七、常微分方程数值解法

在工程和科学技术的实际问题中,常需要求解微分方程, 只有简单的和典型的微分方程可求出解析解,在实际问题中的 微分方程往往无法求出解析解,只能通过数值方法近似求解。

常微分方程的一般形式:

(1)
$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

(2)
$$\begin{cases} y'' = f(x, y, y') & a \le x \le b \\ y(a) = y_0, y'(a) = \alpha \end{cases}$$

(3)
$$\begin{cases} y'' = f(x, y, y') & a \le x \le b \\ y(a) = y_0, y(b) = y_n \end{cases}$$

(1),(2)式称为初值问题,(3)式称为边值问题。

另外,在实际应用中还经常需要求解常微分方程组:

(4)
$$\begin{cases} y_1' = f_1(x, y_1, y_2) & y_1(x_0) = y_{10} \\ y_2' = f_2(x, y_1, y_2) & y_2(x_0) = y_{20} \end{cases}$$

N阶方程、N个方程组的方程

我们首先介绍初值问题(1)的数值解法

1、初值问题的Euler方法

一阶常微分方程的初值问题

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

取等距节点
$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

$$h = \frac{b-a}{n} , x_k = a + kh$$

在各子区间上应用两点数值微分 $y'(x_j) = \frac{1}{h} [y(x_{j+1}) - y(x_j)]$

$$y(x_{j+1}) = y(x_j) + hy'(x_j) = y(x_j) + hf(x_j, y_j)$$

$$y_{j+1} = y_j + hf(x_j, y_j)$$
 向前Euler公式(显式)

由 y_0 逐次递推得到 $\Rightarrow y_1 \Rightarrow y_2 \cdots \Rightarrow y_n$

若各子区间上向后差商
$$y'(x_{j+1}) = \frac{1}{h} [y(x_{j+1}) - y(x_j)]$$

$$y(x_{j+1}) = y(x_j) + hy'(x_{j+1}) = y(x_j) + hf(x_{j+1}, y_{j+1})$$

$$y_{j+1} = y_j + hf(x_{j+1}, y_{j+1})$$
 向后Euler公式(隐式)

Euler方法的几何意义:

$$y_{j+1} = y_j + hf(x_j, y_j)$$

过 (x_i, y_i) 作斜率为 $f(x_i, y_i)$

的直线与 $x = x_{i+1}$ 的交点为

$$(x_{j+1}, y_{j+1})$$

用前进Euler公式求解初值问题 例1.

$$\begin{cases} y' = y - \frac{2x}{y} & 0 \le x \le 1 \\ y(0) = 1 & \exists x \in A \end{cases}$$

解: 显然
$$f(x,y) = y - \frac{2x}{y}$$

$$x_0 = a = 0, n = 10, b = 1, y_0 = 1$$

由前进Euler公式

$$y_{j+1} = y_j + hf(x_j, y_j)$$

= $y_j + h(y_j - \frac{2x_j}{y_j})$ $j = 1, 2, \dots, n$

得
$$y_1 = y_0 + h(y_0 - \frac{2x_0}{y_0}) = 1 + 0.1(1 - \frac{2 \times 0}{1}) = 1.1$$

$$y_2 = y_1 + h(y_1 - \frac{2x_1}{y_1}) = 1.1 + 0.1(1.1 - \frac{2 \times 0.1}{1.1}) = 1.1918$$

依此类推,有

$$[x, y] =$$

2、改进的Euler方法

向前、向后Euler公式

如果取以上两式的算术平均值的结果,则得

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$$
 $(n = 0,1,2,...)$

称为梯形公式。

计算y,时常用以下迭代式:

$$\begin{cases} y_{n+1}^{(0)} = y_n + hf(x_n, y_n) \\ y_{n+1}^{(k+1)} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(k)})] & (k = 0, 1, 2, ...) \end{cases}$$
(3)

当 |
$$y_{n+1}^{(k+1)} - y_n^{(k)}$$
 | $< \varepsilon$ 时, 取 $y_{n+1} \approx y_{n+1}^{(k+1)}$

取一次迭代,得到预估-校正算法

$$\begin{cases} \overline{y}_{n+1} = y_n + hf(x_n, y_n) \\ y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, \overline{y}_{n+1})] \end{cases}$$

也可写为

$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + h, y_n + k_1) \end{cases}$$

3、Runge-Kutta法

由改进的Euler方法
$$\begin{cases} y_{n+1} = y_n + \frac{h}{2}(k_1 + k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + h, y_n + k_1) \end{cases}$$

更一般的递推公式:
$$\begin{cases} y_{n+1} = y_n + h(\omega_1 k_1 + \omega_2 k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta h k_1) \end{cases}$$

适当选取参数 ω_1 , ω_2 , α , β 提高精度

Runge-Kutta方法的导出

对于常微分方程的边值问题

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(a) = y_0 \end{cases}$$

泰勒展开式:

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + \cdots$$

$$y'(x_n) = f(x_n, y_n)$$

$$y''(x_n) = \frac{\partial}{\partial x}f(x_n, y_n) + \frac{\partial}{\partial y}f(x_n, y_n)y'(x_n)$$

原则上各级导数都能给出,可得高阶的递推公式,但实际困难。

Runge-Kutta方法的思路

递推格式写为:

$$y_{n+1} = y_n + hF \{h x_n y_n f (k_n y_n)\} \oplus (h^{-1})^{+1}$$

同阶的递推格式尽可能与泰勒展开式逼近

看二阶递推公式:

$$\begin{cases} y_{n+1} = y_n + h(\alpha_1 k_1 + \alpha_2 k_2) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta h k_1) \end{cases}$$

与二阶泰勒展式比较,有: $\omega_1 + \omega_2 = 1$ $\alpha \omega_2 = \beta \omega_1 = 1/2$

取: $\omega_1 = \omega_2 = 1/2$ $\alpha = \beta = 1$ 即得改进的Euler公式

三阶递推公式:

$$\begin{cases} y_{n+1} = y_n + h(\omega_1 k_1 + \omega_2 k_2 + \omega_3 k_3) \\ k_1 = f(x_n, y_n) \\ k_2 = f(x_n + \alpha h, y_n + \beta h k_1) \\ k_3 = f(x_n + \gamma h, y_n + \lambda h k_1 + \mu h k_2) \end{cases}$$

与三阶泰勒展式比较,有:

$$\begin{cases} \omega_1 + \omega_2 + \omega_3 = 1\\ \alpha \omega_2 + \gamma \omega_3 = 1/2 \end{cases}$$
$$\beta \omega_2 + (\lambda + \mu)\omega_3 = 1/2$$
$$\alpha^2 \omega_2 / 2 + \gamma^2 \omega_3 / 2 = 1/6$$

\Pi:
$$\omega_1 = \omega_3 = 1/6$$
 $\omega_2 = 4/6$ $\alpha = \beta = 1/2$ $\gamma = 1$ $\lambda = -1$ $\mu = 2$

得三阶Runge-Kutta递推公式:

$$\begin{cases} y_{n+1} = y_n + \frac{h}{6}(k_1 + 4k_2 + k_3) \\ k_1 = f(x_n, y_n) \end{cases}$$

$$k_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}k_1)$$

$$k_3 = f(x_n + h, y_n - hk_1 + 2hk_2)$$

同样方法可得四阶Runge-Kutta递推公式

例1. 使用高阶R-K方法计算初值问题

解: (1) 使用三阶R-K方法

$$n = 1$$
F f $K_1 = y_0^2 = 1$

$$K_2 = (y_0 + \frac{0.1}{2}K_1)^2 = 1.1025$$

$$K_3 = (y_0 + 0.1(2K_2 - K_1))^2 = 1.2555$$

$$y_1 = y_0 + \frac{0.1}{6}(K_1 + 4K_2 + K_3) = 1.1111$$

其余结果如下:

	n	xn	k1	k2	k3	yn
	1.0000	0.1000	1.0000	1.1025	1.2555	1.1111
	2.0000	0.2000	1.2345	1.3755	1.5945	1.2499
	3.0000	0.3000	1.5624	1.7637	2.0922	1.4284
5	4.0000	0.4000	2.0404	2.3423	2.8658	1.6664
	5.0000	0.5000	2.7768	3.2587	4.1634	1.9993

(2) 如果使用四阶R-K方法

$$n = 1$$
 $K_1 = y_0^2 = 1$ $K_2 = (y_0 + \frac{0.1}{2}K_1)^2 = 1.1025$

$$K_3 = (y_0 + \frac{0.1}{2}K_2)^2 = 1.1133$$

$$K_4 = (y_0 + 0.1K_3)^2 = 1.2351$$

$$y_1 = y_0 + \frac{0.1}{6}(K_1 + 2K_2 + 2K_3 + K_4) = 1.1111$$

其余结果如下:

n	xn	k1	k2	k3	k4	yn
1.0000	0.1000	1.0000	1.1025	1.1133	1.2351	1.1111
2.0000	0.2000	1.2346	1.3756	1.3921	1.5633	1.2500
3.0000	0.3000	1.5625	1.7639	1.7908	2.0423	1.4286
4.0000	0.4000	2.0408	2.3428	2.3892	2.7805	1.6667
5.0000	0.5000	2.7777	3.2600	3.3476	4.0057	2.0000

4、线形多步法

$$\begin{cases} y' = f(x, y) & a \le x \le b \\ y(x_0) = y_0 \end{cases}$$

等价于积分式:
$$y(x) = y(x_0) + \int_{x_0}^{x} f(t, y(t)) dt$$

对区间:
$$[x_{n}, x_{n+1}]$$
 $y(x_{n+1}) = y(x_{n}) + \int_{x_{n}}^{x_{n+1}} f(t, y(t)) dt$

(1) 用矩形积分公式:
$$\int_{x_n}^{x_{n+1}} f(x, y) dx \approx h f(x_n, y_n)$$

得Euler公式:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $(n = 0, 1, 2, ...)$

(2) 用梯形积分公式: $\int_{x_n}^{x_{n+1}} f(x, y) dx \approx \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1})]$ 得梯形积分公式:

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}) \quad (n = 0, 1, 2, ...)$$

(3)用高次插值多项式替代被积函数,可望提高精度。

取 r+1 个点 $(x_n, f_n), (x_{n-1}, f_{n-1}), ..., (x_{n-r}, f_{n-r})$

的插值多项式替代被积函数

$$\int_{x_{n-p}}^{x_{n+1}} f(x, y) dx \approx h \sum_{j=0}^{r} a_j f(x_{n-j}, y_{n-j}) \quad ha_j = \int_{x_{n-p}}^{x_{n+1}} l_j(x) dx$$

得:
$$y_{n+1} = y_{n-p} + h \sum_{j=0}^{r} a_j f(x_{n-j}, y_{n-j})$$

记:
$$q = \max(p, r)$$
 若已知 $y_{n-q}, y_{n-q+1}, \dots, y_n \Rightarrow y_{n+1}$

5、常微分方程组和高阶微分方程的数值解法简介

(1) 常微分方程组

下列包含多个一阶常微分方程的初值问题

$$\begin{cases} y_1' = f_1(x, y_1, y_2, \dots, y_m) & y_1(x_0) = y_{10} \\ y_2' = f_2(x, y_1, y_2, \dots, y_m) & y_2(x_0) = y_{20} \\ \dots & \dots \\ y_m' = f_m(x, y_1, y_2, \dots, y_m) & y_m(x_0) = y_{m0} \end{cases}$$

用向前Euler公式:

$$y_{i,n+1} = y_{i,n} + hf_i(x_n, y_{1n}, y_{2n}, \dots, y_{mn}) \ i = 1, 2, \dots, m$$

由 $\{y_{i0}\}$ 逐次递推得到 $\Rightarrow \{y_{i1}\} \Rightarrow \{y_{i2}\} \dots \Rightarrow \{y_{in}\}$

用三阶Runge-Kutta递推公式:

$$\begin{cases} y_{i n+1} = y_{in} + \frac{h}{6}(k_{i1} + 4k_{i2} + k_{i3}) \\ k_{i1} = f_i(x_n, y_{1n}, y_{2n} \cdots y_{mn}) \end{cases}$$

$$\begin{cases} k_{i2} = f_i(x_n + \frac{h}{2}, y_{1n} + \frac{h}{2}k_{11}, y_{2n} + \frac{h}{2}k_{21}, \cdots, y_{mn} + \frac{h}{2}k_{m1}) \\ k_{i3} = f_i(x_n + h, y_{1n} - hk_{11} + 2hk_{12}, \cdots, y_{mn} - hk_{m1} + 2hk_{m2}) \end{cases}$$

由
$$\{y_{i0}\}$$
 逐次递推得到 $\Rightarrow \{y_{i1}\} \Rightarrow \{y_{i2}\} \cdots \Rightarrow \{y_{in}\}$

(2) 高阶微分方程

$$\begin{cases} \frac{d^m}{dx^m} y(x) = f(x, y, y', y'', \dots, y^{(m-1)}) \\ y(x_0) = y_0 \\ \dots \\ y^{(m-1)}(x_0) = y_0^{(m-1)} \end{cases}$$

令:

$\begin{cases} y(x) = y_1(x) \\ y'(x) = y_2(x) \\ \dots \\ y^{(m-1)}(x) = y_m(x) \end{cases}$

等价于常微分方程组:

$$\begin{cases} y_1' = f_1(x, y_1, y_2, \dots, y_m) & y_1(x_0) = y_{10} \\ y_2' = f_2(x, y_1, y_2, \dots, y_m) & y_2(x_0) = y_{20} \\ \dots & \dots \\ y_m' = f_m(x, y_1, y_2, \dots, y_m) & y_m(x_0) = y_{m0} \end{cases}$$

例如二阶微分方程:

$$\begin{cases} \frac{d^2}{dx^2} y(x) = f(x, y, y') \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases} \Leftrightarrow \begin{cases} y(x) = y_1(x) \\ y'(x) = y_2(x) \end{cases}$$

有:
$$\begin{cases} y_1'(x) = y'(x) = y_2(x) = 记为 f_1(x, y_1, y_2) \\ y_1(x_0) = y(x_0) = y_0 = 记为 y_{10} \end{cases}$$
$$\begin{cases} y_2'(x) = y''(x) = f(x, y, y') = 记为 f_2(x, y_1, y_2) \\ y_2(x_0) = y'(x_0) = y_0' = 记为 y_{20} \end{cases}$$

即得常微分方程组: $\begin{cases} y_1'(x) = f_1(x, y_1, y_2) & y_1(x_0) = y_{10} \\ y_2'(x) = f_2(x, y_1, y_2) & y_2(x_0) = y_{20} \end{cases}$

例如三阶微分方程:

$$\begin{cases} \frac{d^3}{dx^3} y(x) = f(x, y, y', y'') \\ y(x_0) = y_0 \\ y'(x_0) = y'_0 \\ y''(x_0) = y''_0 \end{cases}$$
 \(\phi:\bigg\{ \bigg\{ y(x) = y_1(x) \\ y'(x) = y_2(x) \\ y''(x) = y_3(x) \end{argma} \}

有:
$$\begin{cases} y_1'(x) = y'(x) = y_2(x) = 记为 f_1(x, y_1, y_2, y_3) \\ y_1(x_0) = y(x_0) = y_0 = 记为 y_{10} \end{cases}$$

$$\begin{cases} y_2'(x) = y''(x) = y_3(x) = i 已为 f_2(x, y_1, y_2, y_3) \\ y_2(x_0) = y'(x_0) = y_0' = i 已为 y_{20} \end{cases}$$

$$\begin{cases} y_3'(x) = y'''(x) = f(x, y, y', y'') = i 已为 f_3(x, y_1, y_2, y_3) \\ y_3(x_0) = y''(x_0) = y_0'' = i 已为 y_{30} \end{cases}$$

即得常微分方程组:

$$\begin{cases} y_1'(x) = f_1(x, y_1, y_2, y_3) & y_1(x_0) = y_{10} \\ y_2'(x) = f_2(x, y_1, y_2, y_3) & y_2(x_0) = y_{20} \\ y_3'(x) = f_3(x, y_1, y_2, y_3) & y_3(x_0) = y_{30} \end{cases}$$

6、解微分方程的诺曼诺夫方法常

$$\frac{d^2}{dx^2}y(x) = F(x)y(x) + G(x) \qquad a \le x \le b$$

取等距节点
$$h = \frac{b-a}{n}$$
 , $x_k = a + kh$

 X_{n+1} , X_{n-1} 泰勒展开式:

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^3}{3!}y'''(x_n) + \cdots$$

$$y(x_{n-1}) = y(x_n) - hy'(x_n) + \frac{h^2}{2}y''(x_n) - \frac{h^3}{3!}y'''(x_n) + \cdots$$

两式相加除2得:

$$[y(x_{n+1}) + y(x_{n-1})]/2 = y(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^4}{4!}y^{(4)}(x_n) + \cdots$$
 (1)

两式相加除2得:

$$[y(x_{n+1}) + y(x_{n-1})]/2 = y(x_n) + \frac{h^2}{2}y''(x_n) + \frac{h^4}{4!}y^{(4)}(x_n) + \cdots$$
 (1)

求导两次得:

$$[y''(x_{n+1}) + y''(x_{n-1})]/2 = y''(x_n) + \frac{h^2}{2}y^{(4)}(x_n) + \frac{h^4}{4!}y^{(6)}(x_n) + \cdots$$
 (2)

$$(1) - \frac{h^2}{12}(2): \quad [y(x_{n+1}) + y(x_{n-1})]/2 - \frac{h^1}{12}[y''(x_{n+1}) + y''(x_{n-1})]/2$$
$$= y(x_n) + \frac{5h^2}{2}y''(x_n) - \frac{h^6}{480}y^{(6)}(x_n) + \cdots$$

此式略去 $\frac{h^6}{480}$ $y^{(6)}(x_n)$ 以后的项,误差量级为: $O(h^6)$

代入整理后得:

$$[1 - \frac{h^2}{12}F(x_{n+1})]y(x_{n+1}) = [2 + \frac{5h^2}{6}F(x_n)]y(x_n)$$

$$-[1 - \frac{h^2}{12}F(x_{n-1})]y(x_{n-1}) + \frac{h^2}{12}[G(x_{n-1}) + 10G(x_n) + G(x_{n+1})]$$

F(x), G(x) 形式已知

由 $y_0, y_1 \Rightarrow y_2 \Rightarrow \cdots \Rightarrow y_n$ 两步,显式,递推格式。

形式简单精度较高。许多情况 G(x)=0

练习、微分方程的数值求解

- 1、建立四阶Runge-Kutta方法数值解微分方程的计算程序。 或建立诺曼诺夫方法数值解微分方程的计算程序。
- 2、选取一可解析求解的二阶微分方程。比较程序的计算结果与解析的计算结果(图表)。