Física Nuclear

- **Radio núcleo**: $10^{-15}(m)$.
- Radio órbita electrón: $10^{-11}(m)$.
- **Núcleo**: protones (p^+) y neutrones (n).
- Fuerza nuclear fuerte: atrae protones y neutrones.
- Fuerza nuclear débil: radiación (decaída de partículas).
- Número atómico: número de protones en núcleo.
- Número másico: suma de protones y neutrones.
- Isótopo: mismo elemento pero con diferente número de neutrones.

Estabilidad del núcleo \implies Desintegración \implies Radiación

- Radiación β : pérdida de neutrones (inestable a partir del elemento 83+).
- Radiación α : pérdida equivalente a un núcleo de helio (He).
- Radiación γ : pérdida de energía electromagnética.

Leyes de desplazamiento

- Desintegración $\alpha: {}^A_ZX o {}^{A-4}_{Z-2}Y + {}^4_2$ He
- Desintegración eta: ${}^A_ZX o ^A_{Z+1}Y + {}^0_{-1}e + {}^u$
- Desintegración γ : ${}_Z^AX \to {}_Z^AX + \gamma$

Ley de desintegración nuclear

Conceptos:

- $N \equiv$ número de núcleos post-desintegración.
- $N_0 \equiv$ número de núcleos inicial.
- $T_{\frac{1}{2}} \equiv$ período de desintegración \rightarrow tiempo hasta que se han desintegrado la mitad de los elementos.

$$\begin{array}{l} \bullet \quad \frac{dN}{dt} = -kN \\ \\ \frac{dN}{N} = -kdt \implies \int \frac{1}{N} \, dN = \int k \, dt \implies \ln N = -k \cdot t + C \\ t = 0 \implies N = N_0 \implies \ln N_0 = -k \cdot_0 + C \implies \ln N_0 = C \\ \ln N = -k \cdot t + \ln N_0 \\ \ln \frac{N}{N_0} = -k \cdot t \\ \\ \frac{N}{N_0} = e^{-kt} \\ N = N_0 \cdot e^{-kt} \\ t = T_{\frac{1}{2}} \implies N = N_{\frac{1}{2}} \\ \\ \frac{N_0}{2} = N_0 \cdot e^{-kt} \\ \\ \frac{1}{2} = e^{-k \cdot T_{\frac{1}{2}}} \\ \ln \left(\frac{1}{2}\right) = -k \cdot T_{\frac{1}{2}} \\ K = -\frac{\ln \frac{1}{2}}{T_1} = \lambda \end{array}$$

$$\lambda = rac{\ln 2}{T_{rac{1}{2}}}$$
 $N = N_0 \cdot e^{-\lambda \cdot t}$ $A = A_0 \cdot e^{-\lambda \cdot t}$

$$egin{align} ext{Vida media} &\equiv au
ightarrow au = rac{1}{\lambda} \equiv rac{T_{rac{1}{2}}}{\ln_2} \ ext{Actividad} &\equiv A
ightarrow A = \lambda \cdot N \ (Bq) \ &1 \ (Bq) = 1 \ rac{ ext{desintegración}}{s} \ \end{aligned}$$

Datos

Desintegración del Carbono 14 (C-14): β^-