BANCO DE PREGUNTAS TAREA 1

1. Considere las siguientes funciones f y g : $R^2 \rightarrow R$ definidas por:

$$f(x,y) = \begin{cases} y & , si \ x > 0 \\ -y & , si \ x \le 0 \end{cases} , \qquad g(x,y) = \begin{cases} x & , si \ y > 0 \\ -x & , si \ y \le 0 \end{cases}$$

Sea $h: \mathbb{R}^2 \to \mathbb{R}$ definida por $h(x,y) = f(x,y) \cdot g(x,y)$

- a) ¿Es h inyectiva? Justifique
- b) ¿Es h sobreyectiva? Justifique
- c) Determine $h^{-1}(\{a\})$

2. Considere la función $\mathbf{F}: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$F(x,y) = (2x - y, -x + y)$$

- a) Estudie si \boldsymbol{F} es una función inyectiva. Justifique.
- b) Estudie si \boldsymbol{F} es una función sobreyectiva. Justifique.
- c) Estudie si $\mathbf{F} \circ \mathbf{F} \circ \mathbf{F} \circ \mathbf{F}$ es biyectiva. Justifique su respuesta.
- 3. Considere las funciones

$$f : \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \to y^2 - x^2$$

- a) ¿Es f inyectiva? ¿Es f sobreyectiva?
- b) ¿Es f sobreyectiva? ¿Es f sobreyectiva?

$$g : \mathbb{R}^2 - (\{0\} \times \mathbb{R}) \to \mathbb{R}^2$$
$$(s,t) \to (s+t, \frac{t}{s})$$

c) ¿Es la función $f \circ g$ invertible? Justifique su respuesta.

4. Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ una función con la propiedad que f(x+2, y-1) = (3x+4, 5y-3) para cada $x,y \in \mathbb{R}$

- a) Determine el valor f(2, 2)
- b) Para la función:

$$g: \mathbb{R}^2 \to \mathbb{R}^2$$
 definida por $g(x,y) = (x+y, x-y)$ para cada $(x,y) \in \mathbb{R}^2$ determine $(f \circ g)(x,y)$

5. Para cada $a \in R$ se define la función $H_a : R - \{0\} \rightarrow R^2$ por:

$$H_a(x) = (\frac{x-a}{x}, ax)$$

i. Se define el conjunto $A = \{ a \in R \mid H_a \text{ es inyectiva } \}$. Determine todos los elementos pertenecientes a este conjunto

ii. Sea a \in A definido en el punto anterior. Asigne a cada letra del abecedario su número de posición, es decir, a =1, b = 2, c = 3,..., z = 26. Considere el par ordenado (y_1,y_2) donde y_1 corresponde al número asignado por la primera letra de <u>su nombre</u> e y_2 al número de la primera letra de su apellido, por ejemplo ANA CARRASCO, entonces $(y_1,y_2) = (1,3)$

Determine $H_a^{\text{--}1}(\{(y_1,y_2)\})$ para el par definido por su nombre y apellido

iii. Sea la función

C:
$$R^2 \rightarrow R^2$$
 tal que $C(x,y) = (x^2,y^2)$ si $B = \{ x \in R - \{0\} \mid C \circ H_1(x) = (4,1) \}$

Determine todos los elementos pertenecientes a este conjunto.

6. Sea $f : N \rightarrow Z$ definida por

$$F(n) = \begin{cases} \frac{-n^2}{2} + 1 & \text{si } n \text{ es por} \\ (n+1)^2 & \text{si } n \text{ ex impor} \end{cases}$$

- a) Demuestre que f es inyectiva
- b) ¿Es f sobreyectiva? Justifique su respuesta.
- c) Sea C = { $z \in Z \mid 0 \le z \le 100$ } Determine f^{-1} (C)