End-to-End Machine Learning Project

Chapter 2: pp 39-41, 69, 76-78

End-to-End Machine Learning Project

- 1. Look at the big picture.
- 2. Get the data.
- 3. Discover and visualize the data to gain insights.
- 4. Prepare the data for Machine Learning algorithms.
- 5. Select a model and train it.
- 6. Fine-tune your model.
- 7. Present your solution.
- 8. Launch, monitor, and maintain your system.

Real Data

- Popular open data repositories:
 - UC Irvine Machine Learning Repository
 - Kaggle datasets
 - Amazon's AWS datasets
- Meta portals (they list open data repositories):
 - http://dataportals.org/
 - http://opendatamonitor.eu/
 - http://quandl.com/
- Other pages listing many popular open data repositories:
 - Wikipedia's list of Machine Learning datasets
 - Quora.com question
 - Datasets subreddit

Notations

- *m* is the number of instances in the dataset you are measuring the RMSE on.
 - For example, if you are evaluating the RMSE on a validation set of 2,000 districts, then m = 2,000.
- $\mathbf{x}^{(i)}$ is a vector of all the feature values (excluding the label) of the i^{th} instance in the dataset, and $y^{(i)}$ is its label (the desired output value for that instance).
 - For example, if the first district in the dataset is located at longitude –118.29°, latitude 33.91°, and it has 1,416 inhabitants with a median income of \$38,372, and the median house value is \$156,400 (ignoring the other features for now), then:

$$\mathbf{x}^{(1)} = \begin{pmatrix} -118.29 \\ 33.91 \\ 1,416 \\ 38,372 \end{pmatrix}$$

and:

$$y^{(1)} = 156,400$$

- **X** is a matrix containing all the feature values (excluding labels) of all instances in the dataset. There is one row per instance and the i^{th} row is equal to the transpose of $\mathbf{x}^{(i)}$, noted $(\mathbf{x}^{(i)})^T$.
 - For example, if the first district is as just described, then the matrix X looks like this:

like this:

$$\mathbf{X} = \begin{pmatrix} \left(\mathbf{x}^{(1)}\right)^{T} \\ \left(\mathbf{x}^{(2)}\right)^{T} \\ \vdots \\ \left(\mathbf{x}^{(1999)}\right)^{T} \\ \left(\mathbf{x}^{(2000)}\right)^{T} \end{pmatrix} = \begin{pmatrix} -118.29 & 33.91 & 1,416 & 38,372 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

Summary

- $\mathbf{x}^{(i)}:$ i-th vector (i-th training example)
- x_i : j-th element of a vector (scalar)
- $x_j^{(i)}$: j-th element of the i-th vector (scalar)

Fisher Iris (sepal length, sepal width, petal length, petal width, class)

```
5.3000 3.7000 1.5000 0.2000 setosa
5.0000 3.3000 1.4000 0.2000 setosa
7.0000 3.2000 4.7000 1.4000 versicolor
6.9000 3.1000 5.4000 2.1000 virginica
```

- Find **X**, **y**
- What is $\mathbf{x}^{(2)}$, $x_4^{(3)}$, y_1 ?

$$\mathbf{x}^{(2)} = [5.0000 \ 3.3000 \ 1.4000 \ 0.2000]^T$$

$$x_4^{(3)}$$
= 1.4000

$$y_1$$
= setosa

- h is your system's prediction function, also called a *hypothesis*. When your system is given an instance's feature vector $\mathbf{x}^{(i)}$, it outputs a predicted value $\hat{y}^{(i)} = h(\mathbf{x}^{(i)})$ for that instance (\hat{y} is pronounced "y-hat").
 - For example, if your system predicts that the median housing price in the first district is \$158,400, then $\hat{y}^{(1)} = h(\mathbf{x}^{(1)}) = 158,400$. The prediction error for this district is $\hat{y}^{(1)} y^{(1)} = 2,000$.
- RMSE(**X**,*h*) is the cost function measured on the set of examples using your hypothesis *h*.

We use lowercase italic font for scalar values (such as m or $y^{(i)}$) and function names (such as h), lowercase bold font for vectors (such as $\mathbf{x}^{(i)}$), and uppercase bold font for matrices (such as \mathbf{X}).

Distance Measures

Equation 2-1. Root Mean Square Error (RMSE)

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m}} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2$

Equation 2-2. Mean absolute error (MAE)

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

- Computing the root of a sum of squares (RMSE) corresponds to the *Euclidean* norm: it is the notion of distance you are familiar with. It is also called the ℓ_2 norm, noted $\|\cdot\|_2$ (or just $\|\cdot\|$).
- Computing the sum of absolutes (MAE) corresponds to the ℓ_1 *norm*, noted $\|\cdot\|_1$. It is sometimes called the *Manhattan norm* because it measures the distance between two points in a city if you can only travel along orthogonal city blocks.
- More generally, the ℓ_k *norm* of a vector \mathbf{v} containing n elements is defined as $\|\mathbf{v}\|_k = \left(|v_0|^k + |v_1|^k + \dots + |v_n|^k\right)^{\frac{1}{k}}$. ℓ_0 just gives the number of non-zero elements in the vector, and ℓ_∞ gives the maximum absolute value in the vector.

Take a Look at the Data

- https://github.com/ageron/handsonml2/blob/master/02 end to end machine learning project.ipynb
- 10 features \rightarrow 10 dimensional vector

Figure 2-5. Top five rows in the dataset

• 20,640 instances (examples) \rightarrow m = 20,640

```
housing.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
        longitude
                              20640 non-null float64
        latitude
                              20640 non-null float64
        housing median age
                              20640 non-null float64
        total rooms
                              20640 non-null float64
        total bedrooms
                              20433 non-null float64
                              20640 non-null float64
        population
        households
                              20640 non-null float64
                              20640 non-null float64
        median income
        median house value
                              20640 non-null float64
        ocean proximity
                              20640 non-null object
        dtypes: float64(9), object(1)
        memory usage: 1.6+ MB
```

Figure 2-6. Housing info

Feature Scaling

Out[5]:	housing = load_housing_data() housing.head()						
		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populatio
	0	-122.23	37.88	41.0	880.0	129.0	322.0
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0
	2	-122.24	37.85	52.0	1467.0	190.0	496.0
	3	-122.25	37.85	52.0	1274.0	235.0	558.0
	4	-122.25	37.85	52.0	1627.0	280.0	565.0

Figure 2-5. Top five rows in the dataset

- Min-max Scaling (normalization)
 - Subtract min value then divide by (max min)
 - Range = [0,1]
- Standardization
 - Subtract mean value then divide by standard deviation

Grid Search

- Iterate over hyperparameters for all possible combinations to find the best model
- Example: hyperparameters C, γ
 - Specify $C = [10, 100, 1000], \gamma = [0.1, 0.5, 0.9]$
 - Determine the cartesian product and train with $\{C, \gamma\} \rightarrow 9$ models
 - Evaluate performance using cross-validation to find the best selection of $\{\mathcal{C},\gamma\}$

Random Search

- Randomize the values of C, γ for each iteration
- Stop after *N* iterations