Tutorat 02

Analysis I Panajiotis Christoforidis

1 Aufgabe 1

2 Aufgabe 2

a)

$$M \subseteq \mathbb{R}, M \neq \emptyset$$

Jedes $\varepsilon > 0$ ist obere Schranke von M. (*)

Behauptung (2.1): $sup(M) \leq 0$

 $sup(M) \le 0$

Beweis. Angenommen $\sup(M) > 0$

$$\stackrel{(*)}{\Rightarrow} \sup(M) \le \varepsilon \, \forall \varepsilon > 0$$

$$\varepsilon = \frac{\sup(M)}{\Rightarrow} \sup(M) > \varepsilon \, \sharp \sup(M) \le \varepsilon$$

$$\Rightarrow \sup(M) \le 0$$

b)

Seien
$$M, N \subseteq \mathbb{R}, M, N \neq \emptyset$$

 $M + N := \{x + y | x \in M, y \in N\}$

Behauptung (2.2): $\sup(M+N)$ existiert und $\sup(M+N) = \sup(M) + \sup(N)$

Beweis. Für alle $x \in M$, $y \in N$ $x \le \sup(M)$, $y \le \sup(N)$

$$\Rightarrow \forall x \in Mx + y \le \sup(M) + \sup(N) \qquad \Rightarrow \sup(M+N) \le \sup(M) + \sup(N) \quad (1)$$

Sei nun $y \in N$ fest:

$$\Rightarrow \forall x \in Mx + y \le \sup(M + N)$$

$$\Rightarrow \sup(M+N) - y$$
 obere Schranke von M

$$\Rightarrow \sup(M) \le \sup(M+N) - y \quad (*)$$

(*) gilt für alle $y \in \mathbb{N}$

$$\Rightarrow \forall y \in Ny \le \sup(M+N) - \sup(M)$$

$$\Rightarrow \sup(M+N) - \sup(M)$$
 ist obere Schranke von N

$$\Rightarrow \sup(N) \le \sup(M+N) - \sup(M)$$

$$\Rightarrow \sup(N) + \sup(M) \le \sup(M+N)$$
 (2)

$$\stackrel{(1),(2)}{\Rightarrow} \sup(M+N) = \sup(M) + \sup(N)$$

3 Aufgabe 3

Behauptung (3.1): $d \in \mathbb{N}, \zeta \in \mathbb{Q}, d = \zeta^2, d = n^2$ für ein $n \in \mathbb{N}$

Beweis.o.B.d.A. $\zeta>0, m,n$ kleinste natürlichen Zahlen, sodass $m\cdot\zeta\in\mathbb{N}, \zeta\leq n$

a)

Behauptung (3.2): Es gibt solche m, n

Beweis.

$$\begin{split} \zeta &= \frac{r}{s} \quad r, s \in \mathbb{N} \\ \Rightarrow s \cdot \zeta \in \mathbb{N} \Rightarrow \{k \in \mathbb{N} | \, k \cdot \zeta \in \mathbb{N}\} \neq \emptyset \\ &\stackrel{4.7}{\Rightarrow} m \text{ existiert} \end{split}$$

Außerdem:

$$\zeta = 1 \cdot \zeta \leq s \cdot \zeta = r \in \mathbb{N} \Rightarrow \{k \in \mathbb{N} | k \cdot \zeta \in \mathbb{N}\} \neq \emptyset$$

$$\overset{4.7}{\Rightarrow} n \text{ existiert}$$

Setze $p := m (\zeta - n + 1)$

b)

Behauptung (3.3): $p \in \mathbb{N}$ (1), $p \le m$ (2)

Beweis. (i):

$$p = \underbrace{m \cdot \zeta}_{\in \mathbb{N}} - \underbrace{m \cdot n}_{\in \mathbb{N}} + \underbrace{m}_{\in \mathbb{N}} \Rightarrow p \in \mathbb{N}$$

(ii):

$$p \le m$$

$$\zeta - n \le 0$$

$$p = m \cdot \left(\underbrace{\zeta - n + 1}_{\le 1}\right) \le m \cdot 1 = m$$

Behauptung (3.4): $p \cdot \zeta \in \mathbb{N}$

Beweis.

$$\begin{aligned} p \cdot \zeta &= \underbrace{n \cdot \zeta}_{\in \mathbb{N}} - \underbrace{n \cdot m}_{\in \mathbb{N}} \cdot \zeta + \underbrace{m \cdot \zeta}_{\in \mathbb{N}} \\ \Rightarrow p \cdot \zeta \in \mathbb{N} \end{aligned}$$

d)

Behauptung (3.5): $p = m, \zeta = n$

Beweis. mkleinste natürliche Zahl sodas
s $m\cdot \zeta\in \mathbb{N}$

$$\overset{c)}{\Rightarrow} m \leq p \overset{b)}{\Rightarrow} p = m$$

$$\begin{array}{lll} m & = m \cdot \zeta - m \cdot n + m \\ \Leftrightarrow & m \cdot (1+n) & = m \cdot \zeta + m \\ \Leftrightarrow & m+n \cdot m & = m \cdot \zeta + m \\ \Leftrightarrow & m \cdot n & = m \cdot \zeta \\ \Leftrightarrow & \zeta & = n \end{array}$$

4 Präsenzaufgabe

4.1 a)

$$\begin{split} I & = \mathbb{N}, \, M = \mathbb{R} \\ S & = \{M_k | k \in \mathbb{N}\} \\ M_k : & = \{i \in \mathbb{Z} | \, i \geq -k\} \end{split}$$

Bestimme $\bigcup_{k \in \mathbb{N}} M_k$

Behauptung (4.1): $\bigcup_{k \in \mathbb{N}} M_k = \mathbb{Z}$

Beweis. Mengengleichheit beweisen:

$$\begin{array}{ll}
"\supseteq": \\
n \in \mathbb{Z} & \stackrel{arch.Prinzip}{\Rightarrow} & \exists k_0 \in \mathbb{N} |n| < k_0 \\
\Rightarrow n \in M_{k_0} \Rightarrow & n \in \bigcup_{k \in \mathbb{N}} M_k
\end{array}$$

$$"\subseteq ": n \in \bigcup_{k \in \mathbb{N}} M_k$$

$$\Rightarrow \exists k_0 \in \mathbb{N} : n \in M_{k_0} \stackrel{M_{k_0} \subseteq \mathbb{N} \subseteq \mathbb{Z}}{\Rightarrow} n \in \mathbb{Z}$$

$$\Rightarrow \bigcup_{k \in \mathbb{N}} M_k = \mathbb{Z}$$

b)

$$I = \mathbb{N}, M = \mathbb{R}$$

$$S = \{M_k | k \in \mathbb{N}\}$$

$$M_k : = \{\frac{1}{i} \in \mathbb{Z} | i \ge k\} \cup \{0\}$$

Behauptung (4.2): $\bigcap_{k \in \mathbb{N}} M_k = \{0\}$

Beweis. " \supseteq ": $\forall k \in \mathbb{N} \cup \{0\} \subseteq M_k$

"⊆": Angenommen es existier
t $x>0:x\in\bigcup_{k\in\mathbb{N}}M_k$

$$\Rightarrow \forall k \in \mathbb{N} : x \in M_k$$

$$\stackrel{arch.Prinzip}{\Rightarrow} \exists k_0 \in \mathbb{N} \frac{1}{k_0} < x \Rightarrow \forall y \in M_{k_0} y < x$$

$$\Rightarrow x \notin M_{k_0} \quad \xi x \in M_{k_0}$$

$$\Rightarrow \qquad x \notin M_{k_0} \quad \not\downarrow x \in M_{k_0}$$