Evolución del bus PCI y análisis del PCIe

Curso: Organización de computadores

Profesor: Néstor González

Integrantes: Isaías Cárdenas

Juan Martínez

Contenidos

- → Objetivo(s) del trabajo
- → Definición
- → Historia del bus PCI
- → Evolución a PCle
- → Estado del Arte
- → Tecnologías futuras
- → Conclusión

Objetivo del trabajo

→ Analizar los posibles nuevos usos que se avecinan para el bus PCIe a través del análisis técnico de éste y su relación con las tecnologías actuales. En particular, con los dispositivos de memoria y almacenamiento.

Definición

¿Qué es el bus PCI?

- → Peripheral Component Interconnect
- → Desarrollado por Intel
- → Conexión directa a la placa madre
- → Tarjetas de expansión

Historia del bus PCI

Historia del PCI (v1.0 1992)

- Primera versión
- → 16 MHz
- → Competencias:
 - MCA (Micro Channel Architecture)
 - EISA (Extended Industry Standard Architecture)

Historia del PCI (v2.0 1993)

- Estandariza slot
- 33 MHz
- Competencias:
 - MCA (Micro Channel Architecture)
 - VESA (Video Electronics Standards Association)

Historia del PCI (v2.1 1995)

- → Expande estandarización (Mac)
- → 66 MHz
- → Competencias:
 - AGP (Accelerated Graphics Port)
 - VESA (Video Electronics Standards Association)

Evolución a PCIe

Evolución a PCIe

- → Integración tarjetas de video
- → Información serializada
- → 1, 2, 4, 8, 16 ó 32 enlaces de datos (1x, 2x, 4x, 8x, etc)
- → Derrota de AGP, VESA

Estado del Arte

Estado del Arte

- → Evolución en velocidad (Gigatransferencias)
- → PCIe 3.0
- → 16 GB (ambas direcciones)
- → Ancho de banda de sobra para tarjetas gráficas

Estado del arte (velocidades del PCIe 3.0)

	DOLLAR OF	201112	DOI - 0.0	101 - 111
	PCI-e 1.0	PCI-e 2.	PCI-e 3.0	PCI-e 4.x
x1	250MB/s	500MB/s	985MB/s	1969MB/s
х4	1000MB/s	2000ME\/s	3940MB/s	7876MB/s
х8	2000MB/s	4000ME/s	7880MB/s	15752MB/s
x16	4000MB/s	8000MB/s	15760MB/s	31504MB/s

Estado del Arte (Usos del PCIe 3.0)

- PCle x1: Tarjetas de sonido
- PCIe x4: Tarjetas Ethernet y algunos discos sólidos
- PCIe x8: (No muy común) Algunas tarjetas gráficas y de internet de fibra óptica
- PCle x16: Tarjetas gráficas

Cantidad de carriles asignados en función al ancho de banda requerido*

Tecnologías futuras

Tecnologías futuras

- → PCle 4.0:
 - ◆ Añade potencia (400 500 W)
 - Latencia reducida
 - Mejora en velocidad (2 veces PCIe 3.0)
 - Lanzamiento 2017
- → PCle 5.0:
 - Mejora en velocidad (4 veces PCIe 3.0)
 - Lanzamiento previsto para 2019

Tecnologías futuras (Memorias)

- → Discos Sólidos:
 - ◆ SSD 2.5" interfaz SATA III: 6Gb/s (máximo).
 - SSD M.2 interfaz PCIe 3.0: 32 Gb/s (máximo).
- → Unidades de Memoria Persistente:
 - ◆ Intel Optane™:
 - Grandes cantidades de datos "más cerca del procesador".
 - Ayuda a eliminar cuellos de botella.
 - Versiones de 16 y 32 Gb.
 - Algoritmo 3D Xpoint: Aprender los hábitos del usuario

Conclusiones

Conclusiones

- → Comparación con competencia
- → Importancia en estandarización
- → Visión al futuro (un paso adelante)
- → Velocidad de transferencia no es lo importante

Referencias

https://www.intel.la/content/www/xl/es/architecture-and-technology/intel-optane-technology.html

https://www.profesionalreview.com/2017/06/13/disco-ssd-sata-vs-m-2-vs-ssd-pci-express/

https://pcisig.com/specifications