1. CONJUNTOS, RELAÇÕES e LINGUAGENS

Conjuntos

- conjuntos são coleções de objetos $L = \{a,b,c\}$
- cada objeto é um membro ou elemento do conjunto
- conjuntos *contêm* cada um de seus elementos a∈L
- não há elementos repetidos em um conjunto
- conjuntos iguais contêm os mesmos elementos
- conjuntos unitários contêm um só elemento $\{a\} \neq a$.
- o conjunto vazio não contém elemento algum

 $\emptyset = \{\}$

- conjuntos infinitos contêm infinitos elementos $\mathbb{N} = \{0,1,...\}$
- B é subconjunto de A se todos os elementos de B forem também elementos de A. B \subset A
- Conjuntos podem ser dados por regras que definem as propriedades de seus elementos $\{x \mid x>0\}$
- C é a *união* de A e B se todos os seus elementos pertencerem ou a A ou a B. C=A∪B
- C é a intersecção de A e B se todos os seus elementos pertencerem a A e a B, C=A∩B
- C é a diferença entre A e B se seus elementos pertencerem a A, mas não a B, C=A - B
- Idempotência um conjunto não se altera sob união ou intersecção consigo mesmo
- Comutativa a ordem dos conjuntos não altera o resultado das operações de união ou intersecção
- Associativa a sequência de aplicação de operações de união (ou de intersecção) a três conjuntos é irrelevante
- *Distributiva* vale a distributividade para a união em relação à intersecção e vice-versa
- Absorção um conjunto não se altera sob união (intersecção) com o resultado de sua intersecção (união) com outro conjunto

Leis de De Morgan - a diferença entre um conjunto e uma união (intersecção) de outros dois é igual à intersecção (união) das diferenças entre esse conjunto e cada um dos outros dois

A e B são *disjuntos* se não tiverem intersecção

Uniões e intersecções se aplicam também a mais de dois conjuntos

Conjunto-potência de A (2^A) é o conjunto de todos os possíveis subconjuntos de A

Partição de A é qualquer subconjunto de 2^A que não inclua o conjunto vazio, que tenha elementos disjuntos dois a dois e que seja tal que a união de todos os seus elementos seja A

Teoremas de De Morgan

- $A (B \cup C) = (A B) \cap (A C)$
- $A (B \cap C) = (A B) \cup (A C)$
- $A \cup (A \cap B) = A$
- $A \cap (A \cup B) = A$

Relações

Par ordenado (a,b) distingue os elementos a e b

Produto cartesiano A×B de A por B é o conjunto de todos os possíveis pares ,ordenados (a,b) tais que $a \in A$ e $b \in B$

Uma relação binária sobre dois conjuntos é qualquer subconjunto de seu produto cartesiano

Ênupla ordenada $(a_1, a_2, ..., a_n)$

Següência é uma ênupla ordenada em que não está fixado o número de elementos componentes

Comprimento de uma sequência é o número de seus elementos Produto cartesiano A₁×A₂×...×A_n é o conjunto de todas as possíveis ênuplas ordenadas $(a_1, a_2, ..., a_n)$ tais que $a_i \in A_i$ Uma relação n-ária sobre A₁, A₂, ... ,A_n é um subconjunto qualquer de $A_1 \times A_2 \dots \times A_n$

Funções

Uma função f: A \rightarrow B, de A para B, é uma relação binária R sobre A e B tal que para cada a∈ A existe um e só um par ordenado de R, cuja forma seja (a,x).

O conjunto A é o *domínio* de f.

Para $a \in A$ denota-se como f(a) o elemento $b \in B$ tal que $(a,b) \in f$, f(a) é dito imagem do elemento a, segundo f.

Se f: $A_1 \times A_2 \times ... \times A_n \rightarrow B$ é função, e $f(a_1, a_2, ..., a_n) = b$, então os a: são chamados *argumentos* de f. e b é o correspondente *valor* de f.

 $f: A \to B \text{ \'e injetora}$ se para todo $a \ne b$, $f(a) \ne f(b)$

 $f: A \rightarrow B$ é sobrejetora se cada elemento de B é imagem de algum elemento de A

 $f: A \rightarrow B \in bijetora$ se for injetora e sobrejetora

Uma relação binária R ⊆ A×B tem uma relação inversa $R^{-1} \subseteq B \times A \text{ dada por } (b,a) \in R^{-1} \Leftrightarrow (a,b) \in R$

A inversa de uma função nem sempre é função

Se f for uma bijeção, f^{-1} também será uma bijeção Em bijeções simples, em que o argumento pode ser confundido com sua imagem, caracterizam-se os isomorfismos naturais

Para relações binárias O e R, define-se composição OoR ou OR como sendo o conjunto:

 $Q \circ R = \{ (a,b) \mid \text{para algum } c, (a,c) \in Q \text{ } e(c,b) \in R \}$

Relações Binárias Especiais (1)

Uma relação R \subseteq A×A pode ser representada através de um *grafo* orientado

Elementos de A correspondem a nós do grafo

 $R \subseteq A \times A \in reflexiva$ se todo $(a,a) \in R$

 $R \subseteq A \times A$ é simétrica se $(a,b) \in R$ sempre que $(b,a) \in R$

 $R \subset A \times A \in anti-simétrica$ se para todo $(a,b) \in R$, com $a \neq b$, implicar que (b,a) ∉ R

 $R \subseteq A \times A \in transitiva \text{ se } (a,b) \in R \land (b,c) \in R \Rightarrow (a,c) \in R$

Uma relação reflexiva, simétrica e transitiva é dita relação de eguivalência

Cada grupo de nós conexos do grafo forma uma classe de equivalência

As classes de equivalência de uma relação de equivalência sobre A criam uma partição de A

Uma relação reflexiva, anti-simétrica e transitiva é chamada relação de ordem parcial

Uma relação de ordem parcial R ⊆ A×A é chamada *relação de* ordem total se, para todo a, b ∈ A, tem-se que ou (a,b) ∈ R ou $(b.a) \in R$

Uma cadeia em uma relação binária é uma següência $(a_1, a_2, ..., a_n), n \ge 1$, tal que $(a_i, a_{i+1}) \in R, i = 1, ..., n-1$. Diz-se que esta cadeia vai de a₁ até a_n

Uma cadeia é um *ciclo* se os a_i são distintos, e também $(a_n,a_1) \in R$ Um ciclo é *trivial* se n=1. Se não, será *não-trivial*

Uma relação é de ordem parcial se e somente se for reflexiva e transitiva, e isenta de ciclos não-triviais

Fechamentos

Se D é um conjunto e $n \ge 0$, seja $R \subseteq D^{n+1}$ uma relação (n+l)-ária sobre D. Então um subconjunto B ⊆ D é dito fechado em relação a R sempre que $(b_1, \dots, b_{n+1}) \in \mathbb{R}$, caracterizando uma propriedade de fechamento de B.

Seja P uma propriedade de fechamento definida por relações sobre um conjunto D, e seja A ⊆ D. Nessas condições, existirá um conjunto mínimo B, que contém o conjunto A. e que guarda a propriedade P.

B é o fechamento de A em relação às relações R₁ ... R_n

No particular caso de $R \subseteq A \times A$ define-se R^* como fechamento reflexivo e transitivo de R.

O fechamento reflexivo e transitivo R* é dado por:

 $R \cup \{ (a,b) \mid existe \ uma \ cadela \ de \ a \ para \ b, \ em \ R \}$

Relação binária pode ser fechada para uma ou mais propriedades.

Ex.: R+ fechamento transitivo

Conjuntos Finitos e Infinitos

Tamanho (número de elementos) finito caracteriza conjuntos finitos.

Dois conjuntos finitos A e B são *equinumerosos* se for possível obter alguma bijeção $f: A \to B$. É uma relação de *simetria*. Um conjunto finito é equinumeroso em relação a $\{1, ..., n\}$, com $n \in \mathbb{N}$. Neste caso, diz-se que a *cardinalidade* do conjunto é n.

Para conjuntos infinitos não é possível contar os elementos, Um conjunto é enumeravelmente infinito se for equinumeroso em relação a \mathbb{N} .

Um conjunto é *enumerável* se for finito ou então enumeravelmente infinito. Caso contrário será dito *não-enumerável*

A forma mais direta de mostrar que um conjunto é enumerável consiste em estabelecer uma *bijeção* deste conjunto com outro conjunto enumerável, como por exemplo o conjunto dos naturais. Uma união finita de conjuntos enumeráveis é enumerável.

Um produto cartesiano de um número finito de conjuntos enumeráveis é enumerável.

Técnicas de Demonstração

Há vários tipos de demonstrações, baseados em três princípios:

(a) Principio da indução matemática

Seja A um subconjunto dos números naturais tal que O e Ao e para cada natural n. se $\{0,1,...,n\} \in A$. então $n+1 \in A$. Nessas

condições tem-se $A=\mathbb{N}$. Usa-se para provar asserções do tipo:

"Para todo natural n, a propriedade P é válida".

Para isso, deve ser provada a validade de:

- (1) Base da indução provar P para n=0
- (2) Hipótese de indução: admitir que P valha para naturais 0.1....n
- (3) Passo indutivo: provar que P é válido também para n+1

(b) Principio das Casas de Pombos

Se A e B forem conjuntos finitos não-vazios, e se a cardinalidade de A for maior que a de B, então não haverá nenhuma função injetora de A para B (prova-se por indução).

Teorema: se R é uma relação binária sobre um conjunto A finito, caso haja em R cadeias arbitrariamente longas, então certamente haverá ciclos em R (prova-se pelo princípio das casas de pombos)

(c) Principio da diagonalização

Para R, uma relação binária sobre A, define-se D, conjunto-diagonal como D = { a | a \in A \land (a,a) \notin R } . Para cada a \in A, seja R_a = { b | b e A \land (a,b) \in R } Nessas condições, D é distinto

de cada R_a.

Cada linha da matriz é diferente do complemento de sua diagonal.

Teorema de Cantor: $2^{\mathbb{N}}$ é não-enumerável. (prova-se pelo principio da diagonalização)

Alfabetos e Linguagens (1)

Alfabetos e linguagens podem ser usados como modelos para os dados que o computador manipula, na forma de cadeia de símbolos.

O alfabeto binário {0,1} é particularmente útil.

Uma *cadeia* sobre um alfabeto é uma seqüência finita de símbolos do alfabeto

A cadeia vazia **\varepsilon** não contém símbolos

 Σ^* é o conjunto de todas as cadeia sobre o alfabeto Σ Comprimento de uma cadeia é o número de símbolos da seqüência que a compõe

Um mesmo símbolo σ pode ocorrer mais de uma vez em uma cadeia

Concatenação w de duas cadeias x e y é a cadeia formada pela justaposição de x com y: w=x°y. Não havendo ambigüidade, pode-se omitir o"°".

A concatenação é associativa, não-comutativa e seu elemento neutro é a cadeia vazia.

Uma cadeia v é *sub-cadeia* de outra cadeia w se e somente se existirem x e y tais que w=x°v°y.

Se w = $x \circ v$, v é *sufixo* de w.

Se $w = v \circ y$, $v \in prefixo de w$.

Par:a cada natural i e cada cadeia w define-se indutivamente:

 $\mathbf{w}^0 = \mathbf{\varepsilon} : \mathbf{w}^{i+1} = \mathbf{w} \circ \mathbf{w}^i$

Define-se *cadeia reversa* w^R de uma cadeia w:

Se w= ε , então w^R = w = ε .

Se |w| = n+1 > 0, e $w=u \circ a$ para $a \in \Sigma$, então $w^R = a \circ u^R$ (demonstrase por inducão).

Um conjunto de cadeias sobre Σ (um subconjunto de Σ^*) é chamado linguagem.

Linguagens infinitas são conjuntos do tipo

L={ $w \in \Sigma^*$ | w tem a propriedade P}

Se Σ é finito, Σ^* será um conjunto infinito enumerável (prova-se construindo uma bijeção, através da enumeração de Σ^* de acordo com alguma ordenação lexicográfica).

Pode-se definir para linguagens L, L':

• Complemento de uma linguagem L: Σ^* - L

- Concatenação de linguagens L°L'
- Fechamento de K1eene de uma linguagem: L*
- Fechamento $L^+ = L \circ L^*$

Representação finita de Linguagens

Representações de linguagens são cadeias finitas sobre um alfabeto finito. Logo existe um número infinito, enumerável, de representações para linguagens.

O conjunto de linguagens possíveis sobre um alfabeto Σ é 2^{Σ^*} , não-enumerável de acordo com o teorema de Cantor.

Assim, há linguagens que não são finitamente representáveis, independentemente do tipo escolhido de representação.

Algumas representações usuais de linguagens:

- expressões regulares, para linguagens regulares
- geradores ou gramáticas
- reconhecedores ou autômatos
- algoritmos