Kalman Filter

Embedded Systems Lecture Notes

Kasım Sinan Yıldırım

Random Variables

- Let X be a random variable with a probability density function p(x).
- Expected value of X is given by:

$$\mathbb{E}[X] = \mu = \int_{-\infty}^{\infty} x p(x) dx \tag{1}$$

• Variance of X is given by:

$$Var[X] = \sigma^2 = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$
(2)

Example

As an example, if X is a random variable of *Gaussian* distribution:

$$X \sim \mathcal{N}(\mu, \sigma^2) \implies p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (3)

Figure: Gaussian Distribution

Random Variables

• **Covariance** of two random variables X_1 and X_2 :

$$cov(X_{1}, X_{2}) = \sigma_{x_{1}x_{2}} = \mathbb{E}[(X_{1} - \mu_{1})(X_{2} - \mu_{2})]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_{1} - \mu_{1})(x_{2} - \mu_{2})p(x_{1}, x_{2})dx_{1}dx_{2}$$
(4)

where $p(x_1, x_2)$ is the joint probability.

Random Vectors

• Let $\mathbf{X} = [X_1, \dots, X_n]^T$ be a vector of random variables. Then

$$\bar{\mathbf{X}} = \boldsymbol{\mu} = \mathbb{E}[\mathbf{X}] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} X p(x_1, \dots, x_n) dx_1 \dots dx_n.$$
 (5)

The covariance matrix becomes:

$$cov(\mathbf{X}) = \mathbf{\Sigma} = \mathbb{E}[(\mathbf{X} - \mathbf{\bar{X}})(\mathbf{X} - \mathbf{\bar{X}})^{T}]$$

$$= \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (X - \mathbf{\bar{X}})(X - \mathbf{\bar{X}})^{T} \rho(X) dX_{1} \dots dX_{n}$$

$$= \begin{pmatrix} \sigma_{x_{1}}^{2} & \sigma_{x_{1}x_{2}} & \dots & \sigma_{x_{1}x_{n}} \\ \sigma_{x_{1}x_{2}} & \sigma_{x_{2}}^{2} & \dots & \sigma_{x_{2}x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{x_{1}x_{n}} & \sigma_{x_{2}x_{n}} & \dots & \sigma_{x_{n}}^{2} \end{pmatrix}$$

$$(6)$$

Gaussian Random Vectors

• A random vector $\mathbf{X} \in \mathbb{R}^n = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ is Gaussian if it has density

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \implies \rho(X) = \frac{1}{\sqrt{2\pi^n \det(\boldsymbol{\Sigma})}} e^{-\frac{1}{2}(X - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(X - \boldsymbol{\mu})}$$
(7)

where

$$\bar{\mathbf{X}} = \boldsymbol{\mu} = \mathbb{E}[\mathbf{X}] = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p(X) dX_1 \dots dX_n, \tag{8}$$

$$\mathbf{\Sigma} = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} (X - \bar{\mathbf{X}}) (X - \bar{\mathbf{X}})^T p(X) dX_1 \dots dX_n \tag{9}$$

Linear Transformation of Random Vectors

• Suppose $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ be Gaussian random vector. Consider linear transformation of \mathbf{X} :

$$Z = AX + b \tag{10}$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.

• **Z** is a random Gaussian vector with mean and covariance as below:

$$\mathbb{E}[\mathbf{Z}] = \mathbb{E}[\mathbf{A}\mathbf{X} + \mathbf{b}] = \mathbf{A}\mathbb{E}[\mathbf{X}] + \mathbf{b}$$

$$= \mathbf{A}\boldsymbol{\mu}_{X} + \mathbf{b}; \qquad (11)$$

$$\mathbf{\Sigma}_{Z} = \mathbb{E}[(Z - \mathbf{\bar{Z}})(Z - \mathbf{\bar{Z}})^{T}] = \mathbb{E}[\mathbf{A}(X - \mathbf{\bar{X}})(X - \mathbf{\bar{X}})^{T}\mathbf{A}^{T}]$$

$$= \mathbf{A}\mathbf{\Sigma}_{X}\mathbf{A}^{T} \qquad (12)$$

Discrete Time Linear Dynamical System

$$x_{t+1} = \mathbf{A}x_t + w_t, \qquad z_t = \mathbf{C}x_t + v_t$$
 (13)

where

- $x_t \in \mathbb{R}^n$ is the *state*,
- $w_t \in \mathbb{R}^n \sim \mathcal{N}(0, \Sigma_w)$ is the state noise,
- $z_t \in \mathbb{R}^p$ is the observed output,
- $v_t \in \mathbb{R}^p \sim \mathcal{N}(0, \Sigma_v)$ is the measurement noise.

Statistical Properties:

- Sensor noise v_t is independent of x_t
- State noise w_t is independent of x_t and z_t
- Process is *Markov*; i.e. if you know x_{t-1} , then knowledge of x_{t-2}, \ldots, x_0 does not give any more information about x_t :

$$x_t | x_0 \dots x_{t-1} = x_t | x_{t-1}$$
 (14)

System View

Figure: System View

- x_{t-1} is known and z_t is measured
- Estimate x_t based on knowledge x_{t-1} and z_t

"I measure z_t and I have knowledge to some extent about my previous state x_{t-1} ; so that is my current state?"

Bayesian Modeling

We have

$$x_{t+1} = \mathbf{A}x_t + w_t, \qquad z_t = \mathbf{C}x_t + v_t$$

where $w_t \sim \mathcal{N}(0, \Sigma_w)$ and $v_t \sim \mathcal{N}(0, \Sigma_v)$.

• We will **assume** that x_t is a Gaussian random vector, i.e.

$$x_t \sim \mathcal{N}(\mu_t, \Sigma_t)$$
 (15)

• Let's apply linear transformations: we know x_t and we can measure z_t ; therefore we can predict x_{t+1}

$$p(x_{t+1}|x_t) = \mathbf{A}p(x_t) + w_t$$
 (16)

$$\rho(z_t|x_t) = \mathbf{C}\rho(x_t) + v_t \tag{17}$$

Bayes' Rule

$$p(\alpha|\beta) = \frac{p(\beta|\alpha)p(\alpha)}{p(\beta)}$$
 (18)

where $p(\alpha)$ is **prior** distribution, $p(\beta|\alpha)$ is the **likelihood** and $p(\alpha|\beta)$ is **posterior** distribution.

We have the following distributions:

$$p(x_t|x_{t-1}) \sim \mathcal{N}\left(\mathbf{A}\mu_{t-1}, \mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w\right)$$
 (19)

$$p(z_t|x_t) \sim \mathcal{N}\left(\mathbf{C}\mu_t, \mathbf{C}\Sigma_t \mathbf{C}^T + \Sigma_v\right)$$
 (20)

Apply Bayes' Rule:

$$p(x_t|z_t, x_{t-1}) = \frac{p(z_t|x_t, x_{t-1})p(x_t|x_{t-1})}{p(z_t)}$$
(21)

Posterior distribution is also Gaussian. Maximize posterior distribution:

$$\hat{x}_{t} = \arg \max_{x_{t}} p(x_{t}|z_{t}, x_{t-1})$$

$$= \arg \max_{x_{t}} \frac{p(z_{t}|x_{t}, x_{t-1})p(x_{t}|x_{t-1})}{p(z_{t})}$$

$$= \arg \max_{x_{t}} p(z_{t}|x_{t}, x_{t-1})p(x_{t}|x_{t-1})$$
(22)

Therefore, we get

$$\hat{x}_{t} = \underset{x_{t}}{\operatorname{arg\,max}} \mathcal{N}\left(\mathbf{C}\mu_{t}, \mathbf{C}\Sigma_{t}\mathbf{C}^{T} + \Sigma_{v}\right) \mathcal{N}\left(\mathbf{A}\mu_{t-1}, \mathbf{A}\Sigma_{t-1}\mathbf{A}^{T} + \Sigma_{w}\right)$$
(23)

Let $\mathbf{R} = \mathbf{C}\Sigma_t \mathbf{C}^T + \Sigma_v$ and $\mathbf{P} = \mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w$. Using the **log-likelihood** function, we obtain:

$$\hat{x}_{t} = \arg\min_{x_{t}} (z_{t} - \mathbf{C}x_{t}) \mathbf{R}^{-1} (z_{t} - \mathbf{C}x_{t})^{T} + (x_{t} - \mathbf{A}x_{t-1}) \mathbf{P}^{-1} (x_{t} - \mathbf{A}x_{t-1})^{T}$$
(24)

Take the derivative with respect to x_t and after several steps we reach:

$$\hat{x}_t = \mathbf{A} x_{t-1} + K(z_t - \mathbf{C} \mathbf{A} x_{t-1})$$
 (25)

where K is the **Kalman Gain** which is defined as:

$$K = \mathbf{PC}^{T} (\mathbf{R} + \mathbf{CP}^{T} \mathbf{C}^{T})^{-1}$$
 (26)

Therefore, the values of μ_t and Σ_t that maximizes the posterior becomes:

$$\mu_t = \mathbf{A}\mu_{t-1} + K(z_t - \mathbf{C}\mathbf{A}\mu_{t-1});$$
 (27)

$$\Sigma_{t} = (\mathbf{A}\Sigma_{t-1}\mathbf{A}^{T} + \Sigma_{w}) - K\mathbf{C}(\mathbf{A}\Sigma_{t-1}\mathbf{A}^{T} + \Sigma_{w}).$$
 (28)

where K is the **Kalman Gain** which is defined as:

$$K = (\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w)\mathbf{C}^T(\mathbf{C}\Sigma_t\mathbf{C}^T + \Sigma_v + \mathbf{C}(\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w)^T\mathbf{C}^T)^{-1}$$
(29)

Therefore, our posterior distribution becomes:

$$x_{t} \sim \mathcal{N}\left(\mu_{t}, \Sigma_{t}\right) \tag{30}$$

The Algorithm

Kalman Filter Pseudocode

- 1: Kalman Filter $(\mu_{t-1}, \Sigma_{t-1}, z_t)$ 2: $K = (\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w)\mathbf{C}^T(\mathbf{C}\Sigma_t\mathbf{C}^T + \Sigma_v + \mathbf{C}(\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w)^T\mathbf{C}^T)^{-1}$
- 3: $\mu_t = \mathbf{A}\mu_{t-1} + K(z_t \mathbf{C}\mathbf{A}\mu_{t-1})$
- 4: $\Sigma_t = (\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w) K\mathbf{C}(\mathbf{A}\Sigma_{t-1}\mathbf{A}^T + \Sigma_w)$
- 5: Return (μ_t, Σ_t)
- It is an optimal estimator
 - infers parameters of interest from inaccurate and uncertain observations.
- It is recursive so that new measurements can be processed as they arrive.