Крипография на решетках

Шокуров А.В.

22 апреля 2025 г.

Факторгруппы

Пусть $L = \mathcal{L}(\mathbf{B})$ — решетка ранга n и $M = \mathcal{L}(\mathbf{C})$ ее полная подрешетка. Иными словами $\mathbf{C} = \mathbf{B}\mathbf{A}$ для некоторой невырожденной целочисленной матрицы **A** размера $n \times n$. Подрешетка M определяет отношение эквивалентности на решетке $L: x \sim_M y \Leftrightarrow x - y \in M$. Множество классов относительно этой эквивалентности обозначается через L/M. Очевидно, это отношение эквивалентности инвариантно относительно операции сложения, т.е. $x\sim_{M} y$ и $x'\sim_{M} y'$, тогда $x + x' \sim_{M} y + y'$ и выполняется соотношение $x + 0 \sim_{M} x$. Классы эквивалентности составляют абелеву группу относительно операции сложения классов. Как выбрать каноническое представлние класса? Во-первых, это зависит от выбора базисов решеток L и M.

Задача. Доказать, что $L/M \simeq \mathbb{Z}^n/\mathcal{L}(\mathbf{A}).$

Факторгруппы

Пусть $\mathcal{P}(M)$ — основной параллелепипед решетки M

$$\mathcal{P}(\mathbf{M}) = \{ \mathbf{C} \mathbf{z} \mid \forall i, 0 \le \mathbf{z}_i < 1 \}.$$

Тогда для каждого класса $[x]_M$ существует $x' \in L \cap \mathcal{P}(M)$ эквивалентный x. Как получить такой элемент? Для этого представим $x = \mathbf{C}z$. Поскольку матрица \mathbf{C} невырождена, такое представление единственно. Положим $z_i' = \{z_i\}$ для всех $i=1,\ldots,n$. Тогда $x' = \mathbf{C}z'$. В частности, из правила Крамера получаем соотношение

$$|L/M| = \det M/\det L = \det A.$$

Другой способ представления — использовать параллелепипед $\mathcal{P}(\mathbf{A}^*).$

Задача. Доказать, что каждый класс из L/M имеет такое представление и это представление единственно. Построить алгоритм нахождения такого представления.

Эрмитова нормальная форма

Определение

Квадратная невырожденная матрица $\mathbf{A} \in \mathbb{Z}^{n \times n}$ называется эрмитовой, если

- **А** верхняя треугольная матриц, т.е. $a_{i,j} = 0$ для всех i > j.
- Все диагональные элементы матрицы **A** строго положительны, т.е. $a_{i,i} > 0$ для всех $i = 1, \ldots, n$.
- Все недиагональные элементы приведены по модулю соответствующего диагонального элемента в той же строке, т.е. $0 < a_{i,i} < a_{i,i}$ для всех i < j.

Теорема

Для произвольной невырожденной целочисленной матрицы **A** существует унимодулярная матрица **U** такая, что **AU** эрмитова.

Отметим, что это означает возможность преобразования по столбцам произвольной невырожденной матрицы в эрмитову. 4/39

Эрмитова нормальная форма

Приведение к унимодуляроной форме может быть выполнено за полиномиальное время. Для эффективного представление элементов группы G = L/M, приведем матрицу **A** к эрмитовой форме. Далее будем теперь считать, что матрица А эрмитова. Поскольку это так, то соответствующий ортогональный базис, полученный из этого процедурой ортогонализации Грамма-Шмидта, имеет вид $\mathbf{a}_{i}^{*}=a_{i,i}\mathbf{e}_{i}$. Тогда множество $\mathbb{Z}^n \cap \mathcal{P}(\mathbf{A}^*)$ состоит из таких векторов $\mathbf{v} \in \mathbb{Z}^n$, что $0 < \mathbf{v}_i < a_{i,i}$. В частности, каждая из координат может быть представлена $\log_2 a_{i,i}$ битами, а размер представления элементов группы составляет

$$\sum_{i=1}^{n} \log_2 a_{i,i} = \log_2 \prod_{i=1}^{n} a_{i,i} = \log_2 \det(\mathbf{A}) = \log_2 |\mathbf{G}|.$$

Эрмитова нормальная форма

Специальный случай: $L=\mathbb{Z}^n$ и M произвольная целочисленная решетка. В этом случае используем обозначение $\mathbf{v} \mod M$ для единственного представителя класса $[\mathbf{v}]_M$ относительно эрмитова базиса для M.

Нормальная форма Смита

Определение

Матрица $\mathbf{D} \in \mathbb{Z}^{n \times n}$ называется нормальной матрицей Смита, если она диагональна, ее диагональные элементы неотрицательны и $d_{i+1,i+1}$ делит $d_{i,i}$ для всех $i=1,\ldots,n$.

Теорема

Любая целочисленная квадратная матрица **С** может быть приведена к нормальной форме по Смиту с помощью унимодулярных матриц **U** и **V**, т.е. **D** = **UAV** — матрица Смита. Это приведение можно выполнить за полиномиальное время.

Нормальная форма Смита

Заметим, что решетки, соответствующие матрицам **A** и **D**, не совпадают. Однако эти матрицы эквивалентны в том смысле, что группы $\mathbb{Z}^n/\mathcal{L}(\mathbf{A})$ и $\mathbb{Z}^n/\mathcal{L}(\mathbf{D})$ изоморфны.

Теорема

Пусть **D** — нормальная форма матрицы **A**. Тогда группа G = L/M изоморфна аддитивной группе

$$S = \mathbb{Z}_{d_{1,1}} \oplus \ldots \oplus \mathbb{Z}_{d_{n,n}}.$$

Также как в случае эрмитова представления, все элементы группы G представимы целозначными векторами $\mathbf{s} \in \mathbb{Z}^n$, для которых $0 \leq s_i < d_{i,i}$ при $i=1,\ldots,n$. Следовательно, такое представление имеет размер

$$\sum_{i=1}^{n} \log_2 d_{i,i} = \log_2 \det(\mathbf{A}) = \log_2 |\mathbf{G}|.$$

Нормальная форма Смита

Поскольку операции по-компонентные, операции могут выполняться за время

$$\mathcal{O}\left(\sum_{i=1}^n \log_2 d_{i,i}\right) = \mathcal{O}(\log_2 |G|).$$

Теорема

Отображение

$$\psi: [\mathbf{x}]_{\mathbf{M}} \mapsto \mathbf{DC}^{-1}\mathbf{x} \bmod \mathbf{D}$$

задает изоморфизм групп S и G.

Решетки и хэш-функции Айтаи-Гольдрейх-Гольдвассер-Хэлеви

Пусть $q \geq 2$ — целое число и **A** случайная матрица размера $n \times m$ над кольцом \mathbb{Z}_q . Определено линейное отображение

$$f_{\mathbf{A}}: \mathbf{x} \mapsto \mathbf{A}\mathbf{x} \bmod q$$

из \mathbb{Z}_q^m в \mathbb{Z}_q^n . Очевидно, это отображение вычислимо, а также можно найти обратное, решив систему уравнений над \mathbb{Z}_q . Рассмотрим теперь ограничение этой функции на множество B^m , где $B=\{0,1\}$

$$h_{\mathbf{A}}: B^m \to \mathbb{Z}^n$$
.

Задача нахождения коллизии $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y}$, где $\mathbf{x}, \mathbf{y} \in \mathcal{B}^m$ заключается в нахождении векторов таких \mathbf{z} , что $\|\mathbf{z}\|_{\infty} = 1$ и $\mathbf{z} = \mathbf{x} - \mathbf{y}$. Отметим, что при $m > n \log_2 q$ функция $h_{\mathbf{A}}$ представляет собой хэш-функцию.

О коллизиях

Почему в этом случае найти коллиизии? Оказывается, что нахождение коллизий в среднем является столь же сложной задачей, что и для задачи аппроксимации радиуса покрытия с точностью до полиномиального множителя $\gamma(n) < O(n^{2.5} \log n)$. Из этого факта и сводимости задачи нахождения радиуса покрытия к задаче нахождения кратчайшего вектора с точностью до множителя, получена сводимость задачи находения коллизии к задаче аппроксимации кратчайшего вектора с точностью $\gamma(n) < \mathcal{O}(n^{3,5}n)$. Для "почти совершенных"решеток сводится к задаче нахождения ближайшего вектора с точностью до множителя \sqrt{n} .Задача находения коллизии соответствует задаче нахождения коротких векторов $||z||_2 < \sqrt{n} ||s||_{\infty} = \sqrt{n}$ в решетке $L_{A} = \{z | Az \equiv 0 \mod q\}$. Поэтому задачу стойкости хэш функции можно переформулировать как задачу нахождения короткого вектора в решетке в среднем и задачей аппроксимации длины кратчайшего вектора в любой решетке в худшем случае.

Пусть L_n решетка полная решетка размерности n. Будем рассматривать такие решетки L, для которых существует такой алгоритм CVP_L , что на входе n и $\mathbf{t} \in \mathbb{Q}_n$ он находит ближайший к этому вектору вектор решетки L_n . Например, это решетки \mathbb{Z}^n .

Определение

Радиусом упаковки решетки называется такое наибольшее число r=
ho(L), что открытые шары с центрами в точках решетки попарно не пересекаются.

Определение

Радиусом покрытия решетки называется такое наименьшее число R, что замкнутые шары с центрами в точках решетки покрывают все пространство.

Определение

Положим $au_{\rm L}=R/r=2R/\lambda_{\rm l}$, где R — радиус покрытия решетки, а r радиус упаковки. Для любого числа au>1 будем называть решетку L au-совершенной, если $au_{\rm L}\leq au$. Последовательность решеток ${\rm L}_{\rm n}$ будем называть почти совершенной, если все решетки ${\rm L}_{\rm n}$ являются au-совершенными для некоторой постоянной величины au, не зависящей от ранга ${\rm n}$.

Пусть $L-\tau$ -совершенная решетка для некоторого τ от 1 до \sqrt{n} . Положим $\mathbf{c}_i = \mathit{CVP}_L(\alpha \rho(L)\mathbf{e}_i)$ — это точка решетки, находящаяся на расстоянии $\rho(L)$ от $\alpha \rho(L)\mathbf{e}_i$, т.е.

$$\mathbf{C} = \alpha \rho(\mathbf{L})\mathbf{I} + \mathbf{R},$$

где **R** матрица, столбцы которой ограничены $\|\mathbf{r}_i\| \leq \rho(L)$. Решетки L и M определяют абелеву группу G = L/M.

Отметим, что элементы группы ${\it G}$ представимы $\log |{\it G}|$ битами, а операции в группе выполнимы за полиномиальное время. Имеется также полиномиальный алгорим вычисления гомоморфизма $\psi: {\it L} \to {\it G}$. При этом $\psi({\bf x}) = 0$ тогда и только тогда, когда ${\bf x} \in {\it M} \subset {\it L}$.

Определим семейство хэш функций со значениями в G. Пусть m — целое. Зафиксируем последовательность из m элементов $a_1, \ldots, a_m G$. Вектор $\mathbf{a} = (a_1, \ldots, a_m)^t \in G^m$ определяет функцию $h_{\mathbf{a}}: \{0,1\}^m \to G$ по формуле

$$h_{\mathbf{a}}(\mathbf{x}) = \sum_{i=1}^{m} x_i a_a = \sum_{i|\mathbf{x}=1} a_i.$$

При $m>\log_2|{\it G}|$ определены хэш функции $h_{\it a}$ и коллизии всегда существуют.

Теорема

При случайном равномерном выборе вектора ${m a} \in {m G}^m$ задача нахождения коллизии является NP-трудной.

Теорема

Для каждого п существует au-совершенная решетка с au < 4.

Схема шифрования GGH (Гольдрайх-Гольдвассер-Хэлеви)

Секретный ключ. Имеется два способа.

- Строим $n \times n$ матрицу **R**, выбирая ее элементы случайно и равномерно из множества $\{-I, \ldots, I\}$.
- Строим $\mathbf{R} = k\mathbf{I} + \mathbf{R}'$, где \mathbf{R}' выбирается как в первом способе, а k параметр, например, $k = \sqrt{n}l$.

Открытый ключ. Открытый ключ — другой базис решетки. Должен выбираться случайно из заданного распределения возможных базисов решетки. Имеется два способа.

- Первый споособ преобразование **R** в базис **B** с помощью некоторой последовательности операций над столбцами. В качестве коэффициентов выбираются случайно выбранные элементы из множества $\{-1,0,1\}$.
- Предлагается умножить исходную матрицу на последовательность унимодулярных множеств.

Схема шифрования GGH (Гольдрайх-Гольдвассер-Хэлеви)

Открытый ключ. Открытый ключ — другой базис решетки. Должен выбираться случайно из заданного распределения возможных базисов решетки. Имеется два способа.

- Первый способ преобразование ${\bf R}$ в базис ${\bf B}$ с помощью некоторой последовательности операций над столбцами. В качестве коэффициентов выбираются случайно выбранные элементы из множества $\{-1,0,1\}$.
- Предлагается умножить исходную матрицу на последовательность унимодулярных множеств. В качестве унимодулярных матриц можно брать произведения нижней треугольной и верхней треугольной матриц. Эти матрицы имеют на даагоналях ± 1 , а вне диагонали состоят из элементов множества $\{-1,0,1\}$.

Схема шифрования GGH (Гольдрайх-Гольдвассер-Хэлеви)

Шифрование. На входе подается вектор \mathbf{x} и небольшой вектор возмущения (шум) \mathbf{r} . На выходе получаем $\mathbf{t} = \mathbf{B}\mathbf{x} + \mathbf{r}$. Максимальная длина вектора \mathbf{r} указывается при задании открытого ключа. Вектор \mathbf{x} определен в достаточно большой области, поэтоому $\mathbf{B}\mathbf{x}$ кажется случайным вектором решетки. **Дешифрование.** Имеется два метода дешифрования.

- Первый метод использовать алгоритм ближайшей плоскости с базисом **R**. В соответствии с ним находится единственная точка **Bx** на расстоянии $\delta = (1/2) \min \|r_i^*\|$ от **t** и восстанавливает вход $(\mathbf{x}, \mathbf{t} \mathbf{Bx})$.
- Во втором случае, нужно вычислить ${\bf R}^{-1}{\bf t}$ и округлить координаты до ближайшего целого., а затем умножить рузультат на ${\bf R}$.

Рассмотрим кольцо $\mathbb{Z}[X]/(X^n-1)$. Элементы этого кольца можно отождествить с многочленами с целыми коэффициентами степени не выше n-1. Сложение определяется по-компонентно. Умножение задается формулой

$$\sum_{k=0}^{n-1} a_k X^k \sum_{k=0}^{n-1} b_k X^k = \sum_{k=0}^{n-1} \left(\sum_{i+j \equiv k \pmod{n}} a_i b_j \right) X^k.$$

Операции в кольце многочленов $\mathbb{Z}_q[X]/(X^n-1)$ определяются так же, как и в кольце $\mathbb{Z}[X]/(X^n-1)$ с той лишь разницей, что операции над коэффициентами выполняются в кольце \mathbb{Z}_q . В этом кольце имеется группа единиц.

Задача Если p — простое, то \mathbb{Z}_p — поле. Тогда многочлены $f(X) \in \mathbb{Z}_p[X]/(X^n-1)$, для которых $\mathrm{HOД}(f(X),X^n-1)=1$, лежат в группе единиц и обратный элемент можно найти с помощью алгоритма Евклида. Доказать, что этот алгоритм имеет сложность $\mathcal{O}(n^2\log q)$.

Пусть теперь $q = p^t$, где p простое и многочлены $f(X) \in \mathbb{Z}_{q}[X]/(X^{n}-1)$ такие, что $HO \coprod (f(X), X^{n}-1) = 1$ (Наибольший общий делитель вычисляется в кольце $\mathbb{Z}_q[X]$). Поскольку $\mathbb{Z}_q\supset\mathbb{Z}_p$ это же выполняется в кольце $\mathbb{Z}_p[X]$.В кольце $\mathbb{Z}[X]$ соотношение $HOД(f(X), X^n - 1) = 1$ также выполняется. С помощью алгоритма Евклида примененного для кольца $\mathbb{Z}_p[X]$ над полем \mathbb{Z}_p , для представителя многочлена f(X) в $\mathbb{Z}[X]$ найдем многочлены $u,v,c\in\mathbb{Z}[X]$, для которых в кольце $\mathbb{Z}[X]$ выполняется равенство

$$uf + v(X^n - 1) = 1 - pc.$$

Поэтому u*f=1 в $\mathbb{Z}_p[\mathbf{X}]/(\mathbf{X}^n-1).$ Имеем также в кольце $\mathbb{Z}[\mathbf{X}]$

$$(1 + \rho c) * u * f = 1 - \rho^2 c^2$$

 $(1 + \rho^2 c^2) * (1 + \rho c) * u * f = 1 - \rho^4 c^4$
:

в кольце
$$\mathbb{Z}[X]/(X^n-1)$$
. При $2^s>t$ имеем

$$(1+p^{2^{s-1}}c^{2^{s-1}})* \ldots * (1+p^2c^2)* (1+pc)* u*f=1 \mod q$$

 $(1 + \rho^{2^{s-1}}c^{2^{s-1}}) * \dots * (1 + \rho^2c^2) * (1 + \rho c) * u * f = 1 - \rho^{2^s}c^{2^s}$

и, следовательно,

$$f^{-1} = (1 + \rho^{2^{s-1}}c^{2^{s-1}}) * \dots * (1 + \rho^2c^2) * (1 + \rho c) * u.$$

Описание NTRU

Пусть p и q — два небольших взаимно простых числа (,например, p=3 и q=128). (В общем случае p очень мало, а q — многочлен от параметра безопасности n.) Элементы кольца $R=\mathbb{Z}[X]/(X^n-1)$ будем представлять многочленом или вектором в \mathbb{Z}^n вида

$$f = \sum_{i=0} f_i X^i = [f_0, f_1, \dots, f_{n-1}].$$

Произведение в этом кольце описывается формулой

$$f * g = [f_0, f_1, \ldots, f_{n-1}] * [g_0, g_1, \ldots, g_{n-1}] = [h_0, h_1, \ldots, h_{n-1}],$$

где

$$h_k = \sum_{i=0}^k f_i g_{k-i} + \sum_{i=k+1}^{n-1} f_i g_{n+k-i}.$$

Описание NTRU

В кольцах $R_p=R/(p)$ и $R_q=R/(q)$ коэффициенты многочленов представляются остатками в диапазонах [0,p-1] и [0,q-1]. Рассмотрим также множество многочленов $\mathcal{P}_p(\textit{N})$,

элементы которого представляются в виде

$$g=\sum_{i=0}^{N-1}g_i$$
Х $^i=[g_0,g_1,\;\ldots,g_{N-1}],\;$ где $g_p\in\left(-rac{p}{2},rac{p}{2}
ight].$

Описание NTRU. Генерация ключа.

Генерация ключа. Выбираем два случайных многочлена $f \in R_1$ и $g \in R$ с маленькими коэффициентами (например, из множества $\{-1,0,1\}$) и взаимно простые числа p и q такие, что для многочлена f существуют обратные элементы f_p^{-1} и f_q^{-1} в кольцах $R_p = R/(p)$ и $R_q = R/(q)$. С вероятностью близкой к единице случайный многочлен f удовлетворяет этому условию. Обратные элементы f_p^{-1} и f_q^{-1} строятся с помощью алгоритма Евклида.

Затем вычисляется многочлен h в $R_q=R/(q)$

$$h \equiv pf_q^{-1} * g \mod q,$$

где умножение выполняется в кольце $R=\mathbb{Z}[X]/(X^N-1)$. Открытым ключом шифрования объявляется многочлен h и числа q и p. Секретным ключом является пара f,g.

Описание NTRU. Шифрование.

Шифрование. Пусть имеется пара: текст m и случайный вектор r (предполагаем, что текст представляет собой многочлен с маленькими коэффициентами, например, -1, 0 и 1). Зашифрованный текст t получается по формуле

$$t \equiv r * h + m \mod q$$
.

Описание NTRU. Дешифрация.

Дешифрация. Пусть t — шифртекст и f — секретный ключ. Сначала вычислим многочлен a по формуле

$$a \equiv f * t \mod q$$
,

причем коэффициенты многочлена a выбираются из интервала от -q/2 до q/2. Рассматривая многочлен a как многочлен с целыми коэффициентами, вычислим многочлен $m' \in R_p$ по формуле

$$m' \equiv f_p^{-1} * a \mod p$$
.

Описание NTRU. Дешифрация.

В работе [Hoffstein J., Piper J., Silverman J., NTRU: A ring based public key cryptosystem, in Algebraic number theory (ANTS III), vol.1423 of Lecture Notes in Computer Science, pp. 267-288, Springer] показано, при соответствующем выборе параметров t=a с большой вероятностью. Идея такова. Из определения t и h, имеем

$$a \equiv f * t \mod q \equiv f * (m + r * h) \mod q \equiv f * m + pgr \mod q.$$

Поскольку коэффициенты многочленов f, m, g, r малы и p мало, то с вероятностью близкой к 1 коэффициенты многочлена целочисленного многочлена fm+pgr лежат в интервале [q/2,q/2]. Тогда a=fm+pgr над кольцом целых чисел и $m'\equiv f^{-1}(fm+pgr)\equiv m \bmod p$. Соответственно $r=(t-m)(ph)^{-1} \bmod q$.

Определение

Целочисленная решетка, содержащая решетку $q\mathbb{Z}^n$ называется q -модулярной.

Определение

Вектор $(x_n, x_1 \dots, x_{n-1})$ называется циркулянтом вектора $\mathbf{x} = (x_1, \dots, x_n)$ и обозначается $\mathbf{rot}(\mathbf{x})$.

Имеется следующее представление кольца $R=\mathbb{Z}[\mathbf{x}]/(\mathbf{x}^n-1)$ циркулянтными матрицами. А именно, сопоставим вектору \mathbf{x} матрицу из столбцов $M_{\mathbf{x}}=(\mathbf{x},\mathbf{rot}(\mathbf{x}),\ \dots,\mathbf{rot}^{n-1}(\mathbf{x})).$ Задача. Доказать равенство $M_{\mathbf{x}}M_{\mathbf{v}}=M_{\mathbf{x}\mathbf{v}}.$

Определение

Пусть $\mathbf{x}, \mathbf{y} \in \mathbb{Z}^n$ и $\mathbf{z} = (\mathbf{x}, \mathbf{y}) \in \mathbb{Z}^{2n}$. Определим бициркулянт формулой $\mathbf{rot}_2(\mathbf{z}) = (\mathbf{rot}(\mathbf{x}), \mathbf{rot}(\mathbf{y}))$.

Определение

Целочисленная решетка \mathcal{L} размерности 2n называется бициклической, если из $\mathbf{x} \in \mathcal{L}$ следует, что $\mathbf{rot}_2(\mathbf{x}) \in \mathcal{L}$. Иными словами, решетка должна быть замкнута относительно бициркуляций.

Предложение

Пересечение сохраняет свойства q -модулярности и бицикличности. В частности, для любого множества векторов S определена минимальная q -модулярная бицикличная решетка, содержащая множество S.

Задача. Доказать предложение.

Определение NTRU-шифрования на решетках. Секретный ключ.

Секретный ключ. Секретный ключ определяется коротким вектором $\mathbf{v} = (px_1, \ldots, px_n, y_1, \ldots, y_n)$, где $x_i, y_i \in \{-1, 0, 1\}$. Свяжем с этим вектором бициклическую q -модулярную решетку (см. предыдущее предложение). Порождающим множеством этой решетки являются бициркулянты вида $\mathbf{rot}_{2}^{k}(\mathbf{v})$ для всех $k=0,\ldots,n-1$ и множество векторов вида qe_k , где $k=1,\ldots,2n$.

Определение NTRU-шифрования на решетках. Открытый ключ.

Открытый ключ. Открытый ключ определяется как эрмитов нормальный базис бициклической q -модулярной решетки, определяемой вектором v.

Определение NTRU-шифрования на решетках.

Задача. При $\mathbf{v} = (pg,f)$ (см. определение NTRU-шифрования через многочлены) выполняется равенство

$$H = \begin{pmatrix} qI & M_h \\ 0 & I \end{pmatrix}.$$

Иными словами, эта решетка определяется как минимальная бициклическая q -модулярная решетка, содержащая вектор $(h,e_1).$

Определение NTRU-шифрования на решетках. Шифрование.

Шифрование. Рассмотрим вектор (m,-r). При приведении этого вектора по модулю эрмитова нормального базиса H получим шифротекст (t,0), где t — многочлен из определения шифрования с помощью многочленов.

Задача. Докажите это.

Определение NTRU-шифрования на решетках. Дешифрация.

Дешифрация. Алгоритм дешифрации не имеет геометрической интерпретации и выполняется по ранее описанным формулам.

Анализ

Анализ. Специфическая структура q -модулярных бициклических решеток позволяет представлять секретный и открытый ключ, используя только $O(n \log n)$ битов. С точки зрения эффективности NTRU-шифрование представляется хорошим методом: шифрование и дешифрация осуществляются очень быстро, также как и процедура порождения ключа шифрования быстро. Причем размер открытого ключа сопоставим с размерами широко используемых ключей в методах шифрования связанных с теорией чисел.

Анализ

Главный вопрос о стойкости этой криптосистемы остается в настоящее время открытым. Являются ли задачи на решетках такого специального вида трудными, как и вобщем случае? Точное решение также NP-трудная задача? Аппроксимация также NP-трудна? Что можно сказать о трудности в среднем для этого класса решеток?

С теоретической точки зрения пока на эти вопросы ответы неизвестны. Однако эта криптосистема широко используется и хорошо себя зарекомендовала с практической точки зрения.