

IN THE CLAIMS

Please make the following claim substitutions:

1 1. (Canceled)

2 2. (Canceled)

1 3. (Canceled)

1 4. (Currently amended) A method of format detection for information received over a communication system, the method comprising the step of determining the format of the received information by decoding received information extracted from a defined guiding channel, wherein information size values obtained from a defined list of size values for the guiding channel are used in the decoding,

6 wherein the step of determining the format comprises the steps of:

7 extracting received information from other channels of the communications system;

9 performing decoding operations on the extracted guiding channel information M times where M is an integer that represents a total number of information size values in said list;

12 deciding which of the M decoding operations resulted in a correct decode; and

13 determining the format of the received information from the information size value of the guiding channel that yielded the correct decode, and

15 wherein the step of deciding which of the M decoding operations resulted in a correct decode comprises the steps of:

17 performing at least one decode operation on the extracted guiding channel information yielding at least one decode result; and

19 applying the at least one decode result to an algorithm for deciding whether there is a correct decode and which information size value yielded such correct decode.

22 The method of claim 3 where wherein the communication system is a 3GPP compliant

23 UMTS where the guiding channel is TrCh1 and the decoding operations comprise

24 convolutional decoding yielding a result on which a tail bit test and CRC decoding are
25 performed whereby wherein each such operation is performed M times.

1 5. (Original) The method of claim 4 where the format being determined are transport
2 formats of TrCh2 and TrCh3 based on a format detected for TrCh1.

1 6. (Currently amended) The method of claim 4 where the decoding operations yield
2 decoding results that

3 are used in the algorithm to decide the correct decode where the CRC decoding for the
4 i^{th} operation yields a value C_i , and the tail bit test yields values T_i and K_i where i is any
5 integer equal to M or less and, whereby wherein

6 (a) $C_i = 1$ indicates a CRC pass;

7 (b) $C_i = 0$ indicates a CRC fail;

8 (c) T_i is an integer value that represent a total number of "1" bits occurring in the tail bits
9 of the convolutional decoding result and further, T_0 is a defined threshold value that is
10 an integer equal to 1 or greater.

11 (d) $K_i = 1$ indicates a tail bit test pass condition where $T_i \leq T_0$; and

12 (e) $K_i = 0$ indicates a tail bit test fail;

1 7. (Original) The method of claim 6 where a correct decode is declared when any one of
2 the following conditions occurs from one of the M decoding operations:

3 (a) only one of the decoding operations yielded in a CRC pass;

4 (b) none of the decoding operations yielded a CRC pass, and of these, only one passed
5 the tail bit test;

6 (c) none of the decoding operations yielded a CRC pass, but more than one passed the
7 tail bit test, and of these, only one satisfies the condition $T_i = T_0$;

8 (d) none of the decoding operations yielded a CRC pass, but more than one passed the
9 tail bit test, and of these, only one satisfies the condition $T_i < T_0$;

10 (e) More than one decoding operation yielded a CRC pass, but none passed the tail bit
11 test, and of these, only one satisfies the condition $T_i = T_0 + 1$;

12 (f) More than one decoding operation yielded a CRC pass and passed the tail bit test,
13 but only one of these satisfy the condition $T_i < T_0$;
14 (g) More than one decoding operation yielded a CRC pass, and of these, only one
15 passed the tail bit test; and
16 (h) More than one decoding operation yielded a CRC pass and passed the tail bit test,
17 but only one satisfies the condition $T_i = T_0$.

1 8. (Original) The method of claim 6 where a BTFD failure is declared when any one of
2 the following sets of values or conditions occur from at least one of the M decoding
3 operations:

4 (a) none of the M decoding operations yielded either a CRC pass or a tail bit test pass
5 result;
6 (b) none of the M decoding operations yielded a CRC pass, but more than one passed
7 the tail bit test and none of these satisfy the condition $T_i = T_0$ condition;
8 (c) none of the M decoding operations yielded a CRC pass but more than one passed
9 the tail bit test, and of these, more than one decoding operation yielded the values $C_i =$
10 0 ; $K_i = 1$; $T_i = T_0$;
11 (d) none of the M decoding operations yielded a CRC pass, but more than one passed
12 the tail bit test, and of these, more than one yielded values of $C_i = 0$; $K_i = 1$; $T_i < T_0$;
13 (e) more than one of the M decoding operations yielded a CRC pass, but none passed
14 the tail bit test, and of these, none satisfy the condition $T_i = T_0 + 1$;
15 (f) more than one of the M decoding operations yielded a CRC pass, but none passed
16 the tail bit test, and of these, more than one yielded the values $C_i = 1$; $K_i = 1$; $T_i = T_0 + 1$;
17 (g) more than one of the M decoding operations yielded values of $C_i = 1$; $K_i = 1$; $T_i < T_0$;
18 (h) more than one of the decoding operations yielded a CRC pass and a tail bit pass
19 result, and of these, none satisfy the conditions $T_i < T_0$ or $T_i = T_0$; and
20 (i) more than one of the decoding operations yielded a CRC pass and a tail bit test pass
21 result, and of these, more than one yielded values of $C_i = 1$; $K_i = 1$; $T_i = T_0$.