

Logică Matematică și Computațională

Anul I, Semestrul I 2021/2022

Laurențiu Leuștean

Pagina web: http://cs.unibuc.ro/~lleustean/

PRELIMINARII

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T \setminus A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N}=\{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^*=\mathbb{N}\setminus\{0\}$; \mathbb{Z} este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor reale; \mathbb{Q} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Definiție

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Fie A și B mulțimi și $f: A \rightarrow B$ o funcție.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor sau codomeniul lui f.

Fie $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Mulţimea funcţiilor de la A la B se notează Fun(A, B) sau B^A .

Fie $f: A \rightarrow B$ o funcție.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Funcția identică a lui A: $1_A: A \to A$, $1_A(x) = x$.

Fie $f: A \to B$ și $g: B \to C$ două funcții. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

 $f:A \to B$ este inversabilă dacă există $g:B \to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

f este bijectivă ddacă f este inversabilă.

Observație

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă.
- (ii) Pentru orice mulțime nevidă A, $Fun(A, \emptyset) = \emptyset$.

Definiția 1.1

Fie A, T mulțimi a.î. $A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: \mathcal{T} o \{0,1\}, \quad \chi_A(x) = egin{cases} 1, & ext{dacă} \ x \in A \ 0, & ext{dacă} \ x
otin A \end{cases}$$

,

Definiția 1.2

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notație: $A\sim B$.

Propoziția 1.3

Pentru orice mulțimi A, B, C, avem

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Următorul rezultat este fundamental.

Teorema 1.4 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există $f: A \to B$ şi $g: B \to A$ funcții injective. Atunci $A \sim B$.

Dem.: Exercițiu suplimentar.

Definiția 1.5

O mulțime A se numește finită dacă $A = \emptyset$ sau dacă există $n \in \mathbb{N}^*$ a.î. A este echipotentă cu $\{1, \ldots, n\}$.

Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

Definiția 1.6

O mulțime care nu este finită se numește infinită.

,

Mulțimi (cel mult) numărabile

Definiția 1.7

O mulțime A este numărabilă dacă este echipotentă cu \mathbb{N} .

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple de mulțimi numărabile: \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} .

Teorema Cantor

 \mathbb{R} , $2^{\mathbb{N}}$ nu sunt mulțimi numărabile.

Se poate demonstra că

Propoziția 1.8

 \mathbb{R} este echipotentă cu $2^{\mathbb{N}}$.

Propoziția 1.9

- (i) Orice mulțime infinită are o submulțime numărabilă.
- (ii) Orice submulțime a unei mulțimi numărabile este cel mult numărabilă.
- (iii) O mulțime A este cel mult numărabilă ddacă există o funcție injectivă de la A la o mulțime numărabilă.
- (iv) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (v) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

Dem.: Exercițiu.

Corolar 1.10

Fie A o mulțime numărabilă și B o mulțime nevidă cel mult numărabilă. Atunci $A \times B$ și $A \cup B$ sunt numărabile.

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ► |A| este unic determinat de A.
- lacktriangle pentru orice mulțimi A, B, avem că |A|=|B| ddacă $A\sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei mulțimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a mulțimilor. Conform acestei definiții, pentru orice mulțime A, |A| este tot o mulțime.

- Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele mulțimilor infinite.
- ▶ $|\mathbb{N}|$ se notează \aleph_0 (se citește alef zero).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.
- ▶ O mulţime A este numărabilă ddacă $|A| = \aleph_0$.
- \triangleright $|2^{\mathbb{N}}| \neq \aleph_0$.
- $|2^{\mathbb{N}}| = \mathfrak{c}.$

Familii de mulțimi

Fie I o mulţime nevidă.

Definiția 1.11

Fie A o mulțime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Fie I o mulțime nevidă și $(A_i)_{i\in I}$ o familie de mulțimi.

Definiția 1.12

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Fie n număr natural, $n \ge 1$, $I = \{1, \ldots, n\}$ și $A_1, \ldots, A_n \subseteq T$.

$$(x_i)_{i\in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A_n}_{n}$$

Propoziția 1.13

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Dem.: Exercițiu.

Definiția 1.14

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Definiția 1.15

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A^2 = A \times A$.

Exemple

- ▶ relația de divizibilitate pe N:
 - $|=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$
- ▶ relația de ordine strictă pe \mathbb{N} : $<=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiția 1.16

- ▶ R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- R este tranzitivă dacă pentru orice x, y, z ∈ A, xRy şi yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Fie A o mulțime nevidă și R o relație binară pe A.

Definiția 1.17

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Definiția 1.18

R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

LOGICA PROPOZIŢIONALĂ

Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacționat violent la acuzațiile lui Ion.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- Andrei este deştept.
- Marţienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ▶ Pleacă!

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm p, q, r, \ldots sau p_1, p_2, p_3, \ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

p o q = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este miercuri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este miercuri. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este miercuri și nu avem curs de logică.

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Definiția 2.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectori logici: \neg (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulțimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Definiția 2.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Operația de bază pentru expresii este concatenarea: dacă $\varphi = \varphi_0 \dots \varphi_{k-1}$ și $\psi = \psi_0 \dots \psi_{l-1}$ sunt expresii, atunci concatenarea lor, notată $\varphi \psi$, este expresia $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$.

Definiția 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 2.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează Form. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

Formule

Exemple:

- \triangleright $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 2.5

Mulțimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

Principiul inducției pe formule

Propoziția 2.6 (Principiul inducției pe formule)

Fie P o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \mathbf{P} , atunci $(\varphi \to \psi)$ are proprietatea \mathbf{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \leq n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \leq n+1$. Avem trei cazuri:

- $ightharpoonup \varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Așadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Propoziția 2.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- *V* ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 2.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 2.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi = ((v_1 \to v_2) \to (\neg v_1))$$
. Atunci
$$SubForm(\varphi) = \{v_1, v_2, (v_1 \to v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \vee (se citește sau), \wedge (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ln practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \to \psi) \to \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Propoziția 2.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A, \quad G_\neg: A \to A, \quad G_\to: A \times A \to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0)
$$F(v) = G_0(v)$$
 pentru orice variabilă $v \in V$.

(R1)
$$F(\neg \varphi) = G_{\neg}(F(\varphi))$$
 pentru orice formulă φ .

(R2)
$$F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$$
 pentru orice formule φ, ψ .

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ , $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$\begin{array}{rcl} c(v) &=& 0 & \text{pentru orice variabilă } v \\ c(\neg\varphi) &=& c(\varphi)+1 & \text{pentru orice formulă } \varphi \\ c(\varphi\to\psi) &=& c(\varphi)+c(\psi)+1 & \text{pentru orice formule } \varphi,\psi. \end{array}$$

În acest caz,
$$A=\mathbb{N},\ G_0:V o A,\ G_0(v)=0,$$

$$G_\neg:\mathbb{N}\to\mathbb{N},\qquad G_\neg(n)=n+1,$$

$$G_\to:\mathbb{N}\times\mathbb{N}\to\mathbb{N},\quad G_\to(m,n)=m+n+1.$$

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}$.

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$ag{7}: \{0,1\} \rightarrow \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	ŗ	,	q	$p \wedge q$		р	q	$p \leftrightarrow q$
0	0	0	C		0	0	_	0	0	1
0	1	1	C		1	0		0	1	0
1	0	1	1		0	0 0 0 0 1		1	0	1 0 0 1
1	0 1 0 1	1	1		1	1		1	1	1

Observatie

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg(p \to \neg q)$ și $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Definiția 2.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 2.11

Pentru orice evaluare e : $V \rightarrow \{0,1\}$ există o unică funcție

$$e^+:\textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice $\varphi, \psi \in Form$.

Dem.: Aplicăm Principiul recursiei pe formule (Propoziția 2.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p \text{ și}$ $G_{\neg} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ , ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

$$\varphi$$
 are proprietatea **P** ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $arphi = \neg \psi$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \rightarrow \{0, 1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $\begin{array}{l} \blacktriangleright \ \varphi = \psi \rightarrow \chi \ \text{si} \ \psi, \chi \ \text{satisfac} \ \textbf{\textit{P}}. \ \text{Fie} \ e_1, e_2 : V \rightarrow \{0,1\} \ \ \text{a.î.} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\varphi). \ \ \text{Deoarece} \\ Var(\psi) \subseteq Var(\varphi) \ \text{si} \ Var(\chi) \subseteq Var(\varphi), \ \text{rezultă că} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\psi) \ \text{si pentru orice} \\ v \in Var(\chi). \ \ \text{Așadar, aplicând} \ \textbf{\textit{P}} \ \text{pentru} \ \psi \ \text{si} \ \chi, \ \text{obținem că} \\ e_1^+(\psi) = e_2^+(\psi) \ \text{si} \ e_1^+(\chi) = e_2^+(\chi). \ \ \text{Rezultă că} \\ \end{array}$

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

 $\mathsf{Fie}\ arphi$ o formulă.

Definiția 2.14

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui φ dacă $e^+(\varphi) = 1$. Notație: $e \models \varphi$.
- $\triangleright \varphi$ este satisfiabilă dacă admite un model.
- Dacă φ nu este satisfiabilă, spunem și că φ este nesatisfiabilă sau contradictorie.
- φ este tautologie dacă orice evaluare este model al lui φ . Notație: $\models \varphi$.

Notație: Mulțimea tuturor modelelor lui φ se notează $Mod(\varphi)$.

Propoziția 2.15

- (i) φ este tautologie ddacă $\neg \varphi$ este nesatisfiabilă.
- (ii) φ este nesatisfiabilă ddacă $\neg \varphi$ este tautologie.

Dem.: Exercitiu.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0, 1\}, e^+(\varphi)$ depinde doar de $e(x_1), \dots, e(x_k)$, conform Propoziției 2.13.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

mine mich	an tuben.				
<i>x</i> ₁	<i>X</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	φ
$\overline{e_1'(x_1)}$	$e_1'(x_2)$		$e_1'(x_k)$		$e_1^{\prime+}(arphi)$
$e_2'(x_1)$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime+}(\varphi)$
:	:	٠	:	٠	:
$e_{2^k}'(x_1)$	$e'_{2^k}(x_2)$		$e_{2^k}'(x_k)$		$\left \begin{array}{c} {e_{2^k}'}^+(arphi) \end{array} \right $

Pentru orice i, $e_i^{\prime +}(\varphi)$ se definește similar cu Teorema 2.11.

$$\varphi$$
 este tautologie ddacă $e_i^{\prime+}(\varphi)=1$ pentru orice $i\in\{1,\ldots,2^k\}$.

.

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>V</i> ₂	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Definiția 2.16

Fie φ, ψ două formule. Spunem că

- $ightharpoonup \varphi$ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notatie: $\psi \models \varphi$.
- $ightharpoonup \varphi$ și ψ sunt (logic) echivalente dacă $\mathsf{Mod}(\psi) = \mathsf{Mod}(\varphi)$. Notație: $\varphi \sim \psi$.

Observație

Relația \sim este o relație de echivalență pe mulțimea Form a formulelor lui LP.

Propoziția 2.17

Fie φ, ψ formule. Atunci

- (i) $\psi \models \varphi$ ddacă $\models \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă ($\psi \models \varphi$ și $\varphi \models \psi$) ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

Tautologii, consecințe semantice și echivalențe

Propoziția 2.18

Pentru orice formule φ, ψ, χ ,

tortul oxclus

terțui exclus	$\vdash \varphi \lor \neg \varphi$	(T)
modus ponens	$\varphi \wedge (\varphi \rightarrow \psi) \vDash \psi$	(2)
afirmarea concluziei	$\psi \vDash \varphi \to \psi$	(3)
contradicția	$\vDash \neg (\varphi \land \neg \varphi)$	(4)
dubla negație	$\varphi \sim \neg \neg \varphi$	(5)
contrapoziția	$\varphi \to \psi \sim \neg \psi \to \neg \varphi$	(6)
negarea premizei	$\neg \varphi \vDash \varphi \rightarrow \psi$	(7)
modus tollens	$\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$	(8)
ranzitivitatea implicației	$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$	(9)

H (0) / - (0)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan	$\varphi \lor \psi \sim \neg (\neg \varphi \land \neg \psi)$	(10)
	$\varphi \wedge \psi \sim \neg (\neg \varphi \vee \neg \psi)$	(11)
exportarea și importarea	$\varphi \to (\psi \to \chi) \sim \varphi \wedge \psi \to \chi$	(12)
idempotența	$\varphi \sim \varphi \wedge \varphi \sim \varphi \vee \varphi$	(13)
slăbirea	$\vDash \varphi \land \psi \rightarrow \varphi \qquad \vDash \varphi \rightarrow \varphi \lor \psi$	(14)
comutativitatea	$\varphi \wedge \psi \sim \psi \wedge \varphi \qquad \varphi \vee \psi \sim \psi \vee \varphi$	(15)
asociativitatea	$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$	(16)
	$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$	(17)
absorbția	$\varphi \lor (\varphi \land \psi) \sim \varphi$	(18)
	$\varphi \wedge (\varphi \vee \psi) \sim \varphi$	(19)
distributivitatea	$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$	(20)
	$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$	(21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi) \qquad (22)$$

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi) \qquad (23)$$

$$\varphi \land \psi \to \chi \sim (\varphi \to \chi) \lor (\psi \to \chi) \qquad (24)$$

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi) \qquad (25)$$

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi) \qquad (26)$$

$$\neg \varphi \sim \varphi \to \neg \varphi \sim (\varphi \to \psi) \land (\varphi \to \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi) \qquad (28)$$

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi \qquad (29)$$

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi \qquad (30)$$

$$\models (\varphi \to \psi) \lor (\neg \varphi \to \psi) \qquad (31)$$

$$\models (\varphi \to \psi) \lor (\varphi \to \neg \psi) \qquad (32)$$

$$\models \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \qquad (33)$$

$$\models (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \qquad (34)$$

Dem.: Exercițiu.

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e:V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

II. Raţionăm direct.

Avem două cazuri:

- $e^+(\varphi) = 1$. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.
- $e^+(\varphi) = 0$. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notații

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- φ este tautologie ddacă $\varphi \sim \top$.
- φ este nesatisfiabilă ddacă $\varphi \sim \bot$.

Substituția

Definiția 2.19

Pentru orice formule φ, χ, χ' , definim

$$\varphi_{\chi}(\chi')$$
 := expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_\chi(\chi')$ este de asemenea formulă.
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie
$$\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$$
.

$$\lambda = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$$

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 2.21

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $\blacktriangleright \varphi \sim \psi$ implică $\varphi_{v}(\chi) \sim \psi_{v}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci şi $\varphi_v(\chi)$ este nesatisfiabilă.

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \lor \ldots \lor \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

Pentru orice evaluare $e: V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \lor \ldots \lor \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 2.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercitiu.

Mulțimi de formule

Fie Γ o mulțime de formule.

Definiția 2.24

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- Γ este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 2.25

O formulă φ este consecință semantică a lui Γ dacă

 $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \vDash \varphi$.

Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ . Așadar,

$$Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Definiția 2.26

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- ▶ Γ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\psi \vDash \varphi$ ddacă $\{\psi\} \vDash \varphi$ ddacă $\{\psi\} \vDash \{\varphi\}$.
- $\blacktriangleright \ \psi \sim \varphi \ \text{ddacă} \ \{\psi\} \sim \{\varphi\}.$

Propoziția 2.27

- ▶ $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq Form$.

- (i) Dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \rightarrow \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \models \psi \quad ddac \ \Gamma \models \varphi \rightarrow \psi$.
- (iii) $\Gamma \vDash \varphi \land \psi$ ddacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi$.

Dem.: Exercițiu.

Propoziția 2.29

Fie Γ o mulțime de formule. Următoarele afirmații sunt echivalente:

- (i) Γ este nesatisfiabilă.
- (ii) $\Gamma \vDash \varphi$ pentru orice formulă φ .
- (iii) $\Gamma \vDash \varphi$ pentru orice formulă nesatisfiabilă φ .
- (iv) $\Gamma \vDash \bot$.

Dem.: Exercițiu ușor.

Fie Γ o mulțime de formule.

- (i) $\Gamma \vDash \varphi$ ddacă $\Gamma \cup \{\neg \varphi\}$ este nesatisfiabilă.
- (ii) $\Gamma \vDash \neg \varphi$ ddacă $\Gamma \cup \{\varphi\}$ este nesatisfiabilă.
- (iii) Dacă Γ este satisfiabilă, atunci cel puțin una dintre $\Gamma \cup \{\varphi\}$ și $\Gamma \cup \{\neg \varphi\}$ este satisfiabilă.

Dem.:

- (i) Avem că $\Gamma \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \not\models \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma$ și $e \models \neg \varphi \iff$ există o evaluare $e: V \to \{0,1\}$ a.î. $e \models \Gamma \cup \{\neg \varphi\} \iff \Gamma \cup \{\neg \varphi\}$ este satisfiabilă.
- (ii) Similar.
- (iii) Fie e un model al lui Γ . Dacă $e \vDash \varphi$, atunci e este model al lui $\Gamma \cup \{\varphi\}$. Dacă $e \not\vDash \varphi$, deci $e \vDash \neg \varphi$, atunci e este model al lui $\Gamma \cup \{\neg \varphi\}$.

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) $\Gamma \sim \{\varphi_1 \wedge \ldots \wedge \varphi_n\}$.
- (ii) $\Gamma \vDash \psi$ ddacă $\vDash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$.
- (iii) Γ este nesatisfiabilă ddacă $\neg \varphi_1 \lor \neg \varphi_2 \lor \ldots \lor \neg \varphi_n$ este tautologie.
- (iv) Dacă $\Delta = \{\psi_1, \dots, \psi_k\}$ este o altă mulțime finită de formule, atunci următoarele afirmații sunt echivalente:
 - (a) $\Gamma \sim \Delta$.
 - (b) $\varphi_1 \wedge \ldots \wedge \varphi_n \sim \psi_1 \wedge \ldots \wedge \psi_k$.

Dem.: Exercițiu.

Teorema de compacitate - versiunea 1

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Teorema de compacitate - versiunea 2

Pentru orice mulțime Γ de formule, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.

Teorema de compacitate - versiunea 3

Pentru orice mulțime Γ de formule și pentru orice formulă φ , $\Gamma \vDash \varphi$ ddacă există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

Propoziția 2.32

Cele trei versiuni sunt echivalente.

Dem.: Exercițiu.

Teorema de compacitate

¹ Lema 2.33

Fie Γ finit satisfiabilă. Atunci există un șir $(\varepsilon_n)_{n\in\mathbb{N}}$ în $\{0,1\}$ care satisface, pentru orice $n\in\mathbb{N}$:

 P_n Orice submulțime finită Δ a lui Γ are un model $e: V \to \{0,1\}$ cu proprietatea că $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0,1,\ldots n\}$.

Dem.: Exercițiu suplimentar.

Teorema 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: "←" Presupunem că Γ este finit satisfiabilă. Definim

$$\overline{e}: V \to \{0,1\}, \quad \overline{e}(v_n) = \varepsilon_n$$

unde (ε_n) este șirul construit în Lema 2.33. Demonstrăm că \overline{e} este model al lui Γ . Fie $\varphi \in \Gamma$ arbitrară și fie $k \in \mathbb{N}$ a.î.

 $Var(\varphi) \subseteq \{v_0, v_1, \dots, v_k\}$. Avem că $\{\varphi\} \subseteq \Gamma$ este o submulțime finită a lui Γ .

Theorem 2.34 (Teorema de compacitate)

Pentru orice mulțime Γ de formule, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.

Dem.: (continuare)

Aplicând proprietatea P_k , obținem un model e al lui φ a.î. $e(v_i) = \varepsilon_i$ pentru orice $i \in \{0, 1, \dots k\}$.

Atunci $\overline{e}(v) = e(v)$ pentru orice variabilă $v \in Var(\varphi)$. Din Propoziția 2.13 rezultă că $\overline{e}^+(\varphi) = e^+(\varphi) = 1$, deci $\overline{e} \models \varphi$.

Prin urmare, \overline{e} este model al lui Γ , deci Γ este satisfiabilă.

"⇒" Evident.

SINTAXA LP

Sistemul deductiv

Folosim un sistem deductiv de tip Hilbert pentru LP.

Axiomele logice

Mulțimea Axm a axiomelor lui LP constă din toate formulele de forma:

(A1)
$$\varphi \to (\psi \to \varphi)$$

(A2)
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(A3)
$$(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$$
,

unde φ , ψ și χ sunt formule.

Regula de deducție

Pentru orice formule φ, ψ ,

din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

Fie Γ o mulțime de formule. Definiția Γ -teoremelor este un nou exemplu de definiție inductivă.

Definiția 2.35

Γ-teoremele sunt formulele lui LP definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ-teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (T3) Numai formulele obţinute aplicând regulile (T0), (T1), (T2) sunt Γ-teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

```
\begin{array}{lllll} \hline \textit{Thm}(\Gamma) & := & \text{mulţimea} \ \Gamma\text{-teoremelor} & \hline \textit{Thm} & := & T\textit{hm}(\emptyset) \\ \hline \Gamma \vdash \varphi & :\Leftrightarrow & \varphi \ \text{este} \ \Gamma\text{-teoremă} & \vdash \varphi & :\Leftrightarrow & \emptyset \vdash \varphi \\ \hline \Gamma \vdash \Delta & :\Leftrightarrow & \Gamma \vdash \varphi \ \text{pentru orice} \ \varphi \in \Delta. \end{array}
```

Definiția 2.36

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 2.37

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

Γ-teoreme

Definiția Γ-teoremelor dă naștere la metoda de demonstrație prin inducție după Γ-teoreme.

Versiunea 1

Fie \mathbf{P} o proprietate a formulelor. Demonstrăm că orice Γ-teoremă satisface \mathbf{P} astfel:

- (i) Demonstrăm că orice axiomă are proprietatea P.
- (ii) Demonstrăm că orice formulă din Γ are proprietatea P.
- (iii) Demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea ${\bf P}$, atunci ψ are proprietatea ${\bf P}$.

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) Demonstrăm că orice axiomă este în Σ .
- (ii) Demonstrăm că orice formulă din Γ este în Σ .
- (iii) Demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Fie Γ, Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

(ii) $Thm \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi \text{ implică } \Gamma \vdash \varphi.$$

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Definiția 2.39

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_i \rightarrow \theta_i$.
- O Ø-demonstrație se va numi simplu demonstrație.

Lema 2.40

Dacă $\theta_1, \ldots, \theta_n$ este o Γ-demonstrație, atunci

$$\Gamma \vdash \theta_i$$
 pentru orice $i \in \{1, \ldots, n\}$.

Dem.: Exercitiu.

Definiția 2.41

Fie φ o formulă. O Γ-demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ-demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ-demonstrației.

Propoziția 2.42

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Pentru orice mulțime de formule Γ și orice formulă φ ,

 $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 2.38.(i) obținem că $\Gamma \vdash \varphi$. " \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 2.42, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.

$$\vdash \varphi \to \varphi$$

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

- (1) $\vdash (\varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)) \rightarrow ((\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi))$ (A2) (cu φ , $\psi := \varphi \rightarrow \varphi$, $\chi := \varphi$) și Propoziția 2.37.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi \rightarrow \varphi$) și Propoziția 2.37.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 2.37.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi$) și Propoziția 2.37.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

Teorema 2.45 (Teorema deducției)

Fie $\Gamma \subseteq \mathit{Form}\ \mathit{si}\ \varphi, \psi\ \in \mathit{Form}\ \mathit{Atunci}$

$$\Gamma \cup \{\varphi\} \vdash \psi \quad ddac\check{a} \ \Gamma \vdash \varphi \rightarrow \psi.$$

Dem.: Exercițiu suplimentar.

Teorema deducției este un instrument foarte util pentru a arăta că o formulă e teoremă.

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (35)

Dem.: Folosind teorema deducției observăm că

$$\vdash \frac{(\varphi \to \psi)}{} \to ((\psi \to \chi) \to (\varphi \to \chi))$$

$$\updownarrow$$

$$\{\varphi \to \psi\} \vdash \frac{(\psi \to \chi)}{} \to (\varphi \to \chi)$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi\} \vdash \frac{\varphi}{} \to \chi$$

$$\updownarrow$$

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziția 2.37.(ii)

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziția 2.37.(ii)

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziția 2.37.(ii)

(5)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \quad \text{si} \quad \Gamma \vdash \psi \rightarrow \chi \quad \Rightarrow \quad \Gamma \vdash \varphi \rightarrow \chi.$$

Dem.:

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteză
(2) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$ P.2.46 și P.2.38.(ii)
(3) $\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$ (MP): (1), (2)
(4) $\Gamma \vdash \psi \rightarrow \chi$ ipoteză
(5) $\Gamma \vdash \varphi \rightarrow \chi$ (MP): (3), (4).

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)) \tag{36}$$

Dem.: Exercițiu.

Propoziția 2.49

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Dem.: Exercițiu.

Pentru orice formule φ, ψ ,

$$\{\psi, \neg \psi\} \vdash \varphi \qquad (37)$$

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi) \qquad (38)$$

$$\vdash \psi \rightarrow (\neg \psi \rightarrow \varphi) \qquad (39)$$

$$\vdash \neg \neg \varphi \rightarrow \varphi \qquad (40)$$

$$\vdash \varphi \rightarrow \neg \neg \varphi \qquad (41)$$

$$\vdash (\varphi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \varphi) \qquad (42)$$

$$\{\psi, \neg \varphi\} \vdash \neg (\psi \rightarrow \varphi) \qquad (43)$$

$$\vdash (\varphi \rightarrow \neg \varphi) \rightarrow \neg \varphi \qquad (44)$$

$$\vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi \qquad (45)$$

Dem.: Exercițiu.

Pentru orice mulțime de formule Γ și orice formule φ, ψ ,

$$\Gamma \cup \{\psi\} \vdash \varphi \ \ \textit{si} \ \ \Gamma \cup \{\neg\psi\} \vdash \varphi \ \ \Rightarrow \ \ \Gamma \vdash \varphi.$$

Dem.:

(1)
$$\Gamma \cup \{\psi\} \vdash \varphi$$

(2)
$$\Gamma \vdash \psi \rightarrow \varphi$$

(3)
$$\Gamma \cup \{\neg \psi\} \vdash \varphi$$

(4)
$$\Gamma \vdash \neg \psi \rightarrow \varphi$$

(5)
$$\Gamma \vdash (\psi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \psi)$$
 (42) și P.2.38.(ii)

(6)
$$\Gamma \vdash \neg \varphi \rightarrow \neg \psi$$

(7)
$$\Gamma \vdash \neg \varphi \rightarrow \varphi$$

(8)
$$\Gamma \vdash (\neg \varphi \rightarrow \varphi) \rightarrow \varphi$$

(9)
$$\Gamma \vdash \varphi$$

ipoteză

Teorema deducției

ipoteză

Teorema deductiei

(MP): (2), (5)

(6), (4) și P. 2.47

(45) și P.2.38.(ii)

(MP): (7), (8).

Pentru orice formule φ, ψ ,

$$\begin{cases}
\varphi \wedge \psi \} & \vdash & \varphi \\
\{\varphi \wedge \psi \} & \vdash & \psi \\
\{\varphi, \psi \} & \vdash & \varphi \wedge \psi
\end{cases}$$

$$\begin{cases}
\varphi, \psi \} \vdash \chi \quad ddac\check{a} \quad \{\varphi \wedge \psi \} \vdash \chi \\
\vdash & \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi
\end{cases}$$
(46)
$$(47)$$
(48)

Dem.: Exercițiu.

SINTAXA și SEMANTICA

Corectitudine

Teorema 2.53 (Teorema de corectitudine (Soundness Theorem))

Orice Γ-teoremă este consecință semantică a lui Γ, adică,

$$\Gamma \vdash \varphi \implies \Gamma \vDash \varphi$$

pentru orice $\varphi \in Form \ \text{\vec{s}} \ \Gamma \subseteq Form.$

Dem.: Fie

$$\Sigma := \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$$

Trebuie să demonstrăm că $\mathit{Thm}(\Gamma) \subseteq \Sigma$. O facem prin inducție după Γ -teoreme.

- Axiomele sunt în Σ (exerciţiu).
- ▶ Evident, $\Gamma \subseteq \Sigma$.
- ▶ Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\varphi, \varphi \to \psi \in \Sigma$, adică, $\Gamma \vDash \varphi$ și $\Gamma \vDash \varphi \to \psi$. Conform Propoziției 2.28.(i), obținem că $\Gamma \vDash \psi$, adică, $\psi \in \Sigma$.

Fie $e: V \to \{0,1\}$ o evaluare și $v \in V$ o variabilă.

Definim

$$\mathbf{v}^{\mathbf{e}} = egin{cases} v & \mathsf{dac} \check{\mathbf{a}} \; e(v) = 1 \\ \neg v & \mathsf{dac} \check{\mathbf{a}} \; e(v) = 0. \end{cases}$$

Aşadar, $e^+(v^e) = 1$.

Pentru orice mulțime $W = \{x_1, \dots, x_k\}$ de variabile, notăm

$$W^e = \{v^e \mid v \in W\} = \{x_1^e, x_2^e, \dots, x_k^e\}.$$

Pentru orice $a \in \{0,1\}$, definim evaluarea $e_{V \leftarrow a}: V \rightarrow \{0,1\}$ prin

$$e_{v \leftarrow a}(x) = egin{cases} e(x) & ext{daca } x
eq v \ a & ext{daca } x = v. \end{cases}$$

Fie e : $V \rightarrow \{0,1\}$ o evaluare. Pentru orice formulă φ ,

- (i) Dacă $e^+(\varphi) = 1$, atunci $Var(\varphi)^e \vdash \varphi$.
- (ii) Dacă $e^+(\varphi) = 0$, atunci $Var(\varphi)^e \vdash \neg \varphi$.

Dem.: Prin inducție după formule. Avem următoarele cazuri:

- ▶ $\varphi = v$. Atunci $Var(\varphi)^e = \{v^e\}$ și $e^+(v) = e(v)$. Dacă e(v) = 1, atunci $v^e = v$, deci, $\{v^e\} \vdash v$. Dacă e(v) = 0, atunci $v^e = \neg v$, deci, $\{v^e\} \vdash \neg v$.

 $\varphi = \psi \to \chi. \text{ Atunci } Var(\varphi) = Var(\psi) \cup Var(\chi), \text{ deci } Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e.$ $\text{Dacă } e^+(\psi \to \chi) = 0, \text{ atunci } e^+(\psi) = 1 \text{ și } e^+(\chi) = 0. \text{ Avem } Var(\psi)^e \vdash \psi \qquad \text{ipoteza de inducție pentru } \psi$ $Var(\chi)^e \vdash \neg \chi \qquad \text{ipoteza de inducție pentru } \chi$ $Var(\varphi)^e \vdash \{\psi, \neg \chi\} \qquad Var(\psi)^e, Var(\chi)^e \subseteq Var(\varphi)^e \text{ și P. 2.38.(i)}$ $\{\psi, \neg \chi\} \vdash \neg (\psi \to \chi) \qquad \text{(43) din Propoziția 2.50}$ $Var(\varphi)^e \vdash \neg (\psi \to \chi) \qquad \text{Propoziția 2.38.(iv)}.$

Sintaxă și semantică

Dacă
$$e^+(\psi o \chi) = 1$$
, atunci $e^+(\psi) = 0$ sau $e^+(\chi) = 1$.

În primul caz, obținem

$$\begin{array}{ll} \textit{Var}(\psi)^{\text{e}} \vdash \neg \psi & \text{ipoteza de inducție pentru } \psi \\ \textit{Var}(\psi)^{\text{e}} \vdash \neg \psi \rightarrow (\psi \rightarrow \chi) & \text{(38) din P. 2.50 și P. 2.38.(ii)} \\ \textit{Var}(\psi)^{\text{e}} \vdash \psi \rightarrow \chi & \text{(MP)} \\ \textit{Var}(\varphi)^{\text{e}} \vdash \psi \rightarrow \chi & \textit{Var}(\psi)^{\text{e}} \subseteq \textit{Var}(\varphi)^{\text{e}} \text{ și P. 2.38.(i).} \end{array}$$

În al doilea caz, obținem

$$Var(\chi)^e \vdash \chi$$
 ipoteza de inducție pentru χ $Var(\chi)^e \vdash \chi \rightarrow (\psi \rightarrow \chi)$ (A1) și Propoziția 2.37.(i) $Var(\chi)^e \vdash \psi \rightarrow \chi$ (MP) $Var(\varphi)^e \vdash \psi \rightarrow \chi$ $Var(\chi)^e \subseteq Var(\varphi)^e$ și P. 2.38.(i).

Demonstrația propoziției anterioare ne dă o construcție efectivă a unei demonstrații a lui φ sau $\neg \varphi$ din premizele $Var(\varphi)^e$.

Teorema 2.55 (Teorema de completitudine)

Pentru orice formulă φ ,

$$\vdash \varphi \quad ddac\check{a} \quad \vDash \varphi.$$

Dem.: " \Rightarrow " Se aplică Teorema de corectitudine 2.53 pentru $\Gamma = \emptyset$. " \Leftarrow " Fie φ o tautologie și $Var(\varphi) = \{x_1, \dots, x_n\}$. Demonstrăm prin inducție după k următoarea proprietate:

(*) pentru orice
$$k \le n$$
, pentru orice $e: V \to \{0,1\}$, $\{x_1^e, \dots, x_{n-k}^e\} \vdash \varphi$.

Pentru k = n, (*) ne dă $\vdash \varphi$.

k=0. Fie $e:V\to\{0,1\}$. Deoarece φ este tautologie, $e^+(\varphi)=1$. Aplicând Propoziția 2.54, obținem că

$$Var(\varphi)^e = \{x_1^e, \dots, x_n^e\} \vdash \varphi.$$

Teorema de completitudine

 ${}^{\prime}k\Rightarrow k+1$. Presupunem că (*) este adevărată pentru k și fie $e:V\to\{0,1\}$. Trebuie să arătăm că $\{x_1^e,\ldots,x_{n-k-1}^e\}\vdash \varphi$. Considerăm evaluarea $e':=e_{x_{n-k}\leftarrow \neg e(x_{n-k})}$. Așadar, e'(v)=e(v) pentru orice $v\neq x_{n-k}$ și

$$e'(x_{n-k}) = egin{cases} 0 & \operatorname{dacreve{a}} e(x_{n-k}) = 1 \ 1 & \operatorname{dacreve{a}} e(x_{n-k}) = 0. \end{cases}$$

Rezultă că $x_i^{e'} = x_i^e$ pentru orice $i \in \{1, ..., n-k-1\}$ și

$$x_{n-k}^{e'} = \begin{cases} \neg x_{n-k} & \text{dacă } x_{n-k}^e = x_{n-k} \\ x_{n-k} & \text{dacă } x_{n-k}^e = \neg x_{n-k}. \end{cases}$$

Din (*) pentru e și e', obținem

$$\{x_1^e, \dots, x_{n-k-1}^e, x_{n-k}\} \vdash \varphi \text{ si } \{x_1^e, \dots, x_{n-k-1}^e, \neg x_{n-k}\} \vdash \varphi.$$

Aplicăm acum Propoziția 2.51 cu $\Gamma := \{x_1^e, \dots, x_{n-k-1}^e\}$ și $\psi := x_{n-k}$ pentru a conclude că $\{x_1^e, \dots, x_{n-k-1}^e\} \vdash \varphi$.

Fie $\Gamma \cup \{\varphi, \psi\} \subseteq$ Form. Presupunem că $\varphi \sim \psi$. Atunci

$$\Gamma \vdash \varphi \iff \Gamma \vdash \psi.$$

Dem.: Observăm că

$$\begin{array}{cccc} \varphi \sim \psi & \iff & \vDash \varphi \rightarrow \psi \text{ \sharp } \vDash \psi \rightarrow \varphi \\ & & \mathsf{Propozi} \\ \Leftrightarrow & \vdash \varphi \rightarrow \psi \text{ \sharp } \vdash \psi \rightarrow \varphi \\ & & \mathsf{Teorema \ de \ completitudine.} \end{array}$$

"⇒" Presupunem că $\Gamma \vdash \varphi$. Deoarece $\vdash \varphi \to \psi$, rezultă din Propoziția 2.38.(ii) că $\Gamma \vdash \varphi \to \psi$. Aplicăm acum (MP) pentru a obține că $\Gamma \vdash \psi$.

Fie Γ o mulțime de formule și φ o formulă.

Notații

```
\begin{array}{lll} \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este } \Gamma\text{-teorem} \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este teorem} \\ \Gamma \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este consecin} ; a lui } \Gamma \\ \not \vdash \varphi & :\Leftrightarrow & \varphi \text{ nu este tautologie}. \end{array}
```


Definiția 2.57

Fie Γ o mulțime de formule.

- ▶ Γ este consistentă dacă există o formulă φ astfel încât Γ ∀ φ.
- ▶ Γ este inconsistentă dacă nu este consistentă, adică, Γ $\vdash \varphi$ pentru orice formulă φ .

Observație

Fie Γ, Δ mulțimi de formule a.î. $\Gamma \subseteq \Delta$.

- ightharpoonup Dacă Δ este consistentă, atunci și Γ este consistentă.
- ▶ Dacă Γ este inconsistentă, atunci şi Δ este inconsistentă.

- (i) ∅ este consistentă.
- (ii) Mulțimea teoremelor este consistentă.

Dem.:

- (i) Dacă ⊢ ⊥, atunci, conform Teoremei de corectitudine 2.53, ar rezulta că ⊨ ⊥, o contradicție. Așadar ⊬ ⊥, deci ∅ este consistentă.
- (ii) Aplicând Propoziția 2.38.(iv) pentru $\Gamma = \emptyset$, obținem că Thm = Thm(Thm), adică, pentru orice φ , $\vdash \varphi$ ddacă $Thm \vdash \varphi$.
 - Din (i) rezultă că Thm este consistentă.

Pentru o mulțime de formule Γ sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ a.î. $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iv) $\Gamma \vdash \bot$.

Dem.: $(i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \text{ sunt evidente.}$

 $(iii) \Rightarrow (i)$ Fie φ o formulă. Conform (38) din Propoziția 2.50,

$$\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi).$$

Aplicând (iii) și de două ori modus ponens, rezultă că $\Gamma \vdash \varphi$. (iv) \Rightarrow (iii). Presupunem că $\Gamma \vdash \bot$. Avem că $\bot = \neg \top$. Deoarece \top este tautologie, aplicăm Teorema de completitudine pentru a conclude că $\vdash \top$, deci și $\Gamma \vdash \top$.

Fie Γ o mulțime de formule și φ o formulă.

- (i) $\Gamma \vdash \varphi \iff \Gamma \cup \{\neg \varphi\}$ este inconsistentă.
- (ii) $\Gamma \vdash \neg \varphi \iff \Gamma \cup \{\varphi\}$ este inconsistentă.

Dem.:

(i) Avem

$$\begin{array}{lll} \Gamma \cup \{ \neg \varphi \} \text{ este inconsistent} & \iff & \Gamma \cup \{ \neg \varphi \} \vdash \bot \\ & & \text{Propoziția 2.59} \\ & \iff & \Gamma \vdash \neg \varphi \to \bot \\ & & \text{Teorema deducției} \\ & \iff & \Gamma \vdash \varphi \\ & & \neg \varphi \to \bot \sim \varphi \text{ și P. 2.56.} \end{array}$$

(ii) Similar.

Fie $\Gamma = \{\varphi_1, \dots, \varphi_n\}$ o mulțime finită de formule.

- (i) Pentru orice formulă ψ , $\Gamma \vdash \psi$ ddacă $\vdash \varphi_1 \land \ldots \land \varphi_n \rightarrow \psi$ ddacă $\{\varphi_1 \land \ldots \land \varphi_n\} \vdash \psi$.
- (ii) Γ este consistentă ddacă $\{\varphi_1 \wedge \ldots \wedge \varphi_n\}$ este consistentă.

Dem.: Exercițiu.

Fie Γ o mulțime de formule. Γ este inconsistentă ddacă Γ are o submulțime finită inconsistentă.

Dem.: "⇐" este evidentă.

"⇒" Presupunem că Γ este inconsistentă. Atunci, conform Propoziției 2.59.(iv), $\Gamma \vdash \bot$. Aplicând Propoziția 2.43, obținem o submulțime finită $\Sigma = \{\varphi_1, \ldots, \varphi_n\}$ a lui Γ a.î. $\Sigma \vdash \bot$. Prin urmare, Σ este inconsistentă.

Un rezultat echivalent:

Propoziția 2.63

Fie Γ o mulțime de formule. Γ este consistentă ddacă orice submulțime finită a lui Γ este consistentă.

Consecință a Teoremei de completitudine

Teorema 2.64

Pentru orice formulă φ ,

 $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Dem.: Avem

$$\{\varphi\} \text{ este inconsistentă} \qquad \Longleftrightarrow \qquad \vdash \neg \varphi \\ \qquad \qquad \qquad \text{Propoziția 2.60.(ii)} \\ \iff \qquad \vdash \neg \varphi \\ \qquad \qquad \text{Teorema de completitudine} \\ \iff \qquad \{\varphi\} \text{ este nesatisfiabilă} \\ \qquad \qquad \qquad \text{Propoziția 2.30.(ii)}.$$

Aşadar, $\{\varphi\}$ este consistentă $\iff \{\varphi\}$ este satisfiabilă.

Teorema 2.65 (Teorema de completitudine tare - versiunea 1)

Pentru orice mulțime de formule Γ ,

 Γ este consistentă $\iff \Gamma$ este satisfiabilă.

Dem.: " \Leftarrow " Presupunem că Γ este satisfiabilă, deci are un model $e:V\to\{0,1\}$. Presupunem că Γ nu este consistentă. Atunci Γ $\vdash \bot$ și, aplicând Teorema de corectitudine 2.53, rezultă că Γ $\vDash \bot$. Ca urmare, $e\vDash \bot$, ceea ce este o contradicție. " \Rightarrow " Presupunem că Γ este consistentă. Demonstrăm că Γ este finit satisfiabilă și aplicăm apoi Teorema de compacitate 2.34 pentru a conclude că Γ este satisfiabilă.

Fie $\Sigma = \{\varphi_1, \dots, \varphi_n\}$ o submulțime finită a lui Γ. Atunci Σ este consistentă, conform Propoziției 2.63. Din Propoziția 2.61.(ii), rezultă că $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$ este consistentă. Aplicând acum Teorema 2.64 obținem că $\{\varphi_1 \wedge \dots \wedge \varphi_n\}$ este satisfiabilă. Deoarece, conform Propoziției 2.31.(i), $\Sigma \sim \{\varphi_1 \wedge \dots \wedge \varphi_n\}$, avem că Σ este satisfiabilă.

Teorema de completitudine tare

Teorema 2.66 (Teorema de completitudine tare - versiunea 2)

Pentru orice mulțime de formule Γ și orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vDash \varphi.$$

Dem.:

Observatie

Am demonstrat Teorema de completitudine tare - versiunea 2 folosind Teorema de completitudine tare - versiunea 1. Se poate arăta că cele două versiuni sunt echivalente (exercițiu).

FORMA NORMALĂ CONJUNCTIVĂ / DISJUNCTIVĂ

Forma normală conjunctivă / disjunctivă

Definiția 2.67

Un literal este o

- variabilă (în care caz spunem că este literal pozitiv) sau
- negația unei variabile (în care caz spunem că este literal negativ).

Exemple: v_1, v_2, v_{10} literali pozitivi; $\neg v_0, \neg v_{100}$ literali negativi

Convenție:
$$\bigvee_{i=1}^{1} \varphi_i = \varphi_1$$
 și $\bigwedge_{i=1}^{1} \varphi_i = \varphi_1$.

Definiția 2.68

O formulă φ este în formă normală disjunctivă (FND) dacă φ este o disjuncție de conjuncții de literali.

Aşadar,
$$\varphi$$
 este în FND ddacă $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$, unde fiecare $L_{i,j}$ este literal.

Definiția 2.69

O formulă φ este în formă normală conjunctivă (FNC) dacă φ este o conjuncție de disjuncții de literali.

Aşadar,
$$\varphi$$
 este în FNC ddacă $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$, unde fiecare $L_{i,j}$ este literal.

Exemple

- \blacktriangleright $(v_0 \lor v_1) \land (v_3 \lor v_5) \land (\neg v_{20} \lor \neg v_{15} \lor \neg v_{34})$ este în FNC
- $(\neg v_9 \land v_1) \lor v_{24} \lor (v_2 \land \neg v_1 \land v_2)$ este în FND
- \triangleright $v_1 \land \neg v_5 \land v_4$ este atât în FND cât și în FNC
- $ightharpoonup \neg v_{10} \lor v_{20} \lor v_4$ este atât în FND cât și în FNC
- $(v_1 \lor v_2) \land ((v_1 \land v_3) \lor (v_4 \land v_5))$ nu este nici în FND, nici în FNC

Notație: Dacă
$$L$$
 este literal, atunci $L^c := \begin{cases} \neg v & \text{dacă } L = v \in V \\ v & \text{dacă } L = \neg v. \end{cases}$

- (i) Fie φ o formulă în FNC, $\varphi = \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}\right)$. Atunci $\neg \varphi \sim \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j}^c\right)$, o formulă în FND.
- (ii) Fie φ o formulă în FND, $\varphi = \bigvee_{i=1}^n \left(\bigwedge_{j=1}^{k_i} L_{i,j} \right)$. Atunci $\neg \varphi \sim \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j}^c \right)$, o formulă în FNC.

Dem.: Exercițiu.

Funcția asociată unei formule

Exemplu: Arătați că $\vDash v_1 \rightarrow (v_2 \rightarrow v_1 \land v_2)$.

v_1	<i>v</i> ₂	$v_1 \rightarrow (v_2 \rightarrow v_1 \wedge v_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Acest tabel defineste o funcție $F:\{0,1\}^2 \rightarrow \{0,1\}$

ε_1	ε_2	$F(\varepsilon_1, \varepsilon_2)$
0	0	1
0	1	1
1	0	1
1	1	1

Funcția asociată unei formule

Fie
$$\varphi$$
 o formulă și $Var(\varphi) = \{v_{i_1}, v_{i_2}, \dots, v_{i_n}\}$, unde $n \ge 1$ și $0 \le i_1 \le i_2 \le \dots \le i_n$.

Fie
$$(\varepsilon_1, \dots, \varepsilon_n) \in \{0, 1\}^n$$
. Definim $e_{\varepsilon_1, \dots, \varepsilon_n} : Var(\varphi) \to \{0, 1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}(v_{i_k})=\varepsilon_k$$
 pentru orice $k\in\{1,\ldots,n\}$.

Definim $e_{\varepsilon_1,\dots,\varepsilon_n}^+(\varphi) \in \{0,1\}$ astfel:

$$e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi):=e^+(\varphi),$$

unde $e: V \to \{0,1\}$ este orice evaluare care extinde $e_{\varepsilon_1,\dots,\varepsilon_n}$, adică, $e(v_{i_k}) = e_{\varepsilon_1,\dots,\varepsilon_n}(v_{i_k}) = \varepsilon_k$ pentru orice $k \in \{1,\dots,n\}$. Conform Propoziției 2.13, definiția nu este ambiguă.

Definitia 2.71

Funcția asociată lui φ este $F_{\varphi}: \{0,1\}^n \to \{0,1\}$, definită astfel:

$$F_{\varphi}(\varepsilon_1,\ldots,\varepsilon_n)=e_{\varepsilon_1,\ldots,\varepsilon_n}^+(\varphi)$$
 pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$.

Așadar, F_{φ} este funcția definită de tabela de adevăr pentru φ .

Propoziția 2.72

- (i) Fie φ o formulă. Atunci
 - (a) $\models \varphi$ ddacă F_{φ} este funcția constantă 1.
 - (b) φ este nesatisfiabilă ddacă F_{φ} este funcția constantă 0.
- (ii) Fie φ, ψ două formule astfel încât $Var(\varphi) = Var(\psi)$. Atunci
 - (a) $\varphi \vDash \psi$ ddacă $F_{\varphi} \leq F_{\psi}$.
 - (b) $\varphi \sim \psi$ ddacă $F_{\varphi} = F_{\psi}$.
- (iii) Există formule diferite φ, ψ a.î. $F_{\varphi} = F_{\psi}$.

Caracterizarea funcțiilor booleene

Definiția 2.73

O funcție booleană este o funcție $F: \{0,1\}^n \to \{0,1\}$, unde $n \ge 1$. Spunem că n este numărul variabilelor lui F.

Exemplu: Pentru orice formulă φ , F_{φ} este funcție Booleană cu n variabile, unde $n = |Var(\varphi)|$.

Teorema 2.74

Fie $n \geq 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă φ în FND a.î. $H=F_{\varphi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=0$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, luăm $\varphi:=\bigvee_{i=1}^n(v_i\wedge\neg v_i)$. Avem că $Var(\varphi)=\{v_1,\ldots,v_n\}$, așadar, $F_{\omega}:\{0,1\}^n\to\{0,1\}$. Cum $v_i\wedge\neg v_i$ este nesatisfiabilă pentru orice

 $F_{\varphi}: \{0,1\}^n \to \{0,1\}$. Cum $v_i \land \neg v_i$ este nesatisfiabilă pentru orice i, rezultă că φ este de asemenea nesatisfiabilă. Deci, F_{φ} este funcția constantă 0.

Caracterizarea funcțiilor booleene

Altcumva, multimea

$$T:=H^{-1}(1)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=1\}$$

este nevidă.

Considerăm formula

$$\varphi := \bigvee_{(\varepsilon_1,...,\varepsilon_n) \in T} \left(\bigwedge_{\varepsilon_i=1} v_i \wedge \bigwedge_{\varepsilon_i=0} \neg v_i \right).$$

Decarece $Var(\varphi) = \{v_1, \dots, v_n\}$, avem că $F_{\varphi} : \{0, 1\}^n \to \{0, 1\}$.

Se demonstrează că $H = F_{\varphi}$ (exercițiu suplimentar).

Caracterizarea funcțiilor booleene

Teorema 2.75

Fie $n \ge 1$ și $H: \{0,1\}^n \to \{0,1\}$ o funcție booleană arbitrară. Atunci există o formulă ψ în FNC a.î. $H=F_{\psi}$.

Dem.: Dacă $H(\varepsilon_1,\ldots,\varepsilon_n)=1$ pentru orice $(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n$, atunci luăm

$$\psi := \bigwedge_{i=1}^n (v_i \vee \neg v_i).$$

Altcumva, mulțimea

$$F:=H^{-1}(0)=\{(\varepsilon_1,\ldots,\varepsilon_n)\in\{0,1\}^n\mid H(\varepsilon_1,\ldots,\varepsilon_n)=0\}$$
este nevidă.

Considerăm formula
$$\psi := \bigwedge_{(\varepsilon_1, ..., \varepsilon_n) \in F} \left(\bigvee_{\varepsilon_i = 1} \neg v_i \lor \bigvee_{\varepsilon_i = 0} v_i \right).$$

Se demonstrează că $H = F_{\psi}$ (exercițiu suplimentar).

Exemplu: Fie $H: \{0,1\}^3 \rightarrow \{0,1\}$ descrisă prin tabelul:

ε_1	ε_2	$arepsilon_3$	$\mid H(\varepsilon_1, \varepsilon_2, \varepsilon_3) \mid$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 0 0 1 0 0

$$D_{1} = v_{1} \lor v_{2} \lor v_{3}$$

$$D_{2} = v_{1} \lor v_{2} \lor \neg v_{3}$$

$$C_{1} = \neg v_{1} \land v_{2} \land \neg v_{3}$$

$$D_{3} = v_{1} \lor \neg v_{2} \lor \neg v_{3}$$

$$C_{2} = v_{1} \land \neg v_{2} \land \neg v_{3}$$

$$C_{3} = v_{1} \land \neg v_{2} \land v_{3}$$

$$C_{4} = v_{1} \land v_{2} \land \neg v_{3}$$

$$C_{5} = v_{1} \land v_{2} \land v_{3}$$

$$\varphi = C_1 \lor C_2 \lor C_3 \lor C_4 \lor C_5$$
 în FND a.î. $H = F_{\varphi}$. $\psi = D_1 \land D_2 \land D_3$ în FNC a.î. $H = F_{\psi}$.

Teorema 2.76

Orice formulă φ este echivalentă cu o formulă φ^{FND} în FND și cu o formulă φ^{FNC} în FNC.

Dem.:

Fie $Var(\varphi)=\{x_1,\ldots,x_n\}$ și $F_\varphi:\{0,1\}^n \to \{0,1\}$ funcția booleană asociată. Aplicând Teorema 2.74 cu $H:=F_\varphi$, obținem o formulă φ^{FND} în FND a.î. $F_\varphi=F_{\varphi^{FND}}$. Așadar, conform Propoziției 2.72.(ii), $\varphi\sim \varphi^{FND}$.

Similar, aplicând Teorema 2.75 cu $H:=F_{\varphi}$, obținem o formulă φ^{FNC} în FNC a.î. $F_{\varphi}=F_{\varphi^{FNC}}$. Prin urmare, $\varphi\sim\varphi^{FNC}$.

a înlocui

Forma normală conjunctivă / disjunctivă

'Algoritm pentru a aduce o formulă la FNC/FND:

Pasul 1. Se înlocuiesc implicațiile și echivalențele, folosind:

$$\varphi \to \psi \sim \neg \varphi \lor \psi$$
 si $\varphi \leftrightarrow \psi \sim (\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi)$.

Pasul 2. Se înlocuiesc dublele negații, folosind $\neg\neg\psi\sim\psi$, și se aplică regulile De Morgan pentru a înlocui

$$\neg(\varphi \lor \psi)$$
 cu $\neg\varphi \land \neg\psi$ și $\neg(\varphi \land \psi)$ cu $\neg\varphi \lor \neg\psi$.

Pasul 3. Pentru FNC, se aplică distributivitatea lui ∨ fața de ∧, pentru a înlocui

 $\varphi \vee (\psi \wedge \chi) \text{ cu } (\varphi \vee \psi) \wedge (\varphi \vee \chi) \quad \text{ si } \quad (\psi \wedge \chi) \vee \varphi \text{ cu } (\psi \vee \varphi) \wedge (\chi \vee \varphi).$ Pentru FND, se aplică distributivitatea lui \wedge fața de \vee , pentru

$$\varphi \wedge (\psi \vee \chi) \text{ cu } (\varphi \wedge \psi) \vee (\varphi \wedge \chi) \quad \text{ si } \quad (\psi \vee \chi) \wedge \varphi \text{ cu } (\psi \wedge \varphi) \vee (\chi \wedge \varphi).$$

Forma normală conjunctivă / disjunctivă

Exemplu

Considerăm formula $\varphi := (\neg v_0 \rightarrow \neg v_2) \rightarrow (v_0 \rightarrow v_2)$.

Avem

$$\varphi \sim \neg (\neg v_0 \rightarrow \neg v_2) \lor (v_0 \rightarrow v_2) \qquad \text{Pasul 1}$$

$$\sim \neg (\neg \neg v_0 \lor \neg v_2) \lor (v_0 \rightarrow v_2) \qquad \text{Pasul 1}$$

$$\sim \neg (\neg \neg v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \qquad \text{Pasul 1}$$

$$\sim \neg (v_0 \lor \neg v_2) \lor (\neg v_0 \lor v_2) \qquad \text{Pasul 2}$$

$$\sim (\neg v_0 \land \neg \neg v_2) \lor (\neg v_0 \lor v_2) \qquad \text{Pasul 2}$$

$$\sim (\neg v_0 \land v_2) \lor \neg v_0 \lor v_2 \qquad \text{Pasul 2}$$

Putem lua $\varphi^{FND} := (\neg v_0 \wedge v_2) \vee \neg v_0 \vee v_2$.

Pentru a obține FNC, continuăm cu Pasul 3:

$$\varphi \sim (\neg v_0 \wedge v_2) \vee (\neg v_0 \vee v_2) \sim (\neg v_0 \vee \neg v_0 \vee v_2) \wedge (v_2 \vee \neg v_0 \vee v_2).$$

Putem lua $\varphi^{FNC} := (\neg v_0 \lor \neg v_0 \lor v_2) \land (v_2 \lor \neg v_0 \lor v_2)$. Se observă, folosind idempotența și comutativitatea lui \lor , că $\varphi^{FNC} \sim \neg v_0 \lor v_2$.

CLAUZE ȘI REZOLUȚIE

Definiția 2.77

O clauză este o mulțime finită de literali:

$$C = \{L_1, \ldots, L_n\}$$
, unde L_1, \ldots, L_n sunt literali.

Dacă n = 0, obținem clauza vidă $\square := \emptyset$.

O clauză nevidă este considerată implicit o disjuncție.

Definiția 2.78

Fie C o clauză și e : $V \to \{0,1\}$. Spunem că e este model al lui C sau că e satisface C și scriem $e \models C$ dacă există $L \in C$ a.î. $e \models L$.

Definiția 2.79

O clauză C se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare $e: V \rightarrow \{0,1\}$ este model al lui C.

Definiția 2.80

O clauză C este trivială dacă există un literal L a.î. $L \in C$ și $L^c \in C$.

Propoziția 2.81

- (i) Orice clauză nevidă este satisfiabilă.
- (ii) Clauza vidă □ este nesatisfiabilă.
- (iii) O clauză este validă ddacă este trivială.

Dem.: Exercițiu.

 $\mathcal{S} = \{C_1, \dots, C_m\}$ este o mulțime de clauze. Dacă m = 0, obținem mulțimea vidă de clauze \emptyset .

 ${\cal S}$ este considerată implicit ca o formulă în FNC: conjuncție de disjuncții ale literalilor din fiecare clauză.

Definiția 2.82

Fie e: $V \to \{0,1\}$. Spunem că e este model al lui $\mathcal S$ sau că e satisface $\mathcal S$ și scriem e $\models \mathcal S$ dacă e $\models C_i$ pentru orice $i \in \{1, \dots, m\}$.

Definiția 2.83

 ${\cal S}$ se numește

- (i) satisfiabilă dacă are un model.
- (ii) validă dacă orice evaluare e : $V \rightarrow \{0,1\}$ este model al lui \mathcal{S} .

Propoziția 2.84

- ightharpoonup Dacă S conține clauza vidă \square , atunci S nu este satisfiabilă.
- ▶ ∅ este validă.

Dem.: Exercițiu.

Exemplu

$$\mathcal{S} = \{\{v_1, \neg v_3\}, \{\neg v_3, v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\}\} \text{ este satisfiabil} \check{a}.$$

Dem.: Considerăm $e: V \to \{0,1\}$ a.î. $e(v_1) = e(v_2) = 1$. Atunci $e \models S$.

Exemplu

$$S = \{ \{ \neg v_1, v_2 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1 \}, \{ v_3 \} \}$$
 nu este satisfiabilă.

Dem.: Presupunem că S are un model e. Atunci $e(v_1) = e(v_3) = 1$ și, deoarece $e \models \{\neg v_3, \neg v_2\}$, trebuie să avem $e(v_2) = 0$. Rezultă că $e(v_2) = e^+(\neg v_1) = 0$, deci e nu satisface $\{\neg v_1, v_2\}$. Am obținut o contradicție.

Unei formule φ în FNC îi asociem o mulțime de clauze \mathcal{S}_{φ} astfel:

Fie

$$\varphi := \bigwedge_{i=1}^n \left(\bigvee_{j=1}^{k_i} L_{i,j} \right),$$

unde fiecare $L_{i,j}$ este literal. Pentru orice i, fie C_i clauza obținută considerând toți literalii $L_{i,j}, j \in \{1, \ldots, k_i\}$ distincți. Fie \mathcal{S}_{φ} mulțimea tuturor clauzelor $C_i, i \in \{1, \ldots, n\}$ distincte.

 S_{φ} se mai numește și forma clauzală a lui φ .

Propoziția 2.85

Pentru orice evaluare $e: V \to \{0,1\}, e \vDash \varphi \ ddacă \ e \vDash S_{\varphi}.$

Unei mulțimi de clauze S îi asociem o formulă φ_S în FNC astfel:

$$C = \{L_1, \ldots, L_n\}, n \ge 1 \longmapsto \varphi_C := L_1 \vee L_2 \vee \ldots \vee L_n.$$

Fie $S = \{C_1, \dots, C_m\}$ o mulțime nevidă de clauze. Formula asociată lui S este

$$\varphi_{\mathcal{S}} := \bigwedge_{i=1}^{m} \varphi_{\mathcal{C}_i}.$$

Formula asociată mulțimii vide de clauze este $\varphi_{\emptyset} := v_0 \vee \neg v_0$. Formula $\varphi_{\mathcal{S}}$ nu este unic determinată, depinde de ordinea în care se scriu elementele în clauze și în \mathcal{S} , dar se observă imediat că: $\mathcal{S} = \mathcal{S}'$ implică $\varphi_{\mathcal{S}} \sim \varphi_{\mathcal{S}'}$.

Propoziția 2.86

Pentru orice evaluare $e: V \to \{0,1\}, e \models S$ ddacă $e \models \varphi_S$.

Definiția 2.87

Fie C_1 , C_2 două clauze. O clauză R se numește rezolvent al clauzelor C_1 , C_2 dacă există un literal L a.î. $L \in C_1$, $L^c \in C_2$ și

$$R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\}).$$

Regula Rezoluției

Rez
$$\frac{C_1, C_2}{(C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})}, L \in C_1, L^c \in C_2$$

Notăm cu $Res(C_1, C_2)$ mulțimea rezolvenților clauzelor C_1, C_2 .

- ▶ Rezoluția a fost introdusă de Blake (1937) şi dezvoltată de Davis, Putnam (1960) şi Robinson (1965).
- Multe demonstratoare automate de teoreme folosesc rezoluţia. Limbajul PROLOG este bazat pe rezoluţie.

Exemplu

 $C_1 = \{v_1, v_2, \neg v_5\}, C_2 = \{v_1, \neg v_2, v_{100}, v_5\}.$

- ▶ Luăm $L := \neg v_5$. Atunci $L \in C_1$ și $L^c = v_5 \in C_2$. Prin urmare, $R = \{v_1, v_2, \neg v_2, v_{100}\}$ este rezolvent al clauzelor C_1, C_2 .
- ▶ Dacă luăm $L' := v_2$, atunci $L' \in C_1$ și $L'^c = \neg v_2 \in C_2$. Prin urmare, $R' = \{v_1, \neg v_5, v_{100}, v_5\}$ este rezolvent al clauzelor C_1, C_2 .

Exemplu

 $C_1 = \{v_7\}, C_2 = \{\neg v_7\}.$ Atunci clauza vidă \square este rezolvent al clauzelor C_1, C_2 .

Fie $\mathcal S$ o mulțime de clauze.

Definiția 2.88

O derivare prin rezoluție din S sau o S-derivare prin rezoluție este o secvență C_1, C_2, \ldots, C_n de clauze $a.\hat{i}$. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) C_i este o clauză din S;
- (ii) există j, k < i a.î. C_i este rezolvent al clauzelor C_j , C_k .

Definiția 2.89

Fie C o clauză. O derivare prin rezoluție a lui C din S este o S-derivare prin rezoluție C_1, C_2, \ldots, C_n a.î. $C_n = C$.

Exemplu

Fie

$$\mathcal{S} = \{ \{ \neg v_1, v_2 \}, \{ \neg v_2, \neg v_3, v_4 \}, \{ v_1 \}, \{ v_3 \}, \{ \neg v_4 \} \}.$$

O derivare prin rezoluție a clauzei vide \square din $\mathcal S$ este următoarea:

$$\begin{array}{llll} C_1 &=& \{ \neg v_4 \} & C_1 \in \mathcal{S} \\ C_2 &=& \{ \neg v_2, \neg v_3, v_4 \} & C_2 \in \mathcal{S} \\ C_3 &=& \{ \neg v_2, \neg v_3 \} & C_3 \text{ rezolvent al clauzelor } C_1, C_2 \\ C_4 &=& \{ v_3 \} & C_4 \in \mathcal{S} \\ C_5 &=& \{ \neg v_2 \} & C_5 \text{ rezolvent al clauzelor } C_3, C_4 \\ C_6 &=& \{ \neg v_1, v_2 \} & C_6 \in \mathcal{S} \\ C_7 &=& \{ \neg v_1 \} & C_7 \text{ rezolvent al clauzelor } C_5, C_6 \\ C_8 &=& \{ v_1 \} & C_8 \in \mathcal{S} \\ C_9 &=& \square & C_9 \text{ rezolvent al clauzelor } C_7, C_8. \end{array}$$

Pentru orice mulțime de clauze S, notăm cu

$$Res(S) := \bigcup_{C_1, C_2 \in S} Res(C_1, C_2).$$

Propoziția 2.90

Pentru orice mulțime de clauze \mathcal{S} și orice evaluare e : $V \to \{0,1\}$,

$$e \vDash \mathcal{S} \Rightarrow e \vDash Res(\mathcal{S}).$$

Dem.: Dacă $Res(S) = \emptyset$, atunci este validă, deci $e \models Res(S)$. Presupunem că Res(S) este nevidă și fie $R \in Res(S)$. Atunci există clauze $C_1, C_2 \in S$ și un literal L a.î. $L \in C_1, L^c \in C_2$ și $R = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$. Avem două cazuri:

- ▶ $e \vDash L$. Atunci $e \not\vDash L^c$. Deoarece $e \vDash C_2$, există $U \in C_2$, $U \ne L^c$ a.î. $e \vDash U$. Deoarece $U \in R$, obţinem că $e \vDash R$.
- ▶ $e \not\vdash L$. Deoarece $e \vdash C_1$, există $U \in C_1$, $U \not= L$ a.î. $e \vdash U$. Deoarece $U \in R$, obținem că $e \vdash R$.

Rezoluția

Teorema 2.91 (Teorema de corectitudine a rezoluției)

Fie S o mulțime de clauze. Dacă \square se derivează prin rezoluție din S, atunci S este nesatisfiabilă.

Dem.: Fie $C_1, C_2, \ldots, C_n = \square$ o S-derivare prin rezoluție a lui \square . Presupunem că S este satisfiabilă și fie $e \models S$.

Demonstrăm prin inducție după i că:

pentru orice
$$1 \le i \le n$$
, $e \models C_i$.

Pentru i=n, obținem că $e \models \square$, ceea ce este o contradicție.

Cazul i = 1 este evident, deoarece $C_1 \in \mathcal{S}$.

Presupunem că $e \models C_j$ pentru orice j < i. Avem două cazuri:

- ▶ $C_i \in S$. Atunci $e \models C_i$.
- ▶ există j, k < i a.î. $C_i \in Res(C_j, C_k)$. Deoarece, conform ipotezei de inducție, $e \models \{C_j, C_k\}$ aplicăm Propoziția 2.90 pentru a conclude că $e \models C_i$.

Algoritmul Davis-Putnam (DP)

Intrare: S mulțime nevidă de clauze netriviale.

$$i:=1, \mathcal{S}_1:=\mathcal{S}$$
.

Pi.1 Fie x_i o variabilă care apare în S_i . Definim

$$\mathcal{T}_i^1 := \{ C \in \mathcal{S}_i \mid x_i \in C \}, \quad \mathcal{T}_i^0 := \{ C \in \mathcal{S}_i \mid \neg x_i \in C \}.$$

Pi.2 if $(\mathcal{T}_i^1 \neq \emptyset \text{ si } \mathcal{T}_i^0 \neq \emptyset)$ then

$$\mathcal{U}_i := \{(C_1 \setminus \{x_i\}) \cup (C_0 \setminus \{\neg x_i\}) \mid C_1 \in \mathcal{T}_i^1, C_0 \in \mathcal{T}_i^0\}.$$

else $\mathcal{U}_i := \emptyset$.

Pi.3 Definim

$$\begin{array}{ll} \mathcal{S}'_{i+1} & := \left(\mathcal{S}_i \setminus (\mathcal{T}_i^0 \cup \mathcal{T}_i^1) \right) \cup \mathcal{U}_i; \\ \mathcal{S}_{i+1} & := \left(\mathcal{S}'_{i+1} \setminus \{C \in \mathcal{S}'_{i+1} \mid C \text{ trivial} \check{a} \}. \end{array}$$

Pi.4 if
$$S_{i+1} = \emptyset$$
 then S este satisfiabilă.
else if $\square \in S_{i+1}$ then S este nesatisfiabilă.
else $\{i := i+1; \text{ go to Pi.1}\}.$

Algoritmul Davis-Putnam (DP)

$$\begin{split} \mathcal{S} &= \{ \{v_1, \neg v_3\}, \{v_2, v_1\}, \{v_2, \neg v_1, v_3\} \}. \ i := 1, \ \mathcal{S}_1 := \mathcal{S}. \\ \text{P1.1} \quad x_1 &:= v_3; \ \mathcal{T}_1^1 := \{ \{v_2, \neg v_1, v_3\} \}; \ \mathcal{T}_1^0 := \{ \{v_1, \neg v_3\} \}. \\ \text{P1.2} \quad \mathcal{U}_1 &:= \{ \{v_2, \neg v_1, v_1\} \}. \\ \text{P1.3} \quad \mathcal{S}_2' &:= \{ \{v_2, v_1\}, \{v_2, \neg v_1, v_1\} \}; \ \mathcal{S}_2 := \{ \{v_2, v_1\} \}. \\ \text{P1.4} \quad i &:= 2 \text{ and go to P2.1.} \\ \text{P2.1} \quad x_2 &:= v_2; \ \mathcal{T}_2^1 := \{ \{v_2, v_1\} \}; \ \mathcal{T}_2^0 := \emptyset. \\ \text{P2.2} \quad \mathcal{U}_2 &:= \emptyset. \\ \text{P2.3} \quad \mathcal{S}_3 &:= \emptyset. \\ \text{P2.4} \quad \mathcal{S} \text{ este satisfiabilă.} \end{split}$$

Algoritmul Davis-Putnam (DP)

$$S = \{ \{ \neg v_1, v_2, \neg v_4 \}, \{ \neg v_3, \neg v_2 \}, \{ v_1, v_3 \}, \{ v_1 \}, \{ v_3 \}, \{ v_4 \} \}.$$

$$i := 1, S_1 := S.$$

- P1.1 $x_1 := v_1; \ \mathcal{T}_1^1 := \{\{v_1, v_3\}, \{v_1\}\}; \ \mathcal{T}_1^0 := \{\{\neg v_1, v_2, \neg v_4\}\}.$
- P1.2 $U_1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$
- P1.3 $S_2 := \{\{\neg v_3, \neg v_2\}, \{v_3\}, \{v_4\}, \{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}.$
- P1.4 i := 2 and go to P2.1.
- P2.1. $x_2 := v_2$; $\mathcal{T}_2^1 := \{\{v_3, v_2, \neg v_4\}, \{v_2, \neg v_4\}\}; \mathcal{T}_2^0 := \{\{\neg v_3, \neg v_2\}\}.$ P2.2 $\mathcal{U}_2 := \{\{v_3, \neg v_4, \neg v_3\}, \{\neg v_4, \neg v_3\}\}.$
- P2.3 $S_3 := \{\{v_3\}, \{v_4\}, \{\neg v_4, \neg v_3\}\}.$
- P2.4 i := 3 and go to P3.1.
- P3.1 $x_3 := v_3; \mathcal{T}_3^1 := \{\{v_3\}\}; \mathcal{T}_3^0 := \{\{\neg v_4, \neg v_3\}\}.$
- $\mathsf{P3.2.} \quad \mathcal{U}_3 := \{ \{ \neg v_4 \} \}. \qquad \qquad \mathsf{P3.3} \quad \mathcal{S}_4 := \{ \{ v_4 \}, \{ \neg v_4 \} \}.$
- P3.4 i := 4 and go to P4.1.
- $\mathsf{P4.1} \quad x_4 := \mathsf{v_4}; \ \mathcal{T}_4^1 := \{\{\mathsf{v_4}\}\}; \ \mathcal{T}_4^0 := \{\{\neg \mathsf{v_4}\}\}.$
- P4.2 $\mathcal{U}_4 := \{\Box\}.$ P4.3 $\mathcal{S}_5 := \{\Box\}.$
- P4.4 \mathcal{S} nu este satisfiabilă.

Notăm:

$$Var(C) := \{x \in V \mid x \in C \text{ sau } \neg x \in C\}, \quad Var(S) := \bigcup_{C \in S} Var(C).$$

Aşadar,
$$Var(C) = \emptyset$$
 ddacă $C = \square$ și $Var(S) = \emptyset$ ddacă $S = \emptyset$ sau $S = \{\square\}$.

Propoziția 2.92

Fie n := |Var(S)|. Atunci algoritmul DP se termină după cel mult n pași.

Dem.: Se observă imediat că pentru orice *i*,

$$Var(S_{i+1}) \subseteq Var(S_i) \setminus \{x_i\} \subsetneq Var(S_i)$$
.

Prin urmare,
$$n = |Var(S_1)| > |Var(S_2)| > |Var(S_3)| > \ldots \ge 0$$
.

Fie $N \leq n$ numărul de pași după care se termină DP. Atunci $\mathcal{S}_{N+1} = \emptyset$ sau $\square \in \mathcal{S}_{N+1}$.

Algoritmul DP - corectitudine și completitudine

Propoziția 2.93

Pentru orice $i \leq N$,

 S_{i+1} este satisfiabilă $\iff S_i$ este satisfiabilă.

Dem.: Exercițiu suplimentar.

Teorema 2.94

Algoritmul DP este corect și complet, adică,

S este nesatisfiabilă ddacă $\square \in S_{N+1}$.

Dem.: Aplicăm Propoziția 2.93. Obținem că $S = S_1$ este nesatisfiabilă ddacă S_{N+1} este nesatisfiabilă ddacă $\square \in S_{N+1}$.

LOGICA DE ORDINUL ÎNTÂI

Limbaje de ordinul întâi

Definiția 3.1

Un limbaj \mathcal{L} de ordinul întâi este format din:

- ightharpoonup o mulţime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectorii \neg și \rightarrow ;
- parantezele (,);
- simbolul de egalitate =;
- ► cuantificatorul universal ∀:
- o mulţime R de simboluri de relaţii;
- ▶ o mulțime 𝓕 de simboluri de funcții;
- o mulțime C de simboluri de constante;
- ightharpoonup o funcție aritate ari : $\mathcal{F} \cup \mathcal{R} \to \mathbb{N}^*$.
- \blacktriangleright \mathcal{L} este unic determinat de cvadruplul $\tau := (\mathcal{R}, \mathcal{F}, \mathcal{C}, \operatorname{ari})$.
- ightharpoonup r se numește signatura lui $\mathcal L$ sau tipul de similaritate al lui $\mathcal L$

Fie \mathcal{L} un limbaj de ordinul întâi.

• Mulțimea $Sim_{\mathcal{L}}$ a simbolurilor lui \mathcal{L} este

$$Sim_{\mathcal{L}} := V \cup \{\neg, \rightarrow, (,), =, \forall\} \cup \mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$$

- Elementele lui $\mathcal{R} \cup \mathcal{F} \cup \mathcal{C}$ se numesc simboluri non-logice.
- Elementele lui $V \cup \{\neg, \rightarrow, (,), =, \forall\}$ se numesc simboluri logice.
- Notăm variabilele cu x, y, z, v, ..., simbolurile de relații cu P, Q, R..., simbolurile de funcții cu f, g, h, ... și simbolurile de constante cu c, d, e, ...
- Pentru orice $m \in \mathbb{N}^*$ notăm:

 \mathcal{F}_m := mulțimea simbolurilor de funcții de aritate m;

 $\mathcal{R}_m := \text{mulțimea simbolurilor de relații de aritate } m.$

Definiția 3.2

Mulțimea $\mathsf{Expr}_{\mathcal{L}}$ a expresiilor lui \mathcal{L} este mulțimea tuturor șirurilor finite de simboluri ale lui \mathcal{L} .

Expresia vidă se notează λ . O expresie nevidă este de forma $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$, unde $k \geq 1$ și $\theta_i \in \mathit{Sim}_{\mathcal{L}}$ pentru orice $i = 0, \dots, k-1$.

Fie
$$\theta = \theta_0 \theta_1 \dots \theta_{k-1}$$
 și $\sigma = \sigma_0 \sigma_1 \dots \sigma_{l-1}$ două expresii ale lui \mathcal{L} . $\theta = \sigma$ ddacă $k = l$ și $\theta_i = \sigma_i$ pentru orice $i = 0, \dots, k-1$.

Definiția 3.3

Fie $\theta=\theta_0\theta_1\dots\theta_{k-1}$ o expresie a lui \mathcal{L} . Spunem că o expresie σ apare în θ dacă există $0\leq i\leq j\leq k-1$ a.î. $\sigma=\theta_i\dots\theta_j$. Notăm cu $Var(\theta)$ mulțimea variabilelor care apar în θ .

Definiția 3.4

Termenii lui \mathcal{L} sunt expresiile definite astfel:

- (T0) Orice variabilă este termen.
- (T1) Orice simbol de constantă este termen.
- (T2) Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și t_1, \ldots, t_m sunt termeni, atunci $ft_1 \ldots t_m$ este termen.
- (T3) Numai expresiile obținute aplicând regulile (T0), (T1), (T2) sunt termeni.

Notații:

- ► Multimea termenilor se notează *Termc*.
- ightharpoonup Termenii se notează $t, s, t_1, t_2, s_1, s_2, \ldots$

Definiția 3.5

Un termen t se numește închis dacă $Var(t) = \emptyset$.

Propoziția 3.6 (Inducția pe termeni)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- Γ conţine variabilele şi simbolurile de constante.
- ▶ Dacă $m \ge 1$, $f \in \mathcal{F}_m$ și $t_1, \ldots, t_m \in \Gamma$, atunci $ft_1 \ldots t_m \in \Gamma$.

Atunci Term $_{\mathcal{L}} \subseteq \Gamma$.

Este folosită pentru a demonstra că toți termenii au o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor expresiilor care satisfac \mathcal{P} și aplicăm inducția pe termeni pentru a obține că $\mathit{Term}_{\mathcal{L}} \subseteq \Gamma$.

Propoziția 3.7 (Citire unică (Unique readability))

Dacă t este un termen, atunci exact una din următoarele alternative are loc:

- ightharpoonup t = x, unde $x \in V$;
- ightharpoonup t = c, unde $c \in C$;
- $ightharpoonup t=ft_1\dots t_m$, unde $f\in \mathcal{F}_m\ (m\geq 1)$ și t_1,\dots,t_m sunt termeni.

Mai mult, scrierea lui t sub una din aceste forme este unică.

Formule

Definiția 3.8

Formulele atomice ale lui \mathcal{L} sunt expresiile de forma:

- \triangleright (s = t), unde s, t sunt termeni;
- $ightharpoonup (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m \ (m \ge 1)$ și t_1, \dots, t_m sunt termeni.

Definiția 3.9

Formulele lui \mathcal{L} sunt expresiile definite astfel:

- (F0) Orice formulă atomică este formulă.
- (F1) Dacă φ este formulă, atunci atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Dacă φ este formulă, atunci $(\forall x \varphi)$ este formulă pentru orice variabilă x.
- (F4) Numai expresiile obținute aplicând regulile (F0), (F1), (F2), (F3) sunt formule.

Notații

- ► Mulțimea formulelor se notează *Form*_L.
- Formulele se notează $\varphi, \psi, \chi, \ldots$

Propoziția 3.10 (Inducția pe formule)

Fie Γ o mulțime de expresii care are următoarele proprietăți:

- Γ conţine toate formulele atomice.
- ▶ Γ este închisă la \neg , \rightarrow și $\forall x$ (pentru orice variabilă x), adică: dacă $\varphi, \psi \in \Gamma$, atunci $(\neg \varphi), (\varphi \rightarrow \psi), (\forall x \varphi) \in \Gamma$.

Atunci Form $_{\mathcal{L}} \subseteq \Gamma$.

Este folosită pentru a demonstra că toate formulele satisfac o proprietate \mathcal{P} : definim Γ ca fiind mulțimea tuturor formulelor care satisfac \mathcal{P} și aplicăm inducția pe formule pentru a obține că $Form_{\mathcal{L}} \subseteq \Gamma$.

Propoziția 3.11 (Citire unică (Unique readability))

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\varphi = (s = t)$, unde s, t sunt termeni;
- $\varphi = (Rt_1 \dots t_m)$, unde $R \in \mathcal{R}_m \ (m \ge 1)$ și t_1, \dots, t_m sunt termeni;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $\blacktriangleright \varphi = (\psi \to \chi)$, unde ψ, χ sunt formule;
- $ightharpoonup \varphi = (\forall x \psi)$, unde x este variabilă și ψ este formulă.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Conectori derivați

Conectorii \lor , \land , \leftrightarrow și cuantificatorul existențial \exists sunt introduși prin următoarele abrevieri:

$$\varphi \lor \psi := (\neg \varphi) \to \psi
\varphi \land \psi := \neg(\varphi \to (\neg \psi))
\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi)
\exists x \varphi := \neg \forall x \neg \varphi.$$

147

În practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $s=t,\,Rt_1\ldots t_m,\,\forall x\varphi,\,\neg\varphi,\,\varphi\to\psi$. Pe de altă parte, scriem $(\varphi\to\psi)\to\chi$.

Pentru a reduce din folosirea parantezelor, presupunem următoarele:

- ► Cuantificatorii \forall , \exists au precedență mai mare decât ceilalți conectori. Așadar, $\forall x \varphi \rightarrow \psi$ este $(\forall x \varphi) \rightarrow \psi$ și nu $\forall x (\varphi \rightarrow \psi)$.
- ▶ ¬ are precedență mai mare decât \rightarrow , \land , \lor , \leftrightarrow .
- \triangleright \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Formule

- Scriem uneori $f(t_1, \ldots, t_m)$ în loc de $ft_1 \ldots t_m$ și $R(t_1, \ldots, t_m)$ în loc de $Rt_1 \ldots t_m$.
- Simbolurile de funcții sau relații de aritate 1 se numesc unare.
- Simbolurile de funcții sau relații de aritate 2 se numesc binare.
- ▶ Dacă f este un simbol de funcție binară scriem t_1ft_2 în loc de ft_1t_2 .
- Analog, dacă R este un simbol de relație binară, scriem t_1Rt_2 în loc de Rt_1t_2 .

Vom identifica un limbaj \mathcal{L} cu mulţimea simbolurilor sale non-logice şi vom scrie $\mathcal{L} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$.

Definiția 3.12

O L-structură este un cvadruplu

$$\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{C}^{\mathcal{A}})$$

unde

- A este o mulţime nevidă;
- ▶ $\mathcal{F}^{\mathcal{A}} = \{ f^{\mathcal{A}} \mid f \in \mathcal{F} \}$ este o mulțime de operații pe A; dacă f are aritatea m, atunci $f^{\mathcal{A}} : A^m \to A$;
- ▶ $\mathcal{R}^{\mathcal{A}} = \{R^{\mathcal{A}} \mid R \in \mathcal{R}\}$ este o mulțime de relații pe A; dacă R are aritatea m, atunci $R^{\mathcal{A}} \subseteq A^m$;
- A se numește universul structurii A. Notație: A = |A|
- $f^{\mathcal{A}}$ (respectiv $R^{\mathcal{A}}$, $c^{\mathcal{A}}$) se numește denotația sau interpretarea lui f (respectiv R, c) în \mathcal{A} .

Exemple - Limbajul egalității $\mathcal{L}_{=}$

$$\mathcal{L}_{=}=(\mathcal{R},\mathcal{F},\mathcal{C})$$
, unde

- $\triangleright \mathcal{R} = \mathcal{F} = \mathcal{C} = \emptyset$
- acest limbaj este potrivit doar pentru a exprima proprietăți ale egalității
- \triangleright $\mathcal{L}_{=}$ -structurile sunt mulțimile nevide

Exemple de formule:

• egalitatea este simetrică:

$$\forall x \forall y (x = y \rightarrow y = x)$$

• universul are cel puţin trei elemente:

$$\exists x \exists y \exists z (\neg(x = y) \land \neg(y = z) \land \neg(z = x))$$

Exemple - Limbajul aritmeticii $\mathcal{L}_{\mathsf{ar}}$

$$\mathcal{L}_{\textit{ar}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \{\dot{<}\}; \dot{<}$ este simbol de relație binară;
- $\mathcal{F} = \{\dot{+}, \dot{\times}, \dot{S}\}; \dot{+}, \dot{\times}$ sunt simboluri de funcții binare și \dot{S} este simbol de funcție unară;
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem
$$\mathcal{L}_{ar} = (\dot{<}; \dot{+}, \dot{\times}, \dot{S}; \dot{0})$$
 sau $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$.

Exemplul natural de \mathcal{L}_{ar} -structură:

$$\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0),$$

unde $S: \mathbb{N} \to \mathbb{N}, S(m) = m+1$ este funcția succesor. Prin urmare,

$$\dot{<}^{\mathcal{N}}=<,\ \dot{+}^{\mathcal{N}}=+,\ \dot{\times}^{\mathcal{N}}=\cdot,\ \dot{S}^{\mathcal{N}}=S,\ \dot{0}^{\mathcal{N}}=0.$$

• Alt exemplu de \mathcal{L}_{ar} -structură: $\mathcal{A} = (\{0,1\}, <, \mathsf{V}, \mathsf{\Lambda}, \neg, 1)$.

Exemplu - Limbajul cu un simbol de relație binar

$$\mathcal{L}_R = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde

- $ightharpoonup \mathcal{R} = \{R\}$; R simbol de relație binară
- \triangleright $\mathcal{F} = \mathcal{C} = \emptyset$
- L-structurile sunt mulțimile nevide împreună cu o relație binară
- ▶ Dacă suntem interesați de mulțimi parțial ordonate (A, \leq) , folosim simbolul \leq în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- ▶ Dacă suntem interesați de mulțimi strict ordonate (A, <), folosim simbolul < în loc de R și notăm limbajul cu $\mathcal{L}_{<}$.
- Dacă suntem interesați de grafuri G = (V, E), folosim simbolul \dot{E} în loc de R și notăm limbajul cu \mathcal{L}_{Graf} .
- ▶ Dacă suntem interesați de structuri (A, \in) , folosim simbolul \in în loc de R și notăm limbajul cu \mathcal{L}_{\in} .

Exemple - Limbajul grupurilor \mathcal{L}_{Gr}

$$\mathcal{L}_{\mathit{Gr}} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$$
, unde $\mathcal{R} = \emptyset$ și

- $\mathcal{F} = \{\dot{*}, \dot{-}^{1}\}; \dot{*}$ simbol de funcție binară, $\dot{-}^{1}$ simbol de funcție unară
- $ightharpoonup \mathcal{C} = \{\dot{e}\}.$

Scriem
$$\mathcal{L}_{Gr} = (\emptyset; \dot{*}, \dot{-1}; \dot{e})$$
 sau $\mathcal{L}_{Gr} = (\dot{*}, \dot{-1}, \dot{e})$.

Exemple naturale de \mathcal{L}_{Gr} -structuri sunt grupurile: $\mathcal{G} = (G, \cdot, ^{-1}, e)$. Prin urmare, $\dot{*}^{\mathcal{G}} = \cdot \dot{^{-1}}^{\mathcal{G}} = ^{-1}$, $\dot{e}^{\mathcal{G}} = e$.

Pentru a discuta despre grupuri abeliene (comutative), este tradițional să se folosească limbajul $\mathcal{L}_{AbGr} = (\mathcal{R}, \mathcal{F}, \mathcal{C})$, unde

- $\triangleright \mathcal{R} = \emptyset;$
- $\mathcal{F} = \{\dot{+}, \dot{-}\}; \dot{+} \text{ simbol binar, } \dot{-} \text{ simbol unar;}$
- $ightharpoonup \mathcal{C} = \{\dot{0}\}.$

Scriem $\mathcal{L}_{AbGr} = (\dot{+}, \dot{-}, \dot{0}).$

SEMANTICA

Fie $\mathcal L$ un limbaj de ordinul întâi și $\mathcal A$ o $\mathcal L$ -structură.

Definiția 3.13

O interpretare sau evaluare a (variabilelor) lui $\mathcal L$ în $\mathcal A$ este o funcție $e:V\to A$.

În continuare, e:V o A este o interpretare a lui ${\mathcal L}$ in ${\mathcal A}.$

Definiția 3.14 (Interpretarea termenilor)

Prin inducție pe termeni se definește interpretarea $t^{\mathcal{A}}(e) \in A$ a termenului t sub evaluarea e:

- ightharpoonup dacă $t = x \in V$, atunci $t^{\mathcal{A}}(e) := e(x)$;
- ightharpoonup dacă $t=c\in\mathcal{C}$, atunci $t^{\mathcal{A}}(e):=c^{\mathcal{A}}$;
- $lackbox{dacă}\ t=ft_1\ldots t_m$, atunci $t^{\mathcal{A}}(e):=f^{\mathcal{A}}(t_1^{\mathcal{A}}(e),\ldots,t_m^{\mathcal{A}}(e))$.

Prin inducție pe formule se definește interpretarea

$$\varphi^{\mathcal{A}}(e) \in \{0,1\}$$

a formulei φ sub evaluarea e.

$$(s=t)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac}\check{a} \ s^{\mathcal{A}}(e) = t^{\mathcal{A}}(e) \\ 0 & \operatorname{altfel}. \end{array}
ight. \ (Rt_1 \ldots t_m)^{\mathcal{A}}(e) = \left\{ egin{array}{ll} 1 & \operatorname{dac}\check{a} \ R^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \ldots, t_m^{\mathcal{A}}(e)) \\ 0 & \operatorname{altfel}. \end{array}
ight.$$

Negația și implicația

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 - \varphi^{\mathcal{A}}(e);$$

$$(\varphi \to \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \to \psi^{\mathcal{A}}(e)$$
, unde,

Prin urmare,

$$(\neg \varphi)^{\mathcal{A}}(e) = 1 \iff \varphi^{\mathcal{A}}(e) = 0.$$

$$(\varphi \to \psi)^{\mathcal{A}}(e) = 1 \iff (\varphi^{\mathcal{A}}(e) = 0 \text{ sau } \psi^{\mathcal{A}}(e) = 1).$$

Notație

Pentru orice variabilă $x \in V$ și orice $a \in A$, definim o nouă interpretare $e_{x \leftarrow a} : V \rightarrow A$ prin

$$e_{x \leftarrow a}(v) = \left\{ egin{array}{ll} e(v) & ext{dacă } v
eq x \ a & ext{dacă } v = x. \end{array}
ight.$$

Interpretarea formulelor

$$(\forall x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \mathsf{dac}\check{a} \ \varphi^{\mathcal{A}}(e_{\mathsf{x}\leftarrow a}) = 1 \ \mathsf{pentru\ orice}\ a \in A \\ 0 & \mathsf{altfel}. \end{cases}$$

Relația de satisfacere

Fie $\mathcal A$ o $\mathcal L$ -structură și e:V o A o interpretare a lui $\mathcal L$ în $\mathcal A$.

Definiția 3.15

Fie φ o formulă. Spunem că:

- e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notație: $\mathcal{A} \vDash \varphi[e]$.
- e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notație: $\mathcal{A} \not\models \varphi[e]$.

Corolar 3.16

Pentru orice formule φ, ψ și orice variabilă x,

- (i) $A \vDash \neg \varphi[e] \iff A \nvDash \varphi[e].$
- (ii) $\mathcal{A} \vDash (\varphi \to \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \text{ implică } \mathcal{A} \vDash \psi[e] \iff \mathcal{A} \nvDash \varphi[e] \text{ sau } \mathcal{A} \vDash \psi[e].$
- (iii) $A \models (\forall x \varphi)[e] \iff pentru \ orice \ a \in A, \ A \models \varphi[e_{x \leftarrow a}].$

Dem.: Exercițiu ușor.

Fie φ, ψ formule și x o variabilă.

Propoziția 3.17

(i)
$$(\varphi \lor \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \lor \psi^{\mathcal{A}}(e);$$

(ii)
$$(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e);$$

(iii)
$$(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$$

$$(iv) \ (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \textit{dacă există a} \in A \ \textit{a.î.} \ \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1 \\ 0 & \textit{altfel.} \end{cases}$$

Dem.: Exercițiu ușor. Arătăm, de exemplu, (iv).

$$(\exists x\varphi)^{\mathcal{A}}(e) = 1 \iff (\neg \forall x \neg \varphi)^{\mathcal{A}}(e) = 1 \iff (\forall x \neg \varphi)^{\mathcal{A}}(e) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } (\neg \varphi)^{\mathcal{A}}(e_{x \leftarrow a}) = 0$$

$$\iff \text{există } a \in A \text{ a.î. } \varphi^{\mathcal{A}}(e_{x \leftarrow a}) = 1.$$

Corolar 3.18

- (i) $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e] \text{ si } A \vDash \psi[e].$
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $A \vDash (\varphi \leftrightarrow \psi)[e] \iff A \vDash \varphi[e] \ ddac \ A \vDash \psi[e].$
- $(iv) \ \mathcal{A} \vDash (\exists x \varphi)[e] \Longleftrightarrow \text{ există } a \in A \ \text{ a.î. } \ \mathcal{A} \vDash \varphi[e_{\mathsf{x} \leftarrow \mathsf{a}}].$

Fie φ formulă a lui \mathcal{L} .

Definiția 3.19

Spunem că φ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} și o evaluare e : $V \to A$ a.î.

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că (A, e) este un model al lui φ .

Atenție! Este posibil ca atât φ cât și $\neg \varphi$ să fie satisfiabile. Exemplu: $\varphi := x = y$ în $\mathcal{L}_=$.

Fie φ formulă a lui \mathcal{L} .

Definiția 3.20

Spunem că φ este adevărată într-o \mathcal{L} -structură \mathcal{A} dacă pentru orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că \mathcal{A} satisface φ sau că \mathcal{A} este un model al lui φ .

Notație: $A \models \varphi$

Definiția 3.21

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \vDash \varphi$$
.

Notație: $\models \varphi$

Semantică

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 3.22

 φ și ψ sunt logic echivalente dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \bowtie \psi$

Definiția 3.23

 ψ este consecință semantică a lui φ dacă pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare e : $V \to A$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \models \psi$

Observație

- (i) $\varphi \vDash \psi$ ddacă $\vDash \varphi \rightarrow \psi$.
- (ii) $\varphi \vDash \psi$ ddacă ($\psi \vDash \varphi$ și $\varphi \vDash \psi$) ddacă $\vDash \psi \leftrightarrow \varphi$.

Echivalențe și consecințe logice

Pentru orice formule φ , ψ și orice variabile x, y,

$\neg \exists x \varphi$	H	$\forall x \neg \varphi$	(51)
$\neg \forall x \varphi$	H	$\exists x \neg \varphi$	(52)
$\forall x (\varphi \wedge \psi)$	H	$\forall x \varphi \wedge \forall x \psi$	(53)
$\forall x \varphi \lor \forall x \psi$	F	$\forall x (\varphi \lor \psi)$	(54)
$\exists x (\varphi \wedge \psi)$	F	$\exists x \varphi \land \exists x \psi$	(55)
$\exists x (\varphi \lor \psi)$	H	$\exists x \varphi \lor \exists x \psi$	(56)
$\forall x (\varphi \rightarrow \psi)$	F	$\forall x \varphi \rightarrow \forall x \psi$	(57)
$\forall x (\varphi \rightarrow \psi)$	F	$\exists x \varphi \rightarrow \exists x \psi$	(58)
$\forall x \varphi$	E	$\exists x \omega$	(59)

Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi \tag{60}$$

$$\forall x \varphi \models \varphi \tag{61}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi$$
 (62)

$$\exists x \exists y \varphi \mid \exists y \exists x \varphi$$
 (63)

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{64}$$

Dem.: Exercițiu.

Propoziția 3.24

Pentru orice termeni s, t, u,

(i)
$$\models t = t$$
;

(ii)
$$\models s = t \rightarrow t = s$$
;

(iii)
$$\models s = t \land t = u \rightarrow s = u$$
.

Dem.: Exercițiu ușor.

Variabile legate și libere

Definiția 3.25

Fie $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ o formulă a lui \mathcal{L} și x o variabilă.

- ▶ Spunem că variabila x apare legată pe poziția k în φ dacă $x = \varphi_k$ și există $0 \le i \le k \le j \le n-1$ a.î. $\varphi_i \dots \varphi_j$ este de forma $\forall x \psi$.
- Spunem că x apare liberă pe poziția k în φ dacă $x = \varphi_k$, dar x nu apare legată pe poziția k în φ .
- ightharpoonup x este variabilă legată (bounded variable) a lui φ dacă există un k a.î. x apare legată pe poziția k în φ .
- ightharpoonup x este variabilă liberă (free variable) a lui φ dacă există un k a.î. x apare liberă pe poziția k în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

Notație: $FV(\varphi)$:= mulțimea variabilelor libere ale lui φ .

Definiție alternativă

Mulţimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducţie pe formule:

$$\begin{array}{lll} FV(\varphi) & = & Var(\varphi), & \operatorname{dac\check{a}} \varphi \text{ este formul\check{a} atomic\check{a}}; \\ FV(\neg\varphi) & = & FV(\varphi); \\ FV(\varphi \to \psi) & = & FV(\varphi) \cup FV(\psi); \\ FV(\forall x \varphi) & = & FV(\varphi) \setminus \{x\}. \end{array}$$

Notație: $\varphi(x_1,\ldots,x_n)$ dacă $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

Propoziția 3.26

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1,e_2:V\to\mathcal{A}$, pentru orice termen t,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in Var(t)$, atunci $t^{\mathcal{A}}(e_1) = t^{\mathcal{A}}(e_2)$.

Dem.: Exercițiu.

Propoziția 3.27

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2 : V \to A$, pentru orice formulă φ ,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

•
$$\varphi = t_1 = t_2$$
.

Atunci $Var(t_1) \subseteq FV(\varphi)$, $Var(t_2) \subseteq FV(\varphi)$, deci putem aplica Propoziția 3.26 pentru a obține că

$$t_1^{\mathcal{A}}(e_1) = t_1^{\mathcal{A}}(e_2)$$
 și $t_2^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_2)$.

$$\mathcal{A} \vDash \varphi[e_1] \iff t_1^{\mathcal{A}}(e_1) = t_2^{\mathcal{A}}(e_1) \iff t_1^{\mathcal{A}}(e_2) = t_2^{\mathcal{A}}(e_2)$$
$$\iff \mathcal{A} \vDash \varphi[e_2].$$

Interpretarea formulelor

• $\varphi = Rt_1 \dots t_m$.

Atunci $Var(t_i) \subseteq FV(\varphi)$ pentru orice $i=1,\ldots,m$ și aplicăm din nou Propoziția 3.26 pentru a obține că

$$t_i^{\mathcal{A}}(e_1) = t_i^{\mathcal{A}}(e_2)$$
 pentru orice $i = 1, \ldots, m$.

Rezultă că

$$\mathcal{A} \vDash \varphi[e_1] \iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_1), \dots, t_m^{\mathcal{A}}(e_1))$$
$$\iff R^{\mathcal{A}}(t_1^{\mathcal{A}}(e_2), \dots, t_m^{\mathcal{A}}(e_2)) \iff \mathcal{A} \vDash \varphi[e_2].$$

• $\varphi = \neg \psi$.

Deoarece $FV(\psi) = FV(\varphi)$, putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2].$$

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \not\vDash \psi[e_1] \iff \mathcal{A} \not\vDash \psi[e_2] \iff \mathcal{A} \vDash \varphi[e_2].$$

•
$$\varphi = \psi \to \chi$$
.

Deoarece $FV(\psi), FV(\chi) \subseteq FV(\varphi)$, putem aplica ipoteza de inducție pentru a obține că

$$\mathcal{A} \vDash \psi[e_1] \iff \mathcal{A} \vDash \psi[e_2] \text{ si } \mathcal{A} \vDash \chi[e_1] \iff \mathcal{A} \vDash \chi[e_2].$$

$$\mathcal{A} \vDash \varphi[e_1] \iff \mathcal{A} \not\vDash \psi[e_1] \text{ sau } \mathcal{A} \vDash \chi[e_1]$$
$$\iff \mathcal{A} \not\vDash \psi[e_2] \text{ sau } \mathcal{A} \vDash \chi[e_2]$$
$$\iff \mathcal{A} \vDash \varphi[e_2].$$

Interpretarea formulelor

• $\varphi = \forall x \psi$ și

$$e_1(v) = e_2(v)$$
 pentru orice $v \in FV(\varphi) = FV(\psi) \setminus \{x\}$.

Rezultă că pentru orice $a \in A$,

$$e_{1\times\leftarrow a}(v)=e_{2\times\leftarrow a}(v)$$
 pentru orice $v\in FV(\psi)$.

Prin urmare, putem aplica ipoteza de inducție pentru interpretările $e_{1\times\leftarrow a}, e_{2\times\leftarrow a}$ pentru a obține că

pentru orice
$$a \in A$$
, $A \models \psi[e_{1_{X \leftarrow a}}] \iff A \models \psi[e_{2_{X \leftarrow a}}]$.

Propoziția 3.28

Pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\varphi \quad \exists x \varphi \qquad (65)$$

$$\varphi \quad \exists x \varphi \qquad (66)$$

$$\forall x (\varphi \land \psi) \quad \exists \varphi \land \forall x \psi \qquad (67)$$

$$\forall x (\varphi \lor \psi) \quad \exists \varphi \lor \forall x \psi \qquad (68)$$

$$\exists x (\varphi \land \psi) \quad \exists \varphi \land \exists x \psi \qquad (69)$$

$$\exists x (\varphi \lor \psi) \quad \exists \varphi \lor \exists x \psi \qquad (70)$$

$$\forall x (\varphi \to \psi) \quad \exists \varphi \to \forall x \psi \qquad (71)$$

$$\exists x (\varphi \to \psi) \quad \exists \varphi \to \exists x \psi \qquad (72)$$

$$\forall x (\psi \to \varphi) \quad \exists x \psi \to \varphi \qquad (73)$$

$$\exists x (\psi \to \varphi) \quad \exists \varphi \lor \psi \to \varphi \qquad (74)$$

Dem.: Exercițiu.

Definiția 3.29

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: Sent $_{\mathcal{L}}$:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 3.30

Fie φ un enunț. Pentru orice interpretări $e_1, e_2: V \to A$,

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

Dem.: Este o consecință imediată a Propoziției 3.27 și a faptului că $FV(\varphi) = \emptyset$.

Definitia 3.31

O \mathcal{L} -structură \mathcal{A} este un model al lui φ dacă $\mathcal{A} \vDash \varphi[e]$ pentru o (orice) evaluare $e: V \to A$. Notație: $\mathcal{A} \vDash \varphi$

SUBSTITUȚII

Substituția

Fie x o variabilă a lui \mathcal{L} și u termen al lui \mathcal{L} .

Definiția 3.32

Pentru orice termen t al lui \mathcal{L} , definim $t_x(u) := expresia obținută din t prin înlocuirea tuturor aparițiilor lui <math>x$ cu u.

Propoziția 3.33

Pentru orice termen t al lui \mathcal{L} , $t_x(u)$ este termen al lui \mathcal{L} .

- Vrem să definim analog $\varphi_x(u)$ ca fiind expresia obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u.
- De asemenea, vrem ca următoarele proprietăți naturale ale substituției să fie adevărate:

$$\vDash \forall x \varphi \to \varphi_x(u) \quad \text{si} \quad \vDash \varphi_x(u) \to \exists x \varphi.$$

Apar însă probleme.

Fie $\varphi := \exists y \neg (x = y)$ și u := y. Atunci $\varphi_x(u) = \exists y \neg (y = y)$. Avem

- ▶ Pentru orice \mathcal{L} -structură \mathcal{A} cu $|A| \geq 2$, avem $\mathcal{A} \models \forall x \varphi$.
- $ightharpoonup \varphi_{x}(u)$ nu este satisfiabilă.

Fie x o variabilă, u un termen și φ o formulă.

Definiția 3.34

Spunem că x este liberă pentru u în φ sau că u este substituibil pentru x în φ dacă pentru orice variabilă y care apare în u, nici o subformulă a lui φ de forma $\forall y\psi$ nu conține apariții libere ale lui x.

Observație

x este liberă pentru u în φ în oricare din următoarele situații:

- u nu contine variabile;
- $\triangleright \varphi$ nu conține variabile care apar în u;
- \blacktriangleright nici o variabilă din u nu apare legată în φ ;
- \triangleright x nu apare în φ ;
- $\triangleright \varphi$ nu conține apariții libere ale lui x.

Fie x o variabilă, u termen și φ o formulă a.î. x este liberă pentru u în φ .

Definiția 3.35

 $\varphi_{\mathsf{x}}(\mathsf{u}) := \mathsf{expresia}$ obținută din φ prin înlocuirea tuturor aparițiilor libere ale lui x cu u .

Spunem că $\varphi_{\mathsf{x}}(\mathsf{u})$ este o substituție liberă.

Propoziția 3.36

 $\varphi_{\mathsf{x}}(\mathsf{u})$ este formulă a lui \mathcal{L} .

Noțiunea de substituție liberă evită problemele menționate anterior și se comportă cum am aștepta.

^T Propoziția 3.37

Pentru orice termeni u_1 și u_2 și orice variabilă x,

(i) pentru orice termen t,

$$\vDash u_1 = u_2 \to t_{\times}(u_1) = t_{\times}(u_2).$$

(ii) pentru orice formulă φ a.î. x este liberă pentru u_1 și u_2 în φ ,

$$\vDash u_1 = u_2 \to (\varphi_{\mathsf{x}}(u_1) \leftrightarrow \varphi_{\mathsf{x}}(u_2)).$$

Propoziția 3.38

Fie φ o formulă și x o variabilă.

(i) Pentru orice termen u substituibil pentru x în φ ,

$$\vDash \forall x \varphi \to \varphi_{\mathsf{x}}(u), \qquad \vDash \varphi_{\mathsf{x}}(u) \to \exists x \varphi.$$

(ii)
$$\vDash \forall x \varphi \to \varphi$$
, $\vDash \varphi \to \exists x \varphi$.

(iii) Pentru orice simbol de constantă c,

$$\vDash \forall x \varphi \rightarrow \varphi_x(c), \qquad \vDash \varphi_x(c) \rightarrow \exists x \varphi.$$

În general, dacă x si y sunt variabile, φ și $\varphi_x(y)$ nu sunt logic echivalente: fie \mathcal{L}_{ar} , \mathcal{N} și $e:V\to\mathbb{N}$ a.î. e(x)=3, e(y)=5, e(z)=4. Atunci

$$\mathcal{N} \models (x \dot{<} z)[e], \text{ dar } \mathcal{N} \not\models (x \dot{<} z)_x(y)[e].$$

Totuși, variabilele legate pot fi substituite, cu condiția să se evite conflicte.

Propoziția 3.39

Pentru orice formulă φ , variabile distincte x și y a.î. $y \notin FV(\varphi)$ și y este substituibil pentru x în φ ,

$$\exists x \varphi \bowtie \exists y \varphi_x(y)$$
 $\forall x \varphi \bowtie \forall y \varphi_x(y).$

Folosim Propoziția 3.39 astfel: dacă $\varphi_{\mathsf{x}}(u)$ nu este substituție liberă (i.e. x nu este liberă pentru u în φ), atunci înlocuim φ cu o formulă φ' logic echivalentă a.î. $\varphi'_{\mathsf{x}}(u)$ este substituție liberă.

Definiția 3.40

Pentru orice formulă φ și orice variabile y_1, \ldots, y_k , varianta y_1, \ldots, y_k -liberă φ' a lui φ este definită recursiv astfel:

- ▶ dacă φ este formulă atomică, atunci φ' este φ ;
- ► dacă φ = ¬ψ, atunci φ' este ¬ψ';
- dacă $\varphi = \psi \rightarrow \chi$, atunci φ' este $\psi' \rightarrow \chi'$;
- ightharpoonup dacă $\varphi = \forall z \psi$, atunci

$$\varphi' \text{ este } \begin{cases} \forall w \psi_z'(w) & \textit{dacă } z \in \{y_1, \dots, y_k\} \\ \forall z \psi' & \textit{altfel}; \end{cases}$$

unde w este prima variabilă din șirul $v_0, v_1, \ldots,$ care nu apare în ψ' și nu este printre y_1, \ldots, y_k .

Definiția 3.41

 φ' este variantă a lui φ dacă este varianta y_1, \ldots, y_k -liberă a lui φ pentru anumite variabile y_1, \ldots, y_k .

Propoziția 3.42

- (i) Pentru orice formulă φ , dacă φ' este o variantă a lui φ , atunci $\varphi \bowtie \varphi'$;
- (ii) Pentru orice formulă φ și orice termen t, dacă variabilele lui t se află printre y_1, \ldots, y_k și φ' este varianta y_1, \ldots, y_k -liberă a lui φ , atunci $\varphi'_x(t)$ este o substituție liberă.

FORME NORMALE

Definiția 3.43

O formulă care nu conține cuantificatori se numește liberă de cuantificatori ("quantifier-free").

Definiția 3.44

O formulă φ este în formă normală prenex dacă

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \psi,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile și ψ este formulă liberă de cuantificatori. Formula ψ se numește matricea lui φ și $Q_1x_1Q_2x_2\ldots Q_nx_n$ este prefixul lui φ .

Exemple de formule în formă normală prenex:

- ► Formulele universale: $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \psi$, unde $n \in \mathbb{N}$ și ψ este liberă de cuantificatori
- ► Formulele existențiale: $\varphi = \exists x_1 \exists x_2 \dots \exists x_n \psi$, unde $n \in \mathbb{N}$ și ψ este liberă de cuantificatori

Fie φ o formulă și t_1, \ldots, t_n termeni care nu conțin variabile din φ . Notăm cu $\varphi_{x_1,\ldots,x_n}(t_1,\ldots,t_n)$ formula obținută din φ substituind toate aparițiile libere ale lui x_1,\ldots,x_n cu t_1,\ldots,t_n respectiv.

Notații: $\forall^c = \exists$, $\exists^c = \forall$.

Teorema 3.45 (Teorema de formă normală prenex) Pentru orice formulă φ există o formulă φ^* în formă normală prenex a.î. $\varphi \vDash \varphi^*$ și $FV(\varphi) = FV(\varphi^*)$.

Dem.: Aplicăm inducția pe formule. Avem următoarele cazuri:

- φ este formulă atomică. Atunci $\varphi^* := \varphi$.
- $\varphi = \neg \psi$ și, conform ipotezei de inducție, există o formulă $\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0$ în formă normală prenex a.î. $\psi \vDash \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim

$$\varphi^* := Q_1^c x_1 \dots Q_n^c x_n \neg \psi_0.$$

Atunci φ^* este în formă normală prenex, $\varphi^* \boxminus \neg \psi^* \boxminus \neg \psi = \varphi$ și $FV(\varphi^*) = FV(\psi^*) = FV(\psi) = FV(\varphi)$.

• $\varphi=\psi\to\chi$ și, conform ipotezei de inducție, există formulele în formă normală prenex

$$\psi^* = Q_1 x_1 \dots Q_n x_n \psi_0, \quad \chi^* = S_1 z_1 \dots S_m z_m \chi_0$$

a.î. $\psi \bowtie \psi^*$, $FV(\psi) = FV(\psi^*)$, $\chi \bowtie \chi^*$ și $FV(\chi) = FV(\chi^*)$. Notăm cu V_0 mulțimea tuturor variabilelor care apar în ψ^* sau χ^* . Fie $\tilde{\psi}^*$ (resp. $\tilde{\chi^*}$) varianta V_0 -liberă a lui ψ^* (resp. χ^*). Atunci

$$\tilde{\psi}^* = Q_1 y_1 \dots Q_n y_n \tilde{\psi}_0, \quad \tilde{\chi}^* = S_1 w_1 \dots S_m w_m \tilde{\chi}_0,$$

unde $y_1,\ldots,y_n,w_1,\ldots,w_m$ sunt variabile distincte care nu apar în V_0 , $\tilde{\psi}_0=\psi_{0_{X_1,\ldots,X_n}}(y_1,\ldots,y_n)$ și $\tilde{\chi}_0=\chi_{0_{Z_1,\ldots,Z_m}}(w_1,\ldots,w_m)$. Conform Propoziției 3.42.(i), $\tilde{\psi}^* \boxminus \psi^*$ și $\tilde{\chi}^* \boxminus \chi^*$. De asemenea, $FV(\tilde{\psi}^*)=FV(\psi^*)$ și $FV(\tilde{\chi}^*)=FV(\chi^*)$.

Definim

$$\varphi^* := Q_1^c y_1 \dots Q_n^c y_n S_1 w_1 \dots S_m w_m (\tilde{\psi_0} \to \tilde{\chi_0}).$$

Atunci φ^* este în formă normală prenex, $FV(\varphi^*) = FV(\varphi)$ și

$$\varphi^* \quad \exists \quad \tilde{\psi^*} \to \tilde{\chi^*}$$

$$\exists \quad \psi^* \to \chi^*$$

$$\exists \quad \psi \to \chi = \varphi.$$

• $\varphi = \forall x \psi$ și, conform ipotezei de inducție, există o formulă ψ^* în formă normală prenex a.î. $\psi \bowtie \psi^*$ și $FV(\psi) = FV(\psi^*)$. Definim $\varphi^* := \forall x \psi^*$.

- două simboluri de relații unare R, S și două simboluri de relații binare P, Q;
- \triangleright un simbol de funcție unară f și un simbol de funcție binară g;
- două simboluri de constante c, d.

Exemplu

Să se găsească o formă normală prenex pentru

$$\varphi := \exists y (g(y,z) = c) \land \neg \exists x (f(x) = d)$$

Avem

$$\varphi \quad \exists y (g(y,z) = c \land \neg \exists x (f(x) = d))$$

$$\exists y (g(y,z) = c \land \forall x \neg (f(x) = d))$$

$$\exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$$

Prin urmare, $\varphi^* = \exists y \forall x (g(y,z) = c \land \neg (f(x) = d))$ este o formă normală prenex pentru φ .

Exemplu

Să se găsească o formă normală prenex pentru

formă normală prenex pentru φ .

$$\varphi := \neg \forall y (S(y) \to \exists z R(z)) \land \forall x (\forall y P(x, y) \to f(x) = d).$$

Avem că

$$\varphi \quad \exists y \neg (S(y) \rightarrow \exists z R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x (\forall y P(x, y) \rightarrow f(x) = d)$$

$$\exists y \neg \exists z (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d)$$

$$\exists y \forall z \neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d)$$

$$\exists y \forall z (\neg (S(y) \rightarrow R(z)) \land \forall x \exists y (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x (\neg (S(y) \rightarrow R(z)) \land \exists y (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land \exists x (P(x, y) \rightarrow f(x) = d))$$

$$\exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land (P(x, y) \rightarrow f(x) = d))$$

$$\varphi^* = \exists y \forall z \forall x \exists x (\neg (S(y) \rightarrow R(z)) \land (P(x, y) \rightarrow f(x) = d)) \text{ este o}$$

193

Skolemizarea este o procedură prin care se elimină cuantificatorii existențiali din formule de ordinul întâi în formă normală prenex, prin introducerea de noi simboluri de funcții/constante, numite simboluri de funcții/constante Skolem.

Observație

Orice formulă liberă de cuantificatori este universală.

Fie $\mathcal L$ un limbaj de ordinul întâi și φ un enunț al lui $\mathcal L$ care este în formă normală prenex:

$$\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \theta,$$

unde $n \in \mathbb{N}$, $Q_1, \ldots, Q_n \in \{\forall, \exists\}$, x_1, \ldots, x_n sunt variabile distincte două câte două și θ este formulă liberă de cuantificatori.

Forma normală Skolem

Asociem lui φ un enunț universal φ^{Sk} într-un limbaj extins $\mathcal{L}^{Sk}(\varphi)$: Dacă φ este universal, atunci $\varphi^{Sk} = \varphi$ și $\mathcal{L}^{Sk}(\varphi) = \mathcal{L}$. Altfel. φ are una din formele:

- $\varphi = \exists x \, \psi$. Introducem un nou simbol de constantă c și considerăm $\varphi^1 = \psi_x(c)$, $\mathcal{L}^1 = \mathcal{L} \cup \{c\}$.
- ▶ $\varphi = \forall x_1 ... \forall x_k \exists x \, \psi \, (k \geq 1)$. Introducem un nou simbol de funcție f de aritate k și considerăm $\varphi^1 = \forall x_1 ... \forall x_k \, \psi_x (fx_1 ... x_k), \, \mathcal{L}^1 = \mathcal{L} \cup \{f\}.$

În ambele cazuri, φ^1 are cu un cuantificator existențial mai puțin decât φ .

Dacă φ^1 este enunț universal, atunci $\varphi^{Sk}=\varphi^1$. Dacă φ^1 nu este enunț universal, atunci formăm $\varphi^2,\varphi^3,\ldots$, până ajungem la un enunț universal și acesta este φ^{Sk} .

 φ^{Sk} este o formă normală Skolem a lui φ .

Exemple

- ▶ Fie θ o formulă liberă de cuantificatori a.î. $FV(\theta) = \{x\}$ și $\varphi = \exists x \, \theta$. Atunci $\varphi^1 = \theta_x(c)$, unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț liber de cuantificatori, rezultă că $\varphi^{Sk} = \varphi^1 = \theta_x(c)$.
- Fie R un simbol de relație de aritate 3 și $\varphi = \exists x \forall y \forall z \ R(x, y, z)$. Atunci $\varphi^1 = \forall y \forall z \ (R(x, y, z))_x(c) = \forall y \forall z \ R(c, y, z)$,

unde c este un nou simbol de constantă. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \forall z \, R(c, y, z)$.

Fie P un simbol de relație de aritate 2 și $\varphi = \forall y \exists z \, P(y,z)$. Atunci $\varphi^1 = \forall y \, (P(y,z))_z(f(y)) = \forall y \, P(y,f(y))$, unde f este un simbol nou de funcție unară. Deoarece φ^1 este un enunț universal, rezultă că $\varphi^{Sk} = \varphi^1 = \forall y \, P(y,f(y))$.

Forma normală Skolem

Exemplu

Fie $\mathcal L$ un limbaj care conține un simbol de relație binară R și un simbol de funcție unară f. Fie

$$\varphi := \forall y \exists z \forall u \exists v (R(y, z) \land f(u) = v).$$

$$\varphi^{1} = \forall y \forall u \exists v (R(y,z) \land f(u) = v)_{z}(g(y))$$

$$= \forall y \forall u \exists v (R(y,g(y)) \land f(u) = v),$$
unde g este un nou simbol de funcție unară

$$\varphi^2 = \forall y \forall u (R(y, g(y)) \land f(u) = v)_v (h(y, u))$$

= $\forall y \forall u (R(y, g(y)) \land f(u) = h(y, u)),$
unde h este un nou simbol de funcție binară.

Deoarece
$$\varphi^2$$
 este un enunț universal, rezultă că
$$\varphi^{Sk} = \varphi^2 = \forall y \forall u \, (R(y,g(y)) \land f(u) = h(y,u)).$$

Teorema 3.46 (Teorema de formă normală Skolem)

Fie φ un enunț în formă normală prenex și φ^{Sk} o formă normală Skolem a sa.

- (i) $\vDash \varphi^{Sk} \to \varphi$, deci $\varphi^{Sk} \vDash \varphi$ în $\mathcal{L}^{Sk}(\varphi)$.
- (ii) φ este satisfiabilă ddacă φ^{Sk} este satisfiabilă.

Observație

În general, φ și φ^{sk} nu sunt logic echivalente ca enunțuri în $\mathcal{L}^{Sk}(\varphi)$.

TAUTOLOGII

Tautologii

Noțiunile de tautologie și consecință semantică din logica propozițională se pot aplica și unui limbaj de ordinul întâi. Intuitiv: o tautologie este o formulă "adevărată" numai pe baza interpretărilor conectorilor \neg, \rightarrow .

Definiția 3.47

O \mathcal{L} -evaluare de adevăr este o funcție $F: Form_{\mathcal{L}} \to \{0,1\}$ cu următoarele proprietăți: pentru orice formule φ, ψ ,

- $F(\neg \varphi) = \neg F(\varphi);$
- $ightharpoonup F(\varphi)
 ightharpoonup F(\psi)
 ightharpoonup F(\psi).$

Propoziția 3.48

Pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e:V \to \mathcal{A}$, funcția

$$V_{e,\mathcal{A}}: \mathit{Form}_{\mathcal{L}} o \{0,1\}, \quad V_{e,\mathcal{A}}(arphi) = arphi^{\mathcal{A}}(e)$$

este o L-evaluare de adevăr.

Definiția 3.49

 φ este tautologie dacă $F(\varphi)=1$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemple de tautologii: $\varphi \to (\psi \to \varphi)$, $(\varphi \to \psi) \leftrightarrow (\neg \psi \to \neg \varphi)$

Propoziția 3.50

Orice tautologie este validă.

Dem.: Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o evaluare. Deoarece φ este tautologie și $V_{e,\mathcal{A}}$ este \mathcal{L} -evaluare de adevăr, rezultă că $\varphi^{\mathcal{A}}(e)=V_{e,\mathcal{A}}(\varphi)=1$, adică $\mathcal{A}\vDash \varphi[e]$.

Exemplu

x = x este validă, dar nu este tautologie.

Două formule φ și ψ sunt tautologic echivalente dacă $F(\varphi) = F(\psi)$ pentru orice \mathcal{L} -evaluare de adevăr F.

Exemplul 3.52

 $\varphi_1 \to (\varphi_2 \to \varphi_3)$ şi $\varphi_1 \land \varphi_2 \to \varphi_3$ sunt tautologic echivalente.

Definiția 3.53

O formulă φ este consecință tautologică a unei mulțimi de formule Γ dacă pentru orice \mathcal{L} -evaluare de adevăr F,

$$F(\gamma) = 1$$
 pentru orice $\gamma \in \Gamma$ \Rightarrow $F(\varphi) = 1$.

Propoziția 3.54

Dacă φ este consecință tautologică a lui Γ , atunci $\Gamma \vDash \varphi$.

TEORII

Mulțimi de enunțuri

Fie φ un enunț și Γ o mulțime de enunțuri.

Definiția 3.55

Spunem că Γ este satisfiabilă dacă există o \mathcal{L} -structură \mathcal{A} a.î.

$$A \vDash \gamma$$
 pentru orice $\gamma \in \Gamma$.

Spunem și că A este un model al lui Γ . Notație: $A \models \Gamma$

Definiția 3.56

Spunem că φ este consecință semantică a lui Γ dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \models \Gamma \implies \mathcal{A} \models \varphi$$
.

Notație: $\Gamma \vDash \varphi$

Notație: Pentru orice mulțime de enunțuri Γ, notăm

$$Mod(\Gamma)$$
:= clasa modelelor lui Γ .

Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

Lema 3.57

Pentru orice mulțimi de enunțuri Γ, Δ și orice enunț ψ ,

- (i) $\Gamma \vDash \psi \iff Mod(\Gamma) \subseteq Mod(\psi)$.
- (ii) $\Gamma \subseteq \Delta \implies Mod(\Delta) \subseteq Mod(\Gamma)$.
- (iii) Γ este satisfiabil $\check{a} \iff Mod(\Gamma) \neq \emptyset$.

Dem.: Exercițiu ușor.

Definiția 3.58

O \mathcal{L} -teorie este o mulțime T de enunțuri ale lui \mathcal{L} care este închisă la consecința semantică, adică:

pentru orice enunț
$$\varphi$$
, $T \models \varphi \implies \varphi \in T$.

Definiția 3.59

Pentru orice mulțime de enunțuri Γ , teoria generată de Γ este mulțimea

$$Th(\Gamma) := \{ \varphi \mid \varphi \text{ este enunț i } \Gamma \vDash \varphi \}$$
$$= \{ \varphi \mid \varphi \text{ este enunț i } Mod(\Gamma) \subseteq Mod(\varphi) \}.$$

206

Propoziția 3.60

Fie Γ o mulțime de enunțuri.

- (i) $Mod(\Gamma) = Mod(Th(\Gamma))$.
- (ii) $Th(\Gamma)$ este cea mai mică teorie T a.î. $\Gamma \subseteq T$.

Dem.: Exercițiu.

- ▶ O teorie prezentată ca $Th(\Gamma)$ se numește teorie axiomatică sau teorie prezentată axiomatic. Γ se numește mulțime de axiome pentru $Th(\Gamma)$.
- Orice teorie poate fi prezentată axiomatic, dar suntem interesați de mulțimi de axiome care satisfac anumite condiții.

Definiția 3.61

O teorie T este finit axiomatizabilă dacă $T = Th(\Gamma)$ pentru o mulțime de enunțuri finită Γ .

Definiția 3.62

O clasă K de L-structuri este axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime de enunțuri Γ . Spunem și că Γ axiomatizează K.

Definiția 3.63

O clasă K de L-structuri este finit axiomatizabilă dacă $K = Mod(\Gamma)$ pentru o mulțime finită de enunțuri Γ .

Exemple - Teoria egalității

Pentru orice $n \ge 2$, notăm următorul enunț cu $\exists^{\ge n}$:

$$\exists x_1 \ldots \exists x_n (\neg (x_1 = x_2) \land \neg (x_1 = x_3) \land \ldots \land \neg (x_{n-1} = x_n)),$$

pe care îl scriem mai compact astfel:

$$\exists^{\geq n} = \exists x_1 \dots \exists x_n \left(\bigwedge_{1 \leq i < j \leq n} \neg (x_i = x_j) \right).$$

Propoziția 3.64

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 2$,

 $A \models \exists^{\geq n} \iff A \text{ are cel puţin } n \text{ elemente.}$

Dem.: Exercițiu ușor.

Pentru uniformitate, notăm $\exists^{\geq 1} := \exists x(x = x)$.

209

Exemple - Teoria egalității

Notații

Fie n > 1.

- $ightharpoonup \exists \leq n := \neg \exists \geq n+1$
- $\exists = n := \exists \leq n \land \exists \geq n$

Propoziția 3.65

Pentru orice \mathcal{L} -structură \mathcal{A} și orice $n \geq 1$,

$$A \vDash \exists^{\leq n} \iff A \text{ are cel mult } n \text{ elemente}$$

$$A \vDash \exists^{=n} \iff A \text{ are exact } n \text{ elemente.}$$

Dem.: Exercițiu ușor.

Propoziția 3.66

Fie $T := Th(\{\exists^{\geq n} \mid n \geq 1\})$. Atunci pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models T \iff A$ este mulțime infinită.

Dem.: Exercițiu ușor.

Exemple - Teoria grafurilor

Un graf este o pereche G = (V, E) de mulțimi a.î. E este o mulțime de submulțimi cu 2 elemente ale lui V. Elementele lui V se numesc vârfuri, iar elementele lui E se numesc muchii.

- $ightharpoonup \mathcal{L}_{Graf} = (\dot{E}, \emptyset, \emptyset) = (\dot{E})$
- $ightharpoonup \mathcal{L}_{Graf}$ -structurile sunt $\mathcal{A}=(A,E)$, unde E este relație binară.

Fie
$$\Gamma := \{(IREFL), (SIM)\}$$
, unde

$$(IREFL) := \forall x \neg \dot{E}(x, x)$$

$$(SIM) := \forall x \forall y (\dot{E}(x, y) \rightarrow \dot{E}(y, x)).$$

Definiție

Teoria grafurilor este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt grafurile.
- Γ axiomatizează clasa grafurilor. Prin urmare, clasa grafurilor este finit axiomatizabilă.

Exemple - Teoria ordinii parțiale

- $\mathcal{L}_{\dot{\leq}} = (\dot{\leq}, \emptyset, \emptyset) = (\dot{\leq})$
- $ightharpoonup \mathcal{L}_{\dot{\leq}}$ -structurile sunt $\mathcal{A}=(A,\leq)$, unde \leq este relație binară.

Fie
$$\Gamma := \{(REFL), (ANTISIM), (TRANZ)\}$$
, unde
$$(REFL) := \forall x (x \leq x)$$
$$(ANTISIM) := \forall x \forall y (x \leq y \land y \leq x \rightarrow x = y)$$
$$(TRANZ) := \forall x \forall y \forall z (x \leq y \land y \leq z \rightarrow x \leq z)$$

Definiție

Teoria ordinii parțiale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- modelele lui T sunt mulțimile parțial ordonate.
- Γ axiomatizează clasa mulțimilor parțial ordonate. Prin urmare, clasa mulțimilor parțial ordonate este finit axiomatizabilă.

Fie
$$\Gamma := \{(ANTISIM), (TRANZ), (TOTAL)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x \leq y \lor y \leq x)$$

Definiție

Teoria ordinii totale este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt mulțimile total ordonate.
- Γ axiomatizează clasa mulţimilor total ordonate. Prin urmare, clasa mulţimilor total ordonate este finit axiomatizabilă.

Exemple - Teoria ordinii stricte

- $ightharpoonup \mathcal{L}_{\dot{\leqslant}} = (\dot{\leqslant}, \emptyset, \emptyset) = (\dot{\leqslant})$
- \blacktriangleright $\mathcal{L}_{<}$ -structurile sunt $\mathcal{A}=(A,<)$, unde < este relație binară.

Fie
$$\Gamma := \{(IREFL), (TRANZ)\}, \text{ unde}$$

$$(IREFL) := \forall x \neg (x \dot{<} x)$$

$$(TRANZ) := \forall x \forall y \forall z (x \dot{<} y \land y \dot{<} z \rightarrow x \dot{<} z)$$

Definiție

Teoria ordinii stricte este $T := Th(\Gamma)$.

- ▶ T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt mulțimile strict ordonate.
- Γ axiomatizează clasa mulțimilor strict ordonate. Prin urmare, clasa mulțimilor strict ordonate este finit axiomatizabilă.

Fie
$$\Gamma := \{(IREFL), (TRANZ), (TOTAL), (DENS)\}, \text{ unde}$$

$$(TOTAL) := \forall x \forall y (x = y \lor x \dot{<} y \lor y \dot{<} x)$$

$$(DENS) := \forall x \forall y (x \dot{<} y \to \exists z (x \dot{<} z \land z \dot{<} y)).$$

Definiție

Teoria ordinii dense este $T := Th(\Gamma)$.

- ► T este finit axiomatizabilă.
- ▶ modelele lui *T* sunt multimile dens ordonate.
- r axiomatizează clasa mulțimilor dens ordonate. Prin urmare, clasa mulțimilor dens ordonate este finit axiomatizabilă.

Exemple - Teoria relațiilor de echivalență

- $\blacktriangleright \ \mathcal{L}_{\stackrel{.}{\equiv}} = (\stackrel{.}{\equiv}, \emptyset, \emptyset) = (\stackrel{.}{\equiv})$
- $ightharpoonup \mathcal{L}_{\stackrel{.}{\equiv}}$ -structurile sunt $\mathcal{A}=(A,\equiv)$, unde \equiv este relație binară.

Fie
$$\Gamma := \{(REFL), (SIM), (TRANZ)\}$$
, unde
$$(REFL) := \forall x (x \stackrel{.}{=} x)$$
$$(SIM) := \forall x \forall y (x \stackrel{.}{=} y \rightarrow y \stackrel{.}{=} x)$$
$$(TRANZ) := \forall x \forall y \forall z (x \stackrel{.}{=} y \wedge y \stackrel{.}{=} z \rightarrow x \stackrel{.}{=} z)$$

Definiție

Teoria relațiilor de echivalență este $T := Th(\Gamma)$.

- T este finit axiomatizabilă.
- ► Fie $\mathcal K$ clasa structurilor (A, \equiv) , unde \equiv este relație de echivalență pe A. Avem că $\mathcal K = Mod(\Gamma)$, așadar Γ axiomatizează $\mathcal K$. Prin urmare, $\mathcal K$ este finit axiomatizabilă.

• Dacă adăugăm axioma:

$$\forall x \exists y (\neg (x = y) \land x \stackrel{.}{=} y \land \forall z (z \stackrel{.}{=} x \rightarrow (z = x \lor z = y))),$$

obținem teoria relațiilor de echivalență cu proprietatea că orice clasă de echivalență are exact două elemente.

TEOREMA DE COMPACITATE

Teorema 3.67 (Teorema de compacitate)

O mulțime de enunțuri Γ este satisfiabilă dacă și numai dacă orice submulțime finită a sa este satisfiabilă.

unul din rezultatele centrale ale logicii de ordinul întâi

Teorema de compacitate - aplicații

Fie $\mathcal L$ un limbaj de ordinul întâi.

Propoziția 3.68

Clasa \mathcal{L} -structurilor finite nu este axiomatizabilă, adică nu există o mulțime de enunțuri Γ astfel încât

(*) pentru orice \mathcal{L} -structură \mathcal{A} , $\mathcal{A} \models \Gamma \iff \mathcal{A}$ este finită.

Dem.: Presupunem prin reducere la absurd că există $\Gamma \subseteq Sen_{\mathcal{L}}$ a.î. (*) are loc. Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie \mathcal{A} o \mathcal{L} -structură finită a.î. $|\mathcal{A}| \geq \max\{n_1, \ldots, n_k\}$. Atunci $\mathcal{A} \models \exists^{\geq n_i}$ pentru orice $i = 1, \ldots, k$ și $\mathcal{A} \models \Gamma$ deoarece \mathcal{A} este finită.

Teorema de compacitate - aplicații

Prin urmare, $A \models \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$, de unde rezultă că $A \models \Delta_0$. Așadar, Δ_0 este satisfiabilă.

Aplicând Teorema de compacitate, rezultă că

$$\Delta = \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

are un model \mathcal{B} .

Deoarece $\mathcal{B} \models \Gamma$, \mathcal{B} este finită.

Deoarece $\mathcal{B} \models \{\exists^{\geq n} \mid n \geq 1\}$, rezultă că \mathcal{B} este infinită.

Am obținut o contradicție.

Corolar 3.69

Clasa mulțimilor nevide finite nu este axiomatizabilă în $\mathcal{L}_{=}$.

Clasa L-structurilor infinite este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Notăm cu \mathcal{K}_{Inf} clasa \mathcal{L} -structurilor infinite. Conform Propoziției 3.66, pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \in \mathcal{K}_{\mathit{Inf}} \iff A \text{ este infinită} \iff \mathcal{A} \vDash \{\exists^{\geq n} \mid n \geq 1\}.$$

Prin urmare,

$$\mathcal{K}_{Inf} = Mod(\{\exists^{\geq n} \mid n \geq 1\})$$

deci e axiomatizabilă.

Presupunem că \mathcal{K}_{Inf} este finit axiomatizabilă, deci există

$$\Gamma := \{\varphi_1, \dots, \varphi_n\} \subseteq Sen_{\mathcal{L}} \text{ a.î. } \mathcal{K}_{Inf} = Mod(\Gamma).$$

Fie $\varphi := \varphi_1 \wedge \ldots \wedge \varphi_n$. Atunci $\mathcal{K}_{Inf} = Mod(\varphi)$. Rezultă că pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A}$$
 este finită $\iff \mathcal{A} \notin \mathcal{K}_{Inf} \iff \mathcal{A} \not\models \varphi \iff \mathcal{A} \models \neg \varphi$.

Așadar, clasa \mathcal{L} -structurilor finite este axiomatizabilă, ceea ce contrazice Propoziția 3.68.

Corolar 3.71

Clasa mulțimilor infinite nu este finit axiomatizabilă în $\mathcal{L}_{=}$.

Fie Γ o mulțime de enunțuri ale lui $\mathcal L$ cu proprietatea

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Atunci Γ are un model infinit.

_ -.

Dem.: Fie

$$\Delta := \Gamma \cup \{\exists^{\geq n} \mid n \geq 1\}.$$

Demonstrăm că Δ este satisfiabilă folosind Teorema de compacitate. Fie Δ_0 o submulțime finită a lui Δ . Atunci

$$\Delta_0 \subseteq \Gamma \cup \{\exists^{\geq n_1}, \dots, \exists^{\geq n_k}\}$$
 pentru un $k \in \mathbb{N}$.

Fie $m:=\max\{n_1,\ldots,n_k\}$. Conform (*), Γ are un model finit \mathcal{A} a.î. $|\mathcal{A}|\geq m$. Atunci $\mathcal{A}\vDash \exists^{\geq n_i}$ pentru orice $i=1,\ldots,k$, deci $\mathcal{A}\vDash \Delta_0$.

Aplicând Teorema de compacitate, rezultă că Δ are un model \mathcal{B} . Prin urmare, \mathcal{B} este un model infinit al lui Γ .

Dacă un enunț φ este adevărat în orice \mathcal{L} -structură infinită, atunci există $m \in \mathbb{N}$ cu proprietatea că φ este adevărat în orice \mathcal{L} -structură finită de cardinal $\geq m$.

Dem.: Presupunem că nu e adevărat. Fie $\Gamma := \{ \neg \varphi \}$. Atunci pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$. Aplicând Propoziția 3.72, rezultă că Γ are un model infinit \mathcal{A} . Prin urmare, $\mathcal{A} \not\models \varphi$, ceea ce contrazice ipoteza.

Fie Γ o mulțime de enunțuri cu proprietatea că

(*) pentru orice $m \in \mathbb{N}$, Γ are un model finit de cardinal $\geq m$.

Atunci

- (i) Γ are un model infinit.
- (ii) Clasa modelelor finite ale lui Γ nu este axiomatizabilă.
- (iii) Clasa modelelor infinite ale lui Γ este axiomatizabilă, dar nu este finit axiomatizabilă.

Dem.: Exercițiu.

Considerăm limbajul $\mathcal{L}=(\dot{+},\dot{\times},\dot{S},\dot{0})$, unde $\dot{+},\dot{\times}$ sunt simboluri de operații binare, \dot{S} este simbol de operație unară și $\dot{0}$ este simbol de constantă.

Pentru orice $n \in \mathbb{N}$, definim prin inducție \mathcal{L} -termenul $\Delta(n)$ astfel:

$$\Delta(0) = \dot{0}, \quad \Delta(n+1) = \dot{S}\Delta(n).$$

Fie \mathcal{L} -structura $\mathcal{N}=(\mathbb{N},+,\cdot,S,0)$. Atunci $\Delta(n)^{\mathcal{N}}=n$ pentru orice $n\in\mathbb{N}$. Prin urmare, $\mathbb{N}=\{\Delta(n)^{\mathcal{N}}\mid n\in\mathbb{N}\}$.

Definiția 3.75

O \mathcal{L} -structură \mathcal{A} se numește non-standard dacă există $a \in A$ $a.\hat{i}$. $a \neq \Delta(n)^{\mathcal{A}}$ pentru orice $n \in \mathbb{N}$. Un astfel de element a se numește element non-standard.

Teoria lui \mathcal{N} se definește astfel:

$$Th(\mathcal{N}) := \{ \varphi \in Sen_{\mathcal{L}} \mid \mathcal{N} \vDash \varphi \}.$$

Se poate demonstra ușor că $Th(\mathcal{N})$ este o teorie.

Teorema 3.76

Există un model non-standard al teoriei $Th(\mathcal{N})$.

Dem.: Fie c un simbol de constantă nou, $\mathcal{L}^+ = \mathcal{L} \cup \{c\}$ și

$$\Gamma = Th(\mathcal{N}) \cup \{\neg(\Delta(n) = c) \mid n \in \mathbb{N}\}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 \subseteq Th(\mathcal{N}) \cup \{\neg(\Delta(n_1) = c), \dots, \neg(\Delta(n_k) = c)\}.$$

Modele nonstandard ale aritmeticii

Fie $n_0 > \max\{n_1, \ldots, n_k\}$. Considerăm extensia \mathcal{N}^+ a lui \mathcal{N} la \mathcal{L}^+ definită astfel: $c^{\mathcal{N}^+} := n_0$. Atunci $\mathcal{N}^+ \models \Gamma_0$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{A} = (A, +^{\mathcal{A}}, \cdot^{\mathcal{A}}, S^{\mathcal{A}}, 0^{\mathcal{A}}, c^{\mathcal{A}}).$$

Rezultă că $a := c^{\mathcal{A}}$ este element non-standard al lui \mathcal{A} .

APLICAȚIE A TEOREMEI DE COMPACITATE LA TEORIA RAMSEY

Teoria Ramsey este o ramură a combinatoricii, a cărei temă principală este:

"Complete disorder is impossible." (T.S. Motzkin)

O structură mare, oricât de haotică ar fi, conține substructuri cu regularități.

Problemă tipică

O anumită structură este partiționată într-un număr finit de clase. Ce tip de substructură rămâne intactă în cel puțin una din clase?

- ► Rezultatele din teoria Ramsey sunt foarte puternice, deoarece ele sunt generale, se obțin presupunând ipoteze foarte slabe.
- ► Graham, Rothschild, Sperner, Ramsey Theory, 1990.

Teoria Ramsey

X multime, \mathcal{G} colectie de submultimi bune ale lui $X, r \in \mathbb{N} \setminus \{0\}$.

Definiția 3.77

O r-colorare a lui X este o funcție $c: X \to \{1, 2, ..., r\}$. Pentru $x \in X$, c(x) este culoarea lui x. O submulțime $A \subseteq X$ se numește monocromatică dacă toate elementele din A au aceeași culoare.

Definiția 3.78

O familie de mulțimi C_1, \ldots, C_r se numește partiție a lui X dacă

$$X = \bigcup_{i=1}^{n} C_i$$
 și $C_i \cap C_j = \emptyset$ pentru orice $i \neq j \in \{1, \ldots, n\}$.

Următoarele afirmații sunt echivalente:

- ▶ Pentru orice partiție $X = \bigcup_{i=1}^r C_i$ a lui X, există $i \in \{1, ..., r\}$ si $G \in \mathcal{G}$ a.î. $G \subseteq C_i$.
- Pentru orice r-colorare a lui X există o multime $G \in \mathcal{G}$ monocromatică.

Teorema Schur (1916)

Fie
$$r\in\mathbb{N}, r\geq 1$$
 și $\mathbb{N}=\bigcup_{i=1}^r C_i$ o partiție a lui \mathbb{N} . Atunci există $i\in\{1,\ldots,r\}$ a.î.

$$\{x,y,x+y\}\subseteq C_i$$
 pentru $x,y\in\mathbb{N}.$

$$X = \mathbb{N}, \quad \mathcal{G} = \{\{x, y, x + y\} \mid x, y \in \mathbb{N}\}.$$

Versiunea cu colorări: Pentru orice r-colorare a lui $\mathbb N$ există $x,y\in\mathbb N$ a.î. mulțimea $\{x,y,x+y\}$ este monocromatică.

Teorema van der Waerden (1927)

Fie $r\in\mathbb{N}, r\geq 1$ și $\mathbb{N}=\bigcup_{i=1}^r C_i$ o partiție a lui \mathbb{N} . Pentru orice $k\in\mathbb{N}$ există $i\in\{1,\ldots,r\}$ a.î. C_i conține progresii aritmetice de lungime k.

- rezultat central în teoria Ramsey
- una din cele trei perle în teoria numerelor Khintchin (1948)
- demonstrație combinatorială prin inducție dublă după r și k.

 $X = \mathbb{N}$, $\mathcal{G} = \text{multimea progresiilor aritmetice de lungime } k$.

Versiunea cu colorări: Orice colorare finită a lui $\mathbb N$ conține progresii aritmetice monocromatice de lungime finită arbitrară.

Teoria Ramsey

Y mulțime, $k \in \mathbb{N} \setminus \{0\}$. Notăm cu $[Y]^k$ mulțimea submulțimilor lui Y cu k elemente: $[Y]^k = \{A \subseteq Y \mid |A| = k\}$.

Putem să ne gândim la $[Y]^2$ ca fiind mulțimea muchiilor grafului complet peste Y.

Teorema 3.79 (Teorema Ramsey)

Fie Y o mulțime infinită, $k, r \in \mathbb{N} \setminus \{0\}$ și $[Y]^k = \bigcup_{i=1}^r C_i$ o partiție a lui $[Y]^k$. Atunci există $i \in \{1, \ldots, r\}$ și o submulțime infinită B a lui Y a.î. $[B]^k \subseteq C_i$.

- rezultat structural general, nu depinde de proprietățile aritmetice ale lui N:
- ▶ articolul lui Ramsey: On a problem of formal logic (1930);
- ▶ teorema lui Ramsey a fost popularizată de Erdös și Szekeres, care au redescoperit-o într-un articol clasic din 1935.

Teorema 3.80 (Teorema Ramsey - versiunea cu colorări)

Fie Y o mulțime infinită și $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[Y]^k$, există o submulțime infinită B a lui Y a.î. $[B]^k$ este monocromatică.

Versiune echivalentă

Teorema 3.81 (Teorema Ramsey - versiunea cu colorări)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui $[\mathbb{N}]^k$, există o submulțime infinită B a lui \mathbb{N} a.î. $[B]^k$ este monocromatică.

Consecință: Principiul cutiei - varianta infinită (Infinite Pigeonhole Principle)

Fie Y o mulțime infinită și $r \in \mathbb{N} \setminus \{0\}$. Pentru orice r-colorare a lui Y, există o submulțime infinită monocromatică B a lui Y.

Notăm
$$[n] := \{1, ..., n\}$$
 și $[n]^k = \{A \subseteq [n] \mid |A| = k\}.$

Teorema 3.82 (Teorema Ramsey finitară)

Fie $k, r \in \mathbb{N} \setminus \{0\}$. Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice r-colorare a lui $[n]^k$ există o submulțime $D \subseteq [n]$ de cardinal m cu proprietatea că $[D]^k$ este monocromatică.

Generalizare a Principiului cutiei (Pigeonhole Principle): Dacă avem r cutii și r+1 obiecte, atunci cel puțin într-o cutie vor fi două obiecte. \iff Dacă colorăm r+1 obiecte cu r culori, atunci există două obiecte care au aceeași culoare.

Pentru k, r, m date, notăm cel mai mic n cu proprietatea de mai sus cu R(k, r, m). Atunci R(1, r, 2) = r + 1.

Vom demonstra folosind Teorema de compacitate că Teorema Ramsey implică Teorema Ramsey finitară.

Pentru simplitate, considerăm r = 2, k = 2.

Teorema 3.83 (Teorema Ramsey finitară)

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: Presupunem prin reducere la absurd că teorema nu are loc. Atunci există $M \in \mathbb{N}$ cu următoarea proprietate:

(*) pentru orice $n \in \mathbb{N}$ există o 2-colorare a lui $[n]^2$ a.î. [n] nu are submulțimi D de cardinal M cu proprietatea că $[D]^2$ este monocromatică.

În continuare, fixăm M ca mai sus.

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare)

Pentru orice mulțime nevidă D,

▶ oricărei 2-colorări c a lui $[D]^2$, îi asociem relația binară R_c pe D definită astfel:

$$R_c = \{(a, b) \in D^2 \mid c(\{a, b\}) = 1\}.$$

▶ oricărei relații binare R pe D îi asociem 2-colorarea c_R a lui $[D]^2$ definită astfel: pentru orice $\{a,b\}\subseteq D$,

$$c_R(\{a,b\}) = 1 \iff (a,b) \in R.$$

Teorema Ramsey finitară

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} limbajul de ordinul întâi care conține simbolurile de constantă $\{c_k \mid k \geq 1\}$ și un simbol U de relație binară. Pentru orice $n \geq M$, definim un enunț φ_n din \mathcal{L} cu următoarea proprietate: pentru orice $\mathcal{A} = (A, \{c_k^A \mid k \geq 1\}, U^A)$,

$$\mathcal{A} \vDash \varphi_n \iff c_i^{\mathcal{A}} \neq c_j^{\mathcal{A}}$$
 pentru orice $i \neq j \in \{1, \dots, n\}$
şi pentru orice $D \subseteq \{c_1^{\mathcal{A}}, ..., c_n^{\mathcal{A}}\}$ de cardinal M , $[D]^2$ nu este monocromatică relativ la 2-colorarea $c_{U^{\mathcal{A}}}$.

$$\varphi_n = \bigwedge_{1 \leq i < j \leq n} \neg(c_i = c_j) \land \bigwedge_{1 \leq i_1 < i_2 < \dots < i_M \leq n} \psi_{i_1,\dots,i_M}, \text{ unde}$$

$$\psi_{i_1,\dots,i_M} = \bigvee_{\substack{1 \leq j,k,p,q \leq M, \\ j \neq k,p \neq g,(j,k) \neq (p,q)}} U(c_{i_j},c_{i_k}) \land \neg U(c_{i_p},c_{i_q}).$$

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Evident, pentru $m \ge p$, avem că $\varphi_m \vDash \varphi_p$. Fie

$$\Gamma := \{ \varphi_n \mid n \ge M \}.$$

Demonstrăm că Γ este satisfiabilă folosind Teorema de compacitate. Fie Γ_0 o submulțime finită a lui Γ ,

$$\Gamma_0 = \{\varphi_{n_1}, \dots, \varphi_{n_k}\}, \text{ unde } n_1, \dots, n_k \geq M.$$

Fie $n_0 = \max\{n_1, \ldots, n_k\}$. Atunci orice model al lui φ_{n_0} este model al lui Γ . Aplicând (*) pentru n_0 , rezultă că există o 2-colorare c_{n_0} a lui $[n_0]^2$ a.î. $[D]^2$ nu este monocromatică pentru nicio submulțime $D \subseteq [n_0]$ de cardinal M.

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie \mathcal{L} -structura \mathcal{A} definită astfel:

- $\blacktriangleright |\mathcal{A}| = [n_0];$
- ▶ pentru orice $i = 1, ..., n_0$, $c_i^A = i$ și c_k^A arbitrar pentru $k > n_0$;
- $ightharpoonup U^{\mathcal{A}} = R_{c_{n_0}}$.

Atunci $\mathcal{A} \models \varphi_{n_0}$.

Aplicând Teorema de compacitate, rezultă că Γ are un model

$$\mathcal{B} = (B, \{c_n^{\mathcal{B}} \mid n \geq 1\}, U^{\mathcal{B}}).$$

Pentru orice $m \in \mathbb{N}$, există $n \in \mathbb{N}$ a.î. pentru orice 2-colorare a lui $[n]^2$ există o submulțime $D \subseteq [n]$ de cardinal m a.î. $[D]^2$ este monocromatică.

Dem.: (continuare) Fie

$$C = \{c_n^{\mathcal{B}} \mid n \geq 1\} \subseteq B.$$

Deoarece $\mathcal{B} \vDash \Gamma$, avem că $c_n^{\mathcal{B}} \neq c_m^{\mathcal{B}}$ pentru $n \neq m$. Prin urmare, $|C| = |\mathbb{N}| = \aleph_0$. Aplicând Teorema Ramsey 3.80 pentru mulțimea infinită C și 2-colorarea $c_{U^{\mathcal{B}}}$ a lui $[B]^2$ (deci și a lui $[C]^2$), rezultă că C are o submulțime infinită D a.î. $[D]^2$ este monocromatică. Deoarece D este infinită, există N a.î. mulțimea $D_N := D \cap \{c_1^{\mathcal{B}}, \dots, c_N^{\mathcal{B}}\}$ are cardinal M. Cum $[D_N]^2 \subseteq [D]^2$ este monocromatică, am obținut o contradicție cu faptul că $\mathcal{B} \vDash \varphi_N$.

SINTAXA

Definiția 3.84

Mulţimea $Axm_{\mathcal{L}} \subseteq Form_{\mathcal{L}}$ a axiomelor (logice) ale lui \mathcal{L} constă din:

- (i) toate tautologiile.
- (ii) formulele de forma

$$t=t, \quad s=t \rightarrow t=s, \quad s=t \wedge t=u \rightarrow s=u,$$
 pentru orice termeni $s,t,u.$

(iii) formulele de forma

$$t_1 = u_1 \wedge ... \wedge t_m = u_m \rightarrow ft_1 ... t_m = fu_1 ... u_m,$$

 $t_1 = u_1 \wedge ... \wedge t_m = u_m \rightarrow (Rt_1 ... t_m \leftrightarrow Ru_1 ... u_m),$
pentru orice $m \geq 1$, $f \in \mathcal{F}_m$, $R \in \mathcal{R}_m$ și orice termeni t_i, u_i
 $(i = 1, ..., m).$

(iv) formulele de forma

$$arphi_{x}(t)
ightarrow\exists xarphi,$$
 unde $arphi_{x}(t)$ este o substituție liberă (\exists -axiomele).

Definiția 3.85

Regulile de deducție (sau inferență) sunt următoarele: pentru orice formule φ , ψ ,

(i) din φ și $\varphi \to \psi$ se inferă ψ (modus ponens sau (MP)):

$$\frac{\varphi, \ \varphi \to \psi}{\psi}$$

(ii) dacă $x \notin FV(\psi)$, atunci din $\varphi \to \psi$ se inferă $\exists x \varphi \to \psi$ (\exists -introducerea):

$$\frac{\varphi o \psi}{\exists x \varphi o \psi}$$
 dacă $x \notin FV(\psi)$.

Fie Γ o mulțime de formule ale lui \mathcal{L} .

Definiția 3.86

 Γ -teoremele lui \mathcal{L} sunt formulele definite astfel:

- (Γ0) Orice axiomă logică este Γ-teoremă.
- (Γ1) Orice formulă din Γ este Γ-teoremă.
- (Γ2) Dacă φ și $\varphi \to \psi$ sunt Γ-teoreme, atunci ψ este Γ-teoremă.
- (Γ3) Dacă $\varphi \to \psi$ este Γ-teoremă și $x \notin FV(\psi)$, atunci $\exists x \varphi \to \psi$ este Γ-teoremă.
- (Γ4) Numai formulele obţinute aplicând regulile (Γ0) (Γ1), (Γ2) şi (Γ3) sunt Γ-teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Notații

$$\Gamma \vdash_{\mathcal{L}} \varphi := \varphi \text{ este } \Gamma\text{-teorem} \qquad \vdash_{\mathcal{L}} \varphi := \emptyset \vdash_{\mathcal{L}} \varphi$$

Definiția 3.87

O formulă φ se numește teoremă (logică) a lui \mathcal{L} dacă $\vdash_{\mathcal{L}} \varphi$.

Reformulând condițiile din definiția Γ-teoremelor folosind notația ⊢, obținem

Pentru orice mulțime de formule Γ și orice formule φ, ψ , au loc următoarele:

- (i) Dacă φ este axiomă, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (ii) Dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash_{\mathcal{L}} \varphi$;
- (iii) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi$ și $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$, atunci $\Gamma \vdash_{\mathcal{L}} \psi$.
- (iv) Dacă $\Gamma \vdash_{\mathcal{L}} \varphi \to \psi$ și $x \notin FV(\psi)$, atunci $\Gamma \vdash_{\mathcal{L}} \exists x \varphi \to \psi$.

Definiția 3.88

O Γ -demonstrație (demonstrație din ipotezele Γ) a lui $\mathcal L$ este o secvență de formule $\theta_1, \ldots, \theta_n$ astfel încât pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i astfel încât $\theta_k = \theta_i \rightarrow \theta_i$;
- (iv) există j < i astfel încât

$$\theta_i = \varphi \to \psi$$
 și $\theta_i = \exists x \varphi \to \psi$, unde $x \notin FV(\psi)$.

O Ø-demonstrație se va numi simplu demonstrație.

Definiția 3.89

Fie φ o formulă. O Γ-demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ-demonstrație $\theta_1, \ldots, \theta_n$ astfel încât $\theta_n = \varphi$.

Propoziția 3.90

Fie Γ o mulțime de formule. Pentru orice formulă φ ,

 $\Gamma \vdash_{\mathcal{L}} \varphi$ ddacă există o Γ -demonstrație a lui φ .

Fie Γ o mulțime de formule.

Teorema 3.91 (Teorema Tautologiei (Post))

Fie $\psi, \varphi_1, \dots, \varphi_n$ astfel încât

- (i) ψ este consecință tautologică a mulțimii $\{\varphi_1, \ldots, \varphi_n\}$.
- (ii) $\Gamma \vdash_{\mathcal{L}} \varphi_1$, $\Gamma \vdash_{\mathcal{L}} \varphi_2$, ..., $\Gamma \vdash_{\mathcal{L}} \varphi_n$.

Atunci $\Gamma \vdash_{\mathcal{L}} \psi$.

Teorema 3.92 (Teorema Deducției)

Fie ψ o formulă și φ un enunț. Atunci

$$\Gamma \cup \{\varphi\} \vdash_{\mathcal{L}} \psi$$
 ddacă $\Gamma \vdash_{\mathcal{L}} \varphi \rightarrow \psi$.

Propoziția 3.93

Pentru orice formulă φ și orice variabilă x,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \forall x \varphi.$$

Definiția 3.94

Fie φ o formula cu $FV(\varphi) = \{x_1, \dots, x_n\}$. Închiderea universală a lui φ este enunțul

$$\overline{\forall \varphi} := \forall x_1 \dots \forall x_n \varphi.$$

Notații 3.95

$$\overline{\forall \Gamma} := \{ \overline{\forall \psi} \mid \psi \in \Gamma \}.$$

Propoziția 3.96

Pentru orice formulă φ ,

$$\Gamma \vdash \varphi \iff \Gamma \vdash \overline{\forall \varphi} \iff \overline{\forall \Gamma} \vdash \varphi \iff \overline{\forall \Gamma} \vdash \overline{\forall \varphi}.$$

Definiția 3.97

Fie Γ o mulțime de formule. Spunem că

- (i) Γ este consistentă dacă există o formulă φ astfel încât $\Gamma \not\vdash_{\mathcal{L}} \varphi$.
- (ii) Γ este inconsistentă dacă nu este consistentă, adică $\Gamma \vdash_{\mathcal{L}} \varphi$ pentru orice formulă φ .

Propoziția 3.98

Pentru orice mulțime de formule Γ , următoarele afirmații sunt echivalente:

- (i) Γ este inconsistentă.
- (ii) Pentru orice formulă ψ , $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.
- (iii) Există o formulă ψ astfel încât $\Gamma \vdash \psi$ și $\Gamma \vdash \neg \psi$.

TEOREMA DE COMPLETITUDINE

Teorema de completitudine

Teorema de completitudine - prima versiune

Fie Γ o mulțime de enunțuri.

 Γ este consistentă \iff Γ este satisfiabilă.

Teorema de completitudine - a doua versiune

Pentru orice mulțime de enunțuri Γ și orice enunț φ ,

$$\Gamma \vdash_{\mathcal{L}} \varphi \iff \Gamma \vDash_{\mathcal{L}} \varphi.$$

- ► Teorema de completitudine a fost demonstrată de Gödel în 1929 în teza sa de doctorat.
- ► Henkin a dat în teza sa de doctorat din 1947 o demonstrație simplificată.