

Лекция 3

Ортогональный проектор

Содержание лекции:

В настоящей лекции мы продолжим изучать ортогональные системы векторов. Здесь будут определены ортогональное дополнение подпространства и ортогональный проектор - те понятия, которыми наиболее часто оперирует геометрия. Также мы сформулируем и решим одну из самых важных задач геометрии - задачу о перпендикуляре.

Ключевые слова:

Ортогональная сумма подпространств, ортогональный проектор, задача о перпендикуляре, коэффициенты Фурье, неравенство Бесселя, равенство Парсеваля.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

3.1 Ортогональная сумма подпространств

Nota bene Пусть $X_E(\mathbb{C})$ - комплексное евклидово пространство и $L \leqslant X_E$ - его подпространство. Введем следующие определения:

Говорят, что элемент $x \in X_E(\mathbb{C})$ ортогонален подпространству L, если

$$\forall y \in L \quad x \perp y.$$

Nota bene Тот факт, что x ортогонален L принято обозначать $x \perp L$.

Ортогональным дополнением подпространства L в X_E называется множество:

$$M = L^{\perp} = \{ x \in X_E : \quad x \perp L \} .$$

Лемма 3.1. Множество $M=L^{\perp}$ является подпространством в $X_E(\mathbb{C})$.

Лемма 3.2. На множестве подпространств евклидова пространства X_E операция $L \mapsto L^{\perp}$ обладает следующими свойствами:

$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}, \quad (L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}.$$

Теорема 3.1. Пусть L - подпространство линейного пространства X_E , тогда

$$X_E = L + M \Leftrightarrow \forall x \in X_E \quad \exists! z \in L, \ h \in L^{\perp} : \quad x = z + h.$$

1. Пусть $\{e_j\}_{j=1}^k$ - ортонормированный базис в L,

2. Дополним $\{e_j\}_{j=1}^k$ до базиса $X_E: \{e_1, e_2, \dots, e_k; x_{k+1}, x_{k+2}, \dots, x_n\}$

3. Проведем процесс ортогонализации Грама-Шмидта

$$\{e_1, e_2, \ldots, e_k; e_{k+1}, e_{k+2}, \ldots, e_n\},\$$

4. $\forall x = \sum_{i=1}^{k} \xi^{i} e_{i} + \sum_{i=k+1}^{n} \xi^{i} e_{i} = z + h \implies E = L + M.$

5. Пусть $x=h_1+z_1=h_2+z_2$, тогда $h_2-h_1=z_1-z_2$ и $\|h_2-h_1\|^2=\langle z_1-z_2,h_2-h_1\rangle=0, \quad \Rightarrow \quad h_2-h_1=0.$

Nota bene В данном случае прямая сумма $E = L \dot{+} M = L \oplus M$ называется также ортогональной суммой подпространств L и M.

 $Nota\ bene$ В более общем случае, сумма попарно ортогональных подпространств $L_i \perp L_{j\neq i}$ называется ортогональной суммой подпространств:

$$E = \bigoplus_{i=1}^{s} L_i.$$

3.2 Ортогональный проектор

Ортогональным проектром на подпространство L называется линейный оператор, обладающий следующим свойством:

$$\mathcal{P}_L^\perp(x) = z, \quad x = z + h, \quad z \in L, \quad h \in M = L^\perp.$$

Nota bene При этом вектор z называется ортогональной проекцией x на L.

Теорема 3.2. Пусть $\{e_j\}_{j=1}^m$ - ортонормированный базис в X_E . Тогда вид ортогонального проектора в этом базисе:

$$\mathcal{P}_L^{\perp} x = \sum_{i=1}^m \langle x, e_i \rangle e_i, \quad \forall x \in E.$$

Для доказательства этого утверждения достаточно показать, что

$$x = z + h \quad \Rightarrow \quad \mathcal{P}_L^{\perp} z = z, \quad \mathcal{P}_L^{\perp} h = 0.$$

Действительно, пусть e_j - элемент базиса, лежащий в L, тогда

$$\mathcal{P}_L^{\perp} e_j = \sum_{i=1}^k \langle e_j, e_i \rangle e_i = e_j.$$

Если e_l - элемент базиса, лежащий в M ($k < l \le n$), тогда

$$\mathcal{P}_L^{\perp} e_l = \sum_{i=1}^k \langle e_l, e_i \rangle e_i = 0.$$

3.3 Задача о перпендикуляре

Задачей о перпендикуляре называется задача об отыскании компонент произвольного вектора x в подпространствах L и M.

Nota bene Алгоритм решения задачи о перпендикуляре:

- 1. Найти ортонормированный базис $\{e_j\}_{j=1}^k$ подпространства L;
- 2. Найдем ортогональную проекцию $\mathcal{P}_L^{\perp}x=\sum_{i=1}^k \langle x,e_i \rangle\,e_i,$
- 3. Найдем ортогональную проекцию $\mathcal{P}_M^{\perp} = x \mathcal{P}_L^{\perp}$.

Лемма 3.3. Имеет место следующее сравнение:

$$\left\| \mathcal{P}_L^{\perp} x \right\| \le \|x\|$$

Из теоремы Пифагора непосредственно следует, что

$$\|\mathcal{P}_L^{\perp} x\|^2 + \|\mathcal{P}_M^{\perp} x\|^2 = \|x\|^2.$$

Коэффициенты $\alpha_i = \langle e_i, x \rangle$ ортонормированном базисе $\{e_i\}_{i=1}^n$ пространства X_E называются коэффициентами Фурье вектора x относительно этого базиса.

Лемма 3.4. Справедливо следующее равенство:

$$\|\mathcal{P}_L^{\perp} x\|^2 = \sum_{i=1}^m |\langle e_i, x \rangle|^2 = \sum_{i=1}^m |\alpha_i|^2.$$

Действительно, прямой проверкой можно убедиться, что

$$\|\mathcal{P}_L^{\perp} x\|^2 = \langle \mathcal{P}_L^{\perp} x, \mathcal{P}_L^{\perp} x \rangle = \sum_{i,j=1}^m \langle \langle e_i, x \rangle e_i, \langle e_j, x \rangle e_j \rangle =$$

$$= \sum_{i,j=1}^m \langle e_i, x \rangle \langle e_j, x \rangle \langle e_j, e_i \rangle = \sum_{i=1}^m |\langle e_i, x \rangle|^2 = \sum_{i=1}^m |\alpha_i|^2$$

Лемма 3.5. (Следствие предыдущих лемм) Неравенство Бесселя:

$$||x||^2 \ge \sum_{i=1}^k |\alpha_i|^2$$
, $||x||^2 = \sum_{i=1}^k |\alpha_i|^2 \iff x \in L$.

Теорема 3.3. Система ортонормированных векторов $\{e_i\}_{i=1}^k$ является полной в X_E тогда и только тогда, когда для любого $x \in X_E$ имеет место равенство Парсеваля:

$$||x||^2 = \sum_{i=1}^k |\alpha_i|^2, \quad \alpha_i = \langle e_i, x \rangle, \quad \forall x \in X_E.$$

⇒ Очевидно.

 \Leftarrow Пусть для любого x выполняется равенство Парсеваля. Предположим, что

$$x = z + h$$
, $z = \sum_{i=1}^{m} \langle e_i, x \rangle e_i$, $h \perp z$,

тогда по теореме Пифагора

$$||x||^2 = ||z||^2 + ||h||^2, \quad \sum_{i=1}^m |\alpha_i|^2 = \sum_{i=1}^m |\alpha_i|^2 + ||h||^2,$$

откуда следует, что h=0 и система $\left\{e_i\right\}_{i=1}^m$ - полная в $X_E.$

•