

课程设计计算书

课程	名称:		建筑结构课程	<u>设计</u>
题	目:	福州市轨道交流	<u>甬 2 号线区间</u>	<u>盾构管片设计</u>
学	院:	土木工程学[院 系:轨道与	地下工程系
专	水:		土木工程方向.	Ξ
学	号:	051701417	051701434	051701444
姓	名:	汪大晟	郝栩轲	林旭鹏
起讫	日期:	2019/	/12/23~2019/	12/31
指导	教师.		缪圆冰	

目录

1.	工程概况	. 1
2.	课程设计技术要求	. 1
3.	荷载计算(单宽)	. 2
	3. 1. 计算简图	. 2
	3. 2. 参数和公式	. 3
	3. 3. 泰沙基公式的计算土高	. 3
	3. 4. 承载能力极限状态	. 3
	3.5. 正常使用极限状态和衬砌直径变形验算	. 4
4.	内力计算	. 5
	4.1. 承载能力极限状态	. 5
	4. 2. 正常使用极限状态	. 8
5.	配筋计算	11
	5. 1. 参数	11
	5. 2. 验算正截面抗弯强度(Nu-Mu 相关曲线)	11
	5. 3. 验算斜截面抗剪强度	13
	5. 4. 验算裂缝宽度	14
	5. 5. 编程	15
6.	管片主要工程量	16
7.	参考资料	17
8.	附录	17

1. 工程概况

福州市轨道交通 2 号线整体呈东西走向,西起闽侯县沙堤村,东至晋安区鼓山镇,沿东西向城市发展轴,途径上街大学城片区、金山工业区、金山居住区、闽江北岸商务中心区、鼓楼成熟建成区及晋安区东部鼓山片区。

线路串联了主要文教科研区、主要工业区、福州市历史文化中心、大型居住区,有利于疏解城市东西向客流,有力地支持了城市近期规划重点发展地区。

线路全长约 26.9km,均为地下敷设,共设车站 21座,其中有 4座换乘车站,最大站间距 2.8km (建平站至展览城站),最小站间距 0.68km (展览城站至洪湾路站),平均站间距约 1.3km。全线设竹岐定修段和下院停车场。控制中心与 1号线共址,设主变电站 2座(南门兜站主变与 1号线共用)及配套机电系统工程。

钻孔编号 MBZ2-A122,根据工程地质纵断面图,此处隧道埋深 22.72m,地下水位深度 9.2m,隧道顶部以上有 19.32m 厚的粗中砂层(松散),隧道位于粗中砂层和淤泥夹砂层的 交界处,地质条件较复杂。

计算内容为该位置隧道的荷载和内力,以及给管片配筋使其满足强度和裂缝的要求。 设计原则是选取合理的计算模型和计算方法,根据相应规范设计,使结构满足承载力 极限状态和正常使用极限状态的要求。

2. 课程设计技术要求

- 1. 工程结构安全等级按一级考虑,结构重要性系数γο取 1.1。
- 2. 设计使用年限: 100年。
- 3. 隧道衬砌采用具有一定刚度的柔性结构,并限制其变形和接头张开量,满足结构受力和防水要求。
- 4. 衬砌结构变形验算: 计算直径变形≤2%D(D为隧道外径)。
- 5. 钢筋混凝土结构允许裂缝开展,但裂缝宽度≤0.2mm。
- 6. 结构运营阶段抗浮安全系数≥1.1,施工阶段抗渗安全系数≥1.05。
- 7. 区间隧道衬砌结构防水等级为二级。盾构区间混凝土管片抗渗等级≥P10。
- 8. 管片内径为 5500mm, 外径为 6200mm, 厚度为 350mm, 环宽为 1200mm。每环管片纵缝采用 12 根 M30 螺栓, 每个环缝采用 16 根 M30 螺栓。
- 9. 衬砌环全环由一块封顶块(F)、两块邻接块(L1)、(L2)以及三块标准块(B1)、(B2)、(B3)构成。
- 10. 纵缝采用 2mm 厚的薄凸榫。
- 11. 隧道衬砌采用通用楔型环错缝拼装。
- 12. 楔形衬砌环设计为双面楔形环,每环楔形角0°20′37.59"。
- 13. 地面超载按 20kPa 取值。
- 14. η取 0.7, ζ取 0.3。
- 15. 工程材料:
- 1) 采用钢筋砼管片,砼强度等级为 C50 高强砼,抗渗等级为≥P10,
- 2) 钢筋采用 HPB300 钢和 HRB400 钢,均为热轧钢筋。
- 3) 管片连接螺栓采用强度等级为 6.8 级的钢材。
- 4) 预埋件用 Q235B 钢。

3. 荷载计算(单宽)

3.1. 计算简图

3. 2. 参数和公式

隧道外直径 $D_1=6.2m$,内直径 $D_2=6.2m$,矩心半径 $R_c=2.925m$,厚度t=0.35m,计算宽度取1m,实际宽度b=1.2m。

截面惯性矩
$$I = \frac{1}{12}bh^3 = \frac{1}{12} \times 1 \times 0.35^3 = 3.573 \times 10^{-3}m^4$$
。

根据混凝土结构设计规范材料篇,C50 混凝土弹性模量 $E_c=34500N/mm^2$ 。

K_0 γ (kN/m³) φ (°) c (kPa) 垂直k₀ (Mpa/m) 水平ko 素填土<1-1> 19.11 8 10 粗中砂<2-5-2>松散 17.64 20 4 25 30 0.39 淤泥夹砂<2-4-4> 16.76 8 8 0.67

土层参数表

隧道位置在两层土的交界处,地基反作用系数k和侧向土压系数K采用加权平均的方式得到。

该位置隧道埋深很大,达到22.72*m*,D配筋方案已不适用。计算竖向压力时如果按隧道顶部全部土压考虑,内力很大,为满足裂缝宽度要求单侧配筋面积高达到6600*mm*²,不经济。考虑到大部分土壤为粗中砂,有较大的抗剪强度,可按"松动高度"理论进行计算,采用泰沙基公式计算竖向土压。

3.3. 泰沙基公式的计算土高

隧道顶部以上土的

$$\bar{\gamma} = \frac{3.4 \times 19.11 + 5.8 \times 17.64 + 13.52 \times (17.64 - 10)}{22.72} = 11.91 kN/m^3$$

$$\bar{\varphi} = \frac{3.4 \times 8 + 19.32 \times 20}{22.72} = 18.2^{\circ}$$

$$\bar{c} = \frac{3.4 \times 10 + 19.32 \times 4}{22.72}$$

$$\text{外半径 } R_0=3. \text{ lm, } \tan\bar{\varphi}=0. \text{ } 329, \text{ } K_0=1$$

$$B_1 = R_0 \cot\left(\frac{\pi}{8} + \frac{\bar{\varphi}}{4}\right) = 6.07 m$$

$$\text{计算土高} h = \frac{B_1(1 - \frac{c}{B_1 \gamma})(1 - e^{\frac{-k_0 \tan\varphi H}{B_1}})}{K_0 \tan\varphi} + \frac{P_0 e^{\frac{-k_0 \tan\varphi H}{B_1}}}{\gamma} = 17.69 m$$

3.4. 承载能力极限状态

永久作用的分项系数 $\gamma_G = 1.3$,可变作用的分项系数 $\gamma_Q = 1.5$,考虑结构设计使用年限的荷载调整系数 $\gamma_L = 1.1$ 。

1) 竖向压力:

$$p_{el} = 1.3 \times 17.69 \times 11.91 + 1.5 \times 1.1 \times 0.7 \times 20 = 296.99 kN/m^3$$

 $p_{wl} = 1.3 \times 13.52 \times 10 = 175.76 kN/m^3$

$$\begin{split} p_{el} + p_{wl} &= 472.75 kN/m^3 \\ p_2 &= p_{el} + \pi P_g - \frac{\pi R_c \gamma_w}{2} \\ &= 296.99 + 1.3 \times 3.14 \times 9.1 - 1.3 \times 3.14 \times 2.925 \times \frac{10}{2} = 274.44 kN/m^3 \end{split}$$

2) 侧向压力:

$$\begin{split} q_{e1} &= 0.47 \times (269.99 + 1.3 \times 0.35/2 \times (17.64 - 10)) = 140.40 kN/m^3 \\ q_{w1} &= 0.47 \times (175.76 + 1.3 \times 0.35/2 \times 10) = 83.68 kN/m^3 \\ q_{e2} &= 0.47 \times (269.99 + 1.3 \times (4.28 \times 7.64 + (1.92 - 0.35/2) \times 6.76)) = 166.77 kN/m^3 \\ q_{w2} &= 0.47 \times (175.76 + 1.3 \times 10 \times (6.2 - 0.35/2)) = 119.34 kN/m^3 \end{split}$$

3) 地层抗力

$$y = \frac{(2q - p_1 - p_2 + \pi g)R_c^4}{24(\eta EI + 0.045kR_c^4)}$$

$$= \frac{(2 \times 472.75 - 166.77 - 119.34 + 3.14 \times 9.1 \times 1.3) \times 2.925^4}{24 \times (0.7 \times 34500 \times 3.573 + 0.045 \times 23440 \times 2.925^4)} = 0.0130m$$

$$R_k = ky = 23440 \times 0.0130 = 304.72kPa$$

3.5. 正常使用极限状态和衬砌直径变形验算

1) 竖向压力:

$$\begin{split} p_{el} &= 17.69 \times 11.91 + 0.7 \times 20 = 224.69 kN/m^3 \\ p_{wl} &= 13.52 \times 10 = 135.20 kN/m^3 \\ p_{el} + p_{wl} &= 359.89 kN/m^3 \\ p_2 &= p_{el} + \pi P_g - \frac{\pi R_c \gamma_w}{2} \\ &= 224.69 + 3.14 \times 9.1 - 3.14 \times 2.925 \times \frac{10}{2} = 207.34 kN/m^3 \end{split}$$

2) 侧向压力:

$$\begin{split} q_{e1} &= 0.47 \times (224.69 + 0.35/2 \times (17.64 - 10)) = 106.23kN/m^3 \\ q_{w1} &= 0.47 \times (135.20 + 0.35/2 \times 10) = 64.37kN/m^3 \\ q_{e2} &= 0.47 \times (224.69 + 4.28 \times 7.64 + (1.92 - 0.35/2) \times 6.76) = 126.52kN/m^3 \\ q_{w2} &= 0.47 \times (135.2 + 10 \times (6.2 - 0.35/2)) = 91.86kN/m^3 \end{split}$$

3) 地层抗力:

$$y = \frac{(2q - p_1 - p_2 + \pi g)R_c^4}{24(\eta EI + 0.045kR_c^4)}$$

$$= \frac{(2 \times 359.89 - 126.52 - 91.86 + 3.14 \times 9.1) \times 2.925^4}{24 \times (0.7 \times 34500 \times 3.573 + 0.045 \times 23440 \times 2.925^4)} = 0.0099m$$

 $R_k = ky = 23440 \times 0.0130 = 232.06kPa$

4) 直径变形验算

 $y < 0.002D_1 = 0.002 \times 6.2 = 0.0124m$,衬砌直径变形满足要求。

4. 内力计算

详见《内力计算》Excel 表格。

表格中的实际总值等于计算总值(按单宽 1m 计算)乘以 1.2 (管片宽度)。 内力图通过把极坐标中的数据转化成直角坐标系中的数据,连点成线形成曲线。

4.1. 承载能力极限状态

承载能力极限状态弯矩计算表

			弯矩				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	1011.168	-479.286	-55.282	-310.241	34.895	201.253	241.504
10	950.187	-450.382	-52.762	-296.236	33.108	183.915	220.698
20	774.600	-367.154	-45.290	-254.646	27.898	135.407	162.488
30	505.584	-239.643	-33.169	-186.736	19.697	65.733	78.880
40	175.587	-83.227	-17.048	-94.567	9.208	-10.046	-12.056
50	-175.587	83.227	1.944	19.058	-2.638	-73.995	-88.794
60	-505.584	239.643	22.113	145.377	-14.723	-113.175	-135.810
70	-774.600	367.154	41.243	266.550	-25.806	-125.459	-150.550
80	-950.187	450.382	56.809	358.361	-34.581	-119.216	-143.059
90	-1011.168	479.286	66.338	394.450	-39.746	-110.840	-133.008
100	-950.187	450.382	67.866	358.361	-40.118	-113.697	-136.436
110	-774.600	367.154	60.393	266.550	-35.088	-115.591	-138.709
120	-505.584	239.643	44.225	145.377	-25.023	-101.362	-121.634
130	-175.587	83.227	21.095	19.058	-11.166	-63.374	-76.048
140	175.587	-83.227	-5.991	-94.567	4.596	-3.602	-4.323
150	505.584	-239.643	-33.169	-186.736	20.049	66.085	79.303
160	774.600	-367.154	-56.346	-254.646	32.997	129.450	155.340
170	950.187	-450.382	-71.913	-296.236	41.590	173.247	207.896
180	1011.168	-479.286	-77.395	-310.241	44.598	188.844	226.613

承载能力极限状态弯矩图

承载能力极限状态轴力计算表

			轴力				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	0.000	655.434	56.699	315.166	-5.767	1021.532	1225.838
10	41.696	635.670	55.828	310.378	-4.631	1038.941	1246.729
20	161.756	578.763	53.125	296.159	-1.288	1088.515	1306.218
30	345.698	491.576	48.398	272.942	4.065	1162.678	1395.214
40	571.337	384.624	41.532	241.431	11.110	1250.035	1500.042
50	811.457	270.810	32.725	200.884	19.425	1335.300	1602.360
60	1037.095	163.859	22.680	144.046	28.498	1396.177	1675.413
70	1221.038	76.671	12.676	79.048	37.753	1427.186	1712.623
80	1341.097	19.764	4.467	23.576	46.579	1435.484	1722.580
90	1382.794	0.000	0.000	0.000	54.354	1437.148	1724.577
100	1341.097	19.764	1.004	23.576	58.851	1444.292	1733.150
110	1221.038	76.671	8.548	79.048	58.238	1443.543	1732.252
120	1037.095	163.859	22.680	144.046	53.033	1420.713	1704.855
130	811.457	270.810	42.240	200.884	44.367	1369.758	1643.709
140	571.337	384.624	64.940	241.431	33.805	1296.138	1555.365
150	345.698	491.576	87.680	272.942	23.112	1221.008	1465.210
160	161.756	578.763	107.089	296.159	14.005	1157.771	1389.325
170	41.696	635.670	120.139	310.378	7.909	1115.792	1338.951
180	0.000	655.434	124.738	315.166	5.767	1101.105	1321.326

承载能力极限状态轴力图

承载能力极限状态剪力计算表

			剪力				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	-236.472	112.086	9.844	54.728	-6.949	-66.763	-80.116
20	-444.421	210.652	19.336	107.793	-13.323	-119.963	-143.955
30	-598.767	283.811	27.943	157.583	-18.574	-148.005	-177.606
40	-680.893	322.738	34.850	202.585	-22.213	-142.933	-171.520
50	-680.893	322.738	39.000	239.404	-23.828	-103.578	-124.294
60	-598.767	283.811	39.282	249.495	-23.112	-49.291	-59.149
70	-444.421	210.652	34.826	217.182	-19.878	-1.639	-1.967
80	-236.472	112.086	25.334	133.707	-14.069	20.586	24.703
90	0.000	0.000	11.340	0.000	-5.767	5.573	6.687
100	236.472	-112.086	-5.693	-133.707	4.521	-10.493	-12.592
110	444.421	-210.652	-23.487	-217.182	15.060	8.160	9.792
120	598.767	-283.811	-39.282	-249.495	23.959	50.138	60.165
130	680.893	-322.738	-50.340	-239.404	29.700	98.111	117.733
140	680.893	-322.738	-54.491	-202.585	31.316	132.395	158.874
150	598.767	-283.811	-50.622	-157.583	28.498	135.248	162.298
160	444.421	-210.652	-38.977	-107.793	21.615	108.614	130.337
170	236.472	-112.086	-21.184	-54.728	11.641	60.115	72.138
180	0.000	0.000	0.000	0.000	0.000	0.000	0.000

承载能力极限状态剪力计算表

4. 2. 正常使用极限状态

正常使用极限状态弯矩计算表

			弯矩				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	769.771	-364.897	-42.582	-236.261	26.842	152.873	183.447
10	723.348	-342.891	-40.641	-225.595	25.468	139.688	167.626
20	589.679	-279.528	-34.885	-193.923	21.460	102.802	123.363
30	384.885	-182.449	-25.549	-142.206	15.152	49.833	59.799
40	133.669	-63.364	-13.131	-72.016	7.083	-7.759	-9.311
50	-133.669	63.364	1.498	14.514	-2.029	-56.323	-67.588
60	-384.885	182.449	17.033	110.710	-11.326	-86.020	-103.224
70	-589.679	279.528	31.768	202.988	-19.851	-95.246	-114.295
80	-723.348	342.891	43.759	272.906	-26.600	-90.393	-108.471
90	-769.771	364.897	51.098	300.389	-30.574	-83.961	-100.753
100	-723.348	342.891	52.275	272.906	-30.860	-86.136	-103.363
110	-589.679	279.528	46.519	202.988	-26.991	-87.635	-105.162
120	-384.885	182.449	34.066	110.710	-19.248	-76.910	-92.291
130	-133.669	63.364	16.249	14.514	-8.589	-48.133	-57.759
140	133.669	-63.364	-4.615	-72.016	3.535	-2.791	-3.349
150	384.885	-182.449	-25.549	-142.206	15.422	50.104	60.124
160	589.679	-279.528	-43.402	-193.923	25.382	98.209	117.850
170	723.348	-342.891	-55.392	-225.595	31.992	131.462	157.754
180	769.771	-364.897	-59.615	-236.261	34.306	143.304	171.965

正常使用极限状态弯矩图

正常使用极限状态轴力计算表

			轴力				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	0.000	499.005	43.674	240.011	-4.436	778.254	933.904
10	31.742	483.958	43.002	236.365	-3.562	791.505	949.806
20	123.140	440.633	40.921	225.536	-0.991	829.239	995.086
30	263.170	374.254	37.280	207.856	3.127	885.685	1062.822
40	434.941	292.828	31.991	183.859	8.546	952.166	1142.599
50	617.737	206.177	25.207	152.981	14.942	1017.044	1220.453
60	789.509	124.751	17.470	109.697	21.921	1063.347	1276.017
70	929.538	58.372	9.764	60.198	29.041	1086.913	1304.296
80	1020.936	15.047	3.441	17.954	35.830	1093.208	1311.850
90	1052.678	0.000	0.000	0.000	41.811	1094.489	1313.387
100	1020.936	15.047	0.773	17.954	45.270	1099.980	1319.976
110	929.538	58.372	6.585	60.198	44.799	1099.492	1319.390
120	789.509	124.751	17.470	109.697	40.795	1082.221	1298.665
130	617.737	206.177	32.537	152.981	34.129	1043.560	1252.272
140	434.941	292.828	50.021	183.859	26.004	987.654	1185.185
150	263.170	374.254	67.538	207.856	17.779	930.595	1116.714
160	123.140	440.633	82.487	225.536	10.773	882.569	1059.083
170	31.742	483.958	92.540	236.365	6.084	850.688	1020.826
180	0.000	499.005	96.083	240.011	4.436	839.535	1007.442

正常使用极限状态轴力图

正常使用极限状态剪力计算表

			剪力				
θ	垂直荷载	水平荷载	水平三角荷载	地层抗力	自重	计算总值	实际总值
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
10	-180.019	85.335	7.582	41.677	-5.345	-50.769	-60.923
20	-338.324	160.377	14.894	82.089	-10.248	-91.213	-109.456
30	-455.823	216.076	21.523	120.005	-14.288	-112.507	-135.008
40	-518.343	245.712	26.844	154.276	-17.087	-108.598	-130.317
50	-518.343	245.712	30.041	182.315	-18.329	-78.604	-94.325
60	-455.823	216.076	30.258	190.000	-17.779	-37.268	-44.721
70	-338.324	160.377	26.826	165.392	-15.291	-1.020	-1.224
80	-180.019	85.335	19.514	101.823	-10.822	15.831	18.997
90	0.000	0.000	8.735	0.000	-4.436	4.299	5.158
100	180.019	-85.335	-4.385	-101.823	3.478	-8.047	-9.656
110	338.324	-160.377	-18.091	-165.392	11.584	6.048	7.258
120	455.823	-216.076	-30.258	-190.000	18.430	37.919	45.503
130	518.343	-245.712	-38.776	-182.315	22.846	74.386	89.264
140	518.343	-245.712	-41.973	-154.276	24.089	100.471	120.565
150	455.823	-216.076	-38.993	-120.005	21.921	102.670	123.205
160	338.324	-160.377	-30.023	-82.089	16.627	82.463	98.955
170	180.019	-85.335	-16.317	-41.677	8.955	45.644	54.772
180	0.000	0.000	0.000	0.000	0.000	0.000	0.000

正常使用极限状态剪力图

5. 配筋计算

5.1.参数

配筋计算参数表

f _c (N/mm ²)	23.1	α_1	1
f_y (N/mm ²)	360	ξ_{b}	0.518
E_s (N/mm ²)	200000	ξ_{cy}	1.082
b (mm)	1200	β_1	0.8
h (mm)	350	γο	1.1
as' (mm)	55	1+µ	1.3
as (mm)	55		
h ₀ (mm)	295		
ε _{cu}	0.0033		

结构设计使用年限为100年,结构重要性系数 $\gamma_0 = 1.1$ 。

C50 混凝土, $\alpha_1 = 1.0$, $\beta_1 = 0.8$,抗压强度设计值 $f_c = 23.1 N/mm^2$ 。

HRB400 钢筋,强度设计值 $f_v = 360N/mm^2$,弹性模量 $E_s = 200000 N/mm^2$ 。

受压钢筋和受拉钢筋到混凝土表层的距离 a_s' 和 a_s 取55mm,因为保护层厚度为30~35mm,箍筋直径为10mm,钢筋直径为25~30mm, $a_s'=a_s=30+10+30/2=55mm$ 。

在推到公式时,需要求钢筋未屈服时的应力,即需要根据平截面假定分析应变图,混凝土极限压应变 ε_{cu} 取0.0033。

在修正惯用法中,管片接头表现出铰接的力学特点,弯矩不能完全通过管片接头来传递,其中一部分通过环间接头的剪切刚度传递给错缝拼装下的相邻管片,弯矩提高率 μ 等于接头部位相邻管片传来的弯矩M2与弯曲刚度为 ηEI 的等刚度环所发生的弯矩M的比值。弯曲刚度有效率 η 和弯矩提高率 μ 要依据试验结果和经验来确定。

 η 和 μ 之间存在着联系。如果接头抗弯刚度和主断面刚度相同 ($\eta = 1$),弯矩不会向相邻管片传递 ($\mu = 0$),相反接头为完全铰接,刚度为 0,相邻管片会分担所有的弯矩 ($\mu = 1$)。

在主断面应力计算时,管片接头上一部分弯矩传递给主断面的位置,将提高前的弯矩记为M,则设计弯矩为 $(1 + \mu) M$ 。

5.2. 验算正截面抗弯强度(Nu-Mu 相关曲线)

在承载力能力极限状态下验算强度是否满足可以用 Nu-Mu 相关曲线来判断。将内力计算阶段得到的弯矩标准值先乘以管片处弯矩提高系数($1 + \mu$)再乘以 γ_0 ,轴力标准值直接乘以 γ_0 ,在 N-M 图中画出相应的点,如果内力在 Nu-Mu 相关曲线以内,则说明强度满足。

Nu-Mu 相关曲线根据受拉钢筋是否屈服,分为大偏心和小偏心两部分。根据平截面假定,中和轴位置变化时钢筋受力状态变化,可以更精细地划分曲线。

各个情况下的公式推导的思路都是根据力和弯矩的平衡联立方程。钢筋没有达到屈服强度时,则通过分析平截面假定中的应变关系得到钢筋的应变,应变乘以弹性模量得到应力。

曲线分段及钢筋受力情况表

	条件	受拉钢筋	受压钢筋
1	x<2a _s	受拉屈服	不屈服
2	$x_b > x > 2a_s$	受拉屈服	受压屈服
3	$x>x_b \underline{\mathbb{H}} h_0>x_c$	受拉不屈服	受压屈服
4	$x_c > h_0 $ Д $\xi_{cv} h_0 > x$	受压不屈服	受压屈服
5	$x > \xi_{cv} h_0$	受压屈服	受压屈服

计算公式:

1) $x < 2a'_s$ (受拉钢筋受拉屈服,受压钢筋不屈服)

$$M_u = A_s f_v (h_0 - a_s')$$

2) $x_h > x > 2a'_s$ (受拉钢筋受拉屈服,受压钢筋受压屈服)

$$\begin{split} N_{u} &= \alpha_{1} f_{c} b x + f_{y}' A_{s}' - f_{y} A_{s} \\ N_{u} e &= \alpha_{1} f_{c} b x (h_{0} - x/2) + f_{y}' A_{s}' (h_{0} - a_{s}') \\ e &= e_{i} + \frac{h}{2} - a_{s} \end{split}$$

3) $x > x_b$ 且 $h_0 > x_c$ (受拉钢筋受拉不屈服,受压钢筋受压屈服)

$$N_{u} = \alpha_{1}f_{c}bx + f'_{y}A'_{s} - \sigma_{s}A_{s}$$

$$N_{u}e = \alpha_{1}f_{c}bx(h_{0} - x/2) + f'_{y}A'_{s}(h_{0} - a'_{s})$$

$$e = e_{i} + \frac{h}{2} - a_{s}$$

$$\sigma_{s} = E_{s}\varepsilon_{s} = \frac{\xi - \beta_{1}}{\xi_{h} - \beta_{1}}f_{y}$$

4) $x_c > h_0$ 且 $\xi_{cv}h_0 > x$ (受拉钢筋受压不屈服,受压钢筋受压屈服)

$$N_{u} = \alpha_{1}f_{c}bx + f'_{y}A'_{s} + \sigma_{s}A_{s}$$

$$N_{u}e = \alpha_{1}f_{c}bx(h_{0} - x/2) + f'_{y}A'_{s}(h_{0} - a'_{s})$$

$$e = e_{i} + \frac{h}{2} - a_{s}$$

$$\sigma_{s} = E_{s}\varepsilon_{s} = E_{s}(1 - \beta_{1}h_{0}/x)\varepsilon_{cu}$$

5) $x > \xi_{cv} h_0$ (受拉钢筋和受压钢筋受压屈服)

$$N_u = 0.9 \varphi(f_c A + f_v' A)$$
, A是全部纵向钢筋截面面积

具体推导得到的曲线公式以及计算过程见《配筋计算》Excel 表格和编程。

以最终确定的配筋面积 (5680mm²) 绘制曲线,将承载能力极限状态下的内力的坐标显示在图上,可见内力对应的点都在 Nu-Mu 相关曲线左侧,说明配筋满足强度要求。

5.3. 验算斜截面抗剪强度

根据承载力极限状态内力计算,最大剪力 $V_{max}=177.61kN$ 。

$$V_{cs} = \alpha_{cv} f_t b h_0 + f_{yv} \frac{A_{sv}}{s} h_0 = 0.7 \times 1.89 \times 1200 \times (350 - 55) \times 10^{-3} = 468.34 kN$$

上面计算中没有考虑箍筋的抗剪强度,可见混凝土自身的抗剪强度已满足抗剪强度的要求,于是按构造和模板配箍筋。

5.4. 验算裂缝宽度

根据《GB50010-2010 混凝土结构设计规范》(7.1.2)对管片进行裂缝宽度验算。

$$\omega_{max} = \alpha_{cr} \psi \frac{\sigma_s}{E_s} (1.9c_s + 0.08 \frac{d_{eq}}{\rho_{te}})$$

公式相关参数详见规范,计算过程见《配筋计算》Excel 表格和程序。注意采用荷载准 永久组合的到的内力,且不要将内力乘以结构重要性系数γ₀。

较难用公式解出满足裂缝宽度要求的配筋面积,用 Excel 做出裂缝与配筋的关系,以寻找合适的配筋。最终确定的配筋面积为 5680mm², 此时最大裂缝宽度为 0.190mm,满足。

管片配筋通用参考图中的 D 型配筋(4000mm²)可以满足强度要求,但是无法满足裂缝宽度要求。裂缝宽度是该结构配筋的控制因素。

最终确定的配筋见《盾构管片标准块配筋图》、《盾构管片标准块钢筋表》。

最大裂缝宽度与配筋的关系

d _{ea} (mm)	A_s	$ ho_{te}$	$\sigma_{\rm s}$ (N/mm ²)	ψ	ω_{max} (mm)
17.85	2000	0.00952	464.60	0.712	0.710
18.72	2200	0.01048	422.37	0.712	0.626
19.55	2400	0.01143	387.17	0.712	0.558
20.35	2600	0.01238	357.39	0.712	0.502
21.12	2800	0.01233	331.86	0.712	0.455
21.12	3000	0.01333	309.74	0.712	0.416
22.57	3200	0.01423	290.38	0.712	0.410
23.27	3400	0.01619	273.30	0.712	0.353
23.94	3600	0.01013	258.11	0.712	0.333
24.60	3800	0.01714	244.53	0.712	0.306
25.24	4000	0.01905	232.30	0.712	0.286
25.86	4200	0.02000	221.24	0.712	0.269
26.47	4400	0.02095	211.18	0.712	0.253
27.06	4600	0.02190	202.00	0.712	0.239
27.65	4800	0.02286	193.59	0.712	0.226
28.22	5000	0.02381	185.84	0.712	0.215
28.78	5200	0.02476	178.69	0.712	0.204
29.32	5400	0.02571	172.08	0.712	0.195
29.86	5600	0.02667	165.93	0.712	0.186
30.39	5800	0.02762	160.21	0.712	0.178
30.91	6000	0.02857	154.87	0.712	0.170
31.42	6200	0.02952	149.87	0.712	0.163
31.92	6400	0.03048	145.19	0.712	0.157
32.42	6600	0.03143	140.79	0.712	0.151
32.91	6800	0.03238	136.65	0.712	0.145
33.39	7000	0.03333	132.74	0.712	0.140
33.86	7200	0.03429	129.06	0.712	0.135
34.33	7400	0.03524	125.57	0.712	0.131
34.79	7600	0.03619	122.26	0.712	0.126
35.24	7800	0.03714	119.13	0.712	0.122
35.69	8000	0.03810	116.15	0.712	0.119

5.5.编程

采用 C++的图形库 Qt 编程,工程文件分为项目组织文件 MN. pro,头文件 mainwindow. h,源文件 main. cpp 和 mainwindow. cpp,界面文件 mainwindow. ui。在头文件中声明函数和全局对象,在 mainwindow. cpp 中编写各个函数,在界面文件中设计软件界面。

程序思路即考虑前述受力情况分段编写,由公式推出 Mu 和 Nu 的相关函数,首先计算轴心受压时最大轴力和区分大小偏心的分界轴力,确定分界点后,用循环函数得到 M 和 N 的数组,借助作图函数 Qchart 导入数组得到图像。

源码(详细注释)见附录。

程序界面

6. 管片主要工程量

通过 Revit 建模得到管片模型,通过软件计算得到各块的砼方量。 钢筋重量根据钢筋的直径、长度和根数计算得到。 详见《盾构管片模板图》、《盾构管片标准块钢筋表》。

Revit 模型

各块的砼方量表

	混凝	土强度	单位 (m³)	总量 (m³)
标准块	C	50砼	4.3080	
邻接块	C	50砼	2.8750	7.6340
封顶块	C	50砼	0.4630	

钢筋重量表

直径	Ф32	Ф28	Ф10	Ф8	Ф6	合计
总重量(kg)	181. 600	138. 760	61. 900	21. 900	5. 000	409. 160

7. 参考资料

- 1) 《地下建筑结构》 朱合华主编 中国建筑工业出版社
- 2) 《盾构隧道衬砌设计指南》 国际隧协编写 翟进营 译
- 3) 《盾构隧道管片设计——从容许应力设计法到极限状态设计法》小泉淳(日)主编 中国建筑工业出版社
- 4) 《混凝土结构基本原理》 顾祥林主编 同济大学出版社
- 5) 《福州市轨道交通2号线工程设计技术要求》
- 6) 《地铁设计规范》(GB50157-2013)
- 7) 《城市轨道交通技术规范》(GB50490-2009)
- 8) 《建筑结构荷载规范》(GB50009-2012)
- 9) 《混凝土结构设计规范》(GB50010-2010)
- 10) 《混凝土结构耐久性设计规范》(GB/T50476-2008)

8. 附录

```
头文件 mainwindow. h 主要代码:
class MainWindow: public QMainWindow
{
   Q_OBJECT
public:
   explicit MainWindow(QWidget *parent = 0);//主窗体的构造函数
   ~MainWindow();//主窗体的析构函数
   QGridLayout *chartlayout = new QGridLayout;//创建布局 chartlayout 用来安排画布 chartview
   QChartView *chartview = new QChartView;//创建画布 chartview 用来展示曲线
   QValueAxis *axisx = new QValueAxis;//创建数轴 x
   QValueAxis *axisy = new QValueAxis;//创建数轴 y
   float xmax = 0;//数轴 x 的最大范围
   float ymax = 0;//数轴 y 的最大范围
private slots:
   void on_pushButton_c_1_clicked();//创建画图按钮的槽函数
   void on_pushButton_c_2_clicked();//创建清除图像按钮的槽函数
   void on pushButton c 3 clicked();//定义裂缝验算按钮的槽函数
private:
   Ui::MainWindow *ui;//创建主窗体
};
```

槽函数 mainwindow. cpp 全部代码:

```
#include "mainwindow.h"
#include "ui_mainwindow.h"
MainWindow::MainWindow(QWidget *parent):
QMainWindow(parent), ui (new Ui::MainWindow)
   ui->setupUi(this);//展示主窗体
   ui->chartwidget->setLayout (chartlayout);//把布局 baselayout 放在空白构件 chartwidget 上
   chartlayout->addWidget(chartview, 1, 0);//把画布 chartview 放在网格布局 baselayout 中
   chartview->chart()->setTheme(QChart::ChartThemeBrownSand);//设置图表主题
   chartview->chart()->setTitle("Nu-Mu 相关曲线");//设置图表名称
   axisx->setTitleText("M");//设置数轴 x 的名称为 M
   axisy->setTitleText("N");//数轴 y 的名称为 N
MainWindow:: ~ MainWindow() // 析构函数,删除主窗体
   delete ui;
void MainWindow::on_pushButton_c_1_clicked()//画图按钮的槽函数
{
   QString str;//数据传输和转化
   str = ui->lineEdit_c_1->text();//将文本框中的数字字符传递给 str
   float alpha_1 = str. toFloat();//把 str 中的字符转化为浮点型数字传递给变量
   str = ui->lineEdit_c_2->text();
   float xi_b = str. toFloat();
   str = ui->lineEdit_c_3->text();
   float beta_1 = str. toFloat();
   str = ui->lineEdit_c_4->text();
   float fc = str.toFloat();
   str = ui->lineEdit_c_5->text();
   float fy = str. toFloat();
   str = ui->lineEdit_c_6->text();
   float b = str. toFloat();
   str = ui->lineEdit_c_7->text();
   float h = str. toFloat();
   str = ui->lineEdit c 8->text();
   float as1 = str. toFloat();//as1 是受压钢筋到混凝土表面的距离 as'
   str = ui->lineEdit_c_9->text();
   float as2 = str. toFloat();//as2 是受拉钢筋到混凝土表面的距离
   float h0 = h - as2;//h0 设为只读, 通过 h0=h-as 计算
   ui->lineEdit_c_10->setText(str.sprintf("%.0f", h0));
   float xicy = 2*beta_1 - xi_b;//xicy 设为只读, 通过 xicy=2*beta1-xib 计算
```

```
ui->lineEdit_c_17->setText(str.sprintf("%.3f", xicy));
        str = ui->lineEdit_c_11->text(); //As1 是受压钢筋的面积 As'
        float As1 = str. toFloat();
        str = ui->lineEdit_c_12->text();//As2 是受拉钢筋的面积 As
        float As2 = str. toFloat();
        QSplineSeries *series1 = new QSplineSeries;//添加曲线数据系列
        QString str1 = ui->lineEdit_c_11->text();
        QString str2 = ui->lineEdit_c_12->text();
        series1->setName ("As'"+str1+"As"+str2);//获取钢筋面积信息来设置曲线的名称
        float Nmax = 0.9*1.0*(fc*b*h+fy*(As1+As2))*0.001;//计算 N 最大值,即轴心受压时
        float Ndiv = alpha_1*fc*b*xi_b*h0*0.001;//计算大偏心和小偏心分界处的 N
        float NO = alpha_1*fc*b*(2*as1)*0.001;//计算按大偏心计算 x=2as' 时的 N
        float MO = fy*As2*(h0-as1)*0.000001;//计算 x<2as' 时的 M
        series1->append(MO, 0);//添加 x<2as'时的点
        for (int i = qRound (NO); i < qFloor (Ndiv); i = i + 5) //添加大偏心曲线的点
                series1- \\ append(-(i*i)/(2*alpha_1*fc*b) + 0.5*h*i*0.001 + fy*As1*(h0-as1)*0.000001,
i);
       }
        float xi;//借助 & 使公式简洁清晰
        for(int i=qCeil(Ndiv); i<qFloor(Nmax); i=i+5)//添加小偏心曲线的点
                xi = ((beta_1-xi_b)*i*1000 + xi_b*fy*As1) / (alpha_1*fc*b*h0*(beta_1-xi_b) +
fy*As1);
                series1->append(alpha_1*fc*b*h0*(xi-0.5*xi*xi)*0.000001 - (0.5*h-as2)*i*0.001 +
fy*As1*(h0-as1)*0.000001, i);
        series1->append(0, Nmax);//添加轴心受压时的点
        int i = qFloor(Ndiv);
        float Mmax = -(i*i)/(2*alpha_1*fc*b) + 0.5*h*i*0.001 + fy*As1*(h0-as1)*0.000001;
        if (Mmax>xmax)
                xmax=Mmax;//确定数轴x最大范围
        if (Nmax>ymax)
                ymax=Nmax;//确定数轴 y 最大范围
        chartview->chart()->addSeries(series1);//把数据系列添加到图表中
        axisx->setRange(0, qRound(xmax/100+1)*100);//数轴 x 的范围
        axisy->setRange(0, qRound(ymax/1000+1)*1000);//数轴 y 的范围
        axisx->setTickCount(qRound(xmax/100+1)+1);//数轴x的间隔划分
        axisy->setTickCount(qRound(ymax/1000+1)+1);//数轴y的间隔划分
```

chartview->chart()->setAxisX(axisx, series1);//把数轴 x 放在图的 x 轴上

```
chartview->chart()->setAxisY(axisy, series1);//把数轴 y 放在图的 y 轴上
void MainWindow::on_pushButton_c_2_clicked()//清空图像按钮的槽函数
    chartview->chart()->removeAllSeries();//清空所有 Series
void MainWindow::on_pushButton_c_3_clicked()//裂缝验算的槽函数
    QString str;//数据传输和转化
    str = ui->lineEdit c 6->text();
    float b = str. toFloat();
    str = ui->lineEdit_c_7->text();
    float h = str. toFloat();
    str = ui->lineEdit_c_9->text();
    float as2 = str. toFloat();
    str = ui->lineEdit_c_12->text();
    float As2 = str. toFloat();
    str = ui \rightarrow lineEdit_c_14 \rightarrow text();
    float Mq = str.toFloat();
    str = ui->lineEdit_c_16->text();
    float alpha_cr = str. toFloat();
    str = ui->lineEdit_c_19->text();
    float ftk = str. toFloat();
    str = ui->lineEdit_c_18->text();
    float Es = str.toFloat();
    float rho_te = As2/(0.5*b*h);//计算裂缝
    float sigma_s = Mq*1000000/(0.87*(h-as2)*As2);
    float deq = sqrt(As2/8*4/3.1416);
    float cs = as2 - deq/2;
    float psi = 1.1 - 0.65*ftk/(rho_te*sigma_s);
    float wmax = alpha_cr*psi*sigma_s/Es*(1.9*cs + 0.08*deq/rho_te);
   ui->lineEdit_c_13->setText(str.sprintf("%.3f", wmax));//返回数据,显示结果
}
```