

Sergey Antipov (Euclid Techlabs)

B. Lengeler, Refractive x-ray lenses: New developments, 2012

Ultimate Storage Ring

– ultra-high brightness

New generation of synchrotrons

• Round beam (source) – ideal for x-ray microscopy, tomography

• Higher degree of coherence

orders of magnitude in

focused flux

APS-U exceeds the capabilities

of today's storage rings by 2 to 3

brightness, coherent flux, nano-

8-U, APS-U

MAX IV, ESRF-U, SIRIUS, SPRING-

Thomas Roth, Rafael Celestre (ESRF)

Funded by DOE SBIR, PM E. Lessner

Compound Refractive Lens

APS Today APS Upgrade 200 -200 -200

Serebrennikov, D., Clementyev, E., E (keV) Semenov, A., & Snigirev, A. (2016). JCP, 23(6), 1315–1322.

- High heat load on the x-ray beamline
- of coherence

Standard lens: R=100-120um

[2] 501.488µm

Polishing bit

500 micron

Polished diamond

with beryllium scattering-wise

 $Q[\hat{A}^{-1}]$

"Analysis of hard x-ray focusing by 2D diamond CRL"

O. Chubar, et. al., SPIE conference proceedings 2020, https://doi.org/10.1117/12.2568980

(ongoing) - thermal

Octagonal coin – large

 Retrofitting / adding into existing Be lens holder

Ultra-small diamond stack

brazed into heatsink – 10mm

aperture, 1D lens

long CRL

residual, std=0.80232um

Equivalent to Be lens with R=50 and 2R₀=450

150

200

Metrology in-house

Scanning confocal laser microscopy

Side view: as ablated vs polished

Polishing process

-600 -400 -200 0 200 400 600 -600 -400 -200 0 200 400 600

elements Stringent requirements on preservation

Diamond Compound Refractive Lens?

- Low Z
- Single crystal
- · Best thermal conductivity
- Outstanding coefficient of linear thermal expansion
- Radiation hard
- Semiconductor

Diamond compared to Beryllium $-\delta_{\text{diamond}}/\delta_{\text{Be}}$ absorption $-\beta$ _diamond / β _Be —Absorption Ratio Diamond/Be same aperture (Deff_Be) refraction absorption per equivalent lens x-ray energy, keV

adjustment

Ablation of the line patter

Femtosecond laser microfabrication of diamond

Fs- laser: 515nm, 3W, 60kHz, 200fs Diamond lens ablation Ablation Scripting Profile decomposed in ablation symmetrization layers Complex geometry ablation Laser delay Edge effects effects motorization Focus

12 Diamond Lens Optical metrology 17 keV BM05 metrology ~95.35 um average 48.1 um average (96.2 um R (apex) Equivalent to Be lens with (on each side) per side) R=50 and 2R₀=450 350um usable 2R₀ (aperture) 410 um 19.7 um average ~300nm As-ablated roughness As-ablated figure error 1.09um average (for both 0.082um - standard 0.64um average (350um aperture) deviation ~20nm Polished roughness Polished figure error 0.91um average 1.19um average (2 sides) Full lens measurement Form-factor 2-sided lens <3um Alignment

Tested Diamond Lens Quick Stats

At-Wavelength Lens Metrology: X-ray speckle vectorial Tracking (XSVT)

Radiography and cross-correlation peak

(a) figure errors 2D distribution

Paraboloid fit vs aperture

(b) figure errors vs. aperture size

(c) R vs. aperture size

16 Profile decomposition

17

→ Be CRL

diamond CRL

Correctable profile

Rotationally-symmetric (spherical) aberrations can be corrected by a correction phase plate. In future it may be possible to correct other aberrations. At this point this is difficult given the stringent alignment requirements for non-spherical features.

