Knowledge Representation

Lecture 5: Practical Reasoning with $\mathcal{E}\mathcal{L}$

Patrick Koopmann

November 6, 2023

The story so far:

- Concepts describe sets of individuals
- Ontologies contain axioms about concepts and individuals
- ► Interpretations and models
- ► Entailment as basic reasoning task
- ► Today: How does reasoning with DLs work?

Little Warm-Up Exercise

```
\mathcal{O} = \{ Alive \sqsubseteq Animal \sqcup Plant \ Animal \sqsubseteq \exists hasParent.Male \sqcap \exists hasParent.Female \ thomas : Alive \ thomas : <math>\forall hasParent.\bot \}
```

What can we say about Thomas?

Flashback: What is Knowledge Representation?

- KR as surrogate
- ► KR as expression of ontological commitment
- ► KR as theory of intelligent reasoning
- ► KR as medium for efficient computation
 - automated deduction is useless if it is not practical
 - trade-off between expressivity and reasoning performance
- ► KR as medium of human expression

Flashback: Reasoning

Reasoning allows us to discover new insights from the knowledge represented in the ontology.

The central reasoning task is entailment:

 \mathcal{O} entails an axiom α ($\mathcal{O} \models \alpha$) if every model of \mathcal{O} is also a model of α .

- ▶ We need to consider what all models have in common.
- This is the same as in propositional and first-order logic.

Deciding $\mathcal{O} \models \alpha$

Reasoning looks harder than in propositional logic:

- In propositional logic, we only have a finite number of interpretations to consider
 - interpretations are truth valuations
 - we can go through the interpretations one by one and check

Deciding $\mathcal{O} \models \alpha$

Reasoning looks harder than in propositional logic:

- In propositional logic, we only have a finite number of interpretations to consider
 - interpretations are truth valuations
 - we can go through the interpretations one by one and check
- ▶ In description logics, there are infinitely many interpretations!
 - interpretations involve different domain elements
 - their number is arbitrary (up infinitely many)

Deciding $\mathcal{O} \models \alpha$

Reasoning looks harder than in propositional logic:

- In propositional logic, we only have a finite number of interpretations to consider
 - interpretations are truth valuations
 - we can go through the interpretations one by one and check
- ▶ In description logics, there are infinitely many interpretations!
 - interpretations involve different domain elements
 - their number is arbitrary (up infinitely many)
- But we are better off than in first-order logic
 - entailment in description logics is decidable
 - entailment in description logics is decidable
 - entailment for first-order logic is only semi-decidable

No Equivalence Axioms

To keep the following simpler, we assume that our TBoxes contain no equivalence axioms.

If the TBox contains equivalence axioms $C \equiv D$, we can replace each such axiom by the two axioms $C \sqsubseteq D$ and $D \sqsubseteq C$.

Reasoning in Description Logics

Reasoning with \mathcal{ALC} is truely harder than for propositional logic

- we have to consider different options for different elements
- ▶ it may require exponential time in the size of the ontology
- ightharpoonup differently to propositional logic (P = NP question), this is certain from a theoretically perspective

Reasoning in Description Logics

Reasoning with \mathcal{ALC} is truely harder than for propositional logic

- we have to consider different options for different elements
- ▶ it may require exponential time in the size of the ontology
- ightharpoonup differently to propositional logic (P=NP question), this is certain from a theoretically perspective

Before we look at \mathcal{ALC} , we look at an easier description logic

A practical fragment of \mathcal{ALC}

- $ightharpoonup \mathcal{ALC}$ is just one example of a DL
- ▶ Different DLs differ in
 - What concept operators they allow
 - What axiom types they allow

A practical fragment of \mathcal{ALC}

- $ightharpoonup \mathcal{ALC}$ is just one example of a DL
- ▶ Different DLs differ in
 - What concept operators they allow
 - What axiom types they allow
- \blacktriangleright A very important DL is \mathcal{EL} , which is a fragment of \mathcal{ALC}
 - \triangleright \mathcal{EL} only allows the concept operators \top , \sqcap and $\exists \ \forall$
 - $ightharpoonup \mathcal{EL}$ does allow all axiom types we have seen so far.

A practical fragment of \mathcal{ALC}

- $ightharpoonup \mathcal{ALC}$ is just one example of a DL
- ▶ Different DLs differ in

example

- What concept operators they allow
- What axiom types they allow
- \blacktriangleright A very important DL is \mathcal{EL} , which is a fragment of \mathcal{ALC}
 - \triangleright \mathcal{EL} only allows the concept operators \top , \sqcap and $\exists \ \forall$
 - $ightharpoonup \mathcal{EL}$ does allow all axiom types we have seen so far.
- \blacktriangleright \mathcal{EL} is used predominantly in many large ontologies
 - ightharpoonup Very often, most axioms in an ontology are \mathcal{EL} axioms
 - ightharpoonup A lot of ontologies are pure \mathcal{EL} ontologies (or in friendly extensions of \mathcal{EL})
 - ► SNOMED CT, the large medical ontology mentioned in Lecture 3, is one such

Reasoning in \mathcal{EL}

- ightharpoonup Some reasoning tasks are not interesting in \mathcal{EL} :
 - ▶ We do not have ⊥ or ¬
 - ⇒ We cannot create contradictions
 - \Rightarrow every \mathcal{EL} ontology is consistent and coherent

Reasoning in \mathcal{EL}

- ▶ Some reasoning tasks are not interesting in \mathcal{EL} :
 - \blacktriangleright We do not have \bot or \neg
 - ⇒ We cannot create contradictions
 - \Rightarrow every \mathcal{EL} ontology is consistent and coherent
- Other reasoning tasks are more interesting:
 - ▶ Subsumption: $\mathcal{O} \models C \sqsubseteq D$
 - ▶ Instance checking: $\mathcal{O} \models a$: \mathcal{C}
 - ▶ Classification: Determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - ▶ Materialization: Determine all $\mathcal{O} \models a$: B where $a \in I$ and $B \in C$

Reasoning in \mathcal{EL}

- ▶ Some reasoning tasks are not interesting in \mathcal{EL} :
 - ightharpoonup We do not have \perp or \neg
 - ⇒ We cannot create contradictions
 - \Rightarrow every \mathcal{EL} ontology is consistent and coherent
- ▶ Other reasoning tasks are more interesting:
 - ▶ Subsumption: $\mathcal{O} \models C \sqsubseteq D$
 - ▶ Instance checking: $\mathcal{O} \models a$: \mathcal{C}
 - ▶ Classification: Determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - ▶ Materialization: Determine all $\mathcal{O} \models a$: B where $a \in I$ and $B \in C$
- ► We first look at an algorithm for subsumption

The idea:

▶ We want to determine whether $\mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D}$

- ▶ We want to determine whether $\mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D}$
- \blacktriangleright We iteratively construct a special model of $\mathcal O$ with an element $d \in \mathcal C^{\mathcal I}$
- ▶ In this model, d will satisfy all concepts D' for which $\mathcal{O} \models C \sqsubseteq D'$
 - ► The model is thus called a canonical model

- ▶ We want to determine whether $\mathcal{O} \models C \sqsubseteq D$
- \blacktriangleright We iteratively construct a special model of $\mathcal O$ with an element $d \in \mathcal C^{\mathcal I}$
- ▶ In this model, d will satisfy all concepts D' for which $\mathcal{O} \models \mathcal{C} \sqsubseteq D'$
 - ► The model is thus called a canonical model
- We start with the single element d that should satisfy C

- ▶ We want to determine whether $\mathcal{O} \models C \sqsubseteq D$
- \blacktriangleright We iteratively construct a special model of $\mathcal O$ with an element $d \in \mathcal C^{\mathcal I}$
- ▶ In this model, d will satisfy all concepts D' for which $\mathcal{O} \models \mathcal{C} \sqsubseteq D'$
 - ► The model is thus called a canonical model
- We start with the single element d that should satisfy C
- Throughout the algorithm, elements are marked with concepts they (should) satisfy

- ▶ We want to determine whether $\mathcal{O} \models C \sqsubseteq D$
- \blacktriangleright We iteratively construct a special model of $\mathcal O$ with an element $d \in \mathcal C^{\mathcal I}$
- ▶ In this model, d will satisfy all concepts D' for which $\mathcal{O} \models \mathcal{C} \sqsubseteq D'$
 - ► The model is thus called a canonical model
- We start with the single element d that should satisfy C
- Throughout the algorithm, elements are marked with concepts they (should) satisfy
- Special rules are applied towards satisfying those concepts

- ▶ We want to determine whether $\mathcal{O} \models C \sqsubseteq D$
- \blacktriangleright We iteratively construct a special model of $\mathcal O$ with an element $d \in \mathcal C^{\mathcal I}$
- ▶ In this model, d will satisfy all concepts D' for which $\mathcal{O} \models \mathcal{C} \sqsubseteq D'$
 - ► The model is thus called a canonical model
- We start with the single element d that should satisfy C
- ► Throughout the algorithm, elements are marked with concepts they (should) satisfy
- Special rules are applied towards satisfying those concepts
- ▶ If we eventually assign D to the initial element, then $\mathcal{O} \models \mathcal{C} \sqsubseteq \mathcal{D}$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

$$\operatorname{er} \mathcal{O} \models A \sqsubseteq B$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

$$A, \exists r.C$$
 r $C, D \sqcap \exists s.E, D, \exists s.E$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We first look at an example:

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

We want to determine whether $\mathcal{O} \models A \sqsubseteq B$

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

Yes:

▶ We added what needs to be in every model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

- ▶ We added what needs to be in every model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ► Only exception: role-successors
 - other models might use different elements as role-successors
 - but for every role-successor we added, there has to be a corresponding role successor in the other models that satisfies at least the same concepts

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

- ▶ We added what needs to be in every model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ► Only exception: role-successors
 - other models might use different elements as role-successors
 - but for every role-successor we added, there has to be a corresponding role successor in the other models that satisfies at least the same concepts
- $\Rightarrow A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ also on every other model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

- ▶ We added what needs to be in every model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ► Only exception: role-successors
 - other models might use different elements as role-successors
 - but for every role-successor we added, there has to be a corresponding role successor in the other models that satisfies at least the same concepts
- \Rightarrow $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ also on every other model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ▶ If A^{\emptyset} , we also have $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$

But $\mathcal{O} \models A \sqsubseteq B$ only if $\mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O} .

Did we really show that $\mathcal{I} \models A \sqsubseteq B$ in every model of \mathcal{O} ?

- ▶ We added what needs to be in every model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ► Only exception: role-successors
 - other models might use different elements as role-successors
 - but for every role-successor we added, there has to be a corresponding role successor in the other models that satisfies at least the same concepts
- $\Rightarrow A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ also on every other model \mathcal{I} of \mathcal{O} where $A^{\mathcal{I}} \neq \emptyset$
- ▶ If A^{\emptyset} , we also have $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$
- $\Rightarrow \mathcal{I} \models A \sqsubseteq B$ in every model \mathcal{I} of \mathcal{O}

The idea: To decide whether $\mathcal{O} \models C_0 \sqsubseteq D_0$, we start with an element d_0 , assign C_0 to it, and check whether we can apply the following rules so that D_0 gets eventually assigned:

ightharpoonup T-rule: add ightharpoonup to d.

- ightharpoonup T-rule: add ightharpoonup to d.
- ▶ \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.

- ightharpoonup op op rule: add op to d.
- ▶ \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- ▶ \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.

- ightharpoonup op op rule: add op to d.
- ▶ \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- ▶ \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.
- ▶ \exists -rule 1: If d has $\exists r.C$ assigned, add a new r-successor to d and assign C to it.

- ightharpoonup T-rule: add ightharpoonup to d.
- ▶ \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- ▶ \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.
- ▶ \exists -rule 1: If d has $\exists r.C$ assigned, add a new r-successor to d and assign C to it.
- ▶ \exists -rule 2: If d has an r-successor with C assigned, add $\exists r.C$ to d.

- ightharpoonup op op rule: add op to d.
- ▶ \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- ▶ \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.
- ▶ \exists -rule 1: If d has $\exists r.C$ assigned, add a new r-successor to d and assign C to it.
- ▶ \exists -rule 2: If d has an r-successor with C assigned, add $\exists r.C$ to d.
- ▶ \sqsubseteq -rule: If d has C assigned and $C \sqsubseteq D \in \mathcal{T}$, then also assign D to d.

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

$$A, B$$

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

$$A, B, A \sqcap B, (A \sqcap B) \sqcap B,$$

$$((A \sqcap B) \sqcap B) \sqcap B$$

If we just use the rules like that, our algorithm will never stop:

$$\mathcal{O} = \{ A \sqsubseteq B \}$$

$$A, B, A \sqcap B, (A \sqcap B) \sqcap B, (A \sqcap B) \sqcap B, \dots$$

- 1. □-rule will keep generating new concepts.
- 2. \exists -rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

$$A, \exists r.A$$

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

$$A, \exists r.A A$$

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

$$A, \exists r.A A, \exists r.A$$

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

$$A, \exists r.A A, \exists r.A A$$

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

$$A, \exists r.A A, \exists r.A A, \exists r.A$$

If we just use the rules like that, our algorithm will never stop:

- 1. □-rule will keep generating new concepts.
- 2. ∃-rule 1 will keep adding elements.

To have a decision procedure we have to know when to stop.

▶ How else would we ever know if $\mathcal{O} \not\models C_0 \sqsubseteq D_0$?

Fixing Problem 1: Unbounded Introduction of Concepts

Fixing Problem 1: Unbounded Introduction of Concepts

All inference rules need to be applied with the following side condition:

- ▶ If we assign a concept *C*, then *C* must occur somewhere in our input
 - ▶ in the ontology or in the entailment $C_0 \sqsubseteq D_0$
 - "occur in" includes nested concepts

Fixing Problem 1: Unbounded Introduction of Concepts

All inference rules need to be applied with the following side condition:

- ▶ If we assign a concept *C*, then *C* must occur somewhere in our input
 - ▶ in the ontology or in the entailment $C_0 \sqsubseteq D_0$
 - "occur in" includes nested concepts
- ► Idea:
 - If a concept does not occur at least nested in the TBox, then it will never be needed to trigger the ⊆-rule
 - ightharpoonup Other concepts are only relevant if they occur in D_0

Fixing Problem 1: Our Example

$$\mathcal{O} = \mathcal{T} = \left\{ \begin{array}{ccc} A \sqsubseteq \exists r.C, & C \sqsubseteq D \sqcap \exists s.E, & E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, & \exists r.(C \sqcap G) \sqsubseteq B \end{array} \right\}$$

$$A, \exists r.C, \exists r.(C \sqcap G), & C, D \sqcap \exists s.E, D, \exists s.E, \\ B & \exists s.F, G, C \sqcap G$$

With this restriction on the rules, there is actually no more step we can do.

Fixing Problem 2: Unbounded Introduction of Individuals

Fixing Problem 2: Unbounded Introduction of Individuals

► For every individual, we remember the initial concept

Fixing Problem 2: Unbounded Introduction of Individuals

- ► For every individual, we remember the initial concept
- ▶ We modify the ∃-rule 1 as follows:

\exists -rule 1: If d has $\exists r.C$ assigned:

- 1. If there is some e with initial concept \underline{C} , make e the r-successor of d
- 2. Otherwise, add a new r-successor to d, and assign to it as initial concept \underline{C}

Fixing Problem 2: Our First Example

$$\mathcal{O} = \mathcal{T} = \{ A \sqsubseteq \exists r.C, \qquad C \sqsubseteq D \sqcap \exists s.E, \qquad E \sqsubseteq F, \\ \exists s.F \sqsubseteq G, \qquad \exists r.(C \sqcap G) \sqsubseteq B \}$$

The outcome of our example remains the same with this modification, only that we now remember the initial concepts:

Fixing Problem 2: The Problematic Example

The other example now stops fairly soon:

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

Fixing Problem 2: The Problematic Example

The other example now stops fairly soon:

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

Fixing Problem 2: The Problematic Example

The other example now stops fairly soon:

$$\mathcal{O} = \{ A \sqsubseteq \exists r.A \}$$

The \mathcal{EL} -Completion Method

The resulting method is called the \mathcal{EL} -Completion Method.

The \mathcal{EL} -Completion Method

The resulting method is called the \mathcal{EL} -Completion Method.

We will see that it is indeed a decision procedure:

▶ It is sound, complete and terminating.

The Final \mathcal{EL} -Completion Rules

```
\top-rule: Add \top to any individual.
```

- \sqcap -rule 1: If d has $C \sqcap D$ assigned, assign also C and D to d.
- \sqcap -rule 2: If d has C and D assigned, assign also $C \sqcap D$ to d.
- \exists -rule 1: If d has $\exists r.C$ assigned:
 - 1. If there is an element e with initial concept \underline{C} assigned, make e the r-successor of d.
 - 2. Otherwise, add a new r-successor to d, and assign to it as initial concept \underline{C} .
- \exists -rule 2: If d has an r-successor with C assigned, add $\exists r.C$ to d.
- \sqsubseteq -rule: If d has C assigned and $C \sqsubseteq D \in \mathcal{T}$, then also assign D to d

The \mathcal{EL} -Completion Algorithm

Decide whether $\mathcal{O} \models C_0 \sqsubseteq D_0$

- 1. Start with initial element d_0 , assign to C_0 to it as initial concept
- 2. Set changed := true
- 3. While changed = true:
 - 3.1 Set changed := false
 - 3.2 For every element d in the current interpretation:
 - 3.2.1 Apply all the rules on d in all possible ways so that only concepts from the input get assigned
 - 3.2.2 If a new element was added or a new concept assigned, set changed = **true**
- 4. If D_0 was assigned to d_0 , return YES, otherwise return NO

Concepts from the input: occur, possibly nested, explicitly in \mathcal{O} , C_0 or D_0

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, C \sqsubseteq \exists r. \exists t. B, A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s.\exists t.B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s.\exists t.B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r. C \sqsubseteq \exists s. \exists t. B \}$$

$$\mathcal{O} = \mathcal{T} = \{ B \sqsubseteq C, \\ A \sqcap \exists r.C \sqsubseteq \exists s.\exists t.B \}$$

 $C \sqsubseteq \exists r. \exists t. B$,

We want to decide whether $\mathcal{O} \models A \sqcap \exists r.B \sqsubseteq \exists t.A$

NO

Lemma: The algorithm stops after at most n^2 steps, where n is the number of concepts in the input

Lemma: The algorithm stops after at most n^2 steps, where n is the number of concepts in the input

Proof:

- ▶ We add at most one element for each concept in the input: at most *n* elements.
 - Because we never introduce two elements with the same initial concept.

Lemma: The algorithm stops after at most n^2 steps, where n is the number of concepts in the input

Proof:

- ▶ We add at most one element for each concept in the input: at most *n* elements.
 - ▶ Because we never introduce two elements with the same initial concept.
- ► For each element, we only add concepts occurring in the input: at most *n* concepts per element.

Lemma: The algorithm stops after at most n^2 steps, where n is the number of concepts in the input

Proof:

- ▶ We add at most one element for each concept in the input: at most *n* elements.
 - Because we never introduce two elements with the same initial concept.
- ► For each element, we only add concepts occurring in the input: at most *n* concepts per element.
- ▶ In each step, we either add an element or assign a new concept to an existing element: at most $n \times n$ steps.

Lemma: The algorithm stops after at most n^2 steps, where n is the number of concepts in the input

Proof:

- ▶ We add at most one element for each concept in the input: at most *n* elements.
 - Because we never introduce two elements with the same initial concept.
- ► For each element, we only add concepts occurring in the input: at most *n* concepts per element.
- ▶ In each step, we either add an element or assign a new concept to an existing element: at most $n \times n$ steps.

Note: This is better than for propositional logic!

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models C_0 \sqsubseteq D_0$.

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$.

Proof (sketch):

▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).
 - $\Rightarrow \mathcal{I} \models C \sqsubseteq D$ for every $C \sqsubseteq D \in \mathcal{T}$.

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models C_0 \sqsubseteq D_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).
 - $\Rightarrow \mathcal{I} \models C \sqsubseteq D$ for every $C \sqsubseteq D \in \mathcal{T}$.
- ightharpoonup We have $d_0 \in C_0^{\mathcal{I}}$ and $d_0 \not\in D_0^{\mathcal{I}}$.
 - by the previous observation

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models C_0 \sqsubseteq D_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).
 - $\Rightarrow \mathcal{I} \models C \sqsubseteq D$ for every $C \sqsubseteq D \in \mathcal{T}$.
- ightharpoonup We have $d_0 \in C_0^{\mathcal{I}}$ and $d_0 \not\in D_0^{\mathcal{I}}$.
 - by the previous observation
- $\Rightarrow \mathcal{I} \models \mathcal{T} \text{ and } \mathcal{I} \not\models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$,

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models C_0 \sqsubseteq D_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - ▶ For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).
 - $\Rightarrow \mathcal{I} \models C \sqsubseteq D$ for every $C \sqsubseteq D \in \mathcal{T}$.
- ightharpoonup We have $d_0 \in C_0^{\mathcal{I}}$ and $d_0 \not\in D_0^{\mathcal{I}}$.
 - by the previous observation
- $\Rightarrow \mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \not\models C_0 \sqsubseteq D_0$, but what about the ABox?

Lemma: If the algorithm returns NO, then $\mathcal{O} \not\models C_0 \sqsubseteq D_0$.

- ▶ The final interpretation \mathcal{I} is a model of the TBox \mathcal{T} .
 - ► The \top -rule, \sqcap -rules and \exists -rules make sure that for every concept C occurring in the input, and for every $d \in \Delta^{\mathcal{I}}$, d is assigned to C iff $c \in C^{\mathcal{I}}$.
 - For every $C \sqsubseteq D \in \mathcal{O}$, if C is assigned to d, then D is also assigned to d. (by the \sqsubseteq -rule).
 - $\Rightarrow \mathcal{I} \models C \sqsubseteq D$ for every $C \sqsubseteq D \in \mathcal{T}$.
- ▶ We have $d_0 \in C_0^{\mathcal{I}}$ and $d_0 \notin D_0^{\mathcal{I}}$.
 - by the previous observation
- $\Rightarrow \mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \not\models C_0 \sqsubseteq D_0$, but what about the ABox?
- ▶ The ABox is not relevant: we can extend any model of \mathcal{O} by adding the stuff in \mathcal{I} !

Lemma: If the algorithm returns YES, then $\mathcal{O} \models C_0 \sqsubseteq D_0$

Lemma: If the algorithm returns YES, then $\mathcal{O} \models C_0 \sqsubseteq D_0$

Proof Idea:

► Assume the algorirthm returns YES.

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d_0' \in C_0^{\mathcal{I}}$.

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.
 - ▶ Only difference: \exists -rule 1 now uses a corresponding, existing role successor in \mathcal{I}' .

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.
 - ightharpoonup Only difference: \exists -rule 1 now uses a corresponding, existing role successor in \mathcal{I}' .
- One can show that, whenever the algorithm would assign C to d, then also $d \in C^{\mathcal{I}'}$.

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.
 - lacktriangle Only difference: \exists -rule 1 now uses a corresponding, existing role successor in \mathcal{I}' .
- One can show that, whenever the algorithm would assign C to d, then also $d \in C^{\mathcal{I}'}$.
- ▶ The algorithm assigns D_0 to d_0' , and therefore $d_0' \in D_0^{\mathcal{I}'}$.

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.
 - lacktriangle Only difference: \exists -rule 1 now uses a corresponding, existing role successor in \mathcal{I}' .
- One can show that, whenever the algorithm would assign C to d, then also $d \in C^{\mathcal{I}'}$.
- ▶ The algorithm assigns D_0 to d'_0 , and therefore $d'_0 \in D_0^{\mathcal{I}'}$.
- $ightharpoonup \mathcal{I}'$ was an arbitrary model, and d_0' an arbitrary element of C_0' , so the same would happen for all models and all elements in C_0' .

Lemma: If the algorithm returns YES, then $\mathcal{O} \models \mathcal{C}_0 \sqsubseteq \mathcal{D}_0$

- Assume the algorizthm returns YES.
- ▶ We need to show that for every model \mathcal{I} of \mathcal{O} , $\mathcal{I} \models C_0 \sqsubseteq D_0$.
- ▶ Take any model \mathcal{I}' of \mathcal{O} in which there is some $d'_0 \in C_0^{\mathcal{I}}$.
- Now simulate the steps of the algorithm on the elements in \mathcal{I}' , starting with d.
 - lacktriangle Only difference: \exists -rule 1 now uses a corresponding, existing role successor in \mathcal{I}' .
- One can show that, whenever the algorithm would assign C to d, then also $d \in C^{\mathcal{I}'}$.
- ▶ The algorithm assigns D_0 to d'_0 , and therefore $d'_0 \in D_0^{\mathcal{I}'}$.
- \nearrow \mathcal{I}' was an arbitrary model, and d_0' an arbitrary element of C_0' , so the same would happen for all models and all elements in C_0' .
- ▶ Hence, $\mathcal{O} \models C \sqsubseteq D$.

The Completion Algorithm is a Decision Procedure

These lemmas together give us the following theorem:

Theorem: The \mathcal{EL} Completion Algorithm is a decision procedure for \mathcal{EL} concept subsumption from \mathcal{EL} ontologies.

- ▶ Instance checking: determine whether $\mathcal{O} \models a$: C
 - ► Same procedure, but start with the ABox

- ▶ Instance checking: determine whether $\mathcal{O} \models a$: C
 - Same procedure, but start with the ABox
- ▶ Classification: determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - Start with a node for every concept name

- ▶ Instance checking: determine whether $\mathcal{O} \models a$: C
 - Same procedure, but start with the ABox
- ▶ Classification: determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - Start with a node for every concept name
- ▶ Materialization: determine all $\mathcal{O} \models a$: A where $a \in I$ and $A \in C$
 - Same algorithm as for instance checking.

- ▶ Instance checking: determine whether $\mathcal{O} \models a$: C
 - Same procedure, but start with the ABox
- ▶ Classification: determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - Start with a node for every concept name
- ▶ Materialization: determine all $\mathcal{O} \models a$: A where $a \in I$ and $A \in C$
 - Same algorithm as for instance checking.
 - ightharpoonup (Note: role assertions cannot be inferred from other axioms in \mathcal{EL})

We can use the same algorithm with little adaptations for other tasks:

- ▶ Instance checking: determine whether $\mathcal{O} \models a$: C
 - Same procedure, but start with the ABox
- ▶ Classification: determine all $\mathcal{O} \models A \sqsubseteq B$ where $A, B \in \mathbf{C}$
 - Start with a node for every concept name
- ▶ Materialization: determine all $\mathcal{O} \models a$: A where $a \in I$ and $A \in C$
 - Same algorithm as for instance checking.
 - ightharpoonup (Note: role assertions cannot be inferred from other axioms in \mathcal{EL})

Note: Algorithms always takes at most n^2 steps!

- Better complexity as propositional logic.
- \triangleright Modern \mathcal{EL} reasoners like ELK process 10,000s of axioms in seconds.

Beyond \mathcal{EL} ?

There are some extensions to \mathcal{EL} that still allow reasoning in polynomial time, even if we allow \bot .

Beyond \mathcal{EL} ?

There are some extensions to \mathcal{EL} that still allow reasoning in polynomial time, even if we allow \bot .

However, any other concept constructor we have seen until now makes reasoning even harder than for propositional logic:

- ▶ disjunction: □
- ▶ negation: ¬
- ▶ value restrictions: ∀

Beyond \mathcal{EL} ?

There are some extensions to \mathcal{EL} that still allow reasoning in polynomial time, even if we allow \bot .

However, any other concept constructor we have seen until now makes reasoning even harder than for propositional logic:

- ▶ disjunction: □
- ▶ negation: ¬
- ▶ value restrictions: ∀

Allowing any of these three constructs makes reasing ExpTime-hard, which means reasoning may require a number of steps that is exponential in the size of the ontology (independently of whether P = NP).

First challenge: Disjunction $C \sqcup D$

- ightharpoonup For instances of $C \sqcup D$, we do not know whether we need to satisfy C or D.
- ⇒ Case distinction required
- \Rightarrow There is no canonical model as for \mathcal{EL}

Second challenge: Value restrictions $\forall r.C$

▶ We need a rule like the following:

 \forall -rule: If d as $\forall r.C$ assigned and e is an r-succesor of d, then assign C to e

- ⇒ Additional concepts come from predecessors of a node.
- ⇒ We cannot reuse individuals as before.

Third challenge: Negation $\neg C$

- ightharpoonup Concepts can be unsatisfiable ightharpoonup model construction can fail
 - ightharpoonup cannot have A and $\neg A$ at the same time

Third challenge: Negation $\neg C$

- ightharpoonup Concepts can be unsatisfiable ightharpoonup model construction can fail
 - \triangleright cannot have A and $\neg A$ at the same time
- Nested expressions
 - ▶ What do we do with $\neg(A \sqcap \neg(B \sqcup C))$?

Third challenge: Negation $\neg C$

- ightharpoonup Concepts can be unsatisfiable ightarrow model construction can fail
 - \triangleright cannot have A and $\neg A$ at the same time
- Nested expressions
 - ▶ What do we do with $\neg(A \sqcap \neg(B \sqcup C))$?
- ▶ Different ways to express the same thing:
 - $ightharpoonup C \Box D$
 - ightharpoonup $\neg D \sqsubseteq \neg C$
 - $ightharpoonup C \sqcap \neg D \sqsubseteq \bot$
 - ightharpoonup igh

Overview of the Tableaux Method for \mathcal{ALC}

This time, it is easier to focus on concept satisfiability

Given an ontology \mathcal{O} and a concept C, C is satisfiable w.r.t. \mathcal{O} iff \mathcal{O} has a model \mathcal{I} in which $C^{\mathcal{I}} \neq \emptyset$ (a model of C and \mathcal{O}).

Overview of the Tableaux Method for \mathcal{ALC}

This time, it is easier to focus on concept satisfiability

Given an ontology \mathcal{O} and a concept C, C is satisfiable w.r.t. \mathcal{O} iff \mathcal{O} has a model \mathcal{I} in which $C^{\mathcal{I}} \neq \emptyset$ (a model of C and \mathcal{O}).

 \blacktriangleright For \mathcal{EL} , this wouldn't have made sense, since every concept is satisfiable

Overview of the Tableaux Method for \mathcal{ALC}

This time, it is easier to focus on concept satisfiability

Given an ontology \mathcal{O} and a concept C, C is satisfiable w.r.t. \mathcal{O} iff \mathcal{O} has a model \mathcal{I} in which $C^{\mathcal{I}} \neq \emptyset$ (a model of C and \mathcal{O}).

- \triangleright For \mathcal{EL} , this wouldn't have made sense, since every concept is satisfiable
- ▶ In ALC, we can reduce many problems to it:
 - ▶ To decide $\mathcal{O} \models C \sqsubseteq D$, we check whether $C \sqcap \neg D$ is unsatisfiable
 - ▶ To decide consistency of \mathcal{O} , we check whether \top is satisfiable

