Vegeta: whole viral genome multiple sequence alignments based on RNA secondary structures

Kevin Lamkiewicz^{1,2} Michèle Kayser¹, Emanuel Barth^{1,3} and Manja Marz^{1,2,3,4}

¹Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Germany

²European Virus Bioinformatics Center, Jena, Germany

³FLI Leibniz Institute for Age Research, Beutenbergstraße 11, Jena, Germany

⁴German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig

Problem - Finding representative sequences from million of viruses to create RNA secondary structure alignments

Figure 3: Multiple sequence alignment of the 5' UTR of different *Alphacoronaviruses*. This region is known to be highly conserved on structure level but not on sequence level.

Methods - Implementation and workflow of VeGETA

Conclusion - Vegeta for good alignments

- RNA structures are more conserved than the genomic sequence
- Function of ncRNAs derived from structure
- Alignment-based analysis preferable, but computationally limiting
- Viral genome data exceeds these limits
 - Appropriate filters and selection needed

VeGETA

- Filters sequences for representative viruses
- Considers sequence and structure information for alignments
- Calculates whole genome alignments for viruses
- Allows inclusion of own virus of interest
- First results highly agree with literature

