Lecture 1: Basics of ML.

theoretical foundations of ML. 3) Theme: feature learning AI safety.

- DImportance: We went to understand how & why ML norks.
 - Train a model
 Test on a new task
 - sknowledge doesn't transfer y fundametal statistical problems.
 - not enough data
 - > Computational issue > optimization issue.

(objective function is flaved)

- · mspre new methods.

• guide technical decision

• reduce trial and error

• fore cast outcomes and risks.

• lage

• across new methods.

>> Structure and logic of this course.

ML (AI in general)

(Chatbot) Medrel droprosed (Alpha-Bro).

RL. environents'

text inege

specific structures.

We don't care about deta madelities, have a general view high-dimensional camples, generated from a certain distribution.

$$X = \{x_1, \dots, x_n\}$$
 $X = \{x_1, y_1\}, \dots, \{x_n, y_n\}$
 $X = \{x_1, y_1\}, \dots, \{x_n, y_n\}$
 $X = \{x_1, y_1\}, \dots, \{x_n, y_n\}$

Basics of ML. CONNTS of the following elements.

New era (AGI)

Liki. crawled from the

· loss function (weasuring the difference of model prediction vs y; 12,

cross-entropy, etc.

- · model· (linear/offine, kernel, neural networks.
- · optimizetion alg. (SGD, Adam, adefred).

transformer, Bert.

next word prediction.

 $-P(X_{t+1}|X_1-X_t)$.

Internet.

· risks on AI safety

Security: adversarial attack

poisonous attack

provey: reidentification.

Clean dete poisonous attack.

copyright

chatbot (freemed w/

your dralog. alignment.

2). Superised learning.

Input data 3(xi, yi) y i=1, xi e R, y; ER.

input data, label
feature response.

Good: Find prediction function fo: Rd -> R (Rd -> Rc). Such that $fo(x_i) \approx y_i$, $\forall i$.

parametric model.

Empirical Risk Minimization: $\hat{R}_{n} := \min_{0} \frac{1}{n} \sum_{i=1}^{n} \ell(f_{0}(x_{i}), y_{i})$

U concentrate

population.

 $R = \mathbb{E}_{(x,y)\sim P_{x,y}} L(f_0(x),y).$

Hope:

fo sit Ra (fx) snell

1

R(fo) small.

=> More types of ML tosks:

Traditional types of ML:

Supervised learning ...
Unsupervised learning.
Reinforcement learning.

Spectrum betneen enperied => unsup. L:

More labeled self-supervised.

data involved meta-learning.

domain generalization.

Semi-supervised learning.

L: lebel dera. U: unlebeled deta.

S: source dota.
T: tenget deta.

e: # emmonents or telks.

Learning tests	data that medel tocimed on	data model is tested on.
solf-supervised.	US, LT fewshos	t U ^T
meta-learning.	Li, Li, Le, LT	UT
domain generalization.	Li, Lz, Le	u^{T} .
semi-superved learny	L,U	U
Emperosed learning.	L	u.
venforment learning	Soule environment	faget environent.

=> Theoretical	groundings of M	_ algorithms in	general:
& Objective function			
superved [=1 l(fo(xi),yi)	x Deved	privery a L(Q, F(x))	tteck. + prior (X).
LT requies	studying the two of the studying the		algorishm