QXD0116 - Álgebra Linear

Vetores - Produto Interno, Norma, Ângulo

Universidade Federal do Ceará

Campus Quixadá

André Ribeiro Braga

Definição

Dados dois vetores $\mathbf{v} \in \mathbb{R}^n$ e $\mathbf{u} \in \mathbb{R}^n$, o produto interno, representado pela expressão $\langle \mathbf{v}, \mathbf{u} \rangle$, é uma função escalar entre eles. Se os vetores detêm os seguintes elementos,

$$\mathbf{v} = \begin{bmatrix} v_1 & v_2 & v_3 & \dots & v_n \end{bmatrix}^\mathsf{T}$$
$$\mathbf{u} = \begin{bmatrix} u_1 & u_2 & u_3 & \dots & u_n \end{bmatrix}^\mathsf{T}$$

então

$$\langle \mathbf{v}, \mathbf{u} \rangle = v_1 \cdot u_1 + v_2 \cdot u_2 + v_3 \cdot u_3 + \cdots + v_n \cdot u_n = \sum_{i=1}^n v_i \cdot u_i$$

Exemplo

$$\mathbf{v} = \begin{bmatrix} 4 & 2 \end{bmatrix}^{\mathsf{T}}$$

$$\mathbf{u} = \begin{bmatrix} -1 & 2 \end{bmatrix}^{\mathsf{T}}$$

$$\langle \mathbf{v}, \mathbf{u} \rangle = 4 \cdot (-1) + 2 \cdot 2 = 0$$

$$\mathbf{v} = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}$$
 $\mathbf{u} = \begin{bmatrix} -1 & 7 \end{bmatrix}^\mathsf{T}$
 $\langle \mathbf{v}, \mathbf{u} \rangle = 1 \cdot (-1) + 0 \cdot 7 = -1$

$$\mathbf{v} = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix}^\mathsf{T}$$

$$\mathbf{u} = \begin{bmatrix} -1 & 2 & -1 \end{bmatrix}^\mathsf{T}$$

$$\langle \mathbf{v}, \mathbf{u} \rangle = 2 \cdot (-1) + (-1) \cdot 2 + 0 \cdot (-1) = -4$$

$$\mathbf{v} = \begin{bmatrix} 4 & 3 \end{bmatrix}^\mathsf{T}$$

 $\langle \mathbf{v}, \mathbf{v} \rangle = 4 \cdot 4 + 3 \cdot 3 = 25$

Exemplo

Economia e negócios

Existem três bens (produtos) a serem comercializados (comprados/vendidos). Seus respectivos preços podem ser representados como um vetor em três dimensões $\mathbf{p} = [p_1 \ p_2 \ p_3]^\mathsf{T}$. As quantidades em que compramos ou vendemos cada item pode também ser representada por um vetor $\mathbf{q} = [q_1 \ q_2 \ q_3]^\mathsf{T}$. O sinal em cada elemento de \mathbf{q} indica se o produto foi vendido (positivo) ou comprado (negativo). Calcule o resultado financeiro.

Propriedades

- $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$, $\forall \mathbf{v} \ne \mathbf{0}$
- $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ se, e somente se, $\mathbf{v} = \mathbf{0}$
- $\langle \alpha \cdot \mathbf{v}, \mathbf{u} \rangle = \alpha \cdot \langle \mathbf{v}, \mathbf{u} \rangle$, $\forall \alpha \in \mathbb{R}$
- $\langle \mathbf{v} + \mathbf{w}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{w}, \mathbf{u} \rangle$
- $\langle \mathbf{v}, \mathbf{u} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$
- $\langle \mathbf{v}, \mathbf{u} \rangle = 0 \Rightarrow \mathbf{v}$ e \mathbf{u} são ortogonais

Norma

Definição

O tamanho (ou norma) de um dado vetor $\mathbf{v} = [v_1 \ v_2 \ v_3 \ \dots \ v_n]^T$, representado por $\|\mathbf{v}\|$, pode ser calculada como a raiz quadrada do produto interto de \mathbf{v} com ele mesmo, ou seja

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle} = \sqrt{v_1^2 + v_2^2 + v_3^2 + \dots + v_n^2} = \sqrt{\sum_{i=1}^n v_i^2}$$

Norma

Propriedades

- $\|\mathbf{v}\| \ge 0$ e $\|\mathbf{v}\| = 0$ se, e somente se, $\mathbf{v} = \mathbf{0}$
- $\bullet \|\alpha \cdot \mathbf{v}\| = |\alpha| \cdot \|\mathbf{v}\|$
- $|\langle \mathbf{v}, \mathbf{u} \rangle| \le ||\mathbf{v}|| \cdot ||\mathbf{u}|| \Leftarrow \mathsf{Desigualdade} \; \mathsf{de} \; \mathsf{Schwarz}$
- $\|\mathbf{v} + \mathbf{u}\| \le \|\mathbf{v}\| + \|\mathbf{u}\| \Leftarrow \mathsf{Desigualdade\ triangular}$

Norma

Exemplos

Vetor Unitário

Definição

Um vetor \mathbf{v} é dito unitário se a sua norma for igual a 1. Ao dividir um vetor qualquer pela sua norma, obtem-se um vetor unitário com mesma orientação.

Exemplos

$$\mathbf{u} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}^\mathsf{T}$$

$$\mathbf{j} = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}$$

$$\mathbf{i} = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}$$

$$\mathbf{u} = \begin{bmatrix} \cos \theta & \sin \theta \end{bmatrix}^\mathsf{T}$$

Vetor Unitário

Exemplos

Ângulo

Ângulo

Definição

Dados dois vetores unitários \mathbf{v} e \mathbf{u} , o produto interno é igual ao valor do cosseno do ângulo entre eles.

Ângulo

Para dois vetores \mathbf{v} e \mathbf{u} não unitários e não nulos, basta dividí-los pela sua respectiva norma e calcular o produto interno

$$\left\langle \frac{\mathbf{v}}{\|\mathbf{v}\|}, \frac{\mathbf{u}}{\|\mathbf{u}\|} \right\rangle = \frac{\left\langle \mathbf{v}, \mathbf{u} \right\rangle}{\|\mathbf{v}\| \cdot \|\mathbf{u}\|} = \cos \theta$$

Exemplo

Encontre o ângulo entre os vetores $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ e $\mathbf{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\cos \theta = \frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|} = \frac{4}{\sqrt{5} \cdot \sqrt{5}} = \frac{4}{5} \Rightarrow \theta = 36.87^{\circ}$$

