Crittografia - Cenni

Damiano Carra

Università degli Studi di Verona Dipartimento di Informatica

La crittografia

- ☐ Scienza che si occupa di proteggere l'informazione rendendola sicura, in modo che un utente non autorizzato che ne entri in possesso non sia in grado di comprenderla
- ☐ La crittoanalisi è invece la scienza che cerca di aggirare o superare le protezioni crittografiche, accedendo alle informazioni protette
 - L'insieme di crittografia e crittoanalisi è detto crittologia

Elementi del processo crittografico

☐ Algoritmo crittografico

- Funzione che prende in ingresso un messaggio e un parametro detto chiave, e produce in uscita un messaggio trasformato
- Cifratura
 - Testo in chiaro (plaintext o cleartext) → Testo cifrato (ciphertext)
- Decifratura
 - Testo cifrato → Testo in chiaro

3

Elementi del processo crittografico

- ☐ Se le chiavi di cifratura e decifratura sono uguali
 - Algoritmo simmetrico
 - La chiave deve essere segreta
- ☐ Se le chiavi sono diverse
 - Algoritmo asimmetrico
 - Una chiave è pubblica, l'altra privata (segreta)

Robustezza crittografica

- ☐ Non deve essere possibile (facilmente...):
 - Dato un testo cifrato ottenere il corrispondente testo in chiaro senza conoscere la chiave di decifratura
 - Dato un testo cifrato e il corrispondente testo in chiaro ottenere la chiave di decifratura
- ☐ In generale, nessun algoritmo crittografico è assolutamente sicuro, quindi si dice che è computazionalmente sicuro se:
 - il costo necessario a violarlo è superiore al valore dell'informazione cifrata
 - il tempo necessario a violarlo è superiore al tempo di vita utile dell'informazione cifrata

5

Crittoanalisi

- ☐ La crittoanalisi tenta di ricostruire il testo in chiaro senza conoscere la chiave di decifratura
- ☐ L'attacco più banale è quello "a forza bruta"
 - Tentare di decifrare il messaggio provando tutte le chiavi possibili.
 - Applicabile a qualunque algoritmo, ma la sua praticabilità dipende dal numero di chiavi possibili.
 - È comunque necessario avere informazioni sul formato del testo in chiaro, per riconoscerlo quando si trova la chiave giusta.
- ☐ Principio di Kerckhoffs
 - Nel valutare la sicurezza di un algoritmo crittografico si assume che il crittoanalista conosca tutti i dettagli dell'algoritmo
 - La segretezza deve risiedere nella chiave, non nell'algoritmo!

Crittografia a chiave simmetrica

- □ La crittografia simmetrica, altrimenti detta crittografia a chiave segreta, utilizza una chiave comune e il medesimo algoritmo crittografico per la codifica e la decodifica dei messaggi
- ☐ Due utenti che desiderano comunicare devono accordarsi su di un algoritmo e su di una chiave comuni
 - La chiave deve essere scambiata su un canale sicuro

7

Cifrario di Cesare

- ☐ Sostituisce ogni lettera del testo in chiaro con quella che si trova K posizioni più avanti nell'alfabeto
 - Kè la chiave
- \Box Esempio: K = 3

In chiaro: A B C D E F G H I L M N O P Q R S T U V Z
Cifrate: D E F G H I L M N O P Q R S T U V Z A B C

- Esempio di messaggio in chiaro / cifrato: CIAO / FNDR
- ☐ Le chiavi possibili sono solamente 20

Cifratura monoalfabetica

- ☐ Ogni carattere viene sostituito da un altro (permutazione), secondo un certo alfabeto che costituisce la chiave
- ☐ Esempio:

- In chiaro: A B C D E F G H I L M N O P Q R S T U V Z

- Cifrate: MZNCBVLAHSGDFQPEORITU

- Esempio di messaggio in chiaro / cifrato: CIAO / NHMF

- ☐ Le chiavi possibili sono pari al numero di permutazioni possibili
 - 21! ovvero circa 5,1 x 10¹⁹

9

Analisi delle frequenze

- ☐ Spazio delle chiavi di un algoritmo monoalfabetico molto grande
 - Ma la crittoanalisi è semplice tramite l'analisi delle frequenze
- ☐ In un testo scritto in una determinata lingua (italiano, inglese...) ogni lettera dell'alfabeto si presenta secondo una certa frequenza:
 - Ad esempio in italiano E ed A sono molto comuni, Q e Z sono poco comuni
 - E poi ci sono gruppi di 2 o 3 lettere ("ch", "che", "qu", ...)
- ☐ Contando il numero di occorrenze di ogni lettera nel testo cifrato è possibile ipotizzare con buona probabilità quale sia la lettera corrispondente

Cifrari a blocchi

☐ Tecniche di cifratura simmetrica

- Usati in molti protocolli sicuri di Internet, compreso PGP (posta elettronica), SSL (connessione TCP) e IPSec (trasmissione a livello di rete)
- Chiamati anche cifrari a flusso
- ☐ Dati k bit, i possibili 2^k ingressi vengono permutati
- \Box Esempio: k = 3

Ingresso	Uscita	Ingresso	Uscita
000	110	100	011
001	111	101	010
010	101	110	000
011	100	111	001

11

Cifrari a blocchi (cont'd)

☐ Le permutazioni possono essere combinate tra loro per creare schemi più complessi

Esempi

☐ DES (Data Encryption Standard)

- È il più noto algoritmo crittografico simmetrico moderno, Nato negli anni '70 a seguito di un progetto di IBM
- Adottato ufficialmente nel '77 come standard dal governo americano
- Utilizza chiavi di 56 bit → da considerarsi ormai obsoleto

☐ Triplo-DES

- Per aumentare la sicurezza del DES lo si applica tre volte con chiavi diverse
- Esistono due varianti
 - con chiave da 112 bit (56×2)
 - con chiave da 168 bit (56 × 3)

13

AES - Rijndael

- ☐ Nel 1997 il NIST (National Institute of Standards and Technology) ha bandito una gara per trovare il successore del DES come algoritmo standard
 - AES: Advanced Encryption Standard
- □ Nell'ottobre 2000 è stato scelto come vincitore l'algoritmo Rijndael, sviluppato da due crittologi belgi
 - Joan Daemen e Vincent Rijmen
- ☐ AES è un algoritmo simmetrico che può utilizzare chiavi di 128, 192 o 256 bit (AES-128, AES-192, AES-256).
- ☐ AES sta gradualmente soppiantando il triplo DES.

Distribuzione delle chiavi

- ☐ Negli algoritmi simmetrici la chiave è la stessa in cifratura e decifratura
 - Dunque deve essere segreta
- ☐ Esiste quindi il problema della distribuzione delle chiavi
 - Serve un canale di comunicazione sicuro per trasmettere la chiave
- ☐ Nel 1976 Diffie e Hellman propongono uno schema che supera questa limitazione
 - Crittografia a chiave pubblica (o asimmetrica)

15

Chiave pubblica / chiave privata

- ☐ Nella crittografia asimmetrica ogni utente ha una coppia di chiavi, costituita da una chiave pubblica e una chiave privata
 - La chiave pubblica viene resa nota, quella privata deve rimanere segreta
- ☐ Il dato viene cifrato con la chiave pubblica del destinatario, che potrà decifrarlo con la propria chiave privata

Crittografia asimmetrica

☐ Vantaggi:

- Non è più necessario incontrarsi per scambiare chiavi.
- La stessa chiave (pubblica) può essere usata da più utenti.

☐ Requisiti:

- Deve essere semplice la generazione di una coppia di chiavi pubblica/ privata
- Deve essere semplice l'operazione di cifratura e decifratura se si è a conoscenza della relativa chiave
- Deve essere computazionalmente impraticabile ricavare la chiave privata da quella pubblica
- Deve essere computazionalmente impraticabile ricavare il testo in chiaro avendo il testo cifrato e la chiave pubblica

17

Algoritmo RSA

- □ RSA (1977), così chiamato dalle iniziali dei suoi inventori (Rivest, Shamir, Adleman), è sicuramente il più noto algoritmo crittografico asimmetrico
- ☐ Si basa sulla difficoltà di *scomporre un numero in fattori primi*
- ☐ La chiave in RSA ha di solito dimensioni di almeno 2¹⁰ bit
 - Oltre 300 cifre decimali
- ☐ Un attacco a forza bruta contro RSA non consiste nel provare tutte le chiavi possibili, ma nel fattorizzare il prodotto di due numeri primi

Algoritmo RSA (cont'd)

- ☐ Per capire come avviene la cifratura e la decifratura con RSA ci si deve avvalere della matematica a modulo
- \square Scelti due primi p,q si calcola
 - $n = p^*q$
 - $-z = (p-1)^*(q-1)$
 - un numero 1 < e < n relativamente primo a z
 - un numero d tale che (e^*d -1) sia multiplo di z
- \square Chiave pubblica $\rightarrow (n,e)$ Per cifrare m \rightarrow c = m^e mod n
- ☐ Chiave privata $\rightarrow (n,d)$ Per decifrare c \rightarrow m = c^d mod n

19

Algoritmo RSA: esempio

- \Box p = 5, q = 7
- ☐ Segue:
 - n = p*q = 35
 - -z = (p-1)*(q-1) = 24
 - e = 5 (relativamente primo a 24; andavano bene anche 7, 9, 11, ...)
 - d = 29 (infatti 5*29 1 = 144 → multiplo di 24)
- ☐ Messaggio da inviare: la parola "love"
 - Supponiamo di rappresentare le lettere con numeri da 1 a 26 (incluse le lettere x,y,w, ...)

Algoritmo RSA: esempio

Lettere in chiaro	m: rappresentazione numerica	m^e	Testo cifrato $c = m^e \mod n$
1	12	248832	17
0	15	759375	15
v	22	5153632	22
e	5	3125	10

Testo cifrato c	c^d	$m = c^d \mod n$	Lettere in chiaro
17	481968572106750915091411825223071697	12	1
15	12783403948858939111232757568359375	15	0
22	851643319086537701956194499721106030592	22	V
10	100000000000000000000000000000000000000	5	e

21

Algoritmi asimmetrici: considerazioni

- ☐ Richiedono molte risorse computazionali
 - 100-1000 volte più lenti degli algoritmi simmetrici
- ☐ Vengono utilizzati per scambiarsi una chiave di sessione
 - La chiave di sessione verrà poi usata con un algoritmo simmetrico sicuro e computazionalmente più efficiente
- ☐ Con RSA ciò che viene cifrato con la chiave pubblica si può decifrare con la chiave privata...
- ...ma vale anche l'inverso: ciò che è cifrato con la chiave privata si può decifrare con la chiave pubblica!
- ☐ Questo fornisce un mezzo per garantire l'autenticazione
 - Argomento della prossima lezione

