모두를 위한 R데이터 분석 입문

Chapter 10 워드클라우드와 구매 패턴 분석

목차

- 1. 워드클라우드 분석
- 2. 구매 패턴 분석
- 3. 인터넷 검색어 분석
- 4. 공공 빅데이터

Section 02 구매 패턴 분석

- 상품의 유통, 판매 분야는 데이터 분석이 활발히 적용되는 분야중의 하나
- 계산대 부근에 껌이나 캔디류, 건전지 등이 진열되어 있는 것은 우연이 아니고 소비자의 구매 행태에 대한 철저한 분석의 결과
- 소비자의 구매 패턴(행태) 분석은 장바구니 분석(market basket analysis)으로도 알 려져 있음

(이미지 출처: https://pixabay.com/)

1. 연관 규칙

- 연관 규칙(association rule): 데이터 안에 포함된 일정한 패턴
- 구매 데이터에서 찾을 수 있는 연관 규칙의 예

"맥주를 사는 사람은 땅콩도 함께 구매한다"

"분유를 사는 사람은 기저귀도 함께 구매한다"

■구매 패턴의 표현

{맥주} → {땅콩}

{분유} → {기저귀}

■ 구매 패턴은 영수증을 분석하면 알 수 있다.

2. 어프리오리 알고리즘

- 어프리오리(Apriori) 알고리즘: 연관규칙 분석에 널리 이용되는 머신러닝 기법중의하나로, 1994년 Agrawal 와 Srikant에 의해 제안됨.
- **구매 행렬:** 구매 내역에서 연관된 구매 상품을 찾는 가장 쉬운 방법

표 10-1 구매 내역 예제

거래 번호	구매 상품	÷							
1	맥주, 땅콩								
2	맥주, 오징어								
3	맥주, 라면, 땅콩	표 10-2 구매	행렬						
4	초콜릿, 껌	상품	맥주	땅콩	오징어	라면	초콜릿	껌	생수
5	초콜릿, 생수, 껌	맥주	-	2	1	1	0	0	0
<u> </u>		땅콩	2	-	1	0	0	0	0
		오징어	1	1	_	0	0	0	0
		라면	1	0	0	_	0	0	0
		초콜릿	0	0	0	0	-	2	1
		껌	0	0	0	0	2	_	1
		생수	0	0	0	0	1	1	-

■ 지지도(support):

상품 X,Y를 함께 구매한 비율이 전체 거래에서 차지하는 비율을 측정하는 척도

■ support(X -> Y), support(Y -> X), support(X, Y) 모두 같은 의미

$$support(\{X\} \rightarrow \{Y\}) = \frac{X, Y = \text{end} \times \text{end}}{X + X}$$

■ {맥주}→{땅콩}의 지지도

$$support({맥주}) \rightarrow {{땅>}} = \frac{2}{5} = 0.4$$

표 10-1 구매 내역 예제

거래 번호	구매 상품			
1	맥주, 땅콩			
2	맥주, 오징어			
3	맥주, 라면, 땅콩			
4	초콜릿, 껌			
5	초콜릿, 생수, 껌			

■ 신뢰도(confidence): 조건부확률을 의미

상품 X를 구매했다는 전제하에 상품 X와 Y를 동시에 구매한 빈도수를 계산하는 척도

$$cconfidence({X} \rightarrow {Y}) = \frac{X, Y$$
를 포함한 거래건수
 X 를 포함한 거래건수

■ {맥주}→{땅콩}의 신뢰도 맥주와 땅콩 거래 건수 분모를 coverage(조건 출현률, 조건 항목 등장 비율)라고도 부름
$$confidence({맥주}) \to {땅콩}) = \frac{2}{3} = 0.67$$
 표10-1 구매 내역 예제 개배호 구매 상품

맥주 거래 건수

■ {땅콩} →{맥주}의 신뢰도

거래 번호	구매 상품		
1	맥주, 땅콩		
2	맥주, 오징어		
3	맥주, 라면, 땅콩		
4	초콜릿, 껌		
5	초콜릿, 생수, 껌		

맥주를 산 경우에는 '**많은 경우'** 땅콩도 함께 사지만, 땅콩을 산 경우는 **'반드시'** 맥주를 함께 산다

X를 구매한 사람이 Y를 구매할 확률과 X의 구매와 상관없이 Y를 구매할 확률의 비

 $cconfidence(\{X\} \rightarrow \{Y\})$

- **향상도(lift):** 연관 규칙 {X}→{Y}에서 <mark>X를 구매했을 때 Y를 구매한 비율</mark>이
- <mark>그러한 조건이 없던 때(그냥 Y를 구매한 비율)에 비해 얼마나 증가</mark>하는가를 보여주는 척도
 - 값이 1보다 크면 X를 샀을 때 Y를 살 확률이 높은 것을 의미

 $support(\{Y\})$

- 값이 1 미만이면 X를 샀을 때 Y를 사지않을 확률이 높은 것을 의미
- 향상도가 1이면 X를 산 것과 Y를 산 것은 관계가 없다는 의미

$$lift(\{X\} \rightarrow \{\ Y\}) = \frac{confidence(\{X\} \rightarrow \{\ Y\})}{support(\{\ Y\})}$$

X를 구매 했을 경우, Y도 구매한 비율

■ {맥주}→{땅콩}의 향상도

Y를 구매한 비율

Y(땅콩)를 구매한 비율

맥주를 살 때 땅콩을 구매하는 빈도가 땅콩을 사는 것보다 1.67배 높다

연관분석 지표 계산 문제

아래의 문제를 통해 연관규칙 알고리즘을 이해해보자.

거래번호	거래 아이템
1	<mark>우유</mark> , 버터, <mark>시리얼</mark>
2	우 <mark>유</mark> , <mark>시리얼</mark>
3	우유, 빵
4	버터, 맥주, 오징어

문제 1. 지지도(support)

문제 2. 신뢰도(confidence)

문제 3. 향상도

연관분석 지표 계산

No.

아래의 문제를 통해 연관규칙 알고리즘을 이해해보자.

거래번호	거래 아이템
1	우 <mark>유</mark> , 버터, <mark>시리얼</mark>
2	우 <mark>유</mark> , <mark>시리얼</mark>
3	우유, 빵
4	버터, 맥주, 오징어

문제 1. 지지도

문제 2. 신뢰도

문제 3. 향상도

우유를 살 때 시리얼을 구매하는 빈도가 시리얼을 사는 것보다 1.333배 높다

https://welcome-to-dewy-world.tistory.com/61

연관분석 지표 계산 (간단)

Ç

아래의 문제를 통해 연관규칙 알고리즘을 이해해보자.

거래번호	거래 아이템
1	우 <mark>유</mark> , 버터, <mark>시리얼</mark>
2	우 <mark>유</mark> , <mark>시리얼</mark>
3	우유, 빵
4	버터, 맥주, 오징어

문제 1. 지지도 s(우유,시리얼) = n(X∩Y) / N = 2/4 = ½

문제 2. 신뢰도 c(우유→시리얼) = n(X∩Y) / n(X) = n(우유, 시리얼) / n(우유) = ½ / ¾ = 2/3

문제 3. 향상도(건수로 계산하는 방법) lift(우유→시리얼) = 우유를 살 때 시리얼을 구매하는 빈도가 시리얼을 사는 것보다 1.333배 높다

(우유와 시리얼 거래건수) * 총 건수 / (우유 건수) * (시리얼 건수) = 2 * 4 / 3 * 2 = 8 / 6 = 1.333

https://welcome-to-dewy-world.tistory.com/61

3. 구매 패턴의 분석 과정

- 아프리오리 알고리즘: "arules" 패키지 이용
- 실습 결과의 시각화: "arulesViz" 패키지 이용
- 실습용 데이터셋: Kaggle에서 제공하는 제과점 거래 데이터(BreadBasket_DMS.csv) (https://www.kaggle.com/datasets/sulmansarwar/transactions-from-a-bakery)
- BreadBasket 데이터셋은 어떤 제과점의의 1년간 거래(판매) 내역을 정리한 것으로 169개의 상품에 대해 9835건의 거래내역을 포함하고 있음.

Date		Time	Transaction	Item
	2016-10-30	9:58:11	1	Bread
	2016-10-30	10:05:34	2	Scandinavian
	2016-10-30	10:05:34	2	Scandinavian
	2016-10-30	10:07:57	3	Hot chocolate
	2016-10-30	10:07:57	3	Jam
	2016-10-30	10:07:57	3	Cookies
	2016-10-30	10:08:41	4	Muffin
	2016-10-30	10:13:03	5	Coffee
	2016-10-30	10:13:03	5	Pastry
	2016-10-30	10:13:03	5	Bread
	2016-10-30	10:16:55	6	Medialuna
	2016-10-30	10:16:55	6	Pastry
	2016-10-30	10:16:55	6	Muffin
	2016-10-30	10:19:12	7	Medialuna
	2016-10-30	10:19:12	7	Pastry
	2016-10-30	10:19:12	7	Coffee
	2016-10-30	10:19:12	7	Tea
	2016-10-30	10:20:51	8	Pastry
	2016-10-30	10:20:51	8	Bread
	2016-10-30	10:21:59	9	Bread
	2016-10-30	10:21:59	9	Muffin
	2016-10-30	10:25:58	10	Scandinavian
	2016-10-30	10:25:58	10	Medialuna

2.1 데이터 준비와 관찰하기

```
코드 10-5 (계속)
library(arules) # 아프리오리 알고리즘
library(arulesViz) # 연관규칙 시각화 도구
# 데이터 불러오기와 관찰
setwd("D:/source")
ds <- read.csv("BreadBasket_DMS.csv") # 거래 데이터 읽기
str(ds)
head(ds)
unique(ds$Item)
# 'NONE' item 삭제
ds.new <- subset(ds, Item != 'NONE')
write.csv(ds.new, "BreadBasket_DMS_upd.csv", row.names =F )
```

2.1 데이터의 준비와 관찰

코드 10-5

```
> library(arules)
                                      # 아프리오리 알고리즘
> library(arulesViz)
                                      # 연관규칙 시각화 도구
> setwd("D:/source")
> ds <- read.csv("BreadBasket_DMS.csv") # 거래 데이터 읽기
> str(ds)
'data.frame':21293 obs. of 4 variables:
$ Date : chr "2016-10-30" "2016-10-30" "2016-10-30" "2016-10-30" ...
$ Time : chr "09:58:11" "10:05:34" "10:05:34" "10:07:57" ...
$ Transaction: int 1223334555...
           : chr "Bread" "Scandinavian" "Scandinavian" "Hot chocolate" ...
$ Item
```

> head(ds)			
Date	Time	Transaction	Item
1 2016-10-30	09:58:11	1	Bread
2 2016-10-30	10:05:34	2	Scandinavian
3 2016-10-30	10:05:34	2	Scandinavian
4 2016-10-30	10:07:57	3	Hot chocolate
5 2016-10-30	10:07:57	3	Jam
6 2016-10-30	10:07:57	3	Cookies

```
> unique(ds$Item)
[1] "Bread"
                                   "Scandinavian"
 [3] "Hot chocolate"
                                   "Jam"
[5] "Cookies"
                                   "Muffin"
 [7] "Coffee"
                                   "Pastry"
 [9] "Medialuna"
                                   "Tea"
                                   "Tartine"
[11] "NONE"
...(중간 생략)
                                   "Half slice Monster "
[89] "Argentina Night"
[91] "Gift voucher"
                                   "Cherry me Dried fruit"
[93] "Mortimer"
                                   "Raw bars"
[95] "Tacos/Fajita"
> # 'NONE' item 삭제
> ds.new <- subset(ds, Item != 'NONE')</pre>
> write.csv(ds.new, "BreadBasket_DMS_upd.csv", row.names =F )
> # 트랜잭션 포맷으로 데이터 읽기
> trans <- read.transactions("BreadBasket_DMS_upd.csv", format="single",</pre>
                              header=T, cols=c(3,4), sep=",", rm.duplicates=T)
+
```

"BreadBasket_DMS_upd.csv"

읽어올 트랜잭션(거래) 데이터가 저장된 파일을 지정한다.

format="single"

읽어올 파일의 포맷을 지정한다.

"single"

예제 파일과 같이 한 줄에 하나의 상품만 저장된 경우(즉, 하나의 거래 데이터가 여러 줄에 걸쳐 저장)

header=T

읽어올 파일의 첫째 줄이 열의 변수명인지를 지정한다.

cols=c(3,4)

파일에서 읽어올 열을 지정한다(3번째(트랜잭션 ID)와 4번째(상품) 열만 읽음).

sep=","

파일에서 열과 열의 구분자가 무엇인지 지정한다(예제 파일은 CSV 포맷이므로 구분자가 ","이다).

rm.duplicates=T

동일 트랜잭션 안에 중복된 상품이 있는 경우 중복을 제거할 것인지 지정한다.

```
> trans # 트랜잭션 데이터 요약 정보
transactions in sparse format with
9465 transactions (rows) and
94 items (columns)
```

<pre>> dimnames(trans)[[2]]</pre>	# 상품 목록 확인
[1] "Adjustment"	"Afternoon with the baker"
[3] "Alfajores"	"Argentina Night"
[5] "Art Tray"	"Bacon"
[7] "Baguette"	"Bakewell"
(중간 생략)	
[87] "Tiffin"	"Toast"
[89] "Truffles"	"Tshirt"
[91] "Valentine's card"	"Vegan Feast"
[93] "Vegan mincepie"	"Victorian Sponge"

```
> toLongFormat(trans)
                               # 거래별 상품 목록
    TID
                      item
                     Bread
1
                 Medialuna
3
              Scandinavian
4
                     Bread
           Chimichurri Oil
5
              Scandinavian
6
                     Bread
8
                  Truffles
9
                   Brownie
...(이하 생략)
```

	items	transactionID
1]	{Bread}	1
2]	{Medialuna, Scandinavian}	10
3]	{Bread}	100
4]	{Chimichurri Oil, Scandinavian}	1000
5]	{Bread, Truffles}	1001
6]	{Brownie, Focaccia}	1002
7]	{Bread, Coffee}	1003
8]	{Art Tray, Coffee, Cookies, Tea}	1004
9]	{Coffee}	1005
10]	{Bread}	1006

2.2 연관 규칙의 검색과 시각화

```
코드 10-6 (계속)
# 상품 판매 빈도
itemFrequencyPlot(trans, topN=10, type="absolute", xlab="상품명",
     ylab="절대 판매빈도", main="판매량 많은 상품", col="green")
itemFrequencyPlot(trans, topN=10, type="relative", xlab="상품명",
    ylab="상대 판매빈도", main="판매량 많은 상품", col="blue")
# 연관규칙 찾기
rules <- apriori(trans, parameter = list(supp = 0.001, conf = 0.7))
rules
# 앞쪽 10개의 규칙 출력
options(digits=2) # 평가 척도 값의 자릿수 지정
inspect(rules[1:10])
```

코드 10-6

```
# 신뢰도 상위 10개 규칙 출력
rules.sort <- sort(rules, by='confidence', decreasing = T)
inspect(rules.sort[1:10])
# 산점도 (지지도-향상도)
plot(rules.sort, measure=c("support", "lift"), shading="confidence")
# Graph plot
plot(rules.sort, method="graph")
# Grouped Matrix Plot
plot(rules.sort, method="grouped")
## 연관 규칙의 저장
write(rules.sort, file="BreadBasket_rules.csv", sep=',', quote=T,
row.names=F)
```

```
> itemFrequencyPlot(trans, topN=10, type="absolute", xlab="상품명",
                     ylab="절대 판매빈도", main="판매량 많은 상품", col="green")
+
 판매량 많은 상품
   4000
절대 판매반도
                      Pastry
> itemFrequencyPlot(trans, topN=10, type="relative", xlab="상품명",
                     ylab="상대 판매빈도", main="판매량 많은 상품", col="blue")
+

↓ Zoom Zoom Zexport ▼ 
② 
✓
                                             S Publish ▼ | ©
                       판매량 많은 상품
상대 판매반도
                  Cake Popular Saramich Healthura Cockes
```

```
• `trans`: 입력 데이터셋 (transaction 데이터)
> # 연관규칙 <u>찾기</u>
                                                                  • `parameter`: 연관 규칙을 생성할 때 사용할 파라미터 목록
> rules <- apriori(trans, parameter = list(supp = 0.001, conf = 0.7))</pre>
Apriori
                                                                     • `supp = 0.001`: 최소 지지도 (support)를 0.1%로 설정
                                                                     • `conf = 0.7`: 최소 신뢰도 (confidence)를 70%로 설정
Parameter specification:
confidence minval smax arem aval originalSupport maxtime support minlen
       0.7
            0.1
                  1 none FALSE
                                          TRUE
                                                        0.001
    maxlen target ext
        10 rules TRUE
                                                            • `support`: 지지도 기준 (0.001)
                                                            • `minlen`: 최소 항목 수 (1)
Algorithmic control:
                                                            • `maxlen`: 최대 항목 수 (10)
filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE
                                    TRUE
                                                            • `target`: 생성할 대상 (rules, 기본값)
Absolute minimum support count: 9
                                                                 절대 최소 지지도는 9: 9465건의 트랜잭션 중
                                                               0.001 * 9465 ≈ 9건 이상 등장해야 한다는 의미
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[94 item(s), 9465 transaction(s)] done [0.00s].
sorting and recoding items \dots [57 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
                                                                    57개의 상품으로 14개의 규칙이 생성
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [14 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> rules
set of 14 rules
```

```
다음 R 코드 결과를 자세히 설명해 줘
> rules <- apriori(trans, parameter = list(supp = 0.001, conf = 0.7))
Apriori
Parameter specification:
confidence minval smax arem aval original Support maxtime
      0.7 0.1 1 none FALSE
                                        TRUE
support minlen maxlen target ext
  0.001
                10 rules TRUE
Algorithmic control:
filter tree heap memopt load sort verbose
   0.1 TRUE TRUE FALSE TRUE 2 TRUE
Absolute minimum support count: 9
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[94 item(s), 9465 transaction(s)] done [0.00s].
sorting and recoding items ... [57 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [14 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
```

```
> rules <- apriori(trans, parameter = list(supp = 0.001, conf = 0.7))
Apriori</pre>
```

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen maxlen target ext 0.7 0.1 1 none FALSE TRUE 5 0.001 1 10 rules TRUE

주요 파라미터:

- confidence : 최소 신뢰도 (Confidence) 설정.
 - 연관 규칙의 신뢰도가 0.7(70%) 이상이어야 규칙으로 포함.
- support : 최소 지지도 (Support) 설정.
 - 지지도 값이 0.001(0.1%) 이상인 규칙만 고려.
- minlen: 규칙의 최소 길이.
 - 최소 1개의 아이템을 포함한 규칙을 생성.
- maxlen: 규칙의 최대 길이.
 - 최대 10개의 아이템으로 이루어진 규칙을 생성.
- target : 생성할 대상.
 - rules : 연관 규칙을 생성.
- maxtime: 알고리즘 실행 시간 제한(초).
 - 5초로 설정(기본값).

기타:

- originalSupport : 트랜잭션의 원래 지지도를 기준으로 규칙을 생성할지 여부.
 - TRUE: 원래 지지도를 사용.
- ext : 확장된 규칙을 허용 여부.
 - TRUE: 확장된 규칙을 포함.

2. Algorithmic Control: 알고리즘 제어 설정

```
R
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
```

- filter: 항목 필터링 임계값(설정값: 0.1).
- tree: 트랜잭션 트리를 사용하여 효율적인 탐색 수행 여부(TRUE).
- heap: 힙 기반 메모리 최적화를 활성화 여부(TRUE).
- memopt : 메모리 최적화 옵션 (FALSE = 비활성화).
- sort : 아이템 정렬 수준 (설정값: 2).
- verbose : 실행 중 상세 정보를 출력 여부 (TRUE).

3. 절대 최소 지지도

R
Absolute minimum support count: 9

의미:

- 설정된 지지도(supp = 0.001)는 트랜잭션 개수(9465)의 0.1%에 해당.
- 0.001 × 9465 = 9건 이상 나타난 규칙만 고려.

4. 실행 과정 설명

- 데이터셋 준비:
 - 94개의 항목과 9465개의 트랜잭션을 처리.
 - item appearances 는 특정 항목에 대한 출현 조건이 없는 경우 0으로 표시.

- 항목 정렬 및 재코딩:
 - 빈도가 너무 낮은 항목을 제외하고, 57개의 유효 항목으로 축소.

- 트랜잭션 트리 생성:
 - Apriori 알고리즘은 트랜잭션 트리를 생성하여 효율적으로 빈발 항목 집합을 탐색.

- 빈발 항목 집합 탐색:
 - 1개, 2개, 3개, 4개로 구성된 항목 집합의 빈발 항목 탐색 완료.

- 연관 규칙 생성:
 - 설정한 조건(supp = 0.001, conf = 0.7)을 만족하는 14개의 규칙이 생성.

- S4 객체 생성:
 - 생성된 규칙을 S4 객체 형식으로 저장(rules 객체).

5. 주요 결과

데이터 요약

- 트랜잭션 수: 9465개.
- 항목 수: 94개 (유효 항목 57개).
- 최소 규칙 조건: 지지도 ≥ 0.001 (9건), 신뢰도 ≥ 0.7.
- 생성된 규칙: 14개.

생성된 규칙 확인

규칙은 다음과 같이 확인할 수 있습니다:

출력 예:

```
csharp

Ins rhs support confidence lift

[1] {Bread} => {Coffee} 0.015 0.75 1.20

[2] {Medialuna} => {Tea} 0.012 0.85 1.35
...
```

규칙 필터링 및 정렬

• 예: lift 기준으로 상위 규칙 정렬.

```
R inspect(sort(rules, by = "lift")[1:5])
```

- trans 읽어올 트랜잭션 데이터를 지정한다.
- supp = 0.001 지지도가 0.001 이상인 규칙만 검색한다.
- conf = 0.7
 신뢰도가 0.7 이상인 규칙만 검색한다.

트랜잭션(거래) 수: 9465 건 9465 * 0.001 = 9.5, 구매가 9건 이상 일어난 규칙만 검색

옵션 digits=n

```
> options(digits=2)
                               # 평가척도 값의 자리수 지정
> inspect(rules[1:5])
    1hs
                                   rhs
                                            support confidence coverage lift count
                                => {Coffee} 0.0033 0.82
                                                              0.0040
                                                                      1.7
                                                                            31
[1] {Extra Salami or Feta}
                                                              0.0067
                                                                      1.7
[2] {Keeping It Local}
                                => {Coffee} 0.0054 0.81
                                                                            51
                                                                      1.5 224
                                => {Coffee} 0.0237 0.70
                                                              0.0336
[3] {Toast}
                                => {Coffee} 0.0011 0.83
[4] {Cake, Vegan mincepie}
                                                              0.0013
                                                                      1.7
                                                                            10
[5] {Extra Salami or Feta, Salad} => {Coffee} 0.0015
                                                   0.88
                                                              0.0017
                                                                       1.8
                                                                            14
```

컬럼	의미	예시 (3번 규칙)
lhs	조건 항목 (If)	{Toast}
rhs	결과 항목 (Then)	{Coffee}
support	Toast와 Coffee가 동시에 등장한 비율	0.0237 → 전체 거래 중 2.37%
confidence	Toast가 있을 때 Coffee도 같이 나온 비율	0.70 → 70% 확률로 같이 나옴
coverage	Toast만 등장한 거래의 비율 (조건만)	0.0336
lift	Coffee가 우연히 등장하는 확률 대비 증가율	1.5 → 50% 더 자주 나옴
count	해당 규칙이 등장한 실제 건수	224건

옵션 digits=5

```
# 평가척도 값의 자리수 지정
> options(digits=5)
> inspect(rules[1:10])
     1hs
                                             support confidence coverage lift
                                     rhs
                                                                                  count
                                  => {Coffee} 0.0032752 0.81579
   {Extra Salami or Feta}
                                                                  0.0040148 1.7053
[1]
                                                                                   31
                                  => {Coffee} 0.0053883 0.80952
[2]
    {Keeping It Local}
                                                                  0.0066561 1.6922
[3]
                                  => {Coffee} 0.0236661 0.70440
                                                                  0.0335975 1.4724 224
    {Toast}
                                  => {Coffee} 0.0010565 0.83333
[4]
   {Cake, Vegan mincepie}
                                                                  0.0012678 1.7419
                                                                                   10
    {Extra Salami or Feta, Salad} => {Coffee} 0.0014791 0.87500
[5]
                                                                  0.0016904 1.8290
                                                                                   14
[6] {Hearty & Seasonal, Sandwich} => {Coffee} 0.0012678 0.85714
                                                                  0.0014791 1.7917
                                                                                   12
[7] {Salad, Sandwich}
                                  => {Coffee} 0.0015848 0.83333
                                                                                   15
                                                                  0.0019017 1.7419
[8] {Cake, Salad}
                                  => {Coffee} 0.0010565 0.76923
                                                                  0.0013735 1.6079
[9] {Juice, Spanish Brunch}
                                  => {Coffee} 0.0020074 0.73077
                                                                  0.0027470 1.5275
                                                                                   19
[10] {Pastry, Toast}
                                  => {Coffee} 0.0013735 0.86667
                                                                  0.0015848 1.8116 13
```

기본적으로 Apriori 알고리즘이 발견한 순서대로 나열됨.

연관분석 결과 해석

```
> options(digits=2)
                              # 평가척도 값의 자리수 지정
> inspect(rules[1:5])
   1hs
                                          support confidence coverage lift count
                                  rhs
[1] {Extra Salami or Feta} => {Coffee} 0.0033 0.82
                                                            0.0040
                                                                    1.7
                                                                          31
                                                                    1.7
[2] {Keeping It Local}
                               => {Coffee} 0.0054 0.81
                                                            0.0067
                                                                          51
                               => {Coffee} 0.0237 0.70
                                                            0.0336
                                                                    1.5 224
[3] {Toast}
[4] {Cake, Vegan mincepie}
                              => {Coffee} 0.0011 0.83
                                                            0.0013
                                                                    1.7
                                                                          10
[5] {Extra Salami or Feta, Salad} => {Coffee} 0.0015 0.88
                                                            0.0017
                                                                    1.8
                                                                          14
```

- [3] {Toast} => {Coffee}
 해석: "Toast를 구매한 고객 중 70%는 Coffee도 함께 구매했다."
 lift = 1.5: Coffee가 Toast 없이 등장할 확률보다 1.5배 더 많이 등장함
 마케팅 인사이트:
 → 토스트 사는 고객에게 커피 프로모션 쿠폰 주면 먹힌다!
- [5] {Extra Salami or Feta, Salad} => {Coffee} 조건이 더 구체적: 이 조합으로 구매한 고객 88%가 커피도 샀어! lift = 1.8 → 무려 80% 더 높은 커피 동반 구매율 정밀 타겟 마케팅 대상!

지표	설명	예시 ({Toast} => {Coffee})
support	조건과 결과가 동시에 등장한 비율	0.0237 (2.37%)
coverage	조건(lhs)만 등장한 비율	0.0336 (3.36%)
confidence	조건 등장 시 결과도 등장한 비율 = support / coverage	0.70 (2.37 / 3.36)

># 임	L쪽 10개의 규칙 출력						
> op:	tions(digits=2)	# 평가척도 깂	의 자리수	지정			
>in	spect(rules[1:10])						
	lhs	rhs	support	confidence	coverage	lift	count
[1]	{Extra Salami or Feta}	⇒ {Coffee}	0.0033	0.82	0.0040	1.7	31
[2]	{Keeping It Local}	⇒ {Coffee}	0.0054	0.81	0.0067	1.7	51
[3]	{Toast}	⇒ {Coffee}	0.0237	0.70	0.0336	1.5	224
[4]	{Cake, Vegan mincepie}	⇒ {Coffee}	0.0011	0.83	0.0013	1.7	10
[5]	{Extra Salami or Feta, Salad}	⇒ {Coffee}	0.0015	0.88	0.0017	1.8	14
[6]	{Hearty & Seasonal, Sandwich}	⇒ {Coffee}	0.0013	0.86	0.0015	1.8	12
[7]	{Salad, Sandwich}	⇒{Coffee}	0.0016	0.83	0.0019	1.7	15
[8]	{Cake, Salad}	⇒{Coffee}	0.0011	0.77	0.0014	1.6	10
[9]	{Juice, Spanish Brunch}	⇒{Coffee}	0.0020	0.73	0.0027	1.5	19
[10]	{Pastry, Toast}	⇒{Coffee}	0.0014	0.87	0.0016	1.8	13

- > # 신뢰도 상위 10개 규칙 출력 > rules.sort <- sort(rules, by='confidence', decreasing = T)
- > inspect(rules.sort[1:10]) support confidence coverage lift count lhs rhs 0.88 {Extra Salami or Feta, Salad} ⇒ {Coffee} 0.0015 0.0017 1.8 14 0.87 1.8 ⇒ {Coffee} 0.0014 0.0016 13 {Pastry, Toast} {Hearty & Seasonal, Sandwich} ⇒ {Coffee} 0.0013 0.86 0.0015 1.8 12 {Cake, Vegan mincepie} ⇒ {Coffee} 0.0011 0.83 0.0013 1.7 10 0.83 1.7 {Salad, Sandwich} ⇒ {Coffee} 0.0016 0.0019 15 {Extra Salami or Feta} \Rightarrow {Coffee} 0.0033 0.82 0.0040 1.7 31 0.81 0.0067 1.7 51 {Keeping It Local} \Rightarrow {Coffee} 0.0054 1.7 {Cookies, Scone} ⇒ {Coffee} 0.0016 0.79 0.0020 15 0.77 0.0023 1.6 17 [9] {Juice, Pastry} ⇒ {Coffee} 0.0018 0.0014 [10] {Cake, Salad} ⇒ {Coffee} 0.0011 0.77 1.6 10

디양한 방법으로 정렬

```
# 정렬
inspect(sort(rules, by = "support")[1:10]) # 지지도 순
inspect(sort(rules, by = "confidence")[1:10]) # 신뢰도 순
inspect(sort(rules, by = "lift")[1:10]) # 향상도 순
inspect(sort(rules, by = "coverage")[1:10]) # 조건출현률 순
```

- > # 산점도 (지지도-향상도)
- > plot(rules.sort, measure=c("support", "lift"), shading="confidence")

- > # Graph plot
- > plot(rules.sort, method="graph")

- > ## 연관규칙 저장
- > write(rules.sort, file="BreadBasket_rules.csv", sep=',', quote=T, row.names=F)

1	A	В	С	D	E	F
1	rules	support	confidence	coverage	lift	count
2	(Extra Salami or Feta, Salad) => {Coffee}	0.001479	0.875	0.00169	1.829036	14
3	{Pastry,Toast} => {Coffee}	0.001373	0.866667	0.001585	1.811617	13
4	{Hearty & Seasonal, Sandwich} => {Coffee}	0.001268	0.857143	0.001479	1.791709	12
5	{Cake,Vegan mincepie} => {Coffee}	0.001057	0.833333	0.001268	1.741939	10
6	{Salad,Sandwich} => {Coffee}	0.001585	0.833333	0.001902	1.741939	15
7	{Extra Salami or Feta} => {Coffee}	0.003275	0.815789	0.004015	1.705267	31
8	{Keeping It Local} => {Coffee}	0.005388	0.809524	0.006656	1.692169	51
9	{Cookies,Scone} => {Coffee}	0.001585	0.789474	0.002007	1.650258	15
10	{Juice,Pastry} => {Coffee}	0.001796	0.772727	0.002324	1.615253	17
11	{Cake,Salad} => {Coffee}	0.001057	0.769231	0.001373	1.607944	10
12	{Juice,Spanish Brunch} => {Coffee}	0.002007	0.730769	0.002747	1.527547	19
13	{Cake,Toast} => {Coffee}	0.001585	0.714286	0.002219	1.493091	15
14	{Cake,Sandwich,Tea} => {Coffee}	0.001057	0.714286	0.001479	1.493091	10
15	{Toast} => {Coffee}	0.023666	0.704403	0.033597	1.472431	224

그림 10-5 BreadBasket_rules.csv 파일

옵변 인자 jitter=T

plot(rules, measure=c("confidence", "lift"), jitter=T, shading="support") 중복되는 점들을 약간 흩뿌려서 보기 쉽게 함 특히 동일한 confidence와 lift 값을 가지는 규칙이 많을 경우 유용

> inspect(rules.sort[1:10])

1hc

	Ins		rns	support	confluence	coverage	TITU	count
[1]	{Extra Salami or Feta, Salad}	=>	{Coffee}	0.0014791	0.87500	0.0016904	1.8290	14
[2]	{Pastry, Toast}	=>	{Coffee}	0.0013735	0.86667	0.0015848	1.8116	13
[3]	{Hearty & Seasonal, Sandwich}	=>	{Coffee}	0.0012678	0.85714	0.0014791	1.7917	12
[4]	{Cake, Vegan mincepie}	=>	{Coffee}	0.0010565	0.83333	0.0012678	1.7419	10
[5]	{Salad, Sandwich}	=>	{Coffee}	0.0015848	0.83333	0.0019017	1.7419	15
[6]	{Extra Salami or Feta}	=>	{Coffee}	0.0032752	0.81579	0.0040148	1.7053	31

Thank you!

