#### Polyhedral geometry 3

Computational Visual Design Laboratory (https://github.com/cvlab) "Roma Tre" University, Italy

Computational Graphics - Lecture 8 - March 15, 2013

**Examples and Exercises** 

# **Examples and Exercises**

#### PLaSM Basics

PLaSM = Geometric extension of the FP / FL languages by Backus (IBM Research)

A. Paoluzzi, V. Pascucci and M. Vicentino: Geometric Programming: A Programming Approach to Geometric Design. ACM Transactions on Graphics 14(3): 266-306 (1995)

- 1. geometric calculus in FL-style
- 2. dimension independence
- 3. dynamic typing
- 4. higher-level operators
- 5. arity: always 1 (number of arguments of functions)
- 6. small set of predefined functionals
- 7. names of functions: all-caps



# PLaSM Basics (AA: Apply-to-All)

```
AA(SUM)([[1,2,3],[4,5,6]])
=> [6,15]
```

# PLaSM Basics (DISTL: DISTribute-Left)

```
DISTL([2,[1,2,3]])
=> [[2,1],[2,2],[2,3]]

DISTL([2,[]])
=> []
```

# PLaSM Basics (TRANS: TRANSpose)

```
TRANS([[1,2,3],[10,20,30],[100,200,300]])
=> [[1,10,100],[2,20,200],[3,30,300]]

TRANS([[1,2,3,4,5],[10,20,30,40,50]])
=> [[1,10],[2,20],[3,30],[4,40],[5,50]]

TRANS([[],[]])
=> []
```

### PLaSM Basics (arithmetic ops)

```
PROD([3,4])
=> 12

PROD([[1,2,3],[4,5,6]])
=> 32.0

SUM([3,4])
=> 7

SUM([[1,2,3],[4,5,6]])
=> [5, 7, 9]
```

# PLaSM Basics (product scalar by vector)

```
SCALARVECTPROD([3,[1,2,3]])
=> [3, 6, 9]

SCALARVECTPROD([4,[10,20,30]])
[40, 80, 120]
```

### Pyplasm: Exercise 1 (INNERPROD)

The inner (or scalar) product of  $a, b \in \mathbb{R}^m$  is a number

$$\mathtt{INNERPROD}: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}: (u, v) \mapsto \sum_{i=1}^m \mathbf{u}_i \mathbf{v}_i$$

```
u = [1,2,3]
v = [10,20,30]
INNERPROD([u, v])
=> 140
```

# Pyplasm: Exercise 2 (VECTNORM)

The norm of a vector  $a \in \mathbb{R}^m$  is a number.

$$extsf{VECTNORM}: \mathbb{R}^m o \mathbb{R}: \mathbf{v} \mapsto \sqrt{\sum_{i=1}^m \mathbf{v}_i^2}$$

```
a = [1,2,3]
VECTNORM (a)
=> 3.7416574954986572
```

# Pyplasm: Exercise 3 (UNITVECT)

The unit vector is a function

$$\mathtt{UNITVECT}: \mathbb{R}^m \to \mathbb{R}^m: v \mapsto \frac{v}{|v|}$$

```
v = [1,2,3]
UNITVECT(v)
=> [0.26726123690605164, 0.5345224738121033, 0.8017836809158325]
VECTNORM(UNITVECT(v))
=> 0.9999999403953552 1
```

### Pyplasm: Exercise 4 (SUM)

SUM adds m vectors in  $\mathbb{R}^n$ , i.e. the rows of a matrix in  $\mathbb{R}_n^m$ :

```
a = [1,2,3]

a

=> [1, 2, 3]

b = [10,20,30]

b

=> [10, 20, 30]

SUM([a,b])

=> [11, 22, 33]
```

# Pyplasm: Exercise 5 (SUM)

```
a = range(10)
=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
b = [10*k for k in range(10)]
b
=> [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
SUM([a,b])
=> [0, 11, 22, 33, 44, 55, 66, 77, 88, 99]
c = [100*k for k in range(10)]
С
[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]
SUM([a,b,c])
=> [0, 111, 222, 333, 444, 555, 666, 777, 888, 999]
```

# Pyplasm: Exercise 6 (MATSUM)

Write a function that adds any two matrices [A], [B] (compatible by sum). both [A], [B] must belong to the same linear space  $\mathbb{R}_n^m$ 

```
def MATSUM(args): return AA(AA(SUM)) (AA(TRANS)(TRANS(args)))
A = [ [1,2,3], [4,5,6], [7,8,9] ]
B = [ [10,20,30], [40,50,60], [70,80,90] ]

MATSUM([A,B])
=> [ [11,22,33], [44,55,66], [77,88,99] ]

MATSUM([A,B,A])
=> [ [12,24,36], [48,60,72], [84,96,108] ]

MATSUM([A,B,B,A])
=> [ [22,44,66], [88,110,132], [154,176,198] ]
```

# Pyplasm: Exercise 7 (MATPROD)

Write a function that multiplies two matrices (compatible by product)

Remember that

$$A \in \mathbb{R}_{p}^{m}$$
,  $B \in \mathbb{R}_{p}^{n}$ , and  $C = AB \in \mathbb{R}_{p}^{m}$ ,

with

$$C = (c_j^i) = (\mathbf{A}^i \mathbf{B}_j), \qquad 1 \le i \le m, 1 \le j \le p,$$

where  $A^i$  is the *i*-th row of A, and  $B_j$  is the *j*-th column of B.



### Pyplasm: Exercise 7 (MATPROD) – Solution

Write a function that multiplies two compatible matrices

```
def MATPROD(args):
    A,B = args
    return AA(AA(INNERPROD)) (AA(DISTL) (DISTR ([A, TRANS (B)])))

A = [[1,2,3],[4,5,6],[7,8,9]]
B = [[1,2,3],[4,5,6],[7,8,9]]
MATPROD ([A,B])
=> [[30, 36, 42], [66,81,96], [102,126,150]]

C = [[1,2,3],[4,5,6]]
D = [[1,2],[4,5],[7,8]]
MATPROD ([C,D])
=> [[30,36], [66,81]]
```

# Pyplasm: Exercise 8 (some array operators)

#### Look at some PLaSM operators on arrays

```
N(3) (0) # REPEAT

=> [0,0,0]

N(3) ([0,1])

=> [ [0,1], [0,1], [0,1] ]

NN(3) ([0,1]) # REPeat LIst & CAtenate -- REPLICA

=> [ 0,1, 0,1, 0,1 ]

AR ([ [0,0,0], 1 ]) # Append Rigth

=> [0,0,0,1]

AL ([ 1, [0,0,0] ]) # Append Left

=> [1,0,0,0]
```

### Pyplasm: Exercise 9 (VECTPROD)

the vector product  $\boldsymbol{w}$  of vectors in  $\mathbb{R}^3$  id defined as the function

$$\mathbb{R}^3 imes \mathbb{R}^3 o \mathbb{R}^3 : (\mathbf{u}, \mathbf{v}) \mapsto \det \left( egin{array}{ccc} \mathbf{e}_0 & \mathbf{e}_1 & \mathbf{e}_2 \\ u_x & u_y & u_z \\ v_x & v_y & v_z \end{array} 
ight)$$

Therefore we can write, for the vector product of two 3D vector:

```
def VECTPROD(args):
    u,v = args
    w = [0,0,0]
    w[0] = u[1]*v[2] - u[2]*v[1]
    w[1] = u[2]*v[0] - u[0]*v[2]
    w[2] = u[0]*v[1] - u[1]*v[0]
    return w

VECTPROD([[1,0,0], [0,1,0]])
=> [0,0,1]
VECTPROD([[1,1,0], [0,1,0]])
=> [0,0,1]
```

#### Pyplasm: Exercise 10

```
from random import random

def randomPoints(m, sx=1, sy=1):
    def point():
        return [random() * sx, random() * sy]
    return [point() for k in range(m)]

verts = randomPoints(200, 2*PI, 2)
obj = MKPOL([verts, AA(LIST)(range(200)), None])

VIEW(obj)
```

### Pyplasm: Exercise 11



Figure : 200 random points in  $[0,2\pi] \times [0,2] \subset \mathbb{E}^2$ 

#### Pyplasm: Exercise 12

#### coordinate functions

```
def x (p):
    u,v = p
    return v * COS(u)

def y (p):
    u,v = p
    return v * SIN(u)

obj = MAP([ x,y ])(obj)

VIEW(obj)
```

# Pyplasm: Exercise 12 (4/4)



Figure: 200 random points within the 2D "ball" of radius 2

### From PLaSM to Pyplasm

application (binary infix operator :) to (...) 
$$f: x \to f(x)$$

composition (binary infix operator ) to COMP 
$$f \sim g \to COMP([f,g])$$

$$[f,g]: x \to CONS([f,g])(x)$$

$$f:\langle x_1,x_2,\ldots,x_n\rangle\to f([x_1,x_2,\ldots,x_n])$$

#### From PLaSM to Pyplasm

#### the original FL syntax

```
hpc = MAP:f:dom
WHERE
   f = [COS~S1, SIN~S1],
   dom = INTERVALS: (2*PI): 24
END;

DRAW:hpc
```

#### ported syntactically to python

```
f = CONS([ COMP([COS,S1]), COMP([SIN,S1]) ])
dom = INTERVALS(2*PI)(24)
hpc = MAP(f)(dom)
VIEW(hpc)
```

#### Using properly the Python syntax

:

The function to be mapped is from d-points to lists of coordinate functions  $\mathbb{R}^d \to \mathbb{R}$ 

```
def circle(p):
    alpha = p[0]
    return [COS(alpha), SIN(alpha)]

obj = MAP(circle)(INTERVALS(2*PI)(32))
VIEW(obj)
```

In case of a curve, d=1

# Current plasm.js Library

| AA AL AL APPLY AR BIGGER BIGGEST BOUNDARY BUTLAST CART CAT CENTROID CIRCLE CLONE CODE COMP CONS CUBE CUBOID CYLSOLID CYLSURFACE DISK DISTR DIV | EMBED EXPLODE EXTRUDE FIRST FREE Graph GRAPH HELIX ID IDNT IDNT INNERPROD INSL INSR INTERVALS INV ISFUN ISNUM K LAST LEN LINSPACEID LINSPACE2D LINSPACE3D | LIST MAP MAT MAT MATPROD MATSUM MUL PointSet POLYLINE POLYMARKER PRECISION PRINT PROD PROGRESSIVE_SUM QUADMESH R REPEAT REPLICA REVERSE S S0 S1 S2 S3 S4 | SET SIMPLEX SIMPLEX SIMPLEXGRID SimplicialComplex SKELETON SMALLER SMALLEST SORTED SUB SUM T TAIL Topology TORUSSOLID TORUSSURFACE TRANS TREE TRIANGLEARRAY TRIANGLESTRIP UNITVECT VECTNORM VECTPROD |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|