First Name:	
Last Name:	
Signature:	
Last 4 digits student I.D.:	

Math 6320 Practice Final Exam

December, 2024 One hour and forty minutes

University of Houston

Instructions:

- 1. Put your name, signature and last 4 digits of your I.D. No. in the blanks above.
- 2. There are **three questions** in this exam. Answer the questions in the spaces provided, using the backs of pages or the blank pages at the end for overflow or rough work.
- 3. Your grade will be influenced by how clearly you present your solutions. **Justify your solutions carefully** by referring to definitions and results from class where appropriate.
- 4. This is a closed book exam.

- 1. Recall that a Borel measure μ on the Borel algebra B of a topological space X is regular on a set $A \in B$ if for all $\varepsilon > 0$ there exists a compact set K and an open set V with $K \subset A \subset V$ such that $K \subset A \subset V$ and $\mu(V \setminus K) < \varepsilon$. Let μ be a finite Borel measure on a **compact metric space** (X,d).
 - (a) Let K be a compact subset of X, and $V_n=\{y\in X:\inf_{x\in K}d(x,y)<1/n\}$. Show that $\mu(K)=\lim_{n\to\infty}\mu(V_n)$.

(b)	Show	that	the	class	of set	s on	which	μ is	regula	r forms	s a σ-6	algebra	

(c)	Use	the	preceding	parts	to	conclude	that	μ is	regular	(on all	Borel	sets).	

2. Let f be a real-valued measurable function in $L^1(m)$, where m is the Lebesgue measure on \mathbb{R} , and the measurability is with respect to the σ -algebra M as in Rudin's definition using the Riesz representation theorem. Prove that if $\int_{[\mathfrak{a},\mathfrak{b})} f d\mathfrak{m} = 0$ for each $0 \le \alpha < \mathfrak{b} \le 1$, then there exists a set $E \subset [0,1)$ of measure $\mathfrak{m}(E) = 1$ and f(x) = 0 for each $x \in E$. Hint: An indirect proof starts by assuming that the set $E = \{x \in [0,1): f(x) = 0\}$ does not have $\mathfrak{m}(E) = 1$, so then $\mathfrak{m}(E^c \cap [0,1)) > 0$. Derive a contradiction, using the regularity of the Lebesgue measure.

3. Let (X,M,μ) be a measure space, $f\in L^1(\mu)$, $g\in L^\infty(\mu)$. Show that $\|fg\|_1=\|f\|_1\|g\|_\infty$ implies that the set

$$E = \{x \in X : f(x) \neq 0, |g(x)| < \|g\|_{\infty}\}$$

has measure $\mu(E)=\textbf{0}.$