The Problem

Martin Nyx Brain

City, University of London martin.brain@city.ac.uk

March 16, 2025

Last Week On IN2011...

- ullet HyperText + Internet + Multi-media o WWW
- Three key ideas: URL, HTML, HTTP
- The "killer app" for the Internet
- Originally page-orientated, JavaScript et al. add dynamic behaviour but . . .
- Originally stateless, cookies add state but . . .

TCP/IP Reference Model

Application

Transport

Network

Link

Physical

TCP/IP Reference Model

Application

Transport

Network

Link

Physical

TCP/IP Reference Model

Application

DNS

Transport

Network

Link

Physical

The Problem

IP address' are not human orientated. Want human readable names.

The Problem

The Problem

00000

IP address' are not human orientated. Want human readable names.

(assigning, distributing, updating, ownership ...)

Elizabeth "Jake" Feinler

For most of the 1970s and 1980s - ask her.

The format for entries is:

The Problem

```
;GIDNEY::: <PAETZOLD.ARPANET>HOSTS.TXT.5, 27-Mar-85 13:11:54, Edit by PAETZOLD
;GIDNEY::<PAETZOLD.ARPANET>HOSTS.TXT.4, 25-Mar-85 13:56:55, Edit by PAETZOLD
:local stuff
: DoD Internet Host Table
  22-Mar-85
  Version number 436
 Changes, corrections, comments or questions to (HOSTMASTER@SRI-NIC)
 The format of this file is documented in RFC 810. "DoD Internet
 Host Table Specification", which is available online at SRI-NIC
 as the file
               [SRI-NIC] < RFC > RFC 810. TXT
; It may be retrieved via FTP using username ANONYMOUS with
 any password.
; NOTE CAREFULLY: RFC 810 has been slightly revised since the original
; version was written. In particular, the version printed in the
: "Internet Protocol Transition Workbook" does not document the
; added "machine type" field (between the host-name and system-name
: fields).
```

The Problem	The Solution	The Consequences	Security Analysis	Conclusion
00000				

HOST: 36.44.0.1: SU-SAFE, SAFE: VAX-11/750: UNIX: UDP, TCP/TELNET, TCP/FTP, TC
HOST: 36.47.0.1: SU-ARDVAX, ARDVAX: VAX-11/750: UNIX: UDP, TCP/TELNET, TCP/FT
HOST: 36.2.0.5: SU-HELENS, HELENS: VAX-11/780: UNIX: UDP, TCP/TELNET, TCP/FTP

HOST: 32.2.0.42: UCL-TAC.LONDON-TAC: H-316: TAC: TCP:

HOSTS.TXT

```
HOST: 36.10.0.5: SU-STAR.STAR: VAX-11/780: VMS: TCP/TELNET.TCP/FTP.TCP/SMT
HOST: 36.10.0.6: SU-CORONA, CORONA: VAX-11/750: VMS: TCP/TELNET, TCP/FTP, TCP
HOST: 36.8.0.8, 36.36.0.101: SU-PESCADERO, PESCADERO: VAX-11/750: UNIX: TCP
HOST: 36.9.0.8: SU-WHITEHEAD. WHITEHEAD: VAX-11/750: VMS: TCP/TELNET.TCP/F
HOST: 36.9.0.9: SU-RUSSELL.RUSSELL: VAX-11/750: UNIX: UDP.TCP/TELNET.TCP/F
HOST: 36.47.0.9: SU-HPP-3600-1.HPP-3600-1: SYMBOLICS-3600: LISPM: UDP/TIME
HOST: 36.47.0.10: SU-HPP-3600-2.HPP-3600-2: SYMBOLICS-3600: LISPM: UDP/TIM
HOST: 36.8.0.11, 36.36.0.102: SU-GREGORIO, GREGORIO: VAX-11/750: UNIX: TCP/
HOST: 36.9.0.11: SU-LINDY.LINDY: VAX-11/780: UNIX: TCP/TELNET.TCP/FTP.TCP/
HOST: 36.47.0.11: SU-HPP-3670-3.HPP-3670-3: SYMBOLICS-3670: LISPM: UDP/TIM
HOST: 36.9.0.12: SU-FORSYTHE, FORSYTHE: IBM-3081: MVS: TCP/SMTP:
HOST: 36.47.0.12: SU-HPP-3670-4.HPP-3670-4: SYMBOLICS-3670: LISPM: UDP/TIM
HOST: 36.10.0.14: SU-MOJAVE.MOJAVE: VAX-11/780: UNIX: UDP.TCP/TELNET.TCP/F
HOST: 36.22.0.20: SU-AMADEUS, AMADEUS: VAX-11/780: UNIX: UDP, TCP/TELNET, TCP
HOST: 36.18.0.93: SU-CSLI.CSLI.SU-TURING: DEC-2060: TOPS20: TCP/TELNET.TCP
HOST: 36.40.0.99: SU-SONOMA, SONOMA: VAX-11/780: UNIX: UDP, TCP/TELNET, TCP/F
HOST: 36.40.0.192, 36.10.0.1: SU-SHASTA, SHASTA: VAX-11/750: UNIX: UDP, TCP/
HOST: 36.45.0.193: SU-AIMVAX.AIMVAX.SU-DIABLO.DIABLO.SU-HNV: VAX-11/780: UN
HOST: 36.40.0.200: SU-DIT, DIT, SU-DSN, DSN: VAX-11/780: UNIX: TCP/TELNET, TCP
```

HOST · 36 40 0 201 · SII-ISI ISI · VAY-11/780 · IINIY · TCP/TFINET TCP/FTP TCP/SM

Design Goals 83-85

00000

- Distributed (technical and organisational)
- Highly Robust
- Highly Scalable

Domain Name System

A Map

Name * Type * Class \rightarrow Data

Names

- A tree
- One or more labels separated by dots
- A restricted subset of ASCII
- Read right to left: www.staff.city.ac.uk.

Types of Record

Type	Meaning	Value
SOA	Start of authority	Parameters for this zone
Α	IPv4 address of a host	32-Bit integer
AAAA	IPv6 address of a host	128-Bit integer
MX	Mail exchange	Priority, domain willing to accept email
NS	Name server	Name of a server for this domain
CNAME	Canonical name	Domain name
PTR	Pointer	Alias for an IP address
SPF	Sender policy framework	Text encoding of mail sending policy
SRV	Service	Host that provides it
TXT	Text	Descriptive ASCII text

Zones

Accessing DNS

The Problem

- Client / server
- Server types : primary, secondary, caching, etc.
- Recursive resolution vs. iterative resolution
- TTL vital for scaling

dig

Let's use dig

- Recursive resolution
- Iterative resolution
- Different record types
- "Reverse" DNS

IT WORKS!

IT WORKS!

But...

- "Cyber squatting"
- Typos
- Homographs & phising
- Wildcards
- Monitoring & censorship
- Internationalisation
- "Same origin" policy
- Load balancing

IT WORKS!

But...

- "Cyber squatting"
- Typos
- Homographs & phising
- Wildcards
- Monitoring & censorship
- Internationalisation
- "Same origin" policy
- Load balancing

Delegation of authority vs. delegation of responsibility

Data & Meta-data

Integrity: DNSSEC

- (Offline) digital signature of records
- Use DNS to distribute public keys
- ullet Heirarchy of DNS ightarrow Heirarchy of trust
- Simple but ...

$\overline{\text{Confidentiality}}: \overline{\text{DNS-over-TLS (DoT)}}/\overline{\text{DNS-over-HTTP}}$ (DoH)

- Re-use existing crypto
- Protect client ↔ recursive server confidentiality
- Simple but ...

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

- Scale: PAN, LAN, MAN, WAN
- Mobile / Dynamic vs. Static
- Centralised vs. Federated
- Open
- Packet vs. Stream
- Broadcast vs. Unicast vs. Multi-cast
- Synchronous vs. Asynchronous
- Reliable vs. Unreliable

DNS vs. CRN

Both distributed hash tables so why are they different?

	DNS	CRN
Control	Heirarchical	Decentralised
Access	Mostly read	Read / write
Change rate	Low	Fast
Responsibility	Heirarchical	"Local"

Conclusion

- Domain Name System Key Infrastructure
- Distributed database at vast scale
- Intersection of technology and power

Reading "Computer Networks", Tanenbaum, Feamster & Wetherall, 6th Section 7.1

Practical DNS exercises and coursework help

Conclusion

- Domain Name System Key Infrastructure
- Distributed database at vast scale
- Intersection of technology and power

Reading "Computer Networks", Tanenbaum, Feamster & Wetherall, 6th Section 7.1

Practical DNS exercises and coursework help

Thank you for your time and attention.

Made using only Free Software