Отчёт по лабораторной работе №1

Развертывание виртуальной машины

Агеева Лада, 1032196014

Содержание

Цель работы	4
Выполнение лабораторной работы	5
Вывод	14

Список иллюстраций

1	Создание новой виртуальной машины
2	Конфигурация жёсткого диска
3	Конфигурация жёсткого диска
4	Конфигурация жёсткого диска
5	Конфигурация системы
6	Приветственный экран
7	Параметры установки
8	Этап установки
9	Завершение установки
10	Запущенная система
11	Установка драйверов
12	Пункт 1, 2, 3
13	Пункт 4
14	Пункт 5
15	Пункт 6.7

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, размещение файлов на сервисе Git и подготовка отчета в формате Markdown.

Выполнение лабораторной работы

Создаю виртуальную машину

Рис. 1: Создание новой виртуальной машины

Задаю конфигурацию жёсткого диска — VDI, динамический виртуальный диск.

Рис. 2: Конфигурация жёсткого диска

Рис. 3: Конфигурация жёсткого диска

Рис. 4: Конфигурация жёсткого диска

Добавляю новый привод оптических дисков и выбираю образ

Рис. 5: Конфигурация системы

Запускаю виртуальную машину и выбираю установку системы на жёсткий диск. Устанавливаю язык для интерфейса и раскладки клавиатуры

Рис. 6: Приветственный экран

Указываю параметры установки

Рис. 7: Параметры установки

Перехожу к этапу установки и дожидаюсь его завершения.

Рис. 8: Этап установки

Рис. 9: Завершение установки

Загружаю с жесткого диска установленную систему

Рис. 10: Запущенная система

Устанавливаю обновления и драйверы виртуальной машины.

Рис. 11: Установка драйверов

Использую поиск с помощью grep: dmesg | grep -i "то, что ищем" Получитела следующую информацию. 1. Версия ядра Linux (Linux version). 2. Частота процессора (Detected Mhz processor). 3. Модель процессора (CPU0).

```
[laageeva@laageeva ~]$ dmesg | grep -i "Linux version"
[ 0.000000] Linux version 5.14.0-70.13.1.el9 0.x86_64 (mockbuild@dall-prod-builder00
1.bld.equ.rockylinux.org) (gcc (GCC) 11.2.1 20220127 (Red Hat 11.2.1-9), GNU ld version
2.35.2-17.el9) #1 SMP PREEMPT Wed May 25 21:01:57 UTC 2022
[laageeva@laageeva ~]$ dmesg | grep -i "Detected Mhz processor"
[laageeva@laageeva ~]$ dmesg | grep -i "Mhz processor"
[ 0.000007] tsc: Detected 2208.000 NHz processor
[laageeva@laageeva ~]$ dmesg | grep -i "CPU0"
[ 0.155522] smpboot: CPU0: Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz (family: 0x6, mo del: 0x9e, stepping: 0xa)
```

Рис. 12: Пункт 1, 2, 3

4. Объем доступной оперативной памяти (Memory available).

```
el: 0x9e, stepping: 0xa)
laageeva@laageeva ~]$ dmesg
laageeva@laageeva ~]$ dmesg
               ceva@laageeva ~|$ dmesg | grep -i "Me
eeva@laageeva ~|$ dmesg | grep -i "Me
0.002069] ACPI: Reserving FACP table
0.002071] ACPI: Reserving FACS table
0.002072] ACPI: Reserving FACS table
                                                                                                                                                                        at [mem 0x7fff00f0-0x7fff01e3]
                                                                                                                                                                                  [mem 0x7fff0470-0x7fff62794]
[mem 0x7fff0200-0x7fff023f]
[mem 0x7fff0200-0x7fff023f]
                                                                                                                                                                       at
at
                                                                                                                                                                                  [mem 0x7fff0240-0x7fff0293]
[mem 0x7fff02a0-0x7fff046b]
                                                                     Reserving APIC table
Reserving SSDT table
                                                PM: hibernation: Registered nosave
PM: hibernation: Registered nosave
PM: hibernation: Registered nosave
PM: hibernation: Registered nosave
                                                                                                                                                                                                        [mem 0x0009f000-0x0009ffff]
[mem 0x000a0000-0x000effff]
0.003732] PM: hibernation: Registered nosave memory: [mem 0x000f0 0.014560] Memory: 260860K/2096696K available (14345K kernel code, 52K rodata, 2548K init, 5460K bss, 144304K reserved, 04 cma-reserved) 0.053705] Freeing SMP alternatives memory: 36K
                                                                                                                                                                                                         [mem 0x000f0000-0x000fffff
 0.053705] Freeing SMP alternatives memory: 36K
0.164514] x86/mm: Memory block size: 128MB
0.285658] Non-volatile memory driver v1.3
0.835768] Freeing initrd memory: 54064K
0.976195] Freeing unused decrypted memory: 2036K
0.976527] Freeing unused kernel image (initmem) memory:
0.979055] Freeing unused kernel image (text/rodata gap)
0.979265] Freeing unused kernel image (rodata/data gap)
2.128239] [TTM] Zone kernel: Available graphics memory
2.128340] [drm] Max dedicated hypervisor surface memory
2.128340] [drm] Maximum display memory size is 16384 killaageeva@laageeva ~]$
                                                                                                                                                                                                                     nemory: 1188K
1007150 KiB
                                                                                                                                                                                                                  is 507904 kiB
                                                                                                                                                     size is 16384 kiB
                                                                                                                                                                                                         🛂 💿 💹 🖨 🥟 🔲 🗐 🔐 🕅 🚫 💽 Right Ctrl
```

Рис. 13: Пункт 4

5. Тип обнаруженного гипервизора (Hypervisor detected).

```
[ 2.128340] [drm] Maximum display memory size is 16384 kiB
[laageeva@laageeva ~]$ dmesg | grep -i "Hypervisor detected"
[ 0.000000] Hypervisor detected: KVM
[laageeva@laageeva ~]$
```

Рис. 14: Пункт 5

- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем.

```
[laageeva@laageeva ~]$ dmesg | grep -i "file system"
[ 1.187042] systemd[i]: Reached target Initrd /usr File System.
[ 11.571093] systemd[i]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[ 11.571384] systemd[i]: Stopped target Initrd File Systems.
[ 11.571420] systemd[i]: Stopped target Initrd Root File System.
[ 11.636579] systemd[i]: Mounting Huge Pages File System...
[ 11.640362] systemd[i]: Mounting Kernel Debug File System...
[ 11.640362] systemd[i]: Mounting Kernel Debug File System...
[ 11.79951] systemd[i]: Stopped File System Check on Root Device.
[ 11.835863] systemd[i]: Starting Remount Root and Kernel File Systems...
[ 11.835863] systemd[i]: Mounted Huge Pages File System.
[ 11.836829] systemd[i]: Mounted POSIX Message Queue File System.
[ 11.836629] systemd[i]: Mounted Kernel Debug File System.
[ 11.836629] systemd[i]: Mounted Kernel Trace File System.
[ 11.836629] systemd[i]: Mounted Kernel Trace File System.
[ 11.836629] systemd[i]: Mounted Kernel Trace File System.
```

Рис. 15: Пункт 6,7

Вывод

Мы приобрели практические навыки установки операционной системы на виртуальную машину, Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, разместили файлы работы на сервисе Git и подготовили отчет в формате Markdown.