_

Controle no Espaço-de-Estados de Processo de Nível

O objetivo deste experimento é a implementar um controlador no espaço-de-estados (EE) com observador para um processo de nível de líquidos de 2ª ordem. A vantagem deste controlador em relação à técnicas no domínio da freqüência é que é possível posicionar livremente todos os pólos do sistema, desde que não haja saturação do atuador.

1 - Introdução

Processos de nível de líquido aparecem freqüentemente na indústria (refinarias, usinas de álcool, indústria de alimentos). Em várias situações o líquido é passado de um tanque para outro adjacente. Neste experimento utilizaremos um processo de 2ª ordem, Figura 1.

Figura 1 – Processo de nível de líquidos de 2ª ordem.

Neste processo, conforme pode ser visto na Figura 2, a Bomba 1 injeta água no tanque 1, enquanto a Bomba 2 restira água. Através de uma válvula entre os tanques a água chega ao tanque 2 (vazão q_{12}). Através de um furo no tanque 2 a água volta ao reservatório (vazão q_o). Potenciômetros ligados a hastes com um bóia permitem medir os níveis nos tanques (h_1 e h_2).

Figura 2 – Representação esquemática do processo de nível de líquidos.

Processos de nível de líquido são intrinsecamente não-lineares: a vazão de saída depende da raiz quadrada da altura da coluna de água ($q=k\sqrt{h}$). Conceitos como constantes de tempo e ganho, essenciais para descrever a resposta de sistemas dinâmicos no domínio do tempo, aplicam-se com exatidão apenas a sistemas lineares. Em um sistema não-linear, essas características podem variar com o ponto de operação, não sendo portanto parâmetros constante do sistema. Para continuar aplicando ferramentas de controle linear, uma opção é usar a linearização em ponto de operação. Nesse caso, ao invés de uma constante de tempo ou um valor de ganho, determina-se um conjunto de parâmetros, com um valor para cada ponto de operação.

Uma função de transferência (LTI) pode ser obtida para o processo de nível pela linearização em torno do ponto de operação (ver anexo):

$$\frac{\delta H_2}{\delta q_i} = \frac{a/A}{s^2 + (2a+b)s + ab}.$$
 (1)

Esta função de transferência, que relaciona pequenas variações do nível do tanque 2 em função de pequenas variações da vazão de entrada, será utilizada neste experimento para projetar o controlador EE.

2 - Controle no Espaço-de-Estados

O controle por realimentação de estados permite fixar a dinâmica de sistemas pelo posicionamento de todos os pólos.

Um sistema dinâmico descrito por
$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$
 (2)

submetido à lei de controle
$$u(t) = \overline{N}r(t) - Kx(t)$$
, (3)

terá uma nova dinâmica (autovalores) descrita por:

$$\begin{cases} \dot{x}(t) = (A - BK)x(t) + \overline{N}Br(t) \\ y(t) = Cx(t) \end{cases}$$
 (4)

Quando as variáveis não podem ser medidas diretamente é necessário o uso de um observador de estados. O observador de ordem plena reconstrói todas as variáveis do processo, mesmo aquelas que podem ser medidas diretamente. O erro de estimação é dado por:

$$e(t) = y(t) - \hat{y}(t) = C(x(t) - \hat{x}(t)).$$
 (5)

Temos então a seguinte dinâmica do observador:

$$\dot{\hat{x}}(t) = (A - LC)\hat{x}(t) + Bu(t) - Le(t). \tag{6}$$

A função *acker* do MatLab pode ser utilizada para obter tanto *K* como *L*:

```
>>K=acker(A,B,[p p])
>>L=acker(A',C',[o o]);L=L';
```

O controle no espaço-de-estados do processo de nível de segunda ordem, utilizando a forma canônica controlável, está ilustrado na Figura 3.

Figura 3 – Simulação do controle no espaço-de-estados com observador do processo de nível de líquidos.

Nota-se, em particular, que o controle EE (linear) do processo não-linear exige que se adicione o ponto de operação de vazão à entrada do processo não-linear (P.O. u). O ponto de operação de nível (P.O. y) deve ser subtraído da saída, de tal forma que o controlador EE processe apenas sinais lineares. A Figura 4 mostra o modelo de simução do processo não linear. Percebe-se que os integradores que produzem os níveis h_1 e h_2 saturam (nível máximo do tanque). A saturação da vazão de entrada corresponde à vazão máxima e mínima das bombas. As funções *módulo* e *sinal* na Figura 4 são devidas à possibilidade inversão da vazão entre tanques.

Figura 4 – Simulação não-linear do processo de nível de líquidos.

3 – Pré-Relatório

O processo de nível apresenta os seguintes parâmetros:

```
% Parametros do Processo
Ar=6*25.4; % cm2 - Área da seção transversal dos tanques
k1=0; % parâmetro do furo do tanque de entrada
k2=11.5; % parâmetro do furo do tanque de saída
hmax=16; % altura máxima antes de sair água pelo ladrão
qmax=90; % vazão máxima da bomba +
qmin=-85; % vazão máxima da bomba -
```

Além disso, o processo de nível é configurável em relação à válvula que conecta os dois tanques. Os seguintes valores de k12 podem ser escolhidos:

```
k12=38; % válvula entre tanques no 3o engaste
k12=28; % válvula entre tanques no 2o engaste
k12=16; % válvula entre tanques no 1o engaste
```

Considerando o último algarismo (α) da soma dos últimos algarismos dos números de matrícula dos integrantes de cada grupo as seguintes configurações de projeto deverão ser calculadas (qb – ponto de operação da vazão de entrada, p – posição de todos os pólos em malha fechada, o – posição de todos os autovalores do observador):

Tabela 1 – Configurações de projeto para os grupos.

Par.∖α	0	1	2	3	4	5	6	7	8	9
k12	38	28	16	38	28	16	38	28	16	38
qb	36	34	32	30	32	32	34	34	28	36
p	-1/5	-1/15	-1/10	-1/5	-1/5	-1/15	-1/5	-1/20	-1/15	-1/10
0	5*p	4*p	3*p	4*p	5*p	4*p	3*p	4*p	5*p	4*p

Resultado do projeto:

K – Vetor de realimentação de ganhos,

L – Vetor que define a dinâmica do observador,

Nb – Fator de ajuste de ganho.

Utilizando o arquivo de simulação do processo de nível de líquidos de 2ª ordem: liq2EE.mdl disponível em http://www.ene.unb.br/adolfo/CDin/liq2EE.zip simular o controlador projetado, verificando que não haja saturação significativa nem tampouco ciclos limite.

4 – Procedimento Experimental

O projeto e resultados de simulação são pré-requisitos para a execução do experimento em laboratório. Na planta real o bloco do processo não linear é substituído por um bloco que se comunica com o processo real, Figura 5.

Cada grupo dever inserir os parâmetros projetados e o ponto de operação e verificar o funcionamento do processo durante 10 min.

Figura 5 – Controle do processo de nível de líquidos.

5 – Relatório

- Incluir todos os cálculos do pré-relatório.
- Incluir as simulações realizadas no pré-relatório.

Obs. Os gráficos podem ser feitos pelo comando >>plot(simout.time, simout.signals.values), pode-se também utilizar o bloco "To File" em lugar do "To Workspace".

- Incluir os resultados experimentais.
- Discorrer sobre eventuais diferenças entre os resultados teóricos e práticos.

Apêndice - Modelamento matemático do processo de nível de 2ª ordem

Um sistema de nível de líquidos com dois reservatórios obedece às seguintes equações diferenciais não-lineares (aplicação da lei de Bernoulli, fluxo turbulento):

$$\begin{cases} A \frac{dh_1}{dt} = q_i - k_{12} \sqrt{h_1 - h_2} \\ A \frac{dh_2}{dt} = k_{12} \sqrt{h_1 - h_2} - k_2 \sqrt{h_2} \end{cases}$$

A – seção transversal dos tanques h_1 , h_1 – nível nos tanques 1 e 2 $q_{\rm i}$ - vazção de entrada (+ e -) k_{12} , k_1 – parâmetros das válvulas

O modelo no espaço-de-estados linearizado em torno do ponto de operação (\bar{h}_1, \bar{h}_2) pode ser derivado de:

$$f(x) = f(\overline{x}) + \frac{df}{dx}\Big|_{\overline{x}} (x - \overline{x})$$

$$\sqrt{h_2} = \sqrt{\overline{h_2}} + \frac{1}{2\sqrt{\overline{h_2}}} (h_2 - \overline{h_2}) = \sqrt{\overline{h_2}} + \frac{1}{2\sqrt{\overline{h_2}}} \delta h_2$$

$$\sqrt{h_1 - h_2} = \sqrt{\Delta} = \sqrt{\overline{\Delta}} + \frac{1}{2\sqrt{\overline{\Delta}}} (\Delta - \overline{\Delta}) = \sqrt{\overline{h_1} - \overline{h_2}} + \frac{1}{2\sqrt{\overline{h_1} - \overline{h_2}}} (h_1 - h_2 - \overline{h_1} + \overline{h_2}) = \sqrt{\overline{h_1} - \overline{h_2}} + \frac{1}{2\sqrt{\overline{h_1} - \overline{h_2}}} (\delta h_1 - \delta h_2)$$

$$\begin{cases} A \frac{dh_1}{dt} = q_i - k_{12}\sqrt{\overline{h_1} - \overline{h_2}} - \frac{k_{12}}{2\sqrt{\overline{h_1} - \overline{h_2}}} (\delta h_1 - \delta h_2) \\ A \frac{dh_2}{dt} = k_{12}\sqrt{\overline{h_1} - \overline{h_2}} + \frac{k_{12}}{2\sqrt{\overline{h_1} - \overline{h_2}}} (\delta h_1 - \delta h_2) - k_2\sqrt{\overline{h_2}} - \frac{k_2}{2\sqrt{\overline{h_2}}} \delta h_2 \end{cases}$$

$$\frac{d\delta\!h_1}{dt} = \frac{d(h_1 - \overline{h}_1)}{dt} = \frac{dh_1}{dt}\,; \qquad \qquad \delta\!q_i = q_i - k_{12}\sqrt{\overline{h}_1 - \overline{h}_2}\,;$$

No ponto de operação: $k_{12}\sqrt{\overline{h}_1-\overline{h}_2}=k_2\sqrt{\overline{h}_2}=\overline{a}$:

Adotando-se:
$$a = \frac{k_{12}}{2A\sqrt{\overline{h}_1 - \overline{h}_2}}, b = \frac{k_2}{2A\sqrt{\overline{h}_2}}$$

Modelo linearizado no Espaço-de-Estados:
$$\begin{cases} \frac{d\partial h_1}{dt} = -a\partial h_1 + a\partial h_2 + \frac{\partial q_i}{A} \\ \frac{d\partial h_2}{dt} = a\partial h_1 - (a+b)\partial h_2 \\ y = \partial h_2 \end{cases}$$

A função de transferência pode ser obtida passando as equações para o domínio de Laplace:

$$(s+a)\delta H_1 = a\delta H_2 + \delta q_i / A$$

$$(s+a+b)\delta H_2 = a\delta H_1$$

$$\rightarrow (s+a+b)\delta H_2 = \frac{a^2\delta H_2 + a\delta q_i / A}{(s+a)}$$

Função de transferência:
$$\frac{\delta H_2}{\delta q_i} = \frac{a/A}{s^2 + (2a+b)s + ab}$$

Vazão em regime
$$\overline{q}=k_{12}\sqrt{\overline{h_1}-\overline{h_2}}=k_2\sqrt{\overline{h_2}}$$