۲	
-	
F	
>	
2	
ř	
が出来して来りませまし	
ri	
2	
ř	
ř	
7	
- 61	
ă	
· t	
Ĕ	
- čt	
ă	
- 6	
Ŏ	
ă	
CAGCAGTCAG	
3GCTGCCTGGCTGACTTACAGCAGTCA(
E	
Ē	
Ũ	
Ā	
C	
TGCCTGGCT	
U	
Ü	֡
<u>_</u>	
E	
Ų	
טַ	
ט	
H	
Ų	
Q	
Ö	
\mathbf{c}	
Q	
AC	
GAC	
TGACCGGCT	
GTGAC	
AGTGACCGGCTG	
CAGTGAC	
TCAGTGAC	
TTCAGTGAC	
CTTCAGTGAC	
GCTTCAGTGAC	
GGCTTCAGTGAC	
GGGCTTCAGTGAC	
AGGGCTTCAGTGAC	
PAAGGGCTTCAGTGAC	
GAAGGGCTTCAGTGAC	
AGGAAGGGCTTCAGTGAC	
AGGAAGGGCTTCAGTGAC	
3AAGGAAGGGCTTCAGTGAC	
AGAAGGAAGGGCTTCAGTGAC	
agaaggaaggcttcagtgac	
AGAGAAGGAAGGGCTTCAGTGAC	
PAGAGGAAGGGCTTCAGTGAC	
ATAGAGGAAGGGCTTCAGTGAC	
GAGAAGGAAGGGCTTCA	
Saatagaaggaagggcttcagtga c	
AGAATAGAAGGAAGGGCTTCAGTGA C	
AAGAATAGAAGGAAGGGCTTCAGTGAC	
AAAGAATAGAAAGGAAGGGCTTCAGTGAC	
Aaaagaatagaaaggaaggcttcagtga c	
Taaaagaatagagaaagggcttcagtgac	
ataaaagaatagaaggaagggcttcagtgac	
Tataaaagaatagaaaggaagggcttcagtgac	
CTATAAAAGAATAGAAGGAAGGGCTTCAGTGAC	
actataaaagaatagagaaggagattcagtgac	
Gactataaaagaatagagaaggagaggcttcagtgac	
TGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
CTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
actgactataaaagaatagagaaggaagggcttcagtgac	
CACTGACTATAAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
TCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
CTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
CCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
TCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
TTCCTCACTGACTATAAAGAATAGAGGAAGGAAGGCTTCAGTGAC	
TTTCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	
TTTCCTCACTGACTATAAAGAATAGAGAAGGAAGGGCTTCAGTGAC	

ArGGCTATGATGGAGGTCCAGGGGG MetAlaMetMetGluValGlnGlyG
B

- GTGGCTGTAACTTACGTGTACTTTACCAACGAGCTGAAGCAGATGCAGGACAAGTACTCCAAAAGTGGCATTGCTTGTTTCTTAAAAGAA <u>ValālaValThrTyrValTyrPheThrāsn</u>GluLeuLysGlnMetGlnāspLysTyrSerLysSerGlyIleālaCysPyeLeuL6sGlu 181
- GATGACAGTTATTGGGACCCCAATGACGAAGAGAGTATGAACAGCCCCTGCTGGCAAGTCAAGTGGCAACTCCGTCAGCTCGTTAGAAAG 271
- AspAspSerTyrTrpAspProAsnAspGluGluSerMetAsnSerProCysTrpGlnValLysTrpGlnLeuArgGlnLeuValArgLys
 - **ATGATTTTGAGAACCTCTGAGGAAACCATTTCTACAGTTCAAGAAAAGCAACAAAATATTTCTCCCCTAGTGAGAAAAAGAGGTCCNCAG** ${ t MetIleLeuArgThrSerGluGluThrIleSerThrValGlnGluLysGlnGlnAsnIleSerProLeuValArgGluArgGlyProGln}$ 361 91
- AGAGTAGCAGCTCACATAACTGGGACCAGAGGAAGAAGCAACACATTGTCTTCTCCAAAACTCCAAGAATGAAAAGGCTCTGGGCCGCAAA ${f ArgValAlaAlaHisIlethrGlyThrArgGlyArgSerAsnThrLeuSerSerProAsnSerLysAsnGluLysAlaLeuGlyArgLys}$ 451 121
- ATAAACTCCTGGGAATCATCAAGGAGTGGGCATTCATTCCTGAGCAACTTGCACTTGAGGAATGGTGAACTGGTCATCCATGAAAAAGGG 541
- ${\tt IleAsnSerTrpGIuSerSerArgSerGIyH} is {\tt SerPheLeuSerAsnLeuH} is {\tt LeuArgAsnGIyGIuLeuValIIeH} is {\tt GluLysGIy}$ 151
- t Phe Tyr Tyr I 1 e Tyr Ser G 1 nthr Tyr Phe Arg Phe G 1 n G 1 u G 1 u I 1 e Lys G 1 u A s n Thr Lys A s n A s D Lys G 1 n Met Val G 1 n Tyr I 1 e631 181
- TACAAATACACAAGTTATCCTGACCCTATATTGTTGATGAAAAGTGCTAGAAATAGTTGTTGGTCTAAAGATGCAGAATATGGACTCTAT 721
- TyrLysTyrThrSerTyrProAspProlleLeuLeuMetLysSerAlaArgAsnSerCysTrpSerLysAspAlaGluTyrGlyLeuTyr 211
- SerileTyrGinGlyGlyilePheGluLeuLysGluAsnAspArgilePheValSerValThrAsnGluHisLeuIleAspMetAspHis 811 241
- 901
 - GluAlaSerPhePheGlyAlaPheLeuValGlyStp 271
- 991

Liquid Stability of Apo2L / TRAIL in Various Preparations Following 1 Week Storage at 30°C.

FIG._2

Stability of Lyophilized Apo2L / TRAIL Preparations After 4 Months Storage at 40°C.

Stability of Various Arginine-salt Containing Lyophilized Apo2L / TRAIL Formulations After 1 Month Storage at 50°C

FIG._3B

FIG._3C

pH-stability Profile of Apo2L / TRAIL

pH-stability Profile of Apo2L / TRAIL

Zn Coordination to Apo2L / Trail and Effect of pH

+

Effect of Polysorbate (Tween) 20 on Stabilization of Apo2L / TRAIL

Effect of Zn on Thermal Stabilization of Apo2L / TRAIL After 2 Months Storage as a Liquid Formulation Containing 0.5M Arginine-tartrate, 20 mM Tris, pH 7.0.

FIG._7

0.2

Tris

0.0

0.4

0.6

[Na₂SO₄] (Molar)

8.0

--- Ambient

1.0

1.2

FIG. 10A

Effect of Agitation Rate on Apo2L / TRAIL Crystal Dissolution (Solid Lines). Sample Temperature During the Warming Cycle is Also Shown (Dashed Lines).

FIG. 10B

FIG._10C

IEX Profile of Apo2L / TRAIL after Reconstitution of Vacuum Dried Crystals

FIG._11A

Bioactivity of Apo2L / TRAIL after Reconstitution of Vacuum Dried Crystals.

Arrhenius Profile of a 20 mg / ml Apo2L / TRAIL Lyophilized Formulation in 0.2M Na Sulfate, 20 mM Tris, pH 7.2, 0.01 % tween 20.

Effect of Salt Type on Crystallization of Partially Purified Apo2L / TRAIL. After Partial Purification of E. Coli Clarified Lysates on Sp-sepharose Cation Exchange Column, the Protein Was Eluted At 5-10 mg / ml in 20 mM Tris, pH 8 and 0.2M of One of the Salts Shown. The Samples Were Stored At 2-8°C For 3-7 Days. An Aliquot was Then Filtered and the Soluble Protein Concentration was Measured by UV Spec Scan.

Loss of Trimer by SEC @ 50°C Apo2L Crystals Co-Lyophilized with Excipients

months

Increase in % Non-Reducible Dimer @ 50°C Crystalline Apo2L Lyophilized in the Presence of Potential Stabilizers

Formation of Non-reducible Dimer in Lyophilized Apo2L/TRAIL Crystals at 50°C

Lyophillized Apo2L/TRAIL Crystals SDS-SEC Chromatograms 2.5% Residual Moisture

Lyophillized Apo2L/TRAIL Crystals SDS-SEC Chromatograms 12% Residual Moisture

SDS-SEC Chromatograms of Hexamer Fraction Collected From Apo2L Crystals Containing 2.5% HO

SDS-SEC Chromatograms of Hexamer Fraction Collected From Apo2L Crystals Containing 12% HO

Relationship Between Moisture and Rate of Covalent Bond Formation at 50°C

Relationship Between Moisture and Rate of Covalent Bond Formation at 40°C

