Requested Patent

EP0532167A2

Title:

NON-A, NON-B HEPATITIS VIRUS GENOME, POLYNUCLEOTIDES, POLYPEPTIDES, ANTIGEN, ANTIBODY AND DETECTION SYSTEMS.

Abstracted Patent:

EP0532167;

Publication Date:

1993-03-17;

Inventor(s):

NAKAMURA TETSUO (JP); OKAMOTO HIROAKI (JP);

Applicant(s):

JAPAN IMMUNO INC (JP);

Application Number:

EP19920306952 19920730;

Priority Number(s):

JP19910287402 19910809; JP19910360441 19911205;

IPC Classification:

A61K39/29; C07K15/00; C12N15/51; C12P21/08; G01N33/576;

Equivalents:

CA2075611

ABSTRACT:

Non-A, non-B hepatitis (NANB hepatitis) virus RNA and its corresponding polypeptide, related antigen, antibody, and detection systems for detecting NANB hepatitis antigen or antibodies.

11) Publication numb r:

0 532 167 A2

(2)

EUROPEAN PATENT APPLICATION

- 21 Application number: 92306952.0
- ② Date of filing: 30.07.92

(f) Int. CI.5: **C12N** 15/51, A61K 39/29, G01N 33/576, C07K 15/00, C12P 21/08

- ② Priority: 09.08.91 JP 287402/91 05.12.91 JP 360441/91
- ② Date of publication of application: 17.03.93 Bulletin 93/11
- Designated Contracting States:
 BE CH DE DK FR GB IT LI NL

- 7) Applicant: IMMUNO JAPAN INC. 4-28-14-701, Ogikubo Suginami-Ku Tokyo 167(JP)
- Inventor: Okamoto, Hiroaki 3132-24, Yakushiji, Minami Kawachi Machi Kawachi-gun; Tochigi-ken 329-04(JP) Inventor: Nakamura, Tetsuo 14-701, 4-chome 28, Ogikubo Suginami-ku, Tokyo 167(JP)
- Representative: Arthur, Bryan Edward 4 Dyers Buildings Holborn London, EC1N 2JT (GB)
- Non-A, Non-B Hepatitis virus genome, polynucleotides, polypeptides, antigen, antibody and detection systems.
- (5) Non-A, non-B hepatitis (NANB hepatitis) virus RNA and its corresponding polypeptide, related antigen, antibody, and detection systems for detecting NANB hepatitis antigen or antibodies.

R ference To A Related Application

The present application is a continuation-in-part of our copinding U.S. Pat int Application Serial No. 07/866,045, filed on April 9, 1992, which is incorporated by reference in its entirety.

Background of the Invention

5

The present invention concerns non-A, non-B hepatitis (hereinafter called NANB hepatitis) virus genome, polynucleotides, polypeptides, related antigen, antibody and detection systems for detecting NANB antigens or antibodies.

Viral hepatitis of which DNA and RNA of the causative viruses have been elucidated, and their diagnosis and even prevention in some have been established, are hepatitis A and hepatitis B. The general name NANB hepatitis was given to the other forms of viral hepatitis.

Post-transfusion hepatitis was remarkably reduced after introduction of diagnostic systems for screening hepatitis B in transfusion bloods. However, there are still an estimated 280,000 annual cases of post-transfusion hepatitis caused by NANB hepatitis in Japan.

NANB hepatitis viruses were recently named C,D and E according to their types, and scientists started a world wide effort to conduct research for the causative viruses and subsequent extermination of the causative viruses.

In 1988, Chiron Corp. claimed that they had succeeded in cloning RNA virus genome, which they termed hepatitis C virus (hereinafter called HCV), as the causative agent of NANB hepatitis and reported on its nucleotide sequence (British Patent 2,212,511 which is the equivalent of European Patent Application 0,318,216). HCV (C100-3) antibody detection systems based on the sequence are now being introduced for screening of transfusion bloods and for diagnosis of patients in Japan and in many other countries. The detection systems for the C100-3 antibody have proven their partial association with NANB hepatitis; however, they capture only about 70% of carriers and chronic hepatitis patients, or they fail to detect the antibody in acute phase infection, thus leaving problems yet to be solved even after development of the C100-3 antibody by Chiron Corp.

The course of NANB hepatitis is troublesome and most patients are considered to become carriers, then to develop chronic hepatitis. In addition, most patients with chronic hepatitis develop liver cirrhosis, then hepatocellular carcinoma. It is therefore very imperative to isolate the virus itself and to develop effective diagnostic reagents enabling earlier diagnosis.

The presence of a number of NANB hepatitis which cannot be diagnosed by Chiron's C100-3 antibody detection kits suggests a possibility of a difference in subtype between Chiron's HCV and Japanese NANB hepatitis virus.

In order to develop NANB hepatitis diagnostic kits of more specificity and to develop effective vaccines, it becomes an absolutely important task to analyze each subtype of NANB hepatitis causative virus at its genetic and corresponding amino acid level.

Summary of the Invention

An object of the present invention is to provide the nucleotide sequence coding for the structural protein of NANB hepatitis virus and, with such information, to analyze amino acids of the protein to locate and provide polypeptides useful as antigen for establishment of detection systems for NANB virus, its related antigens and antibodies.

A further object of the present invention is to locate polynucleotides essential to treatment, prevention and diagnosis, and polypeptides effective as antigens, by isolating NANB hepatitis virus RNA from human and chimpanzee virus carriers, cloning the cDNA covering the whole structural gene of the virus to determine its nucleotide sequence, and studying the amino acid sequence of the cDNA. As a result, the inventors have determined the nucleotides of the whole genome of a strain of NANB virus called HC-J6 and a strain called HC-J8. NANB hepatitis virus genome of HC-J6 and HC-J8 differ from that of Chiron's HCV.

Brief Description of the Drawings

Figure 1 shows the restriction map and structure of the coding region of NANB hepatitis virus genome (HC-J6) and positions of clones. C, E, NS-1, NS-2, NS-3, NS-4 and NS-5 are the abbreviation of core, nvelope, non-structure-1, -2, -3, -4 and -5.

Figures 2 to 4 show method of determination of the nucleotide sequence of 5' t rminus of NANB h patitis virus genom of strains HC-J1, HC-J4 and HC-J6 respectively.

Figur 5 shows the m thod of d t rmination of th nucleotid sequence of 3' terminus of HC-J6 genome. Solid lines show nucleotide sequences determined by clones from libraries of bacteriophage lambda qt10, and broken lines show nucleotide sequences determined by clones obtained by PCR.

Figure 6 shows the structure of coding region of NANB hepatitis virus genome (HC-J8) and positions of clones. Regions a to n indicate positions of amplification by PCR.

Detailed Description of the Invention

10

40

The present invention provides NANB hepatitis virus genome RNA for strain HC-J6 (sequence list 1) consisting of 340 nucleotides on the 5' terminus that follow an open reading frame consisting of 9099 nucleotides coding for the structural protein and non-structural protein that follow a noncoding region consisting of 150 nucleotides containing an U-stretch consisting of 108 uracils on the 3' terminus of NANB hepatitis virus, and NANB hepatitis virus genome having substantially the nucleotide sequence of sequence list 1

The present invention provides polynucleotide N-9589 (strain HC-J6) comprising the DNA nucleotide sequence of sequence list 2; cDNA clone J6-ø81 comprising the nucleotide sequence of sequence list 3; cDNA clone J6-ø8 comprising the nucleotide sequence of sequence list 4; and NANB hepatitis virus polynucleotides having substantially the sequence of nucleotides of NANB hepatitis virus nucleotides shown in sequence lists 2 through 4.

The invention provides polypeptide coded for by genome or polynucleotide of HC-J6 above, polypeptide P-J6-3033, comprising the polypeptide sequence of sequence list 5, polypeptides produced by using recombinant genome, recombinant polynucleotides and recombinant cDNA of whole or a part of cDNA above, and polyclonal or monoclonal antibodies against the polypeptides described above.

The present invention also provides NANB hepatitis virus genome for strain HC-J8 comprising sequence list 6, NANB hepatitis virus RNA consisting of noncoding region consisting of 341 nucleotides on 5' terminus followed by an open reading frame consisting of 9099 nucleotides coding for the structural protein and non-structural protein followed by a noncoding region consisting of 71 nucleotides containing an U-stretch consisting of 30 uracils on 3' terminus of NANB hepatitis virus comprising sequence list 6, and NANB hepatitis virus genome having substantially the nucleotide sequence of sequence list 6.

The present invention provides polynucleotide N-9511 for strain HC-J8 comprising the DNA nucleotide sequence of sequence list 7 and NANB hepatitis virus polynucleotide having substantially the sequence of nucleotides of NANB hepatitis virus nucleotides comprising sequence list 7.

The invention provides polypeptide coded for by genome or polynucleotide of HC-J8 above, polypeptide P-J8-3033, comprising the polypeptide sequence of sequence list 8 and polypeptide P-J8-3033-2 comprising the polypeptide sequence of sequence list 9, polypeptides produced by using recombinant genome, recombinant polynucleotides and recombinant cDNA of whole or a part of cDNA above, and polyclonal or monoclonal antibodies against the polypeptides described above.

The present invention, furthermore, provides NANB hepatitis diagnostic system using polypeptides or antibodies described above.

In the method described below, NANB hepatitis virus RNA of the present invention was obtained and its nucleotide sequence was determined.

Plasma samples (HC-J1, HC-J4, HC-J6 and HC-J8) were obtained from human and chimpanzee. HC-J1, HC-J6 and HC-J8 were obtained from Japanese blood donors who had tested positive for HCV antibody. HC-J4 was obtained from the chimpanzee subjected to the challenge test but was negative for Chiron's C100-3 antibody previously mentioned.

RNA was isolated from each of the plasma samples. Following the study of 5' terminus of approximately 2,500 nucleotides and 3' terminus of approximately 1,100 nucleotides disclosed in Japanese patent application No. 196175/91, the inventors have completed the study of the region coding for non-structural protein of strain HC-J6 and the study of the full length sequence of 9,589 nucleotides of HC-J6 genome RNA and have completed the study of the region coding for non-structural protein of strain HC-J8 and the study of the full length sequence of 9,589 nucleotides of HC-J8 genome RNA.

As described in the Example below, strain HC-J6 had a 5' noncoding region consisting of 340 nucleotides, and strain HC-J8 had a 5' noncoding region consisting of 341 nucleotides, followed by region coding for structural protein and region coding for non-structural protein.

Concerning the 3' terminus, strain HC-J6 was found to have a region consisting of 150 nucleotides containing an U-stretch consisting of 108 uracils following after the region coding for non-structural protein

and strain HC-J8 was found to hav a region consisting of 71 nucleotides containing an U-stretch consisting of 30 uracils following after th region coding for non-structural protein.

Th coding region starting with ad nine (341st nucl otid from the 5' terminus for strain HC-J6 and 342nd nucleotide from the 5' terminus for strain HC-J8) was found to have a long *Open Reading Frame* consisting of 9099 nucleotides which codes for 3033 amino acids. HCV or hepatitis C virus is supposed to be closely allied to flavivirus in regard to its genetic structure. The coding of the NANB hepatitis virus genome of the present invention was considered to be consisting of regions named C (core), E (envelope), NS-1 (non-structural-1), NS-2 (non-structural-2), NS-3 (non-structural-3), NS-4 (non-structural-4) and NS-5 (non-structural-5).

As compared with the sequence of HCV disclosed in the European Patent Application by Chiron Corp. (Publication No. 388,232), homology of sequences of the strain HC-J6 was 67.9% for the full nucleotide sequence and 72.3% for the full amino acid sequence, and homology of sequences of the strain HC-J8 was 66.4% for the full nucleotide sequence and 71.0% for the full amino acid sequence.

From an examination of homology for regions, the homology of nucleotide sequences (strain HC-J6) of the 5' terminal noncoding region was 94.4% and that of the amino acid sequences of the C region was 90.1%, showing comparatively high homology; on the other hand, concerning lower stream than envelope, homologies of amino acid sequence were found to be as low as 60.4% for E, 71.1% for NS-1, 57.8% for NS-2, 81.1% for NS-3, 73.1% for NS-4, and 69.9% for NS-5. As a result, HC-J6 strain was found to be significantly different from HCV strain found by Chiron Corp.

From an examination of homology for regions, the homology of nucleotide sequences (strain HC-J8) of the 5' terminal noncoding region was 93.8% and that of the amino acid sequences of the C region was 90.1%, showing comparatively high homology; on the other hand, concerning lower stream than envelope, homologies of amino acid sequence were found to be as low as 54.7% for E, 73.1% for NS-1, 55.6% for NS-2, 81.3% for NS-3, 72.1% for NS-4, 67.3% for NS-5, and 25.9% for 3' terminal noncoding region. As a result, HC-J8 strain was found to be significantly different from HCV strain found by Chiron Corp.

From the comparison of amino acid sequence of HC-J6 strain with strain HC-J1 (American type) and strain HC-J4 (Japanese type) disclosed by the inventors (Japan. J. Exp. Med. (1990), 60: 167-177), homology in the core region was more than 90% for each strain while that in the envelope region was 60.9% for HC-J1 and 53.1% for HC-J4. Thus, in the present invention, strain HC-J6 was found to be a different type of virus than strains HC-J1 or HC-J4.

From the comparison of amino acid sequence of HC-J8 strain with strain HC-J1 (type I) and strain HC-J4 (type II), homology of approximately 3,000 nucleotides of 5' terminus was 70.1% for HC-J1 and 67.1% for HC-J4, and from the comparison of all nucleotides with HC-J6 (type III) genome homology was as low as 76.9%. On the other hand, HC-J8 showed high homology with strain HC-J7 (type IV) disclosed in Japanese patent application 196175/91 as 93.1% for approximately 3,000 nucleotides of 5' terminus.

Nucleotides among stains assumed to belong to same type were supposed to show high homology. For example, homology of 95.6% for approximately 3,000 nucleotides of 5' terminus between HCV disclosed by Chiron Corp. and HC-J1 appears to show that they should be classified into type I. On the other hand, low homology of HC-J8 with HCV, HC-J1, HC-J4 and HC-J6 appeared to show that it was not to be classified into type I, II or III, but into type IV (the same as HC-J7).

Strain HC-J8 has some mutations in the nucleotides as shown in sequence lists 6 and 7 by symbols M, R, W, S, Y, K and B. It also can be easily understood that it has some mutations of amino acids from comparison of sequences in sequences lists 8 and 9. Mutation of nucleotides was observed up to approximately 1.4% in the whole genome and that of amino acids was observed up to approximately 1.7% in whole ORF. Thus the present invention includes genomes, polynucleotides and polypeptides of strain HC-J8 having some mutations.

In addition, envelope (E) region (576 nucleotides/192 amino acids of amino acids 192-383) and NS-1 region (1050 nucleotides/350 amino acids of amino acids 384-733) having many mutations in HC-J8 are called hyper-variable region since mutations were observed as 20 nucleotides/7 amino acids (3.47%/3.64%) in E region and 37 nucleotides/19 amino acids (3.52%/5.42%) in NS-1 region. According to these findings, the present invention can be recognized to include genomes and polypeptides coded for by the genomes of strain HC-J8 having mutations of 3.5% to 5.5% in those regions.

The genome, polynucleotide, and cDNA clones of the present invention can be used as material to produce peptides of the invention by integration into a host genome, e.g. *E. coli* or *Bacillus*, by means of known genetic engineering techniques.

Polypeptides of the inv ntion are useful as material for diagnostic agents to detect NANB hepatitis antibodies with high specificity and as material to produce polyclonal and monoclonal antibodies by known techniques.

Polyclonal and monoclonal antibodi s of the invention ar useful as materials for diagnostic ag nts to d tect NANB hepatitis antig ns with high specificity.

A det ction system using each polypeptide of the pr s nt inv ntion or polypeptid with partial replacement of amino acids, and a detection system using monoclonal or polyclonal antibodies to such polypeptides, are useful as diagnostic agents of NANB hepatitis with high specificity and are effective to screen out NANB hepatitis virus from transfusion bloods or blood derivatives. The polypeptides, or antibodies to such polypeptides, can be used as a material for a vaccine against NANB hepatitis virus.

It is well known in the art that one or more nucleotides in a DNA sequence can be replaced by other nucleotides in order to produce the same protein. The present invention also concerns such nucleotide substitutions which yield DNA sequences which code for polypeptides as described above. It is also well known in the art that one or more amino acids in an amino acid sequence can be replaced by equivalent other amino acids, as demonstrated by U.S. Patent No. 4,737,487 which is incorporated by reference, in order to produce an analog of the amino acid sequence. Any analogs of the polypeptides of the present invention involving amino acid deletions, amino acid replacements, such as replacements by other amino acids, or by isosteres (modified amino acids that bear close structural and spatial similarity to protein amino acids), amino acid additions, or isosteres additions can be utilized, so long as the sequences elicit antibodies recognizing NANB antigens.

Examples of application of this invention are shown below, however, the invention shall in no way be limited to those examples.

Examples

The 5' terminal nucleotide sequence and amino acid sequence of NANB hepatitis virus genome were determined in the following way:

(1) Isolation of RNA

RNA of the sample (HC-J1, HC-J6, HC-J8) from plasma of Japanese blood donor testing positive for HCV (C100-3) antibody (by Ortho HCV Ab ELISA, Ortho Diagnostic System, Tokyo), and that of the sample (HC-J4) from the chimpanzee challenged with NANB hepatitis for infectivity and negative for HCV antibody were isolated in the following method:

Each plasma sample was added with Tris chloride buffer (10 mM, pH 8.0) and centrifuged at 68 x 103 rpm for 1 hour. Its precipitate was suspended in Tris chloride buffer (50 mM, pH 8.0) containing 200 mM NaCl, 10 mM EDTA, 2% (w/v) sodium dodecyl sulfate (SDS), and proteinase K 1 mg/ml, incubated at 60°C for 1 hour, then their nucleic acids were extracted by phenol/chloroform and precipitated by ethanol to obtain RNA.

(2) HC-J1 and HC-J8 cDNA Synthesis

After heating the RNA isolated from HC-J1 or HC-J8 plasma at 70°C for 1 minute, this was used as a template; 10 units of reverse transcriptase (cDNA Synthesis System Plus, Amersham Japan) and 20 pmol of oligonucleotide primer (20 mer) were added and incubated at 42 °C for 1.5 hours to obtain cDNA. Primer #8 (5'- GATGCTTGCGGAAGCAATCA - 3') was prepared by referring to the basic sequence shown in European Patent Application No. 88310922.5, which is relied on and incorporated herein by reference.

(3) cDNA Was Amplified by the following Polymerase Chain Reaction (PCR)

cDNA was amplified for 35 cycles according to Saiki's method (Science (1988) 239: 487-491) using Gene Amp DNA Amplifier Reagent (Perkin-Elmer.Cetus) on a DNA Thermal Cycler (Perkin-Elmer.Cetus).

For cDNA synthesis and for PCR for HC-J8, synthesized primers disclosed in Japanese patent application 153402/90 and those based on HC-J1, HC-J4 and HC-J6 genomes disclosed in Japanese patent applications 196175/91 and b low were utilized.

(4) Determination of 5' Terminal Nucl otide Sequence of HC-J1 and HC-J4 by Assembling cDNA Clones

As shown in Figur s 2 and 3, nucleotide sequences of 5' termini of the genomes of strains HC-J1 and HC-J4 were determined by combined analysis of clones obtained from the cDNA library constructed in bacteriophage \(\lambda\)gt10 and clones obtained by amplification of HCV specific cDNA by PCR.

5

20

40

Figures 2 and 3 show 5' t rmini of NANB hepatitis virus g nom togeth r with cl avag site by restriction indonuclease and sequenc of primers used. In the figur s, solid lines are nucl otid sequinc s determined by clones obtained by PCR.

A 1656 nucleotide sequence of HC-J1 spanning nt454-2109 was determined by clone Ø41 which was obtained by inserting the cDNA synthesized with the primer #8 into \(\lambda \text{gt10} \) phage vector (Amersham).

Another primer #25 (5'- TCCCTGTTGCATAGTTCACG -3') corresponding to nt824-843 was synthesized based on the ø41 sequence, and four clones (ø60, ø61, ø66 and ø75) were obtained to cover the upstream sequence nt18-843.

(5) Determination of 5' Terminal Nucleotide Sequence of HC-J6.

10

15

55

The nucleotide sequence of the 5' terminus of strain HC-J6 was determined from analysis of clones obtained by PCR amplification as shown in Figure 4.

Isolation of RNA from HC-J6 and determination of its sequence was made in the same manner as described in (2) above. Sequences in the range of nt24-2551 of the RNA were determined from consensus sequence of respective clones obtained by amplification by PCR using each pair of primers based on nucleotide sequence of HC-J4.

```
20
                  nt24-826
                       (5'-ACTCCACCATAGATCACTCC-3')
                  #32
                  #122 (5'-AGGTTCCCTGTTGCATAATT-3')
25
                  Clones: C9397, C9388, C9764
30
                  nt732-1907
                        (5'-GCCGACCTCATGGGGTACAT-3')
                  #50
                        (5'-TCGGTCGTGCCCACTACCAC-3')
                  #128
35
                           C9316, C9752, C9753
                  Clones:
40
                  nt1847-2571
45
                         (5'-TCTGTGTGTGGCCCAGTGTA-3')
                  #149
                         (5'-AGTAGCATCATCCACAAGCA-3')
                  #146
                  Clones: Cl1621,Cl1624,Cl1655
50
```

In order to determin further upstream of the 5' terminus, antisens primer #36 (5'- AACACTACTCGG-CTAGCAGT -3') corresponding to nt246-265, followed by dAs were added to 5' terminus of cDNA using terminal deoxynucleotidyl transf rase, and one-sided PCR amplification was mad twice as described below.

cDNA was amplified for 35 cycles as first stage PCR using oligo dT primer (20-mer) and antis ns primer #48 (5'-GTTGATCCAAGAAAGGACCC -3') of nt188-207, followed by th second stag of PCR by 30 cycle amplification using th first PCR product as a template, oligo dT primer (20 -mer) and antisense

primer #109 (21-mer; 5'-ACCGGATCCGCAGACCACTAT-3') corresponding to nt140 to 160. The obtained PCR product was subcloned to M13 phage vector.

Nucl otid sequ nce from nt1 to 23 was determined from cons nsus sequenc of 13 isolated clones C9577, C9579, C9581, C9587, C9590, C9591, C9595, C9606, C9609, C9615, C9616 and C9619 obtained above which were considered having complete 5' terminus.

(6) Determination of nucleotide sequence of HC-J6 middle region.

cDNA library was constructed with using \(\text{\gamma} \) according to the method described in (2) above from 100ml of HC-J6 plasma as a starting materials. Primers #162 and #81 were prepared for synthesis by referring to the basic sequence shown in the European Patent Application Publication No. 318,216. Clones were selected by plaque hybridization.

Nucleotide sequence from 2552 to 8700 was determined from consensus sequence of four obtained cDNA clones Ø2 (nt6996 to 8700), Ø6(nt6485 to 8700), Ø8(nt6008 to 8700) and Ø81 (nt2199 to 6168) as shown in Figure 1. Clones Ø81 and Ø8 were found to have nucleotide sequences shown in sequence lists 3 and 4 respectively.

(7) Determination of 3' terminal nucleotide sequence of HC-J6 strain.

As shown in Figure 5, the nucleotide sequence of the 3' terminus of HC-J6 genome was determined by analysis of clones obtained by amplification of HCV specific cDNA by PCR.

Nucleotide sequence of HC-J6 from nt8701 to 9241 was determined from consensus sequence of three clones consisting of 938 nucleotides, C9760, C9234 and C9761, obtained by amplification of sample using primer #80 (5'-GACACCCGCTGTTTTGACTC-3') and #60 (5'-GTTCTTACTGCCCAGTTGAA-3').

Nucleotide sequence of 3' terminus down stream from nt9242 was determined in the method described below.

Isolation of RNA from HC-J6 was made in the same manner as described in (1) above. The obtained RNA was added poly (A) to its 3' terminus using poly (A) polymerase and cDNA was synthesized using oligo (dT)₂₀ as a primer, and obtained cDNA was provided to PCR as a template.

First PCR product was made with using #97 (5'-AGTCAGGGCGTCCCTCATCT-3') as a sense primer and oligo (dT)₂₀ as an antisense primer. Second PCR product was made with using #90 (5'-GCCGTTTGCGGCCGATATCT-3') corresponding to downstream sequence of #97 as a sense primer, and oligo (dT)₂₀ as an antisense primer as well as first PCR product. PCR product obtained by two step amplification was smoothened on both ends by treatment with T₄DNA polymerase, followed by phosphorylation of 5'terminus by T₄ polynucleotide kinase. The obtained product was subcloned into Hinc II position of M13mp19 phage vector.

Nucleotide sequence of 3' terminus was determined from consensus sequence of 19 obtained clones, C10311, C10313, C10314, C10320, C10322, C10323, C10326, C10328, C10330, C10333, C10334, C10336, C10337, C10345, C10346, C10347, C10349, C10350 and C10357.

As a result, the nucleotide sequence of cDNA to HC-J6 genome RNA was determined as shown in sequence list 2, and full sequence of genome RNA was determined as shown in sequence list 1.

(8) Determination of amino acid sequences.

According to the nucleotide sequence of the genome of strain HC-J6, determination was made of sequence of coded region starting with ATG. As a result, HC-J6 genome was found to have a long *Open Reading Frame* coding for polypeptide precursor consisting of 3033 amino acid residues.

(9) Determination of 5' terminal nucleotide sequence of HC-J8

As shown in Figure 6, the nucleotide sequence of 5' terminus of HC-J8 genome (a region) was determined by analysis of clones obtained by amplification of HCV specific cDNA by PCR.

Single-stranded cDNA was synthesized using antisense primer #36 (5'-AACACTACTCGGCTAGCAGT-3') of nt246 to 265 in the same manner as (2) above, then it was added with dATP tail at its 3' terminus by terminal deoxynucleotidyl transferase, then amplified by one-sided PCR in two stages.

That is, in th first stag, antisense prim r #48 (5'-GTTGATCCAAGAAAGGACCC-3') of nt188 to 207 was used with s nse primer selected from non-specific primer #165 (5'-AAGGATCCGTCGACATCGATAATACG (A) 17-3') and #171 (5'-AAGGATCCGTCGACATCGATAATACG(T)17-3') to amplify the dA-tailed cDNA

7

50

20

25

by PCR for 35 cycl s; and in the second stage, using the product of the first-stage PCR as a template, non-specific primer #166 (5' AAGGATCCGTCGACATCGAT -3') and antisense prim r #109 (21-m r; 5'-ACCG-GATCCGCAGACCACTAT -3') w r added to initiat PCR for 30 cycl s. The product of PCR was subcloned to M13 phage vector.

Thirteen independent clones (poly dT-tailed: C14951,C14952, C14953, C14958, C14960, C14968, C14971, C14972 and C14974; poly dA-tailed: C14987, C14996, C14999 and C15000) were obtained (each considered having complete length of 5' terminus), and the consensus sequence of nt1-139 of the respective clones was determined.

(10) cDNA amplification of ORF region and 3' terminus by PCR

20

25

30

35

40

45

50

55

As shown in Figure 6, the nucleotide sequence of downstream from nt140 of HC-J8 genome was determined by analysis of clones obtained by amplification of HCV specific cDNA by PCR.

Single-stranded cDNAs to HC-J8 RNA were synthesized in the same manner as (2) above using antisense primers described below, then they were amplified by PCR using sense and antisense primers described below. Each product of PCR was subcloned to M13 phage vector, then consensus sequence of the respective clones of each region was determined.

The primers for cDNA synthesis and PCR amplification, and the numbers of obtained clones are shown below for each region. Alphabetical symbol of each amplified region corresponds to that in Figure 6.

b region

55

nt45-847 Primer for cDNA synthesis: #122 (5'-AGGTTCCCTGTTGCATAATT-3') Primer for PCR: sense: #32A (5'-CTGTGAGGAACTACTGTCTT-3') antisense #122 10 Clones: C15221,C15222,C15223 15 c region nt732-1354 Primmer for cDNA synthesis:#54 (5'-ATCGCGTACGCCAGGATCAT-3') Primer for PCR: sense: #50 (5'-GCCGATCTCATGGGGTACAT-3') antisense:#54 25 C15256, C15257, C15258 Clones: <u>d region</u> nt1300-1879 Primer for cDNA synthesis: #199 (5'-GGGGTGAAACAATACACCGG-3') Primer for PCR: sense: #205 (5'-GGGACATGATGATCAACTGG-3') antisense: #199 C14221, C14222, C14223 Clones: 4n 45 50

e region nt1833-2518 5 Primer for cDNA synthesis: #146 (5'-AGTAGCATCATCCACAAGCA-3') Primer for PCR: sense: #150 (5'-ATCGTCTCGGCTAAGACGGT-3') antisense: #146 10 C11535,C11540,C11566 Clones: 15 f region nt2433-3451 Primer for cDNA synthesis: #170 (5'-GCATAAGCAGTGATGGGGGC-3') Primer for PCR: sense: #160 (5'-CAGAACATCGTGGACGTGCA-3') antisense: #170 25 Clones: C15348,C15349,C15356 g region nt3404-4300 Primer for cDNA synthesis: #225 (5'-TCGCATATGATGATGTCATA-3') Primer for PCR: sense: #238 (5'-CTACACCTCCAAGGGGTGGA-3') antisense: #225 C15701,C15702,C15703 Clones: h region nt4221-5015 Primer for cDNA synthesis: #216 (5'-GTGGTCTAGACATACGGGCA-3') Primer for PCR: sense: #230 (5'-CCCATCACGTACTCCACATA-3')

55

antisense: #216

Clones: C15391,C15392,C15393

5 <u>i region</u>

nt4695-5062

Primer for cDNA synthesis: #210 (5'-GCATCTATGTGTGTGAGGCC-3')

Primer for PCR: sense: #209 (5'-TTCGACTCCGTGATCGACTG-3')

antisense: #210

15 Clones: C14087,C14088,C14089

<u>i region</u>

nt5021-6169

Primer for cDNA synthesis: #162 (5'-TCCGACTCCGTCACGTAGTG-3')

25 Primer for PCR: sense: #227 (5'-GTTCTGGGAAGCGGTCTTTA-3')

antisense: #162

Clones: C15421,C15422,C15423

k region

30

nt6027-6889

Primer for cDNA synthesis: #232 (5'-GATGGGTCTGTTAGCATGGA-3')

Primer for PCR: sense: #242 (5'-TTGGTAGTGGGAGTCATCTG-3')

antisense: #232

Clones: C15733,C15734,C15735

1 region

nt6834-7735

50 Primer for cDNA synthesis #239 (5'-ATCGGTAACTTCTCCTCTTC-3')

55

Primer for PCR: sense: #241 (5'-CCTTGCGATCCTGAACCTGA-3')

antisense:#239

Clones: C15798,C15799,C15800

10 m region

15

25

35

nt7656-8630

Primer for cDNA synthesis: #222 (5'-GACCAGGTCGTCTCCACACA-3')

Primer for PCR: sense: #229 (5'-GTCGTGTGCTCCATGTC-3')

antisense: #222

20 Clones: C15376,C15378,C15381

n region

nt8325-9511

Primer for cDNA synthesis: #165

30 Primer for PCR: sense: #80 (5'-GACACCCGCTGTTTTGACTC-3')

non-specific: #165

Clones: C15270,C15271,C15272

From the analysis described above, full nucleotide sequence of cDNA to HC-J8 was determined as shown in sequence list 7, then full nucleotide sequence of HC-J8 genome RNA as shown in sequence list 6. Two amino acid sequences shown in sequence lists 8 and 9 represent those coded for by HC-J8 genome.

Utilizing known immunological techniques, it is possible to determine epitopes (e.g., from the core region, etc.) from the polypeptides of sequence lists 5, 8 and 9. Determination of such epitopes of the NANB hepatitis virus opens access to chemical synthesis of the peptide, manufacturing of the peptide by genetic engineering techniques, synthesis of the polynucleotides, manufacturing of the antibody, manufacturing of NANB hepatitis diagnostic reagents, and development of products such as NANB hepatitis vaccines.

According to the well-known method described by Merrifield, NAMB peptides can be synthesized. Furthermore, the polynucleotides in sequence lists 2-4 and 7 can be used to express polypeptides in host cells such as *Escherichia coli* by means of genetic engineering technique.

A detection system for antibody against NANB hepatitis virus can be developed using polyvinyl microtiter plates and the sandwich method. For example, 50μ I of $5~\mu$ g/mI concentration of a NANB peptide can be dispensed in each well of the microtiter plates and incubated overnight at room temperature for consolidation. Th microplate w IIs can be washed five times with physiological saline containing 0.05% Tween 20. For overcoating, $100~\mu$ I of NaCl buffer containing 30% (v/v) of calf serum and 0.05% Tw en 20 (CS buffer) can b dispens d in each well and discarded after incubation for 30 minutes at room temperature.

For determination of NANB antibodies in sampl s, in the primary reaction, 50μ I of the CS buff r containing 30% calf serum and $10~\mu$ I of a sample can b dispensed in each microplate well and incubated on a microplate vibrator for one hour at room temperature. After completion of the reaction, microplate wells

can be washed five times in th sam way as pr viously described.

In the secondary r action, as label d antibody 1 ng of hors radish peroxidas lab led anti-human lgG mous monoclonal antibodi s (Fab' fragment: 22G, Institut of Immunology Co., Ltd., Tokyo, Japan) dissolved in 50 μ I of calf serum can be dispensed in each microplate well, and incubated on a microplate vibrator for one hour at room temperature. Wells can be washed five times in the same way. After addition of hydrogen peroxide (as substrate) and 50 μ I of O-phenylendiamine solution (as color developer) in each well, and after incubation for 30 minutes at room temperature, 50 μ I of 4M sulphuric acid can be dispensed in each well to stop further color development and for reading absorbance at 492 nm.

The cut-off level of this assay system can be set by measuring a number of donor samples with normal serum ALT (alanine aminotransferase) value of 34 Karmen unit or below and which tested negative for anti-HCV.

The present invention makes possible detection of NANB hepatitis virus infection which could not be detected by conventional determination methods, and provide NANB hepatitis detection kits capable of highly specific and sensitive detection at an early phase of infection.

These features allow accurate diagnosis of patients at an early stage of the disease and also help to remove at higher rate NANB hepatitis virus carrier bloods through screening test of donor bloods.

Polypeptides and their antibodies under this invention can be utilized for manufacture of vaccines and immunological pharmaceuticals, and structural gene of NANB hepatitis virus provides indispensable tools for detection of polypeptide antigens and antibodies.

Antigen-antibody complexes can be detected by methods known in this art. Specific monoclonal and polyclonal antibodies can be obtained by immunizing such animals as mice, guinea pigs, rabbits, goats and horses with NANB peptides (e.g., bearing NANB hepatitis antigenic epitope).

The present invention is based on studies on isolated virus genome of NANB hepatitis virus named HC-J6 and HC-J8, and is completed by clarification of the full sequence of the nucleotides. The invention makes possible highly specific detection of NANB hepatitis virus and provision of polypeptide, polyclonal antibody and monoclonal antibody to prepare the test system.

Further variations and modifications of the invention will become apparent to those skilled in the art from the foregoing and are intended to be encompassed by the claims appended hereto.

Japanese Priority Applications 287402/91 filed August 9, 1991 and 360441/91 filed on December 5, 1991 are relied on and incorporated by reference. U.S. patent applications serial no. 07/540,604 (filed June 19, 1990), 07/653,090 (filed February 8, 1991), and 07/712,875 (filed June 11, 1991) are incorporated by reference in their entirety.

Sequence list

35

15

20

Sequence list 1: whole nucleotides of HC-J6 genome RNA

Sequence list 2: N-9589 whole nucleotides of cDNA to HC-J6 genome RNA

Sequence list 3: J6-ø81 nucleotides of clone J6-ø81

Sequence list 4: J6-ø8 nucleotides of clone J6-ø8

Sequence list 5: P-J6-3033 whole amino acids of ORF of HC-J6 genome

Sequence list 6: whole nucleotides of HC-J8 genome RNA

Sequence list 7: whole nucleotides of cDNA to HC-J8 genome RNA

Sequence list 8: whole amino acids of a variation of ORF of HC-J8 genome

Sequence list 9: whole amino acids of a variation of ORF of HC-J8 genome

Claims

 Recombinant RNA of non-A, non-B hepatitis virus, strain HC-J6, comprising the nucleotide sequence of sequence list 1.

- 2. Recombinant cDNA of non-A, non-B hepatitis virus, strain HC-J6, comprising the nucleotide sequence of sequence list 2.
- cDNA clone J6-ø81 comprising the nucleotide sequence of sequence list 3.

4. cDNA clone J6-ø8 comprising the nucleotide sequence of sequence list 4.

55

40

45

- Amino acid sequence corresponding to recombinant cDNA of non-A, non-B hepatitis virus, strain HC-J6, comprising the amino acid s quenc of sequence list 5.
- 6. Recombinant RNA of non-A, non-B hepatitis virus, strain HC-J8, comprising the nucleotide sequence of sequence list 6.
 - 7. Recombinant cDNA of non-A, non-B hepatitis virus, strain HC-J8, comprising the nucleotide sequence of sequence list 7.
- 8. Amino acid sequence corresponding to recombinant cDNA of non-A, non-B hepatitis virus, strain HC-J8, comprising the amino acid sequence of sequence list 8.
 - 9. Amino acid sequence corresponding to recombinant cDNA of non-A, non-B hepatitis virus, strain HC-J8, comprising the amino acid sequence of sequence list 9.
 - 10. A non-A, non-B hepatitis diagnostic test kit for analyzing samples for the presence of antibodies directed against a non-A, non-B hepatitis antigen, comprising an antigen attached to a solid substrate and labeled anti-human immunoglobulin; wherein said antigen is an antigen selected from the antigens contained in sequence lists 5, 8 or 9.
 - 11. A method of detecting antibodies directed against a non-A, non-B hepatitis antigen in a sample, said method comprising:
 - (a) reacting said sample with an antigen selected from the antigens contained in sequence lists 5, 8 or 9 to form antigen-antibody complexes; and
- 25 (b) detecting said antigen-antibody complexes.
 - 12. A non-A, non-B hepatitis specific monoclonal or polyclonal antibody reactive with an antigen, said antigen is an antigen selected from the antigens contained in sequence lists 5, 8 or 9.
- 30 13. A method of detecting non-A, non-B hepatitis antigen in a sample, said method comprising:
 - (a) reacting said sample with the non-A, non-B hepatitis monoclonal or polyclonal antibody according to claim 12 to form antigen-antibody complexes; and
 - (b) detecting said antigen-antibody complexes.

40

35

15

20

45

50

Fig. 2

Fig. 5

Sequence ID No.1
Sequence Length: 9,589
Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: genomic RNA

Method for Determination of Feature: E

ACCCGCCCU AAUAGGGGCG ACACUCCGCC AUGAACCACU CCCCUGUGAG GAACUACUGU 60 CUUCACGCAG AAAGCGUCUA GCCAUGGCGU UAGUAUGAGU GUCGUACAGC CUCCAGGCCC 120 CCCCCUCCG GGAGAGCCAU AGUGGUCUGC GGAACCGGUG AGUACACCGG AAUUGCCGGG 180 AAGACUGGGU CCUUUCUUGG AUAAACCCAC UCUAUGCCCG GUCAUUUGGG CGUGCCCCCG 240 CAAGACUGCU AGCCGAGUAG CGUUGGGUUG CGAAAGGCCU UGUGGUACUG CCUGAUAGGG 300 UGCUUGCGAG UGCCCCGGGA GGUCUCGUAG ACCGUGCACC AUGAGCACAA AUCCUAAACC 360 420 UCAAAGAAA ACCAAAAGAA ACACCAACCG UCGCCCACAA GACGUUAAGU UUCCGGGCGG CGGCCAGAUC GUUGGCGGAG UAUACUUGUU GCCGCGCAGG GGCCCCAGGU UGGGUGUGCG 480 CGCGACAAGG AAGACUUCGG AGCGGUCCCA GCCACGUGGA AGGCGCCAGC CCAUCCCUAA 540 600 GGAUCGGCGC UCCACUGGCA AAUCCUGGGG AAAACCAGGA UACCCCUGGC CCCUAUACGG 660 GAAUGAGGGA CUCGGCUGGG CAGGAUGGCU CCUGUCCCCC CGAGGUUCCC GUCCCUCUUG 720 GGGCCCCAAU GACCCCGGC AUAGGUCCCG CAACGUGGGU AAGGUCAUCG AUACCCUAAC GUGCGGCUUU GCCGACCUCA UGGGGUACAU CCCUGUCGUA GGCGCCCCGC UCGGCGGCGU 780 CGCCAGAGCU CUCGCGCAUG GCGUGAGAGU CCUGGAGGAC GGGGUUAAUU UUGCAACAGG 840 GAACUUACCC GGUUGCUCCU UUUCUAUCUU CUUGCUGGCC CUGCUGUCCU GCAUCACCAC 900 CCCGGUCUCC GCUGCCGAAG UGAAGAACAU CAGUACCGGC UACAUGGUGA CCAACGACUG 960 CACCAAUGAU AGCAUUACCU GGCAACUCCA GGCUGCUGUC CUCCACGUCC CCGGGUGCGU 1020 CCCGUGCGAG AAAGUGGGGA AUACAUCUCG GUGCUGGAUA CCGGUCUCAC CGAAUGUGGC 1080 CGHGCAGCAG CCCGGCGCCC HCACGCAGGG CHUACGGACG CACAUNGACA NGGNUGUGAU 1140

GUCCGCCACG	CUCUGCUCCG	CUCUUUACGU	GGGGGACCUC	UGCGGUGGGG	UGAUGCUUGC	1200
AGCCCAGAUG	UUCAUUGUCU	CGCCACAGCA	CCACUGGUUU	GUGCAAGACU	GCAAUUGCUC	1260
CAUCUACCCU	GGUACCAUCA	CUGGACACCG	CAUGGCGUGG	GACAUGAUGA	UGAACUGGUC	1320
GCCCACGGCU	ACCAUGAUCC	UGGCGUACGC	GAUGCGCGUC	CCCGAGGUCA	UCAUAGACAU	1380
CAUUGGCGGG	GCUCAUUGGG	GCGUCAUGUU	CGGCUUAGCC	UACUUCUCUA	UGCAGGGAGC	1440
GUGGGCAAAA	GUCGUUGUCA	UUCUUUUGCU	GGCCGCCGGG	GUGGACGCGC	AAACCCAUAC	1500
CGUUGGGGGU	UCUACCGCGC	AUAACGCCAG	GACCCUCACC	GGCAUGUUCU	CCCUUGGUGC	1560
CAGGCAGAAA	AUCCAGCUCA	UCAACACCAA	UGGCAGUUGG	CACAUCAACC	GCACCGCCCU	1620
GAACUGCAAU	GACUCUUUGC	ACACCGGCUU	CCUCGCGUCA	CUGUUCUACA	CCCACAGCUU	1680
CAACUCGUCA	GGAUGUCCCG	AACGCAUGUC	CGCCUGCCGC	AGUAUCGAGG	CCUUUCGGGU	1740
GGGAUGGGGC	GCCUUACAAU	AUGAGGACAA	UGUCACCAAU	CCAGAGGAUA	UGAGACCGUA	1800
UUGCUGGCAC	UACCCACCAA	GACAGUGUGG	UGUAGUCUCC	GCGAGCUCUG	UGUGUGGCCC	1860
AGUGUACUGU	UUCACCCCCA	GCCCAGUAGU	AGUGGGUACG	ACCGAUAGAC	UUGGAGCGCC	1920
CACUUACACG	UGGGGGAGA	AUGAGACAGA	UGUCUUCCUA	UUGAACAGCA	CUCGACCACC	1980
GCAGGGGUCA	UGGUUCGGCU	GCACGUGGAU	GAACUCCACU	GGCUACACCA	AGACUUGCGG	2040
CGCACCACCC	UGCCGCAUUA	GAGCUGACUU	CAAUGCCAGC	AUGGACUUGU	UGUGCCCCAC	2100
GGACUGUUUU	AGGAAGCAUC	CUGAUACCAC	CUACAUCAAA	UGUGGCUCUG	GGCCCUGGCU	2160
CACGCCAAGG	UGCCUGAUCG	ACUACCCCUA	CAGGCUCUGG	CAUUACCCCU	GCACAGUUAA	2220
CUAUACCAUC	UUCAAAAUAA	GGAUGUAUGU	GGGGGGGUC	GAGCACAGGC	UCACGGCUGC	2280
GUGCAAUUUC	ACUCGUGGGG	AUCGUUGCAA	CUUGGAGGAC	AGAGACAGAA	GUCAACUGUC	2340
UCCUUUGCUG	CACUCCACCA	CGGAGUGGGC	CAUUUUACCU	UGCACUUACU	CGGACCUGCC	2400
CGCCUUGUCG	ACUGGUCUUC	UCCACCUCCA	CCAAAACAUC	GUGGACGUGC	AAUUCAUGUA	2460
UGGCCUAUCA	CCUGCUCUCA	CAAAAUACAU	CGUCCGAUGG	GAGUGGGUAG	UACUCUUAUU	2520
CCUGCUCUUA	GCGGACGCCA	GGGUUUGCGC	CUGCUUAUGG	AUGCUCAUCU	UGUUGGGCCA	2580
GGCCGAAGCA	GCACUAGAGA	AGUUGGUCGU	CUUGCACGCU	GCGAGCGCAG	CUAGCUGCAA	2640
UGGCUUCCUA	UACUUUGUCA	ucuuuuucgu	GGCUGCUUGG	UACAUCAAGG	GUCGGGUAGU	2700
ccccuuggcu	ACUUAUUCCC	UCACUGGCCU	AUGGUCCUUU	GGCCUACUGC	UCCUAGCAUU	2760
GCCCCAACAG	GCUUAUGCUU	AUGACGCAUC	UGUACAUGGU	CAGAUAGGAG	CAGCUCUGUU	2820
GGUACUGAUC	ACUCUCUUUA	CACUCACCCC	CGGGUAUAAG	ACCCUUCUCA	GCCGGUUUCU	2880

				GUCCAGGAGU		
UAUGCAGGUG	CGCGGUGGCC	GUGAUGGGAU	CAUAUGGGCC	GUCGCCAUAU	UCUGCCCGGG	3000
UGUGGUGUUU	GACAUAACCA	AGUGGCUCUU	GGCGGUGCUU	GGGCCUGCUU	AUCUCCUAAA	3060
AGGUGCUUUG	ACGCGUGUGC	CGUACUUCGU	CAGGGCUCAC	GCUCUACUAA	GGAUGUGCAC	.3120
CAUGGUAAGG	CAUCUCGCGG	GGGGUAGGUA	CGUCCAGAUG	GUGCUACUAG	CCCUUGGCAG	3180
GUGGACUGGC	ACUUACAUÇU	AUGACCACCU	CACCCCUAUG	UCGGAUUGGG	CUGCUAAUGG	3240
CCUGCGGGAC	UUGGCGGUCG	CCGUGGAGCC	UAUCAUCUUC	AGUCCGAUGG	AGAAAAAGU	3300
CAUCGUCUGG	GGAGCGGAGA	CAGCUGCUUG	CGGGGAUAUC	UUACACGGAC	UUCCCGUGUC	3360
CGCCCGACUU	GGCCGGGAGG	UCCUCCUUGG	CCCAGCUGAU	GGCUAUACCU	CCAAGGGGUG	3420
GAGUCUUCUC	GCCCCCAUCA	CUGCUUAUGC	CCAGCAGACA	CGCGGCCUUU	UGGGCACCAU	3480
AGUGGUGAGC	AUGACGGGGC	GCGACAAGAC	AGAACAGGCC	GGGGAGAUUC	AGGUCCUGUC	3540
CACGGUCACU	CAGUCCUUCC	UCGGAACAAC	CAUCUCGGGG	GUCUUAUGGA	CUGUCUACCA	3600
				GUCACACAGA		
				ACCAAAUCUU		
				GCUGAUGUCA		
				CCUCUUUCCA		
				GUCGGGGUCU		
				CCCGUUGAGA		
				CCUGCUGUGC		
				AGCACCAAAG		
				UCGGUGGCUG		
				AACAUUAGGA		
				GGCAAAUUCC		
				GAAUGCCAUG		
				GAGACAGCCG		
				ACCCCCCACC		
				GGGAGGGCGA		
				AAGAAAAAGU		
CGCGGCGGCC	CUUCGGGGUA	UGGGCUUGAA	CGCAGUGGCA	UACUACAGAG	GGCUGGACGU	4620

CUCCGUAAUA	CCAACUCAGG	GAGACGUAGU	GGUCGUCGCC	ACCGACGCCC	UCAUGACGGG	4680
GUUUACUGGA	GACUUUGACU	CCGUGAUCGA	CUGCAACGUA	GCGGUCACUC	AAGUUGUAGA	4740
CUUCAGCUUG	GACCCCACAU	UCACCAUAAC	CACACAGACU	GUCCCUCAAG	ACGCUGUCUC	4800
ACGUAGCCAG	CGCCGGGGCC	GCACGGGCAG	GGGAAGACUG	GGUAUUUAUA	GGUAUGUUUC.	4860
CACUGGUGAG	CGAGCCUCAG	GAAUGUUUGA	CAGUGUAGUG	CUCUGCGAGU	GCUACGAUGC	4920
AGGGCCGCA	UGGUAUGAGC	UCACACCAGC	GGAGACCACC	GUCAGGCUCA	GAGCAUAUUU	4980
CAACACACCU	GGUUUGCCUG	UGUGCCAAGA	CCAUCUUGAG	UUUUGGGAGG	CAGUUUUCAC	5040
CGGCCUCACA	CACAUAGAUG	CCCACUUCCU	UUCCCAAACA	AAGCAAUCGG	GGGAAAAUUU	5 100
CGCAUACUUA	ACAGCCUACC	AGGCUACAGU	GUGCGCUAGG	GCCAAAGCCC	CCCCCCGUC	5 160
CUGGGACGUC	AUGUGGAAGU	GUUUGACUCG	ACUCAAGCCC	ACACUCGUGG	GCCCCACACC	5220
UCUCCUGUAC	CGCUUGGGCU	CUGUUACCAA	CGAGGUCACC	CUCACGCAUC	CUGUGACGAA	5280
AUACAUCGCC	ACCUGCAUGC	AAGCCGACCU	UGAGGUCAUG	ACCAGCACGU	GGGUCUUAGC	5340
UGGGGGGGUC	UUGGCGGCCG	UCGCCGCGUA	CUGCCUGGCG	ACCGGGUGUG	UUUGCAUCAU	5400
CGGCCGCUUG	CACGUUAACC	AGCGAGCCGU	CGUUGCACCG	GACAAGGAGG	UCCUCUAUGA	5460
GGCUUUUGAU	GAGAUGGAGG	AAUGUGCCUC	UAGAGCGGCU	CUCAUUGAAG	AGGGGCAGCG	5520
GAUAGCCGAG	AUGCUGAAGU	CCAAGAUCCA	AGGCUUAUUG	CAGCAAGCUU	CCAAACAAGC	5580
UCAAGACAUA	CAACCCGCUG	UGCAGGCUUC	UUGGCCCAAG	GUAGAGCAAU	UCUGGGCCAA	5640
ACACAUGUGG	AACUUCAUCA	GCGGCAUUCA	AUACCUCGCA	GGACUAUCAA	CACUGCCAGG	5700
GAACCCUGCU	GUAGCUUCCA	UGAUGGCAUU	CAGUGCCGCC	CUCACCAGUC	CGUUGUCAAC	5760
UAGCACCACU	AUCCUUCUCA	ACAUUUUGGG	GGGCUGGCUA	GCAUCCCAAA	UUGCGCCUCC	5820
CGCGGGGGCU	ACCGGCUUCG	UCGUCAGUGG	CCUGGUGGGG	GCUGCCGUAG	GCAGCAUAGG	5880
CUUGGGUAAG	GUGCUGGUGG	ACAUCCUGGC	AGGGUAUGGU	GCGGGCAUUU	CGGGGGCUCU	5940
CGUCGCAUUC	AAGAUCAUGU	CUGGCGAGAA	GCCCUCCAUG	GAGGAUGUUG	UCAACCUGCU	6000
GCCUGGAAUU	CUGUCUCCGG	GUGCCCUGGU	GGUGGGAGUC	AUCUGCGCGG	CCAUCCUGCG	6060
		AAGGCGCUGU				
		CCCCCACCCA				
		CCCUUACCAU				
		UCCCAUGCAG				
GGUUUGCACC	AUCCUAACAG	ACUUUAAAAA	CUGGCUGACC	UCCAAAUUGU	UCCCAAAGAU	6360

GCCUGGUCUC CCCUUUAUCU CUUGUCAAAA GGGGUACAAG GGCGUGUGGG CUGGCACUGG 6420 UAUCAUGACC ACACGGUGUC CUUGCGGCGC CAAUAUCUCU GGCAAUGUCC GCCUGGGCUC 6480 CAUGAGAAUU ACGGGGCCCA AAACCUGCAU GAAUAUCUGG CAGGGGACCU UUCCCAUCAA 6540 UUGUUACACG GAGGGCCAGU GCGUGCCGAA ACCCGCACCA AACUUUAAGA UCGCCAUCUG. 6600 GAGGGUGGCG GCCUCAGAGU ACGCGGAGGU GACGCAGCAC GGGUCAUACC ACUACAUAAC 6660 AGGACUUACC ACUGAUAACU UGAAAGUUCC UUGCCAACUA CCUUCUCCAG AGUUCUUUUC 6720 CUGGGUGGAC GGAGUGCAGA UCCAUAGGUU UGCCCCCAUA CCGAAGCCGU UUUUUCGGGA 6780 UGAGGUCUCG UUCUGCGUUG GGCUUAAUUC AUUUGUCGUC GGGUCUCAGC UCCCUUGCGA 6840 UCCUGAACCU GACACAGACG UAUUGACGUC CAUGCUAACA GACCCAUCCC AUAUCACGGC 6900 GGAGACUGCA GCGCGGCGUU UGGCACGGGG GUCACCCCCG UCCGAGGCAA GCUCCUCAGC 6960 GAGCCAGCUA UCGGCACCAU CGCUGCGAGC CACCUGCACC ACCCACGGCA AGGCCUAUGA 7020 UGUGGACAUG GUGGAUGCCA ACCUGUUCAU GGGGGGCGAU GUGACCCGGA UAGAGUCUGA 7080 GUCCAAAGUG GUCGUUCUGG ACUCUCUCGA CCCAAUGGUC GAAGAAAGGA GCGACCUUGA 7140 GCCUUCGAUA CCAUCGGAAU AUAUGCUCCC CAAGAAGAGA UUCCCACCAG CCUUACCGGC 7200 UUGGGCACGG CCUGAUUACA ACCCACCGCU UGUGGAAUCG UGGAAGAGGC CAGAUUACCA 7260 ACCGGCCACU GUUGCGGGCU GCGCUCUCCC CCCCCUAAG AAAACCCCGA CGCCUCCCCC 7320 AAGGAGACGC CGGACAGUGG GUCUGAGUGA GAGCUCCAUA GCAGAUGCCC UACAACAGCU 7380 GGCCAUCAAG UCCUUUGGCC AGCCCCCCC AAGCGGCGAU UCAGGCCUUU CCACGGGGG 7440 GGACGCAGCC GAUUCCGGCA GUCGGACGCC CCCCGAUGAG UUGGCCCUUU CGGAGACAGG 7500 UUCCAUCUCC UCCAUGCCCC CUCUCGAGGG GGAGCCUGGA GAUCCAGACU UGGAGCCUGA 7560 GCAGGUAGAG CUUCAACCUC CCCCCCAGGG GGGGGUGGUA ACCCCCGGCU CAGGCUCGGG 7620 GUCUUGGUCU ACUUGCUCCG AGGAGGACGA CUCCGUCGUG UGCUGCUCCA UGUCAUACUC 7680 CUGGACCGGG GCUCUAAUAA CUCCUUGUAG CCCCGAAGAG GAAAAGUUGC CAAUUGGCCC 7740 CUUGAGCAAC UCCCUGUUGC GAUAUCACAA CAAGGUGUAC UGUACCACAU CAAAGAGCGC 7800 CUCAUUAAGG GCUAAAAAGG UAACUUUUGA UAGGAUGCAA GCGCUCGACG CUCAUUAUGA 7860 CUCAGUCUUG AAGGACAUUA AGCUAGCGGC CUCCAAGGUC ACCGCAAGGC UUCUCACUUU 7920 AGAGGAGGCC UGCCAGUUAA CUCCACCCA CUCUGCAAGA UCCAAGUAUG GGUUUGGGGC 7980 UAAGGAGGUC CGCAGCUUGU CCGGGAGAGC CGUUAACCAC AUCAAGUCCG UGUGGAAGGA 8040 CCUCCUGGAA GACACACAAA CACCAAUUCC UACAACCAUC AUGGCCAAAA AUGAGGUGUU 8100

CUGCGUGGAC CCCACCAAGG GGGGUAAGAA AGCAGCUCGC CUUAUCGUUU ACCCUGACCU 8160 CGGCGUCAGG GUCUGCGAGA AAAUGGCCCU UUAUGAUAUC ACACAAAAGC UUCCUCAGGC 8220 GGUGAUGGGG GCUUCUUAUG GAUUCCAGUA CUCCCCCGCU CAGCGGGUGG AGUUUCUCUU 8280 GAAGGCAUGG GCGGAAAAGA AAGACCCUAU GGGUUUUUCG UAUGAUACCC GAUGCUUUGA 8340 CUCAACCGUC ACUGAGAGAG ACAUCAGGAC UGAGGAGUCC AUAUAUCGGG CUUGUUCCUU 8400 GCCCGAGGAG GCCCACACUG CCAUACACUC ACUGACUGAG AGACUUUACG UGGGAGGGCC 8460 CAUGUUCAAC AGCAAGGGCC AGACCUGCGG GUACAGGCGU UGCCGCGCCA GCGGGGUGCU 8520 UACCACUAGC AUGGGGAACA CCAUCACAUG CUAUGUGAAA GCCUUAGCGG CCUGUAAGGC 8580 UGCAGGGAUA AUUGCGCCCA CAAUGCUGGU AUGCGGCGAU GACUUGGUUG UCAUCUCAGA 8640 GAGCCAGGGG ACCGAGGAGG ACGAGCGGAA CCUGAGAGCC UUCACGGAGG CUAUGACCAG 8700 QUAUUCUGCC CCUCCUGGUG ACCCCCCAG ACCGGAAUAU GACCUGGAGC UGAUAACAUC 8760 UUGCUCCUCA AAUGUGUCUG UGGCGUUGGG CCCACAAGGC CGCCGCAGAU ACUACCUGAC 8820 CAGAGACCCU ACCACUCCAA UCGCCCGGGC UGCCUGGGAA ACAGUUAGAC ACUCCCCUGU 8880 CAAUUCAUGG CUAGGAAACA UCAUCCAGUA CGCCCCAACC AUAUGGGCUC GCAUGGUCCU 8940 GAUGACACAC UUCUUCUCCA UUCUCAUGGC CCAAGAUACU CUGGACCAGA ACCUCAACUU 9000 UGAGAUGUAC GGAGCGGUGU ACUCCGUGAG UCCCUUGGAC CUCCCAGCCA UAAUUGAAAG 9060 GUUACACGGG CUUGACGCUU UCUCUCUGCA CACAUACACU CCCCACGAAC UGACACGGGU 9120 GGCUUCAGCC CUCAGAAAAC UUGGGGCGCC ACCCCUCAGA GCGUGGAAGA GCCGGGCACG 9180 UGCAGUCAGG GCGUCCCUCA UCUCCCGUGG GGGGAGAGCG GCCGUUUGCG GCCGAUAUCU 9240 CUUCAACUGG GCGGUGAAGA CCAAGCUCAA ACUCACUCCA UUGCCGGAAG CGCGCCUCCU 9300 GGAUUUAUCC AGCUGGUUCA CUGUCGGCGC CGGCGGGGGC GACAUUUAUC ACAGCGUGUC 9360 GCGUGCCCGA CCCCGCUUAU UACUCCUUGG CCUACUCCUA CUUUUUGUAG GGGUAGGCCU 9420 UUUCCUACUC CCCGCUCGGU AGAGCGGCAC ACAUUAGCUA CACUCCAUAG CUAACUGUCC 9480 9589

Sequence ID No.2 Sequence Length: 9,589 Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: cDNA to genomic RNA Method for Determination of Feature: E

ACCCGCCCCT	AATAGGGGCG	ACACTCCGCC	ATGAACCACT	CCCCTGTGAG	GAACTACTGT	60
CTTCACGCAG	AAAGCGTCTA	GCCATGGCGT	TAGTATGAGT	GTCGTACAGC	CTCCAGGCCC	120
CCCCCTCCCG	GGAGAGCCAT	AGTGGTCTGC	GGAACCGGTG	AGTACACCGG	AATTGCCGGG	180
AAGACTGGGT	CCTTTCTTGG	ATAAACCCAC	TCTATGCCCG	GTCATTTGGG	CGTGCCCCCG	240
CAAGACTGCT	AGCCGAGTAG	CGTTGGGTTG	CGAAAGGCCT	TGTGGTACTG	CCTGATAGGG	300
TGCTTGCGAG	TGCCCCGGGA	GGTCTCGTAG	ACCGTGCACC	ATGAGCACAA	ATCCTAAACC	360
TCAAAGAAAA	ACCAAAAGAA	ACACCAACCG	TCGCCCACAA	GACGTTAAGT	TTCCGGGCGG	420
CGGCCAGATC	GTTGGCGGAG	TATACTTGTT	GCCGCGCAGG	GGCCCCAGGT	TGGGTGTGCG	480
CGCGACAAGG	AAGACTTCGG	AGCGGTCCCA	GCCACGTGGA	AGGCGCCAGC	CCATCCCTAA	540
GGATCGGCGC	TCCACTGGCA	AATCCTGGGG	AAAACCAGGA	TACCCCTGGC	CCCTATACGG	600
GAATGAGGGA	CTCGGCTGGG	CAGGATGGCT	CCTGTCCCCC	CGAGGTTCCC	GTCCCTCTTG	660
GGGCCCCAAT	GACCCCCGGC	ATAGGTCCCG	CAACGTGGGT	AAGGTCATCG	ATACCCTAAC	720
GTGCGGCTTT	GCCGACCTCA	TGGGGTACAT	CCCTGTCGTA	GGCGCCCCGC	TCGGCGGCGT	780
CGCCAGAGCT	CTCGCGCATG	GCGTGAGAGT	CCTGGAGGAC	GGGGTTAATT	TTGCAACAGG	840
GAACTTACCC	GGTTGCTCCT	TTTCTATCTT	CTTGCTGGCC	CTGCTGTCCT	GCATCACCAC	900
CCCGGTCTCC	GCTGCCGAAG	TGAAGAACAT	CAGTACCGGC	TACATGGTGA	CCAACGACTG	960
CACCAATGAT	AGCATTACCT	GGCAACTCCA	GGCTGCTGTC	CTCCACGTCC	CCGGGTGCGT	1020
CCCGTGCGAG	AAAGTGGGGA	ATACATCTCG	GTGCTGGATA	CCGGTCTCAC	CGAATGTGGC	1080
CGTGCAGCAG	CCCGGCGCCC	TCACGCAGGG	CTTACGGACG	CACATTGACA	TGGTTGTGAT	1140
GTCCGCCACG	CTCTGCTCCG	CTCTTTACGT	GGGGGACCTC	TGCGGTGGGG	TGATGCTTGC	1200

AGCCCAGAIG TTCATIGICT	CGCCACAGCA	CCACTGGTTT	GTGCAAGACT	GCAATTGCTC	1260
CATCTACCCT GGTACCATCA	CTGGACACCG	CATGGCGTGG	GACATGATGA	TGAACTGGTC	1320
GCCCACGGCT ACCATGATCC	TGGCGTACGC	GATGCGCGTC	CCCGAGGTCA	TCATAGACAT	1380
CATTGGCGGG GCTCATTGGG	GCGTCATGTT	CGGCTTAGCC	TACTTCTCTA	TGCAGGGAGC	1440
GTGGGCAAAA GTCGTTGTCA	TTCTTTTGCT	GGCCGCCGGG	GTGGACGCGC	AAACCCATAC	1500
CGTTGGGGGT TCTACCGCGC	ATAACGCCAG	GACCCTCACC	GGCATGTTCT	CCCTTGGTGC	1560
CAGGCAGAAA ATCCAGCTCA	TCAACACCAA	TGGCAGTTGG	CACATCAACC	GCACCGCCCT	1620
GAACTGCAAT GACTCTTTGC	ACACCGGCTT	CCTCGCGTCA	CTGTTCTACA	CCCACAGCTT	1680
CAACTCGTCA GGATGTCCCG	AACGCATGTC	CGCCTGCCGC	AGTATCGAGG	CCTTTCGGGT	1740
GGGATGGGGC GCCTTACAAT	ATGAGGACAA	TGTCACCAAT	CCAGAGGATA	TGAGACCGTA	1800
TTGCTGGCAC TACCCACCAA	GACAGTGTGG	TGTAGTCTCC	GCGAGCTCTG	TGTGTGGCCC	1860
AGTGTACTGT TTCACCCCCA	GCCCAGTAGT	AGTGGGTACG	ACCGATAGAC	TTGGAGCGCC	1920
CACTTACACG TGGGGGAGA	ATGAGACAGA	TGTCTTCCTA	TTGAACAGCA	CTCGACCACC	1980
GCAGGGGTCA TGGTTCGGCT	GCACGTGGAT	GAACTCCACT	GGCTACACCA	AGACTTGCGG	2040
CGCACCACCC TGCCGCATTA	GAGCTGACTT	CAATGCCAGC	ATGGACTTGT	TGTGCCCCAC	2100
GGACTGTTTT AGGAAGCATC	CTGATACCAC	CTACATCAAA	TGTGGCTCTG	GGCCCTGGCT	2160
CACGCCAAGG TGCCTGATCG	ACTACCCCTA	CAGGCTCTGG	CATTACCCCT	GCACAGTTAA	2220
CTATACCATC TTCAAAATAA	GGATGTATGT	GGGGGGGTC	GAGCACAGGC	TCACGGCTGC	2280
GTGCAATTTC ACTCGTGGGG	ATCGTTGCAA	CTTGGAGGAC	AGAGACAGAA	GTCAACTGTC	2340
TCCTTTGCTG CACTCCACCA	CGGAGTGGGC	CATTTTACCT	TGCACTTACT	CGGACCTGCC	2400
CGCCTTGTCG ACTGGTCTTC	TCCACCTCCA	CCAAAACATC	GTGGACGTGC	AATTCATGTA	2460
TGGCCTATCA CCTGCTCTCA	CAAAATACAT	CGTCCGATGG	GAGTGGGTAG	TACTCTTATT	2520
CCTGCTCTTA GCGGACGCCA	GGGTTTGCGC	CTGCTTATGG	ATGCTCATCT	TGTTGGGCCA	2580
GGCCGAAGCA GCACTAGAGA	AGTTGGTCGT	CTTGCACGCT	GCGAGCGCAG	CTAGCTGCAA	2640
TGGCTTCCTA TACTTTGTCA	TCTTTTTCGT	GGCTGCTTGG	TACATCAAGG	GTCGGGTAGT	2700
CCCCTTGGCT ACTTATTCCC	TCACTGGCCT	ATGGTCCTTT	GGCCTACTGC	TCCTAGCATT	2760
GCCCCAACAG GCTTATGCTT	ATGACGCATC	TGTACATGGT	CAGATAGGAG	CAGCTCTGTT	2820
GGTACTGATC ACTCTCTTTA	CACTCACCCC	CGGGTATAAG	ACCCTTCTCA	GCCGGTTTCT	2880
GIGGIGGIIG IGCTATCIIC	TGACCCTGGC	GGAAGCTATG	GTCCAGGAGT	GGGCACCACC	2940

TATGCAGGTG CGCGGTGGCC GTGATGGGAT CATATGGGCC GTCGCCATAT TCTGCCCGGG 3000 TGTGGTGTTT GACATAACCA AGTGGCTCTT GGCGGTGCTT GGGCCTGCTT ATCTCCTAAA 3060 AGGTGCTTTG ACGCGTGTGC CGTACTTCGT CAGGGCTCAC GCTCTACTAA GGATGTGCAC 3120 CATGGTAAGG CATCTCGCGG GGGGTAGGTA CGTCCAGATG GTGCTACTAG CCCTTGGCAG 3180 GTGGACTGGC ACTTACATCT ATGACCACCT CACCCCTATG TCGGATTGGG CTGCTAATGG 3240 CCTGCGGGAC TTGGCGGTCG CCGTGGAGCC TATCATCTTC AGTCCGATGG AGAAAAAAGT 3300 CATCGTCTGG GGAGCGGAGA CAGCTGCTTG CGGGGATATC TTACACGGAC TTCCCGTGTC 3360 CGCCCGACTT GGCCGGGAGG TCCTCCTTGG CCCAGCTGAT GGCTATACCT CCAAGGGGTG 3420 GAGTCTTCTC GCCCCCATCA CTGCTTATGC CCAGCAGACA CGCGGCCTTT TGGGCACCAT 3480 AGTGGTGAGC ATGACGGGGC GCGACAAGAC AGAACAGGCC GGGGAGATTC AGGTCCTGTC 3540 CACGGTCACT CAGTCCTTCC TCGGAACAAC CATCTCGGGG GTCTTATGGA CTGTCTACCA 3600 TGGAGCTGGC AACAAGACTC TAGCCGGCTC ACGGGGTCCG GTCACACAGA TGTACTCCAG 3660 TGCTGAGGGG GACTTAGTGG GGTGGCCCAG CCCCCCGGG ACCAAATCTT TGGAGCCGTG 3720 CACGTGTGGA GCGGTCGACC TATACCTGGT CACGCGAAAC GCTGATGTCA TCCCGGCTCG 3780 AAGACGCGGG GACAAGCGAG GAGCGCTACT CTCCCCGAGA CCTCTTTCCA CCTTGAAGGG 3840 GTCCTCGGGG GGCCCGGTGC TCTGCCCCAG AGGCCACGCT GTCGGGGTCT TCCGGGCAGC 3900 CGTGTGCTCC CGGGGCGTGG CCAAGTCCAT AGATTTTATC CCCGTTGAGA CACTTGACAT 3960 CGTCACTCGG TCCCCCACCT TTAGTGACAA CAGCACACCA CCTGCTGTGC CCCAAACTTA 4020 TCAGGTCGGG TACTTACATG CCCCGACTGG TAGTGGAAAG AGCACCAAAG TCCCTGTCGC 4080 GTATGCCGCT CAGGGGTACA AAGTGCTAGT GCTTAATCCC TCGGTGGCTG CCACCCTGGG 4140 GTTTGGGGCG TACTTGTCCA AGGCACATGG CATCAATCCC AACATTAGGA CTGGGGTCAG 4200 GACTGTGACG ACCGGGGCGC CCATCACGTA CTCCACATAT GGCAAATTCC TCGCCGATGG 4260 GGGCTGCGCA GGCGGCGCCT ATGACATCAT CATATGCGAT GAATGCCATG CCGTGGACTC 4320 TACCACCATT CTCGGCATCG GAACAGTCCT CGATCAAGCA GAGACAGCCG GGGTCAGGCT 4380 AACTGTACTG GCTACGGCTA CGCCCCCGG GTCAGTGACA ACCCCCCACC CCAACATAGA 4440 GGAGGTGGCC CTCGGGCAGG AGGGTGAGAT CCCCTTCTAT GGGAGGGCGA ITCCCCTGTC 4500 ATACATCAAG GGAGGAAGAC ACTTGATCTT CTGCCACTCA AAGAAAAAGT GTGACGAGCT 4560 CGCGGCGGCC CTTCGGGGTA TGGGCTTGAA CGCAGTGGCA TACTACAGAG GGCTGGACGT 4620 CTCCGTAATA CCAACTCAGG GAGACGTAGT GGTCGTCGCC ACCGACGCCC TCATGACGGG 4680

GTTTACTGGA GACTTTGACT CCGTGATCGA CTGCAACGTA GCGGTCACTC AAGTTGTAGA 4740 CTTCAGCTTG GACCCCACAT TCACCATAAC CACACAGACT GTCCCTCAAG ACGCTGTCTC 4800 ACGTAGCCAG CGCCGGGCC GCACGGCAG GGGAAGACTG GGTATTTATA GGTATGTTTC 4860 CACTGGTGAG CGAGCCTCAG GAATGTTTGA CAGTGTAGTG CTCTGCGAGT GCTACGATGC 4920 AGGGGCCGCA TGGTATGAGC TCACACCAGC GGAGACCACC GTCAGGCTCA GAGCATATTT 4980 CAACACACCT GGTTTGCCTG TGTGCCAAGA CCATCTTGAG TTTTGGGAGG CAGTTTTCAC 5040 CGGCCTCACA CACATAGATG CCCACTTCCT TTCCCAAACA AAGCAATCGG GGGAAAATTT 5100 CGCATACTTA ACAGCCTACC AGGCTACAGT GTGCGCTAGG GCCAAAGCCC CCCCCCCGTC 5160 CTGGGACGTC ATGTGGAAGT GTTTGACTCG ACTCAAGCCC ACACTCGTGG GCCCCACACC 5220 TCTCCTGTAC CGCTTGGGCT CTGTTACCAA CGAGGTCACC CTCACGCATC CTGTGACGAA 5280 ATACATCGCC ACCTGCATGC AAGCCGACCT TGAGGTCATG ACCAGCACGT GGGTCTTAGC 5340 TGGGGGGGTC TTGGCGGCCG TCGCCGCGTA CTGCCTGGCG ACCGGGTGTG TTTGCATCAT 5400 CGGCCGCTTG CACGTTAACC AGCGAGCCGT CGTTGCACCG GACAAGGAGG TCCTCTATGA 5460 GGCTTTTGAT GAGATGGAGG AATGTGCCTC TAGAGCGGCT CTCATTGAAG AGGGGCAGCG 5520 GATAGCCGAG ATGCTGAAGT CCAAGATCCA AGGCTTATTG CAGCAAGCTT CCAAACAAGC 5580 TCAAGACATA CAACCCGCTG TGCAGGCTTC TTGGCCCAAG GTAGAGCAAT TCTGGGCCAA 5640 ACACATGTGG AACTTCATCA GCGGCATTCA ATACCTCGCA GGACTATCAA CACTGCCAGG 5700 GAACCCTGCT GTAGCTTCCA TGATGGCATT CAGTGCCGCC CTCACCAGTC CGTTGTCAAC 5760 TAGCACCACT ATCCTTCTCA ACATTITGGG GGGCTGGCTA GCATCCCAAA TTGCGCCTCC 5820 CGCGGGGGCT ACCGCCTTCG TCGTCAGTGG CCTGGTGGGG GCTGCCGTAG GCAGCATAGG 5880 CITGGGTAAG GTGCTGGTGG ACATCCTGGC AGGGTATGGT GCGGGCATTT CGGGGGCTCT 5940 CGTCGCATTC AAGATCATGT CTGGCGAGAA GCCCTCCATG GAGGATGTTG TCAACCTGCT 6000 GCCTGGAATT CTGTCTCCGG GTGCCCTGGT GGTGGGAGTC ATCTGCGCGG CCATCCTGCG 6060 CCGACACGTG GGACCGGGGG AAGGCGCTGT CCAATGGATG AATAGGCTCA TTGCCTTTGC 6120 TTCCAGAGGA AACCACGTCG CCCCCACCCA CTACGTGACG GAGTCGGATG CGTCGCAGCG 6180 TGTGACCCAA CTACTTGGCT CCCTTACCAT AACCAGCCTG CTCAGGAGAC TCCACAACTG 6240 GATTACTGAA GACTGCCCCA TCCCATGCAG CGGCTCGTGG CTCCGCGATG TGTGGGATTG 6300 GGTTTGCACC ATCCTAACAG ACTTTAAAAA CTGGCTGACC TCCAAATTGT TCCCAAAGAT 6360 GCCTGGTCTC CCCTTTATCT CTTGTCAAAA GGGGTACAAG GGCGTGTGGG CTGGCACTGG 6420

TATCATGACC ACACGGTGTC CTTGCGGCGC CAATATCTCT GGCAATGTCC GCCTGGGCTC 6480 CATGAGAATT ACGGGGCCCA AAACCTGCAT GAATATCTGG CAGGGGACCT TTCCCATCAA 6540 TIGITACACG GAGGGCCAGT GCGTGCCGAA ACCCGCACCA AACTITAAGA TCGCCATCTG 6600 GAGGGTGGCG GCCTCAGAGT ACGCGGAGGT GACGCAGCAC GGGTCATACC ACTACATAAC 6660 AGGACTTACC ACTGATAACT TGAAAGTTCC TTGCCAACTA CCTTCTCCAG AGTTCTTTTC 6720 CTGGGTGGAC GGAGTGCAGA TCCATAGGTT TGCCCCCATA CCGAAGCCGT TTTTTCGGGA 6780 TGAGGTCTCG TTCTGCGTTG GGCTTAATTC ATTTGTCGTC GGGTCTCAGC TCCCTTGCGA 6840 TCCTGAACCT GACACAGACG TATTGACGTC CATGCTAACA GACCCATCCC ATATCACGGC 6900 GGAGACTGCA GCGCGGCGTT TGGCACGGGG GTCACCCCCG TCCGAGGCAA GCTCCTCAGC 6960 GAGCCAGCTA TCGGCACCAT CGCTGCGAGC CACCTGCACC ACCCACGGCA AGGCCTATGA 7020 TGTGGACATG GTGGATGCCA ACCTGTTCAT GGGGGGCGAT GTGACCCGGA TAGAGTCTGA 7080 GTCCAAAGTG GTCGTTCTGG ACTCTCTCGA CCCAATGGTC GAAGAAAGGA GCGACCTTGA 7140 GCCTTCGATA CCATCGGAAT ATATGCTCCC CAAGAAGAGA TTCCCACCAG CCTTACCGGC 7200 TTGGGCACGG CCTGATTACA ACCCACCGCT TGTGGAATCG TGGAAGAGGC CAGATTACCA 7260 ACCGGCCACT GTTGCGGGCT GCGCTCTCCC CCCCCTAAG AAAACCCCGA CGCCTCCCCC 7320 AAGGAGACGC CGGACAGTGG GTCTGAGTGA GAGCTCCATA GCAGATGCCC TACAACAGCT 7380 GGCCATCAAG TCCTTTGGCC AGCCCCCCC AAGCGGCGAT TCAGGCCTTT CCACGGGGC 7440 GGACGCAGCC GATTCCGGCA GTCGGACGCC CCCCGATGAG TTGGCCCTTT CGGAGACAGG 7500 TTCCATCTCC TCCATGCCCC CTCTCGAGGG GGAGCCTGGA GATCCAGACT TGGAGCCTGA 7560 GCAGGTAGAG CTTCAACCTC CCCCCAGGG GGGGGTGGTA ACCCCCGGCT CAGGCTCGGG 7620 GICITGGTCT ACTIGCTCCG AGGAGGACGA CICCGTCGTG TGCTGCTCCA TGTCATACTC 7680 CTGGACCGGG GCTCTAATAA CTCCTTGTAG CCCCGAAGAG GAAAAGTTGC CAATTGGCCC 7740 CTTGAGCAAC TCCCTGTTGC GATATCACAA CAAGGTGTAC TGTACCACAT CAAAGAGCGC 7800 CTCATTAAGG GCTAAAAAGG TAACTTTTGA TAGGATGCAA GCGCTCGACG CTCATTATGA 7860 CTCAGTCTTG AAGGACATTA AGCTAGCGGC CTCCAAGGTC ACCGCAAGGC TTCTCACTTT 7920 AGAGGAGGCC TGCCAGTTAA CTCCACCCCA CTCTGCAAGA TCCAAGTATG GGTTTGGGGC 7980 TAAGGAGGTC CGCAGCTTGT CCGGGAGAGC CGTTAACCAC ATCAAGTCCG TGTGGAAGGA 8040 CCTCCTGGAA GACACAAA CACCAATTCC TACAACCATC ATGGCCAAAA ATGAGGTGTT 8100 CTGCGTGGAC CCCACCAAGG GGGGTAAGAA AGCAGCTCGC CTTATCGTTT ACCCTGACCT 8160

CGGCGTCAGG GTCTGCGAGA AAATGGCCCT TTATGATATC ACACAAAAGC TTCCTCAGGC 8220 GGTGATGGGG GCTTCTTATG GATTCCAGTA CTCCCCCGCT CAGCGGGTGG AGTTTCTCTT 8280 GAAGGCATGG GCGGAAAAGA AAGACCCTAT GGGTTTTTCG TATGATACCC GATGCTTTGA 8340 CTCAACCGTC ACTGAGAGAG ACATCAGGAC TGAGGAGTCC ATATATCGGG CTTGTTCCTT. 8400 GCCCGAGGAG GCCCACACTG CCATACACTC ACTGACTGAG AGACTTTACG TGGGAGGGCC 8460 CATGTTCAAC AGCAAGGGCC AGACCTGCGG GTACAGGCGT TGCCGCGCCA GCGGGGTGCT 8520 TACCACTAGC ATGGGGAACA CCATCACATG CTATGTGAAA GCCTTAGCGG CCTGTAAGGC 8580 TGCAGGGATA ATTGCGCCCA CAATGCTGGT ATGCGGCGAT GACTTGGTTG TCATCTCAGA 8640 GAGCCAGGGG ACCGAGGAGG ACGAGCGGAA CCTGAGAGCC TTCACGGAGG CTATGACCAG 8700 GTATTCTGCC CCTCCTGGTG ACCCCCCAG ACCGGAATAT GACCTGGAGC TGATAACATC 8760 TIGCTCCTCA AATGTGTCTG TGGCGTTGGG CCCACAAGGC CGCCGCAGAT ACTACCTGAC 8820 CAGAGACCCT ACCACTCCAA TCGCCCGGGC TGCCTGGGAA ACAGTTAGAC ACTCCCCTGT 8880 CAATTCATGG CTAGGAAACA TCATCCAGTA CGCCCCAACC ATATGGGCTC GCATGGTCCT 8940 GATGACACAC ITCTTCTCCA TTCTCATGGC CCAAGATACT CTGGACCAGA ACCTCAACTT 9000 TGAGATGTAC GGAGCGGTGT ACTCCGTGAG TCCCTTGGAC CTCCCAGCCA TAATTGAAAG 9060 GTTACACGGG CTTGACGCTT TCTCTCTGCA CACATACACT CCCCACGAAC TGACACGGGT 9120 GGCTTCAGCC CTCAGAAAAC TTGGGGCGCC ACCCCTCAGA GCGTGGAAGA GCCGGGCACG 9180 TGCAGTCAGG GCGTCCCTCA TCTCCCGTGG GGGGAGAGCG GCCGTTTGCG GCCGATATCT 9240 CTTCAACTGG GCGGTGAAGA CCAAGCTCAA ACTCACTCCA TTGCCGGAAG CGCGCCTCCT 9300 GGATTTATCC AGCTGGTTCA CTGTCGGCGC CGGCGGGGC GACATTTATC ACAGCGTGTC 9360 GCGTGCCCGA CCCCGCTTAT TACTCCTTGG CCTACTCCTA CTTTTTGTAG GGGTAGGCCT 9420 TTTCCTACTC CCCGCTCGGT AGAGCGGCAC ACATTAGCTA CACTCCATAG CTAACTGTCC 9480

Sequence ID No.3 Sequence Length: 3,970 Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: cDNA to genomic RNA Method for Determination of Feature: E

GGCATTACCC	CTGCACAGTT	AACTATACCA	TCTTCAAAAT	AAGGATGTAT	GTGGGGGGG	60
TCGAGCACAG	GCTCACGGCT	GCGTGCAATT	TCACTCGTGG	GGATCGTTGC	AACTTGGAGG	120
ACAGAGACAG	AAGTCAACTG	TCTCCTTTGC	TGCACTCCAC	CACGGAGTGG	GCCATTTTAC	180
CTTGCACTTA	CTCGGACCTG	CCCGCCTTGT	CGACTGGTCT	TCTCCACCTC	CACCAAAACA	240
TCGTGGACGT	GCAATTCATG	TATGGCCTAT	CACCTGCTCT	CACAAAATAC	ATCGTCCGAT	300
GGGAGTGGGT	AGTACTCTTA	TTCCTGCTCT	TAGCGGACGC	CAGGGTTTGC	GCCTGCTTAT	360
GGATGCTCAT	CTTGTTGGGC	CAGGCCGAAG	CAGCACTAGA	GAAGTTGGTC	GTCTTGCACG	420
CTGCGAGCGC	AGCTAGCTGC	AATGGCTTCC	TATACTTTGT	CATCTTTTTC	GTGGCTGCTT	480
GGTACATCAA	GGGTCGGGTA	GTCCCCTTGG	CTACTTATTC	CCTCACTGGC	CTATGGTCCT	540
TTGGCCTACT	GCTCCTAGCA	TTGCCCCAAC	AGGCTTATGC	TTATGACGCA	TCTGTACATG	600
GTCAGATAGG	AGCAGCTCTG	TTGGTACTGA	TCACTCTCTT	TACACTCACC	CCCGGGTATA	660
AGACCCTTCT	CAGCCGGTTT	CTGTGGTGGT	TGTGCTATCT	TCTGACCCTG	GCGGAAGCTA	720
TGGTCCAGGA	GTGGGCACCA	CCTATGCAGG	TGCGCGGTGG	CCGTGATGGG	ATCATATGGG	780
CCGTCGCCAT	ATTCTGCCCG	GGTGTGGTGT	TTGACATAAC	CAAGTGGCTC	TTGGCGGTGC	840
TTGGGCCTGC	TTATCTCCTA	AAAGGTGCTT	TGACGCGTGT	GCCGTACTTC	GTCAGGGCTC	900
ACGCTCTACT	AAGGATGTGC	ACCATGGTAA	GGCATCTCGC	GGGGGGTAGG	TACGTCCAGA	960
TGGTGCTACT	AGCCCTTGGC	AGGTGGACTG	GCACTTACAT	CTATGACCAC	CTCACCCCTA	1020
TGTCGGATTG	GGCTGCTAAT	GGCCTGCGGG	ACTTGGCGGT	CGCCGTGGAG	CCTATCATCT	1080
TCAGTCCGAT	GGAGAAAAA	GTCATCGTCT	GGGGAGCGGA	GACAGCTGCT	TGCGGGGATA	1140
TCTTACACGG	ACTTCCCGTG	TCCGCCCGAC	TTGGCCGGGA	GGTCCTCCTT	GGCCCAGCTG	1200

ATGGCTATAC	CTCCAAGGGG	TGGAGTCTTC	TCGCCCCCAT	CACTGCTTAT	GCCCAGCAGA	1260
CACGCGGCCT	TTTGGGCACC	ATAGTGGTGA	GCATGACGGG	GCGCGACAAG	ACAGAACAGG	1320
CCGGGGAGAT	TCAGGTCCTG	TCCACGGTCA	CTCAGTCCTT	CCTCGGAACA	ACCATCTCGG	1380
GGGTCTTATG	GACTGTCTAC	CATGGAGCTG	GCAACAAGAC	TCTAGCCGGC	TCACGGGGTC	1440
CGGTCACACA	GATGTACTCC	AGTGCTGAGG	GGGACTTAGT	GGGGTGGCCC	AGCCCCCCG	1500
GGACCAAATC	TTTGGAGCCG	TGCACGTGTG	GAGCGGTCGA	CCTATACCTG	GTCACGCGAA	156 0
ACGCTGATGT	CATCCCGGCT	CGAAGACGCG	GGGACAAGCG	AGGAGCGCTA	CTCTCCCCGA	1620
GACCTCTTTC	CACCTTGAAG	GGGTCCTCGG	GGGGCCCGGT	GCTCTGCCCC	AGAGGCCACG	1680
CTGTCGGGGT	CTTCCGGGCA	GCCGTGTGCT	CCCGGGGCGT	GGCCAAGTCC	ATAGATTTTA	1740
TCCCCGTTGA	GACACTTGAC	ATCGTCACTC	GGTCCCCCAC	CTTTAGTGAC	AACAGCACAC	1800
CACCTGCTGT	GCCCCAAACT	TATCAGGTCG	GGTACTTACA	TGCCCCGACT	GGTAGTGGAA	1860
AGAGCACCAA	AGTCCCTGTC	GCGTATGCCG	CTCAGGGGTA	CAAAGTGCTA	GTGCTTAATC	1920
CCTCGGTGGC	TGCCACCCTG	GGGTTTGGGG	CGTACTTGTC	CAAGGCACAT	GGCATCAATC	1980
CCAACATTAG	GACTGGGGTC	AGGACTGTGA	CGACCGGGGC	GCCCATCACG	TACTCCACAT	2040
ATGGCAAATT	CCTCGCCGAT	GGGGGCTGCG	CAGGCGGCGC	CTATGACATC	ATCATATGCG	2100
ATGAATGCCA	TGCCGTGGAC	TCTACCACCA	TTCTCGGCAT	CGGAACAGTC	CTCGATCAAG	2160
CAGAGACAGC	CGGGGTCAGG	CTAACTGTAC	TGGCTACGGC	TACGCCCCCC	GGGTCAGTGA	2220
CAACCCCCCA	CCCCAACATA	GAGGAGGTGG	CCCTCGGGCA	GGAGGGTGAG	ATCCCCTTCT	2280
ATGGGAGGGC	GATTCCCCTG	TCATACATCA	AGGGAGGAAG	ACACTTGATC	TTCTGCCACT	2340
CAAAGAAAAA	GTGTGACGAG	CTCGCGGCGG	CCCTTCGGGG	TATGGGCTTG	AACGCAGTGG	2400
CATACTACAG	AGGGCTGGAC	GTCTCCGTAA	TACCAACTCA	GGGAGACGTA	GTGGTCGTCG	2460
CCACCGACGC	CCTCATGACG	GGGTTTACTG	GAGACTTTGA	CTCCGTGATC	GACTGCAACG	2520
TAGCGGTCAC	TCAAGTTGTA	GACTTCAGCT	TGGACCCCAC	ATTCACCATA	ACCACACAGA	2580
CTGTCCCTCA	AGACGCTGTC	TCACGTAGCC	AGCGCCGGGG	CCGCACGGGC	AGGGGAAGAC	2640
TGGGTATTTA	TAGGTATGTT	TCCACTGGTG	AGCGAGCCTC	AGGAATGTTT	GACAGTGTAG	2700
TGCTCTGCGA	GTGCTACGAT	GCAGGGGCCG	CATGGTATGA	GCTCACACCA	GCGGAGACCA	2760
CCGTCAGGCT	CAGAGCATAT	TTCAACACAC	CTGGTTTGCC	TGTGTGCCAA	GACCATCTTG	2820
AGTTTTGGGA	GCAGTTTTC	ACCGGCCTCA	CACACATAGA	TGCCCACTTC	CTTTCCCAAA	2880
CAAAGCAATC	GGGGGAAAAT	TTCGCATACT	TAACAGCCTA	CCAGGCTACA	GTGTGCGCTA	2940

GGGCCAAAGC CCCCCCCG TCCTGGGACG TCATGTGGAA GTGTTTGACT CGACTCAAGC 3000 CCACACTCGT GGGCCCCACA CCTCTCCTGT ACCGCTTGGG CTCTGTTACC AACGAGGTCA 3060 CCCTCACGCA TCCTGTGACG AAATACATCG CCACCTGCAT GCAAGCCGAC CTTGAGGTCA 3120 TGACCAGCAC GTGGGTCTTA GCTGGGGGGG TCTTGGCGGC CGTCGCCGCG TACTGCCTGG. 3180 CGACCGGGTG TGTTTGCATC ATCGGCCGCT TGCACGTTAA CCAGCGAGCC GTCGTTGCAC 3240 CGGACAAGGA GGTCCTCTAT GAGGCTTTTG ATGAGATGGA GGAATGTGCC TCTAGAGCGG 3300 CTCTCATTGA AGAGGGGCAG CGGATAGCCG AGATGCTGAA GTCCAAGATC CAAGGCTTAT 3360 TGCAGCAAGC TTCCAAACAA GCTCAAGACA TACAACCCGC TGTGCAGGCT TCTTGGCCCA 3420 AGGTAGAGCA ATTCTGGGCC AAACACATGT GGAACTTCAT CAGCGGCATT CAATACCTCG 3480 CAGGACTATC AACACTGCCA GGGAACCCTG CTGTAGCTTC CATGATGGCA TTCAGTGCCG 3540 CCCTCACCAG TCCGTTGTCA ACTAGCACCA CTATCCTTCT CAACATTTTG GGGGGCTGGC 3600 TAGCATCCCA AATTGCGCCT CCCGCGGGG CTACCGGCTT CGTCGTCAGT GGCCTGGTGG 3660 GGGCTGCCGT AGGCAGCATA GGCTTGGGTA AGGTGCTGGT GGACATCCTG GCAGGGTATG 3720 GTGCGGGCAT TTCGGGGGCT CTCGTCGCAT TCAAGATCAT GTCTGGCGAG AAGCCCTCCA 3780 TGGAGGATGT TGTCAACCTG CTGCCTGGAA TTCTGTCTCC GGGTGCCCTG GTGGTGGGAG 3840 TCATCTGCGC GGCCATCCTG CGCCGACACG TGGGACCGGG GGAAGGCGCT GTCCAATGGA 3900 TGAATAGGCT CATTGCCTTT GCTTCCAGAG GAAACCACGT CGCCCCCACC CACTACGTGA 3960 CGGAGTCGGA 3970

Sequence ID No.4
Sequence Length: 2,693
Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: cDNA to genomic RNA Method for Determination of Feature: E

ATTCTGTCTC CGGGTGCCCT GGTGGTGGGA GTCATCTGCG CGGCCATCCT GCGCCGACAC 60 GTGGGACCGG GGGAAGGCGC TGTCCAATGG ATGAATAGGC TCATTGCCTT TGCTTCCAGA 120 GGAAACCACG TCGCCCCCAC CCACTACGTG ACGGAGTCGG ATGCGTCGCA GCGTGTGACC 180 CAACTACTTG GCTCCCTTAC CATAACCAGC CTGCTCAGGA GACTCCACAA CTGGATTACT 240 GAAGACTGCC CCATCCCATG CAGCGGCTCG TGGCTCCGCG ATGTGTGGGA TTGGGTTTGC 300 ACCATCCTAA CAGACTTTAA AAACTGGCTG ACCTCCAAAT TGTTCCCAAA GATGCCTGGT 360 CTCCCCTTTA TCTCTTGTCA AAAGGGGTAC AAGGGCGTGT GGGCTGGCAC TGGTATCATG 420 ACCACACGGT GTCCTTGCGG CGCCAATATC TCTGGCAATG TCCGCCTGGG CTCCATGAGA 480 ATTACGGGGC CCAAAACCTG CATGAATATC TGGCAGGGGA CCTTTCCCAT CAATTGTTAC 540 600 ACGGAGGGCC AGTGCGTGCC GAAACCCGCA CCAAACTTTA AGATCGCCAT CTGGAGGGTG GCGGCCTCAG AGTACGCGGA GGTGACGCAG CACGGGTCAT ACCACTACAT AACAGGACTT 660 ACCACTGATA ACTTGAAAGT TCCTTGCCAA CTACCTTCTC CAGAGTTCTT TTCCTGGGTG 720 GACGGAGTGC AGATCCATAG GTTTGCCCCC ATACCGAAGC CGTTTTTTCG GGATGAGGTC 780 TCGTTCTGCG TTGGGCTTAA TTCATTTGTC GTCGGGTCTC AGCTCCCTTG CGATCCTGAA 840 CCTGACACAG ACGTATTGAC GTCCATGCTA ACAGACCCAT CCCATATCAC GGCGGAGACT 900 GCAGCGCGC GTTTGGCACG GGGGTCACCC CCGTCCGAGG CAAGCTCCTC AGCGAGCCAG 960 CTATCGGCAC CATCGCTGCG AGCCACCTGC ACCACCCACG GCAAGGCCTA TGATGTGGAC 1020 ATGGTGGATG CCAACCTGTT CATGGGGGGC GATGTGACCC GGATAGAGTC TGAGTCCAAA 1080 GTGGTCGTTC TGGACTCTCT CGACCCAATG GTCGAAGAAA GGAGCGACCT TGAGCCTTCG 1140 ATACCATCGG AATATATGCT CCCCAAGAAG AGATTCCCAC CAGCCTTACC GGCTTGGGCA 1200

CGGCCTGATT ACAACCCACC GCTTGTGGAA TCGTGGAAGA GGCCAGATTA CCAACCGGCC 1260 ACTGTTGCGG GCTGCGCTCT CCCCCCCCT AAGAAAACCC CGACGCCTCC CCCAAGGAGA 1320 CGCCGGACAG TGGGTCTGAG TGAGAGCTCC ATAGCAGATG CCCTACAACA GCTGGCCATC 1380 AAGTCCTTTG GCCAGCCCC CCCAAGCGGC GATTCAGGCC TTTCCACGGG GGCGGACGCA 1440 GCCGATTCCG GCAGTCGGAC GCCCCCCGAT GAGTTGGCCC TITCGGAGAC AGGTTCCATC 1500 TCCTCCATGC CCCCTCTCGA GGGGGAGCCT GGAGATCCAG ACTTGGAGCC TGAGCAGGTA 1560 GAGCTTCAAC CTCCCCCCA GGGGGGGTG GTAACCCCCG GCTCAGGCTC GGGGTCTTGG 1620 TCTACTTGCT CCGAGGAGGA CGACTCCGTC GTGTGCTGCT CCATGTCATA CTCCTGGACC 1680 GGGGCTCTAA TAACTCCTTG TAGCCCCGAA GAGGAAAAGT TGCCAATTGG CCCCTTGAGC 1740 AACTCCCTGT TGCGATATCA CAACAAGGTG TACTGTACCA CATCAAAGAG CGCCTCATTA 1800 AGGGCTAAAA AGGTAACTTT TGATAGGATG CAAGCGCTCG ACGCTCATTA TGACTCAGTC 1860 TTGAAGGACA TTAAGCTAGC GGCCTCCAAG GTCACCGCAA GGCTTCTCAC TTTAGAGGAG 1920 GCCTGCCAGT TAACTCCACC CCACTCTGCA AGATCCAAGT ATGGGTTTGG GGCTAAGGAG 1980 GTCCGCAGCT TGTCCGGGAG AGCCGTTAAC CACATCAAGT CCGTGTGGAA GGACCTCCTG 2040 GAAGACACA AAACACCAAT TCCTACAACC ATCATGGCCA AAAATGAGGT GTTCTGCGTG 2100 GACCCCACCA AGGGGGGTAA GAAAGCAGCT CGCCTTATCG TTTACCCTGA CCTCGGCGTC 2160 AGGGTCTGCG AGAAAATGGC CCTTTATGAT ATCACACAAA AGCTTCCTCA GGCGGTGATG 2220 GGGGCTTCTT ATGGATTCCA GTACTCCCCC GCTCAGCGGG TGGAGTTTCT CTTGAAGGCA 2280 TGGGCGGAAA AGAAAGACCC TATGGGTTTT TCGTATGATA CCCGATGCTT TGACTCAACC 2340 GTCACTGAGA GAGACATCAG GACTGAGGAG TCCATATATC GGGCTTGTTC CTTGCCCGAG 2400 GAGGCCCACA CTGCCATACA CTCACTGACT GAGAGACTTT ACGTGGGAGG GCCCATGTTC 2460 AACAGCAAGG GCCAGACCTG CGGGTACAGG CGTTGCCGCG CCAGCGGGGT GCTTACCACT 2520 AGCATGGGGA ACACCATCAC ATGCTATGTG AAAGCCTTAG CGGCCTGTAA GGCTGCAGGG 2580 ATAATTGCGC CCACAATGCT GGTATGCGGC GATGACTTGG TTGTCATCTC AGAGAGCCAG 2640 GGGACCGAGG AGGACGAGCG GAACCTGAGA GCCTTCACGG AGGCTATGAC CAG

Sequence ID No.5 Sequence Length: 3,033 Sequence Type: amino acid

Topology: linear Molecule Type: protein

Het	Ser	Thr	Asn	Pro	Lys	Pro	Gln	Arg	Lys	Thr	Lys	Arg	Asn	Thr
				5					10					15
Asn	Arg	Arg	Pro	Gin	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gin	He
				20					25					30
Val	Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly
				35					40					45
Vai	Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gln	Pro	Arg	Gly
				50					55					60
Arg	Arg	Gln	Pro	He	Pro	Lys	Asp	Arg	Arg	Ser	Thr	Gly	Lys	Ser
		•		65					70					75
Trp	Gly	Lys	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly
				80					85					90
Leu	Gly	Trp	Ala	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	Pro
				95					100					105
Ser	Trp	Gly	Pro	Asn	Asp	Pro	Arg	His	Arg	Ser	Arg	Asn	Val	Gly
				110					115					120
Lys	Val	He	Asp	Thr	Leu	Thr	Cys	Gly	Phe	Ala	Asp	Leu	Het	Gly
				125					130					135
Tyr	He	Pro	Val	Val	Gly	Ala	Pro	Leu	Gly	Gly	Val	Ala	Arg	Ala
				140					145					150
Leu	Ala	His	Gly	Val	Arg	Val	Leu	Glu	Asp	Gly	Val	Asn	Phe	Ala
				155					160					165

Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	Ser	He	Phe	Leu	Leu	Ala
				170					175					180
Leu	Leu	Ser	Cys	He	Thr	Thr	Pro	Val	Ser	Ala	Ala	Glu	Val	Lys
				185					190					195
Asn	He	Ser	Thr	Gly	Tyr	Het	Val	Thr	Asn	Asp	Cys	Thr	Asn	Asp
				200					205					210
Ser	He	Thr	Trp	GIn	Leu	Gin	Ala	Ala	Val	Leu	His	Val	Pro	Gly
				215					220					225
Cys	Val	Pro	Cys	Glu	Lys	Val	Gly	Asn	Thr	Ser	Arg	Cys	Trp	He
				230					235					240
Pro	Val	Ser	Pro	Asn	Val	Ala	Val	Gln	Gin	Pro	Gly	Ala	Leu	Thr
				245			•		250					255
GIn	Gly	Leu	Arg	Thr	His	Ile	Asp	Het	Val	Val	Het	Ser	Ala	Thr
				260					265					270
Leu	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Leu	Cys	Gly	Gly	Val	Het
				275					280					285
Leu	Ala	Ala	Gin	Het	Phe	He	Val	Ser	Pro	Gln	His	His	Trp	
				290					295					300
Val	Gln	Asp	Cys	Asn	Cys	Ser	He	Tyr	Pro	Gly	Thr	He	Thr	
				305					310					315
His	Arg	Het	Ala	Trp	Asp	Met	Het	Het	Asn	Trp	Ser	Pro	Thr	
				320					325					330
Thr	Het	lle	Leu		Tyr	Ala	Het	Arg		Pro	Glu	Val	He	
				335					340					345
Asp	He	He	Gly	Gly	Ala	His	Trp	Gly	Val	Het	Phe	Gly	Leu	
				350					355					360
Tyr	Phe	Ser	Het		Gly	Ala	Trp	Ala		Val	Val	Val	He	
				365					370					375
Leu	Leu	Ala	Ala	GIV	Val	Asp	Ala	Gln	Thr	His	Thr	Val	GIV	GIV

				380					385					390
Ser	Thr	Ala	His	Asn	Ala	Arg	Thr	Leu	Thr	Gly	Het	Phe	Ser	Leu
				395					400					405
Gly	Ala	Arg	Gln	Lys	[le	Gln	Leu	He	Asn	Thr	Asn	Gly	Ser	Trp
				410					415					420
His	He	Asn	Arg	Thr	Ala	Leu	Asn	Cys	Asn	Asp	Ser	Leu	His	Thr
				425					430					435
Gly	Phe	Leu	Ala	Ser	Leu	Phe	Tyr	Thr	His	Ser	Phe	Asn	Ser	Ser
				440					445					450
Gly	Cys	Pro	Glu	Arg	Het	Ser	Ala	Cys	Arg	Ser	He	Glu	Ala	Phe
				455					460					465
Arg	Val	Gly	Trp	Gly	Ala	Leu	GIn	Tyr	Glu	Asp	Asn	Val	Thr	Asn
				470					475					480
Pro	Glu	Asp	Het	Arg	Pro	Tyr	Cys	Trp	His	Tyr	Pro	Pro	Arg	
				485					490					495
Cys	Gly	Val	Val	Ser	Ala	Ser	Ser	Val	Cys	Gly	Pro	Val	Tyr	
				500					505					510
Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly		Thr	Asp	Arg	Leu	
				515					520					525
Ala	Pro	Thr	Tyr	Thr	Trp	Gly	Glu	Asn		Thr	Asp	Val	Phe	
				530					535					540
Leu	Asn	Ser	Thr	Arg	Pro	Pro	Gin	Gly		Trp	Phe	Gly	Cys	
				545					550					555
Trp	Het	Asn	Ser		Gly	Tyr	Thr	Lys		Cys	Gly	Ala	Pro	
				560					565					570
Cys	Arg	Ile	Arg		Asp	Phe	Asn	Ala		Het	ASP	Leu	Leu	
				575				_	580		- .	-		585
Pro	Thr	Asp	Cys			Lys	His	Pro		Thr	Thr	lyr	He	
				590					595					600

Cys	Gly	Ser	Gly	Pro	Trp	Leu	Thr	Pro	Arg	Cys	Leu	Ile	Asp	Tyr	
	ė			605					610					615	
Pro	Туг	Arg	Leu	Trp	His	Tyr	Pro	Cys	Thr	Val	Asn	Tyr	Thr	He	
				620					625					630	
Phe	Lys	He	Arg	Het	Tyr	Val	Gly	Gly	Val	Glu	His	Arg	Leu	Thr	
				635					640					645	
Ala	Ala	Cys	Asn	Phe	Thr	Arg	Gly	Asp	Arg	Cys	Asn	Leu	Glu	Asp.	
				650					655					660	
Arg	Asp	Arg	Ser	Gin	Leu	Ser	Pro	Leu	Leu	His	Ser	Thr	Thr	Glu	
				665					670					675	
Trp	Ala	He	Leu	Pro	Cys	Thr	Tyr	Ser	Asp	Leu	Pro	Ala	Leu	Ser	
				680					685					690	
Thr	Gly	Leu	Leu	His	Leu	His	Gin	Asn	He	Val	Asp	Val	Gin	Phe	
				695					700					705	
Het	Tyr	Gly	Leu	Ser	Pro	Ala	Leu	Thr	Lys	Туг	He	Val	Arg	Trp	
				710					715					720	
Glu	Trp	Val	Val		Leu	Phe	Leu	Leu	Leu	Ala	Asp	Ala	Arg	Val	
				725					730					735	
Cys	Ala	Cys	Leu		Het	Leu	He	Leu		Gly	Gin	Ala	Glu	Ala	
				740					745					750	
Ala	Leu	Glu	Lys		Val	Val	Leu	His		Ala	Ser	Ala	Ala	Ser	
				755	_				760					765	
Cys	Asn	Gly	Phe		Tyr	Phe	Val	He		Phe	Val	Ala	Ala		
_				770					775					780	
lyr	He	Lys	Gly		Val	Val	Pro	Leu		Thr	Tyr	Ser	Leu	Thr _. .	
		_	_	785					790					795	
Gly	Leu	1 rp	Ser		Gly	Leu	Leu	Leu		Ala	Leu	Pro	Gln		
	_		_	800					805					810	
Ala	lyr	Ala	[yr	Asp	Ala	Ser	Val	His	Gly	Gin	He	Gly	Ala	Ala	

				815					820					825
Leu	Leu	Val	Leu	Ile	Thr	Leu	Phe	Thr	Leu	Thr	Pro	Gly	Tyr	Lys
				830					835					840
Thr	Leu	Leu	Ser	Arg	Phe	Leu	Trp	Trp	Leu	Cys	Tyr	Leu	Leu	Thr
				845					850					855
Leu	Ala	Glu	Ala	Het	Val	GIn	Glu	Trp	Ala	Pro	Pro	Het	Gin	Val
				860					865					870
Arg	Gly	Gly	Arg	Asp	Gly	Ile	Ile	Trp	Ala	Val	Ala	lle	Phe	Cys
				875					880					885
Pro	Gly	Val	Val	Phe	Asp	Ile	Thr	Lys	Trp	Leu	Leu	Ala	Val	Leu
				890					895					900
Gly	Pro	Ala	Tyr	Leu	Leu	Lys	Gly	Ala	Leu	Thr	Arg	Val	Pro	Tyr
				905					910					915
Phe	Val	Arg	Ala	His	Ala	Leu	Leu	Arg	Het	Cys	Thr	Het	Val	Arg
				920					925					930
His	Leu	Ala	Gly	Gly	Arg	Tyr	Val	Gin	Het	Val	Leu	Leu	Ala	Leu
				935					940					945
Gly	Arg	Trp	Thr	Gly	Thr	Tyr	He	Tyr	Asp	His	Leu	Thr	Pro	
				950					955					960
Ser	Asp	Trp	Ala	Ala	Asn	Gly	Leu	Arg	Asp	Leu	Ala	Val	Ala	
				965					970					975
Glu	Pro	He	He	Phe	Ser	Pro	Het	Glu		Lys	Val	He	Val	
	•			980					985					990
Gly	Ala	Glu	Thr	Ala	Ala	Cys	Gly			Leu	His	Gly		
				995					1000					1005
Val	Ser	Ala	Arg	Leu	Gly	Arg	Glu			Leu	Gly	Pro		
	•			1010					1015					1020
Gly	Туг	Thr	Ser	Lys	Gly	Trp	Ser			Ala	Pro	He		
				1025					1030					1035

Tyr	Ala	Gln	Gln	Thr	Arg	Gly	Leu	Leu	Gly	Thr	He	Val	Val	Ser
			•	1040				•	1045				1	1050
Het	Thr	Gly	Arg	Asp	Lys	Thr	Glu	Gin	Ala	Gly	Glu	He	Glu	Val
			•	1055				•	1060				1	1065
Leu	Ser	Thr	Val	Thr	Gln	Ser	Phe	Leu	Gly	Thr	Thr	He	Ser	Gly
				1070				•	1075				1	1080
Val	Leu	Trp	Thr	Val	Tyr	His	Gly	Ala	Gly	Asn	Lys	Thr	Leu	Ala
			•	1085				•	1090				1	1095
Gly	Ser	Arg	Gly	Pro	Val	Thr	Gin	Het	Tyr	Ser	Ser	Ala	Glu	Gly
			•	1100				•	1105				•	1110
Asp	Leu	Val	Gly	Trp	Pro	Ser	Pro	Pro	Gly	Thr	Lys	Ser	Leu	Glu
			,	1115				•	1120				•	1125
Pro	Cys	Thr	Cys	Gly	Ala	Val	Asp	Leu	Tyr	Leu	Val	Thr	Arg	Asn
				1130				•	1135				•	1140
Ala	Asp	Val	He	Pro	Ala	Arg	Arg	Arg	Gly	Asp	Lys	Arg	Gly	Ala
				1145				•	1150				•	1155
Leu	Leu	Ser	Pro	Arg	Pro	Leu	Ser	Thr	Leu	Lys	Gly	Ser	Ser	Gly
				1160				•	1165				•	1170
Gly	Pro	Val	Leu	Cys	Pro	Arg	Gly	His	Ala	Val	Gly	Val	Phe	Arg
				1175					1180				•	1185
Ala	Ala	Val	Cys	Ser	Arg	Gly	Val	Ala	Lys	Ser	Ile	Asp	Phe	He
				1190					1195				•	1200
Pro	Val	Glu	Thr	Leu	Asp	He	Val	Thr	Arg	Ser	Pro	Thr	Phe	Ser
				1205					1210				•	1215
Asp	Asn	Ser	Thr	Pro	Pro	Ala	Val	Pro	Gln	Thr	Tyr	Gln	Val	GIn
				1220					1225					1230
Tyr	Leu	His	Ala	Pro	Thr	Gly	Ser	Gly	Lys	Ser	Thr	Lys	Val	Pro
				1235					1240					1245
Val	Ala	Tyr	Δla	۵la	Gin	Glv	Tvr	IVS	Val	1 611	Val	Leu	Asn	Pro

			•	1250				•	1255				1	1260
Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly	Ala	Tyr	Leu	Ser	Lys	Ala
			•	1265				•	1270				1	1275
His	Gly	He	Asn	Pro	Asn	He	Arg	Thr	Gly	Val	Arg	Thr	Val	Thr
			•	1280				•	1285				1	1290
Thr	Gly	Ala	Pro	He	Thr	Tyr	Ser	Thr	Tyr	Gly	Lys	Phe	Leu	Ala
				1295					1300					1305
Asp	Gly	Gly	Cys	Ala	Gly	Gly	Ala	Tyr	Asp	He	He	He	Cys	Asp
				1310					1315					1320
Glu	Cys	His	Ala	Val	Asp	Ser	Thr	Thr	He	Leu	Gly	He	Gly	Thr
		•		1325					1330				1	1335
Val	Leu	Asp	Gin	Ala	Glu	Thr	Ala	Gly	Val	Arg	Leu	Thr	Val	Leu
			•	1340					1345				•	1350
Ala	Thr	Ala	Thr	Pro	Pro	Gly	Ser	Val	Thr	Thr	Pro	His	Pro	Asn
				1355	•				1360				•	1365
He	Glu	Glu	Val	Ala	Leu	Gly	Gln	Glu	Gly	Glu	He	Pro	Phe	Tyr
				1370					1375					1380
Gly	Arg	Ala	Ile	Pro	Leu	Ser	Tyr	He	Lys	Gly	Gly	Arg	His	Leu
				1385			•		1390					1395
He	Phe	Cys	His	Ser	Lys	Lys	Lys	Cys	Asp	Glu	Leu	Ala	Ala	Ala
				1400					1405					1410
Leu	Arg	Gly	Het	Gly	Leu	Asn	Ala	Val	Ala	Tyr	Tyr	Arg	Gly	Leu
				1415					1420				•	1425
Asp	Val	Ser	Val	He	Pro	Thr	GIn	Gly	Asp	Val	Val	Val	Val	Ala
				1430					1435					1440
Thr	Asp	Ala	Leu	Het	Thr	Gly	Phe	Thr	Gly	Asp	Phe	Asp	Ser	Val
				1445					1450					1455
He	Asp	Cys	Asn	Val	Ala	Vai	Thr	Gln	Val	Val	Asp	Phe	Ser	Leu
				1460					1465					1470

Asp	Pro	Thr	Phe	Thr	He	Thr	Thr	Gin	Thr	Val	Pro	Gin	Asp	Ala
				1475					1480					1485
Val	Ser	Arg	Ser	Gin	Arg	Arg	Gly	Arg	Thr	Gly	Arg	Gly	Arg	Leu
				1490					1495					1500
Gly	He	Tyr	Arg	Tyr	Val	Ser	Thr	Gly	Glu	Arg	Ala	Ser	Gly	Met
				1505				•	1510					1515
Phe	Asp	Ser	Val	Val	Leu	Cys	Glu	Cys	Tyr	Asp	Ala	Gly	Ala	Ala
				1520					1525				•	1530
Trp	Tyr	Glu	Leu	Thr	Pro	Ala	Glu	Thr	Thr	Val	Arg	Leu	Arg	Ala
				1535					1540				•	1545
Tyr	Phe	Asn	Thr	Pro	Gly	Leu	Pro	Val	Cys	Gln	Asp	His	Leu	Glu
				1550				•	1555				•	1560
Phe	Trp	Glu	Ala	Val	Phe	Thr	Gly	Leu	Thr	His	He	Asp	Ala	His
			,	1565					1570					1575
Phe	Leu	Ser	Gln	Thr	Lys	Gln	Ser	Gly	Glu	Asn	Phe	Ala	Tyr	Leu
				1580				•	1585				•	1590
Thr	Ala	Tyr	Gln	Ala	Thr	Val	Cys	Ala	Arg	Ala	Lys	Ala	Pro	Pro
			•	1595				•	1600				•	1605
Pro	Ser	Trp	Asp	Val	Het	Trp	Lys	Cys	Leu	Thr	Arg	Leu	Lys	Pro
	•			1610				•	1615				•	1620
Trp	Leu	Val	Gly	Pro	Thr	Pro	Leu	Leu	Tyr	Arg	Leu	Gly	Ser	Val
				1625				•	1630					1635
Thr	Asn	Glu	Val	Thr	Leu	Thr	His	Pro	Val	Thr	Lys	Tyr	He	Ala
				1640					1645				•	1650
Thr	Cys	Het	Gln	Ala	Asp	Leu	Glu	Val	Het	Thr	Ser	Thr	Trp	Val
				1655				•	1660				•	1665
Leu	Ala	Gly	Gly	Val	Leu	Ala	Ala	Val	Ala	Ala	Tyr	Cys	Leu	Ala
				1670					1675					1680
The	Glv	CVS	Val	Cvs	ΠA	ماآ	GIV	A ra	Leu	His	Val	Asn	Gln	Ara

				1685				1	1690				16	95
Ala	Val	Val	Ala	Pro	Asp	Lys	Glu	Val	Leu	Tyr	Glu	Ala	Phe A	sp
				1700				1	1705				17	10
Glu	Het	Glu	Glu	Cys	Ala	Ser	Arg	Ala	Ala	Leu	He	Glu	Glu G	ly
				1715					1720					25
GIn	Arg	He	Ala	Glu	Het	Leu	Lys	Ser	Lys	He	Gln	Gly	Leu L	eu
				1730				•	1735				17	40.
Gin	Gln	Ala	Ser	Lys	Gln	Ala	Gin	Asp	Ile	Gln	Pro	Ala	Val G	iln
				1745					1750					' 55
Ala	Ser	Trp	Pro	Lys	Val	Glu	Gln	Phe	Trp	Ala	Lys	His	Het T	rp
				1760				•	1765				17	70
Asn	Phe	lle	Ser	Gly	Ile	Gln	Tyr	Leu	Ala	Gly	Leu	Ser	Thr L	eu
				1775				•	1780				17	785
Pro	Gly	Asn	Pro	Ala	Val	Ala	Ser	Het	Het	Ala	Phe	Ser	Ala A	lla
				1790					1795					300
Leu	Thr	Ser	Pro	Leu	Ser	Thr	Ser	Thr	Thr	He	Leu	Leu	Asn I	le
•				1805					1810					315
Leu	Gly	Gly	Trp	Leu	Ala	Ser	Gin	Ile	Ala	Pro	Pro	Ala	Gly A	
				1820					1825					330
Thr	Gly	Phe	Val	Val	Ser	Gly	Leu	Val	Gly	Ala	Ala	Val	Gly S	
	•			1835					1840					345
He	Gly	Leu	Gly	Lys	Vai	Leu	Val	Asp	He	Leu	Ala	Gly	Tyr (
				1850					1855					360
Ala	Gly	He	Ser	Gly	Ala	Leu	Val			Lys	He	Het	Ser (
				1865					1870					875
Glu	Lys	Pro	Ser	Het	Glu	Asp	Val			Leu	Leu	Pro	Gly	
				1880					1885		•			890
Leu	Ser	Pro	Gly			Val	Val				Cys	Ala	Ala	
				1895					1900				1	905

Leu	Arg	Arg	His	Val	Gly	Pro	Gly	Glu	Gly	Ala	Val	Gin	Trp	Het
				1910					1915					1920
Asn	Arg	Leu	He	Ala	Phe	Ala	Ser	Arg	Gly	Asn	His	Val	Ala	Pro
				1925					1930					1935
Thr	His	Tyr	Val	Thr	Glu	Ser	Asp	Ala	Ser	GIn	Arg	Val	Thr	Gin
				1940					1945					1950
Leu	Leu	Gly	Ser	Leu	Thr	He	Thr	Ser	Leu	Leu	Arg	Arg	Leu	His
			•	1955					1960					1965
Asn	Trp	He	Thr	Glu	Asp	Cys	Pro	He	Pro	Cys	Ser	Gly	Ser	Trp
			•	1970				•	1975					1980
Leu	Arg	Asp	Val	Trp	Asp	Trp	Val	Cys	Thr	Ile	Leu	Thr	Asp	Phe
				1985				•	1990				•	1995
Lys	Asn	Trp	Leu	Thr	Ser	Lys	Leu	Phe	Pro	Lys	Het	Pro	Gly	Leu
			2	2000				2	2005				4	2010
Pro	Phe	He	Ser	Cys	Gin	Lys	Gly	Tyr	Lys	Gly	Val	Trp	Ala	Gly
			2	2015				2	2020				2	2025
Thr	Gly	He	Het	Thr	Thr	Arg	Cys	Pro	Cys	Gly	Ala	Asn	He	Ser
			2	2030				2	2035				2	2040
Gly	Asn	Val	Arg	Leu	Gly	Ser	Het	Arg	He	Thr	Gly	Pro	Lys	Thr
			2	2045				2	2050				2	2055
Cys	Met	Asn	He	Trp	GIn	Gly	Thr	Phe	Pro	He	Asn	Cys	Tyr	Thr
			. 2	2060				. 2	2065				2	2070
Glu	Gly	Gln	Cys	Val	Pro	Lys	Pro	Ala	Pro	Asn	Phe	Lys	He	Ala
			2	2075				2	2080				2	2085
He	Trp	Arg	Val	Ala	Ala	Ser	Glu	Tyr	Ala	Glu	Val	Thr	GIn	His
			2	2090				2	2095				2	2100
Gly	Ser	Tyr	His	Tyr	He	Thr	Gly	Leu	Thr	Thr	Asp	Asn	Leu	Lys
			2	2105				2	2110				4	2115
Val	Pro	CVS	Gln	Len	Pro	Ser	Pro	Glu	Phe	Phe	Ser	Trn	Val	Asn

			2	2120				2	2125				2	2130
Gly	Val	Gin	He	His	Arg	Phe	Ala	Pro	He	Pro	Lys	Pro	Phe	Phe
				2135					2140					2145
Arg	Asp	Glu	Val	Ser	Phe	Cys	Val	Gly	Leu	Asn	Ser	Phe	Val	Val
			2	2150				2	2155				2	2160
Gly	Ser	GIn	Leu	Pro	Cys	Asp	Pro	Glu	Pro	Asp	Thr	Asp	Val	Leu
			2	2165				2	2170				4	2175
Thr	Ser	Het	Leu	Thr	Asp	Pro	Ser	His	He	Thr	Ala	Glu	Thr	Ala
			4	2180				2	2185				4	2190
Ala	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Glu	Ala	Ser	Ser
			4	2195				2	2200				4	2205
Ser	Ala	Ser	Gin	Leu	Ser	Ala	Pro	Ser	Leu	Arg	Ala	Thr	Cys	Thr
			2	2210				4	2215					2220
Thr	His	Gly	Lys	Ala	Tyr	Asp	Val	Asp	Het	Val	Asp	Ala	Asn	Leu
			:	2225				:	2230				:	2235
Phe	Het	Gly	Gly	Asp	Val	Thr	Arg	Ile	Glu	Ser	Glu	Ser	Lys	Val
			:	2240				:	2245					2250
Val	Val	Leu	Asp	Ser	Leu	Asp	Pro	Het	Val	Glu	Glu	Arg	Ser	Asp
				2255					2260					2265
Leu	Glu	Pro	Ser	He	Pro	Ser	Glu	Tyr	Het	Leu	Pro	Lys	Lys	Arg
				2270					2275					2280
Phe	Pro	Pro	Ala	Leu	Pro	Ala	Trp	Ala	Arg	Pro	Asp	Tyr	Asn	Pro
				2285					2290					2295
Pro	Leu	Val	Glu	Ser	Trp	Lys	Arg	Pro	Asp	Tyr	Gin	Pro	Ala	Thr
				2300					2305					2310
Val	Ala	Gly	Cys	Ala	Leu	Pro	Pro	Pro	Lys	Lys	Thr	Pro	Thr	Pro
				2315					2320					2325
Pro	Pro	Arg	Arg	Arg	Arg	Thr	Val	Gly	Leu	Ser	Glu	Ser	Ser	Ile
				2330					2335					2340

Ala	Asp	Ala	Leu	Gln	Gln	Leu	Ala	He	Lys	Ser	Phe	Gly	Gin	Pro
			2	2345				2	2350				2	355
Pro	Pro	Ser	Gĺy	Asp	Ser	Gly	Leu	Ser	Thr	Gly	Ala	Asp	Ala	Ala
			2	2360				2	2365				2	370
Asp	Ser	Gly	Ser	Arg	Thr	Pro	Pro	Asp	Glu	Leu	Ala	Leu	Ser	Glu
				2375					2380					385
Thr	Gly	Ser	[le	Ser	Ser	Het	Pro	Pro	Leu	Glu	Gly	Glu	Pro	G l.y
				2390					2395					400
Asp	Pro	Asp	Leu	Glu	Pro	Glu	Gin	Val	Glu	Leu	Gin	Pro	Pro	Pro
				2405					2410					2415
GIn	Gly	Gly	Val	Val	Thr	Pro	Gly	Ser	Gly	Ser	Gly	Ser		
				2420					2425					2430
Thr	Cys	Ser	Glu	Glu	Asp	Asp	Ser	Val	Val	Cys	Cys	Ser		
				2435					2440					2445
Tyr	Ser	Trp	Thr	Gly	Ala	Leu	He	Thr	Pro	Cys	Ser	Pro		
				2450					2455		,			2460
Glu	Lys	Leu	Pro	He	Asn	Pro	Leu			Ser	Leu	Leu		
				2465					2470			_		2475
His	Asn	Lys	Val	Туг	Cys	Thr	Thr			Ser	Ala	Ser		
				2480					2485					2490
Ala	Lys	Lys		Thr		ASP	Arg				Leu	ASP		
				2495					2500		41.	0		2505
Tyr	Asp	Ser	Val	Leu		Asp	He				Ala	Ser		
				2510					2515		0.1			2520
Thr	Ala	Arg	Leu	Leu	Thr	Leu	Glu				GIN	Leu		
				2525					2530			1		2535
Pro	His	Ser	Ala	Arg		Lys	Tyr	Gly			Ala	LYS		
				2540)				2545					2550

Arg	Ser	Leu	Ser	Gly	Arg	Ala	Val	Asn	His	He	Lys	Ser	Val	Trp
			2	2555				2	2560				2	2565
Lys	Asp	Leu	Leu	Glu	Asp	Thr	Gln	Thr	Pro	He	Pro	Thr	Thr	Ile
			2	2570				2	2575				2	2580
Het	Ala	Lys	Asn	Glu	Val	Phe	Cys	Val	Asp	Pro	Thr	Lys	Gly	Gly
			2	2585				2	259 0				2	2595
Lys	Lys	Ala	Ala	Arg	Leu	He	Val	Tyr	Pro	Asp	Leu	Gly	Val	Arg
			2	2600				2	2605				2	2610
Val	Cys	Glu	Lys	Het	Ala	Leu	Tyr	Asp	He	Thr	Gln	Lys	Leu	Pro
				2615					2620					2625
Gln	Ala	Val	Het	Gly	Ala	Ser	Tyr	Gly	Phe	Gin	Tyr	Ser	Pro	Ala
				2630					2635					2640
Gln	Arg	Val	Glu	Phe	Leu	Leu	Lys	Ala	Trp	Ala	Glu	Lys	Lys	Asp
			2	2645				2	2650				2	2655
Pro	Het	Gly	Phe	Ser	Tyr	Asp	Thr	Arg	Cys	Phe	Asp	Ser	Thr	Val
				2660				4	2665				2	2670
Thr	Glu	Arg	Asp	He	Arg	Thr	Glu	Glu	Ser	He	Tyr	Arg	Ala	Cys
			4	2675				2	2680				2	2685
Ser	Leu	Pro	Glu	Glu	Ala	His	Thr	Ala	He	His	Ser	Leu	Thr	Glu
			:	2690				4	2695				4	2700
Arg	Leu	Tyr	Val	Gly	Gly	Pro	Het	Phe	Asn	Ser	Lys	Gly	GIn	Thr
			4	2705				:	2710				;	2715
Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Leu	Thr	Thr	Ser
			:	2720					2725				4	2730
Het	Gly	Asn	Thr	He	Thr	Cys	Tyr	Val	Lys	Ala	Leu	Ala	Ala	Cys
				2735					2740					2745
Lys	Ala	Ala	Gly	He	He	Ala	Pro	Thr	Het	Leu	Val	Cys	Gly	Asp
				2750					2755	*				2760

Asp	Leu	Val	Val	He	Ser	Glu	Ser	GÌn	Gly	Thr	Glu	Glu	Asp	Glu
				2765					2770					2775
Arg	Asn	Leu	Arg	Ala	Phe	Thr	Glu	Ala	Het	Thr	Arg	Tyr	Ser	Ala
				2780					2785					2790
Pro	Pro	Gly	Asp	Pro	Pro	Arg	Pro	Glu	Туг	Asp	Leu	Glu	Leu	Ile
				2795					2800					2805
Thr	Ser	Cys	Ser	Ser	Asn	Val	Ser	Vai	Ala	Leu	Gly	Pro	Gln	Gly
				2810					2815					2820
Arg	Arg	Arg	Tyr	Tyr	Leu	Thr	Arg	Asp	Pro	Thr	Thr	Pro	He	Ala
			;	2825				:	2830				;	2835
Arg	Ala	Ala	Trp	Glu	Thr	Val	Arg	His	Ser	Pro	Val	Asn	Ser	Trp
				2840				:	2845					2850
Leu	Gly	Asn	He	lle	Gln	Tyr	Ala	Pro	Thr	He	Trp	Ala	Arg	Het
			;	2855				:	2860				4	2865
Val	Leu	Het	Thr	His	Phe	Phe	Ser	lle	Leu	Het	Ala	Gin	Asp	Thr
			2	2870					2875				2	2880
Leu	Asp	Gln	Asn	Leu	Asn	Phe	Glu	Het	Tyr	Gly	Ala	Val	Туг	Ser
			4	2885				2	2890				2	2895
Val	Ser	Pro	Leu	Asp	Leu	Pro	Ala	He	He	Glu	Arg	Leu	His	Gly
			2	2900				2	2905				2	2910
Leu	Asp	Ala	Phe	Ser	Leu	His	Thr	Tyr	Thr	Pro	His	Glu	Leu	Thr
			. 2	2915				2	2920				2	2925
Arg	Val	Ala	Ser	Ala	Leu	Arg	Lys	Leu	Gly	Ala	Pro	Pro	Leu	Arg
			2	2930				2	935				2	940
Ala	Trp	Lys	Ser	Arg	Ala	Arg	Ala	Val	Arg	Ala	Ser	Leu	He	Ser
			2	2945				2	950				2	955
Arg	Gly	Gly	Arg	Ala	Ala	Val	Cys	Gly	Arg	Tyr	Leu	Phe	Asn	Trp
			2	2960				2	2965				2	970

Ala Val Lys Thr Lys Leu Lys Leu Thr Pro Leu Pro Glu Ala Arg Leu Leu Asp Leu Ser Ser Trp Phe Thr Val Gly Ala Gly Gly Gly Asp Ile Tyr His Ser Val Ser Arg Ala Arg Pro Arg Leu Leu Leu Leu Gly Leu Leu Leu Leu Phe Val Gly Val Gly Leu Phe Leu Leu

Pro Ala Arg

Sequence ID No. 6 Sequence Length: 9,511 Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: genomic RNA

Method for Determination of Feature: E

GCCCGCCCCC	UGAUGGGGGC	GACACUCCGC	CAUGAAUCAC	UCCCCUGUGA	GGAACUACUG	60
UCUUCACGCA	GAAAGCGUCU	AGCCAUGGCG	UUAGUAUGAG	UGUCGUACAG	CCUCCAGGCC	120
cccccuccc	GGGAGAGCCA	UAGUGGUCUG	CGGAACCGGU	GAGUACACCG	GAAUUACCGG	180
AAAGACUGGG	UCCUUUCUUG	GAUAAACCCA	CUCUAUGUCC	GGUCAUUUGG	GCACGCCCCC	240
GCAAGACUGC	UAGCCGAGUA	GCGUUGGGUU	GCGAAAGGCC	UUGUGGUACU	GCCUGAUAGG	300
GURCUUGCGA	GUGCCCCGGG	AGGUCUCGUA	GACCGUGCAU	CAUGAGCACA	AAUCCUAAAC	360
CUCAAAGAAA	AACCAAAAGA	AACACAAACC	GCCGCCCACA	GGACGUUAAG	UUCCCGGGUG	420
GCGGUCAGAU	CGUUGGCGGA	GUUUACUUGC	UGCCGCGCAG	GGGCCCCAGG	UUGGGUGUGC	480
GCGCGACAAG	GAAGACUUCY	GAGCGAUCCC	AGCCGCGUGG	ACGACGCCAG	CCCAUCCCGÃ	540
AAGAUCGGCG	CUCCACCGGC	AAGUCCUGGG	GAAAGCCAGG	AUAUCCUUGG	CCCCUGUACG	600
GAAACGAGGG	UUGCGGCUGG	GCGGGUUGGC	UCCUGUCCCC	CCGCGGGUCU	CGUCCUACUU	660
GGGGCCCCAC	CGACCCCCGG	CAUAGAUCAC	GCAAUUUGGG	CAGAGUCAUC	GAUACCAUUA	720
CGUGUGGUUU	UGCCGACCUC	AUGGGGUACA	UCCCUGUCGU	UGGCGCCCCG	GUYGGAGGCG	780
UCGCCAGAGC	UCUGGCACAC	GGUGUUAGGG	UCCUGGAGGA	CGGGAUAAAU	UACGCAACAG	840
GGAAUUUACC	CGGUUGCUCU	UUUUCUAUCU	UUUUGCUUGC	UCUUCUGUCA	UGCGUCACAR	900
UGCCAGUGUC	UGCAGUGGAA	GUCAGGAACA	UYAGUUCUAG	CUACUACGCC	ACUAAUGAUU	960
GCUCAAACAA	CAGCAUCACC	UGGCAGCUCA	CUGACGCAGU	UCUCCAUCUU	CCUGGAUGCG	1020
UCCCAUGUGA	GAAYGAUAAY	GGCACCUUGC	RUUGCUGGAU	ACAAGUAACA	CCCRACGUGG	1080
CUGUGAAACA	CCGCGGUGCG	CUCACUCGUA	GCCUGCGAAC	ACACGUCGAC	AUGAUCGUAA	1140

UGGCAGCUAC GGCCUGCUCG GCCUUGUAUG UGGGAGAUGU GUGCGGGGCC GUGAUGAUYC 1200 UAUCGCAGGC UUUCAUGGUA UCACCACAAC GCCACAACUU CACCCAAGAG UGCAACUGUU 1260 CUCCAACUCU URCCAUGAUC CUCGCCUACG CYGCUCGYGU UCCCGARCUG GUCCUCGAAA 1380 UYAUYUUCGG CGGCCAUUGG GGUGUGGYGU UYGGCUUGGS CUAUUUCUCC AUGCARGGAG 1440 CGUGGGCCAA AGUCRUYGCC AUCCUCCUUC UUGUUGCGGG AGUGGAUGCA WCCACCUAUU 1500 CCASCGGYCA GSAAGCGGGU CGURCCGYCK HKGGGWUCKC URGCCUCUUU AHUACUGGUG 1560 CCAAGCAGAA CCUCYAUUUR AUCAACACCA AUGGCAGCUG GCACAUAAAC CGGACUGCCC 1620 UCAAUUGCAA UGACAGCYUA SAGACGGGUU UCHUCGCUUC CYUGKUUUAC WMCCRCARGU 1680 UCAACAGCUC UGGCUGCCCC GAGCGCUUGU CUUCCUGCCG CGGGCUGGAC GAYUUYCGCA 1740 UCGGCUGGGG AACCUUGGAA UACGAAACCA ACGUCACCAA CGAUGRGGAC AUGAGGCCGU 1800 ACUGCUGGCA UUACCCCCG AGGCCUUGCG GCAUCGUCCC GGCUAGGACG GUUUGCGGAC 1860 CGGUCUAUUG YUUCACCCCU AGCCCUGUUG UCGUGGGCAC CACUGACAAG CAGGGCGUAC 1920 CCACCUACAC CUGGGGRGAA AACGAGACCG AUGUCUUCCU GCRAAAUAGC ACAAGACCCC 1980 CGCGAGGAGC UUGGUUCGGC UGCACYUGGA UGAACGGGAC UGGGUUCACU AAGACAUGCG 2040 GUGCACCACC UUGCCGCAUU AGGAAAGACU ACAACAGCAC UCUCGAUUUA UUGUGCCCCA 2100 CAGACUGUUU UAGGAAGCAC CCAGAUGCUA CCUAUCUUAA GUGUGGAGCA GGGCCUUGGU 2160 UAACUCCCAG GUGCCUGGUA GACUACCCUU AUAGRYUGUG GCAUUAUCCG UGCACUGUAA 2220 ACUUCACCAU CUUYAAGGCG CGGAUGUAUG UAGGAGGGGU GGAGCAUCGA UUCUCCGCAG 2280 CAUGCAACUU CACGCGCGGA GAUCGCUGCA GACUGGAAGA UAGGGAUAGG GGYCAGCAGA 2340 GUCCACUGCU GCAUUCCACU ACUGAGUGGG CGGUGYUCCC AUGCUCCUUC UCUGACCUAC 2400 CAGCACUAUC CACUGGCCUA UUGCACCUCC ACCAAAACAU CGUGGACGUG CAGUACCUYU 2460 ACGGACUUUC UCCGGCUCUG ACAAGAUACA UCGUGAAGUG GGAGUGGGUG AUCCUCCUUU 2520 UCUUGUUGUU GGCAGACGCC AGGRUCUGUG CAUGCCUUUG GAUGCUCAWC AUACUGGGCC 2580 AAGCCGAAGC GGCGCUUGAG AAGCUCAUCA UCUUGCACUC CGCUAGYGCU GCUAGUGCCA 2640 AUGGUCCGCU GUGGUUUUUC AUCUUCUUUA CAGCGGCCUG GUACUUAAAG GGCAGGGUGG 2700 UCCCCGUGGC CACGUACUCU GUBCUCGGCU URUGGUCCUU CCUCCUCCUA GUCCUGGCYU 2760 UACCACAGCA GGCUUAUGCC UUGGACGCUG CUGAACAAGG GGAACUGGGG CUGGCCAUAU 2820 UAGUAAUUAU AUCCAUCUUU ACUCUUACCC CAGCAUACAA GAUCCUCCUG AGCCGUUCAG 2880-

UGUGGUGGCU	GUCCUACAUG	CUGGUCUUGG	CCGAGGCCCA	GAUUCAGCAA	UGGGUUCCCC	2940
CCCUGGAGGU	CCGAGGGGGG	CGUGACGGGA	UCAUCUGGGU	GGCUGUCAUU	CUACACCCAC	3000
GCCUUGUGUU	UGAGGUCACG	AAAUGGUUGU	UAGCAAUCCU	GGGGCCUGCC	UACCUCCUUA	3060
RAGCGUCUCU	GCUACGGAUA	CCGUACUUUG	UGAGGGCCCA	CGCUUUGCUA	CGAGUGUGUA	3120
CCCUGGUGAA	ACACCUCGCR	GGGGCUAGGU	ACAUCCAGAU	GCUGUURAUC	ACCAUAGGCA	3180
GAUGGACCGG	CACUUACAUC	UACGACCACC	ncaccenna	AUCAACUUGG	GCGGCCCAGG	3240
GUUURCGGGA	CCUGGCAAUC	GCCGUGGAGC	CUGUGGUGUU	CAGCCCAAUG	GAGAAGAAGG	3300
UCAUUGUGUG	GGGGGCUGAG	ACAGUGGCGU	GUGGAGACAU	CCUGCAUGGC	CUCCCGGUCU	3360
CCGCGAGGCU	AGGUAGGGAR	GUUCUGCUCG	GCCCUGCCGA	CGGCUACACC	UCCAAGGGGU	3420
GGAAKCUCCU	AGCUCCCAUU	ACUGCUUACA	CUCAGCAAAC	UCGUGGUCUC	CUGGGUGCUA	3480
UCGUGGUCAG	CCUAACGGGC	CGCGACAAAA	AUGAGCAGGC	UGGGCAGGUC	CAGGUUCUGU	3540
CCUCCGUCAC	ACAAACUUUC	UUGGGGACAU	CCAUUUCGGG	CGUCCUCUGG	ACAGUAUAUC	3600
ACGGGGCUGG	UAAUAAGACC	UUGGCCGGCC	CCAAGGGACC	AGUCACUCAG	AUGUACACCA	3660
GCGCAGAAGG	GGACCUCGUG	GGAUGGCCUA	GUCCCCCCGG	GACUAAGUCA	UUGGACCCCU	3720
GUACCUGCGG	GGCCGUAGAC	CUCUACCUGG	UCACCCGAAA	CGCUGAUGUC	AUUCCGGUCC	3780
GGAGGAAAGA	UGACCGACGG	GGUGCAUUAC	UCUCGCCAAG	GCCCCUCUCA	ACCCUCAAAG	3840
GAUCAUCCGG	AGGGCCCGUG	CUCUGCUCWA	GGGGACACGC	CGUGGGCUUG	UUCAGAGCGG	3900
CCGUGUGUGC	CAGGGGUGUA	GCCAAAUCUA	UUGACUUCAU	CCCCGUCGAA	UCACUCGAUR	3960
UCGCCACACG	GACGCCCAGU	UUCUCUGACA	ACAGURCGCC	GCCAGCUGUG	CCCCAGUCUU	4020
ACCAGGUGGG	UUACUUGCAC	GCACCAACAG	GCAGCGGAAA	GAGCACCAAG	GUCCCUGCCG	4080
CGUAUGCCAG	UCAGGGGUAU	AAAGUACUCG	UACUAAAUCC	CUCUGUCGCG	GCCACACUUG	4140
GUUUUGGGGC	CUACAUGUCC	AAAGCCCACG	GGAUCAACCC	UAAUAUCAGA	ACUGGAGUGC	4200
GGACCGUUAC	CACCGGGGAC	UCUAUCACUU	ACUCCACUUA	UGGCAAGUUU	AUCGCAGAUG	4260
GAGGCUGUGC	AGCCGGUGCC	UAUGACAUCA	UCAUAUGCGA	CGAAUGCCAU	UCAGUGGACG	4320
CUACUACCAU	CCUUGGCAUU	GGAACAGUCC	UUGACCAAGC	UGAGACCGCA	GGCGUCAGGC	4380
UAGUGGUYUU	GGCCACAGCC	ACGCCUCCCG	GUACGGUGAC	AACUCCCCAC	AGUAACAUAG	4440
AGGAGGUGGC	CCUUGGUCAC	GAGGGCGAGA	UCCCUUUUUA	UGGCAAAGCU	AUUCCCCUAG	4500
CUUUCAUCAA	GGGGGCAGA	CACUUGAUCU	UUUGCCAUUC	AAAGAAGAAG	UGCGACGAGC	4560
UCGCAGCGGC	CCUCCGGGGC	AYGGGUGUCA	AUGCCGUUGC	AUACUAUAGG	GGUCUCGACG	4620

UCUCCGUUAU	ACCAACUCAA	GGAGACGUGG	UGGUUGUCGC	CACUGAUGCC	CUAAUGACUG	4680
GGUACACCGG	CGACUUUGAC	UCYGUCAUCG	ACUGUAAUGU	UGCAGUCUCU	CAGAUUGUUG	4740
ACUUCAGCCU	AGACCCAACC	UUCACCAUCA	CCACUCAAAC	CGUCCCUCAG	GACGCUGUCU	4800
CCCGUAGUCA	ACGUAGAGGG	AGAACUGGGA	GGGGGCGAUU	GGGCRUUUAC	AGGUAUGUUU	4860
CGUCAGGYGA	RRGGCCGUCU	GGGAUGUUCG	ACAGCGUAGU	GCYCUGCGAG	UGCUAUGAUG	4920
CCGGGGCAGC	CUGGUACGAG	CUUACACCUG	CUGAGACUAC	GGUGAGACUC	CGGGCYUAUU	4980
UCAACACGCC	CGGUUUGCCC	GUAUGUCAAG	ACCACCUGGA	GUUCUGGGAA	GCGGUCUUŲA	5040
CAGGUCUCAC	WCACAUURAC	GCCCACUUCC	UCUCCCAGAC	GAAGCAAGGA	GGAGAAAACU	5100
UUGCRUAUCU	AACGGCCUAC	CAGGCCACAG	UAUGCGCCAG	GGCAAAGGCC	ccnccnccnn	5160
CGUGGGACGU	GAUGUGGAAG	UGUCUAACUA	GGCUCAAACC	UACACUGACU	GGUCCCACCC	5220
CCCUCCUGUA	CCGCUUGGGU	GCCGUGACCA	AUGAGGUYAC	CUUGACGCAC	CCCGUGACGA	5280
AAUACAUCGC	CACGUGCAUG	CAAGCUGACC	UYGAGAUCAU	GACAAGCUCA	UGGGUCCUGG	5340
CGGGGGGGGU	GCUAGCCGCC	GUGGCAGCUU	ACUGCCUGGC	GACUGGCUGC	AUUUCCAUCA	5400
UUGGCCGCCU	ACACCUGAAU	GAUCGGGUGG	UUGUGRCCCC	YGACAAGGAR	AUCUUAUAUG	5460
AGGCCUUUGA	UGAGAUGGAA	GAAUGCGCCU	CCAAAGCCGC	CCUCAUUGAG	GAAGGGCAGC	5520
GGAUGGCGGA	GAUGCUCAAA	UCUAAGAUAC	AAGGCCUCCU	ACAACAGGCC	ACAAGGCAAG	5580
CUCAAGRCAU	RCAGCCAGCU	AUACAGUCAU	CAUGGCCCAA	GCUUGAACAA	UUUUGGGCCA	5640
AACACAUGUG	GAACUUCAUC	AGUGGUAUAC	AGUACCUAGC	AGGACUCUCC	ACCCUACCGG	5700
GAAAUCCUGC	AGURGCAUCA	AUGAUGGCUU	UUAGCGCCGC	GCUGACUAGC	CCACUACCCA	5760
CCAGCACCAC	CAUCCUCUUG	AACAUCAUGG	GAGGAUGCUU	GGCCUCYCAG	AUUGCCCCCC	5820
CUGCCGGAGC	CACYGGCUUC	GUUGUCAGUG	GUCUAGUGGG	GGCGGCCGUC	GGAAGCAUAG	5880
GCCUGGGUAA	GAUACUGGUG	GACGUUUUGG	CCGGGUACGG	CGCAGGCAUU	UCAGGGGCCC	5940
UCGUAGCUUU	UAAGAUCAUG	AGCGGCGAGA	AGCCCACGGU	AGAAGACGUU	GUGAAUCUCC	6000
-				CAUCUGUGCA		
GCCGCCACGU	CGGUCAGGGA	GAGGGRGCGG	UCCAGUGGAU	GAACAGACUG	AUCGCCUUCG	6120
CCUCCAGGGG	AAACCACGUU	GCCCCUACCC	ACUACGUGGU	GGAGUCUGAC	GCUUCACAGC	6180
GUGURACGCA	GGUGCUGAGU	UCACUUACAA	UUACCAGCUU	ACUUAGGAGA	CUACAUGCCU	6240
GGAUCACUGA	AGAUUGCCCA	RUCCCAUGCU	CGGGGUCUUG	GCUCCAGGAC	AUUUGGGAUU	6300
GGGUUUGUUC	CAUCCUCACA	GACUUYAAAA	ACUGGCUGUC	UUCAAAAUUA	CUCCCCAAGA	6360

UGCCCGGCAU UCCCUUUAUC UCUUGCCAGA AGGGAUACAA GGGUGUAUGG GCUGGUACGG 6420 GUGUCAUGAC YACUCGRURC CCAUGUGGAG CAAACAUCUC GGGCCAUGUC CGCAUGGGCA 6480 CCAUGAAAAU AACAGGCCCG AAGACUUGCU UGAACCUGUG GCAGGGGACU UUCCCCAUUA 6540 AUUGUUACAC AGAAGGGCCY UGCGUGCCAA AACCCCCUCC UAAUUACAAG ACCGCAAUUU 6600 GGAGGGUGGC AGCGUCGGAG UACGUUGAGG UCACACAGCA UGGCUCUUUC UCGUAUGUAA 6660 CRGGGUUAAC CAGUGACAAC CUUAAGGUYC CUUGCCAGGU ACCAGCUCCA GAAUUUUUCU 6720 CUUGGGUGGA CGGGGUGCAA AUCCACCGAU UCGCCCCCGU WCCAGGUCCC UUCUUUCGGG 6780 AUGAGGUAAC GUUCACCGUA GGCCUUAACU CCUUCGUGGU CGGCUCUCAG CUCCCUUGCG 6840 AUCCUGAGCC GGACACCGAR GUACUGGCCU CYAUGUUGAC AGACCCGUCC CACAUCACCG 6900 CKGAGGCGGC AGCCAGGCGA UUGGCAAGGG GAUCUCCCCC YUCACAGGCU AGCUCCUCAG 6960 CGAGCCAGCU CUCUGCCCCG UCCUUGAAGG CUACCUGUAC CACCCAUAAG ACAGCAUAUG 7020 AUUGUGACAU GGUGGAUGCY AACCUUUUCA UGGGAGGHGA UGUGAYCCGG AUUGAGUCUG 7080 ACUCUAAGGU GAUCGUUCUA GACUCCCUCG AUUCCAUGAC UGAGGUAGAG GAUGAUCGUG 7140 AGCCUUCUGU ACCAUCAGAG UACCUGAUCA AGAGGAGAAA GUUCCCACCG GCGCUGCCUC 7200 CUUGGGCCCG UCCAGACUAC AAUCCUGUUU UGAUCGAGAC AUGGAAGAGG CCGGGCUAUG 7260 AACCACCCAC UGUCCUAGGC UGUGCCCUCC CCCCACACY UCAAACGCCA GUGCCUCCAC 7320 CUCGGAGGCG CCGCGCYAAA RUCCUGACCC AGGACRAUGU GGAGGGGRUC CUCAGGGAGA 7380 UGGCUGACAA AGURCUCAGC CCUCUCCAAG ACAACAAUGA CUCCGGUCAC UCCACUGGAG 7440 CGGAUACCGG AGGAGACAUC GUCCAGCAAC CCUCUGACGA GACUGCCGCU UCAGAAGCGG 7500 GGUCACUGUC CUCCAUGCCU CCCCUUGAGG GAGAGCCGGG AGACCCYGAC CUGGAGUUUG 7560 AACCAGUGGG AUCCGCUCCC CCUUCUGAGG GGGAGUGUGA GGUCAUUGAU UCGGACUCUA 7620 AGUCGUGGUC CACAGUCUCU GAUCAAGAGG AUUCUGUUAU CUGCUGCUCU AUGUCAUACU 7680 CCUGGACGG GGCCCUCAUA ACACCAUGUG GGCCCGAAGA GGAGAAGUUA CCGAUCAACC 7740 CUCUGAGUAA UUCGCUCAUG CGGUUCCAUA AYAAGGUGUA CUCCACAACC UCGAGGAGUG 7800 CCUCUCUGAG GGCAAAGAAG GUGACUUUUG ACAGGGUGCA GGUGCUGGAC GCACACUAUG 7860 ACUCAGUCUU GCAGGACGUU AAGCGGGCCG CCUCUAAGGU URGUGCGAGG CUCCUCACAG 7920 UAGAGGAAGC CUGCGCGCUG ACCCCGCCCC ACUCCGCCAA AUCGCGAUAC GGAUUUGGGG 7980 CAAAAGAGGU GCGCAGCUUA UCCAGGAGGG CCGUUAACCA CAUCCGGUCC GUGUGGGAGG 8040 ACCUCCUGGA AGACCAACRU ACCCCAAUUG ACACAACUAU CAUGGCUAAA AAUGAGGUGU 8100

UCUGCAUUGA UCCAACUAAR GGUGGGAAAA AGCCAGCUCG CCUCAUCGUA UACCCCGACC 8160 HUGGGGUCAG GGUGUGCGAA AAGAUGGCCC UCUAUGACAU CRCACAAAAG CUUCCCAAAG 8220 CGAUAAUGGG GCCAUCCUAU GGGUUCCAAU ACUCUCCCGC AGAACGGGUC GAUUUCCUCC 8280 UCAAAGCUUG GGGAAGUAAG AAGGACCCAA UGGGGUUCUC GUAUGACACC CGCUGCUUUG 8340 ACUCAACCGU CACGGAGAGG GACAUAAGAA CAGAAGAAUC CAUAUAUCAG GCUUGUUCUC 8400 UGCCUCAAGA AGCCAGAACU GUCAUACACU CGCUCACUGA GAGACUUUAC GUAGGAGGGC 8460 CCAUGACAAA CAGCAAAGGG CAAUCCUGCG GCUACAGGCG UUGCCGCGCA AGCGGKGUUU 8520 UCACCACCAG CAUGGGGAAU ACCAUGACAU GUUACAUCAA AGCCCUUGCA GCGUGUAAGG 8580 CUGCRGGGAU CGUGGACCCU GUUAUGUUGG UGUGUGGAGA CGACCUGGUC GUCAUCUCAG 8640 AGAGCCAAGG UAACGAGGAG GACGAGCGAA ACCUGAGAGC UUUCACGGAG GCUAUGACCA 8700 GGUAUUCCGC CCCUCCCGGU GACCUUCCCA GACCGGAAUA UGACUUGGAG CUUAUAACAU 8760 CCUGCUCCUC AAACGUAUCG GUAGCGCUGG ACUCUCGGGG UCGCCGCCGG UACUUCCUAA 8820 CCAGAGACCC UACCACUCCA AUCACCCGAG CUGCUUGGGA AACAGUAAGA CACUCCCCUG 8880 UCAAUUCUUG GCUGGGCAAC AUCAUCCAGU ACGCCCCCAC AAUCUGGGUC CGGAUGGUCA 8940 UAAUGACUCA CUUCUUCUCC AUACUAUUGG CCCAGGACAC UCUGAACCAA AAUCUCAAUU 9000 UUGAGAUGUA CGGGGCAGUA UACUCGGUCA AUCCAUUAGA CCUACCGGCC AUAAUUGAAA 9060 GGCUACAUGG GCUUGAAGCC UUUUCACUGC ACACAUACUC UCCCCACGAA CUCUCACGGG 9120 UGGCAGCAAC UCUCAGAAAA CUUGGAGCGC CUCCCCUUAG AGCGUGGAAG AGUCGGGCGC 9180 GUGCCGUGAG AGCUUCACUC AUCGCCCAAG GAGCGAGGGC GGCCAUUUGU GGCCGCUACC 9240 UCUUCAACUG GGCGGUGAAA ACAAAGCUCA AACUCACUCC AUUGCCCGAG GCGAGCCGCC 9300 UGGAUUUAUC CGGGUGGUUC ACCGUGGGCG CCGCCGGGGG CGACAUUUAU CACAGCGUGU 9360 CGCAUGCYCG ACCCCGCCUA UUACUCCUUU GCCUACUCCU ACUUAGCGUA GGAGUAGGCA 9420 UCUUUUUACU CCCCGCUCGG UAGAGCGGCA AACYCUAGCU ACACUCCAUA GCUAGUUUCC 9480 GUUUUUUUU UUUUUUUUUU UUUUUUUUUU U 9511

Sequence ID No. 7 Sequence Length: 9,511 Sequence Type: nucleic acid

Strandedness: single Topology: linear

Molecule Type: cDNA to genomic RNA Method for Determination of Feature: E

GCCCGCCCC TGATGGGGGC GACACTCCGC CATGAATCAC TCCCCTGTGA GGAACTACTG 60 TCTTCACGCA GAAAGCGTCT AGCCATGGCG TTAGTATGAG TGTCGTACAG CCTCCAGGCC 120 CCCCCCTCCC GGGAGAGCCA TAGTGGTCTG CGGAACCGGT GAGTACACCG GAATTACCGG 180 AAAGACTGGG TCCTTTCTTG GATAAACCCA CTCTATGTCC GGTCATTTGG GCACGCCCCC 240 GCAAGACTGC TAGCCGAGTA GCGTTGGGTT GCGAAAGGCC TTGTGGTACT GCCTGATAGG 300 GTRCTTGCGA GTGCCCCGGG AGGTCTCGTA GACCGTGCAT CATGAGCACA AATCCTAAAC 360 CTCAAAGAAA AACCAAAAGA AACACAAACC GCCGCCCACA GGACGTTAAG TTCCCGGGTG 420 GCGGTCAGAT CGTTGGCGGA GTTTACTTGC TGCCGCGCAG GGGCCCCAGG TTGGGTGTGC 480 GCGCGACAAG GAAGACTTCY GAGCGATCCC AGCCGCGTGG ACGACGCCAG CCCATCCCGA 540 AAGATCGGCG CTCCACCGGC AAGTCCTGGG GAAAGCCAGG ATATCCTTGG CCCCTGTACG 600 GAAACGAGGG TTGCGGCTGG GCGGGTTGGC TCCTGTCCCC CCGCGGGTCT CGTCCTACTT 660 GGGGCCCCAC CGACCCCCGG CATAGATCAC GCAATTTGGG CAGAGTCATC GATACCATTA 720 CGTGTGGTTT TGCCGACCTC ATGGGGTACA TCCCTGTCGT TGGCGCCCCG GTYGGAGGCG 780 TCGCCAGAGC TCTGGCACAC GGTGTTAGGG TCCTGGAGGA CGGGATAAAT TACGCAACAG 840 GGAATTTACC CGGTTGCTCT TTTTCTATCT TTTTGCTTGC TCTTCTGTCA TGCGTCACAR 900 TGCCAGTGTC TGCAGTGGAA GTCAGGAACA TYAGTTCTAG CTACTACGCC ACTAATGATT GCTCAAACAA CAGCATCACC TGGCAGCTCA CTGACGCAGT TCTCCATCTT CCTGGATGCG 1020 TCCCATGTGA GAAYGATAAY GGCACCTTGC RTTGCTGGAT ACAAGTAACA CCCRACGTGG 1080 CTGTGAAACA CCGCGGTGCG CTCACTCGTA GCCTGCGAAC ACACGTCGAC ATGATCGTAA 1140 TGGCAGCTAC GGCCTGCTCG GCCTTGTATG TGGGAGATGT GTGCGGGGCC GTGATGATYC 1200

TATCGCAGGC TTTCATGGTA TCACCACAAC GCCACAACTT CACCCAAGAG TGCAACTGTT 1260 CTCCAACTCT TRCCATGATC CTCGCCTACG CYGCTCGYGT TCCCGARCTG GTCCTCGAAA 1380 TYATYTTCGG CGGCCATTGG GGTGTGGYGT TYGGCTTGGS CTATTTCTCC ATGCARGGAG 1440 CGTGGGCCAA AGTCRTYGCC ATCCTCCTTC TTGTTGCGGG AGTGGATGCA WCCACCTATT 1500 CCASCGGYCA GSAAGCGGGT CGTRCCGYCK HKGGGWTCKC TRGCCTCTTT AHTACTGGTG 1560 CCAAGCAGAA CCTCYATTTR ATCAACACCA ATGGCAGCTG GCACATAAAC CGGACTGCCC 1620 TCAATTGCAA TGACAGCYTA SAGACGGGTT TCHTCGCTTC CYTGKTTTAC WHCCRCARGT 1680 TCAACAGCTC TGGCTGCCCC GAGCGCTTGT CTTCCTGCCG CGGGCTGGAC GAYTTYCGCA 1740 TCGGCTGGGG AACCTTGGAA TACGAAACCA ACGTCACCAA CGATGRGGAC ATGAGGCCGT 1800 ACTGCTGGCA TTACCCCCCG AGGCCTTGCG GCATCGTCCC GGCTAGGACG GTTTGCGGAC 1860 CGGTCTATTG YTTCACCCCT AGCCCTGTTG TCGTGGGCAC CACTGACAAG CAGGGCGTAC 1920 CCACCTACAC CTGGGGRGAA AACGAGACCG ATGTCTTCCT GCTRAATAGC ACAAGACCCC 1980 CGCGAGGAGC TTGGTTCGGC TGCACYTGGA TGAACGGGAC TGGGTTCACT AAGACATGCG 2040 GTGCACCACC TTGCCGCATT AGGAAAGACT ACAACAGCAC TCTCGATTTA TTGTGCCCCA 2100 CAGACTGTTT TAGGAAGCAC CCAGATGCTA CCTATCTTAA GTGTGGAGCA GGGCCTTGGT 2160 TAACTCCCAG GTGCCTGGTA GACTACCCTT ATAGRYTGTG GCATTATCCG TGCACTGTAA 2220 ACTICACCAT CTTYAAGGCG CGGATGTATG TAGGAGGGGT GGAGCATCGA TICTCCGCAG 2280 CATGCAACTT CACGCGCGGA GATCGCTGCA GACTGGAAGA TAGGGATAGG GGYCAGCAGA 2340 GTCCACTGCT GCATTCCACT ACTGAGTGGG CGGTGYTCCC ATGCTCCTTC TCTGACCTAC 2400 CAGCACTATC CACTGGCCTA TTGCACCTCC ACCAAAACAT CGTGGACGTG CAGTACCTYT 2460 ACGGACTITC TCCGGCTCTG ACAAGATACA TCGTGAAGTG GGAGTGGGTG ATCCTCCTTT 2520 TCTTGTTGTT GGCAGACGCC AGGRTCTGTG CATGCCTTTG GATGCTCAWC ATACTGGGCC 2580 AAGCCGAAGC GGCGCTTGAG AAGCTCATCA TCTTGCACTC CGCTAGYGCT GCTAGTGCCA 2640 ATGGTCCGCT GTGGTTTTTC ATCTTCTTTA CAGCGGCCTG GTACTTAAAG GGCAGGGTGG 2700 TCCCCGTGGC CACGTACTCT GTBCTCGGCT TRTGGTCCTT CCTCCTCCTA GTCCTGGCYT 2760 TACCACAGCA GGCTTATGCC TTGGACGCTG CTGAACAAGG GGAACTGGGG CTGGCCATAT 2820 TAGTAATTAT ATCCATCTTT ACTCTTACCC CAGCATACAA GATCCTCCTG AGCCGTTCAG 2880 TGTGGTGGCT GTCCTACATG CTGGTCTTGG CCGAGGCCCA GATTCAGCAA TGGGTTCCCC 2940

CCCTGGAGGI CCGAGGGGG CGTGACGGGA TCATCTGGGI GGCTGTCATI CTACACCCAC 3000 GCCTTGTGTT TGAGGTCACG AAATGGTTGT TAGCAATCCT GGGGCCTGCC TACCTCCTTA 3060 RAGCGTCTCT GCTACGGATA CCGTACTTTG TGAGGGCCCA CGCTTTGCTA CGAGTGTGTA 3120 CCCTGGTGAA ACACCTCGCR GGGGCTAGGT ACATCCAGAT GCTGTTRATC ACCATAGGCA 3180 GATGGACCGG CACTTACATC TACGACCACC TCTCCCCTTT ATCAACTTGG GCGGCCCAGG 3240 GTTTRCGGGA CCTGGCAATC GCCGTGGAGC CTGTGGTGTT CAGCCCAATG GAGAAGAAGG 3300 TCATTGTGTG GGGGGCTGAG ACAGTGGCGT GTGGAGACAT CCTGCATGGC CTCCCGGTCT 3360 CCGCGAGGCT AGGTAGGGAR GTTCTGCTCG GCCCTGCCGA CGGCTACACC TCCAAGGGGT 3420 GGAAKCTCCT AGCTCCCATT ACTGCTTACA CTCAGCAAAC TCGTGGTCTC CTGGGTGCTA 3480 TCGTGGTCAG CCTAACGGGC CGCGACAAAA ATGAGCAGGC TGGGCAGGTC CAGGTTCTGT 3540 CCTCCGTCAC ACAACTITC TTGGGGACAT CCATITCGGG CGTCCTCTGG ACAGTATATC 3600 ACGGGGCTGG TAATAAGACC TTGGCCGGCC CCAAGGGACC AGTCACTCAG ATGTACACCA 3660 GCGCAGAAGG GGACCTCGTG GGATGGCCTA GTCCCCCCGG GACTAAGTCA TTGGACCCCT 3720 GTACCTGCGG GGCCGTAGAC CTCTACCTGG TCACCCGAAA CGCTGATGTC ATTCCGGTCC 3780 GGAGGAAAGA TGACCGACGG GGTGCATTAC TCTCGCCAAG GCCCCTCTCA ACCCTCAAAG 3840 GATCATCCGG AGGGCCCGTG CTCTGCTCWA GGGGACACGC CGTGGGCTTG TTCAGAGCGG 3900 CCGTGTGTGC CAGGGGTGTA GCCAAATCTA TTGACTTCAT CCCCGTCGAA TCACTCGATR 3960 TCGCCACACG GACGCCCAGT TTCTCTGACA ACAGTRCGCC GCCAGCTGTG CCCCAGTCTT 4020 ACCAGGTGGG TTACTTGCAC GCACCAACAG GCAGCGGAAA GAGCACCAAG GTCCCTGCCG 4080 CGTATGCCAG TCAGGGGTAT AAAGTACTCG TACTAAATCC CTCTGTCGCG GCCACACTTG 4140 GTTTTGGGGC CTACATGTCC AAAGCCCACG GGATCAACCC TAATATCAGA ACTGGAGTGC 4200 GGACCGITAC CACCGGGGAC TCTATCACTT ACTCCACTTA IGGCAAGTTI ATCGCAGATG 4260 GAGGCTGTGC AGCCGGTGCC TATGACATCA TCATATGCGA CGAATGCCAT TCAGTGGACG 4320 CTACTACCAT CCTTGGCATT GGAACAGTCC TTGACCAAGC TGAGACCGCA GGCGTCAGGC 4380 TAGTGGTYTT GGCCACAGCC ACGCCTCCCG GTACGGTGAC AACTCCCCAC AGTAACATAG 4440 AGGAGGTGGC CCTTGGTCAC GAGGGCGAGA TCCCTTTTA TGGCAAAGCT ATTCCCCTAG 4500 CTITCATCAA GGGGGGCAGA CACTTGATCT TTTGCCATTC AAAGAAGAAG TGCGACGAGC 4560 TCGCAGCGGC CCTCCGGGGC AYGGGTGTCA ATGCCGTTGC ATACTATAGG GGTCTCGACG 4620 TCTCCGTTAT ACCAACTCAA GGAGACGTGG TGGTTGTCGC CACTGATGCC CTAATGACTG 4680

GGTACACCGG CGACTTTGAC TCYGTCATCG ACTGTAATGT TGCAGTCTCT CAGATTGTTG 4740 ACTICAGCCI AGACCCAACC IICACCATCA CCACTCAAAC CGTCCCTCAG GACGCTGTCT 4800 CCCGTAGTCA ACGTAGAGGG AGAACTGGGA GGGGGCGATT GGGCRTTTAC AGGTATGTTT 4860 CGTCAGGYGA RRGGCCGTCT GGGATGTTCG ACAGCGTAGT GCYCTGCGAG TGCTATGATG 4920 CCGGGGCAGC CTGGTACGAG CTTACACCTG CTGAGACTAC GGTGAGACTC CGGGCYTATT 4980 TCAACACGCC CGGTTTGCCC GTATGTCAAG ACCACCTGGA GTTCTGGGAA GCGGTCTTTA 5040 CAGGTCTCAC WCACATTRAC GCCCACTTCC TCTCCCAGAC GAAGCAAGGA GGAGAAAACT 5100 TIGCRIATCI AACGGCCIAC CAGGCCACAG TATGCGCCAG GGCAAAGGCC CCTCCTCCTT 5160 CGTGGGACGT GATGTGGAAG TGTCTAACTA GGCTCAAACC TACACTGACT GGTCCCACCC 5220 CCCTCCTGTA CCGCTTGGGT GCCGTGACCA ATGAGGTYAC CTTGACGCAC CCCGTGACGA 5280 AATACATCGC CACGTGCATG CAAGCTGACC TYGAGATCAT GACAAGCTCA TGGGTCCTGG 5340 CGGGGGGGGT GCTAGCCGCC GTGGCAGCTT ACTGCCTGGC GACTGGCTGC ATTTCCATCA 5400 TIGGCCGCCT ACACCTGAAT GATCGGGTGG TTGTGRCCCC YGACAAGGAR ATCTTATATG 5460 AGGCCTTTGA TGAGATGGAA GAATGCGCCT CCAAAGCCGC CCTCATTGAG GAAGGGCAGC 5520 GGATGGCGGA GATGCTCAAA TCTAAGATAC AAGGCCTCCT ACAACAGGCC ACAAGGCAAG 5580 CTCAAGRCAT RCAGCCAGCT ATACAGTCAT CATGGCCCAA GCTTGAACAA TTTTGGGCCA 5640 AACACATGTG GAACTTCATC AGTGGTATAC AGTACCTAGC AGGACTCTCC ACCCTACCGG 5700 GAAATCCTGC AGTRGCATCA ATGATGGCTT TTAGCGCCGC GCTGACTAGC CCACTACCCA 5760 CCAGCACCAC CATCCTCTTG AACATCATGG GAGGATGCTT GGCCTCYCAG ATTGCCCCCC 5820 CTGCCGGAGC CACYGGCTTC GTTGTCAGTG GTCTAGTGGG GGCGGCCGTC GGAAGCATAG 5880 GCCTGGGTAA GATACTGGTG GACGTTTTGG CCGGGTACGG CGCAGGCATT TCAGGGGCCC 5940 TCGTAGCTTT TAAGATCATG AGCGGCGAGA AGCCCACGGT AGAAGACGTT GTGAATCTCC 6000 TGCCTGCTAT YCTGTCTCCT GGTGCGYTGG TAGTGGGAGT CATCTGTGCA GCAATYCTGC 6060 GCCGCCACGT CGGTCAGGGA GAGGGRGCGG TCCAGTGGAT GAACAGACTG ATCGCCTTCG 6120 CCTCCAGGGG AAACCACGTT GCCCCTACCC ACTACGTGGT GGAGTCTGAC GCTTCACAGC 6180 GTGTRACGCA GGTGCTGAGT TCACTTACAA TTACCAGCTT ACTTAGGAGA CTACATGCCT 6240 GGATCACTGA AGATTGCCCA RICCCATGCT CGGGGTCTTG GCTCCAGGAC ATTTGGGATT 6300° GGGTTTGTTC CATCCTCACA GACTTYAAAA ACTGGCTGTC TTCAAAATTA CTCCCCAAGA 6360 TGCCCGGCAT TCCCTTTATC TCTTGCCAGA AGGGATACAA GGGTGTATGG GCTGGTACGG 6420

GTGTCATGAC YACTCGRTRC CCATGTGGAG CAAACATCTC GGGCCATGTC CGCATGGGCA 3467 CCATGAAAAT AACAGGCCCG AAGACTTGCT TGAACCTGTG GCAGGGGACT TTCCCCATTA 654 ATTGTTACAC AGAAGGGCCY TGCGTGCCAA AACCCCCTCC TAATTACAAG ACCGCAATTT 5600 GGAGGGTGGC AGCGTCGGAG TACGTTGAGG TCACACAGCA TGGCTCTTTC TCGTATGTAA 6660 CRGGGITAAC CAGTGACAAC CTTAAGGTYC CTTGCCAGGT ACCAGCTCCA GAATTTTTCT 6720 CTTGGGTGGA CGGGGTGCAA ATCCACCGAT TCGCCCCCGT WCCAGGTCCC TTCTTTCGGG 6780 ATGAGGTAAC GTTCACCGTA GGCCTTAACT CCTTCGTGGT CGGCTCTCAG CTCCCTTGCG 6840 ATCCTGAGCC GGACACCGAR GTACTGGCCT CYATGTTGAC AGACCCGTCC CACATCACCG 6900 CKGAGGCGGC AGCCAGGCGA TTGGCAAGGG GATCTCCCCC YTCACAGGCT AGCTCCTCAG 6960 CGAGCCAGCT CTCTGCCCCG TCCTTGAAGG CTACCTGTAC CACCCATAAG ACAGCATATG 7020 ATTGTGACAT GGTGGATGCY AACCTTTTCA TGGGAGGHGA TGTGAYCCGG ATTGAGTCTG 7080 ACTCTAAGGT GATCGTTCTA GACTCCCTCG ATTCCATGAC TGAGGTAGAG GATGATCGTG 7140 AGCCTTCTGT ACCATCAGAG TACCTGATCA AGAGGAGAAA GTTCCCACCG GCGCTGCCTC 7200 CTIGGGCCCG TCCAGACTAC AATCCTGTTT TGATCGAGAC ATGGAAGAG CCGGGCTAIG 7260 AACCACCCAC TGTCCTAGGC TGTGCCCTCC CCCCCACACY TCAAACGCCA GTGCCTCCAC 7320 CTCGGAGGCG CCGCGCYAAA RTCCTGACCC AGGACRATGT GGAGGGGRTC CTCAGGGAGA 7380 TGGCTGACAA AGTRCTCAGC CCTCTCCAAG ACAACAATGA CTCCGGTCAC TCCACTGGAG 7440 CGGATACCGG AGGAGACATC GTCCAGCAAC CCTCTGACGA GACTGCCGCT TCAGAAGCGG 7500 GGTCACTGTC CTCCATGCCT CCCCTTGAGG GAGAGCCGGG AGACCCYGAC CTGGAGTTTG 7560 AACCAGTGGG ATCCGCTCCC CCTTCTGAGG GGGAGTGTGA GGTCATTGAT TCGGACTCTA 7620 AGTCGTGGTC CACAGTCTCT GATCAAGAGG ATTCTGTTAT CTGCTGCTCT ATGTCATACT 7680 CCTGGACGGG GGCCCTCATA ACACCATGTG GGCCCGAAGA GGAGAAGTTA CCGATCAACC 7740 CTCTGAGTAA TTCGCTCATG CGGTTCCATA AYAAGGTGTA CTCCACAACC TCGAGGAGTG 7800 CCTCTCTGAG GGCAAAGAAG GTGACTTTTG ACAGGGTGCA GGTGCTGGAC GCACACTATG 7860 ACTCAGTCTT GCAGGACGTT AAGCGGGCCG CCTCTAAGGT TRGTGCGAGG CTCCTCACAG 7920 TAGAGGAAGC CTGCGCGCTG ACCCCGCCCC ACTCCGCCAA ATCGCGATAC GGATTTGGGG 7980 CAAAAGAGGT GCGCAGCTTA TCCAGGAGGG CCGTTAACCA CATCCGGTCC GTGTGGGAGG 8040 ACCTCCTGGA AGACCAACRT ACCCCAATTG ACACAACTAT CATGGCTAAA AATGAGGTGT 8100 TCTGCATTGA TCCAACTAAR GGTGGGAAAA AGCCAGCTCG CCTCATCGTA TACCCCGACC 8160

TTGGGGTCAG GGTGTGCGAA AAGATGGCCC TCTATGACAT CRCACAAAAG CTTCCCAAAG 8220 CGATAATGGG GCCATCCTAT GGGTTCCAAT ACTCTCCCGC AGAACGGGTC GATTTCCTCC 8280 TCAAAGCTTG GGGAAGTAAG AAGGACCCAA TGGGGTTCTC GTATGACACC CGCTGCTTTG 8340 ACTCAACCGT CACGGAGAGG GACATAAGAA CAGAAGAATC CATATATCAG GCTTGTTCTC 8400 TGCCTCAAGA AGCCAGAACT GTCATACACT CGCTCACTGA GAGACTTTAC GTAGGAGGGC 8460 CCATGACAAA CAGCAAAGGG CAATCCTGCG GCTACAGGCG TTGCCGCGCA AGCGGKGTTT 8520 TCACCACCAG CATGGGGAAT ACCATGACAT GTTACATCAA AGCCCTTGCA GCGTGTAAGG 8580 CTGCRGGGAT CGTGGACCCT GTTATGTTGG TGTGTGGAGA CGACCTGGTC GTCATCTCAG 8640 AGAGCCAAGG TAACGAGGAG GACGAGCGAA ACCTGAGAGC TTTCACGGAG GCTATGACCA 8700 GGTATTCCGC CCCTCCCGGT GACCITCCCA GACCGGAATA IGACTTGGAG CTTATAACAT 8760 CCTGCTCCTC AAACGTATCG GTAGCGCTGG ACTCTCGGGG TCGCCGCCGG TACTTCCTAA 8820 CCAGAGACCC TACCACTCCA ATCACCCGAG CTGCTTGGGA AACAGTAAGA CACTCCCCTG 8880 TCAATICTTG GCTGGGCAAC ATCATCCAGT ACGCCCCCAC AATCTGGGTC CGGATGGTCA 8940 TAATGACTCA CTTCTTCTCC ATACTATTGG CCCAGGACAC TCTGAACCAA AATCTCAATT 9000 TTGAGATGTA CGGGGCAGTA TACTCGGTCA ATCCATTAGA CCTACCGGCC ATAATTGAAA 9060 GGCTACATGG GCTTGAAGCC ITTTCACTGC ACACATACTC ICCCCACGAA CTCTCACGGG 9120 TGGCAGCAAC TCTCAGAAAA CTTGGAGCGC CTCCCCTTAG AGCGTGGAAG AGTCGGGCGC 9180 GTGCCGTGAG AGCTTCACTC ATCGCCCAAG GAGCGAGGGC GGCCATTTGT GGCCGCTACC 9240 TCTTCAACTG GGCGGTGAAA ACAAAGCTCA AACTCACTCC ATTGCCCGAG GCGAGCCGCC 9300 TGGATTTATC CGGGTGGTTC ACCGTGGGCG CCGGCGGGG CGACATTTAT CACAGCGTGT 9360 CGCATGCYCG ACCCCGCCTA TTACTCCTTT GCCTACTCCT ACTTAGCGTA GGAGTAGGCA 9420 TCTTTTTACT CCCCGCTCGG TAGAGCGGCA AACYCTAGCT ACACTCCATA GCTAGTTTCC 9480 GITTITIT TITTITIT TITTITIT 1 9511

Sequence ID No. 8
Sequence Length: 3,033
Sequence Type: amino acid

Topology: linear

Molecule Type: protein

Het Sei	Thr	Asn	Pro	Lys	Pro	GIn	Arg	Lys	Thr	Lys	Arg	Asn	Thr
			5					10					15
Asn Arg	Arg	Pro	GIn	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gln	He
			20					25					30
Val Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly
			35					40			•		45
Val Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gin	Pro	Arg	Gly
			50					55					60
Arg Arg	Gln	Pro	He	Pro	Lys	Asp	Arg	Arg	Ser	Thr	Gly	Lys	Ser
			65					70					75
Trp Gly	Lys	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly
			80					85					90
Cys Gly	Trn	Ala	GIV	Ten	í Au	1 011	•	Dno	A na	ΛI	_	.	Pro
• •	l i p	MIG	uly	ПÞ	LCU	Leu	Ser	Pro	Aly	ыту	Ser	Arg	FIU
	119	AIG	95		LCU	Lea	Ser	100	Aly	ыу	Ser	Arg	105
Thr Trp			95					100					
			95					100					105
	Gly	Pro	95 Thr 110	Asp	Pro	Arg	His	100 Arg 115	Ser	Arg	Asn	Leu	105 Gly 120
Thr Trp	Gly	Pro	95 Thr 110	Asp	Pro	Arg	His	100 Arg 115	Ser	Arg	Asn	Leu	105 Gly 120
Thr Trp	Gly	Pro Asp	95 Thr 110 Thr 125	Asp	Pro Thr	Arg Cys	His Gly	100 Arg 115 Phe 130	Ser Ala	Arg Asp	Asn Leu	Leu Het	105 Gly 120 Gly
Thr Trp	Gly	Pro Asp	95 Thr 110 Thr 125	Asp Ile	Pro Thr	Arg Cys	His Gly	100 Arg 115 Phe 130	Ser Ala	Arg Asp	Asn Leu	Leu Het	105 Gly 120 Gly 135
Thr Trp	Gly Ile	Pro Asp Val	95 Thr 110 Thr 125 Val 140	Asp Ile Gly	Pro Thr Ala	Arg Cys Pro	His Gly Val	100 Arg 115 Phe 130 Gly 145	Ser Ala Gly	Arg Asp Val	Asn Leu Ala	Leu Het Arg	105 Gly 120 Gly 135 Ala 150

Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	Ser	He	Phe	Leu	Leu	Ala
				170					175					180
Leu	Leu	Ser	Cys	Vai	Thr	Val	Pro	Val	Ser	Ala	Val	Glu	Val	Arg
				185					190					195
Asn	He	Ser	Ser	Ser	Tyr	Tyr	Ala	Thr	Asn	Asp	Cys	Ser	Asn	Asn
				200					205					210
Ser	He	Thr	Trp	Gln	Leu	Thr	Asp	Ala	Val	Leu	His	Leu	Pro	Gly
				215			·		220					225
Cys	Val	Pro	Cys	Glu	Asn	Asp	Asn	Gly	Thr	Leu	His	Cys	Trp	He
				230					235					240
GIn	Val	Thr	Pro	Asn	Val	Ala	Val	Lys	His	Arg	Gly	Ala	Leu	Thr
				245					250					255
Arg	Ser	Leu	Arg	Thr	His	Val	Asp	Het	He	Val	Het	Ala	Ala	Thr
				260					265					270
Ala	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Val	Cys	Gly	Ala	Val	Het
				275					280					285
He	Leu	Ser	Gln		Phe	Het	Val	Ser		Gin	Arg	His	Asn	Phe
				290					295					300
Thr	GIn	Glu	Cys		Cys	Ser	He	Tyr		Gly	His	He	Thr	_
				305					310					315
His	Arg	Het	Ala		Asp	Het	Het	Leu		Trp	Ser	Pro	Thr	
				320	_				325					330
Thr	Het	He	Leu		Tyr	Ala	Ala	Arg		Pro	Glu	Leu	Val	Leu
				335					340					345
Glu	He	He	Phe		Gly	His	Trp	Gly		Val	Phe	Gly	Leu	
_				350					355					360
Tyr	Phe	Ser	Het		Gly	Ala	Trp	Ala		Val	He	Ala	He	
				365					370					375
Leu	Leu	Val	Ala	Gly	Val	Asp	Ala	Thr	Thr	Tyr	Ser	Ser	Gly	Gin

				380					385					390
Glu	Ala	Gly	Arg	Thr	Val	Ala	Gly	Phe	Ala	Gly	Leu	Phe	Thr	Thr
		•		395					400					405
Gly	Ala	Lys	Gln	Asn	Leu	Tyr	Leu	lle	Asn	Thr	Asn	Gly	Ser	Trp
				410					415					420
His	He	Asn	Arg	Thr	Ala	Leu	Asn	Cys	Asn	Asp	Ser	Leu	Gln	Thr
				425					430					435
Gly	Phe	Leu	Ala	Ser	Leu	Phe	Tyr	Thr	His	Lys	Phe	Asn	Ser	Ser
				440					445					450
Gly	Cys	Pro	Glu	Arg	Leu	Ser	Ser	Cys	Arg	Gly	Leu	Asp	Asp	Phe
				455					460					465
Arg	He	Gly	Trp	Gly	Thr	Leu	Glu	Tyr	Glu	Thr	Asn	Val	Thr	Asn
			•	470					475					480
Asp	Gly	Asp	Het	Arg	Pro	Tyr	Cys	Trp	His	Tyr	Pro	Pro	Arg	Pro
				485					490					495
Cys	Gly	He	Val	Pro	Ala	Arg	Thr	Val	Cys	Gly	Pro	Val	Tyr	Cys
				500					505					510
Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Thr	Asp	Lys	GIn	Gly
				515					520					525
Val	Pro	Thr	Tyr	Thr	Trp	Gly	Glu	Asn	Glu	Thr	Asp	Val	Phe	Leu
				530					535					540
Leu	Asn	Ser	Thr	Arg	Pro	Pro	Arg	Gly	Ala	Trp	Phe	Gly	Cys	Thr
				545					550					555
Trp	Het	Asn	Gly	Thr	Gly	Phe	Thr	Lys	Thr	Cys	Gly	Ala	Pro	Pro
				560					565					570
Cys	Arg	He	Arg	Lys	Asp	Tyr	Asn	Ser	Thr	Ile	Asp	Leu	Leu	Cys
				575					580					585
Pro	Thr	Asp	Cys	Phe	Arg	Lys	His	Pro	Asp	Ala	Thr	Туг	Leu	Lys
				590					595					600

Cys	Gly	Ala	Gly	Pro	Trp	Leu	Thr	Pro	Arg	Cys	Leu	Val	Asp	Tyr
				605					610					615
Pro	Tyr	Arg	Leu	Trp	His	Tyr	Pro	Cys	Thr	Val	Asn	Phe	Thr	He
				620					625					630
Phe	Lys	Ala	Arg	Het	Tyr	Val	Gly	Gly	Val	Glu	His	Arg	Phe	Ser
				635					640					645
Ala	Ala	Cys	Asn	Phe	Thr	Arg	Gly	Asp	Arg	Cys	Arg	Leu	Glu	Asp
				650					655					660
Arg	Asp	Arg	Gly	Gin	Gln	Ser	Pro	Leu	Leu	His	Ser	Thr	Thr	Glu
				665					670					675
Trp	Ala	Val	Leu	Pro	Cys	Ser	Phe	Ser	Asp	Leu	Pro	Ala	Leu	Ser
				680					685					690
Thr	Gly	Leu	Leu	His	Leu	His	Gin	Asn	He	Val	Asp	Val	Gln	Tyr
				695					700					705
Leu	Tyr	Gly	Leu	Ser	Pro	Ala	Leu	Thr	Arg	Tyr	He	Val	Lys	Trp
				710					715					720
Glu	Trp	Val	He	Leu	Leu	Phe	Leu	Leu	Leu	Ala	Asp	Ala	Arg	He
				725					730					735
Cys	Ala	Cys	Leu	Trp	Het	Leu	He	He	Leu	Gly	Gln	Ala	Glu	Ala
				740					745					750
Ala	Leu	Glu	Lys	Leu	He	He	Leu	His	Ser	Ala	Ser	Ala	Ala	Ser
				755					760					765
Ala	Asn	Gly	Pro	Leu	Trp	Phe	Phe	He	Phe	Phe	Thr	Ala	Ala	Trp
				770					775					780
Туг	Leu	Lys	Gly	Arg	Val	Val	Pro	Val	Ala	Thr	Tyr	Ser	Val	Leu
				785					790					795
Gly	Leu	Trp	Ser	Phe	Leu	Leu	Leu	Val	Leu	Ala	Leu	Pro	Gln	Gln
				800					805					810
۵la	Tyr	Δla	l pii	Δsn	Δla	Ala	Glu	Gin	GIV	Glii	الم ا	GIV	LΔυ	Ala

				815					820					825
He	Leu	Val	He	He	Ser	He	Phe	Thr	Leu	Thr	Pro	Ala	Tyr	Lys
				830					835					840
He	Leu	Leu	Ser	Arg	Ser	Val	Trp	Trp	Leu	Ser	Туг	Het	Leu	Val
				845					850					855
Leu	Ala	Glu	Ala	Gln	He	GIn	GIn	Trp	Val	Pro	Pro	Leu	Glu	Val
				860					865					870
Arg	Gly	Gly	Arg	Asp	Gly	He	He	Trp	Val	Ala	Val	He	Leu	His
				875					880					885
Pro	Arg	Leu	Val	Phe	Glu	Val	Thr	Lys	Trp	Leu	Leu	Ala	He	Leu
				890					895					900
Gly	Pro	Ala	Tyr	Leu	Leu	Lys	Ala	Ser	Leu	Leu	Arg	He	Pro	Tyr
				905					910					915
Phe	Val	Arg	Ala	His	Ala	Leu	Leu	Arg	Val	Cys	Thr	Leu	Val	Lys
				920					925					930
His	Leu	Ala	Gly	Ala	Arg	Tyr	He	Gln	Het	Leu	Leu	He	Thr	He
				935					940					945
Gly	Arg	Trp	Thr	Gly	Thr	Tyr	He	Tyr	Asp	His	Leu	Ser	Pro	Leu
				950					955					960
Ser	Thr	Trp	Ala	Ala	GIn	Gly	Leu	Arg	Asp	Leu	Ala	He	Ala	Val
				965					970					975
Glu	Pro	Val	Val	Phe	Ser	Pro	Het	Ğlu	Lys	Lys	Val	He	Val	Trp
				980	•				985					990
Gly	Ala	Glu	Thr	Val	Ala	Cys	Gly	Asp	Ile	Leu	His	Gly	Leu	Pro
				995				•	1000					1005
Val	Ser	Ala	Arg	Leu	Gly	Arg	Glu	Val	Leu	Leu	Gly	Pro	Ala	Asp
				1010					1015				,	1020
Gly	Tyr	Thr	Ser	Lys	Gly	Trp	Lys	Leu	Leu	Ala	Pro	He	Thr	Ala
				1025					1030					1035

Tyr	Thr	Gln	Gin	Thr	Arg	Gly	Leu	Leu	Gly	Ala	He	Val	Val	Ser
				1040					1045					1050
Leu	Thr	Gly	Arg	Asp	Lys	Asn	Glu	Gin	Ala	Gly	Gin	Val	Gin	Val
				1055					1060					1065
Leu	Ser	Ser	Val	Thr	Gln	Thr	Phe	Leu	Gly	Thr	Ser	He	Ser	Gly
				1070					1075					1080
Val	Leu	Trp	Thr	Val	Tyr	His	Gly	Ala	Gly	Asn	Lys	Thr	Leu	Ala
				1085					1090				,	1095
Gly	Pro	Lys	Gly	Pro	Val	Thr	Gln	Het	Tyr	Thr	Ser	Ala	Glu	Gly
			,	1100				•	1105					1110
Asp	Leu	Val	Gly	Trp	Pro	Ser	Pro	Pro	Gly	Thr	Lys	Ser	Leu	Asp
				1115					1120					1125
Pro	Cys	Thr	Cys	Gly	Ala	Val	Asp	Leu	Tyr	Leu	Val	Thr	Arg	Asn
				1130					1135					1140
Ala	Asp	Val	He	Pro	Val	Arg	Arg	Lys	Asp	Asp	Arg	Arg	Gly	Ala
			•	1145				•	1150				•	1155
Leu	Leu	Ser	Pro	Arg	Pro	Leu	Ser	Thr	Leu	Lys	Gly	Ser	Ser	Gly
			•	1160				•	1165					1170
Gly	Pro	Val	Leu	Cys	Ser	Arg	Gly	His	Ala	Val	Gly	Leu	Phe	Arg
				1175					1180					1185
Ala	Ala	Val	Cys	Ala	Arg	Gly	Val	Ala	Lys	Ser	He	Asp	Phe	He
			•	1190				•	1195				•	1200
Pro	Val	Glu	Ser	Leu	Asp	Val	Ala	Thr	Arg	Thr	Pro	Ser	Phe	Ser
			•	1205				•	1210				•	1215
Asp	Asn	Ser	Thr	Pro	Pro	Ala	Val	Pro	GIn	Ser	Tyr	GIn	Val	Gly
			•	1220				•	1225					1230
Туг	Leu	His			Thr	Gly	Ser	_	_	Ser	Thr	Lys	Val	Pro
				1235					1240					1245
Ala	Ala	Tvr	Ala	Ser	Gin	Glv	Tvr	IVS	Val	Leu	Val	Leu	Asn	Pro

				1250				,	1255				•	1260
Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly	Ala	Tyr	Het	Ser	Lys	Ala
				1265					1270				•	1275
His	Gly	He	Asn	Pro	Asn	He	Arg	Thr	Gly	Val	Arg	Thr	Val	Thr
				1280				•	1285				•	1290
Thr	Gly	Asp	Ser	Ile	Thr	Tyr	Ser	Thr	Tyr	Gly	Lys	Phe	He	Ala
				1295				•	1300				•	1305
Asp	Gly	Gly	Cys	Ala	Alà	Gly	Ala	Tyr	Asp	He	He	He	Cys	Asp
			•	1310				•	1315				•	1320
Glu	Cys	His	Ser	Val	Asp	Ala	Thr	Thr	He	Leu	Gly	He	Gly	Thr
				1325				•	1330					1335
Val	Leu	Asp	GIn	Ala	Glu	Thr	Ala	Gly	Val	Arg	Leu	Val	Val	Leu
	٠		•	1340				•	1345				1	1350
Ala	Thr	Ala	Thr	Pro	Pro	Gly	Thr	Vai	Thr	Thr	Pro	His	Ser	Asn
				1355				•	1360				1	365
He	Glu	Glu	Val	Ala	Leu	Gly	His	Glu	Gly	Glu	He	Pro	Phe	Tyr
				1370				•	1375				1	380
Gly	Lys	Ala	He	Pro	Leu	Ala	Phe	He	Lys	Gly	Gly	Arg	His	Leu
			•	1385				•	1390				1	395
He	Phe	Cys	His	Ser	Lys	Lys	Lys	Cys	Asp	Glu	Leu	Ala	Ala	Ala
			•	1400					1405				1	410
Leu	Arg	Gly	Het	Gly	Val	Asn	Ala	Val	Ala	Tyr	Tyr	Arg	Gly	Leu
			•	1415				1	1420				1	425
Asp	Val	Ser	Val	He	Pro	Thr	Gln	Gly	Asp	Val	Val	Val	Val	Ala
			•	1430				1	1435				1	440
Thr	Asp	Ala	Leu	Het	Thr	Gly	Tyr	Thr	Gly	Asp	Phe	Asp	Ser	Val
			•	1445				1	1450				1	1455
He	Asp	Cys	Asn	Val	Ala	Val	Ser	Gln	He	Val	Asp	Phe	Ser	Leu
				1460				4	1/65				1	170

Asp	Pro	Thr	Phe	Thr	He	Thr	Thr	Gin	Thr	Val	Pro	Gin	ASD	Ala
		•	•	1475				•	1480				1	485
Val	Ser	Arg	Ser	Gln	Arg	Arg	Gly	Arg	Thr	Gly	Arg	Gly	Arg	Leu
			•	1490					1495				1	1500
Gly	Val	Tyr	Arg	Tyr	Val	Ser	Ser	Gly	Glu	Arg	Pro	Ser	Gly	Het
				1505				•	1510				1	515
Phe	Asp	Ser	Val	Val	Leu	Cys	Glu	Cys	Tyr	Asp	Ala	Gly	Ala	Ala
				1520					1525				1	1530
Trp	Tyr	Glu	Leu	Thr	Pro	Ala	Glu	Thr	Thr	Val	Arg	Leu	Arg	Ala
			•	1535				•	1540				1	1545
Tyr	Phe	Asn	Thr	Pro	Gly	Leu	Pro	Val	Cys	GIn	Asp	His	Leu	Glu
				1550				•	1555				1	1560
Phe	Trp	Glu	Ala	Val	Phe	Thr	Gly	Leu	Thr	His	He	Asp	Ala	His
				1565					1570				1	1575
Phe	Leu	Ser	GIn	Thr	Lys	Gin	Gly	Gly	Glu	Asn	Phe	Ala	Tyr	Leu
				1580					1585					1590
Thr	Ala	Tyr	Gln	Ala	Thr	Val	Cys	Ala	Arg	Ala	Lys	Ala		
				1595					1600					1605
Pro	Ser	Trp	Asp	Val	Het	Trp	Lys	Cys	Leu	Thr	Arg	Leu		
				1610					1615					1620
Thr	Leu	Thr	Gly	Pro	Thr	Pro	Leu			Arg	Leu	Gly		
				1625					1630					1635
Thr	Asn	Glu		Thr	Leu	Thr	His			Thr	Lys	Tyr		
				1640					1645					1650
Thr	Cys	Het		Ala	Asp	Leu	Glu			Thr	Ser	Ser		
				1655					1660		_	_		1665
Leu	Ala	Gly		Val	Leu	Ala	Ala			Ala	Tyr	Cys		
				1670					1675					1680
The	Clv	CVC	ΠIA	Ser	Ile	IIA	GIV	Ara	1 611	His	Len	ASD	ASD	Ara

				1685					1690					1695
Val	Val	Val	Ala	Pro	Asp	Lys	Glu	He	Leu	Туг	Glu	Ala	Phe	Asp
				1700					1705					1710
Glu	Het	Glu	Glu	Cys	Ala	Ser	Lys	Ala	Ala	Leu	He	Glu	Glu	Gly
				1715					1720					1725
Gln	Arg	Het	Ala	Glu	Het	Leu	Lys	Ser	Lys	He	Gin	Gly	Leu	Leu
				1730					1735					1740
GIn	Gin	Ala	Thr	Arg	GIn	Ala	Gln	Asp	He	Gin	Pro	Ala	Ile	Gin
				1745					1750					1755
Ser	Ser	Trp	Pro	Lys	Leu	Glu	Gln	Phe	Trp	Ala	Lys	His	Het	Trp
				1760					1765					1770
Asn	Phe	He	Ser	Gly	He	Gin	Tyr	Leu	Ala	Gly	Leu	Ser	Thr	Leu
				1775					1780					1785
Pro	Gly	Asn	Pro	Ala	Val	Ala	Ser	Het	Het	Ala	Phe	Ser	Ala	Ala
				1790					1795					1800
Leu	Thr	Ser	Pro	Leu	Pro	Thr	Ser	Thr	Thr	He	Leu	Leu	Asn	He
				1805					1810					1815
Het	Gly	Gly	Trp	Leu	Ala	Ser	Gin	He	Ala	Pro	Pro	Ala	Gly	Ala
				1820					1825					1830
Thr	Glý	Phe	Val	Val	Ser	Gly	Leu	Val	Gly	Ala	Ala	Val	Gly	Ser
				1835					1840				,	1845
He	Gly	Leu	Gly	Lys	He	Leu	Val	Asp	Val	Leu	Ala	Gly	Tyr	Gly
				1850					1855					1860
Ala	Gly	He	Ser	Gly	Ala	Leu	Val	Ala	Phe	Lys	He	Het	Ser	Gly
				1865					1870					1875
Glu	Lys	Pro	Thr	Val	Glu	Asp	Val	Val	Asn	Leu	Leu	Pro	Ala	He
				1880					1885					1890
Leu	Ser	Pro	Gly	Ala	Leu	Val	Val	Gly	Val	He	Cys	Ala	Ala	He
				1895					1900					1905

Leu	Arg	Arg	His	Val	Gly	Gin	Gly	Glu	Gly	Ala	Val	Gin	lcb	Het
			•	1910					1915					1920
Asn	Arg	Leu	He	Ala	Phe	Ala	Ser	Arg	Gly	Asn	His	Val	Ala	Pro
			•	1925					1930					1935
Thr	His	Tyr	Vai	Val	Glu	Ser	Asp	Ala	Ser	Gin	Arg	Val	Thr	Gin
			•	1940					1945					1950
Val	Leu	Ser	Ser	Leu	Thr	He	Thr	Ser	Leu	Leu	Arg	Arg	Leu	His
			•	1955					1960				•	1965
Ala	Trp	lle	Thr	Glu	Asp	Cys	Pro	Val	Pro	Cys	Ser	Gly	Ser	Trp
				1970					1975					1980
Leu	Gin	Asp	lie	Trp	Asp	Trp	Vai	Cys	Ser	Ile	Leu	Thr		
				1985					1990					1995
Lys	Asn	Trp	Leu	Ser	Ser	Lys	Leu	Leu	Pro	Lys	Het	Pro		
				2000					2005					2010
Pro	Phe	He	Ser	Cys	GIn	Lys	Gly			Gly	Val	Trp		
				2015					2020					2025
Thr	Gly	Val			Thr	Arg	Cys			Gly	Ala	Asn		
				2030					2035					2040
Gly	His	Val			Gly	Thr	Het			Thr	Gly	Pro		
			-	2045					2050					2055
Cys	Leu	Asn			GIn	Gly	Thr			He	Asn	Cys		
				2060					2065		_			2070
Glu	Gly	Pro	•		Pro	Lys	Pro			Asn	Ĭуг	Lys		
				2075					2080					2085
He	Trp	Arg			Ala	Ser	Glu			Glu	Val	וחר		
	_			2090		- .			2095	_				2100
Gly	Ser	Phe			Val	Thr	Gly			Ser	ASP	ASN		
		_		2105					2110			_		2115
Val	Pro	CVS	GIn	Val	Pro	Ala	Pro	Glu	Phe	Phe	Ser	מחו	val	ASD

				2120					2125					2130
Gly	Val	Gin	He	His	Arg	Phe	Ala	Pro	Val	Pro	Gly	Pro	Phe	Phe
				2135					2140					2145
Arg	Asp	Glu	Val	Thr	Phe	Thr	Val	Gly	Leu	Asn	Ser	Phe	Val	Val
				2150					2155					2160
Gly	Ser	Gin	Leu	Pro	Cys	Asp	Pro	Glu	Pro	Asp	Thr	Glu	Val	Leu
				2165					2170					2175
Ala	Ser	Het	Leu	Thr	Asp	Pro	Ser	His	He	Thr	Ala	Glu	Ala	Ala
				2180		÷			2185					2190
Ala	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Gln	Ala	Ser	Ser
				2195					2200					2205
Ser	Ala	Ser	GIn	Leu	Ser	Ala	Pro	Ser	Leu	Lys	Ala	Thr	Cys	Thr
				2210					2215					2220
Thr	His	Lys	Thr	Ala	Tyr	Asp	Cys	Asp	Het	Val	Asp	Ala	Asn	Leu
			;	2225				;	2230				:	2235
Phe	Het	Gly	Gly	Asp	Val	Thr	Arg	He	Glu	Ser	Asp	Ser	Lys	Val
			. :	2240				:	2245					2250
He	Val	Leu	Asp	Ser	Leu	Asp	Ser	Het	Thr	Glu	Val	Glu	Asp	Asp
			2	2255				1	2260				4	2265
Arg	Glu	Pro	Ser	Val	Рго	Ser	Glu	Tyr	Leu	He	Lys	Arg	Arg	Lys
				2270					2275					2280
Phe	Pro	Pro			Pro	Pro	Trp	Ala	Arg	Pro	Asp	Tyr	Asn	Pro
				2285					2290			•		2295
Val	Leu	Ile			Trp	Lys	Arg	Pro	Gly	Tyr	Glu	Pro	Pro	Thr
				2300					2305					2310
Val	Leu	Gly			Leu	Pro	Pro	Thr	Pro	Gln	Thr	Pro	Val	Pro
				2315					2320					2325
Pro	Pro	Arg				Ala	Lys	Val	Leu	Thr	Gin	Asp	Asn	Val
			1	2330				2	2335				2	2340

Glu Gly Val Leu Arg	Glu Het Ala Asp Lys	Val Leu Ser Pro Leu
2345	2350	2355
GIn Asp Asn Asn Asp	Ser Gly His Ser Thr	Gly Ala Asp Thr Gly
2360	2365	2370
Gly Asp Ile Val Gin	Gin Pro Ser Asp Glu	Thr Ala Ala Ser Glu
2375	2380	2385
Ala Gly Ser Leu Ser	Ser Het Pro Pro Leu	Glu Gly Glu Pro Gly
2390	2395	2400
Asp Pro Asp Leu Glu	Phe Glu Pro Val Gly	Ser Ala Pro Pro Ser
2405	2410	2415
Glu Gly Glu Cys Glu	Val Ile Asp Ser Asp	Ser Lys Ser Trp Ser
2420	2425	2430
Thr Val Ser Asp Gin	Glu Asp Ser Val Ile	Cys Cys Ser Het Ser
2435	2440	2445
Tyr Ser Trp Thr Gly	Ala Leu Ile Thr Pro	Cys Gly Pro Glu Glu
2450	2455	2460
Glu Lys Leu Pro Ile	Asn Pro Leu Ser Asn	Ser Leu Het Arg Phe
2465	2470	2475
His Asn Lys Val Tyr	Ser Thr Thr Ser Arg	Ser Ala Ser Leu Arg
2480	2485	2490
Ala Lys Lys Val Thr	Phe Asp Arg Val Gin	Val Leu Asp Ala His
2495	2500	2505
Tyr Asp Ser Val Leu	Gin Asp Val Lys Arg	Ala Ala Ser Lys Val
2510	2515	2520
Ser Ala Arg Leu Leu	Thr Val Glu Glu Ala	Cys Ala Leu Thr Pro
2525	2530	2535
Pro His Ser Ala Lys	Ser Arg Tyr Gly Phe	Gly Ala Lys Glu Val
2540	2545	2550
Arg Ser Leu Ser Arg	Arg Ala Val Asn His	Ile Arg Ser Val Trp

			2	2555				2	2560				2	2565
Glu	Asn	Leu	Leu	Glu	Asp	Gin	His	Thr	Pro	He	Asp	Thr	Thr	He
			2	2570				2	2575				2	2580
Het	Ala	Lys	Asn	Glu	Vai	Phe	Cys	He	Asp	Pro	Thr	Lys	Gly	Gly
	•		2	2585				2	2590				2	2595
Lys	Lys	Pro	Ala	Arg	Leu	He	Val	Tyr	Pro	Asp	Leu	Gly	Val	Arg
			2	2600				2	2605				2	2610
Val	Cys	Glu	Lys	Het	Ala	Leu	Tyr	Asp	He	Ala	Gln	Lys	Leu	Pro
			2	2615				2	2620				2	2625
Lys	Ala	He	Het	Gly	Pro	Ser	Tyr	Gly	Phe	Gin	Tyr	Ser	Pro	Ala
			1	2630				2	2635				2	2640
Glu	Arg	Val	Asp	Phe	Leu	Leu	Lys	Ala	Trp	Gly	Ser	Lys	Lys	Asp
			1	2645				2	2650				2	2655
Pro	Het	Gly	Phe	Ser	Туг	Asp	Thr	Arg	Cys	Phe	Asp	Ser	Thr	Val
			1	2660				2	2665				4	2670
Thr	Glu	Arg	Asp	He	Arg	Thr	Glu	Glu	Ser	He	Tyr	Gin	Ala	Cys
			4	2675				2	2680					2685
Ser	Leu	Pro	Gln	Glu	Ala	Arg	Thr	Val	He	His	Ser	Leu	Thr	Glu
		-	. :	2690				2	2695					2700
Arg	Leu	Tyr	Val	Gly	Gly	Pro	Het	Thr	Asn	Ser	Lys	Gly	Gln	Ser
				2705					2710					2715
Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Phe	Thr	Thr	Ser
				2720					2725					2730
Het	Gly	Asn	Thr	Het	Thr	Cys	Tyr			Ala	Leu	Ala	Ala	Cys
				2735					2740					2745
Lys	Ala	Ala	Gly	He	Val	Asp	Pro	Val	Het	Leu	Val	Cys	Gly	Asp
				2750					2755					2760
Asp	Leu	Val	Val	He	Ser	Glu	Ser	Gin	Gly	Asn	Glu	Glu	Asp	Glu
				2765				4	2770					2775

Arg	Asn	Leu	Arg	Ala	Phe	Thr	Glu	Ala	Het	Thr	Arg	Tyr	Ser	Ala
			. 2	2780				2	2785				2	790
Pro	Pro	Gly	Asp	Leu	Pro	Arg	Pro	Glu	Tyr	Asp	Leu	Glu	Leu	He
			2	795				2	2800				2	805
Thr	Ser	Cys	Ser	Ser	Asn	Val	Ser	Val	Ala	Leu	Asp	Ser	Arg	Gly
			2	2810				2	2815				2	820
Arg	Arg	Arg	Tyr	Phe	Leu	Thr	Arg	Asp	Pro	Thr	Thr	Pro	He	Thr
			2	2825				2	2830				2	835
Arg	Ala	Ala	Trp	Glu	Thr	Val	Arg	His	Ser	Pro	Val	Asn	Ser	Trp
			2	2840				. 2	2845				2	2850
Leu	Gly	Asn	He	He	Gln	Tyr	Ala	Pro	Thr	He	Trp	Val	Arg	Het
			7 2	2855				2	2860				2	2865
Val	He	Het	Thr	His	Phe	Phe	Ser	Ile	Leu	Leu	Ala	Gln	Asp	Thr
			2	2870				2	2875				2	2880
Leu	Asn	Gin	Asn	Leu	Asn	Phe	Glu	Het	Tyr	Gly	Ala	Val	Tyr	Ser
			4	2885				4	2890				2	2895
Val	Asn	Pro	Leu	Asp	Leu	Pro	Ala	He	He	Glu	Arg	Leu	His	Gly
			1	2900				4	2905				2	2910
Leu	Glu	Ala	Phe	Ser	Leu	His	Thr	Tyr	Ser	Pro	His	Glu	Leu	Ser
			1	2915					2920				2	2925
Arg	Val	Ala	Ala	Thr	Leu	Arg	Lys	Leu	Gly	Ala	Pro	Pro	Leu	Arg
			4	2930				4	2935				2	2940
Ala	Trp	Lys	Ser	Arg	Ala	Arg	Ala	Val	Arg	Ala	Ser	Leu	He	Ala
			:	2945					2950				2	2955
Gin	Gly	Ala	Arg	Ala	Ala	He	Cys	Gly	Arg	Tyr	Leu	Phe	Asn	Trp
				2960					2965				4	2970
Ala	Val	Lys	Thr	Lys	Leu	Lys	Leu	Thr	Pro	Leu	Pro	Glu	Ala	Ser
			:	2975					2980					2985
A ra	Len	Δsn	Leu	Ser	Glv	Trn	Phe	Thr	Val	GIV	Δla	GIV	Glv	GIV

2990 2995 3000

Asp Ile Tyr His Ser Val Ser His Ala Arg Pro Arg Leu Leu Leu 3005 3010 3015

Leu Cys Leu Leu Leu Leu Ser Val Gly Val Gly Ile Phe Leu Leu 3020 3025 3030

Pro Ala Arg 3033

Sequence ID No. 9 Sequence Length: 3,033 Sequence Type: amino acid

Topology: linear

Molecule Type: protein

Het	Ser	Thr	Asn	Pro	Lys	Pro	Gin	Arg	Lys	Thr	Lys	Arg	Asn	Thr
				5					10					15
Asn	Arg	Arg	Pro	Gin	Asp	Val	Lys	Phe	Pro	Gly	Gly	Gly	Gln	He
				20					25					30
Val	Gly	Gly	Val	Tyr	Leu	Leu	Pro	Arg	Arg	Gly	Pro	Arg	Leu	Gly
				35					40					45
Val	Arg	Ala	Thr	Arg	Lys	Thr	Ser	Glu	Arg	Ser	Gin	Pro	Arg	Gly
				50					55					60
Arg	Arg	Gln	Pro	He	Pro	Lys	Asp	Arg	Arg	Ser	Thr	Gly	Lys	Ser
				65					70					75
Trp	Gly	Lys	Pro	Gly	Tyr	Pro	Trp	Pro	Leu	Tyr	Gly	Asn	Glu	Gly
				80					85					90
Cys	Gly	Trp	Ala	Gly	Trp	Leu	Leu	Ser	Pro	Arg	Gly	Ser	Arg	Pro
				95					100					105
Thr	Trp	Gly	Pro	Thr	Asp	Pro	Arg	His	Arg	Ser	Arg	Asn	Leu	Gly
				110					115					120
Arg	Val	He	Asp	Thr	He	Thr	Cys	Gly	Phe	Ala	Asp	Leu	Het	Gly
				125					130					135
Tyr	He	Pro	Val	Val	Gly	Ala	Pro	Val	Gly	Gly	Val	Ala	Arg	Ala
				140					145					150
Leu	Ala	His	Gly	Val	Arg	Val	Leu	Glu	Asp	Gly	He	Asn	Tyr	Ala

Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	Phe	Ser	He	Phe	Leu	Leu	Ala
				170					175					180
Leu	Leu	Ser	Cys	Val	Thr	Het	Pro	Val	Ser	Ala	Val	Glu	Val	Arg
				185					190					195
Asn	He	Ser	Ser	Ser	Туг	Tyr	Ala	Thr	Asn	Asp	Cys	Ser	Asn	Asn
				200					205					210
Ser	He	Thr	Trp	GIn	Leu	Thr	Asp	Ala	Val	Leu	His	Leu	Pro	Gly
				215					220					225
Cys	Val	Pro	Cys	Glu	Asn	Asp	Asn	Gly	Thr	Leu	Arg	Cys	Trp	He
				230					235					240
Gln	Val	Thr	Pro		Val	Ala	Val	Lys	His	Arg	Gly	Ala	Leu	
				245					250					255
Arg	Ser	Leu	Arg	Thr	His	Val	Asp	Het		Val	Het	Ala	Ala	
				260					265					270
Ala	Cys	Ser	Ala		Tyr	Val	Gly	Asp		Cys	Gly	Ala	Val	
				275					280					285
He	Leu	Ser	Gin		Phe	Het	Val	Ser		Gln	Arg	His	Asn	
				290	_			_	295					300
lpr	GIN	Glu	Cys		Cys	Ser	He	Tyr		Gly	His	He	Thr	
		• • •		305				_	310	_	_			315
HIS	Arg	Het	Ala		ASP	Het	Met	Leu		Irp	Ser	Pro	Ihr	
41-	u'a a	11.		320	T	41.	A 1 -	A = -	325	•				330
АІа	Met	116	Leu		ıyr	Ala	Ala	Arg		Pro	GIU	Leu	Val	
Λ I		71.	0 h .	335	0.1	n ! .	T	0.1	340		•	0.1		345
GIU	116	116	rne		GIY	His	1 LD	GIY		Ala	rne	Gly	Leu	
T	06.	C	11.5	350	01	41.	T	41.	355	10 - 1				360
ŧγr	rne	ser	нет		GIY	Ala	irp	AIA		val	val	Ala	116	
٠	1	Val	41-	365	V a 1	A	41.	C	370	T	0 -	* L	Λι	375
reu	ı eu	งลเ	SIA.	to IV	งสา	Asn	AIA	Ser	IDC	IVC	Ser	INC	GIV	GID

				380					385					390
GIn	Ala	Gly	Arg	Ala	Ala	Tyr	Gly	He	Ser	Ser	Leu	Phe	Asn	Thr
				395					400					405
Gly	Ala	Lys	Gln	Asn	Leu	His	Leu	He	Asn	Thr	Asn	Gly	Ser	Trp
				410					415					420
His	He	Asn	Arg	Thr	Ala	Leu	Asn	Cys	Asn	Asp	Ser	Leu	Glu	Thr
				425					430					435
Gly	Phe	He	Ala	Ser	Leu	Val	Tyr	Tyr	Arg	Arg	Phe	Asn	Ser	Ser
				440					445					450
Gly	Cys	Pro	Glu	Arg	Leu	Ser	Ser	Cys	Arg	Gly	Leu	Asp	Asp	Phe
				455					460					465
Arg	He	Gly	Trp	Gly	Thr	Leu	Glu	Tyr	Glu	Thr	Asn	Val	Thr	Asn
				470					475					480
Asp	Glu	Asp	Het	Arg	Pro	Tyr	Cys	Trp	His	Tyr	Pro	Pro	Arg	Pro
			٠	485					490					495
Cys	Gly	He	Val	Pro	Ala	Arg	Thr	Val	Cys	Gly	Pro	Val	Tyr	Cys
				500					505					510
Phe	Thr	Pro	Ser	Pro	Val	Val	Val	Gly	Thr	Thr	Asp	Lys	Gln	
				515					520					525
Val	Pro	Thr	Tyr	Thr	Trp	Gly	Glu	Asn	Glu	Thr	Asp	Val	Phe	
				530					535					540
Leu	Asn	Ser	Thr		Pro	Pro	Arg	Gly		Trp	Phe	Gly	Cys	
				545					550					555
Trp	Het	Asn	Gly		Gly	Phe	Thr	Lys		Cys	Gly	Ala	Pro	
				560					565					570
Cys	Arg	He	Arg		Asp	Tyr	Asn	Ser		Ile	Asp	Leu	Leu	
				575					580			_		585
Pro	Thr	Asp				Lys	His	Pro			Thr	Tyr	Leu	
				San					595					600

Cys	Gly	Ala	Gly	Pro	Trp	Leu	Thr	Pro	Arg	Cys	Leu	Val	Asp	Туг
		*		605					610					615
Pro	Tyr	Arg	Leu	Trp	His	Tyr	Pro	Cys	Thr	Val	Asn	Phe	Thr	He
				620					625					630
Phe	Lys	Ala	Arg	Het	Tyr	Val	Gly	Gly	Val	Glu	His	Arg	Phe	Ser
				635					640					645
Ala	Ala	Cys	Asn	Phe	Thr	Arg	Gly	Asp	Arg	Cys	Arg	Leu	Glu	Asp
				650					655					660
Arg	Asp	Arg	Gly	Gin	Gin	Ser	Pro	Leu	Leu	His	Ser	Thr	Thr	Glu
				665					670					675
Trp	Ala	Val	Phe	Pro	Cys	Ser	Phe	Ser	Asp	Leu	Pro	Ala	Leu	Ser
				680					685					690
Thr	Gly	Leu	Leu	His	Leu	His	Gln	Asn	He	Val	Asp	Vai	Gin	Tyr
				695					700					705
Leu	Tyr	Gly	Leu	Ser	Pro	Ala	Leu	Thr	Arg	Tyr	He	Val	Lys	Trp
				710					715					720
Glu	Trp	Val	He	Leu	Leu	Phe	Leu	Leu	Leu	Ala	Asp	Ala	Arg	Val
				725					730					735
Cys	Ala	Cys	Leu	Trp	Het	Leu	Asn	lle	Leu	Gly	GIn	Ala	Glu	Ala
				740					745					750
Ala	Leu	Glu	Lys		He	He	Leu	His		Ala	Ser	Ala	Ala	
				755					760					765
Ala	Asn	Gly	Pro		Trp	Phe	Phe	He		Phe	Thr	Ala	Ala	
				770					775					780
Tyr	Leu	Lys	Gly		Val	Val	Pro	Val		Thr	Tyr	Ser	Val	
				785					790					795
Gly	Leu	Trp	Ser		Leu	Leu	Leu	Val		Ala	Leu	Pro	Gin	
				800					805					810
412	Tyr	412	LAII	A cn	412	Ala	Glu	Gin	GIV	Gli	1 611	GIV	1 60	Ala

				815					820					825
He	Leu	Val	He	He	Ser	He	Phe	Thr	Leu	Thr	Pro	Ala	Tyr	Lys
				830					835					840
He	Leu	Leu	Ser	Arg	Ser	Val	Trp	Trp	Leu	Ser	Tyr	Het	Leu	Val
				845					850					855
Leu	Ala	Glu	Ala	Gln	He	Gln	Gln	Trp	Val	Pro	Pro	Leu	Glu	Val
				860		_			865					870
Arg	Gly	Gly	Arg	Asp	Gly	Ile	He	Trp	Val	Ala	Val	He	Leu	His
				875					880					885
Pro	Arg	Leu	Val	Phe	Glu	Val	Thr	Lys	Trp	Leu	Leu	Ala	He	Leu
				890					895					900
Gly	Pro	Ala	Tyr	Leu	Leu	Arg	Ala	Ser	Leu	Leu	Arg	He	Pro	Tyr
				905					910					915
Phe	Val	Arg	Ala	His	Ala	Leu	Leu	Arg	Val	Cys	Thr	Leu	Val	Lys
				920					925					930
His	Leu	Ala	Gly	Ala	Arg	Tyr	He	Gin		Leu	Leu	He	Thr	
				935					940					945
Gly	Arg	Trp	Thr		Thr	Tyr	He	Tyr		His	Leu	Ser	Pro	
				950					955					960
Ser	Thr	Trp	Ala		Gin	Gly	Leu	Arg		Leu	Ala	He	Ala	
				965					970					975
Glu	Pro	Val	Val		Ser	Pro	Het	Glu		Lys	Val	He	Vai	Trp
				980					985					990
Gly	Ala	Glu	Thr		Ala	Cys	Gly			Leu	His	Gly		
				995					1000			_		1005
Vai	Ser	Ala			Gly	Arg	Glu			Leu	Gly	Pro		
				1010		_			1015			y 1 .		1020
Gly	Tyr	lhr			Gly	Irp	Asn				פחץ	116		
				1025					1030					1035

Tyr	Thr	Gln	Gln	Thr	Arg	Gly	Leu	Leu	Gly	Ala	He	Vai	Vai	Ser
				1040					1045					1050
Leu	Thr	Gly	Arg	Asp	Lys	Asn	Glu	Gin	Ala	Gly	Gin	Val	GIn	Val
				1055					1060					1065
Leu	Ser	Ser	Val	Thr	Gln	Thr	Phe	Leu	Gly	Thr	Ser	He	Ser	Gly
				1070					1075					1080
Val	Leu	Trp	Thr	Val	Tyr	His	Gly	Ala	Gly	Asn	Lys	Thr	Leu	Ala
				1085					1090					1095
Gly	Pro	Lys	Gly	Pro	Val	Thr	GIn	Het	Туг	Thr	Ser	Ala	Glu	Gly
				1100					1105					1110
Asp	Leu	Val	Gly	Trp	Pro	Ser	Pro	Pro	Gly	Thr	Lys	Ser	Leu	Asp
			•	1115					1120				•	1125
Pro	Cys	Thr	Cys	Gly	Ala	Val	Asp	Leu	Tyr	Leu	Val	Thr	Arg	Asn
			•	1130					1135					1140
Ala	Asp	Val	[le	Pro	Val	Arg	Arg	Lys	Asp	Asp	Arg	Arg	Gly	Ala
			•	1145				•	1150				•	1155
Leu	Leu	Ser	Pro	Arg	Pro	Leu	Ser	Thr	Leu	Lys	Gly	Ser	Ser	Gly
			•	1160				•	1165				•	1170
Gly	Pro	Val	Leu	Cys	Ser	Arg	Gly	His	Ala	Val	Gly	Leu	Phe	Arg
				1175					1180					1185
Ala	Ala	Val			Arg	Gly	Val	Ala	Lys	Ser	He	ASP	Phe	He
				1190					1195					1200
Pro	Vai	Glu			Asp	He	Ala			Thr	Pro	Ser		
			1	1205				1	1210				1	1215
Asp.	Asn	Ser			Pro	Ala	Val			Ser	Tyr	GIn		
				1220					1225					1230
Tyr	Leu	His			Thr	Gly	Ser			Ser	Thr	Lys		
				1235					1240					1245
Ala	Ala	Tyr	Ala	Ser	Gln	Gly	Tyr	Lys	Val	Leu	Val	Leu	Asn	Pro

				1250					1255					1260
Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly	Ala	Tyr	Het	Ser	Lys	Ala
				1265					1270					1275
His	Gly	He	Asn	Pro	Asn	He	Arg	Thr	Gly	Val	Arg	Thr	Val	Thr
				1280					1285					1290
Thr	Gly	Asp	Ser	He	Thr	Tyr	Ser	Thr	Tyr	Gly	Lys	Phe	He	Ala
				1295					1300					1305
Asp	Gly	Gly	Cys	Ala	Ala	Gly	Ala	Tyr	Asp	He	He	He	Cys	Asp
				1310					1315					1320
Glu	Cys	His	Ser	Val	Asp	Ala	Thr	Thr	He	Leu	Gly	He	Gly	Thr
				1325					1330					1335
Val	Leu	Asp	Gin	Ala	Glu	Thr	Ala	Gly	Val	Arg	Leu	Val	Val	Leu
				1340					1345				•	1350
Ala	Thr	Ala	Thr	Pro	Pro	Gly	Thr	Val	Thr	Thr	Pro	His	Ser	Asn
				1355					1360				•	1365
He	Glu	Glu	Val	Ala	Leu	Gly	His	Glu	Gly	Glu	He	Pro	Phe	Tyr
				1370					1375				•	1380
Gly	Lys	Ala	He	Pro	Leu	Ala	Phe	He	Lys	Gly	Gly	Arg	His	Leu
				1385				•	1390				•	1395
He	Phe	Cys	His	Ser	Lys	Lys	Lys	Cys	Asp	Glu	Leu	Ala	Ala	Ala
				1400					1405				•	1410
Leu	Arg	Gly	Thr	Gly	Val	Asn	Ala	Val	Ala	Tyr	Tyr	Arg	Gly	Leu
				1415				•	1420					1425
Asp	Val	Ser	Val	He	Pro	Thr	Gin	Gly	Asp	Val	Val	Val	Val	Ala
			•	1430				•	1435				•	1440
Thr	Asp	Ala	Leu	Het	Thr	Gly	Туг	Thr	Gly	Asp	Phe	Asp	Ser	Val
				1445				•	1450					1455
He	Asp	Cys		Val				Gln	Ile	Val	Asp	Phe		
				1460				•	1465				•	1470

Asp	Pro	Thr	Phe	Thr	He	Thr	Thr	Gln	Thr	Val	Pro	GIn	Asp	Ala
				1475					480					485
Val	Ser	Arg	Ser	Gin	Arg	Arg	Gly	Arg	Thr	Gly	Arg	Gly	Arg	Leu
				1490					1495					500
Gly	He	Туг	Arg	Tyr	Val	Ser	Ser	Gly	Glu	Gly	Pro	Ser	Gly	Het
				1505					1510					1515
Phe	Asp	Ser	Val	Val	Pro	Cys	Glu	Cys	Tyr	Asp	Ala	Gly	Ala	Ala
				1520				•	1525				1	1530
Trp	Tyr	Glu	Leu	Thr	Pro	Ala	Glu	Thr	Thr	Val	Arg	Leu	Arg	Ala
				1535					1540				•	1545
Tyr	Phe	Asn	Thr	Pro	Gly	Leu	Pro	Val	Cys	Gin	Asp	His	Leu	Glu
				1550					1555					1560
Phe	Trp	Glu	Ala	Val	Phe	Thr	Gly	Leu	Thr	His	He	Asn	Ala	His
				1565					1570					1575
Phe	Leu	Ser	Gin	Thr	Lys	Gln	Gly	Gly	Glu	Asn	Phe	Ala	Tyr	Leu
				1580					1585					1590
Thr	Ala	Tyr	Gln	Ala	Thr	Val	Cys	Ala	Arg	Ala	Lys	Ala		
				1595					1600					1605
Pro	Ser	Trp	Asp	Val	Het	Trp	Lys	Cys	Leu	Thr	Arg	Leu		
				1610					1615					1620
Thr	Leu	Thr	Gly	/ Pro	Thr	Pro	Leu	Leu	Tyr	Arg	Leu	Gly	Ala	
				1625					1630					1635
Thr	Asr	Glu	ı Val	Thr	Leu	Thr	His	Pro	Val	Thr	Lys	Tyr	Ile	Ala
				1640					1645					1650
Thi	Cys	He	Gli	n Ala	Asp	Leu	Glu	Ile	Het	Thr	Ser	Ser	Trp	Val
				1655					1660					1665
Let	ı Ala	a Gly	y Gl	y Val	Leu	ı Ala	Ala	Val	Ala	Ala	Туг	Cys	Leu	Ala
				1670					1675					1680
Th	r Gly	v Cv	s II	e Sei	116	e Ile	e GIV	/ Arc	ı Lei	ı His	Leu	ı Asr	i Ast) Arg

1685	1690	1695
Val Val Val Thr Pro	Asp Lys Glu Ile Leu	Tyr Glu Ala Phe Asp
1700	1705	1710
Glu Het Glu Glu Cys	Ala Ser Lys Ala Ala	Leu Ile Glu Glu Gly
1715	1720	1725
Gin Arg Het Ala Glu	Het Leu Lys Ser Lys	Ile Gin Gly Leu Leu
1730	1735	1740
Gin Gin Ala Thr Arg	Gin Ala Gin Gly Het	Gin Pro Ala Ile Gin
1745	1750	1755
Ser Ser Trp Pro Lys	Leu Giu Gin Phe Trp	Ala Lys His Met Trp
1760	1765	1770
Asn Phe Ile Ser Gly	Ile Gln Tyr Leu Ala	Gly Leu Ser Thr Leu
1775	1780	1785
Pro Gly Asn Pro Ala	Val Ala Ser Het Het	Ala Phe Ser Ala Ala
1790	1795	1800
Leu Thr Ser Pro Leu	Pro Thr Ser Thr Thr	lie Leu Leu Asn Ile
1805	1810	1815
Het Gly Gly Trp Leu	Ala Ser Gin Ile Ala	Pro Pro Ala Gly Ala
1820	1825	1830
Thr Gly Phe Val Val	Ser Gly Leu Val Gly	Ala Ala Val Gly Ser
1835	1840	1845
lle Gly Leu Gly Lys	lie Leu Vai Asp Vai	Leu Ala Gly Tyr Gly
1850		1860
Ala Gly Ile Ser Gly	Ala Leu Val Ala Phe	Lys Ile Het Ser Gly
1865		1875
-	Glu Asp Val Val Asn	
1880		1890
Leu Ser Pro Gly Ala	Leu Val Val Gly Val	•
1895	1900	1905

Leu	Arg	Arg	His	Val	Gly	Gln	Gly	Glu	Gly	Ala	Val	Gin	Trp	Het
				1910					1915					1920
Asn	Arg	Leu	He	Ala	Phe	Ala	Ser	Arg	Gly	Asn	His	Val	Ala	Pro
				1925					1930					1935
Thr	His	Tyr	Val	Val	Glu	Ser	Asp	Ala	Ser	Gln	Arg	Val	Thr	Gin
			•	1940					1945					1950
Val	Leu	Ser	Ser	Leu	Thr	He	Thr	Ser	Leu	Leu	Arg	Arg	Leu	His
				1955					1960					1965
Ala	Trp	He	Thr	Glu	Asp	Cys	Pro	He	Pro	Cys	Ser	Gly	Ser	Trp
				1970					1975					1980
Leu	Gln	Asp	He	Trp	Asp	Trp	Val	Cys	Ser	He	Leu	Thr	Asp	Phe
				1985					1990					1995
Lys	Asn	Trp	Leu	Ser	Ser	Lys	Leu			Lys	Het	Pro	Gly	Ile
				2000					2005					2010
Pro	Phe	He		Cys	Gin	Lys	Gly	-	-	Gly	Val	Trp		-
				2015					2020					2025
Thr	Gly	Val		Thr	Thr	Arg	Tyr			Gly	Ala	Asn		
				2030					2035					2040
Gly	His	Val		Het	Gly	Thr	Het	-		Thr	Gly	Pro		
				2045					2050					2055
Cys	Leu	Asn		Trp	Gin	Gly	Thr			He	Asn	Cys		
				2060			_		2065		_			2070
Glu	Gly	Pro		Vài	Pro	Lys	Pro			Asn	Tyr	Lys		
	-			2075					2080					2085
lle	Irp	Arg		Ala	Ala	Ser	Glu			Glu	Val	Ihr		
	•			2090					2095	_				2100
GIY	ser	rne		Tyr	vai	INC	Gly			ser	ASP	ASN		
				2105					2110	•	_	-		2115
val	አ L ሁ	CVS	GIN	Val	የቦዕ	Ala	እ∟ሀ	GHI	Pne	PNe	Ser	ורח	vai	ASD

			2	120					2125				2	130
Gly	Val	Gln	He	His	Arg	Phe	Ala	Pro	Val	Pro	Gly	Pro	Phe	Phe
			2	135				4	2140				2	145
Arg	Asp	Glu	Val	Thr	Phe	Thr	Val	Gly	Leu	Asn	Ser	Phe	Val	Val
			2	2150				2	2155				2	160
Gly	Ser	Gin	Leu	Pro	Cys	Asp	Pro	Glu	Pro	Asp	Thr	Glu	Val	Leu
			2	165				,	2170				2	175
Ala	Ser	Het	Leu	Thr	Asp	Pro	Ser	His	He	Thr	Ala	Glu	Ala .	Ala
			2	180				2	2185				2	190
Ala	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Gin	Ala	Ser	Ser
			2	195				2	2200				2	205
Ser	Ala	Ser	Gin	Leu	Ser	Ala	Pro	Ser	Leu	Lys	Ala	Thr	Cys	Thr
			2	2210				2	2215				2:	220
Thr	His	Lys	Thr	Ala	Туг	Asp	Cys	Asp	Het	Val	Asp	Ala	Asn	Leu
			2	2225				2	2230				2	235
Phe	Het	Gly	Gly	Asp	Val	Thr	Arg	He	Glu	Ser	Asp	Ser	Lys	Val
			2	2240				2	2245				2	250
He	Val	Leu	ASP	Ser	Leu	Asp	Ser	Het	Thr	Glu	Val	Glu	Asp	Asp
			2	255				2	2260				. 2	265
Arg	Glu	Pro	Ser	Val	Pro	Ser	Glu	Tyr	Leu	He	Lys	Arg	Arg	Lys
			2	2270				2	2275				2	280
Phe	Pro	Pro	Ala	Leu	Pro	Pro	Trp	Ala	Arg	Pro	Asp	Tyr	Asn	Pro
			2	2285				2	2290				2	295
Val	Leu	He	Glu	Thr	Trp	Lys	Arg	Pro	Gly	Туг	Glu	Pro	Pro	Thr
			2	2300				2	2305				2	310
Val	Leu	Gly	Cys	Ala	Leu	Pro	Pro	Thr	Leu	Gin	Thr	Pro	Val	Pro
			2	2315				2	2320				2	325
Pro	Pro	Arg	Arg	Arg	Arg	Ala	Lys	Ile	Leu	Thr	Gin	Asp	Asp	Val
			2	2220				4	2225				2	340

Glu	Gly	He	Leu	Arg	Glu	Het	Ala	Asp	Lys	Val	Leu	Ser	Pro	Leu
			2	2345				;	2350					2355
Gin	Asp	Asn	Asn	Asp	Ser	Gly	His	Ser	Thr	Gly	Ala	Asp	Thr	Gly
			2	2360					2365				;	2370
Gly	Asp	He	Val	Gin	Gin	Pro	Ser	Asp	Glu	Thr	Ala	Ala	Ser	Glu
			2	2375				:	2380					2385
Ala	Gly	Ser	Leu	Ser	Ser	Het	Pro	Pro	Leu	Glu	Gly	Glu	Pro	Gly
			2	2390				:	2395				•	2400
Asp	Pro	Asp	Leu	Glu	Phe	Glu	Pro	Val	Gly	Ser	Ala	Pro	Pro	Ser
			2	2405					2410				4	2415
Glu	Gly	Glu	Cys	Glu	Val	He	Asp	Ser	Asp	Ser	Lys	Ser	Trp	Ser
			2	2420				:	2425				;	2430
Thr	Val	Ser	Asp	GIn	Glu	Asp	Ser	Val	He	Cys	Cys	Ser	Het	Ser
			2	2435					2440				;	2445
Tyr	Ser	Trp	Thr	Gly	Ala	Leu	Ile	Thr	Pro	Cys	Gly	Pro	Glu	Glu
			2	2450					2455				:	2460
Glu	Lys	Leu	Pro	He	Asn	Pro	Leu	Ser	Asn	Ser	Leu	Het	Arg	Phe
•			2	2465					2470					2475
His	Asn	Lys	Val	Tyr	Ser	Thr	Thr	Ser	Arg	Ser	Ala	Ser	Leu	Arg
			2	2480				;	2485				:	249 0
Ala	Lys	Lys	Val	Thr	Phe	Asp	Arg	Val	Gln	Val	Leu	Asp	Ala	His
			2	2495					250 0					2505
Tyr	Asp	Ser	Val	Leu	Gin	Asp	Val	Lys	Arg	Ala	Ala	Ser	Lys	Val
			. 2	25 10					2515					2520
Gly	Ala	Arg	Leu	Leu	Thr	Val	Glu	Glu	Ala	Cys	Ala	Leu	Thr	Pro
,			1	2525				:	253 0					2535
Pro	His	Ser	Ala	Lys	Ser	Arg	Туг	Gly	Phe	Gly	Ala	Lys	Glu	Val
			:	2540				:	2545				;	2550
A ra	CAr	l au	SAC	A ra	A ca	Ala	Val	Acn	Hic	IΙΔ	Ara	Sar	Val	Trn

				2555					2560					2565
Glu	Asn	Leu	Leu	Glu	Asp	Gln	Arg	Thr	Pro	He	Asp	Thr	Thr	He
			;	2570				•	2575				4	2580
Het	Ala	Lys	Asn	Glu	Val	Phe	Cys	He	Asp	Pro	Thr	Lys	Gly	Gly
			•	2585				4	2590				:	2595
Lys	Lys	Pro	Ala	Arg	Leu	He	Val	Tyr	Pro	Asp	Leu	Gly	Val	Arg
			4	2600				4	2605				4	2610
Val	Cys	Glu	Lys	Het	Ala	Leu	Tyr	Asp	He	Thr	Gin	Lys	Leu	Pro
			;	2615				4	2620				2	2625
Lys	Ala	He	Het	Gly	Pro	Ser	Tyr	Gly	Phe	GIn	Tyr	Ser	Pro	Ala
			:	2630				4	2635				2	2640
Glu	Arg	Val	Asp	Phe	Leu	Leu	Lys	Ala	Trp	Gly	Ser	Lys	Lys	Asp
				2645				4	2650				2	2655
Pro	Het	Gly	Phe	Ser	Tyr	Asp	Thr	Arg	Cys	Phe	Asp	Ser	Thr	Val
			4	2660	,			2	2665				2	2670
Thr	Glu	Arg	Asp	He	Arg	Thr	Glu	Glu	Ser	He	Tyr	Gin	Ala	Cys
			4	2675				2	2680				2	2685
Ser	Leu	Pro	GIn	Glu	Ala	Arg	Thr	Val	He	His	Ser	Leu	Thr	Glu
			4	2690				2	2695				2	2700
Arg	Leu	Tyr	Val	Gly	Gly	Pro	Het	Thr	Asn	Ser	Lys	Gly	GIn	Ser
			2	2705				2	2710				2	2715
Cys	Gly	Tyr	Arg	Arg	Cys	Arg	Ala	Ser	Gly	Val	Phe	Thr	Thr	Ser
			2	2720				2	2725				2	2730
Het	Gly	Asn	Thr	Het	Thr	Cys	Tyr	He	Lys	Ala	Leu	Ala	Ala	Cys
			2	2735				2	2740				2	2745
Lys	Ala	Ala	Gly	He	Val	Asp	Pro	Val	Het	Leu	Val	Cys	Gly	Asp
				2750					2755					2760
Asp	Leu	Val			Ser	Glu	Ser			Asn	Glu	Glu		
			9	7765				•	777				2	775

Arg	Asn	Leu	Arg	, Ala	Phe	Thr	Glu	Ala	Het	Thr	Arg	Tyr	Ser	Ala
				2780					2785					2790
Pro	Pro	Gly	Asp	Leu	Pro	Arg	Pro	Glu	Туг	Asp	Leu	Glu	Leu	He
				2795					2800					2805
Thr	Ser	Cys	Ser	Ser	Asn	Vai	Ser	Val	Ala	Leu	Asp	Ser	Arg	Gly
				2810					2815					2820
Arg	Arg	Arg	Tyr	Phe	Leu	Thr	Arg	Asp	Pro	Thr	Thr	Pro	He	Thr
				2825					2830					2835
Arg	Ala	Ala	Trp	Glu	Thr	Val	Arg	His	Ser	Pro	Val	Asn	Ser	Trp
				2840					2845					2850
Leu	Gly	Asn	Ile	He	Gin	Туг	Ala	Pro	Thr	He	Trp	Val	Arg	Het
				2855					2860					2865
Val	He	Het	Thr	His	Phe	Phe	Ser	He	Leu	Leu	Ala	Gln	Asp	Thr
				2870					2875					2880
Leu	Asn	Gln			Asn	Phe	Glu	Het	Tyr	Gly	Ala	Val	Tyr	Ser
				2885					2890					2895
Val	Asn	Pro			Leu	Pro	Ala	He	He	Glu	Arg	Leu	His	Gly
				2900					2905					2910
Leu	Glu	Ala			Leu	His	Thr	Туг	Ser	Pro	His	Glu	Leu	Ser
				2915					2920					2925
Arg	Vai	Ala			Leu	Arg	Lys			Ala	Pro	Pro	Leu	Arg
	_			2930					2935					2940
Ala	Irp	Lys			Ala	Arg	Ala			Ala	Ser	Leu		
- 4				2945					2950					2955
Gin	Gly	Ala			Ala	He	Cys	Gly	Arg	Tyr	Leu	Phe	Asn	Trp
				2960					2965					2970
Ala	Val	Lys			Leu	Lys	Leu			Leu	Pro	Glu		
_				2975		_			2980					985
Arg	Leu	Asp	Leu	Ser	Gly	Trp	Phe	Thr	Val	Gly	Ala	Gly	GIV	Glv