ΑD	
ΛD	

MIPR NO: 92MM2525

TITLE: SUBCHRONIC TOXICITY STUDIES ON 1,3,5-TRINITROBENZENE,

1,3-DINITROBENZENE, AND TETRYL IN RATS

SUBTITLE: Subchronic Toxicity Evaluation of N-Methyl-N,

2,4,6-Tetranitroaniline (Tetryl) in Fischer 344 Rats

PRINCIPAL INVESTIGATOR: Tirumuru V. Reddy, Ph.D.

CONTRACTING

ORGANIZATION: Environmental Monitoring Systems Laboratory

U.S. Environmental Protection Agency

26 W. Martin Luther King Drive Cincinnati, Ohio 45268-0001

SELECTE DE SEEB. 0 9 1995 B

REPORT DATE:

September 1, 1994

19950206 013

TYPE OF REPORT: Final Report

PREPARED FOR: U.S. Army Medical Research and Materiel Command,

Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;

distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

	50011115115151011	DAGE	T	
REPORT	DOCUMENTATION	PAGE	Form Approved	
			OMB No. 0704-0188	
gathering and maintaining the data needed,	of information is estimated to average 1 hour p , and completing and reviewing the collection ns for reducing this burden to Washington Hea -4302, and to the Office of Management and	of information. Send comments regar douarters Services. Directorate for info	rding this burden estimate or any other aspermation Operations and Reports, 1215 Jeffer.	ect of this
1. AGENCY USE ONLY (Leave I	blank) 2. REPORT DATE	3. REPORT TYPE	AND DATES COVERED	
	1 September 199	94 Final	Report	
4. TITLE AND SUBTITLE S	Subchronic Toxicity Studies o	n 1,3,5-Trinitrobenzene,	5. FUNDING NUMBERS	
	1,3-Dinitrobenzene, and Tetryl			
	Toxicity Evaluation of N-Methy			
	troaniline (Tetryl) in Fischer		MIPR No. 92MM2525	
6. AUTHOR(S)			1	
	V. Reddy, F. B. Daniel, M. Rol	binson,		
G. R. Olse	on, B. Wiechman, G. Reddy			
PERFORMING ORGANIZATIO	ON NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	N
	- ita - Occatama Labamatama		REPORT NUMBER	
	oring Systems Laboratory			
U.S. Environmental F				
26 W. Martin Luther				
Cincinnati, Ohio 45	268-0001			
9. SPONSORING / MONITORING	AGENCY NAME(S) AND ADDRESS	(ES)	10. SPONSORING/MONITORING	
5. S.	2.102.10.	()	AGENCY REPORT NUMBER	
U.S. Army Medical Re	esearch and Materiel Command	d,		
Fort Detrick				
Frederick, Maryland	21702-5012			
11. SUPPLEMENTARY NOTES				
			2	
12a. DISTRIBUTION / AVAILABILIT	YSTATEMENT		12b. DISTRIBUTION CODE	
A	disable sisse sedimined			
Approved for public rele	ease; distribution unlimited			
13. ABSTRACT (Maximu	um 200 words) Subchroni	c toxic effects of N-Meth	nyl-N, 2,4,6-Tetranitroaniline	(tetryl)
	344 rats were evaluated by fee			
	yl (0, 200, 1000 and 3000 mg			
toxicity or early deaths. Foot	d intake was reduced in both	sexes at all dose levels the	broughout the study and resu	Ited in
a significant decrease in term	minal body weights in the 3000	n and 1000 mg tetryl dos	se groups. The calculated as	verage
total design was 14 60 an	nd 199 mg/kg/day for females	and 13 62 and 180 mg	/kg/day for males An incre	ase in
the relative liver and kidney	weights in both sexes in the 3	000 and 1000 mg tetryl o	dose groups and an increase	in the
rolative splean weight in the	3000 mg dose group were no	ted Hematology and clin	nical chemistry analyses were	done
at 45 and 90 days exposure	e. Methemoglobin levels were	increased in both sexes	in the 3000 and 1000 tetry	I dose
groups at 45 and 90 days wh	nile hemoglobin was decreased	in these same groups at	90 days. The red blood cell	count
was decreased in the 3000 n	ng tetryl dose group of both se	exes while the reticulocyte	e count was increased in this	same
group Cholostorol lovels we	ere increased in all dose group	es in both sexes at 90 da	avs Histonathological examin	ations
suggested that suscentible of	organs for tetryl toxicity were	spleen (pigment deposit	tion and erythroid cell hyper	olasia)
and kidneys (tubular degene	eration and cytoplasmic drople	ets). A no observed ac	dverse effect level (NOAEL)	of 13
mg/kg/day was established.				
14.SUBJECT TERMS	Methemoglobin		15. NUMBER OF PAGES	
Subchronic Oral Toxicity	_	90-Day		
Fischer 344 Rats	Clinical Chemistry	,	16. PRICE CODE	
Hematology	N-Methyl-N, 2,4,6	S-Tetranitroaniline		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICAT	TION 20. LIMITATION OF ABST	FACT
OF REPORT	OF THIS PAGE	OF ABSTRACT		

Unclassified NSN 7540-01-280-5500

Unlimited Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

Unclassified

OF ABSTRACT Unclassified

QUALITY ASSURANCE STATEMENT

The portions of this toxicology project performed and reported by Pathology Associates, Inc. has been inspected and audited by the quality assurance unit as required by the Good Laboratory Practice (GLP) standards promulgated by the U.S. Environmental Protection Agency. The following table is a record of the inspections/audits performed and reported by the QAU.

Date of Inspection	Phase Inspected	Date Findings Reported to Management and Study Director
01-03-95	Final Report	01-03-95
08-29-94	Draft Report	08-29-94
08-29-94	Data	08-29-94
04-14-94	Necropsy	04-14-94
04-08-94	In-Life Data	04-12-94
04-08-94	Food & Water Consumption	04-12-94
02-15-94	Food & Water Consumption	02-17-94
02-15-94	Weighing	02-17-94
01-13-94	Food & Water Consumption	01-14-94
01-13-94	Weighing	01-14-94
	-	

Willa Fox, MA

Quality Assurance Unit

PAI-Cin

1-3-95

Date

Study Number: 94-001

Access	ion To	r
NTIS	GRA&I	G
DTIC 1	AB	
Unanno	unced	
Just 11	icatio	19 ^
Avail		y Codes
Ĭ	lvail a	and/or
Dist .	Speod	al
A-1	45 64	

Compliance Statement

This study was conducted in compliance with the Good Laboratory Practice Regulations as set forth in Title 21 of the U.S. Code of Federal Regulations Part 792 issued August 17, 1989. All deviations from the protocol and/or GLPs are listed in Appendix J. There were no deviations from the aforementioned regulations which affected the quality or integrity of the study or the interpretation of the results in the report.

Timmen V. Ledos	12.30.94
Tirumuru V. Reddy, Ph.D. U.S. Environmental Protection Agency	Date
Greg R. Olson, D.V.M., Ph.D. Pathology Associates, Inc.	
Jone J. Jonella Joni A. Torsella, Ph.D. U.S. Environmental Protection Agency	
Barry E. Wiechman, B.S., M.S. Pathology Associates, Inc.	12-29-94 Date

Study Personnel

Principal Investigator: Tirumuru V. Reddy, Ph.D.

Co-Principal Investigator: F.Bernard Daniel, Ph.D.

Biochemist: Barry E. Wiechman, B.S., M.S.

Pathologist: Greg R. Olson, D.V.M., Ph.D.

Biostatistician: Joni A. Torsella, Ph.D.

Study Biological Technician: Bradley Peterson, A.S.

Histology Laboratory Supervisor: Sheree Lovelace, A.S.

Contracting Officer Representative: Gunda Reddy, Ph.D.

Study Timetable:

Study Initiation: January 4, 1994

Initiation of Dosing: January 12, 1994

Completion of Necropsy: April 14, 1994

TABLE OF CONTENTS

		Page Number
Mater Resu Sumr	mary rences	1 2 5 9 10 11
Append	ices	
A.	Food and Water Consumption Data	25
B.	Body Weights	40
C.	Organ Weights	45
D.	Hematology Data	55
E.	Clinical Chemistry Data	64
F.	Clinical Observations	73
G.	Gross and Histopathology Data	77
Н.	Ophthalmology Data	124
i.	Chemical Analyses	127
J.	Protocol and Amendments	138

INTRODUCTION

Nitroaromatics, such as 1,3-dinitrobenzene (DNB), 1,3,5-trinitrobenzene (TNB), and N-methyl-N,2,4,6-tetranitroaniline (tetryl), have been detected as environmental contaminants of groundwater and soil near production sites and in some instances at military test grounds. TNB is formed during the nitration step of TNT synthesis as a result of oxidation of methyl groups. Although the complete mechanism of TNB formation during TNT photolysis is unknown, it has been suggested that it is produced by decarboxylation of 2,4,6-trinitrobenzaldehyde, a major TNT photoproduct (Burlinson, 1980). It is also found in aquatic systems and surface soils as a by-product of photolysis of TNT. DNB and TNB are not easily biodegradable, persist in the environment, eventually leach out, and contaminate groundwater near waste disposal sites. Tetryl is an explosive that has been in use, largely for military purposes, since 1906. Wastewaters and soil at the original production sites and other plants devoted to munitions assembly, contain large quantities of these compounds (Walsh and Jenkins, 1992).

Toxicity data on these compounds are limited. The oral LD50 of DNB, TNB and tetryl were 59 mg/kg, 284 mg/kg and greater than 5 g/kg, respectively, in rats for combined sexes. TNB and tetryl were not toxic at 2 g/kg when applied to rabbit skin for 24 hours. However, the dermal LD50 of DNB was 1.99 g/kg for combined sexes of rabbits. None of these compounds produced skin irritation but positive (DNB) and severe (TNB, tetryl) eye irritation potentials in rabbits were noted. The sensitization tests showed that DNB and tetryl are not skin sensitizers while TNB caused mild allergic reaction in guinea pigs (Fitzgerald et. al., 1992 a,b,c). Some of the toxicological effects of DNB are: formation of methemoglobin, testicular degeneration and reproductive failure, weight loss and anemia in hamsters, rats and mice. Neurological and hematological disorders have also been reported in dogs. DNB is toxic to humans; the estimated lethal dose range is 5-50 mg/kg. It is readily absorbed through the skin (Von Burg, 1989). Tetryl was observed to be a powerful skin sensitizer in ammunition plant Dermatitis, liver atrophy, spleen effects, headaches, weight loss and respiratory irritation were reported following tetryl exposure (U.S. EPA, 1990). Atmospheric concentration of 1.5 mg/m³ or below did not produce systemic poisoning in persons working with tetryl. DNB, TNB, and tetryl have been shown to be genotoxic in the Salmonella mutagenesis assay (McGregor et. al., 1989). TNB has also been shown to form adducts of blood proteins and tissue DNA in rats (Reddy et. al., 1991).

Objective of the Study

This study was conducted in order to evaluate the toxicity of tetryl when administered in the diet for 90 days.

MATERIALS AND METHODS

Test Material Preparation

N-Methyl-N, 2,4,6-Tetranitroaniline powder (CAS #479-45-8) 99.45% purity was prepared by Dr. W. Koppes of the Naval Surface Warfare Center. The purity was confirmed by the U.S. Army Biomedical Research and Development Laboratory and the U.S. EPA. Analysis by HPLC revealed no detectable impurities. Certified powdered Purina Laboratory Chow 5002 was purchased (Ralston-Purina Co., St. Louis, MO) and stored at 4°C until used. Tetryl diets were prepared weekly. First, 4.5 g of tetryl was added to 50 g of powdered diet in a mortar and thoroughly ground with a pestle. Afterwards 1450 g of the diet was added and mixed for 2 hours in a mechanical mixer (Kitchen Aid, St. Joseph, MI)) for uniform distribution. This was verified by determining the tetryl concentration in the diet, taken from each of the 1 kg mixtures, by quantitative analysis done by HPLC. The premixed diet was further diluted with fresh powdered diet to obtain the desired tetryl concentration in the lower dose groups. The diet feeders were refilled twice a week and changed weekly.

Analyses of the tetryl-feed mixtures were carried out on acetone extracts of the mixtures, utilizing a Waters 600E chromatography system (Waters, Milford, MA), equipped with a 490E programmable multiwavelength detector, operating at 245 nm. The entire chromatography system was interfaced with a Berthold HPLC computer program, Version 1.65 (Berthold, Nashua, NH). The tetryl was eluted from a Zorbax C-8 column (9.4 mm x 25 cm) (MAC-DOD Analytical, Chadds Ford, PA) with a water-methanol gradient, at a flow rate of 3 ml/min. The gradient had an initial condition of 20% methanol which was increased in a linear fashion from 20% to 50% in 15 minutes and then to 65% in 25 minutes, and finally to 100% in 10 minutes. The column was washed for an additional 5 minutes and brought back to 20% methanol by reverse gradient and equilibrated for an additional 10 minutes at initial conditions before the next sample was injected. Working standards were prepared in Burdick and Jackson HPLC grade high purity methanol (Baxter, Obetz, OH). Analytical data of these mixtures is presented in Appendix I.

Animals and Maintenance

Male and female Fischer 344 rats, confirmed free of viral antibodies, bacteria and parasites, were obtained from Charles River Laboratories, Kingston, New York. The animals, 6-7 weeks old and weighing approximately 125 g when delivered, were held for 1 week in quarantine prior to initiation of treatment. The animals were housed in a temperature (20-22°C) and humidity (40-60%) controlled room on a 12:12 hour light:dark cycle. For the study, they were housed individually in polycarbonate cages and water was administered ad libitum. Animal identification was done using electronic implants (Bio Medic, Maywood, NJ) with the rats assigned to control and treatment groups according to a computer-generated set of random numbers. The weight variation of the animals of each sex used did not exceed \pm 2 s.d. of the mean weight at the time of delivery. The cages were identified with a color-coded identification card indicating the animal and treatment

group. All aspects of the study were conducted in compliance with the guidelines of the American Association for Accreditation of Laboratory Animal Care.

All rats were observed twice daily for physiological and behavioral responses as well as for mortality or morbidity. Food and water consumption were recorded twice weekly. Body weights were taken prior to the start of the study, once weekly during the study and at the final sacrifice.

Experiment Design

Group	No. of Animals	Sex	Dose Groups (mg tetryl/kg diet)
1	10	F	3000
2	10	F	1000
3	10	F	200
4	10	F	0
5	10	M	3000
6	10	M	1000
7	10	M	200
8	10	M	0

Hematology and Clinical Chemistry

Hematology and clinical chemistry analyses were done on days 45 and 90. Hematology parameters were assessed using a Serono-Baker Hematology Analyzer, Model 9000, coupled to a computer running Labcat[®] software (Innovation Programming, Inc., Princeton, NJ). Total red and white blood cell counts, platelet count, differential leukocyte count, hemoglobin, and packed cell volume were measured and computed. Methemoglobin samples were analyzed on a IL 482 Co-Oximeter. Heinz bodies were determined using the crystal violet procedure (Lee et. al., 1993) with microscopic examination for positive cells (>5 Heinz bodies).

Clinical chemistry was performed using a Cobas Fara II centrifugal analyzer (Roche, Nutley, NJ) with a non-selective electrode (ISE) module. This system was also interfaced with a personal computer and the Labcat software system. Clinical chemistry analytes included sodium, potassium, total protein, albumin, calcium, phosphorus, total bilirubin, blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase, glucose, cholesterol, triglycerides and alkaline phosphatase.

Statistical Evaluation

Males and females were considered separately in all statistical analyses. A one-factor (dose) analysis of variance (ANOVA) was used to analyze normally-distributed measures: body weights, organ weights, organ weight ratios, food and water consumption, hematology and clinical chemistry. When a treatment effect was noted (p ≤0.05, F-test) the difference between the control and the treatment groups was probed using a multiple comparison procedure (Dunnett's t-test).

Necropsy and Histopathology

Prior to necropsy, the animals were anesthetized with pentobarbital (60 mg/kg b.w., i. p.) and blood samples were collected via cardiac puncture after the body weight was recorded. Following euthanasia via exsanguination, all external surfaces, orifices, external surface of the brain, cervical tissues, all organs, and the thoracic, abdominal and pelvic cavities were examined for gross lesions.

During necropsy the following tissues were weighed: brain, liver, spleen, kidneys. adrenals, lungs, thymus, testes w/epididymides, ovaries, and heart.

The following tissues were harvested from each animal and preserved in 10% neutral buffered formalin:

skin mandibular and mesenteric lymph nodes mammary glands thigh muscle sciatic nerve sternum femur with marrow thymus trachea lungs with bronchi

heart and aorta

thyroid parathyroids esophagus stomach duodenum jejunum tongue salivary gland

ileum eyes

colon cecum rectum liver pancreas spieen kidneys adrenals

urinary bladder seminal vesicles

prostate

testes, including epididymides

ovaries uterus

nasal cavity with turbinates

brain pituitary

preputial or clitoral glands

Zymbal's gland thoracic spinal cord harderian gland

Subsequently, these tissues were trimmed, processed and embedded in paraffin. Blocks were sectioned at 5µ and slides were prepared and stained with hematoxylin and eosin. All tissues were examined in the high dose and control groups of both sexes. The spleen and kidneys were identified as target organs and examined in the appropriate groups.

The inflammatory and degenerative lesions were graded according to severity using a scale of one to four (minimal, mild, moderate or marked). Data were tabulated according to individual animal and summarized by group. In addition, the gross observations and microscopic diagnoses were correlated for each animal. Labcat histopathology software was used for data management.

Specimen, Raw data, and Final Report Storage

All tissue specimens, blocks and slides, raw data and final report will be placed in the U.S. EPA storage facility.

RESULTS

Food and Water Consumption

Overall food and water consumption data are listed in Table 1, while weekly data is given in Appendix A. The food consumption was significantly ($p \le .05$) reduced in all treatment groups of both sexes while water consumption was increased in the high dose (3000 mg tetryl) female group only.

Using the food consumption data, the average daily tetryl dose levels received by group (see Experimental Design) are presented in Table 2.

Body Weights, Organ Weights and Weight Ratios

The mean group values for body weights are listed in Table 3 while mean group organ weights (heart, brain, spleen, adrenals, thymus, ovaries/testes, kidneys, lungs and liver) are given in Tables 4 (females) and 5 (males). Mean group values for organ to body weight ratios and terminal body weights are present in Tables 6 (females) and 7 (males). Individual body weights are found in Appendix B with individual organ weights present in Appendix C.

Significant (p \leq 0.05) decreases in terminal body weights were noted in both sexes receiving 3000 mg/kg tetryl diet and in females receiving 1000 mg/kg.

Absolute and relative organ weights were significantly (p \leq 0.05) different from controls for the following organs:

- Kidneys An increased relative weight was noted in all treatment groups of both sexes except the male 200 mg tetryl dose group.
- Liver The 3000 mg tetryl dose group of both sexes had increased absolute and relative weights while the 1000 mg/kg dose group of both sexes had only an increased relative weight.
- Spleen The 3000 mg tetryl dose group of both sexes had an increased relative weight with the male group also having an increased absolute weight.
- Brain The 3000 mg tetryl dose group of both sexes had a decreased absolute weight with the female 1000 mg/kg dose group also being decreased.
- Adrenals and Thymus The female 3000 mg tetryl dose group had a decreased absolute weight for both organs while the 1000 mg/kg female dose group also had a decreased adrenal weight.

Hematology

Hematology analyses performed were total white blood cell count (WBC), platelet count, red blood count (RBC), methemoglobin (MetHb), hemoglobin (HGB), hematocrit (HCT), reticulocytes, Heinz bodies and differential leukocyte count for 45 and 90 days. Group data are summarized in Tables 8-11. Individual data are listed in Appendix D.

1. WBC and Differential:

At 45 days, there were no significant changes while at 90 days the female 200 mg tetryl dose group had a significant (p \leq 0.05) decreased WBC value.

2. RBC:

At 45 days, females receiving 3000 mg tetryl had a significant (p \leq 0.05) decreased RBC while at 90 days both sexes were decreased in this same dose group.

3. Hemoglobin:

At 45 days, females in the 3000 and 1000 mg tetryl dose groups had significantly (p \leq 0.05) decreased hemoglobin values as well as males in the 3000 mg dose group. At 90 days both sexes receiving 3000 and 1000 mg tetryl had decreased values.

4. Hematocrit:

At 45 days, there were no significant changes while at 90 days males receiving 3000 and 1000 mg tetryl had significantly (p \leq 0.05) decreased hematocrit values.

5. Platelets:

At 45 days, males in the 3000 and 1000 mg tetryl dose groups had significantly (p \leq 0.05) increased platelet levels. At 90 days, females in these same dose groups also had increased values. A similar increase was evident in males receiving 3000 mg tetryl.

6. Reticulocytes:

At 45 and 90 days, both sexes dosed at 3000 mg tetryl had significantly (p \leq 0.05) increased reticulocyte values as well as females receiving 1000 mg tetryl for 90 days.

7. Methemoglobin:

At both 45 and 90 days, both sexes receiving 3000 and 1000 mg tetryl had significantly (p \leq 0.05) increased methemoglobin levels in addition to the 200 mg female group at 45 days.

8. Heinz Bodies:

Were not detected in any group at either 45 or 90 days.

Clinical Chemistry

The mean group values for each analyte are compiled in Tables 12-15. Individual data are present in Appendix E.

1. Total Protein:

At 45 days, all male groups receiving tetryl had significantly (p \leq 0.05) increased levels of total protein while at 90 days both sexes in the 3000 and 1000 mg tetryl groups had increased values.

2. Albumin:

At 45 and 90 days, males receiving 3000 and 1000 mg tetryl had significantly (p \leq 0.05) increased values for albumin while all treated female groups at 90 days only were increased.

3. Calcium:

At 45 and 90 days, males receiving 3000 and 1000 mg tetryl had significantly ($p \le 0.05$) increased calcium levels.

4. Total Bilirubin:

At 45 days, females in the 3000 mg tetryl dose group had a significantly (p \leq 0.05) increased total bilirubin value while at 90 days both sexes receiving 3000 and 200 mg tetryl had increased levels in addition to the 1000 mg male group.

5. Blood Urea Nitrogen (BUN):

There were no significant differences amongst the groups at either 45 or 90 days except for a slight increase in the 1000 mg male group at 90 days.

6. Creatinine:

At 45 days, females receiving 3000 and 1000 mg tetryl had significantly (p \leq 0.05) increased values while at 90 days no changes were noted amongst any of the groups.

7. Aspartate Aminotransferase (AST):

There were no significant differences amongst the groups at either 45 or 90 days except for a slight increase in the 200 mg female group at 90 days.

8. Alanine Aminotransferase (ALT):

There were no significant differences amongst the groups at either 45 or 90 days.

9. Alkaline Phosphatase (ALK Phos):

At 45 days, there were no significant changes while at 90 days all male groups receiving tetryl and the female high dose group (3000 mg tetryl) had significantly ($p \le 0.05$) decreased values.

10. Sodium:

There were no significant differences amongst the groups at either 45 or 90 days.

11. Potassium:

At 45 days, the male group receiving 3000 mg tetryl had a significantly (p \leq 0.05) increased value while at 90 days none of the groups displayed any changes.

12. Glucose:

There were no significant changes amongst the groups at either 45 or 90 days except for a slight increase in the 1000 mg female group at 90 days.

13. Phosphorus:

There were no significant changes amongst the groups at either 45 or 90 days.

14. Cholesterol:

At 90 days, cholesterol was significantly (p \leq 0.05) increased at all dose levels in both sexes.

15. Triglycerides:

At 90 days, females receiving 3000 mg tetryl had a significantly (p \leq 0.05) reduced triglyceride level.

Clinical Observations

Clinical observations are listed in Appendix F. There were no clinical observations that were meaningful.

Mortality

There were no early deaths in any of the groups.

Ophthalmology Findings (Appendix H)

All animals used in this study were affected with mild corneal dystrophy prior to the initiation of the study which is a common finding in Fischer 344 rats of both sexes. In the time since performing the initial ophthalmic examination the corneal dystrophy lesions had not progressed except in one animal. The remaining abnormalities were sporadic and did not appear to be a dose-related effect.

Gross Pathology

Gross changes noted at the terminal sacrifice were not remarkable.

Histopathology (Appendix G)

All tissues were histopathologically examined in control and high dose animals. The spleen and kidneys were examined in all remaining groups of both sexes.

The spleen was characterized in both sexes in the 3000 mg tetryl dose group by prominent deposition of intra- and extracellular pigment (probable hemosiderin). Also, males in this same dose group showed excessive erythroid cell hyperplasia.

Pigment deposition was also evident in high and mid dose groups (3000 and 1000 mg tetryl) involving the renal cortical epithelium of both sexes. Kidneys in males were further characterized by a dose related increased severity of tubular degeneration and regeneration, hyaline casts, and cytoplasmic droplets. These droplets were morphologically similar to the hyaline droplets noted in the 14 day tetryl study except for a diminished intensity of eosinophilic staining. The remaining diagnoses as listed in the tables should be considered spontaneous since their incidence or severity levels were low.

SUMMARY

The administration to Fischer 344 rats of N-Methyl-N, 2,4,6-Tetranitroaniline at various doses in the diet for ninety days resulted in the following significant findings:

- 1. A significant decrease in food consumption in both sexes at all dose levels (3000, 1000 and 200 mg tetryl).
- 2. Terminal body weights were significantly decreased in both sexes in the 3000 mg tetryl dose group and in the female 1000 mg dose group.
- 3. Relative organ weights were significantly increased in both sexes in the 3000 and 1000 mg tetryl dose groups for liver and kidneys while the spleen was increased in only the 3000 mg dose group.
- 4. Methemoglobin levels and reticulocytes were significantly increased in both sexes in the 3000 and 1000 mg tetryl dose groups except in females receiving 1000 mg tetryl (reticulocytes).
- 5. The red blood cell count was significantly decreased in both sexes in the 3000 tetryl dose group while hemoglobin levels were decreased in both the 3000 and 1000 mg dose groups.
- 6. Cholesterol was significantly increased in both sexes at all dose levels while alkaline phosphatase was decreased in all male groups and the high dose female group (3000 mg tetryl).
- 7. Albumin levels were significantly increased in both sexes at all dose levels except the female 200 mg tetryl group while total bilirubin was increased at all dose levels except in the female 1000 mg group.

- 8. The high dose group (3000 mg tetryl) featured prominent splenic pigment deposition along with erythroid cell hyperplasia while males receiving 3000 and 1000 mg tetryl demonstrated increased renal tubular degeneration and regeneration along with obvious cytoplasmic droplets.
- 9. A no observed adverse effect level (NOAEL) of 13 mg/kg/day was established even though several analytes (hematological and clinical chemistries) in the 200 mg/kg dose group appeared statistically significant, they were not biologically meaningful since the values were within an accepted normal reference range.

REFERENCES

Burlinson, N.E. (1980) Fate of TNT in an Aquatic Environment: Photodecomposition vs. Biotransformation. Final report. Silver Spring, Maryland: Naval Weapons Center, NSWC/TR-79-445.

Fitzgerald, G.B., Austin, A., Desai, L.S. and Reddy, G. (1992a). Acute Toxicological Evaluation of N-Methyl-N, 2,4,6-Tetranitroaniline. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 167-168.

Fitzgerald, G.B., DiGiulio, N., Desai, L.S. and Reddy, G. (1992b). Acute Toxicological Evaluation of 1,3-Dinitrobenzene. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 168-169.

Lee, R.G., Bithell, T.C., and Foerster, J. (1993). Wintrobe's Clinical Hematology, p.1048.

Fitzgerald, G. B., DiGiulio, N., Desai, L. S. and Reddy, G. (1992c). Acute Toxicological Evaluation of 1,3,5-Trinitrobenzene. J. Amer. Coll., Toxicol. Acute Toxicity Data: Part B. 1, 169-170.

McGregor, D.B., Riach, C.G., Hastwell, R.M. and Dacre, J.C. (1980). Genotoxic Activity in Microorganisms of Tetryl, 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene. Environ. Mut. 2, 531-541.

Reddy, T.V., Wan, L., Lin, E.L.C., Daniel, F.B. and Reddy, G. (1991). Formation and Persistence of 1,3,5-Trinitrobenzene Adducts with Blood Proteins and Tissue DNA. Toxicologist, 11, 131.

U.S. EPA. (1990). Health and Environmental Effects Document for Trinitrophenylmethylnitramine. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH. ECAO-CIN-GO91.

Von Burg, R. (1989). Toxicology Update: Dinitrobenzene. J. Appl. Toxicol. 9, 199-202.

Walsh, M.E. and Jenkins, T.F. (1992). Identification of TNT Transformation Products in Soil. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 92-16.

Table 1: Food and Water Consumption

Dose Groups (mg tetryl/kg diet)	Food (g/kg b	Water .w./day)
	Female	es
0	74.39 ± 0.54	109.15 ± 1.77
3000	67.55 ± 0.50*	130.13 ± 4.61*
1000	69.35 ± 0.23*	115.89 ± 2.69
200	72.44 ± 0.65*	111.88 ± 2.00
	Males	3
0	68.50 ± 0.45	85.84 ± 1.83
3000	60.95 ± 0.29*	92.29 ± 2.34
1000	62.87 ± 0.37*	88.72 ± 1.30
200	66.32 ± 0.42*	89.29 ± 2.22

Mean ± Standard Error

Table 2: Daily Consumption of Tetryl

Dose Groups (mg/kg diet)	Target Dose (mg/kg b.w.)	Females (mg/kg	Males b.w.)
0	0		
3000	300	199.06 ± 1.48	179.63 ± 0.86
1000	100	68.87 ± 0.23	62.43 ± 0.37
200	20	14.20 ± 0.13	13.00 ± 0.08

Mean ± Standard Error

^{*} Significantly different from the control group (p \leq 0.05) by Dunnett's test.

Table 3: Body Weights (grams)

	Dose Groups (mg tetryl/kg diet)				
Week	0	3000	1000	200	
	Females				
1	126.45±1.27	123.87±0.76	126.56±1.41	125.52±1.39	
2	136.97±1.40	131.19±1.19 *	136.01±1.52	134.63±1.40	
3	145.08±1.38	139.94±1.36 *	143.92±1.51	143.02±1.63	
4	150.51±1.60	144.39±1.27 *	149.37±1.75	148.71±1.72	
5	154.88±1.66	148.12±1.22 *	153.41±1.91	153.37±1.90	
6	159.91±1.87	152.64±1.09 *	157.00±1.91	159.15±2.09	
7	165.00±2.17	154.45±0.98 *	160.72±2.21	163.20±2.14	
8	167.85±2.19	156.00±1.17 *	162.91±2.28	165.99±2.38	
9	171.37±2.13	158.40±1.27 *	165.79±2.18	169.25±2.40	
10	173.81±2.12	160.67±1.23 *	168.08±2.09	172.00±2.51	
11	175.51±2.01	161.95±0.85 *	169.39±2.35	173.30±2.79	
12	177.97±2.27	163.01±0.52 *	171.28±2.60	175.15±2.87	
13	180.04±2.31	163.56±1.02 *	172.35±2.61	177.19±2.83	
		Male	S		
1	173.17±1.79	166.74±2.69	170.69±2.59	174.66±3.17	
2	193.31±1.99	180.29±3.02 *	190.12±2.65	195.00±3.34	
3	213.96±2.65	201.88±3.28 *	212.13±2.99	217.42±3.63	
4	228.11±3.21	218.16±3.78	228.42±3.43	231.90±3.60	
5	240.14±4.04	232.44±4.05	243.12±3.80	244.78±3.75	
6	254.34±4.52	246.20±4.04	257.64±4.24	259.93±4.13	
7	268.63±4.99	258.43±4.15	269.30±3.91	273.90±4.56	
8	278.63±5.09	266.77±4.31	277.28±3.82	283.12±4.34	
9	288.03±5.09	272.90±4.61	285.25±3.47	291.34±4.35	
10	296.65±5.06	280.25±4.74 *	293.70±3.66	300.15±4.89	
11	304.29±5.17	286.19±5.12 *	301.40±4.01	307.79±5.10	
12	312.88±5.06	292.71±5.29 *	308.76±4.03	314.47±4.77	
13	319.25±5.29	297.08±5.56 *	313.50±4.23	318.41±4.55	

Mean ± Standard Error

^{*}Significantly different from the control group (p≤0.05) by Dunnett's test.

Table 4: Organ Weights (grams)/Females

		Dose Groups (mg tetryl/kg diet)				
	0	3000	1000	200		
Kidneys	1.25 ± 0.02	1.31 ± 0.01	1.26 ± 0.03	1.30 ± 0.03		
Lungs	1.01 ± 0.03	0.96 ± 0.03	0.94 ± 0.02	0.96 ± 0.04		
Liver	4.73 ± 0.05	5.13 ± 0.03*	4.97 ± 0.11	4.84 ± 0.10		
Heart	0.69 ± 0.02	0.65 ± 0.02	0.64 ± 0.02	0.65 ± 0.02		
Brain	1.83 ± 0.02	1.69 ± 0.01*	1.72 ± 0.02*	1.77 ± 0.05		
Spleen	0.44 ± 0.01	0.47 ± 0.01	0.44 ± 0.01	0.42 ± 0.01		
Adrenals	0.09 ± 0.01	0.07 ± 0.00 *	$0.07 \pm 0.00*$	0.08 ± 0.01		
Thymus	0.25 ± 0.02	0.19 ± 0.01*	0.22 ± 0.01	0.22 ± 0.01		
Gonads	0.17 ± 0.02	0.13 ± 0.01	0.21 ± 0.09	0.14 ± 0.01		

Mean \pm Standard Error * Significantly different from the control group (p \leq 0.05) by Dunnett's test.

Table 5: Organ Weights (grams)/Males

		Dose Groups (mg tetryl/kg diet)			
	0	3000	1000	200	
Kidneys	2.20 ± 0.05	2.40 ± 0.05	2.40 ± 0.10	2.29 ± 0.05	
Lungs	1.42 ± 0.04	1.41 ± 0.04	1.42 ± 0.07	1.47 ± 0.08	
Liver	9.35 ± 0.26	11.03 ± 0.25*	10.07 ± 0.23	9.35 ± 0.22	
Heart	1.00 ± 0.02	0.93 ± 0.02	0.96 ± 0.02	1.05 ± 0.03	
Brain	1.90 ± 0.02	1.83 ± 0.02*	1.90 ± 0.03	1.92 ± 0.02	
Spleen	0.61 ± 0.01	0.71 ± 0.02*	0.63 ± 0.01	0.61 ± 0.01	
Adrenals	0.07 ± 0.01	0.07 ± 0.01	0.07 ± 0.00	0.07 ± 0.00	
Thymus	0.29 ± 0.02	0.25 ± 0.02	0.26 ± 0.02	0.26 ± 0.01	
Gonads	5.08 ± 0.29	4.82 ± 0.17	4.98 ± 0.24	5.37 ± 0.28	

Mean \pm Standard Error * Significantly different from the control group (p \leq 0.05) by Dunnett's test.

Table 6: Organ-to Body Weight Ratios and Terminal Body Weights/Females

		Dose Groups (Dose Groups (mg tetryl/kg diet)		
	0	3000	1000	200	
Body Weight (grams)	171.55 ±2.13	153.33 ± 1.00*	163.70 ± 2.49*	168.44 ± 2.52	
Kidneys (%)	0.73 ± 0.01	$0.86 \pm 0.01*$	0.77 ± 0.01 *	0.77 ± 0.01*	
Lungs (%)	0.59 ± 0.02	0.62 ± 0.02	0.57 ± 0.01	0.57 ± 0.02	
Liver (%)	2.76 ± 0.04	$3.35 \pm 0.03*$	3.04 ± 0.04 *	2.87 ± 0.04	
Heart (%)	0.40 ± 0.01	0.43 ± 0.02	0.39 ±0.01	0.38 ± 0.01	
Brain (%)	1.07 ± 0.02	1.10 ± 0.01	1.05 ± 0.02	1.06 ± 0.04	
Spleen (%)	0.26 ± 0.01	0.30 ± 0.01 *	0.27 ± 0.00	0.25 ± 0.00	
Adrenals (%)	0.05 ± 0.00	0.05 ± 0.00	0.04 ± 0.00	0.05 ± 0.00	
Thymus (%)	0.14 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	
Gonads (%)	0.10 ± 0.01	0.09 ± 0.00	0.13 ± 0.05	0.08 ± 0.00	

Mean \pm Standard Error * Significantly different from the control group (p \leq 0.05) by Dunnett's test.

Table 7: Organ-to-Body Weight Ratios and terminal Body Weights/Males

		Dose Groups (mg tetryl/kg diet)		
	0	3000	1000	200	
Body Weight (grams)	304.19 ± 4.78	279.95 ± 4.71*	297.37 ± 3.89	305.04 ± 4.12	
Kidneys (%)	0.72 ± 0.01	0.86 ± 0.01*	0.81 ± 0.04*	0.75 ± 0.01	
Lungs (%)	0.47 ± 0.01	0.51 ± 0.01	0.48 ± 0.02	0.48 ± 0.03	
Liver (%)	3.07 ± 0.04	$3.94 \pm 0.03*$	3.39 ± 0.04*	3.06 ± 0.05	
Heart (%)	0.33 ± 0.01	0.33 ± 0.01	0.32 ± 0.01	0.35 ± 0.01	
Brain (%)	0.63 ± 0.01	0.66 ± 0.01	0.64 ± 0.01	0.63 ± 0.01	
Spleen (%)	0.20 ± 0.00	0.25 ± 0.00 *	0.21 ± 0.00	0.20 ± 0.00	
Adrenals (%)	0.02 ± 0.00	0.03 ± 0.00	0.02 ± 0.00	0.02 ± 0.00	
Thymus (%)	0.09 ± 0.01	0.09 ± 0.01	0.09 ± 0.01	0.08 ± 0.00	
Gonads (%)	1.67 ± 0.09	1.72 ± 0.06	1.67 ± 0.07	1.76 ± 0.08	

Mean \pm Standard Error * Significantly different from the control group (p \leq 0.05) by Dunnett's test.

Table 8: Hematology Values/Females 45 Days

	Do	se Groups	(mg tetryl/k	g diet)
	0	3000	1000	200
RBC	8.15	7.80*	7.94	7.99
(x10 ⁶ /μl)	±0.21	±0.25	±0.18	±0.16
łemoglobin	15.66	14.36*	14.66 *	14.96
(g/dL)	±0.25	±0.68	±0.40	±0.42
-lematocrit	43.72	42.88	43.78	42.42
(%)	±2.01	±1.68	±1.83	±1.00
VBC	4.18	4.78	4.70	4.04
(x10 ³ /μL)	±0.49	±0.73	±0.33	±0.96
Platelets	778.60	796.40	716.6	778.40
(x10 ³ /μL)	±62.07	±82.38	±125.3	±64.76
Segmented	21.72	12.88*	15.44	19.28
eukocytes (%)	±4.35	±3.36	±4.51	±4.68
ymphocytes	74.28	83.68*	80.66	76.50
(%)	±5.29	±3.4	±4.95	±4.57
leinz Bodies	0.0	0.0	0.0	0.0
(%)	±0.00	±0.00	±0.00	±0.00
MCV	53.60	54.9	55.10 *	53.12
(cumicr)	±1.07	±.58	±1.26	±0.49
MCH (19.18	18.38*	18.46 *	18.74
(picogm)	±0.24	±0.44	±0.39	±0.22
MCHC	35.82	33.46*	33.50 *	35.26
(g/dL)	±1.10	±1.06	±1.06	±0.28
Reticulocytes	2.02	3.68*	2.32	1.94
(%)	±0.25	±0.43	±0.11	±0.27
MetHb	0.28	1.96*	1.10 *	0.90*
(%)	±0.25	±0.41	±0.27	±0.31

Mean \pm Standard Deviation * Significantly different from the control group (P \le 0.05) by the Dunnett's test.

Table 9: Hematology Values/Males 45 Days

	Dose	Dose Groups (mg tetryl/kg diet)			
	0	3000	1000	200	
RBC	8.66	8.50	8.71	8.87	
(x10 ⁶ /μl)	±0.12	±0.20	±0.15	±0.30	
Hemoglobin	15.44	14.12*	14.90	15.40	
(g/dL)	±0.29	±0.48	±0.43	±0.78	
Hematocrit	44.90	43.14	43.94	45.20	
(%)	±0.97	±0.80	±1.19	±1.71	
WBC	4.58	4.10	4.20	4.20	
(x10 ³ /μL)	±0.58	±0.81	±0.87	±0.58	
Platelets	700.60	946.20*	844.20 *	789.00	
(x10 ³ /μL)	±92.44	±73.40	±37.25	±34.55	
Segmented Leukocytes (%)	19.06 ±4.88	18.94 ±3.48	19.88 ±3.59	20.40 ±2.48	
Lymphocytes	78.14	77.84	76.80	76.52	
(%)	±4.61	±3.31	±3.69	±2.83	
Heinz Bodies	0.0	0.0	0.0	0.0	
(%)	±0.00	±0.00	±0.00	±0.00	
MCV	51.88	50.76*	50.46 *	50.96 *	
(cumicr)	±0.53	±0.61	±0.66	±0.28	
MCH	17.82	16.56*	17.08 *	17.34 *	
(picogm)	±0.19	±0.23	±0.29	±0.36	
MCHC	34.38	32.66*	33.84	34.06	
(g/dL)	±0.19	±0.58	±0.40	±0.54	
Reticulocytes	2.42	4.16*	2.84	2.26	
(%)	±0.29	±0.15	±0.26	±0.34	
MetHb	0.42	2.44*	1.36 *	0.88	
(%)	±0.31	0.46	±0.33	±0.48	

Mean \pm Standard Deviation * Significantly different from the control group (P \le 0.05) by the Dunnett's test.

Table 10: Hematology Values/Females 90 Days

	Dose	e Groups (n	ng tetryl/kg	diet)
	0	3000	1000	200
RBC	8.24	7.70*	8.12	8.23
(x10 ⁶ /μl)	±0.21	±0.34	±0.19	±0.27
Hemoglobin	15.66	14.53*	15.18 *	15.66
(g/dL)	±0.35	±0.44	±0.32	±0.58
Hematocrit	44.61	43.22	43.85	44.55
(%)	±1.58	±1.49	±1.41	±1.82
WBC	4.14	3.71	3.69	3.41
(x10 ³ /μL)	±0.70	±0.56	±0.57	±0.57
Platelets	742.50	853.40*	811.40 *	758.10
$(x10^{3}/\mu L)$	±32.03	±53.81	±71.07	±60.50
Segmented	19.82	18.27	22.33	20.27
Leukocytes (%)	±3.37	±3.33	±2.11	±4.84
Lymphocytes	75.75	77.42	73.21	75.49
(%)	±3.70	±4.34	±2.44	±5.24
Heinz Bodies	0.0	0.0	0.0	0.0
(%)	±0.00	±0.00	±0.00	±0.00
MCV	54.14	55.56*	54.01	54.14
(cumicr)	±0.82	±1.21	±0.78	±0.94
мсн	19.01	18.68	18.70	19.05
(picogm)	±0.43	±0.30	±0.24	±0.37
мснс	35.13	33.67*	34.62	35.20
(g/dL)	±1.04	±0.94	±0.81	±0.82
Reticulocytes	1.71	2.63*	2.06 *	1.77
(%)	±0.28	±0.37	±0.28	±0.22
MetHb	0.59	2.23*	1.09 *	0.68
(%)	±0.33	±0.34	±0.33	±0.33

Mean ± Standard Deviation
* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 11: Hematology Values/Males 90 Days

	Dose Groups (mg tetryl/kg diet)			
	0	3000	1000	200
RBC	9.34	8.94*	9.27	9.31
(x10 ⁶ /μl)	±0.19	±0.18	±0.18	±0.23
Hemoglobin	15.83	14.22*	15.31 *	15.61
(g/dL)	±0.23	±0.25	±0.23	±0.41
Hematocrit	48.37	44.98*	47.15 *	48.05
(%)	±0.79	±0.95	±1.23	±1.14
WBC	4.35	4.43	4.30	4.21
(x10 ³ /μL)	±0.64	±0.58	±0.63	±0.68
Platelets	733.70	856.70*	745.10	728.30
(x10 ³ /μL)	±87.65	±45.82	±83.61	±43.06
Segmented Leukocytes (%)	22.38 ±3.75	24.96 ±1.84	25.84 ±4.22	22.55 ±3.55
Lymphocytes	73.31	71.16	69.29	72.87
(%)	±4.35	±2.88	±4.67	±3.73
Heinz Bodies	0.0	0.0	0.0	0.0
(%)	±0.00	±0.00	±0.00	±0.00
MCV	51.81	50.30*	50.85 *	51.61
(cumicr)	±0.81	±0.77	±0.70	±0.69
MCH	16.94	15.92*	16.51 *	16.76
(picogm)	±0.24	±0.16	±0.16	±0.41
MCHC	32.73	31.64*	32.45	32.51
(g/dL)	±0.52	±0.61	±0.46	±0.85
Reticulocytes	1.96	3.35*	2.05	1.88
(%)	±0.19	±0.18	±0.13	±0.20
MetHb	0.50	2.67*	1.37 *	0.58
(%)	±0.40	±0.54	0.27	±0.32

Mean ± Standard Deviation
* Significantly different from the control group (P≤ 0.05) by the Dunnett's test.

Table 12: Clinical Chemistry Values/Females 45 Days

	0	3000	1000	200
Glucose (mg/dl)	154.80 ± 21.04	130.20 ± 20.35	161.40 ± 17.87	166.00 ± 5.00
BUN (mg/dl)	18.40 ± 3.21	17.20 ± 1.92	17.00 ± 1.00	17.60 ± 1.67
Creatinine (mg/dl)	0.52 ± 0.04	0.60 ± 0.00 *	$0.64 \pm 0.05^*$	0.54 ± 0.05
Alk phos (IU/L)	123.20 ± 10.83	116.00 ± 16.84	122.40 ± 24.57	122.60 ± 26.31
AST (IU/L)	106.20 ± 26.44	147.20 ± 33.94	182.20 ± 92.88	95.20 ± 11.12
ALT (IU/L)	37.40 ± 4.28	38.20 ± 6.38	60.20 ± 35.15	35.60 ± 5.68
Potassium (mEq/L)	4.58 ± 0.37	4.54 ± 0.45	4.30 ± 0.16	4.52 ± 0.49
Albumin (g/dl)	4.38 ± 0.08	4.58 ± 0.33	4.68 ± 0.13	4.22 ± 0.16
Calcium (mg/dl)	10.66 ± 0.21	10.70 ± 0.21	10.96 ± 0.13	10.60 ± 0.20
Phosphorus (mg/dl)	8.90 ± 1.27	9.44 ± 1.69	10.02 ± 1.42	8.38 ± 0.52
Triglycerides (mg/dl)	39.60 ± 8.82	29.40 ± 3.58	47.60 ± 14.54	38.80 ± 10.85
Sodium (mEq/L)	138.40 ± 1.67	139.60 ± 0.55	139.60 ± 1.82	138.60 ± 0.55
Total Bilirubin (mg/dl)	0.18 ± 0.04	0.26 ± 0.05 *	0.20 ± 0.00	0.14 ± 0.05
Total Protein (g/dl)	6.20 ± 0.32	6.28 ± 0.04	6.52 ± 0.08	6.04 ± 0.15

Mean \pm Standard Deviation * Significantly different from controls; p \leq 0.05 by Dunnett's test.

Table 13: Clinical Chemistry Values/Males 45 Days

		Dose Groups (mg	tetryl/kg diet)	
	0	3000	1000	200
Glucose (mg/dl)	194.60 ± 21.85	175.20 ± 9.65	185.20 ± 19.61	183.60 ± 15.88
BUN (mg/dl)	19.60 ± 1.52	18.00 ± 1.22	20.40 ± 1.52	18.40 ± 3.13
Creatinine (mg/dl)	0.60 ± 0.07	0.60 ± 0.00	0.62 ± 0.04	0.56 ± 0.05
Alk phos (IU/L)	135.80 ± 8.78	119.60 ± 12.56	123.80 ± 10.03	134.00 ± 14.61
AST (IU/L)	126.80 ± 16.18	111.60 ± 19.83	134.40 ± 39.30	113.60 ± 12.22
ALT (IU/L)	53.80 ± 12.68	38.60 ± 8.56	51.60 ± 23.20	45.80 ± 6.80
Potassium (mEq/L)	4.74 ± 0.51	5.62 ± 0.54*	4.82 ± 0.44	4.70 ± 0.59
Albumin (g/dl)	4.38 ± 0.08	5.04 ± 0.09*	4.78 ± 0.16*	4.64 ± 0.26
Calcium (mg/dl)	10.64 ± 0.15	11.14 ± 0.15*	11.02 ± 0.16*	10.80 ± 0.07
Phosphorus (mg/dl)	9.82 ± 0.52	10.82 ± 1.01	9.84 ± 0.43	9.64 ± 0.60
Triglycerides (mg/dl)	99.80 ± 23.55	64.20 ± 24.80	97.00 ± 28.22	88.60 ± 44.81
Sodium (mEq/dl)	137.60 ± 1.52	138.40 ± 0.55	139.00 ± 1.22	139.00 ± 1.00
Total Bilirubin (mg/dl)	0.14 ± 0.09	0.18 ±0.04	0.12 ± 0.04	0.14 ± 0.09
Total Protein (g/dl)	6.30 ±0.14	7.12 ± 0.18*	6.88 ± 0.13*	6.60 ± 0.21

Mean \pm Standard Deviation * Significantly different from controls; p \leq 0.05 by Dunnett's test.

Table 14: Clincial Chemistry Values/Females 90 Days

		Dose groups (mg	tetryl/kg diet)	
	0	3000	1000	200
Glucose (mg/dl)	125.10 ± 17.64	130.00 ± 17.31	145.30 ± 18.66*	138.80 ± 15.42
BUN (mg/dl)	18.30 ± 2.21	20.20 ± 2.97	20.20 ± 2.39	19.00 ± 1.89
Creatinine (mg/dl)	0.54 ± 0.05	0.57 ± 0.05	0.56 ± 0.05	0.55 ± 0.05
Alk phos (IU/L)	76.50 ± 11.40	63.30 ± 9.35*	67.90 ± 8.02	74.00 ± 15.32
AST (IU/L)	132.00 ± 27.94	159.30 ± 33.04	160.70 ± 37.69	180.20 ± 65.81*
ALT (IU/L)	55.20 ± 19.23	59.00 ± 16.42	79.80 ± 30.14	85.40 ± 46.21
Potassium (mEq/L)	4.03 ± 0.25	4.56 ± 0.86	4.48 ± 0.45	4.49 ± 0.50
Albumin (g/dl)	4.42 ± 0.15	4.96 ± 0.21*	4.72 ± 0.12*	4.67 ± 0.23*
Calcium (mg/dl)	10.04 ± 0.24	10.34 ± 0.43	10.18 ± 0.21	10.23 ± 0.23
Phosphorus (mg/dl)	8.31 ± 0.97	9.12 ± 0.99	8.57 ± 0.98	8.63 ± 1.10
Triglycerides (mg/dl)	40.60 ± 13.93	25.40 ± 3.86*	36.20 ± 13.31	44.60 ± 15.14
Cholesterol (mg/dl)	102.70 ± 6.80	131.50 ± 10.22*	123.00 ± 8.91*	112.90 ± 8.85*
Sodium (mEq/L)	142.70 ± 0.82	143.50 ± 1.08	142.80 ± 1.14	142.90 ± 0.74
Total Bilirubin (mg/dl)	0.11 ± 0.03	$0.22 \pm 0.04*$	0.16 ±0.07	0.19 ±0.10*
Total Protein (g/dl)	6.18 ± 0.19	6.71 ± 0.33*	6.52 ± 0.20*	6.37 ± 0.28

Mean \pm Standard Deviation * Significantly different from controls; p \leq 0.05 by Dunnett's test.

Table 15: Clincial Chemistry Values/Males 90 Days

		tetryl/kg diet)		
	0	3000	1000	200
Glucose (mg/dl)	185.60 ± 18.06	180.10 ± 17.99	187.50 ± 15.66	187.50 ± 19.46
BUN (mg/dl)	20.20 ± 0.92	21.00 ± 1.15	22.20 ± 1.03*	20.60 ± 2.22
Creatinine (mg/dl)	0.62 ± 0.04	0.60 ± 0.05	0.61 ± 0.03	0.62 ± 0.04
Alk phos (IU/L)	104.90 ± 6.87	80.90 ± 6.38*	88.30 ± 8.71*	93.70 ± 6.60*
AST (IU/L)	157.00 ± 43.60	175.50 ± 30.75	164.60 ± 21.88	150.30 ± 29.70
ALT (IU/L)	85.10 ± 28.73	66.50 ± 11.00	80.40 ± 16.30	83.80 ± 17.78
Potassium (mEq/L)	4.65 ± 0.31	5.00 ± 0.24	4.62 ± 0.38	4.80 ± 0.38
Albumin (g/dl)	4.72 ± 0.16	5.12 ± 0.21*	5.00 ± 0.11*	4.82 ± 0.12
Calcium (mg/dl)	10.47 ± 0.12	10.70 ± 0.21*	10.67 ± 0.18*	10.60 ± 0.18
Phosphorus (mg/dl)	9.05 ± 0.55	8.97 ± 0.89	8.59 ± 0.97	8.95 ± 0.66
Triglycerides (mg/dl)	104.40 ± 27.63	89.30 ± 32.15	119.40 ± 28.89	103.40 ± 30.56
Cholesterol (mg/dl)	58.60 ± 7.06	105.40 ± 7.57*	79.10 ± 4.65*	66.40 ± 4.77*
Sodium (mEq/L)	143.00 ± 0.94	142.30 ± 0.67	143.00 ± 0.82	143.50 ± 1.08
Total Bilirubin (mg/dl)	0.05 ± 0.05	0.10 ± 0.00*	$0.09 \pm 0.03*$	0.10 ± 0.00*
Total Protein (g/dl)	6.81 ±0.21	7.39 ± 0.30*	7.22 ±0.23*	6.88 ±0.13

Mean \pm Standard Deviation * Significantly different from controls; p \leq 0.05 by Dunnett's test.

APPENDIX A

FOOD AND WATER CONSUMPTION

Weekly Food Consumption Group Means

	Cor	Diet ncentration		Food (g/wk)	
Group	Sex (mg	tetryl/kg)	Week 11	Week 12	Week 13
1	F	0	84.67 ± 2.38	85.79 ± 2.37	45.64 ± 0.93
2	F	3000	71.38 ± 1.39	70.63 ± 1.42	39.20 ± 1.03
3	F	1000	71.54 ± 3.64	74.90 ± 1.45	41.65 ± 0.72
4	F	200	78.83 ± 1.80	81.01 ± 1.84	44.29 ± 1.07
5	M	Ō	125.02 ± 3.00	128.00 ± 2.54	85.68 ± 2.84
6	М	3000	107.11 ± 2.95	110.14 ± 1.72	75.92 ± 1.69
7	М	1000	113.66 ± 2.27	116.94 ± 1.20	80.51 ± 1.57
8	M	200	123.16 ± 1.99	128.90 ± 2.22	85.17 ± 1.53

^{*} Mean ± Standard Error

Week 13 is for 5 days only

Weekly Food Consumption Group Means

		Diet		Food (g/wk)		•	
	Cor	ncentration					
Group	Sex (mg	tetryl/kg)	Week 1	Week 2	Week 3	Week 4	Week 5
1	F	0 .	106.15 ± 1.47	79.64 ± 1.01	84.82 ± 1.10	85.64 ± 1.20	84.92 ± 2.43
2	F	3000	84.92 ± 2.07	70.59 ± 0.70	72.79 ± 1.37	75.25 ± 1.36	72.63 ± 1 .90
3	F	1000	101.75 ± 1.97	75.42 ± 0.94	77.83 ± 1.25	79.43 ± 1.72	74.99 ± 2.06
4	F	200	103.16 ± 1.43	77.78 ± 1.04	80.93 ± 1.99	84.11 ± 1.32	82.63 ± 1.43
5	M	0	139.91 ± 2.15	116.07 ± 2.19	.118.43 ± 2.45	.119.67 ± 2.89	121.65 ± 3.19
6	M	3000	111.38 ± 2.48	99.29 ± 2.30	101.16 ± 2.02	103.54 ± 2.04	101.16 ± 2.28
7	M	1000	124.33 ± 1.63	107.04 ± 1.94	110.90 ± 1.54	111.89 ± 1.82	110.29 ± 2.01
8	M	200	135.09 ± 2.00	112.01 ± 2.07	114.96 ± 1.09	119.13 ± 1.75	116.91 ± 1.93

Week 1 is for 6 days only

U	lei		
 _	_4.	4	:-

		Concentration					
Group	Sex	(mg tetryl/kg)	Week 6	Week 7	Week 8	Week 9	Week 10
1	F	0	80.77 ± 1.35	85.99 ± 1.30	87.26 ± 1.27	85.46 ± 0.94	81.61 ± 1.39
2	F	3000	70.07 ± 0.89	73.05 ± 1.14	71.89 ± 0.90	72.75 ± 0.66	71.00 ± 1.28
3	F	1000	74.63 ± 2.39	78.58 ± 1.30	77.86 ± 1.52	76.06 ± 1.58	72.89 ± 1.54
4	F	200	81.87 ± 1.31	82.18 ± 1.45	80.87 ± 1.93	82.31 ± 2.18	75.60 ± 1.77
5	М	0	119.76 ± 3.51	128.07 ± 3.26	129.04 ± 2.76	124.11 ± 2.75	123.85 ± 2.88
6	М	3000	102.77 ± 2.05	106.35 ± 1.88	106.65 ± 1.90	106.48 ± 1.59	103.99 ± 2.66
7.	M	1000	111.04 ± 1.46	114.62 ± 1.35	115.13 ± 1.29	112.96 ± 1.33	112.70 ± 2.05
8	М	200	120.95 ± 2.19	125.65 ± 1.87	125.48 ± 2.54	121.70 ± 2.90	122.03 ± 2.35

^{*} Mean ± Standard Error

Individual Food and Water Consumption

Females

		Food (g/wk)					Water (g/wk)				
	Animal										
Group	Number	Week 1*	Week 2	Week 3	Week 4	Week 5	Week 1*	Week 2	Week 3	Week 4	Week 5
٦.	1	83.8	68.7	74.3	71.7	73.4	130.1	130.9	139.9	143.5	148.7
	2	85.0	69.9	70.8	74.5	82.9	155.5	137.1	124.9	163.6	161.2
	3	81.9	70.4	75.0	80.5	74.0	129.7	103.1	101.2	113.7	109.0
	4	88.0	74.6	69.9	75.5	69.7	154.3	127.9	119.9	148.1	159.2
	5	92.5	69.6	79.2	77.2	72.3	155.7	134.4	123.0	127.2	140.8
	6	96.2	74.6	77.9	80.7	67.2	153.5	140.3	113.4	125.6	126.7
	7	86.2	69.3	69.3	77.7	75.6	157.9	138.2	140.1	156.6	153.9
	8	82.8	69.9	75.5	76.2	79.7	145.3	122.6	127.6	139.4	143.7
	9	72.6	68.3	65.0	71.8	69.4	149.7	138.3	141.4	132.1	150.4
	10	80.2	70.6	71.0	66.7	62.1	136.0	115.6	117.1	123.1	127.6
•											
2	11	103.9	80.8	82.8	89.9	80.5	161.1	135.4	125.5	130.3	125.6
	12	93.1	76.4	74.5	82.8	73.4	180.3	132.1	130.0	141.0	134.7
	13	105.1	73.4	72.4	76.2	78.9	151.8	116.4	117.6	127.1	119.8
	14	95.5	71.9	73.2	79.3	75.3	167.5	127.4	122.0	130.6	122.0
	15	106.6	74.3	76.5	77.2	65.6	101.8	123.9	121.0	112.0	118.0
	16	99.2	73.9	80.9	76.9	63.2	160.4	115.4	124.3	133.2	119.2
	17	104.9	73.9	78.7	80.9	78.4	150.7	129.6	140.0	144.3	155.6
	18	96.7	75.9	77.3	75.3	76.3	168.3	133.0	124.1	139.1	135.2
	19	113.8	80.2	84.2	85.0	84.6	186.4	148.2	141.9	137.9	139.6
	20	98.7	73.5	77.8	70.8	73.7	148.2	105.0	96.2	101.6	105.3

*Week 1 is only 6 days

Individual Food and Water Consumption

Females

		Food (g/wk)						Water (g/wk)				
Group	Animal Number	Week 6	Week 7	Week 8	Week 9	Week 10	Week 6	Week 7	Week 8	Week 9	Week 10	
1	1	70.7	75.2	69.6	73.0	74.1	146.6	154.8	143.3	168.4	164.5	
	2	75.1	69.5	76.2	74.3	70.6	174.7	159.8	175.3	177.1	171.8	
	3	69.6	76.1	74.9	72.9	76.5	116.5	124.4	113.7	112.4	115.1	
	4	67.9	73.2	73.8	76.9	77.8	157.9	129.5	145.0	156.0	150.3	
	5	74.7	73.8	74.0	73.4	70.0	134.2	135.0	135.5	147.6	142.6	
	6	70.8	69.7	69.5	71.3	66.8	121.3	116.5	123.5	128.2	124.3	
	7	68.8	80.1	69.3	69.7	66.6	158.0	157.7	149.4	156.6	152.4	
	8	68.0	74.3	73.6	73.8	72.1	135.4	142.8	136.1	144.0	145.4	
	9	68.1	69.6	68.8	71.7	67.7	151.3	152.9	147.2	155.7	171.4	
	10	67.0	69.0	69.2	70.5	67.8	126.5	133.6	143.0	138.0	137.2	
2	11	78.7	79.5	76.4	81.2	75.7	119.3	121.2	117.4	123.3	119.4	
	12	74.4	80.9	78.2	79.7	77.6	138.4	143.5	142.7	150.6	132.8	
	13	76.2	74.7	86.4	78.7	72.6	119.5	130.3	126.5	125.8	115.4	
	14	76.3	81.4	78.8	79.4	71.7	133.0	145.3	135.5	146.4	145.2	
	15	72.1	76.3	76.2	72.7	71.5	119.7	128.9	128.3	133.8	124.8	
	16	64.8	82.2	77.6	75.9	72.6	90.9	127.2	111.9	119.3	111.6	
	17	75.5	79.8	79.9	77.9	76.5	139.4	150.2	132.1	142.4	135.9	
	18	74.9	75.6	73.7	71.8	66.2	142.4	139.5	127.5	139.6	128.4	
	19	90.5	84.5	82.7	78.5	80.0	137.0	145.0	149.5	145.3	143.7	
	20	62.9	70.9	68.7	64.8	64.5	96.3	105.8	105.3	100.3	101.4	

Individual Food and Water Consumption

Females

		F	Food (g/wk))	Water (g/wk)				
	Animal								
Group	Number	Week 11	Week 12	Week 13*	Week 11	Week 12	Week 13*		
1	1	77.7	77.1	32.8	162.9	153.3	78.4		
	2	68.5	67.8	38.4	182.7	188.8	108.4		
	3	70.2	70.3	38.4	112.3	108.8	65.4		
	4	71.3	74.6	39.8	149.1	130.3	71.0		
	5	75.3	75.5	44.2	144.6	141.2	84.5		
	6	74.7	67.5	36.1	115.4	119.0	73.3		
	7	75.0	70.6	43.0	147.3	162.0	86.0		
	8	70.0	72.7	39.6	138.4	154.6	78.9		
	9	62.9	62.1	41.0	160.4	160.6	80.0		
	10	68.2	68.1	38.7	145.4	141.3	80.7		
2	11	82.2	77.9	41.1	123.9	125.4	66.2		
	12	79.0	77.3	43.0	130.9	139.5	71.6		
	13	73.0	74.7	43.6	118.8	123.9	80.4		
	14	72.8	78.6	43.1	145.1	156.5	87.1		
	15	78.1	74.4	44.3	125.7	136.4	73.1		
	16	78.0	74.3	38.5	111.3	117.1	66.1		
	17	44.2	78.5	41.8	149.4	137.8	78.1		
	18	70.8	69.0	39.4	123.8	132.4	78.7		
	19	77.9	79.1	43.6	140.1	141.9	79. 7		
	20	59.4	65.2	38.1	96.5	102.4	63.6		

*Week 13 is only 5 days

Females

							Motor (aluk)					
	Amimon		F	ood (g/w	k)		Water (g/wk)					
Group	Animal Number	Week 1*	Week 2	Week 3	Week 4	Week 5	Week 1*	Week 2	Week 3	Week 4	Week 5	
Group	110111001	7,00,11										
3	21	107.9	77.8	84.2	81.7	77.6	177.1	120.6	111.2	121.8	120.4	
	22	103.1	77.9	84.2	86.6	85.7	155.8	119.4	114.9	117.3	115.8	
	23	107.5	80.7	82.8	83.6	85.2	168.1	120.3	127.6	134.7	131.7	
	24	106.9	83.6	83.6	85.5	86.9	179.3	124.7	123.9	129.4	134.1	
	25	98.8	73.7	77.7	79.4	84.6	164.0	123.5	111.8	121.5	120.6	
	26	107.2	80.5	86.5	89.4	84.8	163.5	119.2	117.8	129.2	130.2	
	27	103.0	76.3	81.8	90.3	86.5	153.8	115.6	121.6	125.7	128.1	
	28	96.5	73.7	76.6	80.9	77.9	160.6	124.9	120.3	124.2	128.8	
	29	104.5	79.0	86.3	86.0	83.3	172.8	135.4	135.1	121.9	123.2	
	30	96.2	74.6	65.6	77.7	73.8	164.4	127.3	124.1	118.4	116.4	
4	31	110.3	79.5	87.0	89.8	96.1	192.7	154.3	145.0	146.4	153.0	
	32	115.3	82.8	85.7	89.8	88.8	181.5	131.4	131.4	124.0	122.8	
	33	98.1	81.2	82.9	84.2	79.0	169.5	129.3	121.7	116.9	116.3	
	34	105.6	76.2	84.8	80.3	87.2	173.0	136.1	123.4	114.1	113.4	
	35	107.2	78.7	85.0	89.9	81.7	186.1	144.0	131.7	128.5	115.3	
	36	103.6	74.0	81.8	79.6	84.1	164.6	126.7	115.1	109.2	116.9	
	37	105.5	79.6	83.7	87.3	78.1	157.0	116.6	121.7	119.3	122.4	
	38	104.7	85.6	90.9	86.8	89.2	164.7	129.9	121.3	121.0	129.8	
	39	102.6	79.4	88.1	85.2	94.0	169.1	124.3	129.8	129.8	126.9	
	40	108.6	79.4	78.3	83.5	71.0	173.5	125.7	108.4	107.0	108.6	

*Week 1 is only 6 days

Females

			Food (g/wk)					Water (g/wk)					
Croun	Animal	Wook 6	Magle 7	Wools 0	Waak 0	W1-10	Wash C	Wast. 7	14/1- 0	M 0	147 1 40		
Group	Number	vveek 6	vveek /	vveek 8	vveek 9	Week 10	vveek 6	week /	vveek 8	week 9	Week 10		
3	21	79.1	76.2	79.5	77.8	73.3	117.9	111.2	109.5	119.1	114.8		
	22	85.1	81.6	79.9	80.9	76.3	117.1	116.5	111.9	116.1	103.3		
	23	85.2	84.5	84.3	83.4	77.7	132.6	135.9	122.7	116.7	120.4		
	24	82.5	84.1	84.0	88.0	85.0	126.9	131.6	133.0	132.3	136.1		
	25	76.3	74.8	70.5	72.3	65.9	123.9	127.6	124.8	127.6	120.7		
	26	89.0	88.4	88.8	90.5	78.5	133.1	137.6	138.9	141.3	128.5		
	27	83.5	88.9	86.5	92.5	77.8	133.5	135.4	132.8	137.8	121.2		
	28	79.6	81.4	81.1	79.2	73.2	124.9	131.7	128.7	129.3	123.4		
	29	82.4	82.2	83.4	85.2	79.9	131.4	126.8	125.4	131.7	129.1		
	30	76.0	79.7	70.7	73.3	68.4	115.4	118.8	119.0	117.5	123.5		
4	31	89.4	92.0	91.7	85.8	85.8	153.4	144.3	147.7	147.8	154.1		
	32	83.2	93.9	90.9	93.0	89.8	118.7	132.7	125.7	130.1	132.9		
	33	74.5	84.6	83.6	84.1	82.8	116.6	117.7	112.4	113.4	112.8		
	34	81.9	84.1	80.6	83.5	77.3	118.9	121.9	107.8	114.6	108.0		
	35	81.9	88.1	84.8	85.3	80.4	122.8	124.9	118.1	122.7	119.1		
	36	75.0	83.1	84.0	84.3	75.8	111.8	114.5	121.5	116.1	110.0		
	37	80.2	85.8	86.9	84.1	85.5	115.7	122.8	114.4	119.3	112.8		
	38	82.6	81.3	87.1	86.6	79.7	118.1	115.1	115.1	122.7	119.7		
	39	80.0	84.2	92.1	82.0	81.3	126.6	129.3	109.3	131.1	126.2		
	40	79.0	82.8	90.9	85.9	77.7	103.9	103.4	116.3	111.0	109.7		

Females

		F	Food (g/wk	x)	Water (g/wk)				
	Animal								
Group	Number	Week 11	Week 12	Week 13*	Week 11	Week 12	Week 13*		
3	21	80.3	79.6	46.2	112.6	123.7	59.9		
	22	80.9	78.6	44.3	101.2	109.6	59.4		
	23	75.5	76.3	40.9	113.4	109.8	60.0		
	24	80.8	92.8	47.2	127.5	142.6	74.9		
	25	74.9	79.4	37.0	120.4	126.4	68.3		
	26	85.0	82.0	47.6	134.0	134.2	79.9		
	27	73.9	85.7	44.1	124.1	117.9	70.4		
	28	81.4	84.0	45.0	126.3	134.4	72.1		
	29	87.4	80.7	47.8	119.4	127.7	78.3		
	30	68.2	71.0	42.8	125.2	135.8	77.8		
4	31	91.3	88.9	49.4	144.4	141.3	83.8		
	32	80.5	100.6	48.4	125.6	131.1	65.4		
	33	79.1	80.4	43.8	110.1	113.9	62.3		
	34	74.4	78.5	39.3	107.1	105.3	48.9		
	35	92.5	90.3	44.1	119.6	127.3	43.3		
	36	74.6	79.8	46.4	104.8	112.3	61.9		
	37	92.6	93.8	48.2	118.2	126.6	58.9		
	38	86.7	86.0	45.2	118.8	125.5	66.9		
	39	81.8	79.2	44.8	131.8	122.2	77.1		
	40	93.2	80.4	46.8	113.5	109.1	58.1		

*Week 13 is only 5 days

Males

			F	ood (g/w	k)		Water (g/wk)				
Group	Animal Number	Mook 1*	Week 2	Wook 2	Wook 1	Wook 5	Wook 1*	Maak 2	Mook 2	Week 4	Wook 5
Group	Number	Week	VVEER Z	VVEEKS	VVCCK 4	vveek 5	VVEEK	WEEK Z	Week 3	WEEK 4	vveek 5
5	41	107.1	99.5	101.9	108.7	97.9	178.7	170.6	160.0	156.1	153.2
	42	116.5	111.7	108.0	105.3	102.5	184.6	179.2	180.0	179.7	177.0
	43	121.9	97.7	100.8	105.2	106.0	165.0	145.5	149.1	159.1	150.6
	44	115.7	102.6	106.3	110.7	104.9	179.7	174.2	166.0	180.6	170.5
	45	96.5	92.0	94.1	91.0	90.0	150.4	138.4	124.2	125.0	126.2
	46	120.3	104.3	103.8	107.0	110.5	178.5	166.6	165.5	159.9	164.9
	47	113.0	98.4	105.3	106.0	109.1	177.8	159.0	149.9	161.1	161.2
	48	111.3	105.2	106.1	108.1	104.2	164.2	169.5	162.8	150.4	146.2
	49	103.3	85.9	97.6	97.3	91.4	145.2	134.6	144.1	137.9	141.7
	50	108.2	95.6	87.7	96.1	95.1	159.2	172.8	174.0	180.9	178.0
6	51	126.3	115.3	113.3	110.7	109.8	214.2	195.9	199.7	189.6	181.4
	52	130.8	110.1	108.3	116.2	115.2	188.3	168.6	151.6	160.4	162.0
	53	126.1	109.7	108.9	113.7	116.7	197.0	177.6	172.0	176.2	167.0
	54	128.7	103.3	111.8	113.0	111.0	188.6	164.7	159.9	154.7	157.5
	55	124.4	107.2	114.8	107.6	106.4	179.3	152.3	165.0	153.4	156.7
	56	118.9	99.1	101.3	97.9	99.5	177.3	152.7	142.3	127.8	126.6
	57	118.7	108.7	110.1	112.5	109.3	190.9	168.6	163.8	154.6	154.2
	58	129.1	116.0	119.6	117.7	120.1	189.1	169.7	171.6	171.1	169.2
	59	115.1	102.4	108.0	112.7	112.6	167.2	153.1	155.7	151.2	154.5
Comment of the Control of the Contro	60	125.2	98.6	112.9	116.9	102.3	189.3	168.3	167.1	154.7	143.8

Week 1 is only 6 days

Males

		Food (g/wk)					Water (g/wk)				
Group	Animal Number	Week 6	Week 7	Week 8	Week 9	Week 10	Week 6	Week 7	Week 8	Week 9	Week 10
5	41	107.6	102.5	104.1	105.6	106.4	160.8	148.6	168.0	170.8	170.0
	42	101.5	105.5	100.1	107.9	105.6	186.4	188.3	190.2	185.6	177.5
	43	106.8	106.1	110.9	106.1	101.2	149.1	142.5	151.6	159.5	147.8
	44	101.8	109.4	113.5	105.4	105.3	175.3	172.3	173.7	154.4	153.2
	45	96.7	103.7	104.7	106.5	100.0	128.3	126.5	124.9	129.3	132.1
	46	115.3	120.5	113.6	116.0	121.5	171.1	177.8	171.4	180.7	183.1
	47	101.8	103.9	107.5	105.8	101.0	153.4	161.3	163.8	155.8	146.9
	48	106.4	110.3	113.6	112.0	108.1	154.0	144.8	164.7	155. 1	149.7
	49	96.6	99.9	99.2	102.1	103.3	137.8	131.6	125.9	139.7	130.9
	50	93.2	101.7	99.3	97.4	87.5	174.6	165.3	167.5	156.4	116.5
6	51	108.0	120.7	110.2	109.8	112.3	180.0	175.1	169.0	177.1	164.3
	52	114.2	117.7	115.9	116.8	118.7	158.9	154.6	153.1	149.9	152.3
	53	114.4	114.1	112.6	114.2	114.5	158.4	162.4	156.0	156.4	160.2
	54	108.5	116.5	116.9	115.2	112.6	151.0	153.1	154.3	154.4	147.9
	55	111.9	111.5	111.3	111.5	107.2	156.2	151.6	154.2	147.9	151.9
	56	106.5	109.4	112.3	109.2	103.8	129.1	135.3	142.6	145.5	144.4
	57	113.4	115.5	111.8	110.5	115.1	150.8	150.4	148.2	149.3	153.6
	58	119.8	118.7	122.0	121.0	125.6	165.2	165.0	154.5	159.6	162.2
	59	109.7	115.1	117.9	114.6	111.9	150.5	162.5	156.4	153.6	156.2
	60	104.0	107.0	120.4	106.8	105.3	135.6	132.9	143.2	133.3	138.5

Males

		ı	ood (g/wk)	Water (g/wk)			
0	Animal	Macket	Wash 40	14/a ala 40#	1811-44	144 - 1- 40	*141 1 40	
Group	Number	week 11	week 12	Week 13*	Week 11	Week 12	*Week 13	
5	41	90.3	111.7	74.0	173.4	186.9	**	
	42	106.2	107.8	72.3	183.5	183.9	48.3	
	43	109.0	116.2	74.3	155.7	152.3	58.1	
	44	104.5	111.7	71.7	160.2	154.9	41.2	
	45	104.3	104.4	77.8	123.1	135.3	49.3	
	46	124.2	116.1	86.9	181.8	183.6	37.5	
	47	110.9	116.9	75.7	150.4	165.4	52.2	
	48	117.7	108.5	82.6	153.2	147.3	43.7	
	49	104.5	107.8	75.1	123.8	131.6	30.6	
	50	99.5	100.3	68.8	144.3	152.1	77.4	
6	51	106.4	115.5	81.2	177.1	185.5	108.8	
	52	117.6	120.2	89.3	147.7	147.1	90.7	
	53	116.3	116.2	80.8	160.3	158.1	84.4	
	54	108.3	119.3	78.1	143.2	155.2	84.2	
	55	105.4	118.8	75.2	146.3	152.3	87.6	
	56	117.3	117.3	80.0	145.2	148.9	67.1	
	57	105.6	111.4	82.3	150.2	151.2	54.5	
	58	127.8	123.7	85.6	159.0	167.5	71.8	
	59	114.6	115.5	81.1	159.8	163.3	72.4	
	60	117.3	111.5	71.5	141.5	138.3	76.3	

*Week 13 is only 5 days, ** Data unavailable

Males

			Food (g/wk)					Water (g/wk)				
	Animal						Week 1* Week 2 Week 3 Week 4 Week 5					
Group	Number	Week 1*	Week 2	Week 3	Week 4	Week 5	Week 1*	Week 2	Week 3	Week 4	Week 5	
								100.0	400.0	407.4	400.0	
7	61	145.0	128.8	120.4	130.2	126.7	222.2	198.0	193.0	187.1	190.8	
	62	138.7	115.2	115.8	120.1	123.1	196.3	167.0	150.3	167.2	170.3	
	63	128.1	109.4	116.1	117.4	114.0	180.8	152.8	149.3	144.7	161.9	
	64	135.5	110.2	111.1	121.5	114.4	197.6	168.5	158.3	155.3	151.1	
	65	135.2	109.4	113.2	120.5	121.8	205.5	159.4	152.7	146.6	144.7	
	66	135.0	113.8	113.7	112.9	112.6	182.7	167.6	164.1	152.1	151.1	
	67	137.7	109.3	118.1	120.3	122.7	177.3	147.6	141.5	149.0	161.2	
	68	141.9	111.3	118.6	122.6	114.0	201.7	172.5	159.9	155.3	151.9	
	69	124.3	106.3	113.1	115.4	111.4	222.9	187.8	187.1	169.4	179.0	
	70	129.5	106.4	109.5	110.4	108.4	196.7	153.6	142.1	149.5	136.2	
8	71	136.1	102.2	110.8	127.4	130.9	180.1	137.6	143.5	143.8	147.4	
	72	139.6	118.6	119.4	126.5	132.2	204.6	157.8	169.7	166.3	173.5	
	73	151.0	112.2	119.7	124.0	121.3	200.7	163.0	149.3	145.9	159.9	
	74	150.7	128.7	124.8	121.9	128.6	221.0	178.6	167.9	168.5	162.6	
	75	140.5	118.6	121.7	126.5	131.3	197.6	174.4	169.4	168.3	174.2	
	76	131.8	119.5	123.2	117.2	121.6	176.5	145.2	154.8	139.9	159.0	
	77	131.2	110.3	99.6	99.0	104.9	172.0	149.1	133.7	118.6	124.0	
	78	138.2	116.3	118.6	110.9	105.3	181.7	150.5	146.5	127.8	136.9	
	79	137.0	115.6	122.0	127.0	123.7	198.7	177.6	180.6	172.1	174.2	
	80	143.0	118.7	124.5	116.3	116.7	190.2	159.2	155.3	148.8	144.1	

Week 1 is only 6 days

Males

		Food (g/wk)					Water (g/wk)				
	Animal										
Group	Number	Week 6	Week 7	Week 8	Week 9	Week 10	Week 6	Week 7	Week 8	Week 9	Week 10
7	61	131.0	129.4	142.5	137.6	128.1	180.7	197.2	191.9	186.8	171.3
	62	125.0	127.0	122.6	127.8	124.1	168.6	164.5	170.5	169.9	163.4
	63	115.6	122.9	117.7	121.4	122.8	154.9	150.0	158.9	154.5	154.9
	64	117.0	121.8	122.8	119.8	121.1	162.2	161.1	170.0	164.2	157.0
	6 5	122.8	127.4	122.5	107.3	126.6	147.5	148.8	147.4	117.6	146.3
	66	123.2	132.3	128.8	119.7	124.6	154.3	164.5	162.0	156.8	155.3
	67	128.7	134.0	133.7	129.8	129.5	168.8	165.8	161.1	164.2	165.0
	68	123.9	127.9	128.5	127.5	126.1	151.5	158.5	154.8	148.0	145.4
	69	111.4	116.8	117.6	112.0	108.4	178.0	170.1	171.5	175.1	157.7
	70	110.9	117.0	118.1	114.1	109.0	145.6	159.3	147.8	143.6	145.3
8	71	137.7	135.8	126.9	122.8	129.2	160.6	153.4	149.2	137.0	143.5
	72	128.8	132.1	136.6	128.2	130.1	169.0	175.2	164.4	162.9	165.9
	73	123.6	132.8	130.6	125.9	128.3	152.3	160.3	154.2	144.3	146.8
	74	120.7	137.2	135.6	124.5	129.6	161.0	169.8	168.2	161.0	148.2
	75	125.9	136.7	137.8	138.9	134.1	165.1	175.6	172.9	170.4	157.5
	76	120.4	133.0	133.5	133.2	130.5	142.2	145.0	141.8	143.9	137.6
	77	99.5	107.9	113.2	110.0	108.9	124.9	122.1	125.9	130.1	135.7
	78	107.8	113.3	116.1	111.9	109.3	127.5	129.2	137.6	130.5	132.4
	79	122.8	130.5	135.7	121.4	119.2	179.9	183.9	178.0	166.2	166.8
	80	110.4	121.4	124.4	124.3	119.3	142.6	145.4	148.9	150.7	141.3

Males

		F	Food (g/wk)	Water (g/wk)				
	Animal								
Group	Number	Week 11	Week 12	Week 13*	Week 11	Week 12	Week 13*		
7	61	128.5	141.1	92.3	185.8	174.6	93.7		
	62	121.4	123.7	78.0	162.0	150.7	66.9		
	63	120.4	128.4	88.4	147.1	150.9	68.6		
	64	122.8	129.2	85.5	164.5	158.5	63.0		
	65	120.3	127.9	81.1	135.2	136.8	60.5		
	66	126.9	131.1	81.9	157.4	166.0	91.0		
	67	131.6	138.6	92.3	161.4	160.6	93.2		
	68	128.9	129.0	87.4	147.7	151.9	74.2		
	69	109.5	117.8	81.8	167.2	179.8	99.6		
	70	121.3	122.2	83.0	144.0	148.9	75.1		
8	71	122.9	137.8	91.7	140.7	144.0	67.1		
	72	130.5	122.2	91.2	160.1	150.7	83.0		
	73	121.6	135.7	91.4	143.3	140.2	58.3		
	74	129.5	124.7	87.6	140.4	146.9	74.4		
	75	145.7	134.1	92.4	149.5	152.9	55.0		
	76	127.3	136.9	92.6	127.3	134.7	56.8		
	77	111.1	113.5	82.3	130.9	135.8	50.0		
	78	122.7	123.6	65.2	130.4	132.2	59.3		
	79	114.6	122.1	75.7	161.7	153.0	66.5		
	80	124.3	129.4	86.7	144.4	146.7	55.1		

*Week 13 is only 5 days

APPENDIX B
BODY WEIGHTS

Weekly Body Weights (grams)/Females

Dose	Animal				We	eks			
(mg tetryl/kg diet)	Number	1	2	3	4	5	6	7	8
3000	1	123.45	129.13	137.87	141.10	142.33	148.57	152.03	152.50
	2	125.75	131.00	139.13	142.63	146.57	151.33	151.93	154.03
	3	123.30	128.60	137.23	143.80	148.27	153.40	157.00	159.33
	4	124.50	132.30	143.23	146.67	151.17	155.73	154.97	159.00
	5	125.60	135.47	146.27	151.73	153.07	157.27	158.63	160.60
	6	126.80	137.13	146.50	149.80	152.23	156.17	156.63	157.77
	7	124.65	134.27	140.47	143.50	149.87	152.20	154.53	153.60
	8	124.55	131.33	139.47	144.93	148.20	152.93	157.57	160.07
	9	121.80	127.90	136.03	140.77	148.13	152.87	152.40	152.53
	10	118.30	124.77	133.20	138.97	141.40	145.97	148.80	150.60
1000	11	132.45	141.60	148.63	155.60	159.80	161.57	165.57	166.93
	12	129.10	136.70	142.87	148.47	152.73	156.67	161.07	162.57
	13	127.65	137.57	145.33	150.17	153.67	158.47	160.67	163.10
	14	127.45	134.83	141.83	148.23	152.73	157.10	158.67	160.80
	15	124.00	134.33	143.33	149.70	152.50	155.17	157.53	160.97
	16	125.45	133.90	142.27	147.83	151.77	153.23	158.37	161.87
	17	128.25	138.57	148.20	151.83	156.90	162.93	166.63	168.50
	18	123.75	132.47	140.33	145.63	149.30	152.00	154.37	155.17
	19	130.90	143.57	151.60	158.33	163.53	167.07	174.77	177.77
	20	116.60	126.57	134.80	137.87	141.13	145.80	149.53	151.43
200	21	129.05	139.37	147.43	152.33	155.47	160.50	163.63	165.80
	22	130.25	137.37	144.37	150.37	157.00	160.50	163.87	168.03
	23	131.50	140.17	149.70	155.57	158.80	165.07	170.63	173.00
	24	126.15	133.13	140.50	147.03	152.33	158.30	161.83	164.43
	25	123.85	131.73	139.00	143.30	146.63	150.90	155.50	157.33
	26	122.45	134.00	143.57	149.67	154.70	160.00	163.53	168.73
	27	128.45	138.10	147.87	155.03	160.77	169.40	174.17	176.83
	28	121.50	131.57	139.97	144.60	146.23	152.80	157.17	159.07
	29	124.50	135.40	145.40	150.87	158.37	165.07	168.77	173.17
	30	117.50	125.50	132.43	138.33	143.40	149.00	152.90	153.53
o	31	134.30	147.17	155.20	161.93	166.67	172.50	180.30	184.33
	32	132.30	142.13	150.23	156.47	160.03	165.17	169.40	171.57
	33	126.85	136.30	142.87	147.53	152.80	158.30	160.50	162.43
	34	125.00	134.43	143.17	148.53	152.47	157.73	162.73	164.57
	35	126.35	136.67	143.80	147.40	150.77	153.50	159.77	163.70
	36	125.50	135.40	142.20	146.67	150.30	156.23	160.37	161.70
	37	123.65	132.73	141.17	147.93	153.53	160.80	166.33	168.30
	38	124.25	134.27	143.57	150.63	156.43	161.47	168.37	171.17
	39	125.45	137.03	146.00	151.70	156.27	161.33	166.30	169.10
	40	120.80	133.53	142.60	146.27	149.53	152.07	155.97	161.60
Wook 1 was only 6									. 5

Week 1 was only 6 days.

Weekly Body Weights (grams)/Females

Dose	Animal			Weeks		
(mg tetryl/kg diet)		9	10	11	12	13
ting toury mig energy						
3000	1	153.60	155.00	159.83	161.17	158.00
	2	159.40	163.37	163.87	162.97	163.77
	3	161.53	163.80	164.13	163.27	166.67
	4	161.23	164.77	164.00	163.87	164.77
	5	162.50	161.63	161.23	162.40	164.80
	6	160.97	163.30	166.00	167.10	168.90
	7	153.03	155.60	158.57	161.93	160.60
	8	162.73	164.03	162.83	162.53	165.43
	9	155.43	159.20	161.37	163.13	161.10
	10	153.57	155.97	157.63	161.73	161.57
1000	11	168.50	171.10	174.43	176.23	177.07
	12	164.93	167.13	171.70	175.23	175.40
	13	166.50	167.83	168.83	168.83	170.23
	14	165.90	168.27	168.33	170.60	170.37
	15	164.80	167.00	167.43	168.70	170.30
	16	163.20	165.20	166.07	168.10	169.43
	17	171.23	172.97	175.40	179.17	179.80
	18	158.50	162.67	161.97	163.23	164.63
	19	179.93	181.93	183.30	185.77	188.07
	20	154.37	156.67	156.47	156.90	158.23
200	21	168.13	170.07	173.37	174.00	176.33
	22	170.93	172.93	173.73	175.97	179.93
,	23	176.47	178.87	179.43	180.73	180.60
	24	169.00	172.90	176.80	181.67	183.90
	25	159.67	160.83	159.17	160.20	161.20
	26	171.87	174.77	175.80	177.77	181.53
	27	180.43	182.30	184.57	185.33	185.27
	28	163.87	166.43	165.77	168.53	170.97
	29	175.77	181.43	183.50	185.53	187.80
	30	156.40	159.50	160.87	161.73	164.33
0	31	187.77	188.00	189.23	192.70	194.17
	32	176.23	180.80	181.70	184.07	185.30
	33	167.13	169.37	171.97	174.10	174.00
	34	168.53	171.90	172.00	172.47	173.90
	35	165.73	166.70	168.20	169.00	172.80
	36	165.33	167.00	169.30	170.47	171.00
	37	170.60	171.30	175.00	179.47	184.40
	38	173.30	177.30	177.57	180.33	184.50
	39	171.97	175.63	177.97	181.60	182.03
	40	167.07	170.10	172.20	175.53	178.27

Weekly Body Weights (grams)/Males

Marchelly Mumber 1	Dose	Animal				We	eks			
3000			1	2	3			6	7	8
42		-				i				
171.65	3000			189.07	207.87	220.87	233.70	247.93	259.30	264.87
44		42	175.85	190.77	214.30	233.37	248.23	260.37	270.97	274.37
45			171.65	185.97	207.07	223.97	235.40	248.47	262.70	272.50
46		44	171.90	186.97	209.77	225.90	238.90	250.50	261.97	269.17
1000			164.00	173.03	191.57	204.70	216.40	229.37	243.10	252.53
48			168.55	187.73	212.73	232.47	249.37	264.60	279.40	291.73
155.30			166.40	179.70	200.33	217.90	234.30	249.57	260.80	268.43
1000		48	164.70	178.80	201.83	219.63	237.43	252.27	264.70	276.43
1000		49	155.30	167.07	187.40	202.50	218.10	231.70	243.47	250.23
52 180.70 200.53 222.37 239.00 254.53 269.67 281.47 288.90 53 179.55 199.33 220.83 234.90 249.20 263.73 272.27 277.33 54 175.50 194.93 215.53 229.03 243.20 258.93 288.40 276.03 56 166.20 181.13 194.43 204.57 215.63 228.90 246.07 255.30 57 164.85 185.03 209.23 226.87 242.03 257.10 269.43 278.23 58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97		50	151.10	163.77	185.90	200.30	212.53	227.27	237.90	247.43
53 179.55 199.33 220.83 234.90 249.20 263.73 272.27 277.33 54 175.50 194.93 215.53 229.03 243.20 258.93 268.40 275.47 55 173.15 191.30 213.47 229.47 242.33 257.43 270.93 276.03 56 166.20 181.13 194.43 204.57 242.33 257.43 270.93 276.03 57 164.85 185.03 209.23 226.87 242.03 257.10 269.43 278.23 58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.49 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 244.73 259.47 270.33	1000	51		198.40	221.63	239.70	254.87	270.90	280.67	288.23
54 175.50 194.93 215.53 229.03 243.20 258.93 268.40 275.47 55 173.15 191.30 213.47 229.47 242.33 257.43 270.93 276.03 56 166.20 181.13 194.43 204.57 215.63 228.90 246.07 255.30 57 164.85 185.03 209.23 226.87 242.03 257.10 269.43 278.23 58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47			180.70	200.53	222.37	239.00	254.53	269.67	281.47	288.90
55 173.15 191.30 213.47 229.47 242.33 257.43 270.93 276.03 56 166.20 181.13 194.43 204.57 215.63 228.90 246.07 255.30 57 164.85 185.03 209.23 226.87 242.03 257.10 269.43 278.23 58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 291.03 223.70 237.47 251.67 266.47 281.50 288.53 63 173.85 191.70 214.57 229.57 243.37 258.60			179.55	199.33	220.83	234.90	249.20	263.73	272.27	277.33
56 166.20 181.13 194.43 204.57 215.63 228.90 246.07 255.30 57 164.85 185.03 209.23 226.87 242.03 257.10 269.43 278.23 58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.30 235.47 252.47 269.00		54	175.50	194.93	215.53	229.03	243.20	258.93	268.40	275.47
57		55	173.15	191.30	213.47	229.47	242.33	257.43	270.93	276.03
58 167.80 191.27 217.83 238.30 255.47 272.33 285.43 295.20 59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 286.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90		56	166.20	181.13	194.43	204.57	215.63	228.90	246.07	255.30
59 156.70 176.63 203.70 222.73 239.27 254.20 265.40 276.57 60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53		57	164.85	185.03	209.23	226.87	242.03	257.10	269.43	278.23
60 162.95 182.67 202.30 219.60 234.67 243.23 252.93 261.57 200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.57 68 170.20 192.07 213.93 227.80 238.83 253.97		58	167.80	191.27	217.83	238.30	255.47	272.33	285.43	295.20
200 61 198.50 220.20 244.23 257.60 269.17 285.97 301.47 307.77 62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 197.37 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		59	156.70	176.63	203.70	222.73	239.27	254.20	265.40	276.57
62 180.35 201.03 223.70 237.47 251.67 266.47 281.50 288.57 63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 20 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 20 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		60	162.95	182.67	202.30	219.60	234.67	243.23	252.93	261.57
63 173.85 191.70 214.57 229.57 243.37 258.60 270.00 280.63 64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 280.27 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53	200	61	198.50	220.20	244.23	257.60	269.17	285.97	301.47	307.77
64 174.80 195.57 218.80 232.63 243.17 257.50 274.57 284.87 65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 218.20 231.00 244.73 259.47 270.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		62	180.35	201.03	223.70	237.47	251.67	266.47	281.50	288.57
65 178.30 197.37 218.30 235.47 252.47 269.00 282.30 291.30 66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 170.50 199.57 216.50 227.67 240.80 257.87 274.10 281.70 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 241.53 259.47 270.33 219.37 235.27 252.13 269.30 285.13 292.17 250.17 250.227 227.37 241.53 254.83 269.43 282.13 292.17 250.17 250.17 250.227 227.37 241.53 254.83 269.43 282.13 292.17 250.17 2		63	173.85	191.70	214.57	229.57	243.37	258.60	270.00	280.63
66 173.10 194.57 219.37 231.30 240.70 254.90 270.13 280.27 67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 217.00		64	174.80	195.57	218.80	232.63	243.17	257.50	274.57	284.87
67 170.15 191.70 214.40 232.83 249.80 267.53 282.33 292.50 68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 71 176.75 194.17 212.80 224.87 237.00 251.57 266.53 274.77 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		65	178.30	197.37	218.30	235.47	252.47	269.00	282.30	291.30
68 170.20 192.07 213.93 227.80 238.83 253.97 268.90 278.27 69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 71 176.75 194.17 212.80 224.87 237.00 251.57 266.53 274.77 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		66	173.10	194.57	219.37	231.30	240.70	254.90	270.13	280.27
69 164.60 181.93 202.87 216.17 227.63 240.60 248.37 256.70 70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 71 176.75 194.17 212.80 224.87 237.00 251.57 266.53 274.77 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 <		67	170.15	191.70	214.40	232.83	249.80	267.53	282.33	292.50
70 162.70 183.90 204.03 218.20 231.00 244.73 259.47 270.33 0 71 176.75 194.17 212.80 224.87 237.00 251.57 266.53 274.77 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 <		68	170.20	192.07	213.93	227.80	238.83	253.97	268.90	278.27
0 71 176.75 194.17 212.80 224.87 237.00 251.57 266.53 274.77 72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		69	164.60	181.93	202.87	216.17	227.63	240.60	248.37	256.70
72 179.25 199.33 219.37 235.27 252.13 269.30 285.13 296.27 73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		70	162.70	183.90	204.03	218.20	231.00	244.73	259.47	270.33
73 180.05 199.57 216.50 227.67 240.80 257.87 274.10 281.70 74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53	0	71	176.75	194.17	212.80	224.87	237.00	251.57	266.53	274.77
74 178.75 202.27 227.37 241.53 254.83 269.43 282.13 292.17 75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		72	179.25	199.33	219.37	235.27	252.13	269.30	285.13	296.27
75 171.40 192.53 216.53 233.73 248.17 265.00 281.50 294.70 76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		73	180.05	199.57	216.50	227.67	240.80	257.87	274.10	281.70
76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		74	178.75	202.27	227.37	241.53	254.83	269.43	282.13	292.17
76 172.40 194.33 222.40 240.43 253.43 266.80 280.50 290.93 77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		75	171.40	192.53		233.73				
77 162.90 181.57 198.03 207.57 214.53 226.47 236.00 245.97 78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53										
78 173.15 193.03 210.67 221.37 229.97 241.83 255.80 264.50 79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		77	162.90	181.57						
79 170.50 189.87 209.23 226.27 240.27 253.77 270.47 278.53		78	173.15							
		80	166.50	186.40	206.73	222.43	230.30	241.40	254.13	266.80

Week 1 was only 6 days.

Weekly Body Weights (grams)/Males

Dose	Animal		 	Weeks		
(mg tetryl/kg diet)	Number	9	10	11	12	13
(ing totrying diet)	Hamber					
3000	41	272.13	278.97	282.50	287.03	289.70
	42	276.83	286.50	292.83	301.27	307.20
	43	278.27	281.90	288.10	295.70	299.70
	44	277.87	281.53	284.63	290.23	290.10
	45	258.97	268.70	272.87	279.53	284.20
	46	299.67	309.73	318.37	324.87	331.60
	47	277.03	283.87	290.20	297.93	302.20
	48	282.80	291.53	300.87	307.57	313.50
	49	254.00	261.00	268.90	276.13	281.40
	50	251.43	258.77	262.67	266.80	271.20
1000	51	293.00	299.50	306.70	316.17	321.50
	52	295.77	306.50	315.93	322.83	329.30
	53	284.67	292.47	299.57	309.33	313.80
	54	284.07	294.20	300.60	307.77	312.50
	55	280.00	287.03	292.30	297.83	300.90
	56	266.33	274.47	285.03	291.50	294.70
	57	286.63	295.23	302.70	311.40	314.40
	58	304.00	313.80	325.73	331.10	337.30
	59	285.97	293.83	300.10	307.67	311.60
	60	272.10	279.97	285.30	292.00	299.00
200	61	317.77	329.47	336.83	341.30	342.90
	62	295.23	303.90	312.87	317.77	320.50
	- 63	289.90	297.03	305.33	313.50	315.30
	64	289.60	299.93	309.83	312.13	315.00
	65	298.53	307.73	311.70	316.73	320.00
	66	288.93	296.60	303.27	312.53	318.80
	67	302.37	314.50	323.87	332.60	338.20
	68	285.83	293.23	303.53	309.23	312.50
	69	266.63	272.60	276.83	286.03	291.50
	70	278.60	286.47	293.87	302.87	309.40
0	71	281.93	293.07	300.40	308.47	313.40
	72	304.10	313.53	321.77	329.20	333.80
	73	288.63	298.53	306.37	315.10	327.10
	74	302.57	307.87	313.67	322.30	332.10
	75	307.37	317.93	327.63	336.40	344.20
	76	300.03	307.37	316.10	324.23	328.50
	77	255.27	263.97	272.47	281.60	288.00
	78	276.30	286.40	292.17	301.07	306.20
	79	285.77	291.97	298.73	306.87	311.00
	80	278.37	285.83	293.57	303.60	308.20

APPENDIX C ORGAN WEIGHTS

GROUP		BODY	KIDNEY	LUNGS	LIVER	%	%	%
NUMBER		WEIGHT	WEIGHT	WEIGHT	WEIGHT	KIDNEY	LUNGS	LIVER
1	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	153.33	1.311	0.956	5.130	0.855	0.623	3.347
	S.E.M.	1.00	0.014	0.026	0.033	0.010	0.017	0.031
2	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	163.70	1.260	0.936	4.972	0.769	0.572	3.036
	S.E.M.	2.49	0.030	0.019	0.112	0.009	0.009	0.041
3	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	168.44	1.295	0.961	4.840	0.769	0.571	2.873
	S.E.M.	2.52	0.025	0.039	0.099	0.012	0.022	0.037
4	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	171.55	1.250	1.015	4.731	0.728	0.592	2.761
	S.E.M.	2.13	0.018	0.028	0.048	0.006	0.017	0.039
5	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	279.95	2.401	1.411	11.033	0.858	0.505	3.938
	S.E.M.	4.71	0.052	0.044	0.248	0.009	0.014	0.029
6	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	297.37	2.396	1.424	10.073	0.806	0.478	3.385
	S.E.M.	3.89	0.102	0.066	0.226	0.036	0.018	0.040
7	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	305.04	2.291	1.470	9.347	0.751	0.482	3.062
	S.E.M.	4.12	0.047	0.078	0.224	0.009	0.025	0.046
8	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	304.19	2.203	1.422	9.347	0.724	0.468	3.068
	S.E.M.	4.78	0.049	0.039	0.256	0.012	0.012	0.044

GROUP		BODY	HEART	BRAIN	SPLEEN	%	%	%
NUMBER		WEIGHT	WEIGHT	WEIGHT	WEIGHT	HEART	BRAIN	SPLEEN
1	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	153.33	0.654	1.686	0.465	0.427	1.100	0.303
	S.E.M.	1.00	0.024	0.014	0.009	0.016	0.013	0.006
	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	163.70	0.640	1.717	0.438	0.390	1.052	0.267
	S.E.M.	2.49	0.021	0.018	0.012	0.010	0.022	0.004
3	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	168.44	0.649	1.773	0.417	0.385	1.056	0.247
	S.E.M.	2.52	0.021	0.046	0.012	0.009	0.036	0.004
	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	171.55	0.686	1.826	0.438	0.400	1.066	0.255
	S.E.M.	2.13	0.017	0.022	0.011	0.008	0.018	0.005
	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	279.95	0.929	1.833	0.707	0.332	0.656	0.253
	S.E.M.	4.71	0.019	0.015	0.015	0.005	0.010	0.004
6	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	297.37	0.963	1.896	0.625	0.324	0.638	0.210
	S.E.M.	3.89	0.019	0.026	0.011	0.006	0.012	0.004
	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	305.04	1.052	1.915	0.613	0.345	0.628	0.201
	S.E.M.	4.12	0.034	0.017	0.011	0.010	0.007	0.003
8	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	304.19	0.995	1.899	0.611	0.327	0.626	0.201
	S.E.M.	4.78	0.024	0.015	0.011	0.008	0.010	0.004

GROUP NUMBER		BODY WEIGHT	ADRENAL WEIGHT	THYMUS WEIGHT	OVARIES, TESTES WEIGHT	/ % ADRENAL	% THYMUS	% OVARIES/ TESTES
1	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	153.33	0.070	0.193	0.130	0.045	0.126	0.085
	S.E.M.	1.00	0.003	0.007	0.005	0.002	0.005	0.003
2	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	163.70	0.069	0.218	0.213	0.042	0.133	0.129
	S.E.M.	2.49	0.004	0.009	0.087	0.003	0.005	0.052
3	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	168.44	0.083	0.218	0.140	0.049	0.129	0.083
	S.E.M.	2.52	0.006	0.010	0.008	0.004	0.006	0.004
4	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	171.55	0.087	0.245	0.165	0.051	0.143	0.096
	S.E.M.	2.13	0.005	0.015	0.020	0.003	0.009	0.011
5	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	279.95	0.074	0.249	4.816	0.027	0.089	1.722
	S.E.M.	4.71	0.005	0.016	0.166	0.002	0.005	0.055
6	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	297.37	0.068	0.265	4.978	0.023	0.089	1.671
	S.E.M.	3.89	0.004	0.022	0.237	0.001	0.007	0.070
7	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	305.04	0.069	0.255	5.366	0.023	0.084	1.756
	S.E.M.	4.12	0.002	0.013	0.278	0.001	0.004	0.082
8	N	10.00	10.000	10.000	10.000	10.000	10.000	10.000
	MEAN	304.19	0.072	0.287	5.082	0.024	0.094	1.672
	S.E.M.	4.78	0.005	0.022	0.288	0.002	0.006	0.094

GP-Z	ANI	BODY	KIDNEY	LUNGS	LIVER	%	%	%
NUM	BER	WEIGHT	WEIGHT	WEIGHT	WEIGHT	KIDNEY	LUNGS	LIVER
			### WEIGHT 1.313 1.280 1.332 1.299 1.389 1.285 1.309 1.347 1.334 1.225 1.303 1.271 1.231 1.280 1.303 1.163 1.326 1.164 1.438 1.119 1.318 1.333 1.207 1.368 1.182 1.382 1.382 1.390 1.314 1.383 1.175 1.391	WEIGHT 0.862 1.064 0.997 0.944 1.039 0.965 1.054 0.832 0.926 0.873 0.987 0.995 0.995 0.995 0.998 0.998 0.998 0.998 0.998 0.916 0.850 0.976 1.017 1.127	WEIGHT 5.02 5.133 5.161 5.122 4.929 5.264 5.264 5.265 5.605 4.9829 4.941 5.601 4.601 4.685 5.513 4.727 4.687 5.175 4.383 4.795 4.787 5.407 4.459 4.732	0.882 0.833 0.849 0.836 0.886 0.818 0.877 0.878 0.899 0.805 0.775 0.763 0.759 0.804 0.722 0.788 0.722 0.788 0.741 0.802 0.747 0.784 0.792 0.703 0.767 0.767 0.767 0.767 0.767	UNGS 0.579 0.693 0.636 0.607 0.663 0.614 0.706 0.543 0.617 0.574 0.573 0.561 0.615 0.578 0.588 0.591 0.524 0.520 0.471 0.594 0.520 0.471 0.594 0.5530 0.596 0.532 0.607	3.358 3.342 3.291 3.295 3.145 3.329 3.473 3.474 3.330 3.332 2.989 2.979 3.102 3.086 2.855 2.913 2.984 3.076 3.045 2.813 2.785 3.013 2.898 2.871 2.997 3.049 2.7697 2.547
4 4 4	31 32 33 34	185.80 176.08 168.91 164.16	1.282 1.234 1.239	1.127 1.060 0.941 0.998	4.732 4.956 4.886 4.486	0.728 0.731 0.755	0.602 0.557 0.608	2.815 2.893 2.733
3	30	161.04	1.175	1.017	4.459	0.730	0.632	2.769
4	31	185.80	1.391	1.127	4.732	0.749	0.607	2.547
4	32	176.08	1.282	1.060	4.956	0.728	0.602	2.815
4	35	163.46	1.186	1.059	4.741	0.726	0.648	2.900
4	36	166.38	1.234	1.132	4.653	0.742	0.680	2.797
4	37	174.28	1.239	0.934	4.704	0.711	0.536	2.699
4	38	175.21	1.241	1.080	4.716	0.708	0.616	2.692
4	39	172.71	1.195	0.871	4.534	0.692	0.504	2.625
4	40	168.54	1.254	0.943	4.899	0.744	0.560	

GP-A NUMB		DDY HEART GHT WEIGHT	BRAIN WEIGHT	SPLEEN WEIGHT	% HEART	% BRAIN	% SPLEEN
NUMB 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3	1 148 2 153 3 156 4 155 6 157 7 149 8 149 10 168 112 166 13 162 14 165 16 161 17 158 18 179 20 168 171 168 171 168 171 173 173 174 175 177 178 179 179 179 179 179 179 179 179 179 179	GHT WEIGHT 3.95 0.695 3.58 0.574 5.81 0.625 5.47 0.656 5.70 0.677 7.07 0.634 6.25 0.623 6.35 0.840 6.98 0.567 6.09 0.651 6.22 0.610 6.27 0.677 6.12 0.628 6.27 0.601 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.27 0.654 6.28 0.552 6.29 0.583 6.24 0.666 6.32 0.710 6.54 0.588 6.34 0.728 6.34 0.567 6.580 0.770	WEIGHT 1.686 1.777 1.656 1.608 1.719 1.673 1.680 1.724 1.666 1.755 1.759 1.725 1.736 1.750 1.584 1.447 1.800 1.665 1.752 1.906 1.824 1.825 1.772 1.906	WEIGHT 0.409 0.473 0.507 0.452 0.445 0.469 0.461 0.514 0.458 0.462 0.467 0.417 0.431 0.423 0.455 0.436 0.517 0.376 0.389 0.438 0.405 0.359 0.410 0.447 0.393 0.489 0.401 0.522		BRAIN 1.132 1.157 1.056 1.072 1.026 1.094 1.121 1.096 1.149 1.054 1.118 1.064 1.071 1.032 1.115 0.884 1.127 0.861 1.069 0.970 1.088 1.295 1.009 1.009 1.143 1.029 1.100 1.026	SPLEEN 0.275 0.308 0.323 0.291 0.284 0.299 0.305 0.305 0.305 0.266 0.274 0.251 0.278 0.288 0.251 0.278 0.288 0.251 0.233 0.233 0.238 0.231 0.246 0.276 0.249 0.281
4 4 4 4	32 176 33 168 34 164 35 163	.08 0.744 .91 0.653 .16 0.665 .46 0.646	1.744 1.945 1.867 1.794	0.444 0.434 0.452 0.426	0.423 0.387 0.405 0.395	0.990 1.152 1.137 1.098	0.252 0.257 0.275 0.261
4 4 4 4	34 164 35 163 36 166 37 174	.16 0.665 .46 0.646 .38 0.655	1.867 1.794 1.801 1.774	0.452	0.405	1.137	0.275
4 3	39 172	.71 0.634 .54 0.755	1.726	0.391	0.367	0.999	0.226

1 2 153.58	% VARIES
2 14 159.27 0.086 0.216 0.128 0.054 0.136 2 15 165.27 0.065 0.216 0.990 0.039 0.131 2 16 161.13 0.066 0.203 0.109 0.041 0.126 2 17 168.25 0.047 0.282 0.140 0.028 0.168 2 18 156.99 0.066 0.219 0.116 0.042 0.139 2 19 179.24 0.096 0.230 0.130 0.054 0.128 2 20 149.83 0.071 0.184 0.081 0.047 0.123 3 21 168.04 0.101 0.269 0.161 0.060 0.160 3 22 168.32 0.053 0.168 0.125 0.031 0.100 3 23 171.62 0.065 0.183 0.132 0.038 0.107 3 24 173.76 0.078 0.238 0.173 0.045 0.138 3 26	0.089 0.083 0.082 0.087 0.085 0.085 0.087 0.087 0.087 0.087 0.088 0.089 0.089 0.073 0.073 0.073 0.074 0.077 0.088 0.083 0.083 0.074 0.083 0.083 0.083 0.099

	-ANI MBER	BODY WEIGHT	KIDNEY WEIGHT	LUNGS WEIGHT	LIVER WEIGHT	% KIDNEY	% LUNGS	% LIVER
555555555666666666677777777778888888888	444444445555555555556666666667777777777	275.59 287.56 282.44 276.40 273.40 307.45 281.32 296.06 262.23 257.02 302.87 311.28 298.84 294.26 284.23 294.41 321.50 297.76 281.36 304.62 304.62 304.62 304.62 304.62 304.62 304.62 304.62 304.62 304.62 304.62 304.76 257.02	2.307 2.420 2.307 2.504 2.438 2.701 2.399 2.561 2.231 2.256 2.256 2.241 2.256 2.228 3.217 2.188 2.233 2.241 2.251 2.203 2.312 2.203 2.312 2.203 2.312 2.333 2.241 2.253 2.241 2.253 2.241 2.253 2.241 2.253 2.253 2.241 2.253	1.386 1.392 1.386 1.392 1.386 1.6429 1.385 1.679 1.368 1.457 1.769 1.368 1.491 1.599 1.220 1.344 1.679 1.344 1.679 1.344 1.491 1.344 1.491 1.428 1.479 1.428 1.479 1.359 1.359	10.529 11.186 10.987 11.062 10.920 12.732 11.029 11.741 10.117 10.025 10.058 10.366 10.131 9.501 9.747 9.441 10.277 11.848 9.972 9.388 10.420 9.336 9.682 9.710 9.214 8.847 9.853 7.944 8.677 9.435 10.695	0.837 0.842 0.817 0.906 0.892 0.879 0.853 0.865 0.818 0.868 0.745 0.804 0.757 1.120 0.770 0.758 0.753 0.753 0.753 0.760 0.771 0.723 0.760 0.773 0.760 0.773 0.760 0.703	UNGS 0.503 0.524 0.461 0.467 0.453 0.5515 0.5530 0.5515 0.539 0.592 0.4416 0.436 0.4477 0.416 0.4476 0.4367 0.4416 0.4477 0.4566 0.4477 0.4566 0.4477 0.4566 0.4477 0.4566 0.4477 0.4566 0.4577 0.4566 0.4577 0.457	3.890 3.890 3.890 4.002 3.994 4.141 3.9266 3.320 3.320 3.329
 8 8 8	78 79 80	285.36 294.28 297.32	1.943 2.177 2.317	1.354 1.190 1.586	8.198 8.491 8.913	0.681 0.740 0.779	0.474 0.404 0.533	2.873 2.885 2.998

	-ANI MBER	BODY WEIGHT	HEART WEIGHT	BRAIN WEIGHT	SPLEEN WEIGHT	% HEART	% BRAIN	% SPLEEN
						0.341 0.310 0.338 0.336 0.332 0.319 0.367 0.326 0.318 0.326 0.343 0.343 0.346 0.315 0.342 0.340 0.315 0.342 0.340 0.315 0.342 0.340 0.315 0.342 0.340 0.315 0.342 0.316 0.303 0.329 0.367 0.367	BRAIN 0.677 0.635 0.653 0.6670 0.628 0.611 0.701 0.706 0.654 0.6618 0.6655 0.646 0.671 0.596 0.620 0.620 0.621 0.622 0.622 0.6622 0.6622 0.6633 0.623 0.633 0.633 0.633	SPLEEN 0.274 0.242 0.265 0.265 0.235 0.252 0.260 0.261 0.242 0.190 0.215 0.203 0.215 0.203 0.219 0.193 0.229 0.186 0.194 0.184 0.208 0.194 0.196 0.207 0.215 0.209 0.197 0.193 0.191 0.193
8 8 8 8	76 77 78 79 80	279.40 285.36 294.28 297.32	0.880 0.963 1.001 1.089	1.874 1.917 1.852 1.927 1.860	0.550 0.657 0.577 0.649	0.315 0.337 0.340 0.366	0.686 0.649 0.655 0.626	0.197 0.230 0.196 0.218

GP-ANI		ADRENAL	THYMUS	TESTES	%	%	%
NUMBER		WEIGHT	WEIGHT	WEIGHT	ADRENAL	THYMUS	TESTES
	WEIGHT 275.59 287.56 282.44 276.40 273.40 307.45 281.32 296.06 262.23 257.02 302.87 311.28 298.84 294.26 287.16 284.23 294.41 321.50		WEIGHT 0.297 0.180 0.303 0.246 0.188 0.342 0.234 0.234 0.236 0.234 0.236 0.234 0.368 0.178 0.183 0.211 0.238 0.254 0.318 0.337 0.232 0.220 0.250 0.215 0.229 0.249 0.233 0.313 0.348		ADRENAL 0.026 0.018 0.027 0.040 0.028 0.025 0.021 0.024 0.028 0.030 0.021 0.019 0.017 0.023 0.025 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.019		TESTES 1.669 1.618 1.653 1.670 1.506 2.077 1.932 1.624 1.836 1.594 1.594 1.504 1.588 1.555 1.494 1.561 2.005 1.494 1.561 2.005 1.494 1.565 1.494 1.565
7 69	282.60	0.070	0.238		0.025	0.084	2.033
7 70	298.64	0.072	0.254		0.024	0.085	1.549
8 71	304.09	0.063	0.231		0.021	0.076	2.151
8 72	322.17	0.091	0.228		0.028	0.071	1.424
8 73	307.77	0.055	0.319	4.390	0.018	0.104	1.426
8 74	312.59	0.099	0.304	4.860	0.032	0.097	1.555
8 75	325.51	0.073	0.385	4.624	0.022	0.118	1.421
8 76	313.40	0.078	0.410	6.584	0.025	0.131	2.101
8 77	279.40	0.062	0.253	4.516	0.022	0.091	1.616
8 78	285.36	0.086	0.289	4.676	0.030	0.101	1.639
8 79	294.28	0.057	0.202	4.125	0.019	0.069	1.402
8 80	297.32	0.058	0.252	5.911	0.020	0.085	1.988

APPENDIX D

HEMATOLOGY DATA

Hematology Data/Females 45 Days

DOSE		RBC				WBC	
GROUPS	ANIMAL	COUNT	HGB	HCT	PLATELETS	COUNT	METHB
(mg tetryl/kg) diet	#	mill/ cu mm	g/dl	%	thsn/ cu mm	thsn/ cu mm	%
3000	401	7.83	14.7	43.2	864	3.7	2.3
	402	7.58	13.4	41.9	903	4.9	1.3
	403	7.91	14.9	43.0	765	5.0	1.9
	404	7.55	13.9	40.9	721	4.6	2.0
	405	8.16	14.9	45.4	729	5.7	2.3
1000	406	7.96	14.2	44.1	500	5.0	1.2
	407	8.25	15.3	46.6	772	5.0	1.1
	408	7.79	14.5	42.1	806	4.8	1.5
	409	7.84	14.7	43.9	719	4.3	0.9
	410	7.88	14.6	42.2	786	4.4	0.8
200	411	7.84	14.7	41.9	722	4.1	0.4
	412	8.05	15.4	43.3	865	4.2	1.2
	413	7.93	14.8	41.6	816	3.0	0.9
	414	7.87	14.5	41.6	710	5.5	1.1
	415	8.24	15.4	43.7	779	3.4	0.9
0	416	7.96	15.5	41.9	768	3.4	0.1
	417	8.01	15.5	42.6	725	4.6	0.1
	418	8.12	15.6	43.5	819	4.1	0.5
	419	8.17	15.6	43.5	718	4.2	0.6
	420	8.49	16.1	47.1	863	4.6	0.1

Hematology Data/Females 45 Days

DOSE					NEUTRO-	LYMPHO-	HEINZ	
GROUPS	ANIMAL	MCV	MCH	MCHC	PHILS	CYTES	BODIES	RETIC
(mg tetryl/kg) diet	#	cumicr	picogm	g/dl	%	%	%	%
3000	401	55.1	18.7	34.0	12.6	83.2	0.0	4.4
	402	55.2	17.7	32.0	18.3	78.2	0.0	3.3
	403	54.4	18.8	34.5	13.3	84.3	0.0	3.4
	404	54.2	18.5	34.1	10.2	87.2	0.0	3.6
	405	55.6	18.2	32.7	10.0	85.5	0.0	3.7
1000	406 407 408 409 410	55.4 56.5 54.0 56.0 53.6	17.8 18.5 18.7 18.8 18.5	32.1 32.8 34.5 33.6 34.5	8.8 14.2 20.8 18.1 15.3	88.3 81.7 75.3 77.5 80.5	0.0 0.0 0.0 0.0	2.3 2.5 2.3 2.3 2.2
200	411	53.5	18.7	35.0	18.7	77.4	0.0	1.8
	412	53.7	19.1	35.5	26.5	69.4	0.0	1.9
	413	52.5	18.7	35.6	19.9	75.3	0.0	1.9
	414	52.8	18.5	35.0	17.7	78.9	0.0	1.7
	415	53.1	18.7	35.2	13.6	81.5	0.0	2.4
0	416	52.6	19.5	37.1	17.1	79.1	0.0	1.8
	417	53.2	19.3	36.3	19.1	77.6	0.0	2.0
	418	53.6	19.2	35.8	21.9	74.2	0.0	2.1
	419	53.2	19.0	35.8	21.9	75.0	0.0	1.8
	420	55.4	18.9	34.1	28.6	65.5	0.0	2.4

Hematology Data/Males 45 Days

DOSE		RBC				WBC	
GROUPS	ANIMAL	COUNT	HGB	HCT	PLATELETS	COUNT	METHB
(mg tetryl/kg)		mill/			thsn/	thsn/	
diet	#	cu mm	g/dl	%	cu mm	cu mm	%
3000	421	8.41	14.0	43.4	1042	4.6	2.8
	422	8.63	14.4	43.4	893	4.2	2.7
	423	8.25	13.6	42.2	914	3.8	2.3
	424	8.77	14.8	44.2	1006	5.0	2.7
	425	8.46	13.8	42.5	876	2.9	1.7
1000	426	8.70	15.1	43.8	873	3.0	1.4
	428	8.77	15.3	44.9	844		
	429	8.85	15.2	45.2	849	4.8	
	430	8.76	14.6	43.6	873	4.5	1.4
200	431	8 70	14.8	43.9	805	33	0.6
, 200							
0	436	8.51	15.0	43.5	678	4.1	0.1
	437	8.58	15.5	44.9	726	4.5	8.0
	438	8.63	15.4	44.7	828	5.4	0.7
	439	8.76	15.5	45.2	571	4.9	0.3
	440	8.80	15.8	46.2	700	4.0	0.2
1000 . 200 0	423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439	8.25 8.77 8.46 8.70 8.46 8.77 8.85 8.76 8.50 9.00 8.89 9.28 8.51 8.58 8.63 8.76	13.6 14.8 13.8 15.1 14.3 15.3 15.2 14.6 14.4 15.9 15.6 16.3 15.0 15.5 15.4 15.5	42.2 44.2 42.5 43.8 42.2 44.9 45.2 43.6 43.9 43.2 46.0 45.4 47.5 43.5 44.7 45.2	914 1006 876 873 782 844 849 873 805 815 781 732 812 678 726 828 571	3.8 5.0 2.9 3.0 3.6 5.1 4.8 4.5 3.3 4.2 4.9 4.2 4.4 4.1 4.5 5.4 4.9	2.3 2.7 1.7 1.4 1.6 1.6 0.8 1.4 0.6 1.4 1.1 0.2 1.1 0.1 0.8 0.7 0.3

Hematology Data/Males 45 Days

DOSE GROUPS	ANIMAL	MCV	МОН	мснс	NEUTRO- PHILS	LYMPHO- CYTES	HEINZ BODIES	RETIC
(mg tetryl/kg) diet	#	cumicr	picogm	g/dl	%	%	%	%
3000	421	51.6	16.6	32.3	16.8	79.8	0.0	4.4
	422	50.4	16.6	33.0	18.8	78.2	0.0	4.1
	423	51.2	16.4	32.1	15.7	80.6	0.0	4.1
	424	50.4	16.9	33.5	18.7	78.4	0.0	4.2
	425	50.2	16.3	32.4	24.7	72.2	0.0	4.0
1000	426	50.3	17.3	34.4	19.7	76.3	0.0	2.5
	427	49.9	16.9	33.9	24.9	71.7	0.0	3.1
	428	51.2	17.4	34.0	15.0	82.0	0.0	2.8
	429	51.1	17.1	33.5	18.8	77.7	0.0	3.1
	430	49.8	16.7	33.4	21.0	76.3	0.0	2.7
200	431	50.5	17.0	33.7	21.5	75.9	0.0	2.4
	432	50.9	16.9	33.3	23.8	72.4	0.0	2.6
	433	51.1	17.7	34.6	20.6	76.1	0.0	2.5
	434	51.1	17.5	34.3	18.7	78.3	0.0	2.0
	435	51.2	17.6	34.4	17.4	79.9	0.0	1.8
0	436	51.2	17.6	34.4	26.1	71.4	0.0	2.9
•	437	52.3	18.1	34.6	22.2	75.4	0.0	2.5
	438	51.8	17.8	34.5	16.0	80.9	0.0	2.3
	439	51.6	17.7	34.3	14.8	82.5	0.0	2.2
	440	52.5	17.9	34.1	16.2	80.5	0.0	2.2

Hematology Data/Females 90 Days

DOSE GROUPS	ANIMAL	RBC COUNT	UCB	UCT	DI ATELETO	WBC	METUD
			HGB	HCT	PLATELETS		METHB
(mg tetryl/kg)		mill/			thsn/	thsn/	
diet	#	cu mm	g/dl	%	cu mm	cu mm	%
3000	1	7.02	14.7	42.6	776	3.5	2.2
	2	7.96	15.0	43.0	918	3.9	2.3
	3	8.15	15.4	44.8	917	4.5	1.7
	4	7.88	14.5	44.3	837	4.1	2.7
	5	7.74	14.0	42.7	852	3.4	1.9
	6	7.80	14.5	42.5	801	3.6	2.3
	7	7.96	14.7	46.1	880	3.1	2.0
	8	7.33	14.0	40.7	874	3.6	2.7
	9	7.69	14.3	42.6	900	4.2	2.5
	10	7.49	14.2	42.9	779	2.9	2.0
1000	11	7.92	14.9	41.9	757	4.6	1.2
	12	8.01	15.0	44.0	725	3.1	0.6
	13	7.96	14.9	43.4	781	3.4	1.4
	14	8.15	15.3	43.4	838	2.9	0.6
	15	8.10	15.0	44.0	748	4.4	1.0
	16	8.45	15.8	46.3	805	3.1	1.1
	17	7.91	14.9	42.2	909	3.7	1.6
	18	8.10	15.1	43.4	880	4.1	1.0
	19	8.19	15.6	43.9	919	3.9	1.4
	20	8.39	15.3	46.0	752	3.7	1.0
200	21	8.03	15.3	43.4	757	3.1	0.1
	22	7.94	15.1	42.5	826	4.4	0.2
	23	8.50	15.6	46.9	815	3.6	1.0
	24	8.65	16.5	45.9	769	2.6	0.7
	25	7.83	14.9	41.8	761	3.2	0.7
	26	8.17	15.5	45.1	725	3.3	0.8
	27	8.34	15.6	44.2	762	2.9	0.6
	28	8.32	16.3	46.3	703	4.0	0.7
	29	8.48	16.5	46.4	830	4.0	0.8
	30	8.01	15.3	43.0	633	3.0	1.2
0	31	8.02	15.7		790	3.5	0.1
	32	8.66	15.7	46.9	669	3.2	1.0
	33	8.08	15.2	44.1	729	4.1	0.4
	34	8.26	15.5	45.3	748	4.3	0.4
	35	8.26	15.5	44.5	729	5.2	0.7
	36	8.03	15.1	42.6	731	5.1	0.3
	37	8.10	15.7	42.9	749	3.5	0.9
	38	8.17	16.0	44.5	753	3.8	1.0
	3 9	8.28	16.1	45.3	761	4.8	8.0
	40	8.51	16.1	47.1	766	3.9	0.3

Hematology Data/Females 90 Days

DOSE					NEUTRO-	LYMPHO-	HEINZ	
GROUPS	ANIMAL	MCV	MCH	MOHO	PHILS	CYTES	BODIES	RETIC
(mg tetryl/kg) diet	#	cumicr	picogm	g/dl	%	%	%	%
			· ·		 	-		
3000	1	54.6	18.8	34.5	23.3	73.2	0.0	2.3
0000	2	54.1	18.8	34.9	16.5	78.8	0.0	2.5
	3	55.0	18.9	34.4	15.9	80.2	0.0	3.0
	4	56.2	18.4	32.8	18.7	77.8	0.0	3.0
	5	55.2	18.1	32.8	18.2	77.6	0.0	1.8
	6	54.5	18.6	34.1	17.6	78.2	0.0	2.7
	7	57.9	18.5	32.0	23.9	68.1	0.0	2.7
	8	55.5	19.1	34.4	13.4	83.4	0.0	2.6
	9	55.4	18.6	33.5	15.5	81.3	0.0	2.8
	10	57.2	19.0	33.3	19.7	75.4	0.0	2.9
	10	J1.2	10.0	00.0	10.7	70.4	0.0	2.0
1000	11	52.8	18.8	35.7	19.8	76.7	0.0	2.0
	12	55.0	18.7	34.0	21.7	73.2	0.0	2.1
	13	54.5	18.7	34.4	20.4	75.7	0.0	2.0
	14	53.3	18.7	35.1	24.7	70.9	0.0	2.5
	15	54.3	18.5	34.0	26.6	68.6	0.0	2.4
	16	54.8	18.7	34.1	20.4	74.4	0.0	1.5
	17	53.3	18.9	35.4	22.5	73.6	0.0	2.0
	18	53.6	18.7	34.8	23.3	71.6	0.0	1.9
	19	53.6	19.1	35.5	21.4	75.1	0.0	2.0
	20	54.9	18.2	33.2	22.5	72.3	0.0	2.2
200	21	54.0	19.1	35.3	19.3	75.8	0.0	1.8
200	22	53.5	19.0	35.5	15.8	80.9	0.0	1.7
	23	55.1	18.3	33.2	18.2	76.7	0.0	1.5
	24	53.1	19.1	36.0	18.6	77.3	0.0	2.1
	25	53.5	19.1	35.7	23.3	71.3	0.0	1.7
	26	55.2	19.0	34.4	29.2	66.9	0.0	1.6
	27	53.0	18.7	35.3	14.7	82.0	0.0	2.1
	28	55.6	19.6	35.3	20.3	75.2	0.0	1.5
	29	54.7	19.5	35.7	16.2	80.6	0.0	1.8
	30	53.7	19.1	35.6	27.1	68.2	0.0	1.9
0	31	53.5	19.5	36.5	20.4	75.3	0.0	1.7
•	32	54.1	18.2	33.6	19.5	76.6	0.0	2.2
	33	54.6	18.9	34.6	20.8	74.1	0.0	1.8
	34	54.8	18.7	34.1	18.6	77.0	0.0	1.4
	35	53.9	18.7	34.7	26.8	68.0	0.0	1.5
	36	53.0	18.8	35.6	23.3	73.4	0.0	2.2
	37	52.9	19.4	36.6	14.9	82.0	0.0	1.6
	38	54.5	19.5	35.9	17.3	79.0	0.0	1.6
	39	54.7	19.4	35.5	19.6	74.9	0.0	1.6
	40	55.4	19.0	34.2	17.0	77.2	0.0	1.5
						_		

Hematology Data/Males 90 Days

DOSE GROUPS	ANIMAL	RBC COUNT	HGB	НСТ	PLATELETS	WBC	METHB
							WETTIB
(mg tetryl/kg)		mill/	4.0	•	thsn/	thsn/	
diet	#	cu mm	g/dl	%	cu mm	cu mm	%
3000	41	8.98	14.3	44.7	891	4.6	2.8
	42	8.97	14.1	44.4	857	5.4	3.0
	43	9.03	14.3	46.3	801	4.5	2.2
	44	8.63	13.7	43.9	795	4.3	3.6
	45	8.96	14.4	44.7	889	4.1	3.3
	46	9.14	14.4	45.4	927	3.6	2.1
	47	9.15	14.3	46.3	867	4.0	2.7
	48	8.61	13.9	44.1	839	5.4	1.9
	49	8.92	14.5	44.0	897	4.3	2.4
	50	9.02	14.3	46.0	804	4.1	2.7
1000	51	9.18	15.1	46.8	806	5.2	0.9
1000	52	9.23	15.5	47.2	780	5.2 4.1	1.5
	52 53	9.23 9.04	15.0	47.2 45.4	824	4.6	1.5
	53 54	9.33	15.4				
	5 4 55	9.33 9.11		47.0 46.6	753 723	3.5 4.8	1.4
	56		15.1	46.6 48.8	723 584		1.2
	50 57	9.50	15.6 15.6	46.6 49.1		3.6	1.4
	57 58	9.59	15.6	49.1 45.4	649	4.8	1.2
		9.19	15.1		846	3.8	1.1
	59	9.44	15.5	47.9	797	3.7	1.7
	60	9.12	15.2	47.3	689	4.9	1.6
200	61	9.60	16.0	48.4	770	4.5	0.9
	62	9.64	15.9	49.5	808	3.7	0.0
	63	9.21	16.0	47.7	675	4.3	0.9
	64	9.29	15.5	47.9	727	4.4	0.9
	65	9.43	16.3	48.9	677	3.5	0.9
	66	9.50	15.2	49.6	720	5.9	0.3
	67	8.98	15.1	46.4	749	3.9	0.6
	68	9.10	15.2	46.2	682	3.8	0.6
	69	9.31	15.5	48.1	750	3.8	0.4
	70	9.04	15.4	47.8	725	4.3	0.3
_							
0	71	9.37	16.1	48.4	705	3.6	0.6
	72	9.27	15.6	47.9	688	4.6	0.3
	73	9.55	15.9	48.3	803	4.9	0.2
	74	9.25	15.9	48.5	738	5.1	0.3
	75	9.44	15.9	49.6	718	4.3	1.1
	76	9.62	15.9	49.7	685	4.4	0.5
	77	9.24	15.9	48.4	607	3.1	0.1
	78	8.97	15.3	47.2	935	3.9	0.2
	79	9.44	16.0	47.5	762	4.9	1.3
	80	9.23	15.8	48.2	696	4.7	0.4

Hematology Data/Males 90 Days

DOSE GROUPS	ANIMAL	MCV	MOH	мснс	NEUTRO- PHILS	LYMPHO- CYTES	HEINZ BODIES	RETIC
(mg tetryl/kg)		cumicr	nicoam	a/dl	%	%	%	%
diet	#	Cullici	picogiii	9/41		/0	/0	
0000	44	49.7	15.9	32.1	27.4	68.9	0.0	3.4
3000	41 42	49.7 49.5	15.8	31.9	24.8	71.4	0.0	3.4
	42	51.3	15.8	30.9	25.5	69.1	0.0	3.4
	44	50.9	15.9	31.3	24.2	72.6	0.0	3.4
	45	49.8	16.1	32.2	24.7	71.6	0.0	3.5
	46	49.7	15.8	31.7	26.7	67.9	0.0	3.4
	47	50.6	15.7	31.0	23.2	76.2	0.0	3.3
	48	51.2	16.1	31.4	21.4	74.9	0.0	3.1
	49	49.3	16.2	32.8	24.6	71.4	0.0	3.6
	50	51.0	15.9	31.1	27.1	67.6	0.0	3.0
	50	51.0	15.5	51.1	27.1	07.0	0.0	0.0
1000	51	50.9	16.4	32.2	19.9	75.7	0.0	2.0
	52	51.1	16.8	32.8	21.2	75.1	0.0	2.0
	53	50.2	16.6	33.0	28.9	66.6	0.0	2.1
	54	50.4	16.5	32.7	29.7	65.0	0.0	2.0
	55	51.1	16.6	32.4	26.7	67.3	0.0	2.0
	56	51.4	16.4	31.9	32.7	62.7	0.0	2.1
	57	51.3	16.3	31.8	24.4	70.2	0.0	1.8
	58	49.4	16.4	33.2	25.1	68.8	0.0	2.1
	59	50.8	16.4	32.3	21.2	75.4	0.0	2.3
	60	51.9	16.7	32.2	28.6	66.1	0.0	2.1
000	61	50.4	16.7	33.2	23.7	71.9	0.0	1.8
200	62	50.4 51.4	16.7	32.0	27.7	67.9	0.0	1.6
			17.4	33.6	22.0	74.5	0.0	1.8
	63	51.8 51.5	16.7	32.5	22.1	74.0	0.0	1.6
	64 65		17.3	33.3	28.5	66.1	0.0	2.0
	65	51.8			28.5 18.7	76.3	0.0	1.7
	66	52.2 51.7	16.0	30.6 32.6	22.5	70.3 73.4	0.0	2.1
	67			32.9	20.9	73. 4 74.6	0.0	2.1
	68	50.8	16.7	32.9	20.5	74.0	0.0	2.1
	69 70	51.6 52.9	16.6 17.0	32.2	16.9	71. 4 78.6	0.0	2.0
	70	02.0						
0	71	51.6	17.2	33.3	24.5	70.3	0.0	2.1
	72	51.7	16.8	32.6	22.6	72.9	0.0	2.0
	73	50.6	16.7	33.0	18.6	77.3	0.0	2.0
	74	52.5	17.2	32.7	22.1	74.7	0.0	1.9
	75	52.6	16.8	32.1	18.9	75.6	0.0	2.2
	76	51.7	16.5	31.9	20.1	76.6	0.0	1.8
	77	52.3	17.2	32.9	27.7	68.7	0.0	2.0
	78	52.6	17.0	32.4	29.3	64.1	0.0	2.2
	79	50.3	16.9	33.6	21.2	75.7	0.0	1.6
	80	52.2	17.1	32.8	18.8	77.2	0.0	1.8

appendix e Clinical Chemistry Data

Clinical Chemistries/Females 45 Days

DOSE						TOTAL	TOTAL	
GROUPS	ANIMAL	GLUCOSE C	REATININE	BUN	Na	PROTEIN	BILIRUBIN	AST
(mg tetryl/kg) diet	#	mg/dl	mg/dl	mg/dl	mmol/l	g/dl	mg/dl	U/L
3000	401	94	0.6	18	140	6.2	0.3	198
	402	136	0.6	14	139	6.8	0.3	150
	403	142	0.6	19	139	6.3	0.2	104
	404	139	0.6	18	140	5.7	0.2	135
	405	140	0.6	17	140	6.4	0.3	149
1000	406	171	0.7	18	140	6.5	0.2	203
	407	130	0.7	18	142	6.6	0.2	328
	408	169	0.6	17	140	6.5	0.2	108
	409	164	0.6	16	139	6.4	0.2	175
	410	173	0.6	16	137	6.6	0.2	97
200	411	169	0.5	15	138	6.1	0.2	90
	412	162	0.6	19	139	6.2	0.1	99
	413	173	0.5	19	139	6.0	0.1	86
	414	165	0.6	17	139	6.1	0.1	88
	415	161	0.5	18	138	5.8	0.2	113
0	416	131	0.5	17	139	6.1	0.2	111
	417	164	0.5	18	137	6.0	0.1	103
	418	167	0.5	21	138	6.3	0.2	95
	419	178	0.5	14	137	5.9	0.2	75
	420	134	0.6	22	141	6.7	0.2	147

Clinical Chemistries/Females 45 Days

DOSE								
GROUPS	ANIMAL	ALT	AP	K	Ca	ALBUMIN	TRIG	PHOS
(mg tetryl/kg)								
diet	#	U/L	U/L	mmol/l	mg/di	g/dl	mg/dl	mg/dl
0000	404	45	04	4.0	10.9	4.5	27	10.4
3000	401	45	94	4.9				
	402	30	125	4.3	10.9	5.0	35	8.8
	403	33	104	4.0	10.6	4.6	31	8.8
	404	42	136	4.4	10.4	4.1	27	7.4
	405	41	121	5.1	10.7	4.7	27	11.8
1000	406	98	131	4.4	11.1	4.7	60	10.5
1000	407	99	81	4.3	11.1	4.8	65	12.0
	408	34	120	4.1	10.9	4.5	43	8.9
	409	40	141	4.2	10.8	4.6	40	10.3
	410	30	139	4.5	10.9	4.8	30	8.4
	410	ÇÜ	100	4.0	10.0	110	00	0
200	411	26	128	4.5	10.7	4.3	32	7.8
	412	39	89	4.2	10.5	4.3	32	8.1
	413	38	103	4.9	10.9	4.4	55	9.1
	414	40	153	3.9	10.5	4.1	45	8.7
	415	35	140	5.1	10.4	4.0	30	8.2
_			4.00		40.5	4.4	C.4	7.5
0	416	38	105	4.1	10.5	4.4	54	7.5
	417	37	123	4.3	10.5	4.3	41	8.8
	418	38	129	4.7	10.7	4.4	31	9.1
	419	31	126	5.0	10.6	4.3	35	8.2
	420	43	133	4.8	11.0	4.5	37	10.9

Clinical Chemistries/Males 45 Days

DOSE						TOTAL	TOTAL	
GROUPS	ANIMAL	GLUCOSE C	REATININE	BUN	Na	PROTEIN	BILIRUBIN	AST
(mg tetryl/kg)								- <u>-</u>
diet	#	mg/dl	mg/dl	mg/dl	mmol/l	g/dl	mg/dl	U/L
3000	421	169	0.6	18	139	7.4	0.2	98
	422	186	0.6	16	138	7.2	0.1	116
	423	171	0.6	19	138	7.0	0.2	95
	424	165	0.6	19	139	7.0	0.2	105
	425	185	0.6	18	138	7.0	0.2	144
1000	426	200	0.6	19	139	6.7	0.1	106
	427	168	0.6	20	141	7.0	0.1	197
	428	212	0.7	23	138	6.9	0.2	101
	429	175	0.6	20	139	7.0	0.1	121
	430	171	0.6	20	138	6.8	0.1	147
200	431	176	0.5	19	140	6.7	0.1	107
	432	168	0.6	15	139	6.4	0.1	98
	433	209	0.6	19	138	6.6	0.1	120
	434	177	0.5	16	138	6.4	0.3	113
	435	188	0.6	23	140	6.9	0.1	130
0	436	187	0.6	20	139	6.4	0.1	130
	437	229	0.6	22	136	6.2	0.1	123
	438	170	0.6	18	138	6.5	0.1	112
	439	188	0.5	19	136	6.2	0.3	153
	440	199	0.7	19	139	6.2	0.1	116

Clinical Chemistries/Males 45 Days

DOSE								
GROUPS	ANIMAL	ALT	AP	K	Ca	ALBUMIN	TRIG	PHOS
(mg tetryi/kg)								
diet	#	U/L	U/L	mmol/l	mg/dl	g/dl	mg/dl	mg/dl
3000	421	41	131	6.3	11.3	5.1	106	11.6
3000	422	40	102	5.5	11.0	5.1	62	10.0
	423	30	125	6.0	11.3	4.9	58	12.2
	424	31	111	4.9	11.1	5.1	55	10.2
	425	51	129	5.4	11.0	5.0	40	10.1
1000	426	34	126	5.6	11.1	4.5	49	10.2
	427	92	110	4.7	10.8	4.9	105	9.4
	428	39	127	4.7	11.2	4.9	102	9.9
	429	46	137	4.6	11.1	4.8	124	10.3
	430	47	119	4.5	10.9	4.8	105	9.4
200	431	50	155	4.4	10.9	4.7	72	9.4
200	432	36	131	5.0	10.8	4.3	53	10.5
	433	54	122	4.3	10.8	4.7	137	8.9
	434	44	120	5.6	10.7	4.5	45	9.5
	435	45	142	4.2	10.8	5.0	136	9.9
	400	200	404	4.5	400	4.4	70	0.0
0	436	66	134	4.5	10.6	4.4	76	9.2
	437	50	134	4.4	10.4	4.3	137	9.7
	438	37	151	4.4	10.7	4.5	107 91	9.6 10.0
	439	67	131	5.6	10.7	4.4		10.6
	440	49	129	4.8	10.8	4.3	88	10.0

Clinical Chemistries/Females 90 Days

GROUPS ANIMAL GLUCOSE CREATININE BUN Na PROTEIN BILIRUBIN AST	DOSE GROUPS	ΔΝΙΜΑΙ	GLUCOSE	PEATININE	BUN	Na	TOTAL PROTEIN	TOTAL BILIRUBIN	ACT
			GLOCOSE (SILATIMIAE	DON	INA	FHOTEIN	DILINUBIN	ASI
1000			mg/dl	mg/dl	mg/dl	mmol/l	g/dl	mg/dl	U/L
1000	3000	1	117	0.6	18	145	6.9	0.2	183
1000									
4									
5 137 0.5 20 144 6.4 0.2 102 6 126 0.5 19 142 6.5 0.3 169 7 172 0.6 24 143 7.2 0.3 172 8 120 0.6 19 144 6.9 0.2 143 9 134 0.6 22 143 6.7 0.2 170 10 119 0.6 22 144 6.0 0.2 159 1000 11 163 0.5 18 142 6.5 0.2 178 12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 24 142 6.8 0.3 197 13 149 0.6 24 142 6.8 0.1 132 14 145 0.5 18 144 6.5 0.1 144									
6 126 0.5 19 142 6.5 0.3 169 7 172 0.6 24 143 7.2 0.3 172 8 120 0.6 19 144 6.9 0.2 143 9 134 0.6 22 143 6.7 0.2 170 10 119 0.6 22 144 6.0 0.2 159 1000 11 163 0.5 18 142 6.5 0.2 178 12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 24 142 6.8 0.3 197 13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 144 15 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 138 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 133 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 165 200 21 145 0.5 19 142 6.3 0.2 165 201 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.2 165 202 17 145 0.5 19 144 6.4 0.1 155 24 155 0.5 17 143 6.2 0.2 133 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 28 132 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 31 199 0.6 20 142 6.7 0.3 174 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 149 36 159 0.5 16 142 6.2 0.1 140 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 5.9 0.1 102									
7 172 0.6 24 143 7.2 0.3 172 8 120 0.6 19 144 6.9 0.2 143 9 134 0.6 22 143 6.7 0.2 170 10 119 0.6 22 144 6.0 0.2 159 1000 11 163 0.5 18 142 6.5 0.2 178 12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 142 6.3 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.2 0.1 266 27 143 0.5 18 144 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.7 0.2 113 29 121 0.5 17 143 6.2 0.2 117 25 165 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 31 139 0.6 20 143 6.9 0.4 316 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 31 139 0.6 20 143 6.9 0.4 316 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 17 143 6.4 0.1 127 34 139 0.6 20 143 6.9 0.1 123 35 117 0.6 19 142 6.2 0.1 140 35 117 0.6 19 142 6.2 0.1 123 37 130 0.5 17 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 199 37 130 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 5.9 0.1 123									
8									
9 134 0.6 22 143 6.7 0.2 170 10 119 0.6 22 144 6.0 0.2 159 1000 11 163 0.5 18 142 6.5 0.2 178 12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 22 144 6.5 0.1 132 14 145 0.5 18 142 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 144 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 144 6.7 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.5 0.2 126 30 140 0.5 18 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212									
1000 111 163 0.5 18 142 6.5 0.2 178 12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.1 170 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 144 6.4 0.1 155 31 17 0.6 19 142 6.3 0.1 199 33 128 0.5 21 144 6.3 0.1 199 33 128 0.5 21 144 6.3 0.1 199 33 128 0.5 21 144 6.3 0.1 199 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 6.9 0.1 102 37 130 0.5 16 142 6.9 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 220 170 0.6 19 143 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
12 119 0.6 24 142 6.8 0.3 197 13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 220 170 0.6 19 143 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 <td>1000</td> <td>11</td> <td>163</td> <td>0.5</td> <td>18</td> <td>142</td> <td>6.5</td> <td>0.2</td> <td>178</td>	1000	11	163	0.5	18	142	6.5	0.2	178
13 149 0.6 22 142 6.6 0.1 132 14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.3 0.1 199 33 128 0.5 21 144 6.5 0.2 126 30 140 0.5 18 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 5.9 0.1 123 39 136 0.5 19 143 6.1 0.1 123									
14 145 0.5 18 144 6.5 0.1 144 15 164 0.6 18 142 6.5 0.1 147 16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.3 0.2 165 200 21 145 0.5 19 142 6.3 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 20 21 143 6.4 0.2 0.1 266 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
15									
16 144 0.6 24 143 6.2 0.1 245 17 116 0.5 19 144 6.7 0.2 133 18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316									
17									
18 153 0.5 21 142 6.5 0.1 118 19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
19 130 0.6 19 142 6.7 0.2 148 20 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 199 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 6.3 0.1 195 38 107 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 17 142 5.8 0.1 95 38 107 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
200 170 0.6 19 145 6.2 0.2 165 200 21 145 0.5 19 142 6.3 0.2 133 22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.9 0.4 316 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2									
22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127									
22 128 0.6 18 143 6.1 0.1 170 23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127	200	21	145	0.5	19	142	6.3	0.2	133
23 145 0.6 19 143 6.2 0.1 266 24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140									
24 155 0.5 17 143 6.2 0.2 117 25 165 0.6 21 143 6.4 0.2 133 26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141									
25									
26 114 0.6 20 143 6.9 0.4 316 27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95									
27 143 0.5 18 144 6.4 0.1 155 28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123									
28 132 0.6 23 142 6.7 0.3 174 29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		27	143	0.5	18				
29 121 0.5 17 144 6.5 0.2 126 30 140 0.5 18 142 6.0 0.1 212 0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
0 31 97 0.5 17 143 6.3 0.2 130 32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		29	121	0.5	17	144	6.5		
32 124 0.6 16 144 6.3 0.1 199 33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		30	140	0.5	18	142			
33 128 0.5 21 143 6.4 0.1 127 34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134	0	31	97	0.5	17	143	6.3	0.2	130
34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		32	124	0.6	16	144	6.3	0.1	199
34 139 0.6 20 142 6.2 0.1 140 35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		33	128	0.5	21	143	6.4	0.1	127
35 117 0.6 19 142 6.3 0.1 141 36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
36 159 0.5 16 142 5.9 0.1 102 37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
37 130 0.5 17 142 5.8 0.1 95 38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134		36	159	0.5	16				
38 107 0.5 16 142 6.2 0.1 123 39 136 0.5 19 143 6.1 0.1 134									
39 136 0.5 19 143 6.1 0.1 134									

Clinical Chemistries/Females 90 Days

DOSE GROUPS	ANIMAL	ALT	AP	К	Ca	ALBUMIN	TRIG	PHOS	CHOL
(mg tetryl/kg) diet	#	U/L	U/L	mmol/l	mg/dl	g/dl	mg/dl	mg/dl	mg/dl
					400	50		0.4	404
3000	1	71	62	4.1	10.2	5.0	25	9.1	134
	2	40	59	3.9	10.0	4.9	27	9.1	145
	3	84	51	4.6	10.3	4.8	20	8.9	128
	4	43	69	4.1	10.5	5.1	28	8.3	132
	5	40	68	4.6	10.2	4.8	24	7.8	142
	6	64	63	3.7	9.9	4.6	25	8.0	115
	7	75 40	70	6.8	11.4	5.4	31	11.2	144
	8	43	47	4.6	10.4	5.0	21	9.6	128
	9	71	65	4.5	10.5	5.0	31	9.6	129
	10	59	79	4.7	10.0	5.0	22	9.6	118
1000	11	108	60	3.8	9.9	4.6	30	8.4	112
	12	76	87	4.5	10.1	4.9	41	10.1	132
	13	61	66	4.3	10.3	4.8	27	7.9	129
	14	55	62	4.6	9.9	4.6	21	8.4	110
	15	76	69	4.4	10.0	4.7	31	7.7	126
	16	150	66	5.0	10.4	4.5	21	9.8	120
	17	49	63	4.0	10.1	4.8	30	7.8	127
	18	66	66	4.1	10.4	4.8	52	7.3	125
	19	66	64	5.0	10.5	4.8	54	9.7	136
	20	91	76	5.1	10.2	4.7	55	8.6	113
200	21	48	80	4.3	10.2	4.6	64	9.0	115
	22	46	70	4.0	10.0	4.5	51	7.8	101
	23	193	71	5.0	10.5	4.4	21	11.0	113
	24	60	65	4.8	10.0	4.6	35	7.6	119
	25	67	79	4.8	10.3	4.5	58	8.7	95
	26	92	54	5.2	10.4	5.1	58	9.0	117
	27	87	67	4.4	9.9	4.6	25	8.8	113
	28	82	86	4.1	10.6	5.0	57	8.5	119
	29	47	60	4.7	10.1	4.8	42	9.0	125
	30	132	108	3.6	10.3	4.6	35	6.9	112
0	31	38	59	4.2	10.1	4.3	32	9.0	113
-	32	105	74	4.1	9.8	4.4	29	7.7	104
	33	57	85	3.9	10.4	4.6	71	7.8	105
	34	49	90	4.3	10.1	4.5	32	9.3	95
	35	57	94	4.1	10.2	4.3	39	9.4	100
	36	49	77	3.7	9.6	4.3	27	6.4	96
	37	39	65	4.0	9.9	4.2	38	8.0	93
	38	42	64	4.4	10.0	4.4	33	8.7	108
	39	61	78	3.6	10.3	4.6	51	7.6	102
	40	55	79	4.0	10.0	4.6	54	9.2	111

Clinical Chemistries/Males 90 Days

DOSE GROUPS	ANIMAL	GLUCOSE	CREATININE	BUN	Na	TOTAL PROTEIN	TOTAL BILIRUBIN	AST
(mg tetryl/kg)				ma m/all	ma ma m 1/1	o /all		11/1
diet	#	mg/dl	mg/dl	mg/dl	mmol/l	g/dl	mg/dl 	U/L
3000	41	178	0.6	20	142	7.3	0.1	158
	42	165	0.6	19	143	7.3	0.1	168
	43	207	0.6	22	143	7.8	0.1	137
	44	176	0.6	20	142	6.8	0.1	168
	45	161	0.5	22	142	7.6	0.1	188
	46	178	0.7	22	143	7.7	0.1	168
	47	185	0.6	21	142	7.5	0.1	233
	48	198	0.6	22	142	7.1	0.1	144
	49	152	0.6	20	143	7.3	0.1	221
	50	201	0.6	22	141	7.5	0.1	170
1000	51	211	0.6	24	142	7.2	0.1	138
	52	187	0.6	22	142	7.0	0.0	167
	53	167	0.7	22	143	7.1	0.1	152
	54	181	0.6	23	144	7.0	0.1	161
	55	194	0.6	21	143	7.4	0.1	155
	56	192	0.6	21	143	7.2	0.1	220
	57	208	0.6	23	142	7.7	0.1	173
	58	161	0.6	23	144	7.0	0.1	152
	59	185	0.6	21	144	7.2	0.1	168
	60	189	0.6	22	143	7.4	0.1	160
200	61	198	0.6	22	145	6.8	0.1	148
	62	206	0.6	21	144	7.1	0.1	106
	63	195	0.6	20	144	6.8	0.1	182
	64	206	0.6	20	143	7.1	0.1	158
	65	190	0.6	19	145	6.8	0.1	183
	66	210	0.6	24	143	6.9	0.1	132
	67	153	0.7	19	142	6.9	0.1	134
	68	182	0.7	20	143	6.7	0.1	189
	69	171	0.6	17	144	6.8	0.1	110
	70	164	0.6	24	142	6.9	0.1	161
0	71	168	0.6	20	143	6.8	0.1	129
	72	183	0.6	20	142	7.2	0.0	159
	73	222	0.6	21	144	6.9	0.1	121
	74	210	0.7	21	142	6.9	0.0	130
	75	185	0.7	20	143	6.9	0.1	198
	76	191	0.6	21	145	6.9	0.1	239
	77	175	0.6	18	143	6.6	0.0	213
	78	170	0.6	20	143	6.4	0.1	121
	79	168	0.6	20	143	6.7	0.0	131
	80	184	0.6	21	142	6.8	0.0	129

Clinical Chemistries/Males 90 Days

DOSE GROUPS	ANIMAL	ALT	AP	K	Ca	ALBUMIN	TRIG	PHOS	CHOL
(mg tetryl/kg)								
diet	#	U/L	U/L	mmol/l	mg/dl	g/dl	mg/dl	mg/dl	mg/dl
3000	41	52	75	5.0	10.5	5.1	40	9.5	100
	42	62	68	4.4	10.6	5.1	67	7.5	99
	43	58	87	5.1	10.7	5.3	98	8.8	112
	44	73	80	4.9	10.6	5.0	64	9.0	94
	45	58	84	5.1	10.9	5.3	130	9.7	109
	46	62	86	5.3	11.1	5.2	109	10.6	97
	47	86	78	5.0	10.7	5.3	80	8.4	110
	48	60	80	5.0	10.4	4.6	136	8.0	118
	49	75	81	5.2	10.6	5.2	110	9.4	107
	50	79	90	5.0	10.9	5.1	59	8.8	108
1000	51	71	97	4.5	10.7	5.0	130	7.9	78
	52	88	92	4.3	10.3	4.8	113	8.9	75
	53	73	79	4.5	10.6	5.0	108	8.5	75 70
	54	65	82	4.5	10.9	5.0	106	8.1	73
	55	85	76	4.5	10.7	5.0	98	8.5	80
	56	119	95	4.5	10.5	5.0	123	7.3	84 87
	57 50	89	103 81	4.8 4.3	10.9 10.7	5.2 4.9	180 122	8.1 9.8	81
	58 59	69 80	89	4.3 5.6	10.7	5.0	71	10.6	75
	60	65	89	4.7	10.6	5.1	143	8.2	83
200	61	86	92	4.4	10.4	4.8	148	8.5	65
200	62	67	101	5.4	11.0	4.9	92	8.4	66
	63	93	86	4.5	10.7	4.9	137	8.4	72
	64	92	100	4.5	10.5	5.0	112	8.6	66
	65	90	86	5.3	10.7	4.9	98	10.3	63
	66	72	93	5.2	10.5	4.9	146	9.3	73
	67	68	95	4.6	10.6	4.6	73	8.8	59
	68	124	87	4.8	10.4	4.7	70	9.7	63
	69	65	92	4.9	10.6	4.8	77	8.3	73
	70	81	105	4.4	10.6	4.7	81	9.2	64
0	71	77	102	4.5	10.6	4.8	114	9.4	57
	72	80	113	5.0	10.7	4.9	141	9.0	62
	73	59	107	4.3	10.5	4.9	150	8.9	75
	74	78	112	4.4	10.4	4.7	85	8.8	49
	75	89	97	4.6	10.4	4.7	109	9.8	61
	76	158	110	5.0	10.3	4.8	121	9.9	59
	77	105	106	5.0	10.5	4.8	89	9.0	59
	78	67	103	5.0	10.5	4.4	84	8.0	51 57
	79	73	91	4.3	10.4	4.7	62	9.0	57 56
	80	65	108	4.4	10.4	4.5	89	8.7	56

APPENDIX F CLINICAL OBSERVATIONS

CLINICAL OBSERVATIONS

DATE	DAILY OBSERVATIONS
01/12/94	Initial food, water, and animals weighed for the females. Feeders changed. All animals look normal.
01/13/94	Initial food, water, and animals weighed for the males. Feeders changed. All animals look normal.
01/18/94	Food, water, and animals weighed for both females and males. Feeders changed. All animals look normal.
01/19/94	All animals look normal.
01/20/94	All animals look normal.
01/21/94	Food and water weighed for the both females and males. All animals look normal.
01/24/94	All animals look normal.
01/25/94	Food, water, and animals weighed for the both females and males. All animals look normal.
01/26/94	All animals look normal.
01/27/94	All animals look normal.
01/28/94	Food and water weighed for the both females and males. All animals look normal.
01/31/94	All animals look normal.
02/01/94	Food, water, and animals weighed for the both females and males. All animals look normal.
02/02/94	All animals look normal.
02/03/94	All animals look normal.
02/04/94	Food and water weighed for the both females and males. All animals look normal.
02/07/94	All animals look normal.
02/08/94	Food, water, and animals weighed for the both females and males. All animals look normal.
02/09/94	All animals look normal.
02/10/94	All animals look normal.
02/11/94	Food and water weighed for the both females and males. All animals look normal.

CLINICAL OBSERVATIONS

DATE	DAILY OBSERVATIONS
02/14/94	All animals look normal.
02/15/94	Food, water, and animals weighed for the both females and males. All animals look normal.
02/16/94	All animals look normal.
02/17/94	All animals look normal.
02/18/94	Food and water weighed for the both females and males. All animals look normal.
02/22/94	Food, water, and animals weighed for the both females and males. All animals look normal.
02/23/94	All animals look normal.
02/24/94	All animals look normal.
02/25/94	Food and water weighed for the both females and males. All animals look normal.
02/28/94	All animals look normal.
03/01/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
03/02/94	All animals look normal.
03/03/94	All animals look normal.
03/04/94	Food and water weighed for the both females and males. All animals look normal.
03/07/94	All animals look normal.
03/08/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
03/10/94	All animals look normal.
03/11/94	Food and water weighed for the both females and males. All animals look normal.
03/14/94	All animals look normal.
03/15/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
03/17/94	All animals look normal.
03/18/94	Food and water weighed for the both females and males. All animals look normal.

CLINICAL OBSERVATIONS

DATE	DAILY OBSERVATIONS
03/21/94	All animals look normal.
03/22/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
03/23/94	All animals look normal.
03/24/94	All animals look normal.
03/25/94	Food and water weighed for the both females and males. All animals look normal.
03/28/94	All animals look normal.
03/29/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
03/30/94	All animals look normal.
03/31/94	All animals look normal.
04/01/94	Food and water weighed for the both females and males. All animals look normal.
04/04/94	All animals look normal.
04/05/94	Food, water, and animals weighed for the both females and males. Feeders changed. All animals look normal.
04/06/94	All animals look normal.
04/07/94	All animals look normal.
04/08/94	Food and water weighed for the both females and males. All animals look normal.
04/11/94	All animals look normal.
04/12/94	Final food and water weights taken. Animals weighed. #1-#40 females taken off food for sacrifice 4-13-94. All animals look normal.
04/13/94	Final food and water weights taken. Animals weighed. #41-#80 males taken off food for sacrifice 4-14-94. Animals 1-40 were sacrificed. All other animals look normal.
04/14/94	Animals 41-80 were sacrificed.

APPENDIX G

GROSS AND HISTOPATHOLOGY DATA

REPORTS CODE TABLE

- N Tissues within normal histological limits
- A Autolysis precluding adequate evaluation
- U Tissues unavailable/unsuitable for evaluation
- * Tissues not examined/not required by protocol
- () Focal
- <> Multifocal
- Diffuse
- 1 Minimal
- 2 Mild
- 3 Moderate
- 4 Marked

Abbreviation List

NOS

Not Otherwise Specified

(End of Report)

Page 1

Pathology Associates, Inc. Study Number 94-001 90 Day Tetryl Exposure in Fischer 344 Rats

......

	PROJECT S	UMI	MARY						
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL								STUDY	NUMBER: 94-00 SEX: FEMAL
INCIDENCE OF NEOPLAS	TIC and NON-NEO	PLAS	TIC MIC	ROSCOF	IC FIN	INGS			
GROUP: NUMBER OF ANIMALS:					2 10		3 10		
BRAIN	# EX	#	%				×		
NERVE	# EX	10		0		0		10	
SPINAL CORD	# EX	10		0		0		10	
SALIVARY GLAND	# EX	10		0		0		10	
PANCREAS	# EX	10		0		0		10	
MANDIBULAR LYMPH NODE	# EX	10		0		0		10	
ZYMBAL'S GLAND	# EX	10		0		0		10	
PITUITARY	# EX	10		0		0		10	
ADRENALS	# EX	10		0		0		10	
THYROID	# EX	10		0		0		10	
PARATHYROID	# EX	9		0		0		8	
TRACHEA	# EX	10		0		0		10	
ESOPHAGUS	# EX	10		0		0		10	
THYMUS Hemorrhage	# EX		10.0	0	0.0	0	0.0	10 3	30.0
HEART Inflammation, Chronic	# EX		10.0	0	0.0	0	0.0	10 1	10.0

Incidence Calculated by No. of Tissues Scored

COLON

EX 10 0 0 10

PR	OJECT S	UM								
STUDY ID : 90 Day Tetryl FATE: ALL					•				NUMBER:	
DAYS ON TEST: ALL INCIDENCE OF NEOPLASTIC	and NON-NEC	PLAS	STIC MIC	ROSCO	OPIC FII	ND I NG	5		SEX:	FEMALE
GROUP:			1		2		3	•••••	4	
NUMBER OF ANIMALS:			10		10		10		10	
		#	%		%		x	#	%	
JEJUNUM	# EX	10		0		0		10		
AORTA	# EX	10		0		0		10		
LIVER	# EX	10		0		0		10		
Inflammation, Subacute		1	10.0	0	0.0	0	0.0	0	0.0	
Inflammation, Chronic		0	0.0	0	0.0	0	0.0	1	10.0	
SPLEEN	# EX	10		10		10		10		
Hyperplasia, Erythroid Cell		1	10.0	0	0.0	0	0.0	0	0.0	
Pigmentation, NOS		7	70.0		30.0	0	0.0	4	40.0	
Fibrosis		1			10.0	2			0.0	
Depletion, Lymphoid		0	0.0	1	10.0	0	0.0	Đ	0.0	
TONGUE	# EX	10		1		0		10		
SKELETAL MUSCLE	# EX	10		1		0		10		
LUNGS	# EX	10		1		0		10		
Inflammation, Chronic		2	20.0	0	0.0	0	0.0	1	10.0	
KIDNEYS	# EX	10		10		10		10		
Mineralization, NOS		9			90.0		100.0		90.0	
Pigmentation, Tubular Epithelium			100.0		100.0	0			0.0	
Regeneration, Tubular Lymphocytic Infiltrates		0	0.0		10.0	0		0	0.0	
Lymphocytic infiltrates		U	0.0		0.0	U	0.0	1	10.0	
URINARY BLADDER	# EX	10		0		0		10		
STOMACH	# EX	10		0		0		10		
DUODENUM	# EX	10		0		0		10		
ILEUM	# EX	10	•	0		0		10		

Incidence Calculated by No. of Tissues Scored

PROJECT SUMMARY

STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001

FATE: ALL SEX: FEMALE DAYS ON TEST: ALL

INCIDENCE OF NEOPLASTIC and NON-NEOPLASTIC MICROSCOPIC FINDINGS											
 GROUP:				1		2		3		4	
NUMBER OF ANIMALS:				10		10		10		10	
 •••••			#	%	#	%	#	%	#	%	
CECUM	#	ΕX	10		0		0		10		
RECTUM	#	EX	10		0		0		10		
MESENTERIC LYMPH NODE	#	EX	10		0		0		10		
OVARIES	#	EX	10		0		0		10		
Cyst, NOS			0	0.0	O	0.0	0	0.0	1	10.0	
UTERUS	#	EX	10		0		0		10		
Dilatation, Bilateral			3	30.0	0	0.0	0	0.0	4	40.0	
SKIN	#	EX	10		0		0		10		
CLITORAL GLANDS	#	EX	10		0		0		10		
Lymphocytic Infiltrates			1	10.0	0	0.0	0	0.0	5	50.0	
Inflammation, Suppurative			0	0.0	0	0.0	0	0.0	1	10.0	
EYES	#	EX	10		0		0		10		
Microgranuloma, Cornea			1	10.0	0	0.0	0	0.0	5	50.0	
HARDERIAN GLAND	#	EX	10		0		0		10		
Lymphocytic Infiltrates			3	30.0	0	0.0	0	0.0	1	10.0	
FEMUR/STERNUM	#	EX	10		0		0		10		
NASAL	#	EX	10		0		0		10		
Inflammation, Subacute			0	0.0	0	0.0	0	0.0	1	10.0	
MAMMARY GLAND	#	EX	10		0		0		10		

Incidence Calculated by No. of Tissues Scored

PROJECT SUMMARY

STUDY ID: 90 Day Tetryl STUDY NUMBER: 94-001

FATE: ALL

DAYS ON TEST: ALL

INCIDENCE OF NEOPLASTIC and NON-NEOPLASTIC MICROSCOPIC FINDINGS

SEX: MALE

GROUP: NUMBER OF ANIMALS:			5 10		5 10		7 10		8 10
***************************************	*******	#	*	#	 %	#	%	#	x
BRAIN	# EX	10		0		0		10	-
NERVE	# EX	10		0		0		10	
SPINAL CORD	# EX	10		0		0		10	
SALIVARY GLAND	# EX	10		0		0		10	
PANCREAS	# EX	10		0		0		10	
Degeneration, Acinar		3	30.0	0	0.0	0	0.0	0	0.0
MANDIBULAR LYMPH NODE	# EX	10		0		0		10	
ZYMBAL'S GLAND	# EX	9		0		0		10	
PITUITARY	# EX	10		0		0		10	
Cyst, NOS, Pars Distalis		0	0.0	0	0.0	0	0.0		10.0
ADRENALS	# EX	10		0		0		10	
THYROID	# EX	10		0		0		10	
PARATHYROID	# EX	8		0		0		7	
TRACHEA	# EX	10		0		0		10	
ESOPHAGUS	# EX	10		0		0		10	
THYMUS	# EX	10		2		1		10	

Incidence Calculated by No. of Tissues Scored

Degeneration, Myocardial

Inflammation, Chronic/Active, Arterial

Inflammation, Chronic

Hemorrhage

HEART

EX 10

3 30.0

0.0

1 10.0

0.0

2 100.0

0.0

0.0

0.0

1 100.0

0.0

0.0

0.0

4 40.0

1 10.0

2 20.0

1 10.0

PROJECT SUMMARY

STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001

FATE: ALL

DAYS ON TEST: ALL SEX: MALE

	INCIDENCE OF NEOPLASTIC					
GROUP: NUMBER OF ANIMA		5 10	_	7 10	_	

NUMBER OF ANIMALS:				10		10		10		10	
 	•	• • • •	#	%	#	%	#	%	#	%	
COLON	#	EX	10		0		0		10		
JEJUNUM	#	EX	10		0		0		10		
AORTA	#	EX	10		0		0		10		
LIVER	#	EX	10		0		0		10		
SPLEEN	#	EX	10		10		10		10		
Hyperplasia, Erythroid Cell			10	100.0	2	20.0	1	10.0	0	0.0	
Pigmentation, NOS			4	40.0	0	0.0	0	0.0	0	0.0	
Fibrosis			1	10.0	0	0.0	1	10.0	0	0.0	
TONGUE	#	EX	10		0		0		10		
SKELETAL MUSCLE	#	EX	10		0		0		10		
LUNGS	#	EX	10		0		0		10		
Inflammation, Chronic			2	20.0	0	0.0	0	0.0	0	0.0	
KIDNEYS	#	EX	10		10		10		10		
Mineralization, NOS			10	100.0	10	100.0	10	100.0	10	100.0	
Pigmentation, Tubular Epithelium			10	100.0	1	10.0	0	0.0	0	0.0	
Regeneration, Tubular			10	100.0		100.0	10	100.0	6	60.0	
Cytoplasmic Droplets			10	100.0	10	100.0	0	0.0	0	0.0	
Degeneration, Tubular			10	100.0	10	100.0	10	100.0	10	100.0	
Hyaline Casts			9	90.0	0	0.0	0	0.0	0	0.0	
URINARY BLADDER	#	EX	10		0		0		10		
Urolith, NOS			3	30.0	0	0.0	0		1	10.0	
Hemorrhage			3	30.0	0	0.0	0	0.0	0	0.0	
PROSTATE	#	EX	10		0		0		10		

Incidence Calculated by No. of Tissues Scored

	JECT S								
STUDY ID : 90 Day Tetryl FATE: ALL									NUMBER: 94-00
DAYS ON TEST: ALL INCIDENCE OF NEOPLASTIC a	nd NON-NEC	PLAS	STIC MIC	ROSCO	PIC FIN	DINGS	1		SEX: MAL
GROUP:	* * * * * * * * * * *		5		6		7		8
NUMBER OF ANIMALS:			10				10		10
			*		*				*
STOMACH	# EX	10		0		0		10	
DUODENUM	# EX	10		0		0		10	
ILEUM	# EX	10		0		0		10	
CECUM	# EX	10		0		0		10	
RECTUM	# EX	10		0		0		10	
MESENTERIC LYMPH NODE	# EX	10		0		0		10	
TESTES	# EX	10		0		0		10	
EPIDIDYMIDES	# EX	10		0		0		10	
SEMINAL VESICLE	# EX	10		0		0		10	
SKIN	# EX	10		0		0		10	
PREPUTIAL GLANDS	# EX	10		0		0		10	
Inflammation, Chronic/Active		1	10.0	0	0.0	0	0.0	3	30.0
Inflammation, Suppurative		2	20.0	0	0.0	0	0.0		0.0
Lymphocytic Infiltrates		4	40.0	0	0.0	0	0.0		30.0
EYES	# EX	10		0		0		10	
Microgranuloma, Cornea		3	30.0	0	0.0	0	0.0	4	40.0
HARDERIAN GLAND	# EX	10		0		0		10	
FEMUR/STERNUM	# EX			0		0		10	
Hyperplasia, Erythroid Cell		3	30.0	0	0.0	0	0.0	0	0.0
NASAL	# EX	10		0		0		10	

Incidence Calculated by No. of Tissues Scored

PROS	JECT SUMMAR	Y			
STUDY ID : 90 Day Tetryl				STUDY NUM	BER: 94-001
FATE: ALL					
DAYS ON TEST: ALL					SEX: MALE
INCIDENCE OF NEOPLASTIC an	d NON-NEOPLASTIC	MICROSCOPIC	FINDINGS		
GROUP:	5	6	7	8	
NUMBER OF ANIMALS:	10	10	10	10	
	# %	# %	# %	# %	

EX 10

0 0

10

Incidence Calculated by No. of Tissues Scored

MAMMARY GLAND

SEVERITY SUMMARY									
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL			,	STUDY NUMBER: 94-001					
GROUP: NUMBER OF ANIMALS:	1 10	2 10	3 10	4 10					
BRAIN	# SE	/ # SEV 0							
NERVE	# EX 10	0	0	10					
SPINAL CORD	# EX 10	0	0	10					
SALIVARY GLAND	# EX 10	0	0	10					
PANCREAS	# EX 10	0	0	10					
MANDIBULAR LYMPH NODE	# EX 10	0	0	10					
ZYMBAL'S GLAND	# EX 10	0	0	10					
PITUITARY	# EX 10	0	0	10					
ADRENALS	# EX 10	0	0	10					
THYROID	# EX 10	0	0	10					
PARATHYROID	# EX 9	0	0	8					
TRACHEA	# EX 10	0	0	10					
ESOPHAGUS	# EX 10	0	0	10					
THYMUS Hemorrhage	# EX 10 1 0.10	0 0.00	0 0 0.00	10 3 0.30					
HEART Inflammation, Chronic	# EX 10 1 0.10	0 0.00	0 0.00	10 1 0.10					
COLON	# EX 10	0	0	10					
JEJUNUM	# EX 10	0	0	10					

SEVERITY SUMMARY

SEVE	KITY S	UMMARY			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL					STUDY NUMBER: 94-001 SEX: FEMALE
GROUP:		1	2	3	4
NUMBER OF ANIMALS:		10	10	10	10
		# SEV	# SEV	# SEV	# SEV
AORTA	# EX		0	0	10
LIVER	# EX	10	0	0	10
Inflammation, Subacute		1 0.10	0 0.00	0 0.00	0 0.00
Inflammation, Chronic		0 0.00	0 0.00	0 0.00	1 0.10
SPLEEN	# EX	10	10	10	10
Hyperplasia, Erythroid Cell		1 0.10	0.00	0 0.00	0 0.00
Pigmentation, NOS		7 1.00	3 0.30	0 0.00	4 0.40
Fibrosis		1 0.10	1 0.20	2 0.30	0 0.00
Depletion, Lymphoid		0 0.00	1 0.20	0 0.00	0 0.00
TONGUE	# EX	10	1	0	10
SKELETAL MUSCLE	# EX	10	1	0	10
LUNGS	# EX	10	1	0	10
Inflammation, Chronic		2 0.20	0 0.00	0 0.00	1 0.10
KIDNEYS	# EX	10	10	10	10
Mineralization, NOS		9 1.00	9 0.90	10 1.20	9 1.20
Pigmentation, Tubular Epithelium		10 2.40	10 1.10	0 0.00	0 0.00
Regeneration, Tubular		0 0.00	1 0.10	0 0.00	0 0.00
Lymphocytic Infiltrates		0 0.00	0 0.00	0 0.00	1 0.10
URINARY BLADDER	# EX	10	0	0	10
STOMACH	# EX	10	0	0	10
DUODENUM	# EX	10	ō	0	10
ILEUM	# EX	10	0	0	10
CECUM	# EX	10	0	0	10

SE	VERITY S	UMMARY			
TUDY ID : 90 Day Tetryl ATE: ALL					STUDY NUMBER: 94-00
AYS ON TEST: ALL					SEX: FEMAL
GROUP:		1	2	3	4
NUMBER OF ANIMALS:		10	10	10	10
		# SEV	# SEV	# SEV	# SEV
RECTUM	# EX	10	0	0	10
MESENTERIC LYMPH NODE	# EX	10	0	0	10
OVARIES	# EX	10	0	0	10
UTERUS	# EX	10	0	0	10
Dilatation, Bilateral		3 0.90	0 0.00	0 0.00	4 0.90
SKIN	# EX	10	0	0	10
CLITORAL GLANDS	# EX	10	0	0	10
Lymphocytic Infiltrates		1 0.20	0 0.00	0 0.00	5 0.90
Inflammation, Suppurative		0 0.00	0 0.00	0 0.00	1 0.20
EYES	# EX	10	0	0	10
Microgranuloma, Cornea		1 0.10	0 0.00	0 0.00	5 0.70
HARDERIAN GLAND	# EX	10	0	0	10
Lymphocytic Infiltrates		3 0.40	0 0.00	0 0.00	1 0.10
FEMUR/STERNUM	# EX	10	0	0	10
NASAL	# EX	10	0	0	10
Inflammation, Subacute		0 0.00	0 0.00	0 0.00	1 0.10
MAMMARY GLAND	# EX	10	0	0	10 .

SEVERITY SUMMARY

					
OUDY ID : 90 Day Tetryl TE: ALL TYS ON TEST: ALL		• • • • • • • • • • • • • • • • • • • •			STUDY NUMBER: 94-0 SEX: MA
GROUP: NUMBER OF ANIMALS:		5 10	6 10	7 10	8 10
BRAIN	# EX	# SEV		# SEV 0	
NERVE	# EX	10	0	0	10
SPINAL CORD	# EX	10	0	0	10
SALIVARY GLAND	# EX	10	0	0	10
PANCREAS Degeneration, Acinar	# EX	10 3 0.30	0 0 0.00	0 0 0.00	10 0 0.00
MANDIBULAR LYMPH NODE	# EX	10	0	0	10
ZYMBAL'S GLAND	# EX	9	0	0	10
PITUITARY	# EX	10	0	0	10
ADRENALS	# EX	10	0	0	10
THYROID	# EX	10	0	0	10
PARATHYROID	# EX	8	0	0	7
TRACHEA	# EX	10	0	0	10
ESOPHAGUS	# EX	10	0	0	10
THYMUS Hemorrhage	# EX	10 3 0.40	2 2 2.00	1 1 1.00	10 4 0.60
HEART Degeneration, Myocardial	# EX	10 0 0.00	0 0 0.00	0 0 0.00	10 1 0.20
Inflammation, Chronic Inflammation, Chronic/Active, Arterial		1 0.20 0 0.00	0 0.00 0 0.00	0 0.00 0 0.00	2 0.20 1 0.10

SEVERITY S	UMMARY
------------	--------

STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL					STUDY NUMBER: 94-001
DATE ON TEST: ALL				******	SEX: MALE
GROUP:		5	6	7	8
NUMBER OF ANIMALS:		10	10	10	10
		# SEV	# SEV	# SEV	# SEV
COLON	# EX	10	0	0	10
JEJUNUM	# EX	10	o	0	10
AORTA	# EX	10	0	o	10
LIVER	# EX	10	0	0	10
SPLEEN	# EX	10	10	10	10
Hyperplasia, Erythroid Cell		10 1.80	2 0.20	1 0.10	0 0.00
Pigmentation, NOS		4 0.40	0 0.00	0 0.00	0 0.00
Fibrosis		1 0.10	0 0.00	1 0.10	0 0.00
TONGUE	# EX	10	0	0	10
SKELETAL MUSCLE	# EX	10	0	0	10
LUNGS	# EX	10	0	0	10
Inflammation, Chronic		2 0.20	0 0.00	0 0.00	0 0.00
KIDNEYS	# EX	10	10	10	10
Mineralization, NOS		10 1.90	10 1.50	10 1.20	10 1.40
Pigmentation, Tubular Epithelium		10 1.90	1 0.10	0 0.00	0 0.00
Regeneration, Tubular		10 2.00	10 1.30	10 1.30	6 0.60
Cytoplasmic Droplets		10 2.90	10 2.00	0 0.00	0 0.00
Degeneration, Tubular		10 2.30	10 1.60	10 1.60	10 1.50
Hyaline Casts		9 1.00	0 0.00	0 0.00	0 0.00
URINARY BLADDER	# EX	10	0	0	10
Hemorrhage		3 0.30	0 0.00	0 0.00	0 0.00
PROSTATE	# EX	10	0	0	10
STOMACH	# EX	10	0	0	10

CENTRUTTY CIMMARY

SEVERITY SUMMARY									
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL					TUDY NUMBER: 94-001 SEX: MALE				
GROUP: NUMBER OF ANIMALS:		5 10	- 10	7 10	8 10				
DUODENUM	# EX	# SEV	# SEV 0	# SEV 0	# SEV 10				
ILEUM	# EX	10	0	0	10				
CECUM	# EX	10	0	0	10				
RECTUM	# EX	10	0	0	10				
MESENTERIC LYMPH NODE	# EX	10	0	0	10				
TESTES	# EX	10	0	0	10				
EPIDIDYMIDES	# EX	10	0	0	10				
SEMINAL VESICLE	# EX	10	0	0	10				
SKIN	# EX	10	0	0	10				
PREPUTIAL GLANDS Inflammation, Chronic/Active Inflammation, Suppurative Lymphocytic Infiltrates	# EX	10 1 0.20 2 0.20 4 0.40	0 0 0.00 0 0.00 0 0.00	0 0 0.00 0 0.00 0 0.00	10 3 0.60 0 0.00 3 0.30				
EYES Microgranuloma, Cornea	# EX	10 3 0.30	0 0 0.00	0 0 0.00	10 4 0.50				
HARDERIAN GLAND	# EX	10	0	0	10				
FEMUR/STERNUM Hyperplasia, Erythroid Cell	# EX	10 3 0.30	0 0 0.00	0 0 0.00	0 0.00				
NASAL	# EX	10	0	0	10				
MAMMARY GLAND	# EX	10	0	0	10				

TARIII.ATED	ANTMAT.	מדמת	

		TABULATED ANIMAL DATA												
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL				• • • •							STUDY NUMBER: 94-001 GROUP: 1 SEX: FEMALE			
ANIMAL ID:	01	02	03	04	05	06	07	08	09	10				
BRAIN	N	N	N	N	N	H	N	N	N	N				
NERVE	N	N	N	N	N	H	N	N	N	N				
SPINAL CORD	N	N	N	N	N	N	N	N	N	N				
SALIVARY GLAND	N	N	N	N	N	N	N	N	N	N				
PANCREAS	N	N	N	N	N	N	N	N	N	N	:			
MANDIBULAR LYMPH NODE	N	N	N	N	N	N	N	N	N	N				
ZYMBAL'S GLAND	N	N	N	N	N	N	N	N	N	N				
PITUITARY	N	N	N	N	N	N	N	N	N	N				
ADRENALS	N	N	N	N	N	N	N	H	N	N				
THYROID	N	N	N	N	N	N	N	N	N	N				
PARATHYROID	N	N	N	N	N	N	N	N	u	N				
TRACHEA	N	N	N	N	N	H	N	N	N	N				
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N				
THYMUS Hemorrhage	N -	N -	N -	N -	N -	N -	N -	N -	1	N -				
HEART Inflammation, Chronic	1	Ri -	N -	N -	N -	N -	N -	N ~	N -	N -				
COLON	N	N	N	N	N	N	N	N	H	N				

דדום בידי	. מידוים ב	ANTMAT.	בידיברו

			LAT.								
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 1 SEX: FEMALE
ANIMAL ID:	01	02	03	04	05	06	07	08	09	10	
JEJUNUM	N	N	N	N	Ñ	N	N	N	N	N	
AORTA	N	М	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N	N	N	N		N	
Inflammation, Subacute	•	•	•	-	•	-	-	-	1	-	
SPLEEN			N							N	
Hyperplasia, Erythroid Cell	-	-	-	-	-	-	-	1	-	-	
Pigmentation, NOS	2	3	-	1	1	1	2	-	2	-	
Fibrosis	-	-	•	1	-	-	-	-	•	•	
TONGUE	N	N	N	N	N	M	N	N	N	H	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
LUNGS	N	N	N		N	N		N	N	N	
Inflammation, Chronic	-	-	-	1	-	-	1	*	-		
KIDNEYS											
Mineralization, NOS	1	8	1	-	1	1	1	1	2	1	
Pigmentation, Tubular Epithelium	2	2	3	3	2	2	3	2	3	2	
URINARY BLADDER	N	N	N	N	N	H	N	N	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	•
DUODENUM	N	N	N	N	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	N	N	N	
CECUM	N	N	N	N	N	N	N	N	N	N	
RECTUM	N	N	N	N	N	N	N	N	N	Я	
MESENTERIC LYMPH NODE	N	N	N	R	N	И	N	N	N	N	

See Reports Code Table for Symbol Definitions

.....

	T	ABU:	LAT	ED .	ANI	MAL	DA'	ΤA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL							••••	••••	••••		STUDY NUMBER: 94-001 GROUP: 1 SEX: FEMALE
ANIMAL ID:	01	02	03	04	05	06	07	08	09	10	
OVARIES	N	N	N	N	N	N	N	N	N	N	
UTERUS Dilatation, Bilateral	N -	2	N -	3	4	N -	N -	N -	N -	N -	
SKIN	N	N	N	N	Ň	N	N	N	N	N	
CLITORAL GLANDS Lymphocytic Infiltrates	N -	N -	N -	N -	2	N -	N -	N -	N -	N -	
EYES Microgranuloma, Cornea	N -	1	N -								
HARDERIAN GLAND Lymphocytic Infiltrates	N -	N -	2	1	N -	N -	N -	N -	N -	1	
FEMUR/STERNUM	N	N	N	N	N	N	N	N	N	N	
NASAL	N	N	N	N	N	N	N	N	N	N	
MAMMARY GLAND	N	N	N	N	N	N	N	N	N	N	

	TA	BUL	ATE	D A	NIM	AL	DAT	A				
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 2 SEX: FEMALE	2
ANIMAL ID:	11	12	13	14	15	16	17	18	19	20		
BRAIN	*	*	*	*	•	*	*	*	*	*		
NERVE	*	*	*	•	*	*	,	*	*	*		
SPINAL CORD	*	*	*	*	*	*	*	*	*	*		
SALIVARY GLAND	*	*	*	*	•	*	*	*	*	*		
PANCREAS	*	*	*	*	*	*	•	*	*	•		
MANDIBULAR LYMPH NODE	*	*	*	*	*	•	•	*	*	*		
ZYMBAL'S GLAND	*	*	*	*	•	*	*	*	*	*		
PITUITARY	*	*	•	*	*	*	*	*	•	•		
ADRENALS	*	*	*	*	*	*	•	*	*	•		
THYROID	*	*	*	*	*	*	*	*	٠			
PARATHYROID	*	*	•	*	•	*	*	*	*	•		
TRACHEA	*	*	•	*	*	*	*	*	•	*		
ESOPHAGUS	*	*	*	•	w	*	*	*	*	*		
THYMUS	*	*	•	•	*		*	*	*	•		
HEART	*	*	•	*	*	•	•	*	•	•		
COLON	*	*	•	*	*	٠	*	*	*	*		
JEJUNUM	*	*	*	*	*	*	*	*	•	•		
AORTA	*	*	•	•	٠	*	*	•	*	•		

See Reports Code Table for Symbol Definitions

TABULATED	ANIMAL	DATA	
-----------	--------	------	--

		'ABU	LAT	ΈD	ANI	MAL								
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL				•							STUDY NUMBER: 94-001 GROUP: 2 SEX: FEMALE			
ANIMAL ID:	11	12	13	14	15	16	17	18	19	20				
LIVER	*	*	*	*	*	*	*	*	*	*				
SPLEEN	N	N	N					N	N	N				
Pigmentation, NOS	-	-	-	-	1	1	1	-	-	-				
Fibrosis	•	-	-	2	-	-	-	-	-	•				
Depletion, Lymphoid	•	-	•	2	-	-	•	-	-	•				
TONGUE	*	*	*	*	М	*	*	*	*	*				
SKELETAL MUSCLE	*	*	*	*	N	*	*	*	*	*				
LUNGS	*	*	*	*	N	*	*	*	*	*				
KIDNEYS														
Mineralization, NOS	-	4												
Pigmentation, Tubular Epithelium		1	1	1	1	1	1	1	1	1				
Regeneration, Tubular	2 -	1	1	1	1	1	1	1	1	1				
URINARY BLADDER	*	*	*	*	*	*	*	*	*	*				
STOMACH	*	*	*	*	*	*	*	*	*	*				
DUODENUM	*	*	*	*	*	*	*	*	*	*				
ILEUM	*	*	*	*	*	*	*	*	*	*				
CECUM	*	*	*	*	*	*	*	*	*	*				
RECTUM	*	*	*	*	*	*	*	*	*	*				
MESENTERIC LYMPH NODE	*	*	*	*	*	*	*	*	*	*				
OVARIES	*	*	*	*	*	*	*	*	*	*				
UTERUS	*	*	*	*	*	*	*	*	*	*				

See Reports Code Table for Symbol Definitions

	T	ABUI	LATI	ED 2	ANTI	JAN	DA'	ΓA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 2 SEX: FEMALE
ANIMAL ID:	11	12	13	14	15	16	17	18	19	20	
SKIN	*	*	•	•	*	*	*	*	*	•	
CLITORAL GLANDS	*	*	*	•	*	*	*	*	*	*	
EYES	*	W	*	*	*	*	*	*	•	٠	
HARDERIAN GLAND	•	*	*	*	*	*	*	*	•	•	
FEMUR/STERNUM	*	*	*		*	*	*	*	*	•	
NASAL	*	*	*	•	*	*	*	*	*	*	
MAMMARY GLAND		*	*	*	*	*	*	*	•	•	

TABULATED ANIMAL DATA STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001 FATE: ALL GROUP: 3 DAYS ON TEST: ALL SEX: FEMALE ANIMAL ID: 21 22 23 26 28 29 BRAIN NERVE SPINAL CORD SALIVARY GLAND **PANCREAS** MANDIBULAR LYMPH NODE ZYMBAL'S GLAND **PITUITARY ADRENALS** THYROID **PARATHYROID TRACHEA ESOPHAGUS** THYMUS **HEART** COLON **JEJUNUM**

See Reports Code Table for Symbol Definitions

AORTA

TABULATED ANIMAL DATA STUDY NUMBER: 94-001 STUDY ID : 90 Day Tetryl GROUP: 3 FATE: ALL SEX: FEMALE DAYS ON TEST: ALL 21 22 23 24 25 26 27 28 29 30 ANIMAL ID: LIVER SPLEEN Fibrosis TONGUE SKELETAL MUSCLE LUNGS KIDNEYS Mineralization, NOS URINARY BLADDER STOMACH DUODENUM ILEUM CECUM RECTUM MESENTERIC LYMPH NODE

See Reports Code Table for Symbol Definitions

OVARIES

UTERUS

SKIN

CLITORAL GLANDS

Page 9

Pathology Associates, Inc. Study Number 94-001 90 Day Tetryl Exposure in Fischer 344 Rats

				ED 2			DA!	ΓA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL							••••			••••	STUDY NUMBER: 94-001 GROUP: 3 SEX: FEMALE
ANIMAL ID:	21	22	23	24	25	26	27	28	29	30	******************
EYES	*	*	*	*	w		٠	*	*	•	
HARDERIAN GLAND	*	*	*	*	*	•		٠	•	•	
FEMUR/STERNUM	•	٠	*	*	•	*	*	*	*	*	
NASAL	*	*	*	*	•	٠	•	*	*	*	
MAMMARY GLAND	*	•	*	*	•	٠		*	*		

TARIILATED ANIMAL DATA

_	T	ABU	LAT	ED .	ANI	MAL	DA'				
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 4 SEX: FEMALE
ANIMAL ID:	31	32	33	34	35	36	37	38	39	40	
BRAIN	N	N	N	N	N	N	N	N	N	N	
NERVE	N	N	N	N	N	N	N	N	N	N	
SPINAL CORD	N	N	N	N	N	N	N	N	N	N	
SALIVARY GLAND	N	N	R	N	N	N	N	N	N	N	
PANCREAS	N	N	N	N	N	N	N	N	N	N	
MANDIBULAR LYMPH NODE	N	N	N	N	N	N	N	H	N	N	
ZYMBAL'S GLAND	N	N	N	N	N	N	N	N	N	N	
PITUITARY	N	N	N	N	N	N	N	N	N	N	
ADRENALS	N	N	N	N	N	N	N	N	N	N	
THYROID	N	N	N	N	N	N	N	N	N	N	
PARATHYROID	N	Ñ	U	N	N	N	N	N	N	u	
TRACHEA	N	N	N	N	H	N	N	N	N	N	
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N	
THYMUS Hemorrhage	N -	N -	N -	N -	1	N -	1	1	N -	N -	
HEART Inflammation, Chronic	N	1	N	N	N	N	N	N	N	N	
COLON	N	N	N	н	N	N	N	N	N	N	
=											
JEJUNUM	N	н	N	N	N	N	N	N	N	N	

See Reports Code Table for Symbol Definitions

		111	r I S	cne	L J	77	Rati				
	T.	ABU						TA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL				••••					••••		STUDY NUMBER: 94-001 GROUP: 4 SEX: FEMALE
ANIMAL ID:	31	32	33	34	35	36	37	38	39	40	
AORTA	N	N	N	N	N	N	N	N	N	N	
LIVER Inflammation, Chronic	N -	N -	N -	N -	1	N -	N -	N -	N -	N -	
SPLEEN Pigmentation, NOS	N -	1	1	1	1	N -	N -	N -	N -	N -	
TONGUE	N	N	N	N	N	N	N	N	N	N	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
LUNGS Inflammation, Chronic	N -	1	N -	N -							
KIDNEYS Mineralization, NOS Lymphocytic Infiltrates	2	3	2	1	1 -	2	1	1	N -	1 -	
URINARY BLADDER	N	N	N	N	N	N	N	N	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	
DUODENUM	N	N	N	N	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	N	N	N	
CECUM	N	N	N	N	N	N	N	N	N	N	
RECTUM	N	N	N	N	N	N	N	N	N	N	
MESENTERIC LYMPH NODE	N	N	N	N	N	N	N	N	N	N	
OVARIES Cyst, NOS	N -	P	N -								

See Reports Code Table for Symbol Definitions

	T.	ABU.	LAT	ED I	ANI	MAL	DA'	TA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 4 SEX: FEMALE
ANIMAL ID:	31	32	33	34	35	36	37	38	39	40	
UTERUS Dilatation, Bilateral	2	3	2	N -	N -	2	N -	N -	N -	N -	
SKIN	N	N	N	N	N	N	N	N	N	N	
CLITORAL GLANDS Lymphocytic Infiltrates Inflammation, Suppurative	N - -	2	1	2	2	2	N - -	N - -	N - -	N - -	
EYES Microgranuloma, Cornea	2	1	N -	N -	N -	1	2	7	N -	N -	
HARDERIAN GLAND Lymphocytic Infiltrates	N -	N -	N	N -	N -	N -	N -	1	N -	N -	
FEMUR/STERNUM	N	N	N	N	N	N	N	N	N	N	
NASAL Inflammation, Subacute	N -	n -	N -	N -	1	N -	N -	N -	N -	N -	
MAMMARY GLAND	N	N	N	N	N	N	N	N	N	N	

		ADU.	uai.	. ري	LTT 4 T-1	MALL	DM.				
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL								••••			STUDY NUMBER: 94-001 GROUP: 5 SEX: MALE
ANIMAL ID:	41	42	43	44	45	46	47	48	49	50	
BRAIN	R	N	N	N	N	N	N	N	N	N	
NERVE	N	N	N	N	И	N	N	N	N	N	
SPINAL CORD	N	N	N	N	N	N	N	พ	N	N	
SALIVARY GLAND	N	N	N	N	N	N	N	N	N	N	
PANCREAS Degeneration, Acinar	1	N -	N -	N -	N -	N -	1	1	N -	N -	
MANDIBULAR LYMPH NODE	N	H	N	N	N	N	N	N	N	N	
ZYMBAL'S GLAND	N	N	N	N	N	N	U	N	N	N	
PITUITARY	N	N	N	N	N	N	N	N	N	N	
ADRENALS	N	N	N	N	N	N	N	N	N	N	
THYROID	N	N	N	N	N	N	N	N	N	N	
PARATHYROID	N	N	N	U	N	N	N	U	N	N	
TRACHEA	N	N	N	N	N	N	N	N	N	N	
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N	
THYMUS Hemorrhage	N -	5	N -	N -	N -	N -	N -	N -	2	1	
HEART Inflammation, Chronic	N -	N -	N -	N -	2	N -	N -	N -	N -	N -	
COLON	N	N	R	N	N	N	N	N	N	N	

	T	ABU:	LAT:	ED I	ANII	MAL	DA'	ľA			
STUDY ID : 90 Day Tetryl											STUDY NUMBER: 94-001
FATE: ALL											GROUP: 5
DAYS ON TEST: ALL											SEX: MALE
ANIMAL ID:	41	42	43	44	45	46	47	48	49	50	
JEJUNUM	N	N	N	N	N	N	N	N	N	N	
AORTA	N	N	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N	N	N	N	N	N	
SPLEEN											
Hyperplasia, Erythroid Cell	1	2	2	2	2	2	3	2	2	2	
Pigmentation, NOS	-	1	-	1	-	1	1	•	•	-	
Fibrosis	•	-	-	-	-	•	•	•	1	-	
TONGUE	N	N	N	N	N	N	N	N	N	N	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
LUNGS		N	N	N	N	N	N		N	N	
Inflammation, Chronic	1	•	-	-	•	-	-	1	-	*	
KIDNEYS											
Mineralization, NOS	1	2	2	2	2	2	2	2	2	2	
Pigmentation, Tubular Epithelium	2		2		8		2	2	2	2	
Regeneration, Tubular	2	2	2		2		2	2	2	2	
Cytoplasmic Droplets	3	3	3		3		3	3	2	3	
Degeneration, Tubular	2	3	3	2	2	2	3	2	2	2	
Hyaline Casts	1	1	•	1	1	1	1	2	1	1	
URINARY BLADDER	N		N			N	N	N	N	N	
Urolith, NOS	-	Р	-	P	5	-	-	-	-	-	
Hemorrhage	-	1	-	1	1	-	-	-	•	-	
PROSTATE	N.	N	N	N	N	N	N	N	N	N	
STOMACH	N	н	N	N	N	N	N	N	N	N	
	_										

DUODENUM

See Reports Code Table for Symbol Definitions

MADUT AMDO ANTRAT DAMA

	T.	ABU	LAT	ED 2	ANI	MAL	DA'	ΓA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL						••••	••••	••••			STUDY NUMBER: 94-001 GROUP: 5 SEX: MALE
ANIMAL ID:	41	42	43	44	45	46	47	48	49	50	
ILEUM	N	N	H	N	N	N	N	N	N	N	
CECUM	N	N	N	N	N	N	N	N	N	N	
RECTUM	N	N	W	N	R	N	N	N	N	N	
MESENTERIC LYMPH NODE	N	N	N	N	N	N	N	N	N	N	
TESTES	N	N	N	N	N	N	N	N	N	N	
EPIDIDYMIDES	N	N	N	N	N	N	N	N	N	N	
SEMINAL VESICLE	N	N	N	N	N	N	N	N	N	N	
SKIN	N	N	N	N	N	N	N	N	N	N	
PREPUTIAL GLANDS			N				N			N	
Inflammation, Chronic/Active	-	-	-	-	-	-	-	2	-	-	
Inflammation, Suppurative	-	1	-	•	-	1	-	-	-	-	
Lymphocytic Infiltrates	1	•	-	1	1	-	-	-	1	•	
EYES		N	N			N	N	N	R	N	
Microgranuloma, Cornea	1	-	-	1	1	-	-	-	-	-	
HARDERIAN GLAND	N	N	N	N	N	N	N	N	N	N	
FEMUR/STERNUM	N	N	N		N			N	N	N	
Hyperplasia, Erythroid Cell	-	-	-	1	-	1	1	-	-	-	
NASAL	N	N	N	N	N	N	N	N	N	N	
MAMMARY GLAND	N	N	N	N	N	N	N	N	N	N	

•	TA	BUL	ATE	D A	NIM	AL	DAT	Ά				
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY	NUMBER: 94-001 GROUP: 6 SEX: MALE
ANIMAL ID:	51	52	53	54	55	56	57	58	59	60		
BRAIN	٠	•	*	•	*	*	•	*	*	•		
NERVE	*	*	•	•	*	*	*	*	*	•		
SPINAL CORD	*	*	*	*	*	*	•	*	*	*		
SALIVARY GLAND	*	*	•	•	*	*	*	*	*	•		
PANCREAS	*	*	•	•	*	*	*	*	*	*		
MANDIBULAR LYMPH NODE	*	*	•	•	*	*	*	*	*	•		
ZYMBAL'S GLAND	•	*	*	*	*	*		*	*	•		
PITUITARY	*	*	•	*	•	*	*	•	•	•		
ADRENALS	*	*	•	•	*	*	*	*	*	*		
THYROID	*	*	*	*	•	•	*	*	*	•		
PARATHYROID	•	*	*	٠	*	•	•	•	*	•		
TRACHEA	*	*	*	*	*	*	*	*	*	*		
ESOPHAGUS	*	•	*	*	*	*	*	*	*	•		
THYMUS Hemorrhage	*		•	-	•	2		•	*	2		
HEART	*	•	*	•	•	*	*	*	*	•		
COEON	*	*	*	*	*	*	•	*	*	•		
JEJUNUM	•	*	w	•	*	*	•	in .	•	*		
AORTA	*	•	*	•	*	*	*	*	*	*		

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001 FATE: ALL GROUP: 6 DAYS ON TEST: ALL SEX: MALE ANIMAL ID: 51 52 53 54 57 58 59 60 55 56 LIVER SPLEEN Hyperplasia, Erythroid Cell TONGUE SKELETAL MUSCLE LUNGS KIDNEYS Mineralization, NOS 2 Pigmentation, Tubular Epithelium 1

1

 ILEUM
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</td

1

2

2

Regeneration, Tubular

Cytoplasmic Droplets

Degeneration, Tubular

URINARY BLADDER

PROSTATE

STOMACH

DUODENUM

	T	ABUI	LATI	ED A	ANII	MAL	DA'	ΓA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 6 SEX: MALE
ANIMAL ID:	51	52	53	54	55	56	57	58	59	60	
EPIDIDYMIDES	*	*	*	*	*	*	*	*	*	*	
SEMINAL VESICLE	*	*	*	*	*	*	*	*	*	*	
SKIN	*	*	*	*	*	*	*	*	*	*	
PREPUTIAL GLANDS	*	*	*	*	*	* -	*	*	*	*	
EYES	*	*	*	*	*	*	*	*	*	*	
HARDERIAN GLAND	*	*	*	*	*	*	*	*	*	*	
FEMUR/STERNUM	*	*	*	*	*	*	· W	*	*	*	
NASAL	*	*	*	*	*	*	*	*	*	*	
MAMMARY GLAND	*	*	*	*	*	*	*	*	*	*	

See Reports Code Table for Symbol Definitions

.....

						MAL					
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 7 SEX: MALE
ANIMAL ID:	61			64	65	66	67	68	69	70	
BRAIN	•	*	*	٠	٠	*	*	*	*	٠	
NERVE	*	*	*	*	•	•	•	*	٠	•	
SPINAL CORD	•	*	*	٠	*	٠	•	*	*	*	
SALIVARY GLAND	*	•	*	*	*	•		*	•	•	
PANCREAS	*	*	*		*	•	*	*	*	*	
MANDIBULAR LYMPH NODE	*	•	*	*	w	*	*	*	*	•	
YMBAL'S GLAND	*	*	*	*		*	•		*	•	
PITUITARY	*	w	*		•	٠	•	*	*	*	
DRENALS	*	*	*	•	*	*	•	*	*		
HYROID	196	*	•		•	•		٠		•	
ARATHYROID		w	•	•	•	*	*	*	*	•	
RACHEA			٠	*	•	*	*	*	*	*	
SOPHAGUS	*	*	•	*	•	•	*	•		*	
HYMUS Hemorrhage	•	*	•	•	•	1	•		*	•	
EART	•	•	•	•	٠		*	•		*	
OLON		•	•	٠	*	*	*	*	*	*	
EJUNUM	•	٠	•	•	•	*	*	•	•	•	
ORTA	*										

•	T	ABU	LAT	ED .	ANI	MAL	DA'	TA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 7 SEX: MALE
ANIMAL ID:	61	62	63	64	65	66	67	68	69	70	
LIVER	*	*	*	*	*	*	*	*	*	*	
SPLEEN	N	N	N	N	N	N			N	N	
Hyperplasia, Erythroid Cell Fibrosis	-	-	-	-	-	•	1	1	-	-	
TONGUE	*	*	*	*	*	*	*	*	*	*	
SKELETAL MUSCLE	*	*	*	*	*	*	*	*	*	*	
LUNGS	*	*	*	*	*	*	*	*	*	*	
KIDNEYS											
Mineralization, NOS	1	1	1	1	2	1	2	1	1	1	
Regeneration, Tubular	1		1		1		2		1		
Degeneration, Tubular	1	1	2	2	2	2	2	2	1	1	
URINARY BLADDER	#	*	*	*	*	*	*	*	×	*	
PROSTATE	*	*	*	*	*	*	*	*	*	*	
STOMACH	*	*	*	*	*	*	*	*	*	*	
DUODENUM	*	*	*	*	*	*	*	*	*	*	
ILEUM	*	*	*	*	*	*	*	*	*	*	
CECUM	*	*	*	*	*	*	*	*	*	*	
RECTUM	*	*	*	*	*	*	*	*	*	*	
MESENTERIC LYMPH NODE	*	*	*	*	*	*	*	*	*	*	
TESTES	*	*	*	*	*	*	*	*	*	*	
EPIDIDYMIDES	*	*	*	*	*	*	*	*	*	*	

See Reports Code Table for Symbol Definitions

TABULATED ANIMAL DATA STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001 FATE: ALL GROUP: 7 DAYS ON TEST: ALL SEX: MALE ANIMAL ID: 61 62 63 64 65 66 67 68 69 70 SEMINAL VESICLE SKIN PREPUTIAL GLANDS EYES HARDERIAN GLAND FEMUR/STERNUM

NASAL

MAMMARY GLAND

•	T	ABUI	LATI	ED A	IINA	AL	DAT	ra			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL		••••				••••		•			STUDY NUMBER: 94-001 GROUP: 8 SEX: MALE
ANIMAL ID:	71	72	73	74	75	76	77	78	79	80	
BRAIN	N	N	N	N	N	N	N	N	N	N	
NERVE	N	N	N	N	N	N	N	N	N	N	
SPINAL CORD	N	N	N	N	N	N	N	N	N	N	
SALIVARY GLAND	N	N	N	N	N	N	N	N	N	N	
PANCREAS	N	N	N	N	N	N	N	N	N	N	
MANDIBULAR LYMPH NODE	N	N	N	N	N	N	N	N	N	N	
ZYMBAL'S GLAND	N	N	N	N	Ñ	N	N	N	N	N	
PITUITARY Cyst, NOS, Pars Distalis	N -	P	N -								
ADRENALS	N	N	N	N	N	N	N	N	N	N	
THYROID	N	N	N	N	N	N	N	N	N	N	
PARATHYROID	N	N	N	N	U	N	U	N	U	N	
TRACHEA	N	N	N	N	N	N	N	N	N	N	
ESOPHAGUS	N	N	N	N	N	N	N	N	N	N	
THYMUS Hemorrhage	N -	1	N -	N -	2	1	N -	N -	2	N -	
HEART		N	N	N			N	N	N	_	
Degeneration, Myocardial	-	-	-	-	-	-	-	-	-	2	
Inflammation, Chronic	4	-	-	•	1	-	-	-	•	-	
Inflammation, Chronic/Active, Arter	•	-	•	-	•	1	•	-	-	-	
COLON	N	И	N	N	N	N	N	N	N	N	

See Reports Code Table for Symbol Definitions

TABIILATED	ARTTMAT	TO 3 (11) 3
TABULATED	ANIMAI.	I I A I I A

		ADU.			LTIATI		~				
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL										•••••	STUDY NUMBER: 94-001 GROUP: 8 SEX: MALE
ANIMAL ID:	71	72	73	74	75	76	77	78	79	80	
JEJUNUM	Я	N	N	N	N	N	N	N	N	N	
AORTA	N	N	N	N	N	N	N	N	N	N	
LIVER	N	N	N	N	N	N	N	N	N	N	
SPLEEN	N	N	N	N	N	N	N	N	N	N	
TONGUE	N	N	N	N	N	N	N	N	N	N	
SKELETAL MUSCLE	N	N	N	N	N	N	N	N	N	N	
LUNGS	N	N	N	N	N	N	N	N	N	N	
KIDNEYS											
Mineralization, NOS	9	2	2	1	2	1	1	1	2	1	
Regeneration, Tubular	•	1	1	-	1	1	-	-	1	1	
Degeneration, Tubular	1	2	2	1	2	1	1	1	2	2	
URINARY BLADDER	N	N	N	N	н	N	N		N	N	
Urolith, NOS	•	-	-	-	-	-	-	P	-	-	
PROSTATE	N	N	N	N	N	N	N	N	N	N	
STOMACH	N	N	N	N	N	N	N	N	N	N	
DUODENUM	N	N	N	N	N	N	N	N	N	N	
ILEUM	N	N	N	N	N	N	N	N	N	H	
CECUM	N	N	N	N	N	N	N	N	N	N	
RECTUM	N	N	N	N	N	N	N	N	N	N	
MESENTERIC LYMPH NODE	R	N	N	N	N	N	N	N	N	N	

TARIII.A	משיד	ANIMAL	DATA
LABULIA	LLELL	WINTINGE	UALA

_	T	ABU!	LAT!	ED 2	ANII	MAL	DA'	ΓA			
STUDY ID : 90 Day Tetryl FATE: ALL DAYS ON TEST: ALL											STUDY NUMBER: 94-001 GROUP: 8 SEX: MALE
ANIMAL ID:	71	72	73	74	75	76	77	78	79	80	
TESTES	N	N	N	N	N	N	N	N	N	N	
EPIDIDYMIDES	N	N	N	N	N	N	N	N	N	N	
SEMINAL VESICLE	N	N	N	N	N	N	N	N	N	N	
SKIN	N	N	N	N	N	N	N	N	N	N	
PREPUTIAL GLANDS Inflammation, Chronic/Active Lymphocytic Infiltrates	N - -	N - -	2	H - -	- 1	2	N - -	- 1	1	2	
EYES Microgranuloma, Cornea	1	N -	2	N -	1	1	N -	N -	N -	N -	
HARDERIAN GLAND	N	N	N	N	N	N	N	N	H	N	
FEMUR/STERNUM	И	N	N	R	N	N	N	N	N	N	
NASAL	N	N	N	N	N	N	N	N	N	N	
MAMMARY GLAND	N	N	N	N	N	N	N	N	M	N	

See Reports Code Table for Symbol Definitions

Page 1

Pathology Associates, Inc. Study Number 94-001 90 Day Tetryl Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 1

DAYS ON TEST: ALL

SEX: FEMALE

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 2

DAYS ON TEST: ALL

SEX: FEMALE

Page 3

Pathology Associates, Inc. Study Number 94-001 90 Day Tetryl Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 3

DAYS ON TEST: ALL

SEX: FEMALE

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 4

DAYS ON TEST: ALL

SEX: FEMALE

Animal ID: 32

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record:

OVARIES - Unilateral, Right, Cyst, 8mm in Diameter,

(1), Round, Red

Related Histopathology: OVARIES - Cyst, NOS

Page 5

Pathology Associates, Inc. Study Number 94-001 90 Day Tetryl Exposure in Fischer 344 Rats

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 5

DAYS ON TEST: ALL

SEX: MALE

CORRELATION OF GROSS & MICRO

STUDY ID: 90 Day Tetryl STUDY NUMBER: 94-001

FATE: ALL GROUP: 6

DAYS ON TEST: ALL SEX: MALE

Animal ID: 56

Pathologist: GRO

Animal Fator Terminal Sacrifica

Days on Test: 90

Animal Fate: Terminal Sacrifice Days on Test: 90

Related Histopathology:

THYMUS - Discolored, Red, Moderate THYMUS - Hemorrhage

Animal ID: 60 Pathologist: GRO

Animal Fate: Terminal Sacrifice Days on Test: 90

Reference to Necropsy Record: Related Histopathology: THYMUS - Foci, 1mm in Diameter, >5, Red THYMUS - Hemorrhage

Reference to Necropsy Record:

CORRELATION OF GROSS & MICRO

STUDY ID : 90 Day Tetryl STUDY NUMBER: 94-001

FATE: ALL GROUP: 7

DAYS ON TEST: ALL SEX: MALE

Animal ID: 66 Pathologist: GRO

Animal Fate: Terminal Sacrifice Days on Test: 90

Reference to Necropsy Record: Related Histopathology:

THYMUS - Discolored, Pinpoint, Multiple (>5), Red, THYMUS - Hemorrhage Spots

CORRELATION OF GROSS & MICRO

......

STUDY ID : 90 Day Tetryl

STUDY NUMBER: 94-001

FATE: ALL

GROUP: 8

DAYS ON TEST: ALL

SEX: MALE

Animal ID: 79

Pathologist: GRO

Animal Fate: Terminal Sacrifice

Days on Test: 90

Reference to Necropsy Record: THYMUS - Discolored, Multiple, Red, Spots Related Histopathology: THYMUS - Hemorrhage

APPENDIX H OPHTHALMOLOGY DATA

Ophthalmology Report

David A. Wilkie DVM, MS Diplomate ACVO

Introduction

The following are results of ocular examinations. All ocular examinations were performed by a Board-Certified Veterinary Ophthalmologist.

Materials and Methods

A preliminary ophthalmic examination was performed on the eyes of all rats by Dr David Wilkie DVM, MS, Dip. ACVO prior to initiation of the study. Examinations included:

- 1. Biomicroscopic examination, using a Zeiss HSO-10 biomicroscope, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).
- 2. Indirect ophthalmoscopic examination, using a 30 diopter lens, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).

Results

Initial Examination

Corneal dystrophy (crystals) -

The eyes of all animals examined were affected by corneal dystrophy/crystals. All animals were affected with mild corneal dystrophy OU.

Conclusions

All animals to be used in this study are affected with mild corneal dystrophy prior to the initiation of the study. Corneal dystrophy is a common finding in Fisher 344 rats of both sexes. In a 90 day study such as this the corneal lesions should not progress significantly and do not interfere with examination of the intraocular tissues.

David A. Wilkie DVM, MS

Diplomate ACVO

Assistant Professor

Department of Veterinary Clinical Sciences

The Ohio State University

1935 Coffey Road

Columbus, Ohio 43210

Ophthalmology Report

David A. Wilkie DVM, MS Diplomate ACVO

Introduction

The following are results of ocular examinations. All ocular examinations were performed by a Board-Certified Veterinary Ophthalmologist.

Materials and Methods

A final ophthalmic examination was performed on the eyes of all rats by Dr David Wilkie DVM, MS, Dip. ACVO prior to completion of the study. Examinations included:

- 1. Biomicroscopic examination, using a Zeiss HSO-10 biomicroscope, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).
- 2. Indirect ophthalmoscopic examination, using a 30 diopter lens, following dilation of the pupils with 1.0% tropicamide (Mydriacyl®).

Results

Initial Examination

Corneal dystrophy (crystals) - The eyes of all animals examined were affected by

corneal dystrophy/crystals. All animals were affected with mild corneal dystrophy OU with the exception of the right eye of animal #46 where the corneal dystrophy was moderate in severity.

corneal dystrophy was moderate in seve

Conjunctivitis (mild) - Mild conjunctivitis was noted in animal #80 and involved the left eye.

Conclusions

All animals used in this study were affected with mild corneal dystrophy prior to the initiation of the study. Corneal dystrophy is a common finding in Fisher 344 rats of both sexes. With the exception of animal #46 the corneal dystrophy has not progressed. The conjunctivitis noted in animal #80 is an incidental finding. There is no treatment or group effect observed.

David A. Wilkie DVM, MS

Diplomate ACVO Assistant Professor

Department of Veterinary Clinical Sciences

The Ohio State University

1935 Coffey Road

Columbus, Ohio 43210

APPENDIX I CHEMICAL ANALYSES

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 1		
	Top	2880		2.03
3000	Middle	2780	2830	1.62
	Bottom	2810		0.41
	Top	1100		2.60
1000	Middle	1080	1070	0.51
	Bottom	1040		3.11
	Тор	207		6.75
200	Middle	184	194	5.36
	Bottom	191		1.39
		WEEK 2		
	Top	2720		0.00
3000	Middle	2730	2720	0.28
	Bottom	2710		0.29
	Тор	920		4.39
1000	Middle	1020	960	5.83
	Bottom	950		1.43
	Top	207		3.43
200	Middle	192	200	3.92
	Bottom	201		0.49

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 3		
	Тор	2920		4.69
3000	Middle	2700	2790	3.29
	Bottom	2750		1.40
	Тор	990		4.94
1000	Middle	1050	1040	0.94
	Bottom	1080		3.99
	Тор	192		2.14
200	Middle	188	196	4.12
	Bottom	209		6.25
		WEEK 4		
	Тор	3190		2.25
3000	Middle	3110	3120	0.40
	Bottom	3060		1.86
	Тор	950		0.09
1000	Middle	960	950	1.11
	Bottom	940		1.02
	Тор	199		1.68
200	Middle	207	203	2.43
_ 5 0	Bottom	201		0.75

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 5		
	Top	3190		9.42
3000	Middle	2820	2910	3.35
	Bottom	2740		6.06
	Top	1080		3.82
1000	Middle	1020	1040	1.39
	Bottom	1010		2.43
	Top	188		1.53
200	Middle	185	185	0.15
	Bottom	182		1.68
		WEEK 6		
	Тор	2780		1.91
3000	Middle	2890	2830	1.85
	Bottom	2830		0.06
	Top	890		4.72
1000	Middle	920	930	1.13
	Bottom	990		5.85
	Тор	192		0.85
200	Middle	184	190	3.52
	Bottom	195	=	2.67

Determination of Homogeneity of Tetryl in the diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 7		
	Тор	2810		1.45
3000	Middle	2770	2770	0.01
	Bottom	2730		1.46
	Top	940		2.13
1000	Middle	880	920	3.80
	Bottom	930		1.67
	Top	194		3.97
200	Middle	184	186	1.44
	Bottom	182		2.52
		WEEK 8		
	Top	2970		5.29
3000	Middle	3270	3130	4.32
	Bottom	3160		0.97
	Top	940		1.45
1000	Middle	980	950	2.57
	Bottom	940		1.13
	Тор	205		2.82
200	Middle	210	211	0.21
	Bottom	217		3.03

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 9		
	Top	3380		5.60
3000	Middle	3240	3200	1.42
	Bottom	2970		7.03
	Top	1070		0.24
1000	Middle	1060	1070	1.13
	Bottom	1080		0.88
	Top	210		2.09
200	Middle	200	200	2.99
	Bottom	200		0.90
		WEEK 10		
	Top	2930		7.83
3000	Middle	2570	2720	5.46
	Bottom	2650		2.37
	Top	880		11.39
1000	Middle	1140	1000	14.66
	Bottom	960		3.27
	Top	180		0.53
200	Middle	200	180	10.00
	Bottom	160		10.54

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)	
		WEEK 11			
	Тор	3160		0.51	
3000	Middle	3200	3180	0.64	
	Bottom	3180		0.13	
	Top	1030		1.91	
1000	Middle	960	1010	4.76	
	Bottom	1030		2.85	
	Тор	192		1.82	
200	Middle	195	195	0.05	
	Bottom	199		1.86	
		WEEK 12			
	Top	2810		4.91	
3000	Middle	2850	2960	3.56	
	Bottom	3210		8.41	
	Тор	1020		0.83	
1000	Middle	1040	1010	2.71	
	Bottom	970		3.53	
	Тор	218		6.15	
200	Middle	205	206	0.26	
	Bottom	193		5.89	

Determination of Homogeneity of Tetryl in the Diet

Target Concentration (mg/kg diet)	Site of Sampling	Concentration by Analysis (mg/kg diet)	Mean Concentration (mg/kg diet)	Deviation from Mean (%)
		WEEK 13		and a standard flower of the foreign of the control
3000	Top Middle	3160 3150	3150	0.24 0.15
	Bottom Top	3150 990		0.09 2.35
1000	Middle Bottom	980 920	960	1.65 4.00
200	Top Middle	203 188	194	4.66 3.13
200	Bottom	191	**	1.53

Analysis of Tetryl in the Feed Mixtures

Target Concentration (mg/kg diet)		Date Prepared		Date alyzed	Concentration by Analysis (mg/kg diet)	% Error
			W	leek 1		
3000	4	Jan 94	7	Jan 94	2830	5.81
1000	5 6	Jan 94 Jan 94	7 10	Jan 94 Jan 94	1070 194	7.49 2.96
200	0	Jan 94	10	Jan 94	194	2.90
			W	eek 2		
3000	11	Jan 94	21	Jan 94	2720	9.34
1000	12	Jan 94	26	Jan 94	960	3.71
200	13	Jan 94	25	Jan 94	200	0.16
			V	eek 3		
3000	18	Jan 94	26	Jan 94	2790	6.96
1000	20	Jan 94	27	Jan 94	1040	3.76
200	21	Jan 94	27	Jan 94	196	1.86
			V	leek 4		
3000	24	Jan 94	2	Feb 94	3120	4.01
1000	24	Jan 94	2	Feb 94	950	5.26
200	25	Jan 94	2	Feb 94	203	1.28
			V	eek 5		
3000	3 1	Jan 94	4	Feb 94	2910	2.84
1000	1	Feb 94	8	Feb 94	1040	3.60
200	2	Feb 94	9	Feb 94	184	7.51

Analysis of Tetryl in the Feed Mixtures

Target Concentration (mg/kg diet)	Pr	Date Prepared		Date alyzed	Concentration by Analysis (mg/kg diet)	% Error
	 .		V	Veek 6		
3000	7	Feb 94	16	Feb 94	2830	5.56
1000	8	Feb 94	17	Feb 94	930	6.54
200	9	Feb 94	17	Feb 94	190	4.84
			W	leek 7		
3000	14	Feb 94	24	Feb 94	2770	7.76
1000	16	Feb 94	1	Mar 94	920	8.17
200	17	Feb 94	1	Mar 94	186	6.79
			W	leek 8		
3000	22	Feb 94	3	Mar 94	3130	4.43
1000	23	Feb 94	4	Mar 94	950	4.76
200	24	Feb 94	4	Mar 94	211	5.38
			V	eek 9		
3000	28	Feb 94	9	Mar 94	3200	6.65
1000	2	Mar 94	10	Mar 94	1070	7.14
200	3	Mar 94	1 1	Mar 94	200	1.37
			W	eek 10		
3000	7	Mar 94	14	Mar 94	2720	9.43
1000	10	Mar 94	14	Mar 94	1000	0.30
200	11	Mar 94	17	Mar 94	180	9.23

Analysis of Tetryl in the Feed Mixtures

Target Concentration (mg/kg diet)	Date Prepared		Date Analyzed		Concentration by Analysis (mg/kg diet)	% Error
			W	eek 11		
3000	14	Mar 94	18	Mar 94	3180	6.02
1000	15	Mar 94	23	Mar 94	1010	0.63
200	17	Mar 94	24	Mar 94	195	2.44
			W	eek 12		
3000	21	Mar 94	24	Mar 94	2960	1.43
1000	23	Mar 94	24	Mar 94	1010	0.83
200	24	Mar 94	30	Mar 94	206	2.79
			W	eek 13		
3000	28	Mar 94	3 1	Mar 94	3150	5.11
1000	28	Mar 94	1	Apr 94	960	3.76
200	29	Mar 94	7	Apr 94	194	2.81

APPENDIX J

PROTOCOL AND AMENDMENTS

PROTOCOL

90-Day Subchronic Toxicity Evaluation of N-Methyl-N,2,4,6-Tetranitroaniline in Male and Female Fischer (F344) Rats

This study will be conducted in agreement with Good Laboratory Practice Standards, Environmental Protection Agency, Toxic Substances Control Act (TSCA) 40 CFR Part 792 (Federal Register, Vol 54, No. 158, August 17, 1989, pp. 34034 - 34050). All aspects of the studies will be conducted in accordance with written Standard Operating Procedures (SOP) of the performing unit and all raw data and performance documents will be maintained in agreement with GLP. An administratively separate quality assurance unit (QAU from PAI) will monitor the studies to assure adherence to good laboratory practices and the approved SOPs. Any deviation from the protocol or GLP will be noted in the raw data and reflected in the final report.

Testing Facility A.W. Breidenbach Environmental Research Center U.S. Environmental Protection Agency Cincinnati, OH 45268

Prime Contractor (Sponsor) U.S. Army Biomedical Research and Development Laboratory, Fort Detrick Frederick, Maryland 21701-5010

Principal Investigator T.V. Reddy, Ph.D.

G. Reddy, Ph.D., Sponsor Date

Project Manager

G.R. Olson, DVM, Ph.D. Pathology Associates, Inc.

Quality Assurance

W.R. Fox, MA Pathology Associates, Inc. 12-15-93 Date

90-DAY SUBCHRONIC TOXICITY EVALUATION OF N-METHYL-N,2,4,6-TETRANITROANILINE IN MALE AND FEMALE FISCHER (F344) RATS

RESEARCH PROTOCOL

Tirumuru V. Reddy, Ph.D. Principal Investigator

F. Bernard Daniel, Ph.D. Co-Principal Investigator

Ecological Monitoring Research Division

Environmental Monitoring Systems Laboratory - Cincinnati

U.S. Environmental Protection Agency

Cincinnati, Ohio 45268

December 15, 1993

kay\protocof\tetryi.tvr

December 15, 1993 Page 1

TITLE: 90-DAY SUBCHRONIC TOXICITY EVALUATION OF N-METHYL-N, 2, 4, 6-TETRANITROANILINE IN MALE AND FEMALE FISCHER (F344) RATS

BACKGROUND:

Nitroaromatics, such as 1,3-dinitrobenzene (DNB), 1,3,5-trinitrobenzene (TNB). and N-methyl-N,2,4,6-tetranitroaniline (tetryl), have been detected as environmental contaminants of groundwater and soil near production sites and in some instances at military test grounds. The wastewaters discharged from trinitrotoluene (TNT) manufacturing processes contain a variety of aromatic compounds, including DNB and TNB. TNB is formed during the nitration step of TNT synthesis as a result of oxidation of methyl groups. Although the complete mechanism of TNB formation during TNT photolysis is unknown, Burlinson (1980) suggested that it is produced by decarboxylation of 2,4,6-trinitrobenzaldehyde, a major TNT photoproduct. It is also found in aquatic systems and surface soils as a by-product of photolysis of TNT. DNB and TNB are not easily biodegradable, persist in the environment, eventually leach out, and contaminate groundwater near waste disposal sites. Tetryl is an explosive that has been in use, largely for military purposes, since 1906. Wastewaters and soil at the original production sites and other plants devoted to munitions assembly, contain large quantities of tetryl. A recent estimate of tetryl in wastewaters generated from the production of tetryl at Joliet Army Ammunition Plant was about 36 lb/per day of each production line.

Toxicity data on these compounds are limited. The oral LD50 of DNB, TNB and tetryl were 59 mg/kg, 284 mg/kg and greater than 5 g/kg, respectively, in rats for combined sexes. TNB and tetryl were not toxic at 2 g/kg when applied to rabbit skin for 24 hours. However, the dermal LD50 of DNB was 1.99 g/kg for combined sexes of rabbits. None of these compounds produced skin irritation potentials but positive (DNB) and severe (TNB, tetryl) eye irritation potentials The sensitization tests showed that DNB and tetryl are not skin in rabbits. sensitizers while TNB caused mild allergic reaction in guinea pigs. Some of the toxicological and behavioral effects of DNB are; formation of methemoglobin, testicular degeneration and reproductive failure, and weight loss and anemia in hamsters, rats and mice. Neurological and hematological disorders have also been reported in dogs. DNB is rather toxic to humans; the estimated lethal dose range is 5-50 mg/kg. It is readily absorbed through the skin. Fetal doses (amount and route of administration are not given) of tetryl produced toxic degeneration (necrosis) in the kidneys of dogs and rabbits and liver necrosis in dogs (not in rabbits). Tetryl was observed to be a powerful skin sensitizer in ammunition plant workers. Hardy and Maloof (1950) reported effects from accidental exposure of 11 people to tetryl: two died, one was disabled and eight did not detect permanent disability. They also reported irreversible liver damage, dermatitis, and upper respiratory irritation following tetryl exposure. The effects of tetryl exposure include gastrointestinal symptoms and epidermal, respiratory, nervous system, hematopoietic and circulatory injury. Atmospheric concentration of 1.5 mg/m3 or below did not produce systemic poisoning in persons working with tetryl. DNB, TNB, and tetryl have been shown to be genotoxic in Salmonella mutagenesis assay. TNB has been shown to form adducts of blood proteins and tissue DNA in rats.

kay\protocol\tetryl.tvr

PROTOCOL

1. Study. 90-day Subchronic toxicity evaluation with N-Methyl-N,2,4,6-tetranitroaniline (tetryl) in F344 male and female rats.

2. <u>Purpose</u>. To evaluate subchronic toxicity of tetryl when administered in the diet for 90-days.

3. <u>Study Location</u>. Andrew W. Breidenbach Environmental Research Center, U.S. Environmental Protection Agency, Cincinnati, OH 45268

4. Sponsor and Address.

U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick, Maryland 21701-5010

5. <u>Principle Investigator</u>.

T.V. Reddy, Ph.D., Research Chemist Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268

6. <u>Co-Principle Investigator</u>. F. Bernard Daniel, Ph.D, Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268

7. Study Coordinator. Barry Wiechman, MS., Pathology Associates (ROW)

8. <u>Project Manager</u>. G.R. Olson, DVM, Ph.D., Pathology Associates (PAI)

9. <u>Regulatory Compliance</u>. This study is carried out according to U.S. EPA Health Effects testing guidelines (40 CFR 798) in compliance with GLP (40 CFR 792)

10. <u>Quality Assurance</u>. The protocol in life phase and final report will be audited by the Quality Assurance Office in accordance with SOP's at Pathology Associates, West Chester, Ohio 45069.

11. <u>Test Material</u>.

N-Methyl-N,2,4,6-tetranitroaniline (tetryl) (CAS#479-45-8) is supplied by the U.S. Army Biomedical Research and Development Laboratory, Ft. Detrick, Frederick, Maryland 21702. The sponsor will be responsible for the purity of the test chemical.

12. Experimental Design.

A. Selection of Dose: An appropriate dose will be selected from 14-day range finding study. Toxikon Corporation, Woburn, MA 01801 has conducted acute toxicity studies on Tetryl. They administered Tetryl in corn oil to

kay\protocol\tetryf.tvr

December 15, 1993 Page 3 rats at a single oral (Bolus) dose and observed the clinical signs for 14 days following dosing. They have reported that tetryl is nontoxic even at dose levels of 5 g/kg B.W. No unusual lesions were reported at necropsy in male and female rats. There were no established reports on the LD50 values. There are no reports on the chronic effects of tetryl in rats. Therefore, a pilot study is designed to determine the palatability.

B. Preparation of the Diet: Certified powdered Purina laboratory chow purchased from Purina labs and stored at 4°C is used. Analysis of the feed for each batch is supplied by the manufacturer. Feed analysis data suggests that the contaminants reported in feed do not have adverse effects on the test. Tetryl diets are prepared once a week. Just before the diet preparation, tetryl is removed from the storage shelves (kept in designated carcinogen room), weighed in the carcinogen room and mixed with the powdered diet (10g/kg/diet g/kg). First, 10g tetryl granules are powdered by grinding in a pestle and mortar and then mixed with 250g powdered diet and mixed for 15 min. Then an additional 250 g of powdered diet is added and mixed for an additional 15 min. Then the remaining diet will be added to bring the tetryl concentration to 10 g/kg; then mixed for an additional hour in a mechanical stirrer (Kitchen Aid heavy duty stand mixer, Model No. K5SS) for uniform distribution of tetryl in the diet. This is also verified by determining the tetryl concentration in the diet taken from three different depths (top, middle and bottom layer) of the mixing chamber. Quantitative analysis of tetryl is done by HPLC.

The premixed diet (10 g/kg) is further diluted with fresh powdered diet to obtain the desired tetryl concentration in the diet as determined from lx day range finding study. Individual diet concentrations are determined as described before. Tetryl concentrations are manipulated in such a way that each rat (caged individually) will receive the desired amount of tetryl. This is determined by calculating the daily average intake, followed by an adjustment of tetryl content in the diet. Dietary intake and water consumption are measured twice a week. Body weights are recorded once a week.

- C. Animal Husbandry: Animals will be housed 2 per cage in suspended stainless steel cages. All housing and care will be carried out according to the standards recommended by the Guide for the Care of Laboratory Animals (DHHS Publication No. (NIH) 86-23, 1989).
- D. Randomization: Using computer-generated random numbers with assignment to groups. At the time of randomization, the weight variation of the animals of each sex used should not exceed \pm 2 SD of the mean weight, and the mean body weights for each group of each sex will not be statistically different.
- E. <u>Justification</u>: Rats (6-8 weeks old) historically have been used in safety evaluation studies and are recommended by appropriate regulatory agencies.
- F. <u>Test Species</u>: Fisher 344 rats (50 male and 50 female, 6-7 weeks old) will be obtained from the Charles River Labs, Inc., Portage, MI. All

animal identification is made by using electronic implants. Cage cards and diet preparations will be color-coded by dose groups. Distilled water will be provided ad libitum using water bottles with stainless double ball sipper tabs. Upon arrival, the animals will be quarantined for one week. During the quarantine period, the animals will be observed for fitness and serology tests will be performed. Animals with any pathological signs will not be included in the study.

G. Group designation and dose levels for 90-day toxicity study:

Group	No. of Rats	Sex	Tetryl Conc. in the Diet g/kg	Tetryl mg/kg/diet	Sacrifice Time (days)
1	10	Male	0	0	90
2	10	11	A*	3000	90
3	10	11	В	1000	90
4	10	"	С	200	90
5	10	Female	0	0	90
6	10	н	A	3000	90
7	10	11	В	1000	90
8	10	n	С	200	90

^{*}A, b, c will be determined from 90 day range finding study.

H. Analysis of the Diet: The stability and the homogeneity of tetryl in the diet is determined by analyzing the tetryl content (by HPLC) in the diet, soon after diet preparation and after each feeding intervals.

I. Observation of Animals:

(1) Clinical Observations:

Twice daily - mortality and morbidity check.

Once daily - cageside observation for obvious indications of a toxic effect; these effects will be recorded as they are observed.

Data for mortality and morbidity checks and cageside observations will be recorded on the same form. Because these are cageside animal checks, the observations will not be as specific and may not necessarily duplicate those observations recorded on body weight days when thorough physical examinations are conducted.

(2) Physical Examinations: At each weighing interval - These observations will include, but not be limited to, changes in: skin and

December 15, 1993 Page 5

kay\protocol\tetryl.tvr

144

fur; eyes and mucous membranes; respiratory, circulatory, autonomic and central nervous systems; some motor activity and behavior.

- (3) Body Weight: Prior to treatment and weekly, thereafter.
- (4) Food Consumption: Weekly twice.
- (5) Water Consumption: Weekly twice.
- (6) Ophthalmoscopic examination: Prior to the treatment and the termination by a board certified veterinarian
- J. Clinical Pathology:
- (1) Frequency: At termination.
- (2) Number of Animals: All animals.
- K. Tests:
- (1) Hematology:

leukocyte count erythrocyte count heinz bodies hemoglobin methemoglobin hematocrit platelet count differential leukocyte count

(2) Blood Chemistry:

glucose
sodium
potassium
total protein
albumin - phosphorus
calcium
total bilirubin

urea nitrogen creatinine aspartate aminotransferase alanine aminotransferase alkaline phosphatase

L. <u>Termination</u>:

- (1) Unscheduled Sacrifices and Deaths: Necropsies, by trained personnel using procedures approved by board-certified pathologists, will be conducted on all moribund animals and on all animals that die.
- (2) Sacrifice: After 90 days of treatment, all surviving animals will be weighed, anesthetized with sodium pentobarbital, and exsanguinated. Necropsies will be conducted on each animal in a random order to eliminate bias by trained personnel using procedures approved by board-certified pathologists. Animals will be fasted for 12 hrs before sacrifice.

A pathologist will be readily available for consultation (further participation by a pathologist is available).

M. Postmortem Procedures:

(1) Gross Necropsy: The necropsy will include examination of:

external surface
all orifices
cranial cavity
carcass
external surface of the brain (at necropsy) - cut surfaces of the brain
thoracic, abdominal and pelvic cavities and their viscera
cervical tissues and organs

(2) Organ Weights: For each terminally sacrificed animal, the following organs (when present) will be weighed following careful dissection and trimming to remove fat and other contiguous tissue in a uniform manner:

brain lungs
liver thymus
spleen testes with epididymides/ovaries
kidneys heart
adrenals

(3) Tissue Preservation: The following tissues (when present) from each animal will be preserved in 10% neutral buffered formalin:

ileum colon mandibular lymph nodes mesenteric lymph nodes cecum rectum mammary glands liver thigh muscle pancreas sciatic nerve sternum with marrow spleen femur with marrow kidneys adrenals larynx urinary bladder thymus seminal vesicles trachea lungs and bronchi prostate testes, including epididymis heart and aorta ovaries thyroid uterus parathyroids nasal cavity and nasal turbinates esophagus stomach brain pituitary duodenum preputial or clitoral glands jejunum Zymbal's gland tongue thoracic spinal cord salivary gland

N. Histopathology:

(1) Following necropsy, a list of all gross lesions recorded will be submitted to the project officer at U.S. Army Biomedical Research and Development Laboratory for his evaluation and for any additional

histopathology other than those described below.

Histopathological evaluations are to be done on the following tissues from all the animals (male and female from the highest dose group and untreated controls). The tissues examined under a light microscope are as follows:

cerebrum pancreas cerebellum Cecum colon trachea rectum thyroid stomach parathyroid skeletal muscle esophagus sciatic nerve salivary gland harderian gland tonque skin heart mammary gland aorta luna nasal region sternum thymus femur spleen vertebrae mesenteric lymph node spinal cord liver adrenals kidnevs urinary bladder pituitary duodenum eye(s) Zymbal's gland ieiunum ileum

MALE FEMALE

accessory sex glands uterus epididymis ovaries testes

An average of 12 slides will be prepared for each rat covering all the tissues shown above (3 or 4 tissues are fixed on each slide). A total of 480 slides from 40 rats(10 male and 10 female from high dose control group) from the 14-day study will be examined. Based on the results from high dose group tissues from other doses, groups will be examined as needed. Following completion of each study, all wet tissues, paraffin blocks and slides will be placed in the EPA storage facility.

O. Final Report:

Two months after the termination of the in-life phase of the study, eight copies of the final report which includes the following information (as appropriate) will be prepared and submitted to the project officer at EPA. Appropriate records are maintained during the test period and returned to the project officer at the completion.

- (1) Experimental Design and Methods:
- (2) Results:

kay\protocol\tetryl.tvr

December 15, 1993

mortality
clinical observations
body weights
food and liquid consumption
clinical pathology tests

organ weights and organ/body weight ratios gross pathology histopathology

Statistical Evaluation:

Stat-view computer software will be used for statistical analysis.

Dunnet's t-test will be used for comparing the treatment groups.

Kruskal-Wallis rank sums will be used, if needed, to examine the differences among the treatment groups and Wilcoxon rank sum test will be used to analyze pairwise differences between the control and each dose group.

- P. Proposed starting date: January 1994
- Q. Proposed termination date: March 1994
- R. Proposed draft report: June 1994
- S. Final Report due: July 1994.

Amendment 1 for

United States Army Study 94-001 SUBCHRONIC TOXICITY EVALUATION OF N-METHYL-N, 2,4,6-TETRANITROANILINE IN FISCHER (F344) RATS

For
United States Army
Biomedical Research and Development Laboratory
Fort Detrick
Frederick, MD 21701-5010

The purpose of Amendment 1 is provide data for hematology and clinical chemistries at 45 days.

- 1. Page 6, add the following:
 - J. Clinical Pathology(1) Frequency: At <u>45 days</u> and termination.

Reason: This statement was incorrect in the original protocol.

Amendment 1 Approval

U.S. Army Medical Research and Development Laboratory Fort Detrick Frederick, Maryland 21701-5010 AW Breidenbach Environmental Research Center U.S. Environmental Protection Agency Cincinnati, Ohio 45268

G. Reddy, Ph.D., Sponsor Date T.V. Reddy, Ph.D., I

., Pl Date

Willa Fox, MA, QA

Date

149

Deviations from GLP's and Protocol

- 1. Clinical observations were performed twice daily but recorded once daily.
- 2. The mandibular lymph node and preputial glands were histopathologically examined while the vertebrae were not.
- 3. A portion (2 grams) of the median lobe was removed after weighing and frozen in liquid nitrogen for biochemical analysis.

Tirumuru V. Reddy, Ph.D.

DISTRIBUTION LIST

Commander

ATTN: SGRD-UBZ-C

U.S. Army Biomedical Research and Development Laboratory

Fort Detrick, Frederick, MD 21702-5010

Commander

ATTN: MCMR-RMI-S

U.S. Army Medical Research and Materiel Command

Fort Detrick, Frederick, MD 21702-5012

Commander/Director

U.S. Army Corps of Engineers

Construction Engineering Research Laboratory

Environmental Division

P.O. Box 4005

Champaign, IL 61820

Commandant

Academy of Health Sciences, U.S. Army

ATTN: DRXTH-ES

Aberdeen Proving Ground, MD 21010-5000

Commander

U.S. Army Environmental Hygiene Agency

ATTN: Library

Aberdeen Proving Ground, MD 21020-5000

Commander

U.S. Army Environmental Center

ATTN: S-FIM-AEC-TSS (Mr. R. L. Muhly) Aberdeen Proving Ground, MD 21010-5401