Student Information

Full Name : Ayşegül Erdem

ID: 2633196

Answer 1

a)

It is not a tautology, and not a contradiction

р	q	¬р	¬ q	p∨ q	$p \wedge (p \vee q)$	$p \land (p \lor q) \land \neg q$	$\neg p \wedge q$	$(\neg p \land q) \lor (p \land (p \lor q) \land \neg q)$
Т	Т	F	F	Т	Τ	F	F	F
Т	F	F	Т	Т	Τ	Τ	F	Т
F	Т	Τ	F	Т	F	F	Т	Т
F	F	Т	Т	F	F	F	F	F

b)

1. $p \lor (\neg (\neg q) \lor (p \land r))$

2. $p \lor (q \lor (p \land r))$

3. $(p \lor q) \lor (p \land r)$

4. $(q \lor p) \lor (p \land r)$

5. $q \lor (p \lor (p \land r))$

6. q V p

7. $p \lor q$

Table 7 1st Law

Table 6 Double Negation Law

Table 6 Associative Laws 1st

Table 6 Commutative Laws 1st

Table 6 Associative Laws 1st

Table 6 Absorption Laws 1st

Table 6 Commutative Laws 1st

Answer 2

a)
$$\forall x \forall y \forall z ((S(x) \land C(y) \land E(x,y)) \rightarrow (C(z) \land R(z,y) \rightarrow P(x,z)))$$

b)
$$\exists x \exists y \forall z ((S(x) \land C(y) \land E(x,y)) \land (C(z) \land E(x,z) \rightarrow y=z))$$

c)
$$\forall x \forall y \forall z (C(y) \land S(x) \land P(x,y) \rightarrow (C(z) \land R(z,y) \rightarrow P(x,z)))$$

d)
$$\exists x \exists y (S(x) \land C(y) \land E(x,y) \land \neg P(x,y))$$

$$e)\exists y \forall x (\ C(y) \land \ (S(x) \to \neg \ P(x,y)))$$

$$f) \forall y \exists x (S(x) \land C(y) \rightarrow (E(x,y) \lor P(x,y)))$$

Answer 3

1	$p \to (q \lor r)$	premise
2	$\neg r \land \neg s$	premise
3	$q \rightarrow s$	premise
4	$\neg r$	$\wedge e, 2$
5	\neg_{S}	$\wedge e, 2$
6	q	assumed
7	s	$\rightarrow e, 3,6$
8		$\neg e, 5, 7$
9	¬ q	¬i, 6-8
10	p	assumed
11	q∨r	$\rightarrow e, 1,10$
12	q	assumed
13		$\neg e, 9,12$
		,
14	r	assumed
15		$\neg e, 4,14$
16		Ve,11,12-13,14-15
17	¬ p	¬ i, 10-16

Answer 4

a)

 $\begin{array}{l} \mathit{Premises} : \exists x (P(x) \land S(x)) \ , \, \forall x (P(x) {\rightarrow} \ K(x)) \\ \mathit{Claim} : \exists x (S(x) {\wedge} K(x)) \end{array}$

b)

1	$\exists x (P(x) \land S(x))$	$\underset{\cdot}{premise}$
2 3	$\forall x (P(x) \to K(x))$	premise
3 4	$P(c) \wedge S(c)$ P(c)	$assumed$ $\land e, 3$
5	S(c)	$\wedge e, \beta$
6	$P(c) \rightarrow K(c)$	$\forall e, 2$
7	K(c)	$\rightarrow e, 4,6$
8	$S(c) \wedge K(c)$	$\wedge i, 5, 7$
9	$\exists x (S(x) \land K(x))$	∃ <i>i</i> , 8
10	$\exists x (S(x) \land K(x))$	$\exists e, 1,3-9$