PUB. NO.:

09-311786 [JP 9311786 A]

PUBLISHED:

December 02, 1997 (19971202)

INVENTOR(s): UMINAGA MASAHIRO

SAITO YASUHIKO

APPLICANT(s): HITACHI LTD [000510] (A Japanese Company or Corporation), JP

(Japan)

APPL. NO.:

09-052772 [JP 9752772]

FILED:

March 07, 1997 (19970307)

INTL CLASS:

[6] G06F-009/38

JAPIO CLASS: 45.1 (INFORMATION PROCESSING -- Arithmetic Sequence Units)

JAPIO KEYWORD:R131 (INFORMATION PROCESSING -- Microcomputers &

Microprocessers)

ABSTRACT

PROBLEM TO BE SOLVED: To reduce a pipeline stall due to a data hazard of a superscalar system and to improve the processing speed by changing an instruction in 1st instruction format stored in an instruction memory into an instruction in 2nd instruction format.

SOLUTION: The instruction is taken in a 1st stage from the instruction memory and the instruction taken in the 1st stage 101 is decoded in a 2nd stage 103. The decoded instruction is executed in a 3rd stage and when the execution result is written in a register in a 4th stage 107, the instruction in the 1st instruction format stored in the instruction memory is changed into the instruction in the 2nd instruction format and executed. Consequently, the pipeline stall due to the data hazard of the superscalar system can be reduced and the processing speed is improved.

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-311786

(43)公開日 平成9年(1997)12月2日

(51) Int.Cl.

識別記号

庁内整理番号

FΙ

技術表示箇所

G06F 9/38

310

G06F 9/38

310X

審査請求 未請求 請求項の数20 OL (全 17 頁)

(21)出願番号

特顏平9-52772

(22)出願日

(32) 優先日

平成9年(1997)3月7日

(31) 優先権主張番号 特願平8-60571

(33)優先権主張国

平8 (1996) 3月18日 日本 (JP)

(71)出題人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(72)発明者 海永 正博

東京都小平市上水本町五丁目20番1号 株

式会社日立製作所半導体事業部内

(72)発明者 斎藤 靖彦

東京都小平市上水本町五丁目20番1号 株

式会社日立製作所半導体事業部内

(74)代理人 弁理士 小川 勝男

(54) 【発明の名称】 データ処理装置

(57)【要約】

【課題】 スーパスカラ方式におけるデータ・ハザード のよるパイプライン・ストールを削減し、処理速度の向 上を実現することにある。

【解決手段】 隣接する2つの2オペランド命令が、1 つの3オペランド命令と同等であることを検出する回路 と、そうであれば2つの命令を1つの3オペランド命令 に統合して後続の実行ステージに送出する回路を命令デ コーダに設ける。また隣接する2つの命令がデータフロ 一の関係にあるが1つの3オペランド命令には統合でき ないことを検出すると、先行命令のソースデータを後続 命令のための演算器に送る回路を設ける。

【効果】 隣接命令間のデータフローにより従来であれ ば2クロックの時間を要していた2つの命令処理を1ク ロックで実行できる。したがって、全体としての実行ク ロック数を削減できる。

、【特許請求の範囲】

【請求項1】複数のステージに分割して命令を実行する データ処理装置であって、

前記複数のステージは、少なくとも命令メモリから命令を取り込む第1のステージと、前記第1のステージで取り込んだ命令を解読する第2のステージと、前記第2のステージで解読された命令を実行する第3のステージと、前記第3のステージで実行された結果をレジスタに書き込む第4のステージとであり、

前記命令メモリに格納される第1の命令フォーマットの命令を第2の命令フォーマットの命令に変更して実行することを特徴とするデータ処理装置。

【請求項2】前記第1の命令フォーマットは、演算命令において第1のオペランドと第2のオペランドとを演算し、第2のオペランドに演算結果を格納する命令フォーマットであり、

前記第2の命令フォーマットは、演算命令において第1 のオペランドと第2のオペランドとを演算し、第3のオペランドに演算結果を格納する命令フォーマットである ことを特徴とする請求項1に記載のデータ処理装置。

【請求項3】前記第2のステージは、先行命令がレジスタ間のデータ転送命令であることを検出し、後続命令が演算命令であることを検出し、さらに先行命令の転送先レジスタ番号が同一であることを検出して、

前記第2の命令フォーマットの演算命令に変換して前記第3のステージに送出することを特徴とする請求項2に記載のデータ処理装置。

【請求項4】前記請求項3に記載のデータ処理装置は、 単一の半導体基板上に形成される。

【請求項5】前記先行命令が転送元レジスタの内容をそのまま転送先レジスタに転送するデータ転送命令である 請求項4に記載のデータ処理装置。

【請求項6】前記先行命令が転送先のレジスタの内容を シフトして転送先のレジスタに転送するデータ転送命令 である請求項4に記載のデータ処理装置。

【請求項7】前記先行命令が転送元レジスタの内容を0 拡張または符号拡張して転送元のレジスタに転送するデータ転送命令である請求項4に記載のデータ処理装置。

【請求項8】前記第2の命令フォーマットは、前記第1 の命令フォーマットの命令を複数組み合わせた命令を有 することを特徴とする請求項1に記載のデータ処理装 置。

【請求項9】前記第2のステージは、先行命令がレジスタ間のデータ転送であることを検出し、後続命令が固定ビットシフト命令であることを検出し、さらに先行命令の転送先レジスタ番号と後続命令の転送元レジスタ番号が同一であることを検出して、

前記第2の命令フォーマットである1つのシフト命令に 変換して第3のステージに送出することを特徴とする請 求項8に記載のデータ処理装置。

【請求項10】前記第2ステージは、先行命令がレジスタ間のデータ転送命令であることを検出し、後続命令が演算命令であることを検出し、さらに先行命令の転送先レジスタ番号と後続命令の転送元レジスタ番号が同一であることを検出して、

後続命令を先行命令とデータフローの関係にない前記第2の命令フォーマットの演算命令に変換して前記第3のステージに送出し、複数の同一ステージを並列実行可能とすることを特徴とする請求項2に記載のデータ処理装置。

【請求項11】前記第1の命令フォーマットは、2バイト固定長命令であることを特徴とする請求項10に記載のデータ処理装置。

【請求項12】前記先行命令が転送元レジスタの内容を そのまま転送先レジスタに転送するデータ転送命令であ る請求項11に記載のデータ処理装置。

【請求項13】前記先行命令が転送先のレジスタの内容をシフトして転送先のレジスタに転送するデータ転送命令である請求項11に記載のデータ処理装置。

【請求項14】前記先行命令が転送元レジスタの内容を0拡張または符号拡張して転送元のレジスタに転送するデータ転送命令である請求項11に記載のデータ処理装置

【請求項15】パイプライン方式のデータ処理装置であって

命令メモリに格納される固定長命令を読み込む第1のス テージと、

読み込まれた複数の命令が実行するデータに依存性が有り、かつ前記複数の命令に所定の関係がある場合、前記複数の命令を複数のパイプラインで並列に実行できるように前記複数の命令を変更する第2のステージと、

変更された前記複数の命令を並列に実行する第3のステージとを有することを特徴とするデータ処理装置。

【請求項16】請求項15に記載の第1のステージは2つの命令を同時に読み込み、第2のステージは2つの命令を2本のパイプラインで並列に実行できるように前記2つの命令を変更することを特徴とするデータ処理装置

【請求項17】請求項16に記載の第1のステージは、 2バイト固定長命令を読み込むことを特徴とするデータ 処理装置。

【請求項18】 C P U と命令メモリとを単一の半導体基 板上に形成するマイクロコンピュータであって、

前記CPUは、

命令メモリに格納される2バイト固定長命令を2つ読み 込む命令フェッチユニットと、

読み込まれた前記2つの命令が実行するデータに依存性が有り、かつ前記2つの命令に所定の関係がある場合、 2つの命令を2本のパイプラインで並列に実行できるよ うに前記2つの命令を変更する命令デコーダと、 変更された2つの命令を並列に実行する2つの4バイト 長の演算器とを有することを特徴とするマイクロコンピュータ。

【請求項19】請求項18に記載の前記命令デコーダは、演算命令において第1のオペランドと第2のオペランドとを演算し、

第2のオペランドに演算結果を格納する命令を、第1の オペランドと第2のオペランドとを演算し、第3のオペ ランドに演算結果を格納する命令に変更することを特徴 とするマイクロコンピュータ。

【請求項20】請求項18に記載の前記命令デコーダは、先行命令がレジスタ間のデータ転送命令であることを検出し、後続命令が演算命令であることを検出し、さらに先行命令の転送先レジスタ番号と後続命令の転送元レジスタ番号が同一であることを検出して、後続命令を先行命令とデータフローの関係にない演算命令に変更することを特徴とするマイクロコンピュータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、マイクロプロセッサやマイクロコンピュータ等のデータ処理装置に係わり、特にスーパスカラ等の並列処理を行うデータ処理装置に適用して有効な技術に関する。

[0002]

【従来の技術】マイクロプロセッサ(CPU(Central Processing Unit)、マイクロコンピュータ等の総称として以下使用する。)は、命令の列を順次にフェッチし、解読し、実行していく。マイクロプロセッサが実行していく命令は、デコード回路の簡単化を狙って現在固定長のものが広まってきている。固定長命令をパイプライン方式(Pipelining)で実行するマイクロプロセッサは、RISC(Redused Instruction Set Computer)型プロセッサと呼ばれている。

【0003】図1は、マイクロプロセッサのパイプライン化された実現方法を示したものである。ここでは簡単化のため通常は存在するメモリアクセスのステージ(MEM)を省略してある。個別のステージ(101、103、105、107)は1単位の時間刻み(クロック)で実行され、最初のステージから最後のステージまでラッチ群(102、104、106)を介して順次に処理を積み重ねていくことで個別の命令処理が完了する。第1ステージ101は命令フェッチを行う(IF)。第2ステージ103は命令の解釈及びレジスタの読み出しを行う(ID)。第3ステージ105は命令機能が指定した演算を実行する(EX)。第4ステージ107は演算結果を信号線108を介して第2ステージ103内に配置されたレジスタに書き込みを行う(WB)。

【0004】図2にはパイプラインで4つの命令を処理 していく時の概念図が示される。後続の命令が先行命令 のレジスタの内容を使用する場合は、後続の命令のバイプラインに空きができてしまう(データ・ハザードによるパイプライン・ストールと呼ばれる)。この様子が図2の(a)に示されている。図2の(a)内の左下を向いた2つの矢印は先行命令のレジスタ書き込み後、後続命令のレジスタ読み出しを示している。

【0005】したがって、この問題を解決する手段として、後続の命令が前の演算結果を使用する場合にはその値を信号線108を介して第3ステージ105内の演算器にも送出する。以上のための制御線が信号線109、110である。この調整はフォワーディング(Forwarding)として知られており、これにより1クロック毎の実行が可能となる。なお、図2の(b)内の左下を向いた2つの矢印はフォワーディングを示している。したがって個別の命令処理に要するクロック数は例えば4となる。しかし、個別のステージが毎クロック新たな命令を処理していくので、命令処理は1クロック当たり1命令となる。したがって、1命令が1クロックで実行できるので、ある処理(プログラム)を行うための実行命令数が少ないほど実行時間が短くなる。

【0006】なお、パイプライン及びフォワーディングについては、1994年Morgan Kaufman Publishers, Inc. 発行のHennessy et al.「Computer Organization and Design」第6章Enhancing Performance with Pipelining(362頁から450頁)に記載されている。

【0007】次に、マイクロプロセッサの処理速度を向上する方式の1例として、スーパスカラ方式(Superscal ar)がある。スーパスカラ方式は、同時に実行できる演算器の数を複数個、例えば2個にし、それに応じて命令フェッチと命令デコードも1時期に2つ行えるようにしたものである。この場合、図3の(a)データ依存無しに示されるように、理想的には1クロック毎に2つの命令が実行可能にされるので、通常のパイプライン方式に較べ実行時間が半分になる。なお、スーパスカラ方式については、日経エレクトロニクス、1989年11月27日号(No.487)、191頁から200頁の「次世代RISC、並列処理を導入しCMOSで100MIPSねらう」に記載されている。

【0008】従来のスーパスカラ方式を採用しているRISC型のマイクロプロセッサの命令長は4パイト固定であり、算術演算等の演算命令のオペランド数は3つとなっているのが一般的である。この例は、特開平2-130634号に記載されている。一方、コード効率を高める(命令を格納するメモリの使用量を少なぐする)ために、2パイト固定長命令のRISC型のマイクロプロセッサがある。ただし、前記2パイト固定長命令のRISC型のマイクロプロセッサにはスーパスカラ方式は採用されていない。この例は、特開平5-197546号に記載されている。

[0009]

【発明が解決しようとする課題】スーパスカラ方式により生ずる課題を明らかにするために、図3を用いて説明する。図3に示される命令の動作が下記に示される。

【0010】 (1) mov R3, R2 「レジスタR3の内容をレジスタR2に複写」

- (2) mov #32, R5「データ*32*をレジスタR5に複写」
- (3) add R4, R2 「レジスタR4の内容とR2の内容を加算して、結果をR2に格納」
- (4) and R3, R5 「レジスタR3の内容とR5の内容を 論理積して、結果をR5に格納」

上記命令(1)と命令(2)、及び命令(3)と命令(4)にはそれぞれデータの依存性(データフロー)はない。しかし、命令(1)と命令(3)、及び命令

- (2) と命令(4) にはそれぞれデータの依存性(データフロー)がある。すなわち、命令(1)と命令(3)の両方でレジスタR2を使用する。また、命令(2)と命令(4)の両方でレジスタR5を使用する。従って、命令
- (1) の実行後に命令(3) を実行しなければならない。また、命令(2) の実行後に命令(4) を実行しなければならない。

【0011】すなわち、同時に実行する命令間にデータ 依存性が無い場合、図3の(a)に示されるようにパイプラインの空きが無く、2命令が完全に並列実行されので、従来の同時に1命令のみを実行する場合の2倍の処理速度が得られる。しかし、同時に実行する命令間にデータ依存性がある場合、図3の(b)に示されるように、パイプラインに乱れが出てしまい、従来の同時に1命令のみを実行する場合と同一の処理速度になってしまう。

【0012】そのために、図3の(C)に示されるように、同時に実行する命令間にデータ依存性がある場合、後続命令は次のパイプラインに回し、後続命令の替りに無処理命令nopを先行命令と同時に実行して、パイプラインの乱れを回避する方法が考えられる。しかし、無駄な命令が増え、全体の実行命令数が増加して実行時間が長くかろ

【0013】次に命令フォーマット及び命令体系により 生する課題を明らかにするため、図4及び図5を用いて 以下に説明する。

【0014】図4には、4バイト・3オペランド命令(4バイト固定長命令)体系の場合の命令形式(命令フォーマット)と命令レバートリの例が示される。この図でOPフィールド401は命令機能を特定する。S1フィールド403は第1入力を特定するレジスタ番号(第1オペランド)、S2フィールド404は第2入力を特a=b+c+d;

これを4バイト・3オペランド命令体系の命令列(命令 列(A1))に変換すると以下のようになる。

[0019]

add Rb, Rc, Ra

定するレジスタ番号 (第2オペランド)、Dフィールド 402は出力を特定するレジスタ番号(第3オペラン ド)が置かれている。すなわち、この命令形式は3つの オペランドを指定することができる。命令機能には、複 写 (データ転送)、加算、減算などがある。さらに、4 バイト命令体系の命令長の余裕から1 ビット左シフト加 算命令aslladdやO拡張加算命令zextaddなどの複合命令 も提供される。aslladd命令は第1オペランドのビット パタンを1ビット左シフトした後で通常の加算を行うも ので、zextadd命令は第1オペランドのビットパタンの 左半分を0にした後で通常の加算を行うものである。な おここでは簡単化のため通常は存在するであろうメモリ アクセス命令や分岐命令等を省略してある。なお複写命 令 (データ転送命令) の場合S2フィールド404は無 視され、S1フィールド403で特定されたレジスタ (転送元レジスタ) 内容がそのままDフィールド402 で特定されたレジスタ (転送先レジスタ) に複写 (転 送) される。

【0015】図5には、2バイト・2オペランド命令(2バイト固定長命令)体系の場合の命令形式と命令レパートリの例が示される。図5でOPフィールド501は命令機能を特定する。S1フィールド503は第1入力を特定するレジスタ番号(第1オペランド)、 Dフィールド502は第2入力を特定するレジスタ番号と同一、第2オペランド)が置かれている。すなわち、この命令形式は2つのオペランドを指定することができる。図4と較ペてフS2フィールドが存在しない点が図4の命令形式と明確に異なっている部分である。すなわち、オペランドの数が1つ少ない。さらに残りのフィールド長も図4のものに較べて短くなっている。

【0016】命令機能には1入力転送命令として複写命令(データ転送命令)、0拡張命令、符号拡張命令、1ビット左シフト命令、2入力演算命令として加算命令、減算命令等がある。このうち1ビット左シフト命令は、命令長の都合で入力レジスタ(転送元レジスタ)と出力レジスタ(転送先レジスタ)の番号が同じである。したがってこの場合、S1フィールドはレジスタ番号でなく、asll命令を特定するための拡張命令コードが格納される。

【0017】さて、4バイト・3オペランド命令体系と 2バイト・2オペランド命令体系の利害得失を明確化す るために例えば、以下の式を考える。

[0018]

(A)

add Ra, Rd, Ra

一方これを2バイト・2オペランド命令体系の命令列 (命令列(A2))に変換すると以下のようになる。 【0020】 mov Rb, Ra
add Rc. Ra
add Rd. Ra

4バイト・3オペランドの命令体系であれば、実行命令数は2であるが、命令メモリでの格納 (および実行のための命令フェッチ) バイト数は8バイトである。一方2バイト・2オペランドの命令体系であると、実行命令数は3に増えるが、命令メモリでの格納 (および実行のための命令フェッチ) バイト数は6バイトに減少する。この傾向は一般的に成立する。そして、4バイト・3オペランド命令体系は2バイト・2オペランド命令体系に較べ実行命令数が1~2割程度少ないが、格納バイト数は6割程度多くなる、という点が一般的に認められる。

【0021】しかし、2バイト・2オペランドの命令体系には1つ課題が存在する。それは2オペランド命令体系の場合に必要となる余分なデータ転送命令にかかわる。上の式(A)でも同様に説明できるのであるが、ここでは以下の式(B)で説明する。

[0022] a=b+c;

これを4パイト・3オペランドの命令体系の命令列(命令列(B1))に変換すると以下のようになる。

[0023] add Rb, Rc, Ra

一方これを2パイト・2オペランドの命令列(命令列 (B2))に変換すると以下のようになる。

[0024]

mov Rb, Ra

add Rc, Ra

4バイト・3オペランドの命令体系であれば、バイプラインの片方だけを使用して1クロックで実行できる。一方2バイト・2オペランドの命令体系であれば、余分に必要となった複写(データ転送)命令mov と後続の加算命令addの2つの命令間にデータフローが存在する。つまり先行命令の結果の値を後続命令が使用している。したがって先行命令movの結果を待って後続命令addを実行する必要があり、2クロックの実行時間がかかる。以下の命令列

mov Rb, Ra

add Rc, Rd

であれば、2つの命令間でデータフローがないので、2 つのパイプラインを使用して1クロックで実行できる訳 であるが、式(B)に対応する命令列(B2)ではデー タフローが存在することにより処理時間が余分にかかる ことになる。スーパスカラ方式を採用した場合、2パイ ト・2オペランド命令体系は4パイト・3オペランド命 令体系に較べ、実行命令数の多さ以上に実行時間がかか る傾向があるといえる。

【0025】なお、2バイト・2オペランド命令体系の 課題を4バイト・3オペランド命令体系と比較して説明 したが、4バイト・3オペランド命令体系においても、 4オペランドの演算を実行する場合、前記命令列(A 1) のようにデータフローが存在し、2パイト・2オペランド命令体系と同様な課題が存在する。

【0026】従来から存在するマイクロプロセッサは、 ソフトウエア資産の蓄積があり、これまで築き上げてき たソフトウエア資産の継承の関係で、命令フォーマッ ト、命令体系を変更することは困難である。従って、従 来の命令フォーマット、命令体系を維持したまま、処理 速度の向上を図る必要がある。

【0027】本発明の課題は、スーパスカラ方式におけるデータ・ハザードのよるパイプライン・ストールを削減し、処理速度の向上を実現することにある。

【0028】本発明の他の課題は、実行命令数を削減 し、処理速度の向上を実現することにある。

【0029】さらに、本発明の他の課題は、2パイト・ 2オペランド命令体系を実行するデータ処理装置の処理 速度の向上を実現することにある。

【0030】本発明の前記並びにその他の課題と新規な 特徴は本明細費の記述及び添付図面から明らかになるで あろう。

[0031]

【課題を解決するための手段】本願において開示される 発明のうち代表的なものの概要を簡単に説明すれば下記 の通りである。

【0032】パイプライン方式のデータ処理装置は、命令メモリに格納される固定長命令を読み込むステージと、読み込まれた複数の命令が実行するデータに依存性が有り、かつ前記複数の命令に所定の関係がある場合、前記複数の命令を複数のパイプラインで並列に実行できるように前記複数の命令を変更するステージと、変更された前記複数の命令を並列に実行するステージとを有する。

【0033】命令体系上は2バイト2オペランド命令体系であるが、内部処理的には3オペランド命令体系として処理する。つまり、命令フェッチステージは2命令をフェッチする。命令デコードステージは2つの隣接した命令をデコードする。演算ステージの演算器は2組用意する。そして、隣接する2つの2オペランド命令が、1つの3オペランド命令と同等であることを検出する手段と、そうであれば2つの命令を1つの3オペランド命令に統合して後続の実行ステージに送出する手段を命令デコーダに設ける。これにより、1つの3オペランド命令として実行ステージに送られ1つのクロックで実行される。また隣接する2つの命令がデータフローの関係にあるが1つの3オペランド命令には統合できないことを検出すると、先行命令のソースデータを後続命令のための演算器に送る手段を設ける。

【0034】これにより、2つの命令を同時に実行できることになる。以上の2つにより、隣接命令間のデータフローにより従来であれば2クロックの時間を要していた2つの命令処理を1クロックで実行できることにな

る。したがって、全体としての実行クロック数を削減で きる。

[0035]

【発明の実施の形態】本発明の実施例に係るマイクロプロセッサを順次項目に従って説明する。

【0036】《マイクロプロセッサのバイプラインデータバス》図6には本発明の実施例に係るマイクロプロセッサのバイプラインのデータバスが示される。前記マイクロプロセッサは図5に示すような2バイト・2オペランド命令体系の命令をフェッチし、実行するものであるとして以下説明する。

【0037】第1ステージ700は命令フェッチステージである。第2ステージ800は命令デコードステージである。第3ステージ900は演算ステージである。第4ステージ1000はレジスタへの書き込みとフォワーディングを行うステージである。前記各ステージの間には、第1ラッチ群750、第2ラッチ群850及び第3ラッチ群950がある。なお、図6以下の実施例における各ステージは、データの流れを示すもので、各ステージ内に記載される回路等の物理的な配置を示すものではない。

【0038】《命令フェッチステージ》図7には第1ステージ700と第1ラッチ群750との詳細ブロック図が示される。第1ステージ700は、プログラムカウンタ(PC)701とフェッチ制御部702と命令メモリ703とで構成される。第1ステージ700の命令フェッチステージの役割は命令メモリ内の命令を次の第2ステージ800の命令デコードステージに渡すことである。

【0039】プログラムカウンタ701の指すアドレスを信号線704に送出し命令メモリ703内の命令4バイト(2命令)を信号線705を介してフェッチ制御部702にフェッチする。フェッチ制御部702にフェッチされた2つの命令を信号線803に従って、信号線706、707に送出する。それから第1ラッチ群750内のラッチ751に信号線706の内容が格納される。ラッチ751には第1命令が、ラッチ752には第2命令が格納される。ここで、命令列の中において第1命令は第2命令よりも先にある。なお、本願では第1命令を先行命令、第2命令を後続命令ともいう。

【0040】また、プログラムカウンタ701の値に4を加えた値をプログラムカウンタ701に設定しなおす。プログラムカウンタ701の値(命令メモリをアクセスするアドレスの値)は2の倍数という制約のもとで命令メモリから4バイト分の命令(2命令)をフェッチし第1ラッチ群750内にラッチするよう第1ステージ700が動作する。但し、常に命令メモリからフェッチした4バイト分の命令をそのまま第1ラッチ群750にラッチするものではない。すなわち、第2ステージ80

0である命令デコーダステージから見て、次に欲しい命令が現命令の何バイト先かの情報を信号線803を介して第1ステージ700のフェッチ制御部702はそれに応答してフェッチ制御部702はそれに応答してフェッチ制御部702内に存在するバッファを活用して命令デコードステージの望みの4パイト(2命令)を信号線706、707に送出し、第1ラッチ群750内のラッチ751、752に格納する。

【0041】《命令デコードステージ》図8には第2ステージ800と第2ラッチ群850との詳細ブロック図が示される。第2ステージ800は、デコード制御部801とレジスタファイル802とで構成される。第2ステージ800の命令デコードステージの役割は以下の通りである。

(1) 2つの命令で使用される入力データを用意し、次の演算ステージ (第3ステージ900) に渡す。

【0042】(2)2つの命令間のデータフローを検査 し、先行命令(第1命令)の実行結果を後続命令(第2 命令)が使用していなければ、2つの命令処理を演算ス テージに依頼する。

【0043】(3)2つの命令間のデータフローを検査 し、先行命令の実行結果を後続命令が使用していれば、 所定の規則に従い2つの命令を変更する。

【0044】(4)演算ステージに処理依頼した命令数を命令フェッチステージに連絡し、次のパイプラインの処理に備える。

【0045】命令デコードステージ(第2ステージ800)の動作を以下に説明する。 図12にはデコード制御部801の一部の詳細プロック図が示される。デコード制御部801はデータフロー検出回路DFDC、命令変換回路INCCは、セレクタSEL1から4を有し、データフロー検出回路DFDCの制御に基づいてラッチ751、752の内容を加工し、ラッチ851、852の内容に変換する

【0046】ラッチ751の内容である第1命令のOPフィールドをOP-1、DフィールドをD-1、S1フィールドをS1-1とする。ラッチ752の内容である第2命令のOPフィールドをOP-2、DフィールドをS1-2とする。ラッチ851の内容である第1命令のOPフィールドをOPN-1、DフィールドをDN-1、S1フィールドをS1N-1とする。ラッチ852の内容である第2命令のOPフィールドをOPN-2、DフィールドをDN-2、S1フィールドをS1N-2とする。ラッチ852の内容である第2命令はさらにS2フィールドを有し、これをS2N-2とする。

【0047】デコード制御部801はラッチ群750内のラッチ751、752より先行命令と後続命令の2つの命令を信号線753、754を介して取り込む。そし

て先行命令のDフィールド (D-1) のレジスタ番号が 後統命令のS1フィールド (S1-2) 又はDフィール ド (D-2) のレジスタ番号と等しいか否かをデータフ ロー検出回路DFDCで検査する。

【0048】レジスタ番号が等しくない場合、データフローは存在しないと判断できる。レジスタ番号が等しい場合、データフローが存在すると判断できる。そうすると、データフロー検出回路DFDCは、制御信号821から824を出力し、セレクタSEL1から4をそれぞれ切り替えて信号線813、804を介して、ラッチ851、852に変換した第1命令、第2命令を格納する。なお、セレクタSEL1、SEL2の一つの入力にはINCCで生成された無効命令NOP820が常時入力される。

【0049】さらに、セレクタSEL2には、信号線840を介してデータフロー検出回路DFDCにより生成した新たな命令が入力される。信号線840によりセレクタSEL2に入力される新たな命令は、データフロー検出回路DFDCがラッチ751の0P-1とラッチ752の0P-2に基づいて生成したものであり、ラッチ852の0P-2に格納される。生成される新たな命令の一例としては、0P-1が1ビットシフト命令asl1で0P-2が加算命令addのときに生成される1ビットシフト加算命令aslladdがある。

【0050】セレクタSEL3は、S1-1またはD-2の一方の値を選択し、S1N-2に格納するためのものである。

【0051】セレクタSEL4は、S1-1またはS1-2の一方の値を選択し、S2N-2に格納するためのものである。

【0052】図11には命令デコードステージの2つの命令を演算ステージの2つの命令に変換する規則(条件と演算ステージに渡る命令)が示されている。第1命令は、無効命令nopに変換されるか又は変換されないかのどちらかである。第2命令は命令形式を図5の2バイト・2オペランド形式ものから図4の4バイト・3オペランド形式ものに変換されるか又は無効命令nopに変換されるか又は無効命令nopに変換される。図11のALUは算術演算(加算、減算等)や論理演算(論理積、論理和等)などの2入力演算命令を総称する命令名である。前述したように、zextALUは演算おの第1入力を0拡張し、そしてALU演算する命令である。asl1ALUは演算器への第1入力を1ビット左シフトし、そしてALU演算する命令である。

【0053】図11の(1)は2オペランド形式の演算 命令で3オペランドの演算命令を実行するためには複写 命令movと演算命令ALUとの2命令必要であったものを1 つの3オペランドの演算命令ALUに変換するものであ る。複写命令movのDフィールドのレジスタ番号と演算 命令ALUのDフィールドのレジスタ番号とが一致する場 合である。この場合、演算ステージには第1命令が無効 命令nopに、第2命令が3オペランドの演算命令に変換されて渡される。

【0054】ラッチ851,852の各フィールドに格納される値を要約すると以下のようになる。なお、

「←」は、「←」の右側の値を「←」の左側に格納する ことを意味する。

[0055]

IF
$$(D-1) = (D-2)$$
,
THEN OPN-1 \leftarrow nop,
OPN-2 \leftarrow OP-2,
DN-2 \leftarrow D-2,
S1N-2 \leftarrow S1-1,
S2N-2 \leftarrow S1-2

具体的には以下のようになる。ラッチ751の〇P-1には「mov」が、D-1には「RN」が、S1-1には「RM」が、S1-1には「RM」が、S1-1には「RM」が格納されているとする。また、ラッチ752の〇P-2には「ALU」が、D-2には「RN」が、S1-2には「R1」が格納されているとする。ここでD-1とD-2が共に「RN」でレジスタ番号が一致することをデータフロー検出回路DFDCは、SEL1がnop命を20を選択するように821を介しセレクタSEL1を制御し、nop命令820をラッチ851の〇PN-1に格納する。データフロー検出回路DFDCは、ラッチ751のD-1、S1-1をそのまま信号線753、813を介してラッチ851のDN-1、S1N-1に格納する。

【0056】またデータフロー検出回路DFDCは、セレクタSEL2がラッチ752のOP-2を選択するように制御信号822を介してセレクタSEL2を制御し、ラッチ752のOP-2をラッチ852のOPN-2に格納する。さらにデータフロー検出回路DFDCは、セレクタSEL3がラッチ751のS1-1を選択するように制御信号823を介しセレクタSEL3を制御し、ラッチ751のS1-1をラッチ852のS1N-2に格納する。またデータフロー検出回路DFDCはラッチ752のD-2を信号線754を介してそのまコー検出回路DFDCは、セレクタSEL4がラッチ752のS1-1を選択するように834を介してセレクタSEL4を制御し、ラッチ752のS1-1をS2N-2に格納する。

【0057】図11の(2)は複写命令movのDフィールドのレジスタ番号と演算命令ALUのS1フィールドのレジスタ番号とが一致する場合である。この場合、演算ステージには第1命令はそのままで、第2命令が3オペランドの演算命令に変換されて渡される。

【0058】ラッチ851,852の各フィールドに格納される値を要約すると以下のようになる。

IF
$$(D-1) = (S1-2)$$
,
THEN $OPN-1 \leftarrow OP-1$,
 $DN-1 \leftarrow D-1$,
 $S1N-1 \leftarrow S1-1$,
 $OPN-2 \leftarrow OP-2$,
 $DN-2 \leftarrow D-2$,
 $S1N-2 \leftarrow S1-1$,
 $S2N-2 \leftarrow D-2$

具体的には以下のようである。ラッチ751の〇P-1には「mov」が、D-1には「RN」が、S1-1には「RM」が格納されているとする。また、ラッチ752の〇P-2には「ALU」が、D-2には「Rx」が、S1-2には「RN」が格納されているとする。ここでD-1とS1-2が共に「RN」でレジスタ番号が一致することをデータフロー検出回路DFDCが検出する。そしてデータフロー検出回路DFDCは、セレクタSEL1がラッチ751の〇P-1(この場合mov命令)を選択するように821を介しセレクタSEL1を制御し、mov命令をラッチ851の〇PN-1に格納する。

【0059】データフロー検出回路DFDCは、ラッチ 751のD-1、S1-1を、そのまま信号線753、 813を介してラッチ851のDN-1、S1N-1に格 納する。またデータフロー検出回路DFDCは、セレク タSEL2がラッチ752のOP-2を選択するように 制御信号822を介してセレクタSEL2を制御し、ラ ッチ752のOP-2をラッチ852のOPN-2に格 納する。なお データフロー検出回路DFDCは、ラッ チ752のD-2をそのまま信号線754、804を介 してラッチ852のDN-2に格納する。さらにデータ フロー検出回路DFDCは、セレクタSEL3がラッチ 751のS1-1を選択するように制御信号823を介 してセレクタSEL3を制御し、信号線804を介して ラッチ852のS1N-2にラッチ751のS1-1を 格納する。なおデータフロー検出回路DFDCは、ラッ チ752のS1-2を信号線754、804を介して、 そのままラッチ852のS2N-2に格納する。

【0060】なお、ラッチ851、852に具体的に格納される値を作っていく以上のような説明は図11の(2)以降では省略する。図11の(1),(2)と同様なやり方でラッチ851,852に格納する値を作っていけるからである。

【0061】図11の(3)は1オペランド形式の1ビット左シフト命令を2オペランド形式の1ビット左シフト命令に変換するものである。複写命令movの Dフィールドのレジスタ番号と1ビット左シフト命令asl1の Dフィールドのレジスタ番号とが一致する場合である。この場合、演算ステージには第1命令が無効命令nopに、第2命令が2オペランドの1ビット左シフト命令asl1に変換されて渡される。

【0062】すなわち、各フィールドは下記のように変

```
換される。
[0063]
IF (D-1) = (S1-2).
THEN OPN-1 \leftarrow nop,
OPN-2 \leftarrow OP-2,
DN-2 \leftarrow D-2 or D-1,
S1N-2 \leftarrow S1-1,
S2N-2 \leftarrow NA
```

図11の(4)は第1命令が複写命令movで、第2命令 又は条件が図11の(1)、(2)、(3)に該当しな かった場合である。この場合、演算ステージには第1命 令はそのままで、第2命令が無効命令nopに変換されて 渡される。「その他」の命令は1クロックずれた次のパイプラインで実行される。

【0064】すなわち、各フィールドは下記のように変換される。

[0065] $OPN-1 \leftarrow OP-1$, $DN-1 \leftarrow D-1$, $S1N-1 \leftarrow S1-1$, $OPN-2 \leftarrow_{nop}$

図11の(5)は0拡張命令zextと演算命令ALUとを0 拡張演算命令zextALUに複合するものである。0拡張命 令zextのDフィールドのレジスタ番号と演算命令ALUの Dフィールドのレジスタ番号とが一致する場合である。 この場合、演算ステージには第1命令が無効命令nop に、第2命令が3オペランドの0拡張演算命令zextALU に変換されて渡される。

【0066】すなわち、各フィールドは下記のように変換される。 【0067】

IF
$$(D-1) = (D-2)$$
,
THEN OPN-1 \leftarrow nop,
OPN-2 \leftarrow zexALU,
DN-2 \leftarrow D-2or D-1,
S1N-2 \leftarrow S1-1,

S2N-2←S1-2 図11の(6)は0拡張命令zextの Dフィールドのレジスタ番号と加算命令addのS1フィールドのレジスタ番号とが一致する場合である。この場合、演算ステージには第1命令はそのままで、第2命令が3オペランドの0拡張加算命令zextaddに変換されて渡される。

【0068】すなわち、各フィールドは下記のように変換される。

[0069]

IF
$$(D-1) = (S1-2)$$
,
THEN $OPN-1 \leftarrow OP-1$,
 $DN-1 \leftarrow D-1$,
 $S1N-1 \leftarrow S1-1$,
 $OPN-2 \leftarrow zextadd$,
 $DN-2 \leftarrow D-2$,
 $S1N-2 \leftarrow S1-1$,
 $S2N-2 \leftarrow D-2$

なお、加算命令add以外に可換な論理積命令andや論理和 命令or等も同様な変換を行っても良い。

【0070】図11の(7)は第1命令が0拡張命令zextで、第2命令又は条件が図11の(5)又は(6)に該当しない場合である。この場合、演算ステージには第1命令はそのままで、第2命令が無効命令nopに変換されて渡される。「その他」の命令は1クロックずれた次のパイプラインで実行される。

【0071】すなわち、各フィールドは下記のように変換される。

[0072]

OPN-1-OP-1,

DN-1-D-1

S1N-1-S1-1,

OPN-2 ←nop

図11の(8)は1ビット左シフト命令asl1と演算命令ALUとを1ビット左シフト演算命令asl1ALUに複合するものである。1ビット左シフト命令asl1のDフィールドのレジスタ番号と演算命令ALUのDフィールドのレジスタ番号とが一致する場合である。この場合、演算ステージには第1命令が無効命令nopに、第2命令が3オペランドの1ビット左シフト演算命令asl1ALUに変換されて渡される。

【0073】すなわち、各フィールドは下記のように変換される。

[0074]

IF
$$(D-1) = (D-2)$$
,
THEN OPN-1 \leftarrow nop,
OPN-2 \leftarrow asilALU,
DN-2 \leftarrow D-2,
S1N-2 \leftarrow S1-1,
S2N-2 \leftarrow S1-2

図11の(9)は1ビット左シフト命令asl1のDフィールドのレジスタ番号と加算命令addのS1フィールドのレジスタ番号とが一致する場合である。この場合、演算ステージには第1命令はそのままで、第2命令が3オペランドの1ビット左シフト加算命令asl1addに変換されて渡される。

【0075】すなわち、各フィールドは下記のように変換される。

[0076]

IF
$$(D-1) = (S1-2)$$
.
THEN $OPN-1 \leftarrow OP-1$,
 $DN-1 \leftarrow D-1$.
 $S1N-1 \leftarrow S1-1$.
 $OPN-2 \leftarrow asiladd$.
 $DN-2 \leftarrow D-2$.
 $S1N-2 \leftarrow S1-1$.
 $S2N-2 \leftarrow D-2$

図11の(10)は第1命令が1ビット左シフト命令as l1で、第2命令又は条件が図11の(8)又は(9)に 該当しない場合である。この場合、演算ステージには第 1命令はそのままで、第2命令が無効命令nopに変換さ れて渡される。「その他」の命令は1クロックずれた次 のパイプラインで実行される。

【0077】すなわち、各フィールドは下記のように変換される。

[0078]

 $OPN-1\leftarrow OP-1$,

 $DN-1\leftarrow D-1$

S1N-1-S1-1

OPN-2 ←nop

図11の (11) は2つの命令間にデータフローがない 場合のもので、命令の変換は行わない。

【0079】デコード制御部801で変換された新しい2つの命令は信号線813、804に送出され、それぞれ第2ラッチ群850内のラッチ851、852に格納される。また、データフロー検出回路DFDCにおける先行命令と後統命令との関係の検査結果を図11のPC更新の値に基づき命令フェッチステージ(第1ステージ700)に信号線803を介して連絡する。すなわち、次のパイプラインでデコードする2つの命令を指定する情報を命令フェッチステージに連絡する。

【0080】 さらにデコード制御部801は先行命令のS1フィールド(S1-1)、Dフィールド(D-

1)、さらに後続命令のS1フィールド503 (S1-2)、Dフィールド502 (D-2)の4つのレジスタ番号を信号線805、806、807、808を介してレジスタファイル802に送る。レジスタファイル802内の4つのレジスタの内容は、信号線809、810、811、812に読み出され、第2ラッチ群74内のラッチ853 (第1-1入力)、ラッチ854 (第1-2入力)、ラッチ855 (第2-1入力)、ラッチ856 (第2-2入力)に格納される。

【0081】図15には、レジスタファイル802のプロック図が示される。レジスタファイル802は、レジスタRGSTRとレジスタ制御回路RCCと等で構成される。レジスタRGSTRは、4本のリードポートと2本のライトポートとがあり、それぞれ信号線809、810、811、812、信号線955、956に接続される。従って、レジスタファイル802は4つのレジス

タの内容を同時に読み出すことができる。また、2つの レジスタに同時に書き込むことができる。

【0082】図11の(1)、(5)、(8)の場合は、(S1-1)と(S1-2)で指定される2つのレジスタの内容が信号線811、812に読み出され、ラッチ855 (第2-1入力)、ラッチ856 (第2-2入力)に格納される。

【0083】図11の(2)、(6)、(9)の場合は、(S1-1)で指定されるレジスタの内容が信号線809、811に読み出され、ラッチ853(第1-1入力)とラッチ855(第2-1入力)とに格納される。(D-2)で指定されるレジスタ内容が信号線812に読み出され、ラッチ856(第2-2入力)に格納される。

【0084】図11の(3)の場合は、(S1-1)で 指定されるレジスタの内容が信号線811に読み出され、ラッチ855(第2-1入力)に格納される。

【0085】図11の(4)、(7)、(10)の場合は、(S1-1)で指定されるレジスタの内容が信号線809に読み出され、ラッチ853(第1-1入力)に格納される。

【0086】図11の(11)の場合は、(S1-1)、(D-1)、(S1-2)、(D-2)で指定される4つのレジスタの内容が信号線809、810、811、812に読み出され、ラッチ853(第1-1入力)、ラッチ854(第1-2入力)、ラッチ855(第2-1入力)、ラッチ856(第2-2入力)に格納される。

【0087】 《実行ステージ》図9には第3ステージ9 00と第3ラッチ群950との詳細ブロック図が示され る。第3ステージ900は、演算制御部901とALU (Alithmetic Logic Unit)等を含む演算器902、90 3と第1入力調整回路904、905、選択器906、 907とで構成される。第3ステージ900である実行 ステージの役割は、2つの命令の演算を実行することで ある。

【0088】演算器902と第1入力調整回路904は 先行命令を演算するための回路で、第2ラッチ群850 内の2つのラッチ853、854から第1-1入力、第 1-2入力が信号線859、860を介して選択器90 6に送られる。また、第3ラッチ群950内の2つのラッチ953、954から第1出力、第2出力が信号線9 55、956を介して選択器906に送られる。

【0089】選択器906は信号線859、955及び956のうちの1つを信号線1001に従い選択して第1入力回路904及び信号線912を介して演算器902にデータを送る。また、選択器906は信号線860、955及び956のうちの1つを信号線1001に従い選択して信号線913を介して演算器902にデー
をを送る。

【0090】 演算制御部901は第2ラッチ群850内のラッチ851の命令を取り込み、その命令機能に従い演算器902、第1入力調整回路904を信号線911と908で制御し、先行命令のための演算を行う。そして結果の値(第1出力)は第3ラッチ群950内のラッチ953に信号線918を介して格納される。

【0091】一方、演算器903と第1入力調整回路9 05は後続命令を演算するための回路で、第2ラッチ群 850内の2つのラッチ855、856から第2-1入 力、第2-2入力が信号線861、862を介して選択 器907に送られる。また、第3ラッチ群950内の2 つのラッチ953、954から第1出力、第2出力が信 号線955、956を介して選択器907に送られる。 【0092】選択器907は信号線861、955及び 956のうちの1つを信号線1002に従い選択して第 1入力回路905及び信号線914を介して演算器90 3にデータを送る。また、選択器907は信号線86 2、955及び956のうちの1つを信号線1002に 従い選択して信号線915を介して演算器903にデー タを送る。演算制御部901は第2ラッチ群850内の ラッチ852の命令を取り込み、その命令機能に従い演 算器903、第1入力調整回路905を信号線910と 909とで制御し、後統命令のための演算を行う。そし て結果の値 (第2出力) は第3ラッチ群950内のラッ チ954に信号線919を介して格納される。

【0093】以上が、実行ステージ(第3ステージ900)の処理であるが、sladd命令やzextadd命令について補足説明しておく。aslladd命令やzextadd命令は、加算を実現できる演算器902または903への第1入力を微調整することで実現できる。すなわち第1入力を演算器に直接入力するのでなく、第1入力調整回路904または905に入力しそれを演算制御部901が制御し、1ビット左シフトや0拡張の調整を行っておき、それを演算器902または903へ入力し、そこで通常の加算をするよう制御することで実現できる。

【0094】《書き込みステージ》図10には第4ステージ1000の動作を説明するためのブロック図が示される。第4ステージ1000は、レジスタ番号解読回路1010とフォワーディング制御回路1020とで構成される。第4ステージ1000であるレジスタへの書き込みとフォワーディングを行うステージの役割は以下の通り。

【0095】(1)2つの命令の演算結果を指定された番号のレジスタに書き込む。

【0096】(2)2つの命令の演算結果が現クロックでの演算ステージ(次のパイプライン)で使用されるなら第2ラッチ群850内にラッチされている値でなく、第3ラッチ群950内にラッチされている値を演算器に入力するように調整する(フォーワーディング)。

【0097】まず、(1)の処理から説明する。第4ス

テージ1000は、第3ラッチ群950内のラッチ951、952から直前に演算された2つの命令を信号線957、958を介してレジスタ番号解読回路1010に取り込む。また第3ラッチ群950内のラッチ953、954から直前の演算結果の値を信号線955、956に送出する。そして、レジスタ番号解読回路1010は直前に実行された命令の2つのDフィールド内のレジスタ番号を信号線1003、1004に送出して第2ステージ800のレジスタファイル802の書き込みレジスタ番号を指定する。これで2つの演算結果の値がレジスタファイル802に書き込まれることになる。

【0098】次に(2)の処理を説明する。第4ステー ジ1000は、第2ラッチ群850内のラッチ851、 852から今回演算すべき2つの命令を信号線857、 858を介してフォワーディング制御回路1020に取 り込む。また、第3ラッチ群950内のラッチ951、 952から直前に演算された2つの命令を信号線95 7、958を介してフォワーディング制御回路1020 - に取り込む。そして、フォワーディング制御回路102 0は直前に実行された命令の2つのDフィールド内のレ ジスタ番号と今回演算されるべき2つの命令のS1フィ ールド、S2フィールドの番号に同じものがあるか検査 する。検査の結果同じものがあれば、その部分につい て、第2ラッチ群850内のラッチ853、854、8 55、856内の値でなく、第3ラッチ群950内のラ ッチ953、954内の値(信号線955、956)が 演算器902、903に入力されるようにフォワーディ ング制御回路1020は信号線1001、1002を送 出して2つの選択器906、907を制御する。

【0099】《命令列の処理》図13には本発明のスーパスカラ処理において命令列が個別のクロックでどのように処理されていくかが示されている。また、比較のため2命令が並列に実行できないときに無効命令nopを挿入するのみ場合に命令列が個別のクロックでどのように処理されていくかも示されている。本発明では、1クロック当たり2つの命令処理が可能となっている。また、本発明では、2命令が並列に実行できないときに無効命令nopを挿入する場合に比べて、実行命令数が6つ少なく実行時間が短くなる(この命令列においては約40%実行命令が少なくなる)。

【0100】先行命令がmov, zext, asl1等の転送系命令で後統命令がaddなどの加算命令であれば、2つの命令を1つの命令に変換し、1つのクロックで実行するので、全体としてのクロック数を削減でき、高速化を図れる。また、先行命令が転送系命令で後統命令が演算命令であり、さらに両者間にデータフローが存在する場合でも、1つのクロックで実行するので、全体としてのクロック数を削減でき、高速化を図れる。

【0101】《マイクロコンピュータへの適用例》図1 4には本発明のスーパスカラ方式を用いたマイクロプロ コンピュータシステムが示される。マイクロコンピュータMCUは、中央処理装置CPUと、浮動小数点処理ユニットFPUと、積和演算機能を有する乗算器MULTと、論理アドレスを物理アドレスに変換するメモリ管理ユニットMMUと、命令及びデータのキャッシュメモリCACHEと、キャッシュコントローラCCNTと、外部バスインタフェースEBIFと、32ビット論理アドレスデータバスPABUSと、32ビットが理アドレスデータバスPABUSと、32ビットデータバスDBUS、DBSとを単結晶シリコンのような半導体基板上に形成され、樹脂封止される(プラスチックパッケージに封止される)。

【0102】マイクロコンピュータMCUは、外部アドレスパスEABとデータパスEDBを介してDRAM等のダイナミック記憶素子をメモリセルに使用した半導体メモリ等からなる主記憶装置MMに接続される。

【0103】中央処理装置CPUは、図6に示されるパ イプライン・データパスで構成される。ただし、第3ス テージと第4ステージとの間にメモリアクセスステージ を有し、いわゆる5段パイプラインを構成する。なお、 データメモリと命令メモリ703は、キャッシュメモリ CACHE又は主記憶装置MMに対応し、中央処理装置 CPU内には存在しない。中央処理装置CPUは2バイ ト固定長命令の命令体系の命令を実行し、演算器90 2、903は、32ビット長のALU等をそれぞれ有す る。また、レジスタファイル802は、32ピット長の 汎用レジスタを16本を有する。すなわち、中央処理装 置CPUは特開平5-197546号公報に記載される 2バイト・2オペランド命令体系(命令セット)の命令 を実行する。特開平5-197546号公報に記載され るCPUはスーパスカラ方式でない。これに比べて中央 処理装置CPUはスーパスカラ方式であり、中央処理装 置CPUは出願番号1992/897457号に記載さ れる命令体系と同一の命令体系を実行できる。従って、 従来のソフトウエアと互換性(オブジェクト・コード互 換性)を維持しながら、高速性能を実現できる。また、 2バイト固定長命令の特徴である高コード効率化も維持 できる。

【0104】以上本発明者によってなされた発明を実施例に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることはいうまでもない。例えば、図6以下の実施例では、2パイト・2オペランド命令体系の場合について説明したが、4パイト・3オペランド命令体系の場合にも適用できる。0拡張命令、0拡張演算命令について説明したが、符号拡張命令、符号拡張演算命令について説明したが、符号拡張命令、第1命令の転送命令のS1フィールドはレジスタを指定する場合について説明したが、即値データである場合についても適用できる。

[0105]

【発明の効果】本願において開示される発明のうち代表 的なものによって得られる効果を簡単に説明すれば下記 の通りである。

【0106】隣接命令間のデータフローを検出し、命令 を変換することにより、並列に命令を実行できる。 従っ て、従来であれば複数クロックの時間を要していた複数 の命令処理を1クロックで実行できる。それによって、 全体としての実行クロック数を削減できる。

【図面の簡単な説明】

【図1】マイクロプロセッサのパイプライン化された実 現方式を示す図。

【図2】パイプライン処理の概念を示す。

【図3】スーパースカラ処理の概念を示す。

【図4】 4バイト命令体系の命令形式と命令レパートリ の例を示す。

【図5】 2バイト命令体系の命令形式と命令レパートリ の例を示す。

【図6】本発明の実施例に係るマイクロプロセッサのパ イプラインのデータパスを示す図。

【図7】第1ステージと第1ラッチ群との詳細ブロック 図。

【図8】第2ステージと第2ラッチ群との詳細ブロック

【図9】第3ステージと第3ラッチ群との詳細ブロック 図.

【図10】第4ステージの動作を説明するブロック図。

【図11】命令デコードステージの2つの命令を演算ス テージの2つの命令に変換する規則を示す。

【図12】デコート制御部の一部の詳細ブロック図を示 す。

【図13】命令列が個別のクロックでどのように処理さ れていくかを示す。

【図14】本発明のスーパスカラ方式を用いたマイクロ コンピュータシステムの図。

【図15】レジスタファイルのブロック図。

【符号の説明】

101……第1ステージ、103……第2ステージ、1

05……第3ステージ、107……第4ステージ、10 8、109、110……信号線、401……OPフィー ルド、402……Dフィールド、403……S1フィー ルド、404……S2フィールド、501……OPフィ ールド、502……Dフィールド、503……S1フィ ールド、700……第1ステージ、800……第2ステ ージ、900……第3ステージ、1000……第4ステ ージ、701……プログラムカウンタ、702……フェ ッチ制御部、703……命令メモリ、704、705、 706、707……信号線、751、752……ラッ チ、801……デコード制御部、802……レジスタフ アイル、803、804、805、806、807、8 . 08、809、810、811、812、813……信 号線、851、852、853、854、855、85 6……ラッチ、857、858、859、860、86 1、862……信号線、901……演算制御部、902 ……演算器、903……演算器、904……第1入力調 整回路、905……第1入力調整回路、906……選択 器、907……選択器、908、909、910、91 1, 912, 913, 914, 915, 916, 91 7、918、919……信号線、951、952、95 3、954……ラッチ、955、956、957、95 8……信号線、1001、1002、1003、100 4……信号線、1010……レジスタ番号制御回路、1 0 2 0 ·····フォワーディング制御回路、INCC·····命 令変換回路、DFDC……データフロー検出回路、MC U……マイクロコンピュータ、 CPU……中央処理装 置、 FPU……浮動小数点処理ユニット、 MULT… …乗算器、MMU……メモリ管理ユニット、CACHE ……命令及びデータのキャッシュメモリ、 CCNT… …キャッシュコントローラ、 EBIF……外部パスイ ンタフェース、 LABUS……32ピット論理アドレ スバス、 PABUS……32ピット物理アドレスデー タバス、DBUS、DBS……32ピットデータバス、 EAB……外部アドレスバス、EDB……外部データバ ス、MM······主記億装置、RCC·····・レジスタ制御回 路、RGSTR……レジスタ。

【図1】

図1

図3

図2

(a) データ飲存無し

(b) フォワーデイングによりパイプラインストールがない場合 時間 mov F ID FX WB add F ID FX WB

(b) データ依存有り may RJ.R2

[図4]

図4

(C) データ依存有り(無効命令挿入)

mov XIJZ			•			
(mop)	IF	D	EX	Wa	7	
MOV #32.JU	(IF	B	境	W	7
ed RING		ı	IP	B	EX	WB

【図5】

複写命令 srov Rm,Rn mov Ra Rm 加其命令 add Rm,Ra add Re Rm O就理命令 ztm Rm,Ra ztm Ra Rm 行号故法命令 est Rm,Rs est Ra Rm 1 ピット左 asil Ra,Rn asil Rn ****

第4ステージ

【図7】

【図9】

【図11】

		デコードステージへの命令			演算ステージへの命令	
٠	第1命令	第2命令	条件	PCの更新		第2命令
(1) mov Rm,Rr	ALU RI,R	x ===	1	nop	ALU Rm,Ri,Rn
(2) mov Rm,Rn	ALU RI,R.	ı n=l	+4	mov Rm,R	
(3)	mov Rm,Rn	esilRx,Rx	11-X	+4	пор	asli Rm,Rn
(4)	mov Rm,Rn	その他	-	+2	mov Rm, Rr	
(5)	zext Rm,Rn	ALU RI,Rx	N=X	+4	nop	zextALU Rm,Rl,Rn
(8)	zext Rm,Rn	add Ri,Rx	n=1	+4	sext Rm,Rn	
n	zext Rm,Rn	その他		+2	zext Rm,Rn	000
(8)	sall Rn,Rn	ALU RIRX	uex	+4	пор	-
(9)	asil Rn,Rn	add RI,Rx	n=l	+4	asli Rn,Rn	asliALU Rn,Ri,Rn
10)	aali Rm,Rn	その他		+2	asli Rm,Rn	esiladd Rn.Rx.Rx
11)	ALU Rm,Rn	ALU RI,Rx	n#1	+4	ALU Rm,Rn	nop
\bot			0 # X	1	ALLO KIM, KIM	ALU RI,Rx

×

図12

図13

クロフ	タ 第2テージ800	第3ステージ900	nopを挿入した
	への命令	への命令	場合
1	mov Re,Rf		
	esli RERE		
2	zext Rh,Re	pop	mov Re,Rf
	add Rc,Ra	sali Re,Rf	пор
3	mov RaRb	nop	aall RERE
	add Rc,Rb	zextadd Rb,Rc,Ra	zext Rb,Ra
4	mov Rb.Rd	вор	add RcRa
	add Rd,Rc	add Ra,Rc,Rb	тор
ŏ	add Rc,Rd	mov Rb,Ed	mov Ra,Rb
		add Rb,Re,Re	лор
6	14 db./4 ar en å 1 db av ev e _l , pv avavamn	add Rc,Rd	add Rc,Rb
		***	пор
7	********		mov Rb,Re
	,		nop
8			add Rd Re
a 240 64 e u e 100 ma			nop
9			add Rc,Rd
		•	

[図15]

図15

図14

•

,
