Обучение без учителя

Лекция 8

Повторение. K-means

Повторение. Иерархическая кластеризация

Повторение. Mean Shift

Повторение. DBSCAN

Уменьшение размерности

Задача: есть матрица X_0 размера $N \times M$

Хотим: получить матрицу X размера $N \times m$

m < M

Уменьшение размерности. Зачем?

2 измерения

Охвачено 78.5% пространства

3 измерения

Охвачено 46.4% пространства

4...10 измерений

Охвачено 30.8%...0.25% пространства

Уменьшение размерности. Зачем?

Изначально имеем 784 признака

Визуализируем двумерно

Уменьшение размерности

Варианты для уменьшения размерности:

- 1. Убирать признаки (feature selection)
- 2. Переходить в иное пространство признаков (feature extraction)
 - 1. PCA
 - 2. T-SNE
 - 3. UMAP

Feature Selection

3 вариации:

- 1. Методы фильтрации
- 2. Методы-обертки
- 3. Методы представлений

Feature Selection. Методы фильтрации

Методы фильтрации оценивают каждый признак независимо друг от друга.

Выбираются признаки с высокой корреляцией с целевой переменной.

Используется в качестве предобработки датасета от избыточных или неинформативных признаков

Feature selection. Методы фильтрации

Удаляем константные признаки (определяем по нулевой дисперсии)

Или признаки, в которых много пропусков (условно >95% is None)

#	Car Make	Car Model	Car Year
1	Toyota	Camry	2018
2	Toyota	Corolla	2019
3	Toyota	Camry	2018
4	Toyota	Corolla	2019
9999	Toyota	Camry	2018
10000	Toyota	Camry	2018

Feature selection. Корреляция

Feature selection. Методы фильтрации

Можно выбирать признаки по их взаимосвязи с целевой переменной с помощью:

- 1. Всевозможные корреляции (Пирсона, Крамера)
- 2. Статистические критерии (T-score, Chi-square)
- 3. Information Gain (как в решающих деревьях)

Корреляции не всегда достаточно

Feature selection. Методы обертки

Используются жадные алгоритмы отбора признаков На каждой итерации берем подмножество признаков, смотрим и выбираем лучшее

Feature selection. Sequential Feature Selection

Бывает прямой (forward) и обратный (backward)

Feature Selection. Методы представлений

Пул признаков оценивается сразу во время обучения модели Учитывается влияние сразу нескольких признаков и их взаимосвязь между собой

Feature Selection. LASSO (L1)

Feature Selection. Random Forest

Feature Selection. Gradient Boosting

Feature Extraction. Переходим в иное пространство признаков

Метод главных компонент (РСА)

Проецирует данные в пространство меньшей размерности

Но проецирует так, чтобы в новом пространстве мы потеряли

как можно меньше информации

Кроме того, отображение в новом пространстве будет линейно зависимо от изначального:

$$Z = XW^T$$

Алгоритм РСА

Шаг 1 – считаем ковариационную матрицу

$$S = XX^T$$

Шаг 2 – считаем собственные вектора и собственные значения

$$Sx = \lambda x$$

- x показывает направление, вдоль которых дисперсия будет максимальна
- λ показывает дисперсию по каждому направлению

PCA procedure

PCA in a nutshell

("urefu" means "height" in Swahili)

2. center the points

3. compute covariance matrix

h 2.0 0.8
$$\cot(h,u) = \frac{1}{n} \sum_{i=1}^{n} h_i u_i$$

4. eigenvectors + eigenvalues

$$\begin{bmatrix} 2.0 & 0.8 \end{bmatrix} \begin{bmatrix} e_h \end{bmatrix} = \lambda \begin{bmatrix} e \end{bmatrix}$$

$$2.0 \quad 0.8$$
 f_h $_{ }$ $_{ }$ $_{ }$ f_h

$$\begin{bmatrix} 0.8 & 0.6 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} f_u \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_u \\ f_u \end{bmatrix}$$

eig(cov(data))

7. uncorrelated low-d data

6. project data points to those eigenvectors

Copyright © 2011 Victor Lavrenko

5. pick m<d eigenvectors w. highest eigenvalues

РСА наглядно

Расшифровывается – t-Stochastic Neighbor Embedding

Старается строить точки в новом пространстве так, чтобы изначально близкие точки были близки и в новом пространстве. Аналогично с далекими объектами

Изначально есть точки $\{x_i|x_i\in X\}$. Преобразовываем их в точки $\{y_i|y_i\in Y\}$ в более низкоразмерном пространстве.

Введем понятие вероятности выбора точкой x_i в качестве

соседа точку x_j

$$p_{j|i} = \frac{\exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(-\frac{\|x_i - x_k\|^2}{2\sigma_i^2}\right)}$$

Аналогично введем вероятности для нового пространства

$$q_{j|i} = \frac{\exp(-\|y_i - y_j\|^2)}{\sum_{k \neq i} \exp(-\|y_i - y_k\|^2)}$$

По изначальной постановке задачи, чем $q_{j|i}$ ближе к $p_{j|i}$, тем лучше.

Но как измерить близость между ними?

Близость через дивергенцию Кульбака-Лейблера:

$$KL(P|Q) = \sum_{j} p_{j} \log \frac{p_{j}}{q_{j}}$$

Определим целевую функцию как:

$$C = \sum_{i} KL(p_i|q_i) = \sum_{i} \sum_{j} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}}$$

Далее случайно создаем множество точек y_i из нормального распределения $\mathcal{N}\left(0,\frac{1}{\sqrt{2}}\right)$.

Оптимизируем положение каждой точки при помощи градиентного спуска:

$$\frac{dC}{dy_i} = 2\sum_{i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

До сих пор мы рассматривали реализацию просто алгоритма SNE.

T-SNE предлагает нововведения:

1. Так как KL-дивергенция несимметрична, можно использовать модификацию:

$$p_{ij} = \frac{p_{i|j} + p_{j|i}}{2|X|}$$

 Использовать распределение Стьюдента с одной степенью свободы, а не Гаусса, так как распределение Стьюдента обладает более тяжелыми хвостами

Продолжаем с нововведениями:

- 3. Вводится «раннее сжатие», которое заставляет точки сжиматься в нуле (с помощью L2-регуляризации), чтобы кластера могли перемешиваться и в конечно итоге корректно расположиться друг относительно друга.
- 4.Вводится «раннее преувеличение», когда мы сильнее учитываем p_{ij} на первых итерациях, которое раскидывает широко кластера друг от друга и позволяет им наилучшим образом перестраиваться

9

Посмотреть https://distill.pub/2016/misread-tsne/

Введем функцию потерь:

$$C = \sum_{e \in E} w_h(e) \log \frac{w_h(e)}{w_l(e)} + \left(1 - w_h(e)\right) \log \left(\frac{\left(1 - w_h(e)\right)}{\left(1 - w_l(e)\right)}\right) \to \min_{w_l}.$$

где $w_h(e)$ -- функция принадлежности нечеткого множества из ребер в высокоразмерном пространстве

 $w_l(e)$ -- функция принадлежности нечеткого множества из ребер в низкоразмерном пространстве

Минимизируем ${\it C}$ градиентным спуском, изменяя w_l (по сути меняя конфигурацию точек в новом графе)

Красивые визуализации

https://pair-code.github.io/understanding-umap/

https://grantcuster.github.io/umap-explorer/