## Monte carlo integration

Integral one

$$I = \int_0^1 3x^2 \ dx$$

## Plot I vs Number of pointes (N)

As we increase the number of points, the calculated vaue of the integral approaches the real value

The real value of the integral is 1





Fix N=20; 100 trials; Plot I vs trials; calculate std deviation.

The standard deviation came out to be **0.19** 

The plot is



Fix N=1000; 100 trials; Plot I vs trials; calculate std deviation.

The standard deviation came out to be 0.028

## The plot is



Plot standard deviation (Of I vs trials) vs N for a fixed number of trials; Check if STD is proportional to sqrt(N)

The plot is for trials = 100 and N = 1000



Integral two

$$I = \int_0^1 \int_0^1 x^2 y \ dx dy$$

## Plot I vs Number of pointes (N)

As we increase the number of points, the calculated vaue of the integral approaches the real value

The real value of the integral is 0.166





Fix N=20; 100 trials; Plot I vs trials; calculate std deviation.

The standard deviation came out to be 0.04

The plot is



Fix N=1000; 100 trials; Plot I vs trials; calculate std deviation.

The standard deviation came out to be **0.0059** 

The plot is



Plot standard deviation (Of I vs trials) vs N for a fixed number of trials; Check if STD is proportional to sqrt(N)

The plot is for trials = 100 and N = 1000

