General overview

Definitions: jump_box = provisioner VM; ansible container = control container node # Definitions: webservers = Web1 and Web2 VM's running in ansible container # Definitions: ELK-SERVER = Elk VM part of vNet Elk; user = source computer

Setup ansible container control node and webserver VMs 1 & 2 within jump_box # provisioner VM

- # All VMs started and running in Azure
- # Use sudo for docker commands unless you are root
- # Any instructions not given for Azure may be assumed to be left as default or configured as # needed

In Azure

Network Security Group>Give your computer's public IP from any of your ports permission to ssh to jump_box private IP only to port 22;

Network Security Group>Give ansible control container node within jump_box permission to ssh into Web1 & Web2 private IP's only to port 22;

In Git Bash

Create ansible container control node

ssh into jump_box;

#! You are now user: jump_box!

This link provides commands for the instructions that follow resulting in new user: ansible

control container node

| install-launch-start-attach-ansible |

Install docker.io;

Pull ansible container

List out ansible container (note name of container);

Run ansible container;

Start ansible container:

Attach ansible container:

#! You are now user: ansible container!

This link gives commands for following instructions: generate ssh cmds

Generate ssh key;

cat public ssh key and copy;

- # In Azure
- # Prohibited: ssh from jump box to webservers
- # Allowed: ssh from ansible control container node within jump_box to webservers internal IP # only to port 22

VM reset password>Give Web1 & 2 access to public ssh key; paste public ssh key;

In Git Bash

As user: ansible container Test ssh key: test ssh;

nano to configure files: /etc/ansible/ansible.cfg (allow <admin username> as remote user with SSH connection) & /etc/ansible/hosts (allow Web1 & 2 private IPs with python3 interpreter);

ping newly added webservers with this command: \$ ansible all -m ping;

Run ansible playbook to configure ansible container: ansible playbook ansible;

Test connection for each webserver VM (ssh <admin name>@<webserver1 or 2 internal IP>; then \$ curl localhost/setup.php for each VM)

General access

All VMs started and running in Azure

Use sudo for docker commands unless you are root

In Git Bash

ssh <admin username>@<jump_box public IP>;

#! You are now user: jump_box!

This is a link to commands for the following instruction that result in connecting the jump_box

with the ansible container: <u>list-start-attach-ansible</u>

List out local container(s) Start ansible container Attach ansible container

#! You are now user: ansible container! ssh <admin username>@Web1 or 2

#! You are now user: <admin user>@Web1 or 2!

Add Load Balancer to vNet with jump_box and webservers to regulate inbound/outbound

webserver1 & 2 traffic;

All VMs started and running in Azure

Use sudo for docker commands unless you are root

Any instructions not given for Azure may be assumed to be left as default or configured as # needed

Add security rule to forward port 80 from Load Balancer to vNet; webserver VMs will have # HTTP access;

- # At any point a new VM can be added behind the Load Balancer by following in Azure: Virtual
- # Machine>(add VM and configure availability options: availability set and availability set: [name
- # of vNet availability set])>Networking>(suggested configuration: public IP: none, NIC:
- # advanced, configure network security group: [choose name of vNet security group] and Load
- # Balancing: no (because VM should now be part of an availability set));
- # Update /etc/ansible/hosts with any newly added VM with it's internal IP;
- # Configure any new VMs added to the vNet by running the ansible playbook: ansible playbook ansible

In Azure

Load Balancers>Add load balancer (with same resource group as vNet & static public IP)>Add health probe (suggested configuration TCP/80/5/2)

Load Balancers>Backend pools>Add backend pool (add webservers names and internal IP addresses add name of vNet with jump box and webservers)

Load Balancers>Frontend IP Configuration>[name of load balancer]>PentestLBR>(suggested configuration: IPv4/TCP/80/80/session persistence = Client IP and protocol)

Network Security Group>[name of vNet security group]>inbound security rules>(suggested configuration: Source: your external IPv4 address, source port ranges: * , destination:

VirtualNetwork, destination port ranges: 80, Protocol: Any, and Action: Allow)

Network Security Group>[name of vNet security group]>inbound security rules>(remove default deny all rule)

Test connection: from user browser enter http://<insert Load Balancer public IP>/setup.php

Create vNet for ELK server

- # All VMs started and running in Azure
- # Use sudo for docker commands unless you are root
- # Any instructions not given for Azure may be assumed to be left as default or configured as # needed

In Azure

Virtual Network>Create VM ELK-SERVER in region different from jump_box; Virtual Network>Settings>Peerings>Add peering to and from ELK-SERVER and jump_box vNets;

- # In Git Bash
- # As user: ansible container
- # This is a link providing commands to ssh from jump_box to user ansible container:

ssh-user2provisioner

Cat public ssh key and copy

In Azure

Virtual Machine>Add new Ubuntu VM (image with >=4GiG) with name ELK-SERVER, public IP address, same region as vNet ELK-SERVER and paste the public ssh key (follow instructions below for copy of ssh key);

Network security group>[choose Elk server group]>inbound security rules>(suggested configuration: source: IP addresses, source IP address: [insert user public IP], source ports: *, destination: VirtualNetwork, destination port: 5601 (or whichever port ELK-SERVER is running on), protocol: any, and action: allow);

In Git Bash

As user: ansible container

nano to configure files: /etc/ansible/hosts (allow host/grup Elk private IP with python3

interpreter);

Test ssh from ansible control container to ELK-SERVER;

Create and run an ansible playbook to install Elk: create launch ansible playbook elk cmds;

Add Filbeat to Elk monitoring for improved log monitoring of webservers 1 & 2 # containers

All VMs started and running in Azure

Use sudo for docker commands unless you are root

Any instructions not given for Azure may be assumed to be left as default or configured as # needed

In user browser

Check ELK-SERVER is connected search: http://[ELK-SERVER public IP]:5601/app/kibana; Install up-to-date Filebeat: in Kibana web page> Add Log Data>System Logs and choose DEB tab under Getting Started;

In Git Bash

As user: ansible container

Create filebeat configuration file: filebeat configuration yml;

Create and run filebeat playbook: filebeat playbook create+run yml;

In user browser

Verify installation: In Elk stack Kibana filebeat installation web page complete steps 1-5;

Install and configure metricbeat to specialize filebeat and Elk monitoring

In user browser

choose DEB tab under Getting Started; # In Git Bash # This link has commands to instructions below: metricbeats install configuration Install Metricbeat; Create Metricbeat configuration file; Update Metricbeat; # In user browser # In Elk stack Kibana docker metrics web page Validate metricbeat is enabled: complete step 5; # Edit /etc/ansible/ansible.cfg file by updating the following: # uncomment remote_user & set equal to remote_user = <admin name>; # In this project example: remote user = RedAdmin; # Edit /etc/ansible/hosts file to add Elk group: # Updated configured section of /etc/ansible/hosts file appears as follows: [webservers] <Insert internal IP of Web1 VM> ansible python interpreter=/usr/bin/python3 <Insert internal IP of Web2 VM> ansible python interpreter=/usr/bin/python3 # List the IP address of your ELK server # There should only be one IP address [elk] <Insert internal IP of ELK-SERVER> ansible_python_interpreter=/usr/bin/python3 # This is a link for a pre-configured ansible playbook to configure the ansible container within # jump box provisioner VM: ansible playbook ansible # Run ansible playbook with command: ansible-playbook <name of playbook>.yml # This yamil ansible playbook will: install docker.io, python3-pip, docker, cyberxsecurity/dvwa # (specific for this project)

container, publish port 80 on the container to port 80 on the host, and start docker service on

boot

Install up-to-date metricbeat: Elk stack Kibana web page> Add Metric Data>Docker Metrics and

Search http://[ELK-SERVER public IP]:5601/app/kibana;

If curl command does not work then filebeat configuration file template: https://github.com/the-Coding-Boot-Camp-at-UT/UTA-VIRT-CYBER-PT-09-2021-U-LOL/blob/master/1-Lesson-Plans/13-Elk-Stack-Project/Activities/Stu_Day_2/Solved/config_files/filebeat-configuration.yml

nano /etc/ansible/files/filebeat-config.yml and copy and paste the above template # Configure filebeat-config.yml as follows: