

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
 of the grant of the patent:
 14.05.2003 Bulletin 2003/20

(51) Int Cl.7: **C12Q 1/68**(21) Application number: **98936928.5**(86) International application number:
 PCT/US98/15008(22) Date of filing: **22.07.1998**(87) International publication number:
 WO 99/005319 (04.02.1999 Gazette 1999/05)**(54) METHODS AND COMPOSITIONS FOR ANALYZING NUCLEIC ACIDS BY MASS SPECTROMETRY**

VERFAHREN UND VERBINDUNGEN ZUR ANALYSIERUNG VON NUKLEINSAUREN DURCH MASSENSPEKTROMETRIE

PROCEDES ET COMPOSITIONS POUR L'ANALYSE DE MOLECULES D'ACIDES NUCLEIQUES AU MOYEN DE SPECTROMETRIE DE MASSE

(84) Designated Contracting States:
 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
 MC NL PT SE

(30) Priority: **22.07.1997 US 898180**
 22.07.1997 US 898564
 22.07.1997 US 898501

(43) Date of publication of application:
 05.04.2000 Bulletin 2000/14

(73) Proprietor: **QIAGEN Genomics, Inc.**
 Bothell, Washington 98021 (US)

(72) Inventors:
 • VAN NESS, Jeffrey
 Seattle, WA 98125 (US)
 • TABONE, John, C.
 Bothell, WA 98011 (US)
 • HOWBERT, Jeffry
 Bellevue, WA 98005 (US)
 • MULLIGAN, John, T.
 Seattle, WA 98105 (US)

(74) Representative: **Gowshall, Jonathan Vallance**
FORRESTER & BOEHMERT
Pettenkoferstrasse 20-22
80336 München (DE)

(56) References cited:

WO-A-94/16101	WO-A-95/04160
WO-A-95/14108	WO-A-95/25737
WO-A-95/28640	WO-A-97/27325
WO-A-97/27327	WO-A-97/27331
US-A- 5 118 605	

- JACOBSON K B ET AL: "APPLICATIONS OF MASS SPECTROMETRY TO DNA SEQUENCING", GENETIC ANALYSIS TECHNIQUES AND APPLICATIONS, vol. 8, no. 8, 1 December 1991, pages 223-229, XP000271820
- P.C.TOREN ET AL.: "Determination of Impurities In Nucleoside 3'-Phosphoramidites by Fast Atom Bombardment Mass Spectrometry" ANALYTICAL BIOCHEMISTRY, vol. 152, no. 2, 1986, pages 291-294, XP002094264
- B.B.BROWN ET AL.: "A Single-Bead Decode Strategy Using Electrospray Ionization Mass Spectrometry and a New Photolabile Linker : 3-Amino-3-(2-nitrophenyl)Propionic Acid." MOLECULAR DIVERSITY, vol. 1, 1995, pages 4-12, XP002094265

Claims

1. A compound of the formula:

5

wherein,

10 T^{ms} is an organic group detectable by mass spectrometry, comprising carbon, at least one of hydrogen and fluoride, and optional atoms selected from oxygen, nitrogen, sulfur, phosphorus and iodine;
 L is an organic group which allows a unique T^{ms} -containing moiety to be cleaved from the remainder of the compound, wherein the T^{ms} -containing moiety comprises a functional group which supports a single ionized
 15 charge state when the compound is subjected to mass spectrometry and is tertiary amine, quaternary amine or organic acid;
 X is a functional group selected from phosphoramidite and H-phosphonate.

2. The compound of claim 1 wherein X is a phosphoramidite group such that $T^{ms}-L-X$ has the structure

20

25

wherein R is an alkyl group or a substituted alkyl group having one or more substituents selected from halogen and cyano, and the two R groups of NR₂ may be bonded together to form a cycloalkyl group.

3. The compound of claim 2 wherein X is a phosphoramidite group such that $T^{ms}-L-X$ has the structure

30

40

and OR is OCH₂CH₂CN while NR₂ is N(iso-propyl)₂.

4. The compound of claim 1 wherein X has an H-phosphonate group such that $T^{ms}-L-X$ has the structure

45

50

wherein R is a C₁-C₆alkyl group.

55

5. A compound according to claims 1-4 wherein T^{ms} has a mass of from 15 to 10,000 daltons and a molecular formula of C₁₋₅₀₀N₀₋₁₀₀O₀₋₁₀₀S₀₋₁₀P₀₋₁₀H_αF_βI_δ wherein the sum of α, β and δ is sufficient to satisfy the otherwise unsatisfied valencies of the C, N and O atoms.
6. A compound according to claims 1-4 wherein T^{ms} and L are bonded together through a functional group selected from amide, ester, ether, amine, sulfide, thioester, disulfide, thioether, urea, thiourea, carbamate, thiocarbamate, Schiff base, reduced Schiff base, imine, oxime, hydrazone, phosphate, phosphonate, phosphoramide, phosphona-

mide, sulfonate, sulfonamide or carbon-carbon bond.

7. A compound according to claims 1-4 wherein L is selected from L^{hv}, L^{acid}, L^{base}, L^[O], L^[R], L^{enz}, L^{elec}, L^Δ and L^{ss}, where actinic radiation, acid, base, oxidation, reduction, enzyme, electrochemical, thermal and thiol exchange, respectively, cause the T^{ms}-containing moiety to be cleaved from the remainder of the molecule.
- 5
8. A compound according to claims 1-4 wherein L^{hv} has the formula L¹-L²-L³, wherein L² is a molecular fragment that absorbs actinic radiation to promote the cleavage of T^{ms} from X, and L¹ and L³ are independently a direct bond or an organic moiety, where L¹ separates L² from T^{ms} and L³ separates L² from X, and neither L¹ nor L³ undergo bond cleavage when L² absorbs the actinic radiation.
- 10
9. A compound according to claim 8 wherein -L²-L³ has the formula:

15

20

25 with one carbon atom at positions a, b, c, d or e being substituted with -L³-X and optionally one or more of positions b, c, d or e being substituted with alkyl, alkoxy, fluoride, chloride, hydroxyl, carboxylate or amide; and R1 is hydrogen or hydrocarbyl.

30 10. A compound according to claim 8 wherein L³ is selected from a direct bond, a hydrocarbylene, -O-hydrocarbylene, and hydrocarbylene-(O-hydrocarbylene)_n-H, and n is an integer ranging from 1 to 10.

11. A compound according to claims 1-4 wherein -L-X has the formula:

35

40

45 wherein one or more of positions b, c, d or e is substituted with hydrogen, alkyl, alkoxy, fluoride, chloride, hydroxyl, carboxylate or amide; R1 is hydrogen or hydrocarbyl, and R2 terminates in an "X" group.

12. A compound according to claims 1-4 wherein T^{ms} has the formula:

50

T² is an organic moiety formed from carbon and one or more of hydrogen, fluoride, iodide, oxygen, nitrogen, sulfur and phosphorous, having a mass of 15 to 500 daltons;
 55 T³ is an organic moiety formed from carbon and one or more of hydrogen, fluoride, iodide, oxygen, nitrogen, sulfur and phosphorous, having a mass of 50 to 1000 daltons;
 J is a direct bond or a functional group selected from amide, ester, amine, sulfide, ether, thioester, disulfide, thioether, urea, thiourea, carbamate, thiocarbamate, Schiff base, reduced Schiff base, imine, oxime, hydra-

zone, phosphate, phosphonate, phosphoramide, phosphonamide, sulfonate, sulfonamide or carbon-carbon bond; and

n is an integer ranging from 1 to 50, and when n is greater than 1, each T³ and J is independently selected.

- 5 13. A compound according to claim 12 wherein T² is selected from hydrocarbyl, hydrocarbyl-O-hydrocarbylene, hydrocarbyl-S-hydrocarbylene, hydrocarbyl-NH-hydrocarbylene, hydrocarbyl-amide-hydrocarbylene, N-(hydrocarbyl)hydrocarbylene, N,N-di(hydrocarbyl)hydrocarbylene, hydrocarbylacyl-hydrocarbylene, heterocyclhydrocarbyl wherein the heteroatom(s) are selected from oxygen, nitrogen, sulfur and phosphorous, substituted heterocyclhydrocarbyl wherein the heteroatom(s) are selected from oxygen, nitrogen, sulfur and phosphorous and the substituents are selected from hydrocarbyl, hydrocarbyl-O-hydrocarbylene, hydrocarbyl-NH-hydrocarbylene, hydrocarbyl-S-hydrocarbylene, N-(hydrocarbyl)hydrocarbylene, N,N-di(hydrocarbyl)hydrocarbylene and hydrocarbylacyl-hydrocarbylene, as well as derivatives of any of the foregoing wherein one or more hydrogens is replaced with an equal number of fluorides.
- 10 14. A compound according to claim 12 wherein T³ has the formula - G(R²)-, G is C₁₋₆ alkylene having a single R² substituent, and R² is selected from alkyl, alkenyl, alkynyl, cycloalkyl, aryl-fused cycloalkyl, cycloalkenyl, aryl, aralkyl, aryl-substituted alkenyl or alkynyl, cycloalkyl-substituted alkyl, cycloalkenyl-substituted cycloalkyl, biaryl, alkoxy, alkenoxy, alkynoxy, aralkoxy, aryl-substituted alkenoxy or alkynoxy, alkylamino, alkenylamino or alkynylamino, aryl-substituted alkylamino, aryl-substituted alkenylamino or alkynylamino, aryloxy, arylamino, N-alkylurea-substituted alkyl, N-aryluera-substituted alkyl, alkylcarbonylamino-substituted alkyl, aminocarbonyl-substituted alkyl, heterocycl, heterocycl-substituted alkyl, heterocycl-substituted amino, carboxyalkyl substituted aralkyl, oxocarbocycl-fused aryl and heterocyclalkyl: cycloalkenyl, aryl-substituted alkyl and, aralkyl, hydroxy-substituted alkyl, alkoxy-substituted alkyl, aralkoxy-substituted alkyl, alkoxy-substituted alkyl, aralkoxy-substituted alkyl, amino-substituted alkyl, (aryl-substituted alkylcarbonylamino)-substituted alkyl, thiol-substituted alkyl, alkylsulfonyl-substituted alkyl, (hydroxy-substituted alkylthio)-substituted alkyl, thioalkoxy-substituted alkyl, hydrocarbylacylamino-substituted alkyl, heterocyclacylamino-substituted alkyl, hydrocarbyl-substituted-heterocyclacylamino-substituted alkyl, alkylsulfonylamino-substituted alkyl, arylsulfonylamino-substituted alkyl, morpholino-alkyl, thiomorpholino-alkyl, morpholino carbonyl-substituted alkyl, thiomorpholinocarbonyl-substituted alkyl, [N-(alkyl, alkenyl or alkynyl)- or N,N-[dialkyl, dialkenyl, dialkynyl or (alkyl, alkenyl)-amino]carbonyl-substituted alkyl, heterocyclaminocarbonyl, heterocyclalkyleneaminocarbonyl, heterocyclaminocarbonyl-substituted alkyl, heterocyclalkyleneaminocarbonyl-substituted alkyl, N,N-[dialkyl]alkyleneaminocarbonyl, N,N-[dialkyl]alkyleneaminocarbonyl-substituted alkyl, alkyl-substituted heterocyclcarbonyl, alkyl-substituted heterocyclcarbonyl-alkyl, carboxyl-substituted alkyl, dialkylamino-substituted acylaminoalkyl and amino acid side chains selected from arginine, asparagine, glutamine, S-methyl cysteine, methionine and corresponding sulfoxide and sulfone derivatives thereof, glycine, leucine, isoleucine, allo-isoleucine, tert-leucine, norleucine, phenylalanine, tyrosine, tryptophan, proline, alanine, ornithine, histidine, glutamine, valine, threonine, serine, aspartic acid, beta-cyanoalanine, and allothreonine; alynyl and heterocyclcarbonyl, aminocarbonyl, amido, mono- or dialkylaminocarbonyl, mono- or diarylaminocarbonyl, alkylarylamino carbonyl, diarylaminocarbonyl, mono- or diacylaminocarbonyl, aromatic or aliphatic acyl, alkyl optionally substituted by substituents selected from amino, carboxy, hydroxy, mercapto, mono- or dialkylamino, mono- or diarylmino, alkylarylamino, diarylamino, mono- or diacylamino, alkoxy, alkenoxy, aryloxy, thioalkoxy, thioalkenoxy, thioalkynoxy, thioaryloxy and heterocycl.
- 20 15. A compound according to claim 12 having the formula:
- 25 16. A compound according to claim 12 having the formula:
- 30 17. A compound according to claim 12 having the formula:
- 35 18. A compound according to claim 12 having the formula:
- 40 19. A compound according to claim 12 having the formula:
- 45 20. A compound according to claim 12 having the formula:
- 50 21. A compound according to claim 12 having the formula:
- 55 22. A compound according to claim 12 having the formula:

wherein

G is $(\text{CH}_2)_{1-6}$ wherein a hydrogen on one and only one of the CH_2 groups is replaced with $-(\text{CH}_2)_c\text{-Amide-}T^4$; T^2 and T^4 are organic moieties of the formula $C_{1-25}N_{0-9}O_{0-9}H_\alpha F_\beta$ wherein the sum of α and β is sufficient to satisfy the otherwise unsatisfied valencies of the C, N, and O atoms;

5

10

R^1 is hydrogen or C_{1-10} alkyl;

c is an integer ranging from 0 to 4;

X is defined according to claim 1; and

15 n is an integer ranging from 1 to 50 such that when n is greater than 1, G, c, Amide, R^1 and T^4 are independently selected.

16. A compound according to claim 15 having the formula:

20

25

30

35

wherein T^5 is an organic moiety of the formula $C_{1-25}N_{0-9}O_{0-9}H_\alpha F_\beta$ wherein the sum of α and β is sufficient to satisfy the otherwise unsatisfied valencies of the C, N, and O atoms; and T^5 includes a tertiary or quaternary amine or an organic acid; and m is an integer ranging from 0-49.

40

17. A compound according to claim 15 having the formula:

45

50

55

wherein T^5 is an organic moiety of the formula $C_{1-25}N_{0-9}O_{0-9}H_\alpha F_\beta$ wherein the sum of α and β is sufficient to satisfy the otherwise unsatisfied valencies of the C, N, and O atoms; and T^5 includes a tertiary or quaternary

amine or an organic acid; and m is an integer ranging from 0-49.

18. A compound according to any one of claims 16 and 17 wherein -Amide-T⁵ is selected from:

5

10

20

25

19. A compound according to any of claims 16 and 17 wherein -Amide-T⁵ is selected from:

30

35

40

45

50

- 55 20. A compound according to any one of claims 14-16 wherein T² has the structure which results when one of the following organic acids is condensed with an amine group to form T²-C(=O)-N(R¹): Formic acid, Acetic acid, Propiolic acid, Propionic acid, Fluoroacetic acid, 2-Butynoic acid, Cyclopropanecarboxylic acid, Butyric acid, Methoxyacetic acid, Difluoroacetic acid, 4-Pentynoic acid, Cyclobutanecarboxylic acid, 3,3-Dimethylacrylic acid, Valeric

acid, N,N-Dimethylglycine, N-Formyl-Gly-OH, Ethoxyacetic acid, (Methylthio)acetic acid, Pyrrole-2-carboxylic acid, 3-Furoic acid, Isoxazole-5-carboxylic acid, trans-3-Hexenoic acid, Trifluoroacetic acid, Hexanoic acid, Ac-Gly-OH, 2-Hydroxy-2-methylbutyric acid, Benzoic acid, Nicotinic acid, 2-Pyrazinecarboxylic acid, 1-Methyl-2-pyrrolecarboxylic acid, 2-Cyclopentene-1-acetic acid, Cyclopentylacetic acid, (S)-(-)-2-Pyrrolidone-5-carboxylic acid, N-Methyl-L-proline, Heptanoic acid, Ac-b-Ala-OH, 2-Ethyl-2-hydroxybutyric acid, 2-(2-Methoxyethoxy)acetic acid, p-Tolueic acid, 6-Methylnicotinic acid, 5-Methyl-2-pyrazinecarboxylic acid, 2,5-Dimethylpyrrole-3-carboxylic acid, 4-Fluorobenzoic acid, 3,5-Dimethylisoxazole-4-carboxylic acid, 3-Cyclopentylpropionic acid, Octanoic acid, N, N-Dimethylsuccinamic acid, Phenylpropionic acid, Cinnamic acid, 4-Ethylbenzoic acid, p-Anisic acid, 1,2,5-Trimethylpyrrole-3-carboxylic acid, 3-Fluoro-4-methylbenzoic acid, Ac-DL-Propargylglycine, 3-(Trifluoromethyl)butyric acid, 1-Piperidinepropanoic acid, N-Acetylproline, 3,5-Difluorobenzoic acid, Ac-L-Val-OH, Indole-2-carboxylic acid, 2-Benzofurancarboxylic acid, Benzotriazole-5-carboxylic acid, 4-n-Propylbenzoic acid, 3-Dimethylaminobenzoic acid, 4-Ethoxybenzoic acid, 4-(Methylthio)benzoic acid, N-(2-Furoyl)glycine, 2-(Methylthio)nicotinic acid, 3-Fluoro-4-methoxybenzoic acid, Tfa-Gly-OH, 2-Naphthoic acid, Quinaldic acid, Ac-L-Ile-OH, 3-Methylindene-2-carboxylic acid, 2-Quinoxalinecarboxylic acid, 1-Methylindole-2-carboxylic acid, 2,3,6-Trifluorobenzoic acid, N-Formyl-L-Met-OH, 2-[2-(2-Methoxyethoxy)ethoxy]acetic acid, 4-n-Butylbenzoic acid, N-Benzoylglycine, 5-Fluoroindole-2-carboxylic acid, 4-n-Propoxybenzoic acid, 4-Acetyl-3,5-dimethyl-2-pyrrolecarboxylic acid, 3,5-Dimethoxybenzoic acid, 2,6-Dimethoxynicotinic acid, Cyclohexanepentanoic acid, 2-Naphthylacetic acid, 4-(1H-Pyrrol-1-yl)benzoic acid, Indole-3-propionic acid, m-Trifluoromethylbenzoic acid, 5-Methoxyindole-2-carboxylic acid, 4-Pentylbenzoic acid, Bz-b-Ala-OH, 4-Diethylaminobenzoic acid, 4-n-Butoxybenzoic acid, 3-Methyl-5-CF₃-isoxazole-4-carboxylic acid, (3,4-Dimethoxyphenyl)acetic acid, 4-Biphenylcarboxylic acid, Pivaloyl-Pro-OH, Octanoyl-Gly-OH, (2-Naphthoxy)acetic acid, Indole-3-butrylic acid, 4-(Trifluoromethyl)phenylacetic acid, 5-Methoxyindole-3-acetic acid, 4-(Trifluoromethoxy)benzolic acid, Ac-L-Phe-OH, 4-Pentyloxybenzoic acid, Z-Gly-OH, 4-Carboxy-N-(fur-2-ylmethyl)pyrrolidin-2-one, 3,4-Diehtoxybenzoic acid, 2,4-Dimethyl-5-CO₂Et-pyrrole-3-carboxylic acid, N-(2-Fluorophenyl)succinamic acid, 3,4,5-Trimethoxybenzoic acid, N-Phenylanthranilic acid, 3-Phenoxybenzoic acid, Nonanoyl-Gly-OH, 2-Phenoxyypyridine-3-carboxylic acid, 2,5-Dimethyl-1-phenylpyrrole-3-carboxylic acid, trans-4-(Trifluoromethyl)cinnamic acid, (5-Methyl-2-phenyloxazol-4-yl)acetic acid, 4-(2-Cyclohexenyloxy)benzoic acid, 5-Methoxy-2-methylindole-3-acetic acid, trans-4-Cotininecarboxylic acid, Bz-5-Aminovaleric acid, 4-Hexyloxybenzoic acid, N-(3-Methoxyphenyl)succinamic acid, Z-Sar-OH, 4-(3,4-Dimethoxyphenyl)butyric acid, Ac-o-Fluoro-DL-Phe-OH, N-(4-Fluorophenyl)glutaramic acid, 4'-Ethyl-4-biphenylcarboxylic acid, 1,2,3,4-Tetrahydroacridinecarboxylic acid, 3-Phenoxyphenylacetic acid, N-(2,4-Difluorophenyl)succinamic acid, N-Decanoyl-Gly-OH, (+)-6-Methoxy-a-methyl-2-naphthaleneacetic acid, 3-(Trifluoromethoxy)cinnamic acid, N-Formyl-DL-Trp-OH, (R)-(+)-a-Methoxy-a-(trifluoromethyl)phenylacetic acid, Bz-DL-Leu-OH, 4-(Trifluoromethoxy)phenoxyacetic acid, 4-Heptyloxybenzoic acid, 2,3,4-Trimethoxycinnamic acid, 2,6-Dimethoxybenzoyl-Gly-OH, 3-(3,4,5-Trimethoxyphenyl)propionic acid, 2,3,4,5,6-Pentafluorophenoxyacetic acid, N-(2,4-Difluorophenyl)glutaramic acid, N-Undecanoyl-Gly-OH, 2-(4-Fluorobenzoyl)benzoic acid, 5-Trifluoromethoxyindole-2-carboxylic acid; N-(2,4-Difluorophenyl)diglycolamic acid, Ac-L-Trp-OH, Tfa-L-Phenylglycine-OH, 3-Iodobenzoic acid, 3-(4-n-Pentylbenzoyl)propionic acid, 2-Phenyl-4-quinolinecarboxylic acid, 4-Octyloxybenzoic acid, Bz-L-Met-OH, 3,4,5-Triethoxybenzoic acid, N-Lauroyl-Gly-OH, 3,5-Bis(trifluoromethyl)benzoic acid, Ac-5-Methyl-DL-Trp-OH, 2-Iodophenylacetic acid, 3-Iodo-4-methylbenzoic acid, 3-(4-n-Hexylbenzoyl)propionic acid, N-Hexanoyl-L-Phe-OH, 4-Nonyloxybenzoic acid, 4'-(Trifluoromethyl)-2-biphenylcarboxylic acid, Bz-L-Phe-OH, N-Tridecanoyl-Gly-OH, 3,5-Bis(trifluoromethyl)phenylacetic acid, 3-(4-n-Heptylbenzoyl)propionic acid, N-Heptyanoyl-L-Phe-OH, 4-Decyloxybenzoic acid, N-(α,α,α -trifluoro-m-tolyl)anthranilic acid, Niflumic acid, 4-(2-Hydroxyhexafluoroisopropyl)benzoic acid, N-Myristoyl-Gly-OH, 3-(4-n-Octylbenzoyl)propionic acid, N-Octanoyl-L-Phe-OH, 4-Undecyloxybenzoic acid, 3-(3,4,5-Trimethoxyphenyl)propionyl-Gly-OH, 8-Iodonaphthoic acid, N-Pentadecanoyl-Gly-OH, 4-Dodecyloxybenzoic acid, N-Palmitoyl-Gly-OH, and N-Stearoyl-Gly-OH.

21. A method for determining the presence of a single nucleotide polymorphism in a nucleic acid target comprising:

- a) amplifying a sequence of a nucleic acid target containing a single nucleotide polymorphism;
- b) generating a single strand form of the target;
- c) combining a tagged nucleic acid probe with the amplified target nucleic acid molecules under conditions and for a time sufficient to permit hybridization of said tagged nucleic acid probe to complementary amplified selected target nucleic acid molecules, wherein said tag is correlative with a particular single nucleotide polymorphism and is detectable by spectrometry or potentiometry;
- d) separating unhybridized tagged probe from hybridized tagged probe by a sizing methodology;
- e) cleaving said tag from said probe; and
- f) detecting said tag by spectrometry or potentiometry, and determining the presence of said single nucleotide polymorphism,

wherein the tagged nucleic acid probe has the structure

5

wherein,

T^{ms} is an organic group detectable by mass spectrometry, comprising carbon, at least one of hydrogen and fluoride, and optional atoms selected from oxygen, nitrogen, sulfur, phosphorus and iodine;

10 L is an organic group which allows a unique T^{ms} -containing moiety to be cleaved from the remainder of the compound, wherein the T^{ms} -containing moiety, comprises a functional group which supports a single ionized charge state when the compound is subjected to mass spectrometry and is tertiary amine, quaternary amine or organic acid; and

15 X' is nucleic acid.

15

22. A method for determining the presence of a single nucleotide polymorphism in a nucleic acid target comprising:

- 20 a) amplifying a sequence of a nucleic acid target containing a single nucleotide polymorphism;
- b) combining a tagged nucleic acid primer with the amplified target nucleic acid molecules under conditions and for a time sufficient to permit annealing of said tagged nucleic acid primer to complementary amplified selected target nucleic acid molecules, wherein the oligonucleotide primer has a 3'-most base complementary to the wildtype sequence or the single nucleotide polymorphism, wherein said tag is correlative with a particular single nucleotide polymorphism and is detectable by spectrometry or potentiometry;
- 25 c) extending the primer wherein a complementary strand to the target is synthesized when the 3'-most base of the primer is complementary to the target;
- d) separating unextended tagged primer from extended tagged primer by a sizing methodology;
- e) cleaving said tag from said primers or extended primers; and
- f) detecting said tag by spectrometry or potentiometry, and determining therefrom the presence of said single nucleotide polymorphis,

30

wherein the tagged nucleic acid primer has the structure

35

wherein,

T^{ms} is an organic group detectable by mass spectrometry, comprising carbon, at least one of hydrogen and fluoride, and optional atoms selected from oxygen, nitrogen, sulfur, phosphorus and iodine;

40 L is an organic group which allows a unique T^{ms} -containing moiety to be cleaved from the remainder of the compound, wherein the T^{ms} -containing moiety comprises a functional group which supports a single ionized charge state when the compound is subjected to mass spectrometry and is tertiary amine, quaternary amine or organic acid; and

X' is nucleic acid.

45

23. A method for determining the quantity of a specific mRNA molecule in a nucleic acid population comprising:

- 50 a) converting an RNA population into a cDNA population;
- b) adding a single strand nucleic acid (internal standard) containing a plurality of single nucleotide polymorphisms, that is otherwise identical to said cDNA target;
- c) amplifying a specific sequence of said cDNA target;
- d) coamplifying the internal standard, wherein said internal standard is the same length as the cDNA amplicon;
- e) generating a single strand form of the target;
- f) combining a set of tagged nucleic acid probes with the amplified target cDNA and amplified internal standard under conditions and for a time sufficient to permit hybridization of said tagged nucleic acid probe to complementary selected target cDNA and Internal standard sequences, wherein said tag is correlative with a particular cDNA sequence and a second tag is correlative with the internal standard, and is detectable by spectrometry or potentiometry;

- g) separating unhybridized tagged probe from hybridized tagged probe by a sizing methodology;
 h) cleaving said tag from said probes;
 i) detecting said tags by spectrometry or potentiometry; and
 j) taking the ratio of tag correlated to cDNA to tag correlated with the internal standard, and determining therefrom the quantity of said cDNA, thereby determining the quantity of the specific mRNA in a nucleic acid population,

wherein the tagged nucleic acid probe has the structure

wherein,

- 15 T^{ms} is an organic group detectable by mass spectrometry, comprising carbon, at least one of hydrogen and fluoride, and optional atoms selected from oxygen, nitrogen, sulfur, phosphorus and iodine;
 L is an organic group which allows a unique T^{ms} -containing moiety to be cleaved from the remainder of the compound, wherein the T^{ms} -containing moiety comprises a functional group which supports a single ionized charge state when the compound is subjected to mass spectrometry and is tertiary amine, quaternary amine
 20 or organic acid; and
 X' is nucleic acid.

24. A method for determining the quantity of a single nucleotide polymorphism in a nucleic acid target comprising:

- 25 a) amplifying a sequence of a nucleic acid target containing a single nucleotide polymorphism;
 b) generating a single strand form of the target;
 c) combining a tagged nucleic acid probe with the amplified target nucleic acid molecules under conditions and for a time sufficient to permit hybridization of said tagged nucleic acid probe to complementary amplified selected target nucleic acid molecules, wherein said tag is correlative with a particular single nucleotide polymorphism and is detectable by spectrometry or potentiometry;
 d) separating unhybridized tagged probe from hybridized tagged probe by a sizing methodology;
 e) cleaving said tag from said probes;
 f) detecting said tags by spectrometry or potentiometry; and
 j) taking the ratio of tag correlated to the wild type polymorphism to the tag correlated with the mutant polymorphism, and determining therefrom the quantity of said polymorphism,

35 wherein the tagged nucleic acid has the structure

wherein,

- 45 T^{ms} is an organic group detectable by mass spectrometry, comprising carbon, at least one of hydrogen and fluoride, and optional atoms selected from oxygen, nitrogen, sulfur, phosphorus and iodine;
 L is an organic group which allows a unique T^{ms} -containing moiety to be cleaved from the remainder of the compound, wherein the T^{ms} -containing moiety comprises a functional group which supports a single ionized charge state when the compound is subjected to mass spectrometry and is tertiary amine, quaternary amine
 50 or organic acid; and
 X' is nucleic acid.

Revendications

55 1. Composé de formule :

