ESO204A, Fluid Mechanics and rate Processes

Dimensional Analysis and Similitude

Simple and powerful qualitative technique applicable to many fields of science and engineering

Chapter 5 of F M White Chapter 7 of Fox McDonald

Area of triangle

ABC: $A_c = c^2 f(\phi)$

Similarly area of triangle ABD:

$$A_a = a^2 f\left(\phi\right)$$

 ϕ : smaller of two acute angles

Similarly area of triangle ACD:

$$A_b = b^2 f(\phi)$$

$$A_c = A_a + A_b$$

$$c^2 f(\phi) = a^2 f(\phi) + b^2 f(\phi) \implies c^2 = a^2 + b^2$$

The theorem is proved using dimension-related arguments only

For quasi-steady, incompressible, frictionless flow, we have derived (Bernoulli Eq.)

$$V = \sqrt{2gh}$$

Alternate approach

Experiment (or thought experiment) suggests

$$V = f_1(g,h) \Rightarrow V = f_2(u)$$

$$u = g^m h^n$$

where u is made of g and h

$$u = \sqrt{gh}$$

and has the same dimension as that of V

$$u = g^{m}h^{n}$$

$$LT^{-1} = (LT^{-2})^{m}(L)^{n}$$

$$= L^{m+n}T^{-2m}$$

$$m + n = 1; -2m = -1$$

$$u = \sqrt{gh}$$

$$m = n = 1/2$$
Water

 $V = f_2(\sqrt{gh})$ Think about the nature of f_2

 $V = c\sqrt{gh}$; c is a constant The constant can be evaluated from experiments

The solution may also be written as $\pi = \frac{V}{\sqrt{gh}} = c; \ \pi \text{ is nondiemsnional}$

Summary

Given f(V,g,h)=0 Where V,g, and h are dimensional, as shown before

The above system is equivalent to

$$\psi(\pi) = 0$$
; π is nondimensional $\pi = \frac{V}{\sqrt{gh}}$

The technique described above is known as **Dimensional Analysis**

Dimensional Analysis

If certain physical phenomenon is governed by

$$f(x_1, x_2,...x_n) = 0$$
 where some/all of the variables (x) are dimensional

Then the above phenomena can be represented as

$$\psi(\pi_1, \pi_2, \pi_m) = 0$$
 where all the variables (π) are non-dimensional

The nature of f and ψ may be obtained from experiments

Dimensional Analysis: Buckingham Pi Theorem

$$f(x_1, x_2,x_n) = 0$$
 $\psi(\pi_1, \pi_2,\pi_m) = 0$ where some/all x where all π are are dimensional non-dimensional

where m < n, m = n - k

Minimum number of **fundamental dimensions** involved: k

Example:
$$f(V,g,h) = 0$$

 $n = 3$ $k = 2$ $m = n - k = 1$

Experiment shows

$$f(V,g,h) = 0 \implies \psi(\pi) = 0$$

where π is made of V, g and h and π is dimensionless

Above Equation suggests

$$\pi = V^a g^b h^c$$
 $L^0 T^0 = \left(L T^{-1}\right)^a \left(L T^{-2}\right)^b \left(L\right)^c = L^{a+b+c} T^{-a-2b}$

$$a+b+c=-a-2b=0$$
 $\Rightarrow b=c=-a/2$

$$\pi = \left(\frac{V}{\sqrt{gh}}\right)^a \qquad \text{Any arbitrary value of } a$$
 should be ok

$$\psi\left(\frac{V}{\sqrt{gh}}\right) = 0$$

Pi Theorem: Repeating and non-repeating variables

$$(x_1, x_2, ..., x_n)$$
 $(x_{r_1}, x_{r_2}, ..., x_{r_k}; x_{nr_1}, x_{nr_2}, ..., x_{nr_m})$

Construction of Pi-terms

$$\pi_1 = x_{nr1} (x_{r1})^{a_{11}} (x_{r2})^{a_{12}} (x_{r3})^{a_{13}} ... (x_{rk})^{a_{1k}}$$

$$\pi_2 = x_{nr2} (x_{r1})^{a_{21}} (x_{r2})^{a_{22}} (x_{r3})^{a_{23}} ... (x_{rk})^{a_{2k}}$$

••••

••••

$$\pi_{m} = x_{nrm} (x_{r1})^{a_{m1}} (x_{r2})^{a_{m2}} (x_{r3})^{a_{m3}} ... (x_{rk})^{a_{mk}}$$

Selection of repeating variables:

- They must be dimensionally independent
- Together, they must include all fundamental dimensions

Experiment shows, for viscous flow f(V,g,h,v)=0

	M	L	T
V			
g			
h			
v			

$$n = 4$$
 $k = 2$ $m = 2$

We have to select two (02) repeating variables

Let's take the repeating variables: g,h

Non-repeating variables: V, v

	L	T
V	1	-1
g	1	-2
h	1	0

$$f(V,g,h,v) = 0$$
 $n = 4$ $k = 2$ $m = 2$

Repeating variables: g,h

Non-repeating variables: V, v

$$\mathbf{v}$$
 2 -1 $\pi_1 = x_{nr1} (x_{r1})^{a_{11}} (x_{r2})^{a_{12}} (x_{r3})^{a_{13}} ... (x_{rk})^{a_{1k}}$

$$\pi_{1} = V(g)^{a} (h)^{b} \Rightarrow L^{0} T^{0} = L T^{-1} (L T^{-2})^{a} (L)^{b} = L^{1+a+b} T^{-1-2a}$$
$$\Rightarrow a = b = -1/2 \qquad \pi_{1} = \frac{V}{\sqrt{gh}}$$

similarly
$$\pi_2 = \nu(g)^a (h)^b \implies L^0 T^0 = L^2 T^{-1} (L T^{-2})^a (L)^b$$

 $2 + a + b = 0 = -1 - 2a \implies a = -1/2, b = -3/2$

$$\pi_2 = \frac{\nu}{\sqrt{gh^3}}$$

$$f(V,g,h,v) = 0$$

$$f_1\left(\frac{V}{\sqrt{gh}},\frac{v}{\sqrt{gh^3}}\right) = 0$$

$$\frac{V}{\sqrt{gh}} = \text{Fr}$$
 Froude number $\frac{V}{\sqrt{gh^3}} = \frac{V}{\sqrt{gh}} \frac{V}{Vh} = \frac{\text{Fr}}{\text{Re}}$

We may also write $f_2(Fr, Fr/Re) = 0$ $Fr = \psi(Fr/Re)$

Frictionless flow: Fr = constant

Viscous flow: $Fr = \psi(Fr/Re)$ Experiments are

necessary to find the nature of function