Comparing RDBMS, Data Warehouse, Data Lake, and Lakehouse

Data Platforms Comparison: RDBMS vs. Data Warehouse vs. Data Lake vs. Lakehouse

Abdel Dadouche DJZ Consulting

adadouche@hotmail.com

@adadouche

Traditional RDBMS

Definition:

- Relational Database Management Systems store structured data in predefined schemas (tables, rows, columns).
- Using a schema-on-write approach

Characteristics:

- ACID transactions
- Optimized for OLTP (Online Transaction Processing)
- Strong consistency and data integrity

Schema:

- Example: Customer table → CustomerID, Name, Email
- Use Cases: Banking systems, ERP, CRM

Data Warehouse

Definition:

A centralized system for storing structured, <u>historical</u> data for analytics.

Characteristics:

- Optimized for OLAP (complex queries, reporting)
- Schema-on-write (structured before loading)
- Uses star or snowflake schemas

Schema Example:

- Sales Fact Table → Date, Customer, Product, Revenue (with dimension tables)
- Use Cases: Business Intelligence (BI), dashboards, trend analysis

Data Lake

Definition:

Scalable storage system for structured, semi-structured, and unstructured data.

Characteristics:

- Schema-on-read (schema applied when queried)
- Stores raw data in multiple formats (CSV, JSON, Parquet, images, videos)
- High scalability and low cost

Schema Example:

- Raw files (csv, txt, json, parquet...Lakehouse) in object storage (e.g., S3 buckets, HDFS)
- Use Cases: Machine learning, advanced analytics, IoT data, raw log storage

Lakehouse

Definition:

Hybrid architecture that unifies Data Lake and Data Warehouse capabilities.

Characteristics:

- ACID transactions with scalable data storage
- Handles structured + unstructured data
- Supports BI, ML, and AI workloads
- Uses open file formats (Parquet, Delta Lake, Iceberg)
- Schema Example (Medallion Architecture):
 - Bronze Layer: Raw data
 - Silver Layer: Cleaned & conformed
 - Gold Layer: Curated, business-ready data
- Use Cases: Self-service BI, ML pipelines, unified enterprise analytics

Comparison Table

Feature	RDBMS	Data Warehouse	Data Lake	Lakehouse
Data Types	Structured	Structured	All (structured + raw)	All (structured + raw)
Data Format	Closed proprietary format	Closed proprietary format	Open format	Open format
Schema	Schema-on-write	Schema-on-write	Schema-on-read	Both
Workload Optimized For	OLTP	OLAP	Big data & ML	BI + ML/AI
ACID Transactions	Yes	Limited	No	Yes
Scalability & Cost	Moderate	Expensive	Highly scalable, low- cost	Scalable, cost-effective

Source: https://www.qlik.com/us/data-lake/data-lakehouse

Data Warehouse

Data Lake

Lakehouse

Structured, Semi-Structured and Unstructured Data

Key Takeaway

RDBMS → Operational systems

Data Warehouse → Historical structured analytics

Data Lake → Scalable raw data storage

• Lakehouse → Unified platform for BI + ML + AI

References

- Inmon, W.H. (2005) <u>Building the Data Warehouse</u>.
- Kimball, R. (2013) The Data Warehouse Toolkit.
- Stonebraker, M. (2024). What Goes Around Comes Around... And Around...?
- Azure Data Lake
- Databricks (2020). The Lakehouse Architecture.
- Google Cloud BigQuery