Advanced Control for Robotics - Homework 5

涂志鑫 12131094

2022.05

1. Given a linear system x'=Ax and a quadratic function $V(x)=x^TPx$, where P is an $n\times n$ symmetric matrix. Derive the conditions for P under which V will be a Lyapunov function for exponential stability that satisfies $\|x(t)\|^2 \leq \beta c^t \|x(0)\|^2$, where $c \in (0,1)$.

Solution:

As for the definition of globally exponentially stability, there exit posotive constants δ, λ, c

$$|x(t)| \leq C|x(0)|e^{-\lambda t}, orall |x(0)| \leq \delta$$

$$\|x(t)\|^2 \leq eta c^t \|x(0)\|^2$$
, When

For linear system $\dot{x}=Ax$, its solution is $x(t)=e^{At}x(0)$.

For $||x(t)||^2 \le \beta c^t ||x(0)||^2$, when $c=e^{-2\lambda}, \beta=C^2$, the equation is satisfied, so it is equivilent to proove the exponential stability.

For a linear system x'=Ax, $e^{At}=Te^{\lambda t}T^{-1}$, if the eigen value λ satisfy the condition $Re(\lambda)<0$, $\lim_{t\to 0}e^{At}x(0)=0$ then the system is exponentially stable.

Therefore, for linear system which is expoentially stable, that is equivilent to symptotically stable.

The condition of P is (1): P is positive definite. $(2): \dot{V}(x) = \dot{x}^T P x + x^T P \dot{x} = x^T (A^T P + P A) x < 0$, that is $A^T P + P A$ is negative definite.

2. Show that the system x=f(x)= x=1 x=1 x=1 is globally asymptotically stable x=1 (hint: try x=1 x=1

Solution

$$f(x)=0$$
, for equilibrium, $egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix}$.

For $V(x) = ln(1+x_1^2) + x_2^2$, check lyapunov conditions.

(1) $\forall x=\begin{bmatrix}x_1\\x_2\end{bmatrix}\neq 0, V(x)>0.$ For $x=\begin{bmatrix}x_1\\x_2\end{bmatrix}=0, V(x)=0,$ the scalar function V(x) is positive definite (PD).

(2)

$$egin{aligned} LfV(x) &= (rac{\partial V}{\partial x})^T f(x) = egin{bmatrix} rac{2x_1}{x_1^2+1} & 2x_2 \end{bmatrix} egin{bmatrix} -x_1 + x_1 x_2 \ -x_2 \end{bmatrix} \ &= rac{-2x_1^2 + 2x_1^2 x_2}{x_1^2+1} - 2x_2^2 \ &= rac{-2x_1^2 - 2x_2^2}{x_1^2+1} \end{aligned}$$

LfV(x) is ND.

Therefore, we can prove the system is globally asymptotically stable.

3. Consider a discrete time system x(k+1) = Ax(k) + Bu(k), with linear feedback law u(k) = -Kx(k). Write down the closed-loop dynamics, and derive conditions for $V(x) = x^T P x$ to be discrete time Lyapunov function for asymptotic closed-loop stability.

Solution

The closed-loop discrete time system is x(k+1) = (A-BK)x(k).

The initial condition of the system is x(0), when k=1, x(1)=(A-BK)x(0); when k=2, $x(2)=(A-BK)^2x(0)$.

We can know the dynamics of cloosed-loop system, $x(K)=(A-BK)^kx(0)$.

For system to be asymptotically stable, the conditions is (1):V(x) is PD. (2) Rate of change of a function V(x) along the system trajectory $\triangle_f V(x) < 0$.

That means for (1): P is PD matrix.

For (2):

$$egin{aligned} riangle_f V(x) &= V(x(K+1)) - V(x(k)) = V((A-BK)x) - V(x) \ &= x^T \left[(A-BK)P(A-BK) - P
ight] x < 0 \end{aligned}$$

that is [(A - BK)P(A - BK) - P] is ND matrix.

4. Show that the PSD cone is acute, i.e., $\forall A,B\in Sn^+$, we have $tr(AB)\geq 0$. (Hint: decompose A using unitary matrix Q, i.e. $A=Q\Lambda Q^T$, and then use the same Q to define another matrix C=0.)

 QBQ^T . The trace tr(AB) can be computed directly in terms of the entries in C and Λ)

Proof

According to the "Spectral decomposition", for $\forall A \in Sn$, there exit a unitary matrix Q and a diagonal matrix Λ satisfy $A = Q\Lambda Q^T$.

Then $A=Q\Lambda Q^T$ and use the same Q matrix to define a matrix C, $C=QBQ^T$.

According to the trace property, $tr(A)=tr(\Lambda)$, then $tr(AC)=tr(Q\Lambda Q^TQBQ^T)=tr(QABQ^T)$, for $QQ^T=I$.

Similarity transformation do not change the trace, then $tr(AC)=tr(QABQ^T)=tr(AB).$

Since the A,B are the positive semidefinite matrix, then C is also PSD, that means the eigenvalues of A,C are non-negative.

$$tr(AB) = tr(AC) \ge 0$$

.

5. Given a symmetric matrix $A \in S_n$, let $\lambda \min(A)$ and $\lambda \max(A)$ be the smallest and largest eigenvalues of A. Show that

$$\begin{cases} \lambda min(A) \geq \mu \\ \lambda max(A) \leq \beta \end{cases} \Leftrightarrow \mu I \preceq A \preceq \beta I$$

Proof

For the left inequality, $\mu I \leq A$ is equivilent to show $A-\mu I \geq 0$. The eigenvalue of $A-\mu I$ is $eig(A-\mu I)=\{\lambda_1-\mu,\lambda_2-\mu,...,\lambda_n-\mu\}$. The minimum of the eigenvalue is

$$\min_i(\lambda-\mu)=\min_i\lambda-\mu=0$$

Therefore, $eig(A - \mu I) \geq 0$, $A - \mu I$ is PSD, that is $\mu I \leq A$.

For the right inequality, $A \leq \beta I$ is equivilent to show $\beta I - A \geq 0$. The eigenvalue of $\beta I - A$ is $eig(\beta I - A) = \{\beta - \lambda_1, \beta - \lambda_2, ..., \beta - \lambda_n\}$. The minimum of the eigenvalue is

$$\min_{i}(\beta - \lambda) = \beta - \min_{i} \lambda = 0$$

Therefore, $eig(\beta I - A) \geq 0$, $\beta I - A$ is PSD, that is $A \leq \beta I$.

6. Suppose $fi:R_n\to R,$ i=1,2 are convex. Show that the pointwise maximum function $f(x)=maxf_1(x),$ $f_2(x)$ is also convex.

Proof

Pointwise maximum function $f(x)=max\,f_1(x),f_2(x)$ For convex function f_i , for $\alpha\in(0,1)$, pick any $x_1,x_2\in D$, (for some $i\in 1,2$)

$$egin{split} f(lpha x_1 + (1-lpha) x_2) &= f_i (lpha x_1 + (1-lpha) x_2) \ &< lpha f_i (x_1) + (1-lpha) f_i (x_2) \ &< lpha f (x_1) + (1-lpha) f (x_2) \end{split}$$

Therefore, pointwise maximum function $f(x) = \max f_1(x), f_2(x)$ is convex function.