(54) Quinazolines and process for their production

(57) The present invention relates to quinazolines of the general formula

$$R_a$$
 CO-O-C(CH₃)₃
 R_b
 R_c

(I)

in which

 R_{a} to R_{c} are defined as mentioned in claims 1 to 5, the stereoisomers thereof and the salts thereof, which exhibit valuable properties. The quinazolines are in particular intermediates for the production of compounds which exhibit in particular an inhibitory action on the signal transduction produced by tyrosine kinases.

Claims

1. Quinazolines of the general formula

$$R_a$$
 CO-O-C(CH₃)₃
 R_b
 R_c

(I)

in which

 R_a denotes a benzyl or 1-phenylethyl group or a phenyl group substituted by the radicals R_1 to R_3 , wherein R_1 and R_2 , which can be the same or different, represent respectively a hydrogen, fluorine, chlorine or bromine atom, a methyl, trifluoromethyl, methoxy, cyano or ethinyl group and

R₃ represents a hydrogen, fluorine or chlorine atom,

R_b denotes a hydroxy, C₁₋₄ alkylcarbonyloxy, amino or nitro group,

 R_c a hydrogen, fluorine, chlorine or bromine atom, a C_{1-4} -alkoxy, C_{4-6} -cycloalkoxy or C_{3-6} -cycloalkyl- C_{1-3} alkoxy group,

a C_{2-4} alkoxy group substituted in β , y or δ position by R_4 , wherein

R₄ represents a methoxy, ethoxy, dimethylamino, diethylamino, pyrrolidino, piperidino, morpholino, 4-methylpiperazino or 4-ethylpiperazino group.

a 1- $(C_{1-2}$ -alkyl)-piperidin-4-yloxy, 1- $(C_{1-2}$ -alkyl)-piperidin-4-ylmethoxy, 2- $[1-(C_{1-2}$ -alkyl)-piperidin-4-yl]-propyloxy, tetrahydrofuran-3-

piperidin-4-yl]-ethoxy, 3-[1-(C_{1-2} -alkyl)-piperidin-4-yl]-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydropyranylmethoxy group,

the stereoisomers thereof and the salts thereof.

2. Quinazolines of the general formula I according to claim 1, in which R_a denotes a 1-phenylethyl group or a phenyl group substituted by the radicals R_1 to R_3 , wherein

 R_1 and R_2 , which can be the same or different, represent respectively a hydrogen, fluorine, chlorine or bromine atom, a methyl, trifluoromethyl, cyano or ethinyl group and

R₃ represents a hydrogen or fluorine atom,

R_b denotes a hydroxy, acetyloxy, amino or nitro group,

Re a hydrogen, fluorine or chlorine atom, a methoxy, ethoxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, 2-(cyclopropyl)-ethoxy, 2-(methoxy)-ethoxy, 3-(methoxy)-propyloxy-2-(ethoxy)-ethoxy, 3-(ethoxy)-propyloxy, 2-(dimethylamino)ethoxy, 3-(dimethylamino)-propyloxy, 2-(diethylamino)-ethoxy, 3-(diethylamino)propyloxy-2-(pyrrolidino)-ethoxy, 3-(pyrrolidino)-propyloxy, 2-(piperidino)-ethoxy, 3-(piperidino)-propyloxy, 2-(morpholino)-ethoxy, 3-(morpholino)-propyloxy, 2-(4methylpiperazino)-ethoxy, 3-(4-methylpiperazino)-propyloxy, 2-(4-ethylpiperazino)ethoxy, 3-(4-ethylpiperazino)-propyloxy,1-methylpiperidin-4-yloxy,1-methylpiperidin-4-ylmethoxy, 2-(1-methylpiperidin-(4-yl)-ethoxy, 3-(1-methylpiperidin-4-yl)-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuranylmethoxy or tetrahydropyranylmethoxy group, the stereoisomers thereof and the salts thereof.

Quinazolines of the general formula I according to claim 1, in which R_a denotes a 1-phenylethyl, 3-fluorophenyl, 3-chlorophenyl, 3-bromophenyl, 3-chloro-4-fluorophenyl, 3-methylphenyl, 3-trifluoromethylphenyl, 3-cyanophenyl or 3ethinylphenyl group,

R_b a hydroxy, acetyloxy, amino or nitro group.

R_c a hydrogen, fluorine or chlorine atom,

a methoxy, ethoxy, cyclobutyloxy, cyclopentyloxy, cyclohexyloxy, cyclopropylmethoxy, cyclobutylmethoxy, cyclopentylmethoxy, cyclohexylmethoxy, 2-(methoxy)-ethoxy, 3-(methoxy)-propyloxy, 2-(morpholino)-ethoxy, 3-(morpholino)propyloxy, 2-(1-methylpiperidin-4-yl)-ethoxy, 3-(1-methylpiperidin-4-yl)-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy or tetrahydrofuran-2-ylmethoxy group,

the stereoisomers thereof and the salts thereof.

Quinazolines of the general formula I according to claim 1, in which Radenotes a 1-phenylethyl, 3-chlorophenyl, 3-bromophenyl, 3-chloro-4-fluorophenyl, 3-methylphenyl or 3-ethinylphenyl group, R_b a hydroxy, acetyloxy, amino or nitro group.

R_c a hydrogen, fluorine or chlorine atom,

- a methoxy, ethoxy, cyclobutyloxy, cyclopentyloxy, cyclopropylmethoxy, cvclobutylmethoxy, 2-(methoxy)-ethoxy, 3-(methoxy)-propyloxy, 3-(morpholino)propyloxy, 3-(1-methylpiperidin-4-yl)-propyloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy or tetrahydrofuran-2-ylmethoxy group. the stereoisomers thereof and the salts thereof.
- The following compounds of the general formula I according to claim 1:
- (1) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitroquinazoline
- (2) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-aminoquinazoline
- (3) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluoro-6-nitroquinazoline
- (4) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6nitro-quinazoline
- (5) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7methoxy-quinazoline
- (6) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-6methylcarbonyloxy-7-methoxy-quinazoline
- (7) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7methoxy-quinazoline
- (8) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2methoxyethoxy)-6-nitro-quinazoline

- (9) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-quinazoline
- (10) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxy]-6-nitro-quinazoline
- (11) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxy]-quinazoline
- (12) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclobutyloxy-6-nitro-quinazoline
- (13) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclobutyloxy-quinazoline
- (14) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-6-nitro-quinazoline
- (15) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-quinazoline
- (16) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-(tetrahydrofuran-3-yloxy)-quinazoline
- (17) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydrofuran-3-yloxy)-quinazoline
- (18) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)amino]-6-nitro-7-(tetrahydropyran-4-yloxy)-quinazoline
- (19) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydropyran-4-yloxy)-quinazoline
- (20) 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-[(tetrahydrofuran-2-yl)methoxy]-quinazoline
- (21) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[(tetrahydrofuran-2-yl)methoxy]-quinazoline
- (22) 4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)amino]-6-nitro-quinazoline
- (23) 6-amino-4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)-amino]-quinazoline
- (24) 4-[N-(3-bromophenyl)-N-tert.butyloxycarbonyl)-amino]-7-fluoro-6-nitro-quinazoline
- (25) 4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-quinazoline
- (26) 6-amino-4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxyquinazoline
- (27) 4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-6-nitro-quinazoline
- (28) 6-amino-4-[N-(3-bromophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-quinazoline
- (29) 4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-quinazoline
- (30) 6-amino-4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-quinazoline
- (31) 4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluoro-6-nitro-quinazoline
- (32) 4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-quinazoline
- (33) 6-amino-4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxyquinazoline
- (34) 4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-6-nitro-quinazoline
- (35) 6-amino-4-[N-(3-methylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-quinazoline
- (36) 4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-quinazoline
- (37) 6-amino-4-[N-(3-ethinlyphenyl)-N-(tert.butyloxycarbonyl)-amino]-quinazoline
- (38) 4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluoro-6-nitro-quinazoline

- (39) 4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-quinazoline
- (40) 6-amino-4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-quinazoline
- (41) 4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-6-nitro-quinazoline
- (42) 6-amino-4-[N-(3-ethinylphenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxyethoxy)-quinazoline
- (43) 6-amino-4-[N-((R)-1-phenylethyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-quinazoline
- (44) 4-[N-((R)-1-phenylethyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7-methoxy-quinazoline
- (45) 6-amino-4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-ethoxy-quinazoline
- $\begin{tabular}{ll} (46) & 4-[N-(3-chloro-4-fluorophenyl)-N-(tert.butyloxycarbonyl)-amino]-7-ethoxy-6-hydroxy-quinazoline \\ \end{tabular}$

the stereoisomers thereof and the salts thereof.

- 6. Use of a compound according to claims 1 to 5 as intermediate for the production of a compound which exhibits an inhibitory action on the signal transduction produced by tyrosine kinases.
- 7. Process for the production of a compound of the general formula I according to claims 1 to 5, characterised in that
 - a. for the production of a compound of the general formula I in which R_{b} represents an amino group, a compound optionally produced in the reaction mixture of the general formula

$$R_a$$
 CO-O-C (CH₃), NO₂ NO₂ , (II)

in which

 R_a and R_c are defined as mentioned in claims 1 to 5, is reduced or b. a compound of the general formula

$$R_b$$

in which

R_b and R_c are defined as mentioned in claims 1 to 5 and

Z₁ represents a leaving group, is reacted with a compound of the general formula

 R_a -NH-CO-O-C(CH₃)₃ (IV)

in which Ra is defined as mentioned in claims 1 to 5 or

c. a compound of the general formula

in which

 R_{a} to R_{c} are defined as mentioned in claims 1 to 5, is reacted with a compound of the general formula

(CH₃)₃C-O-CO-Z₂ (VI)

in which

Z₂ represents a leaving group, or

d. for the production of a compound of the general formula I in which Rb represents a hydroxy group, a protective radical of a compound of the general formula

$$R_{a}$$
 CO-O-C(CH₃)₃
 R_{b}
 R_{c}

, (VII)

in which

 R_{a} and R_{c} are defined as mentioned in claims 1 to 5 and

 $R_{b^{\prime}}$ denotes a hydroxy group protected by a protective radical, is split off or e. for the production of a compound of the general formula I in which R_{c} represents one of the substituted oxy groups mentioned in claims 1 to 5, a compound of the general formula

$$R_a$$
 CO-O-C(CH₃)₃
 R_b
 Z_3
, (VIII)

in which

Ra and Rb are defined as mentioned in claims 1 to 5 and

Z₃ denotes an exchange group, is reacted with an alcohol of the general formula

 $H-R_{c'}$ (IX)

in which

 $R_{c^{\prime}}$ represents one of the substituted oxy groups mentioned in claims 1 to 5 for $R_{c^{\prime}}$ and

if required a compound obtained in this way of the general formula I is then converted to its salts.

DE10040527

Publication Title:

New 4-tert. butoxycarbonylamino-quinazoline derivatives, useful as intermediates for tyrosine kinase-mediated signal transduction inhibitors

Abstract:

Abstract of DE10040527

6-Substituted 4-(N-(phenyl, benzyl or phenethyl)-N-(tert. butoxycarbonyl)-amino)-quinazoline derivatives (I) are new. Quinazolines of formula (I) and their tautomers, stereoisomers and salts are new. Ra = CH2Ph, CHMePh or Ph'; Ph' = phenyl substituted by R1-R3; R1, R2 = H, F, Cl. Br. Me. CF3, OMe, CN or CCH, R3 = H, F or Cl; Rb = OH, (1-4C) alkylcarbonyloxy, NH2 or NO2; Rc = H, F, Cl, Br, 1-4C alkoxy, 4-6C cycloalkoxy or (3-6C) cycloalkyl-(1-3C) alkoxy; 2-4C alkoxy substituted in the beta --, psi - or delta 1-(Q)-piperidin-4-yloxy, 1-(Q)-piperidin-4-ylmethoxy, noxy, 3-(1-(Q)-piperidin-4-yl)-propoxy, -position by R4; or 2-(1-(Q)-piperidin-4-yl)-ethoxy, tetrahydropyran-3-yloxy, tetrahydrofuran-3-yloxy, tetrahydropyran-4-yloxy, tetrahydrofuran-ylmethoxy or tetrahydropyranylmethoxy; R4 = OQ, NMe2, NEt2, pyrrolidino, piperidino, morpholino or 4-(Q)-piperazino; Q = Me or Et. An Independent claim is included for the preparation of (I). Data supplied from the esp@cenet database - Worldwide

Courtesy of http://v3.espacenet.com

- (2) Aktenzeichen: 100 40 527.4
 (2) Anmeldetag: 18. 8. 2000
 (3) Offenlegungstag: 28. 2. 2002
- (1) Anmelder:

Boehringer Ingelheim Pharma KG, 55218 Ingelheim, DE

② Erfinder:

Himmelsbach, Frank, Dipl.-Chem. Dr., 88441 Mittelbiberach, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Chinazoline und Verfahren zu ihrer Herstellung
- Die vorliegende Erfindung betrifft Chinazoline der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃
 N
 R_b
, (I)

in der

 $\rm R_a$ bis $\rm R_c$ wie in den Ansprüchen 1 bis 5 erwähnt, definiert sind, deren Stereoisomere und deren Salze, welche wertvolle Eigenschaften aufweisen. Die Chinazoline stellen insbesondere Zwischenprodukte zur Herstellung von Verbindungen dar, die insbesondere eine Hemmwirkung auf die durch Tyrosinkinasen vermittelten Signaltransduktion aufweisen.

Beschreibung

[0001] Gegenstand der vorliegenden Erfindung sind Chinazoline der allgemeinen Formel

S
$$R_a$$
 CO-O-C(CH₃)₃

N

 R_b
 R_c

(I)

deren Stereoisomere und deren Salze mit anorganischen oder organischen Säuren oder Basen, welche wertvolle Eigenschaften aufweisen, und deren Verwendung.

[0002] Die neuen Verbindungen stellen insbesondere Zwischenprodukte zur Herstellung von Verbindungen dar, die eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion aufweisen.

[0003] Die neuen Chinazoline weisen im Vergleich zu den entsprechenden am Stickstoffatom der RaN-Gruppe unsubstituierten Verbindungen eine bessere Löslichkeit in den gebräuchlichen organischen Lösungsmitteln auf. Ferner verhin-

dert die tert. Butyloxycarbonylgruppe unerwünschte Nebenreaktionen bei weiteren Umsetzungen. Stellt beispielswewise R_b eine Hydroxygruppe dar, so wird bei deren Alkylierung eine Alkylierung des Stickstoffatoms der R_aN-Gruppe vermieden, oder stellt R_b beispielsweise eine Λminogruppe dar, so wird bei deren Λcylierung eine Λcylierung des Stickstoffatoms der R_aN-Gruppe vermieden.

[0004] In der obigen allgemeinen Formel I bedeutet

Ra eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R1 bis R3 substituierte Phenylgruppe, wobei R1 und R2, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Methoxy-, Cyan- oder Ethinylgruppe und R3 ein Wasserstoff-, Fluor- oder Chloratom darstellen,

R_b eine Hydroxy-, C₁₋₄-Alkylcarbonyloxy-, Amino- oder Nitrogruppe,

30 R_c ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C₁₋₄-Alkoxy-, C₄₋₆-Cycloalkoxy- oder C₃₋₆-Cycloalkyl-C₁₋₃-alkoxygruppe,

eine in β -, γ - oder δ -Stellung durch R_4 substituierte C_{2-4} -Alkoxygruppe, wobei

R₄ eine Methoxy-, Ethoxy-, Dimethylamino-, Diethylamino-, Pyrrolidino-, Piperidino-, Morpholino-, 4-Methylpiperazino- oder 4-Ethylpiperazinogruppe darstellt,

35 eine 1-(C₁₋₂-Alkyl)-piperidin-4-yloxy-, 1-(C₁₋₂-Alkyl)-piperidin-4-ylmethoxy-, 2 -[1-(C₁₋₂-Alkyl)-piperidin-4-yl]-ethoxy-, 3-[1-(C₁₋₂-Alkyl)-piperidin-4-yl]-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe.

[0005] Bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

Ra eine 1-Phenylethylgruppe oder eine durch die Reste R1 bis R3 substituierte Phenylgruppe, wobei

40 R₁ und R₂, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und

R₃ ein Wasserstoff- oder Fluoratom darstellen,

R_b eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

R_c ein Wasserstoff-, Fluor- oder Chloratom,

- 45 eine Methoxy-, Ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Cyclopentylmethoxy-, 2-(Cyclopropyl)-ethoxy-, 2-(Methoxy)-ethoxy-, 3-(Methoxy)-propyloxy-, 2-(Ethoxy)-ethoxy-, 3-(Ethoxy)-propyloxy-, 2-(Dimethylamino)-ethoxy-, 3-(Dimethylamino)-propyloxy-, 2-(Dimethylamino)-ethoxy-, 3-(Pyrrolidino)-propyloxy-, 2-(Pyrrolidino)-ethoxy-, 3-(Pyrrolidino)-propyloxy-, 2-(Morpholino)-ethoxy-, 3-(Morpholino)-propyloxy-, 2-(4-Methylpipera-
- zino)-ethoxy-, 3-(4-Methylpiperazino)-propyloxy-, 2-(4-Ethylpiperazino)-ethoxy-, 3-(4-Ethylpiperazino)-propyloxy-, 1-Methylpiperidin-4-ylnethoxy-, 2-(1-Methylpiperidin-4-yl)-ethoxy-, 3-(1-Methylpiperidin-4-yl)-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, T
- [0006] Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen Ra eine 1-Phenylethyl-, 3-Fluorphenyl-, 3-Chlorphenyl-, 3-Bromphenyl-, 3-Chlor-4-fluorphenyl-, 3-Methylphenyl-, 3-Trifluormethylphenyl-, 3-Cyanphenyl- oder 3-Ethinylphenylgruppe, Rb eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

R_c ein Wasserstoff-, Fluor- oder Chloratom,

- 60 eine Methoxy-, Ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclopentylmethoxy-, Cyclopentylmethoxy-, 2-(Methoxy)-ethoxy-, 3-(Methoxy)-propyloxy-, 2-(Morpholino)-ethoxy-, 3-(Morpholino)-propyloxy-, 2-(1-Methylpiperidin-4-yl)-ethoxy-, 3-(1-Methylpiperidin-4-yl)-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydro-pyran-4-yloxy- oder Tetrahydrofuran-2-ylmethoxygruppe bedeuten, deren Stereoisomere und deren Salze.
- 65 [0007] Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen R₃ eine 1-Phenylethyl-, 3-Chlorphenyl-, 3-Bromphenyl-, 3-Chlor-4-fluorphenyl-, 3-Methylphenyl- oder 3-Ethinylphenylgruppe,

R_b eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

a. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine Aminogruppe darstellt: Reduktion einer gegebenenfalls im Reaktionsgemisch hergestellten Verbindung der allgemeinen Formel

$$R_{a} CO-O-C(CH_{3})_{3}$$

$$N NO_{2}$$

$$R_{c} (II)$$

in der

10

25

30

35

40

50

55

60

65

Ra und Rc wie eingangs erwähnt definiert sind.

[0010] Die Reduktion wird zweckmäßigerweise hydrogenolytisch, z. B. mit Wasserstoff in Gegenwart eines Katalysators wie Platin, Palladium/Kohle oder Raney-Nickel in einem geeigneten Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Tetrahydrofuran, Dioxan, Dimethylformamid oder Eisessig und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 1 bis 5 bar, mit Metallen wie Eisen, Zinn oder Zink in Gegenwart einer Säure wie Essigsäure, mit Salzen wie Eisen-(II)sulfat, Zinn(II)chlorid, Natriumsulfid, Natriumhydrogensulfit oder Natriumdithionit, oder mit Hydrazin in Gegenwart von Raney-Nickel bei Temperaturen zwischen 0 und 100°C, vorzugsweise jedoch bei Temperaturen zwischen 20 und 60°C, durchgeführt.

b. Umsetzung einer Verbindung der allgemeinen Formel

$$R_{b}$$

in der

R_b und R_c wie eingangs erwähnt definiert sind und 21 eine Austrittsgruppe wie ein Halogenatom, z. B. ein Chloroder Bromatom, eine Alkylsulfinyl- oder Alkylsulfonylgruppe, z. B. eine Methylsulfinyl-, Methylsulfonyl- oder Ethylsulfonylgruppe, oder eine Thiocyanatogruppe darstellt, mit einer Verbindung der allgemeinen Formel

 R_a -NH-CO-O-C (CH₃)₃, (IV)

in der

R_a wie eingangs erwähnt definiert ist.

[0011] Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Tetrahydrofuran, Dioxan, Toluol, Dimethylformamid, Dimethylsulfoxid, Ethylenglycoldiethylether oder Sulfolan in Gegenwart einer Base, z. B. Natriumhydrid; Kalium-tert.butylat, Kaliumtrimethylsilanolat, Lithium-hexamethyldisilazid, Cäsiumcarbonat, 1,8-Diazabicyclo[5.4.0]undecen-7-en, Triethylamin, N-Ethyl-diisopropylamin oder Pyridin, wobei letztere gleichzeitig auch als Lösungsmittel dienen können, bei Temperaturen zwischen –60 und 150°C, vorzugsweise jedoch bei Temperaturen zwischen –20 und 80°C, durchgeführt.beispielsweise wird die Reaktion in Analogie zu dem von M. Zanda et al. publizierten Verfahren durchgeführt (Tetrahedron Letters 41, (2000) 1757–1761).

c. Umsetzung einer Verbindung der allgemeinen Formel

in de

R_a bis R_c wie eingangs erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

(CH₃)₃C-O-CO-Z₂, (VI)

in de

Z₂ eine Austrittsgruppe wie eine Azido- oder (CH₃)₃C-O-CO-Gruppe darstellt.

[0012] Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Methylenchlorid, Dimethylformamid, Benzol, Toluol, Chlorbenzol, Tetrahydrofuran oder Dioxan gegebenenfalls unter Zusatz einer anorganischen oder organischen Base, vorzugsweise unter Zusatz einer organischen Base wie Triethylamin oder N-Ethyl-diisopropylamin gegebenenfalls unter Zusatz von 4-Dimethylamino-pyridin, zweckmäßigerweise bei Temperaturen zwischen –20 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 80°C, durchgeführt. Die Umsetzung wird jedoch vorzugsweise mit Pyrokohlensäure-di-tert.butylester durchgeführt.

d. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine Hydroxygruppe darstellt: Abspaltung eines Schutzrestes von einer Verbindung der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃
 R_b
 R_b
 R_c

(VII)

5

35

in der 20

 R_a und R_c wie eingangs erwähnt definiert sind und R_b eine durch einen Schutzrest geschützte Hydroxygruppe bedeutet.

[0013] Vorzugsweise kommt als Schutzrest für die Hydroxygruppe eine Acylgruppe wie die Acetyl-, Trifluoracetyl-, Propionyl-, Butanoyl-, Pivaloyl- oder Benzoylgruppe in Betracht.

[0014] Die Abspaltung des verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wässrigen Lösungsmittel, z. B. in Wasser, Methanol/Wasser, Isopropanol/Wasser, Tetrahydrofuran/-Wasser oder Dioxan/Wasser, in Gegenwart einer Base wie Natriumhydroxid, Kaliumhydroxid oder Kaliumcarbonat bei Temperaturen zwischen 0 und 120°C, vorzugsweise bei Temperaturen zwischen 0 und 60°C.

[0015] Die Abspaltung des Schutzrestes kann jedoch auch mit einer Lösung von Ammoniak in Wasser, Methanol oder Ethanol in Gegenwart eines Alkalicarbonats wie Natrium- oder Kaliumcarbonat in einem Alkohol wie Methanol oder Ethanol durchgeführt werden.

[0016] e. Zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_e eine der eingangs erwähnten substituierten Oxygruppen darstellt:

Umsetzung einer Verbindung der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃

N

 R_b
 Z_3

(VIII)

in de

Ra und Rb wie eingangs erwähnt definiert sind und

Z3 eine Austrittsgruppe wie ein Fluor-, Chlor- oder Bromatom bedeutet, mit einem Alkohol der allgemeinen Formel

$$H-R_c$$
, (IX)

in der

R_{c'} eine der für R_c eingangs erwähnten substituierten Oxygruppen darstellt.

[0017] Die Umsetzung wird gegebenenfalls in einem Lösungsmittel oder Lösungsmittelgemisch wie Dimethylformamid, Dimethylsulfoxid, Benzol, Toluol, Ethylenglycoldimethylether, Tetrahydrofuran oder Dioxan gegebenenfalls unter Zusatz einer anorganischen oder organischen Base, vorzugsweise unter Zusatz einer metallorganischen Base wie Kalium-tert.butylat, Kaliumtrimethylsilanolat, Lithium-hexamethyldisilazid oder Kaliumisoamylat oder in Gegenwart von Natriumhydrid zweckmäßigerweise bei Temperaturen zwischen -60 und 100°C, vorzugsweise bei Temperaturen zwischen -20 und 60°C, durchgeführt.

[0018] Die Reaktion kann auch mit einem entsprechenden Alkali- oder Erdalkalialkoholat durchgeführt werden. So wird beispielsweise eine Verbindung der allgemeinen Formel I, in der Re eine Methoxygruppe darstellt, bevorzugt durch Umsetzung mit Natriummethanolat oder Methanol/Kalium-tert.butylat hergestellt.

[0019] Die erhaltenen Verbindungen der allgemeinen Formel I können in ihre Salze mit anorganischen oder organischen Säuren übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Methansulfonsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure oder Maleinsäure in Betracht.

[0020] Wie bereits eingangs erwähnt stellen die neuen Verbindungen der allgemeinen Formel I wertvolle Zwischenprodukte zur Herstellung von Verbindungen dar, die eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Si-

gnaltransduktion aufweisen.

5

10

[0021] Das nachfolgende Beispiel sollen die vorliegende Erfindung näher erläutern ohne diese zu beschränken:

Beispiel 1

4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin

[0022] 4-(3-Chlor-4-fluor-phenylamino)-6-nitro-chinazolin wird in Tetrahydrofuran mit 2 Äquivalenten Pyrokohlensäure-di-tert.butylester, 5 Äquivalenten N-Ethyl-diisopropylamin und einer katalytischen Menge 4-Dimethylamino-pyridin bei Raumtemperatur gerührt. Nach 48 Stunden wird eingeengt und der Rückstand durch Chromatographie gereinigt.

[0023] Analog Beispiel 1 und anderen literaturbekannten Verfahren werden folgende Verbindungen erhalten:

- (2) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
- (3) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
- 5 (4) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (5) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (6) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-methylcarbonyloxy-7-methoxy-chinazolin
 - (7) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7-methoxy-chinazolin
 - (8) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
- 20 (9) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (10) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxy]-6-nitro-chinazolin
 - (11) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxy]-chinazolin
- 25 (12) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclobutyloxy-6-nitro-chinazolin
 - (13) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclobutyloxy-chinazolin
 - (14) 4 [N-(3 Chlor- 4 f luor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-6-nitro-chinazolin
 - (15) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-chinazolin
 - (16) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-(tetrahydro-furan-3-yloxy)-chinazolin
- 0 (17) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydro-furan-3-yloxy)-chinazolin
 - (18) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-(tetrahydro-pyran-4-yloxy)-chinazolin (19) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydro-pyran-4-yloxy)-chinazolin
- (20) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-[(tetrahydro-furan-2-yl)methoxy]-chi-nazolin
 - (21) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[(tetrahydro-furan-2-yl)methoxy]-chinazolin
 - (22) 4-[N-(3-Brom-phenyl)-N-(tert,butyloxycarbonyl)-amino]-6-nitro-chinazolin
- (23) 6-Amino-4-[N-(3-brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
- 40 (24) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
 - (25) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (26) 6-Amino-4-[N-(3-brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (27) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
 - (28) 6-Amino-4-[N-{3-brom-phenyl}-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
- 45 (29) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin
 - (30) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
 - (31) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
 - (32) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-aminol-7-methoxy-6-nitro-chinazolin
 - (33) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
- 50 (34) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
 - (35) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (36) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin
 - (37) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
 - (38) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
- 5 (39) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (40) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (41) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin (42) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (43) 6-Amino-4-[N-((R)-1-phenyl-ethyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
- (44) 4-[N-((R)-1-Phenyl-ethyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7-methoxy-chinazolin
- (45) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-ethoxy-chinazolin
- (46) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-aminol-7-ethoxy-6-hydroxy-chinazolin

Patentansprüche

65

1. Chinazoline der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃
 R_b
 R_c
, (I)

5

10

15

25

30

45

65

in der

 R_a eine Benzyl- oder 1-Phenylethylgruppe oder eine durch die Reste R_1 bis R_3 substituierte Phenylgruppe, wobei R_1 und R_2 , die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Methoxy-, Cyan- oder Ethinylgruppe und

R₃ ein Wasserstoff-, Fluor- oder Chloratom darstellen,

R_b eine Hydroxy-, C₁₋₄-Alkylcarbonyloxy-, Amino- oder Nitrogruppe,

 R_c ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine C_{1-4} -Alkoxy-, C_{4-6} -Cycloalkoxy- oder C_{3-6} -Cycloalkyl- C_{1-3} -alkoxygruppe,

eine in β -, γ - oder δ -Stellung durch R_4 substituierte C_{2-4} -Alkoxygruppe, wobei

 R_4 eine Methoxy-, Ethoxy-, Dimethylamino-, Diethylamino-, Pyrrolidino-, Piperidino-, Morpholino-, 4-Methylpiperazino- oder 4-Ethylpiperazinogruppe darstellt,

eine $1-(C_{1-2}-\Lambda lkyl)$ -piperidin-4-yloxy-, $1-(C_{1-2}-\Lambda lkyl)$ -piperidin-4-ylmethoxy-, $2-[1-(C_{1-2}-\Lambda lkyl)$ -piperidin-4-yl]-ethoxy-, $3-[1-(C_{1-2}-\Lambda lkyl)$ -piperidin-4-yl]-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe bedeuten, deren Stereoisomere und deren Salze.

2. Chinazoline der allgemeinen Formel I gemäß Anspruch 1, in der

R_a eine 1-Phenylethylgruppe oder eine durch die Reste R₁ bis R₃ substituierte Phenylgruppe, wobei

R₁ und R₂, die gleich oder verschieden sein können, jeweils ein Wasserstoff-, Fluor-, Chlor- oder Bromatom, eine Methyl-, Trifluormethyl-, Cyan- oder Ethinylgruppe und

R₃ ein Wasserstoff- oder Fluoratom darstellen,

R_b eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

R_c ein Wasserstoff-, Fluor- oder Chloratom, eine Methoxy-, Ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopentyloxy-, Cyclopentyloxy-, Cyclopentyloxy-, Cyclopentyloxy-, Cyclopentylmethoxy-, Cyclopentylmethoxy-, 2-(Cyclopropyl)-ethoxy-, 2-(Methoxy)-ethoxy-, 3-(Methoxy)-propyloxy-, 2-(Ethoxy)-ethoxy-, 3-(Ethoxy)-propyloxy-, 2-(Diethylamino)-ethoxy-, 3-(Diethylamino)-propyloxy-, 2-(Pyrrolidino)-ethoxy-, 3-(Pyrrolidino)-propyloxy-, 2-(Piperidino)-ethoxy-, 3-(Piperidino)-propyloxy-, 2-(Morpholino)-ethoxy-, 3-(Morpholino)-propyloxy-, 2-(4-Methylpiperazino)-ethoxy-, 3-(4-Methylpiperazino)-propyloxy-, 1-Methylpiperidin-4-yloxy-, 1-Methylpiperidin-4-yloxy-, 1-Methylpiperidin-4-yloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-3-yloxy-, Tetrahydropyran-4-yloxy-, Tetrahydrofuranylmethoxy- oder Tetrahydropyranylmethoxygruppe bedeuten,

deren Stereoisomere und deren Salze.

3. Chinazoline der allgemeinen Formel I gemäß Anspruch 1, in der

R_a eine 1-Phenylethyl-, 3-Fluorphenyl-, 3-Chlorphenyl-, 3-Bromphenyl-, 3-Chlor-4-fluorphenyl-, 3-Methylphenyl-, 3-Trifluormethylphenyl-, 3-Cyanphenyl- oder 3-Ethinylphenylgruppe,

R_b eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

Re ein Wasserstoff-, Fluor- oder Chloratom,

eine Methoxy-, Ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclohexyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, Cyclohexylmethoxy-, 2-(Methoxy)-ethoxy-, 3-(Methoxy)-propyloxy-, 2-(Morpholino)-ethoxy-, 3-(Morpholino)-propyloxy-, 2-(1-Methylpiperidin-4-yl)-ethoxy-, 3-(1-Methylpiperidin-4-yl)-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydropyran-4-yloxy- oder Tetrahydrofuran-2-ylmethoxygruppe bedeuten

deren Stereoisomere und deren Salze.

4. Chinazoline der allgemeinen Formel I gemäß Anspruch 1, in der

R_a eine 1-Phenylethyl-, 3-Chlorphenyl-, 3-Bromphenyl-, 3-Chlor-4-fluorphenyl-, 3-Methylphenyl- oder 3-Ethinylphenylgruppe,

R_b eine Hydroxy-, Acetyloxy-, Amino- oder Nitrogruppe,

R_c ein Wasserstoff-, Fluor- oder Chloratom,

eine Methoxy-, Ethoxy-, Cyclobutyloxy-, Cyclopentyloxy-, Cyclopropylmethoxy-, Cyclobutylmethoxy-, 2-(Methoxy)-ethoxy-, 3-(Methoxy)-propyloxy-, 3-(Morpholino)-propyloxy-, 3-(1-Methylpiperidin-4-yl)-propyloxy-, Tetrahydrofuran-3-yloxy-, Tetrahydrofuran-4-yloxy- oder Tetrahydrofuran-2-ylmethoxygruppe bedeuten, deren Stereoisomere und deren Salze.

5. Folgende Verbindungen der allgemeinen Formel I gemäß Anspruch 1:

- (1) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin
- (2) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino-chinazolin
- (3) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
- (4) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
- (5) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin

- (6) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-methylcarbonyloxy-7-methoxy-chinazolin
- (7) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7-methoxy-chinazolin
- (8) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
- (9) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
- 5 (10) 4-[N-(3-Chlor-4-f luor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxy]-6-nitro-chinazolin
 - (11) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[3-(morpholin-4-yl)-propyloxyl-chinazolin
 - (12) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amine]-7-cyclobutyloxy-6-nitro-chinazolin
 - (13) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclobutyloxy-chinazolin
 - (14) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-6-nitro-chinazolin
 - (15) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-cyclopropylmethoxy-chinazolin
 - (16) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-(tetrahydro-furan-3-yloxy)-chinazolin
- (17) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydro-furan-3-yloxy)-chi-nazolin
 - (18) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-(tetrahydro-pyran-4-yloxy)-chinazolin
 - (19) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(tetrahydro-pyran-4-yloxy)-chinazolin
 - (20) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-7-[(tetrahydro-furan-2-yl)methoxy]-chinazolin
 - (21) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-[(tetrahydro-furan-2-yl)methoxy]-chinazolin
 - (22) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin
 - (23) 6-Amino-4-[N-(3-brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
 - (24) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
 - (25) 4 [N-(3 Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (26) 6-Amino-4-[N-(3-brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin (27) 4-[N-(3-Brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
 - (28) 6-Amino-4-[N-(3-brom-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (29) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-aminol-6-nitro-chinazolin
 - (30) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
 - (31) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
 - (32) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (33) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (34) 4-[N-(3-Methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
 - (35) 6-Amino-4-[N-(3-methyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (36) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-6-nitro-chinazolin
- 40 (37) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-chinazolin
 - (38) 4-[N-(3-Ethinyl-phenyl)-N-(tert,butyloxycarbonyl)-amino]-7-fluor-6-nitro-chinazolin
 - (39) 4-[N-(3-Ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-6-nitro-chinazolin
 - (40) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (41) 4-[N-(3-Ethinyl-phenyl)-N-itert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-6-nitro-chinazolin
 - (42) 6-Amino-4-[N-(3-ethinyl-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-(2-methoxy-ethoxy)-chinazolin
 - (43) 6-Amino-4-[N-((R)-1-phenyl-ethyl)-N-(tert.butyloxycarbonyl)-amino]-7-methoxy-chinazolin
 - (44) 4-[N-((R)-1-Phenyl-ethyl)-N-(tert.butyloxycarbonyl)-amino]-6-hydroxy-7-methoxy-chinazolin
 - (45) 6-Amino-4-[N-(3-chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-ethoxy-chinazolin
 - (46) 4-[N-(3-Chlor-4-fluor-phenyl)-N-(tert.butyloxycarbonyl)-amino]-7-ethoxy-6-hydroxy-chinazolin deren Stereoisomere und deren Salze.
 - 6. Verwendung einer Verbindung gemäß den Ansprüchen 1 bis 5 als Zwischenprodukt zur Herstellung einer Verbindung, die eine Hemmwirkung auf die durch Tyrosinkinasen vermittelte Signaltransduktion aufweist.
 - 7. Verfahren zur Herstellung einer Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß
 - a. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_b eine Aminogruppe darstellt, eine gegebenfalls im Reaktionsgemisch hergestellte Verbindung der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃
 N
 NO_2
 R_c
 (II)

in der

10

20

25

30

35

45

50

55

60

65

Ra und Rc wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, reduziert wird oder

b. eine-Verbindung der allgemeinen Formel

$$R_b$$
 R_c
, (III)

in der

Rb und Rc wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Z₁ eine Austrittsgruppe darstellt, mit einer Verbindung der allgemeinen Formel

$$R_a$$
-NH-CO-O-C(CH₃)₃, (IV)

10

35

65

in der R_a wie in den Ansprüchen 1 bis 5 erwähnt definiert ist, umgesetzt wird oder c. eine Verbindung der allgemeinen Formel

$$R_a$$
 H P_b R_c P_b P_c P_c

in der

Ra bis Rc wie in den Ansprüchen 1 bis 5 erwähnt definiert sind, mit einer Verbindung der allgemeinen Formel

 $(CH_3)_3C$ -O-CO- Z_2 , (VI)

in der

Z₂ eine Austrittsgruppe darstellt, umgesetzt wird oder

d. zur Herstellung einer Verbindung der allgemeinen Formel I, in der Rb eine Hydroxygruppe darstellt, ein Schutzrest von einer Verbindung der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃

N

 R_b

(VII)

 R_c

in der

 R_{a} und R_{c} wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

R_b eine durch einen Schutzrest geschützte Hydroxygruppe bedeutet, abgespalten wird oder

e. zur Herstellung einer Verbindung der allgemeinen Formel I, in der R_c eine der in den Ansprüchen 1 bis 5 erwähnten substituierten Oxygruppen darstellt, eine Verbindung der allgemeinen Formel

$$R_a$$
 CO-O-C(CH₃)₃

N

 R_b
 Z_3

(VIII)

in der

R_a und R_b wie in den Ansprüchen 1 bis 5 erwähnt definiert sind und

Z₃ eine Austauschgruppe bedeutet, mit einem Alkohol der allgemeinen Formel

H-R_c, (IX) in der

 $R_{c^{\prime}}$ eine der für R_{c} in den Ansprüchen 1 bis 5 erwähnten substituierten Oxygruppen darstellt, umgesetzt wird

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze übergeführt wird.