NEO Follow-Up

Data Reduction and Star Detection

Data Reduction Steps

- 1. Calculate the **median bias/dark/flat** frames
 - a. Load in the fits images
 - b. np.median
- 2. Align the light frames, then calculate the **median light** frame
 - a. import astroalign as aa
 - b. Select the reference frame
 - c. Match all other frames to the reference frame
 - d. np.median
- 3. **calibrated_image** = (median_light median_bias median_dark) / median_flat

Star Detection

- 1. Find all stars in the calibrated image
 - a. from photutils import DAOStarFinder
 - b. daofind = DAOStarFinder(fwhm=detection_fwhm, threshold=detection_sigma_threshold*std)
- 2. Plate solve the calibrated image
 - a. ast = AstrometryNet()
 - b. ast.api_key = astrometry_api_key
 - c. wcs_header = ast.solve_from_image(fit_image_path, force_image_upload=True)

3. SIMBAD Query

- a. Query every star found in step 1
- b. Get V mag info
- c. Return the faintest star

'	<row index="0"></row>											
	MAIN_ID	RA	DEC	RA_PREC	DEC_PREC	COO_ERR_MAJA	COO_ERR_MINA	COO_ERR_ANGLE	COO_QUAL	C00_WAVELENGT	H COO_BIBCODE	FLUX_V
		"h:m:s"	"d:m:s"			mas	mas	deg				mag
	object	str13	str13	int16	int16	float32	float32	int16	str1	str1	object	float32
5	DSS J125433.37+212336.2	12 54 33.3841	+21 23 36.248	14	14	0.670	0.508	90	 3 A		 0 2020yCat.13500G	20.79