Национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Учебно-исследовательская работа №3 по дисципение Сети ЭВМ и телекоммуникации Анализ трафика компьютерных сетей утилитой Wireshark

Студент: Саржевский Иван

Группа: Р3302

Содержание

1	Цел	Ъ	2
2	Ути	лита ping	2
	2.1	Фрейм	2
	2.2	Ethernet II	2
	2.3	IPv4	3
	2.4	Internet Control Message Protocol (ICMP)	4
	2.5	Ответы на вопросы	5

1 Цель

Цель работы — изучить структуру протокольных блоков данных, анализируя реальный трафик на компьютере студента с помощью бесплатно распространяемой утилиты Wireshark.

2 Утилита ping

Для анализа трафика, создаваемого утилитой ping был выбран сайт www.ias.ru.

```
Frame 5: 1042 bytes on wire (8336 bits), 1042 bytes captured (8336 bits) on interface wlp4s0, id 0 Ethernet II, Src: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5), Dst: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae) Internet Protocol Version 4, Src: 192.168.0.105, Dst: 81.195.71.197 Internet Control Message Protocol
```

Рис. 1: Заголовки протоколов для команды ping.

На рисунке 1 изображены заголовки различных протоколов, используемых при передаче запроса.

2.1 Фрейм

```
Interface id: 0 (wlp4s0)
Encapsulation type: Ethernet (1)
Arrival Time: Apr 12, 2020 22:23:51.094101026 MSK
[Time shift for this packet: 0.000000000 seconds]
Epoch Time: 1586719431.094101026 seconds
[Time delta from previous captured frame: 0.000253948 seconds]
[Time delta from previous displayed frame: 0.000000000 seconds]
[Time since reference or first frame: 0.036999160 seconds]
Frame Number: 5
Frame Length: 1042 bytes (8336 bits)
Capture Length: 1042 bytes (8336 bits)
[Frame is marked: False]
[Frame is ignored: False]
[Protocols in frame: eth:ethertype:ip:icmp:data]
[Coloring Rule Name: ICMP]
[Coloring Rule String: icmp || icmpv6]
```

Рис. 2: Информация о фрейме команды ping.

Структура, представленная на рисунке 2, описывает метаданные Wireshark для этого запроса - его порядковый номер среди всех записанных, время прибытия, размер, протокол и цвет выделения в интерфейсе.

2.2 Ethernet II

Ethernet II - протокол канального уровня, т.е. описывает передачу данных в рамках локальной сети. Типичная структура кадра Ethernet II представлена в таблице 1.

Таблица 1: Структура кадра Ethernet II.

	таолица т. Ст	грунтура надра	Dullot III.	
	K	Садр Ethernet II		
	(от 64	l-х до 1528-ти бай	it)	
	МАС-заголовок		Данные	
	(14 байт)		(от 46-ти до 1500 байт)	_
МАС получателя	МАС отправителя	Тип протокола	Пауууула	CRC
(6 байт)	(6 байт)	(2 байта)	Данные	(4 байта)

В данном случае получателем выступает роутер, а отправителем - рабочая машина, их MAC-адреса записаны в кадр, тип протокола - IPv4, что можно увидеть на рисунке 3.

```
Destination: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae)
    Address: Tp-LinkT_3d:06:ae (cc:32:e5:3d:06:ae)
    .....0...... = LG bit: Globally unique address (factory default)
    .....0 ...... = IG bit: Individual address (unicast)

Source: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5)
    Address: Chongqin_64:e6:c5 (c0:b5:d7:64:e6:c5)
    .....0 ..... = LG bit: Globally unique address (factory default)
    .....0 ..... = IG bit: Individual address (unicast)

Type: IPv4 (0x0800)
```

Рис. 3: Кадр Ethernet II для ping.

2.3 IPv4

IPv4 - протокол сетевого уровня. Подробные сведения полях, которые включены в заголовок протокола, приведены на рисунке 4. Туда включены IP-адреса отправителя и получателя, длинна заголовка и сообщения, флаги указывающие на наличие фрагментации данных, промежуточности данного пакета и т. д.

Offsets	Octet				(0								1							2 3																													
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	2 13	14	15	16	1	7 18	19	9 20	21	. 2	22 2	3	24	25	26	2	7 28	29	30	31																
0	0		Vers	ion		II	HL		DSCP ECN								Total Length																																	
4	32		Identification Flags Fragment Offset																																															
8	64			Ti	Time To Live					Protocol Header Checksum												Protocol								Header				er Checksum						gment Offset										
12	96	Source IP Address																																																
16	128	Destination IP Address																																																
20	160																																																	
24	192													Options (if IHL > 5)																																				
28	224			Options (if IHL												_ >	5)																																	
32	256																																																	

Рис. 4: Структура заголовка IPv4.

Данные, переданные с использованием протокола IPv4 для команды ping можно увидеть на рисунке 5.

```
0100 .... = Version: 4
.... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
   0000 00.. = Differentiated Services Codepoint: Default (0)
   .... ..00 = Explicit Congestion Notification: Not ECN-Capable Transport (0)
Total Length: 1028
Identification: 0x8a07 (35335)
Flags: 0x4000, Don't fragment
   0... .... .... = Reserved bit: Not set
   .1.. .... = Don't fragment: Set
   ..O. .... .... = More fragments: Not set
...0 0000 0000 0000 = Fragment offset: 0
Time to live: 64
Protocol: ICMP (1)
Header checksum: 0x5258 [validation disabled]
[Header checksum status: Unverified]
Šource: 192.168.0.105
Destination: 81.195.71.197
[Destination GeoIP: RU]
```

Рис. 5: Данные пакета IPv4 для команды ping.

2.4 Internet Control Message Protocol (ICMP)

Offsets	Offsets Octet 0 Octet Bit 0 1 2 3 4 5 6 7 8						1									2								3									
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
0	0	Тур	e							Cod	Code Chec									Checksum													
4	32	Res	t of	Head	ler																												

Рис. 6: Структура заголовка ІСМР.

Данный протокол сетевого уровня используется для передачи служебных сообщений - кода ошибки в случае исключительной ситуации, кода запрашиваемой операции и кода подтверждения в случае удачной передачи. Подробная структура заголовка ICMP приведена на рисунке 6.

```
Type: 8 (Echo (ping) request)
Code: 0
Checksum: 0xb113 [correct]
[Checksum Status: Good]
Identifier (BE): 4975 (0x136f)
Identifier (LE): 28435 (0x6f13)
Sequence number (BE): 1 (0x0001)
Sequence number (LE): 256 (0x0100)
[Response frame: 6]
Timestamp from icmp data: Apr 12, 2020 22:23:51.000000000 MSK
[Timestamp from icmp data (relative): 0.094101026 seconds]
Data (992 bytes)
```

Рис. 7: Данные ICMP для команды ping.

Для команды ping структура ICMP представлена на рисунке 7.

Структура ответов имеет схожую структуру, отличаться они будут типом ICMP, сменой адресов получателя и отправителя, timestamp'ами.

2.5 Ответы на вопросы

- 1. Имеет ли место фрагментация исходного пакета, какое поле на это указывает?

 Да. Но только в том случае, если размер пакета превышает Maximum Transmission
 - Unit (MTU), равный для протокола Ethernet II 1500 байт. Информация о наличии фрагментации содержится во флаге в заголовке IPv4.
- 2. Какая информация указывает, является ли фрагмент пакета последним или промежуточным?
 - $-\Phi$ лаг More Fragments в заголовке IPv4.
- 3. Чему равно количество фрагментов при передаче ping-пакетов?
 - МТU равен 1500 байт, пакет включает в себя IPv4-заголовок (20 байт), ICMP-заголовок (8 байт), и, непосредственно, данные. Это означает, что количество фрагментов равно $\lceil (s+20+8)/1500 \rceil$, где s аргумент -s команды ping. Зависимость количества фрагментов от размера пакета приведена в таблице 2 и в графическом виде на рисунке 8.

Рис. 8: Зависимость количества фрагментов от размера пакета

Таблица 2: Количество фрагментов при разных размерах пакета

Размер пакета	100		1000	1500	2000	3000	5000	10000
1	100	300	1000	1000	2000	3000	3000	10000
Кол-во фраг.	1	1	1	2	2	3	4	7

4. Как изменить поле TTL с помощью утилиты ping?

• Linux:ping -t ttl_value

• Windows: ping -i ttl_value

5. Что содержится в поле данных ping-пакета?

- В поле данных содержится текущий timestamp, а затем циклически повторяющиеся биты от 00 до FF.