Theoretical Foundations of Conformal Prediction

Anastasios N. Angelopoulos¹, Rina Foygel Barber², Stephen Bates³

¹Department of Electrical Engineering and Computer Science, University of California at Berkeley

²Department of Statistics, University of Chicago

³Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology

Contents

Ι	Ba	ackground	9
1	Inti	roduction	4
	1.1	Uncertainty quantification for prediction	4
	1.2	Preview of split conformal prediction	Ę
	1.3	Conformal scores	Ę
	1.4	The conformal prediction framework in context	8
	1.5	Scope of this book	Ć
	Bibl	liographic notes	Ć
2	Exc	changeability and Permutations	10
	2.1	Alternative characterizations of exchangeability	11
	2.2	Permutation tests	13
		2.2.1 Examples	14
	2.3	Proving validity of permutation tests	15
	2.4	Appendix: order statistics, quantiles, and CDFs	16
		2.4.1 Deterministic properties	17
		2.4.2 Properties under exchangeability	19
		2.4.3 A distributional view	19
	Bibl	liographic notes	20
П	C	Conformal Prediction	21
3	Cor	nformal Prediction Under Exchangeability	22
	3.1	Setting: data points, datasets, and scores	22
	3.2	The full conformal prediction procedure	23
		3.2.1 The score function	26
	3.3	Why does conformal prediction guarantee coverage?	26
	3.4	Split conformal prediction as a special case	28
		3.4.1 Exchangeability and split conformal: a closer look	30
		3.4.2 Statistical versus computational efficiency for split and full conformal	31
	3.5	Reinterpretations of conformal prediction	31
		3.5.1 Conformal prediction as a permutation test	31
		3.5.2 Conditioning on the empirical distribution of the data	33
		3.5.3 Tuning based on a plug-in estimate of the error rate	34

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

	3.6	Can conformal prediction be overly conservative?	36
	Bibl	liographic notes	37
4	Cor	nditional Coverage	39
	4.1	Training-conditional coverage for split conformal prediction	39
		4.1.1 High-probability coverage	42
		4.1.2 Exchangeable data or i.i.d. data?	42
	4.2	A hardness result for training-conditional coverage	42
	4.3	Conditioning on the test point features	45
		4.3.1 The discrete setting	46
		4.3.2 Impossibility in the continuous setting	47
	4.4	Relaxations of test-conditional coverage: a binning-based approach	49
	4.5	Label-conditional coverage	52
	4.6	Mondrian conformal prediction	53
	4.7	Relaxations of test-conditional coverage: beyond binning	54
		4.7.1 For all X or for most X ?	54
		4.7.2 Preview: relaxation via localization	62
	Bibl	liographic notes	63
5	A N	Model-Based Perspective on Conformal Prediction	64
	5.1	Oracle approximations for optimality guarantees	64
	5.2	Case studies for classification	66
		5.2.1 Case study: classification with minimal set size	66
		5.2.2 Case study: classification with minimal set size and conditional coverage	68
	5.3	Case studies for regression	70
		5.3.1 Case study: regression with minimal set size	70
		5.3.2 Case study: regression with minimal-length equal-tailed intervals	71
	5.4	A unified framework for asymptotic guarantees	72
		5.4.1 Defining the framework	73
		5.4.2 Convergence of the thresholds	73
		5.4.3 Convergence of the sets	76
		5.4.4 Proofs for case studies	78
	5.5	Model-based robustness to violations of exchangeability	83
	Bibl	liographic notes	87
H	т 1	Extensions of Conformal Prediction	88
-11			88
6		oss-Validation Based Conformal Methods	89
	6.1	Preliminaries: split conformal as a tournament	89
	6.2	Cross-conformal prediction	90
		6.2.1 Coverage guarantees for cross-conformal prediction	91
		6.2.2 Proof of the tournament lemma	96
		6.2.3 Why the factor of 2?	97
	6.3	CV+ and jackknife+	99

		6.3.1 Cross-validation for prediction
		6.3.2 An alternative formulation of CV
		6.3.3 Defining CV+ and jackknife+
		6.3.4 Interpreting the interval
	6.4	Coverage guarantees for CV+ and jackknife+
	6.5	Training-conditional coverage for cross-validation type methods
	6.6	Algorithmic stability and prediction with the jackknife
		6.6.1 The algorithmic stability framework
		6.6.2 Guarantees for jackknife under stability
		6.6.3 Can algorithmic stability be certified?
	Bibl	iographic notes
7	Wei	ghted Variants of Conformal Prediction 11
	7.1	Weighted quantiles and the weighted conformal algorithm
	7.2	Conformal prediction under covariate and label shifts
		7.2.1 Covariate shift
		7.2.2 Label shift
		7.2.3 General shifts between the training distribution and test distribution
		7.2.4 Comparing distribution shift and conditional coverage
	7.3	Localized conformal prediction
		7.3.1 The localized conformal prediction algorithm
		7.3.2 The randomly-localized conformal prediction algorithm
	7.4	Fixed-weight conformal prediction
	7.5	A general outlook through weighted permutations
	Bibl	iographic notes
8	Onl	ine Conformal Prediction 13
	8.1	Online conformal prediction with exchangeable data
	8.2	Testing exchangeability online
	8.3	Prediction sets for adversarial sequences
	Bibl	iographic notes
9	\mathbf{Add}	litional Results in Conformal Prediction 14
	9.1	Conformal prediction with randomization
		9.1.1 Allowing for randomization in the score function
		9.1.2 Using a randomized calibration step
	9.2	Computational shortcuts for full conformal prediction
		9.2.1 Special case: linear regression
		9.2.2 Special case: Lasso regression
		9.2.3 A general approach: discretization
	9.3	The universality of conformal prediction
	Bibl	iographic notes
10	Ext	ensions of Conformal Prediction 15
	10.1	Beyond miscoverage: conformal risk control

	10.2 Multiplicity	. 160
	10.2.1 Controlling the family-wise error rate (FWER) for predictive coverage	. 161
	10.2.2 Outlier detection with multiplicity control	162
	10.3 Selective coverage	166
	10.4 Aggregating conformal sets	169
	10.4.1 Aggregating prediction sets	169
	10.4.2 Re-calibration after aggregation	170
	10.4.3 Connection with cross-conformal	. 172
	Bibliographic notes	. 172
IV	Beyond Predictive Coverage	173
11	Inference on the Regression Function	174
	11.1 Problem formulation and background	. 174
	11.2 Necessity of a boundedness assumption	. 175
	11.3 The discrete case	176
	11.4 The continuous case	. 178
	11.4.1 Comparing regression intervals and prediction intervals	. 178
	11.4.2 Impossibility of vanishing width	. 180
	11.5 Relaxing the target for the continuous case	. 185
	11.5.1 Relaxation by binning	. 185
	11.5.2 Relaxation by blurring the target	
	11.5.3 Relaxing from regression to calibration	. 187
	11.6 Connections to test-conditional predictive coverage	. 187
	11.6.1 From regression to test-conditional prediction	. 188
	11.7 Connections to estimation	
	Bibliographic notes	. 193
12	Calibration	194
	12.1 Calibration: definition and methods	. 194
	12.1.1 Post-hoc calibration	. 195
	12.1.2 Quantifying violations of perfect calibration	. 196
	12.2 Properties of ECE and binned ECE	. 197
	12.2.1 Discontinuity of ECE	. 197
	12.2.2 Can ECE and binned ECE be estimated?	. 198
	12.2.3 Can ECE be controlled with post-hoc calibration?	201
	12.3 Properties of dCE	203
	12.3.1 Comparing dCE and ECE	. 203
	12.3.2 Estimating dCE	. 204
	12.4 Venn–Abers Predictors	. 205
	Bibliographic notes	. 207
13	Conditional Independence Testing	208
	13.1 Testing marginal independence	. 208

13.2	Conditional independence with a discrete confounder	209
	13.2.1 Formulating a local permutation test	210
	13.2.2 Proof of validity of the local permutation test	211
13.3	The hardness of conditional independence testing	213
13.4	Testing conditional independence under smoothness assumptions $\dots \dots \dots \dots \dots$	214
Bibli	iographic notes	217

Preface

A note to the reader

This draft is a preliminary version of a forthcoming textbook. We welcome all feedback from readers—please contact the authors at tfcpbook@gmail.com with any typos, corrections, clarifications, or suggestions. Since this manuscript is a work-in-progress, if referencing any of the results in the book please be aware that later updates may lead to changes in the statements and the numbering of the results.

This book is about conformal prediction and related inferential techniques that build on permutation tests and exchangeability. These techniques are useful in a diverse array of tasks, including hypothesis testing and providing uncertainty quantification guarantees for machine learning systems. Much of the current interest in conformal prediction is due to its ability to integrate into complex machine learning workflows, solving the problem of forming prediction sets without any assumptions on the form of the data generating distribution. Since contemporary machine learning algorithms have generally proven difficult to analyze directly, conformal prediction's main appeal is its ability to provide formal, finite-sample guarantees when paired with such methods.

The goal of this book is to teach the reader about the fundamental technical arguments that arise when researching conformal prediction and related questions in distribution-free inference. Many of these proof strategies, especially the more recent ones, are scattered among research papers, making it difficult for researchers to understand where to look, which results are important, and how exactly the proofs work. We hope to bridge this gap by curating what we believe to be some of the most important results in the literature and presenting their proofs in a unified language, with illustrations, and with an eye towards pedagogy. We note that this book does not focus on the question of how to apply conformal prediction in practice—for a more practical and application-oriented introduction to conformal prediction, the reader may instead prefer to read *Conformal Prediction: A Gentle Introduction* [Angelopoulos et al., 2022a].

This book is meant for those working on the development of statistical theory and methodology, broadly speaking. We envision our audience including everyone from classically trained statisticians interested in finite-sample model-agnostic bounds, to machine learning researchers looking for a modular theory that applies to the ever-changing landscape of machine learning algorithms. The background required is generally at the level of first-year graduate coursework in theoretical statistics; some measure theory will be used occasionally, but the vast majority of results in this book do not require it. We hope that this book will provide the reader with a deep understanding of the theoretical underpinnings of the field, so that they may themselves contribute to the ongoing theoretical development of conformal prediction and other areas within distribution-free inference.

Acknowledgments

We would like to give our deep thanks to the many friends, collaborators, mentors, students, and reviewers who gave us feedback on this work, including Emmanuel Candès, Alexander Gammerman, Michael I. Jordan, Ilmun Kim, Kallia Kleisarchaki, Gyumin Lee, Elena Yutong Li, Luís Marques, Peter McCullagh, Ethan Naegele, Theo Olausson, Drew Prinster, Andi Qu, Aaditya Ramdas, Ryan Tibshirani, Vladimir Vovk, Lekun (Bill) Wang, Eric Weine, Andrew Yao, and Tijana Zrnić. We thank Natalie Tomlinson, Anna Scriven, and

the Cambridge University Press for their support.

Lastly, we thank our families for their long-standing support in this effort—this book would not be possible without them.

Part I

Background

Chapter 1

Introduction

Conformal prediction is a statistical technique that quantifies uncertainty in predictive models. When we train a model using a machine learning algorithm, the resulting predictions are made based on the patterns observed in the training data—but these predictions can be prone to errors due to various sources of uncertainty, such as noisy data or inaccurate models. Uncertainty quantification enables us to make better decisions from model predictions by understanding the level of confidence and limitations of the model.

It might be surprising to learn that, with conformal prediction, rigorous uncertainty quantification is possible without any assumptions at all on the model, and with minimal assumptions on the distribution of the data—no asymptotics, no limit theorems, and no Gaussian approximations. As such, conformal prediction and related methods are widely used in applications. These methods are also theoretically rich and interesting. This book discusses foundational statistical theory for conformal prediction, and points toward the many avenues for continued study.

1.1 Uncertainty quantification for prediction

We now describe the prediction problem. Suppose we have a sequence of data points $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$, for i = 1, ..., n. Here, X_i is the feature vector and Y_i is the response variable. We are then given a new feature vector X_{n+1} , with the task of predicting its corresponding response value Y_{n+1} (which is unobserved). If we have trained a predictive model \hat{f} using the available data, we can return a prediction $\hat{f}(X_{n+1})$ —but this predicted value alone does not express our confidence or uncertainty in the trained model, and does not communicate information about whether the prediction can be trusted. To do so, we could provide a margin of error around our prediction $\hat{f}(X_{n+1})$, or more generally, a prediction set $\mathcal{C}(X_{n+1}) \subseteq \mathcal{Y}$. A common aim for this set is the property of marginal coverage,

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - \alpha,\tag{1.1}$$

where $\alpha \in (0,1)$ is a user-specified error level (e.g., $\alpha = 0.1$ for 90% coverage). At a high level, by returning an interval or set to accompany any model prediction $\hat{f}(X_{n+1})$, we are able to communicate the degree of trustworthiness in any given model prediction—if the margin of error (or more generally, the size of the set $\mathcal{C}(X_{n+1})$) is large, this indicates high uncertainty in the prediction.

Of course, it is not immediately clear whether the marginal coverage property (1.1) is attainable in a general setting. We might suspect that this property can only be achieved in certain settings, for instance, if the model is known to be a good fit to the data distribution. This question is exactly what conformal prediction aims to address: conformal prediction is a statistical approach to uncertainty quantification wherein model predictions are accompanied by an interval or set, communicating the degree of trustworthiness in any given model prediction, without relying on any assumptions on the correctness of the model. In particular, if the underlying predictive model \hat{f} is a poor fit to the data, then the accompanying set $\mathcal{C}(X_{n+1})$ will be large—potentially even infinite. On the other hand, accurate models will result in smaller sets, and (under

additional conditions) can lead to notions of coverage over and above that in (1.1). Either way, the role of conformal prediction is to accurately quantify the level of uncertainty present when using the predictive model on the current data distribution.

1.2 Preview of split conformal prediction

How does conformal prediction work? Let's start with a simple version of the method, called *split conformal* prediction.

As before, suppose we have data points (X_i, Y_i) for i = 1, ..., n, and a test point (X_{n+1}, Y_{n+1}) . Take n to be even for simplicity. We consider the setting $\mathcal{Y} = \mathbb{R}$ —that is, a regression problem with a real-valued response. The following algorithm allows us to construct prediction intervals for Y_{n+1} :

Algorithm 1.1: Split conformal prediction, special case

- 1. Use data (X_i, Y_i) for i = 1, ..., n/2 to fit a predictive model $\hat{f}: \mathcal{X} \to \mathbb{R}$.
- 2. For $i = n/2 + 1, \ldots, n$, compute the absolute residual $S_i = |Y_i \hat{f}(X_i)|$.
- 3. Sort $S_{n/2+1}, \ldots, S_n$ in increasing order, and let \hat{q} be the $\lceil (1-\alpha)(\frac{n}{2}+1) \rceil$ -th element in the sorted list
- 4. Return the prediction interval $C(X_{n+1}) = [\hat{f}(X_{n+1}) \hat{q}, \hat{f}(X_{n+1}) + \hat{q}].$

This algorithm's output is the predictive interval $C(X_{n+1}) = [\hat{f}(X_{n+1}) - \hat{q}, \hat{f}(X_{n+1}) + \hat{q}]$, which represents our uncertainty about the prediction $\hat{f}(X_{n+1})$ for the target value Y_{n+1} .

The predictive model \hat{f} in the first step of Algorithm 1.1 can be any function that is based only on $(X_1, Y_1), \ldots, (X_{n/2}, Y_{n/2})$. For example, it might be a linear model fitted via least-squares regression. The final set is an interval centered at the model's prediction, $\hat{f}(X_{n+1}) \pm \hat{q}$. How should we interpret this choice of \hat{q} ? Observe \hat{q} is chosen such that the intervals $[\hat{f}(X_i) - \hat{q}, \hat{f}(X_i) + \hat{q}]$ contain the response variable Y_i for approximately a $(1 - \alpha)$ fraction of the points $i = n/2 + 1, \ldots, n$ (i.e., the data points that were not used for training the model \hat{f}).

If the data points are independent and identically distributed (i.i.d.), then no matter what predictive model \hat{f} was used, the prediction set above satisfies marginal coverage:

Theorem 1.2: Split conformal coverage guarantee, special case

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are i.i.d., and let $\mathcal{C}(X_{n+1})$ be the output of Algorithm 1.1. Then the marginal coverage property (1.1) holds.

In other words, if the data points are drawn i.i.d. from any distribution, then split conformal prediction offers marginal coverage—even if the fitted model \hat{f} is an extremely poor fit to the data, and even if the sample size n is small. In fact the i.i.d. assumption is sufficient here, it is stronger than necessary—a weaker property known as exchangeability, which will be introduced in Chapter 2, is the fundamental property required for conformal prediction.

1.3 Conformal scores

The example above builds intuition for valid coverage with any predictive model and dataset, but the exact form of the algorithm above is rather constrained: by construction, the prediction set will always be of the form $\hat{f}(X_{n+1}) \pm \hat{q}$, i.e., a band of constant width around the fitted predictive model \hat{f} ; see Figure 1.1. Fortunately, the conformal framework is much more flexible than the above example, allowing for nearly unlimited choice in how $\mathcal{C}(X_{n+1})$ is constructed. The key concept is the *conformal score function*, which is

a function s(x,y) such that larger values indicate that the data point (x,y) does not agree with (does not 'conform' to) the trends observed in the training data. For instance, given a fitted model \hat{f} , a common choice for s is the residual score, $s(x,y) = |y - \hat{f}(x)|$, since a large value of the residual indicates that (x,y) does not appear to agree with the model trained on the available data. We will give additional examples of score functions shortly.

We now state a more general version of the split conformal prediction algorithm, using a generic conformal score function.

Algorithm 1.3: Split conformal prediction, general case

- 1. Use data (X_i, Y_i) for i = 1, ..., n/2 to construct a conformal score function $s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$. The idea to construct s(x, y) to measure how unusual (x, y) is based on a model fit on data from this split.
- 2. For $i = n/2 + 1, \ldots, n$, compute the score $S_i = s(X_i, Y_i)$.
- 3. Sort $S_{n/2+1}, \ldots, S_n$ in increasing order, and let \hat{q} be the $\lceil (1-\alpha)(\frac{n}{2}+1) \rceil$ -th element in the sorted list.
- 4. Return the prediction set $C(X_{n+1}) = \{y \in \mathcal{Y} : s(X_{n+1}, y) \leq \hat{q}\}.$

It may not be immediately clear that the set $C(X_{n+1})$ can be computed efficiently, since it nominally requires iterating through all $y \in \mathcal{Y}$. However, in many cases, it simplifies to an interval that can be computed explicitly, just as in Algorithm 1.1—we will see some examples below.

While we are referring to split conformal prediction as 'an algorithm', the flexibility in choosing the score function s means that we should actually think of this as a family of algorithms—any given choice of the conformal score function s specifies a particular algorithm. For example, by choosing the residual score function $s(x,y) = |y - \hat{f}(x)|$, we can obtain Algorithm 1.1 as a special case of Algorithm 1.3.

The following result states that the marginal coverage guarantee holds with any score function.

Theorem 1.4: Split conformal coverage guarantee, general case

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are i.i.d., and let $\mathcal{C}(X_{n+1})$ be the output of Algorithm 1.3. Then the marginal coverage property (1.1) holds.

Although any score function results in marginal coverage, in practice, the choice of the conformal score function s is the single most important decision when implementing conformal prediction: different choices can lead to very different procedures, and a poorly chosen conformal score function s can lead to completely uninformative prediction sets. We next outline several of the most common conformal score functions, and give intuition for the properties of the resulting conformal prediction method. Figure 1.1 gives an illustration of the sets resulting from these conformal score functions.

The residual score. We first return to the residual score, $s(x,y) = |y - \hat{f}(x)|$, as used in Algorithm 1.1 above, where \hat{f} is fitted on the data points $(X_1, Y_1), \ldots, (X_{n/2}, Y_{n/2})$. This construction will always return a prediction set $\mathcal{C}(X_{n+1})$ of the same form: a symmetric interval, centered around the point prediction $\hat{f}(X_{n+1})$ with the same width for all values of X_{n+1} . This is a simple and natural choice. However, in many settings, the form of the resulting prediction sets may be far from ideal—for instance, if the response variable Y has higher or lower noise variance depending on the value of X.

The scaled residual score. We can modify the residual score to result in intervals of different width (e.g., in settings where the variance of Y is different at different values of X). This construction will again use a trained predictive model \hat{f} , and will also require an estimate $\hat{\sigma}(x)$ of the scale of the noise in Y given X = x (e.g., an estimate of the standard deviation), where \hat{f} and $\hat{\sigma}$ are both fitted using data points

Figure 1.1: The conformal score function determines the shape of the sets. The shaded band is a visualization of the prediction set $\mathcal{C}(X_{n+1}) \subseteq \mathcal{Y}$ as a function of $X_{n+1} \in \mathcal{X}$. On the left, the residual score gives a fixed-width band. In the middle, the scaled residual score gives a symmetric band that adapts to the non-constant noise variance. On the right, the CQR score gives an asymmetric band that follows the quantiles of the distribution.

 $(X_1,Y_1),\ldots,(X_{n/2},Y_{n/2})$. The scaled residual score is then defined as

$$s(x,y) = \frac{|y - \hat{f}(x)|}{\hat{\sigma}(x)},$$

and results in a prediction set

$$C(X_{n+1}) = \hat{f}(X_{n+1}) \pm \hat{q} \cdot \hat{\sigma}(X_{n+1}).$$

This can lead to prediction intervals that are a better fit to the data (as compared to the residual score), since the function $\hat{\sigma}(x)$ can capture the nonconstant variance of the noise.

The CQR score. Both the residual score and the scaled residual score will return symmetric intervals, which may be a poor fit for certain data distributions. This inspires a more nonparametric approach towards choosing the score. Suppose we use the data points $(X_1, Y_1), \ldots, (X_{n/2}, Y_{n/2})$ to obtain an estimate $\hat{\tau}(x; \alpha/2)$ of the $\alpha/2$ quantile of the distribution of Y given X = x, and an estimate $\hat{\tau}(x; 1 - \alpha/2)$ of the $1 - \alpha/2$ quantile—for instance, we might fit these models by running a quantile regression method. A straightforward way to use these estimates when confronted with a test point X_{n+1} would be to output the interval $[\hat{\tau}(X_{n+1}; \alpha/2), \hat{\tau}(X_{n+1}; 1 - \alpha/2)]$, using the estimated quantiles—but this may not give a coverage level of $1 - \alpha$ if the estimates $\hat{\tau}$ are imperfect. Instead, the conformalized quantile regression (CQR) method uses these initial quantile estimates to construct a conformal score, so that the resulting prediction set is an adjusted version of the initial interval. Specifically, the CQR score is given by

$$s(x, y) = \max \{\hat{\tau}(x; \alpha/2) - y, y - \hat{\tau}(x; 1 - \alpha/2)\}\$$

which is the signed distance of y to the interval $[\hat{\tau}(x;\alpha/2),\hat{\tau}(x;1-\alpha)]$. With this choice of s, the resulting conformal prediction set takes the form

$$C(X_{n+1}) = [\hat{\tau}(X_{n+1}; \alpha/2) - \hat{q}, \hat{\tau}(X_{n+1}; 1 - \alpha/2) + \hat{q}]$$

for a number \hat{q} . That is, conformal prediction with this score function takes the prediction interval from the initial quantile estimates, and then either inflates it if \hat{q} is positive or shrinks it if \hat{q} is negative.

The high-probability score. The split conformal prediction algorithm can also be applied to classification problems, i.e., when the response variable takes values in a discrete set. Suppose that $\mathcal{Y} = \{1, \ldots, K\}$ is the set of possible labels, and suppose we have an estimate $\hat{\pi}(y \mid x)$ of the probability of label Y = y given features X = x, which was trained on the data points $(X_1, Y_1), \ldots, (X_{n/2}, Y_{n/2})$. The high-probability score is then given by

$$s(x,y) = -\hat{\pi}(y \mid x).$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

It is important to note that the score is the *negative* of the estimated probability; this is because a conformal score is intended to return larger values when the data point (x, y) appears more unlikely, i.e., when $\hat{\pi}(y \mid x)$ is small. If we use this score for split conformal prediction, the resulting prediction set is given by

$$C(X_{n+1}) = \{y : \hat{\pi}(y \mid X_{n+1}) \ge -\hat{q}\} \subseteq \{1, \dots, K\},\$$

which is the set of all labels $y \in \{1, ..., K\}$ with a sufficiently high estimated probability, given the test point features X_{n+1} . Of course, this type of score function may also be used in the case of a continuous response Y, if we use an estimated conditional density in place of the estimated conditional probability.

At this point, we have seen that conformal prediction can provide a marginal coverage guarantee with only weak assumptions, and can leverage the power of arbitrary predictive models—the better the predictive model, the more precise the prediction set will be. Nonetheless, there are many natural questions at this stage. Is it necessary to split the data into two parts, one for model fitting and one for the calibration of confidence intervals, as in split conformal prediction—or can the data splitting step be avoided? Which conformal score functions are optimal? Can the method be extended to cases where the data are not i.i.d.? We will address these questions throughout the book as we develop conformal prediction in full generality.

1.4 The conformal prediction framework in context

This book discusses the statistical theory underlying conformal prediction and related techniques for providing uncertainty quantification for our predictive models—but of course, this question has long been studied in the statistics literature. What distinguishes the conformal prediction framework from other methods?

As we have seen above, conformal prediction guarantees a marginal coverage property for data drawn i.i.d. from any distribution. We do not need to place conditions on the distribution (such as smoothness, or, a parametric model)—because of this, conformal prediction is often described as a distribution-free approach to inference. Moreover, we do not need to place conditions on the underlying model fitted to the data (such as assuming that \hat{f} is a consistent estimator of the true association between Y and X), and the result is finite-sample, in the sense that it holds at any value of n rather than offering only an asymptotic guarantee.

Conformal prediction is closely related to the field of nonparametric statistics, which has also aimed to provide statistical methods that can flexibly handle data distributions that do not fall within some simple parametric model. However, there are some fundamental differences between these fields. In nonparametric and semiparametric statistics, most methods and results rely on regularity conditions that, while weaker than a parametric model assumption, are nonetheless much stronger than the minimal assumptions required by conformal. For example, we might assume smoothness conditions on the distribution of the data. With these types of assumptions, it is often possible to provide guarantees not only for predictive inference but also for estimation (for instance, estimating the mean of Y given X). By contrast, exchangeability is a far weaker assumption than what is usually considered in nonparametric statistics. Without regularity conditions, it is still possible to provide useful and powerful methods for predictive inference, as we have seen with the marginal coverage guarantee for split conformal, above—but, as we will see in some of the hardness results in Part IV of the book, other types of inference questions become more challenging or even impossible.

Conformal prediction is intimately connected with permutation testing—we will soon see that it can be formulated as the inversion of a particular permutation test. It is also closely connected to quantile estimation and distribution estimation. A natural use of quantile estimation is to give prediction intervals for test points, although such a procedure would again require assumptions on the regularity of the distribution in order to have guaranteed coverage. Farther afield are resampling approaches, such as the bootstrap and cross-validation. Unlike conformal prediction, these are most commonly applied for confidence intervals on functionals of the distribution, and require regularity conditions for validity. Having said that, we will explore distribution-free variants of cross-validation for the purpose of predictive inference later on in the book. What makes it unique is its ability to provide nonasymptotic guarantees on the quality of predictions that do not require smoothness or other regularity conditions.

1.5 Scope of this book

After this introductory chapter, the remainder of Part I is an introduction to exchangeability from a mathematical point of view, with a glossary of facts and properties that will be useful for the statistical results developed later in the book. We pay special attention to permutation tests, since conformal prediction can be reframed as inverting a permutation test. These tools will be critical to many of the proofs and intuitions in the remainder of the book.

Part II of the book then turns to the conformal prediction framework. In particular, we discuss full conformal prediction, a generalization of the split conformal prediction method we have already introduced, which reveals the basic statistical logic at play. We then describe stronger properties than marginal coverage, with a mix of positive results for various methods, and hardness results that show the limits of what is possible without more assumptions. We also examine conformal prediction from a model-based perspective, to see how assumptions about the distribution of the data can be incorporated into the workflow of the conformal prediction framework.

Part III of the book focuses on a broad range of different extensions to the conformal prediction methodology, including cross-validation based methods within the conformal framework, weighted versions of conformal prediction that allow us to move beyond the i.i.d. setting, online versions of conformal methods that are designed for streaming data, and computational shortcuts for conformal prediction. We also briefly cover additional topics such as variants of conformal prediction that can handle broader notions of risk, and connections with selective inference, multiple testing, and model aggregation—these topics are a sample of some recent work in the field, and are suggestive of the many directions for continued study.

Finally, in Part IV, we depart from our focus on predictive inference, and study the problem of distributionfree inference for a range of other questions: estimating a regression function, calibrating probability estimates, and testing conditional independence.

Bibliographic notes

We refer the reader to the bibliographic notes in Chapter 3 for references about the most common variants of conformal prediction and detailed history. Here, we will briefly mention some other textbooks and tutorials on conformal prediction. The first such book was Algorithmic Learning in a Random World by Vovk et al. [2005], which introduced the mathematical framework behind conformal prediction. More recent textbooks include Shafer and Vovk [2008], Balasubramanian et al. [2014], and Angelopoulos et al. [2022a]. Turning to the specific algorithms in this section, split conformal prediction was first described in Papadopoulos et al. [2002], which also introduced the scaled residual score function; see also Lei et al. [2018]. Lastly, the CQR score function is due to Romano et al. [2019], and the high-probability score is studied in Sadinle et al. [2019].

Chapter 2

Exchangeability and Permutations

In this chapter, we provide an introduction to the idea of exchangeability, which provides the core mathematical foundation of conformal prediction and many related methodologies. Exchangeability is a property of a sequence of random variables—informally, it expresses the idea that the sequence is equally likely to appear in any order. A formal definition is as follows:

Definition 2.1: Exchangeability

Let $Z_1, \ldots, Z_n \in \mathcal{Z}$ be random variables with a joint distribution. We say that the random vector (Z_1, \ldots, Z_n) is exchangeable if, for every permutation $\sigma \in \mathcal{S}_n$,

$$(Z_1,\ldots,Z_n)\stackrel{\mathrm{d}}{=} (Z_{\sigma(1)},\ldots,Z_{\sigma(n)}),$$

where $\stackrel{\text{d}}{=}$ denotes equality in distribution, and S_n is the set of all permutations on $[n] := \{1, \dots, n\}$.

Similarly, let $Z_1, Z_2, \dots \in \mathcal{Z}$ be an infinite sequence of random variables with a joint distribution. We say that this infinite sequence is exchangeable if (Z_1, \dots, Z_n) is exchangeable for every $n \ge 1$.

The elements of an exchangeable sequence are identically distributed, but not necessarily independent. Exchangeability constrains the dependence structure so that all permutations are equally likely. Throughout this book, we might interchangeably say that a random vector (Z_1, \ldots, Z_n) is exchangeable, or that the random variables Z_1, \ldots, Z_n are exchangeable.

Exchangeability can arise in a broad range of scenarios. In particular, exchangeability of a sequence Z_1, \ldots, Z_n arises in the following important special cases:

- Z_1, \ldots, Z_n are sampled uniformly without replacement from a finite set $\{z_1, \ldots, z_N\} \subseteq \mathcal{Z}$.
- Z_1, \ldots, Z_n are drawn i.i.d. from a distribution P on \mathcal{Z} .

However, these common scenarios are far from exhaustive. As an intuitive example, consider a distribution on $Z_1, Z_2 \in \{0, 1\}$ defined by the probability mass function

$$p(0,0) = p(1,1) = \frac{1}{8}, \quad p(0,1) = p(1,0) = \frac{3}{8}.$$

This joint distribution is exchangeable, but cannot be expressed either via sampling without replacement or via i.i.d. sampling. It instead illustrates a different way that exchangeability can arise—any mixture of exchangeable distributions is itself an exchangeable distribution. Indeed, the above example can be derived as a mixture, where with probability $\frac{1}{2}$ we sample Z_1, Z_2 uniformly without replacement from the set $\{0, 1\}$, and with probability $\frac{1}{2}$ we draw Z_1, Z_2 i.i.d. from the Bernoulli(0.5) distribution.

As a technical note, here and throughout the remainder of the book, wherever needed we will assume the existence of regular conditional probabilities (i.e., existence of measurable functions such as $x \mapsto \mathbb{P}(Y \in A \mid x)$

X = x)). This relies on standard regularity conditions on the underlying measure spaces, for instance, it holds for standard Borel spaces.

2.1 Alternative characterizations of exchangeability

Exchangeability can be formally described in a number of different ways. Here, we give several characterizations and properties of exchangeability of a random vector (Z_1, \ldots, Z_n) , to help build intuition.

Symmetry of the joint density. Exchangeability can be characterized in a simple way if the random vector (Z_1, \ldots, Z_n) is either discrete, or has a joint density. First, supposing \mathcal{Z} is a countable space so that the Z_i 's are discrete, let $p: \mathcal{Z}^n \to [0,1]$ be the probability mass function for the joint distribution of (Z_1, \ldots, Z_n) . Then this joint distribution is exchangeable if and only if

$$p(z_1,\ldots,z_n)=p(z_{\sigma(1)},\ldots,z_{\sigma(n)})$$
 for all $z_1,\ldots,z_n\in\mathcal{Z}$ and for all $\sigma\in\mathcal{S}_n$.

Analogously, if $\mathcal{Z} = \mathbb{R}$ and the random vector (Z_1, \ldots, Z_n) has a joint density f (with respect to Lebesgue measure on \mathbb{R}^n), then this joint distribution is exchangeable if and only if

$$f(z_1,\ldots,z_n)=f(z_{\sigma(1)},\ldots,z_{\sigma(n)})$$
 for almost every $z_1,\ldots,z_n\in\mathcal{Z}$ and for all $\sigma\in\mathcal{S}_n$.

Conditioning on the order statistics. For this next interpretation, we will consider the special case of real-valued random variables, $\mathcal{Z} = \mathbb{R}$. In this setting, we define the order statistics $Z_{(1)} \leq \cdots \leq Z_{(n)}$ as the sorted values of the vector (Z_1, \ldots, Z_n) . In the simple setting where these n values are distinct almost surely, exchangeability implies that, conditioning on the order statistics, the random vector (Z_1, \ldots, Z_n) is equally likely to be any one of the n! many unique permutations of the order statistics. More generally, without assuming that the Z_i 's are necessarily distinct, we can calculate the distribution of (Z_1, \ldots, Z_n) , conditional on the order statistics, as

$$(Z_1,\ldots,Z_n) \mid (Z_{(1)},\ldots,Z_{(n)}) \sim \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \delta_{(Z_{(\sigma(1))},\ldots,Z_{(\sigma(n))})},$$

placing mass $\frac{1}{n!}$ on each of the n! (potentially non-unique) possible orderings of the order statistics $(Z_{(1)}, \ldots, Z_{(n)})$. To put it more simply, we can say that conditional on the unordered collection of values in the sequence, the order in which they appear is simply a random shuffle. (Here and throughout the book, we will use the notation δ_z to denote the delta function at a value z, i.e., the probability distribution that places probability 1 on the value z.)

We next highlight an important consequence of this equivalent characterization: under exchangeability of Z_1, \ldots, Z_n , it must hold that

$$Z_i \mid (Z_{(1)}, \dots, Z_{(n)}) \sim \frac{1}{n} \sum_{j=1}^n \delta_{Z_{(j)}}$$
 (2.1)

(i.e., each individual entry Z_i is equally likely to be any one of the n order statistics), and consequently,

$$\mathbb{P}(Z_i \le Z_{(k)}) \ge k/n,\tag{2.2}$$

for each index $i \in [n]$ and each rank $k \in [n]$ (see Fact 2.15 below). Moreover, if the values Z_1, \ldots, Z_n are distinct almost surely, then this becomes an equality.

Conditioning on the empirical distribution. In the real-valued setting discussed above, we saw that each entry Z_i can be viewed as a random draw from the values $Z_{(1)}, \ldots, Z_{(n)}$. In fact, this intuition can be extended to the general setting, beyond the case $\mathcal{Z} = \mathbb{R}$. Define

$$\widehat{P}_n = \frac{1}{n} \sum_{i=1}^n \delta_{Z_i},$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

which is the empirical distribution of the random vector (Z_1, \ldots, Z_n) . The following proposition tells us an important implication of exchangeability: essentially, each Z_i is a draw from this empirical distribution \widehat{P}_n . This is simply an extension of the result (2.1) to the case of a general space \mathcal{Z} (formally, we will need to assume a mild regularity condition—namely, that \mathcal{Z} has a countably-generated σ -algebra).

Proposition 2.2

Let $(Z_1, \ldots, Z_n) \in \mathbb{Z}^n$ be an exchangeable random vector, and let \widehat{P}_n be the empirical distribution of this vector. Then for all $i \in [n]$,

$$Z_i \mid \widehat{P}_n \sim \widehat{P}_n,$$

i.e., if we condition on \widehat{P}_n , then \widehat{P}_n is itself the conditional distribution of Z_i .

Proof of Proposition 2.2

To calculate the conditional distribution of Z_i for each $i \in [n]$, we can equivalently compute the conditional probability of the event $Z_i \in A$, for any $A \subseteq \mathcal{Z}$. Since \widehat{P}_n is a symmetric function of the random variables Z_1, \ldots, Z_n , by Lemma 2.3 below it holds almost surely that Z_1, \ldots, Z_n are exchangeable conditional on \widehat{P}_n , and consequently,

$$\mathbb{P}(Z_n \in A \mid \widehat{P}_n) = \mathbb{P}(Z_i \in A \mid \widehat{P}_n),$$

holds almost surely for each $i \in [n]$. Assuming this holds, we then have

$$\mathbb{P}(Z_n \in A \mid \widehat{P}_n) = \frac{1}{n} \sum_{i=1}^n \mathbb{P}(Z_i \in A \mid \widehat{P}_n) = \mathbb{E}\left[\frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{Z_i \in A\right\} \middle| \widehat{P}_n\right]$$
$$= \mathbb{E}\left[\widehat{P}_n(A) \mid \widehat{P}_n\right] = \widehat{P}_n(A),$$

which proves the desired claim.

The proof of Proposition 2.2 relies on the fact that Z_1, \ldots, Z_n are exchangeable even after conditioning on \widehat{P}_n . In fact, this is a special case of the following lemma, which verifies that exchangeability continues to hold after conditioning on any symmetric function of Z_1, \ldots, Z_n .

Lemma 2.3: Conditional exchangeability given a symmetric function

Let $Z_1, \ldots, Z_n \in \mathcal{Z}$ be exchangeable, and let $f: \mathcal{Z}^n \to \mathcal{W}$ be a symmetric function, i.e., $f(z_1, \ldots, z_n) = f(z_{\sigma(1)}, \ldots, z_{\sigma(n)})$ for all $z_1, \ldots, z_n \in \mathcal{Z}$ and all $\sigma \in \mathcal{S}_n$. Then (Z_1, \ldots, Z_n) is conditionally exchangeable given $f(Z_1, \ldots, Z_n)$, in the sense that the conditional distribution

$$(Z_1,\ldots,Z_n)\mid f(Z_1,\ldots,Z_n)$$

is, almost surely, an exchangeable distribution.

Proof of Lemma 2.3

By definition of exchangeability, we need to verify that for any $\sigma \in \mathcal{S}_n$ and any measurable set A, the following statement holds almost surely:

$$\mathbb{P}\big((Z_1,\ldots,Z_n)\in A\mid f(Z_1,\ldots,Z_n)\big)=\mathbb{P}\big((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A\mid f(Z_1,\ldots,Z_n)\big).$$

(Formally, this statement is sufficient for verifying the claim of the lemma because we have

assumed that \mathcal{Z} has a countably-generated σ -algebra.) Equivalently, we need to show that

$$\mathbb{P}\big((Z_1,\ldots,Z_n)\in A, f(Z_1,\ldots,Z_n)\in B\big)=\mathbb{P}\big((Z_{\sigma(1)},\ldots,Z_{\sigma(n)})\in A, f(Z_1,\ldots,Z_n)\in B\big)$$

for all measurable $A \subseteq \mathbb{Z}^n, B \subseteq \mathcal{W}$. This holds because

$$\mathbb{P}((Z_1, \dots, Z_n) \in A, f(Z_1, \dots, Z_n) \in B)$$

$$= \mathbb{P}((Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \in A, f(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \in B)$$

$$= \mathbb{P}((Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \in A, f(Z_1, \dots, Z_n) \in B),$$

where the first step holds since (Z_1, \ldots, Z_n) is exchangeable, while the second step holds by symmetry of f.

2.2 Permutation tests

Permutation tests are used in statistics for a wide range of different inference tasks, most of which are not related to the problem of prediction. Often, a permutation test can be expressed as testing the null hypothesis of exchangeability. To understand this, we will first define permutation testing in general and will examine its properties as a test of exchangeability, and then will give two concrete examples of commonly used permutation tests to reinterpret them within the framework of exchangeability.

Let \mathcal{P} be the set of all distributions on \mathcal{Z}^n , and let $\mathcal{P}_{\text{exch}} \subseteq \mathcal{P}$ be the subset of distributions for which exchangeability is satisfied. Consider a random vector (Z_1, \ldots, Z_n) drawn from some joint distribution P. We would like to perform a hypothesis test of

$$H_0: P \in \mathcal{P}_{\text{exch}}$$
 versus $H_1: P \in \mathcal{P} \backslash \mathcal{P}_{\text{exch}}$.

Before observing the data, we fix any function $T: \mathbb{Z}^n \to \mathbb{R}$, with the intuition that a large value of our test statistic $T(Z_1, \ldots, Z_n)$ will indicate evidence against exchangeability. Then we define the quantity

$$p = \frac{\sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{T(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \ge T(Z_1, \dots, Z_n)\right\}}{n!}$$
(2.3)

which compares the observed value of the test statistic, $T(Z_1, \ldots, Z_n)$, against all possible values obtained via permutations of the data. (Note that the identity permutation, $\sigma = \mathrm{Id}$, is one of the n! many permutations included in the sum, and thus it is not possible for p to be smaller than $\frac{1}{n!}$.) The following well-known result shows that the quantity defined in (2.3) is a valid p-value for testing the null hypothesis of exchangeability.

Theorem 2.4

For any function $T: \mathbb{Z}^n \to \mathbb{R}$, the p-value p defined in (2.3) satisfies $\mathbb{P}_P(p \le \tau) \le \tau$ for all $\tau \in [0,1]$ and all $P \in \mathcal{P}_{\text{exch}}$.

In many settings, it is common to avoid the computational burden of computing all n! permutations by instead sampling a smaller number M of permutations uniformly at random, to obtain the p-value

$$p = \frac{1 + \sum_{m=1}^{M} \mathbb{1}\left\{T(Z_{\sigma_m(1)}, \dots, Z_{\sigma_m(n)}) \ge T(Z_1, \dots, Z_n)\right\}}{1 + M}.$$
 (2.4)

This p-value is again valid against the null hypothesis of exchangeability:

Figure 2.1: Illustration of a permutation test for the equality of two real-valued distributions. The horizontal axes show the index of each data point Z_1, \ldots, Z_n and the vertical axis shows the value. The test statistic used is the difference in means between indices $1, \ldots, n_0$ and $n_0 + 1, \ldots, n$. In each plot, these two group means are shown as two dashed yellow lines. In the left plot, we show the values computed on the real ordering of the data Z. The middle and right plots show the values for two typical permutations Z_{σ} . The difference in means on the real data is far more extreme than on the permuted data, indicating evidence against the null of exchangeability.

Theorem 2.5

For any function $T: \mathbb{Z}^n \to \mathbb{R}$, the p-value p defined in (2.4) satisfies $\mathbb{P}_P(p \leq \tau) \leq \tau$ for all $\tau \in [0,1]$ and all $P \in \mathcal{P}_{\text{exch}}$, where the probability is now taken with respect to both the random draw of $(Z_1, \ldots, Z_n) \sim P$, and the permutations $\sigma_1, \ldots, \sigma_M$ sampled uniformly at random (with replacement) from S_n .

The '+1' term appearing in the numerator and denominator of the p-value p constructed in (2.4) is necessary for obtaining this validity result—indeed, without this correction, the event p=0 could have nonzero probability under the null hypothesis.

2.2.1 Examples

To apply the permutation test, we need to specify a choice of the test statistic T. If the statistic captures the deviations from exchangeability that we expect may occur, then it will lead to a powerful test. We illustrate this with several common examples in the case of real-valued data, $\mathcal{Z} = \mathbb{R}$ —namely, testing for equality of distributions, and testing for outliers. Other common applications of permutation tests include testing stationarity of a time series and testing independence between two random variables.

Testing equality of distributions. Suppose that we have two independent samples from two potentially different distributions, with n_0 many draws from P_0 and $n_1 = n - n_0$ many draws from P_1 . Without loss of generality, we can take $Z_1, \ldots, Z_{n_0} \stackrel{\text{i.i.d.}}{\sim} P_0$ and $Z_{n_0+1}, \ldots, Z_n \stackrel{\text{i.i.d.}}{\sim} P_1$. If $P_0 = P_1$, then the Z_i 's are i.i.d. from a single shared distribution $P_0 = P_1$, and therefore exchangeability holds. If we conjecture that any potential difference between P_0 and P_1 would likely lead to a difference of means, we might choose the test statistic

$$T(z_1,\ldots,z_n) = \left| \frac{1}{n_0} \sum_{i=1}^{n_0} z_i - \frac{1}{n_1} \sum_{i=n_0+1}^n z_i \right|,$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

the difference in the sample means. Alternatively, we might make a choice that is more agnostic to the type of difference between the two distributions,

$$T(z_1, \dots, z_n) = \sup_{v \in \mathbb{R}} \left| \frac{1}{n_0} \sum_{i=1}^{n_0} \mathbb{1} \left\{ z_i \le v \right\} - \frac{1}{n_1} \sum_{i=n_0+1}^{n} \mathbb{1} \left\{ z_i \le v \right\} \right|,$$

which measures the maximum difference between the two empirical cumulative distribution functions (CDFs). The latter is sometimes called the Kolmogorov–Smirnov statistic.

Testing if a new data point is an outlier. Next, suppose that we would like to test whether a particular data point—say, the last data point Z_n —is an outlier relative to the rest of the sequence. In fact, as we will see later on, this use of the permutation test is central to the development of conformal prediction.

For example, we might conjecture that Z_n is more likely to be unusually large relative to the other Z_i 's. In this case, we could consider the test statistic

$$T(z_1,...,z_n) = \sum_{i=1}^n \mathbb{1} \{z_n > z_i\},$$

which is large when the rank of the last value is large among the rest of the list. For this particular test statistic, the permutation test p-value can be simplified. Observe that

$$T(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) = \sum_{i=1}^{n} \mathbb{1} \{ Z_{\sigma(n)} > Z_{\sigma(i)} \} = \sum_{i=1}^{n} \mathbb{1} \{ Z_{\sigma(n)} > Z_{i} \},$$

which simply captures the position of $Z_{\sigma(n)}$ relative to the original (unpermuted) sequence Z_1, \ldots, Z_n . Examining this quantity, we can then see that $T(Z_{\sigma(1)}, \ldots, Z_{\sigma(n)}) \geq T(Z_1, \ldots, Z_n)$ if and only if $Z_{\sigma(n)} \geq Z_n$, and therefore, the p-value can be simplified as

$$p = \frac{\sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{T(Z_{\sigma(1)}, \dots, Z_{\sigma(n)}) \ge T(Z_1, \dots, Z_n)\right\}}{n!} = \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{Z_{\sigma(n)} \ge Z_n\right\}$$
$$= \frac{1}{n!} \sum_{i=1}^n \sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{Z_i \ge Z_n\right\} = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{Z_i \ge Z_n\right\}.$$

Here the last step holds since, for each $i \in [n]$, there are exactly $(n-1)! = \frac{n!}{n}$ many permutations $\sigma \in \mathcal{S}_n$ for which $\sigma(n) = i$.

In fact, this example can be derived in a simpler way, without the terminology of permutation tests. By definition of p, we can verify that, for any $\tau \in [0,1]$,

$$p = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{ Z_i \ge Z_n \} \le \tau \quad \Longleftrightarrow \quad Z_n > Z_{(k)} \text{ for } k = \lceil (1-\tau)n \rceil.$$

By (2.2) we know that exchangeability of Z_1, \ldots, Z_n implies that $\mathbb{P}(Z_n > Z_{(k)}) \leq 1 - k/n \leq \tau$, which directly verifies the validity of the p-value p. We state this result formally in the following corollary:

Corollary 2.6

Let $Z_1, \ldots, Z_n \in \mathbb{R}$ be exchangeable. Then $p = \frac{\sum_{i=1}^n \mathbb{1}\{Z_i \geq Z_n\}}{n}$ satisfies $\mathbb{P}(p \leq \tau) \leq \tau$ for all $\tau \in [0, 1]$.

2.3 Proving validity of permutation tests

We next turn to building a theoretical understanding of permutation tests, within the framework of exchangeability. While the intuition behind permutation tests is very natural, here we will dive into the details that underlie their validity so that we can build a strong foundation for more complex theoretical results that will arise later on. The proofs of Theorem 2.4 and Theorem 2.5 are similar, so we only give the proof of the first.

Proof of Theorem 2.4 (validity of the permutation p-value)

Step 1: a CDF inequality. First, for any $z \in \mathbb{Z}^n$, write $z_{\sigma} = (z_{\sigma(1)}, \dots, z_{\sigma(n)})$ to denote the permuted vector for any permutation $\sigma \in \mathcal{S}_n$. We define

$$F(v;z) = \frac{\sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{-T(z_\sigma) \le v\right\}}{n!}.$$

We can observe that $F(\cdot; z)$ is the cumulative distribution function (CDF) for the distribution of the quantity $-T(z_{\sigma})$, when $\sigma \in \mathcal{S}_n$ is drawn uniformly at random (while z is treated as fixed). We therefore have

$$\mathbb{P}_{\sigma}\left(F(-T(z_{\sigma});z) \leq \tau\right) \leq \tau,$$

where the probability is taken with respect to $\sigma \in \mathcal{S}_n$ drawn uniformly at random, which is implied directly from the following basic property of CDFs:

If the random variable X has CDF F, then
$$\mathbb{P}(F(X) \le \tau) \le \tau$$
 for all $\tau \in [0, 1]$. (2.5)

Step 2: using exchangeability. Now, we incorporate the exchangeability assumption on $Z = (Z_1, \ldots, Z_n)$. For any fixed permutation $\sigma \in \mathcal{S}_n$, $Z \stackrel{\mathrm{d}}{=} Z_{\sigma}$ by exchangeability; therefore it also holds that $Z \stackrel{\mathrm{d}}{=} Z_{\sigma}$ when $\sigma \in \mathcal{S}_n$ is drawn uniformly at random (independently of Z).

Next, we observe that the p-value p defined in (2.3) is equal to p = F(-T(Z); Z). Therefore,

$$\mathbb{P}(p \leq \tau) = \mathbb{P}(F(-T(Z); Z) \leq \tau) = \mathbb{P}(F(-T(Z_{\sigma}); Z_{\sigma}) \leq \tau) = \mathbb{P}(F(-T(Z_{\sigma}); Z) \leq \tau),$$

where the last two probabilities are calculated with respect to the distribution of both Z and the randomly drawn σ . Here the second equality holds since $Z \stackrel{\mathrm{d}}{=} Z_{\sigma}$, while the last step holds since $F(v;z) = F(v;z_{\sigma})$ for any v,z, and σ , by construction. Finally, we know that $\mathbb{P}(F(-T(Z_{\sigma});Z) \leq \tau \mid Z) \leq \tau$, almost surely, by Step 1, which implies that $\mathbb{P}(F(-T(Z_{\sigma});Z) \leq \tau) \leq \tau$ by the tower law.

The key tool in this proof is the CDF of the negative values of the test statistic, i.e., -T(Z) (and its permuted version, $-T(Z_{\sigma})$). The reason for taking the negative is simply that the permutation test has a small p-value when T(Z) is sufficiently large, while the CDF measures the probability of observing a value that is sufficiently small; by taking the negative, we can express the p-value as a CDF.

2.4 Appendix: order statistics, quantiles, and CDFs

In this section, we will give some additional background on some technical details in order to build a strong foundation for theoretical results later in this work. This section will contain definitions and key facts about quantities such as quantiles and CDFs, which provide some of the basic ingredients for studying exchangeability and developing conformal prediction methods.

The structure of the section is as follows. In Section 2.4.1, we state properties of order statistics, quantiles, and CDFs of lists that hold *deterministically*—i.e., for any list of numbers. In Section 2.4.2, we state implications of these properties under the assumption of exchangeability. Finally, in Section 2.4.3, we look at the quantile and CDF function again from a distributional perspective, as opposed to operating over finite lists.

2.4.1 Deterministic properties

Definitions. First, though we have referred to order statistics, CDFs, and quantiles informally throughout this chapter, we now define them rigorously for a list of real numbers, $z = (z_1, \ldots, z_n)$. We emphasize that, for the moment, we are treating the z_i 's as fixed values rather than random variables.

Definition 2.7: Order statistics of a finite list

Let $k \in [n]$. Then the kth order statistic of $z \in \mathbb{R}^n$, written as $z_{(k)}$, is defined as

$$z_{(k)} = \inf \left\{ v : \sum_{i=1}^{n} \mathbb{1} \left\{ z_i \le v \right\} \ge k \right\}.$$

The order statistics $z_{(1)} \leq \cdots \leq z_{(n)}$ simply rearrange the values of z into nondecreasing order. The kth order statistic of z is always uniquely defined, although its value may occur more than once in the list in the case of ties. For example, in the vector z = (3, 2, 1, 2), the order statistics are $z_{(1)} = 1$, $z_{(2)} = z_{(3)} = 2$, and $z_{(4)} = 3$.

Definition 2.8: CDF of a finite list

The CDF of $z \in \mathbb{R}^n$ is the function $\widehat{F}_z : \mathbb{R} \to [0,1]$ defined as

$$\widehat{F}_z(v) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{ z_i \le v \}.$$

The CDF evaluated at v is the fraction of data points z_1, \ldots, z_n that lie at or below the value v. For convenience, we define $\hat{F}_z(-\infty) = 0$ and $\hat{F}_z(+\infty) = 1$.

Definition 2.9: Quantile of a finite list

For any $\tau \in [0,1]$, the τ -quantile of $z \in \mathbb{R}^n$ is defined as

Quantile
$$(z; \tau) = \inf \{ v : \widehat{F}_z(v) \ge \tau \}$$
.

In other words, the τ -quantile is the smallest value v such that a fraction τ of the data points lie at or below the value v. (Note that, at $\tau = 0$, the quantile is given by $-\infty$.)

Conversions between order statistics, quantiles, and CDFs. Order statistics, quantiles, and CDFs are intimately related. One can see them intuitively as different parameterizations of the exact same core concept: counting the number of data points falling below some value. As we will see below, the order statistics and quantiles of a finite list are essentially equivalent. Furthermore, the CDF is approximately the inverse of the quantile function when z does not contain repeated values (and when it does, it provides a bound on the inverse). We describe these conversions here.

Fact 2.10: Conversion between order statistics and quantiles.

For any $z \in \mathbb{R}^n$, for all $\tau \in (0,1]$,

$$z_{(\lceil \tau n \rceil)} = \text{Quantile}(z; \tau).$$

Fact 2.11: Conversion between order statistics and CDFs.

For any $z \in \mathbb{R}^n$, for all $k \in [n]$,

$$\widehat{F}_z(z_{(k)}) \ge \frac{k}{n},$$

with equality in the case that all elements of z are distinct.

Figure 2.2: An illustration of two quantiles chosen on the CDF. The figure illustrates the empirical CDF of the vector z = (1, 1, 2, 3, 4), and the calculation of Quantile $(z; \tau)$, at $\tau = 0.5$ and $\tau = 0.1$. This random vector has quantiles Quantile(z; 0.5) = 2 and Quantile(z; 0.1) = 1. We can see that $\hat{F}_z(2) = 0.6$ (which is slightly larger than $\tau = 0.5$, due to discreteness), and $\hat{F}_z(1) = 0.4$ (which is much larger than $\tau = 0.1$ —due to the fact that the random vector has a tie at the value 1).

Fact 2.12: Conversion between quantiles and CDFs.

The following equivalences hold for any $z \in \mathbb{R}^n$:

- (i) $\widehat{F}_z(v) = \sup\{\tau : \text{Quantile } (z;\tau) \leq v\} \text{ for all } v \in \mathbb{R};$
- (ii) Quantile $\left(z; \widehat{F}_{z}\left(v\right)\right) \leq v$ for all $v \in \mathbb{R}$;
- (iii) \hat{F}_z (Quantile $(z;\tau)$) $\geq \tau$ for all $\tau \in [0,1]$;

and furthermore, as a special case of (iii),

(iv) If all elements of z are distinct, \widehat{F}_z (Quantile $(z;\tau)$) = $\frac{\lceil \tau n \rceil}{n}$ for all $\tau \in [0,1]$.

Figure 2.2 illustrates parts (iii) and (iv) of this last fact. When there are no ties between values of z, Fact 2.12(iv) ensures that the CDF is approximately equal to τ at the τ -quantile—namely, $\tau \leq \hat{F}_z(\text{Quantile}(z;\tau)) \leq \tau + 1/n$. In contrast, in the presence of ties, the value of the CDF at the τ -quantile may be substantially larger than τ .

Translations and transformations. What happens to the order statistics, quantiles, and CDFs when we take transformations of z? Here we show what happens when we take monotone transformations, when we take the negative, and perhaps most importantly, when we permute. We begin with the invariance to monotone transformations.

Fact 2.13

Let $f: \mathbb{R} \to \mathbb{R}$ be a monotone nondecreasing function. Furthermore, for $z \in \mathbb{R}^n$, let $f(z) \in \mathbb{R}^n$ denote the elementwise application of f to z. Then,

- (i) For all $k \in [n]$, $f(z)_{(k)} = f(z_{(k)})$.
- (ii) For all $\tau \in (0,1]$, Quantile $(f(z);\tau) = f(\text{Quantile}(z;\tau))$.
- (iii) If additionally f is a strictly increasing function, then for all $v \in \mathbb{R}$, $\widehat{F}_{f(z)}(f(v)) = \widehat{F}_z(v)$.

Next, we consider permutations of z. From the perspective of this book, this is the most important property of quantiles and CDFs.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Fact 2.14

For any vector $z \in \mathbb{R}^n$ and any permutation σ on [n], let $z_{\sigma} = (z_{\sigma(1)}, \dots, z_{\sigma(n)})$, i.e., the entries of z are permuted according to σ . We have that

- (i) For all $k \in [n]$, $(z_{\sigma})_{(k)} = z_{(k)}$.
- (ii) For all $\tau \in [0, 1]$, Quantile $(z_{\sigma}; \tau) = \text{Quantile}(z; \tau)$.
- (iii) For all $v \in \mathbb{R}$, $\widehat{F}_{z_{\sigma}}(v) = \widehat{F}_{z}(v)$.

In other words, this fact tells us that the order statistics, quantiles, and CDF of a vector z are all unchanged when we permute the vector.

2.4.2 Properties under exchangeability

The deterministic properties above can be directly translated into probabilistic equalities and inequalities, when applied to an exchangeable random vector. We will state the most important of these here.

Fact 2.15

Assume $Z \in \mathbb{R}^n$ is exchangeable, and fix any $i \in [n]$. Then we have that

- (i) For any $k \in [n]$, $\mathbb{P}(Z_i \leq Z_{(k)}) \geq k/n$ and $\mathbb{P}(Z_i < Z_{(k)}) \leq (k-1)/n$.
- (ii) For all $\tau \in [0,1]$, $\mathbb{P}(Z_i \leq \text{Quantile}(Z;\tau)) \geq \tau$ and, if $\tau > 0$, $\mathbb{P}(Z_i < \text{Quantile}(Z;\tau)) < \tau$.
- (iii) For all $\tau \in [0,1]$, $\mathbb{P}\left(\widehat{F}_Z(Z_i) \leq \tau\right) \leq \tau$ and $\mathbb{P}\left(\widehat{F}_Z(Z_i) \geq \tau\right) \geq 1 \tau$.

Furthermore, if all elements of Z are distinct almost surely,

- (iv) For any $k \in [n]$, $\mathbb{P}(Z_i \leq Z_{(k)}) = k/n$.
- (v) For all $\tau \in [0,1]$, $\mathbb{P}(Z_i \leq \text{Quantile}(Z;\tau)) = \frac{\lceil n\tau \rceil}{n}$.
- (vi) For all $\tau \in [0,1]$, $\mathbb{P}\left(\widehat{F}_Z(Z_i) \leq \tau\right) = \frac{\lfloor n\tau \rfloor}{n}$.

Note in particular that Fact 2.15 is closely connected to the result of Corollary 2.6 above, which establishes that $p = \frac{\sum_{i=1}^{n} \mathbb{1}\{Z_i \geq Z_n\}}{n}$ satisfies $\mathbb{P}(p \leq \tau) \leq \tau$ when $Z \in \mathbb{R}^n$ is exchangeable. This result can be derived as a consequence of the first part of Fact 2.15(i) (applied with i = n), since $p > \tau$ holds if and only if $Z_n \leq Z_{(k)}$, for $k = \lceil (1 - \tau)n \rceil$.

2.4.3 A distributional view

It is more common to define quantiles of distributions, rather than of lists or sequences. For a distribution P on \mathbb{R} , for any $\tau \in [0, 1]$ the τ -quantile of the distribution P is defined as

Quantile
$$(P; \tau) = \inf\{x \in \mathbb{R} : \mathbb{P}_P(X \le x) \ge \tau\}.$$

If F is the CDF of the distribution P, we will sometimes equivalently write Quantile $(F; \tau)$. (Note that the quantile at $\tau = 0$ will always be $-\infty$; on the other hand, the quantile at $\tau = 1$ will be finite if the support of P is bounded from above, or will be $+\infty$ otherwise.)

In fact, in the setting of a finite list, this distributional definition of the quantile is equivalent to the earlier Definition 2.9: if we consider the empirical distribution of the vector $z = (z_1, \ldots, z_n)$,

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{z_i},$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

then

Quantile
$$(z;\tau)$$
 = Quantile $\left(\frac{1}{n}\sum_{i=1}^{n}\delta_{z_i};\tau\right)$.

Similarly, \hat{F}_z is the CDF of the empirical distribution $\frac{1}{n} \sum_{i=1}^{n} \delta_{z_i}$. This distribution-based representation will be important throughout later chapters.

Bibliographic notes

Exchangeability as a statistical tool was first studied by De Finetti [1929], although some sources attribute its roots to early philosophical work in logic [Johnson, 1924]. It is well known that any mixture of exchangeable distributions is exchangeable. The most well-known result of de Finetti is the converse of this fact—namely, that any infinite exchangeable distribution can be represented as a mixture of i.i.d. distributions. This was first proved by de Finetti for the binary setting $\mathcal{Z} = \{0,1\}$. Many authors have extended this result to broader settings (e.g., any standard Borel space \mathcal{Z}), most notably by Hewitt and Savage [1955], but with many recent advances in the literature as well. While the theorem does not hold in the finite setting, approximate versions of the result can be established, namely, Diaconis and Freedman [1980]'s well-known result showing that, if Z_1, \ldots, Z_n can be embedded into a longer exchangeable sequence Z_1, \ldots, Z_m for $m \gg n$, then its distribution can be approximated as a mixture of i.i.d. distributions. See also Aldous [1985], Kingman [1978] for additional classical background on exchangeability.

Permutation tests have been core objects of study in statistics since at least the time of Fisher's randomized experiments, including the famous 'Lady Tasting Tea' [Fisher, 1956]. The permutation test as we know it today as a significance test for arbitrary distributions was formalized by Pitman [1937]; see Lehmann et al. [1986] for a comprehensive classical reference on permutation tests. Since the advent of powerful computers, permutation tests have become a practical solution for testing nonparametric null hypotheses, and thus their popularity has grown [Ernst, 2004]. Critical to the practical use of permutation tests was the development of the randomized test by Dwass [1957]. In the work of Dwass and throughout the late 20th century, the randomized permutation p-value was simply seen as an estimate of the quantity computed on all n! permutations. Thus, it was common to calculate estimates of the p-value which can be appropriate asymptotically—essentially, this amounts to removing the '+1' in (2.4). However, it was pointed out by Phipson and Smyth [2010] that this strategy can lead to extreme violations of the Type I error rate in finite samples, and the exact test (i.e., adding the '+1') has much better practical performance (this was likely known to some beforehand as well, as the '+1' does also appear in Lehmann et al. [1986]). The literature on permutation tests and other randomization tests has since developed significantly, and several generalizations have been proposed, e.g., to arbitrary groups [Hemerik and Goeman, 2021, Besag and Clifford, 1989], to dependent data generated by Markov chains [Besag and Clifford, 1989], and to incorporate sampling weights [Harrison, 2012]. Other work in the area includes efficient subroutines for their computation [Koning and Hemerik, 2022, Domingo-Enrich et al., 2025] and the study of the optimality of the permutation test, e.g., in the minimax setting [Kim et al., 2022a. A proof of the validity of the sampled permutation p-value is available in Hemerik and Goeman [2018], although the result itself was well-known beforehand.

The connections between order statistics, quantiles, and CDFs (Section 2.4) are standard tools; for a detailed reference, see Shorack [2000, Chapter 7.3].

Part II Conformal Prediction

Chapter 3

Conformal Prediction Under Exchangeability

This chapter begins Part II of the book, where we introduce conformal prediction, examine the ideas underlying its construction, and study its theoretical properties—its statistical guarantees, both under exchangeability and under stronger assumptions, and the hardness results that capture its limitations.

The goal of this first chapter is to provide the reader with a theoretical understanding of the conformal prediction method. We will make a connection to exchangeability, which is at the core of the conformal prediction framework. This chapter aims to provide both an understanding of how conformal prediction works and why it is able to provide distribution-free guarantees.

3.1 Setting: data points, datasets, and scores

We begin with an exchangeable sequence of data points, $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$. As before, we will refer to $X_i \in \mathcal{X}$ as the feature and $Y_i \in \mathcal{Y}$ as the response, for the *i*th data point $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$. In the setting of a prediction problem, the final response value Y_{n+1} is unobserved—this is the value that we are trying to predict, given the training data points $(X_1, Y_1), \ldots, (X_n, Y_n)$ and the test feature X_{n+1} . Throughout the book, we generally refer to random variables with uppercase letters and fixed values with lowercase letters.

Conformal prediction constructs prediction sets $C(X_{n+1}) \subseteq \mathcal{Y}$ that satisfy marginal predictive coverage at level $1-\alpha$, that is, $\mathbb{P}(Y_{n+1} \in C(X_{n+1})) \geq 1-\alpha$. The set will be constructed using a score function s—this is a function that maps a data point $(x,y) \in \mathcal{X} \times \mathcal{Y}$ and a dataset $\mathcal{D} \in (\mathcal{X} \times \mathcal{Y})^k$ (for any number k of data points) to a real value, $s((x,y);\mathcal{D}) \in \mathbb{R}$. The reader should think of the score $s((x,y);\mathcal{D})$ as a measure of a model's error on a single test point (x,y) after training the model on the dataset \mathcal{D} . As in Chapter 1, a motivating example of a score function is the residual score,

$$s((x,y); \mathcal{D}) = |y - \hat{f}(x; \mathcal{D})|, \tag{3.1}$$

where $\hat{f}(x; \mathcal{D})$ is the prediction of a model trained on \mathcal{D} when given a feature x as input. Note that this score is large when the model is badly wrong in its prediction. This will be true for all scores used in this book: a high value of the score $s((x,y);\mathcal{D})$ indicates that the value y is far from what the model would have predicted given x, after training on the data contained in \mathcal{D} . While in this example, $\mathcal{Y} = \mathbb{R}$, we highlight that the conformal prediction framework also applies to classification (where \mathcal{Y} is a discrete set) and cases where \mathcal{Y} is multidimensional.

Throughout Part II of the book, we require that the score function is *symmetric*, meaning it is invariant to permutations of the dataset \mathcal{D} :

Figure 3.1: Illustration of notation for a single hypothesized response y. This figure illustrates the definitions of Section 3.2. Each of the dark gray dots is a data point, (X_i, Y_i) . The larger yellow dot is the hypothesized test point (X_{n+1}, y) . The regression model $\hat{f}(x; \mathcal{D}^y_{n+1})$ is shown as a gray curve. Each score, S_i^y , is shown as a dotted line, representing the residual score as defined in (3.1)—i.e., the absolute residual of the model $\hat{f}(x; \mathcal{D}^y)$ on the point (X_i, Y_i) (or (X_{n+1}, y) , for the case i = n + 1). The quantile \hat{q}^y is defined as in (3.3).

Definition 3.1: Symmetric score function

A score function s is symmetric if for any data point $(x, y) \in \mathcal{X} \times \mathcal{Y}$, any dataset $\mathcal{D} \in (\mathcal{X} \times \mathcal{Y})^k$, and any permutation σ on [k], we have the deterministic equality

$$s((x,y); \mathcal{D}) = s((x,y); \mathcal{D}_{\sigma}).$$

Here, given a permutation σ , we use the notation \mathcal{D}_{σ} to refer to the dataset whose elements are permuted by σ , i.e., the *i*th element of \mathcal{D}_{σ} is given by the $\sigma(i)$ th element of \mathcal{D} . In the case of the residual score in (3.1), symmetry implies that the fitted model $\hat{f}(\cdot;\mathcal{D})$ is trained using some learning algorithm that is itself symmetric, i.e., it does not depend on the ordering of the data points in \mathcal{D} .

3.2 The full conformal prediction procedure

We next describe the full conformal prediction procedure, which generalizes the split conformal procedure from Chapter 1.2. At a high level, the prediction sets are constructed by inverting the score function s to identify possible values $y \in \mathcal{Y}$ for the response Y_{n+1} that agree (or conform) with the trends observed in the available data.

To make this precise, we will need a few definitions. Let $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$ be the dataset containing the n training points, and let $\mathcal{D}_{n+1} = ((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})) \in (\mathcal{X} \times \mathcal{Y})^{n+1}$ be the same with the test point (X_{n+1}, Y_{n+1}) also included. For each $y \in \mathcal{Y}$, we also define the augmented dataset $\mathcal{D}_{n+1}^y = ((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)) \in (\mathcal{X} \times \mathcal{Y})^{n+1}$, consisting of the n training data points together with an additional point (X_{n+1}, y) . This last element of \mathcal{D}_{n+1}^y is the hypothesized test point, where we substitute a hypothesized value y in place of the unknown test response value Y_{n+1} . In the special case $y = Y_{n+1}$, this simply reduces to the combined training-and-test dataset \mathcal{D}_{n+1} —that is, $\mathcal{D}_{n+1}^{Y_{n+1}} = \mathcal{D}_{n+1}$.

Next, as shorthand, we use the notation S_i^y to refer to the score for the *i*th data point within the augmented dataset \mathcal{D}_{n+1}^y , using our score function s—that is, for the *n* training points $(X_1, Y_1), \ldots, (X_n, Y_n)$, we have scores

$$S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y), i = 1, \dots, n,$$

while for the hypothesized test point (X_{n+1}, y) we have the score

$$S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y).$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Note that all these scores are computed with a model trained on the augmented dataset \mathcal{D}_{n+1}^y —the hypothesized test point (X_{n+1}, y) has been included in the training process. See Figure 3.1 for a visual illustration of all these quantities in the context of the residual score (3.1).

With this notation in place, we are now ready to define the full conformal prediction set. At a high level, when the conformal score S_{n+1}^y is large compared to S_1^y, \ldots, S_n^y , then the hypothesized response y is inconsistent with the data, and should therefore be excluded from the prediction set $\mathcal{C}(X_{n+1})$. To construct $\mathcal{C}(X_{n+1})$, then, we simply take the set of all y which are consistent with the data—that is, those that yield sufficiently small scores:

$$C(X_{n+1}) = \{ y : S_{n+1}^y \le \hat{q}^y \}, \tag{3.2}$$

where

$$\hat{q}^y = \text{Quantile}(S_1^y, \dots, S_n^y; (1 - \alpha)(1 + 1/n)).$$
 (3.3)

When \mathcal{Y} is discrete, we can iterate through each value of y to construct the set in (3.2). On the other hand, when \mathcal{Y} is continuous, it may seem at first that (3.2) is impossible to construct in practice—we will return to the question of computation in Section 9.2, where we will give efficient algorithms for computing (or approximating) full conformal prediction sets.

The quantity \hat{q}^y is often referred to as the *conformal quantile*—it is the threshold below which S_{n+1}^y is considered small enough to 'conform' with the given data. Collecting all such values y into the set $\mathcal{C}(X_{n+1})$ results in a guarantee of marginal coverage:

Theorem 3.2: Marginal coverage guarantee of conformal prediction

Suppose that $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable and that s is a symmetric score function. Then the prediction set $\mathcal{C}(X_{n+1})$ defined in (3.2) satisfies the marginal coverage guarantee,

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - \alpha.$$

We will prove Theorem 3.2 in multiple ways in the subsequent sections of this chapter. We emphasize that the coverage property above is marginal, in the sense that it holds on average over the distribution of the entire dataset—both the training set \mathcal{D}_n (which is used to construct the prediction sets) and the test point (X_{n+1}, Y_{n+1}) . See Chapter 4 for a detailed discussion of this point.

For concreteness, we also give an algorithmic description of full conformal prediction in Algorithm 3.3, along with an illustration of the procedure in Figure 3.2.

Algorithm 3.3: Full conformal prediction

- 1. Input training data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , target coverage level 1α , conformal score function s.
- 2. For each possible response value $y \in \mathcal{Y}$,
 - (a) Compute the conformal score $S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y)$, for all $i \in 1, ..., n$.
 - (b) Compute the conformal score for the hypothesized test point, $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$.
 - (c) Compute the conformal quantile $\hat{q}^y = \text{Quantile}(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)).$
- 3. Return the prediction set $C(X_{n+1}) = \{ y \in \mathcal{Y} : S_{n+1}^y \le \hat{q}^y \}.$

Note that, for a small sample size n, the quantile level $(1-\alpha)(1+1/n)$ appearing in Algorithm 3.3 may in fact be > 1; here and throughout the book, we will take the convention that, for any $\tau > 1$, Quantile $(z;\tau) = +\infty$ for any vector z, and similarly Quantile $(P;\tau) = +\infty$ for any distribution P. In the case where $(1-\alpha)(1+1/n) > 1$, the conformal prediction algorithm would therefore return the full response space, $C(X_{n+1}) = \mathcal{Y}$, for any test point X_{n+1} .

Figure 3.2: An illustration of full conformal prediction with the residual score function. On the left-hand side are four hypothesized response values y, i.e., four distinct iterations of the 'For' loop in Algorithm 3.3. In the center, for each possible value y of the response, we display a smaller version of the plot in Figure 3.1. Note that each center figure has a different fitted function $\hat{f}(\cdot; \mathcal{D}_{n+1}^y)$, since changing the value y has an effect on the regression function. For each value of y, the width of the gray shaded band indicates the conformal quantile \hat{q}^y , as in Figure 3.1. Finally, on the right-hand side, the final prediction set $\mathcal{C}(X_{n+1})$ is shown in dark gray. The set contains all hypothesized response values y whose residuals are no larger than the conformal quantile \hat{q}^y —that is, all values of y for which the yellow data point, denoting (X_{n+1}, y) , lies within the gray band.

3.2.1 The score function

When implementing full conformal prediction, how do we choose a score function $s = s((x, y); \mathcal{D})$? The score function is a measure of the agreement between y and x, typically based on a model that was fit using data \mathcal{D} . There are many sensible ways to instantiate this broad intuition, and we outlined four examples in Section 1.3. (Those examples were presented for the special case of split conformal, but the same constructions are suitable for full conformal prediction as well.) We emphasize that correct marginal coverage will hold for any symmetric score function, as stated in Theorem 3.2. The idea is that no matter how good or bad our models are, one can always make the sets wide enough to contain test points with at least the desired probability $1 - \alpha$ (for example, by taking the set to be all of \mathcal{Y}). In other words, coverage will always hold, but the choice of score function affects the shape of the sets.

The essential logic behind conformal prediction is that we include a point y in the prediction set when $s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$ is sufficiently small (given the test feature X_{n+1}). In other words, when choosing the conformal score function s, we are implicitly defining what types of y values are sufficiently consistent with X_{n+1} , given the trends we observe in the training data. In this way, the choice of score function affects the shape of the resulting prediction sets. For example, we saw in Section 1.3 that the residual score, the scaled residual score, and the CQR score all resulted in prediction sets with different shapes.

The changing shape of the prediction set, which results from the choice of conformal score, certainly affects the quality of the prediction sets. A more accurate model will naturally result in smaller, and therefore more informative, prediction sets—but even beyond this point, different choices of s can lead to vastly different shapes and behaviors in the resulting prediction sets. In Chapter 5, we will return to this point in more detail, examining the choice of the score function from a model-based theoretical perspective.

3.3 Why does conformal prediction guarantee coverage?

In this section, we will examine the marginal coverage guarantee of full conformal prediction (stated in Theorem 3.2).

To build an understanding of the idea behind the proof, let us first consider a naive procedure that does not guarantee coverage. Imagine that we have a model trained on data $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$, and we want to predict a new response Y_{n+1} based on the covariate X_{n+1} for this test point. The scores $s((X_1, Y_1); \mathcal{D}_n), \dots, s((X_n, Y_n); \mathcal{D}_n)$ on the training data points might not be directly comparable to the test point's score, $s((X_{n+1}, Y_{n+1}); \mathcal{D}_n)$, since our model will likely overfit to the training data—that is, the test point score $s((X_{n+1}, Y_{n+1}); \mathcal{D}_n)$ would likely be higher than the others. Thus, if we were to use the $1 - \alpha$ quantile of the training scores, it would likely be too low to ensure the desired coverage probability for the test point.

However, if we could somehow include (X_{n+1}, Y_{n+1}) into the training set, we could avoid this issue—the score for the test point would have the same distribution as the calibration scores. This is where full conformal prediction comes into play: it trains on *all the data*, including the test point. This means the test point is treated exactly the same as the training instances, ensuring exchangeability: that is, defining scores

$$S_i = s((X_i, Y_i); \mathcal{D}_{n+1}) \tag{3.4}$$

for training points i = 1, ..., n as well as for test point i = n + 1, these scores are exchangeable (as we will verify formally below). Of course, computing these scores cannot be done in practice, since the test point's response value Y_{n+1} is unknown, and so we cannot train our model on the larger dataset \mathcal{D}_{n+1} . Instead, we consider some provisional value of $y \in \mathcal{Y}$ and add the hypothesized test point (X_{n+1}, y) into the dataset, repeating this process for each possible value $y \in \mathcal{Y}$. This is the core idea of conformal prediction.

With this intuition in place, we are now ready to present our first proof of the marginal coverage property of full conformal prediction. We will give some alternative proofs and perspectives later on in Section 3.5.

Proof of Theorem 3.2

Step 1: A reformulation of the prediction set. Our first step will derive an equivalent definition of the prediction set $C_n(X_{n+1})$. To do this, we will need a lemma:

Lemma 3.4: Replacement Lemma

Let $v_1, \ldots, v_{n+1} \in \mathbb{R}$. Then for any $t \in [0, 1]$,

$$v_{n+1} \leq \text{Quantile}(v_1, \dots, v_{n+1}; t) \iff v_{n+1} \leq \text{Quantile}(v_1, \dots, v_n; t(1+1/n)).$$

Since by definition we have

$$\hat{q}^y = \text{Quantile}(S_1^y, \dots, S_n^y; (1 - \alpha)(1 + 1/n)),$$

for each $y \in \mathcal{Y}$, this lemma implies that

$$y \in \mathcal{C}(X_{n+1}) \iff S_{n+1}^y \le \hat{q}^y \iff S_{n+1}^y \le \text{Quantile}\left(S_1^y, \dots, S_{n+1}^y; 1 - \alpha\right).$$

In other words, the prediction set $C(X_{n+1})$ can be constructed by comparing the test point score, S_{n+1}^y , against the $(1-\alpha)$ -quantile of the augmented list of scores, S_1^y, \ldots, S_{n+1}^y (i.e., this list includes the test point score S_{n+1}^y itself).

This therefore implies that the coverage event can equivalently be written as

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \le \text{Quantile}(S_1, \dots, S_{n+1}; 1 - \alpha),$$
 (3.5)

where the scores S_1, \ldots, S_{n+1} are defined as in (3.4) above. From this point on, then, to establish the coverage guarantee, we only need to show that the event $S_{n+1} \leq \text{Quantile}\left(S_1, \ldots, S_{n+1}; 1-\alpha\right)$ holds with $\geq 1-\alpha$ probability. This characterization leads right away to an important insight: the coverage guarantee will depend only on these scores S_1, \ldots, S_{n+1} , which are values obtained when the model is fitted with $y=Y_{n+1}$, i.e., on the dataset $\mathcal{D}_{n+1}=\left((X_1,Y_1),\ldots,(X_n,Y_n),(X_{n+1},Y_{n+1})\right)$. In other words, while running full conformal prediction requires us to train the model using values $y\neq Y_{n+1}$ (since we must train using each possible value $y\in\mathcal{Y}$), for the theoretical coverage guarantee these resulting scores are irrelevant.

Step 2: Exchangeability of scores when $y = Y_{n+1}$. Next, we show that the scores S_1, \ldots, S_{n+1} are exchangeable, i.e., that they satisfy Definition 2.1. Towards that end, let σ be a permutation on $\{1, \ldots, n+1\}$. Expanding our shorthand, recall that

$$S_i = s\left((X_i, Y_i); \mathcal{D}_{n+1}\right).$$

First, note that by the symmetry of the score function (Definition 3.1), it is deterministically true that $S_i = s((X_i, Y_i); \mathcal{D}_{n+1}) = s((X_i, Y_i); (\mathcal{D}_{n+1})_{\sigma})$ for each *i*. In particular, this also holds for the index $\sigma(i)$, i.e.,

$$S_{\sigma(i)} = s\left((X_{\sigma(i)}, Y_{\sigma(i)}); (\mathcal{D}_{n+1})_{\sigma}\right).$$

Therefore, to prove that

$$(S_1, \dots, S_{n+1}) \stackrel{d}{=} (S_{\sigma(1)}, \dots, S_{\sigma(n+1)})$$
 (3.6)

it is equivalent to verify that

$$\left(s\left((X_i, Y_i); \mathcal{D}_{n+1}\right)\right)_{i \in [n+1]} \stackrel{\mathrm{d}}{=} \left(s\left((X_{\sigma(i)}, Y_{\sigma(i)}); (\mathcal{D}_{n+1})_{\sigma}\right)\right)_{i \in [n+1]}.$$
(3.7)

But this last claim follows simply from exchangeability of the data: we have

$$\mathcal{D}_{n+1} \stackrel{\mathrm{d}}{=} (\mathcal{D}_{n+1})_{\sigma},$$

and the two vectors of scores in (3.7) are derived by applying the *same* function to \mathcal{D}_{n+1} (on the left-hand side) or to $(\mathcal{D}_{n+1})_{\sigma}$ (on the right-hand side).

Step 3: Completing the proof. By Step 2, we know that the scores S_1, \ldots, S_{n+1} are exchangeable. Applying Fact 2.15(ii), this immediately implies

$$\mathbb{P}\left(S_{n+1} \leq \operatorname{Quantile}(S_1, \dots, S_{n+1}; \tau)\right) \geq \tau$$

for any $\tau \in [0,1]$. Choosing $\tau = 1 - \alpha$, by the equivalent characterization of coverage given in (3.5), this completes the proof.

Proof of Lemma 3.4

First, if $t > \frac{n}{n+1}$, the result holds trivially since Quantile $(v_1, \ldots, v_{n+1}; t) = \max_{i \in [n+1]} v_i \ge v_{n+1}$, while Quantile $(v_1, \ldots, v_n; t(1+1/n)) = +\infty$. From this point on, then, we will assume $t \le \frac{n}{n+1}$ to avoid this trivial case.

Let $v_{(n;1)} \leq \cdots \leq v_{(n;n)}$ be the order statistics of v_1, \ldots, v_n , and let $v_{(n+1;1)} \leq \cdots \leq v_{(n+1;n+1)}$ be the order statistics of v_1, \ldots, v_{n+1} . Let $k = \lceil t(n+1) \rceil \in [n]$. Examining the definition of the quantile (see Section 2.4), we see that

Quantile
$$(v_1, ..., v_{n+1}; t) = v_{(n+1;k)}$$

and

Quantile
$$(v_1, \ldots, v_n; t(1+1/n)) = v_{(n;k)},$$

by definition. So, we need to verify that $v_{n+1} \leq v_{(n+1;k)}$ holds if and only if $v_{n+1} \leq v_{(n;k)}$.

First, by definition of the order statistics, we must have $v_{(n+1;k)} \leq v_{(n;k)}$ (i.e., the kth smallest entry in the list cannot increase if we add a new value to the list). Therefore,

$$v_{n+1} \le v_{(n+1;k)} \Longrightarrow v_{n+1} \le v_{(n;k)}.$$

To verify the converse, suppose that $v_{n+1} > v_{(n+1;k)}$. In this case, we must have $v_{(n+1;k)} = v_{(n;k)}$, again by definition of the order statistics, and so we have

$$v_{n+1} > v_{(n+1:k)} \Longrightarrow v_{n+1} > v_{(n:k)}$$

3.4 Split conformal prediction as a special case

Split conformal prediction, which we previewed earlier in Chapter 1, is a variant of conformal prediction that uses data splitting to avoid the need to retrain the conformal score function s for each possible response value $y \in \mathcal{Y}$. It differs from full conformal prediction in two important ways, as summarized in Table 3.1.

Despite the large operational differences in the algorithms, split conformal prediction is a special case of the full conformal method presented in Algorithm 3.3. We formally describe the specialization now. Let us consider a pretraining set \mathcal{D}_{pre} , which is disjoint from $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$. \mathcal{D}_{pre} is used exclusively for model training, while \mathcal{D}_n is used exclusively for calibrating a threshold for scores to define the prediction set $\mathcal{C}(X_{n+1})$ —consequently, in the context of split conformal, we will refer to \mathcal{D}_n as a calibration set, rather

Full Conformal	Split Conformal
All data used for both training and calibration	Disjoint datasets for training and calibration
Retrains the model for each value $y \in \mathcal{Y}$	No model retraining (requires only one model fit)
Requires a symmetric score function s	Works for any (pretrained) score function s

Table 3.1: Comparison of full and split conformal methods

than a training set. For example, in the context of a residual score (3.1), we can imagine a scenario where the predictive model \hat{f} was pretrained on earlier data, \mathcal{D}_{pre} , and we now have a calibration (or holdout) set \mathcal{D}_n consisting of n many new data points that we may use to quantify our uncertainty around \hat{f} . (Note that this differs from our earlier notation in Chapter 1 where we partitioned the n total available data points into a pretraining set of size n/2 and a calibration set of size n/2.)

More formally, continuing with the residual score as a concrete example, the residual score in the context of split conformal prediction is given by

$$s((x,y); \mathcal{D}) = \left| y - \hat{f}(x; \mathcal{D}_{pre}) \right|,$$

Since this does not depend on \mathcal{D} , we can simply write

$$s((x,y); \mathcal{D}) = s(x,y)$$

for any data point (x, y), suppressing the unused argument \mathcal{D} in the notation. (Here we are treating the pretraining set \mathcal{D}_{pre} , and consequently also the prefitted regression function $\hat{f}(\cdot; \mathcal{D}_{pre})$, as fixed.) More generally, we can apply any method to the pretraining set to produce a pretrained score function—that is, we can use \mathcal{D}_{pre} arbitrarily to construct a score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$. In particular, since $s((x,y); \mathcal{D}) = s(x,y)$ does not depend on \mathcal{D} , trivially this is a symmetric score function.

Definition 3.5

Henceforth, split conformal prediction refers to the case where the score function $s((x,y); \mathcal{D})$ does not depend on \mathcal{D} . In this case, we write s(x,y) as shorthand for $s((x,y); \mathcal{D})$.

With all this in mind, we can then construct the split conformal prediction set as

$$C(X_{n+1}) = \{ y : s(X_{n+1}, y) \le \hat{q} \}, \tag{3.8}$$

where

$$\hat{q} = \text{Quantile}(S_1, \dots, S_n; (1 - \alpha)(1 + 1/n)),$$

and where we use the notation S_i as shorthand for $s(X_i, Y_i)$. Note that \hat{q} is equivalent to the threshold \hat{q}^y defined for full conformal in (3.3) (since the score function does not depend on the dataset, there is no dependence on y—i.e., $S_i = S_i^y$ for all y, and consequently, $\hat{q} = \hat{q}^y$ for all y). See Figure 3.3 for a visualization of the split conformal quantile \hat{q} .

An explicit algorithm for split conformal prediction is given in Algorithm 3.6. Note that it is simpler and more computationally efficient than Algorithm 3.3, and therefore used more often in practice.

Algorithm 3.6: Split conformal prediction

- 1. Input pretraining dataset \mathcal{D}_{pre} , calibration data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , target coverage level 1α .
- 2. Using the pretraining dataset \mathcal{D}_{pre} , construct a conformal score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- 3. Compute the conformal scores on the calibration set, $S_i = s(X_i, Y_i)$ for $i \in [n]$.
- 4. Compute the conformal quantile $\hat{q} = \text{Quantile } (S_1, \dots, S_n; (1 \alpha)(1 + 1/n)).$
- 5. Return prediction set $C(X_{n+1}) = \{y \in \mathcal{Y} : s(X_{n+1}, y) \leq \hat{q}\}.$

Figure 3.3: A visualization of the definition of the split conformal quantile \hat{q} (see Algorithm 3.6).

Again, because this is a special case of Algorithm 3.3, the marginal coverage guarantee of Theorem 3.2, which was stated for full conformal prediction, applies to the split conformal prediction procedure as well.

3.4.1 Exchangeability and split conformal: a closer look

There is a subtle difference in the interpretation of the conformal score in split versus full conformal prediction. In full conformal prediction, the scores S_1^y, \ldots, S_{n+1}^y are computed on the augmented dataset, \mathcal{D}_{n+1}^y , using a score function trained on this same augmented dataset. Thus, in full conformal, verifying the exchangeability of $(S_1, \ldots, S_{n+1}) = (S_1^{Y_{n+1}}, \ldots, S_{n+1}^{Y_{n+1}})$ only relies on the exchangeability of $\mathcal{D}_{n+1} = \mathcal{D}_{n+1}^{Y_{n+1}}$. In contrast, for split conformal prediction, there are two datasets at play: the calibration set \mathcal{D}_n and the pretraining set \mathcal{D}_{pre} . The vector of scores (S_1, \ldots, S_{n+1}) depends on both datasets. So, to formally establish exchangeability of the scores, we need to consider the additional randomness coming from \mathcal{D}_{pre} .

The most straightforward formal argument to justify split conformal prediction is to assume that \mathcal{D}_{pre} is independent of the calibration data and test point, i.e.,

$$((X_1, Y_1), \dots, (X_{n+1}, Y_{n+1})) \perp \mathcal{D}_{pre}$$
 (and $(X_1, Y_1), \dots, (X_{n+1}, Y_{n+1})$ are exchangeable).

In that case, by conditioning on \mathcal{D}_{pre} , we can think of the score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ (which was constructed based on \mathcal{D}_{pre}) as a *fixed* function—and therefore, exchangeability of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ directly implies exchangeability of the scores $s(X_1, Y_1), \ldots, s(X_{n+1}, Y_{n+1})$.

More generally, however, to achieve marginal coverage it is sufficient to assume a strictly weaker condition:

$$((X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})) \mid \mathcal{D}_{pre}$$
 is exchangeable,

i.e., $((X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}))$ has an exchangeable conditional distribution (when conditioning on \mathcal{D}_{pre}). For instance, this assumption holds whenever the pretraining, calibration, and test data (i.e., the entire dataset $(\mathcal{D}_{pre}, \mathcal{D}_n, (X_{n+1}, Y_{n+1}))$, containing $n_{pre} + n + 1$ many data points) satisfies exchangeability. This is due to the following fact:

Fact 3.7: Conditional exchangeability of a subvector

Fix any $1 \le k < m$. If (Z_1, \ldots, Z_m) is exchangeable, then (Z_{k+1}, \ldots, Z_m) is conditionally exchangeable given (Z_1, \ldots, Z_k) —i.e., it holds almost surely that the conditional distribution

$$(Z_{k+1},\ldots,Z_m) | (Z_1,\ldots,Z_k)$$

is an exchangeable distribution.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

3.4.2 Statistical versus computational efficiency for split and full conformal

In general, split conformal is far more computationally efficient than full conformal—for example, for the residual score (3.2.1), split conformal only requires training one model $\hat{f}(\cdot; \mathcal{D}_{pre})$ (i.e., train on \mathcal{D}_{pre}), but full conformal requires training $\hat{f}(\cdot; \mathcal{D}_{n+1}^y)$ for every possible value $y \in \mathcal{Y}$. On the other hand, as we will now explain, full conformal is more efficient in a statistical sense.

In practical implementations of these methods, it is common to use n to denote the total sample size of available data—that is, for split conformal, the pretraining set and the calibration set are taken to be disjoint subsets of the available dataset, and thus have a combined size of n. This means that the greatly improved computational efficiency of Algorithm 3.6 (split conformal) comes with a statistical cost: the pretraining set and the calibration set each have sample size smaller than n (say, n/2 data points each—as in our earlier notation, in Chapter 1), potentially leading to wider prediction intervals. In contrast, in Algorithm 3.3, full conformal prediction uses all n data points both for training (i.e., fitting a score function) and for calibration.

In this book, for consistency of notation across both split and full conformal prediction, we will generally continue to use n to denote the sample size of the calibration set in the case of split conformal, as in Algorithm 3.6. This notation reveals the way in which split conformal prediction can be viewed as a special case of full conformal prediction, and enables a more unified presentation of the theoretical results across these different variants of the method.

3.5 Reinterpretations of conformal prediction

Next, we give some different interpretations of conformal prediction to give intuition about the procedure and connect it to standard ideas in statistics, such as permutation tests.

3.5.1 Conformal prediction as a permutation test

In this section, we formulate conformal prediction as a permutation test. In particular, it can be viewed as a test of whether (X_{n+1}, y) is an outlier relative to the other data points, $(X_1, Y_1), \ldots, (X_n, Y_n)$, as in the last example from Section 2.2.1. We will do this by defining the *conformal p-value*, which lets us build an explicit connection between constructing prediction sets and testing hypotheses.

Definition 3.8: The conformal p-value

Given training data $(X_1, Y_1), \ldots, (X_n, Y_n)$, a test feature X_{n+1} , and a score function s, the conformal p-value is defined as

$$p^{y} = \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{S_{i}^{y} \ge S_{n+1}^{y}\right\}}{n+1}$$

for each $y \in \mathcal{Y}$, where as before,

$$S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y), i \in [n], \quad S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y).$$

This p-value is asking whether the hypothesized test point (X_{n+1}, y) appears to follow the same distribution as the training data $(X_1, Y_1), \ldots, (X_n, Y_n)$. If not, its score $s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$ might be substantially larger than the other scores, and consequently its p-value p^y will likely be small. Informally, we can interpret p^y as a p-value testing the hypothesis of exchangeability of the data points $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y)$. We can then repeat this reasoning for every possible value $y \in \mathcal{Y}$, and collect all the plausible values (i.e., values y for which p^y is not too small) into a prediction set. It turns out that conformal prediction is exactly equivalent to this procedure:

Proposition 3.9

The full conformal prediction set $C(X_{n+1})$ defined in (3.2) satisfies

$$C(X_{n+1}) = \{ y \in \mathcal{Y} : p^y > \alpha \},\,$$

where p^y is the conformal p-value (Definition 3.8).

Proof of Proposition 3.9

First, by definition of the full conformal prediction set,

$$y \notin \mathcal{C}(X_{n+1}) \iff S_{n+1}^y > \text{Quantile}(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)).$$

Next, by definition of the quantile of a finite list, for any $\tau \in [0,1]$ and any $t \in \mathbb{R}$ it holds that

Quantile
$$(S_1^y, \dots, S_n^y; \tau) < t \iff \sum_{i=1}^n \mathbb{1} \{S_i^y < t\} \ge n\tau.$$

Choosing $\tau = (1 - \alpha)(1 + 1/n)$, then, we have

$$y \notin \mathcal{C}(X_{n+1}) \Longleftrightarrow \sum_{i=1}^{n} \mathbb{1}\left\{S_i^y < S_{n+1}^y\right\} \ge (1-\alpha)(n+1).$$

Finally, we return to the p-value: we calculate

$$p^{y} = \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{S_{i}^{y} \ge S_{n+1}^{y}\right\}}{n+1} = 1 - \frac{\sum_{i=1}^{n} \mathbb{1}\left\{S_{i}^{y} < S_{n+1}^{y}\right\}}{n+1},$$

i.e., $p^y \leq \alpha$ if and only if $y \notin \mathcal{C}(X_{n+1})$, as desired.

So far, we have only established a deterministic result: for any dataset, the full conformal set can equivalently be constructed via the conformal p-value. Now we are ready to turn to the question of coverage. We will see that p^y can be reinterpreted as the p-value for a permutation test, and then validity of permutation tests will imply the marginal coverage property of full conformal prediction.

Proof of Theorem 3.2 via permutation tests

For convenience, throughout this proof we will write $Z_i = (X_i, Y_i)$ for the *i*th data point, and will write $\mathcal{Z} = \mathcal{X} \times \mathcal{Y}$.

First we recall the permutation test p-value, developed in Section 2.2: given any test function $T: \mathbb{Z}^{n+1} \to \mathbb{R}$, we define

$$p_{\text{perm}} = \frac{\sum_{\sigma \in \mathcal{S}_{n+1}} \mathbb{1} \left\{ T(Z_{\sigma(1)}, \dots, Z_{\sigma(n+1)}) \ge T(Z_1, \dots, Z_{n+1}) \right\}}{(n+1)!},$$

where, as before, S_{n+1} denotes the set of permutations on $[n+1] = \{1, \ldots, n+1\}$. (Note that here, we are working with a vector of length n+1, rather than n as in the original definition of this p-value in (2.3).) If the combined training and test dataset (Z_1, \ldots, Z_{n+1}) is indeed exchangeable, then we have $\mathbb{P}(p_{\text{perm}} \leq \alpha) \leq \alpha$, as established in Theorem 2.4.

To complete the proof, then, we will verify that

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff p_{\text{perm}} > \alpha,$$

when the test function T is chosen appropriately. In particular, in light of Proposition 3.9, it suffices to show that

$$p_{\text{perm}} = p^{Y_{n+1}}. (3.9)$$

We will choose the test function T as

$$T(z_1,\ldots,z_{n+1}) = s(z_{n+1};(z_1,\ldots,z_{n+1})),$$

i.e., the score for the last data point z_{n+1} when trained on a dataset (z_1, \ldots, z_{n+1}) . In particular, we can calculate the value of this test function on the permuted dataset $(Z_{\sigma(1)}, \ldots, Z_{\sigma(n+1)})$ as

$$T(Z_{\sigma(1)},\ldots,Z_{\sigma(n+1)}) = s(Z_{\sigma(n+1)};(\mathcal{D}_{n+1})_{\sigma}) = s(Z_{\sigma(n+1)};\mathcal{D}_{n+1}) = S_{\sigma(n+1)},$$

where the first step holds since $(\mathcal{D}_{n+1})_{\sigma} = (Z_{\sigma(1)}, \dots, Z_{\sigma(n+1)})$ by definition, and the second step holds since s is assumed to be symmetric. Therefore,

$$p_{\text{perm}} = \frac{\sum_{\sigma \in S_{n+1}} \mathbb{1} \left\{ S_{\sigma(n+1)} \ge S_{n+1} \right\}}{(n+1)!} = \sum_{i=1}^{n+1} n! \cdot \frac{\mathbb{1} \left\{ S_i \ge S_{n+1} \right\}}{(n+1)!},$$

where the last step holds since, for each $i \in [n+1]$, there are exactly n! many permutations $\sigma \in \mathcal{S}_{n+1}$ for which $\sigma(n+1) = i$. After simplifying, we then have

$$p_{\text{perm}} = \frac{\sum_{i=1}^{n+1} \mathbb{1} \left\{ S_i \ge S_{n+1} \right\}}{n+1} = \frac{1 + \sum_{i=1}^{n} \mathbb{1} \left\{ S_i \ge S_{n+1} \right\}}{n+1} = p^{Y_{n+1}},$$

with the last step holding since $S_i = S_i^{Y_{n+1}}$ for all i by definition. This establishes (3.9) as desired.

3.5.2 Conditioning on the empirical distribution of the data

Another interpretation of conformal prediction is given by treating the dataset as an unordered collection of data points, and then using exchangeability to argue that the test point (X_{n+1}, Y_{n+1}) is equally likely to be any one of these points. In particular, if each data point $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ is distinct, and if we observe the unordered set of n+1 values (i.e., we observe the unordered set of data points $\{(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})\}$, but do not know which data value corresponds to which index $i \in [n+1]$), then the test point (X_{n+1}, Y_{n+1}) is equally likely to be any one of these n+1 values.

To formalize this type of conditional statement, given the dataset $\mathcal{D}_{n+1} = ((X_1, Y_1), \dots, (X_{n+1}, Y_{n+1}))$ containing the training data and test point, recalling our notation from Chapter 2 we define its empirical distribution as

$$\widehat{P}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{(X_i, Y_i)}.$$

This is a discrete distribution on $\mathcal{X} \times \mathcal{Y}$, and in the case that the n+1 data points are distinct it can be simply defined by placing mass $\frac{1}{n+1}$ on each value that appears in the dataset. More generally, values that appear multiple times in the dataset will be given higher probability under this empirical distribution. The following proof makes critical use of Proposition 2.2, which tells us that due to the exchangeability of the dataset \mathcal{D}_{n+1} , after conditioning on the empirical distribution \widehat{P}_{n+1} the distribution of the test point (X_{n+1}, Y_{n+1}) is equal to \widehat{P}_{n+1} itself.

Proof of Theorem 3.2 via the empirical distribution of the data

First, since the score function s is assumed to be symmetric, note that $s(\cdot; \mathcal{D}_{n+1})$ depends on the dataset \mathcal{D}_{n+1} only via the empirical distribution \widehat{P}_{n+1} . To emphasize this point, we will use the notation $s(\cdot; \widehat{P}_{n+1})$ in place of $s(z; \mathcal{D}_{n+1})$ throughout the remainder of this proof. We will also write $Z_i = (X_i, Y_i)$ for the *i*th data point.

Let $h: \mathcal{Z} \to \mathbb{R}$ be any function. Conditioning on \widehat{P}_{n+1} , by Proposition 2.2, the test point Z_{n+1} has distribution \widehat{P}_{n+1} . This implies that, again conditioning on \widehat{P}_{n+1} , the random variable $h(Z_{n+1})$ has distribution $\frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{h(Z_i)}$. In particular,

$$\mathbb{P}\left(h(Z_{n+1}) \le \text{Quantile}\left((h(Z_i))_{i \in [n+1]}; 1 - \alpha\right) \mid \widehat{P}_{n+1}\right) \ge 1 - \alpha,$$

by definition of the quantile. Next, observe that since this calculation is carried out conditionally on \widehat{P}_{n+1} , the same argument holds for a function h that depends on the empirical distribution \widehat{P}_{n+1} as well as on a data point $z \in \mathcal{Z}$ —in particular, we can take $h(z) = s(z; \widehat{P}_{n+1})$, to obtain

$$\mathbb{P}\left(s(Z_{n+1}; \widehat{P}_{n+1}) \leq \text{Quantile}\left((s(Z_i; \widehat{P}_{n+1}))_{i \in [n+1]}; 1 - \alpha\right) \,\middle|\, \widehat{P}_{n+1}\right) \geq 1 - \alpha.$$

Since $S_i = s(Z_i; \mathcal{D}_{n+1}) = s(Z_i; \widehat{P}_{n+1})$ for each $i \in [n+1]$, by definition, we then have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \widehat{P}_{n+1}) = \mathbb{P}\left(S_{n+1} \leq \text{Quantile}(S_1, \dots, S_{n+1}; 1 - \alpha) \mid \widehat{P}_{n+1}\right) \geq 1 - \alpha,$$

where the first step applies (3.5). Marginalizing over \widehat{P}_{n+1} , we have proved the claim.

3.5.3 Tuning based on a plug-in estimate of the error rate

We next consider an especially simple and intuitive interpretation of split conformal prediction. Recall that in split conformal prediction, we work with a pretrained score function s(x, y) that does not depend on the calibration set. With this in hand, consider prediction sets of the form

$$C(X_{n+1}; \lambda) = \{ y : s(X_{n+1}, y) \le \lambda \}, \tag{3.10}$$

where $\lambda \in \mathbb{R}$ is a parameter controlling the size of the set. Split conformal prediction can be understood as selecting $\lambda = \hat{q} = \text{Quantile}(S_1, \dots, S_n; (1-\alpha)(1+1/n))$. Why choose this value? We next offer an explanation.

A natural way to choose the parameter λ is by choosing it to control the coverage on an available dataset. More formally, let

$$\hat{R}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ Y_i \notin \mathcal{C}(X_i; \lambda) \right\} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ s(X_i, Y_i) > \lambda \right\} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ S_i > \lambda \right\}$$

be the empirical miscoverage on the calibration data. If the data points (X_i, Y_i) are i.i.d. draws from some distribution P on $\mathcal{X} \times \mathcal{Y}$, then $\hat{R}(\lambda)$ is a noisy estimate of the population miscoverage,

$$R(\lambda) = \mathbb{E}_P[\mathbb{1}\{Y \notin \mathcal{C}(X;\lambda)\}] = 1 - \mathbb{P}_P(Y \in \mathcal{C}(X;\lambda)).$$

If we had knowledge of $R(\lambda)$, we would simply set λ to be the smallest value such that $R(\lambda) \leq \alpha$. In words, we take the smallest sets that have the desired coverage level.

Since we do not know $R(\lambda)$, one reasonable approach is a plug-in method: we could choose λ to be the smallest value such that $\hat{R}(\lambda) \leq \alpha$. This plug-in method is appealing, but it does not quite guarantee a bound on the true risk $R(\hat{\lambda})$, since $\hat{R}(\hat{\lambda})$ is a noisy estimate of this true risk.

To correct for this issue, we will now see that we should instead find a value λ such the coverage is at least $(1-\alpha)(1+1/n)$ on the calibration data. That is, we should choose $\hat{\lambda}$ as

$$\hat{\lambda} = \inf \left\{ \lambda \in \mathbb{R} : \hat{R}(\lambda) \le \alpha' \right\},\tag{3.11}$$

where $\alpha' = \alpha - \frac{1-\alpha}{n}$. The risk threshold α' is slightly lower than the naive value of α , indicating that we must be slightly more conservative than the naive plug-in approach to guarantee coverage. Though it may not be obvious, this choice of $\hat{\lambda}$ is exactly equivalent to the split conformal prediction algorithm; the next proposition formalizes this connection.

Proposition 3.10

The split conformal prediction set $C(X_{n+1})$ defined in (3.8) satisfies

$$C(X_{n+1}) = \left\{ y \in \mathcal{Y} : s(X_{n+1}, y) \le \hat{\lambda} \right\},\,$$

where $\hat{\lambda}$ is defined in (3.11).

Proof of Proposition 3.10

It suffices to prove that $\hat{\lambda}$ is equal to the conformal quantile \hat{q} , i.e., the $(1-\alpha)(1+1/n)$ quantile of the calibration scores $s(X_1,Y_1),\ldots,s(X_n,Y_n)$. By definition of \hat{R} and of α' , we calculate

$$\hat{R}(\lambda) \le \alpha' \iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ S_i > \lambda \right\} \le \alpha - \frac{1-\alpha}{n}$$

$$\iff \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ s(X_i, Y_i) \le \lambda \right\} \ge 1 - \left(\alpha - \frac{1-\alpha}{n}\right) = (1-\alpha)(1+1/n).$$

Plugging this into the definition of $\hat{\lambda}$, we have

$$\hat{\lambda} = \inf \left\{ \lambda \in \mathbb{R} : \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ s(X_i, Y_i) \le \lambda \right\} \ge (1 - \alpha)(1 + 1/n) \right\},\,$$

which is exactly the definition of the conformal quantile \hat{q} for split conformal.

Finally, we give a proof of Theorem 3.2 (for the special case of split conformal) from the perspective of plug-in estimates of error rates. (Later on, in Section 10.1, we will extend this argument to other error rates besides miscoverage.)

Proof of Theorem 3.2 (for split conformal) via tuning a plug-in estimate of error

We will begin by defining an oracle threshold:

$$\tilde{\lambda} = \inf \left\{ \lambda \in \mathbb{R} : \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1} \left\{ S_i > \lambda \right\} \le \alpha \right\}.$$

The quantity $\tilde{\lambda}$ is an oracle version of $\hat{\lambda}$ that depends on the full dataset \mathcal{D}_{n+1} , including both the calibration and test data (while, in contrast, $\hat{\lambda}$ depends only on the calibration data \mathcal{D}_n). Since $\tilde{\lambda}$ is a symmetric function of the n+1 data points, exchangeability of the data implies

that

$$\mathbb{P}(S_{n+1} > \tilde{\lambda}) = \mathbb{P}(S_i > \tilde{\lambda}), \tag{3.12}$$

for all $i \in [n+1]$.

Below, we will show that $\tilde{\lambda} \leq \hat{\lambda}$ must always hold. This is enough to prove the result, since we then have

$$\mathbb{P}(Y_{n+1} \not\in \mathcal{C}(X_{n+1})) = \mathbb{P}(S_{n+1}) > \hat{\lambda}) \text{ by Proposition 3.10}$$

$$\leq \mathbb{P}(S_{n+1} > \tilde{\lambda}) \text{ since } \tilde{\lambda} \leq \hat{\lambda}$$

$$= \mathbb{E}\left[\mathbb{1}\left\{S_{n+1} > \tilde{\lambda}\right\}\right]$$

$$= \mathbb{E}\left[\frac{1}{n+1}\sum_{i=1}^{n+1}\mathbb{1}\left\{S_i > \tilde{\lambda}\right\}\right] \leq \alpha,$$

where the next-to-last step holds by (3.12), while the last step applies the definition of $\tilde{\lambda}$.

To conclude, we show that $\tilde{\lambda} \leq \hat{\lambda}$. For all $\lambda \in \mathbb{R}$,

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \{S_i > \lambda\} \le \alpha' \Longleftrightarrow \frac{1}{n+1} \sum_{i=1}^{n} \mathbb{1} \{S_i > \lambda\} + \frac{1}{n+1} \le \alpha$$
$$\Longrightarrow \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{1} \{S_i > \lambda\} \le \alpha.$$

This means the infimum in the definition of $\tilde{\lambda}$ is taken over a smaller set than the infimum in the definition of $\hat{\lambda}$, proving the desired claim.

3.6 Can conformal prediction be overly conservative?

So far, we have discussed lower bounds on coverage, which say the prediction sets will cover the ground truth with at least probability $1-\alpha$. But this leaves open the possibility that the sets are unnecessarily large. This section gives a distribution-free bound on exactly how conservative conformal prediction can be—i.e., how much the coverage probability could potentially exceed the target level $1-\alpha$.

Theorem 3.11

Under the conditions of Theorem 3.2, we have that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \le \frac{\lceil (1-\alpha)(n+1) \rceil}{n+1} + \epsilon_{\text{tie}} \le 1 - \alpha + \frac{1}{n+1} + \epsilon_{\text{tie}},$$

where ϵ_{tie} captures the likelihood of the score of the (n+1)st data point being tied with any another data point,

$$\epsilon_{\text{tie}} = \mathbb{P} \left(\exists j \in [n], \ S_{n+1} = S_j \right).$$

This theorem says that the coverage of conformal prediction is not too far from $1-\alpha$ as long as the distribution of the scores is unlikely to produce ties. Without making further assumptions on the model, however, this does not directly translate to a bound on the *size* of the prediction set $C(X_{n+1})$. Instead, the bound says that this set is not conservative on the scale of coverage. For example, for a residual score s of the form $s((x,y);\mathcal{D}) = |y - \hat{f}(x;\mathcal{D})|$, a model $\hat{f}(\cdot;\mathcal{D})$ that is a very poor fit to the data distribution will necessarily lead to wide prediction intervals. However, this result is telling us that the prediction intervals are no wider than is needed to compensate for the errors in $\hat{f}(\cdot;\mathcal{D})$.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Proof of Theorem 3.11

In our first proof of Theorem 3.2 (given in Section 3.3), we derived an equivalent characterization of the coverage event (see (3.5)):

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \leq \text{Quantile}(S_1, \dots, S_{n+1}; 1 - \alpha).$$

Writing $S_{(1)} \leq \cdots \leq S_{(n+1)}$ as the order statistics of the scores S_1, \ldots, S_{n+1} , we can equivalently write

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \leq S_{(k)} \text{ where } k = \lceil (1-\alpha)(n+1) \rceil,$$

by the equivalence between quantiles and order statistics (Fact 2.10). We can assume $k \in [n]$ to avoid the trivial case.

Next, by definition of the order statistics,

$$S_{n+1} \le S_{(k)} \iff \text{ either } S_{n+1} < S_{(k+1)} \text{ or } S_{n+1} = S_{(k)} = S_{(k+1)}.$$

If $S_{n+1} = S_{(k)} = S_{(k+1)}$ then we must have $S_{n+1} = S_j$ for some $j \in [n]$, and therefore,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_{n+1}) = \mathbb{P}(S_{n+1} < S_{(k+1)}) + \mathbb{P}(S_{n+1} = S_{(k)} = S_{(k+1)}) \le \mathbb{P}(S_{n+1} < S_{(k+1)}) + \epsilon_{\text{tie}}.$$

Finally, to complete the proof, we have

$$\mathbb{P}(S_{n+1} < S_{(k+1)}) \le \frac{(k+1)-1}{n+1} = \frac{\lceil (1-\alpha)(n+1) \rceil}{n+1}$$

by Fact 2.15.

An important corollary of Theorem 3.11 is that, when the joint distribution of the scores is continuous, then the bound holds with $\epsilon_{\text{tie}} = 0$.

Corollary 3.12

Under the conditions of Theorem 3.2, further assume that the scores S_1, \ldots, S_{n+1} , have a continuous joint distribution. Then

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \le 1 - \alpha + \frac{1}{n+1}.$$

Proof of Corollary 3.12

When the scores have a continuous joint distribution, we have $\mathbb{P}(S_{n+1} = S_j) = 0$, for all $j \in [n]$. Thus, we can apply Theorem 3.11 with $\epsilon_{\text{tie}} = 0$.

It should be noted that the requirement of a continuous joint distribution, though not entirely distribution-free, is not very restrictive; for instance, this often holds for continuously distributed data (e.g., using the residual score, $s((x,y);\mathcal{D}) = |y - \hat{f}(x;\mathcal{D})|$). Finally, we close by noting that a strengthening of Theorem 3.11 is available via a randomized version of conformal, which avoids the issues of ties—we develop this randomized algorithm in Section 9.1.

Bibliographic notes

The earliest works describing a form of conformal prediction were by Gammerman, Vovk, and Vapnik [Gammerman et al., 1998] and by Vovk, Gammerman, and Saunders [Vovk et al., 1999]—see Vovk et al. [2005] for

a discussion of the early history. The work was extended into what we now know as conformal prediction by Vovk, Gammerman, and their students and collaborators: Saunders, Nouretdinov, Papadopoulos, and Proedrou [Saunders et al., 1999, Papadopoulos et al., 2002, Gammerman and Vovk, 2007]. Importantly, Papadopoulos et al. [2002] introduces split conformal prediction. A book called *Algorithmic Learning in a Random World*, by Vovk, Gammerman, and Shafer, summarizes and extends upon these early contributions, and was the first book on the topic [Vovk et al., 2005]. A tutorial on these topics is available in Shafer and Vovk [2008]. These references describe conformal prediction and many early applications, e.g., to support vector machines; they are the main references for our development in Sections 3.2–3.4. The problem of defining a score function to ensure good performance, which we preview in Section 3.2.1, is a central practical question in the field; some popular choices are proposed and examined by Vovk et al. [2005], Lei et al. [2018], Romano et al. [2019], Sadinle et al. [2019], among many others.

The various interpretations of conformal prediction presented in Section 3.5 have been emerging since the aforementioned early works by Vovk, Gammerman, and colleagues. For example, the equivalence to permutation tests is mentioned in Vovk et al. [2005] and Vovk [2013]. The reinterpretation via conditioning on the empirical distribution of the data has also been discussed in these works (often described equivalently in the language of conditioning on a multiset or 'bag' of data points). However, stylistically, our development and notation in the current document differs substantially from these early works, and is inspired by those of Gupta et al. [2021], Kuchibhotla [2020], Angelopoulos et al. [2022a], Zhang and Zhao [2023], and related works. Our illustration of the implementation of full conformal prediction, shown in Figure 3.2, is inspired by illustrations developed by Ryan Tibshirani in various lectures and tutorials.

The version of the upper bound in Corollary 3.12 was first proven in the seminal paper of Lei, G'Sell, Rinaldo, Tibshirani, and Wasserman [Lei et al., 2018]. The randomized version of conformal, which we mentioned in Section 3.6 and will cover in more detail later on in Section 9.1, is discussed in Vovk et al. [2005], Lei et al. [2018].

Chapter 4

Conditional Coverage

Conformal prediction guarantees marginal coverage—on average over all the data—but in practice, we often want to ensure stronger guarantees. A marginal coverage guarantee does not rule out the possibility of a scenario where we might observe a misleading batch of training data, leading us to miscover on nearly all future data points. Nor does it prevent issues of uneven coverage across different parts of the population—for example, we might have two subgroups in our data (say, higher values of X and lower values of X), where the prediction intervals returned by conformal prediction are likely to systematically undercover for test points in one group while overcovering for test points in the other. (See Figure 4.1 for an illustration of this phenomenon.) If we want to ensure that such issues are unlikely to arise, we need to examine the *conditional coverage* properties of conformal prediction.

In the simplest cases—for example, achieving coverage conditional on the event $X_{n+1} \in \mathcal{X}_0$, for some large region $\mathcal{X}_0 \subseteq \mathcal{X}$ —conditional coverage is relatively easy to achieve, but in other contexts it can be hard or even impossible. In this chapter, we explore these questions of conditional coverage. In some settings we will provide procedures that achieve conditional guarantees, while in other settings, we will establish hardness results—that is, results showing that achieving some types of conditional coverage is impossible without further assumptions.

4.1 Training-conditional coverage for split conformal prediction

We first examine the coverage of conformal prediction conditional on the training set:

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n).$$

This is the empirical coverage that we would obtain if we used the points $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ for training (or, in the case of split conformal, for calibration), and then evaluated our coverage over an infinite test set. This quantity is a random variable, since it depends on the training set \mathcal{D}_n .

If the conformal prediction set satisfies marginal coverage at level $1-\alpha$, then the training-conditional coverage must be $\geq 1-\alpha$ in expectation:

$$1 - \alpha \le \mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) = \mathbb{E}\left[\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n)\right].$$

However, a marginal coverage guarantee does not ensure that training-conditional coverage will be close to $1 - \alpha$ with high probability; for this, we need a stronger concentration-type statement.

In this section, we will consider split conformal prediction, where $s((x,y); \mathcal{D})$ has no dependence on \mathcal{D} (see Section 3.4). Throughout this section, we will assume the data points (X_i, Y_i) are i.i.d., rather than the more general assumption of exchangeability. We will see that, for i.i.d. data, the training-conditional coverage will indeed concentrate near (or above) the nominal level $1 - \alpha$, for the split conformal method.

In fact, there is a closed-form expression that characterizes the training-conditional coverage in this setting. For intuition, let us first consider a simplified setting where the score distribution is continuous (so that there

Figure 4.1: An illustration of marginal and conditional coverage. The interval on the left satisfies marginal coverage, but does not satisfy coverage conditional on the value of the test point X_{n+1} —there is undercoverage for larger values of X_{n+1} . In contrast, the interval on the right satisfies both properties.

are no ties, almost surely), and where $(1 - \alpha)(n + 1)$ is an integer. In that case, training-conditional coverage is exactly distributed as a Beta distribution:

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}\left(X_{n+1}\right) \mid \mathcal{D}_n\right) \sim \operatorname{Beta}\left((1-\alpha)(n+1), \alpha(n+1)\right).$$

The Beta distribution arises from the order statistics of the uniform distribution—conformal prediction relies only on the ranks of the scores, so if there are no ties one can without loss of generality analyze conformal scores that are uniformly distributed. More generally, without these assumptions, the Beta distribution provides a lower bound on the training-conditional coverage, as we see in the following result:

Theorem 4.1

Suppose the data points (X_i, Y_i) are i.i.d., and let $\mathcal{C}(X_{n+1})$ be constructed via split conformal prediction (Algorithm 3.6) using any pretrained score function s. Then the training-conditional coverage $\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n\right)$ stochastically dominates the Beta $((1-\alpha)(n+1), \alpha(n+1))$ distribution, and in particular, for any Δ ,

$$\mathbb{P}\bigg(\mathbb{P}\left(Y_{n+1} \in \mathcal{C}\left(X_{n+1}\right) \mid \mathcal{D}_n\right) \leq 1 - \alpha - \Delta\bigg) \leq F_{\text{Beta}((1-\alpha)(n+1),\alpha(n+1))}(1 - \alpha - \Delta) \leq e^{-2n\Delta^2},$$

where $F_{\text{Beta}(a,b)}$ denotes the CDF of the Beta(a,b) distribution.

One consequence of this result is an answer to the question, how large should the calibration set be for split conformal prediction? We know that the marginal coverage will be at least $1-\alpha$ for any n, but the above theorem tells us that a larger calibration set is still better because it leads to coverage that lies closer to $1-\alpha$ conditionally. This is because the distribution of coverage is Beta $((1-\alpha)(n+1), \alpha(n+1))$ (or larger, in the case of ties). This Beta distribution has expected value $1-\alpha$ and variance $\frac{\alpha(1-\alpha)}{n+2} = \mathcal{O}(\frac{1}{n})$, meaning that training-conditional coverage will almost certainly lie near (or above) $1-\alpha$ whenever the calibration set size n is large. More generally, the theorem implies that training-conditional coverage for split conformal can be lower-bounded as

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n) \ge 1 - \alpha - \epsilon_n$$

for an error term ϵ_n that has standard deviation scaling as $n^{-1/2}$. See Figure 4.2 for a visualization of the distribution of conditional coverage for different values of n.

Proof of Theorem 4.1

Throughout this proof, we will treat the pretrained score function as fixed—formally, recalling Algorithm 3.6, we are conditioning on the pretraining set \mathcal{D}_{pre} .

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Figure 4.2: The distribution of coverage of split conformal prediction conditional on the training data, when the scores have no ties. The distribution concentrates around $1 - \alpha$ with rate $n^{-1/2}$.

Let F be the CDF of the distribution of s(X,Y), when the data point is sampled as $(X,Y) \sim P$. Define $S_i = s(X_i,Y_i)$, which are i.i.d. draws from the distribution with CDF F. Next, let $S_{(1)} \leq \cdots \leq S_{(n)}$ be the order statistics of S_1, \ldots, S_n . By definition of split conformal, we have $Y_{n+1} \in \mathcal{C}(X_{n+1})$ if and only if $S_{n+1} \leq S_{(k)}$ for $k = \lceil (1-\alpha)(n+1) \rceil$, and so we have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n) = \mathbb{P}(S_{n+1} \leq S_{(k)} \mid \mathcal{D}_n) = F(S_{(k)}),$$

where the last step holds since S_{n+1} is independent of \mathcal{D}_n and has CDF F, while $S_{(k)}$ is a function of \mathcal{D}_n . Therefore,

$$\mathbb{P}(\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n) \le 1 - \alpha - \Delta) = \mathbb{P}(F(S_{(k)}) \le 1 - \alpha - \Delta).$$

Next let $U_i = F(S_i)$ for all $i \in [n]$. Then the U_i 's are i.i.d., and by the basic property of CDFs (2.5), their shared distribution is superuniform—that is, $\mathbb{P}(U_i \leq \tau) \leq \tau$ for all $\tau \in [0, 1]$. Note also that, by monotonicity of F, the order statistics $U_{(1)} \leq \cdots \leq U_{(n)}$ of U_1, \ldots, U_n satisfy $U_{(k)} = F(S_{(k)})$ (see Fact 2.13(i)). Then

$$\mathbb{P}\big(F(S_{(k)}) \leq 1 - \alpha - \Delta\big) = \mathbb{P}\big(U_{(k)} \leq 1 - \alpha - \Delta\big) \leq \mathbb{P}\big(U_{(k)}^* \leq 1 - \alpha - \Delta\big),$$

where U_1^*, \ldots, U_n^* are i.i.d. Unif[0, 1] random variables, with order statistics $U_{(1)}^* \leq \cdots \leq U_{(n)}^*$. Finally, by definition of the Beta distribution, the kth order statistic from n i.i.d. uniform random variables has distribution

$$U_{(k)}^* \sim \text{Beta}(k, n+1-k).$$

Since $k \ge (1-\alpha)(n+1)$, this distribution stochastically dominates Beta $((1-\alpha)(n+1), \alpha(n+1))$. This proves the first inequality claimed in the theorem.

The second inequality (i.e., the bound on the CDF of the Beta distribution) is due to the fact that the Beta $((1-\alpha)(n+1),\alpha(n+1))$ distribution has mean $1-\alpha$, and is $\frac{1}{4n}$ -subgaussian.

4.1.1 High-probability coverage

The notion of training-conditional coverage also leads to an important variant of the marginal coverage property in (1.1), known as high-probability coverage control or 'probably approximately correct' (PAC) coverage.

As described above, the marginal coverage property in (1.1) is equivalent to a guarantee on the *expected* training-conditional coverage,

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - \alpha \iff \mathbb{E}\left[\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}\left(X_{n+1}\right) \mid \mathcal{D}_n\right)\right] \le \alpha,$$

where the expectation is over the calibration data \mathcal{D}_n . That is, we can think of marginal coverage as a bound on the average error (where in this case, error is given by training-conditional miscoverage, $\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}\left(X_{n+1}\right) \mid \mathcal{D}_n\right)$). We can also consider a different approach: instead of bounding the expected error, we might wish to bound the error with some desired probability—that is, in this setting, we enforce a bound on the chance that we end up with poor training-conditional coverage. Concretely, for some $\delta \in (0,1)$, we could ask for a prediction set $\mathcal{C}(X_{n+1})$ that satisfies

$$\mathbb{P}\left(\left|\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}\left(X_{n+1}\right) \mid \mathcal{D}_{n}\right) \leq \alpha\right) \geq 1 - \delta. \tag{4.1}$$

In other words, there is only a δ chance that we draw a calibration set \mathcal{D}_n leading to a miscoverage rate on future data that is higher than α .

In the special case of i.i.d. data, we can produce sets $C(X_{n+1})$ that satisfy the error-control property in (4.1), with a slight modification of split conformal prediction. Taking as a starting point the distribution of training-conditional coverage given in Theorem 4.1, we see that by defining

$$C(X_{n+1}) = \{ y \in \mathcal{Y} : s(X_{n+1}, y) \le \text{Quantile}(S_1, \dots, S_n; (1 - \alpha')(1 + 1/n)) \}$$

(i.e., split conformal run at a nominal level $1-\alpha'$), then we will achieve the desired high probability bound (4.1) if we choose the appropriate nominal level $1-\alpha'$. In particular, we can take α' to be the unique value that satisfies

$$F_{\text{Beta}((1-\alpha')(n+1),\alpha'(n+1))}(1-\alpha) = \delta.$$

By our calculations on the mean and variance of the Beta distribution, above, we can see that $\alpha' = \alpha - \mathcal{O}(n^{-1/2})$ —that is, this is simply a slightly more conservative version of split conformal prediction.

4.1.2 Exchangeable data or i.i.d. data?

It is important to note that for this chapter, our positive results will primarily be in the setting of i.i.d. data. In contrast, for the marginal results of Chapter 3 (and for related results later on in the book as well), an assumption of exchangeability is sufficient. The reason for the distinction, in the case of training-conditional coverage for split conformal, is that we need the sample quantiles of the empirical distribution of scores in the calibration set, $(S_i)_{i \in [n]}$, to concentrate around their corresponding true quantiles. If we only assume exchangeability rather an i.i.d. assumption, then this concentration phenomenon is no longer guaranteed to hold, making training-conditional coverage impossible to guarantee.

4.2 A hardness result for training-conditional coverage

We have seen in Theorem 4.1 above that split conformal prediction automatically satisfies a training-conditional coverage guarantee (as long as the data points are assumed to be i.i.d., rather than merely exchangeable). The following result shows that, without further assumptions, training-conditional coverage is not guaranteed for full conformal prediction. Essentially, the reason is that, for split conformal in the i.i.d. data setting, the scores $S_i = s(X_i, Y_i)$ are i.i.d. (when we treat the pretrained conformal score function s as fixed); for full conformal, on the other hand, the scores $S_i = s((X_i, Y_i); \mathcal{D}_{n+1})$ are not i.i.d. and thus may not exhibit the same favorable concentration type properties.

To make this more precise, we first introduce the terminology of a nonatomic distribution.

Definition 4.2

For a distribution P on \mathcal{Z} , the atoms of P are all points $z \in \mathcal{Z}$ with positive probability,

$$atom(P) = \{ z \in \mathcal{Z} : \mathbb{P}_P(Z = z) > 0 \}.$$

The distribution P is called *nonatomic* if it has no atoms, i.e., $atom(P) = \emptyset$ (the empty set).

As a concrete example, a distribution on \mathbb{R} is nonatomic if and only if it is continuous (i.e., has a density with respect to Lebesgue measure). In \mathbb{R}^d when d > 1, only one direction holds: a distribution that has a density with respect to Lebesgue measure must be nonatomic, but a nonatomic distribution need not have a density (for example, the uniform distribution on the sphere is nonatomic).

We are now ready to state the theorem, which establishes the impossibility of guaranteeing training-conditional coverage for full conformal prediction in the setting of a nonatomic feature distribution.

Theorem 4.3

Let P be any distribution on $\mathcal{X} \times \mathcal{Y}$ such that the marginal P_X is nonatomic. Then there exists a symmetric conformal score function s such that, when running full conformal prediction with this choice of s, the training-conditional coverage probability satisfies

$$\mathbb{P}\bigg(\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n) = 0\bigg) \ge \alpha - \mathcal{O}\left(\sqrt{\frac{\log n}{n}}\right),$$

where the probability is taken with respect to the training set $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ drawn i.i.d. from P.

As we will see below, this theorem is proved by constructing an explicit counterexample, whose score function $s((x,y);\mathcal{D})$ is highly degenerate and is very different from any score function we might use in practice. We might ask whether placing mild assumptions on the score function could restore a training-conditional coverage guarantee. In fact, the hardness result of Theorem 4.3 holds (in a very slightly weaker form) even if we restrict to residual score functions, i.e., score functions of the form

$$s((x,y); \mathcal{D}) = |y - \hat{f}(x; \mathcal{D})|,$$

where $\hat{f}(\cdot; \mathcal{D})$ is a regression model fitted on training data \mathcal{D} ; in this version of the result, it is the regression algorithm itself (i.e., the map $\mathcal{D} \mapsto \hat{f}(\cdot; \mathcal{D})$) whose degenerate construction enables the counterexample.

In other words, without placing assumptions on the regression algorithm, full conformal does not achieve a training-conditional coverage guarantee even if we restrict ourselves to using the residual score. Of course, it will often be the case that, for the types of score functions we might encounter in practice, the prediction sets returned by full conformal may exhibit training-conditional coverage—this result is simply telling us that this type of property cannot be guaranteed to hold universally across all possible score functions. Likewise, if X is instead discrete, then it may be possible to ensure training-conditional coverage.

Proof of Theorem 4.3

Let $\alpha_P(\mathcal{D}_n) = \mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n)$. Fix a large integer $N \approx \alpha n$ —the exact value will be specified later. First, since P_X is nonatomic, we can define a function $a: \mathcal{X} \to \{0, \dots, n-1\}$ such that $a(X) \sim \text{Unif}\{0, \dots, n-1\}$ when $X \sim P_X$. Consider the following score function: for dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_k, y_k))$ and an additional data point (x, y), define

$$s((x,y); \mathcal{D}) = 1 \left\{ \operatorname{mod} \left(-a(x) + \sum_{j=1}^{k} a(x_j), n \right) < N \right\}.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Next consider applying this score to a test data point (X_{n+1}, Y_{n+1}) within the dataset $\mathcal{D}_{n+1} = ((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}))$. Recall from the proof of Theorem 3.2 that the coverage event $Y_{n+1} \in \mathcal{C}(X_{n+1})$ is equal to the event that $S_{n+1} \leq \text{Quantile}(S_1, \dots, S_{n+1}; 1-\alpha)$, where the scores are defined as $S_i = s((X_i, Y_i); \mathcal{D}_{n+1})$ (see (3.5)). Since the scores always take values in $\{0, 1\}$ in this construction, we see that coverage can fail only when we simultaneously have $S_{n+1} = 1$ and Quantile $(S_1, \dots, S_{n+1}; 1-\alpha) = 0$. In other words, we have

$$\alpha_P(\mathcal{D}_n) = \mathbb{P}\left(S_{n+1} = 1, \text{Quantile}\left(S_1, \dots, S_{n+1}; 1 - \alpha\right) = 0 \mid \mathcal{D}_n\right).$$

From this point on, the main idea of the proof will be as follows: we will define an event \mathcal{E}_{mod} , such that if \mathcal{E}_{mod} occurs (which has probability $\approx \alpha$), then we will likely have high training-conditional miscoverage $\alpha_P(\mathcal{D}_n)$.

Formally, we define \mathcal{E}_{mod} as the event that $\text{mod}(\sum_{i=1}^n a(X_i), n) < N$. With our particular definition of the score function, we have

$$S_{n+1} = s((X_{n+1}, Y_{n+1}); \mathcal{D}_{n+1}) = \mathbb{1} \left\{ \text{mod} \left(\sum_{i=1}^{n} a(X_i), n \right) < N \right\} = \mathbb{1}_{\mathcal{E}_{\text{mod}}}.$$

Since this event only depends on the training data \mathcal{D}_n and not on the test point (X_{n+1}, Y_{n+1}) , we can rewrite the conditional probability of noncoverage as

$$\alpha_P(\mathcal{D}_n) = \mathbb{1}_{\mathcal{E}_{\text{mod}}} \cdot \mathbb{P}\left(\text{Quantile}\left(S_1, \dots, S_{n+1}; 1 - \alpha\right) = 0 \mid \mathcal{D}_n\right).$$

In order to show that the event \mathcal{E}_{mod} leads to high $\alpha_P(\mathcal{D}_n)$, then, we now need to verify that the above conditional probability is likely to be high.

To do so, we need to define another event, $\mathcal{E}_{\text{unif}}$. First, we define a series of sliding windows: for any integer k, define

$$W_k = \{i \in \{0, \dots, n-1\} : \text{mod}(-i+k-1, n) \ge N\}.$$

For example, we have $W_0 = \{0, ..., n-N-1\}$, $W_1 = \{1, ..., n-N\}$, and so on. Then, let $\mathcal{E}_{\text{unif}}$ be the event that

$$\sum_{i=1}^{n} \mathbb{1}\left\{a(X_i) \in W_k\right\} \ge (1-\alpha)(n+1) \text{ for all integers } k,$$

i.e., each window of indices W_k contains a sufficient fraction of the sample. This event is illustrated in Figure 4.3.

For each training point (X_i, Y_i) , we can calculate

$$S_i = s((X_i, Y_i); \mathcal{D}_{n+1}) = 1 \left\{ \mod \left(-a(X_i) + \sum_{j=1}^{n+1} a(X_j), n \right) < N \right\}.$$

By taking $k = 1 + \sum_{j=1}^{n+1} a(X_j)$, we have $S_i = \mathbb{1}\{a(X_i) \notin W_k\}$. We can see that if $\mathcal{E}_{\text{unif}}$ holds, then $\sum_{i=1}^{n} \mathbb{1}\{S_i = 0\} \ge (1 - \alpha)(n+1)$ and therefore Quantile $(S_1, \ldots, S_{n+1}; 1 - \alpha) = 0$. Therefore,

$$\alpha_P(\mathcal{D}_n) \geq \mathbb{1}_{\mathcal{E}_{\text{mod}}} \cdot \mathbb{1}_{\mathcal{E}_{\text{unif}}}.$$

In other words, we have shown that

$$\mathbb{P}\left(\alpha_{P}(\mathcal{D}_{n})=1\right) \geq \mathbb{P}\left(\mathcal{E}_{\mathrm{mod}} \cap \mathcal{E}_{\mathrm{unif}}\right) \geq \mathbb{P}\left(\mathcal{E}_{\mathrm{mod}}\right) - \mathbb{P}\left(\mathcal{E}_{\mathrm{unif}}^{c}\right) = \frac{N}{n} - \mathbb{P}\left(\mathcal{E}_{\mathrm{unif}}^{c}\right).$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Figure 4.3: Illustration of the event $\mathcal{E}_{\text{unif}}$, which is defined in the proof of Theorem 4.3. Each plot shows a different random draw of the histogram of the values $a(X_i) \in \{0, \dots, n-1\}$, for training points $i \in [n]$, where n = 50. Since we have n data points and n values, we have 1 observation per value on average, but the random draws are quite noisy. However, setting N = 20, a sliding window of length n - N = 30 typically contains approximately n - N many data points. For each draw of the data, we highlight two examples of the sliding window of indices W_k , at k = 0 and k = 15. For the left-hand plot, the event $\mathcal{E}_{\text{unif}}$ holds—the window W_k contains a sufficient fraction of the observed $a(X_i)$ values, for every $k \in \{0, \dots, n-1\}$. For the right-hand plot, the event $\mathcal{E}_{\text{unif}}$ fails—in particular, the window W_0 contains too few of the $a(X_i)$ values.

Here the last step holds since $a(X_i) \stackrel{\text{i.i.d.}}{\sim} \text{Unif}\{0,\ldots,n-1\}$ for each $i=1,\ldots,n$, and therefore $\text{mod}(\sum_{i=1}^n a(X_i),n)$ also follows this uniform distribution, i.e., $\mathbb{P}(\mathcal{E}_{\text{mod}}) = N/n$.

Our last step is to bound $\mathbb{P}(\mathcal{E}_{\mathrm{unif}}^c)$. First, we observe that, by definition of the mod function, $\mathcal{E}_{\mathrm{unif}}$ holds if and only if $\sum_{i=1}^n \mathbb{I}\left\{\mathrm{mod}(-a(X_i)+k-1,n)\geq N\right\}\geq (1-\alpha)(n+1)$ for all $k=0,\ldots,n-1$, and so

$$\mathbb{P}\left(\mathcal{E}_{\mathrm{unif}}^c\right) \leq \sum_{k=0}^{n-1} \mathbb{P}\left(\sum_{i=1}^n \mathbb{1}\left\{ \operatorname{mod}(-a(X_i) + k - 1, n) \geq N \right\} < (1 - \alpha)(n+1) \right).$$

Moreover, since $a(X_i) \stackrel{\text{i.i.d.}}{\sim} \text{Unif}\{0,\ldots,n-1\}$, we see that

$$\sum_{i=1}^{n} \mathbb{1}\left\{ \operatorname{mod}(-a(X_i) + k - 1, n) \ge N \right\} \sim \operatorname{Binomial}\left(n, 1 - \frac{N}{n}\right)$$

for each fixed k, and so

$$\mathbb{P}\left(\mathcal{E}_{\mathrm{unif}}^{c}\right) \leq n \cdot \mathbb{P}\left(\mathrm{Binomial}\left(n, 1 - \frac{N}{n}\right) < (1 - \alpha)(n + 1)\right).$$

Taking $N = \alpha n - \mathcal{O}(\sqrt{n \log n})$, and applying standard Binomial tail bounds, we can bound this probability as $\mathcal{O}(1/n)$, which completes the proof.

4.3 Conditioning on the test point features

Next we turn to the problem of conditioning on the test features X_{n+1} , rather than the training data. We call this 'test-conditional coverage', meaning coverage conditional on the test feature X_{n+1} only, as is common in the literature. In its strongest possible version, achieving test-conditional coverage would require that our construction of the prediction sets satisfies the following property: for any distribution P on $\mathcal{X} \times \mathcal{Y}$,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) \ge 1 - \alpha$$

holds almost surely. (In particular, a guarantee of this type would ensure that we avoid the problem of uneven coverage illustrated in Figure 4.1.)

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

In this section, we will explore this version of the test-conditional coverage property, and will study its challenges. Afterward, in later sections, we will examine relaxations of the property.

4.3.1 The discrete setting

First, we will consider a setting where test-conditional coverage can indeed be achieved—the discrete setting. To take a simple case, suppose that $\mathcal{X} = \{x_1, \dots, x_K\}$ is a finite set—effectively, the feature X_i for data point i simply identifies which of K many groups this data point belongs to. If the sample size n is far larger than the number of feature groups K, we might expect that test-conditional coverage is easy to achieve. Indeed, we will now see that while conformal prediction may not itself achieve test-conditional coverage, a simple modification will enable this property.

First, why doesn't conformal prediction already satisfy this property? Conformal prediction is guaranteed to satisfy a marginal coverage guarantee, which we can rewrite for this setting as

$$1 - \alpha \le \mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) = \sum_{k=1}^{K} \mathbb{P}(X_{n+1} = x_k) \cdot \mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x_k).$$

This means that the test-conditional coverage values, $\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x_k)$ for $k \in [K]$, are guaranteed to be $\geq 1 - \alpha$ in the (weighted) average, but some may be lower than this threshold.

Now we will see how to modify conformal prediction to achieve test-conditional coverage in this setting. For simplicity, let us consider split conformal prediction, as defined earlier in Algorithm 3.6. We recall that the split conformal prediction interval is given by the construction

$$C(x) = \{ y : s(x, y) \le \hat{q} \},$$

where $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is the pretrained conformal score function, and where

$$\hat{q} = \text{Quantile}(S_1, \dots, S_n; (1 - \alpha)(1 + 1/n))$$

computes the quantile of the conformal scores on the calibration set. To achieve test-conditional coverage in the finite setting $\mathcal{X} = \{x_1, \dots, x_K\}$, we will instead define

$$\mathcal{C}(x_k) = \{ y : s(x_k, y) \le \hat{q}_k \},\tag{4.2}$$

for each $k \in [K]$, where

$$\hat{q}_k = \text{Quantile}\left((S_i)_{i \in [n], X_i = x_k}; (1 - \alpha)(1 + 1/n_k)\right)$$

instead computes the quantile of scores among only those data points i for which $X_i = x_k$, and where $n_k = \sum_{i \in [n]} \mathbb{1}_{X_i = x_k}$ counts the number of such points. This modified procedure will now satisfy

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x_k) \ge 1 - \alpha$$

for all $k \in [K]$, or equivalently,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) > 1 - \alpha$$

almost surely. We defer a proof of this claim to Section 4.4, where we will see that this is a special case of a more general result.

We note that, if the K many score distributions (i.e., for each k, the distribution of s(X,Y) for $(X,Y) \sim P$, conditional on $X = x_k$) are fairly similar, then the group-wise quantiles \hat{q}_k will be fairly similar as well; in this setting, the original split conformal method may already be nearly achieving test-conditional coverage, without this modification. On the other hand, if these K distributions are widely different, then as discussed above, marginal coverage can be expressed as a weighted average of the K many test-conditional coverage levels; these K values can be quite different, with many falling far below the target level $1 - \alpha$. The modified method defined here fixes this issue by performing calibration within each group separately.

4.3.2 Impossibility in the continuous setting

In the previous section, we considered the discrete setting, where the feature X takes only a small number of possible values. In this section, we will instead consider the other extreme: what if X is continuously distributed? Can test-conditional coverage be guaranteed via any method, whether conformal prediction or some other procedure? To answer this question, we will now write C to denote any procedure that uses a training dataset of size n to construct prediction sets. Formally, C is a map from $(X \times Y)^n \times X$ to the set of subsets of Y, but we will continue to write $C(X_{n+1})$ for the resulting prediction set, i.e., we suppress the dependence on the training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ in the notation.

We will now consider the setting where, under the joint distribution P of the pair (X, Y), the marginal distribution P_X of X is nonatomic (recall Definition 4.2). In this setting, we will see that test-conditional inference is impossible.

What does 'impossible' mean in this context? For example, if we simply return $C(x) = \mathcal{Y}$ for any test feature x (e.g., returning $(-\infty, \infty)$ as our prediction interval in the case of a real-valued response), then any desired coverage guarantee will hold. We can even be slightly less conservative by producing a randomized answer: for any x, return

$$C(x) = \begin{cases} \mathcal{Y}, & \text{with probability } 1 - \alpha, \\ \emptyset, & \text{with probability } \alpha. \end{cases}$$
 (4.3)

This solution is clearly still unsatisfactory, however, since the resulting prediction interval is completely uninformative—it does not even depend on the training data. However, the following result will demonstrate that this trivial (and useless) solution is the best that we can do.

Theorem 4.4

Suppose \mathcal{C} is any procedure that satisfies distribution-free conditional coverage, i.e., for any distribution P on $\mathcal{X} \times \mathcal{Y}$,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) \ge 1 - \alpha$$

holds almost surely, where the probability is taken with respect to $(X_1, Y_1), \dots, (X_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} P$. Then, for any distribution P on $\mathcal{X} \times \mathcal{Y}$ for which the marginal P_X is nonatomic,

$$\mathbb{P}(y \in \mathcal{C}(x)) \ge 1 - \alpha \text{ for every } (x, y) \in \mathcal{X} \times \mathcal{Y}.$$

To see more concretely how this result establishes the impossibility of nontrivial test-conditional inference, in the case that $\mathcal{Y} = \mathbb{R}$, we can consider its implications for the expected *length* (or more formally, the expected Lebesgue measure) of the prediction interval:

Corollary 4.5

Under the assumptions of Theorem 4.4, suppose also that $\mathcal{Y} = \mathbb{R}$. Then, for any distribution P on $\mathcal{X} \times \mathcal{Y}$ for which the marginal P_X is nonatomic, and for every $x \in \mathcal{X}$, it holds that

$$\mathbb{P}(\text{Leb}(\mathcal{C}(x)) = \infty) \ge 1 - \alpha,$$

where $Leb(\cdot)$ denotes the Lebesgue measure.

In particular, this implies that the prediction set constructed at the test point X_{n+1} must have infinite expected length, $\mathbb{E}[\text{Leb}(\mathcal{C}(X_{n+1}))] = \infty$.

Now let's compare this to the trivial solution described above in (4.3), where, regardless of the training data, we return $C(x) = \mathcal{Y}$ with probability $1 - \alpha$, and $C(x) = \emptyset$ otherwise. In that case, we have $\mathbb{P}(y \in C(x)) = 1 - \alpha$ for all (x, y). The result of Theorem 4.4 can therefore be interpreted as saying that, in the nonatomic setting, any procedure with distribution-free test-conditional coverage will return an output that is just as uninformative as this trivial construction.

Before proceeding, we pause to point out an important aspect of Theorem 4.4 (and its corollary): the bounds apply to *every* distribution P (with nonatomic P_X), and we are not simply proving that nontrivial

test-conditional coverage is impossible for *some* particularly challenging distribution P. That is, while we might have expected that we could construct some valid \mathcal{C} that returns reasonably narrow intervals for 'nice' distributions P, and is excessively wide only for distributions P that fail to satisfy some needed conditions (e.g., smoothness), instead we see from this theorem that, if \mathcal{C} achieves test-conditional coverage for every P, then it also returns a completely uninformative solution for every (nonatomic) P.

We are now ready to prove these results. For Theorem 4.4, the key idea of the proof is to construct a perturbation of the distribution P: we consider the mixture distribution

$$P' = (1 - \epsilon) \cdot P + \epsilon \cdot \delta_{(x,y)},$$

where as before, $\delta_{(x,y)}$ denotes the point mass at (x,y). That is, to sample a point from the distribution P', we either draw from P (with probability $1-\epsilon$), or we simply return the point (x,y) (with probability ϵ). The proof will use the fact that \mathcal{C} is assumed to satisfy test-conditional coverage with respect to any distribution of the data—and in particular, must therefore offer test-conditional coverage relative to the perturbed distribution P'.

Proof of Theorem 4.4

Fix any $(x,y) \in \mathcal{X} \times \mathcal{Y}$, and any $\epsilon > 0$. Define a mixture distribution,

$$P' = (1 - \epsilon) \cdot P + \epsilon \cdot \delta_{(x,y)}.$$

Since C offers distribution-free conditional coverage, this means that C must satisfy the coverage guarantee with respect to data drawn from the distribution P'—that is,

$$\mathbb{P}_{P'}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) \ge 1 - \alpha$$

holds almost surely, where the notation $\mathbb{P}_{P'}(\dots)$ indicates that we are calculating probability with respect to training and test data $(X_1, Y_1), \dots, (X_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} P'$. Since the event $X_{n+1} = x$ has positive probability under P', in particular this means that this bound must hold on the event $X_{n+1} = x$:

$$\mathbb{P}_{P'}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x) \ge 1 - \alpha.$$

Moreover, by definition of P' together with the assumption that P_X is nonatomic, we can see that $\mathbb{P}_{P'}(Y_{n+1} = y \mid X_{n+1} = x) = 1$, and so combining these facts, we must have

$$\mathbb{P}_{P'}(y \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x) > 1 - \alpha,$$

or equivalently,

$$\mathbb{P}_{P'}(y \in \mathcal{C}(x)) \ge 1 - \alpha.$$

Note that the event no longer depends on the test point, and so we are calculating probability with respect to the draw of the training data only, i.e., with respect to $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P'$.

Next, observe that the result above holds for an arbitrarily small $\epsilon > 0$. By taking $\epsilon \to 0$, we have shown that the same bound must hold for data drawn from P, rather than from P'. To formalize this argument, we can compute

$$\mathbb{P}_{P}(y \in \mathcal{C}(x)) \ge \mathbb{P}_{P'}(y \in \mathcal{C}(x)) - d_{\text{TV}}(P^n, P'^n) \ge 1 - \alpha - d_{\text{TV}}(P^n, P'^n),$$

where d_{TV} denotes the total variation distance, and where P^n and P'^n denote the corresponding product distributions, i.e., the distribution of an i.i.d. sample of size n drawn from P or from P', respectively. Since $d_{\text{TV}}(P^n, P'^n) \leq n d_{\text{TV}}(P, P') = n \epsilon$, we therefore have

$$\mathbb{P}_P(y \in \mathcal{C}(x)) \ge 1 - \alpha - n\epsilon.$$

Since this holds for any $\epsilon > 0$, this completes the proof.

Finally, to complete this section, we present a proof of the corollary, which verifies that in this setting, the interval $C(X_{n+1})$ must often have infinite length.

Proof of Corollary 4.5

Fix any $x \in \mathcal{X}$ and fix any constants a, b > 0. Then, deterministically, it holds that

$$\operatorname{Leb}(\mathcal{C}(x)) = \int_{y \in \mathbb{R}} \mathbbm{1} \left\{ y \in \mathcal{C}(x) \right\} \; \mathrm{d} y \geq \int_{y=0}^{a+b} \mathbbm{1} \left\{ y \in \mathcal{C}(x) \right\} \; \mathrm{d} y,$$

and so

$$\operatorname{Leb}(\mathcal{C}(x)) \leq a \Longrightarrow \int_{u=0}^{a+b} \mathbbm{1} \left\{ y \in \mathcal{C}(x) \right\} \ \mathrm{d} y \leq a \Longleftrightarrow \int_{u=0}^{a+b} \mathbbm{1} \left\{ y \not \in \mathcal{C}(x) \right\} \ \mathrm{d} y \geq b.$$

By Markov's inequality,

$$\begin{split} \mathbb{P}\left(\mathrm{Leb}(\mathcal{C}(x)) \leq a\right) &\leq \mathbb{P}\left(\int_{y=0}^{a+b} \mathbbm{1}\left\{y \not\in \mathcal{C}(x)\right\} \; \mathrm{d}y \geq b\right) \\ &\leq \frac{\mathbb{E}\left[\int_{y=0}^{a+b} \mathbbm{1}\left\{y \not\in \mathcal{C}(x)\right\} \; \mathrm{d}y\right]}{b} = \frac{\int_{y=0}^{a+b} \mathbb{P}(y \not\in \mathcal{C}(x)) \; \mathrm{d}y}{b} \leq \frac{(a+b)\alpha}{b}, \end{split}$$

where the last step holds by Theorem 4.4, while the next-to-last step applies the Fubini-Tonelli theorem to swap order of integration. Taking $b \to \infty$, then, we have shown that

$$\mathbb{P}\left(\text{Leb}(\mathcal{C}(x)) \le a\right) \le \alpha.$$

Since this holds for all finite a > 0, we therefore have

$$\mathbb{P}\left(\text{Leb}(\mathcal{C}(x)) < \infty\right) < \alpha.$$

4.4 Relaxations of test-conditional coverage: a binning-based approach

So far, we have seen that it is impossible to achieve pointwise test-conditional coverage, i.e., conditional on $X_{n+1} = x$, in the nonatomic setting, but easy to achieve in the discrete setting. This discrepancy arises from the fact that the event X = x might be observed many times in the training set in the discrete case, but (for any prespecified value x) will never occur in the training set for the nonatomic case. This suggests a way to relax the goal of conditional coverage in order to avoid the hardness result: we should condition on events that will be observed many times in a sample of size n. Specifically, we can consider partitioning the feature space into K many bins, $\mathcal{X} = \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_K$, and then requiring a bin-wise notion of conditional coverage:

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_k) \ge 1 - \alpha \text{ for all } k \in [K] \text{ with } \mathbb{P}(X_{n+1} \in \mathcal{X}_k) > 0.$$

Just like in the discrete case, the split conformal procedure can be modified to achieve this guarantee, by simply choosing a threshold for the score separately within each bin k: defining $k(x) \in [K]$ as the index of the bin containing x, we construct the prediction set

$$C(X_{n+1}) = \{ y : s(X_{n+1}, y) \le \hat{q}_{k(X_{n+1})} \},\$$

where the score function s is pretrained (i.e., this method is a variant of split conformal prediction), and where for each k,

$$\hat{q}_k = \text{Quantile}\left((S_i)_{i \in [n], X_i \in \mathcal{X}_k}; (1 - \alpha)(1 + 1/n_k)\right)$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

for $n_k = \sum_{i \in [n]} \mathbb{1}\{X_i \in \mathcal{X}_k\}$ is the sample size for the kth bin. (To account for the case where a bin \mathcal{X}_k might contain no calibration points, we will define the quantile of an empty list to be $+\infty$ —that is, if $X_i \notin \mathcal{X}_k$ for any $i \in [n]$, then $\hat{q}_k = +\infty$.)

Implicitly, in this split conformal version of the construction, we are assuming that the bins are fixed—that is, the bins are chosen independently of the data, or are chosen using the pretraining set. This type of construction can be extended to full conformal prediction as well: define

$$C(X_{n+1}) = \{ y : S_{n+1}^y \le \hat{q}_{k(X_{n+1})}^y \}, \tag{4.4}$$

where now the quantile is given by

$$\hat{q}_k^y = \text{Quantile}\left((S_i^y)_{i \in [n], X_i \in \mathcal{X}_k}; (1 - \alpha)(1 + 1/n_k)\right),$$

for scores S_i^y defined exactly as in Chapter 3. Of course, as usual, the bin-wise split conformal method defined above is simply a special case of this procedure.

The following result verifies that this modified full conformal method achieves bin-conditional coverage:

Theorem 4.6

Suppose $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable. Then the bin-wise prediction interval $C(X_{n+1})$ defined in (4.4) satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_k) \ge 1 - \alpha$$

for all $k \in [K]$ with $\mathbb{P}(X_{n+1} \in \mathcal{X}_k) > 0$.

Pointwise coverage in the discrete case (i.e., the guarantee that $\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} = x_k) \geq 1 - \alpha$, for each k, which we covered in Section 4.3.1 above) is actually a special case of this result: in the setting where $|\mathcal{X}| = K$, we can simply take each bin \mathcal{X}_k to be a singleton set.

The key idea for the proof of this theorem lies in the following lemma:

Lemma 4.7: Conditional exchangeability within a bin

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are exchangeable. Fix any subset $\mathcal{Z}_0 \subseteq \mathcal{X} \times \mathcal{Y}$, and for any fixed nonempty subset $I \subseteq [n+1]$, let \mathcal{E}_I be the event that $\{i \in [n+1] : (X_i, Y_i) \in \mathcal{Z}_0\} = I$. If \mathcal{E}_I has positive probability, then $((X_i, Y_i))_{i \in I}$ is exchangeable conditional on \mathcal{E}_I .

In particular, this result has a useful interpretation in terms of conformal p-values:

Corollary 4.8

In the setting of Lemma 4.7, define

$$p = \frac{1 + \sum_{i \in [n]} \mathbb{1} \{ (X_i, Y_i) \in \mathcal{Z}_0, \ S_i \ge S_{n+1} \}}{1 + \sum_{i \in [n]} \mathbb{1} \{ (X_i, Y_i) \in \mathcal{Z}_0 \}},$$

where $S_i = s((X_i, Y_i); \mathcal{D}_{n+1})$ for some symmetric score function s. If $\mathbb{P}((X_{n+1}, Y_{n+1}) \in \mathcal{Z}_0) > 0$, then

$$\mathbb{P}(p < \alpha \mid (X_{n+1}, Y_{n+1}) \in \mathcal{Z}_0) < \alpha$$

for any $\alpha \in [0, 1]$.

We will use these results to prove the bin-wise conditional coverage guarantee here, but will also use it again for several related results later on in the chapter.

Proof of Theorem 4.6

First, by construction of the set $\mathcal{C}(X_{n+1})$, we can see that on the event $X_{n+1} \in \mathcal{X}_k$,

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \Longleftrightarrow \frac{1 + \sum_{i \in [n], X_i \in \mathcal{X}_k} \mathbb{1}\left\{S_i \ge S_{n+1}\right\}}{1 + n_k} > \alpha \tag{4.5}$$

(the proof of this statement is analogous to the proof of Proposition 3.9).

Next, fix any bin k with $\mathbb{P}(X_{n+1} \in \mathcal{X}_k) > 0$, and let $\mathcal{Z}_0 = \mathcal{X}_k \times \mathcal{Y} \subseteq \mathcal{X} \times \mathcal{Y}$. By Lemma 4.7, the quantity

$$p = \frac{1 + \sum_{i \in [n]} \mathbb{1} \{ (X_i, Y_i) \in \mathcal{Z}_0, \ S_i \ge S_{n+1} \}}{1 + \sum_{i \in [n]} \mathbb{1} \{ (X_i, Y_i) \in \mathcal{Z}_0 \}}$$

satisfies $\mathbb{P}(p \leq \alpha \mid X_{n+1} \in \mathcal{X}_k) = \mathbb{P}(p \leq \alpha \mid (X_{n+1}, Y_{n+1}) \in \mathcal{Z}_0) \leq \alpha$. But by definition of \mathcal{Z}_0 and of n_k , we can rewrite this quantity as

$$p = \frac{1 + \sum_{i \in [n], X_i \in \mathcal{X}_k} \mathbb{1} \{ S_i \ge S_{n+1} \}}{1 + n_k}.$$

By (4.5), this completes the proof.

Finally, we prove the lemma and its corollary.

Proof of Lemma 4.7

For convenience, throughout this proof we will write $Z_i = (X_i, Y_i)$. Fix any nonempty $I \subseteq [n+1]$ such that $\mathbb{P}(\mathcal{E}_I) > 0$. Fix any permutation σ on I, and let $\tilde{\sigma}$ be the permutation on [n+1] defined as

$$\tilde{\sigma}(i) = \begin{cases} \sigma(i), & i \in I, \\ i, & i \notin I. \end{cases}$$

As before, we will write $Z_{\tilde{\sigma}} = (Z_{\tilde{\sigma}(1)}, \dots, Z_{\tilde{\sigma}(n+1)})$, and note that $Z \stackrel{\mathrm{d}}{=} Z_{\tilde{\sigma}}$ by exchangeability of the data.

For any $A \subseteq (\mathcal{X} \times \mathcal{Y})^{|I|}$, we have

$$\begin{split} &\mathbb{P}((Z_i)_{i\in I}\in A,\ \mathcal{E}_I)\\ &=\mathbb{P}\big((Z_i)_{i\in I}\in A,\ \{i\in [n+1]: Z_i\in \mathcal{Z}_0\}=I\big)\\ &=\mathbb{P}\big((Z_{\tilde{\sigma}(i)})_{i\in I}\in A,\ \{i\in [n+1]: Z_{\tilde{\sigma}(i)}\in \mathcal{Z}_0\}=I\big)\quad \text{since }Z\stackrel{\mathrm{d}}{=} Z_{\tilde{\sigma}}\\ &=\mathbb{P}\big((Z_{\tilde{\sigma}(i)})_{i\in I}\in A,\ \{i\in [n+1]: Z_i\in \mathcal{Z}_0\}=I\big)\quad \text{since }\tilde{\sigma}(i)\in I\ \text{if and only if }i\in I\\ &=\mathbb{P}((Z_{\tilde{\sigma}(i)})_{i\in I}\in A,\ \mathcal{E}_I)\\ &=\mathbb{P}((Z_{\sigma(i)})_{i\in I}\in A,\ \mathcal{E}_I), \end{split}$$

where the last step holds by definition of $\tilde{\sigma}$. Therefore,

$$\mathbb{P}((Z_i)_{i\in I}\in A\mid \mathcal{E}_I) = \frac{\mathbb{P}((Z_i)_{i\in I}\in A, \mathcal{E}_I)}{\mathbb{P}(\mathcal{E}_I)} = \frac{\mathbb{P}((Z_{\sigma(i)})_{i\in I}\in A, \mathcal{E}_I)}{\mathbb{P}(\mathcal{E}_I)} = \mathbb{P}((Z_{\sigma(i)})_{i\in I}\in A\mid \mathcal{E}_I).$$

Since this holds for every A, this proves that $(Z_i)_{i\in I}$ and $(Z_{\sigma(i)})_{i\in I}$ are equal in distribution conditional on \mathcal{E}_I , for any permutation σ on I. This verifies exchangeability of $(Z_i)_{i\in I}$ conditional on \mathcal{E}_I , as desired.

Proof of Corollary 4.8

Fix any I with $\mathbb{P}(\mathcal{E}_I) > 0$. Lemma 4.7 verifies that, conditional on \mathcal{E}_I , $(Z_i)_{i \in I}$ is exchangeable. It consequently holds that the corresponding scores, $(S_i)_{i \in I}$, are also exchangeable conditional on \mathcal{E}_I . To verify this formally, following the same steps as in the proof of Lemma 4.7, for any $A \subseteq \mathbb{R}^{|I|}$ we calculate

$$\begin{split} &\mathbb{P}((S_{i})_{i\in I}\in A,\ \mathcal{E}_{I})\\ &=\mathbb{P}\big((s(Z_{i};\mathcal{D}_{n+1}))_{i\in I}\in A, \{i\in[n+1]:Z_{i}\in\mathcal{Z}_{0}\}=I\big)\\ &=\mathbb{P}\big((s(Z_{\tilde{\sigma}(i)};(\mathcal{D}_{n+1})_{\tilde{\sigma}}))_{i\in I}\in A, \{i\in[n+1]:Z_{\tilde{\sigma}(i)}\in\mathcal{Z}_{0}\}=I\big)\ \text{since}\ \mathcal{D}_{n+1}\overset{\mathrm{d}}{=}(\mathcal{D}_{n+1})_{\tilde{\sigma}}\\ &=\mathbb{P}\big((s(Z_{\tilde{\sigma}(i)};\mathcal{D}_{n+1}))_{i\in I}\in A, \{i\in[n+1]:Z_{\tilde{\sigma}(i)}\in\mathcal{Z}_{0}\}=I\big)\ \text{since}\ s\ \text{is symmetric}\\ &=\mathbb{P}\big((s(Z_{\tilde{\sigma}(i)};\mathcal{D}_{n+1}))_{i\in I}\in A, \{i\in[n+1]:Z_{i}\in\mathcal{Z}_{0}\}=I\big)\ \text{since}\ \tilde{\sigma}(i)\in I\ \text{if and only if}\ i\in I\\ &=\mathbb{P}\big((s(Z_{\tilde{\sigma}(i)};\mathcal{D}_{n+1}))_{i\in I}\in A,\ \mathcal{E}_{I}\big)\\ &=\mathbb{P}\big((S_{\tilde{\sigma}(i)})_{i\in I}\in A,\ \mathcal{E}_{I}\big)\\ &=\mathbb{P}\big((S_{\sigma(i)})_{i\in I}\in A,\ \mathcal{E}_{I}\big), \end{split}$$

where $\sigma, \tilde{\sigma}$ are the same as in the proof of Lemma 4.7.

Next, since $(S_i)_{i \in I}$ is exchangeable conditionally on \mathcal{E}_I , the quantity

$$p_I = \frac{\sum_{i \in I} 1 \{ S_i \ge S_{n+1} \}}{|I|}$$

is a valid p-value conditional on \mathcal{E}_I , i.e., $\mathbb{P}(p_I \leq \alpha \mid \mathcal{E}_I) \leq \alpha$ (see Corollary 2.6). But on the event \mathcal{E}_I , we have $p_I = p$ by construction. Since $Z_{n+1} \in \mathcal{Z}_0$ holds if and only if \mathcal{E}_I holds for some $I \ni n+1$, we therefore have

$$\mathbb{P}(p \le \alpha, Z_{n+1} \in \mathcal{Z}_0) = \sum_{I \ni n+1} \mathbb{P}(p \le \alpha, \mathcal{E}_I)$$

$$= \sum_{I \ni n+1} \mathbb{P}(p_I \le \alpha, \mathcal{E}_I)$$

$$= \sum_{I \ni n+1} \mathbb{P}(\mathcal{E}_I) \cdot \mathbb{P}(p_I \le \alpha \mid \mathcal{E}_I)$$

$$\le \sum_{I \ni n+1} \mathbb{P}(\mathcal{E}_I) \cdot \alpha$$

$$= \alpha \cdot \mathbb{P}(Z_{n+1} \in \mathcal{Z}_0),$$

which proves that $\mathbb{P}(p \leq \alpha \mid Z_{n+1} \in \mathcal{Z}_0) \leq \alpha$, as desired.

4.5 Label-conditional coverage

In classification problems, another concept of validity that is stronger than marginal validity is label-conditional coverage. This term refers to coverage conditional on the response Y_{n+1} , in settings where the response is categorical (and is thus commonly referred to as the 'label' of the data point).

Formally, if $\mathcal{Y} = \{1, \dots, K\}$, we seek prediction sets \mathcal{C} such that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid Y_{n+1} = y) \ge 1 - \alpha \tag{4.6}$$

for all y = 1, ..., K. It turns out that this is tractable with sufficient data, just like for test-conditional

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

coverage in the setting where $|\mathcal{X}|$ is finite. Moreover, the underlying proof of validity closely follows those from the previous two sections (see the unifying result in Theorem 4.10 in the next section).

We now show how to achieve (4.6) with a modification of the full conformal algorithm. Essentially, we split the data into classes, and then carry out conformal prediction within each class separately. However, since we do not know the class of the test data point, to implement this we will need to use a hypothesized test point value y in place of the unknown Y_{n+1} .

To be more precise, in order to achieve label-conditional coverage, we will compare the score $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$ against scores S_i^y for training points i for which $Y_i = y$. To this end, let $\mathcal{I}_y = \{i \in [n] : Y_i = y\}$ and let $n_y = |\mathcal{I}_y|$, and define the quantile

$$\hat{q}^y = \text{Quantile}\left((S_i^y)_{i \in \mathcal{I}_y}; (1 - \alpha)(1 + 1/n_y)\right).$$

If $S_{n+1}^y \leq \hat{q}_y$, then Y_{n+1} taking a value of y is judged to be consistent with previous data. Repeating this for each value of y, we arrive at the following prediction set:

$$C(X_{n+1}) = \{ y : S_{n+1}^y \le \hat{q}^y \}. \tag{4.7}$$

This closely parallels the prediction set constructions for test-conditional coverage when the feature vector X_{n+1} is discrete, as in (4.2), or when we relax our goal to bin-wise conditional coverage, as in (4.4). Just like for those two methods, we partition the training points over the K different classes, and calculate a different value of the conformal quantile for each one.

Theorem 4.9: Label-conditional coverage guarantee

Suppose $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable and that s is a symmetric score function. Then the label-conditional prediction set $C(X_{n+1})$ defined in (4.7) satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid Y_{n+1} = y) \ge 1 - \alpha$$

for all $y \in \mathcal{Y}$ such that $\mathbb{P}(Y_{n+1} = y) > 0$.

This result is a special case of Theorem 4.10 below, so we omit the proof.

We point out that the prediction sets always include a label y if there are insufficient examples with that value of y in the calibration data. Thus, the prediction sets are more useful when there are at least $\approx 1/\alpha$ examples of each class in the data; if this is not the case for some y, then this candidate label value y will always be included in the prediction set. This is analogous to the fact that in marginal conformal prediction, when n is smaller than $\approx 1/\alpha$, the sets are uninformative—but in the label-conditional setting, the relevant sample size is now the number of times we observed the value y, rather than the larger sample size n.

4.6 Mondrian conformal prediction

Binned conditional coverage and label-conditional coverage are both special cases of *Mondrian conformal* prediction, a more general framework that enables us to enforce conditional coverage relative to events that capture information about the feature X, about the label Y, or both. To define this general method, the space $\mathcal{X} \times \mathcal{Y}$ is first partitioned into a finite number of groups: formally, we let $g: \mathcal{X} \times \mathcal{Y} \to \{1, \dots, K\}$ be the function that maps a data point to its group identifier. Mondrian conformal prediction is an algorithm that guarantees coverage at least level $1 - \alpha$ for each group, i.e.,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid g(X_{n+1}, Y_{n+1}) = k) \ge 1 - \alpha$$

for all $k \in \{1, ..., K\}$.

The idea behind the algorithm is similar to that of the binning-based or label-conditional approaches described earlier in this chapter. For each provisional value of $y \in \mathcal{Y}$, we compute the group identifier $g(X_{n+1}, y)$. Then, we compare the conformal score $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$ to the conformal scores

 $S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y)$ for all $i \in [n]$ such that $g(X_i, Y_i) = g(X_{n+1}, y)$ —that is, we compare to all those data points that lie in the same group as the hypothesized test point (X_{n+1}, y) . To formalize this, defining $\mathcal{I}_k = \{i \in [n] : g(X_i, Y_i) = k\}$ for each group $k \in [K]$, we compute the quantile

$$\hat{q}^y = \text{Quantile}((S_i^y)_{i \in \mathcal{I}_{g(X_{n+1},y)}}; (1-\alpha)(1+1/|\mathcal{I}_{g(X_{n+1},y)}|)).$$

This leads us to the proposed prediction set

$$C(X_{n+1}) = \{ y : S_{n+1}^y \le \hat{q}^y \}. \tag{4.8}$$

Theorem 4.10: Mondrian coverage guarantee

Suppose $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable and that s is a symmetric score function. The Mondrian prediction set $C(X_{n+1})$ defined in (4.8) satisfies the conditional coverage guarantee

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid g(X_{n+1}, Y_{n+1}) = k) \ge 1 - \alpha$$

for all $k \in \{1, ..., K\}$ such that $\mathbb{P}(g(X_{n+1}, Y_{n+1}) = k) > 0$.

Proof of Theorem 4.10

This proof generalizes the proof of Theorem 4.6, and follows an identical structure. First, by construction of the set $C(X_{n+1})$, we can see that for any $k \in [K]$, on the event $g(X_{n+1}, Y_{n+1}) = k$,

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \Longleftrightarrow \frac{1 + \sum_{i \in [n], g(X_i, Y_i) = k} \mathbb{1}\left\{S_i \ge S_{n+1}\right\}}{1 + |\mathcal{I}_k|} > \alpha \tag{4.9}$$

(the proof of this statement is analogous to the proof of Proposition 3.9).

Next, fix any label $k \in [K]$ with $\mathbb{P}(g(X_{n+1}, Y_{n+1}) = k) > 0$, and let $\mathcal{Z}_0 = \{(x, y) \in \mathcal{X} \times \mathcal{Y} : g(x, y) = k\} \subseteq \mathcal{X} \times \mathcal{Y}$. By Lemma 4.7, the quantity

$$p = \frac{1 + \sum_{i \in [n]} \mathbbm{1} \left\{ (X_i, Y_i) \in \mathcal{Z}_0, S_i \ge S_{n+1} \right\}}{1 + \sum_{i \in [n]} \mathbbm{1} \left\{ (X_i, Y_i) \in \mathcal{Z}_0 \right\}} = \frac{1 + \sum_{i \in [n], g(X_i, Y_i) = k} \mathbbm{1} \left\{ S_i \ge S_{n+1} \right\}}{1 + |\mathcal{I}_k|}$$

satisfies $\mathbb{P}(p \leq \alpha \mid g(X_{n+1}, Y_{n+1}) = k) \leq \alpha$. By (4.9), this completes the proof.

4.7 Relaxations of test-conditional coverage: beyond binning

In Section 4.3.2, we learned that the strongest form of the test-conditional coverage property, which requires that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) \ge 1 - \alpha \text{ holds almost surely over } X_{n+1}, \tag{4.10}$$

is in general too strong—for a nonatomic feature distribution P_X , it is essentially impossible to improve upon the trivial algorithm: outputting \mathcal{Y} with probability $1 - \alpha$ and \varnothing otherwise.

Given this impossibility result, one might wonder if test-conditional coverage is intrinsically impossible, or if there are some mild relaxations of the problem which admit practical solutions. To explore this idea, we will now consider several such relaxations.

4.7.1 For all X or for most X?

Instead of requiring test-conditional coverage to hold for all values of X_{n+1} , as in (4.10), we can consider relaxing the condition by requiring it to hold only for 'most' values of X_{n+1} , to avoid a scenario where some

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

nonnegligible fraction of X_{n+1} values, say some set $\mathcal{X}_0 \subseteq \mathcal{X}$, has a coverage level substantially lower than $1 - \alpha$. To quantify this, we consider the following relaxation of the goal of test-conditional coverage:

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0) \ge 1 - \alpha \text{ for all } P, \text{ and all } \mathcal{X}_0 \subseteq \mathcal{X} \text{ with } P_X(\mathcal{X}_0) \ge \delta.$$
 (4.11)

Here probability is taken with respect to data $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ sampled i.i.d. from P. We can observe that if this relaxed condition holds for all values $\delta > 0$, then we would simply recover the original condition (4.10), which we know to be impossible in the nonatomic setting. Instead, we will ask whether it is possible to ensure that this relaxed condition holds for some fixed and positive δ .

Of course, even the original definition (4.10) of test-conditional coverage can be satisfied if we are willing to accept the trivial algorithm. The impossibility result derived above in Theorem 4.4 and Corollary 4.5 can be interpreted as telling us that this trivial solution is a baseline that cannot be improved upon.

When we instead aim for the relaxed condition (4.11), a different trivial solution gives us a baseline for this setting: we can simply run any distribution-free method (e.g., split or full conformal) with target coverage level $1 - \alpha \delta$ in place of $1 - \alpha$. This strategy is trivial because in no way is it required to adapt to the difficulty of the prediction task as a function of X_{n+1} —it simply achieves the guarantee by being more conservative overall. To verify that this would lead to the desired guarantee, we can simply observe that, for any \mathcal{X}_0 with $P_X(\mathcal{X}_0) \geq \delta$,

$$\mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0) \leq \delta^{-1} \mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1}) \cdot \mathbb{1}_{X_{n+1} \in \mathcal{X}_0})$$

$$\leq \delta^{-1} \mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1})) \leq \delta^{-1} \cdot \alpha \delta = \alpha, \quad (4.12)$$

where the last inequality holds if C is constructed via some method guaranteeing marginal coverage at level $1 - \alpha \delta$. In fact, if we allow randomization in our construction, this trivial solution can be generalized to a family of solutions, parameterized by $c \in [0, 1]$:

$$\begin{cases}
\text{Construct } \mathcal{C}'(X_{n+1}), \text{ using any method that guarantees marginal coverage at level } 1 - c\alpha\delta. \\
\text{With probability } \frac{1-\alpha}{1-c\alpha}, \text{ return } \mathcal{C}(X_{n+1}) = \mathcal{C}'(X_{n+1}); \text{ otherwise, return } \mathcal{C}(X_{n+1}) = \varnothing.
\end{cases}$$
(4.13)

Proposition 4.11

For any $c \in [0,1]$, the procedure defined in (4.13) satisfies the relaxed test-conditional coverage condition (4.11).

Proof of Proposition 4.11

By construction of the method, we have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0) = \frac{1 - \alpha}{1 - c\alpha} \cdot \mathbb{P}(Y_{n+1} \in \mathcal{C}'(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0).$$

Next, following the same steps as in the calculations (4.12) above,

$$\mathbb{P}(Y_{n+1} \notin \mathcal{C}'(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0) \le \delta^{-1} \cdot c\alpha\delta = c\alpha.$$

Combining these two calculations proves the result.

Consequently, in the setting of relaxed (rather than almost sure) test-conditional coverage, our question is somewhat different from before. Again working in the setting $\mathcal{Y} = \mathbb{R}$, while before we asked whether it is possible for a procedure satisfying the original condition (4.10) to return an interval of *finite* length, now we ask whether a procedure satisfying the relaxed condition (4.11) can return an interval of *shorter* length than the trivial solution obtained via (4.13) above. For example, we may ask, for any \mathcal{C} that achieves the relaxed

test-conditional coverage condition (4.11),

Is it true that
$$\mathbb{E}[\text{Leb}(\mathcal{C}(X_{n+1}))] \ge \inf_{c \in [0,1]} \left\{ \frac{1-\alpha}{1-c\alpha} \cdot \mathbb{E}[\text{Leb}(\mathcal{C}_{\text{split};1-c\alpha\delta}(X_{n+1}))] \right\}$$
? (4.14)

Here $C_{\text{split};1-c\alpha\delta}$ is the interval returned by running split conformal prediction at coverage level $1-c\alpha\delta$. It turns out that, while we cannot prove this exact bound, the lower bound established in the following theorem tells a very similar story—we will explain more once we have stated the result. In order to present the theorem we first need to define a new quantity: for $t \in [0,1]$, let $L_P(1-t)$ be the minimum length of any *oracle* prediction interval C_{1-t}^P , which is constructed given knowledge of the distribution P (i.e., not a distribution-free method), and has coverage level 1-t:

$$L_P(1-t) = \inf \left\{ \mathbb{E}_P[\text{Leb}(\mathcal{C}_{1-t}^P(X))] : \mathcal{C}_{1-t}^P \text{ satisfies } \mathbb{P}_P(Y \in \mathcal{C}_{1-t}^P(X)) \ge 1-t \right\}.$$

For example, if under the true distribution P it holds that $Y = f(X) + \mathcal{N}(0,1)$ for some function f, then the minimum-length interval is given by $\mathcal{C}_{1-t}^P(X) = f(X) \pm z_{1-t/2}^*$, where $z_{1-t/2}^*$ is the (1-t/2)-quantile of the standard normal distribution, and so $L_P(1-t) = 2z_{1-t/2}^*$. For a general distribution P, we emphasize that this minimum length is *not* over methods that have distribution-free validity; we are instead considering prediction intervals that are constructed using knowledge of P, which might be substantially narrower. These oracle lengths satisfy a natural property, which we state without proof:

Fact 4.12

For any distribution P, the oracle length $L_P(1-t)$ is a convex and nonincreasing function of t.

Now we present the theorem:

Theorem 4.13

Suppose C satisfies the distribution-free relaxed test-conditional coverage condition (4.11), and let $\mathcal{Y} = \mathbb{R}$. Then, for any distribution P on $\mathcal{X} \times \mathbb{R}$ for which the marginal P_X is nonatomic,

$$\mathbb{E}[\operatorname{Leb}(\mathcal{C}(X_{n+1}))] \ge \inf_{c \in [0,1]} \left\{ \frac{1-\alpha}{1-c\alpha} \cdot L_P(1-c\alpha\delta) \right\}.$$

We can see that this theorem establishes a lower bound that, at first glance, appears similar to the goal laid out in (4.14), with a key difference: instead of the length of a split conformal interval, $\mathbb{E}[\text{Leb}(\mathcal{C}_{\text{split};1-c\alpha\delta}(X_{n+1}))]$, we instead have the length of an oracle interval, $L_P(1-c\alpha\delta)$. Of course, it may be the case that this oracle length $L_P(1-c\alpha\delta)$ is much shorter than the expected length of the split conformal interval—naturally we expect to pay a price for distribution-free validity. Why do we say, then, that the result of the theorem can be viewed as telling us something similar to the original goal in (4.14)? This is because, as we will discuss in Chapter 5, in certain settings where we are able to find a score function that captures the true distribution of the data, the split conformal interval is asymptotically equivalent to the oracle prediction interval—that is, in 'nice' settings, if the sample size n is sufficiently large then we can assume the length of the split conformal interval, $\mathbb{E}[\text{Leb}(\mathcal{C}_{\text{split},1-c\alpha\delta}(X_{n+1}))]$, is approximately equal to the best possible length that can be achieved with oracle knowledge of the distribution P, which is $L_P(1-c\alpha\delta)$. In such settings, then, the lower bound in the theorem can be interpreted as implying that the bound (4.14) approximately holds.

The proof of the hardness result in Theorem 4.13 relies primarily on the following key lemma:

Lemma 4.14

Suppose \mathcal{C} satisfies the distribution-free relaxed test-conditional coverage condition (4.11). Let P be any distribution on $\mathcal{X} \times \mathcal{Y}$ such that the marginal P_X is nonatomic. Then

$$\mathbb{P}_{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid (X_{n+1}, Y_{n+1}) \in B) \ge 1 - \alpha \text{ for any } B \subseteq \mathcal{X} \times \mathcal{Y} \text{ with } P(B) \ge \delta. \tag{4.15}$$

Figure 4.4: An illustration of the hardness result in Lemma 4.14. The lemma says that, if we satisfy conditional coverage over all $\mathcal{X}_0 \subseteq \mathcal{X}$ with measure at least δ , then we must also have coverage for all regions $B \subseteq \mathcal{X} \times \mathcal{Y}$ with measure δ . This leads to the lower bound in Theorem 4.13, because a predictive inference procedure that has high coverage conditional on $(X,Y) \in B$ must necessarily return very wide intervals, since B is in a region of low density. On the left is drawn an example set \mathcal{X}_0 , and on the right an example B.

The significance of this lemma may not be immediately evident. Indeed, its conclusion, the bound given in (4.15), looks extremely similar to the relaxed definition (4.11) of conditional coverage that we have assumed to hold; the only difference lies in whether we condition on an event that depends on the test feature X_{n+1} only, or on the entire test point (X_{n+1}, Y_{n+1}) . In fact, these two statements have very different implications.

To illustrate this difference, let's consider a very simple example, without the distribution-free context. Suppose again that $Y = f(X) + \mathcal{N}(0,1)$, i.e., we assume a Gaussian model on the noise. Then, with oracle knowledge of this conditional distribution, the prediction interval $\mathcal{C}(x) = f(x) \pm 1.96$ offers 95% coverage for the conditional distribution of Y given X = x—and in particular, would satisfy a guarantee of the type (4.11) for arbitrarily small δ . On the other hand, a bound of the type (4.15) would not be satisfied—for instance, choosing any $B \subseteq \{(x,y) : |y-f(x)| > 1.96\}$, we can have P(B) potentially as large as $\mathbb{P}(|Y-f(X)| > 1.96) = 0.05$, but our interval $\mathcal{C}(x)$ would lead to zero coverage conditional on the event $(X,Y) \in B$. See also Figure 4.4 for a visualization.

In other words, the difference is this: the definition (4.11) requires a high level of predictive coverage even at rare values of X, but the conclusion of the lemma given in (4.15) tells us that we therefore also have a high level of predictive coverage even at rare values of Y. While the first statement seems reasonable, the second statement inherently conflicts with the goal of accurate predictive inference, where we typically want to return an interval containing only plausible values of Y.

Next, we prove the key lemma. The main idea of the proof relies on the following strategy: when sampling m i.i.d. draws from any distribution P, it is nearly equivalent to first sample $M \ge m$ i.i.d. draws from P, then sample m times with replacement from this list, as long as M is sufficiently large (specifically, $M \gg m^2$). We will see this construction used again for other hardness results proved later in the book, in other contexts—we refer to it as the sample-resample construction, and we include it as its own lemma:

Lemma 4.15: The sample-resample construction

Let P be a distribution on \mathcal{Z} , and let $m, M \geq 1$. Let P^m denote the corresponding product distribution on \mathcal{Z}^m —that is, the distribution of (Z_1, \ldots, Z_m) , where $Z_1, \ldots, Z_m \stackrel{\text{i.i.d.}}{\sim} P$. Moreover, let Q denote the distribution on \mathcal{Z}^m obtained by the following process to generate (Z_1, \ldots, Z_m) :

- 1. Sample $Z^{(1)}, \dots, Z^{(M)} \stackrel{\text{i.i.d.}}{\sim} P$, and define the empirical distribution $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{Z^{(i)}}$;
- 2. Sample $Z_1, \ldots, Z_m \overset{\text{i.i.d.}}{\sim} \widehat{P}_M$.

Then

$$d_{\text{TV}}(P^m, Q) \le \frac{m(m-1)}{2M},$$

where d_{TV} denotes the total variation distance between distributions.

With this technique in place, we are now ready to prove Lemma 4.14.

Proof of Lemma 4.14

First we prove the result for any set B with $\mathbb{P}_P((X,Y) \in B) > \delta$. Fix a large integer M, let $(X^{(1)},Y^{(1)}),\ldots,(X^{(M)},Y^{(M)})$ be an arbitrary sequence of M data points, and let $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{(X^{(i)},Y^{(i)})}$ denote the empirical distribution of this sequence. Define

$$\mathcal{M} = \{ m \in \{1, \dots, M\} : (X^{(m)}, Y^{(m)}) \in B \}$$

as the set of indices whose points lie in B, and let $\mathcal{X}_0 = \{X^{(m)} : m \in \mathcal{M}\}$ be the corresponding set of X values. Then $\mathbb{P}_{\widehat{P}_M}(X \in \mathcal{X}_0) \geq |\mathcal{M}|/M$ by construction. Therefore, since \mathcal{C} satisfies $(1 - \alpha, \delta)$ -conditional coverage, if $|\mathcal{M}| \geq \delta M$ (and so $\mathbb{P}_{\widehat{P}_M}(X \in \mathcal{X}_0) \geq \delta$) then we must have

$$\mathbb{P}_{\widehat{P}_M}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0\right) \ge 1 - \alpha.$$

Therefore,

$$\mathbb{P}_{\widehat{P}_M}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}), X_{n+1} \in \mathcal{X}_0\right) \ge (1-\alpha) \cdot \frac{|\mathcal{M}|}{M} \cdot \mathbb{1}_{|\mathcal{M}| \ge \delta M}.$$

Moreover, if the values $X^{(1)}, \ldots, X^{(M)}$ are all distinct, then under the distribution $\widehat{P}_M, X_{n+1} \in \mathcal{X}_0$ if and only if $(X_{n+1}, Y_{n+1}) \in B$. In other words, we have shown that for any sequence $(X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)})$ where the values $X^{(1)}, \ldots, X^{(M)}$ are all distinct, it must hold that

$$\mathbb{P}_{\widehat{P}_M}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B\right) \ge (1 - \alpha) \cdot \frac{|\mathcal{M}|}{M} \cdot \mathbb{1}_{|\mathcal{M}| \ge \delta M}. \tag{4.16}$$

Next, consider the following construction:

- 1. Sample $(X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P$, and let $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{(X^{(i)}, Y^{(i)})}$ be the corresponding empirical distribution;
- 2. Sample $(X_1, Y_1), \dots, (X_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} \widehat{P}_M$.

Since P_X is assumed to be nonatomic, this means that $X^{(1)}, \ldots, X^{(M)}$ are distinct almost surely in this construction, and therefore, the inequality (4.16) holds almost surely with respect to the draw of $(X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)})$. Now define a distribution Q on $(\mathcal{X} \times \mathcal{Y})^{n+1}$, given by the marginal distribution of $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ under the construction above.

Marginalizing (4.16) over the random draw of $(X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)})$, then, we have shown that

$$\mathbb{P}_{((X_1,Y_1),...,(X_{n+1},Y_{n+1}))\sim Q}\Big(Y_{n+1}\in\mathcal{C}(X_{n+1}),(X_{n+1},Y_{n+1})\in B\Big)\geq (1-\alpha)\cdot \mathbb{E}\left[\frac{|\mathcal{M}|}{M}\cdot\mathbb{1}_{|\mathcal{M}|\geq\delta M}\right].$$

Next, we also have $|\mathcal{M}| \sim \text{Binomial}(M, \delta')$ by construction, where we define $\delta' = \mathbb{P}_P((X, Y) \in B) > \delta$. We then have

$$\mathbb{E}\left[\frac{|\mathcal{M}|}{M} \cdot \mathbb{1}_{|\mathcal{M}| \ge \delta M}\right] \ge \mathbb{E}\left[\frac{|\mathcal{M}|}{M}\right] - \mathbb{P}(|\mathcal{M}| < \delta M)$$
$$= \delta' - \mathbb{P}\left(\text{Binomial}(M, \delta') < M\delta\right)$$
$$\ge \delta' - e^{-2M(\delta' - \delta)^2},$$

where the last step holds by Hoeffding's inequality. Moreover, by Lemma 4.15, we have

$$d_{\text{TV}}(P^{n+1}, Q) \le \frac{n(n+1)}{2M}.$$

Therefore, combining all these calculations, we have shown that

$$\mathbb{P}_{(X_{i},Y_{i})^{\text{i.i.d.}}P}\Big(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1},Y_{n+1}) \in B\Big)$$

$$\geq \mathbb{P}_{((X_{1},Y_{1}),\dots,(X_{n+1},Y_{n+1}))\sim Q}\Big(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1},Y_{n+1}) \in B\Big) - \frac{n(n+1)}{2M}$$

$$\geq (1-\alpha)\left[\delta' - e^{-2M(\delta' - \delta)^{2}}\right] - \frac{n(n+1)}{2M}.$$

Since M can be taken to be arbitrarily large, therefore, this proves that

$$\mathbb{P}_P(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B) \ge (1 - \alpha)\delta' = (1 - \alpha)\mathbb{P}_P((X_{n+1}, Y_{n+1}) \in B),$$

which establishes that $\mathbb{P}_P(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid (X_{n+1}, Y_{n+1}) \in B) \geq 1 - \alpha$, as desired.

This completes the proof for the case $\mathbb{P}_P((X,Y) \in B) > \delta$. Now suppose instead that $\mathbb{P}_P((X,Y) \in B) = \delta$. Since P_X (and therefore, also P) is nonatomic, we can construct a nested sequence of sets $B_1 \supseteq B_2 \supseteq \cdots \supseteq B$, for which $P(B_i) > \delta$ for all i, and $P(B_i \setminus B) \to 0$. By the work above, then, it holds that

$$\mathbb{P}_P(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid (X_{n+1}, Y_{n+1}) \in B_i) \ge 1 - \alpha$$

for all i. Taking a limit proves the desired result: we have

$$\mathbb{P}_{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid (X_{n+1}, Y_{n+1}) \in B) = \frac{\mathbb{P}_{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B)}{\delta} \\
\geq \frac{\mathbb{P}_{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B_{i}) - \mathbb{P}_{P}((X_{n+1}, Y_{n+1}) \in B_{i} \setminus B)}{\delta} \\
\geq \frac{(1 - \alpha) \cdot (\delta + P(B_{i} \setminus B)) - P(B_{i} \setminus B)}{\delta},$$

for each i, and taking $i \to \infty$ completes the proof.

Next, we need to prove the sample–resample lemma.

Proof of Lemma 4.15

This proof follows by simply bounding the difference between sampling with and without replacement. First, if M < m then the result holds trivially, so we can assume $M \ge m$ from this point on. Observe that drawing m i.i.d. samples from P is equivalent to sampling m times without replacement from the list $(X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)})$ —or more formally,

- 1. Sample $(X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P;$
- 2. Sample indices $k_1, \ldots, k_m \in \{1, \ldots, M\}$, uniformly without replacement;
- 3. Define $(X_i, Y_i) = (X^{(k_i)}, Y^{(k_i)})$ for each $i \in [n]$.

On the other hand, by definition of Q, sampling a dataset from Q is equivalent to the following:

- 1. Sample $(X^{(1)}, Y^{(1)}), \dots, (X^{(M)}, Y^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P$;
- 2. Sample indices $k_1, \ldots, k_m \in \{1, \ldots, M\}$, uniformly with replacement;
- 3. Define $(X_i, Y_i) = (X^{(k_i)}, Y^{(k_i)})$ for each $i \in [n]$.

The only difference between these two constructions lies in whether the indices k_1, \ldots, k_m are sampled without replacement (in the first procedure, while constructing a draw from P^m), or with replacement (in the second procedure, while constructing a draw from Q). Therefore, the total variation distance between these two procedures is simply the total variation distance for sampling with versus without replacement (when drawing m samples from a finite population of size M). This is bounded by the probability of observing any duplicate values when sampling with replacement, i.e.,

$$d_{\text{TV}}(P^m, \tilde{Q}) \le 0 + \frac{1}{M} + \dots + \frac{m-1}{M} = \frac{m(m-1)}{2M},$$

where we are using the fact that, for the *i*th draw, the probability of drawing an index k_i that we have seen before is at most $\frac{i-1}{M}$.

We conclude this section with a proof of the hardness result of Theorem 4.13. This proof is essentially a technical calculation that leverages the result of Lemma 4.14 above; we include it for completeness.

Proof of Theorem 4.13

We begin by defining a probability

$$p(x,y) = \mathbb{P}\left(y \in \mathcal{C}(x)\right),$$

where \mathcal{C} is the prediction set in the theorem, i.e., \mathcal{C} is assumed to satisfy the relaxed test-conditional coverage condition (4.11). (Since this prediction set is fitted to the training data $((X_i, Y_i))_{i \in [n]}$, we are computing the probability with respect to a draw of this training dataset.) For each $t \in [0, 1]$, define also a new prediction set \mathcal{C}_t as

$$C_t(x) = \{ y \in \mathbb{R} : p(x, y) \ge t \},$$

or equivalently,

$$C_t(x) = \{ y \in \mathbb{R} : \mathbb{P}(y \in C(x)) \ge t \}.$$

Note that C_t is no longer data-dependent— $C_t(x)$ depends on the distribution of the random prediction set C(x), not the actual C(x) itself.

By construction, we can observe that the C_t 's are nested: for t < t' we have $C_t(x) \supseteq C_{t'}(x)$. For each t, we can define the coverage level of this (deterministic) interval C_t :

$$1 - \alpha_t = \mathbb{P}_P \left(Y \in \mathcal{C}_t(X) \right).$$

Now we are ready to calculate the expected length of $C(X_{n+1})$, in terms of these new values α_t . First, we need to rearrange some terms to represent the length of the prediction interval C(x) in terms of the probabilities p(x, y). For any fixed x, taking expectation with respect to the random prediction interval C (i.e., with respect to the random draw of the training data), we have

$$\begin{split} \mathbb{E}[\operatorname{Leb}(\mathcal{C}(x))] &= \mathbb{E}\left[\int_{\mathbb{R}} \mathbb{1}\left\{y \in \mathcal{C}(x)\right\} \, \, \mathrm{d}y\right] = \int_{\mathbb{R}} \mathbb{P}\left(y \in \mathcal{C}(x)\right) \, \, \mathrm{d}y = \int_{\mathbb{R}} p(x,y) \, \, \mathrm{d}y \\ &= \int_{\mathbb{R}} \int_{t=0}^{1} \mathbb{1}\left\{p(x,y) \geq t\right\} \, \, \mathrm{d}t \, \, \mathrm{d}y = \int_{\mathbb{R}} \int_{t=0}^{1} \mathbb{1}\left\{y \in \mathcal{C}_{t}(x)\right\} \, \, \mathrm{d}t \, \, \mathrm{d}y \\ &= \int_{t=0}^{1} \int_{\mathbb{R}} \mathbb{1}\left\{y \in \mathcal{C}_{t}(x)\right\} \, \, \mathrm{d}y \, \, \mathrm{d}t = \int_{t=0}^{1} \operatorname{Leb}(\mathcal{C}_{t}(x)) \, \, \mathrm{d}t, \end{split}$$

where in the second step and again in the next-to-last step, we swap order of integration by the Fubini-Tonelli theorem. Replacing the fixed x with a random draw X_{n+1} , and applying the Fubini-Tonelli theorem one more time along with the calculations above, we have

$$\begin{split} \mathbb{E}[\mathrm{Leb}(\mathcal{C}(X_{n+1}))] &= \mathbb{E}\left[\mathbb{E}[\mathrm{Leb}(\mathcal{C}(X_{n+1})) \mid X_{n+1}]\right] \\ &= \mathbb{E}\left[\int_{t=0}^{1} \mathrm{Leb}(\mathcal{C}_{t}(X_{n+1})) \; \mathrm{d}t\right] = \int_{t=0}^{1} \mathbb{E}\left[\mathrm{Leb}(\mathcal{C}_{t}(X_{n+1}))\right] \; \mathrm{d}t. \end{split}$$

Finally, since C_t attains coverage at level $1 - \alpha_t$ with respect to the distribution P (by definition of α_t), we must have $\mathbb{E}\left[\text{Leb}(C_t(X_{n+1}))\right] \geq L_P(1 - \alpha_t)$, and so we can give a lower bound on our calculation:

$$\mathbb{E}[\operatorname{Leb}(\mathcal{C}(X_{n+1}))] \ge \int_{t=0}^{1} L_P(1-\alpha_t) \, dt.$$

Moreover, for any fixed $c \in [0,1]$, we can further lower bound this as follows:

$$\mathbb{E}[\operatorname{Leb}(\mathcal{C}(X_{n+1}))] \ge \int_{t=0}^{\frac{1-\alpha}{1-c\alpha}} L_P(1-\alpha_t) \, dt = \frac{1-\alpha}{1-c\alpha} \cdot \frac{1}{\frac{1-\alpha}{1-c\alpha}} \int_{t=0}^{\frac{1-\alpha}{1-c\alpha}} L_P(1-\alpha_t) \, dt$$

$$\ge \frac{1-\alpha}{1-c\alpha} L_P\left(1-\frac{1}{\frac{1-\alpha}{1-c\alpha}} \int_{t=0}^{\frac{1-\alpha}{1-c\alpha}} \alpha_t \, dt\right),$$

where the last step holds since L_P is a convex function by Fact 4.12.

To complete the proof, we can see that only one question remains: we need to verify that, for some carefully chosen value of c, it holds that

$$L_P\left(1 - \frac{1}{\frac{1-\alpha}{1-c\alpha}} \int_{t=0}^{\frac{1-\alpha}{1-c\alpha}} \alpha_t \, \mathrm{d}t\right) \ge L_P(1 - c\alpha\delta).$$

Since $s \mapsto L_P(1-s)$ is nonincreasing (by Fact 4.12), we can simply check that

$$\frac{1}{\frac{1-\alpha}{1-c\alpha}} \int_{t=0}^{\frac{1-\alpha}{1-c\alpha}} \alpha_t \, \mathrm{d}t \le c\alpha\delta. \tag{4.17}$$

For this, we will need to apply the key lemma, Lemma 4.14. First, define p_* as the δ -quantile of the distribution of p(X,Y), when $(X,Y) \sim P$. By definition of the quantile, we must therefore have $\mathbb{P}_P(p(X,Y) < p_*) \le \delta \le \mathbb{P}_P(p(X,Y) \le p_*)$. Since P_X is assumed to be nonatomic, we can therefore find a set $B \subseteq \mathcal{X} \times \mathbb{R}$ such that

$$\{(x,y): p(x,y) < p_*\} \subseteq B \subseteq \{(x,y): p(x,y) \le p_*\},\tag{4.18}$$

and $P(B) = \delta$. By Lemma 4.14, then, it must hold that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid (X_{n+1}, Y_{n+1}) \in B) \ge 1 - \alpha,$$

or equivalently,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B) \ge (1 - \alpha)\delta.$$

Now we apply the tower law:

$$\begin{split} (1-\alpha)\delta & \leq \mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}), (X_{n+1}, Y_{n+1}) \in B\right) \\ & = \mathbb{E}[p(X_{n+1}, Y_{n+1}) \cdot \mathbb{1}\left\{(X_{n+1}, Y_{n+1}) \in B\right\}] \\ & = p_*\mathbb{P}\left((X_{n+1}, Y_{n+1}) \in B\right) - \mathbb{E}[(p_* - p(X_{n+1}, Y_{n+1})) \cdot \mathbb{1}\left\{(X_{n+1}, Y_{n+1}) \in B\right\}] \\ & = p_*\delta - \mathbb{E}[(p_* - p(X_{n+1}, Y_{n+1})) \cdot \mathbb{1}\left\{p(X_{n+1}, Y_{n+1}) < p_*\right\}] \text{ by } (4.18) \\ & = p_*\delta - \int_{t=0}^{p_*} \mathbb{P}\left(p(X_{n+1}, Y_{n+1}) < t\right) \, \mathrm{d}t \\ & = p_*\delta - \int_{t=0}^{p_*} \mathbb{P}\left(Y_{n+1} \not\in \mathcal{C}_t(X_{n+1})\right) \, \mathrm{d}t = p_*\delta - \int_{t=0}^{p_*} \alpha_t \, \mathrm{d}t. \end{split}$$

In particular, this implies that $p_* \ge 1 - \alpha$. We then choose c to satisfy $\frac{1-\alpha}{1-c\alpha} = p_*$, and so we have shown that

$$\frac{1}{\frac{1-\alpha}{1-c\alpha}}\int_{t=0}^{\frac{1-\alpha}{1-c\alpha}}\alpha_t\;\mathrm{d}t = \frac{1}{\frac{1-\alpha}{1-c\alpha}}\int_{t=0}^{p_*}\alpha_t\;\mathrm{d}t \leq \frac{1}{\frac{1-\alpha}{1-c\alpha}}\cdot\delta(p_*-(1-\alpha)) = c\alpha\delta.$$

This verifies the bound (4.17), and thus completes the proof of the theorem.

4.7.2 Preview: relaxation via localization

The hardness result established in Theorem 4.13 tells us that the 'relaxed' conditional coverage goal (4.11) is in fact not sufficiently relaxed: to be able to achieve a distribution-free guarantee without overly wide interval, we need to relax further to an even more approximate notion of conditional coverage.

One natural way to do this is to require that coverage holds conditionally on $X \in \mathcal{X}_0$ for only certain special subsets $\mathcal{X}_0 \subseteq \mathcal{X}$, instead of for all \mathcal{X}_0 with sufficient probability δ as in (4.11). For instance, we might consider only sets \mathcal{X}_0 that are given by a ball, i.e., requiring

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid ||X_{n+1} - x_*|| \le r_*) \ge 1 - \alpha \text{ for all } P \text{ and all } x_* \in \mathcal{X}, r_* \ge 0 \text{ with } P_X(||X - x_*|| \le r_*) \ge \delta$$

for some norm $\|\cdot\|$ on \mathcal{X} . We can think of this as roughly requiring that coverage holds 'conditional on the event that $X_{n+1} \approx x_*$ '. A related approach is to require that coverage holds relative to a reweighted distribution over \mathcal{X} , e.g., using a kernel centered at some x_* . We will study these types of goals in more detail in Chapter 7, via weighted and localized versions of conformal prediction.

Bibliographic notes

Vovk [2012] develops a framework for defining conditional notions of coverage, examining training-conditional, test-conditional (referred to as 'object-conditional' in that work), and label-conditional coverage. The strong training-conditional guarantees for split conformal prediction (Theorem 4.1, under an assumption of i.i.d. data) is proved in a slightly different form in Vovk [2012]; the subgaussian tail bound on the Beta distribution is proved in Elder [2016], Marchal and Arbel [2017]. This type of high-probability control is related to the classical notion of tolerance regions (see, e.g., [Wald, 1943]). More recent PAC-type analyses of conformal methods include the work of Park et al. [2020, 2021]. Bian and Barber [2022] prove the impossibility of establishing training-conditional coverage for full conformal (Theorem 4.3 is a slightly modified version of their result). The asymptotic distribution of the training-set-conditional false coverage rate in transductive conformal prediction (i.e., full conformal prediction with multiple test data points) is studied in Gazin [2024].

Turning to test-conditional coverage, the impossibility of test-conditional coverage in the nonatomic setting is established by Lei and Wasserman [2014], Vovk [2012]; Theorem 4.4 and Corollary 4.5 give a version of these results. Duchi et al. [2024] extend these results to a setting where the distribution of X is nearly nonatomic (in the sense that P_X can only place extremely small mass on any point). The relaxed version of test-conditional coverage, and the corresponding hardness result, Theorem 4.13, appear in Barber et al. [2021a]. The key ingredient in the proof of that theorem is Lemma 4.14; we give a proof with a simplified construction relative to the original proof in Barber et al. [2021a]. Multiple recent works have proposed methodologies to consider more practical relaxations of test-conditional coverage, for detecting regions of $\mathcal X$ where local coverage is too low (or too high) and adjusting the constructed predictive interval to avoid such issues, e.g., Ali et al. [2022]. The construction of the group-conditional conformal prediction set can also be motivated as a quantile regression on the set of scores, as developed in the work of Jung et al. [2022]. Jung et al. [2022], Gibbs et al. [2023] extend the group-conditional approach to handle overlapping groups, and other relaxations of conditional coverage.

Löfström et al. [2015] study label-conditional coverage, which we discuss in Section 4.5. Ding et al. [2024] extend label-conditional coverage to settings with a large number of classes, with an approach based on clustering. Mondrian prediction (Section 4.6) and its accompanying guarantee (Theorem 4.10) are developed in Vovk et al. [2003a, 2005], and the results for bin-wise test-conditional coverage (Theorem 4.6) and label-conditional coverage (Theorem 4.9) can be viewed as special cases.

Finally, we add a few technical notes. The first step in the proof of Theorem 4.3, where the map $a: \mathcal{X} \to \{0, \dots, n-1\}$ is defined, is due to Dudley et al. [2011, Proposition A.1]; the same result also enables the construction of the nested sets $B_1 \supseteq B_2 \supseteq \dots$ in the proof of Lemma 4.14. Furthermore, the bound on total variation distance between sampling with replacement and sampling without replacement appearing in the proof of Lemma 4.14 can be found in Stam [1978].

Chapter 5

A Model-Based Perspective on Conformal Prediction

The preceding chapters of this book give distribution-free coverage guarantees for conformal prediction. This makes conformal prediction an attractive tool for statistical inference in settings where we cannot rely on prior knowledge of our data's distribution—but if we do assume a certain model for our data, would using conformal prediction lead to worse performance than using a model-based method? We will see that this is not a concern: since conformal prediction offers the flexibility of choosing any score function, this means that we can incorporate any distributional assumptions or modeling tools into s. Thus, conformal prediction can inherit the strong performance of a model-based method. More generally, conformal prediction should be understood as a tool that we use in conjunction with a model, rather than as an alternative to a model.

At a high level, then, the practical appeal of conformal prediction is that we can augment any given model with additional distribution-free guarantees—if our model is correct, the resulting performance will be approximately the same as if we had not used conformal, often including strong guarantees such as conditional coverage; if instead our model assumptions are wrong, conformal still ensures marginal coverage. In summary:

```
stronger modeling assumptions hold \implies stronger guarantees for conformal; modeling assumptions fail but data are exchangeable \implies marginal coverage guarantee for conformal.
```

In other words, a well-designed conformal procedure has the potential to achieve strong guarantees far beyond marginal coverage—such as optimal set size and conditional coverage—while retaining marginal coverage in the worst case.

In this chapter, in contrast to the rest of the book, we will focus on the non-distribution-free properties of conformal. We will study a range of settings ('case studies') where, given a correctly specified model that can be consistently estimated with the observed data, running conformal with a wisely chosen score function s will inherit the same optimality properties as the model-based oracle method. In particular, for each setting, these analyses will reveal (approximately) optimal choices for the conformal score function s, which (as we saw in Chapter 1) is the core ingredient determining the shape of the resulting prediction sets. In practice, designing good conformal scores—ones with good conditional coverage, small size, or other favorable statistical properties—is the single most important practical choice when running conformal prediction; the theoretical results of this chapter offer insight into how this choice interacts with our modeling assumptions to shape the outcome of conformal prediction.

5.1 Oracle approximations for optimality guarantees

We begin with a general design principle: to build a good conformal score, we should first define an 'oracle' model that is designed to target the desired aims, and then design a conformal score to approximate this oracle. We will then make this approximation precise with asymptotic results.

There are many possible goals that we might aim for, depending on the particular setting. For example, we might be interested in optimizing the length of the prediction interval, or, in achieving (an approximation of) test-conditional coverage. These aims, and several others that we will consider in this chapter, are quite different from each other, but can be studied in a unified way.

We will examine a number of different 'case studies', each in a different setting with various aims, but each following the same high-level framework. First, we will define the **aim** for the particular setting (e.g., minimize prediction interval length). We then identify the **oracle** prediction interval construction that would optimize this aim, if we had access to knowledge of the data distribution P. With this in place, our next step is **choosing the score** in a way that that attempts to mimic this oracle. We then state a **model assumption** (for instance, consistent estimation of some true regression function), which enables an **asymptotic optimality** guarantee establishing that we are able to learn an approximation to the oracle interval via split conformal, and thus achieve the stated aim in an asymptotic sense.

The key tool for our convergence guarantees will be the following result, which we state informally here and develop more formally later on in the chapter:

Theorem 5.1: Informal version of Theorems 5.6 and 5.8

Let the data points be drawn i.i.d. from P. Define the oracle set

$$C^*(x) = \{ y : s^*(x, y) \le q^* \},\,$$

where s^* is an oracle score function and q^* is the $(1 - \alpha)$ -quantile of the distribution of $s^*(X, Y)$ under $(X, Y) \sim P$. Let $\mathcal{C}_n(x)$ be the usual split conformal set,

$$C_n(x) = \{ y : s_n(x, y) \le \hat{q}_n \},\,$$

where s_n is the pretrained conformal score function. Then, under appropriate regularity conditions, if $s_n \to s^*$ then

$$\hat{q}_n \to q^*$$
, and $\mathcal{C}_n \to \mathcal{C}^*$.

In words, this result says that if our base model is consistent for the true model (in that s_n converges to an oracle score s^*), then conformal prediction will converge to the oracle prediction set given by \mathcal{C}^* . Of course, we will need to formalize all these notions of convergence—what does it mean for the score functions s_n to converge to s^* , and what does it mean for the sets \mathcal{C}_n to converge to the oracle set \mathcal{C}^* ? With the appropriate definitions and formalities in place, we will see that these convergence guarantees allow us to show that the split conformal interval \mathcal{C}_n asymptotically reaches the stated aim of the oracle score (e.g., minimizing the interval length).

In Section 5.2, we will consider several case studies in a classification setting, examining the aims, oracles, assumptions, and convergence guarantees for each one. Section 5.3 will then do the same for case studies in a regression setting. The underlying technical tools—Theorems 5.6 and 5.8, which are summarized in the informal statement, Theorem 5.1, above—will then be developed in Section 5.4.

Before proceeding, we pause to comment on a subtle point regarding how we should interpret these convergence results. In each specific case study that we will develop below, we will assume that the score function s^* is capturing the true model for the data—that is, s^* is truly an 'oracle' and therefore leads to a prediction set \mathcal{C}^* that is optimally designed for the distribution P of the data. However, the general theoretical framework of Theorem 5.1 (and its formal versions, Theorems 5.6 and 5.8) can be interpreted more broadly: the so-called oracle score function s^* can technically be any fixed function, and does not necessarily need to reflect the true model for the data. For instance, if the true model for $Y \mid X$ is not actually linear, but we are using linear quantile regression to construct the CQR score s_n , then we might expect the split conformal prediction set to converge to the best possible linear prediction set—that is, the best possible interval $\mathcal{C}^*(x)$ whose endpoints are linear functions of x.

Defining the asymptotic regime. Since we will be developing asymptotic guarantees for the split conformal intervals C_n , formally we are considering a *sequence* of problems, indexed by $n \geq 1$, while the

underlying distribution P of the data remains fixed. At each value of n, we write s_n to denote the pretrained conformal score function that will be used in the construction of the split conformal interval, and then the threshold \hat{q}_n will be determined by a calibration set of size n. For $C_n(x) = \{y : s_n(y) \leq \hat{q}_n\}$ to converge to some oracle, then, we will need both s_n and \hat{q}_n to converge.

Recall from Section 3.4 that when we run split conformal in practice, the available data is partitioned into two sets: a 'pretraining set' $\mathcal{D}_{\text{pre},n}$ used for training the score function s_n , and a calibration set \mathcal{D}_n (of size n) used to then determine the threshold \hat{q}_n . (Here we introduce a subscript n into each of these objects in order to emphasize that we are now considering a sequence of problems indexed by n.) In order to achieve asymptotic guarantees, then, we would need the sample size of $\mathcal{D}_{\text{pre},n}$ to grow with n in order to ensure convergence of s_n . For example, if we choose to use half the data for training the score function and the other half for calibration, then to obtain a calibration set of size n, we would need a total of 2n data points (so that the pretraining set $\mathcal{D}_{\text{pre},n}$ and the calibration set \mathcal{D}_n each contain n data points).

In the case studies below, we will not make any explicit assumptions about the sample size of the pretraining set $\mathcal{D}_{\text{pre},n}$. Instead, we will place assumptions on the convergence of s_n , which implicitly means that the sample size of $\mathcal{D}_{\text{pre},n}$ must grow as $n \to \infty$ in order to allow for this convergence to occur. (See Section 5.4 for a more formal definition of this asymptotic framework.)

5.2 Case studies for classification

This section considers the classification setting, where the response Y is categorical and takes values in a finite set \mathcal{Y} . For each of our two case studies, we will define π^* as the true label probability function,

$$\pi^*(y \mid x) = \mathbb{P}_{(X,Y) \sim P}(Y = y \mid X = x),$$

and $\hat{\pi}_n$ will denote a pretrained estimate of π^* (that is, in the language of Section 3.4, $\hat{\pi}_n$ is an estimate of π^* that is fitted using the pretraining set $\mathcal{D}_{\text{pre},n}$).

5.2.1 Case study: classification with minimal set size

Aim. In this first case study, our goal is to provide the sets with the smallest average size among those that have $1 - \alpha$ marginal coverage—we would like to construct C to solve the following optimization problem:

minimize
$$\mathbb{E}_{X \sim P_X}[|\mathcal{C}(X)|]$$

subject to $\mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}(X)) \ge 1 - \alpha$.

Here in the categorical setting, $|\mathcal{C}(X)|$ refers to the cardinality of $\mathcal{C}(X)$, which is a subset of the finite set of labels \mathcal{Y} .

Oracle. Suppose for simplicity that the conditional probability $\pi^*(Y \mid X)$, which is a random variable, has a continuous distribution (under $(X,Y) \sim P$). It is straightforward to prove that the solution to the above optimization problem then has the form $\mathcal{C}^*(x) = \{y : \pi^*(y \mid x) \geq t^*\}$, for some appropriate value t^* . Rewriting this into score function notation, we can define the oracle score

$$s^*(x,y) = -\pi^*(y \mid x), \tag{5.1}$$

where we take the negative of the conditional label probability π^* because our prediction set should include labels y with high probability (which therefore should correspond to low values of the score). We can then construct the oracle prediction interval,

$$C^*(x) = \{ y : s^*(x, y) \le q^* \},$$

where

$$q^* = \inf \left\{ q \in \mathbb{R} : \mathbb{P}_{(X,Y) \sim P}(s^*(X,Y) \le q) \ge 1 - \alpha \right\}.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Choosing the score. To approximate the oracle sets, we can instead use plug-in estimate $\hat{\pi}_n$ of the probability π^* . This leads to the score function

$$s_n(x,y) = -\hat{\pi}_n(y \mid x),$$

which is the high-probability score defined previously in Chapter 1. This results in the prediction set

$$C_n(x) = \{ y \in \mathcal{Y} : s_n(x, y) \le \hat{q}_n \} = \{ y \in \mathcal{Y} : \hat{\pi}_n(y \mid x) \ge -\hat{q}_n \},$$

i.e., all possible labels $y \in \mathcal{Y}$ whose estimated conditional probability is sufficiently large.

Model assumption and asymptotic optimality. We will assume that the estimated conditional distribution of $Y \mid X$, given by $\hat{\pi}_n$ as defined above, is consistent as an estimator of the true π^* . Specifically, at any $x \in \mathcal{X}$, consider the quantity

$$d_{\text{TV}}(\pi^*(\cdot \mid x), \hat{\pi}_n(\cdot \mid x)) = \frac{1}{2} \sum_{y \in \mathcal{Y}} |\pi^*(y \mid x) - \hat{\pi}_n(y \mid x)|,$$

which is the total variation distance between the true and estimated conditional distributions of $Y \mid X = x$. We will assume that this estimation error is small on average over the test feature X—that is, we will measure consistency via the quantity

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(\pi^*(\cdot \mid X), \hat{\pi}_n(\cdot \mid X) \right) \right] = \mathbb{E}_{X \sim P_X} \left[\frac{1}{2} \sum_{y \in \mathcal{Y}} \left| \pi^*(y \mid X) - \hat{\pi}_n(y \mid X) \right| \right].$$

Informally, assuming that

$$\mathbb{E}_{X \sim P_X} \left[\mathrm{d}_{\mathrm{TV}} \big(\pi^* (\cdot \mid X), \hat{\pi}_n (\cdot \mid X) \big) \right] \to 0$$

can be thought of as effectively claiming that, for large n, the conditional density of $Y \mid X = x$ is estimated accurately at most values x.

For this consistency condition, and hereafter throughout the chapter, the notation $\mathbb{E}_{X \sim P_X}$ and $\mathbb{P}_{X \sim P_X}$ (or, $\mathbb{E}_{(X,Y)\sim P}$ and $\mathbb{P}_{(X,Y)\sim P}$) denotes that we are taking expected value or probability *only* with respect to the randomness of a random test point X sampled according to P_X (or $(X,Y)\sim P$). In particular, we are conditioning on the pretraining and calibration datasets—that is, $\hat{\pi}_n$, \hat{q}_n , and other quantities that are constructed when running split conformal prediction, are all being treated as fixed.

We now arrive at our formal result. Under the above model assumption, the split conformal prediction set C_n constructed with the score s_n above is asymptotically a solution to the optimization problem (5.1).

Proposition 5.2

Assume that the conditional probability $\pi^*(Y \mid X)$ is continuously distributed under $(X, Y) \sim P$. Then the following claim holds almost surely: if

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(\pi^* (\cdot \mid X), \hat{\pi}_n (\cdot \mid X) \right) \right] \to 0,$$

then

$$\limsup_{n\to\infty} \mathbb{E}_{X\sim P_X}[|\mathcal{C}_n(X)|] \leq \mathbb{E}_{X\sim P_X}[|\mathcal{C}^*(X)|] \quad \text{and} \quad \liminf_{n\to\infty} \mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}_n(X)) \geq 1-\alpha,$$

i.e., C_n is asymptotically optimal for the aim (5.1).

In words, conformal prediction with the high-probability score yields optimal set sizes as the fitted model probabilities $\hat{\pi}_n$ approach the true model π^* . This suggests that the high-probability score will generally be a good choice if one is seeking small average set size. Note, however, that the aim of having small average set length is often in tension with having good conditional coverage. We turn to this next.

5.2.2 Case study: classification with minimal set size and conditional coverage

Aim. Next, we provide sets that have the smallest size among those that have $1 - \alpha$ conditional coverage. Note that optimizing set size while only enforcing marginal coverage can result in poor behavior, as we saw in Chapter 4 (see Figure 4.1). Consequently, it is often better to target conditional coverage, as we do next. The corresponding optimization problem is as follows:

minimize
$$\mathbb{E}_{X \sim P_X}[|\mathcal{C}(X)|]$$

subject to $\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}(X) \mid X) \ge 1 - \alpha$ almost surely. (5.2)

The sets C(X) that solve the above optimization problem also have the smallest size conditionally on X, almost surely. In other words, for almost every $x \in \mathcal{X}$, there cannot be no smaller subset of \mathcal{Y} that would still maintain $1 - \alpha$ coverage, since this would contradict the optimality of our set.

Oracle. A short calculation will show that the following set is the solution to our aim:

$$C^*(x) = \{ y : \pi^*(y \mid x) \ge t^*(x) \}, \tag{5.3}$$

where, at each $x \in \mathcal{X}$, $t^*(x)$ is chosen so that $\mathbb{P}_{Y \sim P_{Y|X}}(\pi^*(Y \mid X) \geq t^*(x) \mid X = x) \geq 1 - \alpha$; see Figure 5.1 for an illustration of this set. The reason for the optimality of this score is relatively straightforward to see: for any x, the oracle prediction set $\mathcal{C}^*(x)$ includes only the most likely classes until the total mass reaches (at least) $1 - \alpha$. Any other rule would have to include at least as many classes to reach the $1 - \alpha$ threshold.

However, the oracle prediction set given in (5.3) cannot be immediately converted to a construction of the form $\{y: s^*(x,y) \leq q^*\}$, as in Theorem 5.1—this is because the threshold $t^*(x)$ appearing in (5.3) is dependent on x, rather than a common value that is shared over all $x \in \mathcal{X}$. Thus, we will need to reformulate this set. Define

$$s^*(x,y) = \sum_{y' \in \mathcal{V}} \pi^*(y' \mid x) \cdot \mathbb{1} \left\{ \pi^*(y' \mid x) > \pi^*(y \mid x) \right\},\,$$

which is the (conditional) probability captured by the set $\{y' : \pi^*(y' \mid x) > \pi^*(y \mid x)\}$, i.e., all labels that are strictly more likely than the label y (given features x). With this reformulation, we can verify that the set defined in (5.3) can equivalently be written as

$$C^*(x) = \{y : s^*(x, y) < 1 - \alpha\}.$$

If we again assume a continuity condition for simplicity—namely, that $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=1-\alpha)=0$ —then the set

$$C^*(x) = \{ y : s^*(x, y) \le 1 - \alpha \}$$

is also a solution to (5.2), since it differs from the first definition only on an event of measure zero. In particular, this means that the oracle prediction set can be defined by a criterion of the form $s^*(x,y) \leq q^*$ (where $q^* = 1 - \alpha$), which thus fits into the notation of Theorem 5.1.

Choosing the score. We again use a plug-in approach to approximate the oracle score distribution:

$$s_n(x,y) = \sum_{y' \in \mathcal{Y}} \hat{\pi}_n(y' \mid x) \cdot \mathbb{1} \{ \hat{\pi}_n(y' \mid x) > \hat{\pi}_n(y \mid x) \}.$$

To contrast this with the high-probability score of Section 5.2.1, we will refer to this as the *cumulative-probability score*. (This construction is also sometimes called an *adaptive prediction set* score.)

Model assumption and asymptotic optimality. We will require the same convergence condition on $\hat{\pi}_n$ as in the previous case study (in Section 5.2.1): we will again assume that

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(\pi^* (\cdot \mid X), \hat{\pi}_n (\cdot \mid X) \right) \right] \to 0.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Figure 5.1: An illustration of the oracle prediction set for classification with conditional coverage. This figure illustrates the oracle prediction set $C^*(x)$ constructed in (5.3), in yellow. The prediction sets all contain a $1 - \alpha$ proportion of the probability mass.

We now want to show that, under the above model assumption, the split conformal prediction set C_n constructed with s_n above is asymptotically a solution to the optimization problem (5.2). To this end, we first need to formalize what we mean by an 'asymptotic' solution—what does it mean to achieve conditional coverage in an asymptotic sense? There are multiple valid answers to this question; here we will choose a particular one. Recall that (exact) conditional coverage means that

$$\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}_n(X) \mid X) \ge 1 - \alpha$$

holds almost surely, with respect to $X \sim P_X$. We will take the convention that achieving conditional coverage in an approximate sense means that this inequality holds, at least approximately, for most X—i.e., with probability ≈ 1 with respect to $X \sim P_X$.

Proposition 5.3

Assume that the oracle score $s^*(X,Y)$ satisfies the following condition:

$$\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=0) < 1-\alpha, \text{ and } \mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=t) = 0 \text{ for all } t > 0.$$
 (5.4)

Assume also that, for any $y \neq y' \in \mathcal{Y}$, we have $\pi^*(y \mid X) \neq \pi^*(y' \mid X)$ almost surely under $X \sim P_X$. Then the following claim holds almost surely: if

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(\pi^* (\cdot \mid X), \hat{\pi}_n (\cdot \mid X) \right) \right] \to 0$$

then

$$\lim \sup_{n \to \infty} \mathbb{E}_{X \sim P_X}[|\mathcal{C}_n(X)|] \le \mathbb{E}_{X \sim P_X}[|\mathcal{C}^*(X)|]$$

and

$$\lim_{n \to \infty} \mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_Y \mid X} (Y \in \mathcal{C}_n(X) \mid X) \ge 1 - \alpha - \epsilon \right) = 1 \text{ for all } \epsilon > 0,$$

i.e., C_n is asymptotically optimal for the aim (5.2).

In words, conformal prediction with the cumulative-probability score gives the smallest sets with conditional coverage as the fitted model probabilities $\hat{\pi}_n$ approach the true probabilities π . This suggests the cumulative-probability score is generally a good choice when one is seeking to approximately achieve conditional coverage.

5.3 Case studies for regression

This section considers the regression setting, where the response Y is real-valued, i.e., $\mathcal{Y} = \mathbb{R}$. We will assume that the conditional distribution of $Y \mid X = x$, under the joint distribution $(X,Y) \sim P$, has a conditional density

$$f^*(y \mid x)$$

with respect to Lebesgue measure. We assume access to a pretrained estimate of this conditional density, given by $\hat{f}_n(y \mid x)$. We also make use of the conditional quantile function, $\tau^*(x;\beta)$ (that is, the β -quantile of the conditional distribution of Y given X = x), and its corresponding estimator, $\hat{\tau}_n(x;\beta)$ (which can be derived as a function of the estimated conditional density, $\hat{f}_n(\cdot \mid x)$).

5.3.1 Case study: regression with minimal set size

Aim. Our next goal is to provide the sets with the smallest average size among those that have $1 - \alpha$ marginal coverage in the regression setting. This goal is entirely analogous to that in Section 5.2.1, and the score solves the same optimization problem,

minimize
$$\mathbb{E}_{X \sim P_X}[\text{Leb}(\mathcal{C}(X))]$$

subject to $\mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}(X)) \ge 1 - \alpha$, (5.5)

the only difference being that we now consider the Lebesgue measure $\text{Leb}(\mathcal{C}(X))$ of the prediction set, rather than its cardinality $|\mathcal{C}(X)|$.

Oracle. By a standard argument reminiscent of the Neyman–Pearson lemma, the set construction with the smallest average size has the form $C^*(x) = \{y : f^*(y \mid x) \ge t^*\}$, where t^* is chosen as the largest possible value that still yields coverage at level $\ge 1 - \alpha$:

$$t^* = \sup\{t \in \mathbb{R} : \mathbb{P}_{(X|Y) \sim P}(f^*(Y \mid X) \ge t) \ge 1 - \alpha\}.$$

As before, this can equivalently be written as the set $C^*(x) = \{y : s^*(x,y) \le q^*\}$, where $s^*(x,y) = -f^*(y \mid x)$ and $q^* = -t^*$. All these definitions are entirely analogous to those used in Section 5.2.1, only now we are working in the context of regression.

Choosing the score. To approximate the oracle sets, we use an estimate of the density \hat{f} in place of the unknown f^* :

$$s_n(x,y) = -\hat{f}_n(y \mid x).$$

We will refer to this as the *high-density score*—it is exactly analogous to the high-probability score of Section 5.2.1 but with conditional density in place of conditional probability. This leads to a prediction set of the form

$$C_n(x) = \{ y \in \mathbb{R} : s_n(x, y) \le \hat{q}_n \} = \{ y \in \mathbb{R} : \hat{f}_n(y \mid x) \ge -\hat{q}_n \},$$

i.e., all values y with a sufficiently high estimated conditional density.

Model assumption and asymptotic optimality. We will assume that the estimated conditional density of $Y \mid X$, given by \hat{f}_n as defined above, is consistent as an estimator of the true f^* with respect to TV distance. For any $x \in \mathcal{X}$, we can calculate the TV distance between the true and estimated conditional distributions of $Y \mid X = x$ as

$$d_{\mathrm{TV}}\big(f^*(\cdot\mid x), \hat{f}_n(\cdot\mid x)\big) = \frac{1}{2} \int_{y\in\mathbb{R}} \big|f^*(y\mid x) - \hat{f}_n(y\mid x)\big|.$$

We will measure TV distance on average over X:

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(f^*(\cdot \mid X), \hat{f}_n(\cdot \mid X) \right) \right] = \mathbb{E}_{X \sim P_X} \left[\frac{1}{2} \int_{y \in \mathcal{Y}} \left| f^*(y \mid X) - \hat{f}_n(y \mid X) \right| \right].$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

The core assumption will be that the estimation error vanishes in TV distance,

$$\mathbb{E}_{X \sim P_X} \left[\mathrm{d}_{\mathrm{TV}} \big(f^*(\cdot \mid X), \hat{f}_n(\cdot \mid X) \big) \right] \to 0,$$

which means that for large n, the conditional density of $Y \mid X = x$ is estimated accurately at almost all x.

We now show that, under the above model assumption, the split conformal prediction set C_n constructed with s_n above is asymptotically a solution to the optimization problem (5.5).

Proposition 5.4

Assume that the conditional density $f^*(Y \mid X)$ has a continuous distribution under $(X,Y) \sim P$. Furthermore, assume that $\sup_{(x,y)} f^*(y \mid x) < \infty$. Then the following claim holds almost surely: if

$$\mathbb{E}_{X \sim P_X} \left[d_{\text{TV}} \left(f^*(\cdot \mid X), \hat{f}_n(\cdot \mid X) \right) \right] \to 0$$

then

$$\limsup_{n\to\infty}\mathbb{E}_{X\sim P_X}[\operatorname{Leb}(\mathcal{C}_n(X))]\leq \mathbb{E}_{X\sim P_X}[\operatorname{Leb}(\mathcal{C}^*(X))] \ \text{ and } \ \liminf_{n\to\infty}\mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}_n(X))\geq 1-\alpha,$$

i.e., C_n is asymptotically optimal for the aim (5.5).

This result suggests that the high-density score is a good choice when one wants prediction intervals that have the smallest average length. However, as mentioned previously in Section 5.2.1, aiming for small average length may conflict with achieving conditional coverage. We consider the question of conditional coverage next.

5.3.2 Case study: regression with minimal-length equal-tailed intervals

Aim. Our next goal is to provide the prediction intervals with the smallest average size among those with $1-\alpha$ equal-tailed conditional coverage. Equal-tailed conditional coverage means that, conditionally on X=x for all x, the true value of Y will lie below the lower endpoint of the interval with probability $\alpha/2$, and similarly, the true value of Y will lie above the upper endpoint of the interval with probability $\alpha/2$. Thus, errors happen equally frequently in the upper tail and lower tail. Setting this up as an optimization problem, we want to solve

minimize
$$\mathbb{E}_{X \sim P_X}[\text{Leb}(\mathcal{C}(X))]$$

subject to $\mathbb{P}_{Y \sim P_{Y|X}}(Y > \sup \mathcal{C}(X) \mid X) \leq \alpha/2,$
 $\mathbb{P}_{Y \sim P_{Y|X}}(Y < \inf \mathcal{C}(X) \mid X) \leq \alpha/2,$
 $\mathcal{C}(x)$ is an interval for all x . (5.6)

Oracle. With access to the true conditional quantile function, we can simply take the oracle set to be

$$C^*(x) = [\tau^*(x; \alpha/2), \tau^*(x; 1 - \alpha/2)],$$

where we recall that $\tau^*(x;\beta)$ is the β -quantile of the conditional distribution of $Y \mid X = x$. Since this conditional distribution is continuous, this prediction interval, whose endpoints are given by the $(\alpha/2)$ - and $(1-\alpha/2)$ -quantiles of $Y \mid X = x$, solves the optimization problem in (5.6).

Choosing the score. We now want to define a split conformal prediction set C_n that is asymptotically a solution to the optimization problem (5.5). For this purpose, we will construct C_n using the score function

$$s_n(x,y) = \max\{\hat{\tau}_n(x;\alpha/2) - y, y - \hat{\tau}_n(x;1-\alpha/2)\}. \tag{5.7}$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

As in Chapter 1, since this is the score used in the conformalized quantile regression (CQR) method, we refer to this as the CQR score. This score leads to a prediction interval of the form

$$C_n(x) = \left[\hat{\tau}_n(x; \alpha/2) - \hat{q}_n, \hat{\tau}_n(x; 1 - \alpha/2) + \hat{q}_n\right],$$

where we take the convention that [a, b] denotes the empty set if a > b, to handle degenerate cases.

To see how this corresponds to the oracle interval, consider an oracle score,

$$s^*(x,y) = \max\{\tau^*(x;\alpha/2) - y, y - \tau^*(x;1-\alpha/2)\}. \tag{5.8}$$

For a data point (x, y), this score will be positive if y lies outside the oracle interval $C^*(x)$, negative if y lies strictly inside the interval, or zero if y lies on one of the endpoints. Then, by construction, we have $C^*(x) = \{y \in \mathbb{R} : s^*(x, y) \leq q^*\}$ when we choose $q^* = 0$.

Model assumption and asymptotic optimality. We will assume that the estimated $\alpha/2$ and $1 - \alpha/2$ conditional quantiles of $Y \mid X$, given by $\hat{\tau}_n(x; \alpha/2)$ and $\hat{\tau}_n(x; 1 - \alpha/2)$ respectively, converge to their oracle values:

$$\mathbb{E}_{X \sim P_X}[|\hat{\tau}(X; \alpha/2) - \tau^*(X; \alpha/2)|] \to 0 \text{ and } \mathbb{E}_{X \sim P_X}[|\hat{\tau}(X; 1 - \alpha/2) - \tau^*(X; 1 - \alpha/2)|] \to 0.$$

This means that, for large n, the $\alpha/2$ - and $1 - \alpha/2$ -quantiles converge on average over X. In this case, the equal-tailed CQR intervals converge to the oracle interval, as stated next.

Proposition 5.5

Assume that the conditional density f^* satisfies $f^*(y \mid x) > 0$ for all (x, y), and that

$$\sup_{x \in \mathcal{X}} \left(\tau^*(x; 1 - \alpha/2) - \tau^*(x; \alpha/2) \right) < \infty.$$

Then the following claim holds almost surely: if

$$\mathbb{E}_{X \sim P_{\mathbf{Y}}}[|\hat{\tau}(X; \alpha/2) - \tau^*(X; \alpha/2)|] \to 0 \text{ and } \mathbb{E}_{X \sim P_{\mathbf{Y}}}[|\hat{\tau}(X; 1 - \alpha/2) - \tau^*(X; 1 - \alpha/2)|] \to 0,$$

then

$$\limsup_{n \to \infty} \mathbb{E}_{X \sim P_X}[\text{Leb}(\mathcal{C}_n(X))] \le \mathbb{E}_{X \sim P_X}[\text{Leb}(\mathcal{C}^*(X))],$$

and, for all $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_{Y|X}} (Y > \sup C_n(X) \mid X) \ge \alpha/2 + \epsilon \right) = 0$$

and

$$\lim_{n \to \infty} \mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_{Y|X}} (Y < \inf \mathcal{C}_n(X) \mid X) \ge \alpha/2 + \epsilon \right) = 0.$$

That is, C_n is asymptotically optimal for the aim (5.6).

This result suggests that the CQR score is a good choice for approximate conditional coverage with regression problems. Note that other related scores have a similar feature; see the bibliographic notes at end of this chapter.

5.4 A unified framework for asymptotic guarantees

This section gives the formal framework underlying the asymptotic optimality guarantees in the previous sections. The key is a formal version of Theorem 5.1. We will then give the proofs of the asymptotic optimality guarantees for the four case studies—Propositions 5.2, 5.3, 5.4, and 5.5—using a unified, step-by-step approach. The theory in this chapter will be presented in a way that emphasizes its generality: this framework is a foundational approach that can be used to prove *many* asymptotic guarantees about conformal prediction, including but not limited to the specific propositions in the case studies above.

5.4.1 Defining the framework

To begin, we need to lay out a precise asymptotic framework for the question. We will define a sequence of split conformal prediction problems, indexed by n, the size of the calibration set. In other words, for each n, we will define a pretraining set of size m_n and a calibration set of size n:

$$\underbrace{(X'_{n,1}, Y'_{n,1}), \dots, (X'_{n,m_n}, Y'_{n,m_n})}_{\text{pretraining set } \mathcal{D}_{\text{pre},n}}, \underbrace{(X_{n,1}, Y_{n,1}), \dots, (X_{n,n}, Y_{n,n})}_{\text{calibration set } \mathcal{D}_n}.$$

The data points $((X'_{n,i}, Y'_{n,i}))_{i \in [m_n]}$ form a pretraining set of size m_n , used to train a conformal score function:

$$s_n: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$$
 is constructed as a function of $\mathcal{D}_{\mathrm{pre},n} = ((X'_{n,i}, Y'_{n,i}))_{i \in [m_n]}$.

The data points $((X_{n,i}, Y_{n,i}))_{i \in [n]}$ form the calibration set, so that the quantile \hat{q}_n is then computed as

$$\hat{q}_n = \text{Quantile}(s_n(X_{n,1}, Y_{n,1}), \dots, s_n(X_{n,n}, Y_{n,n}); 1 - \alpha_n)$$

(where $1 - \alpha_n = (1 - \alpha)(1 + 1/n)$, as in our usual definition of the split conformal method). Finally, at any test feature value x, the split conformal prediction interval is given by

$$C_n(x) = \{ y \in \mathcal{Y} : s_n(x, y) \le \hat{q}_n \}.$$

In this chapter, we have focused on the i.i.d. data setting. Under our new notation, this means that we assume

$$(X'_{n,1}, Y'_{n,1}), \dots, (X'_{n,m_n}, Y'_{n,m_n}), (X_{n,1}, Y_{n,1}), \dots, (X_{n,n}, Y_{n,n}) \stackrel{\text{i.i.d.}}{\sim} P,$$
 (5.9)

for each $n \geq 1$, where P is some fixed distribution on $\mathcal{X} \times \mathcal{Y}$. In particular, this implies that the calibration data points $(X_{n,i}, Y_{n,i})$ are independent of the pretrained score function s_n , since s_n is fitted on the pretraining set $\mathcal{D}_{\text{pre},n}$ (which is disjoint from the calibration set). Note that this condition places no assumptions on the dependence structure of the sequence of pretraining and calibration sets; for example, $\mathcal{D}_{\text{pre},n}$ and $\mathcal{D}_{\text{pre},n+1}$ could be dependent or independent.

5.4.2 Convergence of the thresholds

As a preliminary result, we will study the convergence properties of the values \hat{q}_n that define the thresholds for the split conformal prediction intervals. For this part of the analysis, we will need to assume the sequence of score functions s_n converges to the oracle score s^* , in a particular sense. To be precise, we will write $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$ to mean that

$$F_{P,s_n}(t) \to F_{P,s^*}(t)$$
, for any $t \in \mathbb{R}$ such that F_{P,s^*} is continuous at t,

where, for any $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, we define $F_{P,s}$ to denote the CDF of s(X,Y) under $(X,Y) \sim P$.

Even though s_n is a function of the randomly drawn pretraining set $\mathcal{D}_{\text{pre},n}$, the CDF F_{P,s_n} is treating s_n as fixed—that is, F_{P,s_n} is the CDF of the score $s_n(X,Y)$ when we treat s_n as fixed and only consider randomness coming from drawing an independent new data point $(X,Y) \sim P$. In other words, $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$ is a (random) event—it is the event that $s_n(X,Y) \to s^*(X,Y)$ in distribution, when $(X,Y) \sim P$ is treated as random while the score functions s_1, s_2, \ldots are treated as fixed.

Figure 5.2: An illustration of q^* and q_+^* . This figure illustrates the values q^* and q_+^* defined in the statement of Theorem 5.6. In the left panel, $s^*(X,Y)$ has a continuous distribution, and $q^* = q_+^*$. In the middle and right panels, $s^*(X,Y)$ has a discrete distribution, and we either have $q^* = q_+^*$ (middle panel) or $q^* < q_+^*$ (right panel), depending on whether the target level $1 - \alpha$ is attained exactly by the CDF F_{P,s^*} .

Theorem 5.6

For each $n \ge 1$, assume the data follows assumption (5.9) for some distribution P on $\mathcal{X} \times \mathcal{Y}$, and define the split conformal prediction interval $C_n(x) = \{y \in \mathcal{Y} : s_n(x,y) \le \hat{q}_n\}$ where

$$s_n(x,y) = s((x,y); \mathcal{D}_{pre,n})$$

for $\mathcal{D}_{\text{pre},n} = ((X'_{n,i}, Y'_{n,i}))_{i \in [m_n]}$, and

$$\hat{q}_n = \text{Quantile}(s_n(X_{n,1}, Y_{n,1}), \dots, s_n(X_{n,n}, Y_{n,n}); 1 - \alpha_n),$$

for a sequence $\alpha_n \to \alpha \in (0,1)$. Let $s^*: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be any fixed score function, and define

$$q^* = \inf\{t : F_{P,s^*}(t) \ge 1 - \alpha\}$$
 and $q_+^* = \sup\{t : F_{P,s^*}(t) \le 1 - \alpha\}.$

Then the following statement holds almost surely:

If
$$s_n \xrightarrow{\text{CDF}} s^*$$
, then $q^* \le \liminf_{n \to \infty} \hat{q}_n \le \limsup_{n \to \infty} \hat{q}_n \le q_+^*$.

To interpret the result of this theorem, we need to understand the quantities q^* and q_+^* . Consider the condition

$$\mathbb{P}_{(X|Y)\sim P}(s^*(X,Y) < q) < 1 - \alpha < \mathbb{P}_{(X|Y)\sim P}(s^*(X,Y) < q).$$

Any q that satisfies this condition could be called the $(1-\alpha)$ -quantile (for the distribution of $s^*(X,Y)$, under $(X,Y) \sim P$). In this book, we have taken the convention that if the solution q to this condition is not unique, then the $(1-\alpha)$ -quantile of the distribution is taken to be the *infimum* of all such solutions q (see Definition 2.9)—this is the value q^* in the theorem above. In contrast, q_+^* is, by definition, the *supremum* of all such solutions q. (See Figure 5.2 for an illustration.) In particular, if the solution q is unique, then we will have $q^* = q_+^*$, and in that case, we have a stronger result:

Corollary 5.7

Under the notation and assumptions of Theorem 5.6, assume also that $q^* = q_+^*$. Then the following statement holds almost surely:

If
$$s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$$
 then $\hat{q}_n \to q^*$.

We now present the proofs of these results. Since Corollary 5.7 follows immediately from Theorem 5.6, we only need to prove the theorem.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Proof of Theorem 5.6

For each $n \geq 1$, define the empirical CDF of the calibration scores,

$$\hat{F}_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \left\{ s_n(X_{n,i}, Y_{n,i}) \le t \right\}, \ t \in \mathbb{R}.$$

We can observe that, by definition, at each $n \ge 1$ the value \hat{q}_n is defined as the $(1 - \alpha_n)$ -quantile of this empirical CDF \hat{F}_n .

Step 1: a deterministic result for the empirical CDFs. First we prove a deterministic result relating properties of the empirical CDFs, \hat{F}_n , to limits of the quantiles, \hat{q}_n . We claim that, for any $q \in \mathbb{R}$,

if
$$\limsup_{n \to \infty} \hat{F}_n(q) < 1 - \alpha$$
 then $\liminf_{n \to \infty} \hat{q}_n \ge q$, (5.10)

and

if
$$\liminf_{n \to \infty} \hat{F}_n(q) > 1 - \alpha$$
 then $\limsup_{n \to \infty} \hat{q}_n \le q$. (5.11)

To prove these claims, first fix any $q \in \mathbb{R}$ with $\limsup_{n \to \infty} \hat{F}_n(q) < 1 - \alpha$. Since $\alpha_n \to \alpha$, this means that for some finite $N \ge 1$, it holds for all $n \ge N$ that $\hat{F}_n(q) < 1 - \alpha_n$. By definition of the quantile, then, $\hat{q}_n = \text{Quantile}(\hat{F}_n; 1 - \alpha_n) \ge q$, for any $n \ge N$. This verifies (5.10). Next, fix any $q \in \mathbb{R}$ with $\liminf_{n \to \infty} \hat{F}_n(q) > 1 - \alpha$. Since $\alpha_n \to \alpha$, this means that for some finite $N \ge 1$, it holds for all $n \ge N$ that $\hat{F}_n(q) \ge 1 - \alpha_n$. By definition of the quantile, then, $\hat{q}_n = \text{Quantile}(\hat{F}_n; 1 - \alpha_n) \le q$, for any $n \ge N$, which completes the proof of (5.11).

Step 2: refining the deterministic result. Now we will refine the deterministic results of Step 1, to make use of the assumption $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$. We claim that

if
$$s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$$
 and $\|\hat{F}_n - F_{P,s_n}\|_{\infty} \to 0$ then $\liminf_{n \to \infty} \hat{q}_n \ge q^*$, (5.12)

and,

if
$$s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$$
 and $\|\hat{F}_n - F_{P,s_n}\|_{\infty} \to 0$ then $\limsup_{n \to \infty} \hat{q}_n \le q_+^*$. (5.13)

First, fix any $q < q^*$. Since F_{P,s^*} is a CDF and therefore has at most countably many discontinuities, we can find some $q' \in (q,q^*)$ such that F_{P,s^*} is continuous at q'. And, by definition of q^* we must have $F_{P,s^*}(q') < 1 - \alpha$. We then have $F_{P,s_n}(q') \to F_{P,s^*}(q')$ since $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$. Since $\|\hat{F}_n - F_{P,s_n}\|_{\infty} \to 0$, this means $\hat{F}_n(q') \to F_{P,s^*}(q') < 1 - \alpha$. Therefore, by (5.10), $\liminf_{n\to\infty} \hat{q}_n \ge q' > q$. Since this holds for any $q < q^*$, this completes the proof of (5.12). Finally, proving (5.13) using (5.11) follows a similar argument.

Step 3: almost sure convergence. Finally, we can see that the claims of the theorem follow immediately from (5.12) (for the first claim) and (5.13) (for the second claim), as long as we show that $\|\hat{F}_n - F_{P,s_n}\|_{\infty} \stackrel{\text{a.s.}}{\to} 0$. To verify this, we apply the Dvoretzky-Kiefer-Wolfowitz inequality, which tells us that for each n and for any $\epsilon > 0$,

$$\mathbb{P}\left(\|\hat{F}_n - F_{P,s_n}\|_{\infty} \ge \epsilon\right) \le 2e^{-2n\epsilon^2},$$

since, after conditioning on $\mathcal{D}_{\text{pre},n}$, \hat{F}_n is the empirical CDF of n i.i.d. draws from the distribution with CDF F_{P,s_n} . Therefore, for any fixed $\epsilon > 0$ and $N \ge 1$, we have

$$\mathbb{P}\left(\limsup_{n\to\infty}\|\hat{F}_n - F_{P,s_n}\|_{\infty} > \epsilon\right) \le \mathbb{P}\left(\sup_{n\ge N}\|\hat{F}_n - F_{P,s_n}\|_{\infty} > \epsilon\right) \le \sum_{n>N} 2e^{-2n\epsilon^2} = \frac{2e^{-2N\epsilon^2}}{1 - e^{-2\epsilon^2}}.$$

For any fixed $\epsilon > 0$, since this holds for all $N \geq 1$, we therefore have $\limsup_{n \to \infty} \|\hat{F}_n - F_{P,s_n}\|_{\infty} \leq \epsilon$. Finally, since $\epsilon > 0$ can be taken to be arbitrarily small, this proves the claim.

5.4.3 Convergence of the sets

In the results above, we have studied convergence of the thresholds, \hat{q}_n . In this section, we will now translate these results into a statement about convergence of the split conformal prediction intervals: we will aim to bound the difference between C_n , the split conformal prediction interval, and the 'oracle' prediction interval C^* given by

$$C^*(x) = \{ y \in \mathcal{Y} : s^*(x, y) \le q^* \},$$

where s^* is some fixed score function (e.g., reflecting the true model of the data), and where q^* is the $(1-\alpha)$ -quantile of $s^*(X,Y)$ under the data distribution $(X,Y) \sim P$. At a high level, we are going to verify that

If
$$s_n$$
 converges to s^* , and s^* satisfies some regularity conditions, then C_n converges to C^* , (5.14)

where $C_n(x) = \{y \in \mathcal{Y} : s_n(x,y) \leq \hat{q}_n\}$ is the split conformal prediction set.

The remainder of this section will develop a formal version of the statement (5.14). In order to be able to ask whether the prediction set construction \mathcal{C}_n converges to the oracle \mathcal{C}^* , we will study the symmetric set difference between the sets, $\mathcal{C}_n(X)\triangle\mathcal{C}^*(X)$ —specifically, we will establish a bound on $\mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}_n(X)\triangle\mathcal{C}^*(X))$, the mass of the symmetric set difference under a draw of a new data point $(X,Y)\sim P$. To be able to achieve this type of bound, we will need to define a stronger notion of convergence for the score functions s_n . While in the previous section, it was sufficient to assume $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$ in order to establish results on the \hat{q}_n 's, this will no longer be sufficient: when we draw a test point $(X,Y)\sim P$, we need the evaluated scores $s_n(X,Y)$ and $s^*(X,Y)$ to return similar values, not just to be similar in distribution. To make this concrete, we will define a stronger notion of convergence: we will write $s_n \stackrel{P}{\longrightarrow} s^*$ to mean that

$$\lim_{n \to \infty} \mathbb{P}_{(X,Y) \sim P} \Big(|s_n(X,Y) - s^*(X,Y)| > \epsilon \Big) = 0 \text{ for all } \epsilon > 0.$$

Note that, treating the functions s_n as fixed (as before), this simply means that the random variables $s_n(X,Y)$ converge in probability to $s^*(X,Y)$. To compare the two notions of convergence, we have

$$s_n \stackrel{P}{\to} s^* \implies s_n \stackrel{\text{CDF}}{\longrightarrow} s^*.$$
 (5.15)

(For fixed functions s_n , this is true simply because convergence in probability is strictly stronger than convergence in distribution; for random functions s_n , this holds since we define $s_n \stackrel{P}{\to} s^*$ and $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$ by treating the s_n 's as fixed.)

We will now present our general theorem.

Theorem 5.8

Under the setting and notation of Theorem 5.6, assume also that

$$\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y) = q_+^*) = 0. \tag{5.16}$$

Then the following statement holds almost surely:

If
$$s_n \stackrel{P}{\to} s^*$$
 then $\mathbb{P}_{(X,Y)\sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \to 0$.

We remark also that the assumption (5.16) will immediately hold if we assume that $s^*(X, Y)$ has a continuous distribution under $(X, Y) \sim P$, but (as we will see below in the proofs for one of our case studies) it can hold more generally as well.

Returning to our original goal (5.14) for this section, we can interpret this theorem as follows:

If
$$\underbrace{s_n \text{ converges to } s^*}_{\text{i.e., } s_n \overset{P}{\to} s^*}$$
 and $\underbrace{s^* \text{ satisfies some regularity conditions}}_{\text{i.e., condition (5.16) holds}}$ then $\underbrace{\mathcal{C}_n \text{ converges to } \mathcal{C}^*}_{\text{i.e., bound } \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)}$

Of course, while this result measures the difference between C_n and C^* in terms of probability (by bounding the mass placed by P on the event $Y \in C_n(X) \triangle C^*(X)$), similar techniques can be used to bound the difference of the sets in other ways—for instance, in the setting of a real-valued response $(\mathcal{Y} = \mathbb{R})$, we might instead be interested in bounding the Lebesgue measure of $C_n(X) \triangle C^*(X)$.

Proof of Theorem 5.8

By Theorem 5.6 (applied with $1 - \alpha_n = (1 - \alpha)(1 + 1/n)$), it holds almost surely that $s_n \stackrel{\text{CDF}}{\longrightarrow} s^*$ implies $q^* \leq \liminf_{n \to \infty} \hat{q}_n \leq \limsup_{n \to \infty} \hat{q}_n \leq q^*$. Therefore, combining this with (5.15), from this point on it suffices to prove the following deterministic statement:

If
$$s_n \stackrel{P}{\to} s^*$$
 and $q^* \le \liminf_{n \to \infty} \hat{q}_n \le \limsup_{n \to \infty} \hat{q}_n \le q_+^*$, then $\mathbb{P}_{(X,Y) \sim P} (Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X))) \to 0$.

First, fix any (x, y), and any $\epsilon > 0$. For sufficiently large n, it holds that $q^* - \epsilon < \hat{q}_n < q_+^* + \epsilon$. Then if $y \in \mathcal{C}_n(x) \triangle \mathcal{C}^*(x)$, we either have

$$y \in \mathcal{C}_n(x) \setminus \mathcal{C}^*(x) \implies s_n(x,y) \le \hat{q}_n < q_+^* + \epsilon \text{ and } s^*(x,y) > q^*$$

 $\implies q^* < s^*(x,y) < q_+^* + 2\epsilon \text{ or } |s_n(x,y) - s^*(x,y)| > \epsilon,$

or

$$y \in \mathcal{C}^*(x) \setminus \mathcal{C}_n(x) \implies s_n(x,y) > \hat{q}_n > q^* - \epsilon \text{ and } s^*(x,y) \le q^*$$

 $\implies q^* - 2\epsilon < s^*(x,y) \le q^* \text{ or } |s_n(x,y) - s^*(x,y)| > \epsilon.$

Combining these two cases, we then have

$$y \in \mathcal{C}_n(x) \triangle \mathcal{C}^*(x) \implies q^* - 2\epsilon < s^*(x,y) < q^*_{\perp} + 2\epsilon \text{ or } |s_n(x,y) - s^*(x,y)| > \epsilon.$$

Therefore,

$$\mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}_n(X)\triangle\mathcal{C}^*(X)) \leq \mathbb{P}_{(X,Y)\sim P}(q^* - 2\epsilon < s^*(X,Y) < q_+^* + 2\epsilon) + \\ \mathbb{P}_{(X,Y)\sim P}(|s_n(X,Y) - s^*(X,Y)| > \epsilon).$$

Since $\mathbb{P}_{(X,Y)\sim P}(|s_n(X,Y)-s^*(X,Y)|>\epsilon)\to 0$ as $n\to 0$ (because we have assumed $s_n\stackrel{P}{\to} s^*$), we therefore have

$$\limsup_{N \to \infty} \mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \le \mathbb{P}_{(X,Y) \sim P}(q^* - 2\epsilon < s^*(X,Y) < q_+^* + 2\epsilon).$$

Since this holds for any fixed $\epsilon > 0$, we therefore have

$$\limsup_{n \to \infty} \mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \le \lim_{\epsilon \to 0} \mathbb{P}_{(X,Y) \sim P}(q^* - 2\epsilon < s^*(X,Y) < q_+^* + 2\epsilon)$$

$$= \mathbb{P}_{(X,Y) \sim P}(q^* \le s^*(X,Y) \le q_+^*),$$

by continuity of measure. Moreover, $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=q_+^*)=0$ by our assumption (5.16), and we also have

$$\mathbb{P}_{(X,Y)\sim P}(q^* \le s^*(X,Y) < q_+^*) = 0$$

by definition of q^* and q_+^* , which completes the proof.

5.4.4 Proofs for case studies

With our general theory in place, we are now ready to present the proofs of the asymptotic optimality results for our four case studies. All four results will follow as applications of Theorem 5.8, and will follow the same general recipe, as follows. For **Step 1**, we will need to verify that the oracle score s^* satisfies the condition (5.16) required by the theorem, and for **Step 2** we need to check that the model assumptions (on how accurately we estimate the true model) are sufficient to ensure that $s_n \stackrel{P}{\to} s^*$. Finally, in **Step 3**, we will show that asymptotic optimality of the split conformal interval follows from the guarantee of Theorem 5.8.

Proofs for the classification setting. First we consider the two case studies for classification, developed in Section 5.2.

Proof of Proposition 5.2

Step 1: verifying condition (5.16). Since $\pi^*(Y \mid X)$ is assumed to have a continuous distribution under $(X,Y) \sim P$, the score $s^*(X,Y) = -\pi^*(Y \mid X)$ is therefore also continuously distributed, which immediately implies (5.16).

Step 2: verifying that $s_n \stackrel{P}{\to} s^*$. We calculate

$$\begin{split} \mathbb{E}_{(X,Y) \sim P}[|s_n(X,Y) - s^*(X,Y)|] &= \mathbb{E}_{(X,Y) \sim P}[|\hat{\pi}_n(Y \mid X) - \pi^*(Y \mid X)|] \\ &= \mathbb{E}_{X \sim P_X} \left[\sum_{y \in \mathcal{Y}} \pi^*(y \mid X) \cdot |\hat{\pi}_n(y \mid X) - \pi^*(y \mid X)| \right] \\ &\leq \sup_{(x,y)} \pi^*(y \mid x) \cdot \mathbb{E}_{X \sim P_X} \left[\sum_{y \in \mathcal{Y}} |\hat{\pi}_n(y \mid X) - \pi^*(y \mid X)| \right] \\ &= \sup_{(x,y)} \pi^*(y \mid x) \cdot \mathbb{E}_{X \sim P_X} \left[2d_{\text{TV}}(\hat{\pi}_n(\cdot \mid X), \pi^*(\cdot \mid X)) \right], \end{split}$$

by definition of total variation distance. Note that $\sup_{(x,y)} \pi^*(y \mid x) \leq 1$, since π^* is a conditional probability. Therefore, if we assume $\mathbb{E}_{X \sim P_X} \left[\operatorname{d}_{\mathrm{TV}} \left(\pi^*(\cdot \mid X), \hat{\pi}_n(\cdot \mid X) \right) \right] \to 0$ as in the proposition, this implies $\mathbb{E}_{(X,Y) \sim P}[|s_n(X,Y) - s^*(X,Y)|] \to 0$, which in turn implies $s_n \stackrel{P}{\to} s^*$.

Step 3: establishing asymptotic optimality. Applying Theorems 5.6 and 5.8 (along with the results of Steps 1 and 2), we see that $\mathbb{E}_{X \sim P_X}[\mathrm{d}_{\mathrm{TV}}(\hat{\pi}_n(\cdot \mid X), \pi^*(\cdot \mid X))] \to 0$ implies $\mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \to 0$ and $q^* \leq \liminf_{n \to \infty} \hat{q}_n \leq \limsup_{n \to \infty} \hat{q}_n \leq q^*_+$, almost surely. From this point on, we will assume that this event holds. To complete the proof, we now need to show that this implies \mathcal{C}_n is asymptotically optimal.

To verify asymptotic optimality of the set size, it suffices to show that $\mathbb{E}_{X \sim P_X}[|\mathcal{C}_n(X) \setminus \mathcal{C}^*(X)|] \to 0$. Define

$$c_n = \inf_{(x,y):y \in \mathcal{C}_n(x)} \hat{\pi}_n(y \mid x). \tag{5.17}$$

We calculate

$$\mathbb{E}_{X \sim P_X}[|\mathcal{C}_n(X) \setminus \mathcal{C}^*|] = \mathbb{E}_{X \sim P_X} \left[\sum_{y \in \mathcal{Y}} \mathbb{1} \left\{ y \in \mathcal{C}_n(X) \setminus \mathcal{C}^*(X) \right\} \right]$$

$$\leq c_n^{-1} \cdot \mathbb{E}_{X \sim P_X} \left[\sum_{y \in \mathcal{Y}} \hat{\pi}_n(y \mid X) \cdot \mathbb{1} \left\{ y \in \mathcal{C}_n(X) \setminus \mathcal{C}^*(X) \right\} \right]$$

$$\leq c_n^{-1} \cdot \mathbb{E}_{X \sim P_X} \left[\operatorname{d}_{\mathrm{TV}}(\hat{\pi}_n(\cdot \mid X), \pi^*(\cdot \mid X)) + \sum_{y \in \mathcal{Y}} \pi^*(y \mid X) \cdot \mathbb{1} \left\{ y \in \mathcal{C}_n(X) \setminus \mathcal{C}^*(X) \right\} \right] \\
= c_n^{-1} \left(\mathbb{E}_{X \sim P_X} \left[\operatorname{d}_{\mathrm{TV}}(\hat{\pi}_n(\cdot \mid X), \pi^*(\cdot \mid X)) \right] + \mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \setminus \mathcal{C}^*(X)) \right). \tag{5.18}$$

Since both the expected value and the probability on the right-hand side are vanishing as $n \to \infty$, from this point on we only need to verify that $\liminf_{n \to \infty} c_n > 0$. By definition of the score, we have $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)<0)=1$. In particular, this implies that we must have $q^* \leq q_+^* < 0$, and since $\limsup_{n \to \infty} \hat{q}_n \leq q_+^*$, for sufficiently large n we have $\hat{q}_n \leq q_+^*/2 < 0$. Therefore, for sufficiently large n,

$$y \in \mathcal{C}_n(x) \iff -\hat{\pi}_n(y \mid x) = s_n(x,y) \le \hat{q}_n \implies \hat{\pi}_n(y \mid x) \ge |q_+^*|/2,$$

and therefore,

$$\liminf_{n \to \infty} c_n \ge |q_+^*|/2 > 0.$$

Next, for the asymptotic coverage guarantee, since $\mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}^*(X))\geq 1-\alpha$ by definition of the oracle \mathcal{C}^* ,

$$\mathbb{P}_{(X,Y)\sim P}(Y \in \mathcal{C}_n(X)) \ge 1 - \alpha - \mathbb{P}_{(X,Y)\sim P}(Y \in \mathcal{C}^*(X) \setminus \mathcal{C}_n(X))$$
$$\ge 1 - \alpha - \mathbb{P}_{(X,Y)\sim P}(Y \in \mathcal{C}^*(X) \triangle \mathcal{C}_n(X)),$$

and therefore, $\liminf_{n\to\infty} \mathbb{P}_{(X,Y)\sim P}(Y\in\mathcal{C}_n(X)) \geq 1-\alpha$ almost surely. This verifies asymptotic optimality of \mathcal{C}_n , and thus completes the proof.

Proof of Proposition 5.3

Step 1: verifying condition (5.16). Since $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=0)<1-\alpha$ (by our assumption (5.4)), we must have $q_+^*\geq q^*>0$ by definition of the quantile. Therefore (again applying (5.4)) we have $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=q_+^*)=0$.

Step 2: verifying that $s_n \stackrel{P}{\to} s^*$. First, for each $x \in \mathcal{X}$ define

$$\Delta(x) = \min_{y \neq y' \in \mathcal{V}} |\pi^*(y \mid x) - \pi^*(y' \mid x)|.$$

By assumption, $\Delta(X) > 0$ almost surely for $X \sim P_X$. Now suppose that $d_{\text{TV}}(\pi^*(\cdot \mid x), \hat{\pi}_n(\cdot \mid x)) < \Delta(x)/2$. If this holds, then for any $y \neq y' \in \mathcal{Y}$,

$$\begin{aligned} |(\hat{\pi}_{n}(y \mid x) - \hat{\pi}_{n}(y' \mid x)) - (\pi^{*}(y \mid x) - \pi^{*}(y' \mid x))| \\ &\leq |\hat{\pi}_{n}(y \mid x) - \pi^{*}(y \mid x)| + |\hat{\pi}_{n}(y' \mid x) - \pi^{*}(y' \mid x)| \leq 2d_{\text{TV}}(\pi^{*}(\cdot \mid x), \hat{\pi}_{n}(\cdot \mid x)) \\ &< 2 \cdot \Delta(x)/2 \leq |\pi^{*}(y \mid x) - \pi^{*}(y' \mid x)|. \end{aligned}$$

In particular, this implies

$$\mathbb{1}\{\hat{\pi}_n(y'\mid x) > \hat{\pi}_n(y\mid x)\} = \mathbb{1}\{\pi^*(y'\mid x) > \pi^*(y\mid x)\}\$$

for all $y \neq y' \in \mathcal{Y}$, for this value x, and therefore for any $y \in \mathcal{Y}$ we have

$$|s_n(x,y) - s^*(x,y)|$$

$$= \left| \sum_{y' \in \mathcal{Y}} \hat{\pi}_n(y' \mid x) \cdot \mathbb{1} \left\{ \hat{\pi}_n(y' \mid x) > \hat{\pi}_n(y \mid x) \right\} - \sum_{y' \in \mathcal{Y}} \pi^*(y' \mid x) \cdot \mathbb{1} \left\{ \pi^*(y' \mid x) > \pi^*(y \mid x) \right\} \right|$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

$$= \left| \sum_{y' \in \mathcal{Y}} \left(\hat{\pi}_n(y' \mid x) - \pi^*(y' \mid x) \right) \cdot \mathbb{1} \left\{ \pi^*(y' \mid x) > \pi^*(y \mid x) \right\} \right|$$

$$\leq d_{\text{TV}}(\pi^*(\cdot \mid x), \hat{\pi}_n(\cdot \mid x)).$$

In other words, we have proved that for all (x, y), we have

$$|s_n(x,y) - s^*(x,y)| \le \begin{cases} d_{\text{TV}}(\pi^*(\cdot \mid x), \hat{\pi}_n(\cdot \mid x)), & \text{if } d_{\text{TV}}(\pi^*(\cdot \mid x), \hat{\pi}_n(\cdot \mid x)) < \Delta(x)/2, \\ 1, & \text{otherwise.} \end{cases}$$

Therefore, for any $\epsilon > 0$,

$$\mathbb{P}_{(X,Y)\sim P}(|s_n(X,Y) - s^*(X,Y)| > \epsilon) \le \mathbb{P}_{X\sim P_X}\Big(\mathrm{d}_{\mathrm{TV}}(\pi^*(\cdot\mid X), \hat{\pi}_n(\cdot\mid X)) \ge \min\{\epsilon, \Delta(X)/2\}\Big).$$

Since $\min\{\epsilon, \Delta(X)/2\}$ is positive almost surely, it must hold that if $\mathbb{E}_{X \sim P_X}[d_{\text{TV}}(\pi^*(\cdot \mid X), \hat{\pi}_n(\cdot \mid X))] \to 0$ then

$$\lim_{n \to \infty} \mathbb{P}_{X \sim P_X} \left(d_{\text{TV}}(\pi^*(\cdot \mid X), \hat{\pi}_n(\cdot \mid X)) \ge \min\{\epsilon, \Delta(X)/2\} \right) = 0.$$

Therefore we have proved the desired claim.

Step 3: establishing asymptotic optimality. Applying Theorems 5.6 and 5.8 (along with the results of Steps 1 and 2), we see that $\mathbb{E}_{X \sim P_X}[\mathrm{d}_{\mathrm{TV}}(\hat{\pi}_n(\cdot \mid X), \pi^*(\cdot \mid X))] \to 0$ implies $\mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \to 0$ and $q^* \leq \liminf_{n \to \infty} \hat{q}_n \leq \limsup_{n \to \infty} \hat{q}_n \leq q^*_+$, almost surely. From this point on, we will assume that this event holds, and will show that this implies \mathcal{C}_n is asymptotically optimal.

For asymptotic optimality of the set size, following the same steps as in (5.18) (in the proof of Proposition 5.2), we only need to show that $\liminf_{n\to\infty} c_n > 0$, where c_n is defined as in (5.17). Note that $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)\leq 1)=1$ by construction. By our assumption (5.4), along with the definition of q_+^* , we must have $q_+^*<1$. Since $\limsup_{n\to\infty}\hat{q}_n\leq q_+^*$, we can assume $\hat{q}_n\leq 1-\frac{1-q_+^*}{2}$ for all sufficiently large n. Next, suppose $y\in\mathcal{C}_n(x)$. Then, for sufficiently large n.

$$1 - \frac{1 - q_{+}^{*}}{2} \ge \hat{q}_{n} \ge s_{n}(x, y) = \sum_{y' \in \mathcal{Y}} \hat{\pi}_{n}(y' \mid x) \cdot \mathbb{1} \left\{ \hat{\pi}_{n}(y' \mid x) > \hat{\pi}_{n}(y \mid x) \right\}$$
$$= 1 - \sum_{y' \in \mathcal{Y}} \hat{\pi}_{n}(y' \mid x) \cdot \mathbb{1} \left\{ \hat{\pi}_{n}(y' \mid x) \le \hat{\pi}_{n}(y \mid x) \right\}$$
$$\ge 1 - \sum_{y' \in \mathcal{Y}} \hat{\pi}_{n}(y \mid x) = 1 - |\mathcal{Y}| \cdot \hat{\pi}_{n}(y \mid x).$$

Therefore,

$$y \in \mathcal{C}_n(x) \Longrightarrow \hat{\pi}_n(y \mid x) \ge \frac{1 - q_+^*}{2|\mathcal{V}|},$$

and so $\liminf_{n\to\infty} c_n \ge (1-q_+^*)/2|\mathcal{Y}| > 0$, as desired.

For the asymptotic conditional coverage guarantee, since $\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}^*(X) \mid X) \geq 1 - \alpha$ almost surely by definition of the oracle \mathcal{C}^* , we have

$$\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}_n(X) \mid X) \ge 1 - \alpha - \mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}^*(X) \setminus \mathcal{C}_n(X) \mid X)$$
$$\ge 1 - \alpha - \mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}^*(X) \triangle \mathcal{C}_n(X) \mid X),$$

and so for any $\epsilon > 0$,

$$\mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_{Y|X}} (Y \in \mathcal{C}_n(X) \mid X) < 1 - \alpha - \epsilon \right)$$

$$\leq \mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_{Y|X}} (Y \in \mathcal{C}^*(X) \triangle \mathcal{C}_n(X) \mid X) > \epsilon \right) = \epsilon^{-1} \mathbb{P}_{(X,Y) \sim P} (Y \in \mathcal{C}^*(X) \triangle \mathcal{C}_n(X)),$$

by Markov's inequality and the tower law. Thus $\mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_{Y|X}} (Y \in \mathcal{C}_n(X) \mid X) \geq 1 - \alpha - \epsilon \right) \rightarrow 1$, almost surely. This verifies asymptotic optimality of \mathcal{C}_n , and thus completes the proof.

Proofs for the regression setting. Next we turn to the two case studies for regression, developed in Section 5.3.

Proof of Proposition 5.4

Step 1: verifying condition (5.16). Since $f^*(Y \mid X)$ is assumed to have a continuous distribution under $(X,Y) \sim P$, the score $s^*(X,Y) = -f^*(Y \mid X)$ is therefore also continuously distributed, which immediately implies (5.16).

Step 2: verifying that $s_n \stackrel{P}{\to} s^*$. This step's proof follows an identical argument as for the corresponding step in the proof of Proposition 5.2, except with f^* and \hat{f}_n in place of π^* and $\hat{\pi}_n$, and with integration over $y \in \mathbb{R}$ in place of summation over $y \in \mathcal{Y}$. (Note that this calculation relies on our assumption that $\sup_{(x,y)} f^*(y \mid x) < \infty$ —while, for the classification setting with π^* in place of f^* , $\sup_{(x,y)} \pi^*(y \mid x)$ is finite simply because conditional probability is always bounded by 1).

Step 3: establishing asymptotic optimality. As for Step 2, the proof again follows an identical argument as for the corresponding step in the proof of Proposition 5.2.

Proof of Proposition 5.5

Step 1: verifying condition (5.16). It is sufficient to prove that $s^*(X,Y)$ has a continuous distribution under $(X,Y) \sim P$. For any $t \in \mathbb{R}$, we have

$$\mathbb{P}_{Y \sim P_{Y|X}}(s^*(X,Y) = t \mid X) = \mathbb{P}_{Y \sim P_{Y|X}}(\max\{\tau^*(X;\alpha/2) - Y, Y - \tau^*(X;1 - \alpha/2)\} = t \mid X)$$

$$\leq \mathbb{P}_{Y \sim P_{Y|X}}\left(Y \in \left\{\tau^*(X;\alpha/2) - t, \tau^*(X;1 - \alpha/2) + t\right\} \mid X\right)$$

$$= 0.$$

since the conditional distribution of $Y \mid X$ is continuous. Therefore, by the tower law, $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)=t)=0$ for all $t\in\mathbb{R}$, as desired.

Step 2: verifying that $s_n \stackrel{P}{\to} s^*$. By definition of s_n and s^* , we see that

$$|s_n(x,y) - s^*(x,y)| \le \max_{\beta \in \{\alpha/2, 1-\alpha/2\}} |\hat{\tau}_n(x;\beta) - \tau^*(x;\beta)|$$

for all (x, y). Therefore,

$$\mathbb{P}_{(X,Y)\sim P}\left(|s_n(X,Y) - s^*(X,Y)| > \epsilon\right) \le \mathbb{P}_{X\sim P_X}\left(\max_{\beta\in\{\alpha/2,1-\alpha/2\}} |\hat{\tau}_n(X;\beta) - \tau^*(X;\beta)| > \epsilon\right)$$

$$\le \epsilon^{-1} \sum_{\beta\in\{\alpha/2,1-\alpha/2\}} \mathbb{E}_{X\sim P_X}[|\hat{\tau}_n(X;\beta) - \tau^*(X;\beta)|],$$

by Markov's inequality. Therefore, it $\mathbb{E}_{X \sim P_X}[|\hat{\tau}_n(X;\beta) - \tau^*(X;\beta)|] \to 0$ holds for each $\beta \in \{\alpha/2, 1 - \alpha/2\}$ (as is assumed in the proposition), then this implies $s_n \stackrel{P}{\to} s^*$.

Step 3: establishing asymptotic optimality. Applying Theorems 5.6 and 5.8 (along with the results of Steps 1 and 2), we see that $\mathbb{E}_{X \sim P_X}[|\hat{\tau}_n(X;\beta) - \tau^*(X;\beta)|] \to 0$ for each $\beta \in \{\alpha/2, 1 - \alpha/2\}$ implies $\mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)) \to 0$ and $q^* \leq \liminf_{n \to \infty} \hat{q}_n \leq \limsup_{n \to \infty} \hat{q}_n \leq q_+^*$, almost surely. From this point on, we will assume that this event holds, and will show that this implies \mathcal{C}_n is asymptotically optimal.

First, for asymptotic optimality of the set size, we will use the fact that, for two intervals [a, b] and [c, d] in the real line, we can calculate

$$\left| [a, b] \triangle [c, d] \right| \le |a - c| + |b - d|$$

(with equality if the two intervals overlap, but a strict inequality if they are disjoint). Then, by construction of the prediction intervals $C_n(X)$ and $C^*(X)$ in this particular setting, we have

Leb(
$$C_n(X) \triangle C^*(X)$$
) \leq

$$\left| \left(\hat{\tau}_n(X; \alpha/2) - \hat{q}_n \right) - \tau^*(X; \alpha/2) \right| + \left| \left(\hat{\tau}_n(X; 1 - \alpha/2) + \hat{q}_n \right) - \tau^*(X; 1 - \alpha/2) \right|$$

$$\leq 2 \max_{\beta \in \{\alpha/2, 1 - \alpha/2\}} \left| \hat{\tau}_n(X; \beta) - \tau^*(X; \beta) \right| + 2|\hat{q}_n|.$$

Next, by construction of the oracle interval we have $q^*=0$, and moreover, the assumption that $f^*(y\mid x)>0$ for all (x,y) ensures that $q_+^*=0$ as well (because, with a positive density, any positive inflation of the interval $\mathcal{C}^*(X)$ would lead to a strictly higher probability of coverage—that is, $\mathbb{P}_{(X,Y)\sim P}(s^*(X,Y)\leq t)>1-\alpha$ for any t>0). Thus we have $\hat{q}_n\to 0$. Therefore,

$$\mathbb{E}_{X \sim P_X}[\text{Leb}(\mathcal{C}_n(X) \triangle \mathcal{C}^*(X))] \leq 2 \sum_{\beta \in \{\alpha/2, 1-\alpha/2\}} \mathbb{E}_{X \sim P_X}[|\hat{\tau}_n(X; \beta) - \tau^*(X; \beta)|] + 2|\hat{q}_n| \to 0,$$

which therefore implies $\limsup_{n\to\infty} \mathbb{E}_{X\sim P_X}[\operatorname{Leb}(\mathcal{C}_n(X))] \leq \mathbb{E}_{X\sim P_X}[\operatorname{Leb}(\mathcal{C}^*(X))].$

Next we turn to the equal-tailed conditional coverage guarantee. If $C_n(X)$ and $C^*(X)$ are disjoint (which includes the denenerate case where $C_n(X)$ is empty), we have

$$\mathbb{P}_{Y \sim P_{Y|X}}(Y > \sup \mathcal{C}_n(X) \mid X) \le 1 = \frac{\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}^*(X))}{1 - \alpha} \le \frac{\mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X))}{1 - \alpha}.$$

If instead the intervals $\mathcal{C}_n(X)$ and $\mathcal{C}^*(X)$ overlap (and in particular $\mathcal{C}_n(X)$ is nonempty), then

$$\sup \mathcal{C}^*(X) \ge Y > \sup \mathcal{C}_n(X) \Longrightarrow Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X),$$

and so

$$\mathbb{P}_{Y \sim P_{Y \mid X}}(Y > \sup \mathcal{C}_n(X) \mid X) \le \alpha/2 + \mathbb{P}_{Y \sim P_{Y \mid X}}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)),$$

using the oracle property of C^* , which ensures that $\mathbb{P}_{Y \sim P_{Y|X}}(Y > \sup C^*(X) \mid X) \leq \alpha/2$. Combining these calculations, then,

$$\mathbb{P}_{Y \sim P_{Y|X}}(Y > \sup \mathcal{C}_n(X) \mid X) \le \alpha/2 + \frac{1}{1-\alpha} \cdot \mathbb{P}_{Y \sim P_{Y|X}}(Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X)),$$

across both possible cases. Therefore,

$$\mathbb{P}_{X \sim P_X} \left(\mathbb{P}_{Y \sim P_Y \mid X} (Y > \sup \mathcal{C}_n(X) \mid X) > \alpha/2 + \epsilon \right) \le \frac{\mathbb{P}_{(X,Y) \sim P} (Y \in \mathcal{C}_n(X) \triangle \mathcal{C}^*(X))}{(1 - \alpha)\epsilon} \to 0,$$

by Markov's inequality and the tower law, which establishes asymptotic coverage in the right tail. An identical argument verifies coverage for the left tail as well, and thus completes the proof.

5.5 Model-based robustness to violations of exchangeability

In this final section of Chapter 5, we will turn to a question of a very different flavor: instead of asking about guarantees that can be obtained by placing model-based assumptions on the data in addition to the assumption of exchangeability, we will now ask whether model-based assumptions allow for conformal type methods to perform well even if exchangeability does not hold.

For simplicity, let us again consider only split conformal prediction throughout this section, so that we have a pretrained score function $s_n: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$. It may seem initially that exchangeability is a critical assumption: if the data points are not exchangeable, how can split conformal prediction still achieve marginal coverage? The key point to consider, however, is that the marginal coverage guarantee relies only on finding a good approximation for the $(1-\alpha)$ -quantile of the test point's score, $s_n(X_{n+1},Y_{n+1})$. Exchangeability of the data points $(X_1,Y_1),\ldots,(X_{n+1},Y_{n+1})$ is certainly sufficient to ensure this (i.e., with the split conformal quantile \hat{q}_n), but it is not necessary: it is possible to find a good estimate via model-based assumptions, without requiring exchangeability.

We will now see that conformal prediction offers a double-robustness type guarantee: conformal prediction offers coverage guarantees as long as *either* exchangeability holds (as in the theory we have seen in Chapter 3), or if instead we can rely on model-based assumptions.

Example: a stationary time series. We now give an example of such a case: a stationary time-series, where exchangeability can fail drastically due to dependence over time. We will see that, under model-based assumptions, applying conformalized quantile regression (CQR) method (recall Section 5.2.2) can still ensure coverage. In particular, if our estimated conditional quantiles $\hat{\tau}_n(x;\beta)$ are a good approximation to the true $\tau^*(x;\beta)$, we can expect to achieve coverage even without exchangeability.

We now define our setting. Consider a time series of data points,

$$(X_1, Y_1), (X_2, Y_2), \dots$$

where the response is real-valued, $\mathcal{Y} = \mathbb{R}$. Suppose that, to predict response Y_{n+1} from features X_{n+1} at time n+1, we train a quantile regression model on past data points $(X_1, Y_1), \ldots, (X_{\lfloor n/2 \rfloor}, Y_{\lfloor n/2 \rfloor})$ —that is, we construct quantile estimates $\hat{\tau}_n(x; \alpha/2)$ and $\hat{\tau}_n(x; 1 - \alpha/2)$. We then use the more recent data points $(X_{\lfloor n/2 \rfloor+1}, Y_{\lfloor n/2 \rfloor+1}), \ldots, (X_n, Y_n)$ as our calibration set, to define \hat{q}_n and return the corresponding CQR prediction set,

$$C_n(X_{n+1}) = [\hat{\tau}_n(X_{n+1}; \alpha/2) - \hat{q}_n, \hat{\tau}_n(X_{n+1}; 1 - \alpha/2) + \hat{q}_n].$$

(Note that our notation for indexing the data points has changed for this time series setting—the calibration set size is $\lceil n/2 \rceil$, rather than n as has been the case throughout the chapter.)

Proposition 5.9

Under the setting and notation defined above, assume that $(X_1, Y_1), (X_2, Y_2), \ldots$ is a time series of identically distributed (but not necessarily independent) data points, with $(X_i, Y_i) \sim P$ for each i. Assume that the conditional distribution $P_{Y|X}$ has a positive and bounded density $f^*(y \mid x)$, and let $\tau^*(x;\beta)$ denote the β -quantile of this conditional distribution. Assume also that the time series is strongly mixing, meaning that

$$\lim_{m \to \infty} \left\{ \sup_{\substack{k \ge 1 \ A \in \mathcal{A}_{\le k} \\ A' \in \mathcal{A}_{>k+m}}} \left| \mathbb{P}(A \cap A') - \mathbb{P}(A)\mathbb{P}(A') \right| \right\} = 0,$$

where $A_{\leq k}$ is the set of all events that depend only on $((X_1, Y_1), \dots, (X_k, Y_k))$, and $A_{\geq k+m}$ is the set of all events that depend only on $((X_{k+m}, Y_{k+m}), (X_{k+m+1}, Y_{k+m+1}), \dots)$.

If the quantile estimates $\hat{\tau}_n$ satisfy

$$\lim_{n \to \infty} \mathbb{E} \left[\int_{\mathcal{X}} |\hat{\tau}_n(x;\beta) - \tau^*(x;\beta)| \, dP_X(x) \right] = 0$$
 (5.19)

for each $\beta \in \{\alpha/2, 1 - \alpha/2\}$, then

$$\lim_{n\to\infty} \mathbb{E}\left[\left|\mathbb{P}\left(Y_{n+1}\in\mathcal{C}_n(X_{n+1})\mid X_{n+1}\right)-(1-\alpha)\right|\right]=0.$$

Proof of Proposition 5.9

Let $Z = (X, Y) \sim P$ denote an independent data point, and let $Z_i = (X_i, Y_i)$ as usual. We will use the following notation:

$$\gamma_m = \sup_{k \ge 1} d_{\text{TV}}((Z_1, \dots, Z_k, Z_{k+m}), (Z_1, \dots, Z_k, Z)).$$

By the strongly mixing assumption, we must have $\lim_{m\to\infty} \gamma_m = 0$. Note that since $\hat{\tau}_n$ is trained on $(Z_1, \ldots, Z_{\lfloor n/2 \rfloor})$, we therefore have

$$d_{\text{TV}}((\hat{\tau}_n, Z_{\lfloor n/2 \rfloor + m}), (\hat{\tau}_n, Z)) \le \gamma_m$$
(5.20)

for all n and all m. In other words, for large m (i.e., if $\gamma_m \approx 0$), the trained model $\hat{\tau}_n$ is nearly independent of the future data point $Z_{\lfloor n/2 \rfloor + m} = (X_{\lfloor n/2 \rfloor + m}, Y_{\lfloor n/2 \rfloor + m})$.

The key challenge of the proof will be to verify that \hat{q}_n converges to zero in probability, i.e.,

$$\lim_{n \to \infty} \mathbb{P}(|\hat{q}_n| > \epsilon) = 0 \tag{5.21}$$

for any $\epsilon > 0$.

Step 1: show that convergence of \hat{q}_n is sufficient. First we assume (5.21) holds. By definition of τ^* , $\mathbb{P}(Y_{n+1} \in \mathcal{C}^*(X_{n+1}) \mid X_{n+1}) = 1 - \alpha$ (almost surely), which implies

$$|\mathbb{P}(Y_{n+1} \in \mathcal{C}_n(X_{n+1}) \mid X_{n+1}) - (1-\alpha)| \le \mathbb{P}(Y_{n+1} \in \mathcal{C}_n(X_{n+1}) \triangle \mathcal{C}^*(X_{n+1}) \mid X_{n+1}).$$

Therefore, recalling the CQR score s_n (5.7) and the oracle CQR score s^* (5.8) from Section 5.6, we have

$$\mathbb{E}\left[\left|\mathbb{P}\left(Y_{n+1} \in \mathcal{C}_n(X_{n+1}) \mid X_{n+1}\right) - (1-\alpha)\right|\right]$$

$$\leq \mathbb{P}\left(Y_{n+1} \in \mathcal{C}_n(X_{n+1}) \triangle \mathcal{C}^*(X_{n+1})\right) = \mathbb{P}\left(\mathbb{1}\left\{s_n(Z_{n+1}) \leq \hat{q}_n\right\} \neq \mathbb{1}\left\{s^*(Z_{n+1}) \leq 0\right\}\right) \\ \leq \mathbb{P}\left(|s_n(Z_{n+1}) - s^*(Z_{n+1})| > \epsilon\right) + \mathbb{P}\left(|s^*(Z_{n+1})| \leq 2\epsilon\right) + \mathbb{P}\left(|\hat{q}_n| > \epsilon\right),$$

where for the last step we fix any $\epsilon > 0$.

Next, by definition of s^* , we have

$$|s^*(Z_{n+1})| \le 2\epsilon \implies \min_{\beta \in \{\alpha/2, 1-\alpha/2\}} |Y_{n+1} - \tau^*(X_{n+1}; \beta)| \le 2\epsilon,$$

and therefore

$$\mathbb{P}(|s^*(Z_{n+1})| \le 2\epsilon) \le \sum_{\beta \in \{\alpha/2, 1-\alpha/2\}} \mathbb{P}\left(-2\epsilon \le Y_{n+1} - \tau^*(X_{n+1}; \beta) \le 2\epsilon\right) \le 2 \cdot 4\epsilon \cdot \sup_{x, y} f^*(y \mid x),$$

since $f^*(\cdot \mid X_{n+1})$ is the conditional density of $Y_{n+1} \mid X_{n+1}$.

Furthermore, by definition of s_n and s^* , we have

$$\mathbb{P}(|s_{n}(Z_{n+1}) - s^{*}(Z_{n+1})| > \epsilon) \leq \sum_{\beta \in \{\alpha/2, 1-\alpha/2\}} \mathbb{P}(|\hat{\tau}_{n}(X_{n+1}; \beta) - \tau^{*}(X_{n+1}; \beta)| > \epsilon)
\leq \sum_{\beta \in \{\alpha/2, 1-\alpha/2\}} (\mathbb{P}(|\hat{\tau}_{n}(X; \beta) - \tau^{*}(X; \beta)| > \epsilon) + \gamma_{\lceil n/2 \rceil + 1}).$$

We also have $\lim_{n\to\infty}\gamma_{\lceil n/2\rceil+1}=0$, and for each β , $\lim_{n\to\infty}\mathbb{P}\left(|\hat{\tau}_n(X;\beta)-\tau^*(X;\beta)|>\epsilon\right)=0$ due to the assumption (5.19). Therefore, $\lim_{n\to\infty}\mathbb{P}\left(|s_n(Z_{n+1})-s^*(Z_{n+1})|>\epsilon\right)=0$.

Combining all these calculations, and using the fact that $\lim_{n\to\infty} \mathbb{P}(|\hat{q}_n| > \epsilon) = 0$ by (5.21), we have shown that

$$\lim_{n \to \infty} \sup_{x \to \infty} \mathbb{E}\left[\left|\mathbb{P}\left(Y_{n+1} \in \mathcal{C}_n(X_{n+1}) \mid X_{n+1}\right) - (1-\alpha)\right|\right] \le 8\epsilon \cdot \sup_{x,y} f^*(y \mid x).$$

Since these calculations hold for arbitrarily small $\epsilon > 0$, and since $\sup_{(x,y)} f^*(y \mid x) < \infty$ by assumption, this completes the proof.

Step 2: prove convergence of \hat{q}_n . We now need to verify (5.21). We will prove that, for any $\epsilon > 0$, $\mathbb{P}(\hat{q}_n \leq \epsilon) \to 1$; the proof for the lower bound on \hat{q}_n is similar so we omit the details.

First we need to show a concentration property of $\hat{\tau}_n$ over the calibration set. We calculate

$$\mathbb{E}\left[\frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1}\left\{|\hat{\tau}_{n}(X_{i};\beta) - \tau^{*}(X_{i};\beta)| > \epsilon/2\right\}\right] \\
= \frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{P}\left(|\hat{\tau}_{n}(X_{i};\beta) - \tau^{*}(X_{i};\beta)| > \epsilon/2\right) \\
\leq \frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \left(\mathbb{P}\left(|\hat{\tau}_{n}(X;\beta) - \tau^{*}(X;\beta)| > \epsilon/2\right) + \gamma_{i-\lfloor n/2 \rfloor}\right) \quad \text{by (5.20)} \\
= \mathbb{P}\left(|\hat{\tau}_{n}(X;\beta) - \tau^{*}(X;\beta)| > \epsilon/2\right) + \frac{1}{\lceil n/2 \rceil} \sum_{i=1}^{\lceil n/2 \rceil} \gamma_{i} \\
\to 0,$$

as $n \to \infty$, where the last step holds since the first term is vanishing by the assumption (5.19), while the second term is vanishing since $\sup_m \gamma_m \le 1$ and $\lim_{m \to \infty} \gamma_m = 0$. By Markov's inequality, then, fixing any $\delta > 0$, we have

$$\mathbb{P}\left(\frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1}\left\{ |\hat{\tau}_n(X_i;\beta) - \tau^*(X_i;\beta)| > \epsilon/2 \right\} > \delta \right) \to 0 \tag{5.22}$$

for each $\beta \in \{\alpha/2, 1 - \alpha/2\}$.

Next, let

$$1 - \alpha' = \mathbb{P}_{(X,Y) \sim P}(Y \in \mathcal{C}^{*,\epsilon/2}(X)),$$

where

$$\mathcal{C}^{*,\epsilon/2}(x) = \left[\tau^*(x;\alpha/2) - \epsilon/2, \tau^*(x;1-\alpha/2) + \epsilon/2\right].$$

Since the conditional density $f^*(\cdot \mid X)$ of $Y \mid X$ is assumed to be positive, and $\epsilon > 0$, we must have $\alpha' < \alpha$. By the Law of Large Numbers for strongly mixing time series, we have

$$\mathbb{P}\left(\frac{1}{\lceil n/2 \rceil} \sum_{i=1}^{\lceil n/2 \rceil} \mathbb{1}\left\{Y_i \in \mathcal{C}^{*,\epsilon/2}(X_i)\right\} < 1 - \alpha' - \delta\right) \to 0 \tag{5.23}$$

for any $\delta > 0$.

Next, by definition of the CQR score, $s_n(x,y) = \max\{\hat{\tau}_n(x;\alpha/2) - y, y - \hat{\tau}_n(x;1-\alpha/2)\}$, it holds that

If
$$y \in \mathcal{C}^{*,\epsilon/2}(x)$$
 then $s_n(x,y) \le \epsilon/2 + \max_{\beta \in \{\alpha/2,1-\alpha/2\}} |\hat{\tau}_n(x;\beta) - \tau^*(x;\beta)|$.

Consequently,

$$\frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1} \left\{ s_n(X_i, Y_i) \le \epsilon \right\} \ge \frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1} \left\{ Y_i \in \mathcal{C}^{*,\epsilon/2}(X_i) \right\} \\ - \sum_{\beta \in \{\alpha/2, 1-\alpha/2\}} \frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1} \left\{ |\hat{\tau}_n(x; \beta) - \tau^*(x; \beta)| > \epsilon/2 \right\}$$

By (5.22) and (5.23), for any $\delta > 0$, we therefore have

$$\mathbb{P}\left(\frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1}\left\{s_n(X_i, Y_i) \le \epsilon\right\} \ge 1 - \alpha' - 3\delta\right) \to 1.$$

Choosing δ sufficiently small so that $1 - \alpha' - 3\delta > 1 - \alpha$, then,

$$\mathbb{P}\left(\frac{1}{\lceil n/2 \rceil} \sum_{i=\lfloor n/2 \rfloor+1}^{n} \mathbb{1}\left\{s_n(X_i, Y_i) \le \epsilon\right\} \ge (1-\alpha)\left(1 + \frac{1}{\lceil n/2 \rceil}\right)\right) \to 1.$$

But by definition of \hat{q}_n as the quantile of the scores on the calibration data, this means that $\mathbb{P}(\hat{q}_n \leq \epsilon) \to 1$, as desired.

Bibliographic notes

Many works in the literature have established asymptotic optimality type properties for conformal prediction, in a range of different settings. These works have generally focused on specific choices of the score and/or the underlying distributional assumptions. For the two case studies presented in Section 5.2 for the classification setting, the first one uses the high-probability score, which is studied by Sadinle et al. [2019], who also give asymptotic optimality statements (see also earlier work by Lei [2014]). The second case study uses the cumulative-probability score to achieve conditional rather than marginal (oracle) coverage, which is a score proposed by Romano et al. [2020] and studied further by Angelopoulos et al. [2021b]. Turning to the regression setting, for the two case studies presented in Section 5.3, the first uses the high-density score, studied by Izbicki et al. [2020] and Lei et al. [2013], who both give asymptotic optimality results for the score. The second uses the conformalized quantile regression (CQR) score, as developed by Romano et al. [2019]; subsequent work by Sesia and Candès [2020] develops asymptotical optimality results for the CQR score. The conformalized quantile regression builds on the large literature in quantile regression, originating from Koenker and Bassett Jr [1978] and with important further results by Chaudhuri [1991]. Early results establishing asymptotic optimality type properties in the regression setting include the work of Lei et al. [2018], who consider the residual score, as we introduced in Chapter 1 (but have not studied in this present chapter). Additional asymptotic optimality results for various settings include the work of Burnaev and Vovk [2014] for ridge regression, Lei and Wasserman [2014] for kernel density estimates, Gyôrfi and Walk [2019] for nearest-neighbors, and Chernozhukov et al. [2018] for counterfactual inference in synthetic controls. Finally, the work of Hoff [2023] establishes an optimality guarantee for the conformalized Bayesian posterior. Essentially, the conformalized posterior distribution has the smallest expected volume under the Bayesian model among all sets with distribution-free $1-\alpha$ frequentist coverage—see also Bersson and Hoff [2024].

Of course, all of the results in this Chapter (and all the works cited above) assume some knowledge of the underlying data distribution in order to establish optimality properties. This is necessary, since although conformal prediction offers distribution-free marginal coverage, stronger properties can only hold under additional assumptions. For instance, hardness results in Chapter 4 establish impossibility of assumption-free conditional coverage guarantees (see see Theorems 4.4 and 4.13). Similarly, Gao et al. [2025] establish that, for any method C_n providing distribution-free marginal predictive coverage, there must exist some distributions for which C_n is far from optimal in terms of the size of the prediction set.

The general theory developed in Section 5.4 is adapted from Duchi et al. [2024]. We note that this paper studies a more general problem, where split conformal prediction (or, in the paper, alternatively a cross-validation based method) is applied across data gathered from multiple different environments; the i.i.d. setting can be viewed as a special case.

Finally, the robustness results of Section 5.5 are based on the work of Xu and Xie [2023a,b] for the time-series setting. The proof of Proposition 5.9 relies on a Law of Large Numbers for strongly mixing time series; see Blum et al. [1963] for background. Additional results for conformal prediction with time series data exist in the literature for a range of different settings, for instance, the results of Chernozhukov et al. [2021].

Part III

Extensions of Conformal Prediction

Chapter 6

Cross-Validation Based Conformal Methods

This chapter begins Part III of the book. The previous part has focused on conformal prediction for batches of exchangeable data points. In this next part of the book, we present extensions to the conformal prediction procedure that modify it to have a better computational/statistical tradeoff, to handle non-exchangeable data, to operate in an online setting with streaming data, and more.

In this chapter, we will focus on cross-validation (CV) style approaches to conformal prediction, covering the main methodologies in this area along with their corresponding theoretical guarantees. Recall that in Part II, we introduced full conformal prediction and split conformal prediction, which can be viewed as lying at two extremes of a computational/statistical tradeoff. Split conformal only requires fitting the model once, but may lead to wider intervals due to the statistical cost of data splitting. In contrast, full conformal may provide narrower intervals as it uses the entire available training set for model fitting, but in principle may require a large number (or even infinitely many) calls to the model fitting algorithm and therefore is very expensive to compute even approximately.

A natural question is therefore whether we can use a strategy that is more statistically efficient than data splitting, without paying the steep computational price of full conformal prediction: namely, can we use cross-validation? Interestingly, the theoretical analysis of CV-type methods proves to be surprisingly different from the analysis of full and split conformal, and this chapter will go through these arguments in detail.

6.1 Preliminaries: split conformal as a tournament

Before presenting cross-validation-style variants of the conformal prediction method, it will help to first return to split conformal, and reformulate the construction of that method. Let $I \subseteq [n]$ be a subset of the indices of the available labeled data, and suppose we will use this subset $\mathcal{D}_I = ((X_i, Y_i))_{i \in [n] \setminus I}$ as our calibration set, after training our model on the remaining data $\mathcal{D}_{[n] \setminus I} = ((X_i, Y_i))_{i \in [n] \setminus I}$. Note that here we depart from the notation of the earlier chapters: in this section, we assume a total of n labeled data points, and that \mathcal{D}_n must be partitioned to provide both data for model training and for calibration. For example, for a data point $i \in I$ used for calibration in the split conformal procedure, its score will be given by $s((X_i, Y_i); \mathcal{D}_{[n] \setminus I})$.

The split conformal method operates by comparing the score of a hypothesized test point, $s((X_{n+1}, y); \mathcal{D}_{[n]\setminus I})$ against the scores for calibration data points, $s((X_i, Y_i); \mathcal{D}_{[n]\setminus I})$, for all $i \in I$. Concretely, in this setting where we have |I| (rather than n) as the number of calibration points, the split conformal interval is defined as

$$\mathcal{C}(X_{n+1}) = \left\{ y : s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I}) \le \text{Quantile}\left(\left(s((X_i, Y_i); \mathcal{D}_{[n] \setminus I})\right)_{i \in I}; (1 - \alpha) \left(1 + 1/|I|\right)\right) \right\}.$$

Figure 6.1: Visualization of split conformal prediction as a tournament, as described in Section 6.1. Given a pretrained score function s, we construct a 'tournament' among the calibration points (X_i, Y_i) and the hypothesized test point (X_{n+1}, y) , where a team 'wins' against another team if its score is strictly larger. The tournament graph at the top of the figure shows the outcomes of all the games, with arrows pointing from the winning team to the losing team in each pairwise comparison.

We observe that, by definition of the quantile, this prediction interval can equivalently be defined as

$$C(X_{n+1}) = \left\{ y : \sum_{i \in I} \mathbb{1} \left\{ s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I}) > s((X_i, Y_i); \mathcal{D}_{[n] \setminus I}) \right\} < (1 - \alpha)(|I| + 1) \right\}.$$
 (6.1)

With this reformulation of the prediction interval, we can now see that split conformal can be interpreted as a tournament between teams—that is, between data points $i \in I \cup \{n+1\}$. Each team's strength is determined by its score, namely, $s((X_i, Y_i); \mathcal{D}_{[n] \setminus I})$ for each team $i \in I$, and $s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I})$ for team i = n+1. When team i plays against team j, it wins if its score is strictly higher; if the scores are equal, neither team wins. We can therefore see that, to determine whether a value y is included in the prediction interval $\mathcal{C}(X_{n+1})$, we are equivalently asking:

Did team n+1 win fewer than $(1-\alpha)(|I|+1)$ many games, when playing against all teams $i \in I$?

This tournament interpretation of split conformal, visualized in Figure 6.1, will help us to understand the construction of the cross-validation methods that we will study next, as well as the proofs of their corresponding theoretical guarantees.

6.2 Cross-conformal prediction

Next, we will extend this reformulation of split conformal to a cross-validation style approach. To begin, we partition the available data into K disjoint folds, given by

$$[n] = I_1 \cup \cdots \cup I_K$$
.

(Typically we would take the folds to be of equal size n/K, or as close to equal as possible if n/K is not an integer.) Then for each k = 1, ..., K, the fold I_k plays the role of the calibration set: we compare the score

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

of the hypothesized test point against the scores of data points indexed by $i \in I_k$, using the model trained on $\mathcal{D}_{[n]\setminus I_k}$. That is, for each k,

Compare
$$s((X_{n+1}, y); \mathcal{D}_{[n]\setminus I_k})$$
 against $(s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k}))_{i\in I_k}$.

To pool these K comparisons together, and construct a *single* prediction interval, we define

$$C(X_{n+1}) = \left\{ y : \sum_{k=1}^{K} \sum_{i \in I_k} \mathbb{1} \left\{ s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I_k}) > s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k}) \right\} < (1 - \alpha)(n+1) \right\}, \tag{6.2}$$

which is known as the *cross-conformal prediction* set. In constructing this set, the innermost sum calculates how many games were won by player n + 1 within fold k, and the outermost sum is over the K folds. Thus, the left-hand side of the inequality simply counts the total number of games won by player n + 1.

Now compare to (6.1): that reformulation of split conformal makes it immediately apparent that the cross-conformal method is simply an extension of split conformal to a setting where we cycle through multiple folds. To ask whether a value y will be included in the prediction set, we can return to the tournament interpretation: when team n+1 plays against team $i \in I_k$, the two teams have 'strengths' determined by $s((X_{n+1},y); \mathcal{D}_{[n]\setminus I_k})$ and $s((X_i,Y_i); \mathcal{D}_{[n]\setminus I_k})$, respectively. In particular, unlike for split conformal, here the strength of team n+1, when it plays a game against team i, will vary depending on the fold I_k to which team i belongs (see Figure 6.2 for an illustration). In both settings, however, the intuition is essentially the same: a value $y \in \mathcal{Y}$ is included in the prediction set if, with this value of y, the test point does not win too many of its games.

The case K = n, where each fold contains a single data point, is a special case. For this variant of the method, which is often called leave-one-out cross-conformal prediction, the procedure requires a model to be trained on each of the n leave-one-out datasets, $\mathcal{D}_{[n]\setminus\{i\}} = ((X_j, Y_j))_{j\in[n]\setminus\{i\}}$.

6.2.1 Coverage guarantees for cross-conformal prediction

We next establish marginal coverage guarantees for the K-fold cross-conformal method. We will present two results, which follow completely different proof strategies, and offer complementary guarantees. The first theorem follows an argument relating to averaging p-values, and offers a more favorable guarantee in the regime where K is small; the second theorem relies on a tournament-matrix type argument, and gives a more favorable guarantee in the regime where K is large (including the case K = n).

Theorem 6.1

If the data points $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are exchangeable, then the cross-conformal prediction method (6.2) (run with K folds of equal size n/K) satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - 2\alpha - 2(1 - \alpha) \cdot \frac{1 - 1/K}{n/K + 1}.$$

For the second bound, we will need to assume symmetry of the score s (recall Definition 3.1). We will also need a slightly stronger form of exchangeability: we will need to assume that the n+1 training and test data points can be embedded into a longer, and still exchangeable, sequence of data points:

$$\underbrace{(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1})}_{\text{the observed training} + \text{ test data}}, (X_{n+2}, Y_{n+2}), \dots, (X_{n+n/K}, Y_{n+n/K}) \text{ are exchangeable.}$$
(6.3)

This is only mildly stronger than our usual assumption of exchangeability of the training and test data—for instance, it is satisfied if the data points are drawn i.i.d. from any distribution, or if they are sampled without replacement from a finite population of length $N \ge n + n/K$. However, it will not hold in all settings—for example, if the n data points are sampled uniformly without replacement from a finite population of size n.

Figure 6.2: Visualization of cross-conformal prediction as a tournament, for a partition $[n] = I_1 \cup \cdots \cup I_K$. For each fold k, and for each data point $i \in I_k$, the hypothesized test point (X_{n+1}, y) 'wins' its game against a data point (X_i, Y_i) if its score is strictly higher, when trained on the data with the kth fold held out—that is, we compare $s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I_k})$ against $s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k})$.

Theorem 6.2

Under the same setting as Theorem 6.1, and assuming also that the exchangeability condition (6.3) holds and that the score function is symmetric (as in Definition 3.1), the cross-conformal prediction method (6.2) satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - 2\alpha - 2(1-\alpha) \cdot \frac{1 - K/n}{K+1}.$$

In particular, Theorem 6.2 establishes that, for leave-one-out cross-conformal (i.e., the case K=n),

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - 2\alpha.$$

(Note that for the leave-one-out setting, the condition (6.3) is simply equivalent to exchangeability of the n+1 training and test points, since n+n/K=n+1 in this case.)

For the general case where K may take any value, by combining the two theorems, we see that K-fold cross-conformal satisfies the following bound:

Corollary 6.3

Under the same setting as Theorem 6.2, the cross-conformal prediction method (6.2) satisfies

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - 2\alpha - 2(1-\alpha) \cdot \min\left\{\frac{1 - 1/K}{n/K + 1}, \frac{1 - K/n}{K + 1}\right\} \ge 1 - 2\alpha - 2/\sqrt{n},$$

for any choice of K.

Ignoring the $\mathcal{O}(1/\sqrt{n})$ term, this result essentially tells us that, for any K, cross-conformal will always yield marginal coverage at level $\geq 1 - 2\alpha$ —but by construction, we would expect to achieve $\geq 1 - \alpha$ coverage (and indeed, this is generally achieved in practice). We will discuss this gap in more detail in Section 6.2.3 below.

We next prove the individual bounds.

Proof of Theorem 6.1

For each fold k, and for any (x, y), define

$$p_k(x,y) = \frac{1 + \sum_{i \in I_k} \mathbb{1}\left\{s((x,y); \mathcal{D}_{[n]\setminus I_k}) \le s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k})\right\}}{1 + n/K}.$$

Then we can interpret $p_k(X_{n+1}, y)$ as a p-value for a permutation test comparing the hypothesized test point (X_{n+1}, y) against the data in the kth fold, $((X_i, Y_i))_{i \in I_k}$. Specifically, observing that the data points $((X_i, Y_i))_{i \in I_k \cup \{n+1\}}$ are exchangeable after conditioning on $\mathcal{D}_{[n]\setminus I_k}$, we then see that the scores $(s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k}))_{i \in I_k \cup \{n+1\}}$ are exchangeable as well, and thus by Corollary 2.6, $p_k(X_{n+1}, Y_{n+1})$ satisfies

$$\mathbb{P}(p_k(X_{n+1}, Y_{n+1}) \le t) \le t \text{ for all } t \in [0, 1].$$

Next, for any y, we can calculate

$$\frac{p_1(X_{n+1}, y) + \dots + p_K(X_{n+1}, y)}{K} = \frac{K + \sum_{k=1}^K \sum_{i \in I_k} \mathbb{1}\left\{s((X_{n+1}, y); \mathcal{D}_{[n]\setminus I_k}) \le s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k})\right\}}{K + n}.$$

Comparing to the definition of the cross-conformal method (6.2), we see that

$$y \in \mathcal{C}(X_{n+1}) \Longleftrightarrow \frac{p_1(X_{n+1}, y) + \dots + p_K(X_{n+1}, y)}{K} > \alpha + (1 - \alpha) \cdot \frac{K - 1}{K + n}.$$

Therefore,

$$\mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1})) = \mathbb{P}\left(\frac{p_1(X_{n+1}, Y_{n+1}) + \dots + p_K(X_{n+1}, Y_{n+1})}{K} \le \alpha + (1 - \alpha) \cdot \frac{K - 1}{K + n}\right).$$

Finally, to complete the proof, we apply the fact that averaging p-values provides a quantity that is a p-value up to a factor of 2, i.e.,

$$\mathbb{P}\left(\frac{p_1(X_{n+1},Y_{n+1})+\cdots+p_K(X_{n+1},Y_{n+1})}{K}\leq t\right)\leq 2t \text{ for all } t.$$

Proof of Theorem 6.2

The proof of this result will refer back to the tournament interpretation of the cross-conformal prediction interval, described in Section 6.1. Recall that, to determine whether Y_{n+1} is covered by $\mathcal{C}(X_{n+1})$, we examine the outcomes of 'games' played between team n+1 and each team $i=1,\ldots,n$, where for $i\in I_k$, the outcome of the game is determined by comparing scores $s((X_{n+1},Y_{n+1});\mathcal{D}_{[n]\setminus I_k})$ and $s((X_i,Y_i);\mathcal{D}_{[n]\setminus I_k})$.

Step 1: constructing the tournament. We begin by imagining that rather than a single test point (X_{n+1}, Y_{n+1}) , we instead have n/K many test points, (X_{n+i}, Y_{n+i}) , for i = 1, ..., n/K. This will allow us to have K + 1 many folds each containing n/K many points, where the first K folds contain the training data, while the last fold contains a test set. (We can construct this longer sequence of n + n/K many exchangeable data points—that is,

$$(X_1, Y_1), \dots, (X_{n+n/K}, Y_{n+n/K})$$
—due to assumption (6.3).)

Next consider a tournament where team i plays against team j, for each pair of teams that are not in the same fold. Specifically, suppose that $i \in I_k$ and $j \in I_\ell$, for $k \neq \ell$. (Here we have $k, \ell \in [K+1]$, that is, we may choose to have one of the folds be the (K+1)st fold that comprises the test set.) Next, define $\mathcal{D}_{n+n/K}$ to be the complete dataset, with all n+n/K (training and test) data points, and for any folds $k \neq \ell \in [K+1]$, let $\mathcal{D}_{[n+n/K]\setminus (I_k \cup I_\ell)}$ be the corresponding dataset of size n-n/K where two folds are removed from $\mathcal{D}_{n+n/K}$.

We now construct a (n + n/K)-by-(n + n/K) matrix of scores,

$$S_{ij} = \begin{cases} s\big((X_i, Y_i); \mathcal{D}_{[n+n/K]\setminus (I_k \cup I_\ell)}\big), & \text{if } i, j \text{ are in different folds: } i \in I_k, j \in I_\ell, k \neq \ell, \\ 0, & \text{if } i, j \text{ are in the same fold.} \end{cases}$$

In other words, S_{ij} is the score assigned to the *i*th data point, when the model is trained after removing the two folds corresponding to data point *i* and data point *j* (and if instead *i* and *j* are in the same fold, then we assign the arbitrary value $S_{ij} = 0$ since no game was played).

Next, consider the tournament matrix $A \in \{0,1\}^{(n+n/K)\times(n+n/K)}$, defined as follows: when team i plays agains team j, we declare team i to be the winner if its score is strictly higher:

$$A_{ij} = \mathbb{1} \{ S_{ij} > S_{ji} \},$$

for each $i, j \in [n + n/K]$. The following lemma deterministically bounds the number of teams which achieve a minimum number of wins in this tournament. (This result is closely related to Landau's theorem on tournaments.)

Lemma 6.4: Tournament Lemma

Let $A \in \{0,1\}^{N \times N}$ satisfy $A_{ij} + A_{ji} \le 1$ for all i, j. Then for any $t \in [0,1]$,

$$\sum_{i=1}^{N} \mathbb{1} \left\{ \sum_{j=1}^{N} A_{ij} \ge N(1-t) \right\} \le 2tN.$$

Applying this lemma with N = n + n/K and $t = \alpha + (1 - \alpha) \cdot \frac{n/K - 1}{n + n/K}$, we then obtain

$$\sum_{i=1}^{n+n/K} \mathbb{1} \left\{ \sum_{j=1}^{n+n/K} A_{ij} \ge (1-\alpha)(n+1) \right\} \le 2 \left(\alpha + (1-\alpha) \cdot \frac{n/K - 1}{n+n/K} \right) \cdot (n+n/K). \tag{6.4}$$

Step 2: relating the tournament to the prediction set. Next we consider the special case where one of the two folds is the test fold. For any $k \in [K]$, $\mathcal{D}_{[n+n/K]\setminus (I_k \cup I_{K+1})} = \mathcal{D}_{[n]\setminus I_k}$ —that is, removing the kth training fold and also the test fold (the (K+1)st fold) from the complete dataset $\mathcal{D}_{n+n/K}$, is equivalent to removing only the kth fold from the training dataset \mathcal{D}_n . Therefore, considering the definition of S_{ij} , if i = n+1 and $j \in I_k$ for some $k \leq K$, then we can see that

$$S_{n+1,j} = s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n]\setminus I_k}),$$

while if j = n + 1 and $i \in I_k$ for some $k \leq K$, then we instead have

$$S_{i,n+1} = s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k}).$$

Therefore, for any $k \in [K]$ and $i \in I_k$

$$s((X_{n+1}, y); \mathcal{D}_{[n]\setminus I_k}) > s((X_i, Y_i); \mathcal{D}_{[n]\setminus I_k}) \iff A_{n+1,i} = 1.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Recalling the definition of the cross-conformal method (6.2), we then have

$$Y_{n+1} \notin \mathcal{C}(X_{n+1}) \Longleftrightarrow \sum_{i=1}^{n} A_{n+1,i} \ge (1-\alpha)(n+1) \Longleftrightarrow \sum_{i=1}^{n+n/K} A_{n+1,i} \ge (1-\alpha)(n+1),$$

where the last step holds since $A_{n+1,i} = 0$ for all $i \in I_{K+1} = \{n+1, \dots, n+n/K\}$, by definition.

Step 3: applying exchangeability. Next, we establish an exchangeability property for the tournament matrix $A \in \{0,1\}^{(n+n/K)\times(n+n/K)}$. In particular, consider any σ on [n+n/K] that preserves the equivalence relation induced by the folds:

If
$$i, j \in I_k$$
 for some $k \in [K+1]$, then $\sigma(i), \sigma(j) \in I_\ell$ for some $\ell \in [K+1]$, (6.5)

so that, for all $i \neq j \in [n + n/K]$, it holds that i, j are in the same fold if and only if $\sigma(i), \sigma(j)$ are in the same fold. We will show that for any such σ ,

$$A \stackrel{\mathrm{d}}{=} A_{\sigma},\tag{6.6}$$

where we define $(A_{\sigma})_{ij} = A_{\sigma(i),\sigma(j)}$, that is, the permuted tournament matrix A_{σ} is derived from the original tournament matrix A by applying the same permutation σ to both row and column indices. To verify (6.6), we observe that we can write A explicitly as a function of the data: we write $A = A(\mathcal{D}_{n+n/K})$, where, given any dataset $\mathcal{D} = (z_r)_{r \in [n+n/K]}$ we define the matrix $A(\mathcal{D})$ to have entries

$$\left(A(\mathcal{D})\right)_{ij} = \mathbb{1}\left\{s\left(z_i;(z_r)_{r\in[n+n/K]\setminus(I_k\cup I_\ell)}\right) > s\left(z_j;(z_r)_{r\in[n+n/K]\setminus(I_k\cup I_\ell)}\right)\right\},\,$$

if $i \in I_k$, $j \in I_\ell$ for some $k \neq \ell \in [K+1]$, or otherwise if i, j lie in the same fold then we set

$$(A(\mathcal{D}))_{ij} = 0.$$

With this new notation in place, it holds immediately that

$$A = A(\mathcal{D}_{n+n/K}) \stackrel{\mathrm{d}}{=} A((\mathcal{D}_{n+n/K})_{\sigma}),$$

where the first step holds by definition of our new notation of A as a function of the dataset, while the second step holds since the dataset $\mathcal{D}_{n+n/K}$ is assumed to be exchangeable. Note that thus far, this claim holds for any permutation σ . Finally, it is also straightforward to verify that, since the score function s is symmetric, as long as we choose a permutation σ that preserves the folds as in (6.5), then $A_{\sigma} = A((\mathcal{D}_{n+n/K})_{\sigma})$ —that is, permuting the tournament matrix A that was computed on the original dataset $\mathcal{D}_{n+n/K}$, is equivalent to computing the tournament matrix using the permuted dataset $(\mathcal{D}_{n+n/K})_{\sigma}$. We have therefore shown that (6.6) holds.

Consequently, for any σ that satisfies (6.5),

$$\mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1})) = \mathbb{P}\left(\sum_{j=1}^{n+n/K} A_{n+1,j} \ge (1-\alpha)(n+1)\right)$$
$$= \mathbb{P}\left(\sum_{j=1}^{n+n/K} (A_{\sigma})_{n+1,j} \ge (1-\alpha)(n+1)\right)$$
$$= \mathbb{P}\left(\sum_{j=1}^{n+n/K} A_{\sigma(n+1),\sigma(j)} \ge (1-\alpha)(n+1)\right)$$

$$= \mathbb{P}\left(\sum_{j=1}^{n+n/K} A_{\sigma(n+1),j} \ge (1-\alpha)(n+1)\right),\,$$

where the last step holds since summing over $\sigma(j)$, for $j \in [n+1]$, is equivalent to simply summing over $j \in [n+1]$. For any $i \in [n+n/K]$, we can choose some σ satisfying (6.5) such that $\sigma(n+1) = i$, so we have

$$\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}(X_{n+1})\right) = \mathbb{P}\left(\sum_{j=1}^{n+n/K} A_{ij} \ge (1-\alpha)(n+1)\right).$$

After averaging over all $i \in [n + n/K]$, then,

$$\mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1})) = \frac{1}{n+n/K} \sum_{i=1}^{n+n/K} \mathbb{P}\left(\sum_{j=1}^{n+n/K} A_{ij} \ge (1-\alpha)(n+1)\right)$$

$$= \mathbb{E}\left[\frac{1}{n+n/K} \sum_{i=1}^{n+n/K} \mathbb{1}\left\{\sum_{j=1}^{n+n/K} A_{ij} \ge (1-\alpha)(n+1)\right\}\right] \le 2\alpha + 2(1-\alpha) \cdot \frac{n/K - 1}{n+n/K},$$

where the last step holds by applying (6.4) to the sum inside the expected value.

6.2.2 Proof of the tournament lemma

Proof of Lemma 6.4

Let

$$J = \left\{ i \in [N] : \sum_{j=1}^{N} A_{ij} \ge (1 - t)N \right\},\,$$

so that our goal is to bound |J|. We then calculate

$$|J| \cdot (1-t)N \leq \sum_{i \in J} \sum_{j=1}^{N} A_{ij} \text{ by definition of } J$$

$$= \sum_{i \in J} \sum_{j \in J} A_{ij} + \sum_{i \in J} \sum_{j \in [N] \setminus J} A_{ij}$$

$$= \frac{1}{2} \sum_{i \in J} \sum_{j \in J} (A_{ij} + A_{ji}) + \sum_{i \in J} \sum_{j \in [N] \setminus J} A_{ij}$$

$$\leq \frac{1}{2} |J|^2 + |J|(N - |J|), \tag{6.8}$$

where the last step holds since, for all $i, j, A_{ij} \in \{0, 1\}$ and $A_{ij} + A_{ji} \leq 1$, by assumption. Rearranging terms, we have proved the desired bound.

To illustrate the proof more intuitively, suppose we reorder the indices so that the entries in J all come first—then the matrix A can be represented as in Figure 6.3. By definition, for each $i \in J$, the sum of the ith

Figure 6.3: An illustration of the tournament matrix and the set J constructed in the proof of Lemma 6.4.

row of A is at least (1-t)N. In particular, this means that

(sum of entries in Block 1) + (sum of entries in Block 2)
$$\geq |J| \cdot (1-t)N$$
,

since each row $i \in J$ contributes at least (1-t)N to this sum—this verifies the step (6.7) in the calculations above. Now, since each entry in the matrix takes values in $\{0,1\}$, we have

(sum of entries in Block 2)
$$\leq |J| \cdot (N - |J|)$$
,

i.e., the sum is simply bounded by the size of the block. Moreover, since the matrix A is a tournament matrix, this means that $A_{ij} + A_{ji} \le 1$ for all (i, j)—in other words, it's not possible for team i to win against team j $(A_{ij} = 1)$ and also for j to win against i $(A_{ji} = 1)$. Therefore, the |J|-by-|J| submatrix in Block 1 can contain at most $|J|^2/2$ many entries with value 1, and so

(sum of entries in Block 1)
$$\leq |J|^2/2$$
.

These last two calculations combine to verify the step (6.8) in the calculations above.

6.2.3 Why the factor of 2?

By reexamining the proof of full conformal prediction through the lens of the tournament matrix construction, we can compare cross-conformal to full conformal, and learn more about why the factor of 2 arises in the coverage guarantee for cross-conformal—that is, why the results of Theorems 6.1 and 6.2 are only able to ensure coverage probability that is (approximately) $1 - 2\alpha$, rather than $1 - \alpha$.

For full conformal, the key construction in the proof is a vector of scores,

$$(S_1,\ldots,S_{n+1}),$$

with ith entry given by

$$S_i = s((X_i, Y_i); \mathcal{D}_{n+1}),$$

where \mathcal{D}_{n+1} comprises the training and test data, $(X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, Y_{n+1})$. The next step is to simply observe that at most α fraction of this list can be above the $(1 - \alpha)$ -quantile of this list,

$$\sum_{i=1}^{n+1} \mathbb{1} \{ S_i > \text{Quantile} (S_1, \dots, S_{n+1}; 1 - \alpha) \} \le \alpha (n+1)$$

(recall Fact 2.12(iii)). In other words, if we were to define a tournament matrix as

$$A_{ii} = 1 \{S_i > S_i\},$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

which we can interpret as saying that team i 'wins' against team j if its score is strictly higher, then the above quantile inequality could be written as

$$\sum_{i=1}^{n+1} \mathbb{1} \left\{ \sum_{j} A_{ij} \ge (1-\alpha)(n+1) \right\} \le \alpha(n+1), \tag{6.9}$$

that is, if we count teams that win at least $(1 - \alpha)$ of their games, these teams can comprise at most an α fraction of the total number of teams in the league. In contrast, Lemma 6.4 shows that, for a general tournament matrix A, the bound might inflate by, at worst, a factor of 2.

For full conformal, where the tournament matrix A is induced by comparing a vector (rather than a matrix) of scores, this tighter bound holds because A must be consistent with a total ordering on the n+1 data points. In particular, this tournament matrix satisfies transitivity: if $A_{ij} = 1$ and $A_{jr} = 1$ (i.e., team i wins against j, and team j wins against r), then we cannot have $A_{ri} = 1$ (i.e., team r cannot then win against i). In contrast, for cross-conformal, it is possible to have a failure of transitivity where, say, $A_{ij} = 1$, $A_{jr} = 1$, and $A_{ri} = 1$ —that is, team i wins against j, team j wins against r, and team r wins against i—and thus A is not consistent with any total ordering. The reason this can occur is that each of these three comparisons is carried out relative to a different model: for each of the three comparisons (i vs j, j vs r, and r vs i), we are removing a different pair of folds from the dataset when training the score function s. This potential failure of transitivity is exactly what leads to a factor of 2 in the coverage guarantee.

The following worst-case construction will illustrate why this can occur. For simplicity, take K = n, so that we have $A \in \{0,1\}^{(n+1)\times(n+1)}$, and assume that $m = \alpha(n+1) - 1$ is an integer. Then define A as follows:

$$A_{ij} = \begin{cases} 1, & i, j \le 2m + 1 \text{ and } 1 \le \text{mod}(j - i, 2m + 1) \le m, \\ 1, & i \le 2m + 1 < j, \\ 0, & \text{otherwise.} \end{cases}$$

For example, if n + 1 = 10 and $\alpha = 0.4$ so that m = 3, we have

where the top-left block is of size (2m+1)-by-(2m+1). We can see that, for each $i=1,\ldots,2m+1$, we have

$$\sum_{j=1}^{n+1} A_{ij} = \sum_{j=1}^{2m+1} A_{ij} + \sum_{j=(2m+1)+1}^{n+1} A_{ij} = m + (n+1-(2m+1)) = n - m = (1-\alpha)(n+1).$$

(In other words, in the notation of the proof of Lemma 6.4 and its illustration in Figure 6.3, the set J is given by $\{1, \ldots, 2m+1\}$.) We therefore have

$$\sum_{i=1}^{n+1} \mathbb{1} \left\{ \sum_{j} A_{ij} \ge (1-\alpha)(n+1) \right\} = 2m+1 = 2\alpha(n+1)-1,$$

which shows that it is possible to have the row sum bound (6.9) fail, by (nearly) a factor of 2. This means that, without further assumptions, the prediction sets returned by cross-conformal may have probability $\approx 2\alpha$, rather than α , of miscoverage.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

6.3 CV+ and jackknife+

In this section, we will first step away from the framework of conformal and cross-conformal and consider a more classical approach: the predictive interval constructed via cross-validation (CV), for the problem of predicting a real-valued response (i.e., $\mathcal{Y} = \mathbb{R}$). Specifically, given a fitted model $\hat{f}: \mathcal{X} \to \mathbb{R}$ trained on the full training set $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$, a popular approach for constructing a prediction interval around $\hat{f}(X_{n+1})$ is to use cross-validation to estimate the margin of error (i.e., the width of the interval). CV has similar benefits to cross-conformal prediction when compared to full and split conformal prediction: it allows one to traverse the tradeoff between computational and statistical efficiency. However, we will see that prediction intervals formed via CV can fail in the distribution-free setting, but a small modification (the CV+ method) resolves the issue. We will then see how CV+ is actually closely connected to cross-conformal.

Before proceeding, we introduce a new piece of notation. For the remainder of this chapter, we will write \mathcal{A} to denote the regression algorithm that is run in order to produce the fitted model \hat{f} —for instance, the least-squares algorithm. That is, \mathcal{A} is a function that inputs a dataset \mathcal{D} (a collection of points in $\mathcal{X} \times \mathbb{R}$), and returns a fitted model—the function $\hat{f}: \mathcal{X} \to \mathbb{R}$. (To compare to our earlier notation, when we discussed the residual score in Chapter 3, the notation $\hat{f}(\cdot; \mathcal{D})$ denoted this same fitted model.)

6.3.1 Cross-validation for prediction

Cross-validation refers to a genre of classical methods for estimating predictive error. Given a training set of n data points, $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$, the cross-validation procedure for constructing a prediction interval can be implemented as follows.

- 1. Split the training dataset \mathcal{D}_n into K disjoint folds, via a partition $[n] = I_1 \cup \ldots \cup I_K$.
- 2. For each fold $k \in [K]$, fit the model $\hat{f}_{-I_k} = \mathcal{A}(\mathcal{D}_{[n]\setminus I_k})$, where $\mathcal{D}_{[n]\setminus I_k} = ((X_i, Y_i))_{i\in [n]\setminus I_k}$ denotes the training set with kth fold I_k held out.
- 3. For each data point $i \in [n]$, compute $S_i = |Y_i \hat{f}_{-I_{k(i)}}(X_i)|$, where k(i) is the fold of the *i*th data point (i.e., the value k such that $i \in I_k$).
- 4. Compute the margin of error, $\hat{q}_{CV} = \text{Quantile}(S_1, \dots, S_n; 1 \alpha)$.
- 5. Refit the model on the full dataset, $\hat{f} = \mathcal{A}(\mathcal{D}_n)$, and output the prediction interval

$$C(X_{n+1}) = \hat{f}(X_{n+1}) \pm \hat{q}_{CV}. \tag{6.11}$$

The reason cross-validation works well in practice is that the residuals S_i are approximately unbiased estimates of the error of the fully trained model \hat{f} , because the data point (X_i, Y_i) , was not used in training the model $\hat{f}_{-I_{k(i)}}$. When K = n, this algorithm is sometimes called the jackknife, or, leave-one-out cross-validation.

Although the CV algorithm above is well-motivated, it does not have an assumption-free guarantee of coverage. To see why, consider the following failure case:

Example 6.5

Suppose that our regression algorithm \mathcal{A} is the following: given a dataset \mathcal{D} , to fit the model $\hat{f} = \mathcal{A}(\mathcal{D})$, if \mathcal{D} has an even number of data points then we return the constant model $\hat{f}(x) = 0$, while if \mathcal{D} has an odd number of data points then we instead return $\hat{f}(x) = 1$.

Now consider a distribution P with $\mathbb{P}_P(Y=0)=1$. Suppose that n and n/K are both odd numbers. Then, for each fold k, $\hat{f}_{-I_k}(x)\equiv 0$, because the dataset $\mathcal{D}_{[n]\backslash I_k}$ contains an even number of data points. Consequently, the ith training data point has residual $S_i=0$, for all $i\in [n]$. On the other hand, \mathcal{D}_n has an odd number of data points, and so we will have $\hat{f}(X_{n+1})=1$. The K-fold CV interval will then be equal to $\mathcal{C}(X_{n+1})=1\pm 0=\{1\}$ almost surely, which will have zero probability of coverage under the distribution P.

To avoid such degenerate failure cases, below we will derive a slight modification to the CV algorithm. This modification (the CV+ method, and its special case, jackknife+) enjoys an assumption-free coverage guarantee. First, however, we will present an alternative definition for the traditional jackknife and CV prediction intervals, which will help build intuition for their modified versions.

6.3.2 An alternative formulation of CV

Before proceeding, we pause to give an equivalent definition of the CV prediction interval, which will be useful for extending to the CV+ method below.

The K-fold CV prediction interval (6.11) can equivalently be defined as

$$\mathcal{C}(X_{n+1}) = \left[\hat{f}(X_{n+1}) - \text{Quantile}\left((S_i)_{i \in [n]}; 1 - \alpha\right), \ \hat{f}(X_{n+1}) + \text{Quantile}\left((S_i)_{i \in [n]}; 1 - \alpha\right)\right],$$

where, for each $i \in [n]$, the score is given by $S_i = |Y_i - \hat{f}_{-I_{k(i)}}(X_i)|$, as before. Rewriting this one more time, we have

$$C(X_{n+1}) = \left[-\text{Quantile}\left(\left(-(\hat{f}(X_{n+1}) - S_i) \right)_{i \in [n]}; 1 - \alpha \right), \right]$$

$$\text{Quantile}\left(\left(\hat{f}(X_{n+1}) + S_i \right)_{i \in [n]}; 1 - \alpha \right) \right]. \quad (6.12)$$

Why does the left endpoint of this interval use a 'double negative' type construction—the negative quantile of the negative values—instead of simply taking Quantile($(\hat{f}(X_{n+1}) - S_i)_{i \in [n]}; 1 - \alpha$)? The reason is that the definition of the quantile, given in Definition 2.9, is not symmetric: in general we may have

Quantile
$$((-z_1, \ldots, -z_n); \tau) \neq -\text{Quantile}((z_1, \ldots, z_n); 1 - \tau).$$

Using the 'double negative' to define the left endpoint in (6.12) makes this interval equivalent to the K-fold CV prediction interval.

6.3.3 Defining CV+ and jackknife+

We are now ready to define the modified versions of the CV and jackknife prediction intervals. First, for K-fold CV+, we define

$$C(X_{n+1}) = \left[-\text{Quantile}\left(\left(-(\hat{f}_{-I_{k(i)}}(X_{n+1}) - S_i) \right)_{i \in [n]}; (1 - \alpha)(1 + 1/n) \right),$$

$$\text{Quantile}\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1}) + S_i \right)_{i \in [n]}; (1 - \alpha)(1 + 1/n) \right) \right], \quad (6.13)$$

where as before we define $S_i = |Y_i - \hat{f}_{-I_{k(i)}}(X_i)|$, and $k(i) \in [K]$ denotes the fold to which data point i belongs. Comparing to (6.11), we can see that the difference lies in using the leave-one-fold-out predictions, $\hat{f}_{-I_k}(X_{n+1})$, in place of the prediction $\hat{f}(X_{n+1})$ obtained by retraining on the full dataset. The quantile level $1 - \alpha$ has also been replaced by $(1 - \alpha)(1 + 1/n)$, which is useful for obtaining finite-sample guarantees, just as for conformal prediction in earlier chapters. For the special case K = n, the jackknife+ prediction interval is defined as

$$C(X_{n+1}) = \left[-\text{Quantile} \left(\left(-(\hat{f}_{-i}(X_{n+1}) - S_i) \right)_{i \in [n]}; 1 - (1 - \alpha)(1 + 1/n) \right),$$

$$\text{Quantile} \left(\left(\hat{f}_{-i}(X_{n+1}) + S_i \right)_{i \in [n]}; (1 - \alpha)(1 + 1/n) \right) \right]. \quad (6.14)$$

Section 6.4 below will relate the CV+ and jackknife+ methods to the cross-conformal framework defined earlier in this chapter, and will present distribution-free theoretical guarantees for these methods. For the

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

moment, we pause to give some brief intuition about why the CV+ and jackknife+ methods avoid the worst-case scenario that arose for CV and jackknife in Example 6.5. In this degenerate example, the issue arose from the fact that CV (i.e., traditional CV, rather than CV+) uses residuals $S_i = |Y_i - \hat{f}_{-I_{k(i)}}(X_i)|$ to try to estimate the value of the error on the test point, $|Y_{n+1} - \hat{f}(X_{n+1})|$. For a fixed training point i, these two quantities are not drawn from the same distribution: S_i is an out-of-sample error for a model fitted on n - n/K data points, while the test error $|Y_{n+1} - \hat{f}(X_{n+1})|$ is an out-of-sample error for a model fitted on i data points. In contrast, for CV+, by using predictions $\hat{f}_{-I_k}(X_{n+1})$ (in place of the original prediction $\hat{f}(X_{n+1})$), we are implicitly comparing S_i with a test point error $|Y_{n+1} - \hat{f}_{-I_k}(X_{n+1})|$. These two errors are now drawn from the same distribution (and are in fact exchangeable), since both are out-of-sample errors for the same fitted model \hat{f}_{-I_k} .

6.3.4 Interpreting the interval

Unlike the CV (or jackknife), this new CV+ (or jackknife+) interval is no longer a symmetric interval around the prediction $\hat{f}(X_{n+1})$ fitted on the entire training dataset—and indeed in extreme cases it can even be the case that the prediction $\hat{f}(X_{n+1})$ is not even contained in the CV+ interval $\mathcal{C}(X_{n+1})$. Therefore, we cannot interpret this new construction as giving us an interval around $\hat{f}(X_{n+1})$. However, an alternative interpretation does hold:

Proposition 6.6

Assume $\alpha \leq 0.5$. The CV+ interval (6.13) (run with K folds of equal size n/K) must contain the median prediction

$$\hat{f}^{\mathrm{med}}(X_{n+1}) = \operatorname{Median}\left(\left(\hat{f}_{-I_k}(X_{n+1})\right)_{k \in [K]}\right).$$

In particular for the case K = n, the jackknife+ prediction interval contains the median leave-one-out prediction,

$$\hat{f}^{\text{med}}(X_{n+1}) = \text{Median}\left(\left(\hat{f}_{-i}(X_{n+1})\right)_{i \in [n]}\right).$$

We can view this median value as an ensembled prediction, obtained by retraining \hat{f} on different subsets of the training data, and can therefore interpret CV+ as providing an interval around $\hat{f}^{\text{med}}(X_{n+1})$ to quantify our uncertainty about this ensembled predictor.

Proof of Proposition 6.6

The upper bound of the CV+ interval (6.13) satisfies

Quantile
$$\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1}) + S_i\right)_{i \in [n]}; (1-\alpha)(1+1/n)\right)$$

 $\geq \text{Quantile}\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1})\right)_{i \in [n]}; (1-\alpha)(1+1/n)\right)$
 $\geq \text{Median}\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1})\right)_{i \in [n]}\right),$

where the first inequality holds since $S_i \ge 0$ for all i by construction, and the second inequality holds since $\alpha \le 0.5$. Moreover, we also have

$$\operatorname{Median}\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1})\right)_{i\in[n]}\right) = \operatorname{Median}\left(\left(\hat{f}_{-I_{k}}(X_{n+1})\right)_{k\in[K]}\right) = \hat{f}^{\operatorname{med}}(X_{n+1}),$$

where the first equality holds since the folds are assumed to be of equal size n/K—that is, we are using the fact that the median of a vector $v = (v_1, v_2, \dots, v_{K-1}, v_K)$ will be unchanged if

we repeat each value an equal number of times, e.g., $(v_1, v_1, v_2, v_2, \dots, v_{K-1}, v_K, v_K)$. A similar argument shows that the lower bound of the CV+ interval satisfies

Quantile
$$\left(\left(-(\hat{f}_{-I_{k(i)}}(X_{n+1}) - S_i)\right)_{i \in [n]}; (1-\alpha)(1+1/n)\right) \leq \hat{f}^{\text{med}}(X_{n+1}),$$

and therefore, it must hold that $\hat{f}^{\text{med}}(X_{n+1}) \in \mathcal{C}(X_{n+1})$.

6.4 Coverage guarantees for CV+ and jackknife+

On the surface, the CV+ method (with jackknife+ as a special case) appears to be quite different from cross-conformal. The CV+ method is constructed to form intervals around a predicted value of Y_{n+1} based on computing residuals S_i for the leave-one-out or leave-one-fold-out models, while cross-conformal prediction can return a prediction set that is not an interval, and does not even need to use a score that is based on a regression model. However, we will now see that CV+ is closely related to the cross-conformal prediction method: the cross-conformal set is always contained in the CV+ interval, if cross-conformal is implemented with the residual score, $s((x,y);\mathcal{D}) = |y - [\mathcal{A}(\mathcal{D})](x)|$. (Here $[\mathcal{A}(\mathcal{D})](x)$ denotes the prediction at x when the algorithm \mathcal{A} is trained on dataset \mathcal{D} —that is, if $\hat{f} = \mathcal{A}(\mathcal{D})$ is the fitted model, then $s((x,y);\mathcal{D}) = |y - \hat{f}(x)|$.) In particular, this means that cross-conformal has the advantage of being potentially less conservative, but on the other hand CV+ is potentially more interpretable as it is guaranteed to return an interval (rather than, perhaps, a disconnected set) and to contain the median ensembled prediction, by construction. In practice, however, the output of the two methods is often identical.

Proposition 6.7

Let $[n] = I_1 \cup \cdots \cup I_K$ be any partition. Let $\mathcal{C}^{CV+}(X_{n+1})$ be the K-fold CV+ interval constructed with some regression algorithm \mathcal{A} , as in (6.13). Define a score function

$$s((x,y); \mathcal{D}) = |y - [\mathcal{A}(\mathcal{D})](x)|,$$

and let $C^{CC}(X_{n+1})$ be the K-fold cross-conformal interval constructed as in (6.2) with this score function. Then it holds surely that

$$\mathcal{C}^{\mathrm{CC}}(X_{n+1}) \subseteq \mathcal{C}^{\mathrm{CV}+}(X_{n+1}).$$

We note that in the special case K = n, this result implies that the jackknife+ interval contains the n-fold (i.e., leave-one-out) cross-conformal prediction set.

Since, by Proposition 6.7, the prediction interval constructed by jackknife+ or CV+ is guaranteed to contain the cross-conformal prediction set, the coverage guarantees in Section 6.2.1 apply immediately to jackknife+ and to CV+. For completeness, these are stated in the following corollary.

Corollary 6.8

Assume \mathcal{A} is a symmetric algorithm (i.e., $\mathcal{A}(\mathcal{D}) = \mathcal{A}(\mathcal{D}_{\sigma})$ for any dataset \mathcal{D} and any permutation σ). If the data points $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are exchangeable, then the jackknife+ interval (6.14) satisfies

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - 2\alpha.$$

Moreover, for any K, if the exchangeability condition (6.3) holds, then the CV+ interval (6.13) (run with K folds of equal size n/K) satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - 2\alpha - 2(1-\alpha) \cdot \min\left\{\frac{1 - 1/K}{n/K + 1}, \frac{1 - K/n}{K + 1}\right\} \ge 1 - 2\alpha - 2/\sqrt{n}.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Proof of Proposition 6.7

If $y \notin \mathcal{C}^{\text{CV}+}(X_{n+1})$, then either y lies above the right endpoint of this interval, i.e.,

$$y > \text{Quantile}\left(\left(\hat{f}_{-I_{k(i)}}(X_{n+1}) + S_i\right)_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right),$$

or y lies below the left endpoint of this interval—by symmetry, these two cases are proved analogously, so without loss of generality we will assume the first case holds. Then, equivalently, we have

$$\sum_{i=1}^{n} \mathbb{1}\left\{y > \hat{f}_{-I_{k(i)}}(X_{n+1}) + S_i\right\} = \sum_{k=1}^{K} \sum_{i \in I_k} \mathbb{1}\left\{y > \hat{f}_{-I_k}(X_{n+1}) + S_i\right\} \ge (1 - \alpha)(n+1).$$

For any $i \in I_k$,

$$y > \hat{f}_{-I_k}(X_{n+1}) + S_i \implies |y - \hat{f}_{-I_k}(X_{n+1})| > S_i \iff s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I_k}) > s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k}),$$

where the last step holds by definition of the score function, and so

$$\sum_{k=1}^{K} \sum_{i \in I_k} \mathbb{1}\left\{ s((X_{n+1}, y); \mathcal{D}_{[n] \setminus I_k}) > s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k}) \right\} \ge (1 - \alpha)(n+1).$$

Comparing to the definition of $\mathcal{C}^{\text{CC}}(X_{n+1})$ given in (6.2), we see that this implies $y \notin \mathcal{C}^{\text{CC}}(X_{n+1})$, as desired.

6.5 Training-conditional coverage for cross-validation type methods

In Chapter 4, for the full and split conformal methods, we considered the question of training-conditional coverage—do the methods offer reliable predictive coverage, conditional on the dataset \mathcal{D}_n ? In this section, we will now ask this question for the cross-validation based methods that are the focus of this chapter.

First, we will see that for K-fold cross-conformal, we can establish a training-conditional coverage guarantee as long as the size n/K of each fold is sufficiently large. At a high level, this result holds because the scores $(S_i)_{i \in I_k}$, where $S_i = s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k})$, are i.i.d. conditional on the data $\mathcal{D}_{[n] \setminus I_k}$ used for training for the kth fold, and therefore concentration results can be applied. In this sense, the result below can be viewed as an extension of the training-conditional coverage guarantee for split conformal, which was given in Theorem 4.1. Before stating the result, we first recall a definition from Chapter 4: we define $\alpha_P(\mathcal{D}_n) = \mathbb{P}(Y_{n+1} \notin \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n)$, the probability of coverage failing when we condition on \mathcal{D}_n . As before, the goal of training-conditional coverage is to establish a high-probability upper bound on $\alpha_P(\mathcal{D}_n)$.

Theorem 6.9

Let P be any distribution on $\mathcal{X} \times \mathcal{Y}$, and let s be any score function. Then cross-conformal (with K folds of equal size n/K) satisfies the training-conditional coverage guarantee

$$\mathbb{P}\left(\alpha_P(\mathcal{D}_n) \le 2\alpha + \sqrt{\frac{2\log(K/\delta)}{n/K}}\right) \ge 1 - \delta,$$

where the probability is taken with respect to the training set $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ drawn i.i.d. from P.

Since K-fold CV+ is strictly more conservative than K-fold cross-conformal (by Proposition 6.7), the same bound holds as well for K-fold CV+ implemented with any regression algorithm A.

Before turning to the proof, we first briefly comment on the nature of this result. Note that we have not proved a bound showing that $\alpha_P(\mathcal{D}_n)$ is approximately bounded by α , with high probability—rather, we instead have $\alpha_P(\mathcal{D}_n) \lesssim 2\alpha$. This is because the marginal coverage guarantee for cross-conformal only establishes coverage at level (approximately) $1 - 2\alpha$, rather than $1 - \alpha$ (see Theorems 6.1 and 6.2), or in other words, $\mathbb{E}[\alpha_P(\mathcal{D}_n)]$ is bounded (approximately) by 2α rather than by α . Therefore, we cannot hope to remove this factor of 2 from the conditional result without further assumptions.

Proof of Theorem 6.9

First, let P_k be the distribution of $s((X,Y); \mathcal{D}_{[n]\setminus I_k})$, where this distribution is calculated with respect to a new data point $(X,Y) \sim P$, after conditioning on the data $\mathcal{D}_{[n]\setminus I_k}$ used for training in the kth fold. Then, conditional on $\mathcal{D}_{[n]\setminus I_k}$, we have

$$(S_i)_{i \in I_k} \overset{\text{i.i.d.}}{\sim} P_k,$$

where as before, for each $k \in [K]$ and each $i \in I_k$, we define $S_i = s((X_i, Y_i); \mathcal{D}_{[n] \setminus I_k})$. A standard concentration result (namely, the Dvoretzky–Kiefer–Wolfowitz inequality) implies that

$$\frac{1}{n/K} \sum_{i \in I_k} \mathbb{1}\left\{S_i \ge t\right\} \ge \mathbb{P}_{S \sim P_k}(S \ge t) - \sqrt{\frac{\log(K/\delta)}{2n/K}}$$

holds simultaneously for all k and for all $t \in \mathbb{R}$, with probability at least $1 - \delta$.

Next, define a p-value

$$p_k^*(x,y) = \mathbb{P}_{S \sim P_k} \left(S \ge s((x,y); \mathcal{D}_{[n] \setminus I_k}) \mid \mathcal{D}_n \right).$$

Comparing to the p-value $p_k(x, y)$ defined in the proof of Theorem 6.1, here we are comparing the score $s((x, y); \mathcal{D}_{[n]\setminus I_k})$ for the data point (x, y) against the true score distribution, P_k , while in the proof of Theorem 6.1, we were comparing against the empirical distribution of scores obtained from data points in the kth fold I_k .

Note that, for $(X_{n+1}, Y_{n+1}) \sim P$, the value $p_k^*(X_{n+1}, Y_{n+1})$ is indeed a valid p-value conditional on the training data, i.e., $\mathbb{P}(p_k^*(X_{n+1}, Y_{n+1}) \leq \tau \mid \mathcal{D}_n) \leq \tau$ for all $\tau \in [0, 1]$. This is true since, conditional on \mathcal{D}_n , $s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n]\setminus I_k})$ is a draw from the (random) distribution P_k . Since averaging p-values provides a quantity that is a p-value up to a factor of 2, then,

$$\mathbb{P}\left(\frac{\sum_{k=1}^{K} p_k^*(X_{n+1}, Y_{n+1})}{K} \le \tau \mid \mathcal{D}_n\right) \le 2\tau$$

holds almost surely for any $\tau \in [0,1]$. Combining this with the concentration result above, then, with probability at least $1-\delta$,

$$\mathbb{P}\left(\frac{\sum_{k=1}^K \frac{1}{n/K} \sum_{i \in I_k} \mathbb{1}\left\{S_i \geq s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n] \setminus I_k})\right\}}{K} \leq \tau - \sqrt{\frac{\log(K/\delta)}{2n/K}} \;\middle|\; \mathcal{D}_n\right) \leq 2\tau.$$

Choosing $\tau = \alpha + \sqrt{\frac{\log(K/\delta)}{2n/K}}$, and simplifying, we have shown that

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}\mathbb{1}\left\{S_{i} \geq s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n]\setminus I_{k}})\right\} \leq \alpha \mid \mathcal{D}_{n}\right) \leq 2\alpha + \sqrt{\frac{2\log(K/\delta)}{n/K}}$$

holds with probability at least $1-\delta$. Finally, it follows directly from the definition of the K-fold cross-conformal method that

$$Y_{n+1} \notin \mathcal{C}(X_{n+1}) \implies \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ S_i \ge s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n] \setminus I_k}) \right\} \le \alpha,$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

and therefore,

$$\alpha_P(\mathcal{D}_n) = \mathbb{P}\big(Y_{n+1} \notin \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n\big) \leq \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^n \mathbb{1}\left\{S_i \geq s((X_{n+1}, Y_{n+1}); \mathcal{D}_{[n] \setminus I_k})\right\} \leq \alpha \mid \mathcal{D}_n\right),$$

which completes the proof.

In the proof of the result above, the key idea is that, when the fold I_k has a large size n/K, the empirical distribution of scores $(S_i)_{i\in I_k}$ within this fold exhibits concentration. This is the reason that the term n/K appears in the denominator, in the upper bound. If instead n/K is small—in particular, with jackknife+ or leave-one-out cross-conformal we have K = n—then this bound no longer gives a meaningful result.

The next theorem shows that, for jackknife+, training-conditional coverage can in fact fail to hold if we do not place any assumptions on the regression algorithm \mathcal{A} . By Proposition 6.7, this result therefore applies to leave-one-out cross-conformal as well—that is, without placing assumptions on the score function s, we cannot guarantee training-conditional coverage for leave-one-out cross-conformal.

Theorem 6.10

Let P be any distribution on $\mathcal{X} \times \mathcal{Y}$ such that the marginal P_X is nonatomic while P_Y has bounded support. Then there exists a symmetric regression algorithm \mathcal{A} such that, for jackknife+, the training-conditional noncoverage probability $\alpha_P(\mathcal{D}_n)$ satisfies

$$\mathbb{P}\left(\alpha_P(\mathcal{D}_n) = 1\right) \ge \alpha - \mathcal{O}\left(\sqrt{\frac{\log n}{n}}\right),$$

where the probability is taken with respect to the training set $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ drawn i.i.d. from P.

The proof of this result is very similar to that of Theorem 4.3, which is the analogous result proving that training-conditional coverage can fail for full conformal prediction.

Proof of Theorem 6.10

Since P_Y has bounded support, we can fix a finite B with $\mathbb{P}_P(|Y| < B) = 1$. Fix a large integer $N \approx \alpha n$, to be specified later. As in the proof of Theorem 4.3, define a function a with $a(X) \sim \text{Unif}\{0,\ldots,n-1\}$ when X is drawn from P_X . Next, define the regression algorithm \mathcal{A} : when the input is given by a training dataset $((x_1,y_1),\ldots,(x_{n-1},y_{n-1}))$, \mathcal{A} returns the fitted model \hat{f} given by

$$\hat{f}(x) = \begin{cases} 0, & \text{if mod } \left(a(x) + \sum_{j=1}^{n-1} a(x_j), n \right) < N, \\ 2B, & \text{otherwise.} \end{cases}$$

In particular, when running jackknife+, we have

$$\hat{f}_{-i}(X_i) = \begin{cases} 0, & \text{if mod } \left(\sum_{j=1}^n a(X_j), n\right) < N, \\ 2B, & \text{otherwise.} \end{cases}$$

Note that $\hat{f}_{-i}(X_i)$ takes the same value for every i, by construction.

Define events \mathcal{E}_{mod} and $\mathcal{E}_{\text{unif}}$ exactly as in the proof of Theorem 4.3: \mathcal{E}_{mod} is the event that $\text{mod}(\sum_{i=1}^n a(X_i), n) < N$, and $\mathcal{E}_{\text{unif}}$ is the event that $\sum_{i=1}^n \mathbbm{1}\{a(X_i) \in W_k\} \ge (1-\alpha)(n+1)$ for all integers k (as illustrated in Figure 4.3). On the event \mathcal{E}_{mod} , we then have $\hat{f}_{-i}(X_i) = 0$

for all i = 1, ..., n, and consequently,

$$S_i = |Y_i - \hat{f}_{-i}(X_i)| = |Y_i - 0| < B \text{ for all } i = 1, \dots, n.$$

The jackknife+ prediction interval then satisfies

$$C(X_{n+1}) \subseteq \left(-\text{Quantile}\left(((\hat{f}_{-i}(X_{n+1}) - B))_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right),$$

$$\text{Quantile}\left((\hat{f}_{-i}(X_{n+1}) + B)_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right)\right).$$

Next, for each i, we calculate

$$\hat{f}_{-i}(X_{n+1}) = \begin{cases} 0, & \text{if mod } \left(-a(X_i) + \sum_{j=1}^{n+1} a(X_j), n\right) < N, \\ 2B, & \text{otherwise.} \end{cases}$$

On the event $\mathcal{E}_{\text{unif}}$, then, we have $\hat{f}_{-i}(X_{n+1}) = 2B$ for $\geq (1-\alpha)(n+1)$ many training points $i \in [n]$, and $\hat{f}_{-i}(X_{n+1}) = 0$ for the others. In particular, this implies that

-Quantile
$$\left((-(\hat{f}_{-i}(X_{n+1}) - B) : i \in [n]); (1 - \alpha)(1 + 1/n) \right) = B,$$

and therefore, if \mathcal{E}_{mod} and $\mathcal{E}_{\text{unif}}$ both occur,

$$\mathcal{C}(X_{n+1}) \subset (B, \infty).$$

Since P_Y is supported on (-B, B), i.e., $\mathbb{P}_P(Y_{n+1} \in (B, \infty)) = 0$, we see that if \mathcal{E}_{mod} and $\mathcal{E}_{\text{unif}}$ both occur, we therefore have $\alpha_P(\mathcal{D}_n) = 1$. This proves that

$$\mathbb{P}_P(\alpha_P(\mathcal{D}_n) = 1) > \mathbb{P}_P(\mathcal{E}_{\text{mod}} \cap \mathcal{E}_{\text{unif}}).$$

The last steps of the proof consist of proving a lower bound on this probability for an appropriate choice of N, exactly as in the proof of Theorem 4.3; we omit the details.

6.6 Algorithmic stability and prediction with the jackknife

The results of Corollary 6.8 show that CV+ and jackknife+ can offer coverage at level $\geq 1-2\alpha$, but this does not match the target level $1-\alpha$ —and in practice, we generally see coverage around level $1-\alpha$ empirically. However, Section 6.2.3 explains why the factor of 2 in the theory cannot be removed. Strikingly, we saw in Example 6.5 that CV and jackknife (rather than their modified versions, CV+ and jackknife+) can even reach zero coverage. The counterexample works by proposing a model $\hat{f} = \mathcal{A}(\mathcal{D}_n)$ that when fitted to a training set \mathcal{D}_n of size n behaves very differently from the model $\hat{f}_{-i} = \mathcal{A}(\mathcal{D}_{[n]\setminus\{i\}})$, which was fitted to the same training set with a single data point removed. This can be described as an issue of instability of the training algorithm: a small change to the training set creates a large change in the resulting fitted model. See Figure 6.4 for an illustration.

We will now study algorithmic stability in more detail, developing a formal definition of this property and analyzing how it can improve our theoretical guarantees for the cross-validation-based predictive inference methods.

Figure 6.4: An illustration of algorithmic stability in a regression. In each plot, the gray dots represent data points (X_i, Y_i) , the dotted line represents the output of a quadratic regression algorithm $\mathcal{A}_{\text{quad}}$, and the solid line represents the output of a spline regression algorithm $\mathcal{A}_{\text{spline}}$. The left plot shows the fitted models on the full data set $((X_j, Y_j))_{j \in [n]}$, while the middle and right plots show the fitted models trained on the dataset $((X_j, Y_j))_{j \in [n] \setminus \{i\}}$, where a single data point (X_i, Y_i) (marked by a yellow cross) has been removed. A stable algorithm is one for which the removal of a typical data point would not cause a large change in the predicted values returned by the fitted model (as in Definition 6.11). In this figure, we can see that $\mathcal{A}_{\text{quad}}$ satisfies this property, but $\mathcal{A}_{\text{spline}}$ does not.

6.6.1 The algorithmic stability framework

At a high level, algorithmic stability simply means that small perturbations to the training dataset (e.g., adding or removing a single data point) do not lead to large changes in the fitted model. However, there are a multitude of different ways to formalize this intuition into a precise definition, and various choices can have extremely different implications for downstream results. Here we will focus on a version of the definition that is most relevant for analyzing the jackknife.

Definition 6.11

An algorithm \mathcal{A} and distribution P satisfy algorithmic stability, with parameters $\epsilon, \delta \geq 0$ at sample size n, if for all $i \in [n]$ it holds that

$$\mathbb{P}\left(\left|\hat{f}(X_{n+1}) - \hat{f}_{-i}(X_{n+1})\right| \le \epsilon\right) \ge 1 - \delta,$$

with respect to data drawn i.i.d. from P, where $\hat{f} = \mathcal{A}(((X_j, Y_j))_{j \in [n]})$ and $\hat{f}_{-i} = \mathcal{A}(((X_j, Y_j))_{j \in [n] \setminus \{i\}})$.

Importantly, this condition requires the change in the prediction to be small when \hat{f} and \hat{f}_{-i} are evaluated on an independent test point X_{n+1} —a data point that does not appear in the training dataset for either \hat{f} or \hat{f}_{-i} . In contrast, requiring $|\hat{f}(X_i) - \hat{f}_{-i}(X_i)|$ to be small would be a much stronger assumption—it would imply that the prediction at X_i is essentially the same regardless of whether (X_i, Y_i) was used for training, which cannot hold for algorithms \mathcal{A} that exhibit substantial overfitting.

A number of common regression algorithms are known to satisfy this type of stability property. One example is K-nearest-neighbors regression, which satisfies Definition 6.11 with $\epsilon = 0$ and $\delta = K/n$ (since the predictions $\hat{f}(X_{n+1})$ and $\hat{f}_{-i}(X_{n+1})$ are actually equal, unless X_i is one of the K nearest neighbors of the test point). Other examples include algorithms based on strongly convex optimization problems such as ridge regression and algorithms based on ensembled or bootstrapped methods. See the bibliographic notes at the end of this chapter for more details.

6.6.2 Guarantees for jackknife under stability

We will now see that the algorithmic stability assumption ensures predictive coverage for the jackknife method. Similar results can also be established for jackknife+, or for the K-fold versions of these methods, but we do not consider these extensions here.

Recall the jackknife (i.e., leave-one-out cross-validation) prediction interval, defined as

$$\mathcal{C}(X_{n+1}) = \hat{f}(X_{n+1}) \pm \hat{q}_{CV},$$

where the margin of error is given by the quantile of the leave-one-out residuals,

$$\hat{q}_{\text{CV}} = \text{Quantile}((S_1, \dots, S_n); 1 - \alpha) \text{ for } S_i = |Y_i - \hat{f}_{-i}(X_i)|.$$

Here \hat{f} is the model trained on the full training set, $\hat{f} = \mathcal{A}(((X_j, Y_j))_{j \in [n]})$, while for each $i \in [n]$, \hat{f}_{-i} is the leave-one-out model, $\hat{f}_{-i} = \mathcal{A}(((X_j, Y_j))_{j \in [n] \setminus \{i\}})$.

We will now see that, while it is not possible to prove $1 - \alpha$ coverage for the jackknife interval (without adding even more assumptions), algorithmic stability enables us to establish coverage at a level that is nearly the target level $1 - \alpha$, for a slightly inflated version of the jackknife interval.

Theorem 6.12

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are drawn i.i.d. from some distribution P, and assume that \mathcal{A} satisfies algorithmic stability as in Definition 6.11 with parameters $\epsilon, \delta \geq 0$. Assume also that \mathcal{A} is symmetric in the input data. Then the inflated jackknife prediction interval

$$C(X_{n+1}) = \hat{f}(X_{n+1}) \pm (\hat{q}_{CV} + \epsilon)$$

satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha - 2\sqrt{\delta} - \frac{1}{n+1}.$$

Analogous results can also be established for jackknife+, which was shown in Corollary 6.8 to satisfy coverage at level $1 - 2\alpha$; a stability assumption essentially allows us to remove this factor of 2.

One interpretation of the reason that jackknife can fail in the absence of algorithmic stability is that since \hat{f} and \hat{f}_{-i} might be fitted using completely different procedures, the test error $|Y_{n+1} - \hat{f}(X_{n+1})|$ and the leave-one-out residuals $S_i = |Y_i - \hat{f}_{-i}(X_i)|$ may have very different distributions—and in particular, the test error $|Y_{n+1} - \hat{f}(X_{n+1})|$ fails to be exchangeable with the S_i 's. The idea of the proof is to instead construct a different vector of scores $\tilde{S}_1, \ldots, \tilde{S}_n$, which are exchangeable with the test error $|Y_{n+1} - \hat{f}(X_{n+1})|$, and then show that the algorithmic stability assumption is sufficient to ensure $S_i \approx \tilde{S}_i$ for most training points $i \in [n]$.

Proof of Theorem 6.12

For each $i \in [n+1]$, define a fitted model

$$\tilde{f}_{-i} = \mathcal{A}(\mathcal{D}_{[n+1]\setminus\{i\}}).$$

Note that for i = n + 1, we simply have $\hat{f}_{n+1} = \hat{f}$, while for $i \in [n]$, this model is trained on the dataset consisting of the n - 1 training points when data point i is held out, together with the test point (X_{n+1}, Y_{n+1}) . Define also a modified leave-one-out residual

$$\tilde{S}_i = |Y_i - \tilde{f}_{-i}(X_i)|,$$

for each $i \in [n+1]$. Since \mathcal{A} is a symmetric algorithm, by symmetry of the construction we see that $\tilde{S}_1, \ldots, \tilde{S}_{n+1}$ are exchangeable. We therefore have

$$\mathbb{P}\left(\tilde{S}_{n+1} \leq \text{Quantile}(\tilde{S}_1, \dots, \tilde{S}_{n+1}; 1 - \alpha')\right) \geq 1 - \alpha',$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

by Fact 2.15(ii), for any $\alpha' \in [0,1]$. By the Replacement Lemma (Lemma 3.4), together with the fact that $\tilde{S}_{n+1} = |Y_{n+1} - \hat{f}(X_{n+1})|$ by definition, we then have

$$\mathbb{P}\left(|Y_{n+1} - \hat{f}(X_{n+1})| \le \text{Quantile}\left((\tilde{S}_i)_{i \in [n]}; (1 - \alpha')(1 + 1/n)\right)\right) \ge 1 - \alpha'.$$

On the other hand, by definition of the inflated jackknife prediction interval $C(X_{n+1})$, we have

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff |Y_{n+1} - \hat{f}(X_{n+1})| \le \hat{q}_{CV} + \epsilon.$$

Therefore,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha' - \mathbb{P}\left(\hat{q}_{CV} + \epsilon < \text{Quantile}\left((\tilde{S}_i)_{i \in [n]}; (1 - \alpha')(1 + 1/n)\right)\right).$$

Plugging in our definition of \hat{q}_{CV} , our last step is to bound the probability

$$\mathbb{P}\left(\text{Quantile}\left((S_i)_{i\in[n]}; 1-\alpha\right) + \epsilon < \text{Quantile}\left((\tilde{S}_i)_{i\in[n]}; (1-\alpha')(1+1/n)\right)\right),$$

or equivalently,

$$\mathbb{P}(S_{(k)} + \epsilon < \tilde{S}_{(k')}),$$

where $k = \lceil (1-\alpha)n \rceil$ while $k' = \lceil (1-\alpha')(n+1) \rceil$. But by definition of the order statistics, if $S_{(k)} + \epsilon < \tilde{S}_{(k')}$ holds then this implies that we must have $\tilde{S}_i > S_i + \epsilon$ for at least k - k' + 1 many $i \in [n]$. We now need to use the assumption of algorithmic stability: since \mathcal{A} is stable, we expect to obtain similar predictions $\hat{f}_{-i}(X_i) \approx \tilde{f}_{-i}(X_i)$ (i.e., the fitted model is only slightly altered by including an additional data point (X_{n+1}, Y_{n+1}) in the training process), and so we will have $S_i \approx \tilde{S}_i$ for most indices i. To formalize this, we calculate

$$\mathbb{P}(S_{(k)} + \epsilon < \tilde{S}_{(k')}) \leq \mathbb{P}\left(\sum_{i \in [n]} \mathbb{1}\left\{\tilde{S}_i > S_i + \epsilon\right\} \geq k - k' + 1\right)$$

$$\leq \mathbb{P}\left(\sum_{i \in [n]} \mathbb{1}\left\{|\tilde{f}_{-i}(X_i) - \hat{f}_{-i}(X_i)| > \epsilon\right\} \geq k - k' + 1\right)$$

$$\leq \frac{\mathbb{E}\left[\sum_{i \in [n]} \mathbb{1}\left\{|\tilde{f}_{-i}(X_i) - \hat{f}_{-i}(X_i)| > \epsilon\right\}\right]}{k - k' + 1} \quad \text{by Markov's inequality}$$

$$= \frac{\sum_{i \in [n]} \mathbb{P}(|\tilde{f}_{-i}(X_i) - \hat{f}_{-i}(X_i)| > \epsilon)}{k - k' + 1}$$

$$\leq \frac{n\delta}{k - k' + 1},$$

where the last step uses the algorithmic stability assumption (Definition 6.11). Finally, by construction, $k - k' + 1 \ge (1 - \alpha)n - (1 - \alpha')(n + 1)$, and so combining everything, we obtain

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha' - \frac{n\delta}{(1-\alpha)n - (1-\alpha')(n+1)}.$$

Choosing $\alpha' = \alpha + \sqrt{\delta} + \frac{1}{n+1}$ completes the proof.

6.6.3 Can algorithmic stability be certified?

We have seen above that algorithmic stability leads to important downstream guarantees: in particular, it implies that the jackknife offers guaranteed predictive coverage (as well as a refined result for jackknife+), and provides confidence intervals for the risk of a trained model, without further distributional assumptions.

To make use of this in practice, however, we would need to know that jackknife is being applied to a stable algorithm—that is, if we cannot be sure that \mathcal{A} is stable, then we do not know whether the jackknife leads to valid predictive inference and/or valid inference on risk.

Earlier, we mentioned several examples of regression algorithms \mathcal{A} that are stable by construction—algorithms such as K-nearest neighbors, for which we can theoretically establish that the stability property given in Definition 6.11 must hold, without any need for empirical validation—but these examples are quite limited and may not be practically useful in most modern settings. We are therefore motivated to turn to the second option: is it possible to certify that an algorithm \mathcal{A} is stable by testing it empirically, without needing to analyze \mathcal{A} theoretically? Interestingly, it turns out that in general this is not possible (when the sample size of the available data is limited). While formalizing this type of hardness result is beyond the scope of this book (we refer the reader to the bibliographic notes for references on results in this area), the implications for distribution-free inference are important to mention. These hardness results imply that a method such as jackknife, whose validity relies on a stability condition, cannot in general be viewed as an assumption-free method, because aside from special cases (i.e., simple algorithms such as K-nearest neighbors), the method's guarantees require untestable assumptions in order to hold.

Bibliographic notes

Cross-validation style methods date back at least 50 years (see, e.g., Stone [1974]). Cross-conformal predictors were first introduced by Vovk [2015], and studied further by Vovk et al. [2018]; in particular, the latter work establishes a theoretical result proving marginal coverage at a level $\approx 1 - 2\alpha$ when the number of folds K is not too large, which appears (in a slightly modified form) in Theorem 6.1 above. This result is based on the fact that an average of p-values is itself a valid p-value up to a factor of 2, as established by Rüschendorf [1982] and studied more generally in Vovk and Wang [2020].

The jackknife+ and CV+ algorithms are proposed by Barber et al. [2021b], where the relationship between jackknife+/CV+ and cross-conformal is also established, as in Proposition 6.7 above. This paper also proves the coverage guarantee given in Theorem 6.2, which covers the case where K is large (e.g., K = n, for jackknife+). Lemma 6.4, which is a key ingredient in the proof, is related to Landau's Theorem on Tournaments [Landau, 1953]. The factor of 2 appearing in the coverage guarantee is explained in Barber et al. [2021b], which also formally establishes that a tighter bound is not possible; the intuition behind the argument for this result comes from the example illustrated in (6.10), which is inspired an earlier construction by Vovk [2015]

Gupta et al. [2021] generalize and reinterpret cross-conformal, as well as jackknife+ and CV+, through a formulation relating to nested families of sets. Kim et al. [2020] give an version of jackknife+ adapted for efficient implementation in the setting of a bootstrapped or ensembled base algorithm; see also Linusson et al. [2020] for a related method via out-of-bag calibration. Properties of jackknife and cross-validation type methods under algorithmic stability assumptions are studied by Steinberger and Leeb [2018], and results for both jackknife and jackknife+ are studied by Barber et al. [2021b]. Training-conditional coverage results for jackknife+ (i.e., the hardness result of Theorem 6.10), and K-fold CV+ and K-fold cross-validation (i.e., the coverage guarantee of Theorem 6.9), appear in Bian and Barber [2022]. The proof of Theorem 6.9 relies on the Dvoretzky-Kiefer-Wolfowitz inequality [Dvoretzky et al., 1956], a classical concentration inequality on the empirical CDF of i.i.d. data.

Algorithmic stability, as introduced in Section 6.6.1, has been broadly studied in the fields of statistics and learning theory. Bousquet and Elisseeff [2002] establish connections between algorithmic stability and the notion of generalization. The specific formulation of stability we use in this work, Definition 6.11, is closely related to the *hypothesis stability* condition in that work. Extensions of their results to the setting of randomized algorithms are developed by Elisseeff et al. [2005]. Shalev-Shwartz et al. [2010] study the

connections between stability and *learnability*, i.e., whether an algorithm is able to achieve some minimal risk on a supervised learning problem. The finite-sample stability-based guarantee for jackknife (Theorem 6.12) is developed by Barber et al. [2021b], along with improved predictive coverage guarantees for jackknife+. The proof of Theorem 6.12 is related to the conformal jackknife method, a version of full conformal prediction that uses a leave-one-out regression based score function [Vovk et al., 2005, Section 2.2]. Earlier work by Steinberger and Leeb [2018] proves an asymptotic coverage guarantee for jackknife under stability. Ndiaye [2022] also establishes computational shortcuts for full conformal prediction, under a stronger form of the stability assumption.

A related line of work studies a different inference question for cross-validation-based methods: for a loss function ℓ , is the average leave-one-out loss $\frac{1}{n}\sum_{i=1}^n\ell(Y_i,\hat{f}_{-i}(X_i))$ an accurate estimator of the true risk of the fitted models? Bayle et al. [2020] establish asymptotic normality of this estimator. That result relies on a weaker formulation of stability, relying on stability of the loss $\ell(\cdot,\hat{f}(\cdot))$ rather than the predictive model \hat{f} itself; other works such as Kearns and Ron [1997], Kale et al. [2011], Kumar et al. [2013] have also studied this type of loss-based stability.

Several types of algorithms have been proved to satisfy stability by their construction. As mentioned in Section 6.6.1, nearest-neighbor type methods satisfy stability (see, e.g., Rogers and Wagner [1978], Devroye and Wagner [1979]); results for ridge regression (and strongly convex regularizers more generally) are discussed by Bousquet and Elisseeff [2002]. Hardt et al. [2016] establish stability of stochastic gradient descent. Ensembling or bootstrapping based methods have also been shown to satisfy stability properties, see, e.g., Poggio et al. [2002], Chen et al. [2022], Soloff et al. [2023]. Results on the hardness of testing algorithmic stability, as mentioned in Section 6.6.3, appear in Kim and Barber [2021], Luo and Barber [2024].

Chapter 7

Weighted Variants of Conformal Prediction

In the previous chapters, our conformal algorithms have treated all data points equally. Often, however, some data points are more relevant than others. For example, data collected more recently is generally expected to be more closely related to the test point, and data points closer in feature space to the test point are expected to be more informative about the test point.

This chapter concerns weighted variants of conformal prediction, which allow us to give different data points a different level of influence. We begin by defining a generic algorithm for weighted conformal prediction in Section 7.1. After that, in the remaining sections, we show how to instantiate weighted conformal prediction for various settings:

- In Section 7.2, we consider known distribution shifts relating the training data distribution and the test point, such as covariate shifts and label shifts. For this setting, we use data-dependent weights to correct for this distribution shift.
- In Section 7.3, we present the localized conformal prediction method, which aims to improve conditional coverage by placing higher weights on data points that are close to the test point X_{n+1} .
- In Section 7.4, we consider arbitrary (and unknown) distribution shifts. We use fixed weights to prioritize more trusted data points, which leads to coverage closer to 1α when exchangeability is violated.
- In Section 7.5, we consider a more general and unified view of conformal prediction, providing a framework for deriving conformal algorithms that generalize beyond the assumptions of exchangeability or of a symmetric score function.

These setups all use variants of the same algorithm, weighted conformal prediction, but with different choices of the weights, to achieve different effects.

7.1 Weighted quantiles and the weighted conformal algorithm

In this section, we will define a weighted version of the split and full conformal prediction algorithms. While conformal prediction computes a threshold \hat{q} (or \hat{q}^y) as a quantile of the data points' scores, thus implicitly placing equal weight on each data point, we will now introduce the ability to place different weights on the various data points.

We will see in later sections that this modification will allow us to extend conformal prediction for a variety of different aims—we will analyze the behavior of this procedure and its extensions to handle distribution

Figure 7.1: An illustration of the weighted conformal quantile. The horizontal axis shows the scores. The vertical axis shows the CDF of \mathcal{D}_{n+1}^y on the left, and its weighted CDF on the right. The quantile level $1-\alpha$ is shown as a light gray line on both plots. The standard choice of quantile \hat{q}^y is shown on the left, and its weighted version \hat{q}_w^y is shown on the right.

shifts and approximate conditional coverage. For now, though, we restrict our attention to the mechanics of the procedure: how can we incorporate weights into the conformal prediction procedure?

Taking a step back, recall that in unweighted full conformal prediction, we include the value y in the prediction set whenever $S_{n+1}^y \leq \hat{q}^y$, where \hat{q}^y is calculated as a quantile of the data points' scores. In weighted full conformal prediction, there is just one difference: we take a weighted $1 - \alpha$ quantile,

$$\hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^{n+1} w_i \delta_{S_i^y}; 1 - \alpha\right),$$

for an (n+1)-length vector w of nonnegative, unit-sum weights. This is the quantile of a weighted empirical distribution—that is, we are calculating the $(1-\alpha)$ -quantile of the distribution that places weight w_i on the value S_i^y , for each i.

When $w_i = \frac{1}{n+1}$ for all i, this calculation simply reduces to Quantile $(S_1^y, \dots, S_{n+1}^y; 1-\alpha)$, the quantile of the list of scores. In general, though, if the weights are not constant across the data points, then points with higher weights will have more of an influence in the chosen quantile. See Figure 7.1 for an illustration of the weighted quantile.

Depending on the situation, the weights can be fixed a-priori, or set as a function of the data—we will discuss the choice of weights later on, as we encounter several different scenarios over the course of this chapter. We now state the weighted full conformal algorithm for a generic (and potentially data-dependent) vector of weights.

Algorithm 7.1: Weighted full conformal prediction

- 1. Input training data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , weights $w_1, ..., w_{n+1} \ge 0$ with $\sum_i w_i = 1$, target coverage level 1α , conformal score function s.
- 2. For each possible response value $y \in \mathcal{Y}$,
 - (a) Compute $S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y)$ for all $i \in [n]$, and $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$.
 - (b) Compute the weighted conformal quantile $\hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^{n+1} w_i \delta_{S_i^y}; 1 \alpha\right)$.
- 3. Return the prediction set $\mathcal{C}(X_{n+1}) = \{ y \in \mathcal{Y} : S_{n+1}^y \leq \hat{q}_w^y \}.$

Comparing to unweighted full conformal prediction (Algorithm 3.3), we can see that this weighted algorithm differs only in a single step—the calculation of the weighted quantiles \hat{q}_w^y . Indeed, we can recover unweighted conformal prediction by choosing constant weights $w_i = \frac{1}{n+1}$ in the weighted full conformal algorithm. The

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

following calculation shows the equivalence of \hat{q}_{w}^{y} from Algorithm 7.1 and \hat{q}^{y} from Algorithm 3.3:

$$\hat{q}_w^y = \text{Quantile}\left(\frac{1}{n+1}\sum_{i=1}^{n+1} \delta_{S_i^y}; 1 - \alpha\right) = \text{Quantile}\left(S_1^y, \dots, S_n^y, S_{n+1}^y; 1 - \alpha\right) = \hat{q}^y \text{ for } w_i = \frac{1}{n+1}.$$

But in fact, these two definitions result in identical prediction sets, because by the Replacement Lemma (Lemma 3.4), for each $y \in \mathcal{Y}$,

$$S_{n+1}^y \leq \hat{q} = \text{Quantile}\left(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)\right) \iff S_{n+1}^y \leq \text{Quantile}\left(S_1^y, \dots, S_n^y, S_{n+1}^y; 1-\alpha\right).$$

To summarize, full conformal prediction is a special case of weighted full conformal prediction: choosing constant weights $w_i = \frac{1}{n+1}$ in Algorithm 7.1 leads to a prediction set $\mathcal{C}(X_{n+1})$ that is exactly the same as the one constructed in Algorithm 3.3.

We can also define a weighted version of split conformal prediction. As for the unweighted case, this can be viewed as a special case of weighted full conformal prediction.

Algorithm 7.2: Weighted split conformal prediction

- 1. Input pretraining dataset \mathcal{D}_{pre} , calibration data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , weights $w_1, ..., w_{n+1} \geq 0$ with $\sum_i w_i = 1$, target coverage level 1α .
- 2. Using the pretraining dataset \mathcal{D}_{pre} , construct a conformal score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$.
- 3. Compute the conformal scores on the calibration set, $S_i = s(X_i, Y_i)$ for $i \in [n]$.
- 4. Compute the weighted conformal quantile $\hat{q}_w = \text{Quantile} \left(\sum_{i=1}^n w_i \delta_{S_i} + w_{n+1} \delta_{+\infty}; 1 \alpha \right)$.
- 5. Return the prediction set $C(X_{n+1}) = \{y \in \mathcal{Y} : s(X_{n+1}, y) \leq \hat{q}_w\}.$

In the remainder of this chapter, we will give coverage guarantees for the weighted conformal algorithm and its extensions in various settings.

7.2 Conformal prediction under covariate and label shifts

In this section, we see how the weighted conformal algorithm can be applied to handle covariate shift and label shift—that is, differences between the distribution of the training data and the test data, so that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are drawn from a covariate- or label-shifted distribution as compared to (X_{n+1}, Y_{n+1}) . The strategy for constructing weights in these two settings will be a common one: setting the weights w_i proportionally to the likelihood ratio relating these two distributions.

7.2.1 Covariate shift

We will begin by using weighted conformal prediction to address covariate shift: the setting where the distribution of X differs between the training and test data, but the distribution of $Y \mid X$ remains the same. For example, covariate shift is a common model for capturing demographic shifts, where certain demographics might be more common in the training population than in the test population.

We assume that $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\text{i.i.d.}}{\sim} P_X \times P_{Y|X}$ and that $(X_{n+1},Y_{n+1}) \sim Q_X \times P_{Y|X}$ independently, for a different covariate distribution Q_X . Here, the notation $P_X \times P_{Y|X}$ means that X follows distribution P_X and then, conditionally on $X,Y\mid X$ follows distribution $P_{Y|X}$ (and, $Q_X \times P_{Y|X}$ is defined similarly). The key insight is that if we know the likelihood ratio $\frac{dQ_X}{dP_X}: \mathcal{X} \to \mathbb{R}_{\geq 0}$ —the ratio of likelihoods for the test versus train data distributions—we can construct weights that compensate for the distribution shift to give us coverage. Formally, $\frac{dQ_X}{dP_X}$ denotes the Radon–Nikodym derivative relating the distribution Q_X of the test data point's feature vector, to the distribution P_X of the training features. For example, if P_X and Q_X both have densities, then $\frac{dQ_X}{dP_X}$ can simply be taken to be the ratio of the densities.

Figure 7.2: **Visualization of a covariate shift** in two groups on the left and the resulting unweighted and weighted quantiles on the right. On the left, there are two groups, X = 1 (yellow) and X = 2 (gray), with different frequencies under P and Q. On the right, we show the density of the scores conditionally on X = 1 and X = 2, in yellow and gray respectively. We additionally show the density of the score under the mixture distributions P (dotted) and Q (dashed). If we compute a quantile using data drawn from P, then the unweighted quantile \hat{q}^y reflects the fact that P places high weight on X = 1 (which is associated with lower scores), and is consequently much lower than the weighted quantile \hat{q}^y_w , which reflects the fact that Q places higher weight on X = 2 (which is associated with higher score values).

The strategy for setting the weights is straightforward: we set $w_i \propto \frac{dQ_X}{dP_X}(X_i)$. To ensure that the weights sum to 1, we set

$$w_i = \frac{\frac{dQ_X}{dP_X}(X_i)}{\sum\limits_{j=1}^{n+1} \frac{dQ_X}{dP_X}(X_j)}$$

$$(7.1)$$

for all $i \in [n+1]$. We will now see that this choice of weights gives us a coverage guarantee.

Theorem 7.3

Let $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P_X \times P_{Y|X}$ and $(X_{n+1}, Y_{n+1}) \sim Q_X \times P_{Y|X}$ independently. Furthermore, assume that Q_X is absolutely continuous with respect to P_X , and so $\frac{dQ_X}{dP_X}(x) < \infty$ for all $x \in \mathcal{X}$. Fix any symmetric score function s, and define the prediction set

$$\mathcal{C}(X_{n+1}) = \left\{ y : S_{n+1}^y \le \hat{q}_w^y \right\} \text{ where } \hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^n w_i \delta_{S_i^y}; 1 - \alpha\right),$$

where the weights w_i are defined as in (7.1). Then,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

In other words, coverage for the covariate shift setting is obtained by running Algorithm 7.1 with weights w_i defined as in (7.1). This result is a corollary to the more general result of Theorem 7.5 (see Section 7.2.3 below), so we do not present the proof.

Why does reweighting give coverage? First, it is worth considering why unweighted conformal prediction does not provide coverage under covariate shift. Imagine that we have just two groups, i.e., $\mathcal{X} = \{1,2\}$, and that the scores in the subpopulation where X = 1 tend to be much smaller than in the subpopulation where X = 2. If $\mathbb{P}_{P_X}(X = 1) > \mathbb{P}_{Q_X}(X = 1)$, then X = 1 is over-represented in the training data (relative to the test point's distribution), and the conformal quantile will be biased downwards; see Figure 7.2 for a visualization. The fundamental problem is that the training and test scores $S_1, \ldots, S_n, S_{n+1}$ are no longer exchangeable—the test point's score S_{n+1} no longer behaves like a draw from the empirical

distribution of S_1, \ldots, S_{n+1} , and so calculating an unweighted quantile cannot be expected to achieve the right coverage level.

Weighted conformal prediction works because the distribution of S_{n+1} can be explicitly represented as a weighted empirical distribution instead. In other words, conditionally on the values of the data points, the test point behaves like a draw from the reweighted empirical distribution:

$$(X_{n+1}, Y_{n+1}) \mid \widehat{P}_{n+1} \sim \sum_{i=1}^{n+1} w_i \delta_{(X_i, Y_i)},$$

where $\widehat{P}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{(X_i,Y_i)}$ is the empirical distribution of the dataset \mathcal{D}_{n+1} , and consequently, an analogous statement holds for the scores:

$$S_{n+1} \mid \widehat{P}_{n+1} \sim \sum_{i=1}^{n+1} w_i \delta_{S_i}.$$

This gives us an explicit distribution for (X_{n+1}, Y_{n+1}) , and thus S_{n+1} , allowing us to prove the coverage guarantee for weighted conformal prediction. We go into more detail on this argument in Section 7.5.

7.2.2 Label shift

In label shift, the distribution of Y changes and the distribution of $X \mid Y$ is held fixed. Label shift is common in many classification problems. Our strategies for handling covariate shift and label shift are almost identical, with one key difference: the weights are now a function of Y as opposed to X.

The setup is entirely analogous to the covariate shift procedure. We assume that $(X_1, Y_1), \ldots, (X_n, Y_n)$ i.i.d. $P_{X|Y} \times P_Y$ and that $(X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times Q_Y$ independently, for a different label distribution Q_Y . Here, the notation $P_{X|Y} \times P_Y$ means that Y follows distribution P_Y and then $X \mid Y$ follows distribution $P_{X|Y}$, and similarly, for $P_{X|Y} \times Q_Y$. Then, we define the likelihood ratio $\frac{dQ_Y}{dP_Y} : \mathcal{Y} \to \mathbb{R}$.

To run Algorithm 7.1, we need to make a slight modification in the calculation of the weighted quantile, since the weights are now a function of Y (which, for the test point, is unknown), rather than of X (where the test point value X_{n+1} is known). In particular, define

$$w_i^y = \frac{\frac{dQ_Y}{dP_Y}(Y_i)}{\sum\limits_{j=1}^n \frac{dQ_Y}{dP_Y}(Y_j) + \frac{dQ_Y}{dP_Y}(y)} \text{ for } i \in [n] \quad \text{ and } \quad w_{n+1}^y = \frac{\frac{dQ_Y}{dP_Y}(y)}{\sum\limits_{j=1}^n \frac{dQ_Y}{dP_Y}(Y_j) + \frac{dQ_Y}{dP_Y}(y)}. \tag{7.2}$$

For the label shift setting, we will use these weights w_i^y for computing the conformal quantile—that is, this procedure is a slight variant of Algorithm 7.1, where the weights w_i did not depend on the hypothesized test point y.

Our next result verifies a coverage guarantee for this setting. This result is again a corollary of Theorem 7.3, so we do not prove it here.

Theorem 7.4

Let $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P_{X|Y} \times Q_Y$ and $(X_{n+1}, Y_{n+1}) \sim P_{X|Y} \times Q_Y$ independently. Furthermore, assume that Q_Y is absolutely continuous with respect to P_Y , and so $\frac{dQ_Y}{dP_Y}(y) < \infty$ for all $y \in \mathcal{Y}$. Fix any symmetric score function s, and define the prediction set

$$\mathcal{C}(X_{n+1}) = \left\{ y : S_{n+1}^y \le \hat{q}_w^y \right\} \text{ where } \hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^n w_i^y \delta_{S_i^y}; 1 - \alpha\right),$$

where the weights w_i^y are defined as in (7.2). Then,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

In other words, coverage for the label shift setting is obtained by running this modified version of Algorithm 7.1—we use weights w_i^y (which depend on the hypothesized test point value y) defined as in (7.2).

7.2.3 General shifts between the training distribution and test distribution

When we apply the weighted conformal algorithm to the covariate shift setting and to the label shift setting, the intuition for the two is essentially the same. Since the training and test scores $S_1, \ldots, S_n, S_{n+1}$ are not exchangeable, we cannot think of the test score S_{n+1} as a uniform draw from the empirical distribution of the training and test scores—but instead, the distribution of the test score S_{n+1} can be described as a reweighted empirical distribution. In fact, the same argument works for any distribution shift between the train and test sets with a known likelihood ratio, with covariate shift and label shift as two special cases. In this section, we will develop the method and theory for the general case.

For the general setting, let $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\text{i.i.d.}}{\sim}P$ and that $(X_{n+1},Y_{n+1})\sim Q$ independently, for a different distribution Q, where we assume that Q is absolutely continuous with respect to P so that the likelihood ratio (i.e., the Radon–Nikodym derivative) $\frac{dQ}{dP}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is well-defined. Paralleling the label shift section, we will set the weights as

$$w_i^y = \frac{\frac{dQ}{dP}(X_i, Y_i)}{\sum_{j=1}^n \frac{dQ}{dP}(X_j, Y_j) + \frac{dQ}{dP}(X_{n+1}, y)} \text{ for } i \in [n] \quad \text{and} \quad w_{n+1}^y = \frac{\frac{dQ}{dP}(X_{n+1}, y)}{\sum_{j=1}^n \frac{dQ}{dP}(X_j, Y_j) + \frac{dQ}{dP}(X_{n+1}, y)}.$$
(7.3)

As a side note, because these weights are self-normalized, we only need to know $\frac{dQ}{dP}$ up to a constant of proportionality—that is, if $\frac{dQ}{dP}(x,y) \propto w(x,y)$ for some function $w: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, it suffices to know the function w, without calculating its normalizing constant. (This was equally true in Sections 7.2.1 and 7.2.2 for the covariate-shift and label-shift settings.)

With the weights defined, we are now ready to state the general result.

Theorem 7.5

Let $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\text{i.i.d.}}{\sim} P$ and $(X_{n+1},Y_{n+1})\sim Q$ independently. Furthermore, assume that Q is absolutely continuous with respect to P, and so $\frac{dQ}{dP}(x,y)<\infty$ for all $(x,y)\in\mathcal{X}\times\mathcal{Y}$. Fix any symmetric score function s, and define the prediction set

$$\mathcal{C}(X_{n+1}) = \left\{ y : S_{n+1}^y \le \hat{q}_w^y \right\} \text{ where } \hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^n w_i^y \delta_{S_i^y}; 1 - \alpha\right),$$

where the weights w_i^y are defined as in (7.3). Then,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

Our proof of this result will generalize the ideas developed in Section 3.5.2, where we proved the coverage guarantee for unweighted full conformal prediction (in a setting without distribution shift) by considering the empirical distribution $\widehat{P}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{(X_i,Y_i)}$ of the training and test data. The argument in Section 3.5.2 showed that, in the setting of exchangeability, the conditional distribution of the test point (X_{n+1},Y_{n+1}) , if we condition on \widehat{P}_{n+1} , is equal to the empirical distribution \widehat{P}_{n+1} itself. This is no longer true in the distribution shift setting—if $P \neq Q$, then the test point is not equally likely to be equal to each one of the points in the dataset. The following proposition shows that the conditional distribution is instead given by a reweighted version of the empirical distribution.

Proposition 7.6

Let $Z_1, \ldots, Z_n \overset{\text{i.i.d.}}{\sim} P$ and $Z_{n+1} \sim Q$ independently, for some distributions P, Q on \mathcal{Z} . Furthermore, assume that Q is absolutely continuous with respect to P, and so $\frac{dQ}{dP}(z) < \infty$ for all $z \in \mathcal{Z}$. Let

$$\widehat{P}_{n+1} = \frac{1}{n+1} \sum_{i=1}^{n+1} \delta_{Z_i}$$

denote the empirical distribution of the n+1 data points. Then the conditional distribution of Z_{n+1} , given the empirical distribution \widehat{P}_{n+1} , is given by

$$Z_{n+1} \mid \widehat{P}_{n+1} \sim \sum_{i=1}^{n+1} w_i \cdot \delta_{Z_i},$$

where

$$w_i = \frac{\frac{\mathrm{d}Q}{\mathrm{d}P}(Z_i)}{\sum_{i=1}^{n+1}\frac{\mathrm{d}Q}{\mathrm{d}P}(Z_j)}, \ i \in [n+1].$$

Of course, in the exchangeable case, the weights are given by $w_i = \frac{1}{n+1}$, and so—as shown earlier in Proposition 2.2—the conditional distribution is equal to the original unweighted empirical distribution, \hat{P}_{n+1} . With this result in place, we now turn to the proof of the theorem.

Proof of Theorem 7.5

By construction of the prediction set, we have

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \le \hat{q}_w^{Y_{n+1}} = \text{Quantile}\left(\sum_{i=1}^n w_i^{Y_{n+1}} \delta_{S_i}; 1 - \alpha\right),$$

where $w_i^{Y_{n+1}}$ is defined as in (7.3) (with $y = Y_{n+1}$). Now write $Z_i = (X_i, Y_i)$ for each $i \in [n+1]$, and define

$$w_i = \frac{\frac{dQ}{dP}(Z_i)}{\sum_{i=1}^{n+1} \frac{dQ}{dP}(Z_j)}$$

(as in the statement of Proposition 7.6). Note that

$$w_i = w_i^{Y_{n+1}}$$

by definition. Therefore,

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff S_{n+1} \leq \text{Quantile}\left(\sum_{i=1}^n w_i \delta_{S_i}; 1 - \alpha\right).$$

We can therefore write

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) = \mathbb{P}\left(S_{n+1} \leq \text{Quantile}\left(\sum_{i=1}^{n} w_{i} \delta_{S_{i}}; 1 - \alpha\right)\right)$$

$$= \mathbb{E}\left[\mathbb{P}\left(S_{n+1} \leq \text{Quantile}\left(\sum_{i=1}^{n} w_{i} \delta_{S_{i}}; 1 - \alpha\right) \middle| \widehat{P}_{n+1}\right)\right],$$

by the tower law. Next, since the score function s is assumed to be symmetric, note that $s(\cdot; \mathcal{D}_{n+1})$ depends on the dataset \mathcal{D}_{n+1} only via the empirical distribution \widehat{P}_{n+1} . To emphasize this point, we will use the notation $s(\cdot; \widehat{P}_{n+1})$ in place of $s(z; \mathcal{D}_{n+1})$ throughout the remainder of this proof. Since $S_i = s(Z_i; \widehat{P}_{n+1})$ for each i by construction, we then have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) = \mathbb{E}\left[\mathbb{P}\left(s(Z_{n+1}; \widehat{P}_{n+1}) \leq \text{Quantile}\left(\sum_{i=1}^{n} w_{i} \delta_{s(Z_{i}; \widehat{P}_{n+1})}; 1 - \alpha\right) \middle| \widehat{P}_{n+1}\right)\right].$$

Now we will consider the conditional probability on the right-hand side. First, observe that the quantile,

Quantile
$$\left(\sum_{i=1}^{n} w_i \delta_{s(Z_i;\widehat{P}_{n+1})}; 1 - \alpha\right)$$
,

can be expressed as a function of the empirical distribution \widehat{P}_{n+1} , i.e., it does not depend on the order of the data points—this is because the reweighted empirical distribution $\sum_{i=1}^{n+1} w_i \delta_{Z_i}$ is itself \widehat{P}_{n+1} -measurable (in particular, this is implied by Proposition 7.6). Using the conditional distribution of (X_{n+1}, Y_{n+1}) as derived in Proposition 7.6, then, we have

$$\mathbb{P}\left(s(Z_{n+1}; \widehat{P}_{n+1}) \leq \operatorname{Quantile}\left(\sum_{i=1}^{n} w_{i} \delta_{s(Z_{i}; \widehat{P}_{n+1})}; 1 - \alpha\right) \middle| \widehat{P}_{n+1}\right)$$

$$= \sum_{j=1}^{n+1} w_{j} \cdot \mathbb{1}\left\{s(Z_{j}; \widehat{P}_{n+1}) \leq \operatorname{Quantile}\left(\sum_{i=1}^{n} w_{i} \delta_{s(Z_{i}; \widehat{P}_{n+1})}; 1 - \alpha\right)\right\}.$$

But this must deterministically be $\geq 1 - \alpha$, by definition of the weighted quantile—this is due to the following fact (which we can view as a weighted version of Fact 2.12(iii)):

Fact 7.7

Fix weights $w_1, \ldots, w_k \geq 0$ with $\sum_{i=1}^k w_i = 1$. Then for any $z \in \mathbb{R}^k$ and any $\tau \in [0, 1]$,

$$\sum_{i=1}^{k} w_i \mathbb{1} \left\{ z_i \le \text{Quantile} \left(\sum_{j=1}^{k} w_j \delta_{z_j}; \tau \right) \right\} \ge \tau.$$

Therefore, we have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \ge \mathbb{E}[1 - \alpha] = 1 - \alpha,$$

which completes the proof.

Finally, to complete this section, we prove Proposition 7.6.

Proof of Proposition 7.6

In this proof, we will use the following two facts, which are measure theoretic in nature, and we state without proof. The first is that proving the desired statement is equivalent to verifying

that, for all (measurable) sets A and B, it holds that

$$\mathbb{P}(Z_{n+1} \in A, \widehat{P}_{n+1} \in B) = \mathbb{E}\left[\sum_{i=1}^{n+1} w_i \mathbb{1} \{Z_i \in A\} \mathbb{1} \{\widehat{P}_{n+1} \in B\}\right].$$
 (7.4)

The second fact is that for any (measurable) function $h: \mathbb{Z}^{n+1} \to \mathbb{R}$, we have

$$\mathbb{E}_{(Z_1,\dots,Z_{n+1})\sim P^n\times Q}\left[h(Z_1,\dots,Z_{n+1})\right] = \mathbb{E}_{(Z_1,\dots,Z_{n+1})\sim P^{n+1}}\left[\frac{\mathsf{d}Q}{\mathsf{d}P}(Z_{n+1})\cdot h(Z_1,\dots,Z_{n+1})\right],\tag{7.5}$$

which is a property of the Radon-Nikodym derivative.

Now, we move to verifying (7.4). We have

$$\begin{split} & \mathbb{P}_{(Z_1,...,Z_{n+1}) \sim P^n \times Q}(Z_{n+1} \in A, \widehat{P}_{n+1} \in B) \\ & = \mathbb{E}_{(Z_1,...,Z_{n+1}) \sim P^n \times Q} \left[\mathbb{1} \left\{ Z_{n+1} \in A \right\} \mathbb{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right] \\ & = \mathbb{E}_{(Z_1,...,Z_n,Z_{n+1}) \sim P^{n+1}} \left[\frac{\mathsf{d}Q}{\mathsf{d}P}(Z_{n+1}) \cdot \mathbb{1} \left\{ Z_{n+1} \in A \right\} \mathbb{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right], \end{split}$$

where the last equality above follows by (7.5). Next, we redefine the weights as

$$w_{i} = \begin{cases} \frac{\frac{dQ}{dP}(Z_{i})}{\sum\limits_{j=1}^{n+1} \frac{dQ}{dP}(Z_{j})}, & \sum\limits_{j=1}^{n+1} \frac{dQ}{dP}(Z_{j}) > 0, \\ 0, & \sum\limits_{j=1}^{n+1} \frac{dQ}{dP}(Z_{j}) = 0. \end{cases}$$

(Note that, if we draw $(Z_1, \ldots, Z_{n+1}) \sim P^{n+1}$, it is no longer the case that $\frac{dQ}{dP}(Z_{n+1})$ must be positive almost surely—and therefore the event

$$\sum_{j=1}^{n+1} \frac{\mathrm{d}Q}{\mathrm{d}P}(Z_j) > 0$$

could potentially have probability < 1. However, if this event does hold, then these new weights are equivalent to those defined in the statement of the proposition—and also, on this event, we have $\sum_{j=1}^{n+1} w_j = 1$.) Then

$$\frac{\mathrm{d}Q}{\mathrm{d}P}(Z_{n+1}) = w_{n+1} \cdot \sum_{j=1}^{n+1} \frac{\mathrm{d}Q}{\mathrm{d}P}(Z_j)$$

holds almost surely under $(Z_1, \ldots, Z_n, Z_{n+1}) \sim P^{n+1}$, and so

$$\begin{split} & \mathbb{P}_{(Z_1, \dots, Z_{n+1}) \sim P^n \times Q}(Z_{n+1} \in A, \widehat{P}_{n+1} \in B) \\ = & \mathbb{E}_{(Z_1, \dots, Z_n, Z_{n+1}) \sim P^{n+1}} \left[w_{n+1} \cdot \sum_{j=1}^{n+1} \frac{\mathsf{d}Q}{\mathsf{d}P}(Z_j) \cdot \mathbbm{1} \left\{ Z_{n+1} \in A \right\} \mathbbm{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right] \\ = & \sum_{j=1}^{n+1} \mathbb{E}_{(Z_1, \dots, Z_n, Z_{n+1}) \sim P^{n+1}} \left[w_{n+1} \cdot \frac{\mathsf{d}Q}{\mathsf{d}P}(Z_j) \cdot \mathbbm{1} \left\{ Z_{n+1} \in A \right\} \mathbbm{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right]. \end{split}$$

Because the expectation above is taken with respect to i.i.d. random variables, we can reindex it however we like. Swapping indexes j and n + 1 in the jth term, for each j, yields that the

above expression is equal to

$$\begin{split} &= \sum_{j=1}^{n+1} \mathbb{E}_{(Z_1,...,Z_n,Z_{n+1}) \sim P^{n+1}} \left[w_j \cdot \frac{\mathrm{d}Q}{\mathrm{d}P}(Z_{n+1}) \cdot \mathbb{1} \left\{ Z_j \in A \right\} \mathbb{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right] \\ &= \sum_{j=1}^{n+1} \mathbb{E}_{(Z_1,...,Z_n,Z_{n+1}) \sim P^n \times Q} \left[w_j \cdot \mathbb{1} \left\{ Z_j \in A \right\} \mathbb{1} \left\{ \widehat{P}_{n+1} \in B \right\} \right], \end{split}$$

where the last step holds by applying (7.5). This is equivalent to the right-hand side of (7.4), as desired.

7.2.4 Comparing distribution shift and conditional coverage

Robustness to distribution shift is closely related to conditional coverage. In fact, requiring test-conditional coverage (i.e., coverage conditional on the test feature X_{n+1}) is strictly stronger than requiring coverage relative to a covariate shift: test-conditional coverage implies coverage with respect to any covariate shifts (i.e., for any Q_X). Similarly, label-conditional coverage implies coverage with respect to any label shift (i.e., for any Q_Y).

However, conditional coverage guarantees are harder to obtain. For example, if label-conditional coverage holds (that is, $\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid Y_{n+1} = y) \geq 1 - \alpha$ for each possible label y) then it implies coverage for any label-shifted distribution—but these prediction sets will be very large unless we have a large number of observations in each category (i.e., $\sum_{i \in [n]} \mathbb{I}\{Y_i = y\}$ is large, for each $y \in \mathcal{Y}$). In contrast, the method studied in Theorem 7.4 gives a marginal guarantee relative to a particular label-shifted distribution $P_{X|Y} \times Q_Y$ and could therefore produce more informative prediction sets.

7.3 Localized conformal prediction

We next turn to a different use case of weighting: the goal of improving conditional coverage. That is, suppose we wish to give confidence sets that approximately give conditional coverage for a test point X_{n+1} , as we have discussed in earlier chapters—in particular, in Chapter 4 we established that it is impossible in general to ensure test-conditional coverage, but as in Chapter 5, certain score functions (such as the CQR score) lead to approximate conditional coverage under additional assumptions. In this section, we pursue a complementary strategy based on weighting.

To see why weighting may be useful, notice that conformal prediction chooses the cutoff \hat{q} (or \hat{q}^y) by looking at the conformal score for all training points—even data points that are far away from the test point X_{n+1} are nonetheless included when choosing the cutoff \hat{q} . This naturally can lead to a failure of test-conditional coverage, if the distribution of scores is very different across different regions of \mathcal{X} . If we instead wish to improve test-conditional coverage, we might choose to give more weight to data points that lie near to the test point X_{n+1} . This is the key idea behind localized conformal prediction.

To make this concrete, suppose we have a function $H: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$ that is capturing the distance between two feature vectors—we will refer to H as the *localization kernel*. For example, when $\mathcal{X} = \mathbb{R}^d$, we could take $H(x, x') = \exp\{-\|x - x'\|_2^2/2h^2\}$, where h > 0 is a bandwidth parameter. An initial idea is to run Algorithm 7.1 with the weight w_i on data point (X_i, Y_i) chosen to be proportional to $H(X_i, X_{n+1})$: that is, we define

$$C(X_{n+1}) = \left\{ y \in \mathcal{Y} : S_{n+1}^y \le \text{Quantile}\left(\sum_{i=1}^{n+1} w_i \delta_{S_i^y}; 1 - \alpha\right) \right\} \text{ where } w_i = \frac{H(X_i, X_{n+1})}{\sum_{j=1}^{n+1} H(X_j, X_{n+1})}$$
(7.6)

That is, when running conformal prediction, we weight data points according to their distance from the test point. This initial approach is intuitively appealing and in practice would likely improve test-conditional coverage, but interestingly, in theory even the marginal coverage guarantee no longer holds for this weighted algorithm. We will remedy this next.

7.3.1 The localized conformal prediction algorithm

To endow the localized conformal approach with marginal coverage guarantees, it can be modified with a recalibration step, as stated next.

Algorithm 7.8: Localized conformal prediction

- 1. Input training data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , localization kernel H, target coverage level 1α , conformal score function s.
- 2. For each possible response value $y \in \mathcal{Y}$,
 - (a) Compute $S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y)$ for all $i \in [n]$, and $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$.
 - (b) Compute $w_{i,j} = H(X_j, X_i) / \sum_{j'=1}^{n+1} H(X_{j'}, X_i)$ for each $i, j \in [n+1]$.
 - (c) For $i = 1, \ldots, n+1$ define

$$\tilde{S}_{i}^{y} = \sum_{j=1}^{n+1} w_{i,j} \mathbb{1} \left\{ S_{j}^{y} < S_{i}^{y} \right\}.$$

- (d) Compute the conformal quantile $\tilde{q}^y = \text{Quantile}\left(\tilde{S}^y_1,\dots,\tilde{S}^y_{n+1};1-\alpha\right)$.
- 3. Return the prediction set $C(X_{n+1}) = \{ y \in \mathcal{Y} : \tilde{S}_{n+1}^y \le \hat{q}^y \}.$

How does this algorithm relate to our original formulation of the localized approach in (7.6)? To see the connection, first observe that $w_{n+1,i}$ (the weight defined here in Algorithm 7.8) is equal to w_i (the weight defined in (7.6)), by construction. When running Algorithm 7.8, therefore, the prediction set $C(X_{n+1})$ contains all values y for which $\tilde{S}_{n+1}^y \leq \tilde{q}^y$, or equivalently,

$$\sum_{i=1}^{n+1} w_i \mathbb{1} \left\{ S_i^y < S_{n+1}^y \right\} \le \tilde{q}^y,$$

while the set defined in (7.6) instead contains y whenever

$$S_{n+1}^{y} \le \text{Quantile}\left(\sum_{i=1}^{n+1} w_{i} \delta_{S_{i}^{y}}; 1 - \alpha\right) \iff \sum_{i=1}^{n+1} w_{i} \mathbb{1}\left\{S_{i}^{y} < S_{n+1}^{y}\right\} < 1 - \alpha.$$

In other words, the localized conformal prediction method defined in Algorithm 7.8 is exactly the same as the intuitive approach outlined in (7.6), except with a data-dependent quantile threshold \tilde{q}^y replacing the usual threshold $1-\alpha$. In other words, the localized conformal prediction method can essentially be interpreted as running the intuitive weighted conformal method suggested in (7.6), but with a modified value of α (which varies with y).

This modification is needed in order to ensure valid marginal coverage for localized conformal prediction—in particular, the following result verifies that this method is a special case of full conformal prediction:

Proposition 7.9

The prediction set defined in Algorithm 7.8 is equivalent to the full conformal prediction set, when full conformal is run with the score function

$$\tilde{s}((x,y);\mathcal{D}) = \sum_{j=1}^{m} \frac{H(x_j,x)}{\sum_{j'=1}^{m} H(x_{j'},x)} \mathbb{1} \left\{ s(x_i,y_i;\mathcal{D}) < s(x,y;\mathcal{D}) \right\},\,$$

for any (x, y) and any dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_m, y_m)).$

This result follows directly from the construction of Algorithm 7.8, and we do not give a formal proof here. Note that the function $\tilde{s}((x,y);\mathcal{D})$ is symmetric in \mathcal{D} , by construction (as long as the original score function $s((x,y);\mathcal{D})$ is itself symmetric in \mathcal{D}). Consequently, by Theorem 3.2, marginal coverage must hold for localized conformal prediction as long as we assume that the data is exchangeable.

7.3.2 The randomly-localized conformal prediction algorithm

Formally, the localized conformal prediction algorithm offers a marginal coverage guarantee. In practice, since the weights focus attention near the test point X_{n+1} , the method will likely yield approximate conditional coverage as well—but establishing theoretical guarantees for approximate conditional coverage is challenging and requires strong technical conditions. Instead, we next turn to the randomly-localized conformal prediction algorithm, which comes with a simple and explicit conditional coverage guarantee.

We continue as before with a localization kernel function $H: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$, and now we additionally assume $H(x,\cdot)$ defines a density with respect to some measure ν for each $x \in \mathcal{X}$:

$$\int_{\mathcal{X}} H(x, x') \, \mathrm{d}\nu(x') = 1.$$

Algorithm 7.10: Randomly-localized conformal prediction

- 1. Input training data $(X_1, Y_1), ..., (X_n, Y_n)$, test point X_{n+1} , weight function H, target coverage level 1α , conformal score function s.
- 2. Sample \tilde{X}_{n+1} from the distribution with density $H(X_{n+1},\cdot)$.
- 3. For each possible response value $y \in \mathcal{Y}$,
 - (a) Compute $S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y)$ for all $i \in [n]$, and $S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y)$.
 - (b) Compute $w_i = H(X_i, \tilde{X}_{n+1}) / \sum_{j=1}^{n+1} H(X_j, \tilde{X}_{n+1})$ for each $i \in [n+1]$.
 - (c) Compute the conformal quantile $\hat{q}^y = \text{Quantile}\left(\sum_{i=1}^{n+1} w_i \delta_{S_i^y}; 1 \alpha\right)$.
- 4. Return the prediction set $C(X_{n+1}) = \{ y \in \mathcal{Y} : S_{n+1}^y \le \hat{q}^y \}.$

In other words, we are simply running the weighted conformal prediction (Algorithm 7.1), with the weights w_i defined using the kernel H centered at the random sample \tilde{X}_{n+1} .

This algorithm comes with a guarantee that can be viewed as an approximation of conditional coverage.

Theorem 7.11

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are i.i.d. and s is a symmetric score function, and let $C(X_{n+1})$ be the output of Algorithm 7.10. Then,

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \tilde{X}_{n+1}\right) \ge 1 - \alpha$$
, almost surely.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Note that this also implies the usual marginal coverage guarantee by the tower property. We can interpret this coverage property as follows. Since we choose $H(X_{n+1},\cdot)$ to be localized near X_{n+1} , the distribution of $X_{n+1} \mid \tilde{X}_{n+1}$ is concentrated near \tilde{X}_{n+1} . Thus, the result of Theorem 7.11 is essentially a guarantee of coverage for a test point X_{n+1} sampled from a distribution that is concentrated near \tilde{X}_{n+1} —a relaxation of conditioning on the exact value of the test point X_{n+1} .

Proof of Theorem 7.11

First, note that $(X_1, Y_1), \ldots, (X_n, Y_n)$ are independent of $(X_{n+1}, Y_{n+1}, \tilde{X}_{n+1})$, by construction. Next, by the definition of \tilde{X}_{n+1} , the joint distribution of $(X_{n+1}, Y_{n+1}, \tilde{X}_{n+1})$ is defined by

$$X_{n+1} \sim P_X$$

 $Y_{n+1} \mid X_{n+1} \sim P_{Y|X}$
 $\tilde{X}_{n+1} \mid (X_{n+1}, Y_{n+1}) \sim H(X_{n+1}, \cdot).$

We then have that

$$(X_{n+1}, Y_{n+1}) \mid \tilde{X}_{n+1} \sim (P_X \circ H(\cdot, \tilde{X}_{n+1})) \times P_{Y|X},$$

where $P_X \circ H(\cdot, \tilde{X}_{n+1})$ denotes a reweighted distribution on \mathcal{X} , defined by

$$\frac{\mathsf{d}(P_X \circ H(\cdot, \tilde{X}_{n+1}))(x)}{\mathsf{d}P_X(x)} \propto H(x, \tilde{X}_{n+1}).$$

Thus, conditional on \tilde{X}_{n+1} , this is an instance of covariate shift—the distribution of X_{n+1} is no longer P_X , but the conditional distribution of $Y_{n+1} \mid X_{n+1}$ is unchanged.

We now note that Algorithm 7.10 is the same as the weighted conformal algorithm with covariate shift. To see this, observe that the weights satisfy

$$\tilde{w}_j \propto H(X_j, \tilde{X}_{n+1}) \propto \frac{\mathsf{d}(P_X \circ H(\cdot, \tilde{X}_{n+1}))(X_j)}{\mathsf{d}P_X(X_j)},$$

exactly as in (7.1) (where the test distribution Q_X of the covariates is now replaced by $P_X \circ H(\cdot, \tilde{X}_{n+1})$ —note that \tilde{X}_{n+1} is being treated as fixed, since the proposition seeks to establish coverage conditional on \tilde{X}_{n+1}). Thus, the validity of weighted conformal for covariate shift (Theorem 7.3) implies the desired claim.

7.4 Fixed-weight conformal prediction

Next, we focus on conformal prediction with fixed weights—ones that don't depend on X or Y—in order to be more robust to deviations from exchangeability. For example, in a time series, we may want to give recent data higher weights relative to data from long ago, since we expect that the distribution of recent points is closer to that of the test point. In this section, we will, a-priori, assign each of our data points a weight, $w_i \geq 0$ for all $i \in [n+1]$, with larger weights indicating greater relevance. When we run Algorithm 7.1 with this non-data-dependent vector of weights, we call it fixed-weight conformal prediction.

Incorporating weights allows us to achieve a coverage guarantee for exchangeable datasets and bound the loss of coverage for datasets that violate the exchangeability assumption. The point is that if choose the weights well, the weighted procedure will be more robust to certain violations of exchangeability. We state this formally next. Throughout this section, we will use the notation $Z_i = (X_i, Y_i)$ for the data points.

Theorem 7.12

Let weights $w_1, \ldots, w_{n+1} \geq 0$ be fixed, with $\sum_i w_i = 1$ and $w_{n+1} \geq w_i$ for all i. Let Z_1, \ldots, Z_{n+1} be random variables with any joint distribution. Fix any symmetric score function s, and define the prediction set

$$\mathcal{C}(X_{n+1}) = \left\{ y : S_{n+1}^y \le \hat{q}_w^y \right\} \text{ where } \hat{q}_w^y = \text{Quantile}\left(\sum_{i=1}^{n+1} w_i \delta_{S_i^y}; 1 - \alpha\right).$$

Then,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha - \sum_{i=1}^{n} w_i \cdot d_{\text{TV}}\left((Z_1, \dots, Z_{n+1}), (Z_1, \dots, Z_{i-1}, Z_{n+1}, Z_{i+1}, \dots, Z_n, Z_i)\right),$$

where d_{TV} denotes the total variation distance between distributions.

This guarantee gives a bound on the loss of coverage for conformal prediction run on a general dataset, regardless of whether it satisfies the exchangeability assumption. The bound depends on two quantities: the TV distance of the swapped versions of the dataset (which we can view as a measure of the degree of non-exchangeability), and the weights. When data points Z_i that are differently distributed from the test point Z_{n+1} are given high weight, this can hurt the coverage. On the other hand, if they have a low weight, then coverage is (approximately) preserved.

Two important implications of the theorem are as follows:

- 1. If the dataset is exchangeable, the fixed-weight procedure has coverage at least 1α (since the total variation distance appearing in the bound is equal to zero in that case).
- 2. If the dataset is not exchangeable, the loss of coverage can be mitigated by choosing the weights strategically—e.g., placing higher weights on more recently gathered data points.

Proof of Theorem 7.12

First we define some notation. Recall from Chapter 3 that we write $S_i = s((X_i, Y_i); \mathcal{D}_{n+1})$ to denote the score of data point $Z_i = (X_i, Y_i)$ when the algorithm is trained on the entire dataset $\mathcal{D}_{n+1} = (Z_1, \ldots, Z_{n+1})$. We will write $S = (S_1, \ldots, S_{n+1})$ to denote this vector of scores, and will write

$$S^{i} = (S_{1}, \dots, S_{i-1}, S_{n+1}, S_{i+1}, \dots, S_{n}, S_{i})$$

to denote the vector S with ith and (n+1)st entries swapped, for each $i \in [n]$.

Our first step is to observe that the total variation distance between the vectors S and S^i , is bounded by the total variation distance on the data. Specifically, define a function $h: (\mathcal{X} \times \mathcal{Y})^{n+1} \to \mathbb{R}^{n+1}$ as

$$h(z_1,\ldots,z_{n+1})=(s(z_1;(z_1,\ldots,z_{n+1})),\ldots,s(z_{n+1};(z_1,\ldots,z_{n+1})),$$

i.e., the function that computes a score for each z_i (relative to the dataset comprised of z_1, \ldots, z_{n+1}). Then by definition we have $S = h(Z_1, \ldots, Z_{n+1})$. Moreover, the assumption of symmetry on s ensures that $S^i = h(Z_1, \ldots, Z_{i-1}, Z_{n+1}, Z_{i+1}, \ldots, Z_n, Z_i)$ —and therefore, by the Data Processing Inequality,

$$d_{\text{TV}}(S, S^i) = d_{\text{TV}}(h(Z_1, \dots, Z_{n+1}), h(Z_1, \dots, Z_{i-1}, Z_{n+1}, Z_{i+1}, \dots, Z_n, Z_i))$$

$$\leq d_{\text{TV}}((Z_1, \dots, Z_{n+1}), (Z_1, \dots, Z_{i-1}, Z_{n+1}, Z_{i+1}, \dots, Z_n, Z_i)).$$

From this point on, then, we will now aim to show that

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha - \sum_{i=1}^{n} w_i \cdot d_{\text{TV}}(S, S^i).$$
 (7.7)

Defining $S^{n+1} = S$ for notational convenience, we then calculate

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) = \mathbb{P}\left(S_{n+1} \leq \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}; 1 - \alpha\right)\right) \\
= \sum_{i=1}^{n+1} w_i \cdot \mathbb{P}\left(S_{n+1} \leq \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}; 1 - \alpha\right)\right) \\
\geq \sum_{i=1}^{n+1} w_i \left[\mathbb{P}\left((S^i)_{n+1} \leq \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{(S^i)_j}; 1 - \alpha\right)\right) - d_{\text{TV}}(S, S^i)\right] \\
= \mathbb{E}\left[\sum_{i=1}^{n+1} w_i \cdot \mathbb{I}\left\{(S^i)_{n+1} \leq \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{(S^i)_j}; 1 - \alpha\right)\right\}\right] - \sum_{i=1}^{n} w_i \cdot d_{\text{TV}}(S, S^i),$$

where the first step simply applies the by definition of $C(X_{n+1})$ for the weighted full conformal method, the second step uses the fact that $\sum_i w_i = 1$, and the inequality step uses the definition of total variation distance.

Our last task is to simplify the remaining expected value. Below we will prove that the following claim holds deterministically:

$$S_i \le \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}; 1 - \alpha\right) \Longrightarrow (S^i)_{n+1} \le \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{(S^i)_j}; 1 - \alpha\right). \tag{7.8}$$

Assuming that this holds, we then have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}))$$

$$\geq \mathbb{E}\left[\sum_{i=1}^{n+1} w_i \cdot \mathbb{1}\left\{S_i \leq \text{Quantile}\left(\sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}; 1 - \alpha\right)\right\}\right] - \sum_{i=1}^{n} w_i \cdot d_{\text{TV}}(S, S^i)$$

$$\geq 1 - \alpha - \sum_{i=1}^{n} w_i \cdot d_{\text{TV}}(S, S^i),$$

where the last step follows since

$$\sum_{i=1}^{n+1} w_i \cdot \mathbb{I} \left\{ S_i \le \text{Quantile} \left(\sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}; 1 - \alpha \right) \right\} \ge 1 - \alpha$$

holds deterministically by Fact 7.7.

To complete the proof, we now need to verify (7.8). For i = n + 1 the claim holds trivially (since $S = S^{n+1}$), so we restrict our attention to the case $i \in [n]$. We will need the following result, which state without proof—we can view this result as a generalized version of the Replacement Lemma (recall Lemma 3.4):

Lemma 7.13

Let P_0, P_1 be any distributions on \mathbb{R} , and let

$$P = (1 - \epsilon) \cdot P_0 + \epsilon \cdot P_1$$

be their mixture, for some $\epsilon \in [0,1]$. Then for any $x \in \mathbb{R}$, and any $\tau \in [0,1]$,

$$x \leq \text{Quantile}(P; \tau) \Longrightarrow x \leq \text{Quantile}((1 - \epsilon) \cdot P_0 + \epsilon \cdot \delta_x; \tau)$$
.

Now define $\epsilon = w_{n+1} - w_i$ (which is nonnegative by assumption), $P_1 = \delta_{S_{n+1}}$, and

$$P_0 = \frac{\sum_{j \in [n], j \neq i} w_j \cdot \delta_{S_j} + w_i \cdot (\delta_{S_i} + \delta_{S_{n+1}})}{1 - \epsilon}.$$

Then by Lemma 7.13 applied with $\tau = 1 - \alpha$,

$$S_i \leq \text{Quantile}((1 - \epsilon)P_0 + \epsilon P_1; 1 - \alpha) \Longrightarrow S_i \leq \text{Quantile}((1 - \epsilon)P_0 + \epsilon \delta_{S_i}; 1 - \alpha).$$
 (7.9)

By construction, we can verify that

$$(1 - \epsilon)P_0 + \epsilon P_1 = \sum_{j=1}^{n+1} w_j \cdot \delta_{S_j}$$

and similarly

$$(1 - \epsilon)P_0 + \epsilon \delta_{S_i} = \sum_{j \in [n], j \neq i} w_j \cdot \delta_{S_j} + w_{n+1} \cdot \delta_{S_i} + w_i \cdot \delta_{S_{n+1}}.$$

Therefore, applying the definition of the swapped score vector S^i , we see that (7.8) is exactly equivalent to (7.9), which completes the proof.

It is worth noting that this proof does not directly use the TV distance between the swapped datasets, but rather, only uses the TV distance between swapped score vectors, as in (7.7). Indeed, in many settings the bound (7.7) may be much stronger than the result stated in the theorem—for instance, in a time series setting, if the data is high-dimensional, we might expect that the total variation distance between high-dimensional data points Z_i and Z_{n+1} could be large, but the distributions of the corresponding scores $S_i, S_{n+1} \in \mathbb{R}$ might nonetheless be fairly similar.

7.5 A general outlook through weighted permutations

As a rejoinder, let us zoom out and reinterpret conformal prediction through weighted distributions over permutations. With this lens, we will see that it is possible to generalize conformal prediction to work with any joint distribution of the data. In particular, we now give an extension that applies even when the joint distribution and test point are not exchangeable, and the algorithm is not symmetric.

The fundamental idea is that if we know the probability of observing every ordering of the data points conditionally on their values, this is enough to run conformal prediction. To make this more concrete, we will again write $Z_i = (X_i, Y_i)$, and define $f : (\mathcal{X} \times \mathcal{Y})^{n+1} \to \mathbb{R}$ to be the joint density of (Z_1, \ldots, Z_{n+1}) , with respect to some base measure on $\mathcal{X} \times \mathcal{Y}$ (in particular, if the data has a continuous joint distribution, then f is simply the joint density in the usual sense, while if the data is discrete, then f is the joint probability mass function). If we assume exchangeability, then f must be a symmetric function—but in this section,

we are working in a general setting where f may be arbitrary. Now recall that \widehat{P}_{n+1} denotes the empirical distribution of the n+1 data points—informally, observing \widehat{P}_{n+1} means that we have observed the collection of data points Z_1, \ldots, Z_{n+1} , but not their order, and in particular we do not know which one of these n+1 data points is equal to the test point, Z_{n+1} . Then we can verify that the conditional distribution of the test point Z_{n+1} , given the empirical distribution \widehat{P}_{n+1} , is equal to

$$Z_{n+1} \mid \widehat{P}_{n+1} \sim \frac{1}{\sum_{\sigma \in S_{n+1}} f(Z_{\sigma(1)}, \dots, Z_{\sigma(n+1)})} \sum_{\sigma \in S_{n+1}} f(Z_{\sigma(1)}, \dots, Z_{\sigma(n+1)}) \cdot \delta_{Z_{\sigma(n+1)}}.$$
 (7.10)

That is, once we fix the *values* of the data points, then we can explicitly describe the distribution of the test point in terms of their *ordering*, if we have knowledge of the joint density f. This is just a generalized version of Proposition 7.6.

With this conditional distribution in hand, we can now construct prediction sets using a generalized form of weighted conformal prediction. First, we need some notation: let Z_1^y, \ldots, Z_{n+1}^y index the dataset comprised of the training points and the hypothesized test point (X_{n+1}, y) , i.e.,

$$Z_i^y = Z_i, i \in [n], Z_{n+1}^y = (X_{n+1}, y),$$

so that the dataset \mathcal{D}_{n+1}^y is equal to $(Z_1^y, \dots, Z_{n+1}^y)$. Then for every $\sigma \in \mathcal{S}_{n+1}$, given a score function s, we define

$$w_{\sigma}^{y} = \frac{f\left(Z_{\sigma(1)}^{y}, \dots, Z_{\sigma(n+1)}^{y}\right)}{\sum\limits_{\sigma' \in \mathcal{S}_{n+1}} f\left(Z_{\sigma'(1)}^{y}, \dots, Z_{\sigma'(n+1)}^{y}\right)}.$$

$$(7.11)$$

An important point is that we often do not need complete knowledge of f in order to compute these weights: for instance, if the data points are i.i.d. from an unknown distribution, we immediately have $w_{\sigma}^{y} = \frac{1}{(n+1)!}$.

Note that here the weight depends on the entire permutation σ , which includes the index $\sigma(n+1)$ assigned to the test point position but also the ordering of the training data points as well. In contrast, for covariate shift and label shift (studied in Section 7.2), the weights w_i^y depend only on a single index i, corresponding to the question of which data value is placed into the test point position.

With these weights defined, we now present a coverage guarantee for this general formulation.

Theorem 7.14

Let $(Z_1, \ldots, Z_n, Z_{n+1}) \sim P$ for an arbitrary joint distribution P on $(\mathcal{X} \times \mathcal{Y})^{n+1}$, and let f be the joint density of this distribution with respect to any base measure on $\mathcal{X} \times \mathcal{Y}$. Fix any score function s (not necessarily symmetric), and define the prediction set

$$\mathcal{C}(X_{n+1}) = \{ y : s((X_{n+1}, y); \mathcal{D}_{n+1}) \le \hat{q}_w^y \} \text{ where } \hat{q}_w^y = \text{Quantile} \left(\sum_{\sigma \in \mathcal{S}_{n+1}} w_\sigma^y \delta_{s\left(Z_{\sigma(n+1)}^y; (\mathcal{D}_{n+1}^y)_\sigma\right)}; 1 - \alpha \right),$$

where the weights w_{σ}^{y} are defined as in (7.11), and where $(\mathcal{D}_{n+1}^{y})_{\sigma}$ denotes the permuted dataset, $(Z_{\sigma(1)}^{y}, \ldots, Z_{\sigma(n+1)}^{y})$. Then,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

This result can be proved as a consequence of the calculation (7.10) above.

The consequence of this theorem is that if we are able to compute the weights in (7.11), then we can carry out conformal prediction, even though we may have nonexchangeable data and/or a nonsymmetric algorithm. However, this general version of the algorithm is not practically implementable without further structure, for both statistical reasons (we are assuming prior knowledge of the joint density f, so that the weights in (7.11) can be computed) and computational reasons (since computing the weights, and the quantile \hat{q}_w^y , involves performing calculations over (n+1)! many permutations σ). Nonetheless, it points toward an underlying structure that facilitates conformal prediction.

In particular, many our preceding results can be viewed as special cases of this general formulation, where the statistical and computational challenges are simplified due to the structure of the specific setting. For example, in the case of covariate shift (Section 7.2.1), we have assumed that Z_1, \ldots, Z_n are i.i.d. from some distribution P, and that the test distribution is a known covariate shift of P. In this case, the weights w_{σ}^y depend only on the known covariate shift but not the whole distribution f, so they can in principle be computed without full knowledge of f. Moreover, they can be computed efficiently—the weights w_{σ}^y in (7.11) depend on σ only through $\sigma(n+1)$. That is, for any $\sigma \in \mathcal{S}_{n+1}$ with $\sigma(n+1) = i$, we have $w_{\sigma}^y = w_i$, where the weight w_i is defined for the covariate shift setting in (7.1). Thus, covariate shift is a tractable special case of the general view.

In summary, this abstract viewpoint unifies existing cases of the conformal algorithm. In particular, exchangeable conformal prediction, and conformal prediction with covariate shift, label shift, or general train-test split, are all special cases. This unified framework can also be viewed as a roadmap for developing extensions to additional settings as well: it suggests that we can aim to identify more complex settings (e.g., if the data exhibits dependence over time) where the structure of the problem enables computation of the weights w_{σ}^{y} and the weighted quantiles \hat{q}_{w}^{y} , in order to be able to apply conformal methodology.

Bibliographic notes

The weighted conformal algorithm introduced in Section 7.1 is proposed by Tibshirani et al. [2019], initially for the setting of covariate shift. In this chapter, we focus on weighted versions of the full and split conformal algorithms; relatedly, Prinster et al. [2022, 2023] develop a weighted version of jackknife+ and CV+.

In the setting of a distribution shift between the training and test data (discussed in Section 7.2), the weighted conformal method for covariate shift and for label shift is studied by Tibshirani et al. [2019] and by Podkopaev and Ramdas [2021], respectively, building on a framework of weighted exchangeability introduced in the former. These results have been applied to a range of statistical problems and settings, including causal inference (specifically, estimation of individualized treatment effects) [Lei and Candès, 2020, Jin et al., 2023], censored data and survival analysis [Candès et al., 2021, Gui et al., 2024], and adaptive learning [Fannjiang et al., 2022]. Results guaranteeing approximate coverage, in the setting where the distribution shift is only known approximately when we define the weights in the WCP algorithm, appear in many works in the literature, e.g., Lei and Candès [2020], Yang et al. [2022], Jin et al. [2023], Yin et al. [2021], Gui et al. [2024]. A different approach is taken by Cauchois et al. [2024], where they establish robustness of (unweighted) conformal prediction to bounded distribution shifts. As a technical note, Fact 7.7, used in the proofs of Theorems 7.5 and 7.12, is due to Harrison [2012].

Section 7.3 presents the localized conformal prediction method, which was developed by Guan [2023], and the randomly-localized conformal prediction method, due to Hore and Barber [2023]. In the case where s is a pretrained score function, Guan [2023] provides an efficient implementation of localized conformal prediction (i.e., for the conformalization procedure to determine the thresholds \tilde{q}^y in Algorithm 7.8). Both of these works also establish approximate test-conditional coverage guarantees for (randomly-)localized conformal prediction, namely, coverage when the test point is drawn from a small neighborhood. The result of Proposition 7.9, establishing that localized conformal prediction can be viewed as an instance of full conformal prediction, appears in Hore and Barber [2023].

The fixed-weight conformal prediction approach described in Section 7.4 is due to Barber et al. [2022] (where this method is referred to as nonexhangeable conformal prediction, or NexCP). In this book, we have presented a special case of that result, by focusing on the setting of a symmetric score function s; the work of Barber et al. [2022] also extends to the case of non-symmetric s, as well.

Finally, in Section 7.5, we considered a more general viewpoint that unifies some of the results presented earlier in the chapter. Our exposition in this section follows ideas developed by Prinster et al. [2024], which explains the viewpoint of conformal prediction through weighted permutations to handle arbitrary data distributions, and the work of Barber and Tibshirani [2025], which extends this framework to allow nonsymmetric algorithms. A related viewpoint is developed by Dobriban and Yu [2023], which extends the idea of distributional invariance under permutations to the more general setting of invariance under an arbitrary group action. A specific example of a different form of exchangeability is the setting where

data follows a hierarchical sampling structure—for instance we may have data from multiple (random) subpopulations, each of which contributes multiple data points to the sample. Dunn et al. [2018], Lee et al. [2023], Duchi et al. [2024] develop conformal methodologies for this setting.

Chapter 8

Online Conformal Prediction

So far, we have been discussing conformal prediction in the batch setting: that is, after obtaining a training dataset \mathcal{D}_n comprising n data points, we then train conformal prediction on this dataset to provide predictive inference on future test points. On the other hand, there are many applications where we observe data points online (i.e., sequentially), and conformal prediction can be extended to this setting. More precisely, imagine at time t, we have observed data points, $(X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1})$, and the covariate X_t for the next data point in the series, and need to construct a prediction set $\mathcal{C}_t(X_t)$ for Y_t . Then at time t+1, we add the newly observed data point (X_t, Y_t) into our dataset, and the process repeats. See Figure 8.1 for an illustration of this setup. In this new setting, unique problems arise relating to constructing multiple prediction sets, while reusing data, all under potentially shifting distributions. This chapter describes some solutions to these problems.

8.1 Online conformal prediction with exchangeable data

We first consider the case where we have a sequence of data points $(X_1, Y_1), (X_2, Y_2), \dots, (X_T, Y_T)$ that are exchangeable. At each time step t, we have seen $(X_1, Y_1), \dots, (X_{t-1}, Y_{t-1})$ and the next feature vector X_t , and we would like to construct a prediction set $C_t(X_t)$ for the as-yet-unseen response Y_t with correct coverage:

$$\mathbb{P}(Y_t \in \mathcal{C}_t(X_t)) \ge 1 - \alpha. \tag{8.1}$$

To this end, suppose we generate prediction sets at each step with full conformal prediction in the usual way. That is, $C_t(X_t)$ is the output of Algorithm 3.3 on training data $(X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1})$ with test point X_t , implemented with some choice of the score function s. (For completeness, we note that at time t = 1, there are zero training points; applying Algorithm 3.3 would then necessarily lead to an uninformative prediction set, $C_1(X_1) = \mathcal{Y}$, but this is nonetheless well-defined.)

An immediate consequence of the validity of conformal prediction (Theorem 3.2) is that for each t, the coverage property in (8.1) holds. Interestingly, we will now see that this algorithm has desirable properties beyond this basic marginal coverage result. We will use the notation

$$\operatorname{err}_{t} = \begin{cases} 1 & \text{if } Y_{t} \notin \mathcal{C}_{t}(X_{t}) \\ 0 & \text{if } Y_{t} \in \mathcal{C}_{t}(X_{t}) \end{cases}$$
 (8.2)

to denote the event that we make a miscoverage at time step t. Our marginal coverage property in (8.1) then equivalent to the statement that $\mathbb{E}[\text{err}_t] \leq \alpha$ for all t. This by itself is not enough to imply that the average coverage of this procedure for a large sequence of data points (i.e., averaging err_t over a long range of times t) would concentrate around $1 - \alpha$; since each data point t is reused in constructing $\mathcal{C}_{t'}$ for every t' > t, the coverage events would appear to be dependent in a complex way.

A surprising and deep result about conformal prediction is that the events err_t are in fact independent across different time steps.

Figure 8.1: Online prediction setting. The rows represent times t, t+1, and t+2, respectively, in the streaming process of running online conformal prediction. At time t, we use the historical training set (Z_1, \ldots, Z_{t-1}) and the test covariate X_t to produce a prediction set for the test label Y_t . We then repeat this process at times t+1, t+2, etc, folding the new data points into the training set as we go.

Proposition 8.1: Independence of errors for online conformal

Suppose $(X_1, Y_1), (X_2, Y_2), \ldots, (X_T, Y_T)$ are exchangeable, the score function s is symmetric, and the scores are distinct almost surely at each time t (i.e., at each $t \in [T]$, it holds almost surely that $s((X_i, Y_i); \mathcal{D}_t)$ are distinct over all $i \in [t]$). Then the miscoverage events err_t as defined above are mutually independent.

Here \mathcal{D}_t denotes the dataset comprised of the first t data points, $\mathcal{D}_t = ((X_1, Y_1), \dots, (X_t, Y_t))$, for each $t \in [T]$.

This is a consequence of the slightly more general result that the conformal p-values at each step are independent. To be explicit, the conformal p-value at time step t is defined as

$$p_{t} = \frac{\sum_{i=1}^{t} \mathbb{1}\left\{s\left((X_{i}, Y_{i}); \mathcal{D}_{t}\right) \ge s\left((X_{t}, Y_{t}); \mathcal{D}_{t}\right)\right)\right\}}{t}.$$
(8.3)

Theorem 8.2: Independence of online conformal p-values

Suppose $(X_1, Y_1), (X_2, Y_2), \ldots, (X_T, Y_T)$ are exchangeable, the score function s is symmetric, and the scores are distinct almost surely at each time t. Then, p_t is distributed as a discrete random variable on $\{1/t, 2/t, \ldots, 1\}$, and p_1, \ldots, p_T are mutually independent.

Note that Proposition 8.1 follows directly from Theorem 8.2 because err_t is a function of p_t : namely, recalling Proposition 3.9, it holds that $\operatorname{err}_t = \mathbb{1} \{ p_t \leq \alpha \}$.

To see the main idea of the proof, let us return to Figure 8.1. Observe that in the middle row, by symmetry of the score function, the conformal p-value p_{t+1} (and the outcome of err_{t+1}) does not depend on the ordering of the t data points in the shaded block—that is, Z_1, \ldots, Z_t are still exchangeable even if we condition on p_{t+1} . By contrast, p_t depends only on the ordering of the first t points. This leads to independence between p_t and p_{t+1} .

Proof of Theorem 8.2

For each $t \in [T]$, let $\mathcal{D}_t = (Z_1, \dots, Z_t)$ denote the data points observed up to time t (where $Z_t = (X_t, Y_t)$), and let $\widehat{P}_t = \frac{1}{t} \sum_{t'=1}^t \delta_{Z_{t'}}$ denote its empirical distribution. Below, we will prove

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

that for each $t \in [T]$, the random variable p_t has the following conditional distribution:

$$p_t \mid (\hat{P}_t, Z_{t+1}, \dots, Z_T) \sim \text{Unif}(\{1/t, 2/t, \dots, 1\}).$$
 (8.4)

In particular, this is sufficient to verify the first claim (i.e., the marginal distribution of p_t). We will also prove that

For each
$$t' > t$$
, $p_{t'}$ can be written as a function of $(\widehat{P}_t, Z_{t+1}, \dots, Z_T)$. (8.5)

In particular, combining (8.4) and (8.5) yields

$$p_t \mid (p_{t+1}, \dots, p_T) \sim \text{Unif}(\{1/t, 2/t, \dots, 1\}),$$

for each $t \in [T]$, which implies that p_1, \ldots, p_T are mutually independent, as desired.

Proving (8.4). By exchangeability of the data, we can see that

$$(Z_1,\ldots,Z_t)\mid (\widehat{P}_t,Z_{t+1},\ldots,Z_T)$$

is conditionally exchangeable (formally, this statement can be verified via Lemma 2.3 and Fact 3.7). Consequently, the scores

$$s(Z_1; \mathcal{D}_t), \dots, s(Z_t; \mathcal{D}_t)$$

are also exchangeable conditionally on $(\widehat{P}_t, Z_{t+1}, \dots, Z_T)$, since s is symmetric. Now let $S_{(1;t)} \leq \dots \leq S_{(t;t)}$ denote the order statistics of these t scores, at time t. Since we have assumed these t scores are distinct, almost surely, Fact 2.15(iv) implies that $\mathbb{P}(s(Z_t; \mathcal{D}_t) > S_{(t-k;t)}) = k/t$, for each $k \in \{0, 1, \dots, t-1\}$. But by definition of the p-value p_t , we have $p_t \leq k/t$ if and only if $s(Z_t; \mathcal{D}_t) > S_{(t-k;t)}$, so the conclusion follows.

Proving (8.5). For this last step, we will write the p-value at time t as $p_t(\mathcal{D}_T)$, to make explicit its dependence on the dataset \mathcal{D}_T (the definition of this p-value is still given by (8.3), as before).

Let $\sigma \in \mathcal{S}_T$ be any permutation that only permutes the first t indices, i.e., $\sigma(t') = t'$ for any t' > t. Let $(\mathcal{D}_T)_{\sigma} = (Z_{\sigma(1)}, \dots, Z_{\sigma(T)})$ be the dataset \mathcal{D}_T permuted according to σ . Note that, since σ maps [t'] to [t'] for any t' > t, this means that the first t' many entries of $(\mathcal{D}_T)_{\sigma}$ are, up to permutation, equal to $\mathcal{D}_{t'}$.

We now verify that permuting the data according to σ does not change p-values after time t: for any t' > t,

$$p_{t'}((\mathcal{D}_{T})_{\tilde{\sigma}}) = \frac{\sum_{i=1}^{t'} \mathbb{1}\left\{s\left(Z_{\tilde{\sigma}(i)}; \mathcal{D}_{t'}\right) \geq s\left(Z_{\tilde{\sigma}(t')}; \mathcal{D}_{t'}\right)\right\}}{t'}$$

$$= \frac{\sum_{i=1}^{t'} \mathbb{1}\left\{s\left(Z_{\tilde{\sigma}(i)}; \mathcal{D}_{t'}\right) \geq s\left(Z_{t'}; \mathcal{D}_{t'}\right)\right\}}{t'} \quad \text{since } \sigma(t') = t'$$

$$= \frac{\sum_{i=1}^{t'} \mathbb{1}\left\{s\left(Z_{i}; \mathcal{D}_{t'}\right) \geq s\left(Z_{t'}; \mathcal{D}_{t'}\right)\right\}}{t'} \quad \text{since } \tilde{\sigma} \text{ maps } [t'] \text{ to } [t']$$

$$= p_{t'}(\mathcal{D}_{T}),$$

where the first step holds since s is symmetric and, as mentioned above, up to permutation it holds that $\mathcal{D}_{t'}$ is equal to the first t' many entries of $(\mathcal{D}_T)_{\sigma}$.

In particular, this implies that $p_{t'}$ depends on $\mathcal{D}_T = (\mathcal{D}_t, Z_{t+1}, \dots, Z_T)$ only through $(\widehat{P}_t, Z_{t+1}, \dots, Z_T)$, since permuting the first t data points (i.e., changing the order of the data points in \mathcal{D}_t) does not change the value of $p_{t'}$.

This result is important since it implies that conformal prediction in the online setting will have total coverage approaching $1 - \alpha$:

Corollary 8.3: Average coverage of online conformal

Suppose $(X_1, Y_1), (X_2, Y_2), \ldots$ are exchangeable, the score function is symmetric, and the scores are distinct almost surely at each time t,

$$\frac{1}{T} \sum_{t=1}^{T} \mathbb{1} \left\{ Y_t \in \mathcal{C}_t(X_t) \right\} \to 1 - \alpha,$$

almost surely as $T \to \infty$.

This result follows from Proposition 8.1 and the law of large numbers. There is a minor subtlety here in that $\mathbb{E}[\text{err}_t]$ is not exactly the same for each t—rather, it is some value lying in the range $(\alpha - 1/t, \alpha]$. Nonetheless, this is easily handled. More refined versions of this result can be given with Hoeffding's inequality and other refinements of the law of large numbers.

If we do not assume that the scores are distinct almost surely at each time t, then it may no longer be the case that the p-values p_t are independent. Nonetheless, due to the fact that conformal prediction can only become more conservative in the presence of ties, and thus a more conservative version of Corollary 8.3 holds: if $(X_1, Y_1), (X_2, Y_2), \ldots$ are exchangeable, then

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \mathbb{1} \left\{ Y_t \in \mathcal{C}_t(X_t) \right\} \ge 1 - \alpha,$$

almost surely.

These powerful results show that we can reliably use conformal prediction to construct a sequence of prediction intervals in the online exchangeable setting. Moreover, having independent p-values at each time step facilitates other goals when analyzing a sequence of data, which is the focus of the next section.

Online conformal without online training? Throughout this section, we have assumed that each test point is added to the training set for the next time step—that is, at time t the point (X_t, Y_t) is the test point, but at time t+1 (and beyond), this same point (X_t, Y_t) is now part of the training set. In some settings, it may not be possible or desirable to add the test data into the training set in this online way. The independence results of this section may no longer apply; if the test points t = n + 1, n + 2, ... are all compared to the same training set $((X_i, Y_i))_{i \in [n]}$ the conformal p-values $p_{n+1}, p_{n+2}, ...$ will be dependent. We refer the reader to Chapter 10.2 for results that characterize the dependence among the p-values for this setting.

8.2 Testing exchangeability online

We next consider the ability to test the exchangeability hypothesis online—an important task when monitoring the online deployment of learning algorithms to identify the presence of distribution shift, especially those harmful shifts that affect the errors of an algorithm. In this section, we show how to test this hypothesis using the conformal p-values from (8.3). More concretely, given a stream of data $(X_1, Y_1), (X_2, Y_2), \ldots$ (with finite or infinite length), we would like to detect any failure of exchangeability in this data stream—for instance, due to a sudden changepoint.

The main message is that the conformal p-values can be combined in such a way that, under exchangeability, the resulting statistic is a supermartingale. Any supermartingale will generally take only small values, so large values of this statistic constitute evidence against the null hypothesis of exchangeability. In this section, we show how to define such supermartingales and how to use them to test the hypothesis of exchangeability online.

Definition 8.4: Supermartingale

A (finite or infinite) sequence of random variables $M_1, M_2, ...$ is a supermartingale if, for all $t, \mathbb{E}[|M_t|] < \infty$ and, for all $t \geq 2$,

$$\mathbb{E}[M_t \mid M_1, \dots, M_{t-1}] \leq M_{t-1}.$$

Essentially, a supermartingale is a sequence of random variables whose average is getting no larger over time. (If the inequality above is replaced by an equality, then this sequence is called a martingale.) An important fact about supermartingales that we will soon use is *Ville's inequality*: if M_1, M_2, \ldots is a nonnegative supermartingale, then for any a > 0,

$$\mathbb{P}\left(\sup_{t\geq 1} M_t \geq a\right) \leq \frac{\mathbb{E}[M_1]}{a}.\tag{8.6}$$

For the problem of testing the hypothesis of exchangeability, we need to define a sequence M_t which is large if the hypothesis is violated, but is a supermartingale if the hypothesis holds. Fortunately, by Theorem 8.2 above, the conformal p-values are independent for an exchangeable stream of data points, which enables the construction of a supermartingale. This next result gives a simple example:

Proposition 8.5

Consider the (finite or infinite) sequence of conformal p-values p_1, p_2, \ldots from (8.3), constructed on a (finite or infinite) streaming dataset $(X_1, Y_1), (X_2, Y_2), \ldots$ Assume the data are exchangeable and the score function is symmetric. Let $\lambda \in [0, 1]$ be a fixed parameter. Then, if the scores are distinct almost surely at each time t, the sequence

$$M_t = \prod_{t'=1}^t \frac{1 - \lambda p_{t'}}{1 - \lambda/2}$$

is a supermartingale.

Proof of Proposition 8.5

Since $p_t \in [0, 1]$ for all t, M_t is bounded almost surely for each t and thus satisfies $\mathbb{E}[|M_t|] < \infty$. We also have $M_t = M_{t-1} \cdot \frac{1-\lambda p_t}{1-\lambda/2}$ by definition, and thus, under exchangeability,

$$\mathbb{E}[M_t \mid M_1, \dots, M_{t-1}] = \mathbb{E}\left[M_{t-1} \cdot \frac{1 - \lambda p_t}{1 - \lambda/2} \mid M_1, \dots, M_{t-1}\right] = M_{t-1} \cdot \frac{\mathbb{E}[1 - \lambda p_t \mid M_1, \dots, M_{t-1}]}{1 - \lambda/2}.$$

Finally, we have

$$\mathbb{E}[1 - \lambda p_t \mid M_1, \dots, M_{t-1}] \le 1 - \lambda/2,$$

since, by Theorem 8.2, p_t is superuniform (i.e., $\mathbb{P}(p_t \leq \tau) \leq \tau$ for all $\tau \in [0,1]$), and is independent from p_1, \ldots, p_{t-1} (and is thus independent from M_1, \ldots, M_{t-1}).

Thus, the values M_t will be small under the hypothesis of exchangeability. Alternatively, if the data contains strong evidence against exchangeability, the p-values p_t will likely be small, and thus the sequence M_t could potentially become quite large as t increases. This intuition can be formalized into a statistical test for exchangeability based on Ville's inequality, as we will see next. Of course, this particular definition of M_t is only one specific (and very simple) example; the design of powerful supermartingales is an active topic of research, and this next theorem applies to a more general recipe for constructing the sequence M_t .

Figure 8.2: The online test for exchangeability. We apply the online test for exchangeability to two example draws from the same supermartingale. On the left-hand side is a draw for which the test does not reject the null hypothesis of exchangeability, because the realized value of the supermartingale never goes above $1/\alpha$. On the right, the hypothesis of exchangeability is rejected, since the realized value of the supermartingale goes above $1/\alpha$ at some point in its history. The situation on the right can only happen with at most probability $1-\alpha$ under the null, and the null can be rejected at the first time the martingale goes above $1/\alpha$.

Theorem 8.6: Online test for exchangeability

Let $f_t: [0,1] \to [0,\infty)$ be any sequence of nonincreasing functions such that $\int_{r=0}^1 f_t(r) dr \le 1$. Let $(X_1,Y_1),(X_2,Y_2),\ldots$ be a (finite or infinite) sequence of data points, and let

$$M_t = \prod_{t'=1}^t f_{t'}(p_{t'}), \tag{8.7}$$

where we define the conformal p-values p_t as in (8.3). Then, if the data points are exchangeable, the score function is symmetric, and the scores are distinct almost surely at each time t, the sequence M_t is a supermartingale. Moreover, under the same assumptions, for any $\alpha \in [0, 1]$ we have

$$\mathbb{P}\left(\sup_{t} M_{t} \ge 1/\alpha\right) \le \alpha.$$

Theorem 8.6 tells us that, under exchangeability, with probability $\geq 1 - \alpha$ the supermartingale M_t constructed in (8.7) never passes the threshold $\mathbb{E}[M_1]/\alpha$ over its entire time of existence. Thus, it implies a simple algorithm for detecting distribution shift online:

- 1. Choose functions f_1, f_2, \ldots as specified in Theorem 8.6 (for example, we might take $f_t(r) = \frac{1-\lambda r}{1-\lambda/2}$ as in Proposition 8.5).
- 2. At each time t = 1, 2, ...:
 - Observe the new data point (X_t, Y_t) , compute conformal p-value p_t , and compute M_t .
 - If $M_t \ge 1/\alpha$, reject the hypothesis of exchangeability. Otherwise, continue to the next time.

See Figure 8.2 for an illustration of this procedure.

Proof of Theorem 8.6

First, we verify that M_t is a supermartingale. For each $t \geq 1$ we have

$$\mathbb{E}[f_t(p_t)] \le \int_{r=0}^1 f_t(r) \, \mathrm{d}r \le 1,$$

where the first step holds since p_t is superuniform according to Theorem 8.2, and f_t is nondecreasing. Next, we observe that $M_t = M_{t-1} \cdot f_t(p_t)$ for each t, and so

$$\mathbb{E}[M_t \mid M_1, \dots, M_{t-1}] = M_{t-1} \cdot \mathbb{E}[f_t(p_t) \mid M_1, \dots, M_{t-1}] = M_{t-1} \cdot \mathbb{E}[f_t(p_t)] \le M_{t-1},$$

where the next-to-last step holds since p_t is independent from p_1, \ldots, p_{t-1} (and therefore, from M_1, \ldots, M_{t-1}) by Theorem 8.2. Thus M_t is a supermartingale. (Since M_t is nonnegative, and $\mathbb{E}[M_t] \leq 1$, we have also verified $\mathbb{E}[|M_t| < \infty]$.) Finally, the last claim holds by applying Ville's inequality (8.6).

As we can see in the proof above, the bound α , bounding the probability of a false rejection of the hypothesis of exchangeability, is due simply to Ville's inequality. This would hold for any supermartingale—so why was conformal prediction critical? The role of conformal prediction is that allows us to reuse the same data over time for every test of exchangeability without having to pay an explicit multiplicity penalty for data reuse. This is because of the independence of the conformal p-values (Theorem 8.2), as used in the proof of Proposition 8.5. This is one of the most unique and powerful features of conformal prediction.

As an example, suppose the conformal score at each step is simply the value of y: $s((x,y);\mathcal{D}) = y$. In this case, the conformal p-value p_t is a re-scaling of the rank of the new data point Y_t relative to those seen previously. We can take these p-values and construct the exchangeability supermartingale M_t as in Proposition 8.5 in order to test for exchangeability. It is clear that M_t will grow if we frequently observe small p-values, which corresponds to seeing values of Y_t that are smaller than most of the previous observed values Y_1, \ldots, Y_{t-1} . Thus, we expect this to detect violations of exchangeability where the values of Y_t are trending down. More broadly, Theorem 8.6 has practical ramifications for the problem of changepoint detection: if the conformal score function is constructed to measure some notion of error of the data point (X_t, Y_t) relative to a trained model, then online tests for exchangeability allow us to identify deviations of the error from its typical behavior.

Finally, we note that while all results in Sections 8.1 and 8.2 are stated under the assumption that scores are distinct almost surely at each time t, the results can be generalized to remove this assumption (in particular, in Chapter 9 we will learn a randomized mechanism for breaking ties, under which the conformal p-values p_t become i.i.d. uniform).

8.3 Prediction sets for adversarial sequences

The previous sections have dealt with online conformal prediction for exchangeable sequences. Recent efforts have aimed to generalize beyond that setting, to one where the incoming sequence of data points $(X_1, Y_1), (X_2, Y_2), \ldots$ is arbitrary—the data points might be drawn from distributions that change over time (i.e., non-i.i.d. data), or might even be deterministic rather than random. Because we do not want to make any distributional assumptions in this setting, the best one can generally hope for is a form of long-run coverage, i.e., that a large fraction of the prediction sets $C_t(X_t)$ contain Y_t . A recently developed line of work has leveraged conformal prediction to achieve guarantees of the form

$$\left| \frac{1}{T} \sum_{t=1}^{T} \operatorname{err}_{t} - \alpha \right| \to 0,$$

meaning that, on average, the miscoverage rate is essentially equal to α —without any assumption of exchangeability or, indeed, even assuming that the data is randomly generated at all.

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

How is this setup related to conformal prediction? The prediction sets C_t studied in this section will be of the form

$$C_t(X_t) = \{ y : s_t(X_t, y) \le q_t \},$$

where the subscript t indicates a dependence on all previous time steps $1, 2, \ldots, t-1$. That is, the score function s_t , and the threshold q_t , may be designed in a way that depends on the previous data. Conformal prediction uses exactly this set construction—specifically, by taking $q_t = \text{Quantile}(s_t(X_1, Y_1), \ldots, s_t(X_{t-1}, Y_{t-1}); (1 - \alpha)(1 + 1/(t-1)))$, if we define $s_t(x, y) = s(x, y)$ then we recover split conformal prediction (for a pretrained score function s), while defining $s_t(x, y) = s((x, y); ((X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1}), (x, y)))$ recovers the full conformal prediction set (for an arbitrary conformal score function s).

In the adversarial sequence setting, where the data may no longer be exchangeable (e.g., if the distribution changes over time), we will deviate from this specific construction of s_t and q_t : we will allow the score functions s_t to be chosen arbitrarily, and the thresholds q_t will then be defined in an online way. Specifically, after initializing at any value $q_1 \in [0, B]$, for each $t \ge 2$ the threshold q_t will be defined as follows:

$$q_{t+1} = q_t + \eta_t(\operatorname{err}_t - \alpha), \tag{8.8}$$

with err_t defined as in (8.2). This quantile tracking algorithm does something very simple: when we fail to cover (i.e., $\operatorname{err}_t = 1$), it increases the conformal quantile in the next time step, to be slightly more conservative. Alternatively, when we cover (i.e., $\operatorname{err}_t = 0$), we decrease the next quantile, to be slightly less conservative. This construction leads to the following guarantee on average coverage.

Theorem 8.7

Consider an arbitrary sequence of data points $(X_1, Y_1), (X_2, Y_2), \ldots$, and sequence of score functions s_1, s_2, \ldots satisfying $s_t(x, y) \in [0, B]$ for all t and (x, y). Furthermore, let the sequence of step sizes η_t be any nonincreasing positive sequence. Then, for all $T \geq 1$, it holds that

$$\frac{1}{T} \sum_{t=1}^{T} \operatorname{err}_{t} \in \left[\alpha \pm \frac{B + \eta_{1}}{\eta_{T} T} \right].$$

In other words, for a constant step size, our historical error concentrates to α at a fast rate of $\mathcal{O}(1/T)$. We emphasize that this result holds deterministically, for any sequence of data points and any choice of score functions s_t . In particular, we have not assumed exchangeability: by adjusting the threshold q_t based on the method's coverage over past data points, the procedure is able to maintain approximately the desired coverage level over time, even under distribution shift or other non-exchangeable settings.

Proof of Theorem 8.7

Step 1: The iterates are bounded. We will first show that $q_t \in [-\eta_1 \alpha, B + \eta_1(1 - \alpha)]$ deterministically for all t. Since $q_1 \in [0, B]$ by definition, this must hold at t = 1. Now suppose that the statement fails for the first time at some $t \geq 2$. Assume for the sake of contradiction that $q_t > B + \eta_1(1 - \alpha)$; since t is the first time the statement fails, we also have $q_{t-1} \leq B + \eta_1(1 - \alpha)$. Since $q_t > q_{t-1}$ we must have that $\operatorname{err}_{t-1} = 1$ by (8.8). But, since $\eta_t \leq \eta$, we have $q_{t-1} = q_t - \eta_t(1 - \alpha) \geq q_t - \eta_1(1 - \alpha) > B$, and so

$$\operatorname{err}_{t-1} = \mathbb{1}\left\{s_{t-1}(X_{t-1}, Y_{t-1}) > q_{t-1}\right\} \le \mathbb{1}\left\{s_{t-1}(X_{t-1}, Y_{t-1}) > B\right\} = 0,$$

since scores are bounded by B. This is a contradiction. The other side follows a similar argument.

Step 2: Simultaneous bounds on the weighted coverage gap. Examining the form

of (8.8), we can see that for all $T_1 \geq T_0 \geq 1$,

$$q_{T_1+1} - q_{T_0} = \sum_{t=T_0}^{T_1} \eta_t(\text{err}_t - \alpha).$$
 (8.9)

Since both q_{T_1+1} and q_{T_0} are bounded by Step 1, we then have

$$\left| \sum_{t=T_0}^{T_1} \eta_t(\operatorname{err}_t - \alpha) \right| = |q_{T_1+1} - q_{T_0}| \le B + \eta_1.$$

Step 3: Bounding the long-run coverage gap. Set $\eta_0 = \infty$ for convenience, so that

$$\frac{1}{\eta_t} = \sum_{r=1}^t \left(\frac{1}{\eta_r} - \frac{1}{\eta_{r-1}} \right)$$

holds for all t = 1, ..., T. We calculate

$$\left| \frac{1}{T} \sum_{t=1}^{T} (\operatorname{err}_{t} - \alpha) \right| = \left| \frac{1}{T} \sum_{t=1}^{T} \frac{1}{\eta_{t}} \eta_{t} (\operatorname{err}_{t} - \alpha) \right|$$

$$= \left| \frac{1}{T} \sum_{t=1}^{T} \sum_{r=1}^{t} \left(\frac{1}{\eta_{r}} - \frac{1}{\eta_{r-1}} \right) \eta_{t} (\operatorname{err}_{t} - \alpha) \right|$$

$$= \left| \frac{1}{T} \sum_{r=1}^{T} \left(\frac{1}{\eta_{r}} - \frac{1}{\eta_{r-1}} \right) \sum_{t=r}^{T} \eta_{t} (\operatorname{err}_{t} - \alpha) \right|$$

$$\leq \frac{1}{T} \sum_{r=1}^{T} \left(\frac{1}{\eta_{r}} - \frac{1}{\eta_{r-1}} \right) \left| \sum_{t=r}^{T} \eta_{t} (\operatorname{err}_{t} - \alpha) \right|$$

$$\leq \frac{B + \eta_{1}}{T} \sum_{r=1}^{T} \left(\frac{1}{\eta_{r}} - \frac{1}{\eta_{r-1}} \right)$$

$$= \frac{B + \eta_{1}}{\eta_{T}T},$$

where the first inequality holds since η_t is a nonnegative nonincreasing sequence, and the second inequality holds from the calculation in Step 2 above.

The key idea of the proof is that the quantile q_t is deterministically bounded over all times t. Since q_T is equal to the (reweighted) long-run coverage gap as in (8.9), this implies that the number of historical errors cannot be too large. See Figure 8.3 for a visual intuition.

When implementing this method in practice, how should the step sizes η_t be defined? This choice depends on the context, and different choices lead to different flavors of guarantees. When tracking a highly varying score sequence, such as one generated by a dynamical system, it can make sense to think of the quantile tracker as a control algorithm and pick a non-decaying $\eta_t = \eta$ for some constant η , or even one that adapts to the score sequence. However, this can lead to quantiles q_t that fluctuate wildly, yielding many infinite-size sets and empty sets.

Alternatively, in the style of online learning, we might choose $\eta_t \propto t^{-(1/2+\epsilon)}$, for some small $\epsilon > 0$. This choice of η_t allows the quantile to adapt to distribution drift (since Theorem 8.7 guarantees average error $\lesssim T^{-(1/2-\epsilon)}$ at each time T), while stabilizing the quantile and even converging when possible.

Figure 8.3: The long-run coverage gap. The yellow line displays the long-run coverage gap $\frac{1}{T}\sum_{t=1}^{T}\operatorname{err}_{t}-\alpha$ over time T. The procedure is initialized with $q_{1}=0$ and run with a fixed step size $\eta_{t}=\eta$. By (8.9), the coverage gap at time T is equal to $\frac{q_{T+1}}{\eta T}$. The thick gray lines at $\frac{B+\eta}{\eta T}$ define a deterministic envelope for the long-term coverage gap; the proof says that the yellow line can never leave the envelope. The thin gray envelope defines the region where $q_{T+1}>B$ (top) or $q_{T+1}<0$ (bottom). One way to understand the proof of coverage is that, once the yellow line leaves the thin gray envelope, it is forced to return—because the next prediction set \mathcal{C}_{T+1} will be \mathcal{Y} (if $q_{T+1}>B$) or \varnothing (if $q_{T+1}<0$), forcing the miscoverage to move back towards the target value α in the next step.

The i.i.d. setting. In the setting of i.i.d. data, we can formalize our empirical observation that a fixed step size $\eta_t = \eta$ leads to fluctuating behavior while a decaying sequence η_t offers more stability. In particular, consider a setting where $(X_t, Y_t) \stackrel{\text{i.i.d.}}{\sim} P$ (for some distribution P), and where the score functions $s_t : \mathcal{X} \times \mathcal{Y} \to [0, B]$ are trained online—that is, s_t may depend on the earlier data, $(X_1, Y_1), \ldots, (X_{t-1}, Y_{t-1})$ (which includes the setting of applying split or full conformal prediction at each time t, as discussed earlier). For any function s, let F_s denote the CDF of s(X, Y), under $(X, Y) \sim P$. At each time t, this means that the probability of coverage for the next data point (X_t, Y_t) is given by $F_{s_t}(q_t)$. We state the following result without proof:

Theorem 8.8

Under the assumptions and notation above, if $\eta_t = \eta$ for some $\eta > 0$, we have

$$\lim \inf_{t \to 0} F_{s_t}(q_t) = 0, \quad \lim \sup_{t \to 0} F_{s_t}(q_t) = 1$$

almost surely. On the other hand, if η_t is a nonnegative sequence with $\sum_t \eta_t = \infty$ and $\sum_t \eta_t^2 < \infty$, then for any continuous CDF F, it holds almost surely that

If
$$F_{s_t} \to F$$
 then $F_{s_t}(q_t) \to 1 - \alpha$.

In other words, a constant step size leads to infinitely many oscillations between undercoverage and overcoverage (e.g., $C_t(X_t) = \emptyset$ and $C_t(X_t) = \mathcal{Y}$). On the other hand, an appropriately chosen decaying sequence of step sizes, such as $\eta_t \propto t^{-(1/2+\epsilon)}$, for some small $\epsilon > 0$, leads to convergence to the desired coverage rate, as long as the score functions s_t converge (for instance, if $s_t(x,y) = |y - \hat{f}_t(x)|$ is a residual score for some fitted regression model \hat{f}_t , then we are effectively assuming that the \hat{f}_t 's converge to some fixed function).

Bibliographic notes

Our exposition of the independence of p-values and testing exchangeability online follows that of Vovk et al. [2005]. The independence of online p-values for exchangeable sequences is a foundational result due to Vovk [2002]. Testing exchangeability online using conformal p-values (or relatedly, testing for outliers) is introduced in Vovk et al. [2003b]; see also Fedorova et al. [2012], Laxhammar [2014]. The martingale we present in Section 8.2 is only for illustrative purposes; more powerful and efficient martingales are available in Vovk et al. [2005] and Ramdas et al. [2022]. This work builds on martingale theory, particularly Ville's inequality [Ville, 1939]. We refer the reader to Williams [1991] for an introduction to martingales. This line of thinking can be leveraged for tasks beyond testing exchangeability. In particular, we note that the exchangeability supermartingale in Proposition 8.5 is a special case of an e-value, and these are useful more broadly; see Ramdas et al. [2023] for a recent survey.

Conformal prediction with coverage guarantees in the adversarial sequence model is introduced in Gibbs and Candès [2021], under the name adaptive conformal inference (ACI). Subsequent work by Zaffran et al. [2022], Gibbs and Candès [2022], Bhatnagar et al. [2023] studies notions of adaptivity and considers adaptive step sizes, and Bastani et al. [2022] discusses conformal prediction with subgroup guarantees in the online setting. The quantile tracking algorithm here is studied in Feldman et al. [2023], Angelopoulos et al. [2023]. The coverage result in Theorem 8.7 is established in Angelopoulos et al. [2024], and is an extension of the coverage guarantees in the above works to allow for decaying step sizes; the same work also proves the results for the i.i.d. setting, given in Theorem 8.8.

Chapter 9

Additional Results in Conformal Prediction

In this chapter, we return to the core conformal prediction framework of Chapter 3, taking a closer look at some interesting details of the algorithm. We discuss the role of randomization, addressing how to use conformal prediction with randomized algorithms such as stochastic gradient descent. We next turn to computational results for full conformal prediction, explaining cases where the set can be computed exactly and the correct way to employ discretization to maintain coverage. Lastly, we turn to the universality of conformal prediction—any method with distribution-free validity that is permutation invariant is equivalent to a conformal method. Each section in this chapter stands alone, but together they supply many new insights about conformal prediction.

9.1 Conformal prediction with randomization

Thus far, we have presented full conformal prediction as a deterministic algorithm—the output $C(X_{n+1})$ is a deterministic function of the training data $((X_i, Y_i))_{i \in [n]}$ and test point X_{n+1} . In practice, however, we may want to allow for the score s to be determined with a randomized algorithm. For example, for a residual score of the form $s((x, y); \mathcal{D}) = |y - \hat{f}(x; \mathcal{D})|$, in some settings we may want to fit the function $\hat{f}(\cdot; \mathcal{D})$ with a randomized regression algorithm, such as stochastic gradient descent. Section 9.1.1 will extend our framework to allow for the possibility of pairing conformal prediction with a randomized algorithm.

Randomization can also enter into the conformal prediction framework in a different form. Specifically, we recall from Chapter 3 that the (full or split) conformal prediction intervals are guaranteed to have at least $1 - \alpha$ level coverage; as explored in Theorem 3.11, overcoverage can arise from the possibility of ties among scores and/or from the fact that $(1 - \alpha)(n + 1)$ is not an integer. Introducing randomization into the construction of the conformal prediction set to break ties at random removes this overcoverage, resulting in exactly $1 - \alpha$ coverage, as we will see in Section 9.1.2.

9.1.1 Allowing for randomization in the score function

We first consider the case where our score functions may contain auxiliary randomness, such as a model fit using stochastic gradient descent. In this case, the requirement of a symmetric score function, as in Definition 3.1 needs to be modified.

To be more concrete, let $\xi \in [0,1]$ denote a stochastic noise term that we use for randomization—we will refer to this as the random seed. The score function is now randomized: given a data point (x, y), a dataset \mathcal{D} , and a random seed value ξ , we can now compute a score

$$s((x,y);\mathcal{D},\xi).$$

Returning to our example of stochastic gradient descent, we might write $\hat{f}(\cdot; \mathcal{D}, \xi)$ to denote the fitted model when stochastic gradient descent is run on dataset \mathcal{D} with random seed ξ —in practice, this means that ξ determines the order in which we cycle through points in the dataset \mathcal{D} , when taking gradient descent steps for our optimization problem. Then we can define a score such as $s((x, y); \mathcal{D}, \xi) = |y - \hat{f}(x; \mathcal{D}, \xi)|$.

What does it mean for the score to be symmetric in this randomized definition? Here, Definition 3.1 is replaced by a requirement that the score function is symmetric in a distributional sense:

Definition 9.1: Symmetric randomized score function

A randomized score function s is symmetric if for any fixed dataset \mathcal{D} , and any fixed test points $(x'_1, y'_1), \ldots, (x'_M, y'_M)$, and any permutation σ ,

$$\left(s\left((x'_m, y'_m); \mathcal{D}, \xi\right)\right)_{m \in [M]} \stackrel{\mathrm{d}}{=} \left(s\left((x'_m, y'_m); \mathcal{D}_\sigma, \xi\right)\right)_{m \in [M]} \tag{9.1}$$

where the equality in distribution holds with respect to drawing the random seed as $\xi \sim \text{Unif}[0,1]$.

Note that the property in (9.1) is weaker than requiring that $s((x'_m, y'_m); \mathcal{D}, \xi) = s((x'_m, y'_m); \mathcal{D}_{\sigma}, \xi)$ for all test points (x'_m, y'_m) , and this distinction is important in practice. With stochastic gradient descent, for instance, for a fixed random seed ξ the fitted function will in general be changed if we permute the data—if the random seed ξ determines that the first gradient descent step is taken with respect to the *i*th data point for some particular *i*, this data point is equal to (X_i, Y_i) in the dataset \mathcal{D} , but is instead equal to $(X_{\sigma(i)}, Y_{\sigma(i)})$ for the permuted dataset \mathcal{D}_{σ} . Thus, we would generally have different fitted models, $\hat{f}(\cdot; \mathcal{D}, \xi) \neq \hat{f}(\cdot; \mathcal{D}_{\sigma}, \xi)$, leading to different score functions, $s(\cdot; \mathcal{D}, \xi) \neq s(\cdot; \mathcal{D}_{\sigma}, \xi)$ —but equality in distribution (as in (9.1)) does hold.

Now we will see how this new symmetry assumption allows us to again establish exchangeability of the vector of scores S_1, \ldots, S_{n+1} . For $\mathcal{D}_{n+1} = ((X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}))$, we have

$$(S_{\sigma(1)}, \dots, S_{\sigma(n+1)}) = (s((X_{\sigma(i)}, Y_{\sigma(i)}); \mathcal{D}, \xi))_{i \in [n+1]} \stackrel{\mathrm{d}}{=} (s((X_{\sigma(i)}, Y_{\sigma(i)}); \mathcal{D}_{\sigma}, \xi))_{i \in [n+1]},$$

where the equality in distribution in the last step holds by applying Definition 9.1 with the data points $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ playing the role of $(x'_1, y'_1), \ldots, (x'_M, y'_M)$. But we also have

$$(s((X_{\sigma(i)}, Y_{\sigma(i)}); \mathcal{D}_{\sigma}, \xi))_{i \in [n+1]} \stackrel{\mathrm{d}}{=} (s((X_i, Y_i); \mathcal{D}, \xi))_{i \in [n+1]} = (S_1, \dots, S_{n+1}),$$

where this next equality in distribution holds by exchangeability of the data points $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$.

We have thus verified that the scores S_1, \ldots, S_{n+1} are exchangeable even in this randomized setting; this is analogous to the key step (3.6) in the proof of Theorem 3.2 (in Section 3.3), for the nonrandomized case, and the remainder of the proof proceeds exactly as before. Thus, if we run conformal prediction with a symmetric randomized score function, we are again guaranteed to have marginal coverage at level $\geq 1 - \alpha$.

From this point on, throughout the book, for clarity of the presentation we will generally only consider deterministic score functions, but in general, all results can easily be generalized to encompass randomized score functions.

9.1.2 Using a randomized calibration step

Next, we will consider a different type of randomization in the construction of the conformal prediction set for the purpose of achieving prediction sets with exact coverage, rather than conservative coverage. While in Section 9.1.1 we considered randomization in the construction of the scores, here we instead consider randomization in comparing the values of the scores, which will help handle ties. Recall from Proposition 3.9 that the conformal prediction set can equivalently be defined as

$$\mathcal{C}(X_{n+1}) = \{ y \in \mathcal{Y} : p^y > \alpha \},\$$

where the conformal p-value is given by

$$p^{y} = \frac{\sum_{i=1}^{n+1} \mathbb{1} \left\{ S_{i}^{y} \ge S_{n+1}^{y} \right\}}{n+1}$$

(as in Definition 3.8). If the scores are distinct, then exchangeability ensures that the p-value $p^{Y_{n+1}}$, corresponding to the true test response value $y = Y_{n+1}$, is uniformly distributed on the grid $\{\frac{1}{n+1}, \dots, \frac{n}{n+1}, 1\}$, reflecting the fact that the scores S_1, \dots, S_{n+1} are equally likely to be ranked in any order (see Theorem 8.2). This means that the coverage event, $p^{Y_{n+1}} > \alpha$, holds with probability exactly $\frac{k}{n+1}$, where $k = \lceil (1-\alpha)(n+1) \rceil$ —which leads to overcoverage if $(1-\alpha)(n+1)$ is not an integer. Moreover, this calculation has not accounted for ties between the scores—another potential source of overcoverage.

To avoid this issue, we can define a randomized version of the conformal prediction set for which coverage will hold at exactly level $1-\alpha$. This modification is sometimes referred to as *smoothing*—the distribution of $p^{Y_{n+1}}$, which is supported on the grid $\{\frac{1}{n+1}, \ldots, \frac{n}{n+1}, 1\}$, is smoothed to achieve a Unif[0, 1] distribution.

The smoothed version of the prediction set is easiest to define using the p-value-based construction. Given a hypothesized value $y \in \mathcal{Y}$ for the test response, we redefine the conformal p-value

$$p^{y}(\xi) = \frac{\sum_{i=1}^{n+1} \mathbb{1}\left\{S_{i}^{y} > S_{n+1}^{y}\right\} + \xi \cdot \sum_{i=1}^{n+1} \mathbb{1}\left\{S_{i}^{y} = S_{n+1}^{y}\right\}}{n+1},$$

which now depends additionally on a randomization term $\xi \sim \text{Unif}[0,1] \in [0,1]$. The conformal prediction set is then given by

$$C(X_{n+1}) = \{ y \in \mathcal{Y} : p^y(\xi) > \alpha \}, \tag{9.2}$$

where the dependence on the random ξ is implicit in the notation. Operationally, it is common to use a single draw of ξ that is shared across all values $y \in \mathcal{Y}$; that is, p-values $p^y(\xi)$ and $p^{y'}(\xi)$ are computed using the same value of ξ .

Theorem 9.2

Suppose that $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable and that s is a symmetric score function. Let $\xi \sim \text{Unif}[0, 1]$ be drawn independently of the data. Then the smoothed conformal prediction set \mathcal{C} defined in (9.2) has marginal coverage level exactly $1 - \alpha$,

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) = 1 - \alpha.$$

We also remark that, in the streaming data setting studied in Chapter 8, it can again be shown that the smoothed p-values at each time t are independent (analogous to the result of Theorem 8.2, but now we no longer need to assume that scores are distinct almost surely, since the randomized smoothing step removes the issue of ties).

Proof of Theorem 9.2

The argument follows the same structure as the permutation-test-based proof of Theorem 3.2, which was given in Section 3.5.1. We have

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff p^{Y_{n+1}}(\xi) > \alpha,$$

where by definition, we have

$$p^{Y_{n+1}}(\xi) = \frac{\sum_{i=1}^{n+1} \mathbb{1}\left\{S_i > S_{n+1}\right\} + \xi \cdot \sum_{i=1}^{n+1} \mathbb{1}\left\{S_i = S_{n+1}\right\}}{n+1}.$$

As in the proof of Theorem 3.2, we know that the scores

$$S_1, \ldots, S_{n+1}$$

are exchangeable. Therefore, our last remaining step is to prove the validity of a randomized version of permutation testing, which is established with the following lemma:

Lemma 9.3

Let S_1, \ldots, S_{n+1} be exchangeable, and let $\xi \sim \text{Unif}[0,1]$ be drawn independently from S_1, \ldots, S_{n+1} . Define

$$p(\xi) = \frac{\sum_{i=1}^{n+1} \mathbb{1}\{S_i > S_{n+1}\} + \xi \cdot \sum_{i=1}^{n+1} \mathbb{1}\{S_i = S_{n+1}\}}{n+1}.$$

Then $\mathbb{P}(p(\xi) \leq \tau) = \tau$ for all $\tau \in [0, 1]$.

The lemma immediately implies that $\mathbb{P}(p^{Y_{n+1}}(\xi) \leq \alpha) = \alpha$, which completes the proof of the theorem.

To complete this section, we prove the lemma.

Proof of Lemma 9.3

Define

$$p_j(\xi) = \frac{\sum_{i=1}^{n+1} \mathbb{1} \{S_i > S_j\} + \xi \cdot \sum_{i=1}^{n+1} \mathbb{1} \{S_i = S_j\}}{n+1}$$

for each $j \in [n+1]$, so that we have $p(\xi) = p_{n+1}(\xi)$. First, by exchangeability, we have $p(\xi) \stackrel{d}{=} p_j(\xi)$ for each j. Therefore,

$$\mathbb{P}(p(\xi) \le \alpha) = \frac{1}{n+1} \sum_{j \in [n+1]} \mathbb{P}(p_j(\xi) \le \alpha) = \mathbb{E}\left[\frac{1}{n+1} \sum_{j \in [n+1]} \mathbb{P}(p_j(\xi) \le \alpha \mid S_1, \dots, S_{n+1}),\right].$$

Next, define

$$q = \text{Quantile}(S_1, \dots, S_{n+1}; 1 - \tau).$$

and let

$$N_{+} = \sum_{j \in [n+1]} \mathbb{1} \{S_j > q\}, \quad N_{=} = \sum_{j \in [n+1]} \mathbb{1} \{S_j = q\}.$$

By definition of the quantile for a finite list (recall Fact 2.10), we have

$$N_{+} \le \tau(n+1), \quad N_{=} + N_{+} \ge 1 + \tau(n+1).$$

By definition of $p_j(\xi)$, for any j with $S_j < q$, we have

$$p_j(\xi) \ge \frac{\sum_{i=1}^{n+1} \mathbb{1}\left\{S_i > S_j\right\}}{n+1} \ge \frac{N_- + N_+}{n+1} > \tau,$$

while for any j with $S_j > q$, we have

$$p_j(\xi) \le \frac{\sum_{i=1}^{n+1} \mathbb{1} \{S_i \ge S_j\}}{n+1} \le \frac{N_+}{n+1} \le \tau.$$

And, if $S_j = q$, then

$$p_j(\xi) = \frac{\sum_{i=1}^{n+1} \mathbb{1}\left\{S_i > q\right\} + \xi \cdot \sum_{i=1}^{n+1} \mathbb{1}\left\{S_i = q\right\}}{n+1} = \frac{N_+ + \xi N_-}{n+1},$$

so that on the event $S_j = q$,

$$p_j(\xi) \le \tau \iff \xi \le \frac{\tau(n+1) - N_+}{N_-}.$$

These calculations combine to show that

$$\mathbb{P}(p_j(\xi) \le \tau \mid S_1, \dots, S_{n+1}) = \mathbb{1}\{S_j > q\} + \mathbb{1}\{S_j = q\} \cdot \frac{\tau(n+1) - N_+}{N_-}.$$

Returning to our work above, we have

$$\mathbb{P}(p(\xi) \le \tau) = \mathbb{E}\left[\frac{1}{n+1} \sum_{j=1}^{n+1} \left(\mathbb{1}\left\{S_j > q\right\} + \mathbb{1}\left\{S_j = q\right\} \cdot \frac{\tau(n+1) - N_+}{N_-}\right)\right]$$
$$= \frac{1}{n+1} \mathbb{E}\left[N_+ + N_- \cdot \frac{\tau(n+1) - N_+}{N_-}\right] = \tau,$$

where the second step simply plugs in the definitions of N_{+} and $N_{=}$.

9.2 Computational shortcuts for full conformal prediction

As we have seen, full conformal prediction is computationally expensive—for each possible value $y \in \mathcal{Y}$ of the test response Y_{n+1} , full conformal requires refitting the score function $s(\cdot; \mathcal{D}_{n+1}^y)$ (e.g., re-running a regression algorithm, in the case that our score function is of the form $s((x,y);\mathcal{D}) = |y - \hat{f}(x;\mathcal{D})|$). While this might be easy in the case that \mathcal{Y} is a small finite set of possible labels, this becomes prohibitively expensive if Y is categorical but has a large number of possible values, or even impossible if Y is continuous, say, if $\mathcal{Y} = \mathbb{R}$.

In this section, we will focus on the case that Y is continuous, so that $\mathcal{Y} = \mathbb{R}$. First we will examine some special cases where, due to the particular construction of the score, the full conformal prediction interval can be computed exactly. We will then turn to a general strategy that uses discretization to allow for efficient computation regardless of the choice of score function.

9.2.1 Special case: linear regression

First, we examine linear regression, in the low-dimensional case, where $\mathcal{X} = \mathbb{R}^d$ for some $d \leq n$. This is an important case and is the first step toward more flexible models such as ridge regression and lasso. We restrict attention to the score function given by the residual for the least-squares regression model: we have

$$s((x,y); \mathcal{D}) = |y - \hat{f}(x; \mathcal{D})|,$$

where the fitted model is given by

$$\hat{f}(x; \mathcal{D}) = x^{\top} \hat{\beta} \text{ for } \hat{\beta} = \underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \sum_{i=1}^m (y_i - x_i \top \beta)^2 \right\} \text{ where } \mathcal{D} = ((x_1, y_1), \dots, (x_m, y_m)).$$

y apsorting the state of the st

Figure 9.1: Visualization of the conformal p-value resulting from the least-squares predictor. The top plot shows the residuals on the augmented dataset as a function of the putative label y. The residuals are all linear in y. The yellow line corresponds to the test residual. In the middle plot, we show the absolute residuals on the augmented dataset. The bottom plot shows the conformal p-values resulting from the residual score. Since the conformal p-value only changes when the lines cross, one does not have to check all $y \in \mathbb{R}$ to compute the prediction set $\{y \in \mathcal{Y} : p^y > \alpha\}$; it suffices to consider only the y values at the crossing points of the absolute residuals.

Proposition 9.4

Let $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}$. Fix a training dataset $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ and test point X_{n+1} , and let $X_{[n+1]} \in \mathbb{R}^{(n+1)\times d}$ denote the matrix with *i*th row given by X_i , for each $i \in [n+1]$. Assume $X_{[n+1]}$ has full column rank, i.e., rank d. Suppose the score function is given by the residual score for least-squares regression, as defined above. Then the full conformal prediction set is equal to

$$C(X_{n+1}) = \left\{ y \in \mathbb{R} : \frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{ |y \cdot (-b_i) - (a_i - Y_i)| \ge |y \cdot (1 - b_{n+1}) - a_{n+1}| \right\}}{n+1} > \alpha \right\}, \quad (9.3)$$

where we define $a, b \in \mathbb{R}^{n+1}$ with entries

$$a_i = \sum_{j \in [n+1]} H_{ij} Y_j, \quad b_i = H_{i,n+1}$$

for matrix $H \in \mathbb{R}^{(n+1)\times(n+1)}$ defined as

$$H = X_{[n+1]} \left(X_{[n+1]}^{\top} X_{[n+1]} \right)^{-1} X_{[n+1]}^{\top}.$$

To see why this reformulation of the prediction $\mathcal{C}(X_{n+1})$ leads to an efficient calculation, we note that

$$y \mapsto \sum_{i=1}^{n} \mathbb{1}\left\{ |y \cdot (-b_i) - (a_i - Y_i)| \ge |y \cdot (1 - b_{n+1}) - a_{n+1}| \right\}$$

is a piecewise constant function, and its changepoints can only occur at values y that satisfy

$$y \cdot (-b_i) - (a_i - Y_i) = \pm (y \cdot (1 - b_{n+1}) - a_{n+1})$$

for some i = 1, ..., n. Therefore, after solving 2n many univariate linear equations to identify the candidate values y that might be changepoints of the above function, we can derive the exact set $\mathcal{C}(X_{n+1})$. See Figure 9.1 for an illustration.

Proof of Proposition 9.4

Given training data $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ and test point X_{n+1} , the score function is given by

$$s((x', y'); \mathcal{D}_{n+1}^y) = \left| y' - x'^{\top} \hat{\beta}^y \right|,$$

where

$$\hat{\beta}^{y} = \arg\min_{\beta \in \mathbb{R}^{d}} \left\{ \sum_{i=1}^{n} (Y_{i} - X_{i}^{\top} \beta)^{2} + (y - X_{n+1}^{\top} \beta)^{2} \right\}$$

is the coefficient vector for least-squares regression. We can rewrite this as

$$\hat{\beta}^{y} = (X_{[n+1]}^{\top} X_{[n+1]})^{-1} X_{[n+1]}^{\top} \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \\ y \end{pmatrix}.$$

For each $i \in [n+1]$, then,

$$X_i^{\top} \hat{\beta}^y = X_i^{\top} (X_{[n+1]}^{\top} X_{[n+1]})^{-1} X_{[n+1]}^{\top} \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \\ y \end{pmatrix} = \sum_{j \in [n]} H_{ij} \cdot Y_j + H_{i,n+1} \cdot y = a_i + b_i y,$$

by plugging in the definitions of H, a, and b from the statement of the proposition. We can then calculate the scores of the training and test data points as

$$S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y) = |Y_i - X_i^\top \hat{\beta}^y| = |y \cdot (-b_i) - (a_i - Y_i)|,$$

for $i = 1, \ldots, n$, and

$$S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y) = |y - X_{n+1}^\top \hat{\beta}^y| = |y \cdot (1 - b_{n+1}) - a_{n+1}|.$$

Next, following the reinterpretation of full conformal given in Section 3.5.1, we have

$$\mathcal{C}(X_{n+1}) = \{ y \in \mathbb{R} : p^y > \alpha \},\$$

where we compute the conformal p-value as

$$p^y = \frac{1 + \sum_{i \in [n]} \mathbb{1}\left\{S_i^y \ge S_{n+1}^y\right\}}{n+1} = \frac{1 + \sum_{i \in [n]} \mathbb{1}\left\{|y \cdot (-b_i) - (a_i - Y_i)| \ge |y \cdot (1 - b_{n+1}) - a_{n+1}|\right\}}{n+1}.$$

This completes the proof.

Related special cases. The example of linear regression can be generalized to a broader class of regression algorithms (while still using the residual score); here we mention some of these special cases briefly, without going into details. Suppose that, for all $x' \in \mathcal{X}$, the prediction $\hat{f}(x'; \mathcal{D}_{n+1}^y)$ depends linearly on y—that is,

$$\hat{f}(x'; \mathcal{D}_{n+1}^y) = a(x'; \mathcal{D}_n, X_{n+1}) + b(x'; \mathcal{D}_n, X_{n+1}) \cdot y, \tag{9.4}$$

where $a(x'; \mathcal{D}_n, X_{n+1})$ and $b(x'; \mathcal{D}_n, X_{n+1})$ can depend arbitrarily on their arguments. In addition to linear regression, methods in this class include ridge regression, nearest neighbor type methods, and various kernel regression methods. In this type of setting, after calculating $a_i = a(X_i; \mathcal{D}_n, X_{n+1})$ and $b_i = b(X_i; \mathcal{D}_n, X_{n+1})$ for each $i = 1, \ldots, n+1$ (which we only need to compute once, as these values do not depend on y), we then have $\mathcal{C}(X_{n+1})$ given by the calculation (9.3), exactly as for linear regression, and so the same calculation strategy can be applied to compute this set.

9.2.2 Special case: Lasso regression

Another special case arises if the regression algorithm is given by the Lasso, i.e., ℓ_1 -penalized linear regression, where the fitted model is now given by

$$\hat{f}(x; \mathcal{D}) = x^{\top} \hat{\beta} \text{ for } \hat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^d} \left\{ \frac{1}{2} \sum_{i=1}^m (y_i - x_i^{\top} \beta)^2 + \lambda \|\beta\|_1 \right\} \text{ where } \mathcal{D} = ((x_1, y_1), \dots, (x_m, y_m)).$$

The addition of the ℓ_1 penalty, $\lambda \|\beta\|_1$ (for some penalty parameter $\lambda > 0$), allows for accurate estimation even in the high-dimensional setting where $d \gg n$, under the assumption that there is (approximate) sparse structure in the true dependence of Y on X. In this setting, our score function is again given by the residual score,

$$s((x,y); \mathcal{D}) = |y - \hat{f}(x; \mathcal{D})|,$$

but the improved accuracy of the fitted model will likely lead to improved predictions (and thus, narrower prediction intervals) relative to non-sparse methods such as ridge regression.

This choice of the base algorithm is more computationally complex than the special case of linear regression—the Lasso does not satisfy a linearity property along the lines of (9.4). Nonetheless, we will now see that efficient computation of $C(X_{n+1})$ can be achieved by exploiting the observation that the map $y \mapsto \hat{f}(x; \mathcal{D}_{n+1}^y)$ is now *piecewise* linear. We will give an informal derivation of the prediction interval, stating facts about the Lasso optimization problem without proof (and assuming without comment any necessary regularity conditions).

Preliminaries: partitioning the real line. Write

$$\hat{\beta}^{y} = \underset{\beta \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \sum_{i=1}^{n} (Y_{i} - X_{i}^{\top} \beta)^{2} + \frac{1}{2} (y - X_{n+1}^{\top} \beta)^{2} + \lambda \|\beta\|_{1} \right\},\,$$

the coefficient vector returned by running Lasso on the dataset \mathcal{D}_{n+1}^y . Define also the support,

$$\hat{I}^y = \{ j \in [d] : \hat{\beta}_j^y \neq 0 \} \subseteq [d],$$

and the signs,

$$\hat{\gamma}^y = (\operatorname{sign}(\hat{\beta}_j^y))_{j \in \hat{I}^y} \in \{\pm 1\}^{|\hat{I}^y|}.$$

We will now see how the fitted values of the Lasso model, $\hat{f}(X_i; \mathcal{D}_{n+1}^y) = X_i^{\top} \hat{\beta}^y$, relate to the support and the signs.

The nature of the Lasso optimization problem ensures that the support and signs are piecewise constant—that is, the map $y \mapsto (\hat{I}^y, \hat{\gamma}^y)$ is piecewise constant over $y \in \mathbb{R}$. In particular, it can be shown that we can partition \mathbb{R} into a finite number of intervals,

$$\mathbb{R} = I_1 \cup \cdots \cup I_R$$

with each interval I_r of the form (a, b) or (a, b) or [a, b) or [a, b] for some $a < b \in \mathbb{R}$, such that $(\hat{I}^y, \hat{\gamma}^y)$ is constant over $y \in I_r$ for each r. Let (I_r, γ_r) denote this constant value in the rth interval, i.e., $(\hat{I}^y, \hat{\gamma}^y) = (I_r, \gamma_r)$ for all $y \in I_r$.

Preliminaries: relating the predictions to the support and signs. For any $y \in \mathbb{R}$, the first-order optimality conditions for the solution $\hat{\beta}^y$ to the Lasso optimization problem yield the identity

$$(\hat{\beta}^{y})_{\hat{I}^{y}} = \left(X_{[n+1],\hat{I}^{y}}^{\top} X_{[n+1],\hat{I}^{y}}\right)^{-1} \begin{pmatrix} X_{[n+1],\hat{I}^{y}}^{\top} & \vdots \\ Y_{n} \\ y \end{pmatrix} - \lambda \hat{\gamma}^{y} ,$$

i.e., if we know the support and signs of the solution $\hat{\beta}^y$ then this solution can be expressed as a *linear* function of the vector $(Y_1, \ldots, Y_n, y)^{\top}$ of response values. Here $X_{[n+1]} \in \mathbb{R}^{(n+1) \times d}$ is the matrix with *i*th row given by X_i , as in Proposition 9.4, while the notation $X_{[n+1],\hat{I}^y}$ indicates that we take the submatrix given by columns $\hat{I}^y \subseteq [d]$. Defining

$$a_{i}(I;\gamma) = (X_{i})_{I}^{\top} \left(X_{[n+1],I}^{\top} X_{[n+1],I} \right)^{-1} \left(X_{[n+1],I}^{\top} \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{n} \\ 0 \end{pmatrix} - \lambda \gamma \right)$$

and

$$b_{i}(I;\gamma) = (X_{i})_{I}^{\top} \left(X_{[n+1],I}^{\top} X_{[n+1],I} \right)^{-1} \left(X_{[n+1],I}^{\top} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right)$$

for any (nonempty) $I \subseteq [d]$ and $\gamma \in \{\pm 1\}^{|I|}$, we can therefore calculate that the prediction for the *i*th data point is given by

$$\hat{f}(X_i; \mathcal{D}_{n+1}^y) = X_i^\top \hat{\beta}^y = a_i(\hat{I}^y, \hat{\gamma}^y) + b_i(\hat{I}^y, \hat{\gamma}^y) \cdot y,$$

for each $i \in [n+1]$.

Relating this to the observation above, where we explained that $y \mapsto (\hat{I}^y, \hat{\gamma}^y)$ is piecewise constant with $(\hat{I}^y, \hat{\gamma}^y) = (I_r, \gamma_r)$ for all $y \in I_r$, for each interval $r \in [R]$ we therefore have

$$\hat{f}(X_i; \mathcal{D}_{n+1}^y) = a_i(I_r, \gamma_r) + b_i(I_r, \gamma_r) \cdot y \text{ for all } y \in I_r.$$

Computing the prediction interval. With all these preliminaries in place, we are now ready to describe the algorithm for computing the full conformal prediction interval with the Lasso.

Begin by choosing an arbitrary value $y_1 \in \mathbb{R}$ as a starting point, and run the Lasso to compute $\hat{\beta}^{y_1}$. Define the support, $I_1 = \hat{I}^{y_1} = \{j \in [d] : \hat{\beta}^{y_1}_j \neq 0\}$, and signs, $\gamma_1 = \hat{\gamma}^{y_1} = \text{sign}(\hat{\beta}^{y_1}_{I_1})$. Certain properties of the Lasso allow us to solve a system of linear inequalities to find interval endpoints $y_{\text{lo}} \leq y_1 \leq y_{\text{hi}}$, such that the support and signs are constant inside this range, i.e., $(\hat{I}^y, \hat{\gamma}^y) = (I_1, \gamma_1)$ for all $y \in I_1$, where we define the interval I_1 as $(y_{\text{lo}}, y_{\text{hi}})$ or $(y_{\text{lo}}, y_{\text{hi}})$ or $[y_{\text{lo}}, y_{\text{hi}}]$, as appropriate. From the work above, then, we can compute predictions

$$\hat{f}(X_i; \mathcal{D}_{n+1}^y) = a_i(I_1, \gamma_1) + b_i(I_1, \gamma_1) \cdot y \text{ for all } y \in I_1$$

for each $i \in [n+1]$, where $a_i(I_1, \gamma_1)$ and $b_i(I_1, \gamma_1)$ are calculated as above. We are now ready to calculate a portion of the conformal prediction interval: we have

$$\mathcal{C}(X_{n+1}) \cap I_1 = \left\{ y \in I_1 : \right.$$

$$\frac{1 + \sum_{i=1}^{n} \mathbb{1}\left\{ |y \cdot (-b_i(I_1, \gamma_1)) - (a_i(I_1, \gamma_1) - Y_i)| \ge |y \cdot (1 - b_{n+1}(I_1, \gamma_1)) - a_{n+1}(I_1, \gamma_1)| \right\}}{n+1} > 1 - \alpha \right\}.$$

Note that this is similar to the calculation (9.3) for the case of linear regression. The difference is that for linear regression, the predictions $\hat{f}(X_i; \mathcal{D}_{n+1}^y)$ are linear in y, and so a single set of this form suffices to compute the entire prediction interval $\mathcal{C}(X_{n+1})$; in the Lasso case, the predictions $\hat{f}(X_i; \mathcal{D}_{n+1}^y)$ are instead piecewise linear, and so the calculation above is only sufficient to calculate one piece of $\mathcal{C}(X_{n+1})$, namely, its intersection with the interval I_1 .

From this point on, we iterate this procedure. We choose another value $y_2 \in \mathbb{R} \setminus I_1$, and run the Lasso to compute $\hat{\beta}^{y_2}$ and thus discover a new interval $I_2 \subseteq \mathbb{R}$ within which $y \mapsto (\hat{I}^y, \hat{\gamma}^y)$ is constant. We then follow the same steps as above to compute $\mathcal{C}(X_{n+1}) \cap I_2$. We repeat this procedure as many times as necessary until the entire real line is covered. That is, we repeat the procedure R times, for some unknown but finite integer R, such that the intervals I_1, \ldots, I_R collectively form a partition of the real line. The final prediction interval is then given by

$$\mathcal{C}(X_{n+1}) = \cup_{r=1}^{R} (\mathcal{C}(X_{n+1}) \cap I_r),$$

where each piece $C(X_{n+1}) \cap I_r$ has been calculated via the procedure above.

9.2.3 A general approach: discretization

Moving beyond simple cases like linear regression and the Lasso, in general settings where the regression method and/or score function may be arbitrarily complex, we may no longer be able to derive computational shortcuts for computing $C(X_{n+1})$ efficiently.

Naive discretization. Since $C(X_{n+1})$ is impossible to compute exactly for $\mathcal{Y} = \mathbb{R}$ aside from special cases like the above, in practice it is common to use an informal discretization strategy, approximating \mathbb{R} with a fine grid. The strategy is typically implemented as follows. Let $y^{(1)} < \cdots < y^{(M)}$ be a prespecified list of values—typically these values are chosen to have equal spacing, $y^{(m+1)} - y^{(m)} = \Delta$ for each $m = 1, \ldots, M-1$. For each grid point, fit the score function by augmenting the dataset with a test point $(X_{n+1}, y^{(m)})$,

$$s_m(x,y) = s((x,y); \mathcal{D}_{n+1}^{y^{(m)}}),$$

and determine whether $y^{(m)}$ should be included into the conformal prediction interval:

$$y^{(m)} \in \mathcal{C}(X_{n+1}) \text{ if } s_m(X_{n+1}, y^{(m)}) \le \text{Quantile}\left((s_m(X_i, Y_i))_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right).$$
 (9.5)

Then we compute an approximation to the full conformal prediction set by constructing the set

$$C(X_{n+1}) = \bigcup_{\substack{m \in \{1, \dots, M\}\\ y^{(m)} \in C(X_{n+1})}} (y^{(m-1)}, y^{(m+1)}).$$

In other words, if we observe that $y^{(m)}$ needs to be included in the prediction interval $\mathcal{C}(X_{n+1})$, then we also include any value y that lies in between grid points $y^{(m-1)}$ and $y^{(m)}$, and any value y that lies in between grid points $y^{(m)}$ and $y^{(m+1)}$, since we are not certain of where the true boundary of the set lies. (For completeness, we can define $y^{(0)} = -\infty$ and $y^{(M+1)} = +\infty$.)

While this strategy generally works well in practice, we cannot verify a distribution-free guarantee for this approximate method. The reason is that the training data points i = 1, ..., n and the test point n + 1 are no longer being treated exchangeably: when computing our score functions, we use data points (X_i, Y_i) for each training point i = 1, ..., n, but the test point (X_{n+1}, Y_{n+1}) is never used, unless by coincidence we happen to have $Y_{n+1} = y^{(m)}$ for one of the preselected grid points. That is, we do not compute scores in a way that treats all the (training and test) data points symmetrically.

Symmetry-preserving discretization. The following result addresses this issue, by modifying the method to restore symmetry. At a high level, it works by discretizing all the points, not just the test point, thus yielding a symmetric algorithm.

Proposition 9.5

Let $y_1, \ldots, y_M \in \mathcal{Y}$ be a prespecified collection of values and let $k : \mathcal{Y} \to [M]$ be any function. (Intuitively, we think of this as a rounding function, where for an observed response $Y \in \mathcal{Y}$, the nearest grid point is $y_{k(Y)}$.) Let s be a symmetric score function, and for each $m \in [M]$, define a function

$$s_m(x,y) = s\Big((x;y); \big((X_1,y_{k(Y_1)}),\ldots,(X_n,y_{k(Y_n)}),(X_{n+1},y_m)\big)\Big).$$

Define

$$C(X_{n+1}) = \bigcup_{m \in [M]} \left\{ y \in \mathcal{Y} : k(y) = m, \ s_m(X_{n+1}, y) \le \text{Quantile}((s_m(X_i, Y_i))_{i \in [n]}; (1 - \alpha)(1 + 1/n)) \right\}.$$

Then this prediction set satisfies distribution-free marginal coverage, i.e., if $(X_1, Y_1), \dots, (X_{n+1}, Y_{n+1})$ are exchangeable then

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

As for the informal grid-based approximation defined in (9.5), the cost of constructing this new discretized full conformal prediction interval is simply the cost of M many runs of the modeling algorithm. For example, if we use a residual score function, then writing \hat{f}_m to denote the fitted model when we run our regression algorithm on data points $(X_1, y_{k(Y_1)}), \ldots, (X_n, y_{k(Y_n)}), (X_{n+1}, y_m)$, the mth trained score function s_m is given by $s_m(x, y) = |y - \hat{f}_m(x)|$. This means that, to compute $C(X_{n+1})$, we need to run our regression algorithm M many times (as compared to infinitely many times—at least in theory—for the original full conformal method).

The choice of M will affect both the statistical performance and the computational cost of this procedure. If M is chosen to be very small, then the procedure is computationally much more efficient, but the trained models \hat{f}_m will be much less accurate since all the response values are rounded—that is, each Y_i is replaced with a value on the grid, $y_{k(Y_i)}$. We can therefore expect to see a tradeoff between the computation time and the width of the resulting prediction intervals, with higher values of M leading to more expensive computation but more precise prediction intervals.

Proof of Proposition 9.5

The key step for the proof is to observe that the proposed prediction set $C(X_{n+1})$, which is an approximation of the full prediction set that we would obtain if we use s as our score function, is actually exactly equal to the full conformal prediction set for a different choice of score function.

To make this precise, we define a new score function \tilde{s} as follows. For any dataset $\mathcal{D} = ((x'_1, y'_1), \dots, (x'_\ell, y'_\ell))$ and data point (x', y'), let

$$\tilde{s}((x',y');\mathcal{D}) = s((x',y');(x'_1,y_{k(y'_1)}),\ldots,(x'_{\ell},y_{k(y'_{\ell})})).$$

In other words, the score function \tilde{s} is obtained by implementing the original score function s, but on a modified version of the dataset \mathcal{D} , obtained by rounding all Y values to the grid $\{y_1, \ldots, y_M\}$ via the map $k: \mathcal{Y} \to [M]$.

Now suppose that we run full conformal prediction with \tilde{s} as our score function. Let $C(X_{n+1})$ be the resulting prediction set, so that we have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha$$

by exchangeability of the data (together with the fact that \tilde{s} is a symmetric score function, because it inherits this property from s). For any $y \in \mathcal{Y}$, write

$$\tilde{S}_i^y = \tilde{s}((X_i, Y_i); \mathcal{D}_{n+1}^y)$$

for $i \in [n]$, and

$$\tilde{S}_{n+1}^y = \tilde{s}((X_{n+1}, y); \mathcal{D}_{n+1}^y).$$

Then we have

$$\mathcal{C}(X_{n+1}) = \left\{ y \in \mathcal{Y} : \tilde{S}_{n+1}^y \le \text{Quantile}\left((\tilde{S}_i^y)_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right) \right\},\,$$

by definition of full conformal prediction. Since the sets $\{y \in \mathcal{Y} : k(y) = m\}$, indexed by $m \in [M]$, form a partition of the response space \mathcal{Y} , we can equivalently write

$$C(X_{n+1}) = \bigcup_{m \in [M]} \left\{ y \in \mathcal{Y} : k(y) = m, \ \tilde{S}_{n+1}^y \le \text{Quantile}\left((\tilde{S}_i^y)_{i \in [n]}; (1 - \alpha)(1 + 1/n)\right) \right\}. \quad (9.6)$$

Now fix any $m \in [M]$. By construction of \tilde{s} , we can verify that, for any $y \in \mathcal{Y}$ with k(y) = m, we have

$$\tilde{s}(\cdot; \mathcal{D}_{n+1}^{y}) = s(\cdot; (X_{1}, y_{k(Y_{1})}), \dots, (X_{n}, y_{k(Y_{n})}), (X_{n+1}, y_{k(y)}))$$

$$= s(\cdot; (X_{1}, y_{k(Y_{1})}), \dots, (X_{n}, y_{k(Y_{n})}), (X_{n+1}, y_{m})) = s_{m}(\cdot).$$

Therefore, for any $y \in \mathcal{Y}$ with k(y) = m,

$$\tilde{S}_{i}^{y} = \begin{cases} s_{m}(X_{i}, Y_{i}), & i \in [n], \\ s_{m}(X_{n+1}, y), & i = n+1. \end{cases}$$

Therefore, we can see that the set defined in the statement of the proposition is exactly equal to the set $C(X_{n+1})$ given in (9.6). Since this set is equal to the full conformal prediction set (constructed with score function \tilde{s}), marginal coverage is therefore guaranteed by Theorem 3.2.

9.3 The universality of conformal prediction

Throughout this book, we have seen that conformal prediction provides a strategy for ensuring distribution-free marginal predictive coverage under only an assumption of exchangeability. But are there alternative methods that might achieve the same goal—and, perhaps, offer more informative prediction intervals?

The following result proves a *universality* property of full conformal prediction. It demonstrates that any method achieving distribution-free marginal coverage must actually be equivalent to running full conformal prediction (with some choice of score function), as long as we assume that the method is symmetric in the training data.

Theorem 9.6

Let C be any predictive inference procedure, which maps any training dataset and test point to a prediction interval (or prediction set),

$$(\mathcal{D}, x) \mapsto \mathcal{C}(x; \mathcal{D}) \subseteq \mathcal{Y}.$$

Assume \mathcal{C} is symmetric in the training data, i.e., $\mathcal{C}(x;\mathcal{D}) = \mathcal{C}(x;\mathcal{D}_{\sigma})$ for any $x \in \mathcal{X}$, any dataset \mathcal{D} , and any permutation σ . Assume also that \mathcal{C} satisfies distribution-free predictive coverage at level $1 - \alpha$:

If
$$(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$$
 are exchangeable then $\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}; \mathcal{D}_n)) \geq 1 - \alpha$.

Then there exists a symmetric conformal score function s such that C is equal to the full conformal prediction interval constructed with this score function.

How should we interpret this result? Essentially, it is telling us that the conformal prediction methodology is so broad—due to the flexibility in choosing the score function s—that any method with distribution-free validity can be expressed as a special case. Therefore, if we are restricting ourselves to symmetric methods, it is not fruitful to ask whether we can find a distribution-free method that will perform better than conformal prediction; instead, we should simply search for a better score function if we are not satisfied with the performance of conformal prediction on a particular application.

However, the symmetry assumption is important. As an example of a distribution-free method that does not satisfy symmetry, we can recall the weighted version of conformal prediction (with fixed weights), covered in Chapter 7 (see Section 7.4); this method achieves marginal coverage under exchangeability, but cannot be expressed as an instance of (unweighted) conformal prediction.

Proof of Theorem 9.6

First we define some notation. Given a dataset \mathcal{D} and a data point (x, y), we define $\mathcal{D}_{\setminus (x, y)}$ as the dataset obtained by removing one copy of (x, y), if (x, y) appears (one or more times) in \mathcal{D} , or otherwise simply returning \mathcal{D} .

Now define the score function s as follows: for any dataset \mathcal{D}' and any point (x,y), let

$$s((x,y); \mathcal{D}') = \mathbb{1}\left\{y \notin \mathcal{C}(x; \mathcal{D}'_{\setminus (x,y)})\right\}.$$

The assumption of symmetry on \mathcal{C} implies that s is a symmetric score function. Given training data $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ and test point X_{n+1} , we now claim that $\mathcal{C}(X_{n+1}; \mathcal{D}_n) = \mathcal{C}_{\mathrm{CP}}(X_{n+1})$, where $\mathcal{C}_{\mathrm{CP}}(X_{n+1})$ denotes the output of full conformal prediction (Algorithm 3.3) run with the score function s defined above, and with \mathcal{D}_n as the training data.

As usual for full conformal, for any $y \in \mathcal{Y}$, let \mathcal{D}_{n+1}^y denote the augmented dataset,

$$\mathcal{D}_{n+1}^{y} = ((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y)),$$

and note that $(\mathcal{D}_{n+1}^y)_{\setminus (X_{n+1},y)} = \mathcal{D}_n$ (or, we may have that $(\mathcal{D}_{n+1}^y)_{\setminus (X_{n+1},y)}$ is equal to some permutation of \mathcal{D}_n , in the case that the data point (X_{n+1},y) happens to be equal to one of the training points (X_i,Y_i)).

By definition of full conformal prediction, we have

$$C_{CP}(X_{n+1}) = \{ y \in \mathcal{Y} : S_{n+1}^y \le \text{Quantile}(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)) \},$$

where

$$S_i^y = s((X_i, Y_i); \mathcal{D}_{n+1}^y), i \in [n], \ S_{n+1}^y = s((X_{n+1}, y); \mathcal{D}_{n+1}^y).$$

In particular, by definition of s, we see that

$$S_{n+1}^y = \mathbbm{1}\left\{y \not\in \mathcal{C}(X_{n+1}; (\mathcal{D}_{n+1}^y)_{\backslash (X_{n+1},y)})\right\} = \mathbbm{1}\left\{y \not\in \mathcal{C}(X_{n+1}; \mathcal{D}_n)\right\},$$

where for the last step we use the fact that $(\mathcal{D}_{n+1}^y)_{\setminus (X_{n+1},y)}$ is equal to \mathcal{D}_n up to a permutation, and s is a symmetric score function.

Since $S_i^y \in \{0,1\}$ for all i by definition of the score function, we must have that

Quantile
$$(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)) \in \{0, 1\}$$

as well. Putting this together, we have

$$y \in \mathcal{C}(X_{n+1}; \mathcal{D}_n) \implies S_{n+1}^y = 0$$

 $\implies S_{n+1}^y \leq \text{Quantile}(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n)) \implies y \in \mathcal{C}_{\text{CP}}(X_{n+1}).$

So far, we have proved that $C(X_{n+1}; \mathcal{D}_n) \subseteq C_{\mathrm{CP}}(X_{n+1})$. Note that we have not yet used our assumption that C satisfies distribution-free coverage. Now we will apply this assumption in order to prove the converse, i.e., verifying that $C(X_{n+1}; \mathcal{D}_n) \supseteq C_{\mathrm{CP}}(X_{n+1})$. We will need to show the following claim:

For any
$$y \in \mathcal{Y}$$
, Quantile $(S_1^y, \dots, S_{n+1}^y; 1 - \alpha) = 0.$ (9.7)

If this claim is true, then for any $y \in \mathcal{Y}$, if $S_{n+1}^y = 1$ then we have $S_{n+1}^y > \text{Quantile}(S_1^y, \dots, S_{n+1}^y; 1-\alpha)$ —and by Lemma 3.4, this implies $S_{n+1}^y > \text{Quantile}(S_1^y, \dots, S_n^y; (1-\alpha)(1+1/n))$. Therefore, for any $y \in \mathcal{Y}$,

$$y \notin \mathcal{C}(X_{n+1}; \mathcal{D}_n) \implies S_{n+1}^y = 1 \implies y \notin \mathcal{C}_{\mathrm{CP}}(X_{n+1}).$$

This verifies that $\mathcal{C}(X_{n+1}; \mathcal{D}_n) \supseteq \mathcal{C}_{\mathrm{CP}}(X_{n+1})$, and thus completes the proof.

Now we will see how distribution-free validity of C implies the claim (9.7). In fact, this is an immediate consequence of the following deterministic lemma:

Lemma 9.7

Let $\mathcal{D} = ((x_1, y_1), \dots, (x_m, y_m))$ be any dataset. Then, if \mathcal{C} satisfies the assumptions of Theorem 9.6, it holds that

$$\sum_{i=1}^{m} \mathbb{1}\left\{y_i \in \mathcal{C}(x_i; \mathcal{D}_{\setminus (x_i, y_i)})\right\} \ge (1 - \alpha)m.$$

In particular, defining $s_i = \mathbb{1}\left\{y_i \notin \mathcal{C}(x_i; \mathcal{D}_{\setminus (x_i, y_i)})\right\} \in \{0, 1\}$ for each $i \in [m]$, it holds that Quantile $(s_1, \ldots, s_m; 1 - \alpha) = 0$.

The claim (9.7) then follows by applying this lemma, with m = n + 1 and with the augmented dataset $\mathcal{D}_{n+1}^y = ((X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, y))$.

Proof of Lemma 9.7

Let $\sigma \in \mathcal{S}_m$ be a permutation drawn uniformly at random, and define

$$(\tilde{X}_i, \tilde{Y}_i) = (x_{\sigma(i)}, y_{\sigma(i)}), i \in [m].$$

That is, the new dataset $(\tilde{X}_1, \tilde{Y}_1), \dots, (\tilde{X}_m, \tilde{Y}_m)$ is obtained by sampling uniformly without replacement from the list $(x_1, y_1), \dots, (x_m, y_m)$, and therefore, this new dataset satisfies ex-

changeability. Distribution-free validity of $\mathcal C$ then implies that

$$1 - \alpha \le \mathbb{P}(\tilde{Y}_m \in \mathcal{C}(\tilde{X}_m; ((\tilde{X}_i, \tilde{Y}_i))_{i \in [m-1]})).$$

We can rewrite this as

$$1 - \alpha \le \mathbb{P}\big(y_{\sigma(m)} \in \mathcal{C}(x_{\sigma(m)}; ((x_{\sigma(i)}, y_{\sigma(i)}))_{i \in [m-1]})\big) = \mathbb{P}\big(y_{\sigma(m)} \in \mathcal{C}(x_{\sigma(m)}; \mathcal{D}_{\setminus (x_{\sigma(m)}, y_{\sigma(m)})}),$$

where the last step holds since, up to permutation, the dataset $((x_{\sigma(i)}, y_{\sigma(i)}))_{i \in [m-1]}$ is equal to $((x_i, y_i))_{i \in [m] \setminus \{\sigma(m)\}} = \mathcal{D}_{\setminus (x_{\sigma(m)}, y_{\sigma(m)})}$, and we have assumed symmetry of \mathcal{C} . Finally, since the (x_i, y_i) 's are treated as fixed while σ is a uniformly random permutation (and thus $\sigma(m)$ is distributed uniformly over $\{1, \ldots, m\}$), we have

$$\mathbb{P}(y_{\sigma(m)} \in \mathcal{C}(x_{\sigma(m)}; \mathcal{D}_{\backslash (x_{\sigma(m)}, y_{\sigma(m)})})) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \{y_i \in \mathcal{C}(x_i; \mathcal{D}_{\backslash (x_i, y_i)})\},$$

as desired.

Bibliographic notes

Conformal prediction with a randomized score function, presented in Section 9.1.1, appears in Vovk et al. [2005], but with different notation and terminology than we present here. That same work also defines the smoothed version of the conformal prediction interval (described in Section 9.1.2); its exact coverage, given in Theorem 9.2, is established by Vovk et al. [2005, Theorem 8.1].

The closed-form calculation of the full conformal prediction interval $C(X_{n+1})$ in the special case of linear regression (as in Proposition 9.4) and related methods, such as ridge regression, is due to Nouretdinov et al. [2001a]. Lei [2019] develops the piecewise linear homotopy approach for computing $C(X_{n+1})$ in the case of Lasso (i.e., ℓ_1 -penalized linear regression [Tibshirani, 1996]), which is presented in Section 9.2.2. The properties of the Lasso that are leveraged for this construction are related to those developed earlier in the selective inference literature, e.g., Tibshirani et al. [2016], Lee and Taylor [2014].

The discretized version of full conformal prediction, presented in Proposition 9.5, appears in the work of Chen et al. [2018]. Related works in the literature include Chen et al. [2016], which examines the question of reducing the range of values $y \in \mathcal{Y}$ that need to be considered for inclusion in the prediction set $\mathcal{C}(X_{n+1})$; Ndiaye and Takeuchi [2019], which proposes a homotopy-based algorithm for more efficient computation of $\mathcal{C}(X_{n+1})$; and Ndiaye and Takeuchi [2022], which proposes a root-finding algorithm in general settings where the model $\hat{f}(\cdot;\mathcal{D})$ is fitted via solving an optimization problem.

The universality of conformal prediction, stated in Theorem 9.6, appears in Vovk et al. [2005, Chapter 2.4]. This result can be viewed as a modern perspective on classical results demonstrating that a permutation test is universal as a test of exchangeability (see, e.g., Scheffé [1943]).

Chapter 10

Extensions of Conformal Prediction

We now consider other prediction settings beyond creating a single uncertainty set for a single prediction. The algorithms we study in this section extend conformal prediction beyond the traditional setup and highlight opportunities for further work. We begin with risk control, which is a generalization of conformal prediction to handle other notions of error beyond miscoverage. This yields conformal-type algorithms applicable for prediction tasks where the output is a high-dimensional object, such as in image segmentation, question answering, and so on. Next, we consider multiplicity and outlier detection, explaining how split conformal p-values have a positive dependence that still enables control of the false discovery rate. We then turn to the issue of selective coverage, where we seek to maintain validity even when we focus on interesting units, rather than marginal coverage. Lastly, we consider the topic of conformal prediction and aggregating multiple models.

10.1 Beyond miscoverage: conformal risk control

Conformal prediction guarantees coverage—that $Y_{n+1} \in \mathcal{C}(X_{n+1})$ with high probability—but this notion of accuracy may not be well suited for certain settings. Particularly in machine learning, the space \mathcal{Y} may be structured such that a failure of coverage, $Y_{n+1} \notin \mathcal{C}(X_{n+1})$, is not a particularly informative notion of error. For example, Y can be very high-dimensional (e.g., a high-resolution image), making coverage of the entire Y too strict. Indeed, prediction sets themselves may not even be the desired method for communicating uncertainty. For such tasks, other notions of error can be more helpful, such as:

• Coordinatewise coverage rate. If $Y_{n+1} \in \mathbb{R}^d$, we may want to return a prediction set such that most coordinates of the response Y_{n+1} are contained in their respective prediction intervals, i.e., we want the coordinatewise miscoverage rate

$$\frac{1}{d} \sum_{j=1}^{d} \mathbb{1} \left\{ (Y_{n+1})_j \notin \mathcal{C}(X_{n+1})_j \right\}$$
 (10.1)

to be bounded in expectation by some target error level α , where our prediction set is of the form $\mathcal{C}(X_{n+1}) = \mathcal{C}(X_{n+1})_1 \times \cdots \times \mathcal{C}(X_{n+1})_d$.

• Accuracy in hierarchical classification. In hierarchical classification, the classes \mathcal{Y} are the leaf nodes of an ever-coarser hierarchy—for example, a 'poodle' is an instance of a 'dog', which is an instance of an 'animal', and so on. Given a prediction set $\mathcal{C}(x)$, we find the lowest common parent of its nodes, $lcp(\mathcal{C}(x))$ —for instance, if $\mathcal{C}(x) = \{\text{'poodle', 'dog', 'cat'}\}$ then $lcp(\mathcal{C}(x)) = \text{'animal', and so if } \mathcal{C}(x)$ indeed covers y then y must be an animal. Our aim, then, is that the event that we have made an error,

$$\mathbb{1}\left\{\operatorname{lcp}(\mathcal{C}(X_{n+1})) \text{ is not an ancestor of } Y_{n+1}\right\},\tag{10.2}$$

is bounded by some target level α , again in expectation. In other words, we are bounding the probability of making an error.

• False discovery rate. Consider a setting where $Y_{n+1} \in \{0,1\}^d$, with a 1 indicating the presence of some signal (e.g., the *j*th pixel of the image contains a vehicle). Then we might output a vector $\hat{Y}_{n+1} \in \{0,1\}^d$ indicating where we believe the true signals lie, and would like to require that our set of (estimated) 1's contains mostly true positives—thus, we aim for our false discovery proportion

$$\frac{\sum_{j=1}^{d} \mathbb{1}\left\{ (Y_{n+1})_j = 0, (\hat{Y}_{n+1})_j = 1 \right\}}{\sum_{j=1}^{d} \mathbb{1}\left\{ (\hat{Y}_{n+1})_j = 1 \right\}}$$

to be bounded (in expectation) by some target level α .

Note that all the error rates in the above list are analogous to the marginal coverage guarantee in (1.1), in the sense that marginal can also be expressed as control of the miscoverage indicator,

$$\mathbb{1}\left\{Y_{n+1} \notin \mathcal{C}(X_{n+1})\right\}. \tag{10.3}$$

In this sense, marginal miscoverage, and the three other examples above, can all be thought of as a *risk*—the expected value of a loss. The basic idea of conformal risk control is to replace the indicator of miscoverage with other loss functions, to generalize beyond the goal of marginal coverage.

We now introduce some notation to unify these different examples. Let \mathcal{C}_{λ} denote the set-valued output of a procedure, with some tuning parameter λ —for instance, $\mathcal{C}_{\lambda}(X)$ might denote a prediction interval for the response Y. The tuning parameter $\lambda \in [\lambda_{\min}, \lambda_{\max}] \subseteq \mathbb{R}$ indexes a nested family of sets,

$$\lambda_1 \le \lambda_2 \implies \mathcal{C}_{\lambda_1}(x) \subseteq \mathcal{C}_{\lambda_2}(x).$$
 (10.4)

This is a generalization of the split conformal prediction sets, which can be written in this form, as we have seen in (3.10). One can think of λ as a parameter controlling the size of the sets, and we will choose the parameter in order to control a statistical error rate.

As our notion of statistical error, let L be a loss function on prediction sets, which is assumed to be monotone in C,

$$C \subseteq C' \implies L(y,C) \ge L(y,C').$$
 (10.5)

i.e., larger sets lead to smaller loss. For instance, for conformal prediction we have the miscoverage loss $L(y, \mathcal{C}) = \mathbb{1} \{ y \notin \mathcal{C} \}$ (as in (10.3)), or we can accommodate more general examples such as (10.1) or (10.2). We hope to choose a value of λ so that the confidence set \mathcal{C}_{λ} satisfies

$$\mathbb{E}\left[L(Y_{n+1}, \mathcal{C}_{\lambda}(X_{n+1}))\right] \le \alpha,\tag{10.6}$$

a property we refer to as risk control.

As hinted above, we can extend the split conformal prediction algorithm in this more general setting. The algorithm is as follows. Consider a plug-in estimator of the expected loss at each value of the tuning parameter λ , given by

$$\hat{R}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} L(Y_i, \mathcal{C}_{\lambda}(X_i)).$$

Intuitively, we would expect that we can then choose a value of λ satisfying $\hat{R}(\lambda) \leq \alpha$ to achieve the desired bound on expected loss, but this does not lead to risk control due to finite-sample fluctuations in $\hat{R}(\lambda)$. To adjust for this and obtain the guarantee in (10.6), our procedure needs to be slightly more conservative—we select λ to be the value where the plug-in estimate of risk is no larger than $\alpha - (1 - \alpha)/n$:

$$\hat{\lambda} = \inf \left\{ \lambda : \hat{R}(\lambda) \le \alpha - (1 - \alpha)/n \right\}. \tag{10.7}$$

See Figure 10.1 for a visualization of this parameter selection, and how it relates to conformal prediction. (To ensure that this set is nonempty, we will assume that $L(y, \mathcal{C}_{\lambda_{\max}}(x)) = 0$ for all (x, y)—that is, we must always have $\hat{R}(\lambda_{\max}) = 0$. For instance, for split conformal prediction, this corresponds to returning a prediction set $\mathcal{C}(x) = \mathcal{Y}$, which is guaranteed to have coverage.)

The next proposition shows that this procedure provides risk control.

Figure 10.1: Visualization of split conformal risk control as it compares to split conformal prediction. Conformal risk control is a generalization of conformal prediction, but it allows for other risks besides miscoverage. The left-hand plot shows the quantile calculation for split conformal prediction, reframed in terms of miscoverage risk. The right-hand plot shows the parameter selection for conformal risk control for a smooth risk.

Theorem 10.1

Suppose that $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are exchangeable, and that the loss L takes values in [0, 1]. Assume that the map $\lambda \mapsto L(y, \mathcal{C}_{\lambda}(x))$ is right-continuous and is monotone nonincreasing, for any (x, y). Then, with $\hat{\lambda}$ selected as in (10.7), we have

$$\mathbb{E}\left[L(Y_{n+1}, \mathcal{C}_{\hat{\lambda}}(X_{n+1}))\right] \leq \alpha.$$

Here, the expectation is over both the calibration data (i.e., the randomness in λ and the fresh test point, as with conformal prediction. Note that the monotonicity condition (i.e., requiring $\lambda \mapsto L(y, \mathcal{C}_{\lambda}(x))$ to be nonincreasing) is an immediate consequence of assuming nested sets \mathcal{C}_{λ} , as in (10.4), and monotonicity of the loss L, as in (10.5). The assumption of right-continuity holds in many practical instances.

Proof of Theorem 10.1

Step 1: Deterministic inequalities on monotone risks. Consider an arbitrary dataset $\mathcal{D} = ((x_1, y_1), \dots, (x_m, y_m))$. We will denote the empirical risk on the dataset as

$$\hat{R}(\lambda; \mathcal{D}) = \frac{1}{m} \sum_{i=1}^{m} L(y_i, \mathcal{C}_{\lambda}(x_i)),$$

and define the following family of thresholds:

$$\hat{\lambda}(\mathcal{D}, \beta) = \inf \left\{ \lambda : \hat{R}(\lambda; \mathcal{D}) \leq \beta \right\}.$$

The right-continuity of L implies that $\hat{R}(\lambda; \mathcal{D})$ is right-continuous for any \mathcal{D} , giving us the following deterministic inequality for any β :

$$\hat{R}\left(\hat{\lambda}(\mathcal{D};\beta);\mathcal{D}\right) \le \beta.$$
 (10.8)

Step 2: Applying exchangeability. The family $\hat{\lambda}(\mathcal{D}, \beta)$, defined above, generalizes our previous choice of threshold in (10.7): we have that $\hat{\lambda} = \hat{\lambda}(\mathcal{D}_n, \alpha')$, where $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$

and $\alpha' = \alpha - (1 - \alpha)/n$. However, here we will consider applying this definition to a different dataset—not to the calibration set \mathcal{D}_n , but instead, to the dataset $\mathcal{D}_{n+1} = ((X_i, Y_i))_{i \in [n+1]}$ containing both the calibration set and test point: define

$$\lambda^* = \hat{\lambda}(\mathcal{D}_{n+1}, \alpha)$$

(note that here we use the original target risk level α , not the modified level α'). Since the data points are exchangeable, and λ^* is a symmetric function of the dataset \mathcal{D}_{n+1} , we have

$$\mathbb{E}\left[L(Y_{n+1}, C_{\lambda^*}(X_{n+1}))\right] = \mathbb{E}\left[L(Y_i, C_{\lambda^*}(X_i))\right],$$

for all $i \in [n+1]$. Therefore,

$$\mathbb{E}\left[L(Y_{n+1}, C_{\lambda^*}(X_{n+1}))\right] = \frac{1}{n+1} \sum_{i=1}^{n+1} \mathbb{E}\left[L(Y_i, C_{\lambda^*}(X_i))\right] = \mathbb{E}\left[\hat{R}(\lambda^*; \mathcal{D}_{n+1})\right] \le \alpha,$$

where the first step holds by exchangeability, the second step by definition of \hat{R} , and the third step by (10.8).

Step 3: proving the bound. Since we have assumed L takes values in [0,1], we have

$$\hat{R}(\lambda; \mathcal{D}_{n+1}) \le \frac{1}{n+1} + \frac{n}{n+1} \hat{R}(\lambda; \mathcal{D}_n)$$

holding for any data points and for any λ . Therefore, for any λ , by definition of α' we have

$$\hat{R}(\lambda; \mathcal{D}_n) \le \alpha' \implies \hat{R}(\lambda; \mathcal{D}_{n+1}) \le \alpha,$$

and so it must hold that $\lambda^* \leq \hat{\lambda}$. Monotonicity of L implies that $L(Y_{n+1}, C_{\hat{\lambda}}(X_{n+1})) \leq L(Y_{n+1}, C_{\lambda^*}(X_{n+1}))$ holds surely, and therefore

$$\mathbb{E}\left[L(Y_{n+1},C_{\hat{\lambda}}(X_{n+1}))\right] \leq \mathbb{E}\left[L(Y_{n+1},C_{\lambda^*}(X_{n+1}))\right] \leq \alpha.$$

We highlight again that the above is a generalization of split conformal prediction. Taking $L(y, \mathcal{S}) = \mathbb{I}\{y \notin \mathcal{S}\}$ and \mathcal{C}_{λ} as in (3.10) exactly recovers the split conformal prediction algorithm, and Theorem 10.1 exactly recovers Theorem 3.2. Choosing λ to satisfy the slightly more conservative threshold $\hat{R}(\lambda) \leq \alpha - (1-\alpha)/n$ in conformal risk control, corresponds exactly to using the $(1-\alpha)(1+1/n)$, rather than $1-\alpha$, quantile of the calibration scores in the split conformal method. Thus, this discussion sheds light on the essential mathematical structure necessary for split conformal prediction: we have a nested family of prediction sets that we tune to control miscoverage, which is a monotone loss.

10.2 Multiplicity

Conformal prediction is typically presented as a method for constructing a prediction interval for a single test point X_{n+1} , given a training set of size n. However, in practice, we often need to provide prediction intervals to multiple test points in a batch. Alternatively, we might want to screen a large collection of data points for potential outliers, via conformal p-values (as developed in Chapter 8).

These uses of conformal prediction raise an important question: how can we use conformal prediction on multiple data points if it only possesses validity guarantees for each data point individually? This is the central question of *multiplicity*.

In this section, we show how to prove guarantees of joint validity when running split conformal prediction across multiple test points. Specifically, we will study family-wise error rate (FWER) control for the problem

of joint validity of a collection of prediction intervals. We will also study the setting where conformal methodology is applied to the problem of outlier detection, and will examine FWER control as well as false discovery rate (FDR) control in this setting.

10.2.1 Controlling the family-wise error rate (FWER) for predictive coverage

Throughout this section, we will use our previous notation for the split conformal prediction setting: we write $\mathcal{D}_n = ((X_i, Y_i))_{i \in [n]}$ to denote the calibration set, while $s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is the pretrained score function. Given a set of test data points X'_1, \ldots, X'_m , we might be interested in obtaining a guarantee of the form

$$\mathbb{P}(Y_1' \in \mathcal{C}(X_1') \text{ and } \dots \text{ and } Y_m' \in \mathcal{C}(X_m')) \ge 1 - \alpha_{\text{FWER}},$$
 (10.9)

meaning all of the m prediction sets cover (with probability at least $1 - \alpha_{\text{FWER}}$). Here α_{FWER} represents the family-wise error rate: that is, the probability of at least one miscoverage among our m prediction sets.

Let us now consider how the split conformal prediction method would perform relative to this goal. Since the prediction set is given by $C(x) = \{y \in \mathcal{Y} : s(x,y) \leq \hat{q}\}$, where $\hat{q} = \text{Quantile}(S_1, \dots, S_n; (1-\alpha)(1+1/n))$, we can rephrase the goal (10.9) above as

$$\mathbb{P}\left(S_1' \leq \hat{q} \text{ and } \dots \text{ and } S_m' \leq \hat{q}\right) \geq 1 - \alpha_{\text{FWER}},$$

where the test point scores are given by $S'_i = s(X'_i, Y'_i)$. The key challenge is that the events $\{S'_i \leq \hat{q}\}_{i \in [m]}$ are not independent, since the threshold \hat{q} (which is random) is shared across all m events.

Let us first consider the asymptotic case, where the number of calibration points is $n \to \infty$ (while the number of test points m remains fixed). For this case, we will write \hat{q}_n (rather than \hat{q}) to emphasize that n is increasing.

Proposition 10.2

Let $(X_1', Y_1'), \ldots, (X_m', Y_m'), (X_1, Y_1), (X_2, Y_2), \ldots$ be sampled i.i.d. from some distribution P. Let $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a pretrained score function, and for each calibration set size $n \geq 1$, define the split conformal prediction set as

$$\mathcal{C}_{\hat{q}_n}(x) = \{ y : s(x, y) \le \hat{q}_n \}$$

where the threshold is given by

$$\hat{q}_n = \text{Quantile}(S_1, \dots, S_n; (1-\alpha)(1+1/n))$$

for scores $S_i = s(X_i, Y_i), i \in [n]$.

Define $q^* = \text{Quantile}(F, 1 - \alpha)$, where F is the CDF of s(X, Y) when $(X, Y) \sim P$. Assume that F(q) is continuous at $q = q^*$, and that q^* is the unique $(1 - \alpha)$ -quantile in the sense that $F(q) > 1 - \alpha$ for all $q > q^*$.

Then

$$\lim_{n\to\infty} \mathbb{P}\big(Y_1'\in\mathcal{C}_{\hat{q}_n}(X_1') \text{ and } \dots \text{ and } Y_m'\in\mathcal{C}_{\hat{q}_n}(X_m')\big) = (1-\alpha)^m.$$

Proof of Proposition 10.2

By construction of the split conformal prediction set, $Y'_i \in \mathcal{C}_{\hat{q}_n}(X'_i)$ holds if and only if $s(X'_i, Y'_i) \leq \hat{q}_n$. Since the test point scores $S'_i = s(X'_i, Y'_i)$ are i.i.d. draws from the CDF F, and \hat{q}_n depends only on the calibration data (and is therefore independent of the test scores), we have

$$\mathbb{P}(S_1' \leq \hat{q}_n \text{ and } \dots \text{ and } S_m' \leq \hat{q}_n) = \mathbb{E}\left[\mathbb{P}(S_1' \leq \hat{q}_n \text{ and } \dots \text{ and } S_m' \leq \hat{q}_n \mid \hat{q}_n)\right] = \mathbb{E}\left[F(\hat{q}_n)^m\right].$$

Next, by Theorem 5.6, it holds almost surely that $\hat{q}_n \to q^*$. Since F is assumed to be continuous

at q^* , we then have $F(\hat{q}_n) \to F(q^*) = 1 - \alpha$, almost surely. By the dominated convergence theorem, then, it holds that $\mathbb{E}[F(\hat{q}_n)^m] = (1 - \alpha)^m$.

This proposition reveals a fundamental fact about FWER control with conformal prediction: it is not possible to do much better than a union bound. That is, the aim of FWER control, as stated in (10.9), will only hold (asymptotically) if we choose

$$1 - \alpha_{\text{FWER}} = (1 - \alpha)^m \iff \alpha = 1 - (1 - \alpha_{\text{FWER}})^{1/m} \approx \alpha_{\text{FWER}}/m,$$

i.e., this is nearly the Bonferroni correction. This is because, as the calibration set size n approaches infinity, the events $\{S'_i \leq \hat{q}_n\}_{i \in [m]}$ become approximately independent. Thus, we must pay for each of them in our error budget by essentially taking a Bonferroni correction—a very severe penalty.

Now we will consider the non-asymptotic case, where n is finite and fixed. In this regime, the random threshold \hat{q}_n induces dependence between the events $\{S_i' \leq \hat{q}_n\}_{i \in [m]}$, but we can still give a partial version of the above result.

Proposition 10.3

In the setting of Proposition 10.2, for any fixed $n \geq 1$,

$$\mathbb{P}\left(Y_1' \in \mathcal{C}_{\hat{q}_n}(X_1') \text{ and } \dots \text{ and } Y_m' \in \mathcal{C}_{\hat{q}_n}(X_m')\right) \geq (1-\alpha)^m.$$

Proof of Proposition 10.3

From the proof of Proposition 10.2, we have that $\mathbb{P}(S_1' \leq \hat{q}_n \text{ and } \ldots \text{ and } S_m' \leq \hat{q}_n) = \mathbb{E}[F(\hat{q}_n)^m]$. The function $t \mapsto t^m$ is convex on $t \geq 0$, so $\mathbb{E}[F(\hat{q}_n)^m] \geq \mathbb{E}[F(\hat{q}_n)]^m$ by Jensen's inequality. Finally, by definition of F, we can write $F(\hat{q}_n) = \mathbb{P}(s(X_1', Y_1') \leq \hat{q}_n \mid \hat{q}_n) = \mathbb{P}(Y_1' \in \mathcal{C}_{\hat{q}_n}(X_1') \mid \hat{q}_n)$, where $(X_1', Y_1') \sim P$ is a test point. Thus, by the tower law,

$$\mathbb{E}[F(\hat{q}_n)] = \mathbb{E}[\mathbb{P}(Y_1' \in \mathcal{C}_{\hat{q}_n}(X_1') \mid \hat{q}_n)] = \mathbb{P}(Y_1' \in \mathcal{C}_{\hat{q}_n}(X_1')) \ge 1 - \alpha,$$

where the last step holds by the distribution-free marginal coverage guarantee for the split conformal prediction method.

As in the asymptotic case, then, the FWER control aim (10.9) holds if we choose $\alpha = 1 - (1 - \alpha_{\text{FWER}})^{1/m}$ (a Bonferroni-type correction), but in the setting of a finite n, it's possible that this might be overly conservative. Nonetheless, if n is large then the asymptotic result of Proposition 10.2 suggests that a Bonferroni-type correction is unavoidable if we wish to obtain FWER control over a collection of test points.

10.2.2 Outlier detection with multiplicity control

We will next turn to the setting of the outlier detection problem. As before, i.i.d. calibration points $(X_1, Y_1), \ldots, (X_n, Y_n)$ from a distribution P, and an independent set of test points $(X'_1, Y'_1), \ldots, (X'_m, Y'_m)$. In contrast to the prediction problem, our goal now is to detect outliers (i.e., test points (X'_1, Y'_1) that were not drawn from P), rather than to construct prediction intervals. In particular, Y'_1, \ldots, Y'_m are observed, which was not previously the case.

To formalize the question, for each test point $i \in [m]$ define the null hypothesis

$$H_{0,i}:(X_i',Y_i')\sim P.$$

Rejecting $H_{0,i}$ means that we claim to have detected that test point (X'_i, Y'_i) is an outlier. For the outlier detection problem, when we are simultaneously testing m many data points, we generally wish to detect

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

Figure 10.2: Visualization of dependence among conformal p-values for outlier detection. The two panels plot the conformal p-value for two realizations of the calibration set. Specifically, the calibration set determines the map from a test point score, S_i' , to the corresponding conformal p-value, p_i , as specified in (10.10); in each panel, this is illustrated by the solid piecewise constant function. This function is essentially an empirical estimate of $s \mapsto 1 - F(s)$, where F is the CDF of the distribution of the score s(X, Y) on a new data point $(X, Y) \sim P$; this population-level function is illustrated by the dotted line. We can see that, given a draw of the calibration set, the conformal p-values p_i for test points $i = 1, \ldots, m$ are dependent. The calibration scores on the left are smaller than average (due to chance), so the p-values p_i assigned to the test points will all be smaller, while in the right-hand panel the opposite is true.

outliers without incurring too many false positives. This may be formalized by seeking to control notions of error such as the family-wise error rate (FWER) or the false discovery rate (FDR). In particular, consider a procedure that sees both the calibration points and the test points and then returns a subset $\mathcal{R} \subseteq \{1, \ldots, m\}$ of the test points as outliers—this is the set of rejections among the null hypotheses $H_{0,1}, \ldots, H_{0,m}$ being tested. In this setting, the FWER is defined as

$$FWER = \mathbb{P}\left(\left|\left\{i \in \mathcal{R} : H_{0,i} \text{ is true}\right\}\right| > 0\right),\,$$

the probability of making at least one false rejection (i.e., falsely labeling at least one (X'_i, Y'_i) as an outlier), while the FDR is defined as

$$FDR = \mathbb{E}\left[\frac{|\{i \in \mathcal{R} : H_{0,i} \text{ is true}\}|}{\max\{1, |\mathcal{R}|\}}\right],$$

the expected proportion of false rejections.

To move towards the goal of controlling FWER or FDR, we will now consider a p-value based approach towards testing the m null hypotheses. Assuming as before that we have a pretrained score function $s: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, we will test each null hypothesis $H_{0,i}$ by comparing the score $S'_i = s(X'_i, Y'_i)$ against the calibration set scores S_1, \ldots, S_n . Concretely, we consider the conformal p-value for test point i (recall Section 3.5.1):

$$p_i = \frac{1 + \sum_{j=1}^n \mathbb{1}\left\{S_i' \le S_j\right\}}{n+1}.$$
(10.10)

Identifying a single outlier is relatively simple—by labeling i as an outlier if $p_i \le \alpha$ (say, $\alpha = 0.05$), we are guaranteed to incur a Type I error rate of no more than α ,

$$\mathbb{P}(p_i \leq \alpha) \leq \alpha$$
 for any $i \in [m]$ for which $H_{0,i}$ is true.

This is true because p_i is a valid p-value for this null hypothesis (as we have established before, e.g., in Section 2.2). However, identifying multiple outliers out of the batch of m data points is more challenging, due to dependencies between the p-values p_i (which is induced by the shared calibration set, used to construct all the p-values, as was also the case in Section 10.2.1 above). We will now explore this in more detail.

FWER control. Suppose we would like to control the FWER at some level $\alpha_{\rm FWER}$. We can perform a Bonferroni correction, by rejecting all p-values at threshold $\alpha = \alpha_{\rm FWER}/m$ (i.e., $\mathcal{R} = \{i \in [m] : p_i \leq \alpha\}$). However, the results of Proposition 10.3 above suggest that taking a slightly less conservative correction, $\alpha = 1 - (1 - \alpha_{\rm FWER})^{1/m}$, is sufficient to ensure FWER control at the desired level. On the other hand, the asymptotic result of Proposition 10.2 suggests that this type of correction is unavoidable; the strong requirement of FWER control will inherently lead to a method that is quite conservative—and consequently, many outlier points might not be detected.

FDR control. For the strict aim of FWER control, we have just established that only a conservative procedure is possible, due to correcting for multiplicity. If we wish to avoid this issue (i.e., we want to avoid missing outliers due to this conservative rejection threshold), we can instead use the more permissive FDR as our statistical error rate.

The problem of controlling FDR in a multiple testing scenario is well understood if we have independent p-values. For example, the well-known Benjamini–Hochberg algorithm is defined as

$$\mathcal{R} = \left\{ i : p_i \le \frac{\alpha_{\text{FDR}} \hat{k}}{m} \right\} \text{ where } \hat{k} = \max \left\{ k : \sum_{i=1}^m \mathbb{1} \left\{ p_i \le \frac{\alpha_{\text{FDR}} k}{n} \right\} \ge k \right\},$$
 (10.11)

where $\alpha_{\rm FDR} \in [0,1]$ is the target FDR level. When applied to independent p-values, this algorithm has the property that FDR $\leq \alpha_{\rm FDR}$.

This leads to the main idea of this section: for the outlier detection problem, even though the conformal p-values p_i defined above are not independent, we can still control the FDR using the Benjamini–Hochberg algorithm. This is because the conformal p-values have a particular form of dependence that is sufficient to prove the validity of the Benjamini–Hochberg algorithm:

Definition 10.4: Positive regression dependence on a subset (PRDS)

A random vector $W \in \mathbb{R}^m$ is PRDS on a set $I_0 \subseteq \{1, \dots, m\}$ if for any $i \in I_0$ and any nondecreasing set A, $\mathbb{P}(W \in A \mid W_i = w_i)$ is nondecreasing in w_i .

Here, a nondecreasing set $A \subseteq \mathbb{R}^m$ is a set where if $(a_1, \ldots, a_m) \in A$, then any vector (b_1, \ldots, b_m) , with $b_i \geq a_i$ for all $i \in [m]$, must also lie in A. Importantly, the Benjamini–Hochberg algorithm is known to control the FDR under this type of dependence (i.e., for PRDS p-values, the Benjamini–Hochberg procedure (10.11) satisfies FDR $\leq \alpha_{\text{FDR}}$, just like for independent p-values).

This leads directly to the main result: the PRDS property of conformal p-values constructed with a shared calibration set.

Theorem 10.5: Conformal p-values are PRDS

Suppose $(X_1, Y_1), \ldots, (X_n, Y_n), (X'_1, Y'_1), \ldots, (X'_m, Y'_m)$ are independent. Assume also that $(X_i, Y_i) \sim P$ for all $i \in [n]$, and that $(X'_i, Y'_i) \sim P$ for all $i \in I_0$. Let s be a pretrained score function, and assume that all calibration and test scores are distinct almost surely. Then, the conformal p-values (10.10) are PRDS on the subset I_0 .

We may compare Theorem 10.5 with the independence property of full conformal p-values in the online setting in Section 8.1. There, the conformal p-values were computed by re-running conformal prediction at each step (with all previous data used as the calibration set). In that setting, we saw that the conformal p-values are independent. By contrast, the setting studied here has a fixed calibration set that is re-used for computing the p-value for every test point. In this setting, the p-values are no longer independent, but the result of Theorem 10.5 establishes that only positive dependence is possible. Indeed, Figure 10.2 gives an intuitive illustration of why this should be the case: we see positive dependence among the conformal p-values p_1, \ldots, p_m because they are each comparing against the same reference set of scores (i.e., the scores of the calibration set).

The implications of Theorem 10.5 are twofold. At a theoretical level, this result reveals something about the structure of conformal p-values: the shared calibration set induces positive dependence among all p-values. For example, if the calibration set happens to contain an unusually high fraction of data points (X_i, Y_i) with a low score $S_i = s(X_i, Y_i)$, then all p-values p_1, \ldots, p_m will be more likely to be small. Moreover, at a practical level, this result implies that using the Benjamini-Hochberg algorithm with the conformal p-values controls the FDR. We record this fact in the following corollary.

Corollary 10.6: FDR control with conformal p-values

In the setting above, let \mathcal{R} be the set of rejections of the Benjamini-Hochberg algorithm, when run at target FDR level α_{FDR} based on the p-values p_1, \ldots, p_m . Then, the FDR is controlled:

$$\mathbb{E}\left[\frac{|\{i \in \mathcal{R} : H_{0,i} \text{ is true}\}|}{\max\{1, |\mathcal{R}|\}}\right] \leq \alpha_{\text{FDR}}.$$

In words, this means that conformal p-values can be used to detect outliers on a batch of test data points while retaining error control, making conformal p-values an attractive choice for statistical inference for outlier detection.

To complete this section, we present a proof of the PRDS result.

Proof of Theorem 10.5

Fix any test point in I_0 —without loss of generality we can assume it is the first one, (X'_1, Y'_1) . First, for each $i \in \{2, ..., m\}$, we define a count

$$C_i = \sum_{j=1}^n \mathbb{1} \left\{ s(X_i', Y_i') \le s(X_j, Y_j) \right\} + \mathbb{1} \left\{ s(X_i', Y_i') \le s(X_1', Y_1') \right\}.$$

For intuition, we can observe that, for each $i \in \{2, ..., m\}$, the quantity $\frac{1+C_i}{n+2}$ is the conformal p-value we would obtain for test point (X_i', Y_i') if we were comparing to an augmented calibration set $((X_1, Y_1), ..., (X_n, Y_n), (X_1', Y_1'))$ rather than only comparing to $\mathcal{D}_n = ((X_1, Y_1), ..., (X_n, Y_n))$.

Step 1: verifying independence of p_1 and the C_i 's. First, we will prove that $p_1 \perp \!\!\! \perp (C_2, \ldots, C_m)$. This claim holds by exchangeability of the augmented calibration set $(X_1, Y_1), \ldots, (X_n, Y_n), (X_1', Y_1')$ —the counts C_i depend symmetrically on this augmented dataset, while p_1 expresses the rank of (X_1', Y_1') within this dataset and is therefore uniformly distributed over $\{\frac{1}{n+1}, \ldots, \frac{n}{n+1}, 1\}$, even after conditioning on C_2, \ldots, C_m , since we have assumed that the scores are distinct almost surely. (We can observe that this argument is nearly identical to that of Theorem 8.2, which proved independence of conformal p-values in the online testing regime.)

Step 2: recovering p_i 's from C_i 's. Next, we claim that for each $i \in \{2, \ldots, m\}$,

$$s(X_i', Y_i') < s(X_1', Y_1') \iff C_i > (n+1)p_1.$$

To see why, define $f(t) = \sum_{j=1}^n \mathbbm{1}\{t \leq s(X_j,Y_j)\} + \mathbbm{1}\{t \leq s(X_1',Y_1')\}$. Then by construction, $C_i = f(s(X_i',Y_i'))$ for each $i \in \{2,\ldots,m\}$, and $p_1 = \frac{f(s(X_1',Y_1'))}{n+1}$. Since f is monotone nonincreasing, this verifies the claim. With this calculation in place, we will now see that the original p-values p_i can be recovered as functions of p_1 and C_i : for each $i \in \{2,\ldots,m\}$, by definition of p_i and of C_i , we have

$$p_i = \frac{1 + \sum_{j=1}^n \mathbbm{1}\left\{s(X_i', Y_i') \leq s(X_j, Y_j)\right\}}{n+1} = \frac{1 + C_i - \mathbbm{1}\left\{s(X_i', Y_i') \leq s(X_1', Y_1')\right\}}{n+1} \\ = \frac{1 + C_i - \mathbbm{1}\left\{C_i \geq (n+1)p_1\right\}}{n+1}.$$

Step 3: the PRDS condition. Now let $A \subseteq \mathbb{R}^m$ be an nondecreasing set. We need to verify that

$$t \mapsto \mathbb{P}((p_1, \dots, p_m) \in A \mid p_1 = t)$$

is nondecreasing in t. From Step 2, this function can equivalently be written as

$$t \mapsto \mathbb{P}(V_t \in A \mid p_1 = t)$$

where we define the random vector V_t as

$$V_t = \left(t, \frac{1 + C_2 - \mathbb{1}\left\{C_2 \ge (n+1)t\right\}}{n+1}, \dots, \frac{1 + C_m - \mathbb{1}\left\{C_m \ge (n+1)t\right\}}{n+1}\right).$$

Since we have proved that $p_1 \perp \!\!\! \perp (C_2, \ldots, C_m)$ in Step 1, while V_t is a function of (C_2, \ldots, C_m) , we have $\mathbb{P}(V_t \in A \mid p_1 = t) = \mathbb{P}(V_t \in A)$. Therefore, we now only need to verify that

$$t \mapsto \mathbb{P}(V_t \in A)$$

is nondecreasing in t. Next, we can observe that $t \mapsto V_t$ is always a coordinatewise monotone nondecreasing function (i.e., this holds for any value of C_2, \ldots, C_m). Since A is a nondecreasing set, then, it holds almost surely that

$$V_t \in A \implies V_{t'} \in A$$
,

for any $t \leq t'$. Therefore, $t \mapsto \mathbb{P}(V_t \in A)$ is an nondecreasing function, as desired.

10.3 Selective coverage

One important use of predictive models and prediction intervals is to identify promising examples for follow-up study. For example, we might have a list of medical drug candidates and we wish to identify candidates that appear to be highly effective, in order to pursue follow-up studies on these candidates. For problems of this flavor where we wish to focus on a set of 'interesting' units, the marginal coverage property is insufficient—for the 'interesting' units, the coverage from conformal prediction may be far less than the nominal rate.

For example, suppose that, for a test feature vector X_{n+1} , we output a prediction interval of the form $\mathcal{C}(X_{n+1}) = [\hat{f}(X_{n+1}) - \hat{q}, \hat{f}(X_{n+1}) + \hat{q}]$, as would be the case for split conformal prediction run with the residual score. The marginal coverage guarantee for conformal prediction ensures that $\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \geq 1 - \alpha$, on average over all possible test points. But if this unit is selected for followup study only if some criterion $\hat{f}(X_{n+1}) \geq c$ is reached (i.e., only if the predicted output is sufficiently high), the probability of coverage conditional on the unit being selected for followup testing may be lower—that is, we may have

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \hat{f}(X_{n+1}) \ge c) < 1 - \alpha.$$

This is the problem of selective inference: a guarantee that holds marginally may no longer hold if we condition on the outcome of a (data dependent) selection rule.

We next explain how conformal prediction can be adapted to avoid undercoverage on selected units. This discussion is related to the conditional coverage and Mondrian conformal prediction discussion in Chapter 4 (we will return to this connection again below). Here, we will ask for coverage conditional on a point being identified for follow-up—that is, conditional on selection.

Consider a selection rule \mathcal{I} mapping a dataset $\mathcal{D} \in (\mathcal{X} \times \mathcal{Y})^{n+1}$ to a selected subset of data points $\mathcal{I}(\mathcal{D}) \subseteq [n+1]$. To give a concrete example, the map \mathcal{I} could select all points i with $\hat{f}(X_i) \geq c$ for some prefitted model \hat{f} and some predetermined threshold c, as above. Or, as another example, the selection rule could depend in a more complex way on the entire dataset, by selecting the k points with the largest

predicted response $\hat{f}(X_i)$ for some fixed k. We assume \mathcal{I} is symmetric, in the following sense:

$$\sigma(i) \in \mathcal{I}(\mathcal{D}) \iff i \in \mathcal{I}(\mathcal{D}_{\sigma}),$$
 (10.12)

for any dataset \mathcal{D} , any permutation σ , and any index $i \in [n+1]$. Essentially, this condition ensures that the ordering of the data points does not affect which data points are selected. For example, if the dataset ((x,y),(x',y')) maps to the selection $\{1\}$ (meaning that (x,y) is selected but (x',y') is not selected), then if we permute to obtain a new dataset ((x',y'),(x,y)), this new dataset must map to $\{2\}$ (so that, again, (x,y) is selected but (x',y') is not selected).

With this selection rule defined, we now turn to the algorithm. The prediction interval will take the following form:

$$C(X_{n+1}) = \{ y : S_{n+1}^y \le \hat{q}^y, n+1 \in \mathcal{I}(\mathcal{D}_{n+1}^y) \},$$
(10.13)

where the notation S_{n+1}^y and \mathcal{D}_{n+1}^y is defined as in Chapter 3. The last part of the condition, $n+1 \in \mathcal{I}(\mathcal{D}_{n+1}^y)$, ensures that we only consider values y that would lead to the test data point being selected (since we are aiming for coverage to hold conditional on this event). The other part of the condition, $S_{n+1}^y \leq \hat{q}^y$, appears identical to the full conformal prediction interval that we have defined before, in Chapter 3—but, as discussed above, using the original definition of \hat{q}^y , which was calibrated to achieve marginal coverage, may not be sufficient to achieve selective coverage, so we will need to define \hat{q}^y in a new way.

The main idea for achieving selective coverage is that \hat{q}^y is computed using only the scores from the set of selected points (rather than using all scores as for marginal coverage, in Chapter 3). These are the data points that, even after conditioning on selection, are exchangeable with a test point. Formally, we define

$$\hat{q}^y = \text{Quantile}((S_i^y)_{i \in \mathcal{I}^y}; (1 - \alpha)(1 + 1/|\mathcal{I}^y|)),$$
 (10.14)

where $\mathcal{I}^y = \{i \in [n] : i \in \mathcal{I}(\mathcal{D}_{n+1}^y)\}$ is the subset of training points that are selected when the selection rule is run with test point (X_{n+1}, y) (or, if this set is empty, then we set $\hat{q}^y = +\infty$). With this in hand, we have the following result.

Theorem 10.7: Coverage guarantee of selective conformal prediction

Suppose $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable. Let s be a symmetric score function, and let \mathcal{I} be a symmetric selection rule as in (10.12). Assume the event $n+1 \in \mathcal{I}(\mathcal{D}_{n+1})$ (i.e., the event that the test point is selected) has positive probability. Then the prediction set $\mathcal{C}(X_{n+1})$ defined above in (10.13) and (10.14) satisfies

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid n+1 \in \mathcal{I}(\mathcal{D}_{n+1})\right) \ge 1 - \alpha.$$

The proof of this theorem follows from the fact that the conformal scores are exchangeable conditional on the output of a symmetric selection rule, which we formally state next.

Lemma 10.8: Conditional exchangeability after selection

Suppose $(X_1, Y_1), ..., (X_{n+1}, Y_{n+1})$ are exchangeable, and let \mathcal{I} be a symmetric selection rule as in (10.12). Let \mathcal{E}_I be the event that $\mathcal{I}(\mathcal{D}_{n+1}) = I$, for some fixed nonempty subset $I \subseteq [n+1]$. Assume \mathcal{E}_I has positive probability. Then $((X_i, Y_i))_{i \in I}$ is exchangeable conditional on \mathcal{E}_I .

This lemma then implies a useful result for conformal p-values:

Corollary 10.9

In the setting of Lemma 10.8, define

$$p = \frac{1 + \sum_{i \in [n]} \mathbb{1} \{ i \in \mathcal{I}(\mathcal{D}_{n+1}), S_i \ge S_{n+1} \}}{1 + \sum_{i \in [n]} \mathbb{1} \{ i \in \mathcal{I}(\mathcal{D}_{n+1}) \}}$$

where $S_i = s((X_i, Y_i); \mathcal{D}_{n+1})$ for some symmetric score function s. If $\mathbb{P}(n+1 \in \mathcal{I}(\mathcal{D}_{n+1})) > 0$, then

$$\mathbb{P}(p \le \alpha \mid n+1 \in \mathcal{I}(\mathcal{D}_{n+1})) \le \alpha$$

for any $\alpha \in [0, 1]$.

These results are very similar to Lemma 4.7 and Corollary 4.8, which were used for bin-wise conditional coverage results in Chapter 4.

Proof of Lemma 10.8

To verify the first part of the lemma, we fix any nonempty $I \subseteq [n+1]$ such that $\mathbb{P}(\mathcal{E}_I) > 0$. Fix any permutation σ on I, and let $\tilde{\sigma}$ be the permutation on [n+1] defined as

$$\tilde{\sigma}(i) = \begin{cases} \sigma(i), & i \in I, \\ i, & i \notin I. \end{cases}$$

Write $Z_i = (X_i, Y_i)$ for each data point $i \in [n+1]$, and let $Z_{\tilde{\sigma}} = (Z_{\tilde{\sigma}(1)}, \dots, Z_{\tilde{\sigma}(n+1)})$. For any $A \subseteq (\mathcal{X} \times \mathcal{Y})^{|I|}$, we have

$$\mathbb{P}((Z_i)_{i \in I} \in A, \mathcal{E}_I) = \mathbb{P}((Z_i)_{i \in I} \in A, \mathcal{I}(Z_1, \dots, Z_{n+1}) = I)$$

$$= \mathbb{P}((Z_{\tilde{\sigma}(i)})_{i \in I} \in A, \mathcal{I}(Z_{\tilde{\sigma}(1)}, \dots, Z_{\tilde{\sigma}(n+1)}) = I) \text{ since } Z \stackrel{\text{d}}{=} Z_{\tilde{\sigma}}$$

$$= \mathbb{P}((Z_{\tilde{\sigma}(i)})_{i \in I} \in A, \mathcal{I}(Z_1, \dots, Z_{n+1}) = I) \text{ since } \mathcal{I} \text{ satisfies } (10.12) \text{ and } \sigma(I) = I$$

$$= \mathbb{P}((Z_{\tilde{\sigma}(i)})_{i \in I} \in A, \mathcal{E}_I)$$

$$= \mathbb{P}((Z_{\sigma(i)})_{i \in I} \in A, \mathcal{E}_I),$$

where the last step holds by definition of $\tilde{\sigma}$. As in the proof of in the proof of Lemma 4.7, since this calculation holds for any A and any σ , this is sufficient to verify that $(Z_i)_{i\in I}$ is exchangeable conditional on \mathcal{E}_I .

Corollary 10.9 then follows from Lemma 10.8, by identical arguments as for the proof of Corollary 4.8 (following from Lemma 4.7), and we omit the proof.

Proof of Theorem 10.7

By definition of $\mathcal{C}(X_{n+1})$ for this setting, on the event $n+1 \in \mathcal{I}(\mathcal{D}_{n+1})$ defining p as in Corollary 10.9 we have

$$Y_{n+1} \in \mathcal{C}(X_{n+1}) \iff s(X_{n+1}, Y_{n+1}) \le \hat{q}^{Y_{n+1}} \iff p > \alpha,$$

where the last step, which relates the coverage event to a statement about a conformal p-value, is proved via an analogous argument as for ordinary conformal prediction, i.e., without selection (see Proposition 3.9). The coverage then follows from the validity in the p-value as given in Lemma 10.8.

Computationally, forming the set in (10.13) potentially requires iterating through all $y \in \mathcal{Y}$ and then computing the selection sets $\mathcal{I}(\mathcal{D}_{n+1}^y)$ and the scores S_i^y for $i=1,\ldots,n$. Thus, for any given test point, it requires $(n+1)\cdot |\mathcal{Y}|$ evaluations of the score function and $|\mathcal{Y}|$ evaluations of the selection rule. The computation simplifies considerably when the selection rule depends only on the features X (for instance, if we select data points i for which $\hat{f}(X_i) \geq c$) and the score function for S_i^y doesn't depend on y (i.e., with scores from split conformal prediction). We give references to work that gives more tractable cases of this algorithm, as well as extensions to other forms of selective validity, in the bibliographic notes at the end of this chapter.

The reader should note that this algorithm is similar to Mondrian conformal prediction from Section 4.6, with the selection rule \mathcal{I} serving as the analog to the function g from that section. The difference is that now \mathcal{I} depends on all the data points, whereas g depended only on one data point—we can view this method as a generalization of the procedure from Section 4.6.

10.4 Aggregating conformal sets

A common strategy in predictive modeling is model ensembling—that is, combining multiple predictive models to achieve better prediction accuracy. This leads naturally to the question of how we might combine multiple prediction sets (rather than combining point predictions). Methods for this question are of practical, as well as theoretical, interest.

Such a question is subtle, however, because the precision of our estimate will vary depending on how dependent the original prediction sets are: if we aggregate K prediction sets that provide relatively independent information, the miscoverage rate should decrease substantially, while if we aggregate K sets that essentially each repeat the same information, then we would not expect their aggregated version to be more accurate. Indeed, we might even be concerned that aggregation in the presence of arbitrary dependence could potentially even inflate the miscoverage error. To address this last concern, we will begin by showing that there is a simple worst-case bound ensuring that aggregation via majority vote will preserve the coverage guarantee up to a factor of two. Next, we will outline a simple strategy that leads to more precise guarantees on coverage, but requires some additional data for calibration. Lastly, we relate the question of aggregating prediction sets to the cross-conformal prediction method studied in Chapter 6.

10.4.1 Aggregating prediction sets

Suppose we have K conformal prediction algorithms. For the first result, we require only access to the confidence sets $C_1(x), \ldots, C_K(x)$, which are each subsets of \mathcal{Y} that depend on the feature vector $x \in \mathcal{X}$. For a test point with features X_{n+1} , we consider merging the K prediction sets by majority vote:

$$\mathcal{C}^{\text{mv}}(X_{n+1}) = \left\{ y : \frac{1}{K} \sum_{k=1}^{K} \mathbb{1} \left\{ y \in \mathcal{C}_k(X_{n+1}) \right\} > 1/2 \right\}.$$

If each set $C_1(x), \ldots, C_K(x)$ has marginal coverage at level $1 - \alpha$, the the majority vote set has coverage at least $1 - 2\alpha$, as stated next.

Theorem 10.10: Coverage guarantee for majority vote aggregation

Suppose
$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_k(X_{n+1})) \geq 1 - \alpha$$
 for each $k = 1, \dots, K$. Then

$$\mathbb{P}\Big(Y_{n+1} \in \mathcal{C}^{\mathrm{mv}}(X_{n+1})\Big) \ge 1 - 2\alpha.$$

Proof of Theorem 10.10

We calculate

$$\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}^{\text{mv}}(X_{n+1})\right) = \mathbb{P}\left(\frac{1}{K} \sum_{k=1}^{K} \mathbb{1}\left\{Y_{n+1} \notin \mathcal{C}_{k}(X_{n+1})\right\} \ge \frac{1}{2}\right)$$

$$\leq 2\mathbb{E}\left[\frac{1}{K} \sum_{k=1}^{K} \mathbb{1}\left\{Y_{n+1} \notin \mathcal{C}_{k}(X_{n+1})\right\}\right]$$

$$= \frac{2}{K} \sum_{k=1}^{K} \mathbb{E}\left[\mathbb{1}\left\{Y_{n+1} \notin \mathcal{C}_{k}(X_{n+1})\right\}\right]$$

$$\leq 2\alpha,$$

where the first inequality is Markov's inequality, and the second inequality uses the marginal coverage property of each C_k .

This result provides basic reassurance that the majority vote procedure is reasonable, in that the coverage cannot degrade dramatically. Still, one would hope that aggregating sets that provide partially distinct information would lead to *increased* coverage. We next outline a strategy that can accomplish this.

10.4.2 Re-calibration after aggregation

We next consider calibrating after aggregation. Our result in Theorem 10.10 shows that aggregating conformal sets after calibration will not badly degrade coverage. However, it may be much too conservative. If we instead first aggregate the sets and then perform calibration (with a small amount of extra data), we can obtain exactly $1-\alpha$ coverage. In this sense, one more step of calibration allows us to adapt to the amount of independence in the constituent sets.

Turning to the details, suppose we have K prediction sets $C_1(x; 1 - \alpha), \ldots, C_K(x; 1 - \alpha)$, where each set C_k can be evaluated at any $x \in \mathcal{X}$ and at any confidence level $1 - \alpha$. Intuitively, each $C_k(\cdot; 1 - \alpha)$ is trained with the aim of achieving (marginal) predictive coverage at level $1 - \alpha$, but unlike the majority-vote aggregation result in Theorem 10.10 above, here we do not assume a marginal coverage property for the base prediction sets C_k . Instead, recalling the conformal risk control method of Section 10.1, we will use an additional independent dataset $\mathcal{D}_n = ((X_1, Y_1), \ldots, (X_n, Y_n))$ to recalibrate an aggregated prediction set. (Note that we are assuming the C_k 's are pretrained—that is, the new dataset \mathcal{D}_n is independent of the K constructed prediction sets.)

Turning to the details, for technical reasons we consider a version of the prediction set C_k that is modified to be monotone and left-continuous in α :

$$C'_k(x; 1 - \alpha) = \{y : \text{ for all } \epsilon > 0, y \in C_k(x; 1 - \alpha') \text{ for some } \alpha' \ge \alpha - \epsilon \}.$$

In other words, this guarantees that for $\alpha' \leq \alpha$, we have $\mathcal{C}'_k(x; 1 - \alpha) \subseteq \mathcal{C}'_k(x; 1 - \alpha')$ (i.e., the set can only increase if we require a higher confidence level), and that $\alpha \mapsto \mathbb{1}\{y \in \mathcal{C}'_k(x; 1 - \alpha)\}$ is left-continuous.

We are now ready to define an aggregation procedure. We will use the same majority-vote aggregation as in Section 10.4.1, except that here we introduce a tuning parameter λ :

$$C^{\text{mv}}(x;\lambda) = \left\{ y : \frac{1}{K} \sum_{k=1}^{K} \mathbb{1} \left\{ y \in C'_k(x_{n+1};\lambda) \right\} > 1/2 \right\}.$$

To compare to the procedure studied in the previous section, here if we choose $\lambda = 1 - \alpha$ then we would obtain exactly the same aggregated set as the one studied in Section 10.4.1 (if we ignore the minor distinction between the C_k 's and the C'_k 's). The intuition for this new procedure is that instead of setting $\lambda = 1 - \alpha$ a

priori (which only leads to the weak coverage guarantee given in Theorem 10.10—and in fact, might either undercover or overcover in practice), we instead use the available data to calibrate the tuning parameter λ to achieve tighter control of the coverage level.

Our next task is then to determine how to use the dataset \mathcal{D}_n to calibrate the tuning parameter λ . We will define

 $\hat{\lambda} = \inf \left\{ \lambda \in [0, 1] : \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ Y_i \notin \mathcal{C}^{\text{mv}}(X_i; \lambda) \right\} \le \alpha - (1 - \alpha)/n \right\}.$

Essentially we are just searching for the smallest value of λ such that $\mathcal{C}^{\text{mv}}(\cdot;\lambda)$ has (approximately) α miscoverage rate within the calibration data. In fact, this is simply an instance of split conformal prediction, as we will see in the proof of the coverage result below. We can also note that the definition of $\hat{\lambda}$ agrees with the tuning step of the conformal risk control procedure (10.7), and indeed we recall that split conformal prediction is simply a special case of conformal risk control, as discussed in Section 10.1 above.

Theorem 10.11: Coverage guarantee for post-aggregation calibration

Suppose $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1})$ are exchangeable, and are independent of the pretrained prediction sets C_1, \ldots, C_K . Then under the notation and definitions above,

$$\mathbb{P}\Big(Y_{n+1} \in \mathcal{C}^{\mathrm{mv}}(X_{n+1}; \hat{\lambda})\Big) \ge 1 - \alpha.$$

Proof of Theorem 10.11

As mentioned above, we simply need to verify that the defined procedure is a special case of split conformal prediction. Define a score function

$$s(x, y) = \inf \{ \lambda : y \in C^{\mathrm{mv}}(x; \lambda) \}.$$

Since $\lambda \mapsto \mathbb{1}\{y \in \mathcal{C}'_k(x;\lambda)\}$ is monotone nondecreasing and is right-continuous, by construction, this therefore means that $\lambda \mapsto \mathbb{1}\{y \in \mathcal{C}^{\text{mv}}(x;\lambda)\}$ is monotone nondecreasing and right-continuous as well, and so

$$y \in \mathcal{C}^{\mathrm{mv}}(x;\lambda) \iff \lambda \geq s(x,y)$$

holds for all (x, y), or equivalently,

$$C^{\mathrm{mv}}(x;\lambda) = \{ y : s(x,y) \le \lambda \}.$$

By definition of $\hat{\lambda}$, we then have

$$\hat{\lambda} = \inf \left\{ \lambda \in [0,1] : \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ s(X_i, Y_i) > \lambda \right\} \le \alpha - (1-\alpha)/n \right\}$$

$$= \inf \left\{ \lambda \in [0,1] : \frac{1}{n} \sum_{i=1}^{n} \mathbb{1} \left\{ s(X_i, Y_i) \le \lambda \right\} \ge (1-\alpha)(1+1/n) \right\}$$

$$= \inf \left\{ \lambda \in [0,1] : \lambda \ge \text{Quantile} \left(s(X_1, Y_1), \dots, s(X_n, Y_n); (1-\alpha)(1+1/n) \right) \right\}$$

$$= \text{Quantile} \left(s(X_1, Y_1), \dots, s(X_n, Y_n); (1-\alpha)(1+1/n) \right).$$

We can then see that $C^{\text{mv}}(X_{n+1}; \hat{\lambda})$ is exactly equal to the split conformal prediction set, $\{y : s(X_{n+1}, y) \leq \hat{\lambda}\}$, which then guarantees coverage.

In addition to the lower bound on the coverage, under weak technical conditions we can also establish an upper bound of $1 - \alpha + \frac{1}{n+1}$ (as in Theorem 3.11 earlier). This means that calibrating after aggregation leads to sets with almost exactly the desired coverage level, unlike the original majority-vote approach of

Section 10.4.1 above. In this way, calibrating after aggregation adapts to the amount of distinct information in each initial set C_k .

10.4.3 Connection with cross-conformal

We conclude with a remark about how this section relates to cross-validation type conformal methods. Note that cross-conformal, CV+, and jackknife+ from Chapter 6 can all be viewed as ways of aggregating distinct conformal sets into one final set, although in a setting with additional structure on how the original sets are related. In particular, we can observe that the result of Theorem 6.1 is similar to that of Theorem 10.10, although arrived at by different means—both results are based on the idea of using an average of conformal p-values.

Bibliographic notes

The conformal risk control algorithm is developed in Angelopoulos et al. [2022a]. This builds on work that controlled monotone and non-monotone risk functions with high-probability guarantees [Bates et al., 2021, Angelopoulos et al., 2021a], which in turn stems from the high-probability guarantees of conformal prediction Vovk [2012]. Algorithms for conformal risk control with cross-validation or leave-one-out data reuse are introduced in Cohen et al. [2024] and Angelopoulos [2024], respectively. See Fisch et al. [2022], Schuster et al. [2021], Angelopoulos et al. [2022b], Feldman et al. [2023], Teneggi et al. [2023] for recent applications of risk control to machine learning tasks.

The Benjamini–Hochberg procedure for FDR control, discussed above in Section 10.2, was introduced in Benjamini and Hochberg [1995]. The PRDS property and the result that the Benjamini–Hochberg procedure controls the FDR with such p-values is due to Benjamini and Yekutieli [2001]. The PRDS property is one of several related notions of positive dependence. In particular, it is a relaxation of the PRD property analyzed in Sarkar [1969]. The result that conformal p-values are PRDS is due to Bates et al. [2023], and was extended in Marandon et al. [2022] to exchangeable but not independent data. Further work develops techniques for outlier detection with FDR control via conformal e-values rather than conformal p-values [Bashari et al., 2023, Lee and Ren, 2024]. On a related note, a version of conformal prediction for multiple test points is developed in Vovk [2013].

The selective coverage algorithm in Section 10.3 can be viewed as a special case of Mondrian conformal prediction [Vovk et al., 2003a]. The emphasis on coverage conditional on the test point being interesting is motivated by the topic of selective inference in statistics [e.g., Berk et al., 2013, Fithian, 2015, Lee et al., 2016]. Selective versions of conformal prediction have been developed by Jin and Candès [2023a,b], which extend the ideas described in Section 10.3 to more complex settings, including FDR control and covariate shift. The procedure we give in Section 10.3 is explicitly discussed in Bao et al. [2024], Jin and Ren [2024], who also develop algorithms for selective coverage with other selection rules and covariate shift.

Turning to Section 10.4, the general problem of aggregating prediction sets is studied by Cherubin [2019], Solari and Djordjilović [2022], and Gasparin and Ramdas [2024]. In particular, the statement of Theorem 10.10 was given in Cherubin [2019] and the proof we give is taken from Gasparin and Ramdas [2024]. Our approach toward tuning the confidence level of the initial sets before aggregation builds on the nested-sets interpretation of split conformal prediction developed by Gupta et al. [2021]. The related topic of selecting a conformal set from many candidates is also studied in Yang and Kuchibhotla [2024]. Lastly, aggregating prediction sets that are formed from resampling on a single dataset (such as cross-validation approaches) is an important topic that we discuss in detail in Chapter 6—see the references therein.

Part IV

Beyond Predictive Coverage

Chapter 11

Inference on the Regression Function

This chapter begins Part IV, the last part of the book, where we move beyond conformal prediction and examine a range of different statistical problems through the lens of the distribution-free framework. This chapter will focus on the problem of regression: given training data $\{(X_i, Y_i)\}$ drawn from an unknown distribution P, we would like to estimate the regression function $\mu_P(x) = \mathbb{E}_P[Y \mid X = x]$. Given an estimate $\hat{\mu}$ of this unknown function, can we provide a meaningful confidence interval around $\hat{\mu}(x)$ that has distribution-free validity?

In particular, we might hope to construct a confidence interval for $\mu_P(x)$, whose width is vanishing as the sample size n increases. This type of result is standard in more classical settings, such as for parametric models, or even for nonparametric regression with smoothness assumptions. In the distribution-free setting, however, our ability to achieve vanishing interval widths will vary widely in different contexts: we will show that constructing such intervals is possible when the covariate X is discrete, but impossible when it is nonatomic. This conclusion is qualitatively similar to the results obtained Chapter 4, where we showed that test-conditional coverage for predictive inference is straightforward in the case where X is discrete but impossible when X is nonatomic. This similarity is not coincidental; towards the end of this chapter, we will see that these two problems—inference for regression, and test-conditional predictive inference—are related on a fundamental level.

11.1 Problem formulation and background

Throughout this chapter, we will assume the available data is given by $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$ for some unknown distribution P on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{Y} \subseteq \mathbb{R}$. Our goal is to provide distribution-free confidence intervals on the regression function, $\mu_P(x) = \mathbb{E}_P[Y \mid X = x]$, for all x. More formally, let \mathcal{C} be trained on data $(X_1, Y_1), \ldots, (X_n, Y_n)$, with $\mathcal{C}(x) \subseteq \mathcal{Y}$. We say that \mathcal{C} is a distribution-free confidence interval for regression at level $1 - \alpha$ if

$$\mathbb{P}(\mu_P(X_{n+1}) \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha \text{ for any distribution } P \text{ on } \mathcal{X} \times \mathcal{Y}, \tag{11.1}$$

where the probability is calculated with respect to $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} P$. Note that while we refer to \mathcal{C} as a 'confidence interval', it may not necessarily return sets that are intervals—that is, $\mathcal{C}(X_{n+1}) \subseteq \mathcal{Y}$ might be a region comprised of multiple disconnected intervals.

A key question is whether (11.1) can be achieved while still producing a confidence interval with vanishing width. We phrase this question informally as follows:

For i.i.d. data in $\mathcal{X} \times \mathcal{Y}$, is there any \mathcal{C} that satisfies distribution-free validity (11.1), and also satisfies $\mathbb{E}[\text{Leb}(\mathcal{C}(X_{n+1}))] \to 0$ for 'nice' distributions P?

Recall from our discussion at the beginning of this chapter that in classical settings, a confidence interval for $\mu_P(x)$ can have vanishing width as $n \to \infty$. Our key question asks if it is possible to achieve the informativeness of these classical constructions while simultaneously achieving distribution-free validity.

11.2 Necessity of a boundedness assumption

This section shows that distribution-free inference for the regression function $\mu_P(x)$ is meaningful only in the setting where the response Y is bounded. In an unbounded case (say, $\mathcal{Y} = \mathbb{R}$), a distribution-free method cannot even return finite-length confidence intervals for $\mu_P(x)$, or indeed, even for the marginal mean of Y (i.e., ignoring covariates X). We will justify this claim via the following classical result:

Theorem 11.1: The Bahadur-Savage Theorem

Let $\mathcal{Y} \subseteq \mathbb{R}$ be unbounded both from above and below, i.e., $\sup \mathcal{Y} = +\infty$ and $\inf \mathcal{Y} = -\infty$. Let $\mathcal{C} \subseteq \mathbb{R}$ be trained on data $Y_1, \ldots, Y_n \in \mathcal{Y}$. Suppose \mathcal{C} is a distribution-free confidence interval for the mean, i.e., \mathcal{C} satisfies

$$\mathbb{P}(\mathbb{E}_P[Y] \in \mathcal{C}) \geq 1 - \alpha$$
 for any distribution P on \mathcal{Y} with finite mean,

where the probability is calculated with respect to $Y_1, \ldots, Y_n \stackrel{\text{i.i.d.}}{\sim} P$. Then it must hold that

$$\mathbb{P}(y \in \mathcal{C}) \geq 1 - \alpha$$
 for any distribution P on \mathcal{Y} with finite mean and for any $y \in \mathbb{R}$.

In particular, regardless of the distribution of the data, \mathcal{C} has infinite expected length (if $\alpha < 1$):

$$\mathbb{E}[\operatorname{Leb}(\mathcal{C})] = \infty.$$

In other words, if \mathcal{Y} is unbounded, then distribution-free inference is impossible even for the marginal mean, $\mathbb{E}_P[Y]$. Of course, the marginal mean $\mathbb{E}_P[Y]$ is a strictly easier target than the conditional mean (i.e., the regression function $\mu_P(x)$). Thus, based on the results of this theorem, studying distribution-free inference for the regression function μ_P has the potential to be meaningful only for a bounded response space \mathcal{Y} . This has implications for both positive and negative results. For positive results, constructing methods that satisfy distribution-free validity as in (11.1) will inevitably require a bounded \mathcal{Y} . On the other hand, establishing hardness results (i.e., proving that distribution-free validity (11.1) leads inevitably to wide confidence intervals) is interesting only for a bounded \mathcal{Y} —if \mathcal{Y} is unbounded, the theorem above already establishes the impossibility of distribution-free inference. Consequently, for the remainder of this chapter, we will restrict our attention to the setting of a bounded $\mathcal{Y} \subseteq \mathbb{R}$ —for instance, $\mathcal{Y} = [0, 1]$ or $\mathcal{Y} = \{0, 1\}$.

Proof of Theorem 11.1

Let P be any distribution with mean $\mathbb{E}_P[Y]$, and fix any $y \in \mathbb{R}$. Without loss of generality consider some $y \geq \mathbb{E}_P[Y]$. We now show that $\mathbb{P}(y \in \mathcal{C}) \geq 1 - \alpha$.

Fix a small $\epsilon > 0$. First, since \mathcal{Y} is unbounded, we can find some value

$$y' \in \mathcal{Y}$$
 such that $y' \ge \frac{y - (1 - \epsilon)\mathbb{E}_P[Y]}{\epsilon}$.

Now define a mixture distribution P' on \mathcal{Y} as

$$P' = (1 - \epsilon') \cdot P + \epsilon' \cdot \delta_{y'},$$

where

$$\epsilon' = \frac{y - \mathbb{E}_P[Y]}{y' - \mathbb{E}_P[Y]}.$$

Note that, by construction, we have $d_{TV}(P, P') \le \epsilon' \le \epsilon$, and $\mathbb{E}_{P'}[Y] = y$. The validity of \mathcal{C} as a confidence interval for the mean implies

$$\mathbb{P}_{(P')^n}(y \in \mathcal{C}) = \mathbb{P}_{(P')^n}(\mathbb{E}_{P'}[Y] \in \mathcal{C}) \ge 1 - \alpha.$$

But we can also calculate

$$\mathbb{P}_{P^n}(y \in \mathcal{C}) \ge \mathbb{P}_{(P')^n}(y \in \mathcal{C}) - d_{\mathrm{TV}}(P^n, (P')^n) \ge \mathbb{P}_{(P')^n}(y \in \mathcal{C}) - n\epsilon' \ge 1 - \alpha - n\epsilon.$$

Since $\epsilon > 0$ can be taken to be arbitrarily small, this completes the proof of the first claim. Finally, we calculate

$$\mathbb{E}_{P^n}[\mathrm{Leb}(\mathcal{C})] = \mathbb{E}_{P^n}\left[\int_{y\in\mathbb{R}}\mathbbm{1}\left\{y\in\mathcal{C}\right\}\;\mathrm{d}y\right] = \int_{y\in\mathbb{R}}\mathbb{P}_{P^n}(y\in\mathcal{C})\;\mathrm{d}y \geq \int_{y\in\mathbb{R}}(1-\alpha)\;\mathrm{d}y = \infty,$$

where the second step holds by the Fubini–Tonelli theorem.

11.3 The discrete case

We are now ready to consider the question of inference on the regression function, $\mu_P(x) = \mathbb{E}_P[Y \mid X = x]$. We first consider the discrete setting. Suppose that $\mathcal{X} = \{x_1, \dots, x_K\}$ is a finite set. Then to perform inference on the regression function $\mu_P(x)$, we only need to perform inference on $\mu_P(x_k)$ for each k with $P_X(\{x_k\}) > 0$ —and each such question is straightforward, since

$$\mu_P(x_k) = \mathbb{E}[Y \mid X = x_k],$$

where we are conditioning on an event $X = x_k$ of positive probability.

As established in Section 11.2 above, the problem of distribution-free inference on μ_P is meaningful only if \mathcal{Y} is bounded, so we will assume that this is the case for the following result.

Theorem 11.2

Let P be a distribution on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} = \{x_1, \dots, x_K\}$ and $\mathcal{Y} \subseteq [a, b]$, and let $\alpha \in [0, 1]$. Let $(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$. For each $k \in [K]$, define $n_k = \sum_{i=1}^n \mathbb{1}\{X_i = x_k\}$, and let

$$\hat{\mu}(x_k) = \frac{1}{n_k} \sum_{i=1}^n Y_i \cdot \mathbb{1} \{X_i = x_k\}$$

for each k with $n_k \geq 1$, i.e., the mean response observed among all data points with $X_i = x_k$. Define

$$C(x_k) = \begin{cases} \hat{\mu}(x_k) \pm (b-a)\sqrt{\frac{\log(2/\alpha)}{2n_k}}, & \text{if } n_k \ge 1, \\ [a,b], & \text{if } n_k = 0. \end{cases}$$

Then \mathcal{C} is a valid distribution-free confidence interval for regression, i.e., \mathcal{C} satisfies (11.1). Moreover,

$$\mathbb{E}\left[\text{Leb}(\mathcal{C}(X_{n+1}))\right] \le 2(b-a)\sqrt{\log(2/\alpha)} \cdot \sqrt{\frac{K}{n}}.$$

This bound on the (expected) length of \mathcal{C} gives us an affirmative answer to the question posed in Section 11.1 for discrete \mathcal{X} . That is, if $|\mathcal{X}|$ is finite, then it is possible to achieve distribution-free coverage without resorting to wide and uninformative intervals, since the length of the intervals vanishes as $n \to \infty$.

Proof of Theorem 11.2

Let $p_k = \mathbb{P}_P(X = x_k)$. Write $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$ to denote the training dataset. Then, since X_{n+1} is independent from \mathcal{D}_n , we can calculate

$$\mathbb{P}\big(\mu_P(X_{n+1}) \not\in \mathcal{C}(X_{n+1}) \mid \mathcal{D}_n\big) = \sum_{k=1}^K p_k \cdot \mathbb{1} \left\{ \mu_P(x_k) \not\in \mathcal{C}(x_k) \right\}.$$

Therefore, marginalizing over \mathcal{D}_n ,

$$\mathbb{P}(\mu_P(X_{n+1}) \notin \mathcal{C}(X_{n+1})) = \sum_{k=1}^K p_k \cdot \mathbb{P}(\mu_P(x_k) \notin \mathcal{C}(x_k))$$

$$= \sum_{k=1}^K p_k \cdot \mathbb{E}\left[\mathbb{P}(\mu_P(x_k) \notin \mathcal{C}(x_k) \mid n_k)\right]$$

$$= \sum_{k=1}^K p_k \cdot \mathbb{E}\left[\mathbb{1}\left\{n_k \ge 1\right\} \cdot \mathbb{P}\left(|\hat{\mu}_k - \mu_P(x_k)| > (b-a)\sqrt{\frac{\log(2/\alpha)}{2n_k}} \mid n_k\right)\right],$$

by construction of \mathcal{C} . But conditional on n_k (and on the event $n_k \geq 1$), the random variable $\hat{\mu}(x_k)$ is the sample mean of n_k many draws from the distribution of $Y \mid X = x_k$, which is supported on [a, b]. By Hoeffding's inequality, therefore,

$$\mathbb{P}\left(|\hat{\mu}(x_k) - \mu_P(x_k)| > (b - a)\sqrt{\frac{\log(2/\alpha)}{2n_k}} \,\middle|\, n_k\right) \le \alpha,$$

and consequently,

$$\mathbb{P}\big(\mu_P(X_{n+1}) \not\in \mathcal{C}(X_{n+1})\big) \leq \sum_{k=1}^K p_k \cdot \mathbb{E}[\mathbb{1}\{n_k \geq 1\} \cdot \alpha] \leq \alpha \sum_{k=1}^K p_k = \alpha.$$

This verifies that \mathcal{C} offers distribution-free coverage.

Next we turn to the question of length. By construction, we have

$$Leb(\mathcal{C}(x_k)) = \begin{cases} b - a, & \text{if } n_k = 0, \\ 2(b - a)\sqrt{\frac{\log(2/\alpha)}{2n_k}}, & \text{if } n_k \ge 1, \end{cases}$$

which satisfies $\text{Leb}(\mathcal{C}(x_k)) \leq 2(b-a)\sqrt{\frac{\log(2/\alpha)}{n_k+1}}$ across both cases. Now, for a new feature $X_{n+1} \sim P_X$, we have

$$\mathbb{E}\left[\operatorname{Leb}(\mathcal{C}(X_{n+1}))\right] = \mathbb{E}\left[\sum_{k=1}^{K} \mathbb{1}\left\{X_{n+1} = x_k\right\} \cdot \operatorname{Leb}(\mathcal{C}(x_k))\right]$$
$$= \sum_{k=1}^{K} p_k \cdot \mathbb{E}\left[\operatorname{Leb}(\mathcal{C}(x_k))\right]$$
$$\leq \sum_{k=1}^{K} p_k \cdot \mathbb{E}\left[2(b-a)\sqrt{\frac{\log(2/\alpha)}{n_k+1}}\right]$$

$$= 2(b-a)\sqrt{\log(2/\alpha)} \cdot \sum_{k=1}^K p_k \cdot \mathbb{E}\left[\frac{1}{\sqrt{n_k+1}}\right].$$

Next, we will need the following fact about the Binomial distribution: it holds that

If
$$B \sim \text{Binomial}(n, p)$$
 then $\mathbb{E}\left[\frac{1}{B+1}\right] = \frac{1 - (1-p)^{n+1}}{p(n+1)} \le \frac{1}{p(n+1)}$. (11.2)

Consequently, since $n_k \sim \text{Binomial}(n, p_k)$, by Jensen's inequality it holds that

$$\mathbb{E}\left[\frac{1}{\sqrt{n_k+1}}\right] \le \sqrt{\mathbb{E}\left[\frac{1}{n_k+1}\right]} \le \sqrt{\frac{1}{p_k(n+1)}} \le \frac{1}{\sqrt{p_k n}}.$$

Combined with the calculations above, this yields

$$\mathbb{E}\left[\operatorname{Leb}(\mathcal{C}(X_{n+1}))\right] \le 2(b-a)\sqrt{\log(2/\alpha)} \cdot \sum_{k=1}^{K} p_k \cdot \frac{1}{\sqrt{p_k n}} \le 2(b-a)\sqrt{\log(2/\alpha)} \cdot \sqrt{K/n},$$

where the last step holds since $\sum_{k=1}^{K} \sqrt{p_k} \leq \sqrt{K}$ (because (p_1, \ldots, p_K) lies in the probability simplex).

11.4 The continuous case

Next, we turn to the continuous setting: instead of a discrete X, we let X have a nonatomic distribution (recall Definition 4.2). In this setting, unlike the discrete case, there are fundamental limits on our ability to provide informative confidence intervals for the regression function μ_P , even if \mathcal{Y} is bounded. Our aim in this section is to make these limits precise.

11.4.1 Comparing regression intervals and prediction intervals

To move towards the above aim, we begin with a surprising connection: any distribution-free confidence interval for $\mu_P(X_{n+1})$ must be at least as wide as a distribution-free prediction interval for Y_{n+1} . This may seem counterintuitive: we would expect to have more uncertainty regarding Y_{n+1} , which is inherently noisy, unlike μ_P . Indeed, in nonparametric regression with standard smoothness assumptions, a confidence interval for $\mu_P(X_{n+1})$ is typically much narrower than a prediction interval for Y_{n+1} —but this is no longer the case in the distribution-free setting.

Theorem 11.3

Let $\mathcal{Y} \subseteq \mathbb{R}$. Suppose \mathcal{C} is any procedure that satisfies distribution-free coverage of the regression function, i.e., for any distribution P on $\mathcal{X} \times \mathcal{Y}$,

$$\mathbb{P}(\mu_P(X_{n+1}) \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

Then, for any distribution P on $\mathcal{X} \times \mathcal{Y}$ for which the marginal P_X is nonatomic,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

In fact, the same result holds when our confidence interval \mathcal{C} is required to cover the conditional median instead of the regression function (i.e., the conditional mean). For any distribution P on $\mathcal{X} \times \mathcal{Y}$, we will write $\operatorname{Med}_{P}(x)$ to denote the median of the conditional distribution of $Y \mid X = x$.

Figure 11.1: Visualization of the different inference targets for regression versus for prediction. The dots represent observed values of (X,Y), the solid black line represents the true regression function $\mu_P(x)$, and the dotted black line represents an estimate, $\hat{\mu}(x)$. The inference targets for prediction are the data points themselves, which can be very noisy. By contrast, the inference target for regression is the fixed curve $\mu_P(x)$.

Theorem 11.4

Let $\mathcal{Y} \subseteq \mathbb{R}$. Suppose \mathcal{C} is any procedure that satisfies distribution-free coverage of the conditional median, i.e., for any distribution P on $\mathcal{X} \times \mathcal{Y}$,

$$\mathbb{P}(\mathrm{Med}_P(X_{n+1}) \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

Then, for any distribution P on $\mathcal{X} \times \mathcal{Y}$ for which the marginal P_X is nonatomic,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

Proof of Theorems 11.3 and 11.4

The proof for these two hardness results will follow the sample–resample construction introduced in Lemma 4.15.

As in Lemma 4.15, writing $Z^{(i)} = (X^{(i)}, Y^{(i)})$, we let $Z^{(1)}, \dots, Z^{(M)} \overset{\text{i.i.d.}}{\sim} P$, and define $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{Z^{(i)}}$ as the corresponding empirical distribution. Now we calculate the conditional mean function $\mu_{\widehat{P}_M}$, and the conditional median function $\text{Med}_{\widehat{P}_M}$, for this distribution. In particular, we only need to calculate $\mu_{\widehat{P}_M}(x)$ and $\text{Med}_{\widehat{P}_M}(x)$ for values $x \in \{X^{(1)}, \dots, X^{(M)}\}$, since this is the support of the marginal distribution $(\widehat{P}_M)_X$. We calculate

$$\mu_{\widehat{P}_{M}}(X^{(i)}) = \frac{\sum_{j=1}^{M} Y^{(j)} \cdot \mathbbm{1}\left\{X^{(j)} = X^{(i)}\right\}}{\sum_{j=1}^{M} \mathbbm{1}\left\{X^{(j)} = X^{(i)}\right\}},$$

and similarly,

$$\operatorname{Med}_{\widehat{P}_{M}}(X^{(i)}) = \operatorname{Med}\left(\left(Y^{(j)}\right)_{j \in [M], X^{(j)} = X^{(i)}}\right).$$

In particular, on the event that $X^{(1)}, \ldots, X^{(M)}$ are all distinct, we therefore have

$$\mu_{\widehat{P}_M}(X^{(i)}) = \operatorname{Med}_{\widehat{P}_M}(X^{(i)}) = Y^{(i)},$$

for all $i \in [M]$ —or in other words, we have

$$\mu_{\widehat{P}_M}(X) = \operatorname{Med}_{\widehat{P}_M}(X) = Y \tag{11.3}$$

almost surely with respect to a draw $(X,Y) \sim \widehat{P}_M$.

Now let $(Z_i)_{i \in [n+1]} = ((X_i, Y_i))_{i \in [n+1]} \stackrel{\text{i.i.d.}}{\sim} \widehat{P}_M$. If \mathcal{C} is a distribution-free confidence interval for either the regression function (as in Theorem 11.3) or the conditional median (as in Theorem 11.4), by (11.3) we must have

$$\mathbb{P}\left(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid \widehat{P}_M\right) \ge 1 - \alpha$$

on the event that $X^{(1)}, \ldots, X^{(M)}$ are all distinct. Since this event holds almost surely (due to our assumption that P_X is nonatomic), after marginalizing over \widehat{P}_M we therefore have

$$\mathbb{P}_Q\left(Y_{n+1} \in \mathcal{C}(X_{n+1})\right) \ge 1 - \alpha,$$

where as in Lemma 4.15, Q is the distribution on $(Z_i)_{i \in [n+1]}$ obtained by first sampling $Z^{(1)}, \ldots, Z^{(M)} \overset{\text{i.i.d.}}{\sim} P$ and constructing \widehat{P}_M , and then sampling $Z_1, \ldots, Z_{n+1} \overset{\text{i.i.d.}}{\sim} \widehat{P}_M$. Applying Lemma 4.15, then,

$$\mathbb{P}_{P^{n+1}}(Y_{n+1} \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha - d_{\text{TV}}(P^{n+1}, Q) \ge 1 - \alpha - \frac{n(n+1)}{2M}.$$

Since M can be taken to be arbitrarily large, this completes the proof.

11.4.2 Impossibility of vanishing width

The result of Theorem 11.3 shows that, in the setting where P_X is nonatomic, any distribution-free confidence set \mathcal{C} for μ_P must satisfy predictive coverage. However, since $\mathcal{C}(X_{n+1})$ is not necessarily an interval, this does not necessarily imply that the set cannot have vanishing Lebesgue measure (which we refer to as 'width' throughout, even for sets that are not intervals). For instance, in the setting of a binary response $Y \in \mathcal{Y} = \{0,1\}$, a set such as $\mathcal{C}(X_{n+1}) = \{0\} \cup \{0.5\} \cup \{1\}$ has Lebesgue measure zero, but has a predictive coverage of 100%.

This section shows that a valid confidence set $\mathcal{C}(X_{n+1})$ cannot have vanishing width. To show this, we will need to carry out a more refined analysis of the problem, which will require developing a more complex version of the sample–resample construction. The resulting bound will show that the Lebesgue measure of our confidence interval, Leb($\mathcal{C}(X_{n+1})$), can be bounded away from zero even as $n \to \infty$, meaning that any \mathcal{C} with distribution-free validity cannot have vanishing width. Figure 11.2 visualizes the core difficulty: in a distribution-free setting, using only finitely many data points drawn from the unknown distribution P, it is impossible to certify that the regression function μ_P is smooth. Consequently, we are forced to build confidence intervals that are wide enough to accommodate highly nonsmooth possibilities for μ_P .

Figure 11.2: Visualization of the difficulty in distribution-free regression. In each plot, the dots represent observed values of (X,Y) (which are identical across the two plots), while the solid black lines represent two possibilities for the true regression function $\mu_P(x)$. Without assumptions, it is impossible to test whether the observed data follow a smooth regression function μ_P (like the one on the left) or a highly nonsmooth function (like the one on the right).

Theorem 11.5

Let $\mathcal{Y} = [a, b]$, and suppose \mathcal{C} is any procedure that satisfies distribution-free coverage of the regression function (11.1), i.e., for any distribution P on $\mathcal{X} \times [a, b]$,

$$\mathbb{P}\big(\mu_P(X_{n+1}) \in \mathcal{C}(X_{n+1})\big) \ge 1 - \alpha.$$

Then, for any distribution P on $\mathcal{X} \times [a, b]$ for which the marginal P_X is nonatomic and for which $\text{Var}(Y \mid X) \geq \sigma_*^2$ almost surely,

$$\mathbb{E}\left[\operatorname{Leb}(\mathcal{C}(X_{n+1}))\right] \ge \frac{\sigma_*^2}{b-a} \cdot 2(1-\alpha).$$

The assumption on variance, requiring $\operatorname{Var}(Y \mid X) \geq \sigma_*^2$ almost surely, allows us to obtain a simple and interpretable lower bound on the width, but a similar result can be obtained with less restrictive conditions (namely, we may assume that $\operatorname{Var}(Y \mid X)$ is bounded away from zero with sufficiently high probability). Because the lower bound in Theorem 11.5 does not depend on n, no distribution-free confidence interval can have vanishing width as $n \to \infty$. Thus, it is impossible to obtain vanishing-width distribution-free confidence sets on the regression function μ_P in a nonatomic setting.

Proof of Theorem 11.5

Without loss of generality, we can take [a, b] = [0, 1]. Fix any distribution P with nonatomic P_X . Below we will verify that, for any $t \in [0, 1]$, it holds that

$$\frac{1}{2}\mathbb{P}(\mu_P(X_{n+1}) - t\sigma_*^2 \in \mathcal{C}(X_{n+1})) + \frac{1}{2}\mathbb{P}(\mu_P(X_{n+1}) + t\sigma_*^2 \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$
 (11.4)

Assuming that this holds, we then calculate

$$\mathbb{E}\left[\operatorname{Leb}\left(\mathcal{C}(X_{n+1})\right)\right] = \mathbb{E}\left[\int_{\mathbb{R}} \mathbb{1}\left\{y \in \mathcal{C}(X_{n+1})\right\} \, dy\right]$$

$$\begin{split} &\geq \mathbb{E}\left[\int_{y=\mu_P-\sigma_*^2}^{\mu_P+\sigma_*^2}\mathbbm{1}\left\{y\in\mathcal{C}(X_{n+1})\right\}\,\mathrm{d}y\right]\\ &=\sigma_*^2\mathbb{E}\left[\int_{t=-1}^1\mathbbm{1}\left\{\mu_P+t\sigma_*^2\in\mathcal{C}(X_{n+1})\right\}\,\mathrm{d}t\right]\\ &=\sigma_*^2\int_{t=-1}^1\mathbb{P}\left(\mu_P+t\sigma_*^2\in\mathcal{C}(X_{n+1})\right)\,\mathrm{d}t\,\,\mathrm{by}\,\,\mathrm{the}\,\,\mathrm{Fubini-Tonelli}\,\,\mathrm{theorem}\\ &=\sigma_*^2\int_{t=0}^1\left[\mathbb{P}(\mu_P-t\sigma_*^2\in\mathcal{C}(X_{n+1}))+\mathbb{P}(\mu_P+t\sigma_*^2\in\mathcal{C}(X_{n+1}))\right]\mathrm{d}t\\ &\geq\sigma_*^2\cdot2(1-\alpha), \end{split}$$

where the last step applies (11.4). This proves the desired bound.

For the remainder of the proof, then, our task is to verify the claim (11.4). The proof of this claim will rely on a variant of the sample–resample technique (Lemma 4.15). First, let $P_{Y|X}$ denote the conditional distribution of $Y \mid X$, and let $\operatorname{Med}_P(X)$ denote the median of this conditional distribution. Following Lemma 11.6 below, let $P_{Y|X} = \frac{1}{2}P_{Y|X}^0 + \frac{1}{2}P_{Y|X}^1$ denote the unique decomposition of $P_{Y|X}$ into distributions $P_{Y|X}^0$, $P_{Y|X}^1$ supported on $[0, \operatorname{Med}_P(X)]$ and on $[\operatorname{Med}_P(X), 1]$, respectively. Writing $\mu_P^0(X)$ and $\mu_P^1(X)$ as the means of these two distributions, by Lemma 11.6 we have $\mu_P^1(X) - \mu_P^0(X) \ge 2\operatorname{Var}(Y \mid X) \ge 2\sigma_*^2$, almost surely.

Now fix any $t \in [0,1]$. First we define a joint distribution \tilde{P} on $\mathcal{X} \times \{\pm 1\} \times [0,1]$ as follows: sample $(X,B) \sim P_X \times \mathrm{Unif}(\{\pm 1\})$, then sample $Y \mid (X,B) \sim \tilde{P}_{Y \mid (X,B)}$ where

$$\tilde{P}_{Y|(X,B)} = \left(\frac{1}{2} - \frac{B \cdot t\sigma_*^2}{\mu_P^1(X) - \mu_P^0(X)}\right) \cdot P_{Y|X}^0 + \left(\frac{1}{2} + \frac{B \cdot t\sigma_*^2}{\mu_P^1(X) - \mu_P^0(X)}\right) \cdot P_{Y|X}^1.$$

For intuition, this construction is designed so that, if B=+1 (respectively, -1), then Y is slightly more likely (respectively, slightly less likely) to lie above its conditional median $\mathrm{Med}_P(X)$. (Note that, since $\mu_P^1(X) - \mu_P^0(X) \geq 2\sigma_*^2$, the weights on $P_{Y|X}^0$ and on $P_{Y|X}^1$ are each nonnegative in the mixture distribution for Y, i.e., the mixture distribution is well-defined.) We can calculate that

$$\mathbb{E}_{\tilde{P}}[Y \mid X, B] = \left(\frac{1}{2} - \frac{B \cdot t\sigma_*^2}{\mu_P^1(X) - \mu_P^0(X)}\right) \cdot \mu_P^0(X) + \left(\frac{1}{2} + \frac{B \cdot t\sigma_*^2}{\mu_P^1(X) - \mu_P^0(X)}\right) \cdot \mu_P^1(X) \\ = \mu_P(X) + t\sigma_*^2 \cdot B. \quad (11.5)$$

using the fact that $P_{Y|X} = \frac{1}{2}P_{Y|X}^0 + \frac{1}{2}P_{Y|X}^1$ and so $\mu_P(X) = \frac{1}{2}\mu_P^0(X) + \frac{1}{2}\mu_P^1(X)$. Moreover, by construction, the marginal distribution of (X,Y) under \tilde{P} is equal to the original joint distribution P.

Next, fix any $M \geq 1$. Let $(X^{(1)}, B^{(1)}), \ldots, (X^{(M)}, B^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P_X \times \text{Unif}(\{\pm 1\})$, and define $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{(X^{(i)}, B^{(i)})}$ as the corresponding empirical distribution. Now we define a distribution \widetilde{P}_M on $(X, Y) \in \mathcal{X} \times [0, 1]$ as follows: sample $(X, B) \sim \widehat{P}_M$, then sample $Y \mid (X, B) \sim \widetilde{P}_{Y \mid X, B}$, and return (X, Y). Applying (11.5), we can then calculate

$$\mu_{\tilde{P}_{M}}(X^{(i)}) = \frac{\sum_{j=1}^{M} \left(\mu_{P}(X^{(j)} + t\sigma_{*}^{2} \cdot B^{(j)}\right) \cdot \mathbbm{1}\left\{X^{(j)} = X^{(i)}\right\}}{\sum_{j=1}^{M} \mathbbm{1}\left\{X^{(j)} = X^{(i)}\right\}},$$

which simplifies to

$$\mu_{\tilde{P}_M}(X^{(i)}) = \mu_P(X^{(i)}) + t\sigma_*^2 \cdot B^{(i)}$$

if $X^{(1)}, \ldots, X^{(M)}$ are all distinct.

Now let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} \tilde{P}_M$ —or equivalently, we can generate this data by drawing $(X_1, B_1), \ldots, (X_{n+1}, B_{n+1})$ uniformly with replacement from \hat{P}_M , and then sampling the Y_i 's according to the conditional distribution $\tilde{P}_{Y|X,B}$. Since \mathcal{C} satisfies coverage of the regression function with respect to any data distribution, in particular coverage must hold with respect to \tilde{P}_M , and therefore

$$\mathbb{P}\Big(\mu_{\tilde{P}_M}(X_{n+1}) \in \mathcal{C}(X_{n+1}) \, \Big| \, \widehat{P}_M\Big) \ge 1 - \alpha.$$

In particular, from our calculation above we must have

$$\mathbb{P}\left(\mu_P(X_{n+1}) + t\sigma_*^2 \cdot B_{n+1} \in \mathcal{C}(X_{n+1}) \,\middle|\, \widehat{P}_M\right) \ge 1 - \alpha$$

if $X^{(1)}, \ldots, X^{(M)}$ are all distinct—and since this holds almost surely (since P_X is assumed to be nonatomic), after marginalizing over \widehat{P}_M we have

$$\mathbb{P}\Big(\mu_P(X_{n+1}) + t\sigma_*^2 \cdot B_{n+1} \in \mathcal{C}(X_{n+1})\Big) \ge 1 - \alpha.$$

Next, consider an alternative distribution: assuming that $M \geq n+1$, suppose that $(X_1, B_1), \ldots, (X_{n+1}, B_{n+1})$ are sampled uniformly without replacement from \widehat{P}_M , and then Y_i 's are again sampled according to the conditional distribution $\widetilde{P}_{Y|X,B}$. By construction, after marginalizing over the random draw of \widehat{P}_M , we can see that this is equivalent to simply drawing $(X_1, B_1, Y_1), \ldots, (X_{n+1}, B_{n+1}, Y_{n+1}) \stackrel{\text{i.i.d.}}{\sim} \widetilde{P}$. Bounding the difference between sampling with versus without replacement as in Lemma 4.15, we then have

$$\mathbb{P}_{\tilde{P}^{n+1}}\Big(\mu_P(X_{n+1}) + t\sigma_*^2 \cdot B_{n+1} \in \mathcal{C}(X_{n+1})\Big) \ge 1 - \alpha - \frac{n(n+1)}{2M}.$$

By taking M to be arbitrarily large, we therefore have

$$\mathbb{P}_{\tilde{P}^{n+1}}\Big(\mu_P(X_{n+1}) + t\sigma_*^2 \cdot B_{n+1} \in \mathcal{C}(X_{n+1})\Big) \ge 1 - \alpha.$$

Now observe that this event does not depend on B_1, \ldots, B_n or on Y_{n+1} . Recalling that under the joint distribution \tilde{P} on (X, B, Y), we have marginal distributions $(X, Y) \sim P$ and $(X, B) \sim P_X \times \text{Unif}(\{\pm 1\})$, we can therefore equivalently write

$$\mathbb{P}_{P^n \times P_X \times \text{Unif}(\{\pm 1\})} \Big(\mu_P(X_{n+1}) + t\sigma_*^2 \cdot B_{n+1} \in \mathcal{C}(X_{n+1}) \Big) \ge 1 - \alpha,$$

where the probability is taken over $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$ (implicitly used in the construction of \mathcal{C}) and $(X_{n+1}, B_{n+1}) \sim P_X \times \text{Unif}(\{\pm 1\})$. Since $B_{n+1} \sim \text{Unif}(\{\pm 1\})$, we have therefore verified (11.4), as desired.

Lemma 11.6

Let $Y \in [0,1]$ be a random variable with distribution P, and let Med_P and σ_P^2 denote its median and its variance. Consider the unique decomposition of P into a mixture

$$P = \frac{1}{2}P_0 + \frac{1}{2}P_1$$

such that P_0 is supported on $[0, \text{Med}_P]$ and P_1 is supported on $[\text{Med}_P, 1]$. Then

$$\mathbb{E}_{P_1}[Y] - \mathbb{E}_{P_0}[Y] \ge 2\sigma_P^2.$$

Proof of Lemma 11.6

First we formally construct P_0, P_1 . Let F denote the CDF of the distribution P, and let $F^{-1}(t) = \inf\{y \in [0,1] : F(y) \ge t\}$ be its generalized inverse, so that $F^{-1}(U) \sim P$ when $U \sim \text{Unif}[0,1]$. In particular note that $F^{-1}(0.5) = \text{Med}_P$. Let P_0 denote the distribution of $F^{-1}(U)$ for $U \sim \text{Unif}[0,0.5]$, and let P_1 denote the distribution of $F^{-1}(U)$ for $U \sim \text{Unif}[0.5,1]$. Then $P = \frac{1}{2}P_0 + \frac{1}{2}P_1$, by construction. And, since F^{-1} is monotone nondecreasing, P_0 is supported on $[0,F^{-1}(0.5)] = [0,\text{Med}_P]$, and P_1 is supported on $[F^{-1}(0.5),1] = [\text{Med}_P,1]$. Moreover, it is straightforward to verify by construction that this decomposition is unique.

With this construction in place, we now verify the bound on the difference in means. Define

$$\mu_0 = \mathbb{E}_{P_0}[Y], \quad \mu_1 = \mathbb{E}_{P_1}[Y], \quad \mu_P = \mathbb{E}_P[Y] = \frac{\mu_0 + \mu_1}{2}.$$

We then calculate

$$\sigma_P^2 = \mathbb{E}_P \left[(Y - \mu_P)^2 \right] = \frac{1}{2} \mathbb{E}_{P_0} \left[(Y - \mu_P)^2 \right] + \frac{1}{2} \mathbb{E}_{P_1} \left[(Y - \mu_P)^2 \right]$$

$$= \frac{1}{2} \text{Var}_{P_0}(Y) + \frac{1}{2} (\mu_0 - \mu_P)^2 + \frac{1}{2} \text{Var}_{P_1}(Y) + \frac{1}{2} (\mu_1 - \mu_P)^2$$

$$= \frac{1}{2} \text{Var}_{P_0}(Y) + \frac{1}{2} \text{Var}_{P_1}(Y) + \frac{1}{4} (\mu_1 - \mu_0)^2.$$

Since P_0 is supported on $[0, \text{Med}_P]$, with mean μ_0 , its variance is therefore bounded as

 $\operatorname{Var}_{P_0}(Y) \le \mu_0(\operatorname{Med}_P - \mu_0) = \mu_0(\operatorname{Med}_P - \mu_P) + \mu_0(\mu_P - \mu_0) = \mu_0(\operatorname{Med}_P - \mu_P) + \frac{1}{2}\mu_0(\mu_1 - \mu_0).$ Similarly,

$$\operatorname{Var}_{P_1}(Y) \le (1 - \mu_1) (\mu_1 - \operatorname{Med}_P) = (1 - \mu_1) (\mu_P - \operatorname{Med}_P) + \frac{1}{2} (1 - \mu_1) (\mu_1 - \mu_0).$$

Therefore,

$$\sigma_P^2 \le \frac{1}{2} (\mu_0 - (1 - \mu_1)) \left(\operatorname{Med}_P - \mu_P \right) + \frac{1}{4} (\mu_0 + (1 - \mu_1)) (\mu_1 - \mu_0) + \frac{1}{4} (\mu_1 - \mu_0)^2$$

$$= \frac{1}{2} (2\mu_P - 1) \left(\operatorname{Med}_P - \mu_P \right) + \frac{1}{4} (\mu_1 - \mu_0)$$

$$\le \frac{1}{2} \left| \operatorname{Med}_P - \mu_P \right| + \frac{1}{4} (\mu_1 - \mu_0),$$

where the last step holds since $\mu_P \in [0,1]$ and so $|2\mu_P - 1| \le 1$. Moreover, since $\mu_0 \le \text{Med}_P \le \mu_1$,

$$\left| \operatorname{Med}_{P} - \mu_{P} \right| \le \max \left\{ |\mu_{1} - \mu_{P}|, |\mu_{0} - \mu_{P}| \right\} = \frac{1}{2} (\mu_{1} - \mu_{0}).$$

Therefore $\sigma_P^2 \leq \frac{1}{2}(\mu_1 - \mu_0)$, which completes the proof.

11.5 Relaxing the target for the continuous case

As we have now seen, in the setting where the feature X has a nonatomic distribution, it is impossible to provide vanishing-width distribution-free inference on $\mu_P(X)$ in the original sense of (11.1). But can we modify the definition of validity to enable a more informative distribution-free inference procedure? In this section, we will consider several possible relaxations.

11.5.1 Relaxation by binning

We first consider a binning-based approach that effectively converts our question from a continuous problem to a discrete problem. Consider a (prespecified) partition $\mathcal{X} = \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_K$. For each $k \in [K]$, we define a new target,

$$\mu_P(\mathcal{X}_k) = \mathbb{E}[Y \mid X \in \mathcal{X}_k],$$

which measures the conditional expectation of Y when X lies in the bin \mathcal{X}_k , under the unknown distribution P. Defining $k(x) \in [K]$ as the index of the bin containing x, we can then relax the original notion of valid coverage (11.1) to the following: we aim to provide a confidence interval $\mathcal{C}(\mathcal{X}_k)$ for $\mu_P(\mathcal{X}_k)$ satisfying

$$\mathbb{P}\left(\mu_P(\mathcal{X}_{k(X_{n+1})}) \in \mathcal{C}(\mathcal{X}_{k(X_{n+1})})\right) \ge 1 - \alpha. \tag{11.6}$$

That is, we replace the original goal (coverage of $\mu_P(X)$, the mean of Y given X) with its binning-based relaxation (coverage of $\mu_P(\mathcal{X}_{k(X)})$, the mean of Y given only partial information about X—namely, the bin to which X belongs). We now construct a distribution-free confidence interval for this relaxed target.

Theorem 11.7

Let P be a distribution on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{Y} \subseteq [a, b]$, and let $\alpha \in [0, 1]$. Let $\mathcal{X} = \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_K$ be a fixed partition. Let $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$. For each $k \in [K]$, define $n_k = \sum_{i=1}^n \mathbb{1} \{X_i \in \mathcal{X}_k\}$, and let

$$\hat{\mu}(\mathcal{X}_k) = \frac{1}{n_k} \sum_{i=1}^n Y_i \cdot \mathbb{1} \left\{ X_i \in \mathcal{X}_k \right\}$$

for each k with $n_k \geq 1$, i.e., the mean response observed among all data points with $X_i \in \mathcal{X}_k$. Define

$$C(\mathcal{X}_k) = \begin{cases} \hat{\mu}(\mathcal{X}_k) \pm (b-a)\sqrt{\frac{\log(2/\alpha)}{2n_k}}, & \text{if } n_k \ge 1, \\ [a,b], & \text{if } n_k = 0. \end{cases}$$

Then \mathcal{C} satisfies (11.6).

Proof of Theorem 11.7

Let \tilde{P} be the distribution of (k(X), Y), when $(X, Y) \sim P$. Then $\mu_P(\mathcal{X}_k) = \mu_{\tilde{P}}(k)$, by construction, meaning that the relaxed inference target (11.6) for P is exactly equivalent to the original aim (11.1) for \tilde{P} . The result then follows by applying Theorem 11.2 for the distribution \tilde{P} , which has a discrete covariate.

We can observe a parallel between the ideas explored here for inference on μ_P , and the results of Section 4.4, where we studied a binning-based relaxation for the problem of test-conditional predictive inference: in both cases, we circumvent an impossibility result (for continuous X) by relaxing the problem via binning (effectively moving to the setting of a discrete X). The connection between these two problems will be discussed further in Section 11.6.

11.5.2 Relaxation by blurring the target

The previous method, defined in Theorem 11.7, replaces the target $\mu_P(x)$ with its binned version, $\mu_P(\mathcal{X}_k)$, in order to make the inference problem easier. We next consider a more general version of this approach.

Fix a function $H: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$, with large values of H(x, x') indicating that $x, x' \in \mathcal{X}$ are similar, or lie nearby to each other. As in Chapter 7 (recall the localized conformal prediction method introduced in Section 7.3), we refer to H as a localization kernel, and can think of a Gaussian kernel, $H(x, x') = \exp\{-\|x - x'\|_2^2/2h^2\}$, as a canonical example. Next, define $\tilde{\mu}_P(x)$ as an approximation to $\mu_P(x)$,

$$\tilde{\mu}_P(x) = \frac{\mathbb{E}_P[\mu_P(X) \cdot H(x, X)]}{\mathbb{E}_P[H(x, X)]}$$
(11.7)

(implicitly, we assume $\mathbb{E}_P[H(x,X)] > 0$ for all $x \in \mathcal{X}$). In particular, the binned mean $\mu_P(\mathcal{X}_k)$ can be viewed as a special case: by defining $H(x,x') = \sum_{k=1}^K \mathbb{1}\{x,x' \in \mathcal{X}_k\}$ (that is, H(x,x') = 1 whenever x and x' lie in the same bin), we obtain $\tilde{\mu}_P(x) = \mu_P(\mathcal{X}_k)$ for any $x \in \mathcal{X}_k$. Intuitively, if $x \mapsto \mu_P(x)$ is reasonably smooth, then we should expect $\tilde{\mu}_P(x) \approx \mu_P(x)$, as long as the kernel H is reasonably strongly localized—for instance, a Gaussian kernel with a small bandwidth h > 0.

We will now see that we can perform inference on $\tilde{\mu}_P(x)$ regardless of the properties of the underlying distribution.

Theorem 11.8

Let P be a distribution on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{Y} \subseteq [a,b]$, and let $\alpha \in [0,1]$. Let $H: \mathcal{X} \times \mathcal{X} \to [0,B]$ be a function satisfying $\mathbb{E}_P[H(x,X)] > 0$ for all $x \in \mathcal{X}$. Let $(X_1,Y_1),\ldots,(X_n,Y_n) \overset{\text{i.i.d.}}{\sim} P$.

Let $U_1, \ldots, U_n \overset{\text{i.i.d.}}{\sim} \text{Unif}[0, 1]$ be drawn independently of the data. For each $x \in \mathcal{X}$, define $n(x) = \sum_{i=1}^n \mathbbm{1}\left\{U_i \leq \frac{H(x, X_i)}{B}\right\}$, and let

$$\hat{\mu}(x) = \frac{1}{n(x)} \sum_{i=1}^{n} Y_i \cdot \mathbb{1} \left\{ U_i \le \frac{H(x, X_i)}{B} \right\}$$

if $n(x) \geq 1$. Define

$$C(x) = \begin{cases} \hat{\mu}(x) \pm (b-a)\sqrt{\frac{\log(2/\alpha)}{2n(x)}}, & \text{if } n(x) \ge 1, \\ [a,b], & \text{if } n(x) = 0. \end{cases}$$

Then \mathcal{C} satisfies

$$\mathbb{P}(\tilde{\mu}_P(x) \in \mathcal{C}(x)) > 1 - \alpha$$

for every $x \in \mathcal{X}$, where $\tilde{\mu}_P(x)$ is defined as in (11.7), and where the probability is taken with respect to the draw of both the data points (X_i, Y_i) and the auxiliary random variables U_i .

The confidence interval C defined in Theorem 11.8 uses auxiliary randomness coming from the uniform random variables U_i . This specific construction allows for a clean and simple finite-sample result, but alternative definitions that achieve finite-sample validity without randomization (and that may make more efficient use of the available data) are also possible; see the bibliographic notes at the end of this chapter for details.

Proof of Theorem 11.8

Fix any $x \in \mathcal{X}$. Let P_X and $P_{Y|X}$ denote the marginal distribution of X and the conditional distribution of $Y \mid X$, respectively, under P. Recalling the covariate shift setting studied in Section 7.2.1, define a distribution

$$Q = Q_X \times P_{Y|X}$$

where Q_X is the distribution on \mathcal{X} defined by the Radon–Nikodym derivative

$$\frac{\mathrm{d}Q_X}{\mathrm{d}P_X}(x',y) \propto H(x,x').$$

Moreover, writing Q_Y to denote the marginal of Y under the joint distribution Q, we can calculate its mean as

$$\begin{split} \mu_{Q_Y} &= \mathbb{E}_Q[Y] = \mathbb{E}_P\left[Y \cdot \frac{\mathsf{d}Q}{\mathsf{d}P}(X,Y)\right] \\ &= \mathbb{E}_P\left[Y \cdot \frac{H(x,X)}{\mathbb{E}_P[H(x,X)]}\right] \\ &= \mathbb{E}_P\left[\mu_P(X) \cdot \frac{H(x,X)}{\mathbb{E}_P[H(x,X)]}\right] \\ &= \tilde{\mu}_P(x). \end{split}$$

Next, let $\mathcal{I}(x) = \{i \in [n] : U_i \leq \frac{H(x,X_i)}{B}\}$, and note that $n(x) = |\mathcal{I}(x)|$. Then the data points $((X_i,Y_i))_{i\in\mathcal{I}(x)}$ can be viewed as the output of rejection sampling, when run on available data sampled from the distribution P, and when the target distribution is given by Q. More specifically, conditioning on n(x), these data points are distributed as n(x) many i.i.d. draws from Q. In particular, this means that the corresponding response values, $(Y_i)_{i\in\mathcal{I}(x)}$, are distributed as n(x) many i.i.d. draws from Q_Y .

Therefore, conditional on n(x) (and on the event $n(x) \geq 1$), the random variable $\hat{\mu}(x)$ is the sample mean of n(x) many i.i.d. draws from Q_Y , which is a distribution supported on [a, b]. By Hoeffding's inequality, therefore, $\mathcal{C}(x)$ provides a confidence interval for $\mu_{Q_Y} = \tilde{\mu}_P(x)$ at level $1 - \alpha$.

11.5.3 Relaxing from regression to calibration

To close this section, we point to another direction for inference that may be more tractable than confidence intervals for the regression function. Suppose we have computed an estimate $\hat{\mu}$ of the conditional mean function $\mu_P(x) = \mathbb{E}_P[Y \mid X = x]$, and would like to assess the accuracy of our estimate. A different formulation of this is *calibration*, which quantifies how close the conditional mean $\mathbb{E}_P[Y \mid \hat{\mu}(X)]$ is to $\hat{\mu}(X)$. Since the conditioning is now over a coarser event, we will see that this problem is sometimes statistically easier than inference on μ_P . We will discuss distribution-free results for calibration in Chapter 12.

11.6 Connections to test-conditional predictive coverage

The results developed in this chapter bear strong resemblance to our findings for an earlier question: that of test-conditional coverage for predictive inference, in Chapter 4. In particular, for both problems, we have seen that the discrete case offers a straightforward solution, while the continuous case (or, more precisely, the case where X is nonatomic) faces a fundamental hardness result that prohibits meaningful solutions. However, at least on the surface, the two questions appear to be quite different: in Chapter 4 we were aiming for *conditional* validity for inference on the *prediction* problem,

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}(X_{n+1}) \mid X_{n+1}) \ge 1 - \alpha,$$

while here we are aiming for marginal validity for inference on the regression problem,

$$\mathbb{P}(\mu_P(X_{n+1}) \in \mathcal{C}(X_{n+1})) \ge 1 - \alpha.$$

In this section, we will examine the way in which these two problems are actually essentially equivalent. At a high level, this is true for the following reason: given a prediction set C, if we define a new response variable $\tilde{Y} = \mathbb{1}\{Y \notin C(X)\}$, then

$$\mathbb{P}(Y \in \mathcal{C}(X) \mid X) \ge 1 - \alpha \text{ almost surely} \iff \mathbb{E}[\tilde{Y} \mid X] \le \alpha \text{ almost surely.}$$

That is, C satisfies test-conditional coverage at level $1-\alpha$ if and only if the regression function $\mu_{\tilde{P}}(X)$ (where \tilde{P} denotes the joint distribution of (X,\tilde{Y})) is always $\leq \alpha$. Therefore, our ability to perform inference on $\mu_{\tilde{P}}(X)$ is closely linked to our ability to provide test-conditional coverage for P. (For clarity, we emphasize that this question is distinct from the results of Section 11.4.1, where we discussed connections to marginal, rather than conditional, predictive coverage.)

11.6.1 From regression to test-conditional prediction

We will now develop these ideas in more detail. We will see that any nontrivial solution for the regression problem leads to a construction for a nontrivial solution for test-conditional predictive inference. Concretely, we will develop an explicit construction to show that any solution C_{regr} to the problem of distribution-free confidence intervals for regression can be leveraged to construct a prediction interval C_{pred} that offers a relaxed notion of distribution-free test-conditional predictive coverage.

Suppose we have data $(X_i, Y_i) \stackrel{\text{i.i.d.}}{\sim} P$, for some unknown distribution P on $(X, Y) \in \mathcal{X} \times \mathcal{Y}$, and we also have a pretrained prediction set $\mathcal{C}_{\text{init}}$ that does not depend on this data—for example, we might have constructed $\mathcal{C}_{\text{init}}$ by running conformal prediction on an independent batch of data. We will now develop a strategy to convert $\mathcal{C}_{\text{init}}$ into a prediction interval that offers test-conditional predictive coverage for P.

Assume that we have access to a procedure C_{regr} that provides distribution-free inference for regression, as in (11.1), in the setting of a bounded response variable: it holds that

For any distribution
$$\tilde{P}$$
 on $\mathcal{X} \times [0,1]$, $\mathbb{P}(\mu_{\tilde{P}}(X_{n+1}) \in \mathcal{C}_{regr}(X_{n+1})) \ge 1 - \epsilon$, (11.8)

for some small constant $\epsilon > 0$, when C_{regr} is trained on an i.i.d. sample of size n drawn from \tilde{P} . (Note that this is the same notion of validity as defined earlier in (11.1), aside from notation—we replace C, α, P with $C_{\text{regr}}, \epsilon, \tilde{P}$ to distinguish the regression problem from the prediction problem.)

We will now see that C_{regr} can be used to help construct a prediction interval that satisfies the relaxed notion of test-conditional coverage defined in the condition (4.11), which we studied in Chapter 4. Write \tilde{P} to denote the distribution of

$$(X, \tilde{Y}) = (X, \mathbb{1} \{Y \notin C_{\text{init}}(X)\}) \in \mathcal{X} \times \{0, 1\}.$$

Similarly, define $\tilde{Y}_i = \mathbb{1}\{Y_i \notin \mathcal{C}_{\text{init}}(X_i)\}$, for $i \in [n]$, so that we have $(X_1, \tilde{Y}_1), \dots, (X_n, \tilde{Y}_n) \stackrel{\text{i.i.d.}}{\sim} \tilde{P}$. We now train $\mathcal{C}_{\text{regr}}$ on the data $\left((X_i, \tilde{Y}_i)\right)_{i \in [n]}$, and finally we define our prediction set as

$$\mathcal{C}_{\text{pred}}(x) = \begin{cases} \mathcal{C}_{\text{init}}(x), & \text{if } \mathcal{C}_{\text{regr}}(x) \subseteq [0, \alpha - \epsilon/\delta], \\ [a, b], & \text{otherwise,} \end{cases}$$

for some parameters $\alpha, \delta > 0$. Effectively, we are using C_{regr} to *certify* that C_{init} has test-conditional coverage—or if not, to return the conservative interval [a, b] instead.

Proposition 11.9

Under the assumptions and definitions above, the prediction set \mathcal{C}_{pred} satisfies

$$\mathbb{P}(Y_{n+1} \in \mathcal{C}_{\text{pred}}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0) \ge 1 - \alpha \text{ for all } P \text{ and all } \mathcal{X}_0 \subseteq \mathcal{X} \text{ with } P_X(\mathcal{X}_0) > \delta.$$

This guarantee on C_{pred} is a relaxed form of test-conditional coverage for predictive inference—in fact, it is exactly the same as the condition (4.11) studied in Chapter 4.

In the setting of a nonatomic X, we have previously established hardness results for inference for regression (Theorem 11.5) and for (relaxed) test-conditional predictive inference (Theorem 4.13). With the new result of Proposition 11.9, we now see that these hardness results are clearly connected, since any procedure C_{regr} that achieves distribution-free inference for regression can be leveraged to define a procedure for distribution-free (relaxed) test-conditional coverage via C_{pred} . In other words, this proposition explains why the two questions face a hardness result in the same regime, i.e., when X is nonatomic.

Proof of Proposition 11.9

Fix any distribution P on $\mathcal{X} \times \mathcal{Y}$, and any subset $\mathcal{X}_0 \subseteq \mathcal{X}$ with $P_X(\mathcal{X}_0) \geq \delta$. First, by definition,

$$Y_{n+1} \notin \mathcal{C}_{\mathrm{pred}}(X_{n+1}) \iff Y_{n+1} \notin \mathcal{C}_{\mathrm{init}}(X_{n+1}) \text{ and } \mathcal{C}_{\mathrm{regr}}(X_{n+1}) \subseteq [0, \alpha - \epsilon/\delta].$$

Therefore, writing $\mathcal{D}_n = ((X_1, Y_1), \dots, (X_n, Y_n))$, we calculate

$$\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}_{\text{pred}}(X_{n+1}) \mid \mathcal{D}_{n}; X_{n+1} \in \mathcal{X}_{0}\right) \\
= \mathbb{P}\left(Y_{n+1} \notin \mathcal{C}_{\text{init}}(X_{n+1}), \mathcal{C}_{\text{regr}}(X_{n+1}) \subseteq [0, \alpha - \epsilon/\delta] \mid \mathcal{D}_{n}; X_{n+1} \in \mathcal{X}_{0}\right) \\
= \mathbb{E}\left[\mathbb{P}\left(Y_{n+1} \notin \mathcal{C}_{\text{init}}(X_{n+1}) \mid \mathcal{D}_{n}, X_{n+1}\right) \cdot \mathbb{I}\left\{\mathcal{C}_{\text{regr}}(X_{n+1}) \subseteq [0, \alpha - \epsilon/\delta]\right\} \mid \mathcal{D}_{n}; X_{n+1} \in \mathcal{X}_{0}\right] \\
= \mathbb{E}\left[\mu_{\tilde{P}}(X_{n+1}) \cdot \mathbb{I}\left\{\mathcal{C}_{\text{regr}}(X_{n+1}) \subseteq [0, \alpha - \epsilon/\delta]\right\} \mid \mathcal{D}_{n}; X_{n+1} \in \mathcal{X}_{0}\right] \\
\leq (\alpha - \epsilon/\delta) + \mathbb{P}\left(\mu_{\tilde{P}}(X_{n+1}) \notin \mathcal{C}_{\text{regr}}(X_{n+1}) \mid \mathcal{D}_{n}; X_{n+1} \in \mathcal{X}_{0}\right) \\
= (\alpha - \epsilon/\delta) + \frac{\mathbb{P}\left(\mu_{\tilde{P}}(X_{n+1}) \notin \mathcal{C}_{\text{regr}}(X_{n+1}), X_{n+1} \in \mathcal{X}_{0} \mid \mathcal{D}_{n}\right)}{\mathbb{P}(X_{n+1} \in \mathcal{X}_{0})} \\
\leq (\alpha - \epsilon/\delta) + \delta^{-1} \cdot \mathbb{P}\left(\mu_{\tilde{P}}(X_{n+1}) \notin \mathcal{C}_{\text{regr}}(X_{n+1}) \mid \mathcal{D}_{n}\right).$$

And, marginalizing over \mathcal{D}_n , we have

$$\mathbb{E}\left[\mathbb{P}\Big(\mu_{\tilde{P}}(X_{n+1}) \not\in \mathcal{C}_{\mathrm{regr}}(X_{n+1}) \,\Big|\, \mathcal{D}_n\Big)\right] = \mathbb{P}\Big(\mu_{\tilde{P}}(X_{n+1}) \not\in \mathcal{C}_{\mathrm{regr}}(X_{n+1})\Big) \leq \epsilon,$$

by our assumption on the validity of C_{regr} (11.8). Therefore,

$$\mathbb{P}\left(Y_{n+1} \not\in \mathcal{C}_{\text{pred}}(X_{n+1}) \mid X_{n+1} \in \mathcal{X}_0\right) \le (\alpha - \epsilon/\delta) + \delta^{-1} \cdot \epsilon = \alpha.$$

11.7 Connections to estimation

Throughout this chapter, we have focused on the question of inference on μ_P —and more specifically, a particular version of this question, where our aim is to construct a confidence interval C(x) for $\mu_P(x)$. In some settings it may be more natural to phrase this question in a different way: can we construct an estimate $\hat{\mu}(x)$ for $\mu_P(x)$, and quantify our uncertainty around this estimate, in a way that offers some notion of distribution-free validity?

In this section, we will examine this alternative formulation of the question of distribution-free inference, based on an estimator $\hat{\mu}$ for μ_P . To make this concrete, consider the following definition of distribution-free validity: for any distribution P,

$$\mathbb{P}\left(\|\hat{\mu} - \mu_P\|_{L_1(P)} \le \hat{\epsilon}\right) \ge 1 - \delta,\tag{11.9}$$

where the probability is taken with respect to the distribution of the training data, $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$, and where $\hat{\epsilon} > 0$ is a function of the training data intended to express our uncertainty around the estimated regression function $\hat{\mu}$. (For a function $f: \mathcal{X} \to \mathbb{R}$, its $L_1(P)$ norm is defined as $||f||_{L_1(P)} = \mathbb{E}_P[|f(X)|]$.)

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

In fact, the two different versions of the problem of inference for regression that we have considered—namely, providing inference around an estimate $\hat{\mu}$ as defined here, or, directly constructing a confidence interval \mathcal{C} for μ_P as has been our focus throughout the chapter—are qualitatively the same. At a high level, any solution for one of these inference problems can be leveraged to provide a solution to the other. Specifically, any $\hat{\mu}, \hat{\epsilon}$ satisfying (11.9) can be used to construct a confidence interval \mathcal{C} for μ_P , by centering our interval around $\hat{\mu}$ and choosing its width as a function of $\hat{\epsilon}$. Conversely, given a confidence interval \mathcal{C} for μ_P satisfying (11.1), we can construct $\hat{\mu}, \hat{\epsilon}$ based on the center and the width of \mathcal{C} .

We now state two formal results that reveal that these two versions of the inference question have the same statistical difficulty. In particular, regardless of which definition of distribution-free validity we choose, meaningful inference on μ_P is straightforward when X is discrete, but faces fundamental hardness results when X is nonatomic.

First, we consider the discrete setting.

Theorem 11.10

Let P be a distribution on $\mathcal{X} \times \mathcal{Y}$, where $\mathcal{X} = \{x_1, \dots, x_K\}$ and $\mathcal{Y} \subseteq [a, b]$, and let $\delta \in [0, 1]$. Let $(X_1, Y_1), \dots, (X_n, Y_n) \overset{\text{i.i.d.}}{\sim} P$. As in Theorem 11.2, define $n_k = \sum_{i=1}^n \mathbb{1}\{X_i = x_k\}$, and let

$$\hat{\mu}(x_k) = \frac{1}{n_k} \sum_{i=1}^n Y_i \cdot \mathbb{1} \{X_i = x_k\}$$

for each k with $n_k \geq 1$, and $\hat{\mu}(x_k) = \frac{a+b}{2}$ for any k with $n_k = 0$. Define

$$\hat{\epsilon} = \frac{b - a}{\sqrt{2\delta}} \cdot \sqrt{\frac{K}{n}}.$$

Then $\hat{\mu}, \hat{\epsilon}$ satisfy the distribution-free validity condition (11.9).

In particular we note that $\hat{\epsilon}$ is vanishing as $n \to \infty$. The implications of this result are essentially the same as that of Theorem 11.2: in the setting of a discrete X, we can provide meaningful inference on μ_P under either notion of validity, whether constructing a confidence interval \mathcal{C} (as in Theorem 11.2) or constructing $\hat{\mu}, \hat{\epsilon}$ (as in Theorem 11.10).

On the other hand, in the continuous case where X is nonatomic, we are again faced with a hardness result.

Theorem 11.11

Suppose $\hat{\mu}$ and $\hat{\epsilon}$ satisfy the condition (11.9) for estimation of the regression function μ_P . Then, for any distribution P on $\mathcal{X} \times [a, b]$ for which the marginal P_X is nonatomic, and for any sample size $n \geq 1$,

$$\mathbb{P}\left(\hat{\epsilon} \, \geq \, \frac{\mathbb{E}_P[\operatorname{Var}_P(Y \mid X)]}{b-a} \, \right) \geq 1-\delta,$$

where $\operatorname{Var}_{P}(Y \mid X)$ is the conditional variance of $Y \mid X$ under the joint distribution P.

In other words, the upper bound $\hat{\epsilon}$ on the error of our estimate, cannot be vanishing as $n \to \infty$ —it is lower-bounded by the conditional variance of $Y \mid X$ under the distribution P. This result is similar in flavor to the hardness result in Theorem 11.5, which proves that any distribution-free confidence interval for μ_P cannot have vanishing width in the nonatomic setting.

Proof of Theorem 11.10

Let $p_k = \mathbb{P}_P(X = x_k)$. Then we can calculate

$$\begin{split} \|\hat{\mu} - \mu_P\|_{L_1(P)} &= \sum_{k=1}^K p_k \cdot |\hat{\mu}(x_k) - \mu_P(x_k)| \\ &\leq \sqrt{\sum_{k=1}^K p_k (\hat{\mu}(x_k) - \mu_P(x_k))^2} \\ &= \sqrt{\sum_{k=1}^K p_k \left\{ (\hat{\mu}(x_k) - \mu_P(x_k))^2 \cdot \mathbb{1} \left\{ n_k \ge 1 \right\} + \left(\frac{a+b}{2} - \mu_P(x_k) \right)^2 \cdot \mathbb{1} \left\{ n_k = 0 \right\} \right\}} \\ &\leq \sqrt{\sum_{k=1}^K p_k \left\{ (\hat{\mu}(x_k) - \mu_P(x_k))^2 \cdot \mathbb{1} \left\{ n_k \ge 1 \right\} + \left(\frac{b-a}{2} \right)^2 \cdot \mathbb{1} \left\{ n_k = 0 \right\} \right\}}. \end{split}$$

For each $k \in [K]$, conditional on n_k (and on the event $n_k \ge 1$), as in the proof of Theorem 11.2 the random variable $\hat{\mu}(x_k)$ is the sample mean of n_k many draws from the distribution of $Y \mid X = x_k$, which is supported on [a, b] and has mean $\mu_P(x_k)$. Therefore,

$$\mathbb{E}\left[(\hat{\mu}(x_k) - \mu_P(x_k))^2 \mid n_k \right] \le \frac{(b-a)^2}{4n_k} \le \frac{(b-a)^2}{2(n_k+1)},$$

where for the last step we use $n_k \geq 1$. We can therefore relax the calculations above to

$$\mathbb{E}\left[\|\hat{\mu} - \mu_P\|_{L_1(P)}^2\right] \le \mathbb{E}\left[\sum_{k=1}^K p_k \cdot \frac{(b-a)^2}{2(n_k+1)}\right]$$
$$\le \mathbb{E}\left[\sum_{k=1}^K p_k \cdot \frac{(b-a)^2}{2 \cdot np_k}\right]$$
$$= \frac{(b-a)^2}{2} \cdot \frac{K}{n},$$

where the second inequality holds by (11.2). Therefore, by Markov's inequality,

$$\mathbb{P}\left(\|\hat{\mu} - \mu_P\|_{L_1(P)} > \frac{b-a}{\sqrt{2\delta}} \cdot \sqrt{\frac{K}{n}}\right) = \mathbb{P}\left(\|\hat{\mu} - \mu_P\|_{L_1(P)}^2 > \frac{(b-a)^2}{2\delta} \cdot \frac{K}{n}\right) \le \delta.$$

Proof of Theorem 11.11

Our proof will rely on the sample–resample technique of Lemma 4.15, and is similar to the proof of Theorem 11.3. Without loss of generality, we can take [a,b] = [0,1]. Let $(X^{(1)},Y^{(1)}),\ldots,(X^{(M)},Y^{(M)})\stackrel{\text{i.i.d.}}{\sim} P$, and let \widehat{P}_M be the empirical distribution. Now condition on \widehat{P}_M , let $((X_i,Y_i))_{i\in[n]}\stackrel{\text{i.i.d.}}{\sim} \widehat{P}_M$, and let $\widehat{\mu},\widehat{\epsilon}$ be trained on this data. Then by (11.9), we must have

$$1 - \delta \leq \mathbb{P}\left(\|\hat{\mu} - \mu_{\widehat{P}_M}\|_{L_1(\widehat{P}_M)} \leq \hat{\epsilon} \mid \widehat{P}_M\right) \leq \mathbb{P}\left(\|\hat{\mu} - \mu_{\widehat{P}_M}\|_{L_1(\widehat{P}_M)} \leq c_M \mid \widehat{P}_M\right) + \mathbb{P}(\hat{\epsilon} > c_M \mid \widehat{P}_M),$$

where we define the constant

$$c_M = \mathbb{E}_P[\operatorname{Var}_P(Y \mid X)] - \frac{n}{4M} - \frac{1}{2\sqrt{M}}.$$

And by definition of \hat{P}_M , we can calculate

$$\|\hat{\mu} - \mu_{\widehat{P}_M}\|_{L_1(\widehat{P}_M)} = \frac{1}{M} \sum_{i=1}^M \left| \hat{\mu}(X^{(i)}) - \mu_{\widehat{P}_M}(X^{(i)}) \right| = \frac{1}{M} \sum_{i=1}^M \left| \hat{\mu}(X^{(i)}) - Y^{(i)} \right|,$$

where the last step holds since we have $\mu_{\widehat{P}_M}(X^{(i)}) = Y^{(i)}$, for all i, on the event that $X^{(1)}, \ldots, X^{(M)}$ are all distinct (which holds almost surely since P_X is nonatomic). Therefore,

$$\mathbb{P}_{\widehat{P}_M}(\widehat{\epsilon} > c_M \mid \widehat{P}_M) \ge 1 - \delta - \mathbb{P}_{\widehat{P}_M} \left(\frac{1}{M} \sum_{i=1}^M \left| \widehat{\mu}(X^{(i)}) - Y^{(i)} \right| \le c_M \mid \widehat{P}_M \right),$$

where we have now added subscripts \widehat{P}_M to emphasize that $\widehat{\mu}$ and $\widehat{\epsilon}$ are computed on data sampled i.i.d. from \widehat{P}_M . Next, by Lemma 4.15 (i.e., by bounding the difference between sampling with and without replacement), we have

$$\begin{split} \mathbb{P}_{P}(\hat{\epsilon} > c_{M}) &\geq \mathbb{E}\left[\mathbb{P}_{\widehat{P}_{M}}(\hat{\epsilon} > c_{M} \mid \widehat{P}_{M})\right] - \frac{n(n-1)}{2M} \\ &\geq 1 - \delta - \frac{n(n-1)}{2M} - \mathbb{E}\left[\mathbb{P}_{\widehat{P}_{M}}\left(\frac{1}{M}\sum_{i=1}^{M}\left|\hat{\mu}(X^{(i)}) - Y^{(i)}\right| \leq c_{M} \mid \widehat{P}_{M}\right)\right]. \end{split}$$

Our remaining step is to bound the last quantity on the right-hand side. First, let $I_1, \ldots, I_n \stackrel{\text{i.i.d.}}{\sim} \text{Unif}([M])$ be the indices corresponding to the draws of the data points—that is, $(X_i, Y_i) = (X^{(I_i)}, Y^{(I_i)})$ for each $i = 1, \ldots, n$. Then, conditioning on I_1, \ldots, I_n and on $\hat{\mu}$, the terms $|\hat{\mu}(X^{(i)}) - Y^{(i)}|$ (indexed by $i \in [M] \setminus \{I_1, \ldots, I_n\}$) are i.i.d., each with variance $\leq \frac{1}{4}$ (since the terms lie in [0, 1]), and each with a mean that is lower-bounded as

$$\mathbb{E}\left[|\hat{\mu}(X^{(i)}) - Y^{(i)}| \mid \mathbb{1}\left\{i \notin \{I_1, \dots, I_n\}\right\}\right] \ge \mathbb{E}\left[|Y - \operatorname{Med}_P(X)|\right]$$

$$\ge \mathbb{E}\left[(Y - \operatorname{Med}_P(X))^2\right] \ge \mathbb{E}_P[\operatorname{Var}_P(Y \mid X)],$$

where the first step holds since $\mathbb{E}_P[|Y-t| \mid X]$ is minimized at $t = \operatorname{Med}_P(X)$, the second step holds since $\mathcal{Y} \subseteq [0,1]$, and the last step holds since $\mathbb{E}_P[(Y-t)^2 \mid X]$ has minimum value $\operatorname{Var}_P(Y \mid X)$ (attained at $t = \mu_P(X)$). Therefore, conditioning on I_1, \ldots, I_n and on $\hat{\mu}$,

$$\sum_{i=1}^{M} |\hat{\mu}(X^{(i)}) - Y^{(i)}| \cdot \mathbb{1} \{ i \notin \{I_1, \dots, I_n\} \}$$

has mean $\geq (M-n)\mathbb{E}_P[\operatorname{Var}_P(Y\mid X)] \geq M\mathbb{E}_P[\operatorname{Var}_P(Y\mid X)] - \frac{n}{4}$, and variance $\leq \frac{M}{4}$. By Chebyshev's inequality,

$$\mathbb{E}\left[\mathbb{P}_{\widehat{P}_{M}}\left(\frac{1}{M}\sum_{i=1}^{M}\left|\widehat{\mu}(X^{(i)})-Y^{(i)}\right|\leq c_{M}\ \left|\ \widehat{P}_{M}\right)\right]=\mathbb{P}\left(\frac{1}{M}\sum_{i=1}^{M}\left|\widehat{\mu}(X^{(i)})-Y^{(i)}\right|\leq c_{M}\right)\leq \frac{1}{2\sqrt{M}},$$

by definition of c_M . Combining everything, then,

$$\mathbb{P}_P(\hat{\epsilon} > c_M) \ge 1 - \delta - \frac{n(n-1)}{2M} - \frac{1}{2\sqrt{M}}.$$

Since $\lim_{M\to\infty} c_M = \mathbb{E}_P[\operatorname{Var}_P(Y\mid X)]$, taking $M\to\infty$ completes the proof.

Bibliographic notes

Theorem 11.1, which establishes a hardness result for inference on the marginal mean in the unbounded setting, is a classical result by Bahadur and Savage [1956]. Turning to the problem of inference on the conditional mean, for the discrete case, the proof of Theorem 11.2 relies on the calculation (11.2) for the Binomial distribution, which is due to Chao and Strawderman [1972]. The confidence interval constructed in Theorem 11.2 offers a solution that is simple, but generally wider than necessary because it only relies on Hoeffding's inequality; a tighter confidence interval for this type of problem is developed by Gupta et al. [2020], using an empirical Bernstein inequality to adapt to the variance of $Y \mid X$. Similarly, the construction of Theorem 11.10 can be tightened by using more refined concentration inequalities, as well.

In the case of a nonatomic feature X, Theorem 11.3, which shows that any distribution-free confidence interval for μ_P must necessarily also be a valid prediction interval, appears in various forms in Nouretdinov et al. [2001b], Vovk et al. [2005], Barber [2020]. Theorem 11.4, which gives an analogous result for any distribution-free confidence interval for the conditional median, was established by Medarametla and Candès [2021]. Theorem 11.5, which proves a lower bound on the width any distribution-free confidence interval for μ_P , is based on results from Barber [2020], Lee and Barber [2021]; the latter work also refines this bound to handle the case where X is not nonatomic, but has large support.

In Section 11.5, where we discuss relaxations of the problem for the nonatomic case, the procedure for distribution-free inference on the local mean (via rejection sampling) is based on the work of Jang and Candès [2023], who provide an analogous procedure but for inference on the conditional quantile, rather than conditional mean, of $Y \mid X$. For background on rejection sampling (also called accept-reject sampling, or, acceptance-rejection sampling), see Owen [2013]. For references on calibration and related questions, see the bibliographic notes in Chapter 12. The confidence intervals constructed in Theorems 11.7 and 11.8 are based on Hoeffding's inequality, and can therefore be quite loose in settings where the (conditional) variance of $Y \mid X$ is low, and tighter bounds can be obtained by using more refined concentration inequalities. In particular, empirical Bernstein inequalities provide sharper bounds without assuming knowledge of the variance—see Audibert et al. [2009], Maurer and Pontil [2009], Waudby-Smith and Ramdas [2024].

The problem of estimating the regression function μ_P has a long history in statistics, both within parametric models and in the nonparametric setting. Concretely, we can compare the distribution-free results established in this chapter to related results from the nonparametric statistics literature. Taking $\mathcal{X} = \mathcal{Y} = [0,1]$ for simplicity, suppose we assume that μ_P is s-Hölder smooth for some s > 0 (when s is an integer, this is equivalent to assuming μ_P has bounded sth derivative). Then it is possible to construct a confidence band for μ_P of width $\mathcal{O}(n^{-s/(2s+1)})$, up to log factors, but this procedure relies on knowing the value of s; if s is unknown, then adaptivity is impossible, in the sense that any procedure guaranteeing coverage for any $s \ge s_{\min}$ will inevitably lead to width $\gtrsim n^{-s_{\min}/(2s_{\min}+1)}$, i.e., it cannot adapt to a higher smoothness level $s > s_{\min}$. Returning to the distribution-free setting (with nonatomic X), even if we believe that the regression function must exhibit some (unknown) level of smoothness s, if we wish to avoid untestable assumptions then we would be forced to take $s_{\min} \to 0$, leading to constant-width confidence intervals (as derived in this chapter). For background on these types of results from the nonparametric statistics literature, see Genovese and Wasserman [2008], Cai et al. [2014], and the references therein; these works also propose relaxations of the notion of valid coverage to enable avoiding hardness results. A closely related problem is that of nonparametric density estimation, with earlier results on the impossibility of adaptivity, such as Low [1997]; see Giné and Nickl [2021, Chapter 8] for a comprehensive overview.

Chapter 12

Calibration

We next consider *calibration*, a property that measures the reliability of a model f(X) for Y. We will restrict our attention to the setting where the response is binary, $Y \in \{0,1\}$, and so f(X) is an estimate of the conditional probability of a positive label, $\mathbb{P}(Y=1\mid X)$. Generally speaking, calibration requires that the estimate satisfies $f(X) \approx \mathbb{P}(Y=1\mid f(X))$. For example, if we consider all data points for which f(X) = 20% (i.e., the model estimates a 20% probability of a positive label), then approximately 20% of those cases should have Y=1, and so on.

In this chapter, we discuss distribution-free calibration guarantees, showing that they are possible in certain regimes but impossible in others. This connects to previous chapters in two ways. First, at a thematic level, calibration is a counterpart to conformal prediction, in that it is used to assess the quality of predictions from machine learning models and thus provide uncertainty quantification. Indeed, at present, calibration approaches such as temperature scaling and isotonic regression are more widely used in practice than conformal prediction, raising the question of how these approaches compare.

Second, at a technical level, calibration is a different, interesting statistical problem, and it is worthwhile to ask what can be achieved with no assumptions other than access to i.i.d. samples. We have seen that marginally valid prediction intervals are possible distribution-free; in contrast, conditionally valid prediction intervals, and confidence intervals for the mean function, are generally not. This leads to the question of whether calibration, which is related to these problems, is possible to achieve distribution-free. We turn to this question next.

12.1 Calibration: definition and methods

Consider a random variable (X, Y) drawn from a distribution P on $\mathcal{X} \times \{0, 1\}$. Suppose we have a function $f: \mathcal{X} \to [0, 1]$ that is an estimate of the probability of a positive label, Y = 1, based on the features X. One basic notion of validity for f is calibration, defined as follows.

Definition 12.1: Perfect calibration

The function f is perfectly calibrated if

$$\mathbb{P}(Y = 1 \mid f(X)) = f(X),$$

almost surely.

This is an appealing basic property. For instance, one example of a perfectly calibrated model is the oracle model that outputs the true conditional probabilities: $f(x) = \mathbb{P}(Y = 1 \mid X = x)$. Note that many other models also satisfy perfect calibration, for example, the constant function $f(x) = \mathbb{E}[Y]$. The latter example illustrates the fact that while calibration is a desirable property, it does not imply that f is an accurate estimate of the true regression function for $Y \mid X$.

Figure 12.1: Visualization of three regressions with varying degrees of calibration. In each plot, the gray dotted line represents the true conditional probability $\mathbb{P}_P(Y=1\mid X=x)$, the dots represent observed values of Y, and the yellow line represents a fitted model f(X). The left plot shows a poorly calibrated f. The middle plot shows a model f(x) with that is an accurate estimate of $\mathbb{P}_P(Y=1\mid X=x)$ and consequently has good calibration. Finally, the right plot shows a binned regression with high error (i.e., f(x) is not an accurate estimate of $\mathbb{P}_P(Y=1\mid X=x)$), but nonetheless good calibration: for each value t that occurs in the output of f(x), we can see that $\mathbb{P}_P(Y=1\mid f(X)=t)\approx t$.

Notice that this definition is with respect to the distribution P, but in practical settings, we would only have access to a finite sample of data drawn from P. As such, we wish to have procedures that use the available data to address the following two goals:

- (a) Given a pretrained model f, we wish to check whether perfect calibration holds, and to quantify violations of calibration.
- (b) We wish to construct a function f, or modify a given pretrained function f, to satisfy or approximately satisfy perfect calibration.

The majority of this chapter will be aimed at these goals.

12.1.1 Post-hoc calibration

With respect to goal (b) above, we will focus on *post-hoc calibration*, a widely-used technique in applied machine learning. We start with a pretrained model $f: \mathcal{X} \to [0,1]$, and a sample of n data points, $(X_1, Y_1), \ldots, (X_n, Y_n) \overset{\text{i.i.d.}}{\sim} P$ that were not used for model training. As with split conformal prediction, we call this the calibration set. Then, we seek to post-process the outputs of f via a function $h: [0,1] \to [0,1]$ so that the composition $h \circ f$ (approximately) satisfies calibration. Throughout this section, we will discuss algorithms that take as input a function f and calibration data and output such an h.

To begin, we introduce three commonly used post-hoc calibration algorithms. Each algorithm uses the observed data to select the function h from some class of functions \mathcal{H} , where the choice of this class varies across the three methods.

Binning. A natural strategy is to bin the values of $f(X_i)$ into K bins, and then use h to adjust the output value for each bin. Concretely, let $[0,1] = B_1 \cup \cdots \cup B_K$ be a partition. Let $n_k = \sum_{i=1}^n \mathbb{1}\{f(X_i) \in B_k\}$ be the number of calibration points in bin k, and for any $z \in [0,1]$, let k(z) be the index of the bin containing z. Then, we define h as

$$\hat{h}(z) = \frac{1}{n_{k(z)}} \sum_{i=1}^{n} Y_i \cdot \mathbb{1} \left\{ f(X_i) \in B_{k(z)} \right\}$$
 (12.1)

whenever $n_{k(z)} \ge 1$, and $\hat{h}(z) = 1/2$ otherwise. That is, for points with $f(x) \in B_k$, the function $\hat{h} \circ f$ returns the frequency of Y = 1 for points in that bin based on the calibration data (or 1/2 if there were no observations in that bin). This is equivalent to minimizing the squared error of $h \circ f$ on the calibration data:

$$\hat{h} = \arg\min_{h \in \mathcal{H}} \sum_{i=1}^{n} ([h \circ f](X_i) - Y_i)^2,$$
(12.2)

where we choose the function class as $\mathcal{H} = \mathcal{H}_{\text{bin}}$, the set of functions that are constant within each bin B_k . This has the advantage that as the number of bins grows, the function class \mathcal{H}_{bin} is larger and more flexible. However, with a large number of bins, more data to is required to fit the function precisely.

Isotonic regression. Next, we consider isotonic regression, an alternative approach that avoids the need to specify bins, and is more commonly used than binning. Here, we restrict the post-hoc calibration function to lie in $\mathcal{H} = \mathcal{H}_{iso}$, the set of all nondecreasing functions. Restricting h to be nondecreasing is often natural, since the initial function f is assumed to be a model where larger outputs correspond to higher confidence that Y = 1. We then fit h by minimizing the squared error on the calibration data as in (12.2). While this approach avoids the specification of bins, it can only produce nondecreasing h. As such, it is neither more nor less general than binning. However, it requires less calibration data to achieve a stable fit, and it is more commonly used than binning.

Temperature scaling. We can impose even more structure by taking \mathcal{H} to be a parametric class. One such approach is to take h to be a logistic regression of Y_i onto $f(X_i)$, which corresponds to the class of functions $\mathcal{H} = \mathcal{H}_{\text{logistic}} = \{h_{\beta_0,\beta_1} : \beta_0, \beta_1 \in \mathbb{R}\}$, where

$$h_{\beta_0,\beta_1}(z) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \text{logit}(z))}}$$

with $\log \operatorname{it}(z) = \log(\frac{z}{1-z})$. Notice that $\beta_1 \approx 0$ encourages the output probabilities to be similar to each other, while larger (positive or negative) β_1 leads to more extreme probabilities that differ across the range of values of f(X). From a statistical perspective, this approach has only two parameters, so it requires less calibration data than the other two approaches. However, the function class $\mathcal{H}_{\text{logistic}}$ is less flexible, so the resulting fit may not be as well calibrated as other approaches when ample data are available.

12.1.2 Quantifying violations of perfect calibration

While Definition 12.1 is the natural definition of perfect calibration, in practice we never expect this to hold exactly, and it is necessary to quantify the degree to which calibration is violated—goal (a) above.

One widely-used measure of the extent to which a function f is miscalibrated is given by the *expected* calibration error (ECE):

$$ECE(f) = \mathbb{E}\Big[\Big|\mathbb{E}[Y \mid f(X)] - f(X)\Big|\Big].$$

Notice that this is defined with respect to a probability distribution P, although the notation suppresses this. A closely related measure is the *binned ECE*:

$$binECE(f) = \sum_{k=1}^{K} \left| \mathbb{E}[Y \mid f(X) \in B_k] - \mathbb{E}[f(X) \mid f(X) \in B_k] \right| \cdot \mathbb{P}(f(X) \in B_k),$$

where $[0,1] = B_1 \cup \cdots \cup B_K$ is some partition of the unit interval. This quantity has a natural plug-in estimator,

$$\widehat{\text{binECE}}(f) = \sum_{k=1}^{K} \left| \frac{1}{n_k} \cdot \sum_{\substack{i \in [n] \\ f(X_i) \in B_k}} (Y_i - f(X_i)) \right| \cdot \frac{n_k}{n}, \tag{12.3}$$

where $n_k = |\{i : f(X_i) \in B_k\}|$ is the number of data points observed in bin k. This estimator is widely used in practice. However, we will see that binned ECE can be arbitrarily far from ECE, which means that binECE(f) (and its empirical estimate binECE(f)) should not be viewed as a reliable proxy for ECE(f).

An alternative relaxation of perfect calibration is the distance to calibration (dCE), which is the minimum L_1 distance between f and a perfectly calibrated function:

$$\mathrm{dCE}(f) = \inf_{\substack{g: \mathcal{X} \to [0,1] \\ \mathbb{E}[Y|g(X)] = g(X)}} \mathbb{E}[|g(X) - f(X)|].$$

A critical advantage of dCE (compared to ECE) is that it is possible to give distribution-free confidence bounds for dCE, which we will state formally soon.

12.2 Properties of ECE and binned ECE

We now consider the ECE in more detail. In an empirical setting when we have access only to a finite amount of data, we will see that ECE is straightforward to work with if f(X) takes only a finite number of values, but faces hardness results if f(X) is continuously distributed. This arises from a connection with the hardness of distribution-free regression, and we will make this connection explicit later on in this section. These challenges make binned ECE an appealing alternative to ECE, but we will see that these two measures of miscalibration are fundamentally quite different.

12.2.1 Discontinuity of ECE

A basic difficulty with the ECE is that it can change by a large amount with only small changes in the function f. We will informally refer to this as the discontinuity of the ECE. This is illustrated by the following example.

Example 12.2

Consider the following distribution P on (X,Y): let $X \sim \text{Unif}[0,1]$, and let

$$\mathbb{P}(Y = 1 \mid X) = \begin{cases} 0, & X \in [0, 0.25] \cup [0.75, 1], \\ 1, & X \in (0.25, 0.75). \end{cases}$$

Then the constant function f(x) = 1/2 is perfectly calibrated. On the other hand, the function

$$f_{\epsilon}(x) = \frac{1-\epsilon}{2} + \epsilon x,$$

which is arbitrarily close to f when $\epsilon > 0$ is small, is highly miscalibrated in terms of its ECE: since f_{ϵ} is injective, we have $\mathbb{E}[Y \mid f_{\epsilon}(X)] = \mathbb{E}[Y \mid X]$, and so

$$\mathrm{ECE}(f_{\epsilon}) = \mathbb{E}\left[\left|\mathbb{E}[Y \mid f_{\epsilon}(X)] - f_{\epsilon}(X)\right|\right] = \mathbb{E}\left[\left|\mathbb{1}\left\{0.25 < X < 0.75\right\} - \left(\frac{1-\epsilon}{2} + \epsilon X\right)\right|\right] = \frac{1}{2}.$$

This discontinuity is central to the challenges inherent to estimating ECE empirically. We can therefore consider binned ECE instead, since this discretized measure of calibration error is easier to estimate. This raises the question of whether binned ECE is a reasonable proxy for ECE.

The following result tells us that binned ECE cannot be larger than ECE:

Proposition 12.3

For any distribution P on $\mathcal{X} \times \{0,1\}$, any function $f: \mathcal{X} \to [0,1]$, and any partition $[0,1] = B_1 \cup \cdots \cup B_K$, binECE $(f) \leq \text{ECE}(f)$.

In fact, however, this inequality can be extremely loose. For instance, returning to Example 12.2 above, if we choose K=2 bins to form the partition $[0,1]=[0,0.5]\cup(0.5,1]$, we can verify that binECE $(f_{\epsilon})=\frac{\epsilon}{4}$, whereas the ECE is 1/2. This illustrates an important point: estimating binned ECE, and observing a small error, does not necessarily imply that ECE is low.

Proof of Proposition 12.3

Let k(f(x)) denote the bin to which f(x) belongs, i.e., for any x with $f(x) \in B_k$, we have k(f(x)) = k. The definition of binned ECE can then equivalently be expressed as

$$\operatorname{binECE}(f) = \sum_{k=1}^{K} \left| \mathbb{E}[Y - f(X) \mid f(X) \in B_k] \right| \cdot \mathbb{P}(f(X) \in B_k) = \mathbb{E}\left[\left| \mathbb{E}[Y - f(X) \mid k(f(X))] \right| \right].$$

The result then follows by Jensen's inequality:

$$\mathbb{E}\Big[\Big|\mathbb{E}\big[Y - f(X) \mid k(f(X))\big]\Big|\Big] \leq \mathbb{E}\Big[\Big|\mathbb{E}\big[Y - f(X) \mid f(X)\big]\Big|\Big] = \mathrm{ECE}(f).$$

12.2.2 Can ECE and binned ECE be estimated?

We now turn to the topic of estimating ECE and binned ECE. More precisely, we are interested in providing upper bounds on these quantities—that is, we would like to use the available data to certify that ECE or binned ECE is low. We will see that this is possible in general with binned ECE but not ECE.

For binned ECE, it is straightforward to construct a meaningful upper bound, using the estimator given in (12.3).

Theorem 12.4

Fix any sample size n and function $f: \mathcal{X} \to [0, 1]$, and let $[0, 1] = B_1 \cup \cdots \cup B_K$ be a fixed partition. Define $\widehat{\text{binECE}}(f)$ as in (12.3). Then for any distribution P on $\mathcal{X} \times \{0, 1\}$, for any $\delta \in [0, 1]$,

$$\mathbb{P}\left(\widehat{\text{binECE}}(f) \ge \widehat{\text{binECE}}(f) - \sqrt{\frac{2\log(1/\delta)}{n}}\right) \ge 1 - \delta,$$

and

$$\mathbb{P}\left(\widehat{\text{binECE}}(f) \leq \widehat{\text{binECE}}(f) + \sqrt{\frac{K}{n}} + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \geq 1 - \delta.$$

In particular, the first statement shows that $\widehat{\operatorname{binECE}}(f) + \sqrt{\frac{2\log(1/\delta)}{n}}$ provides a distribution-free valid upper confidence bound on the binned ECE—and thus we can view this as a way to *certify* that binned ECE is low, without any assumptions. On the other hand, the second statement tells us that this upper confidence bound is fairly tight (as long as $K \ll n$), so this a meaningful way to check whether a function f has low binned ECE.

Next, we show that the picture is substantially different for ECE. Any upper confidence bound for ECE that has distribution-free validity can only return uninformative answers for a nonatomic f(X).

Theorem 12.5

Fix any sample size n and function $f: \mathcal{X} \to [0, 1]$. Let $\widehat{\mathrm{ECE}}(f) \in [0, 1]$ be a function of the observed data $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathcal{X} \times \{0, 1\}$), satisfying the following distribution-free validity property:

$$\mathbb{P}\left(\widehat{\mathrm{ECE}}(f) \ge \mathrm{ECE}(f)\right) \ge 1 - \delta \text{ for all } P. \tag{12.4}$$

Then for any distribution P on $\mathcal{X} \times \{0,1\}$ for which f(X) has a nonatomic distribution,

$$\mathbb{P}\left(\widehat{\mathrm{ECE}}(f) \geq \mathbb{E}[|Y - f(X)|]\right) \geq 1 - \delta.$$

In words, this means we cannot have a distribution-free upper confidence bound on ECE that shrinks to zero as the sample size grows, for *any* function f where f(X) is nonatomic. Notice this result is very similar to Theorem 11.11, which established the impossibility of providing a nontrivial distribution-free upper bound on the error in estimating $\mathbb{E}_P[Y \mid X]$ when X is nonatomic. Here, we are instead interested in $\mathbb{E}_P[Y \mid f(X)]$, but if f(X) is nonatomic then this is essentially the same question.

Proof of Theorem 12.4

Let $\mu_k = \mathbb{E}[Y \mid f(X) \in B_k]$, $\mu_k^f = \mathbb{E}[f(X) \mid f(X) \in B_k]$, $p_k = \mathbb{P}(X \in B_k)$, and $n_k = |\{i \in [n] : f(X_i) \in B_k\}|$ for k = 1, ..., K. Then for each k, conditional on n_k (and assuming $n_k \ge 1$), the quantity

$$\sum_{\substack{i \in [n] \\ f(X_i) \in B_k}} (Y_i - f(X_i))$$

is a sum of n_k many i.i.d. terms, each with mean $\mu_k - \mu_k^f$ and variance ≤ 1 . Consequently, a straightforward calculation verifies that

$$|n_k|\mu_k - \mu_k^f| \le \mathbb{E} \left[\left| \sum_{\substack{i \in [n] \\ f(X_i) \in B_k}} (Y_i - f(X_i)) \right| \mid n_k \right] \le n_k |\mu_k - \mu_k^f| + \sqrt{n_k}.$$

Therefore, marginalizing over n_k ,

$$\mathbb{E}\left[\widehat{\text{binECE}}(f)\right] = \mathbb{E}\left[\frac{1}{n} \sum_{k=1}^{K} \left| \sum_{\substack{i \in [n] \\ f(X_i) \in B_k}} (Y_i - f(X_i)) \right| \right]$$

$$\geq \mathbb{E}\left[\sum_{k=1}^{K} \frac{n_k}{n} |\mu_k - \mu_k^f| \right] = \sum_{k=1}^{K} p_k |\mu_k - \mu_k^f| = \text{binECE}(f),$$

since $\mathbb{E}[n_k] = np_k$, and similarly

$$\mathbb{E}\left[\widehat{\text{binECE}}(f)\right] \leq \mathbb{E}\left[\sum_{k=1}^{K} \frac{n_k}{n} |\mu_k - \mu_k^f| + \frac{\sqrt{n_k}}{n}\right] = \widehat{\text{binECE}}(f) + \sum_{k=1}^{K} \frac{\mathbb{E}[\sqrt{n_k}]}{n}$$
$$\leq \widehat{\text{binECE}}(f) + \sum_{k=1}^{K} \frac{\sqrt{np_k}}{n} \leq \widehat{\text{binECE}}(f) + \sqrt{\frac{K}{n}}.$$

Finally, we apply a bounded-differences argument: observe that resampling a single data point (X_i, Y_i) can only change $\widehat{\text{binECE}}(f)$ by at most $\pm \frac{2}{n}$. By McDiarmid's inequality, we therefore have

$$\mathbb{P}\left(\widehat{\text{binECE}}(f) \geq \mathbb{E}\left[\widehat{\text{binECE}}(f)\right] - \sqrt{\frac{2\log(1/\delta)}{n}}\right) \geq 1 - \delta$$

and

$$\mathbb{P}\left(\widehat{\text{binECE}}(f) \leq \mathbb{E}\left[\widehat{\text{binECE}}(f)\right] + \sqrt{\frac{2\log(1/\delta)}{n}}\right) \geq 1 - \delta,$$

which completes the proof.

Proof of Theorem 12.5

Our proof relies on the sample–resample technique of Lemma 4.15, and follows similar arguments to the proof of Theorem 11.11.

Fix any $M \geq 1$, let $(X^{(1)}, Y^{(1)}), \ldots, (X^{(M)}, Y^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P$, and let \widehat{P}_M be the empirical distribution. Now condition on \widehat{P}_M . On the event that $f(X^{(1)}), \ldots, f(X^{(M)})$ are all distinct (which holds almost surely), we have

$$E_{\widehat{P}_{\mathcal{N}}}[Y \mid f(X) = f(X^{(i)})] = Y^{(i)}$$

for all $i \in [m]$, and consequently

$$ECE_{\widehat{P}_{M}}(f) = \frac{1}{M} \sum_{i=1}^{M} |Y^{(i)} - f(X^{(i)})|$$

where we use the subscript to denote that this is the ECE with respect to the distribution \widehat{P}_M . Then by the distribution-free validity of our estimator of ECE (12.4), we have

$$\mathbb{P}\left(\widehat{\mathrm{ECE}}(f) \ge \frac{1}{M} \sum_{i=1}^{M} |Y^{(i)} - f(X^{(i)})| \mid \widehat{P}_M\right) \ge 1 - \delta,$$

where $\widehat{\mathrm{ECE}}(f)$ is computed using a sample $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\mathrm{i.i.d.}}{\sim}\widehat{P}_M$. Defining $c_M=\mathbb{E}_P[|Y-f(X)|]-\frac{1}{2\sqrt{M}}$, we can then write

$$\mathbb{P}\left(\widehat{\mathrm{ECE}}(f) > c_M \mid \widehat{P}_M\right) \ge 1 - \delta - \mathbb{1}\left\{\frac{1}{M} \sum_{i=1}^M |Y^{(i)} - f(X^{(i)})| \le c_M\right\}.$$

Next, by Lemma 4.15 (i.e., by bounding the difference between sampling with and without replacement), after marginalizing over \hat{P}_M , we have

$$\mathbb{P}\big(\widehat{\mathrm{ECE}}(f) > c_M\big) \ge 1 - \delta - \mathbb{P}\left(\frac{1}{M} \sum_{i=1}^{M} |Y^{(i)} - f(X^{(i)})| \le c_M\right) - \frac{n(n-1)}{2M},$$

where now $\widehat{\mathrm{ECE}}(f)$ is computed using data $(X_1,Y_1),\ldots,(X_n,Y_n)\stackrel{\mathrm{i.i.d.}}{\sim}P$. Since the terms $|Y^{(i)}-f(X^{(i)})|\in[0,1]$ are i.i.d., the quantity $\frac{1}{M}\sum_{i=1}^M|Y^{(i)}-f(X^{(i)})|$ has mean $\mathbb{E}_P[|Y-f(X)|]$

and variance $\leq \frac{1}{4M}$, and therefore by Chebyshev's inequality,

$$\mathbb{P}\left(\frac{1}{M}\sum_{i=1}^{M}|Y^{(i)} - f(X^{(i)})| \le c_M\right) \le \frac{1}{2\sqrt{M}}.$$

Therefore,

$$\mathbb{P}(\widehat{\text{ECE}}(f) > c_M) \ge 1 - \delta - \frac{1}{2\sqrt{M}} - \frac{n(n-1)}{2M}.$$

Finally, since M can be taken to be arbitrarily large, and $\lim_{M\to\infty} c_M = \mathbb{E}_P[|Y-f(X)|]$, this completes the proof.

12.2.3 Can ECE be controlled with post-hoc calibration?

The result of Theorem 12.5 tells us that, given a trained model f, we cannot meaningfully estimate its ECE—unless f returns outputs in a discrete space (i.e., f(X) is effectively performing binning). In particular this means that a continuous function f, which may return a continuously-distributed output f(X), generally cannot be certified to have low ECE. But this does not exclude another possibility: instead of testing whether ECE(f) is low, can we instead perform post-hoc calibration so that the resulting output is now guaranteed to have low ECE?

We will now see that the same types of challenges arise for this alternative version of the question. If post-hoc calibration is performed via binning, as in (12.1), then we can ensure low ECE since we are now in a discrete case. On the other hand, an injective post-hoc calibration (such as temperature scaling) cannot result in a guarantee of low ECE in the continuous setting.

We begin with a positive result showing distribution-free ECE is possible via the binning algorithm (12.1). For each bin B_k , we compute the empirical mean of Y when f(X) takes values in B_k , and we use this as the value of $\hat{h} \circ f$. The approach will result in approximate calibration, with the approximation quality improving with the number of points per bin (i.e., as the sample size grows).

Theorem 12.6: Distribution-free ECE control for binning

Fix a choice of bins B_1, \ldots, B_K that partition [0,1]. Let \hat{h} be the binning post-hoc adjustment as in (12.1). Then

$$\mathbb{E}\left[\mathrm{ECE}(\hat{h} \circ f)\right] \le \sqrt{K/2n},$$

and moreover, for any $\delta \in [0, 1]$,

$$\mathbb{P}\left(\mathrm{ECE}(\hat{h} \circ f) \leq \frac{1}{\sqrt{2\delta}} \cdot \sqrt{\frac{K}{n}}\right) \geq 1 - \delta.$$

Proof of Theorem 12.6

The proof of the tail bound (the second claim) follows directly from Theorem 11.10: specifically, we apply Theorem 11.10 to the sample $(f(X_1), Y_1), \ldots, (f(X_n), Y_n)$ (in place of $(X_1, Y_1), \ldots, (X_n, Y_n)$ as in the statement of that theorem). The bound in expectation follows from a similar calculation as in the proof of Theorem 11.10, and we omit the details.

By construction, the binning procedure coarsens the information coming from f, since $\hat{h} \circ f$ takes only finitely many values. Intuitively, this means that binning loses some of the information present in f.

To avoid this loss of information, we can instead ask whether we can use a post-hoc calibration procedure that returns an injective function \hat{h}_n . However, we will now see that this goal is incompatible with distribution-free validity: if f(X) is nonatomic, then requiring a distribution-free guarantee on ECE will inevitably prohibit the post-hoc calibration function \hat{h}_n from being injective. In particular, this implies that strategies such as temperature scaling are intrinsically unable to provide a distribution-free ECE guarantee.

Theorem 12.7

Fix any sample size n and function $f: \mathcal{X} \to [0, 1]$. Consider any post-hoc calibration procedure that satisfies a distribution-free guarantee on ECE,

$$\mathbb{P}_{P^n}\left(\mathrm{ECE}(\hat{h}_n \circ f) \le \epsilon\right) \ge 1 - \delta \text{ for all } P.$$

Then, for any distribution P on $\mathcal{X} \times \{0,1\}$ for which f(X) has a nonatomic distribution,

If
$$\epsilon < \mathbb{E}_P[\operatorname{Var}_P(Y \mid X)]$$
 then $\mathbb{P}_{P^n}\left(\hat{h}_n \text{ is an injective function}\right) \le \delta$.

Note that this bound on ϵ is not vanishing with n. In other words, regardless of the sample size n, we cannot ensure that ECE will be very low, with any injective post-hoc calibration procedure.

The key idea of this proof is to connect the present aim, distribution-free calibration, with the problem of distribution-free regression as studied in Chapter 11. In particular, a distribution-free guarantee on ECE implies that we are able to perform distribution-free inference on the regression of Y onto the post-hoc calibrated predictor $\hat{h}_n(f(X))$, i.e., inference on $\mathbb{E}[Y \mid \hat{h}_n(f(X))]$ —but from the results of Chapter 11, we know that this is impossible in settings where $\hat{h}_n(f(X))$ is nonatomic.

Proof of Theorem 12.7

First, given a distribution P on $\mathcal{X} \times \{0,1\}$, define \tilde{P} as the induced distribution of (f(X),Y). Let $\mu_{\tilde{P}}$ be the regression function for this distribution, i.e.,

$$\mu_{\tilde{P}}(f(X)) = \mathbb{E}_P[Y \mid f(X)]$$

almost surely. Let $h:[0,1]\to [0,1]$ be any injective function. Then h(f(X)) contains the same information as f(X), and so

$$\mu_{\tilde{P}}(f(X)) = \mathbb{E}_P[Y \mid h(f(X))]$$

almost surely. In particular,

$$\begin{split} \mathrm{ECE}(h \circ f) &= \mathbb{E}_{P} \left[|\mathbb{E}_{P} \left[Y \mid h(f(X)) \right] - h(f(X)) | \right] \\ &= \mathbb{E}_{P} \left[|\mu_{\tilde{P}}(f(X)) - h(f(X))| \right] = \|h - \mu_{\tilde{P}}\|_{L_{1}(\tilde{P})}, \end{split}$$

where the $L_1(\tilde{P})$ norm follows the notation of Section 11.7. On the other hand, if h is not injective, then we nonetheless have $||h - \mu_{\tilde{P}}||_{L_1(\tilde{P})} \leq 1$, so combining both cases,

$$\|h-\mu_{\tilde{P}}\|_{L_1(\tilde{P})} \leq \mathrm{ECE}(h\circ f) \cdot \mathbbm{1}\left\{h \text{ is injective}\right\} + \mathbbm{1}\left\{h \text{ is not injective}\right\}.$$

Next, we return to the setting where \hat{h}_n is trained on data. Define

$$\hat{\epsilon} = \epsilon \cdot \mathbb{1} \left\{ \hat{h}_n \text{ is injective} \right\} + \mathbb{1} \left\{ \hat{h}_n \text{ is not injective} \right\}.$$

Then by the calculations above.

$$ECE(\hat{h}_n \circ f) \le \epsilon \implies \|\hat{h}_n - \mu_{\tilde{P}}\|_{L_1(\tilde{P})} \le \hat{\epsilon},$$

and therefore,

$$\mathbb{P}_{P^n} \big(\| \hat{h}_n - \mu_{\tilde{P}} \|_{L_1(\tilde{P})} \le \hat{\epsilon} \big) \ge \mathbb{P}_{P^n} \big(\text{ECE}(\hat{h}_n \circ f) \le \epsilon \big) \ge 1 - \delta,$$

by our assumption on the ECE calibration properties of \hat{h}_n . In other words, \hat{h}_n provides an estimate of the regression function $\mu_{\tilde{P}}$, and $\hat{\epsilon}$ is a data-dependent estimate of its error, as in (11.9). Since f(X) has a nonatomic distribution by assumption, we can apply Theorem 11.11, which yields

$$\mathbb{P}\left(\hat{\epsilon} \geq \mathbb{E}_P[\operatorname{Var}_P(Y \mid X)]\right) \geq 1 - \delta.$$

But on the event that \hat{h}_n is injective, we have $\hat{\epsilon} = \epsilon < \mathbb{E}_P[\operatorname{Var}_P(Y \mid X)]$, so this completes the proof.

12.3 Properties of dCE

We next turn to studying the properties of dCE. As we will see in this section, unlike ECE, it is possible to estimate dCE empirically in a meaningful way. Before considering the problem of estimation, we first compare dCE and ECE.

12.3.1 Comparing dCE and ECE

Our next result shows that dCE is always bounded by ECE—we can interpret this as saying that dCE is a strictly weaker notion of calibration than ECE.

Proposition 12.8

For any distribution P on $\mathcal{X} \times \{0,1\}$ and any function $f: \mathcal{X} \to [0,1]$, $dCE(f) \leq ECE(f)$.

Proof of Proposition 12.8

By definition of dCE, we have

$$\mathrm{dCE}(f) = \inf_{\substack{g: \mathcal{X} \rightarrow [0,1] \\ \mathbb{E}[Y|g(X)] = g(X)}} \mathbb{E}[|g(X) - f(X)|],$$

where the infimum is taken over all perfectly calibrated functions g. One such function g is the true conditional mean, $g^*(x) = \mathbb{E}[Y \mid f(X) = f(x)]$. With this choice, we have

$$dCE(f) \le \mathbb{E}[|g^*(X) - f(X)|] = \mathbb{E}[|\mathbb{E}[Y \mid f(X)] - f(X)|] = ECE(f).$$

The inequality in this bound can sometimes be extremely loose, as in the following example.

Example 12.9

Returning to the setting of Example 12.2, recall that the constant function f(x) = 1/2 is a perfectly calibrated, while $f_{\epsilon}(x) = \frac{1-\epsilon}{2} + \epsilon x$ is a small perturbation with high ECE. On the other hand, for dCE, we have

$$dCE(f_{\epsilon}) \le \mathbb{E}[|f_{\epsilon}(X) - f(X)|] = \frac{\epsilon}{4}.$$

In particular, this example highlights that, unlike ECE, the dCE measure of miscalibration is continuous: by definition, for any functions f and g, we have

$$dCE(f) \le dCE(g) + \mathbb{E}[|f(X) - g(X)|].$$

That is, dCE is 1-Lipschitz with respect to the $L_1(P)$ norm on functions.

12.3.2 Estimating dCE

We now show that dCE can be estimated from data in a distribution-free way. To define our estimator, we begin by fixing any $K \ge 1$. Let

$$\widehat{\mathrm{dCE}}(f) = \frac{1}{n} \sum_{k=1}^{K} \left| \sum_{\substack{i \in [n] \\ f(X_i) \in B_k}} \left(Y_i - \frac{k}{K} \right) \right|,$$

where the bins B_1, \ldots, B_K partition [0, 1] into equal-length intervals,

$$[0,1] = \left[0, \frac{1}{K}\right] \cup \left(\frac{1}{K}, \frac{2}{K}\right] \cup \dots \cup \left(\frac{K-1}{K}, 1\right] =: B_1 \cup \dots \cup B_K.$$

Theorem 12.10

Fix any sample size n and function $f: \mathcal{X} \to [0,1]$. Then for any distribution P on $\mathcal{X} \times \{0,1\}$, for any $\delta \in [0,1]$,

$$\mathbb{P}\left(\widehat{\mathrm{dCE}}(f) + \frac{1}{K} + \sqrt{\frac{2\log(1/\delta)}{n}} \ge \mathrm{dCE}(f)\right) \ge 1 - \delta.$$

This means we have constructed an upper confidence bound on the dCE of f with distribution-free validity. That is, if we observe a small estimate $\widehat{\text{dCE}}(f)$ (and if K and n are both reasonably large), then we can be confident that dCE(f) is low.

Moreover, unlike for ECE, this estimator can be meaningful (i.e., has the potential to return values close to zero) even when f is continuous. For example, if f is perfectly calibrated (as in Definition 12.1), a straightforward calculation shows that $\mathbb{E}[\widehat{\text{dCE}}(f)] \leq \frac{1}{K} + \sqrt{\frac{K}{n}}$. By choosing K to satisfy $1 \ll K \ll n$, we can therefore construct an estimator of dCE that will successfully certify that an accurate function f has low dCE miscalibration error. This is in contrast to ECE calibration—Theorem 12.5 shows that distribution-free certification of low ECE error is not possible, aside from the case where f(X) is discrete.

Proof of Theorem 12.10

First, define $\tilde{g}(x) = \sum_k \frac{k}{K} \cdot \mathbb{1}\{f(x) \in B_k\}$. Next, let $\mu_k = \mathbb{E}[Y \mid f(X) \in B_k]$ be the true conditional probability for the kth bin, and define $g(x) = \sum_k \mu_k \mathbb{1}\{f(x) \in B_k\}$, which is a perfectly calibrated function, by construction. Following an identical argument as in the proof of Theorem 12.4, we can verify that

$$\mathbb{E}[|g(X) - \tilde{g}(X)|] \le \mathbb{E}\left[\widehat{\mathrm{dCE}}(f)\right] \le \mathbb{E}[|g(X) - \tilde{g}(X)|] + \sqrt{\frac{K}{n}}.$$

Moreover, by construction, we have

$$|\tilde{g}(x) - f(x)| \le \max_{k} \sup_{t \in B_k} \left| t - \frac{k}{K} \right| \le \frac{1}{K},$$

for all x, and therefore $\mathbb{E}[|\tilde{g}(X) - f(X)|] \leq \frac{1}{K}$. Since g is perfectly calibrated, we therefore have

$$\mathrm{dCE}(f) \leq \mathbb{E}[|g(X) - f(X)|] \leq \mathbb{E}[|g(X) - \tilde{g}(X)|] + \mathbb{E}[|\tilde{g}(X) - f(X)|] \leq \mathbb{E}[\widehat{\mathrm{dCE}}(f)] + \frac{1}{K}.$$

To complete the proof, we apply a bounded-differences argument, as in the proof of Theorem 12.4: since resampling a single data point (X_i, Y_i) can only change $\widehat{\text{dECE}}(f)$ by at most $\pm \frac{2}{n}$, we therefore have

$$\mathbb{P}\left(\widehat{\mathrm{dECE}}(f) \geq \mathbb{E}\left[\widehat{\mathrm{dECE}}(f)\right] - \sqrt{\frac{2\log(1/\delta)}{n}}\right) \geq 1 - \delta.$$

12.4 Venn–Abers Predictors

This section introduces the Venn–Abers predictor, a post-hoc calibration algorithm that leverages exchangeability in order to achieve its mathematical guarantee. Unlike previous methods discussed in this chapter, the Venn–Abers predictor outputs an interval-valued prediction of $\mathbb{P}(Y=1\mid f(X))$. This interval contains a prediction that is calibrated, in a sense that will be made precise below.

The Venn–Abers predictor adapts post-hoc isotonic regression, as described in Section 12.1.1, by running two isotonic regressions—one on \mathcal{D}_{n+1}^0 and one on \mathcal{D}_{n+1}^1 , where we recall the notation $\mathcal{D}_{n+1}^y = ((X_1, Y_1), \ldots, (X_n, Y_n), (X_{n+1}, y))$ for any hypothesized test point value y. The method then outputs an interval whose endpoints are given by the predictions at $x = X_{n+1}$ from these two regressions. The Venn–Abers prediction algorithm is summarized below.

Algorithm 12.11: Venn-Abers Prediction

- 1. Input: Calibration data with binary labels $((X_1, Y_1), ..., (X_n, Y_n))$, a test point X_{n+1} , and a pre-trained model $f: \mathcal{X} \to [0, 1]$.
- 2. For each $y \in \{0,1\}$, perform isotonic regression on the augmented dataset \mathcal{D}_{n+1}^y ,

$$\hat{h}^{y} = \underset{h \in \mathcal{H}_{\text{iso}}}{\operatorname{argmin}} \sum_{i=1}^{n} ([h \circ f](X_{i}) - Y_{i})^{2} + ([h \circ f](X_{n+1}) - y)^{2},$$

and return the fitted values,

$$\hat{p}^y = ([\hat{h}^y \circ f](X_1), \dots, [\hat{h}^y \circ f](X_{n+1})).$$

3. Output the interval $[\hat{p}_{n+1}^0, \hat{p}_{n+1}^1]$.

Note that for each $y \in 0, 1$, while \hat{h}^y is not uniquely defined, the vector of fitted values \hat{p}^y is unique. The Venn–Abers predictor enjoys the following distribution-free guarantee:

Theorem 12.12

Let $(X_1, Y_1), \ldots, (X_{n+1}, Y_{n+1}) \in \mathcal{X} \times \{0, 1\}$ be exchangeable, and let $f : \mathcal{X} \to [0, 1]$ be a pre-trained model. Let \hat{p}^0 and \hat{p}^1 be defined as in Algorithm 12.11. Then,

$$\mathbb{P}\left(Y_{n+1} = 1 \mid \hat{p}_{n+1}^{Y_{n+1}}\right) = \hat{p}_{n+1}^{Y_{n+1}}$$

almost surely.

Informally, Theorem 12.12 is often interpreted as a guarantee on the interval-valued Venn–Abers prediction, $[\hat{p}_{n+1}^0, \hat{p}_{n+1}^1]$, in the following sense:

There exists a random variable $W \in \left[\hat{p}_{n+1}^0, \hat{p}_{n+1}^1\right]$ that is perfectly calibrated, i.e., $\mathbb{E}[Y_{n+1} \mid W] = W$.

Thus, we can interpret the output of the Venn-Abers predictor as an interval-valued probabilistic prediction. If the interval is wide, it signifies high uncertainty in our probabilistic prediction.

The procedure's validity hinges on the fact that Y_{n+1} is either equal to 0 or 1, and so the true dataset $\mathcal{D}_{n+1} = ((X_i, Y_i))_{i \in [n+1]}$ is equal to either \mathcal{D}_{n+1}^0 or \mathcal{D}_{n+1}^1 . When we guess $Y_{n+1} \in \{0, 1\}$ correctly, the resulting isotonic regression trained on \mathcal{D}_{n+1} is perfectly calibrated, and therefore one of the endpoints of the resulting interval is perfectly calibrated.

Much like full conformal prediction, the validity of the Venn-Abers predictor follows by combining exchangeability with symmetry. When we train the isotonic regression on all n+1 data points, \mathcal{D}_{n+1} , the resulting output is a symmetric function of the data points, which preserves exchangeability of the probabilistic predictions. The proof below makes all this precise.

Proof of Theorem 12.12

Let $\hat{h} = \hat{h}^{Y_{n+1}}$. By definition of the isotonic regression problem (12.2) (which depends symmetrically on the input data), the data points

$$(([\hat{h} \circ f](X_1), Y_1), \dots, ([\hat{h} \circ f](X_{n+1}), Y_{n+1}))$$

are exchangeable.

We will need to use a deterministic property of isotonic regression, which we state without proof: the fitted values of isotonic regression are piecewise constant, and the value within each bin is equal to the sample mean within the bin, i.e.,

For some partition $[n+1] = I_1 \cup \cdots \cup I_M$, $[\hat{h} \circ f](X_i) = \bar{Y}_{I_m}$ for all $m \in [M], i \in I_m$, (12.5)

where $\bar{Y}_{I_m} = \frac{1}{|I_m|} \sum_{i \in I_m} Y_i$ denotes the mean of the Y values indexed by $i \in I_m$.

Next, fix any function $g:[0,1]\to[0,1]$. We calculate

$$\mathbb{E}\left[\left(Y_{n+1} - \hat{p}_{n+1}^{Y_{n+1}}\right) \cdot g(\hat{p}_{n+1}^{Y_{n+1}})\right] = \mathbb{E}\left[\left(Y_{n+1} - [\hat{h} \circ f](X_{n+1})\right) \cdot g([\hat{h} \circ f](X_{n+1}))\right]$$

$$= \frac{1}{n+1} \mathbb{E}\left[\sum_{i=1}^{n+1} \left(Y_{i} - [\hat{h} \circ f](X_{i})\right) \cdot g([\hat{h} \circ f](X_{i}))\right]$$

$$= \frac{1}{n+1} \mathbb{E}\left[\sum_{m=1}^{M} \sum_{i \in I_{m}} \left(Y_{i} - [\hat{h} \circ f](X_{i})\right) \cdot g([\hat{h} \circ f](X_{i}))\right]$$

$$= \frac{1}{n+1} \mathbb{E}\left[\sum_{m=1}^{M} \sum_{i \in I_{m}} \left(Y_{i} - \bar{Y}_{I_{m}}\right) \cdot g(\bar{Y}_{I_{m}})\right]$$

$$= 0.$$

where the second step holds by exchangeability, the next-to-last step holds by (12.5), and the last step holds since $\sum_{i \in I_m} (Y_i - \bar{Y}_{I_m}) = 0$ by definition of \bar{Y}_{I_m} . Since this holds for any function g, by definition of conditional expectation we have proved that $\mathbb{E}[Y_{n+1} \mid \hat{p}_{n+1}^{Y_{n+1}}] = \hat{p}_{n+1}^{Y_{n+1}}$ almost surely, as desired.

Bibliographic notes

Calibration is a classical validity property for probability estimates [e.g., Murphy and Winkler, 1977, Dawid, 1982, DeGroot and Fienberg, 1983]. Post-hoc calibration for machine-learning models goes back to Platt [1999], which introduced a form of temperature scaling. Binning for post-hoc calibration goes back to Zadrozny and Elkan [2001]. Isotonic regression for post-hoc calibration was introduced in Zadrozny and Elkan [2002], leveraging the paired adjacent violators algorithm for isotonic regression Ayer et al. [1955], Barlow et al. [1972]. For more recent empirical studies of calibration in machine learning, see Guo et al. [2017] and Minderer et al. [2021].

Plotting empirical frequencies versus probabilities, known as reliability diagrams, goes back to at least Murphy and Winkler [1977], and ECE is a numeric summary of the reliability diagram. Gupta et al. [2020], Rossellini et al. [2025] connect the hardness of ECE calibration to the hardness of distribution-free inference for regression. The distance to calibration was introduced by Błasiok et al. [2023], and Proposition 12.8, as well as the fact that dCE can be estimated in a distribution-free setting is due to that work; the same paper also establishes connections between dCE and binned ECE. Another important view on calibration, known as weighted calibration error [Gopalan et al., 2022], considers comparing the prediction error to a class of test functions

$$\sup_{g \in \mathcal{G}} \mathbb{E} \left[g(f(X)) \left(\mathbb{E}[Y \mid f(X)] - f(X) \right) \right],$$

for some class of functions \mathcal{G} . ECE and dCE can both be viewed as special cases of this; see also Okoroafor et al. [2025], Rossellini et al. [2025] for an exploration of additional notions of calibration that lie in between ECE and dCE. Moreover, this view is closely related to the important topic of *multicalibration* [Hébert-Johnson et al., 2018]—a stronger notion of calibration that requires validity across subgroups of the data. See Roth [2022] for an introduction.

Venn-Abers predictors were introduced in Vovk and Petej [2014], building on Venn predictors Vovk et al. [2003c]. The inductive version was introduced in Lambrou et al. [2015] and further elaborated in Nouretdinov et al. [2018]. See Vovk et al. [2005] for further exposition. See also conformal predictive distributions [Vovk et al., 2017, 2018] for a different approach to calibration-type guarantees leveraging exchangeability.

Finally, we add some technical notes for several proofs appearing in this chapter. Several proofs use McDiarmid's inequality to ensure concentration of estimators (namely, the estimators of dCE and of binned ECE); this concentration inequality is due to McDiarmid [1989]. In the proof of Theorem 12.12 we rely on properties of isotonic regression, as in (12.5); for background on isotonic regression, see Barlow et al. [1972].

Chapter 13

Conditional Independence Testing

In this chapter, we turn to a different type of inference problem: the question of $conditional\ independence\ testing$, where we would like to determine whether a feature X and response Y are independent after conditioning on an additional random variable W (the 'confounder', which is often high-dimensional in many practical applications). Formally, we would like to test the hypothesis

$$H_0: X \perp \!\!\!\perp Y \mid W,$$
 (13.1)

or equivalently,

$$H_0: P \in \mathcal{P}_{X \perp \!\!\! \perp Y \mid W},$$

Note that if we instead test $X \perp\!\!\!\perp Y$, we are asking about marginal, rather than conditional, independence—e.g., testing whether the feature X is associated with the response Y, but without accounting for the confounding effects of W. The questions of testing independence or conditional independence are both intimately related to the same sorts of permutation-type arguments that arose in Chapter 2. As we will see shortly, in the distribution-free setting, testing marginal independence is typically straightforward, but testing conditional independence faces fundamental hardness results unless the confounder W is discrete.

13.1 Testing marginal independence

To begin, we tackle the easier problem of testing marginal independence. We are given a random sample $(X_1, Y_1), \ldots, (X_n, Y_n)$ drawn i.i.d. from some distribution $P \in \mathcal{P}_{(X,Y)}$, where $\mathcal{P}_{(X,Y)}$ is the space of all distributions on $(X,Y) \in \mathcal{X} \times \mathcal{Y}$. The goal is to test the null hypothesis of independence:

$$H_0: X \perp \!\!\!\perp Y,$$
 (13.2)

or equivalently,

$$H_0: P \in \mathcal{P}_{X \sqcup Y}$$

where $\mathcal{P}_{X \perp \! \! \perp Y} \subset \mathcal{P}_{(X,Y)}$ is the space of product distributions on $\mathcal{X} \times \mathcal{Y}$ —i.e., the space of distributions P on (X,Y) for which it holds that $X \perp \!\!\! \perp Y$.

We will consider any test statistic

$$T: (\mathcal{X} \times \mathcal{Y})^n \to \mathbb{R}$$

that measures evidence against the null—for example, for the case of real-valued data ($\mathcal{X} = \mathcal{Y} = \mathbb{R}$), we might choose

$$T((X_1, Y_1), \dots, (X_n, Y_n)) = |Corr((X_1, \dots, X_n), (Y_1, \dots, Y_n))|,$$

the absolute value of the sample correlation. How can we use the value of T to decide whether we have sufficient evidence to reject the null?

Before stating the test and the result, we first define some notation. Write

$$\mathbf{X} = (X_1, \dots, X_n) \in \mathcal{X}^n, \ \mathbf{Y} = (Y_1, \dots, Y_n) \in \mathcal{Y}^n$$

to denote the vectors of observations of X and of Y, respectively, and also

$$\mathbf{X}_{\sigma} = (X_{\sigma(1)}, \dots, X_{\sigma(n)})$$

to denote the permuted vector of X observations, for any $\sigma \in \mathcal{S}_n$. Moreover, for any test statistic $T: (\mathcal{X} \times \mathcal{Y})^n \to \mathbb{R}$, abusing notation we write $T(\mathbf{X}, \mathbf{Y})$ to denote $T((X_1, Y_1), \dots, (X_n, Y_n))$.

Theorem 13.1

Fix any function $T: (\mathcal{X} \times \mathcal{Y})^n \to \mathbb{R}$. Let $(X_1, Y_1), \dots, (X_n, Y_n) \stackrel{\text{i.i.d.}}{\sim} P$, and let

$$\psi(\mathbf{X}, \mathbf{Y}) = \mathbb{1}\left\{\frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \mathbb{1}\left\{T(\mathbf{X}_{\sigma}, \mathbf{Y}) \ge T(\mathbf{X}, \mathbf{Y})\right\} \le \alpha\right\}.$$

Then ψ is a valid test of the null hypothesis $\mathcal{H}_{X \perp \! \! \! \! \perp Y}$, i.e.,

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}) = 1) < \alpha \text{ for all } P \in \mathcal{P}_{X \parallel Y}.$$

$$(\mathbf{X}_{\sigma}, \mathbf{Y}) \stackrel{\mathrm{d}}{=} (\mathbf{X}, \mathbf{Y}),$$

for all permutations $\sigma \in \mathcal{S}_n$ —and consequently, the observed test statistic value $T(\mathbf{X}, \mathbf{Y})$ can be compared against permuted values $T(\mathbf{X}_{\sigma}, \mathbf{Y})$ to test the null.

Proof of Theorem 13.1

Our proof will rely on the validity of the permutation test, as established in Chapter 2 (see Theorem 2.4). In order to apply those results, we will need to condition on \mathbf{Y} . Under the null hypothesis of marginal independence (13.2), the joint distribution P can be written as a product, $P = P_X \times P_Y$. Therefore, even after conditioning on \mathbf{Y} , it still holds that the feature values X_1, \ldots, X_n are i.i.d. draws from P_X .

In particular, this means that X_1, \ldots, X_n are exchangeable, after conditioning on Y. Defining

$$p = \frac{\sum_{\sigma \in \mathcal{S}_n} \mathbb{1} \left\{ T(\mathbf{X}_{\sigma}, \mathbf{Y}) \ge T(\mathbf{X}, \mathbf{Y}) \right\}}{n!},$$

we therefore have $\mathbb{P}_P(p \leq \alpha \mid \mathbf{Y}) \leq \alpha$, by Theorem 2.4 (specifically, since we condition on \mathbf{Y} , we are applying this theorem with the test statistic T replaced by the map $\mathbf{x} \mapsto T(\mathbf{x}, \mathbf{Y})$). Finally, by definition, $\psi(\mathbf{X}, \mathbf{Y}) = 1$ if and only if $p \leq \alpha$.

13.2 Conditional independence with a discrete confounder

Next, we study the problem of conditional independence testing, i.e., testing the null (13.1), in a special setting: we will consider the case that the confounder W is a discrete random variable. In this context, the problem of conditional independence testing is solvable via an extension of the permutation test, which groups

Figure 13.1: Visualization of a dataset with a discrete confounder along with a local permutation of the covariate. Grayscale levels indicate numerical value. On the left, we show the dataset in its original ordering; note that W only takes on three values, defining three subgroups. On the right, we show a locally permuted version of the dataset, where the values of X are randomly permuted within each subgroup, as in the local permutation test from Section 13.2.1.

together data points according to their value of the confounder W, and then simply permutes the (X,Y) data within groups. This is sometimes called a local permutation test, because it only permutes 'locally' among data points that share the exact same value of the confounder W. (Later on in this chapter, we will consider versions of this test where permutations are allowed between data points where the W values are approximately the same.)

Throughout the section, we encourage the reader to note the parallel nature of the arguments used for the results on test-point-conditional coverage with discrete features (Section 4.3.1), the results on regression for discrete features (Section 11.3), and the results on calibration via binning (Theorem 12.6). The technical arguments used in these sections are roughly the same, and boil down to the fact that, when we have access to repeated measurements, it becomes possible to perform distribution-free inference.

13.2.1 Formulating a local permutation test

For testing marginal (i.e., unconditional) independence, $X \perp \!\!\! \perp Y$, we can simply permute the X values to simulate a draw from the null distribution as in Section 13.1 above. When testing conditional independence, $X \perp \!\!\! \perp Y \mid W$, for a *discrete* confounder W, we now see that we can use exactly the same strategy by partitioning the data into groups.

The intuition is as follows. If we think of the distribution P on (X, Y, W) as describing the general population from which data points are sampled, for any specific value w for the confounder we can consider the 'subpopulation' of data points for which W = w. Within this subpopulation, X and Y are independent—and so it is again valid to permute X values in order to resample the data and test the null hypothesis. See Figure 13.1 for an illustration.

Formally, we can define the local permutation test as follows. We are given an i.i.d. sample of data $((X_i, Y_i, W_i))_{i \in [n]}$ drawn from $P \in \mathcal{P}_{X \times Y \times W}$, where $\mathcal{P}_{X \times Y \times W}$ is the space of all distributions on $\mathcal{X} \times \mathcal{Y} \times \mathcal{W}$. Let $\mathcal{S}_n(\mathbf{W}) \subseteq \mathcal{S}_n$ be the set of permutations of $\{1, \ldots, n\}$ that preserve the value of the vector of confounders $\mathbf{W} = (W_1, \ldots, W_n)$ —i.e.,

$$S_n(\mathbf{W}) = \left\{ \sigma \in S_n : W_{\sigma(i)} = W_i \text{ for all } i \in \{1, \dots, n\} \right\}.$$
(13.3)

Then, given some choice of test statistic $T: (\mathcal{X} \times \mathcal{Y} \times \mathcal{W})^n \to \mathbb{R}$, the local permutation test is defined as

$$\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = \mathbb{1} \left\{ \frac{1}{|\mathcal{S}_n(\mathbf{W})|} \sum_{\sigma \in \mathcal{S}_n(\mathbf{W})} \mathbb{1} \left\{ T(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W}) \ge T(\mathbf{X}, \mathbf{Y}, \mathbf{W}) \right\} \le \alpha \right\}.$$
(13.4)

(Analogously to the notation defined for the marginal independence testing setting, we will write $T(\mathbf{X}, \mathbf{Y}, \mathbf{W})$ to denote $T((X_1, Y_1, W_1), \dots, (X_n, Y_n, W_n))$.)

The local permutation test is valid for testing the null hypothesis of conditional exchangeability.

Theorem 13.2: Distribution-free validity of the local permutation test

Fix any function $T: (\mathcal{X} \times \mathcal{Y} \times \mathcal{W})^n \to \mathbb{R}$. Let $(X_1, Y_1, W_1), \dots, (X_n, Y_n, W_n) \stackrel{\text{i.i.d.}}{\sim} P$, and let $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W})$ be defined as in (13.4). Then ψ is a valid test of the null hypothesis $\mathcal{H}_{X \perp \!\!\!\perp Y \mid W}$, i.e.,

$$\mathbb{P}_P\left(\psi(\mathbf{X},\mathbf{Y},\mathbf{W})=1\right) \leq \alpha \text{ for all } P \in \mathcal{P}_{X \perp \!\!\! \perp Y \mid W}.$$

As before, the intuition is that under the null, the permuted data $(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W})$ has the same distribution as the original data $(\mathbf{X}, \mathbf{Y}, \mathbf{W})$, for all permutations $\sigma \in \mathcal{S}_n(\mathbf{W})$ —but this statement is not well defined since, of course, the set $\mathcal{S}_n(\mathbf{W})$ is itself random. To be more precise, what we mean is that conditional on \mathbf{W} , for each $\sigma \in \mathcal{S}_n(\mathbf{W})$ it holds that $(\mathbf{X}_{\sigma}, \mathbf{Y})$ and (\mathbf{X}, \mathbf{Y}) are equal in (conditional) distribution. We will formalize this intuition in our proof of the validity of the local permutation test, below.

Will the local permutation test be powerful? The power of the local permutation test will depend heavily on several factors. First, we need to consider the number of 'clashes'—i.e., data points $i \neq j \in [n]$ for which $W_i = W_j$, and therefore, feature values X_i and X_j may be permuted in our permutation test. A large number of clashes will lead to a rich set of candidate permutations $S_n(\mathbf{W})$ and, potentially, a powerful test. At the other extreme, if each value W_i is unique, then $S_n(\mathbf{W})$ will be a singleton set (containing only the identity permutation), leading to $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 0$. In general, if the sample size n is sufficiently large so that many values of W are observed multiple times in the dataset, then we have the potential for high power.

Second, we need to consider the choice of the test statistic T as well. As is the case for any test, if the test statistic cannot discriminate between the null and alternative, then the test will not be powerful. We omit further discussion of this standard point.

Does W need to be discrete? While we have motivated this test by considering the case of a discrete confounder W, in fact the test can be implemented in any setting. Of course, if the distribution of W is continuous, all the W_i 's will be distinct almost surely and we will have no power. But if the distribution of W is, say, a mixture of discrete and continuous components, then we might still have a large number of clashes, and the local permutation test could then achieve high power. As a result, while we have introduced this section by assuming that W is discrete, in fact we can think of the local permutation test as an approach that can be applied for any confounder W, but that will have nontrivial power only if W is discrete (or, more generally, has a mixture distribution that includes a substantial discrete component).

13.2.2 Proof of validity of the local permutation test

We now prove that the local permutation test is valid as a test of conditional independence, with no assumptions on the distribution or on the test statistic. (As mentioned above, here we do not assume that W is discrete, even though the test would not be useful in the case of a continuous W.)

The arguments in this proof are very similar to those used in proving the validity of permutation testing (Theorem 2.4), and in proving the marginal coverage property of full conformal (Theorem 3.2).

Proof of Theorem 13.2

First, for any $(\mathbf{x}, \mathbf{y}, \mathbf{w}) \in \mathcal{X}^n \times \mathcal{Y}^n \times \mathcal{W}^n$, define

$$\hat{q}(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \text{Quantile}\left(\left(T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w})\right)_{\sigma \in \mathcal{S}_n(\mathbf{w})}; 1 - \alpha\right).$$

Then we have

$$\psi(\mathbf{x}, \mathbf{y}, \mathbf{w}) = \mathbb{1} \left\{ \frac{1}{|\mathcal{S}_n(\mathbf{w})|} \sum_{\sigma \in \mathcal{S}_n(\mathbf{w})} \mathbb{1} \left\{ T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) \ge T(\mathbf{x}, \mathbf{y}, \mathbf{w}) \right\} \le \alpha \right\}$$
$$= \mathbb{1} \left\{ T(\mathbf{x}, \mathbf{y}, \mathbf{w}) > \hat{q}(\mathbf{x}, \mathbf{y}, \mathbf{w}) \right\},$$

where the first step is simply the definition of $\psi(\mathbf{x}, \mathbf{y}, \mathbf{w})$, and the second step holds by definition of the quantile of a finite list (recall Definition 2.9; this is also similar to the argument in the proof of Proposition 3.9). Moreover, for any $\sigma \in \mathcal{S}_n(\mathbf{w})$, we have an equality of sets,

$$S_n(\mathbf{w}) = \{ \sigma \circ \sigma' : \sigma' \in S_n(\mathbf{w}) \},$$

where \circ denotes a composition of permutations; this holds specifically because $\mathcal{S}_n(\mathbf{w})$ is a subgroup, rather than an arbitrary subset, of \mathcal{S}_n . Therefore, for any $\sigma \in \mathcal{S}_n(\mathbf{w})$,

$$\hat{q}(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) = \text{Quantile}\left(\left(T((\mathbf{x}_{\sigma})_{\sigma'}, \mathbf{y}, \mathbf{w})\right)_{\sigma' \in \mathcal{S}_{n}(\mathbf{w})}; 1 - \alpha\right) \\
= \text{Quantile}\left(\left(T(\mathbf{x}_{\sigma'}, \mathbf{y}, \mathbf{w})\right)_{\sigma' \in \mathcal{S}_{n}(\mathbf{w})}; 1 - \alpha\right) = \hat{q}(\mathbf{x}, \mathbf{y}, \mathbf{w}),$$

and consequently,

$$\psi(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) = \mathbb{1} \left\{ T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) > \hat{q}(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) \right\} = \mathbb{1} \left\{ T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) > \hat{q}(\mathbf{x}, \mathbf{y}, \mathbf{w}) \right\}.$$

Therefore,

$$\frac{1}{|\mathcal{S}_{n}(\mathbf{w})|} \sum_{\sigma \in \mathcal{S}_{n}(\mathbf{w})} \mathbb{1} \left\{ \psi(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) = 1 \right\} = \frac{1}{|\mathcal{S}_{n}(\mathbf{w})|} \sum_{\sigma \in \mathcal{S}_{n}(\mathbf{w})} \mathbb{1} \left\{ T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) > \hat{q}(\mathbf{x}, \mathbf{y}, \mathbf{w}) \right\}$$

$$= \frac{1}{|\mathcal{S}_{n}(\mathbf{w})|} \sum_{\sigma \in \mathcal{S}_{n}(\mathbf{w})} \mathbb{1} \left\{ T(\mathbf{x}_{\sigma}, \mathbf{y}, \mathbf{w}) > \text{Quantile} \left(\left(T(\mathbf{x}_{\sigma'}, \mathbf{y}, \mathbf{w}) \right)_{\sigma' \in \mathcal{S}_{n}(\mathbf{w})}; 1 - \alpha \right) \right\} \leq \alpha, \quad (13.5)$$

by standard properties of the quantile (see Fact 2.12(iii)).

Next, fix any distribution $P \in \mathcal{P}_{X \perp \!\!\! \perp Y \mid W}$. We now claim that

$$(\mathbf{X}_{\sigma}, \mathbf{Y}) \mid \mathbf{W} \stackrel{\mathrm{d}}{=} (\mathbf{X}, \mathbf{Y}) \mid \mathbf{W},$$
 (13.6)

for any $\sigma \in \mathcal{S}_n(\mathbf{W})$. To see why, first note that conditional on \mathbf{W} , we have $(X_i, Y_i) \sim P_{X|W}(\cdot \mid W_i) \times P_{Y|W}(\cdot \mid W_i)$, since $X \perp \!\!\! \perp Y \mid W$. Moreover, the data points $i = 1, \ldots, n$ are independent, and so

$$(\mathbf{X}, \mathbf{Y}) \mid \mathbf{W} \sim (P_{X|W}(\cdot \mid W_1) \times \cdots \times P_{X|W}(\cdot \mid W_n)) \times (P_{Y|W}(\cdot \mid W_1) \times \cdots \times P_{Y|W}(\cdot \mid W_n)).$$

Similarly, for any $\sigma \in \mathcal{S}_n(\mathbf{W})$ (treating σ as fixed once we have conditioned on \mathbf{W}), we have

$$(\mathbf{X}_{\sigma}, \mathbf{Y}) \mid \mathbf{W} \sim (P_{X|W}(\cdot \mid W_{\sigma(1)}) \times \cdots \times P_{X|W}(\cdot \mid W_{\sigma(n)})) \times (P_{Y|W}(\cdot \mid W_1) \times \cdots \times P_{Y|W}(\cdot \mid W_n)).$$

But since $\sigma \in \mathcal{S}_n(\mathbf{W})$, we have $W_{\sigma(i)} = W_i$ for all *i*—and therefore these two conditional distributions are the same. In particular, the equality (13.6) implies that

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1 \mid \mathbf{W}) = \mathbb{P}_P(\psi(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W}) = 1 \mid \mathbf{W})$$

holds for each $\sigma \in \mathcal{S}_n(\mathbf{W})$. Taking an average over $\sigma \in \mathcal{S}_n(\mathbf{W})$, we therefore have

$$\mathbb{P}_{P}(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1 \mid \mathbf{W}) = \frac{1}{|\mathcal{S}_{n}(\mathbf{W})|} \sum_{\sigma \in \mathcal{S}_{n}(\mathbf{W})} \mathbb{P}_{P}(\psi(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W}) = 1 \mid \mathbf{W})$$

$$= \mathbb{E}_{P} \left[\frac{1}{|\mathcal{S}_{n}(\mathbf{W})|} \sum_{\sigma \in \mathcal{S}_{n}(\mathbf{W})} \mathbb{1} \left\{ \psi(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W}) = 1 \right\} \mid \mathbf{W} \right] \leq \alpha,$$

where the last step holds by (13.5). After marginalizing over \mathbf{W} , this completes the proof.

13.3 The hardness of conditional independence testing

The results of Section 13.2 above show that testing conditional independence is possible in the setting where the confounder W is discrete (or, perhaps, is a mixture of a discrete and a continuous distribution). In this section, we turn to the more challenging setting where the distribution of W is instead continuous, or more generally, nonatomic—recall Definition 4.2. We will see that in this setting, it is impossible to construct a distribution-free test with nontrivial power.

Next, we will turn to formalizing this hardness result. We will use the notation

$$\psi: (\mathcal{X} \times \mathcal{Y} \times \mathcal{W})^n \to \{0, 1\}$$

to represent a test function mapping a dataset of n triples $((X_i, Y_i, W_i))_{i \in [n]}$ to the indicator of rejection. That is, $\psi = 0$ indicates a failure to reject the null hypothesis of conditional independence (13.1), while $\psi = 1$ indicates rejection.

Theorem 13.3

If the test ψ has Type I error bounded by α for any distribution, i.e.,

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \leq \alpha \text{ for all } P \in \mathcal{P}_{X \perp \! \! \perp Y \mid W},$$

then the power of the test is not better than random for any distribution P such that P_W is nonatomic,

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \leq \alpha \text{ for all } P \in \mathcal{P}_{(X,Y,W)} \text{ with } P_W \text{ nonatomic.}$$

We will see that the proof of this hardness result will rely on the sample–resample technique introduced earlier, in Lemma 4.15, where we approximate the process of sampling n i.i.d. draws from P by first drawing a larger list of M samples from P, then drawing our training set by sampling uniformly from this list. (Recall that this proof technique was used in Chapter 4 for establishing the hardness result for test-conditional predictive inference, and in Chapters 11 and 12 for establishing hardness results for regression and calibration.)

Proof of Theorem 13.3

First, fix a large integer M, and let $((X^{(i)}, Y^{(i)}, W^{(i)}))_{i \in [M]}$ be an arbitrary sequence of M data points. Let $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{(X^{(i)}, Y^{(i)}, W^{(i)})}$ be the empirical distribution of the sequence.

If $W^{(1)}, \ldots, W^{(M)}$ are distinct, then under the distribution \widehat{P}_M on (X, Y, W) it holds that X and Y are deterministic functions of W—and in particular it therefore trivially holds that $X \perp \!\!\! \perp Y \mid W$ under the distribution \widehat{P}_M . By distribution-free validity of the test ψ , we must therefore have

$$\mathbb{P}_{\widehat{P}_{M}}(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \le \alpha$$

as long as $W^{(1)}, \ldots, W^{(M)}$ are distinct, where the probability is taken with respect to samples $((X_i, Y_i, W_i))_{i \in [n]}$ sampled i.i.d. from \widehat{P}_M , or equivalently, sampled uniformly with replacement from the dataset $((X^{(i)}, Y^{(i)}, W^{(i)}))_{i \in [M]}$.

Next, we will construct \widehat{P}_M by sampling the M data points i.i.d. from P: specifically,

- 1. Sample $(X^{(1)}, Y^{(1)}, W^{(1)}), \dots, (X^{(M)}, Y^{(M)}, W^{(M)}) \stackrel{\text{i.i.d.}}{\sim} P$, and define the empirical distribution $\widehat{P}_M = \frac{1}{M} \sum_{i=1}^M \delta_{(X^{(i)}, Y^{(i)}, W^{(i)})};$
- 2. Conditional on \widehat{P}_M , sample $(X_1, Y_1, W_1), \dots, (X_n, Y_n, W_n) \stackrel{\text{i.i.d.}}{\sim} \widehat{P}_M$.

We have assumed that P_W is nonatomic, and therefore $W^{(1)}, \ldots, W^{(M)}$ are distinct almost surely. By the calculation above, then,

$$\mathbb{P}_{\widehat{P}_M}(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1 \mid \widehat{P}_M) \le \alpha$$

holds almost surely.

Now let Q be the marginal distribution of $(X_1, Y_1, W_1), \ldots, (X_n, Y_n, W_n)$ under the construction above. Marginalizing over \widehat{P}_M , we therefore have

$$\mathbb{P}_Q(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \le \alpha.$$

Finally, by Lemma 4.15, it holds that

$$d_{\mathrm{TV}}(P^n, Q) \le \frac{n(n-1)}{2M}.$$

Therefore,

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \le \alpha + \frac{n(n-1)}{2M}.$$

Since M can be chosen to be arbitrarily large, this proves the desired result.

13.4 Testing conditional independence under smoothness assumptions

The hardness result in Theorem 13.3 establishes that a test ψ cannot have nontrivial power for nonatomic W if we require it to be valid against *all* distributions on (X, Y, W) for which conditional independence holds. We can conclude from this that, if we would like to design a test ψ that has nontrivial power to detect conditional dependence given a nonatomic confounder W, we need to relax our notion of validity—in other words, we need to require Type I error to be controlled against a more restricted set of possibilities under the null.

In this section, we examine one such possibility: placing a smoothness assumption on the conditional dependence between the variables. For instance, if the space W for the confounder W is equipped with a

Figure 13.2: Visualization of a dataset with a continuous confounder along with a local permutation of the covariate under a smoothness assumption. The figure is similar to Figure 13.1, but W is continuous. To address this, we bin W and permute within these bins. This is the type of permutation used for the test described Section 13.4.

norm $\|\cdot\|$, we can add the assumptions that the map

$$w \mapsto P_{X|W}(\cdot \mid w)$$

is L-Lipschitz with respect to the Hellinger distance—that is, for any $w, w' \in \mathcal{W}$,

$$d_{H}(P_{X|W}(\cdot \mid w), P_{X|W}(\cdot \mid w')) \le L\|w - w'\|,. \tag{13.7}$$

Here d_H denotes the Hellinger distance: for two distributions P_1, P_2 that have densities f_1, f_2 with respect to a common base measure μ ,

$$\mathrm{d_H}(P_1, P_2) = \left(\frac{1}{2} \int_{\mathcal{X}} \left(\sqrt{f_1(x)} - \sqrt{f_2(x)} \right)^2 \; \mathrm{d}\mu(x) \right)^{1/2}.$$

We now define a more restricted set of nulls,

$$\mathcal{P}^{L}_{X \perp \! \! \perp Y \mid W} = \{ P \in \mathcal{P}_{X \perp \! \! \! \perp Y \mid W} : \text{ condition (13.7) holds} \},$$

i.e., all joint distributions P on (X, Y, W) for which $X \perp \!\!\! \perp Y \mid W$ and for which the smoothness assumption (13.7) holds for the conditional distribution $P_{X|W}$, with Lipschitz constant L.

At a high level, this assumption allows for the continuous case to be approximately as easy as the discrete case. In the case of discrete W, we are able to permute X values within any subset of data points that all have the same value of W, as in (13.3). In the case of continuous W, this is not a meaningful approach because no value of W appears twice—but with a smoothness assumption in place, it again becomes possible to perform a test of conditional independence via a permutation test, because we can now permute X values across data points that have similar values of W. We can think of this as a binned version of the local permutation test studied in Section 13.2. See Figure 13.2 for an illustration.

To formalize this, first construct a partition of W, given by

$$\mathcal{W} = \cup_k \mathcal{W}_k$$
,

where each bin \mathcal{W}_k contains only values of W that are close together in the norm $\|\cdot\|$: we assume

$$\max_{k} \sup_{w, w' \in \mathcal{W}_k} \|w - w'\| \le h,$$

This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

for some finite h. (The number of bins may be finite or countably infinite.) Now define a permutation test, analogous to the one defined in Section 13.2: we define the set of allowed permutations as

$$\mathcal{S}_n^{\mathrm{bin}}(\mathbf{W}) = \left\{ \sigma \in \mathcal{S}_n : W_{\sigma(i)}, W_i \text{ are in the same bin for all } i \in \{1, \dots, n\} \right\}.$$

Finally, define

$$\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = \mathbb{1}\left\{\frac{1}{|\mathcal{S}_n^{\text{bin}}(\mathbf{W})|} \sum_{\sigma \in \mathcal{S}_n^{\text{bin}}(\mathbf{W})} \mathbb{1}\left\{T(\mathbf{X}_{\sigma}, \mathbf{Y}, \mathbf{W}) \ge T(\mathbf{X}, \mathbf{Y}, \mathbf{W})\right\} \le \alpha\right\},\tag{13.8}$$

which is analogous to the test $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W})$ defined in (13.4) for the discrete case.

Theorem 13.4: Validity of the binned local permutation test

Fix any function $T: (\mathcal{X} \times \mathcal{Y} \times \mathcal{W})^n \to \mathbb{R}$. Let $(X_1, Y_1, W_1), \dots, (X_n, Y_n, W_n) \overset{\text{i.i.d.}}{\sim} P$, let $\mathcal{W} = \cup_k \mathcal{W}_k$ be any partition with $\max_k \sup_{w,w' \in \mathcal{W}_k} \|w - w'\| \le h$, and let $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W})$ be defined as in (13.8). Then ψ satisfies

In other words, by taking bins of diameter $h = o(n^{-1/2})$, we can ensure that the test ψ is (nearly) a valid test of the null that $X \perp \!\!\! \perp Y \mid W$, as long as we also assume the smoothness condition.

Proof of Theorem 13.4

First, for each $k \geq 1$, let $\pi_k = \mathbb{P}_P(W \in \mathcal{W}_k)$, and (if $\pi_k > 0$) then let $P^{(k)}$ denote the distribution of the triple (X, Y, W) conditional on the event $W \in \mathcal{W}_k$. Then we can express P as a mixture,

$$P = \sum_{k>1} \pi_k \cdot P^{(k)}.$$

The idea of the proof is to find a distribution \tilde{P} that is similar to P, for which the test ψ is exactly valid. We define the distribution \tilde{P} on (X,Y,W) as another mixture,

$$\tilde{P} = \sum_{k>1} \pi_k \cdot \left(P_X^{(k)} \times P_{(Y,W)}^{(k)} \right),$$

where $P_X^{(k)}$ and $P_{(Y,W)}^{(k)}$ are the marginal distributions of X and of (Y,W), respectively, under the joint distribution $P^{(k)}$ on (X,Y,W). Note that $P_X^{(k)}$ can be viewed as a convex combination of conditional distributions $P_{X|W}(\cdot \mid w)$ indexed by $w \in \mathcal{W}_k$ —this is because $P_X^{(k)}$ is the marginal distribution of X, under the joint distribution of (X,W) conditional on $W \in \mathcal{W}_k$. In particular, since $d_H(P_{X|W}(\cdot \mid w), P_{X|W}(\cdot \mid w')) \leq Lh$ for all $w, w' \in \mathcal{W}_k$ due to the smoothness assumption (13.7), this means that

$$d_{\mathcal{H}}(P_{X|W}(\cdot \mid w), P_X^{(k)}) \le Lh \text{ for all } k \text{ and all } w \in \mathcal{W}_k,$$
(13.9)

since $d_{H}(\cdot, \cdot)$ is convex in each argument.

Next, we calculate a bound on the difference between sampling from P and sampling from \tilde{P} . By construction, the marginal distribution of (Y, W) is the same under P as under \tilde{P} , since in both cases it is equal to $\sum_k \pi_k P_{(Y,W)}^{(k)}$. Therefore, the only difference between P and \tilde{P} arises from the differences in the conditional distribution of X: under P this conditional distribution is given by

$$X \mid (Y, W) \sim P_{X|W}(\cdot \mid W),$$

while under \tilde{P} , we have

$$X \mid (Y, W) \sim P_X^{(k(W))},$$

where k(W) identifies the bin to which the confounder W belongs—that is, for any k and any $w \in \mathcal{W}_k$, k(w) = k. Therefore,

$$\mathrm{d}_{\mathrm{H}}^2(P,\tilde{P}) = \mathbb{E}_P\left[\mathrm{d}_{\mathrm{H}}^2\big(P_{X|W}(\cdot\mid W),P_X^{(k(W))}\big)\right] \leq (Lh)^2,$$

where the first step holds by properties of the Hellinger distance, and the last step applies (13.9). Since squared Hellinger distance is subadditive, we therefore have

$$d_{\mathrm{H}}^{2}(P^{n}, \tilde{P}^{n}) \leq n(Lh)^{2},$$

and since total variation distance is bounded by the Hellinger distance up to a factor of $\sqrt{2}$, this implies

$$d_{\text{TV}}(P^n, \tilde{P}^n) \le \sqrt{2} d_{\text{H}}(P^n, \tilde{P}^n) \le Lh\sqrt{2n}.$$

Therefore,

$$\mathbb{P}_P(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \le \mathbb{P}_{\tilde{P}}(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) + Lh\sqrt{2n},$$

i.e., the probability of ψ rejecting H_0 when applied to data $((X_i, Y_i, W_i))_{i \in [n]}$ sampled from P, can be bounded by the probability of rejection for data drawn from \tilde{P} .

To complete the proof, we need to bound $\mathbb{P}_{\tilde{P}}(\psi(\mathbf{X},\mathbf{Y},\mathbf{W})=1)$. Indeed, we will see that it is simply bounded by α , because of the construction of \tilde{P} . Define random variable K=k(W) and consider a new triple,

Note that, under the distribution \tilde{P} , by construction it holds that

$$X \perp \!\!\!\perp (Y, W) \mid K. \tag{13.10}$$

Next we construct a test statistic T on these new triples,

$$\tilde{T}: (\mathcal{X} \times (\mathcal{Y} \times \mathcal{W}) \times [K])^n \to \mathbb{R}.$$

defined by

$$\tilde{T}((X_1,(Y_1,W_1),K_1),\ldots,(X_n,(Y_n,W_n),K_n)) = T((X_1,Y_1,W_1),\ldots,(X_n,Y_n,W_n)).$$

We can observe that running the local permutation test (13.4) defined in Section 13.2, with data $((X_i, (Y_i, W_i), K_i))_{i \in [n]}$ and test statistic \tilde{T} , is exactly equivalent to our test $\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W})$ as defined in (13.8). But since the data $((X_i, (Y_i, W_i), K_i))_{i \in [n]}$ satisfies the null hypothesis of conditional independence by (13.10), we can apply Theorem 13.2 (with (X, (Y, W), K) in place of (X, Y, W), and with \tilde{T} in place of T), to see that $\mathbb{P}_{\tilde{P}}(\psi(\mathbf{X}, \mathbf{Y}, \mathbf{W}) = 1) \leq \alpha$, as desired.

Bibliographic notes

Conditional independence testing is a foundational topic in statistics [e.g., Dawid, 1979]. The problem of testing conditional independence is closely linked to the problem of variable selection in high-dimensional regression: given a high-dimensional feature vector $X = (X_1, \ldots, X_d)$ and response Y, testing whether a particular feature X_i should be included into the fitted model is often framed as a question of conditional

independence, i.e., testing

$$H_{0,i}: X_i \perp\!\!\!\perp Y \mid X_{-i},$$

where $X_{-j} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_d)$ denotes the remaining covariates once X_j has been removed.

Ideas related to the use of permutations or randomization within strata to test for conditional independence with a discrete confounder are widespread [e.g., Birch, 1965, Rosenbaum, 1984], and the local permutation test presented in Section 13.2 (for the case of a discrete confounder W) is studied in detail in Canonne et al. [2018]. For a continuous confounder, one can extend this idea to consider permutations that approximately preserve the values of the confounder [e.g., Margaritis, 2005, Fukumizu et al., 2007, Doran et al., 2014, Sen et al., 2017, Kim et al., 2022b]. The hardness of conditional independence testing in the continuous case was first established by Shah and Peters [2020, Theorem 2]; the result presented here, in Theorem 13.3, is due to Kim et al. [2022b, Theorem 1].

In Section 13.4, we assumed a smoothness condition to enable testing conditional independence beyond the discrete case. Assuming a smoothness condition is one way to avoid the hardness result of Section 13.3, but there are many alternative assumption-lean approaches in the literature as well. For example, Azadkia and Chatterjee [2021], Shi et al. [2024] consider a conditional form of Chatterjee's correlation coefficient [Chatterjee, 2021] for asymptotically valid estimates of conditional dependence (and an asymptotically valid test of conditional independence) without such assumptions. As another example, in the model-X framework [Candès et al., 2018], we assume that we have knowledge (or approximate knowledge) of the conditional distribution of $X \mid W$. Within this framework, testing conditional independence becomes possible, since we can use the (approximate) knowledge of the conditional distribution $P_{X\mid W}$ to resample X under the null hypothesis of conditional independence—see Candès et al. [2018], Berrett et al. [2020]. For variable selection in this setting, the knockoff filter method leverages a different type of exchangeability, pairwise exchangeability, for false discovery rate control [Barber and Candès, 2015, Candès et al., 2018].

The binned version of the local permutation test and its accompanying theoretical guarantee, presented in Section 13.4, are adapted from the work of Kim et al. [2022b]. For background on the Hellinger distance and its properties (which play a key role in the proof of Theorem 13.4), see Le Cam [2012, Chapter 4].

Bibliography

- David J Aldous. Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII—1983, pages 1–198. Springer, Berlin, Heidelberg, 1985.
- Alnur Ali, Maxime Cauchois, and John C Duchi. The lifecycle of a statistical model: Model failure detection, identification, and refitting. arXiv preprint arXiv:2202.04166, 2022.
- Anastasios N. Angelopoulos. Note on full conformal risk control, 2024. URL https://people.eecs.berkeley.edu/~angelopoulos/publications/working_papers/full-risk.pdf.
- Anastasios N Angelopoulos, Stephen Bates, Emmanuel J Candès, Michael I Jordan, and Lihua Lei. Learn then test: Calibrating predictive algorithms to achieve risk control. arXiv preprint arXiv:2110.01052, 2021a.
- Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal risk control. arXiv preprint arXiv:2208.02814, 2022a.
- Anastasios N Angelopoulos, Amit P Kohli, Stephen Bates, Michael I Jordan, Jitendra Malik, Thayer Alshaabi, Srigokul Upadhyayula, and Yaniv Romano. Image-to-image regression with distribution-free uncertainty quantification and applications in imaging. arXiv preprint arXiv:2202.05265, 2022b.
- Anastasios N. Angelopoulos, Emmanuel Candès, and Ryan Tibshirani. Conformal PID control for time series prediction. In *Neural Information Processing Systems*, 2023.
- Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Online conformal prediction with decaying step sizes. arXiv preprint arXiv:2402.01139, 2024.
- Anastasios Nikolas Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets for image classifiers using conformal prediction. In *International Conference on Learning Representations*, 2021b. URL https://openreview.net/forum?id=eNdiU_DbM9.
- Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. Exploration—exploitation tradeoff using variance estimates in multi-armed bandits. *Theoretical Computer Science*, 410(19):1876–1902, 2009.
- Miriam Ayer, H Daniel Brunk, George M Ewing, William T Reid, and Edward Silverman. An empirical distribution function for sampling with incomplete information. *The annals of mathematical statistics*, pages 641–647, 1955.
- Mona Azadkia and Sourav Chatterjee. A simple measure of conditional dependence. *The Annals of Statistics*, 49(6):3070–3102, 2021.
- Raghu R Bahadur and Leonard J Savage. The nonexistence of certain statistical procedures in nonparametric problems. *The Annals of Mathematical Statistics*, 27(4):1115–1122, 1956.
- Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. Conformal prediction for reliable machine learning: theory, adaptations and applications. Newnes, 2014.
- Yajie Bao, Yuyang Huo, Haojie Ren, and Changliang Zou. Selective conformal inference with false coverage-statement rate control. *Biometrika*, page asae010, 2024.

- Rina Foygel Barber. Is distribution-free inference possible for binary regression? arXiv:2004.09477, 2020.
- Rina Foygel Barber and Emmanuel Candès. Controlling the false discovery rate via knockoffs. *Annals of Statistics*, 43(5):2055–2085, 2015. doi: 10.1214/15-AOS1337. URL https://doi.org/10.1214/15-AOS1337.
- Rina Foygel Barber and Ryan J Tibshirani. Unifying different theories of conformal prediction. arXiv preprint arXiv:2504.02292, 2025.
- Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. The limits of distribution-free conditional predictive inference. *Information and Inference: A Journal of the IMA*, 10(2):455–482, 2021a.
- Rina Foygel Barber, Emmanuel J Candès, Aaditya Ramdas, and Ryan J Tibshirani. Predictive inference with the jackknife+. *The Annals of Statistics*, 49(1):486–507, 2021b.
- Rina Foygel Barber, Emmanuel J Cand'es, Aaditya Ramdas, and Ryan J Tibshirani. Conformal prediction beyond exchangeability. arXiv:2202.13415, 2022.
- RE Barlow, DJ Bartholomew, JM Bremner, and HD Brunk. The theory and application of isotonic regression, 1972.
- Meshi Bashari, Amir Epstein, Yaniv Romano, and Matteo Sesia. Derandomized novelty detection with FDR control via conformal e-values. Advances in Neural Information Processing Systems, 36:65585–65596, 2023.
- Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Practical adversarial multivalid conformal prediction. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=QNjyrDBx6tz.
- Stephen Bates, Anastasios Angelopoulos, Lihua Lei, Jitendra Malik, and Michael Jordan. Distribution-free, risk-controlling prediction sets. *Journal of the Association for Computing Machinery*, 68(6), 9 2021.
- Stephen Bates, Emmanuel Candès, Lihua Lei, Yaniv Romano, and Matteo Sesia. Testing for outliers with conformal p-values. *The Annals of Statistics*, 51(1):149–178, 2023.
- Pierre Bayle, Alexandre Bayle, Lucas Janson, and Lester Mackey. Cross-validation confidence intervals for test error. Advances in Neural Information Processing Systems, 33:16339–16350, 2020.
- Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1):289–300, 1995.
- Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4):1165 1188, 2001. doi: 10.1214/aos/1013699998.
- Richard Berk, Lawrence Brown, Andreas Buja, Kai Zhang, and Linda Zhao. Valid post-selection inference. *The Annals of Statistics*, pages 802–837, 2013.
- Thomas B Berrett, Yi Wang, Rina Foygel Barber, and Richard J Samworth. The conditional permutation test for independence while controlling for confounders. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 82(1):175–197, 2020.
- Elizabeth Bersson and Peter D Hoff. Optimal conformal prediction for small areas. *Journal of Survey Statistics and Methodology*, page smae010, 2024.
- Julian Besag and Peter Clifford. Generalized Monte Carlo significance tests. Biometrika, 76(4):633–642, 1989.
- Aadyot Bhatnagar, Huan Wang, Caiming Xiong, and Yu Bai. Improved online conformal prediction via strongly adaptive online learning. arXiv preprint arXiv:2302.07869, 2023.
- Michael Bian and Rina Foygel Barber. Training-conditional coverage for distribution-free predictive inference. arXiv preprint arXiv:2205.03647, 2022.
- This material will be published by Cambridge University Press as *Theoretical Foundations of Conformal Prediction* by Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates. This pre-publication version is free to view and download for personal use only. Not for re-distribution, re-sale or use in derivative works. ©Anastasios N. Angelopoulos, Rina Foygel Barber, and Stephen Bates, 2025.

- MW Birch. The detection of partial association, II: the general case. Journal of the Royal Statistical Society Series B: Statistical Methodology, 27(1):111–124, 1965.
- Jarosław Błasiok, Parikshit Gopalan, Lunjia Hu, and Preetum Nakkiran. A unifying theory of distance from calibration. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, pages 1727–1740, 2023.
- JR Blum, David Lee Hanson, and Lambert Herman Koopmans. On the strong law of large numbers for a class of stochastic processes. Sandia Corporation, 1963.
- Olivier Bousquet and André Elisseeff. Stability and generalization. *The Journal of Machine Learning Research*, 2:499–526, 2002.
- Evgeny Burnaev and Vladimir Vovk. Efficiency of conformalized ridge regression. In *Conference on Learning Theory*, pages 605–622, 2014.
- T Tony Cai, Mark Low, and Zongming Ma. Adaptive confidence bands for nonparametric regression functions. Journal of the American Statistical Association, 109(507):1054–1070, 2014.
- Emmanuel Candès, Yingying Fan, Lucas Janson, and Jinchi Lv. Panning for gold: Model-X knockoffs for high-dimensional controlled variable selection. *Journal of the Royal Statistical Society: Series B*, 80(3): 551–577, 2018.
- Emmanuel J Candès, Lihua Lei, and Zhimei Ren. Conformalized survival analysis. arXiv:2103.09763, 2021.
- Clément L Canonne, Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Testing conditional independence of discrete distributions. In *Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing*, pages 735–748, 2018.
- Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. Robust validation: Confident predictions even when distributions shift. *Journal of the American Statistical Association*, pages 1–66, 2024.
- Min-Te Chao and WE Strawderman. Negative moments of positive random variables. *Journal of the American Statistical Association*, 67(338):429–431, 1972.
- Sourav Chatterjee. A new coefficient of correlation. *Journal of the American Statistical Association*, 116 (536):2009–2022, 2021.
- Probal Chaudhuri. Global nonparametric estimation of conditional quantile functions and their derivatives. Journal of Multivariate Analysis, 39(2):246–269, 1991.
- Qizhao Chen, Vasilis Syrgkanis, and Morgane Austern. Debiased machine learning without sample-splitting for stable estimators. Advances in Neural Information Processing Systems, 35:3096–3109, 2022.
- Wenyu Chen, Zhaokai Wang, Wooseok Ha, and Rina Foygel Barber. Trimmed conformal prediction for high-dimensional models. arXiv preprint arXiv:1611.09933, 2016.
- Wenyu Chen, Kelli-Jean Chun, and Rina Foygel Barber. Discretized conformal prediction for efficient distribution-free inference. *Stat*, 7(1):e173, 2018.
- Victor Chernozhukov, Kaspar Wüthrich, and Zhu Yinchu. Exact and robust conformal inference methods for predictive machine learning with dependent data. In *Conference On Learning Theory*, pages 732–749. PMLR, 2018.
- Victor Chernozhukov, Kaspar Wüthrich, and Yinchu Zhu. Distributional conformal prediction. *Proceedings* of the National Academy of Sciences, 118(48):e2107794118, 2021.
- Giovanni Cherubin. Majority vote ensembles of conformal predictors. *Machine Learning*, 108(3):475–488, 2019.

- Kfir M Cohen, Sangwoo Park, Osvaldo Simeone, and Shlomo Shamai. Cross-validation conformal risk control. arXiv preprint arXiv:2401.11974, 2024.
- A Philip Dawid. Conditional independence in statistical theory. Journal of the Royal Statistical Society Series B: Statistical Methodology, 41(1):1–15, 1979.
- A Philip Dawid. The well-calibrated Bayesian. *Journal of the American statistical Association*, 77(379): 605–610, 1982.
- Bruno De Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de Settembre di 1928, pages 179–190, 1929.
- Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters. *Journal of the Royal Statistical Society: Series D (The Statistician)*, 32(1-2):12–22, 1983.
- Luc Devroye and Terry Wagner. Distribution-free inequalities for the deleted and holdout error estimates. *IEEE Transactions on Information Theory*, 25(2):202–207, 1979.
- Persi Diaconis and David Freedman. Finite exchangeable sequences. The Annals of Probability, pages 745–764, 1980.
- Tiffany Ding, Anastasios Angelopoulos, Stephen Bates, Michael Jordan, and Ryan J Tibshirani. Class-conditional conformal prediction with many classes. *Advances in Neural Information Processing Systems*, 36, 2024.
- Edgar Dobriban and Mengxin Yu. SymmPI: Predictive inference for data with group symmetries. arXiv preprint arXiv:2312.16160, 2023.
- Carles Domingo-Enrich, Raaz Dwivedi, and Lester Mackey. Cheap permutation testing. arXiv preprint arXiv:2502.07672, 2025.
- Gary Doran, Krikamol Muandet, Kun Zhang, and Bernhard Schölkopf. A permutation-based kernel conditional independence test. In *UAI*, pages 132–141, 2014.
- John C Duchi, Suyash Gupta, Kuanhao Jiang, and Pragya Sur. Predictive inference in multi-environment scenarios. arXiv preprint arXiv:2403.16336, 2024.
- Richard M Dudley, Rimas Norvaiša, and Rimas Norvaiša. Concrete functional calculus. Springer, 2011.
- Robin Dunn, Larry Wasserman, and Aaditya Ramdas. Distribution-free prediction sets with random effects. arXiv:1809.07441, 2018.
- Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. *The Annals of Mathematical Statistics*, pages 642–669, 1956.
- Meyer Dwass. Modified randomization tests for nonparametric hypotheses. The Annals of Mathematical Statistics, pages 181–187, 1957.
- Sam Elder. Bayesian adaptive data analysis guarantees from subgaussianity. arXiv preprint arXiv:1611.00065, 2016.
- Andre Elisseeff, Theodoros Evgeniou, Massimiliano Pontil, and Leslie Pack Kaelbing. Stability of randomized learning algorithms. *Journal of Machine Learning Research*, 6(1), 2005.
- Michael D Ernst. Permutation methods: a basis for exact inference. Statistical Science, pages 676–685, 2004.
- Clara Fannjiang, Stephen Bates, Anastasios N Angelopoulos, Jennifer Listgarten, and Michael I Jordan. Conformal prediction under feedback covariate shift for biomolecular design. *Proceedings of the National Academy of Sciences*, 119(43):e2204569119, 2022.

- Valentina Fedorova, Alex Gammerman, Ilia Nouretdinov, and Vladimir Vovk. Plug-in martingales for testing exchangeability on-line. arXiv preprint arXiv:1204.3251, 2012.
- Shai Feldman, Liran Ringel, Stephen Bates, and Yaniv Romano. Achieving risk control in online learning settings. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.
- Adam Fisch, Tal Schuster, Tommi Jaakkola, and Regina Barzilay. Conformal prediction sets with limited false positives. In *International Conference on Machine Learning*, pages 6514–6532. PMLR, 2022.
- Ronald A Fisher. Mathematics of a Lady Tasting Tea. The world of mathematics, 3(part 8):1514–1521, 1956.
- William Fithian. Topics in Adaptive Inference. Stanford University, 2015.
- Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. Kernel measures of conditional dependence. Advances in neural information processing systems, 20, 2007.
- Alex Gammerman, Volodya Vovk, and Vladimir Vapnik. Learning by transduction. *Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence*, 14:148–155, 1998.
- Alexander Gammerman and Vladimir Vovk. Hedging predictions in machine learning. *The Computer Journal*, 50(2):151–163, 2007.
- Chao Gao, Liren Shan, Vaidehi Srinivas, and Aravindan Vijayaraghavan. Volume optimality in conformal prediction with structured prediction sets. arXiv preprint arXiv:2502.16658, 2025.
- Matteo Gasparin and Aaditya Ramdas. Merging uncertainty sets via majority vote. arXiv preprint arXiv:2401.09379, 2024.
- Ulysse Gazin. Asymptotics for conformal inference. arXiv preprint arXiv:2409.12019, 2024.
- Christopher Genovese and Larry Wasserman. Adaptive confidence bands. *The Annals of Statistics*, 36(1): 875–905, 2008.
- Isaac Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift. arXiv:2106.00170, 2021.
- Isaac Gibbs and Emmanuel Candès. Conformal inference for online prediction with arbitrary distribution shifts. arXiv preprint arXiv:2208.08401, 2022.
- Isaac Gibbs, John J Cherian, and Emmanuel J Candès. Conformal prediction with conditional guarantees. arXiv preprint arXiv:2305.12616, 2023.
- Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models. Cambridge university press, 2021.
- Parikshit Gopalan, Michael P Kim, Mihir A Singhal, and Shengjia Zhao. Low-degree multicalibration. In Conference on Learning Theory, pages 3193–3234. PMLR, 2022.
- Leying Guan. Localized conformal prediction: A generalized inference framework for conformal prediction. Biometrika, 110(1):33–50, 2023.
- Yu Gui, Rohan Hore, Zhimei Ren, and Rina Foygel Barber. Conformalized survival analysis with adaptive cut-offs. *Biometrika*, 111(2):459–477, 2024.
- Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In *International conference on machine learning*, pages 1321–1330. PMLR, 2017.
- Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. Distribution-free binary classification: prediction sets, confidence intervals and calibration. *Advances in Neural Information Processing Systems*, 33:3711–3723, 2020.

- Chirag Gupta, Arun K. Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and quantile out-of-bag ensemble methods. *Pattern Recognition*, page 108496, 2021.
- Laszlo Gyôrfi and Harro Walk. Nearest neighbor based conformal prediction. In *Annales de l'ISUP*, volume 63(2-3), pages 173–190, 2019.
- Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International conference on machine learning*, pages 1225–1234. PMLR, 2016.
- Matthew T Harrison. Conservative hypothesis tests and confidence intervals using importance sampling. *Biometrika*, 99(1):57–69, 2012.
- Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Calibration for the (computationally-identifiable) masses. In *International Conference on Machine Learning*, pages 1939–1948. PMLR, 2018.
- Jesse Hemerik and Jelle J Goeman. Exact testing with random permutations. Test, 27(4):811–825, 2018.
- Jesse Hemerik and Jelle J Goeman. Another look at the Lady Tasting Tea and differences between permutation tests and randomisation tests. *International Statistical Review*, 89(2):367–381, 2021.
- Edwin Hewitt and Leonard J Savage. Symmetric measures on Cartesian products. *Transactions of the American Mathematical Society*, 80(2):470–501, 1955.
- Peter Hoff. Bayes-optimal prediction with frequentist coverage control. Bernoulli, 29(2):901–928, 2023.
- Rohan Hore and Rina Foygel Barber. Conformal prediction with local weights: randomization enables local guarantees. arXiv preprint arXiv:2310.07850, 2023.
- Rafael Izbicki, Gilson Shimizu, and Rafael Stern. Flexible distribution-free conditional predictive bands using density estimators. In *Proceedings of Machine Learning Research*, volume 108, pages 3068–3077. PMLR, 2020.
- Jayoon Jang and Emmanuel Candès. Tight distribution-free confidence intervals for local quantile regression. arXiv preprint arXiv:2307.08594, 2023.
- Ying Jin and Emmanuel J Candès. Model-free selective inference under covariate shift via weighted conformal p-values. arXiv preprint arXiv:2307.09291, 2023a.
- Ying Jin and Emmanuel J Candès. Selection by prediction with conformal p-values. *Journal of Machine Learning Research*, 24(244):1–41, 2023b.
- Ying Jin and Zhimei Ren. Confidence on the focal: Conformal prediction with selection-conditional coverage. arXiv preprint arXiv:2403.03868, 2024.
- Ying Jin, Zhimei Ren, and Emmanuel J Candès. Sensitivity analysis of individual treatment effects: A robust conformal inference approach. *Proceedings of the National Academy of Sciences*, 120(6):e2214889120, 2023.
- William Ernest Johnson. The Logical Foundations of Science. University Press, 1924.
- Christopher Jung, Georgy Noarov, Ramya Ramalingam, and Aaron Roth. Batch multivalid conformal prediction. arXiv preprint arXiv:2209.15145, 2022.
- Satyen Kale, Ravi Kumar, and Sergei Vassilvitskii. Cross-validation and mean-square stability. In *ICS*, pages 487–495, 2011.
- Michael Kearns and Dana Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. In *Proceedings of the tenth annual conference on Computational learning theory*, pages 152–162, 1997
- Byol Kim and Rina Foygel Barber. Black box tests for algorithmic stability. arXiv preprint arXiv:2111.15546, 2021.

- Byol Kim, Chen Xu, and Rina Foygel Barber. Predictive inference is free with the jackknife+-after-bootstrap. Advances in Neural Information Processing Systems, 33:4138-4149, 2020.
- Ilmun Kim, Sivaraman Balakrishnan, and Larry Wasserman. Minimax optimality of permutation tests. *The Annals of Statistics*, 50(1):225–251, 2022a.
- Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. Local permutation tests for conditional independence. *The Annals of Statistics*, 50(6):3388–3414, 2022b.
- John FC Kingman. Uses of exchangeability. The Annals of Probability, 6(2):183–197, 1978.
- Roger Koenker and Gilbert Bassett Jr. Regression quantiles. *Econometrica: Journal of the Econometric Society*, 46(1):33–50, 1978.
- Nick W Koning and Jesse Hemerik. Faster exact permutation testing: Using a representative subgroup. ArXiv preprint. Available at, 2022.
- Arun Kumar Kuchibhotla. Exchangeability, conformal prediction, and rank tests. arXiv preprint arXiv:2005.06095, 2020.
- Ravi Kumar, Daniel Lokshtanov, Sergei Vassilvitskii, and Andrea Vattani. Near-optimal bounds for cross-validation via loss stability. In *International Conference on Machine Learning*, pages 27–35. PMLR, 2013.
- Antonis Lambrou, Ilia Nouretdinov, and Harris Papadopoulos. Inductive Venn prediction. *Annals of Mathematics and Artificial Intelligence*, 74:181–201, 2015.
- HG Landau. On dominance relations and the structure of animal societies: III the condition for a score structure. The bulletin of mathematical biophysics, 15:143–148, 1953.
- Rikard Laxhammar. Conformal anomaly detection: Detecting abnormal trajectories in surveillance applications. PhD thesis, University of Skövde, 2014.
- Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Science & Business Media, 2012.
- Jason D Lee and Jonathan E Taylor. Exact post model selection inference for marginal screening. Advances in neural information processing systems, 27, 2014.
- Jason D. Lee, Dennis L. Sun, Yuekai Sun, and Jonathan E. Taylor. Exact post-selection inference, with application to the lasso. *The Annals of Statistics*, 44(3):907 927, 2016. doi: 10.1214/15-AOS1371. URL https://doi.org/10.1214/15-AOS1371.
- Junu Lee and Zhimei Ren. Boosting e-BH via conditional calibration. arXiv preprint arXiv:2404.17562, 2024.
- Yonghoon Lee and Rina Foygel Barber. Distribution-free inference for regression: discrete, continuous, and in between. arXiv:2105.14075, 2021.
- Yonghoon Lee, Rina Foygel Barber, and Rebecca Willett. Distribution-free inference with hierarchical data. arXiv preprint arXiv:2306.06342, 2023.
- Erich Leo Lehmann, Joseph P Romano, and George Casella. *Testing statistical hypotheses*, volume 3. Springer, 1986.
- Jing Lei. Classification with confidence. *Biometrika*, 101(4):755-769, 10 2014. ISSN 0006-3444. doi: 10.1093/biomet/asu038. URL https://doi.org/10.1093/biomet/asu038.
- Jing Lei. Fast exact conformalization of the lasso using piecewise linear homotopy. *Biometrika*, 106(4): 749–764, 2019.
- Jing Lei and Larry Wasserman. Distribution-free prediction bands for non-parametric regression. *Journal of the Royal Statistical Society: Series B: Statistical Methodology*, pages 71–96, 2014.

- Jing Lei, James Robins, and Larry Wasserman. Distribution-free prediction sets. *Journal of the American Statistical Association*, 108(501):278–287, 2013.
- Jing Lei, Max G'Sell, Alessandro Rinaldo, Ryan J. Tibshirani, and Larry Wasserman. Distribution-free predictive inference for regression. *Journal of the American Statistical Association*, 113(523):1094–1111, 2018. doi: 10.1080/01621459.2017.1307116.
- Lihua Lei and Emmanuel J. Candès. Conformal inference of counterfactuals and individual treatment effects. arXiv:2006.06138, 2020.
- Henrik Linusson, Ulf Johansson, and Henrik Boström. Efficient conformal predictor ensembles. *Neurocomputing*, 397:266–278, 2020.
- Tuve Löfström, Henrik Boström, Henrik Linusson, and Ulf Johansson. Bias reduction through conditional conformal prediction. *Intelligent Data Analysis*, 19(6):1355–1375, 2015.
- Mark G Low. On nonparametric confidence intervals. The Annals of Statistics, 25(6):2547–2554, 1997.
- Yuetian Luo and Rina Foygel Barber. Is algorithmic stability testable? a unified framework under computational constraints. arXiv preprint arXiv:2405.15107, 2024.
- Ariane Marandon, Lihua Lei, David Mary, and Etienne Roquain. Adaptive novelty detection with false discovery rate guarantee. arXiv preprint arXiv:2208.06685, 2022.
- Olivier Marchal and Julyan Arbel. On the sub-Gaussianity of the Beta and Dirichlet distributions. *Electronic Communications in Probability*, 22(none):1 14, 2017. doi: 10.1214/17-ECP92. URL https://doi.org/10.1214/17-ECP92.
- Dimitris Margaritis. Distribution-free learning of Bayesian network structure in continuous domains. In AAAI, volume 5, pages 825–830, 2005.
- Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample variance penalization. arXiv preprint arXiv:0907.3740, 2009.
- Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–188, 1989.
- Dhruv Medarametla and Emmanuel Candès. Distribution-free conditional median inference. *Electronic Journal of Statistics*, 15(2):4625–4658, 2021.
- Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai, Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern neural networks. *Advances in neural information processing systems*, 34:15682–15694, 2021.
- Allan H Murphy and Robert L Winkler. Reliability of subjective probability forecasts of precipitation and temperature. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 26(1):41–47, 1977.
- Eugene Ndiaye. Stable conformal prediction sets. In *International Conference on Machine Learning*, pages 16462–16479. PMLR, 2022.
- Eugene Ndiaye and Ichiro Takeuchi. Computing full conformal prediction set with approximate homotopy. In Advances in Neural Information Processing Systems, 2019. URL https://arxiv.org/pdf/1909.09365.pdf.
- Eugene Ndiaye and Ichiro Takeuchi. Root-finding approaches for computing conformal prediction set. *Machine Learning*, 2022. doi: 10.1007/s10994-022-06233-5.
- Ilia Nouretdinov, Thomas Melluish, and Volodya Vovk. Ridge regression confidence machine. In *ICML*, pages 385–392. Citeseer, 2001a.

- Ilia Nouretdinov, Volodya Vovk, Michael Vyugin, and Alex Gammerman. Pattern recognition and density estimation under the general iid assumption. In Computational Learning Theory: 14th Annual Conference on Computational Learning Theory, COLT 2001 and 5th European Conference on Computational Learning Theory, EuroCOLT 2001 Amsterdam, The Netherlands, July 16–19, 2001 Proceedings 14, pages 337–353. Springer, 2001b.
- Ilia Nouretdinov, Denis Volkhonskiy, Pitt Lim, Paolo Toccaceli, and Alexander Gammerman. Inductive Venn–Abers predictive distribution. In *Conformal and Probabilistic Prediction and Applications*, pages 15–36. PMLR, 2018.
- Princewill Okoroafor, Robert Kleinberg, and Michael P Kim. Near-optimal algorithms for omniprediction. arXiv preprint arXiv:2501.17205, 2025.
- Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/, 2013.
- Harris Papadopoulos, Kostas Proedrou, Vladimir Vovk, and Alex Gammerman. Inductive confidence machines for regression. In *Machine Learning: European Conference on Machine Learning*, pages 345–356, 2002.
- Sangdon Park, Osbert Bastani, Nikolai Matni, and Insup Lee. PAC confidence sets for deep neural networks via calibrated prediction. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=BJxVI04YvB.
- Sangdon Park, Shuo Li, Osbert Bastani, and Insup Lee. PAC confidence predictions for deep neural network classifiers. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=Qk-Wq5AIjpq.
- Belinda Phipson and Gordon K Smyth. Permutation p-values should never be zero: calculating exact p-values when permutations are randomly drawn. *Statistical applications in genetics and molecular biology*, 9(1), 2010.
- Edwin JG Pitman. Significance tests which may be applied to samples from any populations. Supplement to the Journal of the Royal Statistical Society, 4(1):119–130, 1937.
- John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–74, 1999.
- Aleksandr Podkopaev and Aaditya Ramdas. Distribution-free uncertainty quantification for classification under label shift. In *Uncertainty in Artificial Intelligence*, pages 844–853. PMLR, 2021.
- Tomaso Poggio, Ryan Rifkin, Sayan Mukherjee, and Alex Rakhlin. Bagging regularizes. *MIT D-Lab AI Memo*, 2002.
- Drew Prinster, Anqi Liu, and Suchi Saria. JAWS: Auditing predictive uncertainty under covariate shift. Advances in Neural Information Processing Systems, 35:35907–35920, 2022.
- Drew Prinster, Suchi Saria, and Anqi Liu. JAWS-x: Addressing efficiency bottlenecks of conformal prediction under standard and feedback covariate shift. In *International Conference on Machine Learning*, pages 28167–28190. PMLR, 2023.
- Drew Prinster, Samuel Don Stanton, Anqi Liu, and Suchi Saria. Conformal validity guarantees exist for any data distribution (and how to find them). In *Forty-first International Conference on Machine Learning*. PMLR, 2024.
- Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter M Koolen. Testing exchangeability: Fork-convexity, supermartingales and e-processes. *International Journal of Approximate Reasoning*, 141:83–109, 2022.
- Aaditya Ramdas, Peter Grünwald, Vladimir Vovk, and Glenn Shafer. Game-theoretic statistics and safe anytime-valid inference. *Statistical Science*, 38(4):576–601, 2023.

- William H Rogers and Terry J Wagner. A finite sample distribution-free performance bound for local discrimination rules. *The Annals of Statistics*, pages 506–514, 1978.
- Yaniv Romano, Evan Patterson, and Emmanuel Candès. Conformalized quantile regression. Advances in Neural Information Processing Systems, 32:3543–3553, 2019.
- Yaniv Romano, Matteo Sesia, and Emmanuel Candès. Classification with valid and adaptive coverage. Advances in Neural Information Processing Systems, 33:3581–3591, 2020.
- Paul R Rosenbaum. Conditional permutation tests and the propensity score in observational studies. *Journal* of the American Statistical Association, 79(387):565–574, 1984.
- Raphael Rossellini, Jake A Soloff, Rina Foygel Barber, Zhimei Ren, and Rebecca Willett. Can a calibration metric be both testable and actionable? arXiv preprint arXiv:2502.19851, 2025.
- Aaron Roth. Uncertain: Modern topics in uncertainty estimation. Unpublished Lecture Notes, 11:30–31, 2022.
- Ludger Rüschendorf. Random variables with maximum sums. Advances in Applied Probability, 14(3):623–632, 1982.
- Mauricio Sadinle, Jing Lei, and L. Wasserman. Least ambiguous set-valued classifiers with bounded error levels. *Journal of the American Statistical Association*, 114:223 234, 2019.
- Tapas Kumar Sarkar. Some lower bounds of reliability, 1969.
- Craig Saunders, Alexander Gammerman, and Volodya Vovk. Transduction with confidence and credibility. *Proceedings of the 16th international joint conference on Artificial intelligence-Volume 2*, pages 722–726, 1999.
- Henry Scheffé. On a measure problem arising in the theory of non-parametric tests. *The Annals of Mathematical Statistics*, 14(3):227–233, 1943.
- Tal Schuster, Adam Fisch, Tommi Jaakkola, and Regina Barzilay. Consistent accelerated inference via confident adaptive transformers. *Empirical Methods in Natural Language Processing*, 2021.
- Rajat Sen, Ananda Theertha Suresh, Karthikeyan Shanmugam, Alexandros G Dimakis, and Sanjay Shakkottai. Model-powered conditional independence test. *Advances in neural information processing systems*, 30, 2017.
- Matteo Sesia and Emmanuel J Candès. A comparison of some conformal quantile regression methods. *Stat*, 9(1):e261, 2020. doi: 10.1002/sta4.261. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.261.
- Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(Mar):371–421, 2008.
- Rajen D Shah and Jonas Peters. The hardness of conditional independence testing and the generalised covariance measure. *The Annals of Statistics*, 48(3):1514–1538, 2020.
- Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.
- Hongjian Shi, Mathias Drton, and Fang Han. On Azadkia–Chatterjee's conditional dependence coefficient. Bernoulli, 30(2):851–877, 2024.
- Galen R Shorack. Probability for statisticians, volume 951. Springer, 2000.
- Aldo Solari and Vera Djordjilović. Multi split conformal prediction. Statistics & Probability Letters, 184: 109395, 2022.
- Jake A Soloff, Rina Foygel Barber, and Rebecca Willett. Bagging provides assumption-free stability. arXiv preprint arXiv:2301.12600, 2023.

- Adriaan Johannes Stam. Distance between sampling with and without replacement. Statistica Neerlandica, 32(2):81–91, 1978.
- Lukas Steinberger and Hannes Leeb. Conditional predictive inference for high-dimensional stable algorithms. arXiv preprint arXiv:1809.01412, 2018.
- Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. *Journal of the royal statistical society: Series B (Methodological)*, 36(2):111–133, 1974.
- Jacopo Teneggi, Matthew Tivnan, Web Stayman, and Jeremias Sulam. How to trust your diffusion model: A convex optimization approach to conformal risk control. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pages 33940–33960. PMLR, 23–29 Jul 2023.
- Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 58(1):267–288, 1996.
- Ryan J Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani. Exact post-selection inference for sequential regression procedures. *Journal of the American Statistical Association*, 111(514):600–620, 2016.
- Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candès, and Aaditya Ramdas. Conformal prediction under covariate shift. Advances in Neural Information Processing Systems 32, pages 2530–2540, 2019.
- Jean Ville. Etude critique de la notion de collectif. Bull. Amer. Math. Soc, 45(11):824, 1939.
- Vladimir Vovk. On-line confidence machines are well-calibrated. In *The 43rd Annual IEEE Symposium on Foundations of Computer Science*, pages 187–196. IEEE, 2002.
- Vladimir Vovk. Conditional validity of inductive conformal predictors. In *Proceedings of the Asian Conference on Machine Learning*, volume 25, pages 475–490, 2012.
- Vladimir Vovk. Transductive conformal predictors. In Artificial Intelligence Applications and Innovations: 9th IFIP WG 12.5 International Conference, AIAI 2013, Paphos, Cyprus, September 30–October 2, 2013, Proceedings 9, pages 348–360. Springer, 2013.
- Vladimir Vovk. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence, 74(1-2):9–28, 2015.
- Vladimir Vovk and Ivan Petej. Venn-Abers predictors. In *Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence*, pages 829–838, 2014.
- Vladimir Vovk and Ruodu Wang. Combining p-values via averaging. Biometrika, 107(4):791–808, 2020.
- Vladimir Vovk, Alexander Gammerman, and Craig Saunders. Machine-learning applications of algorithmic randomness. In *International Conference on Machine Learning*, pages 444–453, 1999.
- Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman. Mondrian confidence machine. Technical Report, 2003a.
- Vladimir Vovk, Ilia Nouretdinov, and Alexander Gammerman. Testing exchangeability on-line. In *Proceedings* of the Twelfth International Conference on Machine Learning (ICML), pages 768–775, 2003b.
- Vladimir Vovk, Glenn Shafer, and Ilia Nouretdinov. Self-calibrating probability forecasting. In *Neural Information Processing Systems*, pages 1133–1140, 2003c.
- Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World. Springer, 2005. doi: 10.1007/b106715.

- Vladimir Vovk, Jieli Shen, Valery Manokhin, and Min-ge Xie. Nonparametric predictive distributions based on conformal prediction. In *Conformal and probabilistic prediction and applications*, pages 82–102. PMLR, 2017.
- Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and Alexander Gammerman. Cross-conformal predictive distributions. In *conformal and probabilistic prediction and applications*, pages 37–51. PMLR, 2018.
- Abraham Wald. An extension of Wilks' method for setting tolerance limits. *Annals of Mathematical Statistics*, 14(1):45–55, 1943. doi: 10.1214/aoms/117731491.
- Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 86(1):1–27, 2024.
- David Williams. Probability with martingales. Cambridge university press, 1991.
- Chen Xu and Yao Xie. Conformal prediction for time series. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2023a.
- Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In *International Conference on Machine Learning*, pages 38707–38727. PMLR, 2023b.
- Yachong Yang and Arun Kumar Kuchibhotla. Selection and aggregation of conformal prediction sets. *Journal* of the American Statistical Association, pages 1–13, 2024.
- Yachong Yang, Arun Kumar Kuchibhotla, and Eric Tchetgen Tchetgen. Doubly robust calibration of prediction sets under covariate shift. arXiv preprint arXiv:2203.01761, 2022.
- Mingzhang Yin, Claudia Shi, Yixin Wang, and David M Blei. Conformal sensitivity analysis for individual treatment effects. arXiv:2112.03493, 2021.
- Bianca Zadrozny and Charles Elkan. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In *Proceedings of the Eighteenth International Conference on Machine Learning*, ICML '01, page 609–616, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1558607781.
- Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probability estimates. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 694–699, 2002.
- Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse, and Aymeric Dieuleveut. Adaptive conformal predictions for time series. In *International Conference on Machine Learning*, pages 25834–25866. PMLR, 2022.
- Yao Zhang and Qingyuan Zhao. What is a randomization test? Journal of the American Statistical Association, 118(544):2928–2942, 2023.