- Permutations, transpositions, basics transpositions.
- Every permutation can be written as a composition of permutations.
- The parity of the number of transpositions involved in any decomposition of a permutation σ is an invariant; it is the signature $\epsilon(\sigma)$ of the permutation σ .
- Multilinear maps (also called n-linear maps); bilinear maps.
- Symmetric and alternating multilinear maps.
- A basic property of alternating multilinear maps (Lemma 7.4) and the introduction of the formula expressing a determinant.
- Definition of a determinant as a multlinear alternating map $D: M_n(K) \to K$ such that D(I) = 1.
- We define the set of algorithms \mathcal{D}_n , to compute the determinant of an $n \times n$ matrix.
- Laplace expansion according to the ith row; cofactors.
- We prove that the algorithms in \mathcal{D}_n compute determinants (Lemma 7.5).
- We prove that all algorithms in \mathcal{D}_n compute the same determinant (Theorem 7.6).
- We give an interpretation of determinants as *signed volumes*.
- We prove that $det(A) = det(A^{\top})$.
- We prove that det(AB) = det(A) det(B).
- The adjugate \widetilde{A} of a matrix A.
- Formula for the inverse in terms of the adjugate.
- A matrix A is invertible iff $det(A) \neq 0$.
- Solving linear equations using Cramer's rules.
- Determinant of a linear map.
- The *characteristic polynomial* of a matrix.
- The Cayley-Hamilton theorem.
- The action of the polynomial ring induced by a linear map on a vector space.
- Permanents.
- Permanents count the number of perfect matchings in bipartite graphs.