Lesson 17: Homogeneous First-Order Differential Equations

ODE 1 - Prof. Adi Ditkowski

1 Recognition and Definition

Definition 1 (Homogeneous Function). A function f(x,y) is homogeneous of degree n if:

$$f(tx, ty) = t^n f(x, y)$$
 for all $t > 0$

Definition 2 (Homogeneous Differential Equation). A first-order ODE is homogeneous if it can be written as:

 $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$

or equivalently, if M(x,y)dx + N(x,y)dy = 0 where M and N are homogeneous functions of the same degree.

Quick Recognition Tests:

- 1. Check if all terms have the same total degree in x and y
- 2. Try to factor out powers to write as F(y/x)
- 3. Apply the scaling test: $f(tx, ty) = t^n f(x, y)$

2 The Substitution Method

The v=y/x Substitution Algorithm:

- 1. Set $v = \frac{y}{x}$, so y = vx
- 2. Differentiate: $\frac{dy}{dx} = v + x \frac{dv}{dx}$ (Product Rule!)
- 3. Substitute into the original equation
- 4. Simplify to get: $x \frac{dv}{dx} = F(v) v$
- 5. Separate variables: $\frac{dv}{F(v)-v} = \frac{dx}{x}$
- 6. Integrate both sides

7. Back-substitute v = y/x

Critical Points:

- The derivative $\frac{dy}{dx} = v + x \frac{dv}{dx}$ comes from the product rule
- Check for singular solutions where F(v) v = 0
- The substitution fails along x = 0 (use u = x/y instead if needed)

3 Detailed Examples

Example 1 (Standard Homogeneous). Solve: $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$ Solution:

- 1. Verify homogeneity: $\frac{dy}{dx} = 1 + \frac{y}{x} + \left(\frac{y}{x}\right)^2 = F(y/x)$ \checkmark
- 2. Let v = y/x, then y = vx and $\frac{dy}{dx} = v + x\frac{dv}{dx}$
- 3. Substitute: $v + x \frac{dv}{dx} = 1 + v + v^2$
- 4. Simplify: $x \frac{dv}{dx} = 1 + v^2$
- 5. Separate: $\frac{dv}{1+v^2} = \frac{dx}{x}$
- 6. Integrate: arctan(v) = ln |x| + C
- 7. Back-substitute: $\arctan\left(\frac{y}{x}\right) = \ln|x| + C$

Example 2 (Disguised Homogeneous). *Solve:* $(x - y) \frac{dy}{dx} = x + y$ *Solution:*

- 1. Rewrite: $\frac{dy}{dx} = \frac{x+y}{x-y} = \frac{1+y/x}{1-y/x}$ (homogeneous!)
- 2. Let v = y/x: $v + x \frac{dv}{dx} = \frac{1+v}{1-v}$
- 3. Simplify: $x \frac{dv}{dx} = \frac{1+v}{1-v} v = \frac{1+v-v(1-v)}{1-v} = \frac{1+v^2}{1-v}$
- 4. Separate: $\frac{1-v}{1+v^2}dv = \frac{dx}{x}$
- 5. Use partial fractions on the left side
- 6. Final solution involves arctan and ln terms

4 Special Cases and Variations

2

Alternative Substitution: When the equation has more y terms, try $u = \frac{x}{y}$:

- x = uy implies $\frac{dx}{dy} = u + y\frac{du}{dy}$
- \bullet The equation becomes separable in u and y

Prof. Ditkowski's Exam Patterns:

- Often combines homogeneous with initial conditions
- May ask to verify homogeneity before solving
- Likes equations of the form (ax + by)dx + (cx + dy)dy = 0
- Tests recognition with trigonometric terms like $\sin(y/x)$
- Partial credit for correct substitution setup

5 Geometric Interpretation

Solution curves of homogeneous equations have the property that they look similar under scaling from the origin. If (x, y) is on a solution curve, then (kx, ky) is on a geometrically similar curve.

6 Recognition Flowchart

The key steps for recognition are:

- 1. Check if the equation can be written as $\frac{dy}{dx} = F\left(\frac{y}{x}\right)$
- 2. Verify that all terms have the same total degree in x and y
- 3. Apply the scaling test: $f(tx, ty) = t^n f(x, y)$

If any test confirms homogeneity, proceed with the v = y/x substitution.