

大学物理实验

教学安排及要求

2022年8月22日

课程交流群

入群后请修改备注名为: "学号""姓名",如 2020100146徐翊森

教学安排

Experiment groups (10:00-12:15)

*1													
	Groups	- 8.22	= 8.29	三 9.5	四 9.12	五 9.19	六 9.26	七 10.3	八 10.10	九 10.17	+ 10.24	+- 10.31	十二 11.7
黄显婷 黎星昆	陈承东 李浚宇 楊錦麟 羅元鴻 曾予良 苏一鸣 胡国强 冯政杰 戚峻嘉	Introduction	EP05 弦振动	EP06 杨氏	放假	EP04 二极管	EP11 霍尔	放假	EP13 分光计	EP12 电桥	EP09 牛顿环	EP10 示波器	考试
陈彦彤 余家文	李瑞来 罗倩琳 吴超 阮子轩 韦纪岚 洪与秦 郑杭焓 王营璨 陈钰琴	Introd	EP06 杨氏	EP05 弦振动	Holiday	EP11 霍尔	EP04 二极管	Holiday	EP12 电桥	EP13 分光计	EP10 示波器	EP09 牛顿环	Final Exam

平时成绩 70% 期末考试 30%

1+

循环实验要求

每人一个组内编号,实验室按照编号使用实验设备

实验室要求

1. 考勤

迟到5分钟内, 扣分; 迟到超过5分钟, 按旷课处理;

- 请假要提前告知指导教师,并附上假条;没有请假均按旷课处理;
- 缺课、缺报告3篇的同学按重修处理;

2. 实验室规范

- 遵守实验室规则, 进入和离开实验室要签到和签离;
- 进入实验室前要完成实验预习报告(实验名称、实验目的、实验设备、实验原理);没有完成不允许做实验;
- 实验不能当堂完成的,可与指导教师协商时间补作,但该实验成绩会根据具体情况相应削减;
- 完成实验项目,数据记录需要指导教师签字,整理设备后才能离开;

实验报告

报告内容需包含:

- 1. 实验名称
- 2. 实验目的
- 实验设备
- 实验原理
- 实验步骤
- 数据记录
- 实验数据处理
- 8. 误差分析及心得
- 9. 思考题

预习 10分 操作与数据记录 50分 数据处理余结果分析 40 分

· 刚体皮轴转动键· M=Is M-合补力矩 1一例作对转动轴面转动模型。 3一角加速度 M=Tr+Mu. Tr-绳炒着的力能。My-摩擦力能 2. 我动这样的能证及物体好动模量的沟槽 ®由mg-T=ma 得下在加速度 a. 到下落就高 h= fost"。 南京中 改 mig-a)r-Mx=社 易accy, wy mgr=Ma+ 社 实事改度發移展是.很次判出存不同并力概作用下m都下降时间士。 刘由 mar=Nu+zhiz man ms云·李诚性美表。作加一声图如得·直线。 则证明转动连续是或到,并由直线钢等5截能,可求对定物体的 預动機是和商增加級 大手行轴建设 则仔相对行意图度转轴的转动使量WLI、等于则体对流过度。脉系行轴 助行动慢量1.5Mx 2年, M一般测测体度量 3-两种轴间能够 I.一圈柱线翻转轴的转动搜查: I.一周定数的转动模型 工一整个系统的转动搜量,10%一等一国教员量 n一国控轴与围崖轴影像。 与手行轴连裙 I:IotzIotzmax* 作致设度建力能可需器的。则于当4hme x+ zhila tall > kn2+c. 上式可知于方广星线性美系。作七六国。 克为-直线,纠论两年行轴直程成主并满明了随至多分布而委托

据记:克藤波长入=410mm 不确定度:1.48×10 m

1. 滋教·诚喜比较大,可通过多次源取至的来减长

1.使用油物用锅的,要吃透过完健能该美

阑,来增加点,必测量的精确度

○号肤健5双枝疮间脱液大,条纹间里被疾大,

首都学孩子太神上年且两看事行》为什么铁堆完成事近中。

条约1回随度人及基度小?

方、展影柳石心得。

七、沒魔惠阪

八、風光級

27 1.48 nm.

回、家庭专家

1. 福强解动定律,川定国环解动模量

()图多琼脂纹加速

实验项目设计的重点

现象观察 规律获取 精度测量

实验报告纸要用A4大小

安张条件便分实现和控制。

高身物理实验!

暨南大学本科实验报告专用纸

一、果脏的的: 超过对一种色种铁性电阻的KLC电路混沌的家的实验分析,让做的从感性上更加清晰地了解混沌视影户生的机理,朝寒混沌视影好生命代表,各样,有性电路中混沌状态的基本规律,使到对电路中的混沌视影以有更体、更形影的认识。 二、实验原理:|由于某些确定的微分方程在来些参数条件下出现更来的为以及信用期分出成序列和混沌区域,并且找到一些蓄造草数、发现存在有无穷较爱的自相似结构。其中可看过。非似性尽LL电路等实际系统的实验研究中,不断揭示出非年龄相支的丰富行为。并且由它求得的观察校情等,并且为行则实知时

2、非代性PLC电路的非线性器件,可为电容、电阻与电感,并更验料利用到一个PLC服务电路;每程图如下:

根据电阻电器。电容上的电压、电流关系,可得出风之说,他电路状态为程; { C. alles z G. Ules - Ules + IL ;其中Ula、Ules 是电容内、C. 上的电压,IL是 C. alles z G. Ules - Ules - y Ules 电感上上的电流,G = 1/R。是电零,成为尺的大型特生成数。定验表则、这三十五重数分为程在一定参数条件下。会出现任例则分分率在一定参数条件下。会出现任例则分分率的、准图则、洗池、混沌中的例别部分,如果尽是纠纷的,可是举数、电、口及吸引于预察

路则为一般的旅游电路, 科列的解为正弦的故。电阻尺。的作用是调节 G和C的相位差 2把G、公内端的电压分别输入到分波器的X、Y轴、显示的 图形为椭圆。而早实验率用的尺为非别性的, 其其伏安特性为。

世界主观为非线性。

实验地点望了核刊成绩评定 午~__月__日__午 温度_ ℃ 湿度__指导教师 4. 用并次影来《母说》、祖家,非创造电阻尺是关键,定位中为一个双达并放大器和 六个电阻组结后以实例如。其实参电路实图例分: 从CD为点来看,其事放于一个维铁性 电路;并且LC有联尺。幼作用便为分割 使用、另外处核八千波器的信务性位 相差,可在分次登上投到 X, Y面个信号 的全战图件。其中双行车放大器丁上。多2 的南级和左级正、负发锁闭叫传统 正文镜的强物。化水水的地值 秘. 负友维的张扬与R2/R1、K5/K4的 5.基本判断依据有. ①频谱分析。 比值有关、当正女孩大分支女孩时,包括 四元房周期后,今由于轨道排斥而出到局好不稳定 才能維持振荡。 (3) 新圣吸引 古春在

三、安结装置、电源、实验模块板,数部用表,非风性电阻,电容、电影和可调电位器,示. 波器;无所参数:G=>2mF; Cz=o.lmF; R,=2kB, R,=R,=lokB, R4=1kB, R5=R,=looB; R。由两个继电位器半联组构,可进行组调和识调,500厘线图一片.

四、实验内容,1.测量非浏览电测的伏安特性并画出伏安特性图。测量时不用电源,用电阻、循调中,伏特更并联在非纯性电阻为端,再和安倍走并联在非代性电阻为端、电阻相卡在一起构成 回路。四于非线性电阻多尽量多测量超点,

2、信用期现款、周期性窗。率处对于知及效付于的观察、记水和杨述将电容C、Cs上的电压输入到分波器的X、Y轴, 老肥尽风州铁城, 于波器屏上可见察到一多直线, 调节R。直到走到椭圆, 到来一位置。图形缩刻一点。增大手波器的结束,反向救调 R。可见曲线作任周期变化,曲纵由一间期增为工周期,再信增为图明期,直至一手到难以计数的允为尾的环水曲线,便是一个单涡波较付出了来。再微调 R。淬吸到了支减30双致付5,可见研水曲状在两个向外涡旋的双器门分之间个断填充与跳跃,必须是阻水研究之或中所揭述的"蝴蝶"图像,也是一种奇怪效对。在特点为整体上的稳定性和域上的不稳定性间的存在。

好的调节尺,有时原先的电池或到于7是信用期变化,对突然出现了一个3月 机图像,形做调尺,又出现混沌吸引力,此现新约为出现3周期性窗口、观察并记录引用期

数据记录

	最大位置	最大工	最小位置	J.	反小鱼	
	3年7.8	83.0	93.5		1.9	
三	355. 2 0	852	95.5	0	1.9	
	347.50	83.8	94.2		1.8	
斗均值	354.17	83.33	93.57		1. 289	
P、秘	30°	43°	600	15°	90°	15°
机大鱼山		3.0	20.7	83.3	(63.7	47.2*
极大值U4w,		0==1.1	5.5	6-6	3 9	
松小随似	1 2.7	1 2	20.4	84.1	164.2	
偏振业态	h+a	1.3	pr -	专.6.4	3-7	
10000	平度	围村		神風		4.8
P. 转过15°	at .			1 1 124	华性	椭圆
		5-25 (LW)	, 7	- 47.2	+46.9	= 47.005HW
	7		Jane 3		2	- 17.00
Imax = 4	+7.05 = 9	1.05				
Irrin 3	5.25					

条位位置		级为	1.3	表 - 头缝底座
Tales v	La M	Table.		- ASTANDA
2		in me	last s	1 1 1/2 12/1/2
3		11/11/11	133 147	. 妹缝预算
q	-41-3	18 212	100	
5	1888			
٦	L. S. S. S.			
7		447		
8			True 6	
9			V 9	
10	14413			
- 11	94			
12				
李级条纹则 (表一:千岁				

不做表格

数据不足

数据记录

极缝度	座後置:20.00	cm	沙牧县统作	经军: 60 69	9.920
	吟 迎童: 3.52			》树杨红量:	
	- Ey-12	2 60 12 2			11 200
) D=	(20.00 +352)	- (69.92	-2.75)=43.	65 cm = 4	36.5
500	上 产 海 本 收 的 问 的	the state of the s	SHALL SHALL		
		组别	单位: ~~	×6.00	ALh:
条收化	工 /	2	3		条 收
1	1.458	0.898	2.131		
	1.536	0.963	2.185	_ 1. AX	1 = 7
- 3	1.605	1.052	2278	- + 2.299	-1.6
N - 4	1.693	[11]	2.347	- 4 - 11	
1 5	1.780	1.195	2.438	Palit for	= 0.
800 b	1.855	1.274	2520	_ 2.0X2	= -
100	1.939	1.351	2.589		
8	2.026	1.434	2652	+1.661	-/.1
_ 9	2.102	1-510	2.741		= 0.
10	2203	1.579	2818	3.4x3:	
_ 1/	2.299	1661	2.905		
_ l2	2770	1.730	2.880	- +2.905	-2.3
13	1458	1.812	3.046		_ 0.
14	5.261	1/1902	13.118	A1476) 87	h Tiert
12年11月西九	北福的河口	L		条数间	TV
	1	级大概		/ 统	AT.
组制)	右侧长游径	左侧城	强和船	-	1000
1	3.80)	1.961	1.846	2.865	
2	3.828	2-199	(1.62)	3.256	15
3	4.186	2.319	1.867	3,189	12
泰出源间	9年均值 T:	- 1.232			-
-			THE RESERVE		
> 2 - AX -	d 0.079.	330× /1	232412746		
ラ ハーー		436.		=0.000224	-54

9 9.05 3.22 1809.9 6.9 3.85

表格混乱

数据记录

暨南大学本科实验报告专用纸(附页)

PE 明尼教 B

房	振信(0)	唐号	技病(c)	In Gi
0,	142.728	86	79.983	0565
62	125.985	91	72.639	0.579
93	112.766	98	62.468	0.591
04	122.919	04	55.757	0.602
95	90,063	90	48,797	0.613
	In Birs Fr	的鱼		0.590

10T = 14.4025 $\overline{T} = 1.4405$ 由公式 SRT = 1.140 万得 $\beta = \frac{10 \frac{1}{100}}{157} = \frac{3.590}{5 \times 1.440} = 0.08194$ 始期:

电机频率与中语版值类和指表 $T = \overline{T} = \frac{1}{3.125 \times 10^{-4}}$

明为经	P(.)	P2C)	P= P1+P2	强的短风期了
180-212	n	12	14	1.7185
10-015	10 -		12	1 7.

振幅θ	固有周 期 To (s)	振幅θ	固有周 期 To (s)	振幅θ	固有周 期 To (s)	振幅θ	固有周 期 To (s)
128. 0	1. 584	106. 3	1. 584	94.8	1.584	84. 4	1. 584
127. 0	1. 585	105.5	1. 584	94.1	1.585	83.8	1. 584
125. 9	1. 584	104.8	1. 585	93. 4	1.584	83. 2	1.584
124. 9	1.585	104.0	1.584	92.8	1.584	82.6	1.583
123. 9	1. 584	103. 3	1.585	92. 1	1.584	82.0	1.584
122. 9	1. 585	102.5	1. 584	91.5	1.584	81.4	1.584
122. 9	1.584	101.8	1. 585	90.8	1.584	80.8	1. 584
121.9	1. 585	101.1	1. 584	90.1	1.585	80. 2	1. 583
120.9	1.584	100.3	1. 584	89. 5	1.584	79.6	1.584
119.9	1. 585	99.6	1. 585	88. 9	1.584	79.0	1.585
111.1	1.584	98. 9	1.584	88. 2	1.585	78.4	1. 583
110.3	1.584	98. 2	1. 585	87.6	1.583	77.8	1.584
109.5	1.585	97.5	1. 583	86. 9	1.584	77.3	1. 584
108.6	1. 585	96. 8	1.585	86 3	1 505	70 7	1 502

2. 测定阻尼系数 β:

1.584

1.585

107.8

选择"阳尼振荡"实验、获得的实验粉据值入表

96.1

95. 5

1.584

1.585

序号	振幅(°)	序号	振幅(°)	In Bi
1	139.238	6	77.538	0. 585
2	122.557	1	69.202	0. 571
3	108.876		61.72	0. 567
	97.204	2 7 9 9	54.934	0. 570
5	86,869	10	48.936	0. 573
	In Bi	殖	The latest	0. 571

85.7

85.0

1.584

1.584

76.1

75.5

1.584

1.583

数据处理

$$e = R_{x} \frac{rd^{2}}{4l}$$
 $ln e = ln R_{x} + ln \pi d^{2} - ln 4l$
 $\bar{e} = 1.15 \times 10^{-7} cn \cdot m$

计算过程

$$\gamma = \frac{0.2503 \times |.23|086}{43.8} = 702 \text{ nm}$$

结果准确度

单位

精度及有效数字

科学计数法

作图

分段拟合

现象描述

	243	18	250	15	
	极大值(ww)	极低W	根地(ww)	极)值(M)	偏振状态
120	255	21	251	17	椭圆偏振光
30°	300	79	293	96	椭圆偏振光
ψS°	278	189	266	206	圆偏振光
60°	48	121	419	122	椭圆偏振光
75°	444	26	476	26	椭圆偏振光
90°	442		407		线偏振光

表5

D 注意事项及难点:

- 1.在多次实验并收集实验数据均过程中需尽量处于黑暗状态下进行(消除其他光调导致均
- 2.在發內收集数据时若出现前后误差过大口情况有可能是手指挡住光源(请注意!)不量光具座以免其挡住光源
- · 二色识名的的写真 保证为市不与田设石信取马到识至17月次本的内心主会、日上八八八

暨南大学本科实验报告专用纸(附页)

39.实验数据

级数i	3	2	1	-1	-2	-3
到0级距离Xi(cm)	0.9	0.6	0.3	0.3	0.6	0.9
空间频率 fxi(hz)	632×103	4.21×103	2.11×103	2.11X10 ²	4.21×103	6.32=/02
光柳常量 di	1.5840-4	2.37×10-4	4.75×10 4	4.75 × 10-4	2.3/×10-4	1.58×10-4

透镜焦距 F=>>5cm, 激光液 入=632.8×10-8m, f= 六年, f=7

光阑雯求	现象	说明原因
1.有0级通过	像变暗,且非常模糊,纲	未知属于低频点,无法反映像的细节,只有轮廓。
通过0级和土1级	4 + 123 4 14 . 6	光由透镜汇集,在频谱面上形成形 某行(例)的点由垂直(水平)的点汇集和点
继续开大先潮,5	像逐渐变亮且被来越 清晰·	接收到的岛频点越来越多成像越来越清晰.
指住土级	无明显变化,轮解清晰	缺少低频信号

狭缝要 求	现象	说明原因
仅使中its轴上的 光点通过	模糊的像	中央光点属于低频点,无法反映的体细节,只有轮廓。
仅使中间-列垂直或 水平的光流通过	横条、纹或坚条纹	光由选镜 汇集,在频谱上对放平面点,阵,某行(例)的点由来且方向的物象汇集,因而在像平面的图像5光,栅壁直
	模糊的斜条纹	老振动方向和漉波器存在头角便得 清晰度下降。
推快级	较宽的条纹	伤频光去失使得像的轮廓F清 叶·

逻辑与条理

暨南大学本科实验报告专用纸

8:45

课程名称 著	例如何是我		成绩评定_	
实验项目名称_	受負振动	(30000000000000000000000000000000000000	_指导教师	、3米纬 教授

20十2 实验项目类型 实验地点 237 学号 2020(03423

学生姓名 社会

系 出现理解 专业 亚根华的程序

实验时间2002年3月8日下午~3月8日下午温度_℃湿度_

一、实验上的 D借助被除成在研究的是振动的基本规律 ②重观地观测·利图尼对 如推动与发过振动分影响。 ③定量测定机械炎恒振动的惨频仰 相频特性、并观察和判断并振观象的发生。

二、黎姆多

人由政队振动装置数据长集器、阻戍电源等组成。

2.振动装置: D值振动:播怀和, 淘光弹簧对摆轮地加与维修的 成此的多地恢复地。,在才帮枪下方装有租足线圈,电视围止线圈性线圈 切,推测电流,其磁力与该图磁场相,形成与运动脏度或正处的电磁 图别矩。 ②专的推动:电动机带动偏处学见过生动皆怀已使推杆 翻,面过游港神黄佳绝给摆轮、群凝迫外放毛、使其振动。 图别的信号频率获得中的存进·挥=3125×104fes。

田州修建上侯州推村相位超前子摆和相位的数值,其负值为相位

3.数据将集第二0消振动从的角度但感验的时模拟起能。整接大概 享管各并上往给竹箅机。

OXI算计量过软件控制来集器业价数早信号从及1水冲宽度调制 鳄 的输入

4. 双面的新加速区的30V, 就们1000mA, 改革 30W。

三、東路原理

/图区30:据动长统天外界就是补偿,振幅消不断减小,真致振动停止。

2、受益振动:烟桶拿为6、风图3分为8的新统在周期附外办的作用下 经过的胜别时间位外销等幅的葡萄瓶动。

3.在发血振动下,系统、物种的位的变化与强迫力的变化是不同相区的。强迫 顿事与系统的固能频率相同时袒花板,此时振幅最大相伦差为90°。

4.参应振动的粉烂及其解的分析

当摆靴类到周期性强迫外力矩M-Mossut 时,在有些,程能的电磁 祖尼的媒介短劲时有: Jab = - KD - bab + Mo coscot ci) 了为轻动图量、一大的为确性力矩、Mo为强恒力处区相值、W大强的力 的圆额 全似于 2月二年 加二州

=> de +28 de + wie = mas wt. (2)

当masurt=0时、式创为程尼振动为性。B=0 为及租尼村里

可像面解: 0=点eftasay+a)+f2Cosartte)

PARKERD 的作动 # 02 = _____ \(\tau = \tau \) 2 + 4 \(\tau \) \(\tau = \tau \)

5 料板料 振幅 越海绵:20 电倒将是[(002-103)2+4度0)]=0

当强迫加起的圆额拿W=~ws->P 时科特振 及新发值时: W=-Wi-28 A-ZBWEB

暨南大学本科实验报告专用纸(附页)

当产联尼数越小,若振时圆频率越接近旅统的固有条频率,Bre越大 剪金呢.

人测量自由振动状态下的振幅及与约图对控的频率(张明系统1)

2.测度强尼维处产(数据事格2). 別傳播機道 Bo, A. Bn 社 In Boett Doppermy = n FT = In Bo (8) 由5时一门在6=0,12,3,4) 梅野鱼,水杨

3.测量交通振动时的幅点指性的相频特性电线 测是时解的、计算被循、()的被隐物给性(是)了心性故我,和助教派已值。 克图尼斜纹 满足 Bicc (13 时, 在书探企置附近(Way) 即到104以22以6 域(4)与(7)可得 (分)2= (以切分)22

当日二在印刷(品)=三时、W-W。土民 助维尼-似-W (2)被揭饰特的故 (哪一般 (数据表格子)

逻辑与条理

暨南大学本科实验报告专用纸(附页)

互数据处理_{1. 摆轮振幅 θ}与系统固有周期 T 的对应关系

与记录 表1 摆轮振幅 θ 与系统固有周期 T 的对应关系

振幅 0	周期 T (s)	振幅日	周期T(s)	振幅 0	周期 T (s)
148	1, 588	128	1.6	106	1.608
146	1, 592	126	1.6	104	1.609
145	1, 595	125	1,602	101	1, 609
144	1.597	124	1, 601	98	1. 61
142	1.597	123	1, 601	96	1. 611
140	1,596	122	1. 603	94	1. 61
139	1. 597	120	1, 601	92	1.615
138	1.598	119	1, 602	90	1, 614
137	1, 598	117	1, 607	88	1.62
136	1.599	115	1, 605	86	1.616
134	1. 598	113	1, 602	84	1.615
133	1.599	112	1, 608	81	1.615
131	1.599	110	1, 61	78	1, 618
129	1.6	108	1,608	75	1, 62

表 2 摆轮振幅 θ 与系统固有周期 T 的对应关系与拟合曲线

暨南大学本科实验报告专用纸(附页)

2. 测定阻尼系数 β

图 2 阻尼导致的振幅衰减

表 2 测定阻尼系数 β 所选数据

次数	振幅 θn(°) 次数 振幅 θn(°)		振幅 θn(°)	ln θi/θi+5		
1	97. 538	6	51. 443	0, 639		
2	85. 314	7_	45. 416	0, 631		
3	74. 618	8	40. 407	0.613		
4	65. 874	9	35, 357	0, 622		
5	58. 234	10	30, 985	0. 631		
	ln θi/θi	+5 平均(直	0, 627		

注:以上付靠数据B用Excel函数解决

暨南大学本科实验报告专用纸(附页)

次数	1	2	3	4	5	6	7	8	9	10
周期 T (s)	1.613	1. 613	1. 602	1. 596	1, 613	1.607	1.607	1, 596	1.602	1. 602
T平均	1.605									

在:以上数据证的值了用Excel 函数解决。

由SBT=
$$\ln \frac{\beta c}{\beta rs}$$
 \Rightarrow $\beta = \frac{\ln \beta r}{5 + 1605} \approx 0.07813 \text{ rad/s}$

3. 测定受迫振动的幅度特性和相频特性曲线

	(600 mA 电流下)
tho.	本事 1 得到与据幅对应的

电机转速 (Hz)	电机周期 (强迫力矩 周期)	相位差读取 值φ(°)	读取值θ (°)	查表 1 得到与振幅对应的固 有周期 T0
1800	1.766	14	22.796	1,618
1850	1.744	17	29.626	1.619
1900	1.689	23	43.834	1.622
1950	1.64	44	75.75	1.617
2000	1.604	85	112.436	1.608
2050	1.566	145	60.916	1.618
2100	1.532	157	37.87	1,601
2150	1.484	162	26.061	1.611
2200	1.459	165	19.843	1,619

$$\left(\frac{\theta}{\theta_r}\right)^2 = \frac{4\beta^2 \omega_r^2}{(\omega_o^2 - \omega^2)^2 + 4\beta^2 \omega^2}$$
可得下表数据(召用EXCEL 图数计算)

逻辑与条理

强迫力 矩周期 (s)	相位差 读取值 φ(°)	测量值θ(°)	ω0	ω	ωr	ω/ωr	(θ/θr)²	φ=arctan(-2 $ωβ$)/($ω₀²$ - $ω²$)
1.766	14	22.796	3.883	3.558	3.723	0.956	0.055	-40.6
1.744	17	29.626	3.881	3.603	3.72	0.968	0.073	-47.5
1.689	23	43.834	3.874	3.720	3.713	1.002	0.198	-83.2
1.64	44	75.750	3.886	3.831	3.725	1.028	0.633	-172.5
1.604	85	112.436	3.907	3.917	3.748	1.045	0.901	260.4
1.566	145	60.916	3.883	4.012	3.723	1.078	0.236	99.4
1.532	157	37.87	3.924	4.101	3.766	1.089	0.142	76.4
1.484	162	26.061	3.900	4.234	3.74	1.131	0.043	43.0
1.459	165	19.843	3.881	4.306	3.72	1.158	0.026	34.3

当保計=2时,有W=1.022966
W=1.061026675
以中=W=W1
以有 P= W=W1 = (W2-W1) X型
WT=(3.723+3.72+3.713+3.725+
3.723+3.748+3.766+3.74+3.72)す
~3.731 rad/s
⇒ P=(1.061026675-1.0022966) X

= 131

~0.0710022

= 0.07100 rad/s

対内限2所保 P=0.07813 处于
同一数量级

一…八、十八大巡旅舌专用纸(附页)

五、思考题

人原理上分析设值振动的振冲色和相位与哪些因素有关了

卷:①与驱动周期和圆角周期3比较,当电动机频率与物体局有频率接近战 数00振动达到偏空后,振幅最大,包括报。

图与图尼文小有差,当图尼超大时-物件的书振·拒陷的越小。

3届时,当电动机场车与物体固有频率相近时,相缝、接近90°.

田相位差与电动机频率大水成时。

2 #现金米用什么方法使阻尼力交互发生变化?请简述原理?

等: 改复实验电源的电流大小,来控制摆动装置中的阻尼线圈电流大小 有 家理: 严寒心定律; 在磁话中线动的残圈, 性感应电动势, 性感应电流 不知 实验处得。 个相, 这里的电源电流可改变更给力的大小,从而使程尺力发生改变。

3.实验中两种测量租民条数的分落 哪种更好,为什么?

着等一种较好;理由: ①使用逐差流,稍除一定误差。

日第二种传数由拟合助线决定,有一定误差,从而使计算值不准确。 4.对似在实验过程中不能任意、改变程尼标数?

等一般。改变相尼系数台,在洞车速的驱动下,会使振幅、相位, 也观离开偏真值,不能在同一图尼的基础下进行实验,使得到 的幅频、相频曲线严重不准确。

②非实验就是为3观定阻尼新数,苦其任意改变,则厌流测量. 介、保护所与实验心得.

暨南大学本科实验报告专用纸(附页)

保护所:D使用Origin Pro 2021 取点有一定的测量设置。

②使用Origin Pro 2021 进约曲线拟合在定的拟合误差,线顶

3100次进代,从面有效减少假差。

图第二部的 与第三部的 的流值分别为 607 mA 与 600/ 竹算所得的租赁员= 0.07813 racks 与 是=0.07/00 racks 正好印证 电流与阳尺小成正比 这是 才知里的实验、 合证的数据处理。

家好心得。 ①中央实验,我深刻 3解3般是振动的基本规律。

包新从战到利用限对帕振动的影响

图伸发到数学分析与物理数据处理的坚牢,但也使约更加安定的选择物理。

教学辅助工具

https://jnu.drpai.com.cn/drpai/#

用户名: 学号

初始密码: 123456aA

教师 学生

