Práctica 3 Lógica de Predicados

1. Sintaxis

Ejercicio 1

Dados los símbolos de predicados (aplicados a variables para facilitar su descripción):

4	1	١.			1		
A	x	'U) :	x	au	$_{ m mira}$	u

• C(x,y): x cursa y

• P(x): x es profesor

• E(x): x es estudiante

 $\blacksquare I(x)$: x es instructor

• M(x): x es materia

y la constante juan, escribir las siguientes oraciones como fórmulas.

1. Juan admira a todos los profesores.

2. Algún profesor admira a Juan.

3. Juan se admira a sí mismo.

4. Ningún estudiante cursa todas las ma-

terias.

5. Ninguna materia es cursada por todos los estudiantes.

6. Ninguna materia no es cursada por ningún estudiante.

Ejercicio 2

Dados los símbolos de predicados (aplicados a variables para facilitar su descripción):

• P(x,y): x es padre de y

• M(x,y): x es madre de y

 \bullet E(x,y): x es esposo de y

• H(x,y): x es hermano de y

 $\blacksquare I(x,y)$: x es hermana de y

y las constantes j, p, a, l por Juan, Pedro, Ana, Lucia, escribir las siguientes frases:

1. Todos tienen una madre.

2. Todos tienen una madre y un padre.

3. Quien tiene madre, tiene padre.

4. Juan es abuelo.

5. Ningún tío es una tía.

6. Ninguna abuela es padre de alguien.

7. Pedro y Ana son marido y mujer.

8. Juan es el cuñado de Lucía.

Ejercicio 3

Dados $\mathcal{F} = \{d, f, g\}$, donde d itene aridad 0, f aridad 2 y g aridad 3. ¿Cuáles de las siguientes cadenas son términos sobre \mathcal{F} ?

- 1. g(d, d)
- 2. f(x, g(y, z), d)
- 3. g(x, f(d, z), d)
- 4. g(x, h(y, z), d)
- 5. f(f(g(d,x), f(g(d,x), y, g(y,d)), g(d,d)), g(f(d,d,x), d), z)

Ejercicio 4

Sean c una constante, f un símbolo de función de aridad 1 y S y B, dos símbolos de predicado binarios. ¿Cuáles de las siguientes cadenas son fórmulas?

1.
$$S(c, x)$$

7.
$$(S(x,y) \to S(y, f(f(x))))$$

2.
$$B(c, f(c))$$

8.
$$B(x,y) \rightarrow f(x)$$

3.
$$f(c)$$

9.
$$S(x, f(y)) \wedge B(x, y)$$

4.
$$B(B(c,x),y)$$

10.
$$\forall x.B(x, f(x))$$

5.
$$S(B(c), z)$$

6. $(B(x, y) \to (\exists z. S(z, y)))$

11.
$$\exists x.B(y,x(c))$$

Ejercicio 5

Sea
$$\phi = \exists x. P(y, z) \land \forall y. \neg Q(y, x) \lor P(y, z)$$

- 1. Identificar todas las variables libres y ligadas
- 2. Calcular $\phi\{w/x\}, \phi\{w/y\}, \phi\{f(x)/y\} \text{ y } \phi\{g(y,z)/z\}$

Ejercicio 6

Dada
$$\phi = \neg \forall x. (\exists y. P(x, y, z)) \land \forall z. P(x, y, z)$$

- 1. Identificar todas las variables libres y ligadas
- 2. Calcular $\phi\{t/x\}$, $\phi\{t/y\}$ y $\phi\{t/z\}$ con t = g(f(g(y,y)), y).

2. Semántica

Ejercicio 7

Sea \mathcal{L} el lenguaje de primer orden que incluye (junto con las variables, signos de puntuación, conectivos y cuantificadores) la constante de individuos a_1 , el símbolo de función f de aridad 2 y el símbolo de predicado P de aridad 2. Sea ϕ la fórmula

$$\forall x_1. \forall x_2. P(f(x_1, x_2), a_1) \rightarrow P(x_1, x_2)$$

Definamos una interpretación I para \mathcal{L} como sigue. D_I es \mathbb{Z} , \overline{a}_1 es 0, $\overline{f}(x,y)$ es x-y, $\overline{P}(x,y)$ es x < y. Escribir la interpretación de ϕ en Castellano. ¿El enunciado es verdadero o falso? Hallar una interpretación de ϕ en la cual el enunciado tenga el valor de verdad opuesto.

Ejercicio 8

¿Existe una interpretación (para un lenguaje de primero orden $\mathcal L$ apropiado) en la cual la fórmula

$$\forall x_1.P(x_1) \rightarrow P(f(x_1))$$

se interprete como un enunciado falso? Si es así, detallar tal interpretación. En caso contrario, explicar por qué no existe tal interpretación.

Ejercicio 9

Repetir el ejercicio anterior con la fórmula

$$\forall x_1.P(x_1,x_2) \to P(x_2,x_1)$$

Ejercicio 10

Sea N la interpretación aritmética donde $D_I = \mathbb{N}$ y

$$\begin{array}{ll} \overline{c}^0 & \text{es el } 0, \\ \overline{P}^2 & \text{es } =, \\ \overline{f}_1^1 & \text{es la función sucesor,} \\ \overline{f}_2^2 & \text{es } +, \\ \overline{f}_3^2 & \text{es } \times \end{array}$$

Hallar, si es posible, asignaciones que satisfagan y que no satisfagan las siguientes fórmulas.

- 1. $P(f_2(x_1,x_1),f_3(f_1(x_1),f_1(x_1)))$
- 2. $P(f_2(x_1,c),x_2) \to P(f_2(x_1,x_2),x_3)$
- 3. $\neg P(f_3(x_1, x_2), f_3(x_2, x_3))$
- 4. $\forall x_1.P(f_3(x_1,x_2),x_3)$
- 5. $\forall x_1.P(f_3(x_1,c),x_1) \to P(x_1,x_2)$

Ejercicio 11

En la interpretación descripta en el ejercicio 7 hallar, si es posible, asignaciones que satisfagan las siguientes fórmulas.

- 1. $P(x_1, a_1)$
- 2. $P(f(x_1, x_2), x_1) \rightarrow P(a_1, f(x_1, x_2))$
- 3. $\neg P(x_1, f(x_1, x_2))$
- 4. $\forall x_1.P(f(x_1,x_2),x_3)$
- 5. $\forall x_1.P(f(x_1,a_1),x_3) \rightarrow P(x_1,x_2)$

Ejercicio 12

¿Cuáles de las siguientes fórmulas son verdaderas en la interpretación N, y cuáles con falsas?

- 1. $\forall x_1.P(f_2(x_1,c),x_1)$
- 2. $\forall x_1. \forall x_2. P(f_2(x_1,c),x_2) \rightarrow P(f_2(x_2,c),x_1)$
- 3. $\forall x_1. \forall x_2. \exists x_3. P(f_3(x_1, x_2), x_3)$
- 4. $\exists x_1.P(f_2(x_1,x_1),f_3(x_1,x_1))$

Ejercicio 13

¿Cuáles de las siguientes fórmula cerradas son verdaderas en la interpretación del ejercicio 7, y cuáles son falsas?

- 1. $\forall x_1.P(f(a_1,x_1),a_1)$
- 2. $\forall x_1. \forall x_2. \neg P(f(x_1, x_2), x_1)$
- 3. $\forall x_1. \forall x_2. \forall x_3. P(x_1, x_2) \rightarrow P(f(x_1, x_3)) \rightarrow P(f(x_1, x_3), f(x_2, x_3))$
- 4. $\forall x_1. \exists x_2. P(x_1, f(f(x_1, x_2), x_2))$

Ejercicio 14

Demostrar que, en una interpretación dada, la fórmula $(\phi \to \psi)$ es falsa si y sólo si ϕ es verdadera y ψ es falsa. Recordar que una fórmula es falsa en una interpretación si ninguna asignación en ella la satisface.

Ejercicio 15

Demostrar que cada una de las siguientes fórmula son lógicamente válidas.

- 1. $\exists x_1. \forall x_2. P(x_1, x_2) \rightarrow \forall x_2. \exists x_1. P(x_1, x_2)$
- 2. $\forall x_1.P(x_1) \rightarrow (\forall x_1.Q(x_1) \rightarrow \forall x_2.Q(x_2))$
- 3. $(\forall x_1.\phi \to \psi) \to ((\forall x_1.\phi) \to (\forall x_1.\psi))$ para ϕ, ψ fórmulas cualesquiera.

4. $(\forall x_1. \forall x_2. \phi) \rightarrow (\forall x_2. \forall x_1. \phi)$, para ϕ una fórmula cualquiera.

Ejercicio 16

Demuestre que ninguna de las siguientes fórmulas es lógicamente válida.

- 1. $\forall x_1. \exists x_2. P(x_1, x_2) \rightarrow \exists x_2. \forall x_1. P(x_1, x_2)$
- 2. $\forall x_1. \forall x_2. P(x_1, x_2) \rightarrow P(x_2, x_1)$
- 3. $\forall x_1. \neg Q(x_1) \rightarrow Q(c)$
- 4. $(\forall x_1.P(x_1,x_1)) \to \exists x_2. \forall x_1.P(x_1,x_2)$

3. Deducción Natural

Ejercicio 17

Dar derivaciones en DN de las siguientes fórmulas¹.

- 1. $(\forall x. P(x)) \rightarrow P(a)$
- 2. $P(a) \rightarrow \exists x. P(x)$
- 3. $(\forall x. \forall y. R(x,y) \rightarrow \neg R(y,x)) \rightarrow \forall x. \neg R(x,x)$
- 4. $(\forall x. \forall y. R(x,y)) \rightarrow \forall x. R(x,x)$
- 5. $(\exists x. P(x)) \to (\forall y. Q(y)) \to \forall x. \forall y. P(x) \to Q(y)$
- 6. $(\forall x. P(x) \to Q(x)) \land (\exists x. P(x)) \to \exists x. Q(x)$
- 7. $(\neg \forall x. P(x) \lor Q(x)) \to \neg \forall x. P(x)$
- 8. $(\neg \forall x. P(x)) \rightarrow \neg \forall x. P(x) \land Q(x)$
- 9. $(\forall x. P(x) \land Q(x)) \rightarrow \neg \exists x. \neg P(x)$
- 10. $(\exists x. P(x) \to Q(x)) \to (\forall x. P(x)) \to \exists x. Q(x)$
- 11. $(\forall x. P(x) \to Q(x)) \land (\neg \exists x. Q(x)) \to \forall x. \neg P(x)$
- 12. $(\forall x. \exists y. R(y, x) \to P(x)) \to (\exists x. \exists y. R(x, y)) \to \exists x. P(x)$
- 13. $(\exists x. P(x) \lor Q(x)) \to (\forall x. \neg Q(x)) \to \exists x. P(x)$
- 14. $(\neg \forall x. \exists y. R(x,y)) \rightarrow \neg \forall x. R(x,x)$
- 15. $(\neg \exists x. \forall y. R(y, x) \rightarrow \neg R(x, y)) \land (\neg R(x, y) \rightarrow R(y, x))$
- 16. $\exists x. P(x) \lor \exists x. Q(x) \to \exists x. (P(x) \lor Q(x))$
- 17. $(\exists x. P(x) \lor Q(x)) \to \exists x. P(x) \lor \exists x. Q(x)$

¹Fuente: proofweb

18.
$$(\exists x. P(x) \land Q(x)) \rightarrow \exists x. P(x) \land \exists x. Q(x)$$

19.
$$\neg(\forall x.P(x) \land \exists x.\neg P(x))$$

20.
$$(\exists x.R(x,x) \land P(x)) \rightarrow \neg \forall x.P(x) \rightarrow \neg \exists y.R(x,y)$$

21.
$$(\exists x. P(x) \to \forall x. Q(x)) \to \forall y. P(y) \to Q(y)$$

22.
$$(\exists x. \neg (P(x) \lor Q(x))) \to \neg \forall x. P(x)$$

23.
$$\neg(\forall x. P(x) \land Q(x)) \land \forall x. P(x) \rightarrow \neg \forall x. Q(x)$$

24.
$$(\forall x.R(x,x) \to Q(x)) \land \exists x. \forall y.R(x,y) \to \exists x.Q(x)$$

Ejercicio 18

Dar derivaciones en DN de los siguientes secuentes.

- 1. $\vdash \exists x.t \doteq x$, para cualquier término t
- 2. $\vdash \forall z.(z \doteq x \rightarrow z \doteq y) \rightarrow x \doteq y$
- $3. \ \forall x.x \doteq a \lor x \doteq b \lor x \doteq c \vdash (\forall x.\phi(x)) \leftrightarrow (\phi(a) \lor \phi(b) \lor \phi(c)), \text{ donde } a,b,c \text{ son constantes}$