Lecture 10. Functors and monads

Functional Programming 2019/20

Alejandro Serrano

Goals

- Understand the concept of higher-kinded abstraction
- ▶ Introduce two common patterns: functors and monads
- Simplify code with monads

Chapter 12 from Hutton's book, except 12.2

Functors

Map over lists

map f xs applies f over all the elements of the list xs

Map over binary trees

Remember binary trees with data in the inner nodes:

They admit a similar map operation:

```
mapTree :: (a -> b) -> Tree a -> Tree b
```

Map over binary trees

Remember binary trees with data in the inner nodes:

They admit a similar map operation:

Map over binary trees

mapTree also applies a function over all elements, but now contained in a binary tree

```
> t = Node (Node Leaf 1 Leaf) 2 Leaf
> mapTree (+1) t
Node (Node Leaf 2 Leaf) 3 Leaf
> mapTree even t
Node (Node Leaf False Leaf) True Leaf
```

Map over optional values

Optional values are represented with Maybe

```
data Maybe a = Nothing | Just a
```

What does a map operation over optional values look like?

Map over optional values

Optional values are represented with Maybe

```
data Maybe a = Nothing | Just a
```

What does a map operation over optional values look like?

```
mapMay :: (a -> b) -> Maybe a -> Maybe b
mapMay _ Nothing = Nothing
mapMay f (Just x) = Just (f x)
```

Map over optional values

mapMay applies a function over a value, only if it is present

```
> mapMay (+1) (Just 1)
Just 2
> mapMay (+1) Nothing
Nothing
It is similar to the "safe dot" operator in some languages
int Total(Order o) { // o might be null
    return o?.Amount * o?.PricePerUnit;
}
```

Maps have similar types

```
      map
      :: (a \rightarrow b) \rightarrow [a]
      -> [b]

      -- (a \rightarrow b)
      -> List
      a \rightarrow List
      b

      mapTree
      :: (a \rightarrow b)
      -> Tree
      a \rightarrow Tree
      b

      mapMay
      :: (a \rightarrow b)
      -> Maybe
      a \rightarrow T
      b

      mapT
      :: (a \rightarrow b)
      -> T
      a \rightarrow T
      b
```

The difference lies in the type constructor

- ▶ [] (list), Tree, Of Maybe
- Those parts need to be applied to other types

Functors

A type *constructor* which has a "map" is called a **functor**

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b

instance Functor [] where
  -- fmap :: (a -> b) -> [a] -> [b]
  fmap = map

instance Functor Maybe where
  -- fmap :: (a -> b) -> Maybe a -> Maybe b
  fmap = mapMay
```

Higher-kinded abstraction

```
class Functor f where
  fmap :: (a -> b) -> f a -> f b
```

- ▶ In Functor the variable f stands for a type constructor
 - A "type" which needs to be applied
- ► This is called **higher-kinded** abstraction
 - ► Not generally available in a programming language
 - Haskell, Scala and Rust have it
 - Java, C# and Swift don't

Functors generalize maps

Suppose you have a function operating over lists

```
inc :: [Int] -> [Int]
inc xs = map (+1) xs
```

You can easily generalize it by using fmap

```
inc :: Functor f => f Int -> f Int
inc xs = fmap (+1) xs
```

Note that in this case the type of *elements* is fixed to Int, but the type of the *structure* may vary

(<\$>) instead of fmap

Many Haskellers use an alias for fmap

$$(<$>) = fmap$$

This allows writing maps in a more natural style, in which the function to apply appears before the arguments

inc
$$xs = (+1) < xs$$

Functions with a fixed input are also functors

ightharpoonup Remember that ightharpoonup s is also written (->) ightharpoonup s

Question

What type should we write in the Functor instance?

Functions with a fixed input are also functors

▶ Remember that r → s is also written (→) r s

Question

What type should we write in the Functor instance?

Answer

We need something which requires a parameter

ightharpoonup Thus we drop the last one from the arrow, (->) m r


```
instance Functor ((->) r) where
  -- fmap :: (a -> b) -> (r -> a) -> (r -> b)
fmap ab ra = \r -> ab (ra r)
```

The map operation for functions is composition!

IO actions form also a functor

instance Functor IO where

ID actions form also a functor

```
instance Functor IO where
   -- fmap :: (a -> b) -> IO a -> IO b
   fmap f a = do x <- a
        return (f x)</pre>
```

This removes the need for a lot of names

```
do x <- getChar ===> toUpper <$> getChar
  return (toUpper x)
```

and it is much easier to read and follow!

Functor laws

Valid Functor instances should obbey two laws

identity distributivity over composition	<pre>fmap id = id fmap (f.g) = fmap f . fmap g</pre>
--	--

These laws guarantee that fmap preserves the structure

A wrong Functor

Could you find an instance which respects the type of fmap but not the laws?

Hint: try with list constructor

A wrong Functor

Could you find an instance which respects the type of fmap but not the laws?

Hint: try with list constructor

```
instance Functor [] where
   -- Applies the function over all elements,
   -- but also reverses the list
fmap _ [] = []
fmap f (x:xs) = fmap f xs ++ [f x]
```

A wrong Functor

Could you find an instance which respects the type of fmap but not the laws?

Hint: try with list constructor

Another wrong Functor

Things can go wrong in many different ways

Monads

Case study: evaluation of arithmetic expressions

```
data ArithOp = Plus | Minus | Times | Div
data ArithExpr = Constant Integer
               | Variable Char
                 Op ArithOp ArithExpr ArithExpr
eval :: Map Char Integer -> ArithExpr
     -> Maybe Integer
eval m (Op Plus x y)
  = case eval m x of
      Nothing -> Nothing
      Just x' -> case eval m y of
                   Nothing -> Nothing
                   Just v' -> Just (x' + y')
```


Validation of data

data Record = Record Name Int Address

```
-- These three validate input from the user
validateName :: String -> Maybe Name
validateAge :: String -> Maybe Int
validateAddr :: String -> Maybe Address
-- And we want to compose them together
case validateName nm of
  Nothing -> Nothing
  Just nm' -> case validateAge ag of
    Nothing -> Nothing
    Just ag' -> case validateAddr ad of
      Nothing -> Nothing
      Just ad' -> Just (Record nm' ag' ad')
```


Looking for similarities

The same pattern occurs over and over again

```
case maybeValue of
  Nothing -> Nothing
  Just x -> -- return some Maybe which uses x
```

Looking for similarities

The same pattern occurs over and over again

```
case maybeValue of
  Nothing -> Nothing
  Just x -> -- return some Maybe which uses x
```

Higher-order functions to the rescue!

```
next :: Maybe a -> (a -> Maybe b) -> Maybe b
next Nothing _ = Nothing
next (Just x) f = f x
```

Shorter code for the examples

For the arithmetic expression evaluator:

```
eval m (Op Plus x y)
= eval m x `next` (\x' ->
        eval m y `next` (\y' ->
        Just (x' + y') ) )
```

For data validation:

```
validateName nm `next` (\nm' ->
validateAge ag `next` (\ag' ->
validateAddr ag `next` (\ad' ->
Just (Record nm' ag' ad') )))
```

Does it sound familiar?

Remember the "bind" operation for input/output actions

$$(>>=)$$
 :: IO a -> (a -> IO b) -> IO

b

Now, compare it to the next operation for Maybe

Another example of higher-kinded abstraction

return for optional values

The other basic operation for IO was return

return :: a -> IO a

This function embeds a pure value into the IO world

return for optional values

The other basic operation for IO was return

return :: a -> **IO** a

This function embeds a pure value into the IO world

Optional values provide a similar function

Just :: a -> Maybe a

return for optional values

The other basic operation for IO was return

```
return :: a -> IO a
```

This function embeds a pure value into the IO world

Optional values provide a similar function

```
Just :: a -> Maybe a
```

Maybe it is about time to introduce a new type class...

(>>=) + return = monad

A **monad** is a type constructor which provides the previous two operations

- ▶ Subject to some laws that we shall introduce later
- In addition, every monad is also a functor

```
class Functor m => Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b

instance Monad Maybe where
  return = Just
  (>>=) = next
```

instance Monad IO where

-- Hidden from us, mere mortals

do-notation for generic monads

The do-notation introduced for IO works for any monad

Rule of thumb for writing monadic code: do not think about nested (>>=) at all, just use do

Shorter (and nicer) code for the examples

For the arithmetic expression evaluator:

For data validation:

```
do nm' <- validateName nm
   ag' <- validateAge ag
   ad' <- validateAddr ad
   return (Record nm' ag' ad')</pre>
```

What does the following code do?

What does the following code do?

```
f :: Maybe Int -> Maybe Int
f m = do x <- m
    return 3
    return (x + 1)</pre>
```

Solution

Adds 1 to the value in m, if present

- return does not break evaluation
- So it does not always return 3

The behavior is clear by looking at the translation

- <- are turned into nested (>>=)
- return for Maybe is Just

```
f m = m >>= \x ->

Just 3 >>= \_ -> -- "gets" the 3

Just (x + 1)
```

Is the following code type correct at all?

Is the following code type correct at all?

And what about the following variation?

Does this code compile?

Does this code compile?

Solution

No, a do block works only with *one* monad

- ► The first <- and return require Maybe
- The second <- requires IO</p>

The List monad

Let us try to write the methods from their types

```
return :: a -> [a] return x = _
```


Let us try to write the methods from their types

```
return :: a -> [a]
return x = _
```

We only have two options:

- Return the empty list, []
- Return the given element repeated some amount of times, [x, ...]

In this case, we settle for [x], a singleton list

- It is the only possibility to satisfy the laws
 - But I will not show you why

$$(>>=)$$
 :: [a] -> (a -> [b]) -> [b] xs >>= f = ...


```
(>>=) :: [a] -> (a -> [b]) -> [b] xs >>= f = ...
```

- 1. We have a list of as and a function which operate in one
 - The natural instinct is to map one over the other
- 2. But map f xs :: [[b]], a list of lists
- 3. Luckily, we have concat :: [[a]] -> [a]

```
xs >>= f = concat (map f xs)
```


What does the List monad model?

```
[1,2,3] >>= \x -> do x <- [1,2,3]

[4,5,6] >>= \y -> y <- [4,5,6]

return (x + y) return (x + y)

= -- definition of (>>=) and return

[5,6,7,6,7,8,7,8,9]

=

[1+4,1+5,1+6,2+4,2+5,2+6,3+4,3+5,3+6]
```

Lists model search and non-determinism

The list monad applies the function over all choices of elements from each list

- ► For that reason we call [] the **search** monad
- Each variable can be thought as having more than one value assigned to it
 - This is called non-determinism

Case study: sum and Pythagorean triples

Given three numbers x, y, z, we say that they form

- ightharpoonup A sum triple if x + y = z
- ▶ A Pythagorean triple if $x^2 + y^2 = z^2$

triples xs computes, given a list of numbers xs, those subsets of elements which form a triple

We are going to build it using the monadic interface to lists

Cooking sumTriple

A first approximation to sum triples is:

The value [] denotes failure while searching

No value is produced from ranging over an empty list

$$[] >>= f = [] = xs >>= _ -> []$$

Introducing guard

This pattern is very common to perform search

```
guard :: Bool -> [()]
guard True = [()]
guard False = []
```

We do not really care of the value returned by guard

► The important bit is that when the condition is false, we produce no more results

Cooking triples

Assuming we have sumTriples and pytTriples

```
triples :: [Int] -> [(Int, Int, Int)]
triples xs = sumTriples xs ++ pytTriples xs
```

Concatenation combines solutions from multiple sources

▶ In a search, it works as a disjunction

Monads with failure

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

Monads with failure

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

The simplest case is Maybe: try to implement mzero and mplus!

Monads with failure

Other monads exhibit the same pattern of failure and combination of results

```
class Monad m => MonadPlus m where
  mzero :: m a
  mplus :: m a -> m a -> m a
```

The simplest case is Maybe, with Nothing representing failure

```
instance MonadPlus Maybe where
  mzero = Nothing
  mplus (Just x) _ = Just x
  mplus _ (Just y) = Just y
  mplus Nothing Nothing = Nothing
```


do versus comprehensions

If I had told you to write sumTriples without imposing monadic notation, the result would have been

```
[ (x,y,z)

do x <- xs

y <- xs

z <- xs

guard (x + y == z)

return (x,y,z)

[ (x,y,z)

| x <- xs

, y <- xs

, z <- xs

, x + y == z ]
```

do-notation and comprehensions are exactly the same!

- ► GHC provides monad comprehensions under a flag
- Other languages, such as Scala, only provide comprehensions for working with monads

Summary

- With higher-order functions and higher-kinded abstraction many patterns become mere functions
 - Higher-kinded abstraction refers to making a type constructor vary, in contrast to "full" types
- ► Functor generalizes the idea of "map"
- Monads encode the notion of "sequential computation"

Later in the course

- More examples of monads
- Utility functions for monads
- Another abstraction: applicatives

