The Set Properties Generating Geometry and Physics

George. M. Van Treeck

ABSTRACT. Volume and the Minkowski distances/Lp norms (e.g., Euclidean distance) are derived from a set and limit-based foundation without referencing the primitives of geometry. Sequencing a linearly ordered set in all n-at-time permutations via successor/predecessor relations is a cyclic set limiting n to at most 3, for example, 3 dimensions of physical space. Therefore, all other interval lengths have different types that can only be related to a 3-dimensional distance interval length via conversion ratios. The ratios and geometry proofs provide simpler derivations of the spacetime, Newton's gravity, Coulomb's charge force, and Einstein-Planck equations and exposes the ratios composing their corresponding constants. All proofs are verified in Coq.

Contents

1.	Introduction	1
2.	Ruler measure and convergence	2
3.	Volume	3
4.	Distance	4
5.	Applications to physics	8
6.	Insights and implications	10
References		19

1. Introduction

Mathematical (real) analysis can construct differential calculus from a set and limit-based foundation without the need to reference the primitives of Euclidean geometry, like straight line, angle, slope, etc. But the Riemann and Lebesgue integrals and measure theory (for example, Hilbert spaces and the Lebesgue measure) define Euclidean volume as the product of interval lengths. And the vector norm and metric space use Euclidean distance and its properties as definitions [Gol76] [Rud76]. Here, volume and distance are derived from a simple set and limit-based foundation without the hand-waving references to side, angle, triangle, rectangle, etc. for justification.

²⁰¹⁰ Mathematics Subject Classification. Primary 28A75, 28E15. Secondary 03E75, 51M99. Copyright © 2022 George M. Van Treeck. Creative Commons Attribution License.

The usual Cartesian definition of volume is the set of all ordered combinations, n-tuples, of members from the disjoint sets, $x_i \in \{x_1, \cdots, x_n\}$. Therefore, the size of a "countable" volume, v_c , is the cardinal of a set of n-tuples, $v_c = \prod_{i=1}^n |x_i|$, where $|x_i|$ is the cardinal of the countable set, x_i . But deriving the Euclidean volume equation from this countable volume, where $|x_i|$ is the number of partitions of the interval, $[a_i, b_i] \subset \mathbb{R}$, requires avoiding the circular logic of assuming that each n-tuple corresponds to a product of interval sizes.

Further, the equality constraint, $v_c = \prod_{i=1}^n |x_i|$, requires the same operation to be applied to both sides of the equation, which will only allow Euclidean volume to be derived. Some generalizations to include non-Euclidean volumes are: $v_c = \prod_{i=1}^n f_i(|x_i|)$ and $v_c = f(\prod_{i=1}^n |x_i|)$.

 $\forall v \in \mathbb{R}, v = g(v_c, n) \exists d \in \mathbb{R} : v = f(d, n) \text{ and } d = f^{-1}(v, n), \text{ where } d \text{ is herein defined to be a "geometric" distance. And an n-volume can only be sum of disjoint n-volumes. Therefore, <math>v = \sum_{i=1}^m v_i \Rightarrow \exists d_i \in \mathbb{R} : f(d, n) = \sum_{i=1}^m f(d_i, n) \Rightarrow d = f^{-1}(v, n) = f^{-1}(\sum_{i=1}^m f(d_i, n)), \text{ which all have the properties of metric space.}$ Every Euclidean and non-Euclidean n-volume, $v = \sum_{i=1}^m v_i$, has a correspond-

Every Euclidean and non-Euclidean n-volume, $v = \sum_{i=1}^{m} v_i$, has a corresponding cuboid volume, $d^n = \sum_{i=1}^{m} d_i^n$. Therefore, proving that the Minkowski distances are derived from sum of countable cuboid n-volumes and have the properties of a metric space provides a common set and limit-based foundation under volume and geometric distance.

It is commonly assumed that the dimensions of physical space can be sequenced in any n-at-time order. But deterministic sequencing of a set from 1 to n (for example, a set of n number domain intervals or dimensions) implies that each set member can be uniquely labeled, counted, and sequenced in a repeatable order, which in set theory is a strict linear order defined in terms of successor and predecessor functions. It will be proved that a strict linearly ordered set sequenced only via the successor/predecessor functions in all n-at-a-time permutations is a cyclic set, where $n \leq 3$.

Therefore, an interval length that is not in a cyclic set of 3 "distance" interval lengths has a different type (member of a different set) that can only be related to a 3-dimensional distance via unit-factoring, conversion ratios. The ratios combined with the geometry proofs provide simpler derivations of the Lorentz, spacetime, Newton's gravity, Coulomb's charge force, and Einstein-Planck equations and exposes the ratios that compose the gravity, charge, and Planck constants. Impacts on Einstein's field (general relativity) equations are also shown.

All the proofs in this article are trivial. But to ensure confidence, all the proofs have been verified using using the Coq proof verification system [Coq23]. The formal proofs are in the Coq files, "euclidrelations.v" and "threed.v," at: https://github.com/treeck/RASRGeometry.

2. Ruler measure and convergence

Derivatives and integrals use a 1-1 correspondence between the infinitesimals of each interval, where the size of the infinitesimals in each interval are proportionate to the size of the interval, which precludes using derivatives and integrals to directly express many-to-one, one-to-many, and many-to-many (Cartesian product) mappings between same-sized, size κ , infinitesimals in different-sized intervals. Further, using tools that define Euclidean volume and distance precludes using those tools to derive Euclidean volume and distance.

Therefore, a different tool is used here. A ruler (measuring stick) measures the size of each interval approximately as the sum of the nearest integer number, p, of whole subintervals (infinitesimals), where each infinitesimal has the same size, κ . The ruler is both an inner and outer measure of an interval.

Definition 2.1. Ruler measure,
$$M \colon \forall [a,b] \subset \mathbb{R}, \ s=b-a \land \kappa > 0 \land (p=floor(s/\kappa) \lor p=ceiling(s/\kappa)) \land M=\sum_{i=1}^p \kappa=p\kappa.$$

Theorem 2.2. Ruler convergence: $M = \lim_{\kappa \to 0} p\kappa = s$.

The formal proof, "limit_c_0_M_eq_exact_size," is in the file, euclidrelations.v.

Proof. (epsilon-delta proof)

By definition of the floor function, $floor(x) = max(\{y: y \le x, y \in \mathbb{Z}, x \in \mathbb{R}\})$:

$$(2.1) \quad \forall \ \kappa > 0, \ p = floor(s/\kappa) \quad \wedge \quad 0 \leq |floor(s/\kappa) - s/\kappa| < 1 \quad \Rightarrow \quad |p - s/\kappa| < 1.$$

Multiply both sides of inequality 2.1 by κ :

$$(2.2) \forall \kappa > 0, |p - s/\kappa| < 1 \Rightarrow |p\kappa - s| < |\kappa| = |\kappa - 0|.$$

$$(2.3) \quad \forall \ \epsilon = \delta \quad \land \quad |p\kappa - s| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |p\kappa - s| < \delta = \epsilon \quad := \quad M = \lim_{\kappa \to 0} p\kappa = s. \quad \Box$$

The following is an example of ruler convergence for the interval, $[0, \pi]$: $s = \pi - 0$, and $p = floor(s/\kappa) \Rightarrow p \cdot \kappa = 3.1_{\kappa = 10^{-1}}, 3.14_{\kappa = 10^{-2}}, 3.141_{\kappa = 10^{-3}}, ..., \pi_{\lim_{\kappa \to 0}}$.

Lemma 2.3.
$$\forall n \geq 1, \quad 0 < \kappa < 1 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa.$$

PROOF. The formal proof , "lim_c_to_n_eq_lim_c," is in the Coq file, euclidrelations.v.

$$(2.4) \quad n \geq 1 \quad \wedge \quad 0 < \kappa < 1 \quad \Rightarrow \quad 0 < \kappa^n < \kappa \quad \Rightarrow \quad |\kappa - \kappa^n| < |\kappa| = |\kappa - 0|.$$

$$(2.5) \quad \forall \ \epsilon = \delta \quad \land \quad |\kappa - \kappa^n| < |\kappa - 0| < \delta$$

$$\Rightarrow \quad |\kappa - 0| < \delta \quad \land \quad |\kappa - \kappa^n| < \delta = \epsilon \quad := \quad \lim_{\kappa \to 0} \kappa^n = 0.$$

$$(2.6) \qquad \lim_{\kappa \to 0} \kappa^n = 0 \quad \wedge \quad \lim_{\kappa \to 0} \kappa = 0 \quad \Rightarrow \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa. \qquad \Box$$

3. Volume

DEFINITION 3.1. Countable volume size, v_c , is the number of ordered combinations (n-tuples) of the members of n number of disjoint, countable domain sets, x_i :

(3.1)
$$\exists n \in \mathbb{N}, v_c, \in \{0, \mathbb{N}\}, x_i \in \{x_1, \dots, x_n\}, \bigcap_{i=1}^n x_i = \emptyset : v_c = \prod_{i=1}^n f_i(|x_i|).$$

THEOREM 3.2. Euclidean volume size, $v = \prod_{i=1}^{n} s_i$, is the equality case of countable volume size, $v_c = \prod_{i=1}^{n} |x_i|$, where each countable set, x_i , is the set of partitions of an interval, $[a_i, b_i] \subset \mathbb{R}$.

(3.2)
$$\forall [a_i, b_i] \in \{[a_1, b_1], \dots [a_n, b_n]\}, [v_a, v_b] \subset \mathbb{R}, \ s_i = b_i - a_i, \ v = v_a - v_b,$$

$$v_c = \prod_{i=1}^n |x_i| \quad \Rightarrow \quad v = \prod_{i=1}^n s_i.$$

The formal proof, "Euclidean_volume," is in the Coq file, euclidrelations.v.

PROOF.

Use the ruler (2.1) to partition each of the domain intervals, $[a_i, b_i]$, into a set, x_i , containing $|x_i|$ number of size κ partitions and apply ruler convergence (2.2):

$$(3.3) \ \forall i \ n \in \mathbb{N}, \ i \in [1, n], \ \kappa > 0 \ \land \ floor(s_i/\kappa) = |x_i| \ \Rightarrow \ s_i = \lim_{\kappa \to 0} (|x_i| \cdot \kappa).$$

$$(3.4) s_i = \lim_{\kappa \to 0} (|x_i| \cdot \kappa) \quad \Leftrightarrow \quad \prod_{i=1}^n s_i = \prod_{i=1}^n \lim_{\kappa \to 0} (|x_i| \cdot \kappa).$$

$$(3.5) \quad \prod_{i=1}^{n} s_i = \prod_{i=1}^{n} \lim_{\kappa \to 0} (|x_i| \cdot \kappa) \quad \Leftrightarrow \quad \prod_{i=1}^{n} s_i = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \cdot \kappa^n.$$

Apply lemma 2.3 to equation 3.5:

$$(3.6) \quad \prod_{i=1}^{n} s_i = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \cdot \kappa^n \quad \wedge \quad \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Rightarrow \quad \prod_{i=1}^{n} s_i = \lim_{\kappa \to 0} (\prod_{i=1}^{n} |x_i|) \cdot \kappa.$$

Apply the ruler (2.1) and ruler convergence (2.2) to v:

$$(3.7) \exists v \in \mathbb{R} : v_c = floor(v/\kappa) \Leftrightarrow v = \lim_{\kappa \to 0} v_c \cdot \kappa.$$

Multiply both sides of the countable volume equation 3.1 by κ :

$$(3.8) v_c = \prod_{i=1}^n |x_i| \Leftrightarrow v_c \cdot \kappa = (\prod_{i=1}^n |x_i|) \cdot \kappa$$

$$(3.9) v_c \cdot \kappa = (\prod_{i=1}^n |x_i|) \cdot \kappa \quad \Leftrightarrow \quad \lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa.$$

Combine equations 3.7, 3.9, and 3.6:

(3.10)
$$v = \lim_{\kappa \to 0} v_c \cdot \kappa \quad \wedge \quad \lim_{\kappa \to 0} v_c \cdot \kappa = \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa \quad \wedge \lim_{\kappa \to 0} (\prod_{i=1}^n |x_i|) \cdot \kappa = \prod_{i=1}^n s_i \quad \Rightarrow \quad v = \prod_{i=1}^n s_i. \quad \Box$$

4. Distance

4.1. Countable cuboid n-volume size.

Definition 4.1. The countable cuboid volume size, d_c^n , is the sum of m number of disjoint countable cuboid volume sizes.

$$\forall n \in \mathbb{N}, d_c \in \{0, \mathbb{N}\} \exists m \in \mathbb{N}, x_i \in \{x_1, \dots, x_m\}, \bigcap_{i=1}^m x_i = \emptyset:$$
$$d_c^n = \sum_{i=1}^m |x_i|^n.$$

4.2. Minkowski distance (L_p norm).

The formal proof, "Minkowski_distance," is in the Coq file, euclidrelations.v.

THEOREM 4.2. The Minkowski distances (L_p norms) are derived from the sum of countable cuboid n-volume sizes (4.1).

$$d_c^n = \sum_{i=1}^m |x_i|^n \quad \Rightarrow \quad \exists \ d, s_1, \cdots, s_m \in \mathbb{R} : \quad d = (\sum_{i=1}^m s_i^n)^{1/n}.$$

PROOF. Apply the ruler (2.1):

$$(4.1) \exists d, s_1, \cdots, s_m \in \mathbb{R} : d_c = floor(d/\kappa) \land |x_i| = floor(s_i/\kappa).$$

Apply the ruler convergence (2.2):

$$(4.2) |x_i| = floor(s_i/\kappa) \Rightarrow s_i = \lim_{\kappa \to 0} |x_i| \cdot \kappa.$$

$$(4.3) d_c^n = \sum_{i=1}^m |x_i|^n \Rightarrow d^n = \lim_{\kappa \to 0} (d_c \cdot \kappa)^n = \lim_{\kappa \to 0} (\sum_{i=1}^m (|x_i|^n) \cdot \kappa.$$

Apply lemma 2.3 to equation 4.3 and substitute equation 4.2:

$$(4.4) \quad d^n = \lim_{\kappa \to 0} \left(\sum_{i=1}^m (|x_i|^n) \cdot \kappa \right) \wedge \lim_{\kappa \to 0} \kappa^n = \lim_{\kappa \to 0} \kappa$$

$$\Rightarrow \quad d^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i|^n) \cdot \kappa^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i| \cdot \kappa)^n.$$

Apply equation 4.2 to equation 4.4:

$$(4.5) \ d^n = \lim_{\kappa \to 0} \sum_{i=1}^m (|x_i| \cdot \kappa)^n \quad \land \quad s_i = \lim_{\kappa \to 0} |x_i| \cdot \kappa \quad \Rightarrow \quad d^n = \sum_{i=1}^m s_i^n.$$

(4.6)
$$d^n = \sum_{i=1}^m s_i^n \quad \Leftrightarrow \quad d = (\sum_{i=1}^m s_i^n)^{1/n}.$$

4.3. Distance inequality. Proving that all Minkowski distances (L_p norms) satisfy the metric space triangle inequality requires another inequality. The formal proof, distance_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.3. Distance inequality

$$\forall n \in \mathbb{N}, \ v_a, v_b \ge 0: \ (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}.$$

PROOF. Expand the n-volume, $(v_a^{1/n} + v_b^{1/n})^n$, using the binomial expansion:

$$(4.7) \quad \forall v_a, v_b \ge 0: \quad v_a + v_b \le v_a + v_b + \\ \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^{n-k} (v_b^{1/n})^k + \sum_{i=1}^n \binom{n}{k} (v_a^{1/n})^k (v_b^{1/n})^{n-k} = (v_a^{1/n} + v_b^{1/n})^n.$$

Take the n^{th} root of both sides of the inequality:

$$(4.8) \ \forall \ v_a, v_b \ge 0, n \in \mathbb{N} : v_a + v_b \le (v_a^{1/n} + v_b^{1/n})^n \Rightarrow (v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n}. \quad \Box$$

4.4. Distance sum inequality. The formal proof, distance_sum_inequality, is in the Coq file, euclidrelations.v.

Theorem 4.4. Distance sum inequality

$$\forall m, n \in \mathbb{N}, \ a_i, b_i \ge 0: \ (\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}.$$

PROOF. Apply the distance inequality (4.3):

$$(4.9) \quad \forall m, n \in \mathbb{N}, \quad v_a, v_b \ge 0: \quad v_a = \sum_{i=1}^m a_i^n \quad \land \quad v_b = \sum_{i=1}^m b_i^n \quad \land$$

$$(v_a + v_b)^{1/n} \le v_a^{1/n} + v_b^{1/n} \quad \Rightarrow \quad ((\sum_{i=1}^m a_i^n) + (\sum_{i=1}^m b_i^n))^{1/n} =$$

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n}. \quad \Box$$

4.5. Metric Space. All Minkowski distances (L_p norms) have the properties of metric space.

The formal proofs: triangle_inequality, symmetry, non_negativity, and identity_of_indiscernibles are in the Coq file, euclidrelations.v.

THEOREM 4.5. Triangle Inequality: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \leq d(u, v) + d(v, w).$

PROOF.
$$\forall p \geq 1, \quad k > 1, \quad u = s_1, \quad w = s_2, \quad v = w/k$$
:

$$(4.10) (u^p + w^p)^{1/p} \le ((u^p + w^p) + 2v^p)^{1/p} = ((u^p + v^p) + (v^p + w^p))^{1/p}.$$

Apply the distance inequality (4.3) to the inequality 4.10:

$$(4.11) \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \wedge (v_{a} + v_{b})^{1/n} \leq v_{a}^{1/n} + v_{b}^{1/n}$$

$$\wedge \quad v_{a} = u^{p} + v^{p} \wedge v_{b} = v^{p} + w^{p}$$

$$\Rightarrow \quad (u^{p} + w^{p})^{1/p} \leq ((u^{p} + v^{p}) + (v^{p} + w^{p}))^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p}$$

$$\Rightarrow \quad d(u, w) = (u^{p} + w^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} \leq (u^{p} + v^{p})^{1/p} + (v^{p} + w^{p})^{1/p} = d(u, v) + d(v, w). \quad \Box$$

Theorem 4.6. Symmetry: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, v) = d(v, u)$.

PROOF. By the commutative law of addition:

(4.12)
$$\forall p : p \ge 1$$
, $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} = (s_1^p + s_2^p)^{1/p}$
 $\Rightarrow d(u, v) = (u^p + v^p)^{1/p} = (v^p + u^p)^{1/p} = d(v, u)$. \square

THEOREM 4.7. Non-negativity: $d(s_1, s_2) = (\sum_{i=1}^2 s_i^p)^{1/p} \implies d(u, w) \ge 0.$

PROOF. By definition, the length of an interval is always ≥ 0 :

$$(4.13) \forall [a_1, b_1], [a_2, b_2], u = b_1 - a_1, v = b_2 - a_2, \Rightarrow u \ge 0, v \ge 0.$$

(4.14)
$$p \ge 1, \ u, v \ge 0 \quad \Rightarrow \quad d(u, v) = (u^p + v^p)^{1/p} \ge 0.$$

Theorem 4.8. Identity of Indiscernibles: d(u, u) = 0.

PROOF. From the non-negativity property (4.7):

$$(4.15) \quad d(u,w) \ge 0 \quad \land \quad d(u,v) \ge 0 \quad \land \quad d(v,w) \ge 0$$

$$\Rightarrow \quad \exists \ d(u,w) = d(u,v) = d(v,w) = 0.$$

$$(4.16) d(u,w) = d(v,w) = 0 \Rightarrow u = v.$$

$$(4.17) d(u,v) = 0 \wedge u = v \Rightarrow d(u,u) = 0.$$

4.6. At most 3 dimensions of space.

Definition 4.9. Totally ordered set:

$$\forall i \ n \in \mathbb{N}, \ i \in [1, n-1], \ \forall x_i \in \{x_1, \dots, x_n\},$$

$$successor \ x_i = x_{i+1} \ \land \ predecessor \ x_{i+1} = x_i.$$

DEFINITION 4.10. Symmetry (every set member is sequentially adjacent to every other member):

$$\forall i \ j \ n \in \mathbb{N}, \ \forall x_i \ x_j \in \{x_1, \dots, x_n\}, \ successor \ x_i = x_j \Leftrightarrow predecessor \ x_j = x_i.$$

THEOREM 4.11. A strict linearly ordered and symmetric set is a cyclic set.

$$i = n \land j = 1 \Rightarrow successor x_n = x_1 \land predecessor x_1 = x_n.$$

The formal proof, "ordered_symmetric_is_cyclic," is in the Coq file, threed.v.

PROOF. A total order (4.9) assigns a unique label to each set member and assigns unique successors and predecessors for all set members except for the successor of x_n and the predecessor of x_1 . Therefore, the only member that can be a successor of x_n , without creating a contradiction, is x_1 . And the only member that can be a predecessor of x_1 , without creating a contradiction, is x_n . Applying the symmetry property (4.10):

$$(4.18) i = n \land j = 1 \land successor x_i = x_j \Rightarrow successor x_n = x_1.$$

Applying the definition of the symmetry property (4.10) to conclusion 4.18:

(4.19) successor
$$x_i = x_j \implies predecessor x_j = x_i \implies predecessor x_1 = x_n$$
.

Theorem 4.12. An ordered and symmetric set is limited to at most 3 members.

The formal proofs in the Coq file threed.v are:

Lemmas: adj111, adj122, adj212, adj123, adj133, adj233, adj213, adj313, adj323, and not_all_mutually_adjacent_gt_3.

The following proof uses Horn clauses (a subset of first order logic), which makes it clear which facts satisfy a proof goal.

Proof.

It was proved that an ordered and symmetric set is a cyclic set (4.11).

Definition 4.13. (Cyclic) Successor of m is n:

$$(4.20) \ Successor(m, n, setsize) \leftarrow (m = setsize \land n = 1) \lor (n = m + 1 \le setsize).$$

Definition 4.14. (Cyclic) Predecessor of m is n:

$$(4.21) \quad Predecessor(m, n, setsize) \leftarrow (m = 1 \land n = setsize) \lor (n = m - 1 > 1).$$

DEFINITION 4.15. Adjacent: member m is sequentially adjacent to member n if the successor of m is n or the predecessor of m is n. Notionally: (4.22)

 $Adjacent(m, n, setsize) \leftarrow Successor(m, n, setsize) \lor Predecessor(m, n, setsize).$

Prove that every member is adjacent to every other member, where $setsize \in \{1, 2, 3\}$:

$$(4.23) \hspace{1cm} Adjacent(1,1,1) \leftarrow Successor(1,1,1) \leftarrow (m = setsize \land n = 1).$$

$$(4.24) \qquad Adjacent(1,2,2) \leftarrow Successor(1,2,2) \leftarrow (n=m+1 \leq setsize).$$

$$(4.25) Adjacent(2,1,2) \leftarrow Successor(2,1,2) \leftarrow (n = setsize \land m = 1).$$

$$(4.26) \qquad Adjacent(1,2,3) \leftarrow Successor(1,2,3) \leftarrow (n=m+1 \leq setsize).$$

$$(4.27) \qquad Adjacent(2,1,3) \leftarrow Predecessor(2,1,3) \leftarrow (n=m-1 \geq 1).$$

$$(4.28) \qquad Adjacent(3,1,3) \leftarrow Successor(3,1,3) \leftarrow (n = setsize \land m = 1).$$

$$(4.29) \qquad \textit{Adjacent}(1,3,3) \leftarrow \textit{Predecessor}(1,3,3) \leftarrow (m=1 \land n = setsize).$$

$$(4.30) \qquad Adjacent(2,3,3) \leftarrow Successor(2,3,3) \leftarrow (n=m+1 \leq setsize).$$

 $(4.31) \qquad Adjacent(3,2,3) \leftarrow Predecessor(3,2,3) \leftarrow (n=m-1 \geq 1).$

Member 2 is the only successor of member 1 for all setsize > 3, which implies member 3 is not (\neg) a successor of member 1 for all setsize > 3:

$$(4.32) \quad \neg Successor(1, 3, setsize > 3) \\ \leftarrow Successor(1, 2, setsize > 3) \leftarrow (n = m + 1 \le setsize).$$

Member n = setsize > 3 is the only predecessor of member 1, which implies member 3 is not (\neg) a predecessor of member 1 for all setsize > 3:

$$(4.33) \quad \neg Predecessor(1, 3, setsize > 3) \\ \leftarrow Predecessor(1, setsize, setsize > 3) \leftarrow (m = 1 \land n = setsize > 3).$$

For all setsize > 3, some elements are not (\neg) sequentially adjacent to every other element (not symmetric):

$$\begin{array}{ll} (4.34) & \neg Adjacent(1,3,setsize>3) \\ & \leftarrow \neg Successor(1,3,setsize>3) \land \neg Predecessor(1,3,setsize>3). & \Box \end{array}$$

5. Applications to physics

5.1. Spacetime and Lorentz equations. From the Euclidean volume proof (3.2), two independent (disjoint) intervals, [0, r] and [0, r'], defines an Euclidean 2-space. From the Minkowski distance proof (4.2), the interval length, r, is an inverse function of a cuboid 2-volume, and the interval length, r', is an inverse function of a cuboid 2-volume, which sum to a cuboid 2-volume: $r_v^2 = r^2 + r'^2$. And from the 3D proof (4.12), if r is a 3-Dimensional distance, then any other interval length, t, must have a different type (from a different set) that is related to r via a constant, unit-factoring, conversion ratio: c: $r/t = r_c/t_c = c$.

(5.1)
$$r_v^2 = r^2 + r'^2 \quad \land \quad \exists \ r_c, \ t_c, \ c, \ v \in \mathbb{R} : \ r/t = r_c/t_c = c \quad \land \quad r_v/t = v$$

$$\Rightarrow \quad r' = \sqrt{(ct)^2 - (vt)^2} = ct\sqrt{1 - (v/c)^2}.$$

Local (proper) distance, r', contracts relative to coordinate distance, r, as $v \to c$:

(5.2)
$$r' = ct\sqrt{1 - (v/c)^2} \quad \land \quad ct = r \quad \Rightarrow \quad r' = r\sqrt{1 - (v/c)^2}.$$

The Lorentz transformations follow from equation 5.2 and Galilean transformation:

(5.3)
$$r' = r/\sqrt{1 - (v/c)^2} \quad \land \quad r = r' + vt \quad \Rightarrow \quad r' = (r - vt)/\sqrt{1 - (v/c)^2}.$$

(5.4)
$$r' = (r - vt)/\sqrt{1 - (v/c)^2} \quad \land \quad r = ct \quad \land \quad r' = ct'$$

$$\Rightarrow \quad t' = (t - (vt/c))/\sqrt{1 - (v/c)^2} = (t - (vr/c^2))/\sqrt{1 - (v/c)^2}.$$

Coordinate time, t, dilates relative to local (proper) time, t, as $v \to c$:

(5.5)
$$ct = r'/\sqrt{1 - (v/c)^2} \quad \land \quad r' = ct' \quad \Rightarrow \quad t = t'/\sqrt{1 - (v/c)^2}.$$

r' is a 3-dimensional distance. And from statement 5.1, the "-+++" form of Minkowski's spacetime event interval [**Ein15**] is:

(5.6)
$$dr_v^2 = dr^2 + dr'^2 \quad \wedge \quad dr'^2 = dx_1^2 + dx_2^2 + dx_3^2 \quad \wedge \quad d(ct) = dr_v$$

$$\Rightarrow \quad dr = -dr_v^2 + dx_1^2 + dx_2^2 + dx_3^2 = -d(ct)^2 + dx_1^2 + dx_2^2 + dx_3^2.$$

5.2. Newton's gravity force equation. From the 3D proof (4.12), where r is a 3-dimensional distance, a mass interval length, m, must have a different type that is related to the distance via a unit-factoring, conversion ratio, $r = (r_c/m_G)m$:

(5.7)
$$F := m_1 a := m_1 r/t^2 \quad \land \quad \exists \ m_G, r_c, m_2 \in \mathbb{R} : \ r = (r_c/m_G)m_2$$

$$\Rightarrow F := m_1 r/t^2 = (r_c/m_G)m_1 m_2/t^2,$$

where a constant mass, m_1 , and force implies an acceleration, $a := r/t^2$.

From equation 5.3, the proper distance, $r = ct\sqrt{1 - (v/c)^2}$, and where v = 0:

(5.8)
$$r = ct \wedge F = (r_c/m_G)m_1m_2/t^2 \Rightarrow$$

 $F = ((r_c/m_G)c^2)m_1m_2/r^2 = Gm_1m_2/r^2,$

where the constant, $G=(r_c/m_G)c^2$, has the SI units: $m^3 \cdot kg^{-1} \cdot s^{-2}$. And where |v|>0, $F=(r_c/m_G)(c^2-v^2)m_1m_2/r^2$.

5.3. Coulomb's charge force. From the 3D proof (4.12), where r is a 3-dimensional distance, a charge interval length, q, must have a different type that is related to the distance via a unit-factoring, conversion ratio, $r = (r_c/q_C)q$:

(5.9)
$$r = (r_c/m_G)m = (r_c/q_C)q_1 \Rightarrow m = (m_G/q_C)q_1.$$

(5.10)
$$F := ma := mr/t^2 \wedge m = (m_G/q_C)q_1 \wedge r = (r_c/q_C)q_2$$

$$\Rightarrow F := mr/t^2 = (m_G/q_C)(r_c/q_C)q_1q_2/t^2,$$

where a constant mass, m, and force implies an acceleration, $a := r/t^2$.

From equation 5.3, the proper distance, $r = ct\sqrt{1 - (v/c)^2}$, and where v = 0:

(5.11)
$$r = ct = (r_c/t_c)t$$
 \wedge $F = (m_G/q_C)(r_c/q_C)q_1q_2/t^2$
 \Rightarrow $F = (m_G/q_C)(r_c/q_C)(r_c/t_c)^2q_1q_2/r^2.$

(5.12)
$$a_G = r_c/t_c^2 \quad \land \quad F = (m_G/q_C)(r_c/q_C)(r_c/t_c)^2 q_1 q_2/r^2$$

$$\Rightarrow \quad F = (m_G a_G)(r_c/q_C)^2 q_1 q_2/r^2 = k_e q_1 q_2/r^2,$$

where the predicted charge constant, $k_e = (m_G a_G)(r_c/q_C)^2$, has the SI units: $N \cdot m^2 \cdot C^{-2}$. And where |v| > 0, $F = (m_G/q_C)(r_c/q_C)(c^2 - v^2)q_1q_2/r^2$.

5.4. Einstein-Planck and energy-charge equations: $m=(m_p/r_p)r$ and $r/t=r_c/t_c=c\Rightarrow m(ct)^2=((m_p/r_p)r)r^2$. Dividing both sides by t^2 yields Einstein's energy: $E=mc^2=((m_p/r_p)r)(r/t)^2=((m_p/r_p)r)(r_c/t_c)^2=((m_pr_c/r_pt_c)c)r=(m_pr_cc)(r/(r_pt_c))=hf$, which is the Einstein-Planck equation, where the Planck constant is, $h=m_pr_cc$, and $f=r/(r_pt_c)$ is the frequency in cycles per second. $h=(m_pr_c)c=k_Wc$, such that $m_0r=k_W\approx 2.2102190943\cdot 10^{-42}~kg~m$, where r is the work displacement (Compton wavelength) on the rest mass, m_0 .

Likewise, for charge, $r = (r_C/q_C)q = (r_p/m_p)m \Rightarrow m = (m_p/r_p)(r_C/q_C)q \Rightarrow E = mc^2 = (m_p/r_p)(r_C/q_C)qc^2 = (m_pr_cc) \cdot (r_Cq/r_pq_Ct_c) = hf_q.$

6. Insights and implications

(1) All "geometric" distances are inverse functions of the sum of disjoint nvolumes of the same type (sum of cuboid, sum of spherical, or sum of elliptic volumes), $d = f^{-1}(v, n) = f^{-1}(\sum_{i=1}^{m} f(d_i, n))$. The same invertible (bijective) function, f, in all terms and the commutative property of addition generate the properties of metric space.

The L_p norms (Minkowski distances), $d = (\sum_{i=1}^m d_i^n)^{1/n}$, are examples of geometric distances. In contrast, $d: d = (a^2 + 2ab + b^2)^{1/2}$ has the properties of a complete metric space but the 2ab term precludes d from being a geometric distance, which is an example of the definition of a complete metric space being an inadequate filter criteria.

(2) Euclid's proof that Euclidean distance is the smallest distance between two distinct points equate Euclidean distance to a straight line, where it is assumed that the straight line length is the smallest distance [Joy98]. And proofs that a straight line is the smallest distance equate the straight line to the Euclidean distance.

The calculus of variations cannot be used to prove that the smallest distance is the Euclidean distance in Euclidean space because the integrals make Euclidean assumptions, which would result in circular logic.

If m represents the number of dimensions, then $m=2 \Rightarrow 1 \leq n \leq 2$, which constrains the Minkowski distances to a range from Manhattan distance (the largest distance, $d = \sum_{i=1}^{2} s_i$) to Euclidean distance (the smallest distance, $d = (\sum_{i=1}^{2} s_i^2)^{1/2}$.

(3) Hilbert spaces allow fractional dimensions (fractals), which is the case of intersecting distance sets and requires generalizing the countable volume definition (3.1) from $v_c = \prod_{i=1}^n f_i(|x_i|)$ to: $v_c = \prod_{i=1}^n f_i(|x_i| - |x_i \cap (\bigcup_{j=1, i \neq j}^n x_j)|)).$

$$v_c = \prod_{i=1}^n f_i(|x_i| - |x_i \cap (\bigcup_{j=1, i \neq j}^n x_j)|).$$

Distance measures are used in shortest and least cost path search algorithms and machine learning. Intersecting domain sets allow neural networks to generalize a response across domains.

(4) Compare the distance sum inequality (4.4),

$$(\sum_{i=1}^m (a_i^n + b_i^n))^{1/n} \le (\sum_{i=1}^m a_i^n)^{1/n} + (\sum_{i=1}^m b_i^n)^{1/n},$$

used to prove that all Minkowski distances satisfy the metric space triangle inequality property (4.5), to Minkowski's sum inequality:

$$\left(\sum_{i=1}^{m} (a_i^n + b_i^n)^n\right)^{1/n} \le \left(\sum_{i=1}^{m} a_i^n\right)^{1/n} + \left(\sum_{i=1}^{m} b_i^n\right)^{1/n}.$$

Note the exponent difference in the left side of the two inequalities:

$$(\sum_{i=1}^{m} (a_i^n + b_i^n))^{1/n}$$
 vs. $(\sum_{i=1}^{m} (a_i^n + b_i^n)^{\mathbf{n}})^{1/n}$.

The proof of Minkowski's sum inequality assumes: convexity and the L_p space inequalities (for example, H'older's inequality or Mahler's inequality) or the triangle inequality. In contrast, the distance (sum) inequality is a more fundamental inequality because its proof does not require the assumptions of the Minkowski sum inequality.

(5) From the 3D proof (4.12), more intervals than the 3 dimensions of distance intervals must have different types with lengths that are related to a 3-dimensional distance interval length, r, via constant, unit-factoring, conversion ratios (both direct and inverse proportion ratios). The direct proportion ratios for time, mass, and charge are: $r = (r_c/t_c)t = ct = (r_c/m_G)m = (r_c/q_C)q$. An inverse proportion ratio is the mass-displacement ratio: $m_0r = (m_pr_c) = k_W$. The speed of light, c, the gravity constant, G, the charge constant, f, and the Planck constant, f, were all derived from these constant ratios.

- (6) The derivations in this article show that the spacetime, gravity force, charge force, and Einstein-Planck equations all depend on time being proportionate to distance: $r = (r_c/t_c)t = ct$. For example, from the derivation of Newton's gravity equation (5.8), where v = 0: $G = (r_c/m_G)c^2$. Likewise, from the derivation of Coulomb's charge force equation (5.12) the constant, where v = 0: $k_e = (m_G/q_C)(r_c/q_C)c^2$. And from the derivation of the Planck constant (5.4): $h = (m_p r_c)c = k_W c$.
- (7) The gravity, charge, and Planck constants are not fundamental constants because the constants are derived from other (conversion ratio) constants.
- (8) The derivation of the Planck constant (5.4),

 $E = mc^2 = \cdots = (m_p r_c c)(r/(r_p t_c)) = hf$, shows that all wave and particle sizes are relative to the relations between conversion ratios. That is, just as there is no absolute inertial frame of reference, there also is no absolute size.

- (9) The derivations of the spacetime equations and Lorentz transformations, here (5.1), differ from all other derivations and provide insights that the other derivations cannot provide.
 - (a) The derivations, here, are much shorter and simpler.
 - (b) The derivations of the spacetime equations, here, do not rely on the Lorentz transformations or Einsteins' postulates [Ein15]. The derivations do not even require the notion of light.
 - (c) The derivations, here, rely only on geometry: the Euclidean volume proof (3.2), the Minkowski distances proof (4.2), and the 3D proof (4.12), which provides the insight that the geometry of physical space alone creates: a constant, unit-factoring conversion ratio, c, with respect to a 3-dimensional distance; the spacetime equations; and Lorentz transformations.
- (10) Applying the ratios to derive Newton's gravity force (5.2) and Coulomb's charge force (5.3) equations provide some firsts and some new insights into physics:
 - (a) Note that the partial derivatives, $\partial f_{\mu\nu}/\partial x^i$, in Einstein's field (general relativity) equations assume that x^i has the units, distance⁻², which is an assumption of the inverse square law. These are the first derivations of Newton's gravity and Coulomb's charge force equations to not assume the inverse square law or Gauss's flux divergence theorem.
 - (b) These are the first derivations to show that the definition of force, F := ma, containing acceleration, $a = r/t^2$, where r is a distance that is proportionate to time, t, generates the inverse square law.
 - (c) Using Occam's razor, those versions of constants like: charge, vacuum magnetic permeability, etc. that contain the value 4π might

be incorrect because those constants are based on the less parsimonious assumption that the inverse square law is due to Gauss's flux divergence on a sphere having the surface area, $4\pi r^2$.

- (d) These are the first derivations to predict that G and k_e are constants, in the local frame of reference, only where the local velocity is zero. The derived relativistic gravity and charge force equations are: $F = (r_c/m_G)(c^2 v^2)m_1m_2/r^2$ (5.8) and $F = (m_G/q_C)(r_c/q_C)(c^2 v^2)q_1q_2/r^2$ (5.12). Therefore, Einstein's gravity constant, $k = 8\pi G/c^4$ [Ein15], is only valid when the local velocity is 0. Otherwise, $k = 8\pi (r_G/m_G)(c^2 v^2)/c^4$. As $v \to c \Rightarrow F \to 0$, implies a universe expanding faster than predicted by a constant k and also predicts an accelerating expansion.
- (11) There is no unit-factoring ratio converting a state, a single value, to a continuously varying distance, time, mass, and charge interval lengths. Therefore, the spin states of two quantum entangled particles and the polarization states of two quantum entangled photons are independent of the amount of distance between the particles and independent of time (instantaneous).
- (12) It was proved that sequencing through a set, having a strict linear order via the successor/predecessor relations in all n-at-a-time permutations, is a cyclic set with $n \leq 3$ (4.12), which is why there are only 3 dimensions of physical space.
 - (a) If there are higher dimensions of ordered and symmetric geometric space, then there is a set of at most three members (4.12), each member being an ordered and symmetric set of 3 dimensions (three 3-dimensional balls).
 - (b) Each of 3 ordered and symmetric dimensions of space can have only 3 sequentially ordered and symmetric state values. For example, the ordered and symmetric set of the 3 vector orientations, $\{-1,0,1\}$, per dimension.

References

[Coq23] Coq, Coq proof assistant, 2023. https://coq.inria.fr/documentation. \dagger2

[Ein15] A. Einstein, Relativity, the special and general theory, Princeton University Press, 2015. ↑8, 11, 12

[Gol76] R. R. Goldberg, Methods of real analysis, John Wiley and Sons, 1976. ↑1

[Joy98] D. E. Joyce, Euclid's elements, 1998. http://aleph0.clarku.edu/~djoyce/java/elements/elements.html. ↑10

[Rud76] W. Rudin, Principles of mathematical analysis, McGraw Hill Education, 1976. ↑1

George Van Treeck, 668 Westline Dr., Alameda, CA 94501