Shapes of dependencies in reaction systems 🕶 💢

Luca Manzoni • Antonio E. Porreca

Grzegorz Rozenberg

Università degli Studi di Milano-Bicocca

Aix-Marseille Université & Laboratoire d'Informatique et Systèmes

Leiden University
& University of

Colorado Boulder

Structure struct

- What are the consequences of structural restrictions on the behaviour of RS?
- Example: minimal RS cannot compute all result functions
- But, for each RS A there exists a minimal RS B
 such that res_A^k(T) = res_B^{2k}(T) for all k ∈ N and state T of A

Positive dependency graph 🧬

- Vertices = set of reactions A
- There is an oriented edge a → b iff at least one product of reaction a is a reactant of reaction b

Positive dependency graph 🧬

A path in the (positive) dependency graph such that for each edge a → b we have:

- Reaction a produces all reactants of b: R_b ⊆ P_a
- Reaction a doesn't produce any inhibitor for b: Pa ∩ Ib = Ø

Non self-inhibiting reactions 🗬

A set of reactions $\{a_1, a_2, ..., a_n\}$ such that no reaction produces inhibitors for any other reaction in the set: $P_i \cap P_i = \emptyset$ for all i, j belonging to the set

Otherwise, the set is called self-inhibiting

Self-sustaining but also self-inhibiting cycle

Simple cyclical dependencies ***

 P_0

 P_3

 P_2

Rotations and cycles

The rotations of active reactions along the (unique) cycle in the dependency graph \mathcal{S} starting from a given configuration correspond to transitions in the graph of the dynamics \mathbb{A}

F the dependency graph of a RS consists only one self-sustaining, non-self-inhibiting cycle of length n

THEN the dynamics of the RS only contains cycles of length dividing n, and there is at least one such cycle for each divisor of n

Length of the cycles

Length of the cycles

Length of the cycles

Chains of dependency \$\$

Chains \$

A set of one or more cycles pairwise sharing a point

Lemma

F the dependency graph of a RS contains a chain of two self-sustaining, non self-inhibiting cycles of length m and n

THEN when starting from a configuration where at least one reaction involved in the cycles is enabled, eventually all the reactions will be enabled once every gcd(m, n) steps

S

Lemma in action

S

Lemma in action

Lemma in action

All reactions are enabled every $3 = \gcd(3, 6)$ steps

Flower-shaped dependencies

Flowers **

A set of one or more cycles all sharing a single point

IF the dependency graph of a RS consists only of a flower of self-sustaining, non-self-inhibiting cycles (petals) with at lest of them of coprime lengths (STRUCTURE)

THEN the RS has exactly two fixed points (BEHAVIOUR).

All reactions enabled every $1 = \gcd(3, 4)$ step! Saturation!

- When all reactions are always enabled the products are always the same: T = ∪{P_a : a ∈ A}
- Thus the RS enters a nonempty fixed point: $res_{\mathcal{A}}(T) = T$
- The second fixed point is by definition the empty state Ø

Chain-shaped dependencies \$\\ \exists

IF the dependency graph of a RS consists only of a chain of self-sustaining, non-self-inhibiting cycles containing two cycles of coprime lengths,

* THEN the RS has exactly two fixed points

activated

Conclusions

Summary

Behaviour A of RS having a dependency graph A consisting of self-sustaining, non-self-inhibiting cycles:

- with a single cycle of length n \$\mathscr{S}\$, the dynamics of the RS contains only cycles of length dividing n \$\mathscr{S}\$.
- with a chain or flower with two cycles of coprime length \$\square\$, the RS has exactly two fixed points \$\frac{x}{2}\$.

Future work

- Does restricting the dependency graphs to cycles, chains and flowers of reduce the complexity of decision problems related to the dynamics? A (e.g., fixed points, reachability)
- Investigate the relationship with Boolean automata networks and their interaction graphs
- Investigate more sophisticated dependency graphs

 (e.g., pre-periods, multiple intersections between cycles)

Dziękuje za uwagę! Thanks for your attention!

