Hierarchical Clustering

Ke Chen

Outline

- Introduction
- Cluster Distance Measures
- Agglomerative Algorithm
- Example and Demo
- Relevant Issues
- Summary

Introduction

Hierarchical Clustering Approach

- A typical clustering analysis approach via partitioning data set sequentially
- Construct nested partitions layer by layer via grouping objects into a tree of clusters (without the need to know the number of clusters in advance)
- Use (generalised) distance matrix as clustering criteria

Agglomerative vs. Divisive

- Two sequential clustering strategies for constructing a tree of clusters
- Agglomerative: a bottom-up strategy
 - Initially each data object is in its own (atomic) cluster
 - Then merge these atomic clusters into larger and larger clusters
- Divisive: a top-down strategy
 - Initially all objects are in one single cluster
 - Then the cluster is subdivided into smaller and smaller clusters

Introduction

Illustrative Example

Agglomerative and divisive clustering on the data set {a, b, c, d, e}

Cluster Distance Measures

- Single link: smallest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_i) = min{d(x_{ip}, x_{iq})}
- Complete link: largest distance between an element in one cluster and an element in the other, i.e., d(C_i, C_j) = max{d(x_{ip}, x_{jq})}
- Average: avg distance between elements in one cluster and elements in the other, i.e.,
 d(C_i, C_j) = avg{d(x_{ip}, x_{jq})}

Cluster Distance Measures

Example: Given a data set of five objects characterised by a single continuous feature, assume that there are two clusters: C1: {a, b} and C2: {c, d, e}.

	a	b	С	d	е
Feature	1	2	4	5	6

- 1. Calculate the distance matrix.
- b d a C e 5 0 4 a 3 b 0 4 2 2 0 C d 3 0 2 1 5 4 0 e
- 2. Calculate three cluster distances between C1 and C2.

Single link

$$dist(C_1, C_2) = min\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= min\{3, 4, 5, 2, 3, 4\} = 2$$

Complete link

$$dist(C_1, C_2) = \max\{d(a, c), d(a, d), d(a, e), d(b, c), d(b, d), d(b, e)\}$$
$$= \max\{3, 4, 5, 2, 3, 4\} = 5$$

Average

$$dist(C_1, C_2) = \frac{d(a, c) + d(a, d) + d(a, e) + d(b, c) + d(b, d) + d(b, e)}{6}$$

$$= \frac{3 + 4 + 5 + 2 + 3 + 4}{6} = \frac{21}{6} = 3.5$$

Agglomerative Algorithm

- The Agglomerative algorithm is carried out in three steps:
 - 1) Convert all object features into a distance matrix
 - 2) Set each object as a cluster (thus if we have Nobjects, we will have N clusters at the beginning)
 - 3) Repeat until number of cluster is one (or known # of clusters)
 - Merge two closest clusters
 - Update "distance matrix"

Problem: clustering analysis with agglomerative algorithm

$$d_{AB} = \left((1 - 1.5)^2 + (1 - 1.5)^2 \right)^{\frac{1}{2}} = \sqrt{\frac{1}{2}} = 0.7071$$

$$d_{DF} = \left((3 - 3)^2 + (4 - 3.5)^2 \right)^{\frac{1}{2}} = 0.5$$
Euclidean distance

distance matrix

Merge two closest clusters (iteration 1)

Update distance matrix (iteration 1)

Merge two closest clusters (iteration 2)

Update distance matrix (iteration 2)

Min Distance (Single Linkage) Dist D, F $d_{C \to (A,B)} = \min(d_{CA}, d_{CB}) = \min(5.66, 4.95) = 4.95$ 3.20 4.24 0.71 5.66 A 0.00 $d_{(D,F)\to(A,B)} = \min \left(d_{DA}, d_{DB}, d_{FA}, d_{FB} \right)$ = \text{min (3.61, 2.92, 3.20, 2.50)} = 2.50 В 0.00 2.50 3.54 4.95 0.71 C 2.24 1.41 5.66 4.95 0.00 D, F 3.20 0.00 1.00 $d_{E\to(A,B)} = \min(d_{EA}, d_{EB}) = \min(4.24, 3.54) = 3.54$ 2.50 2.24 E 1.00 0.00 4.24 3.54 1.41 Min Distance (Single Linkage) (D, F) E A,B Dist E Dist A,B (D, F) A,B 3.54 A,B 2.50 4.95 C 1.41 2.24 C 4.95 1.41 0 2.24 (D, F) 1.00 2.24 2.50 (D, F) 2.24 1.00 0 E 1.41 1.00 0 3.54 1.00 Ε 1.41 0

Example

Merge two closest clusters/update distance matrix

(iteration 3)

 Merge two closest clusters/update distance matrix (iteration 4)

Final result (meeting termination condition)

MANCHESTER

Example

Dendrogram tree representation

- 1. In the beginning we have 6 clusters: A, B, C, D, E and F
- 2. We merge clusters D and F into cluster (D, F) at distance 0.50
- 3. We merge cluster A and cluster B into (A, B) at distance 0.71
- 4. We merge clusters E and (D, F) into ((D, F), E) at distance 1.00
- 5. We merge clusters ((D, F), E) and C into (((D, F), E), C) at distance 1.41
- 6. We merge clusters (((D, F), E), C) and (A, B) into ((((D, F), E), C), (A, B)) at distance 2.50
- 7. The last cluster contain all the objects, thus conclude the computation

Example

Dendrogram tree representation: "clustering" USA states

Exercise

Given a data set of five objects characterised by a single continuous feature:

	a	b	С	d	е
Feature	1	2	4	5	6

Apply the agglomerative algorithm with single-link, complete-link and averaging cluster distance measures to produce three dendrogram trees, respectively.

	а	b	С	d	е
а	0	1	3	4	5
b	1	0	2	3	4
С	3	2	0	1	2
d	4	3	1	0	1
е	5	4	2	1	0

Demo

The University

Relevant Issues

- How to determine the number of clusters
 - If the number of clusters known, termination condition is given!
 - The K-cluster lifetime as the range of threshold value on the dendrogram tree that leads to the identification of K clusters
 - Heuristic rule: cut a dendrogram tree with maximum K-cluster life time

Summary

- Hierarchical algorithm is a sequential clustering algorithm
 - Use distance matrix to construct a tree of clusters (dendrogram)
 - Hierarchical representation without the need of knowing # of clusters (can set termination condition with known # of clusters)
- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Sensitive to cluster distance measures and noise/outliers
 - Less efficient: $O(n^2 \log n)$, where n is the number of total objects
- There are several variants to overcome its weaknesses
 - BIRCH: scalable to a large data set
 - ROCK: clustering categorical data
 - CHAMELEON: hierarchical clustering using dynamic modelling

Online tutorial: the hierarchical clustering functions in Matlab https://www.youtube.com/watch?v=aYzjenNNOcc