Avcorr - instruction

Contents

1	Requirements, compilation and running	2
2	Important files and directories	2
3	Different code versions, inputs and outputs	3
4	Randoms	6
5	Parameter file	6
6	Errors calculation	8
7	Troubleshooting and future improvements	9
8	Citation & references	9

Description

Parallelized and multi-functional code for computing area- or space- averaged correlation functions $\bar{\xi}_J$ of orders 2nd-9th, along with cumulants s_J , as functions of scale(s).

It allows for the calculation in four different modes (VERSIONs):

- angular: angular counts in [RA, DEC] catalog
- BOX: count in spheres within cubic [X, Y, Z] simulation box
- BOX_ellipses: counts in ellipsoids within cubic [X, Y, Z] simulation box
- LC_ellipses: counts in ellipsoids within 3D[X,Y,Z] lightcone

for more details check section about code versions.

1 Requirements, compilation and running

Requirements

- c++17 or newer
- mpi.h library for c++
- libhdf5-cpp

To compile the code, type: make

To run, type (X stands for the number of desired parallel jobs):

Running

mpiexec -np X ./Avcorr.exe

Or use bash script ./run by typing: ./run X firstly ensuring if it has permissions (chmod +700 ./run)

- Computations can be restarted in any moment if user decided to stop it. The restarted code will just ignore the existing counts.
- Input data files should be located within Data/ directory.
- Output scales are always spaced logarithmically

2 Important files and directories

- Data/ should contain the catalog(s) for which code calculates the statistics
- Results/ stores results after the run
- Randoms/ contains optional random catalogs (valid if Random_provided=1, see parameter file section)

3 Different code versions, inputs and outputs

angular

Standard counts-in-cells(CiC), counts within circles located on [RA, DEC] sphere.

Input file format: RA, DEC in degrees (datafiles either ASCII or HDF5, see parameter file).

Output files:

Results/[fname]_merrout.txt (contains $\bar{\xi}_J$ results):

 $\theta,\,\bar{\xi}_2,\,u_{\bar{\xi}_2},\,\bar{\xi}_3,\,u_{\bar{\xi}_3},\,\bar{\xi}_4,\,u_{\bar{\xi}_4},\,\bar{\xi}_5,\,u_{\bar{\xi}_5},\,\bar{\xi}_6,\,u_{\bar{\xi}_6},\,\bar{\xi}_7,\,u_{\bar{\xi}_7},\,\bar{\xi}_8,\,u_{\bar{\xi}_8},\,\bar{\xi}_9,\,u_{\bar{\xi}_9},$

Results/[fname]_merrout_Sn.txt (contains s_J results):

 $\theta,\,1,\,0,\,s_3,\,u_{s_3},\,s_4,\,u_{s_4},\,s_5,\,u_{s_5},\,s_6,\,u_{s_6},\,s_7,\,u_{s_7},\,s_8,\,u_{s_8},\,s_9,\,u_{s_9},\,$

where:

fname - corresponding input datafile without extension (or set of input files, check Combine_reals and Real_template parameters)

 θ - angular scale in degrees, defined by parameters Rmin,Rmax,nR (check parameters section)

 $\bar{\xi}_J/s_J$ - J-th order averaged correlated function/hierarchical amplitude

 $u_{\bar{\xi}_J}/u_{s_J}$ - error of ξ_J/s_J , check error calculation section. The 1,0 values at 2nd and 3rd column of _merrout_Sn files stand for consistency of the format since $s_2 = 1$ by definition.

Output files will have additional columns if ErrPoisson parameter is set to 1 - check ErrPoisson description.

BOX

Counts within spheres in BOX (each axis in [0, boxsize] range)

Input file format: X, Y, Z, units the same as the units of sphere sizes (datafiles either ASCII or HDF5, see parameter file).

Output files:

Results/[fname]_merrout.txt (contains $\bar{\xi}_J$ results):

 $R, \, \bar{\xi}_2, \, u_{\bar{\xi}_2}, \, \bar{\xi}_3, \, u_{\bar{\xi}_3}, \, \bar{\xi}_4, \, u_{\bar{\xi}_4}, \, \bar{\xi}_5, \, u_{\bar{\xi}_5}, \, \bar{\xi}_6, \, u_{\bar{\xi}_6}, \, \bar{\xi}_7, \, u_{\bar{\xi}_7}, \, \bar{\xi}_8, \, u_{\bar{\xi}_8}, \, \bar{\xi}_9, \, u_{\bar{\xi}_9}, \,$

Results/[fname]_merrout_Sn.txt (contains s_J results):

 $R, 1, 0, s_3, u_{s_3}, s_4, u_{s_4}, s_5, u_{s_5}, s_6, u_{s_6}, s_7, u_{s_7}, s_8, u_{s_8}, s_9, u_{s_9},$

where:

fname - corresponding input data file without extension (or set of input files, check $Combine_reals$ and $Real_template$ parameters)

R - scale in the same units as in catalog, defined by parameters Rmin, Rmax, nR (check parameters section)

 ξ_J/s_J - J-th order averaged correlated function/hierarchical amplitude

 $u_{\bar{\xi}_J}/u_{s_J}$ - error of ξ_J/s_J , check error calculation section. The 1,0 values at 2nd and 3rd column of _merrout_Sn files stand for consistency of the format since $s_2 = 1$ by definition

Output files will have additional columns if ErrPoisson parameter is set to 1 - check ErrPoisson description.

BOX_ellipses

Counts within ellipses in BOX (each axis in [0,boxsize] range). Ellipses have axes: axa along X axis, axb along both Y and Z axes. The code creates a grid of axa and axb values with ranges defined in parameter file and for each set of [axa,axb] computes the statistics. Option useful for investigating catalogs with RSD along X axis.

Input file format: X, Y, Z, units the same as the units of sphere sizes (datafiles either ASCII or HDF5, see parameter file).

Output files:

Results/[fname]_merrout.txt (contains $\bar{\xi}_J$ results): axa, axb, $\bar{\xi}_2$, $u_{\bar{\xi}_2}$, $\bar{\xi}_3$, $u_{\bar{\xi}_3}$, $\bar{\xi}_4$, $u_{\bar{\xi}_4}$, $\bar{\xi}_5$, $u_{\bar{\xi}_5}$, $\bar{\xi}_6$, $u_{\bar{\xi}_6}$, $\bar{\xi}_7$, $u_{\bar{\xi}_7}$, $\bar{\xi}_8$, $u_{\bar{\xi}_8}$, $\bar{\xi}_9$, $u_{\bar{\xi}_9}$,

Results/[fname]_merrout_Sn.txt (contains s_J results): axa, axb, 1, 0, s_3 , u_{s_3} , s_4 , u_{s_4} , s_5 , u_{s_5} , s_6 , u_{s_6} , s_7 , u_{s_7} , s_8 , u_{s_8} , s_9 , u_{s_9} ,

where:

fname - corresponding input datafile without extension (or set of input files, check $Combine_reals$ and $Real_template$ parameters)

axa, axb - semi axes of ellipsoid, parallel and perpendicular to line-of-sight (LOS)

 ξ_J/s_J - J-th order averaged correlated function/hierarchical amplitude

 $u_{\bar{\xi}_J}/u_{s_J}$ - error of ξ_J/s_J , check error calculation section. The 1,0 values at 3rd and 4th column of _merrout_Sn files stand for consistency of the format since $s_2 = 1$ by definition.

Output files will have additional columns if ErrPoisson parameter is set to 1 - check ErrPoisson description.

LC_ellipses

Counts within line-of-sight-elongated ellipses in 3D catalog made from lightcone. Ellipses have axes: axa along line-of-sight(LOS), axb along two transverse directions. The code creates a grid of axa and axb values with ranges defined in parameter file and for each set of [axa,axb] computes the statistics. Option useful for investigating higher-order statistics in 3D lightcones including RSD effects.

Input file format: X, Y, Z, units the same as the units of sphere sizes (datafiles either ASCII or HDF5, see parameter file).

Output files:

Results/[fname]_merrout.txt (contains $\bar{\xi}_J$ results): axa, axb, $\bar{\xi}_2$, $u_{\bar{\xi}_2}$, $\bar{\xi}_3$, $u_{\bar{\xi}_3}$, $\bar{\xi}_4$, $u_{\bar{\xi}_4}$, $\bar{\xi}_5$, $u_{\bar{\xi}_5}$, $\bar{\xi}_6$, $u_{\bar{\xi}_6}$, $\bar{\xi}_7$, $u_{\bar{\xi}_7}$, $\bar{\xi}_8$, $u_{\bar{\xi}_8}$, $\bar{\xi}_9$, $u_{\bar{\xi}_9}$,

Results/[fname]_merrout_Sn.txt (contains s_J results): axa, axb, 1, 0, s_3 , u_{s_3} , s_4 , u_{s_4} , s_5 , u_{s_5} , s_6 , u_{s_6} , s_7 , u_{s_7} , s_8 , u_{s_8} , s_9 , u_{s_9} ,

where:

fname - corresponding input datafile without extension (or set of input files, check $Combine_reals$ and $Real_template$ parameters)

axa, axb - semi axes of ellipsoid, parallel and perpendicular to line-of-sight (LOS)

 $\bar{\xi}_J/s_J$ - J-th order averaged correlated function/hierarchical amplitude

 $u_{\bar{\xi}_J}/u_{s_J}$ - error of ξ_J/s_J , check error calculation section. The 1,0 values at 3rd and 4th column of _merrout_Sn files stand for consistency of the format since $s_2=1$ by definition.

Output files will have additional columns if ErrPoisson parameter is set to 1 - check ErrPoisson description.

Common output files (for every code mode (VERSION))

Output files with final results are described in text above, separately for each code version.

Results/[fname]_moments_nnR_X.fndhst

(contains histogram of counts from X-th scale):

 $N, n_c,$

where N - number of objects within circle, n_c - number of circles with N objects.

Results/log.txt

(contains log of the run)

Results/*_moments_*.txt (temporary files with yet-unmerged results, will be removed at the end if Clean = 1 parameter is set)

4 Randoms

Random files (must be located in Randoms/ directory) used in the code are necessary only if $Random_provided = 1$ in parameter file. The format is exactly the same as data files for corresponding VERSION (version is set in parameter file). Randoms define positions of circles/spheres/ellipses for making counts. Therefore it is crucial not to use randoms with positions exceeding the catalog ranges. Check description of Random_provided parameter in parameter file.

5 Parameter file

The param.txt file contains the code settings. For clarity it is divided into parts containing parameters working only for specific code VERSION (angular/BOX/BOX_ellipses/LC_ellipses). The parameters are:

- **VERSION** code mode: angular/BOX/BOX_ellipses/LC_ellipses. Switches between the modes, based on this different data formats and outputs will be used.
- USE_HDF5 input data format: 0 ASCII, 1 HDF5
- POS_DSET dataset with coordinates (applies only if only if USE_HDF5=1)
- cols pos columns with coordinates (applies only if only if USE HDF5=0)

Common parameters (used for every VERSION):

- **nreals** number of sub-probes for errors calculation. Counts are splitted into [nreals] parts, then for each sub-probe the code calculates the statistics. Output result is mean from sub-probes +/- one standard deviation. Check the section about error calculations.
- kappa fraction of statistically independent information contained within one sub-probe, i.e. for VERSION = BOX number of spheres considered for each sub-probe will be: $kappa \times boxsize^3/(4/3\pi R^3)$, where R is the sphere size. Use kappa << 1 to avoid error underestimation (otherwise every sub-probe will contain approximately the same information) and $kappa \times nreals > 1$ to extract full information. Check the section about error calculations.
- Cmin minimum number of circles/spheres/ellipses for CiC
- Cmax maximum number of circles/spheres/ellipses for CiC
- **Datafiles** datafile names from separated by space/tab (with extension). If Datafiles = *, the code just reads entire Data/ catalog (more convenient option)
- Random_provided random file(s) provided? 0 drawing random, 1 reading random file (s) [check Random_file description].

 Drawing randoms:
 - for VERSION = angular: random points within [RA,DEC] rectangle, not closer than current circle size to catalog borders
 - for VERSION = BOX: random points in $[R, boxsize R]^3$ cube, where R current sphere size
 - for $VERSION = BOX_ellipses$: random points in [ax, boxsize ax] ranges, where ax=axa for axis X and ax=axb for axes Y and Z, check parameters for BOX_ellipses and LC_ellipses

- for VERSION = LC_ellipses: random points between spheres of radii DCMIN+axa and DCMAX-axa. [Attention:] for LC_ellipses random drawer ignores any angular cuts, it just draws them for all directions. If your catalog has angular cuts, use own randoms.
- Random_file random file name (if specific file name imposed here, every datafile will be assigned to the same random file); if $Random_file = *$, code reads multiple randoms: for each datafile, random filename is assumed to be: Randoms/Randoms_[datafile] will be assigned to each [datafile]. For example, if $Random_file = *$ and Data/ contains catalogs A.txt and B.txt, then Randoms/ directory has to contain Randoms_A.txt and Randoms_B.txt files. Random file(s) format for ASCII datafiles ($USE_HDF5 = 0$) is assumed to have only columns with coordinates, while for HDF5 datafiles ($USE_HDF5 = 0$) the positions are assumed to be within POS_DSET dataset.
- **Recalc** [0/1] if code is restarted and counts already exist, recalculating the moments [1], or not [0] to save the time
- Clean [0/1] cleaning unnecessary files at the end
- **ErrPoisson** [0/1] switch whether we want Poisson errors calculation or not. For ErrPoisson = 0, there are no columns with Poisson errors in output file. If ErrPoisson = 1, the errors for orders 2-9 are added to the file, so the format is like: R, $\bar{\xi}_2$, $u_{\bar{\xi}_2}$, $\bar{\xi}_3$, $u_{\bar{\xi}_3}$, $\bar{\xi}_4$, $u_{\bar{\xi}_4}$, $\bar{\xi}_5$, $u_{\bar{\xi}_5}$, $\bar{\xi}_6$, $u_{\bar{\xi}_6}$, $\bar{\xi}_7$, $u_{\bar{\xi}_7}$, $\bar{\xi}_8$, $u_{\bar{\xi}_8}$, $\bar{\xi}_9$, $u_{\bar{\xi}_9}$, P_2 , P_3 , P_4 , P_5 , P_6 , P_7 , P_8 , P_9 , where P_J is Poisson error for order J.
- Combine_reals [0/1] switch whether our files are different realisations of one model (check Real_template parameter)
- Real_template template telling how are realisations marked if Combine_reals = 1, e.g. if Real_template = "box *_", and the data files are AAbox1_data, AAbox2_data, AAbox3_data, the code will combine them: the result will be AAboxN_data_merrout.txt: averaged over realisations and errors from standard deviation. One can have any number of files with more than one model, for example: Files: AAbox1_data, AAbox2_data, AAbox3_data, BBbox1_data, BBbox2_data, BBbox3_data, BBbox4_data, will be combined into AAboxN_data_merrout.txt (3 realisations included) and BBboxN_data_merrout.txt (4 realisations included), just Real_template must be the same.

 If Random_file = *, the Randoms/ directory must still contain randoms for each file in Data/ separately, even if these are the same model but different realisations

Parameters for VERSION =angular only:

If $Random_file = *$ and the sky footprint is complicated, right-ascension and declination ranges in param.txt file have to exceed extreme values from catalogs - for pixelization purposes

- ramin catalog right-ascension lower range in degrees
- ramax catalog right-ascension upper range in degrees
- **decmin** catalog declination lower range in degrees
- **decmax** catalog declination upper range in degrees
- **Areaf** catalog sky area in square degrees (for optimization purposes)

Parameters both for VERSION =angular and BOX:

- Rmin smallest scale considered
- Rmax biggest scale considered
- nR number of scales considered

Parameters both for VERSION = BOX and $BOX_ellipses$:

• Boxsize - box size in the same units as random spheres/ellipses

Parameters both for $VERSION = BOX_{ellipses}$ and $LC_{ellipses}$:

- axamin lower range of ellipses axes along X axis (VERSION=BOX_ellipses) / LOS (VERSION=LC_ellipses)
- axamax upper range of ellipses axes along X axis (VERSION=BOX_ellipses) / LOS (VERSION=LC ellipses)
- axbmin lower range of ellipses axes perpendicular to X axis (VERSION=BOX_ellipses)
 / LOS (VERSION=LC_ellipses)
- axbmax upper range of ellipses axes perpendicular to X axis (VERSION=BOX_ellipses)
 / LOS (VERSION=LC_ellipses)
- naxa number of different axes along X/LOS considered grid size
- naxb number of different axes perpendicular to X/LOS considered grid size

Parameters for $VERSION = LC_ellipses$ only:

- DCMIN minimum comoving distance (from observer) considered, the same units as for ellipse axes
- DCMAX minimum comoving distance (from observer) considered, the same units as for ellipse axes

6 Errors calculation

Combine reals set to 0

Errors are being calculated by splitting full counts into [nreals] sub-probes (without returning) and computing standard deviation on the statistics calculated for each sub-probe. Additionally, the code provides independently Poisson errors assuming that $error = \sqrt{counts}$ and calculating the errors of $\bar{\xi}_J/s_J$ using error propagation.

Combine_reals set to 1

Combining results from files according to Real_template (check Parameter file section), computing average and standard deviation. The code finds independent models and number of realizations automatically.

7 Troubleshooting and future improvements

The code predicts potential errors in parameter file (mismatching number of columns, nonphysical values i.e. Rmin < 0, empty Data/ directory and many other). If the code breaks or unexpected behavior occurs:

- check Results/log.txt file. In case of problems in param.txt it should report errors in lines starting with [Error]
- check if datafiles do not contain NaN, INF or other problems inside the data
- check if proper format is specified code will break if USE_HDF5 does not match data type
- if ASCII data is used $(USE_HDF5 = 0)$, check if file headers (lines starting with # are only at the beginning of files and are not separated by non #- starting lines)

Future improvements to add:

- faster MPI threads that finish their part need to do remaining jobs assigned to slower ones
- periodicity in VERSION = angular
- add examples and plotting scripts

8 Citation & references

The code uses equations from Gaztanaga (1994) to compute connected and shot-noise corrected moments of counts in cells.

While using this code, please cite Drozda et al. (2025) and refer to: https://github.com/Pawel - 96/Avcorr.

References

- P. Drozda, W. A. Hellwing, and M. Bilicki. Anisotropic counts-in-cells in redshift space: A new route to cosmological constraints from galaxy surveys, 2025. URL https://arxiv.org/abs/2506.01762.
- E. Gaztanaga. High-Order Galaxy Correlation Functions in the APM Galaxy Survey. *Monthly Notices of the Royal Astronomical Society*, 268:913, June 1994. doi: 10.1093/mnras/268.4.913.