

Basics of Algorithm Design and Analysis

전혀 새로운 아이디어를 갑자기 착상하는 일이 자주 있다. 하지만 그것을 착상하기까지 오랫동안 끊임없이 문제를 생각한다. 오랫동안 생각한 끝에 갑자기 답을 착상하게 되는 것이다.

- 라이너스 폴링

Good Algorithm

Should be clear

- Easy to understand, and simple, if possible
- Overly symbolic representation is often hard to understand
- If clear, natural language is also okay

Should be efficient

An algorithm may take a billion times longer than another for a same problem

```
sample(A[], n):

...

sum \leftarrow 0

for i \leftarrow 1 to n

sum \leftarrow sum + A[i]

avg \leftarrow sum / n

...
```

```
sample(A[], n):

avg \leftarrow the average of A[1...n]

...
```

Running Times

Running time

Problem size(n)

Running Times

Running time

크게 증가한다는 느낌 갖기

	n					
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	103	104	105	10 ⁶
n * log ₂ n	30	664	9,965	105	106	10 7
n²	10 ²	104	106	108	1010	10 12
n ³	10 ³	10 ⁶	10 ⁹	1012	10 15	10 ¹⁸
2 ⁿ	10 ³	1030	1030	103,0	10 10 30,	103 10 301,030

Criteria for Running Times

There are diverse criteria examples:

- # of for/while loop iterations
- # of visiting a particular line
- # of calls for a particular function

- ...

```
factorial(n):

if n = 0 or n=1 return 1

else return n * factorial(n-1) *
```

```
\begin{array}{c} \mathbf{sample}(n): \\ \mathbf{sum} \leftarrow 0 \\ \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ n - 1 \\ \mathbf{for} \ j \leftarrow i + 1 \ \mathbf{to} \ n \\ \mathbf{sum} \leftarrow \mathbf{sum} + \mathbf{A}[i] * \mathbf{A}[j] \\ \mathbf{return} \ \mathbf{sum} \end{array}
```

sample1(A[],
$$n$$
):

$$k = \lfloor n/2 \rfloor$$
return A[k]

 \checkmark constant time, independent of n

```
sample2(A[], n):

sum ← 0

for i ← 1 to n

sum ← sum + A[i]

return sum
```

 \checkmark proportional to n

```
sample3(A[], n):

sum \leftarrow 0

for i \leftarrow 1 to n

for j \leftarrow 1 to n

sum \leftarrow sum + A[i]*A[j]

return sum
```

```
sample4(A[], n):
sum ← 0
for i ← 1 to n
for j ← 1 to n
k ← choose at random \left\lfloor \frac{n}{2} \right\rfloor elements out of A[1 ... n]
and take the maximum sum ← sum + k
return sum
```

```
sample5(A[], n):
sum \leftarrow 0
for \ i \leftarrow 1 \ to \ n
for \ j \leftarrow i \ to \ n
sum \leftarrow sum + A[i]*A[j]
return \ sum
```



```
factorial(n):
    if (n=1) return 1
    return n*factorial(n-1)
```

 \checkmark proportional to n

```
sample7(A[], n):

if (n > 1)

sum \leftarrow 0

for i \leftarrow 1 to n

sum \leftarrow sum+ A[i]

return (sum + sample7(A, n-1))
```

Recursion and Inductive Thinking

Recursion

calling itself

Recursive structure

- A problem contains the same problem(s) of smaller size(s)
- e.g. 1: factorial
 - $N! = N \times (N-1)!$
- e.g. 2: recurrence in progression
 - $a_n = a_{n-1} + 2$ (arithmetic progression)

Example of Recursion: Mergesort

- √ ②, ③: recursive calls
- ✓ 10, 41: overhead for weaving recursive relation

Why Do We Analyze an Algorithm

- To guarantee integrity, correctness
- Efficiency of using resources
 - Resources
 - Time
 - Memory, network bandwidth, ...

Algorithm Analysis

- Small problems
 - Efficiency is not a big issue
 - Non-efficient algorithms are also okay
- Large-enough problems
 - Efficiency is critical
 - Non-efficient algorithms might be fatal
- Asymptotic analysis
 - Analysis for large-enough problems

Asymptotic Analysis

- Analysis for large-enough problems
- You already encountered some examples

$$\lim_{n\to\infty}f(n)$$

• Ω , Ω , Θ , ω , o-notations

Asymptotic Notations점근적 표기법

O()

O(g(n)) – big Oh

- Set of functions growing at most at the ratio of g(n)
- e.g., O(n), $O(n \log n)$, $O(n^2)$, $O(2^n)$, ...
- Formal definition
 - $O(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, f(n) \le cg(n) \}$
 - In practice, we use f(n) = O(g(n)) instead of $f(n) \in O(g(n))$
- Intuitive meaning
 - $f(n) = O(g(n)) \Rightarrow f$ grows no faster than g
 - Difference in a constant ratio is negligible
- Examples
 - $O(n^2) = \{3n^2 + 2n, 7n^2 100n, n\log n + 5n, 3n, \ldots\}$

$\Omega(g(n))$ – big Omega

- Set of functions growing at least at the ratio of g(n)
- Symmetric to O(g(n))
- Formal definition

$$-\Omega(g(n)) = \{ f(n) \mid \exists c > 0, n_0 \ge 0 \text{ s.t. } \forall n \ge n_0, f(n) \ge cg(n) \}$$

- Intuitive meaning
 - $f(n) = \Omega(g(n)) \Rightarrow f$ grows no slower than g
- Examples

$$-\Omega(n^2) = \{3n^2 + 2n, 7n^2 - 100n, n^3 + n\log n + 5n, 2^n + 3n, \ldots\}$$

$$\Theta(g(n))$$
 – big Theta

- Set of functions growing at the same ratio of g(n)
- Formal definition

$$- \Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$$

- Intuitive meaning
 - $f(n) = \Theta(g(n)) \Rightarrow f$ grows at the same ratio to g
- Examples

$$-\Theta(n^2) = \{7n^2 + 9n + 4, 15n^2 - 100n, 2n^2 - 1000n, \ldots\}$$

$$o(g(n))$$
 – little oh

- Set of functions growing at a lower ratio than g(n)
- Formal definition

$$- o(g(n)) = \{ f(n) \mid \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \}$$

- Intuitive meaning
 - $f(n) = o(g(n)) \Rightarrow f \text{ grows slower than } g$
- Examples

$$-o(n^2) = \{9n + 4, 100n\log n + 25n, 2n - 1000, 5n^{1.99} + 17n + 4, \dots\}$$

$\omega(g(n))$ – little omega

- Set of functions growing at a greater ratio than g(n)
- Formal definition

$$- \omega(g(n)) = \{ f(n) \mid \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \}$$

- Intuitive meaning
 - $f(n) = \omega(g(n)) \Rightarrow f$ grows faster than g
- Examples

$$-\omega(n^2) = \{3n^2\log 3n + 2n, 7n^3 - 100n, n^4 + n\log n + 5n, 2^n + 3n, 0.5n^{2.01} - 59n - 45, \ldots\}$$

An example

```
sample3(A[], n):

sum ← 0

for i \leftarrow 1 to n

for j \leftarrow 1 to n

sum ← sum + A[i]*A[j]

return sum
```

$$O(n^2)$$
: O

$$O(n^3)$$
: O

$$\Omega(n^2)$$
: O

$$\Omega(n)$$
: O

$$\Omega(n^3)$$
: X

$$\Theta(n^2)$$
: O

$$\Theta(n)$$
: X

$$\Theta(n^3)$$
: X

The most informative

(10 points) What is the asymptotic time in O-notation of this algorithm?

```
sample3(A[], n):

sum ← 0

for i \leftarrow 1 to n

for j \leftarrow 1 to n

sum ← sum + A[i]*A[j]

return sum
```

Students' answers

 $O(n^2)$: right, 10 points

O(n): wrong, 0 points

 $O(n^{100})$: right, but 0 points

 $O(n^3)$: right, but 0.1 points

Be as tight as possible.

Leave as little information loss as possible.

Intuitive Meanings

- O(g(n))
 - Tight or loose upper bound
- $\Omega(g(n))$
 - Tight or loose lower bound
- $\Theta(g(n))$
 - Tight bound
- o(g(n))
 - Loose upper bound
- $\omega(g(n))$
 - Loose lower bound

Yet Another Intuitive View

Examples of Asymptotic Complexity

Sorting algorithms

- Selection sort: $\Theta(n^2)$
- − Heapsort: *O*(*n*log*n*)
- Quicksort:
 - $O(n^2)$
 - Average $\Theta(n\log n)$
 - Worst-case $\Theta(n^2)$

Types of Complexity Analyses

Worst-case

Analysis for the worst-case input(s)

Average-case

- Analysis for all inputs
- More difficult to analyze

Best-case

- Analysis for the best-case input(s)
- Usually no useful

Asymptotic Complexities of Indexes

Array

- -O(n)
- At least one of insertion, deletion, and search is $\Theta(n)$

Binary search trees

- Worst-case $\Theta(n)$
- Average $\Theta(\log n)$

Balanced binary search trees

- Worst-case $\Theta(\log n)$

B-trees

- Worst-case $\Theta(\log n)$

Hash table

- Average-case $\Theta(1)$

Finding an Element in an array of length n

Sequential search

- Elements are stored at random
- Worst case: $\Theta(n)$
- Average case: $\Theta(n)$
- Best case: $\Theta(1)$

Binary search

- Elements are stored in sorted order
- Worst case: $\Theta(\log n)$
- Average case: $\Theta(\log n)$
- Best case: $\Theta(1)$

Diverse Applications of Algorithms

- Car navigation
- Scheduling
 - TSP, vehicle routing, operations process, ...
- Human genome project
 - Matching, phylogenetic tree, functional analyses, ...
- Search
 - Databases, web pages, texts, ...
- Placement of resources
 - Wharf, logistic warehouse, ...
- Semiconductor design
 - Partitioning, placement, routing, ...
- •

An Example

Traveling Salesman Problem (TSP)

- Given locations of N customers
- Objective
 - circulate all the customers while minimizing the traveling distance

An Example

Vehicle Routing Problem (VRP)

- ities ities
- Multiple vehicles with their own capacities
- Multiple customer destinations(or plus due times)
- Objective
 - serve all the customers while minimizing the # of vehicles and the traveling distance

