DERWENT-ACC-NO:

1997-069623

DERWENT-WEEK:

199707

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE:

Interest forecasting data production method

using neural

network in bank - involves producing

measurement economic

model which is formed on basis of past economic

index

data

PRIORITY-DATA: 1995JP-0119534 (May 18, 1995)

PATENT-FAMILY:

PUB-NO

PUB-DATE

LANGUAGE

PAGES MAIN-IPC

JP 08314892 A

November 29, 1996

N/A

008

G06F 017/00

INT-CL (IPC): G06F009/44, G06F015/18, G06F017/00, G06G007/60

ABSTRACTED-PUB-NO: JP 08314892A

BASIC-ABSTRACT:

The production method involves expanding of the build up of a measurement

<u>economic model</u> with a modern construction support unit (10). The model is

expanded to support a neural network and is arranged by a model learning device

(13) using a teacher data. The teacher data is stored in a past actual result

data file (70). Similarly, using a past actual result data, the neural network

is unified by a model unification unit (20). The unified neural network is

input into an interest forecasting device (32) where interest
forecasting

processing is performed.

Data are input and output to the neural network by a simulation execution unit

(30). An outside student variable time series prediction device (31)

predicts

the variable scenario for the external user. The scenario which is a measurement economic model is formed automatically on a time sequential basis

from a past economic index data and is stored in a memory part (50). The

formed scenario is input into the interest forecasting device and permanently

stored in an interest forecasting data file (80).

ADVANTAGE - Simplifies construction. Improves model's conservativeness.

----- KWIC -----

Basic Abstract Text - ABTX (1):

The production method involves expanding of the build up of a measurement

economic model with a modern construction support unit (10). The
model is

expanded to support a neural network and is arranged by a model learning device

(13) using a teacher data. The teacher data is stored in a past actual result

data file (70). Similarly, using a past actual result data, the neural network

is unified by a model unification unit (20). The unified neural network is

input into an interest forecasting device (32) where interest
forecasting

processing is performed.

Basic Abstract Text - ABTX (2):

Data are input and output to the neural network by a simulation execution

unit (30). An outside student variable time series prediction device
(31)

predicts the variable scenario for the external user. The scenario which is a

measurement <u>economic model</u> is formed automatically on a time sequential basis

from a past economic index data and is stored in a memory part (50).
The

formed scenario is input into the interest forecasting device and
permanently

stored in an interest forecasting data file (80).

Title - TIX (1):

Interest forecasting data production method using neural network

```
in bank -
involves producing measurement economic model which is formed on
basis of past
economic index data

Priority Application Date - PRD (1):
    19950518

PF Publication Date - PFPD (1):
    19961129

PF Application Date - PFAD (1):
    19950518

Standard Title Terms - TTX (1):
    INTEREST FORECAST DATA PRODUCE METHOD NEURAL NETWORK BANK PRODUCE
MEASURE
ECONOMY MODEL FORMING BASIS PASS ECONOMY INDEX DATA
```

(19)日本国特許庁(JP)

識別記号

(51) Int.Cl.8

(12) 公開特許公報(A)

FΙ

庁内整理番号

(11)特許出顧公開番号

特開平8-314892

技術表示箇所

(43)公開日 平成8年(1996)11月29日

G06F 17/	'00	9168-5L	G06F 1	15/20	5/20 F			
9/	44 550	7737-5B		9/44	550	A		
15/	18 5 2 0		1	15/18	18 5 2 0 M			
G 0 6 G 7/	60		G 0 6 G	G 0 6 G 7/60				
			審查請求	未請求	請求項の数4	OL	(全 8 頁)	
(21)出願番号	特願平7−119534	特願平7 -119534		(71)出願人 000005108				
				株式会	社日立製作所			
(22)出願日	平成7年(1995)5	平成7年(1995)5月18日		東京都	千代田区神田駿	可台四丁	目6番地	
			(72)発明者	坂下	正洋			
				神奈川	某川崎市幸区鹿	島田890都	計地の12株	
				式会社	日立製作所情報:	システム	事業部内	
				(72)発明者 今井 美樹				
				神奈川	具川崎市幸区鹿 。	島田890都	計地の12株	
				式会社	日立製作所情報:	システム	事業部内	
			(72)発明者	林孝	欠			
				神奈川	具川崎市幸区鹿 。	第田890 都	き地の12株	
				式会社	日立製作所情報:	システム	事業部内	
			(74)代理人	弁理士	小川 勝男			
						最	終頁に続く	

(54) 【発明の名称】 計量経済モデルにニューラルネットを適用した金利予測システム

(57)【要約】

【目的】ニューラルネットを計量経済モデルに適用する ことによる、モデル構築の簡便化、モデルの保守性の向 上を目的とする。

【構成】まずモデル構築支援装置10で、ビジュアルな 相関ネットワーク図式により、計量経済モデルの構築を 支援、さらにそれをニューラルネットに展開する。展開 されたニューラルネットは、モデル学習装置13によ り、過去の実績データファイル70を教師データとして 使用し学習させる。そのニューラルネットはモデル検証 装置20により、同じく過去の実績データを利用して検 証される。検証されたニューラルネットは、金利予測装 置32に位置付く。シミュレーション実行装置30は、 このニューラルネットへのデータ入出力等の制御を行 い、金利予測処理を行う。この場合、予測に必要となる 外生変数シナリオは、外生変数時系列予測装置31によ り、過去の経済指標データから時系列的に推定され自動 的に生成される。生成されたシナリオは、記憶部50に 格納され、金利予測装置32の入力となり、最終的に金 利予測データファイル80に格納される。

【特許請求の範囲】

【請求項1】過去の経済指標データをもとに計量経済モデルを構築し、金融商品の長期的な金利動向予測を行う処理において、ニューラルネットを適用したことを特徴とする長期金利予測データ作成方式。

【請求項2】過去の経済指標データをもとに計量経済モデルを構築し、金融商品の長期的な金利動向予測を行う 処理において、計量経済モデルを視覚的に構築するモデル構築装置10と、

構築されたモデルで過去のデータを予測させ、実際のデ 10 ータと比較させることによりモデルを検証するモデル検 証装置20と、

構築されたモデルを利用して、将来の金利を予測するシミュレーション実行装置30とを備えた金利予測システム。

【請求項3】請求項2記載のモデル構築装置10において、外生変数と相関関係にある金利を、視覚的なネットワークで表現することにより、計量経済モデルを作成・ 更新するモデル編集装置12と、

作成したモデルに過去のデータを利用して学習させる際、長期的な金利の予測に適したデータに補正する素データ補正装置11と、

補正した過去の経済指標データを利用して、ネットワークに学習を行わせるモデル学習装置13とを備えた金利予測システム。

【請求項4】請求項2記載のシミュレーション実行装置30において、ニューラルネットを使って過去の経済指標データから将来のそれを時系列予測する外生変数時系列予測装置31と、

予測された外生変数予測データを記憶する記憶部50 と、

モデル構築装置10により構築されたモデルに基づき、 記憶部内に蓄積された外生変数シナリオと相関関係にある金利の予測データを生成する金利予測装置32と、を 備えた金利予測システム。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、銀行の経営計画策定に 用いる長期的な経済・金利の予測を、計量経済学モデル の考えを利用して支援するシステムに関する。

[0002]

【従来の技術】計量経済モデルにより、将来の長期的な金利の動向をシミュレートする手法としては、文献『金利・為替予測ハンドブック』(NHK出版)又は、『計量経済分析の基礎と応用』(東洋出版)にあるように、重要な経済要因の相関関係を経済理論に基づき連立方程式化し、シナリオに基づきそれを計算する方式が挙げられる。

【0003】さらに同じく将来の金利の動向をシミュレートする手法として、文献『ニューロコンピューティン 50

グ入門』(オーム社)にあるように、金融指標においては、過去のデータが将来の指標値に影響を与えているという特性をもとに、原因となる過去の金融指標値を入力として、将来の金融指標値を出力するニューラルネットを構成し、実績データに基づいてネットワークを学習させるというアプローチが挙げられる。

【0004】まず第一に前者の従来技術として、計量経済分析方式(特公開63-191268号公報、昭和63年8月8日)がある。このシステムはモデル式の作成修正ができること、マルチウィンドゥによりモデル式修正画面とモデル実行画面を同時に表示することでモデルの修正⇒実行⇒修正……を試行錯誤的に繰り返すことが可能なシステムである。ただしこのシステムでは、外生変数シナリオの自動作成機能を備えていなかった。またモデル式は複雑な連立方程式で表現されるため、作者以外の利用者が解析するの事実上困難だった。

【0005】次に第二に後者の従来技術として、フィードバック付きネットワーク(系列連想機)を構成し、時系列的な相関を取り扱うニューラルネット、文献『ニューロコンピューティング入門』(オーム社)がある。この方式では、実際の値動きの様子から、何日先までの予測が可能であるかという判断が必要となり、この場合フラクタル次元という計測方式を利用し、予測の有効期間を算出する方法がある。

[0006]

【発明が解決しようとする課題】上記第一の従来技術に おける問題点としては次のものが挙げられる。

【0007】まず前述したように、シナリオを作成する 必要がある。過去・現在のトレンドを把握し、膨大な将 30 来のデータを考える必要があり、さらにそれを手入力す る負担も大きいという問題がある。

【0008】また作成したシナリオをもとに金利を計算するモデル式は、複雑な連立方程式で表現されるため、作者以外の利用者はもとより、作者自身も解析困難な状況に陥るといった問題があった。またこのモデル式の構築にあたっては専門知識が必要となり、それをもたない利用者には事実上困難となる。

【0009】上記第二の従来技術における問題点として は次のものが挙げられる。

40 【0010】例えば株価等は、それ自体が規則性をもったデータであるため、時系列予測において高い精度が得られるが、金利の場合、金融政策等によるため規則性に、乏しく、時系列予測では高い精度が得られにくい。

【0011】本発明の目的を以下に記述する。

【0012】請求項1の目的は、計量経済的なモデルを ニューラルネットワークによって実現することで、双方 の欠点を補い、かつ双方の有効な特性を活用すること で、より精緻で長期的な金利予測の実現を可能にするこ とにある。

0 【0013】請求項2の目的は、モデルの定義、検証、

シミュレーション実行といった一連のながれをグラフィカルユーザインタフェースでサポートすることにより、 計量経済学、ニューラルネットに精通していない利用者 による予測を実現することにある。

【0014】請求項3の目的は、モデルを視覚的に編集させ、モデルの作者以外の利用者でも用意に保守可能にすることにある。

【0015】請求項4の目的は、外生変数シナリオを自動生成することと、それをもとに相関関係にある金利の予測を可能にすることにある。

[0016]

【課題を解決するための手段】請求項1の目的を達成するために、本発明は、計量経済的な論理をニューラルネットに展開するアプローチを採る。計量経済モデルを外生変数と影響する金融指標とを視覚的なネットワークで定義し、それをニューラルネットに展開する。外生変数はフィードバック付きニューラルネットにより、時系列予測を行う。これにより外生変数の自動生成が可能となる。また計量経済モデルをビジュアルな相関ネットワークで表現するため、それの特有のモデル式から開放され、ネットワーク図式での保守が可能になる。またニューラルネットを利用することにより、過去の実績データの大局的なトレンドを掴み、長期的な金利の動向予測が可能になる。

【0017】請求項2及び請求項3の目的の実現のために、本発明は、システムに「モデル構築装置10」と「モデル検証装置20」と「シミュレーション実行装置30」の機能をもたせることを特徴とするものである。以下各装置について図1を用いて簡単に説明する。

【0018】モデル構築装置10は、外生変数となる経 30 済指標と、それが影響を与えると思われる金融指標を視覚的なネットワークで定義することにより、モデルを定義・更新させ、内部的にはニューラルネットを生成するモデル編集装置12、モデルの学習に利用する過去の素データを、長期予測に適したデータに変更するデータ補正装置11、モデル学習装置13をもつものである。

【0019】モデル検証装置20は、過去のある時点に **遡り、そこから**予測処理を行わせ、予測データと実際の データを比較しグラフ表示することにより、その差を視 **覚的に検証させる**ものである。

【0020】シミュレーション実行装値30は、学習したモデルを利用して任意の期間分の予測を行うものである。

【0021】請求項4の目的の実現のために、本発明は、システムに「外生変数時系列予測装値31」と「金利予測装値32」と「記憶部50」の機能をもたせることを特徴とするものである。以下図1を用いて簡単に説明する。

【0022】外生変数時系列予測装値31は、フィード バックループをもったニューラルネットを構成し、外生 50 4

変数シナリオとなる将来の経済指標データを時系列的に 予測するものである。このシナリオは記憶部50に格納 され、そのシナリオに相関する金利を予測する金利予測 装値32の入力データとなる。つまり2つのニューラル ネットにより、金利予測を行わせることを特徴としてい る。

[0023]

【作用】請求項1の実現手段により、計量経済モデル特 有の複雑なモデル式から開放され、外生変数シナリオの 10 作成が不要となる。

【0024】請求項2の実現手段により、熱練した専門 知識がなくても、計量経済モデルの作成、検証、及びそ のモデルを利用した予測が可能になる。

【0025】請求項3の実現手段により、計量経済モデルの作成・更新が容易に行えかつ、専門知識をもたない利用者のモデル構築、作者以外での保守が容易に行えるようになる。

【0026】請求項4の実現手段により、外生変数シナリオが自動生成され、それを入力にした長期的な金利の動向予測が可能になる。

[0027]

【実施例】本発明の一実施例を図面を用いて説明する。 図1は計量経済モデルにニューラルネットを適用した金 利予測システムを示すブロック構成図であり、図におい て、10はモデル構築装値であり、利用者により指定さ れた景気動向指標、物価動向指標、海外関連指標及び、 金融指標といった複数の経済指標間の相関を、ネットワ ーク表現することにより視覚的に編集させ、外生変数シ ナリオを生成する外生変数時系列予測装置31及び、外 生変数シナリオから相関関係にある金利を予測する金利 予測装置32を生成するモデル編集装置12、過去の経 済指標データをモデル編集装置12で生成したニューラ ルネットに流し学習させる際、素データを月平均データ に補正するデータ補正装置11、補正されたデータ70 を利用して、ニューラルネットに学習を行わせるモデル 学習装置13から構成される。20はモデル構築装置1 0により生成されたニューラルネットを、過去の実デー 夕を利用して検証するこおとを可能とするモデル検証装 置である。30はモデル構築装置10により自動生成さ れた外生変数時系列予測装置31、金利予測装置32、 2つのニューラルネットを利用して金利動向予測データ 80を生成するシミュレーション実行装置である。40 はこの2つのニューラルネットへデータを入出力させる ための入出力制御装置であり、学習を行わせる際、過去 のデータに対しEPA法、センサス局法といった統計手 法により季節調整を行いことによりノイズを除去するノ イズ除去装置41、そのデータをニューラルネットに流 すデータへ変換または、その逆を行う正規化装置42、 外生変数シナリオを記憶する記憶部50から構成され

【0028】図2は主手続の動作フローチャートであ る。S1は経済指標データ間の相関関係をネットワーク で定義すくことにより、モデルを作成する手続であり、 図1のモデル編集装置12により実現される。またここ で定義されたモデルは、同装置によりニューラルネット に展開される。図3はモデル構築装置12によりで定義 するネットワークと、実際に生成されるニューラルネッ トモデルのイメージである。

【**0029】次**に、図2においてS2は、S1において して与えることで学習を行わせる手続であり、モデル学 習装置13により実現される。図4はその学習処理にお ける主手続の動作フローチャートである。S.1 は実績デ **ータに対し、日次データのものを月平均し、月次データ** に加工するものである。これは本予測システムは、あく まで長期的な金利の動向を予測するためのものであり、 それに適した実績データに変更するためのものであり、 データ補正装置11により実現される。S2はその加工 されたデータに対して、EPA法又は、センサス局法と いった統計手法により、ノイズを除去する処理であり、 ノイズ除去装置41により実現される。S3はニューラ ルネットの各ノードに流すデータへ、正規化する処理で あり、正規化装置42により実現される。S4はS3に より正規化された実績データを、教師データとして各ノ ードに流し実際に学習を行う処理である。これはモデル 学習装置13により実現される。

【0030】次に、図2においてS3は、S2において 学習されたニューラルネットを利用して、過去のデータ を使用し実際に予測を行い、予測値と実績データの比較 をグラフ表示させることにより、視覚的に検証させるた 30 めの手続であり、モデル検証装置20より実現される。 図5はその検証手続のイメージを記したものである。実 **積データD1**中の、検証予測の対象期間中のデータD1 1をニューラルネットに流し推定させる。出力された推 定値D13と、実績データD12比較するためのグラフ が表示され、視覚的な検証が可能となる。またここで実 積値との乖離が大きい場合、推定する際入力する経済指 標の項目の選び方に問題があることが予測され、その場 **合再度図2のS1モデル編集手続にフィードバックす** る。

【0031】次に、図2においてS4は、最終目的であ る長期的な金利の動向を予測する手続であり、シミュレ ーション実行装置30により実現される。図6は、図1 のモデル構築装置10で生成されたニューラルネットを 使用して、金利動向を予測する際の入力と出力の論理的 な関係を表す表である。つまりシミュレーション実行装

置30は、図6の入力データD1から、出力データD2 を予測値として出力する。図7は、その際の処理を表し たものである。実績データD1より、外生変数シナリオ となる将来の経済指標を、フィードバック付きニューラ ルネットN1により時系列的に推定する。これは、外生 変数時系列予測装置31により実現される。この処理に より、論理的には将来的な経済指標D2導きだされるこ とになる。生成された外生変数は、シナリオD2'とし て記憶部に格納され、そのシナリオを金利予測ニューラ 生成されたニューラルネットに、実績値を穀師データと 10 ルネットの各ノードに入力させ、最終的な金利予測値D 3を出力する。

[0032]

【発明の効果】請求項1による発明の効果は、計量経済 特有の複雑なモデル式を必要とせずとも、過去の実績デ ータの大局的なトレンドを掴み、長期的な金利動向予測 が可能になることにある。

【0033】請求項2による発明の効果は、ビジュアル な操作によりモデルの構築、検証、シミュレーション実 行が行えることで、容易な金利の動向予測が可能になる 20 ことにある。

【0034】請求項3による発明の効果は、計量経済モ デルをビジュアルな相関ネットワークで図式化すること で構築することにより、専門知識を持たない利用者でも 自分の意志に基づいたモデルの構築が可能になることに ある。

【0035】請求項4による発明の効果は、過去のトレ ンドの時系列的な把握を行い、外生変数シナリオを自動 生成させ、それから相関関係にある金利の動向予測を可 能にすることにある。

【図面の簡単な説明】

- 【図1】発明のブロック構成図である。
- 【図2】主手続動作フローチャートである。
- 【図3】 ニューラルネットの生成である。
- 【図4】学習処理の流れである。
- 【図5】検証手続のイメージである。
- 【図6】金利予測の入力と出力データである。
- 【図7】シミュレーションの流れである。

【符号の説明】

1 ()…モデル構築装置、11…データ補正装置、12… モデル編集装置、13…モデル学習装置、20…モデル 検証装置、30…シミュレーション実行装置、31…外 生变数時系列予測装置、32…金利予測装置。 入出力制御装置、41…ノイズ除去装置、42…正規化 50…記憶部、70…過去の経済指標データ ファイル、80…金利予測データファイル。

【図1】

図 1

[図2]

図 2

[図3]

図 3

GDP実質

フロントページの続き

(72)発明者 有江 勝利

神奈川県川崎市幸区鹿島田890番地の12株 式会社日立製作所情報システム事業部内