NIM-Theory

Algorithms and Games

• Who knows NIM?

- Who knows NIM?
- n piles of $k_1, \ldots, k_n > 0$ coins

- Who knows NIM?
- n piles of $k_1, \ldots, k_n > 0$ coins
- valid moves:

- Who knows NIM?
- n piles of $k_1, \ldots, k_n > 0$ coins
- valid moves:
 - choose a single (non-empty) pile

- Who knows NIM?
- n piles of $k_1, \ldots, k_n > 0$ coins
- valid moves:
 - choose a single (non-empty) pile
 - remove an arbitrary number of coins from the pile (at least one, at most all)

- Who knows NIM?
- n piles of $k_1, \ldots, k_n > 0$ coins
- valid moves:
 - choose a single (non-empty) pile
 - remove an arbitrary number of coins from the pile (at least one, at most all)
- Normal play: the last one to make a valid move wins

• n integers $f_1, \ldots, f_n > 1$

- n integers $f_1, \ldots, f_n > 1$
- Valid move:

- n integers $f_1, \ldots, f_n > 1$
- Valid move:
 - Choose a non-prime integer $f_i > 1$

- n integers $f_1, \ldots, f_n > 1$
- Valid move:
 - Choose a non-prime integer $f_i > 1$
 - Split f_i into (one or more) prime factors $p_1, \ldots, p_k > 1, k \ge 1$ and a rest f' > 1

- n integers $f_1, \ldots, f_n > 1$
- Valid move:
 - Choose a non-prime integer $f_i > 1$
 - Split f_i into (one or more) prime factors $p_1, \ldots, p_k > 1, k \ge 1$ and a rest f' > 1
 - \circ Replace f_i with p_1, \ldots, p_k and f'

- n integers $f_1, \ldots, f_n > 1$
- Valid move:
 - Choose a non-prime integer $f_i > 1$
 - Split f_i into (one or more) prime factors $p_1, \ldots, p_k > 1, k \ge 1$ and a rest f' > 1
 - Replace f_i with p_1, \ldots, p_k and f'
- Normal play: the last one to make a valid move wins

Poker-NIM

- Startposition:
 - Same as for NIM

Poker-NIM

- Startposition:
 - Same as for NIM
- Possible moves:
 - Similar to NIM, but instead of removing coins you may also put an arbitrary number of coins from your pool (built by previously taken coins) on a heap.

Poker-NIM

- Startposition:
 - Same as for NIM
- Possible moves:
 - Similar to NIM, but instead of removing coins you may also put an arbitrary number of coins from your pool (built by previously taken coins) on a heap.
- Normal play: the last one to make a valid move wins

• $n \times m$ chess board one black, one white coin per row in different columns

• $n \times m$ chess board one black, one white coin per row in different columns

- $n \times m$ chess board one black, one white coin per row in different columns
- Valid move:

- $n \times m$ chess board one black, one white coin per row in different columns
- Valid move:
 - Choose a row

- $n \times m$ chess board one black, one white coin per row in different columns
- Valid move:
 - Choose a row
 - move the coin of your color left or right arbitrarily many steps, but a least one

- $n \times m$ chess board one black, one white coin per row in different columns
- Valid move:
 - Choose a row
 - move the coin of your color left or right arbitrarily many steps, but a least one
 - don't jump over your opponent's coin

- n × m chess board one black, one white coin per row in different columns
- Valid move:
 - Choose a row
 - move the coin of your color left or right arbitrarily many steps, but a least one
 - don't jump over your opponent's coin

Normal play: the last one to make a valid move wins

Kayles (aka Rip van Winkle's Game)

Bowling: Row of n pins. In a move hit one or two neighbored pins.

ullet Bowling: Row of n pins. In a move always hit two neighbored pins. Single pins can be removed.

 \circ Bowling: Row of n pins. In a move hit one or two neighbored pins.

- Setting:
 - as for NIM

• Bowling: Row of n pins. In a move hit one or two neighbored pins.

- Setting:
 - as for NIM
- Possible moves:

- Setting:
 - as for NIM
- Possible moves:
 - Chose an arbitrary, non-empty stack

• Bowling: Row of n pins. In a move hit one or two neighbored pins.

- Setting:
 - o as for NIM
- Possible moves:
 - Chose an arbitrary, non-empty stack
 - Remove one or two coins from this stack

• Bowling: Row of n pins. In a move hit one or two neighbored pins.

- Setting:
 - o as for NIM
- Possible moves:
 - Chose an arbitrary, non-empty stack
 - Remove one or two coins from this stack
 - Optional: split the remaining stack into two non-empty, smaller stacks

 \circ Bowling: Row of n pins. In a move hit one or two neighbored pins.

- Setting:
 - o as for NIM
- Possible moves:
 - Chose an arbitrary, non-empty stack
 - Remove one or two coins from this stack
 - Optional: split the remaining stack into two non-empty, smaller stacks
- Normal play: the last one to make a valid move wins
 - Bowling: Row of *n* pins. In a move hit one or two neighbored pins.

 \circ Bowling: Row of n pins. In a move hit two neighbored pins.

Setting:

As for NIM

- Setting:
 - As for NIM
- Possible moves:
 - Choose an arbitrary, non-empty stack

 \circ Bowling: Row of n pins. In a move hit two neighbored pins.

- Setting:
 - As for NIM
- Possible moves:
 - Choose an arbitrary, non-empty stack
 - Remove two coins from this stack

• Bowling: Row of n pins. In a move hit two neighbored pins.

Dawson's Kayles II

- Setting:
 - As for NIM
- Possible moves:
 - Choose an arbitrary, non-empty stack
 - Remove two coins from this stack
 - Optional: split the remaining stack into two non-empty, smaller stacks
 - \circ Bowling: Row of n pins. In a move hit two neighbored pins.

Dawson's Kayles II

- Setting:
 - As for NIM
- Possible moves:
 - Choose an arbitrary, non-empty stack
 - Remove two coins from this stack
 - Optional: split the remaining stack into two non-empty, smaller stacks
- Normal play: the last one to make a valid move wins
 - \circ Bowling: Row of n pins. In a move hit two neighbored pins.

Monochromatic Triangle

ullet n points in the plane, in general position

Monochromatic Triangle

- n points in the plane, in general position
- Valid move:
 - Draw a straight line segment connecting two points, not crossing any other line

Monochromatic Triangle

- n points in the plane, in general position
- Valid move:
 - Draw a straight line segment connecting two points, not crossing any other line
- The game ends when an empty triangle occurs

Triangulation Coloring Game

• Triangulation on n points in the plane, all edges are black (white on the blackboard)

Triangulation Coloring Game

- Triangulation on n points in the plane, all edges are black (white on the blackboard)
- Valid moves:
 - Select a black edge, color it green

Triangulation Coloring Game

- Triangulation on n points in the plane, all edges are black (white on the blackboard)
- Valid moves:
 - Select a black edge, color it green
- The game ends when the first green empty triangle occurs.

• Games:

- Games:
 - NIM

- Games:
 - NIM
 - Prime-game

- **Games:**
 - NIM
 - Prime-game
 - Poker NIM

- NIM
- Prime-game
- Poker NIM
- Northcott's Game

• Games:

- NIM
- Prime-game
- Poker NIM
- Northcott's Game
- Kayles

- NIM
- Prime-game
- Poker NIM
- Northcott's Game
- Kayles
- Dawson's Kayles

- NIM
- Prime-game
- Poker NIM
- Northcott's Game
- Kayles
- Dawson's Kayles
- Monochromatic Triangle

- o NIM
- Prime-game
- Poker NIM
- Northcott's Game
- Kayles
- Dawson's Kayles
- Monochromatic Triangle
- Triangulation Coloring Game

- NIMPrime-game
 - Poker NIM
 - Northcott's Game
 - Kayles
 - Dawson's Kayles
 - Monochromatic Triangle
 - Triangulation Coloring Game

- Northcott's Game
- Kayles
- Dawson's Kayles
- Monochromatic Triangle
- Triangulation Coloring Game

• Games:

- Kayles
- Dawson's Kayles
- Monochromatic Triangle
- Triangulation Coloring Game

- Kayles
- Dawson's KaylesMonochromatic Triangle
 - Triangulation Coloring Game

• Games:

Games: prague-Grundy-Theory 1935/39; aka NIM-theory NIM Prime-game Poker NIM Northcott's Game Kayles Dawson's Kayles Monochromatic Triangle Triangulation Coloring Game

Single pile of coins

- Single pile of coins
- Remove either 1 or 2 coins ...

- Single pile of coins
- Remove either 1 or 2 coins . . .
- Remove 1, 2 or 3 coins

- Single pile of coins
- Remove either 1 or 2 coins ...
- Remove 1, 2 or 3 coins
- Remove $1 \le i \le k$ coins . . .

- Single pile of coins
- Remove either 1 or 2 coins ...
- Remove 1, 2 or 3 coins . . .
- Remove $1 \le i \le k$ coins . . .
 - Strategy?

- Single pile of coins
- Remove either 1 or 2 coins . . .
- Remove 1, 2 or 3 coins . . .
- Remove $1 \le i \le k$ coins . . .
 - Strategy?
 - \circ NIM $\to k$ unbounded

- Single pile of coins
- Remove either 1 or 2 coins . . .
- Remove 1, 2 or 3 coins
- Remove $1 \le i \le k$ coins . . .
 - Strategy?
 - \circ NIM $\to k$ unbounded
- How about several piles?

• Nimbers $*i, i \ge 0$, are a 'code' used for game-positions:

- Nimbers $*i, i \ge 0$, are a 'code' used for game-positions:
 - $*i, i \neq 0 \Rightarrow 1^{st}$ player win (the player to move)

- Nimbers $*i, i \ge 0$, are a 'code' used for game-positions:
 - $*i, i \neq 0 \Rightarrow 1^{st}$ player win (the player to move)
 - *0 \Rightarrow 2^{nd} player win (the one just moved)

- Nimbers $*i, i \ge 0$, are a 'code' used for game-positions:
 - $*i, i \neq 0 \Rightarrow 1^{st}$ player win (the player to move)
 - \Rightarrow 2nd player win (the one just moved) o *0

 $\bullet \Rightarrow$ For optimal play, always try to reach a position with nimber *0.

- Nimbers $*i, i \ge 0$, are a 'code' used for game-positions:
 - $*i, i \neq 0 \Rightarrow 1^{st}$ player win (the player to move)
 - > *0 $\Rightarrow 2^{nd}$ player win (the one just moved)

- \Rightarrow For optimal play, always try to reach a position with nimber *0.
- Terminal positions have nimber *0 (normal play)

A nimber code implies:

- A nimber code implies:
 - From a *0 situation no legal move leads to another
 *0 situation

- A nimber code implies:
 - From a *0 situation no legal move leads to another
 *0 situation
 - Interpretation: If I made a winning move, my opponent can not

- A nimber code implies:
 - From a *0 situation no legal move leads to another
 *0 situation
 - Interpretation: If I made a winning move, my opponent can not
 - From any $*i, i \neq 0$, situation there is a legal move to a *0 situation

- A nimber code implies:
 - From a *0 situation no legal move leads to another
 *0 situation
 - Interpretation: If I made a winning move, my opponent can not
 - From any $*i, i \neq 0$, situation there is a legal move to a *0 situation
 - Interpretation: If my opponent gives me a (for them) non-optimal situation, I can make a winning move

MEX-rule (Minimal Excluded):

MEX-rule (Minimal Excluded):

• The nimber of a position P is the smallest value which is NOT a nimber of any position which is reachable by a valid move from P.

MEX-rule (Minimal Excluded):

• The nimber of a position P is the smallest value which is NOT a nimber of any position which is reachable by a valid move from P.

The MEX-rule guarantees a good code!

MEX-rule (Minimal Excluded):

• The nimber of a position P is the smallest value which is NOT a nimber of any position which is reachable by a valid move from P.

- The MEX-rule guarantees a good code!
- From a *0 situation no legal move leads to another
 *0 position

MEX-rule (Minimal Excluded):

• The nimber of a position P is the smallest value which is NOT a nimber of any position which is reachable by a valid move from P.

- The MEX-rule guarantees a good code!
- From a *0 situation no legal move leads to another
 *0 position
- From any $*i, i \neq 0$, situation there is a legal move to a *0 situation.

XOR-rule:

XOR-rule:

 The nimber of a set of positions is the XOR-sum of the nimbers of the positions.

XOR-rule:

 The nimber of a set of positions is the XOR-sum of the nimbers of the positions.

- Simplifies computation of nimbers for several piles.
- That is, using the MEX-rule AND the XOR-rules makes computations much more efficient!

XOR-rule:

 The nimber of a set of positions is the XOR-sum of the nimbers of the positions.

- Simplifies computation of nimbers for several piles.
- That is, using the MEX-rule AND the XOR-rules makes computations much more efficient!
- For correctness the MEX-rule is sufficient.

NIM:

NIM

NIM:

• A stack of size i has nimber *i

NIM

NIM:

- A stack of size i has nimber *i
- The nimber of a group of stacks is the XOR-sum of their heights

NIM

NIM:

- A stack of size i has nimber *i
- The nimber of a group of stacks is the XOR-sum of their heights
- \Rightarrow Always try to obtain a position to get $k_1 \otimes k_2 \otimes k_3 \otimes \cdots \otimes k_n = 0$

Games, Triangulations, Theory

Literature:

- Winning Ways for Your Mathematical Plays E.R. Berlekamp, J.H. Conway and R.K. Guy: Second Edition 2001, Volume 1, A K Peters, Ltd.
- Games on triangulations O. Aichholzer, D. Bremner, E.D. Demaine, F. Hurtado, E. Kranakis, H. Krasser, S. Ramaswami, S. Sethia, and J. Urrutia: Theoretical Computer Science, 343(1-2):42-71,2005.

Oswin Aichholzer

Thanks for your attention...