Logik

Aussagenlogik

Aussage Satz/Formel entweder wahr oder falsch: ..-form" bei zu wenig Infos.

Theoreme sind wahre Aussagen.

Junktoren

Negation $\neg A$ "Nicht" (!, ~, \rightarrow)

Konjunkt. $A \wedge B$ "und" (&&, \Box)

Disjunkt. $A \vee B$ "oder" (11, \Rightarrow)

Implikat. $A \Rightarrow B$ "Wenn, dann" $_{,,}\mathcal{B}^{"}$ (\rightarrow, if)

 $\mathcal{A} \Rightarrow \mathcal{B}$ " \mathcal{A} hinreichend"

 $\mathcal{B} \Rightarrow \mathcal{A} ... \mathcal{A}$ notwendig"

Äquiv. $\mathcal{A} \Leftrightarrow \mathcal{B}$ "Genau dann, wenn" $(\leftrightarrow, \equiv, ==, \implies)$

Wahrheitswertetabelle mit 2ⁿ Zeilen für n Atome. Konstruktionssystematik: Frequenz pro Atom verdoppeln.

\mathcal{A}	\mathcal{B}	$\neg \mathcal{A}$	$\mathcal{A} \wedge \mathcal{B}$	$\mathcal{A} \vee \mathcal{B}$	$\mathcal{A} \Rightarrow \mathcal{B}$	$\mathcal{A} \Leftrightarrow \mathcal{B}$
0	0	1	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	1	0	0
1	1	0	1	1	1	1

X		D	
	ente Formeln \Leftrightarrow $B \wedge A$	Bezeichnung	
$A \wedge B$	Kommutativ		
$A \vee B$	$B \lor A$	Kommutativ	
$A \wedge (B \wedge C)$	$(A \wedge B) \wedge C$	Assoziativ	
$A \vee (B \vee C)$	$(A \lor B) \lor C$	Assoziativ	
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$	Distributiv	
$A \vee (B \wedge C)$	$(A \lor B) \land (A \lor C)$	Distributiv	
$A \wedge A$	A	Idempotenz	
$A \vee A$	A	idempotenz	
$\neg \neg A$	A	Involution	
$\neg(A \land B)$	$\neg A \lor \neg B$	De-Morgan	
$\neg(A \lor B)$	$\neg A \land \neg B$	DE-MORGAN	
$A \wedge (A \vee B)$	A	Absorption	
$A \vee (\mathbf{A} \wedge B)$	A	Absorption	
$A \Rightarrow B$	$\neg A \lor B$		
$\neg(A \Rightarrow B)$	$A \wedge \neg B$	Elimination	
$A \Leftrightarrow B$	$(A \Rightarrow B) \land (B \Rightarrow A)$		

Axiomatik

Axiome als wahr angenommene Aussagen: an Nützlichkeit gemessen.

Anspruch, aber nach GÖDELS Unvollständigkeitssatz nicht möglich:

- Unabhängig
- Vollständig
- Widerspruchsfrei

Prädikatenlogik

Quantoren Innerhalb eines Univer-

Existenzg. ∃ "Mind. eines"

Individuum ∃! ..Genau eines"

Allq. ∀ "Für alle"

Quantitative Aussagen

Erfüllbar $\exists x F(x)$

Widerlegbar $\exists x \neg F(x)$

Tautologie $\top = \forall x F(x)$ (alle Schlussregeln)

Kontradiktion $\perp = \forall x \neg F(x)$

	Häufige Fehler
Bezeichnung	
Ausgeschlossenes Drittes	 Nicht vorau
Modus ponens	sen ist

Abschwächung

Oder: Ange-

zeige

Klassische Tautologien $A \vee \neg A$

 $A \wedge (A \Rightarrow B) \Rightarrow B$

 $(A \wedge B) \Rightarrow A$

 $A \Rightarrow (A \lor B)$

Häufige Fehler

Beweistechniken

nommen

Negation (DE-MORGAN)

 $\neg \exists x F(x) \Leftrightarrow \forall x \neg F(x)$

 $\neg \forall x F(x) \Leftrightarrow \exists x \neg F(x)$

• $\exists x (P(x) \Rightarrow Q(x)) \not\Rightarrow \exists x P(x)$

 $\bullet \neg \exists x \exists y P(x,y) \Leftrightarrow \forall x \neg \exists y P(x,y)$

Achtung: Aus falschen Aussagen kön-

nen wahre und falsche Aussagen folgen.

 $\neg B$.

Fallunters. Aufteilen, lösen, zusammen-

schränkung der Allgemeinheit"

 $A \Leftrightarrow B \Leftrightarrow C \Leftrightarrow \cdots$

1. Anfang: Zeige $F(n_0)$. 2. **Schritt:** Angenommen F(n)

Starke Induktion: Angenommen

 $n \in \mathbb{N}$.

 $=A \Rightarrow B \Rightarrow C \Rightarrow \cdots \Rightarrow A$

(Hypothese), zeige

F(n+1) (Behauptung

 $F(k) \quad \forall n_0 \leq k \leq$

 $(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$

führen. O.B.d.A = "Ohne Be-

Angenommen $A \wedge \neg B$, zeige Kontradiktion. (Reductio ad ab-

Direkt $A \Rightarrow B$ Angenommen

A, zeige B.

(Kontraposition).

Widerspruch $(\neg A \Rightarrow \bot) \Rightarrow A$

Ring (Transitivität der Implikation)

Induktion $F(n) \quad \forall n > n_0 \in \mathbb{N}$

surdum)

• $U = \emptyset^{\mathbb{C}}$ nicht notwendig

•	Nicht voraussetzen,	was	zu	bewei-
	sen ist			

• Äguival. von Implikat. unterscheiden (Zweifelsfall immer Implikat.)

$$f(1) = 0, \mathbf{r}_{11}r_{12}r_{13}r_{14} \dots$$

$$f(2) = 0, r_{21} \mathbf{r}_{22} r_{23}r_{24} \dots$$

$$f(3) = 0, r_{31}r_{32} \mathbf{r}_{33} r_{34} \dots$$

$$f(4) = 0, r_{41}r_{42}r_{43} \mathbf{r}_{44} \dots$$

$$\vdots$$

(CANTORS Diagonalargumente)

Naive Mengenlehre

Mengen Zusammenfassung Objekte "Elemente".

Element $x \in M$ "enthält"

Leere M. $\emptyset = \{\}$

Universum U

Einschränkung $\{x \mid F(x)\}$

Relationen

Teilmenge $N \subseteq M$ $\Leftrightarrow \forall n \in N : n \in M$

Gleichheit M=N $\Leftrightarrow M \subseteq N \land N \subseteq M$

Mächtigkeit

 $|M| \begin{cases} = n & \text{endlich} \\ \geq \infty & \text{unendlich} \end{cases}$ $= |N| \Leftrightarrow \exists f_{\mathsf{bijekt.}} : M \to N$

Abzählbar $\exists f_{\mathsf{surj.}} : \mathbb{N} \to M$

- Endliche Mengen, ∅, ℕ, ℤ, □
- $M_{\text{abz.}} \wedge N_{\text{abz.}} \Rightarrow (M \cup N)_{\text{abz.}}$ (= $\{m_1, n_1, m_2, n_2, \dots\}$)
- $M_{abz} \wedge N \subseteq M \Rightarrow N_{abz}$

Operationen

Vereinig. $M \cup N$ \Leftrightarrow $\{x \mid x \in M \lor x \in N\}$

Schnitt $M \cap N \Leftrightarrow \{x \mid x \in M \land x \in A\}$ N (= \emptyset "disjunkt")

Diff. $M \setminus N \Leftrightarrow \{x \mid x \in M \land x \notin N\}$

Komplement M^{\complement} $\{x \mid x \notin M\}$

Alle logischen Äguivalenzen gelten auch für die Mengenoperationen.

Häufige Fehler

• $\forall M : \emptyset \subseteq M$, nicht $\forall M : \emptyset \in M$

Quantitative Relationen

Sei Indexmenge I und Mengen $M_i \quad \forall i \in I.$

 $\bigcup_{i \in I} M_i := \{ x \mid \exists i \in I : x \in M_i \}$ $\bigcap_{i=1}^{n} M_i := \{x \mid \forall i \in I : x \in M_i\}$

Neutrale Elemente

- $\bigcup_{i \in \emptyset} M_i = \emptyset$ ("hinzufügen")
- $\bigcap_{i \in \emptyset} M_i = U$ ("wegnehmen")

Potenzmenge

 $\mathcal{P}(M) := \{ N \mid N \subset M \}$ $|\mathcal{P}(M)| = 2^{|M|} \quad (\in / \notin \mathsf{binär})$

Auswahlaxiom (AC)

Für Menge \mathcal{X} nicht-leerer Mengen:

$$\exists c: \mathcal{X} \to \bigcup \mathcal{X}$$
$$\forall X \in \mathcal{X} : c(X) \in X$$

Nutzung kennzeichnen!

Abbildungen

Abbildung f von X (Definitionsb.) nach Y (Werteb.) ordnet jedem $x \in X$ eindeutig ein $y \in Y$ zu.

Totalität $\forall x \in X \exists y \in Y : f(x) = y$

 $f(x) = a \land f(x) = b \Rightarrow a = b$

$$\mathbf{f}:X o Y$$

Urbilder $f^{-1}(Y') = \{x \in X \mid f(x) \in$ Y' $Y' \subset Y$

Graph $gr(f) := \{(x, f(x)) \mid x \in X\}$

Identität

$$\operatorname{id}_A:A\to A$$
 $\operatorname{id}_A(a):=a\quad \forall a\in A$

Umkehrfunktion $f^{-1}: Y \to X$ wenn f bijektiv und $(f \circ f^{-1})(y) = y$ Vollst. $\forall x,y \in M : (x,y) \in R \lor$ bzw. $f; f^{-1} = id_X \wedge f^{-1}; f = id_X$ Für die Relation f^{-1} gilt:

- $x \in f^{-1}(\{f(x)\})$
- $f(f^{-1}(\{y\})) = \{y\}$ falls fsurjektiv

Eigenschaften

Injektiv
$$\forall x_1, x_2 \in X:$$
 $x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Surjektiv $\forall y \in Y \exists x \in X : \mathbf{y} = \mathbf{f}(\mathbf{x})$

Bijektiv/Invertierbar wenn injektiv und **Identität id**_M := $\{(m,m) \mid m \in M\}$ surjektiv

Verkettung $f \circ q : A \to C$

$$(f \circ g)(a) = f(g(a))$$

(der Reihenfolge nach)

Relationen

Kartesisches Produkt

$$X_1 \times \cdots \times X_n := \{(x_1, \cdots, x_n) \mid x_1 \in X_1, \cdots, x_n \in X_n\}$$

Eindeutigkeit $\forall x \in X \forall a,b \in Y$: **Relation** \sim von/auf M nach N ist Teilmenge $R \subseteq M \times N$. $(R' \subseteq N \times P)$

$$m \sim n \Leftrightarrow (m, n) \in R$$

 \equiv Reflexiv $\forall x \in M : (\mathbf{x}, \mathbf{x}) \in R$ $\Leftrightarrow \mathsf{id}_M \subseteq R$

Irreflexiv $\forall x \in M : (x, x) \notin R$ $\Leftrightarrow id_M \cap R = \emptyset$

 \equiv Sym. $\forall (x, y) \in R : (y, x) \in R$ $\Leftrightarrow R \subseteq R^{-1}$

Antis. $\forall x,y: ((x,y) \in R \land (y,x) \in$ $R) \Rightarrow \mathbf{x} = \mathbf{y}$ $\Leftrightarrow R \cap R' \subseteq \mathsf{id}_M$

 \equiv Transitiv $\forall x, y, z : ((x, y) \in R \land$ $(y,z) \in R$ \Rightarrow $(\mathbf{x},\mathbf{z}) \in R$ $\Leftrightarrow R: R \subseteq R$

 $(y,x) \in R$ $\Leftrightarrow R \cup R^{-1} = M \times M$

Spezielle Relationen

Inverse Relation R^{-1} mit $R \in M \times$ $\{(n,m) \in N \times M \mid (m,n) \in R\}$

Komposition R; R mit $R' \in N \times P :=$ $\{(m,p)\in M\times P\mid \exists n\in N:$ $(m,n) \in R \land (n,p) \in R'$

Leere Relation 0

(=)

All relation $M \times M$

 \ddot{A} \ddot{a} svmmetrisch und transitiv. (Gleichheit***)

Äquivalenzklasse $[m]_{\equiv}$ auf M, Vertreter $m \in M$.

$$[m]_{\equiv} := \{x \in M \mid m \equiv x\}$$

$$\Leftrightarrow [m]_{\equiv} = [x]_{\equiv}$$

Zerlegung $\mathcal{N} \subseteq \mathcal{P}(M)$ von M.

- ∅ ∉ N
- $M = \bigcup \mathcal{N}$
- $N \cap N' = \emptyset$ $(N, N' \in \mathcal{N} : N \neq N')$
- (Korrespondiert zur ÄR.)

Quotient (\mathbf{M}/\equiv) Sei \equiv ÄR. auf M. (ist Zerlegung)

$$(M/\equiv):=\{[m]_{\equiv}\mid m\in M\}$$

(Korrespondiert zur ÄK.)

Analysis

Reelle Zahlen R

Angeordnete Körper

(Gilt auch für \mathbb{Z} und \mathbb{Q})

Körperaxiome $(\mathbb{R}, +, *)$ $a, b, c \in \mathbb{R}$

Addition $(\mathbb{R}, +)$

Assoziativität a + (b + c) = (a + b) + c

Kommutativität a+b=b+a

Neutrales Element Null $a+0=a \quad 0 \in \mathbb{R}$

Inverses "Negativ" $a + (-a) = 0 \quad (-a) \in \mathbb{R}$

Multiplikation $(\mathbb{R},*)$

Assoziativität a*(b*c) = (a*b)*c

Kommutativität a * b = b * a**Neutrales Element Eins** $a * 1 = a \quad 1 \in \mathbb{R} \setminus \{0\}$

Inverses "Kehrwert" $a*(a^{-1})=1$ $a \neq 0, (a^{-1}) \in \mathbb{R}$

Distributivität

$$\mathbf{a} * (b+c) = \mathbf{a} * b + \mathbf{a} * c$$

Totale Ordnung

Transitivität

$$a < b \land b < c \Rightarrow a < c$$

Trichotomie Entweder

$$a < b \text{ oder } a = b \text{ oder } b < a$$

 $\Rightarrow Irreflexivit at (a < b \Rightarrow a \neq b)$

Addition

$$a < b \Rightarrow a + c < b + c$$

Multiplikation

$$a < b \Rightarrow a * c < b * c \quad 0 < c$$

Bei Additiver oder Multiplikativer Inversion dreht sich die Ungleichung.

Archimedes Axiom

$$\forall x \in \mathbb{R} \exists n \in \mathbb{N} : n > x$$
$$n > \frac{1}{x}$$

Teilbarkeit

$$a|b\Leftrightarrow \exists n\in\mathbb{Z}:b=a*n$$
 (\$\Rightarrow\$\sqrt{2}\notin \mathbb{Q}\$, da mit \$\frac{a}{b}=\sqrt{2}\$ nicht teilerfremd)

Häufige Fehler

- Nicht durch Null teilen/kürzen
- Nicht -x < 0 annehmen
- Multiplikation mit negativen Zahlen kehrt Ungleichungen

Operationen

Briiche

- \bullet $\frac{a}{b} * \frac{c}{d} = \frac{ac}{bd}$
- $\bullet \stackrel{a}{=} \stackrel{*d}{=} \stackrel{ad}{=} \frac{ad}{1-a}$
- \bullet $\frac{a}{a} + \frac{b}{a} = \frac{a+b}{a}$
- \bullet $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$

Wurzeln $b^n = a \Leftrightarrow b = \sqrt[n]{a}$

- $\sqrt[n]{a * b} = \sqrt[n]{a} * \sqrt[n]{b}$
- \bullet $\sqrt[n]{\sqrt[m]{a}} = \sqrt[n*m]{a}$
- $\sqrt[n]{a} < \sqrt[n]{b}$ 0 < a < b
- $\sqrt[n+1]{a} < \sqrt[n]{a}$ 1 < a
- $\sqrt[n]{a} < \sqrt[n+1]{b}$ 0 < a < 1

$$\sqrt[n]{a^n} = |a| \quad a \in \mathbb{R}$$

Potenzen $a^{\frac{x}{y}} = \sqrt[y]{a^x}$

- $\bullet \ a^{\times} * b^{\times} = (a * b)^{\times}$
- \bullet $a^x * a^y = a^{x+y}$
- $\bullet (a^x)^y = a^{x*y}$

Dezimaldarstellung

Gauss-Klammer $[y] := \max\{k \in \mathbb{Z} \mid$ k < y = |y|

$$[y] = k \Leftrightarrow k \le y < k+1$$

Existenz $\forall x > 0 \exists ! (a_n)_{n \in \mathbb{N}}$ mit

- $a_n \in \{0, \dots, 9\} \quad \forall n \in \mathbb{N}$
- $\bullet \sum_{i=0}^{n} \frac{a_i}{10^i} \le x < \sum_{i=0}^{n} \frac{a_i}{10^i} + \frac{1}{10^n} \forall n \in \mathbb{N}_0$

Die Umkehrung gilt mit Lemma:

$$x = \sum_{n=0}^{\infty} \frac{a_n}{10^n}$$

Lemma $x \geq 0$, $(a_n)_{n \in \mathbb{N}}$ Dezi. von x

$$\neg(\exists N \in \mathbb{N} \forall n > N : a_n = 9)$$

 $x \in \mathbb{Q} \Leftrightarrow (a_n)_{n \in \mathbb{N}}$ periodisch

Intervalle

Sei $A \subseteq \mathbb{R}, A \neq \emptyset, a_0 \in A$.

Geschlossen $[a;b] := \{x \in \mathbb{R} \mid a \le x \le b\}$ ("Ecken sind mit enthalten")

Kleinstes/Größtes Element

 $\begin{array}{l}
\mathbf{Minimum} \ \min(A) := a_0 \\
\Leftrightarrow \forall a \in A : \mathbf{a}_0 \le a
\end{array}$

Maximum $\max(A) := a_0$ $\Leftrightarrow \forall a \in A : \mathbf{a} \leq a_0$ $(\nexists^{\min}/_{\max}(a;b))$

Beschränktheit A heißt

Oben beschränkt $\exists s \in \mathbb{R} \forall a \in A: \mathbf{a} \leq s$

Unten beschränkt $\exists s \in \mathbb{R} \forall a \in A: s \leq a$

Vollständigkeit

Infimum (klein) $\inf(A)$:= $\max\{s \in \mathbb{R} \mid \forall a \in A : s \leq a\}$

Supremum (groß) $\sup(A)$:= $\min\{s \in \mathbb{R} \mid \forall a \in A : \mathbf{a} \leq s\}$

Vollständigkeitsaxiom $\exists \sup(A)$.

Untere Schranken	min	A max	Obere Schranken	
	inf	sup		7 _R

Folgen

Arithmetische Folge $a_{n+1} = a_n + d$ $a_n = a + (n-1) * d \quad d, a \in \mathbb{R}$

Geometrische Folge $a_{n+1} = a_n * q$ $a_n = q^n \quad q \in \mathbb{R}$

Rekursion a_n ist auf a_{n-1} definiert.

$$a_{n+1} = F(n, a_n) \quad \forall n \in \mathbb{N}$$

 $F: A \times \mathbb{N} \to A$

 $\textbf{Primfaktorzerlegung} \quad n \in \mathbb{N}, n \geq 2$

 $\exists p_1, \dots, p_n \in \mathbb{P} : n = \mathbf{p_1} * \dots * \mathbf{p_n}$

Summen und Produkte

Summe $\sum_{i=1}^n i = 1+2+\cdots+n$

Produkt $\prod_{i=1}^n i = 1 * 2 * 3 * \cdots * n$

Fakultät $n! = \prod^n i \ (0! = 1)$

Gaussche Summe $n \in \mathbb{N}$

$$\sum_{i=1}^{n} i = \frac{n * (n+1)}{2}$$

Geom. Summe $q \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N}_0$

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

Bernoulli Unglei. $n \in \mathbb{N}_0, x \ge -1$

$$(1+x)^n \ge 1 + nx$$

Binom. Koeff. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

- Rechnen: $\frac{n>k}{0<(n-k)}$
- $\bullet \ \binom{n}{0} = \binom{n}{n} = 1$
- $\bullet \binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$

 $\textbf{Binomischer Satz} \quad n \in \mathbb{N}$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} * a^{n-k} b^k$$

Grenzwerte

 $\mathbf{Betrag} \quad |x| := \left\{ \begin{array}{ccc} & x & 0 \le x \\ - & x & x < 0 \end{array} \right.$

 $\mathbf{Lemma} \ |x*y| = |x|*|y|$

Dreiecksungleichung $|x+y| \le |x| + |y|$

Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}, a\in\mathbb{R}$.

$$a_n \xrightarrow{n \to \infty} a \Leftrightarrow \\ \forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} n \ge n_0 : \\ |\mathbf{a_n} - \mathbf{a}| \le \epsilon \\ (a - \epsilon \le a_n \le a + \epsilon)$$

$$\begin{array}{c|c} & \text{Epsilonumgebung} \\ \hline & a-\epsilon & a & a+\epsilon \end{array}$$

• $a_n \xrightarrow{n \to \infty} a \Leftrightarrow \lim_{n \to \infty} a_n = a$

Beschränkt + monoton \Rightarrow konvergent:

$$\lim_{n \to \infty} a_n = \begin{cases} \inf\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{fall}}.\\ \sup\{a_n \mid n \in \mathbb{N}\} & (a_n)_{\mathit{steig}}. \end{cases}$$

Nullfolgen $\lim_{n\to\infty} a_n = 0$

- $\lim_{n\to\infty} \frac{1}{n^k} = 0$ $k \in \mathbb{N}$
- $\lim_{n\to\infty} nq^n = 0$

Folgen gegen 1

- $\lim_{n\to\infty} \sqrt[n]{a} = 1$ a > 0
- $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Bestimmt Divergent

$$a_n \xrightarrow{n \to \infty} \infty \Leftrightarrow$$

$$\forall R > 0 \exists n \ge n_0 \in \mathbb{N} : a_n \ge R$$

$$a_n \xrightarrow{n \to \infty} -\infty \Leftrightarrow$$

$$\forall R < 0 \exists n \ge n_0 \in \mathbb{N} : a_n \le R$$

$$\lim_{n \to \infty} q^n \begin{cases} = 0 & (-1; 1) \\ = 1 & = 1 \\ \geq \infty & > 1 \\ \operatorname{div.} & \leq -1 \end{cases}$$

Monotonie

Monoton fallend

 $a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$

Monoton steigend

 $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$

Beschränktheit

$$\exists k > 0 \forall n \in \mathbb{N} : |\mathbf{a}_n| \le \mathbf{k}$$

- ullet Konvergent \Rightarrow beschränkt
- Unbeschränkt ⇒ divergent

Grenzwertsätze

$$\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$$

- $a_n \xrightarrow{n \to \infty} a \wedge a_n \xrightarrow{n \to \infty} b$ $\Rightarrow a = b \text{ (Max. einen Grenzw.)}$
- $a = \mathbf{0} \wedge (b_n)_{beschr.}$ $\Leftrightarrow \lim_{n \to \infty} a_n b_n = \mathbf{0}$
- $a_n \le b_n \Leftrightarrow a \le b \pmod{n}$

$$\bullet \lim_{n \to \infty} \begin{cases} a_n \pm b_n = a \pm b \\ a_n * b_n = a * b \\ a_n * c = a * c \\ \sqrt[k]{a_n} = \sqrt[k]{a} \\ |a_n| = |a| \end{cases}$$

Einschachtelungssatz

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$

$$\forall n \ge N \in \mathbb{N} : \mathbf{a_n} \le \mathbf{c_n} \le \mathbf{b_n}$$

$$(\exists) \lim_{n \to \infty} c_n = \mathbf{a}$$

Spezielle Folgen

Teilfolge streng mnt. Folge $(b_k)_{n \in \mathbb{N}}$ mit $(n_k)_{k \in \mathbb{N}}$, sodass $b_k = \mathbf{a_{nk}} \quad \forall k \in \mathbb{N}$.

$$\lim_{n \to \infty} a_n = a \Rightarrow \lim_{n \to \infty} a_{nk} = a$$

(da n_k mnt. steigend)

$$\forall (a_n)_{n\in\mathbb{N}} \exists (a_{n\,k})_{k\in\mathbb{N}_{mnt}}.$$

(nicht streng!)

 ${\bf H\ddot{a}ufungspunkt} \quad h \ {\rm mit \ einer \ Teilfolge}$

$$\lim_{n \to \infty} a_{nk} = h$$

• $\lim_{n\to\infty} a_n = a \Leftrightarrow \exists ! : h = a$

Bolzano-Weierstraß

$$(a_n)_{n \in \mathbb{N}_{beschr.}} \Rightarrow \exists h_{H"auf.}$$

(Beschränkte Teilfolgen besitzen mind. einen Häufungspunkt)

Cauchy-Folge

$$\forall \epsilon > 0 \exists n_0 \in \mathbb{N} \forall n, m \ge n_0 :$$

 $|a_n - a_m| \le \epsilon$

(Konv. ohne bekannten Grenzwert)

Vollständigkeit von ℝ

$$(a_n)_{n\in\mathbb{N}_{\mathrm{CAUCHY}}}\Leftrightarrow \exists \lim_{n\to\infty} a_n$$

$$(\exists \lim_{n \to \infty} a_n \Rightarrow (a_n)_{n \in \mathbb{N}_{\text{CAUCHY}}}$$

$$\Rightarrow (a_n)_{n \in \mathbb{N}_{\text{beschr.}}}$$

$$\Rightarrow \exists h \quad \text{(BW)}$$

$$\Rightarrow \lim_{n \to \infty} a_n = h)$$

Reihen

nte Partialsumme $s_n = \sum_{k=1}^n a_k$

Grenzwert ebenfalls $\sum_{k=1}^{\infty} a_k$, falls s_n konvergiert

Spezielle Reihen

Geom. $\sum_{k=0}^{\infty} q^k = \frac{1}{1-q} \quad q \in (-1;1)$

Harmon. $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent

Allg. Harmon. $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ konvergient $\forall \alpha > 1$

Lemma

- • $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} b_k$ konvergent $-\mathbf{c}*\sum_{k=1}^{\infty}\mathbf{a}_{k}=\sum_{k=1}^{\infty}\mathbf{c}*\mathbf{a}_{k}$ Absolut
- $\begin{array}{l} \bullet \ \exists N \in \mathbb{N} \ : \ (\sum_{k=N}^{\infty} a_k)_{\text{konv.}} \Rightarrow \\ (\sum_{k=1}^{\infty} a_k)_{\text{konv.}} \ \text{(Es reicht spätere} \\ \text{Glieder zu betrachten)} \end{array}$
- $\begin{array}{l} \bullet \ (\sum_{k=1}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \ \forall N \in \mathbb{N} \ : \ (\sum_{k=N}^{\infty} a_k)_{\mathrm{konv.}} \\ \Rightarrow \lim_{N \to \infty} \sum_{k=N}^{\infty} a_k = 0 \end{array}$

Konvergenzkriterien

Cauchy

$$\Leftrightarrow (\sum_{k=1}^{n} a_{k})_{n \in \mathbb{N}} \text{ CAUCHY}$$

$$(\sum_{k=1}^{\infty} a_{k})_{\text{konv.}}$$

$$\Leftrightarrow \forall \epsilon > 0 \exists n_{0} \in \mathbb{N} \forall n > m > n_{0} :$$

$$|\sum_{k=m+1}^{n} a_{k}| \leq \epsilon$$

Notwendig

$$(\sum_{n=1}^{\infty} a_n)_{\text{konv.}} \Rightarrow \lim_{n \to \infty} a_n = 0$$

$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow (\sum_{n=1}^{\infty} a_n)_{\text{div.}}$$

Beschränkt $a_n \geq 0 \ (\Rightarrow mnt.) \ \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} a_n)_{beschr.} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{konv.}$$

 $\textbf{Majorante} \ \ 0 \leq \mathbf{a_n} \leq \mathbf{b_k} \quad \forall n \in \mathbb{N}$

$$(\sum_{n=1}^{\infty} b_n)_{\text{konv.}} \Leftrightarrow (\sum_{n=1}^{\infty} a_n)_{\text{konv.}}$$

Quotient $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o \infty} rac{a_{n+1}}{a_n} egin{cases} < \mathbf{1} o (\sum_{n=1}^\infty a_n)_{ ext{konv.}} \ > \mathbf{1} o (\sum_{n=1}^\infty a_n)_{ ext{div.}} \end{cases}$$

Wurzel $a_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n\to\infty}\sqrt[n]{a_n} \begin{cases} <1\to (\sum_{n=1}^\infty a_n)_{\mathsf{konv}} \\ >1\to (\sum_{n=1}^\infty a_n)_{\mathsf{div}}. \end{cases}$$

$$(\sum_{n=1}^{\infty}|a_n|)_{\mathrm{konv.}}\Rightarrow (\sum_{n=1}^{\infty}a_n)_{\mathrm{konv}}$$

$$|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$$

(Dreiecksungleichung)

Leibniz $(a_n)_{n\in\mathbb{N}}$ mnt. Nullfolge

$$(\sum_{n=1}^{\infty} (-1)^n * a_n)_{\text{konv.}}$$

Grenzwert $a_n, b_n \geq 0 \quad \forall n \in \mathbb{N}$

$$\lim_{n o \infty} rac{a_n}{b_n} > 0 \Rightarrow \ (\sum_{n=1}^\infty a_n)_{\mathrm{konv.}} \Leftrightarrow (\sum_{n=1}^\infty b_n)_{\mathrm{konv.}}$$

Exponentialfunktion

$$\exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{x!}$$

$$\exp(x) * \exp(y) = \exp(x + y)$$

Cauchy-Produkt

ptient
$$a_n \geq 0 \quad \forall n \in \mathbb{N}$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \begin{cases} < 1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{konv.}} \\ > 1 \to (\sum_{n=1}^{\infty} a_n)_{\mathsf{div.}} \end{cases} (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Korollar

- $x < y \Rightarrow \exp(x) < \exp(y)$
- $\bullet \exp(r * x) = (\exp(x))^r$
- $\exp(r) = e^r$

Algorithmen auf Datenstrukturen

Algorithmus Handlungsvorschrift aus endlich vielen Einzelschritten zur Problemlösung.

- Korrektheit (Test-based dev.)
- Terminierung (TOURING)
- Effizienz (Komplexität)

Formen (High to low) Menschl. Sprache, Pseudocode, Mathematische Ausdrücke. Quellcode. Binärcode

Divide & Conquer

Divide Zerlegen in kleinere Teilproble-

Conquer Lösen der Teilprobleme mit gleicher Methode (rekursiv)

Merge Zusammenführen der Teillösungen

Effizienz

Raum/Zeit-Tradeoff: Zwischenspeichern vs. Neuberechnen

Programmlaufzeit/-allokationen	Komplexität
Einfluss äußerer Faktoren	Unabh.
Konkrete Größe	Asymptotische Schätzung

Inputgröße n Jeweils

- Best-case C_B
- Average-case
- Worst-case C_W

Asymptotische /Speicherkomplexität

Groß-O-Notation Kosten $C_f(n)$ mit $q: \mathbb{N} \to \mathbb{R} \exists c > 0 \exists n_0 > 0 \forall n > n_0$

Untere Schranke $\Omega(f)$ $C_f(n) > c * q(n)$

Obere Schranke O(f) $C_f(n) \leq c * q(n)$

Exakte Schranke $\Theta(f)$ $C_f(n) \in \Omega(f) \cap O(f)$ Polynom kten Grades $\in \Theta(n^k)$

(Beweis: q und c finden)

Groß-O	Wachstum	Klasse		
O(1)	Konstant			
$O(\log n)$	Logarithmisch			
O(n)	Linear		ösbar	
$O(n \log n)$	Nlogn		lösl	
$O(n^2)$	Quadratisch	Del mariello (k)		
$O(n^3)$	Kubisch	Polynomiell $O(n^k)$		
$O(2^n)$	Exponentiell	Exponentiell $O(\alpha^n)$		
O(n!)	Fakultät		hart	
$O(n^n)$				

Rechenregeln

Elementare Operationen, Kontrollstr. $\in \mathbf{O}(1)$

Schleifen $\in i$ Wiederholungen * O(f)teuerste Operation

Abfolge O(q)O(f)nach $O(\max(f;q))$

Rekursion $\in k$ Aufrufe *O(f) teuerste Operation

Mastertheorem $a \ge 1, b > 1, \Theta \ge 0$

$$T(n) = a * T(\frac{n}{b}) + \Theta(n^k)$$

$$\Rightarrow \begin{cases} \Theta(n^k) & a < b^k \\ \Theta(n^k \log n) & a = b^k \\ \Theta(n^{\log_b a}) & a > b^k \end{cases}$$

Floor/Ceiling Runden

Floor |x| nach unten

Ceiling $\lceil x \rceil$ nach oben

Zeit- Suchverfahren

Lineare Liste endlich. geordnete (nicht sortierte) Folge n Elemente $L := [a_0, \ldots, a_n]$ gleichen Typs.

Array Sequenzielle Abfolge im Speicher, statisch, Index O(1), schnelle Suchverfahren $L[0] | \cdots | L[n-1]$

Sequenziell $C_A(n) = \frac{1}{n} * \sum_{i=1}^{n} i =$ $\frac{n+1}{2} \in O(n)$

Input: Liste L. Predikat xOutput: Index i von xif x = L[i] then return end return -1

Auswahlproblem Finde *i*-kleinstes Element in unsortierter Liste $\in \Theta(n)$

Algorithm: i-Smallest Element Input: Unsortierte Liste L. Level iOutput: Kleinstes Element x for k = 0 to $L \cdot len - 1$ do Push $(L_{\leq}, L[k])$ if L[k] > p then Push $(L_{>}, L[k])$ $\begin{array}{c|c} \text{if } L_{<}.\mathit{len} > i-1 \text{ then} \\ \hline \text{return } i\text{-Smallest Element } L_{<} \end{array}$ return i-Smallest Element (L > $i-1-L_{<}$.len)

Sortierte Listen

Binär $C_W(n) = \lfloor \log_2 n \rfloor + 1$, $C_A(n) \stackrel{n \to \infty}{\approx} \log_2 n \in O(\log n)$

Algorithm: Binary Search Input: Sortierte Liste L, Predikat xOutput: Index i von xif L.len = 0 then return -1 $\inf_{\mathbf{r}} x = L[m] \text{ then }$ < L[m] then return Binary Search $[L[0], \ldots, L[m-1]]$ > L[m] then $[L[m+1], \ldots, L[L.len-1]]$

Sprung Kosten Vergleich a, Sprung b **Verkettete Listen** mit optimaler Sprungweite:

$$m = \left\lfloor \sqrt{(\frac{a}{b})*n)} \right\rfloor$$

$$C_A(n) = \frac{1}{2}(\lceil \frac{n}{m} \rceil * a + mb) \in O(\sqrt{n})$$

Algorithm: Jump Search Input: Sortierte Liste L, Predikat xOutput: Index i von x $\begin{array}{l} m \leftarrow \lfloor \sqrt{n} \rfloor \\ \text{while } i < L . \textit{len do} \end{array}$ $\begin{array}{c} i \leftarrow i + m \\ \text{if } x < L[i] \text{ then} \end{array}$ $[L[i-m],\ldots,L[i-1]]$ end return

- k-Ebenen Sprungsuche $\in O(\sqrt[k]{n})$
- Partitionierung in Blöcke m möglich

Exponentiell $\in O(\log x)$

Algorithm: Exponential Search Input: Sortierte Liste L. Predikat a Output: Index i von x $\label{eq:while} \begin{array}{l} \text{while } x > L[i] \text{ do} \\ \text{\mid} i \leftarrow 2*i \end{array}$ return Search $[L \mid i/2 \mid, \ldots, L[i-1]]$

Unbekanntes n möglich

Interpolation $C_A(n)$ 1 + $\log_2 \log_2 n$, $C_W(n) \in O(n)$

Algorithm: Searchposition Input: Listengrenzen [u, v]Output: Suchposition p

return
$$\lfloor u + \frac{x - L[u]}{L[v] - L[u]}(v - u)$$

Algorithm: Interpolation Search

Input: Sortierte Liste $[L[u], \ldots, L[v]]$, Predikat xOutput: Index i von x $\begin{array}{c|c} \text{if } x < L[u] \lor x > L[v] \text{ then} \\ & \text{return } -1 \end{array}$ $p \leftarrow Searchposition(u, v)$ if x > L[p] then return Interpolation Search(p+1,v,x)return Interpolation Search(u, p - 1, x)

Zu-Häufigkeitsordnungen mit griffswahrscheinlichkeit p_i : $C_A(n)$

Frequency-count Zugriffszähler Element

Transpose Tausch mit Vorgänger

Move-to-front

Container Jedes Element p ist in der Form $p \to |$ (key) | value | next |. Index Stack S = |TOP, \cdots Operationen ist seg. Suche $\in O(n)$

Löschen $\in O(1)$

Algorithm: Delete

Input: Zeiger n auf Vorgänger des löschendes Elements if $p \neq \emptyset \land p \rightarrow \textit{next} \neq \emptyset$ then $| \quad p \, \rightarrow \, \mathsf{next} \, \leftarrow \, (p \, \rightarrow \, \mathsf{next}) \, \rightarrow \, \mathsf{next}$

desh. sehr dynamisch

Suchen
$$C_A(n) = \frac{n+1}{2} \in O(n)$$

Algorithm: Search Linked List

Input: Verkettete Liste L, Predikat xOutput: Zeiger p auf x $p \leftarrow L$.head while $p \rightarrow \mathit{value} \neq x \ \mathsf{do}$ $p \leftarrow p \rightarrow \text{next}$ end return n

Doppelt Verkettet Zeiger auf Vorgänger | (key) | value | prev | next

- Bestimmung des Vorgängers (bei Einfügen, Löschen) $\in O(1)$ statt O(n)
- Höherer Speicheraufwand

Skip

- Zeiger auf Ebene i zeigt zu nächstem 2ⁱ Element
- Suchen $\in O(\log n)$

(Perfekt) Einfügen, Löschen $\in O(n)$ (Vollst. Reorga.)

Randomisiert Höhe zufällig (keine vollst. Reorga.) $P(h) = \frac{1}{2h+1}$: Einfügen, Löschen $\in \mathbf{O}(\log n)$

Spezielle Listen

ADT "Abstrakte Datentypen"

auf letztem Element $\in O(1)$

Queue $Q = || \texttt{HEAD}, \cdots, \texttt{TAIL} \ \mathsf{Vorne} |$ Löschen, hinten einfügen $\in O(1)$

Priority Queue
$$P = \begin{bmatrix} p_0 & p_1 & \cdots & p_r \\ a_0 & a_1 & \cdots & a_r \end{bmatrix}$$

Jedes Element a hat Priorität p: Entfernen von Element mit höchster (MIN) Priorität

Sortierverfahren

Sortierproblem

Gegeben (endliche) Folge von Schlüsseln (von Daten) $(K_i)_{i \in I}$

Gesucht Bijektive Abbildung $\pi:I\to$ I (Permutation), sodass $K_{\pi(i)}$ < $K_{\pi(i+1)} \quad \forall i \in I$

mit Optimierung nach geringen

- Schlüsselvergleichen C
- \bullet Satzbewegungen M

Eigenschaften

Ordnung Allgemein vs. speziell: Ordnung wird nur über Schlüsselvergleiche hergestellt

Relation Stabil vs. instabil: Vorherig relative Reihenfolge bleibt erhalten

Speicher *In situ* vs. *ex situ*: Zusätzlicher Speicher notwendig

Lokal Intern vs. extern: Alles im RAM oder Mischung vorsortierter externer Teilfolgen

Ordnung $\forall x, y \in X$

Reflexiv $x \le x$

Antisym. $x \le y \land y \le x \Rightarrow x = y$

Transitiv $x \le y \land y \le z \Rightarrow x = z$

Total (Vollständig) $x < y \lor y < x$

(ohne Total: "Halbordnung")

Grad der Sortierung

Anzahl der Inversionen Anzahl kleinerer Nachfolger für jedes Element:

$$\begin{split} &\operatorname{inv}(L) := |\{(i,j) \mid \\ &0 \leq i < j \leq n-1, \\ &L[i] \geq L[j]\}| \end{split}$$

 $|a_0 \quad a_1 \quad \cdots \quad a_n|$ Anzahl der Runs Ein Run ist eine sortierte Teilliste, die nicht nach links oder rechts verlängert werden kann. Die Anzahl der Runs ist:

$$\begin{aligned} & \mathsf{runs}(L) := |\{i \mid \\ & 0 \leq i < n-1, \\ & L[i+1] < L[i]\}| + 1 \end{aligned}$$

Längster Run Anzahl der Elemente der längsten sortierten Teilliste:

$$las(L) := max\{r.len \mid$$

$$r \text{ ist Run in } L\}$$

$$rem(L) := L.len - las(L)$$

Einfache Sortierverfahren $O(n^2)$

Selection Entferne kleinstes Element in unsortierter Liste und füge es sortierter Liste an.

```
Algorithm: Selectionsort
Input: Liste L
Output: Sortierte Liste L
for i \leftarrow 0 to L.len - 2 do
      for i \leftarrow i + 1 to L \cdot len - 1 do
            if L[i] < L[min] then
              - 1
      end
      if min \neq i then
            Swap L[min], L[i]
if I_{-} len = 0 then
      return - 1
```

Insertion Verschiebe erstes Element aus unsortierter Liste von hinten durch sortierte Liste, bis das vorgehende Element kleiner ist.

```
Algorithm: Insertionsort
Input: Liste L
Output: Sortierte Liste {\cal L}
for i \leftarrow 1 to L.len - 1 do
     if L[i] < L[i-1] then
           \mathsf{temp} \leftarrow L[i]
           j \leftarrow i
           j - -
           end
           L[j] \leftarrow temp
```

Bubble Vertausche benachbarte Elemente, durchlaufe bis nichts vertauscht werden muss. Achtung: Die hinteren Elemente können im Durchlauf ignoriert werden!

```
Algorithm: Bubblesort
Input: Liste L
Output: Sortierte Liste L
i \leftarrow L.len
swapped ← 1
while swapped do
      swapped \leftarrow 0
      for i \leftarrow 0 to i-2 do
             if L[j] > L[j+1] then Swap L[j], L[j+1]
                    swapped \leftarrow 1
      end
```

Verbesserte Sortierverfahren $O(n \log n)$

Shell Insertionsort, nur werden Elemente nicht mit Nachbarn getauscht, sondern in t Sprüngen h_i , die kleiner werden (Kamm). Im letzten Schritt dann Insertionsort ($h_t = 1$); somit Sortierung von grob bis fein, also Reduzierung der Tauschvorgänge.

```
Algorithm: Shellsort
Input: Liste L, Absteigende Liste von Sprunggrößen H
Output: Sortierte Liste L
foreach h in H do
       for i \leftarrow h to L \cdot len - 1 do
              temp \leftarrow L[i]
              for j \leftarrow i; temp < L[j-h] \land j \ge h;
                   \leftarrow j - h do L[j] \leftarrow L[j - h]
              L[j] \leftarrow \mathsf{temp}
      end
```

Quick Rekursiv: Pivot-Element in der Mitte. Teillisten $L_{<}$. $L_{>}$. sodass $\forall l_{<} \in$ $L_{<} \forall l_{>} \in L_{>} : l_{<} < x < L_{>}$. Zerlegung: Durchlauf von Links bis $L[i] \geq x$ und von Rechts bis $L[i] \le x$, dann tauschen.

```
Algorithm: Quicksort
Input: Liste L, Indices l, r
Output: L, sortiert zwischen l und r
if l > r then
piv \leftarrow L[\lfloor \frac{l+r}{2} \rfloor]
       while L[i] < \mathit{piv} do
       end
       while L[j] > \mathit{piv} do
       if i < j then
              Swap L[i], L[j]
Quicksort (L, l, j)
Quicksort (L, i, r)
```

Turnier Liste also Binärbaum, bestimme $\min(L)$ durch Austragen des Turniers, entferne Sieger und wiederhole von Siegerpfad aus.

Heap Stelle Max-Heap (größtes Element in der Wurzel) her, gib Wurzel aus und ersetze mit Element ganz rechts in unterster Ebene.

Algorithm: Max-Heapify $\textbf{Input:} \ \mathsf{Liste} \ L, \ \mathsf{Index} \ i \ \mathsf{der} \ \mathsf{MHE} \ \mathsf{widerspricht} \ \mathsf{und}$ $\forall j > i$ erfüllen MHE Output: Liste L mit MHE $\forall j \geq i$ $l \leftarrow 2i + 1$ $r \leftarrow 2i + 2$ if l < L . len $\wedge L[l] > L[i]$ then $largest \leftarrow l$ else $\mathsf{largest} \leftarrow i$ if r < L . len \wedge L[r] > L [largest] then largest $\leftarrow r$ if $largest \neq i$ then Swap L[i], L[largest]Max-Heapify L, largest Algorithm: Build-Max-Heap Input: Liste ${\cal L}$ Output: Liste L mit MHE for $i \leftarrow |\frac{L.len}{2}| - 1$ to 0 do Max-Heapify L, iAlgorithm: Heapsort Input: Liste LOutput: Sortierte Liste ${\cal L}$ Build-Max-Heap L for $i \leftarrow L . \mathit{len} - 1$ to 1 do Swap L[0], L[i]Max-Heapify $L,\,0$

diese (mit Mergesort) und verschmelze die sortierten Teillisten (merge).

```
Algorithm: 2-Merge
Input: Liste L mit L[l \dots m-1] und L[m \dots r]
       sortiert, Indices l, m, r
Output: Liste L mit L[l \dots r] sortiert
k \leftarrow m
for i \leftarrow 0 to r - l do
       if k > r \lor (j < m \land L[j] \le L[k]) then B[i] \leftarrow L[j]
             j \leftarrow j + 1
               B[i] \leftarrow L[k]
for i \leftarrow 0 to r - l do
       L[l+i] \leftarrow B[i]
Algorithm: Rekursives 2-Mergesort
Input: Liste L, Indices l, r
Output: Liste L mit L[l \dots r] sortiert
if l > r then
       return
       \begin{array}{l} m \leftarrow \lfloor \frac{l + r + 1}{2} \rfloor \\ \texttt{Mergesort} \ L, \, l, \, m \, - \, 1 \end{array}
       Mergesort L, m, r
       Merge L, l, m, r
```

Iteratives 2-Mergesort

```
Algorithm: Iteratives 2-Mergesort
Input: Liste {\cal L}
Output: Sortierte Liste {\cal L}
for k \leftarrow 2; k < n; k \leftarrow k * 2 do
       for i \leftarrow 0; i + k \leq n; i \leftarrow i + k do
             Merge L, i, \min(i + k - 1, n - 1),
               i + \frac{k}{2}
      end
Merge L, 0, n-1, \frac{k}{2}
```

Natürliches Mergesort Verschmelzen von benachbarten Runs (Ausnutzen der Vorsortierung)

Untere Schranke allgemeiner Sortierverfahren

Jedes allgemeine Sortierverfahren benötigt im Worst- und Average-case Schlüsselvergleiche von mindestens:

$$\Omega(n \log n)$$

(Siehe Pfadlänge auf Entscheidungsbaum)

Spezielle Sortierverfahren O(n)

Distribution Abspeichern der Frequenz jedes Elementes k auf F[k]; Ausgeben jedes Index F[k] mal.

Merge Zerlege Liste in k Teile, sortiere Lexikographische Ordnung \leq Sei $= \{a_1, \ldots, a_n\}$ ein Alphabet, Adass sich mit gegebener Ordnung $a_1 < \cdots < a_n$ wie folgt auf dem Lexikon $A* = \bigcup_{n \in \mathbb{N}_0} A^n$ fortsetzt:

$$v = (v_1, \dots, v_p) \le w = (w_1, \dots, w_q)$$

$$\Leftrightarrow \forall 1 \le i \le p : v_i = w_i \quad p \le q$$

$$\forall \forall 1 \le j \le i : v_j = w_j \quad v_i < w_i$$

Fachverteilen Sortieren von n k-Tupeln in k Schritten: Sortieren nach letztem Element, vorletzem usw.

Große Datensätze sortieren

Indirekt Liste von Zeigern Z[i] = i auf die eigentlichen Listenelemente. Schlüsselvergleiche mit L[Z[i]], Satzbewegungen nur als Zeigertausch in Z. Anschließend linear kopieren.

im Hauptspeicher (Run) der mind. m+1Blöcke groß ist, verschmelzen der Runs (m-Wege-Merge).

Ausgeglichenes 2-Wege-Mergesort

Daten auf Band n, sortieren von Block $r_1 < n$ auf zweites Band und r_2 auf drittes Band, löschen des ersten Bandes und Merge 2rabwechselnd auf erstes (neues $2r_1$) und viertes Band (neues $2r_2$) und wiederholen.

Replacement Selectionsort Lese r <n Elemente auf Priority-Queue Q Falls $x = \min(Q) > \text{letztem Ele-}$ ment auf zweiten Band, schreibe x aus. sonst schreibe Q auf Band. Wiederhole auf dritten Band und dann merge.

Algo.	Stabil	Mem.	Schlüsselvergleiche			Satzbewegungen			
Augo.			C_B	C_A	C_W	M_B	M_A	M_W	
Selection	×	1	n(n-1)	n(n-1)	n(n-1)	3(n - 1)	3(n-1)	3(n-1)	
Insertion	/	1	n-1	$\stackrel{n\to\infty}{\approx} \frac{n(n-1)}{4} + n - \ln n$	$\frac{n(n-1)}{2}$	2(n - 1)	$\frac{n^2+3n-4}{4} + n - 1$	$\frac{n^2+3n-4}{2}$)(n2
Bubble	/	1	$\frac{n(n-1)}{2}$	n(n-1)	$\frac{n(n-1)}{2}$	0	$\frac{3n(n-1)}{4}$	$\frac{3n(n-1)}{2}$	0
				Best-case	Avera	ge-case	Worst-ca	se	
Shell	×	1		-		-			
Quick	×	$\log n$		$n \log n$	m)	log n	n ²		8
Turnier	×	2n-1		$n \log n$	nlogn		n log n		O(n log n)
Heap	×	1		$n \log n$	nlogn		n log n		ő
Merge	/	n		$n \log n$	m)	log n	n log n		
			Untere	Schranke $\Omega(n \log n)$ für al	lgemeine	Sortierverf	ahren		
Distribution	_	n		n		п	n logn, r	2	O(n)

Bäume

- Verallg. von Listen: Element/Knoten kann mehrere Nachfolger haben
- Darstellung von Hierarchien

Ungerichteter Graph (V, E) mit einer Menge Knoten V und Kanten $E \subseteq$ $V \times V$

Baum Ungerichteter Graph mit

Einfach keine Schleife (v)oder Doppelkanten (v)(w)

Zusammenhängend Für jede zwei Knoten gibt es genau eine Folge von Kanten die sie verbindet

Azyklisch kein Zyklus (Cycle)

Extern Zerlegen in m Blöcke, sortieren **Wurzelbaum** Baum mit genau einem **Größen** Knoten der Wurzel heißt

> Orientierter Wurzelbaum Alle Knoten sind Wurzel ihrer disjunkten Unterbäume und haben verschiedene Werte gleichen Typs. (Im Nachfolgenden einfach nur "Baum")

Darstellungsarten

Graph \sim

Array $[a, b, c, \emptyset, \emptyset, d, e]$

Klammer (a, (b), (c, (d), (e)))

Größen

Ordnung Max. Anzahl von Kindern jedes Knoten eines Baums

Tiefe Anzahl Kanten zwischen einem Knoten und Wurzel

Stufe Alle Knoten gleicher Tiefe

Höhe Max. Tiefe +1

Eigenschaften

Geordnet Kinder erfüllen Ordnung von links nach rechts

Vollständig Alle Blätter auf gleicher Stufe, jede Stufe hat max. Anzahl von Kindern

Binärbäume

Geordneter, orientierter Wurzelbaum der Ordnung 2.

Strikt Jeder Knoten hat 0 oder 2 Kinder (Kein Knoten hat genau 1 Kind).

Vollständig Jeder Knoten außer der letzten Stufe hat genau 2 Kinder.

Fast Vollständig Vollständig, auSSer Blätter können rechts fehlen.

Ausgeglichen Vollständig, aber Blätter auf letzten 2 Stufen

2 Binärbäume heißen

Ähnlich selbe Struktur

Äguivalent Ähnlich und selbe Knoten

- Für i Stufen max. 2i Knoten
- Für n Knoten genau n-1 Kanten
- Vollständiger B. mit n Knoten hat Höhe von $\log_2 n + 1$

Exkurs Lineare Algebra

$$(AB)_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

(Reihe \times Spalte)