Title

D. Zack Garza

Monday $10^{\rm th}$ August, 2020

Contents

1	Mod	odules 1			
	1.1	Genera	al Questions	1	
		1.1.1	Fall 2019 Final #2	1	
		1.1.2	Spring 2018 #6	2	
		1.1.3	Fall 2018 #6 ⋈	2	
		1.1.4	Spring 2018 #7	3	
		1.1.5	Fall 2016 #6	3	
		1.1.6	Spring 2016 #4	3	
		1.1.7	Spring 2015 #8	3	
		1.1.8	Fall 2012 #6	4	
		1.1.9		4	
	1.2	Torsion	n and the Structure Theorem	4	
		1.2.1	★ Fall 2019 #5 ⋈	4	
		1.2.2	★ Spring 2019 #5 ⋈	5	
		1.2.3	★ Spring 2020 #6 ⋈	5	
		1.2.4	Spring 2012 #5	8	
		1.2.5	Spring 2017 #5	8	
		1.2.6	Fall 2019 Final #3	8	
		1.2.7	Fall 2019 Final #4	8	
		1.2.8	Fall 2019 Final #5	8	
		1.2.9	Fall 2019 Final #6	8	
		1.2.10	Fall 2019 Final #7	9	
		1.2.11	Fall 2019 Final #8	9	
			Fall 2019 Final #9	9	
		1.2.13	Fall 2019 Final #10	9	

1 Modules

1.1 General Questions

1.1.1 Fall 2019 Final #2

Consider the \mathbb{Z} -submodule N of \mathbb{Z}^3 spanned by $f_1 = [-1, 0, 1], f_2 = [2, -3, 1], f_3 = [0, 3, 1], f_4 = [3, 1, 5]$. Find a basis for N and describe \mathbb{Z}^3/N .

1.1.2 Spring 2018 #6.

Let

$$M = \{(w, x, y, z) \in \mathbb{Z}^4 \mid w + x + y + z \in 2\mathbb{Z}\},\$$

and

$$N = \{(w, x, y, z) \in \mathbb{Z}^4 \mid 4 \mid (w - x), 4 \mid (x - y), 4 \mid (y - z)\}.$$

- a. Show that N is a \mathbb{Z} -submodule of M .
- b. Find vectors $u_1, u_2, u_3, u_4 \in \mathbb{Z}^4$ and integers d_1, d_2, d_3, d_4 such that

$$\{u_1, u_2, u_3, u_4\}$$

is a free basis for M, and

$$\{d_1u_1, d_2u_2, d_3u_3, d_4u_4\}$$

is a free basis for N .

c. Use the previous part to describe M/N as a direct sum of cyclic \mathbb{Z} -modules.

1.1.3 Fall 2018 #6 ⋈

Let R be a commutative ring, and let M be an R-module. An R-submodule N of M is maximal if there is no R-module P with $N \subsetneq P \subsetneq M$.

- a. Show that an R-submodule N of M is maximal $\iff M/N$ is a simple R-module: i.e., M/N is nonzero and has no proper, nonzero R-submodules.
- b. Let M be a \mathbb{Z} -module. Show that a \mathbb{Z} -submodule N of M is maximal $\iff \#M/N$ is a prime number.
- c. Let M be the \mathbb{Z} -module of all roots of unity in \mathbb{C} under multiplication. Show that there is no maximal \mathbb{Z} -submodule of M.

Solution.

a

By the correspondence theorem, submodules of M/N biject with submodules A of M containing N

So

- M is maximal:
- \iff no such (proper, nontrivial) submodule A exists
- \iff there are no (proper, nontrivial) submodules of M/N
- $\iff M/N$ is simple.

b

Identify \mathbb{Z} -modules with abelian groups, then by (a), N is maximal $\iff M/N$ is simple $\iff M/N$ has no nontrivial proper subgroups.

By Cauchy's theorem, if |M/N| = ab is a composite number, then $a \mid ab \implies$ there is an element (and thus a subgroup) of order a. In this case, M/N contains a nontrivial proper cyclic subgroup, so M/N is not simple. So |M/N| can not be composite, and therefore must be prime.

Let $G = \{x \in \mathbb{C} \mid x^n = 1 \text{ for some } n \in \mathbb{N} \}$, and suppose H < G is a proper subgroup.

Then there must be a prime p such that the $\zeta_{p^k} \notin H$ for all k greater than some constant m – otherwise, we can use the fact that if $\zeta_{p^k} \in H$ then $\zeta_{p^\ell} \in H$ for all $\ell \leq k$, and if $\zeta_{p^k} \in H$ for all p and all p then p and all p then p is p and p and p and p and p and p are p in p and p in p and p in p and p and p in p and p in p and p in p in p and p in p in p in p and p in p

But this means there are infinitely many elements in $G \setminus H$, and so $\infty = [G : H] = |G/H|$ is not a prime. Thus by (b), H can not be maximal, a contradiction.

1.1.4 Spring 2018 #7.

Let R be a PID and M be an R-module. Let p be a prime element of R. The module M is called $\langle p \rangle$ -primary if for every $m \in M$ there exists k > 0 such that $p^k m = 0$.

- a. Suppose M is $\langle p \rangle$ -primary. Show that if $m \in M$ and $t \in R$, $t \notin \langle p \rangle$, then there exists $a \in R$ such that atm = m.
- b. A submodule S of M is said to be *pure* if $S \cap rM = rS$ for all $r \in R$. Show that if M is $\langle p \rangle$ -primary, then S is pure if and only if $S \cap p^k M = p^k S$ for all $k \geq 0$.

1.1.5 Fall 2016 #6

Let R be a ring and $f: M \longrightarrow N$ and $g: N \longrightarrow M$ be R-module homomorphisms such that $g \circ f = \mathrm{id}_M$. Show that $N \cong \mathrm{im} \ f \oplus \ker g$.

1.1.6 Spring 2016 #4

Let R be a ring with the following commutative diagram of R-modules, where each row represents a short exact sequence of R-modules:

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma}$$

$$0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C' \longrightarrow 0$$

Prove that if α and γ are isomorphisms then β is an isomorphism.

1.1.7 Spring 2015 #8

Let R be a PID and M a finitely generated R-module.

a. Prove that there are R-submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$$

such that for all $0 \le i \le n-1$, the module M_{i+1}/M_i is cyclic.

b. Is the integer n in part (a) uniquely determined by M? Prove your answer.

1.1.8 Fall 2012 #6

Let R be a ring and M an R-module. Recall that M is Noetherian iff any strictly increasing chain of submodule $M_1 \subsetneq M_2 \subsetneq \cdots$ is finite. Call a proper submodule $M' \subsetneq M$ intersection-decomposable if it can not be written as the intersection of two proper submodules $M' = M_1 \cap M_2$ with $M_i \subsetneq M$.

Prove that for every Noetherian module M, any proper submodule $N \subseteq M$ can be written as a finite intersection $N = N_1 \cap \cdots \cap N_k$ of intersection-indecomposable modules.

1.1.9 Fall 2019 Final #1

Let A be an abelian group, and show A is a \mathbb{Z} -module in a unique way.

1.2 Torsion and the Structure Theorem

1.2.1 ★ Fall 2019 #5 ⋈

Let R be a ring and M an R-module.

Recall that the set of torsion elements in M is defined by

$$Tor(m) = \{ m \in M \mid \exists r \in R, \ r \neq 0, \ rm = 0 \}.$$

- a. Prove that if R is an integral domain, then Tor(M) is a submodule of M.
- b. Give an example where Tor(M) is not a submodule of M.
- c. If R has zero-divisors, prove that every non-zero R-module has non-zero torsion elements.

Solution.

One-step submodule test.

a It suffices to show that

$$r \in R, t_1, t_2 \in \text{Tor}(M) \implies rt_1 + t_2 \in \text{Tor}(M).$$

We have

$$t_1 \in \text{Tor}(M) \implies \exists s_1 \neq 0 \text{ such that } s_1 t_1 = 0$$

 $t_2 \in \text{Tor}(M) \implies \exists s_2 \neq 0 \text{ such that } s_2 t_2 = 0.$

Since R is an integral domain, $s_1s_2 \neq 0$. Then

$$s_1 s_2(rt_1 + t_2) = s_1 s_2 rt_1 + s_1 s_2 t_2$$

= $s_2 r(s_1 t_1) + s_1 (s_2 t_2)$ since R is commutative
= $s_2 r(0) + s_1(0)$
= 0 .

b Let $R = \mathbb{Z}/6\mathbb{Z}$ as a $\mathbb{Z}/6\mathbb{Z}$ -module, which is not an integral domain as a ring. Then $[3]_6 \curvearrowright [2]_6 = [0]_6$ and $[2]_6 \curvearrowright [3]_6 = [0]_6$, but $[2]_6 + [3]_6 = [5]_6$, where 5 is coprime to 6, and thus $[n]_6 \curvearrowright [5]_6 = [0] \implies [n]_6 = [0]_6$. So $[5]_6$ is *not* a torsion element. So the set of torsion elements are not closed under addition, and thus not a submodule.

c Suppose R has zero divisors $a, b \neq 0$ where ab = 0. Then for any $m \in M$, we have $b \curvearrowright m := bm \in M$ as well, but then

$$a \curvearrowright bm = (ab) \curvearrowright m = 0 \curvearrowright m = 0_M$$

so m is a torsion element for any m.

1.2.2 ★ Spring 2019 #5 ⋈

Let R be an integral domain. Recall that if M is an R-module, the rank of M is defined to be the maximum number of R-linearly independent elements of M.

- a. Prove that for any R-module M, the rank of Tor(M) is 0.
- b. Prove that the rank of M is equal to the rank of of M/Tor(M).
- c. Suppose that M is a non-principal ideal of R.

Prove that M is torsion-free of rank 1 but not free.

1.2.3 ★ Spring 2020 #6 ⋈

Let R be a ring with unity.

- a. Give a definition for a free module over R.
- b. Define what it means for an R-module to be torsion free.
- c. Prove that if F is a free module, then any short exact sequence of R-modules of the following form splits:

$$0 \longrightarrow N \longrightarrow M \longrightarrow F \longrightarrow 0.$$

d. Let R be a PID. Show that any finitely generated R-module M can be expressed as a direct sum of a torsion module and a free module.

You may assume that a finitely generated torsionfree module over a PID is free.

Solution.

Let R be a ring with 1.

- **a** An R-module M is **free** if any of the following conditions hold:
 - M admits an R-linearly independent spanning set $\{\mathbf{b}_{\alpha}\}$, so

$$m \in M \implies m = \sum_{\alpha} r_{\alpha} \mathbf{b}_{\alpha}$$

and

$$\sum_{\alpha} r_{\alpha} \mathbf{b}_{\alpha} = 0_{M} \implies r_{\alpha} = 0_{R}$$

for all α .

- $M \cong \bigoplus R$ are isomorphic as R-modules.
- There is a nonempty set X and an inclusion $X \hookrightarrow M$ such that for every R-modules N, every map $X \longrightarrow N$ lifts to a unique map $M \longrightarrow N$, so the following diagram commutes:

$$\begin{array}{c}
M \\
\uparrow \\
X \xrightarrow{f} \stackrel{\cancel{\downarrow}}{\longrightarrow} N
\end{array}$$

b M is **torsionfree** iff $M_t := \{ m \in M \mid \operatorname{Ann}(m) \neq 0 \} \leq M$ is the trivial submodule, where $\operatorname{Ann}(m) := \{ r \in R \mid r \cdot m = 0_M \} \leq R$.

C

• Let the following be an SES where F is a free R-module:

$$0 \longrightarrow N \longrightarrow M \xrightarrow{\pi} F \longrightarrow 0.$$

- Since F is free, there is a generating set $X = \{x_{\alpha}\}$ and a map $\iota : X \hookrightarrow M$ satisfying the 3rd property from (a).
- If we construct a map $f: X \longrightarrow M$, then the universal property of free modules will give a lift $\tilde{f}: F \longrightarrow M$
- Note $\{\iota(x_\alpha)\}\subseteq F$ and π is surjective, so choose fibers $\{y_\alpha\}\subseteq M$ such that

$$\pi(y_{\alpha}) = \iota(x_{\alpha}).$$

• Define a map

$$f: X \longrightarrow M$$

 $x_{\alpha} \mapsto y_{\alpha}.$

• By the universal property, this yields a map $h: F \longrightarrow M$, commutativity forces $(h \circ \iota)(x_{\alpha}) = y_{\alpha}$, i.e. we have a diagram

• It remains to check that it's a section:

$$f \in F \implies f = \sum_{\alpha} r_{\alpha} \iota(x_{\alpha})$$

$$\implies (\pi \circ h)(f) = \pi \left(h \left(\sum_{\alpha} r_{\alpha} \iota(x_{\alpha}) \right) \right)$$

$$= \pi \left(\sum_{\alpha} r_{\alpha} h(\iota(x_{\alpha})) \right)$$

$$= \pi \left(\sum_{\alpha} r_{\alpha} y_{\alpha} \right)$$

$$= \sum_{\alpha} r_{\alpha} \pi(y_{\alpha})$$

$$= \sum_{\alpha} r_{\alpha} \iota(x_{\alpha})$$

$$= f$$

- Checking $(h \circ \pi)(m) = m$: seems to be hard!
- Both $\pi \circ h$ and id_F are two maps that agree on the spanning set $\{\iota(x_\alpha)\}$, so in fact they are equal.

Short proof:

- Free implies projective
- Universal property of projective modules: for every surjective $\pi: M \longrightarrow N$ and every $f: P \longrightarrow N$ there exists a unique lift $\tilde{f}: P \longrightarrow M$:

$$\begin{array}{ccc} & P & & \\ \exists! \tilde{f} & & \downarrow f \\ M & \xrightarrow{\pi} & N \end{array}$$

• Take the identity map:

$$0 \longrightarrow N \longrightarrow M \xrightarrow{\exists ! h} \begin{matrix} F \\ \downarrow \mathrm{id}_F \end{matrix}$$

d

- Claim: if R is a PID and M is a finitely generated R-module, then $M \cong M_t \oplus M/M_t$ where $M_t \leq M$ is the torsion submodule.
- Claim: M/M_t is torsionfree, and since a f.g. torsion free module over a PID is free, M/M_t is free.
 - Let $m + M_t \in M/M_t$ and suppose it is torsion, we will show that is must be the zero coset.
 - Then there exists an $r \in R$ such that $r(m + M_t) = M_t$
 - Then $rm + M_t = M_t$, so $rm \in M_t$.
 - By definition of M_t , every element is torsion, so there exists some $s \in R$ such $s(rm) = 0_M$.
 - Then $(sr)m = 0_M$ which forces $m \in M_t$
 - Then $m + M_t = M_t$, so $m + M_t$ is the zero coset.
- There is a SES

$$0 \longrightarrow M_t \longrightarrow M \longrightarrow M/M_t \longrightarrow 0$$

and since M/M_t is free, by (c) this sequence splits and $M \cong M \oplus M/M_t$.

1.2.4 Spring 2012 #5

Let M be a finitely generated module over a PID R.

- a. M_t be the set of torsion elements of M, and show that M_t is a submodule of M.
- b. Show that M/M_t is torsion free.
- c. Prove that $M \cong M_t \oplus F$ where F is a free module.

1.2.5 Spring 2017 #5

Let R be an integral domain and let M be a nonzero torsion R-module.

- a. Prove that if M is finitely generated then the annihilator in R of M is nonzero.
- b. Give an example of a non-finitely generated torsion R-module whose annihilator is (0), and justify your answer.

1.2.6 Fall 2019 Final #3

Let R = k[x] for k a field and let M be the R-module given by

$$M = \frac{k[x]}{(x-1)^3} \oplus \frac{k[x]}{(x^2+1)^2} \oplus \frac{k[x]}{(x-1)(x^2+1)^4} \oplus \frac{k[x]}{(x+2)(x^2+1)^2}.$$

Describe the elementary divisors and invariant factors of M.

1.2.7 Fall 2019 Final #4

Let I = (2, x) be an ideal in $R = \mathbb{Z}[x]$, and show that I is not a direct sum of nontrivial cyclic R-modules.

1.2.8 Fall 2019 Final #5

Let R be a PID.

- Classify irreducible R-modules up to isomorphism.
- Classify indecomposable R-modules up to isomorphism.

1.2.9 Fall 2019 Final #6

Let V be a finite-dimensional k-vector space and $T:V\longrightarrow V$ a non-invertible k-linear map. Show that there exists a k-linear map $S:V\longrightarrow V$ with $T\circ S=0$ but $S\circ T\neq 0$.

1.2.10 Fall 2019 Final #7

Let $A \in M_n(\mathbb{C})$ with $A^2 = A$. Show that A is similar to a diagonal matrix, and exhibit an explicit diagonal matrix similar to A.

1.2.11 Fall 2019 Final #8

Exhibit the rational canonical form for - $A \in M_6(\mathbb{Q})$ with minimal polynomial $(x-1)(x^2+1)^2$. - $A \in M_{10}(\mathbb{Q})$ with minimal polynomial $(x^2+1)^2(x^3+1)$.

1.2.12 Fall 2019 Final #9

Exhibit the rational and Jordan canonical forms for the following matrix $A \in M_4(\mathbb{C})$:

$$A = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -2 & -2 & 0 & 1 \\ -2 & 0 & -1 & -2 \end{pmatrix}.$$

1.2.13 Fall 2019 Final #10

Show that the eigenvalues of a Hermitian matrix A are real and that $A = PDP^{-1}$ where P is an invertible matrix with orthogonal columns.