2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine Set, Convex Set, Convex Conic Set

 $(x_1, x_2 \in C, \theta, x_1 + \theta_2 x_2 \in C)$

Al-Stine	Conevex	Convex cone
$\Theta_{1}+\Theta_{2}=1$	017 02= 1 01,02 20	O1, Az 20
	ine \Rightarrow cone \Rightarrow cone	
(3) (9) (4) (0)	nvex \Rightarrow a	

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example: $\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_{+}^{2}$

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \quad \Longrightarrow \quad \theta x_1 + (1 - \theta) x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - linear-fractional functions

Intersection $S_1, S_2, \underline{5} = 5, \Lambda S_2$

the intersection of (any number of) convex sets is convex

example:

n of (any number of) convex sets is convex
$$\bigcap_{Z \neq 0} \{\chi \in S^{\mathcal{U}} \mid Z^{\mathcal{U}} \geq 0 \}$$

$$S = \{x \in \mathbf{R}^m \mid |p(t)| \leq 1 \text{ for } |t| \leq \pi/3 \}$$

$$x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \cdots + x_m \cos mt$

for m=2:

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbb{R}^{n} \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

$$\text{Proof:} \qquad f(y) \in f(S) \qquad \qquad \times, y \in S$$

$$\text{Of}(x) + (1-\theta) f(y) \in f(S) \qquad \text{Of}(x) + (1-\theta) y \in S$$

$$= O(Ax+b) + (1-\theta) (Ay+b)$$

$$= A(O \times t(1-\theta)y) + b \in f(S)$$

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

Quiz
$$C \subseteq \mathbf{R}^m$$
 convex $\Longrightarrow f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\}$ convex $\chi, y \in f(C)$

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

- solution set of linear matrix inequality $\{x \mid x_1A_1 + \cdots + x_mA_m \leq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

$$\frac{3}{2} \frac{(2\pi)}{2} \frac{11211_2 \leq u, u > 0}{3}$$

$$\frac{1}{2} \frac{1}{2} \frac{1}{2$$

Perspective and linear-fractional function

perspective function
$$P: \mathbb{R}^{n+1} \to \mathbb{R}^n$$
:

$$(x,t) = \begin{cases} x/t \\ x/t \end{cases} \longrightarrow \begin{cases} x/t \end{cases} \longrightarrow \begin{cases} x/t \\ x/t \end{cases} \longrightarrow \begin{cases} x/t \end{cases} \longrightarrow \begin{cases} x/t \\ x/t \end{cases} \longrightarrow \begin{cases} x/t$$

images and inverse images of convex sets under perspective are convex

$$f = (P) g$$
 $g(x) = (P) \times + ($

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d}, \quad \mathbf{dom} \, f = \{x \mid c^T x + d > 0\}$$

images and inverse images of convex sets under linear-fractional functions are convex

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1} x \qquad \begin{cases} A = 1, & b = 0 \\ (= \begin{cases} \frac{7}{3} \\ \frac{1}{3} \end{cases}, & d = 1 \end{cases}$$

Generalized inequalities

C= bdc VintC (bd C)
boundary

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- K is pointed (contains no line)

examples

- ullet positive semidefinite cone $K=\mathbf{S}^n_+$
- nonnegative polynomials on [0, 1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff$$

$$x \prec_K y \iff$$

$$y - x \in \mathbf{int} K$$

XTK

• componentwise inequality
$$(K = \mathbf{R}_+^n)$$

$$x \leq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_{\perp}} Y \iff Y - X$$
 positive semidefinite

these two types are so common that we drop the subscript in \leq_K

properties: many properties of \leq_K are similar to \leq on **R**, e.g.,

$$x \leq_K y, \quad u \leq_K v \implies x + u \leq_K y + v$$

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \not\preceq_K y$ and $y \not\preceq_K x$ $x \in S$ is the minimum element of S with respect to \leq_K if

$$y \in S \implies x \leq_K y$$
 $\leq \subseteq \times + K$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x \qquad \leq \bigcap (\succ) = \langle \times \rangle$

$$5 \cap (x \mid x) = \langle x \rangle$$

$$\mathsf{example}\left(\!\!\!\begin{array}{c} (K = \mathbf{R}_+^2) \end{array}\!\!\!\!\right)$$

 x_1 is the minimum element of S_1

 x_2 is a minimal element of S_2

Separating hyperplane theorem

$$C \cap D = \emptyset$$

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

the hyperplane $\{x \mid a^Tx = b\}$ separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a singleton)

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\underbrace{\{x \mid a^T x = a^T x_0\}}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

(: convex xde bd C int ()

< xol \(\text{int} \) = \(\phi\)
Separating hyperplans...</pre>

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

X=> X-9 612

Dual cones and generalized inequalities

XGL, AXEC, (AD)

dual cone of a cone K?

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$

examples

ACC, TO

$$\bullet \ K = \mathbf{R}^n_+ \colon K^* = \mathbf{R}^n_+$$

•
$$K = \mathbf{S}_{+}^{n}$$
: $K^{*} = \mathbf{S}_{+}^{n}$

•
$$K = \{(x,t) \mid ||x||_2 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_2 \le t\}$

•
$$K = \{(x,t) \mid ||x||_1 \le t\}$$
: $K^* = \{(x,t) \mid ||x||_{\infty} \le t\}$

first three examples are **self-dual** cones $(k^{**} = k \text{ if } k \text{ is project})$

dual cones of proper cones are proper, hence define generalized inequalities:

$$\frac{1}{\sqrt{(y-x)}} = 0$$

$$\frac{1}{\sqrt{(y-x)}} = 0$$
Convex sets

$$\underline{y} \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

$(\forall) \in S, \times \leq_{\kappa} \forall$

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \preceq_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0$, x is the <u>unique minimizer</u> of $\underline{\lambda^T}z$ over \underline{S} (265)

minimal element w.r.t. \leq_K

ullet if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

(Pareto)

optimal production frontier

- ullet different production methods use different amounts of resources $x \in \mathbf{R}^n$
- ullet production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. \mathbf{R}^n_+

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

$$x_1 \neq x_2$$
 $x_1 \neq x_2$
 $x_1 \neq x_2$
 $x_1 \neq x_2$
 $x_2 \neq x_3$
 $x_4 \leq x_5$

Mahi-Objective

Optimization. 2-23

3. Convex functions

- basic properties and examples
- operations that preserve convexity
- the conjugate function
- quasiconvex functions
- log-concave and log-convex functions
- convexity with respect to generalized inequalities

Definition

 $f: \mathbf{R}^n \to \mathbf{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

for all $x, y \in \operatorname{dom} f$, $0 \le \theta \le 1$

(x, fk))

 \bullet f is strictly convex if $\operatorname{dom} f$ is convex and

$$f(\theta x + (1 - \theta)y) \theta f(x) + (1 - \theta)f(y)$$

for $x, y \in \operatorname{dom} f$, $x \neq y$, $0 < \theta < 1$

Examples on R

convex:

- affine: ax + b on **R**, for any $a, b \in \mathbf{R}$
- exponential: e^{ax} , for any $a \in \mathbf{R}$
- powers: x^{α} on \mathbf{R}_{++} , for $\alpha \geq 1$ or $\alpha \leq 0$
- powers of absolute value: $|x|^p$ on **R**, for $p \ge 1$
- negative entropy: $x \log x$ on \mathbf{R}_{++}

concave:

- ullet affine: ax+b on ${\bf R}$, for any $a,b\in{\bf R}$
- powers: \underline{x}^{α} on \mathbf{R}_{++} , for $0 \leq \alpha \leq 1$
- logarithm: $\log x$ on \mathbf{R}_{++}

Examples on Rⁿ and R^{$m \times n$}

affine functions are convex and concave; all norms are convex

examples on R^n

- affine function $f(x) = a^T x + b$
- norms: $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$ for $p \ge 1$; $||x||_\infty = \max_k |x_k|$

examples on $\mathbb{R}^{m \times n}$ ($m \times n$ matrices)

affine function

$$f(X) = \underbrace{\mathbf{tr}(A^T X)}_{m} + b = \sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} X_{ij} + b$$

spectral (maximum singular value) norm

$$f(X) = ||X||_2 = \sigma_{\max}(X) = (\lambda_{\max}(X^T X))^{1/2}$$

Restriction of a convex function to a line

 $f: (\mathbf{R}^n) \to \mathbf{R}$ is convex if and only if the function $g: \mathbf{R} \to \mathbf{R}$, R JER, direction (arbitang).

$$g(t) = f(x) + tv, \quad \mathbf{dom} \ g = \{t \mid x + tv \in \mathbf{dom} \ f\}$$

is convex (in t) for any $x \in \operatorname{dom} f$, $v \in \mathbb{R}^n$

can check convexity of f by checking convexity of functions of one variable

example.
$$f: \mathbf{S}^n \to \mathbf{R}$$
 with $f(X) = \log \det X$, $\operatorname{dom} f = \mathbf{S}_{++}^n$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

$$g(t) = \log \det(X + tV) = \log \det X + \log \det(I + tX^{-1/2}VX^{-1/2})$$

$$\det(A) \cdot \det(A) \cdot \det(A)$$

where λ_i are the eigenvalues of $X^{-1/2}VX^{-1/2}$

g is concave in t (for any choice of $X \succ 0$, V); hence f is concave

Restriction of a convex function to a line

Restricting a function to a line

Draw a line in the domain of the function, and evaluate the function only along that line.

$$z = rac{x^2}{a^2} + rac{y^2}{b^2}.$$

Paraboloid

Extended-value extension

domf=[0,5]

$$\tilde{f}(x) = f(x), \quad x \in \operatorname{dom} f, \qquad \tilde{f}(x) = \infty, \quad x \not\in \operatorname{dom} f$$

extended-value extension
$$\tilde{f}$$
 of f is
$$f(x) = \begin{cases} f(x) & \text{if } x \in don f \\ f(x) = \begin{cases} f(x) & \text{if } f(x) \end{cases} \end{cases}$$

$$\tilde{f}(x) = \infty, \quad x \not\in \mathbf{dom} \, f$$

often simplifies notation; for example, the condition

$$0 \le \theta \le 1 \implies \tilde{f}(\theta x + (1 - \theta)y) \le \theta \tilde{f}(x) + (1 - \theta)\tilde{f}(y)$$

(as an inequality in $\mathbf{R} \cup \{\infty\}$), means the same as the two conditions

- \bullet dom f is convex
- for $x, y \in \operatorname{dom} f$,

$$0 \le \theta \le 1 \implies f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order condition

f is **differentiable** if $\operatorname{dom} f$ is open and the gradient

$$\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \frac{\partial f(x)}{\partial x_2}, \dots, \frac{\partial f(x)}{\partial x_n}\right) \in \mathbb{R}^{n}$$

exists at each $x \in \operatorname{dom} f$

1st-order condition: differentiable f with convex domain is convex iff

first-order approximation of f is global underestimator

Second-order conditions

f is **twice differentiable** if $\operatorname{dom} f$ is open and the Hessian $\nabla^2 f(x) \in \mathbf{S}^n$,

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n,$$

exists at each $x \in \operatorname{\mathbf{dom}} f$

2nd-order conditions: for twice differentiable f with convex domain

• if $\nabla^2 f(x) \succ 0$ for all $x \in \operatorname{dom} f$, then f is strictly convex

Examples

quadratic function: $f(x) = (1/2)x^T P x + q^T x + r$ (with $P \in \mathbf{S}^n$)

$$\nabla f(x) = Px + q, \qquad \nabla^2 f(x) = P$$

convex if $P \succeq 0$

least-squares objective: $f(x) = ||Ax - b||_2^2$

$$\nabla f(x) = 2A^T(Ax - b), \qquad \nabla^2 f(x) = 2A^T A$$

convex (for any A)

quadratic-over-linear: $f(x,y) = x^2/y$

$$\nabla^2 f(x,y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y \\ -x \end{bmatrix}^T \succeq 0$$

convex for y > 0

log-sum-exp: $f(x) = \log \sum_{k=1}^{n} \exp x_k$ is convex

$$\nabla^2 f(x) = \frac{1}{\mathbf{1}^T z} \operatorname{\mathbf{diag}}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \qquad (z_k = \exp x_k)$$

to show $\nabla^2 f(x) \succeq 0$, we must verify that $v^T \nabla^2 f(x) v \geq 0$ for all v:

$$v^{T} \nabla^{2} f(x) v = \frac{\left(\sum_{k} z_{k} v_{k}^{2}\right) \left(\sum_{k} z_{k}\right) - \left(\sum_{k} v_{k} z_{k}\right)^{2}}{\left(\sum_{k} z_{k}\right)^{2}} \ge 0$$

since $(\sum_k v_k z_k)^2 \le (\sum_k z_k v_k^2)(\sum_k z_k)$ (from Cauchy-Schwarz inequality)

geometric mean: $f(x) = (\prod_{k=1}^n x_k)^{1/n}$ on \mathbb{R}^n_{++} is concave (similar proof as for log-sum-exp)

Epigraph and sublevel set

 α -sublevel set of $f: \mathbb{R}^n \to \mathbb{R}$:

$$C_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$

sublevel sets of convex functions are convex (converse is false) epigraph of $f: \mathbb{R}^n \to \mathbb{R}$:

$$epi f = \{(x, t) \in \mathbf{R}^{n+1} \mid x \in dom f, \ f(x) \le t\}$$

f is convex if and only if epi f is a convex set

Jensen's inequality

basic inequality: if f is convex, then for $0 \le \theta \le 1$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

extension: if f is convex, then

$$f(\mathbf{E}\,z) \leq \mathbf{E}\,f(z)$$

for any random variable z

basic inequality is special case with discrete distribution

$$\operatorname{prob}(z=x) = \theta, \quad \operatorname{prob}(z=y) = 1 - \theta$$

Operations that preserve convexity

practical methods for establishing convexity of a function

- 1. verify definition (often simplified by restricting to a line)
- 2. for twice differentiable functions, show $\nabla^2 f(x) \succeq 0$
- 3. show that f is obtained from simple convex functions by operations that preserve convexity
 - nonnegative weighted sum
 - composition with affine function
 - pointwise maximum and supremum
 - composition
 - minimization
 - perspective

Positive weighted sum & composition with affine function

nonnegative multiple: αf is convex if f is convex, $\alpha \geq 0$

sum: $f_1 + f_2$ convex if f_1, f_2 convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

log barrier for linear inequalities

$$f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x), \quad \text{dom } f = \{x \mid a_i^T x < b_i, i = 1, \dots, m\}$$

• (any) norm of affine function: f(x) = ||Ax + b||

Pointwise maximum

if f_1, \ldots, f_m are convex, then $f(x) = \max\{f_1(x), \ldots, f_m(x)\}$ is convex

examples

- piecewise-linear function: $f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$ is convex
- sum of r largest components of $x \in \mathbf{R}^n$:

$$f(x) = x_{[1]} + x_{[2]} + \dots + x_{[r]}$$

is convex $(x_{[i]}$ is *i*th largest component of x)

proof:

$$f(x) = \max\{x_{i_1} + x_{i_2} + \dots + x_{i_r} \mid 1 \le i_1 < i_2 < \dots < i_r \le n\}$$

Pointwise supremum

if f(x,y) is convex in x for each $y \in \mathcal{A}$, then

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y)$$

is convex

examples

- support function of a set C: $S_C(x) = \sup_{y \in C} y^T x$ is convex
- distance to farthest point in a set C:

$$f(x) = \sup_{y \in C} ||x - y||$$

ullet maximum eigenvalue of symmetric matrix: for $X \in \mathbf{S}^n$,

$$\lambda_{\max}(X) = \sup_{\|y\|_2 = 1} y^T X y$$

Composition with scalar functions

composition of $g: \mathbf{R}^n \to \mathbf{R}$ and $h: \mathbf{R} \to \mathbf{R}$:

$$f(x) = h(g(x))$$

f is convex if $\begin{array}{c} g \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing} \\ g \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing} \end{array}$

• proof (for n = 1, differentiable g, h)

$$f''(x) = h''(g(x))g'(x)^2 + h'(g(x))g''(x)$$

ullet note: monotonicity must hold for extended-value extension \tilde{h}

examples

- $\exp g(x)$ is convex if g is convex
- 1/g(x) is convex if g is concave and positive

Vector composition

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

f is convex if $\begin{array}{c} g_i \text{ convex, } h \text{ convex, } \tilde{h} \text{ nondecreasing in each argument} \\ g_i \text{ concave, } h \text{ convex, } \tilde{h} \text{ nonincreasing in each argument} \\ \\ \text{proof (for } n=1 \text{, differentiable } g,h) \end{array}$

$$f''(x) = g'(x)^{T} \nabla^{2} h(g(x)) g'(x) + \nabla h(g(x))^{T} g''(x)$$

examples

- $\sum_{i=1}^{m} \log g_i(x)$ is concave if g_i are concave and positive
- $\log \sum_{i=1}^{m} \exp g_i(x)$ is convex if g_i are convex

Minimization

if f(x,y) is convex in (x,y) and C is a convex set, then

$$g(x) = \inf_{y \in C} f(x, y)$$

is convex

examples

• $f(x,y) = x^T A x + 2x^T B y + y^T C y$ with

$$\left[\begin{array}{cc} A & B \\ B^T & C \end{array}\right] \succeq 0, \qquad C \succ 0$$

minimizing over y gives $g(x)=\inf_y f(x,y)=x^T(A-BC^{-1}B^T)x$ g is convex, hence Schur complement $A-BC^{-1}B^T\succeq 0$

• distance to a set: $\operatorname{dist}(x,S) = \inf_{y \in S} \|x - y\|$ is convex if S is convex

Perspective

the **perspective** of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the function $g: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$,

$$g(x,t) = tf(x/t),$$
 $dom g = \{(x,t) \mid x/t \in dom f, t > 0\}$

g is convex if f is convex

examples

- $f(x) = x^T x$ is convex; hence $g(x,t) = x^T x/t$ is convex for t > 0
- negative logarithm $f(x)=-\log x$ is convex; hence relative entropy $g(x,t)=t\log t-t\log x$ is convex on ${\bf R}_{++}^2$
- if *f* is convex, then

$$g(x) = (c^T x + d) f\left((Ax + b)/(c^T x + d) \right)$$

is convex on $\{x \mid c^T x + d > 0, \ (Ax + b)/(c^T x + d) \in \text{dom } f\}$