A Top-Down Approach

Chapter 5.1 ~ 5.4

5.1 Introduction

- Forwarding table
- Flow table
- 1. Router output port forwarding
- 2. drop packet
- 3. Rewrite (2,3,4) middle box

5.1 Introduction

- Drop packet
- 1. TTL
- 2. 혼잡 제어
- 3. 401 ERROR

5.1 Introduction

- Per-route control(라우터별 제어)
- Logically centralized control(논리적 중앙 집중형 제어)

centralized routing algorithm VS decentralized routing algorithm static routing algorithm VS dynamic routing algorithm load-sensitive algorithm VS load-insensitive algorithm

발표자: 박지운

centralized routing algorithm

• 다익스트라, OSPF

decentralized routing algorithm

- 거리 벡터, RIP
- 어느것이 성능이 좋을까? 가격은?

• 느린 다익스트라
$$d_x(y) = \min_{v} \{ c(x, v) + d_v(y) \}$$

- 간선 정보를 전부 알아야되지 않나?
- 물어본 정보를 사용한다
- 다른 간선간의 정보도 기억하나?
- 물어볼때 가져오나?

Node x table

	cost to	cost to	cost to					
	x y z	x y z	x y z					
mo y	0 2 7 ∞ ∞ ∞	x 0 2 3 x E v	0 2 3					
or h	∞ ∞ ∞	z 7 1 0 z	3 1 0					

Node y table

cost to				X	X		C	ost	to	l	X		cc	ost	to		
		X	У	Z	Λ	1	\	Х	у	Z	ı	١٠.		Х	У	Z	
_	х	∞	00	00		1	х	0	2	7	V		х	0	2	3	
rom	у	2	0	1)	o m	У	2	0	1	Y	rom	у	2	0	1	
Ψ	Z	∞	∞	∞		₹	z	7	1	0	Λ	=	z	3	1	0	
		1			۱ I	ı	4				1	1 1					

Node z table

cost to			П	۸١	cost to			L	/		cost to					
		х	У	Z	17	1	<u>+ </u>	Х	у	Z			<u> </u>	X	У	z
	х	∞	00	∞	/	_	х	0	2	7	/	_	Х	0	2	3
rom	у	∞	∞	∞		rom	у	2	0	1		ro m	у	2	0	1
fr	Z	7	1	0		Ŧ	z	3	1	0)	Ŧ	z	3	1	0
		'						'						'		

- 간선 정보가 바뀐다면...
- 변경된 거리벡터를 전파한다 (1)

- b.

- 변화가 없으면 전파하지 않는다 (2)
- 이웃한 노드에서 (1)-(2)계속 실행

$$D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60 + 0, 1 + 5\} = 6$$

a.

• 무한대 개수 문제

- 간선 정보가 바뀐다면...
- 변경된 거리벡터를 전파한다 (1)

- b.

- 변화가 없으면 전파하지 않는다 (2)
- 이웃한 노드에서 (1)-(2)계속 실행

$$D_{y}(x) = \min\{c(y,x) + D_{x}(x), c(y,z) + D_{z}(x)\} = \min\{60 + 0, 1 + 5\} = 6$$

a.

• 무한대 개수 문제

- 포이즌 리버스
- 나 무한대에요~~

a.

b.

static routing algorithm

• 직접 라우팅 정보를 관리, 가능한가?

dynamic routing algorithm

- 비용을 시스템에게 맡긴다
- 루프문제, 경로 진동

- 진동 문제
- 동시에 계산하지 못한다면?
- 네비게이션 고속도로, 시골

ullet

a. Initial routing

b. x, y detect better path to w, clockwise

c. x, y, z detect better path to w, counterclockwise

d. x, y, z, detect better path to w, clockwise

load-sensitive algorithm

• 혼잡제어, ARPAnet

load-insensitive algorithm

RIP OSPF BGP (Current)

5.3 Intra-AS Routing in the Internet: OSPF

- ASs (autonomous system) ISP layer으로 생각해도 될까?
- OSPF (open shortest path first) 개방형 최단 경로 우선 프로토콜
- AS내의 다익스트라
- 중앙제어 or 분산제어

- BGP (Border GateWay Protocol) 경계 게이트웨이 프로토콜
- As간의 라우팅
- CIDR, prefix
- Gateway router, Internal router

- GBP Connection (TCP)
- External GBP, Internal BGP
- Internal BGP가 왜 필요하지?
- AS3 x -> AS2 AS3 x

- AS-PATH
- NEXT-HOP
- Hot patato routing(local preference)

- Anycast
- CDN
- 같은 주소라는게...

종류	공인 IP의 범위	사설IP의 범위
Α	1.0.0.0~9.255.255.255 11.0.0.0 ~ 126.255.255.255	10.0.0.0~10.255.255.255
В	128.0.0.0~172.15.255.255 172.32.0.0~191.255.255.255	172.16.0.0~172.31.255.255
С	192.0.0.0~192.167.255.255 192.169.0.0~223.255.255.255	192.168.0.0~192.168.255.255

• AS 라우팅 정책

W,X,Y: ISP

Provider network

Customer network

- A,B,C: backbone provider network
- X -> multi-homed access ISP
- A는 B,C에게 경로를 알리지 않는다?
- B는 C에게 WA를 알리지 않는다?

• 1