Optimisation Programmation linéaire

hepia HES-SO
Paul Albuquerque
Michel Vinckenbosch
Guido Bologna

Plan

- Exemples 2D
- Exemples de dimensionnalité supérieure
- Méthode du «tableau»
- Problème auxiliaire
- Problème dual

Exemple de problème

RESSOURCES							
PRODUIT	Travail (hr/unité)	O	Revenu (CHF/unité)				
Bol	1	4	40				
Tasse	2	3	50				

On dispose de 40 heures de travail et de 120 kilos d'argile par jour

Variables décisionnelles :

 x_1 = nombre de bols à produire

 x_2 = nombre de tasses à produire

100

Exemple de problème

- Maximiser $Z = 40 x_1 + 50 x_2$
- Sous contraintes :
- $x_1 + 2x_2 \le 40 \quad \text{(travail)}$
- $4x_1 + 3x_2 \le 120 \quad \text{(argile)}$
- $x_1, x_2 \ge 0$
- La solution est $x_1 = 24$ bols et $x_2 = 8$ tasses
- Revenu = 1360

Représentation graphique

Résolution graphique

Première contrainte

Deuxième contrainte

Combinaison de trois contraintes

■ Fonction objéctif

Fonction objéctif avec différentes valeurs de ctes

Solution Optimale

м

Polyèdres

- Hyperplan = ensemble de vecteurs $(x_1,...,x_n)$ tels que $a_1x_1 + a_2x_2 + \cdots + a_nx_n d = 0$
 - □ Exemples
 - dimension 2 : une droite
 - dimension 3 : un plan
 - dimension 4 : un sous-espace de dimension n
- Polyèdre = espace fini délimité par des hyperplans

Polyèdres

- Correspondance algébrique → géométrique
 - □ Nombre de variables ↔ dimension de l'espace
 - □ Contraintes ↔ hyperplans
 - □ Solution ↔ tout point à l'intérieur du polyèdre
 - □ Fonction objectif ↔ vecteur (coeffs. de la fonct.)

M

Algorithme simple

- Énumérer tous les sommets du polyèdre et choisir le meilleur d'entre eux
- Difficulté
 - m contraintes et n variables ≥ 0
 - □ (m+n)!/(m!n!) points d'intersections de n hyperplans
 - n = 15, $m = 10 \Rightarrow (m+n)!/(m!n!) = 3.3 \cdot 10^6$
 - quels points d'intersections sont des sommets du polyèdre (i.e. satisfont les contraintes)?
 - □ quel sommet maximise l'objectif?

Algorithme du simplexe (linéaire)

Algorithme du simplexe

- Principe
 - Initialisation sur un sommet s
 - Répéter
 - Sélection du sommet voisin de s qui augmente le plus la fonction objectif

Tant que la fonction objectif croît strictement

- Existence d'une solution optimale
 - □ Si les contraintes délimitent un **polyèdre** $\neq \emptyset$, alors il existe une solution optimale sur **un de ses sommets**

100

Algorithme du simplexe

- Maximiser $z = 5x_1 + \frac{13}{2}x_2 + 8x_3 + 9x_4$
- Sous contraintes

$$3x_1 + 6x_2 + 3x_3 + 9x_4 \le 240$$

 $12x_1 + 15x_2 + 9x_3 + 12x_4 \le 150$
 $0.1x_1 + 0.1x_2 + 0.1x_3 + 0.1x_4 \le 2$
 $x_1, x_2, x_3, x_4 \ge 0$

Forme augmentée

■ Introduction de variables d'écart e;

$$3x_1 + 6x_2 + 3x_3 + 9x_4 + e_1 = 240$$

$$12x_1 + 15x_2 + 9x_3 + 12x_4 + e_2 = 150$$

$$0.1x_1 + 0.1x_2 + 0.1x_3 + 0.1x_4 + e_3 = 2$$

$$e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$$

м

Résolution

- Maximiser $z = [5x_1 + \frac{13}{2}x_2 + 8x_3 + 9x_4]$
- Sous contraintes

$$e_1 = 240 - 3x_1 - 6x_2 - 3x_3 - 9x_4$$

 $e_2 = 150 - 12x_1 - 15x_2 - 9x_3 - 12x_4$
 $e_3 = 2 - 0.1x_1 - 0.1x_2 - 0.1x_3 - 0.1x_4$
 $e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$

Terminologie : e_i variables **de base** (ou liées) x_i variables **hors base** (ou libres)

ne.

Résolution: solution initiale

- Maximiser $z = 5x_1 + \frac{13}{2}x_2 + 8x_3 + 9x_4$
- Sous contraintes

$$e_1 = 240 - 3x_1 - 6x_2 - 3x_3 - 9x_4$$

 $e_2 = 150 - 12x_1 - 15x_2 - 9x_3 - 12x_4$
 $e_3 = 2 - 0.1x_1 - 0.1x_2 - 0.1x_3 - 0.1x_4$
 $e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$

- Solution initiale : $x_1 = x_2 = x_3 = x_4 = 0$
- Valeur initiale : z = 0 (à améliorer)

.

Résolution: première itération

Choix de la variable faisant augmenter

$$z = 5x_1 + \frac{13}{2}x_2 + 8x_3 + 9x_4$$

- max(5, 13/2, 8, 9) = 9
- x_4 donne le plus fort accroissement de z
- x₄ est appelée variable entrante

.

Résolution: première itération

■ Augmenter x_4 tant qu'aucune contrainte n'est violée, i.e. jusqu'à e_i = 0 pour un i

$$e_1 = 240 - 3x_1 - 6x_2 - 3x_3 - 9x_4$$

 $e_2 = 150 - 12x_1 - 15x_2 - 9x_3 - 12x_4$
 $e_3 = 2 - 0.1x_1 - 0.1x_2 - 0.1x_3 - 0.1x_4$
 $e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$

Résolution: première itération

■ En partant de la solution $x_1 = x_2 = x_3 = x_4 = 0$ augmenter x_4 jusqu'à $e_i = 0$ pour un i

$$e_1 = 240 - 3 \cdot 0 - 6 \cdot 0 - 3 \cdot 0 - 9x_4$$

 $e_2 = 150 - 12 \cdot 0 - 15 \cdot 0 - 9 \cdot 0 - 12x_4$
 $e_3 = 2 - 0.1 \cdot 0 - 0.1 \cdot 0 - 0.1 \cdot 0 - 0.1x_4$

- $e_1 \ge 0 \Rightarrow x_4 \le 240/9$
- $\bullet_3 \ge 0 \Rightarrow x_4 \le 2/0.1$

$$e_2 \ge 0 \Rightarrow x_4 \le 150/12$$
 $\Rightarrow min(240/9, 150/12, 2/0.1)$
= 0 > 0 $\Rightarrow x \le 2/0.1$ = 150/12

100

Résolution: première itération

- En prenant $x_4 = 150/12$, on a : $e_2 = 0$
- e₂ est appelée variable sortante
- À cette étape, on dit que x₄ entre dans la base et e₂ sort de la base
- x_4 devient une variable de base
 - e_2 - hors base

100

Résolution: première itération

■ On exprime x_4 en fonction de e_2

$$e_1 = 240 - 3x_1 - 6x_2 - 3x_3 - 9x_4$$

 $x_4 = 25/2 - x_1 - 5/4x_2 - 3/4x_3 - 1/12e_2$
 $e_3 = 2 - 0.1x_1 - 0.1x_2 - 0.1x_3 - 0.1x_4$
 $e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$

■ Puis on remplace x_4 dans les autres équations et dans la fonction objectif

.

Résolution: seconde itération

On obtient

$$e_1 = 255/2 + 6x_1 + 21/4x_2 + 15/4x_3 + 3/4e_2$$

 $x_4 = 25/2 - x_1 - 5/4x_2 - 3/4x_3 - 1/12e_2$
 $e_3 = 3/4 + 1/40x_2 - 1/40x_3 + 1/120e_2$

$$z = 225/2 - 4x_1 - 19/4x_2 + 5/4x_3 - 3/4e_2$$

- Variables de base : e_1 , x_4 , e_3
 - hors base : x_1, x_2, x_3, e_2

Résolution: seconde itération

Choix de la variable entrante

$$\Box z = 225/2 - 4x_1 - 19/4x_2 + 5/4x_3 - 3/4e_2$$

- \square max(-4, -19/4, 5/4, -3/4) = 5/4
- x_3 donne le plus fort accroissement de z
- \square x_3 est la variable entrante

Résolution: seconde itération

■ En partant de la solution $x_1 = x_2 = x_3 = e_2 = 0$ augmenter x_3 jusqu'à e_1 , x_4 ou $e_3 = 0$

$$e_1 = 255/2 + 6 \cdot 0 + 21/4 \cdot 0 + 15/4x_3 + 3/4 \cdot 0$$

 $x_4 = 25/2 - 0 - 5/4 \cdot 0 - 3/4x_3 - 1/12 \cdot 0$
 $e_3 = 3/4 + 1/40 \cdot 0 - 1/40x_3 + 1/120 \cdot 0$

- $e_1 \ge 0 \Rightarrow \text{indép. de } x_3$
- $\bullet_3 \ge 0 \Rightarrow x_3 \le 30$

 $x_4 \ge 0 \Rightarrow x_3 \le 50/3$ $\Rightarrow \min(50/3, 30) = 50/3$

Résolution: seconde itération

- En prenant $x_3 = 50/3$, on a : $x_4 = 0$
- $\blacksquare x_4$ est la variable sortante
- x_3 devient une variable de base x_4 - hors base
- On remplace ensuite

$$x_3 = 50/3 - 4/3 x_1 - 5/3 x_2 - x_4 - 1/9 e_2$$

dans les équations pour e_1 , e_3 , z

re.

Résolution: seconde itération

On obtient

$$e_1 = 190 + x_1 - x_2 + 5x_4 + 1/3e_2$$

 $x_3 = 50/3 - 4/3x_1 - 5/3x_2 - 4/3x_4 - 1/9e_2$
 $e_3 = 1/3 - 1/30x_4 + 1/15x_2 - 1/30x_4 + 1/90e_2$

$$z = 400/3 - 17/3x_1 - 41/6x_2 - 5/3x_4 - 8/9e_2$$

- Variables de base : e_1 , x_3 , e_3
 - hors base : x_1, x_2, x_4, e_2

Terminaison de l'algorithme

Choix de la variable entrante

$$\Box z = 400/3 - 17/3x_1 - 41/6x_2 - 5/3x_4 - 8/9e_2$$

- \square max(-17/3, -41/6, -5/3, -8/9) \leq 0
- □ Impossible d'augmenter z
- □ L'optimum est atteint en $x_1 = x_2 = x_4 = e_2 = 0$ et vaut 400/3

Les équations pour e_1 , x_3 , e_3 donnent $e_1 = 190$, $x_3 = 50/3$, $e_3 = 1/3$

Algorithme du simplexe

- Remarques
 - Initialisation
 - Quelle solution de départ? L'origine?
 - Itération
 - Une stagnation est-elle possible?
 - Terminaison
 - L'algorithme se termine-t-il toujours?

.

Résolution avec tableaux

Maximiser

$$5x_1 + 6.5x_2 + 8x_3 + 9x_4 = z$$

Sous contraintes

$$3x_1 + 6x_2 + 3x_3 + 9x_4 + e_1 = 240$$

 $12x_1 + 15x_2 + 9x_3 + 12x_4 + e_2 = 150$
 $0.1x_1 + 0.1x_2 + 0.1x_3 + 0.1x_4 + e_3 = 2$
 $e_1, e_2, e_3, x_1, x_2, x_3, x_4 \ge 0$

Résolution avec tableaux

Nouvelle représentation

variables hors base

variables de base

X ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	e ₁	e ₂	<i>e</i> ₃	
3	6	3	9	1	0	0	240
12	15	9	12	0	1	0	150
0, 1	0, 1	0, 1	0, 1	0	0	1	2
5	6,5	8	9	0	0	0	Z

Itération 1: choix de la variable entrante

<i>x</i> ₁	<i>x</i> ₂	X 3	<i>x</i> ₄	e ₁	e ₂	e ₃	
3	6	3	9	1	0	0	240
12	15	9	12	0	1	0	150
0, 1	0, 1	0, 1	0, 1	0	0	1	2
5	6, 5	8	9	0	0	0	Z

 x_4 entre dans la base

.

Résolution avec tableaux

Itération 1: choix de la variable sortante

<i>X</i> ₁	<i>x</i> ₂	X 3	<i>X</i> ₄	<i>e</i> ₁	e ₂	e 3	
3	6	3	9	1	0	0	240
12	15	9	12	0	1	0	150
0, 1	0, 1	0, 1	0, 1	0	0	1	2
5	6, 5	8	9	0	0	0	Z

■ min(240/9, 150/12, 2/0.1) \Rightarrow e_2 sort de la base

- Itération 1: x_4 rentre et e_2 sort de la base
 - \Rightarrow on échange les colonnes de x_4 et e_2

V	ariables h	ors base		varia			
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	e ₂	<i>e</i> ₁	<i>x</i> ₄	e ₃	
3	6	3	0	1	9	0	240
12	15	9	1	0	12	0	150
0, 1	0, 1	0, 1	0	0	0, 1	1	2
5	6, 5	8	0	0	9	0	Ζ

- Itération 1: reconstruction de la matrice identité
 - on normalise la seconde ligne par 12

<i>x</i> ₁	<i>x</i> ₂	X 3	e ₂	e ₁	<i>x</i> ₄	e ₃	
3	6	3	0	1	9	0	240
1	15 12 5	9 12	1 12	0	1	0	150 12
1	$\frac{5}{4}$	12 3 4	1 12	0	1	0	25 2 2
0, 1	0,1	0, 1	Ö	0	0, 1	1	2
5	6,5	8	0	0	9	0	Ζ

puis on l'utilise comme **pivot** pour éliminer x₄ des autres lignes

À la fin de la première itération

<i>x</i> ₁	<i>x</i> ₂	X 3	e ₂	e ₁	<i>X</i> ₄	e ₃	
-6	$-\frac{21}{4}$	$-\frac{15}{4}$	$-\frac{3}{4}$	1	0	0	255 2
1	$\frac{5}{4}$	$\frac{3}{4}$	1. 12.	0	1	0	<u>25</u>
0	$-\frac{1}{40}$	$\frac{1}{40}$	$-\frac{1}{120}$	0	0	1	$\frac{3}{4}$
5	6,5	8	0	0	9	0	Z

7

Résolution avec tableaux

Itération 2 : choix de la variable entrante

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	e ₂	e ₁	<i>X</i> ₄	e ₃	
-6	$-\frac{21}{4}$	$-\frac{15}{4}$	$-\frac{3}{4}$	1	0	0	<u>255</u> 2
1	$\frac{5}{4}$	$\frac{3}{4}$	1 12	0	1	0	<u>25</u> 2
0	$-\frac{1}{40}$	<u>1</u> 40	$-\frac{1}{120}$	0	0	1	<u>3</u> 4
-4	$-\frac{19}{4}$	5 4	$-\frac{3}{4}$	0	0	0	$Z - \frac{225}{2}$

 \mathbf{x}_3 entre dans la base

1

Résolution avec tableaux

Itération 2 : choix de la variable sortante

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	e ₂	e ₁	<i>X</i> ₄	e ₃	
-6	$-\frac{21}{4}$	$-\frac{15}{4}$	$-\frac{3}{4}$	1	0	0	<u>255</u> 2
1	$\frac{5}{4}$	$\frac{3}{4}$	1 12	0	1	0	<u>25</u> 2
0	$-\frac{1}{40}$	<u>1</u> 40	$-\frac{1}{120}$	0	0	1	$\frac{\overline{3}}{4}$
-4	$-\frac{19}{4}$	<u>5</u> 4	$-\frac{3}{4}$	0	0	0	$Z - \frac{225}{2}$

■ min(50/3, 30) $\Rightarrow x_4$ sort de la base

محمط معرما مماطمات

■ Itération 2 : x_3 rentre et x_4 sort de la base ⇒ on échange les colonnes de x_3 et x_4

	variables	nors b	ase	varı	ables de	oase	
<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₄	e ₂	e ₁	<i>X</i> ₃	e ₃	
-6	$-\frac{21}{4}$	0	$-\frac{3}{4}$	1	$-\frac{15}{4}$	0	<u>255</u> 2
1	$\frac{5}{4}$	1	1 12	0	$\frac{3}{4}$	0	<u>25</u>
0	$-\frac{1}{40}$	0	$-\frac{1}{120}$	0	<u>1</u> 40	1	$\frac{3}{4}$
-4	$-\frac{19}{4}$	0	$-\frac{3}{4}$	0	<u>5</u>	0	$Z - \frac{225}{2}$

variables de bese

м

Résolution avec tableaux

- Itération 2 : reconstruction de la matrice identité
 - □ on normalise la seconde ligne par 3/4
 - \square puis on supprime x_3 des autres lignes

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₄	e ₂	e ₁	<i>X</i> ₃	e ₃	
-1	1	5	$-\frac{1}{3}$	1	0	0	190
$\frac{4}{3}$	<u>5</u>	$\frac{4}{3}$	1 9	0	1	0	<u>50</u> 3
$-\frac{1}{30}$	$-\frac{1}{15}$	$-\frac{1}{30}$	$-\frac{1}{90}$	0	0	1	$\frac{1}{3}$
$-\frac{17}{3}$	$-\frac{41}{6}$	$-\frac{5}{3}$	$-\frac{8}{9}$	0	0	0	$Z - \frac{400}{3}$

 \square Coefficients dans z tous $\leq 0 \Rightarrow$ on a terminé

Principes généraux

- Mise sous forme normale
- Itération
 - Choix d'un pivot qui accroît la fonction objectif
 - □ Détection d'un optimum ou de l'infaisabilité
- Problèmes possibles
 - Solution non-bornée
 - Infaisabilité
 - Cycles
 - Solution initiale

Difficultés du simplexe

- Itération
 - □ Peut-on toujours itérer vers l'optimum?
- Terminaison
 - □ Les itérations se terminent-elles toujours?
- Initialisation
 - □ Peut-on toujours trouver une solution initiale?

Solution non-bornée

$$x_{2} = 5 + 2x_{3} - x_{4} - 3x_{1}$$

$$x_{5} = 7 - 3x_{4} - 4x_{1}$$

$$z = 5 + x_{3} - x_{4} - x_{1}$$

 x_3 entre dans la base Pas de borne supérieure sur x_3 : $x_3 \ge -5/2$

Valeur de z arbitrairement grande! Pas de solution optimale

Forme matricielle

■ Maximiser $z = c^t x$ sous contraintes

$$Ax \le b$$
$$x > 0$$

Si b ≥ 0, alors l'origine est une solution admissible, sinon elle n'appartient pas au simplexe

м

Initialisation

Maximiser $z = x_1 - x_2 + x_3$ sous contraintes

$$2x_{1} - x_{2} + 2x_{3} \le 4$$

$$2x_{1} - 3x_{2} + x_{3} \le -5$$

$$-x_{1} + x_{2} - 2x_{3} \le -1$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

- L'origine n'est pas une solution admissible
- But: construire une solution admissible

Maximiser $w = -x_0$ sous contraintes

$$2x_{1} - x_{2} + 2x_{3} - x_{0} \le 4$$

$$2x_{1} - 3x_{2} + x_{3} - x_{0} \le -5$$

$$-x_{1} + x_{2} - 2x_{3} - x_{0} \le -1$$

$$x_{0}, x_{1}, x_{2}, x_{3} \ge 0$$

$$x_{4} = 4 -2x_{1} + x_{2} -2x_{3} + x_{0}$$

$$x_{5} = -5 -2x_{1} +3x_{2} -x_{3} +x_{0}$$

$$x_{6} = -1 +x_{1} -x_{2} +2x_{3} +x_{0}$$

$$w = -x_{0}$$

- Démarrage normale du simplexe impossible!
- Pivot: x_0 entre et x_5 sort car min(4,-5,-1) = -5

$$x_{0} = 5 + 2x_{1} - 3x_{2} + x_{3} + x_{5}$$

$$x_{4} = 9 - 2x_{2} - x_{3} + x_{5}$$

$$x_{6} = 4 + 3x_{1} - 4x_{2} + 3x_{3} + x_{5}$$

$$w = -5 - 2x_{1} + 3x_{2} - x_{3} - x_{5}$$

- Itérations normales du simplexe
- Pivot: x_2 entre et x_6 sort

$$x_{2} = 1 +0.75x_{1} +0.75x_{3} +0.25x_{5} -0.25x_{6}$$

$$x_{0} = 2 -0.25x_{1} -1.25x_{3} +0.25x_{5} +0.75x_{6}$$

$$x_{4} = 7 -1.5x_{1} -2.5x_{3} +0.5x_{5} +0.5x_{6}$$

$$w = -2 +0.25x_{1} +1.25x_{3} -0.25x_{5} -0.75x_{6}$$

Pivot: x_3 entre et x_0 sort

$$x_{3} = 1.6 -0.2x_{1} +0.2x_{5} +0.6x_{6} -0.8x_{0}$$

$$x_{2} = 2.2 +0.6x_{1} +0.4x_{5} +0.2x_{6} -0.6x_{0}$$

$$x_{4} = 3 -x_{1} -x_{6} +2x_{0}$$

$$w = -x_{0}$$

- Optimum: $x_0 = 0$, $x_2 = 2.2$, $x_3 = 1.6$, $x_4 = 3$
- Il faut retraduire dans le dictionnaire originel

$$x_{3} = 1.6 -0.2x_{1} +0.2x_{5} +0.6x_{6}$$

$$x_{2} = 2.2 +0.6x_{1} +0.4x_{5} +0.2x_{6}$$

$$x_{4} = 3 -x_{1} -x_{6}$$

$$z = -0.6 +0.2x_{1} -0.2x_{5} +0.4x_{6}$$

- On a posé: $x_0 = 0$, puis remplacé x_2 et x_3 dans z
- On obtient ainsi un dictionnaire admissible pour le problème originel

Initialisation: principe général

- 1ère étape: x_0 entre et une autre variable sort
- Étape générale: itération normale du simplexe
- Terminaison
 - $\square x_0$ n'est pas dans la base et $w = 0 \Rightarrow$ problème résoluble
 - $\square x_0$ est dans la base et $w \neq 0 \implies$ problème insoluble

Simplexe à deux phases

- Phase 1
 - □ Résolution du problème auxiliaire
- Phase 2
 - Résolution du problème originel à partir du tableau / dictionnaire obtenu au terme de la phase 1
- Existence d'une solution: cas possibles
 - □ Chaque problème de programmation linéaire est soit
 - infaisable (polyèdre vide)
 - non borné (polyèdre ouvert)
 - résoluble (polyèdre non-vide)

.

Dualité: motivations

Maximiser $z = 4x_1 + x_2 + 5x_3 + 3x_4$ sous contraintes

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + x_2 + 5x_3 + 3x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

- Borne inférieure sur z : solutions admissibles
 - z > 5 avec x = (0,0,1,0) z > 22 avec x = (3,0,2,0)
- Borne supérieure sur *z* ?

ĸ.

Dualité: motivations

Maximiser $z = 4x_1 + x_2 + 5x_3 + 3x_4$ sous contraintes

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$

 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + x_2 + 5x_3 + 3x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

- Borne supérieure sur z
 - □ Mult. la 2ème contrainte par 5/3, comparaison avec z $z = 4x_1 + x_2 + 5x_3 + 3x_4$ $\leq 25/3 x_1 + 5/3 x_2 + 5x_3 + 40/3 x_4 \leq 275/3$

Dualité: motivations

Maximiser $z = 4x_1 + x_2 + 5x_3 + 3x_4$ sous contraintes

$$x_1 - x_2 - x_3 + 3x_4 \le 1$$
 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + x_2 + 5x_3 + 3x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

- Borne supérieure sur z
 - □ Addition des 2^{ème} et 3^{ème} contraintes, comparaison avec $z = 4x_1 + x_2 + 5x_3 + 3x_4 \le 4x_1 + 2x_2 + 8x_3 + 11x_4 \le 58$
 - □ Idée: combinaison linéaire des contraintes

Dualité: motivations

Maximiser $z = 4x_1 + x_2 + 5x_3 + 3x_4$ sous contraintes

$$(x_1 - x_2 - x_3 + 3x_4 \le 1) \cdot y_1$$

 $(5x_1 + x_2 + 3x_3 + 8x_4 \le 55) \cdot y_2^+$
 $(-x_1 + x_2 + 3x_3 - 5x_4 \le 3) \cdot y_3^+$
 $x_1, x_2, x_3, x_4 \ge 0$

On obtient

$$(y_1 + 5y_2 - y_3) x_1 + (-y_1 + y_2 + 2y_3) x_2$$

+ $(-y_1 + 3y_2 + 3y_3) x_3 + (3y_1 + 8y_2 - 5y_3) x_4 \le y_1 + 55y_2 + 3y_3$

Condition pour que le terme de gauche majore z ?

Dualité: motivations

$$z = 4x_1 + x_2 + 5x_3 + 3x_4$$

$$(y_1 + 5y_2 - y_3) x_1 + (-y_1 + y_2 + 2y_3) x_2 + (-y_1 + 3y_2 + 3y_3) x_3$$

$$+ (3y_1 + 8y_2 - 5y_3) x_4 \le y_1 + 55y_2 + 3y_3$$

Contraintes

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$

Pour obtenir la meilleure borne supérieure, il faut minimiser $y_1 + 55y_2 + 3y_3$

Maximiser
$$z = 4x_1 + x_2 + 5x_3 + 3x_4$$
 Problème primal sous contraintes $x_1 - x_2 - x_3 + 3x_4 \le 1$ $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$ $-x_1 + x_2 + 3x_3 - 5x_4 \le 3$ $x_1, x_2, x_3, x_4 \ge 0$

Minimiser
$$w = y_1 + 55y_2 + 3y_3$$

sous contraintes $y_1 + 5y_2 - y_3 \ge 4$
 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$

Problème dual

Problèmes dual et primal

sous contraintes

Maximiser
$$z = \sum_{j=1}^{n} c_j x_j$$
 ou $z = cx$ sous contraintes

$$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \quad \text{ou } Ax \le b$$
$$x_{j} \ge 0 \quad (i = 1, ..., m, \ j = 1, ..., n)$$

sous contraintes

Minimiser
$$w = \sum_{i=1}^{m} b_i y_i$$
 ou $w = b^t y$ sous contraintes

$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad \text{ou } A^t y \ge c$$
$$y_i \ge 0 \quad (i = 1, ..., m, j = 1, ..., n)$$

Problème primal

м

Dualité: remarques

- Problème primal de maximisation
 - ⇔ Problème dual de minimisation

$$z = \sum_{j=1}^{n} c_{j} x_{j} \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j}$$

$$\leq \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_j \right) y_i \leq \sum_{i=1}^{m} b_i y_i = w$$

- nb. *m* de contraintes > nb. *n* de variables libres
 - ⇒ problème dual plus avantageux à résoudre (nb. d'itérations typique % nb. de variables)

Maximiser sous contraintes

$$z = \sum_{j=1}^{n} 10^{n-j} x_{j}$$

$$\left(2\sum_{j=1}^{i-1} 10^{i-j} x_j\right) + x_i \le 100^{i-1}$$
$$x_i \ge 0 \quad (i = 1, ..., n)$$

- Nombre d'étapes de l'algorithme du simplexe: 2ⁿ
- L'algorithme du simplexe est non-polynomial
- « De tels mauvais cas sont rares »

M

Historique

- Algorithme du simplexe (Dantzig, 1947)
 - ☐ Planification de l'US Air Force
- Applications à la productique
 - □ Problème d'allocation de ressources
 - □ Formalisation de problèmes de décision
- Applications en économie
 - □ Prix Nobel 1975 (Kantorovich / Koopmans)
- Théorie math. plus ancienne (Fourier, 19ème s.)
 - Mise en pratique possible avec l'informatique
- - □ variables entières ⇒ difficile / résolution différente

Bibliographie

- V. Chvátal, Linear Programming, Freeman, 1983
- D. de Werra, Éléments de programmation linéaire avec applications aux graphes,
 Presses Polytechniques Romandes, 1990
- R. Faure, B. Lemaire et C. Picouleau. Précis de recherche opérationnelle: méthodes et exercices d'application, 5ème édition, Dunod, 2000
- D. de Werra, T. M. Liebling et J.-F. Hêche, Recherche opérationnelle pour ingénieurs, Presses polytechniques et universitaires romandes, 2003