TERMODINÁMICA

Nombre	Grupo

Problema – 1 (50 %)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La figura adjunta muestra un ciclo combinado creado a partir de la repotenciación de una central de carbón (ciclo de Rankine). La central de carbón continúa consumiendo carbón tras la repotenciación (Qcar), pero además recibe calor de baja temperatura (caldera de recuperación) para reemplazar a los precalentadores cerrados de alta presión. El condensador disipa calor al ambiente (foco térmico a 15 °C).

El ciclo Brayton toma aire (1) del ambiente (15 °C y 1 bar), lo comprime en un compresor adiabático de rendimiento isentrópico 85% hasta 13,6 bar y lo envía a la cámara de combustión. La cámara de combustión se modela como un aporte de calor (Qcc) desde un foco Tc a 1500 °C, sin cambio de presión. A la salida de la cámara de combustión (3) el aire se encuentra a 1250 °C y se dirige a una turbina adiabática, de la que sale a 600 °C y 1 bar, para entrar en la caldera de recuperación, en la que cede calor al agua del ciclo Rankine. El aire sale de la caldera de recuperación a 170 °C, sin perder presión.

El agua entra en la caldera de recuperación a 154 °C y 120 bar, saliendo de la misma sin perder presión a 240 °C. El alternador del ciclo Brayton produce 140 MW y la caldera de carbón consume 1069 MW, modelándose como un aporte de calor desde un foco Tc a 1500 °C. La eficiencia exergética del ciclo Rankine es 51,4%.

El estado muerto se toma a 1 bar y 15 °C. El aire se supone como gas ideal (R = 287 J/kg-K; ver tablas).

Se pide:

a) Rendimiento isentrópico de la turbin	na del ciclo de gas	2 pt
•		-
	ría producir el ciclo de Rankine	
	ine	
	e recuperación	

Tablas del agua saturada (líquido – vapor)

	ı	1 abias uc	ı agua satu	` -	_	L <i>)</i>	ı
T	p	$\mathbf{v}_{\mathbf{f}}$	$\mathbf{v}_{\mathbf{g}}$	${ m h_f}$	h_{g}	S_{f}	Sg
[°C]	[bar]	[m³/kg]	$[m^3/kg]$	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
120	1,99	0,0010603	0,89133	503,81	2705,9	1,52791	7,12918
122	2,12	0,0010621	0,84029	512,31	2708,8	1,54944	7,10816
124	2,25	0,0010640	0,79270	520,82	2711,7	1,57087	7,08739
126	2,39	0,0010659	0,74830	529,33	2714,5	1,59222	7,06686
128	2,54	0,0010678	0,70683	537,85	2717,3	1,61347	7,04656
130	2,70	0,0010697	0,66808	546,38	2720,1	1,63464	7,02649
132	2,87	0,0010717	0,63184	554,92	2722,8	1,65572	7,00664
134	3,04	0,0010736	0,59793	563,47	2725,5	1,67672	6,98700
136	3,22	0,0010757	0,56617	572,02	2728,2	1,69763	6,96758
138	3,42	0,0010777	0,53641	580,59	2730,9	1,71847	6,94836
140	3,62	0,0010798	0,50850	589,16	2733,5	1,73922	6,92935
142	3,82	0,0010818	0,48232	597,74	2736,0	1,75989	6,91053
144	4,04	0,0010840	0,45773	606,34	2738,6	1,78048	6,89190
146	4,27	0,0010861	0,43463	614,94	2741,1	1,80099	6,87345
148	4,51	0,0010883	0,41291	623,55	2743,5	1,82143	6,85519
150	4,76	0,0010905	0,39248	632,18	2745,9	1,84180	6,83710
152	5,02	0,0010927	0,37325	640,81	2748,3	1,86209	6,81919
154	5,29	0,0010950	0,35514	649,46	2750,7	1,88231	6,80144
156	5,58	0,0010973	0,33807	658,12	2753,0	1,90246	6,78386
158	5,87	0,0010996	0,32198	666,79	2755,2	1,92254	6,76643
160	6,18	0,0011020	0,30680	675,47	2757,5	1,94256	6,74916
162	6,50	0,0011044	0,29246	684,17	2759,6	1,96250	6,73204
164	6,84	0,0011068	0,27893	692,88	2761,8	1,98239	6,71506
166	7,18	0,0011093	0,26613	701,60	2763,9	2,00220	6,69823
168	7,55	0,0011117	0,25404	710,33	2765,9	2,02196	6,68154
200	15,5	0,0011565	0,12721	852,26	2792,0	2,33051	6,43016
202	16,2	0,0011597	0,12218	861,29	2793,2	2,34939	6,41525
204	16,9	0,0011628	0,11739	870,33	2794,3	2,36822	6,40041
206	17,6	0,0011661	0,11282	879,40	2795,4	2,38702	6,38565
208	18,3	0,0011694	0,10846	888,50	2796,3	2,40578	6,37095
210	19,1	0,0011727	0,10429	897,61	2797,3	2,42450	6,35632
212	19,9	0,0011761	0,10032	906,75	2798,1	2,44318	6,34175
214	20,7	0,0011795	0,096516	915,91	2798,9	2,46184	6,32724
216	21,5	0,0011830	0,092885	925,10	2799,7	2,48046	6,31278
218	22,3	0,0011865	0,089414	934,31	2800,4	2,49904	6,29838
220	23,2	0,0011901	0,086094	943,54	2801,0	2,51760	6,28402
222	24,1	0,0011938	0,082917	952,81	2801,5	2,53613	6,26970
224	25,0	0,0011975	0,079876	962,10	2802,0	2,55463	6,25543
226	26,0	0,0012012	0,076965	971,42	2802,3	2,57311	6,24119
228	27,0	0,0012051	0,074177	980,76	2802,7	2,59156	6,22699
230	28,0	0,0012089	0,071505	990,14	2802,9	2,60999	6,21282
232	29,0	0,0012129	0,068945	999,54	2803,1	2,62839	6,19868
234	30,1	0,0012169	0,066490	1009,0	2803,2	2,64678	6,18457
236	31,2	0,0012210	0,064135	1018,4	2803,2	2,66515	6,17047
238	32,3	0,0012251	0,061876	1027,9	2803,1	2,68350	6,15639
240	33,5	0,0012294	0,059707	1037,5	2803,0	2,70183	6,14233
242	34,7	0,0012336	0,057625	1047,0	2802,7	2,72015	6,12828
244	35,9	0,0012380	0,055626	1056,6	2802,4	2,73846	6,11423
246	37,1	0,0012425	0,053705	1066,3	2802,0	2,75676	6,10018
248	38,4	0,0012470	0,051860	1076,0	2801,5	2,77505	6,08614

Tabla del aire (gas ideal)

	Tabla del aire (gas ideal)										
T	u	h	s^0	Pr	T	u	h	s^0	Pr		
[°C]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[-]	[°C]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[-]		
10	7,168	88,44	0,036094	1,1340	550	416,4	652,7	1,1412	53,292		
15	10,75	93,46	0,053671	1,2056	555	420,5	658,2	1,1479	54,549		
20	14,34	98,48	0,070949	1,2804	560	424,6	663,7	1,1545	55,828		
25	17,93	103,5	0,087938	1,3585	565	428,7	669,3	1,1611	57,131		
30	21,52	108,5	0,10467	1,4400	570	432,8	674,8	1,1677	58,458		
155	111,9	234,8	0,45309	4,8478	575	436,9	680,4	1,1743	59,809		
160	115,5	239,9	0,46488	5,0511	580	441	685,9	1,1808	61,184		
165	119,2	245	0,47654	5,2606	585	445,1	691,5	1,1873	62,584		
170	122,9	250,1	0,48808	5,4765	590	449,3	697	1,1938	64,008		
175	126,5	255,2	0,49950	5,6987	595	453,4	702,6	1,2002	65,459		
300	219,6	384,1	0,75290	13,778	600	457,5	708,2	1,2066	66,934		
305	223,4	389,4	0,76198	14,220	605	461,7	713,7	1,2130	68,436		
310	227,2	394,6	0,77098	14,674	610	465,8	719,3	1,2193	69,964		
315	231	399,8	0,77992	15,138	615	470	724,9	1,2256	71,519		
320	234,8	405,1	0,78880	15,613	620	474,1	730,5	1,2319	73,101		
325	238,6	410,3	0,79761	16,100	625	478,3	736,1	1,2381	74,711		
330	242,4	415,6	0,80636	16,598	630	482,5	741,7	1,2444	76,348		
335	246,3	420,8	0,81504	17,108	635	486,7	747,3	1,2506	78,013		
340	250,1	426,1	0,81367	17,100	640	490,8	752,9	1,2567	79,707		
345	253,9	431,4	0,83223	18,164	645	495	758,6	1,2629	81,429		
350	257,8	436,6	0,84073	18,710	650	499,2	764,2	1,2690	83,181		
355	261,6	441,9	0,84918	19,269	655	503,4	769,8	1,2751	84,962		
360	265,5	447,2	0,84918	19,209	660	507,6	775,4	1,2811	86,773		
365	269,4	452,5	0,86590	20,425	665	511,8	781,1	1,2871	88,614		
370	273,2	457,8	0,80390	21,022	670	511,8	786,7	1,2931	90,486		
375	277,1	463,1	0,88240	21,633	675	520,2	792,4	1,2991	92,389		
380	281	468,4	0,89057	22,258	680	524,5	798	1,3051	94,323		
385	284,9	473,8	0,89869	22,896	685	528,7	803,7	1,3110	96,290		
390	288,7	479,1	0,90675	23,548	690	532,9	809,4	1,3169	98,288		
395	292,6	484,4	0,91476	24,215	695	537,2	815	1,3227	100,32		
400	296,5	489,8	0,92272	24,896	700	541,4	820,7	1,3286	100,32		
405	300,5	495,1	0,93064	25,592	705	545,6	826,4	1,3344	104,48		
410	304,4	500,5	0,93850	26,303	710	549,9	832,1	1,3402	106,61		
415	308,3	505,8	0,94631	27,029	715	554,1	837,8	1,3460	108,78		
420	312,2	511,2	0,95408	27,770	720	558,4	843,5	1,3517	110,98		
425	316,2	516,5	0,96180	28,527	725	562,7	849,2	1,3574	113,21		
430	320,1	521,9	0,96947	29,300	730	566,9	854,9	1,3631	115,48		
435	324	527,3	0,97710	30,089	735	571,2	860,6	1,3688	117,79		
440	328	532,7	0,98468	30,894	740	575,5	866,3	1,3745	120,13		
445	331,9	538,1	0,99222	31,716	745	579,8	872	1,3801	122,51		
500	375,9	597,8	1,0724	41,931	1220	1004	1433	1,8310	589,33		
505	379,9	603,3	1,0794	42,973	1225	1009	1439	1,8350	597,69		
510	383,9	608,7	1,0864	44,035	1230	1013	1445	1,8390	606,15		
515	388	614,2	1,0934	45,118	1235	1018	1451	1,8431	614,70		
520	392	619,7	1,1003	46,221	1240	1023	1457	1,8471	623,34		
525	396,1	625,2	1,1072	47,345	1245	1027	1463	1,8511	632,08		
530	400,1	630,7	1,1141	48,491	1250	1032	1469	1,8551	640,92		
535	404,2	636,2	1,1209	49,658	1255	1037	1475	1,8590	649,86		
540	408,3	641,7	1,1277	50,847	1260	1041	1481	1,8630	658,89		
545	412,3	647,2	1,1345	52,058	1265	1046	1487	1,8669	668,02		
575	114,5	017,2	1,1373	52,050	1200	1070	1107	1,0007	000,02		

$$\frac{1}{13.6} = \frac{Prus}{640.92} = S Prus = 47, 1265 = Shus = 624, 13$$

$$k3/ky$$

$$I_{T} = \frac{1469 - 708.2}{1469 - 624.13} = 0.9005 = \frac{90.05\%}{1469 - 624.13}$$

b) Flujo motivo de aire

$$h_1 = 93,46$$
 KJ/KJ $\frac{P_{r23}}{1,2050} = \frac{13.6}{1} = 5 P_{r23} = 16,39616$

$$\hat{W}_{\text{wh}} = \hat{W}_{\text{w}} = \hat{W}_{\text{w}}$$

c) Maximo trobajo (ideal) del vido Rankine

Ester ecuació de el re desepació al ambien to, or took frere to believe vever tible.

$$T_{4r} = \frac{h_{7} - h_{5}}{3u - 4r} = \frac{708,2 - 250,1}{1,2066 - 0,48808} = 637,56 \text{ KW}$$

$$Q_{0}^{*} = 288 \left(\frac{166867,506}{637,56} + \frac{1069000}{1773} \right) = 249022,36 \text{ KW}$$

$$Q_{1} = 364,26 \left(708,2 - 250,1 \right) = 166867,506 \text{ KW}$$

Wev = 1069 + 166,86751 - 249,02236 = 986,85MW

d) Trabajo producido realmente por el vido Rantine

Se puelle recordor êprice Wier = West Icu y que:

$$\frac{\dot{Q}_{CR}}{T_{US}} + \frac{\dot{Q}_{WS}}{T_{C}} + \frac{\dot{Q}_{QS}}{T_{QS}} + \frac{\dot{Q}_{QS}}{T_{QS}} = \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} = \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} = \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} = \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}} = \frac{\dot{Q}_{QS}}{T_{QS}} - \frac{\dot{Q}_{QS}}{T_{QS}}$$

$$\dot{w}_{cv} = \dot{w}_{cv} + \dot{q}_{or} - \frac{\tau_{o}}{\tau_{ur}} \, dcn - \frac{\tau_{o}}{\tau_{c}} \, dwr = \frac{\dot{q}_{cr}}{\dot{q}_{ur}} + \dot{q}_{ur} - \dot{q}_{o}$$

$$= \dot{q}_{cr} \left(1 - \frac{\tau_{o}}{\tau_{ur}}\right) + \dot{q}_{ur} \left(1 - \frac{\tau_{o}}{\tau_{c}}\right) = \frac{\dot{q}_{cr}}{\dot{q}_{ur}} + \dot{q}_{ud} - \dot{q}_{o} \, \dot{q}_{o}^{*}$$

e) Rendimients del vilo combinado

fronteres dol sistema

f) Eficiencie exempline de la CR

$$\varphi_{cR} = \frac{A_{0cR}^{67}}{A_{0cR}} = \frac{\varphi_{cR} \left(1 - \frac{\tau_0}{\tau_{67}}\right)}{\varphi_{cR} \left(1 - \frac{\tau_0}{\tau_{47}}\right)}$$

$$N_6 = 649,46$$
 k 3/ky-k $N_7 = 2.70183$ k 3/ky-k

$$\overline{T}_{67} = \frac{1037, \Gamma - 649, 46}{2,70183 - 1,88231} = 473, \Gamma K$$

$$Q_{CR} = \frac{1 - \frac{288}{473.5}}{1 - \frac{288}{637.56}} = \frac{71.45\%}{}$$

TERMODINÁMICA

Nombre	Grupo

Problema – 2 (50 %)

No está permitido el empleo de calculadoras programables ni la consulta de libros, apuntes o formularios. Los teléfonos móviles y relojes "smartwatch" deberán permanecer apagados y fuera del alcance del alumno.

La bomba de calor de la figura se utiliza para producir vapor de agua saturado y sobrecalentado en una industria. En el condensador, el vapor entra como liquido saturado a 90 °C (v1) y sale como vapor saturado (v2), sin perder presión. Ese vapor se destina mayoritariamente a un determinado uso, pero una pequeña parte (54 kg/h) pasa a un compresor volumétrico alternativo, en el que se comprime hasta 12 bar (v3).

El fluido de trabajo de la bomba de calor es R1233zd(E), cuyas tablas de propiedades se muestran a continuación, y aprovecha un flujo de 1064 t/h de agua (C=4.18 kJ/kg K) a 45 °C (a1) del que toma 15.44 MW en el evaporador. La presión del R1233zd(E) en el evaporador es de 1,5 bar, en el condensador de 9,5 bar, y en ambos intercambiadores sale en condiciones de saturación. El compresor de la bomba de calor es adiabático y tiene un rendimiento isentrópico de 0,85. El R1233zd(E) a su entrada (1) se encuentra a 45 °C.

El compresor del vapor de agua es alternativo con 4 cilindros de simple efecto, refrigerado por aire. En él el vapor se puede asumir como gas perfecto (M=18 kg/kmol; γ =1,357). El proceso en el interior de los cilindros se supone internamente reversible y caracterizado por una politrópica de índice 1,15. El espacio perjudicial es del 3% y la carrera de 100 mm. Las pérdidas de carga en las válvulas de aspiración e impulsión son 5 kPa y 40 kPa, respectivamente. El compresor gira a 1850 rpm y su potencia de accionamiento es de 11,3 kW.

Despreciar la caída de presión en intercambiadores y tuberías. El ambiente (estado muerto) está a 20 °C y 95 kPa.

Se pide:

se piae.
a) Calcular el flujo másico de R1233zd(E) en la bomba de calor
b) Destrucción de exergía en el evaporador
c) COP de la bomba de calor
d) Diagrama T-s cualitativo con los estados y los procesos termodinámicos de la bomba
de calor
Respecto al suministro de vapor compresor de vapor:
e) Cilindrada del compresor y diámetro del pistón
f) Rendimiento mecánico del compresor
g) Calor disipado en el compresor
h) Diagrama de Sankey cualitativo de la línea de vapor (desde v1 hasta los consumos) 1 pt

$$\eta_{vi} = 1 - \alpha \cdot \left[\left(\frac{p_2}{p_1} \right)^{1/n} - 1 \right] \qquad ; \qquad w_i = R \cdot T_1 \cdot \left(\frac{n}{n-1} \right) \cdot \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$$

Tablas de saturación del agua

Tubiub de butui dei ugad									
	Т	V _f	Vg	Uf	Ug	h _f	h_g	Sf	Sg
p (bar)	(°C)	(m³/kg)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(kJ/kg-K)
0,6502	88	0,001035	2,534	368,6	2492	368,6	2656	0,001	7,504
0,7018	90	0,001036	2,359	377,0	2494	377,0	2660	1,193	7,478
0,7569	92	0,001037	2,198	385,4	2496	385,5	2663	1,216	7,453
0,8154	94	0,001039	2,050	393,8	2499	393,9	2666	1,239	7,428

Tablas de saturación del R1233zd(E)

Tubius de sucultation del Rizoczu(L)									
р	Т	Vf	Vg	Uf	u_g	h_f	hg	Sf	Sg
(bar)	(°C)	(m³/kg)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(kJ/kg-K)
0,5	1,00	0,000758	0,3402	201,2	388,6	201,2	405,6	1,004	1,750
1	17,98	0,000782	0,1777	222,1	399,9	222,2	417,7	1,078	1,750
1,5	29,14	0,000798	0,1213	235,9	407,4	236	425,6	1,125	1,752
2	37,7	0,000812	0,0923	246,6	413,1	246,8	431,5	1,160	1,754
2,5	44,74	0,000824	0,07456	255,5	417,8	255,7	436,4	1,188	1,757
3	50,77	0,000835	0,06255	263,1	421,7	263,3	440,5	1,212	1,759
8	88,23	0,000918	0,02352	311,8	445,7	312,5	464,5	1,354	1,775
8,5	90,86	0,000925	0,02208	315,3	447,3	316,1	466	1,364	1,776
9	93,37	0,000933	0,02079	318,7	448,8	319,6	467,5	1,373	1,777
9,5	95,79	0,000940	0,01963	322,0	450,2	322,9	468,8	1,382	1,778
10	98,11	0,000947	0,01858	325,2	451,6	326,1	470,1	1,391	1,779

Tablas de vapor sobrecalentado del R1233zd(E)

p= 1,5 bar					p= 9,5 bar				
Т	V	u	h	S	Т	V	u	h	S
(°C)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)	(°C)	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg-K)
31	0,122	408,8	427,1	1,757	96	0,01968	450,4	469,1	1,779
33	0,123	410,3	428,8	1,763	98	0,01991	452,3	471,2	1,784
35	0,124	411,9	430,5	1,768	100	0,02014	454,2	473,3	1,790
37	0,125	413,4	432,2	1,774	102	0,02036	456,1	475,4	1,796
39	0,1259	415,0	433,9	1,779	104	0,02058	458,0	477,5	1,801
41	0,1269	416,5	435,6	1,785	106	0,0208	459,8	479,6	1,807
43	0,1278	418,1	437,3	1,790	108	0,02102	461,7	481,7	1,812
45	0,1288	419,7	439	1,795	110	0,02123	463,6	483,8	1,818
47	0,1298	421,2	440,7	1,801	112	0,02144	465,5	485,8	1,823
49	0,1307	422,8	442,4	1,806	114	0,02165	467,3	487,9	1,828
51	0,1317	424,4	444,1	1,811	116	0,02185	469,2	490,0	1,834

Boursa de calvi:

	(bar)	T (°C)	x	h (15/1/2)	(KJ/Kg/K)
1	1.5	45		439	1.795
2	9.5			481.82	
25	9.5			475.4	1.795
3	9.5	95.79	0	322.9	
4	9.4			309.5	
5	1.5		0.39%	309.5	1.368
6	1.5	29.14	1	425.b	1.752

Couples (b.c)

$$1/c = \frac{h_{1}s - h_{1}}{h_{2} - h_{1}} = 0.85$$
 $2s : \begin{cases} P_{2s} - P_{2} = 9.5 \text{ bar} \\ S_{2s} = S_{n} = 1.795 \text{ KJ/g/K} \end{cases} \rightarrow$

Regenerador

$$h_3 - h_4 = h_1 - h_6 \longrightarrow 322.9 - h_4 = 439 - 425.6$$

 $h_4 = 309.5 \, \text{KJ} |_5.$

value hy=h5= 309.5 KJ/K.

Evaporador
Qevap =
$$\dot{m}$$
 (h6-h5) = 15.44·10³ — \dot{m} = $\frac{15.44\cdot10^3}{(425.6-309.5)}$ = 133 kg/s

5) Tevap = To. Szerenp Balance de entropria en el evaporador: dSour = m(S5-S6)+ma(Sa-Saz)+ Sonon Speneuro = m (S6-S5)+ma (Saz-Sa1) Ss: hs=hf(155ar)+x5(hg(155ar)-hf(155ar)) 309.5=236+X5 (425.6-236) -> X5=0.3877 5= Sf(1.5 bor)+1/5 (Sg(1Jbor)-Sf (1.5 bor)) S5= 1.125+0.3877 (1.752-1.125)=1.368 KJ/8K Saz: Q evap = ma · (han-haz) = ma· C (tan-taz) 15.44.103 = 1064.103. 4.18. (45-Taz) -> Taz= 32.5°C Spenup = m (56-55)+ ma. C. by Tax = 133. (1.752-1.368)+ + 1064.103.4.18. ly 32.5+273 = 1.5262 KW/K Iwg= (20+273). 1.5262 = 447.17 km - acord - m (hz-hz) - 481.82-322.9 - 3.71 Vcorp - m (hz-hz) 3 481.82-439

e)
$$P_1 = PV_2 - UP_c = 0.7018 - 0.05 = 0.6518$$
 by

 $P_2 = PV_3 + \Delta P_5 = 12 + 0.4 = 12.4$ bor

 $V_1 = 1 - \alpha \left[\left(\frac{P_2}{P_1} \right)^{M_1} - 1 \right] = 1 - 0.03 \cdot \left[\frac{12.4}{0.6518} \right]^{M_15} - 1 \right] = 0.64$
 $V_2 = \frac{mv}{P_1 \cdot v_D \cdot \frac{N}{60}} = \frac{54 13600}{0.3887 \cdot V_D \cdot 1850/60} \rightarrow V_D = 0.00195 \text{ m}^3$
 $V_1 = \frac{mv}{P_1 \cdot v_D \cdot \frac{N}{60}} = \frac{8.314}{18} = 0.4619 \text{ KJ/K}$
 $V_2 = \frac{V_2}{V_1} \cdot V_2 \cdot \frac{N}{60} = \frac{8.314}{18} = 0.4619 \text{ KJ/K}$
 $V_3 = \frac{V_3}{V_2} \cdot V_2 \cdot \frac{N}{4} = \frac{V_3}{V_3} \cdot V_3 \cdot \frac{N}{4} = \frac{V_3}{V_3} \cdot \frac{N}{4} \cdot \frac{N}{4} = \frac{V_3}{V_3} \cdot \frac{N}{4} \cdot$

$$f) \quad \text{Wi} = R.T_1 \cdot \left(\frac{n}{n-1}\right) \left(\left(\frac{p_2}{p_1}\right)^{\frac{1}{n}} - 1\right) = 0.4619. \quad \left(\frac{90+273}{1.15-1}\right) \left(\frac{12.4}{1.15-1}\right) \left(\frac{12.4}{0.6518}\right)^{\frac{1}{1.15}} - 1 = 602.19 \text{ kJ/k}$$

$$\dot{\text{Wi}} = \dot{m}_{\text{V}} \cdot \dot{\text{Wi}} = \frac{54}{3600} \cdot 602.19 = 9.03 \text{ kW}$$

$$\dot{\text{T}}_{\text{m}} = \frac{\dot{\text{Wi}}}{\dot{\text{Wi}}} = \frac{9.03}{(1.3)} = 0.8$$

9) PP al complow:
$$\dot{m}v hv_2 + Wa = \dot{m}v \cdot hv_3 + \dot{Q}_{aup}$$

 $\dot{Q}_{comp} = \dot{v}u_a + \dot{m}v \left(hv_2 - hv_3\right) = \dot{w}u_a + \dot{m}v \cdot cp \left(Tv_2 - Tv_3\right)$
 $cp - cv = R; cp = Y; cp - cp = R \rightarrow cp = \frac{R}{(1 - \frac{1}{8})} = \frac{0.46P}{(1 - \frac{1}{1.357})} = 1.35$
 $\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{N-1}{N}} \rightarrow T_2 = Tv_3 = T_1 \cdot \left(\frac{P_2}{P_1}\right)^{\frac{N}{N}} = \left(q_0 + 273\right) \cdot \left(\frac{P_2 Y}{Q_0 518}\right)^{\frac{4D-1}{N-1}} = 533.25 K$

