Choix de Vitesses pour la Minimisation de la Consommation d'Energie Hors-Ligne en $\mathcal{O}(n)$

Bruno Gaujal, Alain Girault and Stephan Plassart

13 Novembre 2019

Sommaire

- Présentation du modèle
- Algorithme par Intervalle Critique
- 4 Algorithme par Programmation Dynamique
- Extensions

Présentation du modèle

Ensemble fini de tâches, exécutées sur un seul processeur mono-coeur.

Présentation du modèle

Ensemble fini de tâches, exécutées sur un seul processeur mono-coeur.

Tâche (r, c, d) caractérisée par:

- r: instant d'arrivée
- c: temps d'exécution
- d: échéance relative

Présentation du modèle

Ensemble fini de tâches, exécutées sur un seul processeur mono-coeur.

Tâche (r, c, d) caractérisée par:

- r: instant d'arrivée
- c: temps d'exécution
- d: échéance relative

Objectif: Choisir la vitesse du processeur *s* tel que:

- 1 Chaque tâche se termine avant son échéance.
- 2 La consommation d'énergie soit minimale.

La Vitesse Constante est la Meilleure

Chaque **tâche** (r, c, d) est vue comme une "boîte" (courbes d'arrivée & d'échéance).

La Vitesse Constante est la Meilleure

Chaque **tâche** (r, c, d) est vue comme une "boîte" (courbes d'arrivée & d'échéance).

- La vitesse: s(t) doit satisfaire $d(t) \le \int_r^t s(u)du \le a(t)$ Puissance consommée: $P_{ower}(s(t))$, Energie: $\int_r^{r+d} P_{ower}(s(u))du$

La Vitesse Constante est la Meilleure

Chaque **tâche** (r, c, d) est vue comme une "boîte" (courbes d'arrivée & d'échéance).

- La vitesse: s(t) doit satisfaire $d(t) \le \int_r^t s(u)du \le a(t)$
- Puissance consommée: $P_{ower}(s(t))$, Energie: $\int_{-\infty}^{r+d} P_{ower}(s(u)) du$
- Convexité:

Convexite:
$$\int_{r}^{r+d} P_{ower}(s(u)) du \ge d \cdot P_{ower} \left(\frac{1}{d} \int_{r}^{r+d} s(u) du \right) = d \cdot P_{ower} \left(\frac{c}{d} \right)_{4/16}$$

La Vitesse Constante est Meilleure, mais pas toujours possible

Dans le cas général, garder une vitesse constante peut ne pas être possible. Voici un exemple sur 2 tâches:

$$J_1(r_1=2, c_1=3, d_1=3)$$

La Vitesse Constante est Meilleure, mais pas toujours possible

Dans le cas général, garder une vitesse constante peut ne pas être possible. Voici un exemple sur 2 tâches:

$$J_1(r_1=2, c_1=3, d_1=3)$$

La Vitesse Constante est Meilleure, mais pas toujours possible

Dans le cas général, garder une vitesse constante peut ne pas être possible. Voici un exemple sur 2 tâches:

$$J_1(r_1=2, c_1=3, d_1=3)$$

Historique de la Complexité

Beaucoup d'efforts ont été réalisés pour résoudre ce problème:

- 1995: $O(n^3)$ F. Yao et al., Spuri et al.
- 2005: $O(n \log n)$ Gaujal et al. pour des tâches FIFO.
- 2007: $O(Ln^2)$ Gaujal et al. $(L \le n)$: niveau imbriqué)
- 2017: $O(n^2)$ F. Yao et al.

Cas pour *m* vitesses discrètes:

- 1995: $O(n^3)$ F. Yao et al.
- 2005: $O(n \log n)$ Gaujal et al. pour des tâches FIFO.
- 2005: (mn log n) Yao et al.
- 2017: $O(n \log n)$ Yao et al.

Notre résultat: avec $(r_i, c_i, d_i \leq \Delta)_{1 \leq i \leq n} \in \mathbb{N}$: O(n).

Algorithmes présentés

1 Algorithme basé sur les intervalles critiques: $O(n \log n)$

2 Algorithme basé sur la programmation dynamique: O(n)

Ensemble d'intervalles = (2/4, 1/5, 4/4)

Ensemble d'intervalles = (2/4, 1/5, 4/4, 5/7, 6/7)

Ensemble d'intervalles = (2/4, 1/5, 4/4, 5/7, 6/7, 7/10) Max

Vitesses choisies $(t_0, t_1, t_2, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, t_7, t_8, t_9)$

Sur l'intervalle critique, la vitesse optimale s^c est constante

Vitesses choisies $(t_0, t_1, t_2, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, t_7, t_8, t_9)$

quantité de travail

Suppression de l'intervalle critique

⇒ Nouvelle étude de l'intervalle critique sur le système restreint.

$$\pi^* = \text{Vitesses choisies} = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

$$\pi^* = \text{Vitesses choisies} = (\frac{2}{3}, \frac{2}{3}, \frac{2}{3}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{4}{4}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

Vitesses disponibles: $S = \{0, 1\}$

Vitesses choisies $\pi^* = (0, 1, 1, 1, 1, 1, 1, 1, 0, 0)$

quantité de travail

Pour chaque intervalle critique: $s^c = \alpha \lfloor s^c \rfloor + (1 - \alpha) \lfloor s^c + 1 \rfloor$.

Programmation Dynamique

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

Energie pour w en T: $E_T^*(w_T) = 0$

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

Energie pour
$$w$$
 en T -1: $E_{T-1}^*(w) = \min_{s \in S} (P_{ower}(s) + E_T^*(w'))$

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

quantité de travail

 $J_3(r_3=5, c_3=1, d_3=5)$

$$J_2(r_2=3, c_2=4, d_2=4)$$

$$J_1(r_1=0, c_1=2, d_1=4)$$
 $a(t)$ $d(t)$ $temps$

Energie pour
$$w$$
 en T -2: $E_{T-2}^*(w) = \min_{s \in S} (P_{ower}(s) + E_{T-1}^*(w'))$

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4)$ a(t) d(t)

Vitesse pour
$$w$$
 en T -2: $s^*(T-2)(w) = \arg\min_{s \in S} (P_{ower}(s) + E_{T-1}^*(w'))$

temps

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4)$ a(t) d(t)temps

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in S} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $S = \{0, 1, 2\}$

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in S} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $S = \{0, 1, 2\}$

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in S} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

Energie pour w en t-1: $E_{t-1}^*(w) = \min_{s \in S} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $\mathcal{S} = \{0, 1, 2\}$

Energie états inaccessibles:
$$E_t^*(w^1) = E_t^*(w^2) = +\infty$$

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4)$ a(t) d(t)temps

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in \mathcal{S}} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4)$ a(t)d(t)temps

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in \mathcal{S}} (P_{ower}(s) + E_t^*(w'))$

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4) \ a(t)$ d(t)temps

Energie pour
$$w$$
 en t -1: $E_{t-1}^*(w) = \min_{s \in \mathcal{S}} (P_{ower}(s) + E_t^*(w'))$

Programmation Dynamique

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail

Vitesses Optimales obtenues après Programmation Dynamique:

$$\pi^* = (s_0^*, s_1^*, s_2^*, s_3^*, s_4^*, s_5^*, s_6^*, s_7^*, s_8^*, s_9^*) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)$$

Programmation Dynamique

Vitesses disponibles: $S = \{0, 1, 2\}$

quantité de travail $J_3(r_3=5, c_3=1, d_3=5)$ $J_2(r_2=3, c_2=4, d_2=4)$ $J_1(r_1=0, c_1=2, d_1=4) \ a(t)$ d(t)temps

Vitesses Optimales obtenues après Programmation Dynamique:

$$\pi^* = (s_0^*, s_1^*, s_2^*, s_3^*, s_4^*, s_5^*, s_6^*, s_7^*, s_8^*, s_9^*) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0)$$

Complexité

Théorème

La complexité en temps est en Kn, avec n le nombre de tâches et K, une constante, qui dépend de la vitesse maximale s_{max} et de l'échéance relative maximale Δ

Borne sur la taille de l'espace d'état, C:

$$C \leq \Delta s_{\mathsf{max}}$$

• Borne sur $T = \max_{i=1}^{n} \{r_i + d_i\}$, l'horizon de temps:

$$T \leq n\Delta$$

• $K = \mathcal{O}(s_{\text{max}}^2 \Delta^3)$.

Cas Vitesses Non Consécutives

Vitesses disponibles: $S = \{0, 2\}$

Vitesses choisies $\pi^* = (0, 0, 2, 2, 2, 0, 0, [2, 0], 0, 0)$

Cas Vitesses Non Consécutives: la solution

Considérer des vitesses consécutives

$$s = \beta s_1 + (1 - \beta)s_2$$
, avec $\beta = \frac{s_2 - s}{s_2 - s_1}$.

Puissance de la vitesse non disponible fixée à:

$$P_{ower}(s) = \beta P_{ower}(s_1) + (1 - \beta) P_{ower}(s_2)$$

Cas Vitesses Non Consécutives: la solution

Considérer des vitesses consécutives

$$s = \beta s_1 + (1 - \beta)s_2$$
, avec $\beta = \frac{s_2 - s}{s_2 - s_1}$.

Puissance de la vitesse non disponible fixée à:

$$P_{ower}(s) = \beta P_{ower}(s_1) + (1 - \beta) P_{ower}(s_2)$$

Appliquer la programmation dynamique avec cet ensemble de vitesses.

Cas Vitesses Non Consécutives: la solution

Considérer des vitesses consécutives

$$s = \beta s_1 + (1 - \beta)s_2$$
, avec $\beta = \frac{s_2 - s}{s_2 - s_1}$.

Puissance de la vitesse non disponible fixée à:

$$P_{ower}(s) = \beta P_{ower}(s_1) + (1 - \beta) P_{ower}(s_2)$$

- Appliquer la programmation dynamique avec cet ensemble de vitesses.
- Utilisation du Vdd-hopping pour simuler les vitesses indisponibles.
 quantité de travail

Extensions

• Cas où la fonction de puissance est non convexe.

Algorithme de programmation dynamique valable pour une fonction de puissance non convexe.

Extensions

Cas où la fonction de puissance est non convexe.

Algorithme de programmation dynamique valable pour une fonction de puissance non convexe.

Oût de changement de vitesses

Coût de changement de vitesses

 ρ = délai en temps pour changer la fréquence du processeur.

Coût de changement de vitesses

- Execution réelle sur le processeur
- -- Execution simulée

- ρ = délai en temps pour changer la fréquence du processeur.
- Quantité de travail exécuté inférieure ⇒ problème de faisabilité
- Solution: décalage temporel du changement de vitesse

Coût de changement de vitesses

- Execution réelle sur le processeur
- -- Execution simulée

- ρ = délai en temps pour changer la fréquence du processeur.
- Quantité de travail exécuté inférieure ⇒ problème de faisabilité
- Solution: décalage temporel du changement de vitesse

$$\bullet \ \varepsilon = \rho + \alpha_{1,2} = \frac{\rho \, s_2}{s_2 - s_1}$$

 Coût additionnel en énergie:

$$\rho s_1 \left(\frac{P_{ower}(s_2) - P_{ower}(s_1)}{s_2 - s_1} \right)$$

Conclusion

- Algorithme en compléxité linéaire, en O(Kn) avec $K = s_{max}C\Delta$.
- Extension possible pour le cas en-ligne: Minimisation d'énergie avec un algorithme quasiment inchangé.