Aplicação e Análise de Modelo de regressão linear

O objetivo dessa atividade é aplicar e analisar um modelo de regressão linear em um experimento realizado pela Cia. KGB. O experimento traz os resultados encontrados sobre o este de maleabilidade de uma nova película de proteção para um certo tipo de vidro.

Os dados apresentam a flexibilidade dos protótipos (AP, BP e C) em relação à temperatura exposta.

Importação das bibliotecas necessárias para a análise

```
In [38]: import warnings
warnings.filterwarnings('ignore')

In [39]: import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from IPython.display import display
from scipy.stats import linregress, normaltest
import statsmodels.api as sm
# Linear regression model
from statsmodels.formula.api import ols
# Analysis of Variance (ANOVA) on Linear models
from statsmodels.stats.anova import anova_lm
import seaborn as sns
```

função para plotagem dos gráficos dos modelos de regressão linear

Importação e leitura dos dados

```
In [41]: df = pd.read_csv('data.csv', sep=';', decimal=',')
    df.head()
```

Out[41]:		Temperatura (graus C)	Prototipo AP	Prototipo BP	Prototipo C
	0	1	5.0	9.38	11.1
	1	2	6.0	9.12	11.5
	2	3	3.4	9.60	10.9
	3	4	2.7	9.80	10.5
	4	5	10.0	9.00	10.9

Diagrama de dispersão entre os protótipos e a temperatura

Nesses diagramas não é possível inferir que existe um relação diretamente linear entre os Protótipos AP e a Temperatura exposta, entretanto, os Protótipos dos tipos BP e C já se aproximam mais dessa relação.

```
In [43]: columns = data.columns.tolist()
    nrows = 3
    fig, ax = plt.subplots(nrows, 1, figsize=(9, 15))
    for c in range(nrows):
        data.plot.scatter(ax=ax[c], y=columns[c+1], x='Temperatura')
        ax[c].set_title('Relação entre as variáveis de estudo')
    fig.tight_layout()
    plt.show()
```


Modelo de regressão

```
In [44]: x = x = data['Temperatura']
X = sm.add_constant(x)
```

Protótipo AP

```
In [45]: y = data['Prototipo_AP']

model_ap = ols('Prototipo_AP ~ Temperatura', data=pd.concat([X, y], axis=1))

res_ap = model_ap.fit()
print(f"{res_ap.summary()}")
```

OLS Regression Results

===========			==========
Dep. Variable:	Prototipo_AP	R-squared:	0.009
Model:	OLS	Adj. R-squared:	-0.046
Method:	Least Squares	F-statistic:	0.1589
Date:	Sun, 28 May 2023	<pre>Prob (F-statistic):</pre>	0.695
Time:	23:15:32	Log-Likelihood:	-45.142
No. Observations:	20	AIC:	94.28
Df Residuals:	18	BIC:	96.28
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	5.6945	1.132	5.030	0.000	3.316	8.073
Temperatura	0 0377	0 005	a 399	0 695	-0 161	0 236

 Omnibus:
 2.132
 Durbin-Watson:
 1.784

 Prob(Omnibus):
 0.344
 Jarque-Bera (JB):
 1.215

 Skew:
 0.271
 Prob(JB):
 0.545

 Kurtosis:
 1.921
 Cond. No.
 25.0

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.

```
In [46]: print(f"R2: {res_ap.rsquared:.4f}")
    print(f"\nP-value: {res_ap.pvalues[1]:.4f}")
    print(f"R2 ajustado: {res_ap.rsquared_adj:.4f}")
    print(f"\n\tCoeficientes\n{res_ap.params}")
```

R2: 0.0087

P-value: 0.6949 R² ajustado: -0.0463

Coeficientes
Intercept 5.694474
Temperatura 0.037669

dtype: float64

```
In [47]: # nível de confiança
    res_ap.conf_int(alpha=0.05)
```

 Out[47]:
 0
 1

 Intercept
 3.315898
 8.073050

 Temperatura
 -0.160891
 0.236229

Visualizando o modelo e traçando a linha de tendência

A maleabilidade do protótipo do tipo AP, aparentemente, não apresenta relação linear com a temperatura exposta.

Protótipo BP

```
In [49]: y = data['Prototipo_BP']
       model bp = ols('Prototipo BP ~ Temperatura', data=pd.concat([X, y], axis=1))
       res_bp = model_bp.fit()
       print(f"{res_bp.summary()}")
                          OLS Regression Results
     _____
     Dep. Variable:
                       Prototipo_BP R-squared:
                                                           0.825
                               OLS Adj. R-squared:
     Model:
                                                            0.815
              Least Squares F-statistic: 84.92
Sun, 28 May 2023 Prob (F-statistic): 3.09e-08
     Method:
     Date:
                    23:15:33 Log-Likelihood:
                                                          -12.374
     Time:
     No. Observations:
                               20 AIC:
                                                            28.75
     Df Residuals:
                                18 BIC:
                                                             30.74
     Df Model:
                                1
     Covariance Type: nonrobust
     ______
                  coef std err t P>|t| [0.025 0.975]
      -----
     Intercept 9.8822 0.220 44.927 0.000 9.420
Temperatura -0.1692 0.018 -9.215 0.000 -0.208
     ______
                             1.353 Durbin-Watson:
     Omnibus:
                                                            2.344
     Prob(Omnibus):
                            0.508 Jarque-Bera (JB):
                                                           1.003
     Skew:
                            0.279 Prob(JB):
                                                           0.606
     Kurtosis:
                             2.055 Cond. No.
                                                            25.0
     Notes:
     [1] Standard Errors assume that the covariance matrix of the errors is correctly spe
     cified.
In [50]: print(f"R2: {res_bp.rsquared:.4f}")
       print(f"\nP-value: {res_bp.pvalues[1]:.4f}")
       print(f"R2 ajustado: {res_bp.rsquared_adj:.4f}")
       print(f"\n\tCoeficientes:\n{res_bp.params}")
     R2: 0.8251
     P-value: 0.0000
     R<sup>2</sup> ajustado: 0.8154
           Coeficientes:
```

In [51]: # nível de confiança

dtype: float64

Intercept 9.882211 Temperatura -0.169211

Visualizando o modelo e traçando a linha de tendência

```
In [52]: plot_model(x, y, res_bp, title='Regressão Linear do Protótipo BP')
```


<Figure size 3000x1800 with 0 Axes>

A maleabilidade do protótipo BP apresenta uma relação inversamente proporcional à temperatura exposta, logo, quanto maior a sua temperatura, mais flexível essa película será.

Protótipo C

```
In [53]: y = data['Prototipo_C']

model_c = ols('Prototipo_C ~ Temperatura', data=pd.concat([X, y], axis=1))
```

```
res_c = model_c.fit()
       print(f"{res_c.summary()}")
                          OLS Regression Results
      ______
                         Prototipo_C R-squared:
      Dep. Variable:
                                                               0.444
               OLS Adj. N-34ud. C...

Least Squares F-statistic:

Sun, 28 May 2023 Prob (F-statistic):

23:15:35 Log-Likelihood:
      Model:
                                                             0.413
      Method:
                                                              14.38
                                                         0.00133
      Date:
                                                            -20.082
      Time:
      No. Observations:
                                                             44.16
      Df Residuals:
                                18 BIC:
                                                              46.16
      Df Model:
                                  1
      Covariance Type: nonrobust
      ______
                   coef std err t P>|t| [0.025 0.975]
      -----
      Intercept 10.8109 0.323 33.429 0.000 10.132 11.490
Temperatura -0.1024 0.027 -3.792 0.001 -0.159 -0.046
      ______
                             11.002 Durbin-Watson:
      Omnibus:
                                                              1.305
                             0.004 Jarque-Bera (JB):
      Prob(Omnibus):
                                                              8.423
      Skew:
                             -1.393 Prob(JB):
                                                             0.0148
                              4.530 Cond. No.
      Kurtosis:
                                                               25.0
      ______
      Notes:
      [1] Standard Errors assume that the covariance matrix of the errors is correctly spe
      cified.
In [54]: print(f"R2: {res c.rsquared:.4f}")
       print(f"\nP-value: {res_c.pvalues[1]:.4f}")
       print(f"R2 ajustado: {res_c.rsquared_adj:.4f}")
       print(f"\n\tCoeficientes:\n{res_c.params}")
      R<sup>2</sup>: 0.4441
      P-value: 0.0013
      R<sup>2</sup> ajustado: 0.4132
            Coeficientes:
      Intercept 10.810947
      Temperatura -0.102376
      dtype: float64
In [55]: # nível de confiança
       res_c.conf_int(alpha=0.05)
Out[55]:
                               1
          Intercept 10.131517 11.490377
       Temperatura -0.159094 -0.045658
```

Visualizando o modelo e traçando a linha de tendência

<Figure size 3000x1800 with 0 Axes>

Semelhante ao protótipo BP, observa-se uma relação inversamente proporcional entre o tipo C e a temperatura exposta. Entretanto, é possível visualizar também que os valores coletados apresentam-se mais distantes da linha de tendência traçada.

Teste de Hipóteses

Para os modelos de regressão construídos (AP, BP e C), teremos as seguintes regras de decisão:

H₀ -> Não existe regressão

H₁ -> Existe regressão linear

Informações relevantes sobre os dados

In [57]: data.describe()

	Temperatura	Prototipo_AP	Prototipo_BP	Prototipo_C
count	20.00000	20.000000	20.000000	20.000000
mean	10.50000	6.090000	8.105500	9.736000
std	5.91608	2.382646	1.102063	0.908836
min	1.00000	2.700000	6.200000	7.900000
25%	5.75000	4.350000	7.350000	9.015000
50%	10.50000	5.900000	8.105000	9.750000
75 %	15.25000	7.925000	9.025000	10.200000
max	20.00000	10.000000	9.800000	11.500000

Out[57]:

É interessante observar que apesar do número relativamente baixo de dados, o protótipo AP traz uma distribuição maior, além de cauxas mais longas, ao comparar com os outros dois tipos. Além disso, visualiza-se que as medianas não estão localizadas no centro das caixas, logo é possível inferir que a distribuição desses dados não é simétrica, sendo as dos protótipos AP e BP mais próximas do centro e a do tipo C mais próxima do 3º quartil, demonstrando que esses dados são assimétricos negativos.

Somado a isso, o protótipo C apresenta a menor distribuição, concentrando seus valores em torno de 9 e 10. Já o tipo BP, apresenta mais anotações em torno de 8 e 9. Vale ressaltar também que não há a presença de outliers nas amostras.

Visualizando correlações

Pearson

```
In [60]: corr = data.corr(method='pearson')
display(corr)

fig, ax = plt.subplots(figsize=(5,4))
matrix = np.triu(corr)

# using the upper triangle matrix as mask
sns.heatmap(corr, annot=True, mask=matrix, cmap="crest", ax=ax)
fig.tight_layout()
plt.show()
```

	Temperatura	Prototipo_AP	Prototipo_BP	Prototipo_C
Temperatura	1.000000	0.093532	-0.908354	-0.666417
Prototipo_AP	0.093532	1.000000	-0.126194	-0.204609
Prototipo_BP	-0.908354	-0.126194	1.000000	0.599415
Prototipo_C	-0.666417	-0.204609	0.599415	1.000000


```
In [61]: corr = data.corr(method='spearman')
display(corr)

fig, ax = plt.subplots(figsize=(5,4))
matrix = np.triu(corr)

# using the upper triangle matrix as mask
sns.heatmap(corr, annot=True, mask=matrix, cmap="crest", ax=ax)
fig.tight_layout()
plt.show()
```

	Temperatura	Prototipo_AP	Prototipo_BP	Prototipo_C
Temperatura	1.000000	0.106767	-0.914566	-0.661395
Prototipo_AP	0.106767	1.000000	-0.170870	-0.262147
Prototipo_BP	-0.914566	-0.170870	1.000000	0.640272
Prototipo_C	-0.661395	-0.262147	0.640272	1.000000

As correlações negativas entre os Protótipos BP e C com a Temperatura confirmam a linha de tendência de inclinação negativa apresentada nos gráficos de regressão linear. Além

disso, a baixa correlação entre o protótipo AP e a temperatura trazem mais uma confirmação acerca da não existência de regressão linear entre as duas variáveis.

Aplicando teste ANOVA sobre os modelos de regressão realizados

Explicação das variáveis de saída do teste da biblioteca

sum_sq: Soma dos quadrados dos termos do modelo.

df: Graus de liberdade para termos do modelo.

F: Valor da estatística F para significância da adição de termos do modelo.

PR(>F): Valor P para significância da adição de termos do modelo.

Quando os args são vários modelos, o retorno é um DataFrame com colunas:

df_resid: Graus de liberdade dos resíduos nos modelos.

ssr: Soma dos quadrados dos resíduos nos modelos.

df_diff: Diferença de graus de liberdade do modelo anterior em argumentos

ss_dff: Diferença em ssr do modelo anterior em argumentos

F: Estatística F comparada ao modelo anterior em argumentos

PR(>F): Valor P para significância em comparação com o modelo anterior em argumentos

ANOVA no modelo do protótipo AP

```
In [62]: tb_anova_ap = anova_lm(res_ap, typ=1)
    display(tb_anova_ap)
```

	df	sum_sq	mean_sq	F	PR(>F)
Temperatura	1.0	0.943613	0.943613	0.158858	0.694898
Residual	18.0	106.919387	5.939966	NaN	NaN

ANOVA no modelo do protótipo BP

```
In [63]: tb_anova_bp = anova_lm(res_bp, typ=1)
    display(tb_anova_bp)
```

	df	sum_sq	mean_sq	F	PR(>F)
Temperatura	1.0	19.040414	19.040414	84.92012	3.093651e-08
Residual	18.0	4.035881	0.224216	NaN	NaN

ANOVA no modelo do protótipo C

```
In [64]: tb_anova_c = anova_lm(res_c, typ=1)
    display(tb_anova_c)
```

	df	sum_sq	mean_sq	F	PR(>F)
Temperatura	1.0	6.969754	6.969754	14.380632	0.001334
Residual	18.0	8.723926	0.484663	NaN	NaN

Observando os testes ANOVA aplicados para os três modelos de regressão e considerando um valor de significância de 0,05, logo 95% de intervalo de confiança, percebe-se que os modelos BP e CP, apresentam valores de PR(>F) menores do que o nível de significância, ou seja, possuem pouca ou nenhuma evidência real de que a hipótese nula é verdadeira, portanto, pode ser descartada e H1 pode ser confirmada. Já, ao analisar os resultados obtidos no teste ANOVA do modelo AP, confirma-se que a hipótese nula seria verdadeira, pois PR(>F) é maior do que o nível de significância.

Todavia, visualizando os quadrados das médias, em específico as relações de soma da variável preditora (Temperatura) e Residual e a apenas o valor dessa variável, percebe-se que apenas o protótipo BP apresenta um coeficiente de determinação acima de 80%, possuindo, assim, a temperatura com alto poder de predição de maleabilidade desse tipo de película. Enquanto os outros protótipos apresentam fatores bem menores, tendo menos de 10% e cerca de 44% para os tipos AP e C respectivamente.

Predição para 30 graus

```
In [65]: x_ = np.append(x, 30)
X = sm.add_constant(pd.Series(x_, name='Temperatura'))
```

Protótipo AP

```
In [66]: preds = res_ap.predict(X)
    pred_30 = preds.tail(1).values[0]

print(f"30 graus de temperatura produz uma maleabilidade de, aproximadamente, \
{pred_30:.2f} no protótipo AP.")
```

30 graus de temperatura produz uma maleabilidade de, aproximadamente, 6.82 no protót ipo AP.

Protótipo BP

```
In [67]: preds = res_bp.predict(X)
    pred_30 = preds.tail(1).values[0]

print(f"30 graus de temperatura produz uma maleabilidade de, aproximadamente,\
    {pred_30:.2f} no protótipo BP.")
```

30 graus de temperatura produz uma maleabilidade de, aproximadamente, 4.81 no protót ipo BP.

Protótipo C

```
In [68]: preds = res_c.predict(X)
    pred_30 = preds.tail(1).values[0]

print(f"30 graus de temperatura produz uma maleabilidade de, aproximadamente, \
{pred_30:.2f} no protótipo BP.")
```

30 graus de temperatura produz uma maleabilidade de, aproximadamente, 7.74 no protót ipo BP.

Visualizando distribuições

```
In [69]: nrows = 2
    ncols = 2
    fig, ax = plt.subplots(nrows, ncols, figsize=(12, 8))
    count = 0
    for r in range(nrows):
        for c in range(ncols):
            data[columns[count]].hist(ax=ax[r, c])
            ax[r, c].set_xlabel(columns[count])
            count += 1
    plt.suptitle('Distribuições')
    plt.ylabel('Frequências')
    fig.tight_layout()
    plt.show()
```


Aplicando Teste de normalidade sem modelo de regressão

Statistical Test P value

Prototipos

Duntation AD	2.05662	0.220714
Prototipo_AP	2.05002	0.239714
Prototipo_BP	1.93793	0.379476
Prototipo_C	0.16839	0.919252

Verificando de outra maneira se o valor P é menor ou igual à significância

```
In [71]: teste_normal_df[['P value']] <= significancia</pre>
```

Out[7	71]:	P value
_	-	

Prototipos	
Prototipo_AP	False
Prototipo_BP	False
Prototipo_C	False

Observando o teste ANOVA sobre apenas os dados, sem o modelo de regressão criado, percebe-se que todos os modelos possuem o valor P maior do que o nível de significância. Isso pode ser devido à distribuição das amostras não ser normalizada.

Conclusão dos resultados

Com a construção do modelo de regressão linear simples, percebeu-se que a maleabilidade dos protótipos pode ser afetada pela temperatura exposta dependendo do tipo de composição do protótipo. Entretanto, a pouca quantidade de dados e a não distruição normal destes pode afetar nos valores obtidos nos modelos, sendo interessante a adição ou a realização novamente desses experimentos a fim de confirmar a manutenção dos valores obtidos.