Metaanalízisek

Ferenci Tamás tamas.ferenci@medstat.hu

Utoljára frissítve: 2023. május 12.

- Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti – aggregálása
- (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk
- Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különber klasszikus módszerekkel is aggregálhatóak a eredmények)
- Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére
- De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan?

- Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti – aggregálása
- (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk)
- Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különber klasszikus módszerekkel is aggregálhatóak a eredmények)
- Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére
- De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan?

- Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti – aggregálása
- (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk)
- Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények)
- Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére
- De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan?

- Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti – aggregálása
- (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk)
- Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények)
- Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére
- De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan?

- Több, ugyanarra a kérdésre vonatkozó vizsgálat eredményeinek bizonyos módszer szerinti – aggregálása
- (Itt természetesen kvantitatív eredményű, empirikus vizsgálatokról beszélünk)
- Akkor alkalmazzuk jellemzően, ha a páciens-szintű adatok nem elérhetőek (különben klasszikus módszerekkel is aggregálhatóak a eredmények)
- Tehát többször vizsgáljuk ugyanazt a kérdést: hát persze, a kutatások replikációja a tudományos munka egyik alappillére
- De hogyan kell ezt megtenni? Mi erre a korrekt (statisztikai) módszertan?

Metaanalízis végeredményének közlése

Tipikus grafikus megoldás a forest plot:

Study	Treatment n/N	Control n/N	Relative Risk (Fixed) 95% CI	Weight (%)	Relative Risk (Fixed) 95% CI
01 In all babies					
Amorim 1999	14/100	28/100	-	9.6	0.50 [0.28, 0.89]
Block 1977	1/57	5/53		1.8	0.19 [0.02, 1.54]
Collaborative 1981	34/365	32/364	+	10.9	1.06 [0.67, 1.68]
Dexiprom 1999	4/105	8/101		2.8	0.48 [0.15, 1.55]
Doran 1980	4/80	11/60		4.3	0.27 [0.09, 0.81]
Felcih 2002	9/63	21/68		6.9	0.46 [0.23, 0.93]
Gamsu 1989	14/130	17/132	-	5.8	0.84 [0.43, 1.63]
Garite 1992	9/33	11/40		3.4	0.99 [0.47, 2.10]
Kari 1994	4/91	6/88		2.1	0.64 [0.19, 2.21]
Lewis 1996	1/38	1/39	-	0.3	1.03 [0.07, 15.82]
Liggins 1972a	61/554	72/567	+	24.3	0.87 [0.63, 1.19]
Morales 1989	7/87	8/78		2.9	0.78 [0.30, 2.06]
Nelson 1985	1/22	1/22		0.3	1.00 [0.07, 15.00]
Parsons 1988	0/23	1/22		0.5	0.32 [0.01, 7.45]
Qublan 2001	19/70	39/65		13.8	0.45 [0.29, 0.70]
Schutte 1980	3/62	12/58		4.2	0.23 [0.07, 0.79]
Silver 1996	7/54	8/42		3.1	0.68 [0.27, 1.73]
Taeusch 1979	8/54	10/69		3.0	1.02 [0.43, 2.41]
Subtotal (95% CI)	1988	1968	•	100.0	0.69 [0.58, 0.81]
Total events: 200 (Treatmer					
Test for heterogeneity chi-s		2012 = 21.1%			
Test for overall effect z=4.5	0 p<0.00001				

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Előzmények: 17., 18. században (George Biddell Airy)
- Karl Pearson és a tífusz elleni oltás (1904)
- Modern kezdetek: agrometriai eredmények kombinálása (már az 1930-as évektől), Ronald Fisher és Cochran, Yates
- 20. század közepe: elsősorban társadalomtudományi alkalmazások (szociológia, pszichológia)
- A kifejezést Gene Glass vezette be, 1976-ban ("analysis of analysis")
- Egyik első emlékezetes orvosi alkalmazás: aszpirin és szívinfarktus (1974-1980)
- Elképesztő fejlődés azóta, alapvető eszközzé vált az orvostudományban (együtt a vizsgálatok számának robbanásszerű növekedésével)

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között

- Publikációs torzítás felfedése
- Persze a metaanalizis sem hibátian: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
- hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalizis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
 - Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
 - Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
 - Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
 - Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

- Egyszerűen ugyanazért, amiért a nagyobb mintanagyság jobb (szűkebb konfidenciaintervallumok, erősebb tesztek)
- ... de ez "olcsóbb" (nem csak forintban, kivitelezési időben is)
- Konzisztencia megítélése vizsgálatok között
 - Sőt, adott esetben megítélhető, hogy a vizsgálatra jellemző valamilyen tényező számszerűen hogyan függ össze a vizsgálatban talált eredménnyel (metaregresszió)
- Publikációs torzítás felfedése
- Persze a metaanalízis sem hibátlan: hogy milyen tanulmányokat vonunk be, az maga is lehet torzítás forrása (minél több paramétert kell hozzá megszabni, annál inkább – "összelőhetjük" úgy, hogy pont az jöjjön ki, ami a prekoncepciónk)
- "GIGO-elv"

Nagyobb mintanagyság

Béta-blokkolók adása szívinfarktus másodlagos prevenciójában:

Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC. A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts.

Treatments for myocardial infarction. JAMA. 1992 Jul 8;268(2):240-8.

Nagyobb mintanagyság

Béta-blokkolók adása szívinfarktus másodlagos prevenciójában:

Antman EM, Lau J, Kupelnick B, Mosteller F, Chalmers TC. A comparison of results of meta-analyses of randomized control trials and recommendations of clinical experts.

Treatments for myocardial infarction. JAMA. 1992 Jul 8;268(2):240-8.

Konzisztencia megítélése és metaregresszió

BCG hatásossága a tüdő-tuberkulózis ellen:

Borenstein M, Hedges LV, Higgins J, Rothstein HR. Introduction to Meta-Analysis. Wiley. 2009.

Publikációs torzítás megítélése

Lásd később, a rendszerszintű hibáknál

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"…?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"...?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen

◆ロト 4間ト 4 重ト 4 重ト ■ めない

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"...?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen
 - hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése
 - ugyanaz az expozíció
 - ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"...?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen
 - hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése
 - ugyanaz az expozíció
 - ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"...?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen
 - hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése
 - ugyanaz az expozíció
 - ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató

- Ugyanazt a kérdést vizsgálja több kutatás
- Mi az, hogy "ugyanaz"...?
- Két kutatás soha nem tökéletesen ugyanolyan, de legyen
 - hasonló, vagy legalábbis összevethető a minta (definíció, bevonási, kizárási kritériumok!), a kutatás alapkoncepciója, tervezése
 - ugyanaz az expozíció
 - ugyanaz, vagy legalábbis közös nevezőre hozható a hatásnagyság-mutató

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist...
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist...
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist...
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist..
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

Metaanalízis lépései

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist...
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

Metaanalízis lépései

- Nulladik lépés: az előbbiben szereplő kérdéseket rögzíteni, definiálni kell (több tucat vagy annál is több oldal lehet egy ilyen protokoll!)
- Elsőként össze kell gyűjteni az aggregált tanulmányokat
- Lehetőleg nem ad hoc módon: szisztematikus review
- Egységes formátumra kell hozni őket, megteremtve az összehasonlíthatóságot (pl. azonos hatásnagyság-mutató kiszámítása)
- El kell végezni a metaanalízist...
- ...majd a szükséges diagnosztikát: részint magára a metaanalízisre vonatkozóan (pl. különböző analitikus módszerek hatása a végeredményre), részint a nyers adatokra vonatkozóan (pl. publikációs torzítás megítélése)

- A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások)
- A mutatók persze függnek a végpont jellegétől:

- A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások)
- A mutatók persze függnek a végpont jellegétől:
 - Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados, ...
 - Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség, .
 - Korreláció: korrelációs együttható, transzformáltjai, ...

- A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások)
- A mutatók persze függnek a végpont jellegétől:
 - Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados, ...
 - Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség, .
 - Korreláció: korrelációs együttható, transzformáltjai, ...

- A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások)
- A mutatók persze függnek a végpont jellegétől:
 - Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados, ...
 - Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség, ...
 - Korrelacio: korrelacios egyutthato, transzformaltjai, ...

- A tanulmányok összehasonlíthatóságának alapfeltétele, hogy ugyanazon a módon mérjük a végpontot (kompatibilis hatások)
- A mutatók persze függnek a végpont jellegétől:
 - Bináris (vagy arány): kockázat-különbség, kockázat-arány (relatív rizikó), log relatív rizikó, esélyhányados, log esélyhányados, ...
 - Folytonos: átlag-különbség, standardizált átlag-különbség, relatív átlag-különbség, ...
 - Korreláció: korrelációs együttható, transzformáltjai, ...

- Egy ilyen kutatás nem a metaanalízisnél kezdődik...
- ... hanem a metaanalizált tanulmányok összegyűjtésénél
- Szisztematikus vs. nem-szisztematikus
- Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb.

- Egy ilyen kutatás nem a metaanalízisnél kezdődik...
- ... hanem a metaanalizált tanulmányok összegyűjtésénél!
- Szisztematikus vs. nem-szisztematikus
- Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb.

- Egy ilyen kutatás nem a metaanalízisnél kezdődik...
- ... hanem a metaanalizált tanulmányok összegyűjtésénél!
- Szisztematikus vs. nem-szisztematikus
- Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb.

- Egy ilyen kutatás nem a metaanalízisnél kezdődik...
- ... hanem a metaanalizált tanulmányok összegyűjtésénél!
- Szisztematikus vs. nem-szisztematikus
- Számos kérdést vet fel: betegség definíciója, kontrollcsoport, betegjellemzők, hosszúság, stb.

- A továbbiakban feltételezzük, hogy az előkészületek megtörténtek:
 - összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan
 - összevethető formátumra hoztuk őket
- Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy
 Y; hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról
- A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket?

- A továbbiakban feltételezzük, hogy az előkészületek megtörténtek:
 - összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan)
 - összevethető formátumra hoztuk őket
- Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y_i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról
- A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket?

- A továbbiakban feltételezzük, hogy az előkészületek megtörténtek:
 - összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan)
 - összevethető formátumra hoztuk őket
- Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy
 Y; hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról
- A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket?

- A továbbiakban feltételezzük, hogy az előkészületek megtörténtek:
 - összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan)
 - összevethető formátumra hoztuk őket
- Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y_i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról
- A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket?

- A továbbiakban feltételezzük, hogy az előkészületek megtörténtek:
 - összegyűjtöttük a megfelelő tanulmányokat (lehetőleg szisztematikusan)
 - összevethető formátumra hoztuk őket
- Így tehát van egy adatbázisunk: minden sor egy tanulmány, azaz minden sorban van egy Y_i hatásmutató (ugyanaz!), és esetleg még egyéb információk a kutatásról
- A kérdés már csak az (innen jön a matematika): hogyan aggregáljuk őket?

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

- Az alapötlet: az átlagos hatást több kutatásból úgy kapjuk meg, hogy kiátlagoljuk őket
- De nem egyszerű átlaggal (ha egy 10 fős tanulmány szerint -5% a hatás, egy 10 ezer fős szerint pedig +5%, akkor aligha mondható, hogy átlagban nincs hatás)...
- ... hanem súlyozott átlaggal!
- A fontosabb, lényegesebb tanulmányok nagyobb súlyt kapnak az átlagolásban!
- Na de mi az, hogy "fontosabb"?
- Legáltalánosabb módszer: inverse variance weighting

Az inverse variance weighting lényege

- ullet A súly a varianciával fordítottan arányos: $W_i=rac{1}{V_i}$
- Itt a variancia természetesen a mintavételi variancia.
- ... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során!

Az inverse variance weighting lényege

- ullet A súly a varianciával fordítottan arányos: $W_i=rac{1}{V_i}$
- Itt a variancia természetesen a mintavételi variancia...
- ... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során!

Az inverse variance weighting lényege

- ullet A súly a varianciával fordítottan arányos: $W_i=rac{1}{V_i}$
- Itt a variancia természetesen a mintavételi variancia...
- ... azaz a súlyozás a mintavételi bizonytalansággal fordítottan arányos: minél kisebb a mintavételi bizonytalanság egy kutatásban, annál nagyobb súlyt kap az átlagolás során!

Fix és random hatás feltevése

- ullet Alapfeltételezés: az Y_i hatásmutatók eloszlása normális
- Fix hatás: $Y_i = \theta + \varepsilon_i$, ahol $\varepsilon_i \sim \mathcal{N}(0, V_i)$
- Random hatás: $Y_i = \theta + \theta_i + \varepsilon_i$, ahol $\theta_i \sim \mathcal{N}\left(0, \tau^2\right)$ és $\varepsilon_i \sim \mathcal{N}\left(0, V_i\right)$

Fix és random hatás feltevése

- ullet Alapfeltételezés: az Y_i hatásmutatók eloszlása normális
- Fix hatás: $Y_i = \theta + \varepsilon_i$, ahol $\varepsilon_i \sim \mathcal{N}\left(0, V_i\right)$
- Random hatás: $Y_i = \theta + \theta_i + \varepsilon_i$, ahol $\theta_i \sim \mathcal{N}\left(0, \tau^2\right)$ és $\varepsilon_i \sim \mathcal{N}\left(0, V_i\right)$

Fix és random hatás feltevése

- ullet Alapfeltételezés: az Y_i hatásmutatók eloszlása normális
- Fix hatás: $Y_i = \theta + \varepsilon_i$, ahol $\varepsilon_i \sim \mathcal{N}\left(0, V_i\right)$
- Random hatás: $Y_i = \theta + \theta_i + \varepsilon_i$, ahol $\theta_i \sim \mathcal{N}\left(0, \tau^2\right)$ és $\varepsilon_i \sim \mathcal{N}\left(0, V_i\right)$