Определение. Пусть $f: E \to \mathbb{R}$ и x_0 — внутренняя точка множества E. Функция f имеет производную в точке x_0 , если существует

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Этот предел называют *производной* f в точке x_0 и обозначают $f'(x_0)$ или $\frac{df(x_0)}{dx}$.

Определение. Пусть $f \colon E \to \mathbb{R}$ и x_0 — внутренняя точка множества E. Функция f дифференцируема в точке x_0 , если существует число $A \in \mathbb{R}$, что

$$f(x_0 + h) - f(x_0) = Ah + o(h)$$
 при $h \to 0$.

Линейную функцию $h\mapsto Ah,\ h\in\mathbb{R}$, называют $\partial u\phi\phi$ еренциалом функции f в точке x_0 и обозначают df_{x_0} .

Теорема 1. Пусть $f: E \to \mathbb{R} \ u \ x_0 - внутренняя точка множества <math>E$. Следующие условия эквивалентны:

- 1) cywecmsyem $f'(x_0) \in \mathbb{R}$;
- 2) функция f дифференцируема в точке x_0 с $A = f'(x_0)$;
- 3) существует функция $h: E \to \mathbb{R}$, непрерывная в точке x_0 , что $f(x) f(x_0) = h(x)(x x_0)$ для всех $x \in E$ и $h(x_0) = f'(x_0)$.
- ▲ По условию $E \supset (x_0 \delta, x_0 + \delta)$ для некоторого $\delta > 0$. Определим функцию $r \colon (-\delta, \delta) \setminus \{0\} \to \mathbb{R}$ по формуле $r(h) = f(x_0 + h) f(x_0) Ah$. Так как

$$\frac{r(h)}{h} = \frac{f(x_0 + h) - f(x_0)}{h} - A,$$

то r(h) = o(h) при $h \to 0 \Leftrightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = A \Leftrightarrow \exists f'(x_0) = A$, что доказывает эквивалентность (1) и (2). Докажем эквивалентность (1) и (3). Если f имеет конечную производную в точке x_0 , то положим $h(x) = \frac{f(x) - f(x_0)}{x - x_0}$ при $x \neq x_0$ и $h(x_0) = f'(x_0)$. Тогда функция h будет удовлетворять всем условиям пункта (3). Обратно, при выполнении (3) будет существовать $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = h(x_0)$.

Следствие. Если функция f дифференцируема в точке x_0 , то f непрерывна в точке x_0 .

▲ По пункту 3 Т1 имеем $\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} [h(x)(x - x_0)] = 0.$ ■

Геометрический смысл производной. Пусть функция f дифференцируема в точке x_0 . График функции $\ell_{x_0}(x) = f(x_0) + f'(x_0)(x - x_0)$ называется касательной к графику f в точке $(x_0, f(x_0))$.

Определение. Пусть функция f определена на $[x_0, b)$ (на $(a, x_0]$), тогда f(x) имеет правую (левую) производную в точке x_0 , если существует

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \qquad \left(\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0}\right).$$

Этот предел называют *правой (левой) производной* функции f в точке x_0 и обозначают $f'_+(x_0)$ (соот. $f'_-(x_0)$).

Замечание. По Т об односторонних пределах функция f имеет производную в точке $x_0 \Leftrightarrow f$ в x_0 имеет равные левую и правую производные, при этом $f'(x_0) = f'_+(x_0) = f'_-(x_0)$.

Функциональная запись дифференциала. По определению дифференциал функции f в точке x — это линейная функция $df_x \colon \mathbb{R} \to \mathbb{R}, df_x(h) = f'(x)h$. В частности, для функции f(x) = x имеем $dx(h) = 1 \cdot h = h$. Поэтому значение дифференциала $df_x(h) = f'(x)dx(h)$ или в функциональной записи $df_x = f'(x)dx$.

Теорема 2. Пусть функции $f, g: E \to \mathbb{R}$ дифференцируемы в точке x_0 , тогда в этой точке дифференцируемы функции $\alpha f + \beta g \ (\alpha, \beta \in \mathbb{R}), \ f \cdot g \ u, \ ecлu \ g(x) \neq 0$ на E, то также $\frac{f}{g}$, причем

- 1) $(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0);$
- 2) $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$
- 3) $\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) f(x_0)g'(x_0)}{g^2(x_0)}$.
- **1**) Перейдем к пределу при $x \to x_0$ в равенстве

$$\frac{(\alpha f + \beta g)(x) - (\alpha f + \beta g)(x_0)}{x - x_0} = \alpha \frac{f(x) - f(x_0)}{x - x_0} + \beta \frac{f(x) - f(x_0)}{x - x_0}, \quad x \neq x_0.$$

По определению производной и дифференцируемости f и g в точке x_0 , заключаем существование предела левой части, т.е. существование $(\alpha f + \beta g)'(x_0)$, и справедливость формулы (1).

2) Перейдем к пределу при $x \to x_0$ в равенстве

$$\frac{fg(x) - fg(x_0)}{x - x_0} = \frac{f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)}{x - x_0} =$$

$$= g(x_0)\frac{f(x) - f(x_0)}{x - x_0} + f(x)\frac{g(x) - g(x_0)}{x - x_0}, \quad x \neq x_0.$$

Тогда, используя определение производной и непрерывность функции f в точке x_0 , установим существование предела левой части, т.е. $(fg)'(x_0)$, и формулу (2).

3) Покажем сначала, что $(1/g)'(x_0) = -g'(x_0)/g^2(x_0)$. Это следует предельным переходом при $x \to x_0$ в равенстве

$$\frac{(1/g)(x) - (1/g)(x_0)}{x - x_0} = \frac{1}{g(x)g(x_0)} \frac{g(x_0) - g(x)}{x - x_0}.$$

Тогда общий случай получаем из (2):

$$\left(\frac{f}{g}\right)'(x_0) = \left(f\frac{1}{g}\right)'(x_0) = f'(x_0)\frac{1}{g(x_0)} - f(x_0)\frac{g'(x_0)}{g^2(x_0)} = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}. \blacksquare$$

Теорема 3 (производная композиции). Пусть $f: X \to \mathbb{R}$ и $g: Y \to \mathbb{R}$, где $X, Y \subset \mathbb{R}$ и $f(X) \subset Y$. Если f дифференцируема в точке x_0 , а g дифференцируема в точке $y_0 = f(x_0)$, то композиция $g \circ f: X \to \mathbb{R}$ дифференцируема в точке x_0 и $(g \circ f)'(x_0) = g'(y_0)f'(x_0)$.

A Так как f дифференцируема в точке x_0 , то согласно пункту 3 Т1 найдется функция $u: X \to \mathbb{R}$, непрерывная в точке x_0 , что $f(x) - f(x_0) = u(x)(x - x_0)$ на X, причем $u(x_0) = f'(x_0)$. Аналогично существует функция $v: Y \to \mathbb{R}$, непрерывная в точке y_0 , что $g(y) - g(y_0) = v(y)(y - y_0)$ на Y и $v(y_0) = g'(y_0)$. Тогда для всех $x \in X$ имеет место представление

$$g(f(x)) - g(f(x_0)) = v(f(x))(f(x) - f(x_0)) = v(f(x))u(x)(x - x_0).$$

По Т о непрерывности композиции функция $w: X \to \mathbb{R}$, $w(x) = v(f(x))u(x)(x-x_0)$, непрерывна в точке x_0 . Так что по пункту 3 Т1 композиция $g \circ f$ дифференцируема в точке x_0 , причем $(g \circ f)'(x_0) = w(x_0) = v(f(x_0))u(x_0) = g'(y_0)f'(x_0)$.

Следствие (инвариантность дифференциала). Если функции y=y(x), z=z(y) дифференцируемы в точках x и y(x), то вычисление дифференциала композиции z=z(y(x)) прямым способом ($dz=z_y'dx=z_y'y_x'dx$) или последовательным способом ($dz=z_y'dy=z_y'(y_x'dx)$) приводят к одному результату.

Теорема 4 (производная обратной функции). Пусть функция $f: I \to \mathbb{R}$ непрерывна и строго монотонна на промежутке I. Если f дифференцируема во внутренней точке $x_0 \in I$ и $f'(x_0) \neq 0$, то обратная функция $f^{-1}: f(I) \to I$ дифференцируема в точке $y_0 = f(x_0)$ и

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

A Так как f дифференцируема в точке x_0 , то согласно пункту 3 Т1 найдется функция $u: I \to \mathbb{R}$, непрерывная в точке x_0 , что всех $x \in I$ выполнено

$$f(x) - f(x_0) = u(x)(x - x_0), \tag{1}$$

причем $u(x_0) = f'(x_0) \neq 0$. Поскольку f строго возрастает, $u(x) \neq 0$ также и при $x \neq x_0$. Равенство (1) можно переписать в виде $y - y_0 = u(f^{-1}(y))(f^{-1}(y) - f^{-1}(y_0))$ для всех $y \in f(I)$, y = f(x), или

$$f^{-1}(y) - f^{-1}(y_0) = \frac{1}{u(f^{-1}(y))}(y - y_0).$$

По Т об обратной функции f^{-1} непрерывна на f(I). Поэтому функция $w:f(I)\to\mathbb{R},$ $w(y)=1/u(f^{-1}(y)),$ непрерывна в точке y_0 . Следовательно, по пункту 3 Т1 функция f^{-1} дифференцируема в точке y_0 и $(f^{-1})'(y_0)=w(y_0)=1/f'(x_0)$.

Теорема 5. Во внутренних точках областей определения функций справедливы формулы (таблица производных).

Производные высших порядков

Производные высших порядков определяются индукцией по порядку.

Определение. Положим $f^{(0)} := f$, $f^{(1)} := f'$. Если (n-1)-я производная $f^{(n-1)}$ функции f определена в некоторой окрестности точки x_0 и существует $(f^{(n-1)})'(x_0)$, то эту производную называют n-й производной f в точке x_0 и обозначают $f^{(n)}(x_0)$.

Определение. Функцию, имеющую в точке x (на множестве E) конечные производные до порядка n включительно называет n раз дифференцируемой e точке x (на множестве E).

Замечание. Из пункта 1 Т2 по индукции следует, что если функции f и g n раз дифференцируемы в точке x (т.е. $\exists f^{(n)}(x) \in \mathbb{R}$ и $\exists g^{(n)}(x) \in \mathbb{R}$), то функция $\alpha f + \beta g$ (где $\alpha, \beta \in \mathbb{R}$) также n раз дифференцируема в этой точке и справедлива формула $(\alpha f + \beta g)^{(n)}(x) = \alpha f^{(n)}(x) + \beta g^{(n)}(x)$.

Теорема 6 (формула Лейбница). Если $\exists f^{(n)}(x) \in \mathbb{R} \ u \ \exists g^{(n)}(x) \in \mathbb{R}, \ mo \ \exists (fg)^{(n)}(x) \in \mathbb{R},$

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x).$$

▲ Докажем индукцией по n. При n = 1 утверждение верно по пункту 2 Т2. Предположим оно верно при $n \ge 1$. Покажем, что равенство верно и для n + 1. Используя результат для n = 1,

$$(f^{(k)}g^{(n-k)})' = f^{(k+1)}g^{(n-k)} + f^{(k)}g^{(n+1-k)},$$

где $0 \leqslant k \leqslant n$, имеем

$$(fg)^{(n+1)}(x) = ((fg)^{(n)})'(x) = \sum_{k=0}^{n} C_n^k (f^{(k+1)}(x)g^{(n-k)}(x) + f^{(k)}(x)g^{(n+1-k)}(x)) =$$

$$= \sum_{k=1}^{n+1} C_n^{k-1} f^{(k)}(x)g^{(n-(k-1))}(x) + \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n+1-k)}(x) =$$

$$= f^{(0)}(x)g^{(n+1)}(x) + \sum_{k=1}^{n} (C_n^{k-1} + C_n^k)f^{(k)}g^{(n+1-k)} + f^{(n+1)}(x)g^{(0)}(x).$$

Так как
$$C_n^{k-1} + C_n^k = C_{n+1}^k$$
, то $(fg)^{(n+1)}(x) = \sum_{k=0}^{n+1} C_{n+1}^k f^{(k)}(x) g^{(n+1-k)}(x)$, что и требовалось.

Определение. Пусть функция f дифференцируема в окрестности точки x_0 . Для фиксированного $h \in \mathbb{R}$ в этой окрестности определена функция $\varphi(x) = df_x(h)$. Если эта функция дифференцируема в точке x_0 , то *вторым дифференциалом* функции f в точке x_0 называют функцию $d^2 f_{x_0} \colon \mathbb{R} \to \mathbb{R}$, $d^2 f_{x_0}(h) = d\varphi_{x_0}(h)$.

Из определения вытекает, что $d^2f_{x_0}(h)=\varphi'(x_0)h=(f'(x)h)'\big|_{x=x_0}h=f''(x_0)h^2$ или, в функциональной записи $d^2f_{x_0}=f''(x_0)dx^2$.

Определение. Точка x_0 называется точкой локального максимума (строго локального максимума) функции $f: E \to \mathbb{R}$, если x_0 внутренняя точка множества E и $\exists \delta > 0 \ \forall x \in B'_{\delta}(x_0)$: $f(x) \le f(x_0) \ (f(x) < f(x_0)).$

Точка x_0 называется точкой локального минимума (строго локального минимума) функции $f \colon E \to \mathbb{R}$, если x_0 внутренняя точка множества E и $\exists \delta > 0 \ \forall x \in B'_{\delta}(x_0) \colon f(x) \geqslant f(x_0) \ (f(x) > f(x_0))$.

Все точки локального максимума и локального минимума называются точками локального экстремума.

Теорема 7 (Ферма). Пусть $x_0 - m$ очка локального экстремума функции $f \colon E \to \mathbb{R}$. Если f имеет производную в точке x_0 , то $f'(x_0) = 0$.

 \blacktriangle Если x_0 — точка локального максимума f, то $\exists \delta > 0 \colon B_\delta(x_0) \subset E$ и $\forall x \in B'_\delta(x) \colon f(x) \leqslant f(x_0)$. Тогда $f(x) - f(x_0) \leqslant 0$ при $x \in B'_\delta(x_0)$ и, значит, $\frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$ при $x_0 < x < x_0 + \delta$, $\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$ при $x_0 - \delta < x < x_0$. Поскольку $\exists f'(x_0)$, то, с одной стороны, $f'(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0$, с другой — $f'(x_0) = \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$. Поэтому $f'(x_0) = 0$. Случай, когда x_0 — точка локального минимума f, рассматривается аналогично.

Теорема 8 (Ролль). Если функция $f:[a,b] \to \mathbb{R}$

- 1) непрерывна на [a,b],
- 2) дифференцируема на (a,b),
- 3) f(a) = f(b), $mo \exists c \in (a,b) \colon f'(c) = 0.$
- **A** По T Вейерштрасса существуют точки $x_s, x_i \in [a, b]$, что $f(x_i) \leqslant f(x) \leqslant f(x_s)$ для всех $x \in [a, b]$. Если $f(x_s) > f(a) = f(b)$, то положим $c = x_s$. Если $f(x_i) < f(a) = f(b)$, то положим $c = x_i$. В любом случае $c \in (a, b)$ и c — точка локального экстремума f, по T Ферма f'(c) = 0. Если $f(x_s) = f(x_i)$, то f — постоянна на [a,b] и любая точка $c \in (a,b)$ подходит.

Теорема 9 (Лагранж). Если функция $f:[a,b] \to \mathbb{R}$

- 1) непрерывна на [a,b],
- 2) дифференцируема на (a,b), $mo \ \exists c \in (a,b): f(b) - f(a) = f'(c)(b-a).$
- **A** Рассмотрим функцию $g(x) = f(x) \frac{f(b) f(a)}{b a}(x a)$. Такая функция непрерывна на [a, b], дифференцируема на (a,b) и g(a) = f(a) = g(b). По T Ролля $\exists c \in (a,b) \colon g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a} = 0$, T.e. f'(c)(b-a) = f(b) - f(a).

Теорема 10 (Коши). Если функции $f:[a,b] \to \mathbb{R}$ и $g:[a,b] \to \mathbb{R}$

- 1) непрерывны на [a,b],
- 2) дифференцируемы на (a,b),
- 3) $q'(x) \neq 0$ на (a, b),

mo $\exists c \in (a,b) : \frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$

\Delta Отметим, что $g(b) \neq g(a)$ (иначе по T Ролля $\exists c \in (a,b) \colon g'(c) = 0$). Рассмотрим функцию $h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(x) - g(a))$. Эта функция непрерывна на [a, b], дифференцируема на (a,b) и h(a)=h(b)=f(a). По T Ролля $\exists c\in (a,b)\colon\ h'(c)=f'(c)-rac{f(b)-f(a)}{g(b)-g(a)}g'(c)=0.$ Так как по условию $g'(c) \neq 0$, то $\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$.

Следствия теоремы Лагранжа о среднем

 $Cnedcmeue\ 1$ (условия монотонности). Пусть функция $f\colon I\to\mathbb{R}$ непрерывна на промежутке I и дифференцируема во всех внутренних точках I. Тогда

- 1) f нестрого возрастает на $I \Leftrightarrow f'(x) \geqslant 0$ для любой внутренней точки $x \in I$;
- 2) f нестрого убывает на $I \Leftrightarrow f'(x) \leqslant 0$ для любой внутренней точки $x \in I$;

- 3) f постоянна на $I \Leftrightarrow f'(x) = 0$ для любой внутренней точки $x \in I$;
- 4) f'(x) > 0 для любой внутренней точки $x \in I$, то f строго возрастает на I;
- 5) f'(x) < 0 для любой внутренней точки $x \in I$, то f строго убывает на I.

▲ Докажем пункт 1.

- (\Rightarrow) Пусть f нестрого возрастает на I, x_0 внутренняя точка I, т.е $\exists \delta > 0$: $B_\delta(x_0) \subset I$. Тогда $\frac{f(x) f(x_0)}{x x_0} \geqslant 0$ для всех $x \in B'_\delta(x_0)$. Следовательно, $f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} \geqslant 0$. (\Leftarrow) Пусть $x, y \in I, x < y$. По Т Лагранжа f(y) f(x) = f'(c)(y x) для некоторой
- (\Leftarrow) Пусть $x, y \in I, x < y$. По Т Лагранжа f(y) f(x) = f'(c)(y x) для некоторой точки $c \in (x,y)$. Поскольку c внутренняя точка I, значение $f'(c) \geqslant 0$ и, значит, $f(x) \leqslant f(y)$. Следовательно, f нестрого возрастает на I.

Пункт 2 доказывается аналогично. Пункт 3 следует из предыдущих двух утверждений. ■

Следствие 2 (условия экстремума). Пусть функция f определена на интервале (a,b) и $x_0 \in (a,b)$. Пусть также f дифференцируема на $(a,b) \setminus \{x_0\}$ и непрерывна в точке x_0 . Тогда

- 1) если $f'(x) \ge 0$ на (a, x_0) и $f'(x) \le 0$ на (x_0, b) , то x_0 точка локального максимума f (строгого, если неравенства для производной строгие);
- 2) если $f'(x) \leq 0$ на (a, x_0) и $f'(x) \geq 0$ на (x_0, b) , то x_0 точка локального минимума f (строгого, если неравенства для производной строгие).
- ▲ Если функция f удовлетворяет условиям пункта 1, то по следствию f нестрого возрастает на $(a,x_0]$ и нестрого убывает на $[x_0,b)$. Так что $f(x) \le f(x_0)$ на $(a,b) \setminus \{x_0\}$ и, значит, x_0 точка локального максимума f. Если неравенства для производной строгие, то возрастание/убывание строгое. Так что $f(x) < f(x_0)$ на $(a,b) \setminus \{x_0\}$ и, значит, x_0 точка строгого локального максимума f.

Пункт 2 доказывается аналогично. ■

Следствие 3 (о свойстве производной). Пусть функция f определена на полуинтервале $[x_0,b)$ и дифференцируема на (x_0,b) . Если $f(x_0)=f(x_0+0)$ (т.е. f непрерывна в точке x_0 справа) и $\exists f'(x_0+0)$ (предел производной справа), то $\exists f'_+(x_0)=f'(x_0+0)$. Аналогично для левой производной.

 \blacktriangle По Т Лагранжа для каждого $x \in (x_0,b)$ имеем $\frac{f(x)-f(x_0)}{x-x_0} = f'(c(x))$, где $x_0 < c(x) < x$. Так как $\lim_{x \to x_0 + 0} c(x) = x_0$ и $c(x) \neq x_0$, то по Т о замене переменной в пределе существует

$$f'_{+}(x_0) = \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{c \to x_0 + 0} f'(c) = f'(x_0 + 0).$$

Случай левой производной рассматривается аналогично.

Следствие 4. Пусть функция f дифференцируема на интервале (a,b) с $f' \neq 0$. Тогда f' сохраняет знак на (a,b).

A Пусть $x, y \in (a, b), x \neq y$. По Т Лагранжа f(y) - f(x) = f'(c)(y - x) для некоторой точки c, лежащей между x и y. Так как $f'(c) \neq 0$, то $f(y) \neq f(x)$. Значит, f инъективна на (a, b). Отметим также, что f непрерывна на (a, b) как дифференцируемая функция.

Покажем, что функция f строго монотонна на (a,b). Если это не так, то найдутся точки $x, y, z \in (a,b), x < z < y$, такие что либо $(f(x) \leqslant f(z)$ и $f(z) \geqslant f(y))$, либо $(f(x) \geqslant f(z)$ и $f(z) \leqslant f(y))$. Рассмотрим первый случай. Применяя T о промежуточных значениях к f на отрезках [x,z] и [z,y], заключаем, что, например, значение $s=\max\{f(x),f(y)\}$ принимается не менее двух раз; противоречие с инъективностью. \blacksquare

Правила Лопиталя

Теорема 11 (о неопределенности $\frac{0}{0}$). Пусть функции $f:(a,b)\to\mathbb{R},\ g:(a,b)\to\mathbb{R}$

- 1) дифференцируемы на (a,b),
- 2) $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} g(x) = 0$,
- 3) $q'(x) \neq 0$ на (a,b),

4) $\exists \lim_{x \to a+0} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}.$ Тогда существует

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$

\Delta Доопределим функции в точке a, положив f(a) = g(a) = 0. Тогда $\forall x \in (a,b)$ по T Коши о среднем

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f'(c)}{g'(c)},$$

где $c \in (a, x), c = c(x)$.

Так как $\lim_{x\to a+0}c(x)=a$ и $c(x)\neq a$, то по T о замене переменной в пределе $\lim_{x\to a+0}\frac{f(x)}{g(x)}=\lim_{c\to a+0}\frac{f'(c)}{g'(c)}$.

Теорема 12 (о неопределенности $\frac{\infty}{\infty}$). Пусть функции $f:(a,b)\to\mathbb{R},\ g:(a,b)\to\mathbb{R}$

- 1) дифференцируемы на (a,b),
- 2) $\lim_{x \to a+0} f(x) = \pm \infty$, $\lim_{x \to a+0} g(x) = \pm \infty$, 3) $g'(x) \neq 0$ ha (a,b),
- 4) $\exists \lim_{\substack{x \to a+0 \ g'(x)}} \frac{f'(x)}{g'(x)} \in \overline{\mathbb{R}}.$ Torda cywecmsyem

$$\lim_{x \to a+0} \frac{f(x)}{g(x)} = \lim_{x \to a+0} \frac{f'(x)}{g'(x)}.$$

A Так как $\lim_{x\to a+0}g(x)=\pm\infty$, то можно дополнительно предположить, что $g(x)\neq 0$ на (a,b). Пусть $x, x_0 \in (a, b), x < x_0$, тогда по Т Коши о среднем $\frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}$ для некоторой точки $c \in (x, x_0)$. Умножая это равенство на $\frac{g(x) - g(x_0)}{g(x)}$ и группируя члены, получим

$$\frac{f(x)}{g(x)} = \frac{f(x_0)}{g(x)} + \left(1 - \frac{g(x_0)}{g(x)}\right) \frac{f'(c)}{g'(c)}.$$
 (2)

Cлучай I. Пусть $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = A \in \mathbb{R}$, тогда имеем оценку

$$\left| \frac{f(x)}{g(x)} - A \right| \le \left| \frac{f(x_0)}{g(x)} \right| + \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f'(c)}{g'(c)} \right| \left| \frac{g(x_0)}{g(x)} \right|.$$

Для произвольного $\varepsilon>0$ найдем такое $\eta>0$, что $\left|\frac{f'(c)}{g'(c)}-A\right|<\frac{\varepsilon}{3}$ для $a< c< a+\eta$. Фиксируем $x_0 \in (a, a + \eta)$ и положим $\delta_1 = x_0 - a > 0$. Далее, найдем $\delta_2 > 0$, что $|g(x)| > \frac{3}{\varepsilon} |f(x_0)|$ для $a < x < a + \delta_2$ и найдем $\delta_3 > 0$, что $|g(x)| > \frac{3}{\varepsilon} (|A| + \frac{\varepsilon}{3}) |g(x_0)|$ для $a < x < a + \delta_3$.

Положим $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Тогда для $a < x < a + \delta$ имеем

$$\left| \frac{f(x)}{g(x)} - A \right| \leqslant \left| \frac{f(x_0)}{g(x)} \right| + \left| \frac{f'(c)}{g'(c)} - A \right| + \left| \frac{f'(c)}{g'(c)} \right| \left| \frac{g(x_0)}{g(x)} \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \left(|A| + \frac{\varepsilon}{3} \right) \frac{\varepsilon}{3|A| + \varepsilon} = \varepsilon.$$

Следовательно, $\lim_{x\to a+0} \frac{f(x)}{g(x)} = A$.

Случай ІІ. Пусть $\lim_{x\to a+0} \frac{f'(x)}{g'(x)} = \pm \infty$. По уже доказанному существует $\lim_{x\to a+0} \frac{g(x)}{f(x)} = \lim_{x\to a+0} \frac{g'(x)}{f'(x)} = 0$. Значит, $\lim_{x\to a+0} \left|\frac{f(x)}{g(x)}\right| = +\infty$. Из (2) и равенств $\lim_{x\to a+0} \frac{g(x_0)}{g(x)} = \lim_{x\to a+0} \frac{f(x_0)}{g(x)} = 0$ следует, что знак дроби $\frac{f(x)}{g(x)}$ совпадает со знаком $\frac{f'(c)}{g'(c)}$ на некотором интервале (a,d). Поэтому $\lim_{x\to a+0} \frac{f(x)}{g(x)} = \lim_{x\to a+0} \frac{f'(x)}{g'(x)} = \pm \infty$.

Следствие. Правила Лопиталя верны также и при $x \to \pm \infty$.

lacktriangle Сведем случай $a=-\infty$ к уже доказанному. Без ограничения можно считать, что b<0. Рассмотрим функции $\varphi \colon (0, -\frac{1}{b}) \to \mathbb{R}, \ \varphi(t) = f(-\frac{1}{t})$ и $\psi \colon (0, -\frac{1}{b}) \to \mathbb{R}, \ \psi(t) = g(-\frac{1}{t})$. Эти функции дифференцируемы на $(0,-\frac{1}{b})$ и $\psi'(t)=g'(-\frac{1}{t})\frac{1}{t^2}\neq 0$. По T о замене переменной в пределе $\lim_{t\to +0} \varphi(t) = \lim_{x\to -\infty} f(x)$, $\lim_{t\to +0} \psi(t) = \lim_{x\to -\infty} g(x)$ и существует $\lim_{t\to +0} \frac{\varphi'(t)}{\psi'(t)} = \lim_{x\to -\infty} \frac{f'(x)}{g'(x)}$. Осталось применить T11 (T12) для a=0. Определение. Пусть функция $f \colon E \to \mathbb{R}$ имеет $f^{(n)}(x_0) \in \mathbb{R}$, тогда равенство

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + r_n(x)$$

называется формулой Тейлора функции f в точке x_0 . При этом $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ называется многочленом Тейлора, $r_n(x) = f(x) - P_n(x)$ — остаточным членом.

 Π ример. Если $P(x) = \sum_{k=0}^{n} a_k (x-x_0)^k$, то $P^{(m)}(x) = \sum_{k=m}^{n} \frac{k!}{(k-m)!} a_k (x-x_0)^{k-m}$, $0 \leqslant m \leqslant n$, поэтому

 $P^{(m)}(x_0)=m!a_m$. Таким образом, $P(x)=\sum\limits_{k=0}^n rac{P^{(k)}(x_0)}{k!}(x-x_0)^k$ — формула Тейлора многочлена P.

Теорема 13 (остаточный член в форме Пеано). Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}, \ mor\partial a$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n), \quad x \to x_0,$$

m.e. $r_n(x) = o((x - x_0)^n) \ npu \ x \to x_0$.

▲ Пусть $P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$, тогда $P^{(k)}(x_0) = f^{(k)}(x_0)$, $0 \leqslant k \leqslant n$. Поэтому для остаточного члена $r_n(x) = f(x) - P_n(x)$ выполнено $r_n(x_0) = r'_n(x_0) = \dots = r_n^{(n)}(x_0) = 0$. Используя правило Лопиталя, получим

$$\lim_{x \to x_0} \frac{r_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{r'_n(x)}{n(x - x_0)^{n-1}} = \dots = \lim_{x \to x_0} \frac{r_n^{(n-1)}(x)}{n!(x - x_0)}$$

и по определению производной также $\lim_{x\to x_0}\frac{r_n^{(n-1)}(x)}{n!(x-x_0)}=\frac{r_n^{(n)}(x_0)}{n!}=0$. Следовательно, $r_n(x)=o((x-x_0)^n)$ при $x\to x_0$.

Следствие (условия экстремума). Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$ и $f'(x_0) = \ldots = f^{(n-1)}(x_0) = 0$, а $f^{(n)}(x_0) \neq 0, n \in \mathbb{N}$. Тогда

- 1) если n четно и $f^{(n)}(x_0) < 0$, то x_0 точка строгого локального максимума f;
- 2) если n четно и $f^{(n)}(x_0) > 0$, то x_0 точка строгого локального минимума f;
- 3) если n нечетно, то f не имеет локального экстремума в точке x_0 .

▲ По предыдущей теореме

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n) = \left(\frac{f^{(n)}(x_0)}{n!} + \alpha(x)\right) (x - x_0)^n,$$

где $\alpha(x) = o(1)$ при $x \to x_0$. Найдется такое $\delta > 0$, что $|\alpha(x)| < \left|\frac{f^{(n)}(x_0)}{n!}\right|$ для всех $x \in B'_{\delta}(x_0)$, поэтому знак выражения $\frac{f^{(n)}(x_0)}{n!} + \alpha(x)$ совпадает в $B'_{\delta}(x_0)$ со знаком $f^{(n)}(x_0)$. Если n четно, то всегда $(x-x_0)^n > 0$. Поэтому в случае 1 $f(x) < f(x_0)$ при всех $x \in B'_{\delta}(x_0)$, и,

Если n четно, то всегда $(x-x_0)^n>0$. Поэтому в случае 1 $f(x)< f(x_0)$ при всех $x\in B'_\delta(x_0)$, и, значит, x_0 — точка строго локального максимума f; в случае 2 $f(x)>f(x_0)$ при всех $x\in B'_\delta(x_0)$ и, значит, x_0 — точка строго локального минимума f.

Если n нечетно, то знак $f(x)-f(x_0)$ в $B'_{\delta}(x_0)$ зависит от знака $x-x_0$ и, значит, f не имеет экстремума в точке x_0 .

Теорема 14 (остаточный член в форме Лагранжа). Пусть функция $f:(a,b) \to \mathbb{R}$ имеет (n+1)-ю производную на интервале (a,b) и пусть $a < x_0 < b$. Тогда для любого $x \in (a,b)$ существует точка c, лежащая между x_0 и x, что

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1},$$

m.e.
$$r_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-x_0)^{n+1}$$
.

\Delta Зафиксируем точки x_0 и $x \in (a,b)$. Пусть для определенности $x > x_0$. Для функций

$$r(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k, \qquad \varphi(x) = (x - x_0)^{n+1}.$$

точка x_0 является нулем порядка n, в том смысле, что

$$r(x_0) = r'(x_0) = \dots = r^{(n)}(x_0) = 0,$$
 $\varphi(x_0) = \varphi'(x_0) = \dots = \varphi^{(n)}(x_0) = 0.$

Отметим, что производные φ' , φ'' ,..., $\varphi^{(n+1)}$ не обнуляются на (x_0, x) . Это позволяет n+1 раз воспользоваться Т Коши о среднем: применяя ее к функциям r и φ на отрезке $[x_0, x]$, имеем

$$\frac{r(x)}{\varphi(x)} = \frac{r(x) - r(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{r'(c_1)}{\varphi'(c_1)}$$

для некоторой точки $c_1 \in (x_0, x)$. Далее, применяя теорему к сужениям функций r' и φ' на отрезок $[x_0, c_1]$, имеем

$$\frac{r'(x)}{\varphi'(x)} = \frac{r'(x) - r'(x_0)}{\varphi'(x) - \varphi'(x_0)} = \frac{r''(c_2)}{\varphi''(c_2)}$$

для некоторой точки $c_2 \in (x_0, c_1)$ и т.д.

В итоге получим точки $c_1, \dots, c_{n+1}, x_0 < c_{n+1} < c_n < \dots < c_1 < x$, что

$$\frac{r(x)}{\varphi(x)} = \frac{r'(c_1)}{\varphi'(c_1)} = \dots = \frac{r^{(n+1)}(c_{n+1})}{\varphi^{(n+1)}(c_{n+1})}.$$

В частности, полагая $c=c_{n+1}$, имеем $c\in(x_0,x)$ и $\frac{r(x)}{\varphi(x)}=\frac{r^{(n+1)}(c)}{\varphi^{(n+1)}(c)}$, что эквивалентно

$$\frac{f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k}{(x - x_0)^{n+1}} = \frac{f^{(n+1)}(c)}{(n+1)!}$$

и требуемое равенство установлено.

Основные разложения

Формулы разложений в окрестности нуля e^x ,...

Теорема 15 (о единственности разложения). Пусть функция f определена в некоторой проколотой окрестности точки x_0 и

$$f(x) = a_0 + a_1(x - x_0) + \ldots + a_n(x - x_0)^n + o((x - x_0)^n),$$

$$f(x) = b_0 + b_1(x - x_0) + \ldots + b_n(x - x_0)^n + o((x - x_0)^n)$$

 $npu \ x \to x_0$. Torda $a_0 = b_0, \ldots, a_n = b_n$.

▲ Вычитая из второго равенства первое, имеем:

$$(b_0 - a_0) + (b_1 - a_1)(x - x_0) + \ldots + (b_n - a_n)(x - x_0)^n = o((x - x_0)^n).$$

Переходя в нем к пределу при $x \to x_0$, получим $b_0 = a_0$. Учитывая это, делим полученное вычитанием равенство на $(x - x_0)$ и снова переходим к пределу при $x \to x_0$, получим $b_1 = a_1$ и т.д.

Следствие 1. Пусть $\exists f^{(n)}(x_0) \in \mathbb{R}$ и $f(x) = \sum_{k=0}^n a_k (x-x_0)^k + o((x-x_0)^n), x \to x_0$. Тогда $a_k = \frac{f^{(k)}(x_0)}{k!}, \ 0 \leqslant k \leqslant n$.

Cледствие 2. Пусть $\exists f^{(n+1)}(x_0) \in \mathbb{R}$ и $f'(x) = \sum_{k=0}^n a_k(x-x_0)^k + o((x-x_0)^n), x \to x_0$. Тогда

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x - x_0)^{k+1} + o((x - x_0)^{n+1}), \quad x \to x_0.$$

 \blacktriangle По предыдущему следствию $a_k = \frac{(f')^{(k)}(x_0)}{k!}, \ 0 \leqslant k \leqslant n,$ и, значит, $f^{(k+1)}(x_0) = a_k k!$. По Т13

$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{f^{(k+1)}(x_0)}{(k+1)!} (x - x_0)^{k+1} + o((x - x_0)^{n+1}), \quad x \to x_0.$$

Откуда
$$f(x) = f(x_0) + \sum_{k=0}^{n} \frac{a_k}{k+1} (x-x_0)^{k+1} + o((x-x_0)^{n+1}), x \to x_0. \blacksquare$$

Выпуклые функции

Определение. Пусть f определена на конечном или бесконечном интервале (a,b). Функция f называется выпуклой (выпуклой вниз) на (a,b), если $\forall x, y \in (a,b), x \neq y$ и $\forall t \in (0,1)$:

$$f((1-t)x + ty) \leqslant (1-t)f(x) + tf(y).$$

Если неравенство строгое, то говорят, что f строго выпуклая на (a,b). Функция f называется вогнутой (выпуклой вверх) на (a,b), если функция (-f) выпуклая на (a,b). Аналогично определяется строгая вогнутость.

Геометрический смысл. Каждая точка хорды с концами (x, f(x)) и (y, f(y)) может быть записана в виде $((1-t)x+ty, (1-t)f(x)+tf(y)), t \in [0,1]$. Тогда условие (строгой) выпуклости функции f на (a,b) означает, что график f лежит не выше (строго ниже) любой его хорды (исключая концы).

Лемма (о трех хордах). Пусть функция f определена на интервале (a,b). Тогда следующие условия эквивалентны:

- 1) функция f выпукла на (a,b);
- 2) для любых $x, y, z \in (a, b), x < z < y,$ выполнено

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(x)}{y - x};\tag{1}$$

3) для любых $x, y, z \in (a, b), x < z < y$, выполнено

$$\frac{f(y) - f(x)}{y - x} \leqslant \frac{f(y) - f(z)}{y - z};\tag{2}$$

4) для любых $x, y, z \in (a, b), x < z < y,$ выполнено

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}.$$
(3)

Если в (1)–(3) знак неравенства <, то каждое из полученных условий эквивалентно строгой выпуклости f на (a,b).

A Пусть $x, y \in (a, b), x < y$. Точка $z \in (x, y) \Leftrightarrow z = (1 - t)x + ty$ для единственного $t \in (0, 1)$. Перепишем (1) в виде

$$(y-x)(f(z)-f(x)) \le (z-x)(f(y)-f(x)).$$

Подставляя сюда z-x=t(y-x) и приводя подобные слагаемые, получим, что (1) эквивалентно неравенству $f(z) \leq (1-t)f(x)+tf(y)$, т.е. условию выпуклости функции f на (a,b). Рассуждения остаются верными, если в них \leq заменить на строгое неравенство <.

Аналогично устанавливается, что каждое из условий (3)–(4) эквивалентно (1). ■

Теорема 16. Если функция f выпукла на интервале (a,b), то она непрерывна и в каждой точке $x_0 \in (a,b)$ существуют односторонние производные $f'_-(x_0)$ и $f'_+(x_0)$, причем $f'_-(x_0) \leqslant f'_+(x_0)$.

Кроме того, если a < x < y < b, то $f'_{+}(x) \leqslant f'_{-}(y)$, а для строго выпуклых функций $f'_{+}(x) < f'_{-}(y)$.

▲ Фиксируем $x \in (a,b)$ и рассмотрим на множестве $(a,b) \setminus \{x\}$ функцию $\varphi(t) = \frac{f(t) - f(x)}{t - x}$. Если t_1 , $t_2 \in (a,b) \setminus \{x\}$, $t_1 < t_2$, то $\varphi(t_1) \leqslant \varphi(t_2)$ и, значит, функция φ нестрого возрастает на $(a,b) \setminus \{x\}$. Действительно, если $x < t_1 < t_2$, то это следует из неравенства (1), если $t_1 < t_2 < x$, то — из неравенства (2), а если $t_1 < x < t_2$, то — из неравенства (3). По Т о пределах монотонной функции существуют конечные $\lim_{t \to x + 0} \varphi(t)$ и $\lim_{t \to x - 0} \varphi(t)$, т.е. $f'_+(x)$ и $f'_-(x)$. Причем, $f'_+(x) \leqslant f'_-(x)$.

Из существования в каждой точке интервала (a,b) обеих односторонних производных вытекает непрерывность функции f на (a,b).

Пусть $x, y, z \in (a, b)$ и x < z < y. Переходя в неравенстве (1) к пределу при $z \to x + 0$ и в (2) к пределу при $z \to y - 0$, получим

$$f'_{+}(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'_{-}(y).$$

Наконец, если функция f строго выпукла, то при убывании t дробь $\varphi(t) = \frac{f(t) - f(x)}{t - x}$ строго убывает и, значит, левое неравенство строгое. Так что $f'_+(x) < f'_-(y)$.

Теорема 17. Пусть функция f дифференцируема на интервале (a,b), тогда

- 1) f выпукла на $(a,b) \Leftrightarrow f'$ нестрого возрастает на (a,b);
- 2) f строго выпукла на $(a,b) \Leftrightarrow f'$ строго возрастает на (a,b).
- \blacktriangle (\Rightarrow) Вытекает из T16.
- (\Leftarrow) Пусть f' нестрого возрастает на (a,b) и $x, y, z \in (a,b), x < z < y$. По Т Лагранжа о среднем существует точка $c_1 \in (x,z)$, что $f(z) f(x) = f'(c_1)(z-x)$ и существует точка $c_2 \in (z,y)$, что $f(y) f(z) = f'(c_2)(y-z)$. Так как $c_1 < c_2$, то $f'(c_1) \leqslant f'(c_2)$ и, значит,

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}.$$

По лемме функция f выпукла на (a,b). Если f' строго возрастает на (a,b), то последние два неравенства строгие и, значит, функция f строго выпукла на (a,b).

Cледствие. Пусть f дважды дифференцируема на (a,b), тогда

- 1) f выпукла на $(a,b) \Leftrightarrow f'' \geqslant 0$ на (a,b);
- 2) f'' > 0 на $(a, b) \Rightarrow f$ строго выпукла на (a, b).

Теорема 18. Если функция f выпукла на интервале (a,b), то она дифференцируема во всех точках (a,b), за исключением не более чем счетного множества.

A По Т16 на (a,b) определена функция $g(x)=f'_-(x)$, причем g нестрого возрастает на (a,b). По Т о разрывах монотонной функции g может иметь не более чем счетное множество точек разрыва и эти точки являются точками разрыва I-го рода.

Покажем, что в точках непрерывности g функция f дифференцируема. В самом деле, согласно T16, если $x_0 < x$, то $f'_-(x_0) \leqslant f'_+(x_0) \leqslant f'_-(x)$ откуда

$$0 \leqslant f'_{+}(x_0) - f'_{-}(x_0) \leqslant f'_{-}(x) - f'_{-}(x_0).$$

Если $g=f'_-$ непрерывна в точке x_0 , то разность $f'_-(x)-f'_-(x_0)$ выбором точки x можно сделать сколь угодно малой. Поэтому $f'_-(x_0)=f'_+(x_0)$.