TD105

Welche Gesamtkapazität hat die folgende Schaltung?

Gegeben : $C1 = 0.01 \mu F$; C2 = 5 nF und <math>C3 = 5 000 pF

Lösung:

5 nF

Reihenschaltung:
$$\frac{1}{Cges} = \frac{1}{C1} + \frac{1}{C2} + \frac{1}{C3} + \dots$$

Wir stellen alle Werte auf Nanofarad um:

	0	,	Milli			Mikro				Nano		Piko			
0,01 μF								0	,	0	1				
5 nF												5			
5000 pF												5	0	0	0

Taschenrechner:	> Eingabe	= Ausgabe
C Parallel:	> C2 = 5 nF + C3 = 5 nF	= 10 nF
1 geteilt durch C parallel :	>1 ÷ 10 nF	= 0,1
1 geteilt durch C1 :	>1 ÷ 10 nF	<u>= 0,1</u>
1 geteilt durch C 2 + 3:	> 0,1 + 0,1	= 0,2
Cges = 1 geteilt durch Cges	>1 ÷ 0,2	= 5 nF

Die Parallelschaltung der Kondensatoren C2 und C3 verdoppelt die Kapazität. Wird der Parallelschaltung noch C1 in Reihe hinzugefügt, halbiert sie sich in diesem Fall.