StarGAN v2: Diverse Image Synthesis for Multiple Domains

Yunjey Choi*, Youngjung Uh*, Jaejun Yoo*, Jung-Woo Ha Clova AI Research, NAVER Corp, EPFL

Image to Image Translation

- Translate Input Image to another Input Image.
- A good Image to Image translation model has following properties:
 - Diversity of generated images
 - Scalability over multiple domains

What does domain mean?

- Domain means a set of images that can be grouped as visually distinctive category.
- We call this style.
- Male/Female, Big/Small eyes, Long/Short hair etc...

Limitation of previous methods

- Previous image to image translation used the following method:
 - Injecting Latent Vector to the generator.
 - This method is not scalable. Hence, It's not practical.
 - If we have K domains, we need to train K(K-1) generator models.
 - Each generator only consider a mapping between two domains.

StarGAN

StarGAN used single generator for all available domains.

Still learns a deterministic mapping per each domain.

StarGAN v2

- StarGAN v2 is a single framework for Image Synthesis with
 - Diversity of generated images
 - Scalability over multiple domains
 - Superior visual quality.

Figure 1. Diverse image synthesis results on the CelebA-HQ dataset and the newly collected animal faces (AFHQ) dataset. The first column shows input images while the remaining columns are images synthesized by StarGAN v2.

StarGAN v2

- Let \mathcal{X} and \mathcal{Y} be the set of images and possible domains.
- Goal is to train a single generator G that can generate diverse images of each domain y that corresponds to the image x.

Generator G

• Generator G translates an input image x into an output image G(x,s) reflecting a domain-specific style code s.

• We use adaptive instance normalization (AdaIN) to inject s

into G.

Adaptive Instance Normalization

• Normalize input content x and inverse normalize in terms of s.

$$AdaIN(x,s) = \sigma(s) \left(\frac{x - \mu(x)}{\sigma(x)} \right) + \mu(s)$$

Mapping Network F

- Given a random latent code z, F generates a style code $s = F_y(z)$.
- *F* is a MLP with multiple output branches to provide style codes for all available domains.

Style Encoder E

• Similar to F, E takes input image x and it's corresponding domain y and extracts the style code $s = E_y(x)$ of x.

Discriminator D

- *D* is a multi task discriminator, which consists of multiple output branches.
- Each branch D_y learns a binary classification determining whether an image x is a real image of its domain y or a fake image G(x,s) produced by G.

Training Objectives

- Given an image $x \in \mathcal{X}$ and its original domain $y \in \mathcal{Y}$, we train our framework using the following objectives.
 - Adversarial Objective
 - Style Reconstruction
 - Style Diversification
 - Preserving Source Characteristics
- Let's look into it!

Adversarial Objective

- By sampling $z \in \mathcal{Z}$ and $y \in \mathcal{Y}$ randomly, we can generate a target style code $\tilde{s} = F_{\tilde{y}}(z)$.
- Generator G takes an image x and \tilde{s} as inputs and learns to generate an output image $G(x, \tilde{s})$ via an adversarial loss

$$\mathcal{L}_{adv} = \mathbb{E}_{x,y} [\log D_y(x)] + \\ \mathbb{E}_{x,\tilde{y},z} [\log(1 - D_{\tilde{y}}(G(x,\tilde{s})))]$$

• F learns to provide the style code \tilde{s} that is likely in the target domain \tilde{y} , and G learns to utilize \tilde{s} and generate an image $G(x, \tilde{s})$ that is indistinguishable from real images of the domain \tilde{y} .

Style Reconstruction

• In order to enforce the generator G to utilize the style code \tilde{s} , we employ a style reconstruction loss

$$\mathcal{L}_{sty} = \mathbb{E}_{x,\tilde{y},z} \left[\left\| \tilde{s} - E_{\tilde{y}} (G(x,\tilde{s})) \right\|_{1} \right]$$

• We use the distance (norm) between \tilde{s} and style code created by $E_{\tilde{v}}$ using generated image $G(x, \tilde{s})$.

Style Diversification

• To further enable the generator *G* to produce diverse images, we explicitly regularize *G* with the diversity sensitive loss

$$\mathcal{L}_{ds} = \mathbb{E}_{x, \widetilde{y}, z_1, z_2} [\|G(x, \widetilde{s_1}) - G(x, \widetilde{s_2})\|_1]$$

- This loss forces G to explore the image space and discover meaningful style features to generate diverse images.
- Since this function's goal is make G to explore, we removed this term as training progressed.

Preserving Source Characteristics

- We need to insure generated image $G(x, \tilde{s})$ preserve the domain invariant characteristics of its input image x.
- We employ the cycle consistency loss $\mathcal{L}_{cyc} = \mathbb{E}_{x,y,\tilde{\gamma},z}[\|x G(G(x,\tilde{s}),\hat{s})\|_{1}]$
- Where $\hat{s} = E_y(x)$, the estimated style code of the input image x, and y is the original domain of x.

Full Objective

So, our full objective function can be summarized as follows:

$$\begin{split} \mathcal{L}_{d} &= -\mathcal{L}_{adv} \\ \mathcal{L}_{G,F,E} &= \mathcal{L}_{adv} + \lambda_{sty} \mathcal{L}_{sty} \\ &- \lambda_{ds} \mathcal{L}_{ds} + \lambda_{cyc} \mathcal{L}_{cyc} \end{split}$$

• Where λ_{sty} , λ_{ds} and λ_{cyc} are hyperparams for each term.

Result

 StarGAN v2 shows superior results then previous methods like DRIT or MSGAN on Reference-guided synthesis task.

(a) Reference-guided synthesis on Celeb A-HO

(b) Reference-guided synthesis on AFHQ

Figure 6. Qualitative comparison of reference-guided image synthesis results on the CelebA-HQ and AFHQ datasets. Each method translates the source images into target domains, reflecting the styles of the reference images.

	CelebA-HQ		AFHQ	
Method	Quality	Style	Quality	Style
MUNIT [16]	6.2	7.4	1.6	0.2
DRIT [28]	11.4	7.6	4.1	2.8
MSGAN [34]	13.5	10.1	6.2	4.9
StarGAN v2	68.9	74.8	88.1	92.1

Table 4. Votes from AMT workers for the most preferred method regarding visual quality and style reflection (%). StarGAN v2 outperforms the baselines with remarkable margins in all aspects.

Result

- StarGAN v2 addresses two major challenges in image-toimage translation:
 - An image of one domain to diverse images of a target domain.
 - Supporting multiple target domains.
- Model can generate images with rich styles across multiple domains.

StarGAN v2: Diverse Image Synthesis for Multiple Domains

Paper: https://arxiv.org/abs/1912.01865

Official PyTorch Implementation: https://github.com/clovaai/stargan-v2

Thank you for watching!