

Handbuch

HIMax®

X-DO 24 01

Digitales Ausgangsmodul

Alle in diesem Handbuch genannten HIMA Produkte sind mit dem Warenzeichen geschützt. Dies gilt ebenfalls, soweit nicht anders vermerkt, für weitere genannte Hersteller und deren Produkte.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® und FlexSILon® sind eingetragene Warenzeichen der HIMA Paul Hildebrandt GmbH.

Alle technischen Angaben und Hinweise in diesem Handbuch wurden mit größter Sorgfalt erarbeitet und unter Einschaltung wirksamer Kontrollmaßnahmen zusammengestellt. Bei Fragen bitte direkt an HIMA wenden. Für Anregungen, z. B. welche Informationen noch in das Handbuch aufgenommen werden sollen, ist HIMA dankbar.

Technische Änderungen vorbehalten. Ferner behält sich HIMA vor, Aktualisierungen des schriftlichen Materials ohne vorherige Ankündigungen vorzunehmen.

Alle aktuellen Handbücher können über die E-Mail-Adresse documentation@hima.com angefragt werden.

© Copyright 2020, HIMA Paul Hildebrandt GmbH Alle Rechte vorbehalten.

Kontakt

HIMA Paul Hildebrandt GmbH Postfach 1261 68777 Brühl

Tel.: +49 6202 709-0
Fax: +49 6202 709-107
E-Mail: info@hima.com

Revisions-	Änderungen	Art der Änderung		
index		technisch	redaktionell	
4.00	Neue Ausgabe zu SILworX V4	Х	Х	
5.00	Aktualisierte Ausgabe zu SILworX V5		Х	
10.00	Aktualisierte Ausgabe zu SILworX V10	Х	Х	
12.00	Aktualisierte Ausgabe zu SILworX V12 Geändert: Kapitel Leitungsüberwachung (LS/LB)	Х	Х	

X-DO 24 01 Inhaltsverzeichnis

Inhaltsverzeichnis

1	Einleitung	5
1.1	Aufbau und Gebrauch des Handbuchs	5
1.2	Zielgruppe	5
1.3	Darstellungskonventionen	6
1.3.1 1.3.2	Sicherheitshinweise Gebrauchshinweise	6 7
2	Sicherheit	8
2.1	Bestimmungsgemäßer Einsatz	8
2.1.1 2.1.2	Umgebungsbedingungen ESD-Schutzmaßnahmen	8 8
2.2	Restrisiken	8
2.3	Sicherheitsvorkehrungen	8
2.4	Notfallinformationen	8
3	Produktbeschreibung	9
3.1	Sicherheitsfunktion	9
3.1.1	Reaktion im Fehlerfall	9
3.2	Lieferumfang	9
3.3	Typenschild	10
3.4	Aufbau	11
3.4.1	Blockschaltbild	12
3.4.2 3.4.3	Anzeige Modul-Statusanzeige	13 15
3.4.4	Systembusanzeige	16
3.4.5	E/A-Anzeige	16
3.5	Produktdaten	17
3.6	Connector Boards	19
3.6.1	Mechanische Codierung von Connector Boards	19
3.6.2 3.6.3	Codierung Connector Boards X-CB 009 Connector Boards mit Schraubklemmen	20 21
3.6.4	Klemmenbelegung Connector Boards mit Schraubklemmen	22
3.6.5	Connector Boards mit Kabelstecker	24
3.6.6	Steckerbelegung Connector Boards mit Kabelstecker	25
3.7 3.7.1	Systemkabel X-CA 006 Codierung Kabelstecker	26 27
	<u>c</u>	
4	Inbetriebnahme	28
4.1 4.1.1	Montage	28
	Beschaltung nicht benutzter Ausgänge	28
4.2	Einbau und Ausbau des Moduls	29
4.2.1 4.2.2	Montage eines Connector Boards Modul einbauen und ausbauen	29 31
4.3	Leitungsüberwachung (LS/LB)	33
4.3.1	Empfohlene Werte für die Leitungsüberwachung	33
4.3.2	Parameter «LB-Austastung (Anzahl LS/LB-Intervalle)»	34

HI 801 018 D Rev. 12.00 Seite 3 von 56

Inhaltsverzeichnis X-DO 24 01

4.4	Konfiguration des Moduls in SILworX	35
4.4.1	Register Modul	36
4.4.2	Register E/A-Submodul DO24_01	37
4.4.3 4.4.4	Register E/A-Submodul DO24_01: Kanäle Beschreibung <i>Submodul-Status [DWORD]</i>	39 40
4.4. 4 4.4.5	Beschreibung Diagnose-Status [DWORD]	41
4.5	Anschlussvarianten	42
4.5.1	Beschaltung von Aktoren	42
4.5.2	Redundante Beschaltung von Aktoren über zwei Module	43
4.5.2.1	Einschränkung bei redundanter Beschaltung	43
4.5.3	Beschaltung induktiver Lasten	45
4.5.4	Anschluss von Aktoren über Field Termination Assembly	45
5	Betrieb	46
5.1	Bedienung	46
5.2	Diagnose	46
6	Instandhaltung	47
6.1	Instandhaltungsmaßnahmen	47
6.1.1	Wiederholungsprüfung (Proof-Test)	47
6.1.2	Laden weiterentwickelter Betriebssysteme	47
7	Außerbetriebnahme	48
8	Transport	49
9	Entsorgung	50
	Anhang	51
	Glossar	51
	Abbildungsverzeichnis	52
	Tabellenverzeichnis	53
	Index	54

Seite 4 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 1 Einleitung

1 Einleitung

Das vorliegende Handbuch beschreibt die technischen Eigenschaften des Moduls und seine Verwendung. Das Handbuch enthält Informationen über die Installation, die Inbetriebnahme und die Konfiguration in SILworX.

1.1 Aufbau und Gebrauch des Handbuchs

Der Inhalt dieses Handbuchs ist Teil der Hardware-Beschreibung des programmierbaren elektronischen Systems HIMax.

Das Handbuch ist in folgende Hauptkapitel gegliedert:

- Einleitung
- Sicherheit
- Produktbeschreibung
- Inbetriebnahme
- Betrieb
- Instandhaltung
- Außerbetriebnahme
- Transport
- Entsorgung

Zusätzlich sind die folgenden Dokumente zu beachten:

Dokument	Inhalt	Dokumenten-Nr.
HIMax Systemhandbuch	Hardware-Beschreibung HIMax System	HI 801 000 D
HIMax Sicherheitshandbuch	Sicherheitsfunktionen des HIMax Systems	HI 801 002 D
HIMax Wartungshandbuch	Beschreibung wichtiger Tätigkeiten zum Betrieb und Wartung	HI 801 170 D
Kommunikationshandbuch	Beschreibung der safe ethernet Kommunikation und der verfügbaren Protokolle	HI 801 100 D
Automation Security Handbuch	Beschreibung von Automation Security Aspekten bei HIMA Systemen	HI 801 372 D
SILworX Erste Schritte Handbuch	Einführung in SILworX	HI 801 102 D
SILworX Online-Hilfe (OLH)	SILworX Bedienung	

Tabelle 1: Zusätzlich geltende Handbücher

Die aktuellen Handbücher können über die E-Mail-Adresse <u>documentation@hima.com</u> angefragt werden. Für registrierte Kunden stehen die Produktdokumentationen im HIMA Extranet als Download zur Verfügung.

1.2 Zielgruppe

Dieses Dokument wendet sich an Planer, Projekteure, Programmierer und Personen, die zur Inbetriebnahme, zur Wartung und zum Betreiben von Automatisierungsanlagen berechtigt sind. Vorausgesetzt werden spezielle Kenntnisse auf dem Gebiet der sicherheitsbezogenen Automatisierungssysteme.

HI 801 018 D Rev. 12.00 Seite 5 von 56

1 Einleitung X-DO 24 01

1.3 Darstellungskonventionen

Zur besseren Lesbarkeit und zur Verdeutlichung gelten in diesem Dokument folgende Schreibweisen:

Fett Hervorhebung wichtiger Textteile.

Bezeichnungen von Schaltflächen, Menüpunkten und Registern im

Programmierwerkzeug, die angeklickt werden können.

Kursiv Parameter und Systemvariablen, Referenzen.

Courier Wörtliche Benutzereingaben.

RUN Bezeichnungen von Betriebszuständen (Großbuchstaben).
Kap. 1.2.3 Querverweise sind Hyperlinks, auch wenn sie nicht besonders

gekennzeichnet sind.

Im elektronischen Dokument (PDF): Wird der Mauszeiger auf einen Hyperlink positioniert, verändert er seine Gestalt. Bei einem Klick springt

das Dokument zur betreffenden Stelle.

Sicherheits- und Gebrauchshinweise sind besonders gekennzeichnet.

1.3.1 Sicherheitshinweise

Um ein möglichst geringes Risiko zu gewährleisten, sind die Sicherheitshinweise unbedingt zu befolgen.

Die Sicherheitshinweise im Dokument sind wie folgt dargestellt.

- Signalwort: Warnung, Vorsicht, Hinweis.
- Art und Quelle des Risikos.
- Folgen bei Nichtbeachtung.
- Vermeidung des Risikos.

Die Bedeutung der Signalworte ist:

- Warnung: Bei Missachtung droht schwere K\u00f6rperverletzung bis Tod.
- Vorsicht: Bei Missachtung droht leichte K\u00f6rperverletzung.
- Hinweis: Bei Missachtung droht Sachschaden.

SIGNALWORT

Art und Quelle des Risikos! Folgen bei Nichtbeachtung. Vermeidung des Risikos.

HINWEIS

Art und Quelle des Schadens! Vermeidung des Schadens.

Seite 6 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 1 Einleitung

1.3.2 Gebrauchshinweise Zusatzinformationen sind nach folgendem Beispiel aufgebaut: An dieser Stelle steht der Text der Zusatzinformation. Nützliche Tipps und Tricks erscheinen in der Form: TIPP An dieser Stelle steht der Text des Tipps.

HI 801 018 D Rev. 12.00 Seite 7 von 56

2 Sicherheit X-DO 24 01

2 Sicherheit

Sicherheitsinformationen, Hinweise und Anweisungen in diesem Dokument unbedingt lesen. Das Produkt nur unter Beachtung aller Richtlinien und Sicherheitsrichtlinien einsetzen.

Dieses Produkt wird mit SELV oder PELV betrieben. Vom Produkt selbst geht kein Risiko aus. Einsatz im Ex-Bereich nur mit zusätzlichen Maßnahmen erlaubt.

2.1 Bestimmungsgemäßer Einsatz

HIMax Komponenten sind zum Aufbau von sicherheitsbezogenen Steuerungssystemen vorgesehen.

Für den Einsatz der Komponenten im HIMax System sind die nachfolgenden Bedingungen einzuhalten.

2.1.1 Umgebungsbedingungen

Die in diesem Handbuch genannten Umgebungsbedingungen sind beim Betrieb des HIMax Systems einzuhalten. Die Umgebungsbedingungen sind in den Produktdaten aufgelistet.

2.1.2 ESD-Schutzmaßnahmen

Nur Personal, das Kenntnisse über ESD-Schutzmaßnahmen besitzt, darf Änderungen oder Erweiterungen des Systems oder den Austausch von Komponenten durchführen.

HINWEIS

Schäden am HIMax System durch elektrostatische Entladung!

- Für die Arbeiten einen antistatisch gesicherten Arbeitsplatz benutzen und ein Erdungsband tragen.
- Bei Nichtbenutzung Komponente elektrostatisch geschützt aufbewahren, z. B. in der Verpackung.

2.2 Restrisiken

Von einem HIMA System selbst geht kein Risiko aus.

Restrisiken können ausgehen von:

- Fehlern in der Projektierung.
- Fehlern im Anwenderprogramm.
- Fehlern in der Verdrahtung.

2.3 Sicherheitsvorkehrungen

Am Einsatzort geltende Sicherheitsbestimmungen beachten und vorgeschriebene Schutzausrüstung tragen.

2.4 Notfallinformationen

Ein HIMA System ist Teil der Sicherheitstechnik einer Anlage. Der Ausfall einer Steuerung bringt die Anlage in den sicheren Zustand.

Im Notfall ist jeder Eingriff, der die Sicherheitsfunktion des HIMA Systems verhindert, verboten.

Seite 8 von 56 HI 801 018 D Rev. 12.00

3 Produktbeschreibung

Das digitale Ausgangsmodul X-DO 24 01 ist für den Einsatz im programmierbaren elektronischen System (PES) HIMax bestimmt.

Das Modul ist mit 24 digitalen Ausgängen ausgestattet, die mit einem Nennstrom von bis zu 0,5 A pro Kanal belastet werden können. An den Ausgängen liegt jeweils die Versorgungsspannung minus dem internen Spannungsabfall an.

Die Ausgänge eignen sich zum Anschluss von ohmschen, induktiven, kapazitiven Lasten und Lampen.

Das Modul ist rückwirkungsfrei. Dies beinhaltet speziell EMV, elektrische Sicherheit, Kommunikation zu X-SB und X-CPU, und das Anwenderprogramm.

Das Modul ist auf allen Steckplätzen im Basisträger einsetzbar, ausgenommen auf den Steckplätzen für die Systembusmodule, näheres im Systembandbuch HI 801 000 D.

Das Modul ist TÜV zertifiziert für sicherheitsbezogene Anwendungen bis SIL 3 (IEC 61508, IEC 61511, IEC 62061 und EN 50156), sowie Kat. 4 und PL e (EN ISO 13849-1).

Die Zertifikate und die EU-Baumusterprüfbescheinigung befinden sich auf der HIMA Webseite.

3.1 Sicherheitsfunktion

Das Modul gewährleistet die Sicherheitsfunktion durch drei in Reihe geschaltete Sicherheitsschalter je Kanal. Dadurch ist jeder Ausgang bezüglich der Sicherheitsschalter zwei Fehler tolerant. Jeder Sicherheitsschalter eines Kanals kann einzeln entweder über den Systembus (E/A-Bus) oder den zweiten unabhängigen Abschaltweg (Watchdog) abgeschaltet werden.

Der sichere Zustand eines Ausgangs ist der energielose Zustand. Die Ausgänge werden über redundante Prozessorsysteme auf ihre Erwartungswerte hin überwacht. Ausgänge, deren Zustand nicht dem Erwartungswert entsprechen, werden abgesteuert. Einer der beiden auf ihre Erwartungswerte überwachten Rücklesezweige ist testbar.

Die Sicherheitsfunktion ist gemäß SIL 3 ausgeführt.

3.1.1 Reaktion im Fehlerfall

Stellt das sicherheitsbezogene Prozessorsystem einen Modulfehler fest, geht das Modul in den sicheren Zustand und alle Ausgänge werden gemäß dem Ruhestromprinzip energielos geschaltet. Bei einem Kanalfehler wird nur der betroffene Ausgang abgeschaltet.

Bei Ausfall der Systembusse werden die Ausgänge energielos geschaltet.

Das Modul aktiviert die LED Error auf der Frontplatte.

3.2 Lieferumfang

Das Modul benötigt zum Betrieb ein passendes Connector Board. Bei Verwendung eines Field Termination Assembly (FTA) wird ein Systemkabel benötigt, um das Connector Board mit dem FTA zu verbinden. Die Connector Boards, Systemkabel und FTAs gehören nicht zum Lieferumfang des Moduls.

Die Beschreibung der Connector Boards erfolgt in Kapitel 3.7, die der Systemkabel in Kapitel 3.8. Die FTAs sind in eigenen Handbüchern beschrieben.

HI 801 018 D Rev. 12.00 Seite 9 von 56

3.3 Typenschild

Das Typenschild enthält folgende wichtige Angaben:

- Produktname
- Prüfzeichen
- Barcode (2D-Code oder Strichcode)
- Teilenummer (Part-No.)
- Hardware-Revisionsindex (HW-Rev.)
- Betriebssystem-Revisionsindex (OS-Rev.)
- Versorgungsspannung (Power)
- Ex-Angaben (wenn zutreffend)
- Produktionsjahr (Prod-Year:)

Bild 1: Typenschild exemplarisch

Seite 10 von 56 HI 801 018 D Rev. 12.00

3.4 Aufbau

Das Modul ist mit 24 digitalen Ausgängen ausgestattet. Die Ausgänge sind von der Versorgungsspannung und untereinander nicht galvanisch getrennt.

Das Modul verfügt über eine Leitungsüberwachung (LS/LB). Die Kanäle werden automatisch auf Leitungsschluss (LS) und Leitungsbruch (LB) überprüft, wenn die Leitungsüberwachung in SILworX parametriert ist, siehe Kapitel 4.3. Die Schaltschwellen der Leitungsüberwachung sind fest vorgegeben und können nicht geändert werden.

Die Ausgänge sind gegen zu hohe Ströme geschützt. Im Kurzschlussfall wird der Strom an jedem Ausgang auf 2 A begrenzt.

Fließt an einem Ausgang für die Dauer von 50 ms ein Strom größer 0,75 A, wird der betroffene Ausgang für 5 s abgeschaltet. Steht nach dem automatischen Wiedereinschalten der Überstrom weiter an, wird der Ausgang wieder für 5 s abgeschaltet. Dieser Vorgang wird wiederholt, bis der Überstrom nicht mehr vorhanden ist. Soll das zyklische Wiedereinschalten nach Überstrom verhindert werden, muss dies im Anwenderprogramm realisiert werden.

Das sicherheitsbezogene 1002-Prozessorsystem des E/A-Moduls steuert und überwacht die E/A-Ebene. Die Daten und Zustände des E/A-Moduls werden über den redundanten Systembus den Prozessormodulen übermittelt. Der Systembus ist aus Gründen der Verfügbarkeit redundant ausgeführt. Die Redundanz ist nur gewährleistet, wenn beide Systembusmodule in den Basisträger gesteckt und in SILworX konfiguriert wurden.

LEDs zeigen den Status der digitalen Ausgänge auf der Anzeige an, siehe Kapitel 3.4.2.

HI 801 018 D Rev. 12.00 Seite 11 von 56

3.4.1 Blockschaltbild

Nachfolgendes Blockschaltbild zeigt die Struktur des Moduls:

Bild 2: Blockschaltbild

Seite 12 von 56 HI 801 018 D Rev. 12.00

3.4.2 Anzeige

Nachfolgende Abbildung zeigt die Frontansicht des Moduls mit den LEDs:

Bild 3: Anzeige

HI 801 018 D Rev. 12.00 Seite 13 von 56

Die LEDs zeigen den Betriebszustand des Moduls an. Dabei sind alle LEDs im Zusammenhang zu betrachten. Die LEDs des Moduls sind in folgende Kategorien unterteilt:

- Modul-Statusanzeige (Run, Error, Stop, Init)
- Systembusanzeige (A, B)
- E/A-Anzeige (DO 1 ... 24, Field)

Nach dem Zuschalten der Versorgungsspannung erfolgt immer ein LED-Test, bei dem alle LEDs für mindestens 2 s leuchten. Bei zweifarbigen LEDs erfolgt während des Tests einmalig ein Farbwechsel.

Definition der Blinkfrequenzen

In der folgenden Tabelle sind die Blinkfrequenzen definiert:

Definition	Blinkfrequenz
Blinken1	Lang (600 ms) an, lang (600 ms) aus.
Blinken2	Kurz (200 ms) an, kurz (200 ms) aus, kurz (200 ms) an, lang (600 ms) aus.
Blinken-x	Ethernet-Kommunikation: Aufblitzen im Takt der Datenübertragung.

Tabelle 2: Blinkfrequenzen der LEDs

Einige LEDs signalisieren Warnungen (Ein) und Fehler (Blinken1), siehe nachfolgende Tabellen. Die Anzeige von Fehlern hat Priorität gegenüber der Anzeige von Warnungen. Bei der Anzeige von Fehlern können Warnungen nicht angezeigt werden.

Seite 14 von 56 HI 801 018 D Rev. 12.00

3.4.3 Modul-Statusanzeige

Diese LEDs sind oben auf der Frontplatte angeordnet.

LED	Farbe	Status	Bedeutung
Run	Grün	Ein	Modul im Zustand RUN, Normalbetrieb.
		Blinken1	Modul im Zustand
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand RUN,
	<u> </u>		weitere Status LEDs beachten.
Error	Rot	Ein	Systemwarnung, z. B.:
			Fehlende Lizenz für Zusatzfunktionen
			(Kommunikationsprotokolle), Testbetrieb.Temperaturwarnung
		Blinken1	Systemfehler, z. B.:
		Dillikerri	 Durch Selbsttest festgestellter interner Modulfehler,
			z. B. Hardware-Fehler oder Fehler der
			Spannungsversorgung.
			Fehler beim Laden des Betriebssystems
		Aus	Kein Fehler festgestellt
Stop	<mark>Gelb</mark>	Ein	Modul im Zustand
			STOPP / GÜLTIGE KONFIGURATION
		Blinken1	Modul in einem der folgenden Zustände:
			 STOPP / FEHLERHAFTE KONFIGURATION
			STOPP / BS WIRD GELADEN
		Aus	Modul nicht im Zustand STOPP,
	0 "		weitere Status LEDs beachten.
Init	Gelb	Ein	Modul im Zustand INIT
		Blinken1	Modul in einem der folgenden Zustände:
			LOCKED STORP / RC WIPD CELADEN
		A	STOPP / BS WIRD GELADEN Madulin Issinger des begehrichen en Zugtände
		Aus	Modul in keinem der beschriebenen Zustände, weitere Status LEDs beachten.
			Wellere Status LLDs beachtern.

Tabelle 3: Modul-Statusanzeige

HI 801 018 D Rev. 12.00 Seite 15 von 56

3.4.4 Systembusanzeige

Die LEDs für die Systembusanzeige sind mit Sys Bus gekennzeichnet.

LED	Farbe	Status	Bedeutung		
Α	Grün	Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 1.		
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 1.		
	Gelb	Blinken1	Physikalische Verbindung zum Systembusmodul in Steckplatz 1 hergestellt.		
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.		
B Grün Ein		Ein	Physikalische und logische Verbindung zum Systembusmodul in Steckplatz 2.		
		Blinken1	Keine Verbindung zum Systembusmodul in Steckplatz 2.		
	Gelb	Physikalische Verbindung zum Systembusmodul in Steckplatz 2 hergestellt.			
			Keine Verbindung zu einem (redundanten) Prozessormodul im Systembetrieb.		
A+B	Aus	Aus	Keine physikalische und keine logische Verbindung zu den Systembusmodulen in Steckplatz 1 und 2.		

Tabelle 4: Systembusanzeige

3.4.5 E/A-Anzeige

Die LEDs der E/A-Anzeige sind mit *Channel* überschrieben.

LED	Farbe	Status	Bedeutung
DO 1 24	<mark>Gelb</mark>	Ein	High-Pegel liegt an
		Blinken2	Kanalfehler
		Aus	Low-Pegel liegt an
Field	Rot	Blinken2	Feldfehler bei mindestens einem Kanal (Leitungsbruch, Leitungsschluss, Überstrom etc.)
		Aus	Feldseite fehlerfrei

Tabelle 5: E/A-Anzeige

Seite 16 von 56 HI 801 018 D Rev. 12.00

3.5 Produktdaten

Allgemein			
Versorgungsspannung	24 VDC, -15 +20 %, w _s ≤ 5 %,		
	SELV, PELV		
Stromaufnahme	Min. 0,5 A (Leerlauf)		
Dauerlast	Max. 12 A bei 24 VDC		
Galvanische Trennung	Nein		
Zykluszeit des Moduls	2 ms		
Schutzklasse	Schutzklasse III nach IEC/EN 61131-2		
Umgebungstemperatur	0 +60 °C		
Transport- und Lagertemperatur	-40 +85 °C		
Feuchtigkeit	Max. 95 % relative Feuchte, nicht kondensierend		
Verschmutzung	Verschmutzungsgrad II nach IEC/EN 60664-1		
Aufstellhöhe	< 2000 m		
Schutzart	IP20		
Abmessungen (H x B x T)	310 x 29,2 x 230 mm		
Masse	Ca. 1,0 kg		

Tabelle 6: Produktdaten

1 Tiefe: 230 mm 2 Breite: 29,2 mm

Bild 4: Ansichten

Breite: 29,2 mm

HI 801 018 D Rev. 12.00 Seite 17 von 56

3 Höhe: 310 mm

Digitale Ausgänge	
Anzahl der Ausgänge (Kanalzahl)	24, nicht galvanisch getrennt
Ausgangsspannung	L+ minus interner Spannungsabfall
Spannungsabfall (bei High-Pegel)	0,8 V bei 0,75 A Ausgangsstrom
Bemessungsstrom (bei High-Pegel)	0,5 A, Bereich 0,01 0,6 A
Zulässiger Gesamtstrom des Moduls	12 A
Leckstrom (bei Low-Pegel)	< 500 μA
Überstromabschaltung	I > 0,75 A
Strombegrenzung im Kurzschlussfall	2 A, je Kanal
Verhalten bei Überstrom und Kurzschluss	Abschalten des betroffenen Ausgangs mit zyklischem Wiedereinschalten, siehe Kapitel 3.4.
Ohmsche Belastung	Bis nom. Bemessungsstrom 0,5 A
Induktive Belastung	Max. 50 H
Lampenlast (24-V-Lampen)	Max. 4 W
Kapazitive Belastung	Max. 100 μF
Leitungsüberwachung	
LB-Schwelle	≤ 5 mA
LS-Schwelle	0,75 A (Bereich 0,75 0,8 A)
Überspannungsschutz der Ausgänge, transient	33 V (max. 43 V)
Schaltzeit der Kanäle (bei ohmscher Last)	≤ 100 µs
Testimpulse (bei ohmscher Last)	Typ. 200 μs

Tabelle 7: Daten der digitalen Ausgänge

Seite 18 von 56 HI 801 018 D Rev. 12.00

3.6 Connector Boards

Ein Connector Board verbindet das Modul mit der Feldebene. Modul und Connector Board bilden zusammen eine funktionale Einheit. Vor dem Einbau des Moduls Connector Board auf dem vorgesehenen Steckplatz montieren.

Folgende Connector Boards sind für das Modul verfügbar:

Connector Board	Beschreibung
X-CB 009 01	Connector Board mit Schraubklemmen
X-CB 009 02	Redundantes Connector Board mit Schraubklemmen
X-CB 009 03	Connector Board mit Kabelstecker
X-CB 009 04	Redundantes Connector Board mit Kabelstecker

Tabelle 8: Verfügbare Connector Boards

3.6.1 Mechanische Codierung von Connector Boards

E/A-Module und Connector Boards sind ab Hardware-Revisionsindex (HW-Rev.) 10 mechanisch codiert. Durch die Codierung werden fehlerhafte Bestückungen ausgeschlossen und damit Rückwirkungen auf redundante Module und das Feld verhindert. Zusätzlich dazu hat eine fehlerhafte Bestückung keinen Einfluss auf das HIMax System, da nur in SILworX korrekt konfigurierte Module in RUN gehen.

E/A-Module und die zugehörigen Connector Boards sind mit einer mechanischen Codierung in Form von Keilen versehen. Die Codierkeile in der Federleiste des Connector Boards greifen in Aussparungen der Messerleiste des E/A-Modulsteckers ein, siehe Bild 5.

Codierte E/A-Module können nur auf die zugehörigen Connector Boards aufgesteckt werden.

HI 801 018 D Rev. 12.00 Seite 19 von 56

Bild 5: Beispiel einer Codierung

Codierte E/A-Module können auf uncodierte Connector Boards gesteckt werden. Uncodierte E/A-Module können nicht auf codierte Connector Boards gesteckt werden.

3.6.2 Codierung Connector Boards X-CB 009

Folgende Tabelle zeigt die Position der Codierkeile am E/A-Modulstecker:

a7	a13	a20	a26	c7	c13	c20	c26
Х	X			X	X		

Tabelle 9: Position der Codierkeile

Seite 20 von 56 HI 801 018 D Rev. 12.00

3.6.3 Connector Boards mit Schraubklemmen

1 E/A-Modulstecker

2 Anschluss Feldseite (Schraubklemmen)

Bild 6: Connector Boards mit Schraubklemmen

HI 801 018 D Rev. 12.00 Seite 21 von 56

3.6.4 Klemmenbelegung Connector Boards mit Schraubklemmen

Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	01a	DO1+	1	02a	DO2+
2	01b	DO1-	2	02b	DO2-
3	03a	DO3+	3	04a	DO4+
4	03b	DO3-	4	04b	DO4-
5	05a	DO5+	5	06a	DO6+
6	05b	DO5-	6	06b	DO6-
7	07a	DO7+	7	08a	DO8+
8	07b	DO7-	8	08b	DO8-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	09a	DO9+	1	10a	DO10+
2	09b	DO9-	2	10b	DO10-
3	11a	DO11+	3	12a	DO12+
4	11b	DO11-	4	12b	DO12-
5	13a	DO13+	5	14a	DO14+
6	13b	DO13-	6	14b	DO14-
7	15a	DO15+	7	16a	DO16+
8	15b	DO15-	8	16b	DO16-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	17a	DO17+	1	18a	DO18+
2	17b	DO17-	2	18b	DO18-
3	19a	DO19+	3	20a	DO20+
4	19b	DO19-	4	20b	DO20-
5	21a	DO21+	5	22a	DO22+
6	21b	DO21-	6	22b	DO22-
7	23a	DO23+	7	24a	DO24+
8	23b	DO23-	8	24b	DO24-
Pin-Nr.	Bezeichnung	Signal	Pin-Nr.	Bezeichnung	Signal
1	25a		1	26a	
2	25b		2	26b	
3	27a		3	28a	
4	27b		4	28b	
5	29a		5	30a	
6	29b		6	30b	
7	31a		7	32a	
8				32b	_

Tabelle 10: Klemmenbelegung Connector Boards mit Schraubklemmen

Seite 22 von 56 HI 801 018 D Rev. 12.00

Der Anschluss der Feldseite erfolgt mit Klemmensteckern, die auf die Stiftleisten des Connector Boards aufgesteckt werden.

Die Klemmenstecker besitzen folgende Eigenschaften:

Anschluss Feldseite		
Klemmenstecker	8 Stück, 8-polig	
Leiterquerschnitt	0,2 1,5 mm² (eindrähtig) 0,2 1,5 mm² (feindrähtig) 0,2 1,5 mm² (mit Aderendhülse)	
Abisolierlänge	6 mm	
Schraubendreher	Schlitz 0,4 x 2,5 mm	
Anzugsdrehmoment	0,2 0,25 Nm	

Tabelle 11: Eigenschaften der Klemmenstecker

HI 801 018 D Rev. 12.00 Seite 23 von 56

3 Produktbeschreibung

3.6.5 Connector Boards mit Kabelstecker

- 1 E/A-Modulstecker
- Anschluss Feldseite (Kabelstecker Reihe 1)
- Anschluss Feldseite (Kabelstecker Reihe 32)
- Codierung für Kabelstecker

Bild 7: Connector Boards mit Kabelstecker

Seite 24 von 56 HI 801 018 D Rev. 12.00

3.6.6 Steckerbelegung Connector Boards mit Kabelstecker

Zu diesen Connector Boards stellt HIMA vorgefertigte Systemkabel bereit, siehe Kapitel 3.7. Kabelstecker und Connector Board sind codiert.

Steckerbelegung!

Die folgende Tabelle beschreibt die Steckerbelegung der Kabelstecker des Systemkabels.

Die Adernkennzeichnung ist gemäß IEC 60304 ausgeführt. Es werden die Farbkurzzeichen gemäß IEC 60757 verwendet.

Steckerbelegung						
Reihe	С		b		a	
Reine	Signal	Farbe	Signal	Farbe	Signal	Farbe
1	DO32+	PKBN 1)	DO32-	WHPK 1)		YE ²⁾
2	DO31+	GYBN 1)	DO31-	WHGY 1)	Interne	GN ²⁾
3	DO30+	YEBN 1)	DO30-	WHYE 1)	Verwend- ung ³⁾	BN ²⁾
4	DO29+	BNGN 1)	DO29-	WHGN 1)	ang	WH ²⁾
5	DO28+	RDBU 1)	DO28-	GYPK 1)		
6	DO27+	VT 1)	DO27-	BK 1)		
7	DO26+	RD 1)	DO26-	BU 1)		
8	DO25+	PK 1)	DO25-	GY 1)		
9	DO24+	YE 1)	DO24-	GN ¹⁾		
10	DO23+	BN ¹⁾	DO23-	WH 1)		
11	DO22+	RDBK	DO22-	BUBK		
12	DO21+	PKBK	DO21-	GYBK		
13	DO20+	PKRD	DO20-	GYRD		
14	DO19+	PKBU	DO19-	GYBU		
15	DO18+	YEBK	DO18-	GNBK		
16	DO17+	YERD	DO17-	GNRD		
17	DO16+	YEBU	DO16-	GNBU		
18	DO15+	YEPK	DO15-	PKGN		
19	DO14+	YEGY	DO14-	GYGN		
20	DO13+	BNBK	DO13-	WHBK		
21	DO12+	BNRD	DO12-	WHRD		
22	DO11+	BNBU	DO11-	WHBU		
23	DO10+	PKBN	DO10-	WHPK		
24	DO9+	GYBN	DO9-	WHGY		
25	DO8+	YEBN	DO8-	WHYE		
26	DO7+	BNGN	DO7-	WHGN		
27	DO6+	RDBU	DO6-	GYPK		
28	DO5+	VT	DO5-	BK		
29	DO4+	RD	DO4-	BU		
30	DO3+	PK	DO3-	GY		
31	DO2+	YE	DO2-	GN		
32	DO1+	BN	DO1-	WH		
1) Zugätzlicher gengeforbener Ding bei Ferbuijsderhelung der Ademicentzziehnung						

¹⁾ Zusätzlicher orangefarbener Ring bei Farbwiederholung der Adernkennzeichnung.

Tabelle 12: Steckerbelegung der Kabelstecker des Systemkabels

HI 801 018 D Rev. 12.00 Seite 25 von 56

²⁾ Zusätzlicher violetter Ring bei zweiter Farbwiederholung der Aderkennzeichnung.

³⁾ Die Adern müssen einzeln isoliert werden! Eine weitere Verwendung ist verboten!

3.7 Systemkabel X-CA 006

Das Systemkabel X-CA 006 verbindet die Connector Boards X-CB 009 03/04 mit den Field Termination Assemblies

Allgemein	
Kabel	LIYY 64 x 0,34 mm ² +
	2 x 2 x 0,25 mm ²
Leiter	Feindrähtig
Mittlerer Außendurchmesser (d)	Ca. 17,2 mm,
	max. 20 mm für alle Systemkabel-Typen
Mindestbiegeradius	
fest verlegt	5 x d
frei beweglich	10 x d
Brennverhalten	Flammwidrig und selbstverlöschend nach IEC 60332-1-2, -2-2
Länge	8 30 m
Farbcodierung	In Anlehnung an DIN 47100, siehe Tabelle 12.

Tabelle 13: Kabeldaten

1 Identische Kabelstecker

Bild 8: X-CA 006 01 n

Das Systemkabel ist in folgenden Standardlängen lieferbar:

Systemkabel	Beschreibung	Länge	Gewicht
X-CA 006 01 8	Codierte Kabelstecker	8 m	4,25 kg
X-CA 006 01 15	beidseitig.	15 m	8 kg
X-CA 006 01 30		30 m	16 kg

Tabelle 14: Verfügbare Systemkabel

Seite 26 von 56 HI 801 018 D Rev. 12.00

3.7.1 Codierung Kabelstecker

Die Kabelstecker sind mit drei Codierstiften ausgerüstet. Damit passen die Kabelstecker nur in Connector Boards und FTAs mit den entsprechenden Codierungen, siehe Bild 7.

HI 801 018 D Rev. 12.00 Seite 27 von 56

4 Inbetriebnahme X-DO 24 01

4 Inbetriebnahme

Dieses Kapitel beschreibt die Installation und die Konfiguration des Moduls, sowie dessen Anschlussvarianten. Für weitere Informationen siehe HIMax Systemhandbuch HI 801 000 D.

Die sicherheitsbezogene Anwendung (SIL 3 nach IEC 61508) der Ausgänge muss einschließlich der angeschlossenen Aktoren den Sicherheitsanforderungen entsprechen. Näheres im Sicherheitshandbuch HIMax HI 801 002 D.

4.1 Montage

Bei der Montage folgende Punkte beachten:

- Betrieb nur mit zugehörigen Lüfterkomponenten, siehe Systemhandbuch HI 801 000 D.
- Betrieb nur mit zugehörigem Connector Board, siehe Kapitel 3.6.
- Das Modul einschließlich seiner Anschlussteile so errichten, dass die Anforderungen der EN 60529:1991 + A1:2000 mit der Schutzart IP20 oder besser erfüllt werden.

HINWEIS

Beschädigung durch falsche Beschaltung!

Nichtbeachtung kann zu Schäden an elektronischen Bauelementen führen. Die folgenden Punkte sind zu beachten.

- Feldseitige Stecker und Klemmen
 - Bei Anschluss der Stecker und Klemmen an die Feldseite auf geeignete Erdungsmaßnahmen achten.
 - Zum Anschluss der Feldstromkreise an die digitalen Ausgänge ist ein ungeschirmtes, paarweise verdrilltes Kabel zugelassen.
 - Werden zum Anschluss geschirmte Kabel verwendet, so ist die Abschirmung auf beiden Seiten aufzulegen. Auf der Seite des Moduls die Abschirmung auf die Kabel-Schirmschiene auflegen (Schirmanschlussklemme SK 20 oder gleichwertig einsetzen).
 - HIMA empfiehlt, bei mehrdrahtigen Leitungen die Leitungsenden mit Aderendhülsen zu versehen. Die Anschlussklemmen müssen zum Unterklemmen der verwendeten Leitungsquerschnitte geeignet sein.

Eine redundante Verschaltung der Ausgänge ist über die entsprechenden Connector Boards zu realisieren, siehe Kapitel 3.6 und 4.4.1.

4.1.1 Beschaltung nicht benutzter Ausgänge

Nicht benutzte Ausgänge dürfen offen bleiben und müssen nicht abgeschlossen werden. Zur Vermeidung von Kurzschlüssen und Funken im Feld ist es nicht zulässig, Leitungen mit auf der Feldseite offenen Enden an den Connector Boards anzuschließen.

Seite 28 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 4 Inbetriebnahme

4.2 Einbau und Ausbau des Moduls

Dieses Kapitel beschreibt den Austausch eines vorhandenen oder das Einsetzen eines neuen Moduls.

Beim Ausbau des Moduls verbleibt das Connector Board im HIMax Basisträger. Dies vermeidet zusätzlichen Verdrahtungsaufwand an den Anschlussklemmen, da alle Feldanschlüsse über das Connector Board des Moduls angeschlossen werden.

4.2.1 Montage eines Connector Boards

Werkzeuge und Hilfsmittel:

- Schraubendreher Kreuz PH 1 oder Schlitz 0,8 x 4,0 mm.
- Passendes Connector Board.

Connector Board einbauen:

- 1. Connector Board mit der Nut nach oben in die Führungsschiene einsetzen (siehe hierzu nachfolgende Zeichnung). Die Nut am Stift der Führungsschiene einpassen.
- 2. Connector Board auf der Kabelschirmschiene auflegen.
- Mit den unverlierbaren Schrauben am Basisträger festschrauben. Zuerst die unteren, dann die oberen Schrauben eindrehen.

Connector Board ausbauen:

- 1. Unverlierbare Schrauben vom Basisträger losschrauben.
- 2. Connector Board unten von der Kabelschirmschiene vorsichtig anheben.
- 3. Connector Board aus der Führungsschiene herausziehen.

Bild 9: Einsetzen des Mono Connector Boards, exemplarisch

HI 801 018 D Rev. 12.00 Seite 29 von 56

4 Inbetriebnahme X-DO 24 01

Bild 10: Festschrauben des Mono Connector Boards, exemplarisch

Montageanleitung gilt ebenso für redundante Connector Boards. Je nach Typ des Connector Boards wird eine entsprechende Anzahl von Steckplätzen belegt. Die Anzahl der unverlierbaren Schrauben ist vom Typ des Connector Boards abhängig.

Seite 30 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 4 Inbetriebnahme

4.2.2 Modul einbauen und ausbauen

Dieses Kapitel beschreibt den Einbau und Ausbau eines HIMax Moduls. Ein Modul kann eingebaut und ausgebaut werden, während das HIMax System in Betrieb ist.

HINWEIS

Beschädigung von Steckverbindern durch Verkanten! Nichtbeachtung kann zu Schäden an der Steuerung führen. Modul stets behutsam in den Basisträger einsetzen.

Werkzeuge und Hilfsmittel:

- Schraubendreher, Schlitz 0,8 x 4,0 mm.
- Schraubendreher, Schlitz 1,2 x 8,0 mm.

Module einbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ✓ Verriegelungen auf Position *open* stellen.
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben.
- Modul an Oberseite in Einhängeprofil einsetzen, siehe
- 3. Modul an Unterseite in Basisträger schwenken und mit leichtem Druck einrasten lassen, siehe 2.
- 4. Modul festschrauben, siehe 3.
- 5. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 6. Abdeckblech verriegeln.

Module ausbauen:

- 1. Abdeckblech des Lüftereinschubs öffnen:
 - ☑ Verriegelungen auf Position open stellen
 - ☑ Abdeckblech nach oben klappen und in Lüftereinschub einschieben
- 2. Schraube lösen, siehe 3.
- 3. Modul an Unterseite aus Basisträger schwenken und mit leichtem Druck nach oben aus Einhängeprofil herausdrücken, siehe 2 und 1.
- 4. Abdeckblech des Lüftereinschubs herausziehen und nach unten klappen.
- 5. Abdeckblech verriegeln.

HI 801 018 D Rev. 12.00 Seite 31 von 56

4 Inbetriebnahme X-DO 24 01

- 1 Einsetzen/Herausschieben
- 2 Einschwenken/Ausschwenken

3 Befestigen/Lösen

Bild 11: Modul einbauen und ausbauen

Abdeckblech des Lüftereinschubs während des Betriebs des HIMax Systems nur kurz (< 10 min) öffnen, da dies die Zwangskonvektion beeinträchtigt.

Seite 32 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 4 Inbetriebnahme

4.3 Leitungsüberwachung (LS/LB)

Die Leitungsüberwachung besteht aus der Leitungsschluss- und der Leitungsbruch-Überwachung und ist pro Kanal parametrierbar. Die Schaltschwellen für die Leitungsüberwachung sind fest vorgegeben, siehe Produktdaten (Tabelle 7).

Für die Leitungsüberwachung (LS/LB) sind folgende Punkte zu beachten:

- Die Überwachung erkennt sicher einen Leitungsbruch (LB) bei angeschlossener Last mit einer Stromaufnahme von mindestens 10 mA.
- Bei redundantem Anschluss an zwei Modulen erkennt die Überwachung sicher einen LB bei angeschlossener Last mit einer Stromaufnahme von mindestens 20 mA.
- Die Überwachung erkennt sicher einen Leitungsschluss (LS) bei Strömen größer 0,8 A.
- Bei redundantem Anschluss an zwei Modulen erkennt die Überwachung sicher einen LS bei Strömen größer 1,6 A.

Die Leitungsüberwachung (LS/LB) kann für jeden Kanal wie folgt parametriert werden:

- Im Register E/A-Submodul DO24_01, LS/LB-Intervall [μs] einen Wert ≥ 40 ms eingeben, Einstellung wird für alle Kanäle übernommen. Standardeinstellung: 40 000, (40 ms)
- Im Register E/A-Submodul DO24_01, Leitungsbruch anzeigen und Leitungsschluss anzeigen aktivieren (Anzeige erfolgt über die LED Field).
 Standardeinstellung: Aktiviert
- Im Register E/A-Submodul DO24_01: Kanäle, LS/LB aktiv aktivieren.
 Standardeinstellung: Aktiviert
- Im Register E/A-Submodul DO24_01: Kanäle, max. Testimpulsdauer [μs] 0 μs ... 50 ms eingeben, siehe empfohlene Werte Tabelle 15.
 Standardeinstellung: 0

Die maximale Testimpulsdauer beträgt 200 µs bei Standardeinstellung oder Eingabe < 1000. HIMA empfiehlt, die maximale Testimpulsdauer in geraden 1000-µs Schritten als Vielfaches der Zykluszeit des Moduls (2 ms) einzugeben z. B. 0, 2000, 4000, 6000 ...

4.3.1 Empfohlene Werte für die Leitungsüberwachung

Testimpulsdauer	LS/LB-Intervall	Verhältnis
200 μs	40 ms	max. 0,5 %
1 ms	200 ms	max. 0,5 %
10 ms	2 s	max. 0,5 %
20 ms	4 s	max. 0,5 %
50 ms	10 s	max. 0,5 %

Tabelle 15: Testimpulsdauer im Verhältnis zu LS/LB-Intervall

In der Praxis hat sich für Aktoren ein Tastverhältnis von 0,5 % zwischen dem LS/LB-Intervall und der Testimpulsdauer bewährt. Der Wert der Testimpulsdauer muss immer kleiner als der Wert des LS/LB-Intervalls sein.

Bei Defekt der Leitungsüberwachung wird LS und LB signalisiert.

Die Leitungsüberwachung hat keinen Einfluss auf die Status *Kanal OK*, *Submodul OK* und *Modul OK*, siehe Kapitel 4.4.

HI 801 018 D Rev. 12.00 Seite 33 von 56

4 Inbetriebnahme X-DO 24 01

4.3.2 Parameter «LB-Austastung (Anzahl LS/LB-Intervalle)»

Der Parameter *LB-Austastung (Anzahl LS/LB-Intervalle)* definiert die Anzahl von Testintervallen (Parameter *LS/LB-Intervall [µs]*), die ablaufen müssen, bis ein erkannter Feldfehler als Leitungsbruch an das Prozessormodul (X-CPU) übermittelt wird. Bis zur Fehlerreaktion werden transiente Störungen unterdrückt. Die Einstellung von *LB-Austastung (Anzahl LS/LB-Intervalle)* wird für alle Kanäle übernommen.

Die Standardeinstellung von *LB-Austastung (Anzahl LS/LB-Intervalle)* = 1. In diesem Fall wird ein erkannter Feldfehler gleich im ersten CPU-Zyklus an das Prozessormodul übermittelt.

Mit der Einstellung von *LB-Austastung (Anzahl LS/LB-Intervalle)* > 1 verlängert sich die Reaktionszeit. Dies ist bei der Parametrierung der Sicherheitszeit und der Watchdog-Zeit zu beachten.

Seite 34 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 4 Inbetriebnahme

4.4 Konfiguration des Moduls in SILworX

Das Modul wird im Hardware-Editor des Programmierwerkzeugs SILworX konfiguriert.

Bei der Konfiguration folgende Punkte beachten:

 Zur Diagnose des Moduls und der Kanäle können die Systemparameter zusätzlich zum Messwert im Anwenderprogramm ausgewertet werden. Nähere Informationen zu den Systemparametern sind in den nachfolgenden Tabellen zu finden.

 Wird eine Redundanzgruppe angelegt, so erfolgt die Konfiguration der Redundanzgruppe in deren Registern. Die Register der Redundanzgruppe unterscheiden sich von denen der einzelnen Module, siehe nachfolgende Tabellen.

Zur Auswertung der Systemparameter im Anwenderprogramm müssen den Systemparametern globale Variable zugewiesen werden. Diesen Schritt im Hardware-Editor in der Detailansicht des Moduls durchführen.

Die nachfolgenden Tabellen enthalten die Systemparameter des Moduls in derselben Reihenfolge wie im Hardware-Editor.

TIPP

Zur Umwandlung der Hexadezimalwerte in Bitfolgen eignet sich z. B. der Taschenrechner von Windows® in der entsprechenden Ansicht.

HI 801 018 D Rev. 12.00 Seite 35 von 56

4 Inbetriebnahme X-DO 24 01

4.4.1 Register **Modul**

Das Register **Modul** enthält die folgenden Systemparameter des Moduls:

Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
Name			W	Name des Moduls	
Reservemodul	BOOL	J	W	Aktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird nicht als Fehler gewertet. Deaktiviert: Im Basisträger fehlendes Modul der Redundanzgruppe wird als Fehler gewertet. Standardeinstellung: Deaktiviert Wird nur im Register der Redundanzgruppe angezeigt!	
Störaustastung	BOOL	J	W	Störaustastung durch Prozessormodul zulassen (Aktiviert/Deaktiviert). Standardeinstellung: Aktiviert Das Prozessormodul verzögert die Fehlerreaktion auf eine transiente Störung bis zur Sicherheitszeit. Der letzte gültige Prozesswert bleibt für das Anwenderprogramm bestehen. Details zur Störaustastung siehe Systemhandbuch HI 801 000 D.	
Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
Die folgenden Status ur verwendet werden.	nd Parameter	könne	n global	en Variablen zugewiesen und im Anwenderprogramm	
Modul OK	BOOL	J	R	TRUE: Fehlerfrei Mono-Betrieb: Kein Modulfehler. Redundanz-Betrieb: Mindestens eines der redundanten Module hat keinen Modulfehler (ODER-Logik). FALSE: Modulfehler Kanalfehler eines Kanals (keine externe Fehler) Modul ist nicht gesteckt. Parameter Modul-Status beachten!	
Modul-Status	DWORD	J	R	Status des Moduls Codierung Beschreibung 0x00000001 Fehler des Moduls ²⁾ 0x00000002 Temperaturschwelle 1 überschritten 0x00000008 Temperaturschwelle 2 überschritten 0x00000010 Spannung L1+ fehlerhaft 0x00000020 Spannung L2+ fehlerhaft 0x00000040 Interne Spannungen fehlerhaft 0x80000000 Keine Verbindung zum Modul ²⁾ 2) Diese Fehler haben Auswirkung auf den Status Modul OK und müssen nicht extra im Anwenderprogramm ausgewertet werden	
Zeitstempel [µs]	DWORD	N	R	Mikrosekunden-Anteil des Zeitstempels. Zeitpunkt: Test der digitalen Ausgänge abgeschlossen.	
Zeitstempel [s]	Zeitpunkt: Test der digitalen Ausgänge abgeschlossen.				
Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).					

Tabelle 16: Register **Modul** im Hardware-Editor

Seite 36 von 56 HI 801 018 D Rev. 12.00

4.4.2 Register **E/A-Submodul DO24_01**

Das Register E/A-Submodul DO24_01 enthält die folgenden Systemparameter.

Systemparameter	Datentyp	S 1)	R/W	Beschreibung	
Name			W	Name des Moduls	
Ausgangs- Störaustastung	BOOL	J	W	Ausgangs-Störaustastung durch das Ausgangsmodul zulassen (Aktiviert/Deaktiviert). Standarteinstellung: Deaktiviert (Empfohlen!) Bei Diskrepanz zwischen Vorgabewert und Rücklesewert eines Kanals wird die Abschaltung des Kanals unterdrückt. Details zur Ausgangs-Störaustastung siehe Systemhandbuch HI 801 000 D.	
LS/LB-Intervall [µs]	UDINT	J	W	LS/LB-Intervall der Testimpulse (≥ 40 ms) Standardeinstellung: 40 000 = 40 ms Siehe Kapitel 4.3.	
LB-Austastung (Anzahl LS/LB-Intervalle)	UDINT	J	W	Definiert die Anzahl von Testintervallen (Parameter LS/LB-Intervall [µs]), die ablaufen müssen, bis ein erkannter Feldfehler als Leitungsbruch an das Prozessormodul (X-CPU) übermittelt wird. Wertebereich: 1 max. UDINT Standardeinstellung: 1	
Leitungsbruch anzeigen	BOOL	J	W	Anzeige über LED <i>Field</i> (Aktiviert/Deaktiviert) Standardeinstellung: Aktiviert	
Leitungsschluss anzeigen	BOOL	J	W	Anzeige über LED Field (Aktiviert/Deaktiviert) Standardeinstellung: Aktiviert	

HI 801 018 D Rev. 12.00 Seite 37 von 56

Systemparameter	Datentyp	S 1)	R/W	Beschreibung		
Die folgenden Status und Parameter können globalen Variablen zugewiesen und im Anwenderprogramm verwendet werden.						
Diagnose-Anfrage	DINT	N	W	Zur Anforderung eines Diagnosewerts muss über den Parameter <i>Diagnose-Anfrage</i> die entsprechende ID (Codierung siehe Kapitel 4.4.5) an das Modul gesendet werden.		
Diagnose-Antwort	DINT	N	R	Sobald die <i>Diagnose-Antwort</i> die ID der <i>Diagnose-Anfrage</i> (Codierung siehe Kapitel 4.4.5) zurückliefert, enthält der <i>Diagnose-Status</i> den angeforderten Diagnosewert.		
Diagnose-Status	DWORD	N	R	Angeforderter Diagnosewert gemäß Diagnose-Antwort. Im Anwenderprogramm können die IDs der Diagnose-Anfrage und der Diagnose-Antwort ausgewertet werden. Erst wenn beide die gleiche ID enthalten, enthält der Diagnose-Status den angeforderten Diagnosewert.		
Hintergrundtest-Fehler	BOOL	N	R	TRUE: Hintergrundtest fehlerhaft FALSE: Hintergrundtest fehlerfrei		
Restart bei Fehler	BOOL	J	W	Jedes E/A-Modul, das aufgrund von Fehlern dauerhaft abgeschaltet ist, kann durch den Parameter Restart bei Fehler wieder in den Zustand RUN überführt werden. Dazu den Parameter Restart bei Fehler von FALSE auf TRUE stellen. Das E/A-Modul führt einen vollständigen Selbsttest durch und nimmt nur dann den Zustand RUN ein, wenn kein Fehler entdeckt wurde. Standardeinstellung: FALSE		
Submodul OK	BOOL	J	R	TRUE: Kein Submodulfehler, keine Kanalfehler FALSE: Submodulfehler, Kanalfehler (auch externe Fehler) eines Kanals		
Submodul-Status	DWORD	J	R	Bitcodierter Status des Submoduls (Codierung siehe Kapitel 4.4.4)		
1) Systemparameter wird vom Betriebssystem sicherheitsbezogen behandelt, ja (J) oder nein (N).						

Tabelle 17: Register **E/A-Submodul DO24_01** im Hardware-Editor

Seite 38 von 56 HI 801 018 D Rev. 12.00

4.4.3 Register **E/A-Submodul DO24_01: Kanäle**

Das Register **E/A-Submodul DO24_01: Kanäle** enthält die folgenden Systemparameter für jeden digitalen Ausgang.

Den Systemparametern mit -> können globale Variablen zugewiesen und im Anwenderprogramm verwendet werden. Die Werte ohne -> müssen direkt eingegeben werden.

Systemparameter	Datentyp	S 1)	R/W	Beschreibung		
Kanal-Nr.			R	Kanalnummer, fest vorgegeben		
Kanalwert [BOOL] ->	BOOL	J	W	Binärwert gemäß der Schaltpegel LOW (dig) und HIGH (dig) TRUE: Kanal eingeschaltet FALSE: Kanal ausgeschaltet		
-> Kanal OK [BOOL]	BOOL	J	R	Status des Kanals:		
				TRUE: Fehlerfreier Kanal. Der Kanalwert ist gültig.		
				FALSE: Fehlerhafter Kanal. Der Kanal ist ausgeschaltet.		
				Ein externer LS und LB hat keinen Einfluss auf -> Kanal OK [BOOL]. Status -> LB und -> LS beachten!		
LS/LB aktiv	BOOL	J	W	LS- und LB-Überwachung (Aktiviert/Deaktiviert) Standardeinstellung: Aktiviert		
max. Testimpulsdauer [µs]	UDINT	J	W	Testimpulsdauer bei LS- und LB-Überwachung Wertebereich: 0 50 000 µs Standardeinstellung: 0 µs		
-> LB	BOOL	J	R	TRUE: Leitungsbruch FALSE: kein Leitungsbruch		
-> LS	BOOL	J	R	TRUE: Leitungsschluss FALSE: kein Leitungsschluss		
redund.	BOOL	J	W	Voraussetzung: Redundantes Modul muss angelegt sein. Aktiviert: Kanalredundanz für diesen Kanal aktivieren Deaktiviert: Kanalredundanz für diesen Kanal deaktivieren Standardeinstellung: Deaktiviert		
1) Systemparameter wi	rd vom Betrie	ebssyst	em sich	nerheitsbezogen behandelt, ja (J) oder nein (N).		

Tabelle 18: Register E/A-Submodul DO24_01: Kanäle im Hardware-Editor

HI 801 018 D Rev. 12.00 Seite 39 von 56

4.4.4 Beschreibung Submodul-Status [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters Submodul-Status:

Codierung	Beschreibung
0x0000001	Fehler der Hardware-Einheit (Submodul)
0x00000002	Reset eines E/A-Busses
0x00000004	Fehler bei der Initialisierung der Hardware
0x00000008	Fehler bei der Überprüfung der Koeffizienten
0x00000040	Überstrom, Modul abgeschaltet
0x00000080	Rücksetzen der CS-Überwachung (Chip Select)
0x00800000	Spannungsüberwachung der WD1: Spannungsfehler
0x01000000	Spannungsüberwachung der WD2: Spannungsfehler
0x02000000	Spannungsüberwachung der L1+ HIGH Spannung fehlerhaft
0x04000000	Spannungsüberwachung der L1+ LOW Spannung fehlerhaft
0x0800000	Spannungsüberwachung der L2+ HIGH Spannung fehlerhaft
0x10000000	Spannungsüberwachung der L2+ LOW Spannung fehlerhaft
0x20000000	Spannungsüberwachung der AGND Spannung fehlerhaft
0x40000000	Spannungsüberwachung der VMOS HIGH Spannung fehlerhaft
0x80000000	Spannungsüberwachung der VMOS LOW Spannung fehlerhaft

Tabelle 19: Codierung Submodul-Status [DWORD]

Seite 40 von 56 HI 801 018 D Rev. 12.00

4.4.5 Beschreibung *Diagnose-Status* [DWORD]

Folgende Tabelle beschreibt die Codierung des Parameters Diagnose-Status:

ID	Beschreibung	g				
0	Diagnosewerte werden nacheinander angezeigt.					
100	Bitcodierter Temperaturstatus					
	0 = normal					
		mperaturschwelle 1 überschritten				
		mperaturschwelle 2 überschritten				
		mperaturmessung fehlerhaft				
101		Temperatur (10 000 Digit/ °C)				
200		Spannungsstatus				
	0 = normal	(04)0 (-11-1-1-1				
		- (24 V) ist fehlerhaft - (24 V) ist fehlerhaft				
201						
201		der 24-V-Spannungsverorgung (L1+ und L2+) nternen Betriebsspannung 3V3				
202						
		nternen Core-Spannung				
204 207	Nicht verwen					
300	Komparator 24 V Unterspannung (BOOL) Kanal-Status der Kanäle 1 24					
1001 1024						
	Codierung	Beschreibung				
	0x0001	Fehler der Hardware Einheit (Submodul)				
	0x0002	Reset eines E/A-Busses				
	0x0004	Kanal abgeschaltet, Überstrom				
	0x0008	Rücklesewert 0 am Ausgang bei Sollwert 1 aufgrund Hardware-Fehlers				
	0x0010	Leitungsschluss erkannt				
	0x0020 Leitungsbruch erkannt					
	0x0030 Hardware-Fehler der Leitungsüberwachung					
	0x0040 Rücklesewert 1 am Ausgang bei Sollwert 0 aufg Fehler					
	0x0080	Rücklesewert 0 am Ausgang bei Sollwert 1 aufgrund Feldfehlers				

Tabelle 20: Codierung Diagnose-Status [DWORD]

HI 801 018 D Rev. 12.00 Seite 41 von 56

4.5 Anschlussvarianten

Das Kapitel beschreibt die sicherheitstechnisch richtige Beschaltung des Moduls. Die folgenden aufgeführten Anschlussvarianten sind zulässig.

Die Verschaltung der Ausgänge erfolgt über Connector Boards. Für die redundante Verschaltung stehen spezielle Connector Boards zur Verfügung, siehe Kapitel 3.6.

Beim Anschluss der Lasten an die Ausgänge folgende Punkte beachten:

- Bei Anschluss induktiver Lasten ist eine Schutzbeschaltung (Freilaufdiode) erforderlich.
- Anschließen von ungeschirmten, paarweise verdrillten Kabeln ist zugelassen.
- Verbinden von Masseleitungen der Aktoren im Feld ist nicht erlaubt.

4.5.1 Beschaltung von Aktoren

Bild 12: Beschaltung des Moduls mit Aktoren

HINWEIS

Die Ausgänge des Moduls müssen zweipolig angeschlossen werden. Es ist nicht erlaubt Masseleitungen der Aktoren im Feld zusammenzuschalten. Die Verwendung gemeinsamer Leitungen kann Koppelschleifen erzeugen. Mit Störbeeinflussung (z. B. der Leitungsüberwachung) bis hin zum Ausfall des Moduls oder einem Versagen der Leitungsüberwachung ist zu rechnen.

Seite 42 von 56 HI 801 018 D Rev. 12.00

4.5.2 Redundante Beschaltung von Aktoren über zwei Module

Bei redundanter Beschaltung die Rahmenbedingungen der Leitungsüberwachung beachten, siehe Kapitel 4.3.

Bild 13: Redundante Beschaltung von Aktoren

HINWEIS

Obige Beschaltung ist nur zulässig, wenn beide Kanäle identische Kanalnummern verwenden.

4.5.2.1 Einschränkung bei redundanter Beschaltung

Alle E/A-Module unterliegen ständigen Verbesserungen oder Änderungen, z. B. durch Austausch von Komponenten aus Gründen der Obsoleszenz. Jede Änderung eines Moduls ist anhand der unterschiedlichen Hardware-Ausgabestände ersichtlich.

Redundante Beschaltung, wie in Bild 13 abgebildet, ist nur für Module mit folgenden Hardware-Ausgabeständen (HW-Rev.) erlaubt:

HW-Rev.	01	02	10	11	12	13	≥ 14
01	X						
02		X	X	X	X		
10		Х	X	Х	Х		
11		Х	Х	Х	Х		
12		X	Х	Х	Х		
13						X	X
14						X	Х

Tabelle 21: Zulässige Hardware-Revisionsstände bei redundanter Beschaltung

HI 801 018 D Rev. 12.00 Seite 43 von 56

Beispiel: Ein E/A-Modul mit Hardware-Ausgabestand (HW-Rev.) ≥ 14 kann mit einem gleichartigen Modul mit HW-Rev. 13 redundant verschaltet werden, nicht aber mit einem Modul mit HW-Rev. 12.

Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands, siehe Kapitel 3.4.

HINWEIS

Vor Austausch von redundanten Modulen den Ausgabestand beachten!

Wenn Module mit nicht aufeinander abgestimmten Ausgabeständen (siehe Tabelle 21) redundant verschaltet werden, dann kann die Leitungsüberwachung eines der beiden Module externen Leitungsbruch dauerhaft anzeigen, obwohl kein Leitungsbruch vorliegt.

Seite 44 von 56 HI 801 018 D Rev. 12.00

4.5.3 Beschaltung induktiver Lasten

Bei Anschluss induktiver Lasten muss eine Schutzbeschaltung (geeignete Freilaufdiode) parallel zur Last angeschlossen werden.

Bild 14: Beschaltung induktiver Lasten

4.5.4 Anschluss von Aktoren über Field Termination Assembly

Der Anschluss von Aktoren über das Field Termination Assembly X-FTA 002 01 erfolgt wie in Bild 15 dargestellt. Für weitere Informationen siehe X-FTA 002 01 Handbuch HI 801 116 D.

Bild 15: Anschluss von Aktoren über Field Termination Assembly

HI 801 018 D Rev. 12.00 Seite 45 von 56

5 Betrieb X-DO 24 01

5 Betrieb

Das Modul wird in einem HIMax Basisträger betrieben und erfordert keine besondere Überwachung.

5.1 Bedienung

Eine Bedienung direkt am Modul selbst ist nicht vorgesehen.

Eine Bedienung, z. B. Forcen der Ausgänge, erfolgt vom PADT aus. Einzelheiten hierzu in der Dokumentation von SILworX.

5.2 Diagnose

Der Zustand des Moduls wird über die LEDs auf der Frontseite des Moduls angezeigt, siehe Kapitel 3.4.2.

Die Diagnosehistorie des Moduls kann zusätzlich mit dem Programmierwerkzeug SILworX ausgelesen werden. In den Kapiteln 4.4.4 und 4.4.5 sind die wichtigsten Diagnosemeldungen des Moduls beschrieben.

Wird ein Modul in einen Basisträger gesteckt, erzeugt es während der Initialisierung Diagnosemeldungen, die auf Fehlfunktionen wie falsche Spannungswerte hinweisen.

Diese Meldungen deuten nur dann auf einen Fehler des Moduls hin, wenn sie nach dem Übergang in den Systembetrieb auftreten.

Seite 46 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 6 Instandhaltung

6 Instandhaltung

Defekte Module sind gegen Module des gleichen Typs oder eines zugelassenen Ersatztyps auszutauschen.

Beim Austausch von Modulen sind die Angaben im Systemhandbuch HI 801 000 D und Sicherheitshandbuch HI 801 002 D zu beachten.

6.1 Instandhaltungsmaßnahmen

Für Module sind folgende Instandhaltungsmaßnahmen durchzuführen:

- Wiederholungprüfung (Proof-Test).
- Laden weiterentwickelter Betriebssysteme.

6.1.1 Wiederholungsprüfung (Proof-Test)

Für HIMax Module muss die Wiederholungsprüfung (Proof-Test) in einem Intervall erfolgen, welches dem applikationsspezifisch notwendigen Safety Integrity Level (SIL) entspricht. Für weitere Informationen siehe Sicherheitshandbuch HI 801 002 D.

6.1.2 Laden weiterentwickelter Betriebssysteme

Im Zuge der Produktpflege entwickelt HIMA die Betriebssysteme von Modulen weiter. HIMA empfiehlt, geplante Anlagenstillstände zu nutzen, um aktuelle Betriebssystemversionen auf die Module zu laden.

Die Betriebssystemversionen von Modulen werden im SILworX Control Panel angezeigt. Die Typenschilder zeigen die Version des ausgelieferten Stands.

Bevor Betriebssysteme auf Module geladen werden, müssen die Kompatibilitäten und Einschränkungen der Betriebssystemversionen auf das System geprüft werden. Dazu sind die jeweils gültigen Release-Notes zu beachten. Betriebssysteme werden mit SILworX auf Module geladen, die sich dazu im Zustand STOPP befinden müssen.

HI 801 018 D Rev. 12.00 Seite 47 von 56

7 Außerbetriebnahme X-DO 24 01

7 Außerbetriebnahme

Das Modul durch Ziehen aus dem Basisträger außer Betrieb nehmen. Einzelheiten dazu im Kapitel *Einbau und Ausbau des Moduls*.

Seite 48 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 8 Transport

8 Transport

Zum Schutz vor mechanischen Beschädigungen die Komponenten in Verpackungen transportieren.

Die Komponenten immer in den originalen Produktverpackungen lagern. Diese sind gleichzeitig ESD-Schutz. Die Produktverpackung allein ist für den Transport nicht ausreichend.

HI 801 018 D Rev. 12.00 Seite 49 von 56

9 Entsorgung X-DO 24 01

9 Entsorgung

Industriekunden sind selbst für die Entsorgung außer Dienst gestellter Hardware verantwortlich. Auf Wunsch kann mit HIMA eine Entsorgungsvereinbarung getroffen werden.

Alle Materialien einer umweltgerechten Entsorgung zuführen.

Seite 50 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 Anhang

Anhang

Glossar

Begriff	Beschreibung
Al	Analog Input: Analoger Eingang
AO	Analog Output: Analoger Ausgang
ARP	Address Resolution Protocol: Netzwerkprotokoll zur Zuordnung von Netzwerkadressen zu Hardware-Adressen
COM	Kommunikation (Modul)
CRC	Cyclic Redundancy Check: Prüfsumme
DI	Digital Input: Digitaler Eingang
DO	Digital Output: Digitaler Ausgang Digital Output: Digitaler Ausgang
EMV	Elektromagnetische Verträglichkeit
EN	Europäische Normen
ESD	
	Electrostatic Discharge: Elektrostatische Entladung
FB	Feldbus
FBS	Funktionsbausteinsprache
HW	Hardware
ICMP	Internet Control Message Protocol: Netzwerkprotokoll für Status- und Fehlermeldungen
IEC	Internationale Normen für die Elektrotechnik
LS/LB	Leitungsschluss/Leitungsbruch
MAC	Media Access Control: Hardware-Adresse eines Netzwerkanschlusses
PADT	Programming and Debugging Tool (nach IEC 61131-3): PC mit SILworX
PELV	Protective Extra Low Voltage: Funktionskleinspannung mit sicherer Trennung
PES	Programmable Electronic System: Programmierbares Elektronisches System
R	Read: Auslesen einer Variablen
Rack-ID	Identifikation eines Basisträgers (Nummer)
rückwirkungsfrei	Eingänge sind für rückwirkungsfreien Betrieb ausgelegt und können in Schaltungen mit Sicherheitsfunktionen eingesetzt werden.
R/W	Read/Write: Spaltenüberschrift für Art von Systemvariable
SB	Systembus (-modul)
SELV	Safety Extra Low Voltage: Schutzkleinspannung
SFF	Safe Failure Fraction: Anteil der sicher beherrschbaren Fehler
SIL	Safety Integrity Level (nach IEC 61508)
SILworX	Programmierwerkzeug
SNTP	Simple Network Time Protocol (RFC 1769)
SRS	System.Rack.Slot: Adressierung eines Moduls
SW	Software
TMO	Timeout
W	Write: Variable wird mit Wert versorgt, z. B. vom Anwenderprogramm
WD	Watchdog: Funktionsüberwachung für Systeme. Signal für fehlerfreien Prozess
	Watchdog-Zeit
WDZ	vvalcridog-zeri

HI 801 018 D Rev. 12.00 Seite 51 von 56

Anhang X-DO 24 01

Abbildu	ıngsverzeichnis	
Bild 1:	Typenschild exemplarisch	10
Bild 2:	Blockschaltbild	12
Bild 3:	Anzeige	13
Bild 4:	Ansichten	17
Bild 5:	Beispiel einer Codierung	20
Bild 6:	Connector Boards mit Schraubklemmen	21
Bild 7:	Connector Boards mit Kabelstecker	24
Bild 8:	X-CA 006 01 n	26
Bild 9:	Einsetzen des Mono Connector Boards, exemplarisch	29
Bild 10:	Festschrauben des Mono Connector Boards, exemplarisch	30
Bild 11:	Modul einbauen und ausbauen	32
Bild 12:	Beschaltung des Moduls mit Aktoren	42
Bild 13:	Redundante Beschaltung von Aktoren	43
Bild 14:	Beschaltung induktiver Lasten	45
Bild 15:	Anschluss von Aktoren über Field Termination Assembly	45

Seite 52 von 56 HI 801 018 D Rev. 12.00

X-DO 24 01 Anhang

Tabellenv	rerzeichnis	
Tabelle 1:	Zusätzlich geltende Handbücher	5
Tabelle 2:	Blinkfrequenzen der LEDs	14
Tabelle 3:	Modul-Statusanzeige	15
Tabelle 4:	Systembusanzeige	16
Tabelle 5:	E/A-Anzeige	16
Tabelle 6:	Produktdaten	17
Tabelle 7:	Daten der digitalen Ausgänge	18
Tabelle 8:	Verfügbare Connector Boards	19
Tabelle 9:	Position der Codierkeile	20
Tabelle 10:	Klemmenbelegung Connector Boards mit Schraubklemmen	22
Tabelle 11:	Eigenschaften der Klemmenstecker	23
Tabelle 12:	Steckerbelegung der Kabelstecker des Systemkabels	25
Tabelle 13:	Kabeldaten	26
Tabelle 14:	Verfügbare Systemkabel	26
Tabelle 15:	Testimpulsdauer im Verhältnis zu LS/LB-Intervall	33
Tabelle 16:	Register Modul im Hardware-Editor	36
Tabelle 17:	Register E/A-Submodul DO24_01 im Hardware-Editor	38
Tabelle 18:	Register E/A-Submodul DO24_01: Kanäle im Hardware-Editor	39
Tabelle 19:	Codierung Submodul-Status [DWORD]	40
Tabelle 20:	Codierung Diagnose-Status [DWORD]	41
Tabelle 21:	Zulässige Hardware-Revisionsstände bei redundanter Beschaltung	43

HI 801 018 D Rev. 12.00 Seite 53 von 56

Anhang X-DO 24 01

Index

Anschlussvarianten 42
Blockschaltbild 12
Connector Board
mit Kabelstecker 24
mit Schraubklemmen 21
Connector Boards 19
Diagnose

E/A-Anzeige 16 Systembusanzeige 16 Digitale Ausgänge 18 Leitungsüberwachung 33 Leuchtdioden, LED 14 Modul-Statusanzeige 15 Technische Daten 17

Seite 54 von 56 HI 801 018 D Rev. 12.00

HANDBUCH X-DO 24 01

HI 801 018 D

Für weitere Informationen kontaktieren Sie:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Telefon: +49 6202 709-0 +49 6202 709-107 Fax E-Mail: info@hima.com

Erfahren Sie online mehr über HIMax:

www.hima.com/de/produkte-services/himax/