Rermerciements

Les transparents de ce chapitre sont une modification marginale des transparents d'Agathe Guilloux.

Plan du chapitre 1

- Equations linéaires
 - Systèmes d'équations linéaires
 - Opérations élémentaires, équivalence
 - Existence? Unicité?
- Méthode du pivot de Gauss
 - Matrices échelonnées, échelonnée réduite
 - Caractérisation des solutions
 - Existence et unicité des solutions
 - Algorithme du pivot de Gauss
- Équations de vecteurs
 - Combinaison linéaire
 - Espace engendré
- - Produit matriciel

- 3 formes équivalentes pour les systèmes linéaires
- Indépendance linéaire
 - Système homogène
 - Indépendance linéaire de vecteurs
 - Indépendance linéaire des colonnes d'une matrice
 - Cas spéciaux
 - Caractérisation de la dépendance linéaire
- 6 Introduction aux applications linéaires
 - Produit matrice-vecteur
 - Application
 - Application linéaire
- La matrice d'une application linéaire
 - La matrice identité
 - Matrice d'une application linéaire

Equations linéaires :

• Une équation linéaire

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b$$

EXEMPLE:

$$4x_1 - 5x_2 + 2 = x_1 \qquad \text{et} \qquad x_2 = 2(\sqrt{6} - x_1) + x_3$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$réarrangé \qquad \qquad réarrangé$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$3x_1 - 5x_2 = -2 \qquad \qquad 2x_1 + x_2 - x_3 = 2\sqrt{6}$$

Non linéaire

$$4x_1 - 6x_2 = x_1x_2$$
 et $x_2 = 2\sqrt{x_1} - 7$

Définitions

Un système d'équations linéaires ou un système linéaire $\mathcal S$ de m équations à n inconnues :

Une collection de m équations linéaires avec les mêmes n inconnues $x_1, x_2, ..., x_n$.

Une solution d'un système linéaire

Une liste $(s_1, s_2, ..., s_n)$ de nombres qui sont solutions de chaque équation.

EXEMPLES m = 2 équations à n = 2 variables :

$$S_1: \begin{cases} x_1 + x_2 = 10 \\ -x_1 + x_2 = 0 \end{cases}$$
 une unique solution

$$S_2: \begin{cases} x_1 - 2x_2 = -3 \\ 2x_1 - 4x_2 = 8 \end{cases}$$
pas de solution

Proposition

Un système d'équations linéaires a

- (i) exactement une solution ou
- (ii) une infinité de solutions ou
- (iii) pas de solution.

EXEMPLE Trois équations à 3 variables. Chaque équation définit un plan dans l'espace, il y a 3 possibilités :

- i) les plans s'intersectent en un point (solution unique)
- ii) les plans s'intersectent en une ligne (infinité de solutions)
- iii) il n'a pas de point commun aux 3 plans

L'ensemble des solutions d'un système linéaire est

• l'ensemble de toutes les solutions du système.

Systèmes équivalents :

 2 systèmes linéaires sont équivalents quand ils ont le même ensemble de solutions.

Stratégie pour résoudre un système

• Remplacer le système par un système équivalent plus facile à résoudre

EXAMPLE:

$$\begin{cases} x_1 - 2x_2 = -1 \\ -x_1 + 3x_2 = 3 \end{cases} \longrightarrow \begin{cases} x_1 - 2x_2 = -1 \\ x_2 = 2 \end{cases} \longrightarrow \begin{cases} x_1 = 3 \\ x_2 = 2 \end{cases}$$

Notation matricielle

Au système
$$\begin{cases} x_1 - 2x_2 = -1 \\ -x_1 + 3x_2 = 3 \end{cases}$$
 on associe

- la matrice des coefficients $\begin{pmatrix} 1 & -2 \\ -1 & 3 \end{pmatrix}$
- la matrice augmentée $\begin{pmatrix} 1 & -2 & -1 \\ -1 & 3 & 3 \end{pmatrix}$

On peut faire les calculs directement sur la matrice augmentée :

$$\begin{cases} x_1 - 2x_2 = -1 \\ -x_1 + 3x_2 = 3 \end{cases} \longrightarrow \begin{cases} x_1 - 2x_2 = -1 \\ x_2 = 2 \end{cases} \longrightarrow \begin{cases} x_1 = 3 \\ x_2 = 2 \end{cases}$$

$$\begin{pmatrix}1&-2&-1\\-1&3&3\end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix}1&-2&-1\\0&1&2\end{pmatrix} \quad \longrightarrow \quad \begin{pmatrix}1&0&3\\0&1&2\end{pmatrix}$$

Opérations élémentaires, équivalence

Définition : opérations élémentaires sur les lignes

- **①** (Transvection) Ajouter à une ligne le multiple d'une autre : $L_i \leftarrow L_i + \alpha L_j$
- $fence{2}$ (Permutation) Permuter (ou échanger) de deux lignes $L_i \leftrightarrow L_j$.
- **(** *(Dilatation)* Multiplier une ligne par un scalaire $L_i \leftarrow \alpha L_i$.

Définition: matrices lignes-équivalentes

Ce sont deux matrices qui peuvent être obtenues l'une à partir de l'autre par une suite de opérations élémentaires sur les lignes.

Propriété sur l'équivalence en ligne

Si les matrices augmentées de deux systèmes linéaires sont lignes-équivalentes, les deux systèmes ont le même ensemble de solutions

EXEMPLE:

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ -4 & 5 & 9 & -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -3x_2 + 13x_3 = -9 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ -3x_2 + 13x_3 = -9 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & -3 & 13 & -9 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\Rightarrow \begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 = 16 \\ x_3 = 3 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 = 16 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\longrightarrow \begin{cases} x_1 - 2x_2 = -3 \\ x_2 = 16 \\ x_3 = 3 \end{cases} \qquad \begin{pmatrix} 1 & -2 & 0 & -3 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

$$\longrightarrow \begin{cases} x_1 = 29 \\ x_2 = 16 \\ x_3 = 3 \end{cases} \qquad \begin{pmatrix} 1 & 0 & 0 & 29 \\ 0 & 1 & 0 & 16 \\ 0 & 0 & 1 & 3 \end{pmatrix}$$

Solution: (29, 16, 3)

Check : Est ce que (29,16,3) est une solution du système de départ ?

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ 2x_2 - 8x_3 = 8 \\ -4x_1 + 5x_2 + 9x_3 = -9 \end{cases}$$

Deux questions fondamentales : existence et unicité

- Existence : est ce que le système admet ou moins une solution ? Si oui, on dit que le système est consistant.
- Unicité : si une solution existe, est-elle unique?

EXEMPLE: Existence?

$$\begin{cases}
x_1 - 2x_2 + x_3 = 0 \\
2x_2 - 8x_3 = 8 \\
-4x_1 + 5x_2 + 9x_3 = -9
\end{cases}$$

Dans cet exemple, le système a été réduit à une forme triangulaire :

$$\begin{cases} x_1 - 2x_2 + x_3 = 0 \\ x_2 - 4x_3 = 4 \\ x_3 = 3 \end{cases}$$

C'est suffisant pour s'assurer que le système admet une unique solution. Pourquoi?

EXEMPLE: Est ce que ce système admet des solutions?

$$\begin{cases} 2x_2 - 6x_3 = 8 \\ x_1 - 2x_2 + 3x_3 = -1 \\ 5x_1 - 7x_2 + 9x_3 = 0 \end{cases} \begin{pmatrix} 0 & 2 & -6 & 8 \\ 1 & -2 & 3 & -1 \\ 5 & -7 & 9 & 0 \end{pmatrix}$$

Solution:

Les opérations sur les lignes donnent

$$\begin{pmatrix} 0 & 2 & -6 & 8 \\ 1 & -2 & 3 & -1 \\ 5 & -7 & 9 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 \\ 0 & 2 & -6 & 8 \\ 0 & 3 & -6 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 3 & -1 \\ 0 & 2 & -6 & 8 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$

Système obtenu

$$\begin{cases} x_1 - 2x_2 + 3x_3 = -1 \\ 3x_2 - 6x_3 = 8 \\ 0x_3 = -3 \end{cases}$$

• Ce système n'admet pas de solution! Pourquoi? On dit qu'il est inconsistant.

EXAMPLE: Pour quelles valeurs de *h* le système admet des solutions (est consistant)?

$$\begin{cases} 3x_1 - 9x_2 = 4 \\ -2x_1 + 6x_2 = h \end{cases}$$

Solution: Il faut le rendre triangulaire.

$$\begin{pmatrix} 3 & -9 & 4 \\ -2 & 6 & h \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & \frac{4}{3} \\ -2 & 6 & h \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -3 & \frac{4}{3} \\ 0 & 0 & h + \frac{8}{3} \end{pmatrix}$$

La 2ième équation est $0x_1 + 0x_2 = h + \frac{8}{3}$. Le système est donc consistant quand $h + \frac{8}{3} = 0$ ou $h = \frac{-8}{3}$.

Définition: matrice échelonnée

- Toutes les lignes non-nulles sont au-dessus de toute ligne nulle.
- Chaque pivot (c.à.d. la 1ière entrée non-nulle en partant de la gauche) d'une ligne est dans une colonne à droite du pivot de la ligne précédente.
- Toutes les entrées d'une colonne sous un pivot sont nulles.

EXEMPLES: Formes échelonnées

$$\begin{pmatrix} 0 & \blacksquare & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \blacksquare & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \blacksquare & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \blacksquare & * \end{pmatrix}$$

Définition : matrice échelonnée et réduite

- 4 Le coefficient du pivot sur chaque ligne non-nulle est 1.
- 5 Chaque pivot est la seule entrée non-nulle sur sa colonne.

EXEMPLES (suite):

$$\begin{pmatrix} 0 & 1 & * & 0 & 0 & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 1 & 0 & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 1 & * & * & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{pmatrix}$$

Théorème

Chaque matrice est ligne-équivalente à une et seulement une matrice échelonnée et réduite.

EXEMPLE:

$$\begin{pmatrix}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{pmatrix}$$

Solution On commence par échanger les lignes

$$\begin{pmatrix} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & 9 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Matrice originale:

Il y a au plus un pivot par ligne. Il y a au plus un pivot par colonne.

Exercice

Réduire à la forme échelonnée puis à la forme échelonnée réduite :

$$\begin{pmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{pmatrix}$$

Solution (Étape 1)

$$\begin{pmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{pmatrix} \sim \begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix}$$
$$\sim \begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix}$$

On a le 1er pivot. On cache la 1ere ligne et la 1ere colonne (celle du pivot) et on recommence avec la matrice en bas à gauche.

Solution (Étape 2)

$$\begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix} \sim \begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{pmatrix}$$

$$\sim \begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix} \text{ (forme \'echelonn\'ee)}$$

Solution (Étape 3 : finale)

En commençant le pivot le plus à droite, et en remontant par étape,

- on crée des 0 au dessus de chaque pivot.
- Enfin on remet les coefficients des pivots à 1.

$$\begin{pmatrix} 3 & -9 & 12 & -9 & 0 & -9 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix} \sim \begin{pmatrix} 3 & 0 & -6 & 9 & 0 & -72 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix} \text{ (forme \'echelonn\'ee r\'eduite)}$$

Caractérisation des solutions d'un système linéaire

Variable libre / Variable liée

- On appelle variable liée toute variable qui correspond à un pivot.
- On appelle variable libre toutes les variables qui ne sont pas en position de pivot.

EXEMPLE:

La matrice
$$\begin{pmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -8 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{pmatrix}$$
 correspond au système
$$\begin{cases} x_1 + 6x_2 & +3x_4 & =0 \\ x_3 - 8x_4 & =5 \\ x_5 = 7 \end{cases}$$

- les colonnes pivot sont les 1, 3, 5
- les variables liées sont x_1, x_3, x_5
- les variables libres sont x_2, x_4

Étape finale de la résolution

Après avoir obtenu la forme échelonnée réduire,

- on la récrit sous forme d'un système d'équations
- puis on écrit chaque variable liée à partir des variables libres et des constantes

EXEMPLE: Le système
$$\begin{cases} x_1 + 6x_2 & +3x_4 & = 0 \\ x_3 - 8x_4 & = 5 & \text{se récrit} \\ x_5 = 7 & & x_5 = 7 \end{cases} \begin{cases} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ est libre} \\ x_3 = 5 + 8x_4 \\ x_4 \text{ est libre} \\ x_5 = 7 \end{cases}$$

L'ensemble des solutions s'écrit

$$\{(-6x_2-3x_4,x_2,5+8x_4,x_4,7),x_2,x_4\in\mathbb{R}\}$$

EXEMPLE:
$$\begin{cases} 3x_2 - 6x_3 + 6x_4 + 4x_5 = -5 \\ 3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9 \\ -cx_4 + 3x_1 - 9x_2 + 12x_3 + 6x_5 = 15 \end{cases}$$

On avait obtenu la forme échelonnée

$$\begin{pmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{pmatrix}$$

- Il n'y a pas d'équation la forme 0 = c, avec $c \neq 0$, donc le système est consistant
- If y a 2 variables libres x_3 et x_4

 \implies infinité de solutions.

EXEMPLE :
$$\begin{cases} 3x_1 + 4x_2 = -3 \\ 2x_1 + 5x_2 = 5 \end{cases}$$
 On cherche la forme échelonnée
$$-2x_1 - 3x_2 = 1$$

$$\begin{pmatrix} 3 & 4 & -3 \\ 2 & 5 & 5 \\ -2 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & -3 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

On revient au système
$$\begin{cases} 3x_1 + 4x_2 = -3 \\ x_2 = 3 \end{cases}$$

$$\begin{cases} 3x_1 + 4x_2 = -3 \\ x_2 = 3 \end{cases}$$

Système consistant pas de variable libre

 \Longrightarrow solution unique.

Théorème sur l'existence et l'unicité des solutions

• Un système linéaire est consistant (admet des solutions) si et seulement si la matrice augmentée n'a pas de ligne de la forme

$$(0 \dots 0 b)$$

avec $b \neq 0$.

- 2 Si un système linéaire est consistant alors il admet
 - une solution unique (quand il n'y a pas de variable libre) ou
 - une infinité de solutions (quand il y a au moins une variable libre)

Résumé de l'algorithme du pivot de Gauss

- Ecrire la matrice augmentée du système
- Obtenir la forme échelonnée. Puis décider si le système
 - consistant : on passe à l'étape 3
 - ou non : on s'arrête
- Obtenir la forme échelonnée réduite.
- Ecrire le système qui correspond à la forme échelonnée réduite
- Ecrire l'ensemble des solutions en exprimant chaque variable liée à l'aide des variables libres

Vecteurs

Définition : vecteur

Un vecteur est une matrice à une seule colonne. Dans \mathbb{R}^n , les vecteurs ont n entrées :

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \dots \\ u_n \end{pmatrix}$$

EXEMPLE: Dans \mathbb{R}^2 Le vecteur $\binom{x_1}{x_2}$ est le point de coordonnées (x_1, x_2) dans le plan.

 ${\bf R}^2$ est l'ensemble de tous les points sur le plan.

Règle du parallélogramme pour l'addition de 2 vecteurs

Définition : addition de vecteurs

Si ${\bf u}$ et ${\bf v}$ dans ${\bf R}^2$ sont représentés comme des points du plan, alors ${\bf u}+{\bf v}$ correspond au 4ième point du parallélogramme dont les autres points sont ${\bf 0}=\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, ${\bf u}$ et ${\bf v}$.

Opérations sur les vecteurs

Pour tous vecteurs \mathbf{u} , \mathbf{v} et \mathbf{w} dans \mathbf{R}^n et tous réels c et d

- u + v = v + u
- (u + v) + w = u + (v + w)
- u + 0 = u
- **4** u + −u = 0
- $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $oldsymbol{o}$ $c(d\mathbf{u}) = (cd)\mathbf{u}$

Combinaisons linéaires

Définition : combinaison linéaire

Soient les vecteurs $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p$ dans \mathbf{R}^n et des réels c_1,c_2,\ldots,c_p , le vecteur \mathbf{y} défini par

$$\mathbf{y} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_p \mathbf{v}_p$$

est appelé combinaison linéaire de $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ avec les poids c_1, c_2, \dots, c_p .

EXEMPLES: Combinaisons linéaires de \mathbf{v}_1 et \mathbf{v}_2 :

$$3v_1 + 2v_2, \qquad \frac{1}{3}v_1, \qquad v_1 - 2v_2,$$

Soient $\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ et $\mathbf{v}_2 = \begin{pmatrix} -2 \\ 2 \end{pmatrix}$. Exprimer chacun des vecteurs ci-dessous comme combinaison linéaire de \mathbf{v}_1 et \mathbf{v}_2 : $\mathbf{a} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}, \, \mathbf{b} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}, \, \mathbf{c} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}, \, \, \mathbf{d} = \begin{pmatrix} 7 \\ -4 \end{pmatrix}$

Exercice

Soient
$$\mathbf{a}_1 = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$$
, $\mathbf{a}_2 = \begin{pmatrix} 4 \\ 2 \\ 14 \end{pmatrix}$, $\mathbf{a}_3 = \begin{pmatrix} 3 \\ 6 \\ 10 \end{pmatrix}$, et $\mathbf{b} = \begin{pmatrix} -1 \\ 8 \\ -5 \end{pmatrix}$.

Est-ce que **b** est une combinaison linéaire a_1 , a_2 , et a_3 ?

Solution : D'après la définition, le vecteur \mathbf{b} est une combinaison linéaire de \mathbf{a}_1 , \mathbf{a}_2 , et \mathbf{a}_3 si nous pouvons trouver des réels x_1, x_2, x_3 tels que

$$x_1 \mathbf{a}_1 + x_2 \mathbf{a}_2 + x_3 \mathbf{a}_3 = \mathbf{b}.$$

Équations de vecteurs et systèmes linéaires

Dans l'exercice précédent, a_1 , a_2 , a_3 et b sont les colonnes de la matrice augmentée

$$\begin{bmatrix} 1 & 4 & 3 & -1 \\ 0 & 2 & 6 & 8 \\ 3 & 14 & 10 & -5 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbf{a_1} \qquad \mathbf{a_2} \qquad \mathbf{a_3} \qquad \mathbf{b}$$

La solution de $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$ s'obtient en résolvant le système linéaire de matrice augmentée $(\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3 \quad \mathbf{b})$.

Proposition

Une équation de vecteurs $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$ a la même solution que le système linéaire dont la matrice augmentée est $(\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b})$.

En particulier, **b** est une combinaison linéaire de $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ si et seulement si il y a une solution au système linéaire correspondant.

Espace engendré par un vecteur de \mathbb{R}^3

- v, 2v et 1.5v sont sur la même ligne.
- Ici Vect(v) est la ligne passant par l'origine et formée de l'ensemble des vecteurs de la forme cv.

Espace engendré par deux vecteurs de \mathbb{R}^3

EXEMPLE: Quels sont les points \mathbf{u} , \mathbf{v} , $\mathbf{u} + \mathbf{v}$ et $3\mathbf{u} + 4\mathbf{v}$ sur le graphe ci-dessous?

- u, v, u + v et 3u+4v sont tous sur le même plan
- Ici Vect(\mathbf{u} , \mathbf{v}) est le plan formé des vecteurs de la forme $x_1\mathbf{u} + x_2\mathbf{v}$.

Espace engendré

Définition : espace engendré

Soient $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ dans \mathbf{R}^n ; alors

$$Vect(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_p)$$

est l'ensemble de toutes les combinaisons linéaires de $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$, c'est-à-dire l'ensemble des vecteurs qui s'écrivent

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p$$

avec x_1, x_2, \ldots, x_p réels.

Soient
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 et $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$.

- **1** Donner un vecteur dans $Vect(\mathbf{v}_1, \mathbf{v}_2)$.
- 2 Décrire Vect(v₁, v₂) géométriquement.

Exercice

Soit
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 5 \end{pmatrix}$$
 et $\mathbf{b} = \begin{pmatrix} 8 \\ 3 \\ 17 \end{pmatrix}$. Est-ce que \mathbf{b} est dans le plan engendré par les

colonnes de A?

Produit matriciel

Les combinaisons linéaires peuvent être vues comme des produits matrice-vecteur

Définition :

Si A est une matrice de taille $m \times n$, avec les colonnes $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$, et si \mathbf{x} est un vecteur dans \mathbf{R}^n , alors le **produit de** A **et** \mathbf{x} , noté $A\mathbf{x}$, est la combinaison linéaire des colonnes de A avec comme poids les entrées correspondantes dans \mathbf{x} :

$$A\mathbf{x} = \begin{pmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 \ \mathbf{a}_1 + x_2 \ \mathbf{a}_2 + \cdots + x_n \mathbf{a}_n$$

EXEMPLE:

$$\begin{pmatrix} 1 & -4 \\ 3 & 2 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 7 \\ -6 \end{pmatrix} = 7 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + -6 \begin{pmatrix} -4 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 21 \\ 0 \end{pmatrix} + \begin{pmatrix} 24 \\ -12 \\ -30 \end{pmatrix} = \begin{pmatrix} 31 \\ 9 \\ -30 \end{pmatrix}$$

Exercice

Écrire le système d'équations correspondant à la matrice augmentée ci-dessous, puis l'écrire sous forme d'une équation de vecteur enfin sous la forme matricielle $A\mathbf{x} = \mathbf{b}$ avec un vecteur \mathbf{b} de taille 2×1 .

$$\begin{pmatrix} 2 & 3 & 4 & 9 \\ -3 & 1 & 0 & -2 \end{pmatrix}$$

3 formes équivalentes pour les systèmes linéaires

On peut écrire de manière équivalente

- un système linéaire d'équations $((\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b}))$
- une équation de vecteur $(x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b})$
- une équation de matrice (Ax = b).

Théorème

Si A est une matrice de taille $m \times n$, avec pour colonnes $\mathbf{a}_1, \dots, \mathbf{a}_n$, et si \mathbf{b} est dans \mathbf{R}^m , alors l'équation matricielle

$$Ax = b$$

a la même solution que l'équation de vecteurs

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$$

qui a également la même solution que le système linéaire de matrice augmentée

$$(\mathbf{a}_1 \quad \mathbf{a}_2 \quad \cdots \quad \mathbf{a}_n \quad \mathbf{b})$$

Une caractérisation

Propriété

L'équation $A\mathbf{x} = \mathbf{b}$ admet une solution si et seulement si \mathbf{b} est une combinaison linéaire des colonnes de A.

Exercice

Soient
$$A = \begin{pmatrix} 1 & 4 & 5 \\ -3 & -11 & -14 \\ 2 & 8 & 10 \end{pmatrix}$$
 et $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

L'équation $A\mathbf{x} = \mathbf{b}$ est-elle consistante pour tout \mathbf{b} ?

Solution : La matrice augmentée correspondant à $A\mathbf{x} = \mathbf{b}$ s'écrit :

$$\begin{pmatrix} 1 & 4 & 5 & b_1 \\ -3 & -11 & -14 & b_2 \\ 2 & 8 & 10 & b_3 \end{pmatrix} \sim \begin{pmatrix} 1 & 4 & 5 & b_1 \\ 0 & 1 & 1 & 3b_1 + b_2 \\ 0 & 0 & 0 & -2b_1 + b_3 \end{pmatrix}.$$

Donc $A\mathbf{x} = \mathbf{b}$ n'est pas consistante pour tous les \mathbf{b} puisque certains choix de \mathbf{b} rendent $-2b_1 + b_3$ non nul.

En conclusion $A\mathbf{x} = \mathbf{b}$ est consistante si $-2b_1 + b_3 = 0$ (c'est l'équation d'un plan \mathbf{R}^3)

On dit que les colonnes de A engendrent un plan dans \mathbb{R}^3 .

Quand une matrice engendre \mathbb{R}^m

Matrice engendrant \mathbb{R}^m

On dit que les colonnes de $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_p)$ engendrent \mathbf{R}^m si tous les vecteurs \mathbf{b} dans \mathbf{R}^m sont des combinaisons linéaires de $\mathbf{a}_1, \ldots, \mathbf{a}_p$. On note

$$Vect(\mathbf{a}_1,\ldots,\mathbf{a}_p)=\mathbf{R}^m$$
.

Théorème

Soit A une matrice $m \times n$, alors il y a équivalence entre

- Pour tout b dans \mathbf{R}^m , l'équation $A\mathbf{x} = \mathbf{b}$ a une solution.
- Tout tout b dans \mathbb{R}^m est une combinaison linéaire des colonnes de A.
- Les colonnes de A engendrent R^m .
- A a un pivot sur chaque ligne.

Soient
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$$
 et $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_2 \end{pmatrix}$. L'équation $A\mathbf{x} = \mathbf{b}$ est-elle consistante pour tout \mathbf{b} ?

Exercice

Est-ce que les colonnes de
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 0 & 3 & 9 \end{pmatrix}$$
 engendrent \mathbb{R}^3 ?

Un système homogène tel que

$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

peut être vu comme une équation de vecteur

$$x_1\begin{pmatrix}1\\3\\5\end{pmatrix}+x_2\begin{pmatrix}2\\5\\9\end{pmatrix}+x_3\begin{pmatrix}-3\\9\\3\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}.$$

Cette équation de vecteurs a une solution triviale ($x_1=0, x_2=0, x_3=0$). Est-ce l'unique?

Définition :Indépendance linéaire

• Un ensemble de vecteurs $\{\mathbf v_1, \mathbf v_2, \dots, \mathbf v_p\}$ dans $\mathbb R^n$ est linéairement indépendant quand l'équation de vecteurs

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

a seulement la solution triviale $(0,0,\ldots,0)$

• L'ensemble $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ est **linéairement dépendant** quand il existe c_1, \dots, c_p , non tous nuls tels que

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}.$$

relation de dépendance linéaire (quand les poids ne sont pas tous nuls)

Soient
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 5 \\ 9 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} -3 \\ 9 \\ 3 \end{pmatrix}$.

- Déterminer si $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ sont linéairement indépendants.
- Si possible, trouver une relation de dépendance entre eux.

Une relation de dépendance linéaire comme

$$-33\begin{pmatrix}1\\3\\5\end{pmatrix}+18\begin{pmatrix}2\\5\\9\end{pmatrix}+1\begin{pmatrix}-3\\9\\3\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}$$

peut être écrite comme une équation matricielle

$$\begin{pmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{pmatrix} \begin{pmatrix} -33 \\ 18 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Chaque dépendance linéaire entre les colonnes de A correspond à une solution non-triviale $A\mathbf{x} = \mathbf{0}$.

Définition : Indépendance linéaire des colonnes d'une matrice

Les colonnes de la matrice A sont linéairement indépendantes si et seulement si l'équation $A\mathbf{x} = \mathbf{0}$ a seulement la solution triviale.

Ensemble d'un seul vecteur

Considérons l'ensemble contenant seulement un vecteur non-nul $\{v_1\}$

La seule solution de
$$x_1\mathbf{v}_1 = 0$$
 est $x_1 = \begin{pmatrix} 0 \\ 0 \\ \dots \\ 0 \end{pmatrix}$.

Donc $\{v_1\}$ est linéairement indépendant quand $v_1 \neq 0$.

Ensemble de deux vecteurs

Exercice

$$\mathbf{u}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \ \mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$

- ullet Déterminer si $\{u_1,u_2\}$ est un ensemble linéairement indépendant.
- Déterminer si $\{v_1, v_2\}$ est un ensemble linéairement indépendant.

Propriété (fondamentale en analyse des données)

- Un ensemble de deux vecteurs est linéairement dépendant s'ils sont multiples l'un de l'autre.
- Un ensemble de deux vecteurs est linéairement indépendant s'ils ne sont pas multiples l'un de l'autre.

Ensemble contenant "trop" de vecteurs

Propriété

Un ensemble $\{\mathbf v_1,\mathbf v_2,\dots,\mathbf v_p\}$ de p vecteurs dans $\mathbb R^n$ sont linéairement dépendants si p>n.

Considérons l'ensemble de vecteurs $\{v_1, v_2, v_3, v_4\}$ dans R^3 sur la figure. Sont-ils linéairement indépendants?

Avec le moins de calculs possibles, déterminer si les ensembles de vecteurs suivants sont linéairement indépendants

$$\bullet \left\{ \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 9 \\ 6 \\ 4 \end{pmatrix} \right\}$$

- $\bullet \left\{ \begin{pmatrix} 8 \\ 2 \\ 1 \\ 4 \end{pmatrix} \right\}$

Propriété

Un ensemble $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ de p vecteurs est linéairement dépendant si et seulement si au moins un des vecteurs s'écrit comme combinaison linéaire des autres. En fait, si S est linéairement dépendant, et $\mathbf{v}_1 \neq \mathbf{0}$, alors il existe un vecteur \mathbf{v}_j ($j \geq 2$) qui est combinaison linéaire des précédents $\mathbf{v}_1, \dots, \mathbf{v}_{j-1}$.

Produit matrice-vecteur (1)

On peut voir le produit $A\mathbf{x} = \mathbf{b}$:d'une autre façon :

la matrice A agit sur \mathbf{x} par multiplication pour produire un nouveau vecteur $A\mathbf{x}$ ou \mathbf{b} .

Exemple

$$\begin{pmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -8 \\ -12 \\ -4 \end{pmatrix} \qquad \begin{pmatrix} 2 & -4 \\ 3 & -6 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Produit matrice-vecteur (2)

Si A est une matrice $m \times n$ et \mathbf{b} une vecteur de \mathbb{R}^m , il y a équivalence entre

- résoudre $A\mathbf{x} = \mathbf{b}$
- ullet trouver tous les vecteurs de ${f R}^n$ qui sont transformés en le vecteur ${f b}$ dans ${f R}^m$ par la multiplication par A

transformation "machine"

Définition : application

Une application T de \mathbb{R}^n dans \mathbb{R}^m est une règle qui assigne à chaque vecteur \mathbf{x} dans \mathbb{R}^n un vecteur $T(\mathbf{x})$ dans \mathbb{R}^m .

 $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$

Définitions

- Rⁿ est le domaine de départ de T
- R^m est le domaine d'arrivée de T
- T(x) dans R^m est l'image de x par la transformation T
- L'ensemble des images T(x) est l'**image** de T

Exemple

Soit
$$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix}$$
. Définissons une transformation $T : \mathbf{R}^2 \to \mathbf{R}^3$ par $T(\mathbf{x}) = A\mathbf{x}$.

Alors si
$$\mathbf{x} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
, $T(\mathbf{x}) = A\mathbf{x} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$

Soient
$$A \begin{pmatrix} 1 & -2 & 3 \\ -5 & 10 & -15 \end{pmatrix}$$
, $\mathbf{u} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} 2 \\ -10 \end{pmatrix}$ and $\mathbf{c} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$.

On définit la transformation $T: \mathbf{R}^3 \to \mathbf{R}^2$ par $T(\mathbf{x}) = A\mathbf{x}$.

- **1** Trouver \mathbf{x} dans \mathbf{R}^3 dont l'image par T est \mathbf{b} .
- Existe-t-il plus d'un x dont l'image par T est b?
- 3 Determiner si \mathbf{c} est dans l'image de la transformation T.

Exemple

Soit $A = \begin{pmatrix} .5 & 0 \\ 0 & .5 \end{pmatrix}$. L'application $T : \mathbf{R}^2 \to \mathbf{R}^2$ définie par $T(\mathbf{x}) = A\mathbf{x}$ est un exemple de **contraction**.

$$\mathbf{u} = \begin{pmatrix} 8 \\ 6 \end{pmatrix} \qquad \qquad T(\mathbf{u}) = \begin{pmatrix} .5 & 0 \\ 0 & .5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$

Propriété du produit matrice-vecteur

Si A est une matrice de taille $m \times n$, alors l'application $T(\mathbf{x}) = A\mathbf{x}$ a les propriétés suivantes :

$$T(\mathbf{u} + \mathbf{v}) = A(\mathbf{u} + \mathbf{v}) = \dots + \dots$$

et

$$T(c\mathbf{u}) = A(c\mathbf{u}) = \dots A\mathbf{u} = T(\mathbf{u})$$

pour tous \mathbf{u}, \mathbf{v} dans \mathbf{R}^n et tout réel c.

Définition

Définition : application linéaire

Une application T est **linéaire** si :

- $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ pour tout } \mathbf{u}, \mathbf{v} \text{ dans le domaine de départ de } T.$
- $T(c\mathbf{u}) = cT(\mathbf{u})$ pour tout \mathbf{u} dans le domaine de départ de T et tout réel c.

Propriétés

- Tout produit matrice-vecteur est une application linéaire
- Si T est une application linéaire alors

$$T(\mathbf{0}) = \mathbf{0}$$
 and $T(c\mathbf{u} + d\mathbf{v}) = c\mathbf{T}(\mathbf{u}) + d\mathbf{T}(\mathbf{v})$.

Soient
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{y}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$ et $\mathbf{y}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Supposons que $T : \mathbf{R}^2 \to \mathbf{R}^3$ est une transformation linéaire qui evnoie \mathbf{e}_1 sur \mathbf{y}_1 et \mathbf{e}_2 sur \mathbf{y}_2 . Trouver les images de $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ et $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

 $T(3\mathbf{e}_1 + 2\mathbf{e}_2) = 3T(\mathbf{e}_1) + 2T(\mathbf{e}_2)$

SO

Definissons $T: \mathbb{R}^3 \to \mathbb{R}^2$ tel que $T(x_1, x_2, x_3) = (|x_1 + x_3|, 2 + 5x_2)$. Montrer que T n'est pas une application linéaire.

Définition

Definition: matrice identité

- I_n est une matrice de taille n × n avec des 1 sur la diagonale (gauche à droite) et des 0 ailleurs. La i-ième colonne de I_n est notée e_i.
- Pour x dans Rⁿ,

$$I_n \mathbf{x} = \mathbf{x}$$

Exemple

$$I_3 = (\mathbf{e}_1 \quad \mathbf{e}_2 \quad \mathbf{e}_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Remarquons que

$$I_3 \mathbf{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \mathbf{x}$$

Linéarité

On a dit que si $T: \mathbf{R}^n \to \mathbf{R}^m$ est une application linéaire alors

$$T\left(c\mathbf{u}+d\mathbf{v}\right)=cT\left(\mathbf{u}\right)+dT\left(\mathbf{v}\right).$$

Exercice

Les colonnes de $l_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ sont $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ et $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Supposons que T est une application linéaire de \mathbf{R}^2 vers \mathbf{R}^3 avec

$$T\left(\mathbf{e}_{1}\right)=egin{pmatrix} 2 \ -3 \ 4 \end{pmatrix}$$
 et $T\left(\mathbf{e}_{2}\right)=egin{pmatrix} 5 \ 0 \ 1 \end{pmatrix}$.

Calculer $T(\mathbf{x})$ pour tout $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Matrice d'une application linéaire

Matrice d'une application linéaire

• Soit $T: \mathbf{R}^n \to \mathbf{R}^m$ une application linéaire. Alors il existe une unique matrice A telle que

$$T(\mathbf{x}) = A\mathbf{x}$$
 pour tout \mathbf{x} dans \mathbf{R}^n .

• De plus, A est la matrice de taille $m \times n$ dont les colonnes de A sont les vecteurs $T(\mathbf{e}_j)$, où \mathbf{e}_j est la j-ième colonne de la matrice identité dans \mathbf{R}^n .

$$A = [T(\mathbf{e}_1) \qquad T(\mathbf{e}_2) \qquad \cdots \qquad T(\mathbf{e}_n)]$$

image de \mathbf{e}_2 par T matrice de l'application linéaire T

$$\begin{pmatrix} ? & ? \\ ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 - 2x_2 \\ 4x_1 \\ 3x_1 + 2x_2 \end{pmatrix}$$

Exercice

Trouver la matrice de l'application linéaire $T: \mathbf{R}^2 \to \mathbf{R}^2$ de rotation autour de l'origine et d'angle $\frac{\pi}{4}$.