Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 5: Richiami di algebra lineare

Corso di Laurea Magistrale in Ingegneria Meccatronica

A.A. 2021-2022

In questa lezione

▶ Fatti base su vettori e trasformazioni lineari

▶ Fatti base su matrici

Vettori e basi in \mathbb{R}^n

- **1.** L'insieme (di vettori) \mathbb{R}^n con campo (di scalari) \mathbb{R} dotato delle consuete operazioni di somma tra vettori e prodotto di vettore per scalare, è uno spazio vettoriale.
- **2.** I vettori $v_1, \ldots, v_k \in \mathbb{R}^n$ sono detti linearmente indipendenti (dipendenti) se

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k = \mathbf{0}, \ \alpha_i \in \mathbb{R} \implies (\not\Rightarrow) \ \alpha_1 = \cdots = \alpha_k = \mathbf{0}.$$

- **3.** I vettori $v_1,\ldots,v_k\in\mathbb{R}^n$ formano una base $\mathcal B$ di uno spazio vettoriale $\mathcal V\subseteq\mathbb{R}^n$ se:
- (i) generano \mathcal{V} : $\forall v \in \mathcal{V}$, $\exists \alpha_i \in \mathbb{R}$ t.c. $v = \alpha_1 v_1 + \dots + \alpha_k v_k$ (span $\{v_1, \dots, v_k\} = \mathcal{V}$)
- (ii) sono linearmente indipendenti

Esempio: (in)dipendenza lineare

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, v_1 , v_2 , v_3 linearmente indipendenti?

$$\begin{cases} \alpha_1 + \alpha_2 = 0 \\ \alpha_1 - \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 - \alpha_3 = 0 \end{cases} \implies \alpha_1 = \alpha_2 = \alpha_3 = 0 \implies v_1, v_2, v_3 \text{ lin. indip.} \checkmark$$

Esempio: basi

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $v_3 = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$, base di $\mathcal{V} = \operatorname{span}\{v_1, v_2, v_3\}$?

$$\mathcal{B} = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix} \right\}$$
 (**N.B.** scelta generatori della base non unica!)

Trasformazioni lineari

1. Una trasformazione $f: \mathbb{R}^m \to \mathbb{R}^n$ si dice lineare se

(i)
$$f(v_1 + v_2) = f(v_1) + f(v_2), \quad \forall v_1, v_2 \in \mathbb{R}^m$$

(ii) $f(\alpha v) = \alpha f(v), \quad \forall v \in \mathbb{R}^m, \ \forall \alpha \in \mathbb{R}$

2. Una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ è univocamente individuata dalla sua restrizione ai vettori di una qualsiasi base \mathcal{B} di \mathbb{R}^m .

Trasformazioni lineari e rappresentazione matriciale

1. Fissata una base \mathcal{B}_1 di \mathbb{R}^m e una base \mathcal{B}_2 di \mathbb{R}^n è possibile rappresentare una trasformazione lineare $f: \mathbb{R}^m \to \mathbb{R}^n$ con una matrice $F \in \mathbb{R}^{n \times m}$ che descrive come le coordinate (rispetto a \mathcal{B}_1) di vettori di \mathbb{R}^m vengono mappate da f in coordinate di vettori (rispetto a \mathcal{B}_2) di \mathbb{R}^n .

2. Fissata una base \mathcal{B} di \mathbb{R}^n , sia $F \in \mathbb{R}^{n \times n}$ la matrice che rappresenta la trasformazione lineare $f: \mathbb{R}^n \to \mathbb{R}^n$. Sia $T \in \mathbb{R}^{n \times n}$ la matrice di cambio di base da \mathcal{B} di \mathbb{R}^n ad una "nuova" base \mathcal{B}' di \mathbb{R}^n . La matrice che rappresenta f nella nuova base è

$$F' = T^{-1}FT$$
.

Matrici: fatti base

1. Sia $F \in \mathbb{R}^{n \times m}$

nucleo di
$$F=\ker F\triangleq \{v\in\mathbb{R}^m: Fv=0\}$$
 immagine di $F=\operatorname{im} F\triangleq \{w\in\mathbb{R}^n: w=Fv, \exists v\in\mathbb{R}^m\}$ rango di $F=\operatorname{rank} F\triangleq \#$ righe (o colonne) lin. indipendenti di $F=\dim\operatorname{im} F$

- **2.** Sia $F \in \mathbb{R}^{n \times n}$, un vettore $v \in \mathbb{C}^n$ tale che $Fv = \lambda v$, $\lambda \in \mathbb{C}$, è detto autovettore di F corrispondente all'autovalore λ .
- **3.** Gli autovalori $\{\lambda_i\}_{i=1}^k$ di $F \in \mathbb{R}^{n \times n}$ sono le radici del polinomio caratteristico

$$\Delta_F(\lambda) = \det(\lambda I - F) = (\lambda - \lambda_1)^{\nu_1} (\lambda - \lambda_2)^{\nu_2} \cdots (\lambda - \lambda_k)^{\nu_k},$$

dove ν_i è la molteplicità algebrica dell'autovalore λ_i .

Matrici: fatti base

4. Ogni autovettore ν relativo all'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ soddisfa

$$(\lambda_i I - F)v = 0.$$

5. La molteplicità geometrica g_i dell'autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ è il numero massimo di autovettori linearmente independenti associati a λ_i e coincide con

$$g_i = \dim \ker(\lambda_i I - F) = n - \operatorname{rank}(\lambda_i I - F).$$
 $(1 \le g_i \le \nu_i)$

6. Se $\nu_i = g_i$ per ogni autovalore λ_i di $F \in \mathbb{R}^{n \times n}$ allora F è diagonalizzabile, cioè, esiste una matrice di cambio di base $T \in \mathbb{R}^{n \times n}$ tale che

$$F_D \triangleq T^{-1}FT$$
 è diagonale.

Esempio: rango, nucleo, immagine

$$F = \begin{bmatrix} 1 & -2 & 0 \\ -2 & 4 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad \text{ker } F? \text{ im } F? \text{ rank } F?$$

$$\ker F = \operatorname{span} \left\{ \begin{bmatrix} 1\\1/2\\-1/3 \end{bmatrix} \right\}, \quad \operatorname{im} F = \operatorname{span} \left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}, \quad \operatorname{rank} F = 2$$

G. Baggio

Esempio: autovalori/autovettori, diagonalizzazione

$$F = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, F diagonalizzabile? Se sì, calcolare T .

$$\lambda_1 = i, \ \nu_1 = 1, \ g_1 = 1, \ \lambda_2 = -i, \ \nu_2 = 1, \ g_2 = 1 \implies F$$
 diagonalizzabile \checkmark

$$T = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix} \implies F_D = T^{-1}FT = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$

Esempi: diagonalizzabilità

1.
$$F = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \implies \lambda_1 = 1$$
, $\nu_1 = 2$, $g_1 = 2 \implies \nu_1 = g_1$ diagonalizzabile \checkmark

2.
$$F = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \implies \lambda_1 = 2$$
, $\nu_1 = 1$, $g_1 = 1$, $\lambda_2 = 0$, $\nu_2 = 1$, $g_2 = 1$ $\implies \nu_i = g_i$ diagonalizzabile \checkmark

G. Baggio Lez. 5: Richiami di algebra lineare