COMP 598 FINAL PROJECT

Classification Analysis of Parkinson Speech Dataset

Shu Hayakawa Elcin Ergin Timardeep Kaur

Problem definition

- Parkinson disease diagnosis from speech impairments
- Need for remote monitoring of patients
 - Substantial opportunities for lowering the inconvenience and cost of physical visits
- Need for reliable clinical monitoring tools
- Approximately 90% of PWP (People with Parkinson) exhibit some form of vocal impairment
 - o dysphonia (defective use of the voice),
 - hypophonia (reduced volume)
 - o monotone (reduced pitch range)
 - dysarthia (difficulty with articulation of sounds or syllables)

Data

- 26 voice samples from each subject
 - o vowels, numbers, words, and short sentences
- Train data:
 - o 20 PWP (6 female, 14 male)
 - 20 healthy individuals (10 female, 10 male)
- Test data:
 - o 28 PWP
 - Sustained vowels ("a" and "o")

Data

TIME-FREQUENCY-BASED FEATURES EXTRACTED FROM VOICE SAMPLES

Features	Group
Jitter (local)	
Jitter (local, absolute)	E
Jitter (rap)	Frequency parameters
Jitter (ppq5)	
Jitter (ddp)	
Number of pulses	
Number of periods	Pulse Parameters
Mean period	Pulse Parameters
Standard dev. of period	
Shimmer (local)	Amplitude parameters
Shimmer (local, dB)	
Shimmer (apq3)	
Shimmer (apq5)	
Shimmer (apq11)	
Shimmer (dda)	
Fraction of locally unvoiced frames	
Number of voice breaks	Voicing Parameters
Degree of voice breaks	
Median pitch	Pitch Parameters
Mean pitch	
Standard deviation	
Minimum pitch	
Maximum pitch	
Autocorrelation	Uarmoniaity
Noise-to-Harmonic	Harmonicity Parameters
Harmonic -to-Noise	r at afficiers

Related Work

Sakar, Betul Erdogdu, et al. - binary classification

- Methods:
 - o SVM
 - o K-NN
- Leave-One-Subject-Out
 - Validation: all the voice samples of one individual is left out
 - Training: the rest
- Leave-One-Out
 - Summarized-leave-one-out
 - Central tendency metrics:
 - Mean, median, trimmed mean
 - o Dispersion metrics:
 - Standard deviation, mean absolute deviation, interquartile range

Methodology

- Replication of the results
- Methods to be applied
 - Logistic Regression
 - o K-NN
 - o SVM
 - Linear
 - Non-linear
- Leave-one-subject-out
- Leave-one-out
 - With summarized features
 - Regularization
 - Lasso
- If time permits
 - Testing with other datasets

Preliminary Results

Leave-one-subject-out validation results:

	Accuracy
Logistic Regression (Stochastic gradient search)	55%
SVM	52.5%
K-NN	42.5%

References

• Sakar, Betul Erdogdu, et al. "Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings." Biomedical and Health Informatics, IEEE Journal of 17.4 (2013): 828-834.

THANKS