IIMT2641 Assignment 4

Sibo Ding

Spring 2023

Load the Data

```
loans <- read.csv("Loans.csv")</pre>
head(loans) # First 6 rows
     CreditPolicy Purpose.CC Purpose.DC Purpose.Edu Purpose.MP
Purpose.SB IntRate
## 1
                            0
                                       1
                                                    0
                                                               0
0 0.1189
## 2
                1
                            1
                                       0
                                                    0
                                                               0
0 0.1071
## 3
                1
                            0
                                       1
                                                    0
                                                               0
0 0.1357
                                       1
                                                               0
## 4
                1
                            0
0 0.1008
## 5
                                       0
                                                               0
                1
                            1
                                                    0
0 0.1426
## 6
                1
                            1
                                       0
                                                    0
                                                               0
0 0.0788
##
     Installment LogAnnualInc
                               Dti Fico DaysWithCrLine RevolBal
RevolUtil
## 1
          829.10
                     11.35041 19.48
                                      737
                                                 5639.958
                                                             28854
52.1
          228.22
## 2
                     11.08214 14.29
                                      707
                                                 2760.000
                                                             33623
76.7
## 3
          366.86
                     10.37349 11.63 682
                                                4710.000
                                                              3511
25.6
## 4
          162.34
                     11.35041 8.10 712
                                                 2699.958
                                                             33667
73.2
          102.92
                     11.29973 14.97
                                                4066.000
## 5
                                      667
                                                              4740
39.5
## 6
          125.13
                     11.90497 16.98 727
                                                6120.042
                                                             50807
51.0
     InqLast6mths Delinq2yrs PubRec NotFullyPaid
##
## 1
                0
                            0
                                   0
                                                 0
## 2
                0
                                                 0
                            0
                                   0
## 3
                1
                            0
                                   0
                                                 0
## 4
                1
                            0
                                   0
                                                 0
                0
                                                 0
## 5
                            1
                                   0
## 6
                0
                            0
                                   0
                                                 0
dim(loans) # Number of observations and variables
```

```
## [1] 9578
              18
names(loans) # Names of variables
                                           "Purpose.DC"
## [1] "CreditPolicy"
                         "Purpose.CC"
"Purpose.Edu"
## [5] "Purpose.MP"
                         "Purpose.SB"
                                           "IntRate"
"Installment"
## [9] "LogAnnualInc"
                         "Dti"
                                           "Fico"
"DaysWithCrLine"
## [13] "RevolBal"
                         "RevolUtil"
                                           "InqLast6mths"
                                                            "Deling2yrs"
## [17] "PubRec"
                         "NotFullyPaid"
# Change to the categorical/factor variable
loans$NotFullyPaid <- as.factor(loans$NotFullyPaid)</pre>
Train-test Split
library(caTools)
set.seed(12)
# Randomly split the dataset with 70% in the training set
spl <- sample.split(loans$NotFullyPaid, SplitRatio = 0.7)</pre>
table(spl) # Number of TRUE/FALSE data
## spl
## FALSE TRUE
## 2873 6705
train <- loans |> subset(spl == TRUE) # Training set
test <- loans |> subset(spl == FALSE) # Test set
Baseline Model Accuracy
table(test$NotFullyPaid)["0"] / length(test$NotFullyPaid)
##
           0
## 0.8398886
Logistic Regression
model1 <- glm(NotFullyPaid ~ ., data = train, family = binomial)</pre>
summary(model1)
##
## Call:
## glm(formula = NotFullyPaid ~ ., family = binomial, data = train)
##
## Deviance Residuals:
##
       Min
                 10
                    Median
                                   3Q
                                            Max
## -2.2864 -0.6201 -0.4964 -0.3652
                                         2.5926
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
```

(Intercept) 7.463e+00 1.544e+00 4.835 1.33e-06 ***

```
## CreditPolicv
                  -3.757e-01 1.012e-01 -3.713 0.000205 ***
                  -5.588e-01 1.279e-01 -4.369 1.25e-05 ***
## Purpose.CC
## Purpose.DC
                  -3.289e-01 8.631e-02 -3.811 0.000138 ***
                  1.789e-02 1.819e-01
                                         0.098 0.921649
## Purpose.Edu
## Purpose.MP
                  -2.608e-01 1.930e-01 -1.351 0.176656
## Purpose.SB
                  4.482e-01 1.358e-01
                                         3.299 0.000969 ***
## IntRate
                  4.133e+00 2.076e+00
                                         1.991 0.046448 *
                  1.262e-03 2.077e-04
## Installment
                                         6.076 1.24e-09 ***
                  -3.866e-01 7.080e-02 -5.460 4.75e-08 ***
## LogAnnualInc
                  -1.997e-03 5.423e-03 -0.368 0.712645
## Dti
## Fico
                  -7.964e-03 1.694e-03 -4.701 2.59e-06 ***
                                         0.340 0.733912
## DaysWithCrLine 5.465e-06 1.608e-05
## RevolBal
                  2.928e-06 1.141e-06
                                         2.566 0.010299 *
## RevolUtil
                  1.423e-03 1.530e-03
                                         0.930 0.352410
                  7.029e-02 1.682e-02
                                         4.178 2.94e-05 ***
## InqLast6mths
## Deling2yrs
                 -1.178e-01 6.888e-02 -1.710 0.087350 .
## PubRec
                  2.059e-01 1.191e-01
                                         1.728 0.083903 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 5896.6 on 6704
                                      degrees of freedom
##
## Residual deviance: 5507.4 on 6687
                                      degrees of freedom
## AIC: 5543.4
##
## Number of Fisher Scoring iterations: 5
# Significant independent variables (with p < 0.05)
# Note: `Intercept` is not an independent variable
which(summary(model1)$coefficients[, 4] < 0.05)</pre>
## (Intercept) CreditPolicy
                              Purpose.CC
                                           Purpose.DC
                                                        Purpose.SB
IntRate
##
              1
                           2
                                        3
                                                     4
                                                                 7
8
   Installment LogAnnualInc
##
                                    Fico
                                             RevolBal InqLast6mths
##
             9
                                       12
                                                   14
Differences between Two Logits
```

```
coef_fico <- summary(model1)$coefficients["Fico", 1]
coef_fico * (700 - 710)
## [1] 0.07963508</pre>
```

Predict the Test Set

```
predict_test1 <- predict(model1, type = "response", newdata = test)
# Confusion matrix for out-of-sample prediction at threshold value 0.5</pre>
```

```
confusion matrix <- table(test$NotFullyPaid, predict test1 > 0.5)
confusion matrix
##
##
       FALSE TRUE
##
    0 2400
               13
##
    1
         445
               15
# Accuracy
(confusion matrix[1, 1] + confusion matrix[2, 2]) /
length(test$NotFullyPaid)
## [1] 0.8405848
# Baseline model accuracy
table(test$NotFullyPaid)["0"] / length(test$NotFullyPaid)
##
## 0.8398886
```

The logistic regression model is slightly more accurate than the baseline model.

Logistic Regression Using IntRate

```
model2 <- glm(NotFullyPaid ~ IntRate, data = train, family = binomial)</pre>
summary(model2)
##
## Call:
## glm(formula = NotFullyPaid ~ IntRate, family = binomial, data =
train)
##
## Deviance Residuals:
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -1.1039 -0.6296 -0.5366 -0.4160
                                       2.3192
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
                                           <2e-16 ***
## (Intercept) -3.8590
                         0.1697 -22.75
                                            <2e-16 ***
## IntRate
               17.3673
                           1.2717
                                    13.66
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 5896.6 on 6704
                                      degrees of freedom
## Residual deviance: 5702.9 on 6703
                                      degrees of freedom
## AIC: 5706.9
## Number of Fisher Scoring iterations: 4
```

IntRate is significant in this model at 0.1%. It is also significant in the first model at 5%.

First, this difference in significance level is acceptable. Second, this difference may be because some information in the second model is explained by other independent variables in the first model.

Predict the Test Set

```
predict_test2 <- predict(model2, type = "response", newdata = test)

# Highest predicted probability
max(predict_test2)

## [1] 0.4562598

# No. of Loans would not be paid back in full
table(predict_test2 > 0.5)["TRUE"]

## <NA>
## NA
```