

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.01.2003 Bulletin 2003/01

(51) Int Cl.7: A61K 9/14

(21) Application number: 02253951.4

(22) Date of filing: 06.06.2002

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Designated Extension States:
AL LT LV MK RO SI

(30) Priority: 22.06.2001 US 300314 P

(71) Applicant: Pfizer Products Inc. Groton, Connecticut 06340 (US) (72) Inventors:

- Curatolo, William John,
 Pfizer Global and Developt.
 Groton, Connecticut 06340 (US)
- Friesen, Dwayne Thomas,
 Pfizer Global Res. & Dev.
 Groton, Connecticut 06340 (US)
- (74) Representative: Wood, David John et al UK Patent Department, Pitzer Limited, Ramsgate Road, Sandwich, Kent CT13 9NJ (GB)

(54) Pharmaceutical compositions comprising drug and concentration-enhancing polymers

(57) A solubility-improved drug form is combined with a concentration-enhancing polymer in a sufficient amount so that the combination provides substantially enhanced drug concentration in a use environment rel-

ative to a control comprising the same amount of the same drug form without the concentration-enhancing polymer.

[0001] This application claims the benefit of priority of provisional Patent Application Serial No. 60/300,314 filed June 22, 2001.

BACKGROUND OF THE INVENTION

[0002] Generally, the invention relates to pharmaceutical compositions of drugs and concentration-enhancing polymers which increase the drug concentration in a use environment and thus increase bloavailability

- [0003] Low-solubility drugs often show poor bioavailability or irregular absorption, the degree of irregularity being affected by factors such as dose level, fed state of the patient, and form of the drug. Increasing the bioavailability of low-solubility drugs has been the subject of much research. Increasing bloavailability hinges on improving the concen-
- [0004] It is known that many low-solubility drugs can be formulated so as to increase the maximum concentration of the drug that will dissolve in an aqueous solution in in wire tests. One such approach is to grind the drug down to less than 400 mm to form so-called nanoparticles. The nanoparticles contain a discrete phase of a drug with a surface modifier adsorbed to the surface. When such a drug in a nanoparticle form is initially administered to an environment of use, such as in gastric fluid, the nanoparticle form of the drug may lead to increased bicavallability. See U.S. Patent
- [0005] Another drug delivery technology used to increase concentration of a drug in a use environment is to incor-No. 5,145,684, herein incorporated by reference. porate the drug into particles of a water-swellable but insoluble crosslinked polymer, contacting this composition with a solvent, in gaseous or liquid form, which is able to swell the polymer, and then drying the product under vacuum. See U.S. Patent No. 5,569,469, incorporated herein by reference in its entirety.
- [0006] Yet another drug delivery technology converts the bulk crystalline drug into an amorphous nanoparticle. Essentially, a suspension of drug in solvent is fed into a chamber, where it is rapidly mixed with another solvent. The drug substance suspension is converted into a molecular solution. The admixture of an aqueous solution of a polymer induces precipitation of the drug. The polymer keeps the drug substance particles in their nanoparticulate state and 25 prevents them from aggregation or growth. Water redispersable dry powders can be obtained from the nanosized dispersion by conventional methods. See U.S. Patent No. 6,197,349 also incorporated by reference.
 - [0007] Another drug delivery technology of increasing dissolution rate of drug in a use environment is through incorporating the drug in a nanosuspension. See U.S. Patent No. 5,858,410, herein incorporated by reference. A nanosuspension is a suspension of nanosized (typically 10 nm to 1000 nm) particles of at least one active therapeutic.
 - [0008] U.S. Patent No. 6,177,103, herein incorporated by reference, discloses a process for preparing stabilized suspensions of water insoluble drugs with an average particle size of 50 nm to about 2000 nm. The suspensions are prepared by rapid expansion of a solution of the drug, surface modifier and a liquefled gas (e.g., a supercritical fluid) into an aqueous medium. The aqueous suspension may also be homogenized using a high-pressure homogenizer
 - [0009] U.S. Patent No. 5,580,932, herein incorporated by reference, discloses a process for preparing extremely small particles with average particle diameters of less than 400 nm by homogeneous nucleation and precipitation in
 - [0010] Stabilizing the amorphous form of a drug by spray-drying the drug in the presence of a stabilizer to inhibit the presence of a surface modifier. crystal growth is also known to increase solubility of low solubility drugs. See U.S. Patent Nos. 4,769,238 and 4,610,875,
 - [0011] U.S. Patent Nos. 5,851,275 and 5,886,133, herein incorporated by reference, disclose another drug delivery technology for increasing the dissolution rate of poorly soluble drugs by coating them with a combination of gelatin and
 - [0012] In all of the above cases, the methods often provide an increase in dissolution rate and/or a temporary increase lecithin. in the solubility of the drug in a use environment.
 - [0013] Increasing drug solubilization by using combinations of drug and polymer has been described. For example, Martin et al., U.S. Patent No. 4,344,934 mixed poorly soluble drugs with polymers such as hydroxypropyl methyl cellulose (HPMC) and added an aqueous surfactant solution to the drug-polymer mixture. While this results in improved dissolution, there is only slight enhancement of drug concentration relative to the equilibrium concentration. Plergiorgia et al., U.S. Patent No. 4,880,623 used solvent processing to co-precipitate nifedipine with PEG and adsorbed this onto polymers such as HPMC, or onto other excipients. While increased drug bioavailability in a controlled release dosage form, relative to the commercial product nifedipine. ADALAT AR, was observed, no direct comparison was made between coprecipitated and noncoprecipitated drug forms. Uedo et al., U.S. Patent No. 5,093,372 mixed the sparinglysoluble drug exitone with polymers such as HPMC to increase bioavailability. However, the results were reported to
 - be unique for exitone formulations, and the exitone was not in a solubility-improved form.

[0014] Usui, et al., Inhibitory Effects of Water-soluble Polymers on Precipitation of RS-8359, Int I J. of Pharmaceutics 154 (1997) 59-66, discloses the use of three polymers, namely hydroxy propyl methyl cellulose, hydroxy propyl cellulose, and polyvinylpyrrolldone to inhibit precipitation of the low-solubility drug RS-8359. The drug and polymer were dissolved in a mixture of 0.5 N HCl and methanol, and then added to a phosphate buffer solution. Usul et al. observed that the particular polymers inhibited crystallization of the drug.

[0015] Nevertheless, what is still needed is a composition comprising a low-solubility drug that provides enhanced concentration of the drug in aqueous solution and/or that enhances the bioavailability of the drug. These needs and others that will become apparent to one of ordinary skill in the art are met by the present invention, which is summarized

10

SUMMARY OF THE INVENTION

[0016] The invention relates to compositions comprising a combination of a drug in a solubility-improved form and at least one concentration-enhancing polymer that enhances the concentration of the drug in a use environment relative to control compositions that are free from the concentration-enhancing polymer. The terms "solubility-improved" and Solubility-improved drug form* as employed herein reler to a form of the drug that has increased solubility or dissolution rate relative to the least soluble form of the drug known. Thus, the term implies that a less soluble or more slowing dissolving form of the drug exists and is either known or has been determined, i.e., known, for example, from the scentific or patent literature, or determined by or otherwise known to the investigator. The drug in the solubility improved form provides a dissolved drug concentration in a use environment that exceeds, at least temporarily, the equilibrium concentration of the drug in the use environment. By 'equilibrium concentration' is meant the dissolved drug concentration provided by the lowest solubility form of the drug alone, either crystalline or amorphous, in the use environment. in other words, the solubility-improved form is capable of achieving, at least temporarily, a supersaturated concentration of said drug in said use environment. Where the lowest solubility form of the drug provides a drug concentration that decreases slowly with respect to time in the use environment, it may be difficult to establish the lowest dissolved drug value that would represent the equilibrium concentration of the drug. In such cases, the equilibrium concentration of drug may be taken as the dissolved drug concentration in the use environment 20 hours after introduction of the drug to the use environment. A solubility-improved drug form also includes formulations that increase the rate of dissolution of the drug, leading to an initially higher concentration of drug in solution, at least temporarily, compared with the drug

[0017] A solubility-improved drug form may consist of a highly soluble form of the drug alone, may be a composition comprising a highly soluble form of the drug plus inert excipients, or may be a composition comprising the drug in a poorly or highly soluble form and one or more exciplents which have the effect of increasing the solubility of the drug, regardless of the length of time for which the solubility is increased. Examples of "solubility-improved drug forms" include but are not limited to: (1) drug in microparticulate form; (2) drug in nanoparticulate form; (3) absorbed drug; (4) drug in a nanosuspension; (5) a supercooled melt of drug; (6) cyclodextrin/drug form; (7) softgel form; (8) gelatin form, (9) self-emulsifying form; and (10) three-phase drug form. (The drug in the solubility-improved form is....sometimes

[0018] An object of the invention is to provide a pharmaceutically acceptable composition comprising (a) a drug in a solubility-improved form; and (b) a concentration-enhancing polymer combined with the drug in a sufficient amount so that the composition provides, after introduction to a use environment, a dissolution area under the concentration versus time curve ('AUC'), for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 1.25-fold the corresponding AUC provided by a control composition, wherein the control composition is an equivalent quantity of the drug in the same solubility-improved form alone, but free from a concentration enhancing polymer.

[0019] Yet another object of the invention is to provide a pharmaceutically acceptable composition comprising (a) a drug in a solubility-improved form; and (b) a concentration-enhancing polymer combined with the drug in a sufficient amount so that the composition provides, after introduction to a use environment, a relative bioavailability of at least 1.25 relative to a control composition of an equivalent quantity of the drug in the same solubility-improved form alone but free from a concentration-enhancing polymer.

50

[0020] A method is also provided of administering a drug comprising co-administering: (a) a drug in a solubilityimproved form; and (b) a concentration-enhancing polymer; wherein the concentration-enhancing polymer is co-administered with the drug in a sufficient amount so that, after introduction to a use environment, a dissolution area under the concentration versus time curve in the use environment for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 1.25-fold the corresponding area under the curve provided by a control composition; and wherein the control composition is an equivalent quantity of the drug in the same solubility-improved form alone, but free from the concen-

[0021] Also provided by the invention is a method of administering a drug comprising co-administering to a patient in need of the drug (a) a drug in a solubility-improved form, and (b) a concentration-enhancing polymer, wherein the concentration-enhancing polymer is co-administered with the drug in a sufficient amount so that, after introduction to a use environment, a relative bioavailability is provided of at least 1.25 relative to a control composition, and wherein the control composition is an equivalent quantity of the drug in the same solubility-improved form alone, but free from

[0022] The various aspects of the present invention have one or more of the following advantages. [0023] The solubility improved drug form, when administered to a use environment, provides an initial concentration of drug that exceeds the equilibrium concentration of drug, while the concentration-enhancing polymer retards the rate at which the initially enhanced drug concentration falls to the equilibrium concentration. In addition, because in some cases the drug form may dissolve at a rate that is slow relative to the rate that the drug converts to a less soluble form in the absence of the polymer, the presence of the polymer often allows the drug to achieve a higher concentration than that obtained in the absence of the polymer. The result is that the compositions of the present invention provide an improved dissolution area-under-the-curve ("AUC") that is greater than that provided by the solubility-improved form of the drug alone. While not required to be within the scope of the present invention, in some aspects, the drug form provides a maximum drug concentration that exceeds the maximum drug concentration achieved by the drug in the solibility-improved form alone. Nevertheless, the advantages of the invention may be obtained by merely retarding the rate at which the enhanced drug concentration falls to the equilibrium concentration, even without increasing the

[0024] Improving the dissolution AUC has the consequence that the compositions of the present invention may also provide enhanced bloavailability of the drug by increasing the concentration of drug that remains dissolved in the use environment, particularly in the GI tract. Improving the concentration of the drug in solution allows higher blood levels 20 to be achieved, in some cases enabling an effective level to be reached or in other cases, allowing effective blood levels to be reached at lower drug dosage levels, which in turn decreases the amount of drug that must be dosed. reduces the blood level variability, and also decreases the size of the dosage form depending on the amount of polymer needed. Accordingly, the compositions of the present invention enable the effective use of drugs having low aqueous solubility which otherwise do not have a sufficiently high bicavallability, to be effective, and also enhance bicavallability

[0025] Furthermore, because the compositions of the present invention provide for a higher drug concentration in the use environment, and because once a high drug Concentration is achieved the concentration tends to remain high due to inhibition of precipitation or crystallization of the drug, they reduce the adverse effects of chemical species present in the use environment such as chloride or hydrogen ions or bile salts on the absorption of drug. Thus, in cases where the use environment is the GI tract, the compositions of the present invention will show less variability on the

[0026] It is known that the solubility-improved drug forms described below are formulated to provide an initially enhanced aqueous concentration of the drug relative to the equilibrium concentration of the lowest-solubility form of the drug. However, in the absence of the concentration-enhancing polymer, the initially enhanced drug concentration can often quickly decrease, approaching the equilibrium concentration of the drug as the drug precipitates or crystallizes

[0027] The key to the present invention was the recognition by the inventors that the initially enhanced concentration of the drug in solution provided by a drug form could be maintained, and in some cases enhanced, by retarding precipitation, crystallization, or conversion of the drug to lower solubility forms through the use of a concentration-enhance ing polymer. Thus, without implying any particular mechanism of action, it is believed that the concentration-enhancing polymers of this invention may be viewed as acting as crystalization or precipitation inhibitors. Surprisingly, this may be accomplished by simply combining the concentration-enhancing polymer with the drug form. Alternatively, the concentration-enhancing polymer can be coated onto drug-containing tablets or beads or even administered separately but to the same use environment as the drug form and still function to maintain for a substantial time period a greater

[0028] The drug form and concentration-enhancing polymer may be "simple physical mixtures" when they are combined using conventional mixing techniques such as combining and physically stirring dry components together or mixing by dry-or wet-granulating. Thus, a simple physical mixture of the drug form and concentration-enhancing polymer means that in the mixture, the drug form substantially retains its properties, such as a melting point or glass transition temperature, that match those properties of the drug in the solubility-improved form alone. The concentrationenhancing polymer may also be incorporated into the drug form.

[0029] The drug form and the concentration-enhancing polymer can also be combined via co-administration of the two components to a use environment. By co-administration is meant that the drug form is administered separately from, but within the same general time frame, as the concentration-enhancing polymer. For example, the drug form can be administered in its own dosage form that is taken at approximately the same time as the concentration-enhancing

polymer, which is in a separate dosage form. The time difference between administration of the drug form and the concentration-enhancing polymer is such that they come into physical contact in the use environment. When they are not co-administered at the same time it is generally preferable to administer the concentration-enhancing polymer prior

[0030] The various aspects and embodiments of the invention may be described as follows.

[0031] In a first aspect, the invention relates to a composition comprising:

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction to said use environment, a maximum concentration of said drug in said use environment that is at least 1.25-fold a maximum concentration of said drug provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-

[0032] In a second aspect, the invention relates to a composition comprising:

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer;

10

15

20

25

35

CONTRACTOR SECTION SEC

wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction to a use environment, a dissolution area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 1.25-fold the corresponding area under the curve provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form

[0033] In a third aspect, the invention relates to a composition comprising:

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and (b) a concentration-enhancing polymer;

wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction to said use environment, a relative bioavailability of at least 1.25 relative to a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone. [0034] In further independent embodiments of the first, second and third aspects of the invention, the solubility-

improved drug form is selected from the group consisting of drug in microparticulate form, drug in nanoparticulate form, absorbed drug, drug in a nanosuspension, a supercooled melt of drug, cyclodextrin/drug form, softgel form, gelatin form, self-emulsifying form, and three-phase drug form.

[0035] In further independent embodiments of the first , second and third aspects of the invention, the drug is in nanoparticulate form. The nanoparticulate form of the drug may comprise particles of 10% to 99.9% by weight of a crystalline drug substance having a solubility in water of less than 10 mg/ml, said drug substance having an effective average particle size of less than about 400 nm. In one embodiment, nanoparticulate form of the drug consists essentially of 10% to 99.9% by weight of a crystalline drug substance having a solubility in water of less than 10 mg/mL, said drug substance having a non-crosslinked surface modifier adsorbed on the surface thereof in an amount of 0.1 to 90%

by weight and sufficient to maintain an effective average particle size of less than about 400 nm.

[0036] In further independent embodiments of the first, second and third aspects of the invention, the drug is selected from the group consisting of antihypertensives, antianxiety agents, anticlotting agents, anticonvulsants, blood glucoselowering agents, decongestants, antihistamines, antitussives, antineoplastics, beta blockers, anti-inflammatories, antipsychotic agents, cognitive enhancers, cholesterol-reducing agents, antiobesity agents, autoimmune disorder agents, anti-impotence agents, antibacterial and antifungal agents, hypnotic agents, anti-Parkinsonism agents, anti-Alzheim-

er's disease agents, antibiotics, anti-depressants, antiviral agents, anti-atherosclerotic agents, glycogen phosphorylase inhibitors, cholesterol ester transfer protein inhibitors and immune suppressants.

[0037] In further independent embodiments of the first, second and third aspects of the invention, the drug is a glycogen phosphorylase inhibitor selected from the group consisting of [R-R'S')]5-chloro-N[2-hydroxy-3-[meth-glycogen phosphorylase inhibitor selected from the group consisting of [R-R'S')]5-chloro-H-indole-2-carboxylic acid oxymethylamino]-3-oxo-1-(phenylmethyl)propyl-1H-indole-2-carboxamide and 5-chloro-1H-indole-2-carboxylic acid

((1S)-benzyl-(2R)-hydroxy-3-((3R,4S)-dihydroxy-pyrrolidin-1-yl-)-3-oxyproxylamide. 10038] In even turther independent embodiments of the first, second and third aspects of the invention, the drug is a cholesterol ester transfer protein inhibitor selected from the group consisting of [2R,4S] 44(3.5-bis-triflucomentylbenzyl)-methoxycarbonyl-amino)-2-ethyl-6-triflucomentyl-benzyl-drightor-2H-quinoline-1-carboxylse acid entyl ester, or a compound which is [2R,4S] 4-facetyl-(3.5-bis-triflucomentyl-benzyl-amino)-2-ethyl-6-triflucomentyl-benzylginoline-1-carboxylic acid, isopropyl ester; or a compound which is [2R, 4S] 44(3.5-bis-triflucomentyl-benzyl)-methquinoline-1-carboxylic acid, isopropyl ester; or a compound which is [2R, 4S] 44(3.5-bis-triflucomentyl-benzyl)-meth-

10

oxycarbonyl-aminoj-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester [0039] In even further independent embodiments of the first, second and third aspects of the invention, the use environment is in vivo, In these embodiments, the use environment my be selected from the group consisting of the Cli tract, subdormal, intransal, buccal, intrathecal, ocular, intraaural, subcutaneous space, vaginal tract, pulmonary

tract, arterial and venous blood vessels, and intramuscular tissue of an animal.

[0040] In further independent embodiments of the first and second aspects of the invention, the use environment is

[0041] In further independent embodiments of the first and second aspects of the invention, the concentration-en-

nancing polymer has a hydrophobic portion and a hydrophilic portion.
[0042] In further independent embodiments of the first, second and thirds aspects of the invention, the concentration-enhancing polymer is a lonizable cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl methyl cellulose succinate.

droxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose, carboxymethyl cellulose acetate phthalate, mydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose ac

thyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate printalate, cellulose acetate trimellitate, metryl cellulose acetate trimellitate, metryl cellulose acetate trimellitate, metryl cellulose acetate trimellitate, proprior positive acetate trimellitate, cellulose acetate trimellitate, cellulose acetate trimellitate, cellulose acetate trimellitate, cellulose acetate, proprior pro

acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

[0043] In further independent embodiments of the first, second and third aspects of the invention, the polymer is a non-incitzable cellulosic polymer, in these embodiments, the polymer may be selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose.

droxyethyl methyl cellulose, hydroxyethyl cellulose acetate, and hydroxyethyl ethyl cellulose.

[0044] In further independent embodiments of the first, second and third aspects of the invention, the polymer is an ionizable, non-cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of carboxylic acid functionalized polymerhacrylates, carboxylic acid functionalized polymerhacrylates, carboxylic acid functionalized polyacrylates, amine-functionalized

carboxylic acid functionalized polymetriacrylates, carboxylic acid functionalized polyacylates, amine-functionalized polyacylates, amine-functionalized polyacylates and polymetriacylates, proteins, and carboxylic acid functionalized starches.

[0045] In further, independent embodiments of the first, second and third aspects of the invention, the polymer is a non-ionizable, non-cellulosic polymer. In these embodiment, the polymer may be selected from the group consisting non-ionizable, non-cellulosic polymer.

non-ionizable, non-cellulosic polymer. In these embodiment, the polymer may be selected from the group consisting of vinyl polymers and copolymers having at least one substituent selected from the group comprising hydroxyl, allylacyloxy, and cyclicamido, vinyl copolymers of at least one hydrophilic, hydroxyl-containing repeat unit and at least one hydrophobic, alley-or anyl-containing repeat unit; polyvinyl alcohols that have at least a portion of their repeat units in the unitydrotyzed (vinyl acetate) form; polyvinyl alcohol polyvinyl acetate copolymers; polyvinyl pyrrolidone; and polyethylene polyvinyl alcohol copolymers and polyoxyethylene-polyoxypropylene block copolymers.

[0046] In further independent embodiments of the first, second and third aspects of the invention, the concentrationenhancing polymer is a neutralized acidic polymer.

[0047] In further independent embodiments of the first, second and third aspects of the invention, the solubility-improved form is a cyclobeatrin/drug form. In these embodiments, the drug may be ziprasidone.

[0048] In a fourth aspect, the invention relates to a method of administering a low-solubility drug comprising coadministering.

- (a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and
- (b) a concentration-enhancing polymer:

5

20

wherein said concentration-enhancing polymer is co-administered with said drug in a sufficient amount, so that after introduction to said use environment, a maximum concentration of said drug in said use environment is provided that is at least 1.25-fold a maximum concentration of said drug provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone.

[0049] In a fifth aspect, the invention relates to a method of administering a low-solubility drug comprising co-administering:

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer;

wherein said concentration-enhancing polymer is co-administered with said drug in a sufficient amount so that, after introduction to said environment, a dissolution area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment is provided that is at least 1.25-fold the corresponding area under the curve provided by a control composition.

and wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone. [0050] In a sixth aspect, the invention relates to a method of administering a low-solubility drug comprising co-administering.

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer;

5 wherein said concentration-enhancing polymer is co-administered with said drug in a sufficient amount so that, after introduction to said use environment, a relative bioavailability is provided that is at least 1.25-fold that of a control composition, wherein said control composition is an equivalent quantity of said drug in said solbidility-improved malone.

[0051] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the solubility-improved drug form is selected from the group consisting of in nanoparticulate form, absorbed drug, drug in a nanosuspension, a supercooled melt of drug, cyclodextrividrug form, softgel form, self-emulsifying form, and three-phase drug form.

[0052] In further independent embodiment of the fourth, fifth, and sixth aspects of the invention, the drug is in nanoparticulate form. The nanoparticulate form of the drug may comprise particles of 10% to 99.9% by weight of a crystalline of drug substance having a solubility in water of less than 10 mg/ml, said drug substance having an effective average particle size of less than about 400 mm. In one embodiment, nanoparticulate form of the drug consists essentially of 10% to 99.9% by weight of a crystalline drug substance having a solubility in water of less than 10 mg/mls, said rug substance having a non-crossifixed surface modified adsorbed on the surface thereof in an amount of 0.1 to 90% by weight and sufficient to maintain an effective particle size of less than about 400 mm.

[0053] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the drug may be selected from the group consisting of antihypertensives, antianxiety agents, articiotiting agents, articurvalsants, blood glucose-lowering agents, decongestants, antihistamines, artitussives, artineoplastics, beta blockers, anti-inflammatories, antipsychotic agents, articussives, artineoplastics, beta blockers, anti-inflammatories, antipsychotic agents, articussive age

[0054] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the drug is a glycogen phosphorylase inhibitor selected from the group consisting of [R-(R*S*)]-5-chloro-N-[2-hydroxy-3-(methoxymethylami-

noj-3-oxo-1-(phenylmethyl)propyl-1H-indole-2-carboxamide and 5-chloro-1 H-indole-2-carboxylic acid [(1 S)-benzyl-(2R)-hydroxy-3-((3R,4S)-dihydroxy-pyrrolidin-1 -yl-)-3-oxypropyl]amide.

[0055] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the drug is a cholesterol ester transfer protein inhibitor selected from the group consisting of [2R,45] 4:([3,5-bis-trifluoromethyl-benzy)methoxycatonyl-aminq]2-elly-fle-fillifuoromethyl-3,4-dilyhoz-P-drupioline1-carboxykic acid ethyl ester, or a compound which is [2R,45] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-aminq)2-ethyl-6-trifluoromethyl-3,4-dilytdro-2H-quinoline1-carboxylic acid isopropyl ester, or a compound which is [2R, 45] 4-([3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-aming)2-ethyl-6-trifluoromethyl-3,4-dilydro-2H-quinoline1-carboxylic acid isopropyl ester.

[0056] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the use environment is *in* vivo. In these embodiments, the use environment may be selected from the group consisting of the GI tract, subdermal, intranasal, buccal, intrathecal, ocular, intraaural, subcutaneous space, vaginal tract, pulmonary tract, arterial and venous blood vessels, and intramuscular tissue of an animal.

[0057] In further embodiments of the fourth and fifth aspects of the invention, the use environment is in vitro.

[0058] In further independent embodiments of the fourth, fifth and sixth embodiments of the invention, the concentration-enhancing polymer has a hydrophobic portion and a hydrophilic portion.

tration-enhancing polymer has a hydrophocio portion and an quality policibility or consistency and the concentration-enhancing polymer is a lonizable cellulosic polymer. In these embodiments of the invention, the concentration-enhancing polymer is a lonizable cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of hydroxypropyl methyl cellulose accetate succinate, hydroxypropyl cellulose accetate phrhalate, carboxymethyl cellulose, enhosymethyl cellulose, carboxymethyl cel

acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

[0060] In further independent embodiments of the fourth, fifth and sixth embodiments of the invention, the polymer is a non-ionizable cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, methyl cellulose.

hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, and hydroxyethyl ethyl cellulose. [0061] In further independent embodiments of the fourth, fifth and sixth embodiments of the invention, the polymer is an ionizable, non-cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of carboxylic acid functionalized polymerthacrylates, carboxylic acid functionalized polyacrylates, amine-functionalized polyacrylate

staturies. (0682) In further independent embodiments of the fourth, fifth and sixth mebodiments of the invention, the polymer is a non-ionizable, non-cellulosic polymer. In these embodiments, the polymer may be selected from the group consisting of virily polymers and copolymers having at least one substitutest selected from the group consisting of virily polymers and copolymers having at least one substitutest selected from the group comprising hydroxyl, alkylacyloxy, and cyclicamido: virily copolymers of at least one hydrophilic, hydroxyl-containing repeat unit and at least one hydropholic, alky-or anyl-containing repeat unit; polyviny alcohols that have at least a portion of their repeat units in the unhydrokyzed (vinyl acetate) form: polyvinyl alcohol polyvinyl acetate copolymers; polyvinyl alcohol polyvinyl acetate copolymers; polyvinyl alcohol polyvinyl acetate copolymers and polyvoyreprolymeropholoxycoproplene block copolymers.

[0063] In further independent embodiments of the fourth, fifth and sixth aspects of the invention, the concentrationenhancing polymer is a neutralized acidic polymer.

(1004) In Inther independent embodiments of the fourth, fifth and sixth aspects of the invention, the drug and said polymer are administered at about the same time. In these embodiments, the polymer and said drug may optionally be administered together. Alternativley, in these embodiments, the polymer and said drug may optionally be administered separately.

[0065] The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention.

DETAILED DESCRIPTION OF THE INVENTION

THE DRUG

[0067] The present invention is useful with any drug capable of being formulated in one of the above solubility improved drug forms. The term "drug" is conventional, denoting a compound having beneficial prophylactic and/or scholar properties when administered to animal, especially humans. The drug does not need to be sparingly the invention. Even a drug that nonetheless exhibits appreciable solubility in other to benefit from this invention, a should preciable solubility in the desired environment of use can benefit from the increased solubility-bioavailability and possible by this invention it the addition of the concentration-enhance and exhibits appreciable solubility of the desired environment of use can benefit fing polymer can reduce the size of the dose needed for therapeutic efficacy or increase the rate of drug absorption cases where a rapid onset of the drugs discharges in dealing.

[0068] The present invention finds particular utility when the drug is a "low-solubility drug," meaning that the drug may be either "substantially water-insoluble," which means that the drug has a minimum aqueous solubility at physical policy and present present

[0069] Preferred classes of drugs include, but are not limited to, anthypertensives, antianxiety agents, anticortuisants, blood glucose-lowering agents, decongestants, anticitamines, antitusvies, antimopolastics, antipolastics, ant

[0070] Each named drug should be understood to include the neutral form of the drug, pharmaceutically acceptable salls, as well as prodrugs. Specific examples of antihyperfensives include prazosin, nifedipine, amlodipine besylate, Irimazosin and doxazosin; specific examples of a blood glucose-lowering agent are glipizide and chlorpropamide; a specific example of an anti-impotence agent is sildenafil and sildenafil citrate; specific examples of antineoplastics include chlorambucil, lomustine and echinomycin; a specific example of an imidazole-type antineoplastic is tubulazole; a specific example of an anti-hypercholesterolemic is atorvastatin and atorvastatin calcium; specific examples of anxlolytics include hydroxyzine hydrochloride and doxepin hydrochloride; specific examples of anti-inflammatory agents include betamethasone, prednisolone, aspirin, piroxicam, valdecoxib, carproten, celecoxib, flurbiprofen and (+)-N-(4-(3-(4-fluorophenoxy)phenoxy)-2-cyclopenten-1-yl}-N-hyroxyurea; a specific example of a barbiturate is phenobarbital; specific examples of antivirals include acyclovir, nelfinavir, and virazole; specific examples of vitamins/hutritional agents include retinol and vitamin E; specific examples of beta blockers include timolol and nadolo; a specific example of an emetic is apomorphine; specific examples of a diuretic include chlorthalidone and spironolactone; a specific example of an anticoagulant is dicumarol; specific examples of cardiotonics include digoxin and digitoxin; specific examples of androgens include 17-methyllestosterone and testosterone; a specific example of a mineral corticoid is desoxycorticosterone; a specific example of a steroidal hypnotic/anesthetic is affaxatone; specific examples of anabolic agents include fluoxymesterone and methansterolone; specific examples of antidepression agents include sulpiride, [3.6-dimethyl-2-(2.4,6-trimethyl-phenoxy)-pyridin-4-yi]-(1-ethylpropy))-amine, 3,5-dimethyl-4-(3'-pentoxy)-2-(2,4,6'trimethylphenoxy)pyridine, pyroxidine, fluoxetine, paroxetine, ventafaxine and sertraline; specific examples of antibiotics include carbenicillin indanyisodium, bacampicillin hydrochloride, troleandomycin, doxycyline hydate, ampicillin

and penicillin G; specific examples of anti-infectives include benzalkonium chloride and chlorhexidine; specific examples of coronary vasodilators include nitroglycerin and mioflazine; a specific example of a hypnotic is etomidate; specific examples of carbonic anhydrase inhibitors include acetazolamide and chlorzolamide; specific examples of antifungals include econazole, terconazole, fluconazole, voriconazole, and grisedulvin; a specific example of an antiprotozoal is metronidazole: specific examples of antheimintic agents include thisbendazole and oxiendazole and morantel; specific examples of antihistamines include astemizole, levocabastine, cetirizine, decarboethoxyloratadine and cinnarizine; specific examples of antipsycholics include ziprasidone, clanzepine, thiothixene hydrochloride, fluspirilene, risperidone and pentluridole; specific examples of gastrointestinal agents include loperamide and disaptide; specific examples of serotonin antagonists include ketanserin and mianserin; a specific example of an anesthetic is lidocaine; a specific example of a hypoglycemic agent is acetohexamide; a specific example of an anti-emetic is dimenhydrinate; a specific example of an antibacterial is corrimoxazole; a specific example of a dopaminergic agent is L-DoPA; specific examples of anti-Alzheimer's Disease agents are THA and donepezil; a specific example of an anti-ulcer agent/H2 antagonist is famoldine: specific examples of sedative/hypnotic agents include chlordiazepoxide and triazolam; a specific example of a vasodilator is alprostadit; a specific example of a platelet inhibitor is prostacyclin; specific examples of ACE inhibitor anthypertensive agents include enalaprilic acid and isinopril; specific examples of tetracycline antibiotics include oxytetracycline and minocycline; specific examples of macrolide antibiotics include erythromycin, clarithromycin, and spiramycin, a specific example of an azalide antibiotic is azithromycin; specific examples of glycogen phosphorylase inhibitors include [R-{R'S')}-5-chloro-N-[2-hydroxy-3-[methoxymethylamino]-3-oxo-1-(phenylmethyl)propyl-1 H-indole-2-carboxamide and 5-chloro-1 H-indole-2-carboxylic acid ((1 S)-benzyl-(2R)-hydroxy-3-((3R,4S)-dihydroxy-pyrrolidin-1-yl-)-3-oxypropyljamide; and specific examples of cholesterol ester transfer protein (CETP) inhibitors include [2R,45] 4-(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino)-2-ethyl-8-trifluoromethyl-3,4-dihydro-2H-quino ine-1-carboxylic acid ethyl ester, [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dhydro-2H-quinoline-1-carboxylic acid isopropyl ester, [2R, 4S] 4-(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbo nyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester.

[0071] The invention is not limited by any particular structure or group of CETP inhibitors. Rather, the invention has general applicability to CETP inhibitors as a class, the class tending to be composed of compounds having low solubility. Compounds which may be the subject of the invention may be found in a number of patents and published applications. including DE 19741400 At; DE 19741399 At; WO 9914215 At; WO 9914174; DE 19709125 At; DE 19704244 At; DE 19704243 A1; EP 818448 A1; WO 9804528 A2; DE 19627431 A1; DE 19627430 A1; DE 19627419 A1; EP 796846 At; DE 19832159; DE 818197; DE 19741051; WO 9941237 A1; WO 9914204 A1; WO 9835937 A1; JP 11049745; WO 200018721; WO 200018723; WO 200018724; WO 200017184; WO 200017165; WO 200017166; EP 992496;

and EP 987251, all of which are hereby incorporated by reference in their entireties for all purposes.

[0072] The invention is useful for CETP inhibitors that have sufficiently low aqueous solubility, low bioavailability or slow rate of absorption such that it is desirable to increase their concentration in an aqueous environment of use. Therefore, anytime one finds it desirable to raise the aqueous concentration of the CETP inhibitor in a use environment. the invention will find utility. The CETP inhibitor is "substantially water-insoluble" which means that the CETP inhibitor has a minimum aqueous solubility of less than about 0.01 mg/mL (or 10 μg/ml) at any physiologically relevant pH (a. 9. ph 1:8) and at about 22°C. (Unless otherwise specified, reference to aqueous solubility herein and in the claims is determined at about 22°C.) Compositions of the present invention find greater utility as the solubility of the CETP inhibitors decreases, and thus are preferred for CETP inhibitors with solubilities less than about 2 µg/mL, and even more prefetred for CETP inhibitors with solubilities less than about 0.5 µg/mL. Many CETP inhibitors have even lower solubilities (some even less than 0.1 µg/mL), and require dramatic concentration enhancement to be sufficiently bioavailable upon oral dosing for effective plasma concentrations to be reached at practical doses.

[0073] In general, it may be said that the CETP inhibitor has a dose-to-aqueous solubility ratio greater than about 100 mL, where the solubility (mg/mL) is the minimum value observed in any physiologically relevant aqueous solution (e.g., those with pH values from 1 to 8) including USP simulated gastric and intestinal buffers, and dose is in mg. Compositions of the present invention, as mentioned above, find greater utility as the solubility of the CETP inhibitor decreases and the dose increases. Thus, the compositions are preferred as the dose-to-solubility ratio increases, and thus are preferred for dose-to-solubility ratios greater than 1000 mL, and more preferred for dose-to-solubility ratios greater than about 5000 ml. The dose-to-solubility ratio may be determined by dividing the dose (in mg) by the aqueous

[0074] Oral delivery of many CETP inhibitors is particularly difficult because their aqueous solubility is usually extremely low. typically being less than 2 µg/ml, often being less than 0.1 µg/ml. Such low sollubilities are a direct consequence of the particular structural characteristics of species that bind to CETP and thus act as CETP inhibitors. This low solubility is primarily due to the hydrophobic nature of CETP inhibitors. Clog P, defined as the base 10 logarithm of the ratio of the drug solubility in octanol to the drug solubility in water, is a widely accepted measure of hydrophobicity. in general, Clog P values for CETP inhibitors are greater than 4 and are often greater than 5 to 7. Thus, the hydrophobic and insoluble nature of CETP inhibitors as a class pose a particular challenge for oral delivery. Achieving therapeutic drug levels in the blood by oral dosing of practical quantities of drug generally requires a large enhancement in drug concentrations in the gastrointestinal fluid and a resulting large enhancement in bioavailability. Such enhancements in drug concentration in gastrointestsinal fluid typically need to be at least about 10-fold and often at least about 50-fold or even at least about 200-fold to achieve desired blood levels. Surprisingly, the formulations of the present invention have proven to have the required large enhancements in drug concentration and bioavailability.

[0075] In contrast to conventional wisdom, the relative degree of enhancement in aqueous concentration and bioavailability generally improves for CETP inhibitors as solubility decreases and hydrophobocity increases. In fact, the inventors have recognized a subclass of these CETP inhibitors that are essentially aqueous insoluble, highly hydrophobic, and are characterized by a set of physical properties. This subclass exhibits dramatic enhancements in aqueous concentration and bioavailability when formulated using the compositions of the present invention.

[0076] The first property of this subclass of essentially insoluble, hydrophobic CETP inhibitors is extremely low aqueous solubility. By extremely low aqueous solubility is meant that the minimum aqueous solubility at physiologically relevant pH (pH of 1 to 8) is less than about 10 μg/ml and preferably less than about 1 μg/ml.

[0077] A second property is a very high does to solubility ratio. Extremely low solubility often leads to poor or slow absorption of the drug from the fluid of the gastrointestinal tract, when the drug is dosed orally in a conventional manner. For extremely low solubility drugs, poor absorption generally becomes progressively more difficult as the dose (mass of drug given orally) increases. Thus, a second property of this subclass of essentially insoluble, hydrophobic CETP inhibitors is a very high dose (in mg) to solubility (in mg/ml) ratio (ml). By "very high dose-to-solubility ratio" is meant that the dose-to-solubility ratio has a value of at least 1000 ml, and preferably at least 5,000 ml, and more preferably

[0078] A third property of this subclass of essentially insoluble, hydrophobic CETP inhibitors is that they are extremely hydrophobic. By extremely hydrophobic is meant that the Clog P value of the drug, has a value of at least 4.0, preferably a value of at least 5.0, and more preferably a value of at least 5.5.

[0079] A fourth property of this subclass of essentially insoluble CETP inhibitors is that they have a low melting point. 25 Generally, drugs of this subclass will have a melting point of about 150°C or less, and preferably about 140°C or less. [0080] Primarily, as a consequence of some or all of these four properties, CETP inhibitors of this subclass typically have very low absolute bloavailabilities. Specifically, the absolute bloavailibility of drugs in this subclass when dosed orally in their undispersed state is less than about 10% and more often less than about 5%. 30

[0081] Turning now to the chemical structures of specific CETP inhibitors, one class of CETP inhibitors that finds utility with the present invention consists of oxy substituted 4-carboxyamino-2-methyl-1,2,3,4-tetrahydroquinolines hav-

Formula I

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds; wherein R_{I-1} is hydrogen, Y_I, W_I-X_I, W_I-Y_I;

wherein W_I is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_1 is -O-Y₁, -S-Y₁, -N(H)-Y₁ or -N-(Y₁)₂;

35

40

45

50

wherein Y_i for each occurrence is independently Z_i or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may

optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted

wherein Z_i is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally with Z_i; having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said Z_1 substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2 \cdot C_6)$ alkenyl, $(C_1 \cdot C_6) \text{ alkyl, hydroxy, } (C_1 \cdot C_6) \text{alkoxy, } (C_1 \cdot C_4) \text{alkylthio, amino, nitro, cyano, oxo, carboxyl, } (C_1 \cdot C_6) \text{alkyloxycarbonyl, } (C_1 \cdot C_6) \text{alkylo$ $\label{eq:mono-N-or} \mbox{mono-N-or di-N,N-} (C_1 - C_6) \mbox{alkylamino wherein said } (C_1 - C_6) \mbox{alkyl substituent is optionally mono-, di- or tri-substituted}$ independently with halo, hydroxy, (C_1-C_6) alkoxy, (C_1-C_4) alkytthio, amino, nitro, cyano, oxo, carboxyl, (C_1-C_6) alkyloxy-independently with halo, hydroxy, (C_1-C_6) alkyloxy-independently with hydroxy independently with hydro carbonyl, mono-N-or di-N.N- $(C_1^-C_6)$ alkylamino, said $(C_1^-C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

10

45

wherein \mathbf{Q}_l is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched R_{I-3} is hydrogen or Q_i; carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V_i;

wherein V, is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V₁ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C₁-C_e)alkyl, $(C_2 \cdot C_6) \text{alkenyl, hydroxy, } (C_1 \cdot C_6) \text{alkoxy, } (C_1 \cdot C_4) \text{alkylthio, amino, nitro, cyano, oxo, carbamoyl, mono-N- or di-N, amino, oxo, cyano, oxo, cyano$ N-(C1-C6) alkylcarbamoyl, carboxyl, (C1-C6)alkyloxycarbonyl, mono-N- or di-N,N-(C1-C6)alkylamino wherein said $(C_1 \cdot C_6) \\ alkyl \ or \ (C_2 \cdot C_6) \\ alkenyl \ substituent \ is \ optionally \ mono-, \ di- \ or \ tri-substituted \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substituent \ is \ optionally \ mono-, \ di- \ or \ tri-substituted \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ is \ optionally \ mono-, \ di- \ or \ tri-substituted \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ is \ optionally \ mono-, \ di- \ or \ tri-substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ is \ optionally \ mono-, \ di- \ or \ tri-substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ independently \ substitutent \ independently \ with \ hydroxy, \ (C_1 \cdot C_6) \\ alkenyl \ substitutent \ independently \ substitutent \ substitutent$ alkoxy, (C_1-C_4) alkytthio, amino, nitro, cyano, oxo, carboxyl, (C_1-C_6) alkyloxycarbonyl, mono-N-or dl-N,N- (C_1-C_6) alkylamino, said (C1-C6)alkyl or (C2-C6)alkenyl substituents are also optionally substituted with from one to nine fluo-

wherein $Q_{i,1}$ is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or rines; R_{I-4} is Q_{I-1} or V_{I-1} branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, dior tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with V_{l-1} ;

wherein V_{l-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen; 40

wherein said V_{l-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1 - C_6)$ $alkyl, (C_1 - C_6) \\ alkyoxy, \\ amino, \\ nitro, \\ cyano, (C_1 - C_6) \\ alkyloxycarbonyl, \\ mono-N- \\ or \\ di-N,N-(C_1 - C_6) \\ alkyloxycarbo$ $(C_1 - C_6) \\ \text{alkyl substituent is optionally mono-substituted with oxo, said } \\ (C_1 - C_6) \\ \text{alkyl substituent is also optionally substituted} \\ \text{also opti$ tuted with from one to nine fluorines;

wherein either $R_{l,3}$ must contain V_l or $R_{l,4}$ must contain $V_{l,1}$; and $R_{l,5}$, $R_{l,6}$, $R_{l,7}$ and $R_{l,8}$ are each independently hydrogen, hydroxy or oxy wherein said oxy is substituted with T_i or a partially saturated, fully saturated or fully unsaturated one to twelve membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Ti;

wherein T_l is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

 $wherein \ said\ T_{l}\ substituent\ is\ optionally\ mono-,\ di-\ or\ tri-substituted\ independently\ with\ halo,\ (C_{1}-C_{6})\ alkyl,\ (C_{2}-C_{6})$

alkenyl, hydroxy, $(C_1 \cdot C_0)$ alkyoxy, $(C_1 \cdot C_0)$ alkyothio, amino, nitro, cyano, oxo, carboxy, $(C_1 \cdot C_0)$ alkyoxycarbonyl, mone-N-ord Hv, N-($C_1 \cdot C_0$ alkyoxy, $(C_1 \cdot C_0)$ alkyoxy, $(C_1 \cdot$

[0082] Compounds of Formula I and their methods of manufacture are disclosed in commonly assigned United States Patent No. 6,140,342, United States Patent No. 6,362,198, and European Patent publication 967251, all of which are incorporated herein by reference in their entrieties for all unrosess.

[0083] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula I:

- [2R,4S] 4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester:
- [2R,4S] 4-((3,5-dinitro-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester;

15

20

25

30

45

50

55

- [2R,4S] 4-{(2,6-dichloro-pyridin-4-ylmethyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-Quinoline-1-carboxylic acid ethyl ester; [2R,4S] 4-{(15,5-bi-thirinomethyl-1-a-pyridin-1-a-
- [2R,4S] 4-[(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-qui-
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester;
- [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-7-methoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester, [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-qui-
- noline-1-carboxylic acid isopropyl ester; [2R,4S] 4-(3,5-bis-trifluoromethyl-benzyl)-ethoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quino-
- [2R.45] 4(3.5-bis-rfluoro-ethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid 2.2,2-trifluoro-ethyl-star:
- [2R.4S] 4-[(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester;
 - [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-dimethoxy-2-methyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester; [2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethoxy-3,4-dihydro-2H-
- quintime 1-carboxylic acid ethyl ester,

 2R.45] (3,5-bis-trifluoromethyl-benzyl)-(1-butyryl-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinolin-4-yl)-carbamic acid methyl aster.
 - [2R,4S] (3,5-bis-trifluoromethyl-benzyl)-(1-butyl-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinollin-4-yl)-car-bamic acid methyl ester; and
- [2R,4S] (3.5-bis-trifluoromethyl-benzyl)-[1-(2-ethyl-butyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydro-quinolin-

[0084] Another class of CETP inhibitors that finds utility with the present invention consists of 4-carboxyamino-2-methyl-1,2,3,4,-tetrahydroquinolines, having the Formula II

Formula II

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds; wherein R_{II-1} is hydrogen, Y_{II} , $W_{II}^-X_{II}$, $W_{II}^-Y_{II}$;

wherein W_{II} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_{II} is -O-Y_{II}, -S-Y_{II}, -N(H)-Y_{II} or -N-(Y_{II})₂; wherein Y_{ll} for each occurrence is independently Z_{ll} or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted

 Z_{\parallel} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said $Z_{\rm II}$ substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2 - C_6)$ alkenyl, $(C_1 - C_6) \text{ alkyl, hydroxy, } (C_1 - C_6) \text{alkoxy, } (C_1 - C_4) \text{alkylthio, amino, nitro, cyano, oxo, carboxy, } (C_1 - C_6) \text{alkyloxyCarbonyl, } (C_1 - C_6) \text{alkylox$ mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono-, di- or tri-substituted carbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino, said (C₁-C₆)alkyl is also optionally substituted with from one to nine fluorines:

5

10

15

20

40

45

50

wherein \mathbf{Q}_{B} is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched R_{II-3} is hydrogen or Q_{II}; carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\rm li}$

wherein V_{II} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{ii} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1 - C_\theta)$ alkyl, $(C_2 \cdot C_\theta) \text{alkenyl, hydroxy, } (C_1 \cdot C_\theta) \text{alkoxy, } (C_1 \cdot C_\theta) \text{alkoxy, } (C_1 \cdot C_\theta) \text{alkyithio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or di-N, cyano, oxo, cyano, c$ N-(C₁-C₆) alkylcarboxamoyl, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said $(C_1 \cdot C_6) \text{alkyl or } (C_2 \cdot C_6) \text{alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, } (C_1 \cdot C_6) \text{alkyl or } (C_2 \cdot C_6) \text{alkenyl substitutent is optionally mono-, di- or tri-substituted independently with hydroxy, } (C_1 \cdot C_6) \text{alkyl or } (C_2 \cdot C_6) \text{alkenyl substitutent is optionally mono-, di- or tri-substituted independently with hydroxy, } (C_1 \cdot C_6) \text{alkenyl substitutent}$ alkoxy, $(C_1 - C_d)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_g)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1 - C_g)$ alkyloxycarbonyl, mono-N- $(C_1 - C_g)$ alyloxycarbonyl, alkylamino or said $(C_1 \cdot C_6)$ alkyl or $(C_2 \cdot C_6)$ alkenyl substituents are optionally substituted with from one to nine fluorines;

wherein $Q_{\rm B-1}$ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched R_{II-4} is Q_{II-1} or V_{II-1} carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom

selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mone- or di-substituted with oxo, said nitrogen is optionally mone- or di-substituted with oxo, and

wherein V_{II-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{II-I} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_n) $alkyl, (C_1 - C_0) \\ alkoxy, \\ amino, \\ nitro, \\ cyano, \\ (C_1 - C_0) \\ alkyloxycarbonyl, \\ mono-N- \\ or \\ di-N, \\ N-(C_1 - C_0) \\ alkylamino \\ wherein \\ said \\ amino-N- \\ or \\ di-N, \\ N-(C_1 - C_0) \\ alkylamino \\ wherein \\ said \\ amino-N- \\ or \\ di-N, \\ non-N- \\ or \\ di-N, \\ or \\ or \\ di-N, \\ or \\ di$ $(C_1 - C_0)$ alkyl substituent is optionally mono-substituted with oxo, said $(C_1 - C_0)$ alkyl substituent is optionally substituted

wherein either R_{II-3} must contain V_{II} or R_{II-4} must contain V_{II-1} , and

5

40

45

50

55

 $R_{H,S}$, $R_{H,S}$, $R_{H,T}$ and $R_{H,S}$ are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with $T_{\rm II}$ or a partially saturated, fully saturated or fully unsaturated (C_1 - C_{12}) straight or branched carbon chain wherein carbon may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-

wherein T_{ii} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{ii} substituent is optionally mono-, di- or tri-substituted independently with halo, (C_1-C_6) alkyl, (C_2-C_6) alkenyl, hydroxy, $(C_1^-C_2^-)$ alkoxy, $(C_1^-C_4^-)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1^-C_2^-)$ alkyloxycarbonyl, mono-N-25 or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono., di- or tri-substituted independently with hydroxy, $(C_1 - C_0)$ alkoy, $(C_1 - C_0)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_0)$ alkyloxycarbonyl, mono-N- or di-N,N- (C_1-C_6) alkylamino, said (C_1-C_6) alkyl substituent is also optionally substituted with from one to nine

provided that at least one of substituents $R_{li,5}$, $R_{li,6}$, $R_{li,7}$ and $R_{li,8}$ is not hydrogen and is not linked to the quinoline

[0085] Compounds of Formula II and their methods of manufacture are disclosed in commonly assigned United States Patent No. 6,147,090, United States Patent Application No. 09/671,400 filed September 27, 2000, and PCT Publication No. WO00/17166, all of which are incorporated herein by reference in their entireties for all purposes.

[0086] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula II:

[2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-7-trifluoromethyl-3,4-dihydro-2H-

[2R,4S] 4-[(3,5-Bis-triffuoromethyl-benzyl)-methoxycarbonyl-amino]-7-chloro-2-methyl-3,4-dihydro-2H-quinoline-

[2R,4S] 4-{(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-methyl-3,4-dihydro-2H-quinoline-[2R,4S]

4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2,6,7-trimethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester;

[2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6,7-diethyl-2-methyl-3,4-dihydro-2H-quino-

[2R,4S] 4-[(3.5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-ethyl-2-methyl-3,4-dihydro-2H-quinoline-

[2R,4S] 4-[(3,5-Bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2Hquinoline-1-carboxylic acid isopropyl ester.

[0087] Another class of CETP inhibitors that finds utility with the present invention consists of annulated 4-carboxyamino-2-methyl-1,2,3,4, tetrahydroquinolines, having the Formula III

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Formula III

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds; wherein \boldsymbol{R}_{III-1} is hydrogen, $\boldsymbol{Y}_{III}, \boldsymbol{W}_{III}\boldsymbol{\cdot}\boldsymbol{X}_{III}, \boldsymbol{W}_{III}\boldsymbol{\cdot}\boldsymbol{Y}_{III},$

wherein W_{III} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

10

15

40

45

55

 Y_{iii} for each occurrence is independently Z_{iii} or a fully saturated, partially unsaturated or fully unsaturated one to X_{III} is -O-Y_{III}, -S-Y_{III}, -N(H)-Y_{III} or -N-(Y_{III})₂, ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono , di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said suffur is optionally mono-or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{III}. wherein Z_{III} is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally

having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein sald $Z_{\rm lll}$ substituent is optionally mono-, di- or tri-substituted independently with halo, ($C_2 \cdot C_6$)alkenyl, $(C_1 - C_6) \text{ alkyl, hydroxy, } (C_1 - C_6) \text{ alkyx, } (C_1 - C_4) \text{ alkylthio, amino, nitro, cyano, oxo, carboxy, } (C_1 - C_6) \text{ alkyl, hydroxy, } (C_1 - C_6$ mono-N- or di-N.N-(C₁-C₀-lalkylamino wherein said (C₁-C₀-lalkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, (C₁-C₆)alikoxy, (C₁-C₆)alkylthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C_e)alkylamino, said (C₁-C_e)alkyl optionally substituted with from one to nine fluorines.

wherein $\mathbf{Q}_{\mathrm{lli}}$ is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched R_{III-3} is hydrogen or Q_{III}; carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono., di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sultur is optionally mone- or di-substituted with oxo, said nitrogen is optionally mone- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with $V_{\rm HI}$;

wherein $V_{\rm III}$ is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{III} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_{I} - C_{g}) alkyt, (C₂-C₆)alkeryt, hydroxy, (C₁-C₆)alkoxy, (C₁-C₆)alkythio, amino, nitro, cyano, oxo, carboxamoyt, mono-N- or di-N, N-(C₁-C₆) alkylcarboxamoyl, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said $(C_1 - C_2)$ alkeyl or $(C_2 - C_2)$ alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1 - C_2)$ alkoxy, (C₁-C_a)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C_e)alkytoxycarbonyl, mono-N- or di-N.N-(C₁-C_e) alkylamino or sald $(C_1 \cdot C_6)$ alkyl or $(C_2 \cdot C_6)$ alkenyl are optionally substituted with from one to nine fluorines;

 $-\frac{1}{2}$ wherein $\Omega_{[ll+1}$ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched wherein $\Omega_{[ll+1]}$ R_{III-4} is Q_{III-1} or V_{III-1}; carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said

sulfur is optionally mone- or di-substituted with oxo, said nitrogen is optionally mone- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Village

wherein V_{III-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{II-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1 - C_0)$ alkyl, (C₁-C₆)alkyxy, amino, nitro, cyano, (C₁-C₆)alkytoxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkytamino wherein said (C₁-C₆)alkyl substituent is optionally mono-substituted with oxo, said (C₁-C₆)alkyl substituent optionally having from

wherein either $R_{III \cdot 3}$ must contain V_{III} or $R_{III \cdot 4}$ must contain $V_{III \cdot 1};$ and

5

45

50

55

 $R_{\rm III-S}$ and $R_{\rm III-S}$, or $R_{\rm III-S}$ and $R_{\rm III-S}$, and $R_{\rm III-S}$ and $R_{\rm III-S}$ and taken together and form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three heteroatoms independently selected

wherein said ring or rings formed by $R_{H_1\S}$ and $R_{H_1\S}$ or $R_{H_1\S}$ and $R_{H_1\S}$, and/or $R_{H_1\S}$ and $R_{H_1\S}$ are optionally monodi- or tri-substituted independently with halo, (C_1-C_2) alkyl, (C_1-C_4) alkylsutionyt, (C_2-C_6) alkenyt, hydroxy, (C_1-C_6) alkoxy, (C₁-C₄)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₆)alkylamino wherein said (C_1-C_0) alikyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_0) alkoxy, (C₁-C₄)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₆) alkylamino, said (C_1-C_6) alkyl substituent optionally having from one to nine fluorines;

provided that the $R_{\rm III-5}$, $R_{\rm III-6}$, $R_{\rm III-7}$ and/or $R_{\rm III-8}$, as the case may be, that do not form at least one ring are each independently hydrogen, halo, (C_1, C_6) alkov, or (C_1, C_6) alkyl, said (C_1, C_6) alkyl optionally having from one to nine flu-

[0083] Compounds of Formula III and their methods of manufacture are disclosed in commonly assigned United States Patent No. 6,147,089, United States Patent No. 6,310,075, and European Patent Application No. 98307240.4 filed September 14, 1999, all of which are incorporated herein by reference in their entireties for all purposes.

25 [0089] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula III:

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-2,3,4,6,7,8-hexahydro-cyclopenta

[6R, 8S] 8-{(3,5-bls-trifluoromethyl-benzyl)-methoxycarbonyl-amino}-6-methyl-3,6,7,8-tetrahydro-1H-2-thia-5-30 [6R, 8S] 8-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-methyl-3,6,7,8-tetrahydro-2H-furo[2,3-g]

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,8-tetrahydro-2H-furo[3,4-g]

[2R, 4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methyl-3,4,6,7,8,9-hexahydro-2H-benzo[g]

[7R,9S] 9-{(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino}-7-methyl-1,2,3,7,8,9-hexahydro-6-aza-cy-[65,8R] 6-{(3,5-bis-trifluoromethyl-benzyl}-methoxycarbonyl-amino]-8-methyl-1,2,3,6,7,8-hexahydro-9-aza-cy-

40

[0090] Another class of CETP inhibitors that finds utility with the present invention consists of 4-carboxyamino-2-sub-

Formula IV

10

15

20

an

55

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds; wherein R_{IV-1} is hydrogen, Y_{IV}, W_{IV}-X_{IV} or W_{IV}-Y_{IV};

wherein W_{IV} is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

wherein Y_{ij} for each occurrence is independently Z_{ij} or a fully saturated, partially unsaturated or fully unsaturated X_{IV} is -O-Y $_{IV}$, -S-Y $_{IV}$, -N(H)-Y $_{IV}$ or -N-(Y $_{IV}$)2: one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon chain is optionally mono-substituted

-v· wherein $Z_{
m W}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two bused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen,

wherein said Z_0 , substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_2 \cdot C_0)$ alkeryl, (C₁-C₂) alityl, hydroxy, (C₁-C₂)alkoxy, (C₁-C₂)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C₂)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₀)alkylamino wherein said (C₁-C₀)alkyl substituent is optionally mono-, di- or tri-substituted independently with halo, hydroxy, $(C_1 - C_0)$ alkoxy, $(C_1 - C_0)$ alkyrithio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_0)$ alkyroxycarbonyl, mono-N- or di-N.N- (C_1-C_0) alkylamino, said (C_1-C_0) alkyl substituent is also optionally substituted with from

 $R_{\rm NZ}$ is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain 1972 a special street wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms sewherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms sewherein the carbons. lected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally monor, di- or trisubstituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-substituted with hydroxy, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo; or said $R_{\rm IV2}$ is a partially saturated, fully saturated or fully unsaturated three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, suitur and nitrogen,

wherein said R_{IV-2} ring is optionally attached through $(C_1\text{-}C_4)$ alkyl; wherein said $\Pi_{W,Z}$ (ing is optionally mono-, di- or tri-substituted independently with halo, $(C_2 \cdot C_0)$ alkenyl, $(C_1 \cdot C_0)$ alkyl, hydroxy, (C₁-C₆)alkoxy, (C₁-C₆)alkytthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₆)alkyloxycarboxyl, mono-Nor di-N.N-Cq-Cg)alkylamino wherein said (C_1-C_0) alkyl substituent is optionally mono-, di- or tri-substituted independent ently with halo, hydroxy, (C1-C6)alkoxy, (C1-C4)alkylthio, oxo or (C1-C6)alkyloxycarbonyl;

with the proviso that R_{IV-2} is not methyl;

wherein Q_{ij} is a fully saturated, partially unsaturated or fully unsaturated one to Six membered straight or branched R_{IV-3} is hydrogen or Q_{IV}; carbon chain wherein the carbons other than the connecting carbon, may optionally be replaced with one heteroatom

selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mone- or di-substituted with oxo, said nitrogen is optionally mone- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with \mathbf{V}_{IV}

wherein $V_{\rm IV}$ is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_W substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1 - C_6)$ $\text{alkyl, } (C_2 \cdot C_6) \text{alkenyl, hydroxy, } (C_1 - C_6) \text{alkoxy, } (C_1 - C_4) \text{alkylthio, amino, nitro, cyano, oxo, carboxamoyl, mono-N- or d-N, amino, nitro, cyano, oxo, carboxamoyl, mono-N- oxo, cyano, oxo, carboxamoyl, mono-N- oxo, cyano, cyano, oxo, cya$ N-(C₁-C₆) alkylcarboxamoyl, carboxy, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl or (C₂-C₆)alkenyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C₁-C₆) alkoxy, (C₁-C₂)alkylthio, amino, nitro, cyano, oxo, carboxy, (C₁-C₂)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₂) alkylamino, said $(C_1 \cdot C_6)$ alkyl or $(C_2 \cdot C_6)$ alkenyl substituents are also optionally substituted with from one to nine fluoring to the same of the same o R_{IV-4} is Q_{IV-1} or V_{IV-1};

wherein $O_{[N-1]}$ a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and

wherein V_{IV-1} is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said $V_{\text{IV-1}}$ substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, $(C_1 - C_6)$ alkyl, (C₁-C₆)alkoxy, amino, nitro, cyano, (C₁-C₆)alkyloxycarbonyl, mono-N- or di-N,N-(C₁-C₆)alkylamino wherein said (C₁-C₆)alkyl substituent is optionally mono-substituted with oxo, said (C₁-C₆)alkyl substituent is also optionally substituent

wherein either $R_{N/3}$ must contain V_N or $R_{N/4}$ must contain $V_{N/4}$; $R_{N/6}$, $R_{N/6}$, $R_{N/7}$ and $R_{N/3}$ are each independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_{IV} or a partially saturated, fully saturated or fully unsaturated (C₁-C₁₂) straight or branched carbon chain wherein carbon, may optionally be replaced with one or live heteroatoms selected independently from oxygen, sulfur and nitrogen wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon is optionally mono-substituted with T_{IV}.

wherein T_W is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or, a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently,

optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_{IV} substituent is optionally mono. di- or tri-substituted independently with halo, $(C_1 - C_0)$ alkyl, (C₂-C₆)alkenyl, hydroxy, (C₁-C₆)alkoxy, (C₁-C₂)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C₀)alkytoxycarbonyl, $mono-N- \ or \ di-N,N^-(C_1-C_6) alkylamino \ wherein \ said \ (C_1-C_6) alkyl \ substituent \ is \ optionally \ mono-, \ di- or \ tri-substituted$ Independently with hydroxy, (C_1-C_0) alkoxy, (C_1-C_0) alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1-C_0) alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₆)alkylamino, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to

wherein $R_{N/5}$ and $R_{N/6}$, or $R_{N/6}$ and $R_{N/7}$, and/or $R_{N/7}$ and $R_{N/6}$ may also be taken together and can form at least one four to eight membered ring that is partially saturated or fully unsaturated optionally having one to three

heteroatoms independently selected from nitrogen, sulfur and oxygen;

15

25

40

wherein said ring or rings formed by R_{IV-S} and R_{IV-S} or R_{IV-S} and R_{IV-7} , and/or R_{IV-7} and R_{IV-S} are optionally monodi- or tri-substituted independently with halo, $(C_1 - C_4)$ alkyl, $(C_1 - C_4)$ alkylsulfonyl, $(C_2 - C_6)$ alkenyl, hydroxy, $(C_1 - C_6)$ alkoxy, $(C_1 (G_1^*C_2)$ alkyithio, amino, nitro, cyano, oxo, carboxy, $(C_1^*C_2)$ alkyitxycarbonyl, mono-N- or di-N,N- $(G_1^*C_2)$ alkyitxiio wherein said (C_1-C_0) alikyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C_1-C_0) alkoxy, (C₁-C₂)alkythio, amino, nitro, cyano, oxo, carboxy, (C₁-C₀)alkyloxycarbonyl, mono-N- or di-N.N-(C₁-C₀) alkylamino, said (C₁-C₆)alkyl substituent is also optionally substituted with from one to nine fluorines; with the proviso that when $R_{\text{IV-2}}$ is carboxyl or $(C_1\cdot C_4)$ alkylcarboxyl, then $R_{\text{IV-1}}$ is not hydrogen.

[0091] Compounds of Formula IV and their methods of manufacture are disclosed in commonly assigned United States Patent No. 6,197,786, United States Application Serial No. 09/885,3000 filed 10/10/00, and PCT Publication No. WO 00/17164, all of which are incorporated herein by reference in their entireties for all purposes.

[0092] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula IV:

[25,45] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-isopropyl-6-trifluoromethyl-3,4-dihydro-2H-

[23,45] 44(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-6-chloro-2-cyclopropyl-3,4-dihydro-2H-quin-

[25,45] 2-cyclopropyl-4-[(3,5-dichloro-benzyl)-methoxycarbonyl-amino]-6-trifluoromethyl-3,4-dihydro-2H-quino-

[25,45] 4-[3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-

[2R,AR] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dinydro-[25,45] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-

[25.45] 4-((3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino}-2-cyclobutyl-6-trifluoromethyl-3.4-dihydro-

[2R,4S] 4-1(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-qui-

[23.45] 44(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-methoxymethyl-6-trifluoromethyl-3.4-dihy-

[2R,45] 4-(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-qui-

[25.45] 4-[(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-[2R,45] 4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-qui-

[25.45] 4-[(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-

[2R,45] 4-1(3.5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester.

[0093] Another class of CETP inhibitors that finds utility with the present invention consists of 4-amino substituted-2-substituted-1,2,3,4,-tetrahydroquinolines, having the Formula V

$$\begin{array}{c} R_{V:3} & R_{V:4} \\ R_{V:5} & N \\ R_{V:7} & N \\ R_{V:7} & N \\ R_{V:8} & R_{V:1} \end{array}$$

Formula V

and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds; wherein R_{V-1} is Y_V, W_V-X_V or W_V-Y_V,

wherein $W_{\mathbf{V}}$ is a carbonyl, thiocarbonyl, sulfinyl or sulfonyl;

 X_V is -O-Y_V, -S-Y_V, -N(H)-Y_V or -N-(Y_V)₂,

10

15

20

25

30

35

40

45

50

55

wherein Y_V for each occurrence is independently Z_V or a fully saturated, partially unsaturated or fully unsaturated one to ten membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted

with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, and a later of the optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with Z_{V} .

wherein Z_v is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, suffur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, suffur and oxygen;

wherein said Z_v substituent is optionally monor, dir or tris-usbittuted independently with halo, $(C_z \cdot C_b)$ alkeyl, hydroxy, $(C_t \cdot C_b)$ alkoxy, $(C_t \cdot C_b)$ alkeyl trino, and $(C_t \cdot C_b)$ alkeyl trino, anito, oxino, oxino, oxino, oxino, $(C_t \cdot C_b)$ alkoxy, $(C_t \cdot C_b)$ alkoxy substituent is also optionally substituted with from to intelligence of the control of the fluctuation of the control oxino fluctuations and $(C_t \cdot C_b)$ alkoxy substituent is also optionally substituted with from the first order of the fluctuation of the control oxino fluctuations are controlled by the control oxino fluctuations are controlled by the controlled

[0094] R_{VZ} is a partially saturated, fully saturated or fully unsaturated one to six membered straight or branched carbon chain wherein the carbons, other than the connecting carbon, may optionally be replaced with one or two heteroatoms selected independently from oxygen, suffur and nitrogen wherein said carbon atoms are optionally mono-di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with oxo, said carbon is optionally mono-or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, or said R_{VZ} is a partially saturated, fully saturated to the total three to seven membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and introgen,

wherein said R_{V-2} ring is optionally attached through (C₁-C₄)alkyl;

25

wherein sald $\Pi_{i,2}$ ring is optionally mono-, di- or tri-substituted independently with halo, $(C_2 \cdot C_2)$ alkenyl, $(C_1 \cdot C_3)$ alkyl, hydroxy, $(C_1 \cdot C_2)$ alkylxpino, amino, nitro, cyano, oxo, carboxy, $(C_1 \cdot C_2)$ alkyloxycarbonyl, mono-N-ently with halo, hydroxy, $(C_1 \cdot C_3)$ alkyloxy, $(C_1 \cdot C_4)$ alkyloxy, (C

wherein Q_v is a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched cond-nain wherein the carbons, other than the connecting carbon, may optionally be replaced with one heteroatom selected from oxygen, suffur and introgen and said carbon is optionally mono-. di- or tri-substituted independently with halo, said carbon is optionally mono- outstituted with potroxy, said carbon is optionally mono- outstituted with oxy, said carbon is optionally mono- outstituted with oxy, said carbon or di-substituted with oxy, and said carbon chain is optionally mono-substituted with V_v;

wherein V_V is a partially saturated, fully saturated or fully unsaturated three to eight membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated to fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

Wherein said V, substituent is optionally mono-, dr-, tir-, or tetra-substituted independently with halo, (C₁-C₀)alkyn, (C₁-C₀)alkyn, (C₁-C₀)alkyn, (C₁-C₀)alkyn), (C₁

F_{V-4} is cyano, formyl, W_{V-1}Q_{V-1}, W_{V-1}V_{V-1}, (C₁-C₄)alkyleneV_{V-1} or V_{V-2}; wherein W_{V-1} is carbonyl, thiocarbonyl, SO or SO₂,

wherein Q_{V-1} a fully saturated, partially unsaturated or fully unsaturated one to six membered straight or branched carbon or bain wherein the carbons may optionally be replaced with one heteroatom selected from oxygen, sulfur and nitrogen and said carbon is optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said nitrogen is optionally mono-, or di-substituted with oxo, and said carbon tain is optionally mono-substituted with V_{V-1}:

wherein $V_{V,i}$ is a partially saturated, fully saturated or fully unsaturated three to six membered ring optionally having one to two heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated to fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said V_{V-1} substituent is optionally mono-, di-, tri-, or tetra-substituted independently with halo, (C_1-C_6) alkyl, (C_1-C_6) alkyn, hydroxy, oxo, amino, nitro, cyano, (C_1-C_6) alkyloxycarbonyl, mono-N- or di-N.N- (C_1-C_6) alkylamino

wherein said $(C_1 - C_6)$ alkyl substituent is optionally mono-substituted with oxo, said $(C_1 - C_6)$ alkyl substituent is also optionally substituted with from one to nine fluorines;

wherein $V_{V,2}$ is a partially saturated, fully saturated or fully unsaturated five to seven membered ring containing one to four heteroatoms selected independently from oxygen, sulfur and nitrogen;

wherein said V_{V-2} substituent is optionally mono-, di- or tri-substituted independently with halo, (C₁-C₂)alkvl, (C_1-C_2) alkoxy, hydroxy, or oxo wherein said (C_1-C_2) alkyl optionally has from one to five fluorines; and

wherein R_{V-4} does not include oxycarbonyl linked directly to the C⁴ nitrogen;

wherein either $R_{V\cdot3}$ must contain V_V or $R_{V\cdot4}$ must contain $V_{V\cdot4},$

20

25

40

45

50

 $R_{V.6}, R_{V.7}, a_{V.7}$ and $R_{V.8}$ are independently hydrogen, a bond, nitro or halo wherein said bond is substituted with T_V or a partially saturated, fully saturated or fully unsaturated (C₁-C₁₂) straight or branched carbon chain wherein carbon may optionally be replaced with one or two heteroatoms selected independently from oxygen, sulfur and nitrogen, wherein said carbon atoms are optionally mono-, di- or tri-substituted independently with halo, said carbon is optionally mono-substituted with hydroxy, said carbon is optionally mono-substituted with oxo, said sulfur is optionally mono- or di-substituted with oxo, said nitrogen is optionally mono- or di-substituted with oxo, and said carbon chain is optionally mono-substituted with T_v;

wherein T_V is a partially saturated, fully saturated or fully unsaturated three to twelve membered ring optionally having one to four heteroatoms selected independently from oxygen, sulfur and nitrogen, or a bicyclic ring consisting of two fused partially saturated, fully saturated or fully unsaturated three to six membered rings, taken independently, optionally having one to four heteroatoms selected independently from nitrogen, sulfur and oxygen;

wherein said T_V substituent is optionally mono-, di- or tri-substituted independently with halo, $(C_1 - C_6)$ alkyl, $(C_2 - C_6)$ alkenyl, hydroxy, $(C_1 - C_6)$ alkoxy, $(C_1 - C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_6)$ alkyloxycarbonyl, mono-Nor di-N,N-(C1-C6)alkylamino wherein said (C1-C6)alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, $(C_1 - C_6)$ alkoxy, $(C_1 - C_4)$ alkytthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_6)$ alkyloxycarbonyl, moently with hydroxy, $(C_1 - C_6)$ alkyloxycarbonyl, $(C_1 - C_6)$ alkyloxycarbonyl, moently with hydroxy, $(C_1 - C_6)$ alkyloxycarbonyl, moently with hydroxy, $(C_1 - C_6)$ alkyloxycarbonyl, $(C_1 - C_6)$ alky no-N- or di-N,N-(C1-Ce)alkylamino, said (C1-C8)alkyl substituent also optionally has from one to nine fluorines;

wherein $R_{V.5}$ and $R_{V.6}$, or $R_{V.6}$ and $R_{V.7}$, and/or $R_{V.7}$ and $R_{V.8}$ may also be taken together and can form at least one ring that is a partially saturated or fully unsaturated four to eight membered ring optionally having one to three heteroatoms independently selected from nitrogen, sulfur and oxygen;

wherein said rings formed by $R_{V.5}$ and $R_{V.6}$, or $R_{V.6}$ and $R_{V.7}$, and/or $R_{V.7}$ and $R_{V.8}$ are optionally mono-, di- or tri-substituted independently with halo, (C₁-C₆)alkyl, (C₁-C₄)alkylsulfonyl, (C₂-C₆)alkenyl, hydroxy, (C₁-C₆)alkoxy, $(C_1 - C_4) \\ alkylthio, amino, nitro, cyano, oxo, carboxy, (C_1 - C_6) \\ alkyloxycarbonyl, \\ \\ mono-N- or \\ \\ \\ di-N,N-(C_1 - C_6) \\ alkylamino$ wherein said (C1-Ce)alkyl substituent is optionally mono-, di- or tri-substituted independently with hydroxy, (C1-Ce) alkoxy, $(C_1 - C_4)$ alkylthio, amino, nitro, cyano, oxo, carboxy, $(C_1 - C_6)$ alkyloxycarbonyl, mono-N- or di-N,N- $(C_1 - C_6)$

alkylamino, said (C1-C6)alkyl substituent also optionally has from one to nine fluorines. [0095] Compounds of Formula V and their methods of manufacture are disclosed in commonly assigned United States Patent No. 6,140,343, United States Patent Application Serial No. 09/671,221 filed September 27, 2000, and PCT Publication No. WO 00/17165, all of which are incorporated herein by reference in their entireties for all purposes. [0096] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula V:

- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester;
- [2S,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester;
 - [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid tert-butyl ester;
- 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-[2R,4S] carboxylic acid isopropyl ester; [2R,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-
 - [2S,4S] 4-[1-(3,5-bis-trifluoromethyl-benzyl)-ureido]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-
 - carboxylic acid isopropyl ester; 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-
 - [2R.4S] $[2S,4S]\ 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methoxymethyl-6-trifluoromethyl-3,4-dihydro-2H-quin-fine and the state of the state o$
 - [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinooline-1-carboxylic acid isopropyl ester;
- 55 [2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid propyl ester; line-1-carboxylic acid ethyl ester;

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino}-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-

СВП-ОУУРИ: выполнять энцигуру с эки». [2R,45] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-

[2S,4S] 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quino-[2R,45] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-

[2S,4S] 4-{(3,5-bis-Irifluoromethyl-benzyl)-formyl-amino}-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester:

[2R,4S] 4-[(3,5-bis-trifluoromethyl-benzyl)-formyl-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-

(2R.45) 4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-

[0097] Another class of CETP inhibitors that finds utility with the present invention consists of cycloalkano-pyridines

$$D_{V_{I}} \xrightarrow{A_{V_{I}}} R_{V_{I-1}}$$

Formula VI

30 and pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds;

[0098] A_{vi} denotes an anyl containing 6 to 10 carbon atoms, which is optionally substituted with up to five identical or different substituents in the form of a halogen, nitro, hydroxyl, trifluoromethyl, trifluoromethoxy or a straight-chain or branched alkyl, acyl, hydroxyalkyl or alkoxy containing up to 7 carbon atoms each, or in the form of a group according to the formula -BNR_{VI-3}R_{VI-4}, wherein

[0099] R_{VI-3} and R_{VI-4} are identical or different and denote a hydrogen, phenyl or a straight-chain or branched allkyl

[0100] D_{v1} denotes an anyl containing 6 to 10 carbon atoms, which is optionally substituted with a phenyl, nitro, halogen, trifluoromethyl or trifluoromethoxy, or a radical according to the formula R_{Vl-S} - L_{Vl} -,

$$\mathsf{R}_{\mathsf{VI-7}} \qquad \mathsf{R}_{\mathsf{VI-8}}$$

or R_{VI-9}-T_{VI}-V_{VI}-X_{VI}, wherein

5

15

20

25

45

50

 R_{VI-S} , R_{VI-S} and R_{VI-S} denote, independently from one another, a cycloalkyl containing 3 to 6 carbon atoms, or an aryl containing 6 to 10 carbon atom or a 5- to 7-membered, optionally benzo-condensed, saturated or unsaturated, mono-, bl- or tricyclic heterocycle containing up to 4 heteroatoms from the series of S, N and/or O, wherein the rings are optionally substituted, in the case of the nitrogen-containing rings also via the N function, with up to five identical or different substituents in the form of a halogen, trifluoromethyl, nitro, hydroxyl, cyano, carboxyl, trifluoromethoxy, a to uniceria, automated in the form of a lawyer, amounted in the first property of the standard each, an aryl or trifluoromethyl-substituted aryl containing 6 to 10 carbon atoms each, or an optionally benzo-condensed, aromatic 5- to 7-membered heterocycle containing up to 3 heteoatoms from the series of S, N and/or Q, and/ or in the form of a group according to the formula BOR_{VI-10}, -SR_{VI-11}, -SO₂R_{VI-12} or BNR_{VI-13}R_{VI-14}, wherein

R_{0:1:0} P_{0:1:1} and R_{0:1:2} denote, independently from one another, an any containing 6 to 10 carbon atoms, which 191-10 - 191-10 and 191-12 decisions, an appendix of different substituents in the form of a phenyl, halogen or a straight-chain is in turn substituted with up to two identical or different substituents in the form of a phenyl, halogen or a straight-chain

or branched alkyl containing up to 6 carbon atoms, R_{Vl-13} and R_{Vl-14} are identical or different and have the meaning of R_{Vl-3} and R_{Vl-4} given above, or

 R_{Vi-5} and/or R_{Vi-6} denote a radical according to the formula

Rule denotes a hydrogen, halogen, azido, trifluoromethyl, hydroxyl, trifluoromethoxy, a straight-chain or branched alkoxy or alkyl containing up to 6 carbon atoms each, or a radical according to the formula

wherein

10

15

20

25

35

40

45

50

55

 $R_{V_{J-15}}$ and $R_{V_{J-16}}$ are identical or different and have the meaning of $R_{V_{J-3}}$ and $R_{V_{J-4}}$ given above, or

 R_{VI-7} and R_{VI-8} together form a radical according to the formula =0 or =NR_{VI-17}, wherein

R_{0,1-7} denotes a hydrogen or a straight-chain or branched alkyl, alkoxy or acyl containing up to 6 carbon atoms

L_{vi} denotes a straight-chain or branched alkylene or alkenylene chain containing up to 8 carbon atoms each, which are optionally substituted with up to two hydroxyl groups,

 $T_{\rm vi}$ and $X_{\rm vi}$ are identical or different and denote a straight-chain or branched alkylene chain containing up to 8 carbon atoms, or

T_{VI} or X_{VI} denotes a bond,

 $V_{\rm VI}$ denotes an oxygen or sulfur atom or an BNR $_{\rm VI-18}$ group, wherein

R_{M-16} denotes a hydrogen or a straight-chain or branched alkyl containing up to 6 carbon atoms or a phenyl,

Ey denotes a cycloalkyl containing 3 to 8 carbon atoms, or a straight-chain or branched alkyl containing up to 8 carbon atoms, which is optionally substituted with a cycloalicyl containing 3 to 8 carbon atoms or a hydroxyl, or a phenyl, which is optionally substituted with a halogen or trifluoromethyl,

 $R_{0,1}$ and $R_{0,2}$ together form a straight-chain or branched alkylene chain containing up to 7 carbon atoms, which must be substituted with a carbonyl group and/or a radical according to the formula

$$(CH_2)_a - CH_2 \qquad O - CH_2 \qquad O$$

a and b are identical or different and denote a number equaling 1, 2 or 3, R_{0,1-13} denotes a hydrogen atom, a cycloalkyl containing 3 to 7 carbon atoms, a straight-chain or branched silywherein lalkyl containing up to 8 carbon atoms, or a straight-chain or branched alkyl containing up to 8 carbon atoms, which is optionally substituted with a hydroxyl, a straight-chain or a branched alkoxy containing up to 6 carbon atoms or a phenyl, which may in turn be substituted with a halogen, nitro, trifluoromethyl, trifluoromethoxy or phenyl or tetrazole substituted phenyl, and an alkyl that is optionally substituted with a group according to the formula BOR_{V(2)}, wherein R_{VI-22} denotes a straight-chain or branched acyl containing up to 4 carbon atoms or benzyl, or

R_{0:10} denotes a straight-chain or branched acyl containing up to 20 carbon atoms or benzoyl, which is optionally substituted with a halogen, trifluoromethyl, nitro or trifluoromethoxy, or a straight-chain or branched fluoroacyl containing up to 8 carbon atoms,

R_{VI-20} and R_{VI-21} are identical or different and denote a hydrogen, phenyl or a straight-chain or branched alkyl containing up to 6 carbon atoms, or

R_{VI-20} and R_{VI-21} together form a 3- to 6-membered carbocyclic ring, and a the carbocyclic rings formed are optionally substituted, optionally also gerninally, with up to six identical or different substituents in the form of triffuoromethyl, hydroxyl, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkyl or cycloalkyloxy containing 3 to 7 carbon atoms each, a straight-chain or branched alkoxycarbonyl, alkoxy or alkylthio containing up to 6 carbon atoms each, or a straight-chain or branched alkyl containing up to 6 carbon atoms, which is in turn substituted with up to two identical or different substituents in the form of a hydroxyl, benzyloxy, trifluoromethyl, benzoyl, a straight-chain or branched alkoxy, oxyacyl or carboxyl containing up to 4 carbon atoms each and/or a phenyl, which may in turn be substituted with a halogen, trifluoromethyl or trifluoromethoxy, and/or the carbocyclic rings formed are optionally substituted, also geminally, with up to five identical or different substituents in the form of a phenyl, benzoyl, thiophenyl or sulfony/benzyl, which in turn are optionally substituted with a halogen, trifluoromethyl, trifluoromethoxy or nitro, and/or optionally in

 $-SO_2-C_6H_5$, $-(CO)_dNR_{VI-23}R_{VI-24}$ or =O.

15

25

30

35

40

50

55

c is a number equaling 1, 2, 3 or 4,

d is a number equaling 0 or 1,

R_{VI-23} and R_{VI-24} are identical or different and denote a hydrogen, cycloalkyl containing 3 to 6 carbon atoms, a straight-chain or branched alkyl containing up to 8 carbon atoms, benzyl or phenyl, which is optionally substituted with up to two identical or different substituents in the form of halogen, trifluoromethyl, cyano, phenyl or nitro, and/or the carbocyclic rings formed are optionally substituted with a spiro-linked radical according to the formula

wherein

W_{VI} denotes either an oxygen atom or a sulfur atom,

 Y_{VI} and $Y_{=VI}$ together form a 2- to 6-membered straight-chain or branched alkylene chain,

e is a number equaling 1, 2, 3, 4, 5, 6 or 7,

f is a number equaling 1 or 2,

R_{VI-25}, R_{VI-26}, R_{VI-27}, R_{VI-28}, R_{VI-29}, R_{VI-30} and R_{VI-31} are identical or different and denote a hydrogen, trifluor-াপ্তির শাস্ত্র শাস্ত্র শাস্ত্র শাস্ত্র শাস্ত্র শাস্ত্র শাস্তর শাস্ত্র লাভ শাস্ত লাভ শাস্ত্র লাভ শাস্ত্র লাভ শাস্ $\hat{R}_{Vl.25}$ and $R_{Vl.26}$ or $R_{Vl.27}$ and $R_{Vl.28}$ each together denote a straight-chain or branched alkyl chain containing up to 6 carbon atoms or

 $\dot{R}_{VI:25}$ and $R_{VI:26}$ or $R_{VI:27}$ and $R_{VI:28}$ each together form a radical according to the formula

wherein

W_{VI} has the meaning given above,

g is a number equaling 1, 2, 3, 4, 5, 6 or 7,

R_{VI-32} and R_{VI-33} together form a 3- to 7-membered heterocycle, which contains an oxygen or sulfur atom or a group according to the formula SO, SO₂ or BNR_{VI-34}, wherein

 $R_{V_{1}:34}$ denotes a hydrogen atom, a phenyl, benzyl, or a straight-chain or branched alkyl containing up to 4 carbon

atoms, and salts and N oxides thereof, with the exception of 5(6H)-quinolones, 3-benzoyl-7,9-dithydro-2,7,7-trimethyl-

[0101] Compounds of Formula VI and their methods of manufacture are disclosed in European Patent Application No. EP 818448 A1, United States Patent No. 6,207,671 and United States Patent No. 6,069,148, all of which are

[0102] In a preferred embodiment, the CETP inhibitor is selected from one of the following compounds of Formula VI:

2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-3-(4-trifluoromethylbenzoyl)-4,6,7,8-tetrahydro-1 H-quinolin-5-one; 2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-3-(4-irifluoromethylbenzoyl)-7,8-dihydro-6H-quinolin-5-one;

...... [5-(t-buryklimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-5,8,7,8-tetrahydroquinolin-3-yl]-(4-trif-

[5-(t-butyldimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-7,7-dimethyl-5,8,7,8-tetrahydroquinolin-3-yl]-(4-trif-

5-(t-butyldimethylsilanyloxy)-2-cyclopentyl-4-(4-fluorophenyl)-3-[fluoro-(4-trifluoromethylphenyl)-methyl)

2-cyclopenty/-4-(4-fluorophenyl)- 3-(fluoro-(4-trifluoromethylphenyl)-methyl)-7,7-dimethyl-5,6,7,8-tetrahydroquinolin-5-ol.

[0103] Another class of CETP inhibitors that finds utility with the present invention consists of substituted-pyridines having the Formula VII

Formula VII

or a pharmaceutically acceptable salt or tautomer thereof, 35

10

15

20

25

20

40

45

50

55

 $R_{\rm VII-2}$ and $R_{\rm VII-6}$ are independently selected from the group consisting of hydrogen, hydroxy, alkyl, fluorinated alkyl, fluorinated aralkyl, chloroftuorinated alkyl, cycloalkyl, heterocyclyl, aryl, heteroaryl, alkoxy, alkoxy,alkoxyalkyl, and alkox yearbonyt; provided that at least one of R_{VII-2} and R_{VII-6} is fluorinated alkyl, chlorofluorinated alkyl or alkoxyalkyt.

R_{vits} is selected from the group consisting of hydroxy, amido, arykarbonyl, heteroarylcarbonyl, hydroxymethyl

 $-CO_2R_{VIL-7}$, wherein R_{VIL-7} is selected from the group consisting of hydrogen, alkyl and cyanoalkyl; and

wherein R_{VII-15a} is selected from the group consisting of hydroxy, hydrogen, halogen, alkythio, alkenythio, alkynyithio, aryithio, heteroaryithio, heterocyclylthio, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryitoxy and heterocyclyloxy.

R_{vil-16a} is selected from the group consisting of alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl, aryl, and heteroaryl, and heterocyclyl, arylalkoxy, trialkylsilyloxy;

R_{VII-a} is selected from the group consisting of hydrogen, hydroxy, halogen, alkyl, alkenyl, alkynyl, cycloalkyl. cycloalkenyl, hatoalkyl, hatoalkenyl, hatoalkynyl, aryl, heteroaryl, heterocyclyl, cycloalkylalkyl, cycloalkenylalkyl, ar

alkyl, heteroarylalkyl, heterocyclylalkyl, cycloalkylalkenyl, cycloalkenylalkenyl, aralkenyl, heteroarylalkenyl, heterocyclylalkenyl, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkenoyloxy, alkynoy, okoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkynoy, heterocyclyloxy, alkynoy, heterocyclyloxy, alkynoy, heterocyclyloxy, heterocyclyloxy, alkynoy, heterocyclyloxy, heterocyclyloxy, heterocyclyloxy, alkynolinkenyl, alkynylinio, alkynylinio, alkynylinio, arylthioalkyl, heteroarylthioalkyl, alkylinioalkyl, alkynylinioalkyl, alkynylinioalkyl, alkynylinioalkyl, arylthioalkyl, heteroarylthioalkenyl, heterocyclythioalkenyl, alkylamino, alkynylinioalkynylamino, heteroarylthioalkenyl, alkylamino, alkynylinioalkenyl, arylthioalkyl, heteroarylthioalkyl, heteroarylthioalkenyl, alkylamino, alkynylininio, al

CO(O)N(R₁₀₈₋₈R_{V₁₀₋₈₀). Wherein R₁₀₋₈₀ and R_{V₁₀₈} are independently selected from the group consisting of alkyl, alkeryl, alkymyl, aryl, heteroaryl and heterocyclyl. $SO_2R_{V_{10}}$ as wherein R_{V₁₀} is selected from the group consisting of hydroxy, alkyl, alkenyl, alkymyl, aryl, heteroaryl and heterocyclyl. O(O)(O(R₁₀₋₁₀₀) (O(R_{V₁₀₋₁₀₀}), wherein R_{V₁₀₋₁₀₀} are independently selected from the group consisting of hydrogen, hydroxy, alkyl, alkenyl, alkymyl, aryl, heteroaryl and heterocyclyl, and O(P(S) (O(R₁₀₋₁₁₀), wherein R_{V₁₀₋₁₁₀} are independently selected from the group consisting of alkyl, alkenyl, alkymyl, aryl, heteroaryl and heterocycly.}

R_{N1.5} is selected from the group consisting of hydrogen, hydroxy, halogen, alkyl, alkenyl, alkynyl, cycloalkeyl, holoalkyl, haloalkyn, haloalkyn, haloalkyn, haloalkyn, haloalkyn, haloalkyn, ayri, heteroaryl, heterocyclyl, alkoxy, alkenoya, alkynoy, aryloxy, heterocyclyloxy, alkydaronyloxyalkyl, alkynyloachonyloxyalkyl, alkynyloachonyloxyalkyl, alkynyloachonyloxyalkyl, alkynyloxyalkyl, heterocyclybyloxyalkyl, alkynyloxyalkyl, alkynyloxyalkyl, heteroxyloxyalkyl, alkynyloxyalkyl, heteroxyloxyalkyl, heteroxy

25

30

35

45

50

55

wherein $R_{Vil-10s}$ is selected from the group consisting of hydroxy, hydrogen, halogen, alkylthio, alkenylthio, anylthio, heteroarythio, heterocyclylthio, alkoxy, alkenoxy, alkynoxy, anyloxy, heteroarytoxy, heterocyclyloxy, aroyloxy, and alkysiullonyloxy, by the selection of the selection o

R_{VII-16b} is selected form the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, arylalkoxy, and trialkylsilyloxy;

wherein $R_{V|l-17}$ and $R_{V|l-18}$ are independently selected from the group consisting of alkyl, cycloalkyl, alkenyl, aryl, heteroaryl and heterocyclyl;

wherein R_{VII-19} is selected from the group consisting of alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, hete-

rocyclyl, -SR $_{\text{VII-}20}$ -OR $_{\text{VII-}21}$, and BR $_{\text{VII-}22}\text{CO}_2\text{R}_{\text{VII-}23}$, wherein R_{VII-20} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, aminoalkyl, aminoalkenyl, aminoalkynyl, aminoaryl, aminoheteroaryl, aminoheterocyclyl, alkylheteroarylamino, arylheteroarylamino no,

 R_{VII-21} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl. $R_{\text{VII-}22}$ is selected from the group consisting of alkylene or arylene, and

R_{VII-23} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein R_{VII-24} is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, aralkyl, aralkenyl, and aralkynyl;

$$\begin{array}{c}
C \equiv N \\
-C = R_{VII-25}
\end{array}$$

wherein R_{VII-25} is heterocyclylidenyl;

10

15

20

25

30

35

40

45

50

55

wherein R_{VII-26} and R_{VII-27} are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein $R_{VII:28}$ and $R_{VII:29}$ are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein $R_{VII:30}$ and $R_{VII:31}$ are independently alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, and heterocyclyloxy; and

wherein $R_{VII:32}$ and $R_{VII:33}$ are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, aryl, heteroaryl, and heterocyclyl;

H
$$\mid$$
- C = N - OH
 $C = C - SI(R_{VII,36})_3$

wherein R_{VII-36} is selected from the group consisting of alkyl, alkenyl, aryl, heteroaryl and heterocyclyl;

wherein $B_{VII:39}$ and $B_{VII:38}$ are independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl;

wherein H_{VII:39} is selected from the group consisting of hydrogen, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, alkylthio, alkenylthio, alkynylthio, arylthio, heteroarylthio and heterocyclylthio, and

R_{VII.40} is selected from the group consisting of haloalkyl, haloalkenyl, haloalkynyl, haloanyl, haloheteroaryl, haloheterocyclyl, cycloalkyl, cycloalkenyl, heterocyclytalkony, heterocyclytalkenoxy, heterocyclytalkynoxy, alkythio, alkenythio, alkythio, haloanylibio, alkythio, haloanylibio, alkythio, alkythio, alkenythio, alkythio, alkythio,

wherein R_{VII-41} is heterocyclylidenyl;

5

15

20

25

30

35

50

55

wherein R_{VII-42} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, and heterocyclyl, and

R_{VII-43} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, cycloalkyl, cycloalkenyl, haloalkyl, haloalkenyl, haloalkynyl, haloaryl, haloheteroaryl, and haloheterocyclyl;

wherein $R_{\text{vil}-44}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl:

wherein R_{VII-45} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclyl, haloakyl, haloakeyl, haloakeyl, haloakeyl, haloakeyl, haloakeyl, haloakeyl, haloakeylakeyl, haloakeylakeyl, haloakeylakeyl, aralkyl, heteroarylakeyl, heterocyclylakeyl, declasklylakenyl, cycloakeylakeyl, aralkeyl, heteroarylakeyl, haloakeyl, akeynythioalkyl, arylthioakyl, haloakeyl, akeynythioalkyl, akynythioakyl, arythioakyl, heteroarythioalkyl, heteroaryth

cyclytthioalkyt, alkytthioalkenyl, alkenytthioalkenyl, alkynytthioalkenyl, arytthioalkenyl, heteroarytthioalkenyl, encoarbonylalkyl, aminocarbonylalkyl, aminocarbonylalkyl, aminocarbonylalkynyl, aminocarbonylalyl, aminocarbonylalkynyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalyl, aminocarbonylalkynyl, aminocarbonylalkyl, aminocarbonylal

wherein R_{Vil-40} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, R_{Vil-47} is selected from the group consisting of hydrogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl;

wherein R_{VII-40} is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl, and

R_{VII-49} is selected from the group consisting of alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy, heterocyclyloxy, haloalkryl, haloal

5

10

15

20

25

30

35

40

45

50

55

wherein $R_{V|1:50}$ is selected from the group consisting of hydrogen, alkyl, cycloalkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkoxy, alkenoxy, alkynoxy, aryloxy, heteroaryloxy and heterocyclyloxy;

wherein R_{Vil-51} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, haloalkenyl, haloalkynyl, haloalkynyl, haloalkenyl, haloalkynyl, haloalkenyl, haloa

wherein R_{VII-53} is selected from the group consisting of alkyl, alkenyl, alkynyl, aryl, heteroaryl and heterocyclyl: provided that when R_{VII-5} is selected from the group consisting of heterocyclylalkyl and heterocyclylalkenyl, the heterocyclyl radical of the corresponding heterocyclylalkyl or heterocyclylalkenyl is other than ô-lactone; and

provided that when R_{VII-4} is anyl, heteroaryl or heterocyclyl, and one of R_{VII-2} and R_{VII-6} is trifluoromethyl, then the other of R_{VII-2} and R_{VII-6} is diffuoromethyl.

[0104] Compounds of Formula VII and their methods of manufacture are disclosed in PCT Publication No. WO 9941237-A1, which is incorporated herein by reference in its entirety for all purposes.

[0105] In a preferred embodiment, the CETP inhibitor of Formula VII is dimethyl 5,5-dithiobis[2-difluoromethyl-4-(2-methylpropyl)-6-(trifluoromethyl)-3-pyridine-carboxylate].

[0106] Another class of CETP inhibitors that finds utility with the present invention consists of substituted biphenyls having the Formula VIII

Formula VIII

or a pharmaceutically acceptable salt, enantiomers, or stereoisomers thereof, in which

 $A_{
m VIII}$ stands for anyl with 6 to 10 carbon atoms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, or by straight-chain or branched alkyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

25

5

10

15

20

30

 $R_{\rm Viii-1}$ and $R_{\rm Viii-2}$ are identical or different and denote hydrogen, phenyl, or straight-chain or branched alkyl with wherein

 $D_{\rm VIII}$ stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is substituted by hydroxy, up to 6 carbon atoms, $E_{
m VIII}$ and $E_{
m VIII}$ are either identical or different and stand for straight-chain or branched alkyl with up to 8 carbon

atoms, which is optionally substituted by cycloalkyl with 3 to 8 carbon atoms, or stands for cycloalkyl with 3 to 8 carbon atoms, or

 $L_{\rm VIII}$ in this case stands for aryl with 6 to 10 carbon atoms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluoromethyl, trifluoromethoxy, or by straight-chain or branched alkyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

wherein

 $R_{VIII:3}$ and $R_{VIII:4}$ are identical or different and have the meaning given above for $R_{VIII:1}$ and $R_{VIII:2}$, or

Eym stands for straight-chain or branched alkyl with up to 8 carbon atoms, or stands for aryl with 6 to 10 carbon aloms, which is optionally substituted up to 3 times in an identical manner or differently by halogen, hydroxy, trifluorometryl, trifluoromethoxy, or by straight-chain or branched allyl, acyl, or alkoxy with up to 7 carbon atoms each, or by a group of the formula

wherein

 $R_{VIII:5}$ and $R_{VIII:6}$ are identical or different and have the meaning given above for $R_{VIII:1}$ and $R_{VIII:2}$ and L_{(III} in this case stands for straight-chain or branched alkoxy with up to 8 carbon atoms or for cycloalkyloxy with 3 to 8 carbon atoms,

T_{VIII} stands for a radical of the formula

55

45

$$R_{\text{VIII-7}} - X_{\text{VIII-}} \quad \text{or} \quad \begin{array}{c} R_{\text{VIII-8}} \\ R_{\text{VIII-8}} \end{array} \underbrace{\hspace{-0.5cm}}^{\hspace{-0.5cm} R_{\text{VIII-10}}}_{\text{wherein}}$$

 R_{VIII-7} and R_{VIII-8} are identical or different and denote cycloalkyl with 3 to 8 carbon atoms, or aryl with 6 to 10 carbon atoms, or denote a 5- to 7-member aromatic, optionally benzo-condensed, heterocyclic compound with up to 3 heteroatoms from the series S, N and/or O, which are optionally substituted up to 3 times in an identical manner or differently by trifluoromethyl, trifluoromethoxy, halogen, hydroxy, carboxyl, by straight-chain or branched alkyl, acyl, alkoxy, or alkoxycarbonyl with up to 6 carbon atoms each, or by phenyl, phenoxy, or thiophenyl, which can in turn be substituted by halogen, trifluoromethyl, or trifluoromethoxy, and/or the rings are substituted by a group of the formula

wherein

5

15

20

25

30

35

40

 $R_{VIII-11}$ and $R_{VIII-12}$ are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2}

X_{VIII} denotes a straight or branched alkyl chain or alkenyl chain with 2 to 10 carbon atoms each, which are optionally substituted up to 2 times by hydroxy,

R_{VIII-9} denotes hydrogen, and

R_{VIII-10} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, mercapto, trifluoromethoxy, straight-chain or branched alkoxy with up to 5 carbon atoms, or a radical of the formula

wherein

 $R_{VIII-13}$ and $R_{VIII-14}$ are identical or different and have the meaning given above for R_{VIII-1} and R_{VIII-2} , or R_{VIII-9} and R_{VIII-10} form a carbonyl group together with the carbon atom.

Compounds of Formula VIII are disclosed in PCT Publication No. WO 9804528, which is incorporated herein by reference in its entirety for all purposes.

[0107] Another class of CETP inhibitors that finds utility with the present invention consists of substituted 1,2,4-tria-

Formula IX

or a pharmaceutically acceptable salt or tautomer thereof;

wherein R_{IX-1} is selected from higher alkyl, higher alkenyl, higher alkynyl, aryl, aralkyl, anyloxyalkyl, alkoxyalkyl, alkylthioalkyl, arylthioalkyl, and cycloalkylalkyl;

wherein R_{IX-2} is selected from aryl, heteroaryl, cycloalkyl, and cycloalkenyl,

R_{IX.2} is optionally substituted at a substitutable position with one or more radicals independently selected from alkyl, haloalkyl, alkylthio, alkytsulfinyl, alkylsulfonyl, alkoxy, halo, aryloxy, aralkyloxy, aryl, aralkyl, aminosulfonyl, amino,

wherein R_{IX-3} is selected from hydrido, -SH and halo;

provided R_{IX-2} cannot be phenyl or 4-methylphenyl when R_{IX-1} is higher alkyl and when $R_{IX\cdot3}$ is BSH. [0108] Compounds of Formula IX and their methods of manufacture are disclosed in PCT Publication No. WO 9914204, which is incorporated herein by reference in its entirety for all purposes.

[0109] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula IX:

2,4-dihydro-4-(3-methoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2-fluorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2-methylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(3-chlorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2, 4-dihydro-4-(2-methoxyphenyl)-5-tridecyl-3H-1.2,4-triazole-3-thione; 2,4-dihydro-4-(3-methylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 4-cyclohexyl-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione; 2.4-dihydro-4-(3-pyridyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2-ethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2,6-dimethylphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(4-phenoxyphenyl)-5-tridecyl-3H-1,2,4-triazole- 3-thione; 4-(1,3-benzodioxol-5-yl)-2,4-dihydro-5-tridecyl-3H-1,2,4- triazole-3-thione; 4-(2-chlorophenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(4-methoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-5-tridecyl-4-(3-trifluoromethylphenyl)-3H-1,2,4-triazole-3-thione; 2,4-dihydro-5-tridecyl-4-(3-fluorophenyl)-3H-1,2,4-triazole-3-thione; 15 4-(3-chloro-4-methylphenyl)-2.4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 4-(4-benzyloxyphenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2-naphthyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-5-tridecyl-4-(4-trifluoromethylphenyl)-3H-1,2,4-triazole-3-thione; 20 2,4-dihydro-4-(1-naphthyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(3-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2.4-dihydro-4-(4-methylthiophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(3,4-dimethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(2,5-dimethoxyphenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 25 2,4-dihydro-4-(2-methoxy-5-chlorophenyl)-5-tridecyl-3H-1,2,4-triazole-3-thione; 4-(4-aminosulfonylphenyl)-2,4-dihydro-5-tridecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-5-dodecyl-4-(3-methoxyphenyl)-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(3-methoxyphenyl)-5-tetradecyl-3H-1,2,4-triazole-3-thione; 2,4-dihydro-4-(3-methoxyphenyl)-5-undecyl-3H-1,2,4-triazole-3-thione; and 30 2,4-dihydro-(4-methoxyphenyl)-5-pentadecyl-3H-1,2,4-triazole-3-thione.

5

10

40

45

50

[0110] Another class of CETP inhibitors that finds utility with the present invention consists of hetero-tetrahydroquinolines having the Formula X

Formula X

and pharmaceutically acceptable salts, enantiomers, or stereoisomers or N-oxides of said compounds,

 ${\sf A}_{\sf X}$ represents cycloalkyl with 3 to 8 carbon atoms or a 5 to 7-membered, saturated, partially saturated or unsaturated, optionally benzo-condensed heterocyclic ring containing up to 3 heteroatoms from the series comprising S, N and/or O, that in case of a saturated heterocyclic ring is bonded to a nitrogen function, optionally bridged over it, and in which the aromatic systems mentioned above are optionally substituted up to 5-times in an identical or different substituents in the form of halogen, nitro, hydroxy, trifluoromethyl, trifluoromethoxy or by a straight-chain or branched alkyl, acyl, hydroxyalkyl or alkoxy each having up to 7 carbon atoms or by a group of the formula BNR $_{\rm X.9}$ R $_{\rm X.4}$, in which $R_{\rm X3}$ and $R_{\rm X4}$ are identical or different and denote hydrogen, phenyl or straight-chain or branched alkyl having

up to 6 carbon atoms, or Ax represents a radical of the formula

[0111] D_X represents an aryl having 6 to 10 carbon atoms, that is optionally substituted by phenyl, nitro, halogen, trifluormethyl or trifluormethoxy, or it represents a radical of the formula

or R_{x-9} --- T_x --- V_x --- X_y

in which

5

10

15

20

25

35

40

45

50

 $R_{X,S}$, $R_{X,S}$ and $R_{X,S}$ independently of one another denote cycloality having 3 to 6 carbon atoms, or an aryl having 5 to 10 carbon atoms or a 5- to 7-membered aromatic, optionally benzo-condensed saturated or unsaturated, monopin case of the nitrogen containing aromatic rings via the N function, with up to 5 detentical or different substitutes in the form of hadogen, triflucomently, nitro, hydroxy, oyano, carbonyl, triflucomentoxy, straight straight-chain or triflucomently-law, alkylathoxy, alkoxy, or alkoxycarbonyl each having up to 6 carbon atoms, by anyl or tiflucomently-law and the straight of the carbon atoms or by an optionally benzo-condensed, aromatic 5-to 7-membered heterocyclic fing having up to 3 heteroatoms from the series consisting of S, N, and/or O, and/or Substituted by a group of the formula $BOR_{X,10}$ ~SR_{X,11}, $SO_2R_{X,12}$ or $BNR_{X,13}R_{X,14}$ in which

 $R_{\rm NLO}$ $R_{\rm NLO}$ and $R_{\rm NLO}$ independently from each other denote anyl having 6 to 10 carbon atoms, which is in turn substituted with up to 2 identical or different substitutents in the form of phenyl, halogen or a straight-chain or branched alkyl having up to 6 carbon atoms.

 R_{X-13} and R_{X-14} are identical or different and have the meaning of R_{X-3} and R_{X-4} indicated above,

R_{X-5} and/or R_{X-6} denote a radical of the formula

or

R_{X-7} denotes hydrogen or halogen, and

R_{X-8} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straight-chain or branched alkoxy or alkyl having up to 6 carbon atoms or a radical of the formula

55 in which

 R_{X-15} and R_{X-16} are identical or different and have the meaning of R_{X-3} and R_{X-4} indicated above,

 R_{X-7} and R_{X-8} together form a radical of the formula =0 or =NR_{X-17}, in which

 $R_{X\!-\!17}$ denotes hydrogen or straight chain or branched alkyl, alkoxy or acyl having up to 6 carbon atoms, Lx denotes a straight chain or branched alkylene or alkenylene chain having up to 8 carbon atoms, that are

optionally substituted with up to 2 hydroxy groups, T_{χ} and X_{χ} are identical or different and denote a straight chain or branched alkylene chain with up to 8 carbon

atoms or

5

10

15

20

25

30

45

50

55

Ty or Xx denotes a bond,

V_X represents an oxygen or sulfur atom or an BNR_{X-18}-group, in which

 $R_{\rm X+18}$ denotes hydrogen or straight chain or branched alkyl with up to 6 carbon atoms or phenyl,

Ex represents cycloalkyl with 3 to 8 carbon atoms, or straight chain or branched alkyl with up to 8 carbon atoms, that is optionally substituted by cycloalkyl with 3 to 8 carbon atoms or hydroxy, or represents a phenyl, that is optionally substituted by halogen or trifluoromethyl,

 $R_{X,1}$ and $R_{X,2}$ together form a straight-chain or branched alkylene chain with up to 7 carbon atoms, that must be substituted by carbonyl group and/or by a radical with the formula

in which a and b are identical or different and denote a number equaling 1,2, or 3,

Rx.19 denotes hydrogen, cycloalkyl with 3 up to 7 carbon atoms, straight chain or branched silylalkyl with up to 8 carbon atoms or straight chain or branched alkyl with up to 8 carbon atoms, that are optionally substituted by hydroxyl, straight chain or branched alkoxy with up to 6 carbon atoms or by phenyl, which in turn might be substituted by halogen, nitro, trifluormethyl, trifluoromethoxy or by phenyl or by tetrazole-substituted phenyl, and alkyl, optionally be substituted by a group with the formula BOR_{X-22},

 $R_{\rm X,22}$ denotes a straight chain or branched acyl with up to 4 carbon atoms or benzyl, in which

 R_{X+19} denotes straight chain or branched acyl with up to 20 carbon atoms or benzoyl , that is optionally substituted by halogen, trifluoromethyl, nitro or trifluoromethoxy, or it denotes straight chain or branched fluoroacyl with up to 8

 $R_{x,20}$ and $R_{x,21}$ are identical or different and denote hydrogen, phenyl or straight chain or branched alkyl with carbon atoms and 9 fluorine atoms. up to 6 carbon atoms,

 R_{X20} and R_{X21} logether form a 3- to 6-membered carbocyclic ring, and the carbocyclic rings formed are optionally substituted, optionally also geminally, with up to six identical or different substituents in the form of triflouromethyl, hydroxy, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkyl or cycloalkyloxy with 3 to 7 carbon atoms each, by straight chain or branched alkoxycarbonyl, alkoxy or alkylthio with up to 6 carbon atoms each or by straight chain or branched alkyl with up to 6 carbon atoms, which in turn is substituted with up to 2 identically or differently by hydroxyl, benzyloxy, trifluoromethyl, benzoyl, straight chain or branched alkoxy, oxyacyl or carbonyl with up to 4 carbon atoms each and/or phenyl, which may in turn be substituted with a halogen, trifuoromethyl or trifluoromethoxy, and/or the formed carbocyclic rings are optionally substituted, also geminally, with up to 5 identical or different substituents in the form of phenyl, benzoyl, thiophenyl or sulfonylbenzyl, which in turn are optionally substituted by halogen, triffuoromethyl, trifluoromethoxy or nitro, and/or optionally are substituted by a radical with the formula

in which

c denotes a number equaling 1, 2, 3, or 4,

d denotes a number equaling 0 or 1,

 $R_{X,23}$ and $R_{X,24}$ are identical or different and denote hydrogen, cycloalkyl with 3 to 6 carbon atoms, straight chain or branched alkyl with up to 6 carbon atoms, benzyl or phenyl, that is optionally substituted with up to 2 identically or differently by halogen, trifluoromethyl, cyano, phenyl or nitro, and/or the formed carbocyclic rings are substituted optionally by a spiro-linked radical with the formula

in which

5

15

25

30

40

55

W_X denotes either an oxygen or a sulfur atom

Y_X and Y'_X together form a 2 to 6 membered straight chain or branched alkylene chain,

e denotes a number equaling 1, 2, 3, 4, 5, 6, or 7, f denotes a number equaling 1 or 2,

 $R_{x.25}$, $R_{x.26}$, $R_{x.27}$, $R_{x.29}$, $R_{x.29}$, $R_{x.30}$ and $R_{x.31}$ are identical or different and denote hydrogen, trifluoromethyl, phenyl, halogen or straight chain or branched alkyl or alkoxy with up to 6 carbon atoms each,

 $R_{X:25}$ and $R_{X:26}$ or $R_{X:27}$ and $R_{X:28}$ respectively form together a straight chain or branched alkyl chain with up to 6 carbon atoms,

R_{X-25} and R_{X-26} or R_{X-27} and R_{X-28} each together form a radical with the formula

in which

W_x has the meaning given above, g denotes a number equaling 1, 2, 3, 4, 5, 6, or 7,

 $R_{X:32}$ and $R_{X:33}$ form together a 3- to 7- membered heterocycle, which contains an oxygen or sulfur atom or a grow with the formula SO, SO₂ or \cdot NR_{X:34}, in which

R_{X-34} denotes hydrogen, phenyl, benzyl or straight or branched alkyl with up to 4 carbon atoms.

[0112] Compounds of Formula X and their methods of manufacture are disclosed in PCT Publication No. WO 9914215, which is incorporated herein by reference in its entirety for all purposes.

[0113] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula X:

2-cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(4-trifluoromethylbenxoyl)-5,6,7,8-tetrahydroquinoline; 2-cyclopentyl-3-(fluoro-(4-trifluoromethylphenyl)methyl)-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-5,6,7,8-tetrahydroquinoline; and

2-cyclopentyl-5-hydroxy-7,7-dimethyl-4-(3-thienyl)-3-(trifluoromethylbenxyl)-5,6,7,8-tetrahydroquinoline.

[0114] Another class of CETP inhibitors that finds utility with the present invention consists of substituted tetrahydro naphthalines and analogous compound having the Formula XI

Formula XI

and stereoisomers, stereoisomer mixtures, and safts thereof, in which A₀, stands for cycloalkyl with 5 to 8 carbon atoms, or stands for any low file to 10 carbon atoms, or stands for a 51 to 7-membered, saturated, partially unsaturated or unsaturated, possibly benzocondensated, heterocycle with up to 4 heteroatoms from the series S. N and/or O, where any land the heterocycle ring systems mentioned above are substituted up to 5-fold, deritical or different, by cyano, halogen, nitro, carboxyl, hydroxy, frillouromethyl, trilliuoro-methoxy, or by straight-chain or branched alkyl, acl, hydroxyalkyl, alkythio, alkoxycarbonyl, oxyalkoxycarbonyl or alkoxy each with up to 7 carbon atoms, or by a group of the formula

in which

5

10

20

30

35

50

55

 R_{XI-3} and R_{XI-4} are identical or different and denote hydrogen, phenyl, or straight-chain or branched alkyl with up to 6 carbon atoms

Dxi stands for a radical of the formula

in which

R_{XLS}, R_{XL6} and R_{XL9}, independent of each other, denote cycloalkyl with 3 to 6 carbon atoms, or denote aryl with 6 to 10 carbon atoms, or denote a 5- to 7-membered, possibly benzocondensated, saturated or unsaturated, mono-be or trivicille heterocycle with up to 4 heteroatoms of the series S, N ander O, where the cycles are possibly substituted on the case of the introgen-containing rings also via the N-function-Cup to 5-fold, identical or different, by habgen, trifluoromethyl, nitro, hydroxy, cyano, carboxyl, trifluoromethoxy, straight-chain or branched acyl, alkyl, alkylinto, alky

-OR_{XI-10}, -SR_{XI-11}, -SO₂R_{XI-12} or -NR_{XI-13}R_{XI-14},

in which R_{NL-10} , R_{NL-11} and R_{NL-12} , independent of each other, denote anyl with 6 to 10 carbon atoms, which itself is substituted up to 2-fold, identical or different, by phenyl, halogen, or by straight-chain or branched alkyl with up to 6 carbon

R_{XI-13} and R_{XI-14} are identical or different and have the meaning given above for R_{XI-3} and R_{XI-4},

R_{x1-5} and/or R_{x1-6} denote a radical of the formula

 $\mathsf{R}_{\mathsf{XI-7}}$ denotes hydrogen, halogen or methyl, and

 R_{XI-8} denotes hydrogen, halogen, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straight-chain or branched alkoxy or alkyl with up to 6 carbon atoms each, or a radical of the formula $-NR_{XI-16}R_{XI-16}$ in which

R_{XI-15} and R_{XI-16} are identical or different and have the meaning given above for R_{XI-3} and R_{XI-4}.

 R_{XI-7} and R_{XI-8} together form a radical of the formula =0 or = NR_{XI-17} , in which

R_{XI-17} denotes hydrogen or straight-chain or branched alkyl, alkoxy or acyl with up to 6 carbon atoms each,

L_{XI} denotes a straight-chain or branched alkylene- or alkenylene chain with up to 8 carbon atoms each, which is possibly substituted up to 2-fold by hydroxy,

 T_{XI} and X_{XI} are identical or different and denote a straight-chain or branched alkylene chain with up to 8 carbon atoms.

Tyi and Xyi denotes a bond.

V_{x1} stands for an oxygen- or sulfur atom or for an -NR_{x1-18} group, in which

R_{XI-18} denotes hydrogen or straight-chain or branched alkyl with up to 6 carbon atoms, or phenyl,

E_{XI} stands for cycloalkyl with 3 to 8 carbon atoms, or stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by cycloalkyl with 3 to 8 carbon atoms or hydroxy, or stands for phenyl, which is possibly substituted by halogen or trillydromethyl.

 R_{Xl-1} and R_{Xl-2} together form a straight-chain or branched alkylene chain with up to 7 carbon atoms, which must be substituted by a carbonyl group and/or by a radical of the formula

in which

or

10

15

20

25

30

40

a and b are identical or different and denote a number 1, 2 or 3

R_{XL19} denotes hydrogen, cycloalkyl with 3 to 7 carbon atoms, straight-chain or branched silylalkyl with up to 8 carbon atoms, or straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by hydroxy, straight-chain or branched alkey, with up to 8 carbon atoms, or by phenyl, which itself can be substituted by hatogen, nitro, trifluoromethyl, trifluoromethoxy or by phenyl substituted by phenyl or tetrazol, and alkyl is possibly substituted by a group of the formula -OR_{XL22}, in which

R_{XI-22} denotes straight-chain or branched acyl with up to 4 carbon atoms, or benzyl,

R_{3L:19} denotes straight-chain or branched acyl with up to 20 carbon atoms or benzoyl, which is possibly substituted by Ry_{3L:19} denotes straight-chain or branched fluoroacyl with up to 8 carbon atoms and 9 fluorine atoms,

R_{x1-20} and R_{x1-21} are identical or different, denoting hydrogen, phenyl or straight-chain or branched alkyl with up to 6 carbon atoms, or

 $R_{N,20}$ and $R_{N,21}$ logether form a 3- to 6-membered carbocycle, and, possibly also geminally, the alkylene chain formed by R_{N+1} and $R_{N,20}$ is possibly substituted up to 6-fold, identical or different, by frifluoromethyl, hydroxy, nitrile, halogen, carboxyl, nitro, azido, cyano, cycloalkylox for cycloalkyloxy with 3 to 7 carbon atoms each, by straight-chain or branched alkoxycarbonyl, alkoxy or alkoxythio with up to 6 carbon atoms each, or by straight-chain or branched alkyl with up to 6 carbon atoms, which itself is substituted up to 2-fold.

identical or different, by hydroxyl, benzyloxy, trifluoromethyl, benzoyl, straight-chain or branched alkoxy, oxyacyl or carboxyl with up to 4 carbon atoms each, and/or phenyl- which itself can be substituted by halogen, trifluoromethyl or trifluoromethys, and/or the alkylene chain formed by p_{X+1} and p_{X+2} is substituted, also geminally, possibly up to 5-fold, identical or different, by phenyl, benzoyl, thiophenyl or sulfobenzyl-which themselves are possably substituted by halogen, trifluoromethyl, tilluoromethoxy or nitro, and/or the alkylene chain formed by p_{X+1} and p_{X+2} is possibly substituted by a radical of the formula

$$-SO_2-C_6H_{61}$$
, $-(CO)_dNR_{XI-23}R_{XI-24}$ or $=O_1$

10 in which

5

20

25

30

35

40

45

c denotes a number 1, 2, 3 or 4,

d denotes a number 0 or 1.

R_{XI-23} and R_{XI-24} are identical or different and denote hydrogen, cycloalkyl with 3 to 6 carbon atoms, straightchain or branched alkyl with up to 6 carbon atoms, benzyl or phenyl, which is possibly substituted up to 2-fold. identical or different, by halogen, trifluoromethyl, cyano, phenyl or nitro, and/or the alkylene chain formed by R_{VL1} and R_{VL2} is possibly substituted by a spiro-jointed radical of the formula

Wy denotes either an oxygen or a sulfur atom,

Y_{XI} and Y'_{XI} together form a 2- to 6-membered straight-chain or branched alkylene chain,

e is a number 1, 2, 3, 4, 5, 6 or 7,

f denotes a number I or 2,

 $R_{XI:25}, R_{XI:28}, R_{XI:27}, R_{XI:28}, R_{XI:29}, R_{XI:29}, R_{XI:30} \ \text{and} \ R_{XI:31} \ \text{are identical or different and denote hydrogen, trifluorometers of the state of the$ thyl, phenyl, halogen, or straight-chain or branched alkyl or alkoxy with up to 6 carbon atoms each,

 $R_{XI:25}$ and $R_{XI:26}$ or $R_{XI:27}$ and $R_{XI:28}$ together form a straight-chain or branched alkyl chain with up to 6 carbon atoms. or

 $\rm R_{XI-25}$ and $\rm R_{XI-26}$ or $\rm R_{XI-27}$ and $\rm R_{XI-28}$ together form a radical of the formula

in which

W_{XI} has the meaning given above,

g is a number 1, 2, 3, 4, 5, 6 or 7,

 $R_{XI:32}$ and $R_{XI:33}$ together form a 3- to 7-membered heterocycle that contains an oxygen- or sulfur atom or a group of the formula SO, SO2 or -NRXI-34, in which

R_{XI:34} denotes hydrogen, phenyl, benzyl, or straight-chain or branched alkyl with up to 4 carbon atoms. [0115] Compounds of Formula XI and their methods of manufacture are disclosed in PCT Publication No. WO

9914174, which is incorporated herein by reference in its entirety for all purposes.

[0116] Another class of CETP inhibitors that finds utility with the present invention consists of 2-aryl-substituted pyridines having the Formula (XII)

Formula XII

or pharmaceutically acceptable salts, enantiomers, or stereoisomers of said compounds, in which

[0117] Δ_{XI} and E_{XI} are identical or different and stand for any with 6 to 10 carbon atoms which is possibly substitued, up to 5-fold identical or different, by halogen, hydroxy, trifluoromethy, trifluoromethyx, nitro or by straight-chain or branched alkyl, acyl, hydroxy alkyl or alkoxy with up to 7 carbon atoms each, or by a group of the formula $-NP_{XIR}/P_{XIR}/P_{XIR}$

 R_{XII-1} and R_{XII-2} are identical or different and are meant to be hydrogen, phenyl or straight-chain or branched alkyl with up to 6 carbon atoms,

 D_{XII} stands for straight-chain or branched alkyl with up to 8 carbon atoms, which is substituted by hydroxy, L_{XII} stands for cyclosalkyl with 3 to 8 carbon atoms or for straight-chain or branched alkyl with up to 8 carbon atoms, which is possibly substituted by cyclosalky with 3 to 8 carbon atoms, or by hydroxy.

T_{XII} stands for a radical of the formula R_{XII-3}-X_{XII}- or

where

5

10

15

20

25

30

R_{30.3} and R_{50.4}, are identical or different and are meant to be cycloallyl with 3 to 8 cathon atoms, or any with 6 to 10 cathon atoms, or a 5+0 5-membered aromatic, possibly benocondensated heterocycle with up to 8 theoretic from the series S, N and/or O, which are possibly substituted, up to 3-fold identical or different, by trifluoromethyl, trifluoromethyly, habgen, hydrox, carboxy, finite, by straight-chain or branched allyl, acyl, alkoxy or alkoxycearboxyl with up to 6 carbon atoms each, or by phenyl, phenoxy or phenyithio which in turn can be substituted by halogen, intrifluoromethyl or trifluoromethoxy, and/or where the cycles are possibly substituted by a group of the formula where.

 R_{XII-7} and R_{XII-8} are identical or different and have the meaning of R_{XII-1} and R_{XII-8} given above, X_{XII} is a straight-chain or branched alkyl or alkenyl with 2 to 10 carbon atoms each, possibly substituted up to

2-fold by hydroxy or halogen, RxII-5 stands for hydrogen,

and

45

50

[0118] R_{XII-6} means to be hydrogen, halogen, mercapto, azido, trifluoromethyl, hydroxy, trifluoromethoxy, straightchain or branched alkoxy with up to 5 carbon atoms, or a radical of the formula BNR_{XII-9}R_{XIII-10}.

where

 R_{XII-9} and R_{XII-10} are identical or different and have the meaning of R_{XII-1} and R_{XII-2} given above, or

RXII-5 and RXII-6, together with the carbon atom, form a carbonyl group.

Compounds of Formula XII and their methods of manufacture are disclosed in EP 796846-A1, United States Patent No. 6,127,383 and United States Patent No. 5,925,645, all of which are incorporated herein by reference in their entirelies for all purposes.

[0119] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula XII:

4,6-bis-(p-fluorophenyl)-2-isopropyl-3-[(p-trifluoromethylphenyl)-(fluoro)-methyl]-5-(1-hydroxyethyl)pyridine;

2.4-bis-(4-fluorophenyl)-6-isopropyl-5-[4-(trifluoromethylphenyl)-fluoromethyl]-3-hydroxymethyl)pyridine; and 2,4-bis-(4-fluorophenyl)-6-isopropyl-5-[2-(3-trifluoromethylphenyl)vinyl]-3-hydroxymethyl)pyridine.

[0120] Another class of CETP inhibitors that finds utility with the present invention consists of compounds having the Formula (XIII)

Formula XIII

or pharmaceutically acceptable salts, enantiomers, stereoisomers, hydrates, or solvates of said compounds, in which

 R_{XIII} is a straight chain or branched C_{1-10} alkyl; straight chain or branched C_{2-10} alkenyl; halogenated C_{1-4} lower alkyl; C₃₋₁₀ cycloalkyl that may be substituted; C₅₋₈ cycloalkenyl that may be substituted; C₃₋₁₀ cycloalkyl C₁₋₁₀ alkyl that may be substituted; aryl that may be substituted; aralkyl that may be substituted; or a 5- or 6-membered heterocyclic group having 1 to 3 nitrogen atoms, oxygen atoms or sulfur atoms that may be substituted,

XXIII-1, XXIII-2, XXIII-3, XXIII-4 may be the same or different and are a hydrogen atom; halogen atom; C1-4 lower alkyl; halogenated C1.4 lower alkyl; C1.4 lower alkoxy; cyano group; nitro group; acyl; or aryl, respectively;

YXIII is -CO-; or BSO2-; and

10

15

20

30

35

45

50

55

Z_{XIII} is a hydrogen atom; or mercapto protective group.

[0121] Compounds of Formula XIII and their methods of manufacture are disclosed in PCT Publication No. WO 98/35937, which is incorporated herein by reference in its entirety for all purposes.

[0122] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula XIII:

N,N'-(dithiodi-2,1-phenylene)bis[2,2-dimethyl-propanamide];

N,N'-(dithiodi-2,1-phenylene)bis[1-methyl-cyclohexanecarboxamide];

N.N'-(dithiodi-2,1-phenylene)bis[1 -(3-methylbutyl)-cyclopentanecarboxamide];

N,N'-(dithiodi-2,1-phenylene)bis[1-(3-methylbutyl)-cyclohexanecarboxamide];

N,N'-(dithiodi-2,1-phenylene)bis[1-(2-ethylbutyl)-cyclohexanecarboxamide]; N,N'-(dithiodi-2,1-phenylene)bis-tricyclo[3.3.1.13,7]decane-1-carboxamide; propanethioic acid, 2-methyl-,S-[2[

[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino]phenyl] ester;

propanethiolc acid, 2,2-dimethyl-, S-[2-[[[1-(2-ethylbutyl)cyclohexyl]carbonyl]amino]phenyl] ester, and ethanethioic acid, S-[2-[[[1-(2-ethylbutyl)cyclohexyl)carbonyl]amino]ohenyl] ester.

[0123] Another class of CETP inhibitors that finds utility with the present invention consists of polycyclic aryl and heteroaryl tertiary-heteroalkylamines having the Formula XIV

Formula XIV

10

15

20

26

30

40

35 and pharmaceutically acceptable forms thereof, wherein:

n_{XIV} is an integer selected from 0 through 5;

 R_{XV-1} is selected from the group consisting of haloalkyl, haloalkoxyl, haloalkoxyalkyl, and haloalkenyloxyalkyl, X_{XV} is selected from the group consisting of O, H, F, S, S(O),NH, N(OH), N(alkyl), and N(alkoxy);

R_{WV-16} is selected from the group consisting of hydrido, alkyl, alkenyl, alkynyl, aryl, aralkly, aryloxyalkyl, alkoxyalkyl, alkenyloxyalkyl, alkythioalkyl, arylthioalkyl, aralkoxyalkyl, heteroaralkoxyalkyl, alkysulfinylalkyl, alkysulfonylalkyl, oviolalkylalkyl.

cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocydoalkenyl, haloalkosyalkyl, haloalkenyloxyalkyl, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, monocarboalkoxyalkyl, monocarboalkoxy, dicarboalkoxyalkyl, monocarboxamido, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, acyl, aroll, heteroarovl.

heteroaryloxyally, dialkoxyphosphonoalkyl, trialkylsiyl, and a spacer selected from the group consisting of a covalent single bond and a linear spacer molety having from 1 through 4 contiguous atoms linked to the point of bonding of an aromatic substituent selected from the group consisting of P_{RVA}. P_{RVA}. P_{RVA}. P_{RVA}. P_{RVA}. P_{RVA} and heterocyby fing having from 5 though 10 contiguous members with the provisos that said spacer molety is other than a covalent single bond when P_{RVA} is alkyl and there is no P_{RVA}. A wherein X is 1 for 1.

 p_{N+1} , p_{N+2} , p_{N+1} , p_{N+2} , and K_{N+1} , are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_{N+1} , D_{N+2} , p_{N+1} , p_{N+2} , and K_{N+1} is a covalent bond, no more than one of D_{N+1} , D_{N+2} , p_{N+1} , p_{N+2}

D_{p(x,0} D_{q(x,4} J_{p(x,9} J_{p(x,4} and K_{p(x,2}) are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisors that no more than one of D_{p(x,9} D_{p(x,4} J_{p(x,9} J_{p(x,4} J

is S, one of $D_{X|Y-3}$, $D_{X|Y-4}$, $J_{X|Y-3}$, $J_{X|Y-4}$ and $K_{X|Y-2}$ must be a covalent bond when two of $D_{X|Y-3}$, $D_{X|Y-4}$, $J_{X|Y-3}$, $J_{X|Y-4}$, $J_{X|Y-3}$, $J_{X|Y-4}$, $J_{X|Y-3}$, $J_{X|Y-4}$, and $K_{X|Y-2}$ and $K_{X|Y-2}$ and $K_{X|Y-2}$ and $K_{X|Y-2}$ are N;

R_{XVV,2} and R_{XVV,3} are taken together to form a linear spacer moiety selected from the group consisting of a covalent single bond and a moiety having from 1 through 6 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkeryl having from 5 through 8 contiguous members; and a heterocyclyl having from 4 through 8 contiguous members;

R_{XIV-3} is selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, hydroxyalkyl, amino, alkylamino, dialkylamino, acyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl,

20

35

alaysamno, dalaysamno, asyl, suimyuny, asyamao, amyuna, anyuna, anyuna

 Y_{XXY} is selected from a group consisting of a covalent single bond, $(C(R_{XXY-14})_2)_{2XYY}$ wherein $_{XXYY}$ is an integer selected from 1 and 2 and $(CH(R_{XXY-14}))_{2XYY}W_{XXY}$ $(CH(R_{XXY-14}))_{2XYY}$ wherein $_{2XYY}$ and $_{2XYY}$ are integers independently selected from 0 and 1;

R_{XIV-14} is independently selected from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, amino, alkylamino, dialkylamino, hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkylalkoxy, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkoxythioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkenylalkyl, haloalkyl, haloalkenyl, halocycloalkyl, halocycloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, arylsulfinyl, arylsu ylsulfonylalkyl, aralkylsulfinyl, aralkylsulfonyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsulfinylalkyl, cycloalkylsulfinyl fonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphono, diaralkoxyphosphono, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, a spacer selected from a moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of R_{XIV-9} and R_{XIV-13} to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having from 5 through 8 contiguous members and a spacer selected from a moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R_{XIV-4} and R_{XIV-8} to form a heterocyclyl having from 5 through 8 contiguous members with the proviso that, when Y_{XIV} is a covalent bond, an RxIV-14 substituent is not attached to YxIV,

R_{XIV-14} and R_{XXI-14}, when bonded to the different atoms, are taken together to form a group selected from the group consisting of a covalent bond, alkylene, haloalkylene, and a spacer selected from a group consisting of a molety having a chain length of 2 to 5 atoms connected to form a ring selected from the group of a saturated cyclosikly having from 5 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members, and a heterocyclyl from 5 through 8 contiguous members, and 8 contiguous me

having from 5 through 8 contiguous members;

R_{XIV-14} and R_{XIV-14}, when bonded to the same atom are taken together to form a group selected from the group consisting of oxo, thiono, alkylene, haloalkylene, and a spacer selected from the group consisting of a moiety having a chain length of 3 to 7 atoms connected to form a ring selected from the group consisting of a cycloalkyl having from 4 through 8 contiguous members, a cycloalkenyl having from 4 through 8 contiguous members, and a heterocyclyl having from 4 through 8 contiguous members;

W_{XIV} is selected from the group consisting of O, C(O), C(S), C(O)N(R_{XIV-14}), C(S)N(R_{XIV-14}), (R_{XIV-14})NC(O), (R_{XIV-14})NC(S), S, S(O), S(O)₂, S(O)₂N(R_{XIV-14}), (R_{XIV-14})NS(O)₂, and N(R_{XIV-14}) with the proviso that R_{XIV-14} is selected from other than halo and cyano;

 Z_{xiv} is independently selected from a group consisting of a covalent single bond, $(C(R_{xiv-15})_2)_{0xiv-2}$ wherein $_{0xiv-2}$ is an integer selected from 1 and 2, (CH(R_{XIV-15}))_{[XIV}-W-(CH(R_{XIV-15}))_{[XXIV} wherein _{[XIV} and _{XXIV} are integers independently selected from 0 and 1 with the proviso that, when Z_{XIV} is a covalent single bond, an R_{XIV-15} substituent is not attached to Zxiv:

 $R_{X_{IV-15}}$ is independently selected, when $Z_{X_{IV}}$ is $(C(R_{X_{IV-15}})_2)_{Q_{X_{IV}}}$ wherein $q_{X_{IV}}$ is an integer selected from 1 and 2, from the group consisting of hydrido, hydroxy, halo, cyano, aryloxy, amino, alkylamino, dialkylamino, hydroxyalkyl, acyl, aroyl, heteroaroyl, heteroaryloxyalkyl, sulfhydryl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryl, aralkyl, aryloxyalkyl, aralkoxyalkyl, alkylsulfinylalkyl, alkylsulfonylalkyl, aralkylthioalkyl, heteroaralkylthioalkyl, alkoxyalkyl, heteroaryloxyalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkylalkyl, cycloalkylalkyl cloaikenyl, cycloaikenylaikyl, haloaikyl, haloaikenyl, halocycloaikyl, halocycloaikenyl, haloaikoxy, haloaikoxyaikyl, haloalkenyloxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl, monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, arylsulfonylalkyl, aralkylsulfinyl, aralkylsulfonyl, cycloalkylsulfinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylalkyl, heteroarylsulfinyl, he eroarylsulfonyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxy, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphono, diaralkoxyphosphono, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, a spacer selected from a moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of R_{XIV-4} and R_{XIV-8} to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having

from 5 through 8 contiguous members, and a spacer selected from a moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R_{xIV-9} and R_{xIV-13} to form a heterocyclyl having from 5 through 8 contiguous members:

R_{XIV-15} and R_{XIV-15}, when bonded to the different atoms, are taken together to form a group selected from the group consisting of a covalent bond, alkylene, haloalkylene, and a spacer selected from a group consisting of a moiety having a chain length of 2 to 5 atoms connected to form a ring selected from the group of a saturated cycloalkyl having from 5 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members, and a heterocyclyl having from 5 through 8 contiguous members;

R_{XIV-15} and R_{XIV-15}, when bonded to the same atom are taken together to form a group selected from the group consisting of oxo, thiono, alkylene, haloalkylene, and a spacer selected from the group consisting of a moiety having a chain length of 3 to 7 atoms connected to form a ring selected from the group consisting of a cycloalkyl having from 4 through 8 contiguous members, a cycloalkenyl having from 4 through 8 contiguous members, and a heterocyclyl having from 4 through 8 contiguous members;

R_{XIV-15} is independently selected, when Z_{XIV} is (CH(R_{XIV-15}))_{iXIV}-W-(CH(R_{XIV-15}))_{kXIV} wherein _{iXIV} and _{kXIV} are integers independently selected from 0 and 1, from the group consisting of hydrido, halo, cyano, aryloxy, carboxyl, acyl, aroyl, heteroaroyl, hydroxyalkyl, heteroaryloxyalkyl, acylamido, alkoxy, alkylthio, arylthio, alkyl, alkenyl, alkynyl, aryi, aralkyi, aryioxyalkyi, alkoxyalkyi, heteroaryioxyalkyi, aralkoxyalkyi, heteroaralkoxyalkyi, alkyisulfonyialkyi, alkyisulfinylalkyl, alkenyloxyalkyl, alkylthioalkyl, arylthioalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkenyl, cycloalkenyl, cycloalkylalkenyl, cycloalkenyl, cycl cloaikenylaikyi, haloaikyi, haloaikenyi, halocycloalkyi, halocycloaikenyi, haloaikoxy, haloaikoxyaikyi, haloalkenyioxyalkyl, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl, heteroaryl, heteroarylalkyl, heteroarylthioalkyl, heteroaralkylthioalkyl,

monocarboalkoxyalkyl, dicarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, alkylsulfinyl, alkylsulfonyl, haloalkylsulfinyl, haloalkylsulfonyl, arylsulfinyl, arylsulfinylalkyl, arylsulfonyl, arylsulfonylalkyl, aralkylsulfinyl, aralkylsuifonyl, cycloalkylsuifinyl, cycloalkylsulfonyl, cycloalkylsulfinylalkyl, cycloalkylsufonylalkyl, heteroarylsulfonylaikyi, heteroarylsulfinyl, heteroarylsulfonyl, heteroarylsulfinylalkyl, aralkylsulfinylalkyl, aralkylsulfonylalkyl, carboxyalkyl, carboalkoxy, carboxamide, carboxamidoalkyl, carboaralkoxy, dialkoxyphosphonoalkyl, diaralkoxyphosphonoalkyl, a spacer selected from a linear moiety having a chain length of 3 to 6 atoms connected to the point of bonding selected from the group consisting of R_{XIV-4} and R_{XIV-8} to form a ring selected from the group consisting of a cycloalkenyl ring having from 5 through 8 contiguous members and a heterocyclyl ring having from 5 through 8 contiguous members,

and a spacer selected from a linear moiety having a chain length of 2 to 5 atoms connected to the point of bonding selected from the group consisting of R_{XIV-9} and R_{XIV-13} to form a heterocyclyl ring having from 5 through 8 contiguous

R_{XV4-1} P_{XV4-5} P_{XV4-5} P_{XV4-7} P_{XV4-7} P_{XV4-8} P_{XV4-8} P_{XV4-9} P_{XV4-9} P_{XV4-1} P_{XV4-1} P_{XV4-1} and R_{XV4-1} are independently selected from the group consisting of perhadoanyloxy, alkanoylalkyl, alkanoylalkyl, alkanoylalky, alkanoylalky, alkanoylalky, alkanoylakyloxy, alkoxyardonylakkenyloxy, arakanoylakyloxy, alkoxyardonylakkenyloxy, arakanoylakyloxy, arakenoylakyloxy-doxyardonylakkenyloxy, arakanoylakyloxy-doxyardoylakyloxy, alkoxyardonylakkenyloxy, arakanoylakyloxy-doxyardoylakyloxy, peteroarakylityli, heteroarakylityli, heteroarakylityli, heteroarakylityli, heteroarakylityli, perhadoarakyl, arakylsylitylinyl, arakylsylitylinylakyl, haloxyodakylylityl, arakylsylitylinylakyl, haloxyodakylylityl, arakylsylitylinylakylyl, haloxyodakylylityl, arakylsylityl, alkonyloxylakyl, haloxylakyl, h

alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, ar ylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkylamidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoaryl amidosulfonyl, arylsulfinyl, anyisulfonyi, heteroaryithio, heteroaryisulfinyi, heteroaryisulfonyi, heterocyclyisulfonyi, heterocyclyithio, alkanoyi, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkenyloxy, alkenyloxy, alkenyloxy alky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyaralkyl, hydroxyhaloalkyl, hydroxyhalo oaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, arylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphosphonoalkyl with the proviso that there are one to five non-hydrido ring substituents R_{XIV-9}, R_{XIV-9}, R_{XIV-9}, R_{XIV-7}, and R_{XIV-9} present, that there are one to five non-hydrido ring substituents R_{XIV-9}, R_{XIV-10}, R_{XIV-11}, R_{XIV-2}, and R_{XIV-13} present, and R_{XIV-4}, R_{XIV-5}, R_{XIV-6}, R_{XIV-7}, R_{XIV-8}, R_{XIV-9}, R_{XIV-10}, R_{XIV-11}, R_{XIV-12}, and R_{XIV-13} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

25

55

R_{XXV4} and R_{XXV4}. RXXV4 and R_{XXV13}. R_{XXV3} and R_{XXV43} and R_{XXV43} and R_{XXV13} are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear molety wherein said linear molety forms a ring selected from the group consisting of a partially saturated heterocybry ingipating from 5 through 8 contiguous members and a heteroary ring having from 5 through 8 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R_{XXV4} and R_{XXV3}. R_{XXV4} and R_{XXV3}.

[0124] Compounds of Formula XIV and their methods of manufacture are disclosed in PCT Publication No. WO 00/18721, which is incorporated herein by reference in its entirety for all purposes.

[0125] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula XIV:

- 3-[[3-(3-trifluoromethoxyphenoxy)]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoroethoxyphen
- $\label{eq:continuous} 2-propanol; \\ 3-\{[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-letrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; \\ 3-\{[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-letrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; \\ 3-\{[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-letrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; \\ 3-\{[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-letrafluoroethoxy)phenyl]-methyl]-methyl]-methyl[3-(3-isopropylphenoxy)phenyl[3-(3-isopropylphenoxy)phenyl[3-(3-isopropylphen$
- 3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- 3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]1,1,1-trifluoro-2-propanol;
- 3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-

- nol 3-[[3-(4-fluorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-methlylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1 -trifluoro-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1.1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- 3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoro-ethoxy)phenyl]methyl]amino]-1,1,1-tri-10
- 3-[[3-[9-(pentafluoroethyl)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-3- [[3-(3,5-dimethyl]phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-proparation of the propagation of the
 - 3-[[3-(3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy) phenyl]-methyl]aminoj-1,1,1-trifluoro-2-propanol;
- 15 3-[[3-(3-t-butylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]1,1,1-trifluoro-2-propanol; 3-[[3-(3-methylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-3-[[3-(phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- 20 3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methy1][3-[[3-(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1,1,1-trif-
- 3+[[[3-(1,1,2,2-tetrafluoroethoxy]phenyl]methyl][3+[[3-(trifluoromethyl]-phenyl]methoxy]phenyl]amino]-1,1,1-trif-phenyl]methoxy[phenyl]meth25
 - 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[3,5-dimethylphenyl]-methoxy]phenyl]amino]-1,1,1 -trifluoro-
 - 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-[[3-(trifluoromethylthio)-phenyl]methoxy]phenyl]amino]-1,1,-trif-
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy]phenyl]methyl][3-[[3,5-difluorophenyl]-methoxy]phenyl]amino]-1,1,1 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyi]methyl][3-[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;

30

25

- 3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-
- 3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-
- 3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1,-trif-
 - 3-[[3-(3-trifluoromethoxyphenoxy]phenot]][[3-(pentafluoroethymethyl]amino]-1,1,1-trifluoro-2-propanol;[3-(pentafluoroethymethyl]amino]-1,1,1-trifluoroethymethyllaminol[3-(penta3-f[3-(3-isopropylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
- 45 3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1 -trifluoro-2-propanol;
 - 3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-fluorophenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol;
- 3-[[3-(4-methylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol; 3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]-amino]-1,1,1 -trifluoro-2-propanol; 50 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methylj-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-[3-[1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(pentafluoroethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-
- 3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-propanol; 55 3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-ethylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-t-butylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol;
 - 3-[[3-(3-methylphenoxy)phenyl][[3-pentafluoroethyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;

- 3-[[3-(5,6,7,8-letrahydro-2-naphthoxy)phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- $3-[[3-(phenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]\ amino]-1,1,1-trifluoro-2-propanol;$

10

15

20

30

- 3-[[3-[3-(N, N-dimethylamino)phenoxy]phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - 3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-(trifluoromethoxy)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-(trifluoromethyl)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
- 3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3,5-dimethylphenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-(trifluoromethylthio)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3.5-difluorophenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol;3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[cyclohexylmethoxy]phenyl]-amino]-1,1,1-trifluoro-2-propanol;
 - $3-[[3-(2-diffuoromethoxy-4-pyridyloxy)] \\ \text{phenyl}[[3-(pentaffuoroethyl)phenyl]-methyl] \\ \text{amino}]-1,1,1-triffuoro-2-propagation \\ \text{propagation}]-1,1,1-triffuoro-2-propagation \\ \text{propagation}]-1,1-triffuoro-2-propagation \\ \text{propagation}]-1,1-triffuoro-2-pro$
 - 3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - 3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- 3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 25
 - 3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - 3+[[3-(2,3-dichlorophenoxy)phenyl][[3-(heptafluoropropyl)]phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-fluorophenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(4-methylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(2-fluoro-5-bromophenoxy)phenyl][3-(heptafluoropropyl) phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3 [[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(heptafluoropropyl)] phenyl][methyl]-amino] 1, 1, 1-trifluoro-2-propanol; [3-(4-chloro-3-ethylphenoxy)phenyl][[3-(heptafluoropropyl)] phenyl][[3-(heptafluoropropyl)] phenyl] phenyl] phenyl][[3-(heptafluoropropyl)] phenyl] phenyl] phenyl] phenyl] phenyl] phenyl] phenyl][[3-(heptafluoropropyl)] phenyl] phenyl]3-[[3-(3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(heptafluoropropyl)-phenyl]methyl]amino]-1,1,1-trifluoro-
- 3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-35
 - 3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[3-(3-ethylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(3-t-butylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-methylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 40
 - 3 [[3-(5,6,7,8-tetra hydro-2-naphthoxy)] phenyl] [[3-(heptafluoropropyl)] phenyl] methyl] amino] 1,1,1-trifluoro-2-propyl) phenyl] methyl] amino] 1,1,1-trifluoro-2-propyl) phenyl] methyl] me. 3-[[3-(phenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl] amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(3-(N,N-dimethylamino)phenoxy]phenyl][[3-(heptalluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-45
 - 3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-(trifluoromethoxy)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(heptafluoropropyl)phenyl]methyl][3-([3-(trifluoromethyl)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
 - 3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3.5-dimethylphenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propa-1,1,1-trifluo
 - 3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-(trifluoromethylthio)phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoromethylthio)phenyl]methyll[3-(including a phenyl]methyll[3-(including a
- $3 \cdot \hbox{\tt [[[3-(heptafluoropropyl)phenyl]methyl][3-[[3.5-difluorophenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-2-propa-1,1-trifluoro-2-propa-1,1-trifluo$ 55
 - 3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[cyclohexylmethoxy]phenyl]-amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-pro-
 - panol;

- 3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-propa-
- 3-[[3-(3-difluoromethoxyphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]-methyl]aminoj-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(3-trifluoromethyfithio)phenoxy]phenyi][[3-(heptafluoropropyl)phenyi]-methyl]amino]-1.1.1-trifluoro-2-propa-
- 3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-(heptafluoropropyl)-phenyl}-methyl]amino]-1.1.1-trifluoro-
- 3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- 3-[[3-(3-isopropylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(3-cyclopropylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;

10

- 3-[[3-(3-(2-furyl)phenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-f[3-(2,3-dichlorophenoxy)phenyl [[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-propanol;
- 3-[[3-(4-fluorophenoxy)pheny]][[2-fluoro-5-(trifluoromethyl)phenyl]-methyljamino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(4-methylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyljamino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1.1,1-trifluoro-2-pro-
 - 3+[[3-(4-chloro-3-ethyl[phenoxy)]]][2-fluoro-5-(trifluoromethyl)-phenyl[methyl]amino]-1,1,1-trifluoro-2-proparation and the statement of the
- 20 3-[[3-[3-(1.1.2,2-tetraffuoroethoxy)phenoxy]phenyl[[2-fluoro-5-(trifluoromethyl)phenyl]methyl]amino]-1,1,1-trif-
 - 3+[[3-(3-(pentalfluoroethyl)phenoxy]phenoy][[2-fluoro-5-(trifluoromethyl)-phenyl]-methyl]amino]-1,1,1-trifluoromethyl]-methyl][[2-fluoro-5-(trifluoromethyl)-phenyl]-methyl]-methyllogan [[2-fluoro-5-(trifluoromethyl)-phenyl]-methyllogan [[2-fluoro-5-(trifluoromethyl)-phenyl]-methyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoro-5-(trifluoromethyllogan [[2-fluoromethyllogan [[2-fluoro
- 3-[[3-(3.5-dimethylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 25
- 3-[[3-(3-ethylphenoxy)pheny]][[2-fluoro-5-(trifluoromethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-t-butylphenoxy)phenyi][[2-fluoro-5-(trifluoromethyl) phenyl[methyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(3-methylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-(5,6,7,8-letrahydro-2-naphthoxy)pheny][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino[-1,1,1-trifluoromethyl)
- 30 3-[[3-(phenoxy)phenyl][[2-fluoro-5-(trifluoromethyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-
- 35 3+ [[(2-iluoro-5-(trifluoromethyl)phenyl]methyl](3+ [[3-(trifluoromethyl)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoromethyl)-phenyl]methoxy]phenyl]amino]-1,1,1-trifluoromethyl)-phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl]methoxy]phenyl[methox]phenyl[me
- - 3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][[3-[[3,5-dimethyl]phenyl]-methoxy]phenyl]amino]-1,1,1-trifluoromethyl]phenyl[-1,1,1-trifluoromethyl]phenyl
- ع المراجعة على المراجعة المرا 40
 - 3+[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3.5-difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoromethyl)phenyl[[3-fluoro-5-(trifluoromethyl)phenyl]methyl][3-fluoro-5-(trifluoromethyl)phenyl]methyl[[3-fluoro-5-(trifluoromethyl)phenyl]methyl[[3-fluoro-5-(trifluoromethyl)phenyl]methyl[[3-fluoro-5-(trifluoromethyl)phenyl]methyl[[3-fluoromethyl]]methyl[[3
- 3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl)[[2-fluoro-5-(trifluoromethyl)-phenyl]nethyl]amino]-1,1,1-trifluoro-45
 - 3+[[3-(2-trifluoromethyl-4-pyridyloxy)] phenyl] [[2-t] uoro-5-(trifluoromethyl)-phenyl] methyl] amino]-1,1,1-trifluoromethyl-4-pyridyloxy) phenyl [[2-t] uoro-5-(trifluoromethyl)-phenyl [[2-t] uoro-5-(trifluorome
 - 3-[[3-(3-difluoromethoxyphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-pro-
- 50 3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1.1.1-trifluoro-2-propanol;
 - $3 + \frac{1}{3} \frac{1}{3}$
 - 3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1.1.1-trifluoro-2-pro-
 - 3-[[3-(3-isopropylphenoxy)pheny]][[2-fluoro-4-(trifluoromethyl)phenyl]-methyl]amino]-1.1,1-trifluoro-2-propanol; 3-[[3-(3-cyclopropylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)phenyl]-methyljamino]-1,1,1 -trifluoro-2-propa-

- 3-[[3-(3-(2-furyl)phenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(2,3-dichlorophenoxy)phenyl][[2-tluoro-4-(trifluorometry/lphenyl}-methyl]amino]-1,1,1-trifluoro-2-propano;
- 34[3-(4-fluorophenoxy)pheny/[[2-fluoro-4-(trifluoromethy/) pheny/]-methy/]amino]-1,1,1-trifluoro-2-propanol;
- 3-I[3-(4-methylphenoxy)phenyl[[2-fluoro-4-(trifluoromethyl) phenyl]-methyl] amino]-1,1,1-trifluoro-2-propanol; 3-([3-(2-fluoro-5-bromophenoxy)pheny)[[[2-fluoro-4-(trifluoromethyl)-phenyl]methyl[amino]-1,1,1 -trifluoro-2-pro-
 - 3-([3-(4-chloro-3-ethylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propa-
 - $34[3-[3-(1,1,2,2-tetrafluoroethoxy)] phenoxy] phenoy] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] methyl] amino]-1,1,1-trifluoro-methyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] methyl] amino]-1,1,1-trifluoro-methyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] phenyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] phenyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl] phenyl] phenyl] \underline{[[2-fluoro-4-(trifluoro-methyl)] phenyl] phenyl]$
 - 3+[[3-(3-(pentalluoroethyl)phenoxy]]phenoxy]]phenoxy][[2-tluoro-4-(trifluoromethyl)-phenoyl]methyl]amino]-1,1,1-trifluoromethyl)-phenoxy[[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl]amino]-1,1,1-trifluoromethyl)-phenoxy[[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl]amino]-1,1,1-trifluoromethyl)-phenoxy[[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoro-4-(trifluoromethyl)-phenoxy]]methyl[2-tluoromethyl]methyl[2-tluorome

10

55

- $3 \cdot (3.5 dimethylphenoxy)phenyl \underline{\parallel}(2 fluoro-4 (trifluoromethyl)phenyl] methylphenoxy)phenyl \underline{\parallel}(2 fluoro-4 (trifluoromethyl)phenyl] methylphenoxy)phenyl \underline{\parallel}(2 fluoro-4 (trifluoromethyl)phenyl] methylphenoxy)phenyl \underline{\parallel}(2 fluoro-4 (trifluoromethyl)phenyl] methylphenoxy)phenyl \underline{\parallel}(2 fluoro-4 (trifluoromethyl)phenyl methylphenyl methylphenoxy)phenyl (trifluoromethylphenyl methylphenoxy)phenyl (trifluoromethylphenyl methylphenyl methylphenoxy)phenyl (trifluoromethylphenyl methylphenoxy)phenyl (trifluoromethylphenyl methylphenyl methylphenoxy)phenyl (trifluoromethylphenyl methylphenyl methylphenyl methylphenyl (trifluoromethylphenyl methylphenyl (trifluoromethylphenyl$
 - 3-[]3-(3-ethylphenoxy)phenyl[[2-fluoro-4-(trifluoromethyl) phenyl[nethyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-f[3-(3-t-buty)phenoxy)phenyi][[2-fluoro-4-(trifluoromethyr) phenyi]methyl-aminoj-1,1,1-trifluoro-2-propano; 3-f[3-(3-methylphenoxy)phenyl[[2-fluoro-4-(trifluoromethyl) phenyl[methyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-[3-(5.67,8: tetrahydro-2-naphthoxy)phenyl [[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1 -trifluoro-
- 3-[[3-(phenoxy)phenyl][[2-fluoro-4-(trifluoromethyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[]3-[3-(N,N-dimethylamino)phenoxy]phenyl[[[2-fluoro-4-(trifluoromethyl)-phenyl[methyl]amino]-1,1,1-trifluoro-20
 - 3-{[[2-fluoro-4-(trifluoromethy/)phenyl]methyl];3-{[3-(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1.1,1-trifl-
 - $3-\text{[[[2-t]uoro-4-(trifluoromethyl)]phenyl]methyl][3-\text{[[3-(trifluoromethyl)-phenyl]methoxy]phenyl]amino]-1,1,1-\text{trifluoromethyl)}}$
- 3-I[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3,5-dimethylphenyl]-methoxylphenyl]amino]-1,1,1-trifluoro-25
 - 3-III2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3-(trifluoromethylthio)-phenyl]methoxy]phenyl]amino]-1,1,1-trif-
- 3-III2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3,5-difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-30
- 3-III2-fluoro-4-(trifluoromethyl)phenyl]methyl [3-[cyclohexylmethoxy]-phenyl]aminoj-1,1,1 -trifluoro-2-propanol;
 - 3-(I3-{2-diffuoromethoxy-4-pyridyloxy)phenyl|||[2-fluoro-4-(trifluoromethyl)-phenyl|methyl|amino]-1,1,1 -trifluoro-
- 3-([3-42-trifluoromethyl-4-pyridyloxy)phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1.1,1-trifluoro-35
 - 3-fj3-(3-dfiluoromethoxyphenoxy)phenylff[2-fluoro-4-(trifluoromethyf)-phenylfnethyfjamino]-1,1,1-trifluoro-2-propanol;
- 3-I[[3-(3-trifluoromethyithio)phenoxy]phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-40
 - 3-([3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[2-fluoro-4-(trifluoro-methyl)phenyl]methyljamino]-1,1,1-trifluoro-2-propanol.

[0126] Another class of CETP inhibitors that finds utility with the present invention consists of substitued N-Aliphatlc-N-Aromatic tertiary-Heteroalkylamines having the Formula XV 45

$$\begin{array}{c} R_{XV-16} \\ \\ R_{XV-1} \\ \\ R_{XV-2} \end{array} \begin{array}{c} X^{XV} \\ \\ C \\ \\ R_{XV-3} \end{array} \begin{array}{c} R_{XV-15} \\ \\ Y^{XV} \\ \\ R_{XV-14} \end{array}$$

Formula XV

and pharmaceutically acceptable forms thereof, wherein:

n_{XV} is an integer selected from 1 through 2;

They is an integer settlem until a unough ϵ , which is group consisting of -CH₂(CR_{XV-37}R_{XV-39})_{vXV}-(CR_{XV-33}R_{XV-34})_{vXV}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vXV-14}-(CR_{XV-34}R_{XV-34})_{vX-14}-(CR_{XV-34}R_{XV-34})_{vX-14}-(CR_{XV-34}R_{XV-34})_{vX-14}-(CR_{XV-34}R_{XV-14}-(CR_{XV-14}R_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR_{XV-14}-(CR

AQ-1

AQ-2

$$\begin{array}{c} R_{XV-11} \\ R_{XV-3} \\ \end{array} \\ \begin{array}{c} R_{XV-3} \\ \end{array} \\ \begin{array}{c} R_{XV-2} \\ \end{array} \\ \begin{array}{c} R_{XV-31} \\ \end{array} \\ \begin{array}{c} R_{XV-31} \\ \end{array} \\ \begin{array}{c} R_{XV-1} \\ \end{array} \\ \begin{array}{c} R_{XV-1} \\ \end{array} \\ \begin{array}{c} R_{XV-1} \\ \end{array} \\ \begin{array}{c} R_{XV-12} \\ \end{array} \\ \begin{array}{c} R_{XV-12} \\ \end{array} \\ \begin{array}{c} R_{XV-13} \\ \end{array} \\ \begin{array}$$

with the provisos that one of A_{XV} and Q_{XV} must be AQ-1 and that one of A_{XV} and Q_{XV} must be selected from the group consisting of AQ-2 and ${}^{\circ}\text{CH}_2(\text{CR}_{XV-37}\text{R}_{XV-38})_{vXV'}(\text{CR}_{XV-33}\text{R}_{XV-34})_{uXV'}\text{T}_{XV'}(\text{CR}_{XV-35}\text{R}_{XV-38})_{wXV'}\text{H};$ T_{XV} is selected from the group consisting of a single covalent bond, O, S, S(O), S(O)₂, C(R_{XV-33})=C(R_{XV-35}), and

vxv is an integer selected from 0 through 1 with the proviso that vxv is 1 when any one of R_{XV-33}, R_{XV-34}, R_{XV-35},

and Rxv.36 is aryl or heteroaryl;

and wav are integers independently selected from 0 through 6;

5

10

15

20

25

30

35

40

45

50

55

 $D_{XV:1}$, $D_{XV:2}$, $J_{XV:1}$, $J_{XV:2}$, and $K_{XV:1}$ are independently selected from the group consisting of C, N, O, S and a covalent bond with the provisos that no more than one of D_{XV-1} , D_{XV-2} , J_{XV-2} , J_{XV-2} , and K_{XV-1} is a covalent bond, covalent bond, no more than one of D_{XV-1} , D_{XV-2} , J_{XV-1} , J_{XV-2} , and K_{XV-1} is O, no more than one of D_{XV-1} , D_{XV-2} , J_{XV-1} , J_{XV-2} , and K_{XV-1} is S, one of D_{XV-1}, D_{XV-2}, J_{XV-1}, J_{XV-2}, and K_{XV-1} must be a covalent bond when two of D_{XV-1}, D_{XV-2}, J_{XV-1},

J_{XV-2}, and K_{XV-1} are O and S, and no more than four of D_{XV-1}, D_{XV-2}, J_{XV-1}, J_{XV-2}, and K_{XV-1} are N; B_{XV-1}, B_{XV-2}, D_{XV-3}, D_{XV-4}, J_{XV-3}, J_{XV-4}, and K_{XV-2} are independently selected from the group consisting of C, C

(R_{XV-30}), N, O, S and a covalent bond with the provisos that no more than 5 of B_{XV-1}, B_{XV-2}, D_{XV-3}, D_{XV-4}, J_{XV-3}, J_{XV-4}, and K_{XV-2} are a covalent bond, no more than two of B_{XV-1}, B_{XV-2}, D_{XV-3}, D_{XV-4}, J_{XV-3}, J_{XV-4}, and K_{XV-2} are O, no more than two of B_{XV-1}, B_{XV-2}, D_{XV-3}, D_{XV-4}, J_{XV-3}, J_{XV-4}, and K_{XV-2} are S, no more than two of B_{XV-1}, B_{XV-2}, $D_{XV:3}$, $D_{XV:4}$, $J_{XV:3}$, $J_{XV:4}$, and $K_{XV:2}$ are simultaneously O and S, and no more than two of $B_{XV:1}$, $B_{XV:2}$, $D_{XV:3}$, $D_{XV:3}$ D_{XV-4}, J_{XV-3}, J_{XV-4}, and K_{XV-2} are N;

 B_{XV-1} and D_{XV-3} , D_{XV-3} and J_{XV-3} , J_{XV-3} and K_{XV-2} , K_{XV-2} and J_{XV-4} , J_{XV-4} and D_{XV^*-4} , and D_{XV-4} and independently selected to form an in-ring spacer pair wherein said

spacer pair is selected from the group consisting of C(R_{XV-33})=C(R_{XV-35}) and N=N with the provisos that AQ-2 must be a ring of at least five contiguous members, that no more than two of the group of said spacer pairs are simultaneously C(R_{XV-33})=C(R_{XV-35}) and that no more than one of the group of said spacer pairs can be N=N unless the other spacer pairs are other than C(R_{XV-33})=C(R_{XV-35}), O, N, and S;

R_{XV-1} is selected from the group consisting of haloalkyl and haloalkoxymethyl; Rxv.2 is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, haloalkoxy, haloalkoxyalkyl, perhaloaryl, perhaloaralkyl, perhaloaryloxyalkyl and heteroaryl;

 R_{XV-3} is selected from the group consisting of hydrido, aryl, alkyl, alkenyl, haloalkyl, and haloalkoxyalkyl; $Y_{\chi V}$ is selected from the group consisting of a covalent single bond, $(CH_2)_q$ wherein q is an integer selected from 1 through 2 and (CH₂), O-(CH₂)_k wherein j and k are integers independently selected from 0 through 1;

Z_{XV} is selected from the group consisting of covalent single bond, (CH₂)_q wherein q is an integer selected from 1 through 2, and (CH₂)_rO-(CH₂)_k wherein j and k are integers independently selected from 0 through 1;

R_{XV-4}, R_{XV-8}, R_{XV-9} and R_{XV-13} are independently selected from the group consisting of hydrido, halo, haloalkyl,

R_{XV.30} is selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, halo, haloalkyl, alkylamino, alkylthio,

alkyithioalkyl, alkyi, alkenyi, haloalkoxy, and haloalkoxyalkyi with the proviso that B_{XX-30} is selected to maintain the telravalient nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen;

 $R_{NV,30}$, when bonded to $A_{NV,1}$, is taken together to form an intra-ring linear spacer connecting the $A_{NV,1}$ -carbon at the point of attachment of $R_{NV,30}$ to the point of bonding of a group selected from the group consisting of $R_{NV,10}$ $R_{NV,11}$ $R_{NV,12}$ $R_{NV,13}$ and $R_{NV,10}$ $R_{NV,10}$

5

10

15

20

25

30

35

40

45

50

55

 $R_{\mathcal{N},2,0}$, when bonded to $A_{\mathcal{N},1,0}$ is taken together to form an intra-ring branched spacer connecting the $A_{\mathcal{N},1,0}$ -carbon at the point of attachment of $R_{\mathcal{N},2,0}$ to the points of bonding of each member of any one of substituent pairs selected from the group consisting of substituent pairs selected from the group consisting of substituent pairs $R_{\mathcal{N},1,0}$ and $R_{\mathcal{N},1,1}$ $R_{\mathcal{N},0}$ and $R_{\mathcal{N},2,1}$ $R_{\mathcal{N},0}$ and $R_{\mathcal{N},2,1}$ $R_{\mathcal{N},0}$ and $R_{\mathcal{N},2,1}$ $R_{\mathcal{N},0}$ and $R_{\mathcal{N},2,2}$ $R_{\mathcal{N},1}$ and $R_{\mathcal{N},2,2}$ $R_{\mathcal{N},1}$

Rxv4- Rxv5- Rxv5- Rxv5- Rxv5- Rxv6- Rxv5- Rxv10- Rxv11- Rxv11- Rxv11- Rxv11- Rxv11- Rxv2- Rxv2- Rxv2- Rxv3- Rxv3-

halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonyl nylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkylamidosulfonyl, dialkyl amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroarylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyi, alkyl, alkenyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkyl, lalkanoyi, cycloalkenyi, lower cycloalkylalkyi, lower cycloalkenyialkyi, halo, haloalkyi, haloalkenyi, haloalkoxy, hydroxyhaloalkyl, hydroxyaralkyl, hydroxyalkyl, hydoxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxyalkyl, saturated heterocyclyl, partially saturated heterocyclyl, heteroaryl, heteroaryloxy, heteroaryloxyalkyl, arylalkenyl, heteroarylalkenyl, carboxyalkyl, carboalkoxy, alkoxycarboxamido, alkylamidocarbonylamido, alkylamidocarbonylamido, carboalkoxyalkyl, carboalkoxyalkenyl, carboaralkoxy, carboxamido, carboxamidoalkyl, cyano, carbohaloalkoxy, phosphono, phosphonoalkyl, diaralkoxyphosphono, and diaralkoxyphospho $no alkyl \ with \ the \ provisos \ that \ R_{\chi_{V-4}}, R_{\chi_{V-5}}, R_{\chi_{V-6}}, R_{\chi_{V-7}}, R_{\chi_{V-8}}, R_{\chi_{V-9}}, R_{\chi_{V-10}}, R_{\chi_{V-11}}, R_{\chi_{V-12}}, R_{\chi_{V-13}}, R_{\chi_{V-31}}, R_{\chi_{V-32}}, R_{\chi_{$ R_{XV-33}, R_{XV-34}, R_{XV-35}, and R_{XV-36} are each independently selected to maintain the tetravalent nature of carbon, trivalent nature of nitrogen, the divalent nature of sulfur, and the divalent nature of oxygen, that no more than three of the R_{XV-33} and R_{XV-34} substituents are simultaneously selected from other than the group consisting of hydrido and halo, and that no more than three of the $R_{XV.35}$ and $R_{XV.36}$ substituents are simultaneously selected from other than the group consisting of hydrido and halo:

 R_{XV-9} , R_{XV-10} , R_{XV-11} , R_{XV-12} , R_{XV-13} , R_{XV-31} , and R_{XV-22} are independently selected to be oxo with the provisos that B_{XV-1} , B_{XV-2} , D_{XV-3} , D_{XV-3} , D_{XV-3} , D_{XV-3} , D_{XV-3} , D_{XV-3} , and R_{XV-2} are independently selected from the group consisting of C and S, no more than two of R_{XV-9} , R_{XV-10} , R_{XV-11} , R_{XV-12} , R_{XV-31} , R_{XV-

 $R_{NV,4}$ and $R_{NV,5}$, $R_{NV,6}$ and $R_{NV,6}$, $R_{NV,6}$ and $R_{NV,1}$, $R_{NV,7}$ and $R_{NV,2}$ and $R_{NV,1}$, $R_{NV,1}$, and $R_{NV,1}$, $R_{NV,1}$, and $R_{NV,1}$, $R_{NV,1}$, and $R_{NV,2}$, $R_{NV,2}$, and $R_{NV,2}$, $R_{NV,3}$, and $R_{NV,4}$ is used at the same time and that no more than one of the group consisting of spacer pairs $R_{NV,4}$ and $R_{NV,5}$, $R_{NV,5}$, and $R_{NV,6}$, $R_{NV,6}$.

pairs R_{XV-9} and R_{XV-10} , R_{XV-10} and R_{XV-11} , R_{XV-11} and R_{XV-31} , R_{XV-31} and R_{XV-32} , R_{XV-32} and R_{XV-32} , and R_{XV-12} , and R_{XV-12} and R_{XV-13} are used at the same time;

 $\mathsf{R}_{XV,9} \text{ and } \mathsf{R}_{XV,11}, \mathsf{R}_{XV,9} \text{ and } \mathsf{R}_{XV,12}, \mathsf{R}_{XV,9} \text{ and } \mathsf{R}_{XV,13}, \mathsf{R}_{XV,9} \text{ and } \mathsf{R}_{XV,32}, \mathsf{R}_{XV,10} \text{ and } \mathsf{R}_{XV,12}, \mathsf{R}_{XV,10}$ and R_{XV-13}, R_{XV-10} and R_{XV-31}, R_{XV-10} and R_{XV-32}, R_{XV-11} and R_{XV-12}, R_{XV-11} and R_{XV-13}, R_{XV-11} and R_{XV-22}, R_{XV-12} and R_{XV-31}, R_{XV-13} and R_{XV-31}, and R_{XV-13} and R_{XV-32} are independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear spacer molety selected from the group consisting of a covalent single bond and a moiety having from 1 through 3 contiguous atoms to form a ring selected from the group consisting of a cycloalkyl having from 3 through 8 contiguous members, a cycloalkenyl having from 5 through 8 contiguous members, a saturated heterocyclyl having from 5 through 8 contiguous members and a partially saturated heterocyclyl having from 5 through 8 contiguous members with the provisos that no more than one of said group of

spacer pairs is used at the same time; $R_{XV.37}$ and $R_{XV.38}$ are independently selected from the group consisting of hydrido, alkoxy, alkoxyalkyl, hydroxy, amino, thio, halo, haloalkyl, alkylamino, alkylthio, alkylthioalkyl, cyano, alkyl, alkenyl, haloalkoxy, and haloalkoxyalkyl.

[0127] Compounds of Formula XV and their methods of manufacture are disclosed in PCT Publication No. WO 00/18723, which is incorporated herein by reference in its entirety for all purposes.

[0128] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula XV:

```
3-[[3-(4-chloro-3-ethylphenoxy)phenyl]
20
```

10

15

35

46

(cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(4-chloro-3-ethylphenoxy)phenyl]

(cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-chloro-3-ethylphenoxy)phenyl]

(cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol; 25

3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1 -trifluoro-2-propanol;

3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-pentafluoroethyl)

cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(4-chloro-3-ethylphenoxy)phenyl][(3-trifluoromethoxy)

cyclohexyl-methyl]amino]-1,1,1 -trifluoro-2-propanol;

3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)cyclo-hexylmethyl]amino]-1,1,1-trifluoro-30 2-propanol:

3-[[3-(3-trifluoromethoxyphenoxy)phenyl]

(cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-trifluoromethoxyphenoxy)phenyl]

(cyclopentylmethyl)amino]-1,1,1 -trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxyphenoxy)phenyl]

(cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-trifluoromethoxyphenoxy)phenyl][(3-trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-trifluoromethoxyphenoxy)phenyi]](3-pentafluoroethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propa-40

3-[[3-(3-trifluoromethoxyphenoxy)phenyl][(3-trifluoromethoxy)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propa-

 $3-[[3-(3-trifluoromethoxyphenoxy)pheny] \underline{[[3-(1,1,2,2-tetrafluoroethoxy)cyclohexyl-methyl]amino]}-1,1,1-trifluoroethoxyphenox$

2-propanol; $3 \hbox{-} [[3\hbox{-} (3\hbox{-} isopropylphenoxy)phenyl] (cyclohexylmethyl] amino] \hbox{-} 1,1,1\hbox{-} trifliuoro-2\hbox{-} propanol:$

3-[[3-(3-isopropylphenoxy)phenyi] (cyclopentylmethyl] a mino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-isopropylphenoxy)phenyl](cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl][(3-trifluoromethyl) cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-isopropy/phenoxy)phenyl)[(3-pentafluoroethyl) cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[3-(3-isopropylphenoxy)phenyl] (3-trifluoromethoxy) cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(3-isopropylphenoxy)phenyl][3-(1,1,2,2-tetrafluoroethoxy)cyclohexyl-methyl]amino]-1,1,1 -trifluoro-2-propa-

3-[[3-(2,3-dichlorophenoxy)phenyl](cyclohexylmethyl

)amino]-1,1,1-trifluoro-2-propanol; 46

3-[[3-(2,3-dichlorophenoxy)phenyl](cyclopentylmethyl) amino]-1,1,1-trifluoro-2-propanol;

3-f[3-(2,3-dichlorophenoxy)phenyl](cyclopropylmethy)amino]-1,1,1-trifluoro-2-propanol;

3-[[3-(2,3-dichlorophenoxy)phenyl][(3-trifluoromethyl)

```
cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
                                      3-[[3-(2,3-dichlorophenoxy)phenyl][(3-pentafluoroethyl) cyclohexylmethyl]amino]-1,1,1-trifluoro-2-propanol;
                                    3-[[3-(2,3-dichlorophenoxy)phenyl][(3-trifluoromethoxy) cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
                                    3-[[3-(2,3-dichlorophenoxy)phenyl][3-(1,1,2,2-tetrafluoroethoxy)cyclo-hexyl-methyl]amino]-1,1,1 -trifluoro-2-pro-
                                      panol:
                                      3-[[3-(4-fluorophenoxy)phenyl](cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                      3-[[3-(4-fluorophenoxy)phenyl](cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                      3-[[3-(4-fluorophenoxy)phennyl](cyclopropylmethyl)amino]-1,1,1-triflouro-2-propanol;
                                      3-[[3-(4-fluorophenoxy)phenyl][(3-trifluoromethyl)
 10
                                      cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
                                    3-[[3-(4-fluorophenoxy)phenyl][(3-pentafluoroethyl)
                                    cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
                                    3-[[3-(4-fluorophenoxy)phenyl][(3-trifluoromethoxy)
                                    cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
15
                                   3\cdot [[3-(4-fluorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)cyclohexyl-methyl] a mino]-1,1,1-trifluoro-2-propanol;
                                   3-[[3-(3-trifluoromethoxybenzyloxy]phenyl]
                                   (cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                   3-[[3-(3-trifluoromethoxybenzyloxy)phenyl]
                                   (cyclopentylmethyl)amino]-1,1,1 -trifluoro-2-propanol;
                                   3-[[3-(3-trifluoromethoxybenzyloxy)phenyl]
                                    (cyclopropylmethyl]amino]-1,1,1-trifluoro-2-propanol;
                                 3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][(3-trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1 \\ -trifluoro-2-propa-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl][(3-trifluoromethyl)cyclohexyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methyl-methy
                                   3-[[3-(3-trifluoromethoxybenzyloxy)phenyl][(3-pentafluoroethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propa-
                                 3-[[3-(3-trifluoromethoxybenzyloxy]phenyl][(3-trifluoromethoxy)cyclohexyl-methyl] a mino]-1,1,1-trifluoro-2-proparation of the context of t
                                 3-[[3-(3-trifluoromethoxybenzyloxy)] phenyl] [3-(1,1,2,2-tetrafluoroethoxy)-cyclohexylmethyl] amino]-1,1,1-trifluoroethoxybenzyloxy) phenyll [3-(1,1,2,2-tetrafluoroethoxy)-cyclohexylmethyl] amino]-1,1,1-trifluoroethoxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzyloxybenzy
                                 3-[[3-(3-trifluoromethylbenzyloxy)phenyl]
                                 (cyclohexylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                 3-[[3-(3-trifluoromethylbenzyloxy)phenyl]
                                 (cyclopentylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                 3-[[3-(3-trifluoromethylbenzyloxy)phenyl]
                                 (cyclopropylmethyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[3-(3-trifluoromethylbenzyloxy)phenyl][(3-trifluoromethyl)cyclohexyl-methyl]amino]-1,1,1-trifluoro-2-propanol;
                                3-[[3-(3-trifluoromethylbenzyloxy)phenyl][(3-pentafluoroethyl)cyclohexyl-methyl]amino]-1,1,1 -trifluoro-2-propa-
                                 nol;
                                3-[[3-(3-trifluoromethylbenzyloxy)phenyl][(3-trifluoromethoxy)cyclohexyl-methyl] amino]-1,1,1-trifluoro-2-proparation and the propagation of the
                                3-[[3-(3-trifluoromethylbenzyloxy)phenyl][3-(1,1,2,2-tetrafluoroethoxy)cyclohexyl-methyl]amino]-1,1,1-trifluoro-
                                2-propanol;
                              3-[[[(3-trifluoromethyl)phenyl]methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[(3-pentafluoroethyl)phenyl]methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[(3-trifluoromethoxy)phenyl]methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]
                                methyl](cyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[(3-trifluoromethyl)phenyl]methyl]
                                (4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                                3-[[[(3-pentafluoroethyl)phenyl]methyl]
                                (4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                              3-[[[(3-trifluoromethoxy)phenyl]methyl]
                              (4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl] (4-methylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                              3-[[[(3-trifluoromethyl]phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                             3-[[[(3-pentafluoroethyl)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                             3-[[[(3-trifluoromethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
                             3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol;\\[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl](3-trifluoroethoxy)phenyl]methyl]methyl]methyl]methyl]methyl]methyl]methylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylphenylph
```

20

25

30

40

45

50

- 3-[[[(3-trifluoromethyl)]phenyl]methyl][3-(4-chloro-3-ethylphenoxy)cyclohexyl]amino]-1,1,1-trifluoro-2-propanol;3 + [[(3-pentafluoroethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)cyclohexyl]amino] + 1, 1, 1-trifluoro-2-propanol;
- $3 \\ \hbox{\tt [[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-methylphenoxy)cyclo-hexyl]amino]-1,1,1} \\ trifluoro-2-propanic (3-trifluoromethoxy)phenyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-methylphenoxy)cyclo-hexyl]amino]-1,1,1} \\ trifluoro-2-propanic (3-trifluoromethoxy)phenyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-methylphenoxy)cyclo-hexyl]amino]-1,1,1} \\ trifluoro-2-propanic (3-trifluoromethoxy)phenyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-methylphenoxy)cyclo-hexyl]amino]-1,1,1} \\ trifluoro-2-propanic (3-trifluoromethoxy)phenyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl][3-(4-chloromethoxy)phenyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl][3-(4-chloromethoxy)phenyl]methyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyl] \\ \hbox{\tt [(3-trifluoromethoxy)phenyl]methyllogonyphenyllogonyp$
- 3 + [[[3 (1,1,2,2 tetrafluoroethoxy)phenyi]methyl][3 (4 chloro-3 ethylphenoxy) cyclohexyi]amino] 1, 1, 1 trifluoroethoxy)phenyi[methyl][3 (4 chloro-3 ethylphenoxy) cyclohexyi[methyl][3 (4 chloro-3 ethylphenoxy) cyclohexyi[methyl][3 (4 chloro-3 ethylphenoxy) -5 2-propanol;
 - 3-[[[(3-trifluoromethyl]phenyl]methyl](3-phenoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[[(3-pentafluoroethyl)phenyl]methyl](3-phenoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[[(3-trifluoromethoxy)phenyl] methyl](3-phenoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-phenoxycyclohexyl)amino]-1,1,1 -trifluoro-2-propanol; 10
- 3-[[[(3-trifloromethyl)phenyl]methyl](3-isopropoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;

15

50

55

- 3-[[[(3-pentafluoroethyl)phenyl]methyl](3-isopropoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[(3-trifluoromethoxy)phenyl]methyl](3-isopropoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-isopropoxycyclohexyl)-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[(3-trifluoromethyl)phenyl]methyl](3-cyclopentyloxycyclohexyl]amino]-1,1,1-trifluoro-2-propanol; 3-[[(3-pentafluoroethyl]phenyl]methyl](3-cyclopentyloxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethoxy)phenyl]methyl](3-cyclopentyloxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl](3-cyclopentyloxycyclohexyl)-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-isopropoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-cyclopentyloxycyclohexyl)-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-phenoxycyclohexyl)amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-trifluoromethylcyclohexyl)amino]-1,1,1-trifluoro-2-propanol; 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl][3-(4-chloro-3-ethylphenoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propa-
- 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl][3-(1,1,2,2-tetrafluoroethoxy)cyclo-hexyl]amino]-1,1,1-trifluoro-2-propa-25
 - - 3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-pentafluoroethylcyclohexyl)-amino]-1,1,1-trifluoro-2-propanol;3-[[[(2-trifluoromethyl)pyrid-6-yl]methyl](3-trifluoromethoxycyclohexyl)-amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[[(3-trifluoromethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[(3-pentafluoroethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol; 30 3-[[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)propyl]-amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-propyl]amino]-1,1,1-trifluoro-2-propanol;
- . 3-[[[(3-trifluoromethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[(3-pentafluoroethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2, 2-di-fluropropyl]amino]-1, 1, 1-trifluoroethyl)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2, 2-di-fluropropyl]amino]-1, 1, 1-trifluoroethylphenoxy)-2, 2-di-fluropropyl]amino]-1, 2-di-fluropropyl]-1, 2-di-fluropropyl]amino]-1, 2-di-fluropropylamino]-1, 2-di-fluropropylamino]-1, 2-di-fluropropylamino]-1, 2-di-fluropropylami2-propanol:
 - 3-[[[(3-trifluoromethoxy)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl][3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)phenyl[3-(4-chloro-3-ethylphenoxy)-2,2,-di-fluropropyl]amino]-1,1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy)-1,1-trifluoromethoxy-1,12-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(4-chloro-3-ethylphenoxy)-2,2,-difluropropyl]amino]-1,1,1-trif-40 luoro-2-propanol;
 - 3-[[[(3-trifluoromethyl)phenyl]methyl][3-(isopropoxy)propyl]amino]-1,1,1-trifluoro-2-propanol;
 - 3-[[(3-pentafluoroethyl)phenyl]methyl][3-(isopropoxy)propyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[(3-trifluoromethoxy)phenyl]methyl][3-(isopropoxy)propyl]amino]-1,1,1-trifluoro-2-propanol;
- 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]]3-(isopropoxy)propyl]amino]-1,1,1-trifluoro-2-propanol; and 45 3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(phenoxy)propyl]amino]-1,1,1-trifluoro-2-propanol.

[0129] Another class of CETP inhibitors that finds utility with the present invention consists of (R)-chiral halogenated 1-substituted amino-(n+l)-alkanols having the Formula XVI

$$\begin{array}{c} R_{XVI-5} \\ X_{XVI-1} \\ R_{XVI-1} \\ R_{XVI-2} \\ R_{XVI-3} \\ R_{XVI-3} \\ R_{XVI-1} \\$$

Formula XVI

25 and pharmaceutically acceptable forms thereof, wherein:

n_{XVI} is an integer selected from 1 through 4;

X_{XVI} is oxy;

5

10

15

20

30

35

40

45

50

55

 $R_{M/L}$, its selected from the group consisting of haloalkyl, haloalkenyl, haloalkoxymethyl, and haloalkenyloxymethyl with the proviso that $R_{N/L}$ has a higher Carh-rigoid-Pielog stereochemical system ranking than both $R_{N/L}$ and $(CHR_{N/L})^2M/M_{N/L})Q_{N/L}$ wherein $A_{N/L}$ is CM in $A_{N/L}$ is $A_{N/L}$ in $A_{N/L}$ is $A_{N/L}$ in $A_$

$$\begin{array}{c} R_{XVI-6} \\ R_{XVI-5} \\ J_{XVI-2} \\ D_{XVI-2} \\ R_{XVI-9} \\ D_{XVI-2} \\ R_{XVI-9} \\ D_{XVI-9} \\ D_{XVI-3} \\ D_{XVI-3} \\ D_{XVI-3} \\ D_{XVI-3} \\ D_{XVI-3} \\ D_{XVI-3} \\ D_{XVI-1} \\ R_{XVI-11} \\ R_{XVI-11} \\ \end{array}$$

XVI-II XVI-III

 R_{XVI-18} is selected from the group consisting of hydrido, alkyl, acyl, aroyl, heteroaroyl, trialkylsilyl, and a spacer selected from the group consisting of a covalent single bond and a linear spacer molely having a chain length of 1 to 4 atoms linked to the point of bonding of any aromatic substituent selected from the group consisting of R_{XVI-8} . R_{XVI-8} . R_{XVI-9} and R_{XVI-12} to form a heterocycly ring having from 5 through 10 contiguous members;

 $\begin{array}{lll} D_{XN_1-1} D_{XN_1-2} J_{XN_1-1} J_{XN_2-2} \text{ and } K_{XN_1-1} \text{ are independently selected from the group consisting of C, N, O, S and covalent bond with the provisos that no more than one of <math>D_{XN_1-1} D_{XN_2-2} J_{XN_1-1} J_{XN_2-2} \text{ and } K_{XN_1-1} \text{ is a covalent bond, no more than one one <math>D_{XN_1-1} D_{XN_2-2} J_{XN_1-1} J_{XN_2-2} \text{ and } K_{XN_1-1} \text{ is Be O}, \text{no more than one of D}_{XN_1-1} D_{XN_2-2} J_{XN_1-1} J_{XN_2-2} \text{ and } K_{XN_1-1} \text{ instead to a covalent bond when two of } D_{XN_1-1} D_{XN_1-2} J_{XN_1-1} J_{XN_2-2} \text{ and } K_{XN_1-1} \text{ instead to a covalent bond when two of } D_{XN_1-1} D_{XN_1-2} J_{XN_1-1} D_{XN_1-2} J_{XN_1-1} D_{XN_1-2} D_{XN_1-1} D_{XN_1-2} D_{XN_1-$

 $J_{XV_{1}}, J_{XV_{1}}$ and $K_{XV_{1}}$ are O and S, and no more than four of $D_{XV_{1}}, D_{XV_{1}}, J_{XV_{1}}$, $J_{XV_{1}}$, J_{XV_{1

5

10

15

20

25

30

35

40

45

50

55

No. 2013 Annual American American American Structure (No. 2014), aralleyl, alkenyl, alkenyloxyalleyl, haloaiky, Ryn, je šiedecid from the group consisting of hydrido, aryl, aralleyl, alkenyl, alkenyloxyalleyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikonyl, haloaikyl, perhaloaikyl, perhaloaikyloxyleyl, heteroayl, kigyanoaikyl, and acroaikioxyeyanoaikyl, with the proviso that R_{XVI-2} has a lower Cahn-Ingold-Prelog system ranking than both R_{XVI-1} and (CHR_{XVI-3}), nN(A_{XVI})

Qxvi⁻
Rxvi-3 is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkenyl,
Rxvi-3 is selected from the group consisting of hydrido, hydroxy, cyano, aryl, aralkyl, acyl, alkoxy, alkyl, alkoxylakyl,
haloalkoxylakyl, heteroaryl, alkenyloxyalkyl, and carboxamidoalkyl, with the provisos that (CHR_{xxi-3}), h^{(Ax}_{xxi})
monocyanoalkyl, dicyanoalkyl, carboxamide, and carboxamidoalkyl, with the provisos that (CHR_{xxi-3}), h^{(Ax}_{xxi})
Qxy₁ has a lower Cahn-inglot-Prelog stereochemical system ranking than Rxvi-1, and a higher Cahn-inglot-Prelog

stereochemical system ranking than $R_{y,r,z}$: Y_{XN} is selected from a group consisting of a covalent single bond, $(C(R_{XN}, 1_d)_2)_q$ wherein q is an integer selected from 1 and 2 and $(CH(R_{XN-1d})_p)_q W_{XN} (CH(R_{XN-1d})_p)_p$ wherein g and p are integers independently selected from 1 and 2 and $(CH(R_{XN-1d})_p)_q W_{XN} (CH(R_{XN-1d})_p)_p$ wherein g and p are integers independently selected from

0 and 1; R_{XV-14} is selected from the group consisting of hydrido, hydroxy, cyano, hydroxyalkyl, acyl, alkoxy, alkyl, alkenyl, alkynyl, alkoxyalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, acrboalkoxycyanoalkyl, acrboalkoxy, acrboalkoxy, acrboalkoxy, arboalkoxy, arboalkoxy alkyl, monocyanoalkyl, acrboalkoxy beneficial and carboxamidoalkyl; alkyl, monocyanoalkyl, acrboalkoxy, arboalkoxy, arboarmidoalkyl; alkyl, monocyanoalkyl, arboalkoxy, arboalkoxy, arboalkoxy, arboalkoxy, alkyl, alkoxyalkyl, alkoxyalkyl,

 W_{XN} is selected from the group consisting of O, C(O), C(S),C(O)N(R_{XV1-4}), C(S)N(R_{XV1-4}),(R_{XV1-4})NC(O), (R_{XV1-4})NC(O), S, S(O), S(O)₂, S(O)₂N(R_{XV1-4}), (R_{XV1-4})NS(O)₂, and N(R_{XV1-4}) with the proviso that R_{XV1-4} is other than cvans.

R_{XVI-15} is selected, from the group consisting of hydrido, cyano, hydroxyalkyl, acyl, alkoxy, alkynyl, alkoxyalkyl, haloalkyl, haloalkenyl, haloalkoxy, haloalkoxyalkyl, haloalkenyloxyalkyl, monocarboalkoxyalkyl, monocyanoalkyl, dicyanoalkyl, carboalkoxycyanoalkyl, carboalkoxy, carboxamide, and carboxamidoalkyl;

R_{XVI-4}, R_{XVI-5}, R_{XVI-6}, R_{XVI-7}, R_{XVI-8}, R_{XVI-9}, R_{XVI-10}, R_{XVI-11}, R_{XVI-12}, and R_{XVI-13} are independently selected from the group consisting of hydrido, carboxy, heteroaralkylthio, heteroaralkoxy, cycloalkylamino, acylalkyl, acylalkoxy, aroylalkoxy, heterocyclyloxy, aralkylaryl, aralkyl, aralkenyl, aralkynyl, heterocyclyl, perhaloaralkyl, aralkylsulfonyl, aralkylsulfonylalkyl, aralkylsulfinyl, aralkylsulfinylalkyl, halocycloalkyl, halocycloalkenyl, cycloalkylsulfinyl, cycloalkylsulfinylalkyl, cycloalkylsulfonyl, cycloalkylsulfonylalkyl, heteroarylamino, N-heteroarylamino-N-alkylamino, heteroaralkyl, heteroarylaminoalkyl, haloalkylthio, alkanoyloxy, alkoxy, alkoxyalkyl, haloalkoxylalkyl, heteroaralkoxy, cycloalkoxy, cycloalkenyloxy, cycloalkoxyalkyl, cycloalkylalkoxy, cycloalkenyloxyalkyl, cycloalkylenedioxy, halocycloalkoxy, halocycloalkoxyalkyl, halocycloalkenyloxy, halocycloalkenyloxyalkyl, hydroxy, amino, thio, nitro, lower alkylamino, alkylthio, alkylthioalkyl, arylamino, aralkylamino, arylthio, arylthioalkyl, heteroaralkoxyalkyl, alkylsulfinyl, alkylsulfinylalkyl, arylsulfinylalkyl, arylsulfonylalkyl, heteroarylsulfinylalkyl, heteroarylsulfonylalkyl, alkylsulfonyl, alkylsulfonylalkyl, haloalkylsulfinylalkyl, haloalkylsulfonylalkyl, alkylsulfonamido, alkylaminosulfonyl, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl, amidosulfonyl, monoarylamidosulfonyl, arylsulfonamido, diarylamidosulfonyl, monoalkyl monoaryl amidosulfonyl, arylsulfinyl, arylsulfonyl, heteroarylthio, heteroarylsulfinyl, heteroary ylsulfonyl, heterocyclylsulfonyl, heterocyclylthio, alkanoyl, alkenoyl, aroyl, heteroaroyl, aralkanoyl, heteroaralkanoyl, haloalkanoyl, alkyl, alkenyl, alkynyl, alkenyloxy, alkenyloxyalky, alkylenedioxy, haloalkylenedioxy, cycloalkyl, cycloalkylalkanoyl, cycloalkenyl, lower cycloalkylalkyl, lower cycloalkenylalkyl, halo, haloalkyl, haloalkenylalkyl, halo, haloalkyl, haloalkenylalkyl, haloalkenylalkyl, haloalkyl, haloalk nyi, haloalkoxy, hydroxyhaloalkyi,

hydroxyaralkyl, hydroxyalkyl, hydroxyheteroaralkyl, haloalkoxyalkyl, aryl, heteroaralkynyl, aryloxy, aralkoxy, aryloxy, aryloxy,

 $R_{XVI-4} \text{ and } R_{XVI-5}, R_{XVI-5} \text{ and } R_{XVI-6}, R_{XVI-6} \text{ and } R_{XVI-7}, R_{XVI-7} \text{ and } R_{XVI-8}, R_{XVI-9} \text{ and } R_{XVI-10}, R_{XVI-10} \text{ and } R_{XVI-11}, R_{XVI-11}, R_{XVI-12} \text{ and } R_{XVI-13}, R_{XVI-14} \text{ and } R_{XVI-15}, R_{XVI-15} \text{ and } R_{XVI-15$

 R_{XVI-11} and R_{XVI-12} , and R_{XVI-12} and R_{XIV-13} are independently selected to form spacer pairs wherein a spacer pair is taken together to form a linear moiety having from 3 through 6 contiguous atoms connecting the points of bonding of said spacer pair members to form a ring selected from the group consisting of a cycloalkenyl ring having 5 through 8 contiguous members, a partially saturated heterocyclyl ring having 5 through 8 contiguous members, a heteroaryl ring having 5 through 6 contiguous members, and an aryl with the provisos that no more than one of the group consisting of spacer pairs R_{XVI-4} and R_{XVI-5} , R_{XVI-5} and R_{XVI-6} , R_{XVI-6} and R_{XVI-7} , and R_{XVI-7} and R_{XVI-7} is used at the same time and that no more than one of the group consisting of spacer pairs R_{XIV-9} and R_{XVI-10} . R_{XVI-10} and R_{XVI-11}, R_{XVI-11} and R_{XVI-12}, and R_{XVI-12} and R_{XVI-13} can be used at the same time;

ĸ

10

15

20

30

44

R_{XVI-9}, R_{XVI-9}, R_{XVI-4} and R_{XVI-13}, R_{XVI-8} and R_{XVI-9}, and R_{XVI-8} and R_{XVI-13} is independently selected to form a spacer pair wherein said spacer pair is taken together to form a linear moiety wherein said linear moiety forms a ring selected from the group consisting of a partially saturated heterocyclyl ring having from 5 through 8 contiguous members and a heteroaryl ring having from 5 through 6 contiguous members with the proviso that no more than one of the group consisting of spacer pairs R_{XVI-4} and R_{XVI-9} , R_{XVI-4} and R_{XVI-13} , R_{XVI-8} and R_{XVI-9} , and R_{XVI-9} .

[0130] Compounds of Formula XVI and their methods of manufacture are disclosed in PCT Publication No. WO 00/18724, which is incorporated herein by reference in its entirety for all purposes. [0131] In a preferred embodiment, the CETP inhibitor is selected from the following compounds of Formula XVI:

- (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoroethoxyphenoxyphenyl]methyl]amino]-1,1,1-trifluoroethoxyphenyl]methyl]methyl]amino]-1,1,1-trifluoroethoxyphenyl]methylmethyllmethylmethylmethyllmeth
 - (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]aminoj-1,1,1-trifluoro-2-pro-
- (2 R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1 -trifluoroethoxy 25
 - (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
 - (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]aminoj-1,1,1-trifluoro-2-pro-(2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]aminoj-1,1,1-trifluoro-35
- (2R) -3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-(2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoro-ethoxy)phenyl]methyl]amino]-
- 40 (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trif-(2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-
 - (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- 45 (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-propanol:
- 50 (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyi][[3-(1,1,2,2-tetrafluoroethoxy)phenyi]methyi]amino]-1,1,1-trif-
 - (2R)-3-[[3-(phenoxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl]amino]-1,1,1-trif-
- (2R)-3-[[[3-(1,1,2,2,-tetrafluoroethoxy)phenyl]methyl][3-[[3-(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]-1,1,1 -trifluoro-2-propanol; (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-(trifluoro-methyl)phenyl]methoxy]phenyl]amino]-

- (2R) 3 [[[3 (1.1,2,2 letrafluoroethoxy)phenyl]methyl][3 [[3,5 dimethylphenyl] methoxy]phenyl]amino] 1,1,1 trif-letrafluoroethoxy)phenyl]methyll[3 [[3,5 dimethylphenyl] methoxy]phenyll[3 [1,1,2] trif-letrafluoroethoxy]phenyll[3 [1,1,2] trif-letrafluoroethoxy
- (2R) 3 [[3 (1,1,2,2-tetrafluoroethoxy)] phenyl] methyl] [3 [[3 (trifluoromethylthio)-phenyl] methoxy] phenyl] methoxy] phenyl] methyll [3 (1,1,2,2-tetrafluoroethoxy)] phenyll [3 (1,1,2
- (2R)-3-{[[3-(1,1,2,2-tetrafluoroethoxy)phenyl]methyl][3-{[3,5-difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trif-
 - (2R)-3-[[[3-(1,1,2,2-tetrafluoroethoxy)]phenyl]methyl][3-[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-pro-phenyl]methyl][3-[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-pro-phenyl]methyl][3-[cyclohexylmethoxy]-phenyl]methyl[3-[cyclohexylmethoxy]-phenyl]methyl[3-[cyclohexylmethoxy]-phenyl]methyl[3-[cyclohexylmethoxy]-phenyl]methyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethoxy]-phenyl[3-[cyclohexylmethox]-phenyl[3-[cyclohe
 - (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trif-
 - $(2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)] phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl] methyl] amino]-1,1,1-trifluoroethoxy)-phenyl] methyl[3-(1,1,2,2-tetrafluoroethoxy)-phenyl] methyl[3-(1,1,2,2-tetrafluoroethoxy)-phenyl] methyl[3-(1,1,2,2-tetrafluoroethoxy)-phenyl] methyl[3-(1,1,2,2-tetrafluoroethoxy)-phenyl] methyl[3-(1,1,2,2-tetrafluoroethoxy)-phenyl[3-(1,1,2,2-tet$
 - (2R) 3 [[3 (3 diffuoromethoxyphenoxy)phenyl][[3 (1,1,2,2 tetrafluoroethoxy) phenyl] methyl] amino] 1,1,1 trif-tetrafluoroethoxyphenoxyph
 - (2R)-3-[[[3-(3-trifuoromethylthio)phenoxy]phenyl][[3-(1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; luoro-2-propanol; 1,1,2,2-tetrafluoroethoxy)-phenyl]methyl]amino]-
 - (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-((2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 20
 - (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1 -trifluoro-2-propanol; (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
- (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1 -trifluoro-2-propanol; (2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol;
- (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol; 25 (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(pentafluoroethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propa-
 - (2R) 3 [[3 (4 chloro 3 ethylphenoxy)phenyl][[3 (pentafluoroethyl)phenyl]methyl] amino] 1, 1, 1 trifluoro 2 propanological phenyll 2 -
- (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(pentafluoroethyl)-phenyl]methyl]amino]-1,1,1-trif-30
 - (2R)-3-[[3-(pentafluoroethyl)phenoxy]phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-pro-
- (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(pentafluoroethyl) 35

10

15

- phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-(pentafluoroethyl)
- phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-(pentafluoroethyl)
- phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 40
 - (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-(pentafluoroethyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(5.6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol;
- (2R)-3-[[3-(phenoxy)phenyl][[3(pentafluoroethyl) 45 phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(3-(N,N-dimethylamino)phenoxy]phenyl][[3(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-
 - (2R) 3 [[[3 (pentafluoroethyl)phenyl]methyl][3 [[3 (trifluoromethoxy)phenyl]-methoxy]phenyl]amino] 1, 1, 1 trifluoromethoxy [[3 (pentafluoroethyl)phenyl]methyl][3 [[3 (trifluoromethoxy)phenyl]-methoxy]phenyl]methyl [[3 (trifluoromethoxy)phenyl]methyl [[3 -
 - (2R) 3 [[[3 (pentafluoroethyl) phenyl] methyl] [[3 (trifluoromethyl) phenyl] methoxy] phenyl] amino] 1, 1, 1 trifluoromethyl) phenyl] methoxy] phenyl] methoxy] phenyl] phenyl
 - (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[[3-(trifluoromethylthio)phenyl]-methoxy]phenyl]amino]-1,1,1-trif-
- - $(2R) \cdot 3 \cdot [[[3 \cdot (pentafluoroethyl)phenyl]methyl][3 \cdot [[3.5 \cdot difluorophenyl]methoxy] \cdot phenyl]amino] \cdot 1, 1, 1 \cdot trifluoro \cdot 2 \cdot properties of the prope$ panol;

- (2R)-3-[[[3-(pentafluoroethyl)phenyl]methyl][3-[cyclohexylmethoxy]phenyl]-amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-(2-diffuoromethoxy-4-pyridyloxy)phenyl][[3-(pentaffuoroethyl)phenyl]-methyl]amino]-1.1.1-triffuoro-
- (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-
- (2R)-3-[[3-(3-diffuoromethoxyphenoxy)phenyl][[3-(pentaffuoroethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- [2R]-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[3-(pentafluoroethyl)phenyl]-methyl]amino]-1,1,1 10
- (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-(pentafluoroethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-
 - (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1 -trifluoro-2-pro-
- (2R)-3-[[3-(3-isopropylphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; 15 (2R)-3-[[3-(3-cyclopropylphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl]-amino]-1.1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-(2,3-dichlorophenoxy)phenyl][[3-(heptafluoropropyl)
 - phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(4-fluorophenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;

5

20

- (2R)-3-[[3-(4-methylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1,-trifluoro-2-propanol;
- (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propanol:
- 25 (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propa-
 - (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl][[3-(heptafluoropropyl)-phenyl]methyl]amino]-1,1,1-trif-
- (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl][[3-(heptafluoropropyl)phenyl]-methyl]aminoj-1,1,1-trifluoro-30
 - (2R)-3-[[3-(3,5-dimethylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]-amino]-1,1,1-trifluoro-2-propanol;
 - (2R)-3-[[3-(3-ethylphenoxy)phenyl][[3-(heptafluoropropyl)
 - phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-(3-t-butylphenoxy)phenyl][[3-(heptafluoropropyl)
- phenyl]methyl]amino]-1,1,1-triffuoro-2-propanol;
 - (2R)-3-[[3-(3-methylphenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-4n
 - (2R)-3-[[3-(phenoxy)phenyl][[3-(heptafluoropropyl) phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1.1,1 trifluoro-
- (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-(trifluoromethoxy)phenyl]-methoxy]phenyl]amino]-1,1,1-trif-45
 - (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3-(trifluoromethyl)phenyl]-methoxy]phenyl]amino]-1,1,1-trif-
 - (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl[[3-[[3,5-dimethylphenyl]methoxy]-phenyl]amino]-1.1,1-trifluoro-
- 50 (2R)-3-[[[3-(heptafluoropropyf)phenyf]methyf][3-[[3-(trifluoromethylthio)phenyf]-methoxy]phenyf]amino]-1,1,1-trif-
 - (2R)-3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[[3,5-difluorophenyl]methoxy]-phenyl]amino]-1,1,1-trifluoro-
- (2R).3-[[[3-(heptafluoropropyl)phenyl]methyl][3-[cyclohexylmethoxy]phenyl]-amino]-1,1,1 -trifluoro-2-propanol; 55 (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-
 - (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1

- (2R)-3-[[3-(3-diffuoromethoxyphenoxy)phenyl][[3-(heptafluoropropyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- (2R) 3 [[[3 (3-trifluoromethylthio)phenoxy]phenyi][[3 (heptafluoropropyi)phenyi]-methyl]amino] 1, 1, 1-trifluoropropyi)phenyi] [[3 (3-trifluoromethylthio)phenoxy]phenyi][[3 (heptafluoropropyi)phenyi]-methyl]amino] 1, 1, 1-trifluoropropyi)phenyi] [[3 (heptafluoropropyi)phenyi]-methyl]amino] 1, 1, 1-trifluoropropyi)phenyi] [[3 (heptafluoropropyi)phenyi]-methyl]-methyl[3 (heptafluoropropyi)phenyi]-methyl[3 (heptaflu(2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl][[3-(heptafluoropropyl)-phenyl]methyl]amino]-1,1,1-trif-
- (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenoxy]phenyfi[[2-fluoro-5-(trifluoromethyf)-phenyfi]methyf]amino]- 1,1,1 -trifluoro-
 - (2R)-3-{[3-(3-isopropylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- 10 (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - (2R).-3-[[3-(2,3-dichlorophenoxy)phenyi][[2-fluoro-5-(trifluoromethyl)phenyi]-methyl]amino]-1,1,1-trifluoro-2-pro-
 - (2R)-3-[[3-(4-fluorophenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-3-propanol;panol; (2R)-3-[[3-(4-methylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
- (2R)-3-[[3-(2-fluoro-5-bromophenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-20
 - (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol;
- (2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl] [[2-fluoro-5-(trifluoro-methyl)phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; 25

15

45

- (2R)-3-[[3-(3-(pentafluoroethyl)phenoxy]phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1
 - $(2R) \cdot 3 \cdot [[3 \cdot (3.5 \cdot dimethylphenoxy)] phenyl] [[2 \cdot fluoro 5 \cdot (trifluoromethyl)phenyl] methyl] amino] \cdot 1, 1, 1 \cdot trifluoro \cdot 2 \cdot production of the production of t$
- (2R)-3-{[3-(3-ethylphenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)phenyl]methyl]-amino]-1.1,1 -trifluoro-2-propanol; panol: $(2R) - 3 + [[3 - (3 - t-buty|phenoxy)pheny]][2 - fluoro - 5 - (trifluoro methyl)phenyl]methyl] + amino] - 1, 1, 1 \\ - trifluoro - 2 - proparation - 1, 1, 1 \\ - trifluoro - 1, 1, 1, 1, 1 \\ - trifluoro - 1, 1, 1, 1 \\ - trifluoro - 1, 1, 1, 1, 1 \\ - trifluoro - 1, 1, 1, 1, 1 \\$ 30 $(2R) - 3 - [[3 - (3 - methylphenoxy)phenyi]] \\ [[2 - fluoro - 5 - (trifluoromethyl)phenyi]methyl] - amino] - 1, 1, 1 - trifluoro - 2 - proparation - 2 - p$
- (2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifnol: 35 luoro-2-propanol;
 - (2R)-3-[[3-(phenoxy)phenyl][[2-fluoro-5-(trifluoromethyl)
 - phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol; (2R)-3-[[3-[3-(N,N-dimethylamino,phenoxy]phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-
- $(2P) 3 \underbrace{[[2-fluoro-5-(trifluoromethyl)phenyl]methyl)[3-[[3-(trifluoromethoxy)-phenyl]methoxy]phenyl]amino]}_{} + \underbrace{[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3-(trifluoromethoxy)-phenyl]methoxy]phenyl]methyl][3-[[3-(trifluoromethoxy)-phenyl]methyl][3-[13-(trifluoromethoxy)-phenyl]methyll]methyll][3-[13-(trifluoromethoxy)-phenyl]methyll]methyll][3-[13-(trifluoromethoxy)-phenyl]methyll]methyll]methyll]$ 40
 - (2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3-(trifluoromethyl)-phenyl]methoxy]phenyl]amino]-
 - (2F) 3 [[[2-fluoro-5-(trifluoromethyl)]phenyl]methyl][3-[[3,5-dimethylphenyl]-methoxy]phenyl]amino] 1, 1, 1-trifluoromethyl)phenyl]methyl[[3-fluoro-5-(trifluoromethyl)]phenyl[]methyl[[3-fluoromethyl]]methyl[[3-fluo
 - $(2R) 3 \cdot [[[2-fluoro-5-(trifluoromethyl)] phenyl] methyl] \\ [3-[[3-(trifluoromethylthio)-phenyl] methoxy] phenyl] amino] [[3-fluoro-5-(trifluoromethyl)] phenyl] methyl] methyl] [3-fluoro-5-(trifluoromethyl)] [3-fluoro-5-($
 - (2R)-3-{[[2-fluoro-5-(trifluoromethyl)phenyl]methyl][3-[[3,5-difluorophenyl]-methoxy]phenyl]amino]-1,1,1-trifluoro-
 - $\label{eq:condition} \ensuremath{\text{(2R)-3-[[[2-fluoro-5-(trifluoromethyl)phenyl]]methyl][3-[cyclohexylmethoxyl-phenyl]amino]-1,1,1-trifluoro-2-proparation of the condition of$
 - (2R)-3-[[3-(2-difluoromethoxy-4-pyridyloxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-
- (2R)-3-[[3-(2-trifluoromethyl-4-pyridyloxy)phenyl][[2-fluoro-5-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-66
 - $(2R) 3 [[3 (3 difluoromethoxyphenoxy)phenyl] \underline{[[2 fluoro 5 (trifluoromethyl) phenyl]methyl]amino] 1, 1, 1 trifluoromethyl]\underline{[[2 fluoro 5 (trifluoromethyl) phenyl]methyl]methyl]methyl]\underline{[[2 fluoro 5 (trifluoromethyl) phenyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl]methyl[2 fluoro 5 (trifluoromethyl) phenyl]methylmethylmethyllmethyl]methylme$ 2-propanol;

- $(2R) 3 [[[3 (3 trifluoromethy)] + [henoxy]_{phenoxy}] + [[2 fluoro 5 (trifluoromethy)] phenyl] + [henoxy]_{phenoxy}] + [henoxy]_{phenoxy} + [henoxy]_{phenoxy}$
- (2R)-3-[[3-(4-chloro-3-trifluoromethylphenoxy)phenyl)[[2-fluoro-5-(trifluoro-methyl)phenyl]methyl]amino]-1.1,1-tri-
- (2R)-3-[[3-(3-trifluoromethoxyphenoxy)phenyl[[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-
 - (2R)-3-[[3-(3-isopropylphenoxy)phenyl][(2-fluoro-4-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-pro-
- (2R)-3-[(3-(3-cyclopropylphenoxy)phenyl)[(2-flouro-4-(trifluoromethyl)phenyl]-methyl]amino]-1.1,1-trifluoro-2-pro-10
 - (2R)-3-[[3-(3-(2-furyl)phenoxy)phenyl][(2-fluoro-4-(trifluoromethyl)phenyl]-methyl]amino]-1.1,1-trifluoro-2-propa-(2P)-3-[[3-(2,3-dichlorophenoxy)pheny][[2-fluoro-4-(trifluoromethyl)pheny]-methyl]aminoj-1,1,1-trifluoro-2-pro-
 - parus, (2R)-3-[[3-(4-fluorophenoxy)phenyi][[2-fluoro-4-(trifluoromethyi)phenyi]-methyi]amino]-1,1,1-trifluoro-2-propanot;
 - (2R)-3-[[3-(4-methylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)phenyl]-methyl]amino]-1,1,1-trifluoro-2-propa-
 - (2R)-3-[[3-(2-fluoro-5-bromophenoxy)pheny][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-2-propanol:
- 20 (2R)-3-[[3-(4-chloro-3-ethylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-(2R)-3-[[3-[3-(1,1,2,2-tetrafluoroethoxy)phenoxy]phenyl]
 - [[2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol;
- (2R)-3-[[3-[3-(pentafluoroethyl)phenoxy]phenyl[[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trifluoro-25
- (2R)-3-[[3-(3.5-dimethylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)phenyl]-methyl]aminoi-1,1,1-trifluoro-2-pro-(2R)-3-[[3-(3-ethylphenoxy)phenyl][[2-fluoro-4panol:
- (trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-pro-(2R) -3-[[3-(3-t-but/lphenoxy)pheny][[2-fluoro-4-(trifluoromethyl)pheny]]methyl]-amino]-1,1,1-trifluoro-2-propanol; 30
- (2R)-3-[[3-(3-methylphenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)phenyl]methyl]-amino]-1,1,1-trifluoro-2-propa-(2R)-3-[[3-(5,6,7,8-tetrahydro-2-naphthoxy)phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-35
- (2R)-3-[[3-(phenoxy)phenyl][[2-fluoro-4-(trifluoromethyl)
- phenyl]methyl]amino]-1,1,1 -trifluoro-2-propanol;

15

- (2R)-3-[[3-[3-(N,N-dimethylamino)phenoxy]phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-
- (2R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-[[3-(trifluoromethoxy)phenyl]methoxy]phenyl]amino]-
 - (3R)-3-[[[2-fluoro-4-(trifluoromethyl)phenyl]methyl[[3-[[3-(trifluoromethyl)phenyl]methoxy]phenyl]amino]-1,1,1-trif-
- $(2R) \cdot 3 \cdot \underline{I}[2 \cdot \underline{I}|uoro 4 \cdot \underline{I}|uor$ 45
- $(2R) 3 \underbrace{[[2-fluoro-4-(trifluoromethyl)]}_{light in light in$
 - (2R)-3+[[2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-f[3,5-difluorophenyl]-methoxy]phenyl]amino]-1,1.1+trifluoromethyl)phenyl]methyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl][3-fluoromethyl]methyl]methyl][3-fluoromethyl]methyl]methyl]methyl]methyl][3-fluoromethyl]methyll[3-fluoromethyl]methyll[3-fluoromethyll]methyll[$(2R)\cdot 3-[[[2-fluoro-4-(trifluoromethyl)]phenyl]methyl[[3-[cyclohexylmethoxy]-phenyl]amino]-1,1,1-trifluoro-2-proparation and the propagation of the propagation of$
 - $\label{eq:condition} (2R)-3+[[3-(2-diffuoromethoxy-4-pyridyloxy)] phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-prifuoromethylloxy-phenyl]methyl]amino]-1,1,1-trif-prifuoromethylloxy-phenyl]methylloxy-prifuoromethylloxy-phenyl]methylloxy-prifuoromethylloxy-phenyl]methylloxy-prifuoromethylloxy-phenyl]methylloxy-prifuoromethylloxy-phenyl]methylloxy-phenyl]methylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl]methylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl[[2-fluoro-4-(trifluoromethylloxy-phenyl[[2-fluoromethylloxy-phenyl[[2$
 - $(2R)\cdot 3\cdot \underbrace{[[3\cdot(2-\text{trifluoromethyl}\cdot 4-\text{pyridyloxy}]\text{phenyl}]}_{[2-\text{fluoro-}4-(\text{trifluoromethyl})-\text{phenyl}]\text{methyl}]\text{amino}]-1,1,1-\text{trifluoromethyl}}$
- 55 $(2R) - 3 + [[3 + (3 - \text{diffluoromethoxyphenoxy}) \\ \text{phenyl} \\ \underline{[(2 - \text{fluoro-4-(trifluoromethyl)-phenyl]} \\ \text{methyl} \\ \underline{[(2 - \text{fluoromethyl)-phenyl]} \\ \text{methyl} \\$
 - (2R)-3-[[[3-(3-trifluoromethylthio)phenoxy]phenyl][[2-fluoro-4-(trifluoromethyl)-phenyl]methyl]amino]-1,1,1-trif-

 $(2R)\cdot 3+[3-(4-chloro\cdot 3-trifluoromethylphenoxy)phenyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]\cdot 1.1.1-trifluoromethylphenoxy)phenyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]\cdot 1.1.1-trifluoromethylphenoxy)phenyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]\cdot 1.1.1-trifluoromethylphenoxy)phenyl][2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]\cdot 1.1.1-trifluoromethylphenoxy)phenyl[2-fluoro-4-(trifluoromethyl)phenyl]methyl]amino]\cdot 1.1.1-trifluoromethylphenoxy)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoromethyl]phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoromethyl]phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoro-4-(trifluoromethyl)phenyl[1-fluoromethyl]phenyl[1-fluoromethyl]pheny$ luoro-2-propanol.

[0132] Another class of CETP inhibitors that finds utility with the present invention consists of quinolines of Formula XVII

D_{XVII} OR_{XVII-3}

$$R_{XVII-1}$$

$$R_{XVII-2}$$
Formula XVII

and pharmaceutically acceptable forms thereof, wherein:

 $A_{
m XVII}$ denotes an anyl containing 6 to 10 carbon atoms, which is optionally substituted with up to five identical or different substituents in the form of a halogen, nitro, hydroxyl, trifluoromethyl, trifluoromethoxy or a straight-chain or branched allyl, acyl, hydroxyalkyl or alkoxy containing up to 7 carbon atoms each, or in the form of a group

R_{XVII-4} and R_{XVII-5} are identical or different and denote a hydrogen, phenyl or a straight-chain or branched alkyl

D_{XVII} denotes an anyl containing 6 to 10 carbon atoms, which is optionally substituted with a phenyl, nitro, halogen, trifluoromethyl or trifluoromethoxy, or a radical according to the formula

45

55

10

25

30

35

40

 $R_{XVIII-0}$, $R_{XVIII-0}$, $R_{XVIII-10}$ denote, independently from one another, a cycloalkyl containing 3 to 6 carbon atoms, or an any containing 6 to 10 carbon atom or a 5- to 7-membered, optionally benzo-condensed, saturated or unsaturated, mono-, bi- or tricyclic heterocycle containing up to 4 heteroatoms from the series of S, N and/or O, wherein the rings are optionally substituted, in the case of the nitrogen-containing rings also via the N function, with up to five identical or different substituents in the form of a halogen, trifluoromethyl, nitro, hydroxyl, cyano, carboxyl, trifluoromethoxy, a straight-chain or branched acyl, alkyli, alkylithio, alkylalkoxy, alkoxy or alkoxycarbonyl containing up to 6 carbon atoms each, an aryl or trifluoromethyl-substituted aryl containing 6 to 10 carbon atoms each, or an optionally benzo-condensed, aromatic 5- to 7-membered heterocycle containing up to 3 heteoatoms from the series of 5, N and/or O, and/ or in the form of a group according to the formula $-OR_{XVII-11}$, $-SR_{XVII-12}$, $-SO_2R_{XVII-13}$, or $-NR_{XVII-14}R_{XVII-15}$ or in the form of a group according to the formula $-OR_{XVII-11}$, $-SR_{XVII-12}$, $-SO_2R_{XVII-13}$, or $-NR_{XVII-14}R_{XVII-15}$.

Ryon-1: Ryon-12, and R_{XVII-13} denote, independently from one another, an aryl containing 6 to 10 carbon atoms, which is in turn substituted with up to two identical or different substituents in the form of a phenyl, halogen or a straightchain or branched alkyl containing up to 6 carbon atoms,

R_{XVII-14} and R_{XVII-15} are identical or different and have the meaning of R_{XVII-4} and R_{XVII-5} given above, or

 R_{XVII-6} and/or R_{XVII-7} denote a radical according to the formula

R_{XVII-8} denotes a hydrogen or halogen, and

5

15

R_{XVII-9} denotes a hydrogen, halogen, azido, trifluoromethyl, hydroxyl, trifluoromethoxy, a straight-chain or Pranched alkoxy or alkyl containing up to 6 carbon atoms each, or a radical according to the formula NR_{N01-16}R_{XVII-17}. $R_{XVII-16}$ and $R_{XVII-17}$ are identical or different and have the meaning of R_{XVII-4} and R_{XVII-6} above; or

 R_{XVII-8} and R_{XVII-9} together form a radical according to the formula =0 or = $NR_{XVII-18}$.

20 RXVII-18 denotes a hydrogen or a straight-chain or branched alkyl, alkoxy or acyl containing up to 6 carbon atoms each;

 L_{XVII} denotes a straight-chain or branched alkylene or alkenylene chain containing up to 8 carbon atoms each, which are optionally substituted with up to two hydroxyl groups;

 T_{XVII} and X_{XVII} are identical or different and denote a straight-chain or branched alkylene chain containing up to 25 8 carbon atoms; or

 T_{XVII} and X_{XVII} denotes a bond;

V_{XVII} denotes an oxygen or sulfur atom or -NR_{XVII-19};

R_{XVII-19} denotes a hydrogen or a straight-chain or branched alkyl containing up to 6 carbon atoms or a phenyl; Exvii denotes a cycloalkyl containing 3 to 8 carbon atoms, or a straight-chain or branched alkyl containing up to 8 carbon atoms, which is optionally substituted with a cycloalikyl containing 3 to 8 carbon atoms or a hydroxyl, or a phenyl, which is optionally substituted with a halogen or trifluoromethyl;

R_{XVII-1} and R_{XVII-2} are identical or different and denote a cycloalkyl containing 3 to 8 carbon atoms, hydrogen, nitro, halogen, trifluoromethyl, trifluoromethoxy, carboxy, hydroxy, cyano, a straight-chain or branched acyl, alkoxycarbonyl or alkoxy with up to 6 carbon atoms, or NR_{XVII-20}P_{XVII-21};

R_{XVII-20} and R_{XVII-21} are identical or different and denote hydrogen, phenyl, or a straight-chain or branched alkyl with up to 6 carbon atoms; and or

 R_{XVII-1} and/or R_{XVII-2} are straight-chain or branched alkyl with up to 6 carbon atoms, optionally substituted with halogen, trifluoromethoxy, hydroxy, or a straight-chain or branched alkoxy with up to 4 carbon atoms, any containing 6-10 carbon atoms optionally substituted with up to five of the same or different substituents selected from halogen, cyano, hydroxy, trifluoromethyl, trifluoromethoxy, nitro, straight-chain or branched alkyl, acyl, hydroxyalkyl, alkoxy with up to 7 carbon atoms and NR_{XVII-22}R_{XVII-23}

R_{XVII-22} and R_{XVII-23} are identical or different and denote hydrogen, phenyl or a straight-chain or branched akyl up to 6 carbon atoms; and/or

 R_{XVII-1} and R_{XVII-2} taken together form a straight-chain or branched alkene or alkane with up to 6 carbon atoms "TXILL DAY TXILL SWEET OUTSIDE WITH A SHARP TO STATE OF THE STATE OF T

 $R_{XVII:3}$ denotes hydrogen, a straight-chain or branched acyl with up to 20 carbon atoms, a benzoyl optionally substituted with halogen, trifluoromethyl, nitro or trifluoromethoxy, a straight-chained or branched fluoroacyl with up to 8 carbon atoms and 7 fluoro atoms, a cycloalkyl with 3 to 7 carbon atoms, a straight chained or branched alkyl with up to 8 carbon atoms optionally substituted with hydroxyl, a straight-chained or branched alkoxy with up to 8 carbon atoms optionally substituted with phenyl which may in turn be substituted with halogen, nitro, trifluoromethyl, trifluoromethoxy, or phenyl or a tetrazol substitued phenyl, and/or an alkyl that is optionally substituted with a group according to the

 $R_{XVII-24}$ is a straight-chained or branched acyl with up to 4 carbon atoms or benzyl.

[0133] Compounds of Formula XVII and their methods of manufacture are disclosed in PCT Publication No. WO 98/39299, which is incorporated herein by reference in its entirety for all purposes.

[0134] Another class of CETP inhibitors that finds utility with the present invention consists of 4-Phenyltetrahydro-

, N oxides thereof, and pharmaceutically acceptable forms thereof, wherein:

 A_{XMII} denotes a phenyl optionally substituted with up to two identical or different substituents in the form of halogen, trifluoromethyl or a straight-chain or branched alkyl or alkoxy containing up to three carbon atoms;

D_{XVIII} denotes the formula

10

15

20

25

30

35

40

46

$$R_{\rm XVIII-6} \\ R_{\rm XVIII-7} \\ \\ \text{or} \quad R_{\rm XVIII-8} \\ - \text{CH}_2 \\ - \text{O} - \text{CH}_2 \\ - \text{T}_2 \\ \\ \text{or} \quad R_{\rm XVIII-8} \\ - \text{CH}_2 \\ - \text{O} - \text{CH}_2 \\ - \text{T}_2 \\ - \text{CH}_2 \\ - \text{$$

RXVIII-5 and RXVIII-6 are taken together to form =O; or

 $R_{\text{XVIII-6}}$ denotes hydrogen and $R_{\text{XVIII-6}}$ denotes halogen or hydrogen; or

Romits and Ryune are identical or different and denote phenyl, naphthyl, benzothlazolyl, quinolinyl, pyrimidyl or pyridy) with up to four identical or different substituents in the form of halogen, trifluoromethyl, nitro, cyano, trifluor

R_{XVIII-0} and R_{XVIII-10} are identical or different and denote hydrogen or a straight-chained or branched alkyl of up

Exmi denotes a cycloalkyl of from three to six carbon atoms or a straight-chained or branched alkyl of up to eight carbon atoms:

R_{XVIII-1} denotes hydroxy;

R_{XVIII-2} denotes hydrogen or methyl;

 $R_{XYIII:3}$ and $R_{XYIII:4}$ taken together form an alkenylene made up of between two and four carbon atoms.

[0135] Compounds of Formula XVIII and their methods of manufacture are disclosed in PCT Publication No. WO 99/15504 and United States Patent No. 6,291,477, both of which are incorporated herein by reference in their entireties

[0136] Another class of drugs that may be utilized in the present invention include low-solubility drugs such as CCR1 inhibitors. CCR1 inhibitors includes quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1 (S)-3-fluorobenzyl-2(S),7-dihyfor all purposes. droxy-7-methyloctyl]amide and quinoxaline-2-carboxylic acid [1-benzyl-4-(4,4-difluoro-1-hydroxy-cyclohexyl)-2-hy-

[0137] The invention is useful for improving the intrinsic dissolution rate of compounds selected from the following. The intrinsic dissolution rate is defined as the rate of dissolution of a pure pharmaceutical active ingredient when conditions such as surface area, agitation-stirring speed, pH and ionic-strength of the dissolution medium are kept constant. Intrinsic dissolution rate is further defined as being measured in water at 37°C using a USP II dissolution apparatus equipped with a Wood's apparatus (Wood, JH, Syarto, JE and Letterman, H. J.Pharm. Sci. 54 (1965), 1068) with a stirring speed of 50 rpm. The intrinsic dissolution rate is defined in terms of mg of drug dissolved per minute

from a unit surface area, therefore, the intrinsic dissolution rate is referred to in units of mg/min.cm². [0138] The compositions and methods of the invention are particularly useful for compounds with an intrinsic dissolution rate of preferably less than 0.1 mg/min.cm² and more preferably with less than 0.05 mg/min.cm². [0139] Turning now to the chemical structures of specific CCR1 inhibitors, one class of CCR1 inhibitors that finds

utility with the present invention consists of dihydroxyhexanoic acid derivatives having the Formula CCR1-I

$$R_1 \xrightarrow{\begin{array}{c} O \\ H \end{array}} \begin{array}{c} R_2 \\ OH \\ R_3 \end{array} \xrightarrow{\begin{array}{c} O \\ NR_4R_5 \end{array}$$

CCR1-I

wherein R_1 is $(C_2 \cdot C_9)$ heteroaryl optionally substituted with one, two or three substituents independently selected from the group consisting of hydrogen, halo, cyano, (C₁-C₆)alkyl optionally substituted with one, two or three fluorine atloms, hydroxy, hydroxy-(C₁-C₀)alkyl, (C₁-C₀)alkyxy, (C₁-C₀)alkyxy,(C₁-C₀)alkyl, HO-(C=O)-, (C₁-C₀)alkyl-O-(C=O)-, (C₁-C₀)-, $HO_{-}(C=O)\cdot (C_{1}-C_{6})\text{alkyl}, \quad (C_{1}-C_{6})\text{alkyl} \cdot (C_{1}-C_{6})\text{-loc}, \quad (C_{1}-C_{6})\text$ $alkyl, \ H(O=C), \ H(O=C) - (C_1 - C_0)alkyl, \ (C_1 - C_0)alkyl(O=C), \ (C_1 - C_0)alkyl(O=C) - (C_1 - C_0)alkyl, \ NO_2, \ amino, \ (C_1 - C_0)alkyl, \ NO_$

 $(C_1 - C_6) alky/1 amino(C_1 - C_6) alky/1, \quad ((C_1 - C_6) alky/1, \quad H_a N - (C = O) -, \quad (C_1 - C_6) alky/1 N H - (C = O) -, \quad ((C_1 - C_6) alky/1 - (C_1 - C_6) alky/1 - (C_1$ $allyyl_{\mathbb{R}^{N}}(C=O), \ H_{2}N(C=O)\cdot (C_{1}\cdot C_{e})alkyl, \ (C_{1}\cdot C_{e})alkyl + N(C=O)\cdot (C_{1}\cdot C_{e})alkyl, \ (C_{1}\cdot C_{e})alkyl + N(C=O)\cdot (C_{1}\cdot C_{e})alkyl, \ (C_{1}\cdot C_{e})alkyl + N(C=O)\cdot (C_{1}\cdot C_{e})alkyl + N(C_{1}\cdot C_{1}\cdot C$ $(O=C)\cdot NH\cdot, \quad (C_1\cdot C_0) \text{ alky} (C=O)\cdot NH\cdot, \quad (C_1\cdot C_0) \text{ alky} (C=O)\cdot [NH] (C_1\cdot C_0) \text{ alky} (C_1$ $\text{ally}_{I}, (G_{1}-G_{2})\text{ally}_{I}.S_{2}-(G_{1}-G_{2})\text{ally}_{I}(S=0), (G_{1}-G_{2})\text{ally}_{I}.S_{2}-(G_{1}-G_{2})\text{ally}_{I}.S_{2}-(H_{1}-G_{2})\text{a$ $\text{alky}, \ (C_1 C_0) \text{alky} \text{HN-SO}_2 \cdot (C_1 C_0) \text{alky}, \ [(C_1 C_0) \text{alky} \text{I}_2 \text{N-SO}_2 \cdot (C_1 C_0) \text{alky}, \ CF_3 SO_3, \ (C_1 C_0) \text{alky} \cdot SO_2, \ chenyloop control of the second of the second$ (C₃-C₁₀)cycloalkyl, (C₂-C₉)heterocycloalkyl, and (C₂-C₉)heteroaryl;

15

wherein R_2 is phenyl-(CH₂)_m-, naphthyl-(CH₂)_m-, C_3 - C_1 0/cycloalkyl-(CH₂)_m-, $(C_1$ - C_6)alkyl or $(C_2$ - C_6)heteroaryl-(CH₂)_m, wherein each of said phenyl, naphthyl, (C₃·C₁₀)cycloalkyl or (C₂·C₀)heteroaryl moieties of said phey-(-12/m), naphthyl-(-CH₂)m, (C₃-C₁₀kycloalkyl-(CH₂)m, or (C₂-C₃heteroaryl-(CH₂)m, groups may optionally be substituted with one, two, or three substituents independently selected from the group consisting of hydrogen, halo, Substitutes want one, in , in a substitute of the substitute of t $\label{eq:ho-(C=0)-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_1-C_6)alkyl-(C_2-C_6)alkyl$ $alkyl\cdot(C=O)\cdot O\cdot(G_1\cdot C_0)alkyl\cdot H(O=C)\cdot H(O=C)\cdot H(O=C)\cdot (C_1\cdot C_0)alkyl\cdot (O=C)\cdot (C_1\cdot C_0)alkyl\cdot (O=C)\cdot (C_1\cdot C_0)alkyl\cdot NO_2\cdot (O=C)\cdot (O=C_0)alkyl\cdot (O=C_0)\cdot (O=C_0)alkyl\cdot (O=C_0)alkyl\cdot (O=C_0)\cdot (O=C_0)alkyl\cdot (O=C_0)alk$ $amino, (C_1 - C_6) \\ alkyl \\ amino, [(C_1 - C_6) \\ alkyl]_2 \\ amino, \\ amino(C_1 - C_6) \\ alkyl, (C_1 - C_6) \\ alkyl \\ amino(C_1 - C_6) \\ alkyl, \\ amino(C_1 - C_6) \\ amino(C_1$ $[(C_1 - C_6)alkyl]_2 amino(C_1 - C_6)alkyl, H_2N - (C=O) -, (C_1 - C_6)alkyl-NH - (C_1 - C$

 $(C_1 - C_2) alkyl_k N + (C = O) - (H_2 - C_2) alkyl_k (C_1 - C_2) alkyl_k N + (C = O) - (C_1 - C_2) alkyl_k N + (C_1 - C_2)$

 $(C_1 - C_0) alkyl(C=0) - [N|C_1 - C_0) alkyl, \qquad (C_1 - C_0) alkyl(C=0) - [N|C_1 - C_0) alkyl](C_1 - C_0) alkyl, \qquad (C_1 - C_0) alkyl,$ alky+(S=O). (C₁-C₀)alky+SO₂. (C₁-C₀)alky+SO₂NHt, H_2N -SO₂, H_2N -SO₂·(C₁-C₀)alky+. (C₁-C₀)alky+. HN-SO₂-(G₁-G_p)alkyl, [(G₁-G_p)alkyl₂N-SO₂-(G₁-G_p)alkyl, GF₃SO₃-, (G₁-G_p)alkyl-SO₃-, phenyl, phenoxy, benzyloxy. $(C_3 - C_{10})$ cycloalkyl, $(C_2 - C_9)$ heterocycloalkyl, and $(C_2 - C_9)$ heteroaryl;

wherein R³ is hydrogen, (C₁-C₁₀)alkyl, (C₃-C₁₀)cycloalkyl-(CH₂)_n-, (C₂-

 C_g heterocycloalkyi- $(CH_g)_n$, $(C_g C_g)$ heteroaryi- $(CH_g)_n$, or anyi- $(CH_g)_n$; wherein n is an interger from zero to six;

wherein said R₃ (C₁-C₁₀)alkyl group may optionally be substituted with one or more substituents, (preferably from one to three substituents) independently selected from hydrogen, halo, CN, $(C_1 - C_0)$ alkyl, hydroxy, hydroxy $(C_1 - C_0)$ $\text{alkyl. } (C_1 - C_0) \\ \text{alkoxy. } (C_1 - C_0) \\ \text{alkoxy. } (C_1 - C_0) \\ \text{alkyl. } \text{HO-(C=O)-, } (C_1 - C_0) \\ \text{alkyl. } \text{O-(C=O)-, } \text{HO-(C=O)-(C_1 - C_0)} \\ \text{alkyl. } (C_1 - C_0) \\$ $alkyt - C(C_1 - C_2)alkyt \cdot (C_1 - C_2)alkyt \cdot (C_2 - C_2)alkyt \cdot (C_2 - C_2)alkyt \cdot (C_2 - C_2)alkyt \cdot (C_2 - C_2)alkyt \cdot (C_3 - C_2)alkyt \cdot (C$ $\text{allyl} \ (C_1 - C_0) \\ \text{alkyl} \ (O_2 - C_0) \\ \text{alkyl} \ (O_3 - C$ $\text{alky} \text{NH-}(\text{C=O}), \ \ [(\text{C}_1\text{-}\text{C}_0) \text{alky} \text{I}_N\text{-}(\text{C=O}), \ \ H_2\text{N}(\text{C=O}) \text{-}(\text{C}_1\text{-}\text{C}_0) \text{alky} \text{I}_N\text{-}(\text{C}|\text{C}_0) \text{-}(\text{C}_1\text{-}\text{C}_0) \text{-}(\text{$ $alkyf_{\mathbb{R}^N}(C=O+(C_1-C_0)alkyf, H(O=C)+NH+, (C_1-C_0)alkyf(C=O)+NH, (C_1-C_0)alkyf, (C_1 (C_{=O}|N(C_{1}-C_{0}|aikyi,C_{1}-C_{0}|aikyi,(C_{1}-C_{0}|aikyi,C_{1}-C_{0}|aikyi,C_{1}-C_{0}|aikyi,C_{2}-Ni+,$ $H_2\text{NSO}_2, H_2\text{NSO}_2(C_1\text{-}C_\theta)\text{alkyl}, (C_1\text{-}C_\theta)\text{alkyl} + \text{SO}_2(C_1\text{-}C_\theta)\text{alkyl}, ([C_1\text{-}C_\theta)\text{alkyl}, \text{NSO}_2(C_1\text{-}C_\theta)\text{alkyl})$ (C₁-C₆)alkyl-SO₃, phenyl, (C₃-C₁₀)cycloalkyl, (C₂-C₉)heterocycloalkyl, and (C₂-C₉)heteroaryl; and wherein any of the

carbon-carbon single bonds of said $(C_T - C_{10})$ alkyl may optionally be replaced by a carbon-carbon double bond;

wherein the $(C_2 C_{10})$ cycloalkyl moiety of said R_3 $(C_2 C_{10})$ cycloalkyl- $(CH_2)_n$ -group may optionally be substituted wherein the $(C_3 C_{10})$ cycloalkyl- $(CH_2)_n$ -group may optionally be substituted by one to three substituents independently selected from the group consisting of hydrogen, halo, CN, $(C_1 - C_0)$ alk/l. $\text{hydroxy. hydroxy-}(C_1-C_0)\text{alkyl. } (C_1-C_0)\text{alkoxy.} (C_1-C_0)\text{alkoxy}(C_1-C_0)\text{alkyl.} + \text{HO-}(C=O) - (C_1-C_0)\text{alkyl-O-}(C=O) HO(G-O)\cdot C_1\cdot C_0 |aikyl\cdot (C_1\cdot C_0)aikyl\cdot (C_1\cdot C_0)ai$ $\text{aliyl}, \ \text{H(O=C)-(C_1-C_0)aliyl}, \ \text{(C}_1-C_0)aliyl(O=C)-, \ \text{(C}_1-C_0)aliyl(O=C)-(C_1-C_0)aliyl}, \ \text{NO}_2 \ \text{amino, } \ \text{(C}_1-C_0)aliyl(O=C)-(C_1-C_0)-(C_1-C_0)$ $\text{alkylamino.} \quad \text{(C}_1\text{-}C_0\text{)alkyl]}_2\text{amino,} \quad \text{amino(C}_1\text{-}C_0\text{)alkyl,} \quad \text{(C}_1\text{-}C_0\text{)alkyl,} \quad \text{(C}_1\text{-}C$ alkyi, H₂N-(C=O)-, (C₁-C₆)alkyi-NH-(C=O)-, ((C₁-C₆)alkyi-NH-(C=O)-, H₂N(C=O)-(C₁-C₆)alkyi-NH-(C=O)- $(C_1 - C_0) \text{alikyl}, \quad (C_1 - C_0) \text{alikyl}, \quad \text{H}(C = O) - (C_1 - C_0) \text{alikyl}, \quad \text{H}(O = C) - \text{NH}, \quad (C_1 - C_0) \text{alikyl}(C = O) - \text{NH}, \quad (C_1 - C_0) - \text{NH}, \quad (C_1 - C_$ $(C_1 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}, (C_1 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}, (C_3 - C_0) \text{alkyl}$ (C,-C₆)alkyl-SO₂NH, H₂N-SO₂, H₂N-SO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl HN-SO₂(C₁-C₆)alkyl, ([C₁-C₆)alkyl) alityli_cN-SO₂(C₁-C₆)alkyl, CF₅SO₃. (C₁-C₆)alkyl-SO₃, phenyl, (C₂-C₆)cycloalkyl, (C₂-C₆)heterocycloalkyl, and

wherein the $(C_2 \cdot C_9)$ heterocycloalkyl moiety of said $R_3 \cdot (C_2 \cdot C_9)$ heterocycloalkyl- $(CH_2)_n$, group may contain from wherein the $(C_2 \cdot C_9)$ heterocycloalkyl- $(CH_2)_n$. (C2-C9)heteroaryl;

one to three heteroatoms independently selected from nitrogen, sulfur, oxygen, >S(=0), $>SO_2$ or >NR6, wherein said (C₂-C₉)heterocycloalkyl molety of said (C₂-C₉)heterocycloalkyl-(CH₂)_n-group may optionally be substituted on any of the ring carbon atoms capable of forming an additional bond (preferably one to three substitutents per ring) with a substituent independently selected from the group consisting of hydrogen, halo, CN, (C₁-C₆)alkyl, hydroxy, $\label{eq:hydroxy-(C_+C_blalkyl, (C_+C_blalkoxy, (C_+C_blalkoxy, (C_+C_blalkyl, HO-(C=O)-, (C_+C_blalkyl-O-(C=O)-, HO-(C=O)-, HO-($ 20

[(C₁-C₆)alkyl]₂amino, amino(C₁-C₆)alkyl,

 $(C_1 - C_6)$ alkylamino $(C_1 - C_6)$ alkyl, $[(C_1 - C_6)$ alkyl $]_2$ amino $(C_1 - C_6)$ alkyl, H_2 N-(C=O)-, $(C_1 - C_0) alkyl + N + (C = O) \cdot \\ [(C_1 - C_0) alkyl]_D \cdot (C = O) \cdot \\ (C_1 - C_0) alkyl \cdot \\ [(C_1 - C_0) alkyl \cdot N + (C = O) \cdot (C_1 - C_0) alkyl \cdot \\ (C_1 - C_0) alkyl \cdot N + (C = O) \cdot \\ [(C_1 - C_0) alkyl \cdot N + (C = O) \cdot (C_1 - C_0) alkyl \cdot \\ (C_1 - C_0) alkyl \cdot N + (C = O) \cdot \\$ $(C_1 - C_0) \text{alkyl} (C = 0) - (C_1 - C_0) \text{alkyl}, \quad (C_1 - C_0) \text{alkyl} (C = 0) - \text{NH}, \quad (C_1 - C_0) - \text{NH}, \quad (C_1$ $(C_1-C_6)\text{alky}([C_2-C_6]\text{alky})([C_1-C_6]\text{alky}), \quad (C_1-C_6)\text{alky}(-S-C_6), \quad (C_1-C_6)\text{alky}(-S-C_6), \quad (C_1-C_6)\text{alky}(-S-C_6)$ altyt-SO₂NH+, H₂N-SO₂, H₂N-SO₂(C₁-C₉)alkyl, (C₁-C₉)alkyl+N-SO₂(C₇-C₉)alkyl, ((C₁-C₉)alkyl), ((C₁ alkyl, C_fSO_3 , (C_1C_0) alkyl- SO_3 , phenyl, (C_2C_0) cycloalkyl, (C_2C_0) heterocycloalkyl, and (C_2C_0) heteroaryl

wherein the (C_2C_3) heteroaryl moiety of said R9 (C_2C_3) heteroaryl $(CH_2)_n$ group may contain from one to three het-wherein the (C_2C_3) heteroaryl moiety of said R9 (C_2C_3) heteroaryl $(CH_2)_n$ group may contain from one to three het-wherein the (C_2C_3) heteroaryl $(CH_2)_n$ group may contain from one to three het-wherein the (C_2C_3) heteroaryl (C_2C_3) heteroaryl (eroatoms independently selected from nitrogen, sulfur or oxygen, wherein said $(C_2\cdot C_9)$ heteroaryl molety of said $(C_2\cdot C_9)$ heteroary-(Crt₂)_n-group may optionally be substituted on any of the ring carbon atoms capable of forming an additional bond (preferably one to three substitutents per ring) with a substituent selected from the group consisting of hydrogen. halo, CN, (G_1-G_0) alkyi, hydroxy, hydroxy- (C_1-G_0) alkyi, (C_1-G_0) alkoxy, (C_1-G_0) alkoxy, (C_1-G_0) alkyi, HO- (C_1-G_0) $\text{HO-(C=O)-(C_1-C_6)alkyl-,} \qquad \qquad \text{(C_1-C_6)alkyl-O-(C=O)-(C_1-C_6)alkyl,(C_1-C_6)alkyl-(C=O)-O-1}$ $alkyl(C=C)-O-(C_1-C_0)alkyl,H(O=C)-,H(C=C)-(C_1-C_0)alkyl,(C=C)-(C_1-C_0)alkyl,(O=C)-(C_1-C$

 $(C_1 - C_6) \text{alkyl-mino}(C_1 - C_6) \text{alkyl}, \quad [(C_1 - C_6) \text{alkyl}]_2 \text{amino}(C_1 - C_6) \text{alkyl-}, \quad H_2 \text{N-}(C = 0) -, \quad (C_1 - C_6) \text{alkyl-} \text{NH-}(C = 0) -, \quad [(C_1 - C_6) \text{alkyl-}]_2 \text{mino}(C_1 - C_6) \text{alkyl-}, \quad C_1 - C_6) \text{alkyl-} \text{mino}(C_1 - C_6) \text{alkyl-}, \quad C_2 - C_6) \text{alkyl-} \text{mino}(C_1 - C_6) \text{alkyl-}, \quad C_3 - C_6) \text{alkyl-} \text{mino}(C_1 - C_6) \text{alkyl-}, \quad C_3 - C_6) \text{alkyl-}, \quad C_4 - C_6) \text{alkyl-}, \quad C_5 - C_6) \text{alkyl-}, \quad C_7 - C_6) \text{alkyl-}, \quad C$ $|| \mathcal{C}_{1} - \mathcal{C}_{2}||_{\mathcal{C}_{1}} ||_{\mathcal{C}_{1}} \leq ||\mathcal{C}_{1} - \mathcal{C}_{2}||_{\mathcal{C}_{1}} ||_{\mathcal{C}_{1}} ||_{\mathcal{C}_{$ $(O=O)-NH+, \ (C_1\cdot C_0)alky/(C=O)-NH+, \ (C_1\cdot C_0)alky/(C=O)-[NH+](C_1\cdot C_0)alky/, \ (C_1\cdot C_0)alky/(C=O)-[N(C_1\cdot C_0)alky/](C_1\cdot C_0)$

alkyl, (C_1-C_6) alkyl-Š-, (C_1-C_6) alkyl-(S=O)-, (C_1-C_6) alkyl-SO₂-, (C_1-C_6) alkylHN-SO₂- (C_1-C_6) alkyl, alkylkNSO₂(C₁-C₆lalkyl, CF₅SO₃, (C₁-C₆)alkylsO₃, phanyl, (C₃-C₁₀lcycloalkyl, (C₂-C₆heterocycloalkyl, and

wherein said anyl moiety of said R_3 aryl- $(CH_2)_n$ group is optionally substituted phenyl or naphthyl, wherein said wherein said R_3 aryl- R_3 group is optionally substituted phenyl or naphthyl, wherein said (C2-C9)heteroaryl; and phenyl and naphthyl may optionally be substituted with from one to three substituents independently selected from the group consisting of hydrogen, halo, CN, (C₁-C₆)alkyl, hydroxy, hydroxy-(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkoxy $(C_1 - C_6) alikyl, HO - (C = O) - (C_1 - C_6) alikyl - O - (C = O) - HO - (C = O) - (C_1 - C_6) alikyl, (C_1 - C_6) alikyl - O - (C = O) - (C_1 - C_6) alikyl - O - (C_1 - C_6) alikyl - (C_1 - C_$ $\text{ality-(C-O)-O-, (C_1-C_0)alky-(C=O)-O-(C_1-C_0)alky-, H(O=C)-, H(O=C)-(C_1-C_0)alky-, H(O=C)-, (C_1-C_0)alky-, H(O=C)-, H(O=$ (O=C)- $(C_1$ - C_0 alikyl, NO_2 , amino, $(C_1$ - C_0 alikylamino, $(C_1$ - C_0 balikylamino, amino $(C_1$ - C_0 balikyl, $(C_1$ - C_0 balikylamino) (C₁-C₂)alkyl₂amino(C₁-C₂)alkyl₃, H₂N-(C=0), (C₁-C₂)alkyl₃N-(C=0), (C₁-C₂)alkyl₃N-(C=0), H₂N $(C=0)-(C_1-C_0)$ alityi, (C_1-C_0) alityi, $(C_1$ $alkyl(C=O)-NH, \ (C_1-C_6)alkyl(C=O)-[NH](C_1-C_6)alkyl, \ (C_1-C_6)alkyl(C=O)-[NC_1-C_6)alkyl, \ (C_1-C_6)alkyl, \ (C$ $(C_1 - C_0) alkyl + (S=0), \quad (C_1 - C_0) alkyl + SO_2, \quad (C_1 - C_0) alkyl + SO_2, \quad H_2N + SO_2, \quad (C_1 - C_0) alkyl + (S=0), \quad (C_1 - C_0) alkyl + (C_1$ HN-SO₂-(C₁-C₆)alkyl, [(C₁-C₆)alkyl]₂N-SO₂-(C₁-C₆)alkyl, CF₃SO₃, (C₁-C₆)alkyl-SO₃, phenyl, (C₃-C₁₀)cycloalkyl

or R₃ and the carbon to which it is attached form a five to seven membered carbocyclic ring, wherein any of the (C2-C9)heterocycloalkyl, and (C2-C9)heteroaryl; carbon atoms of said five membered carbocyclic ring may optionally be substituted with a substituent selected from the group consisting of hydrogen, halo, CN, (C₁-C₆)alkyl, hydroxy, hydroxy-(C₁-C₆)alkyl, (C₁-C₆)alkoxy, (C₁-C₆)alkoxy

 $(C_1 - C_g)alkyl, \ HO - \{C = O\} - , \ (C_1 - C_g)alkyl - O - \{C = O\} - , \ HO - \{C = O\} - (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl - O - \{C = O\} - (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl - O - \{C = O\} - (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl - O - (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl - O - (C_1 - C_g)alkyl, \ (C_1 - C_g)alkyl - O - (C_1 - C_g)alkyl -$ $\text{alky}(C=O) \cdot O_+(C_1 - C_0) \text{alky}(-C=O) \cdot O_+(C_1 - C_0) \text{alky}, \ H(O=O)_+ \cdot H(O=C)_+(C_1 - C_0) \text{alky}(-C_1 - C_0) \text{alky}(-C=O)_+(C_1 - C_0) \text{alky}(-C_1 (O-C)\cdot (C_1\cdot C_0) \text{alkyl}, \text{ NO}_2, \text{ amino}, \text{ } (C_1\cdot C_0) \text{alkyl} \text{amino}, \text{ } [(C_1\cdot C_0) \text{alkyl}]_2 \text{amino}, \text{ amino} (C_1\cdot C_0) \text{alkyl}, \text{ } (C_1\cdot C_0) \text{alkyl} \text{amino}, \text{ } [(C_1\cdot C_0) \text{alkyl}]_2 \text{ } [(C_1\cdot C_0) \text{alkyl}]_2$ $(C_{f},C_{g})alkyl, \ [(C_{f},C_{g})alkyl]_{g}amino(C_{f},C_{g})alkyl, \ H_{f}(C=0), \ (C_{f},C_{g})alkyl, H_{f}(C=0), \ [(C_{f},C_{g})alkyl]_{g}h_{f}(C=0), \ H_{f}(C=0), \ H_{f}(C=0$ $(C_{\bullet}C)_{\bullet}(C_{\bullet}C_{\bullet})aikyl, \quad (C_{\uparrow}C_{\bullet})aikyl, \quad (C_{\uparrow}C_{\bullet})aiky$ alky(C=O)-NH, (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky (C_1-C_0) alky(C=O)-[NH] (C_1-C_0) alky (C_1-C_0) -[NH] (C_1-C_0) -[(G_1, G_2) alky (G_2, G_1) (G_1, G_2) alky (G_2, G_2) (G_1, G_2) alky (G_2, G_2) (G_2, G_2) (G_1, G_2) (G_2, G_2) $(G_2$ $\label{eq:hisograms} \text{Hisog}_{-(G_1-G_0)\text{alkyl},\text{M}} \text{SO}_{2}(G_1-G_0)\text{alkyl}, \text{CF}_3\text{SO}_3, (G_1-G_0)\text{alkyl}, \text{SO}_3, \text{phenyl}, (G_2-G_0)\text{cycloalkyl}, \text{CF}_3\text{SO}_3, \text{CP}_3\text{$ (C₂·C₃)heterocycloalkyl, and (C₂·C₃)heteroaryl; wherein one of the carbon-carbon bonds of said five to seven membered carbocyclic ring may optionally be fused to an optionally substituted phenyl ring, wherein said substitutents may been detected, risk may open any or use the constraint of the con

 $(C_1 - C_6) alkoxy (C_1 - C_6) alkyl, HO - (C=O) - (C_1 - C_6) alkyl - O - (C=O) - (HO - (C=O) - (C_1 - C_6) alkyl - (C_$ $alkyl(C_1-C_6)alkyl+(C=0)\cdot O\cdot, (C_1-C_6)alkyl+(C=0)\cdot O\cdot (C_1-C_6)alkyl, H(O=C)\cdot, H(O=C)\cdot (C_1-C_6)alkyl, (C_1-C_6)alkyl(O=C)\cdot (C_1-C_$ $(C_1\cdot C_6)\text{alkyl}(O=C)\cdot (C_1\cdot C_6)\text{alkyl}, \text{NO}_2, \text{ amino}, (C_1\cdot C_6)\text{alkylamino}, \{(C_1\cdot C_6)\text{alkyl}\}_2\text{amino}, \text{ amino}(C_1\cdot C_6)\text{alkyl}, \text{ amino$ $(C_1 - C_0) alky/l amino(C_1 - C_0) alky/l. \\ [(C_1 - C_0) alky/l - Mino(C_1 - C_0) alky/l - M$

 $alkyl_{\tilde{b}}^{T}N-(C=O)-(C_{1}-C_{0})alkyl, \ (C_{1}-C_{0})alkyl-HN(C=O)-(C_{1}-C_{0})alkyl, \ ((C_{1}-C_{0})alkyl)_{\tilde{b}}^{T}N-(C=O)-(C_{1}-C_{0})alkyl, \ (C_{1}-C_{0})alkyl, \ (C_{1}-C_{0})alkyl$ $(O=C) - NH +, \quad (C_1 - C_6) \\ alky/(C=O) - NH +, \quad (C_1 - C_6) \\ alky/(C=O) - [NH]/(C_1 - C_6) \\ alky/(C=O) - [N(C_1 - C_6) \\ alky$ alkyl, (C₁-C₈)alkyl-S. (C₁-C₈)alkyl-(S-O), (C₁-C₈)alkyl-SO₂, (C₁-C₆)alkyl-SO₂, NH, H₂N-SO₂, H₂N-SO₂, C₁-C₆) (C₃-C₁₀)cycloalkyl, (C₂-C₉)heterocycloalkyl, and (C₂-C₉)heteroaryl;

wherein R_4 is hydrogen, $(C_1 - C_6)$ alkyl, hydroxy, $(C_1 - C_6)$ alkoxy, hydroxy $(C_1 - C_6)$ alkyl, $(C_1 - C_6)$ alkoxy(C = O)-, $(C_3 - C_1) \text{cycloal}(y + (CH_2)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9) \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_9)_q \cdot (C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_2 - C_9)_q \text{heterocycloal}(y + (C_2 - C_2 - C_2 - C_2)_q \text{heterocycloal}(y + (C_2 - C_2 - C_2 - C_2)_q \text{heterocycloal}(y + (C_2 - C_2 - C_2)_q \text{heterocycloal}(y + (C_2 - C_2 - C_2$ thy- $(Cf_2)_{q^2}$, wherein said $(C_2^2C_g)$ heterocycloalkyl, $(C_2^2C_g)$ heteroaryl, phenyl and naphthyl groups may be optionally substituted with one or two substituents from the group consisting of hydrogen, halo, cyano, (C₁-C₂)alkyl, hydroxy,

 $(C_1-C_6)alkoxy(C_1-C_6)alkyl, HO-(C=O), (C_1-C_6)alkyl-O-(C=O), HO-(C=O)-(C_1-C_6)alkyl, (C_1-C_6)alkyl-O-(C=O)-(C_1-C_6)alkyl, (C_1-C_6)alkyl-O-(C=O)-(C_1-C_6)alkyl-O-(C_1$ alkyl,(C₁-C₆)alkyl-(C=0)-O-, (C₁-C₆)alkyl-(C=0)-O-(C₁-C₆)alkyl, H(O=C)-(C₁-C₆)alkyl, (C₁-C₆)alkyl(C=C)- $(C_1 \cdot C_6) \text{alky/i}(O=C) \cdot (C_1 \cdot C_6) \text{alky/i}, \quad NO_2 \cdot \text{amino}, \quad (C_1 \cdot C_6) \text{alky/i} \text{amino}, \quad (C_1 \cdot C_6) \text{alky/i} \text{amino}, \quad \text{amino}(C_1 \cdot C_6) \text{alky/i}, \quad (C_1 \cdot C_6) \text{alky/i} \text{amino}, \quad \text{amino}(C_1 \cdot C_6) \text{alky/i}, \quad (C_1 \cdot C_6) \text{alky/i} \text{amino}, \quad \text{amino}(C_1 \cdot C_6) \text{alky/i}, \quad (C_1 \cdot C_6)$ $alkylamino \quad (C_1 \cdot C_6)alkyl, \quad [(C_1 \cdot C_6)alkyl]_2amino(C_1 \cdot C_6)alkyl, \quad H_2 N \cdot (C=0), \quad (C_1 \cdot C_6)alkyl \cdot NH \cdot (C=0), \quad [(C_1 \cdot C_6)alkyl \cdot NH \cdot (C=0)]_2 \cdot (C_1 \cdot C_6)alkyl \cdot NH \cdot (C=0), \quad (C_1 \cdot C_6)alkyl \cdot NH \cdot (C=0), \quad$ $alkyll_2N+(C=O)-(C_1^-C_0)aikyl, \ (C_1^-C_0)aikyl-HN(C=O)-(C_1^-C_0)aikyl, \ ((C_1^-C_0)aikyl)_2N-(C=O)-(C_1^-C_0)aikyl, \ H^-N^-(C=O)-(C_1^-C_0)aikyl, \ H^-N^-(C=O)-(C_1^-C_0)aikyl,$ $(O=C)-NH-, \ (C_1-C_6)alkyl(C=O)-NH, \ (C_1-C_6)alkyl(C=O)-[NH](C_1-C_6)alkyl, \ (C_1-C_6)alkyl, \ ($ $(C_1 \cdot C_6) \text{alkyl}(C=0) \cdot [N(C_1 \cdot C_6) \text{alkyl}, (C_1 \cdot C_6) \text{alkyl}, (C_1 \cdot C_6) \text{alkyl} \cdot S. \quad (C_1 \cdot C_6) \text{alkyl} \cdot (S=0) \cdot , \quad (C_1 \cdot C_6) \text{alkyl} \cdot SO_2 \cdot , \quad (C_$

 $(C_1 - C_6) alkyl, \{(C_1 - C_6) alkyl, \{(C_1 - C_6) alkyl, (C_1 - C_6) alkyl, (C_1 - C_6) alkyl, (C_1 - C_6) alkyl, (C_2 - C_6) alkyl, (C_3 - C_$ cloalkyl, (C2-C9)heterocycloalkyl, and (C2-C9)heteroaryl;

wherein R₅ is hydrogen, (C₁-C₈)alkyl or amino; or

 R_4 and R_5 together with the nitrogen atom to which they are attached form a (C_2 - C_0)heterocycloalkyl group optionally substituted with one or two substituents selected from the group consisting of hydrogen, halo, cyano, $(C_1 \cdot C_2)$ alkyl, hydroxy, hydroxy-(C_1 - C_6)alkyl, (C_1 - C_6)alkoxy, (C_1 - C_6)alkoxy(C_1 - C_6)alkyl, HO-(C=O)-, (C_1 - C_6)alkyl-O-(C=O)- $HO\cdot(C=O)\cdot(C_1\cdot C_0)alkyl\cdot (C_1\cdot C_0)alkyl\cdot (C=O)\cdot (C_1\cdot C_0)alkyl\cdot (C=O)\cdot O\cdot (C_1\cdot C_0)alkyl\cdot (C_1\cdot C_0)alk$ alkyl, H(O=C)-, H(O=C)-, $(C_1$ - C_2) alkyl, $(C_1$ - C_3) alkyl, $(C_1$ - C_2) alkyl, $(C_1$ - C_3) alkyl, $(C_1$ - $(C_1$ - $(C_1$ - $(C_2$) alkyl, $(C_1$ - $(C_1$ - $(C_2$) alkyl, $(C_1$ - $(C_2$) alkyl, $(C_1$ - $(C_1$ - $(C_2$) alkyl, $(C_1$ - $(C_2$) $\text{allylamino. } [(C_1 - C_0) \text{alkyl}]_2 \text{ amino, amino}(C_1 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}]_2 \text{amino}(C_1 - C_0) \text{alkyl}]_2 \text{amino}(C_1 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl}]_2 \text{ amino}(C_1 - C_0) \text{alkyl}, (C_2 - C_0) \text{alkyl$ $\text{alkyl. H}_2\text{N-}(C=0), \quad (C_1-C_0)\text{alkyl-NH-}(C=0), \quad ([C_1-C_0)\text{alkyl-NH-}(C=0), \quad H_2\text{N}(C=0), \quad (C_1-C_0)\text{alkyl-NH-}(C=0), \quad (C_1-C_0)\text{alkyl-HN}(C=0), \quad (C_1-C_0)\text{alkyl-HN}(C=0)$ $(C_1 \cdot C_0) alkyl, \quad [(C_1 \cdot C_0) alkyl]_b N \cdot (C=0) \cdot (C_1 \cdot C_0) alkyl, \quad H(O=C) \cdot NH + \quad (C_1 \cdot C_0) alkyl(C=0) \cdot NH + \quad (C_1 \cdot C_0) alkyl(C=0) \cdot [NH]$ $(C_1 - C_6) alkyl, (C_1 - C_6) alkyl)(C_2 - C_6) alkyl)(C_1 - C_6) alkyl, (C_1 - C_6) alkyl + S \cdot (C$ alkyl,N.SO₂·(C₁-C₆)alkyl, CF₃SO₃·, (C₁-C₆)alkyl-SO₃·, phenyl, (C₃-C₁₀bcyloalkyl, (C₂-C₉)heterocycloalkyl, and H_2 N-SO₂-(C₁-C₆)alkyl, (C₁-C₆)alkyl+N-SO₂-(C₁-C₆)alkyl,

wherein \mathbf{R}^6 is hydrogen, $(\mathbf{C_1 \cdot C_6})$ alkyl, $(\mathbf{C_1 \cdot C_6})$ alkoxy- $(\mathbf{CH_2})_g$, $(\mathbf{C_1 \cdot C_6})$ alkoxy $(\mathbf{C=O})$ - $(\mathbf{CH_2})_g$, $(\mathbf{C_1 \cdot C_6})$ alkyl- $(\mathbf{SO_2})$ $-(\mathsf{CH}_2)_g \cdot (\mathsf{C}_6 - \mathsf{C}_{10}) \text{aryloxy-} (\mathsf{CH}_2)_g \cdot (\mathsf{C}_6 - \mathsf{C}_{10}) \text{aryloxy} (\mathsf{C} = \mathsf{O}) - (\mathsf{CH}_2)_g \cdot \text{"or } (\mathsf{C}_6 - \mathsf{C}_{10}) \text{aryl-} (\mathsf{SO}_2) - (\mathsf{CH}_2)_g \cdot (\mathsf{C}_{10} - \mathsf{C}_{10}) - (\mathsf$ wherein g is an integer from zero to four;

wherein m is an integer from zero to four;

wherein n is an interger from zero to six;

with the provisor that when one of R⁴ or R⁵ is hydrogen, and the other of R⁴ or R⁵ is $(C_1 \cdot C_0)$ alkyt; R² is $(C_3 \cdot C_{10})$ cycloalkyt. or isopropyl and \mathbb{R}^3 is $(\mathbb{C}_3 - \mathbb{C}_3]$ alkyl, phenyl, methylvinyl, dimethylvinyl, halovinyl, hydroxyl $(\mathbb{C}_1 - \mathbb{C}_3)$ alkyl or amino $(\mathbb{C}_1 - \mathbb{C}_3)$ alkyl then R1 must be other than indol-5-yl, 6-azaindol-2-yl, 2,3-dichloro-pyrrol-5-yl, 4-hydroxyquinolin-3-yl, 2-hydrox yquinoxalin-3-yl, 6-azaindolin-3-yl, or optionally substituted indol-2 or 3-yl;

[0140] Unless otherwise indicated, the alkyl and alkenyl groups referred to herein, as well as the alkyl moleties of other groups referred to herein (e.g., alkoxy), may be linear or branched, and they may also be cyclic (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl) or be linear or branched and contain cyclic moleties. Such alkyl and alkoxy groups may be substituted with one, two or three halogen and/or hydroxy atoms, preferably fluorine atoms.

[0141] Unless otherwise indicated, "halogen" includes fluorine, chlorine, bromine, and iodine. [0142] ${}^*(C_3C_{10})$ cycloalkyl when used herein refers to cycloalkyl groups containing zero to two levels of unsaturation

such as cyclopropyl, cyclobutyl, cyclopenttyl, cyclopenteryl, cyclohexyl, cyclohexenyl, 1,3-cyclohexadiene, cycloheptyl,

[0143] "(2,-C_s)heterocycloalkyl" when used herein refers to pyrrolklinyl, tetrahydroluranyl, dihydroluranyl, tetrahydropyranyl, pyranyl, thiopyranyl, aziridinyl, oxiranyl, methylenedioxyl, chromenyl, isoxazolidinyl, 1,3-oxazolidin-3-yl, isothiazolidinyl, 1,3-thiazolidin-3-yl, 1,2-pyrazolidin-2-yl, 1,3-pyrazolidin-1-yl, piperidinyl, thiomorpholinyl, 1,2-tetrahydrothiazin-2-yl, 1,3-tetrahydrothiazin-3-yl, tetrahydrothiadiazinyl, morpholinyl, 1,2-tetrahydrodiazin-2-yl, 1,3-tetrahydrothiazin-3-yl, tetrahydrothiadiazinyl, morpholinyl, 1,2-tetrahydrodiazin-2-yl, 1,3-tetrahydrothia drodiazin-1-ył, tetrahydroazepinyl, piperazinyl, chromanyl, and the like. One of ordinary skiil in the art will understand that the connection of said $(C_2$ - C_3)heterocycloalkyl rings is through a carbon or a \mathfrak{sp}^3 hybridized nitrogen heteroatom. [0144] '(C₂-C₉)heteroaryl' when used herein refers to furyl, thianyl, thiazolyl, pyrazolyl, isothiazolyl, oxazolyl, isox-15 azolyl, pyrrolyl, triazolyl, tetrazolyl, imidazolyl, 1,3,5-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,3-oxadiazolyl, 1,3,5-thiadiazolyl, 1,2.3-thladiazolyl, 1,2.4-thiadiazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, 1,2.4-triazinyl, 1,2.3-triazinyl, 1.3.5-triazinyl, pyrazolo(3.4-b)pyridinyl, cinnolinyl, pteridinyl, purinyl, 6,7-dihydro-5H-[1]pyrindinyl, benzo[b]hiophenyl,

5.6.7.8-tetrahydroquinolin-3-yl, benzoxazolyl, benzothiazolyl, benzisothiazolyl, benzisoxazolyl, benzimidazolyl, thianaphthenyi, Isothianaphthenyi, benzoluranyi, isobenzoluranyi, isoindolyi, indolyi, indolyi, indazolyi, isoquinolyi, quinoly), phthalazhyl, quinoxalinyl, quinazolinyl, benzoxazhyl, and the like. One of ordinary skill in the art will under-20 stand that the connection of said (C_2C_3) heterocycloalkyl rings is through a carbon atom or a \mathfrak{sp}^3 hybridized nitrogen

heteroatom.

35

45

[0145] *Protected amine* and *protected amino* refers to an amine group with one of the hydrogen atoms replaced [0145] "Aryl" when used herein refers to phenyl or naphthyl. with a protecting group (P). Any suitable protecting group may be used for amine protection. Suitable protecting groups include carbobenzyloxy, t-butoxy carbonyl (BOC) or 9-fluorenyl-methylenoxy carbonyl.

[0147] Compounds of Formula CCR1-I and their methods of manufacture are disclosed in commonly assigned United States Patent Application Serial No. 09/380,269, filed February 5, 1999, United States Patent Application Serial No. 09/403,215, filed January 18, 1999, PCT Publication No. WO98/38167, and PCT Publication No. WO99/40061, all of 30 which are incorporated herein by reference in their entireties for all purposes.

[0148] In a preferred embodiment, the CCR1 inhibitor is selected from one of the following compounds of Formula CCR1-I:

quinoxalline-2-carboxyllc acid 4(R)-carbamoyl-1 (S)-(3-chloro-benzyl)-2(S),7-dihydroxy-7-methyl-octyl]-amide; 7,8-difluoro-quinoline-3-carboxylic acid (1 S)-benzyl-4(R)-carbamoyl-2(S),7-dihydroxy-7-methyl-octyl)-amide; 6,7,8-trifluoro-quinoline-3-carboxylic acid (1 (S)-benzyl-4(R)-carbamoyl-2(S),7-dihydroxy-7-methyl-octyl)-amide; quinoxaline-2-carboxylic acid [4(R)-carbamoyi-1(S)-(3-fluoro-benzyl)-2(S),7-dihydroxy-7-methyl-octyl)-amide; quinoxaline-2-carboxylic acid (1 (S)-benzyl-2(S),7-dihydroxy-4(R)-hydroxycarbamoyl-7-methyl-octyl)-amide; quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1 (S)-(2-chloro-benzyl)-2(S),7-dihydroxy-7-methyl-octyl]-amide; quinoxaline-2-carboxylic acid [1 (S)-(2-lluoro-benzyl)-2(S),7-dihydroxy-4(R)-hydroxycarbamoyl-7-methyl-octyl]-

quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1 (S)-(2-fluoro-benzyl)-2(S),7-dihydroxy-7-methyl-octyl]-amide; quinoxaline 2-carboxylic acid [1 (S)-(3,4-difluoro-benzyl)-2(S),7-dihydroxy-4(R)-hydroxycarbamoyl-7-methyl-co-

quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1(S)-(3,4-difluoro-benzyl)-2(S),7-dihydroxy-7-methyl-octylj-amide; quinoxaline 2-carboxylic acid (4(R)-carbamoyl-2(S),7-dihydroxy-7-methyl-1 (S)-naphthalen-1-ylmethyl-octyl)-

7,8-difluoro-quinoline-3-carboxylic acid 1 (S)-benzyl-2(S)-hydroxy-7-methyl-4(R)-methylcarbamoyl-octyl)-amide: 8-Huoro-quinoline-3-carboxylic acid 1 (S)-benzyl-2(S)-hydroxy-7-methyl-4(R)-methylcarbamoyl-octyl)-amide: 50 quinoxaline-2-carboxylic acid [4(R)-carbamoyl-7-fluoro-1-(3(S)-fluoro-benzyl)-2(S)-hydroxy-7-methyl-octyl]-

quinoxaline-2-carboxylic acid [4(R)-carbamoyl-1-(2(S)-fluoro-benzyl)-2(S)-hydroxy-7-methyl-octyl]-amide; quinoxaline-2-carboxylic acid [1 (s)-benzyl-4(s)-carbamoyl-4(s)-(2,6-dimethyl-tetrahydro-pyran-4-yl)-2(s)-hy-55

quinoxaline-2-carboxylic acid 1 (S)-benzyl-4(R)-carbamoyl-7-fluoro-2(S)-hydroxy-7-methyl-octyl)-amide; quinoxaline-2-carboxylic acid 1 (S)-benzyl-5-cyclohexyl-2(S)-hydroxy-4(R)-methylcarbamoyl-pentyl)-amide:

quinoxaline-2-carboxylic acid 1 (S)-cyclohexylmethyl-2(S)-hydroxy-7-methyl-4(R)-methylcarbamoyl-octyl)-amide, quinoxaline-2-carboxylic acid [1 (S)-benzyl-2(S)-hydroxy-4(S)-hydroxycarbamoyl-4-(1-hydroxy-4-methyl-cy-

quinoxaline-2-carboxylic acid [1(S)-benzyl-4(S)-(4,4-difluoro-1-hydroxy-cyclohexyl)-2(S)-hydroxy-4-hydroxycarbamoyl-but yl]-amide;

quinoxaline-2-carboxylic acid [1(S)-benzyl-4(S)-carbamoyl-4(S)-(4,4-diffuoro-cyclohexyl)-2(S)-hydroxy-butyl)-

quinoline-3-carboxylic acid (1 (S)-benzyl-4(S)-carbamoyl-4-cyclohexyl-2(S)-hydroxy-butyl)-amide;

quinoxaline-2-carboxylic acid (4(R)-carbamoyl-2(S)-hydroxy-7-methyl-1 (S)-thiophen-2-ylmethyl-octyl)-amide; quinoxaline-2-carboxylic acid 1 (S)-benzyl-4(R)-carbamoyl-7-chloro-2(S)-hydroxy-oct-6-enyl)-amide; quinoxaline-2-carboxylic acid 1 (S)-benzyl-4(R)-carbamoyl-2(S)-hydroxy-5-phenyl-pentyl)-amide,

N-1(S)-benzyl-4(R)-carbamoyl-7-fluoro-2(S)-hydroxy-7-methyl-octyl)-5,6-dichloro-nicotinamide;

quinoxaline-2-carboxylic acid (4(R)-carbamoyl-2(S)-hydroxy-7-methyl-1 (S)-thiazol-4(R)-ylmethyl-octyl)-amide; benzothiazole-2-carboxylic acid 1 (S)-benzyl-4(R)-carbamoyl-7-fluoro-2(S)-hydroxy-7-methyl-octyl)-amide; and benzofuran-2-carboxylic acid 1 (S)-benzyl-4(R)-carbamoyl-7-fluoro-2(S)-hydroxy-7-methyl-octyl)-amide.

[0149] In another preferred embodiment, the CCR1 compound has a formula la-1:

wherein the substituents are as defined above.

[0150] In a preferred method of making the compound la-1, the reaction is started with Scheme 1. In the herein described processes, the substituents are as defined for COR1-I, and the following:

 R_7 is hydroxy, $(C_1 - C_6)$ alkyl, or phenyl wherein the phenyl group unsubstituted or substituted with one, two, or three R_R is hydroxy or halogen;

 R_9 is phenyl, naphthyl, $(C_3$ - C_{10})cycloalkyl, $(C_1$ - C_6)alkyl or $(C_2$ - C_9)heteroaryl,

wherein each of said phenyl, naphthyl, $(C_3 \cdot C_{10})$ cycloalkyl or $(C_2 \cdot C_3)$ heteroaryl groups may be unsubstituted or substituted or stituted with one, two, or three substituents independently selected from the group consisting of halogen, cyano, and P is a protecting group;

15

20

25

30

40

50

X is hydroxy or halogen; and q is 0, 1, 2, 3, or 4.

Scheme 1

[0151] In scheme 1 step 1, a compound of the formula (VI-1) is reduced with a reducing agent under heat to form a

compound of the formula (VId-1), in one embodiment, the reducing agent is aluminum triisopropoxide and isopropanol. Preferably, the temperature is maintained above room temperature, more preferably between about 60°C and about 82°C. The product alcohol can be isolated by either cooling the reaction mixture to room temperature, diluting with more isopropanol and collecting the crystalline material or by cooling the reaction to room temperature and adding 1 N HCL and water and collecting the crystalline material.

[0152] Step 2 of scheme 1 includes reacting a compound of the formula R₇-SO₂-X and a compound of the formula (VId-1) in the presence of a base to form the compound of the formula (VIe-1). Any amine base is suitable, including pyridine, triethylamine, N-methylmayholine, and diisoyropylethylamine. In one embodiment, R_7 -SO₂-R₈ is p-toluenesulfonic acid, methanesulfonic acid, sulfuric acid, or methanesulfonyl chloride. In another embodiment, the conversion of hydroxy dioxane (VId-1) to dioxane oxazolidinone (VIe-1) can be achieved by treatment of the hydroxy dioxane (Vid-1) with methanesulfonyl chloride and triethylamine in tetrahydrofuran solution and heating the mixture to cause the

cyclization of the mesylate formed in situ to the oxazolidinone.

[0153] In step 3 of scheme 1, a compound of the formula (VIf-1) may be formed by heating the compound of the formula (VIe-1). The reaction may proceed by dissolving compound VIe-1 in a solvent such as pyridine or N-methyl imidazole and heating the mixture for several hours at temperature from about 50°C to about 100°C; preferably at about 80°C. The mesylate (VIf-1) may be recovered by extraction into an organic solvent such as ethyl acetate and removal of the amine solvents by extraction of the solution with aqueous acid.

[0154] Step 4 of scheme 1 depicts reacting hydroxylamine hydrochloride, a compound of the formula R₇-SO₂-X, and a compound of the formula (VIf-1) to form a compound of the formula (VIg-1). In one embodiment, R₇-SO2-X is ptoluenesulfonic acid, methanesulfonic acid, sulfuric acid, or methanesulfonyl chloride. The reaction may occur in a solvent, such as methanol. In one embodiment, the reaction occurs in methanol with tosic acid at reflux for 8 to 24 hours. The resulting nitrile oxazolidinone contains a small amount of the corresponding ethyl ester which is not removed

since it also is converted to the desired lactone in subsequent steps.

40

45

50

55

[0155] Step 5 of scheme 1 includes a) hydrolyzing a compound of the formula (VIg-1) with an aqueous solution in the presence of a base, b) protecting the amine group of the compound so formed, and c) cyclizing the compound so formed with heat and an acid catalyst. In one embodiment, the compound VIg-1 is hydrolyzed with sodium hydroxide. The pH is adjusted to approximately 10 and tetrahydrofuran and BOC dicarbonate are added. This provides the protected hydroxy acid, which may be heated in 10% acetic acid and toluene to provide the protected amine lactone (V-1). [0156] The compound of formula (V-1) may also be produced according to scheme 2. 30

73

Scheme 2

10

15

25

35

40

45 [0157] In step 1 of scheme 2, a compound of the formula (VI-1) may be reacted with ozone to for a compound of the formula (VIa-1). The compound VI-1 may be present in a solvent, such as ethyl acetate, and the ozone introduced through sparging at a temperature below now memperature, referenby at about 1-5°C, until the sating dioxane ketone is substantially reacted. Any excess ozone may be removed by bubbling nitrogen through the solution. The resulting crude ketone ester mixture may be isolated after treatment with aqueous sodium bisulfite to remove any hydroperoxides.

[0158] Alternatively, in step 1 of scheme 2, the compound of the formula (VIa-1) may be formed by reacting hypochtorous acid and a compound of the formula (VI-1). Such an oxidation reaction typically produces chlorinated forms of the compound VIa-1 as side products in addition of the compound VIa-1. This oxidation reaction proceeds by mixing the compound VI-1 in solvent, such as acetic acid and/or acetone, and adding sodium hypochlorite, while keeping the mixture at a low temperature, preferably at or below about 0°C.

[0159] As a means to convert the side product chlorinated forms of the compound VIa-1 to compounds of the formula V-1, the compounds formed from the hypochlorous acid oxidation reaction may optionally be hydrogenated by reaction with hydrogen in the presence of a catalyst. The hydrogenation may include introducing the products from the hy-

pochlorous acid oxidation reaction into a solvent system of tetrahydrofuran and water, followed by addition of a PdiC catalyst. The resulting mixture is subjected to hydrogen above atmospheric pressure and temperature. In one embodiment, the pressure is about 80 pounds per square inch and the temperature is maintained from about 60°C to about 70°C until the reaction is substantially complete.

[0160] In step 2 of scheme 2, the compound of the formula (VIb-1) may be formed by reacting a silyating agent and a compound of the formula (VIb-1) and reacting the compound so formed with a reducing agent. In one embodiment, the silyating agent is 1,1,3,3,3-hearthyt-dislazane. The reducitor reaction may occur at temperatures below about 0°C, preferably below about -20°C, more preferably below about -20°C, more preferably below.

[0161] In step 3 of scheme 2, the compound of the formula (V-1) is formed by heating a compound of the formula (Vib-1) in the presence of an acid catalyst, such as a seetic acid. In one embodiment, the cyclization reaction occurs by introducing the compound VIb-1 into a solvent mixture, such as toluene and 10% acetic acid, at the solvent reflux temperature for 8 to 16 hours. This provides the desired lactone as a crystalline sold after work up.

[0162] One method of making the compound of the formula (VI-1) is by reacting a compound of the formula (VII-1)

20

25

34

40

50

55

with a Grinard reagent formed in situ by addition of 2-(2-bromo-ethyl)-[1,3]dioxane to a mixture comprising magnesium and the compound of the formula (VII-1). In one embodiment, the mixture further comprises methyl magnesium chloride and/or methyl magnesium bromide in a solvent. Any exotherm formed from the reaction may be controlled by the rate of addition of the bromide.

[0163] The compound of the formula (VII-1) may be formed by coupling N,O-dimethylhydroxylamine hydrochloride and a compound of the formula (VIII-1)

This coupling reaction may be performed by mixed anhydride procedure. In one mixed anhydride procedure, compound VIII-1 is combined with methylene chloride and N-methylinorpholine is added followed by isobutyl chloroformate. In a separate mixture, a slurry of N_C-dimethylindrodynamic hydrochride is treated with N-methylinorpholine. The two reaction mixtures are combined and then quenched with a solution of cirtic acid in water. This procedure preferably operates at a temperature below about 20°C, more preferably below about 0°C.

[0164] Compounds of formula (V-1) may be used to produce compounds of the formula (IVa1-1) according to scheme 3:

Scheme 3

4:

[0165] In step 1 of scheme 3, the compound of the formula (IVa1-1) may be formed by reacting 4-halo-2-methyl-2-butene and a compound of the formula (IV-1) in the presence of a base. Exemplary bases include lithium diakfyl amides such as lithium N-isopropyl-N-cyclohexylamide, lithium bist(trimethyls)lymalide, lithium diaspropylamide, and potassium hydride. Suitable solvents include aprotic polar solvents such as ethers (such as tetrahydrofuran, glyme or dioxane), benzene, or toluene, preferably tetrahydrofuran. The aforesaid reaction is conducted at a temperature from about -78° C1 or both of C2°, preferably at about -78°C. Lin one embodiment, alkylation of the lactone (V-1) is accomplished by reacting the lactone (V-1) with lithium bis(trimethylsily)amide and dimethylallyl bromide in

tetrahydrofuran at a temperature from about -78°C to about -50°C. Reaction times range from several hours or if an additive such as dimethyl imidazolidinone is present, the reaction may be complete in minutes.

[0166] Compounds of formula (IVa1-1) may be used to produce compounds of the formula (Ia-1) according to scheme

Scheme 4

[0167] In step 1 of scheme 4, a compound of the formula (Illa1-1) is formed by reacting a compound of the formula (Illa1-1) with phosphoric acid. Preferably, this reaction occurs in any suitable solvent, such as non-alcoholic solvents. Two preferred solvents include tetrahydrofuran and dichloroethane. The reaction may take place at any suitable temperature, preferably from about 2-25oC to about 12-25oC, more preferably from about 3-25oC to about 0.000. Reaction time is dependent on temperature and batch size, amount other factors, but typically reaction time is from about 2 hours to about 14 hours.

[0168] Step 2 of scheme 4 depicts coupling a compound Illa1-1 with a compound having the formula R₁-CO-X to form a compound having the formula (Illa1-1). This coupling reaction is generally conducted at a temperature from about 430°C to about 82°C. The coupling reaction may occur with a coupling reagent that activates the acid functionality. Exemplary coupling reagents include dicyclohexylcarbodiimide/hydroxy-benzotriazole (DCC/HBT), N-3-dimethylaminopropyl-N-ethylcarbodiimide (EDC/HBT), 2-ethyoxy-1-ethoxycarbonyl-

1,2-dihydroquinoline (EEDQ), carbonyl diimidazole (CDI), and diethylphosphorylcyanide. The coupling is conducted in an inert solvent, preferably an aprotic solvent, such as tetrahydrofuran, acetonitrile, dichioromethane, cliniconic, or N.N.-dimethylformamide. One preferred solvent is tetrahydrofuran. In one embodiment, quinoxaline acid is combined, with CDI in analydrous tetrahydrofuran and heated to provide the acyl imidazole. Compound Itla1-1 is added to the

acyl imidazole at room temperature to form the compound IIa1-1.

[0169] Step 3 of scheme 4 includes reacting the compound of formula IIa1-1 with an amine having a formula NHR₄R₅ to form a compound of the formula (Ia-1), in one embodiment, the amine is ammonia either anhydrous in an organic to form a compound of the formula (Ia-1), in one embodiment, the amine is ammonia enter form about 170c solvent or as an aqueous solution of ammonium hydroxide added to a polar solvent at a temperature from about 170c solvent or as an aqueous mixture from about 170c solvent be solvents include, alcohols, such as methianol, ethanol, or bulanols; ethers such as tetrahydrofuran, glyme or dioxane; or a mixture thereof, including aqueous mixtures. Preferably the solvent is methanol. In one embodiment, the compound IIa1-1 is dissolved in methanol which has been saturated with ammonia gas. In another embodiment, the compound IIa1-1 in methanol is treated with ammonium hydroxide in tet-

rahydrofuran at room temperature. [0170] Scheme 5 represents an alternative method to form compounds of formula la-1 from compounds of formula [Val-1.]

20

25

30

35

45

50

55

Scheme 5

 $\textbf{[0171]} \quad \text{In step 1 of scheme 5, a compound of the formula (IVa1-1) is reacted with a compound of the formula H_9-$SO}_2$-$\pi$$

- X to form a compound of the formula (IVa2-1). Any suitable acidic deprotection reaction may be performed. In one example, an excess of p-toluenesulfonic acid hydrate in ethyl acetate is introduced to the compound IVa1-1 at room temperature. Suitable solvents include ethyl acetate, alcohols, tetrahydrofuran, and mixtures thereof. The reaction may proceed at ambient or elevated temperatures. Typically, the reaction is substantially complete within two and twelve hours. The resulting compound IVa2-1 may be crystallized and separated from the reaction mixture, and may be further purified to remove impurities by recrystallization from hot ethyl acetate.
- [0172] In step 2 of scheme 5, the compound IVa2-1 may be coupled with a compound having the formula R₁-CO-X to form a compound of the formula (Illa2-1). This coupling reaction is generally conducted at a temperature from about -30°C to about 80°C, preferably from about 0°C to about 25°C. The coupling reaction may occur with a coupling reacent that activates the acid functionality. Exemplary coupling reagents include dicyclohexylcarbodiimide/hydroxybenzotria-
- zole (DCC/HBT), N-3-dimethylaminopropyl-N'-ethylcarbodiimide (EDC/HBT), 2-ethyoxy-1-ethoxycarbonyl-1,2-dihydroquinoline (EEDQ), carbonyl diimidazole (CDI)/dimethylaminopyridine (DMAP), and diethylphosphorylcyanide. The coupling is conducted in an inert solvent, preferably an aprotic solvent, such as acetonitirile, dichloromethane, chloroform, or N,N-dimethylformamide. One preferred solvent is methylene chloride. In one embodiment, quinoxaline acid is combined with methylene chloride, oxallyl chloride and a catalytic amount of N,N-dimethylformamide to form an acid
- chloride complex. The compound IVa2-1 is added to the acid chloride complex followed by triethylamine at a temperature from about 0°C to about 25°C to form the compound IIIa2-1.
- [0173] Step 3 of scheme 5 includes reacting a compound Illa2-1 with trifluoroacetic acid to produce a compound of the formula (IIa2-1). In one embodiment, the hydration with trifluoroacetic acid occurs in methylene chloride solution at room temperature. The hydration may take several hours to complete at room temperature. A catalytic amount of sulfuric acid can be added to the reaction solution to increase the rate of reaction.
 - [0174] Step 4 of scheme 5 includes reacting the compound of formula IIa2-1 with an amine having a formula NHR $_d$ R $_s$ to form a compound of the formula (Ia-1). In one embodiment, the amine is ammonia either anhydrous in an organic solvent or as an aqueous solution of ammonium hydroxide added to a polar solvent at a temperature from about -10°C to about 35°C, preferably at about 30°C. Suitable solvents include, alcohols, such as methanol, ethanol, or butanols; ethers such as tetrahydrofuran, glyme or dioxane; or a mixture thereof, including aqueous mixtures. Preferably the solvent is methanol. In one embodiment, the compound IIa2-1 is dissolved in methanol which has been saturated with ammonia gas. In another embodiment, the compound IIa2-1 in methanol is treated with ammonium hydroxide in tet-
- rahydrofuran at room temperature. [0175] A particular group of drugs useful in the invention, especially when the drug is in nanoparticulate form, are Danazol, 5α,17α,-1'-(methylsulfonyl)-1'H-pregn-20-yno-[3,2-c]-pyrazol-17-ol, piposulfam, piposulfan, camptothecin, and ethyl-3,5-diacetamido-2,4,6-trilodobenzoate.

DRUG IN MICROPARTICULATE FORM

- [0176] The term "microparticulate form" as employed herein, refer to a solubility-improved form of a drug comprising drug particles generally less than about 10 µm and preferably less than about 5µm in average particle size, and are generally greater than about 400 nm in average particle size. Such drug in microparticulate form is generally primarily crystalline, but may also contain substantial amounts of amorphous drug. Conventional bulk drug may be converted to microparticulate form by various types of milling and grinding operations. For example, dry milling, wet milling, wet grinding, ball milling, and air jet milling may all be employed to reduce the particle size of bulk crystalline drug. See for example, Lachman et al., The Theory and Practice of Industrial Pharmacy, Chapter 2, "Milling" (1986) and U.S. Patent No. 4,540,602 (Motoyama et al.). In many cases, agglomeration and caking of the drug as it is processed limits the minimum drug particle size that may be obtained. Mixing various excipients such as surfactants, polymers and inorganic 45 powders such as silicon dioxide prior to or during the milling or grinding steps have been shown to aid in obtaining
 - small particle sizes. [0177] It is well known that reduction in the particle size of crystalline drug can increase the rate and extent of drug dissolution. Such microparticulate drug forms often show enhanced bioavailability relative to larger particle size drug forms. This enhanced bioavailability is thought to be a direct consequence of the increased dissolution rate of the drug, as well as, in some cases, the attainment of a higher level of dissolved drug.
 - [0178] The addition of concentration-enhancing polymer to the crystalline drug prior to such grinding and milling steps or following such grinding and milling steps may further enhance the rate of drug dissolution. It may also increase the maximum concentration of dissolved drug attained or it may also increase the length of time that the concentration of dissolved drug remains high.

DRUG IN NANOPARTICULATE FORM

[0179] The terms 'nanoparticulate,' and 'nanoparticulate form' as employed herein refer to a solubility-improved form of a drug in the form of particles generally having an effective average particle size of less than about 1 um, preferably less than about 400 nm, more preferably less than about 500 nm and even more preferably less than about 100 nm. Examples of such nanoparticulate forms of drug are further described in U.S. Patent No. 5,145,684.

[0180] Such nanoparticulate drug form generally comprises about 10% to 99.9% by weight of a crystalline drug substance having a solubility in water less than about 10 mg/mL and the drug substance having a neffective average particle size of less than about 400 mn. As described in U.S. Patient No. 5, 145,684, nanoparticulate drug forms preferably consist essentially of 10% to 99.9% by weight of a crystalline drug substance having a solubility in water of less than 10 mg/mL, said drug substance having a nor-crosslinked surface modifier adopted on the surface thereof in an amount of 0.1 to 90% by weight and sufficient to maintain an effective average particle size of less than about 400 nm. (0181) Particle size can be measured by conventional particle size measuring techniques well known to those skilled in the art, such as sedimentation field flow fractionation, photon correlation spectroscopy, or disk centrifugation. By 'an effective average particle size of less than about 400 nm' is meant that at least 90% of the particles have a weight average particle size of less than about 400 nm when measured by the above-noted techniques. Preferred embodiments of the invention, the effective average particle size of less than about 250 nm. In some embodiments of the invention, the effective average particle size will be less than about 100 nm. In reference to the effective average particle size will be less than about 100 nm. In reference to the effective average particle size and the effective average particle size is that is less than the effective average particle size 400 nm.

[0182] The nanoparticles of the drug can be prepared in a method comprising the steps of dispersing a drug substance in a liquid dispersion medium and applying mechanical means in the presence of grinding media to reduce the particle size of the drug substance to the effective average particle size. The particles can be reduced in size in the presence of a surface modifier. Alternatively, the particles can be contacted with a surface modifier after attrition.

[0183] A general procedure for preparing the nanoparticles is set forth below. The drug substance selected is obtained commercially and/or prepared by techniques known in the art in a conventional coarse form. It is preferred, but not essential, that the particle size of the coarse art quistustence selected be less than about 100 µm as determined by sieve analysis. If the coarse particle size of the drug substance is greater than about 100 µm, then it is preferred that the particles of the drug substance be reduced in size to less than 100 µm using a conventional milling method such as airjet or fragmentation milling.

[0184] The coarse drug substance selected can then be added to a liquid medium in which it is essentially insoluble to form a premix. The concentration of the drug substance in the liquid medium can vary from about 0.1-60%, and preferably is from 5-30% (w/w). Although not essential, a surface modifier may be present in the premix.

[0188] The mixture can be used directly by subjecting it to mechanical means to reduce the average particle size in the drug substance to the desired size. It is preferred that the premix be used directly when a hall mill is used for attrition. Alternatively, the drug can be mixed in the liquid medium using suitable agitation, e.g., a roller mill or a Cowles type mixer, until a homogeneous mixture is observed in which there are no large agglomerates visite to the naked eye. It is preferred that the premix be subjected to such a premitting mixing step when a recirculating medial mills used for attrition.

[0188] The mechanical means applied to reduce the particle size of the drug substance conveniently can take the form of a mill. Suitable mills include a ball mill, an attition mill, a vibratory mill, and media mills such as a sand mill and a bead mill. A media mill is preferred due to the relatively shorter milling time required to provide the intended result, i.e., the desired reduction in particle size. For media milling, the apparent viscosity of the premix preferably is form about 100 centipoise. For ball milling, the apparent viscosity of the premix preferably is from about 1 up to about 1000 centipoise. For ball milling, the apparent viscosity of the premix preferably is from about 1 up to about 100 centipoise. Such ranges tend to afford an optimal balance between efficient particle fragmentation and media erosion.

[0187] The grinding media for the particle size reduction step can be selected from rigid media which are preferably spherical or particulate in form having an average size of less than about 3 mm and, more preferably, less than about 1 mm. Such media desirably can provide the particles of the invention with shorter processing times and impart less wear to the milling equipment. The selection of material for the grinding media is not believed to be critical. Zirconium oxide, such as 95% 2/O stabilized with magnesia, zirconium silicate, and glass grinding media provide particles having levels of contamination which are believed to be acceptable for the preparation of pharmaceutical compositions may be used. However, other media, such as stainless steel, titania, alumina, and 95% 2/O stabilized with yttrium, are expected to be useful. Preference media have a density greater than about 3 g/m?.

[0188] The attrition time can vary widely and depends primarily upon the particular mechanical means and processing conditions selected. For ball mills, processing times of up to five days or longer may be required. On the other hand, processing times of less than 1 day (residence times of one minute up to several hours) may provide the desired results using a high shear media mill.

[0189] The particles must be reduced in size at a temperature that does not significantly degrade the drug substance. It desired, the processing equipment can be cooled with conventional cooling equipment. The method is conveniently carried out under conditions of ambient temperature and at processing pressures that are sele and effective for the milling process. For example, ambient processing pressures are typical of ball mills, attritor mills and vibratory mills.

Processing pressures up to about 20 psi (1.4 kg/cm²) are typical of media milling.

[0190] A surface modifier may be added to the premix or added to the mixture after attrition to aid in maintaining the effective average particle size. Optionally, the mixture can be subjected to a sonication step, e.g., using an ultrasonic power supply. For example, the mixture can be subjected to ultrasonic energy having a frequency of 20-80 kHz for a

time of about 1 to 120 seconds.

[0191] The concentration-enhancing polymer may be added to the drug before the milling step, or after. Preparation of compositions comprising drug in nanoparticulate form and concentration-enhancing polymers is discussed below.

[0192] Another method of forming nanoparticulates, which provide enhanced stability is found in U.S. Patent No. 5,560,932, incorporated by reference in its entirety. Essentially, the drug form is made in the presence of a surface modifying and colloid stability enhancing surface active agent by the steps of:

- 1. Dissolving a drug in aqueous base with stirring;
- 2. Adding above #1 formulation with stirring to a surface active surfactant (or surface modifiers) solution to form a clear solution:
- 3. Neutralizing above formulation #2 with stirring with an appropriate acid solution. The procedure can be followed
- Removal of formed salt by dialysis or diafiltration; and/or
 - 5. Concentration of dispersion by conventional means.

[0193] In general, this process produces stabilized nanoparticulates with effective average particle size having a diameter of less than about 400 nm (as measured by photon correlation spectroscopy) that are stable in particle size upon storage at room temperature or refrigerated conditions. Preferred embodiments have an effective particle size of less than about 250 nm. In some embodiments of the invention, an effective average particle size of less than about 00 nm is even more preferred. With reference to the effective average particle size, it is preferred that at least 59% and, more preferably, at least 99% of the particles have a particle size less than the effective average, e.g., 400 nm. in particularly preferred embodiments, essentially all of the particles have a size less than 400 nm. In some embodiments, essentially all of the particles have a size less than 200 nm.

[0194] Yet another method of producing nanoparticulates is found in U.S. Patent No. 5,874,029, herein incorporated by reference. In this embodiment, a drug-solvent solution is sprayed through a nozale into an antisohent. In more detail, the process includes the steps of: (1) introducing a solution (including drug dissolved in a solvent) and a compressed gas (i.e., an energizing gas) into a nozzle; and (2) causing the compressed gas to flow through the nozzle under conditions such that the solution forms a spray of atomized droplets at the nozzle exit. In one embodiment, the solution and compressed gas flow through separate channels of the nozzle. The compressed gas exits the nozzle at a velocity such that the spray is shattered into extremely small droplets at the nozzle exit. The actinized spray of droplets is brought into contact with the amissolvent to cause depletion of the solvent in the atomized spray droplets and a further solution. The control of the properties of the properties

ABSORBED DRUG

46

55

15

20

[0195] Another solubility-improved form of the drug is drug absorbed into a material, (herein after referred to as "absorbed," "absorbed drug" or "absorbed drug is drug" or accompany of the disclosured of the disclosured or the disclosured or which is incorporated by reference. One method to manufacture absorbed drug that is incorporated into a crosslinked polymer is implemented in two stages as follows:

1st stage: In the 1st stage the drug is incorporated into a water-swellable but water-insoluble crosslinked polymer (or mixture of two or more such polymers) by any known method such as any of the following:

(1a) the drug is dissolved in a suitable solvent and a certain volume of the solution is sprayed onto a given quantity of polymer with the weight ratio of solution to polymer being chosen on the basis of the polymer swelling capacity and on the basis of the concentration of the drug in the solution. The spraying can be carried out in any apparatus used for the purpose, such as in a continuously stirred reactor, in a rotary evaporator

under continuous rotation, in a vacuum granulator under constant mixing, in a mortar under light mixing with a pestle, or in a fluidized bed with the polymer kept suspended in an air stream. The product obtained is then dried in the aforesaid apparatuses or in other suitable apparatuse.

(1 b) the drug is dissolved in a suitable solvent and a quantity of a water-swellable but water-insoluble crosslinked polymer (or a mixture of two or more such polymers) is suspended in an excess of the solution obtained. The suspension is kept stirred until the polymer particles swell. The suspension is then filtered or separated by other suitable means and the product is recovered and dried.

(1c) the drug in powder form and the water-swellable but water-insoluble crosslinked polymer (or mixture of two or more such polymers) in powder form are homogeneously mixed together and then ground together in a suitable apparatus such as a ball mill, high-energy vibratory mill, air jet mill etc.

(1d) the drug in powder form and the water-swellable but water-insoluble crosslinked polymer in powder form are mixed homogeneously and then heated together to the drug melting point in an apparatus such as an oven, rotary evaporator, reaction vessel, oil bath etc. until the drug has melted and has been absorbed by the polymer.

The weight ratio of the drug to said polymer (or mixture of two or more polymers) is in all cases between 0.1 and 1000 parts by weight of drug per 100 parts by weight of polymer and preferably between 10 and 100 parts by weight of drug per 100 parts by weight of polymer. And stace the polymer in

which the drug has been incorporated by any of the methods described for the 1st stage is brought into contact with a solvent in the vapor or liquid state by any suitable method, for example by any of the following:

(2a) the polymer with the drug incorporated is introduced into a chamber into which the solvent in vapor form is fed through a valve. The chamber can be that in which the 1st stage was carried out:

(2b) the polymer with the drug incorporated is introduced into a sealed chamber already saturated with solvent vapor generated by a solvent container situated within the chamber and kept in the sealed chamber until sat

(2c) the polymer with the drug incorporated is suspended in a fluidized bed by an air stream and is then sprayed with the liquid solvent or is exposed to an air stream saturated with the solvent vapor;

(2d) the polymer with the drug incorporated is suspended in an excess of solvent in liquid form, for example in a reaction vessel, in a mixer etc., and is then filtered off or separated by other means.

[0198] The time of contact between the polymer with the drug incorporated and the solvent in vapor or liquid form is dependent on the drug'polymer/colvent combination in order to obtain the desired characteristics of high drug concentration in the surface layers and/or transformation of the physical state of the drug into a crystalline state of the melting point. The treatment with solvent in gaseous form is conducted at a temperature preferably of between 20° and 100°C and the treatment with solvent in fluguld form is conducted at a temperature preferably of between 20° and 50°C. The time of the contract with the gaseous solvent is between 0.5 and 48 hours when the solvent is not water, and between 12 and 36 hours when the solvent is water. The time of contact with the liquid solvent is between 1 minute and 96 hours when the solvent is water. The final drying of the product is preferably conducted in an over under vacuum at a temperature of between 20° and 100°C.

[0197] The solvent (or solvent mixtures) suitable for the method according to the invention are all those which are able to swell the polymer or to be absorbed by the polymer into which the drug has been incorporated. Examples of solvents are water, water-alcohol mixtures, methanol, ethanol, higher alcohols, acetone, chlorinated solvents, formamide, dimethylformamide, floorinated hydrocarbons and others.

[0198] Examples of water-swellable but water-insoluble

10

15

20

25

30

crosslinked polymers suitable for use (singly or in combinations of two or more than two) in the process of the invention are: crosslinked polymin/pyrrodictione (abbreviated to crospovidone) as described in National Formulary XV, Supplement 3, page 380; crosslinked sodium carboxymethycellulose as described in National Formulary XV, Supplement 3, page 387; crosslinked pi-cyclodextrin polymer as described in WD patent 83/00809 and by Fenyvest et al. in Pharmacia, 39, 473, 1984; and crosslinked dextran. Other polymers suitable to form the crosslinked boylmer should have a hydrophilic polymer lattice allowing high swellability in water, and a water insolubility as determined by the nature of the polymer fattice.

[0199] Thus, in one embodiment, the absorbed drug form comprises a poorly soluble drug supported on a polymer of substance in a form capable of increasing the dissolving rate of the drug, prepared by a method comprising: 1) bringing a drug incorporated into particles of a crosslinked polymer which is swellable in water but insoluble in water by treading the polymer particles with a solution of the drug in a non-aqueous organic solvent and drying, or by mixing the polymer particles with the drug, heating to the drug meiting point, and then cooling at ambient temperature; 2) bringing the polymer.

formed product into contact with a non-aqueous organic solvent, in gaseous or liquid form, which is capable of swelling the polymer, wherein contact with the gaseous solvent is conducted for a period of time of between 0.5 and 48 hours, and wherein contact with the non-aqueous organic fliguid solvent is conducted for a period of time of between 1 minute and 96 hours; and 3) drying the product obtained in step 2) under vacuum to produce a drug supported on a polymer substance wherein the drug has been transformed from a metastable amorphous state to a stable high-energy crystalline isstee and is present in higher concentration in the surface layers of the polymer particles than in their inner layers. It is sufficient to the surface in the surface is a support of the polymer particles than in their inner layers. It is sufficient to the surface is a sufficient of the surface is a sufficient to the surface is a stabilizer and an agent that inhibits crystal formation. The resulting drug form is absorbed on a crosslinked polymer to prevent recrystalization.

[0201] Other embodiments of the drug form can be found in U.S. Patent Nos. 5,008,114, 5,225,192, 5,275,824, 5,354,560, 5,449,521, and 5,569,469, all of which are hereby incorporated by reference.

DRUG IN NANOSUSPENSION FORM

15

35

55

[0202] In another embodiment of the invention, the solubility-improved form of the drug is a nanosuspension. A nanosuspension is a disperse system of solid-in-liquid or solid-n-semisolid, the dispersed phase comprising pure active compound or an active compound or an active compound mixture. The average diameter of the dispersed phase is generally between 10 nm and 1,000 nm (determined by photon correlation spectroscopy), the size distribution of the dispersed active phase being quite narrow. That is, the proportion of "introparticles" (that is, particles larger than about 1 jm) in the active particle population is very low. The nanosuspension can be surfactant-free, but can also comprise surfactants or stabilizers or both. The nanosuspension can also be physhilized or spray dried, and the nanoparticles of a harosuspension can also be incorporated into a solid carrier matrix. See U.S. Patent No. 5,858,410, the entire contents of which are intereby incorporated by reference.

[2233] Although there are many methods to produce the nanosuspensions, one method suitable is by comminuting the solid particles by using cavitation or shearing and impact forces with introduction of a high amount of energy. A specific process for comminuting the solid particles comprises preparing a suspension of active drug in an aqueous solution followed by passing the aqueous suspension through a piston-gap homogenizer at least once and up to 10 to 30 times. Exemplary piston-gap homogenizers are the Micron Lab 40, Microfluidizer Model 110-Y (Microfluidiser, Inc.) and the Nanojet (Nanojet Engineering, Gmbh). A second method for producing the nanosuspension is by rapid expansion from a supercritical solution. See U.S. Patent No. 6,177,103, the entire contents of which are hereby incor-

porated by reference. In this process the nanosuspension is produced by:

(a) dissolving the drug and a surface modifier in a liquefied compressed gas solvent to form a solution of greater than 1% w/w of drug in the solvent; then (b) expanding the compressed fluid solution prepared in step (a) into water or an aqueous solution containing a second surface modifier; then (c) homogenizing the suspension of step (b) at high pressure.

[0204] A concentration-enhancing polymer may be comminuted with the drug and other excipients, or the nanosuspension form may first be prepared and then mixed with the concentration-enhancing polymer.

DRUG IN SUPERCOOLED FORM

[0205] Yet another solubility-improved form of the drug is drug that is in a supercooled form. By "supercooled," "supercooled melt" of "supercooled form" means that the drug, which is normally a solid, crystaline or amorphous substance at ambient conditions, has been formulated so that it is not present in a solid, crystaline state at temperatures below its butk melting point, but is instead in a solid state which is characterized by a more random distribution of atoms or molecules such as is observed in liquids or melts. An example of supercooled drug is disclosed in U.S. Patent No. 1,197,349, which is incorporated by reference.

50 [0206] The supercooled drug is often in the form of a dispersion. One such dispersion can be made by a specific melt emulsification method characterized by the following steps:

- The drug is melted. Optionally, one or more additives, which decrease the melting point of the drug and/or
 impede or inhibit the recrystallization of the molten drug are added.
- 2. Optionally, one or more stabilizing agents (e.g. amphiphilic substances, surfactants, emulsifiers) are dissolved or dispersed in the melt or in the dispersion medium depending on their physicochemical characteristics. Stabilizers can also be added or exchanged after homogenization, e.g. by adsorption of polymers or by dialysis of water-soluble stabilizers.

- Preferably, the dispersion medium is heated to approximately the temperature of the melt prior to mixing and
 may contain additives, a.g., stabilizers, isotonicity agents, buffering agents, cryoprotectants and/or preservatives.
 Optionally, the dispersion medium and the melt are added and predispersed to give a crude dispersion, for
- example by shaking, stirring, sonication or vortexing. Predispersing is preferably carried out at temperatures above the melting point of the substance or the mixture of substances or the mixture of substances and additives, e.g., stabilizers, respectively. Predispersing can he omitted for well dispersible systems.
- 5. The melt is then emulsified in the dispersion medium, preferably at temperatures above the melting point of the substance or the mixture of substances or the mixture of substances and additives, e.g., stabilizers, respectively. Emulsification is preferably carried out by high pressure homogenization or by sonication, but may be also possible by high speed stirring, vortexing and vigorous hand shaking.
- The dispersion can then be further processed into suitable dosage forms.

[0207] A concentration-enhancing polymer may be mixed with the molten drug or the supercooled drug form may first be prepared and then mixed with the concentration-enhancing polymer.

CYCLODEXTRIN/DRUG FORMULATIONS

5

15

40

[0208] Various solubility-improved drug forms using cyclodextrin are well known in the art. As used herein, the term "cyclodextrin" refers to all forms and derivatives of cyclodextrin. Particular examples of cyclodextrin include α-cyclodextrin, β-cyclodextrin, and γ-cyclodextrin. Exemplary derivatives of cyclodextrin include mono- or polyalkylated β $cyclodextrin, mono- or polyhydroxyalkylated \\ \beta-cyclodextrin, hydroxypropyl\\ \beta-cyclodextrin (hydroxypropylcyclodextrin), \\ \beta-cyclodextrin (hydroxypropylcyclod$ mono, tetra or hepta-substituted βcyclodextrin, and sulfoalkyl ether cyclodextrin (SAE-CD). These drug forms, also known as cyclodextrin derivatives, herein after referred to as "cyclodextrin/drug forms" can be simple physical mixtures. An example of such is found in U.S. Patent No. 5,134,127, herein incorporated by reference. For example, the active drug and sulfoalkyl ether cyclodextrin (SAE-CD) may be preformed into a complex prior to the preparation of the final formulation. Alternatively, the drug can be formulated by using a film coating surrounding a solid core comprising a release rate modifier and a SAE-CD/drug mixture, as disclosed in U.S. Patent No. 6,046,177 (1777), herein incorporated by reference. Upon exposure in the use environment, the SAE-CD/drug mixture converts to a complex. Alternatively, controlled-release formulations containing SAE-CD may consist of a core comprising a physical mixture of one or more SAE-CD derivative, an optional release rate modifier, a therapeutic agent, a major portion of which is not complexed to the SAE-CD, and an optional release rate modifying coating surrounding the core. Other cyclodextrin/drug forms contemplated by the invention are found in U.S. Patent Nos. 5,134,127, 5,874,418, and 5,376,645, all of which are incorporated by reference. For example, the drug in cyclodextrin, e.g. SAE-CD, may be physically mixed, wherein a major portion of the drug is not complexed to the SAE-CD in the composition. A preferred SAE-CD is sulfobutyl ether-CD.

DRUG IN THE FORM OF A SOFTGEL

[0209] Another solubility-improved drug form, herein referred to as the "softgel form," generally relates to a drug encapsulated in soft-gelatin. Typically, such softgel forms comprise a soft-gelatin capsule filled with a material, the material often being a highly concentrated solution of drug in a liquid. The fill material generally comprises either a water miscible carrier, such as polyethylene glycol or polyvinylpyrrolidone, or a water immiscible carrier, such as a liquid or oil, in which the drug is dissolved with or without a surfactant or emulstying agent. The fill material is placed in the soft gelatin capsule, for example, by encapsulating the fill material between two sheets of gelatin as it passes between a pair of die rolls having surface cavities shaped to from the desired shape of the resulting softgel. Such soft-gel drug forms are well-known and are described in "The Theory and Practice of Industrial Pharmacy", by L Lachman, H. Lieberman, and J. Kanig, Lea and Febiger, publisher, or "defidion, 1986."

[0210] A concentration-enhancing polymer may be blended with the fill material prior to filling the soft gelatin capsule, it may be added separately to the soft-gelatin capsule, or the softgel drug form may first be prepared and then blended with the concentration-enhancing polymer.

[0211] One variation on the softgel form is found in U.S. Patent Nos. 5,071,643 and 5,360,615, the disclosures of which are incorporated herein by reference. These patents disclose a solvent system for enhancing the solubility of a pharmaceutical agent to produce a highly concentrated solution suitable for sottled filling comprising 10 to 80% poly-ethylene glycol. 1 to 20% by weight of water, and the pharmaceutical agent. The composition also comprises 0.2 to 1.0 mole equivalents of an inciting agent per mole equivalent pharmaceutical agent. Glycerin or polyvinyleyrrolidone may be added to further enhance the solubility of cortain drugs. U.S. Patent No. 5,376,688, herein incorporated by reference, disclose the use of a fill material comprising 0 to 20% water, a solution of a pharmaceutical agent, an ionizing agent, and a solvent selected from the group consisting of dethylene glycol moneethyl ether, polyglycerol loates, alpha-

hydro-w-hydroxypoly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) bloc copolymers, and mixtures thereof.

[0212] A separate embodiment of this drug form can be found in EP 0 605 497, herein incorporated by reference.

This drug form can be varied from a semi-liquid to a semi-solid formed by high-pressure homogenization of a preemulsion of melted lipid containing a dissolved drug. After cooling to room temperature, solid particles are formed.

Drugs may be adsorbed in the lipid depending on the physicochemical properties of the drug.

GELATIN FORM

- [0213] Another solubility-improved drug form is a gelatin form of the drug, herein referred to as the "gelatin form" or "gelatin drug form." Gelatin drug form comprises a drug and a gelatin-based material, the drug either coated with, encapsulated in, or dispersed in the gelatin-based material, bypically using an aqueous-based solvent system. It is believed the gelatin coats or encapsulates the particles of the drug and prevents aggregation or clumping of the particles, leading to increased solubility and/or dissolution of the drug. (Hereinather, the terms "coated with" or "coats" are used to describe the drug coated with, encapsulated in, or dispersed in the gelatin-based material.)
- to see to describe the drug death form is found in U.S. Patent Nos. 5,851,275, 5,834,022 and 5,686,133 herein incorpograted by reference. In this embodiment, the drug is mixed with gelatin and lecithin and her coated, or the drug is
 coated with gelatin and lecithin using standard coating methods. When coated with the gelatin and lecithin is added to the
 method includes the steps of dissolving gelatin in water heated to between 35°C to 40°C. Lecithin is added to the
 gelatin/water mixture and is thoroughly mixed therein. At least one pharmaceutical ingredient in solid particulate form
 is then added slowly and mixed so as to cause thorough and uniform coating of the particles of the pharmaceutical
 ingredient. Following coating with the gelatin/lecithin mixture, the aqueous solvent is removed by various techniques,
 - including lyophylization (e.g., freeze-drying) or spray drying.

 [0215] The general range of concentrations of excipient (i.e., the lecithin/gelatin) and pharmaceutical ingredient is shown. The concentration in the coating solution of gelatin and lecithin broadly ranges from approximately 0.001-99 9% shown. The concentration in the coating solution of the pharmaceutical (w/v) each and more preferably 0.01 to 2.0% each. The concentration in the coating solution of the pharmaceutical ingredient ranges from approximately 0.11-5.0% (w/v). It is preferable that the lecithin and gelatin be present in a 1:1
- [0216] The contacting step includes coating the pharmaceutical ingredient with the mixture including water gelatin and lecithin. The coating step can be accomplished by simple immersion of the particles of the pharmaceutical ingredient and prevents aggregation or of clumping of the particles. The lecithin element is thought to reduce surface tension thereby preventing aggregation or form a microemulsion or to form micelles that facilitate dissolution of the pharmaceutical ingredient. In acting in this complementary fashion, the coating including gelatin and lecithin increases the dissolution rate of water-insoluble pharmaceutical ingredients. The above-described theory is provided merely for descriptive purposes and is no way intended to limit the scope of the present invention.
 - [0217] Another embodiment of this drug form, useful to increase a drug's rate of dissolution and bloavailability in a use environment, is disclosed in U.S. Pat. Nos. 5.405.616 and 5.50.924, herein incorporated by reference. This drum is generally prepared by selecting a gelation or gelatin derivative according to their isoelectric point (IEP), so that their IEP is adapted to the charge of the drug particles, leading to a neutral charge when the gelatin or its derivative their IEP is adapted to the charge of the drug particles, leading to a neutral charge when the gelatin or its derivatives and the complete of the charge of the drug particles. It is described in a second of the control of the aqueous sol form, their pH value is set according to the IEP of the gelatin at a value that stabilizes the particle of the drug at an approximately or totally neutral charge. Before or after this last step, the drug is dissolved in the aqueous gelatin sol or a solution of the drug is blended with the aqueous gelatin sol. Then, the drug of drug blend can be dried, creating a dry powder.
- [0218] A concentration-enhancing polymer may be mixed with the drug prior to coating with the gelatin, or the gelatin drug form may first be prepared and then mixed with the concentration-enhancing polymer.

DRUG IN SELF-EMULSIFYING FORM

- 0 [0219] Another solubility-improved drug form is a self-emulsifying form of the drug, herein referred to as the "self-emulsifying form." A "self-emulsifying form" as used herein, generally refers to a drug form comprising a drug dissolved in a mixture of lipophilic material or phase, and one or more surfactants and countradants. Preferably, upon ingestion of the self-emulsifying form, the drug/lipophilic material/surfactant mixture forms a microemulsion thereby enhancing the absorption of the drug in vivo. Self-emulsifying drug forms avoid the dissolution step that frequently limits the rate of absorption of low-solubility drugs from the crystalline state. See for example, C.W. Pouton, "Formation of Self-Emulsifying Drug Delivery Self-emulsifying drug forms are often filled into soft-pleatin capsules, as is discussed under the softgel drug form.
 - [0220] In one embodiment, the self-emulsifying drug form is comprised of at least one drug; a lipophilic phase, in-

cluding an oil or lipid material; a surfactant; and a hydrophilic phase. The materials used are often selected based on the empirical parameter commonly referred to as the hydrophilic-lipophilic balance (HLB value) of the material. Materials with low HLB values are more lipophilic, while those with high HLB values are more hydrophilic. Materials used in selfemulsifying drug form compositions include polyglycolyzed glycerides, polyethoxylated fatty acids, polyethylene glycol fatty acid diesters, polyethylene glycol fatty acid mono- and diester mixtures, polyethylene glycol glycerol fatty acid esters, transesterification products of natural and hydrogenated oils, polyglycerized fatty acids, propylene glycol fatty acid esters, mixtures of propylene glycol esters and glycerol esters, mono- and di-glycerides, tri-glycerides, sterol and sterol derivatives, polyethylene glycol sorbitan fatty acid esters, polyethylene glycol alkyl ethers, sugar esters, polyethylene glycol alkyl phenois, polyoxyethylene-polyoxypropylene block copolymers, sorbitan fatty acid esters, lower alcohol fatty acid esters, ionic surfactants, and mixtures thereof. Examples of self-emulsifying drug forms can be found in U.S. Patient Nos. 6,294,192 B1, 6,054,136,5,444,041,5,993,858,6,054,136,6,280,770 B1,6,309,665 B2,6,312,704 B1, and PCT Patent Application No. WO 01/01960 A1, the disclosures of which are incorporated by reference. [0221] A concentration-enhancing polymer may be included as part of the self-emulsifying drug form formulation, or the self-emulsifying drug form may first be prepared and then mixed with the concentration-enhancing polymer.

THREE-PHASE FORM

15

25

30

[0222] Another solubility-improved drug form is the "three-phase form." An example of a three-phase form is desofibed in U.S. Patent No. 6,042,847, herein incorporated by reference. Essentially, the three-phase form gives a constant or controlled release of an amorphous active ingredient stabilized with polymers for a single daily peroral application, which is especially suitable for active Ingredients existing in amorphous form or in one or more polymorphous forms, which exhibit poor solubility in crystal form depending on the polymorphous form, particle size and the specific surface area of the active ingredient. In general, this form comprises a core consisting of a first and a second phase and a coating representing the third phase. In the first phase the three-phase pharmaceutical form contains an amorphous active ingredient, the water-soluble polymer polyviny/pyrrolidone and a cellulose ether as carriers of the amorphous active ingredient and simultaneously as inhibitors of its crystalization, and a surfactant that improves the solubility of the active ingredient and promotes the absorption of the amorphous active ingredient from gastrointestinal tract. In the second phase it contains a cellulose ether and a mixture of mono-, di- and triglycerides as sustained release agents. The third phase is represented by a poorly soluble or gastro-resistant film coating, which in the first few hours after the application controls the release of the active ingredient and can consist of an ester of hydroxypropylinethylcellulose with phthalic anhydride or of a copolymerizate based on methacrylic acid and ethyl acrylate.

CONCENTRATION-ENHANCING POLYMERS

- [0223] Concentration-enhancing polymers suitable for use in the various aspects of the present invention should be pharmaceutically acceptable, and should have at least some solubility in aqueous solution at physiologically relevant pHs (e.g. 1-8). Almost any neutral or ionizable polymer that has an aqueous-solubility of at least 0.1 mg/mL over at
- [0224] It is preferred that the concentration-enhancing polymers be "amphiphilic" in nature, meaning that the polymer has hydrophobic and hydrophilic portions. Amphiphilic polymers are preferred because it is believed that such polymers lend to have relatively strong interactions with the drug and may promote the formation of various types of polymer/ drug assemblies in solution. A particularly preferred class of amphiphilic polymers are those that are ionizatio, the ionizable portions of such polymers, when ionized, constituting at least a portion of the hydrophilic portions of the polymer. For example, while not wishing to be bound by a particular theory, such polymer/drug assemblies may comprise hydrophobic drug clusters surrounded by the concentration-enhancing polymer with the polymer's hydrophobic regions turned inward towards the drug and the hydrophilic regions of the polymer turned outward toward the aqueous environment. Alternatively, depending on the specific chemical nature of the drug, the ionized functional groups of the polymer may associate, for example, via ion pairing or hydrogen bonds, with ionic or polar groups of the drug. In the case of ionizable polymers, the hydrophilic regions of the polymer would include the ionized functional groups. In addition, the repulsion of the like charges of the lonized groups of such polymers (where the polymer is ionizable) may serve to limit the size of the polymer/drug assemblies to the nanometer or submicron scale. Such drug/concentrationenhancing polymer assemblies in solution may well resemble charged polymeric micellar-like structures. In any case, regardless of the mechanism of action, the inventors have observed that such amphiphilic polymers, particularly ionizable cellulosic polymers such as those listed below, have been shown to interact with drug so as to maintain a higher concentration of drug in an aqueous use environment.

0225] One class of polymers suitable for use with the present invention comprises neutral non-cellulosic polymers. Exemplary polymers include: vinyl polymers and copolymers having at least one substituent selected from the group comprising hydroxyl, alkylacyloxy, and cyclicamidic, vinyl copolymers of at least one hydrophilic, hydroxyl-containing

repeat unit and at least one hydrophobic, alky- or aryl-containing repeat unit; polyvinyl alcohols that have at least a portion of their repeat units in the unhydrolyzed (vinyl acetate) form; polyvinyl alcohol polyvinyl acetate copolymers; polyvinyl pyrrolidone; polyethylene polyvinyl alcohol copolymers; and polyoxyethylene-polyoxypropylene block copol-

[0226] Another class of polymers suitable for use with the present invention comprises ionizable non-cellulosic polymers. Exemplary polymers include:

carboxylic acid-functionalized vinyl polymers, such as the carboxylic acid functionalized polymethacrylates and carboxylic acid functionalized polyacrylates such as the EUDRAGITS® manufactured by Rohm Tech Inc., of Maiden, Massachusetts; amine-functionalized polyacrylates and polymethacrylates; high molecular weight proteins such as gelatin and albumin; and carboxylic acid functionalized starches such as starch glycolate.

[0227] Non-cellulosic polymers that are amphiphilic are copolymers of a relatively hydrophilic and a relatively hydrophobic monomer. Examples include acrylate and methacrylate copolymers. Exemplary commercial grades of such copolymers include the EUDRAGITS, which are copolymers of methacrylates and acrylates.

(0228) A preferred class of polymers comprises ionizable and neutral (or non-ionizable) cellulosic polymers with at least one ester- and/or ether-linked substituent in which the polymer has a degree of substitution of at least 0.05 for each substituent. It should be noted that in the polymer nomenclature used herein, ether-linked substituents are recited prior to "cellulose" as the moiety attached to the ether group; for example, "ethylcenzoic acid cellulose" has ethoxybenzolo acid substituents. Analogously, ester-linked substituents are recited after "cellulose" as the carboxylate; for example, 'Cellulose phthalate' has one carboxylic acid of each phthalate molety ester-linked to the polymer and the

[0229] It should also be noted that a polymer name such as "cellulose acetate phthalate" (CAP) refers to any of the family of cellulosic polymers that have acetate and phthalate substituents attached via ester linkages to a significant fraction of the cellulosic polymer's hydroxyl groups. Generally, the degree of substitution of each substituent can range

from 0.05 to 2.9 as long as the other criteria of the polymer are met. "Degree of substitution" refers to the average number of the three hydroxyls per saccharide repeat unit on the cellulose chain that have been substituted. For example, if all of the hydroxyls on the cellulose chain have been phthalate substituted, the phthalate degree of substitution is 3. Also included within each polymer family type are cellulosic polymers that have additional substituents added in rela-

tively small amounts that do not substantially alter the performance of the polymer.

[0230] Amphiphilic cellulosics comprise polymers in which the parent cellulose polymer has been substituted at any or all of the 3 hydroxyl groups present on each saccharide repeat unit with at least one relatively hydrophobic substituent. Hydrophobic substituents may be essentially any substituent that, if substituted to a high enough level or degree of substitution, can render the cellulosic polymer essentially aqueous insoluble. Examples of hydrophobic substitutents include ether-linked alkyl groups such as methyl, ethyl, propyl, butyl, etc.; or ester-linked alkyl groups such as acetate, propionate, butyrate, etc.; and ether- and/or ester-linked aryl groups such as phenyl, benzoate, or phenylate. Hydrophilic regions of the polymer can be either those portions that are relatively unsubstituted, since the unsubstituted hydroxyls are themselves relatively hydrophilic, or those regions that are substituted with hydrophilic substituents. Hydrophilic substituents include ether- or ester-linked nonionizable groups such as the hydroxy alkyl substituents hydroxyethyl, hydroxypropyl, and the alkyl ether groups such as ethoxyethoxy or methoxyethoxy. Particularly preferred hydrophilic substituents are those that are ether- or ester-linked ionizable groups such as carboxylic acids, thiocarbox-

ylic acids, substituted phenoxy groups, amines, phosphates or sulfonates. [0231] One class of cellulosic polymers comprises neutral polymers, meaning that the polymers are substantially non-ionizable in aqueous solution. Such polymers contain non-ionizable substituents, which may be either ether-linked or ester-linked. Exemplary ether-linked non-ionizable substituents include: alkyl groups, such as methyl, ethyl, propyl, butyl, etc.; hydroxy alkyl groups such as hydroxymethyl, hydroxyethyl, hydroxypropyl, etc.; and aryl groups such as phenyl. Exemplary ester-linked non-ionizable substituents include: alkyl groups, such as acetate, propionate, butyrate, etc.; and anyl groups such as phenylate. However, when anyl groups are included, the polymer may need to include a sufficient amount of a hydrophilic substituent so that the polymer has at least some water solubility at any physiologically

10

[0232] Exemplary non-ionizable cellulosic polymers that may be used as the polymer include: hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxyethyl cellulose acetate, and hydroxyethyl ethyl cellulose.

[0233] A preferred set of non-ionizable cellulosic polymers are those that are amphiphilic. Exemplary polymers include hydroxypropyl methyl cellulose and hydroxypropyl cellulose acetate, where cellulosic repeat units that have relatively high numbers of methyl or acetate substituents relative to the unsubstituted hydroxyl or hydroxypropyl substituents constitute hydrophobic regions relative to other repeat units on the polymer.

[0234] A preferred class of cellulosic polymers comprises polymers that are at least partially ionizable at physiolog-

ically relevant pH and include at least one ionizable substituent, which may be either ether-linked or ester-linked. Exemplary ether-linked ionizable substituents include: carboxylic acids, such as acetic acid, propionic acid, benzoic acid, salicylic acid, alkoxybenzoic acids such as ethoxybenzoic acid or propoxybenzoic acid, the various isomers of alkoxyphthalic acid such as ethoxyphthalic acid and ethoxyisophthalic acid, the various isomers of alkoxynicotinic acid such as ethoxynicotinic acid, and the various isomers of picolinic acid such as ethoxypicotinic acid, etc.: thiocarboxylic acids, such as thioacetic acid; substituted phenoxy groups, such as hydroxyphenoxy, etc., amines, such as aminoethoxy, diethylaminoethoxy, trimethylaminoethoxy, etc.; phosphates, such as phosphate ethoxy; and sulfonates, such as sulphonate ethoxy. Exemplary ester linked ionizable substituents include: carboxylic acids, such as succinate, citrate, phthalate, terephthalate, isophthalate, trimellitate, and the various isomers of pyridinedicarboxylic acid, etc.; thiocarboxylic acids, such as thiosuccinate; substituted phenoxy groups, such as amino salicylic acid; amines, such as natural or synthetic amino acids, such as alanine or phenylalanine; phosphates, such as acetyl phosphate; and sulfonates, such as acetyl sulfonate. For aromatic-substituted polymers to also have the requisite aqueous solubility, it is also desirable that sufficient hydrophilic groups such as hydroxypropyl or carboxylic acid functional groups be attached to the polymer to render the polymer aqueous soluble at least at pH values where any ionizable groups are ionized. In some cases, the aromatic substituent may itself be ionizable, such as phthalate or trimellitate substituents. [0235] Exemplary cellulosic polymers that are at least partially ionized at physiologically relevant pHs include: hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxyethyl methyl cellulose succinate, hydroxyethyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, hydroxyethyl methyl cellulose acetate succinate, hydroxyethyl methyl cellulose acetate phthalate, carboxyethyl cellulose, ethyl carboxymethyl cellulose (also referred to as carboxymethyl ethyl cellulose), carboxymethyl cellulose, cellulose acetate phthalate, methyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate succinate, hydroxypropyl methyl cellulose acetate succinate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose propionate phthalate, hydroxypropyl cellulose butyrate phthalate, cellulose acetate trimellitate, methyl cellulose acetate trimellitate, ethyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, hydroxypropyl methyl cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate succinate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate terephthalate, cellulose acetate isophthalate, cellulose acetate pyridinedicarboxylate, salicylic acid cellulose acetate, hydroxypropyl salicylic acid cellulose acetate, ethylbenzoic acid cellulose acetate, hydroxypropyl ethylbenzoic acid cellulose acetate, ethyl phthalic acid cellulose acetate, ethyl nicotinic acid cellulose acetate, and ethyl picolinic acid cellulose acetate.

[0236] The inventors have found the following cellulosic polymers result in exceptional concentration enhancement: hydroxypropyl methyl cellulose acetate succinate (HPMCAS), such as the LF, LG, MF, MG, HF, and HG grades available from Shin-Etsu; cellulose acetate phthalate (CAP), such as the HF and CE grades available from Eastman Chemical; hydroxypropyl methyl cellulose phthalate (HPMCP), such as the NF grade available from Eastman Chemical, cellulose acetate trimellitate (CAT), available from Eastman Chemical; and hydroxypropyl methyl cellulose such as the E3 Prem-

20

25

55

[0237] Another preferred class of polymers consists of neutralized acidic polymers. By "neutralized acidic polymer" is meant any acidic polymer for which a significant fraction of the "acidic moleties" or "acidic substituents" have been "neutralized"; that is, exist in their deprotonated form. By "acidic polymer" is meant any polymer that possesses a significant number of acidic moieties. In general, a significant number of acidic moieties would be greater than or equal to about 0.1 milliequivalents of acidic moleties per gram of polymer. "Acidic moleties" include any functional groups that are sufficiently acidic that, in contact with or dissolved in water, can at least partially donate a hydrogen cation to water and thus increase the hydrogen-ion concentration. This definition includes any functional group or "substituent." as it is termed when the functional group is covalently attached to a polymer, that has a pKa of less than about 10. Exemplary classes of functional groups that are included in the above description include carboxylic acids, thiocarboxylic acids, phosphates, phenolic groups, and sulfonates. Such functional groups may make up the primary structure of the polymer such as for polyacrylic acid, but more generally are covalently attached to the backbone of the parent polymer and thus are termed "substituents." Neutralized acidic polymers are described in more detail in commonly assigned provisional patent application U.S. Serial No. 60/300,256 entitled "Pharmaceutical Compositions of Drugs

and Neutralized Acidic Polymers* June 22, 2001, the relevant disclosure of which is incorporated by reference. [0238] While specific concentration-enhancing polymers have been discussed as being suitable for use in the mixtures of the present invention, blends of such concentration-enhancing polymers may also be suitable. Thus, the term *concentration-enhancing polymer* is intended to include blends of concentration-enhancing polymers in addition to a single species of concentration-enhancing polymer.

PREPARATION OF THE COMPOSITIONS

[0239] The compositions of the present invention may be prepared by dry- or wet-mixing the solubility-improved drug

form with the concentration-enhancing polymer or a blend of concentration enhancing polymers to form the composition. Mixing processes include physical processing as well as well-granulation and coating processes.

[0240] For example, mixing methods include convective mixing, shear mixing, or diffusive mixing. Convective mixing involves moving a relatively large mass of material from one part of a powder bed to another, by means of blades or paddles, revolving screw, or an inversion of the powder bed. Shear mixing occurs when slip planes are formed in the material to be mixed. Diffusive mixing involves an exchange of position by single particles. These mixing processes can be performed using equipment in batch or continuous mixed. Turbiling mixers (e.g., riven-shell) are commonly used equipment for batch processing. Continuous mixing can be used to improve composition uniformity.

[0241] Milling may also be employed to prepare the compositions of the present invention. Milling conditions are generally chosen which do not alter the physical form of the drug in the sense that the drug and concentration-enhancing polymer are not mixed at the molecular level to form a dispersion of polymer and drug. Conventional mixing and milling processes suitable for use in the present invention are discussed more fully in Lachman, et al., The Theory and Practice of the drugs of the design of the drugs of the design of the drugs.

[0242] Alternatively, the concentration-enhancing polymer may be included as part of or as an additive to the solubility-improved drug form, the concentration-enhancing polymer being mixed with the drug when the solubility-improved drug form is prepared. For example, in the case of a nanoparticulate drug form, the concentration-enhancing polymer may be included with the drug in a dispersion media that is subjected to a mechanical means to reduce the particle size of the drug substance. In another example, the concentration-enhancing polymer can be added with the drug to

a lipid or colloidal protein to form a softgel drug form.

[243] In addition to the physical mixtures described above, the compositions of the present invention may constitute [243] In addition to the physical mixtures described above, the composition go to the use environment both the drug form and one collection of devices that accomplishes the objective of delivering to the use environment both the drug form and one-contration-enhancing polymer occupy separate regions within the dosage form in which the drug form and one-contration-enhancing polymer occupy separate regions within the dosage form. Thus, in the case of oral administration to a mammal, the dosage form may constitute a layered tablet wherein one or more layers comprise the drug form and one or more other layers comprise the concentration-enhancing polymer may prises the concentration-enhancing polymer may prises the concentration-enhancing polymer may prises the concentration-enhancing polymer may prise to be present in different dosage form such as tablets or beads and may be administered simultaneously or september of the prise of the dosage form and concentration-enhancing polymer are administered in such a way that the arralley as long as both the drug form and concentration-enhancing polymer are administered polymer enhancing polymer are administered separately it is generally preferable to deliver the concentration-enhancing polymer are administered separately it is generally preferable to deliver the concentration-enhancing polymer are administered separately it is generally preferable to deliver the concentration-enhancing polymer are administered separately it is generally preferable to deliver the concentration-enhancing polymer.

[0244] The amount of concentration-enhancing polymer relative to the amount of drug form present in the mixtures of the present invention depends on the drug form and concentration-enhancing polymer and may vary widely from a drug-to-concentration-enhancing polymer weight ratio of about 0.0 1 to about 2.0. However, in most cases, except when the drug dose is quite low (e.g., 25 mg or less) it is preferred that the drug-to-polymer ratio is greater than 0.05 and the session of the service of the preferred that the drug-to-polymer ratio is observed at drug-to-less than about 5.0 and often the enhancement in drug concentration or relative bioavailability is observed at drug-to-polymer ratios of 1 or less or for some drugs even 0.2 or less. In cases when the drug-do-polymer weight ratio may be significantly less than 0.05. In general, regardless of the dose, enhancements in drug concentration or relative bioavailability tend to increase with decreasing drug-to-polymer weight ratio down to a value of about 0.75 to 0.10. However, due to the practical limits of keeping the total mass of a tablet, capsule, or suspension low, it is often desirable to use a relatively high drug-to-polymer ratio as long as satisfactory results are obtained. The maximum drug-concentration-enhancing polymer ratio that yields satisfactory results are to drug and is best determined by conducting in vitro and/or in vivo dissolution tests described below.

CONCENTRATION ENHANCEMENT

45

50

[0245] The concentration-enhancing polymer is present in a sufficient amount so as to improve the concentration of the drug in a use environment relative to a control composition. At a minimum, the compositions of the present invention provide concentration-enhancement relative to a control comprising an equivalent quantity of the drug in the same solubility-improved form as the composition but with no concentration-enhancing polymer. Thus, the concentration-enhancing polymer is present in a sufficient amount so that when the composition is administered to a use environment, the composition provides improved drug concentration (as described more fully below) relative to a control consisting of an equivalent amount of drug in the same solubility-improved form, but with no concentration-enhancing polymer

[0246]. The presence of the concentration-enhancing polymer increases the time required for the drug concentration to fall to equilibrium. In fact, when compositions of the invention are administered to a use environment such as the fall tack where dissolved drug is absorbed from the GI fluids, much or all of the drug may be absorbed prior to the drug

being substantially converted to its lowest solubility form. Typical enhancements of dissolved drug concentration over soquilibrium drug concentration may be on the order of 1.25-fold to 20-fold, and in some cases 20-fold to 100-fold. For example, where the control provides an equilibrium concentration of 1.25-mg/mL, the composition provides a maximum drug concentration of 1.25 mg/mL, the composition provides a 1.25-fold enhancement.

- [0247] It is believed the concentration-enhancing polymers act to slow the rate of precipitation or crystallization of the drug after the drug is nitially dissolved. As mentioned previously, because conversion of dissolved drug to a lower of the polymer may allow a much higher total dissolved drug concentration than is possible in its absence. The presence of the concentration-enhancing polymer(s) thus allows the initially increased or enhanced concentration provided by the drug form to be at least partially maintained for at least a few minutes and, in some cases, for many hours.
- greater than the sea steams that the present invention provide enhanced concentration of the drug in a use environment exceeding the equilibrium concentration for a longe period of time than a control composition comprising an equivalent quantity of the drug form when subjected to a dissolution test. That is, even though the control composition may provide an enhanced concentration of drug in the use environment that exceed equilibrium contains a concentration, the control does so for a shorter period of time than the compositions of the present invention which contains a concentration-enhancing polymer. Preferably, a composition of the present invention which drug concentration that exceed the equilibrium concentration for a period of at least 15 minutes, preferably a period of at least 50 minutes, preferably a period of at least 60 minutes, and even more preferably a period of at least 60 minutes onger than does the drug concentration provided by a control composition that does not contain the concentration of contain the concentration of contain the concentration that does not contain the concentration provided by a control composition that does not contain the concentration of the concentration of the contain the concentration of the conce
- [0249] As used herein, the term 'concentration of drug' in solution or in a use environment refers to drug that may be dissolved in the form of solvated monomeric molecules, so called 'freedrug,' or any other drug-containing submicron structure, assembly, aggregate, colloid, or micelle. As used herein, a 'use environment' can be either the in vive riconment of the GI tract, subdermal, intransat, buccal, intrahecal, ocular, intrahural; suboutaneous spaces, vaginal stract, arterial and venous blood vessels, pulmonary tract or intramuscular tissue of an animal, such as a mammal and
- 25 vioriment or me ut rract, sucoermai, intranasai, buccai, intratinecai, ocular, intranaural, subcutaneous spaces, vaginal particularly a human, or the *in vitro* environment of a test solution, such as phosphate buffered saline (PBS) or a Model phosphate, 47 mM potassium phosphate, 87 mM NaCl and 0.2 mM KCl, adjusted to pH 6.5. An appropriate based under the solution is the same PBS solution wherein additionally is present 7.3 mM sodium taurocholic acid and 1.4 mM of
- [0250] A composition of the invention can be tested in vivo or, more conveniently, in vitro to ascertain whether it is within the scope of the invention. A composition can be dissolution-tested by adding it to a PBS or an MFD solution and agitating to promote dissolution. For example, a composition or a method for administration of drug that meets at least one or more of the concentration or criteria in either PBS or MFD or meets one or more of the concentration or bioavailability criteria when dosed orally to the GI tract of an animal, including a mammal such as a human, is a
- [0251] In one aspect, the compositions of the present invention comprising a drug in a solubility-improved form combined with a concentration-enhancing polymer provide a maximum concentration of the drug in a use environment hat is at least 125-fold the maximum concentration of drug in the use environment provided by a control composition of comprising an equivalent amount of the dip off much without concentration-enhancing polymer. The conventional or control composition is the drug form abone or combined with a weight of inert diluent equivalent to the weight of concentration-enhancing polymer in the inventive composition. Preferably, the maximum concentration of drug achieved with the composition of the present invention is at least 2-fold and more preferably at least 3-fold the maximum.
- 49 [0252] In making such comparisons using this dissolution test or any of the dissolution tests or bioavailability tests described below, it is important that the total amount of drug form dosed be sufficiently high that meaningful comparisons can be made. Specifically, both the compositions of this invention and the control compositions must be dosed at a schieved by the control composition.
- [0253] Alternatively, the compositions of the present invention provide a dissolution AUC for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction to the use environment that is at least 1.25-loft that of a dissolution AUC provided by a control composition comprising an equivalent quantity of drug form but not containing the concentration-enhancing polymer. Dissolution AUC is the integration of a pit of the drug concentration is the concentration-enhancing polymer. Dissolution AUC is the whether a composition or method is part of this invention, the dissolution AUC is calculated over a time period of at which the composition or method is part of this invention, the dissolution AUC is calculated over a time period of at environment (time=0) and about 270 minutes lollowing introduction into the use environment. Thus, among the many acceptable time periods are included, for example, (1) from the time of introduction into the use environment.

minutes following introduction into the use environment; (2) from the time of introduction into the use environment to 180 minutes following introduction into the use environment; and (3) from 90 minutes following introduction into the use environment to 180 minutes following introduction into the use environment. A composition or method is part to the invention if it meets the dissolution AUC criterion for at least one acceptable time period. In vitro determinations of AUC can be made by plotting drug concentration versus time after dissolving the drug composition in, for example, PSS of MFD solution. Measurement of the AUC In vivo, where the use environment is, for example, the GI tract, is more complicated. This requires sampling the GI fluid as a function of time and thus is less preferred than the in vitro dissolution tent or the in vivin relative bioavailability test.

dissolution test or the *in vivo* relative bioavailability test.

[0254] In a preferred embodiment, the composition comprising the mixture provides enhanced relative bioavailability (consistence) and the day of the day o

serum AUC of a control composition or method that is free of the concentration-enhancing polymer.

[0255] A composition of the present invention achieves a relative bioavailability that is at least 1.25 relative to the above-mentioned control. Preferably, the relative bioavailability provided by the composition of the present invention above-mentioned control. Preferably, the relative bioavailability provided by the composition of the present invention is at least 1.5, more preferably at least 2, and even more preferably at least 3 or more, relative to the control composition.

[0256] Compositions or methods of the invention pass either one or more in vitro dissolution tests or the in vivo.

[0257] The concentration of dissolved drug in a dissolution test is bypically measured by sampling the test medium and analyzing for the dissolved drug concentration. To avoid relatively large drug particulates which would give an erroneous determination, the test solution is either filtered or centrifuged. "Dissolved drug" is typically taken as that remoneous determination, the test solution is either filtered or centrifugation. Filtration can be conducted using a 13 mm, 0.45 µm polyinyrididine difluoride syrings filter sold by Scientifugation. Filtration can be conducted using a 13 mm, 0.45 µm polyinyrididine difluoride syrings filter sold by Scientifugation. Filtration can be conducted using a 13 mm, 0.45 µm polyinyrididine difluoride syrings filter sold by Scientifugation in Stypically carried out in a polypropylene microcentrifuge entities Personally and the state of the

[028] While not wishing to be bound by a particular theory, it is believed that while the concentration-enhancing polymer(s) of the present invention may to some extent solubilize insoluble drugs (that is, to increase the equilibrum polymer(s) of the present invention of the drug), the concentration-enhancing polymers also act to sow the rate of precipitation or crystal-concentration of the drug after the drug is initially dissolved. The presence of the concentration-enhancing polymer(s) thus literature in the presence of the drug from to be at least partially maintained allows the initially increased or enhanced concentration provided by the drug from to be at least partially maintained in some cases, for many hours, in addition, in cases where dissolution of the drug is the sow and precipitation of the drug, in the absence of the concentration-enhancing polymer may result in the maximum concentration of drug observed being substantially higher than that observed in the absence of the concentration-enhancing polymer.

45 [0259] One possible mechanism for improving the drug concentration involves the association of the concentration-enhancing polymer and dissolved drug to four "polymeridrug assemblies." Such assemblies may constitute various forms, including polymeric micelles, high-energy polymer-drug aggregates ranging in size from a few nanometers to forms, including polymeric micelles, high-energy polymer-drug aggregates ranging in size from a few nanometers to 5000 nanometers, polymer stabilized drug oblidis or polymer/drug complexes. An alternative view is that as dissolved drug begins to precipitate or drystallize from solution (e.g., as nucleation begins) the polymer adsorbs to these drug drug drug dready or the polymer adsorbs to the acceptancing, the nucleation or crystal-growth process. In any case, the presence of the polymer serves to enhance the amount of drug that is dissolved or at least available for absorption. Drug present in the various drug/polymer assemblies listed above is apparently quite labile and may contribute to the drug present in the various drug/polymer assemblies listed above is apparently quite labile and may contribute to the drug

[0260] In another aspect of the invention, the concentration-enhancing polymer is present in a sufficient amount so that the composition provides a relative bioavailability that is at least 1.25 relative to the same control composition mentioned above.

[0261] In another aspect of the invention, a method is provided for co-administering (1) a drug form and (2) a concentration-enhancing polymer is co-administered in a sufficient amount so that

there is provided in the use environment a maximum concentration of the drug that is at least 1.25-fold that of the maximum concentration provided by the drug form in the use environment of the patient without the polymer present. [0282] In another aspect of the invention, a method is provided for co-administering (1) the drug form and (2) a concentration-enhancing polymer. The concentration-enhancing polymer is co-administered in a sufficient amount so can there is provided in the use environment a dissolution area under the concentration-versus-time curve (AUC) for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes by the same control composition mentioned above.

[0263] In another aspect of the invention, a method is provided for co-administering (1) the drug form, and (2) a concentration-enhancing polymer. The concentration-enhancing polymer is co-administered in a sufficient amount so that there is provided a relative bioavailability that is at least 1.25-fold relative to the same control composition mentioned

EXCIPIENTS AND DOSAGE FORMS

18

[0264] Although the key ingredients present in the compositions of the present invention are simply the drug form and the concentration-enhancing polymer(s), the inclusion of other excipients may be useful. These excipients may be useful. These excipients may be useful, the drug form/concentration-enhancing polymer mixture in order to formulate the mixture into tablets, capsules, suspensions, powders for suspension rear, transformal patients, edpois, and the like. Drug and concentration-enhancing polymer can be added to other dosage form ingredients in essentially any manner that hancing polymer may be mixed with excipients separately to form different beads, or layers, or coatings, or cores or even separate dosage forms.

[0265] One very useful class of excipients is surfactants. Suitable surfactants include fatty acid and alkyl sulfonates; commercial surfactants such as benzeithanium choride (HYAMINE® 1622, available from Lonza, Inc., Fairiawn, N.J.); esters GODUSATE SODIUM (available from Mallinckrodt Spec. Chem., St. Louis, MO); polyoxyethylene sorbitan fatty acid enter. Parterson NJ); CAPMUL® POE-0 (available from ELPOSATE®) P>-20 (available from Lipochem sodium fauro-choic acid, 1-painioply-2-oleys-s-glycero-3-phosphocholine, lecithin, and other phospholipids and mo-wetting, thereby increasing the maximum dissolved concentration, and also to inhibit crystallization or precipitation or procipitation or proci

[0266] The addition of pH modifiers such as acids, bases, or buffers may also be beneficial, retarding the dissolution of the composition (e.g., acids such as citric acid or succinic acid when the polymer is anionic) or, alternatively, enhancing the rate of dissolution of the composition (e.g., bases such as sodium acetate or amines when the polymer is

[D267] Conventional matrix materials, complexing agents, solubilizers, fillers, disintegrating agents (disintegrants), or binders may also be added as part of the composition itself or added by granulation via wet or mechanical or other means. These materials may comprise up to 90 wt% of the composition

[0268] Examples of matrix materials, fillers, or diluents include factose, mannitol, xylitol, dextrose, sucrose, sorbitol, compressible sugar, microcrystalline cellulose, powdered cellulose, starch, pregelatinized starch, dextrates, dextrad, dextrin, matlodextrin, calcium carbonate, dibasic calcium phosphate, tribasic calcium phosphate, calcium sultate, and exist materials are calcium sultangarity of cellulose.

[0269] Examples of disintegrants include sodium starch glycolate, sodium carboxymethyl cellulose, calcium carboxymethyl cellulose, croscarmeliose sodium, crospovidone, methyl cellulose, microcrystalline cellulose, powdered cellulose, starch, pregelatinized starch, and sodium alvinate

[0270] Examples of tablet binders include acacia, alginic acid, carbomer, carboxymethyl cellulose sodium, dextrin, et phycellulose, gelatin, guar gum, hydrogenated vegetable oil, hydroxyethyl cellulose, hydroxypropyl cell

[0271] Examples of lubricants include calcium stearate, glyceryl monostearate, glyceryl palmitostearate, hydrogenated vegetable oil, light minerat oil, magnesium stearate, mineral oil, polyethylene glycol, sodium benzoate, sodium lauryl sulfate, sodium stearyl fumarate, stearic ecd, tak, and zinc stearate.

[0272] Examples of glidants include silkon diskids, tak: and comstants.

[0273] Other conventional form excipients may be employed in the compositions of this invention, including those excipients well-known in the art. Generally, excipients such as pigments, lubricants, flavorants, and so forth may be

used for customary purposes and in typical amounts without adversely affecting the properties of the compositions. These excipients may be utilized in order to formulate the composition into tablets, capsules, suspensions, powders

[0274] Compositions of this invention may be used in a wide variety of dosage forms for administration of drugs. Exemplary dosage forms are powders or granules that may be taken orally either dry or reconstituted by addition of water to form a paste, slurry, suspension or solution; tablets; capsules; multiparticulates; and pills. Various additives may be mixed, ground, or granulated with the compositions of this invention to form a material suitable for the above

[0275] In some cases, the overall dosage form or particles, granules or beads that make up the dosage form may have superior performance if coated with a polymer, particularly an enteric polymer, to prevent or retard dissolution until the dosage form leaves the stomach. Exemplary enteric coating materials include HPMCAS, CAP, HPMCP, CAT, carboxylic acid-functionalized polymethacrylates, and carboxylic acid-functionalized polyacrylate.

[0278] Compositions of this invention may be administered in a controlled release dosage form. In one such dosage form, the composition of the drug form and concentration-enhancing polymer is incorporated into an erodible polymeric matrix device. By an erodible matrix is meant aqueous-erodible or water-swellable or aqueous-soluble in the sense of being either erodible or swellable or dissolvable in pure water or requiring the presence of an acid or base to ionize the polymeric matrix sufficiently to cause erosion or dissolution. When contacted with the aqueous environment of use, the erosible polymeric matrix imbibes water and forms an aqueous-swollen gel or "matrix" that entraps the mixture of drug form and concentration-enhancing polymer. The aqueous-swollen matrix gradually erodes, swells, disintegrates or dissolves in the environment of use, thereby controlling the release of the drug mixture to the environment of use. [0277] Alternatively, the compositions of the present invention may be administered by or incorporated into a non-20

[0278] Alternatively, the invention may be delivered using a coated osmolic controlled release dosage form. This dosage form has two components: (a) the core which contains an osmotic agent and the drug form and the concentration-enhancing polymer either mixed or in separate regions of the core; and (b) a non-dissolving and non-eroding coating surrounding the core, the coating controlling the influx of water to the core from an aqueous environment of use so as to cause drug release by extrusion of some or all of the core to the environment of use. The osmotic agent contained in the core of this device may be an aqueous-swellable hydrophilic polymer, osmogen, or osmagent. The coating is preferably polymeric, aqueous-permeable, and has at least one delivery port.

[0279] Alternatively, the invention may be delivered via a coated hydrogel controlled release dosage form having three components: (a) a composition containing the drug form, (b) a water-swellable composition wherein the waterswellable composition is in a separate region within a core formed by the drug-containing composition and the waterswellable composition, and (c) a coating around the core that is water-permeable, water-insoluble, and has a least one delivery port therethrough. In use, the core imbibes water through the coating, swelling the water-swellable composition and increasing the pressure within the core, and fluidizing the drug-containing composition. Because the coating remains intact, the drug-containing composition is extruded out of the delivery port into an environment of use. The concentration-enhancing polymer may be delivered in a separate dosage form, may be included in the drug-containing composition or may constitute all or part of a coating applied to the dosage form.

[0280] Alternatively, the compositions of the present invention may be co-administered, meaning that the drug form can be administered separately from, but within the same general time frame as, the concentration-enhancing polymer. Thus, a drug form can, for example, be administered in its own dosage form which is taken at approximately the same time as the concentration-enhancing polymer which is in a separate dosage form. If administered separately, it is generally preferred to administer both the drug form and the concentration-enhancing polymer within 60 minutes of each other, so that the two are present together in the environment of use. When not administered simultaneously, the concentration-enhancing polymer is preferably administered prior to the drug form.

[0281] In addition to the above additives or excipients, use of any conventional materials and procedures for preparation of suitable dosage forms using the compositions of this invention known by those skilled in the art are potentially

(0282) Other features and embodiments of the invention will become apparent from the following examples which are given for illustration of the invention rather than for limiting its intended scope.

EXAMPLE 1

[0283] A pharmaceutical composition comprising Danazol, a surface modifier (polyvinylpyrrolidone (PVP)), and a concentration-enhancing polymer is manufactured by the following steps.

[0284] Danazol (which can be purchased in a micronized form from Sterling Drug Inc.) is added to a solution of PVP (which can be purchased from GAF) and water. The solution is rolled for about a week to create a homogeneous mixture. This mixture is then milled in a mill-grinding chamber (such as a DYNO-MILL, Model KDL, manufactured by

Willy A. Bachoffen AG Maschinenfabrik) with silica glass spheres. Milling will continue until the average particle size is less than about 400 nm. Particle size can be measured by using a DuPont sedimentation field flow factionator. A concentration-enhancing polymer is added to the milled mixture in an amount effective to achieve concentration enhancement. A suitable concentration-enhancing polymer is the MF grade of hydroxypropyl methyl cellulose acetate succinate (HPMCAS-MF, available from Shin Etsu). The concentration of drug in solution of the milled pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured iden-

EXAMPLE 2

10

[0285] A 600 ml cylindrical glass vessel is filled approximately halfway with zirconium oxide grinding spheres with diameters in the range of about 0.85-1.18 mm (Zircoa, Inc.). Then, about 10.8 g of micronized Danazol, about 3.24 g of PVP and about 201.96 g water are added to the glass vessel. The glass vessel is rotated horizontally about its axis at 57% of the "critical speed." The critical speed is defined as the rotational speed of the grinding vessel when centriruging of the grinding media occurs. At this speed the centrifugal force acting on the grinding spheres presses and holds them firmly against the inner wall of the vessel. Conditions that lead to unwanted centrifuging can be computed

(D286) After about 5 days of ball milling, the sturry is separated from the grinding media through a screen and evaluated for particle size with the sedimentation field flow fractionator. The number average particle diameter should be less than about 400 nm, preferably less than about 100 nm. A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPM-CAS, CAT, CAP, HPMCP and HPMC. Testing is then conducted as in Example 1 using a control that does not have

EXAMPLE 3

[0287] A cylindrical glass vessel having a diameter of 2.75 inches (7.0 cm) with a volume of 400 ml is charged with 212 mi of unleaded glass grinding media. Then, about 30.4 g of micronized Danazol, about 9.12 g of PVP, and about 112.48 g of high purity water is added to the vessel. The vessel is rotated horizontally on its axis at a controlled rotational speed of about 80.4 revolutions per minute (50% of critical speed) for about 5 days. The slurry is immediately separated from the grinding media and evaluated for particle size and grinding media attrition using inductively coupled plasma emissions (ICP). The particle size measured with a sedimentation field flow fractionator should yield a number average diameter of less than 400 nm, but preferably between about 110 nm and 180 nm. A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. Testing is then conducted as in Example 1 using a control that

EXAMPLE 4

[0288] To a 3 gallon porcelain jar, about 6100 ml of unleaded glass spheres with diameter of between 0.85-1.18 mm are added. Then, about 1000 g of micronized Danazol, about 300 g of PVP, and about 3700 g high purity water are added. The vessel is rolled about 5 days at a rotational speed of 39.5 revolutions per minute (50% critical speed). The liquid sturry is separated from the grinding media with a screen and used to prepare solid oral doses. Average particle size should be less than 400 nm, but more preferably, it should be between 135-225 nm. A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. Testing is then conducted as in Example 1 using a control

EXAMPLE 5

50

[0289] A media mill equipped with a 50 ml grinding chamber ("Mini" Motormill manufactured by Eiger Machinery Inc.) can be used to manufacture nanoparticulate form of a drug. About 27 g of PVP can be dissolved in about 183 g of water and agitated in a steel vessel with a 50 mm 'Cowles' type blade until the solution is clear and free of undissolved PVP polymer. The rotational speed of the mixer should be maintained at 5000 RPM. About 90 g of micronized Danazol is slowly added to this blend with the same mixing for 30 min. Then, about 200 cc of this mix is added to a holding tank of a media mill and recirculated. The mill should contain about 42.5 ml of unleaded glass beads (Glens Mills) having diameters ranging between 0.75 mm and 1.0 mm. The final average particle size should be less than about 400 nm. preferably between about 80 nm and 165 nm. A concentration-enhancing polymer is then added in an amount effective

to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HP-MCP and HPMC. Testing is then conducted as in Example 1 using a control that does not have the concentrationenhancing polymer.

EXAMPLE 6

[0290] A nanoparticulate form of a steroid, 5α,17α,-1'-(methylsulfonyl)-1'H-pregn-20-yno-{3,2-c}-pyrazol-17-ol, can be prepared by ball milling with zirconium oxide grinding beads. The steroid can be prepared in the absence of a surface modifier and a post addition of Lecithin and a sonication step if required to stabilize and prevent aggiomeration and rapid sedimentation. A slurry of about 5 g of unmilled coarse grains of a steroid is mixed with about 95 g high purity water with about 135 ml of Zirbeads (manufactured by Zircoa Inc.) having diameters ranging from about 0.85 mm and 1.18 mm. The slurry is then ball milled at a speed of about 86 mp. After milling, the slurry is separated from the grinding media through a screen. About one gram of this unstabilized sturry is added to 10 g of an aqueous solution of Lecithin (1% Centrolex "P" by weight in high purity water, Lecithin manufactured by Central Soya Company, Inc.) and mixed by vigorous shaking, followed by a sonication step for 20 seconds using an ultrasonic horn (Model 350 Branson Ultrasonic Power Supply. Horn Diameter=0.5 inch (1.27 cm), Power setting=2). Milling should continue until particle size should be less than about 400 nm. A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. Testing is then conducted as in Example 1 using a control that does not have the concentration-enhancing polymer.

EXAMPLE 7

[0291] Example 6 can be repeated except that the Lecithin is replaced with the non-ionic surfactant Triton X-200 (manufactured by Rohm and Haas).

[0292] Example 6 can be repeated except that the Lecithin is replaced with gurn acacla (available from Eastman Kodak Co.) 30

FXAMPLE 9

[0293] Example 6 can be repeated except that the Lecithin is replaced with sodium lauryl sulfate (available as Duponol ME from DuPont, Inc.).

EXAMPLE 10

[0294] Example 6 can be repeated except that the Lecithin is replaced with sodium bis(1-ethylinexyl)sulfosuccinate.

EXAMPLE 11

40

45

[0295] Example 6 can be repeated except that the Lecithin is replaced with Pluronic F68, a block copolymer of polyethylene oxide and polypropyleneoxide (available from BASF Corp.).

FXAMPLE 12

[0296] A nanoparticulate form of the steroid, 5α , 17α , -1^4 -(methylsulfonyl)-1*H-pregn-20-yrio-{3,2-c}-pyriazol-17-ol, can be prepared by ball milling with zirconium oxide grinding media. About 70 cc of Zircoa is added to a 115 cc vessel followed by about 2.5 g of a unmilled tabular crystal steroid purchased from Sterling Drug Inc. along with about 0.75 g of Pluronic F88 (BASF) and about 48.75 g high purity water. The resulting mixture is ball milled at 50% of the critical rotational speed. The mixture is then separated from the grinding media. Particle size is then measured to ensure an average particle size of less than about 400 nm. A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include hydroxypropyl methyl cellulose acetate succinate (HPMCAS), cellulose acetate trimellitate (CAT), cellulose acetate phthalate (CAP), hydroxypropyl methyl cellulose phthalate (HPMCP), and hydroxypropyl methyl cellulose (HPMC). Testing is then conducted as in Example 1 using a control that does not have the concentration-enhancing polymer.

EXAMPLE 13

[0297] Example 12 can be repeated except that Pluronic F68 is replaced with Centrolex® P (a lecithin derivative).

5 EXAMPLE 14

[0288] Ist stage: 10 g of crospovidone (Kollidon C1, BASF) is swollen by slow addition of 20 ml of a 100 mg/ml solution of grisedulvin in idmethylformamide, mixing the powder continuously in a mortar. The powder swollen in this manner is then placed in an oven under vacuum at emperature of 100°C for about 12 hours or until Completely dried (10299). 2nd stage: 2 g of the product obtained in the first stage is disintegrated through a sieve (14 mesh) and then placed in a hermicially seaded container at ambient temperature, saturated with methylenechloride vapor from a receptacle filled with this solvent and placed in the container. After about 24 hours the powder treated in this manner is directed for about 11 hour at 30°C in an oven under vacuum, sieved through a 14 mesh sieve and mixed for 10 minutes. [0300] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhanced (HPMCAS-MF, available from Shin Etsu). The concentration of up in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentrationed of up.

20 EXAMPLE 15

[3031] 1st stage: 10 g of crospovidone (Knollidon C1, BASF) is swollen by slow addition of 2 ml of a 100 mg/ml solution of grisectulvin in dimethylformamide, mixing the powder continuously in a mortar. The powder swollen in this manner is then placed in an over under vacuum at a temperature of 100°C for about 12 hours or until completely dried. [30302] 2nd stage: 2 g of the powder obtained in the first stage is placed in a drief at amblent temperature and under an internal humidity of 90-92% obtained by an aqueous solution of suitable salts placed at the base of the same drier below the perforated floor on which the powder to be treated is placed. After about 24 hours the powder treated in this manner is dried for about 1 hour at 80°C in an oven under vacuum, sleved through a 14 mesh sieve and mixed for 10 minutes.

30 [0303] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include hydroxypropyl methyl celludose acetate succinate (HPM-CAS), celludose acetate firmlitate (CAT), celludose acetate firmlitate (CAT), celludose acetate firmlitate (CAT) celludose acetate firmlitate fir

EXAMPLE 16

[0304] 1st stage: 10 g of crospovidone (Kollidon C1, BASF) is swollen by slow addition of 20 ml of a 100 mg/ml solution of griseofushi in dimethylformamide, mixing the powder continuously in a mortar. The powder swollen in this manner is then placed in an oven under vacuum at a temperature of 100°C for about 12 hours or until completely dried. [0305] 2nd stage: 1 g of the powder obtained in the first stage is wetted with 1 ml of demineratized water in a mortar, mixing the powder slowly for about 1.5 hours. The swollen powder is dried for about 1 hour at 80°C in an oven under vacuum. It is then disintegrated through a 14 mesh sleve and mixed for 10 minutes.

49 [3036] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HBMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing polymer.

EXAMPLE 17

[0307] 1st stage: 500 g of crospovidone is swollen with 1000 ml of a 100 mg/ml solution of griseofulvin in dimethylformamide, this solution being added to the crospovidone kept mixing in a high-speed granulator. The swollen powder is then dried in an oven under vacuum at 100°C for about 12 hours and then disintegrated through a 14 mesh sieve and mixed for 10 minutes.

[0308] 2nd stage: 100 g of the powder obtained in the first stage is suspended in a air-operated fluidized bed (GLATT) provided with a spraying apparatus (WURSTER) and sprayed with 200 ml of demineralized water in one hour. They

are then dried while remaining suspended in the fluidized bed by the flow of hot air. The powder is then recovered in the collection sleeve, disintegrated through a 14 mesh sieve and mixed for 10 minutes.

[0309] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Sultable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing polymer.

EXAMPLE 18

[0310] Ist stage: 3 g of griseofulvin is mixed with 9 g of crospovidone. One g of this mixture is placed in a rotary flask under vacuum (ROTOVAPOR) in an N₂ armosphere (after evacuating the residual air) for 20 minutes under rotation while keeping the flask immersed in a stictone oil bath at 235°C. The flask is then collect to ambient temperature, the powder extracted and sleved through a 14 mesh sleve and then mixed for 10 minutes.

[0311] 2nd stage: 0.250 g of the powder obtained in the first stage were wetted in a mortar with 0.5 ml of demineralized water, mixing the system forcibly for 1.5 hours to homogeneously wet the powder. The wetted powder obtained is dried in an oven under vacuum at 80°C for 1 hour, then disintegrated through a 14 mesh sieve and mixed for 10 minutes. [0312] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing

polymer.

25

[0313] 3.0 g ubidecarenone is melted in a thermostatized vessel at 70°C. 1.8 g lecithin (Phospholipon 100. Nattermann) is added in the melt by sonication (Soniprep, MSE). 95.2 g bidistilled water heated to 70°C is added to the dispersion of lecithin in molten ubidecarenone. The warm mixture is then subjected to high speed vortexing (Ultra Turrax) for 120 sec. The mixture is homogenized at 900 bar for 10m in a high pressure homogenizer type Microfludicist (Microfludicist Corp.) which is immersed in a water bath heated to 70°C then allowed to stand at room temperature dispersions.

[0314] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Sultable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing polymer.

EXAMPLE 20

40 [0315] 3.0 g ubidecarenone is melted in a thermostalized vessel at 70°C. 1.5 g lecithin (Phospholipon 100, Nattermann) is added to the melt by sonication (Soniprep, MSE), 300 mg sodium glycocholate is dissolved in 95.2 g bidistilled water, and the solution is heated to 70°C. The heated aqueous phase is added to the mix of lecithin in molten ubidecarenone. The warm mixture is subjected to high speed vortexing (Ultra Turrax) for 120 sec. The mix is homogenized at 900 bar for 10 min in a high pressure homogenizer type Microfluidizer (Originalized Corp.) which is immersed in a at water bath heated to 70°C then allowed to stand at morn temperature for cooling.

[0316] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing polymer.

EXAMPLE 21

50

[0317] 3.0 g ubidecarenone is melted in a thermostatized vessel at 70°C. 1.8 g lecithin (Phospholipon 100, Nattermann) is added to the melt by sonication (Soniprep, MSE). 380 mg sodium glyocoholate is dissolved in 94.8 g bidistilled water, and the solution is heated to 70°C. The heated aqueous phase is added to the mix of lecithin in motten ubidecarenone. The warm mixture is then subjected to high speed vortexing (Ultra Turrax) for 120 sec. The mixture is homogenized at 900 bar for 10 min in a high pressure homogenizer type Microfluidicar (Microfluidics Corp.) which is

immersed in a water bath heated to 70°C then allowed to stand at room temperature for cooling.

[318] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing notymer.

EXAMPLE 22

- 10 (319) 2.5 g ubidecarenone is melted in a thermostatized vessel at 70°C. 450 mg lecithin (Phospholipon 100, Nattermann) is added to the melt by sonication (Soniprep, MSE), 210 mg sodium glycocholate is dissolved in 48.8 g ubidecarenone. Probe sonication (Soniprep, MSE) to 120 min at 70°C yields a fine mixture of buddecarenone nanoparticles. After cooling to room temperature evaporated water is substituted. The mixture is centrifuged at 4000 rpm in a laboratory centrifuge for 20 min to remove metal shed of the sonication most.
 - [0320] A concentration-enhancing polymer is then added in an amount effective to achieve concentration enhancement. Suitable concentration-enhancing polymers include HPMCAS, CAT, CAP, HPMCP and HPMC. The concentration of drug in a use environment from the resultant pharmaceutical composition can be measured as outlined supra. This can be compared to a control composition manufactured identically as above without the concentration-enhancing

Examples 23-29

20

- [0321] For Examples 23-29, a complex of ziprasidone mesylate and sulfobutyl ether cyclodextrin (SBECD) was formed, and the complex was mixed with various concentration-enhancing polymers. The dissolution performance of each complex/polymer mixture was evaluated in *In vitro* tests.
 - [0322] The ziprasidone complex was formed using the following procedure. First, 1.1374 g SBECD was dissolved in 3.16 g water, by stirring in a 37°C temperature-controlled chamber for about 5 minutes. Next, 0.2169 g of ziprasidone mesylate was added, and the solution was removed from the warm chamber and stirred at ambient temperature for about 1 minute. The clear solution was frozen, and the water was removed by loophilization to obtain a dry powder. The complex contained 16.02 wt% ziprasidone mesylate. or 11.74 wt% active with
- [0323] The dissolution of ziprasidone from the complex mixed with various concentration-enhancing polymers was evaluated in an *in vitro* dissolution test using a microcentrifuge method. A 6.13 mg sample of the ziprasidone complex was placed into a microcentrifuge tube with 0.061 mg (1 wt%), 0.307 mg (5 wt%), or 0.613 mg (10 wt%) of polymer.
- and 1.8 mL of 50 mM 4-morpholinepropanesulfonic acid (MOPS) buffer with 150 mM NaCl (pH 7.4) was added. The samples were quickly mixed using a vortex mixer for about 60 seconds. The samples were centrifuged at 13,000 G at 37°C for 1 minute. The resulting supernatant solution was then sampled and diluted 1.4 (by volume) with method and then analyzed by high-performance liquid rhomatography (HPLC). A Phenomenex Ultracarb 5 ODS HPLC column was used with a mobile phase of 60 vol.% of 0.02 M KH₂PO₄(pH 3.0), and 40 vol.% acctoritrile. UV detection was measured at 254 nm. The contents of the tubes were mixed on the vortex mixer and allowed to stand undisturbed at
- 37°C until the next sample was taken. Samples were collected at 4, 10, 30, 60, and 90 minutes. For Control 1 (C1), 9 (C3) onesisted of 0.982 mg ziprasidone mesylate alone. The concentration-enhancing polymer in the test solution. *Control 2 shown below.

Table 1

		Table 1	AUC (min*µg/mL)
Example	Time (min)	Ziprasidone Concentration (µg/mL)	
23 0		0	0
SBECD complex + 1 wt% HPMCAS-MF	4	204	400
	10	88	1300
	30	64	2800
	60	70	4800
	90	62	6800
24	0	0	0
SBECD complex + 5 wt%	4	227	500
HPMCAS-MF	10	172	1700
	30	53	3900
	60	29	5100
	90	50	6300
	0	0	0
25 SBECD complex + 10 wt%	1	254	500
HPMCAS-MF	10	202	1900
	30	48	4400
	60	39	5700
	90	33	6800
	0	0	0
26 SBECD complex + 1 wt%		194	400
HPMCAS-HF	10	78	1200
	30	26	2200
	60	24	3000
	90	18	3600
	0	0	0
27 SBECD complex + 1 wt		196	400
CAP CAP	10	132	1400
	30	82	3500
	60	44	5400
	90		6900
	90		0
28 SBECD complex + 1 w		200	500
SBECD complex + 1 v		03	1500
	10	43	2800
	30	40	4200
	9	47	5600

Table 1 (continued)

Example	Time (min)	Ziprasidone Concentration (μg/mL)	AUC (min*μg/mL)
29 SBECD complex + 5 wt% CMEC	0	0	0
	4	276	600
	10	174	1900
	30	46	4100
	60	41	5400
	90	46	6700
C1 SBECD complex	0	0	0
	4	12	0
	10	10	100
	30	7	300
	60	6	500
	90	8	700
C2 Ziprasidone Mesylate	0	0	0
	4	3	0
	10	1	0
	30	1	0
	60	1	0
	90	1	100

10

15

25

Results from dissolution tests of Examples 23-29, and Controls C1 and C2, are summarized in Table 2.

Table 2

			lable 2		
15	Example	Concentration Enhancing Polymer*	Amount of Polymer (wt% of complex)	C _{max,90} (µg/mL)	AUC ₉₀ (min*μg/mL)
	23	HPMCAS-MF	1	204	6800
	24	HPMCAS-MF	5	227	6300
40	25	HPMCAS-MF	10	254	6800
40	26	HPMCAS-HF	1	194	3600
ı	27	CAP	1	196	6900
	28	CMEC	1	236	5600
45	29	CMEC	5	276	6700
	C1 SBECD complex	none		12	700
50	C2 ziprasidone mesylate	none		3	100

*Polymer designations: HPMCAS = hydroxypropylmethyl cellulose acetate succinate, CAP = cellulose acetate phthalate, CMEC = carboxymethyl-ethyl cellulose.

[0324] As can be seen from the data in Table 2, the zignasidone complex mixed with concentration-enhancing polymers provides C_{maxO} values 16- to 23-fold that of the complex alone, and AUC_{go} values 5- to 10-fold that of the complex alone. The dissolution performance of the complex (C1) compared to drug alone (C2) shows that the complex is a

solubility-improved form.

Examples 30-33

20

25

30

35

45

50

5 (0325) For Examples 30-33, complexes of ziprasidone mesylate were formed with various cyclodextrins, and the complexes were each mixed with 1 wt% HPMCAS-MF as the concentration-enhancing polymer. The dissolution performance of each complex/polymer mixture was evaluated in in vitro tests.

[0326] The ziprasidone complexes were formed by mixing drug, cyclodextin, and polymer together in a microcentrifuge tube. The amounts of drug and cyclodextin were chosen to yield a molar ratio of 11.25 drug/cyclodextin, HPMCAS was added in an amount to equal 1 wt% of the total weight of the complex. Example 30 comprised a mixture of 0.982 mg ziprasidone mesylate, 2.853 mg hydroxypropy lb-cyclodextrin, HPMCAS-MF. Example 31 comprised a mixture of 0.982 mg ziprasidone mesylate, 2.853 mg hydroxypropy lb-cyclodextrin, and 0.035 mg HPMCAS-MF. Example 32 comprised a mixture of 0.982 mg ziprasidone mesylate, 2.87 mg ly-cyclodextrin, and 0.035 mg HPMCAS-MF. Example 33 comprised a mixture of 0.982 mg ziprasidone mesylate, 2.87 mg /-cyclodextrin, and 0.035 mg HPMCAS-MF. Control 3 (C3) comprised a mixture of ziprasidone mesylate and SBECD without concentration-enhancing polymer. Control 4 (C4) comprised a mixture of ziprasidone mesylate and PDCD without concentration-enhancing polymer. (β-cyclodextrin and 'p-cyclodextrin complexes were not tested without concentration-enhancing polymer.) (3271) The dissolution of ziprasidone manylate and HPDCD without concentration-enhancing polymer (β-cyclodextrin and 'p-cyclodextrin complexes were not tested without concentration-enhancing polymer.)

Table 3

uated using the in vitro dissolution test described in the Examples above. The results are shown in Table 3,

Table 3			
Example	Time (mins)	Ziprasidone Concentration (µg/mL)	AUC (min*μg/mL)
30	0	0	0
SBECD complex + 1 wt% HPMCAS-MF	4	167	300
711 1110/10 1111	10	82	1100
	30	31	2200
	60	26	3100
	90	18	3700
31	0	0	0
HPCD complex + 1 wt% HPMCAS-MF	4	52	100
TH MICACIMI	10	20	300
	30	35	900
	60	30	1800
	90	17	2600
32	0	0	0
β-CD complex + 1 wt% HPMCAS-MF	4	26	100
	10	34	200
	30	29	900
	60	36	1800
	90	17	2600
33	0	0	0
γ-CD complex + 1 wt% HPMCAS-MF	4	14	0
	10	4	100
	30	18	300
	60	10	700
	90	10	1000

Toble 3 (continued)

Example	Time (mins)	Ziprasidone Concentration (µg/mL)	AUC (min*μg/mL)
C3	0	0	0
SBECD complex	4	9	0
	10	11	100
	30	5	200
	60	10	500
	90	6	700
C4	0	0	0
HPCD complex	4	10	0
	10	6	100
	30	6	100
	60	16	300
	90	15	1100

Results from dissolution tests of Examples 30-33, and Controls C3 and C4, are summarized in Table 4.

Table 4

	ido	• •	
Example	Cyclodextrin	C _{max,90} (μg/mL)	AUC ₉₀ (min*µg/mL)
30	SBECD	167	3700
31	HPCD	52	2600
32	β-CD	36	2600
33	γ-CD	18	1000
C3 no polymer	SBECD	11	700
C4 no polymer	HPCD	16	1100

[0328] As can be seen from the data in Table 4, the zignasidone SBECD complex mixed with concentration-enhancing polymer provides a C_{max90} 15.2-fold that of Control C3, and an AUC₉₀ 5.3-fold that of Control C3. The zignasidone HPCD complex mixed with concentration-enhancing polymer provides a C_{max90} 3.3-fold that of Control C4, and an AUC₉₀ 2.4-fold that of Control C4. Examples 32 and 33 provided C_{max90} values 12- and 6-fold that of the drug alone (C2, Table 2), and AUC₉₀ values 26- and 10-fold that of the drug alone.

[0329] The invention has been described in detail with particular reference to particular embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims

55

15

20

25

35

1. A composition comprising

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction into said use environment, a maximum concen-

tration of said drug in said use environment that is at least 1.25-fold a maximum concentration of said drug provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone:

wherein said solubility-improved drug form is selected from the group consisting of drug in nanoparticulate form, absorbed drug, drug in a nanosuspension, a supercooled melt of drug, cyclodextrin/drug form, gelatin form, softgel form, self-emutistying form, and three-phase drug form.

2. A composition comprising

(a) a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction into said use environment, a dissolution area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction into the use environment that is at least 1.25-fold the corresponding rate under the curve provided by a control composition.

wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone; wherein said solubility-improved drug form is selected from the group consisting of drug in nanoparticulate form, absorbed drug, drug in a nanosuspension, a supercooled melt of drug, cyclodextrin/drug form, gelatin form, softgel form, self-emulsifying form, and three-phase drug form.

3. A composition comprising

20

25

30

35

40

50

(a) a drug in a solubility-improved form which provides, when administered into a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment; and

(b) a concentration-enhancing polymer wherein said concentration-enhancing polymer is present in a sufficient amount so that said composition provides, after introduction into said use environment, a relative bioavailability that is at least 1.25-fold that of a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone;

wherein said solubility-improved drug form is selected from the group consisting of drug in microparticulate form, drug in nanoparticulate form, absorbed drug, drug in a nanosuspension, a supercooled melt of drug, cyclodextrin/drug form, softgel form, gelain form, self-emulsifying form, and three-phase drug form.

- A composition according to any of Claims 1 to 3 wherein said solubility-improved drug form is the cyclodextrin/ drug form.
- A composition according to any of Claims 1 to 3 wherein said drug is

[Ri-(R'S')]-5-chloro-N+[2-hydroxy-3-(methoxymethylamino]-3-oxo-1-(phenylmethyl)propyl-1H-indole-2-carbomide: 5-chloro-1H-indole-2-carboxylic acid [(1S)-benzyl-(2R)-hydroxy-3-((3R,4S)-dihydroxy-pyrrolidin-1-yl-)-3-oxypropyl)-amide;

[2R,4S]-4-f(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino}-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid ethyl ester;

[2R,4S]-4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-d ihydro-2H-quino-line-1-carboxylic acid, isopropyl ester;

[2R,4S]-4-[(3,5-bis-trifluoromethyl-benzyl)-methoxycarbonyl-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid, isopropyl ester; or ziprasidone.

5 6. A composition according to any of Claims 1 to 3 wherein said polymer is hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose succinate, hydroxypropyl cellulose acetate succinate, hydroxypropyl methyl cellulose

lubse, ethyl carboxymethyl cellulose acetate phthalate, ethyl cellulose acetate phthalate, methyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl methyl cellulose acetate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose proponate phthalate, hydroxypropyl methyl cellulose succinate phthalate, cellulose acetate trimellitate, hydroxypropyl cellulose acetate trimellitate, cellulose propionate trimellitate, cellulose butyrate trimellitate, cellulose acetate, hydroxypropyl cellulose acetate trimellitate, cellulose acetate, hydroxypropyl cellulose acetate, ethyl phthalate, cellulose acetate

- A composition according to any of Claims 1 to 3 wherein said polymer is hydroxypropyl methyl cellulose acetate, hydroxypropyl methyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, hydroxvethyl cellulose acetate, or hydroxyethyl ethyl cellulose.
 - A composition according to any of Claims 1 to 3 wherein said polymer is a carboxylic acid-functionalised polymethacrylate, a carboxylic acid-functionalised polyacrylate, an amine-functionalised polyacrylate, an amine-functionalised polyacrylate or polymethacrylate, a protein, or a carboxylic acid-functionalised starch.
 - 9. A composition according to any of Claims 1 to 3 wherein said polymer is a vinyl polymer or copolymer having at least one substituent selected from the group comprising hydroxyl, alkylacyloxy, and cyclicamida, a vinyl copolymer having at least one hydrophotic, hydroxyl-containing repeat unit and at least one hydrophotic, alky- or aryl-containing repeat unit, a polyvinyl alcohol having at least a portion of its repeat units in the unhydrolysed (vinyl acetate) form, a polyvinyl alcohol-polyvinyl alcohol co-polymer, or a polyvoxyltylene-polyvinyl alcohol co-polymer, or a polyvoxyltylene-polyvoxyprophene block copolymer.
 - 10. A composition according to any of Claims 1 to 3 wherein said polymer is hydroxypropyl methyl cellulose acetate succinate, hydroxypropyl methyl cellulose phthalate, cellulose acetate phthalate, cellulose acetate phthalate, cellulose acetate phthalate, cellulose, droxypropyl methyl cellulose, hydroxypropyl methyl cellulose, hydroxypropylene block copolymers, or a blend of any thereof.
- 11. A composition according to any of Claims 1 to 3 wherein said solubility-improved drug form is the cyclodextrin/ drug form, said drug is ziprasidione, and said polymer is hydroxypropyl methyl cellulose acetate succinate, cellulose acetate phthalate, or carboxymethyl ethyl cellulose.
 - 12. A composition according to any of Claims 1 to 3 wherein the solubility-improved drug form comprises a CETP inhibitor or a CCR1 inhibitor.
 - 13. A composition according to any of Claims 1 to 12 for use as a medicament.

10

25

4n

45

50

55

- 14. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment, for the manufacture of a medicament combined with a concentration-enhancing polymer for the treatment of a condition for which is required a maximum concentration of said drug in said use environment that is at least 1.25-fold a maximum concentration of said drug in said use environment that is at least 1.25-fold a maximum concentration of said drug provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone.
- 15. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment, for the manufacture of a medicament combined with a concentration-enhancing polymer for the treatment of a condition for which is required a dissolution area under the concentration-enhancing polymer for the treatment of a condition for which is required a dissolution area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction into the use environment and that is at least 9.

1.25-fold the corresponding area under the curve provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone.

- 16. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment, for the manufacture of a medicament combined with a concentration-enhancing polymer for the treatment of a condition for which is required a relative bloavailability that is at least 1.25-fold that of a control composition, wherein said control composition is an equivalent or usuality of said drug in said solubility-morrowed form along.
 - 17. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate at dissolution rate of said lowest solubility form of said drug in said use environment, for the manufacture of a medicament for the treatment of a condition for which is required a maximum concentration of said drug in said use environment that is at least 1.25-fold a maximum concentration of said drug provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone, for administration to patients concomitantly receiving a concentration-enhancing onlymer.

15

20

25

20

35

45

sο

55

- 18. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in said use environment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment, in the manufacture of a medicament for the treatment of a condition for which is required a dissolution area under the concentration versus time curve for any period of at least 90 minutes between the time of introduction into the use environment and about 270 minutes following introduction into the use environment that is at least 1.25-fold the corresponding area under the curve provided by a control composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone, for administration to patients concomitantly receiving a concentration-enhancing polymen.
- 19. The use of a drug in a solubility-improved form which provides, when administered to a use environment, at least one of a dissolved drug concentration in as due servironment that exceeds an equilibrium concentration of a lowest solubility form of said drug in said use environment and a dissolution rate that exceeds a dissolution rate of said lowest solubility form of said drug in said use environment, in the manufacture of a medicament for the treatment of a condition for which is required a relative bloavailability that is at least 12-5fold that of a condition for which is required a relative bloavailability that is at least 12-5fold that of a condition for which is required a relative bloavailability that is at least 12-5fold that of a condition of composition, wherein said control composition is an equivalent quantity of said drug in said solubility-improved form alone, for administration to patients concomitantly receiving a concentration-enhancing polymer.