Examen Mundial de Lógica 1er Semestre. Curso 2021-2022

Nombre v apellidos:	Grupo:	
romarc , apomaos.	O1 apo	

- 1. Sea A finito y $\mathfrak{R}(A) \subset 2^{A \times A}$ el conjunto de todas las relaciones de equivalencia sobre A y $\mathfrak{P}(A) = \{P \in 2^{2^A} | \emptyset \notin P \land [[M \in P \land N \in P] \Rightarrow N \cap M = \emptyset]\}$
 - (a) Pruebe que $|\mathfrak{R}(A)| \leq |\mathfrak{P}(A)|$
 - (b) Proponga una relación de equivalencia S en $\mathfrak{P}(A)$ tal que

$$|\mathfrak{R}(A)| = |\mathfrak{P}(A)/S|$$

2. En un grupo de 256 individuos se realizó un ensayo clínico. Cada individuo tiene un número de ensayo clínico único. Se sabe que, exactamente, a tres de cada cuatro individuos se le aplicó placebo. Del total de individuos a los que se aplicó el principio activo sujeto del ensayo, se indentificaron a 16 individuos con expresiones genómicas exactamente diferentes, dadas por una secuencia de 4 genes consecutivos que fueron analizados. Estos genes pueden expresarse o no. Producto de los análisis se supo que cuando se expresaban exactamente solo dos genes consecutivos el principio activo no tenía efecto alguno.

Para un segundo ensayo a realizar, toda esta información se codificó utilizando el número de ensayo clínico de cada individuo y, además, se diseñó un circuito lógico que permite dado esta codificación, por una parte, identificar a quién se administró placebo o no, por otra parte a quiénes se realizó el estudio genómico y, finalmente, a quiénes el principio activo se supo que no hizo efecto.

- (a) Proponga, y justifique, una codificación que permita hacer lo anterior así como el diseño del circuito lógico mencionado.
- 3. En una localidad donde hay una farmacia se cumplen los siguientes planteamientos:
 - 1 : Para cualquier persona, si tiene un familiar que padece Asma, entonces compra Dipirona o hay alguien que compra Metronidazol
 - 2: Para las personas se cumple que si tienen Asma o Hipertensión no compran Dipirona ni Ibuprofeno.
 - 3: Hay una persona que tiene al menos un familiar que padece Asma.
 - 4 : Todo el mundo padece de Asma, Hipertensión o Catarro.
 - 5 : Nadie es familia de si mismo.
 - (a) Escriba las proposiciones anteriores en el Lenguaje de la Lógica de Predicados. Defina los predicados que utilice.
 - (b) Demuestre formalmente, utilizando las Leyes y Reglas de la Lógica de Predicados, hay alguien con Catarro o Hay alguien que compra Metronidazol
- 4. Estás perdido en una cueva y te encuentras con tres túneles, cada uno con dos grabados. Sabes que uno de esos túneles te llevará a una muerte segura, los otros dos te llevarán a la salida. También recuerdas que en la entrada de la cueva te informaron que por cada túnel, a lo sumo uno de sus planteamientos es falso. Los grabados en cada túnel son los siguientes:
 - A: 1. Los túneles B y C se unen en algún punto del camino.
 - 2. No hay personas que hayan logrado salir de esta cueva.
 - B: 1. Si el túnel A es un camino seguro, C no lo es.
 - 2. Este túnel te llevará fuera de la cueva.
 - C: 1. Este túnel es seguro y hay personas que han logrado salir de la cueva por aquí.
 - 2. Si el camino en el túnel B es seguro entonces hay personas que han logrado salir de esta cueva.
 - (a) Exprese cada uno de estos enunciados en el lenguaje de la Lógica Proposicional.
 - (b) Determine y Demuestre formalmente, utilizando las Leyes y Reglas Lógica Proposicional, cuál camino no deberá seguir para salir de la cueva.