

- Se descobrirmos que duas pessoas, Henriqueta e Horácio, estão relacionadas, entenderemos que existe alguma conexão familiar entre elas—que o par (Henriqueta, Horácio) se diferencia de outros pares ordenados de pessoas porque existe uma relação (são primos, irmãos etc.) que Henriqueta e Horácio satisfazem.
- O análogo matemático é distinguir determinados pares ordenados de objetos de outros pares ordenados porque as componentes dos pares diferenciados satisfazem alguma relação que os outros não satisfazem.

Exemplo

- Lembre-se de que o produto cartesiano de um conjunto S com ele mesmo, $S \times S$ ou S_2 , é o conjunto de todos os pares ordenados de elementos de S.
- ► Seja $S = \{1, 2, 3\}$; então,

$$S \times S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

1

Exemplo (continuação)

- Se estivéssemos interessados na **relação de igualdade**, então (1,1), (2,2) e (3,3) seriam os elementos de $S \times S$ que escolheríamos.
- Se estivéssemos interessados na **relação de um número ser menor do que o outro**, escolheríamos os pares ordenados (1,2), (1,3) e (2,3) em $S \times S$.
- Neste exemplo, poderíamos escolher os pares ordenados (x, y) dizendo que x = y ou que x < y.
- ightharpoonup Analogamente, a notação $x \rho y$ indica que o par ordenado (x,y) satisfaz a relação ρ .
- ightharpoonup A relação ρ pode ser definida por palavras ou, simplesmente, listando-se os pares ordenados que satisfazem ρ.

Exemplo

- ightharpoonup Seja $S = \{1, 2, 4\}.$
- No conjunto $S \times S = \{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (4,1), (4,2), (4,4)\}$, pode-se definir uma relação ρ por $x \rho y$ se e somente se x = y/2, abreviada como $x \rho y \leftrightarrow x = y/2$.
- ► Assim, (1,2) e (2,4) satisfazem ρ .
- A mesma relação ρ poderia ser definida dizendo-se que $\{(1,2),(2,4)\}$ é o conjunto dos pares ordenados que satisfazem ρ .
- Como neste exemplo, um modo de **definir** uma relação binária ρ é especificar um **subconjunto** de $S \times S$.
- Formalmente, essa é a definição de uma relação binária.

Relação binária em um conjunto S

Uma relação binária em um conjunto S é um **subconjunto** de $S \times S$ (um conjunto de pares ordenados de elementos de S).

ightharpoonup Agora que sabemos que uma relação binária ho é um subconjunto, vemos que

$$x \rho y \leftrightarrow (x,y) \in \rho$$

- Em geral, uma relação binária é definida por uma descrição da relação, em vez da lista dos pares ordenados.
- ▶ A descrição fornece uma caracterização dos elementos pertencentes à relação, ou seja, é um predicado binário que é satisfeito por determinados pares ordenados.
- Uma relação binária implica um resultado do tipo sim/não um par ordenado satisfaz ou não satisfaz o predicado binário e pertence ou não pertence à relação.

Exemplo

- Seja $S=\{1,2\}$. Então, $S\times S=\{(1,1),(1,2),(2,1),(2,2)\}$. Seja ρ a relação em S dada pela descrição $x\ \rho\ y\leftrightarrow x+y$ é ímpar.
- Então $(1,2) \in \rho$ e $(2,1) \in \rho$. O par ordenado $(1,1) \notin \rho$ porque 1+1 não é impar. Analogamente, $(2,2) \notin \rho$.
- Inicialmente estaremos preocupados exclusivamente com relações binárias em um único conjunto, mas, de modo mais geral, relações podem ser definidas entre conjuntos diferentes.

Relações entre conjuntos diferentes

Dados dois conjuntos S e T, uma relação binária de S para T (também chamada de uma relação binária em $S \times T$) é um subconjunto de $S \times T$. Dados n conjuntos $S_1, S_2, \ldots, S_n, n > 2$, uma relação n-ária em $S_1 \times S_2 \times \ldots \times S_n$ é um subconjunto de $S_1 \times S_2 \times \ldots \times S_n$.

Exemplo

Sejam $S = \{1,2,3\}$ e $T = \{2,4,7\}$. Então o conjunto

$$\{(1,2),(2,4),(2,7)\}$$

é formado por elementos de $S \times T$. Logo, é uma relação binária de S para T.

- Se ρ for uma relação binária em S, então ρ consistirá em um conjunto de pares ordenados da forma (s_1, s_2) .
- Dada uma primeira componente s_1 ou uma segunda componente s_2 , **podem ser formados diversos pares** pertencentes à relação.
- A relação é um para um se cada primeira componente e cada segunda componente aparecem apenas uma vez na relação.

A relação é **um para muitos** se alguma primeira componente aparece mais de uma vez, ou seja, se s_1 pode aparecer em mais de um par.

- Ela é dita muitos para um se alguma segunda componente s2 aparece em mais de um par.
- Finalmente, ela é **muitos para muitos** se pelo menos um s_1 aparece em mais de um par e pelo menos um s_2 aparece em mais de um par.

- Suponha que B é o conjunto de todas as relações binárias em um conjunto S dado.
- Se ρ e s pertencem a B, então são subconjuntos de $S \times S$.
- Assim, podemos efetuar operações como a **união**, a **interseção** e o **complementar**, que resultam em novos subconjuntos de $S \times S$, ou seja, em novas relações binárias, que denotaremos, respectivamente, por $\rho \cup \sigma$, $\rho \cap \sigma$ e ρ' .

- Assim,

 - $x(\rho \cap \sigma)y \leftrightarrow x \rho y e x \sigma y$
 - $ightharpoonup x \rho' y \leftrightarrow não x \rho y$
- Uma relação binária em um conjunto S pode ter determinadas propriedades.
- Por exemplo, a relação ρ de **igualdade** em $S, x \rho y \leftrightarrow x$, tem três propriedades:
 - 1. para qualquer $x \in S$, x = x, ou seja $(x, x) \in \rho$;
 - 2. quaisquer que sejam $x, y \in S$, se x = y, então y = x, ou seja, $(x, y) \in \rho \to (y, x) \in \rho$;
 - 3. quaisquer que sejam $x,y,z\in S$, se x=y e y=z, então x=z, ou seja, $[(x,y)\in \rho$ e $(y,z\in \rho]\to (x,z)\in \rho$.
- Essas três propriedades fazem com que a relação de igualdade seja reflexiva, simétrica e transitiva.

Relações reflexivas, simétricas e transitivas

```
(\rho ser reflexiva significa) (\forall x)(x \in S \to (x,x) \in \rho)
(\rho ser simétrica significa) (\forall x)(\forall y)(x \in S \land y \in S \land (x,y) \in \rho \to (y,x) \in \rho)
(\rho ser transitiva significa) (\forall x)(\forall y)(\forall z)(x \in S \land y \in S \land (x,y) \in \rho \land (y,z) \in \rho \to (x,z) \in \rho)
```

Exemplo

- Considere a relação ≤ no conjunto N.
- Essa relação é **reflexiva** porque, para qualquer inteiro não negativo $x, x \le x$.
- Ela é, também, **transitiva** pois quaisquer que sejam os inteiros não negativos x, y, z, se $x \le y$ e $y \le z$, então $x \le z$.
- ▶ No entanto, \leq **não é simétrica**; $3 \leq 4$ não implica que $4 \leq 3$, por exemplo.

Exemplo (continuação)

- ▶ De fato, quaisquer que sejam $x, y \in \mathbb{N}$, se $x \le y$ e $y \le x$, então x = y.
- ightharpoonup Essa característica é descrita dizendo-se que \leq é antissimétrica.

Relação antissimétrica

Seja ρ uma relação binária em um conjunto S. Dizer que ρ é antissimétrica significa

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x,y) \in \rho \land (y,x) \in \rho \rightarrow x = y)$$

Em resumo: **Reflexiva** Todo *x* está relacionado consigo mesmo.

Simétrica Se x estiver relacionado com y, então y estará relacionado com x.

Antissimétrica Se x estiver relacionado com y e y estiver relacionado com x, então

x = y.

Transitiva Se x estiver relacionado com y e y estiver relacionado com z, então

x estará relacionado com z.

- As propriedades de simetria e antissimetria para relações binárias não são exatamente opostas.
- Antissimétrica não significa "não simétrica".
- Uma relação não é simétrica se algum (x,y) pertencer à relação, mas (y,x) não. Mais formalmente, não ser simétrica significa que

$$(\forall x)(\forall y)(x \in S \land y \in S \land (x,y) \in \rho \rightarrow (y,x) \notin \rho)$$

- A relação de igualdade em um conjunto S é, ao mesmo tempo, simétrica e antissimétrica.
- ▶ No entanto, a relação de igualdade em *S* (ou um subconjunto dessa relação) é a única relação que tem essas duas propriedades.
- Para ilustrar, suponha que ρ é uma relação simétrica e antissimétrica em S, e seja $(x, y) \in \rho$.
- ▶ Por simetria, temos que $(y, x) \in \rho$. Mas então, por antissimetria, x = y.

- Portanto, **apenas elementos iguais** podem estar relacionados.
- A relação $\rho = \{(1,2),(2,1),(1,3)\}$ no conjunto $S = \{1,2,3\}$ não é nem simétrica—(1,3) pertence a ρ , mas (3,1) não—nem antissimétrica—(1,2) e (2,1) pertencem a ρ , mas $1 \neq 2$.

Exercícios

- 1. Considere as seguintes cinco relações no conjunto $A = \{1, 2, 3, 4\}$:
 - a) $R_1 = \{(1,1), (1,2), (2,3), (1,3), (4,4)\}$
 - b) $R_2 = \{(1,1)(1,2), (2,1), (2,2), (3,3), (4,4)\}$
 - c) $R_3 = \{(1,3), (2,1)\}$
 - d) $R_4 = \emptyset$, a relação vazia
 - e) $R_5 = A \times A$, a relação universal

Determine quais das relações são reflexivas.

Exercícios (continuação)

- 2. Considere as quatro relações a seguir:
 - a) Relação \leq (menor ou igual) no conjunto \mathbb{Z} de inteiros.
 - b) Inclusão de conjunto ⊆ em uma coleção *C* de conjuntos.
 - c) Relação \perp (perpendicular) sobre o conjunto L de linhas no plano.
 - d) Relação \parallel (paralela) sobre o conjunto L de linhas no plano.

Determine quais das relações são reflexivas.

- 3. Determine quais das relações do exercício (1) são simétricas.
- 4. Determine quais das relações do exercício (2) são simétricas.
- 5. Determine quais das relações do exercício (1) são transitivas.
- 6. Determine quais das relações do exercício (2) são transitivas.

- Se uma relação ρ em um conjunto S não tem determinada propriedade, podemos ser capazes de estender ρ a uma relação ρ^* em S que tenha essa propriedade.
- Por "estender" queremos dizer que a nova relação ρ^* vai conter **todos os pares ordenados** em ρ , **além dos pares adicionais** necessários para que a propriedade seja válida.
- Portanto, $\rho \subseteq \rho^*$. Se ρ^* for o **menor conjunto** com essa propriedade, então ρ^* será chamado de **fecho** de ρ em relação a essa propriedade.

Fecho de uma relação

Uma relação binária ρ^* em um conjunto S é o fecho de uma relação ρ em S em relação à propriedade P se

- 1. ρ^* tem a propriedade P;
- 2. $\rho \subseteq \rho^*$;
- 3. ρ^* é subconjunto de qualquer outra relação em S que inclua ρ e tenha a propriedade P.

- Podemos procurar o fecho reflexivo, o fecho simétrico e o fecho transitivo de uma relação em um conjunto.
- É claro que, se a relação já tem a propriedade em questão, ela é seu próprio fecho em relação a essa propriedade.

Exemplo

- Sejam $S = \{1,2,3\}$ e $\rho = \{(1,1),(1,2),(1,3),(3,1),(2,3)\}$. Então ρ não é reflexiva, nem simétrica, nem transitiva.
- ightharpoonup O fecho de ho em relação à reflexividade é

$$\rho^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,2), (3,3)\}$$

Essa relação é reflexiva e contém ρ .

▶ Além disso, qualquer relação reflexiva em *S* tem que conter os novos pares ordenados que adicionamos—(2, 2) e (3,3)—, de modo que não pode existir nenhuma relação reflexiva menor.

Exemplo (continuação)

- ightharpoonup Em outras palavras, qualquer relação reflexiva contendo ho tem que ter a relação anterior como subconjunto.
- ightharpoonup O fecho de ho em relação à simetria é

$$\rho^* = \{(1,1), (1,2), (1,3), (3,1), (2,3), (2,1), (3,2)\}$$

Também aqui é claro que adicionamos apenas os novos pares necessários—(2,1) e (3,2)—para que a relação seja simétrica.

- ▶ Tanto para o fecho reflexivo quanto para o simétrico, tivemos apenas que inspecionar os pares ordenados já pertencentes a ρ para descobrir que pares ordenados precisamos adicionar (supondo conhecido o conjunto S).
- O fecho reflexivo ou o simétrico de uma relação pode ser encontrado em apenas um passo.

Exemplo (continuação)

- O fecho transitivo pode necessitar de uma série de passos. Analisando os pares ordenados na relação ρ do nosso exemplo, vemos que precisamos adicionar (3,2) (por causa de (3,1) e (1,2)), (3,3) (por causa de (3,1) e (1,3)) e (2,1) (por causa de (2,3) e (3,1)).
- Isso nos dá a relação

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1)\}$$

No entanto, essa relação ainda não é transitiva. Por causa do novo par (2,1) e do velho par (1,2), precisamos adicionar (2,2). Isso nos dá a relação

$$\{(1,1),(1,2),(1,3),(3,1),(2,3),(3,2),(3,3),(2,1),(2,2)\}$$

ightharpoonup que é transitiva e é a menor relação transitiva contendo ho. Esse é o fecho transitivo de ho.

RELAÇÕES ORDENS PARCIAIS

Ordem parcial

Uma relação binária em um conjunto S que seja reflexiva, antissimétrica e transitiva é chamada de uma ordem parcial em S.

- Dos exemplos anteriores, temos os seguintes exemplos de ordens parciais:
 - 1) Em \mathbb{N} , $x \rho y \leftrightarrow x \leq y$
 - **2)** Em Z^+ , $x \rho y \leftrightarrow x$ divide y.
 - 3) Em $\{0,1\}, x \rho y \leftrightarrow x = y^2$
- Se ρ for uma ordem parcial em S, então o par ordenado (S, ρ) será chamado de um **conjunto parcialmente ordenado**.
- ▶ Denotaremos um conjunto parcialmente ordenado arbitrário por (S, \preceq) .
- ► Em qualquer caso particular, ≼ tem algum significado preciso, como "menor ou igual a", "é um subconjunto de", "divide" e assim por diante.

RELAÇÕES Ordens parciais

- ▶ O símbolo para uma ordem parcial genérica, ≤, é projetado para parecer com o símbolo de desigualdade ≤, que, como acabamos de observar, é uma ordem parcial no conjunto N ou em qualquer outro conjunto em que uma relação "menor ou igual a" faça sentido.
- ▶ Seja (S, \preceq) um conjunto parcialmente ordenado e seja $A \subseteq S$. Então \preceq é um conjunto de pares ordenados de elementos de S, alguns dos quais podem ser pares ordenados de elementos de S.
- Se selecionarmos, entre os pares ordenados em \leq , os que têm elementos de A, esse novo conjunto é a **restrição** de \leq ao subconjunto A e é uma ordem parcial em A.
- Por exemplo, uma vez que sabemos que a relação "x divide y" é uma **ordem parcial** em \mathbb{Z}^+ , sabemos, automaticamente, que "x divide y" é uma **ordem parcial** em $\{1, 2, 3, 6, 12, 18\}$.
- ▶ Vamos introduzir a **terminologia** usada em conjuntos parcialmente ordenados. Seja (S, \preceq) um conjunto parcialmente ordenado. Se $x \preceq y$, então ou x = y ou $x \ne y$.

RELAÇÕES Ordens parciais

- ▶ Se $x \leq y$ mas $x \neq y$, escrevemos $x \prec y$ e dizemos que x é um **predecessor** de y ou que y é um **sucessor** de x.
- ▶ Um dado y pode ter muitos predecessores, mas se $x \prec y$ e se não existe nenhum z com $x \prec z \prec y$, então x é um **predecessor imediato** de y.
- ▶ Vamos considerar, novamente, um conjunto parcialmente ordenado (S, \preceq) .
- Se existir um $y \in S$ tal que $y \le x$ para todo $x \in S$, então y será um **elemento mínimo** (ou o menor elemento) do conjunto parcialmente ordenado.
- Se existir um elemento mínimo, ele será único.
- Para mostrar isso, suponha que y e z são, ambos, elementos mínimos. Então $y \leq z$, já que y é mínimo, e $z \leq y$, pois z é mínimo; por antissimetria, y = z.

RELAÇÕES Ordens parciais

- ▶ Um elemento $y \in S$ é dito **minimal** se não existir $x \in S$ com $x \prec y$.
- Analogamente vale para **elemento máximo** (ou maior elemento) e **elemento maximal** em um conjunto parcialmente ordenado (S, \leq) .
- Em resumo: ordens parciais são reflexivas, antissimétricas e transitivas.

Exercício

Considere o conjunto $S=\{1,2,3,4,5\}$ e a relação \leq definida em S tal que $a\leq b$ se e somente se a divide b (isto é, b/a é um número inteiro). Determine se a relação \leq é uma ordem parcial em S. Caso seja uma ordem parcial, encontre os elementos minimal e maximal em S.

Relação de equivalência

Uma relação binária em um conjunto S que é **reflexiva**, **simétrica** e **transitiva** é chamada de relação de equivalência em S.

- Qual propriedade diferencia uma ordem parcial de uma relação de equivalência?
- ▶ Já encontramos os seguintes exemplos de relações de equivalência:
 - (a) Em qualquer conjunto $S, x \rho y \leftrightarrow x = y$.
 - **(b)** Em \mathbb{N} , $x \rho y \leftrightarrow x + y \in \text{par}$.
 - (c) No conjunto de todas as retas no plano, $x \rho y \leftrightarrow x$ é paralela ou coincide com y.
 - (d) Em $\{0,1\}$, $x \rho y \leftrightarrow x = y^2$.
 - (e) Em $\{x \mid x \text{ \'e um aluno em sua turma }\}, x \rho y \leftrightarrow x \text{ senta na mesma fileira que } y$.
 - (f) Em $\{1,2,3\}$, $\rho = \{(1,1),(2,2),(3,3),(1,2),(2,1)\}$.

- Podemos ilustrar uma característica importante de uma relação de equivalência em um conjunto analisando o exemplo $S = \{x \mid x \text{ \'e um aluno em sua turma }\}, x \rho y \leftrightarrow "x senta na mesma fileira que y".$
- Ao agrupar todos os alunos no conjunto S que estão relacionados entre si, chegamos à figura ao lado.
- Dividimos o conjunto S em subconjuntos de tal maneira que todos na turma pertencem a um e apenas um subconjunto.

Partição de um conjunto

Uma partição de um conjunto S é uma coleção de subconjuntos disjuntos não vazios cuja união é igual a S.

- Qualquer relação de equivalência, como veremos, divide o conjunto onde está definida em uma partição.
- ▶ Os subconjuntos que compõem a partição, chamados algumas vezes de blocos da partição, são formados **agrupando-se os elementos relacionados**, como no caso dos alunos em sua turma.
- Se ρ for uma relação de equivalência em um conjunto S e se $x \in S$, denotaremos por [x] o conjunto de todos os elementos relacionados com x em S e chamaremos esse conjunto de **classe de equivalência** de x.
- ▶ Assim, $[x] = \{y \mid y \in S \land x \ \rho \ y\}$. Como ρ é **simétrica**, poderíamos ter escrito $[x] = \{y \mid y \in S \land y \ \rho \ x\}$.

Exemplo

► A relação de equivalência em N dada por

$$x \rho y \leftrightarrow x + y \text{ \'e par}$$

divide N em duas classes de equivalência.

- Se x é um número par, então, para todo número par y, x + y é par e $y \in [x]$. Todos os números pares formam uma classe.
- Se x é impar, então, para todo número impar y, x + y é par e $y \in [x]$. Todos os números impares formam a segunda classe.
- Novamente, note que uma classe de equivalência pode ter mais de um nome, ou representante.
- Neste exemplo, [2] = [8] = [1048] e assim por diante; [1] = [17] = [947] etc.

Exercícios

- 1. Considere o conjunto $A = \{1, 2, 3, 4, 5, 6\}$ e a relação de equivalência \sim definida por $a \sim b$ se e somente se a e b têm o mesmo resto na divisão por 3. Encontre as classes de equivalência e a partição correspondente.
- 2. Considere o conjunto $S = \{1,2,3,4,5,6\}$ e defina a relação R em S como $R = \{(1,1),(1,4),(4,1),(2,2),(3,3),(5,5),(6,6)\}$. Mostre que R é uma relação de equivalência em S e encontre a partição correspondente de S.

Tipo de Relação Binária	Reflexiva	Simétrica	Antissimétrica	Transitiva	Característica
					Importante
Ordem parcial	Sim	Não	Sim	Sim	Predecessores e
					sucessores
Relação de equivalência	Sim	Sim	Não	Sim	Determina uma
					partição