Tensor Calculus J.L. Synge and A.Schild (Dover Publication) Solutions to exercises Part II Chapters V to VIII

by

Bernard Carrette

Contents

7	Relative tensors, ideas of volume, Green-Stokes theorems.	4
	7.1 p276 - Exercise 3	5

List of Figures

Relative tensors, ideas of volume, Green-Stokes theorems.

7.1 p276 - Exercise 3

If T_{rs} is a symmetric tensor density and S_{rs} a skew-symmetric tensor density, show that

$$T_{.s|r}^r = \partial_r T_{.s}^r - \frac{1}{2} T^{rk} \partial_s a_{rk}$$
$$S_{..|r}^{rs} = \partial_r S^{rs}$$

Let's define the absolute oriented tensor.

$$\overline{T}_{.s}^{r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}}T_{.s}^{r} \tag{1}$$

By **7.214** we have

$$T_{.s|r}^{r} = \left(\epsilon(a)a\right)^{\frac{1}{2}} \left[\overline{T}_{.s}^{r}\right]_{|r} \tag{2}$$

with

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \partial_{r}\overline{T}_{.s}^{r} + \Gamma_{mr}^{r}\overline{T}_{.s}^{m} - \Gamma_{rs}^{m}\overline{T}_{.m}^{r}$$

$$(3)$$

Using **2.542**: $\Gamma_{mr}^{r} = (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}}$

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_{r} T_{.s}^{r} + T_{.s}^{r} \partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}} \overline{T}_{.s}^{m} \\
-\frac{1}{2} (\partial_{s} a_{rk} + \partial_{r} a_{sk} - \partial_{k} a_{rs}) a^{mk} \overline{T}_{.m}^{r} \\
= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_{r} T_{.s}^{r} + T_{.s}^{r} \partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} (\epsilon(a)a)^{-\frac{1}{2}} T_{.s}^{m} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}} \\
-\frac{1}{2} (\epsilon(a)a)^{-\frac{1}{2}} \left(T^{rk} \partial_{s} a_{rk} + \underline{T^{rk}} \partial_{r} a_{sk} - T^{rk} \partial_{k} a_{rs}\right)
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}) \\
+ T_{.s}^{r} \left[\partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} + (\epsilon(a)a)^{-1} \partial_{r} (\epsilon(a)a)^{\frac{1}{2}}\right]
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}) \\
+ T_{.s}^{r} \left[\partial_{r} (\epsilon(a)a)^{-\frac{1}{2}} + (\epsilon(a)a)^{-1} \partial_{r} (\epsilon(a)a)^{\frac{1}{2}}\right]
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk})
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}
\end{cases}$$

$$= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} (\partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}
\end{cases}$$

giving

$$\left[\overline{T}_{.s}^{r}\right]_{|r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}} \left(\partial_{r}T_{.s}^{r} - \frac{1}{2}T^{rk}\partial_{s}a_{rk}\right) \tag{8}$$

(2) and (8):
$$T_{.s|r}^{r} = \partial_{r} T_{.s}^{r} - \frac{1}{2} T^{rk} \partial_{s} a_{rk}$$
 (9)

Let's define the absolute oriented tensor.

$$\overline{S}^{rs} = (\epsilon(a)a)^{-\frac{1}{2}} S^{rs} \tag{10}$$

By **7.214** we have

$$S_{\cdot\cdot\cdot|r}^{rs} = (\epsilon(a)a)^{\frac{1}{2}} \left[\overline{S}^{rs} \right]_{|r}$$
(11)

with

$$\left[\overline{S}^{rs}\right]_{|r} = \partial_r \overline{S}^{rs} + \Gamma^r_{mr} \overline{S}^{ms} + \Gamma^s_{mr} \overline{S}^{rm}$$
(12)

Using **2.542**: $\Gamma_{mr}^{r} = (\epsilon(a)a)^{-\frac{1}{2}} \partial_{m} (\epsilon(a)a)^{\frac{1}{2}}$

$$\left[\overline{S}^{rs}\right]_{|r} = \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_r S^{rs} + S^{rs} \partial_r (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} \partial_m (\epsilon(a)a)^{\frac{1}{2}} \overline{S}^{ms} \\
+ \frac{1}{2} (\partial_m a_{rk} + \partial_r a_{mk} - \partial_k a_{mr}) a^{sk} \overline{S}^{rm} \\
= \begin{cases}
(\epsilon(a)a)^{-\frac{1}{2}} \partial_r S^{rs} + S^{rs} \partial_r (\epsilon(a)a)^{-\frac{1}{2}} \\
+ (\epsilon(a)a)^{-\frac{1}{2}} (\epsilon(a)a)^{-\frac{1}{2}} S^{ms} \partial_m (\epsilon(a)a)^{\frac{1}{2}} \\
+ \frac{1}{2} (\epsilon(a)a)^{-\frac{1}{2}} (S^{rm} \partial_m a_{rk} + S^{rm} \partial_r a_{mk} - S^{rm} \partial_k a_{mr}) a^{sk}
\end{cases} \tag{13}$$

(15)

Using the skew-symmetry of S_{rm} we get

$$\left[\overline{S}^{rs}\right]_{|r} = \begin{cases}
\frac{\left(\epsilon(a)a\right)^{-\frac{1}{2}}\partial_{r}S^{rs}}{S^{rs}\partial_{r}\left(\epsilon(a)a\right)^{-\frac{1}{2}} + \left(\epsilon(a)a\right)^{-1}S^{ms}\partial_{m}\left(\epsilon(a)a\right)^{\frac{1}{2}}}{S^{rs}\partial_{m}\left(\epsilon(a)a\right)^{\frac{1}{2}}} \\
+\frac{1}{2}\left(\epsilon(a)a\right)^{-\frac{1}{2}}\left(S^{rm}\partial_{m}a_{rk} + S^{rm}\partial_{r}a_{mk} - S^{rm}\partial_{k}a_{mr}\right)a^{sk}
\end{cases}$$

$$= \begin{cases}
\left(\epsilon(a)a\right)^{-\frac{1}{2}}\partial_{r}S^{rs} \\
-\frac{1}{2}\left(\epsilon(a)a\right)^{-\frac{1}{2}}\left(a^{sk}\partial_{k}a_{mr}S^{rm}\right)
\end{cases}$$
(17)

In the last term, put $b_{smr} \doteq a^{sk} \partial_k a_{mr}$ which is symmetric in the last two indexes. Due to the skew-symmetry of S^{rm} we have then $b_{srm} S^{rm} = 0$ and get

$$\left[\overline{S}^{rs}\right]_{|r} = \left(\epsilon(a)a\right)^{-\frac{1}{2}} \partial_r S^{rs} \tag{19}$$

(2) and (19):
$$S_{...|r}^{rs} = \partial_r S^{rs}$$
 (20)

