

US military R-1490 receiver high voltage DC-DC module
replacement/rebuild

R-1490 original 125V DCDC converter waveforms
30-May-2011, Virgil Cheng, vr2xgm

Photos- Original R-1490 inverter module, courtesy Valter Corda IZONHT

Dimension original R-1490 inverter module, , courtesy Valter Corda IZONHT

**R-1490 125V DCDC converter rebuilt
28-Jun-2016, Virgil Cheng, vr2xgm**

Schematic, resonant push-pull converter, rev 0.0

This in fact is more complicated than original two transistor circuit, I took this opportunity to experiment with prior-art resonant push-pull topology, its soft-switching characteristic gives good noise performance

PCB, resonant push-pull converter, Rev. 0.0

Laminate: FR4, 1.6mm, 2 Oz Cu
Dim: W29mm, L56.3mm

Bill of material, resonant push-pull converter

Legend	Description
C1	Cap, ceramic, 10n, 50V, 5%, X7R, 0603
C2	Cap, ceramic, 100n, 25V, 10%, X7R, 0603
C3	Cap, ceramic, 10n, 25V, 5%, X7R, 0603
C4	Cap, ceramic, 100n, 25V, 10%, X7R, 0603
C5	Cap, ceramic, 100n, 25V, 10%, X7R, 0603
C6	Cap, ceramic, 10u, 25V, 10%, X5R, 1206
C7	Cap, ceramic, 10u, 25V, 10%, X5R, 1206
C8	Cap, ceramic, 3u3, 25V, 10%, X7R, 1206
C9	Cap, ceramic, 2n2, 25V, 5%, X7R, 0603
C10	Cap, ceramic, 2n2, 25V, 5%, X7R, 0603
C11	Cap, Elec, 10uF, 160V, 105C
C12	Not populated
C13	Cap, ceramic, 100n, 200V, 10%, X7R, 1206
C14	Cap, ceramic, 100n, 25V, 10%, X7R, 0603
C15	Cap, ceramic, 100n, 200V, 10%, X7R, 1206
C16	Cap, ceramic, 330p, 200V, 10%, COG, 0805
D1	Diode , Ultrafast, 1A, 200V, SMA, US1D
D2	Diode , Ultrafast, 1A, 200V, SMA, US1D
D3	Diode , Ultrafast, 1A, 200V, SMA, US1D
D4	Diode , Ultrafast, 1A, 200V, SMA, US1D
D5	Diode, Zener, 56V, SOT-23, BZX84C56
D6	Diode, Zener, 68V, SOT-23, BZX84C68

Bill of material, resonant push-pull converter

Legend	Description
J1	Header , 2pin, 0.1", Molex 6410 series
J2	Header , 3pin, 0.1", Molex 6410 series
L1	Choke, 2mH, EE-13, thru hole
Q1	MOSFET-N, Dual, 60V, 3A5, 0R1, SO-8, FDS9945
Q2	MOSFET-N, 200V 0A4, 3R, SOT-89, BSS87
R1	Res, CF, 1K5, 5%, 0W125, 0603
R2	Res, CF, 56K, 5%, 0W125, 0603
R3	Res, CF, 22K, 5%, 0W125, 0603
R4	Res, CF, 100R, 5%, 0W125, 0603
R5	Res, CF, 100R, 5%, 0W125, 0603
R6	Res, CF, 4R7, 5%, 0W25, 1206
R7	Res, CF, 4R7, 5%, 0W25, 1206
R8	Res, CF, 100R, 5%, 0W25, 1206
R9	Res, CF, 100R, 5%, 0W25, 1206
R10	Not populated
R11	Res, CF, 0R, 5%, 0W25, 1206
R12	Res, CF, 22K, 5%, 0W125, 0603
T1	Transformer, PQ2620, 62Tx2:560T
U1	Regulator, Linear, 3T, LDO, SOT-89, L78L12ACUTR
U2	IC, PWM, UCC28089

Summary transformer T1

Core geometry	PQ2620	
Core material	Ferroxcube 3F3 or similar	
Gap	None	
Primary	62+62T Bifilar, ϕ 0.17mm, double coat	
Pri-Sec Faraday shield	1T, 25um Cu	
Secondary	560T, ϕ 0.13mm, double coat	
Finish	Varnish dip	
Inductance primary	18mH typical	
Leakage inductance	20uH typical, sec short, primary open	
DC resistance primary	2.5Ω typ.	
DC resistance secondary	42.1Ω typ.	
Breakdown test	Pri-sec 300V AC	

Steel is more suitable than ferrite for 4.5KHz switching frequency, requires large number of turns for flux density criteria, only reason is core/bobbin availability and windings can still fit bobbin

Transformer Cross-section

Transformer pinout, bottom view

Transformer

Summary Inductor L1

Core geometry	EE13/6/6	
Core material	Ferroxcube 3F3 or similar	
Gap	0.06mm side limbs	
Primary	100T, $\phi 0.21\text{mm}$	
Pri-Sec Faraday shield	N/A	
Secondary	N/A	
Finish	Varnish dip	
Inductance primary	2mH typ.	
Leakage inductance	N/A	
DC resistance primary	0.6Ω typ.	
DC resistance secondary	N/A	
Breakdown test	N/A	

Inductor Cross-section

Inductor pinout, bottom view

Breadboard

Debugging: Linear regulator parasitic oscillation suppression

Q2 fails easily when output shorts. Depopulate Q2,D5,D6,R12,C16 and connect Drain/Source pad of Q2 if improved regulation is not needed

First prototype

Waveform, switching, no load

Waveform, switching, no load

Adjust snubber capacitor C9/C10 for reduced ringing

Adjust deadtime by trimming R1 for best zero voltage switching

Waveform, switching, no load

Waveform, switching, no load

Waveform, switching, 5mA

Waveform, switching, 5mA

Waveform, switching, 5mA

Waveform, switching, 5mA

Waveform, switching, 125.9V 5mA

Waveform, switching, 5mA

Waveform, output ripple/noise, 120.1V. 24KΩ resistive load, 5mA

Waveform, output ripple/noise, 120.1V. 24KΩ resistive load, 5mA

Loaded data

Input		Output		Power		Eff
Voltage	Current	Voltage	Current	Input	Output	
VDC	ADC	VDC	ADC	W	W	
15.0690	1.77E-02	120.4	0.000	2.67E-01	0	0.000
15.0371	2.36E-02	120.1	0.001	3.55E-01	0.1201	0.338
15.0013	2.98E-02	120.1	0.002	4.47E-01	0.2402	0.537
14.9311	4.22E-02	119.8	0.003	6.31E-01	0.3594	0.570
14.8958	4.85E-02	119.6	0.004	7.22E-01	0.4784	0.663
14.8606	5.47E-02	119.6	0.005	8.13E-01	0.598	0.736
14.7903	6.71E-02	119.4	0.006	9.92E-01	0.7164	0.722
14.7558	7.39E-02	119.3	0.007	1.09E+00	0.8351	0.766
14.7185	7.95E-02	119.3	0.008	1.17E+00	0.9544	0.816
14.6400	9.25E-02	119.3	0.009	1.35E+00	1.0737	0.792
14.6082	9.81E-02	119.2	0.010	1.43E+00	1.192	0.832

Mount on an Aluminum bracket using double sided tape

Mount and tested on PSU module, clearance a little critical,

Summary:

- Receiver functions normally after retrofitting with new HV inverter.
- Didn't give much thought on connector locations, could be further improved
- Additional cutouts on mounting bracket will improve ease of connector entry.
- A low level audible noise still noticeable, transformer needs more aggressive potting

Receiver specific issues:

- SN:466 PSU E-cap socket has intermittent contact problem, needs repair.

Side by side with original module

PCB mounted on new bracket

Reference materials

C:\Users\Virgil\rive\Documents\D

**Sch/PCB file
Protel99 format**

Adobe Acrobat Document

**Schematic
printout**

Adobe Acrobat Document

**PCB artwork
printout**

C:\Users\Virgil\rive\Documents\D

PCB CAM files

Adobe Acrobat Document

US patent 4,959,765

US patent 4,959,765, DC TO DC CONVERTER USING QUASI-RESONANCE, Alan Weinberg, Sassenheim, Netherlands, Agence Spatiale Europeenne, France, Sep. 25, 1990