

MILNOR INVARIANTS AND EDGE-HOMOTOPY CLASSIFICATION OF CLOVER LINKS

KODAI WADA

ABSTRACT. Given a clover link, we construct a bottom tangle by using a disk/band surface of the clover link. Since the Milnor number is already defined for a bottom tangle, we define the Milnor number for the clover link to be the Milnor number for the bottom tangle and show that for a clover link, if Milnor numbers of length $\leq k$ vanish, then Milnor numbers of length $\leq 2k+1$ are well-defined. Moreover we prove that two clover links whose Milnor numbers of length $\leq k$ vanish are equivalent up to edge-homotopy and C_{2k+1} -equivalence if and only if those Milnor numbers of length $\leq 2k+1$ are equal. In particular, we give an edge-homotopy classification of 3-clover links by their Milnor numbers of length ≤ 3 .

1. INTRODUCTION

In 1954, J. Milnor [11] introduced a concept of *link-homotopy* which is a weaker equivalence relation than link type, where link-homotopy is an equivalence relation generated by crossing changes on the same component. And he [11], [12] defined *Milnor $\overline{\mu}$ -invariants* which are given as follows. (See Subsection 2.3 for detail definitions.) Let L be an oriented ordered n -component link in S^3 . The *Milnor number* $\mu_L(I)$ is an integer determined by a finite sequence I of numbers in $\{1, 2, \dots, n\}$. Let $\Delta_L(I)$ be the greatest common divisor of $\mu_L(J)$'s, where J is obtained from proper subsequence of I by permuting cyclicly. The Milnor $\overline{\mu}$ -invariant $\overline{\mu}_L(I)$ is the residue class of $\mu_L(I)$ modulo $\Delta_L(I)$. The length of I is called the *length* of $\overline{\mu}_L(I)$ and denoted by $|I|$.

Milnor [11] gave a link-homotopy classification for 2- or 3-component links by Milnor $\overline{\mu}$ -invariants. In 1988, J. P. Levine [9] gave a link-homotopy classification for 4-component links. In 1990, N. Habegger and X. S. Lin [3] gave an algorithm which determines if two links with arbitrarily many components are link-homotopic. In [3], they defined Milnor numbers for string links which are similarly defined as links and proved that Milnor numbers are invariants for string links. Moreover they showed that Milnor numbers give a link-homotopy classification for string links with arbitrarily many components. We remark that Milnor numbers are complete link-homotopy invariants for string links, but Milnor $\overline{\mu}$ -invariants are not strong enough to classify for links up to link-homotopy.

An embedded graph in the 3-sphere S^3 is called a *spatial graph*. Let C_n be a graph consisting of n loops, each loop connected to a vertex by an edge. We call a spatial graph of C_n an *n -clover link* in S^3 [8]. Given an n -clover link c , we construct an n -component bottom tangle γ_{F_c} by using a *disk/band surface* F_c of c . In [8], Levine defined the Milnor number for a bottom tangle. Therefore we define the *Milnor number* μ_c for an n -clover link c to be the Milnor number $\mu_{\gamma_{F_c}}$. In [8], a bottom tangle is called a string link. (The name ‘bottom tangle’ follows K. Habiro [5].) In this paper, we mean that a string link is one defined in [3].

Date: June 15, 2015.

Key words and phrases. C_k -equivalence; Clover link; Edge-homotopy; Milnor invariant.

There is a one-to-one correspondence between the sets of string links and bottom tangles. (See subsection 2.1.) This correspondence naturally induces the one-to-one correspondence between the Milnor number for the bottom tangles and the Milnor number for the string links.

We remark that there are infinitely many choices of γ_{F_c} for c , and hence that, in general, μ_c is not an invariant for c . But under a certain condition, μ_c is well-defined as follows.

Theorem (Theorem 2.2). Let c be an n -clover link and l_c a link which is the disjoint union of loops of c . If $\overline{\mu}_{l_c}(J) = 0$ for any sequence J with $|J| \leq k$, then $\mu_c(I)$ is well-defined for any sequence I with $|I| \leq 2k + 1$.

In 1988, Levine [8] already defined Milnor numbers for *flat vertex* clover links and proved the same result as the theorem above, where a flat vertex spatial graph is a spatial graph Γ , for each vertex v of Γ , there exist a neighborhood B_v of v and a small flat plane P_v such that $\Gamma \cap B_v \subset P_v$ [15]. In this paper, we do not assume that clover links are flat vertex ones. And we consider that two clover links are *equivalent* if they are ambient isotopic.

By using Milnor numbers for clover links, we have the following results for an edge-homotopy classification of clover links, where edge-homotopy is an equivalence relation generated by crossing changes on the same spatial edge. This equivalence relation was introduced by K. Taniyama [14] as a generalization of link-homotopy.

Theorem (Theorem 3.3). Let c, c' be two n -clover links and $l_c, l_{c'}$ links which are disjoint unions of loops of c, c' respectively. Suppose that $\overline{\mu}_{l_c}(J) = \overline{\mu}_{l_{c'}}(J) = 0$ for any sequence J with $|J| \leq k$. Then c and c' are (edge-homotopy+ C_{2k+1})-equivalence if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq 2k + 1$, where (edge-homotopy+ C_{2k+1})-equivalence is an equivalence relation obtained by combining edge-homotopy and C_{2k+1} -equivalence which is defined by Habiro [4].

We also have the following proposition.

Proposition (Corollary 3.4). Let c, c' be two n -clover links and $l_c, l_{c'}$ links which are disjoint unions of loops of c, c' respectively. Suppose that $\overline{\mu}_{l_c}(J) = \overline{\mu}_{l_{c'}}(J) = 0$ for any sequence J with $|J| \leq n/2$. Then c and c' are edge-homotopic if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq n$.

It is the definition that the Milnor $\overline{\mu}$ -invariant of length 1 is zero. If $n = 3$, then the proposition above holds without the condition.

Corollary (Corollary 3.5). Two 3-clover links c and c' are edge-homotopic if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq 3$.

Remark 1.1. Let c be a clover link and l_c a link which is the disjoint union of loops of c . By the definition of μ_c in subsection 2.3, we note that $\mu_c(I) = 0$ for any non-repeated sequence I if and only if $\mu_{l_c}(I) = 0$ for I . And we also note that all Milnor numbers for a trivial clover link vanish, where a clover link is *trivial* if there is an embedded plane in S^3 which contains the clover link. It is shown by Milnor [11] that a link is link-homotopic to a trivial link if and only if the Milnor $\overline{\mu}$ -invariant vanishes for any non-repeated sequence. Hence, by the proposition above, we have that c is edge-homotopic to a trivial clover link if and only if l_c is link-homotopic to a trivial link.

Acknowledgements. I would like to express my best gratitude to Professor Akira Yasuhara for his helpful advice and continuous encouragement. I also would like to thank Professor Kokoro Tanaka for his useful comments.

2. MILNOR NUMBERS FOR CLOVER LINKS

In this section we will define Milnor numbers for clover links.

2.1. Tangles. An n -component *tangle* is a properly embedded disjoint union of n arcs in the 3-cube $[0, 1]^3$. An n -component tangle $sl = sl_1 \cup sl_2 \cup \dots \cup sl_n$ is an n -component *string link* if for each i ($= 1, 2, \dots, n$), the boundary $\partial sl_i = \{(\frac{2i-1}{2n+1}, \frac{1}{2}, 0), (\frac{2i-1}{2n+1}, \frac{1}{2}, 1)\} \subset \partial[0, 1]^3$. In particular, sl is *trivial* if for each i ($= 1, 2, \dots, n$), $sl_i = \{(\frac{2i-1}{2n+1}, \frac{1}{2})\} \times [0, 1]$ in $[0, 1]^3$.

Product of n -component string links is defined as follows. Let $sl = sl_1 \cup sl_2 \cup \dots \cup sl_n$ and $sl' = sl'_1 \cup sl'_2 \cup \dots \cup sl'_n$ be two string links in $[0, 1]^3$. Then the *product* $sl * sl' = (sl_1 * sl'_1) \cup (sl_2 * sl'_2) \cup \dots \cup (sl_n * sl'_n)$ of sl and sl' is a string link in $[0, 1]^3$ defined by

$$sl_i * sl'_i = h_0(sl_i) \cup h_1(sl'_i)$$

for $i = 1, 2, \dots, n$, where $h_0, h_1 : ([0, 1] \times [0, 1]) \times [0, 1] \rightarrow ([0, 1] \times [0, 1]) \times [0, 1]$ are embeddings defined by

$$h_0(x, t) = (x, \frac{1}{2}t) \text{ and } h_1(x, t) = (x, \frac{1}{2} + \frac{1}{2}t)$$

for $x \in ([0, 1] \times [0, 1])$ and $t \in [0, 1]$, see Figure 2.1.

FIGURE 2.1. A product of two string links sl and sl'

$\gamma = \gamma_1 \cup \dots \cup \gamma_i \cup \dots \cup \gamma_n$
FIGURE 2.2. A one-to-one correspondence between a string link and a bottom tangle

An n -component *bottom tangle* $\gamma = \gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_n$ defined by Levine [8] is a tangle with $\partial \gamma_i = \{(\frac{2i-1}{2n+1}, \frac{1}{2}, 0), (\frac{2i}{2n+1}, \frac{1}{2}, 0)\} \subset \partial[0, 1]^3$ for each i ($= 1, 2, \dots, n$).

We explain that there is a one-to-one correspondence between the sets of string links and bottom tangles in the following. We first describe a construction of obtaining a string link from a bottom tangle $\gamma = \gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_n$. For each i ($= 1, 2, \dots, n$), let p_i and q_i be the end points $(\frac{2i-1}{2n+1}, \frac{1}{2}, 0)$ and $(\frac{2i}{2n+1}, \frac{1}{2}, 0)$ of γ_i respectively, and let q'_i be the point $(\frac{2i-1}{2n+1}, \frac{1}{2}, 1)$. Let b_i be a line segment between

q_i and $(\frac{2i}{2n+1}, 0, 0)$, s_i a line segment between $(\frac{2i}{2n+1}, 0, 0)$ and $(\frac{2i}{2n+1}, 0, 1)$ and t_i a line segment between $(\frac{2i}{2n+1}, 0, 1)$ and q'_i , see Figure 2.2. By pushing the strands $\gamma_i \cup b_i \cup s_i \cup t_i$ into the interior of $[0, 1]^3$ with fixing the end points p_i and q'_i , we have a string link.

Conversely let $sl = sl_1 \cup sl_2 \cup \dots \cup sl_n$ be a string link with $\partial sl_i = \{p_i, q'_i\}$ for each $i (= 1, 2, \dots, n)$. By pushing the strands $sl_i \cup t_i \cup s_i \cup b_i$ into the interior of $[0, 1]^3$ with fixing the end points p_i and q_i , we have a bottom tangle.

2.2. A bottom tangle obtained from a disk/band surface of a clover link.

Let C_n be a graph consisting of n oriented loops e_1, e_2, \dots, e_n , each loop e_i connected to a vertex v by an edge f_i ($i = 1, 2, \dots, n$), see Figure 2.3. An n -clover link in S^3 is a spatial graph of C_n [8]. The each part of a clover link corresponding to e_i , f_i and v of C_n are called the *leaf*, *stem* and *root*, denoted by the same notations respectively.

FIGURE 2.3. The graph C_n

L. Kauffman, J. Simon, K. Wolcott and P. Zhao [7] defined disk/band surfaces for spatial graphs. For a spatial graph Γ , a *disk/band surface* F_Γ of Γ is a compact, oriented surface in S^3 such that Γ is a deformation retract of F_Γ contained in the interior of F_Γ . Note that any disk/band surface of a spatial graph is ambient isotopic to a surface constructed by putting a disk at each vertex of the spatial graph, connecting the disks with bands along the spatial edges. We remark that for a spatial graph, there are infinitely many disk/band surfaces up to ambient isotopy.

Given an n -clover link, we construct an n -component bottom tangle using a disk/band surface of the clover link as follows.

- (1) For an n -clover link c , let F_c be a disk/band surface of c and let D be a disk which contains the root. From now on, we may assume that the intersection $D \cap \bigcup_{i=1}^n f_i$ and orientations of the disks are as illustrated in Figure 2.4.
- (2) Let $N(D)$ be the regular neighborhood of D .
- (3) Since $S^3 \setminus N(D)$ is homeomorphic to the 3-ball, $F_c \setminus N(D)$ can be seen as a disjoint union of surfaces in the 3-ball. Hence $\partial F_c \setminus N(D)$ is a disjoint union of n -arcs and n -circles $\bigcup_{i=1}^n S_i^1$ in the 3-ball.
- (4) Since the 3-ball is homeomorphic to $[0, 1]^3$, we obtain an oriented ordered n -component bottom tangle γ_{F_c} from $(\partial F_c \setminus N(D)) \setminus \bigcup_{i=1}^n S_i^1$ as illustrated

in (3) and (4) of Figure 2.5. We call γ_{F_c} an n -component bottom tangle obtained from F_c .

FIGURE 2.4.

FIGURE 2.5. A method for obtaining a bottom tangle from a disk-band surface of a clover link

2.3. Milnor invariants. Let us briefly recall from [8] the definition of the Milnor number for a bottom tangle. Let $\gamma = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_n$ be an oriented ordered n -component bottom tangle in $[0, 1]^3$. Let G be the fundamental group of $[0, 1]^3 \setminus \gamma$ with a base point $p = (\frac{1}{2}, 0, 0)$ and G_q the q th lower central subgroup of G , namely $G_1 = G$, G_q is the subgroup generated by $\{a^{-1}b^{-1}ab \mid a \in G, b \in G_{q-1}\}$. Then the quotient group G/G_q is generated by $\alpha_1, \alpha_2, \dots, \alpha_n$ ([1], [13]), where α_i is the i th meridian of γ which is represented by the composite path $t_i m_i t_i^{-1}$ in the (x, y) -plane, m_i is a small counterclockwise circle about the point p_i and t_i is a straight line from p_i to m_i , see Figure 2.6. Then the i th longitude λ_i of γ is represented by $\alpha_1, \alpha_2, \dots, \alpha_n$ modulo G_q , where λ_i is represented by the composite path $t_i l_i t_i'^{-1}$, t'_i is a straight line from p to the boundary of a small neighborhood of q_i and l_i is a path on the boundary of a small regular neighborhood of γ_i . We assume that λ_i is trivial in G/G_2 . See Figure 2.7.

FIGURE 2.6. meridians

FIGURE 2.7. longitudes

We consider the Magnus expansion $E(\lambda_j)$ of λ_j . The Magnus expansion E is a homomorphism from a free group $\langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle$ to the formal power series ring in non-commutative variables X_1, X_2, \dots, X_n with integer coefficients defined as follows. $E(\alpha_i) = 1 + X_i$, $E(\alpha_i^{-1}) = 1 - X_i + X_i^2 - X_i^3 + \cdots$ ($i = 1, 2, \dots, n$).

For a sequence $I = i_1 i_2 \dots i_{k-1} j$ ($i_m \in \{1, 2, \dots, n\}$, $k \leq q$), we define the Milnor number $\mu_\gamma(I)$ to be the coefficient of $X_{i_1} X_{i_2} \cdots X_{i_{k-1}}$ in $E(\lambda_j)$ (we define $\mu_\gamma(j) = 0$), which is an invariant [8]. (In [8], the set of λ_j 's, without taking the Magnus expansion, is called the Milnor $\overline{\mu}$ -invariant.) For a bottom tangle $\gamma = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_n$, an oriented ordered link $L(\gamma) = L_1 \cup L_2 \cup \cdots \cup L_n$ in S^3 can be defined by $L_i = \gamma_i \cup a_i$, where a_i is a line segment connecting p_i and q_i , see Figure 2.8.

FIGURE 2.8.

We call $L(\gamma)$ the *closure* of γ . On the other hand, for any link L in S^3 , there is a bottom tangle γ_L such that the closure of γ_L is equal to L . So we define the Milnor

number of L to be the Milnor number of γ_L . Let $\Delta_L(I)$ be the greatest common divisor of $\mu_L(J)$'s, where J is obtained from proper subsequence of I by permuting cyclicly. The *Milnor $\overline{\mu}$ -invariant* $\overline{\mu}_L(I)$ is the residue class of $\mu_L(I)$ modulo $\Delta_L(I)$. We note that for a sequence I , if we have $\Delta_L(I) = 0$, then the Milnor $\overline{\mu}$ -invariant $\overline{\mu}_L(I)$ is equal to the Milnor number $\mu_{\gamma_L}(I)$. Now we define the Milnor number for clover links.

Definition 2.1. Let c be an n -clover link and F_c a disk/band surface of c . Let γ_{F_c} be the n -component bottom tangle obtained from F_c . For a sequence I , the *Milnor number* $\mu_c(I)$ for c is defined to be the Milnor number $\mu_{\gamma_{F_c}}(I)$.

While $\mu_c(I)$ depends on a choice of F_c , we have the following result.

Theorem 2.2. Let c be an n -clover link and l_c a link which is the disjoint union of leaves of c . If $\overline{\mu}_{l_c}(J) = 0$ for any sequence J with $|J| \leq k$, then $\mu_c(I)$ is well-defined for any sequence I with $|I| \leq 2k + 1$.

Remark 2.3. Levine [8] proved the same result as Theorem 2.2 for flat vertex clover links under flatly isotopy. See Subsection 2.4 for the definition of a flatly isotopy.

2.4. Proof of Theorem 2.2. In order to prove Theorem 2.2, we need two Lemmas 2.4 and 2.6.

Two flat vertex graphs Γ and Γ' are *flatly isotopic* if there exists an isotopy $h_t : S^3 \rightarrow S^3 (t \in [0, 1])$ such that $h_0 = id$, $h_1(\Gamma) = \Gamma'$ and $h_t(\Gamma)$ is a flat vertex graph for each $t \in [0, 1]$. We call such a isotopy h_t a *flatly isotopy* [15].

An n -component braid $\beta = \beta_1 \cup \beta_2 \cup \dots \cup \beta_n$ is a tangle in $[0, 1]^3$ such that for each t ($0 \leq t \leq 1$), $\bigcup_{i=1}^n \beta_i$ intersects $[0, 1] \times [0, 1] \times \{t\}$ transversely at n points.

In particular, β is a *pure braid* if for any i ($= 1, 2, \dots, n$), the boundary $\partial \beta_i = \{(x, \frac{1}{2}, 0), (x, \frac{1}{2}, 1)\} \subset \partial [0, 1]^3$ for $x \in [0, 1]$.

Lemma 2.4. If two n -clover links c and c' are ambient isotopic to each other, then there exists an n -clover link c'' such that c'' is obtained from c by a single B-move and c'' is flatly isotopic to c' , where a B-move is a local move as illustrated in Figure 2.9.

FIGURE 2.9. A B-move

Proof. Consider regular diagrams \tilde{c}, \tilde{c}' of c, c' respectively. Since c and c' are ambient isotopic to each other, \tilde{c} and \tilde{c}' are related by a finite sequence of Reidemeister moves (i) \sim (v) as illustrated in Figure 2.10 [6].

Moves excepting move (iv) are realized by flatly isotopies. Move (iv) consists of two kinds transformations. One increases a crossing, and the other decreases a

FIGURE 2.10. Reidemeister moves (i)~(v)

crossing. We call those two kinds of transformations move (iv)⁺ and move (iv)⁻ respectively. It is not hard to see that a move (iv)⁻ is realized by moves (iv)⁺ and (ii). Hence moves (i) ~ (v) are realized by moves (i) ~ (iii), (v) and (iv)⁺.

We consider a move (iv)⁺. If we apply a move (iv)⁺ to a regular diagram \tilde{d} of an n -clover link, then we obtain a regular diagram either (a) or (b) as illustrated in Figure 2.11. The diagram (a) is clearly obtained from \tilde{d} by a single \tilde{B} -move, where \tilde{B} -move is a local move of regular diagrams which correspond to B-move. The diagram (b) is transformed into a diagram (b') as illustrated in Figure 2.12 by a finite sequence of moves (i)~(iii) and (v). So the diagram (b) is obtained from \tilde{d} by moves (i)~(iii), (v) and a \tilde{B} -moves. Thus a move (iv)⁺ is realized by moves (i)~(iii), (v) and a \tilde{B} -move. It follows that moves (i) ~ (v) are realized by moves (i) ~ (iii), (v) and \tilde{B} -moves.

Applying a move (v), subsequently a \tilde{B} -move can be realized by applying a \tilde{B} -move, subsequently a move (v) and several moves (ii) and (iii), see Figure 2.13. It is clear that applying each move (*) (* = i, ii, iii), subsequently a \tilde{B} -move can be realized by applying \tilde{B} -moves, subsequently a move (*). So applying several moves (i)~(iii) and (v), subsequently a \tilde{B} -move can be realized by applying a \tilde{B} -move, subsequently several moves (i)~(iii) and (v).

FIGURE 2.11. Regular diagrams obtained by applying a move (iv)⁺ to a regular diagram \tilde{d}

FIGURE 2.12.

FIGURE 2.13.

Therefore there exists a regular diagram \tilde{c}'' of an n -clover link c'' such that \tilde{c}'' is obtained from \tilde{c} by a finite sequence of \tilde{B} -moves and \tilde{c}' is obtained from \tilde{c}'' by a finite sequence of moves (i)~(iii) and (v). We note that a finite sequence of \tilde{B} -moves is realized by a single \tilde{B} -move. This completes the proof. \square

Since we suppose that the disk parts of any disk/band surfaces for a clover link are as illustrated in Figure 2.4, by Lemma 2.4, we immediately have the following Proposition 2.5.

Proposition 2.5. For an n -clover link c , any two disk/band surfaces F_c and F'_c are transformed into each other by adding full-twists to bands (Figure 2.14 (a)) and a single move illustrated in Figure 2.14 (b).

FIGURE 2.14. Two local moves of disk-band surfaces

FIGURE 2.15.

Here we introduce a SL-move which is a transformation of an n -component bottom tangle $\gamma = \gamma_1 \cup \gamma_2 \cup \dots \cup \gamma_n$ in $[0, 1]^3$

- (1) Let $u = u_1 \cup u_2 \cup \dots \cup u_n$ be an oriented ordered n -component string link in $[0, 1]^3$. For each i ($= 1, 2, \dots, n$), we consider two arcs u_{i1} and u_{i2} which are parallel to the i th component u_i of u with orientations as illustrated in Figure 2.15. Let $u' = (u_{11} \cup u_{12}) \cup \dots \cup (u_{n1} \cup u_{n2})$. We may assume that for each i ($= 1, 2, \dots, n$), $\partial u_{i1} = \{(\frac{2i-1}{2n+1}, \frac{1}{2}, 0), (\frac{2i-1}{2n+1}, \frac{1}{2}, 1)\}$ and $\partial u_{i2} = \{(\frac{2i}{2n+1}, \frac{1}{2}, 0), (\frac{2i}{2n+1}, \frac{1}{2}, 1)\}$.
- (2) Let $\gamma' = \gamma'_1 \cup \gamma'_2 \cup \dots \cup \gamma'_n$ be an n -component bottom tangle in $[0, 1]^3$ defined by

$$\gamma'_i = h_0(u_{i1} \cup u_{i2}) \cup h_1(\gamma_i)$$

for $i = 1, 2, \dots, n$, where $h_0, h_1 : ([0, 1] \times [0, 1]) \times [0, 1] \rightarrow ([0, 1] \times [0, 1]) \times [0, 1]$ are embeddings defined by

$$h_0(x, t) = (x, \frac{1}{2}t) \text{ and } h_1(x, t) = (x, \frac{1}{2} + \frac{1}{2}t)$$

for $x \in ([0, 1] \times [0, 1])$ and $t \in [0, 1]$.

We say that γ' is obtained from γ by a SL-move. We note that if u is trivial, a SL-move is just adding full-twists or nothing. A SL-move is determined by a String Link and a number of full-twists; this explains ‘SL’ in SL-move. For example, see Figure 2.16

FIGURE 2.16. An example of a SL-move

The following lemma, which is not directly mentioned, can be proved by combining some results in [8]. In the following we directly prove by calculus of Milnor numbers.

Lemma 2.6. [8] Let γ be an n -component bottom tangle and γ' a bottom tangle obtained from γ by a SL-move. If $\mu_\gamma(J) = \mu_{\gamma'}(J) = 0$ for any sequence J with $|J| \leq k$, then $\mu_\gamma(I) = \mu_{\gamma'}(I)$ for any sequence I with $|I| \leq 2k + 1$.

Proof. Denote respectively by α_i, λ_i (resp. α'_i, λ'_i) the i th meridian and i th longitude of γ (resp. γ') for $1 \leq i \leq n$. Let E_X (resp. E_Y) be the Magnus expansion in non-commutative variables X_1, \dots, X_n (resp. Y_1, \dots, Y_n) obtained by replacing α_j by $1 + X_j$ (resp. α'_j by $1 + Y_j$) and replacing α_j^{-1} by $1 - X_j + X_j^2 - X_j^3 + \dots$ (resp. α'^{-1}_j by $1 - Y_j + Y_j^2 - Y_j^3 + \dots$) for $1 \leq j \leq n$. Let u_i be the i th longitude of a string link which gives the SL-move, see Figure 2.17.

Then we have $\alpha_i = u_i^{-1} \alpha'_i u_i$ and $\lambda'_i = u_i \lambda_i u_i^{-1}$, where α_i and λ_i are assumed to be elements of $\pi_1([0, 1]^3 \setminus \gamma')$. Let $\beta_i = [\lambda'_i, \alpha'_i]$ as illustrated in Figure 2.17. By

FIGURE 2.17.

the assumption, Milnor numbers for γ and γ' of length $\leq k$ vanish, so $E_X(\lambda_i)$ and $E_Y(\lambda'_i)$ can be written respectively in the form

$$E_X(\lambda_i) = 1 + f_i(X) \text{ and } E_Y(\lambda'_i) = 1 + f'_i(Y),$$

where $f_i(X)$ and $f'_i(Y)$ mean the terms of degree $\geq k$.

First, we observe $E_Y(\alpha_i)$. Let $E_Y(\lambda'^{-1}) = 1 + \overline{f'_i}(Y)$, where $\overline{f'_i}(Y)$ is the terms of degree $\geq k$. Note that

$$E_Y(\lambda'^{-1})E_Y(\lambda'_i) = (1 + \overline{f'_i}(Y))(1 + f'_i(Y)) = 1.$$

It follows that

$$\begin{aligned} E_Y(\beta_i) &= E_Y([\lambda'_i, \alpha'_i]) \\ &= E_Y(\lambda'^{-1}\alpha'^{-1}_i\lambda'_i\alpha'_i) \\ &= (1 + \overline{f'_i}(Y))E_Y(\alpha'^{-1}_i)(1 + f'_i(Y))E_Y(\alpha'_i) \\ &= (1 + \overline{f'_i}(Y))(1 + f'_i(Y) + \mathcal{O}(k+1)) \\ &= 1 + \mathcal{O}(k+1), \end{aligned}$$

where $\mathcal{O}(m)$ means the terms of degree $\geq m$. Since u_i is represented by a product of the conjugates of β_i , we have $E_Y(u_i) = 1 + \mathcal{O}(k+1)$ and set

$$E_Y(u_i) = 1 + g_i(Y) \text{ and } E_Y(u_i^{-1}) = 1 + \overline{g_i}(Y),$$

where $g_i(Y)$ and $\overline{g_i}(Y)$ mean the terms of degree $\geq k+1$. As $\alpha_i = u_i^{-1}\alpha'_i u_i$ we have

$$\begin{aligned} E_Y(\alpha_i) &= E_Y(u_i^{-1}\alpha'_i u_i) \\ &= (1 + \overline{g_i}(Y))(1 + Y_i)(1 + g_i(Y)) \\ &= 1 + (1 + \overline{g_i}(Y))Y_i(1 + g_i(Y)) \\ &= 1 + Y_i + \mathcal{O}(k+2). \end{aligned}$$

Hence

$$E_Y(\alpha_i) = E_Y(\alpha'_i) + \mathcal{O}(k+2).$$

Now we observe $E_Y(\lambda'_i) - (1 + f_i(Y))$. Since λ_i is represented by a word of $\alpha_1^{\pm 1}, \alpha_2^{\pm 1}, \dots, \alpha_n^{\pm 1}$, then $E_Y(\lambda_i)$ is obtained from the word by substituting $\alpha_i^{\pm 1}$ for $E_Y(\alpha_i^{\pm 1}) = E_Y(\alpha'^{\pm 1}_i) + \mathcal{O}(k+2)$. Therefore

$$E_Y(\lambda_i) - (1 + f_i(Y)) = \mathcal{O}(k + (k+2) - 1) = \mathcal{O}(2k+1).$$

It follows that

$$\begin{aligned} E_Y(\lambda'_i) &= E_Y(u_i \lambda_i u_i^{-1}) \\ &= (1 + g_i(Y))(1 + f_i(Y) + \mathcal{O}(2k+1))(1 + \overline{g_i}(Y)) \\ &= 1 + f_i(Y) + \mathcal{O}(2k+1). \end{aligned}$$

This completes the proof. \square

Remark 2.7. Let γ, γ' be oriented ordered 4-component bottom tangles illustrated in Figure 2.18. Note that γ' is obtained from γ by a SL-move. By the definition, $\mu_\gamma(j) = \mu_{\gamma'}(j) = 0$ for any sequence j with $|j| = 1 (= k)$. By Lemma 2.6, $\mu_\gamma(J) = \mu_{\gamma'}(J)$ for any sequence J with $|J| \leq 3 (= 2k + 1)$. However, by easy calculus, $\mu_\gamma(1234) = 0 \neq 1 = \mu_{\gamma'}(1234)$ for the sequence 1234 of the length 4 ($= 2k + 2$). Therefore Lemma 2.6 (Theorem 2.2) generally dose not hold in the case of the length $2k + 2$ or more.

FIGURE 2.18. An example of Lemma 2.6 (Theorem 2.2) dose not hold in the case of the length $2k + 2$ or more

By using the above results, we prove Theorem 2.2.

Proof of Theorem 2.2. By Proposition 2.5, any two disk/band surfaces F_c and F'_c of an n -component clover link c are transformed into each other by the moves (a) and (b) illustrated in Figure 2.14. So two bottom tangles γ_{F_c} and $\gamma_{F'_c}$ are transformed into each other by a SL-move. Since the both closures $L(\gamma_{F_c})$ and $L(\gamma_{F'_c})$ are ambient isotopic to l_c and the hypothesis of Lemma 2.6,

$$0 = \bar{\mu}_{l_c}(J) = \mu_{\gamma_{F_c}}(J) = \mu_{\gamma_{F'_c}}(J)$$

for any sequence J with $|J| \leq k$. Hence by Lemma 2.6, $\mu_{\gamma_{F_c}}(I) = \mu_{\gamma_{F'_c}}(I)$ for any sequence I with $|I| \leq 2k + 1$. This completes the proof. \square

3. EDGE-HOMOTOPY FOR CLOVER LINKS

3.1. Claspers. Let us briefly recall from [4] the basic notations of clasper theory. In this paper, we essentially only need the notation of C_k -tree. For a general definition of claspers, we refer the reader to [4].

Definition 3.1. Let L be a (clover) link in S^3 (resp. a tangle in $[0, 1]^3$). An embedded disk T in S^3 (resp. $[0, 1]^3$) is called a *tree clasper* for L if it satisfies the following (1), (2) and (3):

- (1) T is decomposed into disks and bands, called *edges*, each of which connects two distinct disks.
- (2) The disks have either 1 or 3 incident edges, called *disk-leaves* or *nodes* respectively.
- (3) L intersects T transversely and the intersections are contained in the union of the interior of the disk-leaves.

The *degree* of a tree clasper is the number of the disk-leaves minus 1. (In [4], a tree

clasper is called a *strict tree clasper*.) A degree k tree clasper is called a C_k -tree. A C_k -tree is *simple* if each disk-leaf intersects L at one point.

We will make use of the drawing convention for claspers of [4, Fig. 4]. Given a C_k -tree T for L , there is a procedure to construct a framed link $\gamma(T)$ in a regular neighborhood of T . *Surgery along T* means surgery along $\gamma(T)$. Since surgery along $\gamma(T)$ preserves the ambient space, surgery along the C_k -tree T can be regarded as a local move on L in S^3 (resp. $[0, 1]^3$). We say that the *resulting one L_T in S^3 (resp. $[0, 1]^3$) is obtained from L by surgery along T* . Similarly, for a disjoint union of trees $T_1 \cup \dots \cup T_m$, we can define $L_{T_1 \cup \dots \cup T_m}$. Two (string) links (resp. a clover link) are C_k -equivalence if they are transformed into each other by surgery along C_k -trees.

The relation between C_k -equivalence and Milnor invariants is known as follows.

Theorem 3.2. [4, Theorem 7.2] *Milnor invariants of length $\leq k$ for (string) links are invariants of C_k -equivalence.*

A C_k -tree T for a (string) link (resp. a clover link) L is a *self C_k -tree* if all disk-leaves of T intersect the same component (resp. the same spatial edge) of L . The *self C_k -equivalence* is an equivalence relation generated by surgery along self C_k -trees. We remark that self C_1 -equivalence for a (string) link (resp. a clover link) is the same relation as link-homotopy (resp. edge-homotopy).

3.2. Edge-homotopy for clover links. The (edge-homotopy+ C_k)-equivalence is an equivalence relation obtained by combining edge-homotopy and C_k -equivalence.

Theorem 3.3. *Let c, c' be two n -clover links and $l_c, l_{c'}$ links which are disjoint unions of leaves of c, c' respectively. Suppose that $\bar{\mu}_{l_c}(J) = \bar{\mu}_{l_{c'}}(J) = 0$ for any sequence J with $|J| \leq k$. Then c and c' are (edge-homotopy+ C_{2k+1})-equivalence if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq 2k + 1$.*

Let c be a clover link and l_c a link which is the disjoint union of leaves of c . Since the union of stems of c and the root is contractible, we may assume that a C_k -tree T for c satisfies $T \cap c = T \cap l_c$. By the zip construction [4] for T , T becomes a disjoint union of simple C_k -trees for l_c . Combining this and [2, Lemma 1.2], for $n \leq m$, if two n -clover links are C_m -equivalence, then they are self C_1 -equivalence. Hence by Theorem 3.3, we have the following corollary.

Corollary 3.4. *Let c, c' be two n -clover links and $l_c, l_{c'}$ links which are disjoint unions of leaves of c, c' respectively. Suppose that $\bar{\mu}_{l_c}(J) = \bar{\mu}_{l_{c'}}(J) = 0$ for any sequence J with $|J| \leq n/2$. Then c and c' are edge-homotopic if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq n$.*

By the definition, the Milnor $\bar{\mu}$ -invariant of length 1 is always zero. If $n = 3$, then Corollary 3.4 is not necessary the condition.

Corollary 3.5. *Two 3-clover links c and c' are edge-homotopic if and only if $\mu_c(I) = \mu_{c'}(I)$ for any non-repeated sequence I with $|I| \leq 3$.*

Example 3.6. Let c and c' are two n -clover links as described in Figure 3.1. Let $l_c, l_{c'}$ be links that are disjoint unions of leaves of c, c' respectively. It is clear that l_c and $l_{c'}$ are ambient isotopic. However, c and c' are not edge-homotopic by Corollary 3.4 because $\mu_c(123) = 1 \neq 0 = \mu_{c'}(123)$.

4. PROOF OF THEOREM 3.3

In order to prove Theorem 3.3, we need the following lemma and a theorem given by [16].

FIGURE 3.1. An example of two clover links which are not edge-homotopic to each other

Lemma 4.1. *Let c, c' be two clover links. Then c and c' are (edge-homotopy+ C_k)-equivalence if and only if there exist disk/band surfaces $F_c, F_{c'}$ of c, c' respectively such that the bottom tangles γ_{F_c} and $\gamma_{F_{c'}}$ are (link-homotopy+ C_k)-equivalence.*

Proof. We first prove the sufficient condition. By the assumption, there exists a disjoint union G of self C_1 -trees and C_k -trees for c such that $c' = c_G$. For c, c' , let $F_c, F_{c'}$ be disk/band surfaces of c, c' respectively. We may assume that $F_c \cap G$ is contained in the interior of G . Then we have $\partial F_{c'} = (\partial F_c)_G$ if necessary adding full-twists to bands of F_c . Therefore $\gamma_{F_{c'}} = (\gamma_{F_c})_G$ and G consists of self C_1 -trees and C_k -trees for γ_{F_c} .

We next prove the necessary condition. Let S be the union of stems and the root of c , and let $N(S)$ be the regular neighborhood of S . Then we may assume that S is equal to the union of stems and the root of c' and $c \setminus N(S) = \gamma_{F_c}$. Similarly $c' \setminus N(S) = \gamma_{F_{c'}}$. By the assumption, γ_{F_c} and $\gamma_{F_{c'}}$ are (link-homotopy+ C_k)-equivalence. This completes the proof. \square

Let $\pi : \{1, \dots, k\} \rightarrow \{1, \dots, n\}$ ($k \leq n$) be an injection such that $\pi(1) < \pi(i) < \pi(k)$ ($i \in \{2, \dots, k-1\}$), and \mathcal{F}_k be the set of such injections. For $\pi \in \mathcal{F}_k$, let T_π and \overline{T}_π be simple C_{k-1} -trees as illustrated in Figure 4.1, and set V_π (resp. V_π^{-1}) be a string link obtained from the n -component trivial string link by surgery along T_π (resp. \overline{T}_π). Here, Figure 4.1 are the images of homeomorphisms from the neighborhood of T_π and \overline{T}_π to B^3 .

FIGURE 4.1.

Theorem 4.2. [16, Theorem 4.3]. Let sl be an n -component string link. Then sl is link-homotopic to $sl_1 * sl_2 * \dots * sl_{n-1}$, where

$$\begin{aligned} sl_i &= \prod_{\pi \in \mathcal{F}_{i+1}} V_\pi^{x_\pi}, \\ x_\pi &= \begin{cases} \mu_{sl}(\pi(1)\pi(2)) & (i = 1), \\ \mu_{sl}(\pi(1) \dots \pi(i+1)) - \mu_{sl_1 * \dots * sl_{i-1}}(\pi(1) \dots \pi(i+1)) & (i \geq 2). \end{cases} \end{aligned}$$

By using the results above, we prove Theorem 3.3.

Proof of Theorem 3.3. We first prove the sufficient condition. Since c and c' are (edge-homotopy + C_{2k+1})-equivalence, by Lemma 4.1, there exist disk/band surfaces $F_c, F_{c'}$ of c, c' respectively such that the n -component bottom tangles γ_{F_c} and $\gamma_{F_{c'}}$ are (link-homotopy + C_{2k+1})-equivalence. Since the Milnor number with a non-repeated sequence is an invariant of link-homotopy [3], by Theorem 3.2, $\mu_c(I) = \mu_{c'}(I)$ with a non-repeated sequence I with $|I| \leq 2k+1$.

Let us prove the necessary condition. Let $F_c, F_{c'}$ be disk/band surfaces of c, c' respectively and let be the $\gamma_{F_c}, \gamma_{F_{c'}}$ be n -component bottom tangles. By Theorem 4.2, two string links which correspond to γ_{F_c} and $\gamma_{F_{c'}}$ are link-homotopic to $sl_1 * sl_2 * \dots * sl_{n-1}$ and $sl'_1 * sl'_2 * \dots * sl'_{n-1}$ respectively. Both sl_i and sl'_i are C_i -equivalent to an n -component trivial string link. Set $m = \min\{n, 2k+1\}$, by Theorem 4.2, the two string links which correspond to γ_{F_c} and $\gamma_{F_{c'}}$ are (link-homotopy + C_{2k+1}) to $sl_1 * sl_2 * \dots * sl_{m-1}$ and $sl'_1 * sl'_2 * \dots * sl'_{m-1}$ respectively. We recall that if $n \leq 2k+1$, C_{2k+1} -equivalence implies link-homotopy. By the assumption, since $\mu_{\gamma_{F_c}}(I) = \mu_{\gamma_{F_{c'}}}(I)$ for any non-repeated sequence I with $|I| \leq 2k+1$, we have $sl_i = sl'_i$ for each i ($\leq m-1$). This implies γ_{F_c} and $\gamma_{F_{c'}}$ are (link-homotopy + C_{2k+1})-equivalence. Lemma 4.1 completes the proof. \square

REFERENCES

- [1] K. T. Chen, *Commutator calculus and link invariants*, Proc. Amer. Math. Soc. 3, (1952). 44–55.
- [2] T. Fleming; A. Yasuhara, *Milnor's invariants and self C_k -equivalence*, Proc. Amer. Math. Soc. 137 (2009), 761–770.
- [3] N. Habegger; X. S. Lin, *The classification of links up to link-homotopy*, J. Amer. Math. Soc. 3 (1990), 389–419.
- [4] K. Habiro, *Claspers and finite type invariants of links*, Geom. Topol. 4 (2000), 1–83.
- [5] K. Habiro, *Bottom tangles and universal invariants*, Algebr. Geom. Topol. 6 (2006), 1113–1214.
- [6] L. Kauffman; *Invariants of graphs in three-space*, Trans. Amer. Math. Soc. 311 (1989), 697–710.
- [7] L. Kauffman; J. Simon; K. Wolcott; P. Zhao, *Invariants of theta-curves and other graphs in 3-space*, Topology Appl. 49 (1993), 193–216.
- [8] J. P. Levine, *The $\overline{\mu}$ -invariants of based links*, Differential topology (Siegen, 1987), 87–103, Lecture Notes in Math., 1350, Springer, Berlin, (1988).
- [9] J. P. Levine, *An approach to homotopy classification of links*, Trans. Amer. Math. Soc. 306 (1988), 361–387.
- [10] V. Magnus; A. Karras; D. Solitar, *Combinatorial Group Theory*, Wiley, New York, London, Sydney, 1966.
- [11] J. Milnor, *Link groups*, Ann. of Math. (2) 59, (1954). 177–195.
- [12] J. Milnor, *Isotopy of links. Algebraic geometry and topology*, A symposium in honor of S. Lefschetz, pp. 280–306. Princeton University Press, Princeton, N. J., (1957).
- [13] J. Stallings, *Homology and central series of groups*, J. Algebra 2 (1965), 170–181.
- [14] K. Taniyama, *Cobordism, homotopy and homology of graphs in \mathbf{R}^3* , Topology 33 (1994), 509–523.
- [15] S. Yamada, *An invariant of spatial graphs*, J. Graph Theory 13 (1989), 537–551.
- [16] A. Yasuhara, *Self delta-equivalence for links whose Milnor's isotopy invariants vanish*, Trans. Amer. Math. Soc. 361 (2009), 4721–4749.

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY, NISHI-WASEDA
1-6-1, SHINJUKU-KU, TOKYO, 169-8050, JAPAN
E-mail address: k.wada@akane.waseda.jp