

Muon Wheel/Disk Alignment Constants from HIP

Jim Pivarski

Alexei Safonov

Károly Banicz

Sergey Senkin

Texas A&M University

US-CMS

11 November, 2008

Outline

- Reminder of method
- Alignment results

Reminder of method

- ▶ Treat 5 barrel wheels and 6 out of 8 endcap disks as 6-dof rigid bodies
- Select CRAFT global cosmic rays passing through tracker and wheel/disk
- ► Fit tracker part, propagate to wheel/disk, align wheel/disk
 - ► ME±4/1 and inner rings (ME±1/1, 2/1, 3/1) are nearly inaccessible (dozens of poor-quality tracks)
 - track-fitting and alignment step are independent
- Every track residual can be converted into 6-dof alignment corrections

Selecting tracks by p_T

- CRAFT offers new ability to reject low-momentum tracks
- ▶ Observe each alignment parameter as a function of curvature (q/p_T)
- Cleanest measurement is above 20 GeV

Jim Pivarski 3/14

- multiple scattering is symmetric (independent of q)
- $ightharpoonup \vec{B}$ errors are antisymmetric with q
- ▶ both depend on track angles and detailed track distribution
- ▶ Taylor-expand around $q/p_T = 0$ up to second order
- ▶ Constant term (p_0) is the misalignment: alignment minimizes p_0
- Linear term (p_1) is \vec{B} error, sensitive to a few percent of a Tesla

Details

Jim Pivarski 5/14 MS

- ▶ Iteration scheme: $2 \times \begin{pmatrix} z \\ \phi_z \end{pmatrix}$, followed by $4 \times \begin{pmatrix} x & y & z \\ \phi_x & \phi_y & \phi_z \end{pmatrix}$
 - only needed for resolving correlations among parameters: track-fits are already independent of muon alignment
- \blacktriangleright All barrel wheels converged, endcap disks only in $\left(\begin{array}{c}z\\\phi_z\end{array}\right)$ scheme
 - ightharpoonup I think I only need to fix y for endcap (converged in early tests)
- Endcap disks aligned with tracks passing through outer ring only (allows inner ring correction to be applied from hardware measurement)
- ► Barrel wheels: weighted means Endcap disks: unweighted means (due to low statistics)
 - ► Barrel uncertainties are underestimated: switch back to unweighted means in future
- \blacktriangleright Quality cuts: tracker $\chi^2/\textit{N}_{\rm DOF}<10,~\textit{N}_{\rm tracker~hits}\geq10,$ at least 500 tracks per alignable
- ▶ I check quality of each "parameter vs. q/p_T " fit manually

All alignment results (1/8)

- ► Four run regions with stable 3.8 T field
- ▶ Results depend on tracker alignment: this uses tracker-HIP with survey constraints
- ▶ Muon alignment uses tracks only (aligned is *contracted* relative to ideal)
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (2/8)

Jim Pivarski

- ► Four run regions with stable 3.8 T field
- ▶ Results depend on tracker alignment: this uses tracker-MillePede
- ▶ Muon alignment uses tracks only (aligned is *contracted* relative to ideal)
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (3/8)

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses tracker-HIP with survey constraints
- ▶ Muon alignment uses tracks only (Δ has smallest N_{tracks})
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (4/8)

Jim Pivarski

- ► Four run regions with stable 3.8 T field
- ▶ Results depend on tracker alignment: this uses tracker-MillePede
- lacktriangle Muon alignment uses tracks only (Δ has smallest N_{tracks})
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (5/8)

Jim Pivarski

- ► Four run regions with stable 3.8 T field
- Results depend on tracker alignment: this uses tracker-HIP with survey constraints
- ▶ Muon alignment uses tracks only
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (6/8)

Jim Pivarski

- ► Four run regions with stable 3.8 T field
- ▶ Results depend on tracker alignment: this uses tracker-MillePede
- Muon alignment uses tracks only
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (7/8)

- ► Four run regions with stable 3.8 T field
- ► Results depend on tracker alignment: this uses tracker-HIP with survey constraints
- ▶ Muon alignment uses tracks only
- ▶ From the pattern, I do not believe run-by-run differences are real

All alignment results (8/8)

Jim Pivarski

- ► Four run regions with stable 3.8 T field
- ▶ Results depend on tracker alignment: this uses tracker-MillePede
- ▶ Muon alignment uses tracks only
- ▶ From the pattern, I do not believe run-by-run differences are real

- Tracker MillePede alignment yields the most stable positions from one run range to the next
- ▶ Uncertainties appear to be underestimated in barrel: switch to unweighted means (less precise, more robust)
- ► Endcap will probably converge with $\begin{pmatrix} x & z \\ \phi_x & \phi_y & \phi_z \end{pmatrix}$ floating
- ► Should be compared to survey/hardware
- ▶ Endcap results should be combined with hardware measurements of disk bowing, because inner rings are extremely statistics-limited in globalMuon cosmic rays
- ▶ Alignment takes about 5 hours on about 100 CPUs (depending on dataset): we have time to prepare another, including the above
 - Should four run ranges be combined? I think so.

Backup: tracker alignment study Jim Pivarski

- Largest run range (66604-66904)
- Compare results using tracker alignment from CRUZET, CRAFT HIP with Survey Constraints, and CRAFT MillePede
- Muon alignment is always MuonHIP, tracks only

Backup: tracker alignment study Jim Pivarski

- Largest run range (66604-66904)
- Compare results using tracker alignment from CRUZET, CRAFT HIP with Survey Constraints, and CRAFT MillePede
- ▶ Muon alignment is always MuonHIP, tracks only

Backup: tracker alignment study Jim Pivarski

- ► Largest run range (66604-66904)
- Compare results using tracker alignment from CRUZET, CRAFT HIP with Survey Constraints, and CRAFT MillePede
- Muon alignment is always MuonHIP, tracks only

Backup: tracker alignment study Jim Pivarski 18/14

- Largest run range (66604-66904)
- Compare results using tracker alignment from CRUZET, CRAFT HIP with Survey Constraints, and CRAFT MillePede
- ▶ Muon alignment is always MuonHIP, tracks only

