Kartkówka 2 – przykładowe zadanie (układ licznikowy):

Zaprojektować układ zadany grafem. Wykonać różne realizacje: na przerzutnikach D i JK. Zrealizować wyjście.

Oznaczenia:

q₁ q₀ – stan układu y – wyjście układu s – wejście układu

(układ w wersji Moore'a)

q ₁ q ₀	0	1	у	
0 0	1 1	0 0	0	
0 1	0 0	0 1	1	
1 1	1 0	1 1	0	
1 0	0 1	1 0	1	
w tabeli [q ₁ ' q ₀ ']				

Przepisujemy graf do tabeli:

Realizacja na przerzutnikach	D (dwa przerzutniki	, bo dwa bity stanu):

(lewy bit tabeli = q_1 ') sterowanie przerzutnikiem D_1 dla q_1

s q ₁ q ₀	0	1
0 0	(1)	0
0 1	0	0
1 1		
1 0	0	1

$$D_1 = q_1 \dot{} = q_1 \cdot s + q_1 \cdot q_0 + \overline{q}_1 \cdot \overline{q}_0 \cdot \overline{s}$$

(prawy bit tabeli = q_0 ') sterowanie przerzutnikiem D_0 dla q_0

$q_1 q_0$	0	1
0 0	1/	0
0 1	0	1
1 1	0	1
1 0	/1	0

$$D_0 = q_0' = \overline{q}_0 \cdot \overline{s} + q_0 \cdot s$$

Realizacja na przerzutnikach JK (dwa przerzutniki, bo dwa bity stanu):

$q_1 q_0$	0	1	у	
0 0	1 1	0 0	0	
0 1	0 0	0 1	1	
1 1	1 0	1 1	0	
1 0	0 1	1 0	1	
w tabeli [a ₁ ', a ₀ ']				

Przepisany graf w tabeli:

Kodujemy (wg tabeli JK – w zielonej ramce) przejścia stanu: $q_1 \rightarrow q_1$ ' (lewa tabela) i $q_0 \rightarrow q_0$ ' (prawa tabela):

sterowanie przerzutnikiem J₁ K₁ dla q₁

$q_1 q_0$	0	1
0 0	1/x	0 x
0 1	0 x	0 x
1 1	x 0	x 0
1 0	$\sqrt{x}\sqrt{1}$	x 0

$$J_1 = \overline{q}_0 \cdot \overline{s}$$
 , $K_1 = \overline{q}_0 \cdot \overline{s}$

sterowanie przerzutnikiem $J_0\,K_0\,dla\,q_0$

$q_1 q_0$	0	1
0 0	$\int 1 / x$	0 x
0 1	x 1	x 0
1 1	x 1	x 0
1 0	1) x	0 x

$$J_0 = \overline{s}$$
 , $K_0 = \overline{s}$

q	q'	J K
0	0	0 x
0	1	1 x
1	0	x 1
1	1	x 0
		1

Realizacja wyjścia układu (y):

Tabela wyjścia: tylko bity q₁ i q₀ (bez bitu wejściowego s), bo to jest graf Moore'a

q_1 q_0	0	1
0	0	
1		0

$$y = \overline{q}_1 \cdot q_0 + q_1 \cdot \overline{q}_0$$

Kartkówka 2 – przykładowe zadanie (układ arytmetyczny):

Zaprojektować układ zadany grafem. Wykonać różne realizacje: na przerzutnikach D i JK. Zrealizować wyjście.

Oznaczenia:

q₁ q₀ – stan układu y – wyjście układu a b – wejścia układu

(układ w wersji Mealy'ego - ten układ wykonuje działanie arytmetyczne: y = 3 * a plus b)

Przepisujemy graf do tabeli:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0	w tabeli
0 0	0 0 / 0	0 0 / 1	10/0	01/1	$q_1' q_0' / y$
0 1	0 0 / 1	01/0	1 0 / 1	10/0	
1 1	0 1 / 1	10/0	11/1	11/0	
1 0	01/0	01/1	11/0	1 0 / 1	

Realizacja na przerzutnikach D (dwa przerzutniki, bo dwa bity stanu):

(lewy bit tabeli = q_1 '): sterowanie przerzutnikiem D_1 dla q_1

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0
0 0	0	0		0
0 1	0	0	1	1
1 1	0	1		
1 0	0	0	V	1

$$D_1 = q_1' = q_1 \cdot a + q_0 \cdot a + a \cdot b + q_1 \cdot q_0 \cdot b$$

(prawy bit tabeli = q_0 '): sterowanie przerzutnikiem D_0 dla q_0

ab				
$q_1 q_0$	0 0	0 1	1 1	1 0
0 0	0	0	0	
0 1	0		0	0
1 1		0	1	1
1 0	1	1	1	0

$$D_0 = q_0 \, '= q_1 \cdot \overline{q}_0 \cdot \overline{a} + q_1 \cdot q_0 \cdot a + q_1 \cdot \overline{a} \cdot \overline{b} + q_1 \cdot a \cdot b + \overline{q}_1 \cdot q_0 \cdot \overline{a} \cdot b + \overline{q}_1 \cdot \overline{q}_0 \cdot a \cdot \overline{b}$$

Realizacja wyjścia układu (bit y - bit w tabeli po znaku /):

Tabela wyjścia: bity q_1 i q_0 i bity wejściowe a, b (bo to jest graf Mealy'ego)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0
0 0	0	\1/	0	\1/
0 1	1	0	1	0
1 1	1)	0	1)	0
1 0	0	1	0	1

$$y = q_0 \cdot \overline{a} \cdot \overline{b} + q_0 \cdot a \cdot b + \overline{q}_0 \cdot \overline{a} \cdot b + \overline{q}_0 \cdot a \cdot \overline{b}$$

Realizacja na przerzutnikach JK (dwa przerzutniki, bo dwa bity stanu):

Jeszcze raz tabela układu:

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0	w tabeli
0 0	0 0 / 0	0 0 / 1	10/0	01/1	q ₁ ' q ₀ ' / y
0 1	0 0 / 1	01/0	10/1	10/0	
1 1	0 1 / 1	1 0 / 0	1 1 / 1	11/0	
1 0	0 1 / 0	01/1	11/0	1 0 / 1	

 $Kodujemy \ (wg \ tabeli \ JK - \textbf{w} \ \textbf{zielonej} \ \textbf{ramce}) \ przejścia \ stanu: \ q_1 \rightarrow q_1' \ (pierwsza \ tab.) \ i \ q_0 \rightarrow q_0' \ (druga \ tab.):$

sterowanie: J₁ K₁ dla q₁

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0
0 0	0 x	0 x	$\int 1 x$	0 x
0 1	0 x	0 x	1 x	lх
1 1	x 1	x 0	x 0	x 0
1 0	x 1	x 1	x 0	x 0

0 0 0 x 0 1 1 x 1 0 x 1	q	q'	J K
	0	0	0 x
1 0 x 1	0	1	1 x
	1	0	x 1
1 1 x 0	1	1	x 0

$$J_1 = a \cdot b + q_0 \cdot a \qquad , \qquad K_1 = \overline{a} \cdot \overline{b} + \overline{q}_0 \cdot \overline{a}$$

sterowanie: J₀ K₀ dla q₀

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0	0 1	1 1	1 0
0 0	0 x	0 x	0/x	1 x
0 1	x 1	x 0	x 1	x 1
1 1	x 0	x 1	x 0	x 0
1 0	1 x	1x	1/X	0 x

$$J_0 = q_1 \cdot \overline{a} + q_1 \cdot b + \overline{q}_1 \cdot a \cdot \overline{b} \qquad , \qquad K_0 = \overline{q}_1 \cdot a + \overline{q}_1 \cdot \overline{b} + q_1 \cdot \overline{a} \cdot b$$

Wyjście (y) wyznaczone wcześniej.