Universidade de São Paulo escola de engenharia de são carlos

Projeto de Circuitos Integrados Analógicos - SEL0618

Projeto 7

Aluno: Lucas A. M. Magalhães

N'umero~USP:~7173347

Aluno: Luiz H. G. Patire Número USP: 7126667

SUM'ARIO

Sumário

R	elatório	2
	Questão 1	2
	Questão 2	2
	Questão 3	2
	Questão 4	5
	Questão 5	7
	Questão 6	10
	Questão 7	11
	Questão 8	13
	Questão 9	15
	Questão 10	16
	Questão 11	16
	Questão 12	17
	Questão 13	20
	Questão 14	21
	Questão 15	21
	Questão 16	23
	Questão 17	28
	Questão 18	29
	Questão 19	30
	Questão 20	30
	Questão 21	32
	Questão 22	32
	Questão 23	33
	Questão 24	33
	·	35
	Questão 26	38

Relatório

Questão 1

O valor de gm do transistor MOS varia de acordo com sua região de operação. Na região de forte inversão temos que $gm = \sqrt{2I_D\mu C_{ox}(\frac{W}{L})} = \frac{2I_D}{V_{GS}-V_t}$ e na região de inversão moderada $gm \approx \frac{ID}{nV_T\sqrt{1+LIM}}$. Determine o valor de gm para o transistor operando na região de fraca inversão com $V_D>>V_T$ e n = 1.

Obs:
$$gm = \frac{\partial I_D}{\partial V_{GS}}$$

Para encontrar a equação para o gm, basta partir da definição mostrada na observação acima. A equação 1 mostra a equação antes de aplicar a derivada, para $V_D >> V_T$ e n=1. A relação final é concluida na equação 2, após a aplicação da derivada.

$$gm = \frac{\partial (\frac{W}{L} \cdot I_D \cdot e^{\frac{V_{GS}}{V_T}})}{\partial V_{GS}} \tag{1}$$

$$gm = \frac{\left(\frac{W}{L} \cdot I_D \cdot e^{\frac{V_{GS}}{nV_T}}\right)}{V_T} \tag{2}$$

Questão 2

Mostre que para uma corrente igual a I_{Dlim} os valores de g_m calculados considerando o transistor em fraca ou forte inversão coincidem.

Igualando o valor de gm para forte inversão e o resultado para fraca inversão dados na questão 1, vemos que o resultado é a propria corrente I_{Dlim} , para n=1. As equações 3 e 4 mostram o desenvolvimento.

$$\frac{I_D}{V_T} = \sqrt{2 \cdot I_D \cdot \mu \cdot C_{ox} \cdot (\frac{W}{L})} \tag{3}$$

Aplicando o quadrado e isolando I_D tem-se:

$$I_D = 2 \cdot \mu \cdot C_{ox} \cdot (\frac{W}{L})(V_T)^2 \tag{4}$$

Que é o proprio I_{Dlim} , c.q.d..

Questão 3

Considere os dois espelhos de corrente apresentados na Figura 1. Um deles é um espelho convencional e o outro é um espelho de corrente de Wilson.

Em que circunstância, no espelho convencional, a corrente de saída I_0 é exatamente igual à corrente I_{REF} .

Determine a impedância de saída do espelho convencional.

Caso este valor for pequeno qual é a consequência? Como ele pode ser aumentado?

Determine a impedância de saída do espelho de Wilson e mostre que é aproximadamente igual a $\frac{v_0}{i_0} \approx \frac{gm1gm2}{go1gm2} \frac{1}{go3} \approx \frac{gm1}{go1} \frac{1}{go3}$ para o caso onde M_1 é igual a M_2 (ignore o efeito de corpo). Compare a impedância de saída das duas configurações. Qual é maior? Qual a desvantagem do espelho de Wilson?

Figura 1: a) Espelho de corrente convencional; b) espelho de corrente de Wilson.

Considerando o espelho de convencional, podemos expressar a relação entre as correntes de dreno pela Equação 5:

$$\frac{I_{D2}}{I_{D1}} = \frac{K_2 \cdot \frac{W_2}{L_2} \cdot (V_{GS} - V_{T2})^2 \cdot (1 + \lambda \cdot V_{DS})}{K_1 \cdot \frac{W_1}{L_1} \cdot (V_{GS} - V_{T1})^2 \cdot (1 + \lambda \cdot V_{DS})}$$
(5)

Para que a corrente de saída seja exatamente igual à corrente de I_{REF} , devemos considerar que os transistores estejam casados $(K_1 = K_2 \text{ e } V_{T1} = V_{T2})$ e que tenham as mesmas proporções $(\frac{W_1}{L_1} = \frac{W_2}{L_2})$.

Para calcular a impedância de saída do espelho convencional, utiliza-se o modelo Pi de pequenos sinais, cujo esquemático para o espelho encontra-se na Figura 2:

Figura 2: Modelo de Pequenos Sinais para o Espelho de Corrente Convencional

Do esquemático podemos tirar que

$$gm_1 \cdot V_{GS1} = g_{o1} \cdot V_{GS1} \tag{6}$$

o que só é possivel caso $V_{GS1}=0$, assim temos que:

$$Z_{out} = \frac{V_x}{I_x} = \frac{1}{g_{o2}} \tag{7}$$

Como a impedância de saída de um espelho de corrente ideal deve ser infinita, podemos considerar que a impedância de saída do espelho convencional tem um valor baixo. Isso consiste um problema em espelhos de corrente, pois a dependência da corrente de saída é inversamente proporcional à resistência de saída do circuito, ou seja, quanto menor a resistência de saída, maior a variação da corrente de saída com a tensão de alimentação. Para aumentar esse valor, pode-se optar pelo Espelho de Wilson, que possui transistores em série pendurados na saída, o que aumenta o valor da impedância de saída.

Para calcular a impedância de saída do Espelho de Wilson, utiliza-se o modelo Pi de pequenos sinais, cujo esquemático para esse espelho encontra-se na Figura 3

Figura 3: Modelo de Pequenos Sinais para o Espelho de Corrente de Wilson

Do circuito podemos tirar que

$$V_y \cdot g_{o1} = -gm_1 \cdot V_x \tag{8}$$

$$I_o = gm_3 \cdot (V_y - V_x) + g_{o3} \cdot (V_o - V_x)$$
(9)

$$gm_3 \cdot (V_y - V_x) + g_{o3} \cdot (V_o - V_x) = gm_2 \cdot V_x + g_{02} \cdot V_x$$
 (10)

Substituindo 8 em 10 temos:

$$V_x = \frac{g_{o3} \cdot V_o}{g_{o2} + gm_2 + g_{o3} + gm_3 + \frac{gm_3 \cdot gm_1}{g_{o1}}}$$
(11)

Substituindo 11 em 9 temos:

$$Z_{out} = \frac{V_o}{I_o} = \frac{g_{o1} \cdot (g_{o2} + gm_2 + g_{o3} + gm_3) + gm_3 \cdot gm_1}{gm_2 \cdot g_{o1} \cdot g_{o3} + g_{o1} \cdot g_{o2} \cdot g_{o3}}$$
(12)

Para simplificar o resultado, podemos considerar $gm >> g_o$. Assim, o primeiro termo do numerador pode ser desconsiderado diante do segundo termo e o segundo termo do denominador pode ser desconsiderado diante do primeiro termo. A forma simplificada é

$$Z_{out} = \frac{V_o}{I_o} = \frac{gm_3 \cdot gm_1}{gm_2 \cdot g_{o1} \cdot g_{o3}}$$
 (13)

Pode-se ainda considerar $gm_2 = gm_3$ (devido a igualdade entre os transistores e o fato de que por eles passam a mesma corrente), assim, a impedância de saída fica:

$$Z_{out} = \frac{V_o}{I_o} = \frac{gm_1}{g_{o1} \cdot g_{o3}} \tag{14}$$

A impedância de saída do Espelho de Wilson é maior do que a impedância de saída do espelho convencional por $\frac{gm}{g_o}$, que é um número consideravelmente grande.

O problema dos espelhos de Wilson, no entanto, deve-se ao acúmulo de transistores em série presente no circuito, o que exige uma maior tensão de alimentação do que os espelhos convencionais.

Questão 4

Considere o circuito da figura abaixo (Fig. 4). Este circuito é formado pelo espelho de corrente M_3 , M_4 e M_5 e os transistores trabalhando em fraca inversão M_1 e M_2 . Ele serve para gerar uma corrente de referência I_S . Considere que

- $(W/L)_{M4}$ é M vezes maior do que $(W/L)_{M3}$;
- $(W/L)_{M2}$ é N vezes maior do que $(W/L)_{M1}$ (ambos os transistores operam em fraca inversão).
- $(W/L)_{M5}$ é \boldsymbol{X} vezes maior do que $(W/L)_{M3}$.

Mostre que a corrente de saída tem, quando os transistores M_3 , M_4 e M_5 estão em saturação, a expressão

$$I_s = X \frac{V_T}{R} ln(MN) \tag{15}$$

Figura 4: Circuito gerador de corrente de referência.

Para encontrar a relação 15, será preciso alguma aritmética. Primeiramente, obtêm-se a equação 16, onde V_{GS1} e V_{GS2} são as tensões source e dreno dos transistores M_1 e M_2 , respectivamente. A corrente I_0 é a corrente de dreno do transistor M_2 .

$$V_{GS1} = V_{GS2} = I_0 \cdot R \tag{16}$$

Analizando o circuito, tem-se que:

$$I_{DM4} = -I_{DM1} = -M \cdot I_0 \tag{17}$$

$$I_{DM3} = -I_{DM2} = -I_0 (18)$$

A relação 19 também é observada pelo tamanho dos transistores:

$$M = \frac{I_{DM1}}{I_{DM2}} \tag{19}$$

O projeto especifica que M_1 e M_2 estão em fraca inversão. Assim, as correntes são calculadas pelas equações 20 e 21.

$$I_{DM1} = \frac{W}{L} \cdot I_D 0 \cdot e^{\frac{V_{G1}}{nV_T}} \cdot e^{-\frac{V_{S1}}{V_T}}$$
 (20)

$$I_{DM2} = \frac{W}{L} \cdot I_D 0 \cdot e^{\frac{V_{G2}}{nV_T}} \cdot e^{-\frac{V_{S2}}{V_T}}$$
 (21)

Ao dividir as equações 20 e 21, obtêm-se:

$$M = \frac{e^{\frac{V_{G1}}{nV_T}} \cdot e^{\frac{V_{S1}}{V_T}}}{N \cdot e^{\frac{V_{G2}}{nV_T}} \cdot e^{\frac{V_{S2}}{V_T}}}$$
(22)

Com algum desenvolvimento:

$$V_T \cdot \ln(M \cdot N) = \frac{V_{G1} - V_{G2}}{n} - (V_{S1} - V_{S2})$$
(23)

No circuito, observa-se que $V_{G1} = V_{G2}$. Assim, da equação 16:

$$-V_{S1} + V_{S2} = I_0 \cdot R \tag{24}$$

Das equações 23 e 25:

$$V_T \cdot \ln(M \cdot N) = I_0 \cdot R \tag{25}$$

Como $I_0 \cdot X = I_s$, finalmente:

$$I_s = X \cdot \frac{V_T}{R} \cdot \ln(M \cdot N) \tag{26}$$

Questão 5

Considere os valores M=2, N=1 e X=1. Determine através de equações os valores (W/L) dos transistores e de R para que:

$$I_S = 1 \,\mu A \tag{27}$$

O circuito deve funcionar para tensões na saída (dreno de M_5) tão altas quanto (V_{DD} - 0,4 V). Considere que M_3 , M_4 e M_5 estão em forte inversão.

Para o cálculo de R, modifica-se a equação 26 em 28 e substitui-se os valores dados no exercício:

$$R = X \cdot \frac{V_T}{I_s} \cdot \ln(M \cdot N) = 18,0k\Omega \tag{28}$$

Para calcular os valores dos (W/L) dos transistores, usa-se as condições para fraca e forte inversão, as equações 29 e 30, respectivamente:

$$LIM < 0, 1 \tag{29}$$

$$LIM > 10 \tag{30}$$

onde:

$$LIM = \frac{I_D}{I_{DLim}} \tag{31}$$

$$I_{DLim} = \mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (n \cdot V_T)^2 \tag{32}$$

Considerando os transistores NMOS trabalhando em fraca inversão, temos:

$$\frac{I_D}{\mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (n \cdot V_T)^2} < 0, 1 \tag{33}$$

Os cálculos são feito tomando como base o fato de que o transistor M1 (da Figura 4) deve suportar uma corrente maior do que M2, portanto deve ser maior em tamanho e irá ditar o tamanho de M1 (devido critérios de casamento de componentes). Assim, temos:

$$\frac{I_D}{\mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (n \cdot V_T)^2} < 0, 1 \tag{34}$$

$$\frac{W}{L} > \frac{M \cdot I_S}{0, 1 \cdot \mu \cdot C_{ox} \cdot (n \cdot V_T)^2} \tag{35}$$

Os valores dos parâmetros para NMOS da tecnologia utilizada estão na Tabela 1:

Tabela 1: Parâmetros NMOS

Parâmetro	Min	Max	Típico	Unidade
μ	-	-	$4,758 \cdot 10^2$	$cm^2/V \cdot s$
E_{ox}	_	-	$3,5\cdot 10^{-13}$	F/cm
T_{ox}	-	-	$7,575 \cdot 10^{-9}$	m
V_T	-	-	26,0	mV
n	1,2	1,6	-	_

Escolhendo n = 1,2 (pior caso), temos a restrição as dimensões de M1 e M2 dadas por 36:

$$\frac{W}{L} > 46,7\tag{36}$$

Para cálculo das dimensões do PMOS, consideramos os transistores em forte inversão, assim:

$$\frac{I_D}{\mu \cdot C_{ox} \cdot \frac{W}{L} \cdot (n \cdot V_T)^2} > 10 \tag{37}$$

Para o transistor M4:

$$\frac{W}{L} < \frac{M \cdot I_S}{10 \cdot \mu \cdot C_{ox} \cdot (n \cdot V_T)^2} \tag{38}$$

Para o transistor M3 e M5:

$$\frac{W}{L} < \frac{I_S}{10 \cdot \mu \cdot C_{ox} \cdot (n \cdot V_T)^2} \tag{39}$$

Os valores dos parâmetros para PMOS da tecnologia utilizada estão na Tabela 2:

Tabela 2: Parâmetros PMOS

Parâmetro	Min	Max	Típico	Unidade
μ	-	-	$1,482 \cdot 10^2$	$cm^2/V \cdot s$
E_{ox}	_	-	$3, 5 \cdot 10^{-13}$	F/cm
T_{ox}	_	_	$7,754 \cdot 10^{-9}$	m
V_T	_	_	26,0	mV
n	1,2	1,6	-	-

Escolhendo n=1,6 (pior caso), temos para o transistor M4:

$$\frac{W}{L} < 0.84 \tag{40}$$

e para os transistores M3 e M5:

$$\frac{W}{L} < 0.42 \tag{41}$$

Para encontrar o limitante inferior da relação (W/L) dos transistores PMOS, consideramos o transistor M5 operando em saturação, assim temos:

$$I_S = \frac{\mu_p \cdot C_{ox}}{2} \cdot \frac{W}{L} (V_{GS} + |V_{TP}|)^2$$
 (42)

е

$$V_D - V_G < |V_{TP}| \tag{43}$$

$$V_{DD} - 0.4 - V_G < |V_{TP}| \tag{44}$$

$$V_G - V_{DD} + |V_{TP}| > -0.4 (45)$$

$$(V_G - V_{DD} + |V_{TP}|)^2 < 0, 4^2 (46)$$

$$\left(\frac{W}{L}\right) \cdot \left(V_G - V_{DD} + |V_{TP}|\right)^2 < \left(\frac{W}{L}\right) \cdot 0, 4^2$$
 (47)

De 42 e 47 temos:

$$\frac{I_S}{\frac{\mu_p \cdot C_{ox}}{2}} < \left(\frac{W}{L}\right) \cdot 0, 4^2 \tag{48}$$

$$\frac{W}{L} > \frac{I_S}{\frac{\mu_p \cdot C_{ox}}{2} \cdot 0, 4^2} \tag{49}$$

Dos valores para PMOS da tecnologia, obtemos o limitante inferior:

$$\frac{W}{L} > 0,18 \tag{50}$$

Com 36, 40, 41 e 50, podemos obter as relações (W/L), que estão na Tabela 3:

Tabela 3: Relação (W/L) dos Transistores

Transistores	(W/L)
M1	46,7
M2	46,7
M3	0,2
M4	0,4
M5	0,2

Questão 6

Utilize as dimensões $L_1 = 1 \ \mu m$ e $L_3 = 2 \ \mu m$ para o comprimento de canal dos transistores M_1 e M_3 . Quais são as dimensões de L que devem ser utilizadas nos transistores M_2 , M_4 e M_5 . Por quê? Determine as dimensões da largura de canal W de todos os transistores (mostre numa tabela as dimensões determinadas).

Para que haja o casamento correto dos transistores e para evitar problemas de construção, o melhor seria manter as mesmas dimensões de W e L para transistores de mesmo tipo. Os transistores M_1 e M_2 devem ter as mesmas dimensões. Para manter o casamento correto e as proporções projetadas de W entre os transistores PMOS foi escolhido dividir o transistor M_4 em dois transistores paralelos, M_{41} e M_{41} , de mesmas dimensões. Dessa forma, todos os transistores PMOS tem as mesmas dimensões. A Tabela 4 mostra as dimensões de cada transistor.

Tabela 4: Dimensões dos Transistores

	$W(\mu m)$	$L(\mu m)$
M_1	46,7	1
M_2	46,7	1
M_3	0,4	2
M_{41}	0,4	2
M_{42}	0,4	2
M_5	0,4	2

Escreva o arquivo de entrada para simulação da fonte de corrente tomando cuidado em manter os transistores casados. Faça uma simulação do tipo DC variando V_{DD} entre 0 V e 5 V (considere o dreno de M_5 em 0 V). Medir as correntes que passam pelos transistores M_4 e M_3 para $V_{DD}=3.0$ V. Qual deveria ser a relação entre estas correntes e o que faz com que isso não seja obedecido? O que acontece com a corrente na saída quando aumentamos V_{DD} ? Por quê?

O arquivo de simulação pode ser encontrado no Listing 1

Listing 1: "Arquivo de Simulação para a Fonte de Corrente"

```
** Parametros
    param WM1 = 46.7u, LM1 = 1u , WM2 = 46.7u , LM2 = 1u , WM3 = 0.4u , LM3 = 2u , WM4 = 0.4u , LM4 =
        2u, WM5 = 0.4u, LM5 = 2u
    .param tensao = 3, res = 18k
   ** Circuito
   M1 B B VSS VSS MODN w = WM1, 1 = LM1, ad = '0.85u*WM1', pd = '0.85u*2+WM1', as = '0.95u*WM1
       ', ps = '0.95u*2+WM1'
   M2 A B C VSS MODN w = WM2, 1 = LM2, ad = '0.85u*WM2', pd = '0.85u*2+WM2', as = '0.95u*WM2',
       ps = '0.95u*2+WM2'
   M3 A A VDD VDD MODP w = WM3, 1 = LM3, ad = '0.85u*WM3', pd = '0.85u*2+WM3', as = '0.95u*WM3
       ', ps = '0.95u*2+WM3'
   M41 B A VDD VDD MODP w = WM4, 1 = LM4, ad = '0.85u*WM4', pd = '0.85u*2+WM4', as = '0.95u*WM4'
       ', ps = '0.95u*2+WM4'
   M42 B A VDD VDD MODP w = WM4, l = LM4, ad = '0.85u*WM4', pd = '0.85u*2+WM4', as = '0.95u*WM4
       ', ps = '0.95u*2+WM4'
   M5 VSS A VDD VDD MODP w = WM5, l = LM5, ad = '0.85u*WM5', pd = '0.85u*2+WM5', as = '0.95u*
       WM5', ps = '0.95u*2+WM5'
16
   R1 C VSS res
   VD VDD 0 tensao
   VS VSS 0 0
21
```

```
.DC PARAM tensao 0 5 0.1
.probe DC ID(M1) ID(M2) ID(M5)

.include "transistors.mod"

.end
```

As correntes resultantes da simulação estão na Figura 5. Nela podem ser observados os valores das correntes para $V_{DD}=3V,\,2,699~\mu A$ e 1,325 μA , para M4 e M3, respectivamente.

Figura 5: Correntes em M3 e M4 para Alimentação variando entre 0V e 5V

As correntes nos dois transistores respeitam a proporção 2:1 proposta para a fonte de corrente. Isso acontece devido a divisão do transistor M4 em dois transistores em paralelo, o que faz com que esse transistor esteja casado com os demais.

Conforme V_{DD} aumenta, a corrente que passa pelos transistores tende a aumentar linearmente. Isso é devido ao efeito de modulação de canal que ocorre em transistores MOS, como pode ser vista na Equação 51:

$$I_D = K_n' \frac{W}{L} (V_{GS} - V_{th})^2 (1 + \lambda (V_{DS} - V_{DS,sat}))$$
(51)

Com o aumento de V_{DD} , existe um aumento linear em V_{DS} , o que causa a variação da corrente.

Questão 8

Ajuste o valor de R para que a corrente de saída em $V_{DD}=3$ V seja a desejada no projeto (valor nominal). Apresente então o gráfico I_S x V_{DD} .

Para encontrar o valor correto da resistência, uma simulação foi feita variando-a entre 15kA e 25kA. O arquivo de simulação se encontra no *Listing* 2

Listing 2: "Código para Ajuste do Valor da Resistência"

```
** Parametros
   .param WM1 = 46.7u, LM1 = 1u , WM2 = 46.7u , LM2 = 1u , WM3 = 0.4u , LM3 = 2u , WM4 = 0.4u , LM4 =
        2u, WM5 = 0.4u, LM5 = 2u
   .param tensao = 3, res = 18k
   ** Circuito
   M1 B B VSS VSS MODN w = WM1, 1 = LM1, ad = '0.85u*WM1', pd = '0.85u*2+WM1', as = '0.95u*WM1
       ', ps = '0.95u*2+WM1'
   M2 A B C VSS MODN w = WM2, 1 = LM2, ad = 0.85u*WM2, pd = 0.85u*2+WM2, as = 0.95u*WM2,
   M3 A A VDD VDD MODP w = WM3, 1 = LM3, ad = '0.85u*WM3', pd = '0.85u*2+WM3', as = '0.95u*WM3
       ', ps = '0.95u*2+WM3'
   M41 B A VDD VDD MODP w = WM4, 1 = LM4, ad = '0.85u*WM4', pd = '0.85u*2+WM4', as = '0.95u*WM4
       ', ps = '0.95u*2+WM4'
   M42 B A VDD VDD MODP w = WM4, l = LM4, ad = '0.85u*WM4', pd = '0.85u*2+WM4', as = '0.95u*WM4
       ', ps = '0.95u*2+WM4'
   M5 VSS A VDD VDD MODP w = WM5, 1 = LM5, ad = '0.85u*WM5', pd = '0.85u*2+WM5', as = '0.95u*
       WM5', ps = '0.95u*2+WM5'
   R1 C VSS res
17
   VD VDD 0 tensao
   VS VSS 0 0
   .DC R1 15k 25k 0.1k
   .probe DC ID(M1) ID(M2) ID(M5)
   .include "transistors.mod"
27
   .end
```

O resultado da simulação e o novo valor da resistência podem ser encontrados na Figura 6.

Figura 6: Variação da Corrente de Saída Devido a Variação da Resistência

Com o novo valor de resistência, foi realizado uma nova simulação variando V_{DD} entre 0V e 5V. O resultado se encontra na Figura 7.

Figura 7: Variação da Corrente de Saída Devido a Variação de VDD

Determine a faixa de valores de V_{DD} para a qual a condição $I_0(0,98) < I_S < I_0(1,02)$ seja observada, onde I_0 é a corrente para $V_{DD}=3,0$ V. Qual é o valor mínimo de V_{DD} achado? Chamaremos a faixa de tensão encontrada acima de **faixa de operação do circuito** para variações de ± 2 .

A Faixa de Operação do circuito pode ser encontrada na Figura 8:

Figura 8: Faixa de Operação da Fonte de Corrente Projetada

O valor mínimo de V_{DD} encotrado foi de 2,788 V.

Questão 10

Caso desejemos ter uma **ampla faixa de operação** mesmo para **pequenas variações de corrente**, quais modificações podem ser realizadas no projeto?

Para que tenhamos uma ampla faixa de operação, duas alterações devem ser feitas. A primeira e mais simples é o aumento da largura dos transistores PMOS. No caso desse projeto, os transistores foram aumentados em dez vezes.

Outra modificação que foi aplicada é a inserção de uma fonte de corrente de wilson. A fonte de corrente de wilson irá gerar uma corrente de referência mais estável para o circuito. A Figura 9 mostra como fica o esquemático da fonte com wilson.

Questão 11

Reprojetar o circuito com modificações para reduzir a sua sensibilidade a variações de V_{DD} . Tomar cuidado para que as dimensões não aumentem muito e que a faixa de operação não seja muito reduzida. Apresente o esquemático do circuito, com as dimensões escolhidas, e o novo gráfico I_S \boldsymbol{x} V_{DD} .

A Figura 9 mostra o esquemático do ciruito reprojetado e a Figura 10 mostra a nova curva $I_S \ x \ V_{DD}$.

Figura 9: Esquemático da Fonte de Corrente com Espelho de Wilson

Figura 10: Faixa de Operação da Fonte de Corrente Reprojetada

Alguns circuitos analógicos necessitam de um circuito de *start-up* para começarem a funcionar (por exemplo, fontes de corrente, osciladores, etc.). Verifique por simulação se a fonte de corrente necessita de um *start-up* (considere algumas tensões iniciais nos nós do circuito e verifique, através de simulação de transitório, se o circuito vai ou não para o ponto de operação correto). Caso haja alguma condição inicial em que o circuito não funcione, apresente figura da simulação. Qual comando deve ser utilizado para impor condições iniciais, *IC* ou *.NODESET*?

Para verificar problemas de condição inicial, foram feitas simulações do circuito em condições problemáticas. Foram testadas condições onde os alguns transistores estivessem cortados. Para impor as condições iniciais, foi usado o comando .IC, que impõe condições iniciais para simulações DC.

O transistor M1 não teve problemas para voltar as condições de fucionamento. No entanto, os transistores M4 e M2 tiveram. Para cortar os transistores M1 e M2, foi colocada tensão inicial igual a 0 V em seus terminais dreno e porta; já no transistor M4 foi colocado 3 V. Vale deixar claro que foram feitas três simulações, uma para cada caso. Os gráficos nas figuras 11, 12 e 13 mostram a corrente de saída do circuito para os transistores M1, M2 e M4, respectivamente.

É possível observar que, se o circuito iniciar com M_2 ou M_4 cortados, o circuito não fucionará.

Figura 11: Corrente de saída quando para condição inicial onde M1 está cortado

Figura 12: Corrente de saída quando para condição inicial onde M2 está cortado

Figura 13: Corrente de saída quando para condição inicial onde M4 está cortado

Ajustar o valor de ${\pmb R}$ para que a corrente em M_5 tenha o valor nominal desejado quando $V_{DD}=3.0~{\rm V}.$

Para ajustar o resistor, foi usado o mesmo método que anteriormente. Foi feita uma simulação variando o valor da resistência para encontrar qual seria o melhor valor. O gráfico, na Figura 14, de $Corrente\ (A)\ x\ Resistência(\Omega)\ mostra qual o melhor valor para a resistência.$

Figura 14: Gráfico de simulação para encontrar o resistor onde a corrente de saida tenha o valor nominal desejado, $Corrente (A) \times Resistência(\Omega)$

Como deve ser desenhado o resistor (verificar no manual ENG-183_rev3.pdf como é feita a definição de um resistor)? Qual material é adequado para construí-lo?

O material adequado para que o resistor seja construído é o polysilício de alta resistividade (RPOLYH) pois sua resistividade é alta em comparação com os outros materiais, ideal para a construção de resistores de alta resistência. A resistência deve ser desenhada conforme as instruções do manual ENG-18 rev3.pdf página 44.

Questão 15

Fazer a fonte de corrente (esquemático, símbolo com a localização do *layout*, *layout*, verificações, LVS, etc.). Observe que:

a. para gerar automaticamente o *layout*use o *viewpoint*. Caso seja usado o esquemático os resistores não serão criados;

b. tomar cuidado para garantir o melhor casamento entre os transistores M_3 , M_4 e M_5 ; também cuidar do casamento entre os transistores M_1 e M_2 .

Quais são as dimensões do circuito completo (utilizar o comando Report – Windows

do ICSTATION)? Apresente o layout do circuito.

O layouté apresentado na Figura 15. O Listing~3 mostra o tamanho total do circuito, 55,05 $\mu m~X~47.838~\mu m$.

Figura 15: Layout final da fonte de corrente projetada

Listing 3: "Dimensões da célula do circuito geradas pelo IC Studio."

```
Report Windows
2
   \texttt{Selectable Layers: 0-4097, 4101, 4104-4106, 4109-4112, 4117-4167, 4190-4224}
   IC Windows
                                                   Offset
                         Major
                                  Grid
                                  Snap (X,Y)
                                                   (X,Y)
                                  0.050, 0.050
                                                   0.000, 0.000
12
                                                                              Window
            View Extent:
                              [[-14.817, 78.585],[55.967,128.953]]
                              [[-6.950, 79.350],[48.100,128.188]]
            Cell Extent:
                              $proj2/default.group/layout.views/fonte/fonte
         --- Top Cell:
```

```
--- Displayed Cell: $proj2/default.group/layout.views/fonte/fonte
--- Visible Layers: 0-4098, 4100-4102, 4104-4106, 4109-4132, 4158-4189, 4193-4224
```

Extrair o circuito do layout e determinar:

- a. corrente de saída para $V_{DD} = 3.0 \text{ V}$ (usar modelo típico);
- b. com simulação Monte Carlos, ao menos 200 simulações, traçar o gráfico **número de resultados** X **corrente de saída** em $V_{DD}=3$ V. Acho o valor médio;
- c. Para $V_{DD} = 3V$, qual é a máxima tensão que podemos aplicar na saída e a fonte continuar funcionando (considere que quando a corrente variou 2%, deixou de funcionar).

Obs.: O extrator gera a linha do resistor erradamente. O resistor deve ser um subcircuito. Acrescente \boldsymbol{X} no inicio da linha gerada para o resistor. Adicionalmente deve ser acrescentado ao arquivo de simulação o modelo do resistor que se encontra em /local/to-ols/dkit/ams 3.70/c35/eldo/restm.mod.

O circuito extraido pode ser encontrado no Listing 4:

Listing 4: "Circuito Extraido do Layout"

```
* File: fonte.pex.netlist
* Created: Fri Aug 30 09:55:49 2013
* Program "Calibre xRC"
* Version "v2006.2_16.16"
.subckt FONTE OUT VDD VSS
XrR0 VSS 8 RPOLYH w=2e-06 1=3.18e-05
mM1 VSS 5 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
+ PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
mM2 1 5 VSS VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM3 2 2 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM4 1 2 2 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
+ PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM5 8 5 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
+ PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
mM6 5 5 8 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM7 3 2 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM8 5 2 3 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
+ PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
mM9 VDD 3 2 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
+ PS=5.7e-06 NRD=0.10625 NRS=0.10625
mM10 VDD 3 3 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
+ PS=5.7e-06 NRD=0.10625 NRS=0.10625
mM11 2 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
+ PS=5.9e-06 NRD=0.10625 NRS=0.10625
mM12 OUT 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
+ PS=5.9e-06 NRD=0.10625 NRS=0.10625
c_6 1 0 1.89384f
```

```
| c_14 2 0 7.34406f
| c_20 3 0 0.571816f
| c_25 VSS 0 5.71454f
| c_32 5 0 3.88144f
| c_38 VDD 0 146.559f
| c_45 8 0 2.93227f
| include "fonte.pex.netlist.FONTE.pxi"
| include "restm.mod"
| include "transistors.mod"
| *
| 48 .ends
```

O gráfico com a corrente de saída do circuito pode ser encontra da Figura 16. Nela está indicado o valor da corrente para $V_{DD}=3\ V,\ 1,00\ uA.$

Figura 16: Corrente de Saída do Fonte de Corrente

O arquivo de simulação Monte Carlo pode ser encontrado no Listing 5:

Listing 5: "Código pra Simulação Monte Carlo"

```
* File: fonte.pex.netlist

2 * Created: Fri Aug 30 09:55:49 2013

* Program "Calibre xRC"

* Version "v2006.2_16.16"

*
.subckt FONTE OUT VDD VSS

7 *
XrRO VSS 8 RPOLYH w=2e-06 1=3.18e-05
```

```
mM1 VSS 5 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
          + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
        mM2 1 5 VSS VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
          + PS=1e-06 NRD=0.0182013 NRS=0.0182013
          mM3 2 2 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
          + PS=1e-06 NRD=0.0182013 NRS=0.0182013
          mM4 1 2 2 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
          + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
          mM5 8 5 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
          + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
          mM6 5 5 8 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
          + PS=1e-06 NRD=0.0182013 NRS=0.0182013
          mM7 3 2 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
22
          + PS=1e-06 NRD=0.0182013 NRS=0.0182013
          mM8 5 2 3 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
           + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
           \verb|mM9 VDD 3 2 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06 AD=3.8e-12 AS=3.4e-12 AS
          + PS=5.7e-06 NRD=0.10625 NRS=0.10625
           \verb|mM10 VDD 3 3 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06 AD=3.8e-12 A
           + PS=5.7e-06 NRD=0.10625 NRS=0.10625
          mM11 2 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
           + PS=5.9e-06 NRD=0.10625 NRS=0.10625
          mM12 OUT 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
          + PS=5.9e-06 NRD=0.10625 NRS=0.10625
          c_6 1 0 1.89384f
          c_14 2 0 7.34406f
          c 20 3 0 0.571816f
          c_25 VSS 0 5.71454f
          c_32 5 0 3.88144f
          c_38 VDD 0 146.559f
          c_45 8 0 2.93227f
          .include "fonte.pex.netlist.FONTE.pxi"
          *.include "restm.mod"
          *.include "transistors.mod"
47
          .ends
          Xf OUT VDD VSS FONTE
52
          Vd VDD VSS 3V
          Vs VSS 0 0V
          Vo OUT VSS OV
          .DC Vd 0 5 0.01
57
           *.meas DC OutCurrent FIND I(Vo) WHEN V(VDD)=3V
           .meas DC out FIND I(Vo) WHEN V(VDD)=3v
           .probe DC I(Vo)
          .option SST_MTHREAD=1
           .MC 500 NBBINS=20
            .INCLUDE /local/tools/dkit/ams_3.70_mgc/eldo/c35/profile.opt
           .LIB /local/tools/dkit/ams_3.70_mgc/eldo/c35/wc53.lib mc
67
           .end
```

O gráfico com o resultado da simulação e o ponto médio da distribuição podem ser encontrados na Figura 17:

Figura 17: Histograma da Corrente de Saída na Simulação Monte Carlo

O arquivo para análise da máxima tensão de saída que pode ser aplicada ao circuito pode ser encontrado no *Listing* 6:

Listing 6: "Código para Análise de Tensão Aplicada na Saída"

```
* File: fonte.pex.netlist
    * Created: Fri Aug 30 09:55:49 2013
    * Program "Calibre xRC"
    * Version "v2006.2_16.16"

*

subckt FONTE OUT VDD VSS

*

XrRO VSS 8 RPOLYH w=2e-06 1=3.18e-05

mM1 VSS 5 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
1 + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
    mM2 1 5 VSS VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
```

```
mM3 2 2 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM4 1 2 2 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM5 8 5 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
   + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
   mM6 5 5 8 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM7 3 2 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM8 5 2 3 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM9 VDD 3 2 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM10 VDD 3 3 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM11 2 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   mM12 OUT 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   c_6 1 0 1.89384f
   c_14 2 0 7.34406f
   c_20 3 0 0.571816f
   c_25 VSS 0 5.71454f
   c_32 5 0 3.88144f
   c_38 VDD 0 146.559f
   c_45 8 0 2.93227f
   .include "fonte.pex.netlist.FONTE.pxi"
   .include "restm.mod"
   .include "transistors.mod"
   .ends
   .param tensao=3V
   Xf OUT VDD VSS FONTE
   Vd VDD VSS 3V
   Vs VSS 0 0V
   Vo OUT VSS 0
   *.NODESET V(OUT)=tensao
   .DC Vo 0 5 0.01
61
   .probe DC Is(Xf.mM12)
   .end
```

O gráfico resultante da análise e o valor limite da tensão podem ser encontrados na Figura 18:

Figura 18: Gráfico da Variação da Corrente com Variação da Tensão Aplicada na Saída

Realize a simulação DC do circuito com a temperatura variando de -20 $^{\circ}$ C até 100 $^{\circ}$ C, em passos de 5 $^{\circ}$ C ($V_{DD}=3$ V). Abaixo há **um exemplo** de como devem ficar os comandos: option precise

.DC temp -30 120 10

.probe DC Id(Mp1)

O arquivo para a simulação DC do circuito com a variação de temperatura se encontra no Listing 7:

Listing 7: "Código para a Simulação do Funcionamento do Circuito com a Variação da Temperatura"

```
* File: fonte.pex.netlist

* Created: Fri Aug 30 09:55:49 2013

* Program "Calibre xRC"

* Version "v2006.2_16.16"

*

.subckt FONTE OUT VDD VSS

*

XrRO VSS 8 RPOLYH w=2e-06 1=3.18e-05

mM1 VSS 5 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06

+ PS=2.505e-05 NRD=0.0182013 NRS=0.0182013

mM2 1 5 VSS VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06

+ PS=1e-06 NRD=0.0182013 NRS=0.0182013
```

```
mM3 2 2 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM4 1 2 2 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM5 8 5 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
   + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
   mM6 5 5 8 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM7 3 2 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM8 5 2 3 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM9 VDD 3 2 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM10 VDD 3 3 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM11 2 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   mM12 OUT 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   c_6 1 0 1.89384f
   c_14 2 0 7.34406f
   c_20 3 0 0.571816f
   c_25 VSS 0 5.71454f
   c_32 5 0 3.88144f
   c_38 VDD 0 146.559f
   c_45 8 0 2.93227f
   .include "fonte.pex.netlist.FONTE.pxi"
   .include "restm.mod"
   .include "transistors.mod"
   .ends
   Xf OUT VDD VSS FONTE
   Vd VDD VSS 3V
   Vs VSS 0 0V
   Vo OUT VSS 0
   .option precise
   .DC temp -20 100 5
59
   .probe DC Is(Xf.mM12)
64
   .end
```

Apresente a curva I_S x Temperatura e determine os valores extremos da corrente. Compare a dependência teórica de I_S com a temperatura e os resultados?

O gráfico mostrando a variação da corrente de saída com a temperatura pode ser encontrado na Figura 19:

Figura 19: Variação da Corrente de Saída do Circuito devido a Variação de Temperatura

Segundo os resultados da Questão 4, a corrente de saída do circuito é dada pela equação 15, que é diretamente proporcional à V_T . V_T , por sua vez, é diretamente proporcional à temperatura de acordo com a equação 52, tirada da página 17-13 do arquivo equatios.pdf:

$$V_t(T) = \frac{k_B \cdot T}{q} \tag{52}$$

Espera-se, com isso, que a corrente de saída tenha uma depêndecia linear diretamente proporcional ao aumento da temperatura, fato que se observa nos resultados obtidos.

Questão 19

Vamos determinar a influência de ruídos da tensão de alimentação na corrente de saída. Para isso podemos utilizar simulações do tipo AC. O que faz uma simulação dessas? A simulação AC faz uma análise do circuito com uma entrada de sinal alternado, considerando a parte DC. A simulação faz a análise do funcionamento do circuito com um sinal de entrada em várias frequências e gera o diagrama de Bode do sistema.

Questão 20

Aplique um sinal AC na tensão de alimentação e faça uma simulação AC de 1 KHz a 100 MHz analisando 10 pontos por década (ver comando .AC). Abaixo há **um exemplo** de como devem ficar os comandos:

Vd vd 0 3V AC 1

.AC DEC 10 1K 10MEG .probe AC Id(Mn4) Vd(5) v(6)

O código para a simulação do comportamento do circuito em frequência pode ser encontrado no Listing~8

Listing 8: "Código para Simulação do Comportamento do Circuito em Frequência"

```
* File: fonte.pex.netlist
   * Created: Fri Aug 30 09:55:49 2013
   * Program "Calibre xRC"
   * Version "v2006.2_16.16"
   .subckt FONTE OUT VDD VSS
   XrRO VSS 8 RPOLYH w=2e-06 1=3.18e-05
   mM1 VSS 5 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
   + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
   mM2 1 5 VSS VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM3 2 2 1 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM4 1 2 2 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM5 8 5 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.98475e-11 PD=1e-06
   + PS=2.505e-05 NRD=0.0182013 NRS=0.0182013
   mM6 5 5 8 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM7 3 2 5 VSS MODN L=1e-06 W=2.335e-05 AD=1.1675e-11 AS=1.1675e-11 PD=1e-06
   + PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM8 5 2 3 VSS MODN L=1e-06 W=2.335e-05 AD=1.98475e-11 AS=1.1675e-11
   + PD=2.505e-05 PS=1e-06 NRD=0.0182013 NRS=0.0182013
   mM9 VDD 3 2 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM10 VDD 3 3 VDD MODP L=2e-05 W=4e-06 AD=3.8e-12 AS=3.4e-12 PD=5.9e-06
   + PS=5.7e-06 NRD=0.10625 NRS=0.10625
   mM11 2 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   mM12 OUT 3 VDD VDD MODP L=2e-05 W=4e-06 AD=3.4e-12 AS=3.8e-12 PD=5.7e-06
   + PS=5.9e-06 NRD=0.10625 NRS=0.10625
   c_6 1 0 1.89384f
   c_14 2 0 7.34406f
36
   c_20 3 0 0.571816f
   c_25 VSS 0 5.71454f
   c_32 5 0 3.88144f
   c_38 VDD 0 146.559f
   c_45 8 0 2.93227f
   .include "fonte.pex.netlist.FONTE.pxi"
   .include "restm.mod"
   .include "transistors.mod"
   .ends
51
   Xf OUT VDD VSS FONTE
```

```
Vd VDD VSS 3V AC 1
Vs VSS 0 0V
Vo OUT VSS 0

.AC DEC 10 1K 100MEG
.probe AC Is(Xf.mM12)

61
.end
```

Apresente o gráfico I_S (em dB) x freqüência (em escala logarítmica) (mostre os comando do ELDO utilizados). Caso se deseje que o ruído na saída se mantenha inferior 1% da corrente nominal, para um ruído de 0,1 V na fonte de alimentação, qual a máxima freqüência que o ruído pode ter?

A Figura 20 mostra o diagrama de bode do circuito fonte de corrente. Para que um ruído tenha magnitude menor que 1% da corrente nominal o mesmo deve ter no máximo ganho menor que essa magnitude. Assim o máximo ganho deve ser de 160~dB. Pelo gráfico observamos que a frequência para este ganho deve ser de 284~KHz.

Figura 20: Diagrama de Bode da Fonte de Corrente

Caso a fonte de alimentação apresente ruídos acima de 0,1 V em freqüências acima da permitida, qual providência simples pode ser tomada para reduzi-los?

Para reduzir o ruído, pode ser utilizado um filtro. Como o problema ocorre em altas frequências, o filtro deve ser do tipo passa baixa.

Questão 23

Tecnologias CMOS são desenvolvidas para fornecer transistores MOS, NMOS e PMOS. Apesar disso, não raramente são também disponibilizados transistores bipolares. Verfique os **transistores bipolares LAT2 e Vert10** fornecidos pela AMS, manual ENG-183. Que **tipo** de transistor são (NPN ou PNP) e **por que são chamados** de **lateral**, LAT2, e **vertical**, VERT10?

As categorias vertical e lateral são dadas pela direção que a corrente flui no circuito. Nos transistores laterais a corrente flui paralelamente ao plano de incidência. Nos transistores verfical o fluxo de corrente é perpedicular ao plano de incidência.

Questão 24

Verifique o comportamento do transistor VERT10 com a temperatura. Para isso conecte o emissor dele a uma fonte de corrente (valor de corrente igual ao que você usou no projeto), a base e coletor ao terra e faça o gráfico V_{BE} x Temperatura. A declaração do transistor é:

Qname coletor base emissor VERT10

O modelo VERT10 encontra-se no fim do material.

Grandezas PTAT (Proportional To Absolute Temperature), como a fonte de corrente, e CTAT (Complementary To Absolute Temperature), como o V_{BE} de um bipolar, podem ser utilizadas para gerar um sinal independente da temperatura. Para isto basta somálas, multiplicadas por coeficiente de ajuste, de forma que as variações com a temperatura se cancelem, como mostra a Figura 21.

Figura 21: Soma de grandezas PTAT e CTAT.

Um circuito que realiza semelhante soma é apresentado na Figura 22.

Figura 22: Fonte de tensão de referência.

Nela podemos ver que:

- a tensão de saída é igual a soma entre a tensão em R_2 , PTAT, e a tensão V_{BE} do transistor;
- o valor de R_2 ajusta a relação entre essas duas tensões.

O gráfico de V_{BE} x Temperatura é mostrado na Figura 23. Para gerar o gráfico, foi feita a simulação escrecificada no Listing 9. Pelo gráfico, observa-se que a tensão de saída é inversamente proporcional à temperatura.

Listing 9: "Simulação da tensão para variação de Temperatura no transistor"

* teste - transistor bipolar VERT10

```
Id 0 E 1uA

Qt C B E VERT10

7  Vb B 0 0V
 Vc C 0 0V

.DC temp -20 100 1
.PROBE DC V(E)

12  .include "vert10.mod"

.end
```


Figura 23: Simulação da tensão para variação de temperatura V_{BE} x Temperatura

Projete uma fonte de tensão de referencia similar a da figura 4 mas utilize a fonte de corrente que você projetou (questão 15). Na fonte de tensão faça com que a corrente do bipolar seja igual à corrente que passa pelo resistor R_1 (Figura 4). O valor

de R_2 deve ser ajustado para que Coeficiente de Temperatura* seja inferior a 50 ppm/ $^{\rm O}$ C, para a temperaturas variando entre -10 $^{\rm o}$ C e 100 $^{\rm o}$ C. Apresente o esquemático do circuito completo, as dimensões dos transistores e os valores dos resistores. Apresente também o gráfico V_{REF} x Temperatura.

* Coeficiente de Temperatura (partes por milhão por graus Celsius);

 $V_{MAX} = \text{Máximo valor de } V_{REF} \text{ para } t \in [-10^{\circ}\text{C}, 100^{\circ}\text{C}]$

 $V_{MIN} = \text{Mínimo valor de } V_{REF} \text{ para } t \in [-10^{\circ}\text{C}, 100^{\circ}\text{C}]$

Coeficiente de Temperatura $= \frac{V_{MAX} - V_{MIN}}{V_{ref}} \cdot \frac{10^6}{110}$

Para encontrar o melhor valor para a resistência da fonte de tensão, foi feita uma simulação do coeficiente de temperatura para várias valores de resistência. A Figura 24 mostra o gráfico gerado da simulação e indica o valor onde o coeficiente de temperatura é menor. O gráfico V_{REF} x Temperatura. é apresentado na Figura 25, com a melhor resistência 539 $K\Omega$. Pode-se observar que a variação de tensão é muito pequena, da ordem de mV. O esquemático é mostrado na Figura 26, o subcircuito FONTE2 é mostrado no esquemático da Figura 9. A Tabela 5 mostra os valores finais de dimensões dos transistores e dos resistores.

Tabela 5: Dimensão final dos elementos do circuito

Transistores				
	$W(\mu m)$	$L(\mu m)$		
M_1	46,7	1		
M_2	46,7	1		
M_3	0,4	2		
M_{41}	0,4	2		
M_{42}	0,4	2		
M_5	0,4	2		
Resistores				
	Ω			
R_1	21,22~K			
R_2	539 K			

Figura 24: Coeficiente de Temperatura x Resistencia. Resistência para qual o coeficiente de temperatura é o menor

Figura 25: Tensão x Temperatura. Gráfico da simulação para fonte de tensão invariante a temperatura.

Figura 26: Esquematico para fonte de tensão invariável com a temperatura usando a fonte de corrente previamente projetada.

Desenhe o layout da fonte de tensão completa. Utilize o transistor vertical PRIM-LAB/VERT10 da biblioteca. Adicione ao layout Pads de V_{DD} e GND. Passar o DRC para verificar se tudo está correto e faça simulação com a temperatura. Quais são as dimensões do circuito com os Pads? Apresente o layout do circuito e o gráfico V_{REF} x Temperatura.

Obs.: um bloco de *Pad* pode ser encontrado na biblioteca **IOLIB_4M**, célula *g-padonly*. Alguns dados adicionais: os transistores MOS, apesar de terem em primeira ordem um funcionamento simples, precisam de modelos que são cada vez mais sofisticados. Um dos modelos mais conhecidos, e não por isso o melhor, é o BSIM (Berkeley Short Channel IG-FET Model, HYPERLINK "http://www-device.eecs.berkeley.edu/~bsim3/" http://www-device.eecs.berkeley.edu/~bsim3/" http://www-device.eecs.berkeley.edu/~bsim3/). Este modelo teve diversas edições e versões. Abaixo há exemplo dos parâmetros do modelo BSIM3V3 para a tecnologia CMOS 0, 35 μm da AMS.

A Figura 27 mostra o layout final do circuito já com os Pads. A dimensão do circuito com os Pads é 95,05 $\mu m X327,05~\mu m$. O gráfico V_{REF} x Temperatura é apresentado na Figura 28.

Figura 27: Layout final do circuito de fonte de tensão com os Pads

Figura 28: Gráfico de V_{REF} x Temperatura da fonte de tensão