## 10/593644 IAP9/Rec'd PCT/PTO 21 SEP 2006

## VERIFICATION OF A TRANSLATION

I, the below named translator, hereby declare that:

My name and post office address are as stated below:

That I am knowledgeable in the English language and in the language in which the below identified international application was filed, and that I believe the English translation of the international application No. <a href="PCT/JP2005/005133">PCT/JP2005/005133</a> is a true and complete translation of the above identified international application as filed.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such wilful false statements may jeopardize the validity of the application or any patent issued thereon.

|                                     | Date                               |
|-------------------------------------|------------------------------------|
|                                     | September 6, 2006                  |
| s w tuenglator                      | Yoshiko TAMURA                     |
| Full name of the translator         |                                    |
| Signature of the translator         | Yoshiko Janua                      |
| Signature of the Clanslator         |                                    |
| Post Office Address <u>Kitahama</u> | TNK Building 7-1, Dosho-machi      |
| Post Office Address <u>Kreanama</u> | Chuo-ku, Osaka-shi, Osaka 541-0045 |
| <u>1-chome</u> ,                    | Chuo-ku, Osaka Siii, Coaka         |
| Japan                               |                                    |



#### DESCRIPTION

# THERMOELECTRIC CONVERSION ELEMENT AND THERMOELECTRIC CONVERSION MODULE

5

#### TECHNICAL FIELD

The present invention relates to a thermoelectric element, a thermoelectric module, and a thermoelectric conversion method.

10

15

20

25

30

.35

#### BACKGROUND ART

In Japan, only about 30% of the primary energy supply is used as effective energy, with about 70% being eventually lost to the atmosphere as heat. The heat generated by combustion in industrial plants, garbage-incineration facilities and the like is lost to the atmosphere without being converted into other energy. In this way, we are wastefully discarding a vast amount of thermal energy, while acquiring only a small amount of energy by combustion of fossil fuels or other means.

To increase the proportion of energy to be utilized, the thermal energy currently lost to the atmosphere should be effectively used. For this purpose, thermoelectric conversion, which directly converts thermal energy to electrical energy, is an effective means. Thermoelectric conversion, which utilizes the Seebeck effect, is an energy conversion method for generating electricity by creating a difference in temperature between both ends of a thermoelectric material to produce a difference in electric potential.

In such a method for generating electricity utilizing thermoelectric conversion, i.e., thermoelectric generation, electricity is generated simply by setting one end of a thermoelectric material at a location heated to a high temperature by waste heat, and the other end in the atmosphere, and connecting external resistances to both ends. This method entirely eliminates the need for moving parts, such as the motors or turbines generally required for power generation. As a

consequence, the method is economical and can be carried out without releasing the gases by combustion. Moreover, the method can continuously generate electricity until the thermoelectric material has deteriorated. Furthermore, thermoelectric generation enables power generation at a high power density. Therefore, it is possible to make electric power generators (modules) small and light enough to be used as mobile power supplies for cellular phones, notebook computers, etc.

5

10

Therefore, thermoelectric generation is expected to play a role in the resolution of future energy problems. To realize thermoelectric generation, a thermoelectric module comprising a thermoelectric material that has both a high thermoelectric conversion efficiency and excellent properties in terms of heat resistance, chemical durability, etc., will be required.

CoO<sub>2</sub>-based layered oxides such as  $Ca_3Co_4O_9$  have been reported as substances that achieve excellent thermoelectric performance in air at high temperatures, and such thermoelectric materials are currently being developed (see Non-Patent Document 1, for example).

However, the development of a thermoelectric module (electric power generator) that is needed to realize efficient thermoelectric generation using thermoelectric materials has been delayed so far.

Non-Patent Document 1: R. Funahashi et al., Jpn. J. Appl. Phys., 39, L1127 (2000)

# DISCLOSURE OF THE INVENTION PROBLEMS TO BE SOLVED BY INVENTION

The present invention has been made to solve the above problems. A principal object of the invention is to provide a thermoelectric element and a thermoelectric module that have both a high thermoelectric conversion efficiency and excellent properties in terms of thermal stability, chemical durability, etc., that are required to realize thermoelectric generation.

## MEANS FOR SOLVING THE PROBLEMS

The present inventors conducted extensive research to achieve the above object. As a result, the inventors found that a thermoelectric element having excellent properties can be obtained by forming a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material, each thermoelectric material comprising a specific complex oxide, on an electrically insulating substrate, and electrically connecting one end portion of the p-type thermoelectric material and one end portion of the n-type thermoelectric material. The thermoelectric element thus obtained has a high thermoelectric conversion efficiency and excellent electrical conductivity as well as excellent thermal stability, chemical durability, etc., and exhibits excellent properties as a thermoelectric element.

More specifically, the present invention provides the following thermoelectric elements, thermoelectric modules, and thermoelectric conversion methods.

1. A thermoelectric element comprising:

a thin film of p-type thermoelectric material, a thin film of n-type thermoelectric material, and an electrically insulating substrate,

the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material being formed on the electrically insulating substrate and being electrically connected,

(i) the p-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (1):  $Ca_aA_b^1Co_cA_d^2O_e$ , 30 wherein  $A^1$  is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids;  $A^2$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta;  $2.2 \le a \le 3.6$ ;  $0 \le b \le 0.8$ ;  $2.0 \le c \le 4.5$ ;

35  $0 \le d \le 2.0$ ; and  $8 \le e \le 10$ , and

25

complex oxides represented by Formula (2):  $\mathrm{Bi_fPb_gM^1_hCo_iM^2_jO_k}$ , wherein  $\mathrm{M^1}$  is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids;  $\mathrm{M^2}$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta;  $1.8 \leq f \leq 2.2$ ;  $0 \leq g \leq 0.4$ ;  $1.8 \leq h \leq 2.2$ ;  $1.6 \leq i \leq 2.2$ ;  $0 \leq j \leq 0.5$ ; and  $0 \leq k \leq 10$ ; and

(ii) the n-type thermoelectric material comprising at least one complex oxide selected from the group consisting of:

complex oxides represented by Formula (3): Ln<sub>m</sub>R<sup>1</sup><sub>n</sub>Ni<sub>p</sub>R<sup>2</sup><sub>q</sub>O<sub>r</sub>, wherein Ln is one or more elements selected from the group consisting of lanthanoids; R<sup>1</sup> is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R<sup>2</sup> is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta; 0.5 ≤ m ≤ 1.7; 0 ≤ n ≤ 0.5; 0.5 ≤ p ≤ 1.2; 0 ≤ q ≤ 0.5; and 2.7 ≤ r ≤ 3.3;

complex oxides represented by Formula (4):  $(\operatorname{Ln_sR^3}_t)_2\operatorname{Ni_uR^4}_vO_w$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids;  $R^3$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi;  $R^4$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta;  $0.5 \le s \le 1.2$ ;  $0 \le t \le 0.5$ ;  $0.5 \le u \le 1.2$ ;  $0 \le v \le 0.5$ ; and  $3.6 \le w \le 4.4$ ;

20

complex oxides represented by Formula (5):  $A_x Zn_y O_z$ , wherein 25 A is Ga or Al;  $0 \le x \le 0.1$ ;  $0.9 \le y \le 1$ ; and  $0.9 \le z \le 1.1$ ; and complex oxides represented by Formula (6):  $Sn_{xx} In_{yy} O_{zz}$ , wherein  $0 \le xx \le 1$ ;  $0 \le yy \le 2$ ; and  $1.9 \le zz \le 3$ .

2. The thermoelectric element according to Item 1, wherein the p-type thermoelectric material comprises at least one complex oxide selected from the group consisting of complex oxides represented by the formula: Ca<sub>a</sub>A<sup>1</sup><sub>b</sub>Co<sub>4</sub>O<sub>e</sub>, wherein A<sup>1</sup> is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids; 2.2 ≤ a ≤ 3.6; 0 ≤ b ≤ 0.8; and 8 ≤ e ≤ 10, and

complex oxides represented by the formula:  $Bi_fPb_gM^1_hCo_2O_k$ , wherein  $M^1$  is one or more elements selected from the group consisting of Sr, Ca, and Ba;  $1.8 \le f \le 2.2$ ;  $0 \le g \le 0.4$ ;  $1.8 \le h \le 2.2$ ; and  $8 \le k \le 10$ ;

the n-type thermoelectric material comprises at least one complex oxide selected from the group consisting of complex oxides represented by the formula:  $\operatorname{Ln_mR^1_nNiO_r}$ , wherein Ln is lanthanoid;  $\operatorname{R^1}$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi;  $0.5 \leq m \leq 1.2$ ;  $0 \leq n \leq 0.5$ ;

- and  $2.7 \le r \le 3.3$ , complex oxides represented by the formula:  $(\operatorname{Ln_sR^3}_t)_2\operatorname{NiO_w}$ , wherein Ln is lanthanoid; R³ is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; 0.5  $\le s \le 1.2$ ;  $0 \le t \le 0.5$ ; and  $3.6 \le w \le 4.4$ , and complex oxides represented by the formula:  $\operatorname{Ln_xR^5}_y\operatorname{Ni_pR^6}_{q'}\operatorname{O_{r'}}$ , wherein Ln is
- lanthanoid;  $R^5$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, Bi, and Nd; and  $R^6$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, and Cu;  $0.5 \le x \le 1.2$ ;  $0 \le y \le 0.5$ ;  $0.5 \le p \le 1.2$ ;  $0.01 \le q' \le 0.5$ ; and  $2.8 \le r' \le 3.2$ .

20

30

35

- 3. The thermoelectric element according to Item 1, wherein the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material are electrically connected by one of the following methods:
- bringing one end portion of the thin film of p-type thermoelectric material into direct contact with one end portion of the thin film of n-type thermoelectric material;

bringing one end portion of the thin film of p-type thermoelectric material into contact with one end portion of the thin film of n-type thermoelectric material via an electrically conductive material;

bringing one end portion of the thin film of p-type thermoelectric material into direct contact with one end portion of the thin film of n-type thermoelectric material and covering the contact portion with an electrically conductive material.

- 4. The thermoelectric element according to Item 1, wherein the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material are formed on the same surface or on different surfaces of the electrically insulating substrate.
- 5. The thermoelectric element according to Item 1, wherein the electrically insulating substrate is a substrate comprising a plastic material.

10

30

35

5

- 6. The thermoelectric element according to Item 1, wherein thermoelectromotive force is at least 60  $\mu V/K$  in a temperature range of 293 K to 1073 K.
- 7. The thermoelectric element according to Item 1, wherein electrical resistance is 1 K $\Omega$  or lower in a temperature range of 293 K to 1073 K.
- 8. A thermoelectric module comprising a plurality of the thermoelectric elements of Item 1, wherein the thermoelectric elements are electrically connected in series such that an unconnected end portion of a p-type thermoelectric material of one thermoelectric element is electrically connected to an unconnected end portion of an n-type thermoelectric material of another thermoelectric element.
  - 9. A thermoelectric conversion method comprising positioning one end of the thermoelectric module of Item 8 at a high-temperature portion and positioning the other end of the module at a low-temperature portion.

In the thermoelectric element of the present invention, specific complex oxides are used as p-type and n-type thermoelectric materials; thin films of p-type and n-type thermoelectric materials are formed on an electrically insulating

substrate; and one end portion of the thin film of p-type thermoelectric material and one end portion of the thin film of n-type thermoelectric material are electrically connected.

Combined use of such complex oxides can provide a thermoelectric element high thermoelectric conversion with efficiency and good electrical conductivity. In addition, such complex oxides, when formed into a thin film, can be formed on substrates having various shapes, thereby easily providing thermoelectric elements having various shapes, which can be used in various applications, such as mounting on an electronic circuit, use in a fine portion, etc. Moreover, the thermoelectric module needs to be formed into a fin shape when used in airflow, such as in a boiler or a car radiator so that the module does not cause pressure loss by interrupting the airflow. application, thin film-type thermoelectric elements are useful.

Hereinafter, p-type thermoelectric materials and n-type thermoelectric material used in the invention are described.

## p-type thermoelectric material

5

10

15

Usable as a p-type thermoelectric material is at least one oxide selected from the group consisting of complex oxides represented by Formulae (1) and (2):

complex oxides represented by Formula (1):  $Ca_aA^1{}_bCo_cA^2{}_dO_e$ , wherein  $A^1$  is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids;  $A^2$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta;  $2.2 \le a \le 3.6$ ;  $0 \le b \le 0.8$ ;  $2.0 \le c \le 4.5$ ;  $0 \le d \le 2.0$ ; and  $8 \le e \le 10$ , and

complex oxides represented by Formula (2):  $\mathrm{Bi}_f \mathrm{Pb}_g \mathrm{M}^1_h \mathrm{Co}_i \mathrm{M}^2_j \mathrm{O}_k$ , wherein  $\mathrm{M}^1$  is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Ca, Sr, Ba, Al, Y, and lanthanoids;  $\mathrm{M}^2$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Ni, Cu, Ag, Mo, W, Nb, and Ta;  $1.8 \leq f \leq 2.2$ ;  $0 \leq g \leq 0.4$ ;  $1.8 \leq h \leq 2.2$ ;

## $1.6 \le i \le 2.2$ ; $0 \le j \le 0.5$ ; and $8 \le k \le 10$ .

In the above Formulae (1) and (2), examples of lanthanoids include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.

The complex oxides represented by the above formulae have a laminated structure with alternating rock-salt structure layers and  $CoO_2$  layers, wherein the rock-salt structure layers have the components Ca, Co, and O in the ratio of  $Ca_2CoO_3$ , or the components Ca, Co, and Ca in the ratio of  $Ca_2CoO_3$ , and the  $CoO_2$  layers have octahedrons with octahedral coordination of six Ca to one Ca, the octahedrons being arranged two-dimensionally such that they share one another's sides. In the former case, some of the Ca in  $Ca_2CoO_3$  is substituted by Ca, and some of the Ca of this layer and some of the Ca of the Ca in the latter case, some of the Ca in Ca in the latter case, some of the Ca in Ca in the latter case, some of the Ca in Ca in the latter case, some of the Ca in Ca in Ca in the latter case, some of the Ca in Ca in Ca in the latter case, some of the Ca in Ca

Such complex oxides have high Seebeck coefficients as ptype thermoelectric materials and excellent electrical conductivity. For example, they have a Seebeck coefficient of at least about 100  $\mu\text{V/K}$  and an electrical resistivity of not more than about 50 m $\Omega\text{cm}$ , preferably not more than about 30 m $\Omega\text{cm}$ , at temperatures of 100 K or higher; and the Seebeck coefficient tends to increase and the electrical resistivity tends to decrease as the temperature rises. .

Among the complex oxides mentioned above, mentioned as a preferable example is at least one complex oxide selected from the group consisting of complex oxides represented by the formula:  $Ca_aA^1{}_bCo_4O_e$ , wherein  $A^1$  is one or more elements selected from the group consisting of Na, K, Li, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Sr, Ba, Al, Bi, Y, and lanthanoids;  $2.2 \le a \le 3.6$ ;  $0 \le b \le 0.8$ ; and  $8 \le e \le 10$ ) and complex oxides represented by the formula:  $Bi_fPb_gM^1{}_hCo_2O_k$ , wherein  $M^1$  is one or more elements selected from the group consisting of Sr, Ca, and Ba;  $1.8 \le f \le 2.2$ ;  $0 \le g \le 0.4$ ;  $1.8 \le h \le 2.2$ ; and  $8 \le k \le 10$ ). Such complex oxides have a

Seebeck coefficient of at least about 100  $\mu V/K$  and an electrical resistivity of not more than about 100 m $\Omega cm$  at temperatures of 100 K or higher; and the Seebeck coefficient tends to increase and the electrical resistivity tends to decrease as the temperature rises.

## n-type thermoelectric material

10

15

20

35

Usable as an n-type thermoelectric material is at least one oxide selected from the group consisting of complex oxides represented by Formulae (3), (4), (5), and (6):

complex oxides represented by Formula (3):  $\operatorname{Ln_m} R^1_n \operatorname{Ni_p} R^2_q O_r$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids;  $R^1$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi;  $R^2$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta;  $0.5 \le m \le 1.7$ ;  $0 \le n \le 0.5$ ;  $0.5 \le p \le 1.2$ ;  $0 \le q \le 0.5$ ; and  $2.7 \le r \le 3.3$ ;

complex oxides represented by Formula (4):  $(\operatorname{Ln_sR^3}_t)_2\operatorname{Ni_uR^4}_vO_w$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids; R³ is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi; R⁴ is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Mo, W, Nb, and Ta;  $0.5 \le s \le 1.2$ ;  $0 \le t \le 0.5$ ;  $0.5 \le u \le 1.2$ ;  $0 \le v \le 0.5$ ; and  $3.6 \le w \le 4.4$ ;

complex oxides represented by Formula (5):  $A_x Z n_y O_z$ , wherein A is Ga or Al;  $0 \le x \le 0.1$ ;  $0.9 \le y \le 1$ ; and  $0.9 \le z \le 1.1$ ); and complex oxides represented by Formula (6):  $SN_{xx} In_{yy} O_{zz}$ , wherein  $0 \le xx \le 1$ ;  $0 \le yy \le 2$ ; and  $1.9 \le zz \le 3$ .

In the above formulae, examples of lanthanoids include La, 30 Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, etc. In Formula (3), the range of m is  $0.5 \le m \le 1.7$ , and preferably  $0.5 \le m \le 1.2$ .

The complex oxides represented by the above formulae have a negative Seebeck coefficient and exhibit properties as n-type thermoelectric materials in that when a difference in temperature is created between both ends of the oxide material, the electric

potential generated by the thermoelectromotive force is higher at the high-temperature side than at the low-temperature side.

More specifically, the above complex oxides represented by Formulae (3) and (4) have a negative Seebeck coefficient at temperatures of 373 K or higher. For example, they may have a Seebeck coefficient of about -1 to about -20  $\mu\text{V/K}$  at temperatures of 373 K or higher. Furthermore, the above complex oxides have excellent electrical conductivity and low electrical resistivity, and, for example, may have an electrical resistivity of about 20 m $\Omega$ cm or less at temperatures of 373 K or higher.

5

10

15

20

25

The complex oxides represented by Formula (3) have a perovskite-type crystal structure and the complex oxides represented by Formula (4) have a so-called layered perovskite-type crystal structure. The former is generally referred to as an  $ABO_3$  structure and the latter as an  $A_2BO_4$  structure. In these complex oxides, some of Ln are substituted by  $R^1$  or  $R^3$ , and some of Ni are substituted by  $R^2$  or  $R^4$ .

The complex oxides represented by Formulae (5) and (6) are known as a material for a transparent electrically conductive film. For example, they have a Seebeck coefficient of about -100  $\mu$ V/K or lower at temperatures of 100 K or higher and have excellent electrical conductivity, and exhibits low electrical resistivity as low as not more than about 100 m $\Omega$ cm at temperatures of 100 K or higher.

Among the above complex oxides, the complex oxides represented by Formula (5) have a hexagonal wurtz structure and the complex oxides represented by Formula (6) have a cubic rutile structure or tetragonal bcc structure.

Among the complex oxides mentioned above, preferable examples include a complex oxide selected from the group consisting of complex oxides represented by the formula:  $Ln_mR^1{}_nNiO_r$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids;  $R^1$  is one or more elements selected from the group consisting of Na, Na

the formula:  $(\operatorname{Ln_sR^3}_t)_2\operatorname{NiO_w}$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids;  $R^3$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, and Bi;  $0.5 \le s \le 1.2$ ;  $0 \le t \le 0.5$ ; and  $3.6 \le w \le 4.4$ ; and complex oxides represented by the formula:  $\operatorname{Ln_xR^5}_y\operatorname{Ni_pR^6}_{q'}\operatorname{O_{r'}}$ , wherein Ln is one or more elements selected from the group consisting of lanthanoids;  $R^5$  is one or more elements selected from the group consisting of Na, K, Sr, Ca, Bi, and Nd; and  $R^6$  is one or more elements selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, and Cu;  $0.5 \le x \le 1.2$ ;  $0 \le y \le 0.5$ ;  $0.5 \le p \le 1.2$ ;  $0.01 \le q' \le 0.5$ ; and  $2.8 \le r' \le 3.2$ .

Among the above, the complex oxides represented by the formulae:  $\mathrm{Ln_mR^1}_n\mathrm{NiO_r}$  and  $(\mathrm{Ln_sR^3}_t)_2\mathrm{NiO_w}$ , for example, have a Seebeck coefficient of -1 to -30 mV/K at temperatures of 100 K or higher and exhibits low electrical resistivity. For example, they may have electrical conductivity of not more than about 10 m $\Omega$ cm at a temperature of 100 K or higher.

The complex oxides represented by the formula: Ln<sub>x</sub>R<sup>5</sup><sub>v</sub>Ni<sub>p</sub>R<sup>6</sup><sub>g</sub>,O<sub>r</sub>, have а negative Seebeck coefficient at temperature of 100°C or higher, and have excellent electrical conductivity and exhibit low electrical resistivity as low as not more than about 10 m $\Omega$ cm at a temperature of 100°C or higher.

## Thermoelectric element

10

15

20

35

In the thermoelectric element of the present invention, the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material are formed on an electrically insulating substrate and one end portion of the thin film of p-type thermoelectric material and one end portion of the thin film of n-type thermoelectric material are electrically connected.

## (1) Electrically insulating substrate

There is no limitation on an electrically insulating substrate insofar as the substrate does not deteriorate at the temperature at which the substrate is subjected to a heat

treatment for forming a thin oxide film. Accordingly, various types of substrates can be used, including an inexpensive substrate. Moreover, a substrate having low thermal conductivity, such as a glass substrate, ceramic substrate and the like, can be used. The use of such substrate can sharply reduce the influence of substrate temperature on the thermoelectric conversion efficiency of the thin film of complex oxide to be formed.

Various types of plastic materials, such as polyimide, etc., can also be used as a substrate insofar as the material does not deteriorate at heat-treatment temperature. When a thin film of a thermoelectric material is formed by a vapor deposition method, aerosol deposition method or the like among the thin-film formation methods described later, a thin film having excellent thermoelectric conversion efficiency can be formed without heat treatment. Therefore, on a substrate of a plastic material having relatively low heat resistance, such polyethylene, polypropylene, polystyrene, polyethylene terephthalate (PET) and the like, a thin film of a thermoelectric material having an excellent thermoelectric conversion efficiency can be formed. The present invention can employ various types of plastic materials as mentioned above as a substrate, and thus can be used in many applications utilizing the properties such as flexibility, plasticity and the like of the plastic materials. Moreover, since a thin film of a thermoelectric material can be formed while applying no thermal damage to, for example, organic thin-film transistor (organic TFT) or the like, the present invention can be applied to various flexible devices.

10

15

20

25

30

35

In the invention, a substrate having low thermal conductivity of about 10 W/m·K or lower at 25°C is preferable, one having thermal conductivity of about 5 W/m·K or lower at 25°C is more preferable, and one having thermal conductivity of about 2 W/m·K or lower at 25°C is even more preferable.

Various shapes of electrically insulating substrates can be used without limitation, and the shape can be suitably determined in accordance with the usage of the thermoelectric element to be

obtained.

10

15

20

25

30

35

For example, in the case of a pipe-like substrate, a pipelike thermoelectric element can be obtained by forming thin films of complex oxides on either or both sides of the pipe-like substrate. In the pipe-like thermoelectric element, thermoelectric generation can be conducted by passing combustion gas through the pipe inside to create a temperature difference between the gas inlet side and the gas outlet side. The use of such a thermoelectric element enables electricity to be generated by using a motor vehicle exhaust gas.

When a flexible electrically insulating plastic film is used as a substrate, the shape of a thermoelectric element can be varied by winding or bending the plastic substrate even after obtaining the thermoelectric element by forming thin films of complex oxides on such substrate.

## (2) Thermoelectric material thin film

film thicknesses of а thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material are not limited. The film thickness of the thin films may be suitably determined in accordance with their usage to attain excellent thermoelectric conversion performance. example, by setting the film thickness to about 100 nm or more and preferably about 300 nm or more, excellent performance can be demonstrated. For use as a thin film, the upper limit of the film thickness may generally be about 10  $\mu m$  or less, preferably about 5  $\mu m$  or less, and more preferably about 2  $\mu m$  or less.

The shapes of a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material are not limited. The shape and size of the thin film may be suitably determined in accordance with the shape of the substrate. For example, in the case of a plate-like substrate, a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material can be formed on one surface of a substrate, or a thin film of p-type thermoelectric material can be formed on one

surface of the substrate and a thin film of n-type thermoelectric material can be formed on the other surface of the substrate. Such thin films may be formed on a part of or on the entire surface of the substrate. By lengthening the long sides of a thin film of a thermoelectric material as much as possible, a temperature difference between both the ends of the thin film of a thermoelectric material can be increased to thereby raise the voltage. By shortening the long sides thereof, electrical resistance can be decreased.

Also, in the case of a pipe-like substrate, both thin films may be formed on the external surface of a pipe, or one thin film may be formed on the external surface of the pipe and the other thin film may be formed on the inside of the pipe in the same manner as described above.

15

20

25

10

## (3) Thin-film formation method

There is no limitation to the methods for forming a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material on an electrically insulating substrate insofar as a single crystal thin film or a polycrystal thin film with the above-identified composition can be formed.

Various known methods are usable, and, examples of such known methods include thin film formation by vapor deposition; thin film formation using a raw material solution, such as dip coating, spin coating, brush coating, or spray-atomizing; aerosol deposition by spraying fine particles of a complex oxide; etc. In addition, single-crystal thin film formation methods such as a flux method using a flux and a method for melting and solidifying a raw material without using a flux may be employed.

These film formation methods can be performed under known conditions. Hereinafter, typical methods among the above methods are specifically described.

### (i) Vapor deposition:

A method for forming a thin film by vapor deposition is

described in more detail.

10

15

20

Any raw material can be used without limitation insofar as an oxide can be formed by evaporating and depositing the raw material onto a substrate by vapor deposition. For example, usable are metals; oxides; various compounds (carbonate, etc.); and the like, all of which comprise a constituent metal element. In addition, a material comprising two or more of the constituent elements of an intended complex oxide may be used.

Such raw materials are mixed in such a manner as to yield the same metal ratio as that of an intended complex oxide and the mixture can be used as it is. In particular, such a mixture of raw materials is preferably heated. The heated material is easy to handle in the vapor deposition described later.

There is no limitation on the heating conditions for such raw materials. For example, such raw materials may be sintered at high temperatures at which a crystal of a complex oxide represented by the above-described formula is formed, or such raw materials may be calcined at relatively low temperatures to form a calcinate without forming an oxide crystal. Various heating methods, such as an electric heating furnace, a gas heating furnace, etc., can be employed without limitation. The heating atmosphere may generally be an oxidizing atmosphere such as in an oxygen stream, in air, etc. Such raw materials can also be heated in an inert gas atmosphere.

25 There is no limitation to the vapor deposition method insofar as an oxide thin film can be formed on a substrate using the above-mentioned raw material(s). For example, physical-vapordeposition is preferable and specific examples thereof include pulsed laser deposition, sputtering, vacuum deposition, 30 plating, plasma-assisted-deposition, ion-assisted-deposition, reactive deposition, laser ablation, etc. Among these methods, pulsed laser deposition is preferable because composition variation is not likely to occur during the vapor deposition of a complex oxide comprising multi-elements.

A complex oxide may be deposited while heating a substrate

at about 400°C to about 600°C, or may be deposited at room When a complex oxide is deposited while heating a substrate, the complex oxide is formed on a substrate, thereby usually eliminating a heat treatment. Some complex oxides deposited on a substrate at room temperature have a very low of crystallization, and thus cannot exhibit thermoelectric conversion performance. In this case, can be given good thermoelectric conversion complex oxide performance by heating to promote crystallization of the oxide.

The heat treatment temperature may be, for example, about 600°C to about 740°C. Heat treatment in this temperature range can promote the crystallization of a thin film of complex oxide and thus achieve good thermoelectric performance. An excessively low heat treatment temperature fails to promote crystallization to a sufficient level, which lowers the thermoelectric conversion performance, and thus is not desirable. On the other hand, an excessively high heat treatment temperature causes another phase to appear, which also lowers the thermoelectric conversion performance, and thus is not desirable either.

The heat treatment may generally be performed in an oxidizing atmosphere, such as in air or in an atmosphere containing about 5% or higher of oxygen. The heat treatment can be performed under various pressures, such as reduced pressure, atmospheric pressure, and increased pressure. For example, the pressure may be in the range of about 10<sup>-3</sup> Pa to about 2 MPa.

The heat treatment time varies depending on the size of the substrate, the thickness of the thin film of complex oxide, etc. The heat treatment may be performed in such a manner that the thin film of complex oxide is sufficiently crystallized, and may generally be performed for about 3 minutes to about 10 hours, and preferably about 1 hour to about 3 hours.

An intended thin film of complex oxide can be formed according to the above-described method.

30

Next, spin coating is described in detail as a method for forming a thin film of complex oxide using a raw material solution.

A solution containing a dissolved raw material having a constituent metal element of an intended complex oxide is usable as a raw material solution. The raw material is not limited insofar as the material can form an oxide when heated. Metals, oxides, various compounds (chlorides, carbonates, nitrates, hydroxides, alkoxide compounds, etc.) and the like are usable as raw materials.

Usable as a solvent are water; organic solvents, such as toluene, xylene, and the like; etc. The concentration of the raw material in the solution is not limited insofar as the solution contains a metal component in the same proportion as that of an intended complex oxide, and may be, for example, about 0.01 to about 1 mol/1.

Such a raw material solution is dropped in small portions onto a substrate rotating at high rotation rates. The solution uniformly spreads onto the substrate due to the centrifugal force caused by the rotation. The solvent is then evaporated, forming a precursor of a thin film of the intended complex oxide. The rotation rate of the substrate is not limited, and may be determined suitably depending on the solution viscosity or the thickness of the film to be formed.

Subsequently, this precursor is heat-treated in air to form a thin film of complex oxide. The heat treatment conditions are not limited insofar as an intended complex oxide is formed. In general, a solvent is removed by heating the precursor at about 300°C to about 500°C for about 1 to about 10 hours, and then further heating the result at about 500°C to about 1000°C for about 1 to about 20 hours, thereby forming a polycrystalline thin film of an intended complex oxide.

#### (iii) Aerosol deposition:

5

10

15

20

25

30

In the case of aerosol deposition, a coating film of a

complex oxide can be formed by spraying fine-particles of an intended complex oxide with a carrier gas onto a substrate.

Fine particles of a complex oxide can be obtained by mixing the raw material of a complex oxide in such a manner as to yield the same metal ratio as that of the intended complex oxide, sintering the mixture in an oxygen-containing atmosphere, and, as required, pulverizing the result. The average particle diameter of a complex oxide may be about 0.5  $\mu$ m to about 5  $\mu$ m.

Examples of carrier gas include nitrogen gas, helium (He) gas, etc. A coating film of complex oxide can be formed by spraying a complex oxide powder onto a substrate using such a carrier gas at a gas flow of about 5 to about 10 L/minute and at a distance between a nozzle and a substrate of about 10 to about 30 mm within a reduced pressure chamber having a pressure of about 10 Pa to about 8 kPa. During this process, the substrate is not necessarily heated, but, when heated at about 200 to about 600°C, the adhesion between the coating film to be formed and the substrate can be increased.

After being formed, a coating film is not necessarily heated, but, as required, when heated at about 200 to about 700°C for about 10 minuets to about 4 hours in an oxygen-containing atmosphere, the crystallinity of the coating film to be formed can be further increased.

## 25 (iv) Single crystal thin-film formation method

10

15

20

30

35

Next, a method for forming a single crystal thin film of complex oxide is described.

According to this method, raw materials are mixed in such a manner as to have the same element ratio as that of the intended complex oxide, the mixture is melted on a substrate by heating, and the melt is cooled gradually, providing a single-crystal thin film. Any raw material can be used without limitation insofar as a mixture of the raw materials can form a homogeneous melt when heated. For example, metals, oxides, various compounds (carbonates, etc.), and the like can be used. A compound

containing two or more constituent elements of an intended complex oxide is also usable.

More specifically, a single-crystal thin film can be formed by heating a raw material mixture to form a melt in a uniform solution state, and cooling the melt. The heating time is not limited, and the heating treatment may be performed until a uniform solution state is attained. There is no limitation on the heating method and an electric heating furnace, gas heating furnace and the like can be used. The raw material may be melted in an oxidizing atmosphere, such as in an oxygen stream, in air or the like. A raw material, when containing a sufficient amount of oxygen, can be melted in, for example, an inert gas atmosphere.

The cooling method is not limited. For example, a raw material in a solution state may be cooled as a whole, or a cooled substrate may be immersed in a container containing a molten raw material, to thereby grow a single crystal thereon.

The cooling rate is not limited, but slow cooling is preferable in order to form a single-crystal thin film. This is because as the cooling rate is increased, a large number of crystals are grown on the substrate to form a so-called polycrystalline thin film. For example, a cooling rate of about 50°C/h or lower may be employed.

Instead of directly melting a raw material mixture, another ingredient may be added to a raw material mixture so as to adjust the melting point for forming a melt, and then the mixture is melted by heating. The method of adding an additive (a flux component) other than materials containing metal elements of a complex oxide and melting the mixture is referred to as a so-called "flux method". In flux methods, a flux component contained in a raw material mixture is partially melted by heating, and the whole raw material mixture is dissolved to form a solution due to chemical change, dissolution effect and the like of the molten component. Thus, the raw material mixture can be melted at lower temperatures compared with a method for directly cooling the raw material mixture. By cooling the raw material in a solution state

at a suitably controlled cooling rate, an intended single crystal can be grown due to supersaturation accompanied by cooling. During this cooling process, grown is a single crystal complex oxide with a solid phase composition in phase equilibrium with a solution phase that is formed when the raw material is melted. Therefore, based on the relationship between the solution phase composition and the solid phase (single crystal) composition, which are in an equilibrium state, a proportion of each raw material in a raw material mixture can be determined according to the composition of the complex oxide to be formed.

In this method, the flux component contained in the raw material remains as a solvent component, and is not contained in the single crystal to be grown.

10

15

20

25

Such a flux component may be selected from substances which have a lower melting point compared with the raw material of the thin film, and which have the capability of sufficinetly dissolving a raw material in the melt to be formed and which do not adversely affect the properties of an intended complex oxide. For example, alkali metal compounds, boron-containing compounds and the like can be used.

Specific examples of alkali metal compounds include alkali metal chlorides, such as lithium chloride (LiCl), sodium chloride (NaCl), and potassium chloride (KCl), and hydrates thereof; alkali metal carbonates, such as lithium carbonate ( $\text{Li}_2\text{CO}_3$ ), sodium carbonate ( $\text{Na}_2\text{CO}_3$ ), and potassium carbonate ( $\text{K}_2\text{CO}_3$ ), etc.; and the like. A specific example of boron-containing compounds is boric acid ( $\text{B}_2\text{O}_3$ ), etc. These additives can be used singly or as a mixture of two or more thereof.

The content of such a flux component is not limited, and can be determined depending on the heating temperature considering the solubility of the raw material in the melt to be formed in such a manner that the melt will contain the raw material in as high a concentration as possible.

There is no limitation on the method for melting a raw 35 material mixture, and the raw material mixture may be heated to

form a melt in a uniform solution state on a substrate. The heating temperature varies depending on the flux component used. For example, the raw material mixture may be melted by heating at temperatures of about 800 to about 1000°C for about 20 to about 40 hours.

There is no limitation on the heating method and an electric heating furnace, gas heating furnace and the like can be used. The raw material may be melted in an oxidizing atmosphere, such as in an oxygen stream, in air or the like. A raw material, when containing a sufficient amount of oxygen, can be melted in, for example, an inert gas atmosphere.

Although the cooling rate is not limited, a polycrystalline thin film may be formed at a high cooling rate and a single-crystal thin film may be easy to form at a low cooling rate. For example, a single crystal thin film can be formed at a cooling rate of about 50°C/h or lower.

The size, yield and the like of the single-crystal thin film of complex oxide to be formed varies depending on the type and composition of the raw material, the composition of the molten components, the cooling rate, etc. For example, when the molten mixture is cooled at a cooling rate of about 50°C/h or lower until it is solidified, needlelike or plate-like single crystals with a width of about 0.5 mm or more, a thickness of about 0.5 mm or more, and a length of about 5 mm or more can be obtained.

Subsequently, components other than the intended single crystal complex oxide are removed from solidified product formed by cooling, thereby forming a single crystal thin film of the target complex oxide as it adheres to a substrate.

Components other the complex oxide can be removed as follows. For example, a water-soluble component, e.g., chloride, adhering to a single-crystal complex oxide, can be removed by repeated washing with distilled water and filtration, and, as required, washing with ethanol.

5

10

15

20

25.

#### (4) Thermoelectric element:

5

10

15

20

25

30

35

A thermoelectric element of the present invention is obtained by electrically connecting one end of a thin film of p-type thermoelectric material and one end of a thin film of n-type thermoelectric material, which are formed on a substrate.

It is preferable to use the thermoelectric materials in combination such that the sum of the absolute values of the thermoelectromotive forces of the p-type thermoelectric material and the n-type thermoelectric material is, for example, at least about 60  $\mu\text{V/K}$ , and preferably at least about 100  $\mu\text{V/K}$ , at all temperatures in the range of 293 to 1073 K (absolute temperature). It is also preferable that each of these thermoelectric materials has an electrical resistivity of not more than about 100 m $\Omega\text{cm}$ , preferably not more than about 50 m $\Omega\text{cm}$ , and more preferably not more than about 10 m $\Omega\text{cm}$ , at all temperatures in the range of 293 to 1073 K (absolute temperature).

There is no limitation to methods for electrically connecting the thin films. For example, one end of a thin film of p-type thermoelectric material and one end of a thin film of ntype thermoelectric material may be brought into direct contact with each other, or one end of а thin film of thermoelectric material and one end of a thin film of n-type thermoelectric material may be brought into contact via an electrically conductive material.

Specific methods for electrically connecting one end of a thin film of p-type thermoelectric material and one end of a thin film of n-type thermoelectric material are not limited. Preferable is a method for connecting the materials in such a manner that a thermoelectromotive force of at least 60  $\mu\text{V/K}$  and an electrical resistance of 1  $K\Omega$  or lower can be maintained for the thermoelectric element at all temperatures in the range of 293 to 1073K (absolute temperature).

The electrical resistance caused by connecting thermoelectric materials depends on the connection method, area of the connected portion, type and size of electrically

conductive material used, etc. In general, it is preferable to determine connecting conditions so that the resistance of the connected portion relative to that of the entire thermoelectric element is about 50% or less, preferably about 10% or less, and more preferably about 5% or less.

Hereinafter, a specific example of a method for electrically connecting thermoelectric materials is described with reference to the drawings. Each drawing shows a front view and a plan view of a thermoelectric element in which one end of a thin film of p-type thermoelectric material and one end of a thin film of n-type thermoelectric material are electrically connected on a substrate.

10

15

20

Figs. 1 (a) to (c) show a thermoelectric element in which one end of a thin film of p-type thermoelectric material 2 and one end of a thin film of n-type thermoelectric material 3, which are formed on the same surface of a substrate 1, are brought into direct contact with each other.

Figs. 1 (d) and (e) show a thermoelectric element in which one thermoelectric material is brought into direct contact with the other material while partially covering the other material at the contact portion of the thin films. A thermoelectric element having this structure can obtain more excellent electrical connection.

Figs. 2 (a) to (c) show a thermoelectric element in which one end of a thin film of p-type thermoelectric material 2 and one end of a thin film of n-type thermoelectric material 3, which are formed on a substrate 1, are connected via an electrically conductive material 4.

Any electrically conductive material can be used insofar as an electrical resistance of the connected portion of a p-type thermoelectric material and an n-type thermoelectric material can be held low. For example, metal paste, solder, electrically conductive ceramics, and the like can be used. In particular, electrically conductive ceramics, a paste containing a noble metal, such as gold, silver, platinum, and the like are

preferable because such material does not melt, and maintains its chemical stability and low resistance at temperatures as high as about 1073 K. A thin film of such an electrically conductive material may be formed by vapor deposition, such as sputtering, etc.

5

10

Fig. 3 shows the structure of a thermoelectric element in which one end of a thin film of p-type thermoelectric material 2 and one end of a thin film of n-type thermoelectric material 3, which are formed on a substrate 1, are brought into direct contact with each other and the contact portion is covered with an electrically conductive material 4. In an element thus structured, the thin films can ensure more excellent electrical connection at the contact portion thereof.

Figs. 4 (a) to (c) show a thermoelectric element in which a thin film of p-type thermoelectric material 2 and a thin film of 15 n-type thermoelectric material 3 are formed on the same surface of a substrate without being in contact, and both the thin films are electrically connected with each other on a side surface of the substrate. In Figs. 4 (a) to (c), Fig. 4 (a) shows a thermoelectric element in which both the thin films are directly 20 connected with each other on a side surface of the substrate. Fig. 4 (b) shows a thermoelectric element in which both the thin films are connected via an electrically conductive material 4 on a side surface of the substrate. Fig. 4 (c) shows a thermoelectric element in which a thin film of p-type thermoelectric material 2 25 and a thin film of n-type thermoelectric material 3 are brought into contact with, at a corner of the substrate, a thin film of an electrically conductive material 4 formed on a side surface of substrate to thereby establish an electrical connection 30 between the thin films. In this case, a metal paste, solder, electrically conductive ceramics, etc., can be used as electrically conductive material 4 as in the thermoelectric element shown in Fig. 2, and an electrically conductive film formed by vapor deposition may also be used. In this case, as an electrically conductive material formed on a side surface of the 35

substrate, a thin film of p-type thermoelectric material or a thin film of n-type thermoelectric material may be used, and, in addition, a thin film in which a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material are completely or partially laminated are also usable.

In the thermoelectric element shown in Fig. 4 (a) in which thermoelectric materials are electrically connected on a side surface of the substrate, a better electrical connection can be ensured by bringing both the thin films into direct contact and covering the contact portion with an electrically conductive material, or by partially or completely laminating both the thermoelectric materials on a side surface of the substrate.

The thermal conductivity of each of the thermoelectric elements shown in Figs. 1 to 4 can be reduced over the element by using a substrate with a cut formed as shown in Fig. 5 and separately forming a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material on either side of the cut portion formed in the substrate.

## 20 Thermoelectric module

10

15

25

30

35

The thermoelectric module of the invention comprises a plurality of the above-described thermoelectric elements, wherein the thermoelectric elements are connected in series such that an unconnected end portion of a p-type thermoelectric material of one thermoelectric element is connected to an unconnected end portion of an n-type thermoelectric material of another thermoelectric element.

There is no limitation to the methods for connecting thermoelectric elements, and, for example, the above-described methods for connecting thermoelectric materials to form a thermoelectric element can be similarly applied.

Fig. 6 schematically shows one embodiment of a thermoelectric module. The thermoelectric module uses thermoelectric elements in each of which one end of a thin film of p-type thermoelectric material 2 and one end of a thin film of

n-type thermoelectric material 3 are brought into direct contact on the same surface as shown in Fig. 1(a), and the thermoelectric modlue is formed by connecting a plurality of such thermoelectric elements in series by connecting an unconnected end portion of the p-type thermoelectric material 2 and an unconnected end portion of the n-type thermoelectric material 3 via an electrically conductive material 5. The number of thermoelectric elements used in one module is not limited, and can be suitably determined depending on the required electric power.

Similarly in the case of producing a thermoelectric element as shown in Fig. 2, a noble metal paste, solder, or electrically conductive ceramics can be used as the electrically conductive material 5 for connecting thermoelectric elements. As the electrically conductive ceramics, the same complex oxides as in the p-type thermoelectric material or n-type thermoelectric material can also be used.

10

15

20

25

In addition to a method for connecting unconnected end portions of a plurality of thermoelectric elements formed on different substrates, a method for electrically connecting unconnected end portions of a plurality of thermoelectric elements formed on the same substrate can be employed. According to the latter method, a thermoelectric module can be easily obtained by forming a required number of thin films of p-type thermoelectric material and thin films of n-type thermoelectric material on the same substrate to form thermoelectric elements through the application of the above-described method for forming a thin film of a thermoelectric material, and then connecting an end portion of each element.

The thermoelectric module of the invention can produce an electrical potential difference by positioning one end thereof at a high-temperature side and the other end thereof at a low-temperature side. For example, in the module of Fig. 6, a portion where a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material are brought into direct contact may be disposed at a high-temperature side and the other

end portion may be disposed at a low-temperature side.

Moreover, as shown in the perspective view of Fig. 7, usable is a pipe-like thermoelectric module which is obtained by forming a thin film of p-type thermoelectric material 2 and a thin film of n-type thermoelectric material 3 on either or both surfaces of a pipe-like substrate 1 in parallel with the longitudinal direction of the substrate. The thermoelectric material and the n-type thermoelectric material are electrically connected at one opening side to thermoelectric element on the pipe-like substrate. A plurality of such thermoelectric elements are then formed on the pipe-like substrate, and an unconnected end portion of each thermoelectric element is connected with each other, providing a pipe-like thermoelectric module. According to such a pipe-like thermoelectric module, thermoelectric generation can be carried out by positioning one opening side of the thermoelectric module at a high-temperature side and positioning the other opening side at a low-temperature side. Moreover, thermoelectric generation can also be carried out by passing a high-temperature gas through the pipe to create a temperature difference between a gas inlet portion and a gas outlet portion of the pipe.

Examples of heat sources for the high-temperature side include high-temperature heat of about 473K or higher generated in automobile engines, industrial plants, thermal power stations, atomic power stations, garbage-incineration facilities, microturbines, boilers, and the like; and low-temperature heat of about 293K to about 473K, such as solar heat, boiling water, body temperature, etc.

## 30 EFFECT OF THE INVENTION

10

15

20

25

35

In the thermoelectric element of the invention, a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material are formed on an electrically insulating substrate. Thus, the thermoelectric element of the invention can be formed on various forms of substrates, providing various forms

of thermoelectric elements. Therefore, the thermoelectric element of the invention can be used in various applications, and, for example, can be installed in an electronic circuit, used in a minute portion, etc. Since a plastic substrate can also be used, the thermoelectric element of the invention can also be applied to various flexible devices.

5

10

15

20

25

The thermoelectric element of the invention comprises a combination of a p-type thermoelectric material and an n-type thermoelectric material, each of which comprise a specific complex oxide, and have a high thermoelectric conversion efficiency and good electrical conductivity. Such thermoelectric element is formed by the thermoelectric materials with high thermoelectric conversion efficiency as excellent thermal stability, chemical durability, etc., exhibits excellent performance.

The thermoelectric module of the invention employing such a thermoelectric element is given excellent thermal resistance, and therefore it is not damaged and its electricity generating properties are not easily deteriorated even when the high-temperature side is rapidly cooled to room temperature from a high temperature of about 1000K.

Since the thermoelectric module of the invention can be small in size and has a high output density and also has excellent thermal shock resistance as described above, the thermoelectric module of the invention can be applied to not only industrial plants, garbage-incineration facilities, thermal power stations, and atomic power stations but also automobile engines with rapidly changing temperatures.

Moreover, since the thermoelectric module can generate electricity from heat energy having a temperature of about  $473\ \mathrm{K}$ 30 lower or and can also achieve а high integration thermoelectric elements, the thermoelectric module, when provided with a heat source, can be used as a power supply which does not require recharging, for use in portable equipment such as mobile 35 phones, laptop computers, etc.

## BRIEF DESCRIPTION OF THE DRAWINGS

- Figs. 1(a) to (e) are plan views and front views showing five embodiments of a thermoelectric element.
- Figs. 2(a) to (c) are plan views and front views showing other embodiments of a thermoelectric element.
  - Fig. 3 is a plan view and a front view of another embodiment of a thermoelectric element.
  - Figs. 4(a) to (c) are plan views and front views showing other embodiments of a thermoelectric element.
- Fig. 5 is a plan view of a substrate for a thermoelectric element having a cut portion.
  - Fig. 6 is a perspective view showing a thermoelectric module formed on a pipe-like substrate.
- Fig. 7 is a plan view showing one embodiment of a 15 thermoelectric module.
  - Fig. 8 is a view schematically showing the thermoelectric element of Example 1.
  - Fig. 9 is a view schematically showing the thermoelectric element of each of Examples 9 to 16.
- Fig. 10 is a view schematically showing the thermoelectric element of each of Examples 17 to 24.
  - Fig. 11 is a view schematically showing the thermoelectric element of each of Examples 25 to 40.
- Fig. 12 is a view schematically showing the thermoelectric element of each of Examples 41 to 48.  $\cdot$ 
  - Fig. 13 is a view schematically showing the thermoelectric element of each of Examples 49 to 51.
- Fig. 14 is a graph showing the temperature dependency of electrical resistance with regard to the thermoelectric element of Example 1.

## DESCRIPTION OF REFERENCE NUMERALS

- 1. substrate
- 2. p-type thermoelectric material
- 35 3. n-type thermoelectric material

### 4,5. electrically conductive substrate

## BEST MODE FOR CARRYING OUT THE INVENTION

Hereinafter, the present invention will be described in 5 more detail with reference to Examples.

#### Example 1

10

30

35

After a target material (sintered body) for use in pulsed laser deposition was produced according to the following method, a thermoelectric element was produced by pulsed laser deposition.

- (1) Preparation of a target material
- (i) Target material for producing a p-type thermoelectric material
- Using bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>), strontium carbonate (SrCO<sub>3</sub>) and cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) as a raw material, these materials were mixed in such a manner as to yield the atomic ratio of Bi:Sr:Co of 2:2:2. The mixture was calcined at 800°C in air for 10 hours using an electric furnace, molded under pressure and heated at 850°C for 20 hours, giving a target material for producing a ptype thermoelectric material in the form of a disk-like sintered body with a diameter of 2 cm and a thickness of 3 mm.
- (ii) Target material for producing an n-type thermoelectric 25 material .

Using lanthanum nitrate  $(La_2(NO_3)_3\cdot 6H_2O)$  as a source of La, bismuth nitrate  $(Bi(NO_3)_3\cdot 6H_2O)$  as a source of Bi, and nickel nitrate  $(Ni(NO_3)_2\cdot 6H_2O)$  as a source of Ni, these materials were completely dissolved in distilled water in such a manner as to yield the atomic ratio of La:Bi:Ni of 0.9:0.1:1.0. The solution was thoroughly mixed while stirring in a crucible of alumina, and solidified by evaporating the water. The solidified product was calcined at 600°C in air for 10 hours to decompose the nitrate. The obtained calcinate was crushed, and then molded under pressure. The molded body was heated at 1000°C in a 300 ml/min

oxygen stream for 20 hours, thereby producing a target material for an n-type thermoelectric material in the form of a disk-like sintered body with a diameter of 2 cm and a thickness of 3 mm.

## 5 (2) Production of thermoelectric elements

Using each target material, a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material were successively deposited on an 8 mm  $\times$  8 mm  $\times$  1 mm quartz glass plate as a substrate by pulsed laser deposition 10 using an argon fluoride (ArF) excimer laser. The p-type thermoelectric material and n-type thermoelectric material were deposited using a mask with an L-shaped opening in such a manner as to overlap each other at the short leg of the L shape. The Lshaped opening of the mask had a length of 8 mm and a width of 3  $\mbox{mm}$  on condition that the opening had a width of 5  $\mbox{mm}$  at the 15 portion having 2 mm width at one end in the longitudinal direction. Each thin film was formed at room temperature without heating the substrate. Specific film formation conditions were as follows.

- 20 Laser: ArF excimer laser
  - Laser output: 150 mJ
  - Repetition frequency: 5 Hz
  - Pressure:  $5 \times 10^{-5}$  Torr
  - Distance between a target and a substrate: 3 cm
- 25 Substrate: quartz glass

30

35

- Substrate temperature: room temperature

The thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material were formed by the above-described method. The thin films were then heated at 650°C for 2 hours in air, producing a thermoelectric element.

The thermoelectric element obtained had the same shape as the thermoelectric element shown in Fig. 1(d). The thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material were formed at an interval of 2 mm, each film having a length of 8 mm, a width of 3 mm and a film

thickness of 1 to 2  $\mu m$ . A 2 mm width end portion of each thin film was overlapped with each other, thereby establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 8.

5

## Examples 2 to 8

The same procedure as in Example 1 was performed except that a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material with the compositions shown in Table 1 were formed, producing thermoelectric elements of Examples 2 to 8. In Tables 1 to 3, the value of e is in the range of 8 to 10, k is in the range of 8 to 10, r is in the range of 2.7 to 3.3, w is in the range of 3.6 to 4.4 and r' is in the range of 2.8 to 3.2.

15

20

25

30

10

#### Examples 9 to 16

Thermoelectric materials with the compositions as shown in Table 1 are used. A thin film of platinum with a length of 8 mm and a thickness of 0.5  $\mu$ m was formed by sputtering on a portion having 1 mm width from one side of the 8 mm  $\times$  8 mm surface of an 8 mm  $\times$  8 mm  $\times$  1 mm quartz glass plate as a substrate. The platinum thin film was formed at room temperature in vacuo using argon as a sputtering gas.

Next, a thin film of p-type thermoelectric material with a length of 8 mm was deposited on a portion having 3 mm width from one side perpendicular to the band-like platinum thin film formed, and a thin film of n-type thermoelectric material was further deposited on a portion having 3 mm width from the side opposite to the portion where the thin film of p-type thermoelectric material was deposited. Each thin film was deposited by pulsed laser deposition under the same conditions as in Example 1. Subsequently, a heat treatment was performed under the same conditions as in Example 1, producing a thermoelectric element.

The thermoelectric element thus obtained had the same shape 35 as the element shown in Fig. 2 (c). The thin film of p-type

thermoelectric material and the thin film of n-type thermoelectric material were formed at an interval of 2 mm, each film having a width of 3 mm, a length of 8 mm and a thickness of 1 to 2  $\mu$ m. Each thin film partially overlapped with the platinum thin film, thereby establishing an electrical connection. The thermoelectric element is schematically shown in Fig. 9.

## Examples 17 to 24

5

10

15

20

25

30

Using a mask with an L-shaped opening, a thin film of pthermoelectric material and а thin film of n-type thermoelectric material were deposited on an 8 mm  $\times$  8 mm  $\times$  1 mm The L-shaped opening of the mask had a quartz glass substrate. width of 3 mm and a length of 8 mm on condition that the opening had a width of 4 mm at the portion having 2 mm width at one end in the longitudinal direction. The p-type thermoelectric material and the n-type thermoelectric material were deposited in such a manner that the end portion of the short leg of each L-shaped deposit was brought into contact with each other at the halfway portion of the glass substrate. The p-type thermoelectric material and the n-type thermoelectric material used in Examples 17 to 24 had the compositions shown in Table 1 and were deposited by pulsed laser deposition in the same manner as in Example 1. Subsequently, a heat treatment was performed under the same conditions as in Example 1, producing a thermoelectric element.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 1(a). The thin film of p-type thermoelectric material and the thin film n-type thermoelectric material were formed at an interval of 2 mm, each film having a width of 3 mm, a length of 8 mm and a thickness of 1 to 2  $\mu m\,.$  The thin films had a linear contact with each other at end portion of the short leg of the L shape, establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 10.

A p-type thermoelectric material was deposited on one side surface (8 mm  $\times$  1 mm surface) of an 8 mm  $\times$  8 mm  $\times$  1 mm quartz glass substrate, and then an n-type thermoelectric material was deposited thereon.

Next, an 8 mm long thin film of p-type thermoelectric material was deposited on a portion having a 3 mm width from one side of the 8 mm  $\times$  8 mm surface of the quartz glass substrate. Subsequently, an 8 mm long thin film of n-type thermoelectric material was further deposited on a portion having a 3 mm width from the side opposite to the portion where the thin film of ptype thermoelectric material was deposited. The thin film of ptype thermoelectric material and the thin film of n-type thermoelectric material were deposited in such a manner that the 3 mm long side of each thin film was in contact thermoelectric material formed on a side surface of the substrate. The p-type thermoelectric material and the n-type thermoelectric material used in Examples 25 to 32 had the compositions shown in Table 2 and were deposited by pulsed laser deposition in the same manner as in Example 1. Subsequently, a heat treatment was performed under the same conditions as in Example 1, producing a thermoelectric element.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 4(c). The thin film of p-type thermoelectric material and the film thin of n-type thermoelectric material were formed at an interval of 2 mm, each film having a width of 3 mm, a length of 8 mm and a thickness of The thin films were in contact with, at a corner of the substrate, the electrically conductive film which was formed on the side surface of the substrate and which was composed of thermoelectric materials (a laminate film of thermoelectric material and an n-type thermoelectric material), thereby establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 11.

5

10

15

20

25

30

A platinum was deposited on one side surface (8 mm  $\times$  1 mm surface) of an 8 mm  $\times$  8 mm  $\times$  1 mm quartz glass substrate in the same manner as in Examples 9 to 16.

Next, an 8 mm long thin film of p-type thermoelectric material was deposited on a portion having a 3 mm width from one side of the 8 mm  $\times$  8 mm surface of the quartz glass substrate. Subsequently, an 8 mm long thin film of n-type thermoelectric material was further deposited on a portion having a 3 mm width from the side opposite to the portion where the thin film of ptype thermoelectric material was deposited. The thin film of ptype thermoelectric material and the thin film of n-type thermoelectric material were deposited in such a manner that the 3 mm long side of each thin film was in contact with a platinum thin film formed on a side surface of the substrate. The p-type thermoelectric material and the n-type thermoelectric material used in Examples 33 to 40 had the compositions shown in Table 2 and were deposited by pulsed laser deposition in the same manner as in Example 1. Subsequently, a heat treatment was performed the same conditions as in Example 1, producing thermoelectric element.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 4(c). The thin film of p-type thermoelectric material and the thin film of thermoelectric material were formed at an interval of 2 mm, each 25 film having a width of 3 mm, a length of 8 mm and a thickness of The thin films were in contact with, at a corner of the substrate, the electrically conductive film which was the platinum thin film and was formed on the side surface of the substrate, thereby establishing an electrical connection. thermoelectric element thus obtained is schematically shown in 30 Fig. 11.

## Examples 41 to 48

5

10

15

20

A p-type thermoelectric material was deposited in such a 35 manner as to have a length of 4 mm from one side of one side

surface (8 mm  $\times$  1 mm surface) of an 8 mm  $\times$  8 mm  $\times$  1 mm quartz glass substrate. Subsequently, an n-type thermoelectric material was further deposited in such a manner as to have a length of 4 mm from the opposite side of the same side surface. The thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material had a linear contact with each other at the 1 mm long side.

10

15

20

25

30

35

Next, an 8 mm long thin film of p-type thermoelectric material was deposited on a portion having a 3 mm width from one side of the 8 mm  $\times$  8 mm surface of the quartz glass substrate. Subsequently, an 8 mm long thin film of n-type thermoelectric material was further deposited on a portion having a 3 mm width from the side opposite to the portion where the thin film of ptype thermoelectric material was deposited. The thin film of ptype thermoelectric material was deposited in such a manner that the 3 mm long side was in contact with the p-type thermoelectric material formed on one side surface of the substrate at a corner of the substrate. The thin film of n-type thermoelectric material was deposited in such a manner that the 3 mm long side was in contact with the n-type thermoelectric material formed on one side surface of the substrate at a corner of the substrate. p-type thermoelectric material and the n-type thermoelectric material used in Examples 41 to 48 had the compositions shown in Table 2 and were deposited by pulsed laser deposition in the same manner as in Example 1. Subsequently, a heat treatment was performed under the same conditions as in Example 1, producing a thermoelectric element.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 4(a). The thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material were formed at an interval of 2 mm, each film having a width of 3 mm, a length of 8 mm and a thickness of 1 to 2  $\mu$ m. The thin film of the thermoelectric material was in contact with, at a corner of the substrate, the thin film of the thermoelectric material formed on the side surface of the

substrate, thereby establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 12.

## 5 Examples 49 to 51

10

25

On one side surface of a shorter side (3 mm  $\times$  1 mm surface) of a quartz glass substrate with a length of 8 mm, width of 3 mm and a thickness of 1 mm, an electrically conductive film comprising a thin film of platinum,  $Ca_{2.7}Bi_{0.3}Co_4O_e$  or  $La_{0.9}Bi_{0.1}NiO_r$  was deposited. Platinum was deposited in the same manner as in Examples 9 to 15, and  $Ca_{2.7}Bi_{0.3}Co_4O_e$  or  $La_{0.9}Bi_{0.1}NiO_r$  was deposited in the same manner as in Example 1.

Subsequently, a p-type thermoelectric material with a composition represented by  $\text{Ca}_{2.7}\text{Bi}_{0.3}\text{Co}_4\text{O}_e$  was deposited on one 8 mm 15 surface of the glass substrate and an thermoelectric material with a composition represented  $\text{La}_{0.9}\text{Bi}_{0.1}\text{NiO}_r$  was deposited on the other 8 mm x 3 mm surface Each thin film was deposited in the same manner as in thereof. Example 1. Subsequently, a heat treatment was performed under the same conditions as in Example 1, producing a thermoelectric 20 element.

In the thermoelectric element thus obtained, the thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material were in contact with the electrically conductive film comprising platinum, Ca<sub>2.7</sub>Bi<sub>0.3</sub>Co<sub>4</sub>O<sub>e</sub> or La<sub>0.9</sub>Bi<sub>0.1</sub>NiO<sub>r</sub> at a corner of the substrate, thereby establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 13.

## 30 Property Test Example 1

The Seebeck coefficients of the p-type thermoelectric material and the n-type thermoelectric material of the thermoelectric element obtained in Example 1 were measured at room temperature by the method described below.

First, a heater was wound around one of two K-type

thermocouples and heated. One thermocouple was brought into contact with one end of the thermoelectric material and the other thermocouple was brought into contact with the other end of the thermoelectric material. The temperature and generated voltage were measured. This generated voltage was divided by the temperature difference between the two thermocouples to determine the Seebeck coefficient of each thermoelectric material. As a result, the Seebeck coefficient of the p-type thermoelectric material part was 85  $\mu V/K$  and the Seebeck coefficient of the n-type thermoelectric material part was -13  $\mu V/K$ .

The Seebeck coefficients of the thermoelectric elements obtained in Examples were measured in the same manner as described above, which showed that the Seebeck coefficient of the p-type thermoelectric material part of each Example was in the range of 60 to 120  $\mu$ V/K and the Seebeck coefficient of the n-type thermoelectric material part of each Example was in the range of -5 to -25  $\mu$ V/K.

10

15

20

25

30

35

In each thermoelectric element, a platinum wire was adhered by applying silver paste to each end opposite to the end where the p-type thermoelectric material and the n-type thermoelectric material were electrically connected. The platinum wires were connected to a voltmeter, and the element was placed in an electric furnace and heated to 500°C. The one end portion of the thermoelectric element, to which the platinum wires were adhered, was air-cooled using an air pump, thereby creating a temperature difference of 30 to 40°C between the low-temperature portion and the high-temperature portion. The generated voltage (open circuit voltage) at this time was measured.

The thermoelectric element obtained in Example 1 had a generated voltage (open circuit voltage) of 3.4 mV. The generated voltages (open circuit voltages) of the thermoelectric elements obtained in the Examples are shown in Tables 1 to 3.

Fig. 14 is a graph showing the temperature dependency of the electrical resistance of the thermoelectric element obtained in Example 1. The electrical resistance was in the range of 350 to 1000  $\Omega$  at temperatures from room temperature to 650°C.

10

As the high-temperature portion, the end where the p-type thermoelectric material and the n-type thermoelectric material were electrically connected was heated to 500°C. The other end was then air-cooled, to create a temperature difference of 38°C. At this time, the thermoelectric element obtained in Example 1 had output of power generation of 8.3 nW. Tables 1 to 3 also show the output of power generation measured in the same manner as described above with reference to the thermoelectric elements obtained in the Examples.

Table 1

| Examples | p-type thermoelectric material/                                                                                            | Open circuit      | Electrical | Ordered (mVI)       |
|----------|----------------------------------------------------------------------------------------------------------------------------|-------------------|------------|---------------------|
|          | n-type thermoelectric material                                                                                             | voltage (mV)      | resistance | Output (nW)<br>High |
|          |                                                                                                                            | High              | (Ω)        | temperature         |
|          |                                                                                                                            | temperature       | 500°C      | portion 500°C       |
|          |                                                                                                                            | portion 500°C     |            | Temperature         |
|          |                                                                                                                            | Temperature       |            | difference          |
|          |                                                                                                                            | difference        |            | 30 to 40°C          |
| 1        | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>       | 30 to 40°C<br>3.4 | 350        | 0.2                 |
| 2        | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> N1O <sub>r</sub>   | 3.4               |            | 8.3                 |
| 3        |                                                                                                                            |                   | 360        | 7.1                 |
|          | $Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k/LaNi_{0.9}$                                                                       | 3.1               | 365        | 6.6                 |
|          | $Cu_{0.1}O_{r}$                                                                                                            |                   |            |                     |
| 4        | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>       | 3.3               | 355        | 7.7                 |
| 5        | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>   | 2.9               | 490        |                     |
| 6        | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                         | 2.6               |            | 4.3                 |
| 7        | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> , | 2.7               | 510        | 3.3                 |
| 8        |                                                                                                                            |                   | 520        | 3.5                 |
| 9        | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>   | 2.9               | 530        | 4.0                 |
| 10       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>       | 3.1               | 370        | 6.5                 |
| 11       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                     | 3.2               | 375        | 6.8                 |
| 1 ++     | $Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k$                                                                                  | 3.0               | 380        | 5.9                 |
| 10       | LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub>                                                                       |                   |            |                     |
| 12       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>       | 3.2               | 375        | 6.8                 |
| 13       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiOr               | 2.8               | 530        | 3.7                 |
| 14       | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                         | 2.8               | 550        | 3.6                 |
| 15       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> · | 2.7               | 530        | 3.4                 |
| 16       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>   | 2.9               | 540        | 3.9                 |
| 17       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>       | 3.1               | 370        | 6.5                 |
| 18       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                     | 3.3               | 370        | 7.4                 |
| 19       | $Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k$                                                                                  | 3.0               | 360        | 6.3                 |
|          | LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> ,                                                                     |                   |            |                     |
| 20       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>       | 3.1               | 380        | 6.3                 |
| 21       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>   | 3.0               | 510        | 4.4                 |
| . 22     | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                         | 2.9               | 520        | 4.0                 |
| 23       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub>   | 2.9               | 500        | 4.2                 |
| 24       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>   | 2.7               | 530        | 3.4                 |

Table 2

| Examples | p-type thermoelectric material/<br>n-type thermoelectric material                                                                                                  | Open circuit voltage (mV) High temperature portion 500°C Temperature difference 30 to 40°C | Electrical resistance (Ω) 500°C | Output (nW) High temperature portion 500°C Temperature difference 30 to 40°C |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|
| 25       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>                                               | 2.9                                                                                        | 390                             | 5.4                                                                          |
| 26       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                                                             | 3.0                                                                                        | 370                             | 6.1                                                                          |
| 27       | Bi <sub>1.8</sub> Pb <sub>0.4</sub> Sr <sub>1.8</sub> Ca <sub>0.4</sub> Co <sub>2</sub> O <sub>k</sub> /                                                           | 3.2                                                                                        | 385                             | 6.6                                                                          |
|          | LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> ,                                                                                                             | 512                                                                                        | 303                             | ""                                                                           |
| 28       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /<br>La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>                                           | 3.1                                                                                        | 390                             | 6.2                                                                          |
| 29       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiOr                                                       | 2.9                                                                                        | 560                             | 3.8                                                                          |
| 30       | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                                                                 | 2.7                                                                                        | 550                             | 3.3                                                                          |
| 31       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub><br>/LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> .                                      | 2.8                                                                                        | 550                             | 3.6                                                                          |
| 32       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiOw                                                       | 2.8                                                                                        | 540                             | 3.6                                                                          |
| 33       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>                                               | 3.1                                                                                        | 375                             | 6.4                                                                          |
| 34       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                                                             | 3.3                                                                                        | 390                             | 7.0                                                                          |
| 35       | $Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k/LaNi_{0.9}$<br>$Cu_{0.1}O_r$                                                                                              | 3.0                                                                                        | 380                             | 5.9                                                                          |
| 36       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>                                               | 3.1                                                                                        | 375                             | 6.4                                                                          |
| 37       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>                                           | 2.9                                                                                        | 520                             | 4.0                                                                          |
| 38       | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                                                                 | 2.8                                                                                        | 550                             | 3.6                                                                          |
| 39       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /<br>LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> .                                     | 2.9                                                                                        | 570                             | 3.7                                                                          |
| 40       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>                                           | 2.7                                                                                        | 555                             | 3.3                                                                          |
| 41       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>                                               | 2.9                                                                                        | 400                             | 5.3                                                                          |
| 42       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                                                             | 3.1                                                                                        | 405                             | 5.9                                                                          |
| 43       | Bi <sub>1.8</sub> Pb <sub>0.4</sub> Sr <sub>1.8</sub> Ca <sub>0.4</sub> Co <sub>2</sub> O <sub>k</sub> /<br>LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> , | 3.2                                                                                        | 390                             | 6.6                                                                          |
| 44 -     | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>                                               | 3.0                                                                                        | 385                             | 5.8                                                                          |
| 45       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>                                           | 3.1                                                                                        | 530                             | 4.5                                                                          |
| 46       | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                                                                 | 2.9                                                                                        | 520                             | 4.0                                                                          |
| 47       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /<br>LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> .                                     | 2.7                                                                                        | 525                             | 3.5                                                                          |
| 48       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /<br>La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>                                       | 2.8                                                                                        | 560                             | 3.5                                                                          |

Table 3

| Examples | Electrically conductive film                                       | p-type thermoelectric material/<br>n-type thermoelectric material                                                        | Open circuit voltage (mV) High temperature portion 500°C Temperature difference 30 to 40°C | Electrical resistance (Ω) 500°C | Output (nW) High temperature portion 500°C Temperature difference 30 to 40°C |
|----------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|
| 49       | Pt                                                                 | $Ca_{2.7}Bi_{0.3}Co_4O_e/La_{0.9}Bi_{0.1}NiO_r$                                                                          | 2.8                                                                                        | 490                             | 4.0                                                                          |
| 50       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub> | 3.2                                                                                        | 540                             | 4.7                                                                          |
| 51       | La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>               | $Ca_{2.7}Bi_{0.3}Co_4O_e/La_{0.9}Bi_{0.1}NiO_r$                                                                          | 3.5                                                                                        | 500                             | 4.5                                                                          |

#### Example 52

After a sputtering target was produced by the following method, a thermoelectric element was produced by sputtering.

# (1) Preparation of a target

(i) Target material for producing a p-type thermoelectric 10 material

Using bismuth oxide  $(Bi_2O_3)$ , strontium carbonate  $(SrCO_3)$  and cobalt oxide  $(Co_3O_4)$  as a raw material, these materials were mixed in such a manner as to yield the atomic ratio of Bi:Sr:Co of 2:2:2. The mixture was calcined at 800°C in air for 10 hours using an electric furnace, molded under pressure and heated at 850°C for 20 hours. A copper plate was covered with the obtained powder in such a manner that a diameter is 10 cm and a thickness is 2 mm, giving a target material for producing a p-type thermoelectric material.

20

25

15

(ii) Target material for producing an n-type thermoelectric material

Using lanthanum nitrate  $(La_2(NO_3)_3\cdot 6H_2O)$  as a source of La, bismuth nitrate  $(Bi(NO_3)_3\cdot 6H_2O)$  as a source of Bi, and nickel nitrate  $(Ni(NO_3)_2\cdot 6H_2O)$  as a source of Ni, these materials were completely dissolved in distilled water in such a manner as to yield the atomic ratio of La:Bi:Ni of 0.9:0.1:1.0. The solution

was thoroughly mixed while stirring in a crucible of alumina, and solidified by evaporating the water. The solidified product was calcined at 600°C in air for 10 hours to decompose the nitrates. The obtained calcinate was crushed, and then molded under pressure. The molded body was heated at 1000°C in a 300 ml/min oxygen stream for 20 hours. A copper plate was covered with the obtained powder in such a manner that a diameter is 10 cm and a thickness is 2 mm, giving a target material for producing an n-type thermoelectric material.

10

15

20

30

35

5

# (2) Production of thermoelectric elements

Using each target material, a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material were successively deposited on an 8 mm  $\times$  8 mm  $\times$  1 mm polyimide film as a substrate by RF sputtering. The p-type thermoelectric material and n-type thermoelectric material were deposited using a mask with an L-shaped opening in such a manner as to overlap each other at the short leg of the L shape. The Lshaped opening of the mask had a length of 8 mm and a width of 3 mm on condition that the opening had a width of 5 mm at the portion having 2 mm width at one end in the longitudinal direction. The substrate was not heated and the temperature increase due to plasma was adjusted to 260°C or lower. film formation conditions were as follows.

25 - Sputtering gas: Ar

- RF power: 50 to 200 W

- Substrate: polyimide film

A thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material were formed by the above-described method.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 1(d). The thin film of p-type thermoelectric material and the thin film of n-type thermoelectric material were formed at an interval of 2 mm, each film having a length of 8 mm, a width of 3 mm, and a thickness of

1 to 2  $\mu m$ . A 2 mm width end portion of each thin film was overlapped with each other, thereby establishing an electrical connection. The thermoelectric element thus obtained is schematically shown in Fig. 8.

5

10

15

20

## Examples 53 to 59

The same procedure as in Example 52 was performed except that a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material with the compositions shown in Table 4 were formed, thereby producing thermoelectric elements of Examples 53 to 59. The heating temperature during the production of a raw material powder varied in the range of 700 to 1100°C depending on the specific composition.

In Table 4, the value of e is in the range of 8 to 10, k is in the range of 8 to 10, r is in the range of 2.7 to 3.3, w is in the range of 3.6 to 4.4 and r' is in the range of 2.8 to 3.2.

The thermoelectric elements obtained in Examples 52 to 59 were measured for the generated voltage (open circuit voltage), electrical resistance and power generation output in the same manner as in Example 1. Table 4 shows the measurement results.

Table 4

| Examples | p-type thermoelectric material/<br>n-type thermoelectric material                                                        | Open circuit voltage (mV) High temperature portion 100°C Temperature difference 30 to 40°C | Electrical<br>resistance<br>(Ω)<br>100°C | Output (nW) High temperature portion 100°C Temperature difference 30 to 40°C |
|----------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|
| 52       | Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub>     | 1.5                                                                                        | 670                                      | 0.84                                                                         |
| 53       | Bi <sub>2.2</sub> Sr <sub>2.2</sub> Co <sub>2</sub> O <sub>k</sub> /LaNiO <sub>r</sub>                                   | 1.3                                                                                        | 680                                      | 0.62                                                                         |
| 54       | $Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_2O_k/$ $LaNi_{0.9}Cu_{0.1}O_{r'}$                                                    | 1.2                                                                                        | 685                                      | 0.52                                                                         |
| 55       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub>     | 1.4                                                                                        | 675                                      | 0.72                                                                         |
| 56       | Ca <sub>3.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>r</sub> | 1.1                                                                                        | 710                                      | 0.42                                                                         |
| 57       | Ca <sub>3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNiO <sub>r</sub>                                                       | 0.9                                                                                        | 720                                      | 0.28                                                                         |
| 58       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>r</sub> | 1.0                                                                                        | 730                                      | 0.34                                                                         |
| 59       | Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>w</sub> | 1.1                                                                                        | 740                                      | 0.41                                                                         |

### Example 60

5

15

After a raw material powder for aerosol deposition was prepared by the following method, a thermoelectric element was produced by aerosol deposition using a sheet of polyimide resin (tradename: Capton) as a substrate.

### (1) Production of a raw material powder

## (i) p-type thermoelectric material powder

Using calcium carbonate (CaCo<sub>3</sub>), bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>) and 10 cobalt oxide  $(Co_3O_4)$  as a raw material, these materials were mixed in such a manner as to yield the atomic ratio of Ca:Bi:Co of 2.7:0.3:4. The mixture was calcined at 800°C in air for 10 hours using an electric furnace, molded under pressure and sintered at 850°C for 20 hours. The sintered body was crushed using a ball mill, yielding a raw material powder with an average particle diameter of 4  $\mu m$  for a p-type thermoelectric material represented by the formula: Ca<sub>2.7</sub>Bi<sub>0.3</sub>CO<sub>4</sub>O<sub>e</sub>.

#### (ii) n-type thermoelectric material powder

20 Using lanthanum nitrate (La2(NO3)3:6H2O) as a source of La, bismuth nitrate (Bi(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O) as a source of Bi, and nickel nitrate  $(Ni(NO_3)_2.6H_2O)$  as a source of Ni, these materials were completely dissolved in distilled water in such a manner as to yield the atomic ratio of La:Bi:Ni of 0.9:0.1:1.0. The solution 25 was thoroughly mixed while stirring in a crucible of alumina, and solidified by evaporating the water. The solidified product was calcined at 600°C in air for 10 hours to decompose the nitrates. The obtained calcinate was crushed, and then molded under The molded body was heated at 1000°C in a 300 ml/min 30 oxygen stream for 20 hours. The sintered body was then crushed using a ball mill, yielding a raw material powder with an average particle diameter of 4  $\mu m$  for an n-type thermoelectric material represented by the formula: La<sub>0.9</sub>Bi<sub>0.1</sub>NiO<sub>r</sub>.

#### 35 (2) Production of thermoelectric elements

A thin film of p-type thermoelectric material and a thin film n-type thermoelectric material were successively deposited onto an 8 mm  $\times$  8 mm  $\times$  0.05 mm polyimide (tradename: Capton) sheet as a substrate in a reduced chamber having a pressure of 1 KPa, producing a thermoelectric element. The p-type thermoelectric material and n-type thermoelectric material were deposited using a mask with an L-shaped opening in such a manner as to overlap each other at the short leg of the L shape. shaped opning of the mask had a length of 8 mm and a width of 3 mm on condition that the opening had a width of 5 mm at the portion having 2 mm width at one end in the longitudinal direction. Each film was formed at room temperature without heating the substrate.

Specific film formation conditions were as follows. Helium (He) was used as a carrier gas, the raw material powder for ptype thermoelectric material and the raw material powder for ntype thermoelectric material were successively sprayed at a gas flow rate of 7 L/minute and at a distance between a nozzle and a substrate of 15 mm, providing a thermoelectric element on which a thin film of p-type thermoelectric material and a thin film of ntype thermoelectric material were formed, each film having a thickness of about 50 µm. After the formation of the thin films, no heating was performed.

The thermoelectric element thus obtained had the same shape as the element shown in Fig. 1(d). The thin film of p-type thermoelectric material and the thin film of thermoelectric material were formed at an interval of 2 mm, each film having a length of 8 mm and a width of 3 mm. A 2 mm width end portion of each thin film was overlapped with each other, thereby establishing an electrical connection. When the hightemperature portion of the element was heated by an electric heater to 150°C and the low-temperature portion was adjusted to 120°C, a power of 4.7 nW was generated.

10

25

30

The same procedure as in Example 60 was performed except that a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material with the compositions shown in Table 5 were formed, thereby producing thermoelectric elements of Examples 61 to 67. The heating temperature during the production of a raw material powder varied range of 700 to 1100°C depending on the in the composition.

In Table 5, the value of e is in the range of 8 to 10, k is in the range of 8 to 10, r is in the range of 2.7 to 3.3 and w is in the range of 3.6 to 4.4.

The thermoelectric elements obtained in Examples 60 to 67 were measured for generated voltage (open circuit voltage), electrical resistance and power generation output in the same manner as in Example 1. Table 5 shows the measurement results.

Examples p-type thermoelectric material/ Open circuit Electrical Output (nW) n-type thermoelectric material voltage (mV) resistance High temperature High  $(\Omega)$ portion 100°C temperature 100°C Temperature difference portion 100°C 30 to 40°C Temperature difference 30 to 40°C 60  $Ca_{2.7}Bi_{0.3}Co_4O_e/La_{0.9}Bi_{0.1}NiO_r$ 1.5 330 1.7 61 Ca<sub>3</sub>Co<sub>4</sub>O<sub>e</sub>/LaNiO<sub>r</sub> 1.2 360 1.0 62  $Ca_{2.7}Bi_{0.3}Co_4O_e/La_{1.8}Bi_{0.2}NiO_w$ 1.4 365 1.3 Ca<sub>3</sub>Co<sub>4</sub>O<sub>e</sub>/La<sub>2</sub>Ni<sub>0.9</sub>Cu<sub>0.1</sub>O<sub>w</sub> 63 1.3 355 1.2 64 Bi<sub>2</sub>Sr<sub>2</sub>Co<sub>2</sub>O<sub>k</sub>/La<sub>0.9</sub>Bi<sub>0.1</sub>NiO<sub>r</sub> 0.9 490 0.4 65 Bi<sub>2.2</sub>Sr<sub>2.2</sub>Co<sub>2</sub>O<sub>k</sub>/LaNiO<sub>r</sub> 1.1 510 0.6 66  $Bi_{1.8}Pb_{0.2}Ca_2Co_2O_k$ 1.1 480 0.6  $La_{1.8}Bi_{0.2}NiO_{w}$ 67  $Bi_{2,1}Ca_{0,4}Sr_{1,7}Co_{2}O_{k}/$ 1.0 490 0.5 La<sub>2</sub>Ni0.9Co<sub>0.1</sub>O<sub>w</sub>

Table 5

## 20 Example 68

5

15

After a sputtering target was produced by the following method, a thermoelectric element was produced by sputtering.

- (1) Preparation of a target
- (i) Target material for producing a p-type thermoelectric material

Using bismuth oxide (Bi<sub>2</sub>O<sub>3</sub>), strontium carbonate (SrCO<sub>3</sub>) and cobalt oxide (Co<sub>3</sub>O<sub>4</sub>) as a raw material, these materials were mixed in such a manner as to yield the atomic ratio of Bi:Sr:Co of 2:2:2. The mixture was calcined at 800°C in air for 10 hours using an electric furnace, molded under pressure and heated at 850°C for 20 hours. A copper plate was covered with the obtained powder in such a manner that a diameter is 10 cm and a thickness is 2 mm, giving a target material for producing a p-type thermoelectric material.

(ii) Target material for producing an n-type thermoelectric
15 material

5 wt% of gallium oxide (Ga $_2\mathrm{O}_3$ ) was added to zinc oxide (ZnO), and the mixture was sintered, producing a disk-like sintered target 10 cm in diameter and 3 mm in thickness.

20 (2) Production of a thermoelectric element

each target material, a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material were successively deposited on an 8 mm  $\times$  8 mm  $\times$  0.5 mm polyimide film as a substrate by RF sputtering. The p-type thermoelectric material and n-type thermoelectric material were 25 deposited using a mask with an L-shaped opening in such a manner as to overlap each other at the short leg of the L shape. shaped opening of the mask had a length of 8 mm and a width of 3 mm on condition that the opening had a width of 5 mm at the 30 portion having 2 mm width at one end in the longitudinal direction. The substrate was not heated and the temperature increase due to plasma was adjusted to 260°C or lower. Specific film formation conditions were as follows.

- Sputtering gas: Ar, O2

35 - RF power: 50 to 200 W

### - Substrate: polyimide film

A thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material were formed by the above-described method.

5 The thermoelectric element thus obtained had the same shape as the element shown in Fig. 1(d). The thin film of p-type thermoelectric material the thin and film of thermoelectric material were formed at an interval of 2 mm, each film having a length of 8 mm, a width of 3 mm and a thickness of 10 1 to 2 µm. A 2 mm width end portion of each thin film was overlapped with each other, thereby establishing an electrical connection. The thermoelectric element thus obtained schematically shown in Fig. 8.

# 15 Examples 69 to 75

20

25

The same procedure as in Example 68 was performed except that a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material with the compositions shown in Table 6 were formed, thereby producing thermoelectric elements of Examples 69 to 75. The heating temperature for producing the raw material powder varied in the range of 700 to 1100°C depending on the specific composition.

In Table 6, the value of e is in the range of 8 to 10, k is in the range of 8 to 10, z is in the range of 0.9 to 1.1 and zz is in the range of 1.9 to 3. .

The thermoelectric elements obtained in Examples 68 to 75 were measured for generated voltage (open circuit voltage), electrical resistance and power generation output in the same manner as in Example 1. Table 6 shows the measurement results.

Table 6

| Examples | p-type thermoelectric material/<br>n-type thermoelectric material                                                      | Open circuit voltage (mV) High temperature portion 100°C Temperature difference 30 to 40°C | Electrical<br>resistance<br>(Ω)<br>100°C | Output (nW) High temperature portion 100°C Temperature difference 30 to 40°C |
|----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------|
| 68       | $Bi_2Sr_2Co_2O_k/Ga_{0.1}Zn_{0.9}O_z$                                                                                  | 2.9                                                                                        | 570                                      | 3.69                                                                         |
| 69       | $Bi_{2.2}Sr_{2.2}Co_2O_k/Al_{0.1}Zn_{0.9}O_z$                                                                          | 2.6                                                                                        | 590                                      | 2.86                                                                         |
| 70       | $\begin{array}{c} Bi_{1.8}Pb_{0.4}Sr_{1.8}Ca_{0.4}Co_{2}O_{k}/\\ In_{0.1}Zn_{0.9}O_{z} \end{array}$                    | 2.7                                                                                        | 610                                      | 2.99                                                                         |
| 71       | Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>k</sub> /Sn <sub>0.1</sub> In <sub>1.9</sub> O <sub>zz</sub>    | 2.5                                                                                        | 585                                      | 2.67                                                                         |
| 72       | Ca <sub>3.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /Ga <sub>0.1</sub> Zn <sub>0.9</sub> O <sub>z</sub> | 2.6                                                                                        | 610                                      | 2.77                                                                         |
| 73       | $Ca_3Co_4O_e/Al_{0.1}Zn_{0.9}O_z$                                                                                      | 2.8                                                                                        | 600                                      | 3.27                                                                         |
| 74       | Ca <sub>3.3</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>e</sub> /In <sub>0.1</sub> Zn <sub>0.9</sub> O <sub>z</sub> | 2.4                                                                                        | 605                                      | 2.38                                                                         |
| 75       | $Ca_{2.7}Bi_{0.3}Co_4O_e/Sn_{0.1}In_{1.9}O_{zz}$                                                                       | 2.2                                                                                        | 595                                      | 2.03                                                                         |

Hereinafter, as Reference Examples, the various property values are given for various thermoelectric materials each comprising a complex oxide with a specific composition.

# Reference Example 1

5

10

15

20

A complex oxide having properties of the p-type thermoelectric material represented by the formula  $Ca_aA^1{}_bCo_cA^2{}_dO_e$  or  $Bi_fPb_gM^1{}_nCo_iM^2{}_jO_k$  was prepared by the following method.

Using carbonate or oxide comprising an element of an intended complex oxide as starting materials, these starting materials were mixed in such a manner as to yield the same element ratio as that of the complex oxides represented by the formula shown in Tables 7 to 74. The mixture was calcined at 1073 K for 10 hours in air to yield a calcinate. The calcinate was crushed and molded under pressure, and the molded body was heated in a 300 mL/min oxygen stream for 20 hours. The result was crushed and molded under pressure, and the molded body was hotpress sintered in air under uniaxial pressure of 10 MPa for 20 thereby producing complex oxides for thermoelectric material. The heating temperature for producing each complex oxide varied in the range of 1073 to 1273 K depending on the specific composition. The hot-press temperature during the production of each complex oxide varied in the range of 1123 to 1173 K depending on the specific composition

The complex oxides obtained were measured for the Seebeck coefficient at 700°C, electrical resistivity at 700°C and thermal conductivity at 700°C. Tables 7 to 74 show the measurement results.

Table 7

| p-type                                                                                                 |                     |                           |                      |
|--------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|
| Composition                                                                                            | Seebeck Coefficient | Electrical<br>Resistivity | Thermal Conductivity |
| Ca <sub>a</sub> A <sup>1</sup> <sub>b</sub> Co <sub>c</sub> A <sup>2</sup> <sub>d</sub> O <sub>e</sub> | μV/K (700°C)        | mΩcm (700°C)              | W/mK (700°C)         |
| Ca <sub>3</sub> Co <sub>4</sub> O <sub>9</sub>                                                         | 205                 | 5. 5                      | 2.5                  |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 198                 | 4. 2                      | 2. 2                 |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                      | 195                 | 6                         | 2. 2                 |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 200                 | 7. 2                      | 2. 4                 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 205                 | 6.8                       | 2. 6                 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                      | 198                 | 5. 7                      | 2. 5                 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 199                 | 6. 2                      | 3                    |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 210                 | 6. 8                      | 2. 6                 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 202                 | 8                         | 2. 9                 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 204                 | 7. 9                      | 1.9                  |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 197                 | 6. 9                      | 2. 2                 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 205                 | 5. 9                      | 2. 6                 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 201                 | 7. 8                      | 2. 5                 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 196                 | 6. 3                      | 3                    |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 202                 | 6. 5                      | 1.9                  |
| $Ca_{2.7}Al_{0.3}Co_4O_9$                                                                              | 203                 | 6. 4                      | 2                    |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 208                 | 8. 2                      | 2. 2.                |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                      | 198                 | 7. 5                      | 2. 3                 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 199                 | 6. 9                      | 1.9                  |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 201                 | 8. 1                      | 3. 1                 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 207                 | 7. 6                      | 2. 6                 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 190                 | 5. 9                      | 2. 7                 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 198                 | 5. 8                      | 2. 4                 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 199                 | 7. 2                      | 1.9                  |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 201                 | 8. 2                      | 3                    |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 200                 | 7. 1                      | 2. 1                 |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 206                 | 6. 5                      | 2. 2                 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 205                 | 6. 9                      | 2.6                  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>4</sub> O <sub>9</sub>                                     | 198                 | 7                         | 2. 7                 |
| Ca <sub>3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>                                     | 200                 | 6.8                       | 1.9                  |
| Ca <sub>3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>                                      | 203                 | 7. 2                      | 2.9                  |
| Ca <sub>3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>                                     | 201                 | 5. 9                      | 2.4                  |
|                                                                                                        | <del></del>         |                           |                      |

. Table 8

| Ca <sub>3</sub> Co <sub>3, 8</sub> Mn <sub>0, 2</sub> O <sub>9</sub>                   | 208 | 8. 1     | 2. 6     |
|----------------------------------------------------------------------------------------|-----|----------|----------|
| Ca <sub>3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>                     | 198 | 7. 2     | 2. 7     |
| Ca <sub>3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>                     | 199 | 6. 4     | 1.9      |
| Ca <sub>3</sub> Co <sub>3,8</sub> Cu <sub>0,2</sub> O <sub>9</sub>                     | 207 | 5. 9     | 3        |
| Ca <sub>3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                     | 198 | 6        | 2. 7     |
| Ca <sub>3</sub> Co <sub>3,9</sub> Mo <sub>0,1</sub> O <sub>9</sub>                     | 196 | 5. 9     | 2.7      |
| Ca <sub>3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>                      | 200 | 7. 2     | 2.8      |
| Ca <sub>3</sub> Co <sub>3</sub> <sub>9</sub> Nb <sub>0, 1</sub> O <sub>9</sub>         | 198 | 8. 1     | 2. 2     |
| Ca <sub>3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                     | 205 | 6. 9     | 2. 5     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 205 | 6. 2     | 2. 6     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 198 | 6.8      | 2        |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 195 | 8        | 1.9      |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 200 | 7. 9     | 2.3      |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 205 | 6. 9     | 2. 5     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 198 | 5. 9     | 2. 7     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 199 | 7.8      | 2. 5     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 6. 3     | 2.6      |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 202 | 6. 5     | 2. 4     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 207 | 6. 4     | 2. 3     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 2     | 2. 2     |
| Ca <sub>2.7</sub> Na <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 196 | 7. 5     | 2. 1     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>  | 198 | 8. 1     | 1.8      |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>   | 205 | 7.6      | 2. 7     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>  | 196 | 5. 9     | 2.6      |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>  | 205 | 5. 8     | 2.5      |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>  | 198 | 7. 2     | 2. 1     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>  | 198 | 8. 2     | 2. 3     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>  | 195 | 7. 1     | 2. 7     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 200 | 6. 5     | 2.8      |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>  | 203 | 6. 9     | 2. 5     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>   | 201 | 7        | 2. 4     |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 208 | 7. 2     | 2.8      |
| Ca <sub>2.7</sub> K <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 198 | 6. 8     | 3        |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 207 | 5. 9     | 1. 9     |
|                                                                                        | 1   | <u> </u> | <u> </u> |

Table 9

| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 198 | 8. 1 | 2.6  |
|----------------------------------------------------------------------------------------|-----|------|------|
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 199 | 7. 2 | 2. 5 |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 210 | 6. 4 | 3    |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 202 | 5. 9 | 1.9  |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 204 | 6    | 2    |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 197 | 5. 9 | 2. 2 |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205 | 7. 2 | 2. 3 |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 1 | 1.9  |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 196 | 6. 9 | 3. 1 |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 202 | 5. 7 | 2.6  |
| Ca <sub>2.7</sub> Li <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 203 | 6. 2 | 2. 7 |
|                                                                                        |     |      |      |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 198 | 8    | 1.9  |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 199 | 7. 9 | 3    |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 201 | 6. 9 | 2. 1 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 207 | 5. 9 | 2. 2 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 190 | 7. 8 | 2. 6 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 198 | 6. 3 | 2. 7 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 199 | 6. 5 | 2. 5 |
| $Ca_{2.7}Ti_{0.3}Co_{3.9}Ag_{0.1}O_{9}$                                                | 201 | 6. 4 | 1.9  |
| $Ca_{2.7}Ti_{0.3}Co_{3.9}Mo_{0.1}O_{9}$                                                | 200 | 5. 8 | 2. 9 |
| $Ca_{2.7}Ti_{0.3}Co_{3.9}W_{0.1}O_{9}$                                                 | 206 | 7.2  | 2. 4 |
| Ca <sub>2.7</sub> Ti <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 205 | 8. 2 | 2. 6 |
| $Ca_{2.7}Ti_{0.3}Co_{3.9}Ta_{0.1}O_9$                                                  | 198 | 7. 1 | 2. 7 |
|                                                                                        |     |      |      |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>  | 196 | 6. 9 | 3    |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>   | 202 | 7    | 2.7  |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>  | 203 | 7. 2 | 2. 7 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>  | 208 | 6. 8 | 2. 8 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>  | 198 | 7. 2 | 2. 2 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>  | 199 | 5. 9 | 2. 5 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>  | 201 | 8. 1 | 2. 7 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 207 | 7. 2 | 2. 6 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>  | 190 | 6. 4 | 2    |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>   | 198 | 5. 9 | 1.9  |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 199 | 6    | 2. 3 |
| Ca <sub>2.7</sub> V <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 201 | 5. 9 | 2. 5 |

Table 10

| $Ca_{27}Cr_{0.3}Co_{3.8}Ti_{0.2}O_{9}$                                                            | 206 | 8. 1 | 2. 5 |
|---------------------------------------------------------------------------------------------------|-----|------|------|
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 207 | 6. 9 | 2. 6 |
| Ca <sub>2</sub> ,Cr <sub>0</sub> 3Co <sub>3</sub> 8Cr <sub>0</sub> 2O <sub>9</sub>                | 198 | 5. 7 | 2. 4 |
| Ca <sub>2</sub> <sub>7</sub> Cr <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 199 | 6. 2 | 2. 3 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 210 | 6. 8 | 2. 2 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 202 | 8    | 2. 2 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 204 | 7. 9 | 2. 4 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 197 | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 205 | 5. 9 | 2. 5 |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 201 | 7. 8 | 3    |
| Ca <sub>2.7</sub> Cr <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 196 | 6. 3 | 2. 6 |
| $Ca_{2.7}Cr_{0.3}Co_{3.9}Ta_{0.1}O_{9}$                                                           | 202 | 6. 5 | 2. 9 |
|                                                                                                   |     |      |      |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 208 | 8. 2 | 2. 2 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 198 | 7. 5 | 2. 6 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 199 | 6. 9 | 2. 5 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 201 | 8. 1 | 3    |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 207 | 7. 6 | 1.9  |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 190 | 5. 9 | 2    |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 198 | 5. 8 | 2. 2 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 199 | 7. 2 | 2. 3 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 201 | 8. 2 | 1.9  |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 200 | 7. 1 | 3. 1 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 206 | 6. 5 | 2. 6 |
| Ca <sub>2.7</sub> Mn <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 205 | 6. 9 | 2. 7 |
|                                                                                                   |     |      |      |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 201 | 7. 2 | 1. 9 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 196 | 6.8  | 3    |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 202 | 6. 4 | 2. 1 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 203 | 8. 2 | 2. 2 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 205 | 7. 5 | 2. 6 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 198 | 6. 9 | 2. 7 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 195 | 8. 1 | 2. 5 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 200 | 7. 6 | 1. 9 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 205 | 5. 9 | 2. 9 |
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 198 | 5. 8 | 2. 4 |
|                                                                                                   |     |      |      |

Table 11

| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 199 | 7. 2 | 2. 6 |
|---------------------------------------------------------------------------------------------------|-----|------|------|
| Ca <sub>2.7</sub> Fe <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 210 | 8. 2 | 2. 7 |
|                                                                                                   |     |      |      |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 204 | 6. 5 | 3    |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 197 | 6. 9 | 2. 7 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 205 | 7    | 2. 7 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 201 | 7. 2 | 2. 8 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 196 | 6.8  | 2. 2 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 202 | 4. 2 | 2. 5 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 203 | 6    | 2. 7 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 208 | 7. 2 | 2. 6 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 198 | 6.8  | 2    |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 199 | 5. 7 | 1.9  |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 199 | 6. 2 | 2. 3 |
| Ca <sub>2.7</sub> Ni <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 210 | 6.8  | 2. 5 |
|                                                                                                   |     |      |      |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 204 | 7. 9 | 2. 5 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 197 | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 205 | 5. 9 | 2. 4 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 201 | 7.8  | 2. 3 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 196 | 6. 3 | 2. 2 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 202 | 6. 5 | 2. 7 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 203 | 6. 4 | 2. 6 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 208 | 8. 2 | 2    |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 198 | 7. 5 | 1. 9 |
| Ca <sub>2.7</sub> Cu <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 199 | 6. 9 | 2. 3 |
| Ca <sub>2,7</sub> Cu <sub>0,3</sub> Co <sub>3,9</sub> Nb <sub>0,1</sub> O <sub>9</sub>            | 201 | 8. 1 | 2. 5 |
| Ca <sub>2</sub> <sub>7</sub> Cu <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 207 | 7. 6 | 2. 7 |
| 0 5 0 5                                                                                           |     |      |      |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 198 | 5. 8 | 1.9  |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 199 | 7. 2 | 2. 3 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 201 | 8. 2 | 2. 5 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 200 | 7. 1 | 2. 7 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 206 | 6. 5 | 2. 5 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 205 | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 198 | 7    | 2. 4 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 201 | 8. 2 | 2. 3 |

Table 12

|                                                                                                   | Table | . 12 |      |
|---------------------------------------------------------------------------------------------------|-------|------|------|
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 201   | 7.5  | 2. 2 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 196   | 6. 9 | 2. 2 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 202   | 8. 1 | 2. 4 |
| Ca <sub>2.7</sub> Zn <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 203   | 7.6  | 2. 6 |
|                                                                                                   |       |      |      |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 198   | 5. 8 | 3    |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 199   | 7. 2 | 2. 6 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 201   | 8. 2 | 2. 9 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 207   | 7. 1 | 1.9  |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 190   | 6. 5 | 2. 2 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 198   | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 199   | 7.2  | 2. 5 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 201   | 8. 1 | 3    |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 200   | 6. 9 | 1. 9 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 206   | 5. 7 | 2    |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 207   | 6. 2 | 2. 2 |
| Ca <sub>2.7</sub> Pb <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 198   | 6.8  | 2. 3 |
|                                                                                                   |       |      |      |
| Ca <sub>2 7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 210   | 7.9  | 3. 1 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 202   | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 204   | 5. 9 | 2. 7 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 197   | 7.8  | 2. 4 |
| Ca <sub>2</sub> <sub>7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 205   | 6. 3 | 1.9  |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 201   | 6. 5 | 3    |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 196   | 6. 4 | 2. 1 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 202   | 8. 2 | 2. 2 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 203   | 7. 5 | 2. 6 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 208   | 6. 9 | 2. 7 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 198   | 8. 1 | 2. 5 |
| Ca <sub>2.7</sub> Sr <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 199   | 7.6  | 1.9  |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 201   | 5. 9 | 2. 9 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 207   | 5. 8 | 2. 4 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 190   | 7. 2 | 2. 6 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 198   | 8. 2 | 2. 7 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 199   | 7. 1 | 1.9  |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 201   | 6. 5 | 3    |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 200   | 6. 9 | 2. 7 |
|                                                                                                   |       |      |      |

Table 13

|                                                                                          | Table | 10   |      |
|------------------------------------------------------------------------------------------|-------|------|------|
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>   | 206   | 7    | 2. 7 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>   | 205   | 7. 2 | 2.8  |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>    | 198   | 6.8  | 2. 2 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>   | 201   | 6. 4 | 2. 5 |
| Ca <sub>2.7</sub> Ba <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>   | 196   | 8. 2 | 2. 7 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>   | 203   | 6. 9 | 2    |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>    | 205   | 8. 1 | 1.9  |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>   | 198   | 7. 6 | 2. 3 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>   | 195   | 5. 9 | 2. 5 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>   | 200   | 5. 8 | 2. 7 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>   | 205   | 7. 2 | 2. 5 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>   | 198   | 8. 2 | 2. 6 |
| Ca <sub>2.7</sub> Al <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>   | 199   | 7. 1 | 2. 5 |
| Ca <sub>2.7</sub> A1 <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>   | 210   | 6. 5 | 2. 7 |
| Ca <sub>2.7</sub> A1 <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>    | 202   | 6. 9 | 2. 5 |
| Ca <sub>2.7</sub> A1 <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>   | 204   | 7    | 2. 6 |
| Ca <sub>2.7</sub> A1 <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>   | 197   | 7.2  | 2. 4 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>   | 201   | 4. 2 | 2. 2 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>    | 196   | 6    | 2. 2 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>   | 202   | 7. 2 | 2. 4 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>   | 203   | 6.8  | 2.6  |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>   | 208   | 5. 7 | 2. 5 |
| Ca <sub>2.7</sub> Bi i <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 198   | 6. 2 | 3    |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>   | 199   | 6.8  | 2. 6 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>   | 201   | 8    | 2. 9 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>   | 207   | 7. 9 | 1.9  |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>    | 190   | 6. 9 | 2. 2 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>   | 198   | 5. 9 | 2. 6 |
| Ca <sub>2.7</sub> Bi <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>   | 199   | 7.8  | 2. 5 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>    | 200   | 6. 9 | 1.9  |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>     | 206   | 7. 2 | 2    |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>    | 205   | 8. 1 | 2. 2 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>    | 198   | 6. 9 | 2. 3 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>    | 201   | 5. 7 | 1.9  |

Table 14

|                                                                                        | 10010 |      |      |
|----------------------------------------------------------------------------------------|-------|------|------|
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>  | 196   | 6. 2 | 3. 1 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>  | 202   | 6.8  | 2. 6 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 203   | 8    | 2. 7 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>  | 205   | 7. 9 | 2. 4 |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>   | 198   | 6. 9 | 1.9  |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 195   | 5. 9 | 3    |
| Ca <sub>2.7</sub> Y <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 200   | 7.8  | 2. 1 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 198   | 6. 5 | 2. 6 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 199   | 6. 4 | 2. 7 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 210   | 8. 2 | 2. 5 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 202   | 7. 5 | 1. 9 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 204   | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 197   | 8. 1 | 2. 4 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 205   | 7. 6 | 2. 3 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201   | 5. 9 | 2. 2 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 196   | 5. 8 | 2. 7 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 202   | 7. 2 | 2. 6 |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203   | 8. 2 | 2    |
| Ca <sub>2.7</sub> La <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 208   | 7. 1 | 1. 9 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 199   | 6. 9 | 2. 5 |
| Ca <sub>2,7</sub> Ce <sub>0,3</sub> Co <sub>3,8</sub> V <sub>0,2</sub> O <sub>9</sub>  | 199   | 7    | 2. 7 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 210   | 7. 2 | 2. 5 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 202   | 6.8  | 1. 9 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 204   | 6. 4 | 2. 3 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 197   | 8. 2 | 2. 5 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 205   | 7.5  | 2. 7 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201   | 6.9  | 2. 5 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 196   | 8. 1 | 2. 6 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 202   | 7.6  | 2. 4 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203   | 5. 9 | 2. 3 |
| Ca <sub>2.7</sub> Ce <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 208   | 5. 8 | 2. 2 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 199   | 8. 2 | 2. 4 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 201   | 7.1  | 2. 3 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 207   | 6. 5 | 2. 2 |

Table 15

|                                                                                        |     | <del></del> |      |
|----------------------------------------------------------------------------------------|-----|-------------|------|
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 190 | 6. 9        | 2. 2 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 198 | 7           | 2. 4 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 199 | 6. 9        | 2. 6 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 201 | 8. 1        | 2. 5 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 207 | 7.6         | 3    |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 190 | 5. 9        | 2.6  |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 198 | 5.8         | 2. 9 |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 2        | 1.9  |
| Ca <sub>2.7</sub> Pr <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | . 8.2       | 2. 2 |
|                                                                                        |     |             |      |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 206 | 6. 5        | 2. 5 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 205 | 6. 9        | 3    |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 198 | 7           | 1.9  |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 195 | 7. 2        | 2    |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 200 | 6.8         | 2. 2 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 203 | 6. 4        | 2. 3 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 201 | 8. 2        | 1.9  |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 208 | 7. 5        | 3. 1 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 198 | 6. 9        | 2.6  |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 199 | 8. 1        | 2. 7 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 207 | 7.6         | 2. 4 |
| Ca <sub>2.7</sub> Nd <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 5. 9        | 1.9  |
|                                                                                        |     |             |      |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 200 | 7. 2        | 2. 1 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 198 | 8. 2        | 2. 2 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 205 | 7. 1        | 2. 6 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 196 | 6. 5        | 2. 7 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 205 | 6. 9        | 2. 5 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 198 | 6. 8        | 1.9  |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 195 | 7. 2        | 2. 6 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200 | 5. 9        | 2. 4 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 205 | 8. 1        | 2. 3 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 198 | 7. 2        | 2. 2 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 6. 4        | 2. 7 |
| Ca <sub>2.7</sub> Sm <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 210 | 5. 9        | 2. 6 |
|                                                                                        |     |             |      |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 207 | 5. 9        | 1. 9 |

Table 16

|                                                                                                   | Tabic |      |      |
|---------------------------------------------------------------------------------------------------|-------|------|------|
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 198   | 7. 2 | 2. 3 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 196   | 8. 1 | 2. 5 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 200   | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 198   | 5. 7 | 2. 9 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 205   | 6. 2 | 1. 9 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 196   | 6.8  | 2. 2 |
| Ca <sub>2 7</sub> Eu <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 205   | 8    | 2. 6 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 198   | 7. 9 | 2. 5 |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 198   | 6. 9 | 3    |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 195   | 5. 9 | 1.9  |
| Ca <sub>2.7</sub> Eu <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 200   | 7.8  | 2    |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 201   | 6. 5 | 2. 3 |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 208   | 6. 4 | 1.9  |
| Ca <sub>2</sub> ,Gd <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>             | 198   | 8. 2 | 3. 1 |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 199   | 7. 5 | 2. 6 |
| Ca <sub>2</sub> ,Gd <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>             | 207   | 6. 9 | 2. 7 |
| Ca <sub>2</sub> ,Gd <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>             | 198   | 8. 1 | 2. 4 |
| Ca <sub>2</sub> -Gd <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>             | 199   | 7. 6 | 1.9  |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 210   | 5. 9 | 3    |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 202   | 5. 8 | 2. 1 |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 204   | 7. 2 | 2. 2 |
| Ca <sub>2.7</sub> Gd <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 197   | 8. 2 | 2. 4 |
| Ca <sub>2</sub> <sub>7</sub> Gd <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 205   | 7. 1 | 2. 6 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub>            | 196   | 6. 9 | 3    |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>             | 202   | 7    | 2. 6 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub>            | 203   | 7. 2 | 2. 9 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub>            | 208   | 6.8  | 1. 9 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub>            | 198   | 7. 2 | 2. 2 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub>            | 199   | 5. 9 | 2. 6 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub>            | 201   | 6. 2 | 2. 5 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>            | 207   | 6.8  | 3    |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>            | 190   | 8    | 1.9  |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>             | 198   | 7. 9 | 2    |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>            | 199   | 6. 9 | 2. 2 |
| Ca <sub>2.7</sub> Dy <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>            | 201   | 5. 9 | 2. 3 |

Table 17

| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 206 | 7.8  | 1.9  |
|----------------------------------------------------------------------------------------|-----|------|------|
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 205 | 6. 3 | 3. 1 |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 198 | 6. 5 | 2.6  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 201 | 6. 4 | 2.7  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 196 | 8. 2 | 2. 4 |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 202 | 7. 5 | 1.9  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 203 | 6. 9 | 3    |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 208 | 8. 1 | 2.1  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 198 | 7. 6 | 2. 2 |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 199 | 5. 9 | 2.6  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 5. 8 | 2.7  |
| Ca <sub>2.7</sub> Ho <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 207 | 7    | 2. 5 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 205 | 6.8  | 2. 6 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 198 | 6. 4 | 2. 4 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 195 | 8. 2 | 2. 3 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 200 | 7. 5 | 2. 2 |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 205 | 6. 9 | 2.7  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 198 | 8. 1 | 2.6  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 199 | 7.6  | 2    |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 5. 9 | 1.9  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 202 | 5. 8 | 2.3  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 198 | 7. 2 | 2.6  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 2 | 2.9  |
| Ca <sub>2.7</sub> Er <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 196 | 7. 1 | 1.9  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Ti <sub>0.2</sub> O <sub>9</sub> | 203 | 6. 9 | 2. 6 |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> V <sub>0.2</sub> O <sub>9</sub>  | 208 | 7    | 2. 5 |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Cr <sub>0.2</sub> O <sub>9</sub> | 198 | 7. 2 | 3    |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Mn <sub>0.2</sub> O <sub>9</sub> | 199 | 6.8  | 1.9  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Fe <sub>0.2</sub> O <sub>9</sub> | 201 | 4. 2 | 2    |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Ni <sub>0.2</sub> O <sub>9</sub> | 207 | 6    | 2.6  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.8</sub> Cu <sub>0.2</sub> O <sub>9</sub> | 203 | 7. 2 | 2.7  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205 | 6.8  | 2.4  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 198 | 5. 7 | 1.9  |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 201 | 6. 2 | 3    |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 196 | 6.8  | 2. 1 |
| Ca <sub>2.7</sub> Yb <sub>0.3</sub> Co <sub>3.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 202 | 8. 0 | 2. 2 |
|                                                                                        |     |      |      |

Table 18

| Composition                                                                                                                                             | Seebeck Coefficient | Electrical<br>Resistivity | Thermal Conductivity |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|
| $\mathrm{Bi}_{\mathrm{f}}\mathrm{Pb}_{\mathrm{g}}\mathrm{M}^{1}_{\mathrm{h}}\mathrm{Co}_{\mathrm{i}}\mathrm{M}^{2}_{\mathrm{j}}\mathrm{O}_{\mathrm{k}}$ | μV/K (700°C)        | mΩcm (700°C)              | W/mK (700°C)         |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                                          | 210                 | 6. 2                      | 1. 2                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 205                 | 5. 9                      | 1                    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                       | 195                 | 6. 7                      | 1.3                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 208                 | 8                         | 1                    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 220                 | 8. 1                      | 0.9                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                       | 198                 | 8                         | 1.1                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 201                 | 7.8                       | 1                    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 207                 | 7. 2                      | 1. 2                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 190                 | 9                         | 1.1                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 198                 | 7.8                       | 0.9                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 199                 | 7. 5                      | 0.8                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 201                 | 8. 6                      | 1                    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 200                 | 8. 2                      | 1. 3                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 206                 | 7. 9                      | 1. 2                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 205                 | 6. 9                      | 0.7                  |
| $\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Al}_{0.2}\mathrm{Co}_{2}\mathrm{O}_{9}$                                                                        | 198                 | 8. 1                      | 1. 3                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                       | 201                 | 9                         | 1. 4                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 196                 | 8. 2                      | 1. 1                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 202                 | 7. 9                      | 1                    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 203                 | 8. 6                      | 1. 3                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 205                 | 9. 1                      | 0.9                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 198                 | 6. 9                      | 1. 1                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 195                 | 7. 4                      | 1. 4                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 200                 | 7.8                       | 1. 2                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 205                 | 7. 7                      | 0.9                  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 198                 | 8                         | 1. 1                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 199                 | 8. 2                      | 1. 2                 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                      | 210                 | 7. 9                      | 0. 9                 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                                                                        | 204                 | 8. 4                      | 1. 2                 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                    | 197                 | 8.6                       | 1. 4                 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                     | 190                 | 7. 8                      | 0.8                  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                    | 198                 | 9                         | 1. 3                 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                    | 199                 | 8. 2                      | 1. 2                 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                                                     | 201                 | 8. 3                      | 1.1                  |

Table 19

|                                                                                                        | 10010 |      |      |
|--------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 207   | 8.6  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 190   | 8. 7 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198   | 8. 3 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 199   | 9    | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 201   | 7.9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 210   | 8. 1 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 206   | 8    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 205   | 7.8  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198   | 7. 2 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> · | 195   | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>    | 200   | 7. 8 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 203   | 7. 5 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 201   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 208   | 8. 2 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198   | 7. 9 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 199   | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 207   | 8. 1 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198   | 9    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 201   | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 200   | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198   | 8.6  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 205   | 9. 1 | 1    |
|                                                                                                        |       |      |      |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                                         | 205   | 7. 4 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 198   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                      | 195   | 7. 7 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 200   | 8    | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 205   | 8. 2 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                      | 198 • | 7. 9 | 1. 2 |
| $Bi_2Ca_{1.8}Cr_{0.2}Co_2O_9$                                                                          | 199   | 9. 1 | 0. 7 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 210   | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 200   | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 207   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 198   | 7. 9 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 196   | 8. 6 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 200   | 9. 1 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 198   | 6. 9 | 1. 1 |
|                                                                                                        |       |      |      |

Table 20

|                                                                                                      |     | 20    |      |
|------------------------------------------------------------------------------------------------------|-----|-------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 205 | 7. 4  | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 196 | 7.8   | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                    | 205 | 7.7   | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198 | 8     | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198 | 8. 2  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 195 | 7. 9  | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 200 | 9. 1  | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 210 | 8. 4  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 201 | 8. 6  | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 208 | 7.8   | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198 | 9     | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 199 | 8. 2  | 1.2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 207 | 8. 3  | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198 | 8. 6  | 0.8  |
|                                                                                                      |     |       |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                     | 210 | 8. 3  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 202 | 9     | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>  | 204 | 7. 9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 197 | 8. 1  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 205 | 8     | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>  | 208 | 7. 8  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 196 | 7. 2  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 202 | 9     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 203 | 7.8   | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 208 | 7.5   | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 198 | 8. 6  | 1. 2 |
| $Bi_2Pb_{0.2}Ca_{1.8}Zn_{0.2}Co_2O_9$                                                                | 199 | 8, 2  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 201 | 7.9   | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 207 | - 6.9 | 12   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 190 | 8. 1  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 198 | 9     | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>  | 199 | 8. 2  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 201 | 7.9   | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 190 | 8.6   | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 198 | 9. 1  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 199 | 8     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 201 | 8. 2  | 1.1  |

Table 21

|                                                                                                      | Table |      |      |
|------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 200   | 7.9  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 206   | 9. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 205   | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 198   | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 201   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub> | 196   | 9    | 0. 7 |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                                       | 203   | 8. 3 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 205   | 8. 6 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                    | 198   | 8. 7 |      |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   |       |      | 1    |
|                                                                                                      | 195   | 8.3  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 200   | 9    | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                    | 205   | 7.9  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198   | 8. 1 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 199   | 8    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 210   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 202   | 7. 2 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 204   | 9    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 197   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 190   | 7. 5 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 199   | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 201   | 7. 9 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                    | 207   | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 190   | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198   | 9    | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 199   | 8. 2 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 201   | 7.9  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 210   | -8.6 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 206   | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 205   | 6. 9 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 198   | 7.4  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 195   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 200   | 7.7  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>                   | 203   | 8. 0 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Ba <sub>2</sub> Co <sub>2</sub> O <sub>9</sub>                    | 208   | 7. 9 | 0. 9 |
|                                                                                                      | 200   | 1.3  | U. 9 |

Table 22

|                                                                                                        |     | <del></del> |      |
|--------------------------------------------------------------------------------------------------------|-----|-------------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198 | 8. 0        | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>    | 199 | 8. 1        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 200 | 8           | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 206 | 7.8         | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>    | 205 | 7.2         | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198 | 9           | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Mn <sub>0,2</sub> Co <sub>2</sub> O <sub>9</sub>   | 201 | 7.8         | 0.8  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Fe <sub>0,2</sub> Co <sub>2</sub> O <sub>9</sub>   | 196 | 7.5         | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 202 | 8.6         | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 203 | 8. 2        | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 205 | 7.9         | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198 | 6.9         | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 195 | 8. 1        | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 200 | 9           | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 205 | 8. 2        | 0. 7 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>    | 198 | 7.9         | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 199 | 8. 6        | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 210 | 9.1         | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 202 | 6. 9        | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 207 | 7.4         | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 198 | 7.8         | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 199 | 7. 7        | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 210 | 8           | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 202 | 8. 2        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 204 | 7.9         | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 197 | 9.1         | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>2</sub> O <sub>9</sub>   | 205 | 8. 4        | 1. 2 |
|                                                                                                        |     |             |      |
| $Bi_2Sr_2Co_{1.9}Ti_{0.1}O_9$                                                                          | 196 | 7.8         | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 202 | 9           | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>  | 203 | 8. 2        | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 208 | 8. 3        | 0. 8 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 6        | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>  | 199 | 8. 7        | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 201 | 8.3         | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 207 | 9           | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 9        | 1. 3 |
|                                                                                                        |     |             |      |

Table 23

|                                                                                                                               |     | 23   |       |
|-------------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 198 | 8. 1 | 1.4   |
| $Bi_2Sr_{1.8}Cu_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                                     | 199 | 8    | 1.1   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 201 | 7.8  | 1     |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 190 | 7. 2 | 1.3   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 198 | 9    | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 199 | 7. 8 | 1.1   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 201 | 7. 5 | 1.4   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                         | 200 | 8. 6 | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 206 | 8. 2 | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 205 | 7. 9 | 1. 1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 198 | 6. 9 | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 201 | 8. 1 | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 196 | 9    | 1. 1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 202 | 8. 2 | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 203 | 7. 9 | 1. 4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 205 | 8. 6 | 0.8   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 198 | 9. 1 | 1.3   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 195 | 6. 9 | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                        | 200 | 7. 4 | 1.1   |
|                                                                                                                               |     |      |       |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                          | 198 | 7. 7 | 1.2   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 199 | 8    | 0.9   |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Sr <sub>1, 8</sub> K <sub>0, 2</sub> Co <sub>1, 9</sub> Ti <sub>0, 1</sub> O <sub>9</sub>  | 210 | 8. 2 | 1. 1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 202 | 7. 9 | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Sr <sub>1, 8</sub> Ti <sub>0, 2</sub> Co <sub>1, 9</sub> Ti <sub>0, 1</sub> O <sub>9</sub> | 204 | 9. 1 | 0. 9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>       | 197 | 8. 4 | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 190 | 8. 6 | 1. 2  |
| $Bi_2Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                             | 198 | 8. 2 | 1. 4  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                         | 199 | 7. 9 | - 0.8 |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Ni_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                         | 201 | 8. 6 | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 207 | 9. 1 | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 190 | 6. 9 | 1. 1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 198 | 7. 4 | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 199 | 7. 8 | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 201 | 7. 7 | 1. 4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>      | 210 | 8    | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>       | 206 | 8. 2 | 1     |
|                                                                                                                               |     |      |       |

Table 24

|                                                                                                                          | Table | 24   |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 205   | 7.9  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198   | 9. 1 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 195   | 8. 4 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 203   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 201   | 9    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 208   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 3 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 7 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 199   | 8.3  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                                       | 200   | 7.9  | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 1 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                    | 205   | . 8  | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8  | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7. 2 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                    | 196   | 9    | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 202   | 7.8  | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 203   | 7. 5 | 0.9  |
| $Bi_{2}Ca_{1.8}Fe_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                            | 205   | 8. 6 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 2 | 1 .  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 195   | 7.9  | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 200   | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 1 | 0. 7 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 5 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 210   | 8. 2 | 1.1  |
| $Bi_{2}Ca_{1.8}Y_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                             | 202   | 7.9  | • 1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 204   | 6.9  | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 197   | 8. 1 | 0.9  |
| $Bi_{2}Ca_{1.8}Pr_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                            | 190   | 9    | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7.9  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 207   | 9. 1 | 1.1  |
| $Bi_{2}Ca_{1.8}Dy_{0.2}Co_{1.9}Ti_{0.1}O_{9}$                                                                            | 190   | 6. 9 | 1.2  |
|                                                                                                                          |       |      |      |

Table 25

| 14816 |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 198   | 7. 4                                                                                                                                                | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 199   | 7.8                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 201   | 7. 7                                                                                                                                                | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 206   | 8. 2                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 205   | 7. 9                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 198   | 8                                                                                                                                                   | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 195   | 8. 1                                                                                                                                                | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200   | 7. 5                                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203   | 8. 6                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 201   | 8. 2                                                                                                                                                | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 208   | 7.9                                                                                                                                                 | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 6. 9                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 199   | 8. 1                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 200   | 9                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 206   | 8. 2                                                                                                                                                | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 205   | 7.9                                                                                                                                                 | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 8.6                                                                                                                                                 | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 201   | 9. 1                                                                                                                                                | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 196   | 6. 9                                                                                                                                                | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 202   | 7.4                                                                                                                                                 | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203   | 7.8                                                                                                                                                 | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 202   | 7.7                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 203   | 8                                                                                                                                                   | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 208   | 8. 2                                                                                                                                                | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 7.9                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 199   | 9. 1                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 201   | 8. 4                                                                                                                                                | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 207   | 8. 6                                                                                                                                                | 1.1 •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 190   | 7.8                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 198   | 9                                                                                                                                                   | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 199   | 8. 2                                                                                                                                                | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 190   |                                                                                                                                                     | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 8. 7                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 199   | 8. 3                                                                                                                                                | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 201   | 9                                                                                                                                                   | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 199 201 206 205 198 195 200 203 201 208 198 199 200 206 205 198 201 196 202 203 201 208 198 201 196 202 203 202 203 208 198 199 201 207 190 198 199 | 199       7.8         201       7.7         206       8.2         205       7.9         198       8         195       8.1         200       7.5         203       8.6         201       8.2         208       7.9         198       6.9         200       9         206       8.2         205       7.9         198       8.6         201       9.1         196       6.9         202       7.4         203       7.8         202       7.7         203       8         208       8.2         198       7.9         199       9.1         201       8.6         190       7.8         198       9         199       8.2 |

Table 26

| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9 | 1. 1 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                    | 206 | 8. 1 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8    | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 2 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 196 | 9    | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 202 | 7.8  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7. 5 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 6 | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 195 | 7. 9 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 200 | 6.9  | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                    | 205 | 8. 1 | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9    | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7. 9 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8. 6 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 204 | 9. 1 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 197 | 6. 9 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 4 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8    | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8. 2 | 1. 2 |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                     | 198 | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 4 | 1. 2 |
| $Bi_2Pb_{0.2}Ba_{1.8}K_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                         | 201 | 8. 6 | 0. 9 |
| $Bi_2Pb_{0.2}Ba_{1.8}Li_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                        | 210 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 206 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>  | 205 | 8. 6 | 1. 4 |
| $Bi_2Pb_{0.2}Ba_{1.8}Cr_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                        | 198 | 9. 1 | 0. 8 |
| $Bi_2Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                        | 195 | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 203 | 7. 8 | 1. 1 |
| $Bi_2Pb_{0.2}Ba_{1.8}Cu_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                        | 201 | 7. 7 | 1. 4 |
| $Bi_2Pb_{0.2}Ba_{1.8}Zn_{0.2}Co_{1.9}Ti_{0.1}O_9$                                                                        | 208 | 8    | 1. 2 |
|                                                                                                                          |     |      |      |

Table 27

|                                                                                                                          |                                       | <del>-</del> ' |      |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 205                                   | 8. 2           | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198                                   | 7.9            | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 201                                   | 9. 1           | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 196                                   | 8. 4           | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>  | 202                                   | 8. 6           | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 203                                   | 7.8            | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 205                                   | 9              | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198                                   | 8. 2           | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 195                                   | 8. 3           | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 200                                   | 8. 6           | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 205                                   | 8. 7           | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 198                                   | 8. 3           | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 199                                   | 9              | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 210                                   | 7. 9           | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 202                                   | 8. 1           | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub> | 204                                   | 8              | 1    |
|                                                                                                                          |                                       |                |      |
| $Bi_2Sr_2Co_{1.9}V_{0.1}O_9$                                                                                             | 190                                   | 7. 2           | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 198                                   | 9              | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 199                                   | 7.8            | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 201                                   | 7. 5           | 1. 2 |
| $Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}V_{0.1}O_9$                                                                                 | 207                                   | 8. 6           | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 190                                   | 8. 2           | 1.1  |
| Bi <sub>2</sub> Sr <sub>L.8</sub> Cr <sub>0.2</sub> Co <sub>L.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 198                                   | 7. 9           | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 199                                   | 6. 9           | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 201                                   | 8. 1           | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 210                                   | 6. 9           | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 206                                   | 7. 4           | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 205                                   | 7.8            | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 198                                   | 7. 7           | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 195                                   | 8              | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 200                                   | 8. 2           | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 203                                   | 7.9            | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 201                                   | 9. 1           | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 208                                   | 8. 4           | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 201                                   | 8. 6           | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 190                                   | 8. 2           | 0.8  |
|                                                                                                                          | · · · · · · · · · · · · · · · · · · · |                | ·    |

Table 28

|                                                                                                                         | Table | 20   |      |
|-------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 9 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 6 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 200   | 6. 9 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 206   | 7.4  | 0.9  |
| Bi <sub>2</sub> Sr <sub>1,8</sub> Ho <sub>0,2</sub> Co <sub>1,9</sub> V <sub>0,1</sub> O <sub>9</sub>                   | 205   | 7.8  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.7  | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8    | 1. 2 |
| Di Dh. Ca Ca V. O                                                                                                       | 000   | 7.0  |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 202   | 7.9  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 203   | 9. 1 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 205   | 8. 4 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 195   | 7. 8 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 200   | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 205   | 8. 2 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 3 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 7 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 202   | 8.3  | 1    |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>1,8</sub> Zn <sub>0,2</sub> Co <sub>1,9</sub> V <sub>0,1</sub> O <sub>9</sub> | 204   | 9    | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 197   | 7.9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 1 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 8    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199   | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 201   | 7. 2 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 207   | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 190   | 7.8  | 0.7  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 7. 5 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199   | 8.6  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 210   | 7. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 206   | 6. 9 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 205   | 8. 1 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 7.5  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 195   | 8. 6 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 2 | 1.2  |
|                                                                                                                         |       |      |      |

Table 29

| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                                      | 203 | 7.9  | 0.9  |
|----------------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 201 | 6. 9 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                   | 208 | 8. 1 | 1.2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 198 | 9    | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 199 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                   | 200 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 206 | 8.6  | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 205 | 9. 1 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 198 | 6. 9 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 206 | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 205 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 198 | 7. 7 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 195 | 8    | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 200 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 203 | 8    | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 201 | 7. 4 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                   | 208 | 7.8  | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 201 | 7. 7 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 190 | 8    | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 198 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 199 | 7. 9 | 1. 2 |
| $Bi_2Ca_{1.8}Sm_{0.2}Co_{1.9}V_{0.1}O_9$                                                                                               | 201 | 9. 1 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 200 | 8. 4 | 1.1  |
| $\operatorname{Bi}_{2}\operatorname{Ca}_{1.8}\operatorname{Gd}_{0.2}\operatorname{Co}_{1.9}\operatorname{V}_{0.1}\operatorname{O}_{9}$ | 206 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 205 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 198 | 7. 9 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 201 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                  | 196 | 9. 1 | 1. 4 |
|                                                                                                                                        |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                    | 203 | 7. 4 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                | 205 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                 | 198 | 7.7  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                | 195 | 8. 3 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                | 200 | 8. 6 | 0. 7 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                 | 205 | 8. 7 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                | 198 | 8. 3 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                | 199 | 9    | 1. 3 |

Table 30

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 210 | 7. 9 | 1. 2 |
|-------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 202 | 8. 1 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 204 | 8    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 197 | 7.8  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 2 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198 | 9    | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199 | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 201 | 7. 5 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 207 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198 | 7.9  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199 | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 1 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 210 | 9    | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 205 | 7. 9 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 195 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 200 | 6. 9 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 203 | 7. 4 | 0.8  |
|                                                                                                                         |     |      |      |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                                       | 208 | 7. 7 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8    | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 199 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9. 1 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 210 | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 204 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 197 | 7.9  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8.6  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 199 | 6. 9 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 4 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 207 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8    | 0.8  |
| · · · · · · · · · · · · · · · · · · ·                                                                                   |     |      |      |

Table 31

|                                                                                                                         | Table | <u> </u> |      |
|-------------------------------------------------------------------------------------------------------------------------|-------|----------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 199   | 8. 2     | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7. 9     | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 210   | 9. 1     | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 4     | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 6     | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8      | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 195   | 9        | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 2     | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 203   | 8. 3     | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 6     | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 208   | 8. 7     | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 3     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 198   | 7.9      | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 1     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 201   | 8        | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 200   | 7.8      | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 206   | 7. 2     | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 205   | 9        | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 7.8      | 1. 1 |
| $Bi_2Pb_{0.2}Ba_{1.9}Mn_{0.2}Co_{1.9}V_{0.1}O_9$                                                                        | 201   | 7. 5     | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 196   | 8. 6     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 202   | 8. 2     | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1.8</sub> Cu <sub>0,2</sub> Co <sub>1.9</sub> V <sub>0,1</sub> O <sub>9</sub> | 203   | 7. 9     | 0.9  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1.8</sub> Zn <sub>0,2</sub> Co <sub>1.9</sub> V <sub>0,1</sub> O <sub>9</sub> | 205   | 6. 9     | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 1     | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 195   | 6. 9     | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 200   | 7.4      | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | . 205 | 7.8      | 1.3  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Y <sub>0,2</sub> Co <sub>1,9</sub> V <sub>0,1</sub> O <sub>9</sub>  | 198   | 7.7      | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 199   | 8        | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 2     | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 202   | 7.9      | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 204   | 9. 1     | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 197   | 8. 4     | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 6     | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 2     | 1. 1 |

Table 32

|                                                                                                                          | Tubic 5. | _    |      |
|--------------------------------------------------------------------------------------------------------------------------|----------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 199      | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 201      | 8. 6 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 207      | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>  | 190      | 6. 9 | 1. 2 |
|                                                                                                                          |          |      |      |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                                       | 199      | 7. 8 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201      | 7. 7 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 210      | 8    | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206      | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205      | 7. 9 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 198      | 9. 1 | 0. 7 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 195      | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200      | 8. 6 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 203      | 7.8  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201      | 9    | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 208      | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198      | 8. 3 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 199      | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200      | 8. 7 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206      | 8. 3 | 0. 9 |
| $Bi_2Sr_{1.9}Al_{0.2}Co_{1.9}Mn_{0.1}O_9$                                                                                | 205      | 9    | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 198      | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206      | 8. 1 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198      | 8    | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> MN <sub>0.1</sub> O <sub>9</sub>                   | 195      | 7.8  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200      | 7. 2 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 203      | 9    | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201      | 7.8  | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 208      | 7. 5 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198      | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 199      | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200      | 7.9  | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 199      | 6. 9 | 1. 3 |
|                                                                                                                          |          |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                     | 202      | 7. 5 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 204      | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>  | 197      | 8. 2 | 1. 2 |

Table 33

| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190 | 7.9  | 0.9  |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198 | 6.9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>  | 199 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201 | 9    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.9</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 207 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190 | 7.9  | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198 | 8.6  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 200 | 9. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 203 | 6. 9 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201 | 7.4  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 208 | 7.8  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198 | 7. 7 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199 | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>  | 200 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199 | 8    | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 210 | 7.7  | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 202 | 8. 3 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 204 | 8. 6 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 197 | 8. 7 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 3 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198 | 9    | 0.8  |
| $Bi_2Pb_{0.2}Sr_{1.8}Dy_{0.2}Co_{1.9}Mn_{0.1}O_9$                                                                        | 199 | 7. 9 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 1 | 1.2  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Er_{0.2}Co_{1.9}Mn_{0.1}O_{9}$                                                                    | 207 | 8    | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 8 | 0.8  |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                                       | 199 | 9    | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.9</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7.8  | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 210 | 7. 5 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 6 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 198 | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 195 | 6. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.9</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 203 | 9    | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 208 | 7.9  | 1. 2 |
| <del></del>                                                                                                              |     | L    | J    |

Table 34

|                                                                                                                          | Idbic | 0.   |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 190   | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198   | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7. 4 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7.8  | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 200   | 7. 7 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8    | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 2 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 9 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 196   | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 202   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 203   | 8. 2 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205   | 7. 9 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 6 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 195   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200   | 6. 9 | 1.3  |
|                                                                                                                          |       |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                     | 198   | 7.8  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199   | 7. 7 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>  | 210   | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 202   | 8. 2 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 204   | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1.8</sub> V <sub>0,2</sub> Co <sub>1.9</sub> Mn <sub>0,1</sub> O <sub>9</sub>  | 197   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190   | 6. 9 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198   | 9. 1 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 6 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 207   | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 190   | 7.9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199   | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201   | 6. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 210   | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>  | 206   | 7.8  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 205   | 7. 7 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 0 | 0.8  |
|                                                                                                                          |       |      |      |

Table 35

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 195  | 8. 2 | 1    |
|--------------------------------------------------------------------------------------------------------------------------|------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 200  | 7.9  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 203  | 7.9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 201  | 8. 1 | 0. 7 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 208  | 8    | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 198  | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 199  | 7. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 200  | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> | 206  | 7.8  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1, 9</sub> Mn <sub>0, 1</sub> O <sub>9</sub>                                     | 198  | 8.6  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206  | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 198  | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 207  | 6. 9 | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 190  | 8. 1 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 198  | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 199  | 7. 4 | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201  | 7.8  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1,8</sub> Fe <sub>0,2</sub> Co <sub>1,9</sub> Mn <sub>0,1</sub> O <sub>9</sub>                   | 210  | 7. 7 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206  | 8    | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205  | 8. 2 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198  | 7. 9 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 195  | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200  | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 203  | 8. 6 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 201  | 8. 2 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 208  | 7.9  | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198  | 8. 6 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub> -                 | 199  | 9. 1 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200  | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206  | 7. 4 | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 205  | 7.8  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198  | 7. 7 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 206  | 8    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | .198 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 195  | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 200  | 9. 1 | 1. 2 |
|                                                                                                                          |      |      |      |

Table 36

| 203   | Ω 1                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 200   | 0.4                                                                                                                              | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 208   | 7.8                                                                                                                              | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 198   | 9                                                                                                                                | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199   | 8. 2                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200   | 8. 3                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 199   | 8. 6                                                                                                                             | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 210   | 8. 7                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 202   | 8.3                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 204   | 9                                                                                                                                | 0. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 197   | 7.9                                                                                                                              | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 190   | 8. 1                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 8                                                                                                                                | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199   | 7.8                                                                                                                              | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 201   | 7. 2                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 207   | 9                                                                                                                                | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 190   | 7.8                                                                                                                              | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 7. 5                                                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 8. 6                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 201   | 8. 2                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 196   | 7. 9                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 202   | 6.9                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 203   | 9                                                                                                                                | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 205   | 7.8                                                                                                                              | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 198   | 7. 5                                                                                                                             | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 195   | 8. 6                                                                                                                             | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 200   | 8. 2                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 205   | 7. 9                                                                                                                             | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 198 | 6. 9                                                                                                                             | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199   | 8. 1                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 202   | 7. 4                                                                                                                             | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 204   | 7.8                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 197   | 7. 7                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 190   | 8                                                                                                                                | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198   | 8. 2                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199   | 7.9                                                                                                                              | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 198 199 200 199 210 202 204 197 190 198 199 201 207 190 198 198 201 196 202 203 205 198 195 200 205 198 199  202 204 197 190 198 | 208       7. 8         199       8. 2         200       8. 3         199       8. 6         210       8. 7         202       8. 3         204       9         197       7. 9         190       8. 1         198       8         199       7. 8         201       7. 2         207       9         190       7. 8         198       7. 5         198       8. 6         201       8. 2         196       7. 9         202       6. 9         203       9         205       7. 8         198       7. 5         198       7. 5         198       7. 5         199       8. 1         200       8. 2         205       7. 9         198       6. 9         199       8. 1         202       7. 4         204       7. 8         197       7. 7         190       8         198       8. 2 |

Table 37

|                                                                                                                                                                                                                                                      |      | <b>~</b> · |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 201  | 9. 1       | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 207  | 8. 4       | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 190  | 8. 6       | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 198  | 8. 2       | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 199  | 7. 9       | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 201  | 8. 6       | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 210  | 9. 1       | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 206  | 6. 9       | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 205  | 7. 4       | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 198  | 7. 8       | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                                | 195  | 7. 7       | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 200  | 8          | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 203  | 8. 2       | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 201  | 7. 9       | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 208  | 9. 1       | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 198  | 8. 4       | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 199  | 8. 6       | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 200  | 7.8        | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 206  | 9          | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 205  | 8. 2       | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 198  | 8. 3       | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                                               | 206  | 8. 6       | 1. 2 |
|                                                                                                                                                                                                                                                      |      |            |      |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>2</sub> Co <sub>1,9</sub> Fe <sub>0,1</sub> O <sub>9</sub>                                                                                                                                                 | 207  | 8. 3       | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 190  | 9          | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                              | 198  | 7.9        | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 199  | 8. 1       | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 201  | 8          | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                              | -210 | 7.8        | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 206  | 7. 2       | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 205  | 9          | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 198  | 8. 2       | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 195  | 7.9        | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 200  | 6. 9       | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                                                                                                             | 203  | 8. 1       | 1. 2 |
| la . a . a . a . a . a                                                                                                                                                                                                                               | 001  | 6. 9       | 1 1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub><br>Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201  | 0.9        | 1. 1 |

Table 38

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 1    |
|--------------------------------------------------------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 2    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 3  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 2  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 3  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 1    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 0.8  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 3  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 2  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 1  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | ). 8 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 3    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | . 4  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . 1  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | 3    |
| $Bi_{2}Ca_{1.9}Li_{0.2}Co_{1.9}Fe_{0.1}O_{9}$ 202 7. 9 | ). 9 |
| 2 1.0 0.2 1.5 0.1 5                                    | . 1  |
| Bi Ca. Ti . Co. Fe. 0. 204 9.1                         | . 4  |
| 5.1                                                    | 2    |
| $Bi_2Ca_{1.8}V_{0.2}Co_{1.9}Fe_{0.1}O_9$ 197 8. 4      | ). 9 |
| $Bi_2Ca_{1.8}Cr_{0.2}Co_{1.9}Fe_{0.1}O_9$ 190 8. 6     | 1    |
| $Bi_2Ca_{1.9}Mn_{0.2}Co_{1.9}Fe_{0.1}O_9$ 198 7.8      | . 2  |
| $Bi_2Ca_{1.9}Fe_{0.2}Co_{1.9}Fe_{0.1}O_9$ 199 9        | ). 9 |
| $Bi_2Ca_{1.9}Ni_{0.2}Co_{1.9}Fe_{0.1}O_9$ 201 8.2      | 1    |
| $Bi_2Ca_{1.8}Cu_{0.2}Co_{1.9}Fe_{0.1}O_9$ 207 8.3      | 2    |
| $Bi_2Ca_{1.8}Zn_{0.2}Co_{1.9}Fe_{0.1}O_9$ 190 8. 6     | . 4  |
| $Bi_2Ca_{1.9}Pb_{0.2}Co_{1.9}Fe_{0.1}O_9$ 201 8. 7     | ). 8 |
| $Bi_2Ca_{1.8}Sr_{0.2}Co_{1.9}Fe_{0.1}O_9$ 208 - 8.3    | . 3  |
| $Bi_2Ca_{1.9}Ba_{0.2}Co_{1.9}Fe_{0.1}O_9$ 198 9        | . 2  |
| $Bi_2Ca_{1.9}Al_{0.2}Co_{1.9}Fe_{0.1}O_9$ 199 7. 9     | . 1  |
| $Bi_2Ca_{1.8}Y_{0.2}Co_{1.9}Fe_{0.1}O_9$ 200 8.1       | . 4  |
| $Bi_2Ca_{1.8}La_{0.2}Co_{1.9}Fe_{0.1}O_9$ 199 8        | . 2  |
| $Bi_2Ca_{1.8}Ce_{0.2}Co_{1.9}Fe_{0.1}O_9$ 210 7.8      | ). 9 |
| $Bi_2Ca_{1.8}Pr_{0.2}Co_{1.9}Fe_{0.1}O_9$ 202 7. 2     | 1. 1 |
| $Bi_2Ca_{1.9}Nd_{0.2}Co_{1.9}Fe_{0.1}O_9$ 204 9        | . 2  |
| $Bi_2Ca_{1.8}Sm_{0.2}Co_{1.9}Fe_{0.1}O_9$ 197 7.8      |      |

Table 39

| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 5  | 1.1  |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 6  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2  | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 9  | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 207 | 6. 9  | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 190 | 9     | 1. 2 |
|                                                                                                                          |     |       |      |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>2</sub> Co <sub>1,9</sub> Fe <sub>0,1</sub> O <sub>9</sub>                     | 200 | 7. 5  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 203 | 8. 6  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 201 | 8. 2  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 208 | 7. 9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198 | 6. 9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 199 | 8. 1  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 200 | 6. 9  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 4  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 210 | 7.8   | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 202 | 7. 7  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 204 | 8     | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 197 | 8. 2  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198 | 9. 1  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 4  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 6  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 207 | 8. 2  | 1    |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1.8</sub> La <sub>0,2</sub> Co <sub>1.9</sub> Fe <sub>0,1</sub> O <sub>9</sub> | 190 | 7. 9  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 6  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 199 | 9. 1  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201 | 6. 9  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 210 | - 7.4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 206 | 7.8   | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 205 | 7. 7  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198 | 8     | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 195 | 8. 2  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 203 | 9. 1  | 1.3  |
|                                                                                                                          |     |       |      |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                                       | 208 | 8. 6  | 1. 3 |

Table 40

| Bi <sub>2</sub> Ba <sub>1.9</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7.8  | 0.9  |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                    | 190 | 9    | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9.1  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                    | 201 | 8.4  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 205 | 9    | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8.3  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 196 | 8.6  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8.7  | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 203 | 8. 3 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 205 | 9    | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 9 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                    | 195 | 8. 1 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8    | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7.8  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 2 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 202 | 7.9  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 204 | 6. 9 | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 197 | 8. 1 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 190 | 6. 9 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.4  | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7.8  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                     | 207 | 8    | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 190 | 8.2  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 198 | 7.9  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Li <sub>0,2</sub> Co <sub>1,9</sub> Fe <sub>0,1</sub> O <sub>9</sub> | 199 | 9.1  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 210 | 8.6  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 205 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198 | 8.6  | 0.9  |

Table 41

|                                                                                                                          | Table | 47    |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|-------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.3</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 195   | 9. 1  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 200   | 6. 9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 203   | 7. 4  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201   | 7.8   | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 208   | 7. 7  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198   | 8     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 2  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>  | 200   | 7. 9  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 206   | 9. 1  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 205   | 8. 4  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 206   | 7.8   | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198   | 9     | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 207   | 8. 2  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 3  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 4  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 6  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 2  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub> | 210   | 7.9   | 1. 1 |
|                                                                                                                          |       |       |      |
| $\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Co}_{1.9}\mathrm{Ni}_{0.1}\mathrm{O}_{9}$                                         | 205   | 9. 1  | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198   | 6. 9  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                    | 195   | 7. 4  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7.8   | 1    |
| $Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}Ni_{0.1}O_9$                                                                                | 203   | 7. 7  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                    | 201   | 8     | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 208   | 8. 2  | 0.9  |
| $\mathrm{Bi}_{2}\mathrm{Sr}_{1.8}\mathrm{Mn}_{0.2}\mathrm{Co}_{1.9}\mathrm{Ni}_{0.1}\mathrm{O}_{9}$                      | 198   | 7. 9  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199   | 9.1 - | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 4  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 6  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 205   | 7.8   | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198   | 9     | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 2  | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 3  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 195   | 8. 6  | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                    | 200   | 8. 7  | 1. 3 |

Table 42

| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 203 | 8. 3 | 1     |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 201 | 9    | 1.3   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 208 | 7. 9 | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 1 | 1.1   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8    | 1.4   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.8  | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 2 | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 210 | 9    | 1.1   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8. 2 | 1. 2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 204 | 7.9  | 0.9   |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 197 | 6. 9 | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                     | 208 | 6. 9 | 1.4   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 7.4  | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 199 | 7.8  | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 7 | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 199 | 8    | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 210 | 8. 2 | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 202 | 7. 9 | 0.7   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 204 | 9. 1 | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 197 | 8. 4 | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 190 | 8.6  | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 2 | 1.4   |
| $Bi_2Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Ni_{0.1}O_9$                                                                        | 199 | 7.9  | 1.2   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 201 | 8.6  | 0.9   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 207 | 9. 1 | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 190 | 6. 9 | 1.2   |
| $Bi_2Pb_{0.2}Sr_{1.8}Al_{0.2}Co_{1.9}Ni_{0.1}O_9$                                                                        | 198 | 7. 4 | 0.9   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 199 | 7.8  | • 1.1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 201 | 7. 7 | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 210 | 8    | 1.4   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 2 | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 205 | 7.9  | 1.3   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 9. 1 | 1.2   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 195 | 8. 4 | 1.1   |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Gd_{0.2}Co_{1.9}Ni_{0.1}O_{9}$                                                                    | 200 | 8.6  | 0.8   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 203 | 7.8  | 1.3   |

Table 43

| 201 | 9                                                                                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 208 | 8. 2                                                                                                                     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201 | 8.3                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 198 | 8. 7                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 199 | 8. 3                                                                                                                     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201 | 9                                                                                                                        | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 200 | 7. 9                                                                                                                     | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 206 | 8. 1                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 205 | 8                                                                                                                        | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 198 | 7.8                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201 | 7. 2                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 196 | 9                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 202 | 7.8                                                                                                                      | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 203 | 7. 5                                                                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 205 | 8. 6                                                                                                                     | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198 | 8. 2                                                                                                                     | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 195 | 7. 9                                                                                                                     | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 200 | 6. 9                                                                                                                     | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 205 | 9                                                                                                                        | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 198 | 7.8                                                                                                                      | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 199 | 7. 5                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 210 | 8. 6                                                                                                                     | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 202 | 8. 2                                                                                                                     | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 204 | 7. 9                                                                                                                     | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 197 | 6. 9                                                                                                                     | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 190 | 8. 1                                                                                                                     | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 198 | 6. 9                                                                                                                     | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 199 | 7. 4                                                                                                                     | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 201 | 7.8                                                                                                                      | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 207 | 7. 7                                                                                                                     | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 190 | 8                                                                                                                        | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199 | 7. 9                                                                                                                     | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 201 | 9. 1                                                                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 210 | 8. 4                                                                                                                     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 206 | 8. 6                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | 208 201  198 199 201 200 206 205 198 201 196 202 203 205 198 195 200 205 198 199 210 202 204 197 190 198 199 201 207 190 | 208       8. 2         201       8. 3         198       8. 7         199       8. 3         201       9         206       8. 1         205       8         198       7. 8         201       7. 2         196       9         202       7. 8         203       7. 5         205       8. 6         198       8. 2         195       7. 9         200       6. 9         205       9         198       7. 8         199       7. 5         210       8. 6         202       8. 2         204       7. 9         197       6. 9         199       7. 4         201       7. 8         207       7. 7         190       8         199       7. 9         201       9. 1         201       9. 1         210       8. 4 |

Table 44

| 205         | 8. 2                                                                                                                            | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 198         | 7. 9                                                                                                                            | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 195         | 8. 6                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200         | 9. 1                                                                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 203         | 6. 9                                                                                                                            | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 201         | 7.4                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 208         | 7.8                                                                                                                             | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 198         | 7. 7                                                                                                                            | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 199         | 8                                                                                                                               | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200         | 8. 2                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 206         | 7. 9                                                                                                                            | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 205         | 9. 1                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198         | 8. 4                                                                                                                            | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 206         | 8. 6                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198         | 7. 8                                                                                                                            | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 207         | 9                                                                                                                               | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 190         | 8. 2                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 198         | 9. 1                                                                                                                            | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 199         | 8. 4                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 201         | 8. 6                                                                                                                            | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 210         | 7. 8                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 206         | 9                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 205         | 8. 4                                                                                                                            | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 198         | 8. 6                                                                                                                            | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                 | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                 | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |                                                                                                                                 | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <del></del> |                                                                                                                                 | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 198         |                                                                                                                                 | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 8. 3                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 9                                                                                                                               | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 206         |                                                                                                                                 | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 205         | 8. 1                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 198         | 8                                                                                                                               | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 199         | 7. 8                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 200         | 7. 2                                                                                                                            | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 198 195 200 203 201 208 198 199 200 206 205 198 207 190 198 199 201 210 206 205 198 207 210 206 205 198 199 201 210 206 205 198 | 198       7.9         195       8.6         200       9.1         203       6.9         201       7.4         208       7.8         198       7.7         199       8         200       8.2         206       7.9         205       9.1         198       8.4         207       9         190       8.2         198       9.1         199       8.4         201       8.6         210       7.8         206       9         205       8.4         198       8.6         200       9         203       8.2         201       8.3         202       9         203       8.2         201       8.3         202       9         203       8.7         199       8.3         200       9         205       8.1         198       8         199       7.9         205       8.1         199       7.8 |

Table 45

|                                                                                                                          |     | 10   |      |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9    | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7.8  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 202 | 7.5  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 204 | 8. 6 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                    | 197 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7.9  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198 | 6. 9 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9    | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7.8  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 207 | 7. 5 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 2 | 0. 7 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 9 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 201 | 6. 9 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8. 1 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                   | 206 | 6. 9 | 1    |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>                     | 198 | 7.8  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 195 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 200 | 8    | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 203 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 201 | 7. 9 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 196 | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 202 | 8. 4 | 1. 2 |
| $Bi_2Pb_{0.2}Ba_{1.8}Mn_{0.2}Co_{1.9}Ni_{0.1}O_9$                                                                        | 203 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 205 | 8. 2 | 1.1  |
| $Bi_2Pb_{0.2}Ba_{1.8}Ni_{0.2}Co_{1.9}Ni_{0.1}O_9$                                                                        | 198 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 195 | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 200 | 9. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 205 | 6. 9 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 7.4  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 199 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 210 | 7.7  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub>  | 202 | 8    | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 204 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 197 | 7.9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 190 | 9. 1 | 1    |
|                                                                                                                          |     |      |      |

Table 46

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 4 | 1. 3 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 201 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 207 | 9    | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.9</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 3 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 6 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ni <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 7 | 1. 2 |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                                       | 206 | 9    | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 198 | 8. 1 | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 195 | 8    | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.8  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 203 | 7. 2 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201 | 9    | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8. 2 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.9  | 0. 7 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 1 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.7  | 0.8  |
| $Bi_2Sr_{1.8}Al_{0.2}Co_{1.9}Cu_{0.1}O_9$                                                                                | 198 | . 8  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 207 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8. 6 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7. 9 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 195 | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.4  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7.8  | 0. 9 |
|                                                                                                                          |     |      | 1    |

Table 47

|                                                                                                                          | Table | 47   | <u>-</u> |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|----------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                     | 208   | 8. 0 | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 2 | 1. 4     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 199   | 7.9  | 0.8      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200   | 9. 1 | 1. 3     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 8. 4 | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 206   | 8. 6 | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205   | 7.8  | 1. 4     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 9    | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 195   | 8. 2 | 0. 9     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 3 | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 203   | 8.6  | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 7 | 0. 9     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 208   | 8. 3 | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 9    | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 199   | 7.9  | 1. 4     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 1 | 0. 8     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 206   | 8    | 1. 3     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205   | 7.8  | 1. 2     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 7. 2 | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 9    | 0.8      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 7.8  | 1. 3     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 207   | 7. 5 | 1. 4     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 6 | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 2 | 1        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 199   | 7. 9 | 1. 3     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201   | 6. 9 | 0. 9     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 210   | 9    | 1. 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 7.8  | 1. 4     |
|                                                                                                                          |       |      | ·        |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                                       | 198   | 8. 6 | 0. 9     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 195   | 8. 2 | 1. 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 200   | 7. 9 | 1. 2     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 203   | 6. 9 | 0. 9     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 1 | 1. 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 208   | 6. 9 | 1. 2     |
| Bi2Ca1.8Cr0.2Co1.9Cu0.1O9                                                                                                | 198   | 7. 4 | 1        |
|                                                                                                                          |       |      |          |

Table 48

| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7.8  | 1.3  |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.7  | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8    | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.9  | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8. 2 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 202 | 7.9  | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 204 | 8. 6 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 197 | 9. 1 | 1.2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 190 | 6. 9 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 4 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7.8  | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8    | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 9 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8. 4 | 1.4  |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                     | 206 | 7.8  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205 | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 198 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 195 | 9. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 203 | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 203 | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 208 | 8. 3 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 6 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 7 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 3 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206 | 9    | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205 | 7.9  | 1. 1 |
|                                                                                                                          |     |      |      |

Table 49

|                                                                                                                          |     | • • • |      |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 1  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 206 | 8     | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8   | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 207 | 7. 2  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 190 | 9     | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 2  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 199 | 7.9   | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201 | 6. 9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 210 | 8. 1  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206 | 6. 9  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205 | 7. 4  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8   | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 195 | 7.7   | 1.1  |
|                                                                                                                          |     |       |      |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                                       | 203 | 8. 2  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 9  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 208 | 9. 1  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 4  | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 6  | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 200 | 8. 2  | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7. 9  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 6  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1  | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 6. 9  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 4  | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.8   | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 7  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8     | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 199 | 9. 1  | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8. 4  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8. 6  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 204 | 7.8   | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1,8</sub> Nd <sub>0,2</sub> Co <sub>1,9</sub> Cu <sub>0,1</sub> O <sub>9</sub>                   | 197 | 9     | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8. 2  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 3  | 1.1  |
| · · · · · · · · · · · · · · · · · · ·                                                                                    |     |       |      |

Table 50

|                                                                                                                          | Table | 30   |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201   | 6.9  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 207   | 8. 1 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 190   | 6.9  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.4  | 0.9  |
|                                                                                                                          |       |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                     | 201   | 7. 7 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 210   | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 206   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205   | 7. 9 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 9. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 195   | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Cr <sub>0,2</sub> Co <sub>1,9</sub> Cu <sub>0,1</sub> O <sub>9</sub> | 200   | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | . 203 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 200   | 7.9  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 203   | 8.6  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201   | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 208   | 6. 9 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 7.4  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 199   | 7.8  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Sr <sub>0,2</sub> Co <sub>1,9</sub> Cu <sub>0,1</sub> O <sub>9</sub> | 200   | 7.7  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>  | 205   | 8.2  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 7.9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 9.1  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 207   | 8.6  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 190   | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 198   | 9    | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Gd <sub>0,2</sub> Co <sub>1,9</sub> Cu <sub>0,1</sub> O <sub>9</sub> | 199   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 201   | 9. 1 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 206   | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub> | 205   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                                       | 195   | 8. 2 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8.3  | 1. 3 |
| D1521 1.84490 5001 9480 109                                                                                              | 200   | 0.3  | 1. 3 |

Table 51

| •                                                                                                                        |     | ~ -  |      |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 203 | 8. 6 | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8. 7 | 0. 7 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8.3  | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 198 | 9    | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.9  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 1 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8    | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7.8  | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 2 | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9    | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7. 9 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 198 | 6. 9 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 195 | 7.4  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7.7  | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8    | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8. 2 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 4 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 6 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.9  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                     | 200 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206 | 6. 9 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 205 | 7.4  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 7.7  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 200 | 8    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 202 | 9. 1 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 204 | 8.4  | 1. 1 |
|                                                                                                                          |     |      |      |

Table 52

| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 197 | 8. 6 | 1. 2 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| i <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>1,8</sub> Zn <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub>  | 190 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198 | 9    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 3 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 207 | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 190 | 8. 6 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 2 | 0. 7 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 7.9  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 6 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206 | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205 | 7.4  | 1.1  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>1,8</sub> Gd <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 198 | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 195 | 7.7  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200 | 8    | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 203 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 9 | 1    |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                                       | 201 | 8. 4 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 198 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9    | 1. 2 |
| $Bi_2Ca_{1.8}Ti_{0.2}Co_{1.9}Ag_{0.1}O_9$                                                                                | 200 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 206 | 8. 3 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.9</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 7 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 3 | 1. 1 |
| $Bi_2Ca_{1.9}Ni_{0.2}Co_{1.9}Ag_{0.1}O_9$                                                                                | 198 | 9    | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 207 | 7. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8. 1 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8    | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 8 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 2 | 1.1  |
| $Bi_2Ca_{1.9}Al_{0.2}Co_{1.9}Ag_{0.1}O_9$                                                                                | 210 | 9    | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 206 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 9 | 0.9  |
|                                                                                                                          |     |      |      |

Table 53

| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 6. 9 | 1. 1 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 195 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | 6. 9 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7. 4 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 8 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 7. 7 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8    | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 9. 1 | 1. 1 |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                     | 198 | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 200 | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 6 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205 | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 198 | 6. 9 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 4 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 8 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 7 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 8    | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 202 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Zn <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 204 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 197 | 9. 1 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 4 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Ba <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 198 | 8. 6 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 201 | 9    | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 207 | 8. 2 | 1    |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Ce <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 190 | 8. 3 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Pr <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 198 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 7 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 3 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210 | 9    | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206 | 7.9  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205 | 8. 1 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198 | 8    | 1    |

Table 54

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 195 | 7.8   | 1.3  |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 2  | 1. 2 |
| 2 0.2 1.0 0.2 1.9 00.1 9                                                                                                 |     |       |      |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                                       | 200 | 7.8   | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7. 5  | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 201 | 8. 6  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8. 2  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 9  | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 199 | 6. 9  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | 9     | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.8   | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 5  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 6  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 2  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 9  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 207 | 6. 9  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 190 | 8. 1  | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 190 | 6. 9  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7. 4  | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 199 | 7.8   | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 7  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 210 | 8     | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 2  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 9  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1  | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 195 | 8. 4  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 200 | -8. 6 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 203 | 8. 2  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> •                 | 201 | 7. 9  | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 208 | 8. 6  | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1  | 0.8  |
|                                                                                                                          |     |       |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                     | 200 | 7.4   | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206 | 7.8   | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 206 | 7.7   | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198 | 8     | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2  | 1.4  |

Table 55

|                                                                                                                          |       | · · · · · · · · · · · · · · · · · · · |             |
|--------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|-------------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 200   | 7.9                                   | 0.8         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206   | 9. 1                                  | 1.3         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205   | 8. 4                                  | 1.2         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198   | 8.6                                   | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199   | 7.8                                   | 0.8         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 200   | 9                                     | 1.3         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 2                                  | 1.4         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210   | 9. 1                                  | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 202   | 8. 4                                  | 1           |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 204   | 8.6                                   | 1.3         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 197   | 7.8                                   | 0.9         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>  | 190   | 9                                     | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 4                                  | 1. 4        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 199   | 7.8                                   | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201   | 9                                     | 0. 9        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 207   | 8. 2                                  | 1. 1        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 3                                  | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6                                  | 0.9         |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Gd <sub>0,2</sub> Co <sub>1,9</sub> Ag <sub>0,1</sub> O <sub>9</sub> | 199   | 8. 7                                  | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 3                                  | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 210   | 9                                     | 1. 4        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 206   | 7. 9                                  | 0.8         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub> | 205   | 8. 1                                  | 1. 3        |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                                       | 195   | 7. 8                                  | 1.1         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7. 2                                  | 1. 4        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 203   | 9                                     | 1. 2        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 2                                  | 0. 9        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | - 203 | 7.9                                   | 1.1         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 201   | 6. 9                                  | 1. 2        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 208   | 8. 1                                  | 0. 9        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 6. 9                                  | 1.1         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7.4                                   | 1. 2        |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7.8                                   | 1.4         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7. 7                                  | 0.8         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8                                     | 1.3         |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 2                                  | 1. 2        |
|                                                                                                                          |       |                                       | <del></del> |

Table 56

|                                                                                                                               | Table | 36   |      |
|-------------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 206   | 7.9  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 198   | 9. 1 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199   | 8. 4 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                         | 200   | 8. 6 | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 206   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 205   | 7.9  | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 198   | 8. 6 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199   | 9. 1 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 200   | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199   | 7.4  | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 210   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 202   | 7.7  | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 204   | 8    | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 197   | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 190   | 7.9  | 0. 9 |
|                                                                                                                               |       |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                          | 199   | 8. 4 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 201   | 8.6  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 207   | 7.8  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 190   | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198   | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 199   | 8. 3 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Sr <sub>1, 8</sub> Cr <sub>0, 2</sub> Co <sub>1, 9</sub> Mo <sub>0, 1</sub> O <sub>9</sub> | 201   | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 210   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 206   | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 205   | 7.9  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198   | 8.6  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 195   | 9. 1 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 200   | 6. 9 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 203   | 7.4  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 200   | 7.8  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 203   | 7.7  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 201   | 8    | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 208   | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Sr <sub>1, 8</sub> Ce <sub>0, 2</sub> Co <sub>1, 9</sub> Mo <sub>0, 1</sub> O <sub>9</sub> | 198   | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Sr <sub>1, 8</sub> Pr <sub>0, 2</sub> Co <sub>1, 9</sub> Mo <sub>0, 1</sub> O <sub>9</sub> | 199   | 9. 1 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 200   | 8. 4 | 1. 1 |
|                                                                                                                               |       |      |      |

Table 57

|                                                                                                                          |       | •    |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 203   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 200   | 7. 8 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 203   | 9    | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 208   | 8.3  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 7 | 1    |
|                                                                                                                          |       |      |      |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                                       | 199   | 9    | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7. 9 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 206   | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8    | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 199   | 7. 2 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 9    | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 205   | 7.9  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 6. 9 | 0. 7 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 1 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 200   | 6. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7. 4 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 210   | 7.8  | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 202   | 7. 7 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 204   | 8    | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 197   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 190   | 7. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 4 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 201 - | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 207   | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 190   | 7. 9 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 199   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 201   | 6. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 210   | 7. 4 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8  | 1. 3 |

Table 58

| 201 | 8. 0                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 207 | 8. 2                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 190 | 7. 9                                                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 198 | 9. 1                                                                                                                                                                            | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 199 | 8. 4                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 201 | 8. 6                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 210 | 7. 8                                                                                                                                                                            | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 206 | 9                                                                                                                                                                               | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 205 | 8. 2                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 198 | 8. 3                                                                                                                                                                            | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 195 | 8. 6                                                                                                                                                                            | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 200 | 8. 7                                                                                                                                                                            | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203 | 8. 3                                                                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 200 | 9                                                                                                                                                                               | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 203 | 7.9                                                                                                                                                                             | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 201 | 8. 1                                                                                                                                                                            | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 208 | 8                                                                                                                                                                               | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 198 | 7.8                                                                                                                                                                             | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 199 | 7. 2                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 200 | 9                                                                                                                                                                               | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 206 | 7.8                                                                                                                                                                             | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 205 | 7. 5                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 198 | 8. 6                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 206 | 8. 2                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 198 | 7.9                                                                                                                                                                             | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 207 | 6. 9                                                                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 190 | 9                                                                                                                                                                               | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 190 | 7.8                                                                                                                                                                             | 1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -   | •                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                                                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                 | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | ·                                                                                                                                                                               | 1. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 198 | 6. 9                                                                                                                                                                            | 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                                                                                                                                                 | 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 200 | 7.8                                                                                                                                                                             | 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 207 190 198 199 201 210 206 205 198 195 200 203 200 203 201 201 208 198 199 200 206 205 198 206 205 198 206 205 198 207 190 190 206 201 210 206 205 198 201 210 206 205 198 198 | 207       8. 2         190       7. 9         198       9. 1         199       8. 4         201       8. 6         210       7. 8         206       9         205       8. 2         198       8. 3         195       8. 6         200       8. 7         203       8. 3         200       9         203       7. 9         201       8. 1         208       8         198       7. 8         199       7. 2         200       9         206       7. 8         205       7. 5         198       8. 6         206       8. 2         199       8. 6         201       8. 2         210       7. 9         206       6. 9         205       8. 1         198       6. 9         205       8. 1         198       6. 9         205       8. 1         198       6. 9         205       8. 1         198       6. 9         < |

Table 59

| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 203 | 7. 7 | 1.4  |
|-------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 201 | 8    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 208 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 198 | 7.9  | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199 | 9.1  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 200 | 8. 4 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 206 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 206 | 8. 2 | 1.2  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                         | 198 | 7.9  | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199 | 8. 6 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 200 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 206 | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 205 | 7.4  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 198 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199 | 7.7  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 200 | 8    | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 199 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.9</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 210 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 202 | 9. 1 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                        | 204 | 8. 4 | 1.1  |
|                                                                                                                               |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                          | 190 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Na <sub>0,2</sub> Co <sub>1,9</sub> Mo <sub>0,1</sub> O <sub>9</sub>      | 198 | 9    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 199 | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 201 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 207 | 8. 4 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 190 | 8. 6 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198 | 7.8  | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Ba <sub>1, 8</sub> Mn <sub>0, 2</sub> Co <sub>1, 9</sub> Mo <sub>0, 1</sub> O <sub>9</sub> | 199 | 9 -  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 201 | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 210 | 8. 2 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 206 | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 205 | 8. 4 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 195 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 200 | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 203 | 8. 2 | 0. 9 |

Table 60

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>       | 200 | 8. 3 | 1. 1 |
|-------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 203 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 201 | 8. 7 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 208 | 8. 3 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198 | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 199 | 7. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Ba <sub>1, 8</sub> Eu <sub>0, 2</sub> Co <sub>1, 9</sub> Mo <sub>0, 1</sub> O <sub>9</sub> | 200 | 8. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 199 | 8    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 200 | 7.8  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 206 | 7. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 206 | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>      | 198 | 8. 2 | 1. 2 |
|                                                                                                                               |     |      |      |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                                             | 200 | 6. 9 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 206 | 8. 1 | 0.8  |
| $Bi_2Sr_{1.8}K_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                       | 205 | 6. 9 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 198 | 7. 4 | 1. 3 |
| $Bi_2Sr_{1.8}Ti_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 199 | 7.8  | 1. 2 |
| $Bi_2Sr_{1.8}V_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                       | 200 | 7. 7 | 1. 1 |
| $Bi_2Sr_{1.8}Cr_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 199 | 8    | 1.4  |
| $Bi_2Sr_{1.9}Mn_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 210 | 8. 2 | 1. 2 |
| $Bi_2Sr_{1.8}Fe_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 202 | 7.9  | 0.9  |
| $Bi_2Sr_{1.8}Ni_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 204 | 9. 1 | 1.1  |
| $Bi_2Sr_{1.8}Cu_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                      | 197 | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 190 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 198 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 199 | 7.9  | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 201 | 8.6  | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 207 | 9.1  | 0.8  |
| $Bi_2Sr_{1.8}Y_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                       | 190 | 6. 9 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 198 | 7. 4 | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 199 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 201 | 7. 7 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 210 | 8    | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 206 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 205 | 7.9  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                         | 198 | 9. 1 | 1    |
| <del></del>                                                                                                                   |     |      | ·    |

Table 61

| $Bi_2Sr_{1.8}Dy_{0.2}Co_{1.9}W_{0.1}O_9$ 1                                                                                | 95 8. 4 | 1. 3  |
|---------------------------------------------------------------------------------------------------------------------------|---------|-------|
| $Bi_2Sr_{1.8}Ho_{0.2}Co_{1.9}W_{0.1}O_9$ 2                                                                                | 00 8.6  | 0. 9  |
| $Bi_2Sr_{1.8}Er_{0.2}Co_{1.9}W_{0.1}O_9$ 2                                                                                | 03 7.8  | 1. 1  |
| $Bi_2Sr_{1.8}Yb_{0.2}Co_{1.9}W_{0.1}O_9$ 2                                                                                | 00 9    | 1. 4  |
|                                                                                                                           |         |       |
| $Bi_{2}Pb_{0.2}Sr_{2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                              | 01 8. 3 | 0. 9  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Na_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 08 8. 4 | 1. 1  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                     | 98 8. 6 | 1. 2  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                    | 99 8. 2 | 0. 9  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Ti_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 00 7.9  | 1.1   |
| $Bi_{2}Pb_{0.2}Sr_{1.8}V_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                     | 03 8. 6 | 1. 2  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Cr_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 00 9. 1 | 1     |
| $Bi_{2}Pb_{0.2}Sr_{1.9}Mn_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 03 6. 9 | 1.3   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 2 | 01 7. 4 | 1     |
| $Bi_{2}Pb_{0.2}Sr_{1.9}Ni_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 08 7.8  | 0. 9  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Cu_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                    | 98 7. 7 | 1. 1  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                    | 99 8    | 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.9</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 2 | 00 8.2  | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 1 | 99 7.9  | 1. 1  |
| $Bi_{2}Pb_{0.2}Sr_{1.9}Ba_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 00 9. 1 | 0. 9  |
| $Bi_{2}Pb_{0.2}Sr_{1.9}Al_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 06 8. 4 | 0.8   |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Y_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                     | 06 8. 6 | 1     |
| $Bi_{2}Pb_{0.2}Sr_{1.8}La_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                    | 98 7.8  | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 1 | 99 9    | 1.2   |
| $Bi_{2}Pb_{0.2}Sr_{1.9}Pr_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 00 8. 2 | 1.3   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 2 | 06 8. 3 | 1     |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Sm_{0.2}Co_{1.9}W_{0.1}O_{9}$ 2                                                                    | 05 8. 6 | 1. 3  |
| $Bi_{2}Pb_{0.2}Sr_{1.8}Eu_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                    | 98 8. 7 | 0.9   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 1 | 99 8. 3 | • 1.1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 2 | 00 9    | 1.4   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 1 | 99 7. 9 | 1. 2  |
|                                                                                                                           | 10 8. 1 | 0. 9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> 2 | 02 8    | 1. 1  |
|                                                                                                                           |         |       |
| $Bi_2Ca_2Co_{1.9}W_{0.1}O_9$ 1                                                                                            | 97 7. 2 | 0. 9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                     | 90 9    | 1. 1  |
| $Bi_{2}Ca_{1.8}K_{0.2}Co_{1.9}W_{0.1}O_{9}$ 1                                                                             | 98 8. 2 | 1. 2  |

Table 62

| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 9 | 1     |
|-------------------------------------------------------------------------------------------------------------------------|-----|------|-------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 201 | 6. 9 | 1.3   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                    | 207 | 8. 1 | 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 208 | 6. 9 | 0.9   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.4  | 1. 1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7.8  | 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.7  | 1. 2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8    | 1. 1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 205 | 8. 2 | 0.9   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.9  | 0.8   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 206 | 9. 1 | 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 4 | 1.3   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8.6  | 1. 2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                    | 190 | 8. 2 | 1. 3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.9  | 1     |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 6 | 0.8   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 201 | 9. 1 | 1.1   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 210 | 6. 9 | 1. 2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.4  | 0.9   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7.8  | 1. 1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.7  | 1. 2  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 195 | 8    | 1.4   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 2 | 0.8   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 203 | 7.9  | 1.3   |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 201 | 9. 1 | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Ca <sub>2</sub> Co <sub>1, 9</sub> W <sub>0, 1</sub> O <sub>9</sub>                  | 198 | 8.6  | 0.8   |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Na <sub>0,2</sub> Co <sub>1,9</sub> W <sub>0,1</sub> O <sub>9</sub> | 199 | 7.8  | 1. 3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 200 | 9    | 1. 4- |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 2 | 1.1   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 206 | 8.3  | 1     |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 198 | 8.6  | 1.3   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 7 | 0.9   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 3 | 1. 1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 206 | 9    | 1. 4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 205 | 7.9  | 1. 2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 1 | 0.9   |
| -2 0.2001.8000.2001.9"0.109                                                                                             |     | J. 1 | 1     |

Table 63

|                                                                                                                         | Table | 03   |             |
|-------------------------------------------------------------------------------------------------------------------------|-------|------|-------------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 0 | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 200   | 7.8  | 1.2         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 199   | 7. 2 | 0.9         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 210   | 9. 0 | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 202   | 7.8  | 1.2         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 204   | 7.5  | 1.4         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 197   | 8. 6 | 0.8         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 2 | 1.3         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 198   | 7. 9 | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 199   | 6. 9 | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 201   | 9    | 1.4         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 207   | 7.8  | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 190   | 7.5  | 0.9         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 6 | 1.1         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 2 | 1. 2        |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 201   | 7. 9 | 0.9         |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub> | 210   | 6. 9 | 1.1         |
|                                                                                                                         |       |      |             |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                                       | 205   | 6. 9 | 1.4         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 4 | 0.8         |
| $Bi_2Ba_{1.9}K_{0.2}Co_{1.9}W_{0.1}O_9$                                                                                 | 195   | 7.8  | 1. 3        |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | . 200 | 7. 7 | 1. 2        |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 203   | 8    | 1.1         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                    | 200   | 8. 2 | 0.8         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 203   | 7. 9 | 1.3         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 201   | 9. 1 | 1.4         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 208   | 8. 4 | 1.1         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 6 | 1           |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 2 | 1.3         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7. 9 | 0.9         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 6 | 1.1         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 205   | 9. 1 | 1.4         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 198   | 6. 9 | 1. 2        |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 206   | 7. 4 | 0. 9        |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                    | 198   | 7.8  | 1. 1        |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 207   | 7. 7 | 1.2         |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                   | 190   | 8. 0 | 0. 9        |
|                                                                                                                         |       |      | <del></del> |

Table 64

| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 190 | 8. 2 | 1. 1 |
|------------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 198 | 7. 9 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 199 | 9. 1 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 201 | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 210 | 8. 6 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 206 | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 205 | 9    | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 198 | 8. 2 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                        | 195 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                          | 203 | 8. 6 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Na <sub>0,2</sub> Co <sub>1,9</sub> W <sub>0,1</sub> O <sub>9</sub>      | 201 | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>       | 208 | 9    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 198 | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 199 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>       | 200 | 8    | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ba <sub>1,8</sub> Cr <sub>0,2</sub> Co <sub>1,9</sub> W <sub>0,1</sub> O <sub>9</sub>      | 206 | 7.8  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 206 | 7.2  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.9</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 198 | 9    | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 199 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 200 | 7.5  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0, 2</sub> Ba <sub>1, 8</sub> Zn <sub>0, 2</sub> Co <sub>1, 9</sub> W <sub>0, 1</sub> O <sub>9</sub> | 206 | 8.6  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 205 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 198 | 7.9  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 199 | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 200 | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>       | 199 | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 210 | 7. 5 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 202 | 8. 6 | 1    |
| $Bi_{2}Pb_{0.2}Ba_{1.8}Pr_{0.2}Co_{1.9}W_{0.1}O_{9}$                                                                         | 204 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 197 | 7.9  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 190 | 6. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 198 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 199 | 6. 9 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 201 | 7.4  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 207 | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>      | 190 | 7. 7 | 1    |

Table 65

|                                                                                                                          | Table |      |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>  | 198   | 8    | 1. 3 |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1,3</sub> Nb <sub>0,1</sub> O <sub>9</sub>                                       | 201   | 7. 9 | 0. 7 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 210   | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1, 8</sub> K <sub>0, 2</sub> Co <sub>1, 9</sub> Nb <sub>0, 1</sub> O <sub>9</sub>                | 206   | 8.4  |      |
|                                                                                                                          |       |      | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 2 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 195   | 7.9  | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 6 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 203   | 9. 1 | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 6. 9 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 203   | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 208   | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8    | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 2 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7.9  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 200   | 8. 4 | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8.6  | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 7.8  | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1,8</sub> Pr <sub>0,2</sub> Co <sub>1,9</sub> Nb <sub>0,1</sub> O <sub>9</sub>                   | 198   | 9    | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 9. 1 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 4 | 1.3  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8.6  | 1. 4 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 9    | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7.8  | 0.9  |
| 2 1.0 0.2 1.0 0.1 0                                                                                                      |       |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                     | 202   | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 204   | 8. 3 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 197   | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 190   | 8. 7 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 3 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 199   | 9    | 0.9  |

Table 66

|                                                                                                                          | Tabic | 00   |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201   | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 207   | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 190   | 8    | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198   | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199   | 7. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201   | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 206   | 7. 9 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 205   | 6. 9 | 0. 7 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198   | 8. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 195   | 6. 9 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200   | 7. 4 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200   | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203   | 8    | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201   | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 208   | 7.9  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198   | 9. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203   | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200   | 7.9  | 1. 1 |
|                                                                                                                          |       |      |      |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                                       | 201   | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.9</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 208   | 6. 9 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 198   | 7. 4 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7. 7 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 199   | 8    | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 7. 9 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 9. 1 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.9</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 4 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200   | 7.8  | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206   | 9    | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 2 | 1. 2 |

Table 67

| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 3 | 0. 9 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 4 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 200 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7.9  | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 202 | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 204 | 9. 1 | 1. 4 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 197 | 6. 9 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 4 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 201 | 8    | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 9 | 1. 4 |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                     | 199 | 8. 4 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 6 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 210 | 7.8  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 9    | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 203 | 8. 3 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Ca <sub>1,8</sub> Mn <sub>0,2</sub> Co <sub>1,9</sub> Nb <sub>0,1</sub> O <sub>9</sub> | 208 | 8. 7 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 3 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 9    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 206 | 8. 1 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 206 | 8    | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 2 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 9    | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 206 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 205 | 7. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 6. 9 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 1 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 6. 9 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 4 | 0. 9 |

Table 68

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 210 | 7.8  | 1. 1 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 202 | 7. 7 | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 204 | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 197 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 9 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 9. 1 | 0.8  |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                                       | 201 | 8. 6 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 207 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 190 | 7. 9 | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 6 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 9. 1 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 201 | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7.8  | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 195 | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 203 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 203 | 8. 6 | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7.8  | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 208 | 9    | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 2 | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 3 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 6 | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 7 | 1.3  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 3 | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206 | 9    | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7. 9 | 1.4  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8    | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7.8  | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 206 | 7. 2 | 1. 2 |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                     | 198 | 7. 8 | 1. 1 |

Table 69

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 5 | 1. 2 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 200 | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 210 | 7. 9 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 202 | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 204 | 9    | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 197 | 7.8  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 5 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 8. 6 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 7.9  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 207 | 6. 9 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 1 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 6. 9 | 1.2  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 199 | 7.4  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>  | 201 | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 210 | 7. 7 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 206 | . 8  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 205 | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 198 | 7.9  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 195 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 4 | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203 | 8. 6 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 2 | 1.   |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 203 | 7.9  | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 201 | 8.6  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub> | 208 | 9. 1 | 1.1  |
|                                                                                                                          |     |      |      |
| Bi <sub>2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                                       | 199 | 7.4  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1,8</sub> Na <sub>0,2</sub> Co <sub>1,9</sub> Ta <sub>0,1</sub> O <sub>9</sub>                   | 200 | 7.8  | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 203 | 7.7  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8    | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 203 | 8. 2 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 201 | 7.9  | 1.1  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 208 | 9.1  | 1.2  |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198 | 8. 4 | 1    |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 6 | 1.3  |

Table 70

| BisSr1,8Nio,2Co1,9Ta0,109       200       7.8       1         BisSr1,8Cu0, £Co1,9Ta0,109       199       9       0.9         BisSr1,8Ta0, £Co1,9Ta0,109       200       8.2       1.1         BisSr1,8Pb0, £Co1,9Ta0,109       206       9.1       1         BisSr1,8Ca0, £Co1,9Ta0,109       206       8.4       1.2         BisSr1,8Ba0, £Co1,9Ta0,109       198       8.6       1.1         BisSr1,8Ba0, £Co1,9Ta0,109       199       7.2       0.9         BisSr1,8V0,2Co1,9Ta0,109       200       9       0.8         BisSr1,8V0,2Co1,9Ta0,109       206       8.2       1         BisSr1,8Ca0,£Co1,9Ta0,109       206       8.2       1         BisSr1,8Ca0,£Co1,9Ta0,109       206       8.2       1         BisSr1,8Ca0,£Co1,9Ta0,109       205       7.9       1.3         BisSr1,8Ca0,£Co1,9Ta0,109       198       6.9       1.2         BisSr1,8Nd0,£Co1,9Ta0,109       199       8.1       1.3         BisSr1,8Nd0,£Co1,9Ta0,109       199       7.4       1.1         BisSr1,8Ca0,£Co1,9Ta0,109       200       6.9       0.9         BisSr1,8Nd0,£Co1,9Ta0,109       202       7.7       1.2         BisSr1,8Nd0,£Co1,9Ta0,109 |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\neg \neg$ |
| Bi <sub>2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> 190 7. 9 1. 2 Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> 199 8. 4 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1         |
| Bi <sub>2</sub> Pb <sub>0,2</sub> Sr <sub>2</sub> Co <sub>1,9</sub> Ta <sub>0,1</sub> O <sub>9</sub> 199 8. 4 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| Ri Ph. Sr. Na. Co. Ta. O. 201 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}K_{0.2}Co_{1.9}Ta_{0.1}O_9$ 207 8. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Li_{0.2}Co_{1.9}Ta_{0.1}O_9$ 190 7.9 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $Bi_2Pb_{0,2}Sr_{1,8}Ti_{0,2}Co_{1,9}Ta_{0,1}O_9$ 198 8. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| $Bi_2Pb_{0.2}Sr_{1.8}V_{0.2}Co_{1.9}Ta_{0.1}O_9$ 199 9. 1 0. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| $Bi_2Pb_{0.2}Sr_{1.9}Cr_{0.2}Co_{1.9}Ta_{0.1}O_9$ 201 6. 9 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Mn_{0.2}Co_{1.9}Ta_{0.1}O_9$ 210 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Fe_{0.2}Co_{1.9}Ta_{0.1}O_9$ 200 7.8 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $Bi_2Pb_{0.2}Sr_{1.9}Ni_{0.2}Co_{1.9}Ta_{0.1}O_9$ 206 7. 7 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Cu_{0.2}Co_{1.9}Ta_{0.1}O_9$ 206 8.0 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Zn_{0.2}Co_{1.9}Ta_{0.1}O_9$ 198 8. 2 0. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Pb_{0.2}Co_{1.9}Ta_{0.1}O_9$ 199 7. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Ca_{0.2}Co_{1.9}Ta_{0.1}O_9$ 200 9. 1 1. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Ba_{0.2}Co_{1.9}Ta_{0.1}O_9$ 206 8.4 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| $Bi_2Pb_{0.2}Sr_{1.9}Al_{0.2}Co_{1.9}Ta_{0.1}O_9$ 205 8. 6 0. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |
| $Bi_2Pb_{0.2}Sr_{1.8}Y_{0.2}Co_{1.9}Ta_{0.1}O_9$ 198 7.8 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |

Table 71

|                                                                                                                          | Table | /1   |      |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 9.0  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 8.3  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 4 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 202   | 8.6  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 204   | 8. 2 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 197   | 7.9  | 1.4  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 190   | 8.6  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198   | 9.1  | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 6. 9 | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Sr <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201   | 7. 4 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                                       | 190   | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8    | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 199   | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7. 9 | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 210   | 9. 1 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 206   | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 205   | 8. 6 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7.8  | 0.8  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 195   | 9    | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 2 | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 203   | 8. 3 | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 6 | 1    |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 203   | 8. 7 | 1.3  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 3 | 0.9  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 208   | 9    | 1.1  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 9 | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 199   | 8. 1 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8    | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199   | 7.8  | 1.1  |
| $Bi_{2}Ca_{1.8}Pr_{0.2}Co_{1.9}Ta_{0.1}O_{9}$                                                                            | 200   | 7. 2 | 1. 2 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206   | 9    | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206   | 8. 2 | 1. 3 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198   | 7. 9 | 1.4  |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199   | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200   | 8. 1 | 1.0  |
|                                                                                                                          |       |      |      |

Table 72

| Bi <sub>2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206 | 6. 9 | 1. 3 |
|--------------------------------------------------------------------------------------------------------------------------|-----|------|------|
| Bi <sub>2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 205 | 7. 4 | 0. 9 |
| Bi <sub>2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                     | 200 | 8    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 210 | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 202 | 9. 1 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 204 | 8. 4 | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 197 | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 190 | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 7. 9 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 8.6  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | 9. 1 | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 207 | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 190 | 7.4  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8  | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 7. 7 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ba <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | 8    | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 210 | 8. 2 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 206 | 7.9  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 205 | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 8.4  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 195 | 8.6  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200 | 7.8  | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 203 | 9    | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 203 | 8.3  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | 8.6  | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 208 | 8.7  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 8.3  | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ca <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 9    | 1. 2 |
| Bi <sub>2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                                       | 203 | 8. 1 | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8    | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 203 | 7.8  | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 201 | 7. 2 | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 208 | 9    | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 198 | 7.8  | 0. 7 |

Table 73

|                                                                                                                          |     | , 5         |      |
|--------------------------------------------------------------------------------------------------------------------------|-----|-------------|------|
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 5        | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8. 6        | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 2        | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 7. 9        | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206 | 6. 9        | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206 | 9           | 0.8  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198 | 7.8         | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 5        | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 8.6         | 1.1  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 206 | 8. 2        | 1    |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                    | 205 | 7. 9        | 1. 3 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198 | 6. 9        | 0. 9 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 1        | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 200 | 6. 9        | 1. 4 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 7. 4        | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 210 | 7.8         | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 202 | 7. 7        | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 204 | 8           | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 197 | 8. 2        | 0.9  |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 190 | 7. 9        | 1. 1 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 198 | 9. 1        | 1. 2 |
| Bi <sub>2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 199 | 8. 4        | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                     | 207 | 8. 2        | 1.3  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Na <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 190 | 7. 9        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> K <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 198 | 8. 6        | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Li <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 9. 1        | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ti <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | 6. 9        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> V <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 210 | 7. 4        | 0.9  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 7.8         | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Mn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200 | 7. 7        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Fe <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 203 | 8           | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ni <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 201 | 8. 2        | 1.1  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Cu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 208 | 7. 9        | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Zn <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198 | 9. 1        | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199 | 8. 4        | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ca <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200 | 8. 6        | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 206 | 7.8         | 1. 2 |
|                                                                                                                          |     | <del></del> |      |

Table 74

| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Al <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 206   | 9.0  | 1. 1 |
|--------------------------------------------------------------------------------------------------------------------------|-------|------|------|
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Y <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>  | 198   | 8. 2 | 0.8  |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> La <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ce <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200   | 8. 4 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Pr <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 206   | 8. 6 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Nd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 205   | 7.8  | 1    |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Sm <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 198   | 9    | 1. 3 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Eu <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 7.8  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Gd <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 200   | 7. 5 | 1. 1 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Dy <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 199   | 8. 6 | 1. 4 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Ho <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 210   | 8. 2 | 1. 2 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Er <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 202   | 7.9  | 0. 9 |
| Bi <sub>2</sub> Pb <sub>0.2</sub> Ba <sub>1.8</sub> Yb <sub>0.2</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub> | 204   | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>2</sub> O <sub>9</sub>                                       | 199   | 8. 6 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                   | 201   | 8. 2 | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                    | 207   | 7. 9 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Cr <sub>0.1</sub> O <sub>9</sub>                   | 190   | 6. 9 | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 1 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                   | 199   | 6. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                   | 201   | 7. 4 | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                   | 210   | 7.8  | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                   | 206   | 7. 7 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                    | 205   | 8    | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                   | 198   | 8. 2 | 0.9  |
| Bi <sub>2</sub> Sr <sub>1.9</sub> Na <sub>0.1</sub> Co <sub>1.9</sub> Ta <sub>0.1</sub> O <sub>9</sub>                   | 195   | 7. 9 | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>2</sub> O <sub>9</sub>                                        | 203   | 8. 4 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Ti <sub>0.1</sub> O <sub>9</sub>                    | 200   | 8.6  | 1. 1 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> V <sub>0.1</sub> O <sub>9</sub>                     | 203   | 8. 2 | 0. 9 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Cr <sub>0.1</sub> O <sub>9</sub>                    | - 201 | 7. 9 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Mn <sub>0.1</sub> O <sub>9</sub>                    | 208   | 8. 6 | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Fe <sub>0.1</sub> O <sub>9</sub>                    | 198   | 9. 1 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Cu <sub>0.1</sub> O <sub>9</sub>                    | 199   | 6. 9 | 1. 2 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Ag <sub>0.1</sub> O <sub>9</sub>                    | 200   | 7. 4 | 1. 3 |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Mo <sub>0.1</sub> O <sub>9</sub>                    | 199   | 7. 8 | 1    |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> W <sub>0.1</sub> O <sub>9</sub>                     | 200   | 7. 7 | 0.8  |
| Bi <sub>2</sub> Sr <sub>1.9</sub> K <sub>0.1</sub> Co <sub>1.9</sub> Nb <sub>0.1</sub> O <sub>9</sub>                    | 206   | 8    | 1. 1 |
| $Bi_2Sr_{1.9}K_{0.1}Co_{1.9}Ta_{0.1}O_9$                                                                                 | 206   | 8. 2 | 1. 2 |

As is clear from the above results, the complex oxides represented by the formulae shown in Tables 7 to 74 exhibit excellent properties as a p-type thermoelectric material and have favorable electrical conductivity. Therefore, the complex oxides can possibly demonstrate excellent thermoelectric generation properties when used in place of the p-type thermoelectric materials of the Examples.

## Reference Example 2

5

15

20

25

10 A complex oxide having properties of the n-type thermoelectric material represented by the formula  ${\rm Ln_mR^1}_n{\rm Ni_pR^2}_q{\rm O_r}$  or  $({\rm Ln_sR^3}_t)_2{\rm Ni_uR^4}_v{\rm O_w}$  was prepared by the following method.

As a starting material, nitrates comprising an element of an intended complex oxide were used. The starting materials were completely dissolved in distilled water in such a manner as to yield the atomic ratio of each formula shown in Tables 75 to 121. The solution was thoroughly mixed while stirring in a crucible of alumina, and solidified by evaporating the water. The solidified product was calcined at 600°C in air for 10 hours to decompose the nitrates. The obtained calcinate was crushed, and then molded under pressure. The molded body was heated in a 300 mL/min oxygen stream for 20 hours, thereby producing a complex oxide. The heating temperature and heating time varied in the range of 700 to 1100°C in such a manner that an intended oxide is produced.

The complex oxides obtained were measured for the Seebeck coefficient at 700°C, electrical resistivity at 700°C and thermal conductivity at 700°C. Tables 75 to 121 show the measurement results.

Table 75

| n-type                                                                         |                     |                           |                      |
|--------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|
| Composition                                                                    | Seebeck Coefficient | Electrical<br>Resistivity | Thermal Conductivity |
| Ln <sub>w</sub> R¹ <sub>n</sub> Ni <sub>p</sub> R² <sub>q</sub> O <sub>r</sub> | μV/K (700°C)        | mΩcm (700°C)              | W/mK (700°C)         |
| LaNiO <sub>3</sub>                                                             | -22                 | 2. 2                      | 4. 2                 |
| CeNiO₃                                                                         | -19                 | 1. 9                      | 4. 1                 |
| PrNiO₃                                                                         | -25                 | 1.8                       | 3. 9                 |
| NdNiO <sub>3</sub>                                                             | -30                 | 2. 9                      | 4                    |
| SmNiO₃                                                                         | -28                 | 3. 1                      | 3.8                  |
| EuNiO <sub>3</sub>                                                             | -27                 | 2. 2                      | 3. 7                 |
| GdNiO₃                                                                         | -25                 | 2. 1                      | 4                    |
| DyNiO <sub>3</sub>                                                             | -18                 | 3                         | 3. 9                 |
| HoNiO₃                                                                         | -22                 | 2. 8                      | 3. 6                 |
| ErNiO <sub>3</sub>                                                             | -10                 | 3. 2                      | 4. 1                 |
| YbNiO <sub>3</sub>                                                             | -26                 | 3. 1                      | 3. 9                 |
| La <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub>                           | -19                 | 2. 4                      | 4. 3                 |
| La <sub>0.9</sub> K <sub>0.1</sub> NiO <sub>3</sub>                            | -17                 | 2. 8                      | 4                    |
| $La_{0.9}Sr_{0.1}NiO_3$                                                        | -23                 | 2. 9                      | 4. 7                 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub>                           | -22                 | 3                         | 4. 2                 |
| La <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub>                           | -18                 | 2. 8                      | 4. 3                 |
|                                                                                | -20                 | 3. 5                      | 4. 9                 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub>                           | -21                 | 4                         | 3. 9                 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> NiO <sub>3</sub>                            | -21                 | 3. 9                      | 4. 2                 |
| $Ce_{0.9}Sr_{0.1}NiO_3$                                                        | -22                 | 2. 1                      | 4                    |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub>                           | -18                 | 2. 6                      | 4. 7                 |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub>                           | -25                 | 2. 8                      | 4. 6                 |
| Pr <sub>o.9</sub> Na <sub>o.1</sub> NiO <sub>3</sub>                           | -28                 | 3. 9                      | 4. 2                 |
| $Pr_{0.9}K_{0.1}NiO_3$                                                         | -19                 | 3.8                       | 4. 7                 |
| Pr <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub>                           | -20                 | 2. 7                      | 4.8                  |
| Pr <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub>                           | -26                 | 1. 9                      | 4. 1                 |
| Pr <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub>                           | -23                 | 2. 8                      | 3. 8                 |
| Nd <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub>                           | -19                 | 3. 4                      | 4. 6                 |
| $Nd_{0.9}K_{0.1}NiO_3$                                                         | -17                 | 2. 8                      | 4. 2                 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub>                           | -20                 | 3                         | 4. 5                 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub>                           | -22                 | 2. 9                      | 4. 3                 |

Table 76

| Nd <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -20 | 1.8  | 4. 2 |
|------------------------------------------------------|-----|------|------|
|                                                      |     |      |      |
| Sm <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -23 | 3. 1 | 3. 9 |
| $Sm_{0.9}K_{0.1}NiO_3$                               | -18 | 2. 2 | 4    |
| $Sm_{0.9}Sr_{0.1}NiO_3$                              | -28 | 2.1  | 3.8  |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -19 | 3    | 3. 7 |
| $Sm_{0.9}Bi_{0.1}NiO_3$                              | -24 | 2.8  | 4    |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -16 | 3. 1 | 3. 6 |
| $Eu_{0.9}K_{0.1}NiO_3$                               | -20 | 3    | 4. 1 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub> | -22 | 2. 4 | 3. 9 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -24 | 2.8  | 4. 6 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -23 | 2. 9 | 4. 3 |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -28 | 2. 8 | 4. 7 |
| Gd <sub>0.9</sub> K <sub>0.1</sub> NiO <sub>3</sub>  | -19 | 3. 5 | 4. 2 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub> | -21 | 4    | 4. 3 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -22 | 3. 9 | 4. 9 |
| Gd <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -24 | 2. 1 | 3. 9 |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -29 | 2. 8 | 4    |
| Dy <sub>0.9</sub> K <sub>0.1</sub> NiO <sub>3</sub>  | -17 | 2. 7 | 4. 7 |
| Dy <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub> | -18 | 3. 9 | 4. 6 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -24 | 3.8  | 4. 5 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -22 | 2. 7 | 4. 2 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -27 | 2.8  | 4.8  |
| Ho <sub>0.9</sub> K <sub>0.1</sub> NiO <sub>3</sub>  | -21 | 3. 7 | 4.1  |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> NiO <sub>3</sub> | -23 | 3. 4 | 3.8  |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -19 | 2.8  | 4    |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -23 | 3    | 4.6  |
| Er <sub>0.9</sub> Na <sub>0.1</sub> NiO <sub>3</sub> | -25 | 2. 2 | 4. 5 |
| $\text{Er}_{0.9}\text{K}_{0.1}\text{NiO}_3$          | -16 | 1.9  | 4. 3 |
| $Er_{0.9}Sr_{0.1}NiO_3$                              | -20 | 1.8  | 4. 1 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -22 | 2.9  | 3.9  |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> NiO <sub>3</sub> | -29 | 3. 1 | . 4  |

Table 77

|                                                      | Jabie |      |      |
|------------------------------------------------------|-------|------|------|
| $Yb_{0.9}Na_{0.1}NiO_3$                              | -22   | 2. 2 | 3.8  |
| $Yb_{0.9}K_{0.1}NiO_3$                               | -19   | 2.1  | 3.7  |
| $Yb_{0.9}Sr_{0.1}NiO_3$                              | -25   | 3    | 4    |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> NiO <sub>3</sub> | -30   | 2.8  | 3.9  |
| $Yb_{0.9}Bi_{0.1}NiO_3$                              | -28   | 3. 2 | 3.6  |
|                                                      |       |      |      |
| LaNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -25   | 3    | 3.9  |
| LaNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -18   | 2. 4 | 4.6  |
| LaNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22   | 2.8  | 4. 3 |
| LaNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -10   | 2.9  | 4    |
| $LaNi_{0.9}Fe_{0.1}O_3$                              | -26   | 3    | 4. 7 |
| LaNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -20   | 2.8  | 4. 2 |
| LaNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -19   | 3. 5 | 4. 3 |
| LaNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -17   | 4    | 4.9  |
| LaNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -23   | 3. 9 | 3.9  |
| LaNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -22   | 2. 1 | 4. 2 |
| LaNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -18   | 2.6  | 4    |
|                                                      |       |      |      |
| $CeNi_{0.9}Ti_{0.1}O_3$                              | -21   | 2. 7 | 4.6  |
| CeNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -21   | 3. 9 | 4. 5 |
| $CeNi_{0.9}Cr_{0.1}O_3$                              | -22   | 3.8  | 4. 2 |
| CeNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -18   | 2.7  | 4. 7 |
| CeNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -25   | 1.9  | 4.8  |
| CeNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -24   | 2.8  | 4. 1 |
| CeNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -28   | 3. 7 | 3.8  |
| CeNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -19   | 3. 4 | 4    |
| CeNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -20   | 2.8  | 4. 6 |
| CeNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -26   | 3    | 4. 2 |
| CeNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -23   | 2.9  | 4. 5 |
|                                                      |       |      |      |
| PrNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -19   | 2. 9 | 4. 2 |
| PrNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -17   | 3. 1 | 4. 1 |
| PrNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -20   | 2. 2 | 3. 9 |
| PrNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22   | 2. 1 | 4    |
| PrNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20   | 3    | 3.8  |
| PrNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21   | 2. 8 | 3. 7 |
| PrNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -23   | 3. 2 | 4    |

Table 78

|                                                      |     | - <del>-</del> |      |
|------------------------------------------------------|-----|----------------|------|
| PrNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -18 | 3. 1           | 3.9  |
| PrNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -28 | 3              | 3. 6 |
| PrNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 4           | 4. 1 |
| PrNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 8           | 3.9  |
|                                                      |     |                |      |
| NdNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -16 | 3              | 4. 3 |
| NdNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 2. 8           | 4    |
| NdNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 3. 5           | 4. 7 |
| NdNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24 | 4              | 4. 2 |
| NdNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -23 | 3. 9           | 4. 3 |
| NdNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -26 | 2. 1           | 4. 9 |
| NdNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 6           | 3. 9 |
| NdNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 2           | 4. 2 |
| NdNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -21 | 1. 9           | 4    |
| NdNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -22 | 1.8            | 4. 7 |
| $NdNi_{0.9}Ta_{0.1}O_3$                              | -24 | 2. 9           | 4. 6 |
|                                                      |     |                |      |
| $SmNi_{0.9}Ti_{0.1}O_3$                              | -29 | 2. 2           | 4. 2 |
| $SmNi_{0.9}V_{0.1}O_3$                               | -17 | 2. 1           | 4. 7 |
| SmNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -18 | 3              | 4.8  |
| SmNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 8           | 4. 1 |
| SmNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22 | 3. 2           | 3.8  |
| SmNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 1           | 4    |
| SmNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -27 | 3              | 4. 6 |
| SmNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 4           | 4. 2 |
| SmNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -30 | 2.8            | 4. 1 |
| SmNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 9           | 3.9  |
| $SmNi_{0.9}Ta_{0.1}O_3$                              | -27 | 3              | 4    |
|                                                      |     | •              |      |
| EuNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -18 | 3. 5           | 3. 7 |
| EuNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22 | 4              | 4    |
| EuNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -10 | 3. 9           | 3. 9 |
| EuNi <sub>o.9</sub> Mn <sub>o.1</sub> O <sub>3</sub> | -26 | 2. 1           | 3. 6 |
| EuNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 6           | 4. 1 |
| EuNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 8           | 3. 9 |
| EuNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -17 | 2. 7           | 4. 6 |
| EuNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -23 | 3. 9           | 4. 3 |

Table 79

| EuNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 8 | 4    |
|------------------------------------------------------|-----|------|------|
| EuNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -18 | 2. 7 | 4.7  |
| EuNi <sub>o.9</sub> Ta <sub>o.1</sub> O <sub>3</sub> | -20 | 1.9  | 4. 2 |
|                                                      |     |      |      |
| GdNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 7 | 4. 9 |
| GdNi <sub>o.9</sub> V <sub>o.1</sub> O <sub>3</sub>  | -22 | 3. 4 | 3. 9 |
| GdNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -18 | 2. 8 | 4. 2 |
| GdNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -25 | 3    | 4    |
| GdNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 9 | 4. 7 |
| GdNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -28 | 1.8  | 4.6  |
| GdNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 9 | 4.5  |
| GdNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -20 | 3. 1 | 4. 2 |
| GdNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -26 | 2. 2 | 4. 7 |
| GdNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 1 | 4.8  |
| GdNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -22 | 3    | 4. 1 |
|                                                      |     |      |      |
| DyNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -17 | 3. 2 | 4    |
| DyNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 3. 1 | 4. 6 |
| DyNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 3    | 4. 2 |
| DyNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 4 | 4. 5 |
| DyNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -21 | 2. 8 | 4. 3 |
| DyNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 9 | 4. 2 |
| DyNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -18 | 3    | 4. 1 |
| DyNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 8 | 3. 9 |
| $DyNi_{0.9}W_{0.1}O_3$                               | -19 | 3. 5 | 4    |
| DyNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 4    | 3.8  |
| DyNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -25 | 3. 9 | 3. 7 |
|                                                      |     |      |      |
| HoNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 6 | 3.9  |
| HoNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22 | 2. 8 | 3. 6 |
| HoNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 7 | 4. 1 |
| HoNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -23 | 3. 9 | 3. 9 |
| HoNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -26 | 1.8  | 4. 6 |
| HoNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 9 | 4. 3 |
| HoNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -19 | 3. 1 | 4    |
| HoNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -21 | 2. 2 | 4. 7 |
| HoNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -22 | 2. 1 | 4. 2 |

Table 80

|                                                                                        | Table |      |      |
|----------------------------------------------------------------------------------------|-------|------|------|
| HoNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>                                   | -24   | 3    | 4. 3 |
| HoNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>                                   | -21   | 2.8  | 4. 9 |
|                                                                                        |       |      |      |
| ErNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>                                   | -17   | 3. 1 | 4. 2 |
| ErNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>                                    | -18   | 3    | 4    |
| ErNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>                                   | -24   | 2. 4 | 4. 7 |
| ErNi <sub>o.9</sub> Mn <sub>o.1</sub> O <sub>3</sub>                                   | -22   | 2.8  | 4. 6 |
| ErNi <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>                                   | -21   | 2. 9 | 4. 5 |
| ErNi <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>                                   | -27   | 3    | 4. 2 |
| ErNi <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>                                   | -21   | 2.8  | 4. 7 |
| ErNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>                                   | -23   | 3. 5 | 4.8  |
| ErNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>                                    | -19   | 4    | 4. 1 |
| ErNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>                                   | -23   | 3. 9 | 3.8  |
| ErNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>                                   | -24   | 2. 1 | 4    |
|                                                                                        |       |      |      |
| YbNi <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>                                   | -16   | 2.8  | 4. 2 |
| YbNi <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>                                    | -20   | 2. 7 | 4. 5 |
| YbNi <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>                                   | -22   | 3. 9 | 4. 3 |
| YbNi <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>                                   | -29   | 3.8  | 4. 1 |
| $YbNi_{0.9}Fe_{0.1}O_3$                                                                | -28   | 2. 7 | 3. 9 |
| $YbNi_{0.9}Co_{0.1}O_3$                                                                | -27   | 1.9  | 4    |
| $YbNi_{0.9}Cu_{0.1}O_3$                                                                | -25   | 2. 8 | 3. 8 |
| YbNi <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>                                   | -18   | 3. 7 | 3. 7 |
| YbNi <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>                                    | -22   | 3. 4 | 4    |
| YbNi <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>                                   | -10   | 2.8  | 3. 9 |
| YbNi <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>                                   | -26   | 3    | 3. 6 |
|                                                                                        |       |      | ·    |
| $La_{0.9}Na_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -19   | 1.8  | 3. 9 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -17   | 2. 9 | 4.6  |
| $La_{0.9}Na_{0.1}Ni_{0.9}Cr_{0.1}O_3$                                                  | -23   | 3. 1 | 4. 3 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22   | 2. 2 | 4    |
| $La_{0.9}Na_{0.1}Ni_{0.9}Fe_{0.1}O_3$                                                  | -18   | 2. 1 | 4. 7 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -20   | 3    | 4. 2 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -21   | 2. 8 | 4. 3 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -21   | 3. 2 | 4. 9 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -22   | 3. 1 | 3. 9 |
| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -18   | 3    | 4. 2 |

Table 81

| La <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 4 | 4    |
|----------------------------------------------------------------------------------------|-----|------|------|
| $La_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                  | -28 | 2. 9 | 4.6  |
| $La_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$                                                   | -19 | 3    | 4. 5 |
| $La_0.9K_0.1$ $Ni_0.9Cr_0.1O_3$                                                        | -20 | 2.8  | 4. 2 |
| $La_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -26 | 3.5  | 4. 7 |
| $La_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                  | -23 | 3.3  |      |
|                                                                                        | -22 | 3.9  | 4.8  |
| La <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>  |     |      | 4.1  |
| La <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -19 | 2. 1 | 3.8  |
| La <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -17 | 2. 6 | 4    |
| La <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -20 | 2.8  | 4. 6 |
| La <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -22 | 2. 7 | 4. 2 |
| $La_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                  | -20 | 3. 9 | 4. 5 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -23 | 2.7  | 4. 2 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -18 | 1.9  | 4. 1 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -28 | 2.8  | 3. 9 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -19 | 3.7  | 4    |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24 | 3.4  | 3.8  |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -25 | 2.8  | 3. 7 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -16 | 3    | 4    |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -20 | 2.9  | 3. 9 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -22 | 2. 2 | 3. 6 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 1.9  | 4. 1 |
| La <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -23 | 1.8  | 3. 9 |
| I C N' T' O                                                                            |     |      |      |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -28 | 3. 1 | 4. 3 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -19 | 2. 2 | 4    |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -21 | 2.1  | 4. 7 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22 | 3    | 4. 2 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24 | 2.8  | 4. 3 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 2 | 4. 9 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -29 | 3. 1 | 3. 9 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -17 | 3    | 4. 2 |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -18 | 2. 4 | 4    |
| La <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 8 | 4. 7 |
| $La_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -22 | 2. 9 | 4. 6 |

Table 82

|                                                                                        |     | <u></u> |      |
|----------------------------------------------------------------------------------------|-----|---------|------|
| $La_{0.9}Bi_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -21 | 3       | 4. 5 |
| $La_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -27 | 2.8     | 4. 2 |
| $La_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -21 | 3. 5    | 4.7  |
| $La_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -23 | 4       | 4.8  |
| $La_{0.9}Bi_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -19 | 3. 9    | 4. 1 |
| La <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 1    | 3.8  |
| La <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 6    | 4    |
| $La_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -25 | 2.8     | 4. 6 |
| La <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -16 | 2. 7    | 4    |
| $La_{0.9}Bi_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                 | -20 | 3. 9    | 4. 7 |
| La <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -22 | 3.8     | 4. 2 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -18 | 1. 9    | 4. 9 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22 | 2.8     | 3.9  |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -10 | 3. 7    | 4. 2 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -26 | 3. 4    | 4    |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 8    | 4. 7 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19 | 3       | 4.6  |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -17 | 2. 9    | 4. 5 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -23 | 1.8     | 4. 2 |
| $Ce_{0.9}Na_{0.1}Ni_{0.9}W_{0.1}O_3$                                                   | -22 | 2. 9    | 4. 7 |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -18 | 3. 1    | 4.8  |
| Ce <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 2    | 4. 1 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -21 | . 3     | 4    |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>   | -22 | 2.8     | 4. 6 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -18 | 3. 2    | 4. 2 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>  | -25 | 3. 1    | 4. 5 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>  | -24 | 3       | 4. 3 |
| $Ce_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -28 | 2. 4    | 4. 2 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -19 | 2.8     | 4. 1 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -20 | 2.9     | 3. 9 |
| $Ce_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$                                                   | -26 | 3       | 4    |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -23 | 2. 8    | 3. 8 |
| Ce <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 5    | 3. 7 |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -17 | 3. 9    | 3. 9 |

Table 83

| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 2. 1 | 3. 6 |
|----------------------------------------------------------------------------------------|-----|------|------|
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 6 | 4. 1 |
| $Ce_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -20 | 2. 2 | 3. 9 |
| $Ce_{0.9}Sr_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -21 | 1.9  | 4. 6 |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -23 | 1.8  | 4. 3 |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -18 | 2. 9 | 4    |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28 | 3. 1 | 4. 7 |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -19 | 2. 2 | 4. 2 |
| Ce <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 1 | 4. 3 |
| $Ce_{0.9}Sr_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -25 | 3    | 4. 9 |
|                                                                                        |     |      |      |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -20 | 3. 2 | 4. 2 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 1 | 4    |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -24 | 3    | 4. 7 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 4 | 4. 6 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -26 | 2. 8 | 4. 5 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 9 | 4. 2 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -19 | 3    | 4. 7 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -21 | 2.8  | 4.8  |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 5 | 4. 1 |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 4    | 3.8  |
| Ce <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 9 | 4    |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -29 | 2. 1 | 4.6  |
| $Ce_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -17 | 2. 6 | 4. 2 |
| $Ce_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -18 | 2.8  | 4. 5 |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 7 | 4. 3 |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22 | 3. 9 | 4. 1 |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21 | 3.8  | 3.9  |
| $Ce_{0.9}Bi_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                 | -27 | 2. 7 | 4    |
| $Ce_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -21 | 1.9  | 3. 8 |
| $Ce_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -23 | 2.8  | 3.7  |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -19 | 3. 7 | 4    |
| Ce <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -23 | 3. 4 | 3. 9 |
|                                                                                        |     |      |      |
| $Pr_{0.9}Na_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -25 | 3    | 4. 1 |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -16 | 2. 9 | 3. 9 |
| Pr <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -20 | 1.8  | 4. 6 |

Table 84

| Pr <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22 | 2.9         | 4. 3 |
|----------------------------------------------------------------------------------------|-----|-------------|------|
| Pr <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -29 | 3. 1        | 4    |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                 | -22 | 2. 2        | 4. 7 |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                 | -19 | 2. 1        | 4. 2 |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -25 | 3           | 4. 3 |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -30 | 2. 8        | 4. 9 |
| Pr <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -28 | 3. 2        | 3. 9 |
| $Pr_{0.9}Na_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -27 | 3. 1        | 4. 2 |
|                                                                                        |     |             |      |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                  | -18 | 2. 4        | 4. 7 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$                                                   | -22 | 2. 8        | 4. 6 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                  | -10 | 2. 9        | 4. 5 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -26 | 3           | 4. 2 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                  | -20 | 2. 8        | 4. 7 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -19 | 3. 5        | 4.8  |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                  | -17 | 4           | 4. 1 |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                  | -23 | 3. 9        | 3.8  |
| $Pr_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$                                                   | -22 | 2. 1        | 4    |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                  | -18 | 2. 6        | 4.6  |
| $Pr_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                  | -20 | 2.8         | 4. 2 |
|                                                                                        |     |             |      |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -21 | 2. 9        | 4. 3 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -22 | 3. 1        | 4. 2 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -18 | 2. 2        | 4. 1 |
| Pr <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 1        | 3. 9 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -24 | 3           | 4    |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                 | -28 | 2. 8        | 3. 8 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                 | -19 | 3. 2        | 3. 7 |
| $Pr_{0.9}Sr_{0.1}Ni_{0.9}Mo_{0.1}O_3$                                                  | 20  | 3.1         | 4    |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -26 | 3           | 3. 9 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                 | -23 | 2. 4        | 3. 6 |
| $Pr_{0.9}Sr_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -22 | 2. 8        | 4. 1 |
|                                                                                        |     |             |      |
| Pr <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -17 | 3           | 4. 6 |
| Pr <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 2.8         | 4. 3 |
| Pr <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 3. 5        | 4    |
| Pr <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -20 | 4           | 4. 7 |
| <del></del>                                                                            |     | <del></del> |      |

Table 85

| Tabic        |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -21          | 3. 9                                                                                                                | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -23          | 2. 1                                                                                                                | 4. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -18          | 2. 6                                                                                                                | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -28          | 2.8                                                                                                                 | 3. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -19          | 2. 7                                                                                                                | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -24          | 3.9                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -25          | 3.8                                                                                                                 | 4. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -16          | 2. 7                                                                                                                | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -20          | 1.9                                                                                                                 | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -22          | 2.8                                                                                                                 | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -24          | 3.7                                                                                                                 | 4. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -23          | 3. 4                                                                                                                | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -26          | 2.8                                                                                                                 | 4. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -28          | 3                                                                                                                   | 3. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -19          | 2. 9                                                                                                                | 4. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -21          | 1.8                                                                                                                 | 3. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -22          | 2. 9                                                                                                                | 4. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -24          | 3. 1                                                                                                                | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -29          | 2. 1                                                                                                                | 4. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -17          | 3                                                                                                                   | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -18          | 2. 8                                                                                                                | 4. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -24          | 3. 2                                                                                                                | 4. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -22          | 3. 1                                                                                                                | 3. 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -21          | 3                                                                                                                   | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -27          | 2. 4                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -25          | 2. 8                                                                                                                | 4. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -30          | 2. 9                                                                                                                | 4. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -28          | 3                                                                                                                   | 4. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -27          | 2. 8                                                                                                                | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <del> </del> |                                                                                                                     | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                     | 4. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                     | 3. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                                                                                                                     | 4. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -19          | 1. 9                                                                                                                | 4. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              | -23 -18 -28 -19 -24 -25 -16 -20 -22 -24 -23 -26 -28 -19 -21 -22 -24 -22 -24 -29 -17 -18 -24 -22 -21 -27 -25 -30 -28 | -23       2.1         -18       2.6         -28       2.8         -19       2.7         -24       3.9         -25       3.8         -16       2.7         -20       1.9         -22       2.8         -24       3.7         -23       3.4         -26       2.8         -28       3         -19       2.9         -21       1.8         -22       2.9         -24       3.1         -17       3         -18       2.8         -24       3.2         -22       3.1         -21       3         -27       2.4         -25       2.8         -30       2.9         -28       3         -27       2.8         -18       4         -22       3.9         -18       4         -22       3.9         -18       4         -22       3.9         -10       2.1         -26       2.6         -20       2.2 </td |

Table 86

| $Nd_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                  | -17 | 1.8  | 4. 5 |
|----------------------------------------------------------------------------------------|-----|------|------|
| Nd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -23 | 2. 9 | 4. 3 |
| Nd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -22 | 3. 1 | 4. 1 |
| Nd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -18 | 2. 2 | 3. 9 |
| Nd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -20 | 2. 1 | 4    |
|                                                                                        |     |      |      |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -21 | 2. 8 | 3. 7 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 2 | 4    |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -18 | 3. 1 | 3. 9 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -25 | 3    | 3. 6 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 4 | 4. 1 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 8 | 3. 9 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 9 | 4. 6 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -20 | 3    | 4. 3 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -26 | 2. 8 | 4    |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -23 | 3. 5 | 4. 7 |
| Nd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -22 | 4    | 4. 2 |
|                                                                                        |     |      |      |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -17 | 2. 1 | 4. 9 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 2. 6 | 3. 9 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 8 | 4. 2 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 7 | 4    |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 9 | 4. 7 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -23 | 3.8  | 4. 6 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -18 | 2. 7 | 4.5  |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28 | 1.9  | 4. 2 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -19 | 2.8  | 4. 7 |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24 | 3. 7 | 4.8  |
| Nd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -25 | 3. 4 | 4. 1 |
| $Nd_{0.9}Bi_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -16 | 2.8  | 3.8  |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20 | 3    | 4    |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 9 | 4.6  |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24 | 1.8  | 4. 2 |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 9 | 4. 5 |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -26 | 3. 1 | 4. 3 |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 2 | 4. 2 |
| Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 1 | 4. 1 |

Table 87

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                        | Table |      |      |
|--------------------------------------------------------|----------------------------------------------------------------------------------------|-------|------|------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -21   | 3    | 3. 9 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -22   | 2. 8 | 4    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Nd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -24   | 3. 2 | 3.8  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                        |       |      |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -29   | 3    | 4    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -17   | 2. 4 | 3. 9 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}Na_{0.1}Ni_{0.9}Cr_{0.1}O_3$                                                  | -18   | 2. 8 | 3. 6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24   | 2. 9 | 4. 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22   | 3    | 3. 9 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21   | 2.8  | 4. 6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -27   | 3. 5 | 4. 3 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -21   | 4    | 4    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -23   | 3. 9 | 4. 7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -19   | 2. 1 | 4. 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}Na_{0.1}Ni_{0.9}Ta_{0.1}O_3$                                                  | -23   | 2. 6 | 4. 3 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                        |       |      |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                  | -25   | 2. 7 | 3. 9 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                        | -16   | 3. 9 | 4. 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                  | -20   | 1.8  | 4    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                        | -22   | 2. 9 | 4.7  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                  | -22   | 3. 1 | 4. 6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -10   | 2. 2 | 4. 5 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -26   | 2. 1 | 4. 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | Sm <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -20   | 3    | 4. 7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | $Sm_{0.9}K_{0.1}Ni_{0.9}W_{0.1}O_3$                                                    | -19   | 2.8  | 4.8  |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$ -18 2.4 4       | $Sm_{0.9}K_{0.1}Ni_{0.9}Nb_{0.1}O_3$                                                   | -17   | 3. 2 | 4. 1 |
|                                                        | Sm <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -23   | 3. 1 | 3.8  |
|                                                        |                                                                                        |       |      |      |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$ -20 2.8 4.7      |                                                                                        |       | 2. 4 | 4    |
|                                                        |                                                                                        |       |      | 4. 7 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Cr_{0.1}O_3$ -21 2.9 4.2     |                                                                                        |       | 2. 9 | 4. 2 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$ -21 3 4.3       |                                                                                        |       | 3    | 4. 3 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Fe_{0.1}O_3$ -22 2.8 4.9     |                                                                                        | -22   | 2. 8 | 4. 9 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Co_{0.1}O_{3}$ -18 3. 5 3. 9 |                                                                                        | -18   | 3. 5 | 3. 9 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Cu_{0.1}O_3$ -25 4 4.2       |                                                                                        | -25   | 4    | 4. 2 |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$ -24 3.9 4       |                                                                                        | -24   | 3. 9 | 4    |
| $Sm_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$ -28 2. 1 4. 7    | $Sm_{0.9}Sr_{0.1}Ni_{0.9}W_{0.1}O_3$                                                   | -28   | 2. 1 | 4. 7 |

Table 88

|                                                                                        | Table | 00   |      |
|----------------------------------------------------------------------------------------|-------|------|------|
| Sm <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -19   | 2. 6 | 4. 6 |
| Sm <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -20   | 2. 8 | 4. 5 |
|                                                                                        |       |      |      |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -23   | 3. 9 | 4. 7 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -22   | 3.8  | 4.8  |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -19   | 2. 7 | 4. 1 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -17   | 1.9  | 3.8  |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20   | 2.8  | 4    |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22   | 3.7  | 4.6  |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -20   | 3.4  | 4. 2 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -21   | 2.8  | 4. 5 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -23   | 3    | 4. 3 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -18   | 2.9  | 4. 2 |
| Sm <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -28   | 1.8  | 4. 1 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -19   | 2.9  | 3.9  |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24   | 3. 1 | 4    |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -25   | 2. 2 | 3.8  |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -16   | 2. 1 | 3. 7 |
| $Sm_{0.9}Bi_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -20   | 3    | 4    |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22   | 2.8  | 3. 9 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24   | 3. 2 | 3. 6 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -23   | 3. 1 | 4. 1 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -26   | 3    | 3. 9 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -28   | 2. 4 | 4. 6 |
| Sm <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -19   | 2. 8 | 4.3  |
|                                                                                        |       |      |      |
| $Eu_{0.9}Na_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -22   | 3    | 4. 7 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24   | 2. 8 | 4. 2 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -21   | 3. 5 | 4. 3 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -29   | 4    | 4. 9 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -17   | 3. 9 | 3.9  |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -18   | 2. 1 | 4. 2 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24   | 2. 6 | 4    |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -22   | 2.8  | 4.7  |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -21   | 2. 7 | 4.6  |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -27   | 3. 9 | 4. 5 |
| Eu <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -21   | 3.8  | 4. 2 |

Table 89

| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>   | -19 | 1.9  | 4.8  |
|-----------------------------------------------------------------------------------------|-----|------|------|
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>    | -23 | 2.8  | 4.1  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>   | -24 | 3. 7 | 3.8  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>   | -25 | 3. 4 | 4.1  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>   | -16 | 2.8  | 3.9  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>   | -20 | 3    | 4.6  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>   | -22 | 2. 9 | 4.3  |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>   | -29 | 2. 2 | 4    |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>    | -22 | 1. 9 | 4. 7 |
| Eu <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>   | -19 | 1.8  | 4. 2 |
| $Eu_{0.9}K_{0.1}$ $Ni_{0.9}Ta_{0.1}O_3$                                                 | -25 | 2. 9 | 4. 3 |
| E C N: T: O                                                                             | 00  |      |      |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -28 | 2. 2 | 3. 9 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>   | -27 | 2. 1 | 4. 2 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -25 | 3    | 4    |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>  | -18 | 2. 8 | 4. 7 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>  | -22 | 3. 2 | 4. 6 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>  | -10 | 3. 1 | 4. 5 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -26 | 3    | 4. 2 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -20 | 2. 4 | 4. 7 |
| $Eu_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$                                                   | -19 | 2. 8 | 4.8  |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -17 | 2. 9 | 4. 1 |
| Eu <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -23 | 3    | 3.8  |
| D 0 W 0                                                                                 |     |      |      |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -18 | 3. 5 | 4. 6 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>   | -20 | 4    | 4. 2 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -21 | 3. 9 | 4. 5 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>  | -21 | 2. 1 | 4. 3 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> •Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 6 | 4. 1 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>  | -18 | 2. 8 | 3. 9 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -25 | 2. 7 | 4    |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -24 | 3. 9 | 3. 8 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -28 | 3. 8 | 3. 7 |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -19 | 2. 7 | 4    |
| Eu <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -20 | 1.9  | 3. 9 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -26 | 2. 8 | 3. 6 |

Table 90

|                                                                                        | Table |      |      |
|----------------------------------------------------------------------------------------|-------|------|------|
| $Eu_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -23   | 3. 7 | 4. 1 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22   | 3. 4 | 3. 9 |
| $Eu_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -19   | 2. 8 | 4. 6 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -17   | 3    | 4. 3 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -20   | 2. 9 | 4    |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -22   | 1.8  | 4. 7 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -20   | 2. 9 | 4. 2 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -21   | 3. 1 | 4. 3 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -23   | 2. 2 | 4. 9 |
| Eu <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -18   | 2. 1 | 3. 9 |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -19   | 2.8  | 4    |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24   | 3. 2 | 4.7  |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -25   | 3.1  | 4.6  |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -16   | 3    | 4. 5 |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20   | 2.4  | 4. 2 |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22   | 2. 4 | 4.7  |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24   | 2. 9 | 4.8  |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -23   | 3    | 4. 1 |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -26   | 2.8  | 3.8  |
| Gd <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -28   | 3.5  | 4    |
| $Gd_{0.9}Na_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -19   | 4    | 4.6  |
| 040, 94420, 1 1410, 91220, 103                                                         | 13    | 1    | 4.0  |
| $Gd_{0.9}K_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                  | -22   | 2. 1 | 4. 5 |
| $Gd_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$                                                   | -24   | 2. 6 | 4. 3 |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -21   | 2. 2 | 4. 2 |
| $Gd_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -29   | 1. 9 | 4. 1 |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>  | -17   | 1.8  | 3. 9 |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>  | -18   | 2. 9 | 4    |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -24   | 3. 1 | 3. 8 |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -22   | 2. 2 | 3. 7 |
| $Gd_{0.9}K_{0.1}Ni_{0.9}W_{0.1}O_3$                                                    | -21   | 2. 1 | 4    |
| Gd <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -27   | 3    | 3. 9 |
| $Gd_{0.9}K_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                  | -25   | 2. 8 | 3. 6 |
|                                                                                        |       |      |      |
| $Gd_{0.9}Sr_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -28   | 3. 1 | 3. 9 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -27   | 3    | 4. 6 |

Table 91

| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 4 | 4. 3 |
|----------------------------------------------------------------------------------------|-----|------|------|
| $Gd_{0.9}Sr_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -18 | 2. 8 | 4    |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 9 | 4. 7 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -10 | 3    | 4. 2 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -26 | 2.8  | 4. 3 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -20 | 3. 5 | 4. 9 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -19 | 4    | 3. 9 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -17 | 3. 9 | 4. 2 |
| Gd <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 1 | 4    |
|                                                                                        |     |      |      |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -18 | 2.8  | 4. 6 |
| $Gd_{0.9}Ca_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -20 | 2. 7 | 4. 5 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -21 | 3. 9 | 4. 2 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -21 | 3.8  | 4. 7 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 7 | 4.8  |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -18 | 1. 9 | 4. 1 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 8 | 3.8  |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -24 | 3. 7 | 3. 9 |
| $Gd_{0.9}Ca_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -28 | 3. 4 | 4. 6 |
| Gd <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 8 | 4. 3 |
| $Gd_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -20 | 3    | 4    |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -26 | 2. 9 | 4. 7 |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -23 | 1.8  | 4. 2 |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -22 | 2. 9 | 4. 3 |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -19 | 3. 1 | 4. 9 |
| Gd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -17 | 2. 2 | 3. 9 |
| Gd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 1 | 4. 2 |
| Gd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -22 | 3    | 4    |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -20 | 2. 8 | 4. 7 |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -21 | 3. 2 | 4. 6 |
| $Gd_{0.9}Bi_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                 | -23 | 3. 1 | 4. 5 |
| Gd <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -18 | 3    | 4. 2 |
|                                                                                        |     |      |      |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -19 | 2.8  | 4. 8 |
| $Dy_{0.9}Na_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -24 | 2. 9 | 4. 1 |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -25 | 3    | 3. 8 |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -16 | 2.8  | 4. 3 |

Table 92

|                                                                                        |     | J    |      |
|----------------------------------------------------------------------------------------|-----|------|------|
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20 | 3. 5 | 4    |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22 | 4    | 4. 7 |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24 | 3. 9 | 4. 2 |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -23 | 2. 1 | 4.3  |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -26 | 2. 6 | 4.9  |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -28 | 2.8  | 3.9  |
| Dy <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -19 | 2. 7 | 4. 2 |
| Dy <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -22 | 2. 4 | 4. 7 |
| $Dy_{0.9}K_{0.1} Ni_{0.9}V_{0.1}O_3$                                                   | -24 | 2. 8 | 4. 6 |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                  | -21 | 2. 9 | 4. 5 |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -29 | 3    | 4. 2 |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                  | -17 | 2. 8 | 4. 7 |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -18 | 3. 5 | 4.8  |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                  | -24 | 4    | 4.1  |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                  | -22 | 3. 9 | 3.8  |
| $Dy_{0.9}K_{0.1} Ni_{0.9}W_{0.1}O_3$                                                   | -21 | 2. 1 | 4    |
| $Dy_{0.9}K_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                  | -27 | 2. 6 | 4. 6 |
| Dy <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -21 | 2.8  | 4. 2 |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -19 | 3. 9 | 4. 3 |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -23 | 1.8  | 4. 2 |
| Dy <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -24 | 2. 9 | 4. 1 |
| Dy <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -25 | 3. 1 | 3. 9 |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -16 | 2. 2 | 4    |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                 | -21 | 2. 1 | 3.8  |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Cu_{0.1}O_3$                                                 | -23 | 3    | 3.7  |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -19 | 2.8  | 4    |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | 23  | 3. 2 | 3. 9 |
| $Dy_{0.9}Sr_{0.1} Ni_{0.9}Nb_{0.1}O_3$                                                 | -24 | 3. 1 | 3. 6 |
| Dy <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -25 | 3    | 4. 1 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 8 | 4. 6 |
| $Dy_{0.9}Ca_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -22 | 2. 9 | 4.3  |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -29 | 3    | 4    |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 8 | 4.7  |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -19 | 3. 5 | 4. 2 |

Table 93

|                                                                                        | Table . |      |      |
|----------------------------------------------------------------------------------------|---------|------|------|
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -25     | 4.0  | 4. 3 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -30     | 3. 9 | 4. 9 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28     | 2. 1 | 3. 9 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -27     | 2. 6 | 4. 2 |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -25     | 2. 8 | 4    |
| Dy <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -18     | 2. 7 | 4. 7 |
| $Dy_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -22     | 3. 9 | 4. 6 |
| $Dy_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -10     | 3.8  | 4. 5 |
| $Dy_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -26     | 2. 7 | 4. 2 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -20     | 1. 9 | 4. 7 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -19     | 2. 8 | 4. 8 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -17     | 3. 7 | 4. 1 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -23     | 3. 4 | 3. 8 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -22     | 2. 8 | 4. 1 |
| $Dy_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -18     | 3    | 3. 9 |
| Dy <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -20     | 2. 9 | 4. 6 |
| $Dy_{0.9}Bi_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -21     | 1.8  | 4. 3 |
|                                                                                        |         |      |      |
| $Ho_{0.9}Na_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -22     | 3. 1 | 4. 7 |
| $Ho_{0.9}Na_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -18     | 2. 2 | 4. 2 |
| $Ho_{0.9}Na_{0.1}Ni_{0.9}Cr_{0.1}O_3$                                                  | -25     | 2. 1 | 4. 3 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24     | 3    | 4. 9 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -28     | 2. 8 | 3. 9 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19     | 3. 2 | 4. 2 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -20     | 3. 1 | 4    |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -26     | 3    | 4. 7 |
| $Ho_{0.9}Na_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -23     | 2. 4 | 4. 6 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -22     | 2.8  | 4. 5 |
| Ho <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -19 -   | 2. 9 | 4. 2 |
|                                                                                        |         |      |      |
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -20     | 2. 8 | 4. 8 |
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>   | -22     | 3. 5 | 4. 1 |
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -20     | 4    | 3. 8 |
| $Ho_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -21     | 3. 9 | 4    |
| $Ho_{0.9}K_{0.1}$ $Ni_{0.9}Fe_{0.1}O_3$                                                | -23     | 2. 1 | 4. 6 |
| $Ho_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -18     | 2. 6 | 4. 2 |
| $Ho_{0.9}K_{0.1}$ $Ni_{0.9}Cu_{0.1}O_3$                                                | -28     | 2. 8 | 4. 5 |
|                                                                                        |         |      |      |

Table 94

| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -19         | 2. 7     | 4. 3          |
|----------------------------------------------------------------------------------------|-------------|----------|---------------|
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -24         | 3.9      | 4. 1          |
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -25         | 3.8      | 3. 9          |
| Ho <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -16         | 2. 7     | 4             |
|                                                                                        |             |          |               |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -22         | 2.8      | 3. 7          |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24         | 3.7      | 4             |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -23         | 3. 4     | 3. 9          |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -26         | 2. 8     | 3. 6          |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -28         | 3        | 4. 1          |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19         | 2.9      | 3.9           |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -21         | 2. 2     | 4.6           |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -22         | 1.9      | 4.3           |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -24         | 1.8      | 4             |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -21         | 2.9      | 4. 7          |
| Ho <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -29         | 3. 1     | 4. 2          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -18         | 2. 1     | 4. 9          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24         | 3        | 3. 9          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22         | 2.8      | 4. 2          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -21         | 3. 2     | 4             |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -27         | 3. 1     | 4. 7          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -25         | 3        | 4. 6          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -30         | 2. 4     | 4. 5          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28         | 2.8      | 4. 2          |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -27         | 2. 9     | 4.7           |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -25         | 3        | 4.8           |
| Ho <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -18         | 2.8      | 4. 1          |
| $Ho_{0.9}Bi_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -22         | 3. 5     | 3.8           |
| $Ho_{0.9}Bi_{0.1} Ni_{0.9}V_{0.1}O_3$                                                  | -10 -       | 4        | 4             |
| $Ho_{0.9}Bi_{0.1} Ni_{0.9}Cr_{0.1}O_3$                                                 | -26         | 3. 9     | 4. 6          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -20         | 2. 1     | 4. 2          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -19         | 2. 6     | 4. 5          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -17         | 2.8      | 4. 3          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -23         | 2. 7     | 4. 2          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -22         | 3. 9     | 4. 1          |
| $Ho_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -18         | 3.8      | 3. 9          |
| Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -20         | 2. 7     | 4             |
| · · · · · · · · · · · · · · · · · · ·                                                  | <del></del> | <u> </u> | _ <del></del> |

Table 95

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                |                                                                                        |     |      |      |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----|------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Ho <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -21 | 1. 9 | 3.8  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -22 | 3. 7 | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -18 | 3. 4 | 3.9  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -25 | 2. 8 | 3. 6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -24 | 3    | 4. 1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 9 | 3. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19 | 1.8  | 4. 6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -20 | 2. 9 | 4. 3 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -26 | 3. 1 | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -23 | 2. 2 | 4. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 1 | 4. 2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -19 | 3    | 4. 3 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub>  | -20 | 3. 2 | 3.9  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | $\text{Er}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{V}_{0.1}\text{O}_3$                | -22 | 3. 1 | 4. 2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub>  | -20 | 3    | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub>  | -21 | 2. 4 | 4. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub>  | -23 | 2. 8 | 4. 6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub>  | -18 | 2. 9 | 4. 5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -28 | 3    | 4. 2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -19 | 2.8  | 4. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -24 | 3. 5 | 4.8  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -25 | 4    | 4. 1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | $\text{Er}_{0.9}\text{K}_{0.1} \text{Ni}_{0.9}\text{Ta}_{0.1}\text{O}_3$               | -16 | 3. 9 | 3, 8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 6 | 4. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24 | 2. 2 | 4.6  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -23 | 1.9  | 4. 5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -26 | 1.8  | 4. 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -28 | 2. 9 | 4. 7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -19 | 3.1  | 4.8  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                               | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -21 | 2. 2 | 4. 1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -22 | 2. 1 | 3.8  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -24 | 3    | 4. 1 |
| $Er_{0.9}Ca_{0.1} Ni_{0.9}Ti_{0.1}O_3$ -18 3 4<br>$Er_{0.9}Ca_{0.1} Ni_{0.9}V_{0.1}O_3$ -24 2.4 4.7 | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -21 | 2.8  | 3.9  |
| $\text{Er}_{0.9}\text{Ca}_{0.1} \text{Ni}_{0.9}\text{V}_{0.1}\text{O}_3$ -24 2. 4 4. 7              | Er <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -29 | 3. 2 | 4.6  |
|                                                                                                     | Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -18 | 3    | 4    |
| $Er_{0.9}Ca_{0.1} Ni_{0.9}Cr_{0.1}O_3$ -22 2.8 4.2                                                  | Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -24 | 2. 4 | 4. 7 |
|                                                                                                     | Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22 | 2.8  | 4. 2 |

Table 96

|                                                                                        | Tubic . |      |      |
|----------------------------------------------------------------------------------------|---------|------|------|
| $\operatorname{Er_{0.9}Ca_{0.1}}\operatorname{Ni_{0.9}Mn_{0.1}O_3}$                    | -21     | 2.9  | 4. 3 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -27     | 3    | 4. 9 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -21     | 2.8  | 3. 9 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -23     | 3. 5 | 4. 2 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -19     | 4    | 4    |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -23     | 3. 9 | 4. 7 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -24     | 2. 1 | 4. 6 |
| Er <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -25     | 2. 6 | 4. 5 |
| $\text{Er}_{0.9}\text{Bi}_{0.1}   \text{Ni}_{0.9}\text{Ti}_{0.1}\text{O}_3$            | -16     | 2.8  | 4. 2 |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -20     | 2. 7 | 4. 7 |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -22     | 3. 9 | 4.8  |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22     | 3.8  | 4. 1 |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -10     | 2. 7 | 3.8  |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -26     | 1.9  | 4    |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -20     | 2.8  | 4.6  |
| $\text{Er}_{0.9}\text{Bi}_{0.1}   \text{Ni}_{0.9}\text{Mo}_{0.1}\text{O}_3$            | -19     | 3. 7 | 4. 2 |
| Er <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -17     | 3. 4 | 4. 5 |
| $\text{Er}_{0.9}\text{Bi}_{0.1}   \text{Ni}_{0.9}\text{Nb}_{0.1}\text{O}_3$            | -23     | 2.8  | 4. 3 |
| $\text{Er}_{0.9}\text{Bi}_{0.1}   \text{Ni}_{0.9}\text{Ta}_{0.1}\text{O}_3$            | -22     | 3    | 4. 1 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -20     | 1.8  | 4    |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -21     | 2. 9 | 3.8  |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -21     | 3. 1 | 3. 7 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22     | 2. 2 | 4    |
| $Yb_{0.9}Na_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                 | -18 .   | 2.1  | 3. 9 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -25     | 3    | 3. 6 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -24     | 2.8  | 4. 1 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28     | 3. 2 | 3. 9 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -19     | 3. 1 | 4. 6 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -20     | 3 -  | 4. 3 |
| Yb <sub>0.9</sub> Na <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub> | -26     | 2. 4 | 4    |
| $Yb_{0.9}K_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                   | -22     | 2. 9 | 4. 2 |
| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>   | -19     | 3    | 4. 3 |
| $Yb_{0.9}K_{0.1}Ni_{0.9}Cr_{0.1}O_3$                                                   | -17     | 2. 8 | 4. 9 |
| $Yb_{0.9}K_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                  | -20     | 3. 5 | 3. 9 |
| $Yb_{0.9}K_{0.1} Ni_{0.9}Fe_{0.1}O_3$                                                  | -22     | 4    | 4. 2 |
| $Yb_{0.9}K_{0.1} Ni_{0.9}Co_{0.1}O_3$                                                  | -20     | 3. 9 | 4    |
| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub>  | -21     | 2. 1 | 4. 7 |

Table 97

| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub>  | -23                                   | 2. 6 | 4. 6 |
|----------------------------------------------------------------------------------------|---------------------------------------|------|------|
| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>   | -18                                   | 2.8  | 4, 5 |
| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub>  | -28                                   | 2. 7 | 4. 2 |
| Yb <sub>0.9</sub> K <sub>0.1</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>3</sub>  | -19                                   | 3. 1 | 4. 7 |
| $Yb_{0.9}Sr_{0.1} Ni_{0.9}Ti_{0.1}O_3$                                                 | -25                                   | 2. 1 | 4. 1 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -16                                   | 3    | 3.8  |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -20                                   | 2.8  | 4    |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -22                                   | 3. 2 | 4. 6 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24                                   | 3. 1 | 4. 2 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -23                                   | 3    | 4. 5 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -26                                   | 2. 4 | 4. 3 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -28                                   | 2. 8 | 4. 2 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -19                                   | 2. 9 | 4. 1 |
| Yb <sub>0.9</sub> Sr <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -21                                   | 3    | 3.9  |
| $Yb_{0.9}Sr_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -22                                   | 2. 8 | 4    |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>3</sub> | -21                                   | 4    | 3.7  |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>3</sub>  | -29                                   | 3. 9 | 4    |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>3</sub> | -17                                   | 2. 1 | 3.9  |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>3</sub> | -18                                   | 2. 6 | 3. 6 |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -24                                   | 2. 8 | 4. 1 |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22                                   | 2. 7 | 3. 9 |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -21                                   | 3. 9 | 4. 6 |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>3</sub> | -27                                   | 3.8  | 4. 3 |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>3</sub>  | -21                                   | 2. 7 | 4    |
| Yb <sub>0.9</sub> Ca <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -23                                   | 1. 9 | 4. 7 |
| $Yb_{0.9}Ca_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -19                                   | 2.8  | 4. 2 |
| $Yb_{0.9}Bi_{0.1}Ni_{0.9}Ti_{0.1}O_3$                                                  | -23                                   | 3. 7 | 4. 3 |
| $Yb_{0.9}Bi_{0.1}Ni_{0.9}V_{0.1}O_3$                                                   | -24                                   | 3. 4 | 4. 9 |
| $Yb_{0.9}Bi_{0.1}Ni_{0.9}Cr_{0.1}O_3$                                                  | -25                                   | 2.8  | 3. 9 |
| $Yb_{0.9}Bi_{0.1} Ni_{0.9}Mn_{0.1}O_3$                                                 | -16                                   | 3    | 4. 2 |
| Yb <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>3</sub> | -20                                   | 2. 9 | 4    |
| Yb <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>3</sub> | -22                                   | 1.8  | 4. 7 |
| Yb <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>3</sub> | -29                                   | 2. 9 | 4. 6 |
| $Yb_{0.9}Bi_{0.1} Ni_{0.9}Mo_{0.1}O_3$                                                 | -22                                   | 3. 1 | 4. 5 |
| $Yb_{0.9}Bi_{0.1} Ni_{0.9}W_{0.1}O_3$                                                  | -19                                   | 2. 2 | 4. 2 |
| Yb <sub>0.9</sub> Bi <sub>0.1</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>3</sub> | -25                                   | 2. 1 | 4. 7 |
| $Yb_{0.9}Bi_{0.1} Ni_{0.9}Ta_{0.1}O_3$                                                 | -30                                   | 3    | 4.8  |
|                                                                                        | · · · · · · · · · · · · · · · · · · · |      |      |

Table 98

| Composition                                               | Seebeck Coefficient | Electrical<br>Resistivity | Thermal Conductivity |
|-----------------------------------------------------------|---------------------|---------------------------|----------------------|
| $(\operatorname{Ln_sR^3_t})_2\operatorname{Ni_uR^4_vO_w}$ | μV/K (700°C)        | mΩcm (700°C)              | W/mK (700°C)         |
| La <sub>2</sub> NiO <sub>4</sub>                          | -25                 | 6. 1                      | 4. 3                 |
| Ce <sub>2</sub> NiO <sub>4</sub>                          | -28                 | 5                         | 4. 2                 |
| Pr <sub>2</sub> NiO <sub>4</sub>                          | -28                 | 7                         | 4. 3                 |
| Nd <sub>2</sub> NiO <sub>4</sub>                          | -22                 | 4. 9                      | 4. 5                 |
| Sm <sub>2</sub> NiO <sub>4</sub>                          | -20                 | 5                         | 4. 6                 |
| Eu <sub>2</sub> NiO <sub>4</sub>                          | -25                 | 6                         | 4. 7                 |
| Gd₂NiO₄                                                   | -27                 | 5. 2                      | 4. 4                 |
| Dy <sub>2</sub> NiO <sub>4</sub>                          | -30                 | 7                         | 4. 9                 |
| Ho₂NiO₄                                                   | -29                 | 8. 1                      | 4. 7                 |
| Er <sub>2</sub> NiO <sub>4</sub>                          | -30                 | 6. 9                      | 4. 6                 |
| Yb <sub>2</sub> NiO <sub>4</sub>                          | -28                 | 6. 7                      | 4.6                  |
| La <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub>      | -25                 | 6. 9                      | 4. 2                 |
| La <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>       | -18                 | 5. 9                      | 4. 7                 |
| La <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub>      | -22                 | 6. 3                      | 4.8                  |
| La <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub>      | -10                 | 7                         | 4. 1                 |
| La <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub>      | -26                 | 7. 1                      | 3.8                  |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub>      | -19                 | 7                         | 4. 6                 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>       | -17                 | 6. 8                      | 4. 2                 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub>      | -23                 | 6. 9                      | 4. 5                 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub>      | -22                 | 6. 7                      | 4. 3                 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub>      | -18                 | 7. 1                      | 4. 1                 |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub>      | -21                 | 6. 3                      | 4                    |
| Pr <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>       | -21                 | 7. 1                      | . 3.8                |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub>      | -22                 | 6. 4                      | 3. 7                 |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub>      | -18                 | 5. 9                      | 4                    |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub>      | -25                 | 6. 4                      | 3. 9                 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub>      | -28                 | 7                         | 4. 1                 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>       | -19                 | 6. 8                      | 3. 9                 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub>      | -20                 | 7. 1                      | 4. 6                 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub>      | -26                 | 6. 8                      | 4. 3                 |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub>      | -23                 | 5. 9                      | 4                    |

Table 99

| Sm <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -19 | 7    | 4. 2 |
|------------------------------------------------------|-----|------|------|
| Sm <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -17 | 6. 8 | 4. 3 |
| Sm <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -20 | 5    | 4. 9 |
| Sm <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -22 | 7    | 3. 9 |
| Sm <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -20 | 4. 9 | 4. 2 |
|                                                      |     |      |      |
| Eu <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -23 | 6    | 4. 7 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -18 | 5. 2 | 4. 6 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -28 | 7    | 4. 5 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -19 | 8. 1 | 4. 2 |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -24 | 6. 9 | 4. 7 |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -16 | 7. 2 | 4. 1 |
| Gd <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -20 | 6. 9 | 3.8  |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -22 | 5. 9 | 4    |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -24 | 6. 3 | 4. 6 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -23 | 7    | 4. 2 |
| 041.8010.24104                                       |     | •    | 1. 4 |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -28 | 7. 3 | 4. 3 |
| Dy <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -19 | 7    | 4. 2 |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -21 | 6.8  | 4. 1 |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -22 | 6. 9 | 3. 9 |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -24 | 6. 7 | 4    |
|                                                      |     |      |      |
| Ho <sub>l.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -29 | 5. 8 | 3. 7 |
| Ho <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -17 | 6. 3 | 4    |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -18 | 7. 1 | 3. 9 |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -24 | 6. 4 | 3. 6 |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -22 | 5. 9 | 4. 1 |
|                                                      |     |      |      |
| Er <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -27 | 7. 1 | 4. 6 |
| Er <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>  | -25 | 7    | 4. 3 |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub> | -30 | 6. 8 | 4    |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub> | -28 | 7. 1 | 4. 7 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub> | -24 | 6. 8 | 4. 2 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> NiO <sub>4</sub> | -25 | 5. 9 | 4. 3 |
|                                                      |     |      |      |

Table 100

| <del></del>                                                        | <del></del> | <del>                                     </del> |      |
|--------------------------------------------------------------------|-------------|--------------------------------------------------|------|
| Yb <sub>1.8</sub> K <sub>0.2</sub> NiO <sub>4</sub>                | -16         | 6. 5                                             | 4. 9 |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> NiO <sub>4</sub>               | -20         | 7                                                | 3. 9 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> NiO <sub>4</sub>               | -22         | 6.8                                              | 4. 2 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> NiO <sub>4</sub>               | -24         | 5. 8                                             | 4    |
| La <sub>2</sub> Ni <sub>1.8</sub> Ti <sub>0.2</sub> O <sub>4</sub> | -26         | 7.1                                              | 4. 6 |
| La <sub>2</sub> Ni <sub>1.8</sub> V <sub>0.2</sub> O <sub>4</sub>  | -28         | 6. 4                                             | 4. 5 |
| La <sub>2</sub> Ni <sub>1.8</sub> Cr <sub>0.2</sub> O <sub>4</sub> | -19         | 5. 9                                             | 4. 2 |
| La <sub>2</sub> Ni <sub>1.8</sub> Mn <sub>0.2</sub> O <sub>4</sub> | -21         | 6. 4                                             | 4. 7 |
| La <sub>2</sub> Ni <sub>1.8</sub> Fe <sub>0.2</sub> O <sub>4</sub> | -22         | 7. 1                                             | 4.8  |
| La <sub>2</sub> Ni <sub>1.8</sub> Co <sub>0.2</sub> O <sub>4</sub> | -24         | 7                                                | 4. 1 |
| La <sub>2</sub> Ni <sub>1.8</sub> Cu <sub>0.2</sub> O <sub>4</sub> | -21         | 6.8                                              | 3. 8 |
| La <sub>2</sub> Ni <sub>1.8</sub> Mo <sub>0.2</sub> O <sub>4</sub> | -29         | 7.1                                              | 4    |
| La <sub>2</sub> Ni <sub>1.8</sub> W <sub>0.2</sub> O <sub>4</sub>  | -17         | 6.8                                              | 4. 7 |
| La <sub>2</sub> Ni <sub>1.8</sub> Nb <sub>0.2</sub> O <sub>4</sub> | -18         | 5. 9                                             | 4. 6 |
| La <sub>2</sub> Ni <sub>1.8</sub> Ta <sub>0.2</sub> O <sub>4</sub> | -24         | 6. 5                                             | 4. 5 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -21         | 5                                                | 4. 7 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -27         | 7                                                | 4.8  |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -25         | 4. 9                                             | 4. 1 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -30         | 5                                                | 3. 8 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28         | 6                                                | 4. 1 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -27         | 5. 2                                             | 3. 9 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -25         | 7                                                | 4. 6 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -18         | 8. 1                                             | 4. 3 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -22         | 6. 9                                             | 4    |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -10         | 6.7                                              | 4. 7 |
| Ce <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -26         | 7. 2                                             | 4. 2 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -19         | 5. 9                                             | 4. 9 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -17         | 6. 3                                             | 3. 9 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -23         | 7                                                | 4. 2 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -22         | 7. 1                                             | 4    |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -18         | 7.3                                              | 4. 7 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -20         | 7                                                | 4. 6 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -21         | 6.8                                              | 4. 5 |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21         | 6. 9                                             | 4. 2 |

Table 101

| Pr <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 7 | 4. 7 |
|--------------------------------------------------------------------|-----|------|------|
| Pr <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18 | 7.1  | 4.8  |
| Pr <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -25 | 5. 8 | 4. 1 |
|                                                                    |     |      |      |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -28 | 7. 1 | 4    |
| Nd <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -19 | 6. 4 | 4. 6 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 9 | 4. 2 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -26 | 6. 4 | 4. 5 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -23 | 7. 1 | 4. 3 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 4. 1 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -19 | 6.8  | 3. 9 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -17 | 7. 1 | 4    |
| Nd <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -20 | 6.8  | 3.8  |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22 | 5. 9 | 3. 7 |
| Nd <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 5 | 4    |
|                                                                    |     |      |      |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -23 | 6.8  | 3. 6 |
| $Sm_2Ni_{0.9}V_{0.1}O_4$                                           | -18 | 5    | 4. 1 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -28 | 7    | 3. 9 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 4. 9 | 4. 6 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -24 | 5    | 4. 3 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -25 | 6    | 4    |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -16 | 5. 2 | 4. 7 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -20 | 7    | 4. 2 |
| $Sm_2Ni_{0.9}W_{0.1}O_4$                                           | -22 | 8. 1 | 4. 3 |
| Sm <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 9 | 4. 9 |
| $Sm_2Ni_{0.9}Ta_{0.1}O_4$                                          | -23 | 6. 7 | 3. 9 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -26 | 7. 2 | 4. 2 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -28 | 6. 9 | 4    |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19 | 5. 9 | 4. 7 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -21 | 6. 3 | 4. 6 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 4. 5 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 1 | 4. 2 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 3 | 4. 7 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -29 | 7    | 4.8  |
| Eu <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -17 | 6.8  | 4. 1 |
| Eu <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 9 | 3.8  |

Table 102

| Eu <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 7 | 4    |
|--------------------------------------------------------------------|-----|------|------|
|                                                                    |     |      |      |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -21 | 5. 8 | 4. 2 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -27 | 6. 3 | 4.3  |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4. 5 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 4 | 4.6  |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -19 | 5. 9 | 4.7  |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 4 | 4. 4 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 1 | 4.9  |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -25 | 7    | 4. 7 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -16 | 6.8  | 4. 6 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20 | 7. 1 | 4. 6 |
| Gd <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 6.8  | 4. 5 |
| $Dy_2Ni_{0.9}Ti_{0.1}O_4$                                          | -10 | 6. 5 | 4. 7 |
| Dy <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -26 | 7    | 4.8  |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -20 | 6.8  | 4. 1 |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 5.8  | 3.8  |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -17 | 6. 3 | 4    |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -23 | 7. 1 | 4.6  |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 4 | 4. 2 |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -18 | 5. 9 | 4.5  |
| Dy <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -20 | 6. 4 | 4. 3 |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4. 1 |
| Dy <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -21 | 7    | 3. 9 |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -18 | 7.1  | 3.8  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -25 | 6.8  | 3.7  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -24 | 5. 9 | 4    |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -28 | 5    | 3.9  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -19 | 7    | 3.6  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -20 | 4. 9 | 4. 1 |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -26 | 5    | 3.9  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -23 | 6    | 4.6  |
| Ho <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -22 | 5. 2 | 4. 3 |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -19 | 7    | 4    |
| Ho <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -17 | 8. 1 | 4. 7 |

Table 103

|                                                                                        |             | . • • |             |
|----------------------------------------------------------------------------------------|-------------|-------|-------------|
| Er <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>                     | -22         | 6. 7  | 4.3         |
| Er <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>                      | -20         | 7. 2  | 4.9         |
| Er <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>                     | -21         | 6. 9  | 3.9         |
| Er <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>                     | -23         | 5. 9  | 4. 2        |
| Er <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>                     | -18         | 6. 3  | 4           |
| Er <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>                     | -28         | 7     | 4.7         |
| Er <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>                     | -19         | 7. 1  | 4.6         |
| Er <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>                     | -24         | 7. 3  | 4.5         |
| Er <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>                      | -25         | 7     | 4. 2        |
| Er <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>                     | -16         | 6.8   | 4.7         |
| Er <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>                     | -20         | 6.9   | 4.8         |
|                                                                                        |             |       |             |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>                     | -24         | 7. 1  | 3.8         |
| Yb <sub>2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>                      | -23         | 5. 8  | 4           |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>                     | -26         | 6. 3  | 4.6         |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>                     | -28         | 7. 1  | 4. 2        |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>                     | -19         | 6. 4  | 4. 5        |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>                     | 21          | 5. 9  | 4. 3        |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>                     | -22         | 6. 4  | 4. 2        |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>                     | -24         | 7. 1  | 4. 1        |
| Yb <sub>2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>                      | -21         | 7     | 3.9         |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>                     | -29         | 6.8   | 4           |
| Yb <sub>2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>                     | -17         | 7. 1  | 3.8         |
|                                                                                        |             |       |             |
| $La_{1.8}Na_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -24         | 5. 9  | 4           |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -22         | 6. 5  | 3. 9        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21         | 7     | 3. 6        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -30         | 6.8   | 4. 1        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -29         | 5     | 3. 9        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -30         | 7     | 4.6         |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -28         | 4. 9  | 4. 3        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -27         | 5     | 4           |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -25         | 6     | 4.7         |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18         | 5. 2  | 4. 4        |
| La <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22         | 7     | 4. 9        |
| ·                                                                                      | <del></del> |       | <del></del> |

Table 104

| $La_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                   | -26 | 6. 9   | 4.6  |
|----------------------------------------------------------------------------------------|-----|--------|------|
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -20 | 6. 7   | 4.6  |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -19 | 7. 2   | 4.5  |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -17 | 6. 9   | 4. 2 |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -23 | 5. 9   | 4. 7 |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 3   | 4.8  |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -18 | 7      | 4. 1 |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -20 | 7. 1   | 3.8  |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -21 | 7. 3   | 4    |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -21 | 7      | 4.6  |
| La <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -22 | 6.8    | 4. 2 |
|                                                                                        |     |        |      |
| $La_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -25 | 6. 7   | 4. 3 |
| $La_{1.8}Sr_{0.2}Ni_{0.9}V_{0.1}O_{4}$                                                 | -24 | 7. 1   | 4. 1 |
| $La_{1.8}Sr_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                  | -28 | 5. 8   | 3. 9 |
| La <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 3   | 4    |
| $La_{1.8}Sr_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -20 | · 7. 1 | 3.8  |
| La <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -26 | 6. 4   | 3. 7 |
| $La_{1.8}Sr_{0.2}Ni_{0.9}Cu_{0.1}O_4$                                                  | -23 | 5. 9   | 4    |
| La <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 4   | 3. 9 |
| $La_{1.8}Sr_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -19 | 7. 1   | 3. 6 |
| La <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -17 | 7      | 4. 1 |
| $La_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -20 | 6.8    | 3.9  |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 8   | 4. 3 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 5. 9   | 4    |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 5   | 4. 7 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -18 | 7      | 4. 2 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28 | 6.8    | 4. 3 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -19 | 5. 8   | 4.9  |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 3   | 3.9  |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -25 | 7. 1   | 4. 2 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -16 | 6. 4   | 4    |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 9   | 4. 7 |
| La <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 4 · | 4.6  |
|                                                                                        |     |        |      |
| $La_{1.8}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -23 | 7      | 4. 2 |

Table 105

| $La_{1.8}Bi_{0.2}Ni_{0.9}V_{0.1}O_4$                                                   | -26 | 6. 8 | 4. 7 |
|----------------------------------------------------------------------------------------|-----|------|------|
| $La_{1.8}Bi_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                  | -28 | 7. 1 | 4.8  |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 8 | 4. 1 |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -21 | 5. 9 | 3.8  |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 5 | 4    |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 7    | 4. 6 |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 5    | 4. 2 |
| $La_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -29 | 7    | 4. 5 |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -17 | 4. 9 | 4. 3 |
| La <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -18 | 5    | 4. 2 |
|                                                                                        |     |      |      |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22 | 5. 2 | 3. 9 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 7    | 4    |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -27 | 8. 1 | 3.8  |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -25 | 6. 9 | 3. 7 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -30 | 6. 7 | 4    |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -28 | 7. 2 | 3.9  |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 9 | 3. 6 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -25 | 5. 9 | 4. 1 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -16 | 6. 3 | 3. 9 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20 | 7    | 4. 6 |
| Ce <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 7. 1 | 4. 3 |
|                                                                                        |     |      |      |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -23 | 7    | 4    |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -26 | 6.8  | 4. 7 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -28 | 5. 2 | 4. 2 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -19 | 7    | 4. 3 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -21 | 8. 1 | 4. 9 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 9 | 3. 9 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -24 | 6. 7 | 4. 2 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -21 | 7. 2 | 4    |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -29 | 6. 9 | 4. 7 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -17 | 5. 9 | 4. 6 |
| Ce <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -18 | 6. 3 | 4. 5 |
| o o vi ti o                                                                            |     |      |      |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22 | 7. 1 | 4. 7 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 7. 3 | 4. 8 |

Table 106

|                                                                                        |     | -00  |      |
|----------------------------------------------------------------------------------------|-----|------|------|
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -27 | 7. 0 | 4. 1 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -25 | 6.8  | 3. 8 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -30 | 6. 9 | 4    |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 7 | 4.6  |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -27 | 7. 1 | 4. 2 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -25 | 5. 8 | 4. 5 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -18 | 6. 3 | 4. 3 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22 | 7. 1 | 4. 2 |
| Ce <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -10 | 6. 4 | 4. 1 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 4 | 4    |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -22 | 7. 1 | 3.8  |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19 | 7    | 3. 7 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 6.8  | 4    |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -20 | 7. 1 | 3. 9 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 6.8  | 3. 6 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 9 | 4. 1 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 6.5  | 3. 9 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -23 | 7    | 4. 6 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18 | 6.8  | 4. 3 |
| Ce <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -28 | 5    | 4    |
|                                                                                        |     |      |      |
| $Ce_{1.9}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -24 | 4. 9 | 4.2  |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -25 | 5    | 4. 3 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -16 | 6    | 4. 9 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 2 | 3. 9 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 4. 2 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24 | 8. 1 | 4    |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 9 | 4. 7 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -26 | 6. 7 | 4. 6 |
| $Ce_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -28 | 7. 2 | 4. 5 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 9 | 4. 2 |
| Ce <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -21 | 5. 9 | 4. 7 |
| D. N. N. T. O                                                                          | 0.4 |      |      |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24 | 7    | 4.1  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 7. 1 | 3.8  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -29 | 7. 3 | 4    |

Table 107

| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 7    | 4. 7  |
|----------------------------------------------------------------------------------------|-----|------|-------|
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 8 | 4. 6  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 9 | 4. 5  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 7 | 4. 2  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4. 7  |
| $Pr_{1.8}Na_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -27 | 5. 8 | 4.8   |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -25 | 6. 3 | 4. 1  |
| Pr <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -30 | 7. 1 | 3.8   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -24 | 5. 9 | 3.9   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -25 | 6. 4 | 4.6   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -16 | 7. 1 | 4. 3  |
| $Pr_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$                                                   | -20 | 7    | 4     |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -22 | 6.8  | 4.7   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -24 | 7. 1 | 4. 2  |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -23 | 6.8  | 4. 3  |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -26 | 5. 9 | 4.9   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -28 | 6. 5 | 3.9   |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -19 | 7    | 4. 2  |
| Pr <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -21 | 6. 8 | 4     |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 3 | 4.6   |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 7. 1 | 4. 5  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -29 | 6. 4 | 4. 2  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 5. 9 | 4. 7  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 4 | 4. 8  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 1 | 4. 1  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 3.8   |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 6.8  | 4     |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -27 | 7. 1 | 4.6   |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -25 | 6. 8 | 4. 2  |
| Pr <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -30 | 5. 9 | 4. 5  |
| 1.01-0.21 0.5-50.1-4                                                                   |     |      | 2.0   |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -27 | 7    | 4. 1  |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -25 | 4. 9 | . 3.9 |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -18 | 5. 0 | 4     |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 0 | 3.8   |
|                                                                                        |     |      |       |

Table 108

| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -10 | 5. 2 | 3. 7 |
|----------------------------------------------------------------------------------------|-----|------|------|
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -26 | 7.0  | 4    |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -20 | 8. 1 | 3.9  |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 9 | 3.6  |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -17 | 6. 7 | 4. 1 |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -23 | 7.2  | 3.9  |
| Pr <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 9 | 4. 6 |
|                                                                                        |     |      |      |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 3 | 4    |
| $Pr_{1.8}Bi_{0.2}Ni_{0.9}V_{0.1}O_4$                                                   | -21 | 7    | 4. 7 |
| $Pr_{1.8}Bi_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                  | -21 | 7. 1 | 4. 2 |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -22 | 7.3  | 4.3  |
| $Pr_{1.9}Bi_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -18 | 7    | 4. 9 |
| $Pr_{1.8}Bi_{0.2}Ni_{0.9}Co_{0.1}O_4$                                                  | -25 | 6.8  | 3. 9 |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 6. 9 | 4. 2 |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 7 | 4    |
| $Pr_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -19 | 7. 1 | 4. 7 |
| Pr <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 8 | 4. 6 |
| $Pr_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -26 | 6. 3 | 4. 5 |
|                                                                                        |     |      |      |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 4 | 4. 7 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -19 | 5. 9 | 4. 8 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -17 | 6. 4 | 4. 1 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -20 | 7. 1 | 3. 8 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 4    |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 8 | 4. 3 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4. 2 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 8 | 4. 3 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -18 | 5. 9 | 4. 5 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 5 | 4. 6 |
| Nd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -19 | 7    | 4. 7 |
| NI W NI TI O                                                                           | 0.5 |      |      |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -25 | 5    | 4. 9 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -16 | 7    | 4. 7 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -20 | 4. 9 | 4. 6 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -22 | · 5  | 4. 6 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -24 | 6    | 4. 5 |

Table 109

| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>    | -23 | 5. 2 | 4. 2 |
|------------------------------------------------------------------------------------------|-----|------|------|
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>    | -26 | 7    | 4. 7 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>    | -28 | 8. 1 | 4.8  |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>     | -19 | 6. 9 | 4. 1 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>    | -21 | 6. 7 | 3. 8 |
| Nd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>    | -22 | 7. 2 | 4    |
|                                                                                          |     |      |      |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>   | -21 | 5. 9 | 4. 2 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>    | -29 | 6. 3 | 4. 5 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>   | -17 | 7    | 4. 3 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>   | -18 | 7. 1 | 4. 1 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>   | -24 | 7. 3 | 3. 9 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>   | -22 | 7    | 4    |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>   | -21 | 6.8  | 3. 8 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>   | -27 | 6. 9 | 3. 7 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>    | -21 | 6. 7 | 4    |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>   | -23 | 7. 1 | 3. 9 |
| Nd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>   | -19 | 5. 8 | 3. 6 |
|                                                                                          |     |      |      |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>   | -24 | 7.1  | 3.9  |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>    | -25 | 6. 4 | 4. 6 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>   | -16 | 5. 9 | 4. 3 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>   | -20 | 6. 4 | 4    |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>   | -22 | 7. 1 | 4. 7 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>   | -22 | 7    | 4. 2 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>   | -10 | 6.8  | 4. 3 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>   | -26 | 7. 1 | 4.9  |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>    | -20 | 6.8  | 3. 9 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> • | -19 | 5. 9 | 4. 2 |
| Nd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>   | -17 | 6. 5 | 4    |
|                                                                                          | ,   |      |      |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>   | -22 | 6.8  | 4. 6 |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>    | -18 | 5. 8 | 4. 5 |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>   | -20 | 6. 3 | 4. 2 |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>   | -21 | 7. 1 | 4. 7 |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>   | -21 | 6. 4 | 4.8  |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>   | -22 | 5. 9 | 4. 1 |
|                                                                                          |     |      |      |

Table 110

| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 4 | 3.8   |
|----------------------------------------------------------------------------------------|-----|------|-------|
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -25 | 7. 1 | 4     |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -24 | 7    | 4. 6  |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 8 | 4. 2  |
| Nd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -19 | 7. 1 | 4. 5  |
|                                                                                        |     |      |       |
| $Sm_{1.8}Na_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -26 | 5. 9 | 4. 2  |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -23 | 6. 5 | 4. 1  |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 3. 9  |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 5    | 4     |
| $Sm_{1.8}Na_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -17 | 7    | 3.8   |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -20 | 4. 9 | 3. 7  |
| $Sm_{1.8}Na_{0.2}Ni_{0.9}Cu_{0.1}O_4$                                                  | -22 | 5    | 4     |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -20 | 6    | , 3.9 |
| $Sm_{1.8}Na_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -21 | 5. 2 | 3.6   |
| Sm <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -23 | 7    | 4. 1  |
| $Sm_{1.8}Na_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -18 | 8. 1 | 3. 9  |
|                                                                                        |     |      |       |
| $Sm_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                   | -19 | 6. 7 | 4. 3  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -24 | 7. 2 | 4     |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -25 | 6. 9 | 4. 7  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -16 | 5. 9 | 4. 4  |
| $Sm_{1.8}K_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                   | -20 | 6. 3 | 4. 9  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -22 | 7    | 4. 7  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -24 | 7. 1 | 4. 6  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -23 | 7. 3 | 4. 6  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -26 | 7    | 4. 5  |
| Sm <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -28 | 7. 1 | 4. 2  |
| $Sm_{1.8}K_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                   | -19 | 6. 4 | 4. 7  |
|                                                                                        |     |      |       |
| $Sm_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -22 | 6. 4 | 4. 1  |
| $Sm_{1.8}Sr_{0.2}Ni_{0.9}V_{0.1}O_4$                                                   | -24 | 7. 1 | 3. 8  |
| Sm <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21 | 7    | 4     |
| Sm <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -29 | 6. 8 | 4. 6  |
| $Sm_{1.8}Sr_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -17 | 7. 1 | 4. 2  |
| $Sm_{1.8}Sr_{0.2}Ni_{0.9}Co_{0.1}O_4$                                                  | -18 | 6. 8 | 4. 5  |
| $Sm_{1.8}Sr_{0.2}Ni_{0.9}Cu_{0.1}O_4$                                                  | -24 | 5. 9 | 4. 3  |
|                                                                                        |     |      |       |

Table 111

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | C. C. N. M. O                                                                              |          |      | ,    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------|------|------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>     | -22      | 5. 0 | 4. 1 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                            |          |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                            |          |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                      | -20      | 5. 0 | 3. 8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                            |          |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Ca_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                      | -20      | 5. 2 | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Ca_{0.2}Ni_{0.9}V_{0.1}O_4$                                                       | -21      | 7    | 3. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Ca_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                      | -23      | 8. 1 | 3. 6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>     | -18      | 6. 9 | 3. 8 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>     | -28      | 6. 7 | 3. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>     | -19      | 7. 2 | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>     | -24      | 6. 9 | 3. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>     | -25      | 5. 9 | 3. 6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>      | -16      | 6. 3 | 4. 1 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>     | -20      | 7    | 3. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>     | -22      | 7. 1 | 4. 6 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | -                                                                                          |          |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                      | -23      | 7    | 4    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                            | -26      | 6.8  | 4. 7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | $Sm_{1.8}Bi_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                      | -28      | 6. 9 | 4. 2 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>     | -19      | 6. 7 | 4. 3 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>     | -21      | 7. 1 | 4. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>     | -22      | 5. 8 | 3. 9 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>     | -24      | 6. 3 | 4. 2 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1. 9</sub> Bi <sub>0. 2</sub> Ni <sub>0. 9</sub> Mo <sub>0. 1</sub> O <sub>4</sub> | -21      | 7. 1 | 4    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>      | -29      | 6. 4 | 4. 7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>     | -17      | 5. 9 | 4. 6 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Sm <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>     | -18      | 6. 4 | 4. 5 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                  |                                                                                            | •        |      |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>     | -22      | 7. 0 | 4. 7 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                 | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>      | <u> </u> |      | 4.8  |
| $Eu_{1.8}Na_{0.2}Ni_{0.9}Fe_{0.1}O_4$ $-30$ $5.9$ $4$ $Eu_{1.8}Na_{0.2}Ni_{0.9}Co_{0.1}O_4$ $-28$ $6.5$ $4.3$ $Eu_{1.8}Na_{0.2}Ni_{0.9}Cu_{0.1}O_4$ $-27$ $7.0$ $4.2$ | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>     | -30      | 7. 1 | 4. 1 |
| $Eu_{1.8}Na_{0.2}Ni_{0.9}Co_{0.1}O_4$ $-28$ $6.5$ $4.3$ $Eu_{1.8}Na_{0.2}Ni_{0.9}Cu_{0.1}O_4$ $-27$ $7.0$ $4.2$                                                       |                                                                                            | -29      | 6. 8 | 3. 8 |
| $Eu_{1.8}Na_{0.2}Ni_{0.9}Cu_{0.1}O_4$ -27 7.0 4.2                                                                                                                     | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>     | -30      | 5. 9 | 4    |
|                                                                                                                                                                       |                                                                                            | -28      | 6. 5 | 4. 3 |
| $Eu_{1.8}Na_{0.2}Ni_{0.9}Mo_{0.1}O_4$ -25 6.8 4.3                                                                                                                     | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>     | -27      | 7. 0 | 4. 2 |
|                                                                                                                                                                       | Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>     | -25      | 6.8  | 4. 3 |

Table 112

| Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -18  | 5. 0 | 4. 5 |
|----------------------------------------------------------------------------------------|------|------|------|
| Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22  | 7. 0 | 4. 6 |
| Eu <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -10  | 4. 9 | 4. 7 |
|                                                                                        |      |      |      |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -20  | 6. 0 | 4. 9 |
| $Eu_{1.8}K_{0.2}Ni_{0.9}V_{0.1}O_4$                                                    | -19  | 5, 2 | 4. 7 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -17  | 7    | 4. 6 |
| $Eu_{1.8}K_{0.2}Ni_{0.9}Mn_{0.1}O_4$                                                   | -23  | 8. 1 | 4. 6 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -22  | 6. 9 | 4. 5 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -18  | 6. 7 | 4. 2 |
| $Eu_{1.8}K_{0.2}Ni_{0.9}Cu_{0.1}O_4$                                                   | -20  | 7. 2 | 4. 7 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -21  | 6. 9 | 4.8  |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -21  | 5. 9 | 4. 1 |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -22  | 6. 3 | 3.8  |
| Eu <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -18  | 7    | 4    |
| E C N: T: O                                                                            | 0.4  |      |      |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24  | 7.3  | 4. 2 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -28  | 7    | 4. 5 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19  | 6.8  | 4. 3 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -20  | 6. 9 | 4. 1 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -26  | 6. 7 | 3. 9 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -23  | 7. 1 | 4    |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22  | 5. 8 | 3.8  |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -19  | 6. 3 | 3. 7 |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -17  | 7. 1 | 4    |
| Eu <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20  | 6. 4 | 3. 9 |
| $Eu_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -22  | 5. 9 | 3. 6 |
| Fu Co Ni Ti O                                                                          | _01  | 7 1  | 2.0  |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -21. | 7. 1 | 3. 9 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -23  | 7    | 4. 6 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -18  | 6.8  | 4. 3 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -28  | 7. 1 | 4    |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -19  | 6. 8 | 4. 7 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24  | 5. 9 | 4. 2 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -25  | 6. 5 | 4. 3 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -16  | 7    | 4. 9 |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -20  | 6. 8 | 3. 9 |
|                                                                                        |      |      |      |

Table 113

|                                                                                        | TGDIC I           | 19   |          |
|----------------------------------------------------------------------------------------|-------------------|------|----------|
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22               | 5. 8 | 4. 2     |
| Eu <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -24               | 6. 3 | 4        |
|                                                                                        |                   |      |          |
| $Eu_{1.8}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -26               | 6. 4 | 4. 6     |
| $Eu_{1.8}Bi_{0.2}Ni_{0.9}V_{0.1}O_4$                                                   | -28               | 5. 9 | 4. 5     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19               | 6. 4 | 4. 2     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -21               | 7. 1 | 4. 7     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22               | 7    | 4. 8     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24               | 6. 8 | 4. 1     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -21               | 7. 1 | 3.8      |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -29               | 6. 8 | 4        |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -17               | 5. 9 | 4. 6     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18               | 6. 5 | 4. 2     |
| Eu <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -24               | 7    | 4. 5     |
|                                                                                        |                   |      |          |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -21               | 7    | 4. 2     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -27               | 4. 9 | 4. 1     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -25               | 5    | 3. 9     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -30               | 6    | 4        |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28               | 5. 2 | 3. 8     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24               | 7    | 3. 7     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -25               | 8. 1 | 4        |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -16               | 6. 9 | 3. 9     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -20               | 6. 7 | 3. 6     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22               | 7. 2 | 4. 1     |
| Gd <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -24               | 6. 9 | 3.9      |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -26               | 6. 3 | 4. 3     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -28               | . 7  | 4        |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -19               | 7. 1 | 4. 7     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -21               | 7. 3 | 4. 4     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -22               | 7    | 4. 9     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -24               | 6.8  | 4. 7     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -21               | 5. 2 | 4. 6     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -29               | 7    | 4. 6     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -17               | 8. 1 | 4. 5     |
| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -18               | 6. 9 | 4. 2     |
| ·                                                                                      | <del> 1 !</del> . |      | <u> </u> |

Table 114

| Gd <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -24 | 6. 7  | 4.7  |
|----------------------------------------------------------------------------------------|-----|-------|------|
|                                                                                        |     |       |      |
| $Gd_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -21 | 6. 9  | 4. 1 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -27 | 5. 9  | 3.8  |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -25 | 6. 3  | 4    |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -30 | 7     | 4. 6 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28 | 7. 1  | 4. 2 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -27 | 7. 3  | 4. 5 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -25 | 7     | 4. 3 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 8  | 4. 1 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 9  | 3. 9 |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -10 | 6. 7  | 4    |
| Gd <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -26 | 7. 1  | 3.8  |
|                                                                                        |     |       |      |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 1  | 4    |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 8  | 3. 9 |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21 | 5. 9  | 4. 1 |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -27 | 6. 5  | 3.8  |
| $Gd_{1.8}Ca_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -25 | 7     | 4    |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -30 | 6. 8  | 4.6  |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -28 | 5     | 4. 2 |
| $Gd_{1.8}Ca_{0.2}Ni_{0.9}Mo_{0.1}O_4$                                                  | -27 | 7     | 4. 5 |
| $Gd_{1.8}Ca_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -25 | 4. 9  | 4. 3 |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18 | 5     | 4. 2 |
| Gd <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 6     | 4. 1 |
| C1 D: N: T: O                                                                          |     |       |      |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -26 | 7     | 4    |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -20 | 8. 1  | 3.8  |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19 | • 6.9 | 3. 7 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 6. 7  | 4    |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -23 | 7. 2  | 3. 9 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 9  | 3. 6 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -18 | 5. 9  | 4. 1 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 3  | 3. 9 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -21 | 7     | 4. 6 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1  | 4. 3 |
| Gd <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -22 | 7.3   | 4    |

Table 115

| $Dy_{1.9}Na_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -25 | 6.8   | 4. 4                                  |
|----------------------------------------------------------------------------------------|-----|-------|---------------------------------------|
| $Dy_{1.8}Na_{0.2}Ni_{0.9}V_{0.1}O_4$                                                   | -24 | 6. 9  | 4. 9                                  |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 7  | 4. 7                                  |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 7. 1  | 4. 6                                  |
| Dy <sub>1.9</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -20 | 5. 8  | 4. 6                                  |
| Dy <sub>1.9</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -26 | 6. 3  | 4.5                                   |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -23 | 7. 1  | 4. 2                                  |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 4  | 4.7                                   |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -19 | 5. 9  | 4.8                                   |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -17 | 6. 4  | 4. 1                                  |
| Dy <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -20 | 7. 1  | 3.8                                   |
|                                                                                        |     |       |                                       |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -20 | 6.8   | 4. 6                                  |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -21 | 7. 1  | 4. 2                                  |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -23 | 6. 8  | 4.5                                   |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -18 | 5. 9  | 4. 3                                  |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -28 | 6. 5  | 4. 1                                  |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -19 | 7     | 3.9                                   |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -24 | 6.8   | 4                                     |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -25 | 5. 8  | 3.8                                   |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -16 | 6. 3  | 3.7                                   |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -20 | 7. 1  | 4                                     |
| Dy <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 4  | 3.9                                   |
|                                                                                        |     |       |                                       |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 4  | 3.8                                   |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -26 | 7. 1  | 3. 7                                  |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -28 | 7     | 4                                     |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 8  | 3. 9                                  |
| $Dy_{1.8}Sr_{0.2}Ni_{0.9}Fe_{0.1}O_4$                                                  | -21 | 7.1 • | 3. 6                                  |
| $Dy_{1.8}Sr_{0.2}Ni_{0.9}Co_{0.1}O_4$                                                  | -22 | 6.8   | 4. 1                                  |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 5. 9  | 3. 9                                  |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 6. 5  | 4.6                                   |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -29 | 7.0   | 4. 3                                  |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -17 | 5. 0  | 4                                     |
| Dy <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -18 | 7.0   | 4. 7                                  |
|                                                                                        |     |       | · · · · · · · · · · · · · · · · · · · |

Table 116

|                                                                                        |       | · <del>-</del> - |       |
|----------------------------------------------------------------------------------------|-------|------------------|-------|
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22   | 5. 0             | 4. 3  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21   | 6. 0             | 4. 9  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -27   | 5. 2             | 3. 9  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -21   | 7. 0             | 4. 2  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -23   | 8. 1             | 4     |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -19   | 6. 9             | 4.7   |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -23   | 6. 7             | 4. 6  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -24   | 7. 2             | 4. 5  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -25 . | 6.9              | 4. 2  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -16   | 5. 9             | 4. 7  |
| Dy <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -20   | 6.3              | 4. 8  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22   | 7.1              | 3.8   |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -10   | 7.3              | 4     |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -26   | 7                | 4. 3  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -20   | 7.1              | 4. 2  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -19   | 6. 4             | 4. 3  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -17   | 5. 9             | 4. 5  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -23   | 6. 4             | 4. 6  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -22   | 7. 1             | 4. 7  |
| $Dy_{1.8}Bi_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -18   | 7                | 4. 4  |
| Dy <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -20   | 6.8              | 4. 9  |
| $Dy_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -21   | 7.1              | 4. 7  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22   | 5. 9             | 4.6   |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -18   | 5                | 4. 5  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -25   | 7                | 4. 2  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -24   | 4. 9             | 4. 7  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28   | 5                | - 4.8 |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -19   | 6                | 4. 1  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -20   | 5. 2             | 3.8   |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -26   | 7                | 4     |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -23   | 8. 1             | 4. 6  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -22   | 6. 9             | 4. 2  |
| Ho <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -19   | 6. 7             | 4. 5  |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -20   | 6. 9             | 4. 1  |
| 1.8**0.2***0.1*4                                                                       | L     | 0. 5             | 4. 1  |

Table 117

|                                                                                        |                 | T    |               |
|----------------------------------------------------------------------------------------|-----------------|------|---------------|
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -22             | 5. 9 | 3. 9          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -20             | 6. 3 | 4             |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -21             | 7    | 3. 8          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -23             | 7. 1 | 3. 7          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -18             | 7. 3 | 4             |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -28             | 7    | 3. 9          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -19             | 6.8  | 3. 6          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -24             | 6. 9 | 4. 1          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | <del>-</del> 25 | 6. 7 | 3. 9          |
| Ho <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -16             | 7. 1 | 4. 6          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22             | 6. 3 | 4             |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -24             | 7.1  | 4.7           |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -23             | 6. 4 | 4. 2          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -26             | 5. 9 | 4. 3          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -28             | 6. 4 | 4. 9          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -19             | 7. 1 | 4             |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -21             | 7    | 3.8           |
| $Ho_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$                                                  | -22             | 6.8  | 3. 7          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -24             | 7. 1 | 4             |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -21             | 6.8  | 3. 9          |
| Ho <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -29             | 5. 9 | 4. 1          |
|                                                                                        |                 |      |               |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -18             | 7    | 4             |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -24             | 6.8  | 4. 6          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -22             | 5    | 4. 2          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -21             | 7    | 4. 5          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -30             | 4. 9 | 4. 3          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -20             | 5 ·  | <b>-</b> 4. 2 |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22             | 6    | 4. 1          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -20             | 5. 2 | 3. 9          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -21             | 7    | 4             |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -23             | 8. 1 | 3. 8          |
| Ho <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -18             | 6. 9 | 3. 7          |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -19             | 7. 2 | 3. 9          |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -24             | 6. 9 | 3. 6          |

Table 118

| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -25 | 5. 9 | 4. 1  |
|----------------------------------------------------------------------------------------|-----|------|-------|
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -16 | 6. 3 | 3. 9  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -20 | 7    | 4. 6  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 7. 1 | 4. 3  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 3 | 4     |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -23 | 7    | 4. 7  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -26 | 6.8  | 4. 4  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -28 | 6. 9 | 4. 9  |
| Ho <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 7 | 4. 7  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -22 | 5. 8 | 4. 6  |
| $\text{Er}_{1.8}\text{Na}_{0.2}\text{Ni}_{0.9}\text{V}_{0.1}\text{O}_4$                | -24 | 6. 3 |       |
|                                                                                        |     |      | 4. 5  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4. 2  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -29 | 6. 4 | 4. 7  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -17 | 5. 9 | 4. 8  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -18 | 6. 4 | 4. 1  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 1 | 3. 8  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -22 | 7 .  | 4     |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -21 | 6.8  | 4. 6  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -30 | 7. 1 | 4. 2  |
| Er <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -29 | 6.8  | 4. 5  |
| $Er_{1.8}K_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                   | -28 | 6. 5 | 4. 1  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -27 | 7    | 3. 9  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -25 | 6. 8 | 4     |
| $\text{Er}_{1.8}\text{K}_{0.2}\text{Ni}_{0.9}\text{Mn}_{0.1}\text{O}_4$                | -18 | 5. 8 | 3.8   |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 3 | 3. 7  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -10 | 7. 1 | 4     |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -26 | 6. 4 | 3.9 - |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -20 | 5. 9 | 3. 6  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -19 | 6. 4 | 3. 8  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -17 | 7. 1 | 3. 7  |
| Er <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -23 | 7    | 4     |
|                                                                                        |     |      |       |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -18 | 7. 1 | 3. 6  |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -20 | 6. 8 | 4. 1  |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -21 | 5. 9 | 3. 9  |
|                                                                                        |     |      |       |

Table 119

| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -21 | 6. 5 | 4. 6 |
|----------------------------------------------------------------------------------------|-----|------|------|
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22 | 7    | 4.3  |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -18 | 5    | 4    |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -25 | 7    | 4.7  |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -24 | 4. 9 | 4. 2 |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -28 | 5    | 4.3  |
| Er <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -19 | 6    | 4.9  |
| $\mathrm{Er_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4}$                                         | -20 | 5. 2 | 3. 9 |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -23 | 8. 1 | 4    |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -22 | 6. 9 | 4.7  |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -19 | 6. 7 | 4. 6 |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 7. 2 | 4. 5 |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 9 | 4. 2 |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -22 | 5. 9 | 4.7  |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 3 | 4.8  |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21 | 7    | 4.1  |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -23 | 7. 1 | 3.8  |
| Er <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -18 | 7.3  | 4    |
| $\operatorname{Er_{1.8}Ca_{0.2}Ni_{0.9}Ta_{0.1}O_{4}}$                                 | -28 | 7    | 4. 3 |
| E- D: N: T: O                                                                          | 0.4 |      |      |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24 | 5. 2 | 4. 3 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -25 | 7    | 4. 5 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -16 | 8. 1 | 4.6  |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -20 | 6. 9 | 4. 7 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -22 | 6. 7 | 4. 4 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24 | 7. 2 | 4.9  |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -23 | 6. 9 | 4. 7 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -26 | 5. 9 | 4.6  |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -28 | 6. 3 | 4. 6 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -19 | 7    | 4. 5 |
| Er <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -21 | 7. 1 | 4.2  |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -24 | 7    | 4.8  |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21 | 6. 8 | 4. 1 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -29 | 6. 9 | 3.8  |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17 | 6. 7 | 4    |
|                                                                                        |     |      |      |

Table 120

|                                                                                        |       | <del></del> |      |
|----------------------------------------------------------------------------------------|-------|-------------|------|
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -18   | 7. 1        | 4. 6 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | -24   | 5. 9        | 4. 2 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub> | -22   | 6. 4        | 4. 5 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> | -21   | 7. 1        | 4. 3 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>  | -27   | 7           | 4. 1 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -25   | 6. 8        | 3. 9 |
| Yb <sub>1.8</sub> Na <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub> | -30   | 7. 1        | 4    |
|                                                                                        |       |             |      |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub>  | -24   | 5. 9        | 3. 7 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>   | -25   | 6. 5        | 4    |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>  | -16   | 7           | 3. 9 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>  | -20   | 6. 8        | 3. 6 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>  | -22   | 5           | 4. 1 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>  | -24   | 7           | 3. 9 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>  | -23   | 4. 9        | 4. 6 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>  | -26   | 5           | 4. 3 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>   | -28   | 6           | 4    |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>  | -19   | 5. 2        | 4. 7 |
| Yb <sub>1.8</sub> K <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>  | -21   | 7           | 4. 2 |
|                                                                                        |       |             |      |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                  | -24   | 6. 9        | 4. 6 |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -21   | 6. 7        | 4. 5 |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}Cr_{0.1}O_4$                                                  | -29   | 7. 2        | 4. 2 |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -17   | 6. 9        | 4. 7 |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -18   | 5. 9        | 4.8  |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub> | · –24 | 6. 3        | 4. 1 |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}Cu_{0.1}O_4$                                                  | -22   | 7           | 3.8  |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}Mo_{0.1}O_4$                                                  | -21   | 7. 1        | 4    |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}W_{0.1}O_4$                                                   | -27   | 7. 3        | 4.6  |
| Yb <sub>1.8</sub> Sr <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub> | -25   | 7           | 4. 2 |
| $Yb_{1.8}Sr_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                  | -30   | 6. 8        | 4. 5 |
|                                                                                        |       |             |      |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ti <sub>0.1</sub> O <sub>4</sub> | -27   | 6. 7        | 4. 1 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>  | -25   | 7. 1        | 3. 9 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub> | -18   | 5. 8        | 4    |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub> | -22   | 6. 3        | 3.8  |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub> | -10   | 7. 1        | 3. 7 |
|                                                                                        |       |             |      |

Table 121

| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>   | -26 | 6. 4 | 4    |
|------------------------------------------------------------------------------------------|-----|------|------|
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>   | -22 | 5. 9 | 3. 9 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub> · | -18 | 6. 4 | 3. 6 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>    | -25 | 7. 1 | 3.8  |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>   | -24 | 7    | 3. 7 |
| Yb <sub>1.8</sub> Ca <sub>0.2</sub> Ni <sub>0.9</sub> Ta <sub>0.1</sub> O <sub>4</sub>   | -28 | 6.8  | 4    |
|                                                                                          |     |      |      |
| $Yb_{1.8}Bi_{0.2}Ni_{0.9}Ti_{0.1}O_4$                                                    | -20 | 6.8  | 3. 6 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> V <sub>0.1</sub> O <sub>4</sub>    | -26 | 5. 9 | 4. 1 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cr <sub>0.1</sub> O <sub>4</sub>   | -23 | 6. 5 | 3. 9 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mn <sub>0.1</sub> O <sub>4</sub>   | -22 | 7    | 4. 6 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Fe <sub>0.1</sub> O <sub>4</sub>   | -19 | 6.8  | 4. 3 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Co <sub>0.1</sub> O <sub>4</sub>   | -17 | 5. 8 | 4    |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Cu <sub>0.1</sub> O <sub>4</sub>   | -20 | 6. 3 | 4.7  |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Mo <sub>0.1</sub> O <sub>4</sub>   | -22 | 7.1  | 4. 2 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> W <sub>0.1</sub> O <sub>4</sub>    | -20 | 6. 4 | 4. 3 |
| Yb <sub>1.8</sub> Bi <sub>0.2</sub> Ni <sub>0.9</sub> Nb <sub>0.1</sub> O <sub>4</sub>   | -21 | 5. 9 | 4. 9 |
| $Yb_{1.8}Bi_{0.2}Ni_{0.9}Ta_{0.1}O_4$                                                    | -23 | 6. 4 | 3. 9 |

As is clear from the above results, the complex oxides represented by the formulae shown in Tables 75 to 121 exhibit excellent properties as an n-type thermoelectric material and have favorable electrical conductivity. Therefore, the complex oxides can possibly demonstrate excellent thermoelectric generation properties when used in place of the n-type thermoelectric materials of the Examples.