Bayesian hierarchical modeling

Jingchen (Monika) Hu

MATH 347 Bayesian Statistics

Installing the necessary packages

```
#install.packages("devtools")
require(devtools)
devtools::install_github("bayesball/ProbBayes")

require(ggplot2)
require(gridExtra)
require(ProbBayes)
require(tidyverse)
crcblue <- "#2905a1"</pre>
```

Example: Korean Drama Ratings

Ratings by Schedule

```
dramadata = read.csv("KDramaData.csv", header=T)

KBSdrama = dramadata[dramadata$Producer==2,]

KBSdrama$Schedule = as.factor(KBSdrama$Schedule)
```

Density plot of ratings

table(KBSdrama\$Schedule)

```
##
## 1 2 3 4
## 13 11 3 6
```

tapply(KBSdrama\$Rating, KBSdrama\$Schedule, summary)

```
## $`1`
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
## 0.03310 0.04740 0.06310 0.07396 0.08740 0.18290
##
## $`2`
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
## 0.04830 0.06465 0.08000 0.09976 0.10645 0.28580
##
## $`3`
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
## 0.0312 0.0326 0.0340 0.0384 0.0420
                                           0.0500
##
## $`4`
     Min. 1st Qu. Median
                             Mean 3rd Qu.
##
                                             Max.
## 0.1120 0.1261 0.1974 0.1949 0.2632 0.2750
```

tapply(KBSdrama\$Rating, KBSdrama\$Schedule, sd)

1 2 3 4 ## 0.04264994 0.06608002 0.01014298 0.07570259

Observations in groups: approaches to modeling

A two-stage prior in a hierarchical model

The Hierarchical Normal Model

• The sampling density for group j, and $j = 1, \dots, J$:

$$Y_{ij} \stackrel{i.i.d.}{\sim} \text{Normal}(\mu_j, \sigma),$$
 (1)

where $i = 1, \dots, n_j$ and n_j is the number of observations in group j.

• The stage 1 prior distribution for μ_i :

$$\mu_j \sim \text{Normal}(\mu, \tau).$$
 (2)

• The stage 2 prior distribution for μ_i :

$$\mu, \tau \sim g(\mu, \tau).$$
 (3)

• The prior distribution for σ :

$$1/\sigma^2 \sim \text{Gamma}(\alpha_{\sigma}, \beta_{\sigma}).$$
 (4)

Prior and Hyperprior Specifications

• The stage 1 prior distribution for μ_i :

$$\mu_i \sim \text{Normal}(\mu, \tau).$$
 (5)

• The stage 2 prior distribution for μ_i :

$$\mu, \tau \sim g(\mu, \tau).$$
 (6)

• Hyperpriors:

$$\mu \mid \mu_0, \gamma_0 \sim \text{Normal}(\mu_0, \gamma_0),$$
 (7)

$$1/\tau^2 \mid \alpha_{\tau}, \beta_{\tau} \sim \operatorname{Gamma}(\alpha_{\tau}, \beta_{\tau}).$$
 (8)

• The prior distribution for σ :

$$1/\sigma^2 \sim \text{Gamma}(\alpha_{\sigma}, \beta_{\sigma}).$$
 (9)

MCMC simulation by JAGS

Recap: Prior and Hyperprior Specifications

• The stage 1 prior distribution for μ_i :

$$\mu_j \sim \text{Normal}(\mu, \tau).$$
 (10)

• The stage 2 prior distribution for μ_i :

$$\mu, \tau \sim g(\mu, \tau). \tag{11}$$

• Hyperpriors:

$$\mu \mid \mu_0, \gamma_0 \sim \text{Normal}(0.1, 0.5),$$
 (12)

$$1/\tau^2 \mid \alpha_{\tau}, \beta_{\tau} \sim \operatorname{Gamma}(1, 1). \tag{13}$$

• The prior distribution for σ :

$$1/\sigma^2 \sim \text{Gamma}(1,1). \tag{14}$$

JAGS Script for the Hierarchical Model

```
modelString <-"
model {
## likelihood
for (i in 1:N){
y[i] ~ dnorm(mu_j[schedule[i]], invsigma2)
}

## priors
for (j in 1:J){
mu_j[j] ~ dnorm(mu, invtau2)
}
invsigma2 ~ dgamma(a_g, b_g)
sigma <- sqrt(pow(invsigma2, -1))

## hyperpriors
mu ~ dnorm(mu0, 1/g0^2)
invtau2 ~ dgamma(a_t, b_t)
tau <- sqrt(pow(invtau2, -1))
}
""</pre>
```

Note that $mu_j[schedule[i]]$, we need to determine which j this observation i belongs to. By passing the schedule of each observation as a vector, we can extract which μ_j that we should be working on.

• Notes about the modelString

- 1. Need a vector of mu_j, of length J.
- 2. Need a vector of schedule, of length N.
- 3. dnorm takes mean and precision.
- 4. Work with invsigma2, can return sigma.
- 5. Work with invtau2, can return tau.
- Pass the data and hyperparameter values to JAGS:

The initsfunction shows the way to set seed with JAGS. set.seed() won't work in JAGS.

• Run the JAGS code for this model:

```
## Compiling rjags model...
## Calling the simulation using the rjags method...
## Note: the model did not require adaptation
## Burning in the model for 5000 iterations...
## Running the model for 5000 iterations...
## Simulation complete
## Calculating summary statistics...
## Finished running the simulation
```

moniter is the list of the parameters you want to track.

adapt has default 1000, you can think in a way that it's similar to burnin.

burnin is the number of draws that you want to toss out.

sample is the final number of iterations that you want to have.

inits is for reproducible setup.

JAGS Output of the Hierarchical Model

• Obtain posterior summaries of all parameters:

summary(posterior) ## Lower95 Median Upper95 SD Mode Mean ## mu -0.49047454 0.10801400 0.6682304 0.10472246 0.28838370 NA 0.35267052 0.65852607 1.2499367 0.72061727 0.27488885 ## tau NA ## mu_j[1] -0.07196554 0.07132613 0.2167506 0.07266280 0.07238919 NA ## mu_j[2] -0.05688244 0.09944587 0.2532603 0.09928626 0.07995014 NA ## mu_j[3] -0.24146558 0.04479396 0.3491075 0.04271370 0.15109887 NA ## mu_j[4] -0.02481824 0.19140944 0.3991133 0.19242821 0.10745635 NA 0.20106992 0.26158432 0.3326434 0.26503794 0.03460242 ## sigma NA ## MCerr MC%ofSD SSeff AC.10 psrf 4758 -0.010518456 ## mu 0.0041809868 1.4 NA0.0041977744 1.5 4288 -0.015113465 ## tau NA## mu j[1] 0.0010237378 5000 0.002230488 NA ## mu_j[2] 0.0011306657 1.4 5000 0.018814005 NA## mu_j[3] 0.0020734837 5310 -0.007974257 NA 1.4 ## mu_j[4] 0.0015196623 1.4 5000 -0.017268731 NA

1.6

Do you think the μ_j 's (average ratings) do differ a lot across different groups? Look at the mean, they are different.

3908 0.009879697

NA

All credible intervals for μ_i contain 0, which means that they are not statistically significant from 0.

Yet, the lower bounds of credible intervals for mu_j and μ are negative. This doesn't make sense as the rating can not be negative. Using normal may not be suitable for this particular data type. Consider truncated normal.

```
plot(posterior, vars = "mu_j[1]")
```

Generating plots...

0.0005535073

sigma

Generating plots...

Shrinkage/Pooling Effects

```
Ind_Stats = as.data.frame(matrix(NA, J, 2))
names(Ind_Stats) = c("mean", "sd")
for (j in 1:J){
  Ind_Stats[j, ] = c(mean(KBSdrama$Rating[KBSdrama$Schedule == j]),
                      sd(KBSdrama$Rating[KBSdrama$Schedule == j]))
}
Post_Means <- summary(posterior)[, 4]</pre>
Means1 <- data.frame(Type = "Sample", Mean = Ind_Stats$mean)</pre>
Means2 <- data.frame(Type = "Hierarchical", Mean =</pre>
                        Post_Means[3:(4 + J - 2)])
Means1$Title <- c("Schedule 1", "Schedule 2", "Schedule 3",
                   "Schedule 4")
Means2$Title <- c("Schedule 1", "Schedule 2", "Schedule 3",
                   "Schedule 4")
ggplot(rbind(Means1, Means2), aes(Type, Mean, group=Title)) +
  geom_line(color = crcblue) + geom_point() +
  annotate(geom = "text", x = 0.75,
```


The right-hand side is the sample mean of the 4 different schedules. On the left-hand side, we have the posterior mean after fitting the hierarchical model.

Sources of Variability

• Two sources of variability in Y_{ij} :

$$Y_{ij} \stackrel{i.i.d.}{\sim} \text{Normal}(\mu_j, \sigma) \text{ [within-group variability]}$$
 (15)

$$\mu_i \mid \mu, \tau \sim \text{Normal}(\mu, \tau) \text{ [between-group variability]}$$
 (16)

• To compare these two sources of variability, one can compute the fraction

$$R = \frac{\tau^2}{\tau^2 + \sigma^2},\tag{17}$$

from the posterior draws of τ and σ .

- The closer the value of R to 1, the higher the between-group variability. ## Compute and Graph Sources of Variability
- We need the coda R package

Density of R

Exercise: Hierarchical model with schedule-specific μ_j and σ_j P.37/42

• Specify a shared Normal prior distribution for μ_i

$$\mu_i \sim Normal(\mu, \tau)$$
 (18)

We think the μ_j 's are related to each other, but they are not the same. We think all of them come from normal distribution with mean μ (they should be somewhere around μ basically). τ controls how μ_j are going to be different from μ or different from each other.

• In addition, specify a shared Gamma prior distribution for σ_j

$$\frac{1}{\sigma_j^2} \sim Gamma(s_a, s_b) \tag{19}$$

where the mean is s_a/s_b and the variance is s_a/s_b^2

All of the σ_j 's are related somehow. The mean controls on average how they should be. The variance controls the similarity between the σ_j 's.

```
modelString <-"
model {
## likelihood
for (i in 1:N){
y[i] ~ dnorm(mu_j[schedule[i]], invsigma2_j[schedule[i]])
}
## priors
for (j in 1:J){
mu_j[j] ~ dnorm(mu, invtau2)
invsigma2_j[j] ~ dgamma(s_a, s_b)
}
## sigma <- sqrt(pow(invsigma2, -1))</pre>
## hyperpriors
mu ~ dnorm(mu0, 1/g0^2)
invtau2 ~ dgamma(a_t, b_t)
tau <- sqrt(pow(invtau2, -1))
}
```

Recap