Force Field (Part 01)

- How to describe a molecules?

P. SATPATI

Classical description of atom

Assumption:

- > Smallest unit is "atom" (NO INTERNAL STRUCTURE)
- > Atoms are spheres of various "mass, charge, and size"

Essential features of interactions between simple neutral atoms (Say, Argon atoms)

Argon (Ar) Atomic mass = **39.95 u**

Argon is neutral but it is possible to liquify argon.

- Argon must attract each other.
- How to mimic interaction between two argon atoms?

r = *Interatomic distance* (nm, Å)

https://en.wikibooks.org/wiki/Molecular_Simulation/The_Lennard-Jones_]

$$\mathcal{V}\left(r
ight)=4arepsilon\left[\left(rac{\sigma}{r}
ight)^{12}-\left(rac{\sigma}{r}
ight)^{6}
ight]=arepsilon\left[\left(rac{R_{min}}{r}
ight)^{12}-2\left(rac{R_{min}}{r}
ight)^{6}
ight]$$

$$R_{min} = \sqrt[6]{2}\sigma$$

Unit:

ε: Energy (kcal/mole, kJ/mol)

R_{min}: Distance (Å, nm)

https://en.wikibooks.org/wiki/Molecular_Simulation/The_Lennard-Jones_Potential

Interesting Facts about LJ-potential

$$\mathcal{V}\left(r
ight)=4arepsilon\left[\left(rac{\sigma}{r}
ight)^{12}-\left(rac{\sigma}{r}
ight)^{6}
ight]=arepsilon\left[\left(rac{R_{min}}{r}
ight)^{12}-2\left(rac{R_{min}}{r}
ight)^{6}
ight]$$

- > Always attractive at large distances (**Independent of the nature of the atom**).
- \geq (1/r⁶) has strong physical basis (Induce-dipole : Induced-dipole interaction)
- > $(1/r^{12})$ has NO STRONG THEORETICAL BASIS. Reality exponential. Fitting repulsion as $(1/r^6)^2 = (1/r^{12})$ has computational advantage.
- > Short Range

Given (ϵ and R_{min}) \rightarrow Possible to reproduce Argon...Argon interaction

* Choose (E and R_{min}) to reproduce experiment

Parameters

Essential features of interactions between Charged atoms (Say, Na⁺)

Atoms has charges.

Coulomb's Law

Electrostatic energy

$$U_e = k \frac{q_1 q_2}{r}$$

Facts Coulomb potential

➤ Long-Range

➤ Attractive or repulsion (Sign of q1, q2)

 \triangleright Not valid at r = 0 (LJ will take care).

q1, q2

Parameters

Non-bonded energy terms (electrostatics and Lenard-Jones)

A molecule (internal structure) – Energy Function?

$$F \propto -x$$

$$=) F = -k_b x$$

$$=)-(\frac{dV}{dx})=-k_b x$$

$$=) \int_0^x dV = \int_0^x k_b x dx$$

$$=) V(x) - V(0) = \frac{1}{2} k_b x^2$$

=)
$$V(x) - V(0) = \frac{1}{2} k_b x^2$$

=) $V(x) = V(0) + \frac{1}{2} k_b x^2$

$$X = (r - r_0)$$

$$V(x) = \frac{1}{2} k_b x^2$$

=)
$$V(r - r_0) = \frac{1}{2} k_b (r - r_0)^2$$

 r_0, k_b

Parameters

Interesting Facts about Harmonic potential

- \triangleright Good model only around $r = r_0$
- ➤ No bond breaking (No chemistry)

Can we do better?

- 1. Quartic potential (x^4, x^3, x^2)
- 2. Morse potential

$$U(x)=D [1-exp(\alpha (x-x0))]^2$$

https://www.researchgate.net/publication/264913317_Free_Energy_Simulations_of_Complex_Biological_Systems_at_Constant_pH

$$V = \frac{1}{2} k_b (r - r_0)^2$$

$$K_b = 2 V/(r - r_0)^2$$

$$= Energy/(distance)^2$$

Unit:
 k_b: (kcal/mole)/(Å²)
 or
 (kJ/mole)/(nm²)

A molecule (internal structure) – Energy Function?

A molecule (internal structure) – Energy Function?

Consecutive four atoms connection with rotatable bonds $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4)$.

- Rotation around 2__3 single bond possible
- Multiple possible conformation (relative orientation of 1 &4)
- How the energy varies?

Ethane (C_2H_6)

on back carbon

The Newmen Ducinction of Ethans

Dihedral Angle (Φ)

Angle between (1,2,3) & (2,3,4)

Graphing the rotational barrier in ethane (C₂H₆) as a function of dihedral angle

The barrier to rotation in ethane is about 3.0 kcal/mol.

Graphing the rotational barrier in ethane (C₂H₆) as a function of dihedral angle

The barrier to rotation in ethane is about 3.0 kcal/mol.

synperiplanar synperiplanar E (kcal/mol) eclipsed eclipsed 5 kcal/mol 3.6 kcal/mol 0.88 kcal/mol 300° 120° 240° 180° 360° gauche

Complicated potential Energy curve?

Use combination of cosine function.

https://www.sciencedirect.com/topics/chemistry/torsional-potential

Next: How to describe a molecules?... continue