Sparse matrices

Victor Eijkhout

335/394 fall 2011

Boundary value problems

Consider in 1D

$$\begin{cases} -u''(x) = f(x, u, u') & x \in [a, b] \\ u(a) = u_a, \ u(b) = u_b \end{cases}$$

in 2D:

$$\begin{cases} -u_{xx}(\bar{x}) - u_{yy}(\bar{x}) = f(\bar{x}) & x \in \Omega = [0, 1]^2 \\ u(\bar{x}) = u_0 & \bar{x} \in \delta\Omega \end{cases}$$

Approximation of 2nd order derivatives

Taylor series (write h for δx):

$$u(x+h) = u(x) + u'(x)h + u''(x)\frac{h^2}{2!} + u'''(x)\frac{h^3}{3!} + u^{(4)}(x)\frac{h^4}{4!} + u^{(5)}(x)\frac{h^5}{5!} + \cdots$$

and

$$u(x-h) = u(x) - u'(x)h + u''(x)\frac{h^2}{2!} - u'''(x)\frac{h^3}{3!} + u^{(4)}(x)\frac{h^4}{4!} - u^{(5)}(x)\frac{h^5}{5!} + \cdots$$

Subtract:

$$u(x+h) + u(x-h) = 2u(x) + u''(x)h^2 + u^{(4)}(x)\frac{h^4}{12} + \cdots$$

SO

$$u''(x) = \frac{u(x+h) - 2u(x) + u(x-h)}{h^2} - u^{(4)}(x)\frac{h^4}{12} + \cdots$$

Numerical scheme:

$$-\frac{u(x+h)-2u(x)+u(x-h)}{h^2}=f(x,u(x),u'(x))$$

(2nd order PDEs are very common!)

This leads to linear algebra

$$-u_{xx} = f \rightarrow \frac{2u(x) - u(x+h) - u(x-h)}{h^2} = f(x, u(x), u'(x))$$

Equally spaced points on [0,1]: $x_k = kh$ where h = 1/(n+1), then

$$-u_{k+1} + 2u_k - u_{k-1} = -1/h^2 f(x_k, u_k, u'_k)$$
 for $k = 1, ..., n$

Written as matrix equation:

$$\begin{pmatrix} 2 & -1 & & \\ -1 & 2 & -1 & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 + u_0 \\ f_2 \\ \vdots \end{pmatrix}$$

Matrix properties

- Very sparse, banded
- Symmetric (only because 2nd order problem)
- Sign pattern: positive diagonal, nonpositive off-diagonal (true for many second order methods)
- Positive definite (just like the continuous problem)
- Constant diagonals (from constant coefficients in the DE)

Sparse matrix in 2D case

Sparse matrices so far were tridiagonal: only in 1D case.

Two-dimensional: $-u_{xx} - u_{yy} = f$ on unit square $[0, 1]^2$

Difference equation:

$$4u(x,y) - u(x+h,y) - u(x-h,y) - u(x,y+h) - u(x,y-h) = h^2 f(x,y)$$

This is a graph!

The graph view of things

Poisson eq:

$$4u_k - u_{k-1} - u_{k+1} - u_{k-n} - u_{k+n} = f_k$$

Consider a graph where $\{u_k\}_k$ are the edges and (u_i, u_j) is an edge iff $a_{ij} \neq 0$.

This is the (adjacency) graph of a sparse matrix.

Sparse matrix from 2D equation

Matrix properties

- Very sparse, banded
- Symmetric (only because 2nd order problem)
- Sign pattern: positive diagonal, nonpositive off-diagonal (true for many second order methods)
- Positive definite (just like the continuous problem)
- Constant diagonals: only because of the constant coefficient differential equation

Realistic meshes

Sparse matrix storage

Matrix above has many zeros: n^2 elements but only O(n) nonzeros. Big waste of space to store this as square array.

Matrix is called 'sparse' if there are enough zeros to make specialized storage feasible.

Compressed Row Storage

$$A = \begin{pmatrix} 10 & 0 & 0 & 0 & -2 & 0 \\ 3 & 9 & 0 & 0 & 0 & 3 \\ 0 & 7 & 8 & 7 & 0 & 0 \\ 3 & 0 & 8 & 7 & 5 & 0 \\ 0 & 8 & 0 & 9 & 9 & 13 \\ 0 & 4 & 0 & 0 & 2 & -1 \end{pmatrix} . \tag{1}$$

Compressed Row Storage (CRS): store all nonzeros by row, their column indices, pointers to where the columns start (1-based indexing):

val	10	-2	3	9	3	7	8	7	3 ·	9	13	4	2	-1
col_ind	1	5	1	2	6	2	3	4	1 ·	5	6	2	5	6
	row_ptr		r	1	3	6	9	13	17	20				

Sparse matrix operations

Most common operation: matrix-vector product

```
for (row=0; row<nrows; row++) {
    s = 0;
    for (icol=ptr[row]; icol<ptr[row+1]; icol++) {
        int col = ind[icol];
        s += a[aptr] * x[col];
        aptr++;
    }
    y[row] = s;
}</pre>
```

Operations with changes to the nonzero structure are much harder! Indirect addressing of x gives low spatial and temporal locality.

Graph theory of sparse matrices

Graph theory of sparse elimination

Fill-in

Fill-in: index (i,j) where $a_{ij} = 0$ but $\ell_{ij} \neq 0$ or $u_{ij} \neq 0$.

Fill-in is a function of ordering

After factorization the matrix is dense.

Can this be permuted?

LU of a sparse matrix

$$\begin{pmatrix} 4 & -1 & 0 & \dots & & -1 \\ -1 & 4 & -1 & 0 & \dots & 0 & -1 \\ & \ddots & \ddots & \ddots & & \ddots & \ddots \\ & -\overline{1} & \overline{0} & \dots & & -\overline{1} & \overline{4} & -\overline{1} \\ 0 & -1 & 0 & \dots & & -1 & 4 & -1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 4 & -1 & 0 & \dots & & -1 \\ \hline & 4 - \overline{1}_{4} & -1 & 0 & \dots & -1/4 & -1 \\ & \ddots & \ddots & & & \ddots & \ddots \\ \hline & & -\overline{1/4} & \dots & & & 4 - \overline{1}_{4} & -\overline{1} \\ & & -1 & 0 & \dots & & -1 & 4 & -1 \end{pmatrix}$$

Remaining matrix has a dense leading block

Fill-in during LU

2D BVP: Ω is $n \times n$, gives matrix of size $N = n^2$, with bandwidth n.

Matrix storage O(N)

LU storage $O(N^{3/2})$

LU factorization work $O(N^2)$

Cute fact: storage can be computed linear in #nonzeros

