Medical Image Processing for Diagnostic Applications

Parallel Beam – Differentiated Backprojection

Online Course – Unit 32 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

2nd methode?

Differentiated Backprojection

Filtering Revisited
Differentiated Backprojection
Variety of Reconstruction Algorithms

Summary

Take Home Messages Further Readings

Filtering Revisited

on left multiplicator multiply wit 2 PI i and on the right one divide by 2Pi i

• Rewrite $|\omega|$:

$$|\omega| = (2\pi i\omega) \cdot \left(\frac{1}{2\pi}(-i\operatorname{sgn}(\omega))\right).$$

- Note that multiplication in frequency space with $-i \operatorname{sgn}(\omega)$ is a **Hilbert transform**, i. e., equivalent to a convolution with $h(s) = \frac{1}{\pi s}$.
- Note that the inverse Fourier transform of $2\pi i\omega$ is the derivative operator:

$$\mathsf{FT}^{-1}(2\pi i\omega\cdot G(\omega))=rac{\mathsf{d}}{\mathsf{d}s}g(s).$$

in frequency doimain multiplying with 2 PI i ist the same as a differentiation in SD

ram filter can be deconstructed into a diff and a hilbert transform!

Differentiation Hilbert Backprojection Algorithm

1. Compute first derivative of the detector row:

$$q_1(s, heta) = rac{\partial p(s, heta)}{\partial s}.$$

2. Apply Hilbert transform:

$$q_2(s,\theta) = \frac{1}{2\pi^2s} * q_1(s,\theta).$$

3. Backproject $q_2(s, \theta)$:

$$f(x,y) = \int_0^{\pi} q_2(s,\theta)|_{s=x\cos\theta+y\sin\theta} d\theta.$$

the order can be swithced around

Differentiated Backprojection

Definition of the backprojection:

$$b(x,y) = \int_0^{\pi} \mathbf{H} p(s,\theta)|_{s=x\cos\theta+y\sin\theta} d\theta,$$

where \mathbf{H} is the Hilbert transform with respect to s.

Figure 1: Computation scheme (Zeng, 2009)

Many reconstruction algorithms are possible ...

Step 1	Step 2	Step 3
1-D Ramp Filter with Fourier Transform	Backprojection	from last slides
1-D Ramp Filter with Convolution	Backprojection	
Backprojection	2-D Ramp Filter with Fourier Transform	
Backprojection	2-D Ramp Filter with 2-D Convolution	
Derivative	Hilbert Transform	Backprojection one from these slides
Derivative	Backprojection	Hilbert Transform
Backprojection	Derivative	Hilbert Transform
Hilbert Transform	Derivative	Backprojection
Hilbert Transform	Backprojection	Derivative
Backprojection	Hilbert Transform	Derivative

Table 1: Valid combinations for analytical parallel-beam reconstruction algorithms (cf. Zeng, 2009)

Topics

Differentiated Backprojection

Filtering Revisited

Differentiated Backprojection

Variety of Reconstruction Algorithms

Summary

Take Home Messages

Further Readings

Take Home Messages

- Reformulation of the ramp filter showed that the combination of Hilbert transform and the projection derivatives produce another analytical reconstruction algorithm.
- There is a multitude of valid algorithms that can be built using the tools: projection derivatives, Fourier and Hilbert transform, and backprojection.

Further Readings

The concise reconstruction book from 'Larry 'Zeng:

Gengsheng Lawrence Zeng. *Medical Image Reconstruction – A Conceptual Tutorial*. Springer-Verlag Berlin Heidelberg, 2010. DOI: 10.1007/978-3-642-05368-9

If you want to learn more about applications of the Fourier transform:

Ronald N. Bracewell. The Fourier Transform and Its Applications. 3rd ed. Electrical Engineering Series.

Boston: McGraw-Hill, 2000