

Decomposizione dati 2D: Algoritmi full-parallel per la gestione di matrici

Docente: Prof. L. Marcellino

Tutor: Prof. P. De Luca

Modellizzazione di problemi su larga scala

- Ricerca su internet
- Trasporto
- Pubblicità e Marketing
- Servizi bancari e finanziari
- Media e intrattenimento
- Meteorologia
- Assistenza sanitaria
- Sicurezza informatica
- Formazione

Il parallelismo delle architetture MIMD-SM metodi numerici paralleli

Modello Numerico $M_h(P)$

Ripartire dal modello numerico (modello matematico discretizzato **h=1,...,N**) e analizzare gli **N** passi in modo da distribuirli, eventualmente, a più unità processanti.

Più possibilità:

- ogni unità processante esegue un passo differente (decomposizione funzionale)
- tutte le unità processanti eseguono la stessa operazione su un sottoinsieme di dati

(decomposizione del dominio)

combinazione delle due possibilità precedenti

Il parallelismo delle architetture MIMD-SM metodi numerici paralleli

Modello Numerico M_h(P)

Ripartire dal modello numerico (modello matematico discretizzato h=1,...,N) e suddividere, quando possibile, i task in più sotto-task uguali e processarli contemporaneamente, ma riducendo al minimo la collezione dei risultati locali.

Il parallelismo delle architetture MIMD-SM metodi numerici paralleli

Modello Numerico $M_h(P)$

Ripartire dal modello numerico (modello matematico discretizzato h=1,...,N) e suddividere, quando possibile, i task in più sotto-task uguali e processarli contemporaneamente, ma riducendo al minimo la collezione dei risultati

locali. $M_1(P)$ $M_{2.1}(P)$ $M_{2.np}(P)$ $M_{2.2}(P)$ **Modello Numerico** $M_h(P)$ h=1,..., N $M_2(P)$ decomposizione del dominio $M_N(P)$

Decomposizione di matrici

Prodotto di uno scalare con una matrice di grandi dimensioni!

Input: $\beta \cdot A$: dim(A)=N×N

Output: $C = \{c_{i,j}\} = \{\beta \cdot \alpha_{i,j}\} i = 0,...,N-1, j=0,...,N-1$

Prodotto di uno scalare con una matrice di grandi dimensioni!

Su un calcolatore monoprocessore il prodotto è calcolato eseguendo N×N prodotti uno per volta secondo un ordine prestabilito

Decomposizione di matrici

Prodotto di uno scalare con una matrice di grandi dimensioni!

su un calcolatore parallelo
tipo MIMD

A MEMORIA CONDIVISA

Il parallelismo delle architetture MIMD

prodotto di uno scalare per una matrice di dimensione N×N

Se ho a disposizione np unità processanti, come posso procedere sfruttando il concetto di calcolo parallelo?

Decomporre un problema di dimensione N in **np** sottoproblemi di dimensione N/**np** e risolverli contemporaneamente usando **np** CPU

Quali sono i sotto-problemi indipendenti?

Decomposizione del problema Scalare per Matrice

Partizionamento della matrice A

IN BLOCCHI

Riformulazione dell'algoritmo sequenziale "A BLOCCHI"

Parallelismo dell'algoritmo
"A BLOCCHI"

Qual è l'algoritmo parallelo?

Partizionamento della matrice

I STRATEGIA

Suddividiamo la matrice A in BLOCCHI di RIGHE

I strategia di parallelizzazione prodotto di uno scalare per una matrice di dimensione N×N

IDEA

Suddividere il dominio del problema (la matrice) per blocchi di righe e assegnare il prodotto dello scalare per il blocchi riga ad ogni CPU

I <u>blocchi riga</u> calcolati possono essere uniti nella memoria shared per formare la matrice risultato

PARALLELISMO COMPLETO

I core possono accedere simultaneamente alla memoria globale su dati differenti

Esempio: N=6, p=2

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} & a_{05} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \end{pmatrix} \quad \begin{matrix} c_0 \\ c_0 \\ c_0 \\ c_0 \\ c_0 \\ c_1 \\ c_1 \\ c_2 \\ c_1 \\ c_2 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_4 \\ c_6 \\ c_6 \\ c_1 \\ c_1 \\ c_2 \\ c_1 \\ c_2 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_4 \\ c_6 \\ c_6 \\ c_6 \\ c_6 \\ c_1 \\ c_6 \\$$

Esempio: N=6, p=2

Prodotti locali

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} & a_{03} & a_{04} & a_{05} \\ a_{10} & a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{20} & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \end{pmatrix} \cdot \beta \quad c_0$$

$$\begin{array}{c} a_{30} & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{40} & a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{50} & a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{pmatrix} \cdot \beta \quad c_1$$

II STRATEGIA

Suddividiamo la matrice A in BLOCCHI di COLONNE

Il strategia di parallelizzazione prodotto di uno scalare per una matrice di dimensione N×N

IDEA

Suddividere il dominio del problema (la matrice) per blocchi di colonne e assegnare il prodotto dello scalare per il blocchi colonna ad ogni CPU

I <u>blocchi colonna</u> calcolati possono essere uniti nella memoria shared a formare la matrice risultato PARALLELISMO COMPLETO

I core possono accedere simultaneamente alla memoria globale su dati differenti

Esempio: N=6, p=2

$$A = \begin{pmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \\ a_{30} & a_{31} & a_{32} \\ a_{40} & a_{41} & a_{42} \\ a_{50} & a_{51} & a_{52} \end{pmatrix} \begin{pmatrix} a_{03} & a_{04} & a_{05} \\ a_{13} & a_{14} & a_{15} \\ a_{23} & a_{24} & a_{25} \\ a_{33} & a_{34} & a_{35} \\ a_{43} & a_{44} & a_{45} \\ a_{53} & a_{54} & a_{55} \end{pmatrix}$$

$$egin{array}{llll} a_{03} & a_{04} & a_{05} \ a_{13} & a_{14} & a_{15} \ a_{23} & a_{24} & a_{25} \ a_{33} & a_{34} & a_{35} \ a_{43} & a_{44} & a_{45} \ a_{53} & a_{54} & a_{55} \ \end{array}$$

Esempio: N=6, p=2

Prodotti locali

 C_0 C_1

III STRATEGIA

Suddividiamo la matrice A in BLOCCHI di RigheColonne

III strategia di parallelizzazione prodotto di uno scalare per una matrice di dimensione N×N

IDEA

Suddividere il dominio del problema (la matrice) per blocchi di righe&colonne e assegnare il prodotto dello scalare per il blocchi riga-colonna ad ogni CPU

I <u>blocchi riga-colonna</u> calcolati possono essere uniti nella memoria shared la matrice risultato PARALLELISMO COMPLETO

Griglie di processori/core TOPOLOGIA VIRTUALE

Griglie di processori/core TOPOLOGIA VIRTUALE

Griglie di processori/core TOPOLOGIA VIRTUALE

I core possono accedere simultaneamente alla memoria globale su dati differenti

• Esempio: N=6, $q \times p = 2 \times 2$

		$egin{array}{cccccccccccccccccccccccccccccccccccc$			C ₀₁	
	a_{00}	a_{01}	a_{02}	a_{03}	a_{04}	a_{05}
A =	a_{10}	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
	a_{20}	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}
	a_{30}	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}
	a_{40}	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}
	a_{50}	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}
		C ₁₀			<i>C</i> ₀₀	

• Esempio: N=6, $q \times p = 2 \times 2$

Prodotti locali

$$A = \begin{pmatrix} a_{00} & a_{01}^{2} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \\ a_{30} & a_{31} & a_{32} \\ a_{40} & a_{41} & a_{42} \\ a_{50} & a_{51}^{2} & a_{52} \\ & & \beta \end{pmatrix} \begin{pmatrix} a_{03} & a_{04}^{2} & a_{05} \\ a_{13} & a_{14} & a_{15} \\ a_{23} & a_{24}^{2} & a_{25} \\ a_{33} & a_{34}^{2} & a_{35} \\ a_{43} & a_{44}^{2} & a_{45} \\ a_{50} & a_{51}^{2} & a_{52} \\ & & \beta \end{pmatrix}$$

Strategie di parallelizzazione per problemi di tipo element-wise

Per ognuna delle strategie considerate (I, II, III) si tratta di un PROBLEMA COMPLETAMENTE PARALLELIZZABILE

FULL PARALLEL

nessuna collezione dei risultati

- Somma, prodotto puntuale, sottrazioni di matrici
- Somma, differenza, divisione con scalare
- Calcolo della trasposta, riflessione

con queste prime semplici operazioni è possible fare filtri base a qualunque tipo di segnale

Modellizzazione di problemi su larga scala

- Ricerca su internet
- Trasporto
- Pubblicità e Marketing
- Servizi bancari e finanziari
- Media e intrattenimento
- Meteorologia
- Assistenza sanitaria
- Sicurezza informatica
- Formazione

