A Micro→Macro Bridge for Self-Interacting Dark Matter: SU(2) Skyrme Solitons with Profile-Locked Predictions

Noah Karver https://github.com/Voxtrium/GR-DM-Interaction-Theory

August 13, 2025

Abstract

We present a minimal, calibration-to-prediction framework for self-interacting dark matter (SIDM) based on an SU(2) Skyrme effective field theory (EFT). A single hedgehog soliton profile is solved once and reused everywhere, fixing three dimensionless "shape constants" that lock (i) the mass-size relation, (ii) the per-mass transfer cross-section normalization at low velocity, and (iii) a finite-size suppression scale that governs the decline of σ_T/m with velocity. Using two measurements at dwarf scales—the particle mass m and the low-v anchor $(\sigma_T/m)_0$ —we algebraically determine the EFT couplings (K_s, e) and then predict $\sigma_T/m(v)$ from dwarfs to clusters with no per-halo retuning. The prediction includes the s-wave effective-range expansion and a profile-derived transfer factor $C_T(k)$; an optional, discrete internal mode with $m_{\phi} \sim R_*^{-1}$ further suppresses high-v scattering (not used in baseline). On the renormalization side, in an HLS-matched, background-field scheme, the one-loop divergences renormalize the $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ operators equally along the a=1 line, making $X=eK_s$ marginal at that order (details omitted here). We also record a thin FRW "bridge" that feeds these micro scales into a conserved continuity system via horizon-entropy source terms; it is fully gateable and not used in baseline. The micro sector is unitary and predictive; the macro source is intentionally minimal and testable (and reduces to Λ CDM when gated off).

1 Microphysics: SU(2) Skyrme soliton (locked profile)

Field and Lagrangian. Let $U(x) \in SU(2)$ and $L_{\mu} \equiv U^{\dagger} \partial_{\mu} U$. We use the Skyrme normalization

$$\mathcal{L} = \frac{F^2}{16} \operatorname{Tr}(L_{\mu}L^{\mu}) + \frac{1}{32e^2} \operatorname{Tr}[L_{\mu}, L_{\nu}]^2, \qquad K_s \equiv F/2.$$
 (1)

For bookkeeping one may equivalently write in O(3) unit vector components H with |H| = 1:

$$\mathcal{L} = \frac{K_s^2}{2} (\partial H)^2 + \frac{1}{4e^2} (\partial H \times \partial H)^2, \qquad [K_s] = \text{GeV}, \ [e] = 1.$$
 (2)

Hedgehog and dimensionless radius. Use $U(r) = \cos f(r) + i(\tau \cdot \hat{r}) \sin f(r)$ with $f(0) = \pi$, $f(\infty) = 0$ and

$$x \equiv eK_s r. \tag{3}$$

Solving the static EOM by shooting yields a unique regular profile f(x) with near-origin series $f(x) = \pi - ax + bx^3 + \cdots$, $b = a^3/[2(5+2a^2)]$ (regularity). A representative refined shooting slope is

$$a_{\text{shoot}} = 2.0750000000000.$$
 (4)

This is the dimensionless shooting parameter that defines the profile solution in our conventions.

Canonical EOM and energy density (" x^2 inside ε "). With the convention $x \equiv eK_s r$, the canonical hedgehog EOM and the dimensionless energy density used for all integrals are

$$(x^{2} + 2\sin^{2} f) f_{xx} + 2xf_{x} + \sin(2f) \left[f_{x}^{2} - 1 - \frac{\sin^{2} f}{x^{2}} \right] = 0,$$
 (5)

$$\varepsilon(x) = x^2 f_x^2 + 2\sin^2 f + 2\sin^2 f f_x^2 + \frac{\sin^4 f}{x^2}.$$
 (6)

We use the " x^2 inside ε " convention (this preserves invariants under the usual mapping to " x^2 outside"). The dimensionless energy integral is $E = (K_s/e) 4\pi \int_0^\infty \varepsilon(x) dx$.

Locked shape constants from the solved profile. Define

$$c_m \equiv 4\pi \int_0^\infty \varepsilon \, dx, \qquad c_R \equiv \sqrt{\frac{\int_0^\infty x^2 \varepsilon \, dx}{\int_0^\infty \varepsilon \, dx}}, \qquad c_\sigma \equiv \frac{\pi c_R^2}{c_m}.$$
 (7)

From the EOM-consistent refined profile we find

$$c_m = 147.565, c_R = 1.24220, c_\sigma = 0.032851.$$
 (8)

What these fix

The micro observables are

$$m = \frac{c_m K_s}{e}, \qquad R_* = \frac{c_R}{e K_s}, \qquad \left(\frac{\sigma_T}{m}\right)_{\text{nat}} = \frac{c_\sigma e}{K_s^3}, \qquad X \equiv e K_s.$$
 (9)

Given a dwarf-scale anchor $(m, (\sigma_T/m)_0)$, convert $(\sigma_T/m)_0$ to natural units and solve

$$K_s^2 = \frac{c_m c_\sigma}{m \left(\sigma_T / m\right)_{\text{nat}}}, \qquad e = \frac{c_m K_s}{m}.$$
 (10)

For m = 6.283 GeV and $(\sigma_T/m)_0 = 0.10$ cm² g⁻¹, the calibration gives

$$K_s = 0.04104958 \text{ GeV}, \quad e = 0.96410663, \quad X = 0.039576176 \text{ GeV},$$
 (11)

$$R_* = 31.38757 \text{ GeV}^{-1} \simeq 6.1936 \times 10^{-13} \text{ cm}, \quad \mu = \frac{m}{2} = 3.1415 \text{ GeV}.$$
 (12)

A useful profile scale is

$$v_{R_*} \equiv \frac{1}{\mu R_*} = 0.01015 \, c \approx 3.04 \times 10^3 \, \,\mathrm{km \, s^{-1}},$$
 (13)

which matches the turnover seen in $C_T(k)$ (e.g. $C_T \approx 0.5$ near $v \simeq 3000 \text{ km s}^{-1}$ in our calibration run). The low-v scattering length fixed by the anchor is $a = \sqrt{m(\sigma_T/m)_{\text{nat}}/(4\pi)} = 1.5130465 \times 10^1 \text{ GeV}^{-1}$ (here a is the physical scattering length).

An optional threshold scale is $m_{\phi} \sim R_{*}^{-1} \approx 3.186 \times 10^{-2}$ GeV.

2 Predictive scattering: $\sigma_T/m(v)$ from one curve

Effective range (s-wave) and transfer factor. Let $k = \mu v$ (with v in units of c), and write $k \cot \delta_0(k) = -1/a + (r_e/2)k^2$, where a is the physical scattering length (not to be confused with the near-origin shooting slope a_{shoot}). We set $r_e = \xi R_*$ with $\xi = \mathcal{O}(1)$ (e.g. $\xi = 2/3$). The per-mass transfer cross-section is

$$\frac{\sigma_T}{m}(v) = \left(\frac{\sigma_T}{m}\right)_0 \frac{1}{\left(1 - \frac{1}{2}ar_e k^2\right)^2 + (ak)^2} \times C_T(k),\tag{14}$$

where

$$C_T(k) = \frac{1}{4\pi} \int d\Omega \left(1 - \cos\theta\right) \left| F_{\text{prof}}(q) \right|^2, \qquad q = 2k \sin(\theta/2), \tag{15}$$

and the profile-derived form factor is

$$F_{\text{prof}}(q) = \frac{\int_0^\infty dx \ \varepsilon(x) \ j_0((q/X) x)}{\int_0^\infty dx \ \varepsilon(x)}, \qquad j_0(z) = \frac{\sin z}{z}. \tag{16}$$

For a single internal mode, multiply by $S_{\phi}(q) = 1/(1 + q^2/m_{\phi}^2)$ with $m_{\phi} \sim R_*^{-1}$. This discrete option is not used in our baseline predictions.

What is fixed vs. what is chosen. Once $(m, (\sigma_T/m)_0)$ are set at dwarfs, (K_s, e, R_*) are fixed and the shape of $\sigma_T/m(v)$ follows from the universal profile. The only residual choice is $\xi = \mathcal{O}(1)$. If stronger high–v suppression is demanded by data, m_{ϕ} is a single, transparent knob.

3 Renormalization hygiene (sketch; details on request)

In an HLS-matched scheme with background-field gauge, one-loop divergences renormalize $\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ equally along a=1, so $X=eK_s$ is marginal at that order; we keep details off this note.

4 Macro bridge (optional; not used here)

We have a thin FRW "bridge" that injects micro scales into continuity equations via a horizon–entropy source. It is fully gateable (set to zero) so the micro result stands alone; details omitted here.

5 What is already done; what is next

Done: (i) locked hedgehog profile and constants (c_m, c_R, c_σ) ; (ii) algebraic calibration (K_s, e) to $(m, (\sigma_T/m)_0)$; (iii) $\sigma_T/m(v)$ with effective range + profile transfer $C_T(k)$ and optional m_ϕ (off in baseline); (iv) one-loop equality along a = 1 (sketch; details on request).

Next: (1) full phase–shift computation (beyond ER) to fix $(a, r_e, ...)$ directly from the soliton potential; (2) irreducible two–loop check; (3) astrophysical comparison: dwarfs \rightarrow clusters with no per–halo knobs; (4) empirical calibration of the thin FRW bridge if used (else set it to zero and the micro result stands on its own).

6 Predictions and falsifiability

- Velocity trend: one curve anchored at dwarfs predicts a finite–size decline toward clusters; v_{R_*} is fixed by the calibrated R_* and μ .
- Optional threshold: an internal mode with $m_{\phi} \sim R_{*}^{-1}$ provides additional high–v suppression if demanded by data (not used in baseline).
- No per-halo retuning: after dwarf anchoring, the same parameters apply to all systems (predictivity).
- RG stability (one loop, sketch): $X = eK_s$ marginal \Rightarrow the calibrated mass/size do not undergo a leading runaway.
- Macro bridge: optional and gateable; not used in baseline.

v (km/s)	1000	2000	3000
σ_T/m (baseline; anchored at 0.10)	~ 0.09	~ 0.07	~ 0.05