Blatt 7: Stetigkeit & Grenzwerte von Funktionen

|1| Stetigkeit — Da Capo.

An welchen Stellen sind die folgenden Funktionen stetig bzw. unstetig? Begründe deine Aussagen (keine Beweise!).

(a)
$$f : \mathbb{R} \setminus \{-1\} \to \mathbb{R}, f(x) = 1/(x+1)$$

(b)
$$g: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, g(x) = (x^2 - 1)/(x + 1)$$

- (c) Inwiefern unterscheiden sich f und g nahe $x_0 = -1$?
- (d) $\operatorname{sgn}: \mathbb{R} \to \mathbb{R}, \operatorname{sgn}(x) := x/|x| \ x \neq 0 \text{ und } \operatorname{sgn}(0) := 0.$

Hinweis: Das Anfertigen von Skizzen ist explizit erwünscht!

|2| Grenzwerte explizit.

Untersuche, ob die Grenzwerte existieren und wenn ja, berechne sie! Zeichne auch die Graphen der jeweiligen Funktion.

(a)
$$\lim_{x \searrow 1} \frac{1+x}{1-x}$$
 (b) $\lim_{x \to \infty} \frac{x^3 - 5x^2 - 1}{1-x^3}$ (c) $\lim_{x \to \infty} \exp\left(\frac{x^2 - 131x - 97}{(x+17)(x+1)}\right)$

(c)
$$\lim_{x \to \infty} \exp\left(\frac{x^2 - 131x - 97}{(x+17)(x+1)}\right)$$

3 Verständnisaufgabe: Grenzwerte von Funktionen.

Sei $f: \mathbb{R} \to \mathbb{R}$ eine Funktion mit der Eigenschaft

$$f(\frac{1}{n}) = 0$$
 für alle $n \ge 1$,

d.h.
$$0 = f(1) = f(1/2) = f(1/3) = f(1/4) = \dots$$

Welche der folgenden Aussagen ist korrekt? Begründe.

- (1) Es gilt f(0) = 0.
- (2) Es gilt $\lim_{x\to 0} f(x) = 0$.
- (3) Man kann beides folgern und daher ist f stetig in 0.
- (4) man kann keine der beiden Aussagen (1) und (2) folgern.
- 4 Einseitige Grenzwerte & Grenzwert

Sei $c \in (a,b)$, sei $f:(a,b) \setminus \{c\} \to \mathbb{R}$ eine Funktion und sei $\alpha \in \mathbb{R}$. Beweise, dass

$$\lim_{x \searrow c} f(x) = \alpha = \lim_{x \nearrow c} f(x) \quad \Longleftrightarrow \quad \lim_{x \to c} f(x) = \alpha$$

gilt. (Insbesondere existiert der Limes.)

[5] Schnittstellenaufgabe: Verhalten von Funktionen.

Im Schulkontext ist es wichtig, ein Gefühl dafür zu entwickeln, welches Verhalten von Funktionen möglich ist und welches nicht¹. Gesucht sind also Beispiele von Funktionen mit den angegebenen Eigenschaften bzw. Argumente warum es solche Funktionen nicht geben kann. Dabei kannst du explizit Funktionen/Argumente angeben oder auch entsprechende Graphen/Argumente skizzieren.

- (a) $f: \mathbb{R} \to \mathbb{R}$ stetig und beschränkt.
- (b) $f: \mathbb{R} \to \mathbb{R}$ stetig und unbeschränkt.
- (c) $f:(0,1] \to \mathbb{R}$ stetig, unbeschränkt.
- (d) $f:[0,1]\to\mathbb{R}$ beschränkt, unstetig.
- (e) $f:[0,1]\to\mathbb{R}$, die kein Maximum besitzt.
- (f) $f:[0,1)\to\mathbb{R}$ stetig, die kein Minimum besitzt.
- (g) $f: [0,1] \to \mathbb{R}$ mit f(0) = 1, f(1) = -1 ohne Nullstelle.
- (h) $f:[0,1] \rightarrow [0,1]$ stetig und schneidet die 1. Mediane nicht.

6 Verständnisaufgabe: Annehmen des Maximums.

Welche der folgenden Aussagen ist korrekt? Begründe.

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$

- (1) hat ein Maximum, wenn sie stetig ist,
- (2) hat ein Maximum, wenn sie stetig und beschränkt ist,
- (3) hat kein Maximum, wenn sie unstetig ist.
- (4) Keine der Aussagen stimmt.

[7] Stetig? Stetig fortsetzbar?

Gegeben ist die Funktion $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \quad f(x) = \frac{1}{x^2}.$

- (a) Bewerte die Aussage "f ist unstetig im Punkt $x_0 = 0$ ".
- (b) Zeige, dass f nicht stetig auf ganz $\mathbb R$ fortgesetzt werden kann. *Hinweis:* Mache dir zuerst klar, was diese Aussage genau bedeutet, vgl. Vo. 2.1.28.

8 Noch ein Aspekt der Stetigkeit.

Zeige, dass eine Funktion $f: \mathbb{R} \to \mathbb{R}$ genau dann stetig im Punkt $a \in \mathbb{R}$ ist, falls sie in a im folgenden Sinn "gut durch eine konstante Funktion approximiert" werden kann: Es gibt eine Konstante $c \in \mathbb{R}$, sodass der "Restterm" R(x) := |f(x) - c|

$$\lim_{x \to a} R(x) = 0 \quad \text{erfüllt.}$$

Hinweis: Fertige eine Skizze an um die Aussage zu verstehen, dann setzte die resp. Definitionen zusammen und beherzige für die schwierigere Rückrichtung Vo. 2.1.22(ii).

 $^{^1\}mathrm{Vgl}.$ Grundkompetenzkatalog zur SRDP AHS, Inhaltsbereich "Funktionale Abhängigkeiten" FA 1.5 (Eigenschaften von Funktionen erkennen, benennen [...] können) & FA 1.9 (Einen Überblick über die wichtigsten Typen mathematischer Funktionen geben, ihre Eigenschaften vergleichen können).