1

DC-AC Converter

B Swaroop Reddy and G V V Sharma*

CONTENTS

1 Components

1

2 Circuit Operation

1

2

3 Fourier Series Analysis of DC-AC Converter

Abstract—This manual provides the design of a DC-AC Converter.

1 Components

Component	Value	Quantity			
Arduino Uno		1			
Capacitor	470 uF, 25 V	4			
Capacitor	220 uF, 25 V	4			
Capacitor	47 pF, 25 V	4			
n-MOS	IRF 640	2			
Diodes		6			
Gate Driver	TLP350	2			

TABLE I

2 CIRCUIT OPERATION

The DC-AC converter Block diagram and circuit are shown in Fig. 1 and Fig. 2

Problem 2.1. Generate two dc sources of +12 V and -5 V each using the voltage regulator circuit as shown in the Fig.3

Problem 2.2. Program the arduino to generate a square wave with $Duty\ Cycle\ D = 0.5$ and frequency

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1: DC-AC converter

Fig. 2: DC-AC converter Block-diagram

f = 50Hz and observe the waveform on the oscilloscope.

Solution:

void setup() {
 pinMode(13,OUTPUT);

Fig. 3: Voltage-Regulator Circuit

```
void loop() {
    digitalWrite(13,LOW);
    delay(10);
    digitalWrite(13,HIGH);
    delay(10);
}
```

Problem 2.3. Calculate the R and C values for the dead band circuit shown in Fig.4 for the delay of $2.5 \mu sec.$

Fig. 4: Dead-Band Circuit

Solution:

$$V_{th}(LogicGate) = V_{pulse}(Highlevel) \times (1 - e^{-\frac{t}{RC}})$$

 $RC = 3.82 \times 10^{-6}$

selected R = 390Ω and C = 10nF

Problem 2.4. Connect the 13th pin of arduino to the Dead-band circuit and generate the Non-inverted(at 1) and Inverted(at 2) pulses and observe them on the oscilloscope.

Problem 2.5. Assemble the DC-AC circuit according to Figs. 1,2, 5 and Table II.

Pin Configuration

1: N.C.

2: Anode

3: Cathode

4 : N.C.

5: GND

6: VO (Output)

7: Vo

8: Vcc

Fig. 5: TLP350

1	LP35	0 1	2	3	4	5	6	7	8
A	RDUIN	ØΑ	13	GND	NA			NA	
						-5 V			12 v
						1	0 Ohi	n	

TABLE II: Pin Connections

3 Fourier Series Analysis of DC-AC Converter

Problem 3.1. Observe the output across the load in Fig. 1 on the oscilloscope. What do you observe?

Problem 3.2. Find the Fourier series expansion for the result in Problem.3.1.

Problem 3.3. Design a 4th order RC Low pass filter with cut-off frequency 50 Hz and observe the output of the Low pass filter.

Problem 3.4. Find the output of the lowpass filter designed in 3.3 with input as obtained from the result of 3.1. What do you observe?