

Pangenome graph layout by Path-Guided Stochastic Gradient Descent

Table S1: Performance evaluation of computing a 2D layout of all chromosomal HPRC pangenome graphs. From GFA to the actual layout. **comps:** Number of weakly connected components. **pg-sgd:** *odgi layout* 2D PG-SGD implementation. **bng:** *BandageNG layout* implementation. **32T:** Number of threads: 32. **64T:** Number of threads: 64. **BandageNG* did not finish within the job wall clock time limit of 7 days. Therefore, no layout was produced.

							time in minutes				memory in gigabytes			
							32T		64T		32T		64T	
name	len	\mathbf{nodes}	$_{ m edges}$	paths	$_{ m steps}$	comps	pg - sgd	bng	pg - sgd	bng	pg - sgd	bng	pg - sgd	bng
chr1	1.12e+09	1.11e+07	1.54e+07	2.26e+03	6.01e+08	63	110	1439	68	1427	55.73	149.91	56.00	195.33
chr2	3.47e+08	6.68e+06	9.27e+06	1.65e+03	3.89e+08	15	67	576	47	521	37.31	81.97	37.29	81.97
chr3	4.06e+08	6.20e+06	8.62e+06	1.56e+03	4.55e+08	106	81	473	52	481	41.34	81.41	41.71	93.83
chr4	2.73e+08	5.91e+06	8.23e+06	1.35e+03	4.97e+08	36	88	422	56	423	44.90	79.40	45.02	79.48
chr5	3.35e+08	5.39e+06	7.51e+06	1.20e+03	4.04e+08	19	73	349	46	375	35.83	75.13	36.48	75.10
chr6	2.29e+08	4.70e+06	6.56e+06	1.41e+03	4.03e+08	40	70	270	46	271	36.74	71.25	37.22	71.26
chr7	2.71e+08	5.17e+06	7.25e+06	1.22e+03	4.10e+08	24	70	328	46	346	37.39	73.70	37.88	73.81
chr8	1.93e+08	4.26e+06	5.95e+06	8.55e+02	4.29e+08	16	71	224	47	233	37.73	54.72	38.07	54.70
chr9	1.01e+09	8.80e+06	1.23e+07	8.67e+02	3.31e+08	11	44	931	38	957	31.76	131.93	31.79	131.96
chr10	2.56e+08	4.50e+06	6.26e+06	8.79e+02	2.72e+08	14	36	256	32	260	25.32	67.85	25.25	67.87
chr11	2.83e+08	4.73e+06	6.54e+06	6.53e+02	2.38e+08	8	31	277	28	286	21.81	68.49	21.77	68.54
chr12	2.44e+08	4.10e+06	5.71e+06	7.68e+02	2.54e+08	9	44	210	27	206	23.55	51.19	23.99	51.22
chr13	3.47e+08	4.34e+06	6.08e+06	2.58e+03	3.12e+08	153	52	242	34	237	27.98	54.02	28.64	85.85
chr14	2.73e+08	4.15e+06	5.79e+06	1.82e+03	2.62e+08	133	45	222	28	222	23.56	51.67	24.17	78.13
chr15	5.64e+08	5.20e+06	7.26e+06	2.06e+03	4.02e+08	131	64	347	35	334	35.20	74.27	35.69	102.97
chr16	3.39e+08	3.91e+06	5.53e+06	1.52e+03	6.91e+08	25	152	216	512	244	58.88	53.00	61.02	53.00
chr17	1.73e+08	2.76e+06	3.93e+06	1.42e+03	3.25e+08	77	50	102	33	102	27.83	40.68	28.69	49.50
chr18	2.44e+08	2.83e+06	3.98e+06	1.27e+03	3.00e+08	111	44	108	31	106	26.61	40.80	26.78	45.01
chr19	2.91e+08	3.02e+06	4.21e+06	1.07e+03	2.03e+08	19	31	123	21	117	18.12	40.14	18.43	40.18
chr20	1.87e+08	2.82e+06	3.97e+06	8.24e+02	2.35e+08	17	35	114	25	108	20.79	39.02	21.04	39.05
chr21	2.74e+08	2.76e+06	3.88e+06	3.03e+03	2.21e+08	218	33	110	23	103	18.79	38.07	19.12	46.47
chr22	4.64e+08	3.76e+06	5.22e+06	1.76e+03	2.05e+08	82	32	181	22	183	18.30	44.73	18.65	45.13
chrX	2.07e+08	3.46e+06	4.89e+06	2.42e+03	2.70e+08	11	41	156	28	155	24.66	43.05	24.84	43.05
chrY	8.80e+07	3.18e+05	4.41e+05	3.07e+02	1.34e+07	7	2	5	1	5	1.47	4.65	1.57	4.65
chrM	1.76e+04	1.40e+03	1.89e+03	4.40e+01	4.06e+04	1	1	1	1	1	0.21	0.04	0.49	0.04
all chrs	8.42e+09	1.11e+08	1.55e+08	3.48e+04	8.12e+09	1346	1630	-*	1020	-*	737.15	_*	738.76	-*

6 Supplement

6.1 Supplementary data

6.1.1 Performance evaluation

The results of the performance evaluation are given in Table S1.

6.1.2 1D visualizations

The 1D PG-SGD algorithm creates a 1D layout of the nodes of the graph. Theoretically, it is possible that 2 nodes have the same 1D coordinate or

overlap. But, in our 1D visualizations, we arrange the nodes from left to right. Therefore, we project the 1D coordinates into a 1D node order: We sort the final layout by graph component, graph position, and node rank.

Fig. S1: odgi viz 1D visualizations of a 5 haplotypes subgraph of the Human Pangenome Reference Consortium (HPRC) chromosome 6 pangenome graph. The major histocompatibility complex (MHC) sequence was injected as an extra path. Various node arrangements are shown. a-d A graphs nodes are arranged from left to right forming the pangenome sequence. The black lines under the paths are the links representing the topology. Path names are left. (a) odgi viz default modality: The colored bars are the paths versus pangenome sequence in a binary matrix. Shown is the subgraph extracted with odgi extract. No 1D layout algorithm was applied here. b-d odgi viz colored by path position. Light grey corresponds to the beginning of a path, black encodes the end of the path. (b) The nodes are arranged randomly in 1D. (c) The nodes are arranged applying a 1D reference-guided PG-SGD where the nodes of haplotype HG01071 are fixed and only all the othere ones are movable in 1D. Now all paths of this haplotype are arranged from their lowest to their highest nucleotide position. However,lot's of longer links are now visible compared to the node ordering directly above. This indicates a node order that is globally not optimal.

