CLAIMS

1. A compound of formula (I),

$$\begin{array}{c}
R^4 \\
R^5 \\
R^6
\end{array}$$

$$\begin{array}{c}
R^2 \\
R^3
\end{array}$$

$$\begin{array}{c}
(CH_2)_n \\
R \\
\end{array}$$

$$\begin{array}{c}
X \\
N \\
N \\
\end{array}$$

$$\begin{array}{c}
R^1 \\
O
\end{array}$$

$$\begin{array}{c}
(I)
\end{array}$$

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

10 n is 0, 1 or 2;

5

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

15 R^1 is C_{1-6} alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

R³ is a radical selected from

20
$$-(CH_2)_{s}$$
- NR^8R^9 (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R^{11} (a-4), or
— $C\equiv N$ (a-5),

wherein

s is 0, 1, 2 or 3;

 R^8 , R^{10} and R^{11} are each independently selected from –CHO, C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkylcarbonyl, amino, C_{1-6} alkylamino, di(C_{1-6} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonylamino C_{1-6} alkyl,

- 30 piperidinyl C_{1-6} alkylaminocarbonyl, piperidinyl, piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, thiophenyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, aryl C_{1-6} alkyl)amino C_{1-6} alkyl, and
- R⁹ is hydrogen or C₁₋₆alkyl; or R³ is a group of formula

$$-(CH_2)_{t}-Z$$
 (b-1),

wherein

5

10

20

25

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

$$R^{12}$$
 R^{12} R^{12}

$$R^{13}$$
 R^{12}
 R^{12}

wherein R^{12} is hydrogen, halo, $C_{1\text{-}6}$ alkyl, aminocarbonyl, amino, hydroxy, aryl,

 $-C_{1\text{-}6} \text{alkanediyl} -N \\ -C_{1\text{-}6} \text{alkanediyl} \\ O$

C₁₋₆alkylaminoC₁₋₆alkyloxy, C₁₋₆alkyloxyC₁₋₆alkyl, C₁₋₆alkyloxyC₁₋₆alkylamino, arylC₁₋₆alkyl, di(phenylC₂₋₆alkenyl), piperidinyl, piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, arylC₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, pyridinylC₁₋₆alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, amino, aminoC₁₋₆alkyl, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl, or C₁₋₆alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, C₁₋₆alkyloxy, or aminoC₁₋₆alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy;

10

with the proviso that when

n is 0, X is N, R^1 is $C_{1\text{-}6}$ alkyl, R^2 is hydrogen, R^3 is a group of formula (b-1), t is 0, -Z is the heterocyclic ring system (c-2) wherein said heterocyclic ring system -Z is attached to the rest of the molecule with a nitrogen atom, and R^{12} is hydrogen or

15 C_{1-6} alkyl; then

at least one of the substituents R^4 , R^5 or R^6 is other than hydrogen, halo, $C_{1\text{-}6}$ alkyloxy and trihalomethyl.

2. A compound as claimed in claim 1 wherein

20 R¹ is C₁₋₆alkyl; R³ is a radical selected from (a-1), (a-2), (a-3) or (a-5) or is a group of formula (b-1); s is 0, 1 or 2; R⁸ and R¹⁰ are each independently selected from –CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, piperidinylC₁₋₆alkyl,

 $piperidinyl C_{1\text{-}6} alkylamino carbonyl,\ C_{1\text{-}6} alkyloxy,\ thiophenyl C_{1\text{-}6} alkyl,$

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl; t is 0 or 2; -Z is a heterocyclic ring system selected from (c-1), (c-2), (c-4), (c-6), (c-8), (c-9), or (c-11); R^{12} is hydrogen,

C₁₋₆alkyl, aminocarbonyl,

, C_{1-6} alkyloxy C_{1-6} alkylamino,

di(phenylC₂₋₆alkenyl), piperidinylC₁₋₆alkyl, C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, haloindazolyl, or arylC₂₋₆alkenyl; R⁴, R⁵ and R⁶ are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, C₁₋₆alkyl, C₁₋₆alkyloxy, di(C₁₋₆alkyl)amino, di(C₁₋₆alkyl)aminoC₁₋₆alkyloxy or C₁₋₆alkyloxycarbonyl; and when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula (d-1) or (d-2).

- 3. A compound according to claim 1 and 2 wherein n is 0; X is CH; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a group of formula (b-1); t is 2; -Z is a heterocyclic ring system selected from (c-1); R¹² is hydrogen; R¹³ is hydrogen; and R⁵ and R⁶ are on adjacent positions and taken together form a bivalent radical of formula (d-2).
- 4. A compound according to claim 1, 2 and 3 wherein the compound is compounds No 16, compound No 144, and compound No. 145.

5. A compound of formula (VII-a),

5

10

15

the N-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein

 R^1 , R^4 , R^5 , R^6 , R^7 and aryl are as defined in claim 1;

Re is hydrogen or taken together with Rd may form a bivalent radical of formula

wherein R¹⁵ and R¹⁶ are each independently selected from hydrogen, C₁₋₆alkyl,

$$-C_{1\text{-}6} alkane diyl -N \\ -C_{1\text{-}6} alkane diyl \\ O, C_{1\text{-}6} alkyloxy \\ C_{1\text{$$

piperidinyl C_{1-6} alkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, aryl C_{1-6} alkyl, or aryl C_{2-6} alkenyl; or

 R^d is $di(C_{1-6}alkyl)aminoC_{1-6}alkyl$ or piperidinyl $C_{1-6}alkyl$.

- 5
- 6. A compound as claimed in any of claims 1 to 5 for use as a medicine.
- 7. A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 1 to 5.
 - 8. A process of preparing a pharmaceutical composition as claimed in claim 7 wherein the pharmaceutically acceptable carriers and a compound as claimed in claim 1 to 5 are intimately mixed.
- 15

10

9. Use of a compound for the manufacture of a medicament for the treatment of a PARP mediated disorder, wherein said compound is a compound of formula (I)

$$\begin{array}{c}
R^4 \\
R^5 \\
R^6
\end{array}$$
(CH₂)_n

$$\begin{array}{c}
X \\
R^1 \\
N \\
O
\end{array}$$
(I)

20

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

- 25 n is 0, 1 or 2;
 - X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;
- 30 R^1 is C_{1-6} alkyl or thiophenyl;
 - R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =O;

R³ is a radical selected from

35
$$-(CH_2)_8 - NR^8R^9$$
 (a-1),
-O-H (a-2),

-O-R¹⁰ (a-3),
-S- R¹¹ (a-4), or
—C
$$\equiv$$
N (a-5),

wherein

- 5 s is 0, 1, 2 or 3;
 - R^8 , R^{10} and R^{11} are each independently selected from –CHO, $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, amino, $C_{1\text{-}6}$ alkylamino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkylcarbonylamino $C_{1\text{-}6}$ alkyl, piperidinyl $C_{1\text{-}6}$ alkylaminocarbonyl, piperidinyl, piperidinyl $C_{1\text{-}6}$ alkyl,

(c-4)

- piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, thiophenyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl, and R^9 is hydrogen or C_{1-6} alkyl;
- or R³ is a group of formula

$$-(CH_2)_t-Z$$
 (b-1),

wherein

20

25

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

$$R^{12}$$
 R^{12} R

$$R^{12}$$
 R^{12} R

$$R^{13}$$
 R^{12}
 R^{12}

wherein R¹² is hydrogen, halo, C₁₋₆alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 $-C_{1-6}$ alkanediyl N

 C_{1-6} alkylamino C_{1-6} alkyloxy, C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkyloxy C_{1-6} alkyl, di(phenyl C_{2-6} alkenyl), piperidinyl, piperidinyl C_{1-6} alkyl,

- 5 C₃₋₁₀cycloalkyl, C₃₋₁₀cycloalkylC₁₋₆alkyl, aryloxy(hydroxy)C₁₋₆alkyl, haloindazolyl, arylC₁₋₆alkyl, arylC₂₋₆alkenyl, arylC₁₋₆alkylamino, morpholino, C₁₋₆alkylimidazolyl, pyridinylC₁₋₆alkylamino; and R¹³ is hydrogen, piperidinyl or aryl;
- 10 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or
- when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

$$-O-CH_2-O$$
 (d-1),

$$-O-(CH_2)_2-O-$$
 (d-2),

$$-NH-C(O)-NR^{14}=CH-$$
 (d-4),

wherein R¹⁴ is C₁₋₆alkyl;

aryl is phenyl, phenyl substituted with halo, $C_{1\text{--}6}$ alkyl or $C_{1\text{--}6}$ alkyloxy.

- 25 10. Use of a compound according to claim 5 for the manufacture of a medicament for the treatment of a PARP mediated disorder.
 - 11. Use according to claim 9 and 10 wherein the treatment involves chemosensitization.
- 30 12. Use according to claims 9 and 10 wherein the treatment involves radiosensitization.
 - 13. A combination of a compound with a chemotherapeutic agent wherein said compound is a compound of formula (I)

20

the *N*-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein

n is 0, 1 or 2;

5

10

20

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

 R^1 is C_{1-6} alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =0;

15 R³ is a radical selected from

$$-(CH_2)_{s}$$
- NR^8R^9 (a-1),
-O-H (a-2),
-O-R¹⁰ (a-3),
-S- R^{11} (a-4), or

—C≡N (a-5),

wherein

s is 0, 1, 2 or 3;

R⁸, R¹⁰ and R¹¹ are each independently selected from –CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkylcarbonyl, amino, C₁₋₆alkylamino,

- di(C_{1-6} alkyl)amino C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkylcarbonylamino C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, piperidinyl, piperidinyl C_{1-6} alkyl, piperidinyl C_{1-6} alkylaminocarbonyl, C_{1-6} alkyloxy, thiophenyl C_{1-6} alkyl, pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl,
- aryl C_{1-6} alkyl $(C_{1-6}$ alkyl)amino C_{1-6} alkyl, and R^9 is hydrogen or C_{1-6} alkyl;

or R³ is a group of formula

$$-(CH_2)_t-Z$$
 (b-1),

wherein

35 t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

wherein R^{12} is hydrogen, halo, C_{1-6} alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N

 $C_{1\text{-}6}alkylaminoC_{1\text{-}6}alkyloxy, C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkyl, C_{1\text{-}6}alkyloxyC_{1\text{-}6}alkylamino, arylC_{1\text{-}6}alkyl, di(phenylC_{2\text{-}6}alkenyl), piperidinyl, piperidinylC_{1\text{-}6}alkyl, <math display="block">C_{3\text{-}10}cycloalkyl, C_{3\text{-}10}cycloalkylC_{1\text{-}6}alkyl, aryloxy(hydroxy)C_{1\text{-}6}alkyl, haloindazolyl, arylC_{1\text{-}6}alkyl, arylC_{2\text{-}6}alkyl, arylC_{1\text{-}6}alkylamino, morpholino, C_{1\text{-}6}alkylimidazolyl, arylC_{2\text{-}6}alkylamino, morpholino, C_{2\text{-}6}alkylamino, morpholino, C_{3\text{-}6}alkylamino, morpholino, C_{3\text{-}6}alkylamin$

pyridinylC₁₋₆alkylamino; and R¹³ is hydrogen, piperidinyl or aryl;

5

15

20

25

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or

when R⁵ and R⁶ are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1),
-O-(CH₂)₂-O- (d-2),
-CH=CH-CH=CH- (d-3), or
-NH-C(O)-NR¹⁴=CH- (d-4),
wherein R¹⁴ is
$$C_{1-6}$$
alkyl;

aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

- 14. A combination of a compound according to claim 5 with a chemotherapeutic agent.
 - 15. A process for preparing a compound as claimed in claim 1 or claim 5, characterized by
 - a) the hydrolysis of intermediates of formula (VIII), according to art-known methods, by submitting the intermediates of formula (VIII) to appropriate reagents, such as, tinchloride, acetic acid and hydrochloric acid, in the presence of a reaction inert solvent, e.g. tetrahydrofuran,

20

25

15

5

b) the cyclization of intermediates of formula (X), according to art-known cyclizing procedures into compounds of formula (I) wherein X is CH herein referred to as compounds of formula (I-j), preferably in the presence of a suitable Lewis Acid, e.g. aluminum chloride either neat or in a suitable solvent such as, for example, an aromatic hydrocarbon, e.g. benzene, chlorobenzene, methylbenzene and the like; halogenated hydrocarbons, e.g. trichloromethane, tetrachloromethane and the like; an ether, e.g. tetrahydrofuran, 1,4-dioxane and the like or mixtures of such solvents,

c) the condensation of an appropriate ortho-benzenediamine of formula (XI) with an ester of formula (XII) into compounds of formula (I), wherein X is N and R² taken together with R³ forms =O, herein referred to as compounds of formula (I-a-1), in the presence of a carboxylic acid, e.g. acetic acid and the like, a mineral acid such as, for example hydrochloric acid, sulfuric acid, or a sulfonic acid such as, for example, methanesulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid and the like,

5

10

15

20

25

d) hydrolysing intermediates of formula (VI), wherein R³ is a group of formula (b-1) or a radical of formula (a-1) wherein s is other than 0, herein referred to as R³, according to art-known methods, such as stirring the intermediate (VI) in an aqueous acid solution in the presence of a reaction inert solvent with the formation of intermediates and compounds of formula (VII), wherein R⁴ and Re are appropriate radicals or taken together with the carbon to which they are attached, form an appropriate heterocyclic ring system as defined in -Z,

e) converting intermediates of formula (VII), by a selective hydrogenation of said intermediate with an appropriate reducing agent and an appropriate reductant in a suitable solvent with the formation of compounds of formula (I) wherein R² is hydrogen and R^g is as defined above, herein referred to as compounds of formula (I-i).

16. A process for preparing a compound as claimed in claim 5, characterized by

5

10

15

20

a) reacting a compound of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are hydrogen, herein referred to as compounds of formula (VII-a-2), with an intermediate of formula (XIX) wherein W is an appropriate leaving group such as, for example, chloro, bromo, methanesulfonyloxy or benzenesulfonyloxy and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, with the formation of compounds of formula (VII-a-1), defined as compounds of formula (VII-a), wherein R^e taken together with R^d forms a bivalent radical of formula (e-1) or (e-2) (e.g. a bivalent radical of formula (e-1)) and R¹⁵ or R¹⁶ (e.g. R¹⁵) are other than hydrogen, in a reaction-inert solvent; or

b) reacting a compound of formula (VII-a-2) with an intermediate of formula (XX) wherein R is an appropriate substituent whit the formation of compounds of formula (VII-a) wherein R¹⁵ or R¹⁶ (e.g. R¹⁵) are aryloxy(hydroxy)C₁₋₆alkyl, herein referred to as compounds of formula (VII-a-3), in the presence of 2-propanol.

5