Project #5: Computing π Numerically

Submit your program and results via email.

- 2. Task 2: parallelize your sequential code using MPI.
 - (a) Put together the code pieces in my slides to compute the value of π in parallel using MPI. Requirements:
 - (b) Understand the usage of the four must-have MPI functions in the code.
 - (c) Understand the usage of MPI_Bcast and MPI_Reduce.
 - (d) Compile the code using mpicc. Make sure your code compiles.
 - (e) Try to run the code using mpirun. Make sure your code runs.

| Sub-intervals (n): 1000000 | Sub-intervals

(h) Use the same $n=10^6$ with different number of processes (np = 1, 2, 3, 4). Use MPI_Wtime to obtain the time cost of your program. The MPI_Wtime function should not include the I/O statements. Draw a speed-up curve similar to the one in my slides.

