Mathematical Thinking QUIZ 1 Sept 2023 term

Total marks: 20

1 Section I (7 Marks)

- 1. In the context of real numbers and the standard order relation, which of the following statement(s) is (are) true?
 - (a) The least upper bound is the largest element in the set.
 - (b) A set may have multiple least upper bounds.
 - (c) The least upper bound may not be in the set itself.
 - (d) The completeness axiom ensures that the real numbers have no gaps or holes.

Answer: (c),(d)

- 2. If the negation of a statement is denoted as ¬(The statement), then which of the following options is/are true?
 - (a) \neg (The set S is a bounded above set and $\sup S$ is an upper bound of S)= The set S is not a bounded above set and $\sup S$ is not an upper bound of S.
 - (b) $\neg (p \mid ab) = p \not\mid a \text{ and } p \not\mid b.$
 - (c) ¬(Every convergent sequence is bounded)= A bounded sequence is convergent.
 - (d) $\neg(x \text{ is an arbitrary element of the set } S \cup T) = x \text{ is not element of } S \text{ and } x \text{ is not element of } T$

Answer: (b),(d)

- 3. Which of the following options is/are true?
 - (a) If a sequence $\{s_n\}$ in \mathbb{R} is convergent and $s_n \geq a$ for all but finitely many n, then $\lim_{n\to\infty} s_n \leq a$
 - (b) Let $\{s_n\}$ be a sequence in \mathbb{R} . If $\lim_{n\to\infty} |s_n| = 0$, then $\lim_{n\to\infty} s_n = 0$
 - (c) Let $\{s_n\}$ be a sequence in \mathbb{R} such that $s_1 > 1$ and $s_{n+1} = 4 \frac{4}{s_n}$. $\{s_n\}$ is an increasing sequence.
 - (d) Let $\{s_n\}$ be a sequence in \mathbb{R} such that $s_1 < 1$ and $s_{n+1} = 4 \frac{4}{s_n}$. $\{s_n\}$ is an decreasing sequence.

Answer: (b),(d)

- 4. Which of the following options is/are true?
 - (a) Set $\{n \in \mathbb{N} \mid n \geq 5\}$ and set $\{n \in \mathbb{N} \mid n \geq 500\}$ have the same cardinality.

(b)
$$\sum_{k=1}^{n} (3n-1) = \frac{n(6n+1)}{2}$$

(c) If S is the set $\{1,2,3,4\}$, then cardinality of the set $(S \times S) \setminus (S \times \{3\})$ is 12.

(d)
$$S = -\frac{1^2}{2^2} + \frac{1^2 \cdot 3^2}{2^2 \cdot 4^2} - \frac{1^2 \cdot 3^2 \cdot 5^2}{2^2 \cdot 4^2 \cdot 6^2} + \dots = \sum_{n=1}^{\infty} (-1)^n \frac{1^2 \cdot 3^2 \cdot 5^2 \dots (2n-1)^2}{2^2 \cdot 4^2 \cdot 6^2 \dots n^2}$$

Answer: (a),(c)

- 5. Which of the following options is/are true?
 - (a) Set of rational numbers \mathbb{Q} is a field.
 - (b) Set of rational numbers \mathbb{Q} is a complete ordered field.
 - (c) For a real number $\alpha > 0$, let set αS denoted as the set $\alpha S = \{\alpha x \mid x \in S\}$, then $sup(\alpha S) = \alpha(supS)$.
 - (d) For a real number $\alpha < 0$, let set αS denoted as the set $\alpha S = \{\alpha x \mid x \in S\}$, then $sup(\alpha S) = -\alpha(supS)$

Answer: (a),(c)

2 Section II (13 Marks)

- 1. Consider three sets A, B and C. Prove that $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- 2. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, ... is defined recursively by $a_1 = 1, a_2 = 1$, and $a_{n+2} = a_{n+1} + a_n$, for all $n \ge 1$. Prove that $\gcd(a_k, a_{k+1}) = 1$ for all $k \in \mathbb{N}$.
- 3. Consider a sequence $\{a_n\}$ such that $a_1 = 4$ and $a_{n+1} = 4^{a_n}$, for all n > 1. Find the remainder when a_{100} is divided by 7.
- 4. There exists a rational number x such that $x^2 = 3$. Prove or disprove this statement.
- 5. Prove or disprove the following statement: For any non-empty subset A of \mathbb{Q} that is bounded from above, there exists a least upper bound for A in the set of rational numbers \mathbb{Q} .