Foundations of Machine Learning

Module 3: Instance based Learning and Feature Reduction
Part D: Collaborative Filtering

Sudeshna Sarkar IIT Kharagpur

Recommender Systems

- Item Prediction: predict a ranked list of items that a user is likely to buy or use. predict the rating score that a user is likely to give to an item that s/he has not seen or used before. E.g.,
 - rating on an unseen movie. In this case, the utility of item s
 to user u is the rating given to s by u.
- Rating Prediction: Predict whether someone will like a movie, book, webpage, etc.

The Recommendation Problem

- We have a set of users *U* and a set of items *S* to be recommended to the users.
- Let p be an utility function that measures the usefulness of item s ($\mathfrak{R} S$) to user u ($\mathfrak{R} U$), i.e.,
 - $-p:U\times S$ ***** R, where R is a totally ordered set (e.g., nonnegative integers or real numbers in a range)

Objective

- Learn p based on the past data
- Use p to predict the utility value of each item s (\mathfrak{D} S) to each user u (\mathfrak{D} U)

Recommender Systems

- Content based :
 - recommend items similar to the ones the user preferred in the past
- Collaborative filtering:
 - Look at what similar users liked
 - Similar users = Similar likes and dislikes

Collaborative Filtering

- Present each user with a vector of ratings
- Two types:
 - Yes / No
 - Explicit Ratings
- Predict Rating by User-based Nearest Neighbour

Collaborative Filtering for Rating Prediction

- User-based Nearest Neighbour
 - Neighbour = similar users
 - Generate a prediction for an item i by analyzing ratings for i from users in u's neighbourhood

Neighborhood formation phase

- Let the record (or profile) of the target user be \mathbf{u} (represented as a vector), and the record of another user be \mathbf{v} ($\mathbf{v} \ \nabla T$).
- The similarity between the target user, u, and a neighbor, v, can be calculated using the Pearson's correlation coefficient:

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})^2}},$$

Recommendation Phase

 Use the following formula to compute the rating prediction of item i for target user u

$$p(\mathbf{u}, i) = \overline{r}_{\mathbf{u}} + \frac{\sum_{\mathbf{v} \in V} sim(\mathbf{u}, \mathbf{v}) \times (r_{\mathbf{v}, i} - \overline{r}_{\mathbf{v}})}{\sum_{\mathbf{v} \in V} |sim(\mathbf{u}, \mathbf{v})|}$$

where V is the set of k similar users, $r_{\mathbf{v},i}$ is the rating of user \mathbf{v} given to item i,

Issue with the user-based kNN CF

- The problem with the user-based formulation of collaborative filtering is the lack of scalability:
 - it requires the real-time comparison of the target user to all user records in order to generate predictions.
- A variation of this approach that remedies this problem is called item-based CF.

Item-based CF

 The item-based approach works by comparing items based on their pattern of ratings across users. The similarity of items i and j is computed as follows:

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})^2}}$$

Recommendation phase

 After computing the similarity between items we select a set of k most similar items to the target item and generate a predicted value of user u's rating

$$p(\mathbf{u}, i) = \frac{\sum_{j \in J} r_{\mathbf{u}, j} \times sim(i, j)}{\sum_{j \in J} sim(i, j)}$$

where J is the set of k similar items

Thank You