Homework 3

Exercise 1

Since $Area_{square}=1$, $Area_{circle}=\frac{\pi}{2^2}=\frac{\pi}{4}$ as stated in the exercise. Therefore the number of points that are expected in the circle is $\frac{\pi/4}{1}=\pi/4$ Given that the origin of the circle is at (1/2,1/2) with a radius of r=1/2, the circle equation is $(x-\frac{1}{2})^2+(y-\frac{1}{2})^2=\frac{1}{4}$, so we should look for points with coordinates such that $(x-\frac{1}{2})^2+(y-\frac{1}{2})^2<\frac{1}{4}$. I assume that the circumference doesn't count as in the circle.

```
points_in_circle = function(z){
  points= data.frame(x = runif(1e3), y = runif(1e3))
  mean((points$x-1/2)^2+(points$y-1/2)^2<1/4)
}
estimates_of_points_in_circle = sapply(1:1e3, points_in_circle)
mean(estimates_of_points_in_circle)

## [1] 0.785135

var(estimates_of_points_in_circle)

## [1] 0.0001555804

hist(estimates_of_points_in_circle)</pre>
```

Histogram of estimates_of_points_in_circle

Based on the estimated mean and the variance, the fixed range is very close to the expected fraction.

Exercise 2

Please note: I used the methods from "http://math.stackexchange.com/questions/1200443/evaluating-difficult-monte-carlo-integration-in-r" to do monte carlo integration in R

Part A

```
f = function(x) {
    return(exp(-4*x/3)*x^3)
}
curve(f, lwd=2,to = 50)
```


Based on the graph, it is clear that f(x) converges to 0 close to 10, so using the method described in class, we will do the following

```
n = 1e4
a = 0
b = 10 #as any value past 10 may be significantly greater than zero, but not x = 20, f(20) is approxima
x = runif(n, a, b)
y = f(x)
(b-a)/n*sum(y)
## [1] 1.887044
```

Part B

$$\int_{0}^{\infty} e^{\frac{-4x}{3}} x^{3} \delta x \Longrightarrow$$

$$\int_{0}^{\infty} x^{3} * e^{\frac{-4x}{3}} \delta x \Longrightarrow$$

$$\int_{0}^{\infty} x^{4-1} * e^{\frac{x}{3/4}} \delta x \Longrightarrow$$

$$\Gamma(4) * \left(\frac{3}{4}\right)^{4} \int_{0}^{\infty} \frac{1}{\Gamma(4) * \left(\frac{3}{4}\right)^{4}} * x^{4-1} * e^{\frac{x}{3/4}} \delta x$$
(1)

please recognize that $\frac{1}{\Gamma(4)*(\frac{3}{4})^4}*x^{4-1}*e^{\frac{x}{3/4}} \sim gamma(4,3/4)$ $\therefore \Gamma(4)*(\frac{3}{4})^4 \int_0^\infty \frac{1}{\Gamma(4)*(\frac{3}{4})^4}*x^{4-1}*e^{\frac{x}{3/4}} \delta x = \Gamma(4)*(\frac{3}{4})^4 = 1.898$

- Exercise 3
- Exercise 4
- Exercise 5