#### **LEARNING OBJECTIVES**

## At the end of this section, you should be able to do the following:

- Explain why it is not appropriate to conduct multiple independent t tests to compare the means of more than two independent groups
- Apply one-way ANOVA to test the difference between means of several groups or compare populations each containing several levels or subgroups.
- Run post hoc test (multiple comparisons) to determine which groups are different.

#### **WHY ANOVA?**

- In the previous topic, we looked at how to compare the means of two independent groups
- In this topic, we will learn how to compare the means of more than two independent groups
- So why not just perform multiple two independent sample t-tests?
  - For K independent groups there are K(K-1)/2 possible pairs.
  - If you had 5 independent groups, that would equal 5(5-1)/2 =10 independent t tests!
  - And those 10 independent t-test would not give us information about the intendent variable overall.
  - Greater chance of making type I error: multiple pair-wise comparison means the error compounds with each t-test

# THE COMPLETELY RANDOMISED DESIGN: ONE WAY ANOVA

#### **ANOVA (ANalysis Of VAriance)**

- The one-way analysis of variance is used to test the claim that three or more population means are equal
- This is an extension of the two independent samples t-test
- The response variable is the variable we are comparing
- The factor variable is the categorical variable being used to define the groups (we will assume k samples (groups))
- The one-way is because each value is classified in exactly one way (examples include comparisons by gender, race, political party, color, etc.)

#### HYPOTHESIS OF ONE-WAY ANOVA

$$H_0: \mu_1 = \mu_2 = \mu_3 = \cdots = \mu_c$$

• All population means are equal; (no variation in means between groups)

 $H_1$ : Not all of the population means are the same

• At least one population mean is different; This does not mean that all population means are different (some pairs may be the same).

### **ONE-FACTOR ANOVA (1 OF 2)**

$$H_0: \mu_1 = \mu_2 = \mu_3 = \cdots = \mu_c$$

• All means are the same: the null hypothesis is true



### **ONE-FACTOR ANOVA (2 OF 2)**

 $H_1$ : Not all  $\mu_j$  are the same

• At least one mean is different: The null hypothesis is NOT



$$\mu_1 = \mu_2 \neq \mu_3$$

Is one mean so far away from the other two that it is likely not from the same population?



$$\mu_1 \neq \mu_2 \neq \mu_3$$

Or all three are so far apart that they all likely come from different populations?

#### **ONE-WAY ANOVA: EXAMPLE**

Suppose we want to compare three sample means to see if a difference exists somewhere among them:

- MIS770 classroom is divided into three rows: front, middle, and back
- The professor noticed that the further the students were from her, the more likely they were to miss class or use video sharing platforms like TikTok during class
- She particularly wanted to see if the students further away did worse on the exams

#### **ONE-WAY ANOVA: EXAMPLE...**

- A random sample of the students in each row was taken (samples are small for illustration)
- The marks for those students on the second exam was recorded

• Front: 82, 83, 97, 93, 55, 67, 53

• Middle: 83, 78, 68, 61, 77, 54, 69, 51, 63

• Back: 38, 59, 55, 66, 45, 52, 52, 61

#### **ONE-WAY ANOVA: EXAMPLE...**

### The summary statistics for the grades of each row are shown in the table below

| Row         | Front  | Middle | Back  |
|-------------|--------|--------|-------|
| Sample size | 7      | 9      | 8     |
| Mean        | 75.71  | 67.11  | 53.50 |
| St. Dev     | 17.63  | 10.95  | 8.96  |
| Variance    | 310.90 | 119.86 | 80.29 |

#### Variation

- Variation is the sum of the squares of the deviations between a value and the mean of the value
- Sum of Squares is abbreviated by SS and often followed by a variable in parentheses such as SS(B)etween or SS(W)ithin so we know which sum of squares we're talking about

#### Are all of the values identical?

- No, so there is some variation in the data
- This is called the total variation
- Denoted SS (T) for the total Sum of Squares (variation)
- Sum of Squares is another name for Variation

#### Are all of the sample means identical?

- No, so there is some variation between the groups
- This is called the between group variation
- Sometimes called the variation due to the factor
- Denoted SS(B) for Sum of Squares (variation) between the groups

#### Are each of the values with each group identical?

- No, so there is some variation within the groups
- This is called the within group variation
- Sometimes called the error variation
- Denoted SS(W) for Sum of Squares (variation) within the groups

#### Step-1: Computing Grand Mean

- Strategies for computing Grand Mean
- The Grand Mean is the average of all the values when the factor is ignored
- It is a weighted average of the individual sample means

$$\overline{\overline{X}} = \frac{\sum_{i=1}^k n_i \overline{X}_i}{\sum_{i=1}^k n_i}$$

| $\overline{\overline{x}} =$ | $\underline{n_1\overline{x_1} + n_2\overline{x_2} + \cdots + n_k\overline{x_k}}$ |
|-----------------------------|----------------------------------------------------------------------------------|
|                             | $n_1 + n_2 + \cdots + n_k$                                                       |

| Group |          | D        | ata                                |            | Means                                      |
|-------|----------|----------|------------------------------------|------------|--------------------------------------------|
| 1     | $X_{11}$ | $X_{12}$ | •••                                | $X_{1n_1}$ | $\overline{X}_{\scriptscriptstyle 1ullet}$ |
| 2     | $X_{21}$ | $X_{22}$ | •••                                | $X_{2n_2}$ | $\overline{X}_{2ullet}$                    |
| :     | :        | :        | •                                  | :          | :                                          |
| m     | $X_{m1}$ | $X_{m2}$ | •••                                | $X_{mn_m}$ | $\overline{X}_{m}$ .                       |
|       |          | (        | $\overline{X}_{\cdot \cdot \cdot}$ |            |                                            |

#### Let us use summary statistics to complete the computations

| Row         | Front  | Middle | Back  |
|-------------|--------|--------|-------|
| Sample size | 7      | 9      | 8     |
| Mean        | 75.71  | 67.11  | 53.50 |
| St. Dev     | 17.63  | 10.95  | 8.96  |
| Variance    | 310.90 | 119.86 | 80.29 |

Lets use summary statistics to complete the computations

$$\frac{\overline{x}}{x} = \frac{7(75.71) + 9(67.11) + 8(53.50)}{7 + 9 + 8}$$

$$\frac{1562}{x} = \frac{1562}{24}$$

$$\frac{-}{x}$$
 = 65.08

The grand mean for our example is 65.08

#### **Step 2: Compute SS(B)**

- The between group variation is the variation between each sample mean and the grand mean
- Each individual variation is weighted by the sample size
- General Formula

$$SS(B) = \sum_{i=1}^{k} n_i \left(\overline{x}_i - \overline{\overline{x}}\right)^2$$

Expanded Formula

$$SS(B) = n_{1}(\overline{x}_{1} - \overline{\overline{x}})^{2} + n_{2}(\overline{x}_{2} - \overline{\overline{x}})^{2} + \dots + n_{k}(\overline{x}_{k} - \overline{\overline{x}})^{2}$$

- Means for groups:
  - Front = 75.71
  - Middle = 67.11
  - Back = 53.50
- Grand Mean = 65.08
- Compute using expanded formula

$$SS(B) = n_{1}(\overline{x}_{1} - \overline{\overline{x}})^{2} + n_{2}(\overline{x}_{2} - \overline{\overline{x}})^{2} + \dots + n_{k}(\overline{x}_{k} - \overline{\overline{x}})^{2}$$

$$SS(B) = 7(75.71 - 65.08)^{2} + 9(67.11 - 65.08)^{2} + 8(53.50 - 65.08)^{2}$$

- $SS(B) = 1901.5 \approx 1902$
- The Between Group Variation for our example is SS(B)=1902

#### Step3: ComputeSS(W)

- Computing SS(W), Within Group Variation is the weighted total of the individual variations
- The weighting is done with the df; the df for each sample n-1
- Front: n = 7; df = 6; Variance = 310.90
- Middle: n = 9; df = 8; Variance = 119.86
- Back: n = 8; df = 7; Variance = 80.29
- General Formula  $SS(W) = \sum_{i=1}^{k} df_i S_i^2$
- Expanded Formula

$$SS(W) = df_{1}S_{1}^{2} + df_{2}S_{2}^{2} + \dots + df_{k}S_{k}^{2}$$

• The Within Group Variation is the weighted total of the individual variations

$$SS(W) = 6(310.90) + 8(119.86) + 7(80.29)$$

$$SS(W) = 3386.31 \approx 3386$$

• The within group variation for our example is 3386

• After filling in the sum of squares, we have ...

| Source  | SS   | df | MS | F | p |
|---------|------|----|----|---|---|
| Between | 1902 |    |    |   |   |
| Within  | 3386 |    |    |   |   |
| Total   | 5288 |    |    |   |   |

CRICOS Provider Code: 00113B

#### **Degrees of Freedom for the ANOVA**

- The between group df is one less than the number of groups
- We have three groups, so df(B) = 2
- The within group df is the sum of the individual df's of each group
- The sample sizes are 7, 9, and 8
- df(W) = 6 + 8 + 7 = 21
- The total df is one less than the sample size
- df(Total) = 24 1 = 23

Filling in the degrees of freedom gives this table...

| Source  | SS   | df | MS | F | p |
|---------|------|----|----|---|---|
| Between | 1902 | 2  |    |   |   |
| Within  | 3386 | 21 |    |   |   |
| Total   | 5288 | 23 |    |   |   |

CRICOS Provider Code: 00113B

#### **Step 4: Compute Mean Squares (Variances)**

- The variances are also called the Mean of the Squares and abbreviated by MS, often with an accompanying variable MS(B) or MS(W)
- They are an average squared deviation from the mean and are found by dividing the variation by the degrees of freedom
- MS = SS / df

$$Variance = \frac{Variation}{df}$$

```
    MS(B) = 1902 / 2 = 951.0
    MS(W) = 3386 / 21 = 161.2
    MS(T) = 5288 / 23 = 229.9
```

- -Notice that the MS(Total) is NOT the sum of MS(Between) and MS(Within).
- -This works for the sum of squares SS(Total), but not the mean square MS(Total)
- -The MS(Total) isn't usually shown

#### • Completing the MS gives ...

| Source  | SS   | df | MS    | F | p |
|---------|------|----|-------|---|---|
| Between | 1902 | 2  | 951.0 |   |   |
| Within  | 3386 | 21 | 161.2 |   |   |
| Total   | 5288 | 23 | 229.9 |   |   |

CRICOS Provider Code: 00113B

## Step 5: F-Statistic and Effect

• If the F-statistic is large we reject that the effect is "zero" in favor of the alternative tha the effect of the factor is non-



• If computed F > 3.47 we reject the null hypothesis

Critical Value F (5%, 2,21)

| Denominator     |        |        |
|-----------------|--------|--------|
| df <sub>2</sub> | 1      | 2      |
| 1               | 161.40 | 199.50 |
| 2               | 18.51  | 19.00  |
| 3               | 10.13  | 9.55   |
| 4               | 7.71   | 6.94   |
| 5               | 6.61   | 5.79   |
| 6               | 5.99   | 5.14   |
| 7               | 5.59   | 4.74   |
| 8               | 5.32   | 4.46   |
| 9               | 5.12   | 4.26   |
| 10              | 4.96   | 4.10   |
| 11              | 4.84   | 3.98   |
| 12              | 4.75   | 3.89   |
| 13              | 4.67   | 3.81   |
| 14              | 4.60   | 3.74   |
| 15              | 4.54   | 3.68   |
| 16              | 4.49   | 3.63   |
| 17              | 4.45   | 3.59   |
| 18              | 4.41   | 3.55   |
| 19              | 4.38   | 3.52   |
| 20              | 4.35   | 3.49   |
| 21              | 4.32   | 3.47   |
| 22              | 4.30   | 3.44   |
| 23              | 4.28   | 3.42   |
| 24              | 4.26   | 3.40   |
|                 |        |        |

zero

- F test statistic:
  - -Is the ratio of two sample variances
  - -The MS(B) and MS(W) are two sample variances and that's what we divide to find F.
  - -F = MS(B) / MS(W)
- Computed F = 951.0 / 161.2 = 5.9

• Adding F to the table ...

| Source  | SS   | df | MS    | F   | p |
|---------|------|----|-------|-----|---|
| Between | 1902 | 2  | 951.0 | 5.9 |   |
| Within  | 3386 | 21 | 161.2 |     |   |
| Total   | 5288 | 23 | 229.9 |     |   |

CRICOS Provider Code: 00113B

- The F test is a right-tail test
- The CV from the table is: 3.47

$$-F_{2,21}$$

- where df(B) is numerator and df(W) is denominator
- The p-value is the area to the right of the test statistic
- $\bullet P(F_{2.21} > 5.9) = 0.009$



| α     | F    |
|-------|------|
| 0.05  | 3.47 |
| 0.25  | 4.42 |
| 0.01  | 5.78 |
| 0.005 | 6.89 |

• Completing the table with the p-value

| Source  | SS   | df | MS    | F   | p     |
|---------|------|----|-------|-----|-------|
| Between | 1902 | 2  | 951.0 | 5.9 | 0.009 |
| Within  | 3386 | 21 | 161.2 |     |       |
| Total   | 5288 | 23 | 229.9 |     |       |

CRICOS Provider Code: 00113B

- The p-value is 0.009, which is less than the significance level of 0.05, so we reject the null hypothesis.
- The null hypothesis is that the means of the three rows in class were the same, but we reject that, so at least one row has a different mean.
- There is enough evidence to support the claim that there is a difference in the mean scores of the front, middle, and back rows in class.
- The ANOVA doesn't tell which row is different, you would need to look at confidence intervals or run post hoc tests to determine that

#### **TUKEY-KRAMER PROCEDURE**

- Tells which population means are significantly different
- e.g.  $\mu 1 = \mu 2 \neq \mu 3$
- Done after rejection of equal means in ANOVA
- Allows paired comparisons
- Compare absolute mean differences with critical range
- Critical range: In the Tukey-Kramer method, the value above which differences in means are significant

Critical Range = 
$$Q_u \sqrt{\frac{MSW}{2} \left(\frac{1}{n_j} + \frac{1}{n_{j'}}\right)}$$
Sample 2 size

• where Qu is the upper-tail critical value from a Studentised range distribution having c degrees of freedom in the numerator and n – c degrees of freedom in the denominator.

Number of groups

#### **TUKEY-KRAMER PROCEDURE**

c degrees of freedom in the numerator = 3

| Anova: Single Factor |          |     |          |          |          |        |
|----------------------|----------|-----|----------|----------|----------|--------|
|                      |          |     |          |          |          |        |
| SUMMARY              |          |     |          |          |          |        |
| Groups               | Count    | Sum | Average  | Variance |          |        |
| Front                | 7        | 530 | 75.71429 | 310.9048 |          |        |
| Middle               | 9        | 604 | 67.11111 | 119.8611 |          |        |
| Back                 | 8        | 428 | 53.5     | 80.28571 |          |        |
|                      |          |     |          |          |          |        |
|                      |          |     |          |          |          |        |
| ANOVA                |          |     |          |          |          |        |
| Source of Variation  | SS       | df  | MS       | F        | P-value  | F crit |
| Between Groups       | 1901.516 | 2   | 950.7579 | 5.896056 | 0.009284 | 3.4668 |
| Within Groups        | 3386.317 | 21  | 161.2532 |          |          |        |
|                      |          |     |          |          |          |        |
| Total                | 5287.833 | 23  |          |          |          |        |

n-c degrees of freedom in the denominator = 24-3=21

### **Q STATISTIC**

| Upper 5% points ( $lpha=0.05$ ) |                              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
|---------------------------------|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Denominator<br>degrees of       | Numerator degrees of freedom |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |
| freedom                         | 2                            | 3            | 4            | 5            | 6            | 7            | 8            | 9            | 10           | 11           | 12           | 13           | 14           | 15           | 16           | 17           | 18           | 19           | 20           |
| ਸ਼ੁੱ <sub>ਬ</sub> 1             | 18.00                        | 27.00        | 32.80        | 37.10        | 40.40        | 43.10        | 45.40        | 47.40        | 49.10        | 50.60        | 52.00        | 53.20        | 54.30        | 55.40        | 56.30        | 57.20        | 58.00        | 58.80        | 59.60        |
| 2                               | 6.09                         | 8.30         | 9.80         | 10.90        | 11.70        | 12.40        | 13.00        | 13.50        | 14.00        | 14.40        | 14.70        | 15.10        | 15.40        | 15.70        | 15.90        | 16.10        | 16.40        | 16.60        | 16.80        |
| 3                               | 4.50                         | 5.91         | 6.82         | 7.50         | 8.04         | 8.48         | 8.85         | 9.18         | 9.46         | 9.72         | 9.95         | 10.15        | 10.35        | 10.52        | 10.69        | 10.84        | 10.98        | 11.11        | 11.24        |
| § 4                             | 3.93                         | 5.04         | 5.76         | 6.29         | 6.71         | 7.05         | 7.35         | 7.60         | 7.83         | 8.03         | 8.21         | 8.37         | 8.52         | 8.66         | 8.79         | 8.91         | 9.03         | 9.13         | 9.23         |
| 5                               | 3.64                         | 4.60         | 5.22         | 5.67         | 6.03         | 6.33         | 6.58         | 6.80         | 6.99         | 7.17         | 7.32         | 7.47         | 7.60         | 7.72         | 7.83         | 7.93         | 8.03         | 8.12         | 8.21         |
| 6                               | 3.46                         | 4.34         | 4.90         | 5.31         | 5.63         | 5.89         | 6.12         | 6.32         | 6.49         | 6.65         | 6.79         | 6.92         | 7.03         | 7.14         | 7.24         | 7.34         | 7.43         | 7.51         | 7.59         |
| 7                               | 3.34                         | 4.16         | 4.68         | 5.06         | 5.36         | 5.61         | 5.82         | 6.00         | 6.16         | 6.30         | 6.43         | 6.55         | 6.66         | 6.76         | 6.85         | 6.94         | 7.02         | 7.09         | 7.17         |
| 8 c                             | 3.26<br>3.20                 | 4.04<br>3.95 | 4.53         | 4.89         | 5.17         | 5.40         | 5.60<br>5.43 | 5.77         | 5.92         | 6.05         | 6.18         | 6.29         | 6.39         | 6.48         | 6.57         | 6.65         | 6.73         | 6.80<br>6.58 | 6.87<br>6.64 |
| 9                               |                              |              | 4.42         | 4.76         | 5.02         | 5.24         |              | 5.60         | 5.74         | 5.87         | 5.98         | 6.09         | 6.19         | 6.28         | 6.36         | 6.44         | 6.51         |              |              |
| 10                              | 3.15                         | 3.88         | 4.33         | 4.65         | 4.91         | 5.12         | 5.30         | 5.46         | 5.60         | 5.72         | 5.83         | 5.93         | 6.03         | 6.11         | 6.20         | 6.27         | 6.34         | 6.40         | 6.47         |
| § 11<br>§ 12                    | 3.11<br>3.08                 | 3.82<br>3.77 | 4.26<br>4.20 | 4.57<br>4.51 | 4.82<br>4.75 | 5.03<br>4.95 | 5.20<br>5.12 | 5.35<br>5.27 | 5.49<br>5.40 | 5.61<br>5.51 | 5.71<br>5.62 | 5.81<br>5.71 | 5.90<br>5.80 | 5.99<br>5.88 | 6.06<br>5.95 | 6.14<br>6.03 | 6.20<br>6.09 | 6.26<br>6.15 | 6.33<br>6.21 |
| 13                              | 3.06                         | 3.73         | 4.20         | 4.45         | 4.75         | 4.95         | 5.05         | 5.19         | 5.40         | 5.43         | 5.53         | 5.63         | 5.71         | 5.79         | 5.86         | 5.93         | 6.00         | 6.05         | 6.11         |
| 14                              | 3.03                         | 3.70         | 4.13         | 4.41         | 4.64         | 4.83         | 4.99         | 5.13         | 5.25         | 5.36         | 5.46         | 5.55         | 5.64         | 5.72         | 5.79         | 5.85         | 5.92         | 5.97         | 6.03         |
| 15                              | 3.01                         | 3.67         | 4.08         | 4.37         | 4.60         | 4.78         | 4.94         | 5.08         | 5.20         | 5.31         | 5.40         | 5.49         | 5.58         | 5.65         | 5.72         | 5.79         | 5.85         | 5.90         | 5.96         |
| 16                              | 3.00                         | 3.65         | 4.06         | 4.37         | 4.56         | 4.76<br>4.74 | 4.94         | 5.03         | 5.20         | 5.26         | 5.40         | 5.49         | 5.52         | 5.59         | 5.72         | 5.79         | 5.79         | 5.84         | 5.90         |
| 17                              | 2.98                         | 3.63         | 4.03         | 4.30         | 4.52         | 4.74         | 4.86         | 4.99         | 5.13         | 5.21         | 5.31         | 5.39         | 5.47         | 5.55         | 5.61         | 5.68         | 5.74         | 5.79         | 5.84         |
| 18<br>18                        | 2.97                         | 3.61         | 4.00         | 4.28         | 4.49         | 4.67         | 4.82         | 4.96         | 5.07         | 5.17         | 5.27         | 5.35         | 5.43         | 5.50         | 5.57         | 5.63         | 5.69         | 5.74         | 5.79         |
| 19                              | 2.96                         | 3.59         | 3.98         | 4.25         | 4.47         | 4.65         | 4.79         | 4.92         | 5.04         | 5.14         | 5.23         | 5.32         | 5.39         | 5.46         | 5.53         | 5.59         | 5.65         | 5.70         | 5.75         |
| 20 _                            | 2.95                         | 3.58         | 3.96         | 4.23         | 4.45         | 4.62         | 4.77         | 4.90         | 5.01         | 5.11         | 5.20         | 5.28         | 5.36         | 5.43         | 5.49         | 5.55         | 5.61         | 5.66         | 5.71         |
| 21?                             | 2.92                         | 3.53         | 3.90         | 4.17         | 4.37         | 4.54         | 4.68         | 4.81         | 4.92         | 5.01         | 5.10         | 5.18         | 5.25         | 5.32         | 5.38         | 5.44         | 5.50         | 5.54         | 5.59         |
| 30                              | 2.89                         | 3.49         | 3.84         | 4.10         | 4.30         | 4.46         | 4.60         | 4.72         | 4.83         | 4.92         | 5.00         | 5.08         | 5.15         | 5.21         | 5.27         | 5.33         | 5.38         | 5.43         | 5.48         |
| ង 40                            | 2.86                         | 3.44         | 3.79         | 4.04         | 4.23         | 4.39         | 4.52         | 4.63         | 4.74         | 4.82         | 4.91         | 4.98         | 5.05         | 5.11         | 5.16         | 5.22         | 5.27         | 5.31         | 5.36         |
| 60                              | 2.83                         | 3.40         | 3.74         | 3.98         | 4.16         | 4.31         | 4.44         | 4.55         | 4.65         | 4.73         | 4.81         | 4.88         | 4.94         | 5.00         | 5.06         | 5.11         | 5.16         | 5.20         | 5.24         |
| 3<br>120                        | 2.80                         | 3.36         | 3.69         | 3.92         | 4.10         | 4.24         | 4.36         | 4.48         | 4.56         | 4.64         | 4.72         | 4.78         | 4.84         | 4.90         | 4.95         | 5.00         | 5.05         | 5.09         | 5.13         |
| ∞                               | 2.77                         | 3.31         | 3.63         | 3.86         | 4.03         | 4.17         | 4.29         | 4.39         | 4.47         | 4.55         | 4.62         | 4.68         | 4.74         | 4.80         | 4.85         | 4.89         | 4.93         | 4.97         | 5.01         |
|                                 |                              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              |              | ontinued     |

### **TUKEY-KRAMER PROCEDURE**

| Tukey Kramer Multip        | ole Compa | risons |                           |            |               |          |                     |              |       |
|----------------------------|-----------|--------|---------------------------|------------|---------------|----------|---------------------|--------------|-------|
|                            | Sample    | Sample |                           | Absolute   | Std. Error    | Critical |                     |              |       |
| Group                      | Mean      | Size   | Comparison                | Difference | of Difference | Range    | Results             |              |       |
| 1 = Front                  | 75.71     | 7      | Group 1 to Group 2        | 8.6        | 4.52506248    | 16.2     | Means a             | re not diffe | erent |
| 2 = Middle                 | 67.11     | 9      | <b>Group 1 to Group 3</b> | 22.21      | 4.64714774    | 16.637   | Means are different |              | t     |
| 3 = Back                   | 53.5      | 8      | <b>Group 2 to Group 3</b> | 13.61      | 4.363079      | 15.62    | Means a             | re not diffe | erent |
|                            |           |        |                           |            |               |          |                     |              |       |
| Other Data                 |           |        |                           |            |               |          |                     |              |       |
| Level of significance 0.05 |           |        |                           |            |               |          |                     |              |       |
| Numerator d.f.             | 3         |        |                           |            |               |          |                     |              |       |
| Denominator d.f.           | 21        |        |                           |            |               |          |                     |              |       |
| MSW                        | 161.25    |        |                           |            |               |          |                     |              |       |
| Q Statistic                | 3.58      |        |                           |            |               |          |                     |              |       |
|                            |           |        |                           |            |               |          |                     |              |       |
|                            |           |        |                           |            |               |          |                     |              |       |

#### **ANOVA ASSUMPTIONS**

#### **Assumptions**

- The data are randomly sampled
- The variances of each population are assumed equal
- The populations are normally distributed