Computerstøttet beregning

Lektion 6. Repetition

Martin Qvist

qvist@math.aau.dk

Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår Aalborg Universitet

31. marts 2009

people.math.aau.dk/~qvist/teaching/csb-09

Lagrange-polynomier

■ Ide: Givet punkter $(x_k, f(x_k)), k = 0, 1, ..., N$, bestem en interpolerende funktion, hvis graf går gennem punkterne.

Lagrange-polynomier

- Ide: Givet punkter $(x_k, f(x_k)), k = 0, 1, ..., N$, bestem en interpolerende funktion, hvis graf går gennem punkterne.
- Lagrange-polynomium: Polynomium p defineret udfra betingelsen $p(x_k) = f(x_k)$ for $k = 0, 1, \dots, N$. Hvis graden af p er N og alle x_k er forskellige, så findes præcist et polynomium som opfylder betingelsen. Dette er Lagrange-polynomiet.

Konstruktion af Lagrange-polynomier

• Lagrange basis-polynomier: For hvert x_j findes et polynomium af grad N sådan

$$l_j(x_k) = \begin{cases} 0 & \text{hvis } j \neq k, \\ 1 & \text{hvis } j = k. \end{cases}$$

Konstruktion af Lagrange-polynomier

• Lagrange basis-polynomier: For hvert x_j findes et polynomium af grad N sådan

$$l_j(x_k) = egin{cases} 0 & \mathsf{hvis}\ j
eq k, \ 1 & \mathsf{hvis}\ j = k. \end{cases}$$

Det følger, at

$$l_j(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_N)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_N)}$$

Konstruktion af Lagrange-polynomier

■ Lagrange basis-polynomier: For hvert x_j findes et polynomium af grad N sådan

$$l_j(x_k) = \begin{cases} 0 & \text{hvis } j \neq k, \\ 1 & \text{hvis } j = k. \end{cases}$$

Det følger, at

$$l_j(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_N)}{(x_j - x_0)(x_j - x_1) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_N)}$$

Det interpolerende Lagrange-polynomium har derfor formen

$$p(x) = \sum_{j=0}^{N} f(x_j) l_j(x).$$

Fejlvurdering

■ For Lagrange-polynomiet igennem alle $f(x_k)$, hvor god en approksimation er p til f?

Fejlvurdering

- For Lagrange-polynomiet igennem alle $f(x_k)$, hvor god en approksimation er p til f?
- ullet Hvis f er en N+1 gange differentiabel funktion på et interval [a,b], da gælder for $x\in [a,b]$ at

$$f(x) - p(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(z)$$

for et eller andet $z \in [a, b]$ (som afhænger af x).

Fejlvurdering

- For Lagrange-polynomiet igennem alle $f(x_k)$, hvor god en approksimation er p til f?
- ullet Hvis f er en N+1 gange differentiabel funktion på et interval [a,b], da gælder for $x\in [a,b]$ at

$$f(x) - p(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_N)}{(N+1)!} f^{(N+1)}(z)$$

for et eller andet $z \in [a, b]$ (som afhænger af x).

lacksquare Deraf følger, at for $x \in [a,b]$ er

$$e_N = |f(x) - p(x)| \le \frac{|x - x_0||x - x_1| \cdots |x - x_N|}{(N+1)!} M$$
$$\le \frac{|b - a|^{N+1}}{(N+1)!} M,$$

hvor

$$M = \max_{y \in [a,b]} |f^{(N+1)}(y)|.$$