COMP 424 - Artificial Intelligence Lecture 15: Bayesian Networks 2

Instructor: Jackie CK Cheung (jcheung@cs.mcgill.ca)

Readings: R&N Ch 14

Quiz: Bayes net inference

- What is the unconditional probability of WetGrass, P(W=1)?
 - a) P(W=1|S,R)P(S,R)
 - b) P(W=1|S,R)P(S|C)P(R|C)P(C)
 - c) $\Sigma_{s,r}$ P(W=1 | S=s, R=r)
 - d) $\Sigma_{s,r}$ P(W=1, S=s, R=r)
 - e) $\Sigma_{s,r,c}$ P(W=1,S=s, R=r, C=c)
- What is the conditional probability of Rain, given that the grass is wet, P(R=1|W=1)?
 - a) P(R=1,W=1) / (P(W=1) + P(R=1))
 - b) P(R=1|W=1,C=0)+P(R=1|W=1,C=1)
 - c) $\Sigma_{s,c}$ P(W=1, R=1, S=s, C=c)
 - d) $\Sigma_{s,c}$ P(W=1, R=1, S=s, C=c) / $\Sigma_{s,c,r}$ P(W=1, R=r, S=s, C=c)

To-do later: Calculate the exact probability for each.

Today

How can we speed up (exact) inference with Bayes Nets?

1. Variable elimination algorithm

Sum up probabilities in an efficient way

2. Bayes Ball

 Figure out which variables are conditionally independent given other variables

Inference in BNs: Leveraging

P(F)		
<i>F</i> = 0		
0.99		

P(A T, F)				
	<i>A</i> = 1	<i>A</i> = 0		
<i>T</i> =0, <i>F</i> =0	0.0001	0.9999		
<i>T</i> =0, <i>F</i> =1	0.99	0.01		
<i>T</i> =1, <i>F</i> =0	0.85	0.15		
<i>T</i> =1, <i>F</i> =1	0.5	0.5		

P(L A)			
	<i>L</i> = 1	<i>L</i> = 0	
<i>A</i> = 0	0.001	0.999	
A = 1	0.88	0.12	

P(S F)				
	S = 1	S = 0		
<i>F</i> = 0	0.01	0.99		
<i>F</i> = 1	0.90	0.10		

Recall: Entries in the full joint probability. e.g., $P(\sim T, F, A, S, L)$? $P(\sim T, F, A, S, L) = P(\sim T) P(F) P(A \mid \sim T, F) P(S \mid F) P(L \mid A)$ $= 0.98 \text{ x} \dots$

Say we want: P(T | L=1) = P(T, L=1) / P(L=1)

Inference in BNs: Leveraging

structure

Naïve approach:

Start with

$$P(T \mid L=1) = P(T, L=1) / P(L=1)$$

$$\begin{split} P(L=1) &= P(T=1, L=1) + P(T=0, L=1) \\ P(T=1, L=1) &= \sum_{a, s, f} P(A=a, S=s, F=f, T=1, L=1) \\ &= \sum_{a, s, f} P(s \mid f) P(f) P(a \mid f, T=1) P(L=1 \mid a) P(T=1) \\ P(T=0, L=1) &= \sum_{a, s, f} P(A=a, S=s, F=f, T=0, L=1) \\ &= \sum_{a, s, f} P(s \mid f) P(f) P(a \mid f, T=0) P(L=1 \mid a) P(T=0) \end{split}$$

Inference in BNs: Leveraging structure

A better solution:

Re-arrange the sums:

P(T, L=1) =
$$\sum_{a, s, f} P(s | f) P(f) P(a | f, T) P(L=1 | a) P(T)$$

= $\sum_{a, f} P(f) P(a | f, T) P(L=1 | a) P(T) \sum_{s} P(s | f)$

Inference in BNs: Leveraging structure

A better solution:

Re-arrange the sums:

P(T, L=1) =
$$\sum_{a, s, f} P(s | f) P(f) P(a | f, T) P(L=1 | a) P(T)$$

= $\sum_{a, f} P(f) P(a | f, T) P(L=1 | a) P(T) \sum_{s} P(s | f)$

Replace:

$$\sum_{s} P(s \mid f) = m_s(f)$$
 (Note that $m_s(f)=1$, but ignore for now.)

Now we have:

$$P(T, L=1) = \sum_{a, f} P(f) P(a | f, T=1) P(L=1 | a) P(T=1) m_s(f)$$

Repeat with other hidden variables (A, F).

Instead of O(2ⁿ) factors, we have to sum over O(2^kn) factors.

Basic idea of variable elimination

- Impose an ordering over variables, with the query variable coming last.
- Maintain a list of "factors", which depend on given variables.
- Sum over variables in the <u>order</u> in which they appear in the list.
- 4. Memorize the result of intermediate computations.

This is a kind of dynamic programming.

A bit of notation

- Let X_i be an <u>evidence variable</u> with observed value X_i .
- Let the evidence potential be an indicator function:

$$\delta(x_i, x_i) = 1$$
 if and only if $x_i = x_i$.

This way we can turn conditionals into sums, e.g.

$$P(s \mid F=1) = \sum_{f} P(s \mid f) \, \delta(f, 1)$$

• This is convenient for notation, but not effective as a practical implementation.

Variable elimination algorithm

- 1. Pick a <u>variable ordering</u> with Y (query variable) at the **end** of the list.
- 2. Initialize the <u>active factor list</u> with the conditional probability distributions (tables) in the Bayes net.
- 3. Add to the active factor list the evidence potentials $\delta(e_j, e_i)$ for all evidence variables E.
- **4**. For *i*=1..*n*
 - 1. Take the next variable X_i from the ordering.
 - 2. Take all the factors that have X_i as an argument off the active factor list, and multiply them, then sum over all values of X_i , creating a new factor m_{χ_i}
 - 3. Put m_{χ_i} on the active factor list.

Example

To calculate: P(T | L=1) = P(T, L=1) / P(L=1)

- 1. Pick a variable ordering: S, F, L, A, T
- 2. Initialize the active factor list and introduce the evidence:

List: P(S|F), P(F), P(T), P(A|F,T), P(L|A), $\delta(L,1)$

3. Eliminate S: replace P(S|F) in list by computing

$$m_s(F) = \sum_s P(s \mid F)$$

List: P(S/F), P(F), P(T), P(A/F,T), P(L/A), $\delta(L,1)$, $m_s(F)$

Example (cont'd)

List: P(F), P(T), P(A|F,T), P(L|A), $\delta(L,1)$, $m_s(F)$

- 4. Eliminate F: $m_F(A,T) = \sum_f P(f) P(A \mid f,T) m_S(f)$ List: $P(E), P(T), P(A \mid E,T), P(L \mid A), \delta(L,1), m_S(E), m_E(A,T)$
- 5. Eliminate L: $m_L(A) = \sum_l P(l|A) \, \delta(l,1)$ List: P(T), P(L|A), $\delta(L,1)$, $m_E(A,T)$, $m_L(A)$
- 6. Eliminate A: $m_A(T) = \sum_a m_F(a,T) m_L(a)$ List: P(T), $m_F(A,T)$, $m_L(A)$, $m_A(T)$
- 7. Compute answer for T=0 and T=1: $P(T=0)m_A(T=0)$ $P(T=1)m_A(T=1)$

This is the answer we are looking for!

Complexity of variable elimination

- We need at most O(n) multiplications to create an entry in a factor (where n is the total number of variables).
- If m is the maximum number of values that a variable can take, a factor depending on k variables will have $O(m^k)$ entries.
- So it is <u>important</u> to have <u>small factors</u>. But the size of the factors depends on the ordering of the variables!
- Choosing an optimal ordering is NP-complete.

Strategy #2: DAGs and independence

• Given a graph *G*, what independence assumptions are implied?

DAGs and independence

- Given a graph G, what independence assumptions are implied?
- In our example:
 - Variables were ordered: T, F, A, S, L, R.
 - Graph structure captures specific conditional independence relationships:

$$P(F|T) = P(F),$$
 i.e., $F \perp T$
 $P(S|T,F,A) = P(S|F),$ i.e., $S \perp \{T,A\} \mid F$
 $P(L|T,F,A,S) = P(L|A),$ i.e., $L \perp \{T,F,S\} \mid A$
 $P(R|T,F,A,S,L) = P(R|L),$ i.e., $R \perp \{T,F,A,S\} \mid L$

This notion of ⊥ is called d-separation (directed separation)

DAGs and independencies

- Absence of links implies certain conditional independence relationships.
 - Are there other independencies or conditional independencies between variables?
 - Are A and S independent?
 - Is S conditionally indep. of L and R, given F?
- What variables are independent, or conditionally independent, in general?
 - Can be read off the graph with the right tools!
 - Why do we care? Faster inference!
 - E.g. Suppose we want to know P(S | A)
 - Do we need to sum over all values of T, L, R?
 - Skip variables that are conditionally indep. of S given A!

Implied independencies

- Given evidence for variable Q, what can we say about the sets of variables P and R?
 - If we get information about P, does this change our belief about R?
- If P and R are not directly connected, and having information about P gives information about R, then it must be because it gives <u>information about the</u> <u>variables along the path</u> from P to R.

Three types of connections

• The question to answer in each case:

 $X \perp Z$? X and Z independent?

 $X \perp Z \mid Y$? X and Z conditionally independent given Y?

Indirect connection

Interpret lack of edge between X and Z as conditional independence:

$$P(Z \mid X, Y) = P(Z \mid Y)$$
. Is this justified?

Based on the graph structure, we have:

$$P(X, Y, Z) = P(X) P(Y | X) P(Z | Y)$$

 $P(Z | X, Y) = P(X, Y, Z) / P(X, Y)$
 $= P(X) P(Y | X) P(Z | Y) / P(X) P(Y | X)$
 $= P(Z | Y)$

So Z is independent of X whenever the value of Y is known.

E.g.
$$X = Travel$$
 $Y = Bird flu$ $Z = Fever$

 On the other hand, Z is not independent of X if Y not known. (Can check that P(Z | X) does not simplify)

Common cause

 Again, interpret lack of edge between X and Z as conditional independence given Y. Is this true?

$$P(Z \mid X, Y) = P(X, Y, Z) / P(X, Y)$$

= $P(Y) P(X \mid Y) P(Z \mid Y) / P(Y) P(X \mid Y)$
= $P(Z \mid Y)$

This is a <u>hidden variable scenario</u>: if Y is unknown then
 X and Z can appear dependent on each other.

E.g.
$$Y = Bronchitis$$
 $X = Cough$ $Z = Fever$

• On the other hand, Z is not independent of X if Y not known. (can check that $P(Z \mid X)$ does not simplify)

V-structure

 Interpret lack of an edge between X and Z as statement of <u>marginal independence</u>.

 In this case, when given Y, X is not independent of Z.

(You can check that $P(Z \mid X, Y)$ does not simplify.)

- Same argument if a child of Y is given!
- This is a case of <u>explaining away</u> when there are multiple competing explanations.

E.g.
$$X = Bird flu$$
 $Z = Cold$ $Y = Fever$

 Tampering and Fire are independent variables (not the same as mutually exclusive! They can both be True, for example).

- Tampering and Fire are independent variables (not the same as mutually exclusive! They can both be True, for example).
- Agent hears the Alarm sound. It could be due to Tampering and/or Fire.

$$P(F | A) > P(F)$$
; $P(T | A) > P(T)$

• The agent gets some other piece of evidence, it sees *Smoke*.

$$P(F|A,S)$$
? $P(F|A)$

- Tampering and Fire are independent variables (not the same as mutually exclusive! They can both be True, for example).
- Agent hears the Alarm sound. It could be due to Tampering and/or Fire.

$$P(F | A) > P(F)$$
; $P(T | A) > P(T)$

The agent gets some other piece of evidence, it sees Smoke.

$$P(F \mid A, S) > P(F \mid A)$$

$$P(T|A,S)$$
? $P(T|A)$

- Tampering and Fire are independent variables (not the same as mutually exclusive! They can both be True, for example).
- Agent hears the Alarm sound. It could be due to Tampering and/or Fire.

$$P(F | A) > P(F)$$
; $P(T | A) > P(T)$

The agent gets some other piece of evidence, it sees Smoke.

$$P(F \mid A, S) > P(F \mid A)$$

$$P(T \mid A, S) < P(T \mid A)$$

$$P(T \mid A, S)$$
 ? $P(T)$

- Tampering and Fire are independent variables (not the same as mutually exclusive! They can both be True, for example).
- Agent hears the Alarm sound. It could be due to Tampering and/or Fire.

$$P(F | A) > P(F)$$
; $P(T | A) > P(T)$

The agent gets some other piece of evidence, it sees Smoke.

$$P(F | A, S) > P(F | A)$$

 $P(T | A, S) < P(T | A)$
 $P(T | A, S) > P(T)$

 If instead there was some additional evidence directly related to Tampering, what happens to our belief about Fire, as compared to just having heard the Alarm?

Summary of the three cases

- Cases 1 & 2: path between X and Z is:
 - open if Y is unknown.
 - blocked if Y is known.
- Case 3: path between X and Z is:
 - blocked if Y is unknown.
 - open if Y is known.

Bayes Ball algorithm

- Determine if $x_A \perp x_B \mid X_C$ by looking at structure of graph
 - Can we find a path of influence from x_A to x_B ?
- Use this handy guide →
 - Shaded variable: the observed variables in X_C

Boundary Cases and Explaining Away

Boundary cases

 Case b) above means that explaining away happens if Y or any of its descendants is shaded.

Bayes Ball Example 1

$$\mathbf{x}_2 \perp \mathbf{x}_3 | \{\mathbf{x}_1, \mathbf{x}_6\}$$
 ?

Notice: balls can travel opposite to edge directions.

Bayes Ball Example 2

$$\mathbf{x}_1 \perp \mathbf{x}_6 | \{\mathbf{x}_2, \mathbf{x}_3\}$$
 ?

Bayes Ball

Bayes Ball implies the two properties we discussed before

Summary of Inference with Speed-Ups

Given query, $P(X_A|X_C)$ (where X_A , X_C are sets)

- 1. Use Bayes Ball algorithm to determine set X_B s.t. $X_A \perp X_B | X_C$
 - Look at graph structure
 - Shade in nodes X_C
 - Put a ball in each node X_A
 - See where the balls don't reach
- 2. Prune nodes X_B from graph
- 3. Start variable elimination algorithm

Summary of inference in Bayes nets

- Complexity of inference depends a lot on network's structure.
 - Inference is efficient (poly-time) for tree-structured networks.
 - In worse-case, inference is NP-complete.
- Best exact inference algorithm converts network to a tree,
 then does exact inference on the tree.
- In practice, for large nets, approximate inference methods work much better.

What you should know

- Basic rules of probabilistic inference.
- Variable elimination
 - Algorithm, complexity
- Independence in a Bayes net
 - Three base cases and the boundary leaf case.
 - Bayes ball algorithm