並列処理アーキテクチャ レポート課題

200911434 青木大祐

2011年5月29日

1 ベンチマークの結果を用いAmdahlの法則を確かめる(1-1)

1.1 Cint について

processor	frequecy	memory	result
Intel Xeon E7-2850	2.40 GHz	128 GB	31.3
Intel Xeon E7-2870	2.80 GHz	128 GB	36.2

この2つのシステムについて result と CPU 周波数についての関連を考える。

E7-2870 と E7-2850 を比較すると、前者の方が 17%ほど周波数が高い。しかし、result の数値に注目すると、15%ほどの性能向上しか見られない。このことから、システム全体の処理における CPU 周波数の占める影響は約 88%ほどであることがわかる。

1.2 CFP について

processor	frequecy	memory	result
Intel Xeon E7-2870	2.80 GHz	128 GB	50.6
Intel Xeon E7-2850	2.40 GHz	128 GB	44.7

この2つのシステムについてresultとCPU 周波数についての関連を考える。

E7-2870 と E7-2850 を比較すると、前者の方が 17%ほど周波数が高い。しかし、result の数値に注目すると、13%ほどの性能向上しか見られない。このことから、システム全体の処理における CPU 周波数の占める影響は約 76%ほどであることがわかる。

1.3 まとめ

これらの結果から、CFP よりも ${
m Cint}$ の方が ${
m CPU}$ 周波数が大きく影響するベンチマークであることがわかる。

2 並列計算機のコスト(1-3)

並列計算機 A.B について、各コストごとの性能を計算すると以下の表のようになる。

予算	A数	A 性能	В数	B性能
0^{2}	1	1	1	1
1^2	2	1.94	4	3.6
2^{2}	4	3.7636	8	6.48
3^2	8	7.301384	16	11.664
4^{2}	16	14.16468496	32	20.9952
5^{2}	32	27.4794888224	64	37.79136
6^{2}	64	53.3102083155	128	68.024448
7^{2}	128	103.421804132	256	122.4440064
8^{2}	256	200.6383000161	512	220.39921152
9^{2}	512	389.2383020311	1024	396.718580736
10^{2}	1024	755.1223059404	2048	714.0934453248
11^{2}	2048	1464.9372735244	4096	1285.3682015846

また、これを折れ線グラフとして表示したものを以下に示す。

この結果を見ると、予算が 10^2 、つまり A が 1024 台をを超えた辺りから B の性能を上回っているのがわかる。