Půlsemestrální zkouška ISS, 21.10.2016, BIA, zadání G

Login: Příjmení a jméno: Podpis: Odpis:

Příklad 1 Číslicový filtr má diferenční rovnici: y[n] = x[n] + 0.5y[n-2]. Nakreslete jeho schema.

Příklad 2 Doplňte funkci v jazyce C tak, aby implementovala filtr z příkladu 1. Funkce se volá pro každý vzorek x[n], výstupem je vzorek y[n]. Nezapomeňte na statické proměnné, pokud jsou potřeba.

```
float filter (float xn) {
```

```
return yn;
}
```

Příklad 3 Napište impulsní odezvu h[n] filtru z příkladu 1 pro $n=0\dots 6$.

Příklad 4 Filtrem z příkladu 1 filtrujte zadaný vstupní signál x[n]. Výsledek zapište do tabulky. Předpokládejte, že paměti filtru jsou před spuštěním vynulované.

n	-2	-1	0	1	2	3	4	5
x[n]	0	0	1	0	1	0	0	0
y[n]								

Příklad 5 Impulsní odezva filtru je 50 vzorků dlouhá. Pro $n \in 0...49$ je dána jako $h[n] = \sin(\pi \frac{1}{50}n)\cos(2\pi \frac{10}{50}n)$ a je zobrazena na obrázku. Odhadněte, jak budete vypadat frekvenční charakteristika takového filtru a buď ji popište slovně nebo nakreslete. Vzorkovací frekvence je $F_s = 50$ kHz.

Příklad 6 Diskrétní cosinusovka je definována $x[n] = \cos(2\pi 0.02n)$. Určete, kolik period vykoná tato cosinusovka za N=100 vzorků.

..... period.

Příklad 7 Na obrázku jsou neznámý signál x[n] a báze (nebo analyzační signál) a[n], oba o délce N=40. Určete hodnotu koeficientu $c=\sum_{n=0}^{N-1}x[n]a[n]$.

c =

Příklad 8 Nakreslete průběh reálné a imaginární složky komplexní exponenciály $a[n] = e^{-j2\pi \frac{k}{N}n}$ pro N=50 a k=1 v závislosti na n. Kreslete **samostatně** do dvou obrázků jako spojité funkce.

Příklad 9 V Matlabu je definován počet vzorků N a vzorkovací frekvence Fs. Doplňte kód tak, aby se spektrum signálu zobrazilo s normovanou frekvencí na vodorovné ose.

$$X = fft(x);$$

plot (fn,abs(X));

Příklad 10 Při výpočtu spektra pomocí diskrétní Fourierovy transformace s počtem vzorků N obvykle zobrazujeme koeficienty X[k] pouze pro $k=0\ldots\frac{N}{2}$. Proč nezobrazujeme i druhou polovinu koeficientů X[k]?