

DLI Accelerated Data Science Teaching Kit

Lecture 14.1 - Overview

The Accelerated Data Science Teaching Kit is licensed by NVIDIA, Georgia Institute of Technology, and Prairie View A&M University under the Creative Commons Attribution-NonCommercial 4.0 International License.

How will I rate "Chopin's 5th Symphony"?

Songs	Like?
Some nights	
Skyfall	0 0
Comfortably numb	0 0
We are young	
Chopin's 5th	???

Classification

What tools do you need for classification?

- 1. Data $S = \{(x_i, y_i)\}_{i=1,...,n}$
 - x_i: data example with d attributes
 - y_i: label of example (what you care about)
- 2. Classification model $f_{(a,b,c,...)}$ with some parameters a, b, c,...
- 3. Loss function L(y, f(x))
 - how to penalize mistakes

Terminology Explanation

Data S =
$$\{(x_i, y_i)\}_{i=1,...,n}$$

 $x_i = (x_{i1}, \dots, x_{id})$

data example = data instance attribute = feature = dimension label = target attribute

- o x_i: data example with d attributes
- y_i: label of example

·				<u> </u>
Song name	Artist	Length		Like?
Some nights	Fun	4:23		0 0
Skyfall	Adele	4:00		0 0
Comf. numb	Pink Fl.	6:13	•••	0 0
We are young	Fun	3:50		• •
•••				
Chopin's 5th	Chopin	5:32	•••	??

What is a "model"?

"a simplified representation of reality created to

Serve a purpose" Data Science for Business

Example: maps are abstract models of the physical world

There can be many models!!

(Everyone sees the world differently, so each of us has a different model.)

In data science, a model is formula to estimate what you care about. The formula may be mathematical, a set of rules, a combination, etc.

Screenshot from Apple Maps

Training a classifier = building the "model"

How do you learn appropriate values for parameters a, b, c, ...?

Analogy: how do you know your map is a "good" map of the physical world?

Screenshot from Apple Maps

Classification Loss Function

Most common loss: 0-1 loss function

$$L_{0-1}(y, f(x)) = I(y \neq f(x))$$

More general loss functions are defined by a m x m cost matrix C such that

$$L(y, f(x)) = C_{ab}$$

where y = a and $f(x) = b$

T0 (true class 0), T1 (true class 1)

P0 (predicted class 0), P1 (predicted class 1)

Class	TO	T1
P0	0	C ₁₀
P1	C ₀₁	0

DLI Accelerated Data Science Teaching Kit

Thank You