Pure Mathematics Year 1/AS

Jack Maguire

Contents

Ι	Graphs and Transformations	2
1	Transformations	2
	1.1 Translation	2
	1.2 Scaling	3

Part I

Graphs and Transformations

1 Transformations

The graph of f(x), here as an example: $y = x^2$.

1.1 Translation

The graph of f(x-a) is the graph of f(x) translated right by a units. For example, if we want to move our graph 2 units right, then we can plot $y = (x-2)^2$.

The graph of f(x) + b is the graph of f(x) translated upwards by b units. For example, if we want to move our graph 3 units down, then we can plot $y = x^2 - 3$.

1.2 Scaling

(NB: Never say shrink - always say stretch by a factor e where |e| < 1)

The graph of cf(x) is the graph of f(x) stretched vertically by a factor of c. For example, if we want to stretch our graph by a factor of 2, then we can plot $y = 2 * x^2$.

The graph of f(dx) is the graph of f(x) stretched horizontally by a factor of d^{-1} . For example, if we want to stretch our graph by a factor of 5, then we can plot $y = (0.2 * x)^2$.

Example 1: Combining Transformations

$$y = cf(\frac{1}{a} * (x - b)) + d$$

This is obtained from f(x) by doing the following:

- 1. Shift from the right b units.
- 2. Stretch horizontally by a factor of a.
- 3. Stretch vertically by a factor of c.
- 4. Shift upwards by d units.

Example 2: Combining Transformations

$$y = f(-2x)$$

This is obtained from f(x) by doing the following:

- 1. Flip horizontally.
- 2. Stretch horizontally by a factor of 0.5.