

Nobody is Perfect: ATR's Hybrid Approach to Spoken Language Translation

October 25, 2005

Michael Paul, Takao Doi, Youngsook Hwang, Kenji Imamura, Hideo Okuma, Eiichiro Sumita

ATR Spoken Language Communication Research Laboratories Kyoto, Japan

IWSLT05 - 1 - ©2005 ATR - SLC

Translation Output Examples

(Japanese-to-English)

input	engine	output	eval
かわいい気に入ったわ 試着してもいいですか [cute] [i like it][can i try it on]	1	how cute i like it may i try this on	OK
背中のマッサージはい かがですか [how about a back massage]	1	how about a pedicure	NG
一緒にいきましょう [let's go together]	1	let's go to the same	NG
朝食込みですか [is breakfast included]	1	is this all inclusive	NG

Translation Output Examples

(Japanese-to-English)

input	engine	output	eval
かわいい気に入ったわ 試着してもいいですか [cute] [i like it][can i try it on]	2	may i try it on cute i like it	??
背中のマッサージはい かがですか [how about a back massage]	2	would you like a facial massage on my back	NG
ー緒にいきましょう [let's go together]	2	let's go together	OK
朝食込みですか [is breakfast included]	2	breakfast that's included	??

Translation Output Examples

(Japanese-to-English)

input	engine	output	eval
かわいい気に入ったわ 試着してもいいですか [cute] [i like it][can i try it on]	3	it is lovely the which it likes it is possible to try on is	NG
背中のマッサージはい かがですか [how about a back massage]	3	how about a back massage	OK
一緒にいきましょう [let's go together]	3	it will go together	??
朝食込みですか [is breakfast included]	3	does this include breakfast	OK

Select the Best Translation

(Japanese-to-English)

input	engine	output	eval
かわいい気に入ったわ 試着してもいいですか [cute] [i like it][can i try it on]	1	how cute i like it may i try this on	OK
背中のマッサージはい かがですか [how about a back massage]	3	how about a back massage	OK
ー緒にいきましょう [let's go together]	2	let's go together	OK
朝食込みですか [is breakfast included]	3	does this include breakfast	OK

Talk Outline

ATR's hybrid approach to speech translation

- C³ (Corpus Centered Computation) project
- MT engines
- method to select best translation

application to IWSLT05 translation task

- goals
- track participation
- discussion of evaluation results

conclusion

IWSLT05 - 6 - ©2005 ATR - SLC

C³ = C-cube (Corpus Centered Computation)

³ places corpora at the center of translation technology

translation knowledge is extracted from corpora translation quality is improved by referring to corpora selection of best translation is based on corpora

xample-based Machine Translation (EBMT)

uses corpora directly

retrieves translation examples that matches the input closely adjust examples to obtain translation

tatistical Machine Translation (SMT)

learns statistical models for language and translation from corpora and dictionaries searches for best translation at run-time according to its models

IWSLT05 - 7 - ©2005 ATR - SLC

Element MT Engines

Type	MT engine	Description	
SAT		example-based greedy decoder using IBM-4 models	
CMT	PBHMTM	word-graph-based decoder using phrase-based HMM translation models	
MSEP		phrase-based SMT engine using morpho-syntactic (part-of-speech, chunk) information	
		SMT engine based on syntactic transfer	
	HPAT	syntactic-transfer-based EBMT based on hierarchical phrase alignments	
ЕВМТ	HPATR	syntactic-transfer-based EBMT incorporating word-level SMT methods	
	D3	DP-match-driven EBMT engine	
	EM	translation memory	
SEI	LECTOR	multi-engine output selection method using multiple statistical models	

IWSLT05 - 9 - ©2005 ATR - SLC

Features of Element MT Engines

Research	Laboratories							
		51	ΛT	EBMT				
	SAT	PBHMTM	MSEP	HPATR2	HPATR	HPAT	D3	EM
R	corpus	corpus	corpus, chunker	corpus, parser	corpus , parser	corpus, parser thesaurus	corpus, thesaurus, bilingual dictionary	corpus
tisedi uose	sent. &word	phrase	phrase	phrase	phrase	phrase	sent.	sent.
C tis	wide	wide	wide	wide	wide	wide	narrow	narrow
Q garevo	very good	good	good	good	good	good	very good	very good
S ytil a u	modest	slow	slow	modest	modest	fast	fast	fast

IW**S**LT0

- 10 -

©2005 ATR - SLC

Selection of Best Translation

- calculate scores based on language and translation models
- apply multiple comparison test
- check significance of score differences

IWSLT05 - 11 - ©2005 ATR - SLC

Selection of Best Translation

- determine priority order of element MT engines
- → translate development set and evaluate MT outputs (WER)
- calculate and assign multiple statistical scores (TM_i LM_i 1≤i≤n)
- to each translation hypothesis of the given test sentence
- apply pair-wise comparison test (→ Kruskal –Wallis test) in
- order to check whether the MT output score of first engine
- is better than MT output of second MT engine
- if a significantly better MT output can be found, use this one
- for the comparison with remaining MT outputs. Otherwise,
- select the best MT output according to the priority order
- continue significance test for remaining MT engines and output selected translation

Talk Outline

ATR's hybrid approach to speech translation

- C³ (Corpus Centered Computation)
- MT engines
- method to select best translation

application to IWSLT05 translation task

- goals
- track participation
- discussion of evaluation results

conclusion

IWSLT05 - 13 - ©2005 ATR - SLC

Our Goals for IWSLT 2005

Effects of Training Data Size

variable amounts of training data

 $20K \rightarrow 170K \rightarrow 540K$

Effects of NLP Tools

preprocessing of training data

tagger, (chunker, parser)

Effects of Multi-Engine Approach

combining mult. MT engines

- > SELECTOR vs. best element MT engine
- > upper boundary (ORACLE experiment)

IWSLT05

Track Participation

Translation Direction: (JE) Japanese-to-English

(CE) Chinese-to-English

Data Track: (C) C-STAR Track

(T) Supplied+Tool Data Track

Supplied Data Track

					шинент			
MT			JE	ı	CE			
	engine	C (→ 5)	T (→ 7)	S (→ 3)	C (→ 7)	T (→ 7)		
	SAT	0	0	0	0	0	0	
	PBHMTM	0	0	0	0	0	0	
	MSEP	×	0	N/A	0	0	N/A	
	HPATR2	0	0	N/A	0	0	N/A	
	HPAT	×	0	N/A	N/A	N/A	N/A	
	HPATR	×	×	N/A	0	0	N/A	
	D3	0	0	N/A	0	0	N/A	
	EM	0	0	- 15-	0	0	O ©20	

Priority Order of Element MT Engines

lang	data	priority
uage	track	order
	C	EM>D3>HPATR2>PBHMTM
JE	T	EM>D3>HPAT>HPATR2>PBHMTM>SAT>MSEP
	S	EM>PBHMTM>SAT
	C	EM>D3>HPATR2>HPATR>MSEP>PBHMTM>SAT
CE	T	EM>MSEP>D3>HPATR>PBHMTM>HPATR2>SAT
	S	EM>PBHMTM>SAT

- large differences between languages and data tracks
- selection of optimal combination difficult
- highest priority to EM, rest MT order optimized on develop

IWSLT05 set - 16 - ©2005 ATR - SLC

Evaluation Results

(official run submissions)

lang	data		automatic evaluation					
uage	track	BLEU	NIST	METEOR	WER	GTM		
	C	0.6873	10.7375	0.8102	0.2768	0.6934		
JE	T	0.4774	8.1720	0.6658	0.4349	0.5520		
	S	0.3744	7.7368	0.6008	0.5568	0.4822		
	C	0.5031	8.6875	0.6845	0.4389	0.5898		
CE	T	0.3804	6.7540	0.5819	0.5439	0.4950		
	S	0.3938	8.0004	0.6291	0.5235	0.5533		

- better performance for JE data tracks compared to CE data tracks
- large gain for JE-T (vs. JE-S) due to word normalization
- side-effects of NLP tools for CE-T

IWSLT05 - 17 -©2005 ATR - SLC

Effects of Training Data Size

(Japanese-to-English)

IWSLT05

©2005 ATR - SLC

Effects of Training Data Size

(Chinese-to-English)

Effects on NLP Tools

МТ		JE			CE	
engine	C (→ 5)	T (→ 7)	$\mathbf{S} (\rightarrow 3)$	C (→ 7)	T (→ 7)	$\mathbf{S} (\rightarrow 3)$
SAT	0	0	0	0	0	0
PBHMTM	0	0	0	0	0	0
MSEP	×	0	N/A	0	0	N/A
HPATR2	0	0	N/A	0	0	N/A
HPAT	×	0	N/A	N/A	N/A	N/A
HPATR	×	×	N/A	0	0	N/A
D3	0	0	N/A	0	0	N/A
EM	0	0	0	0	0	0

• 3MT = SAT, PBHMTM, EM

IWSLT05 - 20 - ©2005 ATR - SLC

Effects on NLP Tools

language	data track	WER
JE	T (3MT)	0.5221
	S	0.5568
CE	T (3MT)	0.5913
	S	0.5235

- comparison of JE-S vs. JE-T and CE-S vs. CE-T using the three element MT engines of the Supplied Track (SAT,PBHMTM,EM)
- medium improvement of 3.5% in WER for JE
- degradation in performance for CE due to word segmentation differences and lower coverage of our in-house tagging tool

IWSLT05 - 21 - ©2005 ATR - SLC

Effects on Multi-Engine Approach

MT	WER of JE systems				
engine	C	T	S		
SAT	0.3404	0.5541	0.5664		
PBHMTM	0.3268	0.5310	0.5589		
MSEP	0.3956	0.5384			
HPATR2	0.3457	0.5478			
HPAT	0.4526	0.5427			
HPATR	0.4137	0.5507			
D3	0.3971	0.5650			
EM	0.5995	0.8949	0.9426		

- SMT engines outperformed EBMT engines
- best performing systems for JE is PBHMTM

IWSLT05 - 22 - ©2005 ATR - SLC

Effects of Multi-Engine Approach

- SELECTOR outperforms all element MT engines
- 5% gain for JE-C and even up to 10% for JE-T
- SELECTOR does not tap the full potential of element MT engines

IWSLT05 - 23 - ©2005 ATR - SLC

Distribution of Selected JE Hypotheses

МТ	SELECTOR (%)		
engine	C	T	S
SAT	9.9	3.0	5.9
PBHMTM	16.4	23.3	84.4
MSEP	×	10.9	
HPATR2	17.2	12.0	
HPAT	×	×	
HPATR	×	17.4	
D3	12.1	19.4	
EM	44.4	14.0	9.7

МТ	ORACLE (%)			
engine	C	T	S	
SAT	8.5	11.6	46.8	
PBHMTM	7.7	9.1	44.6	
MSEP	9.9	9.3		
HPATR2	6.7	17.6		
HPAT	32.8	11.9		
HPATR	9.3	21.5		
D3	8.5	10.1		
EM	16.6	8.9	8.5	

- **SELECTOR biased toward SMT** engines
- features beyond statistical TM LM score required to improve system performance

IWSLT05 - 24 - ©2005 ATR - SLC

Upper Boundary

(Japanese-to-English)

IWSLT05

- 25 -

Upper Boundary

(Chinese-to-English)

Lessons learned from IWSLT 2005

Effects of Training Data Size

variable amounts of training data

increase in training data led to improved results

Effects of NLP Tools

preprocessing of training data

preprocessing of the training data was
important to achieve high trans.quality

Effects of Multi-Engine Approach

combining mult.
MT engines

significant gain obtained, but still plenty of room for improvement

Conclusion

- the proposed hybrid approach was successful on the IWSLT05 translation task
- the proposed selection method outperformed all element MT engines gaining 4-5% in WER towards the best MT engine
- SMT-based selection of multiple MT outputs underachieved its task

Future Work

- additional features besides the utilized statistical model scores have to be incorporated into the selection process in order to tap the full potential of the element MT engines
- improve system performance of element MT engines in order to rise the upper boundary