

UNIVERSITE DE NOUAKCHOTT FACULTE DES SCIENCES ET TECHNIQUES FEPARTEMENT INFORMATIQUE

SDD

Machine Learning

Simple Linear Regression

Dr. EL BENANY Mohamed Mahmoud

30.11.24

SUPERVISED MACHINE LEARNING

Simple linear regression

Multiple linear regression

Ridge and Lasso Regression

Polynomial regression

Decision Tree and Random Forest Regression

Classification

Logistic Regression Classification

Decision Tree Random Forest Classification VS Random

Naive Bayesian Classifiers for Ranking

Classification of support vector machines

Vector Machine Kernel Support

K-Nearest Neighbor Classifier

Evaluation of classification models

Unsupervised Learning

Clustering

Dimensionality Reduction

Data Analysis

Regression

Univariate regression problem (one output, real value)

Supervised learning model = mapping from one or more inputs to one or more outputs

- Model is a mathematical equation
- Computing the outputs from the inputs = inference
- Example:
 - Input is age and milage of secondhand Toyota Prius
 - Output is estimated price of car

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation
- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a mathematical equation
- Model is a family of equations
- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a family of equations
- Computing the inputs from the outputs = inference
- Model also includes parameters
- Parameters affect outcome of equation

Training a model = finding parameters that predict outputs "well" from inputs for a training dataset of input/output pairs

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Notation

• Input:

Variables always Roman letters

• Output:

- Normal = scalar Bold = vector Capital Bold = matrix

• Model:

y = f[x]

Functions always square brackets

Normal = returns scalar Bold = returns vector Capital Bold = returns matrix

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Notation example

• Input:

$$\mathbf{x} = \begin{vmatrix} \mathrm{age} \\ \mathrm{mileage} \end{vmatrix}$$
 Structured or tabular data

• Output:

$$y = [price]$$

• Model:

$$y = f[\mathbf{x}]$$

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Model

• Parameters:

Parameters always
 Greek letters

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}]$$

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Loss function

 Training dataset of *I* pairs of input/output examples:

$$\{\mathbf{x}_i,\mathbf{y}_i\}_{i=1}^I$$

 Loss function or cost function measures how bad model is:

$$L[\boldsymbol{\phi}, f[\mathbf{x}_i, \boldsymbol{\phi}], {\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}}]$$

or for short:

$$L\left[oldsymbol{\phi}
ight]$$
 Returns a scalar that is smaller when model maps inputs to outputs better

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Training

• Loss function:

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \underset{\boldsymbol{\phi}}{\operatorname{argmin}} \left[L[\boldsymbol{\phi}] \right]$$

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Testing

- To test the model, run on a separate test dataset of input / output pairs
- See how well it generalizes to new data

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

1D Linear regression example

• Model:

$$y=\mathbf{f}[x,\pmb{\phi}]$$

$$=\phi_0+\phi_1x$$
 • Parameters
$$\phi=\begin{bmatrix}\phi_0\\\phi_1\end{bmatrix}$$
 • y-offset
$$\phi=\begin{bmatrix}\phi_0\\\phi_1\end{bmatrix}$$
 • slope
$$\phi=\begin{bmatrix}\phi_0\\\phi_1\end{bmatrix}$$
 • lope
$$\phi=\begin{bmatrix}\phi_0\\\phi_1\end{bmatrix}$$
 • lope
$$\phi=\begin{bmatrix}\phi_0\\\phi_1\end{bmatrix}$$

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

1D Linear regression example

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

1D Linear regression example

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Parameters

 $\phi_0 = 1.2, \phi_1 = -0.1$

1D Linear regression example

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

1D Linear regression example

- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

1D Linear regression example

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

• 1D Linear regression example

70

60

 $\begin{array}{c} \begin{array}{c} 50 \\ \hline \phi \end{array} \end{array}$

20

10

Intercept, ϕ_0

- Model
- Loss function
- Training
- Testing

1D Linear regression example

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

1D Linear regression example

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

a)

1D Linear regression example

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)$$

 $= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$ "Least squares loss function"

- Example: 1D Linear regression training
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

- Example: 1D Linear regression training
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

- Example: 1D Linear regression training
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

- Example: 1D Linear regression training
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Example: 1D Linear regression training

- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing

Linear regression variables

Simple Linear Regression

- Linear regression:
 - ☐ Real values: 1.2, 2.5, 3.8, 4.2
- Classification:
 - \square Discrete values: 1, 2, 3, 4

Machine Learning

Terminologies: Training Data

X

Input variable

Features

Independent variable

Size[feet ²]	Price in K\$
51000	600
48000 ^N	300
38000	403
11000	210
•••	•••

Output variable

Target

Dependent variable

$$X^{i} \& Y^{i} | X^{1} = 51000 | X^{2} = 48000$$

$$X^2 = 48000$$

$$Y^1 = 600 \dots 34$$

Simple Linear Regression (Housing Data Analysis)

Univariate Linear Regression

Hypothesis Function (1)

Hypothesis Function (1)

Hypothesis Function (2)

Hypothesis Function (3)

Errors

All Errors...

All Errors...

MSE

$$\frac{1}{2m} \sum_{i=1}^{m} \left[H(X^{i}) - Y^{i} \right]^{2}$$

Absolute Error Function?

Square Error Function

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left[H(X^i) - Y^i \right]^2$$

Exemple($\theta_1 = 1$)

Exemple($\theta_1 = 0.4$)

$$J(0.4) = \frac{1}{2*4} ((0.4*2 - 2)^2 + (0.4*3 - 3)^2 + \cdots) = 2.43$$

Exemple(
$$\theta_1 = 0$$
)

$$J(0) = \frac{1}{2*4} ((2)^2 + (3)^2 + (4)^2 + (5)^2) = 9$$

$$H(X) = \theta_0 + \theta_1 * X$$

$$H(X) = \theta_0 + \theta_1 * X$$

$$H(X) = \theta_0 + \theta_1 * X$$

Optimization Gradient Descent

The Gradient: Vector indicates the direction in witch the function is increasing by largest amount.

Multivariable Functions

$$\nabla \mathcal{F} = \frac{\partial \mathcal{F}}{\partial x} [i] + \frac{d\mathcal{F}}{dy} [j]$$

Gradient Descent

■ The Gradient: Vector indicates the direction in witch the function is

increasing by largest amount.

Multivariable Functions

$$\nabla \mathcal{F} = \frac{\partial \mathcal{F}}{\partial x} [i] + \frac{d\mathcal{F}}{dy} [j]$$

How GD Works

$$\theta \coloneqq \theta - \nabla J(\theta_0 + \theta_1)$$

Assignment =

Equality ==

How GD Works

$$\theta \coloneqq \theta - \nabla J(\theta_0 + \theta_1)$$

$$\theta_0 = 0$$

$$\theta_1 \coloneqq \theta_1 - \nabla J(\theta_1)$$

How GD Works

$$\theta_1 \coloneqq \theta_1 - \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8$$

$$\theta_1 \coloneqq 1.8 - \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8 - \frac{dJ}{d\theta_1} \boxed{0.4}$$

$$\theta_1 \coloneqq 1.4 - \frac{dJ}{d\theta_1} \quad \boxed{0.2}$$

$$\theta_1 \coloneqq 1.2 - \frac{dJ}{d\theta_1} \quad \boxed{0.1}$$

Query 1: What about the Initialization?

$$\theta_1 \coloneqq \theta_1 - \propto * \nabla J(\theta_1)$$

$$\theta_1 \coloneqq \theta_1 - \propto \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8$$

$$\theta_1 \coloneqq 1.8 - \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8 - 3 * \frac{dJ}{d\theta_1}$$

$$\theta_1 = 0.6$$

$$\theta_1 = 1.4$$

$$\theta_1 = 0.88$$

$$\theta_1 = 1.45$$

$$\theta_1 \coloneqq \theta_1 - \propto \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8$$

$$\theta_1 \coloneqq 1.8 - \propto \nabla J(\theta_1)$$

$$\theta_1 \coloneqq 1.8 - 5 * \frac{dJ}{d\theta_1}$$

$$\theta_1 = ??$$

$$\theta_1 = ??$$

$$\theta_1 = ??$$

$$\theta_1 = ??$$

Query 3 What if it Was a Non-Convex Function?

Global vs Local Optimum

Global vs Local Optimum

Linear Hypothesis

$$H(X) = \theta_0 + \theta_1 * X$$

$$\frac{1}{2m}\sum_{i=1}^{m} \left[H(X^i) - Y^i\right]^2$$

Gradient Descent

$$\theta_1 \coloneqq \theta_1 - \propto \nabla J(\theta_1)$$

Repeate until convergence: {
$$\theta_i \coloneqq \theta_i - \propto \nabla J(\theta_0, \theta_1)$$

$$[i = 0, i = 1] \}$$

Repeate until convergence: {
$$\theta_{i} \coloneqq \theta_{i} - \propto \frac{d}{d\theta_{i}} J(\theta_{0}, \theta_{1})$$

$$[i = 0, i = 1]$$
}

$$\theta_{i} := \theta_{i} - \propto \frac{d}{d\theta_{i}} J(\theta_{0}, \theta_{1})$$

$$[i = 0, i = 1]$$

$$\frac{d}{d\theta_{0}} J(\theta_{0}, \theta_{1}) = \frac{d}{d\theta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} [H(X^{i}) - Y^{i}]^{2} \right)$$

$$= \frac{d}{d\theta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} [\theta_{0} + \theta_{1} * X - Y^{i}]^{2} \right)$$

$$= \frac{d}{d\theta_{0}} \left(\frac{1}{2m} \sum_{i=1}^{m} [\theta_{0} + \theta_{1} * X - Y^{i}]^{2} \right)$$

$$= \left(\frac{1}{m} \sum_{i=1}^{m} \left[\theta_0 + \theta_1 * X - Y^i\right] \cdot 1\right) = \frac{1}{m} \sum_{i=1}^{m} \left[H(X^i) - Y^i\right]$$

$$\theta_{i} := \theta_{i} - \propto \frac{d}{d\theta_{i}} J(\theta_{0}, \theta_{1})$$

$$[i = 0, i = 1]$$

$$\frac{d}{d\theta_{1}} J(\theta_{0}, \theta_{1}) = \frac{d}{d\theta_{1}} \left(\frac{1}{2m} \sum_{i=1}^{m} [H(X^{i}) - Y^{i}]^{2} \right)$$

$$= \frac{d}{d\theta_{1}} \left(\frac{1}{2m} \sum_{i=1}^{m} [\theta_{0} + \theta_{1} * X - Y^{i}]^{2} \right)$$

$$= \left(\frac{1}{m} \sum_{i=1}^{m} [\theta_{0} + \theta_{1} * X - Y^{i}] \cdot X \right) = \frac{1}{m} \sum_{i=1}^{m} [H(X^{i}) - Y^{i}] \cdot X$$

```
Repeat until convergence: {  \{ \\ \theta_0 \coloneqq \theta_0 - \propto \frac{d}{d\theta_0} J(\theta_0, \theta_1) \\ \theta_1 \coloneqq \theta_1 - \propto \frac{d}{d\theta_1} J(\theta_0, \theta_1) \\ \}
```

```
Repeat until convergence: {
\theta_0 \coloneqq \theta_0 - \propto \frac{1}{m} \sum_{i=1}^m [H(X^i) - Y^i]
\theta_1 \coloneqq \theta_1 - \propto \frac{1}{m} \sum_{i=1}^m [H(X^i) - Y^i]. X
}
```

```
Repeat until convergence: {  \theta_0 \coloneqq \theta_0 - \propto \frac{d}{d\theta_0} J(\theta_0, \theta_1)   \theta_1 \coloneqq \theta_1 - \propto \frac{d}{d\theta_1} J(\theta_0, \theta_1)  }
```



```
Repeat until convergence: {
 T_0 \coloneqq \theta_0 - \propto \frac{1}{m} \sum_{i=1}^m [H(X^i) - Y^i] 
 T_1 \coloneqq \theta_1 - \propto \frac{1}{m} \sum_{i=1}^m [H(X^i) - Y^i].X 
 \theta_0 \coloneqq T_0 
 \theta_1 \coloneqq T_1 
}
```

TP: Required Libraries and Importing Data

- 1. Pandas
- 2. Numpy
- 3. Matplotlib

Error:

• Unicode Error(EBCDIC)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as pt
from sklearn.model_selection import train_test_split
```

iloc Function

```
# Chargement des données depuis un fichier CSV et séparation en variables indépendantes (indepX) et dépendantes (depY)

dataset = pd.read_csv("Datasets/Housing_Data.csv")

indepX = dataset.iloc[:, 0]  # Variable indépendante (ex : surface de la maison)

depY = dataset.iloc[:, 1]  # Variable dépendante (ex : prix de la maison)
```

Handling Data Splitting Data into Train and Test Sets

```
# Division des données en ensembles d'entraînement et de test (80% entraînement, 20% test)
indepX_train, indepX_test, depY_train, depY_test = train_test_split(indepX, depY, test_size=0.2, random_state=42)
```

GD Function

```
# Fonction de descente de gradient pour optimiser les paramètres du modèle linéaire
def gradientDescent(indepX, depY, init_theta, learning_rate, num_iterations):
    # Mise à jour itérative des paramètres theta pour minimiser l'erreur
    theta = init_theta
    for i in range(num_iterations):
        theta = grad(indepX, depY, theta, learning_rate)
    return theta
```

Gradient Function

```
# Fonction pour calculer le gradient des paramètres à chaque étape
def grad(indepX, depY, curr theta, learning rate):
    # Calcul du gradient basé sur la dérivée partielle de la fonction de coût
   grad = np.zeros(2) # Gradient pour theta[0] (biais) et theta[1] (poids)
   new theta = curr theta
   m = len(indepX)
                       # Nombre de données
   for i in range(m):
       x = indepX.iloc[i] # Correction : Utiliser `.iloc` pour éviter les erreurs avec Series
       y = depY.iloc[i] # Correction : Idem
       grad[0] += (-1/m) * (y - (curr theta[0] + curr theta[1] * x))
       grad[1] += (-1/m) * x * (y - (curr theta[0] + curr theta[1] * x))
   # Mise à jour des paramètres en fonction du gradient
   new theta = np.zeros(2)
   temp0 = curr theta[0] - learning rate * grad[0]
   temp1 = curr theta[1] - learning rate * grad[1]
   new theta[0] = temp0
   new theta[1] = temp1
   return new theta
```

H Function

```
# Fonction hypothèse pour prédire les valeurs à partir des paramètres optimisés
def hyp(theta, indepX):
    return [theta[0] + theta[1] * x for x in indepX]
```

Defining Main Function

```
# Fonction principale pour entraîner le modèle et afficher les résultats
def main():
   # Initialisation des paramètres (theta) à zéro
   init theta = np.zeros(2)
   learning rate = 0.05 # Taux d'apprentissage pour contrôler la vitesse de convergence
   num iterations = 56 # Nombre d'itérations pour optimiser les paramètres
   # Appel de la descente de gradient pour optimiser theta
   theta = gradientDescent(indepX train, depY train, init theta, learning rate, num iterations)
   # Prédiction des valeurs avec les paramètres optimisés sur les données de test
   H = hyp(theta, indepX test)
   #check
   for i in range(len(depY test)):
       print(float(H[i]))
       #print(depY test[i])
       print(depY test.iloc[i])
       print('----')
```

Main Function

```
# Point d'entrée du programme
if __name__ == "__main__":
    main()
```