Universal Coding of the Reals: Alternatives to IEEE Floating Point -An Example Application

Improving Numerical Computation with Practical Tools and Novel Computer Arithmetic SC17 Birds of a Feather Flash Talk

14 November 2017

Jeff Hittinger, Peter Lindstrom, and Scott Lloyd
Center for Applied Scientific Computing

We consider an application solving the nonlinear hyperbolic Euler equations in 2D

- Shock wave passing through initially quiescent L-shaped chamber
- Ideal gas Euler equations

$$\partial_t u + \nabla \cdot F(u) = 0$$

$$u = \begin{pmatrix} \rho \\ \rho v \\ \rho E \end{pmatrix} \qquad F(u) = \begin{pmatrix} \rho v \\ \rho v \otimes v + p \\ \rho v H \end{pmatrix}$$

$$\rho E = \frac{p}{\gamma - 1} + \frac{1}{2}|v|^2 \qquad \rho H = \rho E + p$$

Explicit finite volume discretization

$$u_{\mathbf{i}}^{n} = u_{\mathbf{i}}^{n} - \frac{\Delta t}{\Delta x} \sum_{d=1}^{2} \left[F_{\mathbf{i} + \frac{1}{2}\mathbf{e}^{d}}^{d} - F_{\mathbf{i} - \frac{1}{2}\mathbf{e}^{d}}^{d} \right]$$

High-resolution Godunov solver

Uniform grid: 512x256 + 256x768 cells

The solution generates complicated wave interactions

It is useful to understand the solution evolution in order to understand the precision results

Shock reflects off of far wall Steps 48-89 Reflected shock hits vortex Steps 90-102

Shock reflects off of near wall *Steps 103-120*

Second reflection hits vortex Steps 121-135 Multiple wavewave and wave-vortex interactions Steps 136-189

We have tested numerous types, including posits, using the Euler2D code

- Features in the results correlate to features in the solution data
- The general trend is that you can do better than IEEE float at 32-bits
- It appears 32-bit posit, es=1 performs the best of the 32-bit types tested

