Kopce dwumianowe

Kopce dwumianowe są strukturą danych umożliwiającą łatwe wykonywanie zwykłych operacji kopcowych (insert, makeheap, findmin i deletemin) a ponadto operacji meld łączenia kopców.

Definicja 1 Drzewa dwumianowe zdefiniowane są indukcyjnie: i-te drzewo dwumianowe B_i składa się z korzenia oraz i poddrzew: $B_0, B_1, \ldots, B_{i-1}$.

Rysunek 1: Cztery pierwsze drzewa dwumianowe

Fakt 1 Drzewo B_i zawiera 2^i wierzchołków.

Definicja 2 Kopiec dwumianowy to zbiór drzew dwumianowych, które pamiętają elementy z uporządkowanego uniwersum zgodnie z porządkiem kopcowym.

Definicja 3 Niech T będzie drzewem. Rzędem wierzchołka w T nazywamy liczbę jego dzieci. Rzędem drzewa T jest rząd jego korzenia.

Szczegół implementacyjny: Aby umożliwić szybką realizację operacji na kopcu dwumianowym, będziemy zakładać, że dzieci każdego wierzchołka zorganizowane są w cykliczną listę dwukierunkową, a ojciec pamięta wskaźnik do jednego z nich (np. do dziecka o najmniejszym rzędzie).

2.3 Operacja findmin

Z każdym kopcem dwumianowym wiążemy wskaźnik MIN wskazujący na minimalny element. Operacja findmin polega na odczytaniu tego elementu. Stąd jej koszt wynosi O(1).

2.1 Łączenie drzew dwumianowych - operacja join

Dwa drzewa B_i łączymy ze sobą tak, że korzeń jednego drzewa staje się synem korzenia drugiego drzewa. W ten sposób otrzymujemy drzewo B_{i+1} .

UWAGI:

- (a) Nigdy nie będziemy łączyć drzew o różnych rzędach.
- (b) Zawsze podłączamy to drzewo, którego korzeń pamięta większą wartość do tego, którego korzeń pamięta mniejszą wartość.

Koszt operacji link: O(1).

Przejrzenie prezentacji i zadań z hacka te dwa slajdy mi się usunęły i nie chciało mi się powtarzać pracy (brak zadań z ćwiczeń powiązanych z tym tematem

