- Ερωτήσεις
 - 1 Υπολογίστε την αυτοπληροφορία του κάθε συμβόλου και την εντροπία της πηγής
 - 2 Κωδικοποιήστε την έξοδο της πηγής με ένα κώδικα σταθερού μήκους.
 - 3 Εξοδο της πηγής ανά ζεύγη συμβόλων με βέλτιστο κώδικα μεταβλητού μήκους
 - 4 Υπολογίστε την αποδοτικότητα του κώδικα που προκύπτει από το ερώτημα 4
 - <u>5 Διανυσματικός χώρος των παραπάνω σημάτων, με την διαδικασία Gram Schmidt</u>
 - 6 Να σχεδιαστεί ένας αποδιαμορφωτής ετεροσυσχετιστών
 - 7 Να σχεδιαστεί ένας αποδιαμορφωτής προσαρμοσμένων φίλτρων.
 - 8 Να σχεδιαστούν οι κυματομορφές των συναρτήσεων μεταφοράς των προσαρμοσμένων φίλτρων.
 - 9 Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή ετεροσυσχετιστών
 - 10 Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή προσαρμοσμένων φίλτρων

Ερωτήσεις

1 Υπολογίστε την αυτοπληροφορία του κάθε συμβόλου και την εντροπία της πηγής

1. Υπολογίστε την αυτοπληροφορία του κάθε συμβόλου και την εντροπία της πηγής.

H αυτοπληροφορία των συμβόλων βρισκεται απο τον τυπο $I(x_i) = \log_2\left(\frac{1}{P(x_i)}\right) = -\log_2\left(P(x_i)\right)$, οπου $P(\mathbf{x_i})$ ειναι η πιθανοτητα εμφανισης του γραμματος, και βρισκεται απο τον τυπο $P(x) = \frac{Count\ of\ Symbol\ }{Number\ of\ all\ the\ Symbol\ }$, το πηλικο του αριθμου των γραμμάτων σε ολη τη φράση είναι N=72.

Letter	Count	P = Count/N	I= -log2(P)
α	22	0.306	1.71
β	14	0.194	2.363
γ	16	0.222	2.17
δ	20	0.278	1.848
Number of symbols	72		

Η συνολική εντροπία της πηγής βρίσκεται απο τον τυπο: $H(X) = -\sum_{i=1}^N p_i \log_2(p_i)$

Θα βρουμε την πιθανοτητα εμφανισης και την αυτοπληροφορια για καθε χαρακτηρα του κειμένου

$$H(X) = -\sum_{i=1}^4 p_i \log_2(p_i)$$

$$H(X) = -0.306*log_2(0.306) - 0.194*log_2(0.194) - 0.222*log_2(0.222) - 0.278*log_2(0.278) = 1.978*log_2(0.202) - 0.278*log_2(0.202) - 0.278*log_2(0.202) = 0.278*log_2(0.202) - 0.278*log_2(0.202) = 0.278*log_2(0.202) =$$

H(x) = 1.978

2 Κωδικοποιήστε την έξοδο της πηγής με ένα κώδικα σταθερού μήκους.

2. Κωδικοποιήστε την έξοδο της πηγής με ένα κώδικα σταθερού μήκους.

Τα σύμβολα του κειμενου μας ειναι 4 οποτε ο κωδικας σταθερους μηκους δημιουργειται ως εξης :

Symbol	Code
α	00
β	01
γ	10
δ	11

Επομένως η εξοδος της πηγης :

αββββαγγγαγαγαβγαβααβααδαδαδαδαδβδδδγβαβδγαγδβααβγδδδαββγγγαααδδδδαδδγδγδγ

Κωδικοποιείται ως :

3 Εξοδο της πηγής ανά ζεύγη συμβόλων με βέλτιστο κώδικα μεταβλητού μήκους

3. Κωδικοποιήστε την έξοδο της πηγής ανά ζεύγη συμβόλων με ένα βέλτιστο κώδικα μεταβλητού μήκους.

Θα αξιοποιησουμε την κωδικοποίηση Huffman:

Combination	Probability
αα	0.094
αβ	0.059
αγ	0.068
αδ	0.085
βα	0.059
ββ	0.038

Combination	Code
αα	001
αβ	0110
αγ	1010
αδ	1111
Βα	0111
3β	11010

Combination	Probability
βγ	0.043
βδ	0.054
γα	0.068
γβ	0.043
уу	0.049
γδ	0.062
δα	0.085
δβ	0.054
δγ	0.062
δδ	0.077

4 Υπολογίστε την αποδοτικότητα του κώδικα που προκύπτει από το ερώτημα 4

4. Υπολογίστε την αποδοτικότητα του κώδικα που προκύπτει από το ερώτημα 4.

$$H(X) = \sum_{i=1}^{n} P(x_i) \cdot I(x_i) = I_{aa} \cdot P_{aa} + I_{ab} \cdot P_{ab} + I_{ac} \cdot P_{ac} + I_{ad} \cdot P_{ad} + I_{ba} \cdot P_{ba} + I_{bb} \cdot P_{bb} + I_{bc} \cdot P_{bc} + I_{bd} \cdot P_{bd} + I_{ca} \cdot P_{ca} + I_{cb} \cdot P_{cb} + I_{cc} \cdot P_{cc} + I_{cd} \cdot P_{cd} + I_{db} \cdot P_{db} + I_{dc} \cdot P_{db} + I_{dd} \cdot P_{db} + I_{dd} \cdot P_{db} + I_{dd} \cdot P_{db} = I_{db} \cdot P_{db} + I_{db} \cdot P_{db} + I_{dc} \cdot P_{dc} + I_{db} \cdot P_{db} + I_{dc} \cdot P_{dc} + I_{dd} \cdot$$

 $\begin{array}{c} 3.411 \cdot 0.094 + 4.083 \cdot 0.059 + 3.878 \cdot 0.068 + 3.556 \cdot 0.085 + 4.083 \cdot 0.059 + 4.718 \cdot 0.038 + \\ 4.54 \cdot 0.043 + 4.211 \cdot 0.054 + 3.878 \cdot 0.068 + 4.54 \cdot 0.043 + 4.351 \cdot 0.049 + 4.012 \cdot 0.062 + \\ 3.556 \cdot 0.085 + 4.211 \cdot 0.054 + 4.012 \cdot 0.062 + 3.699 \cdot 0.077 = \end{array}$

3.954

H(x) = 3.954

$$R = \sum_{i=1}^{n} P(x_i) \cdot length_i = \\ 0.043 \cdot 4 + 0.049 \cdot 4 + 0.094 \cdot 3 + 0.054 \cdot 4 + \\ 0.054 \cdot 4 + 0.059 \cdot 4 + 0.059 \cdot 4 + 0.062 \cdot 4 + \\ 0.062 \cdot 4 + 0.068 \cdot 4 + 0.068 \cdot 4 + 0.077 \cdot 4 + \\ 0.038 \cdot 5 + 0.043 \cdot 5 + 0.085 \cdot 4 + 0.085 \cdot 4 = \\ 3.987$$

R = 3.987

$$n = \frac{H(x)}{R} = \frac{1.978}{3.954} = 0.5 = 50.0 \%$$

n = 0.5

Για την μετάδοση χρησιμοποιούνται τα παρακατω σηματα

5 Διανυσματικός χώρος των παραπάνω σημάτων, με την διαδικασία Gram Schmidt

5. Χρησιμοποιώντας την διαδικασία Gram Schmidt να βρεθεί ο διανυσματικός χώρος των παραπάνω σημάτων.

$$f_2(t) = rac{S_2(t)}{\sqrt{E_2}}$$
 $E_2 = \int_{-\infty}^{\infty} S_2(t)^2 \, dt = \int_1^3 1^2 \, dt = 2 \cdot 1 = 2$

Αρα

$$f_2(t)=rac{S_2(t)}{\sqrt{2}}$$

$$f_3'(t) = S_3(t) - C_{32} \cdot f_2(t)$$
 $C_{32} = \int_{-\infty}^{\infty} S_3(t) \cdot f_2(t) \, dt = \int_1^3 (-1) \cdot rac{\sqrt{2}}{2} \, dt = -\sqrt{2}$

Άρα

$$f_3'(t) = S_3(t) + \sqrt{2} f_2(t)$$

Δηλαδη :

$$f_3'(t)=rac{f_3'(t)}{\sqrt{E_2}}$$
 $E_3=\int_{-\infty}^{\infty}(f_3'(t))^2\,dt=\int_3^4(-1)^2\,dt=1$

Άρα

$$f_3(t)=f_3^\prime(t)$$

$$S_4(tt)$$
 $f_4'(t) = S_4(t) - C_{43}f_3(t) - C_{42}f_2(t)$ $C_{43} = \int_{-\infty}^{\infty} S_4f_3 dt = \int_3^4 1 \cdot (-1) dt = -1$ $C_{42} = \int_{-\infty}^{\infty} S_4f_2 dt = \int_1^3 1 \cdot \frac{\sqrt{2}}{2} dt = \sqrt{2}$ $S_4' = S_4 + f_3 - \sqrt{2} \cdot f_2$

1)54

$$E_4'=\int_{-\infty}^\infty (f_4')^2\,dt=1$$

Άρα

$$f_4=f_4'$$

 S_1

$$\begin{split} f_1'(t) &= S_1(t) - C_{14} f_4(t) - C_{13} f_3(t) - C_{12} f_2(t) \\ C_{14} &= \int_{-\infty}^{\infty} S_1 \cdot f_4 \, dt = \int_0^1 \, dt = 1 \\ C_{13} &= \int_{-\infty}^{\infty} S_1 f_3 \, dt = \int_0^2 0(1) \, dt + \int_3^4 0(-1) \, dt \\ C_{12} &= \int_{-\infty}^{\infty} S_1 f_2 \, dt = \int_0^2 1 \cdot \frac{\sqrt{2}}{2} \, dt + 0 = \frac{\sqrt{2}}{2} \end{split}$$

Άρα :

$$f_1'(t) = S_1(t) - f_4(t) - rac{\sqrt{2}}{2} f_2(t)$$

$$E_1' = = \int_{-\infty}^{\infty} (f_1')^2 \, dt = \int_1^2 \left(rac{1}{2}
ight)^2 dt + \int_2^3 \left(-rac{1}{2}
ight)^2 dt = rac{1}{4} + rac{1}{4} = rac{1}{2}$$

Άρα :

$$f_1=rac{f_1'}{\sqrt{E_1'}}=\sqrt{2}f_1'$$

Από

$$(1) \implies S_2(t) = \sqrt{2}f_2(t) = 0 \cdot f_1 + \sqrt{2} \cdot f_2 + 0 \cdot f_3 + 0 \cdot f_4$$

$$(2.1), (2,2) \implies S_3(t) = f_3(t)0\sqrt{2}f_2(t) = 0 \cdot f_1 - \sqrt{2} \cdot f_2 - f_3 + f_4$$

$$(3.1), (3.2) \implies S_4(t) = f_4 - f_3 + \sqrt{2}f_2 = 0 \cdot f_1 + \sqrt{2} \cdot f_2 - f_3 + f_4$$

$$(4.1), (4.2) \implies S_1(t) = rac{f_1}{\sqrt{2}} + f_4 + rac{\sqrt{2}}{2} f_2 = rac{\sqrt{2}}{2} f_1 + rac{\sqrt{2}}{2} \cdot f_2 + 0 \cdot f_3 + 1 \cdot f_4$$

Άρα :

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \\ S_4 \end{bmatrix} = \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 & 1 \\ 0 & \sqrt{2} & 0 & 0 \\ 0 & -\sqrt{2} & 1 & 0 \\ 0 & \sqrt{2} & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}$$

6 Να σχεδιαστεί ένας αποδιαμορφωτής ετεροσυσχετιστών

6. Να σχεδιαστεί ένας αποδιαμορφωτής ετεροσυσχετιστών.

$$r_2(t) = \int_{-\infty}^{\infty} r(t) f_j(t) \, dt$$

Συμφωνα με την αποσταση :

$$D(r,\overrightarrow{S_j}) = \sqrt{\sum_{i=4}^4 (n-S_{ji})^2}$$

οποιο σημα S_i' εχει την μικροτερη αποσταση με το r(t) ειναι το $\mathbf{r}(\mathbf{t})$

$$S_3 = [S_{j1} \qquad S_{j2} \qquad S_{j3} \qquad S_{j4}] \cdot egin{bmatrix} f_1 \ f_2 \ f_3 \ f_4 \ \end{pmatrix}$$

7 Να σχεδιαστεί ένας αποδιαμορφωτής προσαρμοσμένων φίλτρων.

7. Να σχεδιαστεί ένας αποδιαμορφωτής προσαρμοσμένων φίλτρων.

8 Να σχεδιαστούν οι κυματομορφές των συναρτήσεων μεταφοράς των προσαρμοσμένων φίλτρων.

8. Να σχεδιαστούν οι κυματομορφές των συναρτήσεων μεταφοράς των προσαρμοσμένων φίλτρων.

Έστω ο πομπός στέλνει το σήμα S3 και ότι ο θόρυβος στο κανάλι είναι μηδενικός.

9 Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή ετεροσυσχετιστών

9. Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή ετεροσυσχετιστών να βρεθεί αναλυτικά πως αυτός αποφασίζει ότι έχει σταλεί το S3.

10 Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή προσαρμοσμένων φίλτρων

10. Αν ο δέκτης χρησιμοποιεί αποδιαμορφωτή προσαρμοσμένων φίλτρων να βρεθεί αναλυτικά πως αυτός αποφασίζει ότι έχει σταλεί το S3. (Θα πρέπει να υπολογιστούν αναλυτικά οι μαθηματικές εκφράσεις καθώς και να σχεδιαστούν οι απαραίτητες γραφικές παραστάσεις