VPHL: A Verified Partial-Correctness Logic for Probabilistic Programs

Robert Rand, Steve Zdancewic

University of Pennsylvania

Mathematical Foundations of Programming Semantics XXXI

VPHL

Verified Probabilistic Hoare Logic

VPHL

Verified Probabilistic Hoare Logic

VPHL

Verified Probabilistic Hoare Logic

Let's Take a Random Walk...

A Program to Analyze

Rabbit Hunting

```
i := 0
caught := F
while i < n do
rabbit := UNIFORM(k)
hunter := UNIFORM(k)
caught := caught \lor (hunter = rabbit)
i := i + 1
end while
```

A Program to Analyze

Rabbit Hunting

```
\{Pr(True) = 1\}
i := 0
caught := F
while i < n do
   rabbit := UNIFORM(k)
   hunter := UNIFORM(k)
   caught := caught \lor (hunter = rabbit)
   i := i + 1
end while
\{Pr(caught) = ?\}
```

Comparison

Paper	Full Distribution	While s Loops
Ramshaw, 1979	No	Partial
Den Hartog & De Vink, 2002	No	Partial
Chadha et. al., 2007	No	No
VPHL	Yes	Partial

Principles

Simple

- ► Full Distributions
- ► Truth-functional propositions
- ► Resembles standard Hoare-logic

Reliable

- Rigorously verified deductive system
- ► Can be safely extended

Powerful

- Support for non-termination
- Capable of analyzing standard randomized algorithms

A Probabilistic Language

Classic Imperative Language Imp:

$$\theta$$
 : $id \rightarrow value$

Probabilistic Imperative Language *PrImp*:

$$\Theta:\theta\to[0,1]$$

Full Distributions with Finite Support

$$\sum_{\theta} \Theta(\theta) = 1$$

Requiring finite support it allows us to represent distributions using a simple inductive structure.

PROBABILITY

$$Pr_{\Theta}(b) = \sum_{\theta} \{\Theta(\theta) \mid b \text{ is true in } \theta\}$$

Probability

$$Pr_{\Theta}(b) = \sum_{a} \{\Theta(\theta) \mid b \text{ is true in } \theta\}$$

$$\Theta(\theta_1) = 1/6$$
 $\Theta(\theta_2) = 1/6$ $\Theta(\theta_3) = 2/3$

Probability

$$Pr_{\Theta}(b) = \sum_{\theta} \{\Theta(\theta) \mid b \text{ is true in } \theta\}$$

$$\Theta(\theta_1) = 1/6$$
 $\Theta(\theta_2) = 1/6$ $\Theta(\theta_3) = 2/3$
 $\theta_1(x) = 1$ $\theta_2(x) = 2$ $\theta_3(x) = 3$

PROBABILITY

$$Pr_{\Theta}(b) = \sum_{\theta} \{\Theta(\theta) \mid b \text{ is true in } \theta\}$$

$$\Theta(\theta_1) = 1/6$$
 $\Theta(\theta_2) = 1/6$ $\Theta(\theta_3) = 2/3$ $\theta_1(x) = 1$ $\theta_2(x) = 2$ $\theta_3(x) = 3$

$$Pr_{\Theta}(x \text{ odd})$$

Probability

$$Pr_{\Theta}(b) = \sum_{\theta} \{\Theta(\theta) \mid b \text{ is true in } \theta\}$$

$$\Theta(\theta_1) = 1/6$$
 $\Theta(\theta_2) = 1/6$ $\Theta(\theta_3) = 2/3$
 $\theta_1(x) = 1$ $\theta_2(x) = 2$ $\theta_3(x) = 3$

$$Pr_{\Theta}(x \text{ odd}) = 1/6 + 2/3 = 5/6$$

Probability

Tautology

For any distribution Θ and tautology T:

$$Pr_{\Theta}(T) = 1$$

PROBABILITY

Complement

For any distribution Θ and boolean b:

$$Pr_{\Theta}(\neg b) = 1 - Pr_{\Theta}(b)$$

PROBABILITY

Marginalization

For any distribution Θ and booleans a, b:

$$Pr_{\Theta}(a) = Pr_{\Theta}(a \wedge b) + Pr_{\Theta}(a \wedge \neg b)$$

$$c \equiv y := toss(\frac{1}{5})$$

$$c \equiv y := toss(\frac{1}{5})$$

VPHL: HOARE LOGIC

Definition: $\{P\}$ c $\{Q\}$

$$\frac{P(\Theta) \quad c / \Theta \Downarrow \Theta'}{Q(\Theta')}$$

VPHL: Hoare Logic

Truth-functional assertions over full distributions

$$\mathcal{P}, \mathcal{Q} ::= Pr(\mathcal{B}) = p \mid Pr(\mathcal{B}) p \mid \mathcal{P} \land \mathcal{P} \mid \mathcal{P} \lor \mathcal{P}$$

Basic Rules

$$\frac{P' \to P \quad \{P\} \ c \ \{Q\} \quad Q \to Q'}{\{P'\} \ c \ \{Q'\}} \text{Consequence}$$
 Skip
$$\frac{}{\{P\} \text{ skip } \{P\}} \quad \frac{}{\{P[z \mapsto e]\} \ z := e \ \{P\}} \text{Assign}$$

$$\frac{\{P\}\ c_1\ \{Q\}\ \{Q\}\ c_2\ \{R\}}{\{P\}\ c_1;\ c_2\ \{R\}}$$
 Sequence

THE TOSS RULE

$$\frac{y \text{ free in } P}{\{P\} \ y := toss(p) \ \{P \lhd_p^y\}} \text{ Toss}$$

THE TOSS RULE

$$\frac{y \text{ free in } P}{\{P\} \ y := toss(p) \ \{P \lhd_p^y\}} \text{ Toss}$$

$$[Pr(b) = a] \lhd_p^y \equiv Pr(b \land y) = pa \land Pr(b \land \neg y) = (1 - p)a$$

 $c \equiv \text{if } y \text{ then } c_1 \text{ else } c_2$

where $\theta_1(y) = T$, $\theta_2(y) = F$ and $\theta_3(y) = F$

 $c \equiv \text{if } y \text{ then } c_1 \text{ else } c_2$

where $\theta_1(y) = T$, $\theta_2(y) = F$ and $\theta_3(y) = F$

Why P_1' ?

- ► Scaling we have to normalize the probabilities in each branch
- ► Conditioning on the guard we need to avoid conflict

Why P_1' ?

- Scaling we have to normalize the probabilities in each branch
- ► Conditioning on the guard we need to avoid conflict

Why P_1' ?

► Scaling – we have to normalize the probabilities in each branch

$$Pr(b) = a \Rightarrow Pr(b) = p * a$$

 Conditioning on the guard – we need to avoid conflict

Why P_1' ?

► Scaling – we have to normalize the probabilities in each branch

$$Pr(b) = a \Rightarrow Pr(b) = p * a$$

 Conditioning on the guard – we need to avoid conflict

Why P_1' ?

► Scaling – we have to normalize the probabilities in each branch

$$Pr(b) = a \Rightarrow Pr(b) = p * a$$

 Conditioning on the guard – we need to avoid conflict

$$Pr(b) = p * a \Rightarrow Pr(b \land y) = p * a$$

Applying the IF Rule

```
u_1 := toss(\frac{1}{3});
if u_1 then
    x := 3
else
    u_2 := toss(\frac{1}{2});
    if u_2 then
        x := 2
    else
        x := 1
    end if
end if
```

UNIFORM(3)

```
u_1 := toss(\frac{1}{3});
if u_1 then
   \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
   u_2 := toss(\frac{1}{2});
   if u_2 then
       \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
   else
       \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
   end if
```

UNIFORM(3)

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{3}); \ \{Pr(True \land u_1) = \frac{1}{3}\}
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(True \land u_2) = \frac{1}{2}\}
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
        \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
```

UNIFORM(3)

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x := 3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}\
    if u_2 then
        \{Pr(2=2)=1\}\ x := 2\ \{Pr(x=2)=1\}
    else
        \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
```

UNIFORM(3)

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x := 3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}\
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
        \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
```

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
         \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
    \{Pr(x=2 \land u_2) = \frac{1}{2} \land Pr(x=1 \land \neg u_2) = \frac{1}{2}\}
end if
```

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}\
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
         \{Pr(1=1)=1\}\ x := 1\ \{Pr(x=1)=1\}
    end if
    \{Pr(x=2) \geq \frac{1}{2} \land Pr(x=1) \geq \frac{1}{2}\}
end if
```

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
        \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
    \{Pr(x=2) = \frac{1}{2} \land Pr(x=1) = \frac{1}{2}\}
end if
```

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{3}); \ \{Pr(u_1) = \frac{1}{2}\}\
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}\
    if u_2 then
        \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
        \{Pr(1=1)=1\}\ x := 1\ \{Pr(x=1)=1\}
    end if
    \{Pr(x=2) = \frac{1}{2} \land Pr(x=1) = \frac{1}{2}\}
end if
```

```
\{Pr(True) = 1\} \ u_1 := toss(\frac{1}{2}); \ \{Pr(u_1) = \frac{1}{2}\}
if u_1 then
    \{Pr(3=3)=1\}\ x:=3\ \{Pr(x=3)=1\}
else
    \{Pr(True) = 1\} \ u_2 := toss(\frac{1}{2}); \ \{Pr(u_2) = \frac{1}{2}\}
    if u_2 then
         \{Pr(2=2)=1\}\ x:=2\ \{Pr(x=2)=1\}
    else
         \{Pr(1=1)=1\}\ x:=1\ \{Pr(x=1)=1\}
    end if
    \{Pr(x=2) = \frac{1}{2} \land Pr(x=1) = \frac{1}{2}\}
end if
\{Pr(x=3) = \frac{1}{2} \land Pr(x=2) = \frac{1}{2} \land Pr(x=1) = \frac{1}{2}\}
```

THE WHILE RULE

We want to guarantee that the program terminates in some number of steps n, assuming that it terminates.

THE WHILE RULE

The *Deterministic Invariant* guarantees that the guard takes on a deterministic value.

The *Probabilistic Invariant* preserves a set of probabilities throughout loop execution.

Rabbit Hunting

while i < n do

```
rabbit := \mathtt{UNIFORM}(k)

hunter := \mathtt{UNIFORM}(k)

caught := caught \lor (hunter = rabbit)

i := i + 1
```

Rabbit Hunting

```
while i < n do \{\exists m \le n : Pr(i = m) = 1 \land Pr(i < n) = 1\} rabbit := \mathtt{UNIFORM}(k) hunter := \mathtt{UNIFORM}(k) caught := caught \lor (hunter = rabbit) i := i + 1
```

Rabbit Hunting

```
while i < n do \{\exists m \le n : Pr(i = m) = 1 \land Pr(i < n) = 1\} \rightarrow \{\exists m \le n : Pr(i + 1 = m) = 1\} rabbit := UNIFORM(k) hunter := UNIFORM(k) caught := caught \lor (hunter = rabbit) i := i + 1
```

Rabbit Hunting

```
while i < n do \{\exists m \leq n : Pr(i = m) = 1 \land Pr(i < n) = 1\} \rightarrow \{\exists m \leq n : Pr(i + 1 = m) = 1\} rabbit := UNIFORM(k) hunter := UNIFORM(k) caught := caught \lor (hunter = rabbit) i := i + 1 \{\exists m \leq n : Pr(i = m) = 1\} end while
```

Rabbit Hunting

while i < n do

```
rabbit := \mathtt{UNIFORM}(k) hunter := \mathtt{UNIFORM}(k) caught := caught \lor (hunter = rabbit) i := i + 1
```

Rabbit Hunting

```
while i < n do \{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i\} rabbit := UNIFORM(k) hunter := UNIFORM(k) caught := caught \lor (hunter = rabbit) i := i+1
```

Rabbit Hunting

```
while i < n do \{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i\} rabbit := \text{UNIFORM}(k) hunter := \text{UNIFORM}(k) \{Pr(\neg caught \land hunter \neq rabbit) = \left(\frac{k-1}{k}\right)\left(\frac{k-1}{k}\right)^i\} caught := caught \lor (hunter = rabbit) i := i+1
```

Rabbit Hunting

```
while i < n do \{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i\} rabbit := \text{UNIFORM}(k) hunter := \text{UNIFORM}(k) \{Pr(\neg caught \land hunter \neq rabbit) = \left(\frac{k-1}{k}\right)^{i+1}\} caught := caught \lor (hunter = rabbit) i := i+1
```

Probabilistic Invariant

```
while i < n do
    \{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i\}
     rabbit := UNIFORM(k)
     hunter := UNIFORM(k)
     \{Pr(\neg caught \land hunter \neq rabbit) = \left(\frac{k-1}{k}\right)^{t+1}\}
     caught := caught \lor (hunter = rabbit)
    i := i + 1
     \{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i\}
end while
```

Rabbit Hunting

i := 0

 $\{Pr(True) = 1\}$

```
caught := F

while i < n do

rabbit := UNIFORM(k)

hunter := UNIFORM(k)

caught := (hunter = rabbit) \lor caught

i := i + 1

end while
```

```
\{Pr(True) = 1\}
i := 0
caught := F
\{Pr(\neg caught) = 1 \land Pr(i = 0) = 1\}
while i < n do
   rabbit := UNIFORM(k)
   hunter := UNIFORM(k)
   caught := (hunter = rabbit) \lor caught
   i := i + 1
end while
```

```
\{Pr(True) = 1\}
i := 0
caught := F
\{Pr(\neg caught) = 1 \land Pr(i = 0) = 1\} \rightarrow
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land \exists m \le n : Pr(i=m) = 1\}
while i < n do
    rabbit := UNIFORM(k)
    hunter := UNIFORM(k)
    caught := (hunter = rabbit) \lor caught
    i := i + 1
end while
```

```
\{Pr(True) = 1\}
i := 0
caught := F
\{Pr(\neg caught) = 1 \land Pr(i = 0) = 1\} \rightarrow
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land \exists m \leq n : Pr(i=m) = 1\}
while i < n do
    rabbit := UNIFORM(k)
    hunter := UNIFORM(k)
    caught := (hunter = rabbit) \lor caught
    i := i + 1
end while
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land \exists m \le n : Pr(i=m) = 1 \land i \not< n\}
```

```
\{Pr(True) = 1\}
i := 0
caught := F
\{Pr(\neg caught) = 1 \land Pr(i = 0) = 1\} \rightarrow
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land \exists m \le n : Pr(i=m) = 1\}
while i < n do
    rabbit := UNIFORM(k)
    hunter := UNIFORM(k)
    caught := (hunter = rabbit) \lor caught
    i := i + 1
end while
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^{t} \land Pr(i=n) = 1\}
```

```
\{Pr(True) = 1\}
i := 0
caught := F
\{Pr(\neg caught) = 1 \land Pr(i = 0) = 1\} \rightarrow
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land \exists m \le n : Pr(i=m) = 1\}
while i < n do
     rabbit := UNIFORM(k)
    hunter := UNIFORM(k)
    caught := (hunter = rabbit) \lor caught
    i := i + 1
end while
\{Pr(\neg caught) = \left(\frac{k-1}{k}\right)^i \land Pr(i=n) = 1\} \rightarrow
\{Pr(caught) = 1 - \left(\frac{k-1}{k}\right)^n\}
```

PROBABILISTIC TERMINATION

What about programs that terminate probabilistically?

PROBABILISTIC TERMINATION

What about programs that terminate probabilistically?

$$\{ \operatorname{Pr}(\operatorname{True}) = 1 \}$$

$$y := \operatorname{toss}(\frac{1}{2});$$
if y then $x := 4$ else loop
$$\{ \operatorname{Pr}(x = 4) = ? \}$$

Soundness

Theorem All of the VPHL rules are sound with respect to the semantics of PrImp.

VERIFIED

https://github.com/rnrand/VPHL

FIN

Thank You Questions?

https://github.com/rnrand/VPHL