

彭·核代

线性代数期中试题集 (2020版)

彭康书院课外学业辅导学友互助团

目录

2019	年线代期中试题				. 1
2018	年线代期中试题				4
2017	年线代期中试题				. 7
2016	年线代期中试题				. 9
2015	年线代期中试题				. 12
2014	年线代期中试题		N /		. 16
2013	年线代期中试题				. 18
参考	答案	72		•••••	20
*	*/-\/				

一、选择题

1. 设
$$x, y, z$$
 为两两互不相同的数,则行列式 $\begin{vmatrix} x+y & z & z^2 \\ y+z & x & x^2 \\ z+x & y & y^2 \end{vmatrix} = 0$ 的充要条件是 ()

A.
$$xyz = 0$$
 B. $x + y + z = 0$ C. $x = -y, z = 0$ D. $y = -z, x = 0$

- 2. 设A为n阶方阵($n \ge 3$),若 $A^3 = 0$,则下式中未必成立的是(A. A = O B. $(A^T)^3 = O$ C. $A^4 = O$
- 3. 设A为n阶可逆矩阵($n \ge 2$),I为n阶单位矩阵,则 $\left(\left(A^*\right)^*\right)^{-1}$ =

A.
$$|A|^{n-1}I$$
 B. $|A|^{1-n}I$

B.
$$\left|A\right|^{1-n}I$$

C.
$$|A|^{n-1} A^*$$

$$D|A|^{1-n}A^*$$

A.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

B.
$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 8 & 9 \end{bmatrix}$$

A.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 B. $\begin{bmatrix} 1 & 3 & 2 \\ 4 & 6 & 5 \\ 7 & 8 & 9 \end{bmatrix}$ C. $\begin{bmatrix} 3 & 2 & 1 \\ 6 & 5 & 4 \\ 9 & 8 & 7 \end{bmatrix}$ D. $\begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$

D.
$$\begin{bmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{bmatrix}$$

5. 设 \vec{a} , \vec{b} , \vec{c} 均为非零向量且 \vec{a} = \vec{b} × \vec{c} , \vec{b} = \vec{c} × \vec{a} , \vec{c} = \vec{a} × \vec{b} ,则 $\|\vec{a}\|$ + $\|\vec{b}\|$ + $\|\vec{c}\|$ =(

- B. 1
- D. 3

二、填空题

1. 已知
$$x_1, x_2, x_3$$
 为方程 $x^3 + px + q = 0$ 的三个根 $\begin{vmatrix} x_1 & x_2 & x_3 \\ x_2 & x_3 & x_1 \\ x_3 & x_1 & x_2 \end{vmatrix} = \underline{\qquad}$

3. 设
$$A$$
 为 3 阶方阵,且 $|A| = 2$,则 $\left| \left(\frac{1}{2} A^* \right)^{-1} - 3A \right| =$ _______.

4. 设有直线
$$L_1: \frac{x-1}{9} = \frac{y-2}{8} = \frac{z-3}{5}, L_2: \frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$$
 则过直线 L_1 且与 L_2 平行的平面方程为

- \overline{S} . 以 A(1,1,1) , B(2,0,1) , C(0,0,1) , D(1,3,2) 为顶点的四面体的体积为 三、解答题
- 1. 设有n元线性方程组Ax = b, 其中A为三对角矩阵,且

$$A = \begin{bmatrix} 2a & 1 & 0 & \cdots & 0 & 0 & 0 \\ a^2 & 2a & 1 & \cdots & 0 & 0 & 0 \\ 0 & a^2 & 2a & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2a & 1 & 0 \\ 0 & 0 & 0 & \cdots & a^2 & 2a & 1 \\ 0 & 0 & 0 & \cdots & 0 & a^2 & 2a \end{bmatrix}, x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

(1) 证明 $|A| = (n+1)a^n$; (2) a 为何值时,该方程组有唯一解,并在此时求 x_1 和 x_n .

2. 设 A 为 n 阶 实矩阵, I 为单位阵,满足 $AA^T=I$,此时称 A 为正交矩阵,若已知 |A|<0,求 |A| 及 |A+I|.

- 3. 设有两条直线 L_1 : $\begin{cases} x-y=3\\ 3x-y+z=1 \end{cases}$ 和 L_2 : $x+1=\frac{y-1}{-2}=\frac{z}{2}$, 点 M(1,0,-1).
- (1)求 L_1 的对称式方程; (2)求点M到 L_1 的距离; (3)研究 L_1 与 L_2 的位置关系.

4. 设矩阵
$$B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, $C = \begin{bmatrix} 2 & 1 & 3 & 4 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}$, I 为单位阵.矩阵 A 满足 $A(I-C^{-1}B)^TC^T = I$,求 A 。

5. 设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -2 & -1 & -2 \\ 4 & 1 & 2 & 1 \\ 2 & 5 & \mu & \lambda \end{bmatrix}$$
, 讨论矩阵 A 的秩.

6. 设 $A = (a_{ij})_{3\times 3}$ 为非零实矩阵, A_{ij} 为 a_{ij} 的代数余子式,且 $a_{ij} + A_{ij} = 0$, (i, j = 1, 2, 3) (1)求 |A|; (2)证明 A 为正交矩阵(正交矩阵的定义参看第 2 题)

一、选择题

- 1. 若 n 阶行列式 D=0,则()
 - A. D中必有一行(列)元素全为零
 - B. D中必有两行(列)的元素对应成比例
 - C. 以 D 为系数行列式的非齐次线性方程组必有唯一解
 - D. 以 D 为系数行列式的齐次线性方程组必有非零解
- 2. 设A,B都是n阶方阵且等价,则必有()
 - A. $\stackrel{\mathcal{L}}{=} |A| = a(a \neq 0)$ |b|, |B| = a
 - B. $\stackrel{\mathcal{L}}{=} |A| = a(a \neq 0)$ |B| = -a
 - C. $||A| \neq 0$ 时, ||B|| = 0
 - D. |A| = 0时,|B| = 0
- 3. 设A为3阶方阵,将A的第二行加到第一行得B,再将B的第一列的-1倍加到第二列得C,

记
$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, 则 $C = \begin{pmatrix} 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ B. $C = PAP^{-1}$

- C. $C = P^T A P$
- D. $C = PAP^T$
- 4. 设四阶矩阵 $A = (\alpha, \gamma_2, \gamma_3, \gamma_4)$, $B = (\beta, \gamma_2, \gamma_3, \gamma_4)$, 其中 $\alpha, \beta, \gamma_2, \gamma_3, \gamma_4$ 均为四维列向量,且已知 |A| = 4, |B| = 1, |A| = 4

- D. 20
- 5. 设单位向量 \vec{a} , \vec{b} , \vec{c} 满足 \vec{a} + \vec{b} + \vec{c} =0,则 \vec{a} · \vec{b} + \vec{b} · \vec{c} + \vec{c} · \vec{a} =(
 - A. $-\frac{3}{2}$

D. 3

二、填空题

- 1. 已知n 阶行列式D的值为 $a \neq 0$,且D的每行元素之和都等于常数b,则D的 j 列 $(1 \leq j \leq n)$ 元素的代数余子式之和 $A_{lj}+A_{2j}+\cdots+A_{nj}=$ _____.

- 4. 过点 $P_1(1,-2,4)$, $P_2(3,5,7)$ 的对称式直线方程为_____
- 5. 以 A(5,1,-1) , B(0,-4,3) , C(1,-3,7) 为顶点的三角形的面积为 .

三、解答题

1. 计算行列式
$$D = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 2 & 3 \\ 2 & 1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 0 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$
.

2. 设 $\alpha_1,\alpha_2,\alpha_3$ 均为 3 维列向量,方阵 $A=(\alpha_1,\alpha_2,\alpha_3)$, $B=(\alpha_1+2\alpha_2,2\alpha_2+3\alpha_3,3\alpha_3+\alpha_1)$,已知 $\det(A)=a$,求 $\det(B)$.

3. 设 4 阶矩阵
$$B$$
 满足 $\left[\left(\frac{1}{2}A\right)^*\right]^{-1}BA^{-1}=2AB+12I$,其中 $A=\begin{bmatrix}1&2&0&0\\1&3&0&0\\0&0&0&2\\0&0&-1&0\end{bmatrix}$,求矩阵 B .

4. 设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{bmatrix}$$
, 试讨论矩阵 A 的秩.

5. 证明直线 $L_1: \frac{x+1}{3} = \frac{y+1}{2} = \frac{z+1}{1}$ 与 $L_2: x-4 = \frac{y+5}{-3} = \frac{z-4}{2}$ 位于同一平面,并求这两条直线的 交点坐标及所在平面的方程.

6. 已知
$$n$$
阶矩阵 $A = \begin{bmatrix} 2 & 2 & 2 & \cdots & 2 & 2 \\ 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$
(1) 求 A^{-1} .

(2) 求 A 中所有元素代数余子式的和 $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$.

一、选择题

B. -4

D. -16

2. 设A, B都是n阶方阵, 如果A和B的秩分别为r和n, 则r(AB)-r(A)=

A. 0

B. *r*

3. 设A,B均为2阶方阵, A^* , B^* 分别是A,B的伴随矩阵,若|A|=1,|B|=2,则分块矩阵

 $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}$ 的伴随矩阵为(

A. $\begin{bmatrix} 0 & A^* \\ 2B^* & 0 \end{bmatrix}$ B. $\begin{bmatrix} 0 & 2A^* \\ B^* & 0 \end{bmatrix}$ C. $\begin{bmatrix} 0 & 2B^* \\ A^* & 0 \end{bmatrix}$

4. 已知 $P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$, 若 $P^m A P^n = A$, 则以下选项中正确的是(

A. m = 5, n = 4 B. m = 5, n = 5 C. m = 4, n = 5

D. m = 4, n = 4

5. 设有直线 $l: \begin{cases} x+3y+2z+1=0 \\ 2x-y-10z+3=0 \end{cases}$ 及平面 $\pi: 4x-2y+z-2=0$,则直线 l ()

A. 平行于 π

B. 垂直于π

C. 在π上

D. 与π斜交

二、填空题

 $|1 \ 0 \ 2|$ 1. 若|x| 3 1| 中(1,2)元的代数余子式 $A_{12} = -1$,则 $A_{21} =$ _____.

2. 设矩阵 A 满足 $A^2 + A = 4I$, 其中 I 为单位矩阵,则 $(A - I)^{-1} =$

3. 设 $\alpha = (1,0,-1)^T$,矩阵 $A = \alpha \alpha^T$, n为正整数,则 $A^n =$

4. 己知 ||a|| = 1, ||b|| = 2, $(a,b) = \frac{\pi}{3}$, 则 $||2a - b|| = _______$.

5. 若 4 点 A(1,0,-2) , B(7,x,0) , C(-8,6,1) , D(-2,6,1) 共面,则 x =

三、解答题

1. 计算行列式 $D = \begin{bmatrix} 0 & 2 & 3 & 4 & 5 \\ 1 & 0 & 3 & 4 & 5 \\ 1 & 2 & 0 & 4 & 5 \\ 1 & 2 & 3 & 0 & 5 \\ 1 & 2 & 3 & 4 & 0 \end{bmatrix}$.

2. 已知矩阵
$$A$$
 的伴随矩阵 $A^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & -3 & 0 & 8 \end{bmatrix}$,矩阵 B 满足方程 $ABA^{-1} = BA^{-1} + 3I$,求 B .

3. 设矩阵
$$A = \begin{bmatrix} a & -1 & -1 \\ -1 & a & -1 \\ -1 & -1 & a \end{bmatrix}$$
与矩阵 $B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ 等价,求常数 a .

4. 讨论
$$n$$
阶方阵 $A = \begin{bmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & & \vdots \\ b & b & \cdots & a \end{bmatrix} (n \ge 2)$ 的秩.

5. 直线
$$L$$
 过点 $P_0(1,0,-2)$,与平面 $\pi:3x-y+2z+1=0$ 平行,与直线 $L_1:\frac{x-1}{4}=\frac{y-3}{-2}=z$ 相交,求 L 的对称式方程.

6. 设平面 π 与 π_1 :x-2y+z-1=0垂直,且与 π_1 的交线落在yoz平面上,求 π 的方程.

一、填空题

- 1. 关于x的代数方程 $\begin{vmatrix} x+1 & -4 & 2 \\ 3 & x-4 & 0 \\ 3 & -1 & x-3 \end{vmatrix} = 0$ 的全部根为_
- 2. 设A的伴随矩阵 $A^* = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, 则 $A^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- 3. 设向量 $\vec{a} = (1,1,1), \vec{b} = (1,2,-3), \vec{c} = (0,-2,\lambda)$ 共面,则 $\lambda = \sqrt{1}$
- 4. 设有向量 $\bar{a}=(1,1,1),\bar{b}=(1,3,-3)$,则向量 \bar{b} 在向量 \bar{a} 上的正交射影向量 $\Pr{oj_{\bar{a}}\bar{b}}=0$
- 5. 点 P(1,0,-1) 到直线 $L: \frac{x-1}{2} = \frac{y+2}{0} = \frac{z-4}{1}$ 的距离 d=

二、选择题

- 已知四阶行列式 D, 其第 3 列元素分别为 1, 3, -2, 2, 它们对应的余子式分别为 3, -2, 1,1,则行列式D=()
 - A. -5
- B. 5
- D. 3
- 2. 设 $A \neq m \times n$ 的矩阵, r(A) = r, 则A中(
 - A. 必有不等于 0 的 r 阶子式,所有 r+1 阶子式均为 0
 - B. 必有等于0的r阶子式,没有不等于0的r+1阶子式
 - C. 没有等于 0 的 r 阶子式,任何 r+1 阶子式均为 0
 - D. 至少有一个r阶子式不为0,没有等于0的r-1阶子式
- 3. 设A,B为同阶可逆方阵,则下列结论正确的是(
 - A. |A + B| = |A| + |B|
- B. $(AB)^T = A^T B^T$
- C. $(AB)^{-1} = A^{-1}B^{-1}$
- D. $|AB| = |A| \cdot |B|$
- 4. 设三阶方阵 A 的行列式 |A| = 2,则 $\left| \frac{1}{4} (2A)^* \right| = ()(A^* \in A)$ 的伴随矩阵)

- B. 4 C. 16 D. 32

5. 设
$$(\vec{a} \times \vec{b}) \cdot \vec{c} = 2$$
, 则 $[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})] \cdot \vec{c} = ($

- A. 1 B. 2 C. 4 D. 8

三、计算与证明题

1. 计算
$$n$$
阶行列式 $D_n = \begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & & \vdots \\ a & a & a & \cdots & x \end{vmatrix}$.

2. 求矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & -1 & b \\ 2 & 3 & a & 4 \\ 3 & 5 & 1 & 7 \end{bmatrix}$$
的秩,其中 a,b 为参数.

- (1) 试求 A^2 及 A^{-1} .
- (2) 若方阵B满足 $A^2 + AB A^{-1} = I$ (其中I为 4 阶单位阵), 求矩阵B.

4. 求过原点且与直线
$$L_1$$
: $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$ 及直线 L_2 : $\begin{cases} x=1 \\ y=-1+t$ 都平行的平面方程. $z=1+t$

5. 求过点(1,1,1)且与两直线
$$L_1: \frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
, $L_2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{4}$ 都相交的直线方程.

6. 设A为n阶非零实方阵,且 $A^* = A^T$ (A^* 是A的伴随矩阵),证明A可逆.

7. 设矩阵
$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{bmatrix}$$
, 且 $A^3 = O$.

- (1) 求 a 的值.
- (2) 若矩阵 X 满足 $X XA^2 AX + AXA^2 = I$, 其中 I 为 3 阶单位阵,求 X.

一、填空题

1.
$$\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix} = \underline{\hspace{1cm}}.$$

- 2. 设 M_{ij} 为行列式 $\begin{vmatrix} 5 & 8 & 2 & 9 \\ 3 & 6 & 4 & 7 \\ 0 & 3 & 0 & 1 \\ 0 & 2 & 0 & 4 \end{vmatrix}$ 的(i,j)元素的余子式,则 $2M_{42} + 4M_{44} =$ ______.
- 3. 三个向量 \vec{a} , \vec{b} , \vec{c} 共面的充要条件为_____
- 4. 设向量 \vec{a} = (3,2,1), \vec{b} = (7,5,0),则 \vec{b} 在 \vec{a} 上的射影(\vec{b}) $_{\vec{a}}$ = _____.
- 5. 过点(2,-1,3)且与直线 $\frac{x+3}{7} = \frac{y}{0} = \frac{z+6}{2}$ 平行的直线方程为_____.
- 6. 设A为 $m \times n$ 矩阵,P为m阶可逆矩阵,且 $PA = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix}$,则r(A) =______.
- 7. 设A,B分别为m阶、n阶可逆方阵,则 $\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}^{-1} = \underline{\qquad}$
- 8. 设 A 为 3 阶矩阵,|A|=2,则 $|-3A^*|=$ _____.
- 9. $\begin{bmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 6 \\ -1 & 1 & 0 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \underline{\qquad}.$
- 10. 设 3 个向量 \vec{a} , \vec{b} , \vec{c} 满足 $(\vec{a} \times \vec{b})$. $\vec{c} = 2$,则 $[(\vec{a} + \vec{b}) \times (\vec{b} + \vec{c})]$. $(\vec{c} + \vec{a}) =$ ______.
- 11. 已知矩阵 $A=(a_{ij})_{3\times 3}$ 的第一行元素为 $a_{11}=1, a_{12}=2, a_{13}=-1$, A的伴随矩阵为

$$A^* = \begin{bmatrix} -7 & -4 & 9 \\ 5 & 3 & -7 \\ 4 & 2 & -5 \end{bmatrix}, \quad \text{MI } A = \underline{\qquad}.$$

12. 设 α_j (j=1,2,3)均为3维列向量,方阵A=[α_1 α_2 α_3],B=[α_1 +2 α_2 2 α_2 +3 α_3 - α_3],已知|A|=a,则|B|=_____.

12

二、选择题

1. 如果齐次线性方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \ 有非零解,则 <math>\lambda$ 的值为 (

- A. $\lambda \neq 1$
- B. $\lambda=1$
- C. $\lambda \neq 3$
- D. $\lambda=3$

2. 设 A, B 为同阶方阵,下列等式正确的是()

A. $(AB)^T = A^T B^T$

- B. $(AB)^* = A^*B^*$
- C. $A^2 B^2 = (A + B)(A B)$ D. |AB| = |A||B|

3. 设A为n阶可逆矩阵,下列等式不正确的是(

- A. $|A^*| = |A|^{n-1}$ B. $A^* = |A|A^{-1}$ C. $A = \frac{1}{|A|}(A^*)^{-1}$ D. $(A^*)^{-1} = \frac{1}{|A|}A$

4. 设有两点 A(1,-2,3), B(3,2,1), 则向量 \overline{AB} 与 y 轴正方向的夹角是(

- A. $\arccos \frac{\sqrt{6}}{6}$ B. $\arccos \frac{\sqrt{6}}{3}$ C. $\arccos \left(-\frac{\sqrt{6}}{6}\right)$ D. $\arccos \left(-\frac{\sqrt{6}}{3}\right)$

5. 两条直线 $L_1: x+1=\frac{y-1}{-2}=\frac{z}{2}$, $L_2: x+1=y+4=\frac{z}{-2}$,则 L_1 与 L_2 的位置关系是(

- A.异面
- B.相交
- C.平行不重合
- D.重合

三、计算题

 $\begin{vmatrix} a_1+b & a_2 & a_3 & \cdots & a_n \\ a_1 & a_2+b & a_3 & \cdots & a_n \\ a_1 & a_2 & a_3+b & \cdots & a_n \\ \cdots & \cdots & \cdots & \cdots & a_n \end{vmatrix}$ 的值.

- 2. 设 3 阶矩阵 A, B满足 $2A^{-1}B = B = B 4I$, 其中 I 是 3 阶单位矩阵.
 - (1) 证明: A-2I 可逆.

(2) 若
$$B = \begin{bmatrix} 1 & -2 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
, 求矩阵 A .

4. 设四阶矩阵
$$A = \begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$
的秩为 3,试求常数 a 的值.

5. 求过点 $P_1(-1,0,2)$, $P_2(1,1,1)$ 且与平面 x+y+z+1=0垂直的平面方程.

6. 求点 P(1,2,3) 到直线 $\begin{cases} x+y-z-1=0\\ 2x+z-3=0 \end{cases}$ 的距离.

1. 设 α 为n维非零列向量, $A=I-\alpha\alpha^T$,其中I 为n阶单位矩阵,证明: $A^2=A \Leftrightarrow \alpha^T\alpha=1$.

2. 设A,B均为n阶方阵,且满足 $A^2 = I, |A| + |B| = 0$,证明: |A + B| = 0.

1. 计算下列行列式:

$$(1) |D| = \begin{vmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 & 1 \\ 1 & 1 & 4 & 1 & 1 \\ 1 & 1 & 1 & 5 & 1 \\ 1 & 1 & 1 & 1 & 6 \end{vmatrix}$$

(2) 已知 A 是 3 阶矩阵, B 是 4 阶矩阵,且 |A| = 12, |B| = -6, 求矩阵 $D = \begin{pmatrix} 0 & \frac{1}{2}A \\ -B & C \end{pmatrix}$ 的行列式|D| 的值.

2. 已知 $|\vec{a} + \vec{b}| = 4$, $|\vec{a} - \vec{b}| = 18$, 求 $|\vec{a}|^2 + |\vec{b}|^2 与 \vec{a} \cdot \vec{b}$.

- 3. 解答题:
 - (1) 已知 3 阶矩阵 A满足: $A^3 + A + E = 0$, 证明 A + 2E 可逆, 并求出 $(A + 2E)^{-1}$.

4. 已知直角坐标系中的 4 个点 A(3,-1,0), B(-1,-1,1), C(3,2,1), $D(5,-\frac{5}{2},-1)$, 这四个点是 否在同一平面上? 若是,请求出此平面方程;若不是,请说明理由.

- 5. 设矩阵 $A = (a_{ij})_{3\times 3}$,满足条件 $a_{33} = -1$ 及 $a_{ij} = A_{ij}, i, j = 1, 2, 3$,其中 A_{ij} 是元素 a_{ij} 的代数余子式.
 - (1) 求|A|.
- (2) 解线性方程组 $Ax = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

1. 计算下列行列式:

$$D = \begin{vmatrix} 1 & 1 & 1 \\ 2+3\cos x_1 & 2+3\cos x_2 & 2+3\cos x_3 \\ 4\cos x_1 +5\cos^2 x_1 & 4\cos x_2 +5\cos^2 x_2 & 4\cos x_3 +5\cos^2 x_3 \end{vmatrix}$$

2. 设n阶矩阵A与B均为非单位阵I, 且AB = A + B - I, 求行列式|A - I|和|B - I|的值.

3. 设A与B均为n阶正交矩阵(即 $A^{-1}=A^{T}$,且为实矩阵),满足|A|+|B|=0,求行列式|A+B|的值.

4. 在线性方程组 Ax = b中, $A = (a_{ij})_{n \times n}$, $b = (b_1, b_2, \dots, b_n)^T$, A_{ij} 是 a_{ij} 的代数余子式,已知 $\sum_{k=1}^n a_{nk} A_{nk} = -1$, $\sum_{k=1}^n b_k A_{kn} = 3$, 求 x 的第 n 个分量 x_n 的值.

5. 设
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
, 试用两种方法求 A^{-1} .

6. 设有直线 L_1 : $\frac{x+3}{2} = \frac{y+2}{3} = \frac{z-6}{-4}$ 和 $\begin{cases} x-z=9 \\ y+4z=-17 \end{cases}$, 试判断这两条直线的位置关系.若共面,求它们所确定的平面方程;若还相交,求交点.

7. 设n阶矩阵A满足 $A^3 = 2I$, $B = A^2 - 2A + 2I$,证明B可逆并求 B^{-1} .

8. 设A是n阶矩阵,r(A)=r,证明: 必存在n阶可逆矩阵B及秩为r的n阶矩阵C满足 $C^2=C$,使A=BC.

2019 年线代期中试题答案

一、选择题

- 1. B
- 2. A
- 3.D
- 4. C
- 5. D

二、填空题

$$2. \quad 2^{2019} \begin{bmatrix} 1 & -1 & 1 \\ 2 & -2 & 2 \\ 3 & -3 & 3 \end{bmatrix}$$

4.
$$3x + y - 7z + 16 = 0$$

5.
$$\frac{1}{3}$$

三、解答题

1.

(1)
$$|A_n|$$
 按第一列展开 $2a|A_{n-1}| + a^2 \cdot (-1)^{2+1} \cdot |A_{n-2}| = 2a|A_{n-1}| - a^2|A_{n-2}|$,

$$\mathbb{E}[|A_n| - a|A_{n-1}| = a(|A_{n-1}| - a|A_{n-2}|) = \dots = a^{n-2}(|A_2| - a|A_1|) = a^n.$$

$$|A_n| = a^n + a |A_{n-1}| = a^n + a(a^{n-1} + a|A_{n-2}|) = 2a^n + a^2 |A_{n-2}|$$

$$= \dots = (n-1)a^n + a^{n-1}|A_1| = (n+1)a^n.$$

也可以使用数学归纳法,或化为上三角形

(2) 由cramer法则知,当 $D=|A_n|\neq 0$ 时,即 $a\neq 0$ 时方程组有唯一解

$$\exists x_1 = \frac{D_1}{D} = \frac{na^{n-1}}{(n+1)a^n} = \frac{n}{(n+1)a}, \ x_n = \frac{D_n}{D} = \frac{(-1)^{n+1}(a^2)^{n-1}}{(n+1)a^n} = (-1)^{n+1}\frac{a^{n-2}}{n+1}.$$

2.

解:
$$: 1 = |I| = |AA^T| = |A|^2$$
,而已知 $|A| < 0$, $: |A| = -1$;

$$|A+I| = |A+AA^T| = |A(I+A^T)| = |A| \cdot |I+A^T| = -|(I+A)^T| = -|I+A|.$$

$$\therefore |I+A| = 0$$

3.

解: (1) L 的方向向量可取作 $\vec{a}_1 = (1,-1,0) \times (3,-1,1) = (-1,-1,2)$,

易得 L_1 上一点 $P_1(0, -3, -2)$,则 L_1 对称式方程为: $\frac{x}{1} = \frac{y+3}{1} = \frac{z+2}{2}$.

$$(2)d = \frac{\|P_1 M \times \vec{a}_1\|}{\|\vec{a}_1\|} = \frac{\sqrt{93}}{3}$$

 $(3)L_2$ 过点 $P_2(-1,1,0)$,其方向向量 $\vec{a}_2=(1,-2,2)$,

$$3)L_2$$
过点 $P_2(-1,1,0)$,其方向向量 $\vec{a}_2 = (1,-2,2)$,
$$\therefore \begin{bmatrix} \overrightarrow{P_1P_2} & \vec{a}_1 & \vec{a}_2 \end{bmatrix} = \begin{vmatrix} -1 & 4 & 2 \\ -1 & -1 & 2 \\ 1 & -2 & 2 \end{vmatrix} = 20 \neq 0, \ \therefore L_1 = L_2$$
异面.

4.

$$\mathbf{M}$$
: $: I = A[C(E-C^{-1}B)]^T = A(C-B)^T$, $: A = [(C-B)^T]^{-1} = [(C-B)^{-1}]^T$

$$C-B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, 求 (C-B)^{-1} 的方法有多种:$$

得
$$(C-B)^{-1} =$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \therefore A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \end{bmatrix}.$$

5.

$$\mathbf{\widetilde{H}} \colon A \xrightarrow{r_2 - r_1 \atop r_4 - 2r_1} \to \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 & -3 \\ 0 & -3 & -2 & -3 \\ 0 & 3 & \mu - 2 & \lambda - 2 \end{bmatrix} \to \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -3 & -2 & -3 \\ 0 & 0 & \mu - 4 & \lambda - 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

故当 $\mu = 4, \lambda = 5$ 时, r(A)=2; 当 $\mu \neq 4, \lambda \neq 5$ 时, r(A)=3.

6.

证: (1) 由題意知 $A^* = -A^T \Rightarrow |A^*| = (-1)^3 |A| \Rightarrow |A|^2 = -|A| \Rightarrow |A| = 0$ 或 |A| = -1,

而A为非零实矩阵,不妨设 $a_{11} \neq 0$,则 $A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = -a_{11}^2 - a_{12}^2 - a_{13}^2 < 0$,

故|4|=-1.

(2)由(1)知 $A^{-1} = \frac{1}{|A|}A^* = -A^* = A^T$,故A为正交矩阵.

2018 年线代期中试题答案

- 一、选择题
- 1. D
- 2. D
- 3. B
- 4. C
- 5. A

二、填空题

1.
$$\frac{a}{b}$$

2.
$$2(b-a)(c-a)(c-b)$$

3.
$$\begin{bmatrix} -2 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

4.
$$\frac{x-1}{2} = \frac{y+2}{7} = \frac{z-4}{3}$$
 5. $12\sqrt{2}$

5.
$$12\sqrt{2}$$

- 三、解答题
- 1. D = 32
- 2. det(B) = 12a

3.
$$B = \begin{bmatrix} 2 & -4 & 0 & 0 \\ -2 & -2 & 0 & 0 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

- 5. 交点坐标(2,1,0); 平面方程: 7x-5y-11z=9
- 6. $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} = 1$

2017 年线代期中试题答案

- 一、选择题
- 1. C
- 2. A
- 3. D 4. D
- 5. B

二、填空题

2.
$$\frac{1}{2}(A+2I)$$

2.
$$\frac{1}{2}(A+2I)$$
 3. $2^{n-1}\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ 4. 2

三、解答题

1.
$$D = 480$$

$$2. \quad B = \begin{bmatrix} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 0 & 3 & 0 & -1 \end{bmatrix}$$

3.
$$a = 2$$

4. $\exists a \neq b \ \exists a \neq (1-n)b \ \forall r(A) = n; \ \exists a = b = 0 \ \forall r(A) = 0;$

5.
$$\frac{x-1}{-4} = \frac{y-0}{50} = \frac{z+2}{31}$$

6.
$$-5x-2y+z-1=0$$

2016年线代期中试题答案

一、填空题

3. 8 4.
$$\frac{1}{3}\vec{a}$$
 5. $2\sqrt{6}$

5.
$$2\sqrt{6}$$

二、选择题

三、计算与证明题

1.
$$x+(n-1)a(x-a)^{n-1}$$

2.
$$\stackrel{\text{def}}{=} a = 1$$
, $b = 2$, $r(A) = 2$; $\stackrel{\text{def}}{=} a \neq 1$, $b = 2$, $r(A) = 3$; $\stackrel{\text{def}}{=} a = 1$, $b \neq 2$, $r(A) = 3$; $\stackrel{\text{def}}{=} a \neq 1$, $b \neq 2$, $r(A) = 4$.

3. (1)
$$A^2 = 4I$$

$$A^{-1} = \frac{1}{4}A$$

3. (1)
$$A^2 = 4I$$
 $A^{-1} = \frac{1}{4}A$ (2) $B = \frac{1}{4}(I - 3A)$

4.
$$x - y + z = 0$$

5.
$$\frac{x-1}{0} = \frac{y-1}{1} = \frac{z-1}{2}$$

6.
$$A^* = A^T \Rightarrow a_{ij} = A_{ij}$$
 $(1 \le i \le n, 1 \le j \le n)$ $|A| = a_{i1}A_{i1} + \dots + a_{in}A_{in} = a_{i1}^2 + \dots + a_{in}^2$ $(1 \le i \le n)$

:: A 为非零矩阵,A 中至少有一个元素不为零,不妨设 $a_{i1} \neq 0$,则 $|A| \neq 0$,故 A 可逆.

7. (1)
$$a = 0$$
 (2)
$$\begin{bmatrix} 3 & 1 & -2 \\ 1 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}$$

2015 年线代期中试题答案

一、填空题

- 1. 12
- 2. -140
- 3. ∃不全为零的常数 k_1, k_2, k_3 满足 $k_1\vec{a} + k_2\vec{b} + k_3\vec{c} = 0$ 或混合积为零 $[\vec{a}, \vec{b}, \vec{c}] = 0$
- 4. $\frac{31}{\sqrt{14}}$
- 5. $\frac{x-2}{7} = \frac{y+1}{0} = \frac{z-3}{2}$
- 6. r(A) = 2
- $7. \begin{bmatrix} 0 & B^{-1} \\ A^{-1} & 0 \end{bmatrix}$
- 8. -108
- $9. \begin{bmatrix} 3 & 0 & 18 \\ -1 & 1 & 0 \\ 3 & 2 & 12 \end{bmatrix}$
- 10. 4
- 11. $\begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 4 \\ 2 & 2 & 1 \end{bmatrix}$
- 12. -2a
- 二、选择题
- 1. B 2. D 3. C 4. B 5. A
- 三、计算题
- 1. $(b + \sum_{i=1}^{n} a_i)b^{n-1}$

$$\begin{array}{c|cccc}
 & 0 & 2 & 0 \\
 & -1 & -1 & 0 \\
 & 0 & 0 & -2
\end{array}$$

3.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}$$
 $A^5 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}$

$$A^5 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 0 \\ 6 & -1 & -1 \end{bmatrix}$$

4.
$$a = -\frac{1}{3}$$

5.
$$2x-3y+z=0$$

6.
$$\frac{\sqrt{6}}{2}$$

四、证明题(略)

2014 年线代期中试题答案

$$(2) -9$$

3. (1)
$$\frac{A^2 - 2A + 5E}{9}$$

$$\begin{array}{c|cccc}
 & & & & & \\
\hline
 & 1 & 0 & 0 \\
\hline
 & 1 & 0 & 0 \\
\hline
 & \frac{1}{5} & \frac{1}{5} & 0 \\
\hline
 & \frac{3}{10} & \frac{2}{5} & \frac{1}{2}
\end{array}$$

$$\vdots \quad -3(x-3) + 4(y+1) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

4. 在同一平面, 平面方程:
$$-3(x-3)+4(y+1)-12z=0$$

(2)
$$x = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

2013 年线代期中试题答案

- 1. $15(\cos x_2 \cos x_1)(\cos x_3 \cos x_1)(\cos x_3 \cos x_2)$
- 2. 0; 0
- 3. 0

$$\begin{bmatrix} \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}$$

5.
$$\begin{vmatrix} -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{3}{4} \end{vmatrix}$$

6. 共面且相交,平面方程: 13x+6y+11z-15=0,交点: (3,7,-6)

7.
$$\frac{1}{10}(A^2+3A+4I)$$

8.
$$r(A) = r$$
, 则∃可逆矩阵 P, Q 使 $PAQ = \begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix}$
$$A = P^{-1} \begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} = P^{-1}Q^{-1}Q \begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix} Q^{-1}$$

$$\diamondsuit B = P^{-1}Q^{-1}$$
 可逆, $C = Q\begin{bmatrix} Ir & 0 \\ 0 & 0 \end{bmatrix}Q^{-1}$ 则 $C^2 = C \perp A = BC$

更多信息,请加入彭康学导团学习 QQ 群: 491330131

搜索微信公众号"彭康书院学导团"或扫描下方二维码,关注 我们,了解更多学业动态,掌握更新学习资料。

本学期,我们组织了答疑志愿者周一到周五每晚在东 19-114 进行答疑活动,答疑课目主要为高数、线代、大物和一些专业课程。

欢迎同学们前往答疑,一起学习,共同进步!

