M5_AI_2_A01571214

A01571214 - Lautaro Coteja 2024-11-19

Actividad Integradora 2

1. Preparar la base de datos del Titanic

```
# Carga de librerías necesarias
library(ISLR)
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.4.2
## Warning: package 'readr' was built under R version 4.4.2
## Warning: package 'dplyr' was built under R version 4.4.2
## Warning: package 'forcats' was built under R version 4.4.2
## — Attaching core tidyverse packages ——
                                                                tidyverse
2.0.0 -
## √ dplyr 1.1.4
                          ✓ readr
                                      2.1.5
## √ forcats 1.0.0

√ stringr

                                      1.5.1
## √ ggplot2 3.5.1

√ tibble

                                      3.2.1
## ✓ lubridate 1.9.3
                         √ tidyr
                                      1.3.1
## √ purrr
               1.0.2
## - Conflicts -
tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all
conflicts to become errors
library(caret)
## Warning: package 'caret' was built under R version 4.4.2
## Cargando paquete requerido: lattice
## Adjuntando el paquete: 'caret'
## The following object is masked from 'package:purrr':
       lift
##
```

```
library(MASS)
##
## Adjuntando el paquete: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
       select
library(dplyr)
library(pROC)
## Warning: package 'pROC' was built under R version 4.4.2
## Type 'citation("pROC")' for a citation.
##
## Adjuntando el paquete: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
library(ggplot2)
# Carga de las bases de datos Titanic y Titanic test
titanic = read.csv('Titanic.csv')
titanic_test = read.csv('Titanic_test.csv')
# Análisis de datos faltantes en la base Titanic
missing data = sapply(titanic, function(x) sum(is.na(x)))
missing data
## PassengerId
                  Survived
                                Pclass
                                               Name
                                                            Sex
                                                                        Age
##
                                                                        263
##
         SibSp
                     Parch
                                Ticket
                                               Fare
                                                          Cabin
                                                                   Embarked
##
                                                                          2
                         0
                                     0
                                                 1
                                                              0
# Estadísticas descriptivas de las variables en Titanic
summary(titanic)
##
     PassengerId
                      Survived
                                        Pclass
                                                         Name
                   Min.
## Min.
                          :0.0000
                                    Min.
                                           :1.000
                                                     Length:1309
         : 1
   1st Qu.: 328
                   1st Qu.:0.0000
                                    1st Qu.:2.000
                                                    Class :character
##
## Median : 655
                   Median :0.0000
                                    Median :3.000
                                                    Mode :character
## Mean
          : 655
                   Mean
                          :0.3774
                                    Mean
                                           :2.295
## 3rd Qu.: 982
                   3rd Qu.:1.0000
                                    3rd Qu.:3.000
## Max.
          :1309
                   Max.
                          :1.0000
                                    Max.
                                           :3.000
##
##
                                           SibSp
        Sex
                            Age
                                                             Parch
##
   Length:1309
                       Min.
                              : 0.17
                                       Min.
                                               :0.0000
                                                         Min.
                                                                :0.000
## Class :character
                       1st Qu.:21.00
                                       1st Qu.:0.0000
                                                         1st Qu.:0.000
                       Median :28.00
                                       Median :0.0000
                                                         Median:0.000
## Mode :character
```

```
##
                              :29.88
                                       Mean :0.4989
                                                               :0.385
                       Mean
                                                        Mean
##
                                       3rd Qu.:1.0000
                       3rd Qu.:39.00
                                                        3rd Qu.:0.000
##
                       Max.
                              :80.00
                                       Max.
                                              :8.0000
                                                        Max.
                                                               :9.000
##
                       NA's
                              :263
##
       Ticket
                            Fare
                                            Cabin
                                                              Embarked
                              : 0.000
##
    Length:1309
                       Min.
                                         Length: 1309
                                                            Length:1309
    Class :character
                       1st Qu.: 7.896
                                         Class :character
                                                            Class :character
   Mode :character
                                         Mode :character
                                                            Mode :character
##
                       Median : 14.454
                              : 33.295
##
                       Mean
                       3rd Qu.: 31.275
##
                       Max.
##
                              :512.329
##
                       NA's
                              :1
# Proporción de sobrevivientes en la base de datos original
prop.table(table(titanic$Survived))
##
##
## 0.6226127 0.3773873
# División de la base de datos en 70% entrenamiento y 30% validación
set.seed(42) # Para reproducibilidad
train index = createDataPartition(titanic$Survived, p = 0.7, list = FALSE)
train data = titanic[train index, ]
validation_data = titanic[-train_index, ]
# Proporción de sobrevivientes en entrenamiento y validación
prop.table(table(train data$Survived))
##
##
## 0.6226827 0.3773173
prop.table(table(validation data$Survived))
##
##
## 0.622449 0.377551
```

2. Con la base de datos de entrenamiento, encuentra un modelo logístico para encontrar el mejor conjunto de predictores que auxilien a clasificar la dirección de cada observación

```
# Eliminación de variables irrelevantes
train_data = titanic %>% dplyr::select(-Name, -PassengerId, -Ticket, -Cabin)

# Manejo de valores faltantes
train_data$Age[is.na(train_data$Age)] = median(train_data$Age, na.rm = TRUE)
train_data$Fare[is.na(train_data$Fare)] = median(train_data$Fare, na.rm =
TRUE)
train_data = train_data %>% drop_na(Embarked)
```

```
# Transformación de variables categóricas
#train data = train data %>%
# mutate(Sex = ifelse(Sex == "male", 0, 1)) %>%
 #mutate(Embarked_C = ifelse(Embarked == "C", 1, 0),
         Embarked Q = ifelse(Embarked == "Q", 1, 0)) %>%
 #select(-Embarked)
# Modelo completo inicial
modelo_completo = glm(Survived ~ ., data = train_data, family = binomial)
# Selección de modelos basada en AIC
modelo_seleccionado = stepAIC(modelo_completo, direction = "both", trace =
FALSE)
# Visualización del mejor modelo
summary(modelo_seleccionado)
##
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age + SibSp, family = binomial,
      data = train data)
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 5.168167 0.441316 11.711 < 2e-16 ***
## Pclass
              -1.038088 0.111469 -9.313 < 2e-16 ***
              -3.750461 0.184287 -20.351 < 2e-16 ***
## Sexmale
              ## Age
## SibSp
              -0.309490
                          0.088623 -3.492 0.000479 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1731.23 on 1306
                                      degrees of freedom
## Residual deviance: 967.84 on 1302 degrees of freedom
## AIC: 977.84
##
## Number of Fisher Scoring iterations: 5
# Propuestas de modelos basadas en AIC
modelo_1 = glm(Survived ~ Pclass + Sex + Age + SibSp, data = train_data,
family = binomial)
modelo 2 = glm(Survived ~ Pclass + Sex + Age + SibSp + Fare, data =
train_data, family = binomial)
# Resumen de ambos modelos
summary(modelo_1)
```

```
##
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age + SibSp, family = binomial,
       data = train data)
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.168167
                           0.441316 11.711 < 2e-16 ***
## Pclass
                                    -9.313 < 2e-16 ***
               -1.038088
                           0.111469
                          0.184287 -20.351 < 2e-16 ***
## Sexmale
               -3.750461
                                    -4.592 4.39e-06 ***
## Age
               -0.032722
                          0.007126
                          0.088623 -3.492 0.000479 ***
## SibSp
               -0.309490
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1731.23
                              on 1306
                                       degrees of freedom
##
## Residual deviance: 967.84 on 1302 degrees of freedom
## AIC: 977.84
##
## Number of Fisher Scoring iterations: 5
summary(modelo_2)
##
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age + SibSp + Fare, family =
binomial,
##
       data = train data)
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.919941
                           0.484866 10.147 < 2e-16 ***
## Pclass
                           0.127766 -7.526 5.24e-14 ***
               -0.961543
## Sexmale
                          0.184630 -20.229 < 2e-16 ***
               -3.734830
## Age
               -0.032599
                          0.007129
                                    -4.573 4.81e-06 ***
## SibSp
               -0.331649
                          0.090697
                                    -3.657 0.000256 ***
## Fare
               0.002317
                          0.001907
                                    1.215 0.224305
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1731.23 on 1306 degrees of freedom
## Residual deviance: 966.33 on 1301 degrees of freedom
## AIC: 978.33
##
## Number of Fisher Scoring iterations: 5
```

3. Analizar los Modelos

```
# Desviación nula y residual para cada modelo
null deviance 1 = modelo 1$null.deviance
residual deviance 1 = modelo 1$deviance
null deviance 2 = modelo 2$null.deviance
residual_deviance_2 = modelo_2$deviance
# Desviación explicada
explained_deviance_1 = null_deviance_1 - residual_deviance_1
explained_deviance_2 = null_deviance_2 - residual_deviance_2
# Prueba de la razón de verosimilitud
lr test statistic 1 = explained deviance 1
lr_test_statistic_2 = explained_deviance_2
lr p value 1 = 1 - pchisq(lr test statistic 1, df = length(coef(modelo 1)) -
1)
lr_p_value_2 = 1 - pchisq(lr_test_statistic_2, df = length(coef(modelo 2)) -
# Resultados
list(
  Modelo_1 = list(Null_Deviance = null_deviance_1, Residual_Deviance =
residual deviance 1,
                  Explained Deviance = explained deviance 1, LR Test P Value
= lr_p_value_1),
  Modelo 2 = list(Null Deviance = null deviance 2, Residual Deviance =
residual deviance 2,
                  Explained_Deviance = explained_deviance_2, LR_Test_P_Value
= lr_p_value_2)
## $Modelo 1
## $Modelo_1$Null_Deviance
## [1] 1731.23
##
## $Modelo 1$Residual Deviance
## [1] 967.8374
##
## $Modelo 1$Explained Deviance
## [1] 763.3931
##
## $Modelo 1$LR Test P Value
## [1] 0
##
##
## $Modelo_2
## $Modelo_2$Null_Deviance
## [1] 1731.23
##
```

```
## $Modelo 2$Residual_Deviance
## [1] 966.3339
##
## $Modelo_2$Explained_Deviance
## [1] 764.8965
##
## $Modelo_2$LR_Test_P_Value
## [1] 0
# Ecuación del modelo 2 y análisis de coeficientes
summary(modelo 2)
##
## Call:
## glm(formula = Survived ~ Pclass + Sex + Age + SibSp + Fare, family =
binomial,
##
      data = train data)
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.919941 0.484866 10.147 < 2e-16 ***
             ## Pclass
## Sexmale
             -3.734830 0.184630 -20.229 < 2e-16 ***
             -0.032599 0.007129 -4.573 4.81e-06 ***
## Age
             ## SibSp
## Fare
             0.002317 0.001907 1.215 0.224305
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 1731.23 on 1306 degrees of freedom
## Residual deviance: 966.33 on 1301 degrees of freedom
## AIC: 978.33
##
## Number of Fisher Scoring iterations: 5
# Interpretación de los coeficientes:
# - Pclass: Cada aumento en clase reduce la probabilidad de sobrevivir.
# - Sex: Ser mujer incrementa la probabilidad de sobrevivir.
# - Age: A medida que la edad aumenta, la probabilidad de sobrevivir
disminuye.
# - SibSp: Más hermanos o cónyuge a bordo reduce La probabilidad de
sobrevivir.
# - Fare: Una tarifa mayor tiene un efecto positivo mínimo en la probabilidad
de sobrevivir.
```

Interpretacion

Las características más relevantes que determinaron la supervivencia fueron las siguientes: Clase (Pclass): Pasajeros en primera clase tenían una mayor probabilidad de sobrevivir en comparación con aquellos en segunda y tercera clase. Sexo (Sex): Las mujeres tenían una probabilidad significativamente mayor de sobrevivir que los hombres. Edad (Age): Los niños y personas más jóvenes presentaban mayor probabilidad de supervivencia. Número de hermanos/esposos a bordo (SibSp): Viajar con menos familiares cercanos aumentaba las probabilidades de sobrevivencia. Estas variables clave reflejan decisiones relacionadas con las prioridades en el abordaje y rescate durante el desastre, como la preferencia por mujeres y niños primero.

Ecuacion

 $logit(P(Survived=1))=1.287+(-1.011)\cdot Pclass+3.829\cdot Sex+(-0.031)\cdot Age+(-0.378)\cdot SibSp+0.0017\cdot Fare$

4. Analiza las predicciones para los datos de entrenamiento

```
# Generar predicciones en los datos de entrenamiento
probabilidades = predict(modelo_2, type = "response")
predicciones = ifelse(probabilidades > 0.5, 1, 0)
# Crear la matriz de confusión
conf matrix = confusionMatrix(as.factor(predicciones),
as.factor(train data$Survived))
conf matrix
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                0
                    1
##
            0 736 107
            1 79 385
##
##
##
                  Accuracy : 0.8577
##
                    95% CI: (0.8376, 0.8762)
##
       No Information Rate: 0.6236
##
       P-Value [Acc > NIR] : < 2e-16
##
##
                     Kappa: 0.6934
##
   Mcnemar's Test P-Value: 0.04773
##
##
##
               Sensitivity: 0.9031
##
               Specificity: 0.7825
##
            Pos Pred Value : 0.8731
            Neg Pred Value: 0.8297
##
##
                Prevalence: 0.6236
##
            Detection Rate: 0.5631
```

```
##
      Detection Prevalence: 0.6450
##
         Balanced Accuracy : 0.8428
##
          'Positive' Class : 0
##
##
# Calcular la curva ROC y el AUC
roc_obj = roc(train_data$Survived, probabilidades)
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc value = auc(roc obj)
# Convertir los datos de la curva ROC en un data frame para applot
roc data = data.frame(
 FPR = 1 - roc obj$specificities,
 TPR = roc_obj$sensitivities
)
# Graficar la curva ROC con ggplot
ggplot(data = roc data, aes(x = FPR, y = TPR)) +
  geom_line(color = "darkorange", size = 1) +
  geom_abline(linetype = "dashed", color = "gray") +
ggtitle(paste("Curva ROC (AUC =", round(auc_value, 2), ")")) +
  xlab("Tasa de Falsos Positivos") +
  ylab("Tasa de Verdaderos Positivos") +
  theme minimal()
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```


Interpretacion

La curva ROC generada muestra un AUC de 0.85, lo que indica un buen desempeño del modelo en la discriminación entre sobrevivientes y no sobrevivientes. Este valor respalda la robustez del modelo logístico propuesto. Además, el gráfico de violín revela que las probabilidades predichas para los sobrevivientes tienden a ser más altas, lo que valida visualmente la efectividad del modelo al separar las dos clases.

Gráfico de Violín de Probabilidades Predichas

5. Validación del modelo con la base de datos de validación

```
# Generar predicciones en la base de datos de validación
validation_probabilities = predict(modelo_2, newdata = validation_data, type
= "response")

# Calcular la curva ROC para determinar el umbral óptimo
roc_obj_validation = roc(validation_data$Survived, validation_probabilities)

## Setting levels: control = 0, case = 1

## Setting direction: controls < cases
auc_value_validation = auc(roc_obj_validation)

# Determinar el umbral óptimo de clasificación
optimal_threshold = coords(roc_obj_validation, "best", ret = "threshold")
optimal_threshold

## threshold
## threshold
## 1 0.2411516</pre>
```

Interpretacion

El umbral óptimo seleccionado fue 0.24, lo que permitió maximizar la sensibilidad (tasa de verdaderos positivos) al identificar sobrevivientes. Este umbral fue ideal para reducir falsos negativos (personas que sobrevivieron pero fueron clasificadas como no sobrevivientes), asegurando que se prioricen los sobrevivientes con mayor probabilidad de

ser rescatados. Aunque esto incrementa ligeramente los falsos positivos, el balance alcanzado es adecuado para este tipo de análisis, donde es preferible clasificar más individuos como sobrevivientes.

```
# Generar predicciones basadas en el umbral óptimo
validation_predictions = ifelse(validation_probabilities > optimal_threshold,
1, 0)
# Crear la matriz de confusión
#conf matrix validation = confusionMatrix(as.factor(validation predictions),
as.factor(validation data$Survived))
#conf matrix validation
# Graficar La curva ROC
roc data validation <- data.frame(</pre>
  FPR = 1 - roc_obj_validation$specificities,
  TPR = roc obj validation$sensitivities
)
ggplot(data = roc_data_validation, aes(x = FPR, y = TPR)) +
  geom_line(color = "darkorange", size = 1) +
  geom_abline(linetype = "dashed", color = "gray") +
  ggtitle(paste("Curva ROC (AUC =", round(auc_value_validation, 2), ")")) +
  xlab("Tasa de Falsos Positivos") +
  ylab("Tasa de Verdaderos Positivos") +
  theme_minimal()
```



```
5. Elabora el testeo con la base de datos de prueba.
# Generar predicciones en la base de datos de prueba (titanic_test)
test_probabilities = predict(modelo_2, newdata = titanic_test, type =
"response")
# Aplicar el umbral óptimo determinado previamente
test_predictions = ifelse(test_probabilities > optimal_threshold, 1, 0)
# Preparar el dataframe final con las predicciones
submission = data.frame(PassengerId = titanic_test$PassengerId, Survived =
test_predictions)
# Guardar el archivo de resultados
#write.csv(submission, "submission.csv", row.names = FALSE)
submission
##
       PassengerId threshold
## 1
               892
## 2
               893
                            0
## 3
               894
                            0
## 4
               895
                            0
## 5
                            0
               896
## 6
                            0
               897
## 7
               898
                            0
## 8
               899
                            0
## 9
               900
                            0
## 10
                            0
               901
## 11
               902
                            0
## 12
               903
                            0
## 13
               904
                            0
## 14
               905
                            0
                            0
## 15
               906
               907
                            0
## 16
## 17
               908
                            0
## 18
                            0
               909
## 19
               910
                            0
## 20
               911
                            0
## 21
               912
                            0
## 22
               913
                            0
## 23
               914
                            0
## 24
               915
                            0
## 25
               916
                            0
## 26
               917
                            0
## 27
                            0
               918
## 28
               919
                            0
## 29
                            0
               920
## 30
               921
                            0
                            0
## 31
               922
               923
## 32
```

##	33	924	0
##	34	925	0
##	35	926	0
##	36	927	0
##	37	928	0
##	38	929	0
##	39	930	0
##	40	931	0
##	41	932	0
##	42	933	0
##	43	934	0
##	44	935	0
##	45	936	0
##	46	937	0
##	47	938	0
##	48	939	0
##	49	940	0
##	50	941	0
##	51	942	0
##	52	943	0
##	53	944	0
##	54	945	0
##	55	946	0
##	56	947	0
##	57	948	0
##	58	949	0
##	59	950	0
##	60	951	0
##	61	952	0
##	62	953	0
##	63	954	0
##	64	955	0
##	65	956	0
##	66	957	0
##	67	958	0
##	68	959	0
##		960	0
##	70	961	0
##	71	962	0
##	72	963	0
##	73	964	0
##	74	965	0
##	75	966	0
##	76	967	0
##	77	968	0
##	78	969	0
##	79	970	0
##	80	971	0
##	81	972	0
##	82	973	0

##	83	974	0
##	84	975	0
##	85	976	0
##	86	977	0
##	87	978	0
	88	979	0
	89	980	0
	90	981	0
	91	982	0
	92	983	0
	93	984	0
	94	985	0
	95	986	
			0
	96	987	0
	97	988	0
	98	989	0
	99	990	0
	100	991	0
	101	992	0
##	102	993	0
##	103	994	0
##	104	995	0
##	105	996	0
	106	997	0
	107	998	0
	108	999	0
	109	1000	0
	110	1001	0
	111	1001	0
	111	1003	0
	: 113		0
		1004	
	114	1005	0
	115	1006	0
	116	1007	0
	117	1008	0
	118	1009	0
	119	1010	0
##	120	1011	0
##	121	1012	0
##	122	1013	0
	123	1014	0
	124	1015	0
	125	1016	0
	126	1017	0
	127	1017	0
	127	1019	0
	129	1020	0
	130	1021	0
	131	1022	0
##	132	1023	0

#	‡#	133	1024	0
		134	1025	0
		135	1026	0
		136	1027	0
		137	1028	0
		138	1029	0
		139	1030	0
		140	1031	0
		141	1032	0
		142	1033	0
		143	1034	0
		144	1035	0
		145	1036	0
		146	1037	0
		147	1038	0
		148	1030	0
		149	1040	0
		150	1041	0
		151	1041	0
		152	1043	0
		153	1044	0
		154	1045	0
		155 156	1046	0
		156	1047	0
		157	1048	0
		158	1049	0
		159	1050	0
		160	1051	0
		161	1052	0
		162	1053	0
		163	1054	0
		164	1055	0
		165	1056	0
#	##	166	1057	0
#	##	167	1058	0
#	##	168	1059	0
#	##	169	1060	0
		170	1061	0
		171	1062	0
		172	1063	0
		173	1064	0
		174	1065	0
		175	1066	0
		176	1067	0
		177	1068	0
		178	1069	0
		179	1070	0
		180	1071	0
		181	1072	0
Ŧ	f#	182	1073	0

##	183	1074
##	184	1075
	185	1076
	186	1077
	187	1078
	188	1079
	189	1080
	190	1081
	191	1082
	192	1083
	193	1084
	194	1085
	195	1086
	196	1087
	197	1088
	198	1089
	199	1099
	200	1090
	200	1091
	202	
		1093
	203	1094
	204	1095
	205	1096
	206	1097
	207	1098
	208	1099
	209	1100
	210	1101
	211	1102
	212	1103
	213	1104
##	214	1105
##	215	1106
##	216	1107
##	217	1108
	218	1109
##	219	1110
	220	1111
	221	1112
	222	1113
	223	1114
	224	1115
	225	1116
	226	1117
	227	1118
	228	1110
	228	1119
	230	1121
	231	1122
##	232	1123

##	233	1124	0
##	234	1125	0
##	235	1126	0
##	236	1127	0
##	237	1128	0
##	238	1129	0
##	239	1130	0
##	240	1131	0
##	241	1132	0
##	242	1133	0
##	243	1134	0
##	244	1135	0
##	245	1136	0
##	246	1137	0
	247	1138	0
	248	1139	0
	249	1140	0
	250	1141	0
	251	1142	0
	252	1143	0
	253	1144	0
	254	1145	0
	255	1146	0
	256	1147	0
	257	1148	0
	258	1149	0
	259	1150	0
	260	1151	0
	261	1151	0
	262	1152	0
	263	1154	0
	264		0
		1155 1156	
	265	1156	0
	266	1157	0
	267	1158	0
	268	1159	0
	269	1160	0
	270	1161	0
	271	1162	0
	272	1163	0
	273	1164	0
	274	1165	0
	275	1166	0
	276	1167	0
	277	1168	0
	278	1169	0
	279	1170	0
	280	1171	0
	281	1172	0
##	282	1173	0

##	283	1174	0
##	284	1175	0
##	285	1176	0
##	286	1177	0
##	287	1178	0
##	288	1179	0
##	289	1180	0
##	290	1181	0
##	291	1182	0
##	292	1183	0
##	293	1184	0
##	294	1185	0
	295	1186	0
##	296	1187	0
	297	1188	0
	298	1189	0
	299	1190	0
	300	1191	0
	301	1192	0
	302	1193	0
	303	1194	0
	304	1195	0
	305	1196	0
	306	1197	0
	307	1198	0
	308	1199	0
	309	1200	0
	310	1201	0
	311	1202	0
	312	1202	0
	313	1203	0
	314	1205	0
	315	1206	0
	316	1207	0
	315		0
		1208	
	318	1209	0
	319	1210	0
	320	1211	0
	321	1212	0
	322	1213	0
	323	1214	0
	324	1215	0
	325	1216	0
	326	1217	0
	327	1218	0
	328	1219	0
	329	1220	0
	330	1221	0
	331	1222	0
##	332	1223	0

## 333				
## 334	##	333	1224	0
## 335				
## 336				
## 337				
## 338				
## 339				
## 340				
## 341				
## 342				
## 343				
## 344				
## 345				
## 346				
## 347				
## 348				
## 349				
## 350				
## 351				
## 352				
## 353				
## 354				
## 355				
## 356				
## 357				
## 358				
## 359				
## 360				
## 361				
## 362				
## 363				
## 364 1255 0 ## 365 1256 0 ## 366 1257 0 ## 367 1258 0 ## 368 1259 0 ## 369 1260 0 ## 370 1261 0 ## 371 1262 0 ## 372 1263 0 ## 373 1264 0 ## 374 1265 0 ## 375 1266 0 ## 376 1267 0 ## 377 1268 0 ## 378 1269 0 ## 380 1271 0 ## 380 1271 0				
## 365				
## 366				
## 367				
## 368				
## 369	##	367	1258	0
## 370	##	368	1259	0
## 371 1262 0 ## 372 1263 0 ## 373 1264 0 ## 374 1265 0 ## 375 1266 0 ## 376 1267 0 ## 377 1268 0 ## 378 1269 0 ## 379 1270 0 ## 380 1271 0 ## 381 1272 0	##	369	1260	0
## 371 1262 0 ## 372 1263 0 ## 373 1264 0 ## 374 1265 0 ## 375 1266 0 ## 376 1267 0 ## 377 1268 0 ## 378 1269 0 ## 379 1270 0 ## 380 1271 0 ## 381 1272 0				
## 372			1262	
## 373				
## 374 1265 0 ## 375 1266 0 ## 376 1267 0 ## 377 1268 0 ## 378 1269 0 ## 379 1270 0 ## 380 1271 0 ## 381 1272 0				
## 375				
## 376				
## 377				
## 378 1269 0 ## 379 1270 0 ## 380 1271 0 ## 381 1272 0				
## 379 1270 0 ## 380 1271 0 ## 381 1272 0				
## 380 1271 0 ## 381 1272 0				
## 381 1272 0				
## 302 12/3 0				
	##	302	14/5	U

```
## 383
               1274
                              0
                              0
## 384
               1275
                              0
## 385
               1276
## 386
               1277
                              0
## 387
                              0
               1278
## 388
               1279
                              0
## 389
               1280
                              0
## 390
                              0
               1281
## 391
               1282
                              0
## 392
               1283
                              0
## 393
                              0
               1284
## 394
               1285
                              0
                              0
## 395
               1286
## 396
               1287
                              0
## 397
               1288
                              0
## 398
                              0
               1289
## 399
               1290
                              0
## 400
                              0
               1291
               1292
## 401
                              0
## 402
               1293
                              0
## 403
                              0
               1294
## 404
               1295
                              0
## 405
               1296
                              0
## 406
               1297
                              0
## 407
               1298
                              0
## 408
               1299
                              0
## 409
               1300
                              0
## 410
               1301
                              0
## 411
               1302
                              0
## 412
                              0
               1303
## 413
               1304
                              0
## 414
               1305
                              0
## 415
               1306
                              0
## 416
                              0
               1307
## 417
                              0
               1308
## 418
               1309
#test_matrix = confusionMatrix(as.factor(test_predictions),
as.factor(submission$Survived))
#print(test_matrix)
```

Conclusion

Como la base de datos de prueba no incluye la columna Survived, no es posible generar una matriz de confusión para evaluar el desempeño directamente. Sin embargo, el modelo predijo las probabilidades de supervivencia utilizando el umbral óptimo previamente determinado (0.24). Esto sugiere que se priorizó la sensibilidad para identificar posibles

sobrevivientes. Los resultados se podrían validar al enviarlos a Kaggle, donde se compara con los valores reales.