DRLND Project 1 Report

Introduction

In this project, I trained an agent to navigate (and collect bananas) in an environment provided by Unity-ML.

There will be two types of bananas, yellow and blue. The agent is trained to collect ONLY yellow bananas and avoid blue ones. The agent receives +1 reward for collecting yellow bananas and -1 for collecting blue bananas.

The environment has 37 dimensions state space and there are 4 discrete actions available: move forward (0), move backward (1), turn left (2), turn right (3).

The aim of this project is to get an average score of +13 over 100 consecutive episodes.

Learning Algorithm

I used deep neural networks to approximate the reinforcement learning components: value function, policy, and model (state transition and reward function).¹

I searched for similar works as this project, and I found that 2 fully connected layers was solved in more episodes compared to 3 fully connected layers.^{2,3}

In this project, I implemented 3 fully connected layers and an output layer with 4 action values). I tried different fc layers and the results of those different layers were not much different.

1 st experiment	2 nd experiment	3 rd experiment	4 th experiment	5 th experiment
fc1:128	fc1:62	fc1:256	fc1:32	fc1:512
fc2:64	fc2:32	fc2:128	fc2:16	fc2:256
fc3:32	fc3:16	fc3:64	fc3:8	fc3:128
Solved in episode 441	Solved in episode 403	Solved in episode 497	Solved in episode 604	Solved in episode 468

I submitted 2nd experiment for this project.

Hyperparameters:

- BUFFER_SIZE= 1e5
- The replay buffer size
 BATCH SIZE= 64
- Number of inputs processed per batch when running Stochastic Gradient Descent
- GAMMA= 0.99
 - Discount factor of the Q-Learning Algorithm
- TAU: 1e-3
 - To perform soft updates of the target network parameters
- LR: 5e-4
 - Learning rate provided to the Adam optimizer
- UPDATE EVERY= 4
 - It is used to determine how often to update the network

Plot of Rewards

Below is the rewards plot compilation from different experiments I did

Below is from the algorithm that I submit for this project. With 3 fully connected layers (fc1=64, fc2=32, fc3=16), the environment was solved in 403 episodes.

```
Episode 100 Average Score: 0.59
Episode 200 Average Score: 3.50
Episode 300 Average Score: 6.60
Episode 400 Average Score: 9.75
Episode 500 Average Score: 12.89
Episode 503 Average Score: 13.04
Environment solved in 403 episodes! Average Score: 13.04
```


Ideas for Future Work

Upon the completion fo this course, I will do some extras for this project:

- Make a video output of this project
- Improve the DQN algorithm performance using combination of:
 - Double DQN to tackle the over-estimate problem in Q-learning
 - Prioritized Experience Replay
 To prioritize experience replay, so that important experience transitions can be replay more frequently, to learn more efficiently.
 - Dueling DQN
 Combine state values and advantage values to estimate action value Q(s,a) function may result into faster convergence than vanilla Q-learning.
- There are other extensions, such as multi-step bootstrap targets, Distributional DQN, and Noisy DQN

References

- 1. Deep Reinforcement Learning Nano Degree Udacity Course
- 2. Deep Reinforcement Learning: An overview https://arvix.org/pdf/1701.07274.pdf
- 3. https://github.com/mgiammatteo/udacity_drlnd_project1/blob/master/Navigation.ipynb
- 4. https://github.com/xsankar/DQN Navigation/blob/master/Report.pdf