tions follow.

Consider a space of well-behaved "test" functions, $D_{\infty}\left(R^{k}\right)$ of infinitely differentiable functions with bounded support, or any of the spaces $D_{m}\left(R^{k}\right)$ of m times continuously differentiable functions (with bounded support); sometimes the domain of definition can be an open subset W of R^{k} , typically here $W=(0,1)^{k}$. Denote the generic space by $D\left(W\right)$; convergence in $D\left(W\right)$ is defined as follows: a sequence $\psi_{n}\in D\left(W\right)$ converges to zero if all ψ_{n} are defined on a common bounded support in W and ψ_{n} as well as all the l-th order derivatives (with $l\leq m$ for D_{m} or all $l<\infty$ for D_{∞}) converge pointwise to zero. The space of generalized functions is the dual space, D^{*} , the space of linear continuous functionals on $D\left(W\right)$ with the weak topology: a sequence of elements of D^{*} converges if the sequence of values of the functionals converges for any test function from $D\left(W\right)$. The usual notation is to write the value of the functional f applied to a test function $\psi\in D\left(W\right)$ as (f,ψ) ; then a sequence f_{n} converges to f if for any ψ convergence $(f_{n},\psi)\to(f,\psi)$ holds.

Assume that functions in D(W); $W\subseteq R^k$ are suitably differentiable, e.g. at least k times continuously differentiable. Then for any $\psi\in D(W)$, and $F\in D^*$ define a generalized derivative $f\in D^*$; $f=\frac{\partial^k}{\partial x_1...\partial x_k}F$ as the functional with values given by:

$$(f,\psi) = (-1)^k (F, \frac{\partial^k \psi}{\partial x_1 \dots \partial x_k}). \tag{5}$$

If the right-hand side is expressed via a regular locally summable function