

System Design for Vision Based Traffic Sensing & Control

GROUP 6

SUPERVISIOR

Prof. Rohan Munasinghe

Dept. of Electronics & Telecommunications Engineering

CO-SUPERVISIOR

Prof. Saman Bandara

Head, Dept. of Civil Engineering

MEMBERS

Abarajithan G. 150001C

Fonseka T. T. 150172A

Wickramasinghe W.M.R.R. 150689N

Wimalasuriya C. 150707V

EXTERNAL STAKEHOLDERS

- A part of the nationwide ITS (Intelligent Transportation System) Project
- In collaboration with RDA and Transportation Engineering Division, Dept. of Civil Engineering, UoM
- Funded by World Bank

Problem Statement

- Traffic lights in Sri Lanka work on preset, static timing
- Blind to dynamic changes in traffic flow, hence increases congestion
- In such conditions, traffic policemen are deployed

Existing Solutions

1. Induction Loops [13]

- Ideal for sparse traffic
- Difficult to install, not ideal for motorbikes

2. Microwave Radars [13]

Ideal for sparse traffic

3. Wireless sensor networks [14]

- Needs transmitters and centralized stations
- False positives

4. Existing vision-based systems

Expensive processing hardware [9][3]

Edge Solutions: Research

Developing countries [1] [7]

Need for cost effective, scalable solution

- Attempts using:
 - Raspberry Pi
 - Basic image processing techniques to detect traffic level [12]

Our Solution

A low cost System on Chip (SOC) design, that

- Collects video feed
- Processes the feed locally <u>at edge</u>
- Deduces traffic level
- Suggests a <u>change in time</u> (Δt) to the traffic lights

for optimal traffic flow at a junction

Advantages,

Uniqueness

&

National Importance

- Low cost solution
- Localized No optic fibers or monitoring centers
- Easily implementable
- Scalable
- Unique, ideal solution for a developing country
- First steps in implementing an ITS in Sri Lanka

Objectives

- Deduce traffic level from video feed
 - Design morphological operations or choose suitable CNN and modify
 - o Fine Tuning
- Hardware Implementation
 - FPGA for prototyping and verification
 - Test real time prediction accuracy in prototype
 - Algorithm to propose Δt
 - By comparing traffic levels in different lanes of a junction

Key Deliverables

- SOC (with neural network)
 - as FPGA based prototype
- Algorithm to propose Δt
 - closed loop demonstration in VISSIM simulator

Optional Deliverables

- ASIC fabrication files
- Real world demonstration (with RDA permission)

Hardware Implementation

- Specialized design
- Prototyped on FPGA
- ASIC conversion, if time permits

Algorithm

- o Input: traffic levels in all lanes of the junction
- Output: Change in static time ($\Delta t \neq 0$)
- Four way intersections only
- o low confidence \rightarrow static timing ($\Delta t = 0$)
- Tested an demonstrated in VISSIM

Documentation

For future improvement and implementation

Risk Factors

State-of-the-art CNNs may perform poorly in real world

Accuracy - complexity trade-off

Implementing Neural Networks in hardware is complicated

Demonstrability of the project

Synchronizing the entire traffic network

ASIC conversion is complex and time consuming

• Extreme conditions \rightarrow static ($\Delta t = 0$)

- 100% accuracy is not required
- Traffic is a qualitative problem
- Not building a GPU / TPU
- Specific CNN on hardware is possible ^{[2] [4]}
 ^{[6] [10]} (eg: DAC)
- Closed loop VISSIM simulations [8]
- Real world data on FPGA

Unsolved problem, even in developed countries (green wave)

Optional scope

VISSIM: Industry Standard [15] Traffic Simulation Software

Python / C++ script

Algorithm to propose Δt

Task Delegation

Preliminary Tasks
Traffic sensing
Hardware Implementation
Algorithm Design & Testing

	Task	Abarajithan	Tehara	Rukshan	Chinthana	TOTAL PROPERTY.
1	Literature review & analyzing alternate methods					1000
<	Building & testing data collection device					
	Implementing device and collect preliminary data					
	Compare different approaches					700
	Modify a suitable CNN					
	Collect data from 3 junctions & train					188
9	Implement convolution blocks in FPGA					1
	Design hardware architecture for CNN					100
	Implement hardware architecture for CNN					
	ASIC conversion					
1	Test on real world data					
11/2	Train & test same CNN in simulation data					1000
No.	Design algorithm to predict Δt and test in simulation					-

Timeline

Resources & Budget

	Amount (Rs.)	
Raspberry Pi 3 Model B (x2)	14, 000	
Pi Camera (x2)	4, 000	
FPGA Board (x4)	36, 500	
FPGA Camera (x4)	14, 000	
GPU Server (Estimated GCP computational cost)	25, 000	
Material to build the data collection device	10, 000	
Total Estimated Amount	103 500/=	

Other Resources:

- ZYNQ Ultra 96 available
- VISSIM research license from Dept. of Civil Engineering
- Permissions from RDA and Traffic Police

Thank You

- [1] K.Vidhya and A. B. Banu, "Density Based Traffic Signal System," International Journal of Innovative Research in Science, Engineering and Technology, vol. 3, no. 3, Jan. 1970. http://www.rroij.com/peer-reviewed/density-based-traffic-signal-system-50686.html
- [2] K. Mohammad and S. Agaian, "Efficient FPGA implementation of convolution," in 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 3478–3483. https://ieeexplore.ieee.org/ielx5/5340904/5345886/05346737.pdf?tp=&arnumber=5346737&isnumber=5345886
- [3] P. Duse, A. G. Gaikwad, and A. Chhajalane, "Intelligent Traffic Control System for Congestion Control and Violation Detection at Traffic Signal," Imperial Journal of Interdisciplinary Research, vol. 3, no. 5, May 2017.

 www.imperialjournals.com/index.php/IJIR/article/download/4894/4704
- [4] "Microsoft's Project Brainwave brings fast-chip smarts to AI at Build conference CNET." https://www.cnet.com/news/microsoft-project-brainwave-speeds-ai-with-fpga-chips-on-azure-build-conference/

- [5] "MIT Traffic Data Set." http://www.ee.cuhk.edu.hk/~xgwang/MITtraffic.html
- [6] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, "Optimizing CNN-Based Object Detection Algorithms on Embedded FPGA Platforms," in Applied Reconfigurable Computing, 2017, pp. 255–267. https://link.springer.com/chapter/10.1007/978-3-319-56258-2 22
- [7] K. Kiratiratanapruk and S. Siddhichai, "Practical application for vision-based traffic monitoring system," in 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, vol. 02, pp. 1138–1141. https://ieeexplore.ieee.org/ielx5/5076159/5137082/05137245.pdf?tp=&arnumber=5137245&isnumber=5137082
- [8] PTV Group Traffic, PTV Vissim: Simulation of a Complex Intersection. https://www.youtube.com/watch?v=OtYby7QnyAE

- [9] "The use of fibre optics in security and surveillance systems Cabling Install."

 https://www.cablinginstall.com/articles/print/volume-19/issue-3/features/the-use-of-fiber-optics-in-security-and-surveillance-systems.html
- [10] P. V. F. U. States, "Why CTOs Should Reconsider FPGAs," Datanami, 26-Mar-2019. https://www.datanami.com/2019/03/26/why-ctos-should-reconsider-fpgas/
- [11] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," arXiv:1612.08242 [cs], Dec. 2016. www.arxiv.org/pdf/1612.08242.pdf
- [12] Y.-C. Chung, J.-M. Wang, and S.-W. Chen, "A Vision-Based Traffic Light Detection System at Intersections," A Vision, p. 20.
- [13] "How Traffic Lights Sensors Work | Automate Systems," Auto Mate Systems, 20-Oct-2015. http://www.automatesystems.co.uk/how-traffic-light-sensors-work/.

- [14] "Traffic Light Sensor Technology," AZoSensors.com, 27-Nov-2012. https://www.azosensors.com/article.aspx?ArticleID=95.
- [15] M. S. Bains, B. Ponnu, and S. S. Arkatkar, "Modeling of Traffic Flow on Indian Expressways using Simulation Technique," *Procedia Social and Behavioral Sciences*, vol. 43, pp. 475–493, 2012. https://pdf.sciencedirectassets.com/277811/1-s2.0-S1877042812X00144/1-s2.0-S1877042812X0016/main.pdf
- [16] "Quantizing Neural Networks to 8-bit Using TensorFlow Lite." ARM Limited, 2019. https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/quantizing-neural-networks-to-8-bit-using-tensorflow