- **1.** A direction field for the differential equation $y' = x \cos \pi y$ is
 - (a) Sketch the graphs of the solutions that satisfy the given initial conditions.
 - (i) y(0) = 0
- (ii) y(0) = 0.5
- (iii) y(0) = 1
- (iv) y(0) = 1.6
- (b) Find all the equilibrium solutions.

 - 0.5

- 3-6 Match the differential equation with its direction field (labeled I–IV). Give reasons for your answer.
 - 3. y' = 2 y
- **4.** y' = x(2 y)
- **5.** y' = x + y 1
- **6.** $y' = \sin x \sin y$

III

3

1-10 Solve the differential equation.

$$1. \ \frac{dy}{dx} = xy^2$$

$$2. \ \frac{dy}{dx} = xe^{-y}$$

3.
$$(x^2 + 1)y' = xy$$

4.
$$(y^2 + xy^2)y' = 1$$

5.
$$(y + \sin y)y' = x + x^3$$

6.
$$\frac{du}{dr} = \frac{1 + \sqrt{r}}{1 + \sqrt{u}}$$

$$7. \ \frac{dy}{dt} = \frac{te^t}{y\sqrt{1+y^2}}$$

8.
$$\frac{dy}{d\theta} = \frac{e^y \sin^2 \theta}{y \sec \theta}$$

9.
$$\frac{du}{dt} = 2 + 2u + t + tu$$

10.
$$\frac{dz}{dt} + e^{t+z} = 0$$

11–18 Find the solution of the differential equation that satisfies the given initial condition.

Find the function
$$f$$
 such that $f'(x) = f(x)(1 - f(x))$ and $f(0) = \frac{1}{2}$.

11.
$$\frac{dy}{dx} = \frac{x}{y}$$
, $y(0) = -3$

12.
$$\frac{dy}{dx} = \frac{\ln x}{xy}$$
, $y(1) = 2$

13.
$$\frac{du}{dt} = \frac{2t + \sec^2 t}{2u}$$
, $u(0) = -5$

14.
$$y' = \frac{xy \sin x}{y+1}$$
, $y(0) = 1$

15.
$$x \ln x = y(1 + \sqrt{3 + y^2})y', \quad y(1) = 1$$

16.
$$\frac{dP}{dt} = \sqrt{Pt}, \quad P(1) = 2$$

17.
$$y' \tan x = a + y$$
, $y(\pi/3) = a$, $0 < x < \pi/2$

18.
$$\frac{dL}{dt} = kL^2 \ln t$$
, $L(1) = -1$

$$y' = x + y$$

 $xy' = y + xe^{y/x}$

$$y(x) = 2 + \int_{2}^{x} [t - ty(t)] dt$$

$$y(x) = 2 + \int_{1}^{x} \frac{dt}{ty(t)}, \quad x > 0$$

Find a function f such that f(3) = 2 and $(t^2 + 1)f'(t) + \lceil f(t) \rceil^2 + 1 = 0 \qquad t \neq$

b) Match differential equations and direction fields:

$$y' = 3$$
, $y' = -2$, $y' = 1 + y$ $y' = x + y$, $y' = \sin x$

y' = 1, y' = -2, y' = |y|/3 y' = y - x, y' = y - 1

b) Match differential equations and direction fields (one equation has no match):

$$y' = 3$$
, $y' = -2$, $y' = |y|/3$ $y' = x - y$, $y' = \cos x$

y' = 1, y' = -2, y' = |y|/3 y' = y - x, y' = y - 1

