

Database e gestione dei dati

Giulio Angiani - UniPr

# Big Data e Business Intelligence





# Sistema informativo

### Sistema informativo

- · Sistema informativo
  - Informazioni di interesse nei processi aziendali
  - Modalità in cui esse sono gestite
  - Risorse coinvolte, sia umane sia tecnologiche
- · ICT: insieme di programmi concorrenti
  - Ogni programma opera su un certo insieme di dati
  - Certi dati possono essere condivisi tra i programmi
- · Casi semplici: ogni programma gestisce i suoi dati
- · Altrimenti: sistema di gestione tra programmi e dati

#### Gestione distinta dei dati

- · Ridondanza: più copie dello stesso dato
- · Inconsistenza: copie modificate diversamente
- Riservatezza: dati riservati accessibili a persone non autorizzate
- · Integrità: operazioni sbagliate o incomplete sui dati
- Concorrenza: accesso e aggiornamento dati non sincronizzato tra programmi differenti



### Gestione condivisa dei dati

- Tutte le azioni sui dati vengono mediate dal DBMS (DataBase Management System)
- · Dati in formato standard, con backup/ripristino
- · Controlli su:
  - Ridondanza, consistenza, distribuzione
  - Riservatezza, integrità
  - Accesso concorrente
- Ma risorse hw/sw (stesso DBMS)



#### Basi di dati con DBMS

- · Da preferire quando:
  - Dati organizzati secondo modelli predefiniti
  - Grandi: fino e oltre TByte, memoria secondaria
  - Condivisi: accesso da app. ed utenti diversi
  - **Persistenti**: tempo di vita > esecuzione app.
- · Da evitare quando:
  - Insieme dati piccolo e semplice
  - Poche modifiche nel tempo
  - Non condiviso
  - Prestazioni in tempo reale

### Accessi concorrenti

- · Problemi di consistenza dei dati condivisi
- · Es. prelievo da un conto corrente come sequenza operazioni
  - Verifica disponibilità
  - Sottrazione importo



Stesso CC, disponibilità 1000 € Alla fine CC = -1000€, oppure 0!

#### **Transazione**

- Insieme di operazioni non decomponibili
  - Eseguite completamente, prima che stessi dati siano nuovamente disponibili ACID (Atomicity, Consistency, Isolation, Durability)
- Es. precedente:
  - Verifica disponibilità
  - Sottrazione importo
  - Unica transazione!



Stesso CC, disponibilità 1000 € Permessa solo prima transazione: OK!

### Architettura a tre livelli



### Linguaggi DDL e DML

- DDL (Data Definition Language), intensionale
  - Usato dal DBA (amministratore)
  - Definire lo schema dati, secondo il modello concettuale: gerarchico, relazionale ecc.
  - Definire tabelle, campi, chiavi ecc.
- DML (Data Manipulation Language), estensionale
  - Usato all'interno delle applicazioni
  - Operazioni CRUD (Create, Read, Update, Delete )
  - SQL (INSERT, SELECT, UPDATE, DELETE)
  - ~ 4 verbi HTTP (POST, GET, PUT, DELETE)

### Modelli dei dati

- · Caratterizza livello concettuale e esterno DBMS
- · Definito da regole precise, per esprimere sia le proprietà statiche che quelle dinamiche dei dati
- · Evoluzione dei modelli:
  - Gerarchico (anni 1960)
  - Reticolare (anni 1970)
  - Relazionale (anni 1970)
  - Object-relational, object-oriented (anni 1980)



# Modello relazionale

### Modello relazionale

- · Codd 1970; DBMS reali 1981
- · Si basa sul concetto matematico di relazione
  - Relazioni rappresentate da familiari tabelle
  - Successo anche per *semplicità* di utilizzo
- · A ciascun dominio è associato un nome (attributa), unico nella relazione
  - Il nome "descrive" il ruolo del dominio
  - Attributi usati come intestazioni delle colonne
- · Informazioni inserite nelle *righe* della tabella

### Definizione di relazione

- Relazione R: insieme di n-uple ordinate  $(d_1 \dots d_n)$  tali che  $d_1 \in D_1 \dots d_n \in D_n$
- · Cioè R è sottoinsieme del prodotto cartesiano D1 × D2 × ... × Dn
- · Insiemi D<sub>1</sub> ... D<sub>n</sub> (anche non distinti) detti domini
- · Valore n detto grado di R
- · Il numero di n-uple in R è detto cardinalità di R

### Database universitario

| Studente  |         |       |            |            |
|-----------|---------|-------|------------|------------|
| Matricola | Cognome | Nome  | Corso      | Nascita    |
| 27655     | Rossi   | Mario | Ing.Inf.   | 1978-12-05 |
| 78763     | Rossi   | Mario | Ing.Inf.   | 1976-11-03 |
| 65432     | Neri    | Piero | Ing. Mecc. | 1979-07-10 |
| 87654     | Neri    | Mario | Ing. Inf.  | 1976-11-03 |
| 67653     | Rossi   | Piero | Ing. Mecc. | 1978-12-05 |

| Esame    |              |      |
|----------|--------------|------|
| Studente | Insegnamento | Voto |
| 78763    | 04           | 30   |
| 65432    | 02           | 24   |
| 65432    | 01           | 28   |
| 27655    | 01           | 26   |

| Titolo  | Docente |
|---------|---------|
|         |         |
| Analisi | Chiari  |
| Chimica | Bruni   |
| Chimica | Verdi   |
|         | Chimica |

### Terminologia



Colonna / Attributo / Campo

### Dominio di un attributo

- Tuple di una relazione definite dall'insieme dei valori corrispondenti agli attributi
- Dominio di un attributo: insieme di tutti e soli i valori che quell'attributo può assumere
- Es. Dominio dei codici fiscali
- · Formato dalle stringhe di 16 caratteri che rispettano con precisione le regole di generazione dei codici fiscali



# Modello E-R

#### Modello E-R

- · Si creano associazioni tra entità distinte, tramite condivisione di attributi
  - Le righe di diverse tabelle hanno domini in comune
- · Es. Database universitario
  - Studenti ed esami sono associati tramite gli attributi matricola e studente
  - Insegnamenti ed esami sono associati tramite gli attributi insegnamento e codice
- · Semplicità: forza del modello relazionale!

### Chiave primaria

- · Una tabella (relazione) non dovrebbe contenere due righe identiche
  - Sempre possibile scegliere un sottoinsieme di campi t.c. ...
  - Ciascuna riga della tabella identificata univocamente
- Chiave primaria (primary key, PK) di una tabella:
  - Minimo sottoinsieme di campi che permette di...
  - Identificare univocamente le righe della tabella

#### Chiave esterna

- · Le informazioni presenti in tabelle diverse possono essere associate tra loro perché tali tabelle hanno dei domini in comune
- · Quando il dominio di un campo K che è chiave primaria in una tabella A è presente anche in un'altra tabella B...
- · Allora questo campo K è detto chiave esterna (foreign key, FK) verso la tabella A

# Concetto e tipo di chiave



#### Chiave candidata

- Le chiavi candidate sono gli attributi in una relazione con la proprietà di poter essere la chiave primaria:
  - Tra le chiavi candidate deve essere scelta la chiave primaria
  - Le chiavi escluse si dicono chiavi alternative
- · Le righe di una tabella rappresentano "entità" del mondo reale
- · La chiave primaria rappresenta il modo con cui è possibile distinguere queste entità

### Normalizzazione

- Processo di organizzazione dei dati per evitare ridondanza, anomalie, inefficienza
- Stessa informazione in più copie → svantaggi
  - Maggior uso di memoria
  - Modifiche ripetute della stessa informazione
  - *Inconsistenza* dei dati, se aggiornati in modo indipendente; la stessa informazione potrebbe assumere valori diversi

### Prima forma normale

- · La relazione rispetta il modello relazionale
- · Le tuple hanno un numero fisso di attributi definiti su domini elementari
  - Non ci sono righe uguali
  - Atomicità: solo attributi elementari
  - Non ci sono attributi ripetitivi



### Seconda forma normale

 Non ci sono attributi non-chiave che dipendono parzialmente dalla chiave



### Terza forma normale

- Non ci sono attributi non-chiave che dipendono transitivamente dalla chiave
  - Ossia dipendenti da campi non-chiave





# Operatori relazionali

### Operatori relazionali

- · Base teorica per i linguaggi di interrogazione delle basi di dati relazionali
  - Operano su intere tabelle considerate come insiemi, piuttosto che record per record
  - Prendono in input tabelle
  - Generano in output nuove tabelle
- · Operatori
  - Unione, intersezione, differenza (op. insiemistici, applicabili a relazioni definite sugli stessi attributi)
  - Selezione, proiezione (un solo operando)
  - Prodotto cartesiano, join (più operandi)

## Operatori insiemistici

| Laureati  |       |     |  |  |  |
|-----------|-------|-----|--|--|--|
| Matricola | Nome  | Età |  |  |  |
| 7274      | Rossi | 42  |  |  |  |
| 7432      | Neri  | 54  |  |  |  |
| 9824      | Verdi | 45  |  |  |  |

| Quadri    |       |     |  |  |  |
|-----------|-------|-----|--|--|--|
| Matricola | Nome  | Età |  |  |  |
| 9297      | Neri  | 33  |  |  |  |
| 7432      | Neri  | 54  |  |  |  |
| 9824      | Verdi | 45  |  |  |  |



### Unione



### Intersezione



### Differenza



### Selezione e proiezione



### Selezione



### Proiezione



#### Prodotto cartesiano



Join senza uso di attributi in comune Risultato con numero di n-uple pari al prodotto delle cardinalità degli operandi (le n-uple sono tutte combinabili)

#### Join



#### Proiezione + selezione



### Join + selezione





## Join + proiezione





# Structured Query Language

#### Structured Query Language

- SQL: riferimento per manipolazione e interrogazione di basi di dati relazionali
- · Deriva da una prima proposta di linguaggio di Ibm chiamato *Sequel* (1974)
- · Prime implementazioni di Ibm e Oracle (1981)
- · Da 1983 "standard di fatto"
- Evoluzione corrispondente ad aggiornamenti delle specifiche (1986, 1989, 1992, 1999...)

#### Es. Tabelle parentele

```
create table Person (
    Name character(20) primary key,
    Age numeric(3),
    Income numeric(9)
);
create table Paternity (
    Father character(20),
    Child character(20) unique
);
create table Maternity (
    Mother character(20),
    Child character(20) unique
);
```

**SQL** 

#### Es. Ricerche semplici

- · Tell me name and income of people less than 30 yo
- · Tell me everything of people less than 30 yo
- Fathers of people earning more than 50

```
select Name, Income from Person where Age < 30
select * from Person where Age < 30
select Paternity.Father
   from Person
   join Paternity
   on Paternity.Child = Person.Name
   where Person.Income > 50
```

S0L

#### Es. Manipolazione dati

```
insert into Person
   values ('Mario', 25, 52);
insert into Person (Name, Age)
   values ('Pino', 25);
delete from Person
   where Age < 18;
update Person
   set Income = 45
   where Name = 'Piero';
update Person
   set Income = Income * 1.1
   where Age < 30;</pre>
```

**SQL** 

#### Es. Ricerche complesse

- Tell me name, income and fathers' age of people earning more than their father
- · Tell me the name of each person's mother and father

```
select C.Name, C.Income, F.Age
    from Person C
    join Paternity P on C.Name = P.Child
    join Person F on F.Name = P.Father
    where C.Income > F.Income;

select Paternity.Child, Father, Mother
    from Paternity
    join Maternity on Paternity.Child = Maternity.Child
```

47/51

S<sub>0</sub>L

#### Es. Tabella impiegati

```
create table Employee (
   Id character(6) primary key,
   Name character(20) not null,
   Surname character(20) not null,
   Location character(15),
   Salary numeric(9) default 0,
   City character(15),
   foreign key(Location)
      references Department(DepName),
   unique (Surname, Name)
)
```

**SQL** 

#### Create, select

```
create table Table (
   Attribute Domain [Constraints],
   Attribute Domain [Constraints]
   ...
   [OtherConstraints]
)
select Attribute, Attribute ...
   from Table, Table ...
   [where Conditions]
```

**SQL** 

## Insert, update, delete

**SQL** 



Giulio Angiani Universita' degli Studi di Parma