- Like the previous notes most of the stuff that you will see here is based heavily on this book
- Designing with the mind in mind by Jeff Johnson

- Human colour perception has strengths and weaknesses
 - Relevant to user interface design
 - Vision optimised to detect contrast, not brightness
 - Ability to distinguish colours dpends on how they are presented
 - Some people are colour blind
 - Users display and viewing conditions affect colour perception

- Eyes contain two types of receptors
 - Rods for detecting light levels
 - Cones for detecting colours
 - It was initially though that we had red green and blue cones that combined colours to generate all the colours we see
 - Each sensitive to one kind of light
 - Not strictly true

- In reality they are low, medium and high frequency light receptors
 - Low frequency is sensitive to all light but particularly red and yellow
 - Medium frequency is sensitive to blue green yellow and orange
 - High frequency receptors are sensitive to violets and blues with weak response to green

- Diagram on the left is the sensitivity of cones to different wavelengths of light
 - Diagram on the right is what you would get in a camera
 - But how does the brain combine these together

- The answer is by subtraction
 - By subtracting the low frequency from the medium frequency we get the red green channel (red +ive green -ive)
 - By combining the medium and low and subtracting that from the high we get a yellow blue channel (yellow +ive blue -ive)
 - Brightness is a combination of all four

- Produces opponent colour channels
 - These are the three channels that a human will see
 - What this does is make us more sensitive to differences in colour instead of overall brightness

- The green circle in the middle is the exact same colour however the different background makes us percieve colour differently
 - Check for yourself with a colour picker
 - Sensitivity to contrast was an evolutionary advantage helped to spot predators
 - With us to this day

- Areas A and B have the same colour
 - We only see B as white because it is shaded by the green cylinder

- How we discriminate colours depends on how they are presented
 - Paleness: the paler two colours are the more difficult it is to distinguish them
 - Colour patch size: the smaller or thinner objects are the harder it is to distinguish colours
 - Separation: The more separated colour patches are the more difficult to distinguish their colour.

Size of patches are a problem with legends in figures

- Another factor in colour presentation is colour blindness.
 - Colour blindness is due to one of the opponent channels not functioning normally
 - Meaning it is difficult to distingush certian pairs of colours
 - Red green colour blindness is most common
 - 8% of men 2% of women approximately
 - Others are rarer

 Colour pairs that red green blindness will have difficulty seeing

- External factors can influence the ability to distinguish colour
 - Variation among colour displays
 - All displays show colour differently
 - Colour settings
 - Display technology
 - Drivers
 - etc

- Display Angle
 - Some displays work much better when viewed straight on than at an angle.
 - Lcd screens being the main culprit
- Ambient light can affect colour perception
 - Brighter environment makes colours appear darker
 - Darker environment makes colours appear brigher

- These factors are out of your control
 - If the environment needs to be accounted for then you will need to simulate it
 - Ambient and display
 - So colours are percieved properly
 - There are general guidelines however as to how to use colour in applications

- Distinguish colour by saturation and brightness as well as hue
 - Avoid subtle colour differences
 - Make sure the contrast is high
 - To test this render all colours in greyscale
 - If you cant distinguish them as greyscale then you won't distinguish them in colour

- Use Distinctive Colours
 - The colours that people percieve easiest are those that cause a strong signal on one colour opponent channel
 - But are neutral on the other compoent channels
 - Black, white, red, green, blue, yellow
 - All other colours cause signals on multiple channels and are not as easy to distinguish

- Avoid Colour pairs that colour blind people cannot distinguish
 - See the examples on the earlier slides
 - Will make your application impossible for these users

- Use colour redundantly with other cues
 - Dont rely on colour alone, use other markings as well
 - Different shape, symbol, position etc
 - e.g. a traffic light uses colour but position matters as well top is stop middle is prepare to stop and bottom is go.

- Separate strong opponent colours.
 - Placing these next to or ontop of each other can cause issues

- If at all possible try and use colours that are visible to everyone regardless of colour blindness
 - This example uses white and all shades of green, works in greyscale too

