1. 교과목 수강인원

수업년도	수업학기	계열구분	수강인원	이수인원
2021	2	자연과학	2	2
2021	2	공학	191	166
2022	2	인문.사회	1	1
2022	2	공학	207	187
2023	2	자연과학	1	1
2023	2	공학	207	184
2024	2	자연과학	1	1
2024	2	공학	213	182

2. 평균 수강인원

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	37.26	63.09	32.32	62	
2017	1	38.26	65.82	33.5		
2016	2	37.24	72.07	31.53	92.67	
2016	1	37.88	73.25	32.17		
2015	2	36.28	70.35	30.36	68.25	

3. 성적부여현황(평점)

수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2017	2	3.44	3.05	3.59	3.35	
2016	2	3.49	3.16	3.61	3.36	
2015	2	3.51	3.28	3.6	3.42	

4. 성적부여현황(등급)

2

2

2

2

2

2

2

D+

D0

A+

Α0

ВО

C+

1

4

49

35

51

19

12

2022

2022

2023

2023

2023

2023

2023

수업년도	수업학기	등급	인원	비율	수업년도	수업학기	등급	인원	비율
2021	2	Α+	60	35.71	2023	2	C0	18	9.73
2021	2	Α0	20	11.9	2023	2	D0	1	0.54
2021	2	B+	39	23.21	2024	2	A+	48	26.23
2021	2	ВО	25	14.88	2024	2	A0	21	11.48
2021	2	C+	13	7.74	2024	2	B+	46	25.14
2021	2	C0	8	4.76	2024	2	ВО	31	16.94
2021	2	D0	3	1.79	2024	2	C+	21	11.48
2022	2	Α+	56	29.79	2024	2	C0	13	7.1
2022	2	A0	28	14.89	2024	2	D+	3	1.64
2022	2	B+	45	23.94					
2022	2	В0	35	18.62					
2022	2	C+	14	7.45					
2022	2	C0	5	2.66	-				

0.53

2.13

26.49

18.92

27.57

10.27

6.49

5. 강의평가점수

 수업년도	수업학기	캠퍼스	공통교과목	학과교과목	해당교과목	내교과목
2024	2	92.56	93.8	92.33	95.33	
2024	1	91.5	93.79	91.1		
2023	1	91.47	93.45	91.13		
2023	2	91.8	93.15	91.56	97	
2022	2	90.98	92.48	90.7	92.6	

6. 강의평가 문항별 현황

		н оли	OLTH			점수별 인원분포				
번호	평가문항	본인평 균 (가중 치적용)		대학평 차이 바,-:미!		매우 그렇 치않 다	그렇 치않 다	보통 이다	그렇 다	매우 그렇 다
		5점	학과	C	내학	1 24	2 Z-l	그래	4점	디저
	교강사:	미만	차이 평균	· 차이	평균	· 1점	2점	3점	42	5점

No data have been found.

7. 개설학과 현황

학과	2025/2	2024/2	2023/2	2022/2	2021/2
기계공학부	2강좌(6학점)	3강좌(9학점)	2강좌(6학점)	5강좌(15학점)	2강좌(6학점)

8. 강좌유형별 현황

강좌유형	2021/2	2022/2	2023/2	2024/2	2025/2
일반	2강좌(193)	5강좌(208)	2강좌(208)	3강좌(214)	0강좌(0)

9. 교과목개요

교육과정	관장학과	국문개요	영문개요	수업목표
학부 2024 - 2027 교육과 정	서울 공과대학 기계공학부	열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 2020 - 2023 교육과 정	서울 공과대학 기계공학부	열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한	Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics,	

교육과정	관장학과	국문개요	영문개요	수업목표
		열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 2016 - 2019 교육과 정	서울 공과대학 기계공학부	열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 2013 - 2015 교육과 정	서울 공과대학 기계공학부	열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 2009 - 2012 교육과 정	서울 공과대학 기계공학부	열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of	

 교육과정	관장학과	국문개요	영문개요	수업목표
			steady flow and unsteady flow systems.	
학부 2001 - 2004 교육과 정	서울 공과대학 기계공학부	MEE301 열역학1 열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	MEE301 Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 1997 - 2000 교육과 정	서울 공과대학 기계공학부	MEE301 열역학1 열과 일의 개념,이상기체의 성질,이상기체의 상 태 변화,순수물질의 열역학적 성질과 증기선도,순수물질의 상태 변화,유동계 및 비유 동계에 관한 이상기체 및 실제 가스에 대한 열역학의 이론과 열역학 제1법칙과 열역학 제 2법칙의 이론과 응용에 관한 사항을 다루고, 엔트로피의 성질,엔트로피의 변화,엔트로피 증 가원리,열역학적 상태량 선도,정상류 장치의 단열 효율 등에 관한 이론과 개방계에 관한 제 2법칙,카르노 사이클,계의 열역학 제2법칙 해석 이론을 강술한다.	MEE301 Thermodynamics 1 Introduction to the concept of energy and transformation of energy: the first and second law of thermodynamics, thermodynamic properties, conservation of energy for closed and open systems. Entropy and the second law of thermodynamics; the increase of entropy principle, entropy change of ideal gas, pure substance, and adiabatic efficiency of steady-flow devices. The second law analysis of an engineering system: availability, reversible work and irresponsibility, second law analysis of steady flow and unsteady flow systems.	
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학			
학부 1993 - 1996 교육과 정	서울 공과대학 기계공학			
	서울 공과대학 기계공학 정밀 기계			

10. CQI 등록내역		
	No data have been found.	

