Math 444 - Homework 3

Cameron Dart

June 22, 2017

Claim 2.4.2 If $S := \{\frac{1}{n} - \frac{1}{m} : m, n \in \mathbb{N}\}$, then $\sup S = 1$ and $\inf S = -1$

Proof. First, note $0 < \frac{1}{n} \le 1$ and $0 < \frac{1}{m} \le 1$. It follows that,

$$\frac{1}{n} - \frac{1}{m} \ge \frac{1}{n} - 1 > -1$$

$$\frac{1}{n} - \frac{1}{m} \le 1 - \frac{1}{m} < 1$$

Thus, $-1 < \frac{1}{n} - \frac{1}{m} < 1$.

Claim 2.4.2a If a > 0, $aS = \{as : s \in S\}$, then $\inf(aS) = a \inf S$

Proof. Let $u = \sup S$ which means $s \le u$ for all $s \in S$ and it is an upper bound of S. Since a > 0 it follows that $as \le au$ for all s. Which shows that au is an upper bound for aS, so $\sup(aS) \le a \sup S$.

Now let $v = \sup(aS)$ and $as \leq v$ for all $s \in S$. Since a > 0, we can divide both sides by a and we have $s \leq \frac{v}{a}$ for all s. This implies that $\frac{v}{a}$ is an upper bound of S and that $a \sup S \leq v = \sup(aS)$

The result of the two inequalities is our desired result $a \sup S = \sup aS$

Claim 2.4.4b Let b < 0 and $bS = \{bs : s \in S\}$

$$\sup(bS) = b\inf S$$
. Let $u = \sup S$

Proof. Let $x \in bS$ so $\frac{x}{b} \in S$. $\sup S \geq \frac{x}{b}$ since $\sup S$ is an upper bound for S. It follows, $b \sup S \leq x$ and $b \sup S$ is a lower bound for bS. Now let u be a lower bound for bS. If $s \in S$, then $u \leq bs \implies \frac{u}{b} \geq s$. Thus, $\frac{u}{b}$ is an upper bound for S, and $\frac{u}{b} \leq \sup S$. Hence, $u \leq b \sup S$ and $b \sup S = \inf bS$

Claim 2.4.8 Let X be a nonempty set, and f, g be defined on X and have bounded ranges in \mathbb{R} .

$$\sup f(x) + g(x) : x \in X \le \sup f(x) : x \in X + \sup g(x) : x \in X$$

Proof. Let $u = \sup f$ and $v = \sup g$. $f(x) \le u$ and g(x) for all $x \in X$ by definition of supremum. $(f+g)(x) = f(x) + g(x) \le u + v = \sup f + \sup g$. So u+v is an upper bound for f(x) + g(x). u+v is also a supremum so $\sup\{f(x) + g(x)\} \le \sup f + \sup g$

Claim 2.5.3 Suppose S is a nonempty bounded subset of \mathbb{R} and $I_S = [\inf S, \sup S]$.

- (i) $S \subseteq I_S$
- (ii) If J is any bounded interval containing $S, I_S \subseteq J$

Proof. Let $x \in S$. Since S is nonempty and bounded there exist $u = \inf S$, $v = \sup S$ so that $u \leq s$ and $s \leq v$ for all $s \in S$. $\inf S \leq x \leq \sup S$ by definition of infimum and supremum. It follows that $x \in [\inf S, \sup S] = I_S$ so $S \subseteq I_S$.

Proof. Let $s \in I_S$. Suppose $J \subseteq [a, b]$ where $a \le \inf S$ and $b \ge \sup S$. Since $s \in I_S$ we know inf $S \le s \le \sup S$. Combining our two inequalities we get,

$$a \le \inf S \le s \le \sup S \le b$$

Therefore, $s \in J$ and it follows that $I_S \subseteq J$.