CAPÍTULO 3 - TEORIA ELEMENTAR DA PROBABILIDADE

Problemas

PROBLEMA 3.1

Na tabela seguinte apresenta-se a composição por raça e género da população de um país.

		Género				
	_	Masculino	Feminino			
Raça	Branca	1 726 348	2 110 253			
	Negra	628 309	753 125			
	Outra	15 239	7 435			

Admita que se selecciona ao acaso um indivíduo desta população.

- (i) Qual a probabilidade de o indivíduo seleccionado ser branco?
- (ii) E a de ser negro?
- (iii) E a de ser uma mulher branca?
- (iv) Qual a probabilidade de o indivíduo seleccionado ser de raça branca, admitindo que é uma mulher?

Será que os acontecimentos «o indivíduo é mulher» e «o indivíduo é de raça negra» são independentes?

PROBLEMA 3.2

Calcule a probabilidade de, com uma aposta simples, ganhar cada um dos três primeiros prémios do Totoloto.

PROBLEMA 3.3

Calcule a probabilidade de, entre um conjunto de 25 pessoas reunidas numa sala, haver pelo menos duas que façam anos no mesmo dia.

PROBLEMA 3.4

O grupo empresarial Sucesso tem 13 directores, entre os quais figura você.

Numa sessão para quadros das empresas do grupo, os directores ocuparão lugares marcados numa mesa colocada sobre um palco. O critério de colocação é desconhecido, presumindo-se que a distribuição dos lugares seja aleatória.

Por razões circunstanciais, você não quer ficar ao lado do seu colega da Direcção Financeira. Acha que há uma probabilidade elevada de tal vir a suceder? Calcule essa

probabilidade antes de se decidir a telefonar à secretária encarregada da colocação das pessoas na sala.

PROBLEMA 3.5

Um míssil encomendado à firma Joaquim Tiro & Filhos Lda. acerta e destrói determinado tipo de alvo inimigo com uma probabilidade de 30%.

Num ataque surpresa, quantos mísseis deverão ser disparados simultaneamente para que a probabilidade de destruir aquele tipo de alvo seja, pelo menos, de 90%?

PROBLEMA 3.6

Admita que dois contentores A e B, cada um com 13 peças, incluem, respectivamente, 3 e 6 peças defeituosas. Considere que, por lapso, se perderam as referências dos contentores.

Se se seleccionar ao acaso um dos contentores e se dele se retirarem, também ao acaso, duas peças, qual a probabilidade de ambas serem boas? Calcule também a probabilidade de entre as duas peças haver pelo menos uma boa.

PROBLEMA 3.7

Num determinado país faz sol em 75% dos dias e chove nos restantes 25%. Verificou-se que um tipo de barómetro, que se limita a indicar «sol» ou «chuva», dá frequentemente indicações erradas: prevê sol em 10% dos dias chuvosos e chuva em 30% dos dias com sol.

- (i) Qual a probabilidade de o barómetro errar a previsão?
- (ii) Qual a probabilidade de fazer sol num dia para o qual a previsão seja de chuva?

PROBLEMA 3.8

Três máquinas – A, B e C – produzem, respectivamente, 60%, 30% e 10% do total de peças de um determinado tipo. Para cada uma das máquinas A, B e C, o número de peças defeituosas representa, respectivamente, 2%, 3% e 4% das peças produzidas pela máquina.

Admita que, de um contentor no qual se juntaram as peças, foi seleccionada ao acaso uma delas, que se revelou defeituosa. Calcule a probabilidade de esta peça ter sido produzida pela máquina C.

PROBLEMA 3.9

Admita que 42% dos acidentes de aviação são causados por falhas estruturais e que, para este tipo de acidentes, a probabilidade de atribuir (correctamente) a sua ocorrência a uma falha estrutural é de 80%. Admita, ainda, que a probabilidade de um acidente cuja causa não é daquele tipo ser diagnosticado (incorrectamente) como devido a uma falha estrutural é de 15%.

Determine a probabilidade de um acidente ao qual foi atribuída como causa uma falha estrutural ter resultado efectivamente de uma falha deste tipo.

PROBLEMA 3.10

Uma dona de casa dispõe de oito chaves, das quais três abrem a porta da sua despensa. Admita que a senhora tenta abrir a porta seleccionando sucessivamente as chaves de uma forma aleatória e pondo de lado as que já tentou (e que não abriram a porta). Calcule a probabilidade de a dona de casa ser bem sucedida na quarta tentativa.

PROBLEMA 3.11

Dois estudantes combinaram encontrar-se à porta da biblioteca entre as 12h00 e as 13h00, de acordo com a seguinte regra: aquele que chegar em primeiro lugar espera pelo outro até ao limite de 15 minutos. Passado este tempo, vai-se embora.

Admitindo que cada estudante escolhe ao acaso, dentro do período estipulado, o momento da sua chegada, calcule a probabilidade do encontro se concretizar.

PROBLEMA 3.12

O mercado do serviço de telemóvel reparte-se por três empresas: empresa A com uma quota de 41%, empresa B com 38% e empresa C com 21%.

Um estudo levado a cabo por uma associação de consumidores revelou que 17% dos utilizadores do serviço estavam insatisfeitos e que tais utilizadores se distribuíam da seguinte forma: 35% eram clientes de A, 35% de B e 30% de C.

Calcule a probabilidade de um cliente satisfeito estar ligado à rede da empresa B.

PROBLEMA 3.13

Dois jogadores, A e B, disputam um jogo na TV. Em cada jogada, cada um dos participantes selecciona ao acaso um de seis temas, lançando um dado. Seguidamente terá de responder a uma pergunta do tema seleccionado.

Na tabela seguinte apresenta-se, para cada jogador, as probabilidades de sucesso nas respostas às perguntas de cada tema.

	Desporto	Literatura	Política	Cinema	Telenovela	Música
A	0.90	0.10	0.80	0.10	0.40	0.30
В	0.40	0.50	0.70	0.55	0.20	0.85

Calcule a probabilidade de, numa jogada, sair o tema Desporto a ambos os jogadores, sabendo que, nessa jogada, A acerta e B falha.