

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

MATHEMATICS 9709/11

Paper 1 Pure Mathematics 1

October/November 2024

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

* 0000800000002 *

Fin	nd the v	alue of	k and	hence	determ	nine th	e coef	ficient	of x^2	in the	expansi	on.		
••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
••••			•••••						•••••				•••••	
••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
••••	•••••		•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	•••••	•••••	••••••	••••••
••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••
••••											•••••			
••••					•	•		••••••	•	•	•		•	••••••
••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	••••••
••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••
••••	•••••		•••••				•••••		•••••		•••••		•••••	•••••
••••			•••••			•••••			•••••				•••••	
••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
••••	•••••		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••
••••	•••••		•••••	••••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
••••	•••••		•••••		•••••	•••••	•••••	•••••	•••••		•••••		•••••	•••••
••••	•••••													

2	The curve $y = x^2$	$-\frac{a}{x}$	has a stationary point at $(-3, b)$.
---	---------------------	----------------	---------------------------------------

Find the values of the constants a and b .	[4]
	•••••
	•••••
	•••••
	•••••

The diagram shows a sector of a circle, centre O, where OB = OC = 15 cm. The size of angle BOC is $\frac{2}{5}\pi$ radians. Points A and D on the lines OB and OC respectively are joined by an arc AD of a circle with centre O. The shaded region is bounded by the arcs AD and BC and by the straight lines AB and DC. It is given that the area of the shaded region is $\frac{209}{5}\pi$ cm².

Find the perimeter of the shaded region. Give your answer in terms of π .	[5]

all values of the constant k .	[5]
	•••••

5	The equation of a curve is such that	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 3\sqrt{x} + 1.$
---	--------------------------------------	---

(a)	Find the x-coordinate of the point on the curve at which the gradient is $\frac{11}{2}$. [3]
(b)	Given that the curve passes through the point (4, 11), find the equation of the curve. [4]

6 Circles C_1 and C_2 have equations

$x^2 +$	$v^2 + 6x -$	10y + 18 = 0	and	$(x-9)^2$	+(v+	$(4)^2$	64 = 0
<i>A</i>	$y + 0\lambda$	109 1 10 0	unu	(λ)	1 () 1	' <i>)</i>	01 0

respectively.

	Find the distance between the centres of the circles.	[4]
		•••••
P aı	and Q are points on C_1 and C_2 respectively. The distance between P and Q is derived as Q is derived as Q are points on Q and Q is derived as Q and Q is derived as Q are points on Q .	oted by d.
(b)	Find the greatest and least possible values of d .	[3]

The diagram shows part of the curve with equation $y = \frac{12}{\sqrt[3]{2x+1}}$. The point A on the curve has coordinates $\left(\frac{7}{2}, 6\right)$.

	the equa						•			v		
•••••	•••••		••••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	••
				•••••		•••••		•••••				
•••••			•	•	•••••	••••••	•			•	•	••
•••••	•••••			•••••		••••••	•••••	•••••		••••••	•••••	••
••••												
•••••			•			••••••	•		•	•	•	••
•••••	•••••		•••••	•••••		••••••	•••••	•••••		•••••	•••••	••
	•••••		•••••	•••••		•••••		•••••			•••••	
•••••	•••••	· • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	••
	•••••		•••••	•••••		•••••	•••••	•••••			•••••	••
•••••	• • • • • • • • • • • • • • • • • • • •		•••••	•••••		••••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••	••
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••
•••••		•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	•••••	••

* 000080000	0009 *	

(b)

Find the area of the region bounded by the curve and the lines $x = 0$, $x = \frac{7}{2}$ and $y = 0$. [4]

DO NOT WRITE IN THIS MARGIN

8	(a)	It is	given	that	B is	an	angle	between	900	and	180°	such	that	sin	$\beta = \epsilon$	q
o ,	(a)	11 13	SIVOII	uiat	ρ κ	an	angic	DCLWCCII	70	and	100	Sucii	uiui	SIII	$\rho - \iota$	1 ·

Express $\tan^2 \beta - 3 \sin \beta \cos \beta$ in terms of a.	[3]

		11
(b)	Solve the equation $\sin^2 \theta + 2\cos^2 \theta = 4s$	$\sin \theta + 3$ for $0^{\circ} < \theta < 360^{\circ}$.

9 The equation of a curve is $y = 4 + 5x + 6x^2 - 3x^3$.

•••••	•••••		••••••	•••••		•••••	•••••	•••••	
•••••	•••••		•••••	•••••		•••••		•••••	
						•••••			
•••••	••••••	••••••••••	••••••	•••••	••••••	•••••	•••••••	••••••••	••••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••
			•••••	•••••		•••••		••••••	
						•••••			
				•••••					•••••
•••••	•••••	••••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	•••••
•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••	•••••	••••••
			•••••	•••••		•••••		••••••	
						•••••			
	•••••					•••••	•••••		
	•		•			•			•
•••••	•••••	•••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	•••••	•••••	•••••
•••••	•••••		•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
				•••••					
	•••••		•••••			•••••			•••••

* 000080000013 *

(b) It is given that y = 9x + k is a tangent to the curve.

Find the value of the constant k .	[4]
	,
	•••••

An arithmetic progression has first term 5 and common difference d, where d > 0. The second, fifth and eleventh terms of the arithmetic progression, in that order, are the first three terms of a geometric progression.

•	•••••
•	 •••••
•	 •••••
•	•••••
•	•••••
•	•••••
•	••••••
•	 ••••••
	 •••••
•	
•	••••••
•	 ••••••
•	••••••
	•••••

* 000080000015 *

www.dynamicpapers.com

15

	sum of the first 77 terms of the arithmetic progression is denoted by S_{77} . The sum of the first erms of the geometric progression is denoted by G_{10} .
Fi	If the value of $S_{77} - G_{10}$. [5]
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	
•••	

11 The function f is defined by $f(x) = 3 + 6x - 2x^2$ for $x \in \mathbb{R}$.

(a)	Express $f(x)$ in the form $a-b(x-c)^2$, where a, b and c are constants, and state the range of f. [3]
(b)	The graph of $y = f(x)$ is transformed to the graph of $y = h(x)$ by a reflection in one of the axes followed by a translation. It is given that the graph of $y = h(x)$ has a minimum point at the origin.
	Give details of the reflection and translation involved. [2]

The function g is defined by $g(x) = 3 + 6x - 2x^2$ for $x \le 0$.

(c) Sketch the graph of y = g(x) and explain why g is a one-one function. You are **not** required to find the coordinates of any intersections with the axes. [2]

Sketch the graph of $y = g^{-1}(x)$ on your diagram in (c), and find an expression for $g^{-1}(x)$ You should label the two graphs in your diagram appropriately and show any relevant mirror line [4]

(d)

DO NOT WRITE IN THIS MARGIN

www.dynamicpapers.com

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s must be clearly shown.

* 000080000019 *

www.dynamicpapers.com

BLANK PAGE

© UCLES 2024

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

DO NOT WRITE IN THIS MARGIN

www.dynamicpapers.com

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

