Maltsev products of CP varieties

Ralph Freese and Ralph McKenzie

k-Permutable Varieties

• A variety V has k-permutable congruences if $\forall \mathbf{A} \in V$, and all θ and ψ in Con(\mathbf{A})

$$\theta \circ \psi \circ \theta \cdots = \psi \circ \theta \circ \psi \cdots$$

 $(k-1 \circ \text{'s on each side})$. When k=2, \mathcal{V} is CP.

k-Permutable Varieties

• A variety $\mathcal V$ has k-permutable congruences if $\forall \mathbf A \in \mathcal V$, and all θ and ψ in Con($\mathbf A$)

$$\theta \circ \psi \circ \theta \cdots = \psi \circ \theta \circ \psi \cdots$$

 $(k-1 \circ \text{'s on each side})$. When k=2, \mathcal{V} is CP.

• (А. И. Мальцев, 1954) $\mathcal V$ is congruence permutable iff it has a term p(x,y,z) such that

$$p(x,z,z) \approx x$$
, $p(x,x,z) \approx z$.

Maltsev Product

• All algebras, varieties, etc., are assumed to be idempotent.

Maltsev Product

- All algebras, varieties, etc., are assumed to be idempotent.
- For \mathcal{U} , \mathcal{W} varieties,

$$\mathcal{U} \circ \mathcal{W} = \{ \mathbf{A} : \exists \, \theta \in \mathsf{Con}(\mathbf{A}) \text{ with } \mathbf{A}/\theta \in \mathcal{W} \}$$
 and each block of θ in \mathcal{U}

• If $\mathbf{B} \in \mathcal{U}$ and $\mathbf{C} \in \mathcal{W}$, then $\mathbf{B} \times \mathbf{C} \in \mathcal{U} \circ \mathcal{W}$. So

$$\mathcal{U} \vee \mathcal{W} \subseteq \mathbf{V}(\mathcal{U} \circ \mathcal{W}).$$

• If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?

- If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?
- No.

- If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?
- No.
- But it is 4-permutable (F-McK) and

- If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?
- No.
- But it is 4-permutable (F-McK) and
- $\mathcal{U} \vee \mathcal{W}$ is 3 -permutable (Valeriote).

- If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?
- No.
- But it is 4-permutable (F-McK) and
- $\mathcal{U} \vee \mathcal{W}$ is 3 -permutable (Valeriote).
- What about the Maltsev product of two CP varieties? Is it 3-permutable?

- If \mathcal{U} , \mathcal{W} are CP (and idempotent), is $\mathcal{U} \circ \mathcal{W}$ CP? is $\mathcal{U} \vee \mathcal{W}$?
- No.
- But it is 4-permutable (F-McK) and
- $\mathcal{U} \vee \mathcal{W}$ is 3 -permutable (Valeriote).
- What about the Maltsev product of two CP varieties? Is it 3-permutable? Yes.

Theorem

Let **A** be an idempotent algebra with congruence θ and terms p(x, y, z) and q(x, y, z) such that

- q is a Maltsev term for \mathbf{A}/θ and
- p is a Maltsev term for each θ block.

Then A has 3-permutable congruences.

Lemma

Let **A** satisfy the hypotheses of the theorem. Then θ 3-permutes with every other congruence ψ .

Lemma

Let **A** satisfy the hypotheses of the theorem. Then θ 3-permutes with every other congruence ψ .

Proof.

Suppose $(a, d) \in \theta \circ \psi \circ \theta$ so there exists b and c such that

$$a\theta b\psi c\theta d$$

We calculate

$$a = p(a, b, b) \psi p(a, b, c) \theta p(b, b, d) \psi p(c, c, d) = d$$

showing $(a, d) \in \psi \circ \theta \circ \psi$.

Lemma

Let **A** satisfy the hypotheses of the theorem. Then θ 3-permutes with every other congruence ψ .

Proof.

Suppose $(a, d) \in \theta \circ \psi \circ \theta$ so there exists b and c such that

$$a\theta b\psi c\theta d$$

We calculate

$$a = p(a, b, b) \psi p(a, b, c) \theta p(b, b, d) \psi p(c, c, d) = d$$

showing $(a, d) \in \psi \circ \theta \circ \psi$.

Similarly $\psi \circ \theta \circ \psi \subseteq \theta \circ \psi \circ \theta$.

- If α , $\beta \geq \theta$, then they permute.
- If α , $\beta \leq \theta$, then they permute.

- If α , $\beta \geq \theta$, then they permute.
- If α , $\beta \leq \theta$, then they permute.
- A lies in a CM variety because

- If α , $\beta \geq \theta$, then they permute.
- If α , $\beta \leq \theta$, then they permute.
- A lies in a CM variety because
 - Maltsev terms are cube terms.

- If α , $\beta \geq \theta$, then they permute.
- If α , $\beta \leq \theta$, then they permute.
- A lies in a CM variety because
 - Maltsev terms are cube terms.
 - Maltsev products of varieties with cube terms have a cube term.

- If α , $\beta \geq \theta$, then they permute.
- If α , $\beta \leq \theta$, then they permute.
- A lies in a CM variety because
 - Maltsev terms are cube terms.
 - Maltsev products of varieties with cube terms have a cube term.
 - Varieties with a cube term are CM.

Suppose the theorem is false.

- Suppose the theorem is false.
- There are α , $\beta \in Con(\mathbf{A})$ with

$$\beta \circ \alpha \circ \beta \neq \alpha \vee \beta$$

- Suppose the theorem is false.
- There are α , $\beta \in Con(\mathbf{A})$ with

$$\beta \circ \alpha \circ \beta \neq \alpha \vee \beta$$

• WLOG $\alpha \lor \beta = 1$, since **A** is idempotent.

- Suppose the theorem is false.
- There are α , $\beta \in Con(\mathbf{A})$ with

$$\beta \circ \alpha \circ \beta \neq \alpha \vee \beta$$

- WLOG $\alpha \vee \beta = 1$, since **A** is idempotent.
- So the sublattice **L** generated by α , β and θ is a homomorphic image of **L**₀:

• $[\beta_*, \beta_*] \leq \alpha^*$ so β_* and α^* permute.

Suppose

$$1 = \beta \circ \alpha^{**} \circ \beta \tag{1}$$

$$\alpha^* = \beta_{**} \circ \alpha \circ \beta_{**} \tag{2}$$

Suppose

$$\mathbf{1} = \beta \circ \alpha^{**} \circ \beta \tag{1}$$

$$\alpha^* = \beta_{**} \circ \alpha \circ \beta_{**} \tag{2}$$

Then we calculate

$$1 = \beta \circ \alpha^{**} \circ \beta$$

$$= \beta \circ \alpha^{*} \circ \beta_{*} \circ \beta$$

$$= \beta \circ \alpha^{*} \circ \beta$$

$$= \beta \circ \beta_{**} \circ \alpha \circ \beta_{**} \circ \beta$$

$$= \beta \circ \alpha \circ \beta$$

Suppose

$$\mathbf{1} = \beta \circ \alpha^{**} \circ \beta \tag{1}$$

$$\alpha^* = \beta_{**} \circ \alpha \circ \beta_{**} \tag{2}$$

Then we calculate

$$1 = \beta \circ \alpha^{**} \circ \beta$$

$$= \beta \circ \alpha^{*} \circ \beta_{*} \circ \beta$$

$$= \beta \circ \alpha^{*} \circ \beta$$

$$= \beta \circ \beta_{**} \circ \alpha \circ \beta_{**} \circ \beta$$

$$= \beta \circ \alpha \circ \beta$$

• A contradiction. So (1) or (2) must fail.

- If (1) fails, replace α by α^{**} . Then **L** is an image of **L**₂.
- If (2) fails, replace β by β_{**} and L is an image of L₁.

• Suppose that L is an image of L_1 .

- Suppose that L is an image of L_1 .
- In L₁ let $\alpha_1 = \alpha \wedge \theta$ and $\beta_1 = \beta \wedge \theta$.

- Suppose that L is an image of L_1 .
- In L₁ let $\alpha_1 = \alpha \wedge \theta$ and $\beta_1 = \beta \wedge \theta$.
- By the above remarks $\theta = \alpha_1 \circ \beta_1 = \beta_1 \circ \alpha_1$.

- Suppose that L is an image of L₁.
- In L_1 let $\alpha_1 = \alpha \wedge \theta$ and $\beta_1 = \beta \wedge \theta$.
- By the above remarks $\theta = \alpha_1 \circ \beta_1 = \beta_1 \circ \alpha_1$.
- Also θ 3-permutes with α

- Suppose that L is an image of L₁.
- In L₁ let $\alpha_1 = \alpha \wedge \theta$ and $\beta_1 = \beta \wedge \theta$.
- By the above remarks $\theta = \alpha_1 \circ \beta_1 = \beta_1 \circ \alpha_1$.
- Also θ 3-permutes with α so

$$1 = \theta \circ \alpha \circ \theta$$

$$= \beta_1 \circ \alpha_1 \circ \alpha \circ \alpha_1 \circ \beta_1$$

$$= \beta_1 \circ \alpha \circ \beta_1$$

$$\subseteq \beta \circ \alpha \circ \beta \subseteq 1.$$

- Suppose that L is an image of L₁.
- In L₁ let $\alpha_1 = \alpha \wedge \theta$ and $\beta_1 = \beta \wedge \theta$.
- By the above remarks $\theta = \alpha_1 \circ \beta_1 = \beta_1 \circ \alpha_1$.
- Also θ 3-permutes with α so

$$1 = \theta \circ \alpha \circ \theta$$

$$= \beta_1 \circ \alpha_1 \circ \alpha \circ \alpha_1 \circ \beta_1$$

$$= \beta_1 \circ \alpha \circ \beta_1$$

$$\subseteq \beta \circ \alpha \circ \beta \subseteq 1.$$

• Thus $\beta \circ \alpha \circ \beta = \alpha \vee \beta$, a contradiction.

Now suppose that L is an image of L₂.

- Now suppose that L is an image of L₂.
- We claim

$$1 = \alpha \vee \beta = \alpha \circ \beta \circ \alpha = \alpha \circ \beta \circ \theta = \theta \circ \beta \circ \alpha.$$

- Now suppose that L is an image of L₂.
- We claim

$$1 = \alpha \vee \beta = \alpha \circ \beta \circ \alpha = \alpha \circ \beta \circ \theta = \theta \circ \beta \circ \alpha.$$

• Proof. In L_1 let $\gamma = \beta \vee \theta$.

- Now suppose that L is an image of L₂.
- We claim

$$1 = \alpha \vee \beta = \alpha \circ \beta \circ \alpha = \alpha \circ \beta \circ \theta = \theta \circ \beta \circ \alpha.$$

- Proof. In L_1 let $\gamma = \beta \vee \theta$.
- α and γ permute and θ and β 3-permute. So

- Now suppose that L is an image of L₂.
- We claim

$$1 = \alpha \vee \beta = \alpha \circ \beta \circ \alpha = \alpha \circ \beta \circ \theta = \theta \circ \beta \circ \alpha.$$

- Proof. In L_1 let $\gamma = \beta \vee \theta$.
- α and γ permute and θ and β 3-permute. So

$$1 = \alpha \circ \gamma = \alpha \circ (\theta \circ \beta \circ \theta) = \alpha \circ \beta \circ \theta.$$

- Now suppose that L is an image of L₂.
- We claim

$$1 = \alpha \vee \beta = \alpha \circ \beta \circ \alpha = \alpha \circ \beta \circ \theta = \theta \circ \beta \circ \alpha.$$

- Proof. In L_1 let $\gamma = \beta \vee \theta$.
- ullet α and γ permute and θ and β 3-permute. So

$$1 = \alpha \circ \gamma = \alpha \circ (\theta \circ \beta \circ \theta) = \alpha \circ \beta \circ \theta.$$

• Let $a, d \in A$. Since $1 = (\alpha \circ \beta \circ \theta) \cap (\theta \circ \beta \circ \alpha)$ there are $b, c, e, f \in A$ with

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

 $\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

• Since p is Maltsev on the blocks of θ , we have

$$p(d,c,b) \beta p(d,c,c) = d$$
 and $p(e,e,a) \beta p(f,f,a) = a$

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

• Since p is Maltsev on the blocks of θ , we have $p(d,c,b) \ \beta \ p(d,c,c) = d \quad \text{and} \quad p(e,e,a) \ \beta \ p(f,f,a) = a$

• $\theta \le \alpha$, so $p(d, c, b) \alpha p(e, e, a)$. Hence

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

• Since p is Maltsev on the blocks of θ , we have $p(d,c,b) \ \beta \ p(d,c,c) = d \quad \text{and} \quad p(e,e,a) \ \beta \ p(f,f,a) = a$

• $\theta \le \alpha$, so $p(d, c, b) \alpha p(e, e, a)$. Hence $a \beta p(e, e, a) \alpha p(d, c, b) \beta d$.

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

• Since p is Maltsev on the blocks of θ , we have $p(d,c,b) \ \beta \ p(d,c,c) = d \quad \text{and} \quad p(e,e,a) \ \beta \ p(f,f,a) = a$

- $\theta \le \alpha$, so $p(d, c, b) \alpha p(e, e, a)$. Hence $a \beta p(e, e, a) \alpha p(d, c, b) \beta d$.
- Since a and d were arbitrary,

$$1 = \alpha \vee \beta = \beta \circ \alpha \circ \beta,$$

$$\mathbf{a} \alpha \mathbf{b} \beta \mathbf{c} \theta \mathbf{d} \alpha \mathbf{e} \beta \mathbf{f} \theta \mathbf{a}$$

• Since p is Maltsev on the blocks of θ , we have $p(d,c,b) \ \beta \ p(d,c,c) = d \quad \text{and} \quad p(e,e,a) \ \beta \ p(f,f,a) = a$

- $\theta \le \alpha$, so $p(d, c, b) \alpha p(e, e, a)$. Hence $a \beta p(e, e, a) \alpha p(d, c, b) \beta d$.
- Since a and d were arbitrary,

$$1 = \alpha \vee \beta = \beta \circ \alpha \circ \beta,$$

showing this case cannot occur and proving the theorem.

Rest of the Introduction

• (F-McK) If q(x, y, z) is a Maltsev term for \mathbf{A}/θ and p(x, y, z) is a Maltsev term for the blocks of θ , \mathbf{A} has Hagemann-Mitschke terms $p_0 = x$, $p_4 = z$ and

$$p_1(x, y, z) = p(x, q(x, y, y), q(x, z, z))$$

 $p_2(x, y, z) = q(x, y, z)$
 $p_3(x, y, z) = p(q(x, x, z), q(y, y, z), z)$

Rest of the Introduction

• (F-McK) If q(x, y, z) is a Maltsev term for \mathbf{A}/θ and p(x, y, z) is a Maltsev term for the blocks of θ , \mathbf{A} has Hagemann-Mitschke terms $p_0 = x$, $p_4 = z$ and

$$p_1(x, y, z) = p(x, q(x, y, y), q(x, z, z))$$

 $p_2(x, y, z) = q(x, y, z)$
 $p_3(x, y, z) = p(q(x, x, z), q(y, y, z), z)$

• (Valeriote) If $\mathcal U$ and $\mathcal W$ are CP varieties (of the same type) with Maltsev term p and q respectively then $\mathcal U \vee \mathcal W$ has Hagemann-Mitschke terms $p_0 = x$, $p_3 = z$ and p_1 and p_2 are

$$p(q(x, p(x, y, z), p(x, y, z)), q(x, p(y, z, z), z), q(x, y, z))$$

 $p(q(x, y, z), q(x, p(x, y, y), z), q(p(x, y, z), p(x, y, z), z))$