

Egotrip: who is Antti P Miettinen?

- Not a hockey player
- Energy Efficiency Engineer @ NVIDIA
 - One year with Tegra now
- Used to be a researcher at Nokia Research Center
 - About seven years of EPM research
- Newbie in hard core Linux work
 - But surrounded by great professionals

Why constraints?

- Peak current management
 - Regulators have limited current capacity
 - So does the battery
- Thermal management
 - Silicon temperature, characterization constraints
 - Battery temperature, device skin temperature
- Helping e.g. cpufreq and scheduler
 - Timely performance boost
 - Optimizing energy efficiency
- Platform quirks
 - Tegra 3 companion core impersonates CPU0

Tegra 3, overall

- 4+1 Cortex A9 CPUs
 - G cluster: 4 high performance CortexA9 cores
 - LP cluster: 1 low leakage Cortex A9 core
 - Only 1 cluster can be active at a time

HD VIDEO

DECODER

GPU, video, etc

Tegra 3, some details

- Two voltage rails: VDD_CPU, VDD_CORE
 - VDD_CPU: quad core CPU cluster
 - VDD_CORE: LP A9 and engines
 - Voltages are not independent
- Shared clock for G cluster CPUs
- LP A9 is CPU0
 - Must quiesce CPU1-3 for cluster migration
- CPU0 power gating is actually VDD_CPU rail gating
 - CPUidle characteristics are different

Constraining in current Tegra kernel

- PM QoS additions for
 - Limiting CPU frequency: both minimum and maximum
 - Number of CPUs online: both minimum and maximum
- Autohotplug/cpuquiet
 - Separate presentation
- Peak current management
 - Implemented in platform code
 - CPU frequency cap
 - Based on number of online cores and temperature
- Issues in current implementation
 - Per core CPU frequency?
 - PM QoS has no differentiation for requests

Requirements: user space interface

- Kernel tries it's best to manage the HW
 - But trading power vs performance is difficult
- Application/middleware often knows better
- Currently identified needs
 - Minimum CPU frequency for ensuring performance
 - Maximum CPU frequency for ensuring energy efficiency
 - Minimum number of online CPUs for performance
 - Maximum number of online CPUs for energy efficiency
- Under study
 - Blocks other than CPU
- Notification interface?

Requirements: in kernel constraints

- Thermal and peak currents
 - CPU frequency
 - Number of online CPUs
 - Possibly other blocks
 - Current capacity at different levels: regulator, battery
- Cluster switching requires CPU activity management
 - Only CPU0 can be active for migration to LP
- Limiting number of online cores: cpuquiet
 - Separating policy and mechanism
- Differentiation mechanism needed
 - User space minimum frequency may be just a wish
 - Peak current frequency cap is a hard limit

An idea once upon a time

From G. Bosch, P. Niska, *System-Level Power Management for Mobile Devices*, IEEE CIT 2007

PM constraints, general thoughts

- Scope of constraints framework?
 - Many things could be modeled as constraints
 - LP cluster has one core, fast cluster has 4
 - Voltage domains have dependencies
 - Clocks have dependencies
- Application interface is essential
 - Per CPU vs misc device minors?
- Differentiation is essential
 - Or separate request and enforcement layers
- Configurability is essential
 - Chip variants may want to impose different limits/policies
- The TLA? P2C? (Power/Perf Constraints)

Related issues

- Asymmetric CPU idle states
- Cluster awareness
 - E.g. perf tool
- Runtime PM: multiple states
 - Clock gating vs power gating
- CPU hotplug is slow
 - State between online and offline?
 - Or just make hotplug fast enough?
- CPU affinity vs hotplug
 - Virtual CPU IDs?
- Scheduler, timers, workqueues, cpufreq