Week 1: Vectors

1. Vectors in \mathbb{R}^2

Definition 1.1. A vector in \mathbb{R}^2 is an ordered pair $\mathbf{v} = (x, y)$ where $x, y \in \mathbb{R}$. The real numbers x, y are called the *coordinates* of \mathbf{v} . Let $\mathbf{v} = (x, y)$ and $\mathbf{w} = (r, s)$ be two vectors in \mathbb{R}^2 . We say write $\mathbf{v} = \mathbf{w}$ if x = r and y = s. The zero vector is $\mathbf{0} = (0, 0)$.

Example 1.2.

- (1) $\mathbf{v}=(\pi^2,e)$ is a vector in \mathbb{R}^2 . In short math-speak, $(\pi^2,e)\in\mathbb{R}^2$. The coordinates of \mathbf{v} are π^2 and e.
- (2) $\mathbf{w} = (1+i,3)$ is not a vector in \mathbb{R}^2 since $1+i \notin \mathbb{R}$ (here $i = \sqrt{-1}$).
- (3) If $\mathbf{x} = (2,5)$ and $\mathbf{y} = (3,5)$, then $\mathbf{x} \neq \mathbf{y}$ since it is false that both coordinates are equal. That is, $2 \neq 3$.

Definition 1.3. Let $\mathbf{v} = (x, y)$ be any vector in \mathbb{R}^2 .

- (1) The magnitude of **v** is defined to be the non-negative real number $\|\mathbf{v}\| = \sqrt{x^2 + y^2}$.
- (2) The vector \mathbf{v} is called a *unit vector* if $\|\mathbf{v}\| = 1$.

Example 1.4.

- (1) The vector $\mathbf{v} = (3,4)$ is not a unit vector since $\|\mathbf{v}\| = \sqrt{3^2 + 4^2} = 5 \neq 1$.
- (2) The vector $\mathbf{w} = (\frac{3}{5}, \frac{4}{5})$ is a unit vector since $\|\mathbf{w}\| = \sqrt{(\frac{3}{5})^2 + (\frac{4}{5})^2} = 1$.

Definition 1.5. Let $\mathbf{v} = (x, y)$ and $\mathbf{w} = (r, s)$ be two vectors in \mathbb{R}^2 and let $\alpha \in \mathbb{R}$.

(1) We define vector addition \boxplus on \mathbb{R}^2 by the rule $\mathbf{v} \boxplus \mathbf{w} = (x+r, y+s)$ where + is the usual addition in \mathbb{R} . Well-definedness of \boxplus allows the implication

$$\mathbf{v}_1 = \mathbf{v}_2 \Longrightarrow \mathbf{v}_1 \boxplus \mathbf{w} = \mathbf{v}_2 \boxplus \mathbf{w}$$

(2) We define scalar multiplication $\mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ by the rule $\alpha \mathbf{v} = (\alpha x, \alpha y)$. Well-definedness of scalar multiplication allows the implication

$$\mathbf{v}_1 = \mathbf{v}_2 \Longrightarrow \alpha \mathbf{v}_1 = \alpha \mathbf{v}_2$$

Example 1.6. If $\mathbf{v} = (3,5)$ and $\mathbf{w} = (\frac{1}{3},2)$, then $\mathbf{v} \boxplus \mathbf{w} = (3+\frac{1}{3},5+2) = (\frac{10}{3},7)$. If $\alpha = \frac{3}{4}$, then $\alpha \mathbf{v} = ((\frac{3}{4})(3),(\frac{3}{4})(5)) = (\frac{9}{4},\frac{15}{4})$.

Definition 1.7. Let \mathbf{v}, \mathbf{w} be two nonzero vectors in \mathbb{R}^2 .

(1) We say that **v** is *parallel* to **w** if there exists a nonzero real number $\alpha \in \mathbb{R}$ such that $\mathbf{v} = \alpha \mathbf{w}$.

1

(2) We say that \mathbf{v} and \mathbf{w} have the *same direction* if there exists a positive real number $\alpha \in \mathbb{R}$ such that $\mathbf{v} = \alpha \mathbf{w}$.

Theorem 1.8.

- (1) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$ for all $\mathbf{v} \in \mathbb{R}^2$ and all $\alpha \in \mathbb{R}$.
- (2) For every nonzero vector $\mathbf{v} \in \mathbb{R}^2$, there exists a unit vector $\mathbf{u} \in \mathbb{R}^2$ in the same direction as \mathbf{v} .

Proof.

(1) Choose any arbitrary $\mathbf{v} \in \mathbb{R}^2$ and any arbitrary real number (scalar) $\alpha \in \mathbb{R}$. By Definition 1.1, $\mathbf{v} = (x, y)$ for some $x, y \in \mathbb{R}$. By Definition 1.5, we have $\alpha \mathbf{v} = \alpha(x, y) = (\alpha x, \alpha y)$. It follows that

$$\|\alpha \mathbf{v}\|$$

$$= \|(\alpha x, \alpha y)\|$$

$$= \sqrt{(\alpha x)^2 + (\alpha y)^2} \text{ (Definition 3(1))}$$

$$= \sqrt{\alpha^2 x^2 + \alpha^2 y^2} \text{ (Property of } \mathbb{R})$$

$$= \sqrt{\alpha^2 (x^2 + y^2)} \text{ (Property of } \mathbb{R})$$

$$= |\alpha| \sqrt{x^2 + y^2} \text{ (Property of } \mathbb{R})$$

$$= |\alpha| \|\mathbf{v}\| \text{ (Definition 3(1))}$$

(2) Choose any vector $\mathbf{v} \in \mathbb{R}^2$. By Definition 1, we can write $\mathbf{v} = (x, y)$ for some $x, y \in \mathbb{R}$. Since \mathbf{v} is a nonzero vector, it must be the case that $\|\mathbf{v}\|$ is a nonzero (and hence positive) real number. We put $\mathbf{u} = \frac{1}{\|\mathbf{v}\|}\mathbf{v}$ and verify that \mathbf{u} is a unit vector and that \mathbf{u} is in the same direction as \mathbf{v} . By (1) above, we have the equality $\|\mathbf{u}\| = \left\|\frac{1}{\|\mathbf{v}\|}\mathbf{v}\right\| = \left|\frac{1}{\|\mathbf{v}\|}\right| \|\mathbf{v}\| = \frac{\mathbf{v}}{\|\mathbf{v}\|} \|\mathbf{v}\| = 1$. This proves that \mathbf{u} is a unit vector. Since $\frac{1}{\|\mathbf{v}\|} > 0$ and $\mathbf{u} = \frac{1}{\|\mathbf{v}\|}\mathbf{v}$, it follows from Definition 1.7(2) that \mathbf{u} is in the same direction as \mathbf{v} .

Theorem 1.9. The following properties hold in the Euclidean plane \mathbb{R}^2 .

- (A1) $\mathbf{v} \boxplus (\mathbf{w} \boxplus \mathbf{z}) = (\mathbf{v} \boxplus \mathbf{w}) \boxplus \mathbf{z}$ for all $\mathbf{v}, \mathbf{w}, \mathbf{z} \in \mathbb{R}^2$ (Associative Law of Addition)
- (A2) $\mathbf{v} \boxplus \mathbf{w} = \mathbf{w} \boxplus \mathbf{v}$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ (Commutative Law of Addition)
- (A3) The vector $\mathbf{0}$ is the unique vector in \mathbb{R}^2 such that $\mathbf{v} \boxplus \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$ (Additive Identity)
- (A4) For each $\mathbf{v} \in \mathbb{R}^2$, there exists a unique $\mathbf{w} \in \mathbb{R}^2$ such that $\mathbf{v} \boxplus \mathbf{w} = \mathbf{0}$ (Additive inverse)
- (S1) $1\mathbf{v} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$
- (S2) $\alpha(\mathbf{v} \boxplus \mathbf{w}) = \alpha \mathbf{v} \boxplus \alpha \mathbf{w}$ for all $\alpha \in \mathbb{R}$ and for all $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$
- (S3) $(\alpha + \beta)\mathbf{v} = \alpha \mathbf{v} \boxplus \beta \mathbf{v}$ for all $\alpha, \beta \in \mathbb{R}$ and for all $\mathbf{v} \in \mathbb{R}^2$
- (S4) $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$ for all $\alpha, \beta \in \mathbb{R}$ and for all $\mathbf{v} \in \mathbb{R}^2$

Proof. We prove (A3) and (S2). The rest are proved similarly.

- (A3) We need to prove that the vector $\mathbf{0}$ has the property that $\mathbf{v} \boxplus \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$ and that $\mathbf{0}$ is the only vector with said property. Choose any arbitrary vector $\mathbf{v} \in \mathbb{R}^2$. By Definition (1), we can write $\mathbf{v} = (x,y)$ for some $x,y \in \mathbb{R}$ and $\mathbf{0} = (0,0)$. It follows that $\mathbf{v} \boxplus \mathbf{0} = (x,y) \boxplus (0,0) = (x+0,y+0) = (x,y) = \mathbf{v}$ (notice that the second equality follows from Definition 1.5(1)). Now suppose that there exists another vector $\mathbf{z} \in \mathbb{R}^2$ such that $\mathbf{v} \boxplus \mathbf{z} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$. Then it is certainly true that $\mathbf{0} \boxplus \mathbf{z} = \mathbf{0}$ (just set $\mathbf{v} = \mathbf{0}$). Since $\mathbf{v} \boxplus \mathbf{0} = \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^2$, it certainly true that $\mathbf{z} \boxplus \mathbf{0} = \mathbf{z}$. It nowfollows from the Commutative Law that $\mathbf{0} = \mathbf{0} \boxplus \mathbf{z} = \mathbf{z} \boxplus \mathbf{0} = \mathbf{z}$.
- (S2) Choose any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ and any $\alpha \in \mathbb{R}$. By Definition 1.1, we can write $\mathbf{v} = (x_1, y_1)$ and $\mathbf{w} = (x_2, y_2)$. Now,

```
\alpha(\mathbf{v} \boxplus \mathbf{w})
= \alpha((x_1, y_1) \boxplus (x_2, y_2))

= \alpha(x_1 + x_2, y_1 + y_2) (Definition 1.5(1))

= (\alpha(x_1 + x_2), \alpha(y_1 + y_2)) (Definition 1.5(2))

= (\alpha x_1 + \alpha x_2, \alpha y_1 + \alpha y_2) (Distributive Property in \mathbb{R})

= (\alpha x_1, \alpha y_1) \boxplus (\alpha x_2, \alpha y_2) (Definition 1.5(1))

= \alpha(x_1, y_1) \boxplus \alpha(x_2, y_2) (Definition 1.5(2))

= \alpha \mathbf{v} \boxplus \alpha \mathbf{w}
```

Remark 10.

- (1) From now on, we will simply write $\mathbf{v} + \mathbf{w}$ instead of $\mathbf{v} \boxplus \mathbf{w}$ for vector addition in \mathbb{R}^2 .
- (2) We will denote the unique additive inverse of a vector $\mathbf{v} \in \mathbb{R}^2$ by $-\mathbf{v}$. We write $\mathbf{v} \mathbf{w}$ instead of $\mathbf{v} + (-\mathbf{w})$.

Theorem 11. The following properties hold in the Euclidean plane \mathbb{R}^2 .

- (1) $\alpha \mathbf{0} = \mathbf{0}$ for all $\alpha \in \mathbb{R}$.
- (2) $0\mathbf{v} = \mathbf{0}$ for all $\mathbf{v} \in \mathbb{R}^2$.
- (3) $(-\alpha)\mathbf{v} = \alpha(-\mathbf{v}) = -\alpha\mathbf{v}$ for all $\alpha \in \mathbb{R}$ and for all $\mathbf{v} \in \mathbb{R}^2$.
- (4) $\alpha \mathbf{v} = \mathbf{0}$ implies $\alpha = 0$ or $\mathbf{v} = \mathbf{0}$.

Proof. We prove (1), (3), and (4)

(1) We have $\alpha \mathbf{0} = \alpha (\mathbf{0} + \mathbf{0}) = \alpha \mathbf{0} + \alpha \mathbf{0}$. Indeed, the first equality is (A3) and the second is (S2). Now

$$\alpha \mathbf{0} = \alpha \mathbf{0} + \alpha \mathbf{0}$$

$$\Rightarrow -\alpha \mathbf{0} + \alpha \mathbf{0} = -\alpha \mathbf{0} + (\alpha \mathbf{0} + \alpha \mathbf{0}) \text{ (Definition 5(1))}$$

$$\Rightarrow -\alpha \mathbf{0} + \alpha \mathbf{0} = (-\alpha \mathbf{0} + \alpha \mathbf{0}) + \alpha \mathbf{0} \text{ (Property A1)}$$

$$\Rightarrow \mathbf{0} = \mathbf{0} + \alpha \mathbf{0} \text{ (Property A4)}$$

$$\Rightarrow \mathbf{0} = \alpha \mathbf{0} \text{ (Property A1)}$$

- (3) We have $\alpha(-\mathbf{v}) + \alpha \mathbf{v} = \alpha((-\mathbf{v}) + \mathbf{v}) = \alpha \mathbf{0} = \mathbf{0}$. Indeed, the first equality is (S2), the second is (A4), and the last is (1) above. The equation $\alpha(-\mathbf{v}) + \alpha \mathbf{v} = \mathbf{0}$ says that the additive inverse of $\alpha \mathbf{v}$ is $\alpha(-\mathbf{v})$. But the *unique* additive inverse of $\alpha \mathbf{v}$ is $-\alpha \mathbf{v}$. Therefore, $\alpha(-\mathbf{v}) = -\alpha \mathbf{v}$ as needed. The equality $(-\alpha)\mathbf{v} = -\alpha \mathbf{v}$ is proved similarly.
- (4) The statement to be proved is of the form "If P, then Q or R is true." The standard way to prove this is to assume that P is true, Q is not true and then to show that R must be true. So suppose that $\alpha \mathbf{v} = \mathbf{0}$ and that $\alpha \neq 0$. Then $\alpha^{-1} \in \mathbb{R}$ and we have

$$\alpha \mathbf{v} = \mathbf{0}$$

$$\Rightarrow \alpha^{-1}(\alpha \mathbf{v}) = \alpha^{-1}\mathbf{0} \quad \text{(Definition 5(2))}$$

$$\Rightarrow (\alpha^{-1}\alpha)\mathbf{v} = \alpha^{-1}\mathbf{0} \quad \text{(S4 on the left)}$$

$$\Rightarrow \mathbf{1}\mathbf{v} = \alpha^{-1}\mathbf{0} \quad \text{(Property in } \mathbb{R}\text{)}$$

$$\Rightarrow \mathbf{v} = \alpha^{-1}\mathbf{0} \quad \text{(S1 on the left)}$$

$$\Rightarrow \mathbf{v} = \mathbf{0} \quad \text{(1 above)}$$

2. Lines in \mathbb{R}^n

Definition 2.1. Let $n \geq 1$ be any positive integer. A vector $\mathbf{v} \in \mathbb{R}^n$ is and n-tuple of the form $\mathbf{v} = (x_1, x_2, ..., x_n)$. The zero vector in \mathbb{R}^n is the n-tuple $\mathbf{0} = (0, 0, ..., 0)$. All of the previous definitions and theorems can be generalized in natural way from \mathbb{R}^2 to \mathbb{R}^n .

Definition 2.2. Let $\mathbf{x}_0, \mathbf{v} \in \mathbb{R}^n$ with $\mathbf{v} \neq \mathbf{0}$. A line in \mathbb{R}^n through the point \mathbf{x}_0 in the direction of \mathbf{v} is the set

$$L = L(\mathbf{x}_0, \mathbf{v}) = {\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_0 + t\mathbf{v} \text{ for some } t \in \mathbb{R}}.$$

Remark 2.3. Although there exists a unique line L through \mathbf{x}_0 in the direction of \mathbf{v} , it is not true that L is uniquely represented by the parametric equation $\mathbf{x} = \mathbf{x}_0 + t\mathbf{v}$.

Example 2.4. Here is an example in \mathbb{R}^2 . Let

$$L = {\mathbf{x} \in \mathbb{R}^2 : \mathbf{v} = (2,1) + t(-4,2) \text{ for some } t \in \mathbb{R}}$$

and let

$$N = {\mathbf{x} \in \mathbb{R}^2 : \mathbf{v} = (-2, 3) + t(2, -1) \text{ for some } t \in \mathbb{R}}.$$

We show that L and N represent the same line. In other words, we prove the equality of sets L = N. The standard way to do this is to prove that $L \subseteq N$ (every vector of L must belong to the set N) and that $N \subseteq L$ (every vector of N must belong to the set L).

(\subseteq) Choose any vector $\mathbf{x} \in L$. What does \mathbf{v} look like? Well, according to the way we define L, it must be the case that $\mathbf{x} = (2,1) + t(-4,2)$ for some $t \in \mathbb{R}$. Using our vector algebra, we have

$$\mathbf{x} = (2,1) + t(-4,2)$$

$$= (2,1) + (-4,2) - (-4,2) + t(-4,2)$$

$$= (-2,3) - (-4,2) + t(-4,2)$$

$$= (-2,3) + (t-1)(-4,2)$$

$$= (-2,3) + 2(1-t)(2,-1).$$

Since 2(1-t) is a real number, it follows that $\mathbf{x} \in N$.

(\subseteq) Choose any vector $\mathbf{x} \in N$. It must be the case that $\mathbf{x} = (-2,3) + t(2,-1)$ for some $t \in \mathbb{R}$. Using our vector algebra, we have

$$\mathbf{x} = (-2,3) + t(2,-1)$$

$$= (-2,3) + (4,-2) - (4,-2) + t(2,-1)$$

$$= (2,1) - (4,-2) + t(2,-1)$$

$$= (2,1) - (4,-2) + \frac{t}{2}2(2,-1)$$

$$= (2,1) - (4,-2) + \frac{t}{2}(4,-2)$$

$$= (2,1) + (\frac{t}{2}-1)(4,-2)$$

Since $\frac{t}{2} - 1$ is a real number, it follows that $\mathbf{x} \in L$.

3. Spanning Sets and Planes in \mathbb{R}^n

Definition 3.1. Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m \in \mathbb{R}^n$. We define the *span* of the m vectors to be the set

$$\operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + ... + c_n \mathbf{v}_m\}.$$

An element of Span($\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$) is called a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m$.

Example 3.2. Consider the vectors $\mathbf{u}=(1,1)$ and $\mathbf{v}=(-2,1)$. Then $3\mathbf{u}+\frac{1}{2}\mathbf{v}=3(1,1)+\frac{1}{2}(-2,1)=(2,\frac{7}{2})$ belongs to $\mathrm{Span}(\mathbf{u},\mathbf{v})$. So does $25\mathbf{u}+\pi\mathbf{v}=(25,25)+\pi(-2,1)=(25-2\pi,25+\pi)$. It is reasonable to ask which vectors in \mathbb{R}^2 do or don't belong to $\mathrm{Span}(\mathbf{u},\mathbf{v})$. As it turns out, every vector in \mathbb{R}^2 belongs to $\mathrm{Span}(\mathbf{u},\mathbf{v})$. That is, $\mathrm{Span}(\mathbf{u},\mathbf{v})=\mathbb{R}^2$ as we will prove now.

(\subseteq) Choose any $\mathbf{x} \in \operatorname{Span}(\mathbf{u}, \mathbf{v})$. By Definition 3.1, there exist real numbers $r, s \in \mathbb{R}$ such that $\mathbf{x} = r\mathbf{u} + s\mathbf{v}$. It follows that $\mathbf{x} = r(1,1) + s(-2,1) = (r,r) + (-2s+s) = (r-2s,r+s)$. Since r,s are real numbers, it must be the case that r-2s and r+s are real numbers. It follows that $\mathbf{x} \in \mathbb{R}^2$. (\supseteq) Choose any $\mathbf{x} \in \mathbb{R}^2$ and write $\mathbf{x} = (x, y)$ where $x, y \in \mathbb{R}$. The question is, can we find $r, s \in \mathbb{R}$ such that $\mathbf{x} = r\mathbf{u} + s\mathbf{v}$? This is equivalent to asking if we can find $r, s \in \mathbb{R}$ such that (x, y) = r(1, 1) + s(-2, 1)? This in turn is the same thing as asking if we can find $r, s \in \mathbb{R}$ such that (x, y) = (r - 2s, r + s). We can answer this question if we can solve the system

$$\begin{array}{rcl}
x & = & r - 2s \\
y & = & r + s
\end{array}$$

for the variables r, s. Using the usual methods from high school we find that

$$r = \frac{2y+x}{3}$$
 and $s = \frac{y-x}{3}$.

We now have a formula for writing every (x, y) as a linear combination of **u** and **v**. For example, take x = (2, 5) so that $r = \frac{(2)(5)+2}{3} = \frac{12}{3} = 4$ and $s = \frac{5-2}{3} = 1$. Now check that 4(1,1)+1(-2,1)=(2,5). More generally, we find that if (x,y) is any vector in \mathbb{R}^2 , then

$$r\mathbf{u} + s\mathbf{v} = \frac{2y + x}{3}\mathbf{u} + \frac{y - x}{3}\mathbf{v}$$

$$= \frac{2y + x}{3}(1, 1) + \frac{y - x}{3}(-2, 1)$$

$$= (\frac{2y + x}{3}, \frac{2y + x}{3}) + (\frac{2x - 2y}{3}, \frac{y - x}{3})$$

$$= (\frac{2y + x + 2x - 2y}{3}, \frac{2y + x + y - x}{3})$$

$$= (\frac{3x}{3}, \frac{3y}{3})$$

$$= (x, y).$$

We have verified that every vector (x, y) can be written as a linear combination of **u** and **v** as needed.

Definition 3.3. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be nonparallel vectors. A *plane* in \mathbb{R}^n through the point \mathbf{x}_0 spanned by \mathbf{u}, \mathbf{v} is the set

$$P = P(\mathbf{x}_0, \mathbf{u}, \mathbf{v}) = {\mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{x}_0 + s\mathbf{u} + t\mathbf{v} \text{ for some } s, t \in \mathbb{R}}.$$

Example 3.4. Suppose that P is the plane spanned by $\mathbf{u}=(1,1,0)$ and $\mathbf{v}=(1,-1,1)$ passing through the point (3,0,-2). We determine whether or not (7,-2,1) lies on the plane P. That is, we ask if $(7,-2,1) \in P$. Well, by the definition of P, we know that $(7,-2,1) \in P$ if and only if we can find $s,t \in \mathbb{R}$ such that (7,-2,1)=(3,0,-2)+s(1,1,0)+t(1,-1,1). After some vector algebra, we realize that we are trying to solve

$$3 + s + t = 7$$

 $s - t = -2$
 $-2 + t = 1$.

Considering the first two equations, we add to arrive at 3+2s=5 or s=1. It follows that t=3. Now take these two solutions and plug them into the third. Since -2+3=1 is a true statement, we have found our solutions! We conclude that

$$(7,-2,1) = (3,0,-2) + 1(1,1,0) + 3(1,-1,1)$$

and so $(7, -2, 1) \in P$ as needed.

Exercises Section 1.1: 5, 6(a,c,d,h), 7, 10(a,d), 20-25, 28(d). Due next Wednesday!

5. If $\mathbf{x}_0 = (1,3)$ and $\mathbf{v} = (-2,1)$, determine which of the following points lie on $L(\mathbf{x}_0, \mathbf{v})$.

(a)
$$\mathbf{x} = (-1, 4)$$
 (b) $\mathbf{x} = (7, 0)$ (c) $\mathbf{x} = (6, 2)$

- **6.** Find a parametric representation $L(\mathbf{x}_0, \mathbf{v})$ for each of the following lines. Observe that it is enough to determine \mathbf{x}_0 and \mathbf{v} .
- (a) $\{(x,y) \in \mathbb{R}^2 : 3x + 4y = 6\}.$
- (c) Slope $m = \frac{2}{5}$ passing through the point (3,1).
- (d) Passing through the point (-2,1) parallel to $\mathbf{x} = (1,4) + t(3,5)$.
- (h) Passing through the point (1, 1, 0, -1) parallel to $\mathbf{x} = (2+t, 1-2t, 3t, 4-t)$.
- 7. In \mathbb{R}^n , suppose that $L(\mathbf{x}_0, \mathbf{v}) = L(\mathbf{y}_0, \mathbf{w})$. Prove the following statements.
- (a) There exists $t_0 \in \mathbb{R}$ such that $\mathbf{y}_0 = \mathbf{x}_0 + t_0 \mathbf{v}$.
- (b) The vectors \mathbf{v} and \mathbf{w} are parallel. Hint: It might help to consider the two cases $\mathbf{x}_0 \neq \mathbf{y}_0$ and $\mathbf{x}_0 = \mathbf{y}_0$.
- 10. Find a parametric representation $P(\mathbf{x}_0, \mathbf{u}, \mathbf{v})$ for each of the following planes. Observe that it is enough to determine \mathbf{x}_0, \mathbf{u} , and \mathbf{v} .
- (a) Containing the point (-1,01) and the line $\mathbf{x} = (1,1,1) + t(1,7,-1)$.
- (d) Containing the points (1, 1, -1, 2) and (2, 3, 0, 1) and (1, 2, 2, 3).
- **20.** Assume that \mathbf{u} and \mathbf{v} are parallel vectors in \mathbb{R}^n . Prove that $\mathrm{Span}(\mathbf{u}, \mathbf{v})$ is a line. That is, find vectors $\mathbf{x}_0, \mathbf{y} \in \mathbb{R}^n$ such that $\mathrm{Span}(\mathbf{u}, \mathbf{v}) = L(\mathbf{x}_0, \mathbf{y})$ and then prove that the sets are actually equal.
- **21.** Suppose that $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and fix any $c \in \mathbb{R}$. Prove that $\mathrm{Span}(\mathbf{v} + c\mathbf{w}, \mathbf{w}) = \mathrm{Span}(\mathbf{v}, \mathbf{w})$.
- **22.** Suppose that $\mathbf{v}, \mathbf{w} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$ and fix any $c \in \mathbb{R}$.
- (a) Prove that $c\mathbf{v} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$.
- (b) Prove that $\mathbf{v} + \mathbf{w} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k)$.
- **23.** Consider the line $L(\mathbf{x}_0, \mathbf{v})$ and the plane $P(\mathbf{0}, \mathbf{u}, \mathbf{v})$. Prove that if $L(\mathbf{x}_0, \mathbf{v}) \cap P(\mathbf{0}, \mathbf{u}, \mathbf{v})$ is nonempty, then $\mathbf{x}_0 \in P(\mathbf{0}, \mathbf{u}, \mathbf{v})$.
- **24.** Consider the lines $L(\mathbf{x}_0, \mathbf{v})$ and $L(\mathbf{x}_1, \mathbf{u})$. Prove that $L(\mathbf{x}_0, \mathbf{v}) \cap L(\mathbf{x}_1, \mathbf{u})$ is nonempty if and only if $\mathbf{x}_0 \mathbf{x}_1 \in \operatorname{Span}(\mathbf{u}, \mathbf{v})$.
- **25.** Suppose that $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are nonparallel vectors.
- (a) Prove that if $s\mathbf{x} + t\mathbf{y} = \mathbf{0}$, then s = t = 0.
- (a) Prove that if $a\mathbf{x} + b\mathbf{y} = c\mathbf{x} + d\mathbf{y}$, then a = c and b = d.
- **28(d).** Prove that for each $\mathbf{v} \in \mathbb{R}^n$, there exists a unique $\mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{v} + \mathbf{w} = \mathbf{0}$. In other words, prove that every vector in \mathbb{R}^n has a unique additive inverse.