

Kleben als Fügeverfahren

- Fügen: 4 Hauptgruppe der Fertigungsverfahren (DIN 8580)
- langfristiges Verbinden oder sonstigen Zusammenbringen mehrerer Werkstücke geometrisch bestimmter fester Form oder von ebensolchen Werkstücken mit formlosem Stoff.

9 verschiedene Gruppen (DIN 8593):

Zusammen- setzen	Füllen	An- und Einpressen
Fügen durch Urformen	Fügen durch Umformen	Schweißen
Löten	Kleben	Textiles Fügen

Definition Kleben

 Herstellung einer festen Verbindung zweier Teile durch einen synthetischen Werkstoff (Klebstoff), der durch physikalisches Abbinden oder chemische Reaktion verfestigt wird (Aushärten) und die Teile infolge der Oberflächenhaftung (Adhäsion) sowie der zwischenmolekularen Kräfte (Kohäsion) miteinander verbindet.

Definition Klebstoff

DIN 16920

 Klebstoff ist ein nicht metallischer Werkstoff, der Körper durch Oberflächenhaftung und innere Festigkeit (Adhäsion und Kohäsion) verbinden kann, ohne dass sich das Gefüge der Körper wesentlich ändert

Naturwissenschaftliche Grundlagen

Klebstoff härtet durch Trocknung, chemische oder physikalische Reaktion aus und hält dadurch die Materialien zusammen.

Zwei Faktoren beeinflussen die Haltbarkeit einer Verklebung:

- Adhäsion (Oberflächenhaftung)
- Kohäsion (innere Festigkeit)

Adhäsion

- Lat. (adhaerere) "anhaften"
- Kräfte, die an Berührungsflächen von Klebstoff und Werkstoff deren Zusammenhalt bewirken

Adhäsion

 Physikalische Adhäsion: durch Ausbildung von Dipolen

 Chemische Adhäsion: chemische Bindung

 Mechanische Adhäsion: mechanische Verankerung in raue Oberflächen

Adhäsion

- Geringer Abstand zwischen Klebstoff- und Werkstoffoberfläche notwendig zum Wirken der Kräfte
 - muss sich der Oberflächen anpassen können
 - intensive Benetzung der Oberfläche durch den Klebstoff Voraussetzung gute Klebung
 - Klebstoffe in flüssiger Form

Setae

- Härchen aus Keratin
- 1/10 der Dicke eines menschl. Haars
- Ca. 5000/mm²

Spatulae

- Enden der Setae
- Mehrere 100/Setae
- Spatelförmig
- 200-500 Nanometer

How engineers have mimicked the fine hairs on a gecko's foot

Nanohairs grown on top of microhairs are just hundreds of nanometres wide

Microhairs

Polymer substrate on which microhairs are grown

GLASS

The polymer nanohairs conform to the shape of, say, a granular glass surface. Attractive forces between the nanohair ends and the granular faces keep them stuck fast

Gecko:

 Klebt mit Hilfe von Van-der-Waals-Bindungen

 Würden einem Gegengewicht eines Wassereimers standhalten

Kohäsion

- Lat. (cohaerere) "zusammenhängen"
- Bindungskräfte, die die innere Festigkeit von Klebstoffen bewirken

Kohäsion

Zusammenhangskräfte zwischen den Molekülen eines Stoffes und innerhalb der Moleküle

durch folgende Wechselwirkungen bestimmt:

- Mechanische Verschlaufung
- Chemischen Bindungen
- Physikalische Bindung

(Ionenbindung und zwischenmolekulare Kräfte benachbarter Atome oder Moleküle; van-der-Waals-Wechselwirkung, Dispersionswechselwirkung, Wasserstoffbrückenbindung)

Adhäsion + Kohäsion

Historische Entwicklung

Aufbau von Klebstoffe

Grundstoff / eigentl. Klebstoff	Lösungs- oder Dispersionsmittel	Zusatzstoffe						
natürliche u. synthetische Polymere	Schnellverdunstende organische Lösungsmittel							
Erklärung: • Makromoleküle haben gute Klebeigenschaften wegen guter Adhäsion u.Kohäsion	 Einteilung d. Klebstoffe: Lösungsmittelhaltige: Mit Alkohol, Aceton, Benzin (Schnelle Härtung) Lösungsmittelfreie: Mit Wasser (Langsame Härtung, da Verdunstet langsamer alsandere Lösungsmittel) Papierwellung umweltschonender 	Funktion: - Farbgebung - Alterungsschutz - Konservierungsmittel (bei natürlichen Klebstoffen wie Stärkeklebstoff) - Entschäumungsmittel						

Bindemittel (Polymere)

Natürliche Bindemittel für Klebstoffe									
Naturharze	Balsame (Terpentin)								
	Kolophonium (Wurzelharz)								
	Fossile Harze (Dammer, Kopal, Bernstein)								
Kohlenhydrate	•Stärke								
	•Dextrin								
	•Zucker								
Proteine	•Albumin								
	•Gelatin								
Kautschuk	•Latex								
	 Getrocknete Gummimilch (Smoked sheets) 								
	Crepe (gefällte Latex)								
Wachse /	•Bienenwachs								
andere	•Schellack								
Naturstoffe	•Gummiarabicum 20								

Bindemittel (Polymere)

Natürliche Bindemitt	el für Klebstoffe
Methylcellulose	•Tapetenkleister
Polyvinylalkohol	•Papierkleber
Polyvinylpyrrolidon	•Klebestift
Polystyrol	•Modellbaukleber
Polyvinylchlorid	•Plastikkleber
Polyacrylate	•Plastikkleber, Haftkleber
Polymethacrylate	•Plastikkleber, Haftkleber
Polyvinylacetate	•Alleskleber, Holzleim
PVAc/Polyethylen	•Schmelzkleber
Nitrocellulose	•Modellbaukleber
Polychloroprene	•Kontaktkleber
Kautschuke	•Kontaktkleber, Haftkleber
Polyurethane	Kontaktkleber, Reaktionskleber
Methaacrylate	•Modellbaukleber
Cyanacrylate	•Sekundenkleber
Diacrylsäreester	•Schraubensicherungen
Epoxidharze	•Metallkleber
Polyester	Metallkleber, Gießharze
Wachse / andere Naturstoffe	•Bienenwachs
	•Schellack
	•Gummiarabicum

Klebstoffarten (nach Art des Abbindens)

Reaktionsklebstoffe

Chemisch reagierende:

- chem. Bausteine werden im richtigen Verhältnis in die Klebefuge eingebracht
- Verfestigung erfolgt durch chem. Reaktion

Physikal. abbindende:

- Heißschmelzklebstoffe
- Verfestigen durch Temperaturabnahme

Physikal. abbindende

- Klebstoffpolymere schon im Klebstoff enthalten
 - Lösungen
 - Dispersionen
- Verfestigung erfolgt über entweichen des Lösungsmittels

Reaktionsklebstoffe

Zwei-Komponenten Kleber

- Aus 2 getrennten Bestandteilen (Harz und Härter)
- Durch Mischen startet chem. Reaktion zum Klebstoffpolymer
- Muss während Tropfzeit verarbeitet werden
- Nach Einbringen in Klebefuge folgt Abbindzeit
- Festigkeit und Abbindzeit positiv durch höhere Temperaturen beeinflussbar

Reaktionsklebstoffe

Ein-Komponentenkleber

- Gebrauchsfertige Klebemasse
- In die Klebefuge eingebracht, härtet er durch Veränderung der Umgebungsbedingungen
 - Temperaturerhöhung
 - Zutritt von Luftfeuchtigkeit
 - Entzug von Sauerstoff
 - Kontakt mit Substratoberfläche
 - Licht

- Methylmethacrylat-Klebstoffe
 - Methylester (Monomer) + Peroxid (Radikal) + Beschleuniger
 - Beide Komponenten kommen durch Zusammenfügen der Flächen in Kontakt
 - Polymerisation

Anwendung: Verklebung von Metallen

- Anaerob härtende Klebstoffe
 - Wie Methylmethacrylat
 - Hier Härtereaktion nur unter Sauerstoffausschluss

Anwendung: wenn aus konstruktionstechnischen Gründen Klebefuge von Umgebungsluft abgeschlossen wird: Schraubensicherung oder Wellen- u. Flanschverklebung

- Phenol-Formaldehydharz-Klebstoffe
 - Phenol + Formaldehyd
 - Wird als Lösung oder Pulver in die Klebefuge gebracht
 - Härteraktion wird durch Temperaturerhöhung auf ca. 160-180°C hervorgerufen
 - Nebenprodukt: Gas
 - Gute Temperaturbeständigkeit

Anwendung: temperaturbelastete Metallverklebungen, Reibbeläge, bei d. Fertigung von Kupplungen und Bremsbelägen

- Silicone
 - Prä-Polymere + Härter
 - Vernetzung zu hochmolekularen Polymer

Anwendung: meist als Dichtstoffe z.B. als Sanitärsilikon

- Epoxidharz-Klebstoff
 - Harz + Härter
 - Härtung zum stabilem Duroplasten
 - Temperaturerhöhung führt zu höherer Festigkeit
 - Sehr hohe Kohäsion

Anwendung: im Fahrzeug- und Flugzeugbau

Reaktionsklebstoffe

Ein-Komponentenkleber

- Gebrauchsfertige Klebemasse
- In die Klebefuge eingebracht, härtet er durch Veränderung der Umgebungsbedingungen
 - Temperaturerhöhung
 - Zutritt von Luftfeuchtigkeit
 - Entzug von Sauerstoff
 - Kontakt mit Substratoberfläche
 - Licht

Ein-Komponentenkleber

- Cyanacrylat-Klebstoffe (Sekundenkleber)
 - Komponenten werden im Klebstoff durch
 Cyanacrylsäure vor dem Zusammengehen geschützt
 - Härtung erfolgt durch Reaktion mit der Luftfeuchtigkeit
 ⇒ neutralisiert Säure ⇒ Polymerisation
 - Nicht feuchtigkeits- oder temperaturstabil
 - Haltbarkeit sehr eingeschränkt (2-3 Tage)

Anwendung: in der Medizin zum Wundschluss, für kleine Flächen

Ein-Komponentenkleber

- Strahlenhärtende Klebestoffe
 - Radikalische Polymerisation durch Bestrahlung mit UV-Licht
 - Genaue Abstimmung der Wellenlängen auf den eingesetzten Klebstoff
 - Min. ein Fügeteil muss transparent sein

Ein-Komponentenkleber

- Silicone
 - Prä-Polymere + Luftfeuchtigkeit
 - Vernetzung zu hochmolekularen Polymer

Anwendung: meist als Dichtstoffe z.B. als Sanitärsilikon

Klebstoffarten (nach Art des Abbindens)

Reaktionsklebstoffe

Chemisch reagierende:

- chem. Bausteine werden im richtigen Verhältnis in die Klebefuge eingebracht
- Verfestigung erfolgt durch chem. Reaktion

Physikal. abbindende:

- Heißschmelzklebstoffe
- Verfestigen durch Temperaturabnahme

Physikal. abbindende

- Klebstoffpolymere schon im Klebstoff enthalten
 - Lösungen
 - Dispersionen
- Verfestigung erfolgt über entweichen des Lösungsbzw. Dispersionsmittels

Kontaktklebstoffe

- Harze und synthetische Kautschuke in Lösungsmittel
- Verklebung von undurchlässigen Materialien möglich
- Pressdruck wichtiger als Pressdauer
- Bleibt elastisch

Anwendung: Holz, Metall, Leder, Kunststoffe, Gummi (Schuhsohlen), Schaumstoffe

Dispersionsklebstoffe

- Feinste Verteilung von Kunstharzen im Wasser
- Keine Lösung
- Wasser als Transportmittel
- Fügeteile müssen Wasser aufnehmen und verdunsten lassen können → Abbinden des Kunstharzes
- Beim Abbinden Kohäsion gering
 - Schraubzwingen

Anwendung: Verleimen von Holz

Leime

- In Wasser enthaltene tierische (Casein, Glutin), pflanzliche (Stärke, Dextrin) oder synthetische Klebstoffe
- Härten durch Verdunsten des Dispersionsmittels oder durch Gelieren

Haftklebstoffe

- Viskose Lösungen oder Dispersionen von Kautschuk, Polyacrylaten, Polyvinylethern
- Große Adhäsionskräfte u. kleine Kohäsionskräfte
- Viskosität bleibt bestehen
- Mehrmals lösbar

Anwendung: Heftpflaster, Klebeband, Aufkleber

Platisolklebstoffe

- Dispersion von Kunststoffpulver, bes.
 PVC in Weichmacher + Stabilisatoren
- Gelieren bei Temp. von 140-200°C zu kautschukähnlichen Masse
- Zugabe von Haftvermittler z.B.
 Carbonsäure → Klebstoff

Formgebung der Klebenaht

- Bei hohen Ansprüchen an die Klebung
 - nur auf Scherung und Zug beanspruchen
- Belastbarkeit gegen Biege- und Schälbeanspruchung ist grundsätzlich geringer

Formgebung der Klebenaht

Stumpfer Stoß
Schlecht!

Schäftung Besser!

Laschung Gut!

Formgebung der Klebnaht

Abschälen sehr schlecht!

Spaltbeanspruchung ganz schlecht!

Formgebung der Klebenaht

Je größer das Überlappungsverhältnis desto besser die Haltbarkeit !!!

Lesebeispiel:			Н	olz			Kui	nstst	offe		harte Materialien			Ma	exib teria	le lien	Papier		
1=	oier auf Kork= 2 UHU Alleskleber oder UHU Alleskleber Kraft	Holz-Furniera	Balsaholz	Holz*, Sperrholz, Spanplatten	Kork	Rusopai®, Bakelite®, Duroplast	Weich-Schaum (Schaumgummi, -stoff)	Hart-Schaum (Styropor®)	Weich-Kunststoffe (Weich-PVC)	Hart-Kunststoffe (PVC, ABS, Polystyrol)	Metall	Stein, Beton, Keramik	Glas, Porzellan	Gummi	leder	Textil, Filz	Fotos	Pappe, Karton	Papier
_	Papier	1/4	1/8	1/5	1/	1/	2/	10/	1 .	2/3	1/2	1/2	1/2	2/1	1/4	1/4	16/5	1/5	5 /
Papier	Pappe, Karton	1/4	1/8	2/7	2/3	2/	2/	10/	1	9	2/3	2/1	1/2	2/3	1/4	1/4	16/5	1/5	
ă	Fotos	10/15	10/15	10/	10/	10/		10/15	1	10/	15	15	15	15	15	15	10/15		
9.5	Textil, Filz	2/1	2/1	2/1	2/	2/	2/	10/	2/	2/	3	3/2	2/1	3	2/3	2/3			3
xible	Leder	2/3	1/3	2/3	2/	2/	2/	10/	1	2/3	2/3	3/	1/12	2/3	2/			- 1	13
flexible Materialien	Gummi	3/11	12/3	3/	2/	3/	2/	15/	1	3/11	11/6	3/	11/	3 /		4			
	Glas, Porzellan	2/3	12/	6/1	2/3	15	2/3	10	2	2/0	6/	6	6		(1	n I		- 1	UHU
harte Materialien	Stein, Beton, Keramik	3/2	3/	3/6	3/	3/	2/3	10/16	2	3/2	6	6						-	
¥	Metall	2/3	6/12	6/3	3/2	6/11	2/3	10/	2	11/0	6				(D :			UH
	Hart-Kunststoffe (PVC, ABS, Polystyrol)	2/9	9/12	3/2	3/2	3/11	2/3	10/16	2/9	9/13		E		1	_				
ffe	Weich-Kunststoffe (Weich-PVC)	2/14	2/	2/		11/2	2	10	2			U	HU		(I	1)			
Kunststoffe	Hart-Schaum (Styropor®)	10/7	10/7	10/7	10/	10/	10/16	10/16				K	raft		6	2)			UHU
Kun	Weich-Schaum (Schaumgummi, -stoff)	2/3	2/3	2/3	2/	2 /	2 /					1 :	-	1		_			Artin
	Rusopal®, Bakelite®, Duroplast	3/	3 /	3/14	3 /	2/11		Ť.				V-	-	Y	(2		ode -	UH
	Kork	7/2	7 /		2 /							(2						
	Holz*, Sperrholz,	7/	7/	7/		4							_				6		

