Лекция 9. ФИЗИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

- 1. Работа переменной силы.
- 2. Работа электродвигателя переменной мощности.
- 3. Сила давления жидкости.
- 4. Статические моменты, моменты инерции и координаты центра масс.

1. Работа переменной силы.

Пусть материальная точка движется по прямой линии под действием некоторой переменной силы F. Перемещение этой точки зададим вектором \vec{s} и предположим, что направление силы совпадает с направлением перемещения ($F \| \vec{s} \|$). Пусть через |F| и |s| длины векторов F и s.

Если на всем пути сила F постоянна, то, как известно из механики, работа A = |F||s|.

Рассмотрим случай, когда сила F сохраняет постоянное направление ($F \| s$), но меняется по модулю ($|F| \neq \text{const}$). Вычислим работу этой переменной силы. За ось Ox примем прямую, вдоль которой движется материальная точка. Пусть начальная и конечная точки пути имеют абсциссы a и b (a < b) соответственно. В каждой точке отрезка [a;b] модуль силы принимает определенное значение и является некоторой функцией абсциссы, т.е |F| = F(x). Таким образом,

$$F = |F|\vec{i} = F(x)\vec{i}$$
, $s = (b-a)\vec{i}$, $|s| = b-a$.

Будем считать функцию F(x) непрерывной. Для нахождения работы переменной силы вновь используем алгоритм, основанный на составлении интегральной суммы и предельном переходе к определенному интегралу.

1. Разобьем отрезок |s| = [a;b] на n частичных отрезков точками x_k : $a = x_0 < x_1 < x_2 < ... < x_n = b$, где $\Delta x_k = x_k - x_{k-1}$, $k = \overline{1,n}$, — длина k-го частичного отрезка. Как известно, работа на всем

пути равна сумме работ на малых его участках. Обозначив работу на всем пути через A, а работу на частичном отрезке $\left[x_{k-1};x_k\right]$ через ΔA_k , получим

$$A = \sum_{k=1}^{n} \Delta A_k .$$

Если отрезки $[x_{k-1};x_k]$ брать достаточно малыми, то на каждом таком отрезке можно считать $|F| \approx \text{const}$.

- 2. Выберем на каждом частичном отрезке $[x_{k-1}; x_k]$ произвольную точку ξ_k и найдем значение функции F(x) в точке ξ_k .
- 3. Предположим, что на каждом частичном отрезке модуль силы имеет постоянное значение, равное значению F(x) в точке ξ_k : $\big|F_k\big|=F\big(\xi_k\big)$. При этом предположении работа силы на отрезке $\big[x_{k-1};x_k\big]$ равна

$$\Delta A_k \approx |F_k| \Delta x_k = F(\xi_k) \Delta x_k$$
.

Работа переменной силы F , совершаемая на всем пути |s| = b - a ,

$$A \approx A_n = \sum_{k=1}^n F(\xi_k) \Delta x_k .$$

Сумма A_n представляет собой интегральную сумму, составленную для непрерывной на отрезке [a;b] функции F(x).

4. Предел A_n при $\lambda = \max_{[a;b]} \{ \Delta x_k \} \to 0$ в силу предположения о непрерывности функции F(x) существует и выражает работу переменной силы на прямолинейном пути от точки a до точки b:

$$A = \lim_{\lambda \to 0} \sum_{k=1}^{n} F(\xi_k) \Delta x_k = \int_{a}^{b} F(x) dx.$$

2. Работа электродвигателя переменной мощности.

Пусть мощность электродвигателя в момент времени t равна N(t). Необходимо найти работу, совершенную двигателем за промежуток времени $\Delta t = [a;b]$.

Как известно, при постоянной мощности двигателя N его работа $A=N\Delta t$.

Воспользуемся алгоритмом составления интегральной суммы и предельного перехода к определенному интегралу.

- 1. Разобьем временной отрезок [a;b] на n частичных отрезков $[x_{k-1};x_k]$, $k=\overline{1,n}$. Обозначим $\Delta t_k=t_k-t_{k-1}$, $k=\overline{1,n}$.
- 2. Выберем на каждом частичном отрезке произвольным образом точку x_k : $t_{k-1} \le \tau_k \le t_k$.
- 3. Будем считать мощность на каждом из частичных отрезков постоянной и равной $N(\tau_k)$. Тогда

$$A \approx A_n = \sum_{k=1}^n N(\tau_k) \Delta t_k .$$

4. Считая функцию N(t) непрерывной и переходя к пределу при $\lambda = \max_{[a:b]} \{ \Delta x_k \} \to 0$, получаем

$$A = \int_{a}^{b} N(t)dt.$$

3. Сила давления жидкости.

Пусть пластинка, имеющая вид криволинейной трапеции, погружена вертикально в жидкость, плотность которой ρ , таким образом, что ее боковые стороны параллельны поверхности жидкости и находятся ниже ее уровня на расстояниях a и b соответственно (рис.1.). Требуется определить силу давления жидкости на пластинку.

$$P = g \rho h S$$
,

где $g = 9.8 \text{ м/c}^2$; S - площадь пластинки.

Если же пластинка догружена в жидкость вертикально, то давление жидкости — сила давления на единицу площади — изменяется с глубиной погружения.

По закону Паскаля давление в жидкости передается одинаково по всем направлениям, в том числе и на вертикальную пластинку.

Выберем систему координат так, как показано на рис.1. Пусть уравнение кривой AB имеет вид y = f(x), где функция f(x) непрерывна на отрезке [a;b].

Для нахождения силы давления снова используем алгоритм составления интегральной суммы и предельного перехода к определенному интегралу.

1. Разобьем отрезок [a;b] на n частичных отрезков $[x_{k-1};x_k]$ точками

$$a = x_0 < x_1 < x_2 < ... < x_n = b$$
.

Обозначим $\Delta x_k = x_k - x_{k-1}$, $k = \overline{1,n}$. Проведем через точки x_0 , x_1 , ..., x_n прямые, параллельные оси Oy, которые разобьют пластинку на n малых горизонтальных полосок.

2. Выберем на каждом частичном отрезке произвольным образом точку $\xi_k \in [x_{k-1}; x_k], \ k = \overline{1,n}$. Тогда площадь S_k малой горизонтальной полоски

$$S_k \approx f(\xi_k) \Delta x_k$$
.

3. Считая, что все точки каждой элементарной пластинки находятся на одной глубине $h=\xi_k$, значение силы давления на нее можно вычислить по формуле:

$$\Delta P_k \approx g\rho \xi_k f(\xi_k) \Delta x_k$$
.

Просуммировав найденные значения ΔP_k , $k=\overline{1,n}$, получим

приближенное значение силы давления жидкости на всю пластинку:

$$\Delta P_n \approx \sum_{k=1}^n g \rho \xi_k f(\xi_k) \Delta x_k$$
.

Точность этого приближенного равенства тем больше, чем меньше длины частичных отрезков $[x_{k-1}; x_k]$.

4. За точное значение P силы давления жидкости на пластинку принимается предел P_n при $\lambda = \max_{[a,b]} \{ \Delta x_k \} \to 0$:

$$P = \lim_{\lambda \to 0} \sum_{k=1}^{n} g \rho \xi_k f(\xi_k) \Delta x_k.$$

Так как P_n представляет собой интегральную сумму для непрерывной функций $\rho x f(x)$ на отрезке [a;b] то указанный предел существует и выражается определенным интегралом

$$P = g \int_{a}^{b} \rho x f(x) dx.$$

Если в жидкость вертикально погружена пластинка $A_1B_1B_2A_2$ (рис.2), ограниченная прямыми x=a, x=b и кривыми $y=y_1(x)$, $y=y_2(x)$, то сила давления на эту пластинку вычисляется по формуле

$$P = g \int_a^b \rho x (y_2 - y_1) dx.$$

Общие сведения. Пусть на плоскости задана прямоугольная система координат Oxy.

Определение 1. Статическим моментом материальной точки A(x,y), в которой сосредоточена масса m, относительно оси Ox (оси Oy) называется величина, численно равная произведению массы этой точки и расстояния до оси Ox (оси Oy):

$$M_x = my \ (M_y = mx).$$

Определение 2. Моментом инерции материальной точки A(x;y) в которой сосредоточена масса m, относительно оси Ox (оси Oy, точки O) называется величина, численно равная произведению массы этой точки и квадрата расстояния до оси Ox (оси Oy, точки O):

$$I_x = my^2$$
, $I_y = mx^2$, $I_0 = I_x + I_y = m(x^2 + y^2)$.

Если дана система материальных точек $A_1(x_1; y_1)$, $A_2(x_2; y_2)$, ..., $A_n(x_n; y_n)$, в которых сосредоточены массы m_1 , m_2 , ..., m_n , то статические моменты находятся по формулам:

$$M_{x} = \sum_{k=1}^{n} m_{k} y_{k}$$
, $M_{y} = \sum_{k=1}^{n} m_{k} y_{k}$,

а моменты инерции – по формулам:

$$I_x = \sum_{k=1}^n m_k y_k^2$$
, $I_y = \sum_{k=1}^n m_k x_k^2$, $I_0 = I_x + I_y = \sum_{k=1}^n (x_k^2 + y_k^2) m_k$.

Определение 3. Центром масс системы материальных точек называется точка, обладающая тем свойством, что если в

ней сосредоточить всю массу $M = \sum_{k=1}^{n} m_k$ системы, то статиче-

ский момент этой точки относительно любой ее оси равен статическому моменту данной системы материальных точек относительно той же оси.

Поэтому, обозначая центр масс системы $C(x_C; y_C)$, получаем:

$$M_x = \sum_{k=1}^n m_k y_k = M y_C$$
, $M_y = \sum_{k=1}^n m_k x_k = M x_C$.

Таким образом, координаты центра масс системы материальных точек вычисляются по следующим формулам:

$$x_C = \frac{M_y}{M} = \frac{\sum_{k=1}^{n} m_k x_k}{\sum_{k=1}^{n} m_k}, \ y_C = \frac{M_x}{M} = \frac{\sum_{k=1}^{n} m_k y_k}{\sum_{k=1}^{n} m_k}.$$

Пусть требуется вычислить статические моменты, моменты инерции и координаты центра масс однородной плоской материальной линии или плоской материальной фигуры с известной плотностью ρ распределения масс. Линия (фигура) называется *однородной*, если ρ = const на всей линии (фигуре). Если при этом $\rho = 1$, то масса линии (фигуры) численно равна длине линии (площади фигуры). Для вычисления M_x , M_y , I_x , I_y , I_0 , x_{C}, y_{C} эту линию (фигуру) разбивают произвольным образом на n частей, что достигается разбиением отрезка [a;b] оси Ox, на который проектируется плоская линия l или плоская фигура D. На каждой части выбирают точку P_k , $k=\overline{1,n}$, и сосредотачивают массу m_k k -й части линии (фигуры) в точках P_k . Так как линия (фигура) однородна, то масса k-й части линии $lm_k = \rho \Delta l_k$, где Δl_k – длина k-го участка линии. Масса k-й части однородной фигуры D $m_k = \rho \Delta S_k$, где ΔS_k – площадь k -й частиц фигуры D.

Далее рассматривают материальную линию l (фигуру D) как фиктивную систему материальных точек P_k , $k=\overline{1,n}$, с массами m_k . Тогда искомые величины M_x , M_y , M, I_x , I_y , I_0 , x_C , y_C приближенно равны соответствующим величинам рассматриваемой фиктивной системы материальных точек P_k .

Точное значение искомых величин определяется как предел соответствующего приближенного значения при

 $\lambda = \max_{\{a,b\}} \{\Delta x_k\} \to 0$. Отсюда следует, что рассмотренный алгоритм вычисления статических моментов, моментов инерции и координат центра масс материальной кривой (фигуры) приводит к составлению интегральных сумм, а предельный переход при стремлении $\lambda \to 0$ — к определенному интегралу.

Вычисление статических моментов, моментов инерции и координат центра масс плоской линии. Пусть материальная кривая AB длиной l задана уравнением $y=f(x),\ x\in [a;b]$. Будем считать кривую AB однородной $\rho={\rm const}$.

Вычисление моментов плоской линии и координат центра масс проведем по описанному выше алгоритму.

1. Разобьем отрезок [a;b] на n частичных отрезков точками x_k :

$$a = x_0 < x_1 < ... < x_{n-1} < x_n = b$$
.

Обозначим $\Delta x_k = x_k - x_{k-1}$. Выберем внутри каждого частичного отрезка $\left[x_{k-1}; x_k\right]$ произвольным образом точку ξ_k , $k=\overline{1,n}$. Через точки разбиения x_k проведем прямые параллельные оси Oy (рис. 3).

Рис.3.

Эти прямые разобьют кривую AB на частичные дуги длиной Δl_k и массой $m_k = \rho \Delta l_k$. Тогда каждой точке $\xi_k \in [x_{k-1}; x_k]$ будет соответствовать точка $P_k(\xi_k; f(\xi_k))$.

2. Заменим теперь каждую часть дуги Δl_k материальной точ-

кой $P_k(\xi_k; f(\xi_k))$ массой $m_k = \rho \Delta l_k$, $k = \overline{1,n}$.

3. Будем рассматривать материальную кривую AB как фиктивную систему, состоящую из n материальных точек $P_k(\xi_k;f(\xi_k))$, $k=\overline{1,n}$. Тогда масса M материальной кривой AB, статические моменты M_x , M_y , моменты инерции I_x , I_y , I_0 и координаты центра масс находятся по следующим приближенным формулам:

$$\begin{split} M \approx & \sum_{k=1}^n \rho \Delta l_k \;,\; M_x \approx \sum_{k=1}^n \rho f\left(\xi_k\right) \Delta l_k \;,\; M_y \approx \sum_{k=1}^n \rho \xi_k \Delta l_k \;,\\ & I_x \approx \sum_{k=1}^n \rho f^2(\xi_k) \Delta l_k \;,\; I_y \approx \sum_{k=1}^n \rho \xi_k^2 \Delta l_k \;,\; I_0 = I_x + I_y \;, \end{split}$$
 где $\Delta l_k = \sqrt{1 + \left(f'(\xi_k)\right)^2} \, \Delta x_k \;,$
$$x_C \approx \frac{M_y}{M} \;,\; y_C \approx \frac{M_x}{M} \;. \end{split}$$

4. Переводя к пределу при $\lambda = \max_{[a;b]} \{ \Delta x_k \} \to 0$, получаем точное значения искомых величин:

$$M = \int_{a}^{b} \rho \sqrt{1 + (y')^{2}} dx,$$

$$M_{x} = \int_{a}^{b} \rho y \sqrt{1 + (y')^{2}} dx, M_{y} = \int_{a}^{b} \rho x \sqrt{1 + (y')^{2}} dx$$

$$I_{x} = \int_{a}^{b} \rho y^{2} \sqrt{1 + (y')^{2}} dx, I_{y} = \int_{a}^{b} \rho x^{2} \sqrt{1 + (y')^{2}} dx, I_{0} = I_{x} + I_{y},$$

$$x_{C} = \frac{M_{y}}{M}, y_{C} = \frac{M_{x}}{M}.$$

Полученные формулы справедливы и для любой неоднородной ($\rho = \rho(x)$) материальной линии AB .

Вычисление статических моментов, моментов инерции и координат центра масс плоской фигуры. В этом случае так же, как и при вычислении площадей плоских фигур, в качестве базовой фигуры удобно прини-

мать криволинейную трапецию.

Пусть дана материальная криволинейная трапеция aABb, ограниченная графиком функции $y=f(x)\geq 0$, $x\in [a;b]$, осью Ox и прямыми x=a, x=b. По этой трапеции непрерывно с плотностью $\rho=$ const распределена масса M. Тогда $M=\rho S$, где S — площадь криволинейной трапеции.

Вычисление статических моментов M_x , M_y , моментов инерции I_x , I_y , I_0 и координат центров масс x_C , y_C проведем по известному алгоритму.

1. Разобьем отрезок [a;b] на n частичных отрезков точками $a = x_0 < x_1 < ... < x_n = b$.

Обозначим $\Delta x_k = x_k - x_{k-1}$.

2. Выберем точку $\xi_k = \frac{1}{2}(x_{k-1} + x_k)$. Через точки разбиения x_k проведем прямые, параллельные оси Oy (рис.4).

Эти прямые разобьют криволинейную трапецию на частичные трапеции. Площадь каждой такой k -й частичной трапеции приближенно равна площади прямоугольника со сторонами Δx_k и $f(\xi_k)$: $\Delta S_k \approx f(\xi_k) \Delta x_k$, масса $m_k = \rho \Delta S_k$.

3. Сосредоточим массу каждой частичной криволинейной трапеции в точке $P_k\left(\xi_k;\frac{1}{2}f(\xi_k)\right)$, т.е. в центре симметрии прямоугольника со сторонами Δx_k , $f(\xi_k)$. Будем рассматривать материальную криволинейную трапецию aABb как фиктивную

систему, состоящую из n материальных точек $P_k\bigg(\xi_k;\frac{1}{2}f\big(\xi_k\big)\bigg)$, $k=\overline{1,n}$. Тогда ее масса, статические моменты M_x , M_y , моменты инерции I_x , I_y , I_0 и координаты центра масс находятся по приближенным формулам:

$$\begin{split} M \approx & \sum_{k=1}^{n} \rho f\left(\xi_{k}\right) \Delta x_{k} \;, \\ M_{x} \approx & \frac{1}{2} \sum_{k=1}^{n} \rho f^{2}\left(\xi_{k}\right) \Delta x_{k} \;, \; M_{y} = \sum_{k=1}^{n} \rho \xi_{k} f\left(\xi_{k}\right) \Delta x_{k} \;, \\ I_{x} \approx & \frac{1}{2} \sum_{k=1}^{n} \rho f^{3}\left(\xi_{k}\right) \Delta x_{k} \;, \; I_{y} = \sum_{k=1}^{n} \rho \xi^{2} f\left(\xi_{k}\right) \Delta x_{k} \;, \; I_{0} = I_{x} + I_{y} \;, \\ x_{C} \approx & \frac{M_{y}}{M} \;, \; y_{C} \approx \frac{M_{x}}{M} \;. \end{split}$$

4. Переходя к пределу при $\lambda = \max_{[a;b]} \{\Delta x_k\} \to 0$ ($\lambda \to 0 \Leftrightarrow \xi_k \to x$; $\xi_k \to y$), получаем точные значения искомых величин:

$$M = \int_{a}^{b} \rho y dx,$$

$$M_{x} = \frac{1}{2} \int_{a}^{b} \rho y^{2} dx, M_{y} = \int_{a}^{b} \rho x y dx,$$

$$I_{x} = \frac{1}{2} \int_{a}^{b} \rho y^{3} dx, I_{y} = \int_{a}^{b} \rho x^{2} y dx, I_{0} = I_{x} + I_{y},$$

$$x_{C} = \frac{M_{y}}{M}, y_{C} = \frac{M_{x}}{M}.$$

Замечание. Для нахождения центра тяжести плоской фигуры, имеющей сложную форму, разбивают фигуру на простейшие фигуры, координаты центра масс которых либо известны, либо достаточно легко определяются. При этом сложную фигуру D представляют в виде объединения простейших фигур, из которых вырезаны некоторые фигуры. Эти фигуры (вырезанные)

обозначим через $D_1,\ D_2\,,\,...,\,D_n\,,$ а их площади — $S_1,\ S_2\,,\,...,\ S_n\,.$

Тогда координаты центра масс фигуры D можно найти по формулам:

$$x_C = \frac{\sum_{k=1}^{n} (\pm S_k) x_{C_k}}{\sum_{k=1}^{n} (\pm S_k)}, \quad y_C = \frac{\sum_{k=1}^{n} (\pm S_k) y_{C_k}}{\sum_{k=1}^{n} (\pm S_k)},$$

где x_{C_k} y_{C_k} — координаты центра масс фигуры D_k ; S_k — площадь фигуры D_k , $k=\overline{1,n}$. В этих формулах площадь фигуры берется со знаком «+», если $D_k \subset D$, и со знаком «—», если $D_k \not\subset D$, т.е. если элементарная фигура D_k вырезана.

При нахождении координат центра масс используется также свойство симметрии фигуры: если фигура имеет плоскость, ось или центр симметрии, то центр тяжести лежит в этой плоскости, на этой оси или в этом центре.

Вопросы для самоконтроля

- 1. Как вычисляется работа переменной силы с помощью определенного интеграла?
- 2. Выведите формулу для вычисления работы электродвигателя переменной мощности.
- 3. Выведите формулу для вычисления силы давления жидкости.
- 4. Что называется статическим моментом и моментом инерции материальной точки?
- 5. Дайте определение центра масс системы материальных точек. По каким формулам вычисляются координаты центра масс?
- 6. Как вычисляются статические моменты, моменты инерции и координаты центра масс плоской линии?