

Brood sorting by ants

Ludi van Leeuwen Corine Nijhof Advanced Self-Organisation of Social Systems

Main character

Family picture

Egg medium large pre-pupae pupae

Empirical data (Sendova-Franks 2004)

Brood is sorted in concentric annuli (rings)

Question

• What is the cause of this brood organisation?

Alternative hypotheses

Alternative hypotheses

Muesli effect (Barker & Grimson, 1990)

• Small items can pass, larger can't

Empirical results (by simulated robots)

Sendova and Franks Hypothesis

• Differential diffusion - each brood type is spaced out according to its domain of care.

Domain of care ~ to amount of care that brood needs

Domain of care ~ to amount of care that brood needs

Care eggs and larvae: Feeding and cleaning

Care (Pre)-Pupae: No feeding, only cleaning

- Care ordering: Large larvae > Medium larvae ~ Prepupae ~ Pupae > Small larvae and eggs.
- Evolutionary explanation: more energy invested in large larvae, hence need more care.

- Care ordering: Large larvae > Medium larvae ~ Prepupae ~ Pupae > Small larvae and eggs.
- Simple rules:
 - Pick brood up if overcrowded according to domain of care.
 - Drop brood if not overcrowded anymore.

- Care ordering: Large larvae > Medium larvae ~ Prepupae ~ Pupae > Small larvae and eggs.
- Simple rules:
 - Pick brood up if overcrowded according to domain of care.
 - Drop brood if not overcrowded anymore.
 - + tiredness ants carry small/light brood easier than large/heavy brood.

Ants Larvae Carry Pick up if not enough room around larva Energy Type Drop when enough room <u>or</u> Weight Vision ant too tired • Care domain • Speed • Pick-up range • Pheromones • Tiredness

Ants Larvae Carry Pick up if not enough room around larva Energy Type small Drop when enough room <u>or</u> medium Weight Vision ant too tired large • Care domain • Speed prepupae • Pick-up range • Pheromones pupae • Tiredness

Ants Larvae Carry Pick up if not enough room around larva Energy Type small 0.40522 Drop when enough room or 2.62807 Weight medium Vision ant too tired 7.41487 large • Care domain • Speed prepupae 5.92974 • Pheromones • Pick-up range 5.83200 pupae Tiredness

Ants Larvae Carry Pick up if not enough room around larva Type Energy small 1.0 Drop when enough room <u>or</u> medium 3.5 Weight Vision ant too tired 5.0 large • Speed • Care domain prepupae 2.5 • Pick-up range • Pheromones 2.0 pupae • Tiredness

Ants Larvae Carry Pick up if not enough room around larva Energy Type Drop when enough room <u>or</u> Weight Vision ant too tired • Care domain • Speed • Pick-up range • Pheromones • Tiredness

Model demonstration

Initial placing bottom vs. center

Initial placing bottom vs. center

Initial placing bottom vs. center

Care domain proportional to weight vs. equal

Care domain proportional to weight vs. equal for all larvae

Tiredness dependent on weight vs. equal for all larvae

Tiredness dependent on weight vs. equal for all larvae

RMS of brood displacement model vs. empirical (Sendova-Franks, 2004)

RMS of brood displacement model vs. empirical

Mean duration of brood movement by ants model vs. empirical

Mean duration of brood movement by ants model vs. empirical

Summary of results

	Answer	Significance
Does sorting occur?	Yes – difference in position between different types of larvae	F(4, 288095) = 32482, p < 0.05*** Adjusted for multiple comparisons
Does care domain affect sorting?	Yes – with equal care domains of larvae sorting happens only based on weight	MANOVA F(5, 144044) = 14575, p < 0.05***
Does tiredness affect sorting?	Yes – with equal tiredness for larvae sorting is less clear	MANOVA F(5, 144044) = 237, p < 0.05***

Conclusion

- Model shows
 - Different care domains cause brood sorting
 - Tiredness is less important than care domain in resulting brood sorting
 - Lighter larvae can be carried longer, but aren't because of small care domain

Discussion

- Model agrees with article on
 - Larvae with more weight can be carried less far
 - Larvae with bigger care domain end up more towards periphery
 - Structure!
- Model disagrees with article on
 - Even though small larvae can be carried further, they aren't
 - Probable cause: small larvae are already "happy" where they are due to their small domain of care

Further research

- We took "domain of care" as a primitive, but can we get "domain of care" to emerge by modelling food requirement and cleaning requirements directly?
- Sendova and Franks discuss 2 different phases: 1 of direct, tight clustering, and 2 of spacing out we only modelled phase 2 can we model both phases?

References

Franks, N. R. & Sendova-Franks, A. B. 1992. Brood sorting by ants: distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30, 109–123.

Sendova-Franks, A. B. et al. "Brood sorting by ants: two phases and differential diffusion". Animal Behaviour, 68 (2004): 1095 - 1106. https://doi.org/10.1016/j.anbehav.2004.02.013

Wilson, M. et al. "Algorithms for Building Annular Structures with Minimalist Robots Inspired by Brood Sorting in Ant Colonies." *Autonomous Robots* 17 (2004): 115-136.

