To see that the *Perfect Assembly* problem is in NP we use the sequence forming the perfect assembly as the certificate. It is easy to check that a given sequence forms a perfect assembly.

To show that the problem is NP-complete, we show that $Hamiltonian\ Path \leq_P\ Perfect\ Assembly$. Given an arbitrary instance of the $Hamiltonian\ Path$ problem G=(V,E), we use $\ell=1$ and use 2 letters v_{in} and v_{out} for each node v in G. The set S of required sequences will be $S=\{v_{in}v_{out}\ for\ all\ v\in V\}$, so a perfect assembly corresponds to ordering the nodes of the graph G. We set T of possible corroborating strings will correspond to edges of E. Let $T=\{v_{out}w_{in}\ for\ edges\ (v,w)\in E\}$. We claim that this instance of $Perfect\ Assembly$ is equivalent to the original $Hamiltonian\ Path$ problem. To prove this assume first that G=(V,E) has a Hamiltonian Path. Order the pairs in S in the order the path traverses the corresponding nodes. This forms a perfect assembly as the edges (v,w) of the path provide the necessary corroborating sequences in T. To see the other direction, assume there is a perfect assembly of S. This ordering of S corresponds to an ordering of the nodes on G, and the ordering is a Hamiltonian path in G, as whenever a node v is followed by a node v in the ordering, by the definition of perfect assembly the sequence $v_{in}v_{out}w_{in}w_{out}$ must be corroborated by a sequence $v_{out}w_{in}$ in T, and hence (v,w) must be an edge of G.

 $^{^{1}}$ ex47.725.856