NAGARAJ SIDDESHWAR SOUMOJIT BOSE DATE – 26th FEB 2018

#### HW<sub>5</sub>

**Goal:** The goal of this lab is to get a hands-on experience to analyse how parameters affect the various impedance features of a Differential pair of a Microstrip and Stripline. Tool used is Hyperlynx.

Plan: The plan is to theoretically anticipate the various impedance features theoretically and apply the same to 2D Field Solver.

## Design a tightly coupled 100 Ohm microstrip differential pair, with 5 mil wide trace. Adjust the dielectric thickness



| Coupling                          | Trace width (mil) | Zsingle(onm) | Comment                                                                                                                 |  |
|-----------------------------------|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Tight                             | 5                 | 56.4         | As per the above figure, Single ended impedance Zsingle=56.4 ohm nearly equal to half of Differential                   |  |
|                                   |                   |              | Impedance (Zdiff) of 100 ohms. Also, Odd mode impedance (Zodd) is theoretically half of Zdiff, its observed             |  |
|                                   |                   |              | that Zodd = 50 ohm. By theory, Common mode impedance (Zcomm) is defined as impedance between the                        |  |
|                                   |                   |              | two lines when the line pair is driven with common mode signal. Even mode Impedance (Zeven) is defined by               |  |
|                                   |                   |              | the impedance of a single transmission line when the pair is driven by a common mode signal. So, Zdiff=2Zodd            |  |
|                                   |                   |              | and Zcomm=0.5*Zeven. Since, the <b>fringe lines</b> across the Differential pair is greater than Common signal pair,    |  |
|                                   |                   |              | displacement current across the Differential pair is greater than Common signal pair. Hence, <b>Zeven&gt;Zodd</b> , but |  |
|                                   |                   |              | definitely lesser than Zdiff which can be verified by the below figure. However, loss is greater in tight coupling      |  |
|                                   |                   |              | compared to other coupling as width is narrower; advantages being low cost and high interconnect density.               |  |
| Innedance and Termination Summary |                   |              |                                                                                                                         |  |

Differential Z = 99.9 ohas
(suggested single line-to-line resistor for differential signals; works best for opposed, balanced transitions)
Odd-mode Z = 50.0 ohas

Common-mode Z = 31.5 ohas
Even-mode Z = 62.9 ohas
(suggested single line-to-ground resistor for common-mode signals; works best for all-1's or all-0's transitions)

Line-to-ground Z = 56.4 ohas

# Now make the pair loosely coupled. What line width is needed to make it 100 Ohms.



## **HIGH SPEED DIGITAL DESIGN**

NAGARAJ SIDDESHWAR SOUMOJIT BOSE DATE – 26th FEB 2018

#### HW<sub>5</sub>



| Coupling  | Trace width (mil) | Zsingle (ohm) | Comment                                                                                                                  |
|-----------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|
| Uncoupled | 6.05              | 51            | If the separation is blindly increased from the above condition (tight coupling), Zdiff would be more than 100           |
|           |                   |               | ohms. So, to compensate, trace is made wider. As per the above figure, Single ended impedance Zsingle=51                 |
|           |                   |               | ohm nearly equal to half of Differential Impedance (Zdiff) of 100 ohms. Due to increase in trace width, Zsingle          |
|           |                   |               | is lesser than the corresponding value in loose coupling. Since spacing is increased, Zeven decreases as the             |
|           |                   |               | common mode fringe field interference decresases (hence, displacement current increases); so does Zcomm.                 |
|           |                   |               | Zodd is theoretically half of Zdiff, its observed that Zodd = 50 ohm. Also, <b>Zeven&gt;Zodd</b> , but definitely lesser |
|           |                   |               | than Zdiff which can be verified by the figure. All the above discussed ideas are valid from above figures.              |

# Repeat for stripline diff pairs.



## **HIGH SPEED DIGITAL DESIGN**

**NAGARAJ SIDDESHWAR** SOUMOJIT BOSE **DATE - 26th FEB 2018** 

#### HW<sub>5</sub>





| Coupling | Trace width (mil) | Zsingle (ohm) | Comment                                                                                                                  |
|----------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|
| Loose    | 6                 | 55.6          | If the separation is blindly increased from the above condition (tight coupling), Zdiff would be more than 100           |
|          |                   |               | ohms. So, to compensate, trace is made wider. In case of As per the above figure, Single ended impedance                 |
|          |                   |               | Zsingle=55.6 ohm nearly equal to half of Differential Impedance (Zdiff) of 100 ohms. Due to increase in trace            |
|          |                   |               | width, Zsingle is lesser than the corresponding value in tight coupling. Since spacing is increased, Dielectric          |
|          |                   |               | thickness needs to be reduced to retain the Differential Impedance of 100 ohm. Zeven decreases as the                    |
|          |                   |               | common mode fringe field interference decresases (hence, displacement current increases); so does Zcomm.                 |
|          |                   |               | Zodd is theoretically half of Zdiff, its observed that Zodd = 50 ohm. Also, <b>Zeven&gt;Zodd</b> , but definitely lesser |
|          |                   |               | than Zdiff which can be verified by the figure. All the above discussed ideas are valid from above figures.              |

## **Uncoupled condition:**



Differential Z = 99.9 ohms
(suggested single line-to-line resistor for differential signals;
works best for opposed, balanced transitions)
Odd-mode Z = 49.9 ohms

Common-mode Z = 26.8 ohms Even-mode Z = 53.6 ohms (suggested single line-to-ground resistor for common-mode signals; works best for all-1's or all-0's transitions)

Line-to-ground Z = 51.8 ohms (suggested single line-to-ground resistor for independent signals; works best for mixed 1's and 0's transitions)

| Coupling  | Trace width (mil) | Zsingle (ohm) | Comment                                                                                                                  |
|-----------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------|
| Uncoupled | 6                 | 51.8          | If the separation is blindly increased from the above condition (tight coupling), Zdiff would be more than 100           |
|           |                   |               | ohms. So, to compensate, trace is made wider. As per the above figure, Single ended impedance Zsingle=52.2               |
|           |                   |               | ohm nearly equal to half of Differential Impedance (Zdiff) of 100 ohms. Due to increase in trace width, Zsingle          |
|           |                   |               | is lesser than the corresponding value in loose coupling. Since spacing is increased, Dielectric thickness needs         |
|           |                   |               | to be reduced to retain the Differential Impedance of 100 ohm . Since spacing is increased, Zeven decreases              |
|           |                   |               | as the common mode fringe field interference decresases (hence, displacement current increases); so does                 |
|           |                   |               | Zcomm. Zodd is theoretically half of Zdiff, its observed that Zodd = 50 ohm. Also, <b>Zeven&gt;Zodd</b> , but definitely |
|           |                   |               | lesser than Zdiff which can be verified by the figure. All the above discussed ideas are valid from above figures.       |

## **HIGH SPEED DIGITAL DESIGN**

NAGARAJ SIDDESHWAR SOUMOJIT BOSE DATE – 26th FEB 2018

HW5

# **Conclusions/ Lessons Learnt:**

- 1. In any case, Zdiff > Zeven>Zodd
- 2. Tight coupling should be the first approach as it gives more dielectric thickness, low cost and more interconnect density; the downside being more conductor loss due to narrow width
- 3. As separation increases compared to trace width, Differential Impedance increases and Even mode impedance decreases. So configure the parameters accurately
- 4. Its not a good idea to decrease the dielectric thickness to get lower impedance as this leads to higher fabrication cost