CSPs of Finite Commutative Idempotent Binars

William DeMeo

williamdemeo@gmail.com lowa State University

joint work with

Cliff Bergman Jiali Li

Shanks Workshop Vanderbilt University May 30, 2015

slides available at

https://github.com/williamdemeo/Talks

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a weak-nu term operation

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \implies A has a weak-nu term operation \checkmark

The left-to-right direction is known.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a weak-nu term operation (?)

The right-to-left direction is open.

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

CSP(A) is tractable \iff A has a weak-nu term operation (?

A weak near unanimity (weak-nu) term operation is one that satisfies

$$t(x, x, \dots, x) \approx x$$
 (idempotent)

$$t(y, x, \dots, x) \approx t(x, y, \dots, x) \approx \dots \approx t(x, x, \dots, y)$$

CSP DICHOTOMY CONJECTURE

For a (finite, idempotent) algebra A...

$$CSP(A)$$
 is tractable \iff A has a weak-nu term operation (?)

A weak near unanimity (weak-nu) term operation is one that satisfies

$$t(x, x, ..., x) \approx x$$
 (idempotent)
 $t(y, x, ..., x) \approx t(x, y, ..., x) \approx ... \approx t(x, x, ..., y)$

A binary operation t(x, y) is weak-nu if

$$t(x,x) \approx x$$
 (idempotent) $t(y,x) \approx t(x,y)$ (commutative)

So let's try to prove (?) for commutative idempotent binars.

A CIB is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.

A CIB is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.

QUESTION

Is every finite commutative idempotent binar tractable?

A CIB is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.

QUESTION

Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB.

Semilattices are tractable.

A CIB is an algebra $\mathbf{A} = \langle A, \cdot \rangle$ satisfying $x \cdot y \approx y \cdot x$ and $x \cdot x \approx x$.

QUESTION

Is every finite commutative idempotent binar tractable?

First Example: a semilattice is an associative CIB. Semilattices are tractable.

Pause to consider more general case for a minute...

SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

V(A) is CP \iff A has Malcev term

SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

V(A) is CP \iff A has Malcev term

SOME WELL KNOWN FACTS

Let ${\bf A}$ be a finite idempotent algebra. Let ${\bf S}_2$ be the 2-elt semilattice.

$$\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ \Longrightarrow A \text{ has cube term} \end{array}$$

SOME WELL KNOWN FACTS

Let A be a finite idempotent algebra. Let S_2 be the 2-elt semilattice.

$$\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ \implies A \text{ has cube term} \\ \implies V(A) \text{ is CM} \end{array}$$

SOME WELL KNOWN FACTS

Let ${\bf A}$ be a finite idempotent algebra. Let ${\bf S}_2$ be the 2-elt semilattice.

 $\begin{array}{c} V(A) \text{ is CP} \iff A \text{ has Malcev term} \\ \Longrightarrow A \text{ has cube term} \\ \Longrightarrow V(A) \text{ is CM} \\ \Longrightarrow S_2 \text{ is not in } V(A) \end{array}$

 ${f A}={f a}$ finite idempotent algebra ${f S}_2={f the}$ 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \end{array}$$

 $\mathbf{A} = \mathbf{a}$ finite idempotent algebra $\mathbf{S}_2 = \mathbf{the}$ 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \end{array}$$

- (Berman, Idziak, Marković, McKenzie, Valeriote, Willard 2010)
- CM \Longrightarrow S₂ is not in V(A) Proof: S₂ ∈ V(A) \Rightarrow S₂² ∈ V(A); Con (S₂²) is not modular.

■ cube term ⇒ CM

 $\mathbf{A} = \mathbf{a}$ finite CIB

 S_2 = the 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & \mathbf{S}_2 \text{ is not in } V(A) \end{array}$$

CIB case

1st reduction by cube-term blockers.

 $\mathbf{A}=\mathbf{a}$ finite CIB

 S_2 = the 2-elt semilattice.

 $\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \\ & \Longrightarrow & A \text{ has a cube term} \end{array}$

CIB case

1st reduction by cube-term blockers.

 $\mathbf{A} = \mathbf{a}$ finite CIB

 S_2 = the 2-elt semilattice.

 $\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \\ & \Longrightarrow & A \text{ has a cube term} \end{array}$

CIB case

- 1st reduction by cube-term blockers.
- 2nd reduction by Kearnes-Tschantz.

 $\mathbf{A} = \mathbf{a}$ finite CIB

 S_2 = the 2-elt semilattice.

$$\begin{array}{ccc} V(A) \text{ is CP} & \Longleftrightarrow & A \text{ has a Malcev term} \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CM} \\ & \Longrightarrow & S_2 \text{ is not in } V(A) \\ & \Longrightarrow & A \text{ has a cube term} \\ & \Longrightarrow & V(A) \text{ is CP} \end{array}$$

CIB case

- 1st reduction by cube-term blockers.
- 2nd reduction by Kearnes-Tschantz.

Marković, M. Maróti, McKenzie (M^4) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying $\emptyset < C < B \leqslant A$ and for every $t(x_1,\ldots,x_n)$ there is an index $i \in [n]$ with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

Marković, M. Maróti, McKenzie (M^4) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying $\emptyset < C < B \leqslant A$ and for every $t(x_1,\ldots,x_n)$ there is an index $i \in [n]$ with

$$(\forall (b_1,\ldots,b_n)\in \textit{B}^n)(b_i\in \textit{C}\longrightarrow\textit{t}(b_1,\ldots,b_n)\in \textit{C}).$$

 M^4 prove a finite idempotent algebra has a cube term iff it has no CTB.

Marković, M. Maróti, McKenzie (M^4) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying $\emptyset < C < B \leqslant A$ and for every $t(x_1,\ldots,x_n)$ there is an index $i \in [n]$ with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

 M^4 prove a finite idempotent algebra has a cube term iff it has no CTB.

LEMMA

A finite CIB $\mathbf A$ has a CTB if and only if $\mathbf S_2 \in \mathsf{HS}(\mathbf A)$.

Marković, M. Maróti, McKenzie (M^4) "Finitely related clones and algebras with cube terms" (2012)

A cube-term blocker (CTB) is a pair (C,B) of subuniverses satisfying $\emptyset < C < B \leqslant A$ and for every $t(x_1,\ldots,x_n)$ there is an index $i \in [n]$ with

$$(\forall (b_1,\ldots,b_n)\in B^n)(b_i\in C\longrightarrow t(b_1,\ldots,b_n)\in C).$$

 M^4 prove a finite idempotent algebra has a cube term iff it has no CTB.

LEMMA

A finite CIB A has a CTB if and only if $S_2 \in \mathsf{HS}(A)$.

PROOF.

(C,B) a CTB implies $\theta = C^2 \cup (B-C)^2$ a congruence with $\mathbf{B}/\theta \cong \mathbf{S}_2$.

Conversely, suppose $S_2 \in \mathsf{HS}(\mathbf{A})$, and \mathbf{B} is a subalgebra of \mathbf{A} with \mathbf{B}/θ a meet-SL for some θ . Let C/θ be the bottom of \mathbf{B}/θ , then (C,B) is a CTB.

SECOND REDUCTION

Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)

LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F} := \mathbf{F}_V\{x,y\}$ satisfying

- 1. $x \in U \cap W$
- 2. $y \in U^c \cap W^c$
- 3. $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

SECOND REDUCTION

Kearnes and Tschantz

"Automorphism groups of squares and of free algebras" (2007)

LEMMA

If V is an idempotent variety that is not congruence permutable, then there are subuniverses U and W of $\mathbf{F} := \mathbf{F}_V\{x,y\}$ satisfying

- 1. $x \in U \cap W$
- 2. $y \in U^c \cap W^c$
- 3. $(U \times F) \cup (F \times W) \leqslant \mathbf{F}^2$

For CIB's, either *U* or *W* will be an ideal.

This implies a CTB and a semilattice.

CONCLUSION

Let A be a finite CIB. Then

 $\textbf{S}_2\notin \text{HS}(\textbf{A})$ if and only if $\,V(\textbf{A})$ is congruence permutable.

CONCLUSION

Let A be a finite CIB. Then

 $S_2 \notin \mathsf{HS}(A)$ if and only if V(A) is congruence permutable.

(so CSP(A) tractable in this case)

CONCLUSION

Let A be a finite CIB. Then

 $S_2 \notin \mathsf{HS}(A)$ if and only if V(A) is congruence permutable.

(so CSP(A) tractable in this case)

OPEN QUESTION

Let A be a finite CIB with S_2 in HS(A). Is CSP(A) tractable?

CONCLUSION

Let A be a finite CIB. Then

 $S_2 \notin \mathsf{HS}(A)$ if and only if V(A) is congruence permutable.

(so CSP(A) tractable in this case)

OPEN QUESTION

Let A be a finite CIB with S_2 in HS(A). Is CSP(A) tractable?

Recall, if $V(\mathbf{A})$ is SD_{\wedge} , then $CSP(\mathbf{A})$ is tractable.

CONCLUSION

Let A be a finite CIB. Then

 $S_2 \notin \mathsf{HS}(A)$ if and only if V(A) is congruence permutable.

(so CSP(A) tractable in this case)

OPEN QUESTION

Let A be a finite CIB with S_2 in HS(A). Is CSP(A) tractable?

Recall, if V(A) is SD_{\wedge} , then CSP(A) is tractable.

REVISED QUESTION

Let A be a finite CIB with S_2 in HS(A), and V(A) not SD_{\wedge} .

Is CSP(A) tractable?

	0	1	2	3
0	0	0	0	1
1	0	1	3	2
2 3	0	3	2	1
3	1	2	1	3

Cliff's idea: replace basic binary operation with a term from $\operatorname{Clo}(\mathbf{A})$, say $t(x,y)=(x\cdot(x\cdot y))\cdot(y\cdot(x\cdot y))$. If $\langle A,t\rangle$ tractable, then so is $\mathbf{A}=\langle A,\cdot\rangle$.

	0	1	2	3
0	0	0	0	1
1	0	1	3	2
2	0	3	2	1
3	1	2	1	3

Cliff's idea: replace basic binary operation with a term from $Clo(\mathbf{A})$, say $t(x, y) = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$.

If
$$\langle A, t \rangle$$
 tractable, then so is $\mathbf{A} = \langle A, \cdot \rangle$.

$$\{t\} \subseteq \operatorname{Clo}(\mathbf{A}) \implies \operatorname{Rel}(\operatorname{Clo}(\mathbf{A})) \subseteq \operatorname{Rel}(\{t\})$$

$$\implies$$
 CSP(A) \leq_P CSP $\langle A, t \rangle$

	0	1	2	3	
0	0	0	0	1	
1	0	1	3	2	
1 2 3	0	3	2	1	
3	1	2	1	3	
		-	_	0	
t	0	1	2	3	
0	0	0	0	0	
0		0	0 3	0	
	0	-	0	0	

Cliff's idea: replace basic binary operation with a term from $\operatorname{Clo}(\mathbf{A})$, say $t(x,y) = (x \cdot (x \cdot y)) \cdot (y \cdot (x \cdot y))$. If $\langle A, t \rangle$ tractable, then so is $\mathbf{A} = \langle A, \cdot \rangle$. $\{t\} \subseteq \operatorname{Clo}(\mathbf{A}) \implies \operatorname{Rel}(\operatorname{Clo}(\mathbf{A})) \subseteq \operatorname{Rel}(\{t\})$

$$\{t\} \subseteq \operatorname{Clo}(\mathbf{A}) \implies \operatorname{Rel}(\operatorname{Clo}(\mathbf{A})) \subseteq \operatorname{Rel}(\{t\})$$

$$\implies \operatorname{CSP}(\mathbf{A}) \leq_{P} \operatorname{CSP}(A, t)$$

 $\langle A, t \rangle$ tractable \implies **A** tractable

	0	1	2	3
0	0	0	1	1
1	0	1	3	2
2	1	3	2	1
3	1	2	1	3

Let
$$t_2(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

	0	1	2	3
0	0	0	1	1
1	0	1	3	2
2	1	3	2	1
3	1	2	1	3

Let
$$t_2(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

	0	1	2	3	
0	0	0	1	1	
0 1 2 3	0 0 1 1	1 3 2	3 2	2	
2	1	3	2	1	
3	1	2	1	3	
to	l 0	1	2	3	

Let
$$t_2(x, y) = x \cdot (x \cdot (x \cdot y)) \cdot y \cdot (y \cdot (x \cdot y)).$$

$$\langle A, t_2 \rangle$$
 tractable

•	U	- 1	2	3
0	0	0	2	1
1	0	1	3	2
1 2 3	0 0 2	3 2	2	1
3	1	2	1	3

		0	1	2	3
,	0	0	0	2	1
	1	0 0 2	1	3	2
	2	2	3	2	1
	2	4	2	4	2

Let
$$t_3(x, y) = ...$$
 ?

	0	1	2	3
0	0	0	2	1
0 1 2	0 0 2	1	3	2
2	2	3	2	1
0	4	0	4	0

Let
$$t_3(x, y) = ...$$
 ?
Let $t_3(x, y, z) = ...$?

...and about 25 others.

To see them, load UACalc with files from the Bergman directory at

https://github.com/UACalc/AlgebraFiles

...and about 25 others.

To see them, load UACalc with files from the Bergman directory at

https://github.com/UACalc/AlgebraFiles
Thank you for listening!