HOMEWORK 12 MATH 104, SECTION 6

(1) Let X be a compact metric space, and let $\mathcal{B}(X)$ be the set of real-valued bounded functions on X. We define

$$d_{\mathcal{B}}(f,g) := \sup_{x \in X} |f(x) - g(x)|.$$

Also, let $\mathcal{C}(X)$ be the set of real-valued continuous functions on X.

- (a) Prove that $(\mathcal{B}(X), d_{\mathcal{B}})$ is a metric space.
- (b) Moreover, prove that $\mathcal{B}(X)$ is a complete metric space, i.e. every Cauchy sequence in $\mathcal{B}(X)$ converges to some element in $\mathcal{B}(X)$.
- (c) Prove that C(X) is a closed subset of B(X).
- (d) Prove that a closed subset of a complete metric space is also complete, therefore concludes that C(X) is a complete metric space.
- (2) Let (a_n) be a sequence of real numbers satisfying

$$0 \le a_{n+m} \le a_n + a_m$$
 for any $n, m \in \mathbb{N}$.

Define $b_n := \frac{a_n}{n}$ for each n. Prove that the sequence (b_n) is convergent. (Hint: First prove that (b_n) is bounded. Let $z := \sup b_n$. There exists a subsequence (b_{k_n}) such that $\lim b_{k_n} = z$. For any $m \in \mathbb{N}$, you can write $k_n = \ell_n m + r_n$ where $0 \le r_n < m$. Then try to show that $z \le b_m$ by taking $n \to \infty$ for certain inequality obtained from the assumption.)

(3) Let S be the set of nonempty compact subsets of \mathbb{R}^2 . For any r>0 and $K\in S$, we define the r-neighborhood of K to be

$$B_r(K) := \{x \in \mathbb{R}^2 : d(x, a) < r \text{ for some } a \in K\} = \bigcup_{a \in K} B_r(a).$$

For $K_1, K_2 \in S$, we define

$$d(K_1, K_2) := \inf\{r > 0 \colon K_1 \subset B_r(K_2) \text{ and } K_2 \subset B_r(K_1)\}.$$

- (a) Prove that (S, d) is a metric space, i.e. d is a distance function on S.
- (b) Let F be the set of finite subsets of \mathbb{R}^2 . Prove that F is dense in S.
- (4) Let $f: [0,1] \to \mathbb{R}$ be an increasing function.
 - (a) Prove that for any $a \in (0,1)$, the left hand limit $\lim_{x\to a^-} f(x)$ and the right hand limit $\lim_{x\to a^+} f(x)$ of f at a both exists. (Recall Ross, §20 for the definition.)

- (b) Define $A := \{x \in [0,1]: f \text{ is not continuous at } x\}$. Prove that the set A is either finite or countable. (Hint: Define an injection from A to \mathbb{Q} using (a).)
- (5) An open cube in \mathbb{R}^n is a product of open intervals

$$U = (a_1, b_1) \times \cdots \times (a_n, b_n)$$

Its *volume* is defined to be

$$vol(U) = (b_1 - a_1) \cdots (b_n - a_n).$$

We say a subset $E \subset \mathbb{R}^n$ has measure zero if for any $\epsilon > 0$, there exists finite or countably many open cubes U_1, U_2, \ldots such that

$$E \subset \bigcup_i U_i$$
 and $\sum_i \operatorname{vol}(U_i) < \epsilon$.

Let $f \colon [a,b] \to \mathbb{R}$ be a continuous map. Prove that the graph

$$\Gamma_f = \{(x, f(x)) \in \mathbb{R}^2 : x \in [a, b]\}$$

has measure zero in \mathbb{R}^2 .

(6) Let $X = (\mathbb{R}^n, d_{\text{std}})$ be the Euclidean space with the standard distance function

$$d_{\text{std}}(\vec{x}, \vec{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

Prove that any linear map $T: X \to X$ is continuous.

(7) (a) Find the domain $E \subset \mathbb{R}$ of pointwise convergence of the series

$$\sum_{n=1}^{\infty} e^{-nx} \cos(nx),$$

i.e. find all possible $x \in \mathbb{R}$ such that the above series converges.

- (b) Prove or disprove: the series converges uniformly on E.
- (8) Let a_1, a_2, \dots, a_n be real numbers. Suppose that

$$|a_1 \sin x + a_2 \sin(2x) + \dots + a_n \sin(nx)| \le |\sin x|$$
 for any $x \in \mathbb{R}$.

Prove that $|a_1 + 2a_2 + \cdots + na_n| \le 1$. (Hint: Let $f(x) = a_1 \sin x + a_2 \sin(2x) + \cdots + a_n \sin(nx)$ and consider f'(0).)

- (9) Suppose that the derivative and the second derivative of a function $f:(a,b) \to \mathbb{R}$ both exist on (a,b). Moreover, suppose that there exists M>0 such that |f''(x)| < M for any $x \in (a,b)$. Prove that f is uniformly continuous on (a,b).
- (10) Suppose that $f: \mathbb{R} \to \mathbb{R}$ satisfies f(f(x)) = -x for any $x \in \mathbb{R}$. Prove that f is not a continuous function on \mathbb{R} .