BIOS 662 Fall 2018

Analysis of Variance, Part IV: A Case Study

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Strategy for Analysis

- 1. Consider data generation mechanism
- 2. Analysis plan: Specify model and assumptions; hypotheses to be tested; diagnostics to be performed
- 3. Summary statistics, tables, figures
- 4. Model fitting and diagnostics
- 5. Inference
- 6. Sensitivity analysis
- 7. Conclusions; summary; limitations (e.g., lack of power)

Hypothetical Example

• Survival times of patients following heart transplant surgery based on degree of mismatch (low, medium, high) of the tissue type between donor and recipient

Analysis Plan

• ANOVA model

$$Y_{ij} = \mu_i + \epsilon_{ij}$$

i = 1, 2, 3 denoting low, medium, high groups, respectively

 $j = 1, 2, \dots, n_i$ denoting the j^{th} patient in the i^{th} group

$$n_1 = 14, \quad n_2 = 13, \quad n_3 = 12$$

 Y_{ij} survival time in days

 μ_i mean survival time in patients with type i mismatch

Analysis Plan cont.

• Primary hypotheses of interest: all pairwise comparisons

$$H_0: \mu_1 = \mu_2, \quad H_0: \mu_1 = \mu_3, \quad H_0: \mu_2 = \mu_3$$

- Based on power considerations, decide $\alpha = 0.1$
- All pairwise comparisons using Tukey
- Further contrasts, group level means, etc. will be considered hypothesis generating/exploratory; thus no multiplicity adjustment
- Diagnostics, remedial measures, sensitivity analyses

Data

j	Low	Medium	High
1	44	15	3.0
2	551	280	136.0
3	127	1024	65.0
4	1400	836	400.0
5	1000	51	10.4
6	700	600	39.4
7	550	250	33.4
8	300	200	48.4
9	47	22	13.5
10	26	71	34.5
11	50	62	35.5
12	10	69	45.5
13	70	13	
14	20		

Boxplot With Raw Data

Summary Statistics

	Low	Medium	High
n	14	13	12
Mean	349.6	268.7	72.0
Median	98.5	71.0	37.5
SD	435.31	337.51	108.82
(Min, Max)	(10,1400)	(13, 1042)	(3,400)

Homogeneity of Variance Plot

Residual Plot

Modified Levene Test

Brown and Forsythe's Test for Homogeneity of survival Variance ANOVA of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
degree	2	452324	226162	2.46	0.0993
Error	36	3304203	91783.4		

QQ Plot

Normal Q-Q Plot

ullet Recall: Family of transformations indexed by λ

$$Y_{\lambda} = \begin{cases} k_1(Y^{\lambda} - 1) & \text{for } \lambda \neq 0 \\ k_2 \log(Y) & \text{for } \lambda = 0 \end{cases}$$

where

$$k_2 = \left(\prod_{i,j} Y_{ij}\right)^{1/N}$$
 and $k_1 = \frac{1}{\lambda k_2^{\lambda - 1}}$

- \bullet Choose λ that minimizes SSW
- SAS: macro on course website or proc transreg

R: MASS library, function boxcox()

```
%macro boxcox(
                           /* name of response variable
                                                                   */
   resp=,
                           /* independent variables in regression
   model=,
                           /* ID variable for observations
                                                                   */
   id=,
   data= last .
                           /* input dataset
                                                                   */
   /* Various other parameters */
   lopower=-2,
                  /* low value for power
                                                                   */
   hipower=2,
                          /* high value for power
                                                                   */
   npower=21, /* number of power values in interval
   conf=0.95);
                          /* confidence coefficient of CI on power*/
data case_study;
  infile "anova_case.txt";
  input degree $ survival;
low=0; medium=0;
if degree="Low" then low=1;
if degree="Medium" then medium=1;
*%boxcox(resp=survival,model=low medium,lopower=-2,hipower=2,npower=21);
%boxcox(resp=survival,model=low medium,lopower=-0.7,hipower=0.7,npower=15);
```

Box-Cox		Root mean	0.95
Power	Log	squared	Confidence
(lambda)	Likelihood	error	Interval
-0.7	-209.436	214.896	
-0.6	-203.272	183.479	
-0.5	-198.035	160.423	
-0.4	-193.809	143.949	
-0.3	-190.648	132.742	
-0.2	-188.568	125.847	*
-0.1	-187.546	122.593	*
-0.0	-187.530	122.543	<+
0.1	-188.446	125.456	*
0.2	-190.213	131.268	
0.3	-192.746	140.080	
0.4	-195.970	152.149	
0.5	-199.812	167.904	
0.6	-204.212	187.955	
0.7	-209.113	213.124	

proc transreg data=case_study ss2 pboxcoxtable details; model boxcox(survival) = identity(low medium);

Box-Cox Transformation Information for survival

Lambda	R-Square	Log Like
-2.50	0.06	-390.086
-2.00	0.07	-333.778
-1.50	0.07	-280.235
-1.00	0.09	-232.441
-0.50	0.12	-198.035
0.00	+ 0.14	-187.530 <
0.50	0.13	-199.812
1.00	0.12	-226.364
1.50	0.10	-261.488
2.00	0.09	-301.910
2.50	0.08	-345.720

- < Best Lambda
- * 95% Confidence Interval
- + Convenient Lambda

- Choose log transformation
- Run diagnostics again

Modified Levene Test

Brown and Forsythe's Test for Homogeneity of logsurvival Variance
ANOVA of Absolute Deviations from Group Medians

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
degree	2	2.2384	1.1192	1.52	0.2324
Error	36	26.5038	0.7362		

Residual Plot

QQ Plot

Normal Q-Q Plot

Tests for Normality

```
> fit <- aov(log(survival)~degree)</pre>
> qq <- qqnorm(fit$residuals,xlab="Fitted Values",ylab="Residuals")</pre>
> cor.test(qq$x,qq$y)
        Pearson's product-moment correlation
sample estimates:
      cor
0.9882992
> lillie.test(fit$residuals)
        Lilliefors (Kolmogorov-Smirnov) normality test
data: fit$residuals
D = 0.0799, p-value = 0.766
> shapiro.test(fit$residuals)
data: fit$residuals
W = 0.9682, p-value = 0.3294
```

- Diagnostics suggest adequate fit after log transformation
- Employ Tukey for all (3) pairwise comparisons of factor level means

Tukey Simultaneous 90% CIs

Tukey's Studentized Range (HSD) Test for logsurvival

NOTE: This test controls the Type I experimentwise error rate.

Alpha	0.1
Error Degrees of Freedom	36
Error Mean Square	2.132024
Critical Value of Studentized Range	2.99758

Comparisons significant at the 0.1 level are indicated by ***.

		Di	fference			
	degree		Between	Simultane	ous 90%	
Comparison		on	Means	Confidence	Limits	
	Low - Me	edium	0.1476	-1.0444	1.3397	
	Low - H:	igh	1.2805	0.0630	2.4980	***
	Medium - Lo	OW	-0.1476	-1.3397	1.0444	
	Medium - H	igh	1.1329	-0.1061	2.3718	
	High - Lo	OW	-1.2805	-2.4980	-0.0630	***
	High - Me	edium	-1.1329	-2.3718	0.1061	

Tukey Simultaneous 90% CIs

Sensitivity Analyses: Bonferroni

Bonferroni (Dunn) t Tests for logsurvival

NOTE: This test controls the Type I experimentwise error rate, but it generally has a higher Type II error rate than Tukey's for all pairwise comparisons.

Comparisons significant at the 0.1 level are indicated by ***.

		Difference			
de	egree	Between	Simultan	eous 90%	
Comparison		Means	Confidenc	e Limits	
Low	- Medium	0.1476	-1.0969	1.3922	
Low	- High	1.2805	0.0094	2.5516	***
Medium	n - Low	-0.1476	-1.3922	1.0969	
Medium	n - High	1.1329	-0.1606	2.4263	
High	- Low	-1.2805	-2.5516	-0.0094	***
High	- Medium	-1.1329	-2.4263	0.1606	

Sensitivity Analyses: Wilcoxon Rank Sum

wilcox.test(low.survival,med.survival) Wilcoxon rank sum test W = 93, p-value = 0.943 alternative hypothesis: true location shift is not equal to 0 wilcox.test(low.survival,high.survival) Wilcoxon rank sum test W = 122, p-value = 0.05264 alternative hypothesis: true location shift is not equal to 0 wilcox.test(med.survival,high.survival) Wilcoxon rank sum test W = 115, p-value = 0.04571 alternative hypothesis: true location shift is not equal to 0

BIOS 662 Fall 2018 25 ANOVA, Part IV

Contrasts

- It looks like low and medium degrees of mismatch are much better than a high degree of mismatch
- Consider using a contrast to test whether the mean survival time for patients with a high degree of mismatch differs from that of patients in the other two groups
- We want to test

$$H_0: (\mu_1 + \mu_2)/2 - \mu_3 = 0$$
 vs. $H_A: (\mu_1 + \mu_2)/2 - \mu_3 \neq 0$

• Letting $c_1 = 0.5$, $c_2 = 0.5$ and $c_3 = -1$, we have

$$L = \sum_{i=1}^{3} c_i \mu_i$$
 with $\sum_{i=1}^{3} c_i = 0$

Contrasts cont.

```
data case_study; set case_study;
logsurvival=log(survival);

if degree='Low' then mismatch=1;
    else if degree='Medium' then mismatch=2;
    else if degree='High' then mismatch=3;

proc glm data=case_study;
    class mismatch;
    model logsurvival = mismatch / clparm;
    estimate 'Low/med vs. high' mismatch 0.5 0.5 -1;

* or contrast 'Low/med vs. high' mismatch 0.5 0.5 -1;
```

Standard

Parameter	Estimate	Error	t Value	Pr > t	95% Conf.	Limits
Low/med vs. high	1.20668	0.50670	2.38	0.0227	0.1791	2.2343
Contrast	DF Co	ntrast SS	Mean Sq	uare F V	alue Pr	> F
Low/med vs. high	1	12.09150	12.0	9150	5.67 0.	0227

Conclusions

- Conclude there is evidence of a marginally significant difference in mean log survival times between low and high (although not totally consistent across sensitivity analyses)
- How to quantify/interpret on log scale?
- Power of study to detect what size effects? Alternative analysis to test for trend?