Domino Magic Threefold Problem Set

Xun Zou, slides adapted from Chih-Hung Liu, Daniel Wolleb, and Andreas Bärtschi November 25, 2020

ETH Zürich

Threefold Problem Set

Goal: simulate the thinking steps of a six hour exam in one hour.

First Part: (16:15-17:00)

- think about the problems
- sketch solutions on paper
- no coding required

Break: (17:00-17:10)

Second Part: (17:10-)

- solution discussion
- ► Q & A

The problem set is available on moodle. Please ask questions in Code Expert.

Note: we need a new technique to solve the second problem.

Domino Snake – The problem

Given:

- ightharpoonup h imes w grid with obstacles
- ightharpoonup p queries of point pairs ((q,r),(s,t))

Wanted:

y or n per query: Does a domino snake between the two points exist?

What corresponds to a domino snake?

- ▶ a (q,r)-(s,t)-path on the 4-neighborhood grid graph with holes
- this path needs to have even length (i.e. an even number of vertices)

Is even length necessary and sufficient?

- necessary: odd length paths can not be tiled into dominos of area 2.
- ▶ sufficient: a path $P=(p_1,p_2,\ldots,p_l)$ of even length l=2k can always be tiled into dominoes of the form (p_1,p_2) , (p_3,p_4) , \ldots , (p_{l-1},p_l) .

Domino Snake - Handling a single query

BFS/DFS can answer if any path from (q,r) to (s,t) exists.

What if this path is of odd length?

Can we add a detour to find a path of the right parity?

No! Chessboard coloring argument: bipartite graph

We require: $(q+r) \not\equiv_2 (s+t)$

Domino Snake – Handling multiple queries

$$p=1$$
: check that BFS/DFS from (q,r) visits (s,t) and $(q+r)\not\equiv_2 (s+t)$.

p > 1:

- ▶ Running BFS/DFS over and over is expensive $\rightarrow \mathcal{O}(hwp)$
- ightharpoonup Are (q,r) and (s,t) in the same connected component?
- ightharpoonup Precompute the connected components in $\mathcal{O}(hw)$.
- lacktriangle Each of the p queries can then be answered in $\mathcal{O}(1)$ by checking
 - ightharpoonup component((q,r))=component((s,t))
 - $(q+r) \not\equiv_2 (s+t).$

Overall runtime: $\mathcal{O}(hw+p) = \mathcal{O}(hw)$

New Tiles – The problem

Problem

Given a $h \times w$ matrix of 0's and 1's.

Find the maximum number of non-overlapping 2×2 matrices of the form: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Greedily take every 2x2 free space.

Counterexample (ignoring zeros on the boundary):

0110

1111

1111

Greedy gives answer 1, while the maximum is 2.

Maximum Independent Set

Take all 2x2 all-ones matrices as vertices.

Edges indicate overlapping.

We do not have a bipartite graph.

0110

1110

1110

Note that $h \leq 100$, $w \leq 17$ are relatively small.

State of the subproblem: [i,b], $1 \le i \le h$, $b \in \{0,1\}^w$ is a bitmask

 $DP[i][b] := \max \max number of 2x2 \ matrices we can take from the first <math>i$ rows where the i-th row is constrained to the bitmask.

 $b_j=1$ iff. j-th column has been used in calculating DP[i][b] (regardless of the input)

Wanted: $DP[h][\{1\}^w]$

State of the subproblem: [i,b], $1 \le i \le h$, $b \in \{0,1\}^w$ is a bitmask

 $DP[i][b] := \max \max number of 2x2 matrices we can take from the first <math>i$ rows where the i-th row is constrained to the bitmask.

 $b_j=1$ iff. j-th column has been used in calculating DP[i][b] (regardless of the input)

Wanted: $DP[h][\{1\}^w]$

Initialization:

▶ For the first row, no tiles fit: DP[1][b] = 0, for all $b \in \{0,1\}^w$

New Tiles - Recurrent Formula

Assume DP[i-1][b'] is available from all b', compute DP[i][b] for all b

Now we want to take matrices that occupy only row i-1 and row i

If we do not use the i-th row at all: $DP[i][\{0\}^w] = \max_b(DP[i-1][b])$

Enumerate b (red) that have even number of consecutive 1s

Check whether b is compatible with the input (yellow)

$$DP[i][b] = \max(DP[i][b], DP[i-1][\mathsf{negated}\ b] + \mathsf{bitcount}(b)/2)$$

We take some 2×2 matrices (specified by red and yellow) in the i-1,i strip

For the example: $DP[i][000011011110011] \leftarrow DP[i-1][111100100001100] + 4$

How about invalid bitmasks? Drop some one-bits.

- ▶ $DP[i][b] = \max_{j \in [w]} DP[i][b \text{ with } j\text{-th bit set to 0}], \mathcal{O}(w)$
- $lackbox{\ }$ Compute DP[i][b] in lexicographical order of b

Formula:

$$\begin{split} DP[i][b] &= \max(\max_{j \in [w]} DP[i][b \text{ with } j\text{-th bit unset}], \\ &DP[i-1][\mathsf{negated } b] + \mathsf{bitcount}(b)/2) \end{split}$$

Runtime:

Size of the table: $2^w \cdot h$.

Update step per entry: $\mathcal{O}(2^w)$ or $\mathcal{O}(w)$.

Runtime: $\mathcal{O}(4^w \cdot h)$ or $\mathcal{O}(2^w \cdot h \cdot w)$.

Snakes strike back – The problem

Given:

- $\blacktriangleright h \times w$ grid with obstacles (snake cages) and entrance/exit pair.
- ▶ Path width p, safety distance p/2. (Cases: $p = 1, p = 2, p \le 30$)

Wanted:

> yes or no: Is there a path between the entrance and the exit with minimum width p which keeps clear from obstacles by p/2?

Snakes strike back – Case p = 1

Rough Idea:

Use the graph from Domino Snake, but delete squares which are adjacent to snake cages.

Problem: Fails, graph is disconnected!

Reason: Deleting too much.

Equivalent: Curve (has 0 width!) with a

safety distance: p.

Solution Approach:

Go along the boundary of cells which are not adjacent to snake cages.

Solution (p = 1):

BFS on grid graph given by vertices and by boundary segments with distance ≥ 1 to snake cage boundarys.

Can we adapt for larger p?

Snakes strike back – Case p = 2

Rough Idea (first case solution adapted): BFS on grid graph given by vertices and by boundary segments with distance ≥ 2 to snake cage boundarys.

Problem: the grid graph becomes disconnected.

Look at the problem statement again: Originally: Is there a path of width p which keeps clear from obstacles by p/2? Redefined: Is there a path of width 0 which keeps clear from obstacles by p?

Redefinition II: Is there a path of width 2p which keeps clear from obstacles by 0?

Snakes strike back – Arbitrary *p*

Draw a path with a brush of diameter 2p.

This sounds familiar:

 ${\sf H1N1-How}$ to move a disk D without colliding with a given point set P? Move disk along Voronoi Diagram edges / in the Delaunay triangulation.

Problem: Here our obstacles are cells, not points.

Solution: Replace every snake cage square by its 4 vertices.

Careful:

We need vertices of each square! (Only considering the convex & concave vertices of the boundary of the full obstacle is not enough.)

