Azzolini Riccardo 2019-04-01

Continuità

1 Funzione continua

Sia $f: X \to \mathbb{R}$ e sia $x_0 \in X$. f(x) si dice **continua** in x_0 se

- x_0 è un punto isolato del dominio X, oppure
- x_0 è un punto di accumulazione per X e

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Osservazioni:

• $x_0 \in X$, quindi non ha senso considerare *non* continua una funzione in $x_0 \notin X$. Di conseguenza, il grafico di una funzione continua si può disegnare "senza staccare la penna dal foglio" solo se il dominio è un singolo intervallo.

Ad esempio, $f(x) = \frac{1}{x}$ è continua nel dominio $X = (-\infty, 0) \cup (0, +\infty)$, e non ha senso dire che non è continua in $x_0 = 0$.

• Dire che $\lim_{x\to x_0} f(x) = f(x_0)$ implica l'esistenza di $\lim_{x\to x_0^-} f(x)$ e $\lim_{x\to x_0^+} f(x)$, e che

$$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = f(x_0)$$

2 Funzione continua da destra o sinistra

Sia $f: X \to \mathbb{R}$ e sia $x_0 \in X$ un punto di accumulazione destro (sinistro) per X. Allora, f(x) si dice **continua da destra** (**da sinistra**) in x_0 se

$$\lim_{\substack{x \to x_0^+ \\ (x \to x_0^-)}} f(x) = f(x_0)$$

Osservazione: f è continua in $x_0 \in X$, punto di accumulazione per X, se e solo se è continua sia da destra che da sinistra in x_0 .

2.1 Esempi

• $f(x) = \sqrt{x}$, che ha dominio $X = [0, +\infty)$, è continua da destra, ma non da sinistra, in $x_0 = 0$:

$$\lim_{x \to 0^+} \sqrt{x} = 0 = f(0) \qquad \nexists \lim_{x \to 0^-} \sqrt{x}$$

• La funzione parte intera di x, f(x) = [x], è continua da destra, ma non da sinistra, in $x_0 = 2$:

$$\lim_{x \to 2^{+}} [x] = 2 = f(2) \qquad \lim_{x \to 2^{-}} [x] = 1 \neq f(2)$$

• La funzione segno di x,

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ -1 & \text{se } x < 0 \end{cases}$$

non è continua né da destra né da sinistra in $x_0 = 0$, perché

$$\lim_{x \to 0^+} \operatorname{sgn}(x) = 1 \neq \operatorname{sgn}(0) \qquad \lim_{x \to 0^-} \operatorname{sgn}(x) = -1 \neq \operatorname{sgn}(0)$$

In generale, i polinomi, le funzioni razionali fratte, le radici, $\sin x$, $\cos x$, $\tan x$, gli esponenziali e i logaritmi sono tutte funzioni continue (eventualmente, per alcuni punti, solo da destra/sinistra) nei rispettivi domini.

3 Funzione prolungabile con continuità

Sia $f: X \to \mathbb{R}$ e sia $x_0 \in \mathbb{R} \setminus X$ un punto di accumulazione per X. Se esiste ed è finito

$$\lim_{\substack{x \to x_0^+ \\ (x \to x_0^-)}} f(x) = l$$

si dice che f è prolungabile con continuità da destra (da sinistra) in $x_0=0$, ponendo $f(x_0)=l$.

3.1 Esempio

$$f(x) = \frac{x}{\log x}$$

è continua nel suo dominio $X=(0,1)\cup(1,+\infty).$

- f è prolungabile con continuità da destra in 0, perché

$$\lim_{x \to 0^+} \frac{x}{\log x} = 0$$

quindi si può porre f(0) = 0.

- $f\ non$ è prolungabile con continuità né da destra né da sinistra in 1, dato che

$$\lim_{x \to 1^{-}} \frac{x}{\log x} = -\infty \qquad \lim_{x \to 1^{+}} \frac{x}{\log x} = +\infty$$

cioè x = 1 è un asintoto verticale di f.

4 Permanenza del segno

Teorema: Sia $f:X\to\mathbb{R}$ continua in $x_0\in X$, con x_0 di accumulazione per X. Se $f(x_0)>0$ $(f(x_0)<0)$, allora $\exists U(x_0)$ tale che

$$f(x) > 0 \ (f(x) < 0) \quad \forall x \in U(x_0) \cap X$$

Osservazione: Se f non è continua, questo non è necessariamente vero. Ad esempio:

$$\lim_{x \to x_0} f(x) = l > 0 \qquad f(x_0) < 0$$

Il teorema è comunque una condizione sufficiente, non necessaria, quindi esistono funzioni non continue in x_0 per cui la tesi è comunque vera, come ad esempio:

5 Composizione di funzioni continue

Siano $f: X \to \mathbb{R}$ e $g: Y \to \mathbb{R}$ due funzioni, e siano $x_0 \in X$ e $f(X) \subseteq Y$. Se f è continua in x_0 e g è continua in $f(x_0) = y_0$, allora $g \circ f$ è continua in x_0 .

5.1 Esempio

$$f(x) = \cos\frac{1}{\sqrt{x}}$$

è continua nel dominio $X=(0,+\infty)$ perché è corrisponde alla composizione di funzioni continue:

$$g(x) = \cos x$$
 $h(x) = \frac{1}{x}$ $k(x) = \sqrt{x}$ $f = g \circ h \circ k$

6 Somma e differenza di funzioni continue

Siano $f, g: X \to \mathbb{R}$ e sia $x_0 \in X$ un punto di accumulazione per X. Se f(x) e g(x) sono entrambe continue in x_0 , allora anche la loro somma/differenza $f(x) \pm g(x)$ è continua in x_0 , perché

$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = f(x_0) \pm g(x_0)$$

7 Punti di discontinuità

Sia $f: X \to \mathbb{R}$ e sia $x_0 \in X$. Se f non è continua in x_0 , quest'ultimo è un **punto di discontinuità** per f.

Osservazione: x_0 è un punto di accumulazione, perché se invece fosse un punto isolato la funzione sarebbe continua per definizione.

7.1 Discontinuità eliminabile

Se $\exists \lim_{x\to x_0} f(x)$ ed è un valore finito $l \in \mathbb{R}$, ma $l \neq f(x_0)$, allora x_0 si dice punto di discontinuità **eliminabile**.

La discontinuità può infatti essere eliminata, cambiando il valore di $f(x_0)$ e ponendolo uguale a l:

$$\tilde{f}(x) = \begin{cases} f(x) & \text{se } x \neq x_0 \\ l & \text{se } x = x_0 \end{cases}$$

7.2 Discontinuità di prima specie

Se $\lim_{x\to x_0^-} f(x) = l_- \in \mathbb{R}$ e $\lim_{x\to x_0^+} f(x) = l_+ \in \mathbb{R}$, con $l_- \neq l_+$, x_0 si chiama punto di discontinuità di **prima specie** o di tipo **salto**, e la quantità $|l_+ - l_-|$ è il salto di f(x) in x_0 .

7.3 Discontinuità di seconda specie

Tutti gli altri casi di discontinuità sono chiamati discontinuità di seconda specie.

Di conseguenza, x_0 è un punto di discontinuità di seconda specie se almeno uno tra $\lim_{x\to x_0^-} f(x)$ e $\lim_{x\to x_0^+} f(x)$ è infinito o non esiste.

7.4 Esempi

•
$$f(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \neq f(0) = 0$$

quindi $x_0=0$ è un punto di discontinuità eliminabile, e la funzione continua corrispondente è

$$\tilde{f}(x) = \begin{cases} f(x) & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases} = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x = 0 \end{cases}$$

•
$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{se } x > 0 \\ 0 & \text{se } x = 0 \\ -1 & \text{se } x < 0 \end{cases}$$

$$\lim_{x \to 0^{-}} \operatorname{sgn}(x) = \lim_{x \to 0^{-}} (-1) = -1$$
$$\lim_{x \to 0^{+}} \operatorname{sgn}(x) = \lim_{x \to 0^{+}} 1 = 1$$

quindi $x_0 = 0$ è un punto di discontinuità di prima specie, con salto |1 - (-1)| = 2.

•
$$f(x) = \begin{cases} e^{\frac{1}{x}} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

$$\lim_{x \to 0^+} e^{\frac{1}{x}} = +\infty$$

$$\lim_{x \to 0^-} e^{\frac{1}{x}} = 0 = f(0)$$

quindi f è continua da sinistra, ma non da destra, in $x_0 = 0$, che è un punto di discontinuità di seconda specie.

•
$$f(x) = \begin{cases} \sin\frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

$$\nexists \lim_{x \to 0^{-}} \sin \frac{1}{x}$$

quindi $x_0 = 0$ è un punto di discontinuità di seconda specie.