Abstract submission Form - Deadline May 23rd 2024

Please submit BOTH pages as one single PDF to CESTWorkshopInfo@gmail.com

Name the 2-page-PDF document with a unique file name using the following format: <first author last name>_<initials>_<abstract short title> (e.g., "Meier_M_Why_CEST_is_best.pdf")

Fill out the following questions by replacing \square with \boxtimes
 □ Apply Student/Postdoc Travel Fund ☑ Oral Presentation □ Poster □ Either Oral or Poster Presentation
Contact Email: Moritz.fabian@uk-erlangen.de
KEYWORD: You are encouraged to choose one or two keywords. CEST agents Contrast Mechanism Concology Neurology Body & MSK Standardization Novel Acquisition Data analysis Al

Formatting Instructions:

Abstract must fit on one 1 page

• (including title, authors, affiliations, main text, figures and references)

Formatting rules:

- main text font no smaller than 10pt (Arial)
- figure captions no smaller than 9pt (Arial)
- margins no smaller than 0.5" around (8.5"x11" page).
- see template on the next page of this document.

Next generation CEST MRI: Optimal Control comprehensive CEST at 7T

Moritz S. Fabian¹, Clemens Stillianu², Simon Weinmüller¹, Martin Freudensprung¹, Rudolf Stollberger², and Moritz Zaiss^{1,3}

¹Institute of Neuroradiology, University Hospital Erlangen, Erlangen, Germany, ²Institute of Medical Engineering, Graz University of Technology, Graz, Austria ³Department Artificial Intelligence in Biomedical Engineering, Erlangen, Germany

Introduction CEST imaging experiments typically benefit from long continoous wave (cw) saturation in order to achive high labelling¹. In clinical settings, cw irradiation is not possible due to SAR and hardware safety limits. Optimal control (OC) pulses² are an emerging technique, which promise high CEST labeling while still accounting for hardware and software limitations of in-vivo scanners. In this work, pulses were optimized for the complete 7T comprehensive CEST (cCEST) protocol of three B1 regimes³ and compared to the conventional pulses.

Methods Data is acquired from a healthy subject at a Siemens MAGNETOM Terra.X 7 Tesla scanner (Siemens Healthcare GmbH, Erlangen, Germany) with a 32ch Rx and 8ch Tx head coil. Pre-saturation was realized in Pulseq-CEST⁴ using the three B1 regimes of 7T cCEST at B_{1rms}=1 μ T, 2 μ T and 4 μ T³ including higher and lower B1 for B1 correction. Image readout was a centric 3D snapshot GRE⁵. GRAPPA 2 was applied in the first phase encoding direction.

Results Compared to conventional pulses (Figure 1a, 6.25 μ T adiabatic spin lock pulses) the respective optimal control pulses look very different (Figure 1b), but create very similar Z-spectra data for all B1 regimes (Figure 1c-e). Direct comparison of CEST maps (Figure 2A-F) and optimal control pulses (Figure 2G-L) show very similar outcome with slightly more homogeneous outcome for the optimal control cCEST esepcially in the frontal area.

Figure 1: pulses (Figure 1a, 6.25 μT adiabatic spin lock pulses) the respective optimal control pulses look very different (Figure 1b), but create very similar Z-spectra data for all B1 regimes (Figure 1c-e).

Figure 2: Comprehensive CEST maps for conventional pulses (A-F) and optimal control pulses (G-L).

Discussion In the course of this work, optimal control pulses in a healthy male subject showed comparable Z-spectra and CEST effects with improved robustness against B0/B1 inhomogeneity, as proposed by Stilianu et al.² CEST saturation with optimal control pulses is estimated to yield improved CEST labelling in all exchange regimes, while being optimizable for different targets, e.g. minimizing spillover or SAR.

Conclusion Optimal Control pulses can be used as drop-in replacement in the cCEST protocol generating 6 CEST contrast with improved field inhomogeneity robustness that can successfully be applied in human subjects.

References

- 1. Zaiss et al. NeuroImage(2022):Clinical,32,1
- 2. Stilianu et al. MRM (2024)
- 3. Fabian et al., NBM (2024), e5096.
- 4. Herz et al., MRM(2019), 81(1), 275-290.
- 5. Zaiss et al., NBM 31.4 (2018), e3879.