Der im Dokumentauszug erwähnte Gauss-Integralsatz in 3D formuliert, dass für einen Körper $K \subset \mathbb{R}^3$, dessen Oberfläche mit ∂K und einem äußeren Einheitsnormalen-Vektorfeld \hat{n} in einem Bereich eines differenzierbaren Vektorfeldes $v : \mathbb{R}^3 \to \mathbb{R}^3$, die Beziehung

$$\int_{\partial K} \langle v, \hat{n} \rangle \, dA = \Phi_v = \int_K \operatorname{div}(v) \, dV$$

gilt. Diese Formel besagt, dass das Flussintegral des Vektorfeldes v über die Oberfläche ∂K gleich dem Integral der Divergenz von v über das Volumen K ist. Diese mathematische Aussage ist in der mathematischen Physik und Ingenieurwissenschaft wichtig, um Beziehungen zwischen Fluss- und Quellendichten zu beschreiben.