முழுப்	பதிப்புரிமையுடையது	/ All Rights Reserved)	
			-

மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் ஆபிவிருத்திக் குங்கம் வவுளியா, மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் அபிவிரு velopm அணைத்து பெருப்பில் கலைக்கழைக்கு மாணவர் இடிவியிருத்திச்சு மிக்கம் வவுளியாமாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் முக மானவர் அபிவிருத்தித் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக்கழக மானவர் ஆபிவிருத்தித் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் Developme Allo University r Students மூலைக்கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அபிவிருத்திச் சங்கம் வவுளியா மாவட்டம் அனைத்துப் பல்கலைக் கழக மானவர் அ

கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர) முன்னோடிப்பரீட்சை , 2024 General Certificate of Education (Adv. Level) Pilot Examination, 2024

இனைந்த கணிதம் l Combined maths l

10	Т	ı

3 மணித்தியாலம் 10 நிமிடம் 3 hour 10 minutes

PART 1

1.	கணிதத் தொகுத்தறிவு முறையைப் பயன்படுத்தி, எல்லா நேர்முழு எண்களுக்கும். $2(7^n)+3(5^n)$ என்பது இனால் 24 வகுபடும் போது மீதி 5 எனக்காட்டுக.	
2.	ஒரே வரிப்படத்தில் $y= x+3 $, $y= 1-2x $ ஆகியவந்நின் வரைபுகளைப் பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+1 $	3
2.		3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3
2.	பரும்படியாக வரைக.இதிலிருந்து அல்லது வேறு விதமாக, சமனிலி $ 1-2x > x+$	3

மட்டு, வீச்சம்								
			•••••			•••••		
			••••••					
							• • • • • • • • • • • • • • • • • • • •	••••••
` ,					இ ருப்பி	ன (3n -	–t) <u>"</u>	னது
` ,					இருப்பி 	ன (3 <i>n</i> -	-t)	னது
` ,					இருப்பி 	ன (3 <i>n</i> -	- t)	
$\left(x^3 - \frac{1}{x^2}\right)^n$ இன் இன் மடங்கு என	க்காட்டுக.	இங்கு 1	$t \leq 3n$	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	$t \leq 3n$	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	$t \leq 3n$	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				னது
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				
இன் மடங்கு என	க்காட்டுக.	இங்கு 1	t ≤ 3n	ஆகும்.				

5.				$\lim_{x \to 0} \frac{\tan(ax^2)}{x^2}$	= a எனக்	காட்டுக.	இதிலிருந்து,	
	$\lim_{x\to 0}\frac{\tan x}{x}$	$\frac{7x^2 + \tan 8x^2}{\sin^2 x} =$	= 15 எனக்	காட்டுக.				
6.	அருகே	ഉ ள்ள ഉ	ருவில் y =	$=\frac{\sqrt{3x}}{3x+1}$ இன் L	பரும்படி வ ல	отц	$\sqrt{3}x$	
	காட்டப்	பட்டுள்ளது.		3211		y	$y = \frac{\sqrt{3x}}{3x+1}$	
	இவ்வரை செங்கோ	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ		ருவானது $\it x$ நறப்படும் போத	அச்சுப் பற்ற	3 4	$y = \frac{\sqrt{3x}}{3x+1}$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது χ	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1 \qquad x$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	
	இவ்வரை செங்கோ திண்மக்	பட்டுள்ளது. ரபில் நிழற்ற ாணங்களினூ கனவளவு	ப்பட்ட உ டாக சுழ <u>ற்</u>	ருவானது <i>x</i> நூப்படும் போ _ද	அச்சுப் பற்ற து பெறப்படு	3 4	$y = \frac{\sqrt{3x}}{3x+1}$ $x=1$	

a,b€	ER^+									
இல்	ഖത്വെല്	ப்படும்	தொடலி	ியின்	சமன்பா($\frac{x}{a}\cos\theta$	$+\frac{y}{h}\sin\theta$	= 1 என ச	க் காட்(்க.
						0) என்னும்	D			
	_				у ј (2и,	o) diwiggit	<i>д</i> опошав		ഗാരായ്യവ	010011001
U D	ன் பெறு	மானத	தை கா	ணக ?						
						• • • • • • • • • • • • • • • • • • • •				···········
				••••••						
 . A ≡	(1, -1)	,B ≡ ((5, -3)	எனக்	கொள்ே	வாம். <i>AB</i> (இன் செந்	பகுத்து இ) ருகூறா	 க்கி
						வாம். <i>AB</i> (ானத்தைக்				 க்கி
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும		கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	
மீது ($C \equiv (2t)$,t) <u>e</u>	ள்ளது.	<i>t</i> இன்	பெறும	ானத்தைக்	கண்டு,	$ABCD$ $_{\mathfrak{G}}$	9 (IJ)	

காண்க.					
	 		 •••••		
	 	•••••	 •••••		
•••••	 •••••		 		
	 	••••••	 •••••		
	 	••••••	 •••••		
•••••	 •••••		 		
•••••	 •••••		 		
•••••	 •••••		 		
	 	•••••	 		
	 		 	,	
				எனக்கா	ாட்டுக.
tan 2 <i>θ</i> வை t இதிலிருந்து				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.
				எனக்கா	ாட்டுக.

PART II

11.

(a) $f(x) = ax^2 + 2x + c$, $g(x) = bx^2 + x + c$ எனக் கொள்வோம். இங்கு a,b,c பூச்சியமற்ற மெய்ம் மாறிலிகள் ஆகும். f(x), g(x) ஆகியன ஒரு பொதுமூலம் α ஐக் கொண்டுள்ளன எனத் தரப்பட்டுள்ளது. $\alpha = \frac{1}{b-a}$ எனக் காட்டுக. c ஐ a,b இன் சார்பில் காண்க.

f(x)=0 இன் பிரித்துக்காட்டி Δ_1 ஆனது $\Delta_1=rac{4b^2}{(b-a)^2}$ எனக் காட்டி,

இதிலிருந்து, f(x)=0 இன் மூலங்கள் மெய்யானவையும் வேறு வேறானவையும் எனக் காட்டுக.

g(x)=0 இன் பிரித்துக்காட்டி Δ_2 ஆனது $\Delta_2=\left(rac{a-3b}{b-a}
ight)^2$ எனக் காட்டி,

இதிலிருந்து g(x)=0 இன் மூலங்கள் பொருந்தும் எனின் a=3b எனக் காட்டுக.

f(x)=0 , g(x)=0 ஆகியவற்றின் மற்றைய மூலங்கள் β , γ எனக்கொள்வோம். $\beta=rac{a-2b}{a(b-a)}$ எனவும் $\gamma=rac{a-2b}{b(b-a)}$ எனவும் காட்டுக.

(b) p(x) = 0 ஆனது மூவுறுப்பு பல்லுறுப்பியாகும். இதன் முந்துறுகுணகம் 1 ஆகும். p(x) இனை (x-1), (x-3) என்பவற்றால் வகுக்கும் போது மீதிகள் முறையே 7, 13 ஆகும் p(x) இனை (x-1) (x-3) இனால் வகுக்கும் போது மீதியைக் காண்க. p(2) = 6எனில் p(x) இனை (x-1) (x-3) இனால் வகுக்கும் போது ஈவைக் கண்டு p(x) இனைக் காண்க.

12.

(a) பன்னிரண்டு உறுப்பினர்களைக்கொண்ட நடமாடும் கொரோனா தடுப்பூசி செலுத்தும் குழு ஒன்று ஏழு நாட்கள் வேலைத்திட்டம் ஒன்றை செயன்முறைப்படுத்தியது. அக்குழுவில் 2 வாகன ஓட்டிகளும் 4 வைத்தியர்கள் 6 தாதியர்களும் காணப்பட்டனர்.குறித்த ஒரு நாளில் ஒரு வாகன ஓட்டியும் 2 வைத்தியர்களும் 4 தாதியர்களும் வேலை செய்யவேண்டும்.

- і) அமைக்கக்கூடிய மொத்த குழுக்களின் எண்ணிக்கையைக் காண்க.
- ii) தாதியர்களில் குறித்த இருவர் இணைந்து பணிபுரிவார்கள் எனின் அமைக்கக்கூடிய குழுக்களின் எண்ணிக்கையைக் காண்க.
- iii) வைத்தியர்களில் குறித்த இருவர் இணைந்து பணிபுரிய மறுப்பின் அமைக்கக்கூடிய குழுக்களின் எண்ணிக்கையைக் காண்க.
- iv) குறித்த ஒரு நாள் வேலைப்பழு அதிகமாக காணப்படும் எனக்கருதி 1 தாதியும் 1 வைத்தியரும் உள்வாங்கப்படுவார்களெனின் அமைக்கக்கூடிய குழுக்களின் எண்ணிக்கையைக் காண்க.
- (b) $r\in\mathbb{Z}^+$ இந்கு $u_r=\frac{1}{r(r+1)(r+2)}$ எனவும் $f(r)=\frac{\lambda}{r(r+1)}$ எனவும் கொள்வொம். இங்கு λ மெய்மாநிலி $u_r=f(r)-f(r+1)$ ஆகுமாறு $\lambda=\frac{1}{2}$ எனக்காட்டுக. இதிலிருந்து $\sum_{r=1}^n u_r=\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$ எனக் காட்டுக. $r\in\mathbb{Z}^+$ இந்கு $v_r=\frac{1}{(r+1)(r+2)(r+3)}$ எனத்தரப்படின், $\sum_{r=1}^n v_r=\frac{1}{12}-\frac{1}{2(n+2)(n+3)}$ என உய்த்தறிக. u_r+v_r ஐக் கருதுவதன் மூலம் $\sum_{r=1}^n w_r=\frac{1}{3}-\frac{1}{2(n+1)(n+2)}-\frac{1}{2(n+2)(n+3)}$ என உய்த்தறிக. இங்கு $w_r=\frac{2r+3}{r(r+1)(r+2)(r+3)}$ ஆகும். $\sum_{r=1}^n w_r$ ஒருங்குகின்றது எனக்காட்டி , அதன் குட்டுத்தொகையைக் காண்க.

13.

(a)
$$A=\begin{pmatrix}a&0\\2&-2\\b&3\end{pmatrix}$$
, $B=\begin{pmatrix}1&5\\4&-1\\2&1\end{pmatrix}$, $C=\begin{pmatrix}15&6\\c&5\end{pmatrix}$ ஆகியன $A^TB=C$ ஆக

இருக்கத்தக்கதாக உள்ள தாயங்கள் எனக் கொள்வோம்; இங்கு $a,b,c\in\mathbb{R}$. a=1,b=3,c=-2எனக் காட்டுக.a,b,c இன் இப்பெறுமானங்களிற்கு C^{-1} ஐ எழுதி C(P+2I)=3C+I ஐ ஆக இருக்கத்தக்கதாக தாயம் P ஐக் காண்க ; இங்கு I ஆனது வரிசை 2 இன் சர்வசமன்பாட்டுத் தாயமாகும்.

(b) சிக்கலெண்கள் $z_1=1$ எனவும் $z_2=\cos\theta+i\sin\theta$ எனவும் கொள்வோம். இங்கு $-\pi<\theta\leq\pi$ ஆகும். ஆகண் வரிப்படத்தில் z_1 , z_2 என்னும் சிக்கலெண்களை A,B என்னும் புள்ளிகள் வகைக் குறிக்கின்றன. z_1+z_2 ஐ வகைக் குறிக்கும் புள்ளி C ஐக் காண்க. இதிலிருந்து z_1+z_2 இன் மட்டையும் வீசலையும் காண்க. $|z_1+z_2|$ இன் உயர்வுப் பெறுமானத்தையும் அதற்கு ஒத்த சிக்கலெண் z_2 வையும்

காண்க. $\left|z_1+z_2\right|$ இன் இழிவுப் பெறுமானத்தையும் அதற்கு ஒத்த சிக்கலெண் z_2 வையும் காண்க. $\frac{1}{z_1+z_2}$ ஐ முனைவாள்கூற்று வடிவத்தில் எழுதி $Re\left(\frac{1}{z_1+z_2}\right)=\frac{1}{2}$ எனக் காட்டுக.

(c) $z=r(\cos\alpha+i\sin\alpha)$ எனக் கொள்வோம்; இங்கு $r\in R$, $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ ஆகும். தாய்மோய்வரின் தேந்நத்தைப் பயன்படுத்தி $z^n+\bar{z}^n=2r^n\cos n\alpha$ எனக் காட்டுக; இங்கு $n\in\mathbb{Z}^+$ ஆகும். இதிலிருந்து அல்லது வேறுவிதமாக $(1+i)^n+(1-i)^n=2(\sqrt{2})^n\cos\left(\frac{n\pi}{4}\right)$ எனக் காட்டுக.

14.

- (a) $x \neq 1$ இந்கு $f(x) = \frac{2x(2x-1)(2x-5)}{(x-1)^3}$ எனக் கொள்வோம். $x \neq 1$ இந்கு f(x) இன் முதலாம் வகையீட்டுப் பெறுதி f'(x) இனைக் கண்டு இதிலிருந்து f(x) அதிகரிக்கின்ற ஆயிடையையும் f(x) குறைகின்ற ஆயிடைகளையும் காண்க. மேலும் f(x) இன் திரும்பல் புள்ளியின் ஆள்கூறுகளையும் காண்க. $x \neq 1$ இந்கு $f''(x) = \frac{12(1-\lambda x)}{(x-1)^5}$ எனத் தரப்பட்டுள்ளது. இங்கு λ துணியப்படவேண்டிய மாநிலியாகும். y = f(x) இன் வரைபின் விபத்திப்புள்ளியின் ஆள்கூறினைக் காண்க. y = f(x) இன் வரைபை அணுகுகோடுகள், திரும்பற்புள்ளி ஆகியவற்றைக் காட்டிப் பரும்படியாக வரைக.
- (b) முக்கோணி ஒன்றின் இருபக்கங்களின் நீளங்கள் முறையே 15, 20 ஆகும். தரப்பட்ட பக்கங்களுக்கு இடைப்பட்ட கோணமானது $\frac{\pi}{90}$ எனும் வீதத்தில் அதிகரிக்கின்றது. குறப்பட்ட பக்கங்களுக்கு இடைப்பட்ட கோணம் $\frac{\pi}{3}$ ஆகும்போது மூன்றாவது பக்கம் அதிகரிக்கும் வீதம் $\frac{\pi}{\sqrt{39}}$ எனக் காட்டுக.

15.

- (a) $j=\int_0^{\frac{\pi}{3}} \tan^2 \theta \sec \theta \, d\theta$ இனைக் காண்க. $I=\int_0^3 \ln(\sqrt{x+1}+\sqrt{x}) \, dx$ எனக் கொள்வோம். பிரதியீடு $\sqrt{x}=\tan \theta$ இனைப் பயன்படுத்தி $I=3\ln(2+\sqrt{3})-J$ எனக் காட்டுக. மேலும் $I=\frac{1}{2}\big\{7\ln(2+\sqrt{3})-2\sqrt{3}\big\}$ எனவும் காட்டுக.
- (b) பகுதிப் பின்னங்களைக் கொண்டு $\frac{4}{(x-1)(x+1)^2}$ ஐ எடுத்துரைக்க. **இதிலிருந்து** $\int \frac{1}{(1-e^{-x})(e^x+1)^2} \, dx$ ஐக் காண்க.
- (c) $\int_a^b f(x) \, dx = \int_a^b f(a+b-x) \, dx$ எனக் காட்டுக. இதிலிருந்து $\int_0^3 \frac{\cos^2(\frac{\pi x}{8})}{x(4-x)} \, dx = \frac{1}{4} \ln 3$ எனக் காட்டுக.

16.

(a) $x^2+y^2+2gx+2fy+C=0$ எனும் வட்டமானது x அச்சைத் தொடும் எனின் $g^2=c$ எனவும் $f^2>c$ எனின் y அச்சை வெட்டும் எனவும் இவ் வெட்டும் நாணின் நீளம் $2\sqrt{f^2-c}$ எனவும் காட்டுக. ஓர் வட்டமானது x அச்சை புள்ளி A(a,0) இல் தொடும் அதேவேளை நேர் y அச்சை B,C எனும் புள்ளிகளிலும் வெட்டிக் கொண்டு செல்கிறது. BC=l எனின் இவ்வட்டத்தின் சமன்பாடு

$$(x-a)^2 + \left(y - \frac{\sqrt{l^2 + 4a^2}}{2}\right)^2 = \frac{l^2 + 4a^2}{4}$$
 எனக்காட்டுக $a = 12$, $l = 10$ எனின் முக்கோணி ABC யின் பரப்பைக் காண்க.

(b) ஓர் நேர் கோடானது. கோடு 5x-y-4=0 ஐ புள்ளி P யிலும் கோடு 3x+4y-4=0 ஐ புள்ளி Q விலும் வெட்டிக் கொண்டு செல்கிறது. PQ வின்

நடுப்புள்ளி $M\equiv (1,5)$ ஆகும். m என்பது கோடு PQவின் படித்திறன் எனின் $P=\left(\frac{9-m}{5-m},\frac{25-m}{5-m}\right)$ எனவும் $Q=\left(\frac{4m-16}{4m+3},\frac{m+15}{4m+3}\right)$ எனவும் காட்டி PQ வின் சமன்பாட்டைக் காண்க.

17.

- (a) வழக்கமான குறிப்பீட்டில் முக்கோணி ABC இல் சைன் நெறி, கோசைன் நெறியைக் கூறுக. முக்கோணி ABC இல் வழக்கமான குறிப்பீட்டுடன் $cos(A-B)=\frac{61}{64}$ எனின் $2\sin(A+B)\cos(A-B)=\sin 2A+\sin 2B$ எனும் முடிவையும் , சைன் நெறியையும் பயன்படுத்தி $a\cos A+b\cos B=\frac{61}{64}$ c எனக் காட்டுக. **இதிலிருந்து** a=2 , b=3 எனின் c=4 எனக்காட்டுக.
- (b) $t= anrac{ heta}{2}$ எனின் $\sin heta=rac{2t}{1+t^2}$, $\cos heta=rac{1-t^2}{1+t^2}$ என்னும் முடிவுகளைப் பெறுக. மேலும்

 $\frac{1+\sin\theta}{3+2\cos\theta}=\frac{(1+t)^2}{5+t^2}$ எனக் காட்டி இதிலிருந்து t இன் எல்லா மெய்ப்பெறுமானங்களிற்கும்

 $0 \le \frac{1+\sin\theta}{3+2\cos\theta} \le \frac{6}{5}$ எனக் காட்டுக.

(c) $\cos x + \cos 2x + \cos 3x = \sin x + \sin 2x$ ஐத் தீர்க்க. $\alpha = \tan^{-1} \frac{5}{12} \ , \beta = \tan^{-1} \frac{3}{4} \ \text{எனத் தரப்படும்போது}$ $\cos(\alpha - \beta) = \frac{63}{65} \ \text{எனக் காட்டுக.}$ $\sin(\alpha - \beta)$ இன் பெறுமானத்தை உய்த்தநிக.

(முழுப் பதிப்புரிமையுடையது / All Rights Reserved)

இனைந்த கணிதம் II Combined maths II

10	Т	II
----	---	----

3 மணித்தியாலம் 10 நிமிடம் 3 hour 10 minutes

PART 1

1.	2m திணிவுடைய கோளம் A , கதி $2u$ உடன் இயங்கி அதே திசையில் கதி u உடன்
	இயங்கும் m திணிவுடைய கோளம் B உடன் மோதுகிறது. பின்னர் கோளம் B ஆனது
	நிலைக்குத்தான ஒப்பமான சுவரொன்றினைச் செங்குத்தாக மோதுகின்றது. A இற்கும் B
	இந்குமிடையேயான மீளமைவுக்குணகம் $rac{1}{2}$ ஆகவும் B இந்கும் சுவருக்குமிடையிலான
	மீளமைவுக்குணகம் $rac{3}{4}$ ஆகவுமிருப்பின் A இற்கும் B இற்குமிடையே மீண்டும் ஒரு
	மோதுகை நடைபெறும் எனக் காட்டுக.
2.	கிடைத் தரையில் உள்ள புள்ளி \emph{O} விலிருந்து நிலைக்குத்துத்தளத்தில் $u \emph{\textbf{i}} + 2 u \emph{\textbf{j}}$
	வேகத்துடன் எறியப்படும் துணிக்கை ஒன்றின் கிடை, நிலைக்குத்து இயக்கங்களுக்கான
	வேக - நேர வரைபுகளை துணிக்கை தரையை அடிக்கும் வரைக்கும் தனித்தனியே
	வரிப்படத்தில் வரைக. கிடை, நிலைக்குத்து கதிகள் முதலில் சமனாகும் கணத்தில் கிடை,
	நிலைக்குத்து இடப்பெயர்ச்சிகளுக்கு இடையிலான விகிதத்தைக் காண்க.

3.	உருவில் A,B,C ஆகியன முறையே $3m,m,2m$ திணிவுள்ள துணிக்கைகளாகும் இங்கு $2m$ திணிவுள்ள துணிக்கையானது M திணிவுள்ள ஒப்பான கப்பின் மேலே வைக்கப்பட்டும், A,B ஆகிய துணிக்கைகள் ஓர் இலேசான நீட்டமுடியாத இழையில் தொடுக்கப்பட்டும் துணிக்கை C யானது ஒப்பமான சிறிய கப்பியின் மேலாகச்செல்லும் வேறோர் இலேசான நீட்டமுடியாத இழையினால் இணைக்கப்பட்டும், தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. இழையிலுள்ள இழுவையைத் துணிவதற்குப் போதுமான சமன்படுகளை எழுதுக.
4.	$M\ kg$ திணிவுடைய வண்டி நேர்ச் சமதள வீதியிலே செல்லும் போது அது
	அடையக்கூடிய உயர்கதி $u\ ms^{-1}$ ஆகும். அவ்வண்டி கிடையுடன் $lpha$ சாய்ந்துள்ள
	சாய்தளத்தில் மேல் நோக்கி இயங்கும் போது அடையக்கூடிய உயர்கதி
	$rac{u}{2}\ ms^{-1}$ ஆகும். வண்டி எப்போதும் மாறா வலுவில் இயங்குகிறது. தடை விசை R
	ஆனது எப்போதும் $R=kw^2N$ ஆகும் .இங்கு w ஆனது ms^{-1} இல் வண்டியின்
	கதியும், k மாநிலியும் ஆகும். $k=rac{4Mg\sinlpha}{7u^2}$ எனக் காட்டுக.

5.	ஆரை l ஐ உடையதும் மையம் O இல் $\frac{7\pi}{6}$ கோணம் $B_{\nu}v=0$
	அமைக்கும் வில் வடிவிலுள்ள ACB என்னும் ஒப்பமான
	மெல்லிய குழாய் உருவில் காட்டப்பட்டுள்ளது. முனை A யில்
	m திணிவுள்ள துணிக்கை P மெதுவாக விழவிடப்படுகின்றது.
	P மெதுவாக விழும் கணத்தில் நிலைக்குத்தாகக் கீழ் நோக்கி C
	u வேகத்துடன் இயங்கும் திணிவு m ஐ உடைய வேறொரு
	துணிக்கையானது P உடன் மோதி அதனுடன் இணைந்து குழாயினுள்ளே
	இயங்குகின்றது. முனை B ஐ மட்டுமட்டாகச் சேர்த்தித் துணிக்கை அடைந்தது எனின்,
	$u=2\sqrt{gl}$ எனக் காட்டுக.
_	
6.	O உந்பத்தியாக இருக்க A,B என்பவந்றின் தானக்காவிகள் முறையே $\underline{a}=\underline{i}+2\underline{j}$, $\underline{b}=$
	$2\ \underline{i}-\underline{j}$ ஆகும். $\lambda>\mu$ ஆயிருக்க $\overrightarrow{OC}=\lambda\underline{a}$ ஆகவும் $\overrightarrow{OD}=\mu\underline{b}$ ஆகவும்
	இருக்கத்தக்கதாக \mathcal{C} , D ஆகிய புள்ளிகள் தெரியப்பட்டுள்ளன. \overrightarrow{AB} , \overrightarrow{CD} ஆகியவற்றை
	காண்பதன் மூலம் $AB\perp CD$ ஆகவும் \overrightarrow{CD} இன் பருமன் $2\sqrt{10}$ ஆகவும் இருப்பின் λ,μ
	ஐக் காண்க.

இழைக்கு இணைக்கப்பட்டு பறிலையில் இருப்பதை படம் காட்டுகின்றது. ### படம் காட்டுகின்றது. ###################################	படம் காட்டுகின்றது. $\frac{w_1}{w_2} = \frac{\cot \beta - \cot \alpha}{2 \cot \alpha}$ எனக் காட்டுக $\frac{B}{W_1} = \frac{7}{C} + \frac{1}{W_2}$ ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2 λ எனவும் இழையில் உள்ள இழுவை		<u>ும் நிறைகள் ஒரு</u> ந		սնաասասա	ummin
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	இழைக்கு இனை	னக்கப்பட்டு சமநி	லையில் இருப்பதை	Υ α	α
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	படம் காட்டுகின்	ந்து. $\frac{w_1}{w_2} = \frac{\cot \beta - \cot \beta}{2 \cot \alpha}$	<i>t</i> α எனக் காட்டுக	B W_1 C	\widetilde{W}_1
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					2
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	ஒரு கரடான சாய்தளமொன்றின் மீது ஓய்விற் கிடக்கும் W நிறையுடைய ஒரு கோளம் கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை	கோளத்தின் மிக உயர்ந்த புள்ளியையும் அத்தளத்தில் உள்ள புள்ளியையும் இணைக்கும் ஒரு கிடை இழையினாலே தாங்கப்படுகின்றது. அத்தளத்தின் கிடையுடனான சாய்வுக் கோணம் ∝ உம் தளத்திற்கும் கோளத்திற்கும் இடையிலான உராய்வுக்கோணம் λ உம் எனின் ∝≤ 2λ எனவும் இழையில் உள்ள இழுவை					
		் கோளத்தின் மிக	க உயர்ந்த புள்ளின	யையும் அத்தளத்தில்	உள்ள புள்ளியைய	
<i>W tan</i> [∞] எனவும் காட்டுக.	W tan $\frac{\propto}{2}$ எனவும் காட்டுக.	் கோளத்தின் மிக இணைக்கும் ஒடு	க உயர்ந்த புள்ளின ந கிடை இழையின	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின்	உள்ள புள்ளியைய றது. அத்தளத்தின்	цiò
		் கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான எ	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ச	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான
		கோளத்தின் மிக இணைக்கும் ஒடு கிடையுடனான உராய்வுக்கோன	க உயர்ந்த புள்ளின ந கிடை இழையின சாய்வுக் கோணம் ஏ எம் λ உம் எனின்	யையும் அத்தளத்தில் ாலே தாங்கப்படுகின் ∝ உம் தளத்திற்கும்	உள்ள புள்ளியைய றது. அத்தளத்தின் கோளத்திற்கும் இவ	பும் டையிலான

9.	A,B என்பன யாதாயினும் இரு நிகழ்ச்சிகள்			
	$p(A\cap B')=0.20, p(A'\cap B)=0.15, p(A\cap B)=0.10$ எனத்தரப்பட்டுள்ளன. இங்கு			
	A',B' என்பன முறையே A,B என்பவற்றின் நிரப்பு நிகழ்ச்சிகளைக் குறிக்கின்றன. $p(A \cup B) = 0.45$ எனவும் $p(B/A) = \frac{1}{3}$ எனவும் காட்டுக.			
	ஒவ்வொன்றிலும் $50Kg$ இருப்பதாக உரிமை கோருகின்றார். உள்ளபடியான நிறைகள் அறியப்படாத அத்தகைய 100 பைகளுக்குப் பின்வரும் தகவல்கள் தரப்பட்டுள்ளன. $\sum_{i=1}^{100}(x_i-50)=57.2$ உம் $\sum_{i=1}^{100}(x_i-50)^2=95.1$ உம் ஆகும் இங்கு $x_i(i=1,2,3,\dots 100)$ இனால் i ஆவது பையின் உள்ளபடியான நிறை குறிப்பிடப்படுகின்றது. பொருத்தமான ஏகபரிமாண உருமாற்றத்தைப் பயன்படுத்தி அல்லது வேறு விதமாக, 100 பைகளின் உள்ளபடியான நிறைகளின் இடையையும் மாறற்றிறனையும் காண்க.			

PART II

11.

- (a) t=0 இல் ஓய்விலிருந்து இயங்க ஆரம்பிக்கும் பலூன் ஒன்று தரையிலிருந்து மேல்நோக்கி $f\left(>\frac{g}{2}\right)$ எனும் ஆர்முடுகலுடன் பயணிக்கின்றது. நேரம் t=T இல் பலூனிலிருந்து பந்து ஒன்று மெதுவாக விழவிடப்படுகின்றது. பந்து விழவிடப்பட்ட கணத்திலிருந்து பலூனானது 2f எனும் அமர்முடுகலுடன் இயங்கி ஓய்வுக்கு வந்து வளியில் நிலையாக மிதக்கின்றது. பந்தானது புவியீர்ப்பின்கீழ் இயங்கி பலூன் ஓய்வடைந்து சிறிது நேரத்தின் பின்னர் மீண்டும் பலூனை அடைகின்றது. பந்து, பலூன் ஆகியவற்றின் இயக்கங்களுக்கான வேக-நேர வரைபுகளை ஒரே படத்தில் வரைக.
 - i. பந்தானது தரைக்கு மேல் அடையும் அதிஉயர் உயரம் $\frac{fT^2}{2g}(f+g)$ எனக்காட்டுக.
 - ii. பந்தானது அதி உயர் புள்ளியை அடையும்போது பந்திற்கும் பலூனிற்கும் இடையிலான தூரம் $rac{fT^2}{4g}(2f-g)$ எனக்காட்டுக.
 - iii. நேரம் $t = T \left(1 + \frac{f}{g} + \frac{\sqrt{2f(2f-g)}}{2g} \right)$ இல் பந்து மீண்டும் பலூனை அடைகின்றது எனக்காட்டுக.
- (b) தெற்கு நோக்கிக் கதி $uKmh^{-1}$ உடன் செல்லும் போர்க்கப்பல் ஒன்றின் கப்ரின் தனது கப்பலிலிருந்து தூரம் $d\ Km$ மேற்கே வடக்கிலிருந்து 30° கிழக்கில் கதி $u\sqrt{3}Kmh^{-1}$ உடன் செல்வது போல் தோன்றும் ஓர் எதிரிக்கப்பலைக் காண்கிறார்.
- i. எதிரிக்கப்பலின் வேகத்தைக் காண்க.
- ii. இரு கப்பலும் ஒன்றுக் கொன்று கிட்ட இருக்கும் போது போர்க் கப்பலிலிருந்து எதிரிக் கப்பலின் திசைகோளையும் அவ்விரு கப்பல்களுக்கும் இடையேயுள்ள மிகக் குறுகிய தூரத்தையும் காண்க.
- iii. போர்க்கப்பல் 0.9dKm சுடும் வீச்சை உடையதெனின் எதிரிக் கப்பல் நேரம் $12\sqrt{2}\frac{d}{u}$ நிமிடத்திற்கு போர்க்கப்பலின் தாக்குதலுக்கு உட்படத் தக்கதெனக் காட்டுக.

12.

(a) தரப்பட்ட உருவில் $B\hat{A}H = \infty$, $A\hat{B}C = 2 \propto$ ஆகவுள்ளதும் AB ஐக் கொண்ட முகம் ஓர் ஒப்பமான கிடை நிலத்தின் மீது வைக்கப்பட்ட M திணிவுடைய ஒப்பமான சீரான குற்றியின் புவியிர்ப்பு மையத்தினூடாக உள்ளதுமான

நிலைக்குத்து குறுக்குவெட்டாகும். AH,BC என்பன அதனைக் கொண்டுள்ள முகத்தின் ஓர் அதியுயர் சரிவுக் கோடாகும். AH,BC ஆகிய முகங்களில் முறையே m,2m திணிவுகளைக் கொண்ட P,Q எனும் துணிக்கைகளானது மேலே காட்டப்பட்டுள்ளவாறு நிலைப்படுத்தப்பட்ட ஒப்பமான கப்பிகளினூடாகச் செல்லும் இலேசான நீட்டமுடியாத இழைகளினால் இருமுனைகளிலும் இணைக்கப்பட்டுள்ளது. தொகுதி ஓய்விலிருந்து விடுவிக்கப்படுகின்றது. துணிக்கை P யானது கப்பி G ஐ அடையாதிருக்குமாறும், துணிக்கை Q யானது B அடையாதிருக்குமாறும் இருக்கும் போது கப்பி தொடர்பாக துணிக்கைகள் P,Q இன் ஆர்முடுகலைத் துணிவதற்குப் போதுமான சமன்பாடுகளைப் பெறுக.

(b) படத்தில் காட்டப்பட்டவாறு மையம் O இல் 150° கோணத்தை எதிரமைக்கும் 2a ஆரையுடைய வட்டவடிவ ஒப்பமான குழாய் BCD ஆனது OB கிடையாக இருக்குமாறு

கிடைத்தரை ஒன்றில் நிலைக்குத்தாக நிலைப்படுத்தப்பட்டு முனை B உடன் படத்தில் காட்டப்பட்டவாறு சம ஆரையும் a நீளமும் உள்ள AB என்னும் ஒப்பமான குழாய் இணைக்கப்பட்டு m திணிவுள்ள துணிக்கை ஒன்று A இல் இருந்து குழாயினுள் மெதுவாக விடப்படுகின்றது. தொடரும் இயக்கத்தில் துணிக்கை OB க்கு கீழே OB உடன் θ கோணத்தில் உள்ள போது

- i. துணிக்கையின் வேகத்தையும் துணிக்கை மீதான மறுதாக்கத்தையும் காண்க.
- ii. துணிக்கை D இன் ஊடு வெளியேறும் கதியைக் காண்க.
- iii. துணிக்கை D இன் ஊடாக வெளியேநி C இல் இருந்து $\sqrt{3}a + x$ தூரத்தில் தரையை அடிக்கும் எனின் $x^2 2\sqrt{3}ax 2a^2 = 0$ என காட்டுக.
- 13. a ஆரையுடைய ஒப்பமான மெல்லிய வட்டவடிவமான வட்டக்குழாய் ஒன்று படத்தில் காட்டப்பட்டுள்ளவாறு நிலைக்குத்துத் தளம் ஒன்றில் நிலைப்படுத்தப்பட்டுள்ளது. குழாயினுள் m, 3m திணிவுள்ள இரு துணிக்கைகள் P, Q என்பன \frac{\pi a}{2} நீளமுடைய நீளா இழையொன்றினால் இணைக்கப்பட்டு P ஆனது உச்சியில் இருக்குமாறும்

இழை இறுக்கமாக இருக்குமாறு வைத்து மெதுவாக இயங்க விடப்படுகின்றன. \emph{O} மையம்

I. t நேரத்தின் பின் OQ திரும்பிய கோணம் heta எனின் $2a\left(rac{d heta}{dt}
ight)^2=g(1-\cos heta+3\sin heta)$ என காட்டுக.

(இழை தொய்வடையவில்லை எனக் கொள்க.)

- II. P இற்கும் குழாயிற்கும் இடையிலுள்ள மறுதாக்கத்தை m,g, heta சார்பில்
- III. $a \frac{d^2 \theta}{dt^2}$ ஐ g, θ சார்பில் கண்டு இழையிலுள்ள இழைவையை m, g, θ சார்பில் காண்க.
- IV. இழையானது தொய்வடையும் போது $heta=\pi/_4$ எனக் காட்டுக

14.

காண்க.

(a) உந்பத்தி O குநித்து புள்ளிகள் A,B இனது தானக் காவிகள் முறையே $\underline{a},\underline{b}$ ஆகும். புள்ளி P யானது $\overrightarrow{OP}=4\overrightarrow{OB}$ ஆகுமாறும் புள்ளி Q ஆனது AB இன் நடுப்புள்ளியாகுமாறும் உள்ள புள்ளிகள் ஆகும். புள்ளி R ஆனது OQ:QR=5:3 ஆகுமாறு நீட்டப்பட்ட OQ மீது உள்ள புள்ளியாகும். $\overrightarrow{OQ},\overrightarrow{OR},\overrightarrow{AR},\overrightarrow{RP}$ ஆகியவற்றை $\underline{a},\underline{b}$ ஆகியவற்றின் சார்பில் காண்க.

A,R,P என்பன ஒரு நேர்கோட்டில் இருக்கும் எனக் காட்டி, AR:RP எனும் விகிதத்தைக் காண்க.

 $\overrightarrow{OS}=\mu\overrightarrow{OQ}$ ஆகுமாறு உள்ள புள்ளி S எனக் கொள்வோம். PS சமாந்தரம் BA எனின் μ இனைக் காண்க.

- (b) O என்னும் புள்ளி குறித்து A,B,C என்னும் புள்ளிகளின் தானக்காவிகள் முறையே $\underline{a},\underline{b},\underline{c}$ ஆகும். தளம் ABC யில் புள்ளி O உண்டு. $OA \perp BC,OB \perp AC$ எனின், $OC \perp AB$ என காட்டுக.
- (c) ABCDEF என்பது 4m பக்கமுள்ள ஓர் ஒழுங்கான அறுகோணி ஆகும். $\overrightarrow{BA}, \overrightarrow{AC}, \overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{EF}, \overrightarrow{AE}$ வழியே முறையே $6,2\sqrt{3},2,1,1,\sqrt{3}$ N விசைகள் தாக்குகின்றன.
 - \overrightarrow{AB} இற்குச் சமாந்தரமான திசையில் விசைகளின் துணித்த பகுதிகளின் அட்சரகணிதக் கூட்டுத்தொகையைக் காண்க.
 - ii. \overrightarrow{AE} இற்குச் சமாந்தரமான திசையில் விசைகளின் துணித்த பகுதிகளின் அட்சரகணிதக் கூட்டுத்தொகையைக் காண்க.
 - iii. விளையுளைக் காண்க.
 - ${
 m iv.}$ விளையுள் AB யை வெட்டும் புள்ளியைக் காண்க.
 - ${f v}$. விளையுள் விசையை ${f C}$ யில் தாக்குமாறு செய்வதற்கு சேர்க்க வேண்டிய இணையின் பருமனையும் போக்கையும் காண்க.

15.

(a) சீரான கோலொன்று நீளங்கள் l, 2l, l ஆகுமாறு முறையே AB, BC, CD என்னும் துண்டுகளாக வெட்டப்பட்டுள்ளது. B, C யில் ஒப்பமான மூட்டப்பட்டுள்ளன. இத்தொகுதியானது அச்சு கிடையாகவுள்ள ஒப்பமான உருளையொன்றின் மீது சமநிலையில் காணப்படுகிறது. அப்போது BC இன் நடுப்புள்ளியும் முனைகள் A, D என்பனவும் உருளையுடன் தொடுகையுறுகின்றன. உருளையின் ஆரை 2l உம், அதன் மையம் O உம் வெட்டுவதற்குமுன் கோலின் நிறை w உம் எனின்

- i. உருளையுடன் BCயின் நடுப்புள்ளி தொடுகையுறும் புள்ளியிலுள்ள $\frac{91W}{100}$ எனக் காட்டுக.
- ii. முட்டு *C* இலுள்ள மறுதாக்கத்தைக் காண்க.
- (b) AB, BC, CD, DA, DB என்னும் இலேசான கோல்களை அவற்றின் முனைகளில் சுயாதீனமாக மூட்டிச் செய்யப்பட்டதும் மூட்டு A பற்றி ஒரு நிலைக்குத்துத் தளத்தில் அசையத்தக்கதுமான ஒரு

சட்டப்படல் உருவில் காட்டப்பட்டுள்ளது. AB = CD = 3a, BC = DA = 5a, DB = 4a ஆகும். மூட்டு C இல் ஒரு நிறை W தொங்கவிடப்பட்டு, அது AB, DC ஆகியன கிடையாகவும் BD நிலைக்குத்தாகவும் இருக்க மூட்டு D இல் CD வழியே பிரயோகிக்கப்படும் ஒரு கிடை விசை P இனால் நாப்பத்தில் பேணப்படுகின்றது. Pஐ W இல் காண்க.

போவின் குறிப்பீட்டைப் பயன்படுத்தி ஒரு தகைப்பு வரிப்படத்தைப் பரும்படியாக வரைந்து, இதிலிருந்து, எல்லாக் கோல்களிலும் உள்ள தகைப்புகளைக் காண்க. இவை இழுவைகளா, உதைப்புகளா எனக் குறிப்பிடுக.

16.

a ஆரையுடைய சீரான திண்மக் கோளத்தில் உரு (i) இல் காட்டப்பட்டதைப் போல அதன் மையம் O விலிருந்து b தூரத்தில் வெட்டி பெரும்பகுதியை அகற்றுவதால் திண்ம கோளத்துண்டம் பெறப்படுகிறது.

இதன் புவியீர்ப்பு மையம் கோளத்தின் மையம் 0 விலிருந்து $\frac{3(a+b)^2}{4(2a+b)}$ எனும் தூரத்தில் உண்டு என தொகையிடல் மூலம் காட்டுக. **இதிலிருந்து** சீரான aஆரையுடைய திண்ம அரைக்கோளத்தின் புவியீர்ப்பு மையத்தை உய்த்தறிக. rஆரையுடைய சீரான திண்ம அரைக்கோளமும் r ஆரையுடைய சீரான திண்ம செவ்வட்டக்கூம்பும் அவற்றின் தளமுகங்கள் சரியாகப் பொருந்தக் கூடியவாறு ஓட்டப்பட்டு ஆக்கப்பட்ட சேர்த்திப் பொருள் ஒன்று உரு (ii) இல் காட்டப்பட்டுள்ளது. அடர்த்திகள் எல்லாம் ஒரே அளவானது எனக் கொண்டு சேர்த்திப் பொருளின் திணிவு மையம் அதன் சமச்சீரச்சின் மீது O' இல் இருந்து தூரம் $\frac{r|tan^2 \propto -3|}{8+4tanc}$ இல் இக்கூட்டுடல் ஆனது உரு (iii) இல் காட்டிவாறு இருக்கிறதெனக் காட்டுக. கிடைத்தரை மீது வைக்கப்பட்டு ஓய்வில் பிடித்து விடுவிக்கப்படுகிறது. பின்வரும் நிபந்தனைகளில் என்ன நடைபெறும் என விளக்குக.

(a)
$$\propto < \tan^{-1}(\sqrt{3})$$

(a)
$$\propto < \tan^{-1}(\sqrt{3})$$
 (b) $\propto > \tan^{-1}(\sqrt{3})$ (c) $\propto = \tan^{-1}(\sqrt{3})$

(c)
$$\propto = \tan^{-1}(\sqrt{3})$$

17.

(a) ஒரு பெட்டியில் நிறம் தவிரச் சர்வசமமான ஆறு சிவப்புப் பந்துகளும் மூன்று பந்துகளும் மூன்று நீலப் பந்துகளும் உள்ளன. ஒ(ந பந்து எழுமாற்றாகப் பெட்டியிலிருந்து வெளியே எடுக்கப்படுகின்றது. பந்து நீலப் பந்தாக இருப்பதற்கான நிகழ்தகவைக் காண்க. வெளியே எடுக்கப்படும் பந்து பச்சைப் பந்தாக அல்லது சிவப்புப் பந்தாக இருப்பின், மேலதிகமாக ஒரு சிவப்புப் பந்தும் மேலதிகமாக ஒரு நீலப் பந்தும் தொடக்கப் பந்துடன் பெட்டியில் சேர்க்கப்படுகின்றன. வெளியே எடுக்கப்படும் பந்து நீலப் பந்தாக இருப்பின், பிரதிவைப்பு இல்லை.

இரண்டாம் பந்து பெட்டியிலிருந்து எழுமாற்றாக இப்போது ஓர் வெளியே எடுக்கப்படுகின்றது. வெளியே எடுக்கப்படும் இரண்டாம் பந்து நீலப் பந்தாக இருப்பதற்கான நிகழ்தகவு யாது?

வெளியே எடுக்கப்படும் இரண்டாம் பந்து நீலப் பந்து எனத் தரப்பட்டிருப்பின், வெளியே எடுக்கப்படும் நீலப் பந்தாக இருப்பதந்கான முதந் பந்து நிகழ்தகவைக் காண்க.

(b) இடை \overline{x} ஐயும் நியமவிலகல் S_x ஐயும் உடைய $\{x_1, x_2, \dots, x_n\}$ என்னும் n எண்களின் தொடை $i=1,2,\dots,n$ இந்கு $y_i=ax_i+b$ என்னும் சூத்திரத்தின் மூலம் $\{y_1,y_2,\dots,y_n\}$ என்னும் n எண்களின் தொடையாக உருமாற்றப்படுகிறது. இங்கு a,b ஆகியன மாறிலிகள் $\{y_1,y_2,\dots,y_n\}$ என்னும் n எண்களின் தொடையின் இடையும் நியம விலகலும் முறையே \overline{y},S_y எனக் கொள்வோம். $\overline{y}=a\overline{x}+b,S_y=|a|S_x$ எனக் காட்டுக.

ஒரு குறித்த பரீட்சையில் இணைந்த கணிதம் பௌதிகவியல் என்னும் பாடங்களிற்குத் தோற்றிய பரீட்சார்த்திகளின் புள்ளிகளின் இடைகளும் நியமவிலகல்களும் பின்வரும் அட்டவணையில் காணப்படுகிறன.

	இடை	நியமவிலகல்
இணைந்த கணிதம்	m	15
பௌதிகவியல்	45	p

அப்பாடங்கள் ஒவ்வொன்றிலும் பெற்ற புள்ளிகளின் இடை 50 ஆகவும் நியமவிலகல் 20 ஆகவும் இருக்குமாறு ஏகபரிமாண முறையாக அளவிடையாக்கப்பட்டுள்ளன எனக் கொள்வோம். ஒரு குறித்த பரீட்சார்த்தியின் தொடக்கப்புள்ளிகளும் அளவிடையாக்கப்பட்ட புள்ளிகளும் கீழே காணப்படுகின்றன.

	தொடக்கப்புள்ளி	அளவிடையாக்கப்பட்ட
		പ്പ ്പി
இணைந்த கணிதம்	40	40
பௌதிகவியல்	61	65

m இன் பெறுமானங்களையும், p இன் பெறுமானத்தையும் காண்க. பரீட்சார்த்திகள் தமது விடைத்தாள்களை மீளாய்வு செய்வதற்கு விண்ணப்பிக்க பின்னர் அனுமதிக்கப்பட்டனர் மீளாய்விற்குப் பரீட்சைக்குத் தோற்றிய பரீட்சார்த்திகளின் மொத்த எண்ணிக்கையில் 1% ஆனோரின் இணைந்த கணித பாடப் புள்ளிகள் மாற்றப்பட்டன. பரீட்சார்த்திகளின் இணைந்த கணித பாடத்தில் புள்ளிமாற்றும் பெற்ற மாணவர்களின் புள்ளிகளின் இடை 60 இலிருந்து 64 இற்கு அதிகரித்தது. இணைந்த கணித பாடத்திற்கு தோந்நிய எல்லாப் பரீட்சார்த்திகளினதும் மீளாய்வின் பின்னர் உள்ள புள்ளிகளின் இடையைக் காண்க.