MATH 503: Mathematical Statistics Dr. Kimberly F. Sellers, Instructor Homework 1

- 1. If C_1 and C_2 are independent events, show that C'_1 and C_2 are also independent.
- 2. Find the constant c so that

$$p(x) = c\left(\frac{2}{3}\right)^x$$
, $x = 1, 2, 3, \dots$, zero elsewhere

is a pmf.

3. Determine the value of c that makes

$$f(x) = c\sin(x), \qquad 0 < x < \frac{\pi}{2}$$

a pdf.

- 4. Let X have a pmf $p(x) = \frac{1}{3}$, x = 1, 2, 3, zero elsewhere. Find the pmf of Y = 2X + 1.
- 5. Let X have a pdf $f(x) = \frac{x^2}{9}$, 0 < x < 3, zero elsewhere. Find the pdf of $Y = X^3$.
- 6. Let f(x) = 2x, 0 < x < 1, zero elsewhere, be the pdf of X.
 - (a) Compute E(1/X).
 - (b) Find the cdf and the pdf of Y = 1/X.
 - (c) Compute E(Y) and compare the result with the answer obtained in Part (a).
- 7. Let X be a random variable with a pdf f(x) and mgf M(t). Suppose f is symmetric about 0, i.e. f(-x) = f(x). Show that M(-t) = M(t).
- 8. Let X_1 and X_2 be two independent random variables. Suppose that X_1 and $Y = X_1 + X_2$ have Poisson distributions with means μ_1 and $\mu > \mu_1$, respectively. Find the distribution of X_2 .
- 9. Suppose X is a random variable with the pdf f(x) which is symmetric about 0, i.e. f(-x) = f(x). Show that F(-x) = 1 F(x), for all x in the support of X.

- 10. Let X_n have a gamma distribution with parameter $\alpha = n$ and β , where β is not a function of n. Let $Y_n = X_n/n$. Find the limiting distribution of Y_n .
- 11. The Pareto distribution, with parameters α and β , has pdf

$$f(x) = \frac{\beta \alpha^{\beta}}{x^{\beta+1}}, \quad \alpha < x < \infty, \quad \alpha > 0, \quad \beta > 0.$$

- (a) Verify that f(x) is a pdf.
- (b) Derive the mean of this distribution.