DECEMBER 6, 2018

RoboND-Perception-Project

GOALS OF THE PROJECT:

- The goal of this project is to apply learned perception techniques to pr2 pick & place robot.
- Pr2 robot is mounted with RGB-D camera that gives us required data to form 3D point cloud.
- By applying filters we reduce noise from camera data.
- By applying segmentation techniques we get inliers & outliers
- Finally every object is detected by object recognition techniques

PROJECT STEPS:

- 1- Set up your ROS Workspace
- 2- Complete Perception Exercises 1, 2 and 3, which comprise the project perception pipeline
- 3- Downloaded the project repository into the src directory of your ROS Workspace
- 4- assimilate your work from previous exercises to successfully complete a tabletop pick and place operation using PR2
- 5- implement a perception pipeline
- 6- output yaml files that has the data of objects in each scenarios
- 7- extra challenges

RUBRIC POINTS:

APPLYING TECHNIQUES FROM EXERCISE 1

1ST Outlier Removal Filter

1) FUNCTION

Because camera row data has some noise and distortion this filter is applied to remove this noise, And to make point cloud more efficient for the upcoming processes

2) CODE

```
# TODO: Statistical Outlier Filtering
outlier_filter = cloud.make_statistical_outlier_filter()

# Set the number of neighboring points to analyze for any given point
outlier_filter.set_mean_k(20)

# Set threshold scale factor

x = .2

# Any point with a mean distance larger than global (mean distance+x*std_dev) will be considered outlier
outlier_filter.set_std_dev_mul_thresh(x)

# Finally call the filter function for magic
cloud_filtered = outlier_filter.filter()
```

3) SCREENSHOTS (BEFORE ,AFTER)

2nd Voxel Grid

1) FUNCTION

- Because cameras obtained data varies in respect of its quality, High quality of the camera gives us data with high size.
- When data size increases it will be a waste of processing power to process all this data ,and can make our project slow
- Thus, Voxel Grid Down sampling is applied to define the size of each point in the cloud
- Here the most suitable case was when leaf size=.005

2) Code

```
# TODO: Voxel Grid Downsampling
vox = cloud_filtered.make_voxel_grid_filter()
```

Choose a voxel (also known as leaf) size

Note: this (1) is a poor choice of leaf size

Experiment and find the appropriate size!

 $LEAF_SIZE = .005$

Set the voxel (or leaf) size

vox.set_leaf_size(LEAF_SIZE, LEAF_SIZE, LEAF_SIZE)

Call the filter function to obtain the resultant downsampled point cloud

cloud_filtered_vox = vox.filter()

3) SREENSHOTS

3rd Pass-Through Filter

1) FUNCTION

- This technique is applied to limit the data obtained from RGB-D camera to make it only view only needed area
- In this case the only needed view was the table and objects on it, So we applied Pass Through Filter to x and z axis

2) CODE

```
# TODO: PassThrough Filter
  passthrough = cloud filtered vox.make passthrough filter()
  # Assign axis and range to the passthrough filter object.
  filter axis = 'z'
  passthrough.set_filter_field_name(filter_axis)
  axis min = 0.6
  axis_max = 1
  passthrough.set filter limits(axis min, axis max)
  cloud filtered pass = passthrough.filter()
  #filter x
  passthrough = cloud filtered pass.make passthrough filter()
  filter_axis = 'x'
  passthrough.set filter field name(filter axis)
  axis min = .35
  axis max = 1
  passthrough.set_filter_limits(axis_min, axis_max)
  cloud filtered pass = passthrough.filter()
```

3) SCREENSHOTS (Before, After)

4th RANSAC Plane

1) Function

- To separate the table and object
- We used plane model
- At the end we gets two point clouds one contains the objects and the other one contains the table

2) Code

```
# TODO: RANSAC Plane Segmentation

seg = cloud_filtered_pass.make_segmenter()

# Set the model you wish to fit

seg.set_model_type(pcl.SACMODEL_PLANE)

seg.set_method_type(pcl.SAC_RANSAC)

# Max distance for a point to be considered fitting the model

# Experiment with different values for max_distance

# for segmenting the table
```

seg.set_distance_threshold(max_distance)

max_distance = .012

Call the segment function to obtain set of inlier indices and model coefficients

inliers, coefficients = seg.segment()

TODO: Extract inliers and outliers

extracted_inliers = cloud_filtered_pass.extract(inliers, negative=False)

extracted_outliers = cloud_filtered_pass.extract(inliers, negative=True)

3) Screenshots

APPLYING TECHNIQUES FROM EXERCISE 2

1st Euclidean Clustering

1) Function

- This code is applied to separate each object from objects point cloud
- This code separates objects by identifying the density of point clouds in a particular space
- Parameters needed to be modified is:
 - o minimum distance between two points to form segment
 - o minimum points in one segment
 - o maximum points in one segment

2) Code

```
# TODO: Euclidean Clustering
  cloud_objects_white=XYZRGB_to_XYZ(extracted_outliers)
  tree = cloud_objects_white.make_kdtree()
  # TODO: Create Cluster-Mask Point Cloud to visualize each cluster separately
  ec = cloud_objects_white.make_EuclideanClusterExtraction()
  # Set tolerances for distance threshold
  # as well as minimum and maximum cluster size (in points)
  # NOTE: These are poor choices of clustering parameters
  # Your task is to experiment and find values that work for segmenting objects.
  ec.set ClusterTolerance(.03)
  ec.set_MinClusterSize(50)
  ec.set MaxClusterSize(3000)
  # Search the k-d tree for clusters
  ec.set SearchMethod(tree)
  # Extract indices for each of the discovered clusters
  cluster indices = ec.Extract()
  #Assign a color corresponding to each segmented object in scene
  cluster_color = get_color_list(len(cluster_indices))
  color_cluster_point_list = []
  for j, indices in enumerate(cluster_indices):
    for i, indice in enumerate(indices):
      color_cluster_point_list.append([cloud_objects_white[indice][0],
                        cloud_objects_white[indice][1],
                        cloud_objects_white[indice][2],
                        rgb_to_float(cluster_color[j])])
  #Create new cloud containing all clusters, each with unique color
  cluster_cloud = pcl.PointCloud_PointXYZRGB()
```

cluster_cloud.from_list(color_cluster_point_list)

3) Screenshots

APPLYING TECHNIQUES FROM EXERCISE 3

1st Calculating Color Histograms, Surface Normals

1) Function

- To Calculate a special pattern based on color histograms and surface normals features
- This enables us to find special pattern for each segment in our project
- To make our pattern more optimized we took each feature more than one time to make the code accurate
- Here we took 32 bins for color histogram ,20 different orientation for surface normals

2) Code

```
def compute_color_histograms(cloud,nbins=32, using_hsv=True):
    # Compute histograms for the clusters
    point_colors_list = []
    # Step through each point in the point cloud
    for point in pc2.read_points(cloud, skip_nans=True):
        rgb_list = float_to_rgb(point[3])
        if using_hsv:
```

```
point_colors_list.append(rgb_to_hsv(rgb_list) * 255)
    else:
      point_colors_list.append(rgb_list)
 # Populate lists with color values
  channel_1_vals = []
  channel_2_vals = []
  channel_3_vals = []
  for color in point colors list:
    channel_1_vals.append(color[0])
    channel_2_vals.append(color[1])
    channel_3_vals.append(color[2])
  # TODO: Compute histograms
  ch1_hist =np.histogram(channel_1_vals,nbins, (0, 256))
  ch2_hist = np.histogram(channel_2_vals,nbins, (0, 256))
  ch3_hist = np.histogram(channel_3_vals,nbins, (0, 256))
  # Concatenate the histograms into a single feature vector
  hist_features = np.concatenate((ch1_hist[0], ch2_hist[0], ch3_hist[0])).astype(np.float64)
  # Normalize the result
  norm_features = hist_features / np.sum(hist_features)
  # TODO: Concatenate and normalize the histograms
  # Generate random features for demo mode.
  # Replace normed_features with your feature vector
  normed_features = norm_features
  return normed_features
def compute_normal_histograms(normal_cloud):
 norm_x_vals = []
  norm_y_vals = []
  norm_z_vals = []
```

```
for norm component in pc2.read points(normal cloud,
                    field_names = ('normal_x', 'normal_y', 'normal_z'),
                    skip nans=True):
  norm_x_vals.append(norm_component[0])
  norm_y_vals.append(norm_component[1])
  norm_z_vals.append(norm_component[2])
# TODO: Compute histograms of normal values (just like with color)
x_hist =np.histogram(norm_x_vals,32, (0, 256))
y_hist = np.histogram(norm_y_vals,32, (0, 256))
z_hist = np.histogram(norm_z_vals,32, (0, 256))
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((x_hist[0], y_hist[0], z_hist[0])).astype(np.float64)
# Normalize the result
norm_features = hist_features / np.sum(hist_features)
# TODO: Concatenate and normalize the histograms
# Replace normed_features with your feature vector
normed_features = norm_features
return normed features
```

3) Screenshots

2nd Training our model with SVM

1) Function

- SVM is a machine learning technique is used train our captured_features for each element In the scene to form a model that recognizes each element in our segments
- Model accuracy for each object is obtained from confusion matrix

2) Confusion Matrix for each world

- World 1

- World2

World 3

PUBLISHING MESSAGES NEEDED & OUTPUT DATA

1st Publish Detected Objects, Call pr2_mover function

1) Code

```
# Publish the list of detected objects
rospy.loginfo('Detected {} objects: {}'.format(len(detected_objects_labels),
detected_objects_labels))
detected_objects_pub.publish(detected_objects)

# Suggested location for where to invoke your pr2_mover() function within pcl_callback()
# Could add some logic to determine whether or not your object detections are robust
# before calling pr2_mover()
try:
    pr2_mover(detected_objects)
except rospy.ROSInterruptException:
    pass
```

2nd Implement pr2_mover function

1) Function

- To check if elements in object list is in the detected objects
- Define pick place and place pose of each detected objected
- Define arm name that will grab each object
- Define list name of objects
- Outputs all detected objects data to yaml file

2) Code

```
def pr2_mover(object_list):
  # TODO: Initialize variables
  #declare
  test_scene_num = Int32()
  object_name = String()
  arm_name = String()
  pick_pose = Pose()
  place pose = Pose()
  #initialize
  test scene num.data = 1
  object_list_param = rospy.get_param('/object_list')
  dropbox_list_param = rospy.get_param('/dropbox')
  # TODO: Parse parameters into individual variables
  labels = []
  centroids = [] # to be list of tuples (x, y, z)
  dict_list = []
  centroid =[]
  for object in object_list:
    labels.append(object.label)
    points_arr = ros_to_pcl(object.cloud).to_array()
    centroid=np.mean(points arr, axis=0)[:3]
    centroid = [np.asscalar(centroid[0]),np.asscalar(centroid[1]),np.asscalar(centroid[2])]
    centroids.append(centroid)
  # TODO: Create 'place_pose' for the object
```

```
for i in range(0, len(object list param)):
    object_name_l = object_list_param[i]['name']
    object group = object list param[i]['group']
    for i in range(0,len(labels)):
        detected_object_name=labels[i]
        if(object_name_l==detected_object_name):
          print('object deteted \n')
          object_name.data=object_name_I
          pick pose.position.x=centroids[i][0]
          pick_pose.position.y=centroids[i][1]
          pick pose.position.z=centroids[i][2]
          for i in range(0,len(dropbox_list_param)):
             dropbox name=dropbox list param[i]['name']
             dropbox group=dropbox list param[i]['group']
             dropbox pos=dropbox list param[i]['position']
             if(object_group==dropbox_group):
               arm_name.data=dropbox_name
               place pose.position.x=dropbox pos[0]
               place_pose.position.y=dropbox_pos[1]
               place pose.position.z=dropbox pos[2]
          yaml_dict = make_yaml_dict(test_scene_num, arm_name, object_name, pick_pose,
place_pose)
          dict_list.append(yaml_dict)
  send to yaml('output1.yml', dict list)
               # Wait for 'pick_place_routine' service to come up
        #rospy.wait_for_service('pick_place_routine')
               #try:
                 #pick_place_routine = rospy.ServiceProxy('pick_place_routine', PickPlace)
                 # TODO: Insert your message variables to be sent as a service request
                 #resp = pick_place_routine(test_scene_num, object_name, arm_name,
pick_pose, place_pose)
                 #print ("Response: ",resp.success)
```

#except rospy.ServiceException, e:
 #print "Service call failed: %s"%e

APPLY OBJECT RECOGNITION MODEL IN EACH WORLD

Code

```
detected_objects_labels = []
  detected_objects = []
  # Classify the clusters! (loop through each detected cluster one at a time)
  for index, pts_list in enumerate(cluster_indices):
    # Grab the points for the cluster from the extracted outliers (cloud objects)
    pcl_cluster_object = extracted_outliers.extract(pts_list)
    # TODO: convert the cluster from pcl to ROS using helper function
    cluster_ros=pcl_to_ros(pcl_cluster_object)
    # Extract histogram features
    chists = compute_color_histograms(cluster_ros,nbins=32,using_hsv=True)
    normals = get_normals(cluster_ros)
    nhists = compute normal histograms(normals)
    feature = np.concatenate((chists, nhists))
    #labeled_features.append([feature, model_name])
    # TODO: complete this step just as is covered in capture_features.py
    # Make the prediction, retrieve the label for the result
    # and add it to detected_objects_labels list
    prediction = clf.predict(scaler.transform(feature.reshape(1,-1)))
```

```
label = encoder.inverse_transform(prediction)[0]

detected_objects_labels.append(label)

# Publish a label into RViz

label_pos = list(cloud_objects_white[pts_list[0]])

label_pos[2] += .4

object_markers_pub.publish(make_label(label,label_pos, index))

# Add the detected object to the list of detected objects.

do = DetectedObject()

do.label = label

do.cloud = cluster_ros

detected_objects.append(do)
```

Results

- World 1

- World 2

- World 3

CODE OPTIMIZATION & FUTURE WORK

EXERCISE 1 PART

- There is still little noise in the point cloud that can be optimized
- Voxel Grid Downsampling gives poor accuracy at leaf size=0.01 and when I tried leaf size=0.01
 - Code stuck on infinite loop, so best choice was when leaf size=.005
- Pass-Through Filter needs extra axis, so as not to get more two segments from later

EXERCISE 2 PART

- Euclidian clustering clearance is connected with Voxel Leaf size
- Euclidian max point clouds should be big number to avoid missing segments
- Two extra not needed segments of drop boxes appear when applying 1-axis Pass-Through
 Filter

EXERCISE 3 PART

- HSV gives better accuracy in color histogram
- Tried to increase nbins in color histogram but it gives error in capture_feature or train_svm doesn't remember
- In capture features it gives more accuracy when increasing iteration number
- In train_svm when increasing clusters number accuracy gets better but there is limit for increasing it

IMPLEMENTING PR2 MOVER

- In sometimes there is SVM model detect object 2 times so perhaps with some optimization
 - To the code we can detect which one probability is higher and then consider it the right one and the other is error
- Rotating robot before detecting object or detecting in front and behind table might give us more accuracy

FUTURE WORK

- pick_place_server needs implementation to complete pick and place action of each arm
- inverse kinematics part can be implemented manually to review first project
- PR2 Collision Avoidance code needs implementation to avoid Collision with table or object on it during movement

- Adding code to rotate robot before start to get collision map and to increase accuracy of detecting objects
- To increase efficiency of dropping an item we can add random small offset to place pose within area of drop box to drop the objects in different location of the box.