Equivariant Chow Polynomials of Matroids

Nutan Nepal

North Carolina State University

Goal

Define the equivariant Chow polynomial $\underline{\mathbf{H}}_{\mathsf{M}}^G$ of matroid M :

$$D_{G(\mathbf{w})}^{b}(E(\mathbf{w})) \xrightarrow{\mathbb{T}} D_{G(\mathbf{w}^{*})}^{b}(E(\mathbf{w}^{*}))$$

$$\mathcal{F} \longmapsto q_{2!}q_{1}^{*}(\mathcal{F})[\dim E(\mathbf{w})]$$

where

Overview

Quiver representations

A quiver representation is:

• A finite-dimensional C-vector space for each vertex.

• A linear map for each arrow.

A quiver representation variety $E(\mathbf{w})$ is the space of all quiver representations for a fixed dimension vector \mathbf{w} .

 $G(\mathbf{w}) = \mathbf{GL}(w_1) \times \ldots \times \mathbf{GL}(w_n)$ acts on $E(\mathbf{w})$ splitting it into orbits.

The set of triangular arrays P(w)

Define the set $\mathbf{P}(\mathbf{w})$ of triangular arrays of nonnegative integers such that:

- $\forall j$, the entries in the j^{th} chute sum to w_j .
- Ladders are weakly decreasing.

Theorem [Achar–Kulkarni–M.]

There is a bijection

 $\{G(\mathbf{w})\text{-orbits in } E(\mathbf{w})\} \stackrel{1-1}{\longleftrightarrow} \mathbf{P}(\mathbf{w}) = \{\text{certain tri. arrays}\}.$

Example of bijection

Theorem (Combinatorial Fourier transform) [Achar–Kulkarni–M.]

There is a bijection

$$\mathbf{P}(\mathbf{w}) \stackrel{\mathsf{T}}{\longrightarrow} \mathbf{P}(\mathbf{w}^*)$$

defined inductively by

Definition of τ_j

Define $\tau_i: \mathbf{P}(\mathbf{w}) \to \mathbf{P}(\mathbf{w} + \mathbf{e}_1 + \ldots + \mathbf{e}_j)$ by:

- Add 1 as far down the $j^{\rm th}$ chute as possible, drawing an impassable vertical line there.
- Repeat for chutes $j-1,\ldots,1$ not crossing lines.

Example of CFT

Complete CFT example

Main conjecture (proof in progress)

The bijection T determines T on simple perverse sheaves; that is, $\mathbb{T}(IC(\mathcal{O}_{\lambda})) = IC(\mathcal{O}_{\mathsf{T}(\lambda)}).$