Documentation

James Lamb, Pawel Manikowski 17 November 2018

Q2. Strings handling

"Create a class called **StringContainer**, initialised it with a string containing only spaces and alpha-numerical characters..."

Firstly, the alpha-numerical characters needs to be defined:

"(...) alphanumeric characters are those comprised by the combined set of the 26 alphabetic characters, A to Z, and the 10 Arabic numerals, 0 to 9." (https://whatis.techtarget.com/definition/alphanumeric-alphameric)

Therefore, all other characters will be treated as exception. Assumption has been made that at least one space character and one alphanumeric character were used.

The following methods have been used:

- for the *split* method, we used *split()*
- for the check_occurrence(str) and the get_frequency(str) method, we used count(str) function
- for the replace(str,newstr) method we used replace(old,new) function
- for the *mirror* method we used /::-1/ function

A code [all(x.isalnum() or x.isspace() for x in self.text)] was copied from: (https://stackoverflow.com/questions/29460405/checking-if-string-is-only-letters-and-spaces-python)

(a) Exception

```
Consider:
```

```
example2 = StringContainer("blah $ blah")
```

Since \$ is neither an alpha-numerical character or space the exception is thrown:

raise Exception("String does not contain alphanumerical characters and spaces.") Exception: String does not contain alphanumerical characters and spaces.

As expected.

(b) split() method

The following string has been used for all methods:

```
{\tt example = StringContainer("In the middle of the 1984 I was walking down the street")}
```

Output of the example.split():

```
The string:
```

In the middle of the 1984 I was walking down the street contains the following words:

```
['In', 'the', 'middle', 'of', 'the', '1984', 'I', 'was', 'walking', 'down', 'the', 'street']
```

(c) check_occurence(str) method

The mirror of the:

```
Check if the example string contains word "down".
Output of the example.check_occurance("down"):
Checking occurances for the word: down
Out[9]: True
Output of the example.check_occurance("up"):
Checking occurances for the word: up
False
Out[13]: False
(d) get frequency(str) method
Returns the number of occurrence of the "the" string in the whole message.
Output of the example.get_frequancy("the"):
Number of occurances of the word: the : 3
As expected.
(e) replace(str, newstr) method
The string "the" was replaced with the string "blah" in this example:
Output of the example.replace("the", "blah"):
Old string: In the middle of the 1984 I was walking down the street
the will be replaced with blah
New string: In blah middle of blah 1984 I was walking down blah street
(f) merge(obj) method
For this method operator + was used.
Output of the example.merge("in the valley...."):
In the middle of the 1984 I was walking down the street in the valley....
(g) mirror method
For this method [::-1] function was used.
Output of the example.mirror():
```

In the middle of the 1984 I was walking down the street

teerts eht nwod gniklaw saw I 4891 eht fo elddim eht nI

2

Q3. Guitar string simulation

(a) Function that returns the analytical solution

The following equation needs to be solved for the position x of the string, for time t and for n_{max} :

$$y(x,t) = \lim_{n_{\text{max}} \to \infty} \sum_{n=1}^{n_{\text{max}}} A_n \sin(k_n x) \cos(\omega_n t)$$

Where:

$$A_n = \frac{2hL^2}{\pi^2 n^2 d(L-d)\sin(\frac{n\pi d}{L})}$$

Therefore the final function for the analytical solution is the following:

$$y(x,t) = \sum_{n=1}^{n_{\text{max}}} \frac{2hL^2 \sin(k_n x) \cos(\omega_n t)}{\pi^2 n^2 d(L-d) \sin(\frac{n\pi d}{L})}$$
(1)

Where:

- L length of the string (1 m)
- h height of the string (0.005 m)
- d L/10

The function (1) has been implemented in the following way:

```
def yy(x,t,n):
    if x > L or t < 0:
        raise Exception("x must be less or equal L (in our case 1) and t must be more or equal to 0")
    yxt = 0.0
    for i in range(1,n):
        yxt = yxt + (2*h*L**2*math.sin((i*math.pi*d)/L)*math.sin((i*math.pi*x)/L)
        *math.cos((c*i*math.pi*t)/L))/(math.pi**2*i**2*d*(L-d))
    return yxt</pre>
```

Initial condition, at time t = 0:

$$f(x) = \begin{cases} \frac{hx}{d} & 0 \leqslant x \leqslant d\\ \frac{(L-x)h}{L-d} & d < x \leqslant L \end{cases}$$
 (2)

Implementation of the (2):

```
def init(x):
    initx=0.0
    if x > 0 and x <= d:
        initx = h*x/d
    if x > d and x <= L:
        initx = ((L-x)*h)/(L-d)
    return initx</pre>
```

The following results have been obtained for time t = 0, n = 1000 and the following values of x:

- x = 0.1: analytical solution: 0.0004999999534605353, initial condition: 0.0005
- x = 0.03: analytical solution: 0.0014999998347647126, initial condition: 0.0014999999999998
- x = 0.077: analytical solution: 0.0038500021149159317, initial condition: 0.003849999999999999

It can be seen that the above values are almost identical therefore it can be conclued that function yy(x,t,n) returns expected values.

(b) Plot of initial condition and analytical solution

Functions (1) and (2) have been plotted for t = 0 and n = 1000:

It can be seen that these two plots match which confirms our previous observations.

(c) Function that implements the algorithm

Algorithm 1: Algorithm to solve the equation of motion of a one-dimensional string

```
1 Solver step (y, i, \Delta x, \Delta t, Nx, c);
   Input: an array y, i the index of the current timeslice, dx the spatial step size, dt
            the temporal step size, Nx the number steps in the spatial direction, c the
            parameter of the wave equation.
   Output: a new vector u describing the position of the string at time \Delta t(i+1)
 2 Set \alpha = c * \Delta t / \Delta x
 3 Initialise u to a vector of the appropriate length containing zeros.
 4 if \alpha > 1 then
   \alpha should be smaller than 1! Exitraxiing!
 6 else
      for all positions j except for j = 0 and j = Nx + 1 (the boundaries are fixed).
7
          if i = 0 then
8
            [u[j] = -y[i,j] + 2(1-\alpha^2)y[i,j] + \alpha^2(y[i,j+1] + y[i,j-1]) 
10
           | u[j] = -y[i-1,j] + 2(1-\alpha^2)y[i,j] + \alpha^2 (y[i,j+1] + y[i,j-1]) 
12
      end
13
14 end
15 return u
```

Where c=2Lf, since L=1 and f=440 then c=880. To ease the analysis of the convergence of the **Algoritm 1** $\Delta t = \frac{\Delta x}{c}$, Δx must be equal to $\frac{L}{Nx}$ and since $\alpha = c\frac{\Delta t}{\Delta x}$ then $\alpha = 1$.

The implementation of the **Algorithm 1**:

(d) Prediction of the motion of the string and plot of the residual

The Algorithm 1 was used for calculation of 1500 time steps and retured the matrix:

```
[[ 0.00000000e+00 2.50000000e-04 5.00000000e-04 ... 5.5555556e-05
  2.77777778e-05
                 0.00000000e+00]
[ 0.0000000e+00
                 2.50000000e-04
                                 5.00000000e-04 ...
                                                     5.5555556e-05
  2.77777778e-05
                 0.0000000e+00]
                                 5.0000000e-04 ...
[ 0.0000000e+00
                  2.50000000e-04
                                                     5.5555556e-05
                  0.0000000e+00]
  2.77777778e-05
[ 0.00000000e+00 -2.7777778e-05 -5.5555556e-05 ...
                                                    5.5555556e-05
  2.77777778e-05 0.00000000e+001
[ 0.00000000e+00 -2.7777778e-05 -5.5555556e-05 ... 5.55555556e-05
  2.77777778e-05 0.00000000e+00]
[ 0.00000000e+00 -2.77777778e-05 -5.55555556e-05 ... 5.55555556e-05
  2.77777778e-05 0.00000000e+00]]
```

The residual, which is a standard measure of the difference between the numerical and the analytical solution is defined as:

$$r(i\Delta t) = r_i = \sum_j = (y(i,j) - y(i,j)_{\text{analytical}})^2$$
(3)

Plot of the residual as a function of time (in our case 1500 time steps):

It can be noticed that the errors are not bigger than 4×10^{-7} which means that the **Algoritm 1** provides a very good approximation.

(e) Animation illustrating the motion of the string

First animation, init_cond.mp4, was produced for the initial condition (2). First frame of the animation:

Second animation, stat_wave.mp4, was produced for the initial condition:

$$f_n(x) = A \sin\left(\frac{xn\pi}{L}\right)$$

Where A=0.005 and n=3. First frame of the animation:

