МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. И. ПОЛЗУНОВА»

Факультет информационных технологий

Кафедра Прикладная математика

А.В. Сорокин

РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ТАБЛИЧНЫМ СИМПЛЕКС-МЕТОДОМ

Методические материалы к выполнению лабораторной работы по решению задач линейного программирования

УДК 681.3

Сорокин А.В. Решение задачи линейного программирования табличным симплексметодом». Алт. госуд. технич. ун-т им. И. И. Ползунова. - Барнаул, 2022. – 8 с.

В данной работе изложены учебные материалы по теме «Решение задачи линейного программирования табличным симплекс-методом». Специально созданные и подобранные примеры позволяют в полной мере изучить основные особенности использования табличного симплекс-метода, для поиска решения в задачах линейного программирования. Учебные материалы предназначены для студентов, обучающихся по техническим и экономическим направлениям бакалавриата.

Содержание

1.	Задание к лабораторной работе	. 4
	1. Изучение табличного симплекс-метода	. 4
	1.1. Выбор модели ЗЛП	. 4
	1.2. Разбор первоначального шага табличного симплекс-метода на числовом	
	примере и поиск его первого допустимого решения	. 4
	1.3. Применение вручную табличного симплекс-метода для определения	
	первого базисного решения	. 4
	1.4. Написание программы	. 5
	2. Формирование отчета о проделанной работе	. 5
2.	Варианты заданий	. 6
3.	Список вопросов по теме работы	. 7
4.	Список литературы	. 8

1. Задание к лабораторной работе

- **1. Изучение табличного симплекс-метода.** Используя материал раздела 2.8 темы 2 и возможно литературу, указанную в конце материала [2-8], изучить способ решения задачи линейного программирования (ЗЛП) табличным симплекс-методом.
 - 1.1. Выбор модели ЗЛП. В качестве задачи взять математическую модель задачи из упражнения 3 согласно варианту.
 - 1.2. Разбор первоначального шага табличного симплекс-метода на числовом примере и поиск его первого допустимого решения. Чтобы решить задачу симплекс-методом добавить к выбранной модели искусственные переменные (обычно их 3, но может быть и другое количество), чтобы система ограничений приняла систему уравнений. Например, имеем

$$F=2x_1 + 4x_2 \rightarrow \max$$
,
 $0.3x_1 + 0.4x_2 \le 170$,
 $0.2x_1 + 0.5x_2 \le 160$,
 $1.6x_1 + 1.0x_2 \le 800$,
 $x_1 \ge 0, x_2 \ge 0$.

Введем искусственные переменные $x_3 \ge 0$, $x_4 \ge 0$, $x_5 \ge 0$. Получим ЗЛП

$$F=2x_1 + 4x_2 + 0 \cdot x_3 + 0 \cdot x_4 + 0 \cdot x_5 \rightarrow \max,$$

$$0,3x_1 + 0,4x_2 + x_3 = 170,$$

$$0,2x_1 + 0,5x_2 + x_4 = 160,$$

$$1,6x_1 + 1,0x_2 + x_5 = 800,$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0, x_5 \ge 0.$$

Цель дальнейшего применения симплекс-метода — избавление от искусственных (дополнительных) переменных x_3 , x_4 , x_5 выводом их из несвободных (базисных) переменных.

1.3. Применение вручную табличного симплекс-метода для определения первого базисного решения.

Таблица 1 Свободный Переменные Оценочное Базис член Отношение θ x_1 x_2 *x*₃ x_4 *X*5 -0.3 -0.4 170/0,4=425 170 1 0 x_3 0 -0,2-0,51 0 160/0,5=320 160 0 χ_4 800 -1.6 0 0 1 800/1 -1 *X*5 F-4 0 0 0 0 -2

←min

Т.е. вводимая в базис свободная переменная x_2 , т.к. коэффициент при ней в целевой функции равен -4 и реально может уменьшить значение целевой функции. А выводим из базиса переменную x_4 , поскольку оценочное соотношение для диапазона изменения x_2 наименьшее для нее: $\theta=\min\{425;\ 320;\ 800\}=320$. На пересечении строки x_4 и столбца x_2 стоит разрешающий элемент, выделенный желтым цветом. В нашем случае он $a_{qs}=a_{22}=-0,5$. Необходимо пересчитать часть элементов таблицы. Это элементы столбцов x_1, x_2, x_4 и строки F, а также столбец свободных членов. Процесс преобразования отражен в подразделе 2.8 Симплексные таблицы на сс. 97-98. Элементы a_{ij} , $i=1,\ldots,4;$ $j=1,\ldots,5$, необходимые для расчета находятся в ячейках таблицы на пересечении строк: 2-5 и столбцов 3-7. В итоге получим следующую новую таблицу 2.

Базис	Свободный	Переменные					Оценочное
Базис	член	x_1	x_2	X 3	<i>X</i> 4	X 5	Отношение θ
<i>X</i> 3	298	-0,14	0	1	0,8	0	298/0,14=2128,57
<i>X</i> 2	320	-0,4	1	0	-2	0	320/0,4=800
X 5	480	-1,2	0	0	2	1	480/1,2=400
F	1280	-0,4	0	0	8	0	
		<u> </u>					

←min

Таблица 2

Итак здесь вводим в базис переменную x_1 и выводим несвободную переменную x_5 . Разрешающий элемент a_{31} .

И т.д.. Процесс продолжается пока все элементы в строке целевой функции в столбцах не станут x_1 - x_5 неотрицательными.

- 1.4. **Написание программы.** В этом пункте происходит написание программы, реализующей процесс поиска решения с помощью табличного симплекс-метода. Программа должна последовательно выводить таблицы симплекс-метода с ее преобразованными элементами, которые преобразуются согласно формулам, описанным в разделе 2.8 Симплексные таблицы Темы 2. И в конце концов эта последовательность таблиц должна приводить к решению, либо зацикливаться и приводить к особым случаям. Все эти ситуации рассмотрены в разделе 2.7. Особые случаи Темы 2.
- 2. Формирование отчета о проделанной работе. Необходимо написать отчет о проделанной работе в текстовом редакторе Microsoft Word (LibreOffice Writer). Отчет должен содержать титульный лист по форме, содержание, Постановку задачи, в виде математической модели, построенной в упражнении 3. Отразить процесс получения решения или показать, что его не существует. В отчете можно использовать скриншоты. В отчете должно быть Заключение, где рассказывается о решенной задаче, и способах преодоления трудностей, возникших при решении данной задачи. Должен быть список литературы, за основу которого можно взять список из данного учебного материала.

2. Варианты заданий

В качестве задачи взять построенную математическую модель задачи из упражнения 3 [1] согласно варианту.

3. Список вопросов по теме работы

- 1. В чем состоит суть задачи линейного программирования?
- 2. Какой вид имеет функция цели в задачи линейного программирования?
- 3. Что представляют собой ограничения в задаче линейного программирования?
- 4. Что такое область допустимых решений?
- 5. Как построить область допустимых решений?
- 6. Как задать первоначальное решение ЗЛП?
- 7. Что такое искусственные (дополнительные) переменные в ЗЛП?
- 8. Что такое несвободные (базисные) переменные ЗЛП?
- 9. Что такое свободные переменные ЗЛП?
- 10. Что такое текущее базисное решение ЗЛП?
- 11. Когда можно решать задачу линейного программирования табличным симплексметодом?
- 12. Что такое недопустимое текущее базисное решение ЗЛП?
- 13. В чем состоит суть алгоритма поиска решения задачи линейного программирования табличным симплекс-методом?
- 14. При каких переменных анализируется коэффициенты в функции цели, для продолжения поиска решения ЗЛП?
- 15. Какими должны быть коэффициенты в функции цели для продолжения поиска решения ЗЛП, если необходимо найти ее максимум?
- 16. Какими должны быть коэффициенты в функции цели для продолжения поиска решения ЗЛП, если необходимо найти ее минимум?
- 17. Какая из несвободных (базисных) переменных выбирается для удаления путем введения новой несвободной (базисной) переменной?
- 18. Как определяется текущее базисное решение ЗЛП и соответствующее ему значение функции цели?
- 19. Что происходит в алгоритме табличного симплекс-метода, если решение ЗЛП представляет собой множество, образующееся на основе грани допустимого множества решений?
- 20. Что происходит в алгоритме обычного симплекс-метода, если решение ЗЛП представляет собой угловую точку симплекса, образующего границу допустимого множества решений?
- 21. Что происходит в алгоритме табличного симплекс-метода, если ЗЛП имеет бесконечно большое положительное решение?
- 22. Что происходит в алгоритме табличного симплекс-метода, если ЗЛП имеет бесконечно большое отрицательное решение?
- 23. Как формируются в симплексной таблице элементы столбца переменной, выводимой из базиса?
- 24. Как пересчитываются в симплексной таблице элементы столбца свободных переменных?
- 25. Что такое разрешающий элемент? И как он определяется?
- 26. Что такое минимальный изменяемый диапазон вводимой в базис свободной переменной и как он определяется?
- 27. Какая переменная на очередном шаге вводится из свободных в базис?
- 28. Какие условия окончания симплекс-метода, связанные с элементами симплексной таблины?

4. Список литературы

- 1. Сорокин А.В. Задание для упражнения по теме «Математические модели в задаче линейного программирования». Алт. госуд. технич. ун-т им. И. И. Ползунова. Барнаул, 2022. 21 с.
- 2. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: учеб. пособие, 2-е изд. перераб. и доп., М.: Финансы и статистика, 2006. 432 с.: ил
- 3. Гладких Б.А. Методы оптимизации и исследование операций для бакалавров информатики. Ч.1. Введение в исследование операций. Линейное программирование: Учебное пособие. — Томск: Из-во НТЛ, 2009, 200 с.
- 4. Горлач Б.А. Исследование операций: Учебное пособие. СПб: Из-во «Лань», 2013, 448 с.
- 5. Есипов Б.А. Методы исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 304 с.
- 6. Мадера А.Г. Математические модели в управлении: Компьютерное моделирование в Microsoft Excel: Лабораторные работы. М.:РГГУ, 2007. 121 с.
- 7. Новиков, А.И. Экономико-математические методы и модели: учебник / А.И. Новиков. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. 532 с.: ил. (Учебные издания для бакалавров). Библиогр. в кн. ISBN 978-5-394-02615-7; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=454090 (05.12.2020).
- 8. Ржевский С.В. Исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 480 с.