IN THE CLAIMS

Please amend the claims as follows:

 (Currently Amended) A method for generating training data [[(D_T)]] for an automatic speech recognizer recogniser (2) for operating at a particular first sampling frequency [[(f_I)]], comprising the following steps:

deriving spectral characteristics $[[(S_L)]]$ from audio data $[[(D_L)]]$ sampled at a second frequency $[[(f_L)]]$ lower than the first sampling frequency $[[(f_H)]]$;

extending [[the]] a bandwidth of the spectral characteristics [[(S_L)]] by retrieving bandwidth extending information [[($I_{\rm BE}$)]] from a codebook [[(6)]] so that the audio data sampled at the second frequency is compatible with the automatic speech recognizer operating at the first sampling frequency; and

processing the bandwidth extended spectral characteristics $[[(S_{LE})]]$ to give the required training data $[[(D_T)]]$.

- 2. (Currently Amended) A method according to claim 1, where the conversion of audio data (Đ_H, Đ_L) into sets of spectral characteristics (S_H, S_L) comprises calculating the FFT of the audio data (Đ_H, Đ_L) to give a set of Fourier coefficients [[(31)]] and filtering the output of the FFT with a filterbank [[(22)]] to give a set of filterbank power values [[(32)]].
- 3. (Currently Amended) A method according to claim 2, where the conversion of audio data (Đ_H, Đ_L) into sets of spectral characteristics (S_H, S_L) comprises processing the FFT coefficients [[(31)]] or the filterbank power values [[(32)]] to give a set of log-spectral coefficients [[(33)]].
- 4. (Currently Amended) A method according to claim 1, where the processing of bandwidth extended spectral characteristics $[[(S_{LE})]]$ comprises a step of altering the spectrum to adjust signal properties of the audio data $[[(D_L)]]$.

- (Currently Amended) A method according to claim 4, where the step of altering the spectrum to adjust the signal properties of the audio data [[(D_L)]] is performed in the linear domain.
- 6. (Currently Amended) A method according to claim 1, where the derivation of the spectral characteristics $[[(S_L)]]$ from audio data $[[(D_L)]]$ is followed by a step subtracting the mean spectrum from the spectral characteristics $[[(S_L)]]$.
- 7. (Currently Amended) A method for training an automatic speech recognition system [[(2)]] wherein the data [[(D_T)]] used for training are at least partially generated using a method according to to claim 1.

8 - 13. (Cancelled)

- 14. (Currently Amended) A system [[(1)]] for generating training data [[(D_T)]] for an automatic speech <u>processor</u> recogniser (2) operating at a particular first sampling frequency [[(f_T)]], comprising:
- a converter [[(3)]] for deriving spectral characteristics [[(S_L)]] from audio data [[(D_C)]] sampled at a second frequency [[(f_L)]] lower than the first sampling frequency [[(f_B)]];
- a retrieval unit [[(4)]] for retrieving bandwidth extending information for the spectral characteristics $[[(S_L)]]$ from a codebook [[(6)]] so that the audio data sampled at the second frequency is compatible with the automatic speech recognizer operating at the first sampling frequency:
- a processing module [[(7)]] for processing the bandwidth-extended spectral characteristics $[(S_{1F})]$ to give the required training data $[[(D_T)]]$.

15. (Cancelled)