CLAIMS

1. A compound according to the general Formula (I)

5

the pharmaceutically acceptable acid or base addition salts thereof, the stereochemically isomeric forms thereof, the N-oxide form thereof and prodrugs thereof, wherein:

	isomeric forms thereof, the N-oxide form thereof and prodrugs thereof, wherein:		
10	n	is an integer, equal to 0, 1 or 2;	
	m	is an integer, equal to 1 or 2, provided that if m is 2, then n is 1;	
	p	is an integer equal to 1 or 2;	
	q	is an integer equal to 0 or 1;	
	Q.	is O or NR ³ ;	
15	X	is a covalent bond or a bivalent radical of formula -O-, -S- or -NR ³ -;	
	each R3	independently from each other, is hydrogen or alkyl;	
	each R1	independently from each other, is selected from the group of Ar ¹ , Ar ¹ -	
		alkyl and di(Ar ¹)-alkyl;	
20	R^2	is Ar ² , Ar ² -alkyl, di(Ar ²)alkyl, Het ¹ or Het ¹ -alkyl;	
	Y	is a covalent bond or a bivalent radical of formula -C(=O)-, -SO ₂ -	
		>C=CH-R or >C=N-R, wherein R is H, CN or nitro;	
	each Alk	represents, independently from each other, a covalent bond; a bivalent	
		straight or branched, saturated or unsaturated hydrocarbon radical having	
		from 1 to 6 carbon atoms; or a cyclic saturated or unsaturated hydrocarbon	
25		radical having from 3 to 6 carbon atoms; each radical optionally	
		substituted on one or more carbon atoms with one or more alkyl, phenyl,	
		halo, cyano, hydroxy, formyl and amino radicals;	
	L	is selected from the group of hydrogen, alkyl, alkyloxy, Ar ³ -oxy,	
	_	alkyloxycarbonyl, mono- and di(alkyl)amino, mono-and di(Ar³)amino,	
30		Ar ³ , Ar ³ carbonyl, Het ² and Het ² carbonyl;	
	Ar ^l	is phenyl, optionally substituted with 1, 2 or 3 substituents, each	
	_	independently from each other, selected from the group of halo, alkyl,	
		cyano, aminocarbonyl and alkyloxy;	
		-	

	Ar^2	is naphthalenyl or phenyl, each optionally substituted with 1, 2 or 3
		substituents, each independently from each other, selected from the group
		of halo, nitro, amino, mono- and di(alkyl)amino, cyano, alkyl, hydroxy,
		alkyloxy, carboxyl, alkyloxycarbonyl, aminocarbonyl and mono- and
5		di(alkyl)aminocarbonyl;
	Ar^3	is naphthalenyl or phenyl, optionally substituted with 1, 2 or 3
		substituents, each independently from each other, selected from the group
		of alkyloxy, alkyl, halo, hydroxy, pyridinyl, morpholinyl, pyrrolidinyl,
		imidazo[1,2-a]pyridinyl, morpholinylcarbonyl, pyrrolidinylcarbonyl,
10		amino and cyano;
10	Het ¹	is a monocyclic heterocyclic radical selected from the the group of
	Tiet	pyrrolyl, pyrazolyl, imidazolyl, furanyl, thienyl, oxazolyl, isoxazolyl,
		thiazolyl, isothiazolyl, pyridinyl, pyrimidinyl, pyrazinyl and pyridazinyl;
		or a bicyclic heterocyclic radical selected from the group of quinolinyl,
1.5		quinoxalinyl, indolyl, benzimidazolyl, benzoxazolyl, benzisoxazolyl,
15		benzothiazolyl, benzisothiazolyl, benzofuranyl and benzothienyl; each
		heterocyclic radical may optionally be substituted on any atom by a radical
	2	selected from the group of halo and alkyl; is a monocyclic heterocyclic radical selected from the group of
	Het ²	pyrrolidinyl, dioxolyl, imidazolidinyl, pyrrazolidinyl, piperidinyl,
20		morpholinyl, dithianyl, thiomorpholinyl, piperazinyl, imidazolidinyl,
	•	morpholinyl, ditnianyl, thiomorpholinyl, piperazinyl, inidazolinyl
		tetrahydrofuranyl, 2H-pyrrolyl, pyrrolinyl, imidazolinyl, pyrrazolyl,
		pyrrolyl, imidazolyl, pyrazolyl, triazolyl, furanyl, thienyl, oxazolyl,
		isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, pyridinyl, pyrimidinyl,
25		pyrazinyl, pyridazinyl and triazinyl;
		or a bicyclic heterocyclic radical selected from the group of
		benzopiperidinyl, quinolinyl, quinoxalinyl, indolyl, isoindolyl, chromenyl,
		benzimidazolyl, imidazo[1,2-a]pyridinyl, benzoxazolyl, benzisoxazolyl,
		benzothiazolyl, benzisothiazolyl, benzofuranyl and benzothienyl;
30		each radical optionally substituted with one or more radicals selected from
		the group of Ar ¹ , Ar ¹ alkyl, halo, hydroxy, alkyl, piperidinyl, pyrrolyl,
		thienyl, oxo, alkyloxy, alkyloxyalkyl and alkyloxycarbonyl; and
	alkyl	is a straight or branched saturated hydrocarbon radical having from 1 to 6
		carbon atoms or a cyclic saturated hydrocarbon radicals having from 3 to
35		6 carbon atoms; optionally substituted on one or more carbon atoms with
		one or more radicals selected from the group of phenyl, halo, cyano, oxo,
		hydroxy, formyl and amino.

2. A compound according to claim 1, characterized in that n is 1; is 1; m is 1; 5 p is 0; q Q is O; is a covalent bond; X is Ar¹ or Ar¹-alkyl; each R1 R^2 is Ar²: 10 is a covalent bond or a bivalent radical of formula -C(=O)-; Y represents, independently from each other, a covalent bond each Alk is selected from the group of hydrogen, alkyloxy, Ar³ and Het²; L Ar^{l} is phenyl; is phenyl, optionally substituted with 1, 2 or 3 alkyl radicals; Ar^2 15 is phenyl, optionally substituted with 1, 2 or 3 substituents, each Ar^3 independently from each other, selected from the group of alkyl and halo; is a monocyclic heterocyclic radical selected from the group of pyrazolyl, Het² furanyl and isoxazolyl, each radical optionally substituted with one or more

- 3. A compound according to any of claims 1-2, characterized in that R¹ is Ar¹methyl and attached to the 2-position or R¹ is Ar¹ and attached to the 3-position.
 - 4. A compound according to any of claims 1-3, characterized in that the R²-X-C(=Q)-moiety is 3,5-di-(trifluoromethyl) phenylcarbonyl.

is a straight hydrocarbon radical having 1 to 6 carbon atoms, optionally

30 5. A compound according to any of claims 1-4, characterized in that p is 1.

substituted with one or more halo radicals.

alkyl radicals; and

20

alkyl

- 6. A compound according to any of claims 1-5, characterized in that Y is -C(=0)-.
- 7. A compound according to any of claims 1-6, characterized in that Alk is a covalent bond.
 - 8. A compound according to any of claims 1-3, characterized in that L is Het².

9. A compound select from the group of compounds with compound number 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 as mentioned in Table 1.

11. A compound according to any one of claims 1-10 for use as an orally active, central penetrating medicine.

5

15

20

25

30

- 12. The use of a compound according to any one of claims 11 for the manufacture of a medicament for treating tachykinin mediated conditions.
 - 13. The use of a compound according to claim 1-11 for the manufacture of a medicament for treating schizophrenia, emesis, anxiety, depression, irritable bowel syndrome (IBS), circadian rhythm disturbances, pain, neurogenic inflammation, asthma, micturition disorders such as urinary incontinence and nociception.
 - 14. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and, as active ingredient, a therapeutically effective amount of a compound according to any one of claims 1-9.
 - 15. A process for preparing a pharmaceutical composition as claimed in claim 14, characterized in that a pharmaceutically acceptable carrier is intimately mixed with a therapeutically effective amount of a compound as claimed in any one of claims 1-9.
 - 16. A process for the preparation of a compound of Formula (I") in which an intermediate compound of Formula (II) is reacted with an intermediate compound of Formula (III), wherein the radicals R², X, Q, R¹, m, n, p and q are as defined in claim 1.

17. A process for the preparation of a compound of Formula (I') in which a final compound of Formula (I") is reductively hydrogenated, wherein the radicals R², X, Q, R¹, m, n, p and q are as defined in claim 1.

$$\begin{array}{c} Q \\ \downarrow \\ R^2 - X \end{array} \begin{array}{c} R^1 \\ \downarrow \\ (CH_2)_m \\ (CH_2)_n \end{array} \begin{array}{c} (R^1)_q \\ \downarrow \\ (CH_2)_p \end{array} \begin{array}{c} (R^1)_q \\ \downarrow \\ N - t - boc \end{array} \begin{array}{c} Q \\ \downarrow \\ R^2 - X \end{array} \begin{array}{c} R^1 \\ (CH_2)_m \\ (CH_2)_n \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_p \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_p \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_m \\ (CH_2)_m \\ (CH_2)_m \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_m \\ (CH_2)_m \\ (CH_2)_m \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_m \\ (CH_2)_m \\ (CH_2)_m \\ (CH_2)_m \end{array} \begin{array}{c} (R^1)_q \\ (CH_2)_m \\$$

18. A process for the preparation of a compound according to Formula (I') comprising the consecutive steps of

5

- 1) obtaining a compound of Formula (I") according to claim 16;
- 2) obtaining a compound of Formula (I') according to claim 17.