Design And Analysis Of Algorithms

Condensed Notes

May 4, 2025

Chapter 1

Asymptotic Analysis of Algorithms

1.1 Master theorem

Given a recurrence T(n) = aT(n/b) + f(n) where $a \ge 1$ and b > 1

1. if
$$f(n) = O(n^{\log_b a - \epsilon})$$
 then $T(n) = \Theta(n^{\log_b a})$

2. if
$$f(n) = O(n^{\log_b a} \log^k n)$$
 then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$

3. if
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 then $T(n) = \Theta(f(n))$

which simply means

if f(n) is polynomially smaller than $n^{log_b a}$, then $n^{log_b a}$ dominates, and the runtime is $\Theta(n^{log_b a})$

If f(n) is instead polynomially larger than $n^{log_b a}$, then f(n) dominates, and the runtime is $\Theta(f(n))$.

Finally, if f(n) and $n^{\log_b a}$ are asymptotically the same, then $T(n) = \Theta(n^{\log_b a} \log n)$.

1.1.1 Simpler Form

Given a recurrence T(n) = aT(n/b) + f(n) where $a \ge 1$, b > 1 and $f(n) = \Theta(n^k log^p n)$

- 1. if $log_b a > k$ then $T(n) = \Theta(n^{log_b a})$
- 2. if $log_b a = k$ then
 - if p > -1 then $T(n) = \Theta(n^k \log^{p+1} n)$
 - if p >= -1 then $T(n) = \Theta(n^k log log n)$
 - if p < -1 then $T(n) = \Theta(n^k)$
- 3. if $log_b a < k$ then
 - if $p \ge 0$ then $T(n) = \Theta(n^k \log^p n)$
 - if p < 0 then $T(n) = \Theta(n^k)$

1.2 Master theorem for subtract recurrences

Given a recurrence $T(n)=cifn\leq 1elseaT(n-b)+f(n)$ and $f(n)isO(n^k)$ then $if(a\rangle 1)T(n)=O(n^k)$ $if(a=1)T(n)=O(n^{k+1})$ $if(a\langle 1)T(n)=O(n^ka^{n/b})$

1.3 Points

- f(n) has to be polynomial for applicatrion of master theorem
- $\log n = O(n)$