Title of the Project

Student Name1 Student Name2 Student Name3

SSN College of Engineering, Chennai

September 24, 2013

• To solve the **Satisfiability Problem**.

- To solve the **Satisfiability Problem**.
- What is the **Satisfiability Problem** for any Logic?

- To solve the **Satisfiability Problem**.
- What is the **Satisfiability Problem** for any Logic?
- Say Propositional Logic (PL).

- To solve the **Satisfiability Problem**.
- What is the **Satisfiability Problem** for any Logic?
- Say Propositional Logic (PL).
- Given a formula α in PL,
- Does there exists a valuation ν such that $\nu(\alpha) = T$ (i.e., $\nu \models \alpha$)?

• M teaches AI: M

• S teaches AI: S

• M & S write a book on AI: WB

- M teaches AI: M
- S teaches AI: S
- M & S write a book on AI: WB
- $R = (M \land S) \Rightarrow WB$

- M teaches AI: M
- S teaches AI: S
- M & S write a book on AI: WB
- $R = (M \land S) \Rightarrow WB$

$$\{R, \neg WB, S\}$$
 entails $\neg M$

- M teaches AI: M
- S teaches AI: S
- M & S write a book on AI: WB
- $R = (M \land S) \Rightarrow WB$

$$\{R, \neg WB, S\}$$
 entails $\neg M$

if each of the $\{R, \neg WB, S\}$ are true then does $\neg M$ hold?

ullet Does there exist a valuation ν such that

$$\nu \models \{R, \neg WB, S, M\}$$

ullet Does there exist a valuation ν such that

$$\nu \models \{R, \neg WB, S, M\}$$

• What is a valuation?

ullet Does there exist a valuation ν such that

$$\nu \models \{R, \neg WB, S, M\}$$

• What is a valuation? Assignment of **truth values** to M, S, WB.

ullet Does there exist a valuation ν such that

$$\nu \models \{R, \neg WB, S, M\}$$

- What is a valuation? Assignment of **truth values** to M, S, WB.
- ullet Does there exist a valuation u such that

$$\nu \models R \land \neg WB \land S \land M$$

- Countable set of proposition symbols $P = \{p_1, p_2, p_3, \dots\}$
- Set of propositional connectives $\{\neg, \lor, \land, \Rightarrow\}$.

- Countable set of proposition symbols $P = \{p_1, p_2, p_3, \cdots\}$
- Set of propositional connectives $\{\neg, \lor, \land, \Rightarrow\}$.

The set of all **well-formed formulas** (**wffs**) of propositional logic are defined inductively as the smallest set satisfying the following conditions:

- Every $p_i \in P$ is a wff, (such wffs are called **atomic formulas**)
- If α is a wff then $(\neg \alpha)$ is a wff,
- If α, β are wffs then so are $(\alpha \vee \beta), (\alpha \wedge \beta), (\alpha \Rightarrow \beta)$ and
- Nothing else is a wff.

- Countable set of proposition symbols $P = \{p_1, p_2, p_3, \cdots\}$
- Set of propositional connectives $\{\neg, \lor, \land, \Rightarrow\}$.

The set of all **well-formed formulas** (**wffs**) of propositional logic are defined inductively as the smallest set satisfying the following conditions:

- Every $p_i \in P$ is a wff, (such wffs are called **atomic formulas**)
- If α is a wff then $(\neg \alpha)$ is a wff,
- If α, β are wffs then so are $(\alpha \vee \beta), (\alpha \wedge \beta), (\alpha \Rightarrow \beta)$ and
- Nothing else is a wff.

Alternatively:

$$\alpha, \beta \in \Phi ::= p_i \in P \mid (\neg \alpha) \mid (\alpha \vee \beta) \mid (\alpha \wedge \beta) \mid (\alpha \Rightarrow \beta).$$

Propositional Logic:Semantics

- valuations $\nu: P \to \{T, F\}$.
- Every symbol in P gets exactly one of the truth values $\{T, F\}$.

Propositional Logic:Semantics

- valuations $\nu: P \to \{T, F\}$.
- Every symbol in P gets exactly one of the truth values $\{T, F\}$.

 ν can be extended inductively to the set of all wffs as follows:

$$u(\neg \beta) = \begin{cases} T & \nu(\beta) = F \\ F & \nu(\beta) = T \end{cases}$$

 $u(\alpha \lor \beta) = \left\{ egin{array}{ll} T & ext{when }
u(lpha) = T ext{ or }
u(eta) = T \\ F & ext{otherwise} \end{array}
ight.$

 $u(\alpha \wedge \beta) = \begin{cases} T & \text{when } \nu(\alpha) = T \text{ and } \nu(\beta) = T \\ F & \text{otherwise} \end{cases}$

 $u(\alpha \Rightarrow \beta) = \begin{cases} F & \text{when } \nu(\alpha) = T \text{ and } \nu(\beta) = F \\ T & \text{otherwise} \end{cases}$

Propositional Satisfiability

Given α , how do we check the satisfiability of α

- Find the set of all propositions occurring in α , P_{α} ,
- Generate all possible valuations over P_{α} ,
- There will be $2^{|P_{\alpha}|}$ such valuations,
- Check the satisfiability for each such valuation one after another,
- If at least one valuation satisfies α (i.e., $\nu(\alpha) = T$, for some ν), report **success**.
- If all valuations fail to satisfy α (i.e., $\nu(\alpha) = T$, for all ν), report **failure**.

Temporal Logic

• if M and S teach AI for two consecutive years then eventually they will write the AI book.

$$\Box\Big(\big((M\land S)\Rightarrow\bigcirc(M\land S)\big)\Rightarrow\Diamond WB\Big)$$

Temporal Logic

 if M and S teach AI for two consecutive years then eventually they will write the AI book.

$$\Box\Big(\big((M\land S)\Rightarrow\bigcirc(M\land S)\big)\Rightarrow\Diamond WB\Big)$$

- Temporal Modalities
 - \triangleright \bigcirc , $\bigcirc \alpha$ now if α holds in the immediate future.
 - ▶ \Box , $\Box \alpha$ now if α holds **always** in future.
 - $\triangleright \diamondsuit$, $\diamondsuit \alpha$ now if α holds **sometimes** in future.

LTL Syntax and Semantics

$$\psi \in \Psi ::= p \in P \mid \neg \psi \mid \psi_1 \lor \psi_2 \mid \bigcirc \psi \mid \Box \psi \mid \Diamond \psi$$

LTL formulas are interpreted over sequence of valuations

$$\nu = \nu_0 \nu_1 \nu_2 \cdots \nu_i \cdots$$
, where $\forall i \in \omega, \nu_i \subset_{fin} P$

Satisfiability Relation

- ν , $i \models p$ iff $p \in \nu_i$.
- ν , $i \models \neg \psi$ iff ν , $i \not\models \psi$.
- $\nu, i \models \psi \lor \psi'$ iff $\nu, i \models \psi$ or $\nu, i \models \psi'$.
- ν , $i \models \bigcirc \psi$ iff ν , $i + 1 \models \psi$.
- $\nu, i \models \Diamond \psi$ iff $\exists j \geq i, \ \nu, j \models \psi$.
- $\nu, i \models \Diamond \psi$ iff $\forall j \geq i, \ \nu, j \models \psi$.

$$Models(\psi) = \{ \nu = \nu_0 \nu_1 \nu_2 \cdots \mid \nu, 0 \models \psi \}$$

LTL Satisfiability

Given an LTL formula ψ , does there exist a ν such that

$$\nu$$
, 0 $\models \psi$

ullet Construct a Büchi Automaton A_ψ over $\Sigma=2^{P_\psi}$ such that

$$Lang(A_{\psi}) = Models(\psi)$$

• If $Lang(A_{\psi})$ is non-empty then ψ is satisfiable.

Büchi Automata

NFA over infinite words:

$$B = (Q, \Sigma, \Delta, I, G)$$

B accepts an infinite word $w \in \Sigma^{\omega}$ if there exists an infinite run ρ of B on w such that some good state $q \in G$ occurs infinitely many times in ρ .

LTL to Büchi Automata

Given LTL formula ψ_0

- Construct the closure set cl containing
 - \blacktriangleright all subformulas of ψ_0
 - their negations
 - ▶ additional formulas, $\bigcirc \Diamond \alpha$ if $\Diamond \alpha \in cl$
- Define $UR = \{ \Diamond \alpha \in cI \}$
- Construct the atom set AT as subsets of cl satisfying following criteria:
 - for all $\alpha \in cI$, $\alpha \in A$ iff $\neg \alpha \notin A$
 - ▶ for all $\alpha \lor \beta \in cI$, $\alpha \lor \beta \in A$ iff $\alpha \in A$ or $\beta \in A$
 - ▶ for all $\Diamond \alpha \in cI$, $\Diamond \alpha \in A$ iff $\alpha \in A$ or $\bigcirc \Diamond \alpha \in A$

LTL to Büchi Automata Continued

- Define $Q = AT \times UR$
- Define $I = \{(A, u) \mid \psi_0 \in A, u = \emptyset\}$
- Define $G = \{(A, u) \mid u = \emptyset\}$
- Define $(A, u) \xrightarrow{P'} (A', u')$ if the following conditions hold:
 - $P' = A \cap P$
 - for every $\bigcap \alpha \in cI$, $\bigcap \alpha \in A$ iff $\alpha \in A'$

•

$$u' = \begin{cases} \{ \Diamond \alpha \in u \mid \alpha \notin A' \} & u \neq \emptyset \\ \{ \Diamond \alpha \in A' \mid \alpha \notin A' \} & u = \emptyset \end{cases}$$

Thank You

15 / 15