Gain

Para la conversion de la ganancia de decibeles a la ganancia en magnitud se utilizan las siguientes ecuaciones:

$$A = \frac{V_o}{V_{in}} \tag{1}$$

$$A[dB] = 20log_{10}(A[])$$
 (2)

$$A[] = 10^{\frac{A[dB]}{20}} \tag{3}$$

Equivalent diagram of OPAMP

La R_i de un OPAMP para minimizar las perdidas de potencia, debe ser de la siguiente forma:

- Para una fuente de voltaje: $R_i \to \infty$
- Para una fuente de corriente: $R_i \to 0$

La R_o de un OPAMP para minimizar las perdidas de potencia, debe ser lo mas pequeña posible.

Input Offset Voltage

Input offset voltage (V_{io}): Diferencia de voltaje entre las terminales de entrada causada por las imprefecciones de diseño.

Input Offset and Bias Currents

$$I_{io} = |I_{B1} - I_{B2}| \tag{5}$$

$$I_B = \frac{I_{B1} + I_{B2}}{2} \tag{6}$$

Input Offset Current (I_{io}): Fuga de corriente restante entre las entradas del OPAMP, debido a la imperfección de los transistores en las entradas.

Input Bias Current (I_B) : Corriente promedio que fluye hacia o desde las entradas del OPAMP, debido a la imperfección de los transistores en las entradas.

Common Mode Rejection Ratio (CMRR)

$$A_{cm} = \frac{V_{ocm}}{V_{cm}} \qquad \boxed{CMRR = \frac{A}{A_{cm}} > 120 \ [dB]}$$
 (7)

Common Mode Rejection Ratio (CMRR): Es la capacidad del amplificador diferencial, para rechazar señales comunes.

Comportamiento en Frecuencia

$$UGB = Af_o$$
 (8)

Unit Gain Bandwidth (UGB): Frecuencia a la cual el amplificador tiene una ganancia unitaria.

Breaking Frequency: Frecuencia de corte en la que el amplificador pierde 3 [db] de ganancia.

$$SR = \frac{dV_o}{dt}$$
 (9)

Slew Rate: Es el tiempo de respuesta a cambios de polaridad del V_{id} . Es el factor que determina el ancho de banda del amplificador.

Voltage Follower

Amplificador no inversor con ganancia unitaria, consigue:

- Maximo ancho de banda
- Maxima impedancia de entrada
- Minima impedancia de salida

$$B=1$$

$$A_F = 1 \tag{10}$$

$$R_{iF} = R_i(1+A) \tag{11}$$

$$R_{oF} = \frac{R_o}{(1+A)} \tag{12}$$

$$|f_F = f_o(1+A)| \tag{13}$$

Inverting amplifier

Configuración con baja impedancia de entrada, ideal para fuentes de corriente.

$$B = \frac{R_1}{R_1 + R_F} \qquad K = \frac{R_F}{R_1 + R_F}$$
 (18)

$$A_F = -\frac{AK}{1 + AB} = -\frac{R_F}{R_1}$$
 (19)

$$R_{iF} = R_1 \tag{20}$$

$$R_{oF} = \frac{R_o}{(1+AB)} \tag{21}$$

$$f_F = f_o(1 + AB) = \frac{UGB * K}{A_F}$$
 (22)

Non-inverting amplifier

Configuración con alta impedancia de entrada, ideal para fuentes de voltaje.

$$B = \frac{1}{A_F} \qquad A_F = \frac{A}{1 + AB} = 1 + \frac{R_F}{R_1} \qquad (14)$$

$$R_{iF} = R_i(1 + AB) \tag{15}$$

$$R_{oF} = \frac{R_o}{(1+AB)} \tag{16}$$

$$f_F = f_o(1 + AB) \tag{17}$$

Differential Amplifier

Tiene una baja impedancia de entrada.

$$V_o = -\frac{R_F}{R_1}(V_x - V_y)$$
 $A_D = -\frac{R_F}{R_1}$ (23)

$$R_{iFx} = R_1 \qquad R_{iFy} = R_2 + R_3 \qquad (24)$$

$$R_{oF} = \frac{R_o}{(1 + \frac{A}{A_D})} \tag{25}$$

$$\left| f_F = \frac{UGB}{A_D} = f_o \left(\frac{A}{A_D} \right) \right| \tag{26}$$

Differential Amplifier whith 2 OPAMP'S

Amplificador diferencial conformado por dos amplificadores no inversores en cascada.

Una ventaja sobre el diferencial simple, es que tiene capacidad de tener una alta impedancia de entrada.

$$V_o = \left(1 + \frac{R_F}{R_1}\right) (V_x - V_y)$$

$$A_D = 1 + \frac{R_F}{R_1} \tag{27}$$

$$B_x = \frac{R_1}{R_1 + R_F}$$

$$B_y = \frac{R_2}{R_2 + R_3} \tag{28}$$

$$R_{iFx} = R_i(1 + AB_x)$$

$$R_{iFy} = R_i(1 + AB_y) \tag{29}$$

Instrumentation Amplifier

Amplificador diferencial con alta impedancia de entrada por los seguidores de voltaje en sus entradas. Esto tambien provoca una mejora en el CMRR.

$$V_o = \left(-\frac{R_F}{R_1}\right)(V_x - V_y)$$

$$A_D = -\frac{R_F}{R_1} \tag{30}$$