MAT301: Extra Topics

QiLin Xue

August 8, 2021

Contents

l Fre	ee Abelian Groups
1.1	Proposition 1
1.2	Proposition 2: Homomorphisms and Bases
	Proposition 3
1.4	Invertible Element of $Mat_{n imes n}(\mathbb{Z})$
1.5	Proposition 4
1.6	Proposition 5
1.7	7 Second Reduction Theorem
1.8	B Theorem: Smith Normal Form
1.9	Integral Elementary Row Operations
1.1	O Smith Normal Form Algorithm
1.1	1 Torsion Subgroup
1.1	2 Proposition 6
1.1	3 Proposition 7

Free Abelian Groups

Definition Set of $\mathbb Z$ linear combinations of elements of S

Let (A,+) be an abelian group. Note that if $S\subseteq A$, then

$$\langle S \rangle = \left\{ \sum_{i=1}^{m} k_i a_i : m \in \mathbb{Z}_{\geq 0}, \ a_i \in S, k_i \in \mathbb{Z} \right\}$$

where the right hand side can be denoted as $\operatorname{span}_{\mathbb{Z}}(S)$, which is the set of all \mathbb{Z} linear combinations of elements of S.

Since empty sets are trivial, we have

$$\operatorname{span}_{\mathbb{Z}}(\emptyset) = \{0\} \tag{1}$$

Definition Linear Independence, Span, Basis

Let $S \subseteq A$.

1. S is linearly independent (over \mathbb{Z}) if for any $m \in \mathbb{Z}_{>0}$, $a_1, \ldots, a_m \in S$, and $k_1, \ldots, k_m \in \mathbb{Z}$,

$$\sum_{i=1}^{m} k_i a_i = 0 \implies a_1 = \dots = a_m = 0,$$

or equivalently if every element of A can be written as a \mathbb{Z} -linear combination of elements of S in at most one way.

- 2. S spans A (over \mathbb{Z}) if $A = \operatorname{span}_{\mathbb{Z}}(S)$, or equivalently every element of A can be written as a \mathbb{Z} -linear combination of elements of A in at least one way.
- 3. S is a basis (or \mathbb{Z} -basis) of A if S is linearly independent and spans A, or equivalently if every element of A can be written as a \mathbb{Z} -linear combination of elements of S in exactly one way.

Example 1: e_1, \ldots, e_m is a basis of \mathbb{Z}^m .

Definition Free Abelian Group

A free abelian group is an abelian group that has a basis.

A free abelian group of finite rank is an abelian group that has a finite basis.

- Example 2: \mathbb{Z}^m is a free abelian group of finite rank for all $m \in \mathbb{Z}_{>0}$. Note that $\mathbb{Z}^0 = \{0\}$.
- Example 3: If $\{v_1, \ldots, v_m\} \subseteq \mathbb{R}^n$ is linearly independent over \mathbb{R} and A is the subgroup of \mathbb{R}^n generated by $\{v_1, \ldots, v_n\}$, i.e. $A = \langle v_1, \ldots, v_n = \operatorname{span}_{\mathbb{Z}}(\{v_1, \ldots, v_n\})$, then $\{v_1, \ldots, v_n\}$ is a \mathbb{Z} -basis of A, so A is a free abelian group of finite rank.
- **Example 4:** If $\{G_i\}_{i\in I}$ is a set of groups, then

$$\prod_{i \in I}' G_i := \left\{ (g_i)_{i \in I} \in \prod_{i \in I} G_i \, \middle| \, g_i = e_{G_i} \text{ for all but finitely many } i \in I \right\}$$

is a subgroup of the direct product $\prod_{i \in I} G_i$. If the G_i are abelian, then we denote $\prod_{i \in I}' G_i$ by $\bigoplus_{i \in I} G_i$, and call it the direct sum of $\{G_i\}_{i \in I}$.

If I is infinite and $G_i = \mathbb{Z}$ for all $i \in I$, then $\bigoplus_{i \in I} G_i = \bigoplus_{i \in I} \mathbb{Z}$ is a free abelian group that is not of finite rank (it has an infinite basis but no finite basis).

Note that free abelian groups are like vector spaces over \mathbb{Z} .

■ Corollary

For all $m, n \in \mathbb{Z}_{>0}$, we have $\mathbb{Z}^m \cong \mathbb{Z}^n$ if and only if m = n.

■ Proposition 1

Let A be a finitely generated group. Then A is of finite rank if and only if A is a finite group.

Proof: The "only if" direction is immediate. Suppose A is a finite group and let $\{g_1,\ldots,g_m\}$ be a generating set of A. Let $\{a_i\}_{i\in I}$ be a basis of A. There is a finite subset $\{a_{i_1},\ldots,a_{i_n}\}$ of $\{a_i\}_{i\in I}$ such that

$$\{g_1, \dots, g_m\} \subseteq \operatorname{span}_{\mathbb{Z}}(\{a_{i_1}, \dots, a_{i_n}\}).$$
 (2)

Then

$$A = \operatorname{span}_{\mathbb{Z}}(\{g_1, \dots, g_m\}) \subseteq \operatorname{span}_{\mathbb{Z}}(\{a_{i_1}, \dots, a_{i_n}\}) \subseteq A, \tag{3}$$

so $\operatorname{span}_{\mathbb{Z}}(\{a_{i_1},\ldots,a_{i_n}\})=A$. Since $\{a_{i_1},\ldots,a_{i_n}\}\subseteq \{a_i\}_{i\in I}$ and $\{a_i\}_{i\in I}$ us linearly independent, it follows that $\{a_{i_1},\ldots,a_{i_n}\}$ is linearly independent. Therefore, $\{a_{i_1},\ldots,a_{i_n}\}$ is a basis of A, so A is of finite rank.

Warning! Here are a few misconceptions. Take \mathbb{Z} for example. Then:

- $\{2,3\}$ is a minimal spanning subset of \mathbb{Z} , but it is not a basis as it is linearly dependent.
- $\{2,3\}$ spans \mathbb{Z} , but does not contain a basis of \mathbb{Z} .
- $\{2\}$ is a maximal linearly independent subset of \mathbb{Z} , but it is not a basis because its span is $2\mathbb{Z} \subseteq \mathbb{Z}$.
- $\{2\}$ is linearly independent, but it is not contained in a basis of \mathbb{Z} .

■ Proposition 2: Homomorphisms and Bases

Let A be a free abelian group and let $\{a_i\}_{i\in I}$ be a basis of A.

Let B be an abelian group and let $\{b_i\}_{i\in I}$ be a family of elements of B.

Then there exists a unique homomorphism $\phi: A \to B$ such that $\phi(a_i) = b_i$ for all $i \in I$. IT is surjective if and only if $\{b_i\}_{i \in I}$ spans B, it is injective if and only if $\{b_i\}_{i \in I}$ is linearly independent, and it is an isomorphism iff $\{b_i\}_{i \in I}$ is a basis of B.

Let A be a free abelian group of finite rank n. For any basis $\alpha = \{a_1, \dots, a_n\}$ of A there exists a unique isomorphism:

$$\theta_{\alpha}: A \to \mathbb{Z}^n \tag{4}$$

such that $\theta(a_i) = e_i$ for all i = 1, ..., n. Note that:

$$\bullet \ \theta_{\alpha}^{-1}(k_1,\ldots,k_n) = \sum_{i=1}^n k_i a_i$$

• For all $a \in A$, let us write $[a]_{\alpha} = \theta_{\alpha}(a) \in \mathbb{Z}^n$.

■ Proposition 3

Let A, B be free abelian groups of finite ranks n and m, respectively. Let $\alpha = \{a_1, \ldots, a_n\}$ be a basis of A and $\beta = \{b_1, \ldots, b_m\}$ be a basis of B. For all homomorphisms $\phi : A \to B$ there exists a unique matrix

$$[T]^{\alpha}_{\beta} \in \mathsf{Mat}_{m \times n}(\mathbb{Z}) \tag{5}$$

such that for all $a \in A$ we have

$$[Ta]_{\beta} = [T]_{\beta}^{\alpha}[a]_{\alpha}. \tag{6}$$

Let C be a free abelian group of finite rank p and let $\gamma=\{c_1,\ldots,c_p\}$ be a basis of C. If $T:A\to B$ and $S:B\to C$ are homomorphisms, then

$$[S \circ T]^{\alpha}_{\gamma} = [S]^{\beta}_{\gamma}[T]^{\alpha}_{\beta} \tag{7}$$

Proof: Let $T: A \to B$ be a homomorphism. Define

$$[T]^{\alpha}_{\beta} = [[Ta_1]_{\beta} \cdots [Ta_n]_{\beta}]. \tag{8}$$

The rest is straightforward.

■ Corollary

A homomorphism $T:A\to B$ is an isomorphism if and only if there exists $N\in \mathsf{Mat}_{n\times m}(\mathbb{Z})$ such that

$$[T]^{\alpha}_{\beta} n = I_m \text{ and } N[T]^{\alpha}_{\beta} = I_n \tag{9}$$

in which case m=n.

■ Invertible Element of $Mat_{n\times n}(\mathbb{Z})$

Definition Invertible Element of $Mat_{n\times n}(\mathbb{Z})$

Let n be a positive integer and $M \in \mathsf{Mat}_{n \times n}(\mathbb{Z})$. We say that M is an invertible element of $\mathsf{Mat}_{n \times n}(\mathbb{Z})$ if there exists $N \in \mathsf{Mat}_{n \times n}(\mathbb{Z})$ such that

$$MN = I_n = NM, (10)$$

in which case N is unique, denoted by M^{-1} , and called the *inverse of* M. We denote the subset of invertible elements of $\mathrm{Mat}_{n\times n}(\mathbb{Z})$ by $\mathrm{GL}_n(\mathbb{Z})$.

Note that $M \in \mathsf{Mat}_{n \times n}(\mathbb{Z})$ is invertible if and only if it is invertible in $\mathsf{Mat}_{n \times n}(\mathbb{Q})$ and $M^{-1} \in \mathsf{Mat}_{n \times n}(\mathbb{Z})$.

■ Proposition 4

$$\mathsf{GL}_n(\mathbb{Z}) = \{ M \in \mathsf{Mat}_{n \times n}(\mathbb{Z}) | \det(M) \in \{\pm 1\}$$
(11)

Proof: If $M \in GL_n(\mathbb{Z})$, then

$$\det(M)\det(M^{-1}) = \det(I_n) = 1 \tag{12}$$

Since $det(M), det(M^{-1}) \in \mathbb{Z}$, it follows that $det(M) = det(M^{-1}) = \pm 1$.

If $M \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$ and $\det(M) = \pm 1$, then the usual formula for $M^{-1} \in \operatorname{Mat}_{n \times n}(\mathbb{Q})$ shows that $M^{-1} \in \operatorname{Mat}_{n \times n}(\mathbb{Z})$. Thus, $M \in \operatorname{GL}_n(\mathbb{Z})$.

■ Proposition 5

For each free abelian group A of finite rank, every subgroup B of A is a free abelian group and

$$\operatorname{rank} B \le \operatorname{rank} A \tag{13}$$

Remarks: One can drop the assumption that A is of finite rank.

Proof: We will proceed by induction on $m = \operatorname{rank}(A)$.

If $m \ge 0$ and assume that for each abelian group of rank m, every subgroup of it is a free abelian group of rank at most m.

Let A be a free abelian group of rank m+1 and let $B \leq A$. We can choose a basis $\alpha = \{a_1, \ldots, a_{m+1}\}$ of A and define

$$A' = \operatorname{span}_{\mathbb{Z}}(\{a_1, \dots, a_m\}) \le A \tag{14}$$

Then A' is a free abelian group of rank m.

■ Second Reduction Theorem

Let A be a finitely generated abelian group, $\phi: \mathbb{Z}^m \to A$ is a surjective homomorphism, and $B = \ker \phi \leq \mathbb{Z}^m$. Recall that it suffices to construct an isomorphism $\mathbb{Z}^m \to \mathbb{Z}^m$ that maps B to

$$d_1 \mathbb{Z} \times \cdots \times d_n \mathbb{Z} \times \{0\} \times \cdots \times \{0\} \leq \mathbb{Z}^m$$

for some positive integers $d_1 | \cdots | d_n$.

Since $B \leq \mathbb{Z}^m$, we now know that B is a free abelian group of rank $n \leq m$. Let r = m - n. It then suffices to prove the following theorem (too lazy to write proof, can be found in Lec 20):

Let C be a free abelian group of finite rank m and let $B \leq C$. Then B is a free abelian group of rank at most m. Let $n = \operatorname{rank}(B) \leq m$.

Then, there exists bases $\beta = \{b_1, \dots, b_n\}$ of B and $\gamma = \{c_1, \dots, c_m\}$ of C and positive integers $d_1 | \dots | d_n$ such that

$$b_i = d_i c_i \tag{15}$$

for all i = 1, ..., n. Moreover, $d_1, ..., d_n$ are unique.

Indeed, suppose that this theorem holds and apply it to $B = \ker \phi \leq \mathbb{Z}^n = C$. The isomorphism

$$\mathbb{Z}^m = C \xrightarrow{[\cdot]_{\gamma}} \mathbb{Z}^m \tag{16}$$

maps $b_i = d_i c_i$ to $d_i e_i$ for all i = 1, ..., n. Therefore, the isomorphism maps B to $d_1 \mathbb{Z} \times \cdots \times d_n \mathbb{Z} \times \{0\} \times \cdots \times \{0\}$. We will prove a more general theorem.

Let B and C be free abelian groups of finite ranks n and m, respectively. Let $\Psi: B \to C$ be a homomorphism.

Then there exists bases $\beta = \{b_1, \ldots, b_n\}$ of B and $\gamma = \{c_1, \ldots, c_m\}$ of C, there exists a positive integer

 $r \leq m, n$ and there exists positive integers $d_1 | \cdots | d_r$ such that

$$\Psi(b_i) = \begin{cases} d_i c_i & 1 \le i \le r \\ 0 & r < i \le n \end{cases}$$
(17)

or equivalently

$$[\Psi]_{\gamma}^{\beta} = \begin{bmatrix} d_1 & 0 & \\ & \ddots & 0 \\ 0 & d_r & \\ \hline & 0 & 0 \end{bmatrix}$$
 (18)

Moreover, r, d_1, \ldots, d_r are unique.

Let β_0, γ_0 be bases of B, C, respectively. The theorem is equivalent to the assertion that there exists matrices $P \in GL_m(\mathbb{Z}), \ Q \in GL_n(\mathbb{Z})$ such that

$$P[\Psi]_{\gamma_0}^{\beta_0} Q = \begin{bmatrix} d_1 & 0 & 0 & 0 \\ & \ddots & & 0 \\ & & 0 & d_r & 0 \end{bmatrix}$$
 (19)

for some positive integers $d_1|\cdots|d_r$, and r,d_1,\ldots,d_r are unique. It turns out that slightly more is true.

■ Theorem: Smith Normal Form

Let $M \in \operatorname{Mat}_{m \times n}(\mathbb{Z})$. There exist a sequence of integral elementary row and column operations that transform M to a matrix of the form

where $d_1|\cdots|d_n$ are positive integers. Moreover, $r=\mathrm{rank}\,(M)$ and for all $i=1,\ldots,r,\ d_i=d_i(M)/d_{i-1}(M)$. In particular, r,d_1,\ldots,r_r are unique.

Definition i^{th} determinant divisor of M

For $i = 1, ..., \min\{m, n\}$, define

$$d_i(M) := \gcd\{\text{determinants of } i \times i \text{ minors of } M.\}$$
 (21)

and define $d_0(M) = 1$. The number $d_i(M)$ is called the i^{th} determinant divisor of M.

Note that if $i < \operatorname{rank}(M)$, then $d_i(M) > 0$.

■ Integral Elementary Row Operations

There are three main operations:

- To interchange row i and row j, this is equivalent to multiplying on the left by $P_{i,j}$.
- To multiply row i by -1, we multiply on the left by D_i .
- To replace row i with row i plus k times row j, we multiply on the left by $E_{ij}(k)$.

Note that if we were to act on the columns instead, the elementary matrices should be multiplied on the right.

The integral elementary matrices $P_{ij}, D_i, E_{ij}(k)$ generate the group $GL_n(\mathbb{Z})$.

■ Smith Normal Form Algorithm

If M=0, we are done. Assume $M\neq 0$.

- 1. Let $\delta(M) = \min\{|M_{ij}| : M_{ij} \neq 0\}$. Choose $M_{ij} \neq 0$ such that $|M_{ij}| = \delta(M)$.
- 2. If M_{ij} does not divide an entry in its row, say $M_{i\ell}$, and $M_{i\ell} = gM_{ij} + r$ where $q, r \in \mathbb{Z}$ and $0 < r < |M_{ij}|$, then replace $\operatorname{col}_{\ell}$ with $\operatorname{col}_{\ell} q\operatorname{col}_{j}$:
- 3. This results in a matrix M' with $M'_{i\ell}=r$ and $\delta(M')\leq r<|M_{ij}|=\delta(M)$. Let M denote M' now. Go to the previous step.
- 4. If M_{ij} does not divide an entry in its column, we do the same thing analogous to the previous step.
- 5. If M_{ij} divides every entry in its row and column, we can clear the other entries in row i and column j using M_{ij} (i.e. all the other entries are 0). Let M denote the resulting matrix.
- 6. If M_{ij} divides every entry in M, skip this step. Otherwise, choose $M_{k\ell}$ such that $M_{ij} \nmid M_{k\ell}$. Then replace row i with $\text{row}_i + \text{row}_j$. Let M denote the new matrix. Go to the first step.
- 7. M_{ij} divides every entry of M. Swap row 1 and row i and swap column 1 and column j. If $M_{ij} < 0$, multiply row by -1.

We look at the resulting matrix M' in the bottom right corner inside the larger matrix. Let M denote M'.

8. Repeat steps 1 to 6 until M^\prime in the previous step is the empty matrix.

■ Torsion Subgroup

Definition Torsion subgroup of A

Let A be an abelian group. For each $n \in \mathbb{Z}_{>0}$, we define the n-torsion subgroup of A to be

$$A[n] := \{ a \in A : na = 0 \}$$
 (22)

we define the n-power torsion subgroup of A to be

$$A[n^{\infty}] := \left\{ a \in A : n^k a = 0 \text{ for some } k \in \mathbb{Z}_{>0} \right\}$$
 (23)

and we define the torsion subgroup of A to be

$$\operatorname{Tor}(A) := \{ a \in A : ma = 0 \text{ for some } m \in \mathbb{Z}_{>0} \} = \bigcup_{n \in \mathbb{Z}_{>0}} A[n]. \tag{24}$$

■ Proposition 6

Let A be a finitely generated group. If $A\cong \mathbb{Z}^r\times T$, where $r\in \mathbb{Z}_{\geq 0}$ and T is a finite abelian group, then $T\cong \operatorname{Tor}(A)$ and $\mathbb{Z}^r\cong A/\operatorname{Tor}(A)$.

Consequently, T is unique up to isomorphism and r is unique.

Proof: First, note that if $\phi: B \to C$ is an isomorphism between abelian groups, then $\phi(\text{Tor}B) = \text{Tor}C$, so ϕ restricts to an isomorphism $\phi: \text{Tor}B \to \text{Tor}C$.

Let $\phi:A\to\mathbb{Z}^r\times T$ be an isomorphism as in the proposition statement.

Since $\operatorname{Tor}(\mathbb{Z}^r \times T) = \{(0, \dots, 0)\} \times T \cong T$, we have $\operatorname{Tor}(A) \cong \{0\} \times T \cong T$.

Also since $\phi(\text{Tor}A) = \{0\} \times T$, the map

$$A/\operatorname{Tor} A \to \mathbb{Z}^r \times T/(\{0\} \times T)$$

 $a + \operatorname{Tor} A \mapsto \phi(a) + (\{0\} \times T)$

is a well defined isomorphism. Therefore,

$$A/\mathrm{Tor}A \cong \mathbb{Z}^r \times T/(\{0\} \times T)$$
$$\cong \mathbb{Z}^r/\{0\} \times T/T$$
$$\cong \mathbb{Z}^r \times \{0\}$$
$$\cong \mathbb{Z}^r$$

■ Proposition 7

Let A be a finitely generated abelian group. If $A\cong \mathbb{Z}^r\times P\times B$, where $r\in \mathbb{Z}_{\geq 0}$, P is a finite abelian group with $|P|=p^k$ for some prime p, and B is a finite abelian group with $p\nmid |B|$, then

$$A[p^{\infty}] \cong P \tag{25}$$