Cutting Edge Project A Multilevel Monte Carlo Implementation

Alaa Bouattour Mahdi Ben Ayed

M2QF – Université Paris-Saclay

18 juin 2025

Plan

MLMC Classique

2 C-MLMC

Expérimentation

Méthode Monte Carlo : principe et limites

Pour estimer une espérance $\mathbb{E}[P]$ à partir d'un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, la méthode de Monte Carlo consiste à :

- Générer N réalisations indépendantes $\omega^{(n)}$.
- Calculer l'estimateur suivant :

$$\hat{P}_N = \frac{1}{N} \sum_{n=1}^N P(\omega^{(n)})$$

Erreur et coût :

- Variance de l'estimateur : $\frac{1}{N}\mathbb{V}[P]$
- Erreur quadratique moyenne (r.m.s) : $\mathcal{O}(N^{-1/2})$
- ullet Pour une précision arepsilon, on a besoin de ${\it N}={\cal O}(arepsilon^{-2})$
- Le coût devient très élevé si chaque $P(\omega)$ implique la résolution numérique d'une EDP ou une simulation coûteuse avec de nombreux pas de temps.

Variable de contrôle : réduction de variance

Soit f une fonction d'intérêt et g une variable de contrôle telle que :

- g est corrélée à f,
- $\mathbb{E}[g]$ est connue.

Estimateur sans biais de $\mathbb{E}[f]$:

$$\frac{1}{N} \sum_{n=1}^{N} \left(f(\omega^{(n)}) - \lambda \left(g(\omega^{(n)}) - \mathbb{E}[g] \right) \right)$$

Valeur optimale de λ :

$$\lambda^* =
ho \sqrt{rac{\mathbb{V}[f]}{\mathbb{V}[g]}} \quad ext{où }
ho = ext{corr}(f,g)$$

Gain : la variance est réduite d'un facteur $1 - \rho^2$ par rapport à l'estimateur standard.

Estimateur à deux niveaux : idée clé

Objectif : estimer $\mathbb{E}[P_1]$ avec un coût réduit, où P_1 est coûteux à simuler.

On introduit une approximation bon marché $P_0 \approx P_1$.

$$\mathbb{E}[P_1] = \mathbb{E}[P_0] + \mathbb{E}[P_1 - P_0]$$

Estimateur sans biais :

$$\frac{1}{N_0} \sum_{n=1}^{N_0} P_0^{(n)} + \frac{1}{N_1} \sum_{n=1}^{N_1} \left(P_1^{(n)} - P_0^{(n)} \right)$$

- $P_1^{(n)}$ et $P_0^{(n)}$ sont simulés à partir du **même** échantillon $\omega^{(n)}$.
- $P_1 P_0$ a une variance faible : on peut le simuler avec moins d'échantillons.

Optimisation du coût pour une variance fixée

On définit :

- C_0 , C_1 : coût d'un échantillon de P_0 , $P_1 P_0$
- V_0 , V_1 : variance de P_0 , $P_1 P_0$

Coût total:

$$\operatorname{Coût} = N_0 C_0 + N_1 C_1$$

Variance totale:

$$\mathsf{Var} = \frac{V_0}{N_0} + \frac{V_1}{N_1}$$

Optimisation : minimiser le coût pour une variance fixée via un multiplicateur de Lagrange.

Choix optimal des tailles d'échantillons :

$$\frac{N_1}{N_0} = \sqrt{\frac{V_1 C_0}{V_0 C_1}}$$

→ Plus de simulations sur le niveau le moins coûteux et le plus bruité.

Estimateur MLMC à plusieurs niveaux

On considère une suite de raffinement : P_0, P_1, \dots, P_L telle que :

$$\mathbb{E}[P_L] = \mathbb{E}[P_0] + \sum_{\ell=1}^L \mathbb{E}[P_\ell - P_{\ell-1}]$$

Estimateur sans biais :

$$\frac{1}{N_0} \sum_{n=1}^{N_0} P_0^{(0,n)} + \sum_{\ell=1}^{L} \left(\frac{1}{N_\ell} \sum_{n=1}^{N_\ell} \left(P_\ell^{(\ell,n)} - P_{\ell-1}^{(\ell,n)} \right) \right)$$

- Chaque niveau affine l'approximation du niveau précédent.
- Les échantillons sont indépendants entre niveaux.

Minimisation du coût pour une variance fixée

On note:

- ullet C_ℓ : coût d'un échantillon au niveau ℓ
- V_{ℓ} : variance de $P_{\ell} P_{\ell-1}$

Coût total:

$$\mathsf{Coût} = \sum_{\ell=0}^L N_\ell C_\ell$$

Variance totale:

$$\sum_{\ell=0}^{L} \frac{V_{\ell}}{N_{\ell}} = \varepsilon^2$$

Optimisation (Lagrange) :

$$N_\ell = \mu \sqrt{rac{V_\ell}{C_\ell}} \quad \Rightarrow \quad \mathrm{Coût} = arepsilon^{-2} \left(\sum_{\ell=0}^L \sqrt{V_\ell C_\ell}
ight)^2$$

Coût MLMC et comparaison avec MC standard

Coût MLMC :
$$C = \varepsilon^{-2} \left(\sum_{\ell=0}^{L} \sqrt{V_{\ell} C_{\ell}} \right)^{2}$$

Selon le comportement de $V_{\ell}C_{\ell}$:

- Croissant : $C \approx \varepsilon^{-2} V_L C_L$
- Décroissant : $C \approx \varepsilon^{-2} V_0 C_0$
- Constant : $C = \varepsilon^{-2} L^2 V_0 C_0 = \varepsilon^{-2} L^2 V_L C_L$

MC standard (Giles, 2008) : $C_{MC} \approx \varepsilon^{-2} V_0 C_L$ (avec $C_L \approx \text{coût de } P_L - P_{L-1}$ et $\mathbb{V}[P_L] \approx \mathbb{V}[P_0]$)

Conclusion:

- Si $V_L \ll V_0$, gain $\sim V_L/V_0$
- Si $C_0 \ll C_L$, gain $\sim C_0/C_L$

Formulation théorique du MLMC

On approxime une variable aléatoire P par P_L à différents niveaux de résolution. On souhaite estimer :

$$\mathsf{MSE} = \mathbb{E}\left[(Y - \mathbb{E}[P])^2 \right] = \mathbb{V}[Y] + (\mathbb{E}[Y] - \mathbb{E}[P])^2$$

Avec l'estimateur MLMC :

$$Y = \sum_{\ell=0}^{L} Y_{\ell}, \quad Y_{\ell} = \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}} \left(P_{\ell}^{(n)} - P_{\ell-1}^{(n)} \right), \quad P_{-1} := 0$$

Alors:

$$\mathbb{E}[Y] = \mathbb{E}[P_L], \quad \mathbb{V}[Y] = \sum_{\ell=0}^L \frac{V_\ell}{N_\ell}, \quad V_\ell = \mathbb{V}[P_\ell - P_{\ell-1}]$$

Objectif: garantir MSE $< \varepsilon^2$ en combinant :

- $\mathbb{V}[Y] < \frac{\varepsilon^2}{2}$ (variance)
- \bullet $(\mathbb{E}[P_L] \mathbb{E}[P])^2 < \frac{arepsilon^2}{2}$ (biais)

Théorème de complexité (Giles, 2008)

Hypothèses : il existe des constantes $\alpha, \beta, \gamma > 0$ telles que :

i)
$$|\mathbb{E}[P_L - P]| \le c_1 \cdot 2^{-\alpha L}$$
 (biais)

ii) $V_\ell \leq c_2 \cdot 2^{-\beta\ell}$ (décroissance de variance)

iii) $C_\ell \leq c_3 \cdot 2^{\gamma\ell}$ (coût croissant)

Alors il existe une constante c_4 telle que pour tout $\varepsilon < 1$:

$$\mathsf{MSE} = \mathbb{E}[(Y - \mathbb{E}[P])^2] < \varepsilon^2$$

avec un coût :

$$\mathbb{E}[C] \leq \begin{cases} c_4 \cdot \varepsilon^{-2}, & \beta > \gamma \\ c_4 \cdot \varepsilon^{-2} (\log \varepsilon)^2, & \beta = \gamma \\ c_4 \cdot \varepsilon^{-2 - (\gamma - \beta)/\alpha}, & \beta < \gamma \end{cases}$$

Interprétation:

- Si $\beta > \gamma$: complexité optimale $O(\varepsilon^{-2})$
- Si $\beta = \gamma$: pénalité logarithmique
- Si $\beta < \gamma$: coût exponentiellement plus élevé

Intuition de la preuve du théorème

L'analyse repose sur les ordres :

$$V_\ell = O(2^{-\beta\ell}), \quad C_\ell = O(2^{\gamma\ell})$$

Nombre optimal d'échantillons au niveau ℓ :

$$N_\ell \propto 2^{(\gamma-\beta)\ell/2} \Rightarrow \text{coût au niveau } \ell: N_\ell C_\ell \propto 2^{(\gamma-\beta)\ell/2} \cdot 2^{\gamma\ell} = 2^{(3\gamma-\beta)\ell/2}$$

Conclusion:

- La répartition des coûts dépend de la position de β par rapport à γ .
- Le niveau final L est choisi pour que le biais vérifie $(\mathbb{E}[P_L] \mathbb{E}[P])^2 < \varepsilon^2/2$.
- Le nombre de niveaux et la répartition des N_{ℓ} sont alors optimisés pour contrôler la variance.

Cas clé : $\beta=\gamma$ correspond à un équilibre parfait entre variance et coût — les contributions sont réparties également sur tous les niveaux.

Vers le C-MLMC

- Le MLMC classique repose sur une allocation optimale entre les niveaux, basée sur la variance moyenne par niveau.
- Cela peut conduire à un gaspillage d'échantillons dans des zones peu informatives.
- La variance intra-niveau peut être fortement hétérogène.
- Idée clé : exploiter des caractéristiques (features) des trajectoires pour identifier les zones à forte contribution à la variance.

Objectif

Réduire la variance totale à coût équivalent ou réduire le coût pour une précision donnée.

Théorie: rappel sur le MLMC

Estimateur MLMC :

$$\hat{Y}_{\mathsf{MLMC}} = \sum_{\ell=0}^{L} \frac{1}{N_{\ell}} \sum_{i=1}^{N_{\ell}} \left(Y_{\ell}^{(i)} - Y_{\ell-1}^{(i)} \right)$$

• Allocation optimale du nombre d'échantillons :

$$N_{\ell} \propto \sqrt{\frac{V_{\ell}}{C_{\ell}}}$$

où V_{ℓ} est la variance du niveau ℓ et C_{ℓ} son coût moyen.

ullet Cette stratégie dépend uniquement des variances globales V_ℓ

Théorie: intuition derrière le C-MLMC

- On extrait des **features** $\varphi(path)$ pour chaque trajectoire simulée
- On applique un clustering (ex. KMeans) pour regrouper les trajectoires en strates à variance homogène
- On effectue un échantillonnage stratifié par cluster à chaque niveau

Objectif

Réduire la variance intra-niveau grâce à une allocation intra-cluster optimale

Algorithme du C-MLMC

- **1 Phase pilote** : simuler N_0 trajectoires pour chaque niveau ℓ
- **2** Extraire les **features** $\varphi(path)$ pour chaque trajectoire
- Selfectuer un clustering (ex. KMeans) pour former C clusters
- **6** Estimer variance $V_{\ell,c}$ et coût $C_{\ell,c}$ pour chaque niveau ℓ et cluster c
- 6 Allouer les échantillons selon :

$$N_{\ell,c} \propto p_{\ell,c} \cdot \sqrt{rac{V_{\ell,c}}{C_{\ell,c}}}$$

Simuler de manière stratifiée par cluster et agréger les contributions

Agrégation finale

Pondération basée sur les proportions estimées $p_{\ell,c}$ de chaque cluster

C-MLMC : Allocation optimale (1/2)

Objectif: estimer l'espérance

$$\mathbb{E}[Y] = \sum_{\ell=0}^L \mathbb{E}[Z_\ell]$$
 où $Z_\ell = Y_\ell - Y_{\ell-1}$

Estimateur stratifié par cluster :

$$\hat{Y}_{\mathsf{CMLMC}} = \sum_{\ell=0}^{L} \sum_{c=1}^{C} \frac{1}{N_{\ell,c}} \sum_{i=1}^{N_{\ell,c}} Z_{\ell,c}^{(i)} \cdot p_{\ell,c}$$

- $N_{\ell,c}$: nombre de trajectoires dans le cluster c au niveau ℓ
- ullet $p_{\ell,c}$: proportion estimée de trajectoires dans le cluster c
- ullet Var $(Z_{\ell,c})=V_{\ell,c}$, coût moyen : $C_{\ell,c}$

Problème d'optimisation :

$$\min_{N_{\ell,c}} \sum_{\ell,c} N_{\ell,c} C_{\ell,c} \quad \text{s.t.} \quad \sum_{\ell,c} \frac{p_{\ell,c}^2 V_{\ell,c}}{N_{\ell,c}} = \varepsilon^2$$

C-MLMC : Allocation optimale (2/2)

Méthode : Lagrangien

$$\mathcal{L}(N_{\ell,c},\lambda) = \sum_{\ell,c} N_{\ell,c} C_{\ell,c} + \lambda \left(\sum_{\ell,c} \frac{p_{\ell,c}^2 V_{\ell,c}}{N_{\ell,c}} - \varepsilon^2 \right)$$

Condition du premier ordre :

$$\frac{\partial \mathcal{L}}{\partial N_{\ell,c}} = C_{\ell,c} - \lambda \frac{p_{\ell,c}^2 V_{\ell,c}}{N_{\ell,c}^2} = 0 \quad \Rightarrow \quad N_{\ell,c} = \sqrt{\lambda \cdot \frac{p_{\ell,c}^2 V_{\ell,c}}{C_{\ell,c}}}$$

Donc, allocation optimale:

$$N_{\ell,c} \propto p_{\ell,c} \cdot \sqrt{rac{V_{\ell,c}}{C_{\ell,c}}}$$

Interprétation

• Plus de trajectoires dans les clusters à variance élevée et coût faible.

Structure du code : classes et fonctions clés

1. Classe BSLevelFunction (classe mère)

- ullet Interface pour simuler trajectoires sous Black-Scholes à un niveau ℓ donné
- Méthode simulate(1, N) à implémenter
- Retourne payoff et coût simulation

2. Sous-classe MilsteinBSLevelFunction

- Hérite de BSLevelFunction
- Implémente simulate avec la méthode de Milstein
- Simule trajectoires couplées fine/coarse
- Calcule différence de payoff $Y_\ell = P_\ell P_{\ell-1}$

3. Fonction make_level_fn

- Combine paramètres modèles + payoff + classe simulation
- Produit la fonction level_fn(1, N) utilisable par C-MLMC

19 / 34

Fonction feature et clustering

Extraction des features :

- À partir des détails simulés (valeur finale fine/coarse)
- Exemples : S_{fine} , $S_{\text{fine}} S_{\text{coarse}}$
- Ces features décrivent la variance locale des trajectoires

Clustering intra-niveau:

- Regroupe trajectoires avec comportements similaires
- Utilisation d'algorithme KMeans sur les features
- Permet d'identifier des clusters homogènes en variance

Avantage : meilleure allocation des échantillons selon clusters pour réduire coût total

Classe C_MLMC : algorithme et workflow

Entrées:

- Fonction simulation par niveau sde_step_fn (ex : level_fn)
- Fonction extraction features feature_fn
- ullet Paramètres MLMC : L_{\min} , L_{\max} , taille pilote N_0 , nombre de clusters K

Processus:

- ullet Simulation pilote à chaque niveau ℓ
- 2 Extraction des features et clustering en K clusters
- Stimation variance et coût par cluster
- **4** Calcul allocation optimale $N_{\ell,c}$ par niveau/cluster
- Simulation finale avec allocation optimisée

Sorties:

- Estimation du prix
- Allocation par niveau et cluster
- Coût total et variance finale maîtrisée

Exemple d'utilisation du C-MLMC

```
payoff = lambda S: call_payoff(S, K)
level_fn = MilsteinBSLevelFunction(S0, r, sigma, T, payoff,
            verbose=False).simulate
def feature fn(detail):
    S_fine = detail["S_fine"]
    if "S_coarse" in detail:
        S_coarse = detail["S_coarse"]
        return np.array([S_fine, S_fine - S_coarse])
    else:
        return np.array([S_fine])
cmlmc_obj = C_MLMC(sde_step_fn=level_fn, feature_fn=feature_fn,
            Lmin=2, Lmax=20, n_clusters=3, N0=200,
            scale_features=True)
params = S0, K, r, sigma, T = 100.0, 100.0, 0.05, 0.20, 1.0
print("Exact | price | of | this | option: | , 10.450583572185565) #euro call
```

Prix estimé en fonction de la tolérance ε

Figure – Évolution du prix estimé par C-MLMC en fonction de la tolérance ε . La ligne rouge en pointillés représente le prix exact de l'option call européenne.

Convergence en erreur et coût

Figure – Convergence du C-MLMC en fonction de ε en erreur absolue et en coût

Option digitale : limite du MLMC classique

- Discontinuité du payoff $P(S_T) = 1_{\{S_T > K\}} \to$ presque toutes les différences de niveau ΔP_ℓ sont nulles sauf sur les trajectoires rares proches du seuil.
- Variance pilote plate : la variance estimée V_{ℓ} est quasi constante et très faible, ne révélant pas les zones à forte variance.
- Allocation aveugle : la règle $N_\ell \propto \sqrt{V_\ell/C_\ell}$ ne détecte aucun signal et répartit uniformément les échantillons, gaspillant les ressources.
- Conséquence : inefficacité du MLMC classique face aux payoffs discontinus.

Extraction de la feature utilisée pour C-MLMC

Feature définie :

$$\varphi(\mathsf{trajectory}) = |S_{\mathsf{fine}} - K|$$

- S_{fine} : valeur finale de la trajectoire fine simulée
- K : prix d'exercice de l'option digitale

Paramètres de la simulation :

- Nombre de clusters : 3
- Taille pilote $N_0 = 5000$
- Niveaux considérés : de $L_{min} = 2$ à $L_{max} = 20$
- Tolérances testées :

$$\varepsilon \in \{0.2, 0.1, 0.05, 0.025, 0.0125, 0.00625\}$$

Prix exact de l'option digitale :

0.02849536146532932

MLMC (classique) : Allocation des NI par ε

Figure – Allocation des NI pour des valeurs disctinctes de arepsilon pour le MLMC

C-MLMC : Allocation des NI par arepsilon

Figure – Allocation des NI pour des valeurs disctinctes de arepsilon pour le C-MLMC

Convergence en erreur et coût : MLMC vs C-MLMC

Figure – Convergence en fonction de ε en erreur absolue et en coût : MLMC vs C-MLMC

Option asiatique : test de performance C-MLMC

- Contexte : option asiatique call, payoff dépend de la moyenne du sous-jacent.
- Caractéristique du problème : plus lissée que l'option digitale, mais les trajectoires peuvent varier significativement selon la forme (minima, moyenne, fin de trajectoire).
- **Objectif**: comparer les performances de MLMC et C-MLMC sur ce cas "intermédiaire", non pathologique.
- Résultat de référence (Monte Carlo standard) :

 $\mathbb{E}[P] \approx 1.176119$

Feature utilisée pour C-MLMC : option asiatique

Feature vector:

$$\varphi(\mathsf{trajectory}) = \begin{cases} \mathsf{Fine} \ \mathsf{avg}, \ \mathsf{Fine} \ \mathsf{avg} \ \mathsf{-} \ \mathsf{Coarse} \ \mathsf{avg}, \\ \mathsf{Fine} \ \mathsf{min} \ \mathsf{-} \ \mathsf{Coarse} \ \mathsf{min}, \ \mathsf{Fine} \ \mathsf{end} \ \mathsf{-} \ \mathsf{Coarse} \ \mathsf{end} \end{cases}$$

Interprétation:

- Moyenne fine : contribue directement au payoff.
- Différences fine/coarse : mesures d'écarts de trajectoire (forme, terminal).

Paramètres de simulation :

- $S_0 = 95$, K = 100, r = 0.05, $\sigma = 0.1$, T = 1
- Niveaux : $L_{min} = 2$, $L_{max} = 20$
- Nombre de clusters : 3, taille pilote $N_0 = 5000$
- Tolérances testées :

$$\varepsilon \in \{0.2, 0.1, 0.05, 0.025, 0.0125\}$$

MLMC (classique) : Allocation des NI par ε

Figure – Allocation des NI pour des valeurs disctinctes de arepsilon pour le MLMC

C-MLMC : Allocation des NI par ε

Figure – Allocation des NI pour des valeurs disctinctes de arepsilon pour le C-MLMC

Convergence en erreur et coût : MLMC vs C-MLMC

Figure – Convergence en fonction de ε en erreur absolue et en coût : MLMC vs C-MLMC