Continuità della funzione $\sin(x)$

Alessio Serraino

March 6, 2016

<u>Teorema:</u> La funzione $\sin(x)$ è continua in tutto il suo insieme di definizione. <u>Dimostrazione:</u>

Dimostriamo prima di tutto che le funzioni $\sin(x)$, e $\cos(x)$ sono continue nel punto x=0.

• Calcoliamo quindi $\lim_{x\to 0} \sin(x)$, se questo limite vale 1, poichè $\sin(0) = 0$ allora $\sin(x)$ è continua in 0.

La funzione $\sin(x)$ è dispari, quindi analizziamo solo il caso x > 0, nel caso x < 0 il limite sarà lo stesso in valore assoluto ma di segno opposto.

Sfruttiamo la disugualianza $\sin(x) \leq x$, valida $\forall x \in \mathbb{R} : x > 0$, inoltre $0 < \sin(x)$ almeno definitivamente per $x \to 0^+$, in quanto x è definitivamente nel primo quadrante, e nel primo quadrante $\sin(x) \geq 0$.

Quindi ho: $0 \le \sin(x) \le x$. Il primo è una costante, l'ultimo tende a 0, quindi per il teorema del confronto anche $\sin(x) \to 0$. Per $x \to 0^-$ si avrà lo stesso risultato, ovvero la funzione $\sin(x)$ è continua nel punto x = 0.

• Calcoliamo ora $\lim_{x\to 0}\cos(x)$, se questo limite vale 1, poichè $\cos(0)=1$, allora concluderemo che $\cos(x)$ è continua in 0.

Osserviamo che anche la funzione $\cos(x)$ ha una simmetria: è pari. Quindi calcoleremo solo il limete nel caso x>0, nell'altro caso il limite sarà lo stesso.

 $\cos{(x)} \leq 1,$ basta costruire una circonferenza trigonometrica per rendersene conto.

Inoltre $\cos(x) + \sin(x) \ge 1$ se x è nel primo quadrante, poichè $\sin(x)$ e $\cos(x)$ sono i cateti di un triangolo rettangolo di ipotenusa 1.

Quindi $\cos(x) \ge 1 - \sin(x)$, ovvero $1 - \sin(x) \ge \cos(x) \ge 1$. Il primo membro tende a 1, perchè abbiamo dimostrato che $\lim_{x\to 0} \sin(x) = 0$, il secondo tende a 1 perchè è costante, quindi per il teorema del confronto anche $\cos(x)$ tende a 1. Ma 1 è proprio $\cos(0)$, quindi $\cos(x)$ è continua in x = 0.

Riscriviamo la definizione di continuità in una forma equivalente: $\lim_{x \to x_0} f(x) = f(x_0) \iff \lim_{h \to 0} |f(x_0 + h) - f(x_0)| = 0.$

• Consideriamo ora un generico punto x_0 nel dominio della funzione $\sin(x)$, e calcoliamo $\lim_{h\to 0} |\sin(x_0+h) - \sin(x_0)|$, se questo limite viene 0, allora il teorema è dimostrato.

 $\left| \sin \left(x_0 + h \right) - \sin \left(x_0 \right) \right| = \left| \sin \left(x_0 \right) \cos \left(h \right) + \sin \left(h \right) \cos \left(x_0 \right) - \sin \left(x_0 \right) \right| \le \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \sin \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) - 1 \right) \right| + \left| \cos \left(x_0 \right) \cdot \left(\cos \left(h \right) \right) \right| + \left| \cos \left(x_$

 $|\cos(x_0)\sin(h)|$ Poichè $\lim_{x\to 0} [\cos(x) - 1] = 0$, $\lim_{x\to 0} [\sin(x)] = 0$, sia il primo che il secondo termine diventano infinitamente piccoli quando $h\to 0$ (sin (x_0) e cos (x_0) sono delle costanti). Quindi $\forall \varepsilon > 0 \ |\sin(x_0 + h) - \sin(x_0)| < \varepsilon$. Quindi si conclude che $\lim_{h\to 0} |\sin(x_0+h) - \sin(x_0)| = 0$, che è quanto volevamo dimostrare.