18MAB204T - Probability & Queueing Theory

UNIT I - Random Variables and Statistical Averages

MULTIPLE CHOICE QUESTIONS

- 1. The height of persons in a country is a random variable of the type
 - (a) Continuous (b) Discrete
- (c) Neither discrete nor continuous
- (d) Continuous as well as discrete
- $Lt \ F(x) = \underline{\hspace{1cm}}$
 - (a) 0
- (b) 2
- (c) 1
- (d) 1
- 3. A random variable X has the following probability function:

x	0	1	2	3	4
A		21			'
P(x)	k	2k	5k	7k	9k

The value of k =

- (a) $\frac{2}{24}$
- 21 (b)
 - (c) ₁₂
- (d)

- 4. The probability density function of a continuous random variable is $f(x) = ce^{-|x|}; -\infty < x < \infty$ then the value of $c = \underline{\hspace{1cm}}$
 - (a) $\frac{1}{2}$ (b) $\frac{1}{4}$
- (c) $\frac{3}{4}$
- 5. If X is a random variable which can take only non negative values, then
 - (a) $E(X^2) = [E(X)]^2$
- (b) $E(X^2) \ge [E(X)]^2$
- (c) $E(X^2) \leq [E(X)]^2$
- (d) None of the above
- 6. If c is a constant (non random variable), then E(c) is
 - (a) 0
- (b) 1
- (c) cf(c)
- 7. If $f(x) = \frac{1}{10}$; x = 10 then E(x) is
 - (a) 0
- (b) 2
- (c) 1
- (d) 1

- 8. var(4x + 8) is
 - (a) 12.var(x)
- (b) 4.var(x) + 8
- (c) 16.var(x)
- (d) 16.var(x) + 8
- 9. Family size can be represented by the random variable x. determine the average family size

X	2	3	4	5
P(x)	0.17	0.47	0.26	0.10

(a) 2.94

(b) 3.00

(c) 3.29

(d) 3.86

10. If X is a random variable and r is an integer, then $E(X^r)$ represents

(a) r^{th} central moment

(b) r^{th} factorial moment

(c) r^{th} raw moment

(d) none of the above

11. If random variable x has the p.d.f $f(x) = \begin{cases} 3x; \ 0 < x < 1 \\ 0; \ otherwise \end{cases}$, then the p.d.f of $y = 4x + 3$ is						
(a) $\frac{3}{4}(y-3)$ (b) $\frac{3}{16}(y-3)$ (c) $\frac{1}{4}(y-3)$ (d) $\frac{3}{2}(y-3)$						
12. If the exponential distribution is given as $f(x) = e^{-x}$; $0 \le x \le \infty$, then the mean of the distribution is						
(a) 1 (b) 0 (c) 2 (d) - 1						
13. The expectation of the number on a die when thrown						
(a) 1 (b) $\frac{7}{2}$ (c) 3 (d) 2						
14. A coin is tossed until a head appears. What is the expectation of the number of tosses required?						
(a) 2 (b) 1 (c) 4 (d) 5						
15. A random variable x has the p.d.f given by $f(x) = \begin{cases} 2e^{-2x}; & x \ge 0 \\ 0; & x < 0 \end{cases}$, then the m.g.f is						
(a) $\frac{2}{2-t}$ (c) — $2(2-t)^{-3}$ (d) $3(3-t)^{-2}$ (b) $3(3-t)^{-2}$						
16. If a random variable x has the p.d.f $f(x) = \frac{1}{4}$; $-2 < x < 2$, then $P(x < 1)$ is						
(a) $\frac{2}{3}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{2}$						
17. If $E[x^2] = 8$ and $E[x] = 2$, then $var(x)$ is						
(a) 3 (b) 2 (c) 1 (d) 4						
18. A random variable x has mean $\mu = 12$ and variance $\sigma^2 = 9$ and an unknown probability						
distribution, then $P(6 < x < 18)$ is						
(a) $\frac{1}{2}$ (b) $\frac{3}{4}$ (c) $\frac{1}{4}$ (d) $\frac{1}{8}$						
19. The C.D.F of a continuous random variable is given by $F(x) = \begin{cases} 0; & x < 0 \\ 1 - e^{-x/5}; & 0 \le x \le \infty \end{cases}$						
(a) $\frac{1}{5}e^{\frac{-1}{5}x}$ (b) $\frac{1}{10}e^{\frac{-1}{5}x}$ (c) $e^{\frac{-1}{5}x}$						
20. A continuous random variable x has a p.d.f $f(x) = 3x^2; 0 \le x \le 1$, find the value of b such						
that $P(x > b) = 0.05$						
(a) $\left(\frac{16}{20}\right)^{1/3}$ (b) $\left(\frac{19}{20}\right)^{1/3}$ (c) $\left(\frac{13}{20}\right)^{1/3}$ (d) $\left(\frac{15}{19}\right)^{1/4}$						
21. If $\mu_1 = 0, \mu_2 = \frac{1}{5}, \mu_3 = 0$ and $\mu_4 = \frac{3}{35}$, then $\beta_2 = \frac{1}{35}$						
(a) $\frac{13}{7}$ (b) $\frac{17}{9}$ (c) $\frac{15}{7}$ (d) $\frac{13}{5}$						

- 22. If the random variable x has the p.d.f $f(x) = \begin{cases} ax^3; & 0 < x < 1 \\ 0; & otherwise \end{cases}$ then the value of a is
- (b) 4 (c) $\frac{1}{2}$ (d) $\frac{3}{4}$
- 23. Let x be a continuous random variable with p.d.f $f(x) = \frac{x}{2}$; 1 < x < 5, then the p.d.f of
 - y = 2x 3 is

- (a) $\frac{y+3}{8}$ (b) $\frac{y+2}{8}$ (c) $\frac{y-3}{8}$ (d) $\frac{y+4}{8}$ 24. If $P(X = x) = \frac{x}{15}$; x = 1, 2, 3, 4, 5 then $P\left(\frac{1}{2} < X < \frac{5}{2} / X > 1\right)$ is.
- (a) $\frac{2}{15}$ (c) $\frac{2}{7}$ (d) $\frac{1}{7}$
- (b) 1/5

MULTIPLE CHOICE QUESTIONS- ANSWERS

- 1. (a)
- 2. (c)
- 3. (d)
- 4. (a)
- 5. (c)
- 6. (d)
- 7. (c)
- 8. (c)
- 9. (c)
- 10. (c)
- 11. (b)
- 12. (a)
- 13. (b)

- 14. (a)
- 15. (a)
- 16. (b)
- 17. (d)
- 18. (b) 19. (a)
- 20. (b)
- 21. (c)
- 22. (b)
- 23. (a)
- 24. (d)