Karnaugh maps = (truth table + Venn diagram)

XOR garle

Two input K-maps 8.1

A B	0	1
0	m_0	m_2
1	m_1	m_3

Three input K-maps 8.2

	0	•	<u> </u>	> ²
$^{\rm A}$	В 00	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

Four input K-maps 8.3

CDA	B ₀₀	01	11	10
00	m_0	m_4	m_{12}	m_8
01	m_1	m_5	m_{13}	m_9
11	m_3	m_7	m_{15}	m_{11}
10	m_2	m_6	m_{14}	m_{10}

0

Five input K-maps 8.4

A = 1					
	DE B	C ₀₀	01	11	10
	00	m_{16}	m_{20}	m_{28}	m_{24}
	01	m_{17}	m_{21}	m_{29}	m_{25}
	11	m_{19}	m_{23}	m_{31}	m_{27}
	10	m_{18}	m_{22}	m_{30}	m_{26}

9 More Gates and notations summary

Name	C/Verilog	Boolean expr.	Truth Table	(ANSI) symbol	K-map
NAND Gate	Q = ~(x1 & x2)	$Q = \overline{x_1 \cdot x_2} = \overline{x_1 x_2}$	$\begin{array}{c cccc} x_1 & x_2 & \overline{x_1 \cdot x_2} \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	\bigcap_{B}^{A}	$\begin{bmatrix} A & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix}$
NOR Gate	Q = ~(x1 x2)	$Q = \overline{x_1 + x_2}$	$\begin{array}{c cccc} x_1 & x_2 & x_1 + x_2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	\bigcap_{B}^{A}	$\begin{bmatrix} \mathbf{A} & \mathbf{A} \\ 0 & \mathbf{A} \\ 0 & 0 \end{bmatrix}$
XOR Gate	$Q = x1 ^ x2$	$Q=x_1\oplus x_2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\stackrel{A}{\longmapsto} \stackrel{A}{\longmapsto} 0$	$\begin{bmatrix} A & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
XNOR Gate	Q = ~(x1 ^ x2)	$Q = \overline{x_1 \oplus x_2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A Dout	$\begin{bmatrix} A & A & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

Example 10. Convert the following Boolean expression into a K-map. $f = \overline{AB} + CD$

Problem 10. Convert the following logic circuit into a K-map.

10 Boolean Algebra

10.1 Axioms of Boolean algebra

1.
$$0 \cdot 0 = 0$$

2. $1 + 1 = 1$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$
 $0 \cdot 0 = 0$

Quality exists insorr

- 3. $1 \cdot 1 = 1$
- 4. 0+0=0
- 5. $0 \cdot 1 = 1 \cdot 0 = 0$
- 6. $\bar{0} = 1$
- 7. $\bar{1} = 0$
- 8. x = 0 if $x \neq 1$
- 9. $x = 1 \text{ if } x \neq 0$

10.2 Single variable theorems (Prove by drawing K-maps)

Pust to

- $1. \ x \cdot 0 = 0$
- 2. x + 1 = 1

the 2 is the of The 2

3. $x \cdot 1 = x$

ル_ラロ

- $5. \ x \cdot x = x$
- 6. x + x = x
- 7. $x \cdot \bar{x} = 0$

$$8. \ x + \bar{x} = 1$$

9.
$$\bar{\bar{x}} = x$$

Remark 2 (Duality). $Swap + with \cdot and 0$ with 1 to get another theorem

10.3 Two and three variable properties (Prove by K-maps)

1. Commutative:
$$x \cdot y = y \cdot x$$
, $x + y = y + x$

2. Associative:
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
, $x + (y + z) = (x + y) + z$

RHS =
$$(x+y)\cdot(y+z) = x\cdot y + x\cdot \frac{y+z\cdot z}{x+y+z} = (x+y)\cdot(y+z)$$

 $= x+y\cdot(y+z) = x\cdot y + x\cdot \frac{y+z\cdot z}{x+y+z} = (x+y)\cdot(y+z)$
 $= x+y\cdot(y+z) = x\cdot y + y\cdot z$
 $= x+y\cdot y + x\cdot z + y + y\cdot z$
 $= x+y\cdot y + x\cdot z + y + y\cdot z$
 $= x+x\cdot y = x, x\cdot(x+y) = x$
 $= x+x\cdot y = x, x\cdot(x+y) = x$

7+4.71=7 $\chi \cdot (y + \chi) = \chi$ 744.21 = 2(1 +4) = 2° 4 + 3° 2 2(4+1)= 20-1=2(=RH)

5. Combining:
$$x = \overline{y}$$
, $(x + y) \cdot (x + \overline{y}) = x$

$$2 \cdot y + 2 \cdot \overline{y} = 2 \cdot \overline{y}$$

$$\begin{array}{ccc} \text{Prove this} & \longrightarrow & \text{(d)} & (x+y) \cdot (y+z) \cdot (\bar{x}+z) = (x+y) \cdot (\bar{x}+z) \\ \text{using terms } \end{array}$$

LHS= (2 + y) (y+Z) (\(\bar{z}\)+Z)

RHy= (2+4) (7+2)

RHS z (21-4) (2 +2) 2 2 0 1 0 0 2 0 1 1 1

20 - 7 - 7 - 7 N. y. 2 = 7 + 7 + Z = $\frac{1}{2}$ $\frac{1}{2}$

Sum of products forn NAND - NAND anis

KHL (2+4) (2+5) LHS= 26.4+2.4 = 2(1) X + 7(.y+ y = 7(+y.y) $= \chi \cdot (y + \overline{y})$ $= \gamma \cdot 1$ = 7(= RHS 20 + 21. 4 + 4.20 + 4, 5 = A+ Qyy+y, 2) + O = 7(+ 2(4+4) = 7 + 7.1

Example 11 (Multiplexer). Multiplexer is a circuit used to select one of the input lines x_1 and x_2 based only select input s. When s=0 x_1 is selected x_2 is selected otherwise. Find a boolean expression and a circuit for multiplexer

S	7C 1	762		
0	[65]	7)		Ó
0	0	\		0
Ó	() \	7)
0		1		1
(0	O		O
(5	1)	1
1	(\		\circ

Example 12. Simplify $f = \bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + A\bar{B}\bar{C}$ using boolean algebra

$$f = \overline{ABC} + \underline{ABC} + \underline{ABC}$$

$$= (\overline{A+A})B\overline{C} + A(\overline{B+B})\overline{C}$$

Example 13. Simplify $f = AA\bar{C} + \bar{A}\bar{B}C$ using K-maps.

