

SEQUENCE LISTING

<110> SHERMAN, LINDA A. LUSTGARTEN, JOSEPH <120> RECOMBINANT CONSTRUCTS ENCODING T CELL RECEPTORS SPECIFIC FOR HUMAN HLA-RESTRICTED TUMOR ANTIGENS <130> 48340/55793 <140> 08/812,393 <141> 1997-03-05 <150> 60/012,845 <151> 1996-03-05 <160> 64 <170> PatentIn Ver. 2.1 <210> 1 <211> 1350 <212> DNA <213> Artificial Sequence <220> <221> CDS <222> (1)..(1332) <220> <223> Description of Artificial Sequence: Synthetic single chain TCR derivative nucleotide sequence <400> 1 ctc gag atg cag agg aac ctg gga gct gtg ctg ggg att ctg tgg gtg Leu Glu Met Gln Arg Asn Leu Gly Ala Val Leu Gly Ile Leu Trp Val 48 10 cag att tgc tgg ctg aaa gaa cag caa gtg cag cag agt ccc gca tcc 96 Gln Ile Cys Trp Leu Lys Glu Gln Gln Val Gln Gln Ser Pro Ala Ser ttg gtt ctg cag gag ggg gag aac gca gag ctc cag tgt agc ttt tcc Leu Val Leu Gln Glu Gly Glu Asn Ala Glu Leu Gln Cys Ser Phe Ser atc ttt aca aac cag gtg cag tgg ttt tac caa cgt cct ggg gga aga Ile Phe Thr Asn Gln Val Gln Trp Phe Tyr Gln Arg Pro Gly Gly Arg ctc gtc agc ctg ttg tac aat cct tct ggg aca aag cag agt ggg aga 240 Leu Val Ser Leu Leu Tyr Asn Pro Ser Gly Thr Lys Gln Ser Gly Arg 70 ctg aca tcc aca aca gtc att aaa gaa cgt cgc agc tct ttg cac att Leu Thr Ser Thr Thr Val Ile Lys Glu Arg Arg Ser Ser Leu His Ile 85 90

											ctc Leu					336
tct Ser	gga Gly	gga Gly 115	agc Ser	aat Asn	gca Ala	aag Lys	cta Leu 120	acc Thr	ttc Phe	gly aaa	aaa Lys	ggc Gly 125	act Thr	aaa Lys	ctc Leu	384
tct Ser	gtt Val 130	aaa Lys	tca Ser	ggt Gly	ggc Gly	gga Gly 135	Gly aaa	tct Ser	ggc Gly	glà aaa	ggt Gly 140	gga Gly	tcc Ser	gly ggg	ggt Gly	432
gga Gly 145	ggc Gly	tca Ser	gag Glu	gct Ala	gca Ala 150	gtc Val	acc Thr	caa Gln	agc Ser	cca Pro 155	aga Arg	aac Asn	aag Lys	gtg Val	gca Ala 160	480
gta Val	aca Thr	gga Gly	gga Gly	aag Lys 165	gtg Val	aca Thr	ttg Leu	agc Ser	tgt Cys 170	aat Asn	cag Gln	act Thr	aat Asn	aac Asn 175	cac His	528
aac Asn	aac Asn	atg Met	tac Tyr 180	tgg Trp	tat Tyr	cgg Arg	cag Gln	gac Asp 185	acg Thr	Gly aaa	cat His	Gly aaa	ctg Leu 190	agg Arg	ctg Leu	576
atc Ile	cat His	tat Tyr 195	tca Ser	tat Tyr	ggt Gly	gct Ala	ggc Gly 200	agc Ser	act Thr	gag Glu	aaa Lys	gga Gly 205	gat Asp	atc Ile	cct Pro	624
gat Asp	gga Gly 210	tac Tyr	aag Lys	gcc Ala	tcc Ser	aga Arg 215	cca Pro	agc Ser	caa Gln	gag Glu	aac Asn 220	ttc Phe	tcc Ser	ctc Leu	att Ile	672
ctg Leu 225	gag Glu	ttg Leu	gct Ala	acc Thr	ccc Pro 230	Ser	cag Gln	aca Thr	tca Ser	gtg Val 235	tac Tyr	ttc Phe	tgt Cys	gcc Ala	agc Ser 240	720
ggt Gly	gag Glu	aca Thr	GJ A	acc Thr 245	aac Asn	gaa Glu	aga Arg	tta Leu	ttt Phe 250	Phe	ggt Gly	cat His	gga Gly	acc Thr 255	aag Lys	768
Leu	Ser	Val	Leu 260	Thr	Ser	Asn	Ser	1le 265	Met	Tyr	ttc Phe	Ser	His 270	Phe	Val	816
Pro	Val	Phe 275	Leu	Pro	Ala	Lys	280	Thr	Thr	Thr		285	Pro	Arg	Pro	864
Pro	290	Pro	Ala	Pro	Thr	295	Ala	. Ser	Glr	n Pro	300	Ser	: Leu	ı Arg	cca Pro	912
tct Ser 305	Ser	tct Ser	aga Arg	gat JAsp	2 ccc 2 Pro 310	Lys	cto Lev	tgo Cys	tac Tyr	Let 315	ı Lev	gat Asp	gga Gly	a ato	Leu 320	960

	atc Ile															1008
agc Ser	agg Arg	agc Ser	gca Ala 340	gac Asp	gcc Ala	ccc Pro	gcg Ala	tac Tyr 345	cag Gln	cag Gln	ggc Gly	cag Gln	aac Asn 350	cag Gln	ctc Leu	1056
tat Tyr	aac Asn	gag Glu 355	ctc Leu	aat Asn	cta Leu	gga Gly	cga Arg 360	aga Arg	gag Glu	gag Glu	tac Tyr	gat Asp 365	gtt Val	ttg Leu	gac Asp	1104
aag Lys	aga Arg 370	cgt Arg	ggc Gly	cgg Arg	gac Asp	cct Pro 375	gag Glu	atg Met	GJÀ aaa	gga Gly	aag Lys 380	ccg Pro	aga Arg	agg Arg	aag Lys	1152
aac Asn 385	cct Pro	cag Gln	gaa Glu	ggc Gly	ctg Leu 390	tac Tyr	aat Asn	gaa Glu	ctg Leu	cag Gln 395	aaa Lys	gat Asp	aag Lys	atg Met	gcg Ala 400	1200
gag Glu	gcc Ala	tac Tyr	agt Ser	gag Glu 405	att Ile	ggg Gly	atg Met	aaa Lys	ggc Gly 410	gag Glu	cgc Arg	cgg Arg	agg Arg	ggc Gly 415	aag Lys	1248
gly aaa	cac	gat Asp	ggc Gly 420	ctt Leu	tac Tyr	cag Gln	ggt Gly	ctc Leu 425	agt Ser	aca Thr	gcc Ala	acc Thr	aag Lys 430	gac Asp	acc Thr	1296
tac Tyr	gac Asp	gcc Ala 435	Leu	cac His	atg Met	cag Gln	gcc Ala 440	Leu	ccc Pro	cct Pro	cgc Arg	taa	gcg	gcc	gcc	1344
acc	gcg															1350
<21 <21	.0> 2 .1> 4 .2> P .3> A	44 RT	icia	l Se	quen	ce										
<22 <22	23 > D		ripti .e ch					. Seq	luenc	e: S	ynth	etic	:			
Lev	00> 2 1 Glu 1	: ı Met	: Gln	Arg		. Leu	Gly	, Ala	Val		Gly	, Ile	e Lev	Trp	val	
Glr	ı Ile	е Сув	Trp		Lys	Glu	ı Glr	ı Glr 25		. Glr	Glr	Ser	Pro		Ser	
Let	ı Val	. Let		Glu	ı Gly	Glu	a Asr 4(a Glu	ı Lev	Glr	Cys		Phe	e Ser	
Ile	e Phe		Asr	Glr	ı Val	. Glr 55		Phe	е Туг	Glr	Arg		Gly	/ Gly	Arg	

Leu Val Ser Leu Leu Tyr Asn Pro Ser Gly Thr Lys Gln Ser Gly Arg 65 70 75 80

Leu Thr Ser Thr Thr Val Ile Lys Glu Arg Arg Ser Ser Leu His Ile 85 90 95

Ser Ser Ser Gln Ile Thr Asp Ser Gly Thr Tyr Leu Cys Ala Ser Asn 100 105 110

Ser Gly Gly Ser Asn Ala Lys Leu Thr Phe Gly Lys Gly Thr Lys Leu 115 120 125

Ser Val Lys Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly 130 135 140

Gly Gly Ser Glu Ala Ala Val Thr Gln Ser Pro Arg Asn Lys Val Ala 145 150 155 160

Val Thr Gly Gly Lys Val Thr Leu Ser Cys Asn Gln Thr Asn Asn His

Asn Asn Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu 180 185 190

Ile His Tyr Ser Tyr Gly Ala Gly Ser Thr Glu Lys Gly Asp Ile Pro 195 200 205

Asp Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile 210 215 220

Leu Glu Leu Ala Thr Pro Ser Gln Thr Ser Val Tyr Phe Cys Ala Ser 225 230 235 240

Gly Glu Thr Gly Thr Asn Glu Arg Leu Phe Phe Gly His Gly Thr Lys 245 250 255

Leu Ser Val Leu Thr Ser Asn Ser Ile Met Tyr Phe Ser His Phe Val 260 265 270

Pro Val Phe Leu Pro Ala Lys Pro Thr Thr Thr Pro Ala Pro Arg Pro 275 280 285

Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro 290 295 300

Ser Ser Ser Arg Asp Pro Lys Leu Cys Tyr Leu Leu Asp Gly Ile Leu 305 310 320

Phe Ile Tyr Gly Val Ile Leu Thr Ala Leu Phe Leu Arg Val Lys Phe 325 330 335

Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu 340 345 350

Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp 355 360 365

гув	370	Arg	GIY	Arg	Asp	375	Giu	Mec	Gly	Gly	380	FIO	Arg	Arg	цув	
Asn 385	Pro	Gln	Glu	Gly	Leu 390	Tyr	Asn	Glu	Leu	Gln 395	Lys	Asp	Lys	Met	Ala 400	
Glu	Ala	Tyr	Ser	Glu 405	Ile	Gly	Met	Lys	Gly 410	Glu	Arg	Arg	Arg	Gly 415	Lys	
Gly	His	Asp	Gly 420	Leu	Tyr	Gln	Gly	Leu 425	Ser	Thr	Ala	Thr	Lys 430	Asp	Thr	
Tyr	Asp	Ala 435	Leu	His	Met	Gln	Ala 440	Leu	Pro	Pro	Arg					
<21:	0 > 3 1 > 2 2 > Di 3 > A	NA	icia	l Se	quen	ce										~
<22 <22		escr	ipti	on o	f Ar	tifi	cial	Seq	uenc	e: P	rime	r				
	0> 3 aagg	cac	tgat	gttc	at c	ttc										24
<21 <21	0 > 4 1 > 2 2 > D 3 > A	7 NA	icia	l Se	quen	ce										
<22 <22		escr	ipti	on c	f Ar	tifi	cial	Sec	uenc	e: P	rime	r				
	0> 4 gaca		tccc	caat	ct c	tgac	ag									27
<21 <21	0 > 5 1 > 2 2 > D 3 > A	6 NA	icia	ıl Se	quer	ıce										
<22 <22	0> 3> I	escr	ripti	on c	of Ar	tifi	cial	. Sec	quenc	e: E	rime	r				
	0> 5 scago		tect	caag	jta d	tatt	:c									26
<21	.0> 6 .1> 2	8.8														

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence:	Primer
<400> 6	
tcccggagaa ggtccacagt tcctcttt	. 28
<210> 7	
<211> 29	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence:	Primer
<400> 7	
gaagcagcag agggtttgaa gccacatac	29
<210> 8	
<211> 27	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence:	Primer
<400> 8 qqcagqtctt cagttgctta tgaaggt	27
<210> 9	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence:</pre>	Primer
<400> 9	27
ggttcctctt cagggtccag aatatgt	21
<210> 10	
<211> 27	
<212> DNA <213> Artificial Sequence	
-	
<pre><220> <223> Description of Artificial Sequence:</pre>	Primer
<400> 10	
gcgaagaact caccetggae tgttcat	27
<210> 11	

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 11 gagctccaca gacaacaaga ggacgcagca	30
<210> 12	
<211> 27 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 12	
gagctgcgac gttccttagt gactgtg	27
<210> 13	
<211> 30 <212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 13	
cctcgtcagc ctgttgtcca atccttctgg	30
<210> 14	
<211> 28 <212> DNA	
<213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Primer</pre>	
ALLON DODOLLOCATION OF THE CONTROL O	
<400> 14	28
cageeteate aatetgttet aettgget	20
<210> 15	
<211> 28	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 15	
ccaccaggga ccacagttta tcattcaa	28

```
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 16
                                                                    27
acctggagag aatcctaagc tcatcat
<210> 17
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
 <400> 17
                                                                    28
aggtcttgtg tccctgacag tcctggtt
<210> 18
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 18
                                                                     30
 caagcaaaca ctgtagtgca gagcccttcc
 <210> 19
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 19
                                                                     25
 caagacatcc ataactgccc tacag
 <210> 20
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
```

<400> 20 gtgtatgaaa cccaggacag ttcttac	27
<210> 21 <211> 29	
<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 21 ccgtatttct ttcttatgtt gttttggat	29
<210> 22 <211> 28 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 22 caaagctctc catcgctgac tgttcaag	28
<210> 23 <211> 23	
<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 23 atctaatcct gggaagagca aat	23
<210> 24 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 24 ggcgtctggt accacgtggt caa	23
<210> 25 <211> 23 <212> DNA <213> Artificial Sequence	

<220> <223>	Description of Artificial Sequence: Primer	
<400>	25	
	gggc aaggacaaaa agc	23
<210>	26	
<211>		
<212>	DNA Artificial Sequence	
(213)	Artificial bodacies	
<220>	n	
<223>	Description of Artificial Sequence: Primer	
<400>	26	
gatate	gegaa cagtatetag ge	22
<210>	27	
<211>		
<212>	Artificial Sequence	
(223)		
<220>	Description of Artificial Sequence: Primer	
<223>	Description of Artificial Sequence. Filmer	
<400>		
acata	atcaa aggaaaggga gaa	23
<210>	28	
<211>		
<212>	Artificial Sequence	
	•	
<220>	Description of Artificial Sequence: Primer	
<223>	Description of Artificial Sequence. Filmer	
<400>	28	23
tcctg	attgg tcaggaaggg caa	23
<210>		
<211>		
<212>	Artificial Sequence	
	•	
<220>	Description of Artificial Sequence: Primer	
<223>	bescription of Artificial Sequence, ritimer	
<400>		23
tacct	gatca aaagaatggg aga	∠3
<210>		
<211>	> 23	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400> ataaco	30 catga caatatgtac tgg	23
<210><211><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: Primer	
<400>	31	
	cacaa caacatgtac tgg	23
<210><211><212><213>	23	
(21)/	Altificial bequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400>	32	
atago	cacaa ctacatgtac tgg	23
<210><211><212>	23 DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	33	
	gcaag agttggaaaa cca	23
<210><211>		
<212>		
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Primer	
<400> gatta	.tgttt agctacaata ata	23

```
<210> 35
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 35
                                                                    23
acaaggtgac agggaaggga caa
<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 36
                                                                    23
acctacagaa cccaaggact cag
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 37
                                                                    23
cagttgccct cggatcgatt ttc
<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 38
                                                                    23
gccgagatca aggctgtggg cag
<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
```

<400> 39 agaaccatct gtaagagtgg aac	23
<210> 40 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 40 catcaaataa tagatatggg gca	23
<210> 41 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 41 gtagtcctga aaaagggcac act	23
<210> 42 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 42 catctgtcaa agtggcactt ca	22
<210> 43 <211> 393 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(393)	
<400> 43	
atg aaa tcc ttg agt gtt tcc cta gtg gtc ctg tgg ctc cag tta aac Met Lys Ser Leu Ser Val Ser Leu Val Val Leu Trp Leu Gln Leu Asn 1 5 10 15	48
tgg gtg cag agc cag cag aag gtg cag cag agc cca gaa tcc ctc agt Trp Val Gln Ser Gln Gln Lys Val Gln Gln Ser Pro Glu Ser Leu Ser 20 25 30	96

_					_	-				_		tca Ser 45	-	_	_	144
												gga Gly				192
												aaa Lys				240
												tcc Ser				288
aga Arg	gac Asp	tcc Ser	cag Gln 100	ccc Pro	agt Ser	gac Asp	tcc Ser	gct Ala 105	ctc Leu	tac Tyr	ttc Phe	tgt Cys	gca Ala 110	gtt Val	atg Met	336
gat Asp	tat Tyr	aac Asn 115	cag Gln	G1 y 999	aag Lys	ctt Leu	atc Ile 120	ttt Phe	G1y 999	cag Gln	ggt Gly	acc Thr 125	aag Lys	tta Leu	tct Ser	384
	aag Lys 130															393
<21:	0 > 4 1 > 1 2 > P 3 > H	31	sapi	ens												
<21: <21: <21:	1 > 1: 2 > P: 3 > H: 0 > 4	31 RT omo	_				•	**- 3	**-1	T	W	T a	C1 ~	Lou	n an	
<21: <21: <21:	1 > 1: 2 > P: 3 > H: 0 > 4	31 RT omo	_		Val	Ser	Leu	Val	Val 10	Leu	Trp	Leu	Gln	Leu 15	Asn	
<21: <21: <21: <40: Met	1> 1: 2> P: 3> H 0> 4 Lys	31 RT omo 4 Ser	Leu	Ser 5					10			Leu Glu		15		
<21: <21: <21: <40: Met 1	1> 1 2> P 3> H 0> 4 Lys Val	31 RT omo 4 Ser Gln	Leu Ser 20	Ser 5 Gln	Gln	Lys	Val	Gln 25	10 Gln	Ser	Pro	Glu	Ser 30	15 Leu		
<21: <21: <21: <40: Met 1 Trp	1> 1. 2> P: 3> H 0> 4 Lys Val	31 RT OMO 4 Ser Gln Glu 35	Leu Ser 20 Gly	Ser 5 Gln Gly	Gln Met	Lys Ala	Val Ser 40	Gln 25 Leu	10 Gln Asn	Ser Cys	Pro Thr	Glu Ser 45	Ser 30 Ser	15 Leu Asp	Ser Arg	
<21: <21: <21: <40: Met 1 Trp Val	1 > 1. 2 > P: 3 > H: 0 > 4 Lys Val Pro Phe 50	31 RT omo 4 Ser Gln Glu 35	Leu Ser 20 Gly	Ser 5 Gln Gly	Gln Met Trp	Lys Ala Trp 55	Val Ser 40	Gln 25 Leu Arg	Gln Asn Gln	Ser Cys His	Pro Thr Ser 60	Glu Ser 45	Ser 30 Ser Glu	Leu Asp Gly	Ser Arg	
<21: <21: <20: Met Trp Val Asn Lys 65	1 > 1. 2 > P. 3 > H. 0 > 4 Lys Val Pro Phe 50	31 RT omo 4 Ser Gln 35 Gln Leu	Leu Ser 20 Gly Tyr	Ser 5 Gln Gly Phe	Gln Met Trp Ile 70 Asn	Lys Ala Trp 55	Val Ser 40 Tyr	Gln 25 Leu Arg	Gln Asn Gln Gly	Ser Cys His Asp 75	Pro Thr Ser 60	Glu Ser 45	Ser 30 Ser Glu	Leu Asp Gly	Ser Arg Pro Arg 80 Ile	

Asp Tyr Asn Gln Gly Lys Leu Ile Phe Gly Gln Gly Thr Lys Leu Ser

Ile Lys Pro 130 <210> 45 <211> 402 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(402) <400> 45 atg ggc tcc aga ctc ttc ttt gtg gtt ttg att ctc ctg tgt gca aaa 48 Met Gly Ser Arg Leu Phe Phe Val Val Leu Ile Leu Leu Cys Ala Lys 5 cac atg gag gct gca gtc acc caa agt cca aga agc aag gtg gca gta 96 His Met Glu Ala Ala Val Thr Gln Ser Pro Arg Ser Lys Val Ala Val 25 aca gga gga aag gtg aca ttg agc tgt cac cag act aat aac cat gac 144 Thr Gly Gly Lys Val Thr Leu Ser Cys His Gln Thr Asn Asn His Asp 35 192 tat atg tac tgg tat cgg cag gac acg ggg cat ggg ctg agg ctg atc Tyr Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu Ile 50 cat tac tca tat gtc gct gac agc acg gag aaa gga gat atc cct gat His Tyr Ser Tyr Val Ala Asp Ser Thr Glu Lys Gly Asp Ile Pro Asp 65 70 ggg tac aag gcc tcc aga cca agc caa gag aat ttc tct ctc att ctg 288 Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile Leu gag ttg gct tcc ctt tct cag tca gct gta tat ttc tgt gcc agc agc 336 Glu Leu Ala Ser Leu Ser Gln Ser Ala Val Tyr Phe Cys Ala Ser Ser 105 gat ttc gcc ggg aca ggg ggc ttc tat gaa cag tac ttc ggt ccc ggc 384 Asp Phe Ala Gly Thr Gly Gly Phe Tyr Glu Gln Tyr Phe Gly Pro Gly 120 115 402 acc agg ctc acg gtt tct Thr Arg Leu Thr Val Ser 130

<210> 46 <211> 134

```
<212> PRT
<213> Homo sapiens
```

<400> 46

Met Gly Ser Arg Leu Phe Phe Val Val Leu Ile Leu Leu Cys Ala Lys 1 5 10 15

His Met Glu Ala Ala Val Thr Gln Ser Pro Arg Ser Lys Val Ala Val 20 25 30

Thr Gly Gly Lys Val Thr Leu Ser Cys His Gln Thr Asn Asn His Asp 35 40 45

Tyr Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu Ile 50 55 60

His Tyr Ser Tyr Val Ala Asp Ser Thr Glu Lys Gly Asp Ile Pro Asp 65 70 75 80

Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile Leu 85 90 95

Glu Leu Ala Ser Leu Ser Gln Ser Ala Val Tyr Phe Cys Ala Ser Ser 100 105 110

Asp Phe Ala Gly Thr Gly Gly Phe Tyr Glu Gln Tyr Phe Gly Pro Gly 115 120 125

Thr Arg Leu Thr Val Ser 130

<210> 47

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

<400> 47

Lys Ile Phe Gly Ser Leu Ala Phe Leu
1 5

<210> 48

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic peptide

```
<400> 48
Thr Leu Gln Gly Leu Gly Ile Ser Trp Leu
<210> 49
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 49
Val Met Ala Gly Val Gly Ser Pro Tyr Val
         5
<210> 50
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 50
Val Leu Gln Gly Leu Pro Arg Glu Tyr Val
                  5
<210> 51
<211> 7
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 51
 His Leu Tyr Gln Gly Gln Trp
 <210> 52
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
```

```
<400> 52
Arg Leu Leu Gln Glu Thr Glu Leu Val
                5
<210> 53
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
<400> 53
Lys Ile Pro Val Ala Ile Lys Val Leu
<210> 54
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 54
Cys Leu Thr Ser Thr Val Gln Leu Val
 1
                  5
 <210> 55
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 55
 Gln Leu Met Pro Tyr Gly Cys Leu Leu
 <210> 56
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
```

```
<400> 56
Val Leu Val Lys Ser Pro Asn His Val
<210> 57
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 57
Asp Ile Asp Glu Thr Glu Tyr His Ala
<210> 58
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
Asp Leu Leu Glu Lys Gly Glu Arg Leu
<210> 59
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 59
Glu Leu Val Ser Glu Phe Ser Arg Met
  1
                  5
<210> 60
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<400> 60
Glu Leu Val Ser Glu Phe Ser Arg Met Ala
<210> 61
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     peptide
<400> 61
Leu Val Ser Glu Phe Ser Arg Met Ala
<210> 62
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 62
Asp Leu Val Asp Ala Glu Glu Tyr Leu
                 5
<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 63
 Thr Leu Ser Pro Gly Lys Asn Gly Val
 <210> 64
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
```

<400> 64 Lys Leu Val Gly Lys Leu Asn Trp Ala 1 5

SEQUENCE LISTING

<110>																
<120>	LUS			INDA , JO												
							ENC -RES									
<130>	483	40/	5579	3												
<140>			•													
<150>																
<160>	64															
<170>	• Pat	ent	In V	er.	2.1											
<210><211><211><212><213>	> 135 > DNA		cial	Seq	uenc	:e										
<220><221><222>	> CDS		1332	:)												
<220×	> Des	scri ngle	ptic cha	on of in T	Art	ific	ial ativ	Sequ e nu	ence clec	e: Sy otide	nthe sec	tic Nueno	:e			
<400	> 1															
ctc	aaa a	ata														
Leu (Glu N	1et	Gln	agg Arg 5	aac Asn	Leu	gga Gly	gct Ala	gtg Val 10	ctg Leu	G1y ggg	att Ile	ctg Leu	tgg Trp 15	gtg Val	48
Leu (att t	let eqc	Gln taa	Arg 5 ctq	Asn	Leu gaa	Gly	Ala	Val 10 gtg	Leu	Gly	Ile agt	Leu	Trp 15 gca	Val tcc	48 96
Leu (att t Ile (det egc Cys	tgg Trp 20	Arg 5 ctg Leu	Asn aaa Lys	Leu gaa Glu	Gly cag Gln aac	caa Gln 25	Val 10 gtg Val	Leu cag Gln ctc	cag Gln cag	agt Ser	ccc Pro 30	Trp 15 gca Ala ttt	tcc Ser	
Leu C 1 cag a Gln :	att t Ile (gtt (Val I	det cys ctg Leu 35	tgg Trp 20 cag Gln	Arg 5 ctg Leu gag Glu cag	Asn aaa Lys 999 Gly	Leu gaa Glu gag Glu cag	cag Gln aac Asn 40	Ala caa Gln 25 gca Ala	Val 10 gtg Val gag Glu tac	cag Gln ctc Leu	Cag Gln Cag Gln	agt Ser tgt Cys 45	ccc Pro 30 agc Ser	Trp 15 gca Ala ttt Phe	tcc Ser tcc Ser	96
cag a Gln :	gtt of Val I	Met Egc Cys ctg Leu 35 aca Thr	tgg Trp 20 cag Gln aac Asn	Arg 5 ctg Leu gag Glu cag Gln ttg	Asn aaa Lys 999 Gly gtg Val	gaa Glu gag Glu cag Gln 55	cag Gln aac Asn 40 tgg Trp	Caa Gln 25 gca Ala ttt Phe	Val 10 gtg Val gag Glu tac Tyr	cag Gln ctc Leu caa Gln	cag Gln cag Gln cgt Arg 60	agt Ser tgt Cys 45 cct Pro	ccc Pro 30 agc Ser ggg Gly	Trp 15 gca Ala ttt Phe gga Gly	tcc Ser tcc Ser aga Arg	96 144

						gac Asp										336
						aag Lys										384
						gga Gly 135										432
gga Gly 145	ggc Gly	tca Ser	gag Glu	gct Ala	gca Ala 150	gtc Val	acc Thr	caa Gln	agc Ser	cca Pro 155	aga Arg	aac Asn	aag Lys	gtg Val	gca Ala 160	480
gta Val	aca Thr	gga Gly	gga Gly	aag Lys 165	gtg Val	aca Thr	ttg Leu	agc Ser	tgt Cys 170	aat Asn	cag Gln	act Thr	aat Asn	aac Asn 175	cac His	528
aac Asn	aac Asn	atg Met	tac Tyr 180	tgg Trp	tat Tyr	cgg Arg	cag Gln	gac Asp 185	acg Thr	GJÀ aaa	cat His	GJÅ aaa	ctg Leu 190	agg Arg	ctg Leu	576
atc Ile	cat His	tat Tyr 195	tca Ser	tat Tyr	ggt Gly	gct Ala	ggc Gly 200	agc Ser	act Thr	gag Glu	aaa Lys	gga Gly 205	gat Asp	atc Ile	cct Pro	624
gat Asp	gga Gly 210	tac Tyr	aag Lys	gcc Ala	tcc Ser	aga Arg 215	cca Pro	agc Ser	caa Gln	gag Glu	aac Asn 220	ttc Phe	tcc Ser	ctc Leu	att Ile	672
ctg Leu 225	gag Glu	ttg Leu	gct Ala	acc Thr	ccc Pro 230	tct Ser	cag Gln	aca Thr	tca Ser	gtg Val 235	tac Tyr	ttc Phe	tgt Cys	gcc Ala	agc Ser 240	720
ggt Gly	gag Glu	aca Thr	G1 y ggg	acc Thr 245	Asn	gaa Glu	aga Arg	tta Leu	ttt Phe 250	Phe	ggt Gly	cat His	gga Gly	acc Thr 255	aag Lys	768
ctg Leu	tct Ser	gtc Val	ctg Leu 260	Thr	agt Ser	aac Asn	tcc Ser	atc Ile 265	atg Met	tac Tyr	ttc Phe	agc Ser	cac His 270	ttc Phe	gtg Val	816
ccg Pro	gtc Val	ttc Phe 275	Leu	cca Pro	gcg Ala	aag Lys	ccc Pro 280	Thr	acg Thr	acg Thr	cca Pro	gcg Ala 285	Pro	cga Arg	cca Pro	864
cca Pro	aca Thr 290	Pro	gcg Ala	ccc Pro	acc Thr	atc Ile 295	Ala	tcg Ser	cag Gln	ccc Pro	ctg Leu 300	Ser	ctg Leu	cgc Arg	cca Pro	912
tct Ser 305	Ser	tct Ser	aga Arg	gat Asp	ccc Pro	Lys	ctc Leu	tgc Cys	tac Tyr	ctg Leu 315	Leu	gat Asp	gga Gly	ato Ile	ctc Leu 320	960

ttc Phe	atc Ile	tat Tyr	ggt Gly	gtc Val 325	att Ile	ctc Leu	act Thr	gcc Ala	ttg Leu 330	ttc Phe	ctg Leu	aga Arg	gtg Val	aag Lys 335	ttc Phe	1008
agc Ser	agg Arg	agc Ser	gca Ala 340	gac Asp	gcc Ala	ccc Pro	gcg Ala	tac Tyr 345	cag Gln	cag Gln	ggc Gly	cag Gln	aac Asn 350	cag Gln	ctc Leu	1056
tat Tyr	aac Asn	gag Glu 355	ctc Leu	aat Asn	cta Leu	gga Gly	cga Arg 360	aga Arg	gag Glu	gag Glu	tac Tyr	gat Asp 365	gtt Val	ttg Leu	gac Asp	1104
aag Lys	aga Arg 370	cgt Arg	ggc Gly	cgg Arg	gac Asp	cct Pro 375	gag Glu	atg Met	gjå aaa	gga Gly	aag Lys 380	ccg Pro	aga Arg	agg Arg	aag Lys	1152
aac Asn 385	cct Pro	cag Gln	gaa Glu	ggc Gly	ctg Leu 390	tac Tyr	aat Asn	gaa Glu	ctg Leu	cag Gln 395	aaa Lys	gat Asp	aag Lys	atg Met	gcg Ala 400	1200
gag Glu	gcc Ala	tac Tyr	agt Ser	gag Glu 405	att Ile	Gly ggg	atg Met	aaa Lys	ggc Gly 410	gag Glu	cgc Arg	cgg Arg	agg Arg	ggc Gly 415	aag Lys	1248
Gly 999	cac His	gat Asp	ggc Gly 420	ctt Leu	tac Tyr	cag Gln	ggt Gly	ctc Leu 425	agt Ser	aca Thr	gcc Ala	acc Thr	aag Lys 430	gac Asp	acc Thr	1296
tac Tyr	gac Asp	gcc Ala 435	Leu	cac His	atg Met	cag Gln	gcc Ala 440	ctg Leu	ccc Pro	cct Pro	cgc Arg	taa	gcg	gcc	gcc	1344
acc	gcg															1350
<21 <21	0 > 2 1 > 4 2 > P 3 > A	RT	icia	l Se	quen	ce										
<22 <22	3 > D				f Ar TCR			Seq	uenc	e: S	ynth	etic				
<40 Leu 1		Met	Gln	Arg		Leu	Gly	Ala	Val		Gly	Ile	Leu	Trp	Val	
Gln	Ile	Суѕ	Trp 20		Lys	Glu	Gln	Gln 25		Gln	Gln	Ser	Pro 30		Ser	
Leu	Val	Leu 35		Glu	Gly	Glu	Asn 40		Glu	Leu	Gln	Cys 45		Phe	Ser	
Ile	Phe 50		Asn	Gln	Val	Gln 55		Phe	Tyr	Gln	Arg 60		Gly	Gly	Arg	

- Leu Val Ser Leu Leu Tyr Asn Pro Ser Gly Thr Lys Gln Ser Gly Arg
 65 70 75 80
- Leu Thr Ser Thr Thr Val Ile Lys Glu Arg Arg Ser Ser Leu His Ile 85 90 95
- Ser Ser Ser Gln Ile Thr Asp Ser Gly Thr Tyr Leu Cys Ala Ser Asn 100 . 105 110
- Ser Gly Gly Ser Asn Ala Lys Leu Thr Phe Gly Lys Gly Thr Lys Leu 115 120 125
- Ser Val Lys Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Gly Gly 130 135 140
- Gly Gly Ser Glu Ala Ala Val Thr Gln Ser Pro Arg Asn Lys Val Ala 145 150 155 160
- Val Thr Gly Gly Lys Val Thr Leu Ser Cys Asn Gln Thr Asn Asn His
 165 170 175
- Asn Asn Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu 180 185 190
- Ile His Tyr Ser Tyr Gly Ala Gly Ser Thr Glu Lys Gly Asp Ile Pro 195 200 205
- Asp Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile 210 215 220
- Leu Glu Leu Ala Thr Pro Ser Gln Thr Ser Val Tyr Phe Cys Ala Ser 225 230 235 240
- Gly Glu Thr Gly Thr Asn Glu Arg Leu Phe Phe Gly His Gly Thr Lys 245 250 255
- Leu Ser Val Leu Thr Ser Asn Ser Ile Met Tyr Phe Ser His Phe Val
- Pro Val Phe Leu Pro Ala Lys Pro Thr Thr Pro Ala Pro Arg Pro 275 280 285
- Pro Thr Pro Ala Pro Thr Ile Ala Ser Gln Pro Leu Ser Leu Arg Pro 290 295 300
- Ser Ser Ser Arg Asp Pro Lys Leu Cys Tyr Leu Leu Asp Gly Ile Leu 305 310 315 315
- Phe Ile Tyr Gly Val Ile Leu Thr Ala Leu Phe Leu Arg Val Lys Phe 325 330 335
- Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu 340 345 350
- Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp 355 360 365

```
Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys
Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala
Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Gly Lys
Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg
<210> 3
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 3
                                                                   24
cccaaggcac tgatgttcat cttc
<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 4
                                                                   27
tgagacaaag tccccaatct ctgacag
<210> 5
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
                                                                   26
ctgcagctgc tcctcaagta ctattc
<210> 6
<211> 28
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Primer
<400> 6
                                                                   28
tcccggagaa ggtccacagt tcctcttt
<210> 7
<211> 29
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 7
                                                                    29
gaagcagcag agggtttgaa gccacatac
<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    27
ggcaggtctt cagttgctta tgaaggt
<210> 9
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 9
ggttcctctt cagggtccag aatatgt
                                                                    27
<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 10
                                                                    27
gcgaagaact caccctggac tgttcat
<210> 11
<211> 30
```

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
                                                                   30
gagetecaca gacaacaaga ggaegeagea
<210> 12
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 12
                                                                   27
gagctgcgac gttccttagt gactgtg
<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 13
                                                                   30
cctcgtcagc ctgttgtcca atccttctgg
<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 14
                                                                   28
cagcctcatc aatctgttct acttggct
<210> 15
<211> 28
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 15
                                                                   28
ccaccaggga ccacagttta tcattcaa
```

```
<210> 16
<211> 27
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 16
                                                                    27
acctggagag aatcctaagc tcatcat
<210> 17
 <211> 28
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 17
                                                                    28
 aggtcttgtg tccctgacag tcctggtt
· <210> 18
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Primer
 <400> 18
                                                                     30
 caagcaaaca ctgtagtgca gagcccttcc
 <210> 19
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 19
                                                                     25
 caagacatcc ataactgccc tacag
 <210> 20
 <211> 27
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
```

<400> 20 gtgtatgaaa cccaggacag ttcttac	27
<210> 21 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 21 ccgtatttct ttcttatgtt gttttggat	29
<210> 22 <211> 28 <212> DNA	
<220>	
<223> Description of Artificial Sequence: Primer <400> 22	
caaagctctc catcgctgac tgttcaag	28
<210> 23 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 23 atctaatcct gggaagagca aat	23
<210> 24 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 24 ggcgtctggt accacgtggt caa	23
<210> 25 <211> 23 <212> DNA <213> Artificial Sequence	

```
<223> Description of Artificial Sequence: Primer
<400> 25
                                                                    23
gtgaaagggc aaggacaaaa agc
<210> 26
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 26
                                                                    22
gatatgcgaa cagtatctag gc
<210> 27
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 27
                                                                    23
acataatcaa aggaaaggga gaa
<210> 28
<211> 23
<212> DNA
 <213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
 <400> 28
                                                                    23
 tcctgattgg tcaggaaggg caa
 <210> 29
 <211> 23
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 29
                                                                     23
 tacctgatca aaagaatggg aga
 <210> 30
 <211> 23
```

	<212> DNA	
	<213> Artificial Sequence	
	1210 morriage bodaemen	
	<220>	
	<pre><223> Description of Artificial Sequence: Primer</pre>	
	2237 bescription of Artificial Sequence. Filmer	
	<400> 30	
	ataaccatga caatatgtac tgg	23
	210	
	<210> 31	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	·	
	<400> 31	
	ataaccacaa caacatgtac tgg	23
	<210> 32	
	<211> 23	
	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	•	
	<400> 32	
	atagccacaa ctacatgtac tgg	23
	5 55	
	<210> 33	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	or in	
	<400> 33	
	agcttgcaag agttggaaaa cca	23
	ageregeaag agerggaaaa eea	
	<210> 34	
	<211> 23	
	<211> 23 <212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Primer	
	4400- 24	
	<400> 34	23
	gattatgttt agctacaata ata	23

.

```
<210> 35
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 35
                                                                    23
acaaggtgac agggaaggga caa
<210> 36
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 36
                                                                    23
acctacagaa cccaaggact cag
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
                                                                    23
cagttgccct cggatcgatt ttc
<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 38
                                                                    23
gccgagatca aggctgtggg cag
<210> 39
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
```

<400> 39 agaaccatct gtaagagtgg aac	23
<210> 40 <211> 23 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 40 catcaaataa tagatatggg gca	23
<210> 41 <211> 23 <212> DNA	
<213> Artificial Sequence	
<223> Description of Artificial Sequence: Primer	
<400> 41 gtagtcctga aaaagggcac act	23
<210> 42 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Primer	
<400> 42 catctgtcaa agtggcactt ca	22
<210> 43 <211> 393 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(393)	
<pre><400> 43 atg aaa tcc ttg agt gtt tcc cta gtg gtc ctg tgg ctc cag tta aac Met Lys Ser Leu Ser Val Ser Leu Val Val Leu Trp Leu Gln Leu Asn</pre>	48
tgg gtg cag agc cag cag aag gtg cag cag agc cca gaa tcc ctc agt Trp Val Gln Ser Gln Gln Lys Val Gln Gln Ser Pro Glu Ser Leu Ser 20 25 30	96

														gat Asp		144
														ggc Gly		192
														ggc Gly		240
ttc Phe	aca Thr	gct Ala	cac His	ctc Leu 85	aat Asn	aag Lys	gcc Ala	agc Ser	ctg Leu 90	cat His	gtt Val	tcc Ser	ctg Leu	cac His 95	atc Ile	288
aga Arg	gac Asp	tcc Ser	cag Gln 100	ccc Pro	agt Ser	gac Asp	tcc Ser	gct Ala 105	ctc Leu	tac Tyr	ttc Phe	tgt Cys	gca Ala 110	gtt Val	atg Met	336
gat Asp	tat Tyr	aac Asn 115	cag Gln	GJA aaa	aag Lys	ctt Leu	atc Ile 120	ttt Phe	gjà aaa	cag Gln	ggt Gly	acc Thr 125	aag Lys	tta Leu	tct Ser	384
	aag Lys 130															393
<213 <213	0> 44 l> 13 2> Pl 3> Ho	31 RT	sapi	ens												
<213 <213 <213	1> 1: 2> PI 3> Ho	31 RT OMO 1	_							_		•	93	T	200	
<213 <213 <213	1> 1: 2> PI 3> Ho	31 RT OMO 1	_		Val	Ser	Leu	Val	Val 10	Leu	Trp	Leu	Gln	Leu 15	Asn	
<213 <213 <213 <400 Met	l> 1: 2> Pl 3> Ho 0> 4: Lys	31 RT omo : 4 Ser	Leu	Ser 5		•			10							
<21: <21: <21: <40: Met 1	1> 13 2> P1 3> Ho 0> 4 Lys Val	31 RT OMO : 4 Ser Gln	Leu Ser 20	Ser 5 Gln	Gln	Lys	Val	Gln 25	10 Gln	Ser	Pro	Glu	Ser 30	15	Ser	
<21: <21: <21: <400 Met 1 Trp	1> 1: 2> PI 3> Ho 0> 4: Lys Val	31 RT OMO : 4 Ser Gln Glu 35	Leu Ser 20 Gly	Ser 5 Gln Gly	Gln Met	Lys Ala	Val Ser 40	Gln 25 Leu	10 Gln Asn	Ser Cys	Pro	Glu Ser 45	Ser 30 Ser	15 Leu	Ser Arg	
<21: <21: <21: <400 Met 1 Trp Val	1 > 1: 2 > P1 3 > Ho 0 > 4. Lys Val Pro	Glu 35 Gln	Leu Ser 20 Gly	Ser 5 Gln Gly	Gln Met Trp	Lys Ala Trp 55	Val Ser 40 Tyr	Gln 25 Leu Arg	Gln Asn Gln	Ser Cys His	Pro Thr Ser 60	Glu Ser 45 Gly	Ser 30 Ser Glu	15 Leu Asp	Ser Arg Pro	
<21: <21: <400 Met 1 Trp Val Asn Lys 65	1> 1: 2> Pl 3> Ho 0> 4' Lys Val Pro Phe 50	Glu 35 Gln Leu	Leu Ser 20 Gly Tyr	Ser 5 Gln Gly Phe	Gln Met Trp Ile 70	Lys Ala Trp 55	Val Ser 40 Tyr Ser	Gln 25 Leu Arg	Gln Asn Gln Gly	Ser Cys His Asp 75	Pro Thr Ser 60	Glu Ser 45 Gly Lys	Ser 30 Ser Glu	15 Leu Asp Gly	Ser Arg Pro Arg	

Ile Lys Pro 130 <210> 45 <211> 402 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(402) <400> 45 48 atg ggc tcc aga ctc ttc ttt gtg gtt ttg att ctc ctg tgt gca aaa Met Gly Ser Arg Leu Phe Phe Val Val Leu Ile Leu Leu Cys Ala Lys cac atg gag gct gca gtc acc caa agt cca aga agc aag gtg gca gta 96 His Met Glu Ala Ala Val Thr Gln Ser Pro Arg Ser Lys Val Ala Val 20 25 aca gga gga aag gtg aca ttg agc tgt cac cag act aat aac cat gac 144 Thr Gly Gly Lys Val Thr Leu Ser Cys His Gln Thr Asn Asn His Asp 40 tat atg tac tgg tat cgg cag gac acg ggg cat ggg ctg agg ctg atc 192 Tyr Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu Ile cat tac tca tat gtc gct gac agc acg gag aaa gga gat atc cct gat 240 His Tyr Ser Tyr Val Ala Asp Ser Thr Glu Lys Gly Asp Ile Pro Asp 75 65 ggg tac aag gcc tcc aga cca agc caa gag aat ttc tct ctc att ctg 288 Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile Leu 90 gag ttg gct tcc ctt tct cag tca gct gta tat ttc tgt gcc agc agc Glu Leu Ala Ser Leu Ser Gln Ser Ala Val Tyr Phe Cys Ala Ser Ser 105 100 gat ttc gcc ggg aca ggg ggc ttc tat gaa cag tac ttc ggt ccc ggc 384 Asp Phe Ala Gly Thr Gly Gly Phe Tyr Glu Gln Tyr Phe Gly Pro Gly 120 115 402 acc agg ctc acg gtt tct

Asp Tyr Asn Gln Gly Lys Leu Ile Phe Gly Gln Gly Thr Lys Leu Ser

<210> 46 <211> 134

130

Thr Arq Leu Thr Val Ser

```
<212> PRT
<213> Homo sapiens
<400> 46
Met Gly Ser Arg Let
1
```

Met Gly Ser Arg Leu Phe Phe Val Val Leu Ile Leu Leu Cys Ala Lys
1 5 10 15

His Met Glu Ala Ala Val Thr Gln Ser Pro Arg Ser Lys Val Ala Val 20 25 30

Thr Gly Gly Lys Val Thr Leu Ser Cys His Gln Thr Asn Asn His Asp 35 40 45

Tyr Met Tyr Trp Tyr Arg Gln Asp Thr Gly His Gly Leu Arg Leu Ile 50 60

His Tyr Ser Tyr Val Ala Asp Ser Thr Glu Lys Gly Asp Ile Pro Asp 65 70 75 80

Gly Tyr Lys Ala Ser Arg Pro Ser Gln Glu Asn Phe Ser Leu Ile Leu 85 90 95

Glu Leu Ala Ser Leu Ser Gln Ser Ala Val Tyr Phe Cys Ala Ser Ser 100 105 110

Asp Phe Ala Gly Thr Gly Gly Phe Tyr Glu Gln Tyr Phe Gly Pro Gly 115 120 125

Thr Arg Leu Thr Val Ser 130

<210> 47 <211> 9 <212> PRT <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide ♥

<400> 47 Lys Ile Phe Gly Ser Leu Ala Phe Leu 1 5

<210> 48 <211> 10 <212> PRT <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic
 peptide

```
Thr Leu Gln Gly Leu Gly Ile Ser Trp Leu
<210> 49
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 49
Val Met Ala Gly Val Gly Ser Pro Tyr Val
<210> 50
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 50
Val Leu Gln Gly Leu Pro Arg Glu Tyr Val
 1 5
<210> 51
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 51
His Leu Tyr Gln Gly Gln Trp
 <210> 52
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       peptide
```

```
<400> 52
Arg Leu Leu Gln Glu Thr Glu Leu Val
<210> 53
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 53
Lys Ile Pro Val Ala Ile Lys Val Leu
 1
<210> 54
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 54
Cys Leu Thr Ser Thr Val Gln Leu Val
      5
 1
<210> 55
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
      peptide
 <400> 55
 Gln Leu Met Pro Tyr Gly Cys Leu Leu
                  5
 <210> 56
 <211> 9
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<400> 56
Val Leu Val Lys Ser Pro Asn His Val
<210> 57
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 57
Asp Ile Asp Glu Thr Glu Tyr His Ala
<210> 58
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 58
Asp Leu Leu Glu Lys Gly Glu Arg Leu
                  5
<210> 59
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
Glu Leu Val Ser Glu Phe Ser Arg Met
<210> 60
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
```

```
<400> 60
Glu Leu Val Ser Glu Phe Ser Arg Met Ala
                 5
<210> 61
<211> 9
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 61
Leu Val Ser Glu Phe Ser Arg Met Ala
<210> 62
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 62
Asp Leu Val Asp Ala Glu Glu Tyr Leu
          5
 1
<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
Thr Leu Ser Pro Gly Lys Asn Gly Val
 1
<210> 64
<211> 9
 <212> PRT
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      peptide
```

<400> 64 Lys Leu Val Gly Lys Leu Asn Trp Ala 1 5