$\mathcal{D}e$

revolutionibus orbium coelestium

et momentis vehiculorum liberorum

auctore

Alberto Liberio Humaniense Disciplino

die

 $vicesima~Augusta~{
m MMXVI}$

factum magnum super regnum publicam
imperii super libertatem et veritatem
democratia proficit in fascismum et nazismum
libertas proficit in mendacium publicam
sed verum dictum a te aliquando reveletur
rerum litterae aeternum permaneant
possit nemo prohibere

feb mmxvi alhd

Kerbal Space Program이란?

Kerbal Space Program (약칭 KSP) 란 Squad사에서 만든 우주선 시뮬레이션 게임입니다.

ksp는 왜 좋은가 -교육

하지만, 새롭게 이 게임을 시작하는 사람들이 진행에 많은 어려움을 겪는 것을 보았습니다. 이 서적의 목적은 크게 두 가지입니다. 우선, 처음 입문하는 사람들이 쉽게 따라하면서 게임을 이해할 수 있는 입문서로서의 목적이 있습니다. 또한, 가능한한 많은 수치표를 넣어 숙련자들도 이용할 수 있는 계산툴로서 기능하게 하는 목적이 있습니다. 최대한 첫째 목적을 이루는 것이 주 목표이며, 이를 지키면서도 최대한 많은 물리현상들을 설명하고, 또 정교한 스킬들을 익힐수 있게 하고자 합니다. 짧은 집필기간과 계속되는 게임의 업데이트 때문에 초판은 충분히 잘 기술되지 못할 수 있을 것입니다. 게임소스를 제외한 본 서적의 핵심적인 부분인 기술적인 설명과 저자의 개인연구 부분은 오픈소스 라이센스 하에 있으며, 앞으로 독자들께서도 자유롭게 편집할 수 있도록 할 것이오니, 혹시 틀린 점을 발견하거나 추가하고 싶은 내용이 있으면 책 마지막 장의 소스 URL에서 추가해주시길 부탁드립니다.

Contents

Kerbal S	Space Program이란?	3
Part 1.	시작하기	7
Chapter	1. 궤도에 올리기	9
1.1.	운동에너지 얻기	9
1.2.	공기저항	9
1.3.	공기역학 및 안정성	9
1.4.	재진입시 주의사항	9
Chapter	2. 다단 로켓과 Δv	11
2.1.	연료	11
2.2.	다단 로켓 (Linear Staging)	12
2.3.	아스파라거스 (Asparagus Staging)	12
2.4.	I_{sp}	12
Chapter	3. 궤도운동	13
3.1.	용어설명 및 주의사항	13
3.2.	원궤도	13
3.3.	타원궤도	13
3.4.	쌍곡선궤도 - 탄성충돌	14
3.5.	슬링샷	14
Chapter	4. 달 미션	17
Part 2.	매뉴버	19

Part 3.	미세조정 (Fine-tuning)	21
Part 4.	행성간 비행	23
Chapter	5. 시간계획 정하기	25
Chapter	6. 포획 (Capturing)	27
6.1.	대기를 이용한 포획 (Atmospheric Capture)	27
6.2.	위성을 이용한 포획 (Sling-shot Capture)	27
6.3.	포획을 위한 궤도조정 (Fine-tuning with Sling-shot Capture)	28
Chapter	7. 사례들	29
7.1.	Juno's Maneuver	29
Part 5.	다루어지지 않은 것들	31
Chapter	8. 3체 문제 (Three Body Problem)	33
8.1.	KSP의 간략화	33
8.2.	근일점 변화	33
8.3.	세차운동	33
Chapter	9. 상대론적 문제	35
9.1.	특수상대론: 로렌츠변환	35
9.2.	특수상대론: 적색/청색편이	35
9.3.	일반상대론적 효과 및 천체모델의 근사성	35
Part 6.	천체 데이터 및 프로토콜	37

시작하기

궤도에 올리기

- 1.1. 운동에너지 얻기
- 1.2. 공기저항
- 1.3. 공기역학 및 안정성
 - 1.3.1. Over-compensating.
- 1.4. 재진입시 주의사항
 - 1.4.1. 방열판 (Heat Shield).
 - **1.4.2. 낙하산** (Parashute). 이름 작동속도 면적

다단 로켓과 Δv

2.1. 연료

(1)
$$\Delta v = I_{sp} g_0 \log \frac{M+m}{M}$$

(2)
$$\Delta v = I_{sp} g_0 \log \frac{M + (1 + \alpha)m}{M + \alpha m}$$

(3)
$$\Delta v \to I_{sp} g_0 \log(1 + \alpha^{-1})$$

is independent of thrust force but only depend on isp and etc

Let's assume $I_{sp}=320s\ \mathrm{and}$

Estimated Engine Mass / Fuel Mass = 1/6

Estimated Fuel Tank Mass / Fuel Mass = 1/8

$$\Delta v = 4669.78 m/s$$

실제로는 1단의 경우 공기저항으로 인해 연료를 많이 실을 수록 오히려 얻을 수 있는 운동에너지가 줄어드는 결과를 보이기도 한다. 따라서 많은 양의 화물(Load)을 쏘아 올리기위해서는 '다단 로켓 (multi-stage rocket)'과 '아스파라거스 로켓 (asparagus-staging rocket)'이 필요하다.

2.2. 다단 로켓 (Linear Staging)

а

- 2.3. 아스파라거스 (Asparagus Staging)
- **2.4.** I_{sp}

$$I_{sp} = \frac{F}{\dot{m}g_0}$$

궤도운동

3.1. 용어설명 및 주의사항

*근일점은 꼭 태양과 지구사이만의 의미가 아니고 일반적으로 사용할것임

3.2. 원궤도

3.3. 타원궤도

별 (start) 우주선 (projectile) 위치에너지 (potential energy)

$$(5) r^2 \dot{\theta} = l$$

(6)
$$\ddot{r} - \frac{l^2}{r^3} + \frac{GM}{r^2} = 0$$

(7)
$$-l^2r^{-2}\frac{d^2r^{-1}}{d\theta^2} - l^2r^{-3} + GMr^{-2} = 0$$

(8)
$$\frac{d^2r^{-1}}{d\theta^2} + r^{-1} - GMl^{-2} = 0$$

이러한 우주선(projectile)의 운동방정식의 해는 다음과 같다.

(9)
$$r^{-1} = \frac{GM}{l^2} + \sqrt{\frac{2\epsilon}{l^2} + \left(\frac{GM}{l^2}\right)^2} \cos(\theta + \theta_0)$$

여기서 ϵ 은 우주선(projectile)의 질량당 총 에너지이다. 이러한 식은 이차곡선(원, 타원, 포물선, 쌍곡선)을 나타내는 표현이다. 따라서 이는 역제곱힘에서의 궤도가 이차곡선이 된다는

증명이다. 이 식을 l과 ϵ 이 아닌 l과 근일점 (r_p) 의 함수로 나타내면 다음과 같이 나타낼 수도 있다.

(10)
$$r^{-1} = \frac{r_p^{-1}}{2} \cdot \frac{1}{1 + \epsilon(GM)^{-1}r_p} + \frac{r_p^{-1}}{2} \cdot \frac{1 + 2\epsilon(GM)^{-1}r_p}{1 + \epsilon(GM)^{-1}r_p} \cos(\theta + \theta_0)$$

r이 무한대로 가지 않고 유한한 영역에서 진동하고 있으면 원이나 타원, 즉 구속궤도(bound orbit)이 되고, r이 무한대, 즉 $r^{-1}=0$ 인 지점이 있으면 비구속궤도(unbounded orbit)가 될 것이다.

3.4. 쌍곡선궤도 - 탄성충돌

3.5. 슬링샷

(11)
$$\Delta \theta = \pi + 2 \sin^{-1} \frac{1}{1 + 2\epsilon (GM)^{-1} r_p}$$

특akak aaa

특정 기준계에 대한 슬링샷 결과 어떤 기준계에 대해서 우주선의 입사 속도가 $\vec{v}_s(t=-\infty)$, 천체의 속도가 상수 \vec{v}_c 라고 한다면, 위와 같은 계산결과에 따라 우주선의 최종 속도가 어떻게 되는지 계산해보자.

우선 천체계에서 우주선의 속도는 $\vec{v}_s(t=-\infty) - \vec{v}_c$ 가 될 것이다.

예) 달을 이용한 가속

진입속도 v, 근접거리 r.

달 미션

매뉴버

미세조정 (Fine-tuning)

행성간 비행

시간계획 정하기

포획 (Capturing)

행성계 외부에서 진입하는 물체는 탈출속도를 넘어서므로¹ 힘이 작용하지 않으면 쌍곡선 궤도를 그리며 다시 행성계 밖으로 탈출하게 될 것이다. 안정적인 미션 수행을 위해서 행성간 미션에서는 도착지에서 충분히 감속하여 구속궤도를 만들 수 있는 기술이 필요하다. 이를 '포획'이라고 부르도록 하겠다. 포획이 이루어지지 않는다면 행성의 인공위성 궤도에 진입하는 미션을 수행할 수 없으며, 착륙 미션에 경우 한번만에 성공해야 하는 부담을 안게 된다.²

엔진을 이용한 능동적인 감속은 설명이 필요없으므로 여기서는 동력을 사용하지 않고 포획당하는 방법에 대해서 설명하고자 한다. 두가지 방법을 생각할 수 있을텐데, 행성의 대기를 이용한 방법과 행성의 위성을 이용한 방법이 있을 것이다. 각각의 방법에 대해서 설명하고자한다.

6.1. 대기를 이용한 포획 (Atmospheric Capture)

6.2. 위성을 이용한 포획 (Sling-shot Capture)

다음은 위성을 이용한 슬링샷으로 행성계에서의 속도를 줄일 수 있는지 검토해 보도록 하자. 위성과 조우시 위성의 속도가 우주선의 반대방향이라면 위성의 운동량을 받아 감속할 수 있으리라고 예상할 수 있을 것이다. 하지만 행성간 여행에서 그렇게 정확한 타이밍을 맞출 수 있으리라고 기대하기는 어렵다. 이번 section에서는 행성계 진입후 주어진 상황에서 감속할 수

 $^{^1}$ 정확히는 '행성계 관점에서 보았을 때 양(陽)의 에너지를 갖으므로'라고 하는 것이 옳을 것이다. '탈출속도'라는 개념은 보통 원궤도를 그리던 물체에 얼마만큼의 Δv 가 주어져야 탈출할 수 있는지에 대한 얘기이다.

²비구속궤도(쌍곡선궤도)로부터 대기권으로 진입할 때, 높은 진입속력으로 인해 높은 열이 발생하게 되어 우주 선이 소실될 위험성이 커지게 되며, 또한 다시 튕겨나가지 않고 충분히 감속할 수 있는 가능성도 줄어들게 된다.

있는지에 대해 알아볼 것이다. 다음 section에서는 진입 타이밍을 조정하는 법에 대해 논의해 보겠다.

우선 행성과 위성은 충분히 멀리 떨어져 있어서 조우(encounter)를 탄성충돌로 근사할 수 있다고 가정할 것이다. 사실 KSP는 각 천체의 '영향권'내에서 1체문제로 환원함으로서 이러한 가정을 충실히 따르고 있다.

6.3. 포획을 위한 궤도조정 (Fine-tuning with Sling-shot Capture)

사례들

7.1. Juno's Maneuver

- (1) 지구계를 탈출한다.
- (2) 약 2배의 공전궤도를 만들어 다시 지구와 만날 수 있게 한다.
- (3) 원일점에서 근일점을 낮게 하는 매뉴버를 실시하여 다음 매뉴버에서의 에너지 효율을 높인다.
- (4) 지구를 이용한 슬링샷 효과를 포함하여 목성과의 접점을 만든다.
- (5) 목성근체에서 목성과 비슷한 속도로 가속하여 목성궤도로 들어간다.

다루어지지 않은 것들

3체 문제 (Three Body Problem)

- 8.1. KSP의 간략화
- 8.2. 근일점 변화

(12)
$$\frac{d^2r^{-1}}{d\theta^2} + r^{-1} - GMl^{-2} - l^{-2}r^2V'(r) = 0$$

$$(13) \quad \frac{d^2r^{-1}}{d\theta^2} + r^{-1} - GMl^{-2} + 2l^{-2}r^3\left(\frac{|\alpha_-| - |\alpha_+|}{2} + \frac{|\alpha_-| + |\alpha_+|}{2}\cos(\theta - \omega t)\right) = 0$$

8.3. 세차운동

*로켓발사로 인한 변화 애초에 축은 0도로 고정

상대론적 문제

9.1. 특수상대론: 로렌츠변환

9.2. 특수상대론: 적색/청색편이

9.3. 일반상대론적 효과 및 천체모델의 근사성

천체 데이터 및 프로토콜

천체 데이터

이 챕터의 내용은 주로 게임 내부 데이터 및 물리법칙에 대한 것이며, 따라서 저작권은 게임제작사에 있으며, 인용하고 있는 제3자의 저작권은 없는 것으로 해석합니다. (독창성 결여) 데이터는 게임 플레이 중 직접 확인할 수 있는 부분이며, 상이한 점을 발견하면 갱신부탁드립니다.

- 10.1. 행성
- 10.2. 위성

탄도학 기초 for Kerbal Propulsion Lab

De revolutionibus orbium coelestium et momentis vehiculorum liberorum

저자 Albertus Liberius Humaniensis Disciplinus twpf.jp/alblib 초판 초쇄 2016년 8월 20일

이 저작물은 크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0 국제 라이선스 에 따라 이용할 수 있습니다.

라이선스 본문: https://creativecommons.org/licenses/by-sa/4.0/deed.ko

본 라이선스에 따라 공유 및 기여를 할 수 있는 원문의 주소는 다음과 같습니다. https://github.com/alblib/kerbal-book

단, 기초자료로서 활용된 Kerbal Space Program의 데이터는 Squad사의 저작물로서 저작권 보호를 받습니다. (https://kerbalspaceprogram.com/)