SAI TEJ PARUCHURI

Postdoctoral Research Associate

saitejp@lehigh.edu ► https://www.linkedin.com/in/saitejparuchuri/ in

EDUCATION

Ph.D. in Mechanical Engineering,

Fall 2015 - Present

Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg.

Dissertation: Topics on Modeling and Estimation of Linear and Nonlinear Piezoelectric Systems

GPA: 4.0/4.0 | Advisor: Dr. Andrew J. Kurdila

Research Focus: Dynamics and Controls, Smart Materials and Adaptive Structures, Data-driven Modeling of Smart Material Systems, Estimation & Control, Nonlinear Systems.

M.S. in Mathematics, Spring 2019 – Spring 2020

Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg.

Thesis: Output Regulation of Systems Governed by Delay Differential Equations: Approximations & Robustness

GPA: 4.0/4.0 | Advisor: Dr. John Burns

Research Focus: Robust Geometric Control, Delay-differential Equations, Output Regulation.

B.E. in Mechanical Engineering,

Fall 2010 - Spring 2014

Thiagarajar College of Engineering (TCE), Madurai, India.

GPA: 9.52/10 | Rank: 2nd in the Mechanical Engineering department.

POSITIONS

Postdoctoral Research Associate, Mechanical Engineering, Lehigh University

Nov 2020 - Current

- Solving profile control problems arising in advanced scenarios of tokamaks
- Working on DIII-D and NSTX-U tokamak-based scenario design and control problems
- Developing novel nonlinear control algorithms for current profile control with moving ECCD
- Guiding doctoral students in conducting research on
 - model-based optimal control of plasma parameters in NSTX-U
 - fast model-based scenario optimization in NSTX-U
 - electron temperature neural network design in DIII-D

RESEARCH INTERESTS

Nuclear Fusion Plasma Control – Nonlinear profile control, Control of local properties of safety factor, Control with moving ECCD, Optimization for scenario planning

Machine Learning – Kernel Methods, Neural Networks, Radial Basis Function Networks, Kohonen Self-Organizing Maps, Unsupervised learning, RKHS, Lloyd's Algorithm and Voronoi Tessellations

Data-Driven Modeling - RKHS, Koopman Operator Theory, DMD/EDMD Methods, Vector Fitting, Matrix Pencil Approach

Dynamics and Controls - Dynamical Systems Theory, Nonlinear Systems & Control Theory, Robust Output Regulation, Infinite-dimensional Systems and Control Theory, Delayed Systems Control Theory

Estimation - Adaptive Estimation, Infinite-Dimensional Estimation, Approximation and Estimation in RKHS

Applied Mathematics - Functional Analysis, Dynamical System Theory, Approximation Theory, Reduced-order Modeling

RESEARCH, TEACHING, WORK AND LEADERSHIP EXPERIENCE

Research Experience

Graduate Research Assistant, Mechanical Engineering, Virginia Tech

Fall 2016 - Spring 2017

Project: Distribution Consensus Learning & Approximation for Geometric and Abstract Surfaces

• Investigated RKHS methods for approximation of surfaces

Teaching Experience

Graduate Teaching Assistant, Engineering Education, Virginia Tech

Fall 2019 - Spring 2020

- Taught some of the lectures in the freshman introductory course "Foundations of Engineering."
- Assisted the course instructor with creating course exams and assignments.

Graduate Teaching Assistant, Mechanical Engineering, Virginia Tech

Fall 2017 - Spring 2019

- Assisted course instructor with creating assignments, revising course material and rubrics.
- Created and analyzed peer evaluation data of students required by the Accreditation Board for Engineering and Technology (ABET).
- Guided and evaluated the progress of 9 senior design projects with more than 70 students.

Grader, Virginia Tech

Differential Equations, Mathematics department,
System Dynamics, Mechanical Engineering Dept.,
Fall 2017

Industry Experience

Design Engineer (Full-time employee), Amritha Tool Crafts Pvt. Ltd., India

Sep 2014 - May 2015

Service

Session Chair, IDETC 2017, international ASME conference, Cleveland, Ohio 2017

Peer Reviewer, Nonlinear Dynamics, and IEEE Transactions on Automatic Control

Peer Reviewer, ASME SMASIS, IFAC World Congress, IEEE CDC.

Head Graduate Teaching Assistant, Mechanical Engineering, Virginia TechFall 2018 – Spring 2019Academic Coach, Student Transition Engineering Program, Virginia Tech,Summer 2017 & 2018Peer Mentor, Virginia Tech's Early Engineering Mentoring (VTEEM) program,Summer, Fall 2018

PUBLICATIONS

Journal Articles

Published and Accepted

1. **Paruchuri, S.T.**, Sterling, J., Malladi, V.V.S., Kurdila, A., Vignola, J., and Tarazaga, P., 2019. "**Passive piezoelectric subordinate oscillator arrays**," Smart Materials and Structures, 28(8), p.085046 https://doi.org/10.1088/1361-665X/ab2f5a.

- Guo, J., Dadashi, S., Bender, M., Paruchuri, S.T., et al., 2019. "Probabilistic error bounds on constraint violation for empirical-analytical Lagrangian models of motion," Nonlinear Dyn (2019) 98: 195. https://doi.org/10.1007/s11071-019-05183-3.
- 3. Sterling, J. A., Vignola, J. F., Ryan, T. J., & Paruchuri, S. T., 2019. "Analysis of increased damping in arrays of attached resonators." The Journal of the Acoustical Society of America, 145(3), 1824-1824, https://doi.org/10.1121/1.5101664.
- 4. Sterling, J., Vignola, J., Gietl, J., Ryan, T., Sonne, N., & Paruchuri, S. T., 2018. "Effect of Increased Damping in Subordinate Oscillator Arrays." In Journal of Physics: Conference Series (Vol. 1149, No. 1, p. 012006). IOP Publishing, https://doi.org/10.1088/1742-6596/1149/1/012006.
- 5. Paruchuri, S.T., Guo, J., Kurdila, A.J., 2020. "Reproducing kernel Hilbert space embedding for adaptive estimation of nonlinearities in piezoelectric systems," Nonlinear Dynamics (2020), https://doi.org/10.1007/s11071-020-05812-2.
- 6. Paruchuri, S.T., Malladi, V.V.S., Tarazaga, P., Kurdila, A.J., 2020. "Expanding the Teaching of Single Frequency Vibration Absorption to Broadband Attenuation using Subordinate Oscillator Arrays via Fettuccine Pasta," Engineering Structures (2020), engrxiv preprint https://doi.org/10.31224/osf.io/qb4up.
- 7. Paruchuri, S.T., Guo, J., Kurdila, A.J., 2022. "Kernel center selection techniques for RKHS Adaptive Estimation," International Journal of Adaptive Control and Signal Processing, accepted, arxiv preprint https://doi.org/10.48550/arXiv.2009.02867.
- 8. **Paruchuri, S.T.**, Guo, J., Kurdila, A.J., 2022. "Sufficient Conditions for Parameter Convergence over Embedded Manifolds using Kernel Techniques," IEEE Transactions on Automatic Control, https://doi.org/10.1109/TAC.2022.3148716.

Submitted and Preprints

- 9. Kurdila, A.J., Guo, J., Paruchuri, S.T., and Bobade, P., 2019. "Persistence of Excitation in Reproducing Kernel Hilbert Spaces, Positive Limit Sets, and Smooth Manifolds," arXiv preprint arXiv:1909.12274.
- 10. Guo, J., Paruchuri, S.T., and Kurdila, A.J., 2020. "Persistence of Excitation in Uniformly Embedded Reproducing Kernel Hilbert (RKH) Spaces," arxiv preprint arXiv:2002.07963.
- 11. Sterling, J., Paruchuri, S.T., Vignola, J., Kurdila, A.J., Teresa Ryan, 2020. "Subordinate Oscillator Arrays: Design and Mitigation of Disorder," engrxiv preprint https://engrxiv.org/kpv3r/

Conference Proceedings

Presented

- Paruchuri, S.T., et al., 2021. "Minimum Safety Factor Control in Tokamaks via Optimal Allocation of Spatially Moving Electron Cyclotron Current Drive," IEEE CDC, page. 454 - 459, https://doi.org/10.1109/CDC45484.2021.9683130.
- 2. Paruchuri, S.T., et al., 2021. "Control of the Local Gradient and the Minimum Value of the Safety Factor Profile by Using Moving ECCD," APS DPP.
- 3. Paruchuri, S.T., Kurdila, A.J., Vignola, J., 2018. "Estimation of Distribution Errors in Piezoelectric Subordinate Oscillator Arrays," Nov. SMASIS, doi:10.1115/SMASIS2018-8065. url: https://doi.org/10.1115/SMASIS2018-8065.

- 4. Paruchuri, S.T., et al., 2017. "Piezoelectric composite subordinate oscillator arrays and frequency response shaping for passive vibration attenuation," IEEE CCTA, page. 702 707, https://doi.org/10.1109/CCTA.2017.8062544.
- Paruchuri, S.T., et al., 2017. "Thermodynamic Variational Formulations of Subordinate Oscillator Arrays (SOA)
 With Linear Piezoelectrics," ASME. IDETC/CIE, Volume 8: 29th Conference on Mechanical Vibration and Noise,
 https://doi.org/10.1115/DETC2017-68056.
- Guo. J., Paruchuri S.T., Kurdila, A.J., 2020. "Persistence of Excitation in Uniformly Embedded Reproducing Kernel Hilbert (RKH) Spaces," IEEE American Control Conference (ACC) (pp. 4539-4544), https://doi.org/10.23919/ACC45564.2020.9147851.
- Sterling, J., Paruchuri, S. T., Tarazaga, P., Vignola, J., Kurdila, A., Malladi, V. V., & Ryan, T., 2019. "Piezoelectric Subordinate Oscillator Arrays: Performance Recovery and Robustness to Uncertainty." In ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection, https://doi.org/10.1115/DETC2019-98092.
- 8. Vignola, J., Judge, J., Sterling, J., Ryan, T., Kurdila, A., Paruchuri, S. T., & Glean, A., 2016. "On the Use of Shunted Piezo-Actuators for Mitigation of Distribution Errors in Resonator Arrays," In Proceedings of the 22nd International Congress on Acoustics, Buenos Aires, link.
- 9. Neighborgall C.R., Kothari, K., Malladi V.V.S., Tarazaga, P., Paruchuri, S.T., Kurdila, A.J., 2020. "Shaping the Frequency Response Function (FRF) of a Multi-Degree-of-Freedom (MDOF) Structure Using Arrays of Tuned Vibration Absorbers (TVA)," 2019 IMAC, BT Topics in Modal Analysis & Testing, Volume 8, pp. 317–326. ISBN: 978-3-030-12684-1, https://doi.org/10.1007/978-3-030-12684-1 33.
- 10. Burns, J.A., Paruchuri, S.T., Schmidt. M., 2020. "Output Regulation of Systems Governed by Delay Differential Equations: Approximations and Robustness," IFAC-PapersOnLine 54.9: 422-427, https://doi.org/10.1016/j.ifacol.2021.06.099.

Submitted

- 11. Paruchuri, S.T., et al., 2022. "Local Control of the Safety Factor Profile Gradient in Tokamaks via Feedback Linearization," IEEE CCTA (under peer review).
- 12. Paruchuri, S.T., et al., 2022. "Safety Factor Control in Tokamaks via Lyapunov-based Controller with Actuator Constraints," IEEE CCTA (under peer review).
- 13. Paruchuri, S.T., et al., 2022. "Model Predictive Current Profile Control in Tokamaks by Exploiting Spatially Moving Electron Cyclotron Current Drives," 32nd Symposium on Fusion Technology.

Programming: MATLAB, Python, C++, ROS, LabVIEW.

Analysis and CAD Tools: ANSYS, CATIA, PTC Creo, Autodesk Inventor, SolidWorks, AutoCAD.

Publishing & Graphics Editor Software: Latex, Overleaf, MS Word, MS Publisher, Adobe Illustrator, Inkscape.