

Problem R-06I. This problem requires you to make a complete assignment of the signals of a compound (structure shown below), so that you can determine the stereochemistry of the two substituents on the dioxolane ring. Use the form: δ 5.2, dq, J = 13.5, 7.3 Hz or AB of ABX₃, J_{AB} =12 Hz, J_{AX} = J_{BX} = 7 Hz, δ_{A} = 4.36, δ_{B} = 4.42 ppm. Please show your assignments by placing the appropriate letters clearly on the expanded multiplets in the spectrum.

	Ph F O D A
	C B SiMe ₃
	Assign the signals of protons A and B . What kind of pattern do these protons form? Do an approximate first analysis (give shifts, pattern and approximate couplings).
A:	
B :	
	Consider the signals for protons C and D . What kind of patterns are observed? Report shifts and couplings (first order analysis is OK). How did you distinguish them from each other?
D:	
(c)	Assign the protons H and I . Report shifts, multiplicity and coupling below.
H:	
I:	
	Below report on the crucial signals for E , F and G . Indicate multiplicity and coupling constants. Circle the ure with the correct stereochemistry and explain your reasoning below.
E:	$R^1 \longrightarrow O \longrightarrow O \qquad R^1 \longrightarrow O \longrightarrow O$

 R^2 O R^2 OF:

G:

3

6

6

Problem R-06I. This problem requires you to make a complete assignment of the signals of a compound (structure shown below), so that you can determine the stereochemistry of the two substituents on the dioxolane ring. Use the form: δ 5.2, dq, J = 13.5, 7.3 Hz or AB of ABX $_3$, J_{AB} =12 Hz, J_{AX} = J_{BX} = 7 Hz, δ_A = 4.36, δ_B = 4.42 ppm. **Please show your assignments by placing the appropriate letters clearly on the expanded multiplets in the spectrum**.

$$\begin{array}{c} \text{Me} \\ \text{I} \\ \text{H} \\ \text{G} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{A} \\ \text{SiMe}_3 \end{array}$$

(a) Assign the signals of protons **A** and **B**. What kind of pattern do these protons form? Do an approximate first order analysis (give shifts, pattern and approximate couplings).

A and B are a CH₂-CH₂ system, expect both to be diastereotopic (MNXY pattern)

5 A:
$$0.77, 0.82 \delta, MNXY, {}^{2}J_{MN} = 14, {}^{3}J_{MX} = {}^{3}J_{NY} = 6, {}^{3}J_{MY} = {}^{3}J_{NX} = 10 \text{ Hz}$$

(An AB system where both A and B are are split into a dd, with J =

B: 3.43
$$\delta$$
, MNXY, td, J = 10, 7 (${}^{2}J_{XY} = 10$, ${}^{3}J_{XM} = 10$, ${}^{3}J_{XN} = 7$ Hz) 3.65 δ , MNXY, td, J = 10, 7 (${}^{2}J_{XY} = 10$, ${}^{3}J_{YN} = 10$, ${}^{3}J_{YM} = 7$ Hz)

10, 6)

(b) Consider the signals for protons **C** and **D**. What kind of patterns are observed? Report shifts and couplings below (first order analysis is OK). How did you distinguish them from each other?

Both C and D will be diastereotopic (AB quartets), D next to ketone will have larger JAB

C: 4.58, d, J =7; 4.72, d, J = 7 (
$$J_{AB}$$
 = 7 Hz, expect smaller 2J coupling here, π -donor, σ -acceptor) One shift -1

D: 4.33, d, J = 18; 4.48, d, J = 18 (
$$J_{AB}$$
 = 18 Hz, α -keto increases 2J coupling, π -acceptor)
One shift -1

(c) Assign the protons **H** and **I**. Report shifts, multiplicity and coupling below.

H:
$$\delta$$
 5.43, ddq, J = 15, 8, 2 Hz (${}^{3}J_{HI}$ = 15, ${}^{3}J_{HG}$ = 8, ${}^{4}J_{H-Me}$ = 2 Hz)

I:
$$\delta$$
 5.86, dq, J = 15, 7 Hz (${}^{3}J_{IH}$ = 15, ${}^{3}J_{I-Me}$ = 7.5 Hz)

Swap H/I -2

(d) Below report on the crucial signals for **E**, **F** and **G**. Indicate multiplicity and coupling constants. Circle the structure with the correct stereochemistry and explain your reasoning below.

E:
$$\delta$$
 4.82, d, J = 4 Hz (${}^{3}J_{EF}$ = 4 Hz)

F: δ 3.84, dd, J = 8, 4 Hz (${}^{3}J_{FF}$ = 4 Hz, ${}^{3}J_{FG}$ = 8 Hz)

Swap G/H -3

G: δ 4.65, t, J = 7.5 Hz (${}^{3}J_{GH} = {}^{3}J_{GF} = 7.6$ Hz)

The G-I long range coupling is not resolved

The large J_{FG} of 8 Hz requires them to be diaxial (note that ax-ax couplings, and ³J couplings in general, are reduced when O-substituents are present)

6 Stereochem, justification

No J value -2

