FIRST:

Making the 3d drawing with calculating all the required measurements and assembling all the part successfully

SECOND:

Making the 2d drawings with annotation all the measurements and showing the wielding and the fit clearance with specific positions

THIRD: Now After finishing the drawings I made the Parts list using Inventor With calculating all the masses required

Item	Part Number	Material	part	Q.	weight	Comment
1	Holding block	AlSiMg05	1	2	8.7 g	
2	sensor	Normal	1	5		
3	upper jaw	AlSiMg05	1	1	1633 g	
4	lower jaw	AlSiMg05	1		1569 g	
5	HBN-20/25X2	C45	3		237 g	
6	GRLA-1/8-QS-8-D	Wrought aluminum alloy	1		22 g	
7	DSNU-20-250-PPV-A	High-alloy stainless steel	2		186.8 g	
8	SGS-M10X1,25	Steel, galvanized	2		88 g	
9	SME-8M-DS-24V-K-0,3-M8D	High-alloy stainless steel	8		8.9 g	
10	SMBR-8-25	Wrought aluminum alloy	4	2		
11	LBN-20/25	Steel	4	1	84 g	
12	valve terminal	NBR, HNBR	38	1		
13	HGPL-40-100-A-B	Wrought aluminum alloy	14	1	5340 g	
14	DSNU-16-100-PPV-A	High-alloy stainless steel	2	1	89.9 g	
15	MSB4 (Air valve)	Die-cast aluminum	8		1500 g	
16	sensor holder	S235	1	5	75 g	
17	Jaw box holder	AlSiMg05	1	1	3,039 g	
18	Jaw box	AlSiMg05	1	1	3884 g	
22	TRS-V	C45	1	9	234 g	
20	DYSW-10-17 holder	S235	1	2	7.3 g	
21	Linear rails	C45	1	9	186 g	
22	Rod 1	S235	1	2	6488 g	
23	Rod 2	S235	1	2	1804 g	
24	Rod 3	S235	1	1	7,411 g	
25	Rod 4	S235	1	2	6,494 g	
26	Rod 5	S235	1	4	603 g	
27	Rod 6	S235	1	2	840 g	
28	DYSW-10-17	High-alloy steel	1	2	67 g	
29	hexalobular M3	Stainless Steel A2	1	4		
30	Fillister Head Machine Screw M4	Stainless Steel A2	1	24		
31	SELF TAPPING SCREW 1/4	C45	1			
32	HEX BOIT M3	Stainless Steel A2	1	4		

FINALLY

After finishing measuring and calculating the machine now simulating the Actors for checking the safety and considering the lifespan of the piece and reaching the quickest movement with the highest efficiency possible:

FESTO **FESTO** Input values - system parameters 13.3 kg Moving mass Air supply pressure 6 bar 0 deg 0.74 Bill of materials DSNU-16-100-PPV-A 19232 Cylinder Flow control valve GRLA-M5-QS-4-D 193138 Settings: Flow rate 3.2 VUVG-L10-M52-RT-M5-1P3 Acceleration Silencer PUN-4x0,75-BL QSM-M5-4 PUN-4x0,75-BL 159662 153304 159662 Tubing [Cyl. > Valve] Fitting 1 Tubing length -2,07 Tubing [air supply > valve] Tubing length 1 m 0,3 0,9 1,2 QSM-M5-4 153304 Calculated results 0.086 m/s Total positioning time 0.995 s Impact speed Average speed Air Consumption per Cycle PPV settings 0.080 m/s 0.186 m/s 0.291 l 100 % Kinetic impact energy 0.0501 2,5 0.17 0,3 0.9 1,2 0,11 ot guarantee the suitability of any equipment ordered pursuant to the use of this software for any particular ss that purpose has been fully explained to Festo.
is software should not be relied upon for the determination of any characteristics which can be otherwise

0,3

ly verified.

THANK YOU FOR THE CONSIDERATION