Introduction to Machine Learning

Evaluation: Learning Curves

compstat-lmu.github.io/lecture_i2ml

- The Learning Curve compares the performance of a model on training and test data over a varying number of training instances.
 → How fast can learner learn the given relationship in the data?
- Learning usually fast in the beginning
- Visualizes when a learner has learned as much as it can:
 - when performance on training and test set reach a plateau.
 - when gap between training and test error remains the same.

An ideal learning curve looks like:

In general, there are two reasons for a bad looking learning curve:

- High bias in model / underfitting
 - training and test errors converge at a high value.
 - model can't learn underlying relationship and has high systematic errors, no matter how big the training set.
 - poor fit, which also translates into high test error.

- High variance in model / Overfitting
 - large gap between training and test errors.
 - model requires more training data to improve.
 - model has a poor fit and does not generalize well.

