Chapitre 8: Thermodynamique chimique

On considère un système fermé dans lequel se déroule une réaction chimique.

I Réaction de référence, état standard du corps pur

A) Etude thermodynamique d'une transformation chimique

Une réaction chimique est une transformation d'un état initial vers un état final :

$$n_j A_j$$
 composition initiale
$$P_1, V_1, T_1$$
 $W+Q$

$$Réaction chimique$$
 $n_k A_k$ composition finale
$$P_2, V_2, T_2$$

U et H dépendent de P, V, T, de la composition du système chimique. ΔU et ΔH dépendent donc de la variation des paramètres chimiques (P, V, T) et de la modification de la composition du système (origine chimique). \Rightarrow situation complexe. On va donc étudier une transformation simplifiée (la réaction de référence).

B) Conditions standard, état standard (ES) de corps pur (CP)

Corps pur : une formule chimique unique (pas d'impuretés qui ne sont pas dans la formule)

Conditions standards: $P = P^0 = 1$ bar = 1,00000.10⁵ Pa (pression standard), température T constante.

Etat standard du corps pur : corps pur dans un état d'agrégation normale à T, P^0 . Si l'état est gazeux, l'état standard correspond à celui du gaz parfait. Il peut y avoir plusieurs état standards du corps pur à une même température (exemple : carbone graphite et carbone diamant à 298K).

On définit l'état standard de référence (ESR) du corps pur à T: c'est l'état standard le plus stable à P^0 , T (pour le carbone à 298K : graphite)

C) Grandeurs molaires standard

Définition : grandeur relative à une mole de corps pur A_i dans un état standard à T. $u_{i,T}^0$ ou $U_{A,T}^0$: Energie interne molaire standard du corps pur A_i à T.

$$\underbrace{u_{i,T}^{0}}_{\text{chimie}} \Leftrightarrow \underbrace{U_{m,i}(T,P^{0})}_{\text{physique}}$$

 $h_{i,T}^0$: Enthalpie molaire standard du corps pur A_i à T.

 $v_{i,T}^0$: Volume molaire standard à T.

$$h_{i,T}^{0} = u_{i,T}^{0} + P^{0}v_{i,T}^{0}$$

= $u_{i,T}^{0} + RT$ (gaz parfait)

Convention : à $T = 298,15 \,\mathrm{K}$, un corps pur simple (c'est-à-dire dont un seul élément intervient dans la composition) dans un état standard de référence à 298,15 K, on définit $h_i^0 = h_{i\,298\,15 \,\mathrm{K}}^0 = 0$

Exemples:

$$h_{\rm H_{2(g)}}^0 = h_{\rm O_{2(g)}}^0 = h_{\rm C_{(graphite)}}^0 = 0$$

$$h_{\text{Br}_{2(g)}}^0 = 30.9 \text{kJ.mol}^{-1}$$

$$h_{C_{\text{(diamant)}}}^{0} = 1,9 \text{kJ.mol}^{-1}$$

$$h_{H_2O_{41}}^0 = -285,2 \text{kJ.mol}^{-1}$$

Pour un corps pur simple qui n'est pas dans l'état standard de référence, h > 0

D) Réaction de référence

Définition : composition initiale et finale donnée par la réaction bilan : nombre de moles de réactifs et de produits = coefficients stoechiométriques

Exemple : oxydation de NH₃ par O_2 : $4NH_3 + 5O_2 = 6H_2O + 4NO$

Réaction de référence :

II Energie interne et enthalpie standard de réaction

A) Définition

Equation bilan : $-v_i A_i = v_k A_k$ avec $v_k > 0, v_i < 0$

Réaction de référence :

Etat initial

Réactifs
$$A_j$$
, nb de moles $-v_j$ dans ES(T)

Etat final

Produits A_k , nb de moles v_k dans ES(T)

Définition:

 $\Delta_r U_T^0$: Énergie interne standard de réaction à T

 $= \Delta U$ de la réaction de référence

 $\Delta_r H_T^0$: Enthalpie standard de réaction à T

 $= \Delta H$ de la réaction de référence

$$\Delta_{r}U_{T}^{0} = U_{\text{final}} - U_{\text{initial}} = \sum_{\substack{k \text{produits}}} v_{k}u_{k,T}^{0} - \sum_{\substack{j \text{réactifs}}} (-v_{j})u_{j,T}^{0} = \sum_{\substack{i \text{produits} \\ \text{produits}}} v_{i}u_{i,T}^{0}$$

De même,
$$\Delta_r H_T^0 = \sum_{\substack{i \text{produits} \\ + \text{réactifs}}} v_i h_{i,T}^0$$
 ($v_{i/j/k}$ correspond au nombre de moles de $A_{i/j/k}$)

B) Relation entre $^{\Delta_r H_T^0}$ et $^{\Delta_r U_T^0}$.

Pour tout *i* (réactif ou produit), $h_{i,T}^0 = u_{i,T}^0 + P^0 v_{i,T}^0$

Si A_i est un gaz, l'état standard correspond à celui du gaz parfait donc $P^0v_{i,T}^0=RT$

Si A_i est une phase condensée $P^0 v_{i,T}^0 << h_{i,T}^0$ ou $u_{i,T}^0$. Donc $h_{i,T}^0 \approx u_{i,T}^0$

Si
$$A_i$$
 est une phase condensee $P V_{i,T} \ll h_{i,T}$ ou $u_{i,T}$. Donc $P \Delta_r H_T^0 = \sum_i V_i h_{i,T}^0 = \sum_i V_i (u_{i,T}^0 + P^0 V_{i,T}^0) \approx \Delta_r U_T^0 + \sum_k V_k RT$
en phase gazeuse

$$\Delta_r H_T^0 \approx \Delta_r U_T^0 + RT \sum_{\substack{k \text{gaz}}} V_k$$

Si la réaction ne fait intervenir que des phases condensées, $\Delta_r H_T^0 \approx \Delta_r U_T^0$

C) Lois de Kirchhoff

Etude de $\Delta_r U_T^0$ et $\Delta_r H_T^0$ en fonction de la température On considère la transformation cyclique :

1) 1^{ère} loi de Kirchhoff

H est une fonction d'état.

Donc
$$\Delta H_{\text{cycle}} = 0$$

$$= (H_2 - H_1) + (H_3 - H_2) + (H_4 - H_3) + (H_1 - H_4)$$

$$H_2 - H_1 = \Delta_r H_T^0$$

$$H_4 - H_3 = -\Delta_r H_{T+dT}^0$$

$$H_3 - H_2 = C_p \text{(produits)} dT \quad \text{(transformation monobare, } \int_T^{T+dT} C_p dT = C_p dT \text{)}$$

$$= \sum_{\substack{k \text{produits}}} V_k C_{p,k,T}^0 dT$$

$$H_1 - H_4 = C_p \text{(réactifs)} \times (-dT)$$

$$= \sum_{\substack{k \text{priorities}}} -V_k C_{p,k,T}^0 \times (-dT) = \sum_{\substack{k \text{priorities}}} V_k C_{p,k,T}^0 dT$$

 $C^0_{p,k,T}$: Capacité thermique isobare molaire standard de A_k à T

$$\Delta H_{cycle} = 0 = \Delta_r H_T^0 - \Delta_r H_{T+dT}^0 + \sum_i v_i C_{p,i,T}^0 dT$$

$$\Leftrightarrow \frac{d(\Delta_r H_T^0)}{dT} = \sum_i v_i C_{p,i,T}^0$$

Si les A_i sont dans un même état standard sur $[T_0; T]$

$$\int_{T_0}^T d(\Delta_r H_T^0) = \int_{T_0}^T (\sum_i v_i C_{p,i,T}^0) dT \iff \Delta_r H_T^0 = \Delta_r H_{T_0}^0 + \int_{T_0}^T (\sum_i v_i C_{p,i,T}^0) dT$$

2) 2^{ème} loi de Kirchhoff

$$\begin{split} \Delta U_{cycle} &= 0 \\ &= (U_2 - U_1) + (U_3 - U_2) + (U_4 - U_3) + (U_1 - U_4) \\ U_2 - U_1 &= \Delta_r U_T^0 \\ U_4 - U_3 &= -\Delta_r U_{T+dT}^0 \\ U_3 - U_2 &\approx C_v \text{ (produits)} dT \quad \text{(si on peut considérer que } U \text{ ne dépend que de } T\text{)} \\ U_1 - U_4 &\approx C_v \text{ (réactifs)} \times (-dT) \end{split}$$

$$\Rightarrow \frac{d(\Delta_r U_T^0)}{dT} \approx \sum_i v_i C_{v,i,T}^0$$

 $C_{p,i,T}^0$: Capacité thermique isochore molaire standard de A_i à T.

III Enthalpie standard de réactions particulières

A) Enthalpie de formation

La "réaction de formation d'un corps pur dans ES(T)" est, par définition, la réaction de formation d'une mole de ce corps pur dans ES(T) à partir des corps pur simples dans ESR(T).

Exemple : réaction de formation de $NH_{3(g)}$ à 298,15K :

 $\frac{3}{2}$ H_{2(g)} + $\frac{1}{2}$ N_{2(g)} \rightarrow NH_{3(g)} (H_{2(g)} et N_{2(g)} sont des corps purs simples dans leur état standard de référence à 298,15K)

Définition:

 $\Delta_f H_T^0$: Enthalpie de formation du corps pur dans l'état standard à T.

= $\Delta_r H_T^0$ de la réaction de formation correspondante

Exemples:

$$\Delta_f H_{NH_{3(g)},298.15K}^0 = -46.1 \text{kJ.mol}^{-1}$$

$$\Delta_f H^0_{C_{(graphite)},300K} = 0$$
 (Réaction : $C_{(graphite)} \rightarrow C_{(graphite)}$)

Remarque : à 298.15K :

$$\Delta_f H_{\text{CP dans ES}}^0 = 1 \times h_{\text{CP dans ES}}^0 - \sum_{\substack{j \text{réactifs} \\ \text{réactifs}}} (-v_j) \underbrace{h_{j=\text{CPS dans ESR à 298.15K}}^0}_{=0}$$

Donc
$$\Delta_f H_{\text{CP dans ES}}^0 = h_{\text{CP dans ES}}^0$$

B) Application: loi de Hess

La donnée des $\Delta_f H^0_{CP,T}$ permet le calcul du $\Delta_r H^0_T$ Exemple : à 300K : (1) $\operatorname{Fe_3O_{4(s)}} + 4\operatorname{CO_{(g)}} = 3\operatorname{Fe_{(s)}} + 4\operatorname{CO_{2(g)}}$ (3) \downarrow \uparrow (2) $3\operatorname{Fe_{(s)}} + 2\operatorname{O_{2(g)}} + 4\operatorname{C_{(graphite)}} + 2\operatorname{O_{2(g)}}$ (2) : état intermédiaire fictif, corps purs simples dans $\operatorname{ESR}(300\mathrm{K})$ $\Delta_r H^0_{300\mathrm{K}} = H_3 - H_1 = (H_3 - H_2) + (H_2 - H_1)$ $= (4\Delta_f H^0_{\operatorname{CO_{2(g)}}} + 3\Delta_f H^0_{\operatorname{Fe_{(s)}}}) + (-1 \times \Delta_f H^0_{\operatorname{Fe_3O_{4(s)}}}) + (-4 \times \Delta_f H^0_{\operatorname{CO_{(g)}}})$ $\Delta_r H^0_T = \sum_i v_i \times \Delta_f H^0_{i,T}$ (Loi de Hess)

C) Enthalpie standard de changement d'état

Le changement d'état $A_{(\varphi)}=A_{(\varphi')}$ du corps pur A de la phase (φ) à la phase (φ') est une réaction chimique particulière à $P=P^0$, à la température T du changement d'état.

 $\Delta_{
m changement d'état} H^0_{\it CP,T} = \Delta_r H^0_T$ de la réaction de changement d'état Nomenclature des changements d'état :

 $\Delta_{sub}H_T^0$: enthalpie de sublimation du corps pur $\Delta_{fus}H_T^0$: enthalpie de fusion du corps pur $\Delta_{van}H_T^0$: enthalpie de vaporisation du corps pur

Pour un corps pur sous une phase unique (constante):

Etude qualitative de h_T^0 à P^0 (cas général; possibilité pour certains corps de sublimation directe à P^0)

Approximation d'Ellingham : C_p est constante entre deux changements d'état.

IV Application aux systèmes chimiques réels

A) Réactions monothermes

Réaction:

Composition initiale
$$n_{ini}^{i} \text{ moles de } A_{i}$$

$$T, P_{1}$$

$$\Delta H = H_{\text{final}} - H_{\text{initial}}$$

$$= \sum_{i} (n_{\text{final}}^{i} \times H_{m,A_{i}}(T, P_{2})) - \sum_{i} (n_{\text{initial}}^{i} \times H_{m,A_{i}}(T, P_{1}))$$
Composition finale
$$n_{final}^{i} \text{ moles de } A_{i}$$

$$T, P_{2}$$

$$T, P_{2}$$

Pour les gaz, assimilables à des gaz parfaits : $H_{m,A_1}(T, P_1 \& P_2) \approx h_{T,A_1}^0$

Pour les phases condensées, la 2^{nde} loi de Joule est approximativement vérifiée. Donc $H_{m,A_i}(T, P_1 \& P_2) \approx h_{T,A_i}^0$

Donc
$$\Delta H \approx \sum_{i} (n_{\text{final}}^{i} \times h_{T,A_{i}}^{0}) - \sum_{i} (n_{\text{initial}}^{i} \times h_{T,A_{i}}^{0}) \approx \Delta H^{0}$$

On suppose qu'on a une unique réaction bilan $0 = \sum v_i A_i$

Rappel:
$$\xi = \frac{n_{\text{fin}}^i - n_{\text{ini}}^i}{V_i}$$

$$\Delta H \approx \Delta H^0 = \sum_{i} v_i^{\prime} \times \xi \times h_{A_i,T}^0 = \xi \times \sum_{i} v_i \times h_{A_i,T}^0$$

Donc $\Delta H \approx \xi \Delta_r H_T^0$ (\approx car les corps purs sont considérés dans leur état standard) De même $\Delta U \approx \xi \Delta_r U_T^0$

Remarque : par définition, $\Delta_r X = \frac{\partial \Delta X}{\partial \xi}\Big|_{p.r.}$ (vu plus tard en spé)

B) Réaction monotherme monobare

$$\Delta H \approx \xi \Delta_r H_T^0$$
, et $\Delta H = Q$ (monobare)
Si $\xi > 0$ (sens direct), Q a le signe de $\Delta_r H_T^0$

Par définition,

La réaction est exothermique si $\Delta_r H_T^0 < 0$

La réaction est endothermique si $\Delta_r H_T^0 > 0$

C) Réaction adiabatique : température de flamme

1) Réaction adiabatique monobare

Composition initiale
$$n_{ini}^i$$
 moles de A_i T_1, P_1

Transformation adiabatique monobare

Composition finale n_{final}^{i} moles de A_{i} T_{2}, P_{1}

$$\Delta H = H_f - H_i = Q = 0$$
 (monobare et adiabatique)

On cherche T_2 : température de flamme adiabatique

Etat intermédiaire fictif

Comme *H* est une fonction d'état, $\Delta H = \Delta H_1 + \Delta H_2$

$$\Delta H_1 = \xi \times \Delta_r H_1^0$$

$$\Delta H_2 = \int_{T_1}^{T_2} C_p \text{ (composition finale)} dT = \int_{T_1}^{T_2} \sum_{i} n_{final}^{i} \times C_{p,i}^{0}(T) dT$$

 $\Delta H_1 + \Delta H_2 = 0$ On obtient donc une équation avec T_2 comme seule inconnue.

Exemple: oxydation adiabatique par l'air de $SO_{2(g)}$ en $SO_{3(g)}$, $T_1 = 700K$,

 $P = P^0$ constante

Equation:	$2SO_{2(g)} +$	$O_{2(g)} =$	$2SO_{3(g)}$	(et N ₂ spectatrice dans l'air)
C_p^0 :	39.9	29.4	50.7	29.1 (J.K ⁻¹ .mol ⁻¹)
n _{ini} :	10	10	0	40 (mol)
$\Delta_f H^0_{298.15K}$:	-297	0	-396	0 (kJ.mol ⁻¹)

• Calcul de $\Delta_r H_{298.15K}^0$

Loi de Hess:

$$\Delta_r H_{298.15K}^0 = \sum_i v_i \Delta_r H_i^0 = 2\Delta_r H_{SO_3}^0 - 2\Delta_r H_{SO_2}^0 = -198 \text{kJ.mol}^{-1}$$

1^{ère} loi de Kirchhoff:

$$\Delta_r H_{700\text{K}}^0 = \Delta_r H_{298.15\text{K}}^0 + \int_{298}^{700} \sum_i (\nu_i \times C_{p,i}^0) dT = -201\text{kJ.mol}^{-1} \qquad \text{(Approximation)}$$

d'Ellingham vérifiée)

• Calcul de T_f :

On suppose par exemple que $n_{SO_2}^f=1\mathrm{mol}$. Donc $\xi=4.5\mathrm{mol}$

Composition finale:

 SO_2 : 1mol; O_2 : 5.5 mol; SO_3 : 9 mol; N_2 : 40 mol

$$\Delta H = \Delta_r H_{700\text{K}}^0 + \int_{T_1}^{T_f} \sum_i (n_i^{\text{fin}} \times C_{p,A_i}^0) dT = 0$$

$$\Leftrightarrow \xi \times \Delta_r H_{700K}^0 + (T_f - T_1) \times (40C_{p,N_2}^0 + 9C_{p,SO_3}^0 + 1C_{p,SO_2}^0 + 5.5C_{p,O_2}^0) = 0$$

Donc $T_f = 1200K$

2) Température de flamme isochore

$$\Delta U = Q = 0$$

Donc, de même,
$$\Delta U = 0 = \xi \times \Delta_r U_{T_1}^0 + \int_{T_1}^{T_2} \sum_i (n_i^{\text{fin}} C_{v,i,T}^0) dT$$