Table 1: Continuity Equation for Incompressible Flow in Different Coordinate Systems

Coordinate System	Continuity Equation
Cartesian	$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$
Cylindrical	$\frac{1}{r}\frac{\partial(ru_r)}{\partial r} + \frac{1}{r}\frac{\partial u_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0$

Table 2: Momentum Equations for Incompressible Flow in Different Coordinate Systems

Momentum Equation		
Cartesian		
$\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + g_x$		
$\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + g_y$		
$\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + g_z$		
Cylindrical		
$\frac{\partial u_r}{\partial r} - \frac{u_r}{r^2} + \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} - \frac{2}{r^2} \frac{\partial u_\theta}{\partial \theta} + \frac{\partial^2 u_r}{\partial z^2} \right]$		
$\frac{\partial}{\partial r}(ru_r)$		
θ		
$r\frac{\partial u_{\theta}}{\partial r}$ $-\frac{u_{\theta}}{r^2}$ $+\frac{1}{r^2}\frac{\partial^2 u_{\theta}}{\partial \theta^2} + \frac{2}{r^2}\frac{\partial u_{\theta}}{\partial \theta} + \frac{\partial^2 u_{\theta}}{\partial z^2}$		
$rac{1}{r}rac{\partial}{\partial r}(ru_{ heta}) igg)$		
$-g_z$		
$\frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right]$		

Table 3: Streamline Equations

Coordinate System	Streamline Equations
Cartesian	$u = \frac{\partial \psi}{\partial y} v = -\frac{\partial \psi}{\partial x}$
Cylindrical, Planar	$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} u_\theta = -\frac{\partial \psi}{\partial r}$
Cylindrical, Axisymmetric	$u_r = -\frac{1}{r}\frac{\partial \psi}{\partial z}$ $u_z = \frac{1}{r}\frac{\partial \psi}{\partial r}$