Часть А

Отметьте номер правильного ответа в бланке ответов

А1. Если 80% числа равны $(4\sqrt{98} - 3\sqrt{72}): 5\sqrt{2}$, то это число равно

1)
$$\frac{13}{2}$$
 2) $\frac{11}{2}$ 3) $\frac{9}{2}$ 4) $\frac{7}{2}$ 5) $\frac{5}{2}$

A2. Результат упрощения выражения
$$(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{a+b+\sqrt{ab}}):(\sqrt{\frac{b}{a}})^{-1}$$
 имеет вид

1)
$$\frac{2a}{\sqrt{b}}$$
 2) $2\sqrt{a}$ 3) $2\sqrt{ab}$ 4) $2\sqrt{b}$ 5) \sqrt{b}

А3. Количество целых значений параметра a, при которых абсцисса вершины параболы $y = (x - 7a)^2 - a^2 + 16$ отрицательна, a ордината положительна, равно

A4. Сумма корней уравнения
$$\frac{2x^2 - 5x + 3}{2x - 3} = x^2 + 5x + 2$$
 равна

А5. Разность между наибольшим и наименьшим корнями уравнения $x^2 + |x| = \frac{9}{4}$ равна

1)
$$\sqrt{10}$$
 2) 1 3) $\sqrt{10}$ -1 4) $\frac{1}{2}\sqrt{10}$ 5) $\frac{1}{2}\sqrt{10}$ - $\frac{1}{2}$

А6. Результат вычисления выражения $(0,3)^{^{1/(4\log_7 9)}} \cdot 30^{^{1/(4\log_7 9)}}$ равен

1) 9 2) 4 3)
$$\sqrt[4]{7}$$
 4) $\sqrt[4]{3}$ 5) $\sqrt{7}$

А7. Произведение корней уравнения
$$\sqrt{x+1.5} \cdot (64 \cdot 4^x + 4^{-x} - 20) = 0$$
 равно

A8. Сумма корней уравнения
$$\log_{6x} \frac{6}{x} + \frac{1}{\log_{x}^{2} 6} = 1$$
 равна

1)
$$\frac{215}{36}$$
 2) $\frac{46}{36}$ 3) $\frac{253}{36}$ 4) 2 5) $\frac{217}{36}$

A9. Если
$$ctg\,\alpha = -\frac{1}{3}$$
, то значение выражения $\frac{\cos 2\alpha}{\sin 2\alpha - \cos 2\alpha}$ равно

A10. Результат вычисления выражения $tg(\arccos(-\frac{1}{4}) + \frac{\pi}{2})$ равен

1)
$$-\sqrt{15}$$
 2) 0,258 3) $\sqrt{15}$ 4) $-\frac{\sqrt{15}}{15}$ 5) $\frac{\sqrt{15}}{15}$

А11. Касательная к графику функции $f(x) = 4\log_2(x+3)$ с угловым коэффициентом $k = \frac{8}{\ln 2}$ пересекает ось абсцисс в точке x, равной

1)
$$7 - 7 \ln 2$$
 2) $-0.5(3 + 2 \ln 2)$ 3) $0.5(\ln 2 - 5)$ 4) $0.5(1 - 8 \ln 2)$ 5) $-3 \ln 2$

A12. Точкой минимума функции $f(x) = 0.9x^5 - 4.5x^3 + 4$ является точка x, равная

1)
$$\sqrt{3}$$
 2) $-\sqrt{3}$ 3) 0 4) 1 5) -1

А13. Если в параллелограмме ABCD заданы D(2;-6;5), $\overrightarrow{DC}(-2;-4;4)$, $\overrightarrow{DB}(6;-3;2)$, то сумма координат вершины A равна

A14. Если в треугольнике ABC заданы AB=5, AC=4, $\cos B=\frac{5}{7}$, то синус угла C равен

1)
$$\frac{5\sqrt{6}}{13}$$
 2) $\frac{5\sqrt{6}}{19}$ 3) $\frac{5\sqrt{6}}{14}$ 4) $\frac{5\sqrt{6}}{17}$ 5) $\frac{5\sqrt{6}}{15}$

А15. Если сфера радиуса 2 касается всех граней правильной треугольной призмы, то длина ребра основания призмы равна

1)
$$5\sqrt{3}$$
 2) $3\sqrt{3}$ 3) $2\sqrt{3}$ 4) $6\sqrt{3}$ 5) $4\sqrt{3}$

Часть В

Напишите правильный ответ в нижнем правом углу бланка ответов

В1. Найдите сумму целых решений неравенства
$$\frac{1}{x^2 + 9x + 18} \le \frac{8x + 43}{(x+6)^2(x^2 + 11x + 24)}$$

В2. Найдите наибольшее целое решение неравенства $\sqrt[3]{16+6x-x^2} \cdot \sqrt[4]{x-3} > 0$

В3. Найдите число целых решений неравенства
$$\frac{1}{|x-2|}(\log_{0,5}(x^2+3x-4)+\frac{1}{\log_9 2}) \ge 0$$

В4. В арифметической прогрессии сумма первых трех членов равна 30, разность шестого и четвертого членов равна -4, а n-ый член равен -10. Найдите n.

В5. Укажите сумму корней (в градусах) уравнения $\cos^2 x + 3\sin^2 x + \sqrt{3}\sin 2x = 1$, принадлежащих отрезку [-180°;180°]