Universal Optimality of Dijkstra Algorithm

Using Fibonacci-Like Priority Queue with Working Sets

Soham Chatterjee

July 24, 2025

Oral Qualifier, STCS

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.
- Recently Duan, Mao, Shu and Yin in 2023 solved SSSP for undirected graphs with expected time $O(m\sqrt{\log n \log \log n})$

Introduction

- Dijkstra algorithm is a foundation algorithm solving Single Source Shortest Path problem (SSSP) both for directed and undirected graphs.
- Using Fibonacci Heaps we have the worst-case time complexity $O(m + n \log n)$.
- Recently Duan, Mao, Shu and Yin in 2023 solved SSSP for undirected graphs with expected time $O(m\sqrt{\log n \log \log n})$
- This year in STOC Duan, Mao, Mao, Shu, Yin solved SSSP for directed graphs in $O(m \log^{\frac{2}{3}} n)$ time.

Assumptions

· Input graph is always connected.

• All trees are rooted at s.

- For any vertex v, T(v) denote the subtree of T rooted at v.
- The weights of the graph are positive real numbers.

• We allow the ∞ in the weights.

```
Algorithm: DIJKSTRA(G, s, w)

F \longleftarrow \emptyset, INSERT(F, s), dist(s) \longleftarrow 0

while F \neq \emptyset do

u \longleftarrow \text{EXTRACTMIN}(F)

for e = (u, v) \in E do

frac{1}{2} \text{If } v \text{ is unseen, INSERT}(F, v)

DECREASEKEY(F, v, \min\{dist(v), dist(u) + w(u, v)\}
```

Algorithm: DIJKSTRA(G, s, w) $F \leftarrow \emptyset$, INSERT(F, s), $dist(s) \leftarrow 0$

```
while F \neq \emptyset do
\begin{array}{c|c} u \longleftarrow \text{ExtractMin}(F) \\ \text{for } e = (u, v) \in E \text{ do} \\ & \text{If } v \text{ is unseen, Insert}(F, v) \\ & \text{DecreaseKey}(F, v, \min\{dist(v), dist(u) + w(u, v)\}) \end{array}
```

Dijkstra solves three problems:

• Computes Shortest Distances

Algorithm: DIJKSTRA(G, s, w)

```
F \longleftarrow \emptyset, \mathsf{INSERT}(F, s), \mathit{dist}(s) \longleftarrow 0
\begin{array}{c|c} \mathbf{while} \ F \neq \emptyset \ \mathbf{do} \\ \hline u \longleftarrow \mathsf{EXTRACTMIN}(F) \\ \mathbf{for} \ e = (u, v) \in E \ \mathbf{do} \\ \hline \mathsf{lf} \ v \ \mathsf{is} \ \mathsf{unseen}, \mathsf{INSERT}(F, v) \\ \hline \mathsf{DECREASEKEY}(F, v, \min\{\mathit{dist}(v), \mathit{dist}(u) + w(u, v)\}) \end{array}
```

Dijkstra solves three problems:

- · Computes Shortest Distances
- · Build Shortest Path Tree

Algorithm: DIJKSTRA(G, s, w)

```
F \longleftarrow \emptyset, \operatorname{INSERT}(F, s), \operatorname{dist}(s) \longleftarrow 0
while F \neq \emptyset do
u \longleftarrow \operatorname{ExtractMin}(F)
for e = (u, v) \in E do
| fv \text{ is unseen, Insert}(F, v)|
| \operatorname{DecreaseKey}(F, v, \min\{\operatorname{dist}(v), \operatorname{dist}(u) + w(u, v)\})|
```

Dijkstra solves three problems:

- · Computes Shortest Distances
- · Build Shortest Path Tree
- Sorts vertices by Shortest Distance (DO)

Comparison-Addition Model

Notice the Dijkstra algorithm does the following operations:

- · Adds two values
- · Compares two values.
- · Stores Values.

So we will work on a model where all possible operations are addition, compare and storage.

Comparison-Addition Model

Notice the Dijkstra algorithm does the following operations:

- · Adds two values
- · Compares two values.
- · Stores Values.

So we will work on a model where all possible operations are addition, compare and storage.

For a given graph:

- *OPT_Q*(*G*) is the number of comparison queries of an optimal algorithm for this graph.
- OPT(G) be the number of total steps taken by an optimal correct algorithm for the graph.

- Let $\mathcal A$ is the set of all correct algorithms.
- $\mathcal{G}_{n,m}$ is the set of all graphs with n vertices and m edges.
- W_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

- Let \mathcal{A} is the set of all correct algorithms.
- $G_{n,m}$ is the set of all graphs with n vertices and m edges.
- W_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

A correct algorithm A* is existentially optimal if

$$\forall n, m : \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A^*(G, w) \leq \alpha \inf_{\substack{A \in \mathcal{A} \\ w \in \mathcal{W}_G}} \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A(G, w)$$

where $\alpha = \tilde{O}(1)$. This corresponds to being optimal wrt worst-case complexity.

- Let \mathcal{A} is the set of all correct algorithms.
- $\mathcal{G}_{n,m}$ is the set of all graphs with *n* vertices and *m* edges.
- W_G is the set of all possible weights for a graph $G \in \mathcal{G}_{n,m}$.

A correct algorithm A* is existentially optimal if

$$\forall n, m : \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A^*(G, w) \le \alpha \inf_{\substack{A \in \mathcal{A} \\ w \in \mathcal{W}_G}} \sup_{\substack{G \in \mathcal{G}_{n,m} \\ w \in \mathcal{W}_G}} A(G, w)$$

where $\alpha = \tilde{O}(1)$. This corresponds to being optimal wrt worst-case complexity.

But this is not good. It is just saying A^* may take as much time as it takes in a star-graph or more complicated one.

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you **fix the graph**.

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you **fix the graph**.

A correct algorithm A* is universally optimal if

$$\forall n, m, \forall G \in \mathcal{G}_{n,m} : \sup_{w \in \mathcal{W}_G} A^*(G, w) \leq \alpha \inf_{A \in \mathcal{A}} \sup_{w \in \mathcal{W}_G} A(G, w)$$

where $\alpha = \tilde{O}(1)$.

We want a notion of optimality which says your algorithm is optimal compared to any other algorithm if you **fix the graph**.

A correct algorithm A* is universally optimal if

$$\forall n, m, \forall G \in \mathcal{G}_{n,m} : \sup_{w \in \mathcal{W}_G} A^*(G, w) \leq \alpha \inf_{A \in \mathcal{A}} \sup_{w \in \mathcal{W}_G} A(G, w)$$

where $\alpha = \tilde{O}(1)$.

In this discussion we will focus solely on $\alpha = O(1)$.

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

 Let T be the exploration tree. Let < be the final distance ordering of the vertices.

Exploration Tree and DO

Consider a run of Dijkstra. Whenever a vertex is extracted add the unexplored neighbors of that vertex as children of that vertex. The tree built this way is called the exploration tree.

 Let T be the exploration tree. Let < be the final distance ordering of the vertices.

• Then for every edge $(u, v) \in T$, u < v.

Definition (Order of T)

Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have u < v in the order.

Definition (Order of T)

Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have u < v in the order.

The DO after Dijkstra is an order of exploration tree.

 L is an order of G if there exists a spanning tree T of G such that L is an order of T.

Definition (Order of T)

Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have u < v in the order.

The DO after Dijkstra is an order of exploration tree.

- L is an order of G if there exists a spanning tree T of G such that L is an order of T.
- Order(G) is the number of all possible orders of G.

Definition (Order of T)

Let T be any tree in G. An order of T is a total order of V(T) such that for every edge $(u, v) \in E(T)$ we have u < v in the order.

The DO after Dijkstra is an order of exploration tree.

- *L* is an order of *G* if there exists a spanning tree *T* of *G* such that *L* is an order of *T*.
- Order(G) is the number of all possible orders of G.

Lemma

For any graph G, L is an order of G iff there exists non-negative weights w such that

- 1. For every two nodes $u \neq v$, $d_w(s, u) \neq d_w(s, v)$.
- 2. $u \prec_L v$ if and only if $d_w(s, u) < d_w(s, v)$.

Dijkstra Induced Interval Set

For any vertex $v \in V(G)$

- l_v : When v was first discovered and added to the heap.
- r_v : When v was removed from heap.
- $[l_v, r_v]$: Interval set of v

Dijkstra Induced Interval Set

For any vertex $v \in V(G)$

- l_v : When v was first discovered and added to the heap.
- r_v : When v was removed from heap.
- $[l_v, r_v]$: Interval set of v

A run of Dijkstra induces intervals for each vertex $v \in V$ with the operations INSERT and EXTRACTMIN.

Dijkstra Induced Interval Set

For any vertex $v \in V(G)$

- l_v : When v was first discovered and added to the heap.
- r_v : When v was removed from heap.
- $[l_v, r_v]$: Interval set of v

A run of Dijkstra induces intervals for each vertex $v \in V$ with the operations INSERT and EXTRACTMIN.

An interval set I is collection of intervals for each vertex. It is called Dijkstra Induced when all the intervals for each vertex in I is induced by a run of Dijkstra on some (C, w).

Let \boldsymbol{I} any interval set.

Let *I* any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after v and still present at time t. So

$$W_{v,t} = \{ [l_u, r_u] \in I : l_v \le l_u \le t \le r_u \}$$

Let I any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after v and still present at time t. So

$$W_{v,t} = \{ [l_u, r_u] \in I : l_v \le l_u \le t \le r_u \}$$

• Working set of v, $W_v = W_{v,t^*}$ such that $t^* = \arg\max_t |W_{v,t}|$.

Let I any interval set.

• For any vertex $v \in V(G)$ at any time $t \in I(v)$ the working set $W_{v,t}$ is the set of vertices inserted after v and still present at time t. So

$$W_{v,t} = \{ [l_u, r_u] \in I : l_v \le l_u \le t \le r_u \}$$

- Working set of v, $W_v = W_{v,t^*}$ such that $t^* = \arg \max_t |W_{v,t}|$.
- The cost of a vertex $v \in V(G)$ is $Cost(v) = \log |W_v|$. And so $Cost(I) = \sum_{v \in V(G)} \log |W_v|$.

Fibonacci-Like Priority Queue with Working Set Property

FPQWSP is a type of Fibonacci Heap which satisfies the amortized time complexity for any sequence of operations as follows:

Fibonacci-Like Priority Queue with Working Set Property

FPQWSP is a type of Fibonacci Heap which satisfies the amortized time complexity for any sequence of operations as follows:

	FPQWSP	Fibonacci Heap
Insert	O(1)	O(1)
DecreaseKey	O(1)	O(1)
ExtractMin	$O(1 + \log W_x)$	$O(\log n)$

Fibonacci-Like Priority Queue with Working Set Property

FPQWSP is a type of Fibonacci Heap which satisfies the amortized time complexity for any sequence of operations as follows:

	FPQWSP	Fibonacci Heap
Insert	O(1)	O(1)
DecreaseKey	O(1)	O(1)
ExtractMin	$O(1 + \log W_x)$	$O(\log n)$

Fact

There is a FPQWSP for Dijkstra. We will use this data structure in every argument from now on by default.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs *n* times **ExtractMin** calls for each vertex and *m* times **DecreaseKey** calls.

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs *n* times **ExtractMin** calls for each vertex and *m* times **DecreaseKey** calls.

• Hence total time taken by all DecreaseKey calls is O(m).

Time Complexity of Dijkstra

In Dijkstra Algorithm it runs n times ExtractMin calls for each vertex and m times DecreaseKey calls.

- Hence total time taken by all DecreaseKey calls is O(m).
- Total time taken by all ExtractMin calls is

$$\sum_{v \in V(G)} O(1 + \log|W_v|) = O\left(n + \sum_{v \in V(G)} \log|W_v|\right) = O(n + Cost(I))$$

• Total time taken by Dijkstra is O(m+n+Cost(I))

Main Theorem

Theorem

Dijkstra implemented by FPQWSP in Comparison-Addition model has time complexity $O(OPT_Q(G) + m + n)$.

Goal: We'll show $OPT_Q(G) = \Omega(Cost(I))$.

• $OPT_Q(G) \leq OPT(G)$

Main Theorem

Theorem

Dijkstra implemented by FPQWSP in Comparison-Addition model has time complexity $O(OPT_Q(G) + m + n)$.

Goal: We'll show $OPT_Q(G) = \Omega(Cost(I))$.

- $OPT_Q(G) \leq OPT(G)$
- $OPT(G) = \Omega(n)$

Main Theorem

Theorem

Dijkstra implemented by FPQWSP in Comparison-Addition model has time complexity $O(OPT_Q(G) + m + n)$.

Goal: We'll show $OPT_Q(G) = \Omega(Cost(I))$.

- $OPT_Q(G) \leq OPT(G)$
- $OPT(G) = \Omega(n)$
- $OPT(G) = \Omega(m)$

So
$$OPT_Q(G) + n + m = O(OPT(G))$$
.

Fact

$$OPT_Q(G) = \Omega(\log(\mathsf{Order}(G)))$$

Fact

$$OPT_Q(G) = \Omega(\log(\mathsf{Order}(G)))$$

• Partition the exploration tree into non-comparable sets (B_1, \ldots, B_k) with i < j then no node of B_j is ancestor of any node of B_j .

Fact

$$OPT_Q(G) = \Omega(\log(\mathsf{Order}(G)))$$

- Partition the exploration tree into non-comparable sets (B_1, \ldots, B_k) with i < j then no node of B_j is ancestor of any node of B_i .
- For any such partition $\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^{k} |B_i| \log |B_i|\right)$

Fact

$$OPT_Q(G) = \Omega(\log(Order(G)))$$

- Partition the exploration tree into non-comparable sets (B_1, \ldots, B_k) with i < j then no node of B_j is ancestor of any node of B_i .
- For any such partition $\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^{k} |B_i| \log |B_i|\right)$
- There is a partition such that $2\sum_{i=1}^{k}|B_i|\log|B_i| \geq Cost(I)$

Definition (Barrier)

Let *T* be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

Definition (Barrier)

Let T be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

For two disjoint barriers, B₁ < B₂ if no node of B₂ is predecessor of a node in B₁.

Definition (Barrier)

Let *T* be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

- For two disjoint barriers, B₁ < B₂ if no node of B₂ is predecessor of a node in B₁.
- $(B_1, ..., B_k)$ is a barrier sequence if $i < j \implies B_i < B_j$.

Definition (Barrier)

Let T be any tree. A *Barrier*, $B \subseteq V(T)$ is a set of nodes where for any two vertices $u, v \in B$, u is not ancestor of v in T.

- For two disjoint barriers, B₁ < B₂ if no node of B₂ is predecessor of a node in B₁.
- $(B_1, ..., B_k)$ is a barrier sequence if $i < j \implies B_i < B_j$.

Lemma

A sequence $(B_1, ..., B_k)$ of pairwise disjoint vertex sets is barrier sequence if and only if for all $1 \le i \le j \le k$, $v \in B_j$ is not ancestor of any $u \in B_i$ in T.

Lemma

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of T.

Then
$$\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^{k} |B_i| \log |B_i|\right)$$

Lemma

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of T.

Then
$$\log(\operatorname{Order}(G)) = \Omega\left(\sum_{i=1}^{k} |B_i| \log |B_i|\right)$$

• We have $Order(G)) \ge Order(T)$. We'll show $Order(T) \ge |B_1|!|B_2|!\cdots |B_k|!$.

Lemma

Let T be any spanning tree and (B_1, \ldots, B_k) be a barrier sequence of T.

Then
$$\log(\text{Order}(G)) = \Omega\left(\sum_{i=1}^{k} |B_i| \log |B_i|\right)$$

• We have $Order(G)) \ge Order(T)$. We'll show $Order(T) \ge |B_1|!|B_2|!\cdots |B_k|!$.

• Delete vertices of B_k to get T'. By induction for the barrier sequence (B_1, \ldots, B_{k-1}) for T', $Order(T') \ge |B_1|!|B_2|!\cdots|B_{k-1}|!$.

• We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.

- We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.
- For each order of B_k and any order of Order(T') we can just concatenate them to get an order of T.

- We can order vertices of B_k in any order we want. There are $|B_k|!$ many orders.
- For each order of B_k and any order of Order(T') we can just concatenate them to get an order of T.

So finally we got the result:

Result

If T is a spanning tree of G and (B_1, \ldots, B_k) is a barrier sequence for T then

$$OPT_Q(G) = \Omega\left(\sum_{i=1}^k |B_i| \log |B_i|\right)$$

Consider running Dijkstra algorithm until some time. Let S is the set of nodes that are in the priority queue.

Consider running Dijkstra algorithm until some time. Let *S* is the set of nodes that are in the priority queue.

• Notice that *S* is the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.

Consider running Dijkstra algorithm until some time. Let *S* is the set of nodes that are in the priority queue.

- Notice that *S* is the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.
- Therefore, *S* is an incomparable set of the final exploration tree.
- S forms a barrier.

Consider running Dijkstra algorithm until some time. Let *S* is the set of nodes that are in the priority queue.

- Notice that *S* is the leaves of the partial exploration tree built so far which is a subgraph of final exploration tree.
- Therefore, *S* is an incomparable set of the final exploration tree.
- S forms a barrier.

Result

At any time of the algorithm the set of elements in the priority queue forms a barrier

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$,

```
\bigcap_{I\in I,C(I)=i}I\neq\emptyset.
```

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in I, C(I)=i} I \neq \emptyset$.

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in I, C(I)=i} I \neq \emptyset$.

•
$$B_c = \{ v \in V(G) \mid C(I(v)) = c \}$$

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in I, C(I)=i} I \neq \emptyset$.

- $B_c = \{ v \in V(G) \mid C(I(v)) = c \}$
- $t_c = \min\{t \mid \forall v \in B_c, t \in I(v)\}$

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in I, C(I)=i} I \neq \emptyset$.

- $B_c = \{v \in V(G) \mid C(I(v)) = c\}$
- $t_c = \min\{t \mid \forall v \in B_c, t \in I(v)\}$
- Order $\{B_c\}$ by increasing order of $\{t_c\}$. WLOG $t_1 < \cdots < t_k$.

A barrier sequence is basically coloring vertices in a certain way where vertices in a barrier have same color.

Definition (Intersecting Coloring)

An intersecting coloring of I with k colors is a function $C: I \to [k]$ that assigns a color to every interval and additionally for every color $i \in [k]$, $\bigcap_{I \in I, C(I)=i} I \neq \emptyset$.

- $B_c = \{v \in V(G) \mid C(I(v)) = c\}$
- $t_c = \min\{t \mid \forall v \in B_c, t \in I(v)\}$
- Order $\{B_c\}$ by increasing order of $\{t_c\}$. WLOG $t_1 < \cdots < t_k$.
- (B_1, \ldots, B_k) is a barrier sequence for exploration tree.

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of I with k colors. Let (B_1, \ldots, B_k) is the barrier sequence induced by C. Then let the energy of C is defined to be

$$E(C) = 2\sum_{i=1}^{k} |B_i| \log |B_i|$$

Intersecting Coloring Gives Lower Bounds

Let C be an intersecting coloring of I with k colors. Let (B_1, \ldots, B_k) is the barrier sequence induced by C. Then let the energy of C is defined to be

$$E(C) = 2\sum_{i=1}^{k} |B_i| \log |B_i|$$

Result

If I is the interval set induced by Dijkstra and C be any arbitrary intersecting coloring of I then

$$OPT_Q(G) = \Omega(E(C))$$

Goal: Find an intersecting coloring of I, C such that $E(C) \ge Cost(I)$

• Then time complexity of all EXTRACTMIN operations is O(n + Cost(I)) = O(n + E(C)).

- Then time complexity of all EXTRACTMIN operations is O(n + Cost(I)) = O(n + E(C)).
- We have $OPT_Q(G) = \Omega(E(C))$.

- Then time complexity of all EXTRACTMIN operations is O(n + Cost(I)) = O(n + E(C)).
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of ExtractMin in Dijkstra is upper bounded by $O(n + OPT_Q(G))$.

- Then time complexity of all EXTRACTMIN operations is O(n + Cost(I)) = O(n + E(C)).
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of ExtractMin in Dijkstra is upper bounded by $O(n + OPT_Q(G))$.
- Dijkstra achieves universal optimality for time complexity.

Goal: Find an intersecting coloring of I, C such that $E(C) \ge Cost(I)$

- Then time complexity of all EXTRACTMIN operations is O(n + Cost(I)) = O(n + E(C)).
- We have $OPT_Q(G) = \Omega(E(C))$.
- So overall Cost of ExtractMin in Dijkstra is upper bounded by $O(n + OPT_Q(G))$.
- Dijkstra achieves universal optimality for time complexity.

We will find such a good intersecting coloring recursively.

• We will construct C by induction on |I|.

- We will construct C by induction on |I|.
- Find the interval $x \in I$ with the largest W_x . Use induction on $I' = I \setminus W_x$

- We will construct C by induction on |I|.
- Find the interval $x \in I$ with the largest W_x . Use induction on $I' = I \setminus W_x$
- Let C' is the coloring for I' such that E(C') ≥ Cost(I'). Add a new color for all the elements in W_x to get new coloring C.

- We will construct C by induction on |I|.
- Find the interval $x \in I$ with the largest W_x . Use induction on $I' = I \setminus W_x$
- Let C' is the coloring for I' such that E(C') ≥ Cost(I'). Add a new color for all the elements in W_x to get new coloring C.
- $E(C) = E(C') + 2|W_x| \log |W_x|$ by definition.

- We will construct C by induction on |I|.
- Find the interval $x \in I$ with the largest W_x . Use induction on $I' = I \setminus W_x$
- Let C' is the coloring for I' such that E(C') ≥ Cost(I'). Add a new color for all the elements in W_x to get new coloring C.
- $E(C) = E(C') + 2|W_x| \log |W_x|$ by definition.

Fact

For working set W_x with the largest size

$$Cost(I) \le Cost(I \setminus W_x) + 2|W_x|\log|W_x|$$

- We will construct C by induction on |I|.
- Find the interval $x \in I$ with the largest W_x . Use induction on $I' = I \setminus W_x$
- Let C' is the coloring for I' such that E(C') ≥ Cost(I'). Add a new color for all the elements in W_x to get new coloring C.
- $E(C) = E(C') + 2|W_x| \log |W_x|$ by definition.

Fact

For working set W_x with the largest size

$$Cost(I) \leq Cost(I \setminus W_x) + 2|W_x|\log|W_x|$$

• $Cost(I) \le Cost(I') + 2|W_x| \log |W_x|$. Hence, $E(C) \ge Cost(I)$.

$OPT_Q(G) = \Omega(\log(\mathsf{Order}(G)))$

Lemma

For any directed or undirected graph G, any algorithm for the DO problem needs $\Omega(\log(\text{Order}(G)))$ comparison queries in expectation.

- Let *A* is any correct algorithm and $L \in Order(G)$.
- Given L we have a weight assignment w_L such that L is unique order obtained from w_L upon running Dijkstra. For each L fix w_L . Let W be the collection of all such w_L .
- Let $C_L \in \{-1, 0, 1\}^*$ be the sequence of answers of comparisons made by A on (G, w_L) . Then $C : \mathcal{W} \to \{-1, 0, 1\}^*$, $C(w_L) = C_L$ is a ternary prefix free code.
- By Shannon's source coding lemma for symbol codes any such code has expected length $\Omega(\log(|\mathcal{W}|)) = \Omega(\log(\operatorname{Order}(G)))$

Deleting Intervals from I

Lemma

Let I an interval set and $x \in I$. $k = \max_{t} |\{I \in I \mid t \in I\}|$. Then

$$Cost(I) \le Cost(I \setminus \{x\}) + \log |W_x| + \log k$$

- Let $l_1, \ldots, l_l \in \mathcal{I}$ are the only intervals which had nonempty intersection with x. So $l \le k 1$.
- Let t_i is starting point of I_i . WLOG assume $t_l > \cdots > t_1$.
- Let W_i , W'_i are working sets of I_i before and after removing x.

Deleting Intervals from I

- Let t is starting point of x. Then $W_{i,t}$ contains x, I_1, \ldots, I_i . So $|W_i| \ge i + 1$.
- $|W_i| \in \{|W_i'|, |W_i'| + 1\}$ for all $i \in [l]$.

$$Cost(I) - Cost(I \setminus \{x\}) - \log |W_x|$$

$$= \sum_{i=1}^{l} \log |W_i| - \log |W'_i|$$

$$\leq \sum_{i=1}^{l} \log(i+1) - \log i = \log(l+1) \leq \log k$$

Fact

For any working set $|W_x| = k$ we have

$$Cost(I) \le Cost(I \setminus W_x) + 2|W_x|\log|W_x|$$