Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Caio Costa Salgado

Uso de GPGPU na Análise de Buracos Negros

São Paulo Dezembro de 2017

Uso de GPGPU na Análise de Buracos Negros

 ${\it Monografia final da disciplina} \\ {\it MAC0499-Trabalho de Formatura Supervisionado}.$

Supervisor: Prof. Dr. Rodrigo Nemmen da Silva

São Paulo Dezembro de 2017

Resumo

Aqui vai o resumo que ainda tem que ser feito....

Palavras-chave: GPGPU, CUDA, HPC, Monte Carlo, Transferência radioativa, Buraco Negro.

Abstract

And here will be the english abstract, that still need to be done....

Keywords: GPGPU, CUDA, HPC, Monte Carlo, Rasioactive Transfer, Black Hole.

Sumário

Li	sta d	le Abreviaturas	vii
1	Intr	rodução	1
2	Grn	nonty: Monte Carlo para Relatividade Geral	3
	2.1	O que Faz	3
	2.2	Para que Faz	3
	2.3	Como Faz	3
3	\mathbf{GP}	${f GPU}$	5
	3.1	História das GPU e GPGPU	5
	3.2	Bibliotecas: OpenCL e CUDA	5
4	Oti	mizacao	7
	4.1	Arquitetura	7
	4.2	Melhorias e Modificações	7
		4.2.1 Somente uma dimensão	7
		4.2.2 OpenMP e Concorrência	7
		4.2.3 math.h	7
		4.2.4 divisão e trabalho e parelelização	7
		4.2.5 Processar em Lotes	7
5	Res	ultados	9
	5.1	Métricas e Medição	9
	5.2	Comparações	9
6	Fut	uro	11
	6.1	Outras Linguagens de Programação	11
	6.2	Single Precision	11
	6.3	Novos Disposítivos e Particulariedades dos frabicantes: AMD e NVIDIA	11
	6.4	Arcabouços: Tensorflow	11
	6.5	Application-specific integrated circuit chips (ASICs)	11

	~ ~ ~ · · · · · · · · · · · · · · · · ·
371	SUMARIO
V I	OUMAILO

7	Conclusões	13
Re	eferências Bibliográficas	15

Lista de Abreviaturas

GPU Unidade de processamento Gráfico (Graphics Grocessing Unit)

GPGPU Unidade de processamento Gráfico de Propósito Geral

(General Purpose Graphics Processing Unit)

CUDA Computação em Arquitetura unificada de dispositivos

(Compute Unified Device Architecture)

HCP Computação de Alta Performance (High Performance Computing)

SIMD Única Instrução Múltiplos dados (Sigle Instruction Multiple Dada)

Introdução

Uma grande dúvida dos astrofísicos e também de toda a comunidade científica é o que ocorre em um buraco negro e em suas proximidades. Na busca de respostas programas de computador são feitos com o intuito de simular essa região e talvez trazer alguma luz, um desses programas é o **grmonty**(Dolence et al., 2009).

Programas dessa natureza tendem a ser muito intensos no que diz respeito ao processamento, exigindo muito das CPUs, estas tornam-se assim um limitante, um gargalo, para a velocidade com a qual o programa pode devolver um resultado. É neste contexto que buscamos aplicar métodos de *Computação de Alta Performance* para otimizar ao máximo o uso todos os dispositivos do computador (hardware) que temos disponíveis.

Muitas das técnicas de HPC exploram a paralelização, o que pode ser feito massivamente por um hardware específico as unidades de processamento gráfico, GPU. Tais dispositivos são muito populares e já presentes em muitas máquinas domésticas e até em smartphones, eles são confeccionados primordialmente para processamento gráfico em jogos digitais, porém graças aos avanços recentes tais dispositivos tem se tornado mais genéricos e respondendo a uma gama maior de problemas.

Ao analisar o funcionamento do **grmonty** - por sua característica de simulador de partículas - é possível classificar parte de sua execução no modelo SIMD, uma vez que simula a trajetória da cada fóton de maneira independente. Dada essa informação podemos explorar o poder computacional das GPUs afim de paralelizar a execução do código, aumentando drasticamente sua a performance.

Este trabalho tem como objetivo apresentar melhorias a execução do código do **grmonty**, utilizando-se do processador de placas gráficas, as GPGPUs, para massivamente paralelizar e distribuir a carga de trabalho pelos múltiplos núcleos de processamento destas placas. Primeiramente é explicado o que é o **grmonty** e como funciona, depois os paradigmas ao qual sua execução apoia-se, caminhando para a explicação de GPUs e como contribuem para o aumento de performance, assim são apresentadas as otimizações executadas, chegando finalmente nos resultados alcançados e conclusões. Há ainda um capítulo de próximos passos demonstrando que ainda há muito espaço para mais melhorias e mais velocidade na execução.

Grmonty: Monte Carlo para

Relatividade Geral

2.1 O que Faz

Dolence et al definem o **grmonty** como "software destinado a calcular o espectro de plasmas quentes e opticamente finos a par da completa relatividade geral utilizando um código de transporte radioativo baseado na técnica de Monte Carlo" (Dolence *et al.*, 2009, p.1, traduzido).

explicar o que faz física e matemáticamente talvez falar da tecnica de monte carlo

2.2 Para que Faz

Qualquer fonte astrofísica de radiação que seja relativistica, ou seja, qualquer corpo ou fenômeno fonte de radiação eletromagnética, seja do rádio à raios gama e que é relativistica: apresenta uma considerável distorção no espaço-tempo, seja por estar em velocidades próximas a da luz, seja por possuir uma enorme quantidade de massa e/ou energia. Exemplos de objetos são os buracos negros e estrelas de neutrons, fenômenos são os Gamma Ray Bursts ou núcleos ativos de galáxias.

casos de uso, onde é usado e como

2.3 Como Faz

O software utiliza o método de Monte Carlo na geração dos dados, fótons, a partir de um dado modelo de plasma fornecido como entrada. Desta forma produz um número aleatório de fótons os quais paralelamente tem seus caminhos traçados, determinados, pelas diferentes possíveis interações que podem vir a ter. Depois de algumas iterações um número de fótons já foi gerado e rastreado, se este número é aproximadamente igual um valor dado na entrada do programa a execução termina, retornando o espectro gerado.

No momento de rastreio dos fótons o programa faz o uso da biblioteca **OpenMP** para paralelizar o desenvolvimento dos fótons, graças a esta abordagem é viável o potêncial uso de todos os núcleos disponíveis na CPU da máquina. Assim o código demonstra que apresenta um mesmo conjunto de execuções para uma grande variedade de dados, logo sendo enquadrado como SIMD.

Assim que um fóton é gerado seu percurso é traçado. O que é evidente ao se observar as linhas tal e tal

código có

Fica claro também que o processamento do rastreio é feito assim que possível, ao oposto de um processamento em lotes - um número n de fótons é produzido e agrupado para somente aí esse agrupamento ser processado.

descrever funcionamento computacional, MPI, SIMD, citar assim que possível oposto de lazy ou batch, C

GPGPU

3.1 História das GPU e GPGPU

era uma vez...

3.2 Bibliotecas: OpenCL e CUDA

o que são e como funcionam porque escolhemos cuda?

Otimizacao

4.1 Arquitetura

mostrar gráfico de processamento do grmonty apontar o track super photon como candidato a ser produzido no kernel

4.2 Melhorias e Modificações

4.2.1 Somente uma dimensão

matrix pra vetor

4.2.2 OpenMP e Concorrência

desligar o openmp

4.2.3 math.h

unix math pra nvida math

4.2.4 divisão e trabalho e parelelização

calculo de diviasão de trabalho na GPU

4.2.5 Processar em Lotes

de "assim que possível" "para processamento em lotes"

Resultados

5.1 Métricas e Medição

the old

5.2 Comparações

demonstrar o aumento de $100\mathrm{X}$ na velocidade

Futuro

6.1 Outras Linguagens de Programação

rust, nim, python

6.2 Single Precision

Usar float ao invés de double

6.3 Novos Disposítivos e Particulariedades dos frabicantes: AMD e NVIDIA

cálculo discreto, artiqueturas diferentes

6.4 Arcabouços: Tensorflow

tensorflow TPU TensorProcessingUnit

6.5 Application-specific integrated circuit chips (ASICs)

O que são? Onde vivem? O que comem?

Conclusões

Calculos são importantes e o avanço da ciência depende de artiteturas de alta performance, gpus tem se apresentado competentes na realização de tais tarefas, e sua popular adoção facilita um maior acesso computação astrofísica, aumentando assim a velocidade do progresso científico.

Referências Bibliográficas

Dolence et al. (2009) Joshua C. Dolence, Charles F. Gammie, Monika Mościbrodzka e Po Kin Leung. grmonty: A monte carlo code for relativistic radiative transport. The Astrophysical Journal Supplement, 184:387–397. Citado na pág. 1, 3