Q1. Particle Filtering: Where are the Two Cars?

As before, we are trying to estimate the location of cars in a city, but now, we model two cars jointly, i.e. car i for $i \in \{1, 2\}$. The modified HMM model is as follows:

- $X^{(i)}$ the location of car i
- $S^{(i)}$ the noisy location of the car i from the signal strength at a nearby cell phone tower
- $G^{(i)}$ the noisy location of car i from GPS

				1
d	D(d)	$E_L(d)$	$E_N(d)$	$E_G(d)$
-4	0.05	0	0.02	0
-3	0.10	0	0.04	0.03
-2	0.25	0.05	0.09	0.07
-1	0.10	0.10	0.20	0.15
0	0	0.70	0.30	0.50
1	0.10	0.10	0.20	0.15
2	0.25	0.05	0.09	0.07
3	0.10	0	0.04	0.03
4	0.05	0	0.02	0

The signal strength from one car gets noisier if the other car is at the same location. Thus, the observation $S_t^{(i)}$ also depends on the current state of the other car $X_t^{(j)}$, $j \neq i$.

The transition is modeled using a drift model D, the GPS observation $G_t^{(i)}$ using the error model E_G , and the observation $S_t^{(i)}$ using one of the error models E_L or E_N , depending on the car's speed and the relative location of both cars. These drift and error models are in the table above. The transition and observation models are:

$$\begin{split} P(X_t^{(i)}|X_{t-1}^{(i)}) &= D(X_t^{(i)} - X_{t-1}^{(i)}) \\ P(S_t^{(i)}|X_{t-1}^{(i)}, X_t^{(i)}, X_t^{(j)}) &= \begin{cases} E_N(X_t^{(i)} - S_t^{(i)}), & \text{if } |X_t^{(i)} - X_{t-1}^{(i)}| \geq 2 \text{ or } X_t^{(i)} = X_t^{(j)} \\ E_L(X_t^{(i)} - S_t^{(i)}), & \text{otherwise} \end{cases} \\ P(G_t^{(i)}|X_t^{(i)}) &= E_G(X_t^{(i)} - G_t^{(i)}). \end{split}$$

Throughout this problem you may give answers either as unevaluated numeric expressions (e.g. 0.1·0.5) or as numeric values (e.g. 0.05). The questions are decoupled.

- (a) Assume that at t=3, we have the single particle $(X_3^{(1)}=-1,X_3^{(2)}=2)$.
 - (i) What is the probability that this particle becomes $(X_4^{(1)} = -3, X_4^{(2)} = 3)$ after passing it through the dynamics model?

Answer:

(ii) Assume that there are no sensor readings at t=4. What is the joint probability that the *original* single particle (from t=3) becomes $(X_4^{(1)}=-3,X_4^{(2)}=3)$ and then becomes $(X_5^{(1)}=-4,X_5^{(2)}=4)$?