An Image is Worth 16x16 Words:

Transformers for Image Recognition at Scale

Overview

- Introduction
- Vision Transformer
- Experiments
- State Today
- Conclusion
- Questions

Transformers

Figure 1: The Transformer - model architecture.

Source: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin. Attention is all you need. In NIPS 2017

Transformers

Figure 1: The Transformer - model architecture.

Source: Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin. Attention is all you need. In NIPS 2017

Convolutional Neural Networks (CNN)

Patch Embeddings

Figure 1: The Transformer - model architecture.

Output Probabilities

Linear Projection

Analogy to Convolution

Image Patch

Patch Embeddings

Output Probabilities

Position Embeddings

Figure 1: The Transformer - model architecture.

Position Embeddings

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Figure 1: The Transformer - model architecture.

Position Embedding

Patch Embedding

Position Embeddings

Position Embeddings

Class Token

Figure 1: The Transformer - model architecture.

Whole Pipeline

Position Embeddings

Transformer Encoder

Visualization Attention

Multilayer Perceptron

Prediction

Models

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Models

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Hidden Size Intuition

→ 1 Filter per pixel

Image Patch

Models

Model	Layers	Hidden size D	MLP size	Heads	Params
ViT-Base	12	768	3072	12	86M
ViT-Large	24	1024	4096	16	307M
ViT-Huge	32	1280	5120	16	632M

Results

Patch Size

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	N
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	:
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	S
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Pre-training vs. Performance

Results

Patch Size

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	N
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	12 <u></u>
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	(1)
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Pre-Training vs. Accuracy

Total pre-training compute [exaFLOPs]

Self Supervision

Results

- Only tested on smallest model (ViT-B/16)
- Faster convergence
- Worse performance than pretraining:
 - Training from scratch: 77.9%
 - With self-supervision:79.9%
 - With pre-training: 84.15%

State Today

- Transformer methods are at the top of Leaderboards
- Lager Vision Transformer Vit-G/14 with larger pre-train set
- Transformers can also be used for detection and segmentation tasks
- Self-supervision in the next talk

Conclusion

- It is possible to use Transformers for Image Classification
- Large pre-train datasets are needed
- Perform better than comparable ResNets with the same amount of compute
- Self-supervision is also possible

Appendix

RGB embedding filters (first 28 principal components)

Patch Embeddings

RGB embedding filters (first 28 principal components)

Figure 13: Performance of Axial-Attention based models, in terms of top-1 accuracy on ImageNet 5-shot linear, versus their speed in terms of number of FLOPs (**left**) and inference time (**left**).

		ViT-B/16	ViT-B/32	ViT-L/16	ViT-L/32	ViT-H/14
ImageNet	CIFAR-10	98.13	97.77	97.86	97.94	2
	CIFAR-100	87.13	86.31	86.35	87.07	_
	ImageNet	77.91	73.38	76.53	71.16	-
	ImageNet ReaL	83.57	79.56	82.19	77.83	-
	Oxford Flowers-102	89.49	85.43	89.66	86.36	-
	Oxford-IIIT-Pets	93.81	92.04	93.64	91.35	-
ImageNet-21k	CIFAR-10	98.95	98.79	99.16	99.13	99.27
	CIFAR-100	91.67	91.97	93.44	93.04	93.82
	ImageNet	83.97	81.28	85.15	80.99	85.13
	ImageNet ReaL	88.35	86.63	88.40	85.65	88.70
	Oxford Flowers-102	99.38	99.11	99.61	99.19	99.51
	Oxford-IIIT-Pets	94.43	93.02	94.73	93.09	94.82
JFT-300M	CIFAR-10	99.00	98.61	99.38	99.19	99.50
	CIFAR-100	91.87	90.49	94.04	92.52	94.55
	ImageNet	84.15	80.73	87.12	84.37	88.04
	ImageNet ReaL	88.85	86.27	89.99	88.28	90.33
	Oxford Flowers-102	99.56	99.27	99.56	99.45	99.68
	Oxford-IIIT-Pets	95.80	93.40	97.11	95.83	97.56

Pos. Emb.	Default/Stem	Every Layer	Every Layer-Shared
No Pos. Emb.	0.61382	N/A	N/A
1-D Pos. Emb.	0.64206	0.63964	0.64292
2-D Pos. Emb.	0.64001	0.64046	0.64022
Rel. Pos. Emb.	0.64032	N/A	N/A

