

Mark Scheme (Results)

June 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2018
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

June 2018 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number		Scheme		Notes	Marks	
1.	$\sum_{r=1}^{n} r(r +$	$3) = \sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$	$\sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$			
	$=\frac{1}{6}n(n+$	$-1)(2n+1) + 3\left(\frac{1}{2}n(n+1)\right)$	Attempts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.			
		(- /		Correct expression (or equivalent)	A1	
	$=\frac{1}{6}n(n-1)$	+1)[(2n+1)+9]	Att	dependent on the previous M mark empt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.	dM1	
	$=\frac{1}{6}n(n-1)$	+1)(2n+10)		{this step does not have to be written}		
	$=\frac{n}{3}(n+$	1)(n+5) or $\frac{1}{3}n(n+1)(n+1)$	5)	Correct completion with no errors. Note: $a = 3, b = 5$	A1	
					(4)	
				Question 1 Notes	4	
1.	Note			e printed equation without applying the standard for	mulae	
	Alt 1	to give $a=3$, $b=5$ is M0.		two marks using the main scheme)		
	AIL I			_		
		Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n \equiv -\frac{5}{3}$	$\frac{-n^3+1}{a}$	$\left(\frac{a}{a}\right)^{n^2+a}$ o.e.		
	dM1 A1	Equating coefficients to fi Finds $a = 3$ and $b = 5$	nd bot	th $a = \dots$ and $b = \dots$ and at least one correct of $a = 1$	3 or $b = 5$	
	Alt 2	Alt Method 2: (Award t	he firs	st two marks using the main scheme)		
		$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n+1)$	+1) ≡	$\frac{n}{-}(n+1)(n+b)$		
	dM1	2		a s identity o.e. and solves to find both $a =$ and $b =$	_	
	uivii	and at least one correct of				
				or $2a-b=1$ and $n=2$ gives $14 = \frac{6(2+b)}{a}$ or $7a$	a - 3b = 6	
	A1	Finds $a=3$ and $b=5$	и	и		
'	Note	Allow final dM1A1 for $\frac{1}{3}$	Allow final dM1A1 for $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n$ or $\frac{1}{3}(n^3 + 6n^2 + 5n) \rightarrow \frac{n}{3}(n+1)(n+5)$			
		with no incorrect working	with no incorrect working.			
	Note	A correct proof $\sum_{r=1}^{n} r(r +$	A correct proof $\sum_{r=1}^{n} r(r+3) = \frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g. $a=5, b=3$			
		is M1A1dM1A1 (ignore s	ubseq	uent working)		
	Note	Give A0 for $\frac{2}{6}n(n+1)(n+1)$	- 5) wi	thout reference to $a = 3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3}n(n+1)$	+1)(n+5)	

Question Number	Scheme	Notes			Mark	KS
2.	P represents an anti-clockwise rotation	about the origin th	rough 45 de	egrees		
(a)	$\left\{ \mathbf{P} = \right\} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$	$\frac{1}{\sqrt{2}}$ or e.g. $\frac{1}{\sqrt{2}}$	$ \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} $	Correct matrix which is expressed in exact surds	B1	
(b)	Enlargament			Enlargement or enlarge	M1	(1)
(0)	Enlargement	Abou	ıt (0 0) or a	about O or about the origin	IVI I	
	Centre $(0, 0)$ with scale factor $k\sqrt{2}$		and scale or	r factor or times and $k\sqrt{2}$ low $\sqrt{2k^2}$ in place of $k\sqrt{2}$	A 1	
	Note: Give M0A0	for combinations				(2)
(c) Way 1	$\left\{ \mathbf{PQ} = \right\} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix}$		N	Multiplies their matrix from by Q [either way round] and applies "ad -bc" to the resulting matrix	M1	(-)
	$\left\{\det \mathbf{PQ} = \right\} (k)(k) - (-k)(k) = 2k^2$			to give $2k^2$ states their det \mathbf{PQ} = $2k^2$ adone $\{\det \mathbf{PQ} = \}$ $k^2 + k^2$	A1	
	147	,	(6(their determinant) = 147		
	$6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$	or puts their determinant equal to $\frac{147}{6}$			M1	
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} \ k = \frac{7}{2}$	Obtains $k = 3.5$, o.e.		A1		
						(4)
(c) Way 2	$\det \mathbf{Q} = (k\sqrt{2})(k\sqrt{2}) - (0)(0) \text{ or det}$	$\mathbf{Q} = \left(k\sqrt{2}\right)\left(k\sqrt{2}\right)$		applies " $ad - bc$ " to Q or applies $(k\sqrt{2})^2$	M1	
	$\{\det \mathbf{P} = 1 \implies \} \det \mathbf{PQ} = (1)(2k^2) = 2k$ or $\det \mathbf{Q} = 2k^2$	k^2		deduces that det $\mathbf{PQ} = 2k^2$ states their det \mathbf{PQ} = $2k^2$ or det $\mathbf{Q} = 2k^2$	A1	
	$6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$			or (their det(PQ)) = $\frac{147}{6}$ or (their det(PQ)) = $\frac{147}{6}$	M1	
	$\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} \ k = \frac{7}{2}$	Obtains $k = 3.5$, o.e.		A1		
						(4)
						7

		Question 2 Notes	
2. (b)	Note	"original point" is not acceptable in place of the word "origin".	
	Note	xpand" is not acceptable for M1	
	Note	"enlarge x by $k\sqrt{2}$ and no change in y" is M0A0	
(c)	Note	Obtaining $k = \pm 3.5$ with no evidence of $k = 3.5$ {only} is A0	
	Way 2 Note 1	Give M1A1M0A0 for writing down $147(2k^2) = 6$ or $\frac{1}{2k^2} = \frac{147}{6}$ or $6\left(\frac{1}{2k^2}\right) = 147$, o.e.	
		with no other supporting working.	
	Way 2 Note 2	Give M0A0M1A0 for writing det $\mathbf{Q} = \frac{1}{k^2 - (-k^2)}$ or $\frac{1}{2k^2}$, followed by $6\left(\frac{1}{2k^2}\right) = 147$	
	Note	Allow M1A1 for an incorrect rotation matrix P , leading to det $\mathbf{PQ} = 2k^2$	
	Note	Allow M1A1M1A1 for an incorrect rotation matrix P , leading to det PQ = $2k^2$ and $k = 3.5$, o.e.	
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{147}{6}} \Rightarrow k = 3.5$ is M1A1dM1A1	
	Note	Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{6}{147}}$ is M1A1dM0	

Question Number	Scheme	Notes	Marks
3.	$C: y^2 = 6x$; S is the focus of C; $y^2 = 4ax$; P($(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$	
(a)	$\{a = 1.5 \Rightarrow\}$ S has coordinates $(1.5, 0)$	$(1.5, 0) \text{ or } \left(\frac{3}{2}, 0\right) \text{ or } \left(\frac{6}{4}, 0\right)$	B1 cao
	Note: You can recover this mark for A	S(1.5, 0) stated either parts (b) or part (c)	(1)
(b)	{ PQ is parallel to the x -axis \Rightarrow } Focus-directrix Property $\Rightarrow SP \{= PQ\} = 14$	SP = 14 or 14 stated by itself in (b)	B1 cao
	Note: $PQ = 14$ stated by itself v	without reference to $SP = 14$ is B0	(1)
(c) Way 1	$\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_p = 14 - 14$	$\frac{3}{2}$ {= 12.5} $x = 14 - \text{their "}a$ "	M1
	$y_p^2 = 6(12.5) \Rightarrow y_p = \dots$	dependent on the previous M mark Substitutes their x into $y^2 = 6x$ and finds $y =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1 (2)
			(3)
	$ \begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		
(c) Way 2	$(x-1.5)^{2} + (6x) = 14^{2}$ $\Rightarrow x^{2} + 3x - 193.75 = 0 \Rightarrow x =$	Applies Pythagoras to $x-"a"$, $\sqrt{6x}$ and 14, then forms and solves quadratic equation in x to give $x=$	M1
		As in Way 1	dM1 A1
(c) Way 3	$11^2 + y^2 = 14^2 \implies y = \dots$	Applies Pythagoras to $14-"2a"$, y and 14, and solves to give $y =$	(3) M1
	$\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$	dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1 (2)
(c)	$(1.5t^2 - 1.5)^2 + (3t)^2 = 14^2$ Applies	Puthagarag to 111 511/2 111 511 2/11 511/ 2/11 4	(3)
Way 4	$\Rightarrow 2.25t^4 + 4.5t^2 - 193.75 = 0$ $\{ \text{or } 9t^4 + 18t^2 - 775 = 0 \}$ to	s Pythagoras to "1.5" t^2 – "1.5", 2("1.5") t and 14, forms and solves a quadratic equation in t^2 give t^2 = or t =, and finds at leasts one of or y = by using x = "1.5" t^2 or y = 2("1.5") t	M1
	$\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3 \left(\frac{5\sqrt{3}}{3}\right)$	dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1
			(3)
			5

Question Number		Scheme		Notes		
3.	$C: y^2 = 6$	Sx ; S is the focus of C; y^2	Sx ; S is the focus of C; $y^2 = 4ax$; $P(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$			
(c) Way 5	$(1.5t^2$	$\begin{cases} x_P = \frac{-t}{2}, x_Q = -\frac{-t}{2}, PQ = 14 \implies \\ (1.5t^21.5) = 14 \implies 1.5t^2 = 12.5 \end{cases}$ equation		orizontal distance $PQ = 14$ to form and solve the in "1.5" t^2 -"-1.5" = 14 to give t^2 = or t =, and finds at leasts one of or y = by using x = "1.5" t^2 or y = 2("1.5") t	M1	
	3	$\frac{1}{3} \Rightarrow t = \frac{\sqrt{3}}{3}$ $.5\left(\frac{5\sqrt{3}}{3}\right)^2, y = 3\left(\frac{5\sqrt{3}}{3}\right)$		dependent on the previous M mark Finds both $x =$ and $y =$ by using $x = "1.5"t^2$ and $y = 2("1.5")t$	dM1	
	Either x	=12.5, $y = 5\sqrt{3}$ or (12.5, 5)	$5\sqrt{3}$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
					((3)
(c) Way 6	$\left\{ S(1.5,0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \right\}$ $\left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \Rightarrow y = \dots$ $\left\{ y^4 + 18y^2 - 6975 = 0 \right\}$			Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, and solves to give $y =$	M1	
	$\left(\sqrt{75}\right)^2 =$	$6x \Rightarrow x = \dots$		dependent on the previous M mark Substitutes their y into $y^2 = 6x$ and finds $x =$	dM1	
	Either x	=12.5, $y = 5\sqrt{3}$ or (12.5, 5)	$5\sqrt{3}$	Correct and paired. Accept $(12.5, \sqrt{75})$	A1	
					((3)
2 (5)	NT-4-	¥¥7		uestion 3 Notes		
3. (c)	Note	Writing coordinates the wrong way round E.g. writing $x = 12.5$, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0				
	Note	Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is			is A0	
	Note	,		with either $y = \sqrt{75}$ or $y = 5\sqrt{3}$ seen in their w		
	Note	You can mark part (b) and	part (c) t	ogether		

Question Number	Scheme		Notes	Marks
4.	$\mathbf{A} = \begin{pmatrix} 2p & 3\\ 3p & 5 \end{pmatrix}$	$\begin{pmatrix} q \\ q \end{pmatrix}$; XA = I	$\mathbf{B}; \ \mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$	
(a)	$\{\det(\mathbf{A}) = \} 2p(5q) - (3p)(3q) \{ = p \}$	$q\}$	2p(5q) - (3p)(3q) which can be un-simplified or simplified	B1
	$\left\{\mathbf{A}^{-1} = \right\} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{p} & -\frac{3}{p} \\ -\frac{3}{q} & \frac{2}{q} \end{pmatrix}$		$\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$	M1
			Correct A ⁻¹	A1
				(3)
(b) Way 1	$ \left \begin{array}{cc} p & q \\ 6p & 11q \end{array} \right \underbrace{1}_{} \left(\begin{array}{cc} 5q & -3q \\ \end{array} \right) = \dots $ (or at leas		ttempts BA ⁻¹ and finds at least one element t one element calculation) of their matrix X Note: Allow one slip in copying down B Note: Allow one slip in copying down A ⁻¹	M1
	$= \frac{1}{pq} \begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \\ pq & pq \end{pmatrix}$		At least 4 correct elements (need not be in a matrix)	A1
			dependent on the first M mark Finds a 3×2 matrix of 6 elements	dM1
	$= \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$	Correct simplified matrix for		A1
				(4)
(b) Way 2	$\left\{\mathbf{XA} = \mathbf{B} \Rightarrow\right\} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$ $2pa + 3pb = p, 3qa + 5qb = q$ or $2pc + 3pd = 6p, 3qc + 5qd = 11q$ or $2pe + 3pf = 5p, 3qe + 5qf = 8q$ and finds at least one of a, b, c, d, e or	p (34)	Applies XA = B for a 3×2 matrix X and attempts simultaneous equations in <i>a</i> and <i>b</i> or <i>c</i> and <i>d</i> or <i>e</i> and <i>f</i> to find at least one of <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> or <i>f</i> Note: Allow one slip in copying down A Note: Allow one slip in copying down B	M1
	(2a+3b=1, 3a+5b=1) $a=2$	2, b = -1	At least 4 correct elements	A1
	$\begin{cases} 2a+3b=1, & 3a+5b=1\\ 2c+3d=6, & 3c+5d=11\\ 2e+3f=5, & 3e+5f=8 \end{cases} \Rightarrow \begin{array}{c} a=2, b\\ c=-3, c\\ e=1, f \end{cases}$		dependent on the first M mark Finds all 6 elements for the 3×2 matrix X	dM1
	$\Rightarrow \mathbf{X} = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		Correct simplified matrix for X	A1
				(4)
				7

		Question 4 Notes			
4. (a)	Note	ndone $\frac{1}{10pq - 9pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ or $\frac{1}{2p(5q) - (3p)(3q)} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$ for A1			
	Note	ondone $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{pq}$ or $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{2p(5q) - (3p)(3q)}$ for A1			
	Note	Condone $ \begin{pmatrix} \frac{5q}{pq} & -\frac{3q}{pq} \\ -\frac{3p}{pq} & \frac{2p}{pq} \end{pmatrix} $ for A1			
(b)	Note	Way 1: Allow SC 1 st A1 for at least 4 correct elements in $ \begin{pmatrix} \frac{2pq}{\text{their det } \mathbf{A}} & \frac{-pq}{\text{their det } \mathbf{A}} \\ \frac{-3pq}{\text{their det } \mathbf{A}} & \frac{4pq}{\text{their det } \mathbf{A}} \end{pmatrix} $ $ \frac{pq}{\text{their det } \mathbf{A}} & \frac{pq}{\text{their det } \mathbf{A}} $			
		or for at least 4 of these elements seen in their calculations			

Question Number	S	Scheme	Notes			
5.	$z^4 - 6z^3 + 34z^2 - 54$	$4z + 225 \equiv (z^2 + 9)(z^2 + az)$	$\equiv (z^2 + 9)(z^2 + az + b)$; a, b are real numbers			
(-)	a = -6, b = 25		At least one of $a = -6$ or $b = 25$	B1		
(a)	a = -6, b = 23		Both $a = -6$ and $b = 25$	B1		
				(2	()	
(b)	$\left\{ z^2 + 9 = 0 \Longrightarrow \right\} z = 3i, -3i$		At least one of $3i$, $-3i$, $\sqrt{9}i$ or $-\sqrt{9}i$	M1		
	,		Both 3i and −3i	A 1		
	$\begin{cases} z^2 - 6z + 25 = 0 \implies \\ & z = \frac{6 \pm}{(z - 3)^2 - 9} \end{cases}$ $\{ z = \} \ 3 + 4i, 3 - 4i \}$	$\frac{\sqrt{(-6)^2 - 4(1)(25)}}{2(1)} \text{or} $	Correct method of applying the quadratic formula or completing the square for solving their $z^2 + az + b = 0$; $a, b \ne 0$	M1		
	${z=}3+4i, 3-4$	i	3 + 4i and $3 - 4i$	A1		
()				(4)	
(c)	(0,3)	(3,4)	 Criteria ± 3i or ± (their k)i plotted correctly on the imaginary axis, where k∈ R, k > 0 dependent on the final M mark being awarded in part (b) Their final two roots of the form λ± μi, λ, μ≠ 0, are plotted correctly 			
	(0, -3)	Re	Satisfies at least one of the criteria	B1ft		
		(3, -4)	Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis	B1ft		
				(2		
		Λι	lestion 5 Notes		8	
5. (a)	Note Give B1		rect $(z^2 - 6z + 25)$, followed by $a = 25, b = -6$		-	
2. (u)		lues of a and b are not star			-	
		B1B1 for writing down a c				
		_	$(z^2 + \text{their "}a"z + \text{their "}b")$, with exactly one			
	_	eir a or their b correct	. 22 1. 2			
(b)	Note No work	No working leading to $z = 3i$, $-3i$ is 1^{st} M1 1^{st} A1				
	Note $z = \pm \sqrt{2}$	$z = \pm \sqrt{9i}$ unless recovered is 1 st M0 1 st A0				
	Note You can	assume $x \equiv z$ for solution	s in this question			
	 Note Give 2nd M1 2nd A1 for z² -6z + 25 = 0 ⇒ z = 3 + 4i, 3 - 4i with no intermediate working. Give 2nd M1 2nd A1 for z = 3 + 4i, 3 - 4i with no intermediate working having state a = -6, b = 25 in part (a) or part (b). 					
(b)	 Note No working leading to z = 3i, -3i is 1st M1 1st A1 Note z = ±√9i unless recovered is 1st M0 1st A0 Note You can assume x = z for solutions in this question Note Give 2nd M1 2nd A1 for z² -6z+25 = 0 ⇒ z = 3 + 4i, 3 - 4i with no intermedity working. Give 2nd M1 2nd A1 for z = 3 + 4i, 3 - 4i with no intermediate working having 			naving stated		

	Question 5 Notes Continued			
5. (b)	Note	Special Case: If their <i>3-term quadratic</i> factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$		
	Note	Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.		
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "		
		Formula: Attempt to use the correct formula (with values for a , b and c)		
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$		
5. (b)(c)	Note	You can mark part (b) and part (c) together		

Question Number	Scheme		Notes		Marks
6.	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$;	Roots α , β : $0.4 < \alpha$	α < 0.5 and	1.2 < β < 1.3	
(a)	$\int_{\mathbf{f}(\mathbf{r})} \frac{5}{2\mathbf{r}^2} + 6\mathbf{r}^2 - 0 \rightarrow$	So	me evidence	e of $\pm \lambda x^n \to \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1
	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$; Roots α , β : $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $\begin{cases} f(x) = 2x^{\frac{5}{2}} + 6x^{-\frac{1}{2}} - 9 \Rightarrow \\ 3 & 3 \end{cases}$ Some evidence of $\pm \lambda x^n \to \pm \mu x^{n-1}$; λ , $\mu \neq 0$ Differentiates to give $\pm Ax^{\frac{3}{2}} \pm Bx^{-\frac{3}{2}}$; $A, B \neq 0$			M1	
	$f'(x) = 5x^{\frac{3}{2}} - 3x^{-\frac{3}{2}}$ Correct differentiation which can be simplified or un-simplified			A1	
	$\left\{\alpha \simeq 0.45 - \frac{f(0.45)}{f'(0.45)}\right\} \Rightarrow \alpha \simeq 0.45 - \frac{1}{2}$	<u>0.2159541693</u> -8.428734015	Valid atte	empt at Newton-Raphson using values of $f(0.45)$ and $f'(0.45)$	M1
	$\{\alpha = 0.4756211869\} \Rightarrow \alpha = 0.476$		(Ig	ndent on all 4 previous marks 0.476 on their first iteration nore any subsequent iterations)	A1 cso
	Correct differentiation followed Correct answer w	by a correct answe ith <u>no</u> working sco		<u>=</u> · · · ·	(5)
(a)	Alternative method 1 for the first 3	3 marks		_	
Alt 1		So	me evidence	e of $\pm \lambda x^n \to \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1
	$\begin{cases} u = 2x^3 + 6 & v = \sqrt{x} \\ u' = 6x^2 & v' = \frac{1}{2}x^{-\frac{1}{2}} \end{cases} \Rightarrow$		$\pm Ax^2(\sqrt{x})$	Differentiates to give $\frac{\sqrt{x} + Bx^{-\frac{1}{2}}(2x^3 + 6)}{x}; A, B \neq 0$	M1
	$f'(x) = \frac{6x^2(\sqrt{x}) - \frac{1}{2}x^{-\frac{1}{2}}(2x^3 + 6)}{x}$ Correct differentiation which can be simplified or un-simplified			A1	
(b)	Either	<u>β</u> 0527 "		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1
	**\begin{align*} \ \ \begin{align*} \ \ \begin{align*} \ \begin{align*} \ \ \begin{align*} \ \ \begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			M1	
	• $\beta = \left(\frac{(1.3)("0.3678924937") + (1.2)("0.1161410527")}{"0.1161410527" + "0.3678924937"}\right)$ = $\left(\frac{0.4782602418 + 0.1393692632}{0.4840335464}\right) = \left(\frac{0.617629505}{0.4840335464}\right)$ • $\beta = 1.2 + \left(\frac{"0.3678924937"}{"0.1161410527" + "0.3678924937"}\right)$ • $\beta = 1.2 + \left(\frac{"-0.3678924937"}{"-0.1161410527" + "-0.3678924937"}\right)$ (0.1)			dM1	
	$\{\beta = 1.276005578\} \Rightarrow \beta = 1.276$	(3 dp)	(Ig	1.276 nore any subsequent iterations)	A1 cao
					(4)

Question Number		Scheme		Notes	Marks	
6. (b) Way 2		$\frac{x}{678924937"} = \frac{0.1 - x}{"0.1161410527}$ $\frac{("0.3678924937")}{("0.3678924937")} = 0.076005$		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	
	$x = \frac{(0.1)("0.3678924937")}{0.4840335464} = 0.0760055778$ $\Rightarrow \beta = 1.2 + 0.0760055778$			Finds x using a correct method of similar triangles and applies "1.5 + their x "	M1 dM1	
	$\{\beta = 1.27$	$\beta = 1.276 \text{ (3 dp)}$	p)	1.276	A1 cao	
(b) Way 3		$\frac{0.1 - x}{678924937"} = \frac{x}{"0.1161410527}$ $\frac{("0.1161410527")}{0.4840335464} = 0.023994$		At least one of either ± (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1	(4)
	$\Rightarrow \beta = 1$	1.3 – 0.0239944222		Finds <i>x</i> using a correct method of similar triangles and applies "1.6 – their <i>x</i> "	M1 dM1	
	$\{\beta = 1.27$	$\beta = 1.276 \text{ (3 dp)}$	p)	1.276	A1 cao	
	Question 6 Notes (4)					(4)
6. (a)	Note	Incorrect differentiation follow		r estimate of α with no evidence of applying	the	
		NR formula is final dM0A0.		11.7.0		
	M1			least one correct <i>value</i> of either f(0.45) or f	, ,	
			,	. So just $0.45 - \frac{f(0.45)}{f'(0.45)}$ with an incorrect	answer	
	3 7 /	and no other evidence scores fi				
	Note	• $f'(0.45) = 5(0.45)^{\frac{3}{2}} - 3(0.4)^{\frac{3}{2}}$		lgebraic differentiation for either		
		• f'(1.5) applied correctly in $\alpha \approx 0.45 - \frac{\frac{2((0.45)^3 + 3)}{\sqrt{0.45}} - 9}{\frac{3}{5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}}}$				
(a)	Alternative method 2 for the first 3 marks					
Alt 2	$\begin{cases} u = 2x^{3} + 6 & v = x^{-\frac{1}{2}} \\ u' = 6x^{2} & v' = -\frac{1}{2}x^{-\frac{3}{2}} \end{cases} \Rightarrow$			Some evidence of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; λ , $\mu \neq$ Note: Allow M1 for either $\pm Ax^2(x^{-\frac{1}{2}})$ or $\pm Bx^{-\frac{3}{2}}(2x^3 + 6x^2)$ or $\pm Bx^{-\frac{3}{2}}(x^3 + 3)$; $A, B \neq$	er M1	
		_ ,		Differentiates to giv $\pm Ax^{2}(x^{-\frac{1}{2}}) \pm Bx^{-\frac{3}{2}}(2x^{3} + 6); A, B \neq$	ve M1	
	f'(x) = 6	$x^{2}(x^{-\frac{1}{2}}) - \frac{1}{2}x^{-\frac{3}{2}}(2x^{3} + 6)$		Correct differentiation which can be simplified or un-simplified	Ι Δ Ι	

		Question 6 Notes Continued			
6. (b)	Note	Condone writing the symbol α in place of β in part (b)			
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \left \frac{\text{"- 0.3678924937"}}{\text{"0.1161410527"}} \right \text{ is a valid method for the first M mark}$			
	Note	Give 1st M1 for either $\frac{-f(1.2)}{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{ f(1.3) } = \frac{\beta - 1.2}{1.3 - \beta}$			
	Note	Five M1M1 for the correct statement $\frac{1.3 f(1.2) + 1.2f(1.3)}{f(1.3) + f(1.2) }$			
	Note	Give M1M1 for the correct statement $\beta = \frac{1.3 + 1.2k}{k+1}$,			
		where $k = \frac{f(1.3)}{ f(1.2) } = \frac{0.116141}{0.367892} = 0.31569$			
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"} \Rightarrow \beta = 1.276 \text{ with no intermediate working is B1 M1 dM1 A1}$			
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{0.1161410527} \implies \beta = 1.34613 = 1.346 (3 dp) \text{ is B1 M0 dM0 A0}$			
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{-0.1161410527} \implies \beta = 1.276 \text{ (3 dp) is B1 M1 dM1 A1}$			

Question Number		Scheme Notes		Marks			
7.		$5x^2 - 4x + 3 = 0$ has roots α , β					
(a)	$\alpha + \beta = \frac{4}{5}$	Both $\alpha + \beta = \frac{3}{5}$ Both $\alpha + \beta = \frac{4}{5}$ and $\alpha\beta = \frac{3}{5}$, seen or implied			B1		
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}$			States or uses $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$	M1	
	$\alpha^2 + \beta^2$	$= (\alpha + \beta)^2 - 2\alpha\beta = \dots$		U	Use of the correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)		
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2}$	$=\frac{\alpha^2+\beta^2}{\alpha^2\beta^2}=\frac{\left(\frac{4}{5}\right)^2-2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	Applies $\alpha^2 \beta^2 - (\alpha \beta)^2$ correctly in the denominator				
		$-\left(\frac{14}{25}\right)$ 14	dep	endent on A	ALL previous marks being awarded		
		$= \frac{-\left(\frac{14}{25}\right)}{\left(\frac{9}{25}\right)} = -\frac{14}{9}$		$-\frac{14}{9}$ or	$-1\frac{5}{9}$ or -1.5 from correct working	A1 cso	
					2 2	(5)	
(b) Way 1	{Sum =}	$\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) \left\{ = -\frac{14}{3}\right\}$	$\frac{4}{3}$ or	$-\frac{42}{9}$	Simplifies $\frac{3}{\alpha^2} + \frac{3}{\beta^2}$ to give 3(their answer to (a))	M1	
	{Product	$= \begin{cases} \frac{3}{\alpha^2} \left(\frac{3}{\beta^2} \right) = \frac{9}{\left(\frac{3}{5} \right)^2} & \{ = 25 \} \end{cases}$ Applies $\frac{9}{(\text{their } \alpha\beta)^2}$ using their value of $\alpha\beta$				M1	
	$x^2 + \frac{14}{3}x$	x + 25 = 0	Note: "=0" is not required for this mark Any integer multiple of $3x^2 + 14x + 75 = 0$				
	$3x^2 + 14x$	x + 75 = 0					
						(4)	
				Question 7 I	Notes	9	
7. (a)	Note	Writing a correct $\alpha^2 + \beta^2$ -			without attempting to substitute at leas	t one	
. • (a)	11000	of either their $\alpha + \beta$ or their					
	Note				$\frac{3}{5}$ leading to $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(-\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$	$=-\frac{14}{9}$	
	Note	Writing down α , $\beta = \frac{2+\sqrt{3}}{5}$	11i, 2	$\frac{2-\sqrt{11}i}{5}$ and	I then stating $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ or a	pplying	
		$\alpha + \beta = \frac{2 + \sqrt{11}i}{5} + \frac{2 - \sqrt{11}i}{5} = \frac{4}{5} \text{ and } \alpha\beta = \left(\frac{2 + \sqrt{11}i}{5}\right) \left(\frac{2 - \sqrt{11}i}{5}\right) = \frac{3}{5} \text{ scores B0}$ Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied					
	Note						
	α , $\beta = \frac{2 + \sqrt{11}i}{5}$, $\frac{2 - \sqrt{11}i}{5}$, can only score the M marks in part (a)						
	Note Give B0M0M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\left(\frac{2+\sqrt{11}i}{5}\right)^2} + \frac{1}{\left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$						

	Question 7 Notes Continued							
7. (a)	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5}\right)^2 + \left(\frac{2-\sqrt{11}i}{5}\right)^2}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$						
	Note	Give B0M1M0M0A0 for						
		$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5} + \frac{2-\sqrt{11}i}{5}\right)^2 - 2\left(\frac{2+\sqrt{11}i}{5}\right)\left(\frac{2-\sqrt{11}i}{5}\right)}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$						
	Note	Allow B1 for both $S = \frac{4}{5}$ and $P = \frac{3}{5}$ or for $\sum = \frac{4}{5}$ and $\prod = \frac{3}{5}$						
	Note	Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5						
	Note	Give 2 nd M1 for applying their $\alpha + \beta = \frac{4}{5}$ on						
		$5\alpha^{2} - 4\alpha + 3 = 0, 5\beta^{2} - 4\beta + 3 = 0 \Rightarrow 5(\alpha^{2} + \beta^{2}) - 4(\alpha + \beta) + 6 = 0$						
		to give $5(\alpha^2 + \beta^2) - 4\left(\frac{4}{5}\right) + 6 = 0 \ \left\{ \Rightarrow \alpha^2 + \beta^2 = \frac{-6 + \frac{16}{5}}{5} = -\frac{14}{25} \right\}$						
(b)	Note	A correct method leading to $a = 3$, $b = 14$, $c = 75$ without writing a final answer of						
		$3x^2 + 14x + 75 = 0$ is final M1A0						
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ to give						
		$x^2 + \frac{14}{3}x + 25 = 0 \implies 3x^2 + 14x + 75 = 0$ scores M0M0M1A0 in part (b)						
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ to find $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and applying						
		$\left\{\alpha + \beta = \frac{4}{5}, \right\} \alpha\beta = \frac{3}{5}, \frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ can potentially score full marks in part (b). E.g.						
		• Sum = $\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) = -\frac{14}{3}$						
		• Product $=$ $\left(\frac{3}{\alpha^2}\right)\left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} = 25$						
		$\bullet x^2 + \frac{14}{3}x + 25 = 0 \implies 3x^2 + 14x + 75 = 0$						
	Note	Finding $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and correctly writing $x^2 - 3\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)x + \frac{9}{(\alpha\beta)^2} = 0$ followed by						
		$x^{2} - \frac{14}{3}x + 25 = 0 \implies 3x^{2} - 14x + 75 = 0 \text{ (incorrect substitution of } \frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = -\frac{14}{9})$						
		is M0M1M1A0						

Question Number	Scheme	Notes	Marks
7.	$5x^2 - 4x + 3 =$	0 has roots α , β	
(b) Way 2	$y = \frac{3}{x^2} \Rightarrow x = \frac{3}{y^2} \Rightarrow 5\left(\frac{3}{y}\right) - 4\sqrt{\frac{3}{y}} + 3 = 0$	Substitutes $x^2 = \frac{3}{y}$ into $5x^2 - 4x + 3 = 0$	M1
	$\frac{15}{y} + 3 = 4\sqrt{\frac{3}{y}} \implies \left(\frac{15}{y} + 3\right)^2 = \left(4\sqrt{\frac{3}{y}}\right)^2$	dependent on the previous M mark Correct method for squaring both sides of their equation	dM1
	$\frac{225}{y^2} + \frac{45}{y} + \frac{45}{y} + 9 = 16\left(\frac{3}{y}\right)$		
	$\frac{225}{y^2} + \frac{42}{y} + 9 = 0$		
	$9y^2 + 42y + 225 = 0$	dependent on the previous M mark Obtains an expression of the form $ay^2 + by + c$, $a, b, c \ne 0$ Note: " = 0" not required for this mark	dM1
		Any integer multiple of $3y^2 + 14y + 75 = 0$, or $3x^2 + 14x + 75 = 0$, including the "=0"	A1
			(4)

Question Number		Scheme	Notes	Marks			
8.		$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ \frac{a^n - b^n}{a - b} & b^n \end{pmatrix}; \ n \in \mathbb{Z}^+; \ a \neq b$					
	RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$, shows or states that either LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ or LHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ or $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ or $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$, RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$						
	$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{k+1}$		$ \begin{pmatrix} 0 \\ b \end{pmatrix} \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \qquad \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} $ multiplied by $ \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} $ (either way round)	M1			
		$ \frac{a(a^{k+1} - b^{k})}{a - b} + b^{k} - b^{k+1} \qquad \text{or} \qquad \left(a^{k} + \frac{a(a^{k} - b^{k})}{a - b} + \frac{b^{k}(a - b^{k})}{a - b}\right) = \left(\frac{a^{k+1} - b^{k+1}}{a - b} - b^{k+1}\right) $	$ \begin{array}{ccc} & a^{k+1} & 0 \\ & b(a^k - b^k) & b^{k+1} \\ & 0 \\ & b \\ & 0 \end{array} $ Multiplies out to give a correct un-simplified matrix	Al			
		$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$	dependent on the previous A mark Achieves this result with no algebraic errors	Al			
	If the re	sult is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true }}$	for $n = k + 1$. As the result has been shown to be result is true for all $n \in \mathbb{Z}^+$	A1 cso			
				(5)			
			Question 8 Notes				
8.	Note	Final A1 is dependent on all previous	ious marks being scored.				
			ng the ideas of all four underlined points				
	Note	Give B0 for stating LHS = RHS by	by itself with no reference to LHS = RHS =				
	Note	Give B0 for just stating $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^1$	$= \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$				
	Note	E.g.	$ \begin{array}{c c} & a^{k+1} & 0 \\ & +1 - b^{k+1} \\ \hline & a - b & b^{k+1} \end{array} $ with no intermediate working is N	/1А0А0А0			
	Note	Writing $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b$	$ \frac{a^{k+1}}{a-b} = 0 $ with no intermediate working is N $ \frac{a(a^{k+1} - b^{k+1})}{a-b} + b^{k} = 0 $ $ \frac{a(a^{k-1} - b^{k+1})}{a-b} + b^{k} = b^{k+1} = 0 $ is	M1A1A1			

Question Number	Scheme		Notes		Marks	
9.	(a) $\frac{z - ki}{z + 3i} = i$ (b)	o)(i) k				
(a) Way 1	$z - ki = i(z + 3i) \implies z - ki = iz - 3$ $\implies z - iz = -3 + ki \implies z(1 - i) = -3 + ki$		Complete method of making z the subject			
	$\Rightarrow z = \frac{-3 + ki}{(1 - i)}$		pression for $z =$	A1		
	$z = \frac{(-3+ki)}{(1-i)} \frac{(1+i)}{(1+i)} \left\{ = \frac{(-3+ki)(1+i)}{2} \right\}$		dependent on the Multiplies numerato by the conjugate of	-	dM1	
	$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$			the correct answer with no errors seen	A1* cso	
					(4)	
(a)	z - ki = i(z + 3i)		Multiplies both	sides by $(z + 3i)$,		
Way 2	(x + yi) - ki = i(x + yi + 3i)	ä	applies $z = x + yi$, o.e.,	multiplies out and	M1	
	$x + (y - k)\mathbf{i} = -y - 3 + x\mathbf{i}$		attempts to equate both	•	1111	
	$\{\text{Real} \Rightarrow \} x = -y - 3$	tl	he imaginary part of the			
	$\{\text{Imaginary} \Rightarrow \} y - k = x$		Both which can be simplifie	n correct equations	A1	
	$\begin{cases} x + y = -3 \\ x - y = -k \end{cases} \Rightarrow x = \frac{-k-3}{2}, y = \frac{k-3}{2}$		dependent on the previous M mark Obtains two equations both in terms of x and y and solves them simultaneously to give at least one of $x =$ or $y =$			
	$\Rightarrow z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$			$\frac{-k-3}{2}, y = \frac{k-3}{2}$ when the given result	111 650	
					(4)	
(b)(i)	$\{k = 4 \Rightarrow\} z = -\frac{(4+3)}{2} + \frac{(4-3)}{2}i \{ = -\frac{7}{2} + \frac{1}{2}i \}$ $\{ z = \} \sqrt{\left(-\frac{7}{2}\right)^2 + \left(\frac{1}{2}\right)^2}$	$\left\{\frac{1}{2}i\right\}$	and a full a	substituting $z = 4$ en expression for z ttempt at applying hagoras to find $ z $	M1	
	$= \sqrt{\frac{50}{4}}, \sqrt{12.5}, \frac{\sqrt{50}}{2}, \frac{5}{2}\sqrt{2} \text{ or } \frac{5}{\sqrt{2}} \text{ or } \sqrt{\frac{25}{2}}$		Some evidence of substituting $z=1$ into the given expression for z and uses trigonometry to find an expression for arg z in the range $(-3.14, -1.57)$ or $(-180^{\circ}, -90^{\circ})$ or $(3.14, 4.71)$ or $(180^{\circ}, 270^{\circ})$		A1	
(ii)					M1	
	$\{\arg z = -\pi + 0.463647 \Rightarrow \} \arg z = -2.677945 \{ = -2.678 (3 dp) \}$ awrt -2.678			awrt -2.678	A1	
	,				(4)	
					8	

Question Number		Scheme	Notes	Marks		
9.		(a) $\frac{z - ki}{z + 3i} = i$ (b)(i) $k = 4$ (ii) $k = 1$			
(a) Way 3	-	$z = z + 3i \Rightarrow \frac{iz + k}{(-1)} = z + 3i$	Complete method of making <i>z</i> the subject	M1		
	$\Rightarrow -iz - k = z + 3i \Rightarrow -k - 3i = z + iz$ $\Rightarrow -k - 3i = z(1 + i)$ $\Rightarrow z = \frac{-k - 3i}{(1 + i)}$		Correct expression for $z =$	Al		
	$z = \frac{(-k)}{(1-k)^2}$	$\frac{(1-i)}{(1-i)}$	dependent on the previous M mark Multiplies numerator and denominator by the conjugate of the denominator	dM1		
	$z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$		Achieves the correct answer with no errors seen	A1* cso		
			Question 9 Notes			
9. (a)	Note	Condone any of e.g. $z = -\frac{k+3}{2} + \frac{k-3}{2}i$ or $z = -\frac{(3+k)}{2} + \frac{(-3+k)}{2}i$ for the final A mark				
(b)(i)	Note	M1 can be implied by awrt 3.54 or truncated 3.53				
	Note	Give A0 for 3.5355 without reference to $\sqrt{\frac{50}{4}}$, $\sqrt{12.5}$, $\frac{\sqrt{50}}{2}$, $\frac{5}{2}\sqrt{2}$ or $\frac{5}{\sqrt{2}}$ or $\sqrt{\frac{25}{2}}$				
(b)(ii)	Note	Allow M1 (implied) for awrt -2.7, truncated -2.6, awrt -153° or awrt 207° or awrt 3.6				

10. $H: xy = 144; \ P\left(12p, \frac{12}{p}\right), \ p \neq 0, \ \text{lies on } H.$ Normal to H at P crosses positive x -axis at Q and negative y -axis at R (a) $y = \frac{144}{x} = 144x^{-1} \Rightarrow \frac{dy}{dx} = -144x^{-2} \text{ or } -\frac{144}{x^2}$ $xy = 144 \Rightarrow x \frac{dy}{dx} + y = 0$ Uses product rule to give $\pm x \frac{dy}{dx} \pm y$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, \ y = \frac{1}{p^2}$ $x = 12t, \ y = \frac{1}{p^2}$ $x = 12t, \ y = \frac{1}{p^2}$ $x = \frac{1}{p^2}$ $x = 12t, \ y = 12t, \$	Question Number	Scheme	Scheme			Mark	S
Normal to H at P crosses positive x-axis at Q and negative y-axis at R (a) $y = \frac{144}{x} = 144x^{-4} \Rightarrow \frac{dy}{dx} = -144x^{-2} \text{ or } -\frac{144}{x^2}$ Uses product rule to give $\pm x \frac{dy}{dx} \pm y$ M1 $x = 12t$, $y = \frac{1}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} \frac{dt}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ their $\frac{dy}{dr} \times \frac{1}{t \text{ their } \frac{dy}{dr}} = \frac{1}{p^2}$ Correct calculus work leading to $m_t = -\frac{1}{p^2}$ A1 So at P , $m_t = -\frac{1}{p^2}$ Correct calculus work leading to $m_t = -\frac{1}{p^2}$ A1 $\frac{1}{2} = \frac{m}{p^2} n^2 (x - 12p)$ or Correct straight line method for an equation of a normal where $m_s (\neq m_t)$ is found by using calculus. Correct algebra leading to $y = p^2 x + \frac{12}{p} - 12p^3$ Correct solution only A1 * Note: m_s must be a function of p for the 2^{md} M1 and 3^{nd} M1 mark (5) $y = 0 \Rightarrow x_0 = 12p - \frac{12}{p^2}$ Puts $y = 0$ and finds x or puts $x = 0$ and finds $y = 0$ A1 least one of x_0 or y_0 correct, o.e. A1 (a) $\frac{1}{2} (2p - \frac{12}{p^2}, 0)$ and $\frac{1}{2} (2p - \frac{12}{p^2})$ Both sets of coordinates correct. [Ignore labelling of coordinates] A1 (b) $\frac{1}{2} (2p - \frac{12}{p^2}, 0)$ and $\frac{1}{2} (2p - \frac{12}{p^2})$ Solution only A1 * (c) $\frac{1}{2} (2p - \frac{12}{p^2}) (2p - \frac{12}{p^2}) (2p - 12p^3)$ Correct squation which can be un-simplified or simplified or simplified $\frac{1}{2} (2p - \frac{12}{p^2}) (2p - \frac{12}{p^$	10.	$H: xy = 144; \ P\left(12p, \frac{12}{p}\right), \ p \neq 0, \ \text{lies on } H.$					
$xy = 144 \Rightarrow x\frac{dy}{dx} + y = 0$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{12}{l} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{12}\right)$ $x = 12t, y = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right)\left(\frac{1}{l^2}\right)$ $x = 12t, y = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = -\left(\frac{12}{l^2}\right) \Rightarrow \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} = \frac{1}{l^2} \Rightarrow \frac{dy}{dx} = \frac{dy}{dx} =$				/			
$x = 12t, y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{12}{t^2}\right) \left(\frac{1}{12}\right) \qquad \text{their } \frac{dy}{dt} \times \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{dy}{dt} \cdot \frac{1}{t}$ $So \text{ at } P, m_r = -\frac{1}{p^2} \qquad \text{Correct calculus work leading to } m_r = -\frac{1}{p^2} \text{A1}$ $So, m_\kappa = p^2 \qquad \text{Applies } m_\kappa = \frac{-1}{m_r}, \text{ where } m_r \text{ is found using calculus} \qquad \text{M1}$ $\bullet y = \frac{12}{p} = "p^2"(x - 12p) \text{or} \qquad \text{Correct straight line method for an equation of a normal where } m_\kappa (\neq m_r) \text{ is found by using calculus}$ $\text{Correct algebra leading to } y = p^2x + \frac{12}{p} - 12p^3 \text{Correct solution only} \text{A1} \text{Note: } m_N \text{ must be a function of } p \text{ for the } 2^{rd} \text{ M1 and } 3^{rd} \text{ M1 mark} \qquad (5)$ $y = 0 \Rightarrow x_0 = 12p - \frac{12}{p^3} \qquad \text{Puts } y = 0 \text{ and finds } y \text{M1}$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3 \qquad \text{At least one of } x_0 \text{ or } y_R \text{ correct, o.e. A1}$ $\left(12p - \frac{12}{p^3}, 0\right) \text{ and } \left(0, \frac{12}{p} - 12p^3\right) \qquad \text{Both sets of coordinates correct, } \{\text{Ignore labelling of coordinates}\}} \text{A1}$ $(e) \qquad \text{Area } OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right) \left(\frac{12}{p} - 12p^3\right) = 512 \qquad \frac{1}{2}x \left(\pm \text{ their } x_0\right) \left(\pm \text{ their } y_R\right) = 512 \text{M1}$ $144p^4 - 1312p^4 + 144 = 0 \text{Correct 3 term quadratic in } p^4 \text{A1}$ $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots \qquad \text{Note: } 144p^8 + 144 = 1312p^4 \text{ is acceptable for this mark}} \text{Uses a } 370 \text{ in } p^4 \text{ (or an implied 370 in } p^4 \text{ odd}}$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}} \text{ only}$ $\text{Obtains both } p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}} \text{ only}$ $\text{Note: Allow } p = -\frac{\sqrt{3}}{3} \text{ in place of } p = -\frac{1}{\sqrt{3}} \text{ only}$	(a)	$y = \frac{144}{x} = 144x^{-1} \implies \frac{dy}{dx} = -144x^{-2} \text{ or } -\frac{144}{x^2}$ $\frac{dy}{dx} = \pm k x^{-2}; k \neq 0$					
$x = 12t, y = \frac{12}{t} \Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{12}{t^2}\right) \left(\frac{1}{12}\right) \qquad \text{their } \frac{dy}{dt} \times \frac{1}{t} \cdot \frac{1}{t} \cdot \frac{dy}{dt} \cdot \frac{1}{t}$ $So \text{ at } P, m_r = -\frac{1}{p^2} \qquad \text{Correct calculus work leading to } m_r = -\frac{1}{p^2} \text{A1}$ $So, m_\kappa = p^2 \qquad \text{Applies } m_\kappa = \frac{-1}{m_r}, \text{ where } m_r \text{ is found using calculus} \qquad \text{M1}$ $\bullet y = \frac{12}{p} = "p^2"(x - 12p) \text{or} \qquad \text{Correct straight line method for an equation of a normal where } m_\kappa (\neq m_r) \text{ is found by using calculus}$ $\text{Correct algebra leading to } y = p^2x + \frac{12}{p} - 12p^3 \text{Correct solution only} \text{A1} \text{Note: } m_N \text{ must be a function of } p \text{ for the } 2^{rd} \text{ M1 and } 3^{rd} \text{ M1 mark} \qquad (5)$ $y = 0 \Rightarrow x_0 = 12p - \frac{12}{p^3} \qquad \text{Puts } y = 0 \text{ and finds } y \text{M1}$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3 \qquad \text{At least one of } x_0 \text{ or } y_R \text{ correct, o.e. A1}$ $\left(12p - \frac{12}{p^3}, 0\right) \text{ and } \left(0, \frac{12}{p} - 12p^3\right) \qquad \text{Both sets of coordinates correct, } \{\text{Ignore labelling of coordinates}\}} \text{A1}$ $(e) \qquad \text{Area } OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right) \left(\frac{12}{p} - 12p^3\right) = 512 \qquad \frac{1}{2}x \left(\pm \text{ their } x_0\right) \left(\pm \text{ their } y_R\right) = 512 \text{M1}$ $144p^4 - 1312p^4 + 144 = 0 \text{Correct 3 term quadratic in } p^4 \text{A1}$ $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots \qquad \text{Note: } 144p^8 + 144 = 1312p^4 \text{ is acceptable for this mark}} \text{Uses a } 370 \text{ in } p^4 \text{ (or an implied 370 in } p^4 \text{ odd}}$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}} \text{ only}$ $\text{Obtains both } p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}} \text{ only}$ $\text{Note: Allow } p = -\frac{\sqrt{3}}{3} \text{ in place of } p = -\frac{1}{\sqrt{3}} \text{ only}$		$xy = 144 \implies x\frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Use	es product rule to give $\pm x \frac{dy}{dx} \pm y$	M1		
So, $m_N = p^2$ Applies $m_N = \frac{-1}{m_T}$, where m_T is found using calculus M1 • $y - \frac{12}{p} = "p^2"(x-12p)$ or • $\frac{12}{p} = "p^2"(12p) + c \Rightarrow y = "p^2"x + \text{their } c$ Correct algebra leading to $y = p^2x + \frac{12}{p} - 12p^3$ * Correct solution only A1 * Note: m_N must be a function of p for the 2^{nd} M1 and 3^{nd} M1 mark (5) $y = 0 \Rightarrow x_0 = 12p - \frac{12}{p^3}$ Puts $y = 0$ and finds x or puts $x = 0$ and finds x or puts $x = 0$ and finds y or puts $y = 0$ and finds $y = 0$ and		$x = 12t$, $y = \frac{12}{t}$ \Rightarrow $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -$	$\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$	thei	ir $\frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{1}{\mathrm{their} \frac{\mathrm{d}y}{\mathrm{d}t}}$; Condone $t \equiv p$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		So at P , $m_T = -\frac{1}{p^2}$		Correct calc	rulus work leading to $m_T = -\frac{1}{p^2}$	A1	
correct algebra leading to $y = p^2x + \frac{12}{p} - 12p^3$ * Correct solution only A1 * Note: m_N must be a function of p for the 2^{nd} M1 and 3^{rd} M1 mark $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $x = 0 \Rightarrow y_R = \frac{1}{p} - 12p^3$ $x = 0 \Rightarrow y_R = 1$		So, $m_N = p^2$	Applies	$m_N = \frac{-1}{m_T},$	where m_T is found using calculus	M1	
Note: m_N must be a function of p for the 2^{nd} M1 and 3^{nd} M1 mark $y = 0 \Rightarrow x_Q = 12p - \frac{12}{p^3}$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $\left(12p - \frac{12}{p^3}, 0\right) \text{ and } \left(0, \frac{12}{p} - 12p^3\right)$ $At least one of x_Q or y_R correct, o.e. A1 \left(12p - \frac{12}{p^3}, 0\right) \text{ and } \left(0, \frac{12}{p} - 12p^3\right) Area OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512 \frac{1}{2} \times \left(\pm \text{ their } x_Q\right)\left(\pm \text{ their } y_R\right) = 512 \text{ M1} Correct equation which can be un-simplified or simplified} 144p^4 - 1312 + \frac{144}{p^4} = 0 144p^8 - 1312p^4 + 144 = 0 \{\Rightarrow 9p^8 - 82p^4 + 9 = 0\} (9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots Obtains both p = \sqrt{3} and p = -\frac{1}{\sqrt{3}} only p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}} Note: Allow p = -\frac{\sqrt{3}}{3} in place of p = -\frac{1}{\sqrt{3}} (5)$		-	" $x + \text{their } c$		of a normal where $m_N (\neq m_T)$ is	M1	
(b) $y=0\Rightarrow x_{o}=12p-\frac{12}{p^{3}} \qquad $		Correct algebra leading to $y = p^2x + \frac{1}{2}$	$\frac{12}{p} - 12p^3 *$		Correct solution only	A1 *	
$x = 0 \Rightarrow x_0 = 12p - \frac{1}{p^3}$ $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ $(12p - \frac{12}{p^3}, 0) \text{ and } \left(0, \frac{12}{p} - 12p^3\right)$ $Area OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ $Area OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ $Area OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ $Area OQR = \frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ $Correct equation which can be un-simplified or simplified $		Note: m_N must be a fundamental m_N	nction of p for	or the 2 nd M1	1 and 3 rd M1 mark		(5)
	(b)	$y = 0 \implies x_Q = 12p - \frac{12}{p^3}$				M1	
(c) Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ $\frac{1}{2} \times \left(\pm \text{ their } x_Q \right) \left(\pm \text{ their } y_R \right) = 512 M1$ Correct equation which can be un-simplified or simplified and be un-simplified or simplified		$x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$	At le	east one of x_Q or y_R correct, o.e.	A1		
(c)		$(12p - \frac{12}{p^3}, 0)$ and $(0, \frac{12}{p} - 12p^3)$			A1		
Area $OQR = \frac{1}{2} \left(\frac{12p - p^3}{p^3} \right) \left(\frac{p}{p} - \frac{12p^3}{p^3} \right) = 512$ Correct equation which can be un-simplified or simplified $144p^4 - 1312 + \frac{144}{p^4} = 0$ $144p^8 - 1312p^4 + 144 = 0$ $\{ \Rightarrow 9p^8 - 82p^4 + 9 = 0 \}$ Note: $144p^8 + 144 = 1312p^4$ is acceptable for this mark $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots$ Uses a 3TQ in p^4 (or an implied 3TQ in p^4) dM1 to find at least one value of $p^4 = \dots$ Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ Note: Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$ (5)				1			(3)
be un-simplified or simplified AI $144p^4 - 1312 + \frac{144}{p^4} = 0$ $144p^8 - 1312p^4 + 144 = 0$ $\{\Rightarrow 9p^8 - 82p^4 + 9 = 0\}$ $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots$ Note: $144p^8 + 144 = 1312p^4$ is acceptable for this mark $Uses \ a \ 3TQ \ in \ p^4 \ (or \ an implied \ 3TQ \ in \ p^4)$ $to \ find \ at \ least \ one \ value \ of \ p^4 = \dots$ Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only $p = \sqrt{3} \ and \ p = -\frac{1}{\sqrt{3}} \ only$ Note: Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$ Note: $p = \sqrt{3}$ in place of $p = -\frac{1}{\sqrt{3}}$ (5)	(c)	Area $OOR = \frac{1}{2} \left(12n - \frac{12}{2} \right) \left(\frac{12}{2} - 12n \right)$	$\frac{1}{2}$ ×	$x(\pm \text{ their } x_Q)(\pm \text{ their } y_R) = 512$	M1		
Note: $144p^8 + 144 = 1312p^4$ is acceptable for this mark $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $p = \sqrt{3} \text{ in place of } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$	(c)	$\frac{1}{2} \left(\begin{array}{cc} 12p & \\ p^3 \end{array} \right) \left(\begin{array}{cc} p & \\ p & \end{array} \right)$	- 312			A1	
Note: $144p^8 + 144 = 1312p^4$ is acceptable for this mark $(9p^4 - 1)(p^4 - 9) = 0 \Rightarrow p^4 = \dots$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $p = \sqrt{3} \text{ in place of } p = -\frac{1}{\sqrt{3}}$ Note: $A10w$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$		$144p^4 - 1312 + \frac{144}{p^4} = 0$					
$\frac{\text{dependent on the previous M mark}}{\text{Uses a 3TQ in } p^4 \text{ (or an implied 3TQ in } p^4)} \text{ dM1}$ $to \text{ find at least one value of } p^4 = \dots$ $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ $\text{Note: Allow } p = -\frac{\sqrt{3}}{3} \text{ in place of } p = -\frac{1}{\sqrt{3}}$ (5)				$p^8 + 144 = 13$	•	A1	
Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only Note: Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$ (5)				Uses a 3TQ in p^4 (or an implied 3TQ in p^4)		dM1	
		$n = \sqrt{3}$ and $n = -\frac{1}{3}$			A1		

Question Number	Scheme			Notes	Marks		
10. (c)	Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = \frac{1}{2} \left(\frac{12}{p^3} - \frac{12}{p^3} \right) \left(\frac{12}{p^3} - \frac{12}{p^3} \right) = \frac{1}{2} \left(\frac{12}{p^3} - \frac{12}{p^3} \right) \left(\frac{12}{p^3} - \frac{12}{p^3} - \frac{12}{p^3} \right) \left(\frac{12}{p^3} - \frac{12}{p^3} - \frac{12}{p^3} \right) \left(\frac{12}{p^3} - \frac{12}{p^3} - \frac{12}{p^3} - \frac{12}{p^3} \right) \left(\frac{12}{p^3} - \frac$		512	$\frac{1}{2} \times \left(\pm \text{ their } x_Q \right) \left(\pm \text{ their } y_R \right) = 512$			
		$2 (p^s) (p)$		Correct equation which can be un-simplified or simplified	Δ Ι		
	144(p-	$\frac{1}{p^3}$ $\left(p^3 - \frac{1}{p}\right) = 1024 \implies p^4 - 2 + \frac{1}{p^4}$	$\frac{1}{p^4} = \frac{1024}{144}$				
		$\int_{0}^{2} = \frac{64}{9} \implies p^{2} - \frac{1}{p^{2}} = \pm \frac{8}{3}$					
				Both correct 3 term quadratics in p^2			
	$3p^4 - 8p^2$	$a^2 - 3 = 0$ and $3p^4 + 8p^2 - 3 = 0$	Note:	Both $p^4 - 1 = \frac{8}{3}p^2$ and $3p^4 + 8p^2 = 3$	A1		
	(2 2 . 1)	(2 2) 0 2		is acceptable for this mark dependent on the previous M mark			
		$(p^2-3)=0 \Rightarrow p^2=\dots$	Uses a	a 3TQ in p^2 (or an implied 3TQ in p^2)			
	$(3p^2-1)$	$(p^2+3)=0 \Rightarrow p^2=\dots$		to find at least one value of $p^2 =$			
	$p = \sqrt{3}$ a	$(p^2 + 3) = 0 \implies p^2 = \dots$ $\text{nd } p = -\frac{1}{\sqrt{3}}$	O	Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only	' A1		
				(5)			
			Question 1				
10. (a)	Note	Allow $y = p^2 x - 12p^3 + \frac{12}{p}$ {orde	Allow $y = p^2 x - 12p^3 + \frac{12}{p}$ {order of terms interchanged in $y =$ } for final A1				
(b)	Note	For the accuracy marks in part (b) allow equivalents such as					
		• $x = 12p - \frac{12}{p^3}$ or $x = \frac{12p^4 - 12}{p^3}$ or $x = \frac{12(p^2 - 1)(p^2 + 1)}{p^3}$					
		P P P					
		• $y = \frac{12}{p} - 12p^3$ or $y = \frac{12 - 12p^4}{p}$					
(c)	Note	Give 1 st M1, 1 st A1 for					
		• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right)$	= 512 {co	orrect use of modulus}			
		• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(12p^3 - \frac{12}{p} \right) =$	= 512 {n	nodulus has been applied here}			
		• $-\frac{1}{2}\left(12p - \frac{12}{p^3}\right)\left(\frac{12}{p} - 12p^3\right) = 512$ {modulus has been applied here}					
	Note	Give 1 st M1, 1 st A0 for $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ {modulus has not been applied on y_R }					
	Note	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by a correct e.g. $p^4 = 9$ with no					
		intermediate working is 2 nd A0, 2 nd	nd M1				
	Note	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by $p^4 = 9$ and $p^4 = \frac{1}{9}$ with no					
		intermediate working is 2 nd A1 (implied), 2 nd M1					

