Μοντέλα και Αποδείξεις Ασφάλειας στην Κρυπτογραφία - Ανταλλαγή Κλειδιού Diffie Hellman

Παναγιώτης Γροντάς - Άρης Παγουρτζής 30/10/2018

ΕΜΠ - Κρυπτογραφία (2018-2019)

Formal Models - DHKE 1/48

Περιεχόμενα

- Ορισμός Κρυπτοσυστήματος
- Μοντελοποίηση αντίπαλου
- Μοντελοποίηση ασφάλειας
- Κρυπτογραφικές αποδείξεις
- · Εφαρμογή: Ανταλλαγή Κλειδιού Diffie Hellman

Formal Models - DHKE 2 / 48

Ορισμοί

Κρυπτοσύστημα

- \cdot $\mathcal{CS} = (M, K, C, KeyGen, Encrypt, Decrypt)$
- Μ: Σύνολο Μηνυμάτων
- Κ: Σύνολο Κλειδιών
- C: Σύνολο Κρυπτοκειμένων

Δημιουργία κλειδιού

- $\mathsf{KeyGen}(1^{\lambda}) = (\mathit{key}_{\mathit{enc}}, \mathit{key}_{\mathit{dec}}) \in \mathsf{K}^2$
 - Πιθανοτικός Αλγόριθμος
 - Το κλειδί συνήθως επιλέγεται ομοιόμορφα από το Κ
 - · λ : Παράμετρος ασφάλειας πλήθος bits του κλειδιού
 - Συμβολισμός στο μοναδιαίο (λ '1'): Πολυπλοκότητα εκφράζεται ως προς το μέγεθος της εισόδου, όχι ως προς την αναπαράστασή της(λογαριθμική)
 - Σημασία για χρόνο εκτέλεσης κρυπτογράφησης, προσπάθειας - πιθανότητα επιτυχίας 'σπασίματος'

Formal Models - DHKE Ορισμοί

Κρυπτοσύστημα (2)

Κρυπτογράφηση

 $Encrypt(key_{enc}, m) = c \in C$

- Ντετερμινιστικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα κρυπτοκείμενο
- Πιθανοτικός Αλγόριθμος: Κάθε μήνυμα αντιστοιχεί σε ένα σύνολο πιθανών κρυπτοκειμένων

Αποκρυπτογράφηση

 $Decrypt(key_{dec}, c) = m$

Ορθότητα

 $Decrypt(key_{dec}, Encrypt(key_{enc}, m)) = m, \forall m \in M$

Formal Models - DHKE Ορισμοί

Παρατηρήσεις

- · Συμμετρικό Κρυπτοσύστημα $key_{enc} = key_{dec}$
- · Ασύμμετρο Κρυπτοσύστημα $key_{enc} \neq key_{dec}$
 - Κρυπτογραφία Δημοσίου Κλειδιού
 - Το key_{enc} μπορεί να δημοσιοποιηθεί για την εύκολη ανταλλαγή μηνυμάτων
 - · Το key_{dec} είναι μυστικό

Formal Models - DHKE Ορισμοί 5 / 48

Ο αντίπαλος Α

- Στόχος: Να σπάσει το κρυπτοσύστημα
- Δηλαδή, με δεδομένο το c:
 - Να μάθει το κλειδί k;
 - Επίθεση Πυρηνικής Βόμβας
 - Θέλουμε να προστατεύσουμε το μήνυμα
 - · Τετριμμένα Encrypt(k, m) = m είναι αδύνατο να σπάσει, αλλά τι ασφάλεια παρέχει;

6 / 48

- Να μάθει ολόκληρο το αρχικό μήνυμα m;
 - Αν μάθει το 90%;
- Να μάθει κάποια συνάρτηση του *m*;
 - Ναι αλλά ποια;
- Συμπέρασμα:Χρειάζονται ακριβείς ορισμοί
 - Για το τι σημαίνει 'σπάσιμο'
 - Για τις δυνατότητες και τα μέσα του αντιπάλου.

Formal Models - DHKE Ορισμοί

Είδη επιθέσεων

Επίθεση Μόνο Κρυπτοκειμένου - Ciphertext Only Attack (COA)

- · Παθητικός Αντίπαλος (Eve)
- Πολύ εύκολη: Χρειάζεται απλά πρόσβαση στο κανάλι επικοινωνίας

Formal Models - DHKE Είδη επιθέσεων 7/-

Επίθεση Γνωστού Μηνύματος - Known Plaintext Attack (KPA)

- Παθητικός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Τετριμμένο σενάριο για ασύμμετρα, γιατί:
 - Ο Α έχει το δημόσιο κλειδί
 - Μπορεί να κατασκευάσει μόνος του όσα ζεύγη θέλει
- Ρεαλιστικό σενάριο και για συμμετρικά, γιατί:
 - Ακόμα και τα κρυπτογραφημένα πρωτόκολλα περιέχουν μη απόρρητα μηνύματα (handshakes, ack)
 - · Ιστορικό παράδειγμα: Κρυπτοκείμενα πρόγνωσης καιρού στη μηχανή Enigma
 - Κρυπτογραφημένα μηνύματα γίνονται κάποια στιγμή διαθέσιμα

Formal Models - DHKE Elδη επιθέσεων 8 / 48

Επίθεση Επιλεγμένου Μηνύματος - Chosen Plaintext Attack (CPA)

- · Ενεργός Αντίπαλος (Mallorie)
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Ιστορικό Παράδειγμα: Σπάσιμο κρυπτοσυστήματος JN-25b στη ναυμαχία του Midway (Ιούνιος 1942)
 - Υποψία ότι Encrypt("Midway") = "AF"
 - Αποστολή Πλαστών Μηνυμάτων για επισκευή του συστήματος υδροδότησης του 'Midway'
 - Συλλογή Επικοινωνιών Με Κρυπτοκείμενα 'ΑΕ'
 - Συσχέτιση με παλιότερες επικοινωνίες

Formal Models - DHKE Είδη επιθέσεων 9 / 48

Επίθεση Επιλεγμένου Κρυπτοκειμένου - Chosen Ciphertext Attack (CCA)

- Ενεργός Αντίπαλος
- Γνωρίζει ζεύγη μηνυμάτων κρυπτοκειμένων
- Μπορεί να ζητήσει την κρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Κρυπτογράφησης)
- Μπορεί να επιτύχει την αποκρυπτογράφηση μηνυμάτων της επιλογής του (Μαντείο Αποκρυπτογράφησης)
- Διαίσθηση: Ο αντίπαλος μπορεί να βγάλει έμμεσα συμπεράσματα από αντιδράσεις σε κρυπτογραφημένα μηνύματα
 - · Απόρριψη κρυπτογραφημένων 'σκουπιδιών' από το πρωτόκολλο (Bleichenbacher RSA PKCS1 attack)
 - Ενέργεια στον πραγματικό κόσμο (πχ. αγορά μετοχών)

10 / 48

· Ιστορικό (αντιπαράδειγμα:) Μη αποτροπή του βομβαρδισμού του Coventry

Formal Models - DHKE Είδη επιθέσεων

Μοντέλα Ασφάλειας

Οι κανόνες του Kerchoffs (1883)

Οι πρώτες προσπάθειες ορισμού ασφάλειας κρυπτοσυστημάτων και προστασίας

Αρχή 2

Ο αλγόριθμος (από) κρυπτογράφησης δεν πρέπει να είναι μυστικός. Πρέπει να μπορεί να πέσει στα χέρια του \mathcal{A} χωρίς να δημιουργήσει κανένα πρόβλημα. Αντίθετα το κλειδί μόνο πρέπει να είναι μυστικό.

Λόγοι:

- Το κλειδί διανέμεται πιο εύκολα από τους αλγόριθμους (μικρότερο μέγεθος, απλούστερη δομή)
- Το κλειδί είναι πιο εύκολο να αλλαχθεί αν διαρρεύσει
- Πιο πρακτική χρήση για περισσότερους από έναν συμμετέχοντες
- Αγοικτό κρυπτοσύστημα: Εύκολη μελέτη

Οι κανόνες του Kerchoffs (1883) - (2)

Παρατηρήσεις:

Αν και έχουν παράδοση ακόμα και σήμερα δεν εφαρμόζονται πλήρως

 (Μεγάλες) εταιρίες δημιουργούν και χρησιμοποιούν δικούς τους μυστικούς αλγόριθμους/πρωτόκολλα

· Bruce Schneier Crypto Snake Oil

Formal Models - DHKE Μοντέλα Ασφάλειας 12 / 48

Οι κανόνες του Kerchoffs (1883) - (3)

Αρχή 1

Το κρυπτοσύστημα θα πρέπει να είναι *πρακτικά* απρόσβλητο, αν δεν γίνεται θεωρητικά

- Διάρκεια Κρυπτανάλυσης > Διάρκεια Ζωής Μηνύματος
- Μικρή Πιθανότητα Επιτυχίας
- Υπολογιστική Ασφάλεια

Εμπειρική αρχή - δεν αντιστοιχίζονται σε κάτι πρακτικό

Formal Models - DHKE Μοντέλα Ασφάλειας 13 / 48

Αποδείξιμη Ασφάλεια

Ιδέα

Μαθηματική (Λογική) απόδειξη ότι το κρυπτοσύστημα έχει κάποιες ιδιότητες ασφάλειας.

Παράδειγμα: Τέλεια μυστικότητα (Shannon)

Μπορεί να εφαρμοστεί στην κρυπτογραφία δημοσίου κλειδιού; Γιατί;

Επαναχρησιμοποίηση δημοσίου κλειδιού

Formal Models - DHKE Μοντέλα Ασφάλειας 14 / 48

Σημασιολογική Ασφάλεια

Βασική ιδέα (Goldwasser, Micali):

Χαλαρώνουμε τις απαιτήσεις ασφάλειας για να οδηγηθούμε σε έναν πιο χρήσιμο ορισμό

Λαμβάνουμε υπ'όψιν:

- την υπολογιστική ισχύ του Α
- την πιθανότητα επιτυχίας
- το είδος των επιθέσεων

Διαίσθηση

Ένας υπολογιστικά περιορισμένος *Α* δεν μπορεί να μάθει τίποτε χρήσιμο από το κρυπτοκείμενο παρά μόνο με αμελητέα πιθανότητα

Formal Models - DHKE Μοντέλα Ασφάλειας 15 / 48

Ρητή Προσέγγιση

Ορισμός

Ένα κρυπτοσύστημα είναι (τ,ϵ) ασφαλές αν οποιοσδήποτε $\mathcal A$ σε χρόνο το πολύ τ , δεν μπορεί να το σπάσει με πιθανότητα καλύτερη από ϵ

Παράδειγμα: Για συμμετρικά κρυπτοσυστήματα σήμερα με μακροχρόνια απαιτήσεις ασφάλειας $2^{80} < \tau < 2^{100}$ και $\epsilon = 2^{-64}$ Στατιστικά distributed.net brute force cracking:

- · 56bits 250 μέρες
- · Παγκόσμιο ρεκόρ: 2002 64bits 5 χρόνια
- Τώρα: Προσπάθεια για σπάσιμο κλειδιού 72bits (μετά 15 χρόνια έχει εξερευνηθεί το 5% του Κ)
- Quantum computers: $2^{\tau/2}$ generic speedup (αλγόριθμος Grover)

Formal Models - DHKE Μοντέλα Ασφάλειας 16 / 48

Ρητή Προσέγγιση (2)

Δεν χρησιμοποιείται γιατί:

- Δεν ασχολείται με το υπολογιστικό μοντέλο (κατανεμημένοι υπολογιστές, εξειδικευμένο HW κτλ.)
- \cdot Δεν ασχολείται με το τι θα γίνει μετά το τ
- Για τους ίδιους λόγους με Υπολογιστική Πολυπλοκότητα

Formal Models - DHKE Μοντέλα Ασφάλειας 1

Ασυμπτωτική Προσέγγιση

Ορισμός

Ένα κρυπτοσύστημα είναι ασφαλές αν οποιοσδήποτε περιορισμένος *Α* έχει αμελητέα πιθανότητα να το σπάσει (σε σχέση με την παράμετρο ασφάλειας)

Παρατηρήσεις:

- περιορισμένος = Probabilistic Polynomial Time
- \cdot Ισχύει για μεγάλες τιμές του λ
- Συνέπεια του $|\mathbf{K}| < |\mathbf{M}|$
- Επιτρέπει προσαρμογή της ασφάλειας με αλλαγή του μήκους του κλειδιού

Formal Models - DHKE Μοντέλα Ασφάλειας 18 / 48

Στόχος αντιπάλου

- · Ο $\mathcal A$ θέλει να υπολογίσει το κατηγόρημα $q:\mathbf M o \{0,1\}$
- · Γενικά: $Pr_{m\in \mathbf{M}}[q(m)=0]=Pr_{m\in \mathbf{M}}[q(m)=1]=rac{1}{2}$
- Το μήκος των κρυπτοκειμένων είναι το ίδιο (δεν διαρρέει πληροφορία)

Το πλεονέκτημα του $\mathcal A$

$$Adv_q(\mathcal{A}) = |Pr[\mathcal{A}(c) = q(\mathsf{Decrypt}(\mathit{key}, c))] - \frac{1}{2}|$$

Αν ο $\mathcal A$ μαντέψει στην τύχη έχει Α $dv_q(\mathcal A)=0$

Formal Models - DHKE Μοντέλα Ασφάλειας

Σημασιολογική ασφάλεια - ορισμός

Ορισμός

Ένα κρυπτοσύστημα είναι σημασιολογικά ασφαλές όταν \forall PPT \mathcal{A} , $\forall q$:

$$Adv_q(A) = negl(\lambda)$$

Αμελητέα συνάρτηση

Οποιαδήποτε συνάρτηση για την οποία για κάθε πολυώνυμο p υπάρχει n_0 ώστε $\forall n \geq n_0: neql(n) < \frac{1}{p(n)}$

Δηλαδή: Μεγαλώνει με πιο αργό ρυθμό από αντίστροφο πολυώνυμο

Για παράδειγμα: 2^{-n} , $2^{-\sqrt{n}}$, $n^{-\log n}$

Formal Models - DHKE Μοντέλα Ασφάλειας

Σημασιολογική ασφάλεια (2)

Παρατηρήσεις

- Ο τυπικός ορισμός ενσωματώνει την παράμετρο ασφαλείας
- Δύσχρηστος ορισμός δεν ορίζουμε τι ξέρει ο A και τι διαδικασία ακολουθεί για το 'σπάσιμο'

Formal Models - DHKE Μοντέλα Ασφάλειας 21/

Μη Διακρισιμότητα (Indistinguishability)

Οντότητα (challenger - αναπαριστά το κρυπτοσύστημα)

Παίγνιο Μη Διακρισιμότητας μεταξύ των ${\mathcal A}$, ${\mathcal C}$

- · Ανταλλαγή Μηνυμάτων μεταξύ ${\mathcal A}$, ${\mathcal C}$
- \cdot \mathcal{A} : Παράγει δύο μηνύματα m_0, m_1
- \cdot \mathcal{C} : Διαλέγει ένα τυχαίο bit b
- \cdot \mathcal{C} : Παράγει και απαντά με το $c_b = \mathsf{Encrypt}(m_b)$
- \cdot \mathcal{A} : Μαντεύει ένα bit b'
- Κερδίζει αν μαντέψει την επιλογή του αντιπάλου

Formal Models - DHKE Μοντέλα Ασφάλειας

Μη Διακρισιμότητα (Indistinguishability) - (2)

Δηλαδή:

IND – Game(
$$\mathcal{A}$$
) =
$$\begin{cases} 1, b' = b \\ 0, \alpha \lambda \lambda i \dot{\omega} \zeta \end{cases}$$

Πλεονέκτημα

$$Adv_{IND}(\mathcal{A}) = |Pr[IND - Game(\mathcal{A}) = 1] - \frac{1}{2}|$$

Ορισμός

Ένα κρυπτοσύστημα διαθέτει την ιδιότητα της μη διακρισιμότητας όταν ∀ PPT *A* :

$$Adv_{IND}(\mathcal{A}) = negl(\lambda)$$

Θεώρημα

Σημασιολογική Ασφάλεια ⇔ Μη-Διακρισιμότητα

Formal Models - DHKE Μοντέλα Ασφάλειας 23 / 48

Formal Models - DHKE Movτέλα Ασφάλειας 24 / 48

Formal Models - DHKE Movτέλα Ασφάλειας 25 / 48

Παρατηρήσεις IND-CPA

Θεώρημα

Ένα κρυπτοσύστημα με ντετερμινιστικό αλγόριθμο κρυπτογράφησης δεν μπορεί να έχει την ιδιότητα IND-CPA.

Απόδειξη

- \cdot Ο $\mathcal A$ θέτει $m^*=m_0$ και λαμβάνει την κρυπτογράφηση c^*
- Η απάντηση του είναι $b' = \begin{cases} 0, c^* = c \\ 1, αλλιώς \end{cases}$
- \cdot Ο $\mathcal A$ κερδίζει πάντα $\Pr[\mathit{IND}-\mathit{CPA}(\mathcal A)=1]=1$

Formal Models - DHKE Μοντέλα Ασφάλειας 26 / 48

Formal Models - DHKE Μοντέλα Ασφάλειας 27/

Παρατηρήσεις

- Παραλλαγή IND-CCA2: Επιτρέπεται χρήση του μαντείου αποκρυπτογράφησης μετά το *c* (adaptive IND-CCA)
- · Παραλλαγή IND-CCA1: αλλιώς
- Στο παίγνιο IND-CCA ο $\mathcal A$ δεν μπορεί να ρωτήσει τον $\mathcal C$ για την αποκρυπτογραφήση του $\mathcal C$
- Μπορεί όμως να:
 - · Μετατρέψει το c σε ĉ
 - · Ζητήσει την αποκρυπτογράφηση του \hat{c} σε \hat{m}
 - · Να μετατρέψει το \hat{m} σε m, κερδίζοντας με πιθανότητα 1

28 / 48

Formal Models - DHKE Μοντέλα Ασφάλειας

Malleability

Χειρισμός κρυπτοκειμένων χωρίς αποκρυπτογράφηση

Malleable (εύπλαστο) Κρυπτοσύστημα Επιτρέπει στον $\mathcal A$ να φτιάξει, γνωρίζοντας μόνο το κρυπτοκείμενο $c=\mathsf{Encrypt}(m)$, ένα έγκυρο κρυπτοκείμενο $c'=\mathsf{Encrypt}(h(m))$, για κάποια, συνήθως πολυωνυμικά

Κάποιες φορές είναι επιθυμητή και κάποιες όχι.

αντιστρέψιμη, συνάρτηση h γνωστή σε αυτόν.

- · Ομομορφικά Κρυπτοσυστήματα: Αποτίμηση μερικών πράξεων στα κρυπτοκείμενα (ηλ. ψηφοφορίες)
- Πλήρως Ομομορφικά Κρυπτοσυστήματα (Gentry 2010):
 Αποτίμηση οποιουδήποτε κυκλώματος στα κρυπτοκείμενα
- · Δεν μπορούν να είναι IND-CCA2, ... αλλά είναι πολύ χρήσιμα

Σημαντική ιδιότητα

Non-malleability ⇔ IND-CCA2

Αποδείξεις Ασφάλειας

Κρυπτογραφικές Αναγωγές

Γενική Μορφή

Αν ισχύει ή ὑπόθεση \mathcal{Y} , τότε και το κρυπτοσύστημα \mathcal{CS} είναι ασφαλές (υπό συγκεκριμένο ορισμό).

Αντιθετοαντιστροφή

Αν το \mathcal{CS} ΔΕΝ εἶναὶ ἀσφαλές (υπό συγκεκριμένο ορισμό), τότε δεν ισχύει η \mathcal{Y} .

Formal Models - DHKE Αποδείξεις Ασφάλειας

Κατασκευαστική απόδειξη

- · \mathcal{CS} μη ασφαλές \Rightarrow \exists PPT \mathcal{A} ο οποίος παραβιάζει τον ορισμό ασφάλειας
- · Κατασκευάζουμε PPT αλγόριθμο \mathcal{B} , ο οποίος αλληλεπιδρά με τον $\mathcal{C}_{\mathcal{V}}$ ο οποίος προσπαθεί να 'υπερασπιστεί' την \mathcal{Y}
- Ο \mathcal{B} για να καταρρίψει την \mathcal{Y} χρησιμοποιεί εσωτερικά σαν υπορουτίνα τον \mathcal{A} (black box access) παριστάνωντας τον \mathcal{C} στο παίγνιο μη διακρισιμότητας του \mathcal{CS}

Formal Models - DHKE Αποδείξεις Ασφάλειας

Formal Models - DHKE Αποδείξεις Ασφάλειας

Παρατηρήσεις

Κανόνες Ορθότητας

- Προσομοίωση: Ο *Α* δεν θα πρέπει να ξεχωρίζει τον *Β* από οποιονδήποτε άλλο εισηγητή.
- Πιθανότητα επιτυχίας: Αν ο Α έχει μη αμελητέα
 πιθανότητα επιτυχίας τότε και ο Β θα πρέπει να έχει μη αμελητέα πιθανότητα
- Πολυπλοκότητα: Ο Β θα πρέπει να είναι PPT. Αυτό πρακτικά σημαίνει ότι όποια επιπλέον εσωτερική επεξεργασία πρέπει να είναι πολυωνυμική
- · Πρέπει να είναι όσο πιο tight γίνεται $(t_{\mathcal{B}} \approx t_{\mathcal{A}}$ και $\epsilon_{\mathcal{B}} \approx \epsilon_{\mathcal{A}})$

Formal Models - DHKE Αποδείξεις Ασφάλειας

Συμπεράσματα-Συζήτηση

Κρυπτογραφικές Αναγωγές

- Παρέχουν σχετικές εγγυήσεις (Δύσκολο Πρόβλημα, Μοντέλο Ασφάλειας)
- Δίνουν ευκαιρία να ορίσουμε καλύτερα το κρυπτοσύστημα/πρωτόκολλο
- Πρακτική Χρησιμότητα: Ρύθμιση Παραμέτρου Ασφάλειας
- Συγκέντρωση Κρυπταναλυτικών Προσπαθειών στο
 Πρόβλημα Αναγωγής και όχι σε κάθε κρυπτοσύστημα ξεχωριστά
- Πιο σημαντικές όσο πιο πολύπλοκο γίνεται το πρωτόκολλο
- Αποδεικνύουν την ασφάλεια του μοντέλου, αλλά:
 - Πόσο αναπαριστά το μοντέλο την πραγματικότητα; ΚRACK
 - Δεν σημαίνει ότι οποιαδήποτε υλοποίηση θα είναι ασφαλής

Formal Models - DHKE Αποδείξεις Ασφάλειας 34 / 48

Ανταλλαγή Κλειδιού Diffie Hellman

Το πρωτόκολλο DHKE

Αντί για Alice και Bob...

Πρωτόκολλο Δημιουργίας Κλειδιού

Απαιτήσεις:

Ασφάλεια: Ύψωση σε δύναμη - μονόδρομη συνάρτηση στην $\mathbb G$

Συνήθως: \mathbb{G} υποομάδα του \mathbb{Z}_p^* με p πρώτο ή ελλειπτικές

καμπύλες

Εφαρμογές: SSL, TLS, IPSEC

Ασφάλεια DHKE - Πρόβλημα DLP

DLP - Το πρόβλημα του Διακριτού Λογάριθμου Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$ τάξης q και ένα τυχαίο στοιχείο $y\in\mathbb{G}$

Να υπολογιστεί $x \in \mathbb{Z}_q$ ώστε $g^x = y$ δηλ. το $log_g y \in \mathbb{Z}_q$

Αγνοούμε δεδομένα στο πρωτόκολλο DHKE

Ασφάλεια DHKE - Πρόβλημα CDHP

CDHP - Το υπολογιστικό πρόβλημα Diffie Hellman Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$, δύο στοιχεία

$$y_1 = g^{x_1}, y_2 = g^{x_2}$$

Να υπολογιστεί το $g^{x_1 \cdot x_2}$

Ασφάλεια DHKE - Πρόβλημα DDHP

Μπορούμε να δοκιμάζουμε τυχαία στοιχεία

DDHP - Το πρόβλημα απόφασης Diffie Hellman Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$, δύο στοιχεία $y_1=g^{x_1},y_2=g^{x_2}$ και κάποιο $y\in\mathbb{G}$

Να εξεταστεί αν $y = g^{x_1 \cdot x_2}$

ή ισοδύναμα

DDHP - Το πρόβλημα απόφασης Diffie Hellman Δίνεται μια κυκλική ομάδα $\mathbb{G}=\langle g \rangle$, δύο στοιχεία $y_1=g^{x_1},y_2=g^{x_2}$ και κάποιο $y\in\mathbb{G}$

Μπορούμε να ξεχωρίσουμε τις τριάδες $(g^{x_1}, g^{x_2}, g^{x_1x_2})$ και (g^{x_1}, g^{x_2}, y) ;

DDH σε μορφή παιγνίου DDH – Game

Κοινή είσοδος: παράμετρος ασφάλειας λ.

Λειτουργίες $\mathcal C$

- Παραγωγή: $\mathbb{G} = \langle g \rangle$ τάξης πρώτου q.
- Επιλογή τυχαίων $x_1, x_2 \in \mathbb{Z}_q$, $y \in G$
- Υπολογισμός $g^{x_1}, g^{x_2}, g^{x_1x_2}$
- Επιλογή τυχαίου bit $b \in \{0, 1\}$
- \cdot Αν b=0 τότε αποστολή $\mathbb{G}, g^{\mathsf{x}_1}, g^{\mathsf{x}_2}, \mathsf{y}'=g^{\mathsf{x}_1\mathsf{x}_2}$ στον \mathcal{A}
- \cdot Αν b=1 τότε αποστολή $\mathbb{G}, g^{\mathsf{x}_1}, g^{\mathsf{x}_2}, y'=y$ στον \mathcal{A}

Ο \mathcal{A} υπολογίζει b'.

Αν $b' \neq b$ τότε το αποτέλεσμα του παιχνιδιού είναι 0, αλλιώς 1

39 / 48

DDH σε μορφή παιγνίου DDH – Game (2)

Πλεονέκτημα \mathcal{A} :

$$\begin{aligned} \textit{Adv}_{\mathcal{A}}^{\textit{DDH-Game}} &= \\ |\textit{Pr}[\textit{DDH-Game}(\mathcal{A}(\mathbb{G}, g^{x_1}, g^{x_2}, g^{x_1x_2}) = 1)] \\ -\textit{Pr}[\textit{DDH-Game}(\mathcal{A}(\mathbb{G}, g^{x_1}, g^{x_2}, y) = 1)]| \end{aligned}$$

H υπόθεση DDH ισχύει αν ∀ PPT:

$$A$$
: $Adv^{DDH}_{A}(\lambda) = negl(\lambda)$

Σχέσεις Προβλημάτων

 $CDHP \leq DLP$ Αν μπορούμε να λύσουμε το DLP, τότε μπορούμε να υπολογίζουμε τα x_1, x_2 από τα y_1, y_2 και στην συνέχεια το $g^{x_1 \cdot x_2}$

 $DDHP \leq CDHP$ Αν μπορούμε να λύσουμε το CDHP, υπολογίζουμε το $g^{x_1 \cdot x_2}$ και ελέγχουμε ισότητα με το y

 Δ ηλαδή: $DDHP \leq CDHP \leq DLP$

Δεν γνωρίζουμε αν ισχύει η αντίστροφη σειρά - ισοδυναμία Όμως: Υπάρχουν ομάδες όπου το DDHP έχει αποδειχθεί εύκολο, ενώ CDHP δεν έχει αποδειχθεί εύκολο Μάλλον: DDHP < CDHP

Formal Models - DHKE

Ασφάλεια DHKE

Μοντέλο ασφάλειας: παθητικός αντίπαλος Α

Διαίσθηση

Ο $\mathcal A$ δεν αποκτά καμία χρήσιμη πληροφορία για το κλειδί που δημιουργείται.

Ισοδύναμα

Ο ${\cal A}$ δεν μπορεί να διακρίνει το κλειδί από ένα τυχαίο στοιχείο της ομάδας στην οποία ανήκει

Παιχνίδι ανταλλαγής κλειδιού $\mathit{KEG}(\lambda,\mathcal{A},\Pi)$

Κοινή είσοδος: λ . Λειτουργίες $\mathcal C$:

- · Δημιουργεί ομάδα G
- Εκτελεί το πρωτοκόλλο $\Pi(1^{\lambda})$
- Παράγεται: (τ, k)
 - τ: Τα μηνύματα που ανταλλάσσονται (δημόσια)
 - k: Το κλειδί που παράγεται (ιδιωτικό)
- Επιλογή τυχαίου $b \in \{0, 1\}$
- · Αν b=0 επιλογή τυχαίου k' και αποστολή (au,k') στον $\mathcal A$
- · Av b=1 αποστολή (τ,k) στον \mathcal{A}

Ο $\mathcal A$ υπολογίζει b'. Αν $b' \neq b$ τότε το αποτέλεσμα του παιχνιδιού είναι 0, αλλιώς 1

Πλεονέκτημα \mathcal{A} :

$$Adv_{A,\Pi}^{KEG}(\lambda) = |Pr[KEG_{\Pi}(A(\tau, k) = 1)] - Pr[KEG_{\Pi}(A(\tau, k') = 1)]|$$

Ορισμός ασφάλειας DHKE

Ένα πρωτόκολλο ανταλλαγής κλειδιού Π είναι ασφαλές, αν κάθε PPT $\pi \alpha \theta \eta \tau$ ικός αντίπαλος $\mathcal A$ έχει αμελητέα πιθανότητα ως προς την παράμετρο ασφάλειας να επιτύχει στο KEG $\mathit{Prob}[\mathit{KEG}(\lambda,\Pi,\mathcal A)=1] \leq \frac{1}{2} + \mathit{negl}(\lambda)$

Ένα πρωτόκολλο ανταλλαγής κλειδιού Π είναι ασφαλές, αν κάθε PPT παθητικός αντίπαλος $\mathcal A$ έχει αμελητέο πλεονέκτημα ως προς την παράμετρο ασφάλειας να επιτύχει στο KEG $\mathit{Adv}^{\mathit{KEG}}_{A.\Pi}(\lambda)(\lambda) = \mathit{negl}(\lambda)$

Απόδειξη ασφάλειας DHKE

Αν το DDHP είναι δύσκολο, τότε το πρωτόκολλο DHKE είναι ασφαλές (απέναντι σε παθητικό αντίπαλο)

Απόδειξη - Σχεδιάγραμμα DHKE μη ασφαλές: $\exists \mathcal{A}$ ώστε $\mathsf{Adv}^{\mathsf{KEG}}_{\mathcal{A}}(\lambda) = \mathsf{non} - \mathsf{negl}(\lambda)$

Θα κατασκευάσουμε αντίπαλο PPT $\mathcal B$ ο οποίος παραβιάζει την DDH με μη αμελητέο πλεονέκτημα.

Ο Β λειτουργεί ως εξής:

- \cdot Όταν λάβει το μήνυμα από τον $\mathcal{C}_{\textit{DDH}}$ το προωθεί στον \mathcal{A}
- · Μορφή μηνύματος $(\tau, k') = ((\mathbb{G}, g^{x_1}, g^{x_2})), y')$
- · Όταν ο $\mathcal A$ απαντήσει, προωθεί το b'.

$$\begin{aligned} \textit{Adv}_{\mathcal{B}}^{\textit{DDH-Game}} &= |\textit{Pr}[\textit{DDH} - \textit{Game}(\mathcal{B}(\mathbb{G}, g^{X_1}, g^{X_2}, g^{X_1 X_2}) = 1)] - \textit{Pr}[\textit{DDH} - \textit{Game}(\mathcal{B}(\mathbb{G}, g^{X_1}, g^{X_2}, y) = 1)] = \\ & |\textit{Pr}[\textit{KEG}_{\textit{DHKE}}(\mathcal{A}(\tau, k) = 1)] - \textit{Pr}[\textit{KEG}_{\textit{DHKE}}(\mathcal{A}(\tau, k') = 1)]| = \textit{non} - \textit{negl}(\lambda) \end{aligned}$$

Ενεργοί Αντίπαλοι

Η σημασία του μοντέλου ασφάλειας - Man In The Middle Attacks

Πώς είμαι σίγουρος ότι μιλάω με αυτόν που νομίζω ότι μιλάω; Λύση: ψηφιακές υπογραφές - ψηφιακό πιστοποιητικό (εγγύηση 'έμπιστου' τρίτου)

Formal Models - DHKE Ανταλλαγή Κλειδιού Diffie Hellman

46 / 48

Πραγματικά παραδείγματα

Superfish (02/2015)

- Προεγκατεστημένο λογισμικό Visual Discovery:
 προσπάθεια για εμφάνιση διαφημίσεων όχι με βάση κείμενο αλλά με βάση εικόνες
- · Παρακολούθηση δικτυακής κίνησης και μέσω https
- · Λογισμικό proxy που λειτουργεί ως MiTM
- · Εγκατάσταση και (self signed) ψηφιακού πιστοποιητικού

Και άλλες ανάλογες περιπτώσεις: πχ. DELL - 10/2015

Πηγές

Βιβλιογραφία

- Παγουρτζής, Α., Ζάχος, Ε., ΓΠ, 2015. Υπολογιστική κρυπτογραφία. [ηλεκτρ. βιβλ.] Αθήνα:Σύνδεσμος Ελληνικών Ακαδημαϊκών Βιβλιοθηκών
- Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography (Chapman and Hall/Crc Cryptography and Network Security Series). Chapman and Hall/CRC, 2007
- · Nigel Smart. Introduction to cryptography
- · Alptekin Kupcu. Proofs In Cryptography
- S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299. 1984.
- S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryptosystems. SIAM J. Computing, 17(2):412–426, 1988.
- W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Inf. Theor., 22(6):644-654, September 1976
- · Ivan Damgard, A proof reading of some issues in cryptography
- · Neil Koblitz, Alfred Menezes Another Look at "Provable Security"
- Dan Boneh (1998). "The Decision Diffie-Hellman Problem". ANTS-III: Proceedings of the Third International Symposium on Algorithmic Number Theory. Springer-Verlag: 48–63. doi:10.1007/bfb0054851
- · Bruce Schneier's Blog
- · A Few Thoughts on Cryptographic Engineering
- · Bristol Cryptography Blog

Formal Models - DHKE Πηγές 48 / 48