

Modellierung latenter Variablen in Klassischer Testtheorie und Item Response Theory

Sebastian Weirich und Nicklas Hafiz

Institut zur Qualitätsentwicklung im Bildungswesen (IQB)
Humboldt-Universität zu Berlin

Gesis Workshop, Oktober 2024

Überblick

1. Messinstrumente und Messmodelle in der Kompetenzdiagnostik

– Warum braucht man ein Messmodell?

2. Messmodelle werden aus Testtheorien abgeleitet

- Klassische Testtheorie (KTT)
- Probabilistische Testtheorie (oder Item Response Theory; IRT)
- Warum wird in der Kompetenzdiagnostik vorwiegend auf Modelle der IRT anstatt der KTT zurückgegriffen?

3. Verschiedene Modelle der IRT

- Raschmodell (oder 1PL-Modell)
- 2PL/3PL-Modelle
- Partial Credit model (PCM), Generalized Partial Credit model (GPCM)
- Linear-logistisches Testmodell (LLTM), Multifacettenmodell

Literatur zur Item Response Theorie

- Embretson, S. E. & Reise, S. P. (2000). *Item response theory for psychologists*. Mahwah, NJ: Erlbaum.
- Hambleton, R. K., Swaminathan, H. & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park: Sage.
- Kolen, M. J. & Brennan, R. L. (2004). *Testing equating, scaling, and linking: Methods and practice*. New York: Springer.
- Hambleton, R. K., & Jones, R. W. (1993). Comparison of Classical Test Theory and Item Response Theory and Their Applications to Test Development. *Educational Measurement: Issues and Practice*, 38-47.
- Robitzsch, A. (2009). Methodische Herausforderungen bei der Kalibrierung von Leistungstests. In Bremerich-Vos, A., Granzer, D. & Köller, O. (Hrsg.). *Bildungsstandards Deutsch und Mathematik*. S. 42-106. Weinheim: Beltz Pädagogik.
- De Boeck, P. & Wilson, M. (Hrsg.), Explanatory Item Response Models. New York: Springer.
- Hedeker, D. Mermelstein, R. & Flay, B. (2006). Application of Item Response Theory Models for Intensive Longitudinal Data. In T. A. Walls & J. L. Schafer (Eds.). *Models for Intensive Longitudinal Data* (pp. 84-108). Oxford University Press, New York.

Messinstrumente und Messmodelle

- Messen vs. Modellieren: Messen geht der Modellierung voraus
- Messen verlangt ein Messinstrument (aber nicht zwingend ein Messmodell)

→ Messmodelle sind notwendig, wenn die zu messenden Merkmale latent sind

manifest

- direkt zu beobachten
- Messwert = Merkmalswert
- Beispiele: Körpergröße und -gewicht

latent

- nicht direkt zu beobachten
- hypothetische bzw. theoretisch definierte Konstrukte
- Messwert ≠ Merkmalswert
- Beispiele: Intelligenz, Persönlichkeit ("big five"), Depressivität, mathematische Kompetenz
- Um Aussagen über den Merkmalswert einer Person treffen zu können, muss definiert werden, in welcher Beziehung der Merkmalswert zu den beobachteten Messwerten steht

Diese Beziehung wird durch das Messmodell definiert

Messmodelle werden aus Testtheorien abgeleitet

 Die prominentesten Testtheorien in der Sozial- und Verhaltensforschung sind die klassische Testtheorie (KTT) und die probabilistische Testtheorie (Item Response Theory; IRT)

KTT vs. IRT

- KTT ("Messfehlertheorie"):
 - Beobachtete Wert = "wahrer Wert" + "individueller Fehler"
 - $Y = \tau + \varepsilon$
 - Erwartungswert des Fehlers ist 0
 - Messfehler und tatsächlicher Wert sind unkorreliert
- Bsp. Beck's Depressions Inventar (BDI)
 - Erfasst den Schweregrad einer (endogenen) Depression
 - 21 Fragen mit jeweils 4 Antwortoptionen, z.B.
 - (0) Ich bin nicht traurig.
 - (1) Ich bin traurig.
 - (2) Ich bin die ganze Zeit traurig und komme nicht davon los.
 - (3) Ich bin so traurig oder unglücklich, dass ich es kaum noch ertrage.
 - Mögliche Summenwerte von minimal 0 bis max. 63 Punkte
 - 0-8: Keine Depression
 - 9-13: Minimale Depression
 - 14-19: Leichte Depression
 - 20-28: Mittelschwere Depression
 - 29-63: Schwere Depression

KTT vs. IRT

- KTT: Normierung anhand von Vergleichsgruppen (Referenz- oder Normpopulationen)
 - Beurteilung eines spezifischen individuellen Summenwertes (z.B. 37) erfolgt anhand eines Vergleichs mit anderen Personen
 - Problem: Vergleichbarkeit des Testwerts mit dem Testwert eines anderen Depressionstest
 - Voraussetzung: die Verlässlichkeit des Messinstruments ist unabhängig davon
 - wie oft es bereits eingesetzt wurde
 - wie bekannt es ggf. Ist
- Diese Voraussetzungen sind in bestimmten Tests (Leistungs- oder Kompetenztests)
 möglicherweise nicht gegeben
 - Wenn die Items eines Intelligenz-/Kompetenztests bekannt sind, ist die Güte des Tests eingeschränkt
 - Mögliche Lösung: Paralleltests

Kompetenztests (z.B. PISA)

- Das Testinstrument wechselt von Jahr zu Jahr (durch Aufgabenveröffentlichung);
 trotzdem sollen die Ergebnisse jeweils auf derselben Metrik abgebildet werden
- Kompetenzstufenmodelle definieren kriteriale Standards (z.B. Regelstandard). Diese Beschreibungen beziehen sich auf Testaufgaben (Testitems)
 - Die F\u00e4higkeit eines Kindes wird in Relation zur Schwierigkeit von Testaufgaben operationalisiert (vgl. KTT: Die "F\u00e4higkeit" einer Person wird in Relation zur F\u00e4higkeit von Vergleichspopulationen operationalisiert)
- Modelle der klassischen Testtheorie sind nicht geeignet ...
 - wenn das Testinstrument sich zwischen Erhebungen verändert, die Skala jedoch gleich bleiben soll
 - wenn Testleistungen nicht nur im Sinne eines "Person X ist besser als Person Y" interpretiert, sondern kriterial beschrieben werden sollen
 - → Diese kriterialen Beschreibungen beziehen sich auf Testitems und erfordern eine Modellierung auf Itemebene

KTT vs. IRT (Hambleton & Jones, 1993)

КТТ	IRT
Vergleicht Personen mit anderen Personen	Vergleicht Personen mit Items
Schwache Messmodelle (voraussetzungsarm)	Starke Messmodelle (strikte Voraussetzungen)
Item- und Teststatistiken sind stichprobenabhängig	Item- und Teststatistiken sind stichprobenunabhängig: Item- und Personenparameter können auf gemeinsamer Skala abgebildet werden
Abhängigkeit der Itemparameter von Stichprobeneigenschaften	Invarianz von Item- und Personenparametern
"testbasiert"	"itembasiert"

Raschmodell: Grundlegende Annahmen

- Raschmodell: einfachstes Modell der IRT
 - Abhängige Variable (AV): Lösungswahrscheinlichkeit $P(X_{ni})$ der Person n für Item i
 - nicht die Wahrscheinlichkeit selbst, sondern eine transformierte Wahrscheinlichkeit ("logit") wird vorhergesagt
 - Warum Transformation? Wahrscheinlichkeitswerte sind auf das Intervall [0, 1] beschränkt und können nicht adäquat linear zerlegt werden. Um lineare Modelle schätzen zu können, muss Transformation erfolgen
 - Logit-Transformation einer Wahrscheinlichkeit *P*: $logit(P) = log(\frac{P}{1-P})$
 - Wahrscheinlichkeit > 50% führt zu positivem Logit-Wert
 - 75% → logit von 1.09
 - 98% \rightarrow logit von 3.89
 - Wahrscheinlichkeit < 50% führt zu negativem Logit-Wert
 - 25% → logit von -1.09
 - 5% → logit von -2.94
 - Wahrscheinlichkeit = 50% führt zu Logit = 0
 - Theoretischer Wertebereich des Logits: $-\infty < logit(P) < +\infty$

Raschmodell: Grundlegende Annahmen

Raschmodell: einfachstes Modell der IRT

- Der Logit der Lösungswahrscheinlichkeit $P(X_{ni})$ schreibt sich $logit(P(X_{ni}=1))$ und ist die abhängige Variable (AV) im Raschmodell
- Im Raschmodell hängt dieser Logit ausschließlich von der Fähigkeit der Person θ_n und der Schwierigkeit des Items β_i ab $\to \theta_n$ und β_i sind Prädiktoren im Raschmodell

$$\operatorname{logit}(P(X_{ni}=1)) = \theta_n - \beta_i$$

- Eine Person mit der (hypothetischen) F\u00e4higkeit 2 sollte ein Item der Schwierigkeit 2 mit derselben
 Wahrscheinlichkeit l\u00f6sen, mit der eine Person der F\u00e4higkeit 1 ein Item der Schwierigkeit 1 l\u00f6st
 - Schwierigkeit der Items und F\u00e4higkeit der Personen k\u00f6nnen immer nur in Relation zueinander bestimmt werden
 - Ein konkreter Itemschwierigkeitswert β_i ist immer auf eine Personenpopulation bezogen (z.B. die Population der Sekundarschüler der 9. Klasse, die den MSA anstreben)
- setzt man diese Modellbeziehung voraus, können beruhend auf einem Datensatz die Modellparameter (also die Schwierigkeit der Items β_i und die Fähigkeit der Personen θ_n) geschätzt werden
- Raschmodell wird auch das einparametrische logistische Modell (1PL) genannt, weil pro Item nur ein Parameter (die Schwierigkeit des Items β_i) geschätzt wird

Raschmodell, Annahme 1: parallele Itemcharakteristikkurven

- θ_n : unidimensional latent trait
- Doppelte Monotonizität
 - Rangfolge der Items ist für alle Personenpopulationen gleich
 - Rangfolge der Personen ist für alle Itempopulationen gleich
 - Beide Annahmen folgen aus der Annahme paralleler Itemcharakteristikkurven (ICC) im Raschmodell (gleiche Trennschärfe für alle Items)
- Parallele Itemcharakteristikkurven
 - Kurven überschneiden sich nicht
 - Item A ist für jede beliebige Person und in jeder beliebigen Population schwerer als Item B

Oktober 2024

Raschmodell, Annahme 2: θ_n ist unidimensional

- Die Wahrscheinlichkeit $P(X_{ni} = 1)$ wird lediglich durch θ_n und β_i bestimmt
 - das bedeutet, dass sämtliche Items nur zwischen Personen mit unterschiedlichem θ_n unterscheiden dürfen, nicht etwa zwischen bspw. Personen mit unterschiedlichen Sprachhintergrund etc.
 - Mögliche Verletzung dieser Annahme: Angenommen, zwei Personen mit gleicher (wahrer)
 Mathematikfähigkeit aber unterschiedlichen Sprachfähigkeiten erreichen einen unterschiedlichen
 Fähigkeitswert im Mathematiktest
 - Der Test wäre nicht nur nicht "fair"; die Annahmen des Raschmodells wären nicht gegeben, die Parameter des Modells möglicherweise verfälscht
- Alternative: mehrdimensionale Raschmodelle oder Modelle, die Differential Item Functioning (DIF) parametrisieren
 - Mehrdimensional: $\operatorname{logit}(P(X_{ni} = 1 | \boldsymbol{\theta})) = \boldsymbol{\theta} \boldsymbol{\beta}$ mit $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_D)$
 - DIF: $\operatorname{logit}(P(X_{ni} = 1)) = \theta_n \beta_i + \tau_1 g_j + \tau_2 (\beta_i g_j)$

Oktober 2024

Raschmodell, Annahme 3: lokale stochastische Unabhängigkeit

Lokale stochastische Unabhängigkeit

- Nach Kontrolle der Personenfähigkeit θ_n existieren keine Beziehungen (= Korrelationen) der Items zueinander mehr
- Ist äquivalent zur Annahme einer eindimensionalen latenten Fähigkeit (Lord & Novick, 1968)
 - bedeutet praktisch: würde man eine Gruppe von Personen mit identischer Fähigkeit einen Test bearbeiten lassen, wären ihre Antworten nicht korreliert

Weswegen überhaupt diese Annahme?

Parameterschätzung erfolgt in Marginal Maximum Likelihood Estimation (Adams & Wu, 1997)

Then the likelihood for a set of N response patterns is

$$\mathbf{\Lambda}(\mathbf{\xi}, \mathbf{\alpha} | \mathbf{X}) = \prod_{j=1}^{N} \int_{\mathbf{\theta}} \mathbf{\Psi}(\mathbf{\theta}, \mathbf{\xi}) \exp\left[\mathbf{x}_{j}'(\mathbf{B}\mathbf{\theta} + \mathbf{A}\mathbf{\xi})\right] dG(\mathbf{\theta}; \mathbf{\alpha}) . \tag{14}$$

 Die Wahrscheinlichkeit eines Antwortmusters einer Person wird über das Produkt der Einzelwahrscheinlichkeiten bestimmt. Das ist nur zulässig, wenn die Einzelereignisse (= einzelnen Antworten) zueinander unabhängig sind

Alternative: Modelle, die lokale Abhängigkeiten parametrisieren

Modelle zur Behandlung lokaler Abhängigkeit

- Copula-Modelle (Braeken, 2011; Braeken, Tuerlinckx & de Boeck, 2007)
- Marginale Modelle für stochastische Abhängigkeit (Tuerlinckx & de Boeck, 2004)
- Explanatorische Item-Response-Modelle (Wilson & De Boeck, 2004)

Problem: Interpretierbarkeit

- Parameter aus Modellen für stochastische Abhängigkeit können nicht mehr als Itemschwierigkeitsparameter interpretiert werden (Tuerlinckx & de Boeck, 2004)
- "Second, the parameter β_2 does not have the natural interpretation of marking the point on the latent scale where the probability of a correct response is .5. […] The parameters pertaining to a single item cannot be seen as item difficulties" (Tuerlinckx & de Boeck, 2004, S. 307)
- Je einfacher das Modell ist, desto besser und intuitiver lassen sich die Parameter interpretieren und verstehen. Aber: umso unwahrscheinlicher ist ggf. die Gültigkeit/Verlässlichkeit des Modells
- "All models are wrong but some are useful" (Box & Draper, 1987; S. 74)
- Wie findet man den besten Kompromiss zwischen Modellpassung und Interpretierbarkeit?

Zusammenfassung

- Warum überhaupt Messmodelle?
 - Die zu messenden Merkmale sind latent, nicht direkt zu beobachten
- Warum Messmodelle der Item-Response-Theorie?
 - Gemeinsame Skala f

 ür Items und Personen.
 - Vergleichbare Metrik trotz immer wieder neu entwickelter Tests/Aufgaben
 - Stichprobenunabhängige (Item-)Parameter
- Warum ein möglichst einfaches IRT-Modell?
 - Eigenschaft der parallelen Item-Response-Kurven günstig für die Interpretation in und die Konstruktion von Kompetenzstufenmodellen
 - Itemparameter k\u00f6nnen als Itemschwierigkeit interpretiert und direkt in erwartete
 L\u00f6sungswahrscheinlichkeiten "\u00fcbersetzt" werden
 - → Einfache/intuitive Interpretierbarkeit der Ergebnisse