Lecture 8 – 1-D Stability Analysis

Future: Dynamics & Stability & Species-coexistence

- 1-sp. models (limit-cycles & chaos)
- 2 spp. models (linear & non-linear models)
- 3 spp. models (indirect effects)
- n spp. models

= unstructured models (but methods apply to structured models too!)

Concepts:

Stable point-equilibrium vs. Stable limit cycles vs. Deterministic chaos Time-delays / Response-lags & Over- and under-compensation Formal local stability analysis

Quick review: Overlay on same three graphs

Discrete-time difference equation: $N_{t+1} = F(N_t)$

$$F(N_t) = N_t + r_d N_t \rightarrow \text{geometric growth}$$

$$F(N_t) = N_t + r_d N_t \left(1 - \frac{N_t}{K}\right) \rightarrow \text{ discrete logistic growth}$$

Notice transient versus steady-state/equilibrial dynamics.

R-code exercise - Increasing r_d

First walk through Class-Ex-Chaos.R.

Let class experiment with r_d (assuming K = 10) (look at out vector after transients)

$\mathbf{r_d}$	Number of different popn sizes	
< 2	monotonic dampening & damped oscillations	
2	2-point	
2.449	4-point	
2.544	8-point	
2.564	16-point	
2.5687	32-point	
> 2.7	deterministic chaos	

Let class experiment with $r_d < 2.7$ at different N_0 .

Conclusion:

 \rightarrow Period doubling bifurcations

→ **Stable limit cycles** (stable attractor orbits independent of initial conditions)

Deterministic chaos- Sensitivity to initial conditions

Experiment with $r_d > 2.7$ at different N_0

(look at out vector with $N_0 = 0.0100...001$, up to computer precision $< 10^{-18}$)

N_0	$N_{t=2000} (r_d - 3)$
0.01	13.26
0.011	12.46
0.01001	0.37
$0.01 + 1 \cdot 10^{-10}$	8.05
$0.01 + 1 \cdot 10^{-18}$	2.25

 \rightarrow Not stochastic! Rather, deterministic!

Bifurcation plot - Popn points as function of focal parameter.

Work through peaks function

Run code and explain plot

Add to table $r_d = 2.83 \rightarrow 3$ -point cycle.

Lyapunov exponent - λ (not popn growth rate!)

Measure of sensitivity to initial conditions.

$$|\Delta_t| = |\Delta_0| \cdot e^{t\lambda}$$

where $N_0 + \Delta_0$ is some small addition to N_0 .

That is,

$$|\Delta_t| = |F(N_0 + \Delta_0)_t - F(N_0)_t|$$

Rearrange to:

$$\lambda = \frac{\log\left(\frac{|\Delta_t|}{|\Delta_0|}\right)}{t}$$

Thus, If $\lambda < 0$, \rightarrow convergence \rightarrow same dynamics \rightarrow point equilibrium or limit cycle If $\lambda > 0$, \rightarrow diverging dynamics \rightarrow chaos

Show in Keynote w/ animation

Mechanism:

 $N_{t+1} = F(N_t)$ contains implicit time-lag of 1 unit time

 \rightarrow over- and under-compensation (like lagged thermostat)

Contrast to continuous-time model (differential eqn)

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

Work through and run last section of R-code.

Contrast to delay-differential model

$$\frac{dN}{dt} = rN_{t-\tau} \left(1 - \frac{N_{t-\tau}}{K} \right)$$

Note: For simple delay model, only 2-point limit cycle.

Either need more delays on variables or > 2 species to get more complex dynamics.

Switch to pdf of Keynote presentation of examples

- Daphnia example from Case

Class Q: Why is Case's use as an example of period-doubling wrong!?!

A: Daphnia exhibit continuous reproduction (w/ lag)! (see slide)

- Flour beetles
- Hassel & May insect dynamics
- Other examples: Herring, Salmon, Cicadas

Ricker Plots Class exercise - handout

To develop more intuitive notion of (implicit) time-lag and over- & under-compensation. Note that time-lag is also implicit in interspecific species interactions. Assume discrete-time logistic...

Class Q: Can you predict dynamics from shape of plot?