Escuela Técnica Superior de Ingeniería de Telecomunicación de Barcelona

CONTROL DE TRANSMISIÓN DE DATOS 22 de mayo de 2008

NOTAS IMPORTANTES:

- 1.- No se responderá ninguna pregunta acerca del enunciado o su interpretación. El alumno responderá según su criterio, especificando en sus respuestas las hipótesis que realice.
- 2.- Se valorará la justificación, discusión y claridad de los resultados.
- 3.- Los resultados no reflejados en la hoja de resultados anexa no serán tenidos en cuenta.
- 4.- Un error conceptual grave puede anular todo el problema.
- 5.- Nótese que los problemas constan de distintas partes que pueden resolverse por separado. Se recomienda saltar aquellas partes que no sepan resolverse.

Problema 1 (40%)

Se dispone de dos fuentes binarias de datos (α y β) caracterizadas por las probabilidades:

$$Fte_{\alpha}$$
: $p(A) = 0.85$
 Fte_{β} : $p(A|A) = 0.95$, $p(B|B) = 0.85$

También se dispone de dos canales binarios (a y b) caracterizados por las probabilidades:

$$Can_a$$
: $p(0) = 0.85$ (probabilidad de NO error)
 Can_b : $p(0|0) = 0.95$, $p(1|1) = 0.85$

Se pide:

- a) El valor de las entropías de ambas fuentes (H_{α}, H_{β}) (3 puntos)
- b) El valor de las capacidades de ambos canales (C_a, C_b) (4 puntos)
- c) Justifique qué emparejamiento de fuentes-canales realizaría (3 puntos)

Problema 2 (20%)

Un usuario RSA tiene por exponente público e=3 y por módulo n=110107021. Sabiendo que $42518^2 \equiv 12497^2 \mod n$ encuentre el exponente privado d del usuario.

Problema 3 (10%)

Un criptógrafo pretende diseñar un cifrador bloque de 8 bits. ¿Cuál es el tamaño mínimo de clave para que el cifrador pueda ser perfectamente aleatorio?

Nota.- Úsese la fórmula de Stirling para el factorial:
$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

SIGUE DETRÁS

Problema 4 (30%)

Sabiendo que, según el Teorema Chino de los Restos, el sistema de congruencias:

$$\begin{cases} x_1 = X \bmod n_1 \\ x_2 = X \bmod n_2 \\ x_3 = X \bmod n_3 \end{cases}$$

tiene por solución:

$$X = (x_1 I_{2,3}^1 n_2 n_3 + x_2 I_{1,3}^2 n_1 n_3 + x_3 I_{1,2}^3 n_1 n_2) \operatorname{mod}(n_1 n_2 n_3)$$

si los números n_1 , n_2 y n_3 son primos dos a dos.

Se pide:

a) Encuentre de forma razonada cómo deben calcularse los valores $I_{2,3}^1, I_{1,3}^2, I_{1,2}^3$ (4 puntos)

Si se envía el mismo mensaje M en secreto a tres usuarios RSA que comparten el mismo exponente público e=3 y con módulos $n_1=4033$, $n_2=4223$, $n_3=4343$, se obtienen los criptogramas $c_1=1022$, $c_2=1678$, $c_3=1341$

- b) Encuentre el valor concreto de $I_{1,2}^3$ (3 puntos)
- c) Sabiendo que $I_{2,3}^1 = 3191$, $I_{1,3}^2 = 1609$ Sabiendo encuentre el valor de M usando el *Teorema Chino de los Restos* (3 puntos)