

MENU

SEARCH

INDEX

1/1

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 09326902

(43)Date of publication of application: 16.12.1997

(51)Int.CI.

H04N 1/04 B41J 2/525 H04N 1/028 H04N 1/19 H04N 1/48

(21)Application number: 08144679

(22)Date of filing: 06.06.1996

(71)Applicant:

(72)Inventor:

FUJI PHOTO FILM CO LTD

KATAYAMA TORU

(54) METHOD FOR CORRECTING PICTURE ELEMENT DEVIATION IN SUBSCANNING DIRECTION OF LINEAR IMAGE SENSOR

(57)Abstract:

PROBLEM TO BE SOLVED: To correct a deviation between colors in an output image resulting from a deformation (picture element deviation) in the subscanning direction of each of R, G, B linear image sensors.

SOLUTION: A test chart 102 on which a linear image 100 extended in a main scanning direction X is carried is read in 2-dimension by each of R, G, B linear image sensors 1r, 1g, 1b and an image data file is generated for each picture element of each main scanning line. Based on the image data file, a picture element deviation amount corresponding to a color slurring in the subscanning direction between the picture element of the G linear image sensor 1g and the picture elements of the same picture element number of the remaining image sensors 1r, 1g is calculated for each picture element number to generate a picture element deviation correction table. Actually in the case that the image information carried on the original is read by each of R, G, B linear image sensors 1r, 1g, 1b as image data, the read image data are corrected based on the picture element deviation correction table.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998 Japanese Patent Office

(19) 日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平9-326902

(43)公開日 平成9年(1997)12月16日

(51) Int. C1. 6		識別記号	庁内整理番号	FI				技術表示箇所		
H 0 4 N	1/04			H 0 4 N	1/04		D			
B 4 1 J	2/525				1/028		С			
H 0 4 N	1/028			B 4 1 J	3/00		В			
	1/19			H 0 4 N	1/04	103	E			
	1/48				1/46		Α			
		審査請求	未請求 請求項の	D数4 O	L		(全10頁)) 	_	
(21)出願番号	特顯平8-144679			(71)出願人	000005201 _ 富士写真フイルム株式会社					
(22)出顧日	平成8年(1996)6月6日			(72)発明者	神奈川県南足柄市中沼210番地					
								足柄上郡開成町宮台798番地 富		

(54) 【発明の名称】リニアイメージセンサの副走査方向画素ずれ補正方法

(57)【要約】

【課題】R、G、B用各リニアイメージセンサの副走査 方向の湾曲 (画素ずれ) を原因とする出力画像上の色間 のずれを補正する。

【解決手段】主走査方向Xに延びる直線画像100が担 持されたテストチャート102をR、G、B用各リニア イメージセンサ1 r、1g、1bにより2次元的に読み 取り、各主走査ラインの各画素毎に画像データファイル を作成する。この画像データファイルに基づき、G用の リニアイメージセンサ1gの画素と、残りのイメージセ ンサ1 r、1 bを構成する同一画素番号の画素との間の 副走査方向の色ずれに対応する画素ずれ量を画素番号毎 に計算して画素ずれ量補正テーブルを作成する。実際 に、原稿に担持された画像情報を前記R、G、B用各リ ニアイメージセンサ1 r、1g、1bで画像データとし て読み取ったとき、読み取った各画像データを前記画素 ずれ量補正テーブルに基づいて補正する。

F I G. 5

士写真フイルム株式会社内

(74)代理人 弁理士 千葉 剛宏 (外1名)

【特許請求の範囲】

【請求項1】原稿に担持された画像情報を含む光を3色分解光学系に導き、この3色分解光学系に一体的に取り付けられたR、G、B用各リニアイメージセンサにより前記原稿を主走査方向に読み取るとともに、前記原稿を前記3色分解光学系に対して相対的に副走査方向に移送することで前記原稿に担持された画像情報を2次元的に読み取って画像データを得る画像読取装置における前記R、G、B用各リニアイメージセンサ間の副走査方向の画素ずれを補正する方法において、

主走査方向に延びる直線画像が担持されたテストチャートを前記R、G、B用各リニアイメージセンサにより2次元的に読み取り、各主走査ラインの各画素毎に画像データを記憶する過程と、

記憶した画像データに基づき、前記R、G、B用各リニアイメージセンサのうち、任意の1色のリニアイメージセンサを基準とし、基準としたリニアイメージセンサの各画素と残りのイメージセンサを構成する同一画素番号の画素との間の副走査方向の色ずれに対応する画素ずれ量を画素番号毎に計算して画素ずれ量補正テーブルとして記憶する過程とを有し、

実際に、前記原稿に担持された画像情報を前記R、G、B用各リニアイメージセンサで画像データとして読み取ったとき、読み取った各画像データを前記画素ずれ量補正テーブルに基づいて補正するようにしたことを特徴とするリニアイメージセンサの副走査方向画素ずれ補正方法。

【請求項2】原稿に担持された画像情報を含む光を3色分解光学系に導き、この3色分解光学系に一体的に取り付けられたR、G、B用各リニアイメージセンサにより前記原稿を主走査方向に読み取るとともに、前記原稿を前記3色分解光学系に対して相対的に副走査方向に移送することで前記原稿に担持された画像情報を2次元的に読み取って画像データを得る画像読取装置における前記R、G、B用各リニアイメージセンサ間の副走査方向の画素ずれを補正する方法において、

主走査方向に延びる直線画像が担持されたテストチャートを前記R、G、B用各リニアイメージセンサにより2次元的に読み取り、各主走査ラインの各画素毎に画像データを記憶する過程と、

記憶した画像データに基づき、前記R、G、B用各リニアイメージセンサのうち、任意の1色のリニアイメージセンサを基準とし、基準としたリニアイメージセンサの各画素と残りのイメージセンサを構成する同一画素番号の画素との間の副走査方向の色ずれに対応する画素ずれ量を画素番号毎に計算する過程と、

前記基準とした任意の1色のリニアイメージセンサの各 画素について主走査方向に延びる基準とする仮の直線か らの偏位量を計算する過程と、

前記偏位量と前記画素ずれ量とを各画素毎に加算し、こ

の加算後の各面素毎の面素ずれ量を面素ずれ量補正テー ブルとして記憶する過程と、

2

実際に、前記原稿に担持された画像情報を前記R、G、B用各リニアイメージセンサで画像データとして読み取ったとき、読み取った各画像データを前記画素ずれ量補正テーブルに基づいて補正するようにしたことを特徴とするリニアイメージセンサの副走査方向画素ずれ補正方

#

【請求項3】原稿に担持された面像情報を含む光を3色 10 分解光学系に導き、この3色分解光学系に一体的に取り 付けられたR、G、B用各リニアイメージセンサにより 前記原稿を主走査方向に読み取るとともに、前記原稿を 前記3色分解光学系に対して相対的に副走査方向に移送 することで前記原稿に担持された画像情報を2次元的に 読み取る画像読取装置における前記R、G、B用各リニ アイメージセンサ間の副走査方向の画案ずれを補正する 方法において、

主走査方向に延びる直線画像が担持されたテストチャートを前記R、G、B用各リニアイメージセンサにより2次元的に読み取り、各主走査ラインについて複数画素毎に画像データを記憶する過程と、

記憶した複数画素毎の画像データに基づき、前記R、G、B用各リニアイメージセンサのうち、任意の1色のリニアイメージセンサを基準とし、基準としたリニアイメージセンサの複数画素毎の画素と残りのイメージセンサを構成する同一画素番号の画素との間の副走査方向の色ずれに係る画素ずれ最を計算する過程と、

前記複数画素毎に計算した画素ずれ量を、画素番号を変数として各n次式に近似し、近似した2つのn次式のそれぞれから全画素についての画素ずれ量を算出して画素ずれ量補正テーブルとして記憶し、

実際に、前記原稿に担持された画像情報を前記R、G、B用各リニアイメージセンサで画像データとして読み取ったとき、読み取った各画像データを前記画素ずれ量補正テーブルに基づいて補正するようにしたことを特徴とするリニアイメージセンサの副走査方向画素ずれ補正方法。

【請求項4】原稿に担持された画像情報を含む光を3色分解光学系に導き、この3色分解光学系に一体的に取り付けられたR、G、B用各リニアイメージセンサにより前記原稿を主走査方向に読み取るとともに、前記原稿を前記3色分解光学系に対して相対的に副走査方向に移送することで前記原稿に担持された画像情報を2次元的に読み取る画像読取装置における前記R、G、B用各リニアイメージセンサ間の副走査方向の画案ずれを補正する方法において、

主走査方向に延びる直線画像が担持されたテストチャートを前記R、G、B用各リニアイメージセンサにより2次元的に読み取り、各主走査ラインについて複数画素毎50に画像データを記憶する過程と、

20

記憶した複数画素毎の画像データに基づき、前記R、G、B用各リニアイメージセンサのうち、任意の1色のリニアイメージセンサを基準とし、基準としたリニアイメージセンサの複数画素毎の画素と残りのイメージセンサを構成する同一画素番号の画素との間の副走査方向の色ずれに係る画素ずれ量を計算する過程と、

前記複数画素毎に計算した画素ずれ量を、画素番号を変数として各n次式に近似し、近似した2つのn次式のそれぞれから全画素についての画素ずれ量を算出する過程と、

前記基準とした任意の1色のリニアイメージセンサの各 画素について主走査方向に延びる基準とする仮の直線か らの偏位量を計算する過程と、

前記偏位量と前記画素ずれ量とを各画素毎に加算し、加 算後の各画素毎の画素ずれ量を画素ずれ量補正テーブル として記憶する過程と、

実際に、前記原稿に担持された画像情報を前記R、G、B用各リニアイメージセンサで画像データとして読み取ったとき、読み取った各画像データを前記画素ずれ量補正テーブルに基づいて補正するようにしたことを特徴とするリニアイメージセンサの副走査方向画素ずれ補正方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、各々主走査方向に多数の光電変換画素が連結されたR、G、B用のリニアイメージセンサを3個用いたカラー画像読取装置において、各リニアイメージセンサの副走査方向の湾曲の差に基づいて発生する色ずれ量を補正する、リニアイメージセンサの副走査方向画素ずれ補正方法に関する。

[0002]

【従来の技術】カラー画像競取装置は、例えば、原稿台上に載せられた原稿に照明光を照射することにより、前記原稿に担持された画像情報を含む光を、反射光または透過光として集光光学系(結像光学系)に導いた後、3色分解プリズム(3色分解光学系)に供給し、この3色分解プリズムのR、G、B用各光線の出射面に一体的に取り付けられたR、G、B用各リニアイメージセンサで光電的に読み取るように構成されている。

【0003】この場合、各リニアイメージセンサにより 原稿を主走査方向に読み取るとともに、前記原稿を前記 主走査方向と略直交する副走査方向に相対的に移動する ことで、R、G、B各色についての2次元的な画像情報 を得ることができる。

【0004】図14に模式的に示すように、一般的なリニアイメージセンサ1は、基本的には多数の光電変換画素 Pが長手方向に直線状に連結された受光部2と、この受光部2に沿って両側に形成された図示しない奇数、偶数の各面素転送部とから構成されている。

【0005】この場合、受光部2と画素転送部等は半導

体チップとして一体的に製作され、この半導体チップ が、基台としてのセラミックパッケージ3上に形成され た凹部に接着剤により貼り付けられ、その上に光学ガラ スが貼り付けられることで、リニアイメージセンサ1が 製作されている。

【0006】図15に模式的に示すように、このようにして製作された3個のリニアイメージセンサ1r、1g、1bの光入射面である前記光学ガラス面が3色分解プリズム32r、32g、32bのR、G、B用各光線00出射面に接着剤により固着される。

[0007]

【発明が解決しようとする課題】ところで、このような 3色分解光学系を有するカラー画像読取装置において、 解像度を上げようとする場合、基本的には、光電変換画 素Pの数の多いリニアイメージセンサ1を用いればよ い。最近では、光電変換画素数が7000個を超えるリ ニアイメージセンサが市場に提供されている。

【0008】しかしながら、このように多数の画素 Pを有するリニアイメージセンサ1 r、1g、1bは、各リニアイメージセンサ1 r、1g、1b毎に個別に副走査方向に湾曲しているということが本発明者等により分かり、また、原稿から3色分解プリズム32 r、32 g、32 bに固着された各リニアイメージセンサ1 r、1g、1bまでの光学系に係わる副走査方向の湾曲がこれに加えられて、結果として、出力画像上において、副走査方向に色ずれが発生するという問題があることが分かった。

【0009】図16は、この出願の発明者等が測定した、R用リニアイメージセンサ1r、G用リニアイメー30 ジセンサ1gおよびB用リニアイメージセンサ1bについての副走査湾曲の特性例を、それぞれ、符号Rchd、Gchd、Bchdで示してる。縦軸は、画素ずれ量(湾曲量)であり、横軸は、画素番号である。

【0010】図16から、副走査湾曲特性Rchd、Gchd、Bchdは、それぞれ、画素連結方向(主走査方向)、すなわち、横軸に対しては滑らかに変化しているが、R、G、B各チャンネル間では特に相関関係がなく湾曲しているということが分かる。

【0011】この発明はこのような課題を考慮してなされたものであり、リニアイメージセンサおよび(または)光学系の副走査方向の湾曲(画素ずれ)を原因とする出力画像上の色ずれを補正することを可能とするリニアイメージセンサの副走査方向画素ずれ補正方法を提供することを目的とする。

[0012]

【課題を解決するための手段】この発明は、原稿に担持された画像情報を含む光を3色分解光学系に導き、この3色分解光学系に一体的に取り付けられたR、G、B用各リニアイメージセンサにより前記原稿を主走査方向に読み取るとともに、前記原稿を前記3色分解光学系に対

10

して相対的に副走査方向に移送することで前記原稿に担 持された画像情報を2次元的に読み取って画像データを 得る画像読取装置における前記R、G、B用各リニアイ メージセンサ間の副走査方向の画素ずれを補正する方法 において、主走査方向に延びる直線画像が担持されたテ ストチャートを前記R、G、B用各リニアイメージセン サにより2次元的に読み取り、各主走査ラインの各画素 毎に画像データを記憶する過程と、記憶した画像データ に基づき、前記R、G、B用各リニアイメージセンサの うち、任意の1色のリニアイメージセンサを基準とし、 基準としたリニアイメージセンサの各面素と残りのイメ ージセンサを構成する同一画素番号の画素との間の副走 査方向の色ずれに対応する画素ずれ量を画素番号毎に計 算して面素ずれ量補正テーブルとして記憶する過程とを 有し、実際に、前記原稿に担持された画像情報を前記 R、G、B用各リニアイメージセンサで画像データとし て読み取ったとき、各画像データを前記画案ずれ量補正 テーブルに基づいて補正するようにしたことを特徴とす

【0013】この発明によれば、原稿からR、G、B用各リニアイメージセンサに至るまでの光学系の副走査方向の色ずれに対応する画素ずれ量を予め測定し、画素ずれ量補正テーブルとして記憶しておくようにしているので、実際に、前記原稿に担持された画像情報を前記R、G、B用各リニアイメージセンサで画像データをして読み取ったとき、読み取った各画像データを前記画素ずれ量補正テーブルに基づいて好適に補正することができる。

【0014】なお、画素ずれ量補正テーブルは、このように基準とした任意の1色のリニアイメージセンサを基準に残りの2色分についての画素ずれ量補正テーブルとして作成してもよく、また、基準とした任意の1色のリニアイメージセンサについて仮の直線からの偏位量を求めておき、R、G、B各リニアイメージセンサ毎の3色分についての画素ずれ量補正テーブルとして記憶しておいてもよい。3色分についての画素ずれ量補正テーブルを記憶しておくことにより、色ずれの補正と画像のゆがみの補正を同時に行うことができる。

【0015】さらに、画素ずれ量補正テーブルを作成する際に、複数画素毎に測定データを得、この測定データを基にn次近似式を作成し、このn次近似式に基づき画素ずれ量補正テーブルを作成することにより計算時間を短縮し、全画素について、突発的に発生する雑音による誤差の発生の少ない画素ずれ量補正データを得ることができる。

[0016]

【発明の実施の形態】以下、この発明の一実施の形態について図面を参照して説明する。なお、以下に参照する図面において、上述の図14~図16に示したものと対応するものには同一の符号を付けてその詳細な説明は省

略する。また、図面を繰り返して掲載する煩雑さを避けるために、必要に応じてそれらの図面をも参照する。

【0017】この発明は、図1に示すような透過原稿語取用の画像読取装置10Tおよび図2に示すような反射原稿読取用の画像読取装置10Rのいずれの読取形式の画像読取装置にも適用することができる。なお、この実施の形態において、透過型の画像読取装置10Tには、反射型の画像読取装置10Rに設けられている後述する反射光学系(第1および第2ミラーユニット61、62)が設けられていない。

【0018】図1に示す画像読取装置10Tは、搬送機構11により矢印Y方向(副走査方向Yともいう。)に 搬送される原稿カセット12が照明光学系14からの照明光によって矢印X方向(主走査方向Xともいう。)に 沿って照明され、原稿カセット12に保持された透過型 読取原稿(単に、透過原稿ともいう。) FTに記録された画像情報が、透過光しとしてズームレンズを含む結像光学系16により結像部18に集光され、結像部18により電気信号に変換されるように構成される。なお、照明光学系14、結像光学系16および結像部18とは、図示しない固定部材によりハウジングに固定されている。

【0019】照明光学系14は、内周面に光の拡散面が 形成され、長手方向に沿ってスリット20が形成された 円筒状の拡散キャビティ22と、この拡散キャビティ2 2の両端部に装着されたハロゲンランプ等からなる光源 24a、24bとから構成される。

【0021】この図1例に示す透過型の画像読取装置10Tでは、搬送機構11により矢印Y方向に搬送される原稿カセット12に対してリニアイメージセンサ1r、1g、1bにより矢印X方向に主走査されることで、原稿カセット12に保持された原稿Fの画像の全面が読み取られる。このようにしてリニアイメージセンサ1r、1g、1bにより読み取られた光電変換信号は、図示しない。

60 ない信号処理基板に供給される。

【0022】一方、図2に示す画像読取装置10Rは、ハウジングの上部に、原稿載置台52が開閉自在に配置されている。原稿載置台52には、反射型読取原稿(単に、反射原稿ともいう。)FRを載せるための透明なガラス板54が設けられるとともに、このガラス板54上には、原稿押え板56が揺動自在に配置される。なお、図2においても、図1、図14~図16に示したものと対応するものには同一の符号を付け、その詳細な説明を省略する。

【0023】図2において、ハウジング内には、反射原稿FRからの反射光しの光路を変更する反射光学系である第1および第2ミラーユニット61、62を副走査方向 Yに移送させる移送機構60と、第1および第2ミラーユニット61、62を介して得られた画像情報を有する 光しを集光するズームレンズを含む結像光学系16と、この結像光学系16により集光された光しに含まれた画像情報を光電的に読み取る結像部18とが配設される。

【0024】第1ミラーユニット61には、反射原稿FRに照明光Laを照射するための照明用光源64a、64bと、反射原稿FRからの鉛直の反射光Lの光路を水平方向に変更して第2のミラーユニット62に導くための反射ミラー66とが配設される。これら照明用光源64a、64bと反射ミラー66とは、副走査方向Yと直交する(図2において、紙面と直交する)主走査方向Xに延びた長尺な構成とされている。

【0025】第1ミラーユニット61を構成する反射ミラー66により反射された反射光しの光路は、第2ミラーユニット62を構成する、主走査方向Xに延びた長尺な反射ミラー76、78によりさらに2回光路が変更されて、結像光学系16に導かれる。

【0026】結像部18は、光Lの光路状に配置されかつ結像光学系16に一体的に設けられた3色分解プリズム32r、32g、32bを有し、各プリズム32r、32g、32bの光出射面には、CCDリニアイメージセンサ1r、1g、1bが接着剤により固定されている。

【0027】移送機構60は、第1および第2ミラーユニット61、62を副走査方向Yへ移送するステッピングモータ70を備え、このステッピングモータ70の駆動軸側に回転軸72に第1紐状体73と第2紐状体74とが巻かれ、これら第1および第2紐状体73、74は、図示しない複数のプーリを介して第1および第2ミラーユニット61、62に対して係合され、第1ミラーユニット61を第2ミラーユニット62の移送速度の2倍の速度で移送する周知の構成とされている。換書すれば、第1ミラーユニット62を移送するようにしているので、第1ミラーユニット62を移送するようにしているので、第1ミラーユニット61の移送距離の半分の距離だけ第2ミラーユニット6

2が矢印Y方向に移送される。このため、副走査方向Yへの移送中に、例えば、画像情報の読取中に、反射原稿FRと結像光学系16との間の反射光しの光路長が一定の距離に保持され、ピントがずれることがない。

【0028】このようにして、第1および第2のミラーユニット61、62が、図2中、実線で示す位置から二点鎖線の位置まで移送されることにより、反射原稿FRに担持された画像情報が、リニアイメージセンサ1r、1g、1bにより2次元的に全て読み取られることになる。このリニアイメージセンサ1r、1g、1bから出力される光電変換信号は、図示しない信号処理基板に供給される。

【0029】図3は、図1例および図2例の画像読取装置10T、10Rに適用可能であって、この発明の一実施の形態が適用された補正テーブル作成装置79の概略的な構成を示している。なお、この図3は、後に説明するように、画素ずれ補正装置179の構成をも示している。

【0030】図3において、上述したように、原稿F (FT、FR) の画像情報を担持した光しがズームレン ズを含む結像光学系16を介し、3色分解プリズム32 r、32g、32bを通じて結像部18を構成するリニ アイメージセンサ1r、1g、1bに入射する。リニア イメージセンサ1 r、1g、1bからの出力信号は、そ れぞれ、図示しない信号処理基板に搭載される、オフセ ットと利得の調整可能な可変利得増幅器80m、80 g、80bを介して14ビットの分解能のA/D変換器 82 r、82g、82bに供給され、画像データSr、 Sg、Sbが補正テーブル作成部84に供給される。こ の場合、画像読取の高速化のために、可変利得増幅器8 Or、80g、80bとA/D変換器82r、82g、 82bとは、リニアイメージセンサ1r、1g、1bを 構成する図示しない奇数画素転送部と偶数画素転送部毎 に設けても良い。

【0031】次に、図4に示す補正テーブル作成用フローチャートをも参照してリニアイメージセンサ1 r、1g、1bの副走査湾曲(図16参照)を補正するための補正テーブルの作成方法について説明する。

【0032】まず、図5中に示す、主走査方向Xに延びる直線画像(横一本線)100が担持されたテストチャート102を、図1に示す原稿カセット12に透過原稿FTとして取り付け、または図2に示す原稿載置台52上に反射原稿FRとして載せる。そして、そのテストチャート102に担持された直線画像100を含む副走査方向Yの一定範囲を結像光学系16、3色分解プリズム32r、32g、32bを介してリニアイメージセンサ1r、1g、1bにより読み取る(ステップS1)。なお、このときの副走査方向Yの読取解像度を設定可能な最大の解像度とすることにより、検出される湾曲量の分60解能が向上する。

【0033】この場合、直線画像100の副走査方向の太さは、数画素分に対応する太さにしてある。また、直線画像100の色は黒色であるが、灰色でもよい。あるいは、テストチャート102全体を黒色とし、白色(反射原稿の場合)または透明(透過原稿の場合)としてもよい。このように、テストチャート102上の直線画像100の色を無彩色にするのは、リニアイメージセンサ1r、1g、1bからの出力信号のレベルを同じにするためである。

【0034】副走査方向Yの一定範囲の読取範囲は、図6に示すリニアイメージセンサ1の副走査方向Yの湾曲 型の最大値Dmaxを含む範囲であることを前提として、テストチャート102を前記所定箇所に取り付ける際の位置ずれ、傾き等によって直線画像100が読取範囲内からはみ出さないだけの余裕を考慮したライン数とする。

【0035】そこで、図7に示すように、テストチャート102を前記した一定範囲分(Zライン分とする。)、読み込んだとき、リニアイメージセンサ1 r、1g、1b毎に、その測定データである、7500画素 > 2ライン個からなる画像データファイル104 r、104 g、104 bの各アドレスには、14ビットの画像データファイル104 r、104 g、104 bに記憶されている。この画像データファイル104 r、104 g、104 bに記憶されている内容のイメージは、図16に示した、副走査湾曲特性Rchd、Gchd、Bchdと同等である。

【0036】次に、副走査方向Yの画案ずれ量(位置ずれ量)を計算する(ステップS3)。この場合、任意の1色、この実施の形態では、G色用のリニアイメージセンサ1gを基準とし、このリニアイメージセンサ1gを構成する各画案と残りのリニアイメージセンサ1г、1bを構成する同一画素番号の画素との間の副走査方向Yの色ずれに対応する画案ずれ量を画案番号毎に計算してもよいが、計算量(計算時間)が膨大になるのを避けるために主走直方向Xで複数画素毎、この実施の形態では、10画素毎(例えば、画素番号1、11、21、…)に画素ずれ量Dgb(GチャンネルとBチャンネル間:Gチャンネル基準のBチャンネル間:Gチャンネル基準のBチャンネル間:Gチャンネル基準のBチャンネル間:Gチャンネル基準

(1)式において、画素ずれ量近似関数Egb(Nx)は、図9に模式的に点線で示す8次式であり、a0~a9は係数、Nxは変数である画素番号である。同様に、Gチャンネル基準のRチャンネルの画素ずれ量Dgrについての8次近似式Egr(Nx)(図示していない)も求めることができる。

【0042】そして、これら8次近似式Egb、Egr

*のRチャンネルのずれ量) を 0.1 画素単位で計算する こととした。

【0037】この画素ずれ量Dgb、Dgrの計算は、例えば、図7、図16のそれぞれに示す画素番号Nxの画素を例として説明すると、図7に示す画像データファイル104から、図8に示すように、副走査方向Yの記憶した16ラインの間にA/D変換後のレベルである、直線画像100に対応する、略同一形状の山形になる画像データSr、Sg、Sbが得られることが分かる。なお、図8は、理解の容易化のために、画像データファイル104r、104g、104bの画素番号Nxの第1ラインから第16ラインまでの各アドレスに記憶されている14ビットのA/D変換レベルを、縦軸の上方がシャドウ側となる濃度レベルに換算して示している。

【0038】そこで、画素番号N×の画素の画素ずれ量Dgb(GチャンネルとBチャンネル間)は、図8に示すB用画像データSb(Nx)を矢印J方向に0.1画素分ずつずらし、ずらした位置毎に図8示すG用画像データSg(Nx)から画素毎に被算して、その差が最小となるずれ量を画素ずれ量Dgbとするようにしている。同様に、画素番号N×の画素の画素ずれ量Dgr(GチャンネルとRチャンネル間)は、R用画像データSbを矢印K方向に0.1画素分ずつずらし、ずらした位置毎にG用画像データSgから画素毎に対算して、その差が最小となるずれ量を画素ずれ量Dgrとするようにしている。

【0039】このようにして、10画素毎にステップS 3の処理での2種類の画素ずれ量DgbとDgrとが算出される。図9は、10画素毎に得られた2種類の画素ずれ量DgbとDgrの中、画素ずれ量Dgb(Nx)を模式的にプロットして示している。

【0040】次に、これら2種類の画素ずれ量Dgb (Nx)とDgr (Nx)に基づき画素番号Nxを変数 (Nx=1、2、…、7500)としてn次式に近似する (ステップS4)。この実施の形態では、8次式に近似することにより、近似の精度が向上した。すなわち、Gチャンネル基準のBチャンネルの画素ずれ量Dgb (Nx)を表す近似式を画素ずれ量近似関数 (画素ずれ量近似式または8次近似式ともいう。) Egb (Nx) とすれば、次の(1)式で与えられる。

[0041]

Egb $(Nx) = a_0 Nx^8 + a_1 Nx^7 + \dots + a_8 \dots (1)$

から、面素番号1から画像番号7500までの各画素についての補正画素ずれ量Dgb'、Dgr'を求め、求めた補正画素ずれ量Dgb'、Dgr'をメモリに格納して画素ずれ量補正テーブル110(図10参照)として記憶する(ステップS5)。なお、補正画素ずれ量Dgb'、Dgr'は、補正回路の種類(加算器を使用するのか、乗算器を使用するのか等)に応じて、画素ずれ

量Dgb、Dgrの符号を変えた値または比の値として 求めることができる。上述の8次近似式Egb、Egr より、各画素の補正画素ずれ量Dgb'、Dgr'は、 内挿あるいは外挿の補間演算で求められる。

【0043】そして、実際に、原稿下に担持された画像情報をリニアイメージセンサ1r、1g、1bにより画像データSr、Sg、Sbとして読み取ったときに、各画像データSr、Sbを画素ずれ量補正テーブル110を利用して補正することにより、画素ずれ量が補正された画像データSra、Sga(Sga=Sg)、Sbaを得ることができる。

【0045】このようにして得られた画素ずれ量が補正された画像データSra、Sga(Sga=Sg)、Sba(図3参照)に基づいて、ディスプレイ上に表示させたとき、または例えば、CMYKの各製版用フイルムを作成し、または直接刷版を作成して、カラー画像を印刷したとき、ディスプレイ上または印刷紙上の出力画像における各色間の色ずれを視認することができない程度に低減することができた。

【0046】ただし、実際上、リニアイメージセンサ1が湾曲しているので、この湾曲に対応して、正確には、基準としてG用リニアイメージセンサ1gの湾曲に対応して出力画像上では、画像のゆがみが発生する。通常、この画像のゆがみは、きわめて小さい量であり、問題にはならない。

【0047】しかし、この画像のゆがみをも補正する補正テーブルを作成することもできる。この場合には、基準とした色、すなわちG色のリニアイメージセンサ1gの各画素について、図12に示すように、主走査方向Xに延びる仮の直線114からの偏位量dxを計算する(ステップS6)。なお、この場合にも、10画素毎に読み取った画像データSgから8次近似式Egを作成し、その8次近似式Egの面素番号に対応する各値と仮の直線114との間の値を偏位量dxとするものとする

【0048】そして、この偏位量dxを先に作成した画素ずれ量補正テーブル110の各補正後画素ずれ量Dgb'、Dgr'およびGチャンネル用の補正画素ずれ量Dgに、この偏位量dxを加算した補正テーブル112

12

(図13参照)を作成する (ステップS7)。

【0049】このようにしてGチャンネルの湾曲を考慮した補正テーブル112を使用することにより、画素ずれに基づく色ずれを低減することが可能となるとともに、同時に、上述した出力画像上での画像のゆがみを低減することができる。

【0050】最終的には、図3に示す補正テーブル作成 装置79において、補正テーブル作成部84を、点線で 示すように、補正処理部118に変更し、その補正処理 部118に補正テーブル110(112)を接続してお くことにより、補正処理部118の出力信号として、画 素ずれ量の補正された画像データSra、Sga、Sb aを得ることができる。

【0051】なお、この発明は上述の実施の形態に限らず、この発明の要旨を逸脱することなく種々の構成を採り得ることはもちろんである。

[0052]

【発明の効果】以上説明したように、この発明によれば、R、G、B用各リニアイメージセンサおよび(または)光学系の副走査方向の湾曲(画素ずれ)を原因とする出力画像上の色間のずれを補正することができるという効果が達成される。

【0053】また、この発明によれば、上記湾曲を原因とする出力画像上のゆがみ(曲がり)を除去することができるという効果が達成される。

【図面の簡単な説明】

【図1】この発明の一実施の形態の適用される透過原稿 用の画像読取装置の一部構成を示す斜視図である。

【図2】この発明の一実施の形態が適用される反射原稿 30 用の画像説取装置の一部構成を示す一部省略断面図であ る。

【図3】補正テーブル作成装置と画素すれ補正装置の構成を示す回路ブロック図である。

【図4】補正テーブル作成の説明に供されるフローチャートである。

【図5】テストチャートの読取説明に供される斜視図である。

【図6】リニアイメージセンサの最大画素ずれ量の説明 に供される線図である。

【図7】画像データファイルの構成を示す線図である。

【図8】 画素ずれ量の計算の説明に供される線図である。

【図9】 n 次近似式の算出の説明に供される線図である。

【図10】補正テーブルの構成を示す線図である。

【図11】補正前後の画案ずれ量の比較説明に供される 線図である。

【図12】基準としたイメージセンサの湾曲の補正説明 に供される線図である。

io 【図13】基準としたイメージセンサの湾曲をも補正す

14

る補正テーブルの構成を示す線図である。

【図14】一般的に、ICパッケージ構造のリニアイメ ージセンサの構成説明に供される斜視図である。

13

【図15】R、G、B用各リニアイメージセンサが色分 解プリズムに取り付けられた状態を示す斜視図である。

【図16】R、G、B用各リニアイメージセンサの湾曲 状態を示す線図である。

【符号の説明】

1 (1 r、1 g、1 b) …リニアイメージセンサ

10 T…透過原稿用画像読取装置 10 R…反射原稿 10

用画像読取装置

12…原稿カセット

16…結像光学系

18…結像部

32 (32r、32g、32b) …3色分解プリズム

84…補正テーブル作成部

100…直線画像

102…テストチャート

110, 112...

補正テーブル

118…補正処理部

L…光

来画…q

[図1]

F1G.1

【図5】

F1G.5

【図2】

FIG. 2

【图3】

FIG.3

