Pfaffova DE ter uporaba Fourierjeve in Laplaceove transformacije

Jimmy Zakeršnik

Fakulteta za naravoslovje in matematiko

9. april 2024

Napovednik

- Motivacijski problemi
- Pfaffova DE
- Fourierjeva transformacija
- Laplaceova transformacija
- Literatura

Motivacijski problemi

Za motivacijo si zastavimo naslednje probleme:

- ② Za c>0 najdi rešitev PDE $\frac{\partial^2 u}{\partial t^2}(x,t)=c^2\frac{\partial^2 u}{\partial x^2}(x,t)$ na $\mathbb{R}\times(0,\infty)$ pri pogojih $\forall x\in\mathbb{R}: u(x,0)=f(x)$ & $\frac{\partial u}{\partial t}(x,0)=g(x)$. Pri tem predpostavi, da sta funkciji $f,g\in\mathcal{C}^1(\mathbb{R})$.
- Denimo, da imamo navpično postavljeni žleb po katerem spustimo kroglico. Kakšne oblike mora biti žleb, da bo čas potovanja kroglice po njem do izbrane točke neodvisen od začetne točke, s katere smo kroglico spustili? Pri tem zanemarimo zračni upor in trenje.

Definicija

Naj bodo $F_i:\mathbb{R}^n\to\mathbb{R}$ zvezne funkcije neodvisnih spremenljivk x_1,x_2,\dots,x_n . *Pfaffova diferencialna enačba* je enačba oblike

$$\sum_{i=1}^{n} F_i(x_1, x_2, \dots, x_n) dx_i = 0$$

Definicija

Naj bodo $\forall i \in \{1,2,\ldots,n\}$ $F_i: \mathbb{R}^n \to \mathbb{R}$ zvezne funkcije, ki določajo Pfaffovo diferencialno enačbo $\sum_{i=1}^n F_i(x_1,x_2,\ldots,x_n) dx_i = 0$. Če obstaja taka funkcija $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da za njen totalni diferencial du velja $du = \langle \nabla u, [dx_1,dx_2,\ldots,dx_n] \rangle = \sum_{i=1}^n F_i dx_i$, potem pravimo, da je enačba *eksaktna*.

Definicija

Naj bodo $\forall i \in \{1,2,\ldots,n\}$ $F_i: \mathbb{R}^n \to \mathbb{R}$ zvezne funkcije, ki določajo Pfaffovo diferencialno enačbo $\sum_{i=1}^n F_i(x_1,x_2,\ldots,x_n) dx_i = 0$. Če obstaja taka funkcija $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da za njen totalni diferencial du velja $du = \langle \nabla u, [dx_1,dx_2,\ldots,dx_n] \rangle = \sum_{i=1}^n F_i dx_i$, potem pravimo, da je enačba *eksaktna*.

Definicija

Pravimo, da je Pfaffova diferencialna enačba $\sum_{i=1}^n F_i dx_i = 0$ integrabilna, če obstajata taki funkciji $\mu(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$ in $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da je $< \nabla u, [dx_1,dx_2,\ldots,dx_n]^\top >= \sum_{i=1}^n (\mu F_i) dx_i$

Definicija

Naj bodo $\forall i \in \{1,2,\ldots,n\}$ $F_i: \mathbb{R}^n \to \mathbb{R}$ zvezne funkcije, ki določajo Pfaffovo diferencialno enačbo $\sum_{i=1}^n F_i(x_1,x_2,\ldots,x_n) dx_i = 0$. Če obstaja taka funkcija $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da za njen totalni diferencial du velja $du = \langle \nabla u, [dx_1,dx_2,\ldots,dx_n] \rangle = \sum_{i=1}^n F_i dx_i$, potem pravimo, da je enačba *eksaktna*.

Definicija

Pravimo, da je Pfaffova diferencialna enačba $\sum_{i=1}^n F_i dx_i = 0$ integrabilna, če obstajata taki funkciji $\mu(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$ in $u(x_1,x_2,\ldots,x_n) \in \mathcal{C}^1$, da je $<\nabla u, [dx_1,dx_2,\ldots,dx_n]^\top>=\sum_{i=1}^n (\mu F_i) dx_i$

Opomba

Za Pfaffove DE v treh spremenljivkah velja:

$$Pdx + Qdy + Rdz = 0$$
 je integrabilna \iff $<[P,Q,R], rot[P,Q,R]> = 0$

Kvazi-homogene funkcije

Definicija

Pravimo, da je funkcija $f:\mathbb{R}^n\to\mathbb{R}$ kvazi-homogena stopnje (oz. reda) $m\in\mathbb{Z}$, če obstajajo taka neničelna števila $a_1,a_2,\ldots,a_n\in\mathbb{Z}$, da velja:

$$f(x_1t^{a_1}, x_2t^{a_2}, \dots, x_nt^{a_n}) = t^m f(x_1, x_2, \dots, x_n)$$

za vsak $t \in \mathbb{R}$. V tem primeru pravimo, da je število a_i dimenzija spremenljivke x_i .

Zgled

Funkcija

$$f(x,y) = 4x^3y^3 - 3x^2y^6 + 2xy^9 - y^{12}$$

je kvazi-homogena reda 12 z dimenzijama 3 ter 1.

Kvazi-homogene funkcije

Trditev

Naj bo $f:\mathbb{R}^n \to \mathbb{R}$ kvazi-homogena funkcija reda m, z dimenzijami a_1,a_2,\ldots,a_n . Za $x_1 \neq 0$ in vse $i \in \{2,3,\ldots,n\}$ označimo: $b_i = \frac{a_i}{a_1}$ in $y_i = \frac{x_i}{x_1^{b_i}}$. Tedaj je

$$f(x_1, x_2, \dots, x_n) = x_1^{\frac{m}{a_1}} f(1, y_2, \dots, y_n)$$

Kvazi-homogene funkcije

Trditev

Naj bo $f:\mathbb{R}^n \to \mathbb{R}$ kvazi-homogena funkcija reda m, z dimenzijami a_1,a_2,\ldots,a_n . Za $x_1 \neq 0$ in vse $i \in \{2,3,\ldots,n\}$ označimo: $b_i = \frac{a_i}{a_1}$ in $y_i = \frac{x_i}{x_1^{b_i}}$. Tedaj je

$$f(x_1, x_2, \dots, x_n) = x_1^{\frac{m}{a_1}} f(1, y_2, \dots, y_n)$$

Trditev

Naj bo $f:\mathbb{R}^n \to \mathbb{R}$ kvazi-homogena \mathcal{C}^1 funkcija reda m z dimenzijami a_1,a_2,\dots,a_n . Tedaj velja enakost:

$$mf(x_1, x_2, \dots, x_n) = \sum_{i=2}^n a_i x_i \frac{\partial f}{\partial x_i} (x_1, x_2, \dots, x_n)$$

Kvazi-homogene Pfaffove DE

Definicija

Pravimo, da je Pfaffova diferencialna enačba $\sum_{i=1}^{n} F_i dx_i = 0$:

- ullet homogena reda m, če so za vsak $i\in\{1,2,\ldots,n\}$ fukncije F_i homogene funkcije reda m.
- kvazi-homogena reda m, z dimenzijami a_1, a_2, \ldots, a_n , če so za vsak $i \in \{1, 2, \ldots, n\}$ fukncije F_i kvazi-homogene funkcije reda $m a_i$ (z dimenzijami a_i).

Metode reševanja

Za eksplicitne enačbe:

- Metoda ostrega pogleda
- Reševanje sistema PDE prvega reda
- Integracija potencialnega polja
- Enačbe z ločljivimi spremenljivkami

Za integrabilne enačbe:

- Enačbe z ločljivo spremenljivko
- Homogene enačbe
- Natanijeva metoda
- Mayerjeva metoda
- Bertrandova metoda
- Kvazi-homogene enačbe

Metoda ostrega pogleda

Opis

Najprej si poglejmo najpreprostejšo metodo - metodo ostrega pogleda. Kot ime metode naimguje, tukaj rešitev »uganemo«, kar lahko storimo v nekaterih redkih primerih.

Metoda ostrega pogleda

Opis

Najprej si poglejmo najpreprostejšo metodo - metodo ostrega pogleda. Kot ime metode naimguje, tukaj rešitev »uganemo«, kar lahko storimo v nekaterih redkih primerih.

Zgled

Za Pfaffovo enačbo xdx+ydy+zdz=0 lahko na podlagi simetrije in preprostosti funkcij, ki v njej nastopajo, uganemo, da je $u(x,y,z)=\frac{1}{2}(x^2+y^2+z^2)$ iskana funkcija, ki nam da družino rešitev u(x,y,z)=c.

Reševanje sistema PDE prvega reda

Opis

Funkcijo u, ki določa rešitev, dobimo kot rešitev sistema:

$$u_x(x, y, z) = P(x, y, z)$$

$$u_y(x, y, z) = Q(x, y, z)$$

$$u_z(x,y,z) = R(x,y,z)$$

Reševanje sistema PDE prvega reda

Opis

Funkcijo u, ki določa rešitev, dobimo kot rešitev sistema:

$$u_x(x, y, z) = P(x, y, z)$$

$$u_y(x, y, z) = Q(x, y, z)$$

$$u_z(x,y,z) = R(x,y,z)$$

Zgled

Rešitev enačbe $yze^{xyz}dx+xze^{xyz}dy+xye^{xyz}dz=0$ s to metodo je podana s funkcijo $u(x,y,z)=e^{xyz}+C.$

Integracija potencialnega polja

Opis

Iz vektorske analize vemo, da, če trojica (P, Q, R) tvori \mathcal{C}^1 vektorsko polje F, nam eksaktnost enačbe Pdx + Qdy + Rdz = 0 pove, da obstaja tako C^2 skalarno polje u, da je $\nabla u = F = (P, Q, R)$. Tako lahko uporabimo standardno metodo integriranja potencialnega vektorskega polja, da dobimo potencial u, ki določa rešitev dane Pfaffove diferencialne enačbe.

Integracija potencialnega polja

Opis

Iz vektorske analize vemo, da, če trojica (P,Q,R) tvori \mathcal{C}^1 vektorsko polje F, nam eksaktnost enačbe Pdx+Qdy+Rdz=0 pove, da obstaja tako \mathcal{C}^2 skalarno polje u, da je $\nabla u=F=(P,Q,R)$. Tako lahko uporabimo standardno metodo integriranja potencialnega vektorskega polja, da dobimo potencial u, ki določa rešitev dane Pfaffove diferencialne enačbe.

Zgled

Rešitev enačbe $yze^{xyz}dx+xze^{xyz}dy+xye^{xyz}dz=0$ s to metodo je podana s funkcijo $u(x,y,z)=e^{xyz}+C.$

Enačbe z ločljivimi spremenljivkami

Opis

Metodo ločevanja spremenljivk uporabimo, kadar lahko dano Pfaffovo diferencialno enačbo P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 zapišemo v obliki $\acute{P}(x)dx+\acute{Q}(y)dy+\acute{R}(z)dz=0$. V tem primeru funkcijo u dobimo kot naslednjo vsoto integralov:

$$u(x,y,z) = \int \acute{P}(x)dx + \int \acute{Q}(y)dy + \int \acute{R}(z)dz$$

Enačbe z ločljivimi spremenljivkami

Opis

Metodo ločevanja spremenljivk uporabimo, kadar lahko dano Pfaffovo diferencialno enačbo P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 zapišemo v obliki $\acute{P}(x)dx+\acute{Q}(y)dy+\acute{R}(z)dz=0$. V tem primeru funkcijo u dobimo kot naslednjo vsoto integralov:

$$u(x,y,z) = \int \acute{P}(x)dx + \int \acute{Q}(y)dy + \int \acute{R}(z)dz$$

Zgled

Pfaffova DE xdx+ydy+zdz=0 je enačba z (že) ločenimi spremenljivkami. Ko uporabimo to metodo dobimo funkcijo $u(x,y,z)=\frac{x^2}{2}+\frac{y^2}{2}+\frac{z^2}{2}+C=\frac{1}{2}(x^2+y^2+z^2)+C$, ki določa rešitev.

Integrabilne enačbe z ločljivo spremenljivko

Opis

Denimo, da je spremenljivka z ločljiva spremenljivka v enačbi P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0. Tedaj lahko to enačbo preoblikujemo v obliko $\acute{P}(x,y)dx+\acute{Q}(x,y)dy+\acute{R}(z)dz=0$. Integrabilnost enačbe nam tukaj da pogoj $\frac{\partial \acute{P}}{\partial y}=\frac{\partial \acute{Q}}{\partial x}$, to pa nam pove, da je $\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ totalni diferencial neke funkcije. Označimo to funkcijo z v. Torej, $dv=\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ in naša enačba sedaj dobi obliko $dv+\acute{R}(z)dz=0$. Funkcija u(x,y,z), ki jo iščemo, je potem dobljena kot vsota funkcije v in integrala $\int \acute{R}(z)dz$: $u(x,y,z)=v(x,y)+\int \acute{R}(z)dz$.

Integrabilne enačbe z ločljivo spremenljivko

Opis

Denimo, da je spremenljivka z ločljiva spremenljivka v enačbi P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0. Tedaj lahko to enačbo preoblikujemo v obliko $\acute{P}(x,y)dx+\acute{Q}(x,y)dy+\acute{R}(z)dz=0$. Integrabilnost enačbe nam tukaj da pogoj $\frac{\partial \acute{P}}{\partial y}=\frac{\partial \acute{Q}}{\partial x}$, to pa nam pove, da je $\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ totalni diferencial neke funkcije. Označimo to funkcijo z v. Torej, $dv=\acute{P}(x,y)dx+\acute{Q}(x,y)dy$ in naša enačba sedaj dobi obliko $dv+\acute{R}(z)dz=0$. Funkcija u(x,y,z), ki jo iščemo, je potem dobljena kot vsota funkcije v in integrala $\int \acute{R}(z)dz$: $u(x,y,z)=v(x,y)+\int \acute{R}(z)dz$.

Zgled

Pfaffova DE $\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$ ni eksaktna, je pa integrabilna. Ko ločimo spremenljivko z, s to metodo dobimo rešitev, ki je določena s funkcijo $u(x,y,z)=\frac{x^2}{2}+xy+\ln|y|+\frac{z^4}{4}+\frac{z^2}{2}+C$.

Homogene enačbe

Opis

Denimo, da je Pfaffova diferencialna enačba P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 homogena reda m. Sedaj vpeljemo novi spremenljivki w in v, da velja y=xv ter z=xw. Tedaj dobi naša enačba obliko $x^m(P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw)=0$ oziroma P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw=0. Dobljena enačba je enačba z ločljivo spremenljivko (specifično, x je ločljiva), ki jo rešimo po prejšnji metodi.

Homogene enačbe

Opis

Denimo, da je Pfaffova diferencialna enačba P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=0 homogena reda m. Sedaj vpeljemo novi spremenljivki w in v, da velja y=xv ter z=xw. Tedaj dobi naša enačba obliko $x^m(P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw)=0$ oziroma P(1,v,w)dx+xQ(1,v,w)dv+xR(1,v,w)dw=0. Dobljena enačba je enačba z ločljivo spremenljivko (specifično, x je ločljiva), ki jo rešimo po prejšnji metodi.

Zgled

Ta metoda nam za Pfaffovo DE $x^2yzdx+xy^2zdy+xyz^2dz=0$ da rešitev, ki jo določa funkcija $u(x,y,z)=\ln\lvert x\rvert+\frac{(y^2+z^2)}{2x^2}.$

Natanijeva metoda

Opis

- 2 rešitev originalne enačbe je oblike $\Phi_1(x,y,z)=\psi(z)$
- lacktriangledown Iz Φ_1 in K izrazimo nefiksirano spremenljivko dobimo $\psi(z)$

Natanijeva metoda

Opis

- Eno spremenljivko (npr. z) fiksiramo v konstanto, rešimo pripadajočo Pfaffovo DE $\Phi_1(x,y,z)=c_1$
- 2 rešitev originalne enačbe je oblike $\Phi_1(x,y,z)=\psi(z)$
- $lackbox{0}$ Iz Φ_1 in K izrazimo nefiksirano spremenljivko dobimo $\psi(z)$

Zgled

Za Pfaffovo DE
$$\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$$
 nam ta metoda da $\Phi_1(x,y,z)=\frac{1}{z}(\frac{x^2}{2}+xy+\ln|y|)$ in $K(y,z)=\ln|y|+\frac{z^2(z^2+2)}{4}=c$. Izrazimo $y(z)=e^{\frac{4c-z^2(z^2+2)}{4}}$ in nato dobimo $\psi(z)=\frac{4c-z^2(z^2+2)}{4z}$. Na koncu dobimo rešitev $\frac{x^2}{2}+xy+\ln|y|+\frac{z^4+2z^2}{4}=c_2$.

Mayerjeva metoda

Opis

- ① Z nastavkom (npr. z=x+ky) iz naše prvotne enačbe eliminiramo spremenljivko z. Dobimo Pfaffovo DE v 2 spremenljivkah z rešitvijo $\Phi(x,y,k)=\acute{c}$.

Mayerjeva metoda

Opis

- ① Z nastavkom (npr. z=x+ky) iz naše prvotne enačbe eliminiramo spremenljivko z. Dobimo Pfaffovo DE v z spremenljivkah z rešitvijo $\Phi(x,y,k)=\acute{c}$.
- $\textbf{ § Naša rešitev je } \Phi(x,y,\frac{z-x}{y}) = d.$

Zgled

Ta metoda nam za Pfaffovo DE xdx+ydy+zdz=0 da rešitev $\frac{1}{2}(x^2+y^2+z^2)=c^2$.

Bertrandova metoda

Opis

- ② Poiščemo funkciji, $\lambda(v,w)$ in $\mu(v,w)$, za kateri velja: $P=\lambda v_x+\mu w_x, Q=\lambda v_y+\mu w_y$ in $R=\lambda v_z+\mu w_z.$
- To vstavimo v originalno enačbo in jo reduciramo na (rešljivo) Pfaffovo DE v dveh spremenjivkah.

Bertrandova metoda

Opis

- ② Poiščemo funkciji, $\lambda(v,w)$ in $\mu(v,w)$, za kateri velja: $P=\lambda v_x+\mu w_x, Q=\lambda v_y+\mu w_y$ in $R=\lambda v_z+\mu w_z.$
- To vstavimo v originalno enačbo in jo reduciramo na (rešljivo) Pfaffovo DE v dveh spremenjivkah.

Zgled

Bertrandova metoda nam za Pfaffovo DE $\frac{(x+y)}{z}dx+\frac{xy+1}{yz}dy+(z^2+1)dz=0$ da $\mu(x,y,z)=\frac{1}{z}$

in $\lambda(x,y,z)=\frac{(z^2+1)}{c_3'(z)}$ za poljubno \mathcal{C}^1 funkcijo $c_3(z)$. Označimo $f(v)=c_3^{-1}(v)$, dobimo Pfaffovo

DE $\frac{dv}{f(v)} + \frac{f^2(v)+1}{c_3'(f(v))}dw = 0$, rešitev pa je (ko upoštevamo $v = c_3(z), f(v) = z$) podana s funkcijo

 $g(z,w)=w+\int rac{c_3'(z)^2}{z(z^2+1)}dz$. Za $c_3(z)=rac{z^4}{4}+rac{z^2}{2}$ dobimo ravno rešitev, ki smo jo dobili s prejšnjima metodama.

Kvazi-homogene enačbe

Zadosten pogoj

Denimo, da so P,Q in R naslednje oblike:

$$\begin{split} P(x,y,z) &= \sum_{i=1}^{n_1} a_i x^{\alpha_i} y^{\beta_i} z^{\gamma_i}, \\ Q(x,y,z) &= \sum_{i=j}^{n_2} b_j x^{\lambda_j} y^{\mu_j} z^{\nu_j} \text{ in } \\ R(x,y,z) &= \sum_{k=1}^{n_3} c_k x^{\varepsilon_k} y^{\eta_k} z^{\zeta_k}, \text{ kjer so } a_i, b_j \text{ in } c_k \text{ koeficienti in } \\ \alpha_i,\beta_i,\gamma_i,\lambda_j,\mu_j,\nu_j,\varepsilon_k,\eta_k,\zeta_k &\in \mathbb{Q}, \ \forall i \in \{1,\dots,n_1\}, \forall j \in \{1,\dots,n_2\}, \forall k \in \{1,\dots,n_3\}. \end{split}$$
 Pfaffova DE je kvazi-homogena reda m , če je sistem $n_1+n_2+n_3$ enačb

$$p(\alpha_{i}+1) + q\beta_{i} + r\gamma_{i} - m = 0 \; ; \; i \in \{1, \dots, n_{1}\}$$

$$p\lambda_{j} + q(\mu_{j}+1) + r\nu_{j} - m = 0 \; ; \; j \in \{1, \dots, n_{2}\}$$

$$p\varepsilon_{k} + q\eta_{k} + r(\zeta_{k}+1) - m = 0 \; ; \; k \in \{1, \dots, n_{3}\}$$

usklajen.

Kvazi-homogene enačbe

Opis

Po trditvi zapišemo

$$\begin{split} P(x,y,z) &= x^{\frac{m-p}{p}} P(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}), Q(x,y,z) = x^{\frac{m-q}{p}} Q(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}) \text{ in } \\ R(x,y,z) &= x^{\frac{m-r}{p}} R(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}). \end{split}$$

- ② Uvedemo $u=yx^{-\frac{q}{p}}$ in $v=zx^{-\frac{r}{p}}$ ter $A(u,v)=\frac{pQ(1,u,v)}{pP(1,u,v)+quQ(1,u,v)+rvR(1,u,v)}$ in $B(u,v)=\frac{pR(1,u,v)}{pP(1,u,v)+quQ(1,u,v)+rvR(1,u,v)}.$
- **③** Enačba se reducira v Pfaffovo DE z ločljivo spremenljivko: $\frac{dx}{x} + A(u,v)du + B(u,v)dv = 0$

Kvazi-homogene enačbe

Opis

Po trditvi zapišemo

$$\begin{array}{l} P(x,y,z) = x^{\frac{m-p}{p}} P(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}), Q(x,y,z) = x^{\frac{m-q}{p}} Q(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}) \text{ in } \\ R(x,y,z) = x^{\frac{m-r}{p}} R(1,yx^{-\frac{q}{p}},zx^{-\frac{r}{p}}). \end{array}$$

- ② Uvedemo $u=yx^{-\frac{q}{p}}$ in $v=zx^{-\frac{r}{p}}$ ter $A(u,v)=\frac{pQ(1,u,v)}{pP(1,u,v)+quQ(1,u,v)+rvR(1,u,v)}$ in $B(u,v)=\frac{pR(1,u,v)}{pP(1,u,v)+quQ(1,u,v)+rvR(1,u,v)}.$
- **③** Enačba se reducira v Pfaffovo DE z ločljivo spremenljivko: $\frac{dx}{x} + A(u,v)du + B(u,v)dv = 0$

Zgled

Pfaffova DE $(5x^3+2y^4+2y^2z+2z^2)dx+(4xy^3+2xyz)dy+(xy^2+2xz)dz=0$ je kvazi-homogena reda 4. Opisana metoda nam da rešitev $x^5+x^2y^4+x^2y^2z+x^2z^2=E$.

Fourierjeva transformacija - Uvod

Definicija

Množico ekvivalenčnih razredov realnih ali kompleksnih funkcij nad \mathbb{R} , glede na enakost skoraj povsod, za katere velja, da je $\int_{\mathbb{R}} |f(x)| dx < \infty$ označimo z $L^1(\mathbb{R})$ in imenujemo *množica* absolutno integrabilnih funkcij na \mathbb{R} .

Fourierjeva transformacija - Uvod

Definicija

Množico ekvivalenčnih razredov realnih ali kompleksnih funkcij nad \mathbb{R} , glede na enakost skoraj povsod, za katere velja, da je $\int_{\mathbb{R}} |f(x)| dx < \infty$ označimo z $L^1(\mathbb{R})$ in imenujemo *množica* absolutno integrabilnih funkcij na \mathbb{R} .

Definicija

Preslikavo $\mathcal{F}:L^1(\mathbb{R}) o \mathcal{C}_b(\mathbb{R})$, s predpisom

$$\mathcal{F}(f)(y) = \int_{-\infty}^{\infty} e^{iyt} f(t)dt \ \forall y \in \mathbb{R}$$

imenujemo Fourierjeva transformacija. Za vsak $f \in L^1(\mathbb{R})$ pravimo $\mathcal{F}(f)$ Fourierjeva transformiranka funkcije f, in jo tipično označimo kar z \hat{f} .

Fourierjeva transformacija - uvod

Opomba

Fourierjevo transformacijo lahko definiramo tudi s predpisom:

$$\mathcal{F}(f)(y) = \int_{-\infty}^{\infty} f(t)e^{-2\pi ity}dt$$

Vse lastnosti, ki jih bomo navedli v nadaljevanju, veljajo tudi za to definicijo, ko upoštevamo, da je razlika v resnici le v uvedbi nove spremenljivke. V različnih situacijah nam lahko bolj pride prav ena ali druga definicija.

Fourierjeva transformacija - uvod

Opomba

Fourierjevo transformacijo lahko definiramo tudi s predpisom:

$$\mathcal{F}(f)(y) = \int_{-\infty}^{\infty} f(t)e^{-2\pi ity}dt$$

Vse lastnosti, ki jih bomo navedli v nadaljevanju, veljajo tudi za to definicijo, ko upoštevamo, da je razlika v resnici le v uvedbi nove spremenljivke. V različnih situacijah nam lahko bolj pride prav ena ali druga definicija.

Zgled

 Fourierjeva transformiranka funkcije $\chi_{[-a,a]}(t) = \begin{cases} 1 & ; \ t \in [-a,a] \\ 0 & ; \ \text{sicer} \end{cases}$ je

$$\mathcal{F}(\chi_{[-a,a]})(y) = \frac{2\sin(ay)}{y}.$$

•
$$\mathcal{F}(e^{-\frac{t^2}{2}})(y) = \sqrt{2\pi}e^{-\frac{y^2}{2}}$$

Pomožni rezultati

Lema

Naj bo f absolutno integrabilna (L^1) funkcija na nekem končnem ali neskončnem intervalu I Potem velja:

$$\lim_{\lambda \to \infty} \int_I f(t) cos(\lambda t) dt = 0, \lim_{\lambda \to \infty} \int_I f(t) sin(\lambda t) dt = 0$$

in posledično tudi

$$\lim_{\lambda \to \infty} \int_I f(t)e^{i\lambda t}dt = 0$$

Pomožni rezultati

Lema

Naj bo f absolutno integrabilna (L^1) funkcija na nekem končnem ali neskončnem intervalu I Potem velja:

$$\lim_{\lambda \to \infty} \int_I f(t) cos(\lambda t) dt = 0, \lim_{\lambda \to \infty} \int_I f(t) sin(\lambda t) dt = 0$$

in posledično tudi

$$\lim_{\lambda \to \infty} \int_{I} f(t)e^{i\lambda t}dt = 0$$

Lema

Naj bo $f:[0,\infty)\to\mathbb{R}$ odvedljiva povsod, razen morda v končno mnogo točkah in naj bo njen odvod, f', integrabilna funkcija. Naj velja tudi $\int_0^\infty f(x)dx<\infty$ in $\int_0^\infty f'(x)dx<\infty$. Dodatno predpostavimo:

$$f(x) = \int_0^x f'(t)dt + f(0) \ \forall x \in [0, \infty)$$

Tedaj je $\lim_{x\to\infty} f(x) = 0$.

Trditev

Naj bosta $f,g\in L^1(\mathbb{R})$ poljubni. Za fourierjevo transformacijo veljajo naslednje trditve:

- lacktriangledown \mathcal{F} je zvezni linearni operator.
- 2 Za vsak $a \in \mathbb{R} \setminus \{0\}$ je $\mathcal{F}(f(at))(y) = \frac{1}{|a|} \mathcal{F}(f(t))(\frac{y}{a}) \ \forall y \in \mathbb{R}.$

- $\textbf{ 3} \ \, \mathsf{Za} \ \, \mathsf{vsak} \ \, a \in \mathbb{R} \ \, \mathsf{je} \ \, \mathcal{F}(e^{iat}f(t))(y) = \mathcal{F}(f(t))(y+a) \ \, \forall y \in \mathbb{R}.$
- **③** $\forall f \in L^1(\mathbb{R})$ je funkcija $\mathcal{F}(f)$ enakomerno zvezna na \mathbb{R} .

Izrek

Naj bo f poljubna absolutno integrabilna funkcija na $\mathbb R$ z lastnostjo, da njen odvod, f', obstaja povsod, razen morda v končno mnogo točkah, ter je tudi sama absolutno integrabilna funkcija na $\mathbb R$. Denimo še, da $\forall x \in \mathbb R$ velja $f(x) = \int_0^x f'(t)dt + f(0)$. Tedaj je $\mathcal F(f')(y) = (-iy)\mathcal F(f)(y)$.

Izrek

Naj bo f poljubna absolutno integrabilna funkcija na $\mathbb R$ z lastnostjo, da njen odvod, f', obstaja povsod, razen morda v končno mnogo točkah, ter je tudi sama absolutno integrabilna funkcija na $\mathbb R$. Denimo še, da $\forall x \in \mathbb R$ velja $f(x) = \int_0^x f'(t)dt + f(0)$. Tedaj je $\mathcal F(f')(y) = (-iy)\mathcal F(f)(y)$.

Posledica

Denimo, da je f k-krat odvedljiva na $\mathbb R$ ter, da so f in vsi njeni odvodi absolutno integrabilni na $\mathbb R$ ter da je vsak od teh (razen k-tega odvoda) integral svojega odvoda

$$(\forall x \in \mathbb{R}, \forall i \in \{1, \dots, k\}: f^{(i-1)}(x) = \int_0^x f^{(i)}(t)dt + f^{(i-1)}(0))$$
. Potem je:

$$\mathcal{F}(f^{(k)})(y) = (-iy)^k \mathcal{F}(f)(y)$$

Izrek

Naj bo f poljubna absolutno integrabilna funkcija na $\mathbb R$ z lastnostjo, da njen odvod, f', obstaja povsod, razen morda v končno mnogo točkah, ter je tudi sama absolutno integrabilna funkcija na $\mathbb R$. Denimo še, da $\forall x \in \mathbb R$ velja $f(x) = \int_0^x f'(t)dt + f(0)$. Tedaj je $\mathcal F(f')(y) = (-iy)\mathcal F(f)(y)$.

Posledica

Denimo, da je f k-krat odvedljiva na $\mathbb R$ ter, da so f in vsi njeni odvodi absolutno integrabilni na $\mathbb R$ ter da je vsak od teh (razen k-tega odvoda) integral svojega odvoda

$$(\forall x \in \mathbb{R}, \forall i \in \{1, \dots, k\} : f^{(i-1)}(x) = \int_0^x f^{(i)}(t)dt + f^{(i-1)}(0)).$$
 Potem je:

$$\mathcal{F}(f^{(k)})(y) = (-iy)^k \mathcal{F}(f)(y)$$

Trditev

- Naj bo f poljubna $\mathcal{C}^1(\mathbb{R})$ funkcija, za katero velja, da sta $f,f'\in L^1(\mathbb{R})$. Tedaj je $\mathcal{F}(f)\in L^2(\mathbb{R})$.
- ② Naj bo f poljubna $\mathcal{C}^2(\mathbb{R})$ funkcija, za katero velja, da so $f,f',f''\in L^1(\mathbb{R})$. Tedaj je $\mathcal{F}(f)\in L^1(\mathbb{R})$.

Odvod FT

Izrek

Naj bosta funkciji f(t) in tf(t) obe absolutno integrabilni na $\mathbb R$. Tedaj je $\frac{d}{dy}\mathcal F(f)(y)=\mathcal F(itf)(y)\ \forall y\in\mathbb R.$

Odvod FT

Izrek

Naj bosta funkciji f(t) in tf(t) obe absolutno integrabilni na $\mathbb R$. Tedaj je $\frac{d}{dy}\mathcal F(f)(y)=\mathcal F(itf)(y)\ \forall y\in\mathbb R.$

Posledica

Naj bodo funkcije $f(t), tf(t), t^2f(t), \dots, t^nf(t)$ vse absolutno integrabilne na $\mathbb R$. Tedaj je $\frac{d^n}{dy^n}\mathcal F(f(t))(y)=\mathcal F((it)^nf(t))(y) \forall y\in \mathbb R.$

Inverzna FT

Definicija

Za $f\in L^1(\mathbb{R})$ pravimo, da v točki $t\in\mathbb{R}$ zadošča *Dinijevem pogoju*, če obstaja tak a>0, da obstaja integral $\int_0^a |\frac{f(t+u)+f(t-u)-2f(t)}{u}|du$.

Inverzna FT

Definicija

Za $f\in L^1(\mathbb{R})$ pravimo, da v točki $t\in\mathbb{R}$ zadošča *Dinijevem pogoju*, če obstaja tak a>0, da obstaja integral $\int_0^a |\frac{f(t+u)+f(t-u)-2f(t)}{u}|du$.

Izrek

Če $f\in L^1(\mathbb{R})$ v točki $t\in\mathbb{R}$ zadošča Dinijevem pogoju (za nek a>0), potem velja:

$$f(t) = \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} \mathcal{F}(f)(x)e^{-itx}dx$$

Definicija

Naj bosta $f,g\in L^1(\mathbb{R})$. Funkcijo (f*g) s predpisom $(f*g)(x)=\int_{-\infty}^{\infty}f(t)g(x-t)dt\ \forall x\in\mathbb{R}$ imenujemo *konvolucija* f in g.

Definicija

Naj bosta $f,g\in L^1(\mathbb{R})$. Funkcijo (f*g) s predpisom $(f*g)(x)=\int_{-\infty}^{\infty}f(t)g(x-t)dt\ \forall x\in\mathbb{R}$ imenujemo *konvolucija* f in g.

Trditev

Naj bodo $f,g,h\in L^1(\mathbb{R})$ poljubne. Velja:

- (f+g)*h = f*h+g*h
- (f * g) * h = f * (g * h)
- **6** f * g = g * f

Definicija

Naj bosta $f,g\in L^1(\mathbb{R})$. Funkcijo (f*g) s predpisom $(f*g)(x)=\int_{-\infty}^{\infty}f(t)g(x-t)dt\ \forall x\in\mathbb{R}$ imenujemo *konvolucija* f in g.

Trditev

Naj bodo $f, q, h \in L^1(\mathbb{R})$ poljubne. Velja:

- (f+g)*h = f*h+g*h
- (f * g) * h = f * (g * h)
- **6** f * g = g * f

Izrek

Naj bosta f in g absolutno integrabilni funkciji na \mathbb{R} . Tedaj velja:

$$\mathcal{F}(f*g)(y) = \mathcal{F}(f)(y) \cdot \mathcal{F}(g)(y)$$

Parsevalova enakost

Izrek

Naj bo f poljubna $\mathcal{C}^2(\mathbb{R})$ funkcija, za katero velja, da so $f,f',f''\in L^1(\mathbb{R}).$ Tedaj je

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{F}(f)(y)|^2 dy$$

Zanimivost

Fourierjevo transformacijo se da definirati tudi na $L^1(\mathbb{R}^n)$ (za poljuben $n \in \mathbb{N}$). Lastnosti te transformacije so večinoma naravne analogije lastnosti transformacije za n=1.

Metoda uporabe

Opis - NDE

NDE $y^{(n)}=f(x,y,y',\dots,y^{(n-1)})$ transformiramo s Fourierjevo transformacijo in iz nje izrazimo Fourierjevo transformiranko $Y(\eta)$. Nato poiščemo funkcijo, ki jo FT transformira v Y, bodisi preko znanih transformacij, bodisi preko inverzne FT.

Opis - PDE

PDE v dveh spremenljivkah transformiramo s FT glede na izbrano spremenljivko (tipično x) in iz transformirane enačbe izrazimo transformiranko iskane funkcije $U(\eta,y)$. Nato poiščemo funkcijo, ki jo FT transformira v U, bodisi preko znanih transformacij, bodisi preko inverzne FT.

Primeri uporabe

Zgled 1

S pomočjo Fourierjeve transformacije rešimo diferencialno enačbo $xy^{\prime\prime}+2y^{\prime}+xy=0.$ Rešitev:

$$y(x) = C\delta_0(x) - i\delta'_0(x) - \frac{i}{3}\delta_0^{(3)}(x)$$

kjer je δ_0 Diracova δ funkcija s polom v 0.

Zgled 2

S pomočjo Fourierjeve transformacije rešimo enačbo $tu_x(x,t)+u_t(x,t)=0$, pri začetnem pogoju u(x,0)=f(x). Rešitev:

$$u(x,t) = f(x - \frac{t^2}{2})$$

Primeri uporabe

Zgled 3

S pomočjo Fourierjeve transformacije reši toplotno enačbo $u_t=ku_{xx}$ na $\mathbb{R}\times[0,\infty)$ pri začetnem pogoju u(x,0)=f(x). Rešitev:

$$u(x,t) = \frac{1}{\sqrt{2kt}} \int_{-\infty}^{\infty} f(s)e^{\frac{-(x-s)^2}{4kt}} ds$$

Zgled 4

Naj bo c>0. Poišči rešitev valovne enačbe z eno prostorsko spremenljivko $\frac{\partial^2 u}{\partial t^2}=c^2\frac{\partial^2 u}{\partial x^2}$ na $\mathbb{R}\times(0,\infty)$ pri začetnih pogojih: $\forall x\in\mathbb{R}: u(x,0)=f(x)\ \&\ \frac{\partial u}{\partial t}(x,0)=g(x)$. Pri tem predpostavi, da sta $f\in\mathcal{C}^2(\mathbb{R})$ in $g\in\mathcal{C}^1(\mathbb{R})$. Rešitev:

$$u(x,t) = \frac{f(x-ct) + f(x+ct)}{2} + \frac{1}{2c} \int_{x-xt}^{x+ct} g(u)du$$

Laplaceova transformacija - uvod

Definicija

Naj bo $a \geq 0$. Za odsekoma zvezno funkcijo $f: [a, \infty) \to \mathbb{R}$, za katero obstajata taka $k \in \mathbb{R}$ in M>0, da je $|f(t)|< Me^{kt} \ \forall t\in [a,\infty)$, pravimo, da je funkcija eksponentnega naraščanja za Min k na $[a, \infty)$.

Laplaceova transformacija - uvod

Definicija

Naj bo $a\geq 0$. Za odsekoma zvezno funkcijo $f:[a,\infty)\to\mathbb{R}$, za katero obstajata taka $k\in\mathbb{R}$ in M>0, da je $|f(t)|\leq Me^{kt}\ \forall t\in[a,\infty)$, pravimo, da je *funkcija eksponentnega naraščanja* za M in k na $[a,\infty)$.

Definicija

Naj bo $f:[0,\infty)\to\mathbb{R}$ poljubna funkcija. Laplaceova transformiranka F, funkcije f je definirana s predpisom:

$$F(z) = \mathcal{L}(f(t))(z) = \int_0^\infty f(t)e^{-zt}dt$$

tam, kjer integral obstaja.

Pomožni rezultati

Definicija

Naj bo $D\subset\mathbb{C}$ neprazna odprta množica in $f:D\to\mathbb{C}$ funkcija. Naj bo $a\in D$ neka točka. Če obstaja limita $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$, jo imenujemo $\mathit{kompleksen}$ odvod funkcije f v točki a in jo označimo z f'(a). Če kompleksen odvod funkcije f obstaja $\forall a\in D$ pravimo, da je f holomorfna na D.

Pomožni rezultati

Definicija

Naj bo $D\subset\mathbb{C}$ neprazna odprta množica in $f:D\to\mathbb{C}$ funkcija. Naj bo $a\in D$ neka točka. Če obstaja limita $\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$, jo imenujemo $\mathit{kompleksen}$ odvod funkcije f v točki a in jo označimo z f'(a). Če kompleksen odvod funkcije f obstaja $\forall a\in D$ pravimo, da je f $\mathit{holomorfna}$ na D.

Goursatov izrek

Naj bo D neprazna odprta množica v $\mathbb C$ in $f:D\to\mathbb C$ holomorfna funkcija na D. Tedaj je f analitična na D.

Izrek

Denimo, da za funkcijo $f:[0,\infty)\to\mathbb{R}$ obstajajo taka števila $M,N>0,k\in\mathbb{R}$, da velja:

- Funkcija f je integrabilna na [0, N] (posledično je tudi $f(t)e^{-zt}$).
- ② Funkcija f je funkcija eksponentnega naraščanja za M in k na $[N,\infty)$ (torej $|f(t)| \leq Me^{kt} \ \forall t \geq N$).

Potem $\mathcal{L}(f(t))(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je Re(z)>k.

Izrek

Denimo, da za funkcijo $f:[0,\infty)\to\mathbb{R}$ obstajajo taka števila $M,N>0,k\in\mathbb{R}$, da velja:

- $lackbox{0}$ Funkcija f je integrabilna na [0,N] (posledično je tudi $f(t)e^{-zt}$).
- ② Funkcija f je funkcija eksponentnega naraščanja za M in k na $[N,\infty)$ (torej $|f(t)| \leq Me^{kt} \ \forall t \geq N$).

Potem $\mathcal{L}(f(t))(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je Re(z)>k.

Izrek

Naj bo f kosoma zvezna funkcija na $[0,\infty)$ in naj za nek $z_0\in\mathbb{C}$ obstaja $\mathcal{L}(f)(z_0)$. Potem $\mathcal{L}(f)(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je $Re(z)\geq Re(z_0)$

Izrek

Denimo, da za funkcijo $f:[0,\infty)\to\mathbb{R}$ obstajajo taka števila $M,N>0,k\in\mathbb{R}$, da velja:

- Funkcija f je integrabilna na [0, N] (posledično je tudi $f(t)e^{-zt}$).
- ② Funkcija f je funkcija eksponentnega naraščanja za M in k na $[N,\infty)$ (torej $|f(t)| \leq Me^{kt} \ \forall t \geq N$).

Potem $\mathcal{L}(f(t))(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je Re(z)>k.

Izrek

Naj bo f kosoma zvezna funkcija na $[0,\infty)$ in naj za nek $z_0\in\mathbb{C}$ obstaja $\mathcal{L}(f)(z_0)$. Potem $\mathcal{L}(f)(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je $Re(z)\geq Re(z_0)$

Definicija

Številu $\sigma(f) = \inf\{Re(z) \mid \mathcal{L}(f)(z) \text{ obstaja}\}$ pravimo *abscisa konvergence*.

Izrek

Denimo, da za funkcijo $f:[0,\infty)\to\mathbb{R}$ obstajajo taka števila $M,N>0,k\in\mathbb{R}$, da velja:

- Funkcija f je integrabilna na [0, N] (posledično je tudi $f(t)e^{-zt}$).
- ② Funkcija f je funkcija eksponentnega naraščanja za M in k na [N,∞) (torej | f(t)| ≤ Me^{kt} ∀t ≥ N).

Potem $\mathcal{L}(f(t))(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je Re(z)>k.

Izrek

Naj bo f kosoma zvezna funkcija na $[0,\infty)$ in naj za nek $z_0\in\mathbb{C}$ obstaja $\mathcal{L}(f)(z_0)$. Potem $\mathcal{L}(f)(z)$ obstaja za vse $z\in\mathbb{C}$ za katere je $Re(z)\geq Re(z_0)$

Definicija

Številu $\sigma(f) = \inf\{Re(z) \mid \mathcal{L}(f)(z) \text{ obstaja}\}$ pravimo *abscisa konvergence*.

Opomba

Po potrebi razširimo vsako funkcijo $f:[0,\infty)\to\mathbb{C}$ na \mathbb{R} tako, da ji za t<0 določimo vrednost 0.

9. april 2024

Trditev

Za Laplaceovo transformacijo veljajo naslednje lastnosti:

- Laplaceova transformacija je linearna transformacija
- Naj za funkcijo f obstaja Laplaceova transformacija. Tedaj je:

$$\forall \alpha \in \mathbb{C} : \mathcal{L}(f(t)e^{\alpha t})(z) = \mathcal{L}(f)(z - \alpha)$$

- **③** Naj za funkcijo f obstaja Laplaceova transformacija. Tedaj (ob razširitvi f iz opombe **??**) je $\mathcal{L}(f(t-k))(z) = e^{-kz}\mathcal{L}(f(t))(z) \ \forall k > 0.$
- **1** Naj za funkcijo f obstaja Laplaceova transformacija. Tedaj za vsak k > 0 velja:

$$\mathcal{L}(f(tk))(z) = \frac{1}{k}\mathcal{L}(f(t))(\frac{z}{k})$$

③ Če $\mathcal{L}(tf(t))(z)$ in $\mathcal{L}(f(t))(z)$ obstajata za nek $z_0 \in \mathbb{C}$, potem je $\frac{d}{dz}(\mathcal{L}(f(t))(z)) = -\mathcal{L}(tf(t))(z)$. Dodatno, če obstajajo $\mathcal{L}(t^kf(t))(z)$, ∀ $k \in \mathbb{N}_0$, velja:

$$\frac{d^k}{dz^k}(\mathcal{L}(f(t))(z)) = (-1)^k \mathcal{L}(t^k f(t))(z)$$

Zgled

- $\textbf{②} \ \, \mathsf{Za} \, f(t) = e^{t\alpha} \, \text{ hitro vidimo, da je } \, \mathcal{L}(e^{t\alpha})(z) = \tfrac{1}{z-\alpha} \, \mathsf{za} \, \mathsf{vse} \, z \in \{z \in \mathbb{C} \mid Re(z) > \alpha\}.$

Zgled

- ② Za $f(t) = e^{t\alpha}$ hitro vidimo, da je $\mathcal{L}(e^{t\alpha})(z) = \frac{1}{z-\alpha}$ za vse $z \in \{z \in \mathbb{C} \mid Re(z) > \alpha\}$.

Zgled

Za vse $n\in\mathbb{C}$, za katere je Re(n)>-1 velja: $\mathcal{L}(t^n)(z)=z^{-(n+1)}\Gamma(n+1)$ za vse $z\in\mathbb{C}$, za katere je Re(z)>0.

Zgled

- ② Za $f(t) = e^{t\alpha}$ hitro vidimo, da je $\mathcal{L}(e^{t\alpha})(z) = \frac{1}{z-\alpha}$ za vse $z \in \{z \in \mathbb{C} \mid Re(z) > \alpha\}$.

Zgled

Za vse $n\in\mathbb{C}$, za katere je Re(n)>-1 velja: $\mathcal{L}(t^n)(z)=z^{-(n+1)}\Gamma(n+1)$ za vse $z\in\mathbb{C}$, za katere je Re(z)>0.

Zgled

$$\mathcal{L}(t^{-\frac{1}{2}})(z) = \sqrt{\pi}z^{-\frac{1}{2}}$$

Izrek

Naj bo f zvezno odvedljiva in naj za nek $z_0\in\mathbb{C}$ obstajata $\mathcal{L}(f(t))(z_0)$ in $\mathcal{L}(f'(t))(z_0)$. Tedaj za vse $z\in\mathbb{C}$, ki zadoščajo pogoju $Re(z)>Re(z_0)$, velja:

$$\mathcal{L}(f'(t))(z) = z\mathcal{L}(f(t))(z) - f(0)$$

Dodatno, če je f n-krat zvezno odvedljiva in za nek $z_0\in\mathbb{C}$ obstajajo $\mathcal{L}(f^{(k)}(t))(z_0)$ za vsak $k\in\{0,1,\ldots,n\}$, tedaj velja:

$$\mathcal{L}(f^{(n)}(t))(z) = z^n \mathcal{L}(f(t))(z) - z^{n-1}f(0) - \dots - zf^{(n-2)}(0) - f^{(n-1)}(0)$$

Inverzna LT

Izrek

Naj bo f zvezna in odsekoma zvezno odvedljiva funkcija eksponentnega naraščanja na $[0,\infty)$. Denimo tudi, da za nek $z_0\in\mathbb{C}$ obstaja $\mathcal{L}(f)(z_0)$. Tedaj za poljuben $a>Re(z_0)$ v točkah $t\in[0,\infty)$ v katerih je f zvezna in zvezno odvedljiva velja formula:

$$\lim_{R \to \infty} \frac{1}{2\pi i} \int_{a-iR}^{a+iR} e^{zt} \mathcal{L}(f)(z) dz = \begin{cases} f(t) & ; \ t \ge 0 \\ 0 & ; \ t < 0 \end{cases}$$

Definicija

Konvolucija funkcij $f:[0,\infty)\to\mathbb{C}$ in $g:[0,\infty)\to\mathbb{C}$ je funkcija (f*g) s predpisom

$$(f * g)(x) = \int_0^x f(t)g(x - t)dt$$

Definicija

Konvolucija funkcij $f:[0,\infty)\to\mathbb{C}$ in $g:[0,\infty)\to\mathbb{C}$ je funkcija (f*g) s predpisom

$$(f * g)(x) = \int_0^x f(t)g(x - t)dt$$

Izrek

Naj bosta funkciji $f:[0,\infty) \to \mathbb{C}$ in $g:[0,\infty) \to \mathbb{C}$ funkciji eksponentnega naraščanja za M in k (od obeh vzamemo večjo konstanto, da zadošča obema). Potem za vsak $z \in \mathbb{C}$, ki zadošča pogoju Re(z) > k, velja:

$$\mathcal{L}(f*g)(z) = \mathcal{L}(f)(z) \cdot \mathcal{L}(g)(z)$$

Definicija

Konvolucija funkcij $f:[0,\infty)\to\mathbb{C}$ in $g:[0,\infty)\to\mathbb{C}$ je funkcija (f*g) s predpisom

$$(f * g)(x) = \int_0^x f(t)g(x - t)dt$$

Izrek

Naj bosta funkciji $f:[0,\infty)\to\mathbb{C}$ in $g:[0,\infty)\to\mathbb{C}$ funkciji eksponentnega naraščanja za M in k (od obeh vzamemo večjo konstanto, da zadošča obema). Potem za vsak $z\in\mathbb{C}$, ki zadošča pogoju Re(z)>k, velja:

$$\mathcal{L}(f*g)(z) = \mathcal{L}(f)(z) \cdot \mathcal{L}(g)(z)$$

Zgled

Naj bo c poljubna nenegativna konstanta. Velja:

- $\mathcal{L}(\sin(ct))(z) = \frac{c}{z^2 + c^2}$
- $\mathcal{L}(\cos(ct))(z) = \frac{z}{z^2 + c^2}$

Metoda uporabe

Opis

Strategija uporabe je enaka kot pri Fourierjevi transformaciji.

Za LNDE 2. reda

Naj bo y''+ay'+by=f(x) Cauchyjeva naloga z začetnima pogojema $y(0)=y_0,y'(0)=v_0.$ Tedaj je $\mathcal{L}(y)(z)=\frac{\mathcal{L}(f)(z)+(z+a)y_0+v_0}{(z^2+az+b)}.$

Primerjava uporabe LT in FT

- Prednosti LT: Močna orodja v kompleksni analizi (npr. Goursatov izrek)
- Prednosti FT: Trenutno poznamo realno analizo bolje kot pa kompleksno

Primeri uporabe

Zgled 1

S pomočjo Laplaceove transformacije reši enačbo $y^{\prime\prime}+y^{\prime}+y=0$ pri pogojih y(0)=0 in $y^{\prime}(0)=1.$ Rešitev:

$$y(x) = \frac{1}{i\sqrt{3}}e^{-\frac{1-i\sqrt{3}}{2}x} - \frac{1}{i\sqrt{3}}e^{-\frac{1+i\sqrt{3}}{2}x}$$

Zgled 2

S pomočjo Laplaceove transformacije reši Cauchyjevo nalogo $y''+2y'+5y=3e^{-x}\sin(x)$ pri pogojih y(0)=0,y'(0)=3. Rešitev:

$$y(x) = e^{-x}\sin(x) + e^{-x}\sin(2x)$$

Abelov problem o tautohroni

Zgled 3

Denimo, da imamo navpično postavljeni žleb po katerem spustimo kroglico. Kakšne oblike mora biti žleb, da bo čas potovanja kroglice po njem do izbrane točke neodvisen od začetne točke, s katere smo kroglico spustili? Pri tem zanemarimo zračni upor in trenje.

Rešitev:

$$u(\theta) = a(\theta + \sin(\theta)), v(\theta) = a(1 - \cos(\theta))$$

To je ravno parametrizacija cikloide.

Literatura

- O. K. Fong, Equations involving differentials: Pfaffian equations, [ogled 10. 3. 2024], dostopno na https://people.math.carleton.ca/~ckfong/S12.pdf.
- B. Magajna, Uvod v diferencialne enačbe, kompleksno in Fourierjevo analizo, DMFA založništvo, Ljubljana, 2018.
- K. R. Unni, Pfaffian differential expressions and equations, diplomsko delo, v: All graduate theses and dissertations, [ogled 10. 3. 2024], dostopno na
 https://core.ac.uk/download/pdf/127676355.pdf.
- E. Zakrajšek, Analiza IV, DMFA založništvo, Ljubljana, 1999.