Network layer: "control plane" roadmap

- introduction
- routing protocols
 - link state
 - distance vector
- intra-ISP routing: OSPF
- routing among ISPs: BGP
- Internet Control MessageProtocol

Distance vector algorithm

Based on *Bellman-Ford* (BF) equation (dynamic programming):

Bellman-Ford Example

Suppose that u's neighboring nodes, x,v,w, know that for destination z:

Bellman-Ford equation says:

$$D_{u}(z) = \min \{ c_{u,v} + D_{v}(z), c_{u,x} + D_{x}(z), c_{u,w} + D_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \} = 4$$

node achieving minimum (x) is next hop on estimated leastcost path to destination (z)

Distance vector algorithm

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from any neighbor, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow \min_{v} \{c_{x,v} + D_v(y)\}$$
 for each node $y \in N$

• under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

Distance vector algorithm:

each node:

wait for (change in local link cost or msg from neighbor)

recompute DV estimates using DV received from neighbor

if DV to any destination has changed, *notify* neighbors

iterative, asynchronous: each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed, self-stopping: each node notifies neighbors *only* when its DV changes

- neighbors then notify their neighbors – only if necessary
- no notification received, no actions taken!

- All nodes have distance estimates to nearest neighbors (only)
- All nodes send their local distance vector to their neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

- receive distance vectors from neighbors
- compute their new local distance vector
- send their new local distance vector to neighbors

.... and so on

Let's next take a look at the iterative *computations* at nodes

t=1

b receives DVs from a, c, e

DV in a:

 $D_a(a)=0$ $D_a(b) = 8$

 $D_a(c) = \infty$

 $D_a(d) = 1$

 $D_a(e) = \infty$

 $D_a(f) = \infty$

 $D_a(g) = \infty$

 $D_a(h) = \infty$

 $D_a(i) = \infty$

DV in b:

 $D_b(f) = \infty$ $D_{b}(a) = 8$ $D_b(c) = 1$ $D_b(g) = \infty$

 $D_b(d) = \infty$ $D_b(h) = \infty$

 $D_{b}(e) = 1$ $D_b(i) = \infty$

DV in c:

 $D_c(a) = \infty$

 $D_{c}(b) = 1$

 $D_c(c) = 0$

 $D_c(d) = \infty$

 $D_c(e) = \infty$

 $D_c(f) = \infty$

 $D_c(g) = \infty$

 $D_c(h) = \infty$

 $D_c(i) = \infty$

DV in e:

 $D_e(a) = \infty$

 $D_{e}(b) = 1$

 $D_e(c) = \infty$

 $D_{e}(d) = 1$

 $D_e(e) = 0$

 $D_{e}(f) = 1$

 $D_e(g) = \infty$

 $D_e(h) = 1$

 $D_e(i) = \infty$

(i) t=1

b receives DVs from a, c, e, computes:

DV in a:

$$D_{a}(a)=0$$

$$D_{a}(b) = 8$$

$$D_{a}(c) = \infty$$

$$D_{a}(d) = 1$$

$$D_{a}(e) = \infty$$

$$D_{a}(f) = \infty$$

$$D_{a}(g) = \infty$$

$$D_{a}(h) = \infty$$

$$D_{a}(i) = \infty$$

DV in b:

$$\begin{array}{ll} D_b(a) = 8 & D_b(f) = \infty \\ D_b(c) = 1 & D_b(g) = \infty \\ D_b(d) = \infty & D_b(h) = \infty \\ D_b(e) = 1 & D_b(i) = \infty \end{array}$$

DV in c:

$$D_c(a) = \infty$$
$$D_c(b) = 1$$

$$D_{c}(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_{e}(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_{o}(i) = \infty$$

$D_b(a) = \min\{c_{b,a} + D_a(a), c_{b,c} + D_c(a), c_{b,e} + D_e(a)\} = \min\{8, \infty, \infty\} = 8$

$$D_b(c) = min\{c_{b,a} + D_a(c), c_{b,c} + D_c(c), c_{b,e} + D_e(c)\} = min\{\infty, 1, \infty\} = 1$$

$$D_b(d) = min\{c_{b,a} + D_a(d), c_{b,c} + D_c(d), c_{b,e} + D_e(d)\} = min\{9, \infty, 2\} = 2$$

$$D_b(e) = min\{c_{b,a} + D_a(e), c_{b,c} + D_c(e), c_{b,e} + D_e(e)\} = min\{\infty, \infty, 1\} = 1$$

$$D_b(f) = \min\{c_{b,a} + D_a(f), c_{b,c} + D_c(f), c_{b,e} + D_e(f)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(g) = \min\{c_{b,a} + D_a(g), c_{b,c} + D_c(g), c_{b,e} + D_e(g)\} = \min\{\infty, \infty, \infty\} = \infty$$

$$D_b(h) = \min\{c_{b,a} + D_a(h), c_{b,c} + D_c(h), c_{b,e} + D_e(h)\} = \min\{\infty, \infty, 2\} = 2$$

$$D_b(i) = \min\{c_{b,a} + D_a(i), c_{b,c} + D_c(i), c_{b,e} + D_e(i)\} = \min\{\infty, \infty, \infty\} = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = 2$
 $D_b(c) = 1$ $D_b(g) = \infty$
 $D_b(d) = 2$ $D_b(h) = 2$
 $D_b(e) = 1$ $D_b(i) = \infty$

t=1

c receives DVs from b

DV in a:

 $D_a(a)=0$

$$D_{a}(b) = 8$$

$$D_a(c) = \infty$$

 $D_a(d) = 1$

$$D_a(a) = 1$$

 $D_a(e) = \infty$

$$D_a(f) = \infty$$

$$D_a(g) = \infty$$

$$D_a(h) = \infty$$

$$D_a(i) = \infty$$

DV in b:

$$D_b(a) = 8$$
 $D_b(f) = \infty$
 $D_b(c) = 1$ $D_b(g) = \infty$

$$D_b(d) = \infty$$
 $D_b(h) = \infty$

$$D_b(e) = 1$$
 $D_b(i) = \infty$

DV in c:

$$D_c(a) = \infty$$

$$D_{c}(b) = 1$$

$$D_{c}(c) = 0$$

$$D_c(d) = \infty$$

$$D_c(e) = \infty$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in e:

$$D_e(a) = \infty$$

$$D_{e}(b) = 1$$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

DV in b:

$$D_b(a) = 8 D_b(f) = \infty$$

$$D_b(c) = 1 D_b(g) = \infty$$

$$D_b(d) = \infty D_b(h) = \infty$$

$$D_b(e) = 1 D_b(i) = \infty$$

compute

DV in c:

 $D_c(a) = \infty$ $D_c(b) = 1$

 $D_{c}(c) = 0$

 $D_c(d) = \infty$

 $D_c(e) = \infty$

 $D_c(f) = \infty$

 $D_c(g) = \infty$

 $D_c(h) = \infty$

 $D_c(i) = \infty$

t=1

c receives DVs from b computes:

$$D_c(a) = min\{c_{c,b} + D_b(a)\} = 1 + 8 = 9$$

$$D_c(b) = min\{c_{c,b} + D_b(b)\} = 1 + 0 = 1$$

$$D_c(d) = min\{c_{c,b}+D_b(d)\} = 1+ \infty = \infty$$

$$D_c(e) = min\{c_{c,b} + D_b(e)\} = 1 + 1 = 2$$

$$D_c(f) = min\{c_{c,b} + D_b(f)\} = 1 + \infty = \infty$$

$$D_{c}(g) = \min\{c_{c,h} + D_{h}(g)\} = 1 + \infty = \infty$$

$$D_c(h) = min\{c_{bc,b} + D_b(h)\} = 1 + \infty = \infty$$

$$D_c(i) = \min\{c_{c,b} + D_b(i)\} = 1 + \infty = \infty$$

DV in c:

$$D_{c}(a) = 9$$

$$D_{c}(b) = 1$$

$$D_{c}(c) = 0$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 2$$

$$D_c(f) = \infty$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

DV in b:

$$D_b(a) = 8 D_b(f) = \infty$$

$$D_b(c) = 1 D_b(g) = \infty$$

$$D_b(d) = \infty D_b(h) = \infty$$

$$D_b(e) = 1 D_b(i) = \infty$$

DV in d:

$$D_{c}(a) = 1$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = 0$$

$$D_{c}(e) = 1$$

t=1

e receives DVs

from b, d, f, h

$$D_c(f) = \infty$$

$$D_{c}(g) = 1$$

$$D_c(h) = \infty$$

$$D_c(i) = \infty$$

Q: what is new DV computed in e at t=1?

DV in e:

$$D_e(a) = \infty$$

 $D_e(b) = 1$

$$D_e(c) = \infty$$

$$D_{e}(d) = 1$$

$$D_{e}(e) = 0$$

$$D_e(f) = 1$$

$$D_e(g) = \infty$$

$$D_{e}(h) = 1$$

$$D_e(i) = \infty$$

DV in h:

$$D_c(a) = \infty$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = \infty$$

$$D_c(g) = 1$$

$$D_c(h) = 0$$

$$D_c(i) = 1$$

DV in f:

$$D_c(a) = \infty$$

$$D_c(b) = \infty$$

$$D_c(c) = \infty$$

$$D_c(d) = \infty$$

$$D_{c}(e) = 1$$

$$D_c(f) = 0$$

$$D_c(g) = \infty$$

$$D_c(h) = \infty$$

$$D_c(i) = 1$$

Distance vector: state information diffusion

Iterative communication, computation steps diffuses information through network:

- t=0 c's state at t=0 is at c only
- c's state at t=0 has propagated to b, and may influence distance vector computations up to **1** hop away, i.e., at b
- c's state at t=0 may now influence distance vector computations up to 2 hops away, i.e., at b and now at a, e as well
- c's state at t=0 may influence distance vector computations up to **3** hops away, i.e., at d, f, h
- c's state at t=0 may influence distance vector computations up to 4 hops away, i.e., at g, i

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- updates routing info, recalculates local DV
- if DV changes, notify neighbors

"good news travels fast"

 t_0 : y detects link-cost change, updates its DV, informs its neighbors.

 t_1 : z receives update from y, updates its DV, computes new least cost to x, sends its neighbors its DV.

t₂: y receives z's update, updates its DV. y's least costs do not change, so y does not send a message to z.

Distance vector: link cost changes

link cost changes:

- node detects local link cost change
- "bad news travels slow" count-to-infinity problem:

- y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y computes "my new cost to x will be 6, via z); notifies z of new cost of 6 to x.
- z learns that path to x via y has new cost 6, so z computes "my new cost to x will be 7 via y), notifies y of new cost of 7 to x.
- y learns that path to x via z has new cost 7, so y computes "my new cost to x will be 8 via y), notifies z of new cost of 8 to x.
- z learns that path to x via y has new cost 8, so z computes "my new cost to x will be 9 via y), notifies y of new cost of 9 to x.

• • •

• see text for solutions. *Distributed algorithms are tricky!*

Comparison of LS and DV algorithms

message complexity

LS: n routers, $O(n^2)$ messages sent

DV: exchange between neighbors; convergence time varies

speed of convergence

LS: $O(n^2)$ algorithm, $O(n^2)$ messages

may have oscillations

DV: convergence time varies

- may have routing loops
- count-to-infinity problem

robustness: what happens if router malfunctions, or is compromised?

LS:

- router can advertise incorrect link cost
- each router computes only its own table

DV:

- DV router can advertise incorrect path cost ("I have a really low-cost path to everywhere"): black-holing
- each router's DV is used by others: error propagate thru network

Network layer: "control plane" roadmap

- introduction
- routing protocols
- intra-ISP routing: OSPF
- routing among ISPs: BGP
- Internet Control MessageProtocol

Copyright Information

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

The Slides are adapted from,

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved