Charity Funding Predictor Report

1. Overview

The non-profit foundation Alphabet Soup wants to select applicants for its charity funding program, and for this, the foundation needs to find a system that will help it choose the right ventures. Therefore, with my knowledge of machine learning and neural network, I will target some features on the dataset provided by the foundation by using the appropriate machine learning model to create a binary classifier that can predict whether the selected ventures will succeed after receiving the fund.

I started analysing historical funding data about the 34,000 organisations that have received funding from Alphabet Soup over the years. The dataset contains 12 columns that capture metadata about each beneficiary.

2. Results

Data pre-processing

I started my data pre-processing by removing irrelevant dataset features like EIN and NAME, which dropped the columns to 10.

The target variable of the model was IS_SUCCESSFUL which has a value of 1 for yes; the funding was used effectively, and 0 for no; it wasn't. Also, the same variable was the feature column chosen for the model (represented by y, the dependent variable)

Compiling, Training, and Evaluating the Model

```
# Define the model - deep neural net, i.e., the
number_input_features = len(X_train_scaled[0])
                                               the number of input features and hidden nodes for each layer.
nn = tf.keras.models.Sequential()
nn.add(tf.keras.layers.Dense(units=80, activation="relu", input dim = number input features))
nn.add(tf.keras.layers.Dense(units=30, activation="relu"))
nn.add(tf.keras.layers.Dense(units= 1, activation="sigmoid"))
# Check the structure of the model
nn.summary()
Model: "sequential"
                             Output Shape
Layer (type)
                                                           Param #
 dense (Dense)
                            (None, 80)
                                                          3520
dense_1 (Dense)
                            (None, 30)
                                                           2430
dense 2 (Dense)
                             (None, 1)
                                                           31
Total params: 5,981
Trainable params: 5,981
Non-trainable params: 0
```

I chose those hyperparameters to increase the neural network model's performance and speed.

However, the figure below shows that the model didn't perform well.

```
: # Compile the model
 nn.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
: # Train the model
 fit_model = nn.fit(X_train_scaled, y_train, epochs=100)
 Epoch 61/100
 804/804 [====
             Epoch 62/100
               804/804 [====
 Epoch 63/100
 804/804 [====
            Epoch 64/100
 804/804 [====
             Epoch 65/100
 804/804 [====
                ========] - 1s 1ms/step - loss: 0.5367 - accuracy: 0.7399
 Epoch 66/100
 804/804 [====
                =======] - 1s 1ms/step - loss: 0.5365 - accuracy: 0.7387
 Epoch 67/100
 804/804 [====
              Epoch 68/100
 804/804 [====
              =========] - 1s 1ms/step - loss: 0.5366 - accuracy: 0.7393
 Epoch 69/100
 # Evaluate the model using the test data
 model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
 print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
 268/268 - 0s - loss: 0.5616 - accuracy: 0.7298 - 187ms/epoch - 699us/step
 Loss: 0.5615804195404053, Accuracy: 0.7297959327697754
```

The model achieves an accuracy of 73%, far below the 85% accuracy required for a basic model. Another factor to point out is the loss, which value is high.

To improve the performance, I built another model starting by dropping four columns from the initial dataset: EIN, NAME, SPECIAL_CONSIDERATION and USE_CASE and increased the number of neurons in the two hidden layers, as you can see in the following figure.

```
# Define the model - deep neural net, i.e.
                                            the number of input features and hidden nodes for each layer.
number\_input\_features = len(X\_train\_scaled[0])
nn = tf.keras.models.Sequential()
# First hidden Laver
nn.add(tf.keras.layers.Dense(units=90, activation="relu", input_dim = number_input_features))
# Second hidden Layer
nn.add(tf.keras.layers.Dense(units=50, activation="relu"))
nn.add(tf.keras.lavers.Dense(units= 1, activation="sigmoid"))
# Check the structure of the model
nn.summary()
Model: "sequential"
Layer (type)
                             Output Shape
                                                        Param #
dense (Dense)
                             (None, 90)
                                                       3330
dense_1 (Dense)
                             (None, 50)
                                                       4550
dense_2 (Dense)
                             (None, 1)
                                                       51
Total params: 7,931
Trainable params: 7,931
Non-trainable params: 0
```

However, the performance has not improved; the loss and accuracy values worsened slightly.

```
# Train the model
fit_model = nn.fit(X_train_scaled, y_train, epochs=100)
Epocn 91/100
 804/804 [=====
            -----] - 3s 4ms/step - loss: 0.5414 - accuracy: 0.7371
 Epoch 92/100
 804/804 [====
            Epoch 93/100
 804/804 [===:
                     Epoch 94/100
 804/804 [====
                 =======] - 3s 3ms/step - loss: 0.5408 - accuracy: 0.7376
 Epoch 95/100
 804/804 [====
                  Epoch 96/100
 804/804 [====
                    =======] - 3s 3ms/step - loss: 0.5405 - accuracy: 0.7368
 Epoch 97/100
 804/804 [====
                 Epoch 98/100
 804/804 [====
                     =======] - 3s 3ms/step - loss: 0.5404 - accuracy: 0.7374
 Epoch 99/100
 804/804 [====
                =======] - 3s 3ms/step - loss: 0.5406 - accuracy: 0.7369
 Epoch 100/100
 804/804 [=====
              # Evaluate the model using the test data
 model_loss, model_accuracy = nn.evaluate(X_test_scaled,y_test,verbose=2)
 print(f"Loss: {model_loss}, Accuracy: {model_accuracy}")
 268/268 - 1s - loss: 0.5659 - accuracy: 0.7264 - 961ms/epoch - 4ms/step
 Loss: 0.5659346580505371, Accuracy: 0.7264139652252197
```

3. Summary

The model's best result employing the different numbers of neurons and layers was a 73% accuracy for the ReLU and sigmoid. The value could be improved by considering other processes, such as using a different model, increasing the number of layers, or dropping more columns in the dataset. Concerning the recommendation, I would suggest accessing a better dataset.