CS 5158/6058 Data Security and Privacy, Spring 2018 Homework 3

Instructor: Dr. Boyang Wang

Due Date: 02/27/2018 (Tuesday), 11:59pm.

Format: Please submit a pdf of your homework in Blackboard.

Total Points: 6 points

Problem 1 (C5158 only, 1 point). Explain the difference among ciphertext-only attacks, know-plaintext attacks, and chosen-plaintext attacks.

Problem 1 (CS6058 only, 1 point). Describe the details of the security game for Chosen-Plaintext Attacks (CPA), and formally explain what is CPA-security.

Problem 2 (1 point). Describe what is a function family and what is a keyed function. Explain what is a Pseudo Random Function.

Problem 3 (1 point). Assume we have a PRG $G: \{0,1\}^n \to \{0,1\}^{2n}$, and given n=2, we define this PRG as follows:

If we use GGM method to build a PRF $F : \{0,1\}^m \to \{0,1\}^n$ based on this PRG G, where the input of this PRF is $x_1x_2x_3x_4x_5 = 01101$ and key k = 01, then what is the output of $F_k(x_1x_2x_3x_4x_5) = ??$.

Problem 4 (1 point). Given a message m = 10011111100 and a key k = 01, if initialization vector IV = 10 and each block has 2 bits,

- what is the ciphertext of this message if we encrypt it with ECB mode?
- what is the ciphertext of this message if we encrypt it with CBC mode?

The PRF/PRP used in this block cipher is described as below.

$$\begin{array}{c|ccccc} x & 00 & 01 & 10 & 11 \\ \hline k = 00, F_k(x) & 10 & 00 & 11 & 01 \\ k = 01, F_k(x) & 00 & 11 & 01 & 10 \\ k = 10, F_k(x) & 11 & 01 & 10 & 00 \\ k = 11, F_k(x) & 01 & 10 & 00 & 11 \end{array}$$

Problem 5 (1 point). Given a ciphertext c = (IV, 100111110011) and a key k = 10, if initialization vector IV = 100 and each block has 3 bits,

- what is the message of this ciphertext if we decrypt it with CBC mode?

- what is the message of this ciphertext if we decrypt it with OFB mode?

The PRF/PRP used in this block cipher is described as below.

	000							
$k = 00, F_k(x)$								
$k = 01, F_k(x)$								
$k = 10, F_k(x)$								
$k = 11, F_k(x)$	111	101	000	001	100	110	011	010

Problem 6 (1 point). Given a message m = 101110, a key $k_1 = 10$ for encryption and a key $k_2 = 00$ for message authentication, assume each block has 3 bits and a random initialization vector IV = 101,

- compute a ciphertext and its tag using the Encrypt-then-Authenticate approach
- also explain why other approaches, such as Encrypt-and-Authenticate and Authenticate-then-Encrypt,
 are not suitable to protect both data privacy and message authentication.

The encryption algorithm uses CBC mode and the Mac generation algorithm also uses CBC mode. When we compute a tag for a ciphertext, we assume that the initialization vector IV is a part of a ciphertext. The PRF/PRP used in this block cipher is described as below.

	000					l .		
$k = 00, F_k(x)$								
$k = 01, F_k(x)$								
$k = 10, F_k(x)$								
$k = 11, F_k(x)$	111	101	000	001	100	110	011	010