International Rectifier

IRLZ44ZPbF IRLZ44ZSPbF IRLZ44ZLPbF

Features

- Logic Level
- Advanced Process Technology
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Fast Switching
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free

Description

This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications.

HEXFET® Power MOSFET

TO-220AB IRLZ44ZPbF

D²Pak IRLZ44ZSPbF

TO-262 IRLZ44ZLPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	51	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	36	Α
I _{DM}	Pulsed Drain Current ①	204	
P _D @T _C = 25°C	Power Dissipation	80	W
	Linear Derating Factor	0.53	W/°C
V_{GS}	Gate-to-Source Voltage	± 16	V
E _{AS (Thermally limited)}	Single Pulse Avalanche Energy②	78	mJ
E _{AS} (Tested)	Single Pulse Avalanche Energy Tested Value ©	110	
I _{AR}	Avalanche Current ①	See Fig.12a, 12b, 15, 16	Α
E _{AR}	Repetitive Avalanche Energy ©		mJ
T_J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting Torque, 6-32 or M3 screw ⑦	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.87	°C/W
$R_{\theta CS}$	Case-to-Sink, Flat Greased Surface ⑦	0.50		
$R_{\theta JA}$	Junction-to-Ambient ⑦		62	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ®		40	1

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.05		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		11	13.5	mΩ	V _{GS} = 10V, I _D = 31A ③
			_	20	mΩ	V _{GS} = 5.0V, I _D = 30A ③
			_	22.5	mΩ	V _{GS} = 4.5V, I _D = 15A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	27			V	$V_{DS} = 25V, I_{D} = 31A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 55V$, $V_{GS} = 0V$
				250	1	$V_{DS} = 55V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	200	nA	V _{GS} = 16V
	Gate-to-Source Reverse Leakage			-200	ĺ	V _{GS} = -16V
Q_g	Total Gate Charge		24	36		$I_D = 31A$
Q_{gs}	Gate-to-Source Charge		7.5		nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		12		ĺ	V _{GS} = 5.0V ③
t _{d(on)}	Turn-On Delay Time		14			$V_{DD} = 50V$
t _r	Rise Time		160		Ī	$I_D = 31A$
t _{d(off)}	Turn-Off Delay Time		25		ns	$R_G = 7.5 \Omega$
t _f	Fall Time		42		1	V _{GS} = 5.0V ③
L _D	Internal Drain Inductance		4.5			Between lead,
					nН	6mm (0.25in.)
L _S	Internal Source Inductance		7.5		1	from package G
						and center of die contact
C _{iss}	Input Capacitance		1620			$V_{GS} = 0V$
C _{oss}	Output Capacitance		230		1	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		130		pF	f = 1.0MHz
C _{oss}	Output Capacitance		860		1	$V_{GS} = 0V, V_{DS} = 1.0V, f = 1.0MHz$
C _{oss}	Output Capacitance		180		1	$V_{GS} = 0V, V_{DS} = 44V, f = 1.0MHz$
C _{oss} eff.	Effective Output Capacitance		280		ĺ	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 44V $

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
IS	Continuous Source Current			51		MOSFET symbol
	(Body Diode)				Α	showing the
I _{SM}	Pulsed Source Current			204		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 31A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		21	32	ns	$T_J = 25^{\circ}C, I_F = 31A, V_{DD} = 28V$
Q _{rr}	Reverse Recovery Charge		16	24	nC	di/dt = 100A/µs ③
t _{on}	Forward Turn-On Time	Intrinsio	turn-or	time is	negligib	le (turn-on is dominated by LS+LD)

International TOR Rectifier

IRLZ44Z/S/LPbF

Fig 1. Typical Output Characteristics

1000

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Typical Forward Transconductance Vs. Drain Current

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Normalized On-Resistance Vs. Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. | Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit 6

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 14. Threshold Voltage Vs. Temperature www.irf.com

Fig 15. Typical Avalanche Current Vs.Pulsewidth

Fig 16. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax} . This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 15, 16).

 t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = $t_{av} \cdot f$

 $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see figure 11)

$$\begin{split} P_{D \; (ave)} &= 1/2 \; (\; 1.3 \cdot \text{BV} \cdot \text{I}_{av}) = \triangle \text{T} / \; \text{Z}_{thJC} \\ \text{I}_{av} &= 2 \triangle \text{T} / \; [1.3 \cdot \text{BV} \cdot \text{Z}_{th}] \\ \text{E}_{AS \; (AR)} &= P_{D \; (ave)} \cdot t_{av} \end{split}$$

International TOR Rectifier

Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 18a. Switching Time Test Circuit

Fig 18b. Switching Time Waveforms

International TOR Rectifier

IRLZ44Z/S/LPbF

TO-220AB Package Outline

Dimensions are shown in millimeters (inches)

- SUMENSONING AND TOLERANCING AS PER ASIÉ 174.6 V 1994.

 DIKENSONING AND TOLERANCING AS PER ASIÉ 174.6 V 1994.

 DIKENSON AND FRISH I INCHES [MLLIMETES].

 DIKENSON AND FRISH INCONTROLLED IN LL

 DIKENSON AND FRISH INCONTROLLED IN LL

 DIKENSON AND TOLECED DOS (1277) PER SIDE. TIKES DIKENSON SIDE

 SHALL NOT EXCERCE DOS (1277) PER SIDE. TIKES DIKENSON SIDE

 MEASINED AT THE OUTERNOUS EINFRES OF THE PLASTIC BOOM PLASTIC BO

- DUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

SYMBOL	OL MILLIMETERS		INC		
	MIN.	MAX.	MiN.	MAX.	NOTES
A	3.56	4.83	.140	.190	
A1	0.51	1.40	.020	.055	
A2	2,03	2.92	.080	.115	
b	0,38	1.01	,015	.040	
ь1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1,73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16,51	,560	,650	4
D1	8.38	9.02	.330	.355	
D2	11,68	12,88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0,76	-	.030	8
e	2.54		.100 BSC		
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14,73	.500	.580	
Lf	3.56	4.06	.140	.160	3
øP	3,54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789

ASSEMBLED ON WW 19, 1997 IN THE ASSEMBLY LINE "C"

Note: "P" inassembly line position indicates "Lead - Free"

TO-220AB packages are not recommended for Surface Mount Application.

Notes:

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International IOR Rectifier

D²Pak Package Outline

Dimensions are shown in millimeters (inches)

S	DIMENSIONS				
M B O	MILLIM	ETERS	INC	OT ES	
2	MIN.	MAX.	MIN.	MAX,	ទី
	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
_ c	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270		4
E	9,65	10,67	.380	.420	3,4
E1	6.22	_	.245		4
	2.54	BSC	.100	BSC]
н	14,61	15,88	.575	.625	1
L	1.78	2.79	.070	.110	
L1		1.65	-	.066	4
L2	-	1.78	-	.070	
L3	0.25	BSC	.010	1	
L4	4.78	5.28	.188	.208]

NOTES:

1. DIMENSIONING AND TOLERANDING PER ASME Y14,6M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

ADMENSION D & E DO NOT INCLUDE WOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 (.005*) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

ATHERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6, DATUM A & B TO BE DETERMINED AT DATUM PLANE H,

7. CONTROLLING DIMENSION; INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB

LEAD ASSIGNMENTS

A = ASSEMBLY SITE CODE

DIODES

HEXFET IGBTs, CoPACK 1.- GATE
2. 4.- COLLECTOR
3.- EMITTER

D²Pak Part Marking Information

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International TOR Rectifier

IRLZ44Z/S/LPbF

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S	S Y DIMENSIONS					
M B	MILLIM	ETERS	INC	INCHES		
B 0 L	MIN.	MAX.	MIN.	MAX.	N O T E S	
Α	4.06	4.83	.160	.190		
A1	2.03	3.02	.080	.119		
ь	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1,14	1,73	.045	.068	5	
С	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1,14	1.65	.045	.065		
D	8,38	9,65	,330	.380	3	
D1	6,86	-	,270	-	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	-	.245		4	
e	2,54	BSC	.100 BSC			
L	13.46	14.10	.530	.555		
L1	-	1,65	-	.065	4	
L2	3,56	3,71	.140	.146		

- DIRENSIONS ARE SHORN IN MILLIPETERS [INCHES].
 DIRENSIONS ARE SHORN IN MILLIPETERS [INCHES].
 DIRENSION D. & C. DO NOT ANGLUDE WOLD. FLASH, MOLD FLASH SHALL NOT EXCEED
 0.127. [DOOS] FER SIGE. DESS DIRENSIONS ARE MEASURED AT THE DUTNOST
 EXTREMES OF THE FLASH CBOOT.

TO-262 Part Marking Information

Notes:

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

International **TOR** Rectifier

D²Pak Tape & Reel Infomation

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- ② Limited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 0.166mH ⑥ $R_G = 25\Omega$, $I_{AS} = 31A$, $V_{GS} = 10V$. Part not recommended for use above this value.

- S Limited by T_{Jmax}, see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
 - This value determined from sample failure population. 100% tested to this value in production.
- This is only applied to TO-220AB pakcage.
- This is applied to D²Pak, when mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web site.

International

TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 10/2010