北京师范大学 2020~2021 学年第一学期期末考试试卷 (A卷)

课程名称	数章	学分析 (3)	任课者	牧师姓名:		
卷面总分:	100 分	考试时长:	120 分钟	考试类别	闭 卷	
院(系):		-t	Falks		年級:	
姓(_	

题号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	总分
成绩															-	
			_			-			200							

一、计算题(共50分,每题5分)

- 2. 求二元数值函数 $f(x,y) = x^2 y^2$ 在 $x_0 = (1,1)$ 沿与 x 轴正向成 $\alpha = 60^\circ$ 的方向导数.
- 3. 设方程 $\ln(\sqrt{x^2+y^2}) = \arctan \frac{y}{x}$ 能确定隐函数 y = f(x), 求它的导数.
- 4. 在曲线 x=t, $y=t^2$, $z=t^3$ 上求一点, 使此点的切线平行于平面 x+2y+z=4.
- 5. 求 $\iiint_V xy^2z^3\mathrm{d}x\mathrm{d}y\mathrm{d}z$, 其中 V 是由 z=xy, y=x, x=1, z=0 所围闭区域.
- 6. 求曲线 $x = \cos^3 t$, $y = \sin^3 t$ 在 $t_0 = \frac{\pi}{4}$ 点的<u>曲率</u>.
- 7. 求 $\int_{\Gamma} (e^x \sin y my) dx + (e^x \cos y m) dy$, 其中 Γ 是由点 A(a,0) 经圆周 $x^2 + y^2 = ax$ 上半部到原点的一段弧.
- 8. 求 $\iint_S x^3 dy dz + y^3 dz dx + z^3 dx dy$, 其中 S 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧。

- 9. 求由方程 $2x^2 + y^2 + z^2 + 2xy 2x 2y 4z + 4 = 0$ 所确定的隐函数 z = z(x, y) 的极值.
- 10. 设函数 f(x) 一阶连续可微, 且 f(0) = 0, 区域 $D = \{(x,y)|x^2+y^2 < 2tx\}$, 求 $\lim_{t\to 0^+} \frac{1}{t^4} \iint_D y f(\sqrt{x^2+y^2}) dx dy$.
- 二、证明题(共50分,每题10分)
- 11. 设 n 元数值函数 f 在 x_0 连续, g 在 x_0 可微, 且 $g(x_0) = 0$, 证明: fg 在 x_0 可微.
- 12. 设 $\iiint_D f(x,y,z) dx dy dz$ 存在, 区域 D 关于 yOz 平面对称, 被积函数 f 关于 x 是奇函数, 即 f(-x,y,z) = -f(x,y,z), 证明:

$$\iiint_D f(x, y, z) dx dy dz = 0.$$

- 13. 设 Γ 为 \mathbb{R}^2 平面上的分段光滑简单闭曲线, ν_0 为任意固定的方向 (即 $|\nu_0|=1$), N 为 Γ 的单位外法向量, 证明: $\int_{\Gamma} \cos(\nu_0, N) \, \mathrm{d}s = 0$.
- 14. 设 u=f(x,y,z) 在闭立方体 $\bar{D}[a,b;a,b;a,b]$ 上连续, 证明:

$$g(x,y) = \max_{a \le z \le b} f(x,y,z)$$

在正方形 $[a,b;a,b]\subset\mathbb{R}^2$ 上连续.

15. 设 f(x,y) 在区域 $D=\{(x,y)|x^2+y^2\leq 1\}$ 上存在二阶偏导数, 且 $\frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}=1$, 证明:

$$\iint_D \left(x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} \right) \mathrm{d}x \mathrm{d}y = \frac{\pi}{4}.$$