STA 437/2005: Methods for Multivariate Data

Week 9: Non-linear Dimension Reduction Techniques

Piotr Zwiernik

University of Toronto

Why Principal Component Analysis may not be enough?

Why go beyond PCA?

PCA captures variance through linear projections but struggles with:

- ► Non-linear relationships.
- Complex manifolds.

We explore MDS, UMAP and its relationship with PCA.

Multi-dimensional Scaling (MDS)

Problem Setup

Consider a dissimilarity matrix $\Delta = (\delta_{ij}) \in \mathbb{R}^{n \times n}$: $\delta_{ii} = 0$ for all $i, \delta_{ij} \geq 0$ for all $i \neq j$.

In classical MDS: there exist $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^m$ such that $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$.

In general we have n objects and δ_{ij} is a measure of their dissimilarity (small if similar). There need not a Euclidean distance defining this metric.

Classical MDS: $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$

Classical MDS: $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$

If $\delta_{ij} = \|\mathbf{x}_i - \mathbf{x}_j\|$, we have:

$$\delta_{ij}^2 = (\mathbf{x}_i - \mathbf{x}_j)^\top (\mathbf{x}_i - \mathbf{x}_j) = (\mathbf{X}\mathbf{X}^\top)_{i,i} + (\mathbf{X}\mathbf{X}^\top)_{j,j} - 2(\mathbf{X}\mathbf{X}^\top)_{i,j}.$$

The Hadamard product $\Delta \odot \Delta = [\delta_{ii}^2]$ can be written as:

$$\Delta \odot \Delta = \mathrm{diag}(\boldsymbol{X}\boldsymbol{X}^\top)\boldsymbol{1}\boldsymbol{1}^\top + \boldsymbol{1}\boldsymbol{1}^\top\mathrm{diag}(\boldsymbol{X}\boldsymbol{X}^\top) - 2\boldsymbol{X}\boldsymbol{X}^\top$$

Reintroducing the centering matrix $H = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$, we obtain

$$B := -\frac{1}{2}H(\Delta \odot \Delta)H = H\mathbf{X}(H\mathbf{X})^{\top} = \tilde{\mathbf{X}}\tilde{\mathbf{X}}^{\top}.$$

This matrix contains all inner products $\langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \rangle$.

Centering the Distance Matrix

$$H = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$$
$$B = -\frac{1}{2} H(\Delta \odot \Delta) H$$

Eigen-decomposition for Dimensionality Reduction

$$B = V \Lambda V^{\top}$$
$$\mathbf{Y} = U_d \Lambda_d^{1/2}$$

 U_d : top d eigenvectors. Λ_d : top d eigenvalues.

Duality Between MDS and PCA

Classical MDS and PCA are closely connected. Here is the key insight:

- **PCA**: Finds principal components from the eigenvectors of $(HX)^T HX$.
- ▶ **MDS**: Finds embeddings from the eigenvectors of $HX(HX)^{\top}$.

Both methods rely on the singular value decomposition (SVD) of HX.

Detailed Explanation of Duality

Singular Value Decomposition (SVD):

$$H\mathbf{X} = U\tilde{\Lambda}^{1/2}V^{\top}$$

- ▶ MDS uses U (left singular vectors) and $\tilde{\Lambda}$ (singular values).
- ▶ PCA uses V (right singular vectors) and $\tilde{\Lambda}$ (singular values).

This shows that MDS and PCA are dual methods, analyzing complementary covariance structures.

Key Result

Theorem: Classical MDS on distances is equivalent to PCA on the centered data matrix.

$$H\mathbf{X}(H\mathbf{X})^{\top} = U\tilde{\Lambda}U^{\top}$$

 $(H\mathbf{X})^{\top}H\mathbf{X} = V\tilde{\Lambda}V^{\top}$

Conclusion: The MDS embedding and PCA scores are both derived from HX but use different components of the SVD.