# 深圳大学实验报告

| 课程名称:_         | 大学     | 物理实  | <u> </u>   | <u>)</u>  |              |    |
|----------------|--------|------|------------|-----------|--------------|----|
| 实验名称:_         | 霍      | 尔效应》 | <u>及其应</u> | 祖         |              |    |
| 学 院:_          | 电子     | 与信息  | <u>【工程</u> | <u>学院</u> |              |    |
| 指导教师:_         |        | 李颖   | <u>〔贞</u>  |           |              |    |
| 报告人:           | 蔡岱南    | 组号   | ·          | 17        | 7            |    |
| 学号 <u>2022</u> | 280376 | 实验地。 | 点3         | <u></u>   | <u>₹ 214</u> |    |
| 实验时间:_         | 2023   | 年_   | 10         | _月_       | 10           | _日 |
| 提交时间:_         | 2023   | 年_   | 10         | 月_        | 17           | _日 |

1

#### 一、实验目的

- 1、了解产生霍尔效应的物理过程;
- 2、学习用霍尔元件测量长直螺线管的轴向磁场分布;
- 3、学习"对称测量法"消除副效应的影响。

#### 二、实验原理

#### 1、霍尔效应

#### (1) 霍尔效应原理

如图 1 所示,一块长为 I、宽为 b、厚度为 d 的半导体薄片置于磁场中,磁感应强度 B 垂直于半导体薄片,在半导体薄片的横向上加载工作电流  $I_S$ ,在薄片的纵向两侧会出现一个电压  $U_H$ ,这种现象叫霍尔效应, $U_H$  称为霍尔电压。实验表明:在磁场不太强时,  $U_H$ 与  $I_S$ 、B 成正比,与薄片厚度 d 成反比,即

$$U_H = R_H \frac{I_S \mathbf{B}}{d} \tag{1}$$

式中 $R_H$ 叫霍尔系数。



图 1 霍尔效应原理图

霍尔效应可用洛仑兹力来解释。

设半导体薄片内载流子的定向漂移速率为v,那么载流子所受洛仑兹力为

$$\mathbf{f} = q\mathbf{v} \times \mathbf{B} \tag{2}$$

在洛仑兹力的作用下,电子向 A'一侧漂移,结果在 A、A'两侧分别聚集了正负电荷,在 A、A'之间建立了静电场,形成电势差。静电场会阻碍电子的继续漂移,当静电场力和洛仑兹力达到平衡时,电子不再侧向漂移,电势差达到恒定状态,此时

$$qv\mathbf{B} = q\frac{U_H}{h} \tag{3}$$

设载流子浓度为n,则电流 $I_S$ 和载流子定向漂移速率v的关系为

$$I_S = avbdn \quad \vec{\boxtimes} \quad v = \frac{I_S}{abdn} \tag{4}$$

将式(4)代入式(3)得

$$U_H = \frac{1}{nq} \frac{I_S \mathbf{B}}{d} \tag{5}$$

对比式(1)和式(5),可知霍尔系数为

$$R_H = \frac{1}{nq} \tag{6}$$

式(6)表明,霍尔系数和载流子浓度有关。半导体的载流子浓度比金属导体的载流子浓度小得多。因而半导体的霍尔系数比导体大得多,半导体的霍尔效应较为显著,而导体几乎观察不到该效应。通过测量材料的霍

尔系数可以确定材料的载流子浓度,因此霍尔效应是研究载流子浓度的一个重要方法。

由式(5)还可看出,半导体薄片的厚度 d 越小,霍尔效应越显著,所以霍尔器件通常做得很薄。

式(5)中的 $\frac{1}{nqd}$ 叫霍尔器件的灵敏度,用 $K_H$ 表示:

$$K_H = \frac{1}{ngd} \tag{7}$$

则式(5)可写成

$$U_H = K_H I_S \mathbf{B} \tag{8}$$

若己知  $K_H$  (—般由仪器生产厂家给出),通过测量霍尔电压  $U_H$ 和工作电流  $I_S$  可以求出磁感应强度的大小,这就是霍尔片测磁场的原理。

半导体的载流子有正有负,A、A'之间的电势差(即霍尔电压) $U_H$ 与载流子的正负有关。与载流子是正(空穴导电——P型半导体)时,载流子定向漂移的速度方向与电流方向相同,洛仑兹力使它向上偏转,结果是 A'端电势高于 A 端,如图 2(a)所示;当载流子是负(电子导电——N型半导体)时,载流子定向漂移的速度方向与电流方向相反,洛仑兹力使电子向上偏转,结果是 A 端电势高于 A'端,如图 2(b)所示。所以根据霍尔系 数的正负可以判断半导体的导电类型。



图 2 霍尔电压与载流子正负之间的关系

#### (2) 霍尔器件的重要参数

霍尔器件的電要参数包括:

a. 霍尔系数:

$$R_H = \frac{1}{nq}$$

b. 霍尔器件的灵敏度:

$$K_H = \frac{1}{nad}$$

c. 迁移率、电导率:

在低电场下载流子平均漂移速度v和场强E成正比,即 $v = \mu E$ 。比例系数 $\mu$ 称为迁移率。

场强 E 与电流密度 J 成正比,即 $E = \rho J$ ,比例系数 $\rho$ 称为电阻率,电阻率的倒数称为电导率,即 $\sigma = \frac{1}{\rho}$ 。

又因为电流密度的大小 $j = ne\bar{v}$ .可得电导率和迁移率之间的关系为  $\sigma = ne\mu$ , 进而可得

$$\mu = K_H \sigma d \tag{9}$$

测出电导率,即可求出迁移率。

#### 2、对称测量法与附加电动势

#### (1) 附加电动势

将载流半导体薄片置于磁场中,除了会产生霍尔效应外,还会有其他的副效应产生。实际测量霍尔片两侧的电压时,得到的不只是  $U_H$ ,还包括副效应产生的附加电动势(如图 3 所示)。



图 3 霍尔效应的附加电动势

副效应主要有以下4种:

- **a.** 厄廷豪森(Etinghausen)效应引起的电势差  $U_E$ 。由于电子实际上并非以同一速度 v 沿 y 轴负向运动,速度大的电子回转半径大,能较快地到达接点 3 的侧面.从而导致 3 侧面较 4 侧面集中了较多能量高的电子,结果 3、4 侧面出现温差,产生温差电动势  $E_E$ 。可以证明 $E_E \propto I \bullet B$ ,容易理解  $E_E$  的正负与 I 和 B 的方向有关。
- **b.** 能斯特(Nernst)效应引起的电势差  $U_N$ 。焊点 1、2 间的接触电阻可能不同,通电发热程度不同,故 1、2 两点间的温度可能不同,于是引起热扩散电流。与霍耳效应类似,该热扩散电流也会在 3、4 点间形成电势差  $U_N$ 。若只考虑接触电阻的差异,则  $U_N$ 的方向仅与 B的方向有关。
- c. 里纪-勒杜克(Righi-Leduc)效应产生的电势差  $U_{RL}$ 。上述热扩散电流的载流子由于速度不同,根据厄廷豪森效应同样的理由,又会在 3、4点间形成温差电动势  $E_{RL}$ 。 $E_{RL}$ 的正负仅与 B 的方向有关,而与 I 的方向无关。
- d. 不等电位效应引起的电势差  $U_0$ 。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一条等势线上,因而只要有电流,即使没有磁场 B,3、4 两点间也会出现电势差  $U_0$ 。 $U_0$ 的正负只与电流 I的方向有关,而与 B的方向无关。

#### (2) 对称测量法消除附加电动势

上述副效应产生的附加电动势叠加在霍尔电压上,在测量中形成系统误差。由于副效应与磁感应强度 B 和电流 I 的方向有关,测量时可采用"对称测量法",即通过改变电流 I 和磁感应强度 B 的方向基本可以消除附加电动势。具体操作如下(测 4 组数据):

$$+B$$
,  $+I_{S}$ :  $U_{1} = U_{H} + E_{E} + U_{N} + E_{RL} + U_{0}$   
 $+B$ ,  $-I_{S}$ :  $U_{2} = -U_{H} - E_{E} + U_{N} + E_{RL} - U_{0}$   
 $-B$ ,  $-I_{S}$ :  $U_{3} = U_{H} + E_{E} - U_{N} - E_{RL} - U_{0}$   
 $-B$ ,  $+I_{S}$ :  $U_{4} = -U_{H} - E_{E} - U_{N} - E_{RL} + U_{0}$ 

由四组数据可得:

$$U_H = \frac{U_1 - U_2 + U_3 - U_4}{4} - E_E$$

 $E_E$ 比  $U_H$ 小得多,可略去不计,于是霍尔电压为

$$U_H = \frac{U_1 - U_2 + U_3 - U_4}{4} \tag{10}$$

#### 3、长直螺线管的磁场分布

如图 4 所示,一密绕螺线管,管内是真空,管长 1,半径为 R,单位长度匝数为 n,当通以电流 I 时,则在管内外产生磁场,根据毕奥-萨伐尔定律  $\mathbf{B} = \frac{\mu_0}{4\pi} \int \frac{Idl \times r}{r^3}$  可求得密绕螺线管内部轴线上磁感应强度为

$$\mathbf{B} = \frac{1}{2}\mu_0 nI(\cos\beta_1 - \cos\beta_2) \tag{11}$$

其中  $\mu_0 = 4\pi \times 10^{-7} \text{N} \cdot \text{A}^{-2}$  是真空磁导率。



图 4 长直螺线管的磁场分布

当 1>>R 时,螺线管称为长直螺线管。在远离端点的螺线管内部,近似地认为式(11)中 $\beta_1=0$ , $\beta_2=\pi$ ,则 $B=\mu_0nI$ ,即在远离端点的螺线管内部的轴线上可视为均匀磁场,而在长直螺线管的端点处 $B=\frac{1}{2}\mu_0nI$ 。

#### 三、实验仪器

TH—H 霍尔效应实验测试仪、TH—H 霍尔效应实验组合仪

#### 四、实验内容与步骤

- 1、测量试样的  $V_H I_S$  和  $V_H I_M$  曲线,确定材料的霍尔系数。
  - (1) 实验仪双刀开关倒向"V<sub>4</sub>",测试仪功能选择置于"V<sub>4</sub>"。

#### 测绘 V<sub>I</sub>—I<sub>S</sub> 曲线:

- (2) 保持  $I_s$ =0. 5A 不变,调节  $I_s$ ,记录不同  $I_s$ 下电流  $I_s$ 和磁感应强度 B 的方向分别为+ $B_s$ + $I_s$ 、- $B_s$ + $I_s$ 、 $B_s$ - $I_s$ 、+ $B_s$ - $I_s$  时的电压  $V_1$ 、 $V_2$ 、 $V_3$ 、 $V_4$ 。
  - (3) 利用公式 $V_H = \frac{|V_1| + |V_2| + |V_3| + |V_4|}{4}$  计算不同 $I_S$ 下的霍尔电压,绘制 $V_H$ 一 $I_S$  曲线。
  - (4) 对 V<sub>H</sub>—I<sub>s</sub> 曲线进行线性拟合,得到霍尔系数。

#### 测绘 V<sub>I</sub>—I<sub>S</sub> 曲线:

- (2)保持  $I_S$  的值不变( $I_S$ =3.00mA),确定材料的霍尔系数  $R_H$ 。记录电磁铁规格数值 k,单位为高斯(Gs/A) 或特斯拉(T/A, 10kGs/A)。
- (3)调节  $I_M$ ,记录不同  $I_M$ 下电流  $I_S$ 和磁感应强度 B 的方向分别为+B,+ $I_S$ 、-B,+ $I_S$ 、B,- $I_S$ 、+B,- $I_S$  时的电压  $V_I$ 、 $V_2$ 、 $V_3$ 、 $V_4$ 。
  - (4) 利用公式 $V_H = \frac{|V_1| + |V_2| + |V_4|}{4}$  计算不同 $I_M$ 下的霍尔电压,绘制 $V_H I_S$ 曲线。
  - (5) 对  $V_H$ — $I_M$  曲线进行线性拟合,得到霍尔系数。

#### 2、测量螺线管轴线上磁场分布。

- (1) 调节励磁电流  $I_{\mathbb{H}}$ =0. 500A,霍尔片工作电流  $I_{\mathbb{H}}$ =3. 00mA 并保持不变。记录线圈的霍尔灵敏度  $I_{\mathbb{H}}$ ,单位 mV/ (mA $\bullet$ T)。
- (2)调节霍尔片在螺线管轴线上的位置,记录不同位置下电流  $I_S$ 和磁感应强度 B 的方向分别为+ $B_S$ + $I_S$ 、- $B_S$ + $I_S$ 、 $B_S$ - $I_S$ 、+ $B_S$ - $I_S$  时的电压  $V_I$ 、 $V_S$ 0、 $V_S$ 0。

- (3) 利用公式 $V_H = \frac{|V_1| + |V_2| + |V_3| + |V_4|}{4}$  计算不同位置下的霍尔电压。
- (4) 利用公式  $B = V_H / (K_H I_S)$  计算不同位置的磁感应强度。
- (5) 绘制磁场分布曲线 (B-X)。

#### 五、数据处理

1、测量试样的  $V_H - I_S$ 和  $V_H - I_M$  曲线,确定材料的霍尔系数。

励磁线圈参数 K = 4.35 KGs•A<sup>-1</sup> 霍尔片厚度 d = 0.5 mm

(1) 保持励磁电流  $I_M$  ( $I_M$ =0.500A) 不变,测绘  $V_F$ — $I_S$  曲线:

数据记录表格:

| Ia.               | V <sub>1/mV</sub> | $V_{2/\text{mV}}$ | $V_{3/\text{mV}}$ | V <sub>4/mV</sub> | $V_H = \frac{ V_1  +  V_2  +  V_3  +  V_4 }{4} \text{mV}$ |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------------------------------|
| I <sub>S/mA</sub> | $+B,+I_S$         | $-B,+I_S$         | - $B$ ,- $I_S$    | $+B,-I_S$         | $V_H = {4}$ mV                                            |
| 1.00              | -2.70             | 2.73              | -2.71             | 2.69              | 2.7075                                                    |
| 1.50              | -4.03             | 4.10              | -4.07             | 4.03              | 4.0575                                                    |
| 2.00              | -5.37             | 5.44              | -5.42             | 5.37              | 5.4                                                       |
| 2.50              | -6.70             | 6.78              | -6.76             | 6.70              | 6.735                                                     |
| 3.00              | -8.05             | 8.14              | -8.12             | 8.05              | 8.09                                                      |
| 3.50              | -9.41             | 9.53              | -9.50             | 9.37              | 9.4525                                                    |
| 4.00              | -10.71            | 10.86             | -10.83            | 10.70             | 10.775                                                    |

以 Is=1.00mA 为例,根据公式 $V_H = \frac{|V_1| + |V_2| + |V_3| + |V_4|}{4}$ :

$$V_{H} = \frac{|V_{1}| + |V_{2}| + |V_{3}| + |V_{4}|}{4} = \frac{|-2.70| + |2.73| + |-2.71| + |2.69|}{4} = 2.7075 \, mV$$

同理计算其他 //。

对  $V_H$ - $I_S$ 曲线进行线性拟合:



图 5 霍尔电压 V<sub>H</sub> (mV) 与霍尔片工作电流 I<sub>s</sub> (mA) 的关系曲线

日期: 2023年10月10日

线性拟合结果:

$$V_H = 2.6972I_S (12)$$

由式(1)和 $B=KI_M$ 可得:

$$V_H = \frac{R_H K I_M}{d} I_S \tag{13}$$

对比式(12)和式(13)可得:

$$R_H = \frac{2.6972 \times d}{KI_M} = \frac{2.6972 \, mV \cdot \text{mA}^{-1} \times 0.5mm}{4.35 \, \text{KGs} \cdot \text{A}^{-1} \times 0.500A} = 6.200 \times 10^{-3} \, m^3 / C$$

即为所求霍尔系数。

# (2) 保持霍尔片工作电流 $I_s$ 的值不变( $I_s$ =3.00mA),测绘 $V_H$ — $I_M$ 曲线:

数据记录表格:

| I         | V <sub>1/m</sub> V | V <sub>2/mV</sub> | V <sub>3/mV</sub> | V <sub>4/mV</sub> | $V_H = \frac{ V_1  +  V_2  +  V_3  +  V_4 }{4} \text{mV}$ |
|-----------|--------------------|-------------------|-------------------|-------------------|-----------------------------------------------------------|
| $I_{M/A}$ | $+B,+I_S$          | - $B$ ,+ $I_S$    | $-B,-I_S$         | $+B,-I_S$         | $V_H = {4}$ mV                                            |
| 0.300     | -4.85              | 4.93              | -4.90             | 4.82              | 4.875                                                     |
| 0.400     | -6.44              | 6.53              | -6.52             | 6.42              | 6.4775                                                    |
| 0.500     | -8.05              | 8.11              | -8.10             | 8.06              | 8.08                                                      |
| 0.600     | -9.66              | 9.76              | -9.73             | 9.67              | 9.705                                                     |
| 0.700     | -11.25             | 11.34             | -11.32            | 11.27             | 11.295                                                    |
| 0.800     | -12.87             | 12.91             | -12.89            | 12.88             | 12.8875                                                   |

以  $I_{\text{\tiny M}}=0.300$ A 为例,根据公式 $V_H=\frac{|V_1|+|V_2|+|V_3|+|V_4|}{4}$ :

$$V_{H} = \frac{|V_{1}| + |V_{2}| + |V_{3}| + |V_{4}|}{4} = \frac{|-4.85| + |4.93| + |-4.90| + |4.82|}{4} = 4.875 \ mV$$

同理计算其他 1/4。

对  $V_H$ - $I_S$ 曲线进行线性拟合:



图 6 霍尔电压 V<sub>H</sub> (mV) 与励磁电流 I<sub>M</sub> (A) 的关系曲线

日期: 2023年10月10日

线性拟合结果:

$$V_H = 16.147 I_M (14)$$

由式(1)和 B=K I<sub>M</sub> 可得:

$$V_H = \frac{R_H K I_S}{d} I_M \tag{15}$$

对比式(14)和式(15)可得:

$$R_H = \frac{16.147 \times d}{KI_S} = \frac{16.147 \times 0.5mm}{4.35 \text{ KGS} \cdot \text{A}^{-1} \times 3.00 \text{ mA}} = 6.187 \times 10^{-3} \text{ m}^3/\text{C}$$

即为所求霍尔系数。

# 2、测量螺线管轴线上磁场分布。

霍尔片工作电流  $I_S$ = \_3.00 \_mA, 励磁电流  $I_M$ = 0.500 A,

霍尔元件灵敏度  $K_H = 165$  mV/mA $\bullet$ T

## 数据记录表格:

| W/   | $V_{1/mV}$ | V <sub>2/m</sub> V | V3/mV          | $V_{4/\mathrm{mV}}$ | 17 / 37            | D/T                   |
|------|------------|--------------------|----------------|---------------------|--------------------|-----------------------|
| X/cm | $+B,+I_S$  | $-B,+I_S$          | - $B$ ,- $I_S$ | $+B,-I_S$           | V <sub>H</sub> /mV | B/T                   |
| 0    | 0.62       | -0.24              | 0. 26          | -0.60               | 0.43               | 8.69×10 <sup>-4</sup> |
| 0.5  | 0.76       | -0.38              | 0.39           | -0.75               | 0.57               | 1.15×10 <sup>-3</sup> |
| 1    | 0.97       | -0.58              | 0.59           | -0.95               | 0.77               | 1.56×10 <sup>-3</sup> |
| 1.5  | 1.23       | -0.85              | 0.86           | -1.24               | 1.05               | 2.11×10 <sup>-3</sup> |
| 2    | 1.58       | -1.19              | 1.20           | -1.57               | 1.39               | $2.80 \times 10^{-3}$ |
| 3    | 2.24       | -1.85              | 1.86           | -2.24               | 2.05               | $4.14 \times 10^{-3}$ |
| 5    | 2.89       | -2. 48             | 2.49           | -2.87               | 2.68               | $5.42 \times 10^{-3}$ |
| 7    | 3.05       | -2.65              | 2.66           | -3.05               | 2.85               | $5.76 \times 10^{-3}$ |
| 11   | 3. 12      | -2.72              | 2.73           | -3.12               | 2.92               | $5.90 \times 10^{-3}$ |
| 15   | 3.08       | -2.68              | 2.69           | -3.07               | 2.88               | $5.82 \times 10^{-3}$ |
| 17   | 2.96       | -2. 57             | 2. 58          | -2.97               | 2.77               | $5.60 \times 10^{-3}$ |
| 19   | 2. 56      | -2. 16             | 2. 17          | -2.54               | 2.36               | $4.76 \times 10^{-3}$ |
| 20   | 2.04       | -1.63              | 1.65           | -2.01               | 1.83               | $3.70 \times 10^{-3}$ |
| 21   | 1.35       | -0.95              | 0. 97          | -1.33               | 1.15               | 2.32×10 <sup>-3</sup> |
| 21.5 | 1.04       | -0.65              | 0.66           | -1.03               | 0.85               | 1.71×10 <sup>-3</sup> |
| 22   | 0.82       | -0.44              | 0.45           | -0.80               | 0.63               | 1.27×10 <sup>-3</sup> |
| 22.5 | 0.66       | -0. 28             | 0. 29          | -0.65               | 0.47               | 9.49×10 <sup>-4</sup> |

| 23   0. 55   -0. 17   0. 18   -0. 55   0.36   7.22 × 10 |  | 23 | 0.55 | -0.17 | 0.18 | -0.53 | 0.36 | 7.22×10 <sup>-4</sup> |
|---------------------------------------------------------|--|----|------|-------|------|-------|------|-----------------------|
|---------------------------------------------------------|--|----|------|-------|------|-------|------|-----------------------|

以 X=0cm 处为例,根据公式 $V_H = \frac{|V_1| + |V_2| + |V_3| + |V_4|}{4}$ :

$$V_H = \frac{|V_1| + |V_2| + |V_3| + |V_4|}{4} = \frac{|0.62| + |-0.24| + |0.26| + |-0.60|}{4} = 0.43 mV$$

根据公式 B= V<sub>1</sub> / (K<sub>1</sub> I<sub>8</sub>):

$$B = \frac{V_H}{K_H I_S} = \frac{0.43 \text{ mV}}{165 \text{ mV/mA} \cdot \text{T} \times 3.00 \text{ mA}} = 8.69 \times 10^{-4} \text{ T}$$

同理计算其他 V<sub>1</sub>和 B。

绘制螺线管轴线上的磁场分布曲线:



图 7 螺线管轴线上磁场分布曲线

日期: 2023年10月10日

## 六、结果陈述

- 1、 $V_{i}$ — $I_{s}$ 曲线和 $V_{i}$ — $I_{u}$ 曲线分别如图 5 和图 6 所示。 根据 $V_{i}$ — $I_{s}$ 曲线,分析得到实验材料的霍尔系数为6.200 ×  $10^{-3}$   $m^{3}/C$ ;根据 $V_{i}$ — $I_{u}$ 曲线,分析得到实验材料的霍尔系数为6.187 ×  $10^{-3}$   $m^{3}/C$ ;
- 2、螺线管轴线上磁场分布曲线如图 7 所示。从磁场分布曲线可以看出,远离端点的位置(5-17cm)磁感应强度 B 大致相同;越靠近两端,磁感应强度 B 越小。

#### 七、思考题

- 1. 如果磁感应强度 B 不垂直于霍尔片,对测量结果有何影响? 如何由实验判断 B 与霍尔片是否垂直?
- 答: 霍尔片感应到的是磁场的垂直分量,如果不垂直,会比实际的值小。 将霍尔片绕轴线方向左右旋转,观察示数大小变化,当时数最大时,就是B垂直于霍尔片。
- 2. 霍尔效应有哪些应用, 试举一例, 并简单阐述其原理。
- 答: 霍尔效应在汽车工业中的应用: 转向角度传感器。

原理:转向角度传感器使用磁场传感器来测量车辆的转向角度。霍尔元件被安装在转向机构附近,感知

| 转向机构的磁场变化。当驾驶员转动。   | 方向盘时,转向机构会引起磁 | 场的改变,从而产生相应的霍尔电压。转 |
|---------------------|---------------|--------------------|
| 向角度传感器通过测量霍尔电压的变    | 化来确定方向盘的旋转角度, | 并将该信息传递给车辆的电子控制单元  |
| (ECU)。这些数据用于辅助驾驶系统、 | 电动助力转向系统和稳定控  | 制系统等,以实现更精确和响应迅速的车 |
| 辆转向控制。              |               |                    |

| 指导教师批阅意 | 见 |
|---------|---|
|---------|---|

# 成绩评定

| 预习<br>(20 分) | 操作及记录<br>(40分) | 数据处理与结果陈述<br>(30分) | 思考题<br>(10 分) | 报告整体<br>印 象 | 总分 |
|--------------|----------------|--------------------|---------------|-------------|----|
|              |                |                    |               |             |    |