

Multiselective Diels-Alder Reaction

CHM 612

Prof. Dr. Vinod K Singh Sir

Department of Chemistry IIT Kanpur

Presented By

- Vikash Meghwal,
- Nitu Kumari

BINOL-derived phosphoric acid catalysts

Prepration

Axial chirality

1-1' Bi -2- Naphthol

Diels-Alder

 Boron Tribromide-Assisted Chiral Phosphoric Acid Catalysts for Enantioselective [2+2]
Cycloaddition

 Boron Tribromide-Assisted Chiral Phosphoric Acid Catalyst for a Highly Enantioselective Diels— Alder Reaction of 1,2-Dihydropyridines

J. Am. Chem. Soc. 2015, 137, 42, 13472–13475

•Manabu Hatano[†] Yuta Goto[†]Atsuto Izumiseki[†]Matsujiro Akakura[‡] Kazuaki Ishihara^{*†}

Hetero Diels-Alder

Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acid Catalysts for Enantioselective Inverse-Electron-Demand Hetero-Diels-Alder Reaction of α,β-Substituted Acroleins Enantio- and Diastereoselective Carbonyl-Ene Cyclization— Acetalization Tandem Reaction Catalyzed by Tris(pentafluorophenyl)borane-Assisted Chiral Phosphoric Acids

Diels-Alder (DA) reactions, in which the enantio-, endo/exo-, π -facial, regio-, site-, and substrateselectivity are possible.

During the present study, we found that Davies had reported the Me2AlCl-catalyzed HDA reaction of α -arylacroleins (3) and cyclopentadiene (2), in which the undesired competitive DA reaction also occurred

Selectivity can be controlled

- Catalysts for multiselective carbon-carbon-bond-forming reactions
- The rational design of achiral acid-assisted chiral Lewis- or Brønsted-acid catalysts
- In particular, by taking advantage of the chiral-cavity control exerted by BX3-(R)-1, unusual exo-DA productsmight be obtained by overcoming the orbital preference

(b) This work (Multiselective DA reaction supressing HDA reaction)

Mechanistic Aspects

Optimization of the Catalysts in the Reaction of α -Phenylcrotonaldehyde (3a) with Cyclopentadiene (2)a

				ratio (%)				
entry	catalyst	reaction time (h)	yield (%) ^b	endo-4a	exo-4a	endo- 5a	6a	ee (%) of exo-4a
1	(R)-1a	24	0					
2	$BBr_3-(R)-1a$	2.5	83	1	66	17	16	94
3	$BBr_3-(R)-1a$	48	79	2	67	16	15	95
4	BCl_3 - (R) -1a	2.5	87	5	63	29	3	78
5	$B(C_6F_5)_3-(R)-1a$	24	53	26	15	57	2	-3^c
6	BBr_3	7	15	13	13	53	21	
7^d	$B(C_6F_5)_3$	4	84	27	27	46	0	
8	$C_6F_5SO_3H$	24	36	17	36	39	8	

