2006-2007

2000-2007

Concours d'Entrée

DEUXIÈME ÉPREUVE DE MATHÉMATIQUES

Durée: 4 heures

Calculatrice autorisée

OPTION A

Le sujet est constitué de deux exercices et d'un problème tous indépendants

EXERCICE 1: REDUCTION DES MATRICES DE RANG 1

- 1. Donner deux exemples de matrices de $\mathcal{M}_3(\mathbb{R})$ (matrices 3×3) de rang 1, la première matrice diagonalisable et la seconde matrice non diagonalisable (justifier).
- **2.** Dans toute cette question, A est une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang 1.
 - **a.** Montrer qu'il existe n réels $a_1, a_2, ..., a_n$ tels que la matrice A soit semblable à la matrice

$$B = \begin{pmatrix} 0 & \cdot & 0 & a_1 \\ \cdot & \cdot & \cdot & a_2 \\ \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & 0 & a_n \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- **b.** Justifier que la matrice *A* est trigonalisable.
- **c.** Montrer que la matrice A est diagonalisable si et seulement si, trace $(A) \neq 0$.
- 3. Si E est un \mathbb{R} -espace vectoriel de dimension n et u un endomorphisme de E tel que trace $(u) = \operatorname{rang}(u) = 1$, montrer que u est un projecteur de E.
- **4.** Dans cette question, n = 4.
 - **a.** Diagonaliser la matrice de rang $1:J\in\mathcal{M}_4(\mathbb{R})$ dont tous les termes sont égaux à 1.
 - **b.** En déduire la réduction de la matrice $A = \begin{pmatrix} 2007 & 1 & 1 & 1 \\ 1 & 2007 & 1 & 1 \\ 1 & 1 & 2007 & 1 \\ 1 & 1 & 1 & 2007 \end{pmatrix}$.

On précisera la matrice de passage.

EXERCICE 2

On considère l'ensemble E des fonctions f de classe C^2 de $\left[0,1\right]$ vers $\mathbb R$ vérifiant :

$$f(0) = f(1) = 0$$
 et $f'(0) = 1$.

- 1. Si f est un élément de E, déterminer $\int_0^1 (t-1) f''(t) dt$.
- 2. Si f est un élément de E, montrer que $\int_0^1 (f''(t))^2 dt \ge 3$.

On pourra utiliser une inégalité de Cauchy-Schwarz.

- 3. Montrer qu'il existe un unique réel k tel que l'équation différentielle y''=k (t-1) admette comme solution un élément de E. Montrer en même temps que cette solution est unique.
- **4.** Déterminer $\inf_{f \in E} \int_0^1 (f''(t))^2 dt$;

PROBLEME: UN THEOREME DE HARDY-LITTLEWOOD

Notation : $\lim_{x\to 1^-} f(x)$ désignera la limite finie ou infinie, lorsqu'elle existe, de f quand x tend vers 1 par valeurs inférieures.

Le but du problème est de démontrer le théorème ci-dessous :

Si la fonction f est définie sur]-1,1[par $f(x)=\sum_{n=0}^{+\infty}a_n\ x^n$ où (a_n) est une suite de réels positifs,

il y a équivalence entre (1) et (2):

(1):
$$\lim_{x \to 1^{-}} (1-x)f(x) = 1$$

$$(2): \sum_{k=0}^{n} a_k \sim n$$

PREMIERE PARTIE

1. Importance de l'hypothèse « (a_n) est une suite de réels positifs ».

On considère la fonction
$$f$$
 définie sur]-1,1 [par : $f(x) = 4\frac{1-x}{(1-x^2)^2}$.

- **a.** Montrer que la fonction f est développable en série entière au voisinage de 0.
- **b.** On note pour $x \in \left[-1, 1\right[$, $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, montrer que f vérifie (1) et ne vérifie pas (2).
- 2. Dans cette question, f est définie sur]-1,1[par : $f(x) = \sum_{n=0}^{+\infty} \alpha_n x^n$ où $\sum \alpha_n$ est une série de réels positifs et divergente.
 - **a.** Montrer que la fonction f admet une limite quand x tend vers 1^- et déterminer $\lim_{x \to 1^-} f(x)$.
 - **b.** Soit (b_n) une suite de réels vérifiant $\alpha_n \sim b_n$ au voisinage de $+\infty$.

On pose pour
$$x \in [0, 1[, g(x) = \sum_{n=0}^{+\infty} b_n x^n]$$
.

- i. Soit un réel $\varepsilon > 0$, justifier qu'il existe un entier n_0 tel que pour tout entier $n \ge n_0$ on ait $|\alpha_n b_n| \le \frac{\varepsilon}{2} \alpha_n$.
- ii. Montrer que pour tout $x \in \left]0,1\right[, \left|f(x) g(x)\right| \le \sum_{n=0}^{n_0-1} \left|\alpha_n b_n\right| + \frac{\varepsilon}{2} f(x)$.
- iii. Conclure que, pour x au voisinage de 1^- , $f(x) \sim g(x)$.
- c. Application

Si la suite de réels positifs (α_n) converge vers un réel non nul l (donc $\alpha_n \sim l$), donner un équivalent, au voisinage de 1^- , de f(x).

3. Soit la fonction f définie sur]-1,1[par : $f(x)=\sum_{n=0}^{+\infty}a_n \ x^n$ où (a_n) est une suite de réels positifs et vérifiant (2) : $\sum_{k=0}^{n}a_k \sim n$.

a. Déterminer le développement en série entière au voisinage de 0 de la fonction

$$x \mapsto \frac{1}{1-x} \sum_{n=0}^{+\infty} a_n \ x^n \ .$$

On précisera le rayon de convergence de ce développement en série entière.

- **b.** Déterminer un équivalent au voisinage de 1⁻ de la fonction $x \mapsto \frac{1}{1-x} \sum_{n=0}^{+\infty} a_n x^n$.
- **c.** Conclure que $\lim_{x \to \Gamma} (1-x) f(x) = 1$.

DEUXIEME PARTIE

Soit la fonction f définie sur]-1,1[par : $f(x)=\sum_{n=0}^{+\infty}a_n\ x^n$ où (a_n) est une suite de réels positifs et vérifiant $(1):\lim_{x\to 1^-}(1-x)f(x)=1$.

On notera \mathcal{Z} l'espace vectoriel des applications bornées de [0,1] dans \mathbb{R} muni de la norme de la convergence uniforme notée $\| \cdot \|_{\infty}$: pour $f \in \mathcal{Z}$, $\| f \|_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

4. Si $g \in \mathcal{B}$, justifier que pour $x \in [0, 1[$, la série $\sum_{n \ge 0} a_n x^n g(x^n)$ converge.

On notera pour g élément de \mathcal{E} et $x \in [0, 1[, S(g)(x) = (1-x)\sum_{n=0}^{+\infty} a_n x^n g(x^n)]$.

On considère l'ensemble E des éléments de \mathcal{E} pour lesquels la fonction S(g) admet une limite finie lorsque x tend vers 1 par valeurs inférieures et, pour g élément de E, on posera $l(g) = \lim_{x \to 1^-} S(g)(x)$.

5. Propriétés

- **a.** Si $k \in \mathbb{N}$ et $g_k : x \mapsto x^k$, calculer $l(g_k)$. Ensuite comparer le résultat avec $\int_0^1 x^k dx$.
- **b.** Montrer que E est un \mathbb{R} -espace vectoriel et que l'application l:E dans \mathbb{R} définie par $g\mapsto l(g)$ est linéaire.
- **c.** Montrer que l'application l est continue (E est muni de $\| \|_{\infty}$) et calculer $\| l \|_{\infty}$
- 6. Si g est une fonction continue sur [0,1], montrer que l(g) existe et que $l(g) = \int_{0}^{1} g(x) dx$.

On pourra utiliser le théorème de Weierstrass suivant : toute fonction continue sur un segment est limite uniforme sur ce segment d'une suite de fonctions polynômes.

7. On considère la fonction h élément de \mathcal{E} définie par :

$$h(x) = 0$$
 pour $x \in \left[0, \frac{1}{e}\right]$ et $h(x) = \frac{1}{x}$ pour $x \in \left[\frac{1}{e}, 1\right]$.

On choisit un réel $\varepsilon \in \left]0, \frac{1}{e}\right[$.

a. On désigne par a_{ε} la fonction continue sur $\left[0,1\right]$ qui coïncide avec h sur les intervalles $\left[0,\frac{1}{\mathrm{e}}\right]$ et $\left[\frac{1}{\mathrm{e}}+\varepsilon,1\right]$ et qui est affine sur l'intervalle $\left[\frac{1}{\mathrm{e}},\frac{1}{\mathrm{e}}+\varepsilon\right]$ et on désigne par b_{ε} la fonction continue sur $\left[0,1\right]$ qui coïncide avec h sur les intervalles $\left[0,\frac{1}{\mathrm{e}}-\varepsilon\right]$ et $\left[\frac{1}{\mathrm{e}},1\right]$ et qui est affine sur l'intervalle $\left[\frac{1}{\mathrm{e}}-\varepsilon,\frac{1}{\mathrm{e}}\right]$.

On a ainsi $a_{\varepsilon} \le h \le b_{\varepsilon}$: construire les trois fonctions définies sur [0,1].

Uniquement à l'aide de la figure et par des considérations d'aires de triangles, déterminer une constante λ telle que :

$$\int_0^1 b_{\varepsilon}(x) dx = \int_0^1 h(x) dx + \lambda \varepsilon \text{ et } \int_0^1 a_{\varepsilon}(x) dx \ge \int_0^1 h(x) dx - \lambda \varepsilon.$$

b. Montrer qu'il existe un réel $\alpha \in [0, 1[$ tel que pour tout réel $x \in [\alpha, 1[$ on ait :

$$-\varepsilon + l(a_{\varepsilon}) \le S(a_{\varepsilon})(x) \le S(h)(x) \le S(b_{\varepsilon})(x) \le \varepsilon + l(b_{\varepsilon}).$$

- **c.** Conclure que la fonction $h \in E$ et déterminer l(h).
- **d.** Pour N entier naturel non nul, déterminer S(h) ($e^{\frac{-1}{N}}$) et en déduire que : $S_N = \sum_{n=0}^N a_n \sim N$.
- **8.** Application

Proposer, en utilisant la question **3. c.**, une démonstration du théorème de Cesàro : si la suite de réels (u_n) converge vers un réel l non nul alors la suite $\left(\frac{u_0+u_1+...+u_n}{n+1}\right)$ converge vers l.

9. Déterminer la nature de la série $\sum_{n\geq 1} u_n$ avec, pour $n\geq 1$, $u_n=\frac{1}{\sum_{k=1}^n \sqrt[k]{k}}$.
