Exercises, Algebraic Geometry I – Week 13

Exercise 70. (2 points) Codimension.

Let $Y \subset X$ be an integral subscheme and $\eta_Y \in Y$ be its generic point. Show that

$$\dim \mathcal{O}_{X,\eta_Y} = \operatorname{codim}(Y).$$

Exercise 71. (4 points) Ample invertible sheaves.

Let X be a noetherian scheme.

- i) Show that if \mathcal{L} and \mathcal{M} are two invertible sheaves on X such that \mathcal{L} is ample, then $\mathcal{L}^n \otimes \mathcal{M}$ is ample for $n \gg 0$. Conclude that any invertible sheaf \mathcal{M} is isomorphic to some $\mathcal{L}_1 \otimes \mathcal{L}_2^*$ with \mathcal{L}_1 and \mathcal{L}_2 ample if there exists an ample invertible sheaf at all.
- ii) Is the tensor product $\mathcal{L}_1 \otimes \mathcal{L}_2$ of two ample (resp. very ample) invertible sheaves again ample (resp. very ample)?

Exercise 72. (4 points) Ample invertible sheaves on the quadric.

Consider the quadric $Q = \mathbb{P}^1_k \times \mathbb{P}^1_k$ and use that $\operatorname{Pic}(Q) \cong \mathbb{Z} \oplus \mathbb{Z}$, i.e. every invertible sheaf on Q is isomorphic to a unique $\mathcal{O}(a,b) := p_1^* \mathcal{O}(a) \otimes p_2^* \mathcal{O}(b)$.

- i) Determine all ample invertible sheaves on Q. Are they all very ample?
- ii) Compute the cohomology groups $H^1(Q, \mathcal{O}(a, b))$.

Exercise 73. (4 points). Trivial and torsion invertible sheaves.

Let X be an integral projective scheme over an algebraically closed field k.

- i) Assume $H^0(X, \mathcal{L}) \neq 0$ and $H^0(X, \mathcal{L}^*) \neq 0$ for some invertible sheaf \mathcal{L} . Show that then $\mathcal{L} \cong \mathcal{O}_X$.
- ii) Let $\mathcal{L} \in \text{Pic}(X)$ be of order n. Show $H^0(X, \mathcal{L}^m) = k$ for n|m and = 0 otherwise.

Exercise 74. (6 points) Base locus.

Let X be a projective integral scheme over $k = \bar{k}$ and \mathcal{L} an invertible sheaf on X. Let V be a subspace in $H^0(X,\mathcal{L})$. A point $x \in X$ is a base point of the linear system $\mathbb{P}(V) \subset |\mathcal{L}|$ if $s_x \in \mathfrak{m}_x \mathcal{L}$ for all $s \in V$. Thus, \mathcal{L} is globally generated if and only if $|\mathcal{L}|$ has no base points.

- i) Prove that the base locus $Bs \subset X$, i.e. the set of all base points, is closed.
- ii) Assume in addition that X is locally factorial. Show that for any \mathcal{L} there exists an effective divisor D such that the base locus of the complete linear system given by $\mathcal{L}(-D) := \mathcal{L} \otimes \mathcal{O}(-D)$ is of codimension ≥ 2 .

Exams

23.02.2016, 13.00 - 15.00, Großer Hörsaal, Wegelerstr. 10; 31.03.2016, 9.00 - 11.00, Kleiner Hörsaal, Wegelerstr. 10.

Due Monday 1 February, 2016.

This is the last exercise sheet for which you can get points.