Métodos Quantitativos em Economia I - Exercícios

1. Resolva o seguinte problema de otimização com restrição:

$$\max z = xy$$

s.r. $x + y = 12$.

O ponto ótimo encontrado (x^*, y^*) é um ponto de máximo, mínimo, ou nenhum dos dois?

2. Considere uma firma com tecnologia de produção caracterizada pela seguinte função:

$$Q = AK^{\alpha}L^{1-\alpha},$$

onde, Q, K e L denotam, respectivamente, produção, capital e trabalho.

Vamos considerar o problema de minimização de custos sujeito à restrição de que a produção deve ser igual a um nível especificado \bar{Q} . O problema, portanto, é:

$$\begin{aligned} & \text{min} & rK + wL \\ & \text{s.r.} & AK^{\alpha}L^{1-\alpha} - \bar{Q} = 0, \end{aligned}$$

onde r é o custo do capital e w a taxa de salário.

Resolva o problema de otimização e encontre os valores ótimos de capital e trabalho em função dos parâmetros do modelo.

3. Resolva os seguintes problemas de otimização com restrição (em todos estes problemas, temos as restrições adicionais de que $x \ge 0$ e $y \ge 0$):

(a)
$$\min z = (x-2)^2 + 2(y-5)^2 - 7$$
 s.r. $x+y=12$.

(a)
$$\min z = (x-2)^2 + 2(y-5)^2 - 7$$
 s.r. $x+y=12$.
(b) $\max z = (x-2)^2 + 2(y-5)^2 - 7$ s.r. $x+y=12$.

(c)
$$\min z = x^2 - 3xy + y^2 + 5x - 2y + 2$$
 s.r. $x + y = 44$.

(d)
$$\max z = \ln(x) + \ln(y)$$
 s.r. $x + y = 15$.

(e)
$$\max z = 2 \ln(x) + \ln(y)$$
 s.r. $x + y = 26$.

4. Resolva os seguintes problemas de otimização com restrição (em todos estes problemas, temos as restrições adicionais de que $x_1, x_2, x_3 \ge 0$):

max
$$\ln(x_1) + 0.9 \ln(x_2) + 0.81 \ln(x_3)$$

s.r. $x_1 + x_2 + x_3 = 125$.

5. Resolva o seguinte problema de otimização com restrição e verifique se as condições de segunda ordem para um ponto de máximo são satisfeitas:

$$\max f(x, y, z) = xyz$$
s.r.
$$y + 2x = 15$$

$$2z + y = 7.$$