

UNSTEADY LOSS IN THE STATOR DUE TO THE INCOMING ROTOR WAKE IN A HIGHLY LOADED TRANSONIC COMPRESSOR

Chunill Hah

NASA Glenn Research Center,
MS 5-10, Cleveland, Ohio

Background

- NASA ERA Program
 - Physics of Loss Generation in a GE Highly Loaded Transonic Compressor.
 - Aero Testing at NASA/Glenn W7 facility.
 - NASA Internal CFD study with RANS,
URANS, LES.

1-Stage Rig Configuration

Objectives

- Application of a LES to investigate loss generation in a highly loaded compressor.
- Possible ways to reduce loss generation ?

Order of presentation

- LES set-up and CFD grids.
- Compressor characteristics from LES.
- Effects of spacing between IGV and R1.
- Unsteady loss generation in the stator passage.
- Effects of spacing between R1 and S1.
- Concluding remarks.

CFD analysis of the first stage

LES for turbomachinery application

- To address some shortcomings of RANS/URANS (vortex interaction, flow separation, wake development. Etc.)
- Significant increase in computing cost with large size computational grid.
- Solution depends on CFD grid.
- Good insight and knowledge required to extract physics (needs further development).

Applied LES procedure

- 3rd-order scheme for convection terms.
- 2nd-order central differencing for diffusion terms.
- Sub-iteration at each time step.
- Dynamic model for sub grid stress tensor.

LES Set-Up

- Original Blades : 42 IGV, 28 R1, and 58 S1.
Scaled to 42 IGV, 28 R1, and 56S1.
- 3 IGV , 2 R1 , and 4 S1 passages analyzed with periodicity condition.
- 500 million CFD nodes for 9 passages (for S1, 384x356x650 in B to B, Spanwise, axial direction for each passage)

Computational grid and domain

IGV

Rotor 1

Stator 1

Overall compressor flow field from LES

Instantaneous pressure distribution at mid-span

Instantaneous vorticity distribution at mid-span

Comparison of corrected speedline relative to multi-stage compressor opline

Comparison of Pt and Tt at exit of R1 and S1

Pt

Pt

Tt

R1 exit

Tt

S1 exit

Comparison of total pressure at IGV exit

5-hole traverse

LES

Comparison of IGV exit swirl angle

IGV wake phasing study

- Effects of IGV wake phasing on the stage efficiency.
- Axial gap between IGV and R1 increased twice.
- Very little effects on the efficiency.

Instantaneous axial velocity, mid-span

Original design

Wider igv/r1 spacing

R1 shock structure from LES

- Detached shock at mid-span and attached shock at rotor tip (Forward swept rotor characteristics).
- Shock structure agrees with high frequency pressure data.

Comparison of rotor shock structure

Mid-span

Rotor tip

Unsteady loss generation in the stator due to incoming rotor wake

Measured Pt and Tt at stator exit

Pressure Side

Suction Side

Pressure Side

Suction Side

Pt

Tt

Measured Pt, Tt, and entropy at 48.1 % span (Lurie and Breeze-Stringfellow[GT2015-42526])

Comparison of Pt from LES, S1 exit

Pressure Side

Suction Side

Five hole probe

LES

Comparison of T_t from LES, S1 exit

Measurement

LES

Comparison of Pt and Tt at mid-span

Instantaneous Pt distribution

Pt time-space plot at S1 exit

Instantaneous distribution of Tt from LES

Why higher Tt and lower Pt on the pressure side of the stator ?

Why URANS does not pick up this trend ?

Why LES shows the correct trend ?

Flow mechanism for unsteady loss generation

Loss generation in multi-stage compressors

Smith, L.H. Jr. : Wake Dispersion, 1966.

Kerrebrock, J.L. and Mikolajczk, A.A. :
Intra-Stator transport of rotor wakes, 1970

Instantaneous velocity vectors at mid-span

Velocity vectors in rotor wake

Absolute Pt in the rotor wake

Instantaneous tangential velocity component in stator frame

Intra-stator transport of rotor wake for high Tt on PS

Both Tt and Pt are higher in rotor wake for the current compressor.

Jet velocity in the rotor wake decays very fast and
The rotor wake is not like 2-D inviscid wake.

What makes Tt higher on pressure side of S1 ?

Why Pt is lower on pressure side of S1 ?

Mechanisms of unsteady loss generation

Curvature effects

Wake stretching

Effects of axial gap between R1 and S1

- Axial gap between R1 and S1 increased twice.
- Higher Pt and Tt observed with the increased gap.
- Further analysis are being performed.

Instantaneous Pt distribution (larger space between R1 and S2)

Original spacing

Increased spacing

Concluding remarks

- Investigated unsteady loss generation in the stator passage due to incoming rotor wake.
- Three-dimensional unsteady vortex interaction seems to be the main reason for the high loss near the pressure side of the stator.
- Further study being performed to develop ways to reduce the overall loss generation.