Neural Machine Translation (NMT)

Presenter: Noriyuki Kojima

Date: 2017/10/3

Machine Translation (MT)

"sub-field of computational linguistics that investigates **the use of software** to translate text or speech from one language to another."

By wikipedia

What software is available for MT

- Simple Word Replacement
 - Apparent Low Accuracy
- Phrase-based Translation (Corpus Statistics)
 - N-Gram and EM-algorithm, it is not terrible ...
- Neural Machine Translation
 - Use of Neural Network, best performance (En-Fr)
 VS
- Human Translation

Steps to understand NMT

- 1. Encoder-Decoder
- 2. Attention-Based Encoder-Decoder
- 3. Bi-directional Encoder-Decoder
- 4. Depth
- 5. Testing (Beam Search)
- 6. Cool New Models of NMT

1.Encoder-Decoder

- Encoding?/ Decoding?
- Hidden state

1.Encoder-Decoder

- Recurrent Neural Network
- Recurrent Cell Unit (Mi-LSTM/LSTM/GRU)
 - Capture the dependency of a sequence as Memory
 - Three components
 - Memory (hidden state) + Input → New Memory
 - Input Gate, Output Gate, Forget Gate
 - Parameter Sharing

Good Resource: https://theneuralperspective.com/2016/11/17/recurrent-neural-network-rnn-part-4-custom-cells/

2. Attention-Based Encoder-Decoder

- Problem of RNN: Vanishing Gradients
- Solution: Attention!!!

3.Bi-directional Encoder-Decoder

- Capture the full context
 - "I have a car" or Arabic

4.Depth

- Depth sometimes help..... (but not always)
- GNMT

5. Beam Search (Testing)

Recall output of Decoder is probability of word.....

Need to calculate probability of sequence

→ Beam Search!!

5. Beam Search (Testing)

	/s						
Probability	1						
	I	He	She				
Probability	0.4	0.1	0.5				
	Have	Run	Have		Has	Run	Have
Probability	0.1	0.7	0.2	Probability	0.5	0.45	0.05

$$P(Top1) = P(/s | Run) = 1* 0.4 * 0.7 = 0.28$$

 $P(Top2) = P(/s | She | has) = 1* 0.5 * 0.5 = 0.25$

$$P(Top3) = P (/s She Run) = 1* 0.5 *0.45 = 0.225$$

.

6. Cool New Models

FAIR CNN encoder-(decoder)

6. Cool New NMTs

- Google's Multilingual NMT (Johnson et al., 2017)
 - Many to one, one to many, many to many
- Adverserial NMT (Wu et al., 2017)
 - GANs for NMT
- Learning to Translate in Real-time with NMT (Gu et al., 2017)
 - Reinforcement Learning for NMT
- Context aware, low-resource, BLUE, Ensemble and etc...

Thank you for listening!!!