ą z Ć棳Óó

1. Przedmiot zainteresowania statystyki

Przedmiotem zainteresowania statystyki sa ilosciowe metody badania zjawisk masowych.

2. Cechy zmienne a cechy stale

2.1. Cechy stale

Cechy stale okreslaja jednostki pod wzgledem rzeczowym (co?), czasowym (kiedy?) oraz przestrzennym (gdzie?). Cechy stale sa wspolne wszystkim jednostkom badanej zbiorowości. Nie podlegaja badaniu, jedynie decyduja o zaliczeniu jednostek do okreslonej zbiorowości.

2.2. Cechy zmienne to własciwości, ktorymi roznia sie poszczegolne jednostki statystyczne. Dziela sie na:

- Jakosciowe (niemierzalne) nie da sie ich zmierzy, jedynie okreslic slownie (np. pochodzenie spoleczne, plec, kolor wlosow)
- Ilosciowe mozna je wyrazic za pomoca liczb o roznych mianach (np. wzrost w cm, wiek w latach, zarobki w zl).Dziela sie one dalej na:
 - Zmienne skokowe moga sie wyrazac jedynie okreslonymi liczbami, bez wartości pośrednich (np. liczba studentow w grupie, liczba pokoi w mieszkaniu). Cechy skokowe przyjmujace przyjmujace bardzo duzo wartości to tzw. cechy quasi ciagle (np. zarobki w groszach)
 - Zmienne ciagle moga przyjmowac kazda wartosc z okreslonego przedzialu liczbowego

3. Pomiar wielkości prostej i zlozonej oraz jego blad (niepewnośc)

3.1. Pomiary proste (bezposrednie)

3.2. Pomiary zlozone (posrednie)

Polegaja na wyznaczaniu wartości wielkości zlożonej na podstawie znanych zależności miedzy roznymi wielkościami mierzonymi bezpośrednio, np. pomiar oporności elektrycznej metoda techniczna na podstawie zmierzonych bezpośrednio wartości nateżenia i napiecia.

Niepewnosc pomiaru

jest miara rozrzutu wynikow powtarzanych pomiarow danej wielkości fizycznej. Zapisujac wynik pomiaru fizycznego x nalezy wyraznie zaznaczyc jednostke podanej wartości i opatrzyc przedzialem niepewności Δx :

 $x \pm \Delta x$

np. zmierzona mikrometrem srednica drutu d wynosci $d = (2, 53 \pm 0, 01)mm$.

Z powodu wystepowania przypadkowych niepewności (bledow) pomiarowych, powstarzanie pomiaru wielkości fizycznej daje rozne wyniki. Otrzymane wartości (wyniki) rozkladaja sie wokol wartości rzeczywistej a ich rozrzut zależy od dokładności prowadzonych pomiarow. Niepewności przypadkowe można zmniejszyc stosując dokładniejsze przyrzady i dbając o zapewnienie niezmiennych warunkow doświadczenia - nie można ich jednak calkowicie uniknac.

Bledy grube powstaja wskutek falszywego odczytu przyrzadu lub ewidentnej pomylki eksperymentatora, np. zapisanie wyniku pomiaru dlugosci w centrymetrach zamiast w milimetrach. Pomiar obarczony bledem grubym rozni sie zasadniczo od pozostalych wynikow i mozna go latwo zauwazyc. Powtarzanie pomiarow pozwala zatem dostrzec i wyeliminowac wyniki obarczone bledem grubym.

Bledy systematyczne wynikaja z wadliwego dzialania przyrzadu pomiarowego (np. amperomierz ze skrzywiona wskazowka, spieszacy sie stoper itp.) lub ze zle zaprojektowanego doswiadczenia (np. waga jest ustawiona blisko grzejnika i jedno ramie jej belki jest dluzsze od drugiego). W takich przypadkach wystepuje stala roznica miedzy wartosciami zmierzonymi i wartoscia rzeczywista. Bledy systematyczne mozna eliminowac przez wprowadzenie poprawek lub takie projektowanie ukladow pomiarowych aby bledy te nie wystepowały.

Ocena niepewnosci przypadkowych

Wielokrotne niezalezne powstarzanie tego samego pomiaru fizycznego pozwala otrzymac serie wynikow $x_1, x_2, x_3, \ldots, x_n$, gdzie n - liczba wykonanych pomiarow. Rzeczywistej wartości wielkości fizycznej nie znamy ale można wykazac, ze najbardziej zbliżona do niej jest średnia arytmetyczna otrzymanych wynikow \overline{x}

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

4. Skale pomiarowe wraz z omowieniem

Wyroznia sie cztery skale pomiarowe:

4.1. Skala nominalna (niemetryczna)

Najmniej precyzyjny sposob pomiaru. Liczby pelnia jedynie role umownych sumboli sluzacych do identyfikacji jednostek statystycznych i ich klasyfikacji do wyroznionych kategorii. Jedyna dopuszczalna operacja matematyczna to zliczenie jednostek nalezacych do okreslonej kategorii danej cechy i obliczanie np. proporcji, odsetek. O poszczegolnych wariantach danej cechy mozna powiedziec tylko, ze sa rozne lub rowne (np. gatunki sera, numery telefonow, grupy krwi).

4.2. Skala porzadkowa (rangowa - niemetryczna)

Posiada wszystkie cechy skali nominalnej, dodatkowo pozwala na porzadkowanie jednostek statystycznych w ramach wyroznionych kategorii pod wzgledem natezenia badanej cechy. Mozna powiedziec nie tylko, czy dane warianty sa rowne lub rozne, ale rowniez okreslic, czy jeden jest wiekszy czy mniejszy od drugiego. W skali nominalnej liczby, zwane rangami, wyznaczaja kolejnosc wystepowania jednostek, ale nie okreslaja odleglosci miedzy nimi (np. sok A jest slodszy od soku B, ale nie mozna okreslic o ile slodszy). Porzadkowanie w tej skali moze byc slabe (np. marka A jest tak samo dobra lub mniej dobra od marki B - relacja <=). Przykladami skali norminalnej sa skala Richtera, stopnie wojskowe, wysztalcenie, itp. Skala porzadkowa jest bardziej precyzyjna niz nominalna.

4.3. Skala przedzialowa (interwalowa - metryczna)

Posiada wszystkie własności skali porzadkowej, a oprocz tego umożliwia określenie odległości (dystansu) miedzy jednostkami. W skali przedzialowej punk zerowy jest ustalony arbitralnie (brak zera absolutnego, np. skala Celsjusza - miedzy 10 stopniami a 20 jest 10 stopni roznicy, ale to nie znaczy, ze 20 stopni jest 2 razy cieplejsze niz 10 stopni)

4.4. Skala stosunkowa (ilorazowa)

Posiada własności trzech poprzednich skal, ale posiada naturalny punkt zerowy. Punkt zerowy oznacza brak danej cechy. Mozna wykonywac na niech wszystkie operacje matematyczne lacznie z dzieleniem. Przykładem moze byc temperatura w stopniach Kelvina, długośc, ciezar, cena towaru.

5. Rodzaje badan statystycznych

- Badania pelne (calkowite, wyczerpujace), obejmujace wszystkie jednostki danej zbiorowosci statystycznej
- Badania niepelne (czesciowe), obejmujące niektore jednostki zbiorowości statystycznej

Decyzja o przeprowadzeniu badania czesciowego zamiast pelnego moze byc podjeta z nastepujacych przyczyn:

- zbiorowosc statystyczna jest tak liczna, ze badanie pelne byloby zbyt kosztowne badz wymagaloby zbyt dlugiego czasu
- badanie ma charakter niszczacy (np. badanie jakosci konserw)
- chodzi jedynie o wyniki orientacyjne

Zarowno badanie pelne jak i czesciowe moga byc ciagle, okresowe lub dorazne.

- Badania ciagle- przeprowadzane i analizowane sukcesywnie oraz nieprzerwanie
- **Badania okresowe** podejmowane w pewnych, zazwyczaj scisle okreslonych, odstepach czasu (np. coroczne spisy rolne czy przeprowadzane co 10 lat powszechne spisy ludnosci).
- **Badania dorazne** przeprowadzane w pewnych szczegolnych okolicznosciach spowodowanych z reguly nieprzewidzianymi przyczynami (np. badanie dotyczace strat czasu pracy wywolanych epidemia grypy, badanie strat materialnych spowodowanych powodzia lub pozarem).

Szacunki interpolacyjne i ekstrapolacyjne

- **Interpolacja** polega na szacowaniu nieznanych wartosci cechy na podstawie znanych wartosci sasiednich (pozniejszych i wczesniejszych)
- **Ekstrapolacja** polega na szacowaniu wartosci wykraczajacych poza przedzial wartosci znanych.

Zarowno ekstrapolacja jak i interpolacja moga miec charakter liniowy lub nieliniowy. Interpolacja i ekstrapolacja liniowa opieraja sie na zalozeniu proporcjonalnego rozkladu wartosci cechy pomiedzy liczebnosci lub jednostki czasu.

6.