Analysis 1 - Übungsblatt 11

Wintersemester 2016/2017

Prof. Dr. Anna Marciniak-Czochra, Dr. Frederik Ziebell, Chris Kowall Internetseite: http://www.biostruct.uni-hd.de/Analysis1.php

Abgabe: 27. Januar, 11:00 Uhr in den Zettelkasten (1. Stock Mathematikon)

Aufgabe 11.1 4 Punkte

Sei $I \subset \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ konvex.

(a) Zeigen Sie, dass für festes $x \in I$ die Funktion

$$d_x: D_x \to \mathbb{R}, \quad h \mapsto \frac{f(x+h) - f(x)}{h}$$

auf dem Definitionsbereich $D_x := \{h \in \mathbb{R} \setminus \{0\} \mid x + h \in I\}$ monoton steigend ist.

(b) Beweisen Sie für festes $x \in I$, für welches es a < b gibt mit $x \in (a,b) \subset I$, die folgenden Abschätzungen:

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(z) - f(x)}{z - x} \le \frac{f(b) - f(x)}{b - x} \qquad \forall z \in (a, b) \subset I, z \ne x.$$

Zeigen Sie, dass f stetig auf I ist.

(c) Ist die Funktion $g:[0,1]\to\mathbb{R}$ mit

$$g(x) = \begin{cases} 1 & \text{falls } x = 0, \\ x^2 & \text{sonst} \end{cases}$$

konvex? Begründen Sie Ihre Antwort.

Aufgabe 11.2 4 Punkte

Sei $n \in \mathbb{N}$ und $D \subset \mathbb{R}$ eine offene Menge. Eine Nullstelle $x_0 \in D$ einer n-mal differenzierbaren Funktion $f: D \to \mathbb{R}$ heißt Nullstelle der Ordnung mindestens n, falls sie Nullstelle aller Ableitungen bis zur Ordnung n-1 sowie der Funktion selbst ist, d.h. $f^{(k)}(x_0) = 0$ für alle $k = 0, \ldots, n-1$ gilt.

(a) Zeigen Sie, dass obiges f eine Nullstelle $x_0 \in D$ der Ordnung mindestens n besitzt genau dann wenn es eine stetige Funktion $g: D \to \mathbb{R}$ gibt mit $f(x) = (x - x_0)^n g(x)$.

Ist eine Nullstelle $x_0 \in D$ von der Ordnung mindestens n, jedoch nicht von der Ordnung mindestens n+1, so heißt x_0 n-fache Nullstelle oder Nullstelle der Ordnung n.

(b) Betrachten Sie die Funktion

$$f: \mathbb{R}_+ \to \mathbb{R}_+, \quad x \mapsto x^{\alpha}$$

und bestimmen Sie die Ordnung der Nullstelle in Abhängigkeit von $\alpha \in \mathbb{R}_{>0}$.

(c) Prüfen Sie in Abhängigkeit des Parameters $\beta \in \mathbb{R}$ die Existenz des Grenzwerts

$$\lim_{x \to \infty} \left(1 + x^{\beta} \right)^x$$

und geben Sie gegebenenfalls den Grenzwert an.

Bitte wenden!

Aufgabe 11.3 4 Punkte

Seien $n \in \mathbb{N}_0$ und f, g n-mal differenzierbare reellwertige Funktionen auf demselben Definitionsbereich D.

(a) Zeigen Sie die folgende Regel für die n-te Ableitung des Produkts

$$(f \cdot g)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) \cdot g^{(n-k)}(x), \quad x \in D.$$

(b) Bestimmen Sie die Taylorreihe der Funktion

$$h: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sin(x)\cos(x)$$

um den Entwicklungspunkt $x_0 = 0$ mithilfe von Aufgabenteil (a).

Hinweis. Verwenden Sie den Binomialsatz.

(c) Für welche $x \in \mathbb{R}$ konvergiert die Taylorreihe aus Aufgabenteil (b) und stellt sie die Funktion h dar?

Aufgabe 11.4 4 Punkte

(a) Betrachten Sie für eine reelle Nullfolge $(\varepsilon_n)_{n\in\mathbb{N}}$ die Funktionenfolge $f_n:\mathbb{R}\to\mathbb{R}$ mit $f_n(x)=\sqrt{\varepsilon_n^2+x^2}$. Gilt in diesem Fall für alle $x\in\mathbb{R}$ die Gleichheit

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{n \to \infty} f'_n(x) ?$$

(b) Gegeben sei ein offenes, beschränktes Intervall $I \subset \mathbb{R}$, eine stetig differenzierbare Funktionenfolge $(g_k)_{k \in \mathbb{N}}$ mit $g_k : I \to \mathbb{R}$ und eine paramterabhängige Reihe

$$S: I \to \mathbb{R} \quad \text{mit} \quad S(x) := \sum_{k=1}^{\infty} g_k(x),$$

die punktweise konvergiere, d.h. für jedes $x \in I$ konvergent ist. Geben Sie Kriterien an, unter welchen Differentiation und Summation vertauscht werden kann, d.h.

$$S'(x) = \frac{\mathrm{d}}{\mathrm{d}x} \sum_{k=1}^{\infty} g_k(x) = \sum_{k=1}^{\infty} g'_k(x)$$

gilt.

(c) Prüfen Sie, für welche $x \in \mathbb{R}$ die parameterabhängige Reihe

$$S(x) := \sum_{k=1}^{\infty} \frac{x^k}{k}$$

konvergiert und ob Differentiation und Summation im Konvergenzbereich vertauscht werden kann.