Ciencias de la Computación I Teoría de Grafos III

Eduardo Contrera Schneider

Universidad de la Frontera

16 de noviembre de 2016

1 Teorema de Kuratowski

2 Coloración de Grafos

Subdivisión Elemental

Para lo que sigue necesitamos de una nueva definición para cierta construcción de grafos.

Subdivisión Elemental

Sea G=(V,E) un grafo no dirigido sin lazos, tal que $E\neq\emptyset$. Una subdivisión elemental de G resulta cuando eliminamos un arista $e=\{u,w\}$ de G y entonces las aristas $\{u,v\}$ y $\{v,w\}$ se añaden a G-e, así como v también se agrega a V.

Grafos Homeomorfos

Los grafos no dirigidos sin lazos G = (V, E) y G' = (V', E') son homeomorfos si son isomorfos o si ambos pueden obtenerse del mismo grafo H mediante una sucesión de subdivisiones elementales.

Es claro que si G' se obtiene de una subdivisión elemental de G, entonces G' tiene un vértice y una arista más que G.

Subdivisión Elemental

Nos faltan aún criterios para decidir si un grafo es plano o no. En 1930, el matemático polaco Kasimir Kuratowski demostró el siguiente resultado:

Teorema de Kuratowski

Un grafo no es plano si y sólo si contiene un subgrafo que es homeomorfo a K_5 o $K_{3,3}$

La demostración de este resultado es extensa y escapa a los fines del curso.

Teorema

La siguiente relación fue descubierta por Euler y relaciona el número de vértices, aristas y regiones definidas por una inmersión de un grafo.

Sea G un grafo o multigrafo plano conexo con |V| = n y |E| = m. Sea r el número de regiones en el plano determinadas por una inmersión plana de G; una de estas regiones tiene un área infinita y se le conoce como **región infinita**. Entonces n - m + r = 2.

Este resultado puede resultar muy familiar ya que caracteriza a los sólidos platónico con respecto a sus vértices, aristas y caras.

Otro resultado directo del anterior el siguiente:

Corolario

Sea G = (V, E) un grafo conexo sin lazos con |V| = n y |E| > 2 y r regiones. Si G es plano entonces $3r \le 2e$ y $e \le 3v - 6$.

Con este criterio se puede probar que el K_5 no es plano. El criterio no funciona para $K_{3,3}$, pero podemos razonar a través del teorema de Euler.

Coloración de Grafos

Coloración de Grafos

Si G = (V, E) es un grafo no dirigido, una **coloración propia** de G ocurre cuando coloreamos los vértices de G de modo que si $\{a,b\}$ es una arista de G, entonces a y b tienen colores distintos. El número mínimo de colores necesarios para una coloración propia de G es el número cromático de G y se denota por $\chi(G)$.

No es difícil observar que $\chi(K_n) = n$.

Polinomio Cromático

Coloración propia

Una coloración propia que usa como máximo λ colores es una función f, con dominio V y codominio $\{1, 2, 3, ..., \lambda\}$.

Diremos que dos coloraciones son diferentes si son diferentes como funciones. Ahora veremos un método para determinar $\chi(G)$.

Polinomio Cromático

Sea G un grafo no dirigido y sea λ el número de colores disponibles para la coloración propia de los vértices de G. Definimos como $P(G,\lambda)$, en la variable λ llamada **polinomio cromático** de G que representa el número de coloraciones propias diferentes de los vértices de G, usando un máximo de λ colores.

Observaciones

- Si G = (V, E) es tal que |V| = n y $E = \emptyset$, entonces G tiene n puntos aislados y por la regla del producto, $P(G, \lambda) = \lambda^n$.
- Si $G = K_n$, entonces debemos disponer de al menos n colores para obtener una coloración propia de G.
- En general, si G es un camino simple con n vértices, entonces $P(G,\lambda) = \lambda(\lambda-1)^{n-1}$.
- Si G está conformado por componentes $G_1, G_2, ..., G_k$, entonces usamos de nuevo la regla del producto para obtener $P(G, \lambda) = P(G_1, \lambda)P(G_2, \lambda) \cdots P(G_k, \lambda)$.

Teorema de Descomposición

Sea G = (V, E) un grafo no dirigido. Para $e = \{a, b\} \in E$, sea G_e el subgrafo de G que se obtiene al eliminar e de G, sin quitar los vértices a y b. A partir de G_e obtenemos un segundo subgrafo de G, identificando los vertices a y b. Este segundo subgrafo se denota con G'_e .

Teorema de Descomposición de Polinomios Cromáticos

Si G = (V, E) es un grafo conexo y $e \in E$, entonces

$$P(G_e, \lambda) = P(G, \lambda) + P(G'_e, \lambda)$$

Observaciones

- Para cualquier grafo G, el término constante en $P(G, \lambda)$ es 0.
- Sea G = (V, E) con |E| > 0. Entonces la suma de los coeficientes es $P(G, \lambda)$ es 0.

Podemos también considerar un nuevo grafo al agregar una arista y obtener otro teorema de descomposición.

Teorema de Descomposición de Polinomios Cromáticos

Sea G=(V,E), $a,b\in V$ y con $\{a,b\}$ una arista que no pertenece a E. Escribimos G_e^+ para el grafo que se obtiene al añadir la arista $\{a,b\}$. Al identificar los vértices a y b en G, obtenemos el subgrafo G_e^{++} de G. En estas circunstancias

$$P(G,\lambda) = P(G_e^+,\lambda) + P(G_e^{++},\lambda)$$

