Promoting Intersectional Fairness through Knowledge Distillation

Md Fahim Sikdera, Resmi Ramachandranpillaib, Daniel de Lenga, and Fredrik Heintza

^aReasoning and Learning lab (ReaL), Department of Computer and Information Science (IDA), Linköping University, Sweden

bInstitute of Experential AI, Northeastern University, USA

The problem: Intersectional Bias in AI Systems

Discrimination can manifest at intersections of multiple sensitive attributes (gender x race x ethnicity). For example: evidence showed commercial facial recognition software gives errors of 0.8% for lighter-skinned males versus 34.7% for darker-skinned females, while giving good performance when considering single-attributes alone [1]. Existing fairness methods address singleattributes, thereby missing compounded discrimination.

Our Approach: Novel Two-stage Framework for Mitigating Intersectional Bias

Knowledge distillation + Modular Intersectional Loss (FPR + DP + CI + Adversarial) targeting Intersectional Groups

Novel Two-Stage Framework

• Presented a knowledge distillation framework that transfers predictive performance from a teacher model to a fair student model

- Ensures high utility while enabling fairness interventions
- Teacher focuses on accuracy; student inherits knowledge while enforcing fairness

Key Contribution

Comprehensive Architecture

- Modular loss functions targeting False-positive rate parity (FPR), Demographic parity (DP), Conditional independence (CI)
- Support both binary and multi-class classification settings

Improved Performance

• +52% accuracy, 61% FPR reduction, robust model

Practical Deployment

• 2.5 – 5 x parameter compression

Framework Architecture

Experimental Results

Overall Predictive Performance

Model Robustness Under Label Noise (COMPAS)

Acknowledgement

This work was funded by the Knut and Alice Wallenberg Foundation, Sweden, the ELLIIT Excellence Center at Linköping-Lund for Information Technology, Sweden (portions of this work were carried out using the AIOps/Stellar). The computations were enabled by the Berzelius resource provided by the Knut and Alice Wallenberg Foundation at the National Supercomputer Centre.

References

- [1] Buolamwini, Joy, and Timnit Gebru. "Gender shades: Intersectional accuracy disparities in commercial gender classification." Conference on fairness, accountability and transparency. PMLR, 2018.
- [2] Jang, Taeuk, et al. "Achieving fairness through separability: A unified framework for fair representation learning." International Conference on Artificial Intelligence and Statistics. PMLR, 2024.

Paper

