```
import pandas as pd
import numpy as np
import textstat
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, RidgeCV, LassoCV, BayesianRidge, ElasticNetCV
from sklearn.model_selection import cross_val_score
import sklearn.metrics as metrics
from sklearn import svm
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from dmba import regressionSummary
```

/Users/aminazimi/opt/anaconda3/lib/python3.7/site-packages/statsmodels/tools/_testing.py:19: FutureWarning: pan das.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm no display found. Using non-interactive Agg backend

```
In [2]:
    df = pd.read_csv('/Users/aminazimi/Downloads/winequality-white.csv', sep=";")
    df.describe()
    #import the dataset
    #no missing values
    #all variables are numerical
    #check the descriptive statistics of the features
```

Out[2]:

	fixed acidity	volatile citric acid acidity		residual chlorides sugar		free sulfur dioxide	total sulfur dioxide	density	рН	
count	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	4898.000000	_
mean	6.854788	0.278241	0.334192	6.391415	0.045772	35.308085	138.360657	0.994027	3.188267	
std	0.843868	0.100795	0.121020	5.072058	0.021848	17.007137	42.498065	0.002991	0.151001	
min	3.800000	0.080000	0.000000	0.600000	0.009000	2.000000	9.000000	0.987110	2.720000	
25%	6.300000	0.210000	0.270000	1.700000	0.036000	23.000000	108.000000	0.991723	3.090000	
50%	6.800000	0.260000	0.320000	5.200000	0.043000	34.000000	134.000000	0.993740	3.180000	
75%	7.300000	0.320000	0.390000	9.900000	0.050000	46.000000	167.000000	0.996100	3.280000	
max	14.200000	1.100000	1.660000	65.800000	0.346000	289.000000	440.000000	1.038980	3.820000	

```
In [3]: df.quality.hist()
    plt.show()
    #distribution of the outcome variable
```



```
In [4]: sns.regplot(x=df['fixed acidity'], y=df['quality'])
#checking for outliers in fixed acidity
```

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d43bbcd0>


```
In [5]:
    sns.regplot(x=df['volatile acidity'], y=df['quality'])
    #checking for outliers in volatile acidity
```

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d7283c10>


```
In [6]:
    sns.regplot(x=df['citric acid'], y=df['quality'])
    #checking for outliers in citric acid
```

Out[6]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8360510>


```
In [7]:
    sns.regplot(x=df['residual sugar'], y=df['quality'])
    #checking for outliers in residual sugar
```

Out[7]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8417690>


```
In [8]:
    sns.regplot(x=df['chlorides'], y=df['quality'])
    #checking for outliers in chlorides
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8545a50>

Out[8]:

```
In [9]:
    sns.regplot(x=df['free sulfur dioxide'], y=df['quality'])
    #checking for outliers in free sulfur dioxide
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d727fd50>


```
In [10]:
    sns.regplot(x=df['total sulfur dioxide'], y=df['quality'])
    #checking for outliers in total sulfur dioxide
```

```
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d7852150>
```



```
In [11]:
sns.regplot(x=df['density'], y=df['quality'])
#checking for outliers in density
```

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d80cb9d0>


```
In [12]: sns.regplot(x=df['pH'], y=df['quality'])
#checking for outliers in pH
```

```
Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d885d750>
```



```
In [13]:
    sns.regplot(x=df['sulphates'], y=df['quality'])
    #checking for outliers in sulphates
```

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d89304d0>


```
In [14]:
    sns.regplot(x=df['alcohol'], y=df['quality'])
    #checking for outliers in alcohol
```

Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8a275d0>


```
In [15]:
    df = df[df['fixed acidity'] < 14]
    df = df[df['volatile acidity'] < 1.1]
    df = df[df['citric acid'] < 1.5]
    df = df[df['residual sugar'] < 60]
    df = df[df['free sulfur dioxide'] < 250]
    df = df[df['total sulfur dioxide'] < 400]
    df = df[df['density'] < 1.02]
    df
    #removing all outliers from these variables</pre>
```

\cap	1.1	+		1	5	-	=
U	и	L	L	_	J	J.	=

:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
	0	7.0	0.27	0.36	20.7	0.045	45.0	170.0	1.00100	3.00	0.45	8.8	6
	1	6.3	0.30	0.34	1.6	0.049	14.0	132.0	0.99400	3.30	0.49	9.5	6
	2	8.1	0.28	0.40	6.9	0.050	30.0	97.0	0.99510	3.26	0.44	10.1	6
	3	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
	4	7.2	0.23	0.32	8.5	0.058	47.0	186.0	0.99560	3.19	0.40	9.9	6
	•••	•••	•••	•••	•••	•••	•••	•••	•••				•••
4	893	6.2	0.21	0.29	1.6	0.039	24.0	92.0	0.99114	3.27	0.50	11.2	6

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
4894	6.6	0.32	0.36	8.0	0.047	57.0	168.0	0.99490	3.15	0.46	9.6	5
4895	6.5	0.24	0.19	1.2	0.041	30.0	111.0	0.99254	2.99	0.46	9.4	6
4896	5.5	0.29	0.30	1.1	0.022	20.0	110.0	0.98869	3.34	0.38	12.8	7
4897	6.0	0.21	0.38	0.8	0.020	22.0	98.0	0.98941	3.26	0.32	11.8	6

4893 rows × 12 columns

In [16]:

df.corr()
#correlation table

Out[16]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
fixed acidity	1.000000	-0.023010	0.290732	0.090121	0.023752	-0.047855	0.092699	0.271490	-0.429015	-0.018346	-0.122915
volatile acidity	-0.023010	1.000000	-0.152177	0.049747	0.070355	-0.094888	0.091417	0.008255	-0.035867	-0.038208	0.064840
citric acid	0.290732	-0.152177	1.000000	0.093472	0.117764	0.100306	0.125245	0.149807	-0.167113	0.061229	-0.080009
residual sugar	0.090121	0.049747	0.093472	1.000000	0.086554	0.316755	0.409155	0.833975	-0.199975	-0.030966	-0.459323
chlorides	0.023752	0.070355	0.117764	0.086554	1.000000	0.103905	0.199637	0.259082	-0.090685	0.016432	-0.360238
free sulfur dioxide	-0.047855	-0.094888	0.100306	0.316755	0.103905	1.000000	0.611360	0.314264	-0.005030	0.057120	-0.255363
total sulfur dioxide	0.092699	0.091417	0.125245	0.409155	0.199637	0.611360	1.000000	0.544197	-0.000005	0.133251	-0.451267
density	0.271490	0.008255	0.149807	0.833975	0.259082	0.314264	0.544197	1.000000	-0.099712	0.071007	-0.801804
рН	-0.429015	-0.035867	-0.167113	-0.199975	-0.090685	-0.005030	-0.000005	-0.099712	1.000000	0.155213	0.120870
sulphates	-0.018346	-0.038208	0.061229	-0.030966	0.016432	0.057120	0.133251	0.071007	0.155213	1.000000	-0.017931
alcohol	-0.122915	0.064840	-0.080009	-0.459323	-0.360238	-0.255363	-0.451267	-0.801804	0.120870	-0.017931	1.000000

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
quality	-0.116055	-0.194037	-0.010859	-0.100068	-0.210542	0.017862	-0.171505	-0.316137	0.101173	0.054514	0.437067

```
In [17]:

corr = df.corr()
sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns)
#visualizing correlation table
#one multicollinear pair: density and residual sugar
#not enough pairs to take out density or residual sugar --> will keep both
```

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x7fe6d8c64890>


```
In [18]:
    y=df['quality']
    X=df.drop(columns=['quality'])
    print(X.shape)
    print(y.shape)
    #predictors and outcome
```

```
(4893, 11)
         (4893,)
In [26]:
          train X, valid X, train y, valid y = train test split(X, y, test size=0.3, random state=0)
          scaler = StandardScaler()
          scaler.fit(train X)
          train X = scaler.transform(train X)
          valid X = scaler.transform(valid X)
          svr = svm.SVR(kernel='linear',C=1)
          svr.fit(train X, train y)
          pred y = svr.predict(valid X)
          print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(valid_y, pred_y)))
          #splitting for training and validating
          #normalizing data
          #Support Vector Machines used
         Root Mean Squared Error: 0.7263087635176013
In [27]:
          all accuracies = cross val score(svr, X=train X, y=train y, cv=10) # check model name and number of folds
          print(all accuracies) # print accuracy for each fold
          print(all_accuracies.mean()) # print mean of accuracies for all folds
          print(all accuracies.std()) # print SD for mean of all accuracies
         [0.27788205 0.2955304 0.30923896 0.28190371 0.22095945 0.21418381
          0.25725164 0.26150965 0.35454531 0.31826895]
         0.27912739347145743
         0.04098177448532126
In [28]:
          train X, valid X, train y, valid y = train test split(X, y, test size=0.3, random state=0)
          logit = LinearRegression()
          logit.fit(train X, train y)
          pred y = logit.predict(valid X)
          print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(valid_y, pred_y)))
          #linear regression on data
         Root Mean Squared Error: 0.7247836182129064
In [29]:
          scaler = StandardScaler() # Standardize features by removing the mean and scaling to unit variance
          scaler.fit(train X) \# z = (x - u) / s -- z-scores = (value - mean)/SD
          train X = scaler.transform(train X)
```

```
valid_X = scaler.transform(valid_X)

logit = LinearRegression()
logit.fit(train_X, train_y)
y_pred = logit.predict(valid_X)
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(valid_y, y_pred)))
#normalized linear regression

Root Mean Squared Error: 0.7247836182129063
```

In [30]:

```
from sklearn.model_selection import cross_val_score # import library to conduct cross-validation # specify your instance and number of folds. Rule of thumb 5 or 10 (might take longer to calculate)

all_accuracies = cross_val_score(estimator=logit, X=train_X, y=train_y, cv=10) # check model name and number of print(all_accuracies) # print accuracy for each fold print(all_accuracies.mean()) # print mean of accuracies for all folds print(all_accuracies.std()) # print SD for mean of all accuracies
```

```
[0.28376401 0.29558096 0.30660919 0.28360871 0.23030936 0.21204806 0.27546747 0.25715538 0.35553293 0.32505307] 0.2825129130847369 0.0403471298573455
```

In [31]:

```
# Let's see if we can achive better results by using another algorithm

from sklearn.neighbors import KNeighborsRegressor

# Instantiating and training

knn_reg = KNeighborsRegressor(n_neighbors = 5) # number of neighbors to consider

# There is no ideal value for K and it is selected after testing and evaluation,

# however to start out, 5 seems to be the most commonly used value for KNN algorithm.

knn_reg.fit(train_X, train_y)

y_pred = knn_reg.predict(valid_X)

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(valid_y, y_pred)))

#KNN used
```

Root Mean Squared Error: 0.6961161229821855

```
In [32]:
```

knn_reg = KNeighborsRegressor(n_neighbors = 12) # number of neighbors to consider
There is no ideal value for K and it is selected after testing and evaluation,
however to start out, 5 seems to be the most commonly used value for KNN algorithm.

```
knn_reg.fit(train_X, train_y)
y_pred = knn_reg.predict(valid_X)
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(valid_y, y_pred)))

Root Mean Squared Error: 0.6887932336194861

In []: #KNN model reduced RMSE from 0.78 to 0.69
#concluding that KNN model is effective for this homework, although more work can be done to decrease RMSE

In []: In []:
```