

Занятие №1

В ходе первого занятия:

- поговорим, а зачем вообще нужны АБ тесты;
- вспомним, какими бывают распределения и почему это важно при выборе теста;
- ▲ обсудим, что такое статистическая значимость и как она связана с p-value;
- поймем разницу между параметрическими и непараметрическими тестами, а также посмотрим на реализацию в библиотеках;

- поговорим о том, как выбрать правильный тест для конкретного кейса;
- ▲ обсудим понятие "нормальности", когда это важно (и если важно, как приблизить распределение к нормальному), какие проверки существуют;
- ▲ проговорим, как используется Bootstrap.

Примеры использования А/В-тестирования

Для проверки любых бизнес-гипотез!

Ритейл

Гипотеза: Если предложить скидку на любимый продукт, то клиенты будут больше покупать и средний чек в месяц вырастет.

Как проверяем: Небольшой части клиентов предлагаем скидку на любимый продукт, а другой части не предлагаем. Через месяц сравниваем две группы по приросту среднего чека. Если у группы со скидкой средний чек выше (то есть гипотеза подтвердилась), то кампанию со скидкой ставим на регламент.

Телеком

Гипотеза: У нас есть новая рекомендательная модель, которая, по мнению дата сайнтиста, лучше подбирает дополнительные услуги для абонентов, то есть конверсия в покупку будет выше, чем со старой моделью.

Как проверяем: Небольшой части абонентов подбираем предложения новой моделью и сопоставляем с теми абонентами, которым предложения подобраны старой моделью. Если конверсия у абонентов с новой моделью выше, то заменяем старую модель новой.

Страховая

Гипотеза: Бизнес предполагает, что есть сегмент клиентов, которым мы отказываем в страховке на основе стандартного скоринга, хотя на самом деле мы могли бы подобрать для них выгодные предложения.

Как проверяем: Проанализировав данный сегмент клиентов, мы формулируем для них предложения и запускаем тест: выделяем их в отдельную группу и сравниваем их доля страховых случаев с другими клиентами. Если уровень дефолта приемлемый, то расширяем наши предложения для данного сегмента.

Золотодобывающее производство

Гипотеза: Есть технология обогащения руды при помощи бактерий. У этого подхода нет стройного теоретического обоснования. Есть лишь гипотезы о том, каким образом среда и состав бактерий влияет на обогащение. Чтобы найти оптимальное сочетание среды и бактерий проводят эксперименты, то есть A/B тесты.

Как проверяем: В лабораторных условиях создается разная среда (влажность, температурный режим и т.п.) и разный состав бактерий. При помощи тестов выясняется, какое сочетание оптимально.

A/B - **Tect**

Основные определения

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Вводный пример

50κ 51κ

Тест двух видов дизайна

Отклик на первый дизайн: 50к

△ Отклик на второй дизайн: 51к

Выбираем второй?

Понятие частоты

$\$

Числовой ряд:

89, 122, 90, 159, 89, 157, 145, 67, 157, 162, 157...

Как его можно охарактеризовать?

А если значение не повторяется?

- Упорядочиваем ряд в порядке возрастания
- ▲ Бьем весь диапазон значений на N частей
- Строим гистограмму

Плотность распределения, вероятность, правдоподобие

Плотность распределения -

Делим частоту конкретного значения - на общее число наблюдений (на общую площадь под графиком распределения)

Вероятность -

площадь под графиком функции для определенного диапазона значений метрики

• Правдоподобие -

значение функции распределения плотности вероятности для конкретного значения метрики

Правдоподобие

- \\\\\\
 - На сколько конкретное значение является редким по сравнению с другими значениями метрики?
 - Правдоподобие выбранного значения в обоих распределениях одинаково
 - Однако, в одном распределении это значение является одним из наиболее правдоподобных
 - А в другом одним из наименее правдоподобных
 - Как оценить, насколько выбранное значение правдоподобно по сравнению с другими?

"Значимость" значения в выборке - доля значений столь же или менее правдоподобных, чем выбранное значение

"Значимость" значения в выборке

- ▲ Какова доля значений метрики столь же или более редких (столь же или менее правдоподобных), чем выбранное значение метрики?
 - ▼ Где может пригодиться:

разметка клиентов с точки зрения их характерности для бизнеса

"Значимость" значения в выборке

- ▲ Какова доля значений метрики таких же или более экстремальных, чем выбранное значение метрики?
 - ▼ Где может пригодиться:оценка потенциала к росту

Центральная предельная теорема

Центральная предельная теорема

Статистическая значимость. Тестирование гипотез

<<<<<<

А: группа без воздействия

В: группа с воздействием

Н0: средние значения для групп А и В совпадают

Н1: средние значения для групп А и В не совпадают

Статистическая значимость. Тестирование гипотез <<<<<<

Известно:

 В генеральной совокупности признак распределен нормально

 \bullet $\sigma = 12$

Взяли подвыборку:

- Размер n = 9
- Среднее подвыборки равно 10

Гипотезы:

- Н0: среднее генеральной совокупности равно 1
- H1: среднее генеральной совокупности >1

Статистическая значимость. Тестирование гипотез <<<<<<

Принятие решения: если среднее подвыборки попадает в заштрихованную область, то результат считается статистически значимым и Н0 отвергается в пользу альтернативной Н1

Статистические тесты

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Статистический тест: сравнение распределений

\\\\\\

Описать распределения одним числом, например, средним?

Применять стандартные подходы - непараметрические и параметрические тесты

Исходят из гипотезы о форме распределения (как правило, работают с нормальными распределениями)

Непараметрические тесты

Метод		Суть метода
Δ	Манн - Уитни	 Единый отранжированный ряд с проставленными рангами Для каждого ряда рассчитывается функция от рангов
Δ	Уилкоксона	 Парный критерий Для каждой пары рассчитывается разность между значениями, абсолютные значения которых упорядочиваются Если сдвиги в ту или иную сторону происходят случайно, то и суммы их рангов окажутся примерно равны
Δ	Крускала - Уоллиса	 □ Проверка равенства медиан нескольких выборок □ Упорядочиваются элементы всех выборок и рассчитывается ранг каждого элемента в полученном вариационном ряду
Δ	Колмогорова - Смирнова	 Происходит сопоставление частот сначала по первому разряду, затем по первому и второму совместно, Если различия существенны, то разница накопленных частот в какой-то момент превысит критическое значение

Реализация непараметрических тестов


```
0.08
from scipy.stats import mannwhitneyu, wilcoxon, kruskal, ks 2samp
                                                                                                                                         gamma: k=7.0, \theta=2.0
                                                                             0.07
                                                                                                                                         gamma: k=7.2, \theta=2.0
k1=7
k2=7.2
                                                                             0.06
                                                                                                                         Mann-Whitney U Test: p-value=0.115
theta1 = 2
                                                                                                                         Wilcoxon Signed-Rank Test: p-value=0.275
                                                                             0.05
theta2 = 2
                                                                                                                         Kruskal-Wallis H Test: p-value=0.230
                                                                           Density
0.04
                                                                                                                         Kolmogorov-Smirnov Test: p-value=0.276
gamma_dist_1 = np.random.gamma(k1, theta1, 3000)
                                                                             0.03
gamma dist 2 = np.random.gamma(k2, theta2, 3000)
   mw_p = mannwhitneyu(gamma_dist_1, gamma_dist_2)
                                                                             0.02
   wc p = wilcoxon(gamma dist 1, gamma dist 2)
                                                                             0.01
   kw_p = kruskal(gamma_dist_1, gamma_dist_2)
  ks p = ks 2samp(gamma dist 1, gamma dist 2)
                                                                             0.00
                                                                                                                      20
                                                                                                                                      30
                                                                                                      10
                                                                                                                                                       40
```

А что, если требуется сравнить распределения по метрике?

Сравнение распределений по метрике

Примеры метрик:

- Статистические метрики
 - Среднее
 - о Медиана
 - о Мода
 - Граничные значения (MIN, MAX)
 - Определенный квантиль
- Вычислим значение метрики для каждого распределения и сравним полученные значения
- Как определить статистическую значимость наблюдаемого отличия?

• Бизнес-метрики

- Средние траты клиента
- Средний скор склонности клиентов к оттоку (или к какому-либо продукту)

Параметрические тесты

Метод

Z-test

T-test Student

T-test Welch

Суть метода

$$t = rac{Z}{s} = rac{ar{X} - \mu}{\widehat{\sigma} / \sqrt{n}}$$

sigma - SD* популяции, для конверсии

sigma - SD сэмпла, для денег

$$t = rac{\Delta X}{s_{\Delta ar{X}}} = rac{X_1 - X_2}{\sqrt{s_{ar{X}_1}^2 + s_{ar{X}_2}^2}}$$

$$s_{ar{X}_i} = rac{s_i}{\sqrt{N}}$$

ANOVA/ANCOVA

- Применяется F_test для нескольких групп
- Сравнение дисперсий
- Группы независимые

Реализация параметрических тестов


```
from scipy.stats import ttest_ind, f_oneway
from statsmodels.stats.weightstats import ztest

ttest_student_res = ttest_ind(normal_distr1, normal_distr2)
ztest_res = ztest(normal_distr1, normal_distr2)
ttest_welch_res = ttest_ind(normal_distr1, normal_distr2, equal_var=False)
anova_res = f_oneway(normal_distr1, normal_distr2)

print('Student's t-test - \tstatistic: {}, p-value: {}'.format(*ttest_student_res))
print('Z-test - \t\tstatistic: {}, p-value: {}'.format(*ztest_res))
print('Welch's t-test - \tstatistic: {}, p-value: {}'.format(*ttest_welch_res))
print('ANOVA test - \t\tstatistic: {}, p-value: {}'.format(*anova_res))
```

 Student's t-test statistic: -1.78743601953593, p-value: 0.07401856983530722

 Z-test statistic: -1.78743601953593, p-value: 0.0738670443207255

 Welch's t-test statistic: -1.78743601953593, p-value: 0.07401863607106599

 ANOVA test statistic: 3.194927523934394, p-value: 0.07401856983529545

Параметрические критерии

Ограничения

- Гипотеза о форме распределения
- ▲ Допущение: значения нескольких метрик (например, среднее и дисперсия) полностью описывают распределение
- ▲ Параметрические тесты работают с ограниченным набором метрик

Недостатки

- Распределение не всегда соответствуют исходной гипотезе о форме распределения
- Значение среднего не всегда бывает характерным свойством распределения
- ▲ Может требоваться сравнение по нестандартной метрике

Распространенные ошибки

- С ростом количества наблюдений распределение всегда стремится к нормальному. Закон больших чисел говорит только о том, что с ростом числа наблюдений характеристики выборки стремятся к истинным значениям этих характеристик для общей совокупности
- Х Т-тест неприменим для ненормальных распределений

Нормализация распределения

<u>По</u>дготовка

Запуск

эксперимента

Планирование

эксперимента

Проверка на нормальность

- - **Kolmogorov-Smirnov test for Normality**
 - Shapiro-Wilk Test

500

750

1000

- Anderson-Darling Normality Test
- **Chi-Square Normality Test**

40 **OVERLAPS WITH** NORMAL DISTRIBUTION 30 **DIFFERS FROM** Frequency NORMAL DISTRIBUTION 20 10

1250

OBSERVED DISTRIBUTION FOLLOWS THEORETICAL DISTRIBUTION?

1500

1750

Проверка на нормальность

- ▼ Kolmogorov-Smirnov test for Normality
 - ▼ Shapiro-Wilk Test
- Anderson-Darling Normality Test
- ▼ Chi-Square Normality Test

ww.spss-futorials.com SHAPIRO-WILK NORMALITY TEST

OBSERVED DISTRIBUTION FOLLOWS THEORETICAL DISTRIBUTION?

Расчет % схожести экспериментального и нормального распределений.

Реализация проверки на нормальность

Нормализация распределения

Функциональное преобразование

Бакетирование: вычисляем значение метрики на непересекающихся бакетах одинакового размера

Параметрические тесты - не панацея. Когда они не работают?

Нестандартная метрика

Нормализовать распределение не удалось Распределение не соответствует стандартной форме

Тогда:

- Как определить статистическую значимость наблюдаемого отличия?
- Насколько вычисленное значение соответствует истине?
- Насколько вычисленное значение метрики характеризует распределение?

Возможное решение

- Повторить эксперимент множество раз (и каждый раз вычислить значение метрики для полученного распределения)
- Чем больше раз мы повторим эксперимент тем точнее нам удастся охарактеризовать каждое из распределений
- Сравнить полученные распределения значений метрики

- Но ведь повторить эксперимент невозможно!
- Для имитации повторного эксперимента используются методы ресемплинга - в частности, bootstrap

Bootstrap

Подготовка

групп

Запуск

эксперимента

Планирование

эксперимента

Bootstrap

bootstrap sample 1

bootstrap sample 2

bootstrap sample 3

Ресэмплинг: имитация повторного эксперимента (имитация повторной выборки из генеральной совокупности)

Описать каждое из полученных распределений одним числом (например, средним или медианой)

Выводы по первому занятию

- ▲ Статистическая значимость (p-value) показывает долю значений столь же или менее правдоподобных, чем выбранное значение.
- ▲ К непараметрическим тестам относят следующие:
 - Манна Уитни
 - Уилкоксона
 - Крускала Уоллиса
 - Колмогорова Смирнова

Они позволяют сравнивать непосредственно формы распределений.

- ▲ Сравнивать распределения может оказаться полезным не только по стандартной метрике среднее но и по нестандартным: например, медиана, мода, граничные значения (МІN, МАХ), квантиль.
- Параметрические тесты работают для сравнения средних:
 - Z-test
 - T-test Student
 - T-test Welch
 - ANOVA/ANCOVA

Такие тесты обладают целым рядом ограничений и недостатков.

▲ Если есть необходимость сравнить распределения по любой другой метрике, кроме среднего, то это можно реализовать с помощью bootstrap.

Литература

- Fundamentals of Biostatistics (2015);
- The Practice of Statistics for Business and Economics (2020);
- All of Statistics A Concise Course in Statistical (2010);
- ► "История одного обмана" или "Требования к распределению в t-тесте";
- How Not To Run an A/B Test;
- Как правильно считать деньги, или Несколько слов в пользу теста Стьюдента.

ВОПРОСЫ

