

COMPARISON BETWEEN DIFFERENCIAL EVOLUTION AND SIMULATED ANNEALING ALGORITHMS APPLIED TO THE CONSTRUCTAL DESIGN OF THE DOUBLE-T SHAPED CAVITIES

G. V. Gonzales, L. A. Isoldi, L. A. O. Rocha, E. D. dos Santos e A. J. Silva Neto

Programa de Pós-Graduação em Modelagem Computacional - FURG

Outubro de 2018

- Introdução
 - Motivação e Objetivos
 - Breve Estado da Arte
- Modelagem Matemática e Numérica
- Otimização
 - Design Construtal
 - Configuração dos Algoritmos
- Resultados
- Conclusão
- Referências
- Agradecimentos

INTRODUÇÃO: MOTIVAÇÃO

s Com a miniaturização dos circuitos eletrônicos e desenvolvimento de dispositivos cada vez mais compactos, técnicas tradicionais de troca térmica por convecção forçada não são mais suportadas. Alternativas apontam para cavidades ou caminhos com material de alta condutibilidade.

INTRODUÇÃO: OBJETIVOS

- Otimizar parcialmente uma cavidade em forma de Duplo-T;
- Comparar os resultados de duas meta-heurísticas aplicadas ao problema
- Analisar diferentes parâmetros de cada algoritmo;
- Avaliar estatisticamente as diferenças entre os resultados da reprodução dos efeitos dos graus de liberdade sobre a geometria ótima e a temperatura máxima minimizada;
- Recomendar não só o algoritmo mas também a configuração de parâmetros mais adequada ao problema de otimização;

INTRODUÇÃO: Breve Estado da Arte

- Cavidade em formato de "C"e "T"em Biserni et. al. (2004).
- Cavidade em forma de "H"em Biserni et. al. (2007).
- Cavidade em forma de "Y"em (Lorenzini et. al. (2011).
- Cavidade em forma de "Y"aplicação do Algoritmo Genético em Lorenzini et. al.(2014).
- Comparação entre aplicação do SA com GA na otimização da cavidade em forma de Y em Gonzales et. al. (2015a).
- Otimização parcial até 3 graus de liberdade da cavidade em duplo-T em Gonzales et. al. (2015b).

Hipóteses Simplificativas:

- Regime Permanente
- 2. Geração uniforme de calor
- Condutividade térmica constante
- Domínio bidimensional

$$\frac{\partial}{\partial x} \left(k \frac{\partial \theta}{\partial x} \right) + \frac{\partial}{\partial y} \left(k \frac{\partial \theta}{\partial y} \right) + \frac{\partial}{\partial z} \left(k \frac{\partial \theta}{\partial z} \right) + q^{'''} = \rho C_p \frac{\partial \theta}{\partial t} \tag{1}$$

$$\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} + \frac{q'''}{k} = 0 \tag{2}$$

Figura: Domínio Computacional da Cavidade em Forma de Duplo-T.

Restrições:

$$A = HL \tag{3}$$

$$A_c = A_0 + 2A_1 + 2A_2 \tag{4}$$

$$\phi_c = A_c/A \tag{5}$$

Adimensionalização do Problema:

$$\tilde{\theta} = \frac{\theta - \theta_{min}}{q''' \cdot \frac{A}{k}} \tag{6}$$

$$\tilde{x}, \tilde{y}, \tilde{H}_0, \tilde{H}_1, \tilde{H}_2, \tilde{L}_0, \tilde{L}_1, \tilde{L}_2, \tilde{H}, \tilde{L}, \tilde{S}_1 = \frac{x, y, H_0, H_1, H_2, L_0, L_1, L_2, H, L, S_1}{A^{1/2}}$$
(7)

$$\frac{\partial^2 \tilde{\theta}}{\partial \tilde{x}^2} + \frac{\partial^2 \tilde{\theta}}{\partial \tilde{y}^2} + 1 = 0 \tag{8}$$

$$\tilde{\theta}_{max} = \frac{\theta_{max} - \theta_{min}}{q''' \cdot \frac{A}{L}} \tag{9}$$

A função representada pela Eq. 9 é resolvida numericamente através da resolução da Eq. 8 para a determinação dos os campos de temperatura em todo o domínio computacional para diferentes configurações de $(H, L, H_0, L_0, H_1, L_1, H_2, L_2 \in S_1)$ e calculando o $\tilde{\theta}_{max}$ para minimizar o seu valor através da variação da configuração geométrica.

A solução numérica é dada pela aplicação do método de Elementos Finitos (FEM), baseado em elementos triangulares, desenvolvido no ambiente MATLAB®, com o pacote PDE (partial-differential-equations) toolbox.

A malha utilizada é não-uniforme em ambos eixos x e y, e varia de uma geometria para outra. O tamanho é de 80649 mil elementos.

OTIMIZAÇÃO

A metodologia de otimização aplicada neste trabalho utiliza-se do método Constructal Design associado as meta-heurísticas de Evolução Diferencial e Recozimento Simulado.

- Constructal Desing: para definição dos objetivos, restrições, graus de liberdade e espaço de busca.
- Algoritmos de Otimização: neste trabalho aplicamos os algoritmos de Evolução Diferencial e Recozimento Simulado para a obtenção das geometrias ótimas.
- Comparação dos Resultados: São utilzidos os valores de média entre 30 execuções de cada algoritmo e comparados com os melhores resultados encontrados entre todas as rodadas.

Constructal Design

Definição dos Graus de Liberdade e Restrições:

- Nove variáveis $(H, L, H_0, L_0, H_1, L_1, H_2, L_2 \in S_1)$;
- Quatro restrições $(A, A_c, A_1 \in A_2)$;

$$\phi_c = A_c/A = \tilde{H}_0 \tilde{L}_0 + 2\phi_1 + 2\phi_2 \tag{10}$$

$$\phi_1 = \tilde{H}_1 \tilde{L}_1 \tag{11}$$

$$\phi_2 = \tilde{H}_2 \tilde{L}_2 \tag{12}$$

Temos cinco graus de liberdade $(H/L, H_0/L_0, H_1/L_1, H_2/L_2)$ e S_1/H_0) para o fechamento das equações;

Constructal Design

- Durante o processo de otimização, foram mantidos constantes os valores das restrições ($\phi_c = 0.1, \phi_1 = \phi_2 = 0.015$)
- O grau de liberdade H/L foi variado entre $0.3 = \langle H/L \langle = 30 \rangle$
- Foram variados os graus de liberdade: H_0/L_0 , H_1/L_1 , H_2/L_2 e S_1/H_0 .

Configurações dos Algoritmos

Tabela: Versões do Algoritmo Differential Evolution.

	DE1	DE2	DE3	DE4
\overline{F}	1,5	2,0	1,5	2,0
Taxa Cruz.	0,7	0,9	0,7	0,9
Tipo	$\mathrm{rand}/1/\mathrm{bin}$	$\mathrm{rand}/1/\mathrm{bin}$	$\mathrm{best}/2/\mathrm{bin}$	$\mathrm{best}/2/\mathrm{bir}$
Iter	25 G x 20 I = 500	-	-	-

Configurações dos Algoritmos

Tabela: Versões do Algoritmo Simulated Annealing.

	SA_E	SA_B	SA_BE	SA_C1	\overline{SA}_{C2}
C. Schedule	Exponencial	Boltz	BoltzExp	ConstExp1	ConstEx
$\overline{\text{StallIterLimit.}}$	250	-	-	-	-
Reannealing	150	-	-	-	-
Iter	500	-	-	-	-

Resultados

Resultado...

Conclusão

Conclusão...

Referências

Referências...

Agradecimentos

Agradecimentos...

