Research 1-1: Highest Posterior Density Interval for a Binomial Parameter

Nahyun Lee

10/31/2024

1. Introduction

This research aims to calculate and visualize the Highest Posterior Density (HPD) credible interval for a binomial success probability parameter, denoted as p. We will use a Bayesian framework, which allows us to update our beliefs about a parameter after observing new data.

The core of this analysis is the Beta-Binomial conjugate model. Our initial belief about the parameter p (the prior) is represented by a Beta distribution. After conducting a binomial experiment and observing a certain number of successes and failures, we update our belief to form a new distribution for p, known as the posterior distribution, which is also a Beta distribution.

For this specific analysis, we will: * Start with a Beta(1,1) prior, which is equivalent to a Uniform(0,1) distribution. This represents a state of no initial preference for any particular value of p. * Use data from an experiment with 1 success and 9 failures. * Calculate the 95% HPD credible interval for p based on the resulting posterior distribution.

2. Methodology

HPD Interval Calculation

The HPD credible interval is a special type of Bayesian credible interval. For a given probability (e.g., 95%), it is the **shortest possible interval** that contains the true parameter value with that probability. A key property is that the probability density of any point *inside* the interval is greater than or equal to the density of any point *outside* of it.

Our computational approach, implemented in the R function calculate_hpd, involves the following steps: 1. **Determine the Posterior Distribution**: Given a Beta(shape1, shape2) prior and observing s successes and f failures, the posterior distribution is Beta(shape1 + s, shape2 + f). If the posterior is not unimodal (e.g., when it's heavily skewed near 0 or 1), we approximate the mode using the mean-like formula:

$$\text{mode} \approx \frac{\alpha}{\alpha + \beta}$$

where $\alpha = \text{posterior_shape1}$, $\beta = \text{posterior_shape2}$ 2. **Find the Density Threshold** $(t(\alpha))$: We numerically find a density value, t, such that the total area under the posterior curve where the density is *above* t is exactly 95%. This is achieved using R's optimize function. 3. **Identify Interval Endpoints**: The endpoints of the HPD interval are the values of p where the posterior density is exactly equal to the threshold t. These points are found using a root-finding algorithm (uniroot).

R Function Implementation

The following R code defines the calculate_hpd function which encapsulates the methodology described above.

```
#' Function to calculate the HPD credible set
#'
#' Oparam successes Number of successes (x)
\#' Oparam failures Number of failures (n-x)
#' @param shape1 First parameter of the prior Beta distribution
#' Oparam shape2 Second parameter of the prior Beta distribution
#' @param alpha Significance level (e.g., 0.05)
#' @return A list containing t_alpha (threshold), left_endpoint, right_endpoint
calculate_hpd <- function(successes, failures, shape1, shape2, alpha) {</pre>
  # Compute posterior distribution parameters
  posterior_shape1 <- shape1 + successes</pre>
  posterior_shape2 <- shape2 + failures</pre>
  # Check if the mode of the posterior distribution is between 0 and 1
  if (posterior_shape1 > 1 && posterior_shape2 > 1) {
   mode <- (posterior_shape1 - 1) / (posterior_shape1 + posterior_shape2 - 2)</pre>
  } else {
    # If the mode is near 0 or 1, adjust the starting point for search (mean-like fallback)
    mode <- posterior_shape1 / (posterior_shape1 + posterior_shape2)</pre>
  }
  # Define the posterior probability density function (pdf)
  posterior_pdf <- function(p) {</pre>
    dbeta(p, posterior_shape1, posterior_shape2)
  }
  # Find threshold t(alpha): the density level such that the area above it equals 1-alpha
  # Objective function: minimize (calculated probability - target probability) ~2
  objective_function <- function(t) {</pre>
    # Define function f to solve dbeta(p) - t = 0
    f <- function(p) posterior_pdf(p) - t</pre>
    # Find roots to the left and right of the mode
    left_p <- uniroot(f, interval = c(1e-5, mode))$root</pre>
    right_p <- uniroot(f, interval = c(mode, 1 - 1e-5))$root
    # Compute probability between left_p and right_p
    prob <- pbeta(right_p, posterior_shape1, posterior_shape2) - pbeta(left_p, posterior_shape1, poster</pre>
    return((prob - (1 - alpha))^2)
  }
  # Find t_alpha via optimization
  max_density <- posterior_pdf(mode)</pre>
  opt_result <- optimize(objective_function, interval = c(1e-5, max_density))</pre>
  t_alpha <- opt_result$minimum
  # Find endpoints of the interval
```

```
f_final <- function(p) posterior_pdf(p) - t_alpha</pre>
  # Left endpoint
  if (posterior_pdf(0) >= t_alpha) {
    left_endpoint <- 0</pre>
  } else {
    left_endpoint <- uniroot(f_final, interval = c(1e-5, mode))$root</pre>
  # Right endpoint
  if (posterior_pdf(1) >= t_alpha) {
    right_endpoint <- 1
  } else {
    right_endpoint <- uniroot(f_final, interval = c(mode, 1 - 1e-5))$root
  # Return results
  return(list(
    t_alpha = t_alpha,
    left_endpoint = left_endpoint,
    right_endpoint = right_endpoint
  ))
}
```

3. Results and Plot Analysis

Using the function defined above with our specified prior and data, we obtain the posterior distribution and its 95% HPD interval.

Posterior Density Beta(2, 10) with 95% HPD Interval


```
## Threshold t():
## 95% HPD interval: [0.0063, 0.3675]
```

Analysis of the Plot

The plot above visualizes our findings. Here is a breakdown of what each component represents:

- Posterior Density Curve (Solid Black Line): This curve is the Beta(2, 10) distribution, which represents our updated belief about the success parameter p. After starting with a neutral Beta(1,1) prior and observing 1 success and 9 failures, our belief has shifted, now indicating that lower values of p are much more probable. The peak of this curve (the mode) is the single most likely value for p.
- 95% HPD Interval (Gray Shaded Area): This shaded region is the 95% HPD credible interval. Based on our model and data, we are 95% certain that the true value of the success parameter p lies within this range. As calculated and printed above, the interval is approximately [0.0006, 0.3675]. This is the shortest possible interval containing 95% of the posterior probability.
- Density Threshold (Red Dashed Line): The horizontal red line represents the density threshold $t(\alpha) \approx 0.655$, which defines the minimum density level that bounds the top 95% of the posterior probability mass. The HPD interval is constructed by including all values of p for which the posterior density (the black curve) is higher than this line.
- Interval Endpoints (Blue Dashed Lines): The vertical blue lines mark the left and right boundaries of the HPD interval. These are the precise points where the posterior density curve intersects the red threshold line.

4. Conclusion

This research successfully developed and implemented an R function to compute the Highest Posterior Density credible interval for a binomial parameter. By applying this function to a scenario with a Beta(1,1) prior and observed data of 1 success and 9 failures, we determined the 95% HPD interval for the success probability p to be approximately [0.0006, 0.3675].

The visualization clearly illustrates the posterior distribution of p and highlights the resulting credible interval, providing an intuitive and quantitatively robust summary of our uncertainty about the parameter after accounting for the data. This analysis serves as a practical example of the power of Bayesian inference.