1/6 Eberhard Jacob et al

2/6 Eberhard Jacob etal

3/6 Eberhard Jacob et al

5/6

Ebe	rhard	Jacob
Vari -ant	e	tal

FIG. 9

er				P-Cat	P-Cat * (15)					PN	M-Separator (16)	ator (16)			
√ Vari	Fig.	Dimension	Cellular	Vol-	Channel	Aspect	Platinum	ਭ	No.	Dimension	Cellular	٧٥	Channel	Aspect	ESC	ETC
ant -		(mm)	Structure	ume	Velocity	Ratio	Coating	<u></u>		(mm)	Struc-	ume	Velocity	Ratio	*	*
		Ø × I	(cpsi)	3	KG (m/sec)	AR I/Øeff	(9/1) (9)	9		Ø ×	ture (cpsi)	3	KG (m/sec)	I/Ø _{ef}	%	%
_	1,2	220 x 101,5	200	4,0	9,3	0,46	1,41	5,6	4	150 x 150	200	10,6	5,9	0,50	55	50
2	1,2	220 x 101,5	200	4,0	9,3	0,46	1,41	5,6	4	150 x 225	200	15,9	5,9	0,75	70	71
ω	1,2	220 x 101,5	200	4,0	9,3	0,46	1,41	5,6	4	150 x 300	200	21,2	5,9	1,00	82	79
4	3,4	220 x 101,5	200	4,0	9,3	0,46	1,41	5,6	ယ	150 x 150	200	8,0	7,9	0,58	55	53
21	3,4	200 x 101,5	200	3,1	9,3	0,51	1,41	4,4	ယ	150 x 150	200	8,0	7,9	0,58	56	52
6	5,6	200 x 101,5	200	3,1	9,3	0,51	1,41	4,4	_	254 x 150	200	7,5	8,2	0,59	55	52
7	7,8	200 x 101,5	200	კ <u>.</u> 1	9,3	0,51	1,41	4,4	_	220 x 150	200	5,7	11	0,68	54	52
8	7,8	200 x 101,5	160	<u>3</u> ,1	9,3	0,51	1,25	3,9	_	220 x 150	200	5,7	11	0,68	54	52
9	7,8	200 x 101,5	160	კ. 1	9,3	0,51	1,25	3,9		220 x 150	160	5,7	11	0,68	53 -	51
10	7,8	180 x 101,5	160	2,6	14	0,56	1,04 2,7	2,7		220 x 150	160	5,7	1	0,68	52	51

⁼ platinum coated

All data pertaining to the channel velocity KG and conversion relate to a maximum exhaust gas volume flow of 1200 Nm³/h at a raw particle emission of the exhaust gas delivered by the test diesel engine of approximately 40mg/KWh with the ESC test and approximately 50mg/KWh with the ETC test. overall entry surface assuming a circular surface and the resulting diameter. Øeff = diameter effective at inlet of the round entry surface of a P-cat 15 and a PM separator 16 (if only one is used) or for more PM separators 16 their

Best mode = Variant 3

⁼ european steady state cycle (ESC)

european transient cycle (ETC)

Celle Eberhard Jacob et al

