EE-421: Digital System Design

Programmable Logic Devices

Dr. Rehan Ahmed [rehan.ahmed@seecs.edu.pk]

Where are we Heading?

Programmable Logic Devices (computing platforms):

How did we get here?

Review: SOP and POS

Type of Circuits

- Digital Systems consist of two basic types of circuits:
 - Combinational Logic (CL)
 - Output is a function of the inputs only, not the history of its execution
 - e.g. circuits to add A, B (ALUs)
 - Sequential Logic (SL)
 - Circuits that "remember" or store information
 - a.k.a. "State Elements"
 - e.g. memory and registers (Registers)

Converting Combinational Logic

Representations of Combinational Logic

- √ Text Description
- √ Circuit Diagram
 - Transistors and wires
 - Logic Gates
- √ Truth Table
- √ Boolean Expression

√ All are equivalent

Three Variable Minterms and Maxterms

Row number	x_1	x_2	x_3	Minterm	$\mathbf{Maxterm}$
$egin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array}$	0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3 \ m_1 = \overline{x}_1 \overline{x}_2 x_3 \ m_2 = \overline{x}_1 x_2 \overline{x}_3 \ m_3 = \overline{x}_1 x_2 x_3 \ m_4 = x_1 \overline{x}_2 \overline{x}_3 \ m_5 = x_1 \overline{x}_2 x_3 \ m_6 = x_1 \overline{x}_2 \overline{x}_3 \ m_7 = x_1 \overline{x}_2 x_3$	$M_0 = x_1 + x_2 + x_3$ $M_1 = x_1 + x_2 + \overline{x_3}$ $M_2 = x_1 + \overline{x_2} + x_3$ $M_3 = x_1 + \overline{x_2} + \overline{x_3}$ $M_4 = \overline{x_1} + x_2 + x_3$ $M_5 = \overline{x_1} + x_2 + \overline{x_3}$ $M_6 = \overline{x_1} + \overline{x_2} + x_3$ $M_7 = \overline{x_1} + \overline{x_2} + \overline{x_3}$

Activity: A Three-Variable Function

Row number	$ x_1 $	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	1
5	1	0	1	1
6	1	1	0	\parallel 1
7	1	1	$1 \mid$	0

- What is the function f?
- Draw the logic circuit

Activity Answer

• f=x1'x2'+x1'x2+x1x2

How would you implement the above circuit in HW?

Standard Chips

Review: Standard Chips

(a) Dual-inline package

(b) Structure of 7404 chip

Review: Standard Chips

- Limitations:
 - Fixed functionality:
 - Cannot be tailored to suit a particular design situation
 - Each chip contains only a few logic gates:
 - Inefficient for building large circuits

Programmable Logic Devices:

PLA, PAL, CPLD and FPGA

Programmable Logic Devices (PLD)

- PLD as a black box: (introduced in 1970s)
 - Inside: Logic gates and Programmable Switches
 - customizable in different ways -> *programmable switches* that allow the internal circuitry in the chip to be configured in many different ways.
 - The switches are programmed by the end user, rather than when the chip is manufactured!!

Programmable Logic Array (PLA)

- Based on the idea:
 - Logic function can be realized in SOP form

Inside PLA

- Programming AND and OR planes differently could implement various functions.
 - Constraints:
 - size of AND/OR planes
- What is f1 and f2?
- f1 = x1x2 + x1x3' + x1'x2'x3.
- f2 = x1x2 + x1'x2'x3 + x1x3

Customary Schematic of PLA

- Programming AND and OR planes differently could implement various functions.
 - Constraints:
 - size of AND/OR planes
 - Typical commercially available PLAs:
 - 16-inputs
 - 32 product terms
 - 8 outputs

Limitations of PLA

- Historically, the programmable switches presented two difficulties for manufacturers of these devices:
 - they were hard to fabricate correctly, and
 - they reduced the speed performance of circuits implemented in the PLAs.
- Both programmable planes occupy larger area

Programmable Array Logic (PAL)

- AND plane: Programmable
- OR plane: Fixed
- Less flexible than PLA but improved speed-performance
- What is f1 and f2?

$$f_1 = x_1 x_2 \overline{x}_3 + \overline{x}_1 x_2 x_3$$

$$f_2 = \bar{x}_1 \bar{x}_2 + x_1 x_2 x_3$$

Programming of PLAs and PALs

- Commercial PAL and PLA chips contain a few thousand programmable switches:
 - not feasible for a user to specify manually

- CAD systems are employed for this purpose:
 - Generate a file, known as Programming File/Fuse Map
 - specifies the state of each programmable switch

Programming of PLAs and PALs

A Plastic Lead PLCC package with socket.

Programmable Logic Devices [CPLD]

Why CPLD?

- PLAs and PALs are useful for implementing a wide variety of small digital circuits:
 - Each device can be used to implement circuits that do not require more than:
 - the number of inputs,
 - product terms, and
 - outputs that are provided in the particular chip.

- These chips are limited to fairly modest sizes:
 - typically supporting a combined number of inputs plus outputs of not more than 32!

Complex Programmable Logic Devices (CPLDs) - Structure

 Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-like blocks

CPLD – Inside PAL-like Block

CPLD Programming

(a) CPLD in a Quad Flat Pack (QFP) package

(b) JTAG programming

- Quad Flat Package (QFP) pins are much thinner than those on a PLCC:
 - programmed through In-System Programming (ISP) technique
 - Circuitry for ISP is Standardized by IEEE and is called JTAG port
 - (JTAG = Joint Test Access Group)

Recommended Reading

 Digital System Design with Verilog HDL, 3/e, b Stephen Brown and Zvonko Vranesic. [S&Z]

- S&Z,
 - Appendix-B
 - B.5 to B.8

THANK YOU

