Inbound Agent Matching

Farah Ahmed

08/15/2024

Outline

- Motivation
- Model
 - Data Filtering
 - Model Training
 - Model Output
- EDA
- Model Evaluation
- MLOps Cache
- Conclusion and Future Planning

Overview

Motivation

Ensures leads connect with right agent to increase overall close rate

 Get lead to a compatible agent on first contact to reduce need for agent-to-agent transfers, wait time and increase efficiency

Ensures fair and effective lead assignment

Boost customer satisfaction and loyalty

Data Filtering

- Which agent to attribute lead
 - First agent that was connected to lead
- Which applications to include as target
 - Any policy
 - Keep only the first application per lead

```
and application.product in ('Medicare Advantage','Medicare Supplement')
where lead_applications.application_number = 1
```

Data Filtering

Our Approach on Feature Engineering

Collect as much features as we can

Develop the model using all available features to understand their predictive power

• Even if all model features aren't consistently available in production, it is valuable to examine their effect on model performance

Model Type

- Binary Classification Model
 - XGBoost (Extreme Gradient Boosting) Classifier
- Why XGBoost?
 - Particularly effective for tabular data.
 - Provides insights into feature important
 - Optimized for speed and computational efficiency, making it well suited for large datasets
 - XGBoost can automatically detect and model non-linear relationships without needing to manually create new features.

Primary Training Features

- Lead Features : Source, geographic features
- Agent Features: Agent username, start date
- Historical Features:
 - Close rates and applications per carrier for each lead sources, agents, queues and states
- Derived Features: Customer age, agent employment duration

Target Variable and Model Output

- Target Variable
 - Indicates whether an application was closed successfully
 - Binary class, 1 if application exists otherwise 0.
- Model Output
 - The model predicts the probability of closing a lead for each available agents.

Flowchart of Model Input and Output

Exploratory Data Analysis

Number of leads get connected to the system each day

Exploratory Data Analysis (2/6)

Exploratory Data Analysis (3/6)

Exploratory Data Analysis (6/6)

Exploratory Data Analysis (4/6)

Model Training

- Data Split
 - Used train_test_split with 80/20 ratio for training and testing
- Cross Validation
 - StratifiedKFold
- Hyperparameter Tuning
 - Randomized Grid Search with 160 iterations
- We got a BSS of 0.0374 on our test set

Model Evaluation

- Evaluation metric
 - Brier Skill Score (BSS)

$$BSS = 1 - \boxed{rac{BS}{BS_{ref}}}$$

- What is (BSS)
 - BSS is a measure of how well our model performs compared to a reference model
- What is BS (Brier Score)
 - A strictly proper score function that measures the accuracy of probabilistic predictions
- What is BS
 - overall close rate

The brier score of our reference
$$BS = rac{1}{N} \sum_{t=1}^{N} (f_t - o_t)^2$$
 I the prediction values will be the

Model Evaluation

- Why use BSS?
 - o Ensures accurate evaluation of agent/lead matches by providing well-calibrated probabilities
- What is well-calibrated model?
 - A model is considered well-calibrated if it's predicted probabilities correspond closely to the actual probabilities of the outcomes
- BSS of our model
 - BSS value **0.03573** indicates that our model is around 3.6% better than the baseline model

Hyperparameter Plot

SHAP Plot

Feature 1 Feature 2 Feature 3

Ice Plot (1/3)

Ice Plot (2/3)

MLOps Cache

- Why use MLOps cache?
 - Easy and fast to access the pre-processed data
- Features we put in MLOps cache
 - Close rates for each lead sources, agents, queues and states
- How does MLOps works?
 - Cache will be updated every night with the previous 30 days of historical data

Flowchart of Model with MLOps

Conclusion

- Potential problem
 - Agent with previously higher close rate might get most leads
 - Hard to tell which agent is improving as good agents get best leads
- Possible solution
 - Keep 10% holdout set to randomly assign leads to the agents
- Expectation from the solution
 - Get better idea if agent is improving or not
 - All agents have equal chance to get best leads

Future Plan

- Building reports to check model performance over the time to have an idea about how often the model needs to be re-trained
- Try new algorithms/optimization methods for better performance

Thank you