The farthest most people ever get

- Descriptive Statistics are Used by Researchers to Report on Populations <u>and</u> Samples
- In Sociology: Summary descriptions of measurements (variables) taken about a group of people
- By Summarizing Information, Descriptive Statistics Speed Up and Simplify Comprehension of a Group's Characteristics

Sample vs. Population

Sample

An Illustration:

Which Group is Smarter?

Class AIQs of 13 Students		Class BIQs of 13 Students		
102	115	127	162	
128	109	131	103	
131	89	96	111	
98	106	80	109	
140	119	93	87	
93	97	120	105	
110		109		

Each individual may be different. If you try to understand a group by remembering the qualities of each member, you become overwhelmed and fail to understand the group.

Which group is smarter now?

Class A--Average IQ

Class B--Average IQ

110.54

110.23

They're roughly the same!

With a summary descriptive statistic, it is much easier to answer our question.

Types of descriptive statistics:

- Organize Data
 - Tables
 - Graphs
- Summarize Data
 - Central Tendency
 - Variation

Types of descriptive statistics:

- Organize Data
 - Tables
 - Frequency Distributions
 - Relative Frequency Distributions
 - Graphs
 - Bar Chart or Histogram
 - Stem and Leaf Plot
 - Frequency Polygon

SPSS Output for Frequency Distribution

iO

Valid	82.00	. 1	4.2	4.2	Cumulati 4 e2
	87.00	1 Frequency	4.2 Percent	Valid Percent	Percent 7.7
	89.00	1	4.2	4.2	12.5
	93.00	2	8.3	8.3	20.8
	96.00	1	4.2	4.2	25.0
	97.00	1	4.2	4.2	29.2
	98.00	1	4.2	4.2	33.3
	102.00	1	4.2	4.2	37.5
	103.00	1	4.2	4.2	41.7
	105.00	1	4.2	4.2	45.8
	106.00	1	4.2	4.2	50.0
	107.00	1	4.2	4.2	54.2
	109.00	1	4.2	4.2	58.3
	111.00	1	4.2	4.2	62.5
	115.00	1	4.2	4.2	66.7
	119.00	1	4.2	4.2	70.8
	120.00	1	4.2	4.2	75.0
	127.00	1	4.2	4.2	79.2
	128.00	1	4.2	4.2	83.3
	131.00	2	8.3	8.3	91.7
	140.00	1	4.2	4.2	95.8
	162.00	1	4.2	4.2	100.0
	Total	24	100.0	100.0	

Frequency Distribution of IQ for Two Classes

IQ	Frequency
82.00	1
87.00	1
89.00	1
93.00	2
96.00	1
97.00	1
98.00	1
102.00	1
103.00	1
105.00	1
106.00	1
107.00	1
109.00	
111.00	
115.00	
119.00	
120.00	
127.00	
128.00	
131.00	
140.00	
162.00	1
Total	24

Relative Frequency Distribution

Relative Frequency Distribution of IQ for Two Classes

IQ	Frequer	ісу	Percent	Valid Percent	Cumulative Percent
82.00	1	4.2	4.2	4.2	
87.00	1	4.2	4.2	8.3	
89.00	1	4.2	4.2	12.5	
93.00	2	8.3	8.3	20.8	
96.00	1	4.2	4.2	25.0	
97.00	1	4.2	4.2	29.2	
98.00	1	4.2	4.2	33.3	
102.00	1	4.2	4.2	37.5	
103.00	1	4.2	4.2	41.7	
105.00	1	4.2	4.2	45.8	
106.00	1	4.2	4.2	50.0	
107.00	1	4.2	4.2	54.2	
109.00	1	4.2	4.2	58.3	
111.00	1	4.2	4.2	62.5	
115.00	1	4.2	4.2	66.7	
119.00	1	4.2	4.2	70.8	
120.00	1	4.2	4.2	75.0	
127.00	1	4.2	4.2	79.2	
128.00	1	4.2	4.2	83.3	
131.00	2	8.3	8.3	91.7	
140.00	1	4.2	4.2	95.8	
162.00	1	4.2	4.2	100.0	
Total	24	100.0	100.0		

Grouped Relative Frequency Distribution

Relative Frequency Distribution of IQ for Two Classes

IQ	Frequency	Percent	Cumulative Percent	
90 – 100 - 110 - 120 - 130 -		12.5 70.8 12.5 83.3 8.3 91.6 4.2 95.8	3 3 3 3 3 6 8	
150 a	and over	1 4.2	2 100.0	
Total	24	100.0	100.0	

Histogram


```
80.00 100.00 120.00 140.00 160.00
```

Bar Graph

1.00 2.00

Stem and Leaf Plot

Stem	Leaf
8	279
9	3678
10	235679
11	159
12	078
13	1
14	0
15	
16	2

Note: SPSS does not do a good job of producing these.

SPSS Output of a Frequency Polygon

Summarizing Data:

- Central Tendency (or Groups' "Middle Values")
 - Mean
 - Median
 - Mode
- Variation (or Summary of Differences Within Groups)
 - Range
 - Interquartile Range
 - Variance
 - Standard Deviation

Most commonly called the "average."

Add up the values for each case and divide by the total number of cases.

$$Y-bar = \underbrace{(Y1 + Y2 + \ldots + Yn)}_{n}$$

$$Y-bar = \sum_{n} Yi$$

What's up with all those symbols, man?

Y-bar =
$$\frac{(Y1 + Y2 + ... + Yn)}{n}$$
Y-bar =
$$\sum_{n} Yi$$

- $Y = your \ variable \ (could be X or Q or \odot or even "Glitter")$
- "-bar" or line over symbol of your variable = mean of that variable
- Y1 = first case's value on variable Y
- "..." = ellipsis = continue sequentially
- Yn = last case's value on variable Y
- n = number of cases in your sample
- Σ = Greek letter "sigma" = sum or add up what follows
- i = a typical case or each case in the sample (1 through n)

Class A--IQs of 13 Students

$$\Sigma Yi = 1437$$

Y-bar_A =
$$\Sigma Yi = 1437 = 110.54$$

n 13

Class B--IQs of 13 Students

$$\Sigma Yi = 1433$$

$$Y-bar_B = \sum_{n} \frac{Yi}{13} = 1433 = 110.23$$

The mean is the "balance point."

Each person's score is like 1 pound placed at the score's position on a see-saw. Below, on a 200 cm see-saw, the mean equals 110, the place on the see-saw where a fulcrum finds balance:

The scale is balanced because...

$$17 + 4$$
 on the left $=$ 21 on the right

- Means can be badly affected by outliers (data points with extreme values unlike the rest)
- Outliers can make the mean a bad measure of central tendency or common experience

Income in the U.S.

The middle value when a variable's values are ranked in order; the point that divides a distribution into two equal halves.

When data are listed in order, the median is the point at which 50% of the cases are above and 50% below it.

The 50th percentile.

Class A--IQs of 13 Students

131 140

Median = 109

(six cases above, six below)

If the first student were to drop out of Class A, there would be a new median:

The median is unaffected by outliers, making it a better measure of central tendency, better describing the "typical person" than the mean when data are skewed.

- If the recorded values for a variable form a symmetric distribution, the median and mean are identical.
- In skewed data, the mean lies further toward the skew than the median.

The middle score or measurement in a set of ranked scores or measurements; the point that divides a distribution into two equal halves.

Data are listed in order—the median is the point at which 50% of the cases are above and 50% below.

The 50th percentile.

The most common data point is called the mode.

The combined IQ scores for Classes A & B:

80 87 89 93 93 96 97 98 102 103 105 106 109 109 109 110 111 115 119 120 127 128 131 131 140 162

A la mode!!

BTW, It is possible to have more than one mode!

Mode

It may mot be at the center of a distribution.

Data distribution on the right is "bimodal" (even statistics can be open-minded)

82.00 | 89.00 | 96.00 | 98.00 | 103.00 | 106.00 | 109.00 | 115.00 | 120.00 | 128.00 | 140.00 | 87.00 | 93.00 | 97.00 | 102.00 | 105.00 | 107.00 | 111.00 | 127.00 | 131.00 | 162.00

Mode

- It may give you the most likely experience rather than the "typical" or "central" experience.
- In symmetric distributions, the mean, median, and mode are the same.
- In skewed data, the mean and median lie further toward the skew than the mode.

Summarizing Data:

- Central Tendency (or Groups' "Middle Values")
 - Mean
 - Median
 - Mode
- Variation (or Summary of Differences Within Groups)
 - Range
 - Interquartile Range
 - Variance
 - Standard Deviation

Range

The spread, or the distance, between the lowest and highest values of a variable.

To get the range for a variable, you subtract its lowest value from its highest value.

Class AIQs of 13 Students	Class BIQs of 13 Students		
102 115	127	162	
128 109	131	103	
131 89	96	111	
98 106	80	109	
140 119	93	87	
93 97	120	105	
110	109		
Olasa A Danis - 440 00 - 54			

Class A Range = 140 - 89 = 51

Class B Range = 162 - 80 = 82

Interquartile Range

A quartile is the value that marks one of the divisions that breaks a series of values into four equal parts.

The median is a quartile and divides the cases in half.

25th percentile is a quartile that divides the first $\frac{1}{4}$ of cases from the latter $\frac{3}{4}$. 75th percentile is a quartile that divides the first $\frac{3}{4}$ of cases from the latter $\frac{1}{4}$.

The interquartile range is the distance or range between the 25th percentile and the 75th percentile. Below, what is the interquartile range?

0 250 500 750 1000

Variance

A measure of the spread of the recorded values on a variable. A measure of dispersion.

The larger the variance, the further the individual cases are from the mean.

The smaller the variance, the closer the individual scores are to the mean.

Variance is a number that at first seems complex to calculate.

Calculating variance starts with a "deviation."

A deviation is the distance away from the mean of a case's score.

Yi - Y-bar

If the average person's car costs \$20,000, my deviation from the mean is - \$14,000!

$$6K - 20K = -14K$$

The deviation of 102 from 110.54 is? Deviation of 115?

Class A--IQs of 13 Students

102 115

128 109

131 89

98 106

140 119

93 97

110

Y-bar_A = 110.54

The deviation of 102 from 110.54 is? Deviation of 115?

102 - 110.54 = -8.54 115 - 110.54 = 4.46

Class A--IQs of 13 Students

Y-bar_{Δ} = 110.54

- We want to add these to get total deviations, but if we were to do that, we would get zero every time. Why?
- We need a way to eliminate negative signs.

Squaring the deviations will eliminate negative signs...

A Deviation Squared: $(Yi - Y-bar)^2$

Back to the IQ example, A deviation squared for 102 is: of 115: $(102 - 110.54)^2 = (-8.54)^2 = 72.93$ $(115 - 110.54)^2 = (4.46)^2 = 19.89$

If you were to add all the squared deviations together, you'd get what we call the "Sum of Squares."

Sum of Squares (SS) = $\Sigma (Yi - Y - bar)^2$

$$SS = (Y1 - Y-bar)^2 + (Y2 - Y-bar)^2 + \dots + (Yn - Y-bar)^2$$

Class A, sum of squares:

$$(102 - 110.54)^2 + (115 - 110.54)^2 +$$

 $(126 - 110.54)^2 + (109 - 110.54)^2 +$
 $(131 - 110.54)^2 + (89 - 110.54)^2 +$
 $(98 - 110.54)^2 + (106 - 110.54)^2 +$
 $(140 - 110.54)^2 + (119 - 110.54)^2 +$
 $(93 - 110.54)^2 + (97 - 110.54)^2 +$
 $(110 - 110.54) = SS = 2825.39$

Class A--IQs of 13 Students

115
109
89
106
119
97

Y-bar = 110.54

The last step...

The approximate average sum of squares is the variance.

SS/N = Variance for a population.

SS/n-1 = Variance for a sample.

Variance = $\Sigma(Yi - Y-bar)^2 / n - 1$

How helpful is that???

To convert variance into something of meaning, let's create standard deviation.

The square root of the variance reveals the average deviation of the observations from the mean.

s.d. =
$$\sum (\widehat{Y}i - Y - bar)^2$$

n - 1

Standard Deviation

For Class A, the standard deviation is:

The average of persons' deviation from the mean IQ of 110.54 is 15.34 IQ points.

Review:

- 1. Deviation
- 2. Deviation squared
- 3. Sum of squares
- 4. Variance
- 5. Standard deviation

Standard Deviation

Larger s.d. = greater amounts of variation around the mean.

For example:

- s.d. = 0 only when all values are the same (only when you have a constant and not a "variable")
- If you were to "rescale" a variable, the s.d. would change by the same magnitude—if we changed units above so the mean equaled 250, the s.d. on the left would be 30, and on the right, 60
- Like the mean, the s.d. will be inflated by an outlier case value.

Standard Deviation

- Note about computational formulas:
 - Your book provides a useful short-cut formula for computing the variance and standard deviation.
 - This is intended to make hand calculations as quick as possible.
 - They obscure the conceptual understanding of our statistics.
 - SPSS and the computer are "computational formulas" now.

Even though we live in a world where we pay real dollars for goods and services (not percentages of income), most American employers issue raises based on percent of salary.

Why do supervisors think the most fair raise is a percentage raise?

Answer: 1) Because higher paid persons win the most money.

2) The easiest thing to do is raise everyone's salary by a fixed percent.

If your budget went up by 5%, salaries can go up by 5%.

The problem is that the flat percent raise gives unequal increased rewards. . .

Acme Toilet Cleaning Services

Salary Pool: \$200,000

Incomes:

President: \$100K; Manager: 50K; Secretary: 40K; and Toilet Cleaner: 10K

Mean: \$50K

Range: \$90K

Variance: \$1,050,000,000

"measures of inequality"

Standard Deviation: \$32.4K

These can be considered

Now, let's apply a 5% raise.

After a 5% raise, the pool of money increases by \$10K to \$210,000

Incomes:

President: \$105K; Manager: 52.5K; Secretary: 42K; and Toilet Cleaner: 10.5K

Mean: \$52.5K – went up by 5% Range: \$94.5K – went up by 5%

Variance: \$1,157,625,000 Measures of Inequality

Standard Deviation: \$34K –went up by 5%

The flat percentage raise increased inequality. The top earner got 50% of the new money. The bottom earner got 5% of the new money. Measures of inequality went up by 5%.

Last year's statistics:

Acme Toilet Cleaning Services annual payroll of \$200K

Incomes:

\$100K, 50K, 40K, and 10K

Mean: \$50K

Range: \$90K; Variance: \$1,050,000,000; Standard Deviation: \$32.4K

The flat percentage raise increased inequality. The top earner got 50% of the new money. The bottom earner got 5% of the new money. Inequality increased by 5%.

Since we pay for goods and services in real dollars, not in percentages, there are substantially more new things the top earners can purchase compared with the bottom earner for the rest of their employment years.

Acme Toilet Cleaning Services is giving the earners \$5,000, \$2,500, \$2,000, and \$500 more respectively *each and every year forever*.

What does this mean in terms of compounding raises?

Acme is essentially saying: "Each year we'll buy you a new TV, in addition to everything else you buy, here's what you'll get:"

Toilet Cleaner	Secretary M	anager Presid	dent
Sylvania 20 in. LCD Color TV/ED Monitor/DVD Player Combo \$474.99 \$499.99 Save \$25.00 In Stock for Delivery Buy Online - Pick up in Store Eligible	Sony Bravia 46 in. LCD Flat Panel Integrated HDTV, S-Series \$1,999.99 \$2,499.99 Save \$500.00 Rebate details In Stock for Delivery Buy Online - Pick up in Store Eligible	Samsung 50 in. Plasma TV/Integrated HDTV, Widescreen \$2,499.99 \$2,799.99 Save \$300.00 Rebate details In Stock for Delivery Buy Online - Pick up in Store Eligible	Panasonic 58 in. Plasma TV/Integrated HDTV, Widescreen \$4,799.99 Additional \$240.00 savings Applied at cart In Stock for Delivery Buy Online - Pick up in Store Eligible
≓Add to Cart	★Add to Cart	≓Add to Cart	≓Add to Cart

The gap between the rich and poor expands.

This is why some progressive organizations give a percentage raise with a flat increase for lowest wage earners. For example, 5% or \$1,000, whichever is greater.

Descriptive Statistics

Summarizing Data:

- Central Tendency (or Groups' "Middle Values")
 - Mean
 - Median
 - Mode
- Variation (or Summary of Differences Within Groups)
 - Range
 - Interquartile Range
 - Variance
 - Standard Deviation
- ...Wait! There's more

Box-Plots

A way to graphically portray almost all the descriptive statistics at once is the box-plot.

A box-plot shows: Upper and lower quartiles

Mean

Median

Range

Outliers (1.5 IQR)

Box-Plots

- For nominal variables
- Statistic for determining the dispersion of cases across categories of a variable.
- Ranges from 0 (no dispersion or variety) to 1 (maximum dispersion or variety)
- 1 refers to even numbers of cases in all categories, NOT that cases are distributed like population proportions
- IQV is affected by the number of categories

To calculate:

$$IQV = \frac{K(100^2 - \Sigma \text{ cat.}\%^2)}{100^2(K - 1)}$$

K=# of categories
Cat.% = percentage in each category

Problem: Is SJSU more diverse than UC Berkeley?

Solution: Calculate IQV for each campus to determine which is higher.

SJSU: UC Berkeley:

Percent Category Percent Category

00.6 Native American 00.6 Native American

06.1 Black 03.9 Black

39.3 Asian/PI 47.0 Asian/PI

19.5 Latino 13.0 Latino

34.5 White 35.5 White

What can we say before calculating? Which campus is more evenly distributed?

$$K (100^2 - \Sigma \text{ cat.}\%^2)$$
 $IQV = \frac{100^2(K - 1)}{100^2(K - 1)}$

Problem: Is SJSU more diverse than UC Berkeley? YES

Solution: Calculate IQV for each campus to determine which is higher.

34.5 White 1190.25 35.5 White 1260.25

$$5(10000 - 3152.56) = 34237.2$$
 $5(10000 - 3653.82) = 31730.9$ $10000(5 - 1) = 40000$ SJSU IQV = .856 $10000(5 - 1) = 40000$ UCB IQV = .793

Descriptive Statistics

Now you are qualified use descriptive

statistics!

Questions?

