

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки
КАФЕДРА	Прикладная математика
Лабора	торная работа №1 по дисциплине
" D	· ·

Лабораторная работа №1 по дисциплине "Разработка программных комплексов" на тему "Методы конечных элементов"

Студент	ФН2-72Б		Токарев А.И.	
	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Принял			Азметов Х. Х.	
1		(Подпись, дата)	(И.О. Фамилия)	

Содержание

1.	Задача	3
2.	Метод коллокации в точке	4
3.	Метод коллокаций в подобластях	5
4.	Метод Бубнова-Галеркина	6
5.	Метод Галеркина	7
6.	Метод наименьших квадратов	8
7	Метол Ритпа	Q

1. Задача 3

1. Задача

Создать программу решения дифференциального уравнения проекционными методами. Задано урванение на области [0,1]:

$$\frac{d^2u}{dx^2} + u + x = 0, \quad u(0) = u(1) = 0.$$

Необходимо реализовать методы решения:

- 1. Метод коллокаций в точках
- 2. Метод коллокаций в подобластях
- 3. Метод Бубнова-Галеркина
- 4. Метод Галеркина
- 5. Метод наименьших квадратов
- 6. Метод Ритца

Для каждого из методов нужно получить решение с порядком аппроксимации от 1 до 3.

2. Метод коллокации в точке

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.12	$a_1 = 0.286$
2	0.0117	$a_1 = 0.195, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.19, a_2 = 0.196, a_3 = -0.02$
4	$5 \cdot 10^{-5}$	$a_1 = 0.1883, a_2 = 0.1887, a_3 = -0.105, a_4 = -0.008$
5	$3 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

3. Метод коллокаций в подобластях

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.27$
2	0.02	$a_1 = 0.1876, a_2 = 0.17$
3	$8 \cdot 10^{-4}$	$a_1 = 0.1882, a_2 = 0.193, a_3 = -0.023$
4	$4 \cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01, a_4 = -0.0086$
5	$1.5 \cdot 10^{-6}$	$a_1 = 0.1883, a_2 = 0.1883, a_3 = -0.0094, a_4 = -0.0102, a_5 = 0.0008$

4. Метод Бубнова-Галеркина

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1\cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

5. Метод Галеркина

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.0037	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1\cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

6. Метод наименьших квадратов

$N_{\overline{0}}$	Норма ошибки	Коэффициенты
1	0.117	$a_1 = 0.2723$
2	0.021	$a_1 = 0.1875, a_2 = 0.1695$
3	$13\cdot 10^{-3}$	$a_1 = 0.1884, a_2 = 0.1928, a_3 = -0.02332$
4	$2\cdot 10^{-5}$	$a_1 = 0.1884, a_2 = 0.1885, a_3 = -0.01046, a_4 = -0.008571$
5	$1.23 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$

7. Метод Ритца

№	Норма ошибки	Коэффициенты
1	0.115	$a_1 = 0.2778$
2	0.004	$a_1 = 0.1924, a_2 = 0.1707$
3	$3 \cdot 10^{-4}$	$a_1 = 0.1878, a_2 = 0.1941, a_3 = -0.02341$
4	$7.2 \cdot 10^{-6}$	$a_1 = 0.1884, a_2 = 0.1886, a_3 = -0.01052, a_4 = -0.0086$
5	$4.1 \cdot 10^{-7}$	$a_1 = 0.1884, a_2 = 0.1884, a_3 = -0.0095, a_4 = -0.01, a_5 = 0.0008$