Clase 17: Resultados Potenciales

Haciendo Economía I Econ 2205

Ignacio Sarmiento-Barbieri

Universidad de los Andes

April 7, 2021

Anuncios

- ▶ Recordar entregar hoy por SICUA: Actividad 5: Narrativa Zoom
- ▶ Visita del Prof. Andrés Álvarez para charla de mediado de cursado
- Las referencias para estas clases van a ser:
 - 1 Causal Inference: The Mixtape de Cunningham (disponible online en su pagina web)
 - 2 Mostly Harmless Econometrics de Angrist y Pischke
- ► Esta disponible la Actividad 6: Resultados Potenciales

1/22

Sarmiento-Barbieri (Uniandes) Clase 17 April 7, 2021

Plan para hoy

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- ► Porqué?

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- ► Porqué?
 - 1 Variables Omitidas: tendencia, densidad poblacional, etc.

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- ► Porqué?
 - 1 Variables Omitidas: tendencia, densidad poblacional, etc.
 - 2 Comportamiento no aleatorio

- ► En datos observacionales, es casi seguro que las correlaciones no reflejan una relación causal.
- ► Porqué?
 - 1 Variables Omitidas: tendencia, densidad poblacional, etc.
 - 2 Comportamiento no aleatorio
 - Las variables fueron elegidas endógenamente por personas que estaban tomando decisiones que pensaban que eran las mejores.
 - Al maximizar sujeto a restricciones, eligieron ciertas cosas que crean una correlación falsa con otras cosas.
 - Esto se ve especialmente en el modelo de resultados potenciales (HOY)

April 7, 2021

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciale
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

Motivación

- ▶ Yule fue uno de los primeros en del análisis de regresión en las ciencias sociales.
- ▶ Se interesó por las causas de la pobreza en Inglaterra.
- Quería saber si la asistencia pública aumentaba el número de pobres (que es una cuestión causal)
- ▶ Para ello uso datos de los censos ingleses de 1871 y 1881
 - Los datos eran 32 uniones metropolitanas de Inglaterra (por ejemplo, Chelsea, Strand).
 - Las variables las expresó en tasas de crecimiento anual.

Motivación

► Corrió la siguiente regresión

$$\Delta Pobres = \alpha + \delta \Delta Ayuda + \beta_1 \Delta Prop 65 + \beta_2 \Delta Poblacion + u \tag{1}$$

	-	
Var Indep	Variable Dep. Δ Pobres (1) (2)	
Δ Ayuda	0.765 (0.189)	
Δ Prop 65	(0.20)	
Δ Poblacion		
Cons	31.089 (5.323)	

Motivación

► Corrió la siguiente regresión

$$\Delta Pobres = \alpha + \delta \Delta Ayuda + \beta_1 \Delta Prop 65 + \beta_2 \Delta Poblacion + u$$
 (2)

Var Indep	Variable Dep. Δ Pobres	
	(1)	(2)
Δ Ayuda	0.765	0.752
	(0.189)	(0.135)
Δ Prop 65		0.056
		(0.223)
Δ Poblacion		-0.311
		(0.067)
Cons	31.089	63.187
	(5.323)	(27.143)

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

Aleatorización física

- La noción aparece en los siglos XIX y XX, pero no fue hasta Fisher (1935) que cristalizó.
- El primer experimento aleatorio históricamente reconocido surge psicología Peirce y Iastrow (1885).
- La aleatorización física fue en gran parte el dominio de los experimentos agrícolas hasta mediados de la década de 1950, cuando comenzó a usarse en ensayos médicos.

Aleatorización física

- ► Entre los primeros experimentos importantes aleatorios en medicina se encuentran los ensayos de campo de la vacuna contra la polio de Salk:
 - ▶ Un experimento doble ciego, porque ni el paciente ni el administrador de la vacuna sabían si el tratamiento era un placebo o una vacuna.
 - ▶ El grupo de tratamiento (200.745 personas): 33 casos de poliomielitis.
 - ► El grupo de control (201.229 personas): 115 casos.
 - La probabilidad de ver una diferencia tan grande en las tasas de poliomielitis solo debido al azar es de aproximadamente uno en mil millones.
 - Se argumentó que la única explicación plausible era que la vacuna contra la poliomielitis reducía el riesgo de contraer poliomielitis.

Aleatorización física

- ▶ El uso de experimentos aleatorios ha aumentado exponencialmente en Economía.
- ▶ Múltiple premios Nobel se han dado a quienes los usan:
 - ▶ Vernon Smith por ser pionero de experimentos de laboratorio en 2002,
 - ► Abhijit Bannerjee, Esther Duflo, y Michael Kremer en 2019
- ► El diseño experimental se ha convertido en un sello distintivo en microeconomía aplicada, ciencias políticas, sociología, psicología y más.
- Pero,
 - ¿por qué se considera importante?
 - ▶ ¿Por qué la aleatorización es un elemento clave de este diseño para aislar los efectos causales?
- ▶ Para entender esto, necesitamos aprender más sobre la poderosa notación que desarrolló Splawa-Neyman (1923), llamada "resultados potenciales".

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

- ▶ Si bien la notación de resultados potenciales se remonta a Splawa-Neyman (1923), obtuvo un gran impulso en las ciencias sociales más amplias con Rubin (1974)
- ▶ Un efecto causal se define como una comparación entre dos estados del mundo.
- ► Ejemplos:
 - 1 Aspirina:
 - En el primer estado del mundo, un hombre toma aspirina para su dolor de cabeza y una hora más tarde informa de la gravedad de su dolor de cabeza.
 - En el segundo estado del mundo, ese mismo hombre no toma nada para su dolor de cabeza y una hora más tarde informa la severidad de su dolor de cabeza.
 - ¿Cuál fue el efecto causal de la aspirina? la diferencia en la gravedad de su dolor de cabeza entre dos estados del mundo
 - 2 El Jardín de Senderos que se Bifurcan (Borges)

- ► La notación de resultados potenciales expresa causalidad en términos de contrafácticos, y dado que los contrafácticos no existen, la confianza en los efectos causales debe ser hasta cierto punto cuidadosa.
- ▶ Notar que los resultados potenciales existen ex ante como un conjunto de posibilidades, pero una vez que se toma una decisión, todos los resultados menos uno desaparecen
- Para que esto sea concreto, vamos a introducir notación y conceptos más específicos.

- ▶ Unidad *i* (puede ser persona, escuela, etc.)
- ▶ Una variable binaria, 1 si *i* recibe tratamiento, 0 de lo contrario
- ► Cada unidad tiene 2 resultados potenciales
 - 1 Y_i^1 si recibe el tratamiento
 - Y_i^0 si no

- ▶ Los resultados observables o "reales", *Y*_i, son distintos de los resultados potenciales.
- La forma en que pasamos de los resultados potenciales a los resultados reales es un movimiento filosófico importante. El resultado observable de una unidad es una función de sus resultados potenciales:

$$Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0 (3)$$

- ▶ Donde $D_i = 1$ si la unidad recibió el tratamiento, 0 de lo contrario
- Notar que:
 - ► Cuando $D_i = 1$, entonces $Y_i = Y_i^1$

 Usando esta notación, podemos definir el efecto del tratamiento para cada unidad, como la diferencia entre los dos estados

$$\delta_i = Y_i^1 - Y_i^0 \tag{4}$$

- ▶ Problema!
 - No observamos los dos estados de la naturaleza
 - Este es el problema fundamental de la inferencia causal. Certeza sobre los efectos causales requiere si o si tener datos que van a estar siempre faltando

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

Efecto Promedio (ATE)

- De esta definición simple surgen 3 parámetros de interés
- ► Todos son medias poblacionales
- ► El primero es el efecto promedio del tratamiento (Average Treatment Effect)

$$ATE = E[\delta_i]$$

$$= E[Y_i^1 - Y_i^0]$$

$$= E[Y_i^1] - E[Y_i^0]$$
(5)

- ▶ Notar que requiere conocer los efectos potenciales para cada unidad *i*
- ▶ Pero como solo conocemos uno, no podemos calcularlo
- ► Pero se puede estimar

Efecto Promedio para los tratados (ATT)

- ► El segundo parámetro de interés es el efecto del tratamiento promedio para el grupo de tratamiento (Average Treatment Effect for the Treatment Group)
- ► Es simplemente el efecto de tratamiento promedio de la población para el grupo de unidades a las que se les había asignado el tratamiento
- ightharpoonup Si δ_i difiere en la población, el ATT probablemente será diferente del ATE.
- ► En los datos de observacionales que involucran a seres humanos, casi siempre será diferente del ATE, y eso se debe a que los individuos se seleccionan endógenamente en algún tratamiento en función de los beneficios que esperan de él.

Efecto Promedio para los tratados (ATT)

► Formalmente escribimos el ATT como:

$$ATT = E[\delta_i \mid D_i = 1]$$

$$= E[Y_i^1 - Y_i^0 \mid D_i = 1]$$

$$= E[Y_i^1 \mid D_i = 1] - E[Y_i^0 \mid D_i = 1]$$
(6)

▶ Al igual que el ATE, el ATT no es calculable, porque al igual que el ATE, también requiere dos observaciones por unidad de tratamiento i.

Sarmiento-Barbieri (Uniandes)

Efecto Promedio para el grupo de control (ATU)

- ▶ El último parámetro de interés se llama efecto de tratamiento promedio para el grupo de control o grupo no tratado (Average Treatment Effect for the Untreated Group).
- ► Es el efecto de tratamiento promedio para los no tratados.
- ➤ Y al igual que el ATT, el ATU es simplemente el efecto del tratamiento medio de la población para aquellas unidades que se clasificaron en el grupo de control.
- lacktriangle Dados los efectos heterogéneos del tratamiento, es probable que el $ATT \neq ATU$

Efecto Promedio para el grupo de control (ATU)

► La fórmula de la ATU es la siguiente:

$$ATU = E[\delta_i \mid D_i = 0]$$

$$= E[Y_i^1 - Y_i^0 \mid D_i = 0]$$

$$= E[Y_i^1 \mid D_i = 0] - E[Y_i^0 \mid D_i = 0]$$
(7)

- 1 Anuncios
- 2 Correlación no implica Causalidad Recap
- 3 Modelo de Resultados Potenciales
 - Motivación
 - Aleatorización física
 - Resultados potenciales
 - Tres Efectos de Interés
 - Diferencia simple en la descomposición de medias

Diferencia simple en la descomposición de medias

- Veamos un ejemplo de como funcionan estas cantidades
- Supongamos que hay diez pacientes i que tienen cáncer y dos procedimientos o tratamientos médicos.
 - ► Hay una intervención quirúrgica, $D_i = 1$, y
 - hay una intervención de quimioterapia, $D_i = 0$.
- Cada paciente tiene los siguientes dos resultados potenciales en los que un resultado potencial se define como la esperanza de vida posterior al tratamiento en años:
 - $\blacktriangleright\,$ un resultado potencial en un mundo en el que recibieron cirugía (Y_i^1) y
 - ightharpoonup un resultado potencial en el que, en cambio, recibieron quimioterapia (Y_i^0).

Diferencia simple en la descomposición de medias

Pacientes	Cirugía Y_i^1	Quimio Y_i^0	$\delta_i = Y_i^1 - Y_i^0$
1	7	1	6
2	5	6	-1
3	5	1	4
4	7	8	-1
5	4	2	2
6	10	1	9
7	1	10	-9
8	5	6	-1
9	3	7	-4
10	9	8	1

Próxima Pasos

- Próxima Clase:
 - ► Modelo de resultados potenciales, supuestos (Cont.)
 - Análisis de regresión para modelo de resultados potenciales (MHE)
- Semana que viene:
 - ► Modelo de resultados potenciales, ejemplo
 - Quiz sobre resultados potenciales
 - ► Trabajo en Actividad 6: Resultados Potenciales