SAYISAL ANALIZ

Eğri uydurma, ara değer ve dış değer bulma yöntemleri

8. Hafta

Eğri uydurma, aradeğer ve dış değer bulma yöntemleri

Ders İçeriği

- Sonlu Farklar
- Enterpolasyon
- Lineer Enterpolasyon

8. Hafta

Belirlenen aralıkta fonksiyonun varlığı kabul edilir. Dolayısıyla sonlu farklar kullanılarak aralığın herhangi bir noktasındaki değeri için iyi bir yaklaşım bulmak mümkündür.

Bilindiği gibi, fonksiyonların analitik olarak verildiği durumlarda, istenilen noktalardaki fonksiyon değerlerini hesaplamak, fonksiyonun belirli noktalarında istenilen mertebeden türevlerini bulmak yada belirli aralıktaki integralini hesaplamak kolaylıkla yapılabilmektedir.

Ancak fonksiyonların bazı ayrık noktalardaki değerleri belli iken bu tür hesaplamalar sonlu farklar aritmetiği kullanılarak yaklaşık olarak bulunabilmektedir. Hatta, analitik çözümlerin belli olduğu durumlarda bile sonlu farklar kullanım kolaylığı açısından tercih edilmektedir.

8. Hafta

Sonlu farklar hesabı nümerik analizde geniş kullanılma alanına sahiptir.

Matematiksel problemler değişkenlerin sürekli fonksiyonları olarak verilir ve bu fonksiyonlar kapalı bir formülle tanımlanır.

Örnek:
$$y = f(x) = 3x^2 + 5x - 6$$

Bağımsız değişkenlerin verilmiş değerleri için fonksiyonların değerleri hesaplanabilir.

Bir başka şekilde de fonksiyon, bağımsız değişkenlerin her bir değerine y=f(x) karşılık gelen değerlerin bir cümlesi x_1 , y_1 ; x_2 , y_2 ; x_3 , y_3 olarak tanımlanabilir. Bu durumda süreklilik aralığında herhangi bir noktada formülle tanımlama yoktur.

8. Hafta

Sonlu Farklar

İleri Yön Sonlu Farklar

Bir y = f(x) fonksiyonu verildiğinde.

$$\Delta f(x) = f(x+h) - f(x)$$

şeklinde tanımlanan işlemi yaptıran

 Δ sembolüne ileri fark operatörü denir. Burada h, "fark aralığı, adım" olarak adlandırılmıştır.

$$\Delta f(x)$$
 yada Δy

ifadesine f(x) fonksiyonunun birinci mertebeden ileriye farkı denir.

f(x) fonksiyonunun ikinci mertebeden ileriye farkı , $\Delta^2 f(x)$ şeklinde gösterilir ve

$$\Delta^{2} f(x) = \Delta \left[\Delta f(x) \right] = \Delta \left[f(x+h) - f(x) \right]$$

şeklinde ifade edilir.

En genel halde $f(x) = f_i$ ve $f(x + kh) = f_{i+k}$ ile gösterilmek üzere

$$\Delta^n f(x) = \Delta(\Delta^{n-1} f_i) = \Delta^{n-1} f_{i+1} - \Delta^{n-1} f_i \quad \text{seklinde tanımlanır}.$$

Hafta

8.

İleri yönlü Sonlu Farklar: ∆f(x) ifadesi ile gösterimi yapılırsa;

- 1. Mertebeden $\Delta f(x) = f(x+h) f(x)$ (veya $\Delta y_1 = y_1 y_0$)
- 2. Mertebeden $\Delta 2 f(x) = \Delta f(x+h) \Delta f(x) = f(x+2h) 2f(x+h) + f(x)$
- 3. Mertebeden $\Delta 3f(x) = \Delta 2f(x+h) \Delta 2f(x) = [f(x+3h) 2f(x+2h) + f(x+h)] [f(x+2h) 2f(x+h) + f(x)]$

$$= f(x+3h) - 3f(x+2h) + 3f(x+h) - f(x)$$

n. Mertebeden
$$\Delta n f(x) = \Delta n - 1 f(x+h) - \Delta n - 1 f(x)$$
 (veya $\Delta y_n = y_n - y_{n-1}$)

a) İleri yönlü sonlu fark

8. Hafta

Örnek: Aşağıdaki tablodan yararlanarak ileri yön sonlu farklar tablosunu hazırlayınız.

Farklar tablosunu hazırlayalım;

	x	¥	Δ <u>y</u>	Δ ² y	∆³y	Δ^4 y	Δ^5 y	Tablodan (x=2, y=5) noktası örnek olarak alınırsa
	0	-8 -	4	5	5	3	1	katsayılar
	1	-4 9		10	8	4		
	2	5	<mark>19</mark>	<mark>18</mark>	<mark>12</mark>			$\Delta y_2 = 19$, $\Delta^2 y_2 = 18$, $\Delta^3 y_2 = 12$ olur
	3	24	37	30				
8. Hafta	4	61	67					
	5	128						

f(x)

 \boldsymbol{x}

b) Geri yönlü sonlu fark

f(x-h)

x-h

Sayısal Analiz

Sonlu Farklar

Geri yönlü Sonlu Farklar : ∇f(x)

- 2. Mertebeden ∇ 2 f(x) = ∇ f(x+h) ∇ f(x) = f(x) 2f(x-h) + f(x-2h)
- 3. Mertebeden $\nabla 3f(x) = \nabla 2f(x) \nabla 2f(x-h) = [f(x) 2f(x-h) + f(x-2h)] [f(x-h) 2f(x-2h) + f(x-3h)]$ = f(x) - 3f(x-h) + 3f(x-2h) + f(x-3h)

...

 \underline{n} . Mertebeden ∇ n f(x) = ∇ n-1f(x+h) - ∇ n-1f(x) (veya ∇ $\underline{y}_0 = \underline{y}_0 - \underline{y}_{0-1}$)

8. Hafta

Örnek: Aşağıdaki tablodan yararlanarak geri yön sonlu farklar tablosunu hazırlayınız.

Farklar tablosunu hazırlayalım;

x	¥	∇ <u>y</u>	∇ ² y	$\nabla^3 y$	$\nabla^4 y$	$\nabla^5 y$
0	-8					
1	-4	4				
2	5	9	5			
3	24 <	19	10	5		
4	61	37	18	8	3	
5	128	67	30	12	4	1

Tablodan (x=2, y=5) noktası örnek olarak alınırsa katsayılar

$$\nabla y_2 = 9$$
, $\nabla^2 y_2 = 5$ olur

8. Hafta

Merkezi Farklar: $\delta f(x)$

- 1. Mertebeden $\delta f(x) = f(x+h/2) f(x-h/2)$
- 2. Mertebeden $\delta 2 f(x) = \delta f(x+h/2) \delta f(x/2) = f(x+h) 2f(x) + f(x-h)$
- 3. Mertebeden δ 3f(x) = δ 2f(x+h/2) δ 2f(x-h/2)

$$= [f(x+3h/2) - 2f(x+h/2) + f(x-h/2)] - [f(x+h/2) - 2f(x-h/2) + f(x-3h/2)]$$

$$=f(x+3h/2)-3f(x+h/2)+3f(x-h/2)-f(x-3h/2)$$

...

8. Hafta

n. Mertebeden
$$\delta$$
 nf(x) = δ n-1f(x+h) - δ n-1f(x)

10.

Örnek: Aşağıdaki tablodan yararlanarak merkezi farklar tablosunu hazırlayınız.

Merkezi farklar tablosunu hazırlayalım;

×	¥	δ <u>χ</u> ±1/2	δ²y	$\delta^3 y_{\pm 1/2}$	δ ⁴ y	$\delta^5 y_{\pm 1/2}$
0	-8 /					
1	-4 <	4	> 5			
<u>2</u>	<u>5</u> <	> <u>9</u> <	×10 <	>(<u>5</u>)	> (3)~	1
3	24 <	>37	> 18 <	8	> 4	•
4	61 <	>67 /	> 30	>12		
5	128	3.7				

Tablodan (x=2, y=5) noktası örnek olarak alınırsa katsayılar

8. Hafta
$$\delta y_{-1/2} = 9$$
, $\delta^2 y = 10$, $\delta^3 y_{-1/2} = 5$, $\delta^4 y = 3$ veya

11.
$$\delta y_{+1/2} = 19$$
, $\delta^2 y = 10$, $\delta^3 y_{+1/2} = 8$, $\delta^4 y = 3$, $\delta^5 y_{+1/2} = 1$ elde edilir.

Enterpolasyon

Matematiksel problemler değişkenlerin sürekli fonksiyonları olarak ifade edilebilir.

Bu fonksiyonlar kapalı bir formülle tanımlanır ve bağımsız değişkenlerin değerleri için fonksiyonların değerleri hesaplanır.

Fonksiyonlar, bağımsız değişkenlerin her bir değerine karşılık gelen fonksiyon değerlerinin bir cümlesi olarak da tanımlanabilir.

Bu durumda kapalı bir formül verilmemiştir.

Sonlu farklar kullanılarak, değişkenlerin herhangi bir ara değerine karşılık gelen fonksiyon değerleri için iyi bir yaklaşım bulunabilir.

Pratikte karşılaşılan problemlerin çoğunu kapalı bir formül şeklinde tanımlamak mümkün ise de, ayrık noktalar cümlesinde sonlu farklar kullanılarak çözüm elde etmek daha kolay olduğu için daha fazla tercih edilir.

8. Hafta

Enterpolasyon

Veri noktaları arasında ara değer hesabı gereksinim problemi fen ve mühendislikte sıkça karşılaşılır.

Örneğin, bir bina için bilgisayarlı enerji kontrol sistemi dizaynında giriş verisi olarak, her gün binada meydana gelen tipik ısı değişimi gerekebilir.

Örnek ısı değerleri ayrık zaman noktalarında bina içinde ölçülmelidir. Bununla birlikte enerji kontrol sistemi bilgisayar programı için, örnek olarak saatlik artışlarla ısı ölçümleri gerekebilir.

Bu problemi çözmenin bir yolu ölçülen ısı değerlerinin, ölçüm zamanları arasındaki ara değerleri için bir eğri ile tarif edilmesidir.

Katı bir cismin bir sıvı içersinde ilk anda hızlı, daha sonra yavaş çözülmesi olayı gözlemlendiğinde, olayı ifade eden eğriyi bulmak için kullanılacak yöntemler tamamen yaklaşık yöntemlerdir.

8. Hafta

Eğrileri, tanımlanmış bilim ve teknikte kullanılan ya da deney sonucunda elde edilen (veya fonksiyona göre çizilen) şeklinde ikiye ayırmak mümkündür.

Enterpolasyon

Deney sonunda elde edilen değerlen den hareketle bulunan eğri veya diyagramların bazıları bir fonksiyonla ifade edilebilir. Deneysel eğriler bir fonksiyonla ifade edilebiliyorsa bu tür fonksiyonlara **empirik fonksiyonlar** adı verilir.

En basit anlamda fonksiyona ait tablo halinde oluşturulmuş değerlerden hareketle, fonksiyona ait belirli aralıktaki değerlerinin hesaplanması işlemine **enterpolasyon** denir.

Belirli bir aralıkta, bir f(x) fonksiyonu ile bir p(x) polinomunun aldığı değerler farkı istenildiği kadar küçük tutulabiliyorsa, p(x) polinomuna, f(x) fonksiyonunun **yaklaşma polinomu** denir.

İstenilen bir noktadaki değeri ile türevleri f(x) fonksiyonu ile aynı olan polinomlara **uyumlu polinomlar** denir.

8. Hafta

Enterpolasyon

Enterpolasyon fonksiyonunun seçiminde, başlıca iki teorem kullanılır.

- Eğer f(x) fonksiyonu [a,b] aralığında sürekli ve türevlenebilir ise enterpolasyon fonksiyonu olarak polinom kullanılabilir. [a,b] aralığında küçük bir ε değeri için |f(x)-P(x)| ≤ ε kosulu sağlanabilir.
- 2. Periyodu 2π olan herhangi bir sürekli fonksiyon için

$$P(x) = \sum_{k=0}^{n} a_k \cos kx + \sum_{k=1}^{n} b_k \sin kx$$

şeklinde sonlu bir trigonometrik seri enterpolasyon fonksiyonu olarak kullanılabilir.

Enterpolasyon algoritmalarının eğrileri, gerçek fonksiyon eğrilerinden farklıdır.

Birinci teorimi $f(x) = e^x$ fonksiyonu ile örneklemek istersek ;

x=0 için
$$f(x) = e^x \implies f(0) = e^0 = 1$$
 ve $f'(x) = e^x$ olduğundan $f'(0) = e^0 = 1$ dir.

şimdi fonksiyon yerine polinom tanımlayarak işlemi tekrarlarsak ;

Enterpolasyon

İkinci dereceden bir polinom ile fonksiyona yaklaşılmak istenseydi, fonksiyon ve polinomun ikinci türevleride alınarak eşitliklerden polinom elde edilecekti.

 $P_2(x) = ax^2 + bx + c$ olduğu düşünüldüğünde x=0 için benzer işlemler gerçekleştirildiğinde $P_2(x)$ polinomu

"n. dereceden bir polinom tanımlanması halinde fonksiyona daha da yaklaşılacağı açıktır."

f(x) fonksiyonunun p(x) gibi bir polinom yardımıyla enterpolasyon kullanılarak ifade edilmesine işlemine **polinomiyal enterpolasyon** denir.

8. P(x) polinomu trigonometrik bir seri olduğunda ise **trigonometrik enterpolasyon** olarak ifade edilir.

Polinom Enterpolasyonu Lineer (Doğrusal) Enterpolasyon :

Lineer enterpolasyon, belirsiz katsayılar yöntemini örnekleyen en basit ifade şeklidir. Enterpolasyon fonksiyonu düz birçizgiden oluşur. **Lineer enterpolasyon** fonksiyonu,

$$P(x) = a_0 + a_1 x$$

şeklinde ifade edilebilir. Bu basit ifade de bilinmeyen (a_0 , a_1) katsayılarını elde etmek için en az iki adet değişken değeri ve bu değişkenlere karşılık gelen gerçek fonksiyon değerleri bilinmelidir.

Bilinen değişken değerleri \mathbf{x}_i ve \mathbf{x}_{i+1} , fonksiyon değerleri de sırasıyla $f(\mathbf{x}_i)$ ve $f(\mathbf{x}_{i+1})$ olsun, denklemde \mathbf{x}_i , $f(\mathbf{x}_i)$ ve \mathbf{x}_{i+1} , $f(\mathbf{x}_{i+1})$ değerleri üzerinden;

$$a_1 = \frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}}$$
 denklemin katsayıları bulunarak, düzenleme ile;

8. Hafta
$$P(x) = f(x_i) - \left[\frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}} \right] x_i + \left[\frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}} \right] x \quad \text{elde ediling}$$

Polinom Enterpolasyonu Lineer (Doğrusal) Enterpolasyon :

Örnek:
$$f(x) = x^4$$

Fonksiyonuna ait tablo halindeki değerler verilmiştir. x=2.7 için enterpolasyon fonksiyonunun değerini bulalım.

Burada x_i ve x_{i+1} için 2 ve 3 değerleri, $f(x_i)$ ve $f(x_{i+1})$ için de 16 ve 81 değerleri tablodan alınır.

$$P(x) = f(x_i) - \left[\frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}}\right] x_i + \left[\frac{f(x_i) - f(x_{i+1})}{x_i - x_{i+1}}\right] x \quad \text{denklemi kullanılarak;}$$

$$P(x)=16-\left[\frac{16-81}{2-3}\right]2+\left[\frac{16-81}{2-3}\right]x$$
 olur.

Lineer enterpolasyon fonksiyonu p(x)=-114+65x olarak elde edilir. p(2.7)=61.5

- Enterpolasyon fonksiyonu x=2.7 nin 4. Kuvvetini 61.5 olarak bulunur. Bulunan bu değer 53.1441 Hafta gerçek değerinden 8.3559 enterpolasyon hatası ile bulunmuş oldu.
- Aynı denklemde x = 4 için enterpolasyon değeri yaklaşık % 28 hata ile 146 olarak hesaplandı.

Polinom Enterpolasyonu Lineer (Doğrusal) Enterpolasyon :

19. Sayfa

8. Hafta

Polinom Enterpolasyonu Lineer (Doğrusal) Enterpolasyon :

Lineer enterpolasyon fonksiyonu elde edilirken daima hesaplanacak değerin arada kaldığı bilinen sınır değerleri kullanılmalıdır.

Sınır değerlerin dışında kalan bölge için hesaplanan fonksiyon değerlerinde hata oranı artabilmektedir.

Lineer enterpolasyonu iki noktası belli olan denklem için yorumladığımızda, farklı iki noktadaki değeri biliniyorsa, bu durumda $x \in [x_k, x_{k+1}]$ noktasındaki değerinin hesaplanması bu iki noktadan geçen birinci dereceden bir polinom yardımıyla yapılabilir.

8. Hafta

Polinom Enterpolasyonu Lineer (Doğrusal) Enterpolasyon :

 $A[x_k,f(x_k)], B[x_{k+1},f(x_{k+1})]$ noktalarından geçen

doğrunun eğimi
$$m = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}$$
.

O halde doğrunun denklemini yazabiliriz;

$$y - f(x_k) = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k} (x - x_k)$$
 olur.

$$\Delta y_k = f(x_{k+1}) - f(x_k)$$
 ve $h = x_{k+1} - x_k$ konulursa düzenleme ile ifade;

$$y=y_k+rac{\Delta y_k}{h}\left(x-x_k
ight)$$
 elde edilir. Fonksiyon yerine iki noktadan geçen doğruyu seçmiş

olduk.

8. Hafta

Kaynaklar

Sayısal Analiz

(S.Akpınar)

Mühendisler için Sayısal Yöntemler

(Steven C.Chapra&RaymontP.Canale)

Nümerik Analiz

(Schanum's outlines-Nobel)

8. Hafta