

FOR OFFICIAL USE

National Qualifications 2022 MODIFIED

Mark

X816/76/01

Computing Science

MONDAY, 30 MAY 1:30 PM - 3:30 PM

Fill in these boxes and read what is printed below.

Full name of ce	ntre			Towr	1						
Forename(s)		Sur	name					Nur	mber	of se	at
Date of bir	th										
Day	Month	Year	Scottish o	andida	te nur	nber	-				

Total marks — 80

SECTION 1 — Software design and development, and Computer systems — 55 marks Attempt ALL questions.

Attempt EITHER Section 2 OR Section 3

SECTION 2 — Database design and development — 25 marks

SECTION 3 — Web design and development — 25 marks

You may use a calculator.

Show all workings.

Write your answers clearly in the spaces provided in this booklet. Additional space for answers is provided at the end of this booklet. If you use this space you must clearly identify the question number you are attempting.

Use blue or black ink.

Before leaving the examination room you must give this booklet to the Invigilator; if you do not, you may lose all the marks for this paper.

SECTION 1 — SOFTWARE DESIGN AND DEVELOPMENT, AND COMPUTER SYSTEMS — 55 marks

Attempt ALL questions

Write the following binary number using floating-point representation. -111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent	State the range of complement.	f denary values that can be repr	esented using 32-bit two's	
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
-111 0000 1111.0101 There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent				
There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent	Vrite the followin	ng binary number using floating	-point representation.	
There are 16 bits for the mantissa (including the sign bit) and 8 bits for the exponent. Space for working mantissa exponent		-111 0000 1111 0	101	
pace for working mantissa exponent	"h			
mantissa exponent	hara ara 16 hitc			
mantissa exponent sign		ior the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
mantissa exponent sign	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	
	exponent.	Tor the mantissa (including the	sign bit) and 8 bits for the	

3. LottoScot has a logo shown below in diagram 1. They want to change the logo to the one in diagram 2.

Diagram 2

In diagram 2 the rectangle has been moved forward.

Diagram 1

Explain the advantage of making this change using a vector graphic application 2 compared to a bit-mapped graphic application. 4. Explain why a processor with larger cache would outperform an identical processor with smaller cache. 2

5. A mathematician has written a program to generate the first six numbers in a mathematical sequence. The next number in the sequence is the sum of the previous two numbers. For example, if the sequence starts with

Then the first six numbers of the sequence would be

The following code has been developed to generate the sequence of six numbers.

Line 10 DECLARE sequence INITIALLY [0,0,0,0,0,0] Line 11 SET sequence[0] TO 5 Line 12 SET sequence[1] TO 7 Line 13 FOR n FROM 2 TO 5 DO Line 14 SET sequence[n] TO sequence[n] + sequence[n-1] Line 15 END FOR •••

(a) A logic error in the code means that an incorrect sequence is generated. The trace table below shows the line numbers where a variable has changed.

Line Number	sequence	n
10	[0,0,0,0,0,0]	
11	[5,0,0,0,0,0]	
12	A	
13		2
14	В	
13		3
14	С	

State the missing values at A, B and C.
4
3

MARKS	DO NOT
	WKITEIN
	THIS
	MAADCINI

_		1
5. ((continu	100
	CUILLIIL	ICU /
•••	(,

(b)	Re-write Line 14 of the code to generate the correct sequence.

6. An online game stores a player's unique ID, their total score and the number of minutes they have played the game. The game also stores three attributes for the player which are speed, strength and agility.

Throughout gameplay the player's score and playing time are updated.

6. (continued)

(a) At the end of each week, the player with the highest score is rewarded with an upgrade to one of their three attributes.

If more than one player has the same score, then the player who has been playing for the shortest time is rewarded.

The design for this part of the program is shown below.

Explain why a program produced from this design would not be fit for purpose.

[Turn over

MARKS DO NOT WRITE IN THIS MARGIN (continued) (b) The game stores the following details for each player: unique ID score the number of minutes they have played the game speed strength agility. A sample of data is shown below. Zodiac83, 547063, 361.45, 17, 19, 13 Thrasher05, 176491, 175.12, 15, 25, 14 Knuckles45, 92543, 63.42, 16, 14, 21 (i) Using a programming language of your choice, define a suitable record data structure to store the data. 2 (ii) There are currently 10 000 registered players in the game. Using a programming language of your choice, declare a variable that can store the data for the 10 000 players. Your answer should include the 2 record data structure defined in part (i).

page 08

MARKS	DO NOT
MARKS	WRITE IN
	THIS
	MARGIN

6.	(contin	ıued)
----	---------	-------

(c)

All players whose playing time is over 500 minutes will have their speed increased by 3.	
Using a programming language of your choice, write the code to implement this. Your answer should use the record data structure from part (b) (i).	4

MARKS	DO NOT
	WRITE IN
	THIS
	MARGIN

6. (continued)

(a)	maintainable.		
	Describe two other benefits of creating modular code.		
(e)	As part of the program's comprehensive test plan each sub-program was tested individually.		
	Describe one benefit of having a comprehensive test plan.		

7. An app can be used to record two players' scores on a 9 hole mini-golf course.

A player wins a hole if they have fewer shots than their opponent. For example, Claire has won the first hole taking only two shots compared to Tina's four shots.

After nine holes, Claire has won four holes and Tina has won two.

MINI	Player A Claire	Player B Tina
Hole 1	2	4
Hole 2	3	4
Hole 3	2	3
Hole 4	4	2
Hole 5	6	2
Hole 6	2	2
Hole 7	3	3
Hole 8	1	3
Hole 9	4	4

Claire has won the most holes

Claire has 1 hole(s)-in-one Tina has 0 hole(s)-in-one

Both players' names and their nine scores are entered.

The app displays the name of the player who wins the most holes or a message stating the game has been drawn if the number of holes won is the same.

(a)	One boundary of this app is that the app is for games between exactly two
	players.

State two other boundaries for this app.		

[Turn over

MARKS DO NOT WRITE IN THIS MARGIN

7. (continued)

(b) The top-level design of the main steps of the program is shown below. Complete the diagram to show the data flow for the program.

MARKS	THIS
	MARGIN

7.	(cor	ntinued)		
	(c)	Using a design technique of your choice, refine the following step.		
		Calculate result and display winner's name or display draw message		

7. (continued)

(d) A hole-in-one is achieved when a player completes the hole by taking just one shot.

The app counts and displays the number of holes-in-one for a player. Below is the code used to implement this feature. When tested the code was found to contain errors.

Line 201 FUNCTION holesInOne (ARRAY OF INTEGER scores) RETURNS INTEGER Line 202 DECLARE noHolesInOne INITIALLY 0 Line 203 FOR index FROM 0 TO 8 DO Line 204 IF scores[index] = 1 THEN Line 205 SET noHolesInOne TO noHolesInOne + 1 Line 206 END IF Line 207 END FOR Line 208 RETURN noHolesInOne Line 209 END FUNCTION Line 258 SEND playerAname & " has scored " & holesInOne(playerAname, playerAscores) & " hole(s)-in-one" TO DISPLAY ••• (i) There is an error at the function call. Describe the error. 1 (ii) Using a programming language of your choice, correct the error described in part (i). 1

MARKS	DO NOT
MARKING	WRITE IN
	THIS
	MARGIN

7. (continued)

e)	Programmers have control over the scope of a variable when writing code.
	Describe how the position of the declaration of a variable, within code, determines its scope.

MARKS DO NOT WRITE IN THIS MARGIN

8. A game displays a picture and the user is asked to spell the matching word by entering letters.

When a correct letter is entered by the user the letter is filled into the correct box(es).

The game displays the number of letters that the user has already guessed.

The user is able to get a hint. Once the correct letters have been entered a message of congratulations is displayed.

(a)	Describe two processes of this game.		
	Process 1		
	Process 2		

ick	g a design technique of your choice, design a program to read in this file, one of the words at random and assign it to a variable called senWord.	4
s th	ne game progresses the words get longer and users can get hints from the	
ame	e.	
ame Ising	e. g a programming language of your choice, write code to:	
ame Ising	e.	1
ame Ising	g a programming language of your choice, write code to: assign the variable hintOne the first letter of the word stored in the	1
ame Ising	g a programming language of your choice, write code to: assign the variable hintOne the first letter of the word stored in the	1
ame Ising	g a programming language of your choice, write code to: assign the variable hintOne the first letter of the word stored in the	1
ame (i)	assign the variable hintOne the first letter of the word stored in the chosenWord variable.	
ame (i)	g a programming language of your choice, write code to: assign the variable hintOne the first letter of the word stored in the	
ame (i)	assign the variable hintOne the first letter of the word stored in the chosenWord variable. assign the variable hintTwo a random letter from the word stored in the	
ame (i)	assign the variable hintOne the first letter of the word stored in the chosenWord variable. assign the variable hintTwo a random letter from the word stored in the	

8.

(continued)

MARKS DO NOT WRITE IN THIS MARGIN

(d) When the user enters a letter they have not already chosen, this is stored in an array called usedLetters. The number of letters stored in the array is increased by one and is stored in a variable called numLetters.

For example:

	Values
usedLetters	["D", "Z", "R", "B", "", "", "", "", "", "", "", "", "", "
numLetters	4

If the user enters a letter already stored in the array usedLetters an error message is displayed. The user is asked to try again until they enter a letter that is not already stored in this array.

Using a p	rogramming	language	of your	choice,	write the	code to	impleme	nt
this featu	ire							

6

[END OF SECTION 1]

page 18

SECTION 2 — DATABASE DESIGN AND DEVELOPMENT — 25 marks Attempt ALL questions

MARKS DO NOT WRITE IN THIS MARGIN

9. Cara runs a private tutoring company for Computing Science students. Cara requires a relational database to:

- store data on students, tutors and sessions
- display the contact details for a particular tutor or student
- display the number of sessions for a particular date
- display the total fees that each tutor has been paid
- display the tutor who charges the lowest hourly rate.
- (a) State one functional requirement of the relational database.

1

(b) Cara has created a relational database that uses three tables.

Student	Tutor	Session
studentID	tutorID	<u>sessionID</u>
studentName	tutorName	sessionDate
studentAddress	tutorAddress	sessionTime
studentContactNo	tutorContactNo	duration
	hourlyRate	tutorID*
		studentID*

Draw an entity-relationship diagram to show the relationships that exist in this database.

Your answer should show the entity names and cardinality. Attributes are not required on the diagram.

10. A swimming club uses a database to store details of swimmers and their times in a 50 metres swim. A sample of the data stored in the Swimmer table is shown below.

Swimmer				
swimmerNo	swimmer	squad	time	
001	M Marston	Dolphins1A	30.25	
002	S Cochrane	Dolphins2A	25.75	
003	L Richards	Dolphins1B	30.23	
004	F Qazi	Dolphins2A	35.45	
005	R Mirza	Dolphins1A	28.15	
006	J Smith	Sharks1A	29.35	
007	L Pascal	Sharks2A	32.25	
008	F McDonald	Sharks1B	31.45	
009	T Madison	Sharks2B	36.54	
010	M Johnston	Sharks1B	39.15	
011	M Davidson	Sharks1A	29.45	
012	Z Habib	Dolphins1A	25.45	
013	K Patel	Sharks1B	33.76	
•••	•••	•••	•••	

10. (continued)

The head coach would like to produce a report displaying the slowest and fastest times from any of the squads with a '1' in their name, as shown below.

squad	Slowest Time	Fastest Time
Dolphins1A	30.25	25.45
Dolphins1B	30.23	30.23
Sharks1A	29.45	29.35
Sharks1B	39.15	31.45

The following SQL statement is executed.

SELECT squad, MIN(time) AS [Slowest Time], MAX(time) AS [Fastest Time] FROM Swimmer WHERE squad LIKE "1"

When tested, the actual output did not match the expected output. Identify the three errors in the above SQL statement.

Error 1 ______

Error 2 _____

11. Perfect Eyes is an optician that has branches throughout Scotland. It uses a relational database consisting of three linked tables to store data about customers, opticians and specialist referrals.

Extracts from the three tables are shown below.

Customer						
customerID	opticianID	forename	surname	loyaltyPoints	address	town
AW3212	KM101	Amy	Wilson	24	8 Pelken Road	Paisley
JP2323	CS878	Joyce	Peden	47	42 Bewston Road	Ayr
JS9767	KM101	Julia	Smith	77	32 Bracken Road	Paisley
KC1123	MS221	Katy	Carenduff	11	12 Main Street	Melrose
LL3234	CS878	Robin	Li	51	21 Manse Court	Largs
MR8766	JS232	Margaret	Rennie	73	63 Royal Crescent	Dalry
SR7123	CS878	Steven	Rycroft	50	22 Markston Place	Ayr
•••	•••	•••	•••	•••		

Optician			
opticianID	opticianName	opticianAddress	opticianTown
KM101	Mr K Madhok	South Road	Paisley
KM321	Mr M Ali	Main Road	Troon
MS221	Mrs M Saunders	St Dunstan's Park	Melrose
•••			

Referral			
referralID	customerID	referralDate	specialist
P12121	AW3212	12/02/2022	Gerard McGowan Eye Clinic
H92743	HS3433	14/02/2022	JK Optometrist
CXR222	JP2323	28/04/2022	Eye Clinic at Newmains
U32349	JS9767	26/04/2022	Gerard McGowan Eye Clinic
•••	•••	•••	

MARKS DO NOT WRITE IN THIS MARGIN

3

11. (continued)

A query is required to list customers who were referred in April 2022 to any specialist that includes 'Eye Clinic' in its name. The list should be displayed with the most recent referral date first, as shown below.

forename	surname	referralDate	specialist
Joyce	Peden	28/04/2022	Eye Clinic at Newmains
Julia	Smith	26/04/2022	Gerard McGowan Eye Clinic
Margaret	Rennie	01/04/2022	University Hospital Eye Clinic

(a) Complete the design of a query to produce this output.

Field(s) and calculation(s)	forename, surname, referralDate, specialist
Tables(s)	
Search criteria	
Grouping	
Sort order	referralDate DESC

(continued) 11.

- (b) Perfect Eyes wants to know which customers have more than the average loyalty points.
 - (i) Write the SQL statement to display the average loyalty points of the customers, as shown below.

Average Points

2

(ii) The query from part (i) is saved as 'AvgPointsQuery'. Using this query, complete the SQL statement to display the customers who have more than the average loyalty points, in order from highest to lowest as shown below.

forename	surname	loyaltyPoints	opticianName
Julia	Smith	77	Mr K Madhok
Margaret	Rennie	73	Mr M Ali
Robin	Li	51	Miss C Srigor
Steven	Rycroft	50	Miss C Srigor
•••	•••	•••	•••

SELECT forename, surname, loyaltyPoints, opticianName

12. A car dealership uses a relational database to store the following information in three tables as shown below.

CarSale	Customer	SalesPerson
saleID carReg dateIn year mileage askingPrice sold dateSold salesPersonRef* customerNo* soldPrice	customerNo firstName surname contactNo	salesPersonRef salesPersonName

(a)	compound key could have been used.
	Explain why a compound key would not have been suitable for the ${\tt CarSale}$ table.

12. (continued)

MARKS DO NOT WRITE IN THIS MARGIN

3

(b) Sample data from the CarSale table is shown below.

CarSal	e									
saleID	carReg	dateln	year	mileage	askingPrice	sold	dateSold	salesPersonRef	custNo	soldPrice
001	KS17 SDD	17/07/2019	2017	2400	15305	Yes	19/09/2019	GA001	1234	14000
002	DD15 LDX	11/10/2019	2015	45512	6000	Yes	22/11/2019	AJ344	1234	5750
003	DG15 KJS	01/03/2021	2015	34069	5000	Yes	26/06/2021	AJ344	7001	4800
004	KS19 AZX	14/08/2021	2019	10033	13655	Yes	19/09/2021	AJ344	7747	13555
005	FF18 PMD	08/12/2021	2019	8238	10800	Yes	28/12/2021	SS002	5414	10500
006	LK16 JSS	07/03/2022	2016	45300	8500	No				
007	EF18 FES	10/03/2022	2018	29178	11709	No				
800	DD15 LDX	15/03/2022	2015	72130	5000	No				
009	KP15 DDS	01/04/2022	2015	34444	7900	Yes	02/05/2022	GA001	3002	7800
010	KS17 SDD	01/04/2022	2017	22452	12000	No				
011	PK17 YFK	22/04/2022	2017	19858	22663	No				
012	FF17 EES	26/04/2022	2017	14469	10166	No				
013	DS17 KRF	02/05/2022	2017	16113	14748	No				
•••	•••	•••		•••	•••		•••	•••	•••	

A customer would like to buy a car from the years 2017 or 2018. They want to know the cheapest asking price of the 2017 and the 2018 cars that are currently on sale.

This information is shown below.

year	Cheapest Price
2017	10166
2018	11709

Complete the design of a query that will display the information as shown above.

Field(s) and calculation(s)	
Tables(s)	CarSale
Search criteria	
Grouping	
Sort order	year ASC

MARKS DO NOT WRITE IN THIS MARGIN

(c) The manager would like to display a list of all cars that have been sold, showing the price difference between the asking price and the sold price.

The list should look like this.

carReg	salesPersonName	askingPrice	soldPrice	Price Difference
KP15 DDS	Daniel Avery	7900	7800	100
FF18 PMD	Deanna Smith	10800	10500	300
KS19 AZX	Hosea Jack	13655	13555	100
DD15 LDX	Hosea Jack	6000	5750	250
DG15 KJS	Hosea Jack	5000	4800	200
KS17 SDD	Daniel Avery	15305	14000	1305
	•••	•••	•••	•••

	all cars with mileage of 10 000 or less have to be ir	ncreased
by 10%.	all cars with mileage of 10 000 or less have to be ir	ncreased
by 10%.		ncreased

[END OF SECTION 2]

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

page 28

MARKS DO NOT WRITE IN THIS MARGIN

SECTION 3 — WEB DESIGN AND DEVELOPMENT — 25 marks Attempt ALL questions

13. HTML 5 elements have been used to define different parts of a web page shown below

State which elements should be used for the parts labelled A and B.	2
A	
В	

14. A recruitment agency website allows users to create a profile to detail their employment history.

Once logged in users can update their employment history by adding the following pieces of compulsory information: job title, job description, job type (full time, part time or voluntary) and start date. An end date should only be provided when they have left that job.

An example of the 'Edit your profile' page is shown below.

MARKS	DO NOT
MARKINS	WRITE IN
	THIS
	MARGIN

14.	(contini	ued)

Oraw a wireframe for a form that would allow users to provide the information for new job.				

15. Kelly runs a company offering driving lessons.

She wants a website where users can view her profile page and from there directly access individual pages about each of her instructors: Anne, Sarah, Jamal and Eilidh. The website should also detail the courses offered, a frequently asked questions page and a page where users can contact the company.

The multi-level structure below was proposed.

a)	Explain why this structure did not meet the requirements.				

MARKS DO NOT WRITE IN THIS MARGIN

2

15. (continued)

(b) The developers proposed an initial design for the 'Contact us' page.

The design is shown below.

A low fidelity prototype was created from the wireframe above.
State two issues that should be identified from usability testing.

15. (continued)

(c) The style rule for h1 headings is shown below.

```
h1 { font-family: Verdana;
    text-align: center;}
```

All h2 and h3 elements should also be formatted using the rule above. All h2 elements should also have a 10 pixel padding.

Making use of a grouping selector where appropriate, write the CSS rules to format the headings.

15. (continued)

(d) On the 'Courses' page there are a large number of different course packages that are offered. A sample of the HTML code used to implement this page is shown below.

```
<h1>We offer varying courses including:</h1>
<l
   Beginners
   Refresher
<h2>Course Details</h2>
<01>
   Beginners Course
   <l
       Cost: £30 per lesson
       Minimum Lessons: 2
       Lesson Length: 1hr
   Refresher Course
   <l
       Cost: £25 per lesson
       Minimum Lessons: 1
       Lesson Length: 1.5 hr
```

The CSS rules shown below are used to style the 'Courses' page.

ul { color: yellow ; }

```
Ol ul li { color: blue ; }

Describe the effect of these CSS rules on this page.
```

[Turn over

15. (continued)

(e) Kelly wants to add a tutorial page with videos and audio clips as shown in the wireframe below.

State two different compatibility tests that should be carried out on this page.

- **16.** An energy supplier's website allows customers to log in and manage their account online.
 - (a) They are redesigning their home page and want to implement the spacings shown below.

Using the partially completed code below, complete the CSS rules to implement the appropriate spacing as shown above.

2

16. (continued)

(b) A navigation bar will be included across the site.

Complete the CSS rule that will change the colours to black and white if the cursor moves over a link.

2

(c) One of the web pages uses multiple div elements as shown below.

```
Tariff one
Tariff two
Tariff three
```

They are to be displayed as shown below.

The CSS rule below is added.

```
p { display: inline ;}
```

Explain why this CSS rule displays the contents of the elements side by side.

16. (continued)

(d) When an image, 'question.jpg', on the web page is clicked, it should display the text:

'For more help call us on 0800 300200'

The JavaScript code below does not correctly implement this feature.

```
<script>
  function displayHelp() {
       document.getElementById("display").style.display="block";
</script>
For help please click on the icon below.
<img src="question.jpg" >
<div id="help" style="display:none">
     For more help call us on 0800 300200 
</div>
       (i) Re-write the line of code which will use a JavaScript event to call the
                                                                           2
          function displayHelp when the image 'question.jpg' is clicked.
       (ii) Explain why the text is still not displayed when the function
          displayHelp is called.
                                                                           1
```


16. (continued)

All customers have electricity meters and some customers also have a gas meter. The HTML code below allows the user to enter their meter readings.

(e) Re-write the line of HTML code to ensure that a reading has been entered for the electricity meter.

[END OF SECTION 3]

[END OF QUESTION PAPER]

MARKS DO NOT WRITE IN THIS MARGIN

ADDITIONAL SPACE FOR ANSWERS

page 41

MARKS DO NOT WRITE IN THIS MARGIN

ADDITIONAL SPACE FOR ANSWERS

page 42

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

page 43

[BLANK PAGE]

DO NOT WRITE ON THIS PAGE

page 44