

FIGURE 1
Monkey #6 (Intranodal Administration)

FIGURE 2

Monkey #7 (Intranodal Administration)

D0
D68
D82

FIGURE 3
Monkey # 11 (Subcutaneous Administration)

FIGURE 4
Monkey #10 (Subcutaneous Administration)

FIGURE 5

FIGURE 6

ATGG ATCTGGTGT AAAAGATGC CTTCTTCATT TGGCTGTGAT
AGGTGCTTG CTGGCTGTGG GGGCTACAAA AGTACCCAGA AACCAGGACT GGCTTGGTGT
CTCAAGGCAA CTCAGAACCA AAGCCTGGAA CAGGCAGCTG TATCCAGAGT GGACAGAAC
CCAGAGACTT GACTGCTGGA GAGGTGGTCA AGTGTCCCTC AAGGTCAAGTA ATGATGGGCC
TACACTGATT GGTGCAAATG CCTCCTTCTC TATTGCTTG AACTTCCCTG GAAGCCAAA
GGTATTGCCA GATGGGCAGG TTATCTGGGT CAACAATACC ATCATCAATG GGAGCCAGGT
GTGGGCAGGA CAGCCAGTGT ATCCCCAGGA AACTGACGAT GCCTGCATCT TCCCTGATGG
TGGACCTTGC CCATCTGGCT CTTGGTCTCA GAAGAGAAC TTGTTTATG TCTGGAAGAC
CTGGGGCCAA TACTGGCAAG TTCTAGGGGG CCCAGTGTCT GGCTGAGCA TTGGGACAGG
CAGGGCAATG CTGGGCACAC ACACGATGGA AGTGAATGTC TACCATCGCC GGGGATCCCC
GAGCTATGTG CCTCTTGCTC ATTCCAGCTC AGCCTTCACC ATTATGGACC AGGTGCCTT
CTCCGTGAGC GTGTCCCAGT TGCGGGCCTT GGATGGAGGG AACAAAGCACT TCCTGAGAAA
TCAGCCCTCTG ACCTTGCCCC TCCAGCTCCA TGACCCAGT GGCTATCTGG CTGAAGCTGA
CCTCTCTAC ACCTGGGACT TTGGAGACAG TAGTGGAACCT CTGATCTCTC GGGCACATTGT
GGTCACTCAT ACTTACCTGG AGCCTGGCCC AGTCACTGTT CAGGTGGTCC TGCAGGCTGC
CATTCCCTCTC ACCTCTGTG GCTCCTCCCC AGTTCCAGGC ACCACAGATG GGCACAGGCC
AACTGCAGAG GCCCCTAACA CCACAGCTGG CCAAGTGCCT ACTACAGAAG TTGTGGGTAC
TACACCTGGT CAGGGCCAA CTGCAGAGCC CTCTGGAACCT ACATCTGTGC AGGTGCCAAC
CACTGAAGTC ATAAGCACTG CACCTGTGCA GATGCAACT GCAGAGAGCA CAGGTATGAC
ACCTGAGAAAG GTGCCAGTT CAGAGGTCACT GGTCACCACTA CTGGCAGAGA TGTCAACTCC
AGAGGCTACA GGTATGACAC CTGCAGAGGT ATCAATTGTG GTGCTTCTG GAACCACAGC
TGCACAGGTA ACAACTACAG AGTGGGTGGA GACCACAGCT AGAGAGCTAC CTATCCCTGA
GCCTGAAGGT CCAGATGCCA GCTCAATCAT GTCTACGGAA AGTATTACAG GTTCCCTGGG
CCCCCTGCTG GATGGTACAG CCACCTTAAG GCTGGTGAAG AGACAAAGTCC CCCTGGATTG
TGTTCTGTAT CGATATGGTT CCTTTTCCGT CACCCCTGGAC ATTGTCCAGG GTATTGAAAG
TGCCGAGATC CTGCAGGCTG TCCCCTCCGG TGAGGGGAT GCATTTGAGC TGACTGTGTC
CTGCCAAGGC GGGCTGCCA AGGAAGCCTG CATGGAGATC TCATGCCAG GGTGCCAGGC
CCCTGCCAG CGGCTGTGCC AGCCTGTGCT ACCCAGCCCA GCCTGCCAGC TGGTTCTGCA
CCAGATACTG AAGGGTGGCT CGGGGACATA CTGCCTCAAT GTGTCTCTGG CTGATACCAA
CAGCCTGGCA GTGGTCAGCA CCCAGCTTAT CATGCCCTGGT CAAGAAGCAG GCCTTGGCA
GGTTCCGCTG ATCGTGGGCA TCTTGCTGGT GTTGATGGCT GTGGTCCTTG CATCTCTGAT
ATATAGGCAGC AGACTTATGA AGCAAGACTT CTCCGTACCC CAGTTGCCAC ATAGCAGCAG
TCACTGGCTG CGTCTACCC GCATCTCTG CTCTTGCCCC ATTGGTGAGA ACAGCCCCCT
CCTCAGTGGG CAGCAGGTCT GA

FIGURE 7

Met Asp Leu Val Leu Lys Arg Cys Leu Leu His Leu Ala Val Ile Gly
 ↓ 5 10 15

Ala Leu Leu Ala Val Gly Ala Thr Lys Val Pro Arg Asn Gln Asp Trp
 20 25 30

Leu Gly Val Ser Arg Gln Leu Arg Thr Lys Ala Trp Asn Arg Gln Leu
 35 40 45

Tyr Pro Glu Trp Thr Glu Ala Gln Arg Leu Asp Cys Trp Arg Gly Gly
 50 55 60

Gln Val Ser Leu Lys Val Ser Asn Asp Gly Pro Thr Leu Ile Gly Ala
 65 70 75 80

Asn Ala Ser Phe Ser Ile Ala Leu Asn Phe Pro Gly Ser Gln Lys Val
 85 90 95

Leu Pro Asp Gly Gln Val Ile Trp Val Asn Asn Thr Ile Ile Asn Gly
 100 105 110

Ser Gln Val Trp Gly Gly Gln Pro Val Tyr Pro Gln Glu Thr Asp Asp
 115 120 125

Ala Cys Ile Phe Pro Asp Gly Gly Pro Cys Pro Ser Gly Ser Trp Ser
 130 135 140

Gln Lys Arg Ser Phe Val Tyr Val Trp Lys Thr Trp Gly Gln Tyr Trp
 145 150 155 160

Gln Val Leu Gly Gly Pro Val Ser Gly Leu Ser Ile Gly Thr Gly Arg
 165 170 175

Ala Met Leu Gly Thr His Thr Met Glu Val Thr Val Tyr His Arg Arg
 180 185 190

Gly Ser Arg Ser Tyr Val Pro Leu Ala His Ser Ser Ser Ala Phe Thr
 195 200 205

^{Met} Ile ^{Thr} Asp Gln Val Pro Phe Ser Val Ser Val Gln Leu Arg Ala
 210 215 220

Leu Asp Gly Asn Lys His Phe Leu Arg Asn Gln Pro Leu Thr Phe
 225 230 235 240

Ala Leu Gln Leu His Asp Pro Ser Gly Tyr Leu Ala Glu Ala Asp Leu
 245 250 255

Ser Tyr Thr Trp Asp Phe Gly Asp Ser Ser Gly Thr Leu Ile Ser Arg
 260 265 270

Ala Leu Val Val Thr His Thr Tyr Leu Glu Pro Gly Pro Val Thr ^{Val}
 275 280 285

Gln Val Val Leu Gln Ala Ala Ile Pro Leu Thr Ser Cys Gly Ser Ser
 290 295 300

Pro Val Pro Gly Thr Thr Asp Gly His Arg Pro Thr Ala Glu Ala Pro
 305 310 315 320

Asn Thr Thr Ala Gly Gln Val Pro Thr Thr Glu Val Val Gly Thr Thr
 325 330 335

Pro Gly Gln Ala Pro Thr Ala Glu Pro Ser Gly Thr Thr Ser Val Gln
 340 345 350

Val Pro Thr Thr Glu Val Ile Ser Thr Ala Pro Val Gln Met Pro Thr
 355 360 365

FIGURE 7 (CONT'D)

Ala Glu Ser Thr Gly Met Thr Pro Glu Lys Val Pro Val Ser Glu Val
 370 375 380
 Met Gly Thr Thr Leu Ala Glu Met Ser Thr Pro Glu Ala Thr Gly Met
 385 390 395 400
 Thr Pro Ala Glu Val Ser Ile Val Val Leu Ser Gly Thr Thr Ala Ala
 405 410 415
 Gln Val Thr Thr Glu Trp Val Glu Thr Thr Ala Arg Glu Leu Pro
 420 425 430
 Ile Pro Glu Pro Glu Gly Pro Asp Ala Ser Ser Ile Met Ser Thr Glu
 435 440 445
 Ser Ile Thr Gly Ser Leu Gly Pro Leu Leu Asp Gly Thr Ala Thr Leu
 450 455 460
 Arg Leu Val Lys Arg Gln Val Pro Leu Asp Cys Val Leu Tyr Arg Tyr
 465 470 475 480
 Gly Ser Phe Ser Val Thr Leu Asp Ile Val Gln Gly Ile Glu Ser Ala
 485 490 495
 Glu Ile Leu Gln Ala Val Pro Ser Gly Glu Gly Asp Ala Phe Glu Leu
 500 505 510
 Thr Val Ser Cys Gln Gly Gly Leu Pro Lys Glu Ala Cys Met Glu Ile
 515 520 525
 Ser Ser Pro Gly Cys Gln Pro Pro Ala Gln Arg Leu Cys Gln Pro Val
 530 535 540
 Leu Pro Ser Pro Ala Cys Gln Leu Val Leu His Gln Ile Leu Lys Gly
 545 550 555 560
 Gly Ser Gly Thr Tyr Cys Leu Asn Val Ser Leu Ala Asp Thr Asn Ser
 565 570 575
 Leu Ala Val Val Ser Thr Gln Leu Ile Met Pro Gly Gln Glu Ala Gly
 580 585 590
 Leu Gly Gln Val Pro Leu Ile Val Gly Ile Leu Leu Val Leu Met Ala
 595 600 605
 Val Val Leu Ala Ser Leu Ile Tyr Arg Arg Arg Leu Met Lys Gln Asp
 610 615 620
 Phe Ser Val Pro Gln Leu Pro His Ser Ser His Trp Leu Arg Leu
 625 630 635 640
 Pro Arg Ile Phe Cys Ser Cys Pro Ile Gly Glu Asn Ser Pro Leu Leu
 645 650 655
 Ser Gly Gln Gln Val
 660

ATGGAGTCTCCCTCGGCC 1 CCCCCACAGATGGTGCATCCCTGGCAGAGGCTCTGCT
 1 +-----+-----+-----+-----+-----+-----+-----+ 60
 TACCTCAGAGGGAGCCGGGGAGGGGTGTCTACCACGTAGGGACCCTCGAGGACGAG

a M E S P S A P P H R W C I P W Q R L L L -
 ACAGCCTCACTTCTAACCTCTGGAACCCGCCACCCTGCCAAGCTCACTATTGAATCC
 61 +-----+-----+-----+-----+-----+-----+-----+ 120
 TGTCGGAGTGAAGATTGGAAGACCTTGGCGGGTGGTGACGGTCGAGTATAACTTAGG

a T A S L L T F W N P P T T A K L T I E S -
 ACGCCGTTCAATGTCGAGAGGGAGGGAGGTGCTTCACTTGTCACAATCTGCCAG
 121 +-----+-----+-----+-----+-----+-----+-----+ 180
 TGCGGCAAGTTACAGCGTCTCCCTTCACGAAAGATGAAACAGGTGTTAGACGGGTC

a T P F N V A E G K E V L L L V H N L P Q -
 CATCTTTGGCTACAGCTGGTACAAAGGTGAAAGAGTGGATGGCAACCGTCAAATTATA
 181 +-----+-----+-----+-----+-----+-----+-----+ 240
 GTAGAAAAACCGATGTCGACCATGTTCCACTTCTCACCTACCGTTGGCAGTTAATAT

a H L F G Y S W Y K G E R V D G N R Q I I -
 GGATATGTAATAGGAACCTAACAAAGCTACCCAGGGCCCGCATACAGTGGTCGAGAGATA
 241 +-----+-----+-----+-----+-----+-----+-----+ 300
 CCTATACATTATCCTTGAGTTGTTGATGGGGTCCCGGGCGTATGTCACCAGCTCTAT

a G Y V I G T Q Q A T P G P A Y S G R E I -
 ATATACCCCAATGCATCCCTGCTGATCCAGAACATCATCCAGAACATGACACAGGATTCTAC
 301 +-----+-----+-----+-----+-----+-----+-----+ 360
 TATATGGGGTTACGTAGGGACGACTAGGTCTTGTAGTAGGTCTTACTGTGTCCTAAAGATG

a I Y P N A S L L I Q N I I Q N D T G F Y -
 ACCCTACACGTATAAAGTCAGATCTTGTGAATGAAGAACGAACTGCCAGTTGGGTA
 361 +-----+-----+-----+-----+-----+-----+-----+ 420
 TGGGATGTGCAGTATTCAGTCTAGAACACTTACTTCTCGTTGACCGGTCAAGGCCAT

a T L H V I K S D L V N E E A T G Q F R V -
 TACCCGGAGCTGCCAAGCCCTCCATCTCAGCAACAACTCCAAACCGTGGAGGACAAG
 421 +-----+-----+-----+-----+-----+-----+-----+ 480
 ATGGGCCTCGACGGGTTGGAGGTAGAGGTCGTTGAGGTTGGCACCTCCTGTT

a Y P E L P K P S I S S N N S K P V E D K -
 GATGCTGTGGCCTCACCTGTGAACCTGAGACTCAGGACGCAACCTACCTGTGGGGTA
 481 +-----+-----+-----+-----+-----+-----+-----+ 540
 CTACGACACCGGAAGTGGACACTTGGACTCTGAGTCCTGCGTTGGATGGACACCACCCAT

a D A V A F T C E P E T Q D A T Y L W W V -
 AACAAATCAGAGCCTCCGGTCAGTCCCAGGCTGCAGCTGCAATGGCAACAGGACCTC
 541 +-----+-----+-----+-----+-----+-----+-----+ 600
 TTGTTAGTCTCGAGGGCCAGTCAGGTCCGACGTCGACAGGTTACCGTTGTCCTGGAG

a N N Q S L P V S P R L Q L S N G N R T L -
 ACTCTATTCAATGTCACAAGAAATGACACACAGCAAGCTACAAATGTGAAACCCAGAACCA
 601 +-----+-----+-----+-----+-----+-----+-----+ 660
 TGAGATAAGTTACGTGTTACTGTGTCGTTGATGTTACACTTGGGTCTGGGT

a T L F N V T R N D T A S Y K C E T Q N P -
 GTGAGTGCAGGGCGAGTGATTCACTGATCCCTGAATGTCCTCTATGGCCGGATGCC
 661 +-----+-----+-----+-----+-----+-----+-----+ 720
 CACTCACGGTCCGCGTCACTAAGTCAGTAGGACTTACAGGAGATACCGGGCTACGGGG

a V S A R R S D S V I L N V L Y G P D A P -
 V S A R R S D S V I L N V L Y G P D A P -

Figure 8

ACCATTTCCCTCTAACTCTTACAGATCAGGGAAAATCTGAACCTCTCCTGCC
 721 -----+-----+-----+-----+-----+-----+-----+ 780
 TGGTAAAGGGGAGATTGTGAGATGTCTAGTCCCCTTTAGACTTGAGAGGACGGTG

a T I S P L N T S Y R S G E N L N L S C H -

GCAGCCTCTAACCCACCTGCACAGTACTCTTGGTTGTCATGGGACTTTCCAGCAATCC
 781 -----+-----+-----+-----+-----+-----+-----+ 840
 CGTCGGAGATTGGTGGACGTGTCATGAGAACCAAACAGTTACCTGAAAGGTCGTTAGG

a A A S N P P A Q Y S W F V N G T F Q Q S -

ACCCAAGAGCTTTATCCCCAACATCACTGTGAATAATAGTGGATCCTATACGTGCCAA
 841 -----+-----+-----+-----+-----+-----+-----+ 900
 TGGGTTCTCGAGAAATAGGGTTGAGTGAACACTTATTATCACCTAGGATATGCACGGTT

a T Q E L F I P N I T V N N S G S Y T C Q -

GCCCATAACTCAGACACTGGCCTCAATAGGACCACAGTCACGACGATCACAGTCTATGAG
 901 -----+-----+-----+-----+-----+-----+-----+ 960
 CGGGTATTGAGTCTGTGACGGAGTTATCTGGTGTAGTGTGCTAGTGTAGATACTC

a A H N S D T G L N R T T V T T I T V Y E -

CCACCCAAACCCCTCATCACCAAGAACAACTCCAACCCCGTGGAGGATGAGGATGCTGTA
 961 -----+-----+-----+-----+-----+-----+-----+ 1020
 GGGGGTTGGAAAGTAGTGGTGTGAGGTTGGGACCTCCTACTCCCTACGACAT

a P P K P F I T S N N S N P V E D E D A V -

GCCTTAACCTGTGAACCTGAGATTCAAACACAACTACCTGTGGTGGTAAATAATCAG
 1021 -----+-----+-----+-----+-----+-----+-----+ 1080
 CGGAATTGGACACTTGGACTCTAACGTCTTGTGGATGGACACCACCCATTAGTC

a A L T C E P E I Q N T T Y L W W V N N Q -

AGCCTCCCGGTCACTCCAGGCTGCAGCTGCCATGACAACAGGACCCCTCACTCTACTC
 1081 -----+-----+-----+-----+-----+-----+-----+ 1140
 TCGGAGGGCCAGTCAGGGTCCGACGTGACAGGTTACTGTTGTCTGGAGTGAGATGAG

a S L P V S P R L Q L S N D N R T L T L L -

AGTGTACAAGGAATGATGTAGGACCCATTGAGTGTGAAATCCAGAACGAATTAAGTGT
 1141 -----+-----+-----+-----+-----+-----+-----+ 1200
 TCACAGTGTCTTACTACATCCTGGATACTCACACCTTAGGTCTGCTTAATTACAA

a S V T R N D V G P Y E C G I Q N E L S V -

GACCACAGCGACCCAGTCATCCTGAATGTCTCTATGGCCAGACGACCCACCATTCC
 1201 -----+-----+-----+-----+-----+-----+-----+ 1260
 CTGGTGTGCGTGGTCAGTAGGACTTACAGGAGATACCGGGTCTGCTGGGTGGTAAAGG

a D H S D P V I L N V L Y G P D D P T I S -

CCCTCATACACCTATTACCGTCCAGGGTGAACCTCAGCCTCTCCTGCCATGCAGCCTCT
 1261 -----+-----+-----+-----+-----+-----+-----+ 1320
 GGGAGTATGTGATAATGGCAGTCCCCACTGGAGTGGAGAGGACGGTACGTGGAGA

a P S Y T Y Y R P G V N L S L S C H A A S -

AACCCACCTGCACAGTATTCTGGCTGATTGATGGAACATCCAGCAACACACAAAGAG
 1321 -----+-----+-----+-----+-----+-----+-----+ 1380
 TTGGGTGGACGTGTCATAAGAACCGACTAACCTTGAGTGTGTTCTC

a N P P A Q Y S W L I D G N I Q Q H T Q E -

CTCTTATCTAACATCACTGAGAAGAACAGCGGACTCTATACCTGCCAGGCCAAATAAC
 1381 -----+-----+-----+-----+-----+-----+-----+ 1440
 GAGAAATAGAGGTTGAGTGAACACTTCTGAGATATGGACGGTCCGGTTATTG

a L F I S N I T E K N S G L Y T C Q A N N -

Figure 8, con't

Figure 8, con't