第2章 数字电路中的基本门电路

- > 2.1 集成逻辑门电路的一般特性
- ➤ 2.2 CMOS集成门电路
- ➤ 2.3 TTL集成门电路
- > 2.4 集成门电路的实际应用问题

◆ 半导体器件的开关特性和开关电路(回顾)

(一) 半导体二极管的开关特性和开关电路

"与"逻辑功能的二极管电路

输入电压组合(V)		二极管工作状 态		输出结果电压 (V)
V_{A}	$V_{\scriptscriptstyle B}$	D_1	D_2	V_L
0	0	导电	导电	0
0	3	导电	截止	0
3	0	截止	导电	0
3	3	导电	导电	3

(二)晶体三极管的开关特性和开关电路

(三) MOSFET管的开关特性和开关电路

2.1 集成门电路的一般特性

(一) 电压传输特性

TTL和CMOS门电路电压传输特性

- ◆TTL (Transistor—Transistor—Logic) 门电路是指电路由晶体管—晶体管组成的逻辑门电路。它是目前尚大量使用的一种中、小规模集成电路
 - ◆CMOS是用NMOS和PMOS组成的互补型的MOS电路。 它在集成度、功耗、输出高低电平等方面,都比TTL优 越,是目前集成电路的主流产品

(二)输入和输出逻辑电平

种类		CMOS 门电路	TTL 门电路		
		(+5V 电源)	(+5V 电源)		
电平V					
输出	Von	5V	3. 4V		
电平	Vol	ov	0. 3V		
输入	VIR	>2. ov	>1.4V		
电平	V_{IL}	<1.5V	<0.8V		

(三) 开门电平Von和关门电平Voff

输入低电平VIL:

输入低电平上限VILmax—关门电平VOff

输入高电平VIH:

输入高电平下限VIHmin—开门电平Von

(四) 输入信号噪声容限

它表征门电路的抗干扰能力强弱。在TTL驱动TTL集成门电路的情况下,串入两级门电路之间噪声电压大小分低电平输入噪声容限二种情况。

低电平输入噪声容限V_{NL}: —负载门输入低电平时高电平输入噪声容限V_{NH}: —负载门输入高电平时

$$V_{NL} \le V_{IL(\max)} - V_{OL(\max)}$$

$$V_{N\!H\,(\mathrm{max})} \leq V_{O\!H\,(\mathrm{min})} - V_{I\!H\,(\mathrm{min})}$$

(五) 灌电流和拉电流负载

(1) 低电平输出特性—灌电流负载

驱动门输出低电平,输入低电平,负载 电流流向驱动门(灌入)。

随着负载门数增加,IoL灌入的电流便增加, 这促使Vor 电压升高,T5将由饱和趋向放大, 破坏逻辑关系。

◆ 对负载应有一个限定值,Vol的上升有一个低电平上限值Volmax规定, 使用时不超过。

驱动门数(扇出系数)由下式确定: $N_{OL} = \frac{I_{OL \text{max}}}{I_{IL}}$

$$N_{OL} = \frac{I_{OL \max}}{I_{IL}} \Big|_{V_{OL \max}}$$

(2) 高电平输出特性——拉电流负载

输出高电平V_{OH},负载门输入高电平。负载电流从驱动门流出(拉出)。如果负载门数增加,I_{OH}拉出的电流便增加,这使得输出高电平电压V_{OH}会下降,最终破坏逻辑关系。

高电平输出时也规定了一个高电平下限值VOHmin

其负载门数为:

$$N_{OH} = \frac{I_{OH \text{ max}}}{I_{IH}} \Big|_{V_{OL \text{ max}}}$$

补充说明:

$$N_{OL} \le \frac{I_{OL \max}}{|kI_{IL}|}$$

◆ 负载为或/或非门时, k 等于每个负载门的并联输入端数。负载为与/与非门时, k等于1

$$N_{OH} \le \frac{\left|I_{OH \max}\right|}{pI_{IH}}$$

◆ P是每个负载门的并联输入端数

扇出数以
$$N_{\mathrm{OL}}$$
为准 $N_{OL}=rac{I_{OL\,\mathrm{max}}}{I_{IL}}igg|_{V_{OL\,\mathrm{max}}}$

以5V电源电压时,CMOS和TTL参数

参数名称	CMOS(4000系列)	TTL(74LS系列)
V _{OH(min)} /V	4.6	2.7
V _{OL(max)} /V	0.05	0.5
I _{OH(max)} /mA	-0.51	-0.4
I _{OL(max)} /mA	0.51	8
V _{IH(min)} /V	3.5	2
V _{IL(max)} /V	1.5	0.8
I _{IH(max)} /uA	0.1	20
$I_{IL(max)}/mA$	-0.0001	-0.4 -1.6(74系列)

(六) 平均传输延迟时间 t_{pd}

$$t_{pd} = \frac{1}{2}(t_{PHL} + t_{PLH})$$

第2章 数字电路中的基本门电路

- > 2.1 集成逻辑门电路的一般特性
- ➤ 2.2 CMOS集成门电路
- ➤ 2.3 TTL集成门电路
- > 2.4 集成门电路的实际应用问题

2.2 CMOS集成门电路

一、CMOS非门

输入高电平 $v_i = V_{DD}$

二、CMOS与非门和或非门

与非门

以此类推,在CMOS电路中,NMOS管既有串联,也有并联,对应的PMOS管有并联和串联的情况,实现更复杂的逻辑功能,如与或非门、异或门等。

三、CMOS漏极开路门(OD门)

- (1) V_{DD2}可以选为不同于V_{DD1}的数值,实现电平的转换
- (2) 几个OD门的输出端直接相连,实现"线与"逻辑

一般与非门输出直接相连?

$$L = L_1 \cdot L_2 = \overline{AB} \cdot \overline{CD} = \overline{AB + CD}$$

四、三态输出的CMOS门电路

五、CMOS传输门

- ◆不仅能传输逻辑电平,还能传输模拟信号
- ◆ CMOS传输门属于双向器件,输入端和输出端可以互易使用

它由NMOS 和PMOS管并联而成

C和 C 为互补控制端

令C和 \overline{C} 控制电压分别为 V_{DD} 和0V,输入电压从 $0\sim V_{DD}$,

当 $C=V_{DD}$ 、 $\overline{C}=0$ 时,在 $0<v_I< V_{DD}-V_{TN}$ 时, T_N 导电,在 $|V_{TP}|< v_I< V_{DD}$ 时, T_P 导电;所以在 $|V_{TP}|< v_I< V_{DD}-V_{TN}$ 时二管同时导电,此时二管的导电沟道电阻并联,输入/输出间表现为低阻,输入信号传递到输出。

$$v_o = \frac{R_L}{R_L + R_{TG}} v_I \approx v_I$$

当C=0、 $\overline{C}=VDD$ 时,TN和TP都截止,输入/输出为高阻态;

1、TG门组成的单刀双掷和双刀双掷开关

◆CMOS门电路的主要参数

以5V电源电压时,CMOS和TTL参数之比较

参数名称	CMOS(4000系列)	TTL(74LS系列)
V _{OH(min)} /V	4.6	2.7
V _{OL(max)} /V	0.05	0.5
I _{OH(max)} /mA	-0.51	-0.4
I _{OL(max)} /mA	0.51	8
V _{IH(min)} /V	3.5	2
V _{IL(max)} /V	1.5	0.8
I _{IH(max)} /uA	0.1	20
$I_{IL(max)}/mA$	-0.0001	-0.4 -1.6(74系列)

第2章 数字电路中的基本门电路

- > 2.1 集成逻辑门电路的一般特性
- ➤ 2.2 CMOS集成门电路
- ▶ 2.3 TTL集成门电路
- > 2.4 集成门电路的实际应用问题

2.3 TTL系列集成门电路

一、TTL集成与非门电路的结构和工作原理

TTL与非门典型电路如图所示,由四只晶体三极管组成。其中多发射管T₁为输入级,T₂为中间级,T₄、T₅为输出级。

工作原理:

(1) 当输入为低电平时"O" ($V_{IL}=0.3V$) T_1 发射结正偏,

 $V_{B1} = 0.3V + 0.7V = 1.0V$ T_1 深度饱和, $V_{CES} = 0.1V$, T_2 、 T_5 截止。

 V_{CC} 经 R_2 向 T_4 提供基极电流, T_4 、D导电,输出高电平

TTL关门。

$$V_O = V_{CC} - i_{B4}R_2 - V_{BE4} - V_D \approx 3.6V$$

(2) 当输入为高电平时"1"($V_{IH}=3.6V$) V_{CC} 通过 R_1 使 T_1 的b-c结、 T_2 , T_5 的b-e结正偏, $V_{B1}=2.1V$ T_1 倒置、 T_2 、 T_5 他和,输出为低电平 $V_0=V_{OL}\approx 0.3V$, T_4 、D截止状态, TTL开门。

TTL门电路中的其它技术措施

- (1) 肖特基三极管—抗饱和,提高电路开关速度。
- (2) 有源泄放电路—加快T₂、T₅由饱和到截止的转换时间,目的还是提高开关速度。
- (3) T₄用二只三极管子复合—提高电路的带负载能力(增大输出电流)。
 - (4)输入增加了保护二极管(提高可靠性)。

改进后的电路和电压传输特性:

二、TTL集电极开路"与非"门(OC门)

输出高电平为外接的电源电压VCC

$$L = L_1 \cdot L_2 = \overline{AB} \bullet \overline{CD}$$
$$= \overline{AB + CD}$$

OC门的典型应用

(1)输出可以直接连在一起,实现线与逻辑关系。一般TTL门输出不能直接接在一起。

$$L = L_1 \cdot L_2 = \overline{AB} \cdot \overline{CD}$$
$$= \overline{AB + CD}$$

(2) 实现两种逻辑电平的转换

三、TTL三态输出门

EN 使能控制端

 \overline{EN} =0, 三态门使能,即 D_1 、 D_2 截止,A和L实现了反相输出;

 \overline{EN} =1,在A=0或1这二种情况下, D_1 始终导电,而 T_4 、 T_5 都截

止,输出为高阻态(禁止态)。

三态门的应用广泛

总线连接 双向传递数据连接 轮流把输出信号送到公共总线

真值表

注意: 三态输出门的电路符号有多种

\overline{EN}	数据A	输出L
0	0	1
0	1	0
1	0	高阻态
1	1	

EN	数据A	输出L
1	1	1
1	0	0
0	1	高阻态
0	0	

四、CMOS门电路的主要参数

以5V电源电压时,CMOS和TTL参数之比较

参数名称	CMOS(4000系列)	TTL(74LS系列)
V _{OH(min)} /V	4.6	2.7
V _{OL(max)} /V	0.05	0.5
I _{OH(max)} /mA	-0.51	-0.4
I _{OL(max)} /mA	0.51	8
V _{IH(min)} /V	3.5	2
V _{IL(max)} /V	1.5	0.8
I _{IH(max)} /uA	0.1	20
$I_{IL(max)}/mA$	-0.0001	-0.4 -1.6(74系列)

第2章 数字电路中的基本门电路

- > 2.1 集成逻辑门电路的一般特性
- ➤ 2.2 CMOS集成门电路
- ➤ 2.3 TTL集成门电路
- > 2.4 集成门电路的实际应用问题

一、多余输入端的处理

- (1) 对于与非门电路: 把多余输入端接正电源或者与有用端并联使用;
- (2)对于或非门电路:把多余输入端接地或与有用端并联使用。通过电阻接地时,对TTL这只串联电阻阻只能是小电阻(在500欧姆以下);

特别注意:不能把多余输入端悬空。对TTL电路,悬空虽相当于高电平,但易引入干扰;对CMOS电路,悬空无电位,使相应管子截止,破坏逻关系,也会引入干扰。

对于CMOS逻辑门电路,当输入端与地之间接有电阻时,不管是接大电阻还是小电阻,该端都相当于低电平(即地电位);

TTL门电路 (74系列), 当输入端与地之间接有电阻时, 若该阻值大于1.4K 时, 该端相当于高电平; 若该阻值小于0.8K 时, 该端相当于低电平。

二、电源的去耦滤波

滤除在脉冲工作时,产生的尖峰电流在电源内阻上产生的压降。在集成电路电源的引脚端加接一只0.01µF~0.1µF的电容器.

三、在连接二种不同种类的逻辑门电路,且当二种逻辑门电路的逻辑电平,驱动能力不一致时,它们之间应加接口电路。

以5V电源电压时,CMOS和TTL参数之比较

参数名称	CMOS(4000系列)	TTL(74LS系列)
V _{OH(min)} /V	4.6	2.7
V _{OL(max)} /V	0.05	0.5
I _{OH(max)} /mA	-0.51 4 (HC系列 列)	-0.4
I _{OL(max)} /mA	0.51 4 (HC系列)	8
V _{IH(min)} /V	3.5	2
V _{IL(max)} /V	1.5	0.8
I _{IH(max)} /uA	0.1	20
$I_{IL(max)}/mA$	-0.0001	-0.4 -1.6(74系列)

驱动门

负载门

输出高电平下限 $V_{OH\ (min)} \geq$ 输入高电平下限 $V_{IH\ (min)}$

输出低电平上限 $V_{\text{OL (max)}} \leq 输入低电平上限<math>V_{IL(\text{max})}$

最大拉电流 $I_{OH(max)} \ge N_{OH}I_{IH(max)}$

最大灌电流 $I_{OL(max)} \ge N_{OL}I_{IL(max)}$

TTL电路驱动CMOS电路时:

TTL(74LS系列)输出高电平下限V_{OH(min)}不满足CMOS (4000系列)电路的输入高电平下限V_{IH(min)}要求

接上拉电阻RX

采用电平偏移门CC40109

CMOS (4000系列) 电路驱动TTL (74系列) 电路时: 电路的最大灌电流不满足要求

采用CMOS驱动器 (a);同相电流放大器 (b)

◆集成门电路系列型号

1、TTL逻辑电路系列

74×× 标准系列

74L×× 低功耗系列

74HXX 高速系列

745×× 肖特基系列

74LS×× 低功耗肖特基系列

74AS×× 先进的肖特基系列

74ALSXX 先进的低功耗肖特基系列

2、CMOS逻辑器件系列

4000条列

74C××系列

74HC/HCU/HCT ××系列

74AC/ACT ×× 系列

标准系列

普通系列

高速系列

先进CMOS系列

74HCT XX和74ACTXX系列可直接与TTL相兼容; 74HC能够直接驱动TTL电路,而TTL电路却不能直接驱动74HC