

United International University Department of Computer Science and Engineering

CSE 2213: Discrete Mathematics Mi

Midterm: Fall 2022

Total Marks: 30 Time: 1

Time: 1 hour 45 minutes

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

Answer all the questions. Numbers to the right of the questions denote their marks.

- 1. (a) Let, proposition p: Stokes is dependable, proposition q: Stokes is calculative, proposition r: Livingstone comes to party, and proposition s: Buttler is not out. Now using the logical operators formulate the following compound propositions.

 [1 x 3 = 3]
 - i. Either Stokes is dependable, or he is not dependable but calculative.
 - ii. Stokes is either dependable or calculative, but Stokes is not calculative if Buttler is not out.
 - iii. A necessary condition for Livingstone coming to the play is that, if Stokes is not calculative and Buttler is out then Stokes is not dependable.
 - (b) Prove using different logical equivalence laws that $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a Tautology. [3]
- 2. (a) Look at the following predicates:

P(x): x is a student. Q(x,y): x and y are classmates. R(x,y): x and y are friends.

Represent the following sentences using these predicates, appropriate quantifiers, and logical connectives. The domain of all the variables is the set of all people. $[1 \times 3 = 3]$

- i. There is a student who is a classmate of Peter Parker.
- ii. Everyone has a friend who is his/her classmate.
- iii. There are at least two students who are classmates, but not friends.
- (b) With justification, find out whether the following propositions are true or false. The domain of all the variables is the set of real numbers. [1.5 \times 2 = 3]
 - i. $\forall x \forall y \exists z \left(z = \frac{x}{y}\right)$ ii. $\exists x \exists y \left(\frac{x}{y} = \frac{y}{x}\right)$
- 3. (a) Use direct proof to show that the product of two rational numbers is rational. [3]
 - (b) Show using proof by contradiction that if n is an integer and $n^3 + 5$ is odd, then n is even. [3]
- 4. (a) Given a set $X = {Tamim, Shakib, Mushfiq}$, find the power set of X [1]
 - (b) Given a set $A = \{DM, OOP, ICS\}$ and set $B = \{Easy, Medium, Hard\}$, find the sets $A \times B$ and $B \times A$ and their cardinalities. [2]
 - (c) Shade the following on a Venn diagram: [3]
 - $(A \cup B) C$
 - $(A-C)\cap \overline{A}$
 - $(\overline{B}-C)\cap A$
- 5. (a) Is the function $f: R \to R$, $f(x) = \sqrt[3]{x}$ injective, surjective or bijective? Explain with proper numerical examples. [2]
 - (b) A function f has domain = {A,B,C,D,E} and codomain = {Apple, Banana, Orange, Pineapple}.
 f(A) = Apple, f(B) = Banana, f(C) = Pineapple, f(D) = Apple, f(E) = Orange. What is the inverse of the function f? Give proper reasoning for your answer.
 - (c) Let a be the function from the set {x,y,z} to itself such that a(x) = y, a(y) = z, a(z) = x. Let b be the function from the set {x,y,z} to the set {Hi, Hello, Bye} such that b(x) = Bye, b(y) = Hi, b(z) = Hello. What is the composition of a and b? What is the composition of b and a?
 [3]