Notas de clase de Probabilidad y Estadística

Volumen 1: Cap. 1 (Estadística descriptiva)

Versión 1 (Julio 31, 2020)

Dr. rer. nat. Humberto LLinás Solano

Doctor en Estadística (Mainz-Alemania) Profesor Titular/Investigador Asociado hllinas@uninorte.edu.co

Departamento de Matemáticas y Estadística **Universidad del Norte** (www.uninorte.edu.co).

ÍNDICE GENERAL

	PRE	FACIO	PÁGINA 3
		Introducción	3
		El autor	3
	_		
	ESTA	ADÍSTICA DESCRIPTIVA	PÁGINA 5
	1.1	Introducción	5
	1.2	Medidas estadísticas	10
	1.3	Análisis exploratorio de datos	13
	1.4	Ejercicios	15
A	APÉI	NDICE DE TABLAS	PÁGINA 25
		1. Distribución binomial	25
		2. Distribución de Poisson	28
		3.Distribución normal estándar	29
		4. Distribución <i>t</i> de Student	31
		5. Distribución chi-cuadrada	32
		6. Distribución <i>F</i> de Fisher	34
		7. Algunas distribuciones discretas	38
		8. Algunas distribuciones continuas	38
		9. Resumen de distribuciones muestrales e intervalos de confianza	39
B	Guí	A RÁPIDA PARA TRABAJAR CON STATGRAPHICS	PÁGINA 43
	B.1	Análisis de un solo conjunto de datos	43
	B.2	Análisis simultáneo de dos o más conjuntos de datos	43
	B.3	Gráficos de dispersión	44
	B.4	Diagramas de presentación	44
	B.5	Variables numéricas multidimensionales	45
	B.6	Distribuciones de probabilidad	45
	B.7	Inferencias basadas en una sola muestra	45

		1
	B.8 Inferencias basadas en dos muestras	46
	B.9 Bondad de ajuste	46
C	Guía rápida para trabajar con SPSS	PÁGINA 49
	C.1 Definición de las variables	49
	C.1.1 Transformación de una variable	50
	C.1.2 Recodificación de una Variable	51
	C.1.3 Filtrado de datos	51
	C.2 Análisis exploratorio de datos	52
	C.3 Inferencia sobre una o más poblaciones	53
D	USO DE LA CALCULADORA EN LA ESTADÍSTICA	PÁGINA 55
	BIBLIOGRAFÍA & REFERENCIAS	PÁGINA 57

Prefacio

Introducción

Estas notas de clase hacen parte de un compendio de varios volúmenes y están dirigido a todo tipo de público que requiere de algún conocimiento básico en Estadística.

El autor

Humberto Jesús LLinás Solano es Licenciado en Ciencias de la Educación, con énfasis en Matemáticas, Física y Estadística de la Universidad del Atlántico (Colombia). Magister en Matemáticas, convenio Universidad del Valle-Universidad del Norte (Colombia). Doctor en Estadística (Dr. rer. nat.) de la Universidad Johannes Gutenberg de Mainz (Alemania). Desde 1998 se desempeña como profesor de tiempo completo de la Universidad del Norte y forma parte de los grupos de investigación Matemáticas y Enfermedades tropicales de dicha institución. Autor de los productos¹:

- Estadística descriptiva y distribuciones de probabilidad (2005, [6])
- Estadística inferencial (2006, [8])
- Una visión histórica del concepto moderno de integral (como editor, 2006, [4])
- *Medida e integración* (2007, [9])
- Applets de estadística (2007, [11])
- Introducción a la estadística con aplicaciones en Ciencias Sociales (2012, [12])
- Procesos estocásticos con aplicaciones (como coautor, 2013, [2])
- Introducción a la estadística matemática (2014, [13])
- Introducción a la teoría de la probabilidad (2014, [14])

Para más referencias y otros productos de mi autoría, pueden consultarse:

- RPubs
- CVLAC
- ORCID
- Google Scholar

¹Se cita el título del texto o applet, el año de publicación y la referencia bibliográfica respectiva. Cuando sea necesario, un comentario adicional.

1

Estadística descriptiva

Notas de clase basada en LLinás (2005). Ver referencia [6].

1.1 Introducción

1. Recursos online.

Para los cálculos que se vayan a realizar a lo largo de este capítulo, también nos podemos apoyar en:

- a) Excel. Para más informaciones al respecto puede consultarse los siguientes tutoriales de excel Gráficos.
- b) Geogebra. En especial, el link de Probabilidad.
- c) Calculadoras en líneas. En especial, ir a la sección *Distribución de probabilidad* y seleccionar la distribución deseada.
- *d*) R Studio Desktop.
- e) El software estadístico R para windows o para mac.

2. ¿Por qué usted necesita conocer estadística?

Tres razones fundamentales:

- a) Presentar y describir la información en forma adecuada.
- b) Inferir conclusiones sobre poblaciones grandes basándose solamente en la información obtenida de subconjuntos de ellas.
- c) Utilizar modelos para obtener pronósticos confiables.

3. **Términos**

- a) Unidades experimentales: Objetos que hacen parte del estudio
- b) Población: Información obtenida de las unidades experimentales.
- c) Muestra: Subconjunto de unidades exprimentales o de una población.
- d) Censo: Enumeración completa de las unidades experimentales
- e) Parámetro: Medida obtenida a partir de una población.

- f) Estadístico: Medida obtenida a partir de una población.
- g) Estadística descriptiva: Recoger, sistematizar y obtener medidas estaísticas
- h) Estadística inferencial: Encontrar el valor aproximado de un parámetro, basado en una muestra (sin hacer un censo).

i) Métodos estadísticos: Estadística descriptiva + Estadística inferencial.

4. Organización de datos.

- *a*) Por el tipo de dato.
- b) De acuerdo a escalas de medidas.
- c) Mediante tablas.
- d) Mediante representaciones gráficas.

5. Organización de datos de acuerdo al tipo de dato.

- a) Categóricos (o cualitativos): raza, color de los ojos, estrato, número de la cédula, etc.
- b) Numéricos (o cuantitativos): talla, peso, velocidad, etc.
 - Estos últimos se clasifican a su vez en: *Discretos* (conteo) y *Continuos* (medición).

6. Organización de datos de acuerdo a escalas de medidas.

Nominal, ordinal, de intervalo y de razón. Ver LLINÁS [6] para mayores detalles.

7. Organización de datos mediante tablas.

- a) Tablas de frecuencias no agrupadas.
- b) Tablas de frecuencias agrupadas.

8. Organización de datos mediante tablas frecuencias no agrupadas.

Ejemplo 1.1

Edades de unas personas: 11, 11, 13 (8 veces), 17 (11 veces), 21 (10 veces), 25 (8 veces) y 26.

La tabla de frecuencias (no agrupada) para este conjunto de datos es:

Datos	Frecuencia	Frecuencia	Frecuencia	Frec. acum.
(Edades)	absoluta	relativa	acumulada	relativa
11	2	0,050	2	0,050
13	8	0,200	10	0,250
17	11	0,275	21	0,525
21	10	0,250	31	0,775
25	8	0,200	39	0,975
26	1	0,025	40	1,000

Interpretación de los resultados correspondientes a la penúltima fila (como ejercicio):

- a) Frecuencia absoluta:
- b) Frecuencia relativa:
- c) Frecuencia acumulada:
- d) Frecuencia acumulada relativa:

9. Organización de datos mediante tablas frecuencias agrupadas.

Intervalos de clase, límites de clase, fronteras de clase, Marcas de clase, amplitud w. Para hallar número de clases c: Regla de Sturges ($c = (3,3) \log n + 1$) o $c = \sqrt{n}$.

Ejemplo 1.2 Datos con un solo lugar decimal

Forme una distribución de frecuencias considerando los siguientes datos (edades):

SOLUCIÓN:

- **Paso 1**. El rango *R* es 9,8.
- **Paso 2**. Por regla de Sturges, c = 5 (aproximar al entero más cercano).
- **Paso 3**. Como la unidad de medida es 0,1 (por tener los datos un sólo lugar decimal) y como el punto medio de esta unidad de medida es 0,05, entonces,

Frontera inf. de primera clase = dato menor -0.05 = 5.95.

- **Paso 4**. $w = \frac{R}{c} = 2$ (aproximar a la unidad de medida siguiente).
- Paso 5. En consecuencia, la tabla es

Clase	Cuenta	Frecuencia	Frecuencia	Frecuencia	Frec. acum.	Marcas
(Edades)			relativa	acumulada	relativa	de clase
5,95 - 7,95	IIII	4				6,95
7,95 - 9,95	П	2				8,95
9,95 - 11,95		8				10,95
11,95 - 13,95	III	3				12,95
13,95 - 15,95	III	3				14,95

- **Paso 6**. Interpretaciones de los resultados. Por ejemplo, los correspondientes a la penúltima fila son (como ejercicio):
 - a) Frecuencia absoluta:
 - b) Frecuencia relativa:

- c) Frecuencia acumulada:
- d) Frecuencia acumulada relativa:

4

10. Organización de datos mediante representaciones gráficas.

Hay gráficas de varios tipos, entre los cuales se encuentran los siguientes:

- a) El diagrama circular o de pastel.
- b) El pictograma.
- c) El diagrama de barra.
- d) El diagrama de caja y bigote.
- e) El histograma.
- f) El polígono (de frecuencia o de frecuencias relativas).
- g) La ojiva (o polígono de frecuencias acumuladas o polígono de frecuencias relativas acumuladas).
- *h*) El diagrama de tallo y hojas.

11. Histograma

(a) Histograma de frecuencias relativas

(b) Histograma de frecuencias acumuladas

12. Polígono y ojiva.

(c) Polígono de frecuencias

(d) Ojiva

1.2 Medidas estadísticas

1. Tipos de medidas estadísticas

- a) Medidas de tendencia central o de centralización.
- b) Medidas de dispersión o de variabilidad.
- c) Medidas de colocación o de posición relativa.
- d) Medidas de asimetría o de forma.

2. Medidas de tendencia central o de centralización.

- a) La media aritmética (ponderada).
- b) La mediana.
- c) La moda.
- d) El rango medio (promedio de los datos mayor y menor).
- e) La media geométrica.
- f) La media armónica.
- g) La media cuadrática.

En LLINÁS [6] se hace una descripción completa de estas medidas.

3. Medidas de dispersión o de variabilidad.

- a) El rango (diferencia entre datos mayor y menor).
- b) La varianza.
- c) La desviación estándar.
- d) El coeficiente de variación de Pearson (desviación estándar dividida entre la media, multiplicada por 100 por ciento).

En LLinás [6] se explican con detalles todas estas medidas.

4. Aplicaciones de la desviación estándar poblacional.

Se utilizan dos reglas:

a) Regla de Tchebychev (válida para cualquier población).

Por lo menos el $100(1-1/k^2)$ % de los valores de la población se encuentran en el intervalo $[\mu - k\sigma; \mu + k\sigma]$.

k	1,5	2	2,5	3	3,5	4
$100(1-1/k^2)\%$	55,6%	75%	84%	88,9%	91,18%	93,7%

b) Regla empírica (válida sólo para poblaciones de forma acampanada).

El 68 % de los datos de la población se encuentran en $[\mu - \sigma; \mu + \sigma]$ y el 95 % de los datos en $[\mu - 2\sigma; \mu + 2\sigma]$.

Ejemplo 1.3

Un inspector de control de calidad selecciona aleatoriamente 14 clavos de una caja de 100 clavos de 1 pulgada (una pulg.=2,54 cm). Las longitudes, en cm, son

```
2,54 2,55 2,50 2,60 2,51 2,52 2,70 2,40 2,36 2,53 2,54 2,52 2,51 2,55.
```

Si el inspector decide excluir los clavos que están fuera del intervalo $\overline{x} \pm 2s$, entonces, a lo más el 25% estarán fuera del intervalo. ¿Se verifica la regla de Tchebychev?

5. Coeficiente de variación de Pearson.

$$CV = \left(\frac{\text{desviación estándar de los datos}}{\text{media aritmética de los datos}}\right) \cdot 100\%.$$

Ejemplo 1.4

Los siguientes datos representan el promedio de millas por galón diario por cinco días para un determinado auto: 20, 25, 30, 15, 35. Por consiguiente, el tamaño relativo de la dispersión media alrededor de la media con relación a la media es 31,6%.

Ejemplo 1.5

El gerente de operaciones de un servicio de paquetería desea adquirir una nueva flota de autos. Cuando los paquetes se guardan con eficiencia en el interior de los autos (durante la preparación de las entregas), se deben considerar dos restricciones principales: el peso (en libras) y el volumen (en pies cúbicos) de cada paquete. Ahora, en una muestra de 200 paquetes, el peso promedio es 26 libras con una desviación estándar de 3,9 libras. Además, el volumen promedio de cada paquete es 8,8 pies cúbicos con una desviación estándar de 2,2 pies cúbicos. Por consiguiente, con relación a la media, el volumen de un paquete es mucho más variable que su peso. ¿Por qué?

Ejemplo 1.6

Un inversionista potencial piensa adquirir acciones en una de dos compañías A o B, listadas en la Bolsa de Valores de Nueva York. Si ninguna de las compañías ofrece dividendos a sus clientes y ambas tienen igual clasificación (según varios servicios de inversión) en términos de crecimiento potencial, el posible inversionista quizás considere la volatilidad (variabilidad) de ambas acciones para ayudar en la decisión de inversión. En los últimos meses, el precio promedio de las acciones en la compañía A fue de 50 dólares con una desviación estándar de 10 dólares. Además, durante el mismo periodo, el precio promedio de las acciones en la compañía B fue de 12 dólares con una desviación estándar de 4 dólares. Entonces, en relación con la media, el precio de las acciones B es mucho más variable que el de las acciones A.

6. Medidas de colocación o de posición relativa.

- a) La mediana.
- b) Los percentiles.
- c) Los deciles.
- d) Los cuartiles.

En LLINÁS [6] se hace una descripción completa de estas medidas.

7. Medidas de asimetría o de forma.

- a) Coeficiente de sesgo.
- b) Curtosis.

8. Simetría y asimetría.

- a) Una distribución de frecuencias será simétrica o asimétrica según lo sea su representación gráfica. 1
- *b*) Si una distribucón no es simétrica, se dice que es asimétrica a la derecha (positivamente) o a la izquierda (negativamente).²
- c) En la figura 1.1 se ilustra el caso en que la distribución de frecuencias tiene una sola moda.

(e) Distribución simétrica

(f) Distribución asimétrica a la derecha

(g) Distribución asimétrica a la izquierda

Figura 1.1: Comparación de tres distribuciones unimodales cuya forma difiere.

¹En cualquier distribución simétrica, la media es igual a la mediana.

 $^{^2}$ En las medidas asimétricas unimodales la mediana está entre la media y la moda.

9. Coeficiente de sesgo A_p .

a) Se define como:

$$A_p = \frac{\text{Media aritmética} - \text{Moda}}{\text{Desviación estándar}}$$

- b) Cuando $A_p = 0$, se dice que la distibución es simétrica.
- c) Cuando $A_p < 0$, se dice que la distribución es SESGADA NEGATIVAMENTE o A LA IZQUIERDA.
- *d*) Cuando $A_p > 0$, se dice que la distribución es SESGADA POSITIVAMENTE O A LA DERECHA.

10. Relación empírica entre media, mediana y moda.

a) Para distribuciones campanoides, unimodales y moderadamente asimétricas se cumple aproximadamente la relación empírica

b) Con lo anterior, el coeficiente de asimetría de Pearson la podemos calcular también a través de la fórmula

$$A_p = \frac{3(\text{Media aritm\'etica - Mediana})}{\text{Desviaci\'on est\'andar}}$$

11. Medidas de curtosis o apuntamiento.

Se aplican a distribuciones campaniformes, es decir, unimodales simétricas o con ligera asimetría.

1.3 Análisis exploratorio de datos

Muchos autores presentan el diagrama de tallo y hoja como técnica del análisis exploratorio de datos. Consiste en desarrollar un *resumen de cinco números* y construir un *diagrama de caja y bigotes*.

1. Resumen de cinco números.

Consiste en cinco cantidades que se emplean para resumir los datos: valor mínimo, primer cuartil (Q_1) , Mediana (Q_2) , tercer cuartil (Q_3) y valor máximo.

2. Situaciones para reconocer la simetría de los datos.

Si la distribución es simétrica:

- La distancia de Q_1 a la mediana es igual a la distancia de la mediana a Q_3 .
- La distancia del valor mínimo a Q_1 es igual a la distancia de Q_3 al valor máximo.
- La mediana y el rango medio son iguales. (Estas medidas son iguales a la media de los datos.)

3. Situaciones para reconocer la no simetría de los datos.

Si la distribución no es simétrica:

■ En las distribuciones sesgadas a la derecha, la distancia de Q_3 al valor máximo excede la distancia del valor mínimo a Q_1 . Además, la mediana es menor que el rango medio.

■ En las distribuciones sesgadas a la izquierda, la distancia del valor mínimo a Q_1 excede la distancia de Q_3 al valor máximo. Además, el rango medio es menor que la mediana.

4. Diagrama de caja y bigotes.

(R.I. significa el rango intercuartil, los segmentos horzontales son los llamados bigotes y los valores que están por fuera de los bigotes se llaman valores atípicos).

Figura 1.2: Diagrama de caja y bigotes

5. Diagramas de cajas múltiples (o comparativos).

La figura 1.3 contiene los diagramas de caja de las calificaciones en un examen de matemáticas para quince estudiantes de primer curso de primaria, quince de segundo y quince de tercero.

Figura 1.3: Diagrama de caja y bigotes de las calificaciones en un examen

En el diagrama puede apreciarse que no hay valores atípicos en ninguno de los tres grupos. Los estudiantes del tercer curso consiguieron la mejor mediana, pero sus calificaciones tienen una variabilidad considerablemente mayor que la de los otros grupos. Otro hecho que llama la atención es la gran cantidad de calificaciones bajas obtenidas por los

estudiantes de primer curso. Finalmente, podemos afirmar que las distribuciones de frecuencias de los tres conjuntos de datos están sesgadas a la izquierda.

1.4 Ejercicios

- 1. Diga si la afirmación dada es verdadera o falsa. Justifique siempre su respuesta. En caso que sea falso, dé un contraejemplo.
 - (a) Si la desviación estándar de un conjunto de datos es 0, entonces, los datos son iguales.
 - (b) No existen datos de tal forma que sean iguales el rango y la varianza.
 - (c) Existen datos con desviación estándar negativa.
 - (d) En una distribución simétrica, la media, la mediana y la moda son iguales.
 - (e) La desviación estándar está dada por las mismas unidades que la media.
 - (f) Toda información numérica proporciona datos cuantitativos.
 - (g) Toda información no numérica ofrece datos cuantitativos.
 - (h) Cuando todos los datos son categóricos, la moda es la única medida de tendencia central que se puede utilizar.
 - (i) Si el primer cuartil en el primer examen de estadística fue de 3,0, entonces, este valor indica que el 25 % de los estudiantes ganaron el examen.
- 2. Clasifique los datos siguientes en cuantitativos (numéricos) y cualitativos (categóricos). En caso de ser numérico, como discretos o continuos:
 - (a) Estaturas en centímetros de cuatro jugadores de fútbol.
 - (b) Las temperaturas promedios diarias en el último mes.
 - (c) Clasificación étnica de 30 empleados.
 - (d) Números telefónicos de ciertas personas.
 - (e) Distancia (en metros) recorrido por un atleta en una temporada.
 - (f) Peso perdido (en kilogramos) por 10 personas debido a una dieta.
 - (g) Fecha de cumpleaños de determinadas personas.
 - (h) Calificaciones (E, S, A, D, I) de unos estudiantes de bachillerato.
- 3. Se clasificó a los estudiantes de un programa universitario de acuerdo a con el semestre que cursa y su preferencia deportiva. Los resultados están registrados en la siguiente tabla.

	Primero	Segundo	Tercero	Cuarto
Fútbol	15	14	5	9
Beisbol	12	22	6	6
Voleivol	5	5	9	5
Basquétbol	26	7	6	7
Natación	7	8	4	2

(a) ¿Qué porcentaje de los estudiantes de primer semestre prefieren el fútbol?

- (b) ¿Qué porcentaje de los aficionados a la natación son de segundo semestre?
- (c) ¿Qué porcentaje del total de los estudiantes prefieren el basquétbol?
- (d) ¿Qué porcentaje de los estudiantes son de cuarto semestre?
- (e) ¿Qué porcentaje del total de estudiantes son de tercer o cuarto semestre?
- (f) ¿Qué porcentaje prefiere la natación, el voleibol o el beisbol?
- 4. Los siguientes datos representan las cuentas telefónicas mensuales, en miles de pesos, de 25 residentes de un pequeño pueblo:

21,48	21,15	25,12	23,47	27,81	19,80	36,05	28,50	26,66
20,35	30,22	25,49	20,80	23,83	25,35	23,48	25,81	21,07
26,83	30,96	33,38	20,77	19,98	35,87	22,02		

- (a) ¿Qué porcentaje del grupo pagó más de 21.000 pesos?
- (b) ¿Qué porcentaje pagó más de 22.000 pesos pero menos de 27.000 pesos?
- 5. Los datos que se indican a continuación representan el costo (en miles de pesos) de la energía eléctrica durante un determinado mes del año para una muestra aleatoria de 50 apartamentos en cierta ciudad importante:

128	144	168	109	167	141	149	206	175	123
153	197	127	82	96	171	202	178	147	102
135	191	137	129	158	108	119	183	151	114
111	148	213	130	165	157	185	90	116	172
143	187	166	139	149	95	163	150	154	130

- (a) Obtenga una tabla de frecuencias con 7 intervalos de clase.
- (b) Grafique el correspondiente histograma de frecuencias, el polígono de frecuencias relativas y la ojiva con frecuencias acumuladas relativas.
- (c) ¿Alrededor de qué cantidad parece concentrarse el costo mensual de energía eléctrica?
- (d) Según su opinión, ¿cuál de las gráficas representa mejor la distribución de los costos de energía eléctrica?
- 6. Responda las siguientes preguntas. Justifique sus respuestas.
 - (a) ¿Qué escala de medida se requiere para la mediana? ¿Y para la moda?
 - (b) ¿En qué condiciones coinciden la media, la mediana y la moda de una muestra?
 - (c) ¿En qué caso será demasiado grande la diferencia entre la media y la mediana?
- 7. Una empresa de servicio eléctrico de una ciudad le realiza la lectura del contador de luz a un usuario, obteniendo los siguientes datos:

Fecha	Lectura
Agosto 27	00553 Kwh
Agosto 30	00571 Kwh
Septiembre 4	00605 Kwh

El recibo de pago le llegó al usuario con lectura de 00638 Kwh, realizada el 9 de septiembre, pero la empresa no dejó constancia de lectura, hecho que motivó el reclamo del usuario alegando que le estaban cobrando de más. ¿Tiene la razón el usuario? Explique.

8. Los neumáticos de cierta marca tiene una duración de vida con media de 29.000 kilómetros y desviación típica de 3.000 kilómetros.

- (a) Encontrar un intervalo en el que se pueda garantizar que se encuentra por lo menos el 75% de los tiempos de vida de los neumáticos de esta marca.
- (b) Usando la regla impírica y suponiendo que la población tiene forma acampanada, encontrar un intervalo en el cual se estime que se encuentra aproximadamente el 95% de los tiempos de vida de los neumáticos de esta marca.
- 9. Los valores de presión sanguínea se reportan a veces a los 5 mm Hg más cercanos (100, 105, 110, etc.). Suponga que los valores reales de presión sanguínea para nueve individuos seleccionados al azar son:

```
130,0 113,7 122,0 108,3 131,5 133,2 118,6 127,4 138,4
```

- (a) ¿Cuál es la mediana de los valores reportados de presión sanguínea?
- (b) Suponga que la presión del octavo individuo es 127,6 en lugar de 127,4 (un pequeño cambio en su valor). ¿Cómo afectaría esto a la mediana de los valores reportados? ¿Qué dice esto sobre la sensibilidad de la mediana para redondear o agrupar los datos?
- 10. La propagación de grietas por fatiga en diversas partes de aeronaves ha sido objeto de profundo estudio en años recientes. Los datos que aparecen a continuación constan de tiempo de propagación (horas de vuelo/ 10^4) para llegar a un tamaño de grieta dado en agujeros sujetadores que se usan en aeronaves militares:

- (a) Calcule los valores de la media y mediana muestrales.
- (b) ¿En cuánto se puede reducir la observación muestral más grande, sin afectar el valor de la mediana?
- 11. Una manifestación interesante de la variación surge cuando se efectúan los análisis de emisión de gases en los vehículos automotores. Los requisitos de costo y tiempo del procedimiento federal de prueba (PFT) en cierto pais evitan la difusión de su uso en los programas de inspección vehicular. Como resultado, muchas agencias han desarrollado análisis menos costosos y más rápidos con la esperanza de reproducir los resultados. Según un artículo de una prestigiosa revista, se dice que la eceptación del PFT como patrón de excelencia ha conducido a la creencia de que las mediciones repetidas en el mismo vehículo darán resultados idénticos (o casi). Los autores del artículo aplicaron el PFT a siete vehículos caracterizados como "grandes emisores". Los resultados de uno de esos vehículos son los siguientes:

HC (g/mi)	32,2	32,5	13,8	18,3
CO (g/mi)	232	236	118	149

- (a) Calcule las desviaciones estándar muestrales de las observaciones de HC y CO. ¿Parece justificada la creencia general?
- (b) Compare los coeficientes de variación de cada conjunto de datos para determinar cuáles presentan mayor o menor variación.
- 12. Un taller de mecánica acepta una orden por 10.000 ruedas de 2 pulgadas de diámetro. Las especificaciones de tamaño del producto podrán ser mantenidas sólo si el diámetro medio es de 2 pulgadas y la desviación estándar es muy pequeña. En este caso, ¿cuál es el margen de tolerancia permitido para la desviación estándar?
- 13. A continuación se presentan algunas medidas estadísticas (mediana, primer y tercer cuartil) y una tabla de frecuencia agrupada, para las edades de un grupo de personas que hay en una sala de concierto. A partir de estos datos, responder las preguntas que aparecen abajo. Mediana = 20, primer cuartil = 17,5 y tercer cuartil = 23.

		Frecuencia	Frecuencia	Frec. acum.
Edades	Frecuencia	relativa	acumulada	relativa
11,5 - 14,5	2	0,0500	2	0,0500
14,5 - 17,5	8	0,2000	10	0,2500
17,5 - 20,5	11	0,2750	21	0,5250
20,5 - 23,5	10	0,2500	31	0,7750
23,5 - 26,5	8	0,2000	39	0,9750
26,5 - 29,5	1	0,0250	40	1,0000

- (a) ¿Cuál era el número exacto de personas que habían en la sala del concierto?
- (b) ¿Cuál es la media aproximada de las personas que asistieron al concierto?
- (c) ¿Qué edad tienen el 77,5% de las personas?
- (d) ¿Qué porcentaje de personas tienen una edad entre 11,5 y 20,5?
- (e) ¿Qué porcentaje de personas tienen una edad mayor de 23,5?
- (f) ¿Cuántas personas tienen una edad entre 17,5 y 20,5?
- (g) ¿Cuántas personas tienen una edad mayor que 14,5?
- (h) ¿Qué interpretación tiene el valor de la mediana y el de los cuartiles?
- 14. Los siguientes datos representan los rendimientos porcentuales anuales en cuentas de mercado de dinero de una muestra de 15 bancos comerciales en el área metropolitana de una ciudad a una determinada fecha:

Nombre del Banco	Rendimiento	Nombre del banco	Rendimiento
Banco su cuenta	3,10	Banco el Pais	2,28
The Bank	2,63	Banco la Clave	3,01
Mein Bank	2,79	Banco del Norte	2,53
Your Bank	3,25	Banco del Sur	2,00
El Banco del pueblo	1,90	Banco Nacional	3,05
Aero Bank	2,79	Nuestro Banco	2,02
Union Bank	2,90	Banco el dinero	3,05
Bank del cliente	2,73		

- (a) Proporcione el resumen de cinco números.
- (b) Construya el diagrama de caja y bigotes y describa la forma.
- (c) Si alguien le dijera: *los rendimientos del mercado de dinero no varían mucho de un banco a otro*, con base en estos datos, ¿qué diría?
- 15. Una de las metas de toda administración es ganar lo más posible en relación con el capital invertido en la empresa. Una medida del éxito en alcanzarla es el retorno sobre la aportación, que es la relación de la ganancia neta entre el valor de las acciones. A continuación se muestran los porcentajes de ganancia sobre las acciones para 25 empresas.

11,4	15,8	52,7	17,3	12,3	9,0	19,6	22,9	41,6
5,1	17,3	31,1	6,2	19,2	14,7	9,6	8,6	11,2
16.6	5.0	30.3	12.8	12.2	14.5	9.2		

Forme el resumen de cinco números, trace un diagrama de caja y bigotes y determine si hay valores atípicos. ¿Cómo podría un analista financiero usar esta información?

16. Considere la variable **anchura** que contiene el conjunto de datos que encontramos en el archivo **calles.sf3** y que corresponde al ancho de 112 calles de Madrid (España).

- (a) Forme la tabla de frecuencias con 8 clases para los datos, en donde la primera frontera inferior sea 0 y la última frontera superior sea 40. A partir de ella, responda las siguientes preguntas:
 - 1) ¿Cuántas calles tienen un ancho entre 5 y 25 kilómetros?
 - 2) ¿Qué porcentaje de calles tienen un ancho entre 10 y 30 kilómetros?
 - 3) ¿Cuántas calles tienen un ancho mayor de 20 kilómetros?
 - 4) ¿Qué porcentaje de calles tienen un ancho mayor 25 kilómetros?
 - 5) ¿Cuántas calles tienen un ancho menor de 15 kilómetros?
 - 6) ¿Qué porcentaje de calles tienen un ancho menor de 35 kilómetros?
- (b) Con 8 clases (en donde la primera frontera inferior sea 0 y la última frontera superior sea 40), construir los histogramas de frecuencias absolutas y de frecuencias absolutas acumuladas, los polígonos de frecuencia y de frecuencias relativas y las ojivas de frecuencias acumuladas y de frecuencias relativas acumulada. A partir de estos gráficos, responda las siguientes preguntas:
 - 1) ¿Aproximadamente cuántas calles tienen un ancho mayor que 16,9 kilómetros?
 - 2) ¿Aproximadamente cuántas calles tienen un ancho menor que 12,5 kilómetros?
 - 3) ¿Qué porcentaje aproximado de calles tienen un ancho mayor de 7,7 kilómetros?
 - 4) ¿Qué porcentaje aproximado de calles tienen un ancho menor de 13,8 kilómetros?
- (c) Estudie la simetría de la distribución de los datos.
- (d) ¿Existen valores atípicos? ¿Cuántos? ¿Cuáles?
- (e) ¿Existe alguna transformación que mejora la simetría? ¿Y la presencia de valores atípicos? Indique en caso positivo la transformación seleccionada.
- 17. En el archivo de datos **autos.sf3** mostramos las distancias recorridas (dadas en millas por galón) de 154 modelos de automóviles sacados al mercado entre los años 1978 y 1982 por diferentes fabricantes: americanos (origen=1), europeos (origen=2) y japoneses (origen=3). También aparecen los respectivos cilindrajes de los autos, las potencias, etc.
 - (a) Construya un diagrama de caja y bigotes para los datos de la distancia recorrida y a partir de él, responda las siguientes preguntas: ¿Entre cuáles valores varía la distancia recorrida? ¿Cuánto recorre el 50% central de los autos? ¿Hay valores atípicos? ¿Es simétrica o asimétrica la distribución de los datos? En caso de ser asimétrica, ¿es asimétrica a la izquierda o a la derecha? ¿Cuáles son los valores de la media y de la mediana?
 - (b) Estudie el grado de simetría de los datos de la distancia recorrida de cuatro maneras diferentes (compare sus respuestas):
 - 1) Utilizando las medidas estadísticas (media, mediana, moda, sesgo, etc.)
 - 2) Construyendo un histograma de frecuencias con 5 clases.
 - 3) Construyendo un un histograma con 13 clases. ¿Porqué este histograma resulta más adecuado que el que construyó con 5 clases?
 - 4) Construyendo un gráfico de simetría con la opción graphical options ... symmetry plot de Statgraphics.
- 18. Se han medido los diámetros (en milímetros) de 50 tornillos y se han obtenido los resultados que mostramos en el archivo **tornillos.sf3**.
 - (a) Forme la tabla de frecuencias con 6 clases para los datos y, a partir de ella, responda las siguientes preguntas:
 - 1) ¿Cuántos tornillos tienen un diámetro entre 29 y 32 milímetros?

- 2) ¿Qué porcentaje de tornillos tienen un diámetro entre 30 y 34 milímetros?
- 3) ¿Cuántos tornillos tienen un diámetro mayor de 32 milímetros?
- 4) ¿Qué porcentaje de tornillos tienen un diámetro mayor 34 milímetros?
- 5) ¿Cuántos tornillos tienen un diámetro menor de 31 milímetros?
- 6) ¿Qué porcentaje de tornillos tienen un diámetro menor de 33 milímetros?
- (b) Con 6 clases, construir los histogramas de frecuencias absolutas y de frecuencias absolutas acumuladas, los polígonos de frecuencia y de frecuencias relativas y las ojivas de frecuencias acumuladas y de frecuencias relativas acumulada. A partir de estos gráficos, responda las siguientes preguntas:
 - 1) ¿Aproximadamente cuántos tornillos tienen un diámetro mayor que 34,4 milímetros?
 - 2) ¿Aproximadamente cuántos tornillos tienen un diámetro menor que 32,2 milímetros?
 - 3) ¿Qué porcentaje aproximado de tornillos tienen un diámetro mayor de 31,6 milímetros?
 - 4) ¿Cuántos tornillos tienen un diámetro menor de 32,8 milímetros?
- (c) Estudie la simetría de la distribución de los datos.
- 19. Los datos del archivo **fotocopia.sf3** muestran el gasto en fotocopias (en miles de pesos) de 70 estudiantes universitarios durante un determinado año.
 - (a) Forme la tabla de frecuencias con 8 clases para los datos, en donde la primera frontera inferior sea 0 y la última frontera superior sea \$ 1.400.000. A partir de ella, responda las siguientes preguntas:
 - 1) ¿Cuántos estudiantes han gastando entre \$ 175.000 y \$ 525.00 en el año?
 - 2) ¿Qué porcentaje de estudiantes han gastando entre \$700.000 y \$1.225.000 en el año?
 - 3) ¿Cuántos estudiantes han gastando más de \$ 1.050.000 en el año?
 - 4) ¿Qué porcentaje de estudiantes han gastando más de \$350.000 en el año?
 - 5) ¿Cuántos estudiantes han gastando menos de \$875.000 en el año?
 - 6) ¿Qué porcentaje de estudiantes han gastando menos de \$525.000 en el año?
 - (b) Con 8 clases (en donde la primera frontera inferior sea 0 y la última frontera superior sea \$ 1.400.000), construir los histogramas de frecuencias absolutas y de frecuencias absolutas acumuladas, los polígonos de frecuencia y de frecuencias relativas y las ojivas de frecuencias acumuladas y de frecuencias relativas acumulada. A partir de estos gráficos, responda las siguientes preguntas:
 - 1) ¿Aproximadamente cuántos estudiantes han gastando más de \$767.810 en el año?
 - 2) ¿Aproximadamente cuántos estudiantes han gastando menos de \$391.821 en el año?
 - 3) ¿Qué porcentaje aproximado de estudiantes han gastando más de \$601.583 en el año?
 - 4) ¿Cuántos estudiantes han gastando menos de \$1.104.220 en el año?
 - (c) Estudie la simetría de la distribución de los datos.
 - (d) ¿Existen valores atípicos? ¿Cuántos? ¿Cuáles?
 - (e) Realice una transformación logarítmica de los datos e interprete los resultados. Comente las diferencias con los datos sin transformar.
- 20. En el archivo de datos doscientos.sf3 proporcionamos las sesenta y nueve mejores marcas de todos los tiempos en la prueba de 200 metros lisos masculinos (las marcas se dan en segundos), así como el nombre del atleta y la fecha en que se consiguió la marca.
 - (a) Forme la tabla de frecuencias con 8 clases para los datos, en donde la primera frontera inferior sea 19,2 segundos y la última frontera superior sea 20,2 segundos. A partir de ella, responda las siguientes preguntas:

- 1) ¿Cuántos atletas han recorrido entre 19,325 y 19,7 segundos?
- 2) ¿Qué porcentaje de atletas han recorrido entre 19,45 y 19,95 segundos?
- 3) ¿Cuántos atletas han recorrido más de 19,7 segundos?
- 4) ¿Qué porcentaje de atletas han recorrido más de 19,45 segundos?
- 5) ¿Cuántos atletas han recorrido menos de 19,95 segundos?
- 6) ¿Qué porcentaje de atletas han recorrido menos de 19,825 segundos?
- (b) Con 8 clases (en donde la primera frontera inferior sea 19,2 segundos y la última frontera superior sea 20,2 segundos.), construir los histogramas de frecuencias absolutas y de frecuencias absolutas acumuladas, los polígonos de frecuencia y de frecuencias relativas y las ojivas de frecuencias acumuladas y de frecuencias relativas acumulada. A partir de estos gráficos, responda las siguientes preguntas:
 - 1) ¿Aproximadamente cuántos atletas han recorrido más de 19,818 segundos?
 - 2) ¿Qué porcentaje aproximado de atletas han recorrido más de 19,845 segundos?
 - 3) ¿Qué porcentaje aproximado de atletas han recorrido más de 19,782 segundos?
 - 4) ¿Aproximadamente cuántos atletas han recorrido menos de 20,03 segundos?
- (c) Estudie la simetría de la distribución de los datos.
- (d) ¿Se detecta algo peculiar en la distribución de estos datos?
- (e) ¿Se detecta algún valor potencialmente atípico? ¿Cuál es?
- 21. En el archivo de datos **Cavendish.sf3** presentamos 29 medidas de la densidad de la tierra obtenidas por Henry Cavendish en 1798 empleando una balanza de torsión. La densidad de la tierra se proporciona como un múltiplo de la densidad del agua.
 - (a) Utilice los diagramas de tallo y hojas y de cajas para determinar si existe algún valor atípico.
 - (b) Proponga, razonando la respuesta, un valor para la densidad de la tierra.
- 22. En el archivo de datos **autos.sf3** mostramos las distancias recorridas (dadas en millas por galón) de 154 modelos de automóviles sacados al mercado entre los años 1978 y 1982 por diferentes fabricantes: americanos (origen=1), europeos (origen=2) y japoneses (origen=3). También aparecen los respectivos cilindrajes de los autos, las potencias, etc.
 - (a) Considere por separado los conjuntos de distancias recorridas de los modelos de cada uno de los cinco años.
 - 1) Analice gráfica y numéricamente cada uno de estos conjuntos.
 - 2) Utilizando la opción *Plot ... Exploratory Plots ... Multiple Box-and-Whishker Plot ... Data=distancia ... Level codes=year ...* obtenga los diagramas de cajas (múltiples) de los cinco conjuntos de distancias recorridas con respecto a cada uno de los años. ¿Qué se observa? ¿Conoce alguna razón que pueda explicar lo que resulta de los análisis numéricos y de la observación de los diagramas de cajas?
 - (b) Ahora, construya el diagrama de caja múltiple de la distancia recorrida de los automóviles según su cilindrada.
 - 1) Teniendo en cuenta cada uno de los diagramas, responda las preguntas formuladas en la parte (a).
 - 2) Compare entre sí los distintos diagramas y responda las siguientes preguntas: ¿Dónde es más fuerte la asimetría? ¿Dónde es menor? ¿Dónde no existe? ¿Varía bastante los valores de la media y de la mediana para los diferentes grupos?
 - (c) Construya el diagrama de caja múltiple de la potencia de los automóviles según su origen y responda las preguntas formuladas en el inciso anterior.

23. En el archivo de datos **gemelos.sf3** mostramos los resultados de tests de inteligencia realizados a parejas de gemelos monozigóticos. Los gemelos monozigóticos se forman por la división en dos de un mismo óvulo ya fecundado y, por tanto, tienen la misma carga genética. Al mismo tiempo, por razones obvias, es muy frecuente que compartan el entorno vital y es difícil separar ambos factores. En el conjunto de datos, los datos de la columna A corresponden al gemelo criado por sus padres naturales, los de la columna B al criado por un familiar u otra persona. Mediante la opción *Compare … Two Samples … Two Sample Comparison … Sample 1=A … Sample 2=B … Ok*, resuelva lo siguiente:

- (a) Compare la simetría de los datos de la columna A y B.
- (b) Construya un diagrama de caja múltiple para los datos de la columna A y B y describa sus interesantes propiedades
- (c) ¿Cómo interpreta el coeficiente de variación de ambos conjuntos de datos?
- 24. En 1893 Lord Rayleigh investigó la densidad del nitrógeno empleando en su obtención distintas fuentes. Previamente había comprobado la gran discrepancia existente entre la densidad del nitrógeno producido tras la eliminación del oxígeno del aire y el nitrógeno producido por la descomposición de ciertos compuestos químicos. Los datos del archivo **Rayleigh.sf3** muestran esta diferencia de forma clara. Esto llevó a Lord Rayleigh a investigar detenidamente la composición del aire libre de oxígeno y al descubrimiento de un nuevo elemento gaseoso, el argón.
 - (a) Analice numérica y gráficamente estos datos. Preste especial atención a los diagramas de tallo y hojas y al diagrama de cajas. ¿Hay alguna peculiaridad de la población de pesos que se manifieste en un diagrama y no en el otro?
 - (b) Realice diagramas de cajas dividiendo los datos en los pesos obtenidos a partir de aire y los obtenidos a partir de compuestos químicos del nitrógeno. ¿Qué se observa?
- 25. Una de las medidas de seguridad de los reactores nucleares frente a desajustes en el proceso de generación de energía o de extracción de ésta es el disparo del reactor. Esta medida consiste en la detención del proceso de fusión mediante la inserción en el núcleo del reactor de venenos neutrónicos. El número de disparos no previstos de un reactor en un periodo es un indicador de problemas de comportamiento y de fiabilidad en la planta. En el archivo de datos **disparos.sf3** proporcionamos, para dos años diferentes (1984 y 1993), el número de disparos no previstos en sesenta y seis reactores nucleares de los Estados Unidos de Norteamérica.
 - (a) Analice numérica y gráficamente, por separado, el número de disparos de reactor en cada uno de los dos años considerados.
 - (b) Compare gráficamente las distribuciones de ambas variables ¿Se aprecian diferencias importantes entre ellas? ¿Qué conclusiones le merece esta comparación?
- 26. Sea una variable X que presenta los valorees x_1 , x_2 , x_3 , x_4 , x_5 con frecuencias absolutas $n_1 = 1$, $n_2 = 2$, $n_3 = 8$, $n_4 = 5$ y $n_5 = 6$.
 - (a) Representar la variable *X* mediante digramas de barras horizontales.
 - (b) Hacer la representación con barras horizontales apiladas.
 - (c) Representar la variable *X* mediante digramas de barras verticales.
 - (d) Representar la variable X mediante un diagrama de barras varticales con la línea base situada a la altura del punto 4.
 - (e) Representar la variable *X* mediante un diagrama de barras horizontales con rectángulos de error representados por líneas y definidos por la variable *Y* cuyos valores son 1,5; 2,5; 3,5; 3 y 2.
- 27. La encuesta de población activa elaborada por una empresa referente al cuarto trimestre de 1.970 presenta para el número de activos por ramas los siguientes datos:

RAMA DE ACTIVIDAD	MILES DE ACTIVOS
Agricultura, caza y pesca	3706,3
Fabriles	3437,8
Construcción	1096,3
Comercio	1388,3
Transporte	648,7
Otros servicios	2454,8

- (a) Realizar un gráfico de sectores con porcentajes del número de activos por ramas.
- (b) Realizar el gráfico conlas etiquetas de las ramas de actividad sobre los sectores.
- (c) Desplazar el sector relativo a la rama con menor número de activos.

1. Distribución binomial

Las tablas (a)-(e) muestran la probabilidad $P(X \le k) = B(k; n, p)$ de que ocurran máximo k éxitos en n ensayos independientes, cada uno con probabilidad de éxito p.

Estas probabilidades se calculan para n = 5, 10, 15, 20 y 25, respectivamente.

(a) Tabla binomial para n = 5

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,774	0,590	0,328	0,237	0,168	0,078	0,031	0,010	0,002	0,001	0,000	0,000	0,000
1	0,977	0,919	0,737	0,633	0,528	0,337	0,188	0,087	0,031	0,016	0,007	0,000	0,000
2	0,999	0,991	0,942	0,896	0,837	0,683	0,500	0,317	0,163	0,104	0,058	0,009	0,001
3	1,000	1,000	0,993	0,984	0,969	0,913	0,812	0,663	0,472	0,367	0,263	0,081	0,023
4	1,000	1,000	0,999	0,999	0,998	0,990	0,969	0,922	0,832	0,763	0,672	0,410	0,226
5	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

(b) Probabilidades binomiales acumuladas para n = 10

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,599	0,349	0,107	0,056	0,028	0,006	0,001	0,000	0,000	0,000	0,000	0,000	0,000
1	0,914	0,736	0,376	0,244	0,149	0,046	0,011	0,002	0,000	0,000	0,000	0,000	0,000
2	0,988	0,930	0,678	0,526	0,383	0,167	0,055	0,012	0,002	0,000	0,000	0,000	0,000
3	0,999	0,987	0,879	0,776	0,650	0,382	0,172	0,055	0,011	0,004	0,001	0,000	0,000
4	1,000	0,998	0,967	0,922	0,850	0,633	0,377	0,166	0,047	0,020	0,006	0,000	0,000
5	1,000	1,000	0,994	0,980	0,953	0,834	0,623	0,367	0,150	0,078	0,033	0,002	0,000
6	1,000	1,000	0,999	0,996	0,989	0,945	0,828	0,618	0,350	0,224	0,121	0,013	0,001
7	1,000	1,000	1,000	1,000	0,998	0,988	0,945	0,833	0,617	0,474	0,322	0,070	0,012
8	1,000	1,000	1,000	1,000	1,000	0,998	0,989	0,954	0,851	0,756	0,624	0,264	0,086
9	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,994	0,972	0,944	0,893	0,651	0,401

(c) Probabilidades binomiales acumuladas para n=15

						р							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,463	0,206	0,305	0,013	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,829	0,549	0,167	0,080	0,035	0,005	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,964	0,816	0,398	0,236	0,127	0,027	0,004	0,000	0,000	0,000	0,000	0,000	0,000
3	0,995	0,944	0,648	0,461	0,297	0,091	0,018	0,002	0,000	0,000	0,000	0,000	0,000
4	0,999	0,987	0,836	0,686	0,515	0,217	0,059	0,009	0,001	0,000	0,000	0,000	0,000
5	1,000	0,998	0,939	0,852	0,722	0,403	0,151	0,034	0,004	0,001	0,000	0,000	0,000
6	1,000	1,000	0,982	0,943	0,869	0,610	0,304	0,095	0,015	0,004	0,001	0,000	0,000
7	1,000	1,000	0,996	0,983	0,950	0,787	0,500	0,213	0,050	0,017	0,004	0,000	0,000
8	1,000	1,000	0,999	0,996	0,985	0,905	0,696	0,390	0,131	0,057	0,018	0,000	0,000
9	1,000	1,000	1,000	0,999	0,996	0,966	0,849	0,597	0,278	0,148	0,061	0,002	0,000
10	1,000	1,000	1,000	1,000	0,999	0,991	0,941	0,783	0,485	0,314	0,164	0,013	0,000
11	1,000	1,000	1,000	1,000	1,000	0,998	0,982	0,909	0,703	0,539	0,352	0,056	0,005
12	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,973	0,873	0,764	0,602	0,184	0,036
13	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,995	0,965	0,920	0,833	0,451	0,171
14	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,995	0,987	0,965	0,794	0,537

(d) Probabilidades binomiales acumuladas para n=20

						p							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,358	0,122	0,012	0,003	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,736	0,392	0,069	0,024	0,008	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,925	0,677	0,206	0,091	0,035	0,004	0,000	0,000	0,000	0,000	0,000	0,000	0,000
3	0,984	0,867	0,411	0,225	0,107	0,016	0,001	0,000	0,000	0,000	0,000	0,000	0,000
4	0,997	0,957	0,630	0,415	0,238	0,051	0,006	0,000	0,000	0,000	0,000	0,000	0,000
5	1,000	0,989	0,804	0,617	0,416	0,126	0,021	0,002	0,000	0,000	0,000	0,000	0,000
6	1,000	0,998	0,913	0,786	0,608	0,250	0,058	0,006	0,000	0,000	0,000	0,000	0,000
7	1,000	1,000	0,968	0,898	0,772	0,416	0,132	0,021	0,001	0,000	0,000	0,000	0,000
8	1,000	1,000	0,990	0,959	0,887	0,596	0,252	0,057	0,005	0,001	0,000	0,000	0,000
9	1,000	1,000	0,997	0,986	0,952	0,755	0,412	0,128	0,017	0,004	0,001	0,000	0,000
10	1,000	1,000	0,999	0,996	0,983	0,872	0,588	0,245	0,048	0,014	0,003	0,000	0,000
11	1,000	1,000	1,000	0,999	0,995	0,943	0,748	0,404	0,113	0,041	0,010	0,000	0,000
12	1,000	1,000	1,000	1,000	0,999	0,979	0,868	0,584	0,228	0,102	0,032	0,000	0,000
13	1,000	1,000	1,000	1,000	1,000	0,994	0,942	0,750	0,392	0,214	0,087	0,002	0,000
14	1,000	1,000	1,000	1,000	1,000	0,998	0,979	0,874	0,584	0,383	0,196	0,011	0,000
15	1,000	1,000	1,000	1,000	1,000	1,000	0,994	0,949	0,762	0,585	0,370	0,043	0,003
16	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,984	0,893	0,775	0,589	0,133	0,016
17	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,965	0,909	0,794	0,323	0,075
18	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,992	0,976	0,931	0,608	0,264
19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,988	0,878	0,642

(e) Probabilidades binomiales acumuladas para n=25

						р							
k	0,05	0,10	0,20	0,25	0,30	0,40	0,50	0,60	0,70	0,75	0,80	0,90	0,95
0	0,277	0,072	0,004	0,001	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
1	0,642	0,271	0,027	0,007	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
2	0,873	0,537	0,098	0,032	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
3	0,966	0,764	0,234	0,096	0,033	0,002	0,000	0,000	0,000	0,000	0,000	0,000	0,000
4	0,993	0,902	0,421	0,214	0,090	0,009	0,000	0,000	0,000	0,000	0,000	0,000	0,000
5	0,999	0,967	0,617	0,378	0,193	0,029	0,002	0,000	0,000	0,000	0,000	0,000	0,000
6	1,000	0,991	0,780	0,561	0,341	0,074	0,007	0,000	0,000	0,000	0,000	0,000	0,000
7	1,000	0,998	0,891	0,727	0,512	0,154	0,022	0,001	0,000	0,000	0,000	0,000	0,000
8	1,000	1,000	0,953	0,851	0,677	0,274	0,054	0,004	0,000	0,000	0,000	0,000	0,000
9	1,000	1,000	0,983	0,929	0,811	0,425	0,115	0,013	0,000	0,000	0,000	0,000	0,000
10	1,000	1,000	0,994	0,970	0,902	0,586	0,212	0,034	0,002	0,000	0,000	0,000	0,000
11	1,000	1,000	0,998	0,980	0,956	0,732	0,345	0,078	0,006	0,001	0,000	0,000	0,000
12	1,000	1,000	1,000	0,997	0,983	0,846	0,500	0,154	0,017	0,003	0,000	0,000	0,000
13	1,000	1,000	1,000	0,999	0,994	0,922	0,655	0,268	0,044	0,020	0,002	0,000	0,000
14	1,000	1,000	1,000	1,000	0,998	0,966	0,788	0,414	0,098	0,030	0,006	0,000	0,000
15	1,000	1,000	1,000	1,000	1,000	0,987	0,885	0,575	0,189	0,071	0,017	0,000	0,000
16	1,000	1,000	1,000	1,000	1,000	0,996	0,946	0,726	0,323	0,149	0,047	0,000	0,000
17	1,000	1,000	1,000	1,000	1,000	0,999	0,978	0,846	0,488	0,273	0,109	0,002	0,000
18	1,000	1,000	1,000	1,000	1,000	1,000	0,993	0,926	0,659	0,439	0,220	0,009	0,000
19	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,971	0,807	0,622	0,383	0,033	0,001
										. =			
20	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	0,910	0,786	0,579	0,098	0,007
21	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,967	0,904	0,766	0,236	0,034
22	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	0,968	0,902	0,463	0,127
23	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,993	0,973	0,729	0,358
24	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,996	0,928	0,723

2. Distribución de Poisson

La tabla muestra la probabilidad $P(X \le k; \lambda)$ para algunos valores λ .

	$\lambda = 0,1$	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
k = 0	0,905	0,819	0,741	0,670	0,607	0,549	0,497	0,449	0,407	0,368
1	0,995	0,982	0,963	0,938	0,910	0,878	0,844	0,809	0,772	0,736
2	1,000	0,999	0,996	0,992	0,986	0,977	0,966	0,953	0,937	0,920
3	1,000	1,000	1,000	0,999	0,998	0,997	0,994	0,991	0,987	0,981
4	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,999	0,998	0,996
5	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999
6	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000

	$\lambda = 2$	3	4	5	6	7	8	9	10	15	20
k = 0	0,135	0,050	0,018	0,007	0,002	0,001	0,000	0,000	0,000	0,000	0,000
1	0,406	0,199	0,092	0,040	0,017	0,007	0,003	0,001	0,000	0,000	0,000
2	0,677	0,423	0,238	0,125	0,062	0,030	0,014	0,006	0,003	0,000	0,000
3	0,857	0,647	0,433	0,265	0,151	0,082	0,042	0,021	0,010	0,000	0,000
4	0,947	0,815	0,629	0,440	0,285	0,173	0,100	0,055	0,029	0,001	0,000
5	0,983	0,916	0,785	0,616	0,446	0,301	0,191	0,116	0,067	0,003	0,000
6	0,995	0,966	0,889	0,762	0,606	0,450	0,313	0,207	0,130	0,008	0,000
7	0,999	0,988	0,949	0,867	0,744	0,599	0,453	0,324	0,220	0,018	0,001
8	1,000	0,996	0,979	0,932	0,847	0,729	0,593	0,456	0,333	0,037	0,002
9	1,000	0,999	0,992	0,968	0,916	0,830	0,717	0,587	0,458	0,070	0,005
10	1,000	1,000	0,997	0,986	0,957	0,901	0,816	0,706	0,583	0,118	0,011
11	1,000	1,000	0,999	0,995	0,980	0,947	0,888	0,803	0,697	0,185	0,021
12	1,000	1,000	1,000	0,998	0,991	0,973	0,936	0,876	0,792	0,268	0,039
13	1,000	1,000	1,000	0,999	0,996	0,987	0,966	0,926	0,864	0,363	0,066
14	1,000	1,000	1,000	1,000	0,999	0,994	0,983	0,959	0,917	0,466	0,105
15	1,000	1,000	1,000	1,000	0,999	0,998	0,992	0,978	0,951	0,568	0,157
16	1,000	1,000	1,000	1,000	1,000	0,999	0,996	0,989	0,973	0,664	0,221
17	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,995	0,986	0,749	0,297
18	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,998	0,993	0,819	0,381
19	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,997	0,875	0,470
20	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,917	0,559
21	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,947	0,644
22	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,967	0,721
23	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,981	0,787
24	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,989	0,843
25	1,000	1,000	1,000	0,994	0,970	0,902	0,586	0,212	0,034	0,994	0,888
26	1,000	1,000	1,000	0,998	0,980	0,956	0,732	0,345	0,078	0,997	0,922
27	1,000	1,000	1,000	1,000	0,997	0,983	0,846	0,500	0,154	0,998	0,948
28	1,000	1,000	1,000	1,000	0,999	0,994	0,922	0,655	0,268	0,999	0,966
29	1,000	1,000	1,000	1,000	1,000	0,998	0,966	0,788	0,414	1,000	0,978
30	1,000	1,000	1,000	1,000	1,000	1,000	0,987	0,885	0,575	1,000	0,987
31	1,000	1,000	1,000	1,000	1,000	1,000	0,996	0,946	0,726	1,000	0,992
32	1,000	1,000	1,000	1,000	1,000	1,000	0,999	0,978	0,846	1,000	0,995
33	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,993	0,926	1,000	0,997
34	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	0,971	1,000	0,999
35	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,991	1,000	0,999
36	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	0,998	1,000	1,000

3. Distribución normal estándar

La tabla muestra la probabilidad $P(Z \le z)$.

(a) Áreas para valores negativos de ${\cal Z}$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
-3,4										
1 '	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003	0,0003
-3,3	0,0005	0,0005	0,0005	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004	0,0004
-3,2	0,0007	0,0007	0,0006	0,0006	0,0006	0,0006	0,0006	0,0005	0,0005	0,0005
-3.1	0,0010	0,0009	0,0009	0,0009	0,0008	0,0008	0,0008	0,0008	0,0007	0,0007
-3,0	0,0013	0,0013	0,0013	0,0012	0,0012	0,0011	0,0011	0,0011	0,0010	0,0010
-2,9	0,0019	0,0018	0,0017	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2,8	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,4	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,3	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,2	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,1	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143
-2,0	0,0228	0,0222	0,0217	0,0212	0,0207	0,0202	0,0197	0,0192	0,0188	0,0183
-1,9	0,0287	0,0281	0,0274	0,0268	0,0262	0,0256	0,0250	0,0244	0,0239	0,0233
-1,8	0,0359	0,0352	0,0344	0,0336	0,0329	0,0322	0,0314	0,0307	0,0301	0,0294
-1,7	0,0446	0,0436	0,0427	0,0418	0,0409	0,0401	0,0392	0,0384	0,0375	0,0367
-1,6	0,0548	0,0537	0,0526	0,0516	0,0505	0,0495	0,0485	0,0475	0,0465	0,0455
-1,5	0,0668	0,0655	0,0643	0,0630	0,0618	0,0606	0,0594	0,0582	0,0571	0,0559
-1,4	0,0808	0,0793	0,0778	0,0764	0,0749	0,0735	0,0722	0,0708	0,0694	0,0681
-1,3	0,0968	0,0951	0,0934	0,0918	0,0901	0,0885	0,0869	0,0853	0,0838	0,0823
-1,2	0,1151	0,1131	0,1112	0,1093	0,1075	0,1056	0,1038	0,1020	0,1003	0,0985
-1,1	0,1357	0,1335	0,1314	0,1292	0,1271	0,1251	0,1230	0,1210	0,1190	0,1170
-1,0	0,1587	0,1562	0,1539	0,1515	0,1492	0,1469	0,1446	0,1423	0,1401	0,1379
-0,9	0,1841	0,1814	0,1788	0,1762	0,1736	0,1711	0,1685	0,1660	0,1635	0,1611
-0,8	0,2119	0,2090	0,2061	0,2033	0,2005	0,1977	0,1949	0,1922	0,1894	0,1867
-0,7	0,2420	0,2389	0,2358	0,2327	0,2296	0,2266	0,2236	0,2206	0,2177	0,2148
-0,6	0,2743	0,2709	0,2676	0,2643	0,2611	0,2578	0,2546	0,2514	0,2483	0,2451
-0,5	0,3085	0,3050	0,3015	0,2981	0,2946	0,2912	0,2877	0,2843	0,2810	0,2776
-0,4	0,3446	0,3409	0,3372	0,3336	0,3300	0,3264	0,3228	0,3192	0,3156	0,3121
-0,3	0,3821	0,3783	0,3745	0,3707	0,3669	0,3632	0,3594	0,3557	0,3520	0,3483
-0,2	0,4207	0,4168	0,4129	0,4009	0,4052	0,4013	0,3974	0,3936	0,3897	0,3859
-0,1	0,4602	0,4562	0,4522	0,4483	0,4443	0,4404	0,4364	0,4325	0,4286	0,4247
-0,0	0,5000	0,4960	0,4920	0,4880	0,4840	0,4801	0,4761	0,4721	0,4681	0,4641

(b) Áreas para valores positivos de ${\cal Z}$

Z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9278	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9948	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9961	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9971	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998

4. Distribución t de Student

				α			
ν	0,10	0,05	0,025	0,01	0,005	0,001	0,0005
1	3,078	6,314	12,706	31,821	63,657	318,31	636,620
2	1,886	2,920	4,303	6,965	9,925	22,326	31,598
3	1,638	2,353	3,182	4,541	5,841	10,213	12,924
4	1,533	2,132	2,776	3,747	4,604	7,173	8,610
5	1,476	2,015	2,571	3,365	4,032	5,893	6,869
6	1,440	1,943	2,447	3,143	3,707	5,208	5,959
7	1,415	1,895	2,365	2,998	3,499	4,785	5,408
8	1,397	1,860	2,306	2,896	3,355	4,501	5,041
9	1,383	1.833	2,262	2,821	3,250	4,297	4,781
10	1,372	1,812	2,228	2,764	3,169	4,144	4,587
11	1,363	1,796	2,201	2,718	3,106	4,025	4,437
12	1,356	1,782	2,179	2,681	3,055	3,930	4,318
13	1,350	1,771	2,160	2,650	3,012	3,852	4,221
14	1,345	1,761	2,145	2,624	2,977	3,787	4,140
15	1,341	1,753	2,131	2,602	2,947	3,733	4,073
16	1,337	1,746	2,120	2,583	2,921	3,686	4,015
17	1,333	1,740	2,110	2,567	2,898	3,646	3,965
18	1,330	1,734	2,101	2,552	2,878	3,610	3,922
19	1,328	1,729	2,093	2,539	2,861	3,579	3,883
20	1,325	1,725	2,086	2,528	2,845	3,552	3,850
21	1,323	1,721	2,080	2,518	2,831	3,527	3,819
22	1,321	1,717	2,074	2,508	2,819	3,505	3,795
23	1,319	1,714	2,069	2,500	2,807	3,485	3,767
24	1,318	1,711	2,064	2,492	2,797	3,467	3,745
25	1,316	1,708	2,060	2,485	2,787	3,450	3,725
26	1,315	1,706	2,056	2,479	2,779	3,435	3,707
27	1,314	1,703	2,052	2,473	2,771	3,421	3,690
28	1,313	1,701	2,048	2,467	2,763	3,408	3,674
29	1,311	1,699	2,045	2,462	2,756	3,396	3,659
30	1,310	1,697	2,042	2,457	2,750	3,385	3,646
32	1,309	1,694	2,037	2,449	2,738	3,365	3,622
34	1,307	1,691	2,032	2,441	2,728	3,348	3,601
36	1,306	1,688	2,028	2,434	2,719	3,333	3,582
38	1,304	1,686	2,024	2,429	2,712	3,319	3,566
40	1,303	1,684	2,021	2,423	2,704	3,307	3,551
50	1,299	1,676	2,009	2,403	2,678	3,262	3,496
60	1,296	1.671	2,000	2,390	2,660	3,232	3,460
120	1,282	1,658	1,980	2,358	2,617	3,160	3,373
$\infty (=z)$	1,282	1,645	1,960	2,326	2,576	3,090	3,291

5. Distribución chi-cuadrada

					α					
ν	0,995	0,99	0,98	0,975	0,95	0,90	0,80	0,75	0,70	0,50
1	0,000	0,000	0,000	0,001	0,00393	0,0158	0,0642	0,102	0,148	0,4550
2	0,010	0,0201	0,0404	0,0506	0,103	0,211	0,446	0,575	0,713	1,386
3	0,0717	0,115	0,185	0,216	0,352	0,584	1,005	1,213	1,424	2,366
4	0,207	0,297	0,429	0,484	0,711	1,064	1,649	1,923	2,195	3,357
5	0,412	0,554	0,752	0,831	1,145	1,610	2,343	2,675	3,000	4,351
6	0,676	0,872	1,134	1,237	1,635	2,204	3,070	3,455	3,828	5,348
7	0,989	1,239	1,564	1,690	2,167	2,833	3,822	4,255	4,671	6,346
8	1,344	1,646	2,032	2,180	2,733	3,490	4,594	5,071	5,527	7,344
9	1,735	2,088	2,532	2,700	3,325	4,168	5,380	5,899	6,393	8,343
10	2,156	2,558	3,059	3,247	3,940	4,865	6,179	6,737	7,267	9,342
11	2,603	3,053	3,609	3,816	4,575	5,578	6,989	7,584	8,148	10,341
12	3,074	3,571	4,178	4,404	5,226	6,304	7,807	8,438	9,034	11,340
13	3,565	4,107	4,765	5,009	5,892	7,042	8,634	9,299	9,926	12,340
14	4,075	4,660	5,368	5,629	6,571	7,790	9,467	10,165	10,821	13,339
15	4,601	5,229	5,985	6,262	7,261	8,547	10,307	11,036	11,721	14,339
16	5,142	5,812	6,614	6,908	7,962	9,312	11,152	11,912	12,624	15,338
17	5,697	6,408	7,255	7,564	8,672	10,085	12,002	12,792	13,531	16,338
18	6,844	7,633	8,567	8,907	10,117	11,651	13,716	14,562	15,352	18,338
19	6,844	7,633	8,567	8,907	10,117	11,651	13,716	14,562	15,352	18,338
20	7,434	8,260	9,237	9,591	10,851	12,443	14,578	15,452	16,266	19,337
21	8,034	8,897	9,915	10,283	11,591	13,240	15,445	16,344	17,182	20,337
22	8,643	9,542	10,600	10,982	12,338	14,041	16,314	17,240	18,101	21,337
23	9,260	10,196	11,293	11,688	13,091	14,848	17,187	18,137	19,021	22,337
24	9,886	10,856	11,992	12,401	13,848	15,659	18,062	19,037	19,943	23,337
25	10,520	11,524	12,692	13,120	14,611	16,473	18,940	19,939	20,867	24,337
26	11,160	12,198	13,409	13,844	15,379	17,292	19,820	20,843	21,792	25,336
27	11,808	12,879	14,125	14,573	16,151	18,114	20,703	21,749	22,719	26,336
28	12,461	13,565	14,847	15,308	16,928	18,939	21,588	22,657	23,647	27,336
29	13,121	14,256	15,574	16,047	17,708	19,768	22,475	23,567	24,577	28,336
30	13,787	14,953	16,306	16,791	18,493	20,599	23,364	24,478	25,508	29,336
31	14,457	15,655	17,042	17,538	19,280	21,433	24,255	25,390	26,440	30,336
32	15,134	16,362	17,783	18,291	20,072	22,271	25,148	26,304	27,373	31,336
33	15,815	17,073	18,527	19,046	20,866	23,110	26,042	27,219	28,307	32,336
34	16,501	17,789	19,275	19,806	21,664	23,952	26,938	28,136	29,242	33,336
35	17,191	18,508	20,027	20,569	22,465	24,796	27,836	29,054	30,178	34,336
36	17,887	19,233	20,783	21,336	23,269	25,643	28,735	29,973	31,115	35,336
37	18,584	19,960	21,542	22,105	24,075	26,492	29,636	30,893	32,053	36,336
38	19,289	20,691	22,304	22,878	24,884	27,343	30,537	31,815	32,992	37,336
39 40	19,994	21,425	23,069	23,654	25695	28,196	31,441	32,737	33,932	38,335
40	20,706	22,164	23,838	24,433	26,509	29,050	32,345	33,660	34,872	39,335

Valores críticos $\chi^2_{\alpha}(v)$ (continuación)

					α					
ν	0,30	0,25	0,20	0,10	0,05	0,025	0,02	0,01	0,005	0,001
_ v	0,30	0,23	0,20	0,10	0,03	0,023	0,02	0,01	0,003	0,001
1	1,074	1,323	1,642	2,706	3,841	5,024	5,412	6,635	7,879	10,827
2	2,408	2,773	3,219	4,605	5,991	7,378	7,824	9,210	10,597	13,815
3		4,108	4,642	6,251	7,815	9,348	9,837	11,345	12,838	16,268
4	3,665				9,488	,		,	,	
1	4,878	5,385	5,989	5,779		11,143	11,668	13,277	14,860	18,465
5	6,064	6,626	7,289	9,236	11,070	12,832	13,388	15,086	16,750	20,517
6	7,231	7,841	8,558	10,645	12,592	14,449	15,033	16,812	18,548	22,457
7	8,383	9,037	9,803	,	14,067		16,622		20,278	
8	9,524	10,219	11,030	12,017 13,362	15,507	16,013 17,535	18,168	18,475 20,090	21,955	24,322 26,125
9	10,656	11,389	12,242	14,684	16,919	19,023	19,679	21,666	23,589	27,877
10	11,781	12,549	13,442	15,987	18,307	20,483	21,161	23,209	25,188	29,588
10	11,701	12,343	13,442	13,367	10,307	20,403	21,101	23,203	23,100	29,300
11	12,899	13,701	14,631	17,275	19,675	21,920	22,618	24,725	26,757	31,264
12	14,011	14,845	15,812	18,549	21,026	23,337	24,054	26,217	28,300	32,909
13	15,119	15,984	16,985	19,812	22,362	24,736	25,472	27,688	29,819	34,528
14	16,222	17,117	18,151	21,064	23,685	26,119	26,873	29,141	31,319	36,123
15	17,322	18,245	19,311	22,307	24,996	27,488	28,259	30,578	32,801	37,697
13	17,322	10,243	13,311	22,307	24,330	21,400	20,233	30,370	32,001	31,031
16	18,418	19,369	20,465	23,542	26,296	28,845	29,633	32,000	34,267	39,252
17	19,511	20,489	21,615	24,769	27,587	30,191	30,995	33,409	35,718	40,790
18	20,601	21,605	22,760	25,989	28,869	31,526	32,346	34,805	37,156	42,312
19	21,689	22,718	23,900	27,204	30,144	32,852	33,687	36,191	38,582	43,820
20	22,775	23,828	25,038	28,412	31,410	34,170	35,020	37,566	39,997	45,315
20	22,113	23,020	23,030	20,412	31,410	34,170	33,020	37,300	33,331	43,313
21	23,858	24,935	26,171	29,615	32,671	35,479	36343	38,932	41,401	46,797
22	24,939	26,039	27,301	30,813	33,924	36,781	37,659	40,289	42,796	48,268
23	26,018	27,141	28,429	32,007	35,172	38,076	38,968	41,638	44,181	49,728
24	27,096	28,241	29,553	33,196	36,415	39,364	40,270	42,980	45,558	51,179
25	28,172	29,339	30,675	34,382	37,652	40,646	41,566	44,314	46,928	52,620
		,	,	,	,	,	,	,	,	,
26	29,246	30,434	31,795	35,563	38,885	41,923	42,856	45,642	48,290	54,052
27	30,319	31,528	32,912	36,741	40,113	43,194	44,140	46,963	49,645	55,476
28	31,391	32,620	34,027	37,916	41,337	44,461	45,419	48,278	50,993	56,893
29	32,461	33,711	35,139	39,087	42,557	45,722	46,693	49,588	52,336	58,302
30	33,530	34,800	36,250	40,256	43,773	46,979	47,962	50,892	53,672	59,703
	,									,
31	34,598	35,887	37,359	41,422	44,985	48,231	49,226	52,190	55,003	61,098
32	35,665	36,973	38,466	42,585	46,194	49,480	50,487	53,486	56,328	62,487
33	36,731	38,058	39,572	43,745	47,400	50,724	51,743	54,774	57,646	63,870
34	37,795	39,141	40,676	44,903	48,602	51,966	52,995	56,061	58,964	65,247
35	38,859	40,223	41,778	46,059	49,802	53,203	54,244	57,340	60,272	66,619
36	39,922	41,304	42,879	47,212	50,998	54,437	55,489	58,619	61,581	67,985
37	40,984	42,383	43,978	48,363	52,192	55,667	56,731	59,891	62,880	69,346
38	42,045	43,462	45,076	49,513	53,384	56,896	57,969	61,162	64,181	70,703
39	43,105	44,540	46,173	50,660	54,572	58,119	59,204	62,426	65,473	72,055
40	44,165	45,616	47,269	51,805	55,758	59,342	60,436	63,691	66,766	73,402

6. Distribución F de Fisher

(a) Valores críticos $F_{\alpha}(\nu_1, \nu_2)$ para $\alpha = 0,05$

					ν_1				
v_2	1	2	3	4	5	6	7	8	9
1	161,4	199,5	215,7	224,6	230,2	234,0	236,8	238,9	240,5
2	18,51	19,00	19,16	19,25	19,30	19,33	19,35	19,37	19,38
3	10,13	9,55	9,28	9,12	9,01	8,94	8,89	8,85	8,81
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,77
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39
21	4,32	3,47	3,07	2,84	2,68	2,57	2,49	2,42	2,37
22	4,30	3,44	3,05	2,82	2,66	2,55	2,46	2,40	2,34
23	4,28	3,42	3,03	2,80	2,64	2,53	2,44	2,37	2,32
24	4,26	3,40	3,01	2,78	2,62	2,51	2,42	2,36	2,30
0.5	4.04	0.00	0.00	0.70	0.00	0.40	0.40	0.04	0.00
25	4,24	3,39	2,99	2,76	2,60	2,49	2,40	2,34	2,28
26	4,23	3,37	2,98	2,74	2,59	2,47	2,39	2,32	2,27
27	4,21	3,35	2,96	2,73	2,57	2,46	2,37	2,31	2,25
28	4,20	3,34	2,95	2,71	2,56	2,45	2,36	2,29	2,24
29 30	4,18	3,33 3,32	2,93 2,92	2,70	2,55 2,53	2,43	2,35	2,28	2,22
30	4,17	3,32	2,92	2,69	2,53	2,42	2,33	2,27	2,21
40	4,08	3,23	2,84	2,61	2,45	2,34	2,25	2,18	2,12
60	4,00	3,15	2,76	2,53	2,37	2,25	2,17	2,10	2,04
120	3,92	3,07	2,68	2,45	2,29	2,17	2,09	2,02	1,96
∞	3,84	3,00	2,60	2,37	2,23	2,10	2,03	1,94	1,88
$\stackrel{\sim}{\sqsubseteq}$	0,01	5,00	2,00	2,01	2,21	2,10	2,01	1,01	1,00

(b) Valores críticos $F_{\alpha}(\nu_1,\nu_2)$ para $\alpha=0,05$

					ν_1					
ν_2	10	12	15	20	24	30	40	60	120	∞
1	241,9	243,9	245,9	248,0	249,1	250,1	251,1	252,2	253,3	254,3
2	19,40	19,41	19,43	19,45	19,45	19,46	19,47	19,48	19,49	19,50
3	8,79	8,74	8,70	8,66	8,64	8,62	8,59	8,57	8,55	8,53
4	5,96	5,91	5,86	5,80	5,77	5,75	5,72	5,69	5,66	5,63
5	4,74	4,68	4,62	4,56	4,53	4,50	4,46	4,43	4,40	4,36
6	4,06	4,00	3,94	3,87	384	3,81	3,77	3,74	3,70	3,67
	1,00	1,00	0,01	0,01	001	0,01	0,	0,11	0,10	0,01
7	3,64	3,57	3,51	3,44	3,41	3,38	3,34	3,30	3,27	3,23
8	3,35	3,28	3,22	3,15	3,12	3,08	3,04	3,01	2,97	2,93
9	3,14	3,07	3,01	2,94	2,90	2,86	2,83	2,79	2,75	2,71
10	2,98	2,91	2,85	2,77	2,74	2,70	2,66	2,62	2,58	2,54
11	2,85	2,79	2,72	2,65	2,61	2,57	2,53	2,49	2,45	2,40
12	2,75	2,69	2,62	2,54	2,51	2,47	2,43	2,38	2,34	2,30
1.5	2,	2,00	2,02	2,01	2,01	2, 11	2,10	2,00	2,01	2,00
13	2,67	2,60	2,53	2,46	2,42	2,38	2,34	2,30	2,25	2,21
14	2,60	2,53	2,46	2,39	2,35	2,31	2,27	2,22	2,18	2,13
15	2,54	2,48	2,40	2,33	2,29	2,25	2,20	2,16	2,11	2,07
16	2,49	2,42	2,35	2,28	2,24	2,19	2,15	2,11	2,06	2,01
17	2,45	2,38	2,31	2,23	2,19	2,15	2,10	2,06	2,01	1,96
18	2,41	2,34	2,27	2,19	2,15	2,11	2,06	2,02	1,97	1,92
19	2,38	2,31	2,23	2,16	2,11	2,07	2,03	1,98	1,93	1,88
20	2,35	2,28	2,20	2,12	2,08	2,04	1,99	1,95	1,90	1,84
21	2,32	2,25	2,18	2,10	2,05	2,01	1,96	1,92	1,87	1,81
22	2,30	2,23	2,15	2,07	2,03	1,98	1,94	1,89	1,84	1,78
23	2,27	2,20	2,13	2,05	2,01	1,96	1,91	1,86	1,81	1,76
24	2,25	2,18	2,11	2,03	1,98	1,94	1,89	1,84	1,79	1,73
25	2,24	2,16	2,09	2,01	1,96	1,92	1,87	1,82	1,77	1,71
26	2,22	2,15	2,07	1,99	1,95	1,90	1,85	1,80	1,75	1,69
27	2,20	2,13	2,06	1,97	1,93	1,88	1,84	1,79	1,73	1,67
28	2,19	2,12	2,04	1,96	1,91	1,87	1,82	1,77	1,71	1,65
29	2,18	2,10	2,03	1,94	1,90	1,85	1,81	1,75	1,70	1,64
30	2,16	2,09	2,01	1,93	1,89	1,84	1,79	1,74	1,68	1,62
40	2,08	2,00	1,92	1,84	1,79	1,74	1,69	1,64	1,58	1,51
60	1,99	1,92	1,84	1,75	1,70	1,65	1,59	1,53	1,47	1,39
		-,	-,	-,	-,	-,	-,	-,	-,	-,
120	1,91	1,83	1,75	1,66	1,61	1,55	1,50	1,43	1,35	1,25
∞	1,83	1,75	1,67	1,57	1,52	1,46	1,39	1,32	1,22	1,00

(c) Valores críticos $F_{\alpha}(\nu_1, \nu_2)$ para $\alpha = 0,01$

v2 1 2 3 4 5 6 7 8 9 1 4052 4999,5 5403 5625 5764 5859 5928 5981 6022 2 98,50 99,00 99,17 99,25 99,30 99,33 99,36 99,37 99,33 3 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,33 4 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,66 5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,16 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63						ν_1				
2 98,50 99,00 99,17 99,25 99,30 99,33 99,36 99,37 99,33 3 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,33 4 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,60 5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,10 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,33 10 10,04 7,56 6,55 5,99 <th>v_2</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th></th> <th>6</th> <th>7</th> <th>8</th> <th>9</th>	v_2	1	2	3	4		6	7	8	9
2 98,50 99,00 99,17 99,25 99,30 99,33 99,36 99,37 99,33 3 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,33 4 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,60 5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,10 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,33 10 10,04 7,56 6,55 5,99 <td>_</td> <td></td> <td></td> <td>=</td> <td></td> <td></td> <td></td> <td>=000</td> <td></td> <td></td>	_			=				=000		
3 34,12 30,82 29,46 28,71 28,24 27,91 27,67 27,49 27,31 4 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,61 5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,10 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67										
4 21,20 18,00 16,69 15,98 15,52 15,21 14,98 14,80 14,60 5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,10 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5							,	,		,
5 16,26 13,27 12,06 11,39 10,97 10,67 10,46 10,29 10,11 6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86	3	34,12	30,82	29,46	28,71	28,24	27,91	27,67	27,49	27,35
6 13,75 10,92 9,78 9,15 8,75 8,47 8,26 8,10 7,98 7 12,25 9,55 8,45 7,85 7,46 7,19 6,99 6,84 6,72 8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69	4	21,20	18,00	16,69	15,98	15,52	15,21	14,98	14,80	14,66
7	5	16,26	13,27	12,06	11,39	10,97	10,67	10,46	10,29	10,16
8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,1	6	13,75	10,92	9,78	9,15	8,75	8,47	8,26	8,10	7,98
8 11,26 8,65 7,59 7,01 6,63 6,37 6,18 6,03 5,91 9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,1	7	12.25	0.55	9.45	7.85	7.46	7 10	6 99	6.94	6.72
9 10,56 8,02 6,99 6,42 6,06 5,80 5,61 5,47 5,35 10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,00 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15					,					
10 10,04 7,56 6,55 5,99 5,64 5,39 5,20 5,06 4,94 11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 3,89 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,9			,		,					
11 9,65 7,21 6,22 5,67 5,32 5,07 4,89 4,74 4,63 12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,00 3,89 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 <	3	10,50	0,02	0,00	0,12	0,00	5,00	3,01	3,11	0,00
12 9,33 6,93 5,95 5,41 5,06 4,82 4,64 4,50 4,39 13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99										4,94
13 9,07 6,70 5,74 5,21 4,86 4,62 4,44 4,30 4,19 14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82	11	9,65	7,21	6,22	5,67	5,32	5,07	4,89	4,74	4,63
14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 <	12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,39
14 8,86 6,51 5,56 5,04 4,69 4,46 4,28 4,14 4,03 15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 <	13	9.07	6.70	5,74	5,21	4.86	4.62	4.44	4.30	4,19
15 8,68 6,36 5,42 4,89 4,56 4,32 4,14 4,00 3,89 16 8,53 6,23 5,29 4,77 4,44 4,20 4,03 3,89 3,78 17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 <			,		,					4,03
17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78										3,89
17 8,40 6,11 5,18 4,67 4,34 4,10 3,93 3,79 3,68 18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78										
18 8,29 6,01 5,09 4,58 4,25 4,01 3,84 3,71 3,60 19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 <										3,78
19 8,18 5,93 5,01 4,50 4,17 3,94 3,77 3,63 3,52 20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15										3,68
20 8,10 5,85 4,94 4,43 4,10 3,87 3,70 3,56 3,46 21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60
21 8,02 5,78 4,87 4,37 4,04 3,81 3,64 3,51 3,40 22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52
22 7,95 5,72 4,82 4,31 3,99 3,76 3,59 3,45 3,35 23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,46
23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	21	8,02	5,78	4,87	4,37	4,04	3,81	3,64	3,51	3,40
23 7,88 5,66 4,76 4,26 3,94 3,71 3,54 3,41 3,30 24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	22	7.05	E 72	4.92	4 21	2.00	2.76	2.50	2.45	2 25
24 7,82 5,61 4,72 4,22 3,90 3,67 3,50 3,36 3,26 25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15					,			,	,	
25 7,77 5,57 4,68 4,18 3,85 3,63 3,46 3,32 3,22 26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15			,		,			,		
26 7,72 5,53 4,64 4,14 3,82 3,59 3,42 3,29 3,18 27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15		1,02	0,01	1,1.2	1,22	0,00	0,01	0,00	0,00	0,20
27 7,68 5,49 4,60 4,11 3,78 3,56 3,39 3,26 3,15	25	7,77	5,57	4,68	4,18	3,85	3,63	3,46	3,32	3,22
	26	7,72	5,53	4,64	4,14	3,82	3,59	3,42	3,29	3,18
28 7,64 5,45 4,57 4,07 3,75 3,53 3,36 3,23 3,12	27	7,68	5,49	4,60	4,11	3,78	3,56	3,39	3,26	3,15
20 1,01 0,10 1,01 1,01 0,10 0,00 0,00 0,	28	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12
29 7,60 5,42 4,54 4,04 3,73 3,50 3,33 3,20 3,09			,		,			,		3,09
										3,07
, , , , , , , , , , , , , , , , , , ,	-	,	,					,		
40 7,31 5,18 4,31 3,83 3,51 3,29 3,12 2,99 2,89	40	7,31	5,18	4,31	3,83	3,51	3,29	3,12	2,99	2,89
60 7,08 4,98 4,13 3,65 3,34 3,12 2,95 2,82 2,72	60	7,08	4,98	4,13	3,65	3,34	3,12	2,95	2,82	2,72
	120	6.85	4 79	3 95	3 48	3.17	2 96	2 79	2 66	2,56
								,		2,36
	J.	0,00	1,01	5,10	0,02	5,02	2,00	2,01	2,01	-,11

(d) Valores críticos $F_{\alpha}(\nu_1,\nu_2)$ para $\alpha=0,01$

					ν_1					
ν_2	10	12	15	20	24	30	40	60	120	∞
1	6056	6106	6157	6209	6235	6261	6287	6313	6339	6366
2	99,40	99,42	99,43	99,45	99,46	99,47	99,47	99,48	99,49	99,50
3	27,23	27,05	26,87	26,69	26,60	26,50	26,41	26,32	26,22	26,13
4	14,55	14,37	14,20	14,02	13,93	13,84	13,75	13,65	13,56	13,46
5	10,05	9,89	9,72	9,55	9,47	9,38	9,29	9,20	9,11	9,02
6	7,87	7,72	7,56	7,40	7,31	7,23	7,14	7,06	6,97	6,88
	.,	.,.2	1,00	1,10	1,01	1,20	.,	1,00	0,01	0,00
7	6,62	6,47	6,31	6,16	6,07	5,99	5,91	5,82	5,74	5,65
8	5,81	5,67	5,52	5,36	5,28	5,20	5,12	5,03	4,95	4,86
9	5,26	5,11	4,96	4,81	4,73	4,65	4,57	4,48	4,40	4,31
10	4,85	4,71	4,56	4,41	4,33	4,25	4,17	4,08	4,00	3,91
11	4,54	4,40	4,25	4,10	4,02	3,94	3,86	3,78	3,69	3,60
12	4,30	4,16	4,01	3,86	3,78	3,70	3,62	3,54	3,45	3,36
12	1,50	4,10	4,01	3,00	3,70	3,70	3,02	3,34	3,43	3,30
13	4,10	3,96	3,82	3,66	3,59	3,51	3,43	3,34	3,25	3,17
14	3,94	3,80	3,66	3,51	3,43	3,35	3,27	3,18	3,09	3,00
15	3,80	3,67	3,52	3,37	3,29	3,21	3,13	3,05	2,96	2,87
16	3,69	3,55	3,41	3,26	3,18	3,10	3,02	2,93	2,84	2,75
17	3,59	3,46	3,31	3,16	3,08	3,00	2,92	2,83	2,75	2,65
18	3,51	3,37	3,23	3,08	3,00	2,92	2,84	2,75	2,66	2,57
19	3,43	3,30	3,15	3,00	2,92	2,84	2,76	2,67	2,58	2,49
20	3,37	3,23	3,09	2,94	2,86	2,78	2,69	2,61	2,52	2,42
21	3,31	3,17	3,03	2,88	2,80	2,72	2,64	2,55	2,46	2,36
22	3,26	3,12	2,98	2,83	2,75	2,67	2,58	2,50	2,40	2,31
23	3,21	3,07	2,93	2,78	2,70	2,62	2,54	2,45	2,35	2,26
24	3,17	3,03	2,89	2,74	2,66	2,58	2,49	2,40	2,31	2,21
25	3,13	2,99	2,85	2,70	2,62	2,54	2,45	2,36	2,27	2,17
26	3,09	2,96	2,81	2,66	2,58	2,50	2,42	2,33	2,23	2,13
27	3,06	2,93	2,78	2,63	2,55	2,47	2,38	2,29	2,20	2,10
28	3,03	2,90	2,75	2,60	2,52	2,44	2,35	2,26	2,17	2,06
29	3,00	2,87	2,73	2,57	2,49	2,41	2,33	2,23	2,14	2,03
30	2,98	2,84	2,70	2,55	2,47	2,39	2,30	2,21	2,11	2,01
40	2,80	2,66	2,52	2,37	2,29	2,20	2,11	2,02	1,92	1,80
60	2,63	2,50	2,35	2,20	2,12	2,03	1,94	1,84	1,73	1,60
	,	,	,	, -	,	,	,-	,-	,	,
120	2,47	2,34	2,19	2,03	1,95	1,86	1,76	1,66	1,53	1,38
∞	2,32	2,18	2,04	1,88	1,79	1,70	1,59	1,47	1,32	1,00

7. Algunas distribuciones discretas

NOMBRE	FUNCIÓN	PARÁMETROS	E(X)	V(X)
Uniforme	$f(x_k) = \frac{1}{n},$	$x_i < x_{i+1}$	$\frac{1}{n} \sum_{k=1}^{n} x_k$	$\frac{1}{n} \sum_{k=1}^{n} x_k^2 - $
	$k=1,2,\ldots,n$	$n \in \mathbb{N}$		$-\frac{1}{n}\left(\sum_{k=1}^{n}x_{k}\right)^{2}$
De dos	$f(x_1) = p,$	$x_1 < x_2$	<i>x</i> ₁ <i>p</i> +	$(x_1-x_2)^2a$,
puntos	$f(x_2) = 1 - p$	0 < p < 1	$+x_2(1-p)$	a=p(1-p)
Bernoulli	f(0) = p,	p	p	p(1-p)
	f(1) = 1 - p			
Binomial	$\binom{n}{k} p^k (1-p)^{n-k}$	0 < p < 1	np	np(1-p)
	$k=0,1,2,\ldots,n$	$n \in \mathbb{N}$		
Poisson	$f(k) = \frac{1}{k!} e^{-\lambda} \lambda^k$	λ > 0	λ	λ
	$k = 0, 1, 2, 3, \dots$			
Hiper-	$\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}$	$M \in \mathbb{N}_0$,	$n \cdot \frac{M}{N}$	$na\left(\frac{N-n}{N-1}\right)$
geomé-	$k \in \mathbb{N}_0, k \le n,$	$n, N \in \mathbb{N}$		$p = \frac{M}{N}$
trica	$k \le M$	$n \le M \le N$		a = p(1-p)
Binomial	$\binom{k+r-1}{r-1} p^r (1-p)^k$	r > 0,	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
negativa	$k = 0, 1, 2, \dots$	0 < p < 1		<u> </u>
Geomé-	$f(k) = p(1-p)^k$	0 < p < 1	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
trica	$k = 0, 1, 2, \dots$			

8. Algunas distribuciones continuas

NOMBRE	FUNCIÓN	PARÁMETROS	E(X)	V(X)
Uniforme	$f(x) = \frac{1}{b-a},$	a < b	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
	a < x < b			
,	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}, e^{-\frac{(x-\mu)^2}{2\sigma^2}}$			σ^2
Normal	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}, e^{-2\sigma^2}$	$\mu \in \mathbb{R}$,	μ	σ^{2}
	$x \in \mathbb{R}$	$\sigma^2 > 0$		
Normal	$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},$		0	1
	$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x}$			1
estándar	$x \in \mathbb{R}$	_		22
Gamma	$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta},$	$\alpha > 0$,	αβ	$\alpha \beta^2$
	x > 0	$\beta > 0$		
Exponencial	$f(x) = \lambda e^{-\lambda x},$	$\lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
	<i>x</i> > 0			
t de Student	$f(x) = a_n (1 + n x^2)^{-(n+1)/2},$	$n \in \mathbb{N}$	0,	$\frac{n}{n-2}$,
			$n \ge 2$	$n \ge 3$
	$a_n := \frac{\Gamma\left(\frac{n+1}{2}\right)\sqrt{n}}{\Gamma\left(\frac{n}{2}\right)\sqrt{\pi}}, \ x \in \mathbb{R}$			
	$u_n := \frac{1}{\Gamma(\frac{n}{2})\sqrt{\pi}}, x \in \mathbb{R}$			
	(=)			
Chi-cuadrada	$\frac{1}{an} x^{\frac{n}{2}-1} e^{-x/2}$	n > 0	n	2n
	u_n			
	$a_n := 2^{n/2} \Gamma\left(\frac{n}{2}\right), \ x > 0$			
F de Fisher	$f(x) = \frac{a_n x^{\frac{m}{2}-1}}{(n+mx)(m+n)/2}$	$m,n\in\mathbb{N}$	<u>_n_</u>	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$,
7 de l'isliei	$\int_{-\infty}^{\infty} \frac{(n+mx)(m+n)/2}{(n+mx)(m+n)/2}$	111,11 - 114	$n-2$, $n \ge 3$	
	r(m+n) = m/2 = n/2		$n \ge 3$	$n \ge 5$
	$a_n := \frac{\Gamma\left(\frac{m+n}{2}\right) m^{m/2} n^{n/2}}{\Gamma\left(\frac{m}{2}\right) \Gamma\left(\frac{n}{2}\right)}, \ x > 0$			
	$\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})$			
	<i>k</i> =1			
Erlang	$\frac{(\lambda x)^{k-1}}{(k-1)!} \cdot \lambda e^{-\lambda x}$	$k \in \mathbb{N}, \lambda > 0$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$, $x > 0$

9. Resumen de distribuciones muestrales e intervalos de confianza

Cuadro A.1: Distribución de la media muestral

	¿FORMA DE LA	žES σ ²	¿TAMAÑO DE	¿DISTRIBUCIÓN	¿ZÓt?
	POBLACIÓN?	CONOCIDA?	LA MUESTRA?	MUESTRAL?	
1.					
1.	Normal	Sí	No importa	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
2.			Grande		
		No	(<i>n</i> ≥ 30)	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
3.			Pequeño	t de Student,	
			(n < 30)	v = n - 1	$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
				grados de libertad	
4.	No normal o		Grande		
	desconocida	Sí	(<i>n</i> ≥ 30)	Normal	$Z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$
5.			Pequeño	Callejón sin	
			(n < 30)	salida	
6.			Grande		
		No	(<i>n</i> ≥ 30)	Normal	$Z = \frac{\overline{x} - \mu}{s / \sqrt{n}}$
7.			Pequeño	Callejón sin	
			(n < 30)	salida	

Cuadro A.2: Distribución relacionadas con proporciones

	¿ESTADÍSTICO?	¿SUPUESTO?	¿DIST. MUESTRAL	¿Z?
1.	Proporción	<i>n</i> ≥ 30	Normal	$Z = \frac{\overline{p} - p}{\sqrt{p(1-p)}}$
2.	muestral	$np \ge 5,$ $n(1-p) \ge 5$	Normal	$\sqrt{\frac{r}{n}}$
3.	Diferencia de proporciones muestrales	$n_1 \ge 30,$ $n_2 \ge 30$	Normal	$Z = \frac{(\overline{p}_1 - \overline{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1(1 - p_1)}{n_1} + \frac{p_2(1 - p_2)}{n_2}}}$
4.	muestrales	$n_1 p_1 \ge 5,$ $n_1 (1 - p_1) \ge 5,$ $n_2 p_2 \ge 5,$ $n_2 (1 - p_2) \ge 5$	Normal	V n1 n2

Cuadro A.3: Distribución de la diferencias de medias muestrales

 \boldsymbol{X} representa la población y para las dos últimas posibilidades de la tabla:

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}, \quad v' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

		2 2			DIOTRIBUICIÓN	76.0
		$\delta \sigma_1^2 y \sigma_2^2$ SE	2 2-	_	¿DISTRIBUCIÓN	¿ZÓ t?
	¿X?		$\delta \sigma_1^2 = \sigma_2^2$?	¿n₁ y n₂?	MUESTRAL?	$d:=\overline{x}_1-\overline{x}_2,$
		CONOCEN?				$\mu := \mu_1 - \mu_2$
1.	No normal	Sí		Grandes	Normal	$Z = \frac{d - \mu}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
i i			No im-	$n_1 \ge 30$,		
			porta	$n_2 \ge 30$		
2.		No		Grandes	Normal	$Z = \frac{d - \mu}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
			No im-	$n_1 \ge 30$,		, , , ,
			porta	$n_2 \ge 30$		
3.	Normal	Sí		No importa	Normal	$Z = \frac{d - \mu}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
4.		No	Sí	Pequeño	t de Student con	$t = \frac{d - (\mu_1 - \mu_2)}{\sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}}$
				$n_1 < 30$,	$v = n_1 + n_2 - 2$	
				n ₂ < 30	grados de libertad	
5.				Pequeño	t de Student con	
			No	$n_1 < 30$,	v' grados de libertad	$t = \frac{d - \mu}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$
				n ₂ < 30	(redondear al en- tero más cercano)	γ "1 "2

 $\textbf{Cuadro A.4:} \ \text{Distribuci\'on de la varianza muestral y de la raz\'on de varianzas muestrales}$

	ESTADISTÍCO	¿POBLACIÓN?	;DISTRIBUCIÓN	3γ ² Ó F?
	ESTADISTICO	SLOPPACION:		ix OF:
			MUESTRAL?	
1.		Normal	Chi-cuadrada con	
				$(n-1)s^2$
	s^2		v = n - 1	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$
			grados de libertad	U
2.	s_1^2/s_2^2	Ambas normales	F de Fisher con $v_1 = n_1 - 1,$ $v_2 = n_2 - 1$ grados de libertad	$F = \frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2}$ $Regla:$ $F_{1-\alpha}(a,b) = \frac{1}{F_{\alpha}(b,a)}$

Cuadro A.5: Intervalos de confianza para la media poblacional

	¿POBLACIÓN?	$i\sigma^2$	OÑAMAT¸	¿DISTRIBUCIÓN	¿INTERVALO?
		CONOCIDA?	MUESTRAL?	MUESTRAL?	$\overline{x} - b < \mu < \overline{x} + b$, con:
1.	Normal	Sí	No importa	Normal	$b := Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
2.		No	Grande $(n \ge 30)$	Normal	$b := Z_{\alpha/2} \frac{s}{\sqrt{n}}$
3.			Pequeño (n < 30)	t de Student, v = n - 1 grados de libertad	$b := t_{\alpha/2} \frac{s}{\sqrt{n}}$
4.	No normal o	Sí	Grande $(n \ge 30)$	Normal	$b := Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$
5.	desco- nocida		Pequeño (n < 30)	Callejón sin salida	
6.		No	Grande $(n \ge 30)$	Normal	$b := Z_{\alpha/2} \frac{s}{\sqrt{n}}$
7.			Pequeño (n < 30)	Callejón sin salida	

Cuadro A.6: Intervalos para la proporción y para la diferencia de proporciones

	¿ESTADÍSTICO?	;SUPUESTOS?	;DISTR.	;INTERVALO DE CONFIANZA?
	¿ESTADISTICO:	230F0E31O3:	°	0
			MUESTRAL?	$\overline{p} - b , con:$
1.	Proporción	<i>n</i> ≥ 30	Normal	$\sqrt{\overline{p}(1-\overline{p})}$
2.	muestral	$np \ge 5$,	Normal	$b := Z_{\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$
		$n(1-p) \ge 5$		
3.	Diferencia de proporciones muestrales	$n_1 \ge 30,$ $n_2 \ge 30$	Normal	$\overline{p} := \overline{p}_1 - \overline{p}_2$
4.	muestrales	$n_1 p_1 \ge 5,$	Normal	$b := Z_{\alpha/2} \sqrt{\frac{\overline{p}_1(1 - \overline{p}_1)}{n_1} + \frac{\overline{p}_2(1 - \overline{p}_2)}{n_2}}$
		$n_1(1-p_1)\geq 5,$		
		$n_2 p_2 \ge 5$,		
		$n_2(1-p_2) \ge 5$		

 $\textbf{Cuadro A.7:} \ Intervalos \ para \ la \ varianza \ y \ para \ la \ raz\'on \ de \ varianzas$

		¿POBLACIÓN?	¿DISTRIBUCIÓN	¿INTERVALO DE
			MUESTRAL?	CONFIANZA?
1.		Normal	Chi-cuadrada con	
	s ²		v = n - 1	$\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2}$
			grados de libertad	2
2.	s_1^2/s_2^2	Ambas normales	F de Fisher con $v_1 = n_1 - 1$, $v_2 = n_2 - 1$ grados de libertad	$\frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{\frac{\alpha}{2}}(v_1, v_2)} < \frac{\sigma_1^2}{\sigma^2} < \frac{s_1^2}{s_2^2} \cdot F_{\frac{\alpha}{2}}(v_2, v_1)$ Regla: $F_{1-\alpha}(a, b) = \frac{1}{F_{\alpha}(b, a)}$

Cuadro A.8: Intervalos de confianza para la diferencias de medias poblacionales

 \boldsymbol{X} representa la población y para las dos últimas posibilidades de la tabla:

$$s^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}, \quad v' = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$$

	¿X?	$ \begin{array}{c} $	$\dot{z}\sigma_1^2 = \sigma_2^2?$	¿n₁ y n₂?	¿DISTRIBUCIÓN MUESTRAL?	¿INTERVALO? $d - b < \theta < d + b$, donde $d := \overline{x}_1 - \overline{x}_2$ $\theta := \mu_1 - \mu_2$ y:
1.	No normal	Sí	No importa	Grandes $(n_1 \ge 30, n_2 \ge 30)$	Normal	$b := Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
2.		No	No importa	Grandes $(n_1 \ge 30, n_2 \ge 30)$	Normal	$b := Z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
3.	Normal	Sí	No importa	No importa	Normal	$b := Z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
4.		No	Sí	Pequeño $(n_1 < 30, n_2 < 30)$	t de Student con $v = n_1 + n_2 - 2$ grados de libertad	$b := t_{\alpha/2} \sqrt{\frac{s^2}{n_1} + \frac{s^2}{n_2}}$
5.			No	Pequeño $(n_1 < 30, n_2 < 30)$	t de Student con v' grados de libertad (redondear al en- (tero más cercano)	$b := t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

${\bf B}$

Guía rápida para trabajar con Statgraphics

B.1 Análisis de un solo conjunto de datos

- 1. Abrir el archivo de datos calles.sf3.
- 2. Seleccionamos Describe ... Numeric Data ... One-Variable Analysis.
- 3. Elegimos Data = Longitud y pulsamos la opción OK.
- 4. Sale la llamada ventana del análisis. Los íconos principales de esta ventana son:
 - Input dialog (ícono de diálogos): para seleccionar o cambiar variables dentro del archivo y análisis seleccionado.
 - Tabular options (ícono de opciones tabulares): medidas estadísticas, percentiles, tablas de frecuencia, inferencias,
 - Graphical options (ícono de opciones gráficas): diagramas de dispersión, histogramas, etc.
 - Save results (ícono de salvar resultados): permite salvar los resultados del análisis.
- 5. Transformación de una variable: 1 One Variable Analysis, activar el botón Transform y, en Operators, elegir logaritmo.

B.2 Análisis simultáneo de dos o más conjuntos de datos

- $1. \ \ \textit{Compare} \dots \textit{Two Sample Comparison} \dots$
- 2. Para obtener diagramas de cajas múltiples: *Compare ... Multiple Samples ... Multiple-Sample Comparison ... Multiple Data Columns ... Ok ... Samples*= (en esta última opción mencionar los datos que queremos comparar)
- 3. Para obtener diagramas de cajas múltiples: *Plot ... Exploratory Plots ... Multiple Box-and-Whishker Plot ... Data=distancia ... Level codes=year ...*

¹ Por ejemplo, si quisiéramos trabajar con el logaritmo de la variable escribimos LOG(**longitud**) en vez de **longitud**.

B.3 Gráficos de dispersión

Con la opción *Plot...Scatterplots* se pueden realizar:

- 1. Gráficos univariantes (*Univariate Plot*). Por ejemplo, abrir archivo de datos **autos.sf3** y utilizar la variable *mpg*.
- 2. Gráficos bidimensionales *X-Y* simples (*X-Y plot*) y múltiples (*Multiple X-Y Plot*). Por ejemplo, abrir archivo de datos **autos.sf3** y hacer *Y=mpg* y *X=potencia*. Sobre la gráfica, pulsar botón derecho del ratón y elegir *Pane options*. Aparece una pantalla con varios campos. Elegir *Point Codes=model*.
- 3. Gráficos tridimensionales X-Y-Z simples (X-Y-Z plot) y múltiples (Multiple X-Y-Z Plot). Por ejemplo, abrir archivo de datos **autos.sf3** y hacer X=accel, Y=cilindro, Z=price. Sobre la zona gráfica: botón derecho, Pane options, Point Codes=origin.
- 4. Gráficos de matriz (Matriz Plot).
- 5. Gráficos en coordenadas polares (Polar Coordinates Plot).

B.4 Diagramas de presentación

Con la opción *Plot...Business Charts* se pueden realizar (abrir siempre el archivo **autos.sf3**):

- 1. Gráficos de barras simples (*Barchart*). Por ejemplo, realizar un gráfico de barras para la variable *origin* del archivo **autos.sf3**, que contiene el país de origen de los autos. Los valores de la variable *origin* son 1 para los autos norteamericanos, 2 para autos europeos y 3 para autos japoneses. En esta opción sale, entre otros, el campo *Counts* (Frecuencias) que permite introducir la variable que contiene las frecuencias absolutas de los valores de la variable a graficar. Como las frecuencias absolutas de de los valores de la variable *origin* son: 85 para autos norteamericanos, 26 para autos europeos y 44 para autos japoneses, entonces, por esta razón, debemos escribir en este campo *join3(85;26;44)*. Además, el campo *Labels* (Etiquetas) permite introducir el nombre de la variable que contiene las etiquetas a utilizar para cada barra del gráfico. Como las etiquetas de los valores de la variable *origin* están contenidas *carmakers*, que son *America*, *Europe* y *Japan*, hacemos *Labels=carmakers*.
- 2. Gráficos de barras múltiples (*Multiple Barchart*). Por ejemplo, realizaremos un gráfico de barras dobles para las variables *origin* y *year* del archivo **autos.sf3**, que contienen el país de origen de los autos y el año de construcción, respectivamente. Los valores de la variable *year* son los intervalos 1978, [1979,1980] y [1981,1982]. Aparecen, entre otros, los siguientes campos:
 - *Columns* (Columnas): En este campo se introducen las variables que contienen las frecuencias absolutas de los valores de las variables a graficar, o una expresión de Statgtraphics que contiene operadores y que genera sus valores. Como las frecuencias absolutas de de los valores de la variable *origin* son: 85 para autos norteamericanos, 26 para autos europeos y 44 para autos japoneses, y como las frecuencias absolutas de los valores de la variable *year* son: 36 para 1978, 58 para [1979,1980] y 61 para [1981,1982], entonces, por esta razón, debemos escribir en este campo *join3*(85;26;44) y *join3*(36;58;61).
 - *Labels* (Etiquetas): Hacemos *Labels=carmakers*.

- 3. Gráficos de sectores (*Piechart*). Por ejemplo, realizaremos un gráfico de sectores para la variable *origin* del archivo **autos.sf3**, que contienen el país de origen de los autos y el año de construcción, respectivamente. Los valores de la variable *origin* son 1 para los autos norteamericanos, 2 para autos europeos y 3 para autos japoneses. Aparecen, entre otros, los siguientes campos:
 - *Counts* (Frecuencias): En este campo se introducen las variables que contienen las frecuencias absolutas de los valores de las variables a graficar, o una expresión de Statgtraphics que contiene operadores y que genera sus valores. Como las frecuencias absolutas de de los valores de la variable *origin* son: 85 para autos norteamericanos, 26 para autos europeos y 44 para autos japoneses, entonces, por esta razón, debemos escribir en este campo *join3(85;26;44)*.
 - Labels (Etiquetas): En este campo se debe introducir el nombre de la variable que contiene las etiquetas a utilizar
 para cada grupo de barras del gráfico. Como las etiquetas de los valores de la variable origin están contenidas
 carmakers, que son America, Europe y Japan, hacemos Labels=carmakers.
- 4. Gráficos de componentes de líneas (Component Line Chart)
- 5. Gráficos de escogencias alta y baja (High-Low-Chose Chart).

B.5 Variables numéricas multidimensionales

Seleccione la siguiente secuencia de opciones: *Describe...Numeric Data...Multiple-Variable Analysis* y aparecen todas las variables del archivo. Aparece una ventana de diálogo en cuyo campo *Data* introducimos la variables *origin, price* y *year*. Luego, pulsamos el botón OK.

B.6 Distribuciones de probabilidad

Plot ... Probability Distributions. Escogemos la distribución deseada. Los valores de los parámetros que definen la distribución (están fijados por defecto por el programa) los podemos modificar si pulsamos el botón derecho del ratón y escogemos la opción *Analysis Options*.

B.7 Inferencias basadas en una sola muestra

- 1. Se escoge *Describe ... Numeric Data ... One Variable Analysis*. Elegimos la variable que va a ser objeto del análisis y pulsar *OK*. Al pulsar el ícono *Tabular options* aparecen, entre otros:
 - Confidence Intervals.
 Calcula intervalos para la media (Confidence Interval for Mean) y la desviación típica (Confidence Interval for Standard Deviation) de la distribución. Pulsando el botón derecho del ratón y escogiendo Pane Options se puede modificar el nivel de confianza (Confidence Level) y el tipo de intervalo (Interval Type).
 - Hypothesis Testing
 Se realizan los contrastes de la media y de la desviación típica. Pulsando el botón derecho del ratón y escogiendo

Pane options se pueden modificar el valor del parámetro para la hipótesis nula (por ejemplo $Mean = \mu_0$), del nivel de significancia α (Alpha) y de la hipótesis alternativa:

2. Cálculo de la curva de potencia.

Describe ... Hypothesis Test ... Normal Mean y en Null Hypothesis se elige el valor de la media bajo la hipótesis nula. En la casilla Sample Sigma se escoge el valor de la desviación típica de la población. El tamaño de muestra se fija a través de Sample Size. Seleccionando el ícono de gráficos se selecciona la única gráfica posible (curva de potencia - Power Curve) y se pulsa OK.

B.8 Inferencias basadas en dos muestras

- 1. Elegir *Compare ... Two Samples*, en donde aparecen cuatro (4) opciones: *Two Sample Comparison, Paired-Sample Comparison, Hypotesis Tests, Sample-Size Determination.*
- 2. Cuando seleccionamos *Two Sample Comparison*² el programa pide al usuario que especifique las dos columnas de datos a comparar (*Sample 1* y *Sample 2*). Seleccionando *Tabular options* aparece, entre otros:
 - Comparison of Means: Intervalo de confianza para la diferencia de medias y contraste de igualdad de medias.
 - Comparison of Standard Deviations: Intervalo de confianza para el cociente de varianzas y contraste de igualdad de varianzas.
 - Kolmogorov-Smirnov Test: Prueba de hipótesis para saber si las distribuciones de ambas muestras son idénticas.

B.9 Bondad de ajuste

- 1. Se selecciona *Describe... Distribution Fitting...Uncensured Data.* Al pulsar *OK* se obtiene, entre otras, la salida de las contrastes de bondad de ajuste.
- 2. Si, estando situados sobre esta salida, pulsamos el botón derecho del ratón y elegimos la opción *Analysis Options* del menú emergente resultante, obtenemos la caja de diálogo *Probability Distributios Options*, que presenta todas las posibles distribuciones a considerar para el ajuste (observamos que por defecto el ajuste se realiza a una distribución normal).
- 3. También aparecen los siguientes campos:
 - Number of Trials (número de ensayos).
 Se rellena con el número de tiradas cuando la distribución elegida para el ajuste es binomial;
 - Number of Successes (número de eventos).
 Se rellena con el número de éxitos cuando la distribución elegida es una binomial negativa.
 - Population Size (tamaño de la población).
 Se rellena con el tamaño de la población cuando la distribución elegida es una hipergeométrica.

²El procedimiento es idéntico cuando seleccionamos la opción *Paired-Sample Comparison*

- 4. La opción tabular *Tests for Normality*: realiza los contrastes de normalidad.
- 5. Opción tabular *Goodness-of-Fit Tests*: realiza los contrastes de la bondad de ajuste de los datos a una distribución dada.

C

Guía rápida para trabajar con SPSS

C.1 Definición de las variables

Para definir cada variable hay dos procedimientos:

- Hacer doble clic sobre el encabezamiento de la variable o
- Seleccionar, en la parte inferior, la pestaña vista de variables.

Cuando se hace esto, observamos que hay una fila para cada variable del conjunto de datos y que existen 10 columnas: *Nombre, Tipo, Anchura, Decimales, Etiqueta, Valores, Perdidos, Columnas, Alineación* y *Medida.* La definición de una variable se basa en las opciones que se ofrecen en esa ventana:

- 1. Asignar un nombre a cada variable, cumpliendo las siguientes reglas:
 - Nombres con no más de 8 caracteres (el primero debe ser una letra o @).
 - No utilizar símbolos como &, /, \$, etc.
 - No utilizar nunca espacios en blanco.
 - No utilizar expresiones como ALL, AND, BY, EQ, GE, GT, LE, NE, NOT, OR, TO, o WITH.
- 2. Asignar un tipo a cada variable, indicando el máximo número de dígitos que deseamos para anotar las observaciones de la variable y el tipo de la variable con la que vamos a trabajar (alfanumérica, fecha, moneda o numérica) indicando en este caso el número de cifras decimales con que queremos que aparezca en el editor. SPSS permite trabajar con los siguientes tipos de variables:
 - Numéricas: formato numérico estándar.
 - Coma: comas de separación cada tres posiciones. Un punto para la parte decimal.
 - *Punto*: al contrario que el anterior.
 - *Notación Científica*: uso de la E para exponente.
 - Cadena: variable alfanumérica (de más de 8 caracteres se considera larga).

Además están los formatos de fecha, dólar y moneda personalizada.

Si no escogemos el tipo, el sistema lo asigna automáticamente, siendo el formato por defecto: *Numérica 8.2* que significa: Anchura: 8 y Decimales: 2; es decir, una amplitud de columna de 8 espacios, siendo los 2 últimos para los decimales.

- 3. *Asignar una Etiqueta a cada variable* de no más de 120 caracteres (entre 30 y 40 es el valor recomendado) que nos permita tener más información sobre esa variable.
- 4. *Asignar Valores*: se trata de asignar etiquetas a los valores de cada variable. No es obligatorio, pero sí muy útil en algunos casos.
- 5. Definir Perdidos: permite definir los valores de los datos especificados como perdidos por el usuario. Sitúese en el campo correspondiente a Perdidos de cualquier variable y pulse sobre el recuadro coloreado, aparece: Los códigos asignados a los valores ausentes deben de ser coherentes con el tipo de variables declarado: numéricos para las numéricas y alfanuméricos para las alfanuméricas (máximo 9 caracteres). Se pueden introducir hasta 3 valores perdidos (individuales) de tipo discreto, un rango de valores perdidos o un rango más un valor de tipo discreto. Sólo pueden especificarse rangos para las variables numéricas. Estos valores ausentes son denominados por SPSS "valores ausentes definidos por el usuario" (user-defined missing values), a diferencia de los definidos por el sistema (system-missing values o sysmis). Estos últimos corresponden a los que establece el sistema para los espacios en blanco y caracteres ilegales que puedan haber en el archivo de datos. Aparecen en los listados representados por comas.
- 6. *Definir Columnas*: consiste en especificar la amplitud de la columna. Podemos hacerlo también desde el propio archivo de datos.
- 7. Definir Alineación: seleccionar la justificación de las entradas de la columna: Izquierda, Derecha y Centrado.
- 8. Especificar medida. Se puede seleccionar uno de los tres niveles de medida:
 - Escala: los valores de datos son numéricos en una escala de intervalo. Las variables de escala deben ser numéricas.
 - Ordinal: los valores de datos representan categorías con un cierto orden intrínseco (bajo, medio, alto; totalmente de acuerdo, de acuerdo, en desacuerdo). Las variables ordinales pueden ser de cadena o valores numéricos. Notar que para variables de cadena ordinales, se asume que el orden alfabético de los valores de cadena indica el orden correcto de las categorías; en el caso de bajo, medio y alto el orden sería alto, bajo y medio (orden que no es correcto), por lo que es más fiable utilizar códigos numéricos para representar datos ordinales que usar etiquetas de estos códigos.
 - Nominal: los valores de datos representan categorías sin un cierto orden intrínseco. Las variables nominales pueden ser de cadena o valores numéricos que representan categorías diferentes, por ejemplo 1 = Hombre y 2 = Mujer.

C.1.1. Transformación de una variable

Elegimos Transformar... Calcular, y realizamos los siguientes pasos:

- *a*) Asignar un nombre y un tipo (por defecto será numérica) a la nueva variable en el cuadro de texto de la *Variable de destino*.
- b) Definir la expresión numérica que va a permitir calcular los valores de la misma. Para ello utilizaremos los nombres de las variables del archivo (podemos escribirlos o seleccionarlos del listado que aparece), constantes, operadores y funciones.

c) Pulsar Aceptar.

Para construir estas expresiones pueden usarse operadores aritméticos como +, -, *, /, ** y funciones como SQRT, EXP, LG10, LN, ARTAN, COS, SIN, ABS, MOD10, TRUNC, RND, entre otras:

- MOD10 (Resto resultante de dividir entre 10).
- TRUNC (Parte entera de un número).
- RND (Redondeo al entero más cercano).

Pulsando el botón derecho sobre le nombre de la función, aparece su descripción. El argumento de las funciones debe ir entre paréntesis. Existen funciones particulares como UNIFORM y NORMAL, que se utilizan para la generación de variables aleatorias. Son de bastante utilidad en estudios de simulación.

Es importante tener cuidado con el orden de utilización de los operadores y no olvidar que los valores antiguos pierden su vigencia al recodificar una variable sobre el mismo nombre.

El botón *SI*... permite realizar modificaciones similares, pero sujetas a que se verifique una condición lógica. Se incluirán aquellos casos que verifiquen la condición. Los que no la cumplan pasarán a ser valores ausentes definidos por el sistema.

Una expresión lógica es una expresión que puede ser evaluada como verdadera o falsa en función de los valores de las variables en ella relacionadas. El nexo de las variables son los operadores de relación: = , >= , <= , < , > , \sim = . Es posible formar expresiones complejas, utilizando los operadores lógicos: AND (&), OR (|), NOT (\sim).

C.1.2. Recodificación de una Variable

A partir de una variable podemos crear otra cuyos valores sean una recodificación de los de la primera. Esta recodificación podemos hacerla tanto en la misma variable como en variables diferentes. Para ello, seleccionaremos *Transformar* ... *Recodificar* ... *En distintas variables*. Se abre una ventana en la que deberemos asignar un nombre (y una etiqueta si queremos) a la nueva variable. ¹

C.1.3. Filtrado de datos

El programa SPSS permite seleccionar determinados casos para un próximo proceso, bien temporalmente o de forma permanente, sobre la base de un criterio lógico o de una decisión aleatoria. Para ello seleccionaremos el menú *Datos* ... *Seleccionar casos*. La selección de individuos puede ser temporal (*filtrados*) o permanente (*eliminados*). En la selección permanente eliminamos del archivo activo los individuos deseados, mientras que en la temporal, la selección es recuperable (los casos son filtrados). En esta última situación, los individuos (casos) del archivo que no satisfacen la condición aparecerán marcados como excluidos mediante una línea que cruza en diagonal su número de fila. Aparece también una variable llamada *filter*\$ que el sistema crea para controlar el filtrado de datos.

Especificaciones:

■ *Todos los casos*: indica que quiere procesar todos los casos del archivo de datos de trabajo.

¹Cuidado!, si se selecciona ... borrarás la variable original.

- *Si se satisface la condición*: indica que quiere procesar sólo los casos que satisfagan una condición lógica. Para especificar o cambiar la condición, pulse en *Si*. Esta alternativa crea la variable *filter*\$, que el sistema crea para controlar el filtrado de datos.
- Muestra aleatoria de casos: indica que queremos seleccionar los casos de forma aleatoria para su procesamiento. Si ha tecleado las especificaciones de muestreo, éstas aparecerán junto al botón de comando Muestra. Si no, o si quiere cambiarlas, pulse en Muestra(véase más adelante). Esta alternativa también crea la variable filter\$.
- Basándose en el rango del tiempo o de los casos: permite seleccionar los casos deseados siempre que sean consecutivos.
- Usar variable de filtro: indica que quiere utilizar los valores de una variable numérica existente para controlar el filtrado de casos. Seleccione la variable de la lista de la izquierda. Los casos cuyo valor sea 0, o ausentes, en la variable de filtro se excluyen del análisis.

C.2 Análisis exploratorio de datos

Primero abrir el archivo de datos.

- *a*) **Tablas de frecuencias:** *Analizar ... Estadísticos descriptivos ... Frecuencias.* SPSS también cuenta con el menú alternativo *Analizar ... Tablas personalizadas* que posibilita alterar el formato del resultado.
- b) Estadísticos: Analizar ... Estadísticos descriptivos ... Descriptivos donde hay que seleccionar la variable o variables de interés y después *Opciones* para escoger los estadísticos que interesan. Sin embargo con este menú no se pueden obtener los percentiles. Para obtenerlos hay que usar *Analizar* ... Estadísticos descriptivos ... Frecuencias y entrar en la opción Estadísticos en donde se seleccionan los percentiles deseados.
- c) **Gráficos de sectores:** *Gráficos ... Sectores* y seleccionaremos una o varias variables apareciendo un cuadro de diálogo, cuyas opciones pasamos a comentar:
 - 1) Resúmenes para grupos de casos: Genera un gráfico en el que cada sector corresponde a un valor de la variable seleccionada. El tamaño del sector se determina por la opción Los sectores representan, esta opción aparece en el cuadro de diálogo que surge después de pulsar el botón Definir del cuadro anterior. También es posible que los sectores representen otra cosa, como la media de los valores de otra variable, el valor máximo, etc.; esto se consigue con la opción Otra función resumen. Se puede también editar el gráfico haciendo doble clic sobre él, con posibilidad de cambiar colores, tramas, desgajar sectores, etc.
 - 2) Resúmenes para distintas variables. Permite que los sectores representen variables en lugar de grupos de casos. Cada sector representa una función de una determinada variable (por ejemplo, la suma de los valores de sus casos).
 - 3) Valores individuales de los casos. Se resume una única variable, los casos ya son valores agrupados de la variable. Cada sector representa el valor de un caso individual. Con *Gráficos ... Interactivos ... Sectores* podemos obtener representaciones con efectos más llamativos.
- d) Diagramas de barras: Gráficos ... Barras y Gráficos ... Interactivos ... Barras.
- e) Histogramas: Gráficos ... Histograma o Gráficos ... Interactivos ... Histograma.

- f) **Gráficos de tallo y hojas:** Analizar ... Estadísticos descriptivos ... Explorar.
- g) Diagramas de caja: Gráficos ... Diagrama de cajas.
- h) **Diagramas de dispersión:** *Gráficos ... dispersión ... simple* o *Gráficos ... Interactivos ... Diagrama de dispersión*, en donde aparece un cuadro de diálogo en el que se puede elegir qué variable ocupará el eje *X* y qué otra el eje *Y*.

C.3 Inferencia sobre una o más poblaciones

Primero abrir el archivo de datos.

- *a*) **Análisis de una muestra:** *Analizar ... Comparar medias ... Prueba T para una muestra.* Aparece una pantalla en cuyo campo *Contrastar Variables* introducimos las varaibles que queremos contrastar. En esta ventana, seleccione *Opciones*, para introducir el grado de confianza deseado (por defecto es del 95%). Al final se pulsa *Aceptar*.
- b) Análisis de dos muestras emparejadas o relacionadas (Prueba T para muestras relacionadas). Para efectuar la prueba T para muestras relacionadas se necesita una columna en los datos para cada una de las variables a comparar. Seleccionamos Analizar ... Comparar medias ... Prueba T para muestras relacionadas. Aparece la ventana en donde seleccionamos las variables en cuya comparación estamos interesados. Al hacer la primera selección en la columna de variables, esta aparece en el recuadro selecciones actuales como variable 1, y al realizar la segunda selección aparecerá como variable 2. En ese momento, ya seleccionadas las dos, es cuando las podemos introducir en la columna variables relacionadas. Se pulsa Aceptar.
- c) Análisis de dos muestras independientes (Prueba T para muestras independientes). El programa necesita una columna en el editor de datos que contenga los valores de la variable cuyas medias en las dos poblaciones se desea comparar, y otra que indica la población o grupo a que pertenece cada individuo. A continuación, seleccionamos Analizar... Comparar medias... Prueba T para muestras independientes. Aparece una ventana en donde, en primer lugar seleccionamos una variable numérica y con el puntero la situamos en la ventana de Contrastar variables. A continuación, seleccionamos una única variable de agrupación y pulsamos Definir grupos. En esta ventana debemos especificar los dos grupos de la variable de contraste, eligiendo entre:
 - Usar valores especificados. Escribimos un valor para el Grupo 1 y otro para el Grupo 2. Los casos con otros valores quedarán excluidos.
 - Punto de corte. Escribimos un número que divida los valores de la variable de agrupación en dos conjuntos.

Si la variable de agrupación es de cadena corta, por ejemplo, *SI* y *NO*, podemos escribir una cadena para el Grupo 1 y otra para el Grupo 2. Los casos con otras cadenas quedarán excluidos del análisis. Una vez completada la ventana y tras pulsar *Continuar*, volvemos a la ventana de *Prueba T para muestras independientes*. Pulsando el botón *Opciones* podemos introducir un valor entre 1 y 99 para el coeficiente de confianza de un intervalo, cuyo valor por defecto es del 95%. Tras pulsar el botón *Aceptar*.

d) **Pruebas de normalidad.** *Analizar ... Estadísticos descriptivos ... Explorar.* Aparece la ventana *Explorar.* En el caso de una muestra situamos la variable en la ventana *Dependientes*, y dejamos *Factores* en blanco. Para dos muestras independientes, situamos la variable a contrastar en la ventana *Dependientes*, y la variable que forma los grupos en la de Factores. Para dos muestras emparejadas situamos una variable con la diferencia de las dos originales en la ventana *Dependientes*, y dejamos *Factores* en blanco. A continuación, debemos pulsar el botón

Gráficos y en la nueva ventana escoger la opción de *Histograma* y activar la opción de *Gráficos con pruebas de normalidad*.

Uso de la calculadora en la estadística

Las explicaciones las basaremos en la utilización de las calculadoras Casio fx-82MS, fx-83MS, fx-85MS, fx-270MS, fx-300MS y fx-350MS.

Cálculos estadísticos

Para realizar cálculos estadísticos en la calculadora, tenga en cuenta los siguientes comentarios:

- Utilice MODE 2 para ingresar el modo estadístico SD.
- Utilice SHIFT CLR 1 = para borrar la memoria.
- Ingrese los datos usando la secuencia de tecla siguiente: <Dato> [DT].
- Tenga en cuenta la tabla siguiente para los cálculos que se necesiten:

Para llamar este tipo de valor:	Realice esta operación:		
$\sum x^2$	SHIFT S-SUM 1		
$\sum x$	SHIFT S-SUM 2		
\mid n	SHIFT S-SUM 3		
\overline{x}	SHIFT S-VAR 1		
σ_n	SHIFT S-VAR 2		
σ_{n-1}	SHIFT S-VAR 3		

Ejemplo D.1

Calcule n, $\sum x$, $\sum x^2$, \overline{x} , σ_n y σ_{n-1} para los datos siguientes: 55, 54, 51, 55, 53, 53, 54 y 52. SOLUCION:

- Primero, ingresamos al modo SD con las teclas MODE 2.
- Luego, borramos la memoria con la secuencia de teclas SHIFT CLR 1 =.
- Posteriormente, ingresamos los datos: 55 DT 54 DT 51 DT 55 DT 53 DT 54 DT 52 DT
- Por último, calculamos las medidas estadísticas pedidas:

Suma de los cuadrados de los valores $\sum x^2 = 22,805$ SHIFT S-SUM 1 = SHIFT S-SUM 2 = Número de datos n=8 SHIFT S-SUM 3 = Media aritmética $\overline{x}=53,375$ SHIFT S-VAR 1 = Desviación estándar poblacional $\sigma_n=1,316956719$ SHIFT S-VAR 2 = Desviación estándar muestral $\sigma_{n-1}=1,407885953$ SHIFT S-VAR 3 =

Precauciones con el ingreso de datos

- DT DT ingresa el mismo dato dos veces.
- También puede ingresar múltiples entradas del mismo dato usando shift; Por ejemplo, para ingresar el dato 110 diez veces presiones 110 shift; 10 diez veces presiones 110 shift is a shif
- Mientras ingresa datos o después de completar el ingreso de datos, puede usar las teclas \(\triangle y \) \(\nabla \) para ir visualizando a través de los datos que ha ingresado.
- Si ingresa múltiples ingresos del mismo dato usando [SHIFT]; para especificar la frecuencia de datos (número de ítemes de datos) como se describe anteriormente, pasando a través de los datos muetra el ítem de dato y una pantalla separada para la frecuencia de datos (freq).
- Los datos visualizados pueden editarse, si así lo desea. Ingrese el valor nuevo y presione la tecla = para reemplazar el valor antiguo por el valor nuevo. Esto también significa que si desea realizar alguna otra operación (cálculo, llamada de resultados de cálculos estadísticos, etc.), siempre deberá presionar primero la tecla AC para salir de la presentación de datos.
- Presionando la tecla DT en lugar de después de cambiar un valor sobre la presentación, registra el valor que ha ingresado como un elemento de dato nuevo, y deja el valor antiguo tal como está.
- Puede borrar el valor del dato visualizado usando △ y ▽, y luego presionando SHIFT CL. Borrando un valor de dato ocasiona que todos los valores siguientes se desplacen hacia arriba.
- Después de ingresar los datos en el modo SD, no podrá visualizar o editar más los datos ítemes de datos individuales, después de cambiar a otro modo.

Bibliografía

- [1] AGRESTI, A., Categorical data analysis. John Wiley and Sons, Inc., New York, 1990.
- [2] BARBOSA, R.; LLINÁS, H., Procesos estocásticos con aplicaciones, Barranquilla: Editorial Universidad del Norte, 2013.
- [3] HOSMER, D. and LEMESHOW S., Applied Logistic Regression, Segunda edición, John Wiley and Sons, 2000.
- [4] KALB, K. y KONDER, P., *Una visión histórica del concepto moderno de integral*, Barranquilla: Editorial Universidad del Norte, 2006 (editor: Dr. rer. nat. Humberto LLinás).
- [5] KLEINBAUM, D. and KLEIN, M., Logistic Regression: A self Learning Text, Segunda edición, Ed. Springer, 2002.
- [6] LLINÁS, H.; ROJAS, C., Estadística descriptiva y distribuciones de probabilidad. Barranquilla: Ediciones Uninorte, 2005.
- [7] LLINÁS, H., *Precisiones en la teoría de los modelos logísticos*, Revista Colombiana de Estadística, Volumen 29, Número 2, pág. 239-265, 2006.
- [8] LLINÁS, H., Estadística inferencial, Barranquilla: Editorial Universidad del Norte, 2006.
- [9] LLINÁS, H., Medida e integración. Barranquilla: Editorial Universidad del Norte, 2007.
- [10] LLINÁS, H., *Applet: La ley de los grandes números*. Se puede encontrar en el siguiente link: http://ylang-ylang.uninorte.edu.co/Objetos/Estadistica/LeyDeGrandesNumeros/index.html
- [11] LLINÁS, H., *Applets de estadística*, 2007. Se puede encontrar en el siguiente link: http://ylang-ylang.uninorte.edu.co:8080/drupal/?q=node/238
- [12] LLINÁS, H.; ALONSO, J. FLÓREZ, K., *Introducción a la estadística con aplicaciones en Ciencias Sociales*, Barranquilla: Editorial Universidad del Norte, 2012.
- [13] LLINÁS, H., Introducción a la estadística matemática, Barranquilla: Editorial Universidad del Norte, 2014.
- [14] LLINÁS, H., Introducción a la teoría de probabilidad, Barranquilla: Editorial Universidad del Norte, 2014.
- [15] NELDER, J.A. and WEDDERBURN, R.W.M., *Generalized linear models*. The Journal of the Royal Statistical Society, serie A 135, pág.370-384, 1972.
- [16] PÉREZ, C., Estadística práctica con Statgraphics. España: Prentice Hall, 2002.
- [17] Página web de datos estadísticos del Institute for Digital Research and Education (IDRE) de la Universidad de California en Los Angeles (UCLA): https://stats.idre.ucla.edu/. En especial, consultar: https://stats.idre.ucla.edu/other/examples/alr2/