Klasifikácia podľa spracúvaných informácií

- univerzálne počítače
- signálové počítače (DSP digital signal procesing)
- jazykové procesory
- databázové počítačové systémy

Klasifikácia podľa spôsobu riadenia

- počítače riadené tokom inštrukcií
 - control flow
 - o program
- Počítače riadené údajmi
 - o data flow

Pridelovanie instrukcii na vykonanie

Pridelovanie

Výsledky

Pamäť inštrukcii

Prideľovanie

Výber a príprava týchto inštrukcií inštrukcií

Počítače riadené požiadavkami

- demand driwen

Rozdelenie podľa spôsobu pamatania programov a udajov

Princetonska archytektura

Harvadrská

2 Logická úroveň a stavba Počítačových systémov

2.1 Logické obvody

- dvojhodnotové premenné

= Log 0 -fals-low-L

Zakazane pasmo

U

Zobrazenie

 $X = \{(000)(001)(010)(011)(100)(101)(110)(111)\}$

Y={(00) (01) (10) (11)}

- vstupné slovo
- výstupné slovo
- Správanie obvodov
- Štruktúra obvodov

1. Analýza štruktúra =>správanie

Nejednoznačná

2. Systém –správanie + logické členy

-nejednoznačná

Kritériá optimálnosti

- Rýchlosť
- Cena

3. Simulácia

- Funkčná
- Časová

4. Diagnostika

- Detekcia
- Lokalizácia

Rozdelenie logických obvodov:

- podľa reakcie
 - a. kombinačné
 - b. sekundárne
- podľa činnosti v čase
 - a. asynchrónne
 - b. synchrónne (synchronizačná premenná)
- podľa spôsobu implementácie:
 - a. pevná funkcia
 - b. programovateľná funkcia

2.1.1 Kombinované logické obvody

- asynchrónne
- diskrétny dynamický systém

k obrazku hore ten s tymi kuceravymi zatvorkami

$$y_1=f_1(x_1,x_2,...,x_u)$$

$$y_m = f_m(x_1, x_2, ..., x_u)$$

počet všetkých logických funkcíí = 2^{2^n}

neuplne definovaná logická funkcia ~> X=(0 1),0,1

počet kombinácií vzrastie 3^{2^n}

$$f: \{0,1\}^n \to \{0,1\}$$

$$f: \{0,1\}^n \to \{0,1,x\}$$

2.1.1.1 Spôsoby zápisu B funkcií

Boole (boolovské premenné)

• Pravdivostná tabulka

	X_1	\mathbf{X}_2	X_3	Y ₁	\mathbf{Y}_2
0	0	0	0	0	Χ
1	0	0	1	0	0
2	0	1	0	0	0
3	0	1	1	1	1
4	1	0	0	0	0
5	1	0	1	1	1
6	1	1	0	1	1
7	1	1	1	1	Χ

• Číselný zapis

$$"I" \rightarrow y_1 = D(3,5,6,7)$$

 $"J" \rightarrow y_1 = K(0,1,2,4)$
 $"J" \rightarrow y_2 = D(3,5,6(0,7))$

$$_{,,0}$$
" $\rightarrow y_2 = K(1,2,4(0,7))$

- **Vektorový zápis** y₁ =(00010111)
- mapový zápis
 - mapa
 - Karnaugh
 - 2ⁿ štvorčekov
 - Gray-ov cyklický kód

00	2	3	10
4	6	⁷ X	⁵ X

y₁

$$- y_1 = x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3$$

y₂

⁰ X	² 0	³ 1	10
40	⁶ 1	⁷ X	⁵ 1

- Výraz
- Logický výraz

- Bulovský výraz[+,·,-]
- Vyjadruje kedy ma hodnotu 1!
- Všeobecne vyjadrenie susedov
- $y_1 = x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot x_2 \cdot x_3 + x_1 \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3$
- $y_2 = x_1 \cdot x_2 \cdot \overline{x_3} + x_1 \cdot \overline{x_2} \cdot x_3 + \overline{x_1} \cdot x_2 \cdot x_3$
- 2^s s-stupen konfiguracie

2.1.1.2 B funkcie s jednou Premennou

$$n = 1 \rightarrow 2^{2^n} \rightarrow 4$$

$$\begin{array}{c|c}
0 \\
\hline
0 \\
Y_0=0
\end{array}$$

2.1.1.3 B funkcie s doma premennými

$$n = 2 \rightarrow 2^{2^n} \rightarrow 16$$

x_1	x_2	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
		f_0			f_3		f_5					f_{10}		f_{12}			f_{15}
		= 0			$=\overline{x_1}$		$=\overline{x_2}$					$=x_2$		$= x_1$			= 1

Logický súčin [And,A,I,AI]

$$f_8 = x_1 \cdot x_2$$

Logický súčet [Or,alebo]

$$f_{14} = x_1 + x_2$$

Negácia logického súčtu [Nor,ani] (Peircenova)

$$f_1 = \overline{x_1} \cdot \overline{x_2} = \overline{x_1 + x_2} = x_1 \downarrow x_2$$

Negácia logického súčinu [Nand](Seferova)

$$f_7 = \overline{x_1} + \overline{x_2} = \overline{x_1 \cdot x_2} = x_1 \uparrow x_2$$

Neekvivalentná (nerovnoznačná) [XOR]

$$f_6 = x_1 \cdot \overline{x_2} + \overline{x_1} \cdot x_2 = x_1 + x_2$$

- Súčet Modulo 2
- Suma modulo 2
- Exclusive OR
- Len dve vstupné premenné

Ekvivalencia (rovnoznacnost)[xnor]

Inhibicia

$$f_2 = \overline{x_1} \cdot x_2$$
 –znabrana

$$f_4 = x_1 \cdot \overline{x_2}$$
 –znabrana

$$x_1| \rightarrow x_2$$

Implikacia

$$f_{11} = \overline{x_1} + x_2$$

 $f_{13} = x_1 + \overline{x_2}$

$$x_1 \to x_2$$

n > 2

- Špeciálne funkcie
 - Majoritná (n=5 Apollo aspoň 3 počítače museli mať rovnaký výsledok)
 - o Prahová (Prah)
 - o Symetrická

2.1.1.4 Boolovský výraz (b-výraz)

- Retazec
 - o premenné a ich negácie
 - logické operátory
 - zátvorky
- Logický výraz $(a + \overline{b}) | \rightarrow \} (x_1 \cdot \overline{x_2} + x_3)$
- Booleanský výraz $a + [b\bar{c}(\bar{a} + cd) + ce][+, -]$
- Čo je všetko výraz
 - 1. Premenné
 - 2. Ak A je výraz tak aj \bar{A} je výraz
 - 3. Ak A a B sú výrazy tak aj A+B je výraz

2.1.1.5 Boolovská algebra

Def: Booleanský výraz je šestica

$$B=\left\{ B^{(n)},+,\cdot,-,0,I\right\}$$

+, bitove operátory

 $B^{(n)}$ množina všetkých B-výrazov

Unarna operacia

0,1 – unárne operatory

Pre Booleansku algebru platia tieto ekvivalencie

- 1. a + b = b + a komutatívnosť
 - $a \cdot b = b \cdot a$
- 2. a+(b+c)=(a+b)+c -asociatývnosť
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. $a \cdot (b + c) = a \cdot b + a \cdot c$ -distributývnosť
 - $a + b \cdot c = (a + b) \cdot (a + c)!!!$
- 4. $a \cdot a \cdot a \dots \cdot a = a$
 - a + a + a ... + a = a
- 5. $\overline{a+b+c} = \overline{a} \cdot \overline{b} \cdot \overline{c}$ demorganove pravidlá
 - $\overline{a \cdot b \cdot c} = \overline{a} + \overline{b} + \overline{c}$
- 6. $\bar{a} = a$ -pravidlo o zdvojenej negacií
- 7. $a + \bar{a} = 1$ pravidlo o komplemente
 - $a\cdot \bar{a}=0$
- 8. a+1=1 agresívnosť
 - a + 0 = 0
- 9. $a \cdot 1 = a$
 - a + 0 = a
- 10. $(a+b)\cdot(\bar{a}+b)=b$ spojovanie !!!
 - $(a \cdot b) + (\bar{a} \cdot b) = b$
- 11. $a + a \cdot b = a$ pohltenie
 - $a \cdot (a + b) = a$
- 12. $a + \bar{a} \cdot b = a + b !!!$
 - $a \cdot (\bar{a} + b) = a \cdot b$

2.1.1.6 Normálne formy Boolovských výrazov

- elementárny súčin $x^1 \cdot x^2 \cdot \overline{x^3}$
 - o rád –počet počet písmen 3
- Elementárny súčet $x^1 + x^2 + \overline{x^3}$
 - o Rád 3
- 1. Disjunktívna (súčtová) normálna forma (DNF)

$$f = \sum_{i} qi$$

Logický súčet

2. Konjugtíva normálna forma (KNF)

$$f = \prod_{i} hj$$

Logický súčin

A. Úplná DNF (ÚDNF)-ÚKNF

- Obsahuje súčiny (súčty) s r = n
- JEDINÁ

		X ₂	ζ,	
	0	0	1	0
X1	0	1	1	1

- ÚDNF
- $y_1 = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} + x_1x_2x_3$
- ÚKF
- $y_1 = (\overline{x_1} + x_2 + x_3)(x_1 + \overline{x_2} + x_3)(x_1 + x_2 + \overline{x_3})(x_1 + x_2 + x_3)$

ÚDNF $\bar{f} \rightarrow demorgan$

B. Skrátené formy Booleanských výrazov SDNF SKNF

- IFDINÁ
- Aplikácia pravidiel spojovania a pohltenia (všetkých možností) na ÚDNF ÚKNF
- Vynímanie pred zatvorku z ÚDNF a ÚKND vzorcov
- SDNF: $y_1 = x_1x_2 + x_2x_3 + x_1x_3$
- SKNF: $y_1 = x_1 + x_3(x_2 + x_3)(x_1 + x_2)$

C. Iredundantná DNF (IDNF) -IKNF

- Nedá sa redukovať počas písania
- Viacero IDNF (IKDF)

D. Minimálna DNF (MDNF) MKDF

- Najmenší počet písmen zo všetkých
- <u>viacero</u>

Príklad:

		X ₂	Σ	ζ,
	1	0	1	1
X1	1	1	1	0

$$\mathsf{ÚDNF} \colon g = \overline{x_1 x_2 x_3} + \overline{x_1} x_2 x_3 + \overline{x_1} \overline{x_2} x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} x_3 + x_1 \overline{x_2} x_3$$

SDNF:
$$g = \overline{x_2 x_3} + x_1 x_2 + \overline{x_1} x_3 + x_2 x_3 + \overline{x_1 x_2} + x_1 \overline{x_3}$$

12

IDNF:
$$g = \overline{x_2}\overline{x_3} + x_1x_2 + \overline{x_1}x_3$$

6

18

$$g = x_2 x_3 + \overline{x_1 x_2} + x_1 \overline{x_3}$$

6

2.1.2 Analýza logických obvodov

- správanie + štruktúra logických členov

o <u>FUNKCIE</u> Mapy výraz...

- JEDNOZNAČNÉ!!!

2.1.3 Syntéza logických kombinačných obvodov

- Správanie sa + súbor typov logických členov (kritéria optimálnosti (rýchlosť, cena, diagnostikovaťeľnosť))= **štruktúra**
- Nejednoznačnosť (možnosť vytvorenia veľkého množstva)

Postup:

- hľadá sa <u>skupina výrazov</u>, ktoré zodpovedajú danej skupine B-funkcií m>1
- DNF(disjunktívne normálové formy) alebo KNF

↓ MDNF!!

Algoritmizovateľné

2.1.3.1 vyjadrovania IDNF (IKNF) z mapy

- Implikant funkcie → súčin (ma hodnotu 1 tam kde ma aj funkcia hodnotu 1)
- Prostý implikant → súčin

 $\overline{x_1x_2x_3}$ – nie je prostý implikant $\overline{x_2x_3}$ – je prostý implikant

- Implikant funkcie → súčet
- Protý implikant → súčet
 SDNF-Všetky PI
 SKNF všetky PI

IDNF←MDF

Pravidelna konfigurácia

- 1. Obsahuje 2^s štvorčekov s stupeň konfigurácie
- 2. Každý štvorček v konfigurácií musí mať práve s susedných štvorčekov

Pokritie

- Najmenej
- Najväčšie
- Každý bod pokryje aspoň jedenkrát

Príklad:

MDNF:

$$f = \overline{x_1}x_4 + x_1x_3 + x_2\overline{x_3x_4} \quad (7)$$

$$f = \overline{x_1}x_4 + x_1x_3 + x_2\overline{x_1x_3} \quad (7)$$

		X ₃	2	X ₄		
	0	0	1	1	MKNF:	
X,	1	0	1	x	$f = (\overline{x_1} + x_3)(x_1 + \overline{x_3} + x_4)(x_1 + x_2 + x_4)$	
	Х	1	1	0	$f = (\overline{x_1} + x_3)(x_1 + \overline{x_3} + x_4)(x_2 + x_3 + x_4)$	(8)
X ₂	0	1	1	0		

Hľadanie minimálnej skupiny DNF:

- Minimálny počet rôznych súčinov

2.1.3.2 Zmiešané normálové formy

Or and not NOR NAND

Dvojstupnové obvody (najrýchlejšie)

- = negácia vstupných premenných
- = neohraničený počet vstupov logických členov!!!

Príklad:

Poznámka: $\bar{A} = \downarrow A = \uparrow A$

$$DNF: y = a\overline{b} + \overline{c}d + e \rightarrow NF \ AND/OR$$

$$SNF: y = (a \uparrow \overline{b}) \uparrow (\overline{c} \uparrow d) \uparrow \overline{e}$$

$$\overline{a\overline{b} + \overline{c}d + e} = \overline{a\overline{b}} \cdot \overline{\overline{c}d} \cdot \overline{e}$$

NF NOR/OR:

Poznámka:
$$\overline{A+B}=A\downarrow B=\bar{A}\cdot\bar{B}$$

$$y = (\bar{a} \downarrow b) + (c \downarrow \bar{d}) + e$$

NF OR/NAND:

Poznámka:
$$A \cdot B = A \uparrow B = \bar{A} + \bar{B}$$

$$y=(\bar{a}+b)\uparrow(c+\bar{d})\uparrow\bar{e}$$

 $\mathbf{KNF} : y = \left(\bar{a} + \bar{b}\right) (c + \bar{d}) e \ \ \mathsf{NF} \ \mathsf{OR/AND}$

 $\mathbf{DNF} \colon y = \left(\bar{a} \downarrow \bar{b} \right) \downarrow \left(c \downarrow \bar{d} \right) \downarrow \bar{e}$

ND NAND/AND: $y = (a \downarrow b) \downarrow (\bar{c} \downarrow d)e$

NF AND/NOR: $y = \overline{(a \cdot b)} \downarrow \overline{(\bar{c} \cdot d)} \downarrow \bar{e}$

2.1.4 Sekvenčné logické obvody

- Synchrónne (h)
- Asynchrónne
- S pevnou funkciou
- S programovateľnou funkciou
- ➤ STAV ← história

Správanie

Konečný →

Determinovaný

Automat

2.1.4.1 Konečný automat

Def: Pätica(šestica)

$$A = (X, Y, p, v)$$

$$A = (X, S, Y, p, v, s_{\circ})$$

X – množina vstupov

Y – množina výstupov

S – množina stavov

p – prechod funkcie

$$p: S \times X \to S$$

$$S = (S_0, S_1)$$

$$X = (X_0, X_1)$$

$$S \times X(\{S_0, X_0\}\{S_0, X_1\}\{S_1, X_0\}\{S_1, X_1\})$$

v – výstupná funkcia

Moore $v: S \to Y$

Mealy $v: X \times S \rightarrow Y$

s₀ – výstupná funkcia

2.1.4.2 Spôsoby zápisu automatov

1. Prechová tabuľka

Príklad 1:

		X,	X ₂			X,	X ₂	
1	1	. 2	. 2	3	0	1	0	1
2	1	3	. 2	. 2	1	0	1	1
3	. 2	3	3	1	0	1	0	1

$$S = \{1,2,3\}$$

$$X = \{00,01,10,11\}$$

$$Y = \{0,1\}$$

$$p: S \times X \to S$$

$$v: S \times X \to S$$

Príklad 2: (Moore) – pomalší o krok

		X	У
1	1	2	0
2	3	2	1
3	3	4	1
4	1	4	0

$$p: S \times X \to S$$

$$v: S \to Y$$

$$S = \{1,2,3,4\}$$

$$X = \{0,1\}$$

$$Y = \{0,1\}$$

2. Prechodové grafy

Príklad 1:

Príklad 2.:

2.1.5 štruktúra syntéza synchrónnych sekvenčných obvodov

Model SSO:

- K- kombinačná časť SSO
- P pamäťová časť SSO

- Minimálny počet Prekladacích obvodov v "P"
- Minimálny počet logických členov v "K"
- Maximálna operačná rýchlosť

2.1.5.1 Synchrónne preklápacie obvody

-základ → asynchróny <u>PO-SR</u>

S - set

R - reset

		S	R		Q
0	0	. 1	x	0	0
1	1	1	. X	. 0	1

funkcia správania sa

$$S \cdot R \stackrel{!}{=} Q$$

2.1.4.2 Spôsob zápisu automatov

Synchrónny PO-SR

synchrónny PO-D

Synchrónny PO-JK

Univerzálny

2.1.5.2 Postup pri syntéze SSO

A- Abstraktná syntéza!!!

- Slovný opis správania sa

AUTOMAT

B- Štruktúrny syntéza

Automat +po+ Logické členy

 \downarrow

Štruktúra K

2.1.5.3 Príklad

Kontrolór kódu

Legálne 0,1,2,3,4,5

Nelegálne 6,4

_			•	
x_1	x_2	x_3		
0	0	0		
0	0	1		
0	1	0		
0	1	1		y = 0
1	0	0		
1	0	1		
1	1	0		y = 1
1	1	1		
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

A. Abstraktný systém

- Definovanie stavov

o graf ← Rozhodovací automat

 $S = \{A, B, C, D\}$

B. Štruktúra syntézy

- a) Kódovanie stavov
 - o kódovanie nutných (stavových) premených (=PO)

$$|s| \le 2^{k \min}$$

$$kmin =?$$

$$|s| = 4 \to kmin = 2$$

$$\varphi: S \to \{0,1\}^{k}$$

- Kódovacia mapa:

$$\begin{array}{c|c}
 & Z_{\underline{1}} \\
 & A & B \\
 & Z_{\underline{2}} & C & D
\end{array}$$

- A ... 00
- В ... 10
- C ... 11
- D ... 01

Dvojitý ekvivalent:

 KK_B

		Χ		Χ
00	10	11	0	0
01	01	01	0	0
11	01	01	0	1
01	00	00	0	0

Mapy budiacich funkcií

k - map

n + k – premenných

Mapy výstupných funkcií F

k - map

n+k – premenných

		X
	0	0
Z,	0	0
Z_{2}	0	1
2	0	0

$$y = z1Z2x$$

Mapy budiacich funkcií

		X	
	1	1	
Z	0	0	
\mathbb{Z}_{2}	0	0	
2	0	0	
Z_{i}			

$$Z_1 = D_1 =$$

$$Z_2 = D_2 =$$

$$y =$$

PO-JK

Mapy budiacich funkcií PO: Inverzná prechodová funkcia PO

2k máp n + k premenných

		J	K		Q	
0	0	1	1	0	0	
1	1	1	0	0	1	
z	Z					

$z \rightarrow Z$	J	K
$0 \rightarrow 0$	0	X
0 → 1	1	X
1 → 0	X	1
1 → 1	X	0

J K

$$\begin{array}{ccc} 0 \rightarrow 0 = > & 0 & 0 \\ & 0 & 1 \\ & 0 & X \end{array}$$

$$\begin{array}{ccc} 0 \rightarrow 1 = > & 0 & 1 \\ & 1 & 1 \\ & 1 & X \end{array}$$

$$\begin{array}{cccc} 1 \rightarrow 1 = > & 0 & 0 \\ & 1 & 0 \\ & X & 0 \end{array}$$

			X
		1	1
	$\mathbf{Z}_{_{\mathbf{z}}}$	0	0
	Z,	X	X
		X	X
Z_{i}		J1	

$$\begin{array}{c|cc}
 & x \\
\hline
0 & 1 \\
Z_{2} & X & X \\
\hline
X & X \\
Z_{1} & 1 & 1
\end{array}$$
J2

 Z_{2}

$$NF^{\uparrow}/_{\uparrow}$$
:

$$J1=\bar{Z}_2$$

$$K1 = 1$$

$$J2=x+Z_1\to \bar x\uparrow \overline{Z_1}$$

$$K2=\bar{Z}_1$$

$$y = Z_1 \cdot Z_2 \cdot X \to (Z_1 \uparrow Z_2 \uparrow X) \uparrow$$

3. Hlavné podsystémy digitálnych počítačov

- Von Neuman SISD
 - o <u>Sériové</u> riadené tokom inštrukcií
 - Jednoprocesorové počítače

3.1. Prepojovací systém počítača

- Prepojenie jednotlivých častí počítača
 - o čítanie inštrukcií z pamäti
 - o čítanie údajov z pamäti
 - o zápis do pamätí
 - o ...

Prepojovacie kanály

Zbernica počítača

- Nevýhoda naraz môžu komunikovať iba dvaja. Zbernicu dostáva ten s vyššou prioritou
- Zariadenie musí byť pripravené na odpojenie zo zbernice
- Vysielač prijímač (master slave)

3.1.1. Rozdelenia zberníc

- Rozdelenie podľa spôsobu riadenia
 - A. Single master
 - B. Multi-master
 - ⇒ V každom čase zbernicu riadi iba jedno zariadenie
- Podľa synchronizácie prenosu

A. Synchronizované zbernice

- ⇒ Spoločný jeden zdroj synchrónnych impulzov
- ⇒ Zariadenie s rovnakou rýchlosťou

B. Asynchrónne zbernice

- ⇒ Zariadenia s nerovnakou rýchlosťou
- ⇒ Čaká sa na prenos (ďalší údaj sa posiela až po dostaní správy o prijatí predošlého)
- Rozdelenie podľa časového multiplexu

A. Multiplexové zbernice

Význam, druh prenášanej informácie sa mení s časom

Údaj

Adresa

Riadiaca

B. Nemultiplexované zbernice

- Rozdelenie podľa tvaru prenášaných údajov

A. Paralelné zbernice

- ⇒ Naraz sa prenáša viacbitový výraz
- ⇒ Viac vodičov pravdepodobnosť poruchy
- ⇒ Vysoká rýchlosť

B. Sériové zbernice

- ⇒ Bit po bite
- ⇒ Nižšia rýchlosť
- ⇒ Vyššia spoľahlivosť

C. Sériovo paralelné zbernice

⇒ Posiela viacero malých sérií, ktoré sa na konci spájajú

3.1.2. Štruktúra typickej počítačovej zbernice

- Charakteristika:
 - o Paralelná
 - o Asynchrónna
 - Nemultiplexovaná
- Sekvencie
 - o adresová
 - o údajová
 - o riadiaca

Adresová – adresy

- Nadriadený generuje adresy
 - procesor
 - o DMA
- Pamäťová bunka
- Vstupno-výstpné zariadenia

Údajová

- Inštrukcie (HP→P)
- Údaje (HP→P;P→HP)

Riadiaca

- Povely nadriadený
 - o (čítanie zápis)
- Žiadosti podriadený
 - o (pridelenie zbernice)

Signálové sledy

- Časové priebehy
 - Dodržať
 - o **P HP**
 - **P VV**

3.2. Základné koncepcie procesora

- Procesor
 - o základná časť počítača (SISD)
 - o Hlavná riadiaca autorita
- Inštrukcia
 - Kód operácie
 - o adresa operácie

HP- Hlavná Pamäť

- program postupnosť inštrukcií
- výber inštrukcie z HP [PC] P-rogram C-ounter (programové počítadlo)
- prenos informácie medzi podradenými časťami počítača

Podľa vykonávanej funkcie

- univerzálne procesory
- problémovo orientované procesory

UP

- číselné a nečíselne operácie
- riadenie ostatných častí počítača
- to tvorí program HP

inštrukčný súbor – "ÚPLNÝ" – "BOHATÝ"

- CISC
- RISC
- NISC bez inštrukcií riadiace slová NOVÉ

Dôležité činitele

- efektívnosť
- rýchlosť

POP:

- Vykonávajú špeciálne funkcie
- Programové prostriedky
- Vstupno-výstupné procesory
- Numerické koprocesory (386, 486)
- Grafické procesory
- Logické procesory

3.2.1. Hlavné časti procesora

- operačná časť operácie s operandmi
- riadiaca časť
 - o vyber inštrukcie
 - o dekódovanie inštrukcie
 - o zabespečenie vzkonania RČ

3.2.1.1. Operačná časť procesora

- a. Aritmeticko-logická jednotka (ALJ,ALU)
 - Aritmetické
 Logické
 Iné
 Sčítanie
- b. Registre zápisníková pamäť
- c. Komunikačné obvody
 - ⇒ Medzi registrové obvody

3.2.1.1.1. Aritmeticko-logická jednotka

Logické operácie

- Funkčné jednotky

- Dvojfunkčná jednotka

Multiplexor

Postupy

- Aritmetické operácie
- Násobenie a delenie 2ⁿ
- Posúvacie obvody
 - logický posun
 - Vlavo
 - vpravo

- o kruhový posun
 - Vľavo
 - Vpravo
- o aritmetický posun
 - Vľavo
 - Vpravo
 - Okrem znamienka

Predikáty(príkazy)

- Dvojhodnotové funkcie
 - o logické kombinačné obvody
 - Nad jedným operandom
 - [=0;>0;<0; ...]

Príklad:

$$_{y}=0$$
" $P(x)=1 \leftrightarrow x=0$

- Nad dvomi operandmi
 - [x>y;x<y;x≤y;x=y;...]
 Príklad:

$$P(x,y) = 1 \leftrightarrow x = y$$

Prepojovacie obvody

- Spájajú štruktúrne prvky operačnej časti
 - medzi registrové prenosy
 - a. Multipexory a a demultiplexory

b. Zbernicové

- ⇒ Vysielač
 - i. Prijímač 1
 - ii. Prijímač 2
 - iii. ...
- ⇒ Trojstravový radlo

3.2.1.2. Riadiaca časť procesora

- Uskutočňuje
 - o výber inštrukcie → IR
 - dekódovanie inštrukcie
 - o vykonávanie inštrukcie (operácia)
 - Riadenie okolia

Inštrukčný cyklus

- 6 fáz
- 1. Výber inštrukcie z pamäte **IF** (instruction fetch)
- 2. Dekódovanie inštrukcie **D** (decode)
- 3. Výpočet adresy operandu **OA** (operand adress)
- 4. Výber operandov (z pamäte, ...) **OF** (operand fetch)
- 5. Vykonanie operácie **EX** (execution)
- 6. Zápis výsledku (do pamäte, do vštupného zariadenia) S (store)

3.2.1.2.1. Formát inštrukcie

- Inštrukcia → Príkaz pre procesor

Inštrukčný cyklus

- Procesory
 - 1 formát (rovnaká dĺžka)
 - viac formátové

KO P A

3.2.1.2.2. Typy inštrukcií

- Presunové inštrukcie
 - presun údajov
 - Register → register
 - Register → memory
 - Memory → register
 - Register → InOut
 - InOut → register
 - Memory → memory
 - InOut → memory
 - Memory → InOut
- Výpočtové inštrukcie
 - o aritmetické operácie
 - logické operácie
 - o iné
- Skokové inštrukcie
 - o podmienené
 - o nepodmienené
 - o skok do podprogramu
 - o návrat z podprogramu
 - Zásobník → LIFO (last in first out) (FIFO opačne)
- Riadiace inštrukcie

3.2.1.2.3. Spôsoby adresovanie operandov

	Adresovanie	V inštrukcií	V registri	V pamäti
Ξi	Registrové		operand	
implicitné	Zásobníkové		Adresa	Operand
ηé	Nepriame		Adresa	Operand
e)	Priame	Adresa		Operand
explicitné	Nepriame	Adresa 1		Adresa 2
citn	bezprostredné	Operand		\searrow
е́	Registrové	Adresa registra	operand	
	Nepriame registrové	Adresa registra	Adresa	Operand
	Indexové	Adresa index. registra	Index	operand
	Bázovo-regstrové	Bázový register	Bázová adresa	operand
		Indexovy register	index	

3.2.1.2.4. Riadiaca časť pevnou funkciou

- Synchrónny sekvenčný obvod

3.2.1.2.5. Mikroprogramovateľná riadiaca jednotka

- synchrónny systém – vykonáva mikroprogram

Špecializovaný procesor

Postupnosť mikroinštrukcií

 \downarrow

- zmeny mikroproramu
 - o mikroprogamové emulácie

RA - register adresy mikroprogramu

RMI – register m inštrukcií

ARL – adresovacia a riadiaca logika

T – transformačná časť

Príznak	Adresa	Y_I	Υ
---------	--------	-------	---

Príznak - Kód logickej podmienky

príznak						
Príznak	Adresa 1	Adresa 2	Y_I	Υ		
Príznak	Н	DAdresa 1	DAdres	sa 2	Y_I	Υ

3.2.2. CISC, RISC a NISC procesory

- Klasifikácia podľa inštrukčných súborov
 - Procesory CISC (complex instruction set computer)
 - 1970 1980 –drahá a pomalá pamäť
 - Výkonné inštrukcie
 - Princípy realizácie inštrukcie

- 1 inštrukcia = n mikroinštrukcii
- Procesory RISC (reduced instruction set computer)
 - o do konca 80 rokov
 - o operácie

Pamäť programu RISC ≅ 2 × pamäť programu CISC

- Procesory NISC
 - o riadiace slovo → bez dekódovania

Riadiace slová – 2÷3 x dlhšie ako inštrukcie ale každé riadiace slovo 2÷3 inštrukcií RISC

3.2.3. Zvyšovanie výkonnosti Procesorov

- Parameter
- Možnosti
 - o zdokonalenie technológie do 3,2GHz
 - o zdokonalenie organizácie spracovania informácií

3.2.3.1. Výpočty v pohyblivej rádovej čiarke

- Špeciálne procesory → **Numerické koprocesory**

3.2.3.2. Predvýber a predspracovanie inštrukcií

- Zbernica – využitie

→ výber a dekódovanie

3.2.3.3 Prúdové spracovanie Inštrukcií

IF D	OA	OF	EX	S
------	----	----	----	---

6 taktov spracúvania

								$3\times6=8$
1 takt	IF	D	OA	OF	EX	S		
,								
	2 takt	IF	D	OA	OF	EX	S	
		3 takt	IF	D	OA	OF	EX	S

HAZARDY

HONFLIKTY

- Údajová nezávislosť
- Riadiaca nezávislosť

3.2.3.3. Paralelné vykonávanie inštrukcií

1.	IF	D	OA	OF	EX	S
2.	IF	D	OA	OF	EX	S

- Údajová nezávislosť
- Riadiaca nezávislosť

3.2.4. Prerušovací systém procesora

- Prioritný → Externá udalosť
- operačný systém

Register žiadostí o prenesenie

3.2.4.1. Klasifikácia prerušení

- Podľa zdroja maskovacích signálov
 - A. *Externé* "okolie" procesora alebo počítača nesúvisia s práve vykonávaným programom
 - B. Interné súvisia s práce vykonávaným programom
- Podľa toho, kedy prerušenie môže nastať
 - A. Asynchrónné
 - a. Súvisiace s vykonávanými inštrukciami
 - b. Kedykoľvek
 - c. Možno zakázať
 - B. Synchrónne
 - a. Súvisia s vykonávaným programom
 - b. Nemožno zakázať
- Podľa toho či preruš možno alebo nemožno zakázať
 - A. Maskovateľné
 - a. Externé
 - b. Asynchrónne
 - B. Nemaskovateľné
 - a. Mimoriadne dôležité udalosti
- Pri synchrónnych prerušeniach
 - A. Softvérové špeciálne riadiace inštrukcie

B. Výnimka (exeption)Pri vykonávaní inštrukciíIF→ "KO neznámy"

3.2.4.2. Operácie prerušenia

6 krokov

- 1. Prijatie požiadavky na prerušenie
 - Udalosť
 - → dokončenie práve vykonávanej inštrukcie
 - → obsluha prerušenia
- 2. Odloženie stavu procesora
 - Zásobník PC
 - Hniezdenie prerušaní
- 3. Zisťovanie zdrojov prerušenia
 - Prerušovací vektor adresa začiatočnej inštrukcie obslužného programu
- 4. Vykonanie obslužného programu prerušenia
- 5. Obnovenie pôvodného stavu procesora
- 6. Pokračovanie vykonávania prerušeného programu

3.3. Pamäťový podsystém počítača

- Uloženie programov a údajov (práve používané i archivácie)

3.3.1. Hierarchická organizácia pamäťového podsystému počítača

3.3.2. Rozdelenie pamätí

Spôsob prístupu k informácií

- **1.** Pamäte s primárnym prístupom DAM (direct access memory) (RAM Random Access Memory)
- 2. Pamäte so sekvenčným prístupom SAM (Sequentila Access Memory)
- 3. Pamäte s asociatívnym prístupom CAM (Counter Access Memory)

Možnosti čítania a zápisu

- 1. Pamäte pre čítanie a zápis RWM (Read Write Memory)
 - Energeticky závislé
 - Energeticky nezávislé
- 2. Pamäte iba pre čítanie ROM (Read Only Memory)
 - Používateľ

- Výrobca
- 3. Dĺžka uchovaného slova
 - Pamäte s bitovou organizáciou
 - Pamäte so slovnou organizáciou
 - o slabika (byte)
- 4. Tvar prenášaných údajov
 - Sériové pamäte
 - Paralelné pamäte (číta sa cele slovo naraz)
- 5. Organizácia pamäťových buniek
 - Polovodič
 - RWM
- I. Statické pamäte SRAM
 - Preklápací obvod
 - o TTL
- II. Dynamické pamäte DRAM
 - Parazitná kapacita

Obnovovanie obsahu (refresh)

3.3.3. Hlavná pamäť

- Program
- Údaje
- DAM
- RWM
- Statické / Dynamické SRAM, DRAM
- Slovne organizované
- Paralelná

Adresová

3.3.3.1. Pripojenie hlavnej pamäte k zbernici počítača (počítača)

- DC dekodér
- -čip select
- Output enable

3.3.3.2. Komunikácia procesora s hlavnou pamäťou

- Signálové sledy

3.3.4. Vyrovnávacia pamäť

Nekonzistencia Informácií (Udaj vo VP kopírovať hneď do HP)

- Zápis späť (copy-back) (až po tom ako sa riadok stane neaktuálny)
- **Zápis cez vyrovnávaciu pamäť** (okamžité prepisovanie)
- Výber riadku
 - o LRU (least recently Used) riadok, ktorý bol najdlhší čas nepoužitý
 - o LFU (least frekvently used) najmenej často využívaný riadok

3.3.5. Vonkajšie pamäte

- Archivácia
- Prechodné uchovávanie informácií počas výpočtu

3.3.5.1. Diskové pamäte

- magnetické
- optické
- opto-magnetické

Disky obsahujú aj viac diskov každý disk ma svoju hlavičku ktorá ho číta

DVD – špirála

3.3.5.2. Páskové pamäte

- Cievkové SAM
- Kazetové RAM

8 bytov a 1 paritný

Parita hovorí či je počet 1-notiek párny alebo ne

Pozdĺžna a priečna parita

3.3.6. Správy a ochrana hlavnej pamäte

- Absolútna adresa AZ
- Fyzický pamäťový priestor HP → FPP
- FPP = LPP
- Logický pamäťový priestor Program + údaje → LPP
- Rozpracovanie viacerých programov aby bol procesor stále využívaný
- Potrebná správa pamäte

Potrebnosť správy pamäte:

- 1. LPP > FPP
 - Virtuálna pamäť → rýchla vonkajšia pamäť (pevná HDD)
- 2. Viac používateľov viac programov v HP
 - Dynamická relokácia (premiestňovanie údajov v čase)
 - Rôzne Absolútne adresy
- **3.** Prístupové práva najdôležitejšia operácia zápisu (zápis na nepovolenú časť pamäte) **OCHRANA** HW+SW jednotka *memory management unit* **MMU**

3.3.6.1. Virtuálna pamäť

Existencia rýchlej vonkajšej pamäte

- 1) Segmentovanie
- 2) Stránkovanie

1. Segmentovanie

- Program a údaje
 - o rozdelenia bloky → Segmenty
 - 1. Segment program
 - 2. Segment podprogram
 - 3. Segment údaje

Deskriptor:

- 1. Bázová adresa segmentu (base)
 - Začiatok segmentu
- 2. Veľkosť segmentu (limit)
 - offset < Limit ochrana
- 3. Atribúty (vlastnosti) segmentu (attributes)
 - a. Informácia o prítomnosti segmentu v HP
 - b. Informácia o type segmentu (iba čítanie, čítanie a zápis)
 - c. Informácia o privilegovanej úrovni segmentu

4. Adresa segmentu vo vonkajšej pamäti

Absolútna adresa → báza +posunutie

Relatívne adresovanie

2. Stránkovanie

HP – úseky s rovnakou dĺžkou → **stránky** (stránkové rámy)

Výpadok prúdu © KONEC