

STAMFORD UNIVERSITY BANGLADESH

Name : Abdullah Al Monayem

ID : CSE 071 08128

Subject: Algorithms (CSI - 231)

Batch : 71 - A

Email : almonayem2019@gmail.com

Contact No.: 01747-534818

Ans. the Q. No: 1

The LCS OF " PAHMANI

and "JAHANGIR" in,

30 M. A.H. A.G. & = 1

	L NAU	10	JU D			-	paramoni recent			
t	1 4	FI EXE	J	A	H	A	7	Gr	I	R
	dark	0	0	0	0	0	0	0	0	0
	P	0	10	10	10	10	10	10	10	17
	Α	0	10	71	4	K1	1	1	1	11
	H			11		2	2	2	2	2
1	M		NAME OF TAXABLE PARTY.	11	The state of the s	12	12	12	12	12
1	A	0	10	K 1	12	R3	3	3	3	3
1	N	0	10	11	12	13	4	4	4	4
	I	0	10	11	12	13	14	14	75	5
	The state of								1	100

we can see that the LCS is ->

lanna Enterprise

AND THE CANONE

Here,

we have two strings, Let, X = SR, A, H, M, A, N, I's Y = 2 3, A, H, A, N, G, I, R2 81 82 83 84 85 86 87 First compare 'I' and 'P'. 96 they matched, find the nubsequence in the remaining string and then append the 'I' with it 9h "I" on, x7 + y8 (" R") (i) Remove 27 from X and find LCS brom x1 to x7-1 and y1 to ye con noe that the Lesin >

TVAHAM

ha Enterprise

(ii) Remove you from Y and bind LCS from x1 to x7 and Y1 to y8-1

In each step, we reduce the size of the problem into the nubproblems of the optimal substructure.

It is a dynamic programming approach because it has optimal substructure.

Am. the. Q. No: 1

7 - Queen Problem -

Insert Queen in at row-1.

Insert a Queen at Row-2

Insert a queen into Row 5

when we innert a queen in

Row-5, we see we can't

iment a queen into now-6.

So backtracking

Now,

	-1	2	3	4	5	6	7
	Q					7	
2			Q				
3			2		0		
4		Q					
5							
6							
7							

Again backtracking,

	1	2	a	4	7	,	7
1300	1010		3	1	3	6	
32 3.57	Q	15.1					
2			Q				
3					Q		
4							a
5							
6							
7							

30, we insert a queen at pow-5

	1	2	3	4	5	6	7
1	Q						
2			Q				
3			A I		a		
4							a
5		2				411	HIS
6				21			1 3
71							

Again, innert a queen into row-6

	1	2	, 3	4	5	6	7
1	Q						
2			Q				
3	with.				Q		
9							Q
5		a					
6				0			
7				· Santi			1

And Finally,

The second	- 1	2	3	4	5	6	7
1	Q						
2			Q				2
3			2(2)		a		
4							Q
5		Q					
6				a			
7						Q	

So, the Output: (1,3;5,7,2,4,6)

(Am.)

Ans. the. Q. No: 1

(c)

Step-1

	1475		D.						69.50	
oi	P	a	R	5	T	10	V	W	X	金丰
P: - a	5	46	15	10	20	10	55	12.6	32	9
W		10	2	2	3.6	1.2	5.6	7	9	IO.
μ= Pi ω;	5	4.6	7.5	5	5.6	8.3	9.8	1.8	8	1

Ann the O. NO : 1

Step-2

0%	V	U	X	R	T	P	9	Q	W			1 -	901
b.0	55	10	32	15	20	5	10	46	12.6				
wi	5.6	1.2	4	2	3.6	1	2	10	2			Total	l Ca
$L_1^0 = \frac{P_1^0}{w_1^0}$	9.8	83	8	7.5	5.6	5	5	4.6	1.8			m =	26
4(1)	0	0	0	0	0	0	0	0	O		1	Rent	ca
4(2)	1	0	0	0	0	0	0	0	0			0	26-
x4 (3)	1,	1	0	0	0	0	0	0	0	8 6	1		26-
4(4)	1	1	1	0	0	0	0	0	0		-		20.4
4(5)	1	1	1	1	01	0	0	0	0	. B B.			15.2
1(6)	1	_1	1	1	1	0	0	0	0		\rightarrow	·U =	13.2
(7)	1	1	1	1	1	1	0	0	0		-	U =	9.6
1(8),	1	1	1	1	1	1	1	0	0			U =	8.6.
xi(9)	1	1	1	1	1	1	1	0.0	0		\rightarrow	U =	6.6.
4(10)	1	1	1	1	1	1	1	0.66	0			7	0
S. J. 1985	10.1												

Maximum Profit = $\leq P_1 \times 1$ = $(55 \times 1) + (10 \times 1) + (32 \times 1) + (15 \times 1)$ + $(20 \times 1) + (5 \times 1) + (10 \times 1) + (4.6 \times 6.6)$ = 177.4

Total weight = $\leq w_1 \times 1$ = $(5.6 \times 1) + (1.2 \times 1) + (9 \times 1) + (2 \times 1) + (3.6 \times 1) + (1 \times 1) + (2 \times 1) + (10 \times 1) + (2 \times 1) + (10 \times 1)$ = 26

fraction taken of the items;

 $(\chi_{p}, \chi_{Q}, \chi_{p}, \chi_{S}, \chi_{T}, \chi_{U}, \chi_{V}, \chi_{W}, \chi_{X})$ = (1, 0.66, 1, 1, 1, 1, 1, 1, 0, 1)

(Am.)

It we're not allowed to take breaction of an object, then it twom into dynamic problem nather than greedy problem. It is called #0-1" knapsack.

Then, we need to bind an optimal nubstructure to bind the global of optimal solution, rather than a greedy technique to solve the problem.

(1,000 alalatele (2000)

Am. the Q. No: 1

Backtracking in , a recursive approach to enumerate all possible solutions, whenever a dead-end in encountered, the algorithm backs up and systematically tries to bind a different solution.

that are guaranteed to find a tillerent solution. There are the globally optimal result, but there are also greedy algorithms which will only find suboptimal results.

Dynamic programming and Goreedy montly notives optimizations
problem, better.

much more efficient to notice with backtracking other than Coreedy OR DP.

to by of best work our tout

ATTOCKENT VOITSHOW FURNISHED

tood of larger lawitgo plodolo out

there are also distributed

Subject:

Am. the Q. NO:2

(a)

Griven,

$$R = 68000$$

$$T = 13000$$

$$V = 76000$$

$$W = 15000$$

Now, Let, U=1, 3=3, X=5,

$$R = 68$$
, and $V = 76$

Step-1:

U:1

5:3

X:5 T:13 W:15

Y:18

Q:25 Z:26

R:68

N:76

Step-2:

X:5

T:13 W:15

Y: 18

Q:25 Z:26

R:68

V:76

Step-3:

Z: 26

R:68

V:76

Step-4%

Step-5:

Step-6:

DAR

Step-7:

5+ep-80

V:76

D

Step-9:

Step-10:

The Huffman codes are: R = 10, V = 11, Z = 010, Q = 001 T = 0001, W = 0110, Y = 01111, X = 000001, Q = 000000 and Q = 000001

Am. the. Q. No!2 (b)

Divide and conquer

o partion the problem into independent subproblems, solve the subproblems recoverively, and then combine their solutions to solve the original problem

Example:

Merge sont

Dynamic approch:

(i) Applicable when the nubproblems are not independent, that in, when subproblems share subproblems.

Solves every subproblem

just once and then naves

its answer in a table,

thereby avoiding the works of

recomputing the answer

every time the subpubproblem

is encountered.

Example;

Travelling salesperson

Problem

[0 2 3 5 0 9 [6 13 0

$$g(2, q) = c_{21} = 5$$

$$=(9+6)=15$$

$$= \min\{(2+15), (3+18)\}$$

Path $_{\circ}$ $_{1}\rightarrow2\rightarrow3\rightarrow1$

cont: 17

(Am.)

Am.the. Q. No:2

Matrin - chain - OPDER (P)

n < length[P]-1

for i < 1 to n do

m[i,i] <0

bon l←2 to n do

bon i < 1 to m-1+1 do

1 ← 1+1-1

加し,月一人の

bon K←1 +0 .. j-1 do

q < m [i, k] +m [k+1,j] +
Pi-1 PK Pj

if q/m[i,j]then

 $m[i,j] \leftarrow q$

svisci, j] < K

independent trabagodini

retwon moand 5

on bine. It is not with

Larigina s

SNJ- 3 xlon 3 j

alganasis

+ 1102 - 1219 M

Am.the.Q.No;2

Thin algorithm neareher bon the local optima and optimizes the local best solution to bind the global optima. It begins by nonting all the edges and then relects the edge with the minimum cont. 9+ confinuously nelector the best next choices given a condition that no loops are bonned. The complexity of the greedy algorithm in the o(N'slog_N) and there in no

guarantee that a global optimum solution in bound.

lanha Enterprise