CET 141: Day 10

Dr. Noori KIM

Recap: DeMorgan's Theorem

 Used to simplify circuits containing NAND and NOR gates

•
$$\overline{AB} = \overline{A} + \overline{B}$$

• $A + B = \overline{A} B$

Which one looks simpler to implement circuits?

- DeMorgan's Theorem in circuits → Bubble
 Pushing
 - Change the logic gate
 - (AND to OR or OR to AND)
 - Add bubbles to the inputs and outputs where there were none and remove original bubbles

Bubble Pushing

$$A \longrightarrow V = B \longrightarrow V$$

$$A \longrightarrow W = B \longrightarrow W$$

$$A \longrightarrow W = B \longrightarrow$$

Recap: The Universal Capability of NAND and NOR Gates

The NAND/NOR as inverters.

Connect both inputs to *A* to form an Inverter.

$$A \longrightarrow X = \overline{A + A} = \overline{A} \text{ (Inverter)}$$

Agenda

- Lecture
 - Adder/Subtractor
 - Encoder/Decoder

Combinational Logics

- Using two or more logic gates to perform a more useful, complex function
- A combination of logic functions

ex)
$$B = KD + HD = D(K+H)$$
Equation 1 Equation 2

Are they same, mathematically?

, in circuit implementation?

Adders

Half adder

Inputs

Outputs

Α	В	Sum	Carry-Out
0	0		
0	1	Ť	
1	0	Ť	
1	1	T	

Α	В	Sum	Carry-Out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

A∖B	0	1
0	0	(1)
1	(1)	0

A∖B	0	1
0	0	0
1	0	1

K map for Sum

$$Sum = A \cdot \overline{B} + \overline{A} \cdot B$$
$$= A \oplus B$$

K map for Carry-out ${\sf Carry-out} = A \cdot B$

Half adder

Full adder

Α	В	Carry-In	Sum	Carry-Out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

AB\Carry-In	0	1
00	0	(1)
01	1) 0 (
11	0	(1)
10	1	0

K map for Sum

 $Sum = A'B'C_{in} + A'BC'_{in} + ABC_{in} + AB'C'_{in}$ $= A'(B \oplus C_{in}) + A(B \oplus C_{in})'$ $= A \oplus B \oplus C_{in}$

AB\Carry-In	0	1
00	0	0
01	0	1
11	1	1
10	0	1

K map for Carry-out

Carry-out= $AB + BC_{in} + AC_{in}$ $= AB + A'BC_{in} + AB'C_{in}$ $= AB + C_{in}(B \oplus A)$

Think: where are the temp carry out and temp sum?

A half Adder

$$S = A \oplus B$$
$$C_{out} = A \cdot B$$

A full Adder

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = MAJ(A, B, C_{in})$$

$$= AB + C_{in}(B \oplus A)$$

Α	В	C _{out}	S
0	0		
0	1		
1	0		
1	1		

Α	В	C _{in}	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Ripple-Carry Adders

- Simplest design: cascade full adders
 - Critical path goes from C_{in} to C_{out}

Inputs Outputs

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

Ripple-Carry Adder

Assume the 2-input XOR has 2 gate delays, and all other 2-input gates have 1 gate delay:

Gate delay for C_4 : 4+(n-1)*2 = 2n + 2

- When A_0 and $B_0=1 \rightarrow C_1=1$
 - However, it takes some time to settle down logic, so
 C₁ shows up after A₁ and B₁ inputs.
 - Thus, before C₁ shows up, the second full adder does not produce its outputs.
- The worst case, C₄ is not correctly computed until
 - 4*propagation delay
 - C_n is not computed until n*propagation delay.

- The limiting factor of ripple-carry adder is the time it takes to propagate the carry.
- The carry look-ahead adder (CLA) solves this problem by calculating the carry signals in advance, based on the input signals.
- The result is a reduced carry propagation time.

Carry-Lookahead Adder

Carry-lookahead adders.

P and G (at half adders, HA, logics)

- $-P_i = A_i \oplus B_i$: Carry propagate (Sum at HA)
- G_i = A_i•B_i : Carry generate (Carry-out at HA)
- Both propagate and generate signals depend only on the input bits
- The new expressions for Sums and Carry-outs:

$$-S_i = P_i \oplus C_i$$

$$-C_{i+1} = G_i + P_iC_i$$

$$S = A \oplus B \oplus C_{in}$$
 Recall! $C_{out} = AB + C_{in}(B \oplus A)$

$$-S_{i} = P_{i} \oplus C_{i}$$

$$-C_{i+1} = G_{i} + P_{i}C_{i}$$

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i}B_{i}$$

A carry signal will (C_{i+1}) be generated in two cases:

- if both bits A_i and B_i are 1
- if either A_i or B_i is 1 and the carry-in C_i is 1.

Apply these equations for a 4-bit adder:

$$\begin{split} &C_1 = G_0 + P_0 C_0 \\ &C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ &C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \\ &C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

Note that $P_i = A_i \oplus B_i$ and $G_i = A_i \bullet B_i$

$$\begin{split} &C_1 = G_0 + P_0 C_0 \\ &C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0 \\ &C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0 \\ &C_4 = G_3 + P_3 C_3 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0 \end{split}$$

- C₂, C₃ and C₄ do not depend on its previous carry-in.
- C₄ does not need to wait for C₃ to propagate.
 - As soon as C_0 is computed, C_4 can reach steady state.
 - The same is also true for C₂ and C₃
- The general expression is

$$C_{i+1} = Gi + PiG_{i-1} + PiP_{i-1}G_{i-2} + \dots P_iP_{i-1}\dots P_2P_1G_0 + PiP_{i-1}\dots P_1P_0C_0.$$

Reduce delay but circuit complexity increases as the circuit size grows.

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

Delay for carry: O(n)

To calculate the carry signals

 No need to wait for the carry to ripple through all the previous stages to find its proper value

Delay for carry: O(log(n))

Subtractors

• Half subtractor accepts two binary digits as input (Minuend and Subtrahend, A and B) and produces two outputs, a Difference bit (D_i) and Borrow bit (B_0) .

A B		ifferen	ice	Borrow	
0 - 0	=	0		0	$A \longrightarrow \mathbb{Z}$
0 - 1	=	1	A'B	1 A'B	$D_{i} = A \oplus B$
1 - 0	=	1	AB'	0	$B_0 = \overline{A} \cdot B$
1 - 1	=	0		0	

The *full-substracrtor* accepts three inputs including a borrow input (B_{in}) and produces a difference output (D_i) and a borrow output (B_0) .

Pull-Subtractor

 $Diff = A \oplus B \oplus Bin$

$$B_0 = \overline{A} \cdot B + \overline{A \oplus B} \cdot B_{in}$$

Do K-map for verification

A full subtractor

$$Diff = A \oplus B \oplus B_{in}$$

$$B_{out} = A'B + (A \oplus B)'B_{in}$$

Four Bit Parallel Subtractor using Full Adders

(If you know RC <u>adder</u> and <u>2's complements</u> this part is a piece of cake)

- Parallel adders can be used to perform binary subtraction because the subtraction is addition in the 2's complement form of binary number.
- In this case, the outputs are result and Carryout which are more intuitive than the previous case

Ripple-carry adder extension (2's complement based subtractor)

- The four inverters inverts subtrahends
- The high input at $C_0=1$ LSB makes the binary subtrahend to 2's complement form (+1)
- The C_{out} of fourth Full adder is negation of B_{out} (when if carry bit is 1, borrow bit is 0)

4 bit RC Adder / Subtractor Circuit

- Q. Consider a two-bit subtractor, which has four inputs: A_1 , A_0 , B_1 and B_0 .
- This subtractor has three outputs: subtraction result R1, R0, and carry-out C_{out}.
- This subtractor performs the A₁, A₀ B₁, B₀ binary subtraction.

Show the truth table for the R_1 , R_0 and C_{out} .

Hint, use 2's complement method

A ₁	A ₀	B ₁	B ₀	R ₁	R_0	C _{out}
0	0	0	0	0	0	1
0	0	0	1	1	1	0
0	0	1	0	1	0	0
0	0	1	1	0	1	0
0	1	0	0	0	1	1
0	1	0	1	0	0	1
0	1	1	0	1	1	0
0	1	1	1	1	0	0
1	0	0	0	1	0	1
1	0	0	1	0	1	1
1	0	1	0	0	0	1
1	0	1	1	1	1	0
1	1	0	0	1	1	1
1	1	0	1	1	0	1
1	1	1	0	0	1	1
1	1	1	1	0	0	1

Try it

Encoder/Decoder

Reference: www.allaboutcircuits.com

http://www.electronics-tutorials.ws

# of Input	# of Output	Name of I/O converting system
2 ⁿ	n	Encoder
n	2 ⁿ	Decoder
More than 1 Data In: 2 ⁿ Control In: n	1 (mostly)	Multiplexer
1 (mostly)	More than 1	Demultiplexer

Decoder

What is a code? What does that mean?

code

/kəʊd/ •๋)

noun

1. a system of words, letters, figures, or symbols used to represent others, especially for the purposes of secrecy.

"the Americans cracked their diplomatic code" synonyms: cipher, secret language, secret writing, set of symbols, key, hieroglyphics; More

2. COMPUTING

program instructions.

"assembly code"

Then how about decode?

decode

/diːˈkəʊd/ •

verb

convert (a coded message) into intelligible language.
 "he put down the phone and decoded the message"
 synonyms: decipher, decrypt, unravel, untangle, work out, sort out, piece together, solve, interpret, translate, construe, explain, understand, comprehend, apprehend, grasp; More

Example of decoder

- Assuming that we have 2 bit decoder, we can generate 4 secret codes
- Assuming that students has following IDs
 - Haseem: 15, Aina: 7, Rachel: 5, Afrina: 1
- Our 4 secret codes indicate following IDs

$$\begin{array}{c|cccc}
-00 & \rightarrow 1111 \\
-01 & \rightarrow 0101 \\
-10 & \rightarrow 0001 \\
-11 & \rightarrow 1000
\end{array}$$

We decode this secret numbers to a proper ID by means of a decoder

- A decoder is a circuit that changes a code into a set of signals.
- A common example: a line decoder
 - 1-to-2 line decoder.

Α	D_1	D_{o}
0	0	1
1	1	0

- A is the address and D is the dataline.
- $-D_0$ is NOT A and D_1 is A.

The 2-to-4 line decoder

 A typical application of a line decoder circuit is to select among multiple devices.

A decoder application: a binary to 7-segment decoder.

I_3	l ₂	l ₁	lo	D_6	D_5	D_4	D_3	D_2	D_1	D_{o}
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							

What about the remaining six entries of the truth table??

Can you make simplified Bool eq for each segment (D0-D6)?

i.e., D0 and D1

• The collection of equations is summarized

Encoder

About 39,600,000 results (0.65 seconds)

An **encoder** is a device, circuit, transducer, software program, algorithm or person that converts information from one format or code to another, for the purposes of standardization, speed or compressions.

Encoder - Wikipedia

https://en.wikipedia.org/wiki/Encoder

 An encoder is a circuit that changes a set of signals into a code.

2-to-1 line encoder truth table

By reversing the 1-to-2 decoder truth table.

D_1	D_0	Α
0	1	0
1	0	1

A complete truth table would be

One question we need to answer is what to do with those other inputs?

Ţ	О	Α
0	0	
0	_	0
1	0	1
1	1	