Machine learning

Naïve Bayes – part 2

- * Smoothing
- * Continuous features

Exercise V

פיתוח: ד"ר יהונתן שלר משה פרידמן

מהתפלגות לפונקציית צפיפות

מושגים - תזכורת

משתנה מקרי: פונקציה המתאימה כל אירוע אפשרי במרחב הסתברות לערך מספרי. אצלינו – מאפיין. דוגמאות:

- 1 מ"מ בדיד: זריקת מטבע אקראית. נוצר מ"מ בדיד בינארי. התאמת צד מטבע לערך 0, וצדו השני לערך \diamond
 - שתנה מקרי. מ"מ רציף: גובהו של אדם שנבחר באקראי הוא גם כן משתנה מקרי.

מרחב המדגם Ω : קבוצת כל התוצאות האפשריות בניסוי. אצלינו – אוסף הערכים המאפיינים האפשריים. דוגמאות:

- $\{0,1\}$: זריקת מטבע אקראית. מרחב המדגם *
- טמפרטורה של מים. מרחב המדגם [0,100]

מאורצ / תצפית: תוצאה נצפת מסוימת בניסוי מסוים. אצלינו – ערך מאפיין של דוגמה ב-dataset. דוגמאות:

- * התוצאה 3 בזריקת קוביה
 - גובה 1.72 של סטודנט 🌣

מושגים

הסתברות מאורע: מידת הסבירות שמאורע מסוים יתרחש.

.1-10 שבין מספרי שבין לקבל ערך מספרי שבין ל-1.

פונקציית צפיפות הסתברות (של משתנה מקרי) [PDF]: פונקציה המתארת את צפיפות המשתנה בכל נקודה במרחב המדגם.

- 🔹 במ"מ בדיד הצפיפות בנקודה מסוימת היא בעצם ההסתברות של המאורע (פונקצית המסה). סך כל הערכים שבפונקציית הצפיפות 🔹
- שערך שייך PDF במ"מ רציף פונקציית הצפיפות לא שווה להסתברות של קיום אירוע. אפשר לראות את ה-PDF במ"מ רציף כסבירות היחסית שערך שייך להסתברות. ערכיו אי שליליים, אך לא מוגבלים ל-1 (כמו במ"מ בדיד).

פונקצית ההתפלגות המצטברת (של משתנה מקרי) [CDF]: פונקציה הקובעת את ההסתברות למאורעות X<=a, (לכל a ממשי).

נדרשת עבור מ"מ רציף 🎄

ההתפלגות (של משתנה מקרי): קובעת מהי פונקצית הצפיפות (ומהי ההסתברות של כל מאורע).

- של במשתנה מקרי בדיד בעל אוכלוסיה סופית (או במדגם-train-set) נחשב את ההסתברות (הצפיפות) בנקודה מסוימת כמספר המופעים של האירוע לחלק לסך כמות האירועים.
 - . במשתנה מקרי רציף, נמדדת בד"כ כפונקציה של הממוצע וסטיית התקן (דוגמאות בהמשך).

מושגים - תזכורת

התפלגות אחידה: התפלגות בה הצפיפות (סבירות) לכל מאורע היא זהה.

- \star התפלגות אחידה בדידה: ההסתברות שווה ל-1 חלקי מספר הערכים האפשריים במרחב המדגם. לדוגמה: הסתברות \star לקבלת הערך \star בקובייה הוגנת.
 - stהתפלגות אחידה רציפה. לדוגמה: נניח ש-מ"מ X מתפלג באופן אחיד בקטע [0,1]. אז פונקציית ההתפלגות המצטברת שלו:

$$F(x) = egin{cases} 0 & : \ x < 0 \ x & : \ 0 \leq x < 1 \ 1 & : \ x \geq 1. \end{cases}$$

התפלגות ברנולי: מ"מ בדיד בינארי, עם מרחב המדגם: $\{0,1\}$. 1 – מסמן הצלחה ו-0 מסמן כישלון. אם סיכוי ההצלחה הוא q, סיכוי הכישלון הוא q=1-p.

מושגים - תזכורת

תוחלת: מייצגת תוצאה "צפויה" (Expected) של ניסוי זהה החוזר על עצמו פעמים רבות.

$$3.5=$$
הוגנת של קובייה הוגנת $\mu=$ $E[X]=\sum_{x\in A}P(X=x)x$

:עבור משתנה מקרי רציף

* עבור משתנה מקרי בדיד:

$$\mu = \int x \, f(x) \, dx$$

$$\operatorname{Var}(X) = \mathbb{E}((X-\mu)^2) = \mathbb{E}(X^2) - \mu^2 = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

שונות: מדד לפיזור ערכים באוכלוסייה נתונה ביחס לתוחלת שלה.

$$ext{Var}(X) = rac{1}{N} \sum_{i=1}^{N} \left(x_i - \mu
ight)^2 = \left(rac{1}{N} \sum_{i=1}^{N} x_i^2
ight) - \mu^2$$

א מ"מ בדיד, אם האוכלוסייה בגודל N:

$${
m Var}(X) = \sigma^2 = \int (x-\mu)^2 \, f(x) \, dx \, = \int x^2 \, f(x) \, dx \, - \mu^2$$

סטיית תקן: שורש השונות.

:מ רציף

התפלגות נורמלית

או (Gaussian) או נקראת נורמלית: נקראת גם גאוסיאן עקומת פעמון.

🎄 פונקציית צפיפות סמטרית.

התפלגות בורמלית בו בתפלגות בו בורמלית בו בוחלת/הממוצע 0 וסטיית התקן 1.

z כל התפלגות נורמלית ניתן להפוך להתפלגות *

התפלגות במדגם

מדגם (sample): מדגם הוא קבוצת פרטים, המהווה מודל לאוכלוסייה, שאליה היא שייכת. אצלינו – ה-train-set.

$$\overline{oldsymbol{x}} = rac{1}{N} \sum_{i=1}^N x_i$$
ממוצע במדגם:

$$s = \sqrt{rac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$
 סטיית התקן במדגם:

התפלגות t מידע שנאסף במדגם. התפלגות המבוססת על מידע שנאסף במדגם.

אינסוף. שואף לאינסוף t התפלגות ב, כאשר גודל המדגם שואף לאינסוף.

חזרה להתפלגות נורמלית

התפלגות בו בו תת קבוצה של התפלגות נורמלית בו התוחלת/הממוצע=0 וסטיית התקן

z כל התפלגות נורמלית ניתן להפוך להתפלגות 🌣

פונקצית צפיפות:

סטיית תקן

t-val-הערה חשובה: אנחנו נחשב סטיית תקן במדגם ואת

- תזכורת - MAP = Maximum a posteriori (estimation)

השייך c_i אייך מבור כל סיווג $(x_1,x_2,x_3,\dots x_n)$, נעריך את ההסתברות עבור כל סיווג $(x_1,x_2,x_3,\dots x_n)$ השייך לקבוצה C ונבחר את הסיווג עם ההסתברות הגבוהה ביותר.

$$P(c_1 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_2 | x_1, x_2, x_3, ..., x_n) *$$

$$P(c_3 | x_1, x_2, x_3, ..., x_n) *$$

.. .

$$h_{MAP} = \arg\max_{c \in C} P(c \mid X)$$

כלומר, נבחר את הקטגוריה c, המקיימת

חוק בייס והנחת חוסר התלות - תזכורת

בגלל הנחת חוסר התלות בין המאפיינים:

$$P(x_1, x_2, x_D \mid c) = P(x_1 \mid c)P(x_2 \mid c)P(x_3 \mid c)...P(x_D \mid c) = \prod_{i=1}^{D} P(x_i \mid c)$$

תרגיל 8 - סימולציית סיווג – מ"מ רציף

מסווג Gaussian Naïve Bayes עבור מ"מ רציף - תזכורת

Train Naïve Bayes (examples)

for each value
$$y_k$$

estimate*
$$\pi_k \equiv P(Y = y_k)$$

for each attribute X_i estimate $P(X_i|Y=y_k)$

$$P(X_i|Y=y_k)$$

- class conditional mean μ_{ik} , standard deviation σ_{ik}
- Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$
$$Y^{new} \leftarrow \arg\max_{y_k} \ \pi_k \prod_i \mathcal{N}(X_i^{new}; \mu_{ik}, \sigma_{ik})$$

עבור Gaussian Naïve Bayes, נשתמש בפונקציית צפיפות:

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

^{*} probabilities must sum to 1, so need estimate only n-1 parameters...

תרגיל 8 - סימולציית סיווג – מ"מ רציף

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

- נתונות 14 דוגמאות של טניסאי שהיה צריך להחליט אם לשחק טניס ביום מסוים.
 - בנו מסווג שיחזה האםהאדם ישחק טניס ביוםעם התנאים הבאים:

outlook=overcast, temperature=60, humidity=62, windy=false.

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

שלב האימון:

א. חישוב הסתברויות priors של המחלקות:

$$p(yes) = 9 / (9+5) = 0.643$$

$$p(no) = 5 / 14 = 0.357$$

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes .
overcast	81	75	false	yes
rainy	71	91	true	no

תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

שלב האימון:

א. חישוב הסתברויות priors של המחלקות:

$$p(yes) = 0.643$$

$$p(no) = 0.357$$

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

P(outlook=overcast|yes)= P(windy=false|yes)= :הווקטור החדש outlook=overcast, temperature=60, humidity=62, windy=false. תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

שלב האימון (נחשב רק עבור הערכים שבווקטור החדש):

ב. חישוב ההסתברויות המותנות הבדידות:

P(outlook=overcast|no)= P(windy=false|no)=

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

P(outlook=overcast|yes)=4/9 ~ 0.44 P(windy=false|yes)=6/9 ~ 0.66 :הווקטור החדש outlook=overcast, temperature=60, humidity=62, windy=false. תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

שלב האימון (נחשב רק עבור הערכים שבווקטור החדש):

ב. חישוב ההסתברויות המותנות הבדידות:

P(outlook=overcast|yes)=4/9 ~ 0.44 P(windy=false|yes)=6/9 ~ 0.66

$$P(X = x | Y = y) = \frac{n_c + mp}{n + m}$$

$$P(outlook = overcast | yes) =$$

$$P(outlook = overcast \mid no) =$$

:הווקטור החדש outlook=overcast, temperature=60, humidity=62, windy=false. תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

שלב האימון:

ב. חישוב ההסתברויות המותנות הבדידות:

שימו לב, שיש לנו כאן הסתברות 0

p= 1/3, m=3 :בשתמש בהחלקה עם הפרמטרים -

- Smoothing solution

- Probability estimates are adjusted or smoothed.
- * Assumes that each feature is given a prior probability, *p*, that is assumed to have been previously observed in a "virtual" sample of size *m*.
- \diamond Usually, in the binary case *p* is simply assumed to be 0.5

$$P(X = x | Y = y) = \frac{n_c + mp}{n + m}$$

- * n = number of training examples for which Y = y
- * n_c =number of examples where X=x and Y=y
- * p = a prior estimation for P(X=x|Y=y)
- * m = the equivalent sample size

P(outlook=overcast|yes)=4/9 ~ 0.44 P(windy=false|yes)=6/9 ~ 0.66

$$P(X = x \mid Y = y) = \frac{n_c + mp}{n + m}$$

$$P(outlook = overcast \mid yes) = \frac{4+1}{9+3} = \frac{5}{12} = 0.4167$$

$$P(outlook = overcast \mid no) = \frac{0+1}{5+3} = \frac{1}{8} = 0.125$$

:הווקטור החדש outlook=overcast, temperature=60, humidity=62, windy=false. תרגיל 8 -סימולציית סיווג – מ"מ רציף - פתרון

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

שלב האימון:

ב. חישוב ההסתברויות המותנות הבדידות:

שימו לב, שיש לנו כאן הסתברות 0

p= 1/3, m=3 :בשתמש בהחלקה עם הפרמטרים

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes .
overcast	81	75	false	yes
rainy	71	91	true	no

Temperature:

Humidity:

תרגיל 8 - סימולציית סיווג – מ"מ רציף - פתרון

שלב האימון:

ג. חישוב ההסתברויות המותנות הרציפות:

(יש לחשב בנפרד עבור המחלקות השונות)

$$|\overline{\pmb{x}}| = rac{1}{N} \sum_{i=1}^N x_i$$

$$s = \sqrt{rac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$

outlook	temperature	humidity	windy	play
sunny	85	. 85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes .
overcast	81	75	false	yes
rainy	71	91	true	no

Temperature:

Humidity:

$$\mu_{emp_yes=73}$$
, $\sigma_{emp_yes=6.2}$

$$\mu$$
_temp_no=74.6, σ _temp_no=8.0

$$\mu_{\text{hum_yes}=79.1}$$
, $\sigma_{\text{temp_yes}=10.2}$

$$\mu$$
 hum no=86.2, σ temp no=9.7

תרגיל 8 - סימולציית סיווג – מ"מ רציף - פתרון

שלב האימון:

ג. חישוב ההסתברויות המותנות הרציפות:

(יש לחשב בנפרד עבור המחלקות השונות)

$$\overline{oldsymbol{x}} = rac{1}{N} \sum_{i=1}^N x_i$$

$$s = \sqrt{rac{1}{n-1}\sum_{i=1}^n (x_i - \overline{x})^2}$$

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

תרגיל 8 - סימולציית סיווג – מ"מ רציף - פתרון

$$f(temperature = 60 \mid yes) =$$

$$f(temperature = 60 \mid no) =$$

$$f(humidity = 62 \mid yes) =$$

$$f(humidity = 62 \mid no) =$$

שלב הסיווג – חישוב פונקצית בפיפות עבור המ"מ הרציפים: temperature=60 humidity=62

<u>חישבנו:</u>

 $\mu_{emp_yes=73}$, $\sigma_{emp_yes=6.2}$

 μ _temp_no=74.6, σ _temp_no=8.0

 $\mu_{\text{hum_yes}=79.1}$, $\sigma_{\text{temp_yes}=10.2}$

 μ _hum_no=86.2, σ _temp_no=9.7

$$P(X_i = x \mid Y = y_k) = \frac{1}{\sigma_{ik}\sqrt{2\pi}} e^{\frac{-(x-\mu_{ik})^2}{2\sigma_{ik}^2}}$$

תרגיל 8 - סימולציית סיווג – מ"מ רציף - פתרון

$$f(temperature = 60 \mid yes) = \frac{1}{6.2\sqrt{2\pi}} e^{-\frac{(60-73)^2}{2(6.2)^2}} = 0.071$$

$$f(temperature = 60 \mid no) = \frac{1}{8\sqrt{2\pi}} e^{-\frac{(60-74.6)^2}{28^2}} = 0.0094$$

$$f(humidity = 62 \mid yes) = \frac{1}{10.2\sqrt{2\pi}} e^{-\frac{(62-79.1)^2}{2(10.2)^2}} = 0.0096$$

$$f(humidity = 62 \mid no) = \frac{1}{9.7\sqrt{2\pi}} e^{-\frac{(62-86.2)^2}{2(9.7)^2}} = 0.0018$$

שלב הסיווג – חישוב פונקצית הצפיפות עבור המ"מ הרציפים: temperature=60 humidity=62

חישבנו:

μ_temp_yes=73, σ_temp_yes=6.2
 μ_temp_no=74.6, σ_temp_no=8.0
 μ_hum_yes=79.1, σ_temp_yes=10.2
 μ_hum_no=86.2, σ_temp_no=9.7

Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

 $f(temperature = 60 \mid yes) = 0.071$

 $f(temperature = 60 \mid no) = 0.0094$

f(humidity = 62 | yes) = 0.0096

 $f(humidity = 62 \mid no) = 0.0018$

הווקטור החדש:

outlook=overcast, temperature=60, humidity=62, windy=false.

תרגיל 8 - סימולציית סיווג – פתרון

שלב הסיווג (המשך):

:priors-חישבנו ושלפנו את ההסתברויות המותנות ואת ה-

$$p(yes) = 0.643$$

$$p(no) = 0.357$$

P(outlook=overcast|no)=0.125 P(windy=false|no)=0.4

P(outlook=overcast|yes) ~ 0.4167 P(windy=false|yes) ~ 0.66

P(yes|outlook=overcast..) =

כעת נחשב את ההסתברויות:

P(no|outlook=overcast..) =

Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

$$f(temperature = 60 \mid yes) = 0.071$$

$$f(temperature = 60 \mid no) = 0.0094$$

$$f(humidity = 62 | yes) = 0.0096$$

$$f(humidity = 62 \mid no) = 0.0018$$

:הווקטור החדש

outlook=overcast, temperature=60, humidity=62, windy=false.

תרגיל 8 - סימולציית סיווג – פתרון

שלב הסיווג (המשך):

:priors-חישבנו ושלפנו את ההסתברויות המותנות ואת ה-

$$p(yes) = 0.643$$

$$p(no) = 0.357$$

P(outlook=overcast|no)=0.125 P(windy=false|no)=0.4

P(outlook=overcast|yes) ~ 0.4167 P(windy=false|yes) ~ 0.66

P(yes | outlook=overcast..) = p(yes) * p(outlook=overcast | yes)*.. = 0.643*0.4167*0.667*0.071*0.0096= **0.00012**

P(yes) is more probable..

כעת נחשב את ההסתברויות:

P(no|outlook=overcast..) = p(no) * p(outlook=overcast|no)*.. = 0.357*0.125*0.4*0.0094*0.0018= 0.000000302

פונקצית לוג

תכונות:

- פונקציית לוג של שברים תהיה שלילית, אך היא שומרת על הסדר, והיא גם מונוטונית עולה.
 - $\log(x^*y) = \log(x) + \log(y)$ •

לכן, נרצה לעבוד עם חיבור לוגים, במקום מכפלת שברים (של הסתברויות).

מדוע?

Classify (X^{new})

$$Y^{new} \leftarrow \arg\max_{y_k} \ P(Y = y_k) \prod_i P(X_i^{new} | Y = y_k)$$

$$f(temperature = 60 \mid yes) = 0.071$$

$$f(temperature = 60 \mid no) = 0.0094$$

$$f(humidity = 62 | yes) = 0.0096$$

$$f(humidity = 62 \mid no) = 0.0018$$

:הווקטור החדש

outlook=overcast, temperature=60, humidity=62, windy=false.

תרגיל 8 - סימולציית סיווג – פתרון

שלב הסיווג (המשך):

:priors-חישבנו ושלפנו את ההסתברויות המותנות ואת ה-

$$p(yes) = 0.643$$

$$p(no) = 0.357$$

P(outlook=overcast|no)=0.125 P(windy=false|no)=0.4

P(outlook=overcast|yes) ~ 0.4167 P(windy=false|yes) ~ 0.66

P(yes | outlook=overcast..) = p(yes) * p(outlook=overcast | yes)*..=log(0.643)+ log(0.4167)+log(0.667)+log(0.071)+log(0.0096) = -13.003

P(yes) is more probable..

כעת נחשב את ההסתברויות:

P(no|outlook=overcast..) = p(no) * p(outlook=overcast|no)*.. =log(0.357)+ log(0.125)+log(0.4)+log(0.0094)+log(0.0018) = -21.66