Homework 10

Chris Powell

- A. Silverman 20.3. A number a is called a *cubic residue modulo* p if it is congruent to a cube modulo p, that is, if there is a number b such that $a \equiv b^3 \pmod{p}$.
 - (a) Make a list of all the cubic residues modulo 5, modulo 7, modulo 11, and modulo 13.

p = 11, and $a \in \{0, 1, 5, 8, 12\}$ if p = 13.

(b) Find two numbers a_1 and b_1 such that neither a_1 nor b_1 is a cubic residue modulo 19, but a_1b_1 is a cubic residue modulo 19. Similarly, find two numbers a_2 and b_2 such that none of the three numbers a_2 , b_2 , or a_2b_2 is a cubic residue modulo 19.

Proof. It is clear that the program terminates since it iterates via a for loop. Let R_i be the value of the list R after the i^{th} iteration. Assume the value of the parameter n is 3. At each iteration, R_i is a collection of integers x_0, \ldots, x_{i-1} such that $[x_k]_p = [i_k^n]_p$ for some $i_k \in \mathbb{Z}$ where $i \in \{0, \ldots, p-1\}$. Therefore, by definition, R_i is a list of cubic residues modulo p. The program returns set (R), giving all distinct elements of in the list R_{p-1} . This concludes the proof of correctness.

By the above algorithm, the set of cubic residues modulo 19 is

$$R = \{0, 1, 7, 8, 11, 12, 18\}.$$

Consider $a_1 = 3$ and $b_1 = 9$. Then

$$[a_1]_{19} \cdot [b_1]_{19} = [3]_{19} \cdot [9]_{19} = [3 \cdot 9]_{19} = [27]_{19} = [8]_{19}.$$

Note that $8 \in S$, yet neither 3 nor 9 are in R. Next, consider $\alpha_2 = 4$ and $b_2 = 6$. Then

$$[a_1]_{19} \cdot [b_1]_{19} = [4]_{19} \cdot [6]_{19} = [4 \cdot 6]_{19} = [24]_{19} = [5]_{19}$$
.

But $4, 5, 6 \notin R$.

(c) If $p \equiv 2 \pmod 3$, make a conjecture as to which α 's are cubic residues. Prove that your conjecture is correct.

Conjecture. If $p \equiv 2 \pmod{3}$, then every integer not divisible by p is a cubic residue modulo p.

Proof. Let $a \in \mathbb{Z}$ such that $p \nmid a$. Assume $[p]_3 = [2]_3$. Then $3 \mid p-2$. So p-2=3k for some $k \in \mathbb{Z}$. Thus p=3k+2 which implies p-1=3k+1. Since p is prime and $[a]_p \neq [0]_p$, Fermat's Little Theorem implies $\left[a^{3k+1}\right]_p = [1]_p$. It follows that $\left[a^{3k+2}\right]_p = [a]_p$. Thus

$$\begin{split} \left[a\right]_{p} &= \left[a\right]_{p} \cdot \left[1\right]_{p} \\ &= \left[a^{3k+1}\right]_{p} \cdot \left[a^{3k+2}\right]_{p} \\ &= \left[a^{3k+1} \cdot a^{3k+2}\right]_{p} \\ &= \left[a^{6k+3}\right]_{p} \\ &= \left[a^{3(2k+1)}\right]_{p} \\ &= \left[\left(a^{(2k+1)}\right)^{3}\right]_{p}. \end{split}$$

- B. Suppose that p is a prime with $p \equiv 1 \pmod{3}$. Let $a \in \mathbb{Z}$ with $p \nmid a$.
 - (a) Show that if α is a cubic residue, then $\alpha^{(p-1)/3} \equiv 1 \ (\mathrm{mod} \ p).$

Proof. Suppose
$$\left[\mathfrak{a}\right]_{\mathfrak{p}}=\left[\mathfrak{b}^{3}\right]_{\mathfrak{p}}$$
 for some $\mathfrak{b}\in\mathbb{Z}.$ Then

$$\left[a^{(p-1)/3}\right]_{p} = \left[\left(b^{3}\right)^{(p-1)/3}\right]_{p} = \left[b^{p-1}\right]_{p}.$$

Since $[a]_p \neq [0]_p$, and \mathbb{Z}_p is an integral domain, the zero-product property implies $\left[b^3\right]_p = \left[b\right]_p^3 \neq \left[0\right]_p$ Therefore, since p is prime, it follows from Fermat's Little Theorem that $\left[b^{p-1}\right]_p = \left[1\right]_p$. Hence, $\left[a^{(p-1)/3}\right]_p = \left[1\right]_p$.

C. Write a program that implements the CRT for an arbitrary list of moduli. The input should be a list of ordered pairs $[(a_1, m_1), (a_2, m_2), \ldots, (a_n, m_n)]$ where the m_i are pairwise relatively prime, and the output should be a such that $a \equiv a_i \pmod{m_i}$ for all i. Remember to prove your algorithm works!

```
def xgcd(a, b):
    """Return (g, x, y) such that a*x + b*y = g = gcd(a, b)"""
    if b == 0:
       return a, 1, 0
    x, g, v, w = 1, a, 0, b
    while w != 0:
        x, g, v, w = v, w, x - (g // w) * v, g \% w
    x = x \% (b // g)
    return g, x, (g - (a * x)) // b
def CRT(L):
    """Given (a1,m1),\ldots,(an,mn) with gcd(mi,mj)=1, return x such
        that x = ai \pmod{mi} for all i'''''
   x, M = 0, 1
    for i in range(len(L)):
        M *= L[i][1]
    for i in range(len(L)):
        x += L[i][0] * (M // L[i][1]) * (xgcd(M//L[i][1], L[i][1])
            [1] % L[i][1])
    return x % M
```

Proof. Termination must occur since the program iterates via for. I show correctness. The input is a list of ordered pairs $(a_1, m_1), \ldots, (a_n, m_n)$, where the m_i are pairwise relativey prime. Let M be the value of M after completion of the first for loop. Then clearly, $M = \prod_{k=1}^n m_k$. Now consider the program's execution after completion of the first for loop. Let x_i be the value of x after the i^{th} iteration. Recall that for relatively prime integers a and b, a and a returns a returns a and a relatively prime integers a and a and a regard a. The program returns

$$\left[x_{n}\right]_{M} = \left[\sum_{i=1}^{n} \left(a_{i} \cdot \frac{M}{m_{i}} \cdot \left[\frac{M}{m_{i}}\right]_{m_{i}}^{-1}\right)\right]_{M}.$$

Therefore, by the Generalized Chinese Remainder Theorem, the program gives the correct output. $\hfill\Box$

D. Let f(x) be a polynomial, and suppose $m, n \in N$ with gcd(m, n) = 1. Show that $f(x) \equiv 0 \pmod{mn}$ has a solution if and only if $f(x) \equiv 0 \pmod{m}$ and $f(x) \equiv 0 \pmod{n}$ both have solutions.

Proof. Suppose $[f(a)]_m = [0]_m$ and $[f(b)]_n = [0]_n$ for some $a,b \in \mathbb{Z}$. Since $\gcd(\mathfrak{m},\mathfrak{n})=1$, the Chinese Remainder Theorem implies there is a unique $c \in \mathbb{Z}_{mn}$ such that $[c]_m = [a]_m$ and $[c]_n = [b]_n$. Thus $[f(c)]_m = [0]_m$ and $[f(c)]_n = [0]_n$. Applying the Chinese Remainder Theorem again, we that $[f(c)]_{mn} = [0]_{mn}$. Conversely, assume $[f(c)]_{mn} = [0]_{mn}$. Then mn | f(x). So f(x) = mnk for some $k \in \mathbb{Z}$. By multiplicative associativity and commutativity of \mathbb{Z} ,

$$f(x) = m(nk) = n(mk).$$

Thus, by multiplicative closure of \mathbb{Z} , $m, n \mid f(x)$. Hence, $[f(x)]_m = [0]_m$ and $[f(x)]_n = [0]_n$.

E. (a) Find all solutions to $\chi^2 \equiv 1 \pmod{143}$ using the Chinese Remainder Theorem.

The composite modulus 143 has factorization 143 = 11 * 13, where 11 and 13 are distinct primes. Consider the congruences

$$[x^2]_{11} = [1]_{11}$$
 and $[x^2]_{13} = [1]_{13}$.

Observe that

$$[x^{2}]_{11} = [1]_{11} \Leftrightarrow [x^{2}]_{11} - [1]_{11} = [0]_{11}$$
$$\Leftrightarrow [x^{2} - 1]_{p} = [0]_{11}$$
$$\Leftrightarrow [(x+1)(x-1)]_{11} = [0]_{11}.$$

As 11 is prime, \mathbb{Z}_{11} is an integral domain. So by the zero-product property, either

$$[x+1]_{11} = [0]_{11}$$
 or $[x-1]_{11} = [0]_{11}$.

So either

$$[x]_{11} = -[1]_{11} = [-1]_{11} = [10]_{11}$$
 or $[x]_{11} = [1]_{11}$.

Similarly, either

$$[x+1]_{13} = [0]_{13}$$
 or $[x-1]_{11} = [0]_{13}$.

So either

$$[x]_{13} = -[1]_{13} = [-1]_{13} = [12]_{13}$$
 or $[x]_{13} = [1]_{13}$.

By the Chinese Remainder Theorem, there is a unique $x \in \mathbb{Z}_{143}$ such that

$$\begin{cases} [x]_{11} = [1]_{11} \\ [x]_{13} = [1]_{13} \end{cases}, \quad \begin{cases} [x]_{11} = [10]_{11} \\ [x]_{13} = [1]_{13} \end{cases}, \quad \begin{cases} [x]_{11} = [1]_{11} \\ [x]_{13} = [12]_{13} \end{cases}, \quad \begin{cases} [x]_{11} = [10]_{11} \\ [x]_{13} = [12]_{13} \end{cases}.$$

Using the CRT program from Exercise C, I get solutions

$$[1]_{143}$$
, $[131]_{143}$, $[12]_{143}$, $[142]_{143}$,

respectively.

(b) Let p, q be distinct primes. How may solutions does $x^2 \equiv 1 \pmod{pq}$ have?

Proof. Assume p and q are odd primes. Observe that

$$\begin{aligned} \left[x^{2}\right]_{p} &= \left[1\right]_{p} \Leftrightarrow \left[x^{2}\right]_{p} - \left[1\right]_{p} &= \left[0\right]_{p} \\ &\Leftrightarrow \left[x^{2} - 1\right]_{p} &= \left[0\right]_{p} \\ &\Leftrightarrow \left[(x+1)(x-1)\right]_{p} &= \left[0\right]_{p}. \end{aligned}$$

Since \mathbb{Z}_p is an integral domain, it follows from the zero-product property that either $[x+1]_p = [0]_p$ or $[x-1]_p = [0]_p$. But we cannot have both $[x+1]_p = [0]_p$ and $[x-1]_p = [0]_p$, as then $p \mid x+1, x-1$ which implies

$$p \mid (x+1) - (x-1) = 2$$

a contradiction since p>2. Now if $[x+1]_p=[0]_p$, then $[x]_p=[-1]_p$. On the other hand, $[x-1]_p=[0]_p$ implies that $[x]_p=[1]_p$. Thus the congruence $[x^2]_p=[1]_p$ has exactly 2 solutions, namely, $[\pm 1]_p$; likewise $[x^2]_q=[1]_q$ has solutions $[\pm 1]_q$. By the Chinese Remainder Theorem, there is a unique $x\in\mathbb{Z}_{p\,q}$ such that $[x]_p=[a]_p$ and $[x]_q=[b]_p$ for each $(a,b)\in\{[\pm 1]_p\}\times\{[\pm 1]_q\}$. Hence the congruence $[x^2]_p=[1]_p$ has exactly $2^2=4$ solutions. If p or q is 2, then there are exactly 2 solutions since $[1]_2=[-1]_2$.

(c) Let $p_1, p_2, ..., p_r$ be distinct primes. How many solutions does $x^2 \equiv 1 \pmod{p_1 p_2 \cdots p_r}$ have?

Proof. Assume that each prime p_i is odd. Let $m = \prod_{i=0}^r p_i$. Then by the Generalized Chinese Remainder Theorem, there is a unique $x \in \mathbb{Z}_m$ such that $[x]_{p_i} = [a_i]_{p_i}$ for all $i \in \{1, \ldots, r\}$. But by the argument given in part (b), each congruence $[x^2]_{p_i} = [1]_{p_i}$ has the solutions set $\{[\pm 1]_{p_i}\}$. In other words, there is exactly one $x \in \mathbb{Z}_m$ satisfying $[x]_{p_i} = [a_i]_{p_i}$ for each $(a_1, \ldots, a_r) \in \{[\pm 1]_{p_1}\} \times \cdots \times \{[\pm 1]_{p_r}\}$. Thus $[x^2]_m = [1]_m$ has exactly 2^r solutions. If $p_i = 2$ some for some i, then there are exactly 2^{r-1} solutions since $[1]_2 = [-1]_2$