

IV Conference on Application Security and Modern Technologies

In collaborazione con

Università Ca'Foscari Venezia

Dipartimento di Scienze Ambientali Informatica e Statistica

Venezia, Università Ca' Foscari 23 Settembre 2016

APDU-Level Attacks in PKCS#11 Devices

Francesco Palmarini

Joint work with

Claudio Bozzato Riccardo Focardi

Graham Steel

Università Ca' Foscari, Venice, Italy

September 23, 2016

Talk Outline

Agenda

- 1. Background
- 2. Architecture of PKCS#11 devices
- 3. Threat model
- 4. APDU-level attacks on real devices
- 5. Fixes and mitigations

The problem

Cryptographic hardware

Cyrptographic hardware allows cryptographic operations to be performed inside a protected, tamper-resistant environment

PKCS#11 security properties

PKCS#11 is a standard API for cryptographic devices:

- Crypto operations should be performed inside the device
- Sensitive keys should never be leaked as plaintexts

PKCS#11 middleware architecture

A software layer (middleware) translates PKCS#11 commands into ISO 7816 Application Protocol Data Units (APDUs) [4].

PKCS#11 middleware architecture

A software layer (middleware) translates PKCS#11 commands into ISO 7816 Application Protocol Data Units (APDUs) [4].

Background

PKCS#11 middleware architecture

A software layer (middleware) translates PKCS#11 commands into ISO 7816 Application Protocol Data Units (APDUs) [4].

- ► Known attacks at the PKCS#11-level
- ► Focus on new attacks at the APDU-level

PKCS#11-level attacks

There exist several well known attacks[1, 2] at the PKCS#11 level. Many of these are key separation attacks, *i.e.* attributes of a key are set so to give a key conflicting roles.

PKCS#11-level attacks

There exist several well known attacks[1, 2] at the PKCS#11 level. Many of these are key separation attacks, *i.e.* attributes of a key are set so to give a key conflicting roles.

PKCS#11-level attacks

There exist several well known attacks[1, 2] at the PKCS#11 level. Many of these are key separation attacks, *i.e.* attributes of a key are set so to give a key conflicting roles.

PKCS#11-level attacks

There exist several well known attacks[1, 2] at the PKCS#11 level. Many of these are key separation attacks, *i.e.* attributes of a key are set so to give a key conflicting roles.

und Threat model APDILlouel attacks Fives and mitigations Conclusion

A threat model for PKCS#11 middleware

First threat model for PKCS#11 middleware in literature

Security goals

We focus on these sensitive targets:

- PIN enabling cryptographic operations with the device;
- Cryptographic operations that can be performed independently of the knowledge of the PIN;
- Cryptographic keys leaked in the clear out of the device.

A threat model for PKCS#11 middleware

Typical scenario

The target token is connected to a desktop/laptop computer in a single-user configuration.

Attacker capabilities

Threat scenarios are classified based on the attacker capabilities:

- Administrator privileges has complete control of the host;
- Physical access can install key-loggers or USB sniffers;
- User privileges has the same privilege level as the regular user.

Threat model: monolithic

Threat model: monolithic

Threat model: monolithic

Threat model: separate authentication

Threat model: separate middleware & authentication

Threat model: separate middleware & authentication

Threat model

How these settings affect the attacker's capabilities?

Attacker	Application	Attacker can access		Attacker can exploit				
	1 1 1	PKCS#11	APDU	PIN	PKCS#11	APDU passive	APDU active	
Admin	Any	/	/	1	1	1	1	
	Monolithic	/	/	1	1	/	1	
	Sep. Auth.	1	1	X	1	1	1	
User	Sep. Privileges	/	X	1	1	X	X	
	Sep. Auth.&Priv.	/	X	X	1	Х	X	
Physical	Any	X	/	12	1	13	1,3	

¹ Requires MITM.

² Through a keylogger or a USB sniffer.

³ Only APDU payloads, cannot access middleware memory.

Threat model

How these settings affect the attacker's capabilities?

Attacker	Application	Attacker can access		Attacker can exploit				
		PKCS#11	APDU	PIN	PKCS#11	APDU passive	APDU active	
Admin	Any	1	/	-1	1	/	/	
	Monolithic	/	1	1	1	/	1	
	Sep. Auth.	1	1	X	1	1	1	
User	Sep. Privileges	/	X	1	1	X	X	
	Sep. Auth.&Priv.	/	X	X	1	X	X	
Physical	Any	X	1	12	1	13	1.3	

¹ Requires MITM.

² Through a keylogger or a USB sniffer.

³ Only APDU payloads, cannot access middleware memory.

Threat model

How these settings affect the attacker's capabilities?

Attacker	Application	Attacker can access		Attacker can exploit				
	1 4 4	PKCS#11	APDU	PIN	PKCS#11	APDU passive	APDU active	
Admin	Any	/	1	1	1	1	1	
	Monolithic	/	1	1	1	1	1	
	Sep. Auth.	1	1	X	1	1	1	
User	Sep. Privileges	/	X	1	1	X	X	
	Sep. Auth.&Priv.	/	X	X	1	X	X	
Physical	Any	X	1	12	1	13	1.3	

¹ Requires MITM.

² Through a keylogger or a USB sniffer.

³ Only APDU payloads, cannot access middleware memory.

APDU-level attacks on real devices

Tested devices

- 1. Aladdin eToken PRO
- 2. Athena ASEKey
- 3. RSA SecurID 800
- 4. Safesite Classic TPC IS V1
- 5. Siemens CardOS V4.3b

Vulnerabilities found

- Authentication
- Symmetric keys
- Key attributes handling
- RSA session keys

APDU-level attacks: authentication

C_Login() on Siemens CardOS V4.3b:

```
# Standard ISO-7816 Select file:
```

APDU: 00 a4 04 0c 0c a0 00 00 00 63 50 4b 43 53 2d 31 35

SW: 90 00

```
\# Standard ISO-7816 Verify:
```

APDU: 00 20 00 81 05 31 32 33 34 35

APDU-level attacks: authentication

C_Login() on Aladdin eToken PRO:

```
# Custom Get challenge:
APDU: 80 17 00 00 08

SW: DF 89 61 34 62 05 13 36 90 00

# Custom External authenticate:
APDU: 80 11 00 11 0A 10 08 64 D5 97 15 4A 44 EB 23
```


APDU-level attacks: symmetric keys

C_WrapKey() on Aladdin eToken PRO:

```
# Fetch the key
APDU: 80 18 00 00 04 0E 02 00 00 18
SW: 17 3F FF FF FF FF 01 08 3F 44 5F C4 EB 76 F1 86
06 64 65 73 6B 65 79 00 90 00
```

```
Middleware
C_WrapKey(A,B);

KeyA{Attr, Label, Val}

KeyB{Attr, Label, Val}
```

Get challenge (Standard ISO-7816):

APDU: 00 84 00 00 00 00 08

SW: b7 c8 14 4b 4e 5f e6 3e 90 00

.... (omitted) # Get an RSA modulus

APDU: 80 14 02 91 00 00 00

SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57

8b d0 07 e4 cb ..(omitted).. 30 c3 e8 cf 90 00

Send the encrypted key to the token

APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0

cf 9b 1b c7 ad ..(omitted).. a7 f6 4a 97 22 a0

Get challenge (Standard ISO-7816):

APDU: 00 84 00 00 00 00 08

SW: b7 c8 14 4b 4e 5f e6 3e 90 00

.... (omitted)
Get an RSA modulus

APDU: 80 14 02 91 00 00 00

SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57

8b d0 07 e4 cb ..(omitted).. 30 c3 e8 cf 90 00

Send the encrypted key to the token

APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0

cf 9b 1b c7 ad ..(omitted).. a7 f6 4a 97 22 a0

Get challenge (Standard ISO-7816):

APDU: 00 84 00 00 00 00 08

SW: b7 c8 14 4b 4e 5f e6 3e 90 00

.... (omitted)

Get an RSA modulus APDU: 80 14 02 91 00

APDU: 80 14 02 91 00 00 00

SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57

8b d0 07 e4 cb ..(omitted).. 30 c3 e8 cf 90 00

Send the encrypted key to the token

APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0

cf 9b 1b c7 ad ..(omitted).. a7 f6 4a 97 22 a0

Get challenge (Standard ISO-7816):

APDU: 00 84 00 00 00 00 08

SW: b7 c8 14 4b 4e 5f e6 3e 90 00

.... (omitted)

Get an RSA modulus

APDU: 80 14 02 91 00 00 00

SW: 79 23 57 33 9a be 2a dd ba ae 2e 09 4c d0 3d 57

8b d0 07 e4 cb ..(omitted).. 30 c3 e8 cf 90 00

Send the encrypted key to the token

APDU: 80 24 00 80 00 00 a0 20 5b f1 f9 cd 67 c8 3d e0

cf 9b 1b c7 ad ..(omitted).. a7 f6 4a 97 22 a0

APDU-level attacks: key attributes

A key with **CKA_SIGN** attribute set to CK_FALSE cannot perform signature operations.

Bypassing attribute values

- take a private RSA key with CKA_SIGN false;
- 2. verify that it cannot sign a message via the PKCS#11 API;
- perform the sign operation manually, via APDU.

Token	Auth.	Sensitive th. symmetric		Bypassing	RSA session keys		
		PKCS#11 ¹	APDU	values	PKCS#11 ¹	APDU	
eToken PRO	12	1	1	1	X	14	
ASEKey	12	X	13	1	X	×	
SecurID	12	15	1	/	×	×	
Safesite Classic	1	X	X	1	X	×	
Siemens CardOS	1	X	14	/	X	X	

¹ PKCS#11-level attacks discovered in [1], for comparison.

² Requires reverse engineering of the authentication algorithm and bruteforcing.

³ Leakage occurs only during generation.

⁴ Requires access to middleware memory.

 $^{^{5}}$ Possible for RSA Authentication Client version < 3.5.3.

Token	Auth.	Sensitive symmetric keys		Bypassing	RSA session keys		
		PKCS#11 ¹	APDU	values	PKCS#11 ¹	APDU	
eToken PRO	12	1	1	1	X	14	
ASEKey	12	X	13	-1	X	×	
SecurID	12	15	1	/	×	×	
Safesite Classic	1	X	X	1	X	×	
Siemens CardOS	1	X	14	/	X	×	

¹ PKCS#11-level attacks discovered in [1], for comparison.

² Requires reverse engineering of the authentication algorithm and bruteforcing.

³ Leakage occurs only during generation.

⁴ Requires access to middleware memory.

 $^{^{5}}$ Possible for RSA Authentication Client version < 3.5.3.

Token	Auth.	Sensitive symmetric keys		Bypassing attribute	RSA session keys		
		PKCS#11 ¹	APDU	values	PKCS#111	APDU	
eToken PRO	12	1	1	1	X	14	
ASEKey	12	X	13	1	X	×	
SecurID	12	15	1	- /	X	×	
Safesite Classic	1	X	X	1	X	×	
Siemens CardOS	1	X	14	1	X	×	

¹ PKCS#11-level attacks discovered in [1], for comparison.

² Requires reverse engineering of the authentication algorithm and bruteforcing.

³ Leakage occurs only during generation.

⁴ Requires access to middleware memory.

 $^{^{5}}$ Possible for RSA Authentication Client version < 3.5.3.

Token	Auth.	Sensitive symmetric keys		Bypassing attribute	RSA session keys		
		PKCS#11 ¹	APDU	values	PKCS#11 ¹	APDU	
eToken PRO	12	1	1	1	X	14	
ASEKey	12	X	13	1	X	×	
SecurID	√2	15	1	1	×	×	
Safesite Classic	1	X	X	1	X	×	
Siemens CardOS	1	X	14	/	X	X	

¹ PKCS#11-level attacks discovered in [1], for comparison.

² Requires reverse engineering of the authentication algorithm and bruteforcing.

³ Leakage occurs only during generation.

⁴ Requires access to middleware memory.

 $^{^{5}}$ Possible for RSA Authentication Client version < 3.5.3.

Token	Auth.	Sensitive symmetric keys		Bypassing	RSA session keys		
		PKCS#11 ¹	APDU	values	PKCS#11 ¹	APDU	
eToken PRO	12	1	1	1	X	14	
ASEKey	12	X	13	1	X	X	
SecurID	12	15	1	1	X	×	
Safesite Classic	1	X	X	1	X	×	
Siemens CardOS	1	X	14	/	X	×	

¹ PKCS#11-level attacks discovered in [1], for comparison.

² Requires reverse engineering of the authentication algorithm and bruteforcing.

³ Leakage occurs only during generation.

⁴ Requires access to middleware memory.

 $^{^{5}}$ Possible for RSA Authentication Client version < 3.5.3.

keround Threat model APDU-level attacks Fixes and mitigations Conclusion

Fixes and mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations inside the hardware

- Hardware/firmware redesign
- Separate authentication
- Higher privileges middleware

keround Threat model APDU-level attacks Fixes and mitigations Conclusion

Fixes and mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations inside the hardware

- ► Hardware/firmware redesign → costly
- Separate authentication
- Higher privileges middleware

kground Threat model APDU-level attacks Fixes and mitigations Conclusion

Fixes and mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations inside the hardware

- ► Hardware/firmware redesign → costly
- ▶ Separate authentication → not backward compatible
- ► Higher privileges middleware

keround Threat model APDU-level attacks Fixes and mitieations Conclusion

Fixes and mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations inside the hardware

- ► Hardware/firmware redesign → costly
- ▶ Separate authentication → not backward compatible
- ► Higher privileges middleware → transparent

ckground Threat model APDU-level attacks Fixes and mitigations Conclusion

Fixes and mitigations

Compliant PKCS#11 devices should implement all the cryptographic operations inside the hardware

Fixes

- ► Hardware/firmware redesign → costly
- ▶ Separate authentication → not backward compatible
- ightharpoonup Higher privileges middleware ightarrow transparent

Mitigation: OTP C_Login(OTP + PIN)

ground Threat model APDILlouel attacks Fives and mitigations Conclusion

Conclusion

Contributions

- ▶ We introduced a new threat model for PKCS#11 middleware
- We found new, unpublished APDU-level attacks on commercially available tokens and smartcards
- We provided a security analysis of the vulnerabilities with respect to the threat model

round Threat model APDU-level attacks Fixes and mitigations Conclusion

Future works

Wish list...

- ► Test newer devices
- Encrypted APDUs
- ▶ PIN bruteforcing using card emulation
- Open hardware-firmware-middleware reference implementation

Thank you!

no tokens were harmed during the making of this paper

und Threat model APDU-level attacks Fixes and mitigations Conclusion

Want more?

Really?

https://secgroup.dais.unive.it/projects/apduattacks/

- ► Summary of the paper as a blog post
- Official answers from manufacturers
- ▶ Previous / future works [1, 3]

References

- Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Computer and Communications Security (CCS'10). pp. 260–269. ACM (2010)
- Clulow, J.: On the security of PKCS#11. In: 5th International Workshop on Cryptographic Hardware and Embedded Systems (CHES'03). LNCS, vol. 2779, pp. 411–425. Springer (2003)
- Gkaniatsou, A., McNeill, F., Bundy, A., Steel, G., Focardi, R., Bozzato, C.: Getting to know your card: Reverse-engineering the smart-card application protocol data unit. In: Proceedings of the 31st Annual Computer Security Applications Conference, Los Angeles, CA, USA, December 7-11, 2015. pp. 441–450 (2015)
- ISO/IEC 7816-4: Identification cards Integrated circuit cards Part 4: Organization, security and commands for interchange (2013)

Conclusion

Backup slides

ound Threat model APDU-level attacks Fixes and mitigations Conclusion

Related works

PKCS#11

- ► First attacks on PKCS#11 by Clulow
- General analysis tools for PKCS#11
- Generalization of the model and automatic reverse engineering tool

Low level

- No previous APDU-level attacks and threat models for PKCS#11 devices
- APDU buffer compromised in Java Cards
- MITM attack for payments w/o needing PIN
- Automated method to reverse engineer PKCS#11-APDU mapping