Machine Learning: Learning with Neural Networks

Sidharth Baskaran

June 2021

Backpropagation Cost Function

- Notation
 - -L = total no. of layers in network
 - $-s_l = \text{no. of units excluding bias in layer } l$
- Classification types
 - Binary $y \in \{0, 1\}$
 - Multi-class $y \in \mathbb{R}^K$ where there are K output units $(h_{\Theta}(x) \in \mathbb{R}^K : K \geq 3)$
- Cost function with regularization
 - Let $(h_{\Theta}(x))_i$ be ith output

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log(h_{\Theta}(x))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{k=1}^{K} \left[y_k^{(i)} \log(h_{\Theta}(x))_k + (1 - y_k^{(i)}) \log(1 - (h_{\Theta}(x))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{s_l} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{K} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{K} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{K} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k \right] + \frac{\lambda}{2m} \sum_{l=1}^{K} \sum_{i=1}^{S_l+1} \sum_{j=1}^{s_l+1} (\theta_{j,i}^{(l)})^2 - (h_{\Theta}(x))_k + (h_{\Theta}(x))_k$$

Backpropagation Algorithm

- Need to find $\underset{\Theta}{\min}J(\Theta)$
 - Compute $J(\Theta)$ and $\frac{\partial}{\partial \Theta_{ij}^{(l)}}$
- Gradient forward propagation computation given 1 example (x, y)

 - $\begin{array}{l} -\ a^{(1)} = x \\ -\ z^{(2)} = \Theta^{(1)} a^{(1)} \end{array}$
 - $-a^{(2)} = g(z^{(2)})$ (add $a_0^{(2)}$)
- Intuition compute $\delta_j^{(l)}$ is error of node j in layer l
 - If output unit is layer i, $\boxed{\delta_j^{(i)} = a_j^{(i)} y_j}$

$$* a_j^{(4)} = (h_{\Theta}(x))_j$$

$$- \left[\delta^{(i)} = (\Theta^{(i)})^T \delta^{(i+1)} \cdot * g'(z^{(i)}) \right]$$
* Can be shown that $g'(z^{(i)}) = a^{(i)} \cdot * (1 - a^{(i)})$

- * No $\delta^{(1)}$ term because input features don't have error
- General training set of m examples $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
 - Set $\Delta_{ij}^{(l)} = 0 \ \forall l,i,j$ (used to compute the partial derivative of $J(\Theta)$)

Algorithm

For $i = 1 \to m \ (\leftarrow (x^{(i)}, y^{(i)}))$:

- Set $a^{(1)} = x^{(i)}$
- Forward propagation to compute $a^{(l)}$ for $l \in \text{range}(2, 3, \dots, L)$

- Use $y^{(i)}$ to compute $\delta^{(L)} y^{(i)}$
- Back propagation to compute $\delta^{(L-1)}, \dots, \delta^{(2)}$ (no $\delta^{(1)})$
- $\bullet \ \ \Delta_{ij}^{(l)} := \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)} \longleftrightarrow \Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$

Then

$$D_{ij}^{(l)} := \frac{1}{m} \left(\Delta_{ij}^{(l)} + \lambda \Theta_{ij}^{(l)} \right) | j \neq 0$$
$$D_{ij}^{(l)} := \frac{1}{m} \Delta_{ij}^{(l)} | j = 0$$

- Can then show that $\left| \frac{\partial}{\partial \Theta_{ii}^{(l)}} J(\Theta) \right| = D_{ij}^{(l)}$
- Use this partial derivative in an algorithm like gradient descent or fminunc

Backpropagation Intuition

- Forward propagation L to R
 - Inputs from data set fed into 1st layer
 - Sigmoid applied to z values to get activation values in each layer
 - Weights (arrow/lines) \times originating activation values (a dot product) \rightarrow new z-value to which sigmoid is applied
- Backpropagation R to L
 - Let ith training example have a $cost(i) = y^{(i)} \log h_{\Theta}(x^{(i)}) + (1 y^{(i)}) \log h_{\Theta}(x^{(i)})$
 - * Measure of how well the network is performing on example i
 - * Ignore regularization, so $\lambda = 0$

 - $-\delta_{j}^{(l)} \text{ is error of cost for } a_{j}^{(l)} \\ -\text{ Formally, } \delta_{j}^{(l)} = \frac{\partial}{\partial z_{j}^{(l)}} \text{cost}(i) \text{ for } j \geq 0 \text{ so delta values are derivative of the cost function}$
 - * Steeper slope means more incorrect, so is defined as δ
- Backpropagation in the sense that an error of a unit in previous layer is weighted sum (using Θ) of errors in current layer that are edged to the unit in question
 - Opposite of forward-propagation

Implementation note - unrolling parameters

• Process of unrolling parameters from matrices \rightarrow vectors

Optimization routine:

```
function [jval, gradient] = costFunction(theta)
optTheta = fminunc(@costFunction, initialTheta, options)
Neural network with ex. L=4: \Theta^{(1)},\Theta^{(2)},\Theta^{(3)}\to {
m matrices} Theta1, Theta2, Theta3 D^{(1)},D^{(2)},D^{(3)}\to {
m matrices}
matrices D1, D2, D3
Unroll into vectors:
thetaVec = [ Theta1(:); Theta2(:); Theta3(:) ];
gradientVec = [ D1(:); D2(:); D3(:) ];
Getting back to matrices:
Theta1 = reshape(thetaVec(1:110),10,11);
Theta2 = reshape(thetaVec(111:220),10,11);
Theta1 = reshape(thetaVec(221:231),1,11);
```

Can then do

```
function [jval, gradientVec] = costFunction(thetaVec);
```

Use unrolling and forward/back propagation to get $D^{(i)}$ and $J(\Theta)$

• Example NN

```
\begin{array}{l} -\ s_1 = 10, s_2 = 10, s_3 = 1 \\ -\ \Theta^{(1)} \in \mathbb{R}^{10 \times 11}, \Theta^{(2)} \in \mathbb{R}^{10 \times 11}, \Theta^{(3)} \in \mathbb{R}^{1 \times 11} \end{array}
-D^{(1)} \in \mathbb{R}^{10 \times 11}, D^{(2)} \in \mathbb{R}^{10 \times 11}, D^{(3)} \in \mathbb{R}^{1 \times 11}
```

Gradient Checking

- Allows to check implementation of backprop
- Numerical estimatation of gradients

 - $\begin{array}{l} -\frac{d}{d\theta}J(\theta)\approx\frac{J(\theta+\epsilon)-J(\theta-\epsilon)}{2\epsilon} \text{ where } \epsilon=10^{-4}\\ -\text{ Implement this as some gradApprox in Octave} \end{array}$
- If $\theta = [\theta_1, \dots, \theta_n] \in \mathbb{R}^n$, then the *n*th partial derivative is $\frac{\partial}{\partial \theta_n} J(\theta) \approx \frac{J(\theta_1, \dots, \theta_n + \epsilon) J(\theta_1, \dots, \theta_n \epsilon)}{2\epsilon}$

Algorithm:

```
for i = 1:n,
    % setting theta +/- epsilon
    thetaPlus = theta;
    thetaPlus(i) = thetaPlus(i) + EPSILON;
    thetaMinus = theta;
    thetaMinus(i) = thetaMinus(i) - EPSILON;
    % grad approximation
    gradApprox(i) = (J(thetaPlus) - J(thetaMinus)/(2 * EPSILON))
end
% example check
gradApprox - DVec <= 10^(-4) % precision desired</pre>
```

- Implementation notes
 - Implement backprop to compute DVec (unrolled D matrices)
 - Implement gradApprox through algorithm and check with gradient
 - Turn off checking and use backprop for learning
 - Make sure to disable gradient check \rightarrow slows down code significantly due to numerical gradient computations on every optimization iteration - reason for using backprop

Random Initialization

- Pick initial value for Θ
 - Can not initialize to 0, makes activations, errors, and partials equivalent from 1st to 2nd layer
 - All hidden features compute same function of input \rightarrow redundant
- Initialize each $\Theta_{ij}^{(l)}$ to random value $\in [-\epsilon, \epsilon]$ Values should be close to 0 but not 0
- Need to break symmetry

```
Theta1 = rand(10,11) * (2 * INIT_EPSILON) - INIT_EPSILON;
Theta2 = rand(1,11) * (2 * INIT_EPSILON) - INIT_EPSILON;
```

Overall Implementation Process

• Network architecture - connectivity between neurons

- No. of input units dimension of features $x^{(i)}$
- No. of output units number of classes
 - * $y \in \mathbb{R}^{K}$ where there are K classes
- Default 1 hidden layer and if ≥ 1 , equal number of units in each layer
 - * More is better but balance with cost function
- Training neural network steps
 - Randomly initialize weights
 - Implement forward propagation to get $h_{\Theta}(x^{(i)})$ for any $x^{(i)}$
 - Compute $J(\Theta)$
 - Implement backprop to get partial derivatives of $J(\Theta)$
 - Use gradient checking to compare backpropagation partial with numerical estimate of $\nabla J(\Theta)$, then disable check
 - Use optimization routine to minimize $J(\Theta)$

for i = 1:m,

Perform forward propagation and backpropagation using example (x(i),y(i)) (Get activations a(1) and delta terms d(1) for $l=2,\ldots,L$

- For NN $\rightarrow J(\Theta)$ is **non-convex** so has local extrema
 - Ideally want $h_{\Theta}(x^{(i)}) \approx y^{(i)}$