Recursion

- Recursive void Functions
- Recursive Functions that Return a Value
- Thinking Recursively
- Binary Search and Merge Sort

Introduction to Recursion

- C++ allows recursion
 - as do most high-level languages
 - can be useful programming technique
 - has limitations
- Recursion is implemented in functions
- A recursive function
 - a function that calls itself

Recursive Function

- Divide and Conquer
 - break large task into subtasks
 - basic design technique
- Subtasks are smaller versions of the original task!
- Example -- search list for a value
 - Subtask 1: search 1st half of list
 - Subtask 2: search 2nd half of list
 - Subtasks are smaller versions of original task
- recursive function can be used.
 - Usually results in "elegant" solution

Recursive void Function: Vertical Numbers

- Task: display digits of integer vertically, one per line
- Example call:

```
writeVertical(1234);
```

Produces output:

1

2

3

4

Vertical Numbers: Recursive Definition

- Break problem into two cases
- Simple/base case: if n < 10
 - -- simply output n to screen
- Recursive case: if n >= 10, two subtasks:
 - 1) output all digits except last digit smaller subtask
 - 2) output last digit smaller subtask
- Example: argument 1234:
 - 1st subtask displays 1, 2, 3 vertically
 - 2nd subtask displays 4

writeVertical Function Definition

```
void writeVertical(int n)
   if (n < 10) //Base case
       cout << n << endl;</pre>
   else //Recursive step
       writeVertical (n / 10);
       // call itself on smaller argument!
       cout << (n % 10) << endl;</pre>
```

writeVertical Trace

• Example call:

- Altogether, calling writeVertical three times
- Notice first two calls call again (recursive)
- Last call on argument (1) displays, "ends" the series of calls, and starts "backtracking"

Recursion—A Closer Look

- Computer tracks recursive calls
 - Stops current function
 - Must know results of new recursive call before proceeding
 - Saves all information needed for current call
 - To be used later
 - Proceeds with evaluation of new recursive call
 - When THAT call is complete, returns to "outer" computation/statements

Recursion Big Picture

- Outline of successful recursive function:
 - One or more cases where function accomplishes its task by:
 - making one or more recursive calls to solve smaller versions of original task
 - called "recursive case(s)"
 - One or more cases where function accomplishes its task without recursive calls
 - Called "base case(s)" or stopping case(s)

Infinite Recursion

- Base case MUST eventually be entered
- If it doesn't → infinite recursion
 - recursive calls never end!
- Recall writeVertical example:
 - base case happened when down to 1-digit number
 - that's when recursion stopped

Infinite Recursion Example

Consider alternate function definition:

```
void newWriteVertical (int n)
{
    newWriteVertical (n / 10);
    cout << (n % 10) << endl;
}</pre>
```

- Seems "reasonable", but missing "base case"!
- Recursion never stops

Stacks for Recursion

- A stack
 - specialized memory structure
 - like stack of paper
 - Place new on top
 - Remove when needed from top
 - called "last-in/first-out" memory structure
- Recursion uses stacks
 - each recursive call placed on stack
 - when one completes, last call is removed from stack

Stack Overflow

- Size of stack limited
 - memory is finite
- Long chain of recursive calls continually adds to stack
 - all are added before base case causes removals
- If stack attempts to grow beyond limit:
 - stack overflow error
- Infinite recursion always causes this

Recursion Versus Iteration

- Recursion not always "necessary"
- Any task accomplished with recursion can also be done without it
 - non-recursive, also called iterative -- using loops
- Recursive:
 - Runs slower, uses more storage
 - Elegant solution; less coding

Recursive Functions that Return a Value

- Recursion not limited to void functions
- Can return value of any type
- Same technique, outline:
 - One+ cases where value returned is computed by recursive calls
 - Should be "smaller" sub-problems
 - 2. One+ cases where value returned is computed without recursive calls
 - Base case

Return a Value Recursion Example: Powers

Recall predefined function pow :

```
result = pow(2.0, 3.0);
```

- returns 2 raised to power 3 (8.0)
- takes two double arguments
- returns double value
- Let's define a similar function recursively
 - integer arguments, not double
 - negative exponent not considered

Function Definition for power()

```
// precondition: n >= 0
int power(int x, int n)
{
   if (n == 0)
      return 1;
   else
      return power(x, n-1) * x;
}
```

Calling Function power ()

Example calls:

value 1 multiplied by 2, then returned to original call

Calling Function power ()

Larger example call:

- reaches base case
- recursion stops
- values "returned back" up stack
- See next slide for tracing the function call

Evaluating the Recursive Function Call power(2,3) Display 13.4

SEQUENCE OF RECURSIVE CALLS

HOW THE FINAL VALUE IS COMPUTED

Thinking Recursively

When designing recursive solution:

- Ignore details
 - forget how stack works
 - forget the suspended computations
 - yes, this is an "abstraction" principle!
 - and encapsulation principle!
- Programmer just think "big picture"
 - Let computer do "bookkeeping"

Thinking Recursively: power

- Consider power function again
- To calculate x^n : $x^n \times x^n \times$
- suppose xⁿ⁻¹ is computed, how to compute xⁿ?
 - In other words, how to go from the smaller subtask to the original one?
 - Easy! $x^{n-1} * x$
- And ensure base case will be met

Recursive Design Techniques

- Don't trace entire recursive sequence!
- Just check 3 properties:
 - 1. no infinite recursion
 - at least one base case
 - the size of the argument is smaller in the recursive call
 - 2. stopping/base case(s) return correct value(s)
 - 3. recursive case(s) return correct value(s)

Recursive Design Check: power ()

- Check **power()** against 3 properties:
 - 1. No infinite recursion:
 - 2nd argument decreases by 1 each call
 - Eventually must get to base case of 1
 - 2. Stopping case returns correct value:
 - power(x,0) is base case
 - Returns 1, which is correct for x⁰
 - 3. Recursive calls correct:
 - For n>1, power(x, n) returns power(x, n-1) * x
 - Plug in values → correct

Binary Search

- Recursive function to search array
 - determines IF item is in list, and if so:
 - where in list it is
- Assumes array is sorted
- Breaks list in half
 - determines if item in 1st or 2nd half
 - then searches again just that half
 - Recursively (of course)!

```
int a[Some_Size_Value];
ALGORITHM TO SEARCH a[first] THROUGH a[last]
 //Precondition:
 //a[first]<= a[first + 1] <= a[first + 2] <=... <= a[last]
TO LOCATE THE VALUE KEY:
 if (first > last) //A stopping case
     found = false;
 else
     mid = approximate midpoint between first and last;
     if (key == a[mid]) //A stopping case
         found = false; true
         location = mid;
     else if key < a[mid] //A case with recursion
         search a[first] through a[mid - 1];
     else if key > a[mid] //A case with recursion
         search a[mid + 1] through a[last];
```

Checking the Recursion

- Check binary search against criteria:
 - 1. No infinite recursion:
 - Each call increases first or decreases last
 - Eventually first will be greater than last
 - 2. Stopping cases perform correct action:
 - If first > last → no elements between them, so key can't be there!
 - if key == a[mid] → correctly found!
 - 3. Recursive calls perform correct action
 - If key < a[mid] → key in 1st half correct call
 - If key > a[mid] → key in 2nd half correct call

Efficiency of Binary Search

- Compared with linear search, binary search is very efficient (But it requires that the list is sorted!)
- Half of array eliminated at start!
 - Then a quarter, then 1/8, etc
 - Essentially eliminate half with each call
- Example:
 - Array of 100 elements (problem size n = 100)
 - Binary search never needs more than 7 compares!
 - Logarithmic efficiency (log n)

Efficiency of Algorithms

- time efficiency and space efficiency
- How can we measure how long it takes for an algorithm to solve a problem of a certain size?
 - Usually we measure the number of critical steps needed based on the <u>problem size n</u>, which can be expressed as a function on n: f(n)
 - Usually, we investigate the algorithm efficiency in the worst case scenario. That is, we seek a function f(n) to describe the time efficiency of an algorithm when the algorithm is used to solve a problem in the worst case.
 - Our major concern is when problem size n gets large, whether or not the algorithm is workable on the problem

Efficiency of Algorithms (cont)

 We use a series of reference functions in terms of big O notation to measure the efficiency of individual algorithms

Function	Name of function
O (1)	constant
O (log n)	logarithmic
O (n)	linear
O (n log n)	linearithmic
O (n ²)	quadratic
$O(n^c); c > 1$	polynomial
O (2 ⁿ)	exponential
O (n!)	factorial
O (n ⁿ)	n to the n

 A description of a function in terms of big O notation provides an upper bound on the growth rate of the function

Other Recursive Algorithms

Exercises on Recursion ...

Now, let's check out another recursive algorithm:

merge sort

(Quick sort is also recursive, and usually it is very fast.)