# **ENERGY MARKET FORECASTING**

Laura Fedoruk - P.Eng., M.Sc., LEED AP BD+C



### BETTER DISTRIBUTED ENERGY RESOURCE DEPLOYMENT

Resilience



**Sustainability** 



Cost



## PREDICTIONS OF: LOCATIONAL MARGINAL PRICE

The cost of adding one unit of energy to the grid at a particular node.

#### WHOLESALE ENERGY MARKET PRICING

### **HIGHLY VARIABLE**



### **LOCATION DEPENDENT**



#### **MODELING PROCESS**

### Data Gathering/Cleaning

## Time Series Decomposition and Feature Engineering

### Ensemble predictions for 60 min ahead of real time market

- Weather data near nodes
  - Wind Speed
  - Irradiance
  - Dew Point
  - Temperature
  - Pressure, ...
- Pricing at other nodes
- Statewide demand
- Statewide net Import/Export

- Data resampling
- Seasonal components
- Short term memory of previous values
- Rolling averages
- Rate of change of values
- On and off 'peak' hours

- Custom feature engineered auto-regressive moving average ensemble model:
  - Lasso
  - Random Forest Regressor

### LMP TIME SERIES PREDICTIONS FOR EMBARCADERO SF



## What features are predictive?

Historical Features related to:

Location Price and Weather

Generation

Demand



Other Prices



Solar Irradiance



California Demand



Wind Speed



Grid mix



Nearby rolling averages

### **ENERGY STORAGE DEPLOYMENT BASED ON TIME SERIES PREDICTIONS**



74%

value capture vs. perfect foresight

### **THANK YOU!**



















### **Laura Fedoruk**

Professional Engineer (APEGBC) The University of British Columbia M.Sc., B.A.Sc.









in/laura-fedoruk



/lefed