CAQM: Convexity Analysis of Quadratic Maps

Anatoly Dymarsky, Elena Gryazina, Sergei Volodin, Boris Polyak

Name	Input	Call	Description	Return value	Exception
Random map	Dimensions n, m	<pre>get_random_f(n, m,</pre>	Generates random map f	[A, b]	None
		is_complex)			
Value at x	The point $x \in X$	quadratic_map(A, b, x)	Calculates $f(x)$	y = f(x)	None
Product $c \cdot A$	Normal vector c	get_Ac(A, c)	Calculates $c \cdot A$	$A_c = c \cdot A$	None
$\mathbf{Get}\ H_c$	$c, y \in \mathbb{R}^m$	get_H_c(A, b, c, y)	Calculates $H_c = \begin{pmatrix} A_c & b_c \\ b'_c & -(c, y) \end{pmatrix}$	H_c	None
Minimize $z(c)$	$c, c_+, \text{ step } \beta$	minimize_z_c(A, b, c,	Calculates $\inf_{c \in C_{-}} z(c)$	[z, c_array,	If failed
		c_plus, beta_initial,	<i>c</i> ∈ <i>C</i> _	z_array]	
		max_step)			
\mathbb{R}^n projection		project(A, b, c,	Projects $c + \Delta c$ to C_{-}	[c_new, lambda]	If failed
		x_0, delta_c, normal,			
		search_area_size)			
\mathbb{C}^n projection		<pre>project_descent(A, b, c,</pre>	Projects c to C_{-}	[c_new,	If failed
		normal_1, normal_2)		distance]	
Gradient $\frac{\partial z}{\partial c}$	Normal c	<pre>get_dz_dc(A, b, c)</pre>	Calculates Q , $\nabla z(c)$, normal vectors n_1 , n_2	[Q, Q_inv, k, v,	None
				lambda_min,	
				z, dz_dc,	
				normal_re,	
				normal_im,	
				drho_dc]	
Change of basis	c_{+}	change_basis(A, b, c_plus)	Finds $\begin{cases} x = S(x' + x_0) \\ y = y' + y_0 \end{cases}$ s.t. $\begin{cases} c_+ \cdot A_0 = I \\ c_+ \cdot b_0 = 0 \end{cases}$	[A_new, b_new, x0, y0]	None
Boundary point ∂F_c	Normal c	boundary_point(A, b, c)	Calculates pre-image $x \colon f(x) \in \partial F_c$	[x]	If $c \cdot A < 0$