機器學習實務與應用

Homework #1 Due 2021 Mar 17 11:00PM

- (一) 針對附件 *HWI-1.csv* 所提供的 20 筆成對的(x,y)資料, 請利用 tensorflow2.0:
 - (a) 撰寫一個多層的神經網路模型去模擬一個函數y = f(x)可以產生上述資料。該神經網路針對給定輸入資料x所產生的輸出資料y,其平均誤差 (MSE)必須要小於0.1。
 - (b) 另外撰寫一個多項次迴歸的方程式模型 $y = w_m x^m + \dots + w_1 x^1 + w_0$,同樣去模擬上述函數。請
 - (i) 列印出方程式的係數 $w_m, ..., w_0$ 。
 - (ii) 利用 tensorflow 計算梯度的方法算出f'(0.7), f'(0.2), f'(-0.5).
- (二) Cifar-10 由 60000 張 32*32 的 RGB 彩色圖片,共 10 個分類。training data 共 50000 筆,testing data 共 10000 筆。

請建立一CNN的架構,架構請依照下列建立。 (參考 cifar10.py)

(3 1)		1		
type	Kernel size(or	Output channel	stride	Padding
	pooling size)			
Conv2D	3x3	32	1x1	The same
relu				
MaxPooling	2x2		2x2	The same
Dropout	25%			
Conv2D	3x3	64	1x2	The same
Relu				

MaxPooling	2x2		2x2	The same		
Dropout	25%					
Flatten						
Dense(fully	Output size=1024					
connected)						
Dropout	25%					
Dense(fully	Output size=1024					
connective)						
Dropout	25%					
Dense(fully	Output size=10					
connected)						

請回答:

- (a) 計算參數量的總個數(含 kernel 和 bias),將計算過程列出來,並與 model.summary()的結果比對是否吻合。
- (b) 觀察 training 後的結果圖,計算出 training &validation data 的 top-1 及 top-5 accuracy 和 loss。
- (c) 自行調整架構(增加/減少 convolution、max pooling、relu、Dropout 的個數、以及內部參數),讓 testing data 的 top-1 accuracy 結果比上述架構提高 10%以上。