STA2002: Probability and Statistics II Confidence Interval I

Fangda Song and Ka Wai Tseng

School of Data Science, CUHK(SZ)

September, 2025

Introduction

In this lecture we will introduce the technique of **confidence interval (CI)**, which is an important way to construct interval estimators for parameters.

We will discuss confidence intervals for means:

- The observations are normally distributed or not
- The variance of the observations is known or unknown

Suggested reading: Chapter 7.1 of the textbook.

Confidence Interval

Definition (Confidence Interval)

Let X_1, X_2, \ldots, X_n be a sample on a random variable X, where X has PDF $f(x;\theta)$, $\theta \in \Omega$. Let $L = L(X_1,\ldots,X_n)$ and $U = U(X_1,\ldots,X_n)$ be two statistics. Given a level $\alpha \in (0,1)$, we say (L,U) is a $(1-\alpha)100\%$ confidence interval for θ if

$$1-\alpha=P_{\theta}[\theta\in(L,U)].$$

That is, the probability that the interval includes θ is $1 - \alpha$, which is called the **confidence coefficient** of the interval.

CI for mean μ

We consider an i.i.d. random sample X_1, \ldots, X_n of size n for estimating the mean $\mu = \mathbb{E}(X_1)$ under the following four cases:

- $X_i \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2), \sigma^2 \text{ known}$
- ② X_i i.i.d. with mean μ , variance $\sigma^2 = \text{Var}(X_1)$, σ^2 known
- $X_i \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2), \sigma^2 \text{ unknown}$
- **4** X_i i.i.d. with mean μ , variance σ^2 , σ^2 unknown

Case 1: Normal, σ^2 Known

Motivation

Suppose $X_i \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ and σ^2 is known. Please show that the probability that μ belongs to the random interval

$$[\bar{X} - \frac{\sigma \cdot z_{\alpha/2}}{\sqrt{n}}, \bar{X} + \frac{\sigma \cdot z_{\alpha/2}}{\sqrt{n}}]$$

is $1 - \alpha$, where $\Pr(Z > z_{\alpha/2}) = \alpha/2$ for $Z \sim N(0, 1)$.

Based on the property of normal random variables, we have

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1).$$

Then,

$$\Pr\left(-z_{\alpha/2} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

$$\Rightarrow \Pr\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha.$$

Case 1: Normal, σ^2 Known

• Once the sample is observed, we can compute the sample mean \bar{x} . The computed interval

$$\bar{x} \pm \frac{\sigma \cdot z_{\alpha/2}}{\sqrt{n}} \text{ or } \left[\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

is called a $100(1-\alpha)\%$ (two-sided) **confidence interval (CI)** of μ .

- Properties:
 - CI is centered at \bar{x} , a point estimate of μ
 - Width: $2z_{\alpha/2}\sigma/\sqrt{n}$
 - Larger $n \Rightarrow$ shorter CI
 - Larger $\alpha \Rightarrow$ smaller $z_{\alpha/2} \Rightarrow$ shorter CI

Case 1: Normal, σ^2 Known

Example

Let X be the length of lifetime of a light bulb, and assume that $X \sim N(\mu, 1296)$. We have a random sample of n=27 with $\bar{x}=1478$. A 95% confidence interval for μ is

$$\begin{aligned} & \left[\bar{x} - z_{0.025} \left(\frac{\sigma}{\sqrt{n}} \right), \ \bar{x} + z_{0.025} \left(\frac{\sigma}{\sqrt{n}} \right) \right] \\ &= \left[1478 - 1.96 \left(\frac{36}{\sqrt{27}} \right), \ 1478 + 1.96 \left(\frac{36}{\sqrt{27}} \right) \right] \\ &= \left[1464.42, \ 1491.58 \right]. \end{aligned}$$

Note that $z_{0.025}$ can be computed by qnorm(0.975) in R.

Case 2: Non-Normal, σ^2 Known

- X_1, \ldots, X_n are i.i.d. with mean $\mu = \mathbb{E}(X_1)$ and variance $\sigma^2 = \text{Var}(X_1)$, and σ^2 is known.
- Note that we release the normal distribution assumption
- By Central Limit Theorem, for large *n*:

$$rac{ar{X} - \mu}{\sigma / \sqrt{n}} \stackrel{\mathsf{approx}}{\sim} \mathsf{N}(0,1).$$

Thus,

$$\Pr\left(\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) \approx 1 - \alpha.$$

The **approximate** (two-sided) $100(1-\alpha)\%$ CI is:

$$\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

Case 2: Non-Normal, σ^2 Known

Example

Let X be the amount of orange juice consumed by an American per day. We know that $\sigma=96$. To estimate μ , we have a sample of n=576 and $\bar{x}=133$. An approximate 90% confidence interval for μ is:

$$133 \pm 1.645 \left(\frac{96}{\sqrt{576}}\right) = [126.42, 139.58]$$

Case 3: Normal, σ^2 Unknown

- Suppose $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ and σ^2 is unknown.
- \bullet As σ is unknown, we cannot use the CI in Case 1 since the interval

$$\bar{x} \pm z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$

depends on σ .

• Instead, recall the sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2},$$

and

$$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1).$$

Case 3: Normal, σ^2 Unknown

Consider

$$\Pr\left(-t_{\alpha/2}(n-1) \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le t_{\alpha/2}(n-1)\right) = 1 - \alpha$$

$$\Pr\left(\bar{X} - \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}} \le \mu \le \bar{X} + \frac{S \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}\right) = 1 - \alpha.$$

• Once we have the realized sample, we can compute \bar{x} and s, and

$$\left[\bar{x} - \frac{s \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}, \bar{x} + \frac{s \cdot t_{\alpha/2}(n-1)}{\sqrt{n}}\right]$$

is called a $100(1-\alpha)\%$ confidence interval (CI) of μ .

• Here, s represents the realized value of S.

Case 3: Normal, σ^2 Unknown

Example

Let $X \sim N(\mu, \sigma^2)$, and both μ and σ^2 are unknown. We compute that n=20, $\bar{x}=507.50$, and s=89.75. Since $t_{0.05}(19)=1.729$, a 90% confidence interval for μ is

$$507.50 \pm 1.729 \left(\frac{89.75}{\sqrt{20}} \right) = [472.80, 542.20].$$

Note that $t_{0.05}(19)$ can be computed by qt(0.975,19) in R.

Case 4: Non-Normal, σ^2 Unknown

- X_1, \ldots, X_n are i.i.d. with mean $\mu = E(X_1)$ and variance $\sigma^2 = \text{Var}(X_1)$, and σ^2 is unknown.
- If n is large enough (say $n \ge 100$), or if each X_i is approximately normal, then

$$rac{ar{X}-\mu}{S/\sqrt{n}}\stackrel{\mathsf{approx}}{\sim} t(n-1).$$

As a result,

$$\left[ar{x} - t_{lpha/2}(n-1) \left(rac{s}{\sqrt{n}}
ight), \ ar{x} + t_{lpha/2}(n-1) \left(rac{s}{\sqrt{n}}
ight)
ight]$$

is called an **approximate** (two-sided) $100(1-\alpha)\%$ confidence interval (CI) of μ .

Case 4: Non-Normal, σ^2 Unknown

Note that,

• If n is large enough, then $t_{\alpha/2}(n-1) \approx z_{\alpha/2}$, and so we can also use the interval

$$\left[\bar{x} - z_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right), \ \bar{x} + z_{\alpha/2} \left(\frac{s}{\sqrt{n}}\right)\right]$$

as an approximate (two-sided) $100(1-\alpha)\%$ CI for μ .

• If n is small or when each X_i does not look like a normal distribution (e.g., when X_i are very skewed), this method has to be used with caution.

One-sided Confidence Intervals

- Up until now we have only been discussing **two-sided** confidence intervals, since the CI are often of the form $\bar{x} \pm a$ for some constant a.
- Suppose that $X_1, \ldots, X_n \overset{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$ and σ^2 is known. Consider

For $X_i \stackrel{\text{i.i.d.}}{\sim} N(\mu, \sigma^2)$, σ^2 known:

$$\Pr\left(\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha}\right) = 1 - \alpha$$

$$\Rightarrow P\left(\mu \ge \bar{X} - z_{\alpha} \frac{\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

One-sided Confidence Intervals

Thus,

$$\left[\bar{x}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\infty\right)$$

is a one-sided $100(1-\alpha)\%$ CI for μ .

Similarly,

$$\left(-\infty, \bar{x} + z_{\alpha} \frac{\sigma}{\sqrt{n}}\right]$$

is another one-sided CI for μ .

• When we only care about the a lower or upper bound on μ , say the lower bound of bulb lifetimes, one-sided confidence interval is of the interest.

Summary

Two-sided confidence interval for $\boldsymbol{\mu}$

Distribution of X_i	Distribution	Two-sided $1-\alpha$ CI
$N(\mu,\sigma^2)$, σ^2 known	$egin{aligned} rac{ar{X} - \mu}{\sigma/\sqrt{n}} &\sim extstyle extstyle N(0,1) \ rac{ar{X} - \mu}{\sigma/\sqrt{n}} &\stackrel{approx}{\sim} extstyle N(0,1) \end{aligned}$	$\bar{x} \pm \frac{\sigma \cdot z_{\alpha/2}}{\sqrt{n}}$
Any distribution with large n , σ^2 known	, ,	•
$N(\mu,\sigma^2)$, σ^2 unknown	$\left \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1) \right $	$ar{x}\pmrac{s\cdot t_{lpha/2}(n-1)}{\sqrt{n}}$
Any distribution with large n , σ^2 unknown	$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{approx}{\sim} t(n-1)$	$ar{x}\pmrac{s\cdot t_{lpha/2}(n-1)}{\sqrt{n}}$