Louis Kang

Neural Circuits and Computations Unit RIKEN Center for Brain Science louis.kang@riken.jp

https://louiska.ng

Updated 27 August 2020

Positions ———

Unit Leader, Neural Circuits and Computations Unit

2020 -

RIKEN Center for Brain Science, Wako, Japan

Miller Postdoctoral Fellow

2017-2020

University of California, Berkeley, USA

Host departments: Physics and Helen Wills Neuroscience Institute

Host faculty: Mike DeWeese

RESEARCH STATEMENT —

Human cognition ultimately emerges from sophisticated computations performed by networks of neurons. I use and develop theoretical tools to investigate how our brains make sense of and respond to our dynamic environments. In particular, I am pursuing a unified understanding for how the hippocampus and entorhinal cortex allow us to form memories and navigate through space.

EDUCATION -

MD. Perelman School of Medicine

2017

University of Pennsylvania, Philadelphia, USA

Research elective with Vijay Balasubramanian in theoretical neuroscience

PhD, Department of Physics & Astronomy

2015

University of Pennsylvania, Philadelphia, USA

Thesis advisor: Tom Lubensky

Thesis title: Chirality and its spontaneous symmetry breaking in two liquid crystal systems

AB in Chemistry and Physics and Mathematics summa cum laude

2009

Harvard University, Cambridge, USA

VISITING POSITION -

Visiting Scientist

Summer 2019

RIKEN Center for Brain Science, Wako, Japan

Host faculty: Taro Toyoizumi

Publications *equal contribution †corresponding author —

- 8. **Kang** L^{\dagger} , DeWeese MR. Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network. *eLife* 8, e46351 (2019). doi:10.7554/eLife.46351.
- 7. **Kang L** † , Balasubramanian V. A geometric attractor mechanism for self-organization of entorhinal grid modules. *eLife* 8, e46687 (2019). doi:10.7554/eLife.46687.
- 6. Kang L^{\dagger} , Lubensky TC. Chiral twist drives raft formation and organization in membranes composed of rod-like particles. *Proc Natl Acad Sci USA* 114, E19 (2017). doi:10.1073/pnas.1613732114.
- 5. Kang L[†], Gibaud T, Dogic Z, Lubensky TC. Entropic forces stabilize diverse emergent structures

2 Louis Kang

in colloidal membranes. Soft Matter 12, 386 (2016). doi:10.1039/C5SM02038G.

4. Davidson ZS*, Kang L*, Jeong J*,†, Still T, Collings PJ, Lubensky TC, Yodh AG. Chiral structures and defects of lyotropic chromonic liquid crystals induced by saddle-splay elasticity. Phys Rev E 91, 050501 (2015). doi:10.1103/PhysRevE.91.050501.

- 3. Jeong J^{*,†}, Kang L*, Davidson ZS, Collings PJ, Lubensky TC, Yodh AG. Chiral structures from achiral liquid crystals in cylindrical capillaries. Proc Natl Acad Sci USA 112, E1837 (2015). doi:10.1073/pnas.1423220112.
- 2. Idema T, Dubuis JO, Kang L, Manning ML, Nelson PC, Lubensky TC, Liu AJ[†]. The syncytial Drosophila embryo as a mechanically excitable medium. PLOS ONE 8, e77216 (2013). doi:10.1371/journal.pone.0077216.
- 1. Heo M, Kang L, Shakhnovich EI[†]. Emergence of species in evolutionary "simulated annealing". Proc Natl Acad Sci USA 106, 1869 (2009). doi:10.1073/pnas.0809852106.

Grants, Awards, and Honors -

Collaborative Research Travel Grant

2019-2020

Burroughs Wellcome Fund

Project role: PI

Project title: Complementary input pathways enhance associative memory in a model of CA3

Travel Award 2018

Computational Neuroscience Meeting (CNS*2018)

Miller Research Fellowship

2017-2020

University of California, Berkeley

Mary Ellis Bell Prize

2016

University of Pennsylvania, Perelman School of Medicine

"This prize is given to a student in the School of Medicine who is engaged in noteworthy research in any field related to medicine."

Werner Teutsch Memorial Prize

2012

University of Pennsylvania, Department of Physics & Astronomy

"Awarded annually to the graduate student who, by his or her performance in the first year courses, shows the most promise for outstanding achievement in research."

Medical Scientist Training Program

2009-2017

National Institutes of Health (USA), awarded through the University of Pennsylvania

Phi Beta Kappa

2009

Harvard University

Conference Presentations ‡talk —

2020

Computational and Systems Neuroscience (Cosyne), Denver, USA Complementary encoding pathways build a memory hierarchy in a model of hippocampus

Society for Neuroscience Meeting, Chicago, USA

2019

Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network

Bernstein Conference, Berlin, Germany

2018

Replay arises naturally as a traveling wavefront in an entorhinal attractor network[‡]

Computational Neuroscience Meeting (CNS*2018), Seattle, USA

2018

A geometric attractor mechanism for the self-organization of entorhinal grid modules[‡]

Interdisciplinary Navigation Symposium (iNAV), Mont-Tremblant, Canada

2018

A geometric attractor mechanism for the self-organization of entorhinal grid modules[‡]

American Physical Society March Meeting, Los Angeles, USA Self-organization of entorhinal grid modules through commensurate lattice relationships [‡]	2018
Computational and Systems Neuroscience (Cosyne), Denver, USA Self-organization of entorhinal grid modules through commensurate lattices	2018
American Physical Society March Meeting, New Orleans, USA Membrane rafts stabilized by chiral liquid crystal correction to bare interfacial tension [‡]	2017
Computational and Systems Neuroscience (Cosyne), Salt Lake City, USA Coupling between attractor networks naturally generates a discrete grid cell hierarchy	2017
Gordon Research Conference & Seminar on Liquid Crystals, Biddeford, USA Roles of entropy and chirality in depletion-induced colloidal membranes [‡]	2015
American Chemical Society Colloid & Surface Science Symposium, Philadelphia, USA A theory for depletion-induced colloidal membranes ‡	2014
American Physical Society March Meeting, Denver, USA A theory for depletion-induced colloidal membranes [‡]	2014
IAS Program on Frontiers of Soft Matter Physics, Hong Kong A theory for depletion-induced colloidal membranes	2014
American Physical Society March Meeting, Baltimore, USA Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos [‡]	2013
External Seminars —	
University of Tokyo, Japan Yuji Ikegaya Group Replay as wavefronts and theta sequences as bump oscillations in a grid cell attractor network	2019
Ludwig-Maximilians-Universität München, Germany Bernstein Center for Computational Neuroscience Munich Modules (and phase precession and replay) in continuous attractor models of grid cells	2018
University College London, UK Institute for Behavioural Neuroscience Replay arises naturally as a traveling wavefront in an entorhinal attractor network	2018
École Normale Supérieure , Paris, France Group for Neural Theory Self-organization of entorhinal grid modules through commensurate lattice relationships	2017
Institut Curie, Paris, France Pierre Sens Group Chiral twist drives raft formation and organization in membranes composed of rod-like particles	2017
University College London, UK Gatsby Computational Neuroscience Unit Coupling between attractor networks naturally generates a discrete grid cell hierarchy	2016
University of California, Los Angeles, USA Center for Biological Physics Chiral twist drives raft formation and organization in membranes composed of rod-like particles	2016
Teaching —	
Teaching Assistant University of Pennsylvania	-2015

Louis Kang 4

Modern physics, wave phenomena, electromagentism, physics laboratory

Teaching Fellow 2006–2007

Harvard University

Organic chemistry, linear algebra

CLINICAL SERVICE —

Medical Volunteer 2018–present

Project Homeless Connect

Providing medical care at homeless services events in San Francisco

Medical Student Volunteer 2010–2013

United Community Clinics

Provided medical care at a free health clinic in Phladelphia

References -

Mike DeWeese

Postdoctoral advisor

University of California, Berkeley

Redwood Center for Theoretical Neuroscience

deweese@berkeley.edu

Vijay Balasubramanian

Research mentor

University of Pennsylvania

Department of Physics & Astronomy

vijay@physics.upenn.edu

Tom Lubensky

 $PhD\ advisor$

University of Pennsylvania

Department of Physics & Astronomy

tom@physics.upenn.edu

Taro Toyoizumi

Research mentor

RIKEN Center for Brain Science

Neural Adaptation and Computation Group

taro.toyoizumi@riken.jp