Medi-Chal Project

Thomas Gerspacher & Adrien Pavao

April 13^{th}

Ritik presented a recent paper on evaluation metrics for GANs [1].

1 Metrics

Note that the metrics introduced here were tested on images' datasets and we still need to handle mixed-type variables' datasets and see how those metrics can perform.

1.1 Fréchet Inception Distance score

We call the Fréchet distance d(.,.) between the Gaussian with mean (m,C) obtained from p(.) and the Gaussian with mean (m_w, C_w) obtained from $p_w(.)$ the "Fréchet Inception Distance" (FID), which is given by:

$$d^{2}((m,C),(m_{w},C_{w})) = ||m-m_{w}||_{2}^{2} + Tr(C + C_{w} - 2(CC_{w})^{1/2})$$
 (1)

For a generative model, p(.) represents the distribution of model samples and $p_w(.)$ the distributions of the real samples.

The FID is robust to image disturbances.

1.2 1-Nearest Neighbor classifier

The concept of 1-NN is to classify X using the label of the closest neighbor among the training points X'.

1-NN needs a metric to find the nearest neighbor and a possibility could be to use Wasserstein distance.

1.3 Maximum Mean Discrepancy

We compute the mean distance between the distributions¹.

¹http://alex.smola.org/teaching/iconip2006/iconip_3.pdf

Goal: Estimate $D(p, q, \mathcal{F})$

$$\mathsf{E}_{p,p}k(x,x') - 2\mathsf{E}_{p,q}k(x,y) + \mathsf{E}_{q,q}k(y,y')$$

U-Statistic: Empirical estimate $D(X, Y, \mathcal{F})$

$$\frac{1}{m(m-1)} \sum_{i \neq j} \underbrace{k(x_i, x_j) - k(x_i, y_j) - k(y_i, x_j) + k(y_i, y_j)}_{=:h((x_i, y_i), (x_j, y_j))}$$

With an infinite number of samples, the MMD only converge to 0 if the distributions are equal.

Implementations:

https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox/blob/ca9f3662fc1f22763e4efd2edffa720b8943f3dd/cdt/utils/loss.py

https://github.com/dougalsutherland/opt-mmd

https://github.com/dougalsutherland/mmd/

https://github.com/topics/maximum-mean-discrepancy

1.4 Minimum Distance Accumulation

This idea was brought by Michèle Sebag. We have two distributions A and B. We allocate to each point from A the distance of its nearest neighbor from B.

Then we compute this graph: a distance θ on x axis and the number of points with a minimum distance smaller than θ on y axis. We can then define a privacy/resemblance trade-off: a threshold distance. The metrics are the areas under the curve on the left and on the right of the threshold.

- For a respect of **privacy** we want the left area the curve (x between 0 and the threshold) to be null. It means that no points from A has an exact match (or really close) from B.
- For **resemblance**, we want the right area of the curve (x from the threshold) to be maximal.

Figure 1: Example of MDA curve

Privacy: 0.008823529411764707

Resemblance: 2.205882352941176

Figure 2: Example of MDA curve with threshold, normalization and areas under curve

2 Workplan

The next step will be to try out different generative models and test out the mentioned metrics to get a first intuition of how they perform. The goal is to fix a metric quickly in order to make further choice on the generative model.

We chose to implement Generative Adversarial Network, Random Forest imputations and Gaussian Copulas.

References

[1] Gao Huang et al. An empirical study on evaluation metrics of generative adversarial networks. 2018. URL: https://openreview.net/forum?id=Sy1f0e-R-.