### ME951 - Estatística e Probabilidade I

#### Parte 13

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos** 

Dizemos que uma v.a. X possui distribuição normal com parâmetros  $\mu$  e  $\sigma^2$ ,  $\mu \in \mathbb{R}$  e  $\sigma^2 > 0$ , se a f.d.p.  $f_X$  é dada por:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty$$

Notação:  $X \sim N(\mu, \sigma^2)$ 

Distribuição mais importante da Estatística. Também conhecida como distribuição Gaussiana.

A esperança e variância de uma v.a.  $X \sim N(\mu, \sigma^2)$  são:

$$\mathbb{E}(X) = \mu$$
 e  $Var(X) = \sigma^2$ 

## Distribuição Normal - Esperança e Variância

### Esperança:

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] dx = \mu$$

#### Variância

$$Var(X) = \mathbb{E}([X - \mathbb{E}(X)]^2)$$

$$= \int_{-\infty}^{\infty} (x - \mu)^2 \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(x - \mu)^2}{2\sigma^2}\right] dx$$

$$= \sigma^2$$

Gráfico da função de densidade de probabilidade de uma v.a.  $X \sim N(\mu, \sigma^2)$ 



Função Densidade: "Forma de sino", centrada em  $\mu$  e escala controlada por  $\sigma^2$ .

OkCupid é uma rede social para relacionamentos.

Usuários devem colocar características pessoais como, por exemplo, altura.

Será que são sinceros?



Comparação da distribuição das alturas da população adulta norte-americana e a distribuição das alturas dos usuários do site:



Fonte: http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/

Comparação da distribuição das alturas da população adulta norte-americana e a distribuição das alturas dos usuários do site:



Fonte: http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/



Fonte: http://blog.okcupid.com/index.php/the-biggest-lies-in-online-dating/

### Distribuição Normal Padrão

**Propriedade**: Se  $X \sim N(\mu, \sigma^2)$ , então

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

Dizemos que Z tem distribuição **Normal Padrão** e sua densidade se reduz a:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}, \quad -\infty < z < \infty$$

A f.d.a. de uma Normal padrão, que denotaremos por  $\Phi$ , é:

$$\Phi(t) = P(Z \le t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

## Distribuição Normal Padrão







Uma universidade americana recebeu inscrição de dois alunos (Pam e Jim) com os respectivos históricos escolares. No entanto, Pam realizou o SAT e tirou 1800, enquanto que o Jim fez o ACT e tirou 24. Como a universidade pode comparar os dois alunos, baseando-se nesses testes?

Precisamos avaliar quão melhor (ou pior) a Pam foi em relação aos demais alunos que realizaram o SAT.

Precisamos avaliar quão melhor (ou pior) o Jim foi em relação aos demais alunos que realizaram o ACT.

A universidade tem acesso à média (1500) e ao desvio-padrão (300) das notas de todos os alunos que realizaram o SAT juntamente com a Pam.

A universidade tem acesso à média (21) e ao desvio-padrão (5) das notas de todos os alunos que realizaram o ACT juntamente com a Jim.

Assumindo que as notas dos dois testes seguem uma distribuição normal:

Seja X uma v.a. representando a nota no SAT:  $X \sim N(\mu = 1500, \sigma = 300)$ .

Seja Y uma v.a. representando a nota no ACT:  $X \sim N(\mu = 21, \sigma = 5)$ .



Seja X uma v.a. representando a nota no SAT:

$$X \sim N(\mu = 1500, \sigma = 300).$$

Padronizando a v.a. das notas do SAT:  $Z_1 = \frac{X-1500}{300} \sim N(0,1)$ .

Padronizando a nota da Pam:

$$\frac{1800 - 1500}{300} = 1$$

Seja Y uma v.a. representando a nota no ACT: Y ~  $N(\mu=21,\sigma=5)$ .

Padronizando a v.a. das notas do ACT:  $Z_2 = \frac{Y-21}{5} \sim N(0,1)$ .

Padronizando a nota do Jim:

$$\frac{24-21}{5} = 0.6$$



 $\blacksquare$  Para calcular as probabilidades, precisamos usar a f.d.a. de  $Z \sim N(0,1)$ 

$$\Phi(t) = P(Z \le t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz,$$

que não tem forma fechada, pois  $e^{-z^2}$  não tem antiderivada.

- Contudo, os valores para  $Z \sim N(0,1)$  e  $\phi(z)$  encontram-se tabelados.
- Tudo o que precisamos fazer é transformar a variável em N(0,1) e usar os valores tabelados. Ou seja, para  $X \sim N(\mu, \sigma^2)$ , temos:

$$F_X(a) = P(X \le a) = P\left(\underbrace{\frac{X-\mu}{\sigma}}_{Z} \le \frac{a-\mu}{\sigma}\right) = hi\left(\frac{a-\mu}{\sigma}\right)$$

#### Função de Distribuição Acumulada



# Distribuição Normal - Simetria

A distribuição normal é simétrica, portanto

$$P(Z < -z) = P(Z > z)$$



 $Z \sim \text{Normal}(0, 1)$ , com f.d.a.  $\Phi$ :

$$\Phi(t) = P(Z \le t) = \int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

- $\Phi(0) = 0.5$
- $\Phi(-\infty) = 0$
- $\Phi(\infty) = 1$
- Por simetria:

$$\Phi(x) = P(Z < x) = P(Z > -x)$$
  
= 1 - P(Z < -x) = 1 - \Phi(-x)

A probabilidade de um intervalo é dada por:

$$P(a < Z < b) = P(Z < b) - P(Z < a)$$
$$= P(Z \le b) - P(Z \le a)$$
$$= \Phi(b) - \Phi(a)$$







### Tabela Normal

Tabela I: Distribuição Normal Padrão Acumulada



Fornece  $\Phi(z) = P(-\infty < Z \le z)$ , para todo z, de 0,01 em 0,01, desde z = 0,00 até z = 3,59 A distribuição de Z é Normal(0;1)

| z   | 0,00   | 0,01   | 0,02   | 0,03   | 0,04   | 0,05   | 0,06   | 0,07   | 0,08   | 0,09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
| 0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5753 |
| 0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
| 0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
| 0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
| 0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
| 0,6 | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,7454 | 0,7486 | 0,7517 | 0,7549 |
| 0,7 | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7704 | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
| 0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995 | 0,8023 | 0,8051 | 0,8078 | 0,8106 | 0,8133 |
| 0,9 | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264 | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
| 1,0 | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508 | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
| 1,1 | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729 | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
| 1,2 | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925 | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
| 1,3 | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099 | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |

Exercitando com a tabela da Normal:

$$\Phi(0.2) = 0.5793$$

$$\Phi(0.45) = 0.6736$$

$$\Phi(1.28) = 0.8997$$

$$\Phi(-0.45) = 1 - \Phi(0.45) = 0.3264$$

**Exemplo**: Se  $X \sim N(10, 4)$ , calcular:

$$P(9 \le X \le 12)$$

$$P(X < 8 \text{ ou } X > 11)$$

Fonte: Morettin & Bussab, Estatística Básica  $5^a$  edição, pág 182.

Recorde que se  $X \sim N(\mu, \sigma^2)$ , então  $\frac{X-\mu}{\sigma} \sim N(0, 1)$ .

Neste problema, sabemos que  $\mu=10$  e  $\sigma^2=4$ , logo  $\sigma=2$ . Então

$$Z = \frac{(X - 10)}{2} \sim N(0, 1)$$

Devemos transformar X de modo que o evento 8 < X < 10 permaneça inalterado. Fazemos isso transformando todos os lados da inequação:

$$\begin{split} 8 < X < 10 &\Leftrightarrow 8 - 10 < X - 10 < 10 - 10 \\ &\Leftrightarrow \frac{8 - 10}{2} < \frac{X - 10}{2} < \frac{10 - 10}{2} \\ &\Leftrightarrow -1 < Z < 0 \end{split}$$

Então, 
$$P(8 < X < 10) = P(-1 < Z < 0)$$

O valor  $\Phi(0)$  está disponível na tabela e é igual a 0.5.

Para obtermos  $\Phi(-1)$ , devemos usar a simetria da função  $\Phi$  em torno do zero:

$$\Phi(-x) = 1 - \Phi(x)$$

A tabela nos dá  $\Phi(1) = 0.8413$   $\rightarrow$   $\Phi(-1) = 1 - 0.8413 = 0.1587$ 

Concluimos portanto que

$$\begin{split} P(8 < X < 10) &= P(-1 < Z < 0) \\ &= \varPhi(0) - \varPhi(-1) \\ &= 0.5 - 0.1587 = 0.3413 \end{split}$$

Esta é a tabela da normal, com os valores de  $\Phi(1)$  e  $\Phi(0)$  destacados:

Tabela I: Distribuição Normal Padrão Acumulada



Fornece  $\Phi(z) = P(-\infty < Z \le z)$ , para todo z, de 0,01 em 0,01, desde z = 0,00 até z = 3,59 A distribuição de Z é Normal(0,1)

| z   | 0,00   | 0,01   | 0,02   | 0,03   | 0,04   | 0,05   | 0,06   | 0,07   | 0,08   | 0,09   |
|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,5239 | 0,5279 | 0,5319 | 0,5359 |
| 0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,5636 | 0,5675 | 0,5714 | 0,5753 |
| 0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,6026 | 0,6064 | 0,6103 | 0,6141 |
| 0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,6406 | 0,6443 | 0,6480 | 0,6517 |
| 0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,6772 | 0,6808 | 0,6844 | 0,6879 |
| 0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,7123 | 0,7157 | 0,7190 | 0,7224 |
| 0,6 | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,7454 | 0,7486 | 0,7517 | 0,7549 |
| 0,7 | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7704 | 0,7734 | 0,7764 | 0,7794 | 0,7823 | 0,7852 |
| 0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995 | 0,8023 | 0,8051 | 0,8078 | 0,8106 | 0,8133 |
| 0,9 | 0,8159 | 0,8186 | 0,8212 | 0,8238 | 0,8264 | 0,8289 | 0,8315 | 0,8340 | 0,8365 | 0,8389 |
| 1,0 | 0,8413 | 0,8438 | 0,8461 | 0,8485 | 0,8508 | 0,8531 | 0,8554 | 0,8577 | 0,8599 | 0,8621 |
| 1,1 | 0,8643 | 0,8665 | 0,8686 | 0,8708 | 0,8729 | 0,8749 | 0,8770 | 0,8790 | 0,8810 | 0,8830 |
| 1,2 | 0,8849 | 0,8869 | 0,8888 | 0,8907 | 0,8925 | 0,8944 | 0,8962 | 0,8980 | 0,8997 | 0,9015 |
| 1,3 | 0,9032 | 0,9049 | 0,9066 | 0,9082 | 0,9099 | 0,9115 | 0,9131 | 0,9147 | 0,9162 | 0,9177 |

Este é o gráfico da curva N(10,4), com a região [8,10] correspondente ao item 1. em destaque:



$$P(9 \le X \le 12) = P\left(\frac{9-10}{2} \le \frac{X-10}{2} \le \frac{12-10}{2}\right)$$
$$= P(-1/2 \le Z \le 1) = 0.5328$$

$$P(X > 10) = P\left(\frac{X - 10}{2} > \frac{10 - 10}{2}\right) = P(Z > 0) = 0.5$$

$$\begin{split} P(X < 8 \text{ ou } X > 11) &= P(X < 8) + P(X > 11) \\ &= P\left(\frac{X - 10}{2} < \frac{8 - 10}{2}\right) + P\left(\frac{X - 10}{2} > \frac{11 - 10}{2}\right) \\ &= P(Z < -1) + P(Z > 1/2) \\ &= 0.1586 + 0.3085 = 0.4671 \end{split}$$

**Exemplo**: Se  $X \sim N(4, 3^2)$ , calcule  $P(X \le 7)$  e  $P(1 < X \le 7)$ .

$$F_X(7) = P(X \le 7) = P\left(\frac{X-4}{3} \le \frac{7-4}{3}\right)$$

$$= P(Z \le 1) = hi(1) = 0.8413$$

$$P(1 < X \le 7) = P\left(\frac{1-4}{3} < \frac{X-4}{3} \le \frac{7-4}{3}\right)$$

$$= P(-1 < Z \le 1)$$

$$= \Phi(1) - \Phi(-1)$$

$$= \Phi(1) - [1 - \Phi(1)]$$

$$= 2\Phi(1) - 1 = 2 \times 0.8413 - 1 = 0.6826$$

**Exemplo**:  $X \sim N(4,3^2)$  e a região correspondente a  $P(1 < X \le 7)$  em destaque no gráfico



### Regra Empírica

Em uma distribuição normal  $X \sim N(\mu, \sigma^2)$ , temos o seguinte:



### Regra Empírica

**Exemplo:** Suponha que o QI da população mundial segue uma distribuição normal com média 100 e desvio padrão de 15

Encontre um intervalo que englobe os QI's de 68.3% da população?

E se quisermos 95%? E 99.7%?



## Regra Empírica

Como  $QI \sim N(100, 15)$ , pela regra empírica:

68.3%da população:  $85 \leq QI \leq 115$ 

95%da população:  $70 \leq QI \leq 130$ 

99.7% da população:  $55 \leq QI \leq 145$ 

Seja  $X \sim Bin(n, p)$ 

O que acontece quando o número de ensaios n aumenta?



Seja  $X \sim Bin(n,p)$ . Se n é suficientemente grande, a distribuição de X pode ser aproximada pela distribuição normal, isto é,

$$X \sim N(np, np(1-p))$$

**Exemplo:** Se  $X \sim Bin(100, 0.7)$ , podemos usar a aproximação  $X \sim N(70, 21)$ 



**Exemplo:** Seja X o número de vezes que uma moeda honesta resulta em cara quando é lançada 40 vezes. Então

$$X \sim Bin(40, 0.5)$$

Encontre P(X=20) usando a fórmula exata e a aproximação normal.

Binomial

$$P(X = 20) = {40 \choose 20} (0.5)^{20} (0.5)^{20} = 0.125$$

Normal

$$P(X = 20) \approx P(19.5 < X \le 20.5) = 0.1256$$

Exemplo:  $X \sim Bin(40, 0.5)$ 



Em geral, para que a aproximação para a normal seja utilizada:

$$np \ge 10$$

$$n(1-p) \ge 10$$

Ou seja, pelo menos  $10\ {\rm sucessos}$ e pelo menos  $10\ {\rm fracassos}$ na amostra.

# Relembrando: Propriedades da Esperança

 $\blacksquare$  Para qualquer v.a. X e constantes a e b:

$$\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$$

Casos particulares:

- $\mathbb{E}(X+b) = \mathbb{E}(X) + b$
- $\blacksquare \mathbb{E}(aX) = a\mathbb{E}(X)$
- 2 Se  $X_1, X_2, \ldots, X_n$  são variáveis aleatórias:

$$\mathbb{E}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \mathbb{E}(X_i)$$

### Relembrando: Propriedades da Variância

 $\blacksquare$  Para qualquer v.a. X e constantes a e b:

$$Var(aX + b) = a^2 Var(X)$$

Casos particulares:

- Var(X+b) = Var(X)
- $Var(aX) = a^2 Var(X)$
- 2 Se  $X_1, X_2, \ldots, X_n$  são variáveis aleatórias independentes:

$$Var\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} Var(X_i)$$

### Propriedades da Normal

- Se adicionarmos ou multiplicarmos uma constante a uma v.a. com distribuição Normal, a v.a. resultante continua tendo distribuição normal.
- $\blacksquare$  Ou seja, se  $X \sim N(\mu, \sigma^2)$ , então  $aX + b \sim N(a\mu + b, a^2\sigma^2)$ .
- Isso explica

$$X \sim N(\mu, \sigma^2) \qquad \Longleftrightarrow \qquad Z = \frac{X - \mu}{\sigma} \sim N(0, 1).$$

■ Se X e Y são v.a.'s independentes, tal que  $X \sim N(\mu_x, \sigma_x^2)$  e  $Y \sim N(\mu_y, \sigma_y^2)$ , então

$$X + Y \sim N(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$$

### Leituras



 $\blacksquare$  Ross: seções 6.3 a 6.7.

 $\blacksquare$  OpenIntro: seções 3.1, 3.2, 3.4.2

■ Magalhães: capítulo 6.