Fast parameter estimation of gravitational waves from binary neutron stars with JAX and normalizing flows

Thibeau Wouters, Peter T. H. Pang, Tim Dietrich, Chris Van Den Broeck t.r.i.wouters@uu.nl

O in y

arXiv:2404.11397

LVK Barcelona, September 2024

Table of Contents

Introduction

Methods

Results

4 Conclusion

Parameter estimation

Parameter estimation (PE): get posterior of GW parameters θ

$$p(\theta|d) = \frac{p(d|\theta)p(\theta)}{p(d)} = \frac{\text{likelihood} \times \text{prior}}{\text{evidence}}$$

Problem: Markov Chain Monte Carlo (MCMC): computationally expensive for binary neutron stars (BNS)

Overview

 J_{IM} : fast parameter estimation of GW signals with $_{\mathrm{JAX}}$

• MCMC sampler: FLOWMC

Waveforms: RIPPLE

Table of Contents

Introduction

2 Methods

Results

4 Conclusion

JAX

 ${\it JAX} = {\it Numpy} + {\it composable transformations}$:

- 1 Automatic differentiation
- 2 Just-in-time (JIT) compilation

- **3** GPU acceleration
- 4 Parallelization

Potential for massive acceleration, such as in parameter estimation!

Normalizing flows

- Generative machine learning model
- Learn mapping between latent and parameter space
- Enable approximate sampling from complicated distributions
- Training data: MCMC samples

FLOWMC

 ${ t FLOWMC:}$ normalizing-flow (NF) enhanced MCMC sampling

- 1 Gradient-based sampler (local sampler)
- 2 Train NF with samples from local sampler
- 3 Sample normalizing flow (global sampler)

Table of Contents

Introduction

2 Methods

Results

4 Conclusion

Results

- Waveforms: TaylorF2 (TF2), IMRPhenomD_NRTidalv2 (NRTv2)
- JIM wall time: (i) computing reference parameters for relative binning, (ii) training NF, (iii) sampling

Event	Waveform	Jim	PBILBY	RB-BILBY	ROQ-BILBY
		(1 GPU)	(480 cores)	(24 cores)	(24 cores)
GW170817	TF2	$(4.85 + 15.33) \; { m min}$	9.64 h	3.8 h	_
	NRTv2	$(5.38 + 25.59) \ min$	10.99 h	4.11 h	1.65 h
GW190425	TF2	$(2.63 + 18.30) \min$	8.18 h	2.81 h	-
	NRTv2	$(3.26 + 21.20) \ \text{min}$	4.91 h	2.42 h	0.97 h
Injection	TF2	24.76 min	_	_	_
	NRTv2	18.02 min	-	_	-

 $(PBILBY = PARALLEL \ BILBY, \ RB = relative \ binning, \ ROQ = reduced \ order \ quadrature)$

Environmental impact

JIM is more environmentally friendly than existing pipelines

- Energy consumption for all 204 runs of paper
- Convert to number of trees to capture the emitted CO_2 in a year.

Method		Trees
JIM		0.55
PBILBY		67.68
RB-Bilby		1.32
ROQ-BILBY	sampling	0.52
	precompute [‡]	0.44

[†]Estimated cost to build ROQ bases.

Table of Contents

Introduction

2 Methods

Results

4 Conclusion

Conclusion

 ${
m Jim}$: a fast and environmentally friendly PE pipeline for GW signals. Our contribution:

- TaylorF2 and IMRPhenomD_NRTidalv2 in RIPPLE
- Parameter estimation of BNS in 15 30 minutes sampling time without pretraining

References

- [1] Kaze WK Wong, Maximiliano Isi, and Thomas DP Edwards. "Fast gravitational wave parameter estimation without compromises". In: arXiv preprint arXiv:2302.05333 (2023). Available at: https://github.com/kazewong/jim.
- [2] Thomas DP Edwards et al. "RIPPLE: Differentiable and Hardware-Accelerated Waveforms for Gravitational Wave Data Analysis". In: arXiv preprint arXiv:2302.05329 (2023). Available at: https://github.com/tedwards2412/ripple/.
- [3] Marylou Gabrié, Grant M Rotskoff, and Eric Vanden-Eijnden. "Efficient bayesian sampling using normalizing flows to assist markov chain monte carlo methods". In: arXiv preprint arXiv:2107.08001 (2021).
- [4] Kaze WK Wong, Marylou Gabrié, and Daniel Foreman-Mackey. "FLOWMC: Normalizing-flow enhanced sampling package for probabilistic inference in Jax". In: arXiv preprint arXiv:2211.06397 (2022). Available at: https://github.com/kazewong/flowMC.
- [5] Roy Frostig, Matthew James Johnson, and Chris Leary. "Compiling machine learning programs via high-level tracing". In: Systems for Machine Learning 4.9 (2018). Available at: https://github.com/google/jax.
- [6] Peter T. H. Pang et al. "An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers". In: Nature Commun. 14.1 (2023). Available at https://github.com/nuclear-multimessenger-astronomy/nmma, p. 8352. DOI: 10.1038/s41467-023-43932-6. arXiv: 2205.08513 [astro-ph.HE].

10

Normalizing flow details

- Rational-quadratic neural spline flows
- 10 layers, 8 bins
- 128 neurons in hidden layers
- Adam optimizer, learning rate decayed (polynomial schedule)
- Deep learning library: EQUINOX

Loss function: KL divergence on sampled data

$$\mathcal{L}(T) = -\frac{1}{n} \sum_{i=1}^{n} \log \hat{\rho}(x_i)$$

Stopping criterion

We stop training the NF if we achieve a mean Metropolis-Hastings acceptance rate of 10% (20%) for real events (injections).

Example: GW170817, TaylorF2 with 20%:

Validation – Mismatch waveforms

Cross-check against LALsuite: mismatch histogram based on 10 000 waveforms, from uniform samples with following ranges:

Validation – p-p plot

We demonstrate the robustness of JIM:

- ullet 100 GW events with HLV at design sensitivity and T=128 s,
- NRTv2: reference waveform relative binning without taper,
- Priors: Table 1.

Table 1: Prior ranges used in our analyses. All priors are uniform priors with the specified range.

Parameter	Injection	GW170817	GW190425
$\overline{\mathcal{M}\left[M_{\odot} ight]}$	[0.88, 2.61]	[1.18, 1.21]	[1.485, 1.490]
q	[0.5, 1]	[0.125, 1]	[0.125, 1]
χ_i	[-0.05, 0.05]	[-0.05, 0.05]	[-0.05, 0.05]
Λ_i	[0,5000]	[0, 5000]	[0, 5000]
$d_L \; [{ m Mpc}]$	[30, 300]	[1, 75]	[1,500]
t_c [s]	[-0.1, 0.1]	[-0.1, 0.1]	[-0.1, 0.1]
ϕ_{c}	$[0, 2\pi]$	$[0, 2\pi]$	$[0, 2\pi]$
$\cos\iota$	[-1,1]	[-1,1]	[-1,1]
ψ	$[0,\pi]$	$[0,\pi]$	$[0,\pi]$
α	$[0,2\pi]$	$[0,2\pi]$	$[0,2\pi]$
$\sin\delta$	[-1,1]	[-1,1]	[-1,1]

GW170817 & GW190425: Jensen-Shannon divergences

Table 2: Jensen-Shannon divergences (in bits) between the marginal posterior obtained for GW170817 and GW190425 using TaylorF2 and IMRPhenomD_NRTidalv2 with JIM and PBILBY, with the highest value of each comparison in bold. The divergences are bound between [0,1].

	GW17	70817	GW190425	
Parameter	TF2	NRTv2	TF2	NRTv2
$\overline{\mathcal{M}}$	0.001725	0.000516	0.003557	0.002461
q	0.005212	0.007894	0.004837	0.002960
χ_1	0.005633	0.004301	0.002794	0.004825
χ_2	0.003030	0.002671	0.002416	0.003041
Λ_1	0.001062	0.002208	0.008556	0.000783
Λ_2	0.000559	0.002186	0.005808	0.003576
d_L	0.001544	0.01847	0.001273	0.002878
ϕ_c	0.003500	0.010714	0.003338	0.006126
$\cos\iota$	0.001615	0.012851	0.006400	0.005279
ψ	0.004048	0.011036	0.001516	0.003730
α	0.014008	0.001258	0.009822	0.012291
$\sin\delta$	0.009570	0.001761	0.008934	0.009228

GW170817 with TaylorF2

Figure 1

GW170817 with IMRPhenomD_NRTidalv2

Figure 2

GW190425 with TaylorF2

Figure 3

GW190425 with IMRPhenomD_NRTidalv2

Figure 4