W07-02

Slide 01: In this unit, we will discuss a procedure that will allow us to construct an orthogonal basis for a vector space.

Slide 02: Let us start off with the simplest type of subspaces, namely those that are one-dimensional. Suppose V is spanned by a single non zero vector u_1 .

(#)

We know that V is a line and u_1 lies on the line.

(#)

The single vector u_1 forms an orthogonal basis for V.

Slide 03: Suppose V is two-dimensional, that is V is spanned by two linearly independent vectors u_1 and u_2 . Clearly, u_1 and u_2 forms a basis for V.

(#)

We can visualise the subspace V as shown, with the two basis vectors u_1 and u_2 .

Slide 04: Consider the subspace span $\{u_1\}$ spanned by the vector u_1 alone.

(#)

Then this is a one-dimensional subspace of V and $\{u_1\}$ is an orthogonal basis for this subspace.

(#)

Since we have an orthogonal basis for this one-dimensional subspace, we can apply the orthogonal projection theorem to project u_2 onto this subspace. By the orthogonal projection theorem, the projection of u_2 onto span $\{u_1\}$ is the vector $\frac{u_2 \cdot u_1}{||u_1||^2}u_1$.

(#)

This projection is represented by the green vector in the diagram.

(#)

As this is the orthogonal projection of u_2 onto span $\{u_1\}$, if we take the difference between u_2 and its projection, we would obtain the yellow vector as shown

(#)

which will be orthogonal to span $\{u_1\}$, and in particular, orthogonal to u_1 .

Slide 05: We have started off with a basis for the two-dimensional space V, comprising of vectors u_1 and u_2 . After applying orthogonal projection, we now have an orthogonal basis for the same space V. The vectors in this orthogonal basis are u_1 and the difference between u_2 and its projection onto span $\{u_1\}$.

Slide 06: Let us take this one step further and consider V as a three-dimensional subspace of \mathbb{R}^n . Suppose V is spanned by three linearly independent vectors $\boldsymbol{u_1}$, $\boldsymbol{u_2}$ and $\boldsymbol{u_3}$.

(#)

We first consider V' to be the subspace of V spanned by just u_1 and u_2 . Note that V' is two dimensional and u_1 , u_2 forms a basis for V'.

(#)

We will ignore u_3 for the time being, but it is useful to note that u_3 , as shown by the green vector, does not lie on V', since u_3 is not a linear combination of u_1 and u_2 .

(#)

Now

(#)

let v_1 be equal to u_1 , represented by the red vector in the figure.

Slide 07: We have already seen how we can convert a basis for a 2-dimensional subspace into an orthogonal basis, thus

(#)

applying the same principle, we can now have v_1 and v_2 to form an orthogonal basis for the space V'. Note that v_1 is just u_1 while v_2 is the difference between u_2 and its projection onto span $\{v_1\}$.

(#)

It is now time to bring back u_3 into the picture. As mentioned earlier, u_3 does not belong to V'.

(#)

Since we now have an orthogonal basis for V', in the form of v_1 and v_2 , we can apply the orthogonal projection theorem to compute the projection of u_3 onto V'. The projection is given by the linear combination of v_1 and v_2

(#)

as shown by the pink vector.

Slide 08: Just as before,

(#)

we will consider the difference between u_3 and its projection onto $\operatorname{span}\{v_1,v_2\}$.

(#)

Let this vector be v_3 , as represented by the orange vector in the figure. Again, by our understanding of orthogonal projection, the vector v_3 will be orthogonal to the space V', which means that v_3 , together with v_1 and v_2 would be an orthogonal basis for the three-dimensional subspace V.

Slide 09: Let us recap on what we have just discussed. We started off with a basis for the three-dimensional subspace V. This initial basis consists of vectors u_1 , u_2 and u_3 .

(#)

We first let v_1 equal to u_1 .

(#)

Then we project u_2 onto the one-dimensional subspace spanned by v_1 , followed by taking the difference between u_2 and its projection onto span $\{v_1\}$. The resulting vector v_2 will be orthogonal to v_1 . The two vectors v_1 and v_2 would form an orthogonal basis for a two-dimensional subspace.

(#)

We then continue by computing the projection of u_3 onto the subspace spanned by v_1 and v_2 . By taking the difference between u_3 and its projection onto span $\{v_1, v_2\}$, we have the resulting vector v_3 , which is orthogonal to both v_1 and v_2 .

(#)

We have now successfully converted the initial basis $\{u_1, u_2, u_3\}$ into an orthogonal basis $\{v_1, v_2, v_3\}$.

Slide 10: The procedure that we have just described does not have to stop at three dimensional subspaces. The same idea can be applied for higher dimensional subspaces. We will now present this procedure as a theorem. This procedure which converts a basis into an orthogonal basis, is known as the Gram-Schmidt Process. Suppose u_1 to u_k is a basis for V.

(#)

We start by letting v_1 be equal to u_1 .

(#)

Then let v_2 be equal to the difference between u_2 and its projection onto span $\{v_1\}$. At this point, if we have done all computations carefully, the new vector v_2 should be orthogonal to v_1 .

(#)

We then let v_3 to be equal to the difference between u_3 and its projection onto span $\{v_1, v_2\}$. Note that we can compute this orthogonal projection because v_1 and v_2 forms an orthogonal basis for span $\{v_1, v_2\}$. Let this newly constructed vector be v_3 .

(#)

Continuing in this manner, constructing the new vectors v_i one at a time, we eventually arrive at the final vector v_k , which is the difference between u_k and the projection of u_k onto the subspace spanned by v_1 to v_{k-1} . Note that by this time, we would have constructed an orthogonal basis v_1, v_2 to v_{k-1} , which is an orthogonal basis for the k-1-dimensional subspace.

(#)

The process has now ended and v_1 to v_k will be an orthogonal basis for V.

- Slide 11: Converting this orthogonal basis to an orthonormal basis is easy as we simply need to normalise all the vectors by dividing each of them by their length.
- **Slide 12:** We will work through one example on the application of Gram-Schmidt Process. In this example, we wish to convert the three vectors (1,0,1), (0,1,2), (2,1,0) into an orthogonal basis for \mathbb{R}^3 .
- Slide 13: Before we start, it should be noted that because of the sequential nature of the Gram-Schmidt Process, we need to decide which of the three vectors we would like to be u_1 , u_2 and u_3 . Needless to say, if we choose to label the three vectors differently, the resulting three vectors after conversion will be different but would still be correct. For this example, we will let u_1 , u_2 and u_3 be the three vectors as shown. We start off by letting v_1 be u_1 , which is (1,0,1).

(#

Then v_2 is the difference between u_2 and the projection of u_2 onto span $\{v_1\}$.

 (\mathcal{H})

This is given by the expression as shown

(#)

and when evaluated, we have

(#)

the vector (-1, 1, 1).

(#)

As mentioned previously it is good practice to check everytime we constructed a new vector that the new vector is orthogonal to all those constructed up to this point. So now we just need to check that v_2 is orthogonal to v_1 , which is indeed the case, since the dot product between them is zero.

(#)

Next, the vector v_3 is the difference between u_3 and its projection onto span $\{v_1, v_2\}$.

By the orthogonal projection theorem, the projection vector can be computed

(#)

and when evaluated, we have

(#)

the vector $(\frac{2}{3}, \frac{4}{3}, -\frac{2}{3})$.

(#)

Again, we should now check that the new vector v_3 is orthogonal to both v_1 and v_2 and indeed it is true.

Slide 15: We have come to the concluion of the Gram-Schmidt Process and the three vectors v_1, v_2 and v_3 is now an orthogonal basis for \mathbb{R}^3 .

Slide 16: In summary, for this unit,

(#)

we apply the knowledge of orthogonal projection to come up with a procedure known as the Gram-Schmidt Process that will convert a basis for a vector space into an orthogonal basis.