

RXAN

Eric Gaillard - 2015

EPITA

Ethernet Evolution

Ethernet Design Goals

- Simplicity
- Efficient use of shared resources
- Ease of reconfiguration and maintenance
- Compatibility
- Low cost

Ethernet and the OSI / IEEE models

Ethernet Naming Conventions

Ethernet Principle – CSMA/CD

- Carrier Sense (Is someone already talking?)
- Multiple Access (I hear what you hear!)
- Collision Detection (Hey, we're both talking!)
- 1. If the medium is idle, transmit anytime.
- 2. If the medium is busy, wait and transmit right after.
- 3. If a collision occurs, backoff for a random period, then go back to 1.

Ethernet Operation – CSMA

Ethernet Operation – CD

Ethernet Collisions – More Detail

- The adapters have to hear the collision while they are still transmitting
- They then transmit a 32-bit jam signal
- They wait a random time before retransmission
- If there are repeated collisions the adapter tries again, up to a a maximum of 16 times
 - Uses "truncated binary exponential backoff" algorithm

Ethernet, Logical vs Physical

Format of the IEEE 802.3 frame

7	1	6	6	2	46 - 1500	4
Preambl	e SD	AD	AS	L	Payload	CRC

Ethernet or MAC addresses

Ethernet addresses: Broadcasts

- Ethernet inherently supports broadcasts
- Broadcast mechanism is used frequently
 - Example ARP Address Resolution Protocol
- A Broadcast Domain is all devices that will see a broadcast frame

Ethernet implementations

10BaseT

- 2 pairs of Cat 3 UTP
- By far the most widely used specification

10BaseF

2 strands of MMF

• 10Base2

Thin coaxial or "Thinnet" (Dead)

• 10Base5

Thick coaxial or "Thicknet" (Dead)

• 10Broad36

Coaxial (Dead)

Ethernet implementations: 10BaseT

Signal Pin Paires torsadées non blindées Transmit Data + Gaine isolante **Transmit Data -**Paire de fils de 3 Receive Data + cuivre torsadée **Unused** 4 **Unused** 5 **Receive Data -**6 **Unused Unused** 8

Connecteur RJ45

Ethernet Devices

CD = Collision Domain

BD = Broadcast Domain

 A hub is a simple OSI layer 1 device: a hub just repeats the incoming signal

...the hub simply repeats that signal - all devices connected to the hub will see the frame

Essentially, a LAN Switch is a faster more modern version of a Bridge

EPITA 2015 – RXAN

18

Bridges operation

Address	Port	
712B13456141	1	
712B13456142	1	Bridge table
642B13456112	2	
642B13456113	2	

Source : B. Forouzan

Learning bridge

Address	Port

a. Original

Address	Port
A	1

b. After A sends a frame to D

Address	Port
A	1
E	3

a frame to A

Address Port A Е В

c. After E sends d. After B sends a frame to C

Bridges: learning process

21

LAN Switch Operation

 Having learned about destination addresses on the network the switch will forward frames intelligently on the basis of their MAC address

Source : B. Forouzan

Loop problem

EPITA 2015 – RXAN 24

Source: B. Forouzan

Fast Ethernet Essentials

100Base-TX

Pin	Signal
1	Transmit Data +
2	Transmit Data -
3	Receive Data +
4	Unused
5	Unused
6	Receive Data -
7	Unused
8	Unused

Ethernet Comparison

Parameter	Ethernet, 802.3	Fast Ethernet 802.3u	Gigabit Ethernet, 802.3z
Inter Frame Gap	96 bit times	96 bit times	96 bit times
Attempt Limit	16 tries	16 tries	16 tries
Max Frame Size	1518 Bytes	1518 Bytes	1518 Bytes
Min Frame Size	64 Bytes	64 Bytes	512 Bytes
Address Size	48 bits	48 bits	48 bits

IP over Ethernet v2 (1/2)

IP over Ethernet: LLC encapsulation (1/2)

EPITA 2015 – RXAN

29

IP over Ethernet: LLC encapsulation (2/2)

IP over Ethernet: SNAP/LLC encapsulation

Généralités: les architectures protocolaires

OSI (ISO)

FTAM ISO 8571	MHS ISO 8505	ODA ISO 8613	VT ISO 040/41		JTM ISO 831/32
	ISO 8822 ISO 8823	services protocole			
	ISO 8326 ISO 8327	services protocole			
	ISO 8072	services			
ISO 807	3 classe 0.1	2.3 et 4			
18	SO 8348	services			
ISO 8473		protocole "internet"			
IŞO 8802/2					
SO 8802/3 CSMA/CD (Ethernet)	ISO	ISO 8802/4 Bus à jeton ISO 8802/5 Anneau à jeton (Token Ring)			à jeton
ISO 8802/3	02/3 ISO 8802/3		1:	SO 8802	2/3
	•				

Architecture TCP/IP

TFTP SNMP	Telnet	FTP	SMTP	
UDP User Datagram Protocol	TCP Transmission Control Protocol			
IP Internet Protocol				
Ethernet	Token-Ring		FDDI	
Ethernet	Token-	Ring	FDDI	

TCP/IP: historique

- Conception au milieu des années 70
- DARPA (Defense Advanced Projects Research Agency)
- DoD (Departement Of Defense)
- TCP/IP sur ARPANET au début des années 80
- BBN (Bolt Beranek & Newman) : TCP/IP sous UNIX
- Université de Berkeley
- 60000 noeuds interconnectés
- RFC

TCP/IP: une famille de protocoles

Le modèle TCP/IP

- Internet Protocol
- RFC 791 / MIL-STD-1777
- IP est un protocole de niveau réseau qui fonctionne en mode à datagramme
- Il offre des services d'adressage, de routage et de fragmentation
- IP est indépendant des réseaux « physiques »
- Les datagrammes IP peuvent être acheminés sur X.25, liaison modem, RNIS, Frame relay, ATM,

VERSION

4 bits

- Numéro de version du protocole utilisé
- Version 4 = version en cours = IPv4
- Version 6 = nouvelle version = IPv6

LONGUEUR

4 bits

- Longueur totale de l'entête IP exprimée en mots de 32 bits
- Longueur par défaut (si aucune option) = Longueur Min = 5
- Longueur Max = 15

TYPE DE SERVICE 8 bits

```
Priorité (3 bits)
100
100
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
000 = Routine
Delay
0 = Normal / 1 = bas
Troughput
0 = Normal / 1 = haut
Reliability
0 = Normal / 1 = haut
2 derniers bits
111= Network control / 110 = Internetwork Control / 101 = CriticECP /
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priority /
= Priorité (3 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priority /
= Priorité (3 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priorité (2 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priority /
= Priorité (2 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priority / 000 = Driority /
= Priorité (2 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priorité (2 bits)
= Priorité (2 bits)
= Flash override/ 011 = Flash / 010 = Immediate / 001 = Priority /
= Priorité (2 bits)
= Pr
```


LONGUEUR TOTALE 16 bits

- Longueur totale du datagramme IP (entête + données) exprimée en octet
- Longueur par défaut = Longueur Min = 20

• IDENTIFICATION 16 bits

- Identifie le paquet IP, utilisé pour reconstruire le datagramme après fragmentation
- Chaque fragment a le même Id

• FLAGS 3 bits

- 0 DF MF
- Don 't Fragment = 1 : fragmentation interdite / DF = 0 : fragmentation autorisée
- More Fragment = 1 : d 'autres fragments suivents / MF = 0 : dernier fragment

FRAGMENT OFFSET 13 bits

- Position des données du fragment dans le datagramme initiale
- Valeur par défaut = Valeur Min = 0
- valeur Max = 8191

TIME TO LIVE 8 bits

- Durée de vie du datagramme IP exprimée en secondes
- TTL par défaut = 15 / TTL Min = 0 / TTL Max = 255

PROTOCOL 8 bits

Identification du protocole de niveau supérieur (TCP=6 / UDP=17 / ICMP=1)

CHECKSUM 16 bits

- Vérification de l'intégrité du datagramme
- Le complément à un sur 16 bits de la somme des compléments à un du datagramme IP
- Le checksum est calculé à l'émission (checksum = 0) et est vérifié à la réception

ADRESSE SOURCE 32 bits

Adresse IP de la machine émettrice

ADRESSE DESTINATION 32 bits

Adresse IP de la machine destinatrice

OPTIONS variable

Options liées au protocole IP

- Une adresse IP est attribuée à toute interface physique connectée à un réseau IP
- On distingue 4 classes d'adresses IP : A,B, C et D
- Les adresses IP sont codées sur 32 bits
- Représentation des adresses en décimal
 - XXX.XXX.XXX.XXX
 - 10001100 10001011 10000010 10011111 = 140.131.130.159
 - 0.0.0.0 à 255.255.255.255
- Les adresses IP sont découpées en deux champs dont la taille est variable suivant la classe d'adresse: le champs réseau et le champ local
- Adressage public ou référencé
 - Attribué au plan international par le IANA
- Adressage privé
 - inconnu des instances internationales

Réseau de classe A

- 7 bits pour la partie réseau soit 2^7 2 = 126 réseaux
- 24 bits pour la partie machine soit 2^{24} 2 = 16 777 214 machines
- xxx.0.0.0/8
- Exemple : 12.0.0.0/8

Réseau de classe B

- 14 bits pour la partie réseau soit 2^{14} 2 = 16 382 réseaux
- 16 bits pour la partie machine 2^{16} 2 = 65 534 machines
- xxx.xxx.0.0/16
- Exemple : 128.196.0.0/16

Réseau de classe C

- 24 bits pour la partie réseau soit 2^{24} 2 = 2 097 152 réseaux
- 8 bits pour la partie machine soit 2^8 2 = 254 machines
- xxx.xxx.xxx.0/32
- Exemple : 197.242.123.0/24

000.000.000	Réservé
000.xxx.xxx.xxx	Réservé
001.xxx.xxx.xxx - 126.xxx.xxx.xxx	Classe A
127.xxx.xxx	Loopback
128.000.xxx.xxx	Réservé
128.001.xxx.xxx - 191.254.xxx.xxx	Classe B
191.255.xxx.xxx	Réservé
192.000.000.xxx	Réservé
192.000.001.xxx - 223.255.254.xxx	Classe C
223.255.255.xxx	Réservé
224.xxx.xxx.xxx - 255.255.255.254	Classe D
255.255.255	Diffusion générale

- Le champ machine à 0 est utilisé au démarrage des machines pour connaître une adresse IP par le biais du protocole RARP
 - Exemple: 195.10.200.0 ou 145.10.0.0
- 155.100.255.255 est l'adresse de diffusion localisée au réseau de classe B 155.100.0.0
- Par convention de notation
 - 0.0.0.1 sur le réseau 192.9.100 désigne la machine 192.9.100.1 du réseau de classe C 192.9.100.0
 - 1 désigne la machine 0.0.0.1 du réseau de classe C courant
 - .0.1 désigne la machine 0.0.0.1 du réseau de classe B courant
 - .0.0.1 désigne la machine 0.0.0.1 du réseau de classe A courant
 - 113.1.100.23 désigne l'adresse 113.001.100.023
 - 113. désigne le réseau de classe A 113.0.0.0
 - 195.10.200. désigne le réseau de classe C 195.10.200.0

IP: encapsulation Ethernet et 802.3

- Internet Control Message Protocol
- RFC 792
- ICMP est un protocole de contrôle et de report d'erreurs dans l'environnement IP
- ICMP fonctionne en mode non-connecté, il utilise les services du protocole IP
 - TOS=0, Protocol=1
- ICMP est obligatoire dans toutes les implémentations logicielles de TCP/IP
- ICMP ne traite pas les erreurs de paquets. .. ICMP
- Si un routeur détecte un problème sur un datagramme IP, il le détruit et émet un message ICMP pour informer l'émetteur sur la nature de l'incident
- Le protocole ICMP intervient dans le routage IP

ICMP: format des messages

ICMP: format des messages

• TYPE 8 bits

Indique la nature du message et le format du paquet ICMP

_	_
• 0	Echo Reply
• 3	Destination Unreachable
• 4	Source Quench
• 5	Redirect
• 8	Echo Request
• 11	Time Exceeded for a Datagram
• 12	Parameter Problem
• 13	Timestamp Request
• 14	Timestamp Reply
• 15	Information Request
• 16	Information Reply
• 17	Adress Mask Request
• 18	Adress Mask Reply

ICMP: format des messages

CODE 8 bits

Code d'erreur

•	0	Network Unreachable
•	1	Host Unreachable
•	2	Protocol Unreachable
•	3	Port Unreachable
•	4	Fragmentation Needed and DF set
•	5	Source Route Failed
•	6	Destination Network Unknown
•	7	Destination Host Unknown
•	8	Source Host Isolated
•	9	Communication with desination network administratively
pro	ohibited	
•	10	Communication with desination host administratively prohibited
•	11	Network Unreachable for type of Service
•	12	Host Unreachable for type of Service

Exercice: frame decoding

08	00	5A	57	49	54	08	00	38	03	07	43	8 0	00
45	00	00	49	49	35	00	00	1D	06	C8	85	87	E4
06	04	В8	0C	52	0C	00	15	51	0C	71	12	4A	2A
00	00	51	19	50	18	10	00	F3	FF	00	00	33	33
31	20	50	61	73	73	77	6F	72	64	20	72	65	71
75	69	72	65	64	20	66	6F	72	20	бA	65	61	6E
2 F.	0D	$\bigcap Z$											

EPITA 2015 – RXAN

52

Appendice: assigned values for the type field

0000-05DC	IEEE802.3 Length Field	803D	DEC Ethernet	80DE-80DF	Integrated Solutions TRFS
0101-01FF	Experimental	Encryption		80E0-80E3	Allen-Bradley
0200	XEROX PUP (see 0A00)	803E	DEC Unassigned	80E4-80F0	Datability
0201	PUP Addr Trans (see 0A01)	803F	DEC LAN Traffic	80F2	Retix
0400	Nixdorf	Monitor		80F3	AppleTalk AARP (Kinetics)
0600	XEROX NS IDP	8040-8042	DEC Unassigned	80F4-80F5	Kinetics
0660	DLOG	8044	Planning Research	80F7	Apollo Computer
0661	DLOG	Corp.	rianing research	80FF-8103	Wellfleet Communications
			ATOT		
0800	Internet IP (IPv4)	8046	AT&T	8107-8109	Symbolics Private
0801	X.75 Internet	8047	AT&T	8130	Hayes Microcomputers
0802	NBS Internet	8049	ExperData	8131	VG Laboratory Systems
0803	ECMA Internet	805B	Stanford V Kernel exp.	8132-8136	Bridge Communications
0804	Chaosnet	805C	Stanford V Kernel prod.	8137-8138	Novell, Inc.
0805	X.25 Level 3	805D	Evans & Sutherland	8139-813D	KTI
0806	ARP	8060	Little Machines	8148	Logicraft
0807	XNS Compatability	8062	Counterpoint	8149	Network Computing Devices
081C	Symbolics Private	Computers	o and point	814A	Alpha Micro
0888-088A	•	8065	Univ. of Mass. @	814C	SNMP
0900 0900	Xyplex	Amherst	Utilv. Of Mass. @	814D	BIIN
	Ungermann-Bass net debugr				
0A00	Xerox IEEE802.3 PUP	8066	Univ. of Mass. @	814E	BIIN
0A01	PUP Addr Trans	Amherst		814F	Technically Elite Concept
0BAD	Banyan Systems	8067	Veeco Integrated Auto.	8150	Rational Corp
1000	Berkeley Trailer nego	8068	General Dynamics	8151-8153	Qualcomm
1001-100F	Berkeley Trailer encap/IP	8069	AT&T	815C-815E	Computer Protocol Pty Ltd
1600	Valid Systems	806A	Autophon	8164-8166	Charles River Data System
4242	PCS Basic Block Protocol	806C	ComDesign	817D-818C	Protocol Engines
5208	BBN Simnet	806D	Computgraphic Corp.	818D	Motorola Computer
6000	DEC Unassigned (Exp.)	806E-8077	Landmark Graphics	819A-81A3	Qualcomm
			Landmark Graphics		
6001	DEC MOP Dump/Load	Corp.		81A4	ARAI Bunkichi
6002	DEC MOP Remote Console	807A	Matra	81A5-81AE	RAD Network Devices
6003	DEC DECNET Phase IV Route	807B	Dansk Data Elektronik	81B7-81B9	Xyplex
6004	DEC LAT	807C	Merit Internodal	81CC-81D5	Apricot Computers
6005	DEC Diagnostic Protocol	807D-807F	Vitalink	81D6-81DD	Artisoft
6006	DEC Customer Protocol	Communications		81E6-81EF	Polygon
6007	DEC LAVC, SCA	8080	Vitalink TransLAN III	81F0-81F2	Comsat Labs
6008-6009	DEC Unassigned	8081-8083	Counterpoint	81F3-81F5	SAIC
6010-6014	3Com Corporation	Computers	Counterpoint	81F6-81F8	VG Analytical
7000	Ungermann-Bass download	809B	Appletalk	8203-8205	Quantum Software
7002		809C-809E		8221-8222	
	Ungermann-Bass dia/loop		Datability		Ascom Banking Systems
7020-7029	LRT	809F	Spider Systems Ltd.	823E-8240	Advanced Encryption Syste
7030	Proteon	80A3	Nixdorf Computers	827F-8282	Athena Programming
7034	Cabletron	80A4-80B3	Siemens Gammasonics	8263-826A	Charles River Data System
8003	Cronus VLN	Inc.		829A-829B	Inst Ind Info Tech
8004	Cronus Direct	80C0-80C3	DCA Data Exchange	829C-82AB	Taurus Controls
8005	HP Probe	Cluster		82AC-8693	Walker Richer & Quinn
8006	Nestar	80C4	Banyan Systems	8694-869D	Idea Courier
8008	AT&T	80C5	Banyan Systems	869E-86A1	Computer Network Tech
8010	Excelan	80C6	Pacer Software	86A3-86AC	Gateway Communications
8013	SGI diagnostics	80C7	Applitek Corporation	86DB	SECTRA
8014	SGI network games	80C8-80CC	Intergraph Corporation	86DE	Delta Controls
8015	SGI reserved	80CD-80CE	Harris Corporation	86DF	ATOMIC
8016	SGI bounce server	80CF-80D2	Taylor Instrument	86E0-86EF	Landis & Gyr Powers
8019	Apollo Computers	80D3-80D4	Rosemount Corporation	8700-8710	Motorola
802E	Tymshare	80D5	IBM SNA Service on	8A96-8A97	Invisible Software
802F	Tigan, Inc.	Ether		9000	Loopback
8035	Reverse ARP	80DD	Varian Associates	9001	3Com(Bridge) XNS Sys Mgmt
8036	Aeonic Systems			9002	3Com(Bridge) TCP-IP Sys
8038	DEC LANBridge			9003	3Com(Bridge) loop detect
8039-803C	DEC LANDINGE DEC Unassigned			FF00	BBN VITAL-LanBridge cache
0009-0000	DEC Chassighed				
				FF00-FF0F	ISC Bunker Ramo

EPITA 2015 – RXAN 53