

Scalable Incremental Package Maintenance

Experimental Evaluation

PACKAGE (R) AS P

Recipes R REPEAT 0

COUNT(P.*) = 2

SUM(P.carbs);

SUM(P.protein) <= **ub*** AND

FROM

+Progressive Shading

Vasileios Vittis*, Azza Abouzied, Peter Haas*, Alexandra Meliou*

* University of Massachusetts, Amherst

■ New York University, Abu Dhabi

Background

Language Specification: Package Query Language (PaQL)

SELECT PACKAGE (R) AS P Recipes R **REPEAT** 0 FROM

WHERE R.gluten = 'free'

SUCH THAT COUNT(P.*) BETWEEN 3 and 6 AND

SUM(P.kcal) BETWEEN 2 and 2.5

MINIMIZE SUM(P.saturated_fat)

Translation: PaQL to Integer Linear Programming

COUNT(P.*) >= 3
$$\implies \sum_{i=1}^n x_i \ge 3$$
 SUM(P.kcal) >= 2 $\implies \sum_{i=1}^n x_i \cdot t_{i,kcal} \ge 2$

Package...

...is a collection of tuples with certain global properties define on the collection as a whole

Package Builder*

scalable prototype system to find optimal packages

Challenge

What if I add more recipes?

Do I have to calculate everything from the scratch?

Let's update Package Builder to support dynamic environments

Problem in Streaming Setting:

Recomputing of the optimal solution from scratch is expensive for big data.

Intuition

Let's make two rules!

1. Reduce the data to the most "favorable" meals using Multiple Layers Skyline (MLS)

2. Evaluate new tuples based on their trade-offs

Original Dataset

Multiple Layers Skyline

Data Size: 42 | Execution Time: 0.015 sec | Objective Value: 1262.973

SCAN ME

rogressive Shading Skyline Algorithm Direct Method *ub value changes based on the hardness level (h)

Results

- ✓ Scaling Package Queries to Millions of Tuples
- ✓ Adaptability to different Package Queries
- ✓ Incremental Package Evaluation for table insertions
- ✓ Exact Guarantees for the Objective Value
- ✓ Orders-of-magnitude Faster Running Time

Online Stream

Also applicable for offline (static) setting

Warm-up

One time Data Reduction

Favorable points have:

• HIGH Carbs (g)

LOW Protein (g)

- . Incrementally Maintain Online MLS
- 2. Update the MLS when necessary (based on their characteristics)

Multiple Layers Skyline + New Batches Multiple Layers Skyline Protein (g)

Future Work

What if I change my requirements or my objectives?

→ IPM for small query changes

Are there any strategies with approximation bounds?

→ Keep track of an effective set of high-quality tuples

Database setting → Manage Updates and Deletions