```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   from pylab import rcParams
    from sklearn.preprocessing import StandardScaler
   from sklearn.model_selection import train_test_split, GridSearchCV
   from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_a
   uc_score
   from sklearn.tree import DecisionTreeClassifier, export_graphviz
In [2]: url= 'https://raw.githubusercontent.com/BigDataGal/Python-for-Data Science/mas
   ter/titanic-train.csv'
   titanic = pd.read_csv('train.csv')
```

titanic.columns = ['PassengerId','Survived','Pclass','Name','Sex','Age','SibSp','Parch','Ti cket','Fare','Cabin','E mbarked'] You use only Pclass, Sex, Age, SibSp (Siblings aboard), Parch (Parents/children aboard), and Fare to predict whether a passenger survived.

```
In [3]:
          titanic.head()
Out[3]:
              Passengerld Survived Pclass
                                                                      SibSp Parch
                                                                                        Ticket
                                                 Name
                                                           Sex
                                                               Age
                                                                                                   Fare C
                                                Braund,
           0
                        1
                                  0
                                                          male 22.0
                                                                           1
                                                                                    A/5 21171
                                                                                                 7.2500
                                           3
                                              Mr. Owen
                                                  Harris
                                               Cumings,
                                              Mrs. John
                                                Bradley
           1
                        2
                                  1
                                                                                  0 PC 17599 71.2833
                                                         female 38.0
                                                                           1
                                               (Florence
                                                 Briggs
                                                   Th...
                                              Heikkinen,
                                                                                     STON/O2.
                                          3
           2
                        3
                                  1
                                                  Miss.
                                                        female 26.0
                                                                                                 7.9250
                                                                                       3101282
                                                  Laina
                                               Futrelle,
                                                   Mrs.
                                               Jacques
           3
                                  1
                                                         female 35.0
                                                                           1
                                                                                  0
                                                                                        113803 53.1000 C
                                                 Heath
                                               (Lily May
                                                  Peel)
                                               Allen, Mr.
                        5
                                  0
                                           3
                                                                          0
                                                                                  0
                                                                                       373450
                                                                                                 8.0500
                                                William
                                                          male 35.0
                                                  Henry
          titanic = titanic[['Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Survive
In [4]:
          d']]
```

In [5]: titanic.head()

Out[5]:

		Pclass	Sex	Age	SibSp	Parch	Fare	Survived
_	0	3	male	22.0	1	0	7.2500	0
	1	1	female	38.0	1	0	71.2833	1
	2	3	female	26.0	0	0	7.9250	1
	3	1	female	35.0	1	0	53.1000	1
	4	3	male	35.0	0	0	8.0500	0

```
In [6]: titanic.isna().sum()
```

Out[6]: Pclass 0
Sex 0
Age 177
SibSp 0
Parch 0
Fare 0
Survived 0
dtype: int64

Analysing the distribution of data

In [7]: titanic.describe()

Out[7]:

	Pclass	Age	SibSp	Parch	Fare	Survived
count	891.000000	714.000000	891.000000	891.000000	891.000000	891.000000
mean	2.308642	29.699118	0.523008	0.381594	32.204208	0.383838
std	0.836071	14.526497	1.102743	0.806057	49.693429	0.486592
min	1.000000	0.420000	0.000000	0.000000	0.000000	0.000000
25%	2.000000	20.125000	0.000000	0.000000	7.910400	0.000000
50%	3.000000	28.000000	0.000000	0.000000	14.454200	0.000000
75%	3.000000	38.000000	1.000000	0.000000	31.000000	1.000000
max	3.000000	80.000000	8.000000	6.000000	512.329200	1.000000

In [8]: titanic.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 7 columns):
```

#	Column	Non-Null Count	Dtype			
0	Pclass	891 non-null	int64			
1	Sex	891 non-null	object			
2	Age	714 non-null	float64			
3	SibSp	891 non-null	int64			
4	Parch	891 non-null	int64			
5	Fare	891 non-null	float64			
6	Survived	891 non-null	int64			
<pre>dtypes: float64(2), int64(4), object(1)</pre>						
memory usage: 48.9+ KB						

```
In [9]: | # visualize the relationship between independent variable and the dependent va
         riable using scatterplot
         fig, axs = plt.subplots(2, 3, figsize = (24, 24))
         # unpack all the axes subplots
         axe = axs.ravel()
         for i in range(len(titanic.drop(columns='Survived').columns)):
             titanic.plot(kind = 'scatter', x = titanic.columns[i], y = 'Survived', ax
         = axe[i])
             plt.xlabel(titanic.columns[i])
                      2.00 2.25 2.50 2.75 3.00
Priass
```

```
In [10]: # visualize the distribution of data
fig, axs = plt.subplots(2, 3, figsize = (24, 24))
# unpack all the axes subplots
axe = axs.ravel()
col = ['Pclass', 'Age', 'SibSp', 'Parch', 'Fare', 'Survived']
for i in range(len(col)):
    #sns.set(rc={'figure.figsize':(11.7,8.27)})
    sns.displot(titanic[col[i]], bins=30, ax = axe[i])
    plt.show()
```

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)

C:\Users\Urvi\AppData\Roaming\Python\Python37\site-packages\seaborn\distribut
ions.py:2163: UserWarning: `displot` is a figure-level function and does not
accept the ax= paramter. You may wish to try histplot.
 warnings.warn(msg, UserWarning)


```
In [11]: # Fill missing values, as age is almost normally distributed, will replace the
         values with mean
         # titanic[(titanic['Age'].isna()) & (titanic.Sex == 'male')]['Age'] = titanic
         [titanic.Sex == 'male']['Age'].mean()
         # titanic[(titanic['Age'].isna()) & (titanic.Sex == 'female')]['Age'] = titani
         c[titanic.Sex == 'female']['Age'].mean()
         titanic.loc[(titanic.Age.isnull()) & (titanic.Sex=='male'), 'Age'] = titanic.g
         roupby('Sex')['Age'].mean()[1]
         titanic.loc[(titanic.Age.isnull()) & (titanic.Sex=='female'), 'Age'] = titanic
          .groupby('Sex')['Age'].mean()[0]
In [12]: titanic.isna().sum()
Out[12]: Pclass
                     0
         Sex
                     0
         Age
                     0
         SibSp
                     0
         Parch
         Fare
                     0
         Survived
         dtype: int64
In [13]: | titanic.groupby('Sex')['Age'].mean()[1]
Out[13]: 30.7266445916115
In [14]: titanic.groupby('Sex')['Age'].mean()
Out[14]: Sex
         female
                   27.915709
         male
                   30.726645
         Name: Age, dtype: float64
In [15]: # Convert categorical data into numerical
         titanic['Sex'] = titanic['Sex'].map({'female': 1, 'male': 0}).astype(int)
In [16]: | X = titanic.drop(columns='Survived')
         v = titanic.Survived
In [17]: x train, x test, y train, y test = train test split(X, y, test size=0.25, rand
         om state = 123)
```

```
In [18]: | #let's first visualize the tree on the data
         clf = DecisionTreeClassifier()
         clf.fit(x_train, y_train)
Out[18]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                                 max depth=None, max features=None, max leaf nodes=Non
         e,
                                 min_impurity_decrease=0.0, min_impurity_split=None,
                                 min samples leaf=1, min samples split=2,
                                 min weight fraction leaf=0.0, presort='deprecated',
                                 random state=None, splitter='best')
In [19]: | clf.score(x_train,y_train)
Out[19]: 0.9865269461077845
In [20]: y pred = clf.predict(x test)
In [21]: # accuracy of our classification tree
         clf.score(x_test,y_test)
Out[21]: 0.7802690582959642
In [22]:
         accuracy = accuracy_score(y_test,y_pred)
         accuracy
Out[22]: 0.7802690582959642
In [23]:
         conf_mat = confusion_matrix(y_test, y_pred)
         conf_mat
Out[23]: array([[114,
                       25],
                [ 24, 60]], dtype=int64)
In [24]: tp = conf mat[0][0]
         fp = conf mat[0][1]
         fn = conf_mat[1][0]
         tn = conf_mat[1][1]
In [25]: | precision = tp/(tp+fp)
         precision
Out[25]: 0.8201438848920863
In [26]: | recall = tp/(tp+fn) |
         recall
Out[26]: 0.8260869565217391
In [27]: | f1 score = (2*precision*recall)/(precision+recall)
         f1 score
Out[27]: 0.8231046931407943
```

```
In [28]: | auc = roc auc score(y test, y pred)
Out[28]: 0.7672147995889004
In [29]: fpr, tpr, thresholds = roc_curve(y_test, y_pred)
          plt.plot(fpr, tpr, color='orange', label='ROC')
In [30]:
          plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--', label='ROC curve (a
          rea=%0.2f)' % auc)
          plt.xlabel('False Positive Rate')
          plt.ylabel('True Positive Rate')
          plt.legend()
          plt.show()
             1.0
                     ROC
                  ROC curve (area=0.77)
             0.8
          True Positive Rate
             0.6
             0.4
             0.2
             0.0
                          0.2
                                   0.4
                                                     0.8
                  0.0
                                            0.6
                                                             1.0
```

Using Grid Search

s = -1)

```
In [31]: # we are tuning 5 hyperparameters right now, we are passing the different valu
    es for the parameters
    grid_param = {
        'criterion': ['gini', 'entropy'],
        'max_depth' : range(2,32,1),
        'min_samples_leaf' : range(1,10,1),
        'min_samples_split': range(2,10,1),
        'splitter' : ['best', 'random']
}
In [32]: grid_search = GridSearchCV(estimator=clf, param_grid=grid_param, cv = 5, n_job)
```

False Positive Rate

```
In [33]: grid search.fit(x train, y train)
Out[33]: GridSearchCV(cv=5, error score=nan,
                      estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=Non
         e,
                                                        criterion='gini', max_depth=Non
         e,
                                                        max features=None,
                                                        max leaf nodes=None,
                                                        min_impurity_decrease=0.0,
                                                        min_impurity_split=None,
                                                        min samples leaf=1,
                                                        min samples split=2,
                                                        min weight fraction leaf=0.0,
                                                        presort='deprecated',
                                                        random state=None,
                                                        splitter='best'),
                      iid='deprecated', n_jobs=-1,
                      param grid={'criterion': ['gini', 'entropy'],
                                   'max depth': range(2, 32),
                                   'min_samples_leaf': range(1, 10),
                                   'min samples split': range(2, 10),
                                   'splitter': ['best', 'random']},
                      pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                      scoring=None, verbose=0)
In [34]:
         grid_search.best_params_
Out[34]: {'criterion': 'entropy',
           'max depth': 7,
           'min samples leaf': 2,
          'min_samples_split': 2,
           'splitter': 'best'}
         clf_grid = DecisionTreeClassifier(criterion = 'entropy', max_depth = 7, min_sa
In [35]:
         mples leaf = 2, min samples split = 8, splitter = 'best')
         clf_grid.fit(x_train, y_train)
Out[35]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='entropy',
                                 max depth=7, max features=None, max leaf nodes=None,
                                 min impurity decrease=0.0, min impurity split=None,
                                min_samples_leaf=2, min_samples_split=8,
                                 min weight fraction leaf=0.0, presort='deprecated',
                                 random state=None, splitter='best')
In [36]: clf grid.score(x train, y train)
Out[36]: 0.8712574850299402
In [37]: y pred grid = clf grid.predict(x test)
```

```
In [38]: # accuracy of our classification tree
         clf_grid.score(x_test,y_test)
Out[38]: 0.7847533632286996
In [39]: | accuracy = accuracy_score(y_test, y_pred_grid)
         accuracy
Out[39]: 0.7847533632286996
In [40]: conf mat grid = confusion matrix(y test, y pred grid)
         conf_mat_grid
Out[40]: array([[124, 15],
                [ 33, 51]], dtype=int64)
In [41]: | tp_grid = conf_mat_grid[0][0]
         fp grid = conf mat grid[0][1]
         fn_grid = conf_mat_grid[1][0]
         tn_grid = conf_mat_grid[1][1]
In [42]: | precision_grid = tp_grid/(tp_grid+fp_grid)
         precision_grid
Out[42]: 0.8920863309352518
In [43]: recall_grid = tp_grid/(tp_grid+fn_grid)
         recall grid
Out[43]: 0.7898089171974523
In [44]: | f1 score grid = (2*precision grid*recall grid)/(precision grid+recall grid)
         f1_score_grid
Out[44]: 0.8378378378378379
In [45]: | auc grid = roc auc score(y test, y pred grid)
         auc_grid
Out[45]: 0.7496145940390545
In [46]: fpr grid, tpr grid, thresholds grid = roc curve(y test, y pred grid)
```

```
In [47]: plt.plot(fpr_grid, tpr_grid, color='orange', label='ROC')
    plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--', label='ROC curve (a
    rea=%0.2f)' % auc_grid)
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.legend()
    plt.show()
```


Project Done By: Urvi Gadda

mailto: urvigada96@gmail.com

```
In [ ]:
```