la qual cosa hem arribat a contradicció.

4. (PI) Invers d'un element $a \in A$ és $b \in A$ tal que $\phi(a,b) = \phi(b,a) = e$.

Si existeix i és associatiu també és únic. En efecte, si $\exists b, c$ tals que $\phi(a, b) = \phi(b, a) = \phi(a, c) = \phi(c, a) = e$. En aquest cas, $b = \phi(b, \phi(a, c)) = \phi(\phi(b, a), c) = c$, per tant, b = c i són el mateix element.

5. (PD) Si tenim dues operacions, que la primera (ϕ) sigui distributiva respecte la segona (μ) vol dir que $\phi(a, \mu(b, c)) = \phi(\mu(a, b), \mu(a, c))$ i que $\phi(\mu(b, c), a) = \phi(\mu(b, a), \mu(b, c))$.

1.1 Estructures algebraiques bàsiques

Definició 2. Un Grup (G, *) cal que compleixi EN, PA, PI.

Definició 3. Un Semigrup (G,*) cal que compleixi EN, PA.

Definició 4. Un Grup Abelià és un grup amb PC.

Definició 5. Una Anell (A, +, *) cal que (A, +) sigui un grup abelià, (A, *) un semigrup i la PD respecte la primera.

Definició 6. Un Anell communtatiu (o abelià) és un anell on (A, *) és commutatiu.

Definició 7. Un Cos és un Anell (A, +, *) tal que $(A \setminus \{0\}, *)$ és un grup abelià. On 0 és l'element neutre de (A, +).

Definició 8. Mòdul (M, +) és un mòdul sobre l'Anell A tal que: (M, +) és un grup abelià i $A \times M \to M$ (multiplicació per escalars) tal que: $a(m_1 + m_2) = am_1 + am_2$, (a + b)m = am + bm, a(bm) = (ab)m i $1_A m = m$ ($\forall a, b \in A, \forall m, m_1, m_2 \in M$.

Definició 9. Un espai vectorial és un mòdul sobre un Cos.

2 Anells

Sigui $(A, +, \cdot)$ un Anell (sempre ens referirem a Anells commutatius sense haver de dir-ho cada vegada).

Notació: 0_A és l'emenent neutre de la suma (+), el "zero". I a l'element neutre del producte (·) és 1_A , l'ü". Denotarem -a l'element invers d'a respecte + (l'"oposat"). a^{-1} l'element invers d'a respecte del producte. $A^* = \{a \in A \text{ tal que } \exists a^{-1}\}$ s'obté un grup abelià.

Proposició 10. Propietats:

- 1. $\forall a, b, c \in A \text{ si } a + b = a + c \text{ llavors } b = c.$
- 2. $\forall a \in A \text{ es compleix que } 0_A \cdot a = 0_A$.
- 3. $\forall a \in A \text{ es compleix que } (-1_A) \cdot (-a) = a$.
- 4. $\forall a \in A \text{ es compleix que } (-1_A) \cdot (a) = -a$.

Demostració.

1.
$$-a + (a+b) = -a + (a+c) \iff (per\ PA)(-a+a) + b = (-a+a) + c \iff O_A + b = O_A + c \iff b = c$$
.

2.
$$0_A \cdot a + 0_A = 0_A \cdot a = ((0_A + 0_A) \cdot a) = [PD] = 0_A \cdot a + 0_A \cdot a \implies 0_A = 0_A \cdot a$$
.

3.
$$(-1_A)(-a) = (-1_A)(-a) + (-a) + (a) = [PD] = (1_A - 1_A)(-a) + a = 0_A + a = a$$
.

4.
$$-a = [3] = ((-1_A)(-1_A))(-a) = [PA] = (-1_A)((-1_A)(-a)) = [3] = (-1_A)(a)$$
.

Exemple 1. Alguns exemples d'anells.

- 1. $\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$
- 2. $Z[x] \subset Q[x] \subset R[x] \subset C[x]$
- 3. $M_n(A)$ on A és un Anell
- 4. $\mathbf{Z}[J] = \{a_0 + a_1 J + a_2 J^2 + a_3 J^3 + a_4 J^4 : a_i \in \mathbf{Z}\}\ J = e^{2\pi i/5}$
- 5. $\mathbf{Z}/n\mathbf{Z}$ Taules d'operacions per n = 6, 8.

Proposició 11. Sigui A un anell tal que neutre de la suma és el neutre del producte $(0_A = 1_A)$ aleshores l'Anell té un sol element $(A = \{0_A\})$.

Demostració. Suposem que tenim un element $a \in A$ diferent del neutre. Aleshores, $0_A = 0_A \cdot a = 1_A \cdot a = a$. I, per tant, aquest element també és 0_A .

Definició 12. Sigui A un anell, $n \in \mathbf{Z}$ i $a \in A$. Llavors, si n > 0, $n \cdot a := a + \cdots + a$, si n < 0, $n \cdot a := (-a) + \cdots + (-a)$, si $n = 0_{\mathbf{Z}}$, $0_{\mathbf{Z}} \cdot a = 0_A$. De la mateixa manera, si n > 0, $a^n := a \cdot \cdots \cdot a$, si n < 0, $a^n := a^{-1} \cdot \cdots \cdot a^{-1}$ i si $n = 0_{\mathbf{Z}}$, $a^n = 1_A$.

Definició 13. Direm que l'anell A té característica n, si n és el menor nombre enter positiu més petit tal que $n \cdot 1_A = 0_A$. En cas que no existeixi $(n \cdot 1_A \neq 0_A \ \forall n \in \mathbf{Z}^+)$, direm que té característica 0.

Observació 14. Està clar que $char(A) \cdot a = O_A \ \forall a \in A$.

Definició 15. Un subanell d'un anell A és un subconjunt S tal que:

1.
$$1_A \in S$$

- $2. \ a,b \in S \implies a-b \in S$
- $3. \ a,b \in S \implies a \cdot b \in S$

Proposició 16. $S \subset A$, llavors S és un subanell $\iff S$ és un anell.

Demostraci'o. \Longrightarrow Cal veure que (S,+) és un grup (Abelià), (S,\cdot) és un semigrup i que és compleix la PD. De les operacions de A s'hereden automaticament les propietats PA, PC, PD. Ara de la primera característica dels subanells tenim $1_A \in S$. I de la 2a, fent b=a, tenim $0_A \in S$ i ara, fent $a=0_A$, b=a, tenim l'invers per la suma. Per tant, S és un anell.

 \Leftarrow Si S és un anell, té el neutre de la multiplicació, té invers de la suma, està tancat per la suma i està tanvat per la multiplicació. Cosa que demostra les característiques 1, 2 i 3, respectivament.

Exemple 2. $\mathbf{Z} \subset \mathbf{Z}[i] = \{a + bi, a, b \in \mathbf{Z}\} \subset \mathbf{C}$ són anells.

Exemple 3. $2\mathbf{Z} = \{a \in \mathbf{Z} : a \cong 0 \pmod{2}\} = \{2k : k \in \mathbf{Z}\}$ No és un subanell.

Proposició 17. Sigui $J = e^{2\pi i/n}$. $\mathbf{Z}[J] = \{a_0 + a_1 J + \ldots + a_{n-1} J^{n-1} : a_i \in \mathbf{Z}\}$ Demostreu que és una anell comprovant que és un subanell de \mathbf{C} .

Definició 18. Donats A, B anells. el seu anell producte és el conjunt $A \times B$ amb les operacions:

$$+: (A \times B) \times (A \times B) \to A \times B$$

$$(a_{1}, b_{1}), (a_{2}, b_{2}) \to (a_{1} + a_{2}, b_{1} + b_{2})$$

$$\cdot: (A \times B) \times (A \times B) \to A \times B$$

$$(a_{1}, b_{1}), (a_{2}, b_{2}) \to (a_{1} \cdot a_{2}, b_{1} \cdot b_{2})$$

Definició 19. Sigui A un anell. Un subconjunt $I \subset A$ és un ideal si $\forall u, v \in I, \ \forall \alpha, \beta \in A$.

- 1. $u \in I$, $\alpha \in A \implies \alpha \cdot u \in I$
- $2. \ u, v \in I \implies u + v \in I$

I, per tant, només cal comprovar que $\alpha u + \beta v \in I$.

Exemple 4. Alguns ideals:

- 1. $\{0_A\}$ L'ideal zero. A l'ideal total.
- 2. $m\mathbf{Z} \subset Z$ és un ideal.
- 3. Anell principals o l'anell generat per $a \in A$ és $(a) := \{am : m \in A\}$. Similarment l'ideal finitament generat per $a_1, \ldots, a_n \in A$ és $(a_1, a_2, \ldots, a_n) := \{a_1m_1 + \ldots + a_nm_n : m_i \in A\}$.
- 4. Per $\alpha \in \mathbf{Q}$, definim $I = \{f(x) \in Q, \text{ llavors } I = \{f(x) \in \mathbf{Q}[x] : f(x) = 0\}$ és un ideal de $\mathbf{Q}[x]$ i coincideix amb el generat per $(x \alpha) = I$
- 5. $I = \{f(x,y) \in \mathbf{Q}[x,y] : f(0,0) = 0\}$ ideal de $\mathbf{Q}[x,y]$. Coincideix amb (x,y) = I.

Proposició 20. $I, J \subset A \ ideals$

- 1. $I + J = \{a + b : a \in I, b \in J\}$ és un ideal i és el menor que conté I i J.
- 2. $I \cdot J = \{\sum_{i < \infty} a_i b_i : a_i \in I, b_i \in J\}$ és un ideal

Demostraci'o.

1. Primer comprovem que és un ideal. Siguin $a_1, a_2 \in I$, $b_1, b_2 \in J$ i $u = a_1 + b_1, v = a_2 + b_2 \in I + J$, $\alpha, \beta \in A$, llavors $\alpha u + \beta v = \alpha(a_1 + b_1) + \beta(a_2 + b_2) = (\alpha a_1 + \beta a_2) + (\alpha b_1 + \beta b_2)$ que pertany a I + J, ja que $(\alpha a_1 + \beta a_2) \in I$ i $(\alpha b_1 + \beta b_2) \in J$.

I és el menor que conté els I i a J, perquè si un ideal K els conté, com que $\forall a \in I \subset K$, $\forall b \in J \subset K$ aleshores, com que K ha de ser tancat per la suma, segur que $a + b \in K$.

2. Siguin $a_j, a_i \in I$, $b_j, b_i \in J$ i $u = \sum_j a_j \cdot b_j, v = \sum_i a_i \cdot b_i \in I \cdot J$, $\alpha_1, \alpha_2 \in A$, llavors, $\alpha_1 u + \alpha_2 v = \alpha_1 \sum_j a_j \cdot b_j + \alpha_2 \sum_i a_i \cdot b_i = [\text{PD i PA}] = \sum_j (\alpha_1 a_j) \cdot b_j + \sum_i (\alpha_2 a_i) \cdot b_i = \sum_{k=i,j} (\alpha a_k) b_k \in I \cdot J$, perquè $\alpha_1 a_j, \alpha_2 a_i \in I$.

- 3 Cossos
- 4 Grups
- 5 Moduls