УДК 512.582

MINIMAL TOPOLOGIES ON THE SEMIGROUPS OF MATRIX UNITS

Markiian KHYLYNSKYI, Pavlo KHYLYNSKYI

Ivan Franko National University of Lviv, Universitetska str., 1, 79000 Lviv, Ukraine e-mail: khymarkiyan@gmail.com, khypavlo@gmail.com

We describe minimal topologies in some class of semigroup topologies on the semigroups of matrix units.

Key words: topology, semigroup topology, minimal topology, semigroups of matrix units

1. Introduction, motivation and main definitions

In this paper all topological spaces are assumed to be Hausdorff.

A topological semigroup is a Hausdorff topological space together with a continuous semigroup operation. If S is a semigroup and τ is a topology on S such that (S,τ) is a topological semigroup, then we shall call τ semigroup topology on S. A semitopological semigroup is a Hausdorff topological space together with a separately continuous semigroup operation. Topological semigroup (S,τ) is said to be minimal if no semigroup topology on S is strictly contained in τ . If (S,τ) is minimal topological semigroup, then τ is called minimal semigroup topology.

The concept of minimal topological groups was introduced independently in the early 1970's by Doitchinov [2] and Stephenson [6]. Both authors were motivated by the theory of minimal topological spaces, which was well understood at that time. More than 20 years earlier L. Nachbin [5] had studied minimality in the context of division rings, and B. Banaschewski [1] investigated minimality in the more general setting of topological algebras.

Let λ be a nonempty set. By B_{λ} we denote the set $\lambda \times \lambda \cup \{0\}$ endowed with the following semigroup operation:

$$(\alpha,\beta)\cdot(\gamma,\delta)=\left\{\begin{array}{ll}(\alpha,\delta),&\beta=\gamma;\\0,&\beta\neq\gamma\end{array}\right.$$

and $(\alpha, \beta) \cdot 0 = 0 \cdot (\alpha, \beta) = 0 \cdot 0 = 0$, for each $\alpha, \beta, \gamma, \delta \in \lambda$. The semigroup B_{λ} is called the *semigroup of* $\lambda \times \lambda$ -matrix units. The semitopological and topological semigroup of matrix units was investigated in [3].

A directed graph (or just digraph) D consists of a nonempty set V(D) of elements called vertices and a set A(D) of ordered pairs of vertices called arcs. We call V(D) the vertex set and A(D) the arc set of D. The order (size) of D is the cardinality of the vertex (arc) set of D. For an arc (u,v) the first vertex u is its tail and the second vertex v is its head. If a tail and a head of arc coincide, then this arc is called a loop. The head and tail of an arc are its end-vertices. A vertex v is a source(source) if v is not a head(tail) for any arc. A digraph H is a subdigraph of a digraph D if $V(H) \subseteq V(D)$, $A(H) \subseteq A(D)$ and every arc in A(H) has both end-vertices in V(H). If every arc of A(D) with both end-vertices in V(H) is in A(H), we say that H is induced by X = V(H) and call H an induced subdigraph of D.

A walk in D is an alternating sequence $W = x_1 a_1 x_2 a_2 x_3 \dots x_{k-1} a_{k-1} x_k$ of vertices x_i and arcs a_j from D such that the tail of a_i is x_i and the head of a_i is x_{i+1} for every $i=1,2,\dots,k-1$. The length of a walk is the number of its arcs. When the arcs of W are defined from the context or simply unimportant, we will denote W by $x_1 x_2 \dots x_k$. If the vertices of W are distinct, W is a path. If the vertices x_1, x_2, \dots, x_{k-1} are distinct and $x_1 = x_k$, W is a cycle. A walk (path, cycle) W is a Hamilton (or hamiltonian) walk (path, cycle) if W contains all vertices of D.

Let $\{D_i\}_{i\in I}$ be a family of digraphs. The digraph $(\bigsqcup_{i\in I}V(D_i), \bigsqcup_{i\in I}A(D_i))$ is called disjoint union of this family and denoted by $\bigoplus_{i\in I}D_i$. If D is a digraph and $\mathcal R$ is an equivalence relation on V(D). Then the quotient digraph $D/\mathcal R$ has vertex set $V/\mathcal R$ and arc set $\{([a]_{\mathcal R}, [b]_{\mathcal R}) \mid (a,b) \in A(D)\}$.

2. Compositional families

If (B_{λ}, τ) is a semitopological semigroup, then any nonzero element of B_{λ} is an isolated point of (B_{λ}, τ) [3, Lemma 2]. Therefore the following lemma is true.

Lemma 1. Let (B_{λ}, τ) be a topological semigroup and A be a closed subset A of (B_{λ}, τ) which doesn't contain the zero 0. Then any subset of A is closed.

For $A \subseteq B_{\lambda} \setminus \{0\}$ and $\alpha, \beta \in \lambda$ we denote

$${}_{\alpha}A_{\beta} = \{(\beta, \gamma) \mid (\alpha, \gamma) \in A\};$$

$${}_{\beta}^{\alpha}A = \{(\gamma, \beta) \mid (\gamma, \alpha) \in A\};$$

$$\operatorname{proj}_{1}(A) = \{\alpha \mid (\alpha, \beta) \in A\};$$

$$\operatorname{proj}_{2}(A) = \{\beta \mid (\alpha, \beta) \in A\}.$$

Lemma 2. Let τ be a topology on B_{λ} and any nonzero element of B_{λ} is isolated in (B_{λ}, τ) . The semigroup operation is continuous on $(B_{\lambda} \times B_{\lambda}) \setminus \{(0,0)\}$ if and only if the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are closed for all $\alpha, \beta \in \lambda$ and any closed subset A of (B_{λ}, τ) which doesn't contain the zero 0.

Proof. (\Rightarrow) Let A be a closed subset of (B_{λ}, τ) which doesn't contain the zero 0. By the continuity of operation, the maps $\lambda_{(\alpha,\beta)}: B_{\lambda} \to B_{\lambda}$ and $\rho_{(\beta,\alpha)}: B_{\lambda} \to B_{\lambda}$ defined by the formulas $\lambda_{(\alpha,\beta)}(x) = (\alpha,\beta) \cdot x$ and $\rho_{(\beta,\alpha)}(x) = x \cdot (\beta,\alpha)$ are continuous. Therefore the

$$_{\alpha}A_{\beta} = (\lambda_{(\alpha,\beta)})^{-1}(A)$$

and

$$_{\beta}^{\alpha}A = (\rho_{(\beta,\alpha)})^{-1}(A)$$

are closed in the topological space (B_{λ}, τ) .

 (\Leftarrow) Since every nonzero point of B_{λ} is isolated, we check the continuity of semigroup operation only in the cases of $(\alpha, \beta) \cdot 0$ and $0 \cdot (\alpha, \beta)$. Let U be a neighborhood of the zero 0 and $A = B_{\lambda} \setminus U$. Then the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are closed. Denote by V and W the neighborhoods of zero $B_{\lambda} \setminus_{\alpha} A_{\beta}$ and $B_{\lambda} \setminus_{\beta}^{\alpha} A$, respectively. Simple calculations imply that $\{(\alpha, \beta)\} \cdot V \subseteq U \text{ and } W \cdot \{(\alpha, \beta)\} \subseteq U.$

Lemma 2 implies the following corollary.

Corollary 1. Let τ be a topology on B_{λ} . Then (B_{λ}, τ) is a semitopological semigroup if and only if the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are closed for all $\alpha,\beta\in\lambda$ and any closed subset A of (B_{λ}, τ) such that $0 \notin A$.

Lemma 3. Let $A, B \subseteq B_{\lambda}$ and $(\alpha, \beta) \in B_{\lambda}$. The element $(\alpha, \beta) \notin A \cdot B$ if and only if $\operatorname{proj}_{2}({}_{\alpha}A_{\alpha}) \cap \operatorname{proj}_{1}({}_{\beta}^{\beta}B) = \varnothing.$

Proof. (\Rightarrow) Suppose that $(\alpha, \beta) \notin A \cdot B$ and there exists $\gamma \in \operatorname{proj}_2({}_{\alpha}A_{\alpha}) \cap \operatorname{proj}_1({}_{\beta}^{\beta}B)$. Then $(\alpha, \gamma) \in A$ and $(\gamma, \beta) \in B$. Therefore $(\alpha, \gamma) \cdot (\gamma, \beta) = (\alpha, \beta) \in A \cdot B$, a contradiction.

 (\Leftarrow) Suppose that $\operatorname{proj}_2({}_{\alpha}A_{\alpha}) \cap \operatorname{proj}_1({}_{\beta}^{\beta}B) = \emptyset$ and $(\alpha,\beta) \in A \cdot B$. Then there exist $\gamma \in \lambda$ such that $(\alpha, \gamma) \in A$ and $(\gamma, \beta) \in B$. Hence $\gamma \in \operatorname{proj}_2({}_{\alpha}A_{\alpha}) \cap \operatorname{proj}_1({}_{\beta}^{\beta}B)$, a contradiction.

For any nonempty subsets A and B of λ we shall call $A \times B$ by a rectangle of B_{λ} .

Definition 1. A nonempty family \mathcal{F} of rectangles of B_{λ} is called compositional if for $A \times B \in \mathcal{F}$ there exists $C \subset \lambda$ such that $A \times (\lambda \setminus C) \in \mathcal{F}$ and $C \times B \in \mathcal{F}$.

Lemma 4. If τ is a semigroup topology on B_{λ} , then the family of all closed rectangles of (B_{λ}, τ) is compositional.

Proof. Since every point of (B_{λ}, τ) is a closed subset, the family of all closed rectangles of B_{λ} is not empty. Let $A \times B$ be a closed subset of (B_{λ}, τ) . Then $B_{\lambda} \setminus (A \times B)$ is a neighborhood of the zero 0. Since the semigroup operation is continuous at (0,0) there exist neighborhoods of zero U and V such that $U \cdot V \subseteq B_{\lambda} \setminus (A \times B)$. Lemma 3 implies that for each $\alpha \in A$ the neighborhood V doesn't contain the set $\operatorname{proj}_2({}_{\alpha}U_{\alpha}) \times B$. Therefore,

the neighborhood V doesn't contain the set $\left(\bigcup_{\alpha\in A}\operatorname{proj}_2({}_{\alpha}U_{\alpha})\right)\times B$. Denote the set

 $\bigcup_{\alpha \in A} \operatorname{proj}_2(\alpha U_{\alpha}) \text{ by } C.$ Suppose that $C \neq \lambda$. By De Morgan's laws, $\lambda \setminus C = \bigcap_{\alpha \in A} \lambda \setminus \operatorname{proj}_2(\alpha U_{\alpha})$. The neighborhood U doesn't contain the set $A \times (\lambda \setminus C)$. Lemma 1 implies that the sets $A \times (\lambda \setminus C)$ and $C \times B$ are closed.

If $C = \lambda$, then by Lemma 1 the set $(\lambda \setminus \{\varphi\}) \times B$ for some $\varphi \in \lambda$ is closed. Lemma 2 implies that set $A \times \{\varphi\}$ is closed.

Hence the family of all closed rectangles of (B_{λ}, τ) is compositional.

Let \mathcal{F} be compositional family. Denote

$$\mathcal{C} = \mathcal{F} \cup \{_{\alpha} A_{\beta, \beta}^{\alpha} A \mid A \in \mathcal{F} \text{ and } \alpha, \beta \in \lambda\} \cup \{\{(\alpha, \beta)\} \mid (\alpha, \beta) \in B_{\lambda} \setminus \{0\}\}$$

and

$$P_{\mathcal{F}} = \{B_{\lambda} \setminus B \mid B \in \mathcal{C}\} \cup \{\{(\alpha, \beta)\} \mid (\alpha, \beta) \in B_{\lambda} \setminus \{0\}\} \cup \{\emptyset\}.$$

Proposition 1. For every compositional family \mathcal{F} the topology generated by the subbase $P_{\mathcal{F}}$ is the smallest semigroup topology on B_{λ} such that elements of \mathcal{F} are closed.

Proof. Let τ be the topology generated by $P_{\mathcal{F}}$. Since each nonzero point in (B_{λ}, τ) is clopen subset, the topological space (B_{λ}, τ) is Hausdorff.

First we shall show that topology generated by the subbase $P_{\mathcal{F}}$ is semigroup. For any $A \in \mathcal{C}$ the sets ${}_{\alpha}A_{\beta}$ and ${}_{\beta}^{\alpha}A$ are elements of \mathcal{C} . Since

$$\alpha(\bigcup_{i \in I} A_i)_{\beta} = \bigcup_{\iota \in I} \alpha(A_i)_{\beta},$$

$$\alpha(\bigcup_{i \in I} A_i) = \bigcup_{\iota \in I} \alpha(A_i),$$

$$\alpha(\bigcap_{i \in I} A_i)_{\beta} = \bigcap_{\iota \in I} \alpha(A_i)_{\beta},$$

$$\alpha(\bigcap_{i \in I} A_i) = \bigcap_{\iota \in I} \alpha(A_i),$$

for arbitrary family $\{A_i\}_{i\in I}$ subsets of $B_\lambda\setminus\{0\}$, by Lemma 2, the semigroup operation is continuous on $(B_\lambda\times B_\lambda)\setminus\{(0,0)\}$.

The continuity of the operation in the point (0,0) can be verify only for elements of the subbase. Let U be a neighborhood of 0 such that $U \in P_{\mathcal{F}}$. Consider possible cases.

(1) If $B_{\lambda} \setminus U = A \times B \in \mathcal{F}$, then there exists $C \subset \lambda$ such that $A \times (\lambda \setminus C)$ and $C \times B$ are closed subsets of (B_{λ}, τ) . Thus $B_{\lambda} \setminus (A \times (\lambda \setminus C))$ and $B_{\lambda} \setminus (C \times B)$ are neighborhoods of the zero 0 and

$$(B_{\lambda} \setminus (A \times (\lambda \setminus C))) \cdot (B_{\lambda} \setminus (C \times B)) \subseteq B_{\lambda} \setminus (A \times B) = U.$$

(2) If $B_{\lambda} \setminus U = {}_{\alpha}(A \times B)_{\beta} = \{\beta\} \times B$ for some $\alpha \in A, \beta \in \lambda$ and $A \times B \in \mathcal{F}$, then there exists $C \subset \lambda$ such that the sets $A \times (\lambda \setminus C)$ and $C \times B$ are closed in (B_{λ}, τ) . The set ${}_{\alpha}(A \times (\lambda \setminus C))_{\beta} = \{\beta\} \times (\lambda \setminus C)$ is closed in (B_{λ}, τ) . Hence $B_{\lambda} \setminus (\{\beta\} \times (\lambda \setminus C))$ and $B_{\lambda} \setminus (C \times B)$ are neighborhoods of the zero 0 and

$$(B_{\lambda} \setminus (\{\beta\} \times (\lambda \setminus C))) \cdot (B_{\lambda} \setminus (C \times B)) \subseteq B_{\lambda} \setminus (\{\beta\} \times B) = U.$$

(3) In the case $B_{\lambda} \setminus U = {}^{\alpha}_{\beta}(A \times B) = A \times \{\beta\}$ the proof of the continuity of the semigroup operation is similar.

(4) Suppose that $B_{\lambda} \setminus U = \{(\alpha, \beta)\}$ for some $(\alpha, \beta) \in B_{\lambda} \setminus \{0\}$. Since family \mathcal{C} is not empty, there exists $A \times B \in \mathcal{C}$. Then there exists $C \subset \lambda$ such that the sets $A \times (\lambda \setminus C)$ and $C \times B$ are closed in (B_{λ}, τ) . Fix any $\varphi \in A$ and $\psi \in B$. Therefore the sets $\varphi(A \times (\lambda \setminus C))_{\alpha}$ and $\psi(C \times B)$ are closed in (B_{λ}, τ) . Thus $B_{\lambda} \setminus (\varphi(A \times (\lambda \setminus C))_{\alpha})$ and $B_{\lambda} \setminus (\psi(C \times B))$ are neighborhoods of the zero 0 and

$$(B_{\lambda} \setminus (\varphi(A \times (\lambda \setminus C))_{\alpha})) \cdot (B_{\lambda} \setminus (\psi(C \times B))) \subseteq B_{\lambda} \setminus \{(\alpha, \beta)\} = U.$$

Let τ be a semigroup topology on B_{λ} such that elements of \mathcal{F} are closed in the topological space (B_{λ}, τ) . Then all nonzero points are closed. By Lemma 2, elements of $\{\alpha(A \times B)_{\beta}, \beta(A \times B) \mid A \in \mathcal{F} \text{ and } \alpha, \beta \in \lambda\}$ are closed and, hence their complements are open. Since every nonzero point of (B_{λ}, τ) is isolated, elements of $P_{\mathcal{F}}$ are open in the topological space (B_{λ}, τ) .

The topology generated by the subbase $P_{\mathcal{F}}$ is called topology generated by the compositional family \mathcal{F} and denoted by $\tau_{\mathcal{F}}$.

Proposition 1 and Lemma 4 imply the following corollary.

Corollary 2. Every minimal semigroup topology on B_{λ} is generated by some compositional family.

For arbitrary sets A and B we denote

$$A \subseteq^* B$$
 if a set $A \setminus B$ is finite;
 $A =^* B$ if a set $A \triangle B$ is finite.

Remark 1. Note that there are semigroup topologies on B_{λ} such that not generated by compositional families. In particular, a topology generated by the base

$$\mathcal{B} = \{ \{(\alpha, \alpha) \mid \alpha \in A\} \cup \{0\} \mid A =^* \lambda \} \cup \{ \{(\alpha, \beta)\} \mid \alpha, \beta \in \lambda \}.$$

Remark 2. Observe that a semigroup topology on B_{λ} can be generated by distinct compositional families. For example, for arbitrary sets $A \subset \lambda$ and $B \subset A$ the following compositional families $\mathcal{F}_1 = \{A \times (\lambda \setminus A)\}$ and $\mathcal{F}_2 = \{A \times (\lambda \setminus A), B \times (\lambda \setminus A)\}$ generate the same semigroup topology on B_{λ} .

Let τ be a semigroup topology on B_{λ} generated by some compositional family. By $Com(\tau)$ denote the set of all compositional families such that generate the topology τ .

Proposition 2. Let τ_1 and τ_2 be semigroup topologies on B_{λ} generated by compositional families. A topology τ_1 is weaker than a topology τ_2 if and only if there exist compositional families $\mathcal{F}_1 \in \text{Com}(\tau_1)$ and $\mathcal{F}_2 \in \text{Com}(\tau_2)$ such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$.

Proof. (\Rightarrow) If $\mathcal{F}_1 \in \text{Com}(\tau_1)$ and $\mathcal{F} \in \text{Com}(\tau_2)$, then the family $\mathcal{F}_2 = \mathcal{F}_1 \cup \mathcal{F}$ is compositional and $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Since the topology τ_1 is weaker than the topology τ_2 , any element of \mathcal{F}_1 is a closed set in (B_{λ}, τ_2) . Therefore, the family \mathcal{F}_2 generate the topology τ_2 .

 (\Leftarrow) Since $\mathcal{F}_1 \subseteq \mathcal{F}_2$, every closed set in (B_{λ}, τ_1) is closed in (B_{λ}, τ_2) . Then the topology τ_1 is weaker than the topology τ_2 .

Lemma 5. Let τ be a semigroup topology on B_{λ} . If the set $A \times B$ is closed in (B_{λ}, τ) and C = A, D = B, then the set $C \times D$ is closed in (B_{λ}, τ) .

Proof. By Lemma 1, the set $(A \cap C) \times (B \cap D)$ is closed in (B_{λ}, τ) . Lemma 2 implies that the sets $(A \cap C) \times \{\alpha\}$ and $\{\beta\} \times (B \cap D)$ are closed for all $\alpha \in D \setminus B, \beta \in C \setminus A$. Since the sets $D \setminus B$ and $C \setminus A$ are finite, the sets $(A \cap C) \times (D \setminus B)$ and $(C \setminus A) \times (B \cap D)$ are closed. The set $(C \setminus A) \times (D \setminus B)$ is finite and therefore closed. Hence the set $C \times D$ is closed in (B_{λ}, τ) .

3. Compositional digraphs

A compositional family \mathcal{F} can be represented in the form of a digraph with loops $D(\mathcal{F})$. The vertices of the digraph is the set

$$V(D(\mathcal{F})) = \{ A \mid A \times (\lambda \setminus B) \in \mathcal{F} \text{ or } B \times (\lambda \setminus A) \in \mathcal{F} \}$$

and $(A, B) \in A(D(\mathcal{F}))$ if $A \times (\lambda \setminus B) \in \mathcal{F}$.

Definition 2. A digraph with loops D = (V, A) is called compositional if for all $(u, v) \in A$ there exists $w \in V$ such that $(u, w) \in A$ and $(w, v) \in A$.

Proposition 3. For any compositional family \mathcal{F} the digraph $D(\mathcal{F})$ is compositional and any compositional digraph D such that vertices of D are subsets of λ determines some compositional family.

Example 1. The following digraphs are compositional.

Example 2. Let $\mathbb{Z}[\frac{1}{2}]$ be the set of all dyadic rationals in [0,1]. The digraph \mathcal{U} with $V(\mathcal{U}) = \mathbb{Z}[\frac{1}{2}]$ and

$$A(\mathcal{U}) = \left\{ (v, u) \mid v = \frac{k}{2^n} \text{ and } u = v + \frac{1}{2^m} \text{ for some } m \geqslant n \right\}$$

is compositional. Indeed, if (u, v) is an arc of \mathcal{U} , then $(u, \frac{u+v}{2})$ and $(\frac{u+v}{2}, v)$ are arcs of \mathcal{U} .

For each $i \in \mathbb{N}$ by \mathcal{U}_i denoted the subdigraph of \mathcal{U} induced by $V(\mathcal{U}_i) = \{u \in \mathbb{Z}[\frac{1}{2}] \mid u = \frac{k}{2^n} \text{ for } n \leq i\}.$

Proposition 4. There exists a hamiltonian path in U_i for each $i \in \mathbb{N}$.

Proof. Consider the sequence of vertices $W = 0, \frac{1}{2^i}, \frac{2}{2^i}, \frac{3}{2^i}, \dots, \frac{2^{i-1}}{2^i}, 1$. Observe that $v_{j+1} - v_j = \frac{1}{2^i}$ for arbitrary $v_j, v_{j+1} \in W$. Thus (v_j, v_{j+1}) is an arc of \mathcal{U}_i and hence this sequence is a path. Since the path contains all vertices of \mathcal{U}_i , W is a hamiltonian path.

Proposition 4 implies the following corollary.

Corollary 3. Arbitrary quotient digraph of \mathcal{U} has a finite cycle.

Proposition 5. Let $\{D_i\}_{i\in I}$ be a collection of compositional digraphs. Arbitrary quotient digraph of $D = \bigoplus_{i\in I} D_i$ is compositional.

Proof. Let \mathcal{R} be an equivalence relation on V(D) and $([u], [v]) \in A(D/\mathcal{R})$. Then there exist $u', v' \in V(D)$ such that $(v', u') \in A(V)$. Thus (v', u') is an arc of V_j for some $j \in I$. Since digraph V_j is compositional, there exist arcs (u', w) and (w, v') of V_j . Hence $([u'], [w]), ([w], [v']) \in A(D/\mathcal{R})$.

Lemma 6. Let D be a compositional digraph and (u, v) be an arc of D. Then there exists an equivalence relation \mathcal{R} on $V(\mathcal{U})$ such that \mathcal{U}/\mathcal{R} is isomorphic to a subdigraph of D which contains (u, v).

Proof. For each $w \in V(D)$ define a set C_w of vertices of \mathcal{U} by induction. For i = 0 add vertex 0 to C_u and vertex 1 to C_v .

Suppose that all vertexes of \mathcal{U}_n are added to sets $\{C_w\}_{w\in V(D)}$. Take arbitrary vertex $y\in V(\mathcal{U}_{n+1})\setminus V(\mathcal{U}_n)$. There exist two arcs $(x,y),(y,z)\in A(\mathcal{U}_{n+1})\setminus A(\mathcal{U}_n)$ and $x\in C_r$, $z\in C_t$ for some $r,t\in V(D)$. Since the digraph D is compositional, there exist arcs $(r,s),(s,t)\in A(D)$. Then add the vertex y to C_s .

Nonempty elements of $\{C_w\}_{w\in V(D)}$ provide a partition of $V(\mathcal{U})$ which determines an equivalence relation \mathcal{R} . Let H be an subdigraph of D induced by $\{w\in V(D)\mid C_w\neq\varnothing\}$. Then the map $f:H\to\mathcal{U}/\mathcal{R}$ defined by the formula $f(w)=C_w$ is an isomorphism.

Proposition 6. Any compositional digraph with size κ is isomorphic to quotient digraph of $\bigoplus_{k \in \kappa} \mathcal{U}$.

Proof. Let D be compositional digraph with size κ . Consider a collection $\{\mathcal{U}^{(u,v)}\}_{(u,v)\in A(D)}$ where $\mathcal{U}^{(u,v)}$ is a digraph isomorphic to \mathcal{U} for each $(u,v)\in A(D)$. By lemma 6, for arbitrary $\mathcal{U}^{(u,v)}$ there exist an equivalence relation $\mathcal{R}_{(u,v)}$ and an isomorphism $f_{(u,v)}$ between $\mathcal{U}^{(u,v)}/\mathcal{R}_{(u,v)}$ and subdigraph H of D which contains (u,v).

Define the equivalence relation \mathcal{R} on $\bigoplus_{k \in \kappa} \mathcal{U}$ in the next way $u\mathcal{R}v$ if $f_{(s,t)}([u]_{\mathcal{R}_{(s,t)}}) = f_{(x,y)}([v]_{\mathcal{R}_{(x,y)}})$ for $u \in V(\mathcal{U}^{(s,t)})$ and $v \in V(\mathcal{U}^{(x,y)})$. Now define the map $f: \left(\bigoplus_{k \in \kappa} \mathcal{U}\right)/\mathcal{R} \to D$ defined by the formula $f([w]) = f_{(s,t)}([w]_{\mathcal{R}_{(s,t)}})$ where $w \in \mathcal{U}^{(s,t)}$. Then f is an isomorphism.

Corollary 3 and Proposition 6 imply the following corollaries.

Corollary 4. Any compositional digraph has a finite cycle or contains \mathcal{U} as subdigraph.

Corollary 5. Any finite compositional digraph has a finite cycle.

4. Main result

Proposition 7. If $A \subset \lambda$, then a topology τ generated by the compositional family $\{A \times (\lambda \setminus A)\}$ is minimal.

Proof. Let τ_1 be a weaker topology than the topology τ and $B \times (\lambda \setminus C)$ be a closed set in (B_{λ}, τ_1) . By Lemma 4, there exists $D \subseteq \lambda$ such that the sets $B \times (\lambda \setminus D)$ and $D \times (\lambda \setminus C)$ are closed in (B_{λ}, τ_1) . Since τ_1 is weaker than τ , $D \subseteq^* A$ and $(\lambda \setminus D) \subseteq^* (\lambda \setminus A)$. Therefore $D =^* A$. Again, by Lemma 4, there exists $F \subseteq \lambda$ such that the sets $D \times (\lambda \setminus F)$ and $F \times (\lambda \setminus C)$ are closed in (B_{λ}, τ_1) . Hence $F \subseteq^* A$ and $(\lambda \setminus F) \subseteq^* (\lambda \setminus A)$ and then $F =^* A$. By Lemma 5, the set $(A \times (\lambda \setminus A))$ is closed in the topological space (B_{λ}, τ_1) .

Proposition 7 generalizes [3, Theorem 5].

Proposition 8. Let \mathcal{F} be a compositional family. If there exists a finite subdigraph H of $D(\mathcal{F})$ which doesn't contain sink or source, then there exists $A \subseteq \lambda$ such that the set $A \times (\lambda \setminus A)$ is closed in the topological space $(B_{\lambda}, \tau_{\mathcal{F}})$.

Proof. Let $V(D) = \{A_1, \ldots, A_n\}$ and H doesn't contain sink. For each $A_i \in V(H)$ there exits $A_j \in V(H)$ such that $A_i \times (\lambda \setminus A_j)$. Observe that

$$\lambda \setminus (A_1 \cup \ldots \cup A_n) = (\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n).$$

If $(\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n) = \emptyset$, then $A_1 \cup \ldots \cup A_n = \lambda$ and hence, by Lemma 2, for each $\alpha \in \lambda$ the set $(\lambda \setminus \{\alpha\}) \times \{\alpha\}$ is closed in the topological space $(B_\lambda, \tau_\mathcal{F})$. Let $(\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n) \neq \emptyset$. By Lemma 1, the set $A_i \times ((\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n))$ is closed for any $A_i \in V(H)$. Hence

$$A_1 \cup \ldots \cup A_n \times \lambda \setminus (A_1 \cup \ldots \cup A_n) = \bigcup_{i=1}^n A_i \times ((\lambda \setminus A_1) \cap \ldots \cap (\lambda \setminus A_n))$$

is closed in the topological space $(B_{\lambda}, \tau_{\mathcal{F}})$. The case with source is proved similarly.

Propositions 7 and 8 imply the following corollary.

Corollary 6. If $D(\mathcal{F})$ has a finite cycle, then \mathcal{F} is a singleton or generates a nonminimal topology.

Corollaries 3 and 6 imply the following theorem.

Theorem 1. Let τ be a semigroup topology on B_{λ} generated by compositional family \mathcal{F} such that $D(\mathcal{F})$ doesn't contain subgraph isomorphic to \mathcal{U} . The topology τ is minimal if and only if τ is generated by singleton compositional family.

Problem 1. Is there a minimal semigroup topology on B_{λ} generated by a composition family \mathcal{F} such that $D(\mathcal{F})$ is isomorphic to \mathcal{U} ?

References

- 1. B. Banaschewski, Minimal topological algebras, Math. Ann. 211 (1974), 107-114.
- D. Doitchinov, Produits de groupes topologiques minimaux, Bull. Sci. Math. (2) 97 (1972), 59-64.
- 3. O. V. Gutik, and K. P. Pavlyk, On topological semigroups of matrix units, Semigroup Forum 71 (2005), no. 3, 389-400.
- 4. J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer-Verlag, London, 2nd edition, 2009.
- L. Nachbin, On strictly minimal topological division rings, Bull. Amer. Math. Soc. 55 (1949), 1128–1136.
- 6. R. M. Stephenson, Jr., Minimal topological groups, Math. Ann. 192 (1971), 193-195.

Стаття: надійшла до редколегії 02.06.2017 прийнята до друку ??.??.2017

МІНІМАЛЬНІ ТОПОЛОГІЇ НА НАПІВГРУПІ МАТРИЧНИХ ОДИНИЦЬ

Маркіян ХИЛИНСЬКИЙ, Павло ХИЛИНСЬКИЙ

Львівський національний університет ім. І. Франка, м. Львів, 79000, вул. Університетська, 1 e-mail: khymarkiyan@gmail.com, khypavlo@gmail.com

Ключові слова: напівградка, топологія, напівгрупа матричних одиниць