

Instituto Federal de Educação, Ciência e Tecnologia da Bahia - IFBA
Departamento de Informática
Integrado / Análise e Desenvolvimento de Sistemas / Licenciatura em Computação

Conceitos Básicos de Banco de Dados - PARTE 1

André L. R. Madureira <andre.madureira@ifba.edu.br>
Doutorando em Ciência da Computação (UFBA)
Mestre em Ciência da Computação (UFBA)
Engenheiro da Computação (UFBA)

Importância do gerenciamento de dados

- Sistemas necessitam de armazenamento de dados
 - Você precisa dar suporte a esses sistemas
 - o Como você vai fazer isso?

Armazenamento de dados

- Quase todo programa precisa armazenar dados
- Como você vai armazenar dados em seu programa?
 - Sistemas legados: dados são armazenados em vários arquivos separados por vários programas

 Sistemas DBMS: dados armazenados usando um software DBMS que gerencia a gravação e leitura das informações

Sistemas legados não são uma escolha razoável

- Sistemas legados possuem alguns problemas
 - Redundância e Inconsistência de dados
 - Integridade de dados
 - Atomicidade
 - Acesso concorrente

Redundância e Consumo de Espaço

Redundância: Temos mais de um arquivo com mesmo conteúdo

Aumento no consumo de espaço em disco

Redundância e Inconsistência de dados

Redundância: Temos mais de um arquivo com mesmo conteúdo

Inconsistência de dados:

um programa pode alterar um dos arquivos sem alterar o outro

Problemas de Integridade

Falhas durante a gravação de dados podem ocasionar perdas de dados

Problemas de Atomicidade

Nos sistemas legados não temos como garantir que um conjunto de operações foi executado com sucesso.

Também não temos como garantir que, caso uma das operações falhe, todas as outras operações que foram executadas sejam desfeitas.

Como um DBMS resolve o problema da atomicidade?

Sistemas DBMS possuem transações!

Transação:

Conjunto de operações que devem ser executadas juntas.

Transações possuem a propriedade de atomicidade:

Ou todas as operações que pertencem a uma transação são realizadas com sucesso, ou nenhuma delas será executada!

Exemplo de Transação Bancária

Suponha que a operação "Registrar movimento no DB" falhou:

Logo todas as operações da transação (ex: "Sacar dinheiro") não devem ser executadas

Problemas com o Acesso Concorrente

João e Maria atrapalham um ao outro

O acesso simultâneo a dados não é suportado em sistemas legados!

Sistemas de gerenciamento de bancos de dados (SGBDs ou DBMSs)

- Sistemas que solucionam os problemas dos sistemas legados
- SGBDs são capazes de definir, construir, manipular, compartilhar, e proteger informações em bancos de dados, controlando o acesso de diversos usuários e aplicações

Definição de um banco de dados

- Envolve especificar os tipos, estruturas e restrições dos dados a serem armazenados
 - Essa especificação é denominada de metadados
- Ex:
- CPF é um número inteiro (tipo de dados *INTEGER*)
- CPF pertence a uma pessoa (é um atributo de pessoa)
- CPF deve ser único para cada pessoa (restrição sobre o atributo)

13

Construção do banco de dados

- É o processo de armazenar os dados em algum meio controlado pelo SGBD
 - Ex: tabelas, classes e objetos, arquivos XML ou JSON

ALUNO

Nome	Numero_aluno	Tipo_aluno	Curso
Silva	17	1	CC
Braga	8	2	CC

```
"nome": "Bruno",
"sobrenome": null,
"idade": 20,
"ativo": true,
"endereco": {
    "rua": "Rua Vinte e Um de Abril",
    "numero": 18
},
"turmas": [
"Programação Orientada a Objetos",
"Lógica de Programação"
]
```

Manipulação do banco de dados

- Inclui funções como:
 - Consulta ao banco de dados para recuperar dados
 - Atualização de informações
 - Geração de relatórios
- Ex: Busque pelos alunos matriculados na disciplina "Geografia"
- Ex: Atualize as notas dos alunos da disciplina "Geografia" para 6,0

Compartilhamento de dados

- Permite que diversos usuários e programas acessem o banco de dados simultaneamente
 - Ex: O banco de dados de uma grande empresa como o Banco do Brasil é acessado por diversos funcionários (e clientes) ao mesmo tempo
 - SGBD controla quando cada usuário pode acessar dados para evitar problemas de integridade

Proteção de dados

Recurso que controla quais usuários e programas podem acessar determinadas informações do banco de dados

Ex: Gerentes de banco podem consultar o extrato das contas,

mas eles não podem alterar a senha dos clientes

Valor

Proteção de dados

- Esse recurso também define que operações cada usuário pode realizar sobre o banco de dados
 - Ex: Gerente pode realizar um empréstimo, enquanto que um cliente pode realizar um saque no caixa eletrônico

Manutenção dos dados

- SGBDs possuem mecanismos para recuperação do banco de dados, seja devido a uma falha ou operação indevida realizada por um usuário
 - Logs de transação
 - Backup e Recuperação
 - Online ou Offline (feito com o DB em execução ou parado)
 - On-site ou Off-site (guardado no mesmo local físico onde o DB está instalado ou fora dele)

Exemplo de Banco de Dados de uma Universidade

DISCIPLINA

Nome_ disciplina	Numero_ disciplina	Creditos	Departamento
Introd. à ciência da computação	CC1310	4	CC
Estruturas de dados	CC3320	4	CC
Matemática discreta	MAT2410	3	MAT
Banco de dados	CC3380	3	CC

ALUNO

Nome	Numero_aluno	Tipo_aluno	Curso
Silva	17	1	CC
Braga	8	2	CC

TURMA

Identificacao_ turma	Numero_ disciplina	Semestre	Ano	Professor
85	MAT2410	Segundo	07	Kleber
92	CC1310	Segundo	07	Anderson
102	CC3320	Primeiro	08	Carlos
112	MAT2410	Segundo	08	Chang
119	CC1310	Segundo	08	Anderson
135	OC3380	Segundo	08	Santos

HISTORICO_ESCOLAR

Numero_aluno	Identificacao_turma	Nota
17	112	В
17	119	C
8	85	Α

Tipos de Usuários de SGBDs

- SGBDs possuem diversos tipos de usuários, cada um com necessidades específicas:
 - Administradores de bancos de dados (DBAs)
 - Projetistas de banco de dados
 - Usuários finais
 - Analistas de sistemas e Programadores de aplicações

Administradores de bancos de dados (*DBAs*)

 Supervisionam e gerenciam recursos do sistema, sendo responsáveis por:

- Autorizar o acesso ao DB para outros usuários
- Coordenar e monitorar o uso do DB
- Adquirir recursos de software e hardware
- Corrigir falhas na segurança
- Melhorar o desempenho do sistema (tempo de resposta)

Projetistas de bancos de dados

Analytics have become frame to common the log Cod

- São responsáveis por:
 - Identificar os dados a serem armazenados
 - Escolher estruturas apropriadas para representar e armazenar esses dados
- Se comunicam com os usuários finais do sistema para:
 - Entender as necessidades de todos os usuários
 - Criar um projeto de DB que atenda a todas as demandas

- São pessoas cujas funções exigem acesso ao banco de dados para:
 - Realizar consultas
 - Atualizar dados
 - Gerar relatórios
- Ex: Alunos e professores do IFBA
- Ex: Clientes e gerentes de um banco
- Ex: Caixas e gerentes de supermercado

- Podem ser classificados como:
 - Usuários finais casuais:
 - Ocasionalmente acessam o banco de dados

- Podem ser classificados como:
 - Usuários finais casuais:
 - Ocasionalmente acessam o banco de dados
 - Usuários finais iniciantes:

Consultam e atualizam o banco de dados constantemente

- Podem ser classificados como:
 - Usuários finais casuais:
 - Ocasionalmente acessam o banco de dados
 - Usuários finais iniciantes:
 - Consultam e atualizam o banco de dados constantemente
 - Usuários finais sofisticados (ou avançados):
 - Profundamente familiarizados com o SGBD
 - Podem implementar as próprias aplicações

Analistas de sistemas e Programadores de aplicações

Analistas de sistemas:

- o Identificam as necessidades dos usuários finais
- Definem as especificações do sistema

Analistas de sistemas e Programadores de aplicações

Analistas de sistemas:

- Identificam as necessidades dos usuários finais
- Definem as especificações do sistema

Programadores de aplicações:

- Implementam essas especificações como programas
- Testam, depuram, documentam e mantêm o sistema

Analistas de sistemas e Programadores de aplicações

Analistas de sistemas:

- Identificam as necessidades dos usuários finais
- Definem as especificações do sistema
- Programadores de aplicações:
 - Implementam essas especificações como programas
 - Testam, depuram, documentam e mantêm o sistema
- Ambos (analistas e programadores) precisam ter profundo conhecimento sobre os recursos fornecidos pelo SGBD

Armazenamento de informações em um BD

- Para armazenar dados precisamos de estruturas de dados de alto desempenho
- Estruturas de dados: Formas de organizar e manipular dados
 - Essas estruturas geralmente são complexas (difíceis de

manipular)

 Como organizar os dados que serão armazenados?

Estruturas de dados e Alto desempenho

Problema:

- Uso de estruturas de dados complexas dificulta o acesso aos dados
- Usuários não necessariamente precisam conhecer detalhes de implementação do DB para ter acesso aos dados

Solução:

 Simplificar o uso do SGBD e o acesso às estruturas de dados

View ProximosVoos

Cia Aerea	Horario
Latam	11:10
Gol	11:15
Azul	11:20

View Empresa

Cia Aerea	Itinerarios	
Latam	95	
Gol	87	
Azul	92	

Nível de View

Tabela ProximosVoos

Cia Aerea	Horario	Preço
Latam	11:10	R\$ 100
Gol	11:15	R\$ 110
Azul	11:20	R\$ 95

Tabela Empresa

		•	
Cia Aerea	Funcionarios	Aviões	Itinerarios
Latam	1200	20	95
Gol	2000	35	87
Azul	1800	26	92

Nível Lógico

Nível Físico

Níveis de Abstração

Nível de view (ou externo):

- Que dados um usuário deve ter acesso
- Nível lógico (ou conceitual):
 - Quais dados estão armazenados
 no banco de dados e as suas relações
- Nível físico (ou interno):

Como os dados são armazenados

View ProximosVoos

Cia Aerea	Horario
Latam	11:10
Gol	11:15
Azul	11:20

Nível de View

Tabela ProximosVoos

Cia Aerea	Horario	Preço
Latam	11:10	R\$ 100
Gol	11:15	R\$ 110
Azul	11:20	R\$ 95

Nível Lógico

Nível Físico

Instância x Esquema

Esquema

Instâncias

Esquema:

Estrutura (Projeto) do banco de dados (DB)

Raramente muda

Instância:

Informações armazenadas no DB.

Muda com frequência

Níveis de Abstração de Esquemas

View ProximosVoos

Cia Aerea	Horario
Latam	11:10
Gol	11:15
Azul	11:20

Nível de View

Esquema

- Esquema físico
 - Descreve o nível físico
- Esquema lógico
 - Descreve o nível lógico
- Esquema de view
 - Descreve o nível de view

Tabela ProximosVoos

Cia Aerea	Horario	Preço
Latam	11:10	R\$ 100
Gol	11:15	R\$ 110
Azul	11:20	R\$ 95

Nível Lógico

Nível Físico

Abstração e Independência de Dados

- Os níveis de abstração facilitam o acesso e uso do DB pelos usuários
 - Para isso precisamos que haja independência de dados
- Essa independência pode ser classificada em:
 - Independência de dados física
 - Independência de dados lógica

Independência de Dados Física 🐧 💓 💠

- Habilidade de mudar o esquema físico sem incorrer em alterações no esquema lógico
- Ex: compressão de dados, criptografia, índices, hashing, etc

Nível lógico não precisa mudar seu acesso aos dados

Exemplo de Independência de Dados Física

	Gerente				
id nome cpf agencia		agencia	conta_gerenciada		
1	Juan	111.222.333-44	4200	51002	
2	Hebert	555.666.777-88	7171	95620	
3	Claudia	123.456.789-00	1952	61230	

Nível lógico

Se eu ativar a compressão de dados no nível físico, não preciso alterar nada no nível lógico.

Nível físico

Independência de Dados Lógica node

- Habilidade de alterar o esquema lógico sem incorrer em mudanças no esquema de view
- Ex: adicionar campos, tabelas, etc

Aplicação não precisa mudar seu acesso aos dados

Não precisamos reescrever a aplicação quando o esquema de view é modificado

Exemplo de Independência de Dados Lógica

Gerente			
id nome conta_gerenciad			
1	Juan	51002	
2 Hebert 95620		95620	
3	Claudia	61230	

Nível de view

	Gerente				
id	nome	cpf	agencia	conta_gerenciada	
1	Juan	111.222.333-44	4200	51002	
2	Hebert	555.666.777-88	7171	95620	
3	Claudia	123.456.789-00	1952	61230	

Se eu remover o atributo "agência" ou "cpf", não preciso alterar nada no nível de view

Nível de lógico

Exemplo de Independência de Dados Lógica

Gerente			
id nome conta_gerencia			
1	Juan	51002	
2 Hebert		95620	
3	Claudia	61230	

Nível de view

id	nome	cpf	agencia	conta_gerenciada	supervisor
1	Juan	111.222.333-44	4200	51002	João
2	Hebert	555.666.777-88	7171	95620	Maria
3	Claudia	123.456.789-00	1952	61230	Kleber

Se eu adicionar um atributo como "supervisor", não preciso alterar nada no nível de view

Nível de lógico

Exemplo de **Ausência** de Independência de Dados Lógica

Gerente			
id nome conta_gerenciad			
1	Juan	51002	
2 Hebert 95620		95620	
3	Claudia	61230	

Nível de view

	Gerente				
id	nome	cpf	agencia	conta_gerenciada	
1	Juan	111.222.333-44	4200	51002	
2	Hebert	555.666.777-88	7171	95620	
3	Claudia	123.456.789-00	1952	61230	

Se eu remover o atributo

"conta_gerenciada" precisarei
alterar o nível de view.

Logo NAO temos independência
lógica nesse caso.

Nível de lógico

Referencial Bibliográfico

 KORTH, H.; SILBERSCHATZ, A.; SUDARSHAN, S.
 Sistemas de bancos de dados. 5. ed. Rio de Janeiro: Ed. Campus, 2006.

 DATE, C. J. Introdução a sistemas de bancos de dados. Rio de Janeiro: Ed. Campus, 2004. Tradução da 8ª edição americana.