ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ИРАКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Д.В. БУША»

Арбузолитейный факультет

Специальность «Фундаментальный исламизм и физическая софистика»

Кафедра общей демократии

Дипломная работа

ВОССТАНОВЛЕНИЕ АРХИТЕКТУРЫ РАЗРУШЕННЫХ ГОРОДОВ ПО МНОГОБАХЧЕВЫМ ДЫННЫМ ПОЛЯМ МЕТОДОМ ВСЕОБЩЕГО ГОЛОСОВАНИЯ

«К защите допущен»:	
Зав. кафедрой общей демократии, профессор, д.фм.н.	Иванов И.И.
Научный руководитель, профессор, в.н.с. ЁКЛ ЭМЭН, д.фм.н.	Петров П.П.
Рецензент, зав. лаб. ЖЗ ИКЛ, д.фм.н.	Сидоров С.С.
Консультант по технике безопасности, ассистент	
каф. софистики	Рейсфейдер Р.Р.
Дипломник	Ватманн В.В.

Содержание

Глава I.	Введение	3
Глава II.	Основные определения	4
Глава III.	Формулы	4
3.1. Ан	алитический функтор для h-species	4
3.2. Де	котигорификация аналитического функтора (Фробениусова	
xap	рактеристика / Цикленный индекс)	5
3.3. Ци	кленный индекс композиции	7

Глава I. Введение

Гипероктаэдральные или кубические комбинаторные виды — развите идеи комбинаторных типов (species). Мы будем обозначать их h-species для краткости. ТООО:добавить введение (видимо взять часть из Bergeron)

План: Изложить теорию для species, параллельно строить ее для h-species species — сложение умножение — аналитический функтор — композиция аналитических функторов — композиция species — декатегорификация аналитического функтора — примеры

Глава II. Основные определения

species HSet h-species аналитический функтор

Глава III. Формулы

3.1. Аналитический функтор для h-species

Аналитический функтор \mathcal{F} соответствующий species F является продуктивной конструкцией, позволяющей определить композиционное произведение species. Вводить его можно разными способами, мы ограничимся универсальным свойством и явной конструкцией (TODO: дописать и возможно добавить определение Дурова). Аналитический функтор является левым расширением по Кану функтора F относительно i.

Эта диаграмма не коммутативна, а почти коммутативна. Иммется в виду, что из F существует естественное преобразование в $i \circ \mathcal{F}$. Это естественное преобразование обозначим κ . Универсальность заключаеться в том, что для любого функтора $M \colon Set \to Set$ и морфизма функторов $\eta \colon F \to i \circ M$ этот морфизм пропускаеться через \mathcal{F} при помощи κ .

Явная формула для аналитического функтора. Для доказательства см (TODO)

$$\mathcal{F} = \sum_{n} F[n] \times A^{n} / S_{n} \tag{3.1}$$

Хочется построить аналог аналитического функтора для h-species

$$\mathcal{F} = \sum_{n} F[\bar{n}] \times A^{\bar{n}}/B_n \tag{3.2}$$

Где $A^{\bar{n}}$ задает отображение, сохраняющее инволюцию.

TODO:Здесь нужно добавить проверук универсальности картинки

3.2. Декотигорификация аналитического функтора (Фробениусова характеристика / Цикленный индекс)

3.2.1. Случай обычных species

Напомним ситуацию с обычными species. Надо устроить морфизм из моноидальной категории (категории с тензорным произведением) в какую-нибудь алгебру функций. Мы вводим весовую функцию таким образом что орбита раскрашенной структуры под действием S_n имеет один и тот же вес. После этого можно задать вопрос о коэфициенте при мономе, отвечающем весу. Это будет число орбит с заданной весовой функцией. По Лемме Бернсайда это то же самое, что и усредненное число неподвижных точек по всем элементам группы. Чтобы раскрашенная структура была неподвижна под действием перестановки σ нужно, чтобы во-первых она была неподвижна как не раскрашенная структура, а во-вторых расскраска должна переходить в себя. В качестве весовой функции выбираем моном возникающий в произведении переменных отвечающим цветам. Например расскраске в которой 2 первых цвета и 1 второй соответсвует моном $x_1^2x_2$. Тогда первое условие дает нам сомножитель $\chi(\sigma)$, где характер это характер соответствующего перестановочного представления с базисом из структур. Второе условие требует покраски каждого цикла в один и тот же цвет. Итоговая формула называеться фробениусовой характеристикой / цикленным индексом. Она считает количество неподвижных раскрашенных структур в среднем.

$$\mathcal{Z}_F = \sum_n \frac{1}{n!} \sum_{\sigma \in S_n} \chi(\sigma) \psi^{\lambda(\sigma)} = \sum_{n, \lambda \vdash n} \chi(\sigma_\lambda) \frac{\psi^\lambda}{z_\lambda}$$
 (3.3)

Где χ — характер (перестановочного) представления заданного F, σ — перестановка цикленного типа λ , $\psi^{\lambda} = (x_1^{\lambda_1} + x_2^{\lambda_1} + x_3^{\lambda_1} + \dots)(x_1^{\lambda_2} + x_2^{\lambda_2} + x_3^{\lambda_2} + \dots)(x_1^{\lambda_3} + x_2^{\lambda_3} + x_3^{\lambda_3} + \dots) \dots, z_{\lambda}$ — индекс класса сопряженности σ . Появляется она из следующих соображений: в числителе стоит симметрическая функция считающая все неподвижные раскраски. Цвета это x_1, x_2, x_3, \dots

3.2.2. Случай h-species

Попробуем построить аналогичную конструкцию для h-species. Прежде всего отметим, что расскраска, элемент $A^{\bar{n}}$, это отображение, сохраняющее инволюцию. Значит элементы n и -n должны отображаться либо в один и тот же элемент A (который инволюцией переводиться в себя), либо в пару элементов сопряженных инволюцией. Будем называть первый случай моно-цветом, второй — бицветом.

Покрашенные структуры сами по себе также будут являться либо моноцветом, либо бицветом. Это по-прежнему определяется длинной орбиты инволюции A, уже после факторизации по B_n . То есть кроме действия B_n есть еще внешняя инволюция — действие Z_2 .

Цикленный индекс, считающий только моноцветные структуры будем обозначать $\mathcal{Z}^{(1)}$, бицветные — $\mathcal{Z}^{(2)}$. Количество орбит под действием $H_n \times Z_2$ соответствует $\mathcal{Z}^{(1)} + \mathcal{Z}^{(2)}$, а под действием только H_n соответствует $\mathcal{Z}^{(1)} + 2\mathcal{Z}^{(2)}$. Поскольку каждый бицвет будет посчитан два раза.

В качестве H-множества цветов возьмем счетное множество моноцветов x_1, x_2, x_3, \ldots объединенное с счетным множеством бицветов y_1, y_2, y_3, \ldots

Допустим, что мы придумали весовую функцию, отправляющую каждую расскрашенную структуру в моном и любая орбита отправляеться в один моном. Применив Лемму Бернсайда переходим к подсчету неподвижных точек. Циклы в каждом элементе H_n бывают двух типов: длинные — каждая грань входит в цикл вместе со своей противоположной гранью и короткие — пара граней лежит в симметричных, различных циклах.

Посчитаем количество количество неподвижных точек для H_n . Пусть λ^1 — цикленный тип коротких перестановок, λ^2 — цикленный тип длинных перестановок. Утверждение: неподвижные раскрашенные структуры, это в точности те, у которых длинный цикл соответсвует моноцвету, а пара симметричных коротких может быть покрашена либо в моноцвет, либо в бицвет.

Это можно выразить такой формулой:

$$\mathcal{Z}_{F}^{(1)} + 2\mathcal{Z}_{F}^{(2)} = \sum_{n} \frac{1}{2^{n} n!} \sum_{\sigma \in B_{n}} \chi(\sigma) \psi_{x,y}^{\lambda^{1}(\sigma)} \psi_{x}^{\lambda^{2}(\sigma)} = \sum_{n,\lambda^{1} + \lambda^{2} \vdash n} \chi(\sigma_{\lambda^{1} \lambda^{2}}) \frac{\psi_{x,y}^{\lambda^{1}} \psi_{x}^{\lambda^{2}}}{z_{\lambda^{1} \lambda^{2}}}$$

$$(3.4)$$

Здесь нижний индекс ψ означает переменные по которым берется степенная сумма. Например $\psi_{x,y}^2=(x_1^2+x_2^2+x_3^2+\cdots+y_1^2+y_2^2+y_3^2+\dots).$

Посчитаем количество количество неподвижных точек для $H_n \times Z_2$. Разобъем сумму на две части — $(h,\bar{0})$ и $(h,\bar{1})$. Для первой формула будет аналогична 3.4, только из-за того что порядок группы в 2 раза больше, появится коофициент $\frac{1}{2}$.

Во второй части по-прежнему можно красить и длинные и короткие циклы в моноцвет. А вот с бицветом происходит любопытная вещь — предположим мы красим цикл (пару циклов в него). Тогда добавляется смена грани на каждом шаге, а значит для циклов нечетной длинны сменится свойство короткий—длинный. Итоговая формула такая

$$\frac{1}{2} \sum_{n,\lambda_1^1 + \lambda_1^2 + \lambda_2^1 + \lambda_2^2 \vdash n} \chi(\sigma_{\lambda_1^1 \lambda_1^2 \lambda_2^1 \lambda_2^2}) \frac{\psi_{x,y}^{\lambda_2^1 + \lambda_1^2} \psi_x^{\lambda_2^2 + \lambda_1^1}}{z_{\lambda_1^1 \lambda_1^2 \lambda_2^1 \lambda_2^2}}$$

 Γ де λ_1 — циклы нечетной длинны, λ_2 — циклы четной длинны.

3.3. Цикленный индекс композиции

3.3.1. Случай обычных species

Аналитический функтор позволяет дать определние композиционного произведения двух структур. Рассмотрим два species F и G. По ним можно построить аналитические функторы \mathcal{F} и \mathcal{G} . Композиция этих функторов снова будет анлитическим функтором $\mathcal{F} \circ \mathcal{G}$. Доказательство его аналитичности можно найти в [TODO: где или взять доказательство Дурова]. Species который соответсвует цикленному индексу $\mathcal{F} \circ \mathcal{G}$ и будет называться $F \circ G$. У этого определения есть простая, наглядная комбинаторная интерпретация: каждую точку структуры F раздуваем(красим) в структуру типа G. Чудесный факт заключается в том, что в декатегорификации композиция соответ-

ствует простой формуле подстановке. Сейчас мы ее напишем и приведем набросок доказательства. В качестве множества цветов A рассмотрим счетный набор цветов x_1, x_2, x_3, \ldots Цикленный индекс запишем относительно базиса кольца симметрических функций $\psi^1, \psi^2, \psi^3, \ldots$

$$\mathcal{Z}_{F \circ G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots) = \\
\mathcal{Z}_{F}(\mathcal{Z}_{G}(\psi^{1}, \psi^{2}, \psi^{3}, \dots), \mathcal{Z}_{G}(\psi^{2}, \psi^{4}, \psi^{6}, \dots), \mathcal{Z}_{G}(\psi^{3}, \psi^{6}, \psi^{9}, \dots), \dots) (3.5)$$

В композиции двух аналитических функторов получается, что цвета в которые мы красим структуру F это структуры типа G. То есть $\mathcal{Z}_{F\circ G}=\mathcal{Z}_F(\psi_g^1,\psi_g^2,\psi_g^3,\dots)$, где $\psi_g^i=(g_1^i+g_2^i+g_3^i+\dots)$, где g_i — перечисление всех структур типа G. Нужно раскрыть переменные g_i — написать их относительно начальных цветов. Формулу $\psi_g^i=\mathcal{Z}_G(\psi^i,\psi^{2i},\psi^{3i},\dots)$ легко понять в переменных x_1,x_2,x_3,\dots Мы должны покрасить i кусков в одну и ту же G-структуру. Значит каждый цвет x_j заменяется на x_i^i .

Формулу 3.5 можно специализировать для подсчета labeled—структур. То есть покрашенных структур у которых нет двух одинаковых цветов в расскраске. Соответсвующие мономы (в базисе x_1, x_2, x_3, \ldots) возникают только при раскрытии мономов вида $c(\psi^1)^k$ и коэффициент в них равен ck! — такой же как при мономе с точностью до факториала. Этот факториал приводит к необходимости рассматривать экспоненциальные производящие функции вместо обычных. Можно занулить все остальные мономы подстановкой $\psi^1 = t, \psi^2 = 0, \psi^3 = 0, \psi^4 = 0$. Формула 3.5 примет вид $\mathcal{Z}_{F\circ G}(t,0,0,\ldots) = \mathcal{Z}_F(\mathcal{Z}_G(t,0,0,\ldots),0,0,\ldots)$. А значит для экспоненциальных производящих функции labeled-структур справедливо равенство

$$(f \circ g)(t) = f(g(t)) \tag{3.6}$$

А поскольку labeled структур ровно в k! раз больше, чем unlabeled, то равенство 3.6 справедливо для обыкновенных производящих функций unlabeled структур.

3.3.2. Случай h-species

Теперь попробуем выстроить теорию композиции цикленного индекса для h-species, параллельно теории species. Прежде всего отметим, что инволюция на множестве цветов делит их на моноцвета (x_1, x_2, x_3, \dots) и бицвета (y_1, y_2, y_3, \dots) . Однако, формула ?? подсказывает что в качестве базиса можно брать не ψ_x^i, ψ_y^j а $\psi_x^i, \psi_{x,y}^j$. Впрочем это тривиальная замена переменных, поскольку $\psi_{x,y}^j = \psi_x^j + \psi_y^j$. Итак мы хоти понять чему равняется

$$\mathcal{Z}_{F \circ G}(\psi_x^1, \psi_x^2, \psi_x^3, \dots, \psi_{x,y}^1, \psi_{x,y}^2, \psi_{x,y}^3, \dots)$$

Предположение [TODO: заменить на утверждение] такое:

$$\mathcal{Z}_{F\circ G}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y}^{1}, \psi_{x,y}^{2}, \psi_{x,y}^{3}, \dots) = \\
\mathcal{Z}_{F}(\mathcal{Z}_{G}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots), \\
\mathcal{Z}_{G}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots), \\
\mathcal{Z}_{G}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{x}^{9}, \dots, \psi_{x}^{3}, \psi_{x}^{6}, \psi_{x}^{9}, \dots), \\
\dots, \\
\mathcal{Z}_{G}(\psi_{x}^{1}, \psi_{x}^{2}, \psi_{x}^{3}, \dots, \psi_{x,y}^{1}, \psi_{x,y}^{2}, \psi_{x,y}^{3}, \dots), \\
\mathcal{Z}_{G}(\psi_{x}^{2}, \psi_{x}^{4}, \psi_{x}^{6}, \dots, \psi_{x,y}^{2}, \psi_{x,y}^{4}, \psi_{x,y}^{6}, \dots), \\
\mathcal{Z}_{G}(\psi_{x}^{3}, \psi_{x}^{6}, \psi_{x}^{9}, \dots, \psi_{x,y}^{3}, \psi_{x,y}^{6}, \psi_{x,y}^{9}, \dots), \\
\dots)$$

$$(3.7)$$

Эта формула слишком грамоздкая, поэтому давайте напишем ее на уровне членов:

$$\psi_x^i \circ \mathcal{Z}_G = Z_G(\psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots, \psi_x^i, \psi_x^{2i}, \psi_x^{3i}, \dots)$$

Нужно понять в каком случае расскрашенная структура являеться бицветом, а в каком моноцветом. Утверждается, что структура будет бицветом, если при ее расскраске использовался хотя бы один бицвет [TODO б) она не переводиться инволюцией в себя (как нерасскрашенная структура) — но у нас ведь все склеено по орбитам, значит это будет та же самая структура]. Зна-

чит цикленный индекс отвечающий моноцветам получается, после обнуления y_i .

$$\psi_{x,y}^{i} \circ \mathcal{Z}_{G} = Z_{G}(\psi_{x}^{i}, \psi_{x}^{2i}, \psi_{x}^{3i}, \dots, \psi_{x,y}^{i}, \psi_{x,y}^{2i}, \psi_{x,y}^{3i}, \dots)$$

Можно сказать что цикленный индекс для бицветных структур — это разность полного цикленного индекса и моноцветных. Но, поскольку в $\psi_{x,y}^i$ входит сумма бицветного и моноцветного индексов, то как раз и получается, что нужно подставлять полный цикленный индекс.

Давайте попробуем оставить только мономы отвечающие bilabeled-структурам. Это значит занулить все x_i и сделать подстановку $\psi_y^1 = t, \psi_y^2 = 0, \psi_y^3 = 0$. Получившаяся формула показывает, что 3.6 справедливо для экспоненциальных производящих функций bilabeled-структур со всеми вытекающими последствиями.