Appendices: Non-spawner covariate tests

Table A1. Covariate tests for the October-March catch (N_t) . M is the base model with prior season October-March catch (N_{t-1}) and July-September catch two seasons prior (S_{t-2}) as the covariates. To the base model, the environmental covariates are added. ns-SST is nearshore (0-80km) and r-SST is regional (0-160km) SST. Similarly, ns-Chl is nearshore chlorophyll. The models are nested sets, e.g. 1, 2a, 3a and 1, 2b, 3b.

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
catch only models 1983-2014 data						
null model: $ln(N_t) = ln(N_{t-1}) + \epsilon_t$	32		0.999	92.9	0.999	0.256
base (M): 1. $ln(N_t) = \alpha + s(ln(N_{t-1})) + \epsilon_t$	29.1	45.9	0.824	87.7	0.955	0.323
Precipitation						
$V_t = \text{Jun-Jul Precipitation} - \text{satellite (S1)}$						
2a. $ln(N_t) = M + \beta V_t$	28.1	44	0.824	90.5	0.99	0.353
$3a. \ln(N_t) = M + s(V_t)$	26.9	46.1	0.791	91.5	1.037	0.354
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	44.7	0.819	90.1	0.989	0.315
3b. $ln(N_t) = M + s(V_{t-1})$	26.8	44.2	0.804	92.8	1.021	0.337
$V_t = \text{Jun-Jul Precipitation} - \text{land gauges (S1)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	54.1	0.745	84.1†	0.964	0.351
$3a. \ln(N_t) = M + s(V_t)$	26.9	59.6	0.685	82.1††	$0.906 \ddagger$	0.246‡‡‡
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	45.2	0.815	89.8	1.01	0.339
3b. $ln(N_t) = M + s(V_{t-1})$	27	43.2	0.814	93	1.05	0.356
$V_t = \text{Apr-May Precipitation - satellite (S2)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	44	0.823	90.5	0.968	0.36
$3a. \ln(N_t) = M + s(V_t)$	26.8	41.9	0.819	94.2	0.996	0.457
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	44.5	0.82	90.2	0.958	0.374
3b. $ln(N_t) = M + s(V_{t-1})$	26.8	45.4	0.794	92.1	0.954	0.381
$V_t = \text{Apr-May Precipitation - land gauges (S2)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	47.4	0.799	88.5	0.913	0.368
$3a. \ln(N_t) = M + s(V_t)$	26.2	46.1	0.781	93	0.93	0.389
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	44	0.824	90.5	0.965	0.314
3b. $ln(N_t) = M + s(V_{t-1})$	26.1	42.1	0.808	95.4	0.994	0.359
Sea surface temperature						
$V_t = \text{Mar-May r-SST (S5)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	46.4	0.805	89.1	0.961	0.34
3a. $ln(N_t) = M + s(V_t)$	26.7	46.8	0.784	91.4	0.961	0.423
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	50	0.778	86.9	0.941	0.475
3b. $ln(N_t) = M + s(V_{t-1})$	26.6	50.9	0.751	89.1	0.928	0.398

Model	Resid.	Adj. R^2	RMSE	AICc	LOOCV RMSE	LOOCV MdAE
$\overline{V_t} = \text{Oct-Dec ns-SST (L1)}$						
$2a. \ln(N_t) = M + \beta V_t$	28.1	44.9	0.817	90	0.981	0.416
$3a. \ln(N_t) = M + s(V_t)$	27.1	43.9	0.81	92.4	0.99	0.434
2b. $ln(N_t) = M + \beta V_{t-1}$	28.1	46.3	0.806	89.2	0.964	$0.289\ddagger\ddagger$
3b. $ln(N_t) = M + s(V_{t-1})$	27.1	45.3	0.8	91.6	1.019	0.324
Upwelling						
$V_t = \text{Jun-Sep SST-derived UPW (L2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	54.7	0.741	83.8^{\dagger}	0.913	0.447
$3a. ln(N_t) = M + s(V_t)$	26.2	56.8	0.699	86	1.017	0.456
$2b. ln(N_t) = M + \beta V_{t-1}$	28.1	44	0.824	90.5	1.007	0.322
3b. $ln(N_t) = M + s(V_{t-1})$	26.1	47.2	0.772	92.4	1.084	0.35
$V_t = \text{Jun-Sep ns-SST (L2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	52.3	0.76	85.4^{\dagger}	0.914	0.432
$3a. ln(N_t) = M + s(V_t)$	26.6	52.1	0.742	88.4	0.965	0.519
$2b. \ ln(N_t) = M + \beta V_{t-1}$	28.1	45.6	0.812	89.5	0.97	0.333
3b. $ln(N_t) = M + s(V_{t-1})$	26.6	44.4	0.798	93.2	0.995	0.307‡
$V_t = \text{Jun-Sep Bakun-UPW (L2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	46.5	0.805	89	0.948	0.37
$3a. ln(N_t) = M + s(V_t)$	26.6	47.7	0.775	91.1	0.945	0.309
$2b. ln(N_t) = M + \beta V_{t-1}$	28.1	44.9	0.817	90	0.951	0.342
3b. $ln(N_t) = M + s(V_{t-1})$	26.7	45.4	0.794	92.3	0.965	0.392
Ocean climate						
$V_t = 2.5\mbox{-year}$ average r-SST - AVHRR (A1)						
$2a. ln(N_t) = M + \beta V_t$	28.1	56.5	0.726	$82.4\dagger\dagger$	$0.844\ddagger\ddagger$	0.324
$3a. ln(N_t) = M + s(V_t)$	26.9	64.5	0.642	78.1††	0.758‡‡‡	0.351
$V_t = 2.5\text{-year}$ average r-SST - ICOAD (A1)						
$2a. ln(N_t) = M + \beta V_t$	28.1	58.9	0.706	80.6 † †	$0.814\ddagger\ddagger$	0.436
$3a. ln(N_t) = M + s(V_t)$	27.3	61.5	0.673	79.9††	0.799‡‡	0.311
$V_t = \text{ONI (A2)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	48.5	0.79	87.8	0.916	0.453
$3a. ln(N_t) = M + s(V_t)$	27.5	48	0.785	89.2	0.929	0.44
$V_t = \text{Sep-Nov DMI (A3)}$						
$2a. ln(N_t) = M + \beta V_t$	28.1	48.8	0.787	87.7	0.978	0.425
$3a. ln(N_t) = M + s(V_t)$	25.8	48.9	0.754	92.2	1.119	0.493
$2b. \ ln(N_t) = M + \beta V_{t-1}$	28.1	44.7	0.819	90.1	0.95	0.336
3b. $ln(N_t) = M + s(V_{t-1})$	26	44.3	0.791	94.4	0.947	0.339
. 1 1 11 1000 0014 1						
catch only models 1998-2014 data	1 17		0.420	00	0.420	0.199
null model: $ln(N_t) = ln(N_{t-1}) + \epsilon_t$	17 14	26.5	0.432	$\frac{22}{22}$	0.432	0.133
base (M): 1. $ln(N_t) = \alpha + p(ln(N_{t-1})) + \epsilon_t$	14	26.5	0.334	22.3	0.422	0.369

		A 1.				
	Resid.	Adj.			LOOCV	LOOCV
Model	df	R^2	RMSE	AICc	RMSE	MdAE
Chlorophyll						
$V_t = \text{Jul-Sep ns-CHL (L3)}$						
$2a. ln(N_t) = M + \beta V_t$	13	24	0.327	25.7	0.441	$0.344 \ddagger$
$3a. ln(N_t) = M + p(V_t)$	12	18.6	0.325	30.5	0.496	0.333‡
2b. $ln(N_t) = M + \beta V_{t-1}$	13	31.5	0.311	24	0.418	$0.348 \ddagger$
3b. $ln(N_t) = M + p(V_{t-1})$	12	25.8	0.311	28.9	1.616	0.362
$V_t = \text{Oct-Dec ns-CHL (L3)}$						
2a. $ln(N_t) = M + \beta V_t$	13	24	0.327	25.7	0.445	0.336‡
$3a. ln(N_t) = M + p(V_t)$	12	35.1	0.29	26.6	$0.391 \ddagger$	0.217‡‡‡
2b. $ln(N_t) = M + \beta V_{t-1}$	13	45.3	0.277	$20.1\dagger$	$0.364\ddagger\ddagger$	0.235‡‡‡
3b. $ln(N_t) = M + p(V_{t-1})$	12	40.8	0.277	25.1	0.384‡	0.278‡‡‡

Notes: LOOCV = Leave one out cross-validation. RMSE = root mean square error. MdAE = median absolute error. AICc = Akaike Information Criterion corrected for small sample size. \dagger and $\dagger\dagger$ = AICc greater than 2 and greater than 5 below model M (base catch model). \ddagger , $\ddagger\ddagger$, and $\ddagger\ddagger$ = LOOCV RMSE 5%, 10% and 20% below model M, respectively. t indicates current season (Jul-Jun) and t-1 is prior season. Thus a Jan-Mar covariate with t-1 would be in the same calendar year as the Jul-Sep catch, though in a prior fishing season. With the exception that for covariates that are calendar year (Jan-Dec) or multiyear, t is the current calendar year.