1. Let G be a simple graph such that $\delta(G) = k \ge 2$. Prove that G contains a cycle on at least k+1 vertices. (3 pts extra credit: Give an example that demonstrates this result is best possible.)

Solution:

Let G be a simple graph such that $\delta(G) = k \ge 2$. Let u be the endpoint of a maximal length path in G. Since P is maximal, every neighbor of u is in V(P). Hence, since u has at least k neighbors, P has at least k edges. Let v be the farthest neighbor of u's along P. Then there is a uv-path that has length k, but there is also edge uv. Hence, there is a cycle of length k+1. Consider the graph below, which has minimum degree 2 with C_3 as the maximum length cycle, as a demonstration that this result is best possible:

2. Let *G* be a connected graph on *n* vertices. Prove that *G* has exactly one cycle if and only if *G* has exactly *n* edges.

Solution:

_

Suppose G has exactly one cycle and G is connected on n vertices. Let C_k be the cycle, $k \le n$. If k = n, then G has n edges, as desired. On the other hand, suppose k < n. Consider a graph containing only C_k . To yield G, we must connect n - k vertices to C_k . Yet, each edge added must be a cut-edge in order to avoid creating a cycle. Thus, exactly one edge must be added for each of the n - k missing vertices. Hence, the total number of edges in G is:

$$e(G) = e(C_k) + n - k$$
$$= k + n - k$$
$$= n$$

_

Suppose G is a connected graph on n vertices and n edges. G is not a tree because G has one too many edges to be a tree. Since G is connected but not a tree, G contains a cycle. Remove an edge from cycle C_k in G to produce G' with n vertices and n-1 edges. Since the edge was in a cycle, it is not a cut-edge. Thus, G' is connected on n-1 edges, which means G' is a tree. Therefore, G' is acyclic. Hence, G' is the only cycle in G.

3. Let *G* be a simple graph having no isolated vertex and no *induced* subgraph with exactly two edges. Prove that *G* must be the complete graph.

Solution:

Assume G is a simple graph with no isolated vertices, and no induced subgraph with exactly two edges. Assume, for a contradiction, that G is not complete. That is, there exists $u, v \in V(G)$ such that $uv \notin E(G)$. Since there are no isolated vertices in G, u and v have neighbors. Delete every vertex in G except for u, v, a neighbor of u, and a neighbor

of v. If u and v share one or more neighbors, delete every vertex except u, v, and one vertex from their neighborhood. In either case, the induced subgraph has exactly two edges, a contradiction. Hence, G must be the complete graph. \Box

4. Let d be a sequence d_1, d_2, \dots, d_n be positive integers and assume $n \ge 2$. Prove that there exists a tree T with degree sequence d if and only if $\sum_{i=1}^{n} d_i = 2n - 2$.

Solution:

 \rightarrow

Suppose there exists tree T with degree sequence $d_1, d_2, ..., d_n, n \ge 2$. Then T has n - 1 edges. Hence, the degree sum of T is $\sum_{i=1}^{n} d_i = 2n - 2$, as desired.

<u>(</u>

Let d be a sequence d_1, d_2, \dots, d_n of positive integers and, without loss of generality, suppose they are arranged in non-increasing order. Assume $n \ge 2$. Suppose $\sum_{i=1}^n d_i = 2n-2$. I claim $d_n = d_{n-1} = 1$. Otherwise, if either $d_{n-1} \ge 2$ and $d_n = 1$, or if $d_{n-1}, d_n \ge 2$, then $\sum_{i=1}^n d_i \ge 2n-1$, which is a contradiction. Let $\Delta = \max_{1 \le i \le n} d_i$. The maximum Δ could be is when all the other terms of d are equal to 1. In this extremal case, we have:

$$\sum_{i=1}^{n} d_i = 2n - 2 = \Delta + n - 1.$$

Which means,

$$n-1=\Delta$$

in this extremal case. Hence, in general, $\Delta \le n-1$. Furthermore, for n>2, $\Delta \ge 2$, for otherwise, $\sum_{i=1}^n d_i = n-2$, a contradiction. Proceeding inductively on n, when n=2, d=1,1, which is certainly the degree sequence of a tree. Let $2 < k \in \mathbb{N}$. For our inductive hypothesis, suppose that for a non-increasing sequence $d=d_1,d_2,\cdots,d_k$ of positive integers where $\sum_{i=1}^k d_i = 2k-2$ there exists a tree with degree sequence d. Consider the sequence of positive integers arranged in non-increasing order $d'=d'_1,d'_2,\cdots,d'_{k+1}$ where $\sum_{i=1}^{k+1} d'_i = 2(k+1)-2$. Now, remove d'_{k+1} from the sequence and subtract 1 from $d'_s \ge 2$, $1 \le s < k$, $(d'_s$ must exists since $\Delta \ge 2$) to create d''. Evaluating the sum of the terms in d'', we have:

$$\sum_{i=1}^{k} d_i^{"} = 2(k+1) - 2 - 2$$
$$= 2k + 2 - 4$$
$$= 2k - 2.$$

Hence, by the inductive hypothesis, there exists a tree T with degree sequence d''. In order to get a tree with degree sequence d', we simply add a vertex v to T and an edge from v to a vertex with degree $d'_s - 1$ in T. Since this is merely adding a leaf to a tree, the resulting graph must also be a tree.