MAT02025 - Amostragem 1

AAS: estimativa de um índice

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2022

Relembrando

No sentido mais simples do termo, podemos dizer que um **número índice** é um quociente que expressa uma dada quantidade em comparação a uma **quantidade base**. Em outras palavras, são **valores relativos**.

- Frequentemente, a quantidade que deve ser estimada a partir de uma amostra aleatória simples é a razão de duas variáveis, ambas as quais variam de unidade para unidade.
- Em um levantamento por amostragem domiciliar, alguns exemplos são:
 - o número de aparelhos de celular por residente (o número de celulares e residentes variam de domicílio para domicílio);
 - a despesa com aplicativos de transporte por residente adulto;
 - o número médio de horas por semana gastas assistindo programas no serviço de streaming por criança de 10 a 15 anos.

- A fim de estimar a primeira dessas quantidades, registraríamos para o *i*-ésimo domicílio (i = 1, 2, ..., n) o número de residentes X_i que ali vivem e o número total de aparelhos de celular Y_i que eles possuem.
- ► O parâmetro da população a ser estimado é a razão (ou índice)

$$R = \frac{\text{número total de aparelhos de celular}}{\text{número total de residentes}} = \frac{\sum_{i=1}^{N} Y_i}{\sum_{i=1}^{N} X_i}.$$

► A estimativa amostral correspondente é

$$\widehat{R} = \frac{\sum_{i=1}^{n} Y_i}{\sum_{i=1}^{n} X_i} = \frac{\overline{y}}{\overline{x}}.$$

- Exemplos dessa natureza ocorrem, frequentemente, quando a unidade de amostragem (no caso o domicílio) compreende um grupo ou um conjunto de elementos (residentes) e nosso interesse está no valor médio da população por elemento.
- Os índices também aparecem em muitas outras aplicações, como, por exemplo
 - o índice de empréstimos para construções imobiliárias no total de empréstimos de um banco;
 - ou índice de acres plantados com trigo, no total de acres cultivados de uma fazenda:
 - ou índice de casos de diabetes não diagnosticado, no total de casos de diabetes.

Epidemiology/Health Services Research

ORIGINAL ARTICLE

Prevalence of Diabetes and High Risk for Diabetes Using A1C Criteria in the U.S. Population in 1988–2006

CATHERINE C. COWIE, PHD¹
KEITH F. RUST, PHD²
DANITA D. BYRD-HOLT, BBA³
EDWARD W. GREGG, PHD⁴

EARL S. FORD, MD⁵ LINDA S. GEISS, MS⁴ KATHLEEN E. BAINBRIDGE, PHD³ JUDITH E. FRADKIN, MD¹ cal trials in type 1 and type 2 diabetic patients, which have established widely accepted AIC treatment goals for diabetes. A cut point of ≥6.5% for the diagnosis of diabetes was recommended by the

Prevalence of diabetes using A1C

Table 1—Crude prevalence of diagnosed diabetes, undiagnosed diabetes (AIC \geq 6.5%), total diabetes (diagnosed and undiagnosed combined), total diabetes that is undiagnosed, and at high risk for diabetes (AIC \geq 6.0 to <6.5%), by age, sex, and race/ethnicity: NHANES 2003–2006 (n = 13,094)

	Diagnosed diabetes	Undiagnosed diabetes	Total diabetes	Total diabetes that is undiagnosed	At high risk for diabetes
Combined age-groups (years) ≥12 ≥20	6.8 (6.1–7.5) 7.8 (7.0–8.6)	1.6 (1.2–1.9) 1.8 (1.4–2.2)	8.4 (7.6–9.2) 9.6 (8.7–10.5)	19.0 (15.2–22.7) 19.0 (15.2–22.7)	3.1 (2.7–3.4) 3.5 (3.0–3.9)
≥65	17.7 (15.6–19.7)	3.5 (2.6-4.3)	21.1 (18.7-23.5)	16.3 (12.9-19.8)	8.1 (6.6-9.6)

- A distribuição amostral de \widehat{R} é mais complicada que a de \overline{y} , porque tanto o numerador \overline{y} , quanto o denominador, \overline{x} , variam de amostra para amostra.
- ▶ Em **pequenas amostras**, a distribuição de \widehat{R} é assimétrica, e \widehat{R} é, geralmente, uma estimativa ligeiramente **enviesada** de R.
- Em grandes amostras, a distribuição de \widehat{R} tende à normalidade e o viés torna-se insignificante.

O seguinte resultado aproximado servirá para a maioria dos propósitos¹.

Teorema 14.1

Se as variáveis Y_i e X_i são medidas em cada unidade de uma amostra aleatória simples de tamanho n, que se presume grande, a variância de $\widehat{R} = \overline{y}/\overline{x}$ é, aproximadamente²,

$$\operatorname{Var}(\widehat{R}) \stackrel{\cdot}{=} \frac{1-f}{n\overline{X}^2} \frac{\sum_{i=1}^{N} (Y_i - RX_i)^2}{N-1},$$

em que $R = \overline{Y}/\overline{X}$ é o índice dos valores médios da população, e f = n/N é a fração de amostragem.

 $^{^{1}}$ A distribuição de \widehat{R} é estudada com mais detalhes no Capítulo 6 de Cochran (1965) e no Capítulo 5 de Bolfarine e Bussab (2005).

²O símbolo = indica "aproximadamente igual".

Demonstração. Note que

$$\widehat{R} - R = \frac{\overline{y}}{\overline{x}} - R = \frac{\overline{y} - R\overline{x}}{\overline{x}}.$$

- ▶ Se *n* é grande, \overline{x} não deve ser muito diferente de \overline{X} .
- Para evitar ter que calcular a distribuição da razão de duas variáveis aleatórias $\overline{y} R\overline{x}$ e \overline{x} , substituímos \overline{x} por \overline{X} no denominador da expressão acima **como uma aproximação**. Isso dá

$$\widehat{R} - R \doteq \frac{\overline{y} - R\overline{x}}{\overline{X}}.$$

Agora calcule a média de todas as amostras aleatórias simples de tamanho *n*:

$$\mathsf{E}(\widehat{R}-R) \stackrel{\cdot}{=} \frac{\mathsf{E}(\overline{y}-R\overline{x})}{\overline{X}} = \frac{\overline{Y}-R\overline{X}}{\overline{X}} = 0,$$

uma vez que $R = \overline{Y}/\overline{X}$.

lsso mostra que, para a ordem de aproximação usada aqui, \widehat{R} é uma estimativa não enviesada de R.

Da expressão aproximada, também obtemos

$$\operatorname{Var}(\widehat{R}) = \operatorname{E}(\widehat{R} - R)^2 \stackrel{\cdot}{=} \frac{1}{\overline{X}^2} \operatorname{E}(\overline{y} - R\overline{x})^2.$$

- A quantidade $\overline{y} R\overline{x}$ é a média amostral da variável $D_i = Y_i RX_i$, cuja média populacional, $\overline{D} = \overline{Y} R\overline{X}$, é igual a 0.
- Portanto, podemos encontrar $Var(\widehat{R})$ aplicando o teorema para a variância da média de uma amostra aleatória simples à variável D_i e dividindo por \overline{X}^2 .

► Isso dá

$$\operatorname{Var}(\widehat{R}) \stackrel{\cdot}{=} \frac{1}{\overline{X}^{2}} \operatorname{E}(\overline{y} - R\overline{x})^{2} = \frac{1}{\overline{X}^{2}} \frac{S_{D}^{2}}{n} (1 - f)$$

$$= \frac{1 - f}{n\overline{X}^{2}} \frac{\sum_{i=1}^{N} (D_{i} - \overline{D})^{2}}{N - 1} = \frac{1 - f}{n\overline{X}^{2}} \frac{\sum_{i=1}^{N} (Y_{i} - RX_{i})^{2}}{N - 1},$$

o que completa a demonstração.

► Como estimativa amostral de

$$\frac{\sum_{i=1}^{N} (Y_i - RX_i)^2}{N-1}$$

é comum tomarmos

$$\frac{\sum_{i=1}^{n} (Y_i - \widehat{R}X_i)^2}{n-1}.$$

▶ Pode-se demonstrar que essa estimativa tem um viés de ordem 1/n.³

 $^{^3}$ Ou seja, conforme $n \to \infty$ o viés decresce a zero mais rapidamente que a sequência 1/n. Ou, utilizando a notação $o(\cdot)$, temos que $Viés_n = o(n^{-1})$.

Para o erro padrão estimado de \hat{R} , temos

$$s_{\widehat{R}} = \frac{\sqrt{1-f}}{\sqrt{nX}} \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \widehat{R}X_i)^2}{n-1}}.$$

- ightharpoonup Se \overline{X} não é conhecido, a estimativa amostral \overline{x} o substitui no denominador da fórmula.
- Uma fórmula prática para calcular s

 é dada por

$$s_{\widehat{R}} = \frac{\sqrt{1-f}}{\sqrt{nX}} \sqrt{\frac{\sum_{i=1}^{n} Y_i^2 - 2\widehat{R} \sum_{i=1}^{n} Y_i X_i + \widehat{R}^2 \sum_{i=1}^{n} X_i^2}{n-1}}.$$

- A tabela a seguir mostra o número de pessoas (X_1) , a renda familiar semanal (X_2) e os gastos semanais com alimentação (Y) em uma amostra aleatória simples de 33 famílias de baixa renda.
- Como a amostra é pequena, os dados se destinam apenas a ilustrar os cálculos.

Tabela 1: Renda semanal e custo dos alimentos de 33 famílias

Número	Tamanho	Renda	Custo dos	Número	Tamanho	Renda	Custo dos
da família	(x_1)	(x_2)	alimentos (y)	da família	(x_1)	(x_2)	alimentos (y)
1	2	62	14,3	18	4	83	36,0
2	3	62	20,8	19	2	85	20,6
3	3	87	22,7	20	4	73	27,7
4	5	65	30,5	21	2	66	25,9
5	4	58	41,2	22	5	58	23,3
6	7	92	28,2	23	3	77	39,8
7	2	88	24,2	24	4	69	16,8
8	4	79	30,0	25	7	65	37,8
9	2	83	24,2	26	3	77	34,8
10	5	62	44,4	27	3	69	28,7
11	3	63	13,4	28	6	95	63,0
12	6	62	19,8	29	2	77	19,5
13	4	60	29,4	30	2	69	21,6
14	4	75	27,1	31	6	69	18,2
15	2	90	22,2	32	4	67	20,1
16	5	15	37,7	33	2	63	20,7
17	3	69	22,6				

- 1. Estime a partir da amostra
 - a. o gasto semanal médio com comida por família;
 - b. o gasto semanal médio com comida por pessoa;
 - c. a porcentagem da renda que é gasta com comida.
- Calcule os erros padrões dessas estimativas (pode ignorar as cpf).
- 3. Compartilhe os seus resultados no Fórum Geral do Moodle.

Próxima aula

Estimativa da média e do total em subpopulações.

Por hoje é só!

Bons estudos!

