Sistemas de control en tiempo discreto

Ingeniería Electrónica

Prof: Luis Miguel Esquivel Sancho

Correspondencia plano s y plano z

Correspondencia plano s y plano z

Correspondencia plano s y plano z

Figura 4-2 Diagramas que muestran la correspondencia entre la franja primaria en el plano s y el círculo unitario en el plano z: a) una trayectoria en el plano s; b) la trayectoria correspondiente en el plano z.

Lugar geométrico de atenuación constante

Figura 4-3 a) Líneas de atenuación constante en el plano s; b) lugar geométrico correspondiente en el plano z.

Tiempo de asentamiento ts

Figura 4-4 a) Región para un tiempo de asentamiento T_s menor que $4/\sigma_1$ en el plano s; b) región para un tiempo de asentamiento T_s menor que $4/\sigma_1$ en el plano z.

Lugar geométrico de frecuencia constante

Figura 4-5 a) Lugares geométricos de frecuencia constante en el plano s; b) lugares geométricos correspondientes en el plano z.

Región limitada

Figura 4-6 a) Región limitada por líneas $\omega = \omega_1$, $\omega = -\omega_2$, $\sigma = -\sigma_1$ y $\sigma = -\sigma_2$ en el plano s; b) región correspondiente en el plano z.

Lugares geométricos del factor de amortiguamiento

Figura 4-7 a) Línea de factor de amortiguamiento relativo constante en el plano s; b) lugar geométrico correspondiente en el plano z.

$$s = -\zeta \omega_n + j\omega_n \sqrt{1 - \zeta^2} = -\zeta \omega_n + j\omega_d$$

$$z = e^{Ts} = \exp(-\zeta \omega_n T + j\omega_d T)$$
$$= \exp\left(-\frac{2\pi\zeta}{\sqrt{1-\zeta^2}}\frac{\omega_d}{\omega_s} + j2\pi\frac{\omega_d}{\omega_s}\right)$$

$$|z| = \exp\left(-\frac{2\pi\zeta}{\sqrt{1-\zeta^2}}\frac{\omega_d}{\omega_s}\right)$$

$$\underline{z} = 2\pi \frac{\omega_d}{\omega_s}$$

$$|z| = \exp\left(-\frac{2\pi \times 0.3}{\sqrt{1 - 0.3^2}} \times 0.25\right) = 0.610$$

$$z = 2\pi \times 0.25 = 0.5\pi = 90^{\circ}$$

Lugares geométricos del factor de amortiguamiento

Figura 4-8 Lugares geométricos del factor de amortiguamiento relativo constante en el plano z.

Perpendicularidad entre ω_n y ζ

Figura 4-9 a) Diagrama que muestra la ortogonalidad o perpendicularidad de los lugares geométricos de las ζ constantes y de los lugares geométricos de los ω_n constantes dentro del plano s; b) diagrama correspondiente en el plano z.

Regiones en plano s y plano z para ζ

Figura 4-10 a) Región correspondiente a $\zeta > \zeta_1$ en el plano s; b) región correspondiente a $\zeta > \zeta_1$ en el plano z.

Ejemplo

Figura 4-11 a) Una región deseable en el plano s para la localización de los polos en lazo cerrado; b) región correspondiente en el plano z.