## 50. Regression algorithms o Decision Tree Regressor o Random Forest Regressor o Support Vector Regression

```
In [11]: import pandas as p
          from sklearn.metrics import r2_score
          from sklearn.model selection import train test split
          # Breast cancer dataset
          data = p.read_csv("breast-cancer.csv")
          data.info()
          data.drop(["id"],axis=1,inplace=True)
          M=data[data.diagnosis=="M"]
          B=data[data.diagnosis=="B"]
          data.diagnosis=[1 if i == "M" else 0 for i in data.diagnosis]
          x=data.drop(["diagnosis"],axis=1)
          y=data.diagnosis.values
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42)
          from sklearn.tree import DecisionTreeRegressor
          model=DecisionTreeRegressor()
          model.fit(x_train,y_train)
          y pred=model.predict(x test)
          print("\nAccuracy of the model using Decision tree regression algorithm is ",r2 score(y test,y pred))
          \textbf{from} \  \, \textbf{sklearn.ensemble} \  \, \textbf{import} \  \, \textbf{RandomForestRegressor}
          model1 = RandomForestRegressor()
          model1.fit(x_train,y_train)
          y_pred1 = model1.predict(x_test)
          print("\nAccuracy of the model using Random forest regression algorithm is ",r2_score(y_test,y_pred1))
          from sklearn.svm import SVR
          model2 = SVR(kernel='rbf')
          model2.fit(x_train,y_train)
          y pred2 = model2.predict(x test)
          print("\nAccuracy of the model using Support vector regression algorithm is ",r2_score(y_test,y_pred2))
```

```
RangeIndex: 569 entries, 0 to 568
Data columns (total 32 columns):
 # Column
                                                                    Non-Null Count Dtype
 0 id
                                                                  569 non-null int64
                                                                 569 non-null object
569 non-null float64
569 non-null float64
        diagnosis
radius_mean
 1
 3 texture_mean
4 perimeter_mean 569 non-null float64
5 area_mean 569 non-null float64
6 smoothness_mean 569 non-null float64
7 compactness_mean 569 non-null float64
8 concavity_mean 569 non-null float64
9 concave points_mean 569 non-null float64
10 symmetry_mean 569 non-null float64
11 fractal_dimension_mean 569 non-null float64
 11 fractal dimension mean 569 non-null float64
                                         569 non-null float64
 12 radius se
13 texture_se 569 non-null float64
14 perimeter_se 569 non-null float64
15 area_se 569 non-null float64
16 smoothness_se 569 non-null float64
17 compactness_se 569 non-null float64
18 concavity_se 569 non-null float64
19 concave points_se 569 non-null float64
20 symmetry_se 569 non-null float64
21 fractal_dimension_se 569 non-null float64
22 radius_worst 569 non-null float64
23 texture_worst 569 non-null float64
24 perimeter_worst 569 non-null float64
25 area_worst 569 non-null float64
26 smoothness_worst 569 non-null float64
27 compactness_worst 569 non-null float64
28 concavity_worst 569 non-null float64
29 concave points_worst 569 non-null float64
30 symmetry_worst 569 non-null float64
31 fractal_dimension_worst 569 non-null float64
31 fractal_dimension_worst 569 non-null float64
 13 texture_se
                                                                    569 non-null
                                                                                                           float64
 31 fractal dimension worst 569 non-null
                                                                                                           float64
dtypes: float64(30), int64(1), object(1)
memory usage: 142.4+ KB
Accuracy of the model using Decision tree regression algorithm is 0.6984126984126984
Accuracy of the model using Random forest regression algorithm is 0.852717328042328
```

Accuracy of the model using Support vector regression algorithm is 0.8114302960086689

<class 'pandas.core.frame.DataFrame'>

## 51. Build decision tree-based model for Breast Cancer Wisconsin (diagnostic) dataset.[Classifier]

```
In [16]: import numpy as n
         import pandas as p
         import seaborn as s
         import matplotlib.pyplot as m
         from sklearn.metrics import r2_score
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.model selection import train test split
         from sklearn.metrics import accuracy score,confusion matrix
         data = p.read csv("breast-cancer.csv")
         data.info()
         data.drop(["id"],axis=1,inplace=True)
         M=data[data.diagnosis=="M"]
         B=data[data.diagnosis=="B"]
         m.title("Malignant vs Benign Tumor")
         m.xlabel("Radius Mean"); m.ylabel("Texture Mean")
         m.scatter(M.radius mean,M.texture mean,color='red',label='Malignant',alpha=0.3)
         m.scatter(B.radius mean, B.texture mean, color='lime', label='Bengin', alpha=0.4)
         m.legend(); m.show()
         data.diagnosis=[1 if i == "M" else 0 for i in data.diagnosis]
         x=data.drop(["diagnosis"],axis=1)
         y=data.diagnosis.values
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=42)
         dt=DecisionTreeClassifier()
         dt.fit(x train,y train)
         y_pred=dt.predict(x_test)
         #Confusion Matrix
```

```
cm = confusion_matrix(y_test,y_pred)
s.heatmap(cm,annot=True,fmt='d',cmap="Blues")
m.title("Confusion matrics ")
m.show()
print("Accuracy of the classifier model is",accuracy_score(y_test,y_pred))
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 32 columns):

| #                                        | Column                             | Non-Null Count | Dtype   |
|------------------------------------------|------------------------------------|----------------|---------|
| 0                                        | id                                 | 569 non-null   | int64   |
| 1                                        | diagnosis                          | 569 non-null   | object  |
| 2                                        | radius mean                        | 569 non-null   | float64 |
| 3                                        | texture mean                       | 569 non-null   | float64 |
| 4                                        | perimeter mean                     | 569 non-null   | float64 |
| 5                                        | area_mean                          | 569 non-null   | float64 |
| 6                                        | smoothness_mean                    | 569 non-null   | float64 |
| 7                                        | compactness_mean                   | 569 non-null   | float64 |
| 8                                        | concavity_mean                     | 569 non-null   | float64 |
| 9                                        | concave points_mean                | 569 non-null   | float64 |
| 10                                       | symmetry_mean                      | 569 non-null   | float64 |
| 11                                       | <pre>fractal_dimension_mean</pre>  | 569 non-null   | float64 |
| 12                                       | radius_se                          | 569 non-null   | float64 |
| 13                                       | texture_se                         | 569 non-null   | float64 |
| 14                                       | perimeter_se                       | 569 non-null   | float64 |
| 15                                       | area_se                            | 569 non-null   | float64 |
| 16                                       | smoothness_se                      | 569 non-null   | float64 |
| 17                                       | compactness_se                     | 569 non-null   | float64 |
| 18                                       | concavity_se                       | 569 non-null   | float64 |
| 19                                       | concave points_se                  | 569 non-null   | float64 |
| 20                                       | symmetry_se                        | 569 non-null   | float64 |
| 21                                       | <pre>fractal_dimension_se</pre>    | 569 non-null   | float64 |
| 22                                       | radius_worst                       | 569 non-null   | float64 |
| 23                                       | texture_worst                      | 569 non-null   | float64 |
| 24                                       | perimeter_worst                    | 569 non-null   | float64 |
| 25                                       | area_worst                         | 569 non-null   | float64 |
| 26                                       | smoothness_worst                   | 569 non-null   | float64 |
| 27                                       | compactness_worst                  | 569 non-null   | float64 |
| 28                                       | concavity_worst                    | 569 non-null   | float64 |
| 29                                       | concave points_worst               | 569 non-null   | float64 |
| 30                                       | symmetry_worst                     | 569 non-null   | float64 |
| 31                                       | <pre>fractal_dimension_worst</pre> |                | float64 |
| dtypes: float64(30), int64(1), object(1) |                                    |                |         |
| memory usage: 142 4+ KB                  |                                    |                |         |

memory usage: 142.4+ KB

## Malignant vs Benign Tumor





Accuracy of the classifier model is 0.935672514619883

In [ ]:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js