Fonament i Aplicacions del Processament Digital dels Senyals Grau de Telemàtica Examen Setembre 2012

Problema 1.

Donat l'esquema de la figura següent:

on
$$h_1[n] = 2(\frac{1}{2})^n u[n]$$
, $h_2[n] = h_1[n-4]$, $h_3[n] = \{\underline{-1}, 0, 1\}$ i $h_4[n] = \{\underline{a}, 0, b, 0, c, 0\}$.

Trobau els valors de les constants K, a, b i c que fan que el sistema es comporti com un filtre FIR de fase lineal generalitzada de tipus IV.

Problema 2 .

Considerau un sistema LTI causal IIR recursiu definit per la següent equació:

$$y[n] - y[n-1] + 4y[n-2] - 4y[n-3] = x[n] - \frac{1}{4}x[n-2]$$

- a) Dibuixau les formes directa i canònica del sistema.
- b) Calculau la funció de transferència del sistema H(z).
- c) Dibuixau el diagrama de zeros i pols i justificau si el sistema és estable o no.
- d) Calculau la resposta impulsional del sistema h[n].

Problema 3.

La següent figura representa el mòdul de la DFT d'un senyal digital x[n], obtingut per discretització amb N=55000 mostres d'un senyal continu, amb una freqüència de mostreig $F_s=11025$ Hz.

- a) Pensau que x[n] és un senyal real? Per què?
- b) Pensau que s'ha produit aliasing quan s'ha mostrejat el senyal continu? Per què?
- c) Pensau que es podria submostrejar x[n] amb un factor de submostreig 2 (és a dir, obtenir $x_{subm}[n] = x[2n]$) sense que es produís aliasing? Per què?
- d) A quin rang de freqüències contínues (en Hz) corresponen els valors de X[k] compresos entre k=6000 i k=8000?
- e) Quina és l'amplada de banda del senyal (la freqüència contínua, en Hz, major que conté el senyal)?
- f) Si volguèssim eliminar la component espectral amb freqüència contínua (aproximada) 900 Hz, per a quins valors de k hauriem de fer X[k] = 0?
- g) Si reconstruïm el senyal amb una freqüència de mostreig doble de l'original obtindrem un senyal de sortida més ràpid o més lent que l'original? Justificau la resposta.
- h) Si reconstruïm el senyal amb una freqüència de mostreig doble de l'original l'amplada de banda del senyal de sortida serà major o menor que l'original? Justificau la resposta.

Problema 4.

Volem dissenyar un filtre FIR causal real de fase lineal amb el menor nombre de mostres possible que atenui totalment les freqüències discretes $\omega = \pi/4$ i $\omega = 0$ (és a dir $X(\omega) = 0$ per a $\omega = \pi/4$ i $\omega = 0$).

- a) Dibuixau el diagrama de zeros i pols del filtre.
- b) Calculau la funció de transferència H(z) del filtre.
- c) Calculau la resposta freqüencial $H(\omega)$ del filtre i calculau la seva fase.
- d) Calculau la resposta impulsional h[n] del filtre i digau de quin tipus de filtre FIR es tracta (I, II, III o IV).
- e) Calculau la resposta del filtre al senyal d'entrada $x[n] = \{-1, 0, 1\}$.