Microprocessors (EE309-S2)

Shalabh Gupta

shalabh@ee.iitb.ac.in

EE Department, IIT Bombay

8085 Microprocessor Architecture

- 8085 based on <u>Von Neumann</u> <u>Architecture</u>
 - Data/Program memory is shared
 - ✓ Same bus
 - ✓Separate CPU
 - √Separate I/O
- ✓ CPU: ALU, Control and Timing Unit, Interface, Registers

8085AH/8085AH-2/8085AH-1 8-BIT HMOS MICROPROCESSORS

- Single +5V Power Supply with 10% Voltage Margins
- 3 MHz, 5 MHz and 6 MHz Selections Available
- 20% Lower Power Consumption than 8085A for 3 MHz and 5 MHz
- 1.3 μs Instruction Cycle (8085AH); 0.8 μs (8085AH-2); 0.67 μs (8085AH-1)
- 100% Software Compatible with 8080A
- On-Chip Clock Generator (with External Crystal, LC or RC Network)

- On-Chip System Controller; Advanced Cycle Status Information Available for Large System Control
- Four Vectored Interrupt Inputs (One Is Non-Maskable) Plus an 8080A-Compatible Interrupt
- Serial In/Serial Out Port
- Decimal, Binary and Double Precision
 Arithmetic
- Direct Addressing Capability to 64K Bytes of Memory
- Available in 40-Lead Cerdip and Plastic Packages

(See Packaging Spec., Order #231369)

The Intel 8085AH is a complete 8-bit parallel Central Processing Unit (CPU) implemented in N-channel, depletion load, silicon gate technology (HMOS). Its instruction set is 100% software compatible with the 8080A microprocessor, and it is designed to improve the present 8080A's performance by higher system speed. Its high level of system integration allows a minimum system of three IC's [8085AH (CPU), 8156H (RAM/IO) and 8755A (EPROM/IO)] while maintaining total system expandability. The 8085AH-2 and 8085AH-1 are faster versions of the 8085AH.

Registers

- General Purpose
 - B(8), C(8) or BC(16)
 - D(8), E(8) or DE(16)
 - H(8), L(8) or HL(16)
- Special Purpose
 - Stack Pointer SP(16), Program Counter PC(16), Address Latch(16)
 - Accumulator A or Acc(8), Temp(8), Instruction Reg(8), Flag Register(8)
 - Program-Status-Word(PSW) (16) is a combination of Acc(8) and Flag Register(8)
 - Flag Register consists of Zero(Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags
- Apart from User Accessible registers (RED), there are many other internal registers for intermediate operations

8085 Architecture: ALU

- Arithmetic Operations
 - Add, Subtract, Increment, Decrement
 - NO multiplication available
 - Programs have to be written to multiplication, adding/subtracting bigger numbers
 - Shift Right/Left: Divide or Multiply by 2.
- Logic Operations
 - AND, OR, XOR, NOT, Compare (>, <, ==)</p>

Interrupts

- TRAP: Non-maskable interrupt
- RST7.5, RST6.5, RST5.5, INTR: Maskable nterrupts

8085 Internal Architecture

Timing & Control Unit

- Consists of sequential and combinatorial logic
- Senses inputs for external world (RESET IN, READY, Interrupts, HOLD etc.)
- Provides handshake signals for external chips – RDB, WRB, HLDA, INTAB
- Provides clock and control signals for internal modules

Clock Generator

- External Crystal (Quartz Resonator) provides frequency reference
- Internal circuitry completes the oscillator
 - And divides the clock by 2 to obtain 2-phase clock
- Alternatively, external source connect at one of the inputs can directly provide clock (see datasheet)
 - CLK (out) and internal microprocessor clock are divided-by-2
 - i.e. CLK frequency half of the clock frequency at X1 or X2.

Interrupts

Interrupt	Mask -able	Restart Address	Trigger	Priority
TRAP (RST 4.5)	No	24H	Rising Edge & High Level*	1
RST 7.5	Yes	3CH	Rising Edge	2
RST 6.5	Yes	34H	High Level*	3
RST 5.5	Yes	2CH	High Level*	4
INTR	Yes	Instr.	High Level*	5

^{*}until sampled

Restart interrupts also called "Vectored Interrupts"

Pinout

Source: Datasheet

8085 Instruction Execution

- Instruction Cycle consists of a few machine cycles such as
 - Opcode Fetch
 - Memory Read or Write
- Every Instruction Cycle
 - Begins with Opcode Fetch
 - Opcode Fetch Cycle
 - Typically 4 clock periods, sometimes more
 - Execution Cycle(s)

 Page (Write 2 clocks (T.s.

Read/Write – 3 clocks (T-states)

Machine Cycle Status Lines

MACHINE CYCLE STATUS:

```
S<sub>1</sub> S<sub>0</sub> Status
              Memory write
              Memory read
              I/O write
              I/O read
              Opcode fetch
              Interrupt Acknowledge
              Halt
          X Hold
          X Reset
* = 3-state (high impedance)
X = unspecified
```

Instruction Cycle: Timing Diagram

Source: http://rohanranjangaonkar.blogspot.in

Example

Store the contents of Accumulator at Memory location 526A_H
Instruction (mnemonic): STA 526A_H

External Memory Location	Memory content	Description of contents
41FF _H	32 _H	Opcode for STA
4200 _H	6A _H	Lower Byte of 526A _H
4201 _H	52 _H	Upper Byte of 526A _H
		••
526A _H	unknown	

External Memory Location	Memory content	Description of contents
41FF _H	32 _H	Opcode for STA
4200 _H	6A _H	Lower Byte of 526A _H
4201 _H	52 _H	Upper Byte of 526A _H
		••
526A _H	Same data as in the accumulator	

Before execution: PC = 41FF_H

After execution: PC = 4202_H

Timing Diagram: STA 526A_H

8085 Instruction Execution

- Instruction Cycle consists of a few machine cycles such as
 - Opcode Fetch
 - Memory Read or Write
- Every Instruction Cycle
 - begins with Opcode Fetch
 - Opcode Fetch Cycle (4 clock periods) or sometimes more
 - Execution Cycle(s) require
 - Read/Write Typically 3 clocks (T-states)/MC
 - Bus Idle Machine Cycle

Example

Store the contents of I/O device with address $C0_H$ to Acc. Instruction (mnemonic): IN $C0_H$

External Memory Location	Memory content	Description of contents
4125 _H	DB _H	Opcode for IN
41 <u>26</u> _H	CO _H	I/O address

Timing Diagram: IN CO_H

T-states/instruction: Rule of thumb

Most instructions require

$$(3+w)*n+1$$
 T-states

- w is the number of T-states inserted if the memory device is slow
- n is the number of times the memory or IO device has to be read or written

Wait States: Slow Mem/IO device

MR OR IOR MR OR IOR Wait state inserted T, T, T₃ T₃ TWAIT if READY signal is CLK found to be low IO/M towards the end $10/\overline{M} = 0 (MR) OR 1(10R), S_1 = 1, S_0 = 0$ IOM = 0 (MR) OR 1(IOR), S, = 1, So = 0 S1, S0 of 2nd T-state of A8 - A15 the machine OUT OUT IN $AD_0 - AD_7$ cycle ALE RD READY

Fig. 1.24 Read machine cycle with and without wait state

Exceptions

- Instructions involving 16-bit operations:
 - 6 T-state Opcode Fetch cycles are there in the following:
 - INR, DCR: 16-bit data has to be incremented or decremented
 - CALL, PUSH instruction

 16-bit SP has to be
 decremented after Instruction decoder tells that it
 is a CALL/PUSH instruction

Note: RETURN, POP have 4 T-state OF cycle only (SP is not changed during OF cycle, is changed in parallel during read cycles of RETURN/POP)

Other Exceptions

DAD instruction require 1210 T-States (OF: 64, two Bus Idle cycles of 3 T-states each)

Sample Problem: Draw the timing diagram for the RET (Return) instruction.

This instruction pops the return address from the stack and resumes execution from the

return address.

Other Exceptions

- Other exceptions that involve longer operation after Opcode is decoded:
 - Conditional Jump instructions
 - Conditional Call Instructions
 - Conditional Return instruction
 - HALT, PCHL, RST, SPHL

Number Systems used in Microprocessors (for additional reading, not included in quiz/exam syllabus)

- References: Goankar: Appendix A
- Wikipedia page:

http://en.wikipedia.org/wiki/IEEE_754-1985

Converter for floating point numbers (in IEEE 754 format):

http://www.h-schmidt.net/FloatConverter/IEEE754.html