

July 2008 **IGBT**®

FGH40N120AN 1200V NPT IGBT

Features

- · High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.6 \text{ V} @ I_C = 40 \text{A}$
- · High input impedance
- · RoHS complaint

Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Description

Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Absolute Maximum Ratings

Symbol	Parameter		FGH40N120AN	Units	
V _{CES}	Collector-Emitter Voltage		1200	V	
V _{GES}	Gate-Emitter Voltage		±25	V	
	Collector Current	@T _C = 25°C	64	A	
IC	Collector Current	@T _C = 100°C	40	A	
I _{CM(1)}	Pulsed Collector Current		160	A	
D	Maximum Power Dissipation	@T _C = 25°C	417	W	
P_{D}	Maximum Power Dissipation	@T _C = 100°C	167	W	
SCWT	Short Circuit Withstand Time, V _{CE} = 600V, V _{GE} = 15V, T _C = 125°C		10	μs	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{STG}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 seconds		300	°C	

Notes

(1) Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (IGBT)	Thermal Resistance, Junction-to-Case		0.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGH40N120AN	FGH40N120AN	TO-247	=	=	30

Electrical Characteristics of the IGBT $T_C = 25$ °C unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Off Charact	reristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$	1200			V
BV _{CES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 1mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			1	mA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			±250	nA
On Charact	eristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	3.5	5.5	7.5	V
OL(III)	j ,	I _C = 40A, V _{GE} = 15V		2.6	3.2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 40A, V_{GE} = 15V,$ $T_C = 125^{\circ}C$		2.9		V
		I _C = 64A, V _{GE} = 15V		3.15		V
Dvnamic Cl	haracteristics	,		l		
C _{ies}	Input Capacitance			3200		pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V$		370		pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz		125		pF
Switching (Characteristics			•	•	•
t _{d(on)}	Turn-On Delay Time			15		ns
t _r	Rise Time			20		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 40A,$		110		ns
t _f	Fall Time	$R_G = 5\Omega$, $V_{GE} = 15V$,		40	80	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		2.3	3.45	mJ
E _{off}	Turn-Off Switching Loss]		1.1	1.65	mJ
E _{ts}	Total Switching Loss]		3.4	5.1	mJ
t _{d(on)}	Turn-On Delay Time			20		ns
t _r	Rise Time			25		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600V, I_{C} = 40A,$		120		ns
t _f	Fall Time	$R_{\rm G} = 500$, $R_{\rm C} = 40$ A, $R_{\rm G} = 5\Omega$, $R_{\rm G} = 15$ V, Inductive Load, $R_{\rm C} = 125$ °C		45		ns
E _{on}	Turn-On Switching Loss			2.5		mJ
E _{off}	Turn-Off Switching Loss			1.8		mJ
E _{ts}	Total Switching Loss			4.3		mJ
Qg	Total Gate charge	V 000V I 101		220		nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 600V, I_{C} = 40A,$ $V_{GE} = 15V$		25		nC
Q _{gc}	Gate-Collector Charge	- GE = 10 t		130		nC

Typical Performance Characteristics

Figure 1. Typical Output Characteristics

Figure 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Saturation Voltage Characteristics

Figure 4. Load Current vs. Frequency

Figure 6. Saturation Voltage vs. V_{GE}

Typical Performance Characteristics (Continued)

Figure 7. Capacitance Characteristics

Figure 9. Turn-Off Characteristics vs. Gate Resistance

Figure 11. Turn-On Characteristics vs. Collector Current

Figure 8. Turn-On Characteristics vs. Gate Resistance

Figure 10. Switching Loss vs. Gate Resistance

Figure 12. Turn-Off Characteristics vs. Collector Current

Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

Figure 14. Gate Charge Characteristics

Figure 15. SOA Characteristics

Figure 16. Turn-Off SOA

Figure 17. Transient Thermal Impedance of IGBT

Mechanical Dimensions

TO-247AB (FKS PKG CODE 001)

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACFx[®] Green FPS™ Power247® SuperSOT™-8 POWEREDGE® Build it Now™ Green FPS™ e-Series™ SyncFET™ CorePLUS™ GTO™ Power-SPM™ The Power Franchise® $\mathsf{PowerTrench}^{\texttt{®}}$ CROSSVOLT™ i-LoTM p_{wer} $\mathsf{CTL^{\mathsf{TM}}}$ IntelliMAX™ Programmable Active Droop™ Current Transfer Logic™ ISOPLANAR™ QFET® TinyBoost™ TinyBuck™ EcoSPARK® QS™ MegaBuck™ MICROCOUPLER™ TinyLogic[®] QT Optoelectronics™ $\bar{\text{Fairchild}}^{\text{@}}$ TINYOPTO™ Quiet Series™ MicroFET™ Fairchild Semiconductor® MicroPak™ TinvPower™ RapidConfigure™ $\mathsf{TinyPWM}^{\mathsf{TM}}$ FACT Quiet Series™ MillerDrive™ SMART START™ **FACT®** Motion-SPM™ SPM[®] TinyWire™ $\mathsf{FAST}^{\mathbb{R}}$ $\mathsf{OPTOLOGIC}^{\mathbb{R}}$ STEALTH™ µSerDes™ $\mathsf{UHC}^{\mathbb{B}}$ OPTOPLANAR® FastvCore™ SuperFET™ FPS™ SuperSOT™-3 UniFET™ FRFET® PDP-SPM™ SuperSOT™-6 VCX^{TM} Global Power ResourceSM Power220[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification		Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

Rev. I31