

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Кафедра теоретических основ радиотехники

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ Тема 5 Эффекты квантования

(Лекция 2)

Эффекты квантования в цифровых фильтрах

- Погрешностипредставления коэффициентов
- Округление промежуточных результатов
- □ Переполнения
- □ Предельные циклы

Погрешности представления коэффициентов цифровых фильтров

Нерекурсивные фильтры

Погрешности представления коэффициентов цифровых фильтров

Масштабирование коэффициентов цифровых фильтров

Масштабирование коэффициентов цифровых фильтров

Квантование коэффициентов — влияние формы реализации фильтра

- Реализация в виде секций второго порядка
 - Уменьшаются значения коэффициентов в рекурсивных частях секций (так как $|a_1| < 2$, $|a_2| < 1$)
 - Снижаются потери точности при масштабировании

Переполнения в цифровых фильтрах

- □ Переполнение выход результатов вычислений за пределы диапазона представимых чисел
- □ Из-за переполнений цифровой фильтр становится существенно нелинейным
- □ Два режима обработки переполнений
 - *Отбрасывание* старших разрядов (*wrap*)
 - Насыщение (saturate)

Собственный шум цифрового фильтра (шум округления)

- □ Вычисления с фиксированной запятой
 - При операциях *сложения* необходимости в округлении не возникает
 - Возможно только переполнение
 - При операциях умножения увеличивается число знаков после запятой
 - Необходимо округление
 - По свойствам шум округления аналогичен шуму квантования

Собственный шум цифрового фильтра (шум округления)

Прямая форма реализации фильтра

СПМ собственного шума:

$$W_n(\omega) = \frac{5W_{n0}}{\left|1 + a_1 e^{-j\omega} + a_2 e^{-j2\omega}\right|^2}$$

Собственный шум цифрового фильтра (шум округления)

□ Каноническая форма реализации фильтра

Шум от источников
1 и 2 проходит
через весь фильтр

Шум от источников **3, 4, 5** приложен *к выходу* и фильтром *не преобразуется*

СПМ собственного шума:

$$W_n(\omega) = W_{n0} \left(3 + 2 \left| \dot{K}(\omega) \right|^2 \right)$$

Предельные циклы

- □ Проявление: неустойчивое поведение устойчивого фильтра
- □ Разновидности:
 - Циклы низкого уровня: свободные колебания затухают, но не доходят до нуля
 - □ **Причина:** ошибки *округления* промежуточных результатов
 - Циклы высокого уровня: из-за возникающих при работе переполнений после обнуления входного сигнала на выходе могут присутствовать колебания с большой амплитудой
 - □ **Причина:** нелинейные эффекты при переполнении

Предельные циклы

- □ Пример цикла низкого уровня
 - $\mathbf{V}(k) = x(k) + 0.95 \ y(k-1)$
 - Входной сигнал: x(k) = 0 при $k \ge 1$
 - Начальное состояние: y(0) = 13
- □ Точный расчет переходного процесса
 - $y(1) = 0.95 y(0) = 0.95 \times 13$ = 12.35
 - $y(2) = 0.95 y(1) = 0.95 \times 12.35$ = 11,7325
 - $y(3) = 0.95 \ y(2) = 0.95 \times 11,7325 = 11,145875$
 - $y(4) = 0.95 y(3) = 0.95 \times 11.145875 = 10.58858125$
 - $y(5) = 0.95 y(4) = 0.95 \times 10.58858125 = 10.0591521875$
 - $y(k) \to 0$ при $k \to \infty$

Предельные циклы

- □ Целочисленный формат внутреннего состояния
 - Фильтр ([] *округление*): y(k) = [x(k) + 0.95 y(k-1)]
 - Входной сигнал: x(k) = 0 при $k \ge 1$
 - Начальное состояние: y(0) = 13
- □ Переходный процесс
 - $y(1) = [0.95 y(0)] = [0.95 \times 13] = [12.35] = 12$
 - $y(2) = [0.95 \ y(1)] = [0.95 \times 12] = [11.4] = 11$
 - $y(3) = [0.95 \ y(2)] = [0.95 \times 11] = [10.45] = 10$
 - $y(4) = [0.95 \ y(3)] = [0.95 \times 10] = [9.5] + 10$
 - $y(5) = [0.95 \ y(4)] = [0.95 \times 10] = [9.5]$
 - y(k) = 10 при $k \ge 3$

Простейший предельный цикл с периодом 1

Предельные циклы — более сложный пример

$$\Box$$
 $y(k) = x(k) + 7/8 y(k-1) - 5/8 y(k-2)$

□ Формат 1.3, режим переполнений — wrap

