Statisin HWI BD = J-BIX = Y = (xi-x)xi $| \cdot \beta| = \frac{2}{5} (x_i - x_i) y_i$ (a) $\frac{1}{5} (x_i - x_i)^2$ $\frac{\partial(b)\overline{\xi(y|i|xi)} = \beta o + \beta_1 x i}{\overline{\xi(xi|yi)} = \frac{1}{\beta_1}yi - \frac{\beta o}{\beta_1} = \frac{1}{\beta_1}xi + \frac{1}{\beta_1}xi}$ $\frac{\partial(b)\overline{\xi(y|i|xi)} = \beta o + \beta_1 x i}{\overline{\xi(xi-x)}} = \frac{1}{\beta_1}xi + \frac{1}{\beta_1}xi$ (c) yes, As can be seen in (b) Qi=Bi (d) See R code (b) math 10 = \$0 + \$1 log(expand) + &
if expand increases by 10%. math10 = Bo + B1 log (1.1 expand) + E = math (0+ 0.1B)

4. (a). $\beta \hat{o} + \beta \hat{i} \hat{a} = \frac{1}{12} (x_i - \bar{x})y_i \hat{a} + y - \beta \hat{i} \hat{x}$ $= y - \beta \hat{i} \hat{x} + \beta \hat{i} \hat{a}$ $= y - \beta \hat{i} (\alpha - \bar{x}) = \frac{y}{n} + \frac{y}{z} (x_i - \bar{x})y_i \hat{a}$ $= y - \beta \hat{i} (\alpha - \bar{x}) = \frac{y}{n} + \frac{y}{z} (x_i - \bar{x})y_i \hat{a}$ (b) var (60+ 816) = var 5 yi (+ 19-x xxi-x) $= \sum_{i=1}^{n} vor(y_i) \left(\frac{1}{n} + \frac{(a-x)(x-x)}{(x-x)^2} \right)^2$ $= \sum_{i=1}^{n} o^2 \left(\frac{1}{n} + \frac{(a-x)(x-x)}{(x-x)^2} \right)^2$ $=\frac{2n}{\sqrt{n^2+\frac{2(\alpha-x)(x-x)}{h^2(x-x)^2}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^4}}}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^4}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{(\alpha-x)(x-x)^2}{f^2(x-x)^2}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ $=\frac{n^2+\frac{n}{\sqrt{n^2+2(\alpha-x)}}+\frac{n}{\sqrt{n^2+2(\alpha-x)}}}{f^2(x-x)^2}$ (c). let = var(pi+pia) Here $\alpha = \overline{x}$, var($\beta \circ + \beta \circ \alpha$) can acheive its smallest value since $\overline{\sigma}(q-\overline{x}) = 0$. and vor $(\beta \hat{o} + \beta \hat{i} \alpha) = \frac{1}{N} \frac{62}{N}$

	. (12) (12) (13) (13) (13) (13) (13) (13) (13) (13
6.	(a) $\hat{\mathcal{O}} = V = \hat{SIX}$
U	D (b) - E (vi-BIX)
	8Q> = (yi-Bix) (20. X1 = 0.
	=> = (yixi-bixi)=0 => = yixi= = sixi=
	5 1/xi= 31 2 XI
	$\beta \hat{l} = \frac{\sum y_i x_i}{\sum x_i}$
	7.0 (v)57 =
(6).	To show Pi is unbiasel. E(\(\hat{\epsilon}\) = \(\beta\)!
	TIALLY EL ZYIXI
	$\frac{E(\beta X) = E(\frac{1}{2} \times 1)^2}{\sum X_i E(y_i)} = \frac{\sum X_i E(\beta X_i)}{\sum X_i^2} = \frac{\sum X_i X_i X_i}{\sum X_i^2}$
* 7.50	$= \underbrace{\beta_1 \sum_{X}}_{X} = \beta_1$
	thus proved.
	THE POLES
(c)	var(y/x)=02 by assumption.
	$var(\hat{p})=var(\hat{p} x)=0$ by assumption. $var(\hat{p}i)=var(\hat{p}i x)=var(\frac{\sum yixi}{\sum xi^2} x)$
	with a second of the second of
10	$= \frac{\sum X_i \text{ varely i}}{\left(\sum X_i^2\right)^2} = \frac{\sum X_i^2}{\left(\sum X_i^2\right)^2} \cdot 0^2 = \frac{1}{\sum X_i^2} \cdot 0^2$
Anna spin	Also were in
2 2 2 2 2 2 2 2	

 $E(\hat{f}|x) = E(\frac{\Sigma(X-X)Y_1}{\Sigma(X-X)}x)$ 7. (a). E(fo/x) = E(y-fix). = \(\si\)\(\varphi\)\(\frac{1}{\pi}\)\(\ $\frac{E(y_i|x_i) = \beta_0 + \beta_1 X}{E(\beta_i|x)} = \frac{\sum (x_i - x_i)^2}{\sum (x_i - x_i)^2} = \beta_1$ thus $\hat{p_i}$ is unbiased ectimator. $E(\hat{p_o}|x) = E(\frac{1}{n}\Sigma y_i) - \hat{p_i}x$ = TECYID- BIX = = 5 (Bo+BiXi) -BIX = \$ BO + BI. - EXi - BIX = BO+ BI- 1 = Xi - BI- 12 Xi = BO. thus for is unbiased estimator. c)[N(0,25) x1=65 To/0,10) 65 < xi < 70 unifom C-8,8) 10 xi>70 variance of the three intervals are not consistent. The assumption of homoskedasticity suggests that the variance is consistent for all Xis. Thus in this case, the assumption of the moskedasticing is not valud.