

Programación II Práctica Calificada 1 Pregrado

2023-II

Profesor: Julio Yarasca

Lab 2.10

Indicaciones específicas:

- Esta evaluación contiene 9 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Cada pregunta deberá ser respondida en un solo archivo con el número de la pregunta.
 - p1.cpp
 - p2.cpp
 - p3.cpp
- Deberás subir estos archivos directamente a www.gradescope.com, uno en cada ejercicio. También puedes crear un .zip
- La evaluación es **individual**. Un nivel alto de **similitud** con otros estudiantes o fuentes externas no será aceptada y se **anulará** el ejercicio.
- Se puede consultar material de clase y utilizar funciones o partes de código desarrollados en clase. Esto ultimo no descontará puntos, pero se debe hacer referencia a ellos en la entrega.

Competencias:

Para los alumnos de la carrera de Ciencia de la Computación

Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Evaluar)

Analizar problemas e identificar y definir los requerimientos computacionales apropiados para su solución.(Usar)

Utilizar técnicas y herramientas actuales necesarias para la práctica de la computación. (Usar)

• Para los alumnos de las carreras de Ingeniería

Capacidad de aplicar conocimientos de matemáticas (nivel 3)

Capacidad de aplicar conocimientos de ingeniería(nivel 2)

Capacidad para diseñar un sistema, un componente o un proceso para satisfacer las necesidades deseadas dentro de restricciones realistas (nivel 2)

Para los alumnos de Administración y Negocios Digitales

Analizar información verbal y/o lógica proveniente de distintas fuentes, encontrando relaciones y presentándola de manera clara y concisa (nivel 2)

Analizar y evaluar el comportamiento del consumidor y el desarrollo de estrategias comerciales (nivel 2)

Trabajar de manera efectiva con equipos multidisciplinarios y diversos en género, nacionalidad, edad, etc. (nivel 2)

Calificación:

Tabla de puntos (sólo para uso del professor)

Question	Points	Score
1	6	
2	7	
3	7	
Total:	20	

1. (6 puntos) Evalúa estructuras de control

El engagement es el nivel de compromiso, entusiasmo y lealtad que tiene una audiencia con una marca, para una publicación en Instagram se tiene la siguientes fórmulas:

Elabore un programa que solicite al usuario el número de seguidores que tiene en su cuenta Instagram y la cantidad publicaciones (historias o videos) que desea analizar. Luego, para cada publicación solicite la cantidad de **Visualizaciones**, **Comentarios** y **Me Gusta**, según corresponda y calcule su engagement. Por último, imprima un reporte de la cantidad de publicaciones que obtuvieron un engagement excelente (mayor a 5). Algunos ejemplos de diálogo de este programa serían:

Listing 1: Ejemplo 1

```
Seguidores:1000000
Cantidad de publicaciones:2

Ingrese H si es historia o V si es video:H
Visualizaciones:5000
Comentarios:2000
Engagement de la historia es:0.7

Ingrese H si es historia o V si es video:V
Visualizaciones:10000
Comentarios:20000
Me gusta:10000
Engagement del video es:4

Total de publicaciones:2
Videos con excelente nivel:0
Historias con excelente nivel:0
```

Listing 2: Ejemplo 1

Seguidores:500000 Cantidad de publicaciones:5 Ingrese H si es historia o V si es video:H Visualizaciones:50000 Comentarios:2000 Engagementde la historia es:10.4 Ingrese H si es historia o V si es video:H Visualizaciones:30000 Comentarios:1000 Engagement de la historia es:6.2 Ingrese H si es historia o V si es video:V Visualizaciones:6000 Comentarios:4000 Me gusta:2000 Engagement del video es:2.4 Ingrese H si es historia o V si es video:V Visualizaciones:80000 Comentarios:20000 Me gusta:10000 Engagement del video es:22 Ingrese H si es historia o V si es video:V Visualizaciones:100000 Comentarios:5000 Me gusta:2000 Engagement del video es:21.4 Total de publicaciones:5 Videos con excelente nivel:2

Historias con excelente nivel:2

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Allgoritmo:	El diseño del	El diseño del al-	El diseño del	El diseño del al-
Evalúa el diseño	algoritmo es or-	goritmo es orde-	algoritmo con-	goritmo y la eje-
del algoritmo,	denado y claro,	nado y claro, pe-	tiene algunos	cución son inco-
siguiendo bue-	siguiendo bue-	ro optimizable.	errores que afec-	rrectos (0 pts)
nas prácticas en	nas prácticas en	La ejecución es	tan la ejecución	
programación.	programación.	correcta (2pts)	(1pts).	
Asi como la	La ejecución es			
ejecución del	correcta (3pts)			
mismo				
Código : Eva-	No contiene	Existen algunos	Existen errores	El código tie-
lúa sintaxis en el	errores sin-	errores sintácti-	sintácticos o	ne errores de
código y correc-	tácticos o de	cos, que no afec-	de ejecución,	sintáxis y de
ta ejecución (se-	compilación.	tan directamen-	que afectan	ejecución que
mántica)	La ejecución es	te el resultado,	parcialmente	no permiten
	correcta (2pts)	pero hacen al	el resultado	obtener un re-
		código optimiza-	(1pts).	sultado correcto
	T1 (1)	ble. (1.5pts).	771	(0 pts).
Eficiencia:	El código es óp-	El codigo es de	El código no	El codigo no esta
evalua uso de	timo y eficiente.	buen performan-	esta optimizado,	optimizado y la
buenas practicas	De buen perfor-	ce durante la eje-	lo que afecta	ejecución es defi-
en programación	mance e interac-	cución pero opti-	parcialmente	ciente (Opts).
en el diseño del	ción con el usua-	mizable. Pero no	el resultado.	
algoritmo y el	rio (1pt)	afecta el resulta-	(0.3pts).	
código de pro-		do. (0.7pts).		
gramación, para				
lograr un nivel				
de eficiencia				
adecuado				

2. (7 puntos) Evalúa Funciones

• La siguiente fórmula permite aproximar el valor de π :

$$\sqrt{90 \times \sum_{i=1}^{\infty} \frac{1}{i^4}} = \sqrt{90 \times \left(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^2} + \dots\right)}$$

• Se pide que elabore una función <u>recursiva</u> suma(n) que tenga como paramétros un entero positivo n; y calcule :

$$\left(\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \dots + \frac{1}{n^4}\right)$$

• Posteriormente elabore una función error(n) que utilice suma(n) para calcular el valor el error de aproximación:

$$error(n) = \left| 3.141592 - \sqrt{90 \times suma(n)} \right|$$

• Luego elabore un programa que solicite un número entero positivo M e imprima todos el error para n desde 1 hasta M con 5 decimales.

Algunos ejemplos de diálogo de este programa serían:

Listing 3: Ejemplo 1

```
Ingrese M:3

Para n = 1 el error es: 0.06152

Para n = 2 el error es: 0.01448

Para n = 3 el error es: 0.00544
```

Listing 4: Ejemplo 2

```
Ingrese M:4
Para n = 1 el error es: 0.06152
Para n = 2 el error es: 0.01448
Para n = 3 el error es: 0.00544
Para n = 4 el error es: 0.00259
```

Listing 5: Ejemplo 3

```
Ingrese M:7

Para n = 1 el error es: 0.06152

Para n = 2 el error es: 0.01448

Para n = 3 el error es: 0.00544

Para n = 4 el error es: 0.00259

Para n = 5 el error es: 0.00143

Para n = 6 el error es: 0.00087

Para n = 7 el error es: 0.00057
```

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado. La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Allgoritmo:	El diseño del	El diseño del al-	El diseño del	El diseño del al-
Evalúa el diseño	algoritmo es or-	goritmo es orde-	algoritmo con-	goritmo y la eje-
del algoritmo,	denado y claro,	nado y claro, pe-	tiene algunos	cución son inco-
siguiendo bue-	siguiendo bue-	ro optimizable.	errores que afec-	rrectos (0 pts)
nas prácticas en	nas prácticas en	La ejecución es	tan la ejecución	
programación.	programación.	correcta (2pts)	(1pts).	
Asi como la	La ejecución es			
ejecución del	correcta (3pts)			
mismo				
Código : Eva-	No contiene	Existen algunos	Existen errores	El código tie-
lúa sintaxis en el	errores sin-	errores sintácti-	sintácticos o	ne errores de
código y correc-	tácticos o de	cos, que no afec-	de ejecución,	sintáxis y de
ta ejecución (se-	compilación.	tan directamen-	que afectan	ejecución que
mántica)	La ejecución es	te el resultado,	parcialmente	no permiten
	correcta (2pts)	pero hacen al	el resultado	obtener un re-
		código optimiza-	(1pts).	sultado correcto
	T1 (1)	ble. (1.5pts).	771 (1)	(0 pts).
Eficiencia:	El código es óp-	El codigo es de	El código no	El codigo no esta
evalua uso de	timo y eficiente.	buen performan-	esta optimizado,	optimizado y la
buenas practicas	De buen perfor-	ce durante la eje-	lo que afecta	ejecución es defi-
en programación	mance e interac-	cución pero opti-	parcialmente	ciente (Opts).
en el diseño del	ción con el usua-	mizable. Pero no	el resultado.	
algoritmo y el	rio (2 pts)	afecta el resulta-	(0.5pts).	
código de pro-		do. (1.5 pts).		
gramación, para				
lograr un nivel				
de eficiencia				
adecuado				

3. (7 puntos) Evalúa Arreglos estáticos y punteros

El proceso mediante el cual el ADN envía un mensaje al citoplasma por medio del ARN se denomina transcripción. Las secuencias de ADN estan conformadas por 4 bases nitrogenadas: adenina (A), timina (T), guanina (G) y citosina (C); y las secuencias de ARN por las bases adenina (A), uracilo (U), citosina (C) o guanina (G). En el proceso de transcipción, las secuencias de ADN generan una secuencia de ARN mediante los siguientes pasos:

- Las bases adeninas generan uracilos,
- las timina generan adeninas,
- las guanina generan citosina,
- las citosina generan guanina.

Por ejemplo: una secuencias de ADN

ACTG

genera la secuencias de ARN

UGAC

Se solicita que escriba un programa que genere un <u>arreglo</u> aleatorio de ADN con 10 bases nitrogenadas, luego elabore una <u>función</u> que solicite el arreglo y lo transforme en ARN. Algunos ejemplos de diálogo de este programa serían:

Listing 6: Ejemplo 1

ADN
T C G A T A G G G A
ARN
A G C U A U C C C U

Listing 7: Ejemplo 2

ADN
A G T A G G A A T C
ARN
U C A U C C U U A G

Listing 8: Ejemplo 3

ADN
C A A A A T C C G A
ARN
G U U U A G G C U

Los criterios en la rúbrica (y el puntaje respectivo) se condicionan a que la solución presentada corresponda al problema planteado. La rúbrica para esta pregunta es:

Criterio	Excelente	Adecuado	Mínimo	Insuficiente
Allgoritmo:	El diseño del	El diseño del al-	El diseño del	El diseño del al-
Evalúa el diseño	algoritmo es or-	goritmo es orde-	algoritmo con-	goritmo y la eje-
del algoritmo,	denado y claro,	nado y claro, pe-	tiene algunos	cución son inco-
siguiendo bue-	siguiendo bue-	ro optimizable.	errores que afec-	rrectos (0 pts)
nas prácticas en	nas prácticas en	La ejecución es	tan la ejecución	
programación.	programación.	correcta (2pts)	(1pts).	
Asi como la	La ejecución es			
ejecución del	correcta (3pts)			
mismo				
Código : Eva-	No contiene	Existen algunos	Existen errores	El código tie-
lúa sintaxis en el	errores sin-	errores sintácti-	sintácticos o	ne errores de
código y correc-	tácticos o de	cos, que no afec-	de ejecución,	sintáxis y de
ta ejecución (se-	compilación.	tan directamen-	que afectan	ejecución que
mántica)	La ejecución es	te el resultado,	parcialmente	no permiten
	correcta (2pts)	pero hacen al	el resultado	obtener un re-
		código optimiza-	(1pts).	sultado correcto
		ble. (1.5pts).		(0 pts).
Eficiencia:	El código es óp-	El codigo es de	El código no	El codigo no esta
evalua uso de	timo y eficiente.	buen performan-	esta optimizado,	optimizado y la
buenas practicas	De buen perfor-	ce durante la eje-	lo que afecta	ejecución es defi-
en programación	mance e interac-	cución pero opti-	parcialmente	ciente (Opts).
en el diseño del	ción con el usua-	mizable. Pero no	el resultado.	
algoritmo y el	rio (2 pts)	afecta el resulta-	(0.5pts).	
código de pro-		do. (1.5 pts).		
gramación, para				
lograr un nivel				
de eficiencia				
adecuado				