Notas sobre Teoria dos Grupos para Programa de Iniciação Científica e Mestrado - PICME

Rodrigo Yuske Yamauchi

13 de maio de 2025

Sumário

1	Introdução a grupos	3
2	Subgrupos	7
3	Classes Laterais	10
4	Subgrupos Normais e Grupos Quocientes	14
5	Homomorfismos de Grupos	18
6	Produto Direto de Grupos	31
7	Grupos de Permutações	39
8	Grupos Solúveis	55

Capítulo 1

Introdução a grupos

Definição 1.0.1. Seja um conjunto A e uma operação binária $A \cdot A \to A$, diz-se que (A, \cdot) é um grupo quando são satisfeitas as condições necessárias a seguir:

- I) $\forall a, b, c \in A$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associatividade);
- II) $\exists e \in A \text{ tal que } a \cdot e = a \text{ (elemento neutro)};$
- III) $\forall a \in A, \exists b \in A, \text{ tal que } a \cdot b = e \text{ (elemento inverso)}.$

A partir deste momento, uma operação $a \cdot b$, tais que $a, b \in A$ e (A, \cdot) é um grupo, também será denotada simplesmente por ab e o grupo poderá ser denotado pelo seu conjunto, e.g., A é um grupo.

(Generalização da Associatividade) Seja A um grupo, mostraremos que para $a_0 \dots a_n \in A$,

$$(a_0 \dots a_s)(a_{s+1} \dots a_n) = (a_0 \dots a_r)(a_{r+1} \dots a_n),$$

tal que $r, s \in \mathbb{N}$ e 0 < r < s < n.

Para n=2, é evidente que o que queremos mostrar é verdadeiro, uma vez que

$$(a_0a_1)a_2 = a_0(a_1a_2)$$

é a própria condição de A ser um grupo.

Para n > 2 e por indução em n, suponhamos que $\forall n'$, tal que n' < n, seja verdade que

$$(a_0 \dots a_{s'})(a_{s'+1} \dots a_{n'}) = (a_0 \dots a_{r'})(a_{r'+1} \dots a_{n'}),$$

onde 0 < r' < s' < n'.

Como r < s < n, temos pela hipótese da indução que, sendo r' = r, s' = s - 1 e n' = s,

$$(a_0 \dots a_s)(a_{s+1} \dots a_n) = ((a_0 \dots a_{s-1})(a_s)) (a_{s+1} \dots a_n)$$

$$= ((a_0 \dots a_r)(a_{r+1} \dots a_s)) (a_{s+1} \dots a_n)$$

$$= (a_0 \dots a_r) ((a_{r+1} \dots a_s)(a_{s+1} \dots a_n))$$

$$= (a_0 \dots a_r)(a_{r+1} \dots a_n),$$

como queríamos provar. \square

Enunciaremos o seguinte lema que nos será útil posteriormente:

Lema 1.0.2. Sejam $a, b, c \in A$, se

$$b \cdot a = c \cdot a \implies b = c.$$

Demonstração. Seja a' o elemento inverso de a,

$$b \cdot a \cdot a' = c \cdot a \cdot a'$$
$$b \cdot e = c \cdot e$$
$$\therefore b = c.$$

Proposição 1.0.3. Sendo (A, \cdot) um grupo, mostraremos agora a comutatividade e unicidade de $e \in A$, tal que $a \cdot e = a$, e de $a' \in A$, tal que $a \cdot a' = e$.

Para a comutatividade do elemento inverso, temos que

$$aa' = e$$

$$= a'(a')'$$

$$= (a'e)(a')'$$

$$= a'(e(a')')$$

$$= a'((aa')(a')')$$

$$= a'(a(a'(a')'))$$

$$= a'(ae) = a'a,$$

como queríamos mostrar. \square

Quanto a comutatividade do elemento neutro,

$$ae = a(a'a) = (aa')a = ea,$$

como queríamos. \square

Provaremos a unicidade do elemento neutro por contradição, seja $e'\neq e$ um elemento neutro do grupo, tem-se então que

$$e'a = a$$

= ea ,

então, pelo Lema 1.0.2, $e^\prime=e$ e entramos em contradição, como queríamos mostrar.

A fim de provar a unicidade do elemento inverso, consideremos $b, b' \in A$, tais que ambos sejam elementos inversos de a. Assim,

$$b \cdot a = e = b' \cdot a$$
$$\therefore b = b',$$

pelo lema acima novamente, como queríamos mostrar. \square

A partir de agora, denotaremos por a^{-1} o único elemento inverso de $a \in A$.

Note que agora é possível **redefinir** o conceito de grupo já com a unicidade e comutatividade dos elementos neutro e inverso e com a generalidade da associatividade, visto que estes todos são consequências diretas da definição mais abstrata.

Alguns exemplos notáveis de grupos são descritos a seguir.

- Exemplo 1) O conjunto dos inteiros com a operação usual de soma é um grupo infinito, i.e., com um número infinito de elementos. Tal conjunto é denotado por $(\mathbb{Z}, +)$.
- Exemplo 2) O conjunto das classes de equivalência módulo n, i.e., $\{\overline{0},\ldots,\overline{n-1}\}$ e a soma dessas classes denotada por \bigoplus_n formam um grupo $(\mathbb{Z}/n\mathbb{Z},\bigoplus_n)$ finito de n elementos. Esse exemplo de grupo será melhor definido e mais explorado posteriormente
- Exemplo 3) O conjunto das permutações¹ de n elementos com a operação de composição de funções \circ é um grupo e é denotado por S_n .

Assim, se n=3,

$$S_3 = \left\{ \begin{pmatrix} 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 213 \end{pmatrix}, \begin{pmatrix} 123 \\ 321 \end{pmatrix}, \begin{pmatrix} 123 \\ 132 \end{pmatrix}, \begin{pmatrix} 123 \\ 231 \end{pmatrix}, \begin{pmatrix} 123 \\ 312 \end{pmatrix} \right\},\,$$

onde a notação $\binom{123}{abc}$ representa a função tal que f(1) = a, f(2) = b e f(3) = c.

Por fim, definimos ainda o que é um grupo abeliano, um exemplo importante de grupo a ser estudado mais a frente.

Definição 1.0.4. Um grupo A abeliano ou comutativo é um grupo em que a seguinte propriedade é satisfeita:

$$ab = ba, \ \forall a, b \in A.$$

¹Relação de bijeção entre um dado conjunto $A \in \{0, ..., |A-1|\}$.

Capítulo 2

Subgrupos

Definição 2.0.1. Seja A um grupo e $H \subseteq A$ não vazio, então se H com a mesma operação de A, tal que $H \cdot H \to H$, também é um grupo, o chamaremos de subgrupo de A e denotaremos por $H \le A$. Ou seja, para que H seja um subgrupo de A as seguintes condições devem ser satisfeitas:

```
I) \forall a, b, c \in H, a \cdot (b \cdot c) = (a \cdot b) \cdot c (associatividade);
```

- II) $\exists e \in H \text{ tal que } a \cdot e = a \text{ (elemento neutro)};$
- III) $\forall a \in H, \exists b \in A, \text{ tal que } a \cdot b = e \text{ (elemento inverso)};$
- IV) $\forall a, b \in H, a \cdot b \in H$ (operação binária fechada).

Proposição 2.0.2. Seja $H\subseteq A$ não vazio. Então, $H\le A$ se, e somente se, as seguintes condições são satisfeitas:

- 1. $\forall a, b \in H, a \cdot b \in H$;
- 2. $\forall a \in H, a^{-1} \in H$.

Demonstração. Sendo $H \leq A$, então a primeira condição é imediatamente satisfeita. E, como $a \in A$ tem um único elemento inverso $a^{-1} \in A$, se $a \in H$, então $a^{-1} \in H$ pela condição da existência de elemento inverso para que H seja subgrupo. Reciprocamente, se H satisfaz a primeira condição da proposição, claramente é satisfeita a condição de operação binária fechada de subgrupo. Ademais, como vale a associatividade para elementos de A e $H \subseteq A$, então consequentemente vale a associatividade para elementos de H. Ora, e se existe elemento inverso para todo elemento de $h \in H$, $hh^{-1} = e$, tal que $e \in A$, e pela condição de operação binária fechada, $e \in H$. Assim, é garantido a existência de elemento

neutro e inverso $\forall h$.

Alguns exemplos de subgrupos são descritos a seguir:

Exemplo 1) O subconjunto $\{e\}$ forma um subgrupo para todo grupo, onde e é o elemento neutro do grupo.

Exemplo 2) O subconjunto $H \subseteq A$, tal que $A \subseteq H$, i.e., o próprio conjunto A é subgrupo de A.

Definição 2.0.3. Seja $S \subseteq A$ um subconjunto não vazio, onde A é um grupo. Definimos

$$\langle S \rangle = \{ s_0 s_1 s_2 \dots s_n \mid n \in \mathbb{N}, s_i \in S \text{ ou } s_i^{-1} \in S \}.$$

Ademais, se $a \in A$, notaremos $\langle \{a\} \rangle$ diretamente como $\langle a \rangle$.

Proposição 2.0.4. Sejam $S \subseteq A$ um subconjunto não vazio e A um grupo, então $\langle S \rangle$ é um subgrupo de A.

Demonstração. Basta provar a proposição 2.0.2. Seja $x, y \in \langle S \rangle$,

$$x = a_0 a_1 \dots a_n$$
, com $a_i \in S$ ou $a_i^{-1} \in S$.

$$y = b_0 b_1 \dots b_m$$
, com $b_i \in S$ ou $b_i^{-1} \in S$.

Ora, $xy = a_0a_1 \dots a_nb_0b_1 \dots b_m$, tal que todos os fatores são elementos de S ou são o inverso de um elemento de S. Ademais, $x^{-1} = a_0^{-1}a_1^{-1} \dots a_n^{-1}$, tal que todos os fatores são elementos de S ou inverso de um elemento de S. Assim, $xy, x^{-1} \in \langle S \rangle$, como queríamos. \square

Dessa forma, a partir de agora chamaremos $\langle S \rangle$ por subgrupo gerado pelo subconjunto S, onde S é o conjunto gerador.

Definição 2.0.5. Um grupo é dito **cíclico** quando ele pode ser gerado por um elemento, i.e., $\exists a \in A$ tal que $A = \langle a \rangle$. Note que $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}$.

Definição 2.0.6. Chamaremos de **ordem** de um grupo A, o número de elementos de A, e será denotada por |A|. Além disso, se um grupo é gerado por um elemento a, a ordem de a será a ordem do subgrupo gerado por a, i.e., $|a| = |\langle a \rangle|$.

Teorema 2.0.7. Sejam A um grupo e $a \in A$, tal que a ordem de a, |a| = m, é finita. Então m é o menor inteiro positivo tal que $a^m = e$, onde e é o elemento neutro de A.

Demonstração. Primeiro mostraremos que, sendo |a| finita, existe um inteiro positivo k tal que $a^k = e$. Temos a seguinte generalização para $\langle a \rangle$:

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \},\,$$

tal que |a|=m. Assim, devem existir, sem perda de generalidade, $p,q\in\mathbb{Z}$, tal que p>q e $a^p=a^q$. Ora,

$$a^p \cdot a^{-q} = a^q \cdot a^{-q}$$
$$a^{p-q} = e.$$

portanto, como p - q > 0, $\exists k > 0$, tal que $a^k = e$.

Agora, considere a sequência de potências de a:

$$e, a^1, a^2, \dots, a^{k'-1}$$

onde k' é o menor inteiro k, tal que $a^k = e$. Mostraremos que todos os elementos dessa sequência são distintos. Para k' = 1, há apenas um elemento, e é imediata a validade da afirmação. Para k' > 1, suponhamos, sem perda de generalidade, $p, q \in \mathbb{Z}_{\geq 0}$, tal que q . Ora,

$$a^p \cdot a^{-q} = a^q \cdot a^{-q}$$
$$a^{p-q} = e.$$

porém, como 0 , entramos em contradição, já que <math>k' é o menor inteiro tal que essa relação é verdadeira. Portanto, a sequência de potências de a:

$$e, a^1, a^2, \dots, a^{k'-1}$$

possui todos elementos distintos.

Por fim, basta mostrar que k' = m. Para isso, consideremos $n \in \mathbb{Z}$. Pelo algoritmo de Euclides, pode-se escrever n = qk' + r, tal que $0 \le r < k'$. Assim,

$$a^n = a^{qk'+r} = a^{qk'} \cdot a^r = e \cdot a^r = a^r.$$

Isso significa que para qualquer n, a^n encontra-se na sequência de elementos distintos enunciada acima. Portanto,

$$\langle a \rangle = \{ a^n \mid n \in \mathbb{Z} \} = \{ e, a^1, a^2, \dots, a^{k'-1} \},$$

e ainda, como |a| = m, m = k', como queríamos mostrar.

Capítulo 3

Classes Laterais

Definição 3.0.1. Sejam $S \leq A$, A um grupo e $a \in A$, define-se como classe lateral à esquerda de S em A o subconjunto de A

$$aS = \{as \mid s \in S\}.$$

(uma classe lateral à direita é definida por $Sa = \{sa \mid s \in S\}$). Analogamente, pode-se definir a seguinte relação

$$y \sim_E a \iff \exists \ s \in S \ \text{tal que y} = \text{as.}$$

Assim, a classe lateral à esquerda de S pode também ser escrita como

$$aS = \{ y \in A \mid y \sim_E a \}$$

Proposição 3.0.2. A relação

$$y \sim_E a \Leftrightarrow \exists s \in S \text{ tal que } y = as$$

é uma relação de equivalência a .

^aUma relação de equivalência é uma relação que seja reflexiva, simétrica e transitiva

Demonstração. Primeiramente, provaremos que a relação é reflexiva, i.e., $a \sim_E a$. Ora, $\forall a \in A$,

$$ae \in A$$
,

onde e é o elemento identidade do subgrupo S.

Mostraremos agora que a relação é simétrica, i.e., se $y \sim_E a$, então $a \sim_E y$. Ora, se $\exists s \in S$ tal que y = as, então

$$y = as$$
$$ys^{-1} = ass^{-1}$$
$$ys^{-1} = a,$$

onde $s^{-1} \in S$, uma vez que S é um subgrupo.

Finalmente, mostraremos que a relação é transitiva, i.e., se $y \sim_E a$ e $a \sim_E b$, onde $a,b \in A$, então $y \sim_E b$. Ora, se $\exists s \in S$ tal que y = as e $\exists t \in S$ tal que a = bt, então

$$y = as$$
$$= bts$$
$$= bu,$$

onde $u=ts\in S$, uma vez que S é um subgrupo. Assim, a relação apresentada é uma relação de equivalência, como queríamos mostrar.

Lema 3.0.3. Se \sim é uma relação de equivalência em A, então o conjunto de todas as classes de equivalência definidas por \sim , forma uma partição de A.

Demonstração. Consideraremos a seguinte notação para uma classe de equivalência: $[a] = \{b \in A \mid a \sim b\}$. Precisamos, então, mostrar que

- a) cada elemento do conjunto é não vazio;
- b) os elementos são disjuntos entre si;
- c) a união de todos os elementos (classes de equivalência) formam A.

Ora, $\forall a \in A, \ a \sim a$ é garantido pela definição de relação de equivalência. Assim, $a \in [a]$, ou seja, $[a] \neq \emptyset$.

Por contraposição mostraremos que os elementos do conjunto são disjuntos entre si, i.e., se $[a] \cap [b] \neq \emptyset$, então [a] = [b]. Ora, se a intersecção entre [a] e [b] não é o conjunto vazio,

$$\exists c \mid a \sim c \in b \sim c$$
,

e consequentemente $c \sim a$ e $c \sim b$. Assim, pelas propriedades de simetria e transitividade,

$$\forall x \in [a] \mid x \sim a \Rightarrow x \sim c \Rightarrow x \sim b,$$

ou seja, $x \in [b]$, ou ainda, $[a] \subseteq [b]$. A mesma lógica pode ser aplicada para provar $[b] \subseteq [a]$. Portanto, [a] = [b], como queríamos.

Por fim, mostraremos que a união de todos os elementos formam A. Ora, $\forall a \in A$, todo elemento da classe de equivalência [a] pertence à A, assim, a união de todas as classes de equivalência é subconjunto de A. Para o caminho inverso, tem-se que $\forall a \in A, a \in [a]$. Como [a] pertence a união de todas as classes de equivalência, então A é subconjunto da união de todas as classes de equivalência. Portanto, $A = \bigcup_{a \in A} [a]$, como queríamos, concluindo a prova.

Definição 3.0.4. A cardinalidade do conjunto de classes laterais à esquerda de S em A é o **índice** de S em A, denotado por (A:S).

Proposição 3.0.5. Todas as classes laterais de S em A têm a mesma cardinalidade, que é igual a |S|.

Demonstração. Ora, $S \to aS$ é claramente uma bijeção de cada classe lateral com S. O mesmo pode ser afirmado sobre as classes laterais à direita.

Teorema 3.0.6. (Teorema de Lagrange) Sejam A um grupo finito e $S \leq A$. Então $|S| \cdot (A:S) = |A|$.

Demonstração. Como mostrado pelo lema 3.0.3, o conjunto das classes laterais à esquerda de S em A formam uma partição de A. Ademais, pela proposição 3.0.5, a cardinalidade de cada classe lateral é igual à cardinalidade de S. Assim,

$$|A| = |S| \cdot (A:S),$$

como queríamos mostrar.

Teorema 3.0.7. (Pequeno Teorema de Fermat) Seja p um número primo, então para a não múltiplo de p

$$a^{p-1} \equiv 1 (mod \ p).$$

Demonstração. Denotando o módulo p de um número k por \overline{k} , tem-se que

$$\overline{a}\in \mathbb{Z}/p\mathbb{Z}\backslash\{\overline{0}\}.$$

Ora, $\mathbb{Z}/p\mathbb{Z}$ é um grupo com a operação de multiplicação \odot , tal que $\overline{1}$ é o elemento neutro e para $a,b\in\mathbb{Z}/p\mathbb{Z}, \,\overline{a}\odot\overline{b}=\overline{ab}$. A cardinalidade desse grupo é p-1.

Assim, pelo teorema 3.0.6, $|\langle \overline{a} \rangle|$ divide a cardinalidade de $\mathbb{Z}/p\mathbb{Z}$. E, pelo teorema 2.0.7,

$$\overline{a}^{(p-1)} = \overline{a}^{(k \cdot |\langle a \rangle|)} = \overline{1}^{(k)}$$
$$= \overline{1},$$

ou seja,

$$a^{p-1} \equiv 1 \pmod{p},$$

como queríamos. \Box

Capítulo 4

Subgrupos Normais e Grupos Quocientes

Um caso importante no estudo da teoria de grupos, que nos será útil mais a frente, para um grupo A e um subgrupo $H \leq A$, é quando a função com operação herdada de A

$$(xH, yH) \mapsto xyH, \tag{4.1}$$

para $x, y \in A$, está bem definida, isto é, quando o conjunto de subconjuntos de A forma um grupo.

Proposição 4.0.1. $(xH, yH) \mapsto xyH$ estar bem definida é equivalente a $aha^{-1} \in H, \forall h \in H, \text{ tal que } a \in A.$

Demonstração. Para que a operação seja bem definida, duas entradas iguais na função devem resultar na mesma saída. Isto é, sejam (x_1H, y_1H) e (x_2H, y_2H) iguais, então $x_1y_1H = x_2y_2H$.

Assim, sejam duas entradas iguais

$$x_1h_1 = x_2h_2$$

$$y_1 j_1 = y_2 j_2$$

tais que $\exists h2, \forall h1 \in H \text{ e } \exists j2, \forall j1 \in H.$

$$\Rightarrow x_1 = x_2 h_2 h_1^{-1}$$

$$y_1 = y_2 j_2 j_1^{-1}$$

Disso, é verdade então que

$$(y_2^{-1}x_2^{-1})x_1y_1 = (y_2^{-1}x_2^{-1})x_2h_2h_1^{-1}y_2j_2j_1^{-1}$$
$$= y_2^{-1}h_2h_1^{-1}y_2j_2j_1^{-1}.$$

Ora, como apontado acima que a operação estar bem definida acontece quando $x_1y_1H=$ x_2y_2H , i.e., $(y_2^{-1}x_2^{-1})x_1y_1 \in H$, tem-se que

$$(y_2^{-1}x_2^{-1})x_1y_1 \in H \Leftrightarrow (y_2^{-1}x_2^{-1})x_2h_2h_1^{-1}y_2j_2j_1^{-1} \in H$$
$$\Leftrightarrow y_2^{-1}h_2h_1^{-1}y_2j_2j_1^{-1} \in H$$
$$\Leftrightarrow y_2^{-1}h_2h_1^{-1}y_2 \in H,$$

pois $j_2 j_1^{-1} \in H$.

Tomando $h=h_2h_1^{-1}$, relembremos que h_2 é um elemento não arbitrário e h_1 é um elemento arbitrário, assim, h também é um elemento arbitrário e pode-se concluir que

$$x_1y_1H = x_2y_2H \Leftrightarrow (y_2^{-1}x_2^{-1})x_1y_1 \in H \Leftrightarrow y_2^{-1}hy_2 \in H,$$
 (4.2)

 $\forall h \in H$, tal que $y_2 \in A$, como queríamos mostrar.

Proposição 4.0.2. Seja $H \leq A$, onde A é um grupo. Então as afirmações seguintes são todas equivalentes:

- 0. $(xH, yH) \mapsto xyH$ estar bem definida;
- 1. $aHa^{-1} \subseteq H$, $\forall a \in A$; 2. $aHa^{-1} = H$, $\forall a \in A$;
- 3. $aH = Ha, \forall a \in A$.

Demonstração. Que o item 0 ⇔ item 1 já foi provado pela proposição 4.0.1. Para mostrar que $1 \Rightarrow 2$, consideremos $h \in H$ e $a \in A$,

$$h = a^{-1}(aha^{-1})a \in a^{-1}(aHa^{-1})a \subseteq a^{-1}Ha = bHb^{-1},$$

 $\forall b \in A$.

Ademais, é imediato que $2 \Rightarrow 1$. Por fim, que $2 \Leftrightarrow 3$ é óbvio uma vez que

$$aHa^{-1} = H \Leftrightarrow aHa^{-1}a = aH = Ha.$$

Definição 4.0.3. Chama-se de subgrupo normal de um grupo A (denotado por $H \leq A$) um subgrupo $H \leq A$ tal que H satisfaça uma (e, portanto, todas) das afirmações da proposição anterior. Nota-se ainda que como nesse caso as classes laterais à direita de H e à esquerda de H são iguais, elas serão chamadas simplesmente por classes laterais.

Alguns exemplos de subgrupos normais estão descritos a seguir:

Exemplo 1) O subgrupo $\{e\}$ e o próprio grupo A são subgrupos normais de A;

Exemplo 2) O subgrupo (chamado de centro de A)

$$Z(A) = \{x \in A | xa = ax, \forall a \in A\} \triangleleft A.$$

Ou ainda, mais geralmente, se H < Z(A), então $H \triangleleft A$. A prova disso vem diretamente da afirmação 3 da proposição 4.0.2;

Exemplo 3) Se um grupo A é abeliano (rever definição 1.0.4), então todo subgrupo de A é normal em A. A prova disso vem diretamente do item anterior, uma vez que o centro de um grupo abeliano é o próprio grupo.

Teorema 4.0.4. Considere um subgrupo normal H de um grupo A. Então, o conjunto das classes laterais, com operação induzida de A, é também um grupo. Note que esse grupo não é subgrupo de A.

Demonstração. O conjunto das classes laterais é dado por

$$\{aH | a \in A\}.$$

Assim, sejam $a, b \in A$,

$$aH \cdot bH = aH \cdot Hb$$
$$= aHb$$
$$= abH,$$

como $ab \in A$, mostramos que a operação induzida de A para o conjunto das classes laterais é fechada. Ademais, uma vez que a operação é induzida, temos garantida a associatividade, pois, sejam $a, b, c \in A$,

$$(aH \cdot bH) \cdot cH = (abc)H = aH \cdot (bH \cdot cH).$$

Agora, consideremos e o elemento identidade de A e $a \in A$, então

$$eH \cdot aH = (ea)H = aH$$
,

i.e., eH = H é o elemento identidade do grupo das classes laterais. Por fim, sejam $a \in A$ e $a^{-1} \in A$ o elemento inverso de a. Então,

$$aH \cdot a^{-1}H = (aa^{-1})H = eH,$$

i.e. $a^{-1}H$ é o elemento inverso da classe aH.

Definição 4.0.5. Sejam A um grupo e $H \leq A$ um subgrupo, então o grupo de todas suas classes laterais (denotado por A/H) com a operação induzida de A é chamado de grupo quociente de A por H.

Proposição 4.0.6. Sejam A um grupo e A' seu subgrupo dos comutadores, i.e., $\langle \{xyx^{-1}y^{-1}|x,y\in A\}\rangle$. Então,

- 1. A/A' é abeliano;
- 2. A' é o menor subgrupo normal de A com a propriedade do item anterior. Ou seja, se $H \triangleleft A$ é tal que A/H é abeliano, então $A' \subseteq H$.

Demonstração. Para o item 1, consideremos $a, b \in A$, então, como $(b^{-1}a^{-1}ba) \in A'$,

$$aA' \cdot bA' = abA' = ab(b^{-1}a^{-1}ba)A' = baA' = bA' \cdot aA'. \square$$

Para o item 2, suponhamos um grupo A e um subgrupo $H \leq A$, tal que A/H seja abeliano. Então, para $a,b \in A$,

$$abH = aH \cdot bH = bH \cdot aH = baH.$$

Ora, multiplicando ambas as extremidades da equação pela esquerda por $(ba)^{-1}$, tem-se

$$a^{-1}b^{-1}abH = H.$$

ou seja, $A' \subseteq H$.

Capítulo 5

Homomorfismos de Grupos

Definição 5.0.1. Sejam (A, \cdot) e (A, \times) dois grupos. A função $f: A \to A$ é dita um homomorfismo se

$$f(a \cdot b) = f(a) \times f(b), \ \forall a, b \in A.$$

Alguns exemplos de homomorfismos de grupos estão descritos a seguir:

Exemplo 1) Identidade: $Id: (A, \cdot) \to (A, \cdot), Id(a) = a, a \in A.$

Exemplo 2) Trivial: $e: A \to \mathcal{A}, e(a) = e_{\mathcal{A}}, \forall a \in A.$

Exemplo 3) Projeção Canônica: Sendo $H \triangleleft A$, então $\phi: A \rightarrow A/H$, $\phi(a) = aH = Ha$.

Exemplo 4) Sejam A é um grupo abeliano e $n \in \mathbb{Z}$ fixo, então $\phi_n : A \to A$, $\phi_n(a) = a^n$ é um homomorfismo.

Exemplo 5) Seja $a \in A$ fixo, então $\mathcal{I}_a : A \to A$, $\mathcal{I}_a(x) = axa^{-1}$, $x \in A$, é um homomorfismo bijetivo.

Demonstração. Primeiramente, mostraremos que \mathcal{I}_a é um homomorfismo. Ora,

$$\mathcal{I}_a(xy) = axya^{-1}$$

$$= ax(a^{-1}a)ya^{-1}$$

$$= (axa^{-1})(aya^{-1})$$

$$= \mathcal{I}_a(x)\mathcal{I}_a(y).$$

Ademais, mostraremos que \mathcal{I}_a é bijetiva. Uma função é bijetiva se, e somente se, a função admite inversa (a demonstração disso é encontrada facilmente na internet).

Assim, mostraremos que $\mathcal{I}_a^{-1}(x) = a^{-1}xa$ é a inversa de \mathcal{I}_a . Ora, $\forall x \in A$,

$$\mathcal{I}_a^{-1}(\mathcal{I}_a(x)) = a^{-1}(axa^{-1})a$$

= $(a^{-1}a)x(a^{-1}a)$
= x ,

e, logo, a função é bijetora.

Algumas propriedades importantes de homomorfismo de grupos está listada a seguir. Seja $f:(A,\cdot)\to(\mathcal{A},\times)$, então:

1. $f(e_A) = e_A$.

A demonstração disso vem de que

$$f(e_A) = f(e_A \cdot e_A) = f(e_A) \times f(e_A) \Rightarrow f(e_A) = e_A.$$

2. $f(a^{-1}) = f(a)^{-1}$.

A demonstração disso vem de que $e_{\mathcal{A}} = f(a \cdot a^{-1}) = f(a) \times f(a^{-1})$

$$\Rightarrow f(a)^{-1} = f(a)^{-1} \times e_{\mathcal{A}} = f(a)^{-1} = f(a^{-1}).$$

3. chama-se por núcleo do homomorfismo f o subgrupo normal de A

$$kerf := \{a \in A \mid f(a) = e_A\}.$$

A prova de que kerf < A vem de que, sejam $x, y \in kerf$, então

$$f(x \cdot y) = f(x) \times f(y) = e_{\mathcal{A}}.$$

 $f(x^{-1}) = f(x)^{-1} = e_{\mathcal{A}}.$

Ademais, tem-se que $kerf \triangleleft A$ pois, para qualquer $a \in A$,

$$f(axa^{-1}) = f(a) \times f(x) \times f(a)^{-1} = f(a) \times f(a)^{-1} = e_{\mathcal{A}}$$
$$\Rightarrow axa^{-1} \in kerf. \ \Box$$

4. chama-se por imagem de f o subgrupo de A

$$Im(f) = \{ y \in \mathcal{A} \mid y = f(a) \text{ para algum } a \in A \}.$$

A prova que $Im(f) < \mathcal{A}$ vem de que, sejam $x,y \in Im(f)$, então $\exists a,b \in A$ tais que

$$x \times y = f(a) \times f(b) = f(a \cdot b) \in Im(f).$$

 $e_{\mathcal{A}} = f(e_A) = f(a \cdot a^{-1}) = f(a) \times f(a^{-1}) = x \times x^{-1}$
 $\Rightarrow x^{-1} = f(a^{-1}) \in Im(f).$

5. se $H \leq A$, então $f(H) \leq \mathcal{A}$ e $f^{-1}(f(H)) = Hkerf$. A prova que $f(H) \leq \mathcal{A}$ vem de que, sendo $x, y \in f(H)$, então $\exists a, b \in H$ tais que

$$x \times y = f(a) \times f(b) = f(a \cdot b) \in f(H).$$

$$e_{\mathcal{A}} = f(e_A) = f(a \cdot a^{-1}) = f(a) \times f(a^{-1}) = x \times x^{-1}$$

 $\Rightarrow x^{-1} = f(a^{-1}) \in f(H).$

Ademais, provaremos que $f^{-1}(f(H)) = Hkerf$. Sejam $h \in H$ e $k \in kerf$, então

$$f(h \cdot k) = f(h) \times f(k) = f(h) \times e_{\mathcal{A}} = f(h) \in f(H)$$

$$\Rightarrow Hkerf \subseteq f^{-1}(f(H)).$$

A inclusão contrária vem de que seja $x \in f^{-1}(f(H))$, então

$$f(x) \in f(H)$$
,

assim, $\exists h \in H$, tal que f(x) = f(h). Dessa forma,

$$f(h)^{-1}f(x) = e_{\mathcal{A}} \implies h^{-1}x \in kerf.$$

Então,

$$x = h(h^{-1}x) \in Hkerf. \square$$

6. $kerf = \{e_A\} \Leftrightarrow f \text{ \'e injetiva.}$

Para a função ser injetiva, para quaisquer $a,b\in A,$ se f(a)=f(b), então a=b. Ora, sejam $a,b\in kerf,$ então

$$f(a) = f(b) = e_A$$
.

Sabemos que $f(e_A) = e_A$ para qualquer homomorfismo. Assim,

$$a = b \Leftrightarrow kerf = \{e_A\}. \square$$

7. se $\mathcal{O}(x)$ é finita, então $\mathcal{O}(f(x))$ divide $\mathcal{O}(x)$.

A prova disso vem de que

$$x^{\mathcal{O}(x)} = e_A.$$

Assim,

$$e_{\mathcal{A}} = f(e_A) = f(x^{\mathcal{O}(x)}) = f(x)^{\mathcal{O}(x)},$$

i.e., $\mathcal{O}(f(x))$ divide $\mathcal{O}(x)$.

8. seja $g:(\mathcal{A},\times)\to(\mathcal{H},\odot)$ um outro homomorfismo, então a composição

$$g \circ f : (A, \cdot) \to (\mathcal{H}, \odot)$$

também é um homomorfismo.

A prova disso vem de que

$$g\circ f(x\cdot y)=g(f(x)\times f(y))=g(f(x))\circ g(f(y))=(g\circ f(x))\circ (g\circ f(y)). \ \Box$$

Definição 5.0.2. Seja $f: A \to \mathcal{A}$ um homomorfismo. f é chamado de *isomorfismo* se existe um homomorfismo $g: \mathcal{A} \to A$ tal que $f \circ g = id_{\mathcal{A}}$ e $g \circ f = id_{\mathcal{A}}$. Utilizaremos a notação $A \simeq \mathcal{A}$ para denotar a relação de isomorfismo entre os grupos.

Proposição 5.0.3. Seja $f:(A,\cdot)\to(A,\times)$ um homomorfismo, então f é um isomorfismo se, e somente se, f é bijetora.

Prova: Pelo Teorema de Cantor-Bernstein-Schroeder^a, tem-se que (\Rightarrow) é imediato. Ademais, suponhamos que f é bijetiva, então $\forall x, y \in \mathcal{A}$,

$$f^{-1}(x \times y) = f^{-1}(f(a) \times f(b))$$

= $f^{-1}(f(a \cdot b))$
= $a \cdot b$
= $f^{-1}(x) \cdot f^{-1}(y)$,

tais que $a=f^{-1}(x), b=f^{-1}(y)\in A.$ Assim, mostramos que (\Leftarrow) também é verdadeira. \square

Proposição 5.0.4. Seja $f: A \to \mathcal{A}$ um homomorfismo injetivo de grupos. Então

$$\mathcal{O}(f(x)) = \mathcal{O}(x), \ \forall x \in A.$$

Demonstração. A ordem de f(x) é dada pela cardinalidade do subgrupo gerado por f(x), i.e., $|\langle f(x) \rangle|$. Como já apontado ao analisar subgrupos gerados por um único elemento, podemos escrever isso também como

$$|\{f(x)^n \mid n \in \mathbb{Z}\}|.$$

Como já mostrado,

$$\langle x \rangle = \{e, x, x^2, x^3, \dots, x^{\mathcal{O}(x)-1}\},\$$

^aO qual diz que se existe injeção de $A \to B$ e de $B \to A$, então existe uma bijeção $A \to B$.

onde todos os elementos são distintos.

Uma vez que a função f é um homomorfismo injetivo, tem-se

$$f(x^n) = f(\underbrace{x \cdot x \cdot (\dots) \cdot x}_{n \text{ elementos}}) = \underbrace{f(x) \times f(x) \times (\dots) \times f(x)}_{n \text{ elementos}},$$

tal que para cada entrada $a \neq b$, com $a, b \in A$, $f(a) \neq f(b)$. Assim, $\mathcal{O}(x) = \mathcal{O}(f(x))$.

Teorema 5.0.5. (Primeiro Teorema do Isomorfismo). Seja $f:A\to\mathcal{A}$ um homomorfismo de grupos. Então,

$$Im(f) \simeq A/ker(f)$$
.

Demonstração. Provaremos primeiramente que o isomorfismo dado por

$$\phi: A/ker(f) \to Im(f)$$

$$f(x) = \phi(x \cdot ker(f))$$

é bem definido, i.e., se

$$\forall x, y \in A, \ xker(f) = yker(f) \Rightarrow \phi(xker(f)) = \phi(yker(f)).$$

Ora,

$$xker(f) = yker(f)$$

$$\Leftrightarrow \qquad \qquad y^{-1}x \in ker(f)$$

$$\Leftrightarrow \qquad \qquad f(y^{-1}x) = e_{\mathcal{A}}$$

$$\Leftrightarrow \qquad \qquad f(y)^{-1} \times f(x) = e_{\mathcal{A}}$$

$$\Leftrightarrow \qquad \qquad f(x) = f(y).$$

Portanto, ϕ é bem definida.

 ϕ também é um homomorfismo uma vez que

$$\phi(xker(f) \cdot yker(f)).$$

Como ker(f) < A,

$$\phi(xker(f) \cdot yker(f)) = \phi(xyker(f))$$

$$= f(xy)$$

$$= f(x)f(y)$$

$$= \phi(xker(f))\phi(yker(f)).$$

Ademais, mostraremos que ϕ é injetiva. Ora, mostramos que

$$f(x) = f(y) \Leftrightarrow xker(f) = yker(f).$$

Assim, pela definição de ϕ ,

$$\phi(xker(f)) = \phi(yker(f)) \Leftrightarrow xker(f) = yker(f),$$

que é a definição de injetividade.

Mostraremos por fim a subjetividade de ϕ . Ora, tem-se que

$$Im(\phi) = \phi(Aker(f)) = f(A) = Im(f),$$

i.e., a imagem de ϕ é equivalente ao seu contra-domínio (Img(f)), como queríamos. O diagrama comutativo abaixo ilustra essa prova.

Neste momento, enunciaremos um lema que será útil para o próximo teorema.

Lema 5.0.6. Sejam $H \leq A$ um subgrupo e $N \triangleleft A$ um subgrupo normal. Então,

$$H \cap N \triangleleft H$$
.

Demonstração. Uma vez que sendo ambos H e N subgrupos de A, a associatividade, o elemento identidade e inversa de cada elemento nos subgrupos são herdados de A. Assim, sejam $x, y \in H \cap N$, então $x, y \in H$ e $x, y \in N$. Como $xy^{-1} \in H$ e $xy^{-1} \in N$, $xy^{-1} \in H \cap N$, i.e., a operação é fechada e para todo elemento existe elemento inverso correspondente. Assim, $H \cap N$ é um subgrupo de H. Ademais, seja $h \in H$ e $x \in H \cap N$, então

$$hxh^{-1} \in H$$
,

pois $x \in H$ e a operação é fechada. Além disso,

$$hxh^{-1} \in N$$
,

pois $x \in N$ e N é um subgrupo normal. Portanto,

$$hxh^{-1} \in H \cap N$$
.

i.e., $H \cap N$ é subgrupo normal de H.

Teorema 5.0.7. (Segundo Teorema do Isomorfismo). Sejam $H \leq A$ um subgrupo e $N \triangleleft A$ um subgrupo normal. Então,

$$\frac{H}{H\cap N}\simeq \frac{HN}{N}.$$

Demonstração. Temos pel o Lema 5.0.6 que

$$H \cap N \triangleleft H$$
.

Agora, seja $f: H \to HN/N, \, f(h) = hN.$ Mostraremos que f é um homomorfismo já que

$$f(h_1h_2) = (h_1h_2)N$$

= $(h_1N)(h_2N)$
= $f(h_1)f(h_2)$.

Notemos agora que

$$ker(f) = \{ h \in H \mid hN = e_{HN/N} = N \}$$

= $\{ h \in H \mid h \in N, \}$

i.e., $ker(f) = H \cap N$.

Por fim, mostraremos que f é sobrejetora. Ora, pela definição,

$$f(h) \in HN/N \Rightarrow f(H) \subseteq HN/N$$
.

E, por sua vez, qualquer elemento de HN/N,

$$hnN = hN = f(h) \in f(H) \Rightarrow HN/N \subseteq f(H)$$

 $\Rightarrow f(H) = HN/N,$

i.e., f é sobrejetora.

Dessa forma, pelo Teorema 5.0.5, tem-se que

$$f(H) \simeq H/kerf(f) \Rightarrow \frac{HN}{N} \simeq \frac{H}{H \cap N}.$$

Teorema 5.0.8. (Terceiro Teorema do Isomorfismo). Sejam H e N subgrupos normais de A, tais que $N \subseteq H \subseteq A$. Então,

$$\frac{A/N}{H/N} \simeq A/H.$$

Demonstração. Primeiramente, mostraremos que $N \triangleleft H$, o que é imediato uma vez que $H \subseteq A$ e $N \triangleleft A$.

Agora, seja a função $f:A/N\to A/H$, tal que f(aN)=aH. Mostraremos que ela é bem definida. Ora, sejam

$$xN = yN$$
.

Então,

$$y^{-1}x \in N \subseteq H$$
,

ou seja,

$$y^{-1}x \subseteq H \Rightarrow xH = yH,$$

e a função é bem definida.

A prova que f é um homomorfismo vem de que

$$f(xN)f(yN) = (xH)(yH)$$

$$= xyH$$

$$= f(xyN)$$

$$= f((xN)(yN)).$$

Ademais, tem-se que

$$\begin{split} ker(f) &= \{ xN \in A/N \ | \ f(xN) = e_{A/H} \} \\ &= \{ xN \in A/N \ | \ xH = H \} \\ &= \{ xN \in A/N \ | \ x \in H \} \\ &= H/N. \end{split}$$

Além disso, das propriedades do homomorfismo, sabe-se que o ker(f) = H/N é subgrupo normal do domínio de f, isto é, A/N.

Por fim, f é sobrejetiva já que, sendo $aH \in A/H$, claramente,

$$aH = f(aN) \in f(A/N).$$

Assim,

$$f(A/N) = A/H$$
.

Dessa forma, pelo Teorema 5.0.5, tem-se que

$$f(A/N) \simeq (A/N)/kerf(f) \Rightarrow A/H \simeq \frac{A/N}{H/N}.$$

Enunciaremos agora alguns lemas sobre funções e sobre homomorfismos de grupos que nos serão úteis para o próximo teorema.

Definição 5.0.9. Seja uma função $f:X\to Y,$ então, sendo $A\subseteq X$ e $B\subseteq Y,$ definimos

$$f(A) = \{ y \in Y \mid y = f(a), \text{ para algum } a \in A \},$$

e definimos como sendo a pré-imagem de f

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}.$$

Lema 5.0.10. Sejam uma função $f:X\to Y$ e $A\subseteq X$ e $B\subseteq Y$, é verdade que:

- 1. $f(f^{-1}(B)) \subseteq B$; ou ainda $f(f^{-1}(B)) = B$, sse f é sobrejetora;
- 2. $f^{-1}(f(A)) \supseteq A$; ou ainda $f^{-1}(f(A)) = A$, sse f é injetora.

Demonstração. Para a primeira afirmação, tem-se que

$$f(f^{-1}(B)) = f(\{x \in X \mid f(x) \in B\})$$

 $\subset B$.

Ademais, se f é sobrejetora, seja $b \in B$,

$$\exists x \in X \mid f(x) = b.$$

Ora, então $x \in f^{-1}(B)$ pela definição de pré-imagem, e

$$b = f(x) \in f(f^{-1}(B)).$$

Já para a segunda afirmação, tem-se

$$\begin{split} f^{-1}(f(A)) &= f^{-1}(\{y \in Y \mid y = f(a), \text{ para algum } a \in A\}) \\ &= \{x \in X \mid f(x) \in \{y \in Y \mid y = f(a), \text{ para algum } a \in A\}\} \\ &= \{x \in X \mid f(x) = f(a), \text{ para algum } a \in A\} \\ &\supseteq A. \end{split}$$

Além disso, se f é injetora, seja $z \in f^{-1}(f(A))$. Então, pela definição de pré-imagem,

$$f(z) = f(a) \in f(A),$$

para algum $a \in A$. Ora, como f é injetora,

$$z = a \in A$$
.

Note que se uma função f^{-1} satisfaz $f(f^{-1}(B)) = B$ e $f^{-1}(f(A)) = A$, ela é também é a função inversa de f.

Lema 5.0.11. Seja um homomorfismo de grupos $\phi: A \to H$, então, sendo $X \leq A$ e $Y \leq H$ subgrupos, é verdade que:

- 1. $\phi(\phi^{-1}(Y)) = Y \cap Im(\phi);$ 2. $\phi^{-1}(\phi(X)) = Xker(\phi).$

Demonstração. Para a primeira afirmação, tem-se que $\phi(\phi^{-1}(Y)) \subseteq Y$ pelo lema anterior (5.0.10) e ainda, por definição, $\phi(\phi^{-1}(Y)) \subseteq Im(\phi)$. Assim,

$$\phi(\phi^{-1}(Y)) \subseteq Y \cap Im(\phi).$$

Ademais, sendo $z \in Y \cap Im(\phi)$, $\exists a \in A$, tal que

$$\phi(a) = z \in Y$$
.

Ora, então, pela definição de pré-imagem,

$$a \in \phi^{-1}(Y)$$

$$\Rightarrow z = \phi(a) \in \phi(\phi^{-1}(Y)).$$

Já para a segunda afirmação, tem-se que $\phi^{-1}(\phi(X)) = Xker(\phi)$ pela propriedade do isomorfismo já provada (ver propriedade 5).

E ainda, caso ϕ seja injetora, $ker(\phi) = \{e_A\}$ e $Xker(\phi) = X$, e assim

$$\phi^{-1}(\phi(X)) = X.$$

Lema 5.0.12. O homomorfismo (projeção canônica)

$$\phi: A \to A/H$$
,

onde $H \triangleleft A$, é sobrejetiva. E, ainda,

$$ker(\phi) = H.$$

Demonstração. Seja $z \in A/H$, então como z = aH e $a \in A$,

$$z = aH = \phi(a) \in \phi(A),$$

ou seja, ϕ é sobrejetiva.

Além disso, provaremos que o ker(f) = H. Ora,

$$ker(f) = \{a \in A \mid f(a) = H\}$$

= $\{a \in A \mid aH = H\}$
= $\{a \in A \mid a \in H\}$
= H .

Teorema 5.0.13. (Teorema da Correspondência). Seja $N \triangleleft A$ um subgrupo normal. Então, o homomorfismo $f: A \to A/N$ (projeção canônica) induz uma correspondência bijetiva entre o conjunto \mathcal{L}_N dos subgrupos de A que contêm N e o conjunto \mathcal{L} dos subgrupos de A/N, dada por:

$$\hat{f}: V \in \mathcal{L}_N \longmapsto f(V) = V/N \in \mathcal{L}.$$

Ademais, $\hat{f}^{-1}: \mathcal{L} \to \mathcal{L}_N$, tal que $H \mapsto f^{-1}(H)$, é função inversa de \hat{f} . Além disso, sejam $X \in \mathcal{L}_N$ e $Y \in \mathcal{L}$,

i.
$$X \triangleleft A \Rightarrow f(X) \triangleleft Im(f)$$
;

ii.
$$Y \triangleleft Im(f) \Rightarrow f^{-1}(Y) \triangleleft A$$
.

Demonstração. Mostraremos inicialmente que $V/N \leq A/N$. Sendo $x,y \in V/N, \exists a,b \in V$ tais que

$$xy = (aN)(bN),$$

e como $N \triangleleft A$ e $N \subseteq V \leq A$,

$$xy = abN \in V/N$$
,

já que $ab \in V$. Ademais,

$$x^{-1} = (aN)^{-1} = a^{-1}N \in V/N,$$

já que $a^{-1} \in V$. Assim, mostramos que

$$V/N \leq A/N$$
,

i.e., V/N é subgrupo de A/N e $V/N \in \mathcal{L}$.

Mostraremos agora que \hat{f} é bijetora ao mostrar que a função pré-imagem

$$\hat{f}^{-1}: H \mapsto f^{-1}(H) \in \mathcal{L}_N$$

é função inversa de \hat{f} .

Ora, pelo lema 5.0.12, f é sobrejetora. Seja $H \in \mathcal{L}$, vamos provar agora que $\exists K \leq A$, tal que

$$H = K/N$$
.

Mostraremos inicialmente que essa afirmação é equivalente a

$$H \le A/N \Rightarrow H = f^{-1}(H)/N.$$

Seja $K:=f^{-1}(H)$. Então, devemos mostrar que $K\leq A$ e $N\subseteq K$. Suponhamos $x,y\in$ $K = f^{-1}(H)$. È verdade, portanto, que

$$f(x), f(y) \in H$$
.

Como H é um grupo,

$$f(x)f(y) \in H$$

$$\Rightarrow \qquad f(xy) \in H$$

$$\Rightarrow \qquad xy \in f^{-1}(H) = K.$$

Ademais, como $f(x) \in H$,

$$f(x)^{-1} \in H$$

$$\Rightarrow \qquad f(x^{-1}) \in H$$

$$\Rightarrow \qquad x^{-1} \in f^{-1}(H) = K.$$

E, portanto, $K \leq A$.

Mostraremos agora que sendo $n \in N$, $n \in K$. Ora,

$$\Rightarrow \qquad f(n) = nN \in H$$

$$\Rightarrow \qquad n \in f^{-1}(H) = K$$

$$\Rightarrow \qquad N \subseteq K.$$

Provaremos agora que $H=f^{-1}(H)/N$. (\supseteq) Seja $x\in f^{-1}(H)/N$. Então $\exists y\in f^{-1}(H)$, tal que

$$x = yN$$
.

Uma vez que f é sobrejetora e $f^{-1}(H) \subseteq A$,

$$x = yN = f(y) \in H$$
.

 (\subseteq) Seja $h\in H\leq A/N.$ Podemos escrever h como

$$h = aN = f(a),$$

onde $a \in A$. Assim,

$$f(a) \in H \Rightarrow a \in f^{-1}(H).$$

Ora, então,

$$h = aN \in f^{-1}(H)/N$$
.

Demonstrado que f(K) = K/N para algum $K \leq A$ e $N \triangleleft K$,

$$H = f(K) \in f(\mathcal{L}_N)$$

$$\Rightarrow \mathcal{L} \subseteq f(\mathcal{L}_N),$$

e \hat{f} é sobrejetora. Assim, pelo lema 5.0.10

$$\hat{f}(\hat{f}^{-1}(\mathcal{L})) = \mathcal{L}.$$

Além disso, já mostramos que ker(f) = N. Assim, sendo $V \in \mathcal{L}_N$,

$$\hat{f}^{-1}(\hat{f}(V)) = f^{-1}(f(V)) = V ker(f) = V N = V$$
$$\Rightarrow \hat{f}^{-1}(\hat{f}(\mathcal{L}_N)) = \mathcal{L}_N,$$

i.e., \hat{f} é injetora. Assim, mostramos que \hat{f}^{-1} é inversa de \hat{f} e \hat{f} é bijetora. Por fim,

(i.) Seja $b \in f(A) = Im(f)$. Como f é sobrejetiva, b = f(a), para algum $a \in A$. Então, uma vez que $X \triangleleft A$, Xa = aX, e

$$bf(X) = f(a)f(X) = f(aX) = f(Xa) = f(X)f(a) = f(X)b.$$

Portanto, pela definição de normalidade de grupos,

$$f(X) \triangleleft Im(f)$$
.

(ii.) Sendo $Y \triangleleft Im(f)$, queremos mostrar que $f^{-1}(Y) \triangleleft A$. Isso é equivalente a mostrar que, $\forall a \in A$,

$$af^{-1}(Y)a^{-1} \subseteq f^{-1}(Y) \Leftrightarrow f(af^{-1}(Y)a^{-1}) \subseteq Y \Leftrightarrow f(a)Yf(a)^{-1} \subseteq Y.$$

Ora, como $Y \triangleleft Im(f)$,

$$f(a)Yf(a)^{-1} \subseteq Y, \ \forall a \in A,$$

como queríamos.

Capítulo 6

Produto Direto de Grupos

Veremos agora uma maneira de se obter um grupo a partir de dois grupos quaisquer.

Definição 6.0.1. Sejam dois grupos A e B, o produto direto $A \times B$ é definido em termo de **componentes** (pares ordenados (a,b), tais que $a \in A$ e $b \in B$) e pelo produto cartesiano desses pares ordenados, i.e.,

$$(a_1, b_1) \cdot (a_2, b_2) = (a_1 a_2, b_1 b_2),$$

onde (a_1a_2, b_1b_2) também é um elemento de $A \times B$ e, logo, a operação é fechada.

Proposição 6.0.2. O produto direto $A \times B$ satisfaz os axiomas de grupo e, logo, é um grupo.

Demonstração. Primeiramente, mostraremos que a operação é associativa. Ora,

$$((a_1, b_1) \cdot (a_2, b_2)) \cdot (a_3, b_3) = (a_1 a_2, b_1 b_2) \cdot (a_3, b_3)$$

$$= ((a_1 a_2) a_3, (b_1 b_2) b_3)$$

$$= (a_1 (a_2 a_3), b_1 (b_2 b_3))$$

$$= (a_1, b_1) \cdot (a_2 a_3, b_2 b_3)$$

$$= (a_1, b_1) \cdot ((a_2, b_2) \cdot (a_3, b_3)).$$

Mostraremos agora que a operação tem elemento inverso e identidade. Seja $a \in A$ e $b \in B$, então,

$$(a,b)\cdot(a^{-1},b^{-1})=(aa^{-1},bb^{-1})=(id_A,id_B),$$

onde (id_A, id_B) é claramente a identidade da operação.

Buscaremos agora descobrir as condições para que um grupo seja isomorfo a algum produto direto de grupos.

Enunciaremos para isso, um lema que nos será útil para provar essas condições.

Lema 6.0.3. Sejam $A_1, A_2, \dots A_n$ subgrupos de um grupo A, então, dadas as seguintes suposições:

- 1. $A = A_1 A_2 \dots A_n$; 2. $A_i \triangleleft A, \forall i = 1, \dots, n$; 3. $A_i \cap (A_1 \dots A_{i-1} A_{i+1} \dots A_n) = \{e\}, \forall i = 1, \dots, n$; 4. $\forall a \in A$, existem únicos $a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n$, tais que $a = a_1 a_2 \dots a_n$; 5. $\forall i, j$, tais que $1 \le i, j \le n$, sendo $a_i \in A_i$ e $a_j \in A_j$, $a_i a_j = a_j a_i$;

Demonstração. Começaremos mostrando que (1, 2, 3). Seja $a = a_1 a_2 \dots a_n \in A$, sendo $a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n$. Suponhamos $b_1 \in A_1, b_2 \in A_2, \dots, b_n \in A_n$, tais que $a = b_1 b_2 \dots b_n$. Assim,

$$a_1 a_2 \dots a_n = b_1 b_2 \dots b_n$$

$$\Rightarrow a_1 = b_1 b_2 \dots b_n (a_2 \dots a_n)^{-1}$$

$$\Rightarrow a_1 = b_1 b_2 \dots b_n a_n^{-1} \dots a_2^{-1}$$

$$\Rightarrow b_1^{-1} a_1 = b_2 \dots b_n a_n^{-1} \dots a_2^{-1}$$

$$\Rightarrow b_1^{-1} a_1 \in A_2 \dots A_n A_n \dots A_2.$$

Ora, como $A_i \triangleleft A, \forall i = 1, ..., n$, por comutatividade, i.e., $A_i A_j = A_j A_i$ para $1 \leq j \leq n$, tem-se

$$b_1^{-1}a_1 \in A_2 A_2 A_3 A_3 \dots A_{n-1} A_{n-1} A_n A_n$$
$$\in A_2 A_3 \dots A_{n-1} A_n.$$

Assim, pela propriedade (3.),

$$b_1^{-1}a_1 = e \Rightarrow a_1 = b_1.$$

Analogamente, fazemos o mesmo procedimento em tal igualdade a fim de chegar que $a_2 = b_2, a_3 = b_3, \dots, a_n = b_n$. Dessa forma, mostramos indutivamente a propriedade (4.). Agora, mostraremos que (1., 2., 3. \Rightarrow 5.). Sejam $a_i \in A_i$ e $a_j \in A_j$. Então, um elemento da forma

$$a_i a_j a_i^{-1} a_i^{-1}$$

é tal que

$$(a_i a_j a_i^{-1}) a_i^{-1} \in A_j,$$

uma vez que $A_j \triangleleft A$.

Ainda, como $A_i \triangleleft A$,

$$a_i(a_ja_i^{-1}a_j^{-1}) \in A_i.$$

Ora, então pela propriedade (3.),

$$a_i a_j a_i^{-1} a_j^{-1} \in A_i \cap A_j = \{e\}.$$

Assim,

$$a_i a_j = a_j a_i,$$

como queríamos mostrar.

Finalmente, mostraremos que $(4.,5. \Rightarrow 1.,2.,3.)$. A propriedade (1.) é claramente satisfeita a partir da propriedade (4.)

Para mostrar que a propriedade (2.) é satisfeita, queremos mostrar que

$$aA_ia^{-1} \subseteq A_i, \forall a \in A \in \forall i = 1, \dots, n.$$

Pela propriedade (4.) ou (1.), temos que a pode ser escrito da forma

$$a = a_1 a_2 \dots a_n$$
.

Então, fixado $i \in \{1, ..., n\}$, seja $x \in A_i$. Pela comutatividade da propriedade (5.) e por $a_i x a_i^{-1} \in A_i$,

$$axa^{-1} = a_1 \dots a_i \dots a_n x (a_1 \dots a_i \dots a_n)^{-1}$$

$$= a_1 \dots a_i \dots a_n x a_n^{-1} \dots a_i^{-1} \dots a_1^{-1}$$

$$= a_1 \dots a_i x \dots a_n a_n^{-1} \dots a_i^{-1} \dots a_1^{-1}$$

$$= a_1 \dots (a_i x a_i^{-1}) \dots a_1^{-1}$$

$$= a_1 a_1^{-1} a_2 a_2^{-1} \dots (a_i x a_i^{-1})$$

$$= a_i x a_i^{-1}$$

$$\in A_i,$$

como queríamos.

Por fim, mostraremos que a propriedade (3.) é satisfeita. Para isso, seja um elemento $x \in A_i \cap A_1 \dots A_{i-1} A_{i+1} \dots A_n$. Como $x \in A_i$, então pela propriedade (4.),

$$x = a_1 a_2 \dots a_n$$
, com $a_j = e \in A_j$ para $j \neq i$ e $a_i = x$.

Ora, como $x \in A_1 \dots A_{i-1} A_{i+1} \dots A_n$,

$$x = b_1 \dots b_{i-1} b_i b_{i+1} \dots b_n$$
, com $b_j \in A_j$ e $b_i = e$.

Utilizando ainda a propriedade (4.), existem únicos $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Assim, $a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$, i.e.,

$$a_i = b_i \Rightarrow x = e$$

e portanto,

$$A_i \cap (A_1 \dots A_{i-1} A_{i+1} \dots A_n) = \{e\},\$$

como queríamos mostrar.

Teorema 6.0.4. Sejam A, H_1, \ldots, H_n grupos. O grupo A é isomorfo ao grupo $H_1 \times \cdots \times H_n$ se, e somente se, A possui os subgrupos $A_1 \simeq H_1, \ldots, A_n \simeq H_n$ tais

- 1. $A = A_1 A_2 \dots A_n$. 2. $A_i \triangleleft A, \forall i = 1, \dots, n$. 3. $A_i \cap (A_1 \dots A_{i-1} A_{i+1} \dots A_n) = \{e\}, \forall i = 1, \dots, n$.

Demonstração. (\Leftarrow) Seja $f: A \to A_1 \times \cdots \times A_n$ uma relação, tal que

$$f(a) = (a_1, \dots, a_n),$$

onde $a = a_1 a_2 \dots a_n \text{ com } a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n.$

Mostraremos agora que f é uma função bem definida. Sejam $a = b \in A$, então,

$$a = a_1 a_2 \dots a_n$$
, tais que $a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n$

$$b = b_1 b_2 \dots b_n$$
, tais que $b_1 \in A_1, b_2 \in A_2, \dots, b_n \in A_n$.

Ora, pela propriedade (4.) do Lema 6.0.3,

$$a_1 = b_1, a_2 = b_2, \dots, a_n = b_n.$$

Assim,

$$f(a) = f(b),$$

como queríamos.

Ademais, mostraremos que f é um homomorfismo, aplicando a propriedade (5.) do Lema 6.0.3.

$$f(ab) = f(a_1 \dots a_n b_1 \dots b_n)$$

$$= f(a_1 b_1 \dots a_n b_n)$$

$$= (a_1 b_1, \dots, a_n b_n)$$

$$= (a_1, \dots, a_n) \times (b_1, \dots, b_n)$$

$$= f(a) \times f(b).$$

Finalmente, mostraremos que f é uma bijeção. Ora, sejam f(a) = f(b) para $a, b \in A$,

$$f(a) = f(b)$$

$$\Rightarrow (a_1, \dots, a_n) = (b_1, \dots, b_n)$$

$$\therefore a_1 = b_1, \dots, a_n = b_n,$$

i.e., a = b (f é injetora).

Para a sobrejetividade, consideremos um elemento $y \in A_1 \times \cdots \times A_n$. Então, pela definição de produto direto,

$$y = (a_1, \dots, a_n),$$

tais que $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$. Uma vez que, pela propriedade (1.), $A = A_1 A_2 \ldots A_n$,

$$y \in f(a)$$
,

como queríamos.

Finalmente, mostraremos que a função $F:A_1\times\cdots\times A_n\to H_1\times\cdots\times H_n$, tal que $F:(a_1,\ldots,a_n)\mapsto (f_1(a_1),\ldots,f_n(a_n))$, é uma bijeção. Seja f_i a relação de isomorfismo entre A_i e $H_i,\ f_i:A_i\to H_i$. A função F está bem definida uma vez que, sendo $(a_1,\ldots,a_n),(b_1,\ldots,b_n)\in A_1\times\cdots\times A_n$, tais que $(a_1,\ldots,a_n)=(b_1,\ldots,b_n)$, é verdade que $a_i=b_i, \forall i=1,\ldots,n$. Assim, como f_i é um isomorfismo,

$$f_i(a_i) = f_i(b_i).$$

Portanto, tem-se que

$$F((a_1,\ldots,a_n))=(f_1(a_1),\ldots,f_n(a_n))=(f_1(b_1),\ldots,f_n(b_n))=F((b_1,\ldots,b_n)).$$

Mostraremos agora a injetividade de F. Sejam $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in A_1 \times \cdots \times A_n$, tais que $F((a_1, \ldots, a_n)) = F((b_1, \ldots, b_n))$. Então, é verdade que

$$(f_1(a_1),\ldots,f_n(a_n))=(f_1(b_1),\ldots,f_n(b_n)).$$

Temos, assim, que $f_i(a_i) = f_i(b_i)$. Ora, como f_i é um isomorfismo, $a_i = b_i$ e, então,

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_n).$$

Resta-nos agora mostrar a sobrejetividade de F. Para isso, consideremos $(h_1, \ldots, h_n) \in H_1 \times \cdots \times H_n$. Ora, como já assumimos que existe f_i tal que $A_i \simeq H_i$, temos que

$$\exists a_i$$
, tal que $f_i(a_i) = h_i$, para $i = \{1, \dots, n\}$.

Assim, podemos escrever que

$$(h_1,\ldots,h_n)=(f_1(a_1),\ldots f_n(a_n))\in F(A_1\times\cdots\times A_n).$$

 (\Rightarrow) Suponhamos $\phi: A \to H_1 \times \cdots \times H_n$ um isomorfismo de grupos. Mostraremos que A contém os subgrupos $A_1 \simeq H_1, \ldots, A_n \simeq H_n$ (com as condições citadas no teorema). Sendo $X_i = Y_1 \times Y_2 \times \cdots \times Y_n$, tal que $Y_j = \{e\}$ se $j \neq i$ e $Y_j = H_i$ se j = i com i = 1, ..., n, definimos

$$A_i := \phi^{-1}(X_i) \subseteq A.$$

É verdade que X_i é subgrupo de $H_1 \times \cdots \times H_n$ uma vez que sendo $a, b \in X_i$, $a = (x_1, \dots, x_n)$ e $b = (y_1, \dots, y_n)$, tais que $x_j = y_j = e$ se $j \neq i$. Então,

$$ab^{-1} = (x_1, \dots, x_n)(y_1, \dots, y_n)^{-1}$$

$$= (x_1, \dots, x_n)(y_1^{-1}, \dots, y_n^{-1})$$

$$= (x_1y_1^{-1}, \dots, x_iy_i^{-1}, \dots, x_ny_n^{-1})$$

$$= (e, \dots, e, x_iy_i^{-1}, e, \dots, e)$$

$$\in X_i.$$

Ademais, precisamos mostrar que A_i é subgrupo de A. Dados $a, b \in A_i$, tem-se, por ϕ ser um isomorfismo, que $\phi(a), \phi(b) \in X_i$. Ora,

$$\phi(a)\phi(b)^{-1} = \phi(a)\phi(b^{-1}) = \phi(ab^{-1}) \in X_i.$$

Então,

$$ab^{-1} \in \phi^{-1}(X_i) = A_i.$$

Queremos mostrar ainda que $A_i \simeq H_i$. Seja, então, a função

$$\phi_i: X_i \to H_i$$

 $(h_1, \dots, h_n) \mapsto h_i.$

 ϕ_i é um homomorfismo já que, dados $a, b \in X_i$, $a = (x_1, \dots, x_n)$ e $b = (y_1, \dots, y_n)$, tais que $x_j = y_j = e$ se $j \neq i$,

$$\phi_i(ab) = \phi_i((x_1, \dots, x_n)(y_1, \dots, y_n))$$

$$= \phi_i((x_1y_1, \dots, x_iy_i, \dots, x_ny_n))$$

$$= x_iy_i$$

$$= \phi_i(a)\phi_i(b).$$

 ϕ_i também é sobrejetiva, pois sendo $h_i \in H_i$ e

$$x_i := (h_1, \ldots, h_i, \ldots, h_n) \in X_i,$$

com $h_j = e$, se $j \neq i$, tem-se que

$$h_i = \phi_i(x_i).$$

Além disso, ϕ_i é injetiva uma vez que para $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in X_i$, tais que

$$\phi_i((a_1,\ldots,a_n)) = \phi_i((b_1,\ldots,b_n)),$$

é verdade que $a_i = b_i$. Então,

$$(a_1,\ldots,a_n)=(b_1,\ldots,b_n),$$

uma vez que $a_j = b_j = e$ se $j \neq i$. Mostrado que ϕ_i é um isomorfismo, então,

$$\phi_i \circ \phi(A_i) = \phi_i(\phi(A_i)) = \phi_i(\phi(\phi^{-1}(X_i))) = \phi_i(X_i) = H_i$$

Portanto, podemos afirmar que

$$A_i \simeq_{\phi_i \circ \phi} H_i$$

como queríamos.

Quanto à propriedade (1.), seja $a \in A$, como ϕ é uma bijeção, $\phi^{-1}(H_1 \times \cdots \times H_n) = A$. Ora, pela definição de produto direto de grupos,

$$H_1 \times \cdots \times H_n = X_1 X_2 \dots X_n$$
.

Assim,

$$\phi^{-1}(X_1 X_2 \dots X_n) = A$$

$$\phi^{-1}(X_1)\phi^{-1}(X_2) \dots \phi^{-1}(X_n) = A$$

$$A_1 A_2 \dots A_n = A,$$

como queríamos.

A propriedade (3.) vem de que

$$Y = A_{i} \cap (A_{1} \dots A_{i-1} A_{i+1} \dots A_{n})$$

$$= \phi^{-1}(X_{i}) \cap \phi^{-1}(X_{1} \dots X_{i-1} X_{i+1} \dots X_{n})$$

$$= \phi^{-1}(\{e\} \times \dots \times \{e\} \times H_{i} \times \{e\} \times \dots \times \{e\}) \cap \phi^{-1}(H_{1} \times \dots \times H_{i-1} \times \{e\} \times H_{i+1} \times \dots \times H_{n})$$

$$= \{e\}.$$

Quanto à propriedade (2.), queremos mostrar que $aA_ia^{-1} \subseteq A_i, \forall i=1,2,\ldots,n, \forall a \in A$. Ora,

$$\phi(aA_{i}a^{-1}) = \phi(a)\phi(A_{i})\phi(a^{-1})$$

$$= (h_{1}, h_{2}, \dots, h_{n})(\{e\} \times \dots \times \{e\} \times H_{i} \times \{e\} \times \dots \times \{e\})(h_{1}^{-1}, h_{2}^{-1}, \dots, h_{n}^{-1})$$

$$= (h_{1}h_{1}^{-1}, \dots, h_{i-1}h_{i-1}^{-1}, h_{i}H_{i}h_{i}^{-1}, h_{i+1}h_{i+1}^{-1}, \dots, h_{n}h_{n}^{-1})$$

$$= \{e\} \times \dots \times \{e\} \times H_{i} \times \{e\} \times \dots \times \{e\}$$

$$= \phi(A_{i}).$$

Como ϕ é bijetora,

$$aA_ia^{-1} = A_i,$$

como queríamos mostrar.

Capítulo 7

Grupos de Permutações

Antes de propriamente discorrer sobre grupos de permutações, enunciaremos algumas definições e proposições que serão úteis para isso.

Definição 7.0.1. Chama-se de conjunto subjacente de um grupo A o conjunto de A sem a estrutura de grupo.

Proposição 7.0.2. Seja C um conjunto. Então, $(Bij(C), \circ)$ é um grupo, onde

$$Bij(C) = \{f: C \to C \mid f \text{ \'e uma bijeção}\}\$$

e \circ é a operação de composição de funções. Esse grupo é designado por $\mathcal{P}(C)$.

Demonstração. A fim de provar que $\mathcal{P}(C)$ é de fato um grupo começamos mostrando que, sendo $f, g \in \mathcal{P}(C)$, então $f \circ g \in \mathcal{P}(C)$, i.e., que a operação é fechada. Como f e g são bijetoras pela definição do conjunto Bij(C), tem-se que

$$f \circ g : C \to C$$
.

Sendo $c, d \in C$, se $f \circ g(c) = f \circ g(d)$, então,

$$f(g(c)) = f(g(d)) \Leftrightarrow f^{-1}(f(g(c))) = f^{-1}(f(g(d))) \Leftrightarrow g(c) = g(d) \Leftrightarrow g^{-1}(g(c)) = g^{-1}(g(d)) \Leftrightarrow c = d,$$

ou seja, $f \circ g$ é injetiva. Além disso, seja $c \in C$. Ora, como f é sobrejetora, $\exists x \in C$ tal que f(x) = c. E, como g é sobrejetora, $\exists y \in C$ tal que g(y) = x. Assim,

$$f(g(y)) = c,$$

isto é, $f \circ g$ é sobrejetora. Logo, $f \circ g$ é bijetora e é elemento de $\mathcal{P}(C)$.

Sejam $f, g, h \in \mathcal{P}(C)$, mostraremos que a operação de composição é associativa. Assim,

$$f \circ (g \circ h)(C) = f \circ (g(h(C))) = f(g(h(C))) = (f \circ g)(h(C)) = (f \circ g) \circ h(C).$$

Por fim, resta mostrar que o grupo admite elemento identidade e inversa. Ora, para $f \in \mathcal{P}(C)$, como f é bijetora, $\exists g \in \mathcal{P}(C)$ tal que $g = f^{-1}$. Assim,

$$f \circ g(C) = Id_{\mathcal{P}(C)},$$

onde

$$Id_{\mathcal{P}(C)}: c \mapsto c.$$

Um conjunto de grupos bastante útil no estudo de grupos finitos é dos grupos de permutações. Assim, a proposição 7.0.3 a seguir mostra que qualquer grupo finito é isomorfo a um subgrupo de um grupo de permutações.

Teorema 7.0.3. (Cayley) Seja A um grupo finito, tal que n = |A|, e A_0 o conjunto subjacente a A. Então,

$$T: A \to \mathcal{P}(A_0) \simeq S_n$$

 $a \mapsto T_a: A_0 \xrightarrow{\sim} A_0$
 $x \mapsto ax.$

é um homomorfismo injetivo.

Demonstração. Mostraremos inicialmente que T está bem definida. Sejam $a_1, a_2 \in A$ e $a_1 = a_2$, então $T_{a_1}(x_i) = a_1x_i = a_2x_i = T_{a_2}(x_i), \forall x_i \in A_0$. Assim, $T_{a_1} = T_{a_2}$.

Agora, mostraremos que T é um homomorfismo. Sejam $a_1,a_2\in A$, então $T_{a_1a_2}(x_i)=(a_1a_2)x_i=a_1(a_2x_i)=T_{a_1}(T_{a_2}(x_i))$. Assim, $T_{a_1a_2}=T_{a_1}T_{a_2}$.

Por fim, mostraremos que T é injetivo. Tem-se que se $a \in ker(T)$, então $T_a = Id_{A_0}$. Ora, se $T_a = Id_{A_0}$, então $ax = x, \forall x \in A_0$. Assim, a = e, e portanto $ker(T) = \{e\}$, o que implica que T é injetivo, pelas propriedades do homomorfismo.

Definição 7.0.4. Uma permutação $\alpha \in S_n$ é um r-ciclo se existem $a_1, a_2, \ldots, a_r \in \{1, \ldots, n\}$ distintos tais que $\alpha(a_1) = a_2, \ \alpha(a_2) = a_3, \ldots, \ \alpha(a_{r-1}) = a_r, \ \alpha(a_r) = a_1,$ e os demais elementos de $\{1, \ldots, n\}$ são mapeados a eles mesmos. Esse r-ciclo é denotado por $(a_1 \ldots a_r)$, onde r é o comprimento do ciclo.

É interessante apontar que 2-ciclos são chamados de transposições. Alguns **exemplos** interessantes de r-ciclos em S_5 são listados a seguir.

Exemplo 1) $\binom{12345}{23451}$ é um 5-ciclo com uma possível representação (12345).

Exemplo 2) $\binom{12345}{32145}$ é uma transposição com possível representação (13).

Exemplo 3) O único 1-ciclo é a identidade $\binom{12345}{12345}$ com possível representação (1).

Definição 7.0.5. Sejam $\alpha, \beta \in S_n$ um r_1 -ciclo e um r_2 -ciclo. α e β são ditas disjuntas se $\forall a \in \{1, 2, ..., n\}$, tem-se **ou** $\alpha(a) = a$ **ou** $\beta(a) = a$.

Proposição 7.0.6. Dados $\alpha, \beta \in S_n$ dois ciclos disjuntos, então $\alpha\beta = \beta\alpha$.

Demonstração. Ora, por definição, $\forall a \in \{1, 2, ..., n\}$, $\alpha(a) = a$ ou $\beta(a) = a$. Assim, para o caso em que $\alpha(a) = a$,

$$\alpha(\beta(a)) = \beta(a) = \beta(\alpha(a)).$$

Já para o caso em que $\beta(a) = a$,

$$\alpha(\beta(a)) = \alpha(a) = \beta(\alpha(a)).$$

Portanto, $\alpha\beta = \beta\alpha$.

Proposição 7.0.7. Seja $\alpha \in S_n$ um r-ciclo. Mostre que a ordem de α é igual a r.

Demonstração. Para mostrarmos que a ordem de α é igual a r, mostraremos que $\alpha^r = Id = (1)$ e que r é o menor inteiro positivo com essa propriedade.

Primeiro, vamos mostrar que $\alpha^r = Id$. Isso significa que $\alpha^r(a_i) = a_i$ para todo $i = 1, \ldots, r$. Mas isso é verdade por definição de r-ciclo, pois $\alpha(a_i) = a_{i+1}$ para $i = 1, \ldots, r-1$ e $\alpha(a_r) = a_1$. Então, aplicando α repetidamente r vezes, temos que $\alpha^r(a_i) = a_{i+r} = a_i$, onde usamos a aritmética modular para simplificar o índice, tal que $\alpha(a_i) = a_{i+1}$, $\alpha(a_{i+1}) = a_{i+2}$, ..., $\alpha(a_{i+(r-i-1)}) = a_r$ e $\alpha(a_r) = a_1$, ..., $\alpha(a_{i-1}) = a_i$. Como existem i elementos entre a_{i-1} e a_r e existem r-i elementos entre $a_{i+(r-i-1)}$ e a_i , então $\alpha^r(a_i) = a_i$.

Para mostrar que r é o menor inteiro positivo que satisfaz essa propriedade, suponhamos que exista um inteiro positivo s < r, tal que $\alpha^s = Id$. Ora, isso contradiz a definição de r-ciclo, pois teríamos que $\alpha^s(a_i) = a_{i+s} = a_i$, o que significa que s = 0 ou s = r. Mas s não pode ser zero, pois é um inteiro positivo. E $s \neq r$, pois assumimos que s < r. Portanto, r é o menor inteiro positivo com essa propriedade.

Proposição 7.0.8. Sejam $\alpha_1, \ldots, \alpha_t \in S_n$ ciclos disjuntos de comprimentos r_1, \ldots, r_t , respectivamente, Mostre que o produto $\alpha_t \ldots \alpha_1$ tem ordem igual a $MMC\{r_1, \ldots, r_t\}$.

Demonstração. Mostraremos primeiramente, utilizando a proposição 7.0.6, que, sendo $\alpha, \beta \in S_n$ dois ciclos disjuntos, então $(\alpha\beta)^k = \alpha^k \beta^k$, $\forall k \in \mathbb{N}$. Ora,

$$(\alpha\beta)^k = \underbrace{\alpha\beta}_{k \text{ yezes}} = \underbrace{\alpha}_{k \text{ vezes}} \underbrace{\beta}_{k \text{ yezes}} = \alpha^k \beta^k.$$

Ademais, com a proposição 7.0.7, tem-se que

$$(\alpha_t \dots \alpha_1)^{MMC\{r_1,\dots,r_t\}} = \alpha_t^{MMC\{r_1,\dots,r_t\}} \dots \alpha_1^{MMC\{r_1,\dots,r_t\}} = Id,$$

pois $MMC\{r_1,\ldots,r_t\}$ é múltiplo de cada r_i .

Por fim, mostraremos que $MMC\{r_1,\ldots,r_t\}$ é o menor inteiro positivo que satisfaz a propriedade, e logo é a ordem do produto. Ora, seja $s < MMC\{r_1,\ldots,r_t\}$ um inteiro positivo, tal que $(\alpha_t \ldots \alpha_1)^s = Id$. Então, $\alpha_t^s \ldots \alpha_1^s = Id$. Isso implica que $a_i^s = Id$, $\forall i = 1,\ldots,t$. Todavia, isso contradiz com o fato de que a ordem de cada α_i ser igual a r_i . Logo, $MMC\{r_1,\ldots,r_t\}$ é igual a ordem do produto $\alpha_t \ldots \alpha_1$.

Proposição 7.0.9. Seja $\alpha \in S_n$ e $\alpha \neq Id$. Então, α é igual a um produto de ciclos disjuntos de comprimentos ≥ 2 , tal que a fatoração é única a menos da ordem dos fatores.

Demonstração. Primeiramente, mostraremos a existência de um produto de ciclos disjuntos de comprimento ≥ 2 que seja igual a α . Seja i um elemento em $\{1,2,\ldots,n\}$ tal que $\alpha(i)\neq i$. Considere $r\in\mathbb{N}$, tal que r seja o menor valor que satisfaça $\alpha^r(i)=i$, i.e., criamos um ciclo σ_1 . Agora, considere o conjunto $\{1,2,\ldots,n\}\setminus\{i,\alpha(i),\alpha^2(i),\ldots,\alpha^{r-1}(i)\}$. Se este conjunto não estiver vazio, escolha um elemento j nele e construa o ciclo σ_2 da mesma forma. Continue este processo até que todos os elementos de $\{1,2,\ldots,n\}$ tenham sido incluídos em um ciclo. Note que cada ciclo construído terá comprimento ≥ 2 , pois $\alpha\neq \mathrm{Id}$. Afirmamos que $\alpha=\sigma_1\sigma_2\ldots\sigma_k$, onde σ_i são os ciclos construídos. Isso ocorre porque, para qualquer elemento x em $\{1,2,\ldots,n\}$, $\alpha(x)$ é dado pela ação do ciclo que contém x. Como os ciclos são disjuntos, a ordem em que eles são multiplicados não importa, pela proposição 7.0.6.

Quanto à unicidade da fatoração, suponhamos

$$\alpha = \sigma_1 \sigma_2 \dots \sigma_k = \tau_1 \tau_2 \dots \tau_l,$$

onde σ_i e τ_j são ciclos disjuntos de comprimento ≥ 2 . Seja x um elemento em $\{1, 2, \ldots, n\}$. Sem perda de generalidade, suponha que x esteja no ciclo σ_1 . Como $\alpha(x) = \sigma_1(x)$, então $\tau_j(x) = \sigma_1(x)$ para algum j. Como τ_j é um ciclo, $\tau_j^s(x) = \sigma_1^s(x)$ para todo $s \in \mathbb{N}$. Em particular, se r é o comprimento do ciclo σ_1 , então $\tau_j^r(x) = \sigma_1^r(x) = i$. Portanto, o ciclo τ_j contém todos os elementos do ciclo σ_1 . Como σ_1 e τ_j são disjuntos, eles devem ser iguais. Analogamente, podemos mostrar que cada ciclo σ_i é igual a algum ciclo τ_j .

Portanto, k = l e, a menos de reordenação, $\sigma_i = \tau_i$ para todo i.

Concluímos que a fatoração de α em ciclos disjuntos é única a menos da ordem dos fatores.

Proposição 7.0.10. Considere as seguintes proposições:

- a) Todo elemento de S_n pode ser escrito como um produto de transposições.
- b) $S_n = \langle (1 \ 2), (1 \ 3), \dots, (1 \ n) \rangle.$
- c) $S_n = \langle (1 \ 2), (2 \ 3), (3 \ 4), \dots, (n-1 \ n) \rangle.$

Demonstração. Para o item (a), note que o produto de transposições $(a\ b)(a\ b) = ()$ é uma maneira de escrever o elemento identidade de S_n , $\forall n \geq 2$. Agora, para $\alpha \in S_n \setminus Id$, considere a proposição 7.0.9. Assim,

$$\alpha = \sigma_1 \sigma_2 \dots \sigma_k$$

onde $\sigma_1, \sigma_2, \ldots, \sigma_k$ são ciclos disjuntos de ordem maior ou igual a 2. Ora, note que, para $1 \le i \le k$, tem-se que, para j-ciclos sem perda de generalidade,

$$\sigma_i = (x_{i1}x_{i2} \dots x_{ij})$$

= $(x_{i1}x_{ij})(x_{i1}x_{i(j-1)})\dots(x_{i1}x_{i2}).$

Assim, α pode ser reescrita como um produto de transposições,

$$\alpha = ((x_{11}x_{1j})(x_{11}x_{1(j-1)})\dots(x_{11}x_{12}))\dots((x_{k1}x_{kj})(x_{k1}x_{k(j-1)})\dots(x_{k1}x_{k2})),$$

como queríamos mostrar.

É claro que $\langle (1\ 2), (1\ 3), \ldots, (1\ n) \rangle \leq S_n$. Uma vez provado o item (a), é suficiente para o item (b) mostrar que toda transposição $(i\ j)$ pode ser escrito como um produto dos elementos do subgrupo gerado $\langle (1\ 2), (1\ 3), \ldots, (1\ n) \rangle$. Ora,

$$(i \ j) = (1 \ i)(1 \ j)(1 \ i),$$

se $i \neq j$, como queríamos.

Para o item (c), é claro que $\langle (1\ 2), (2\ 3), (3\ 4), \dots, (n-1\ n) \rangle \leq S_n$, e é suficiente mostrar que toda transposição $(1\ i) \in \langle (1\ 2), (2\ 3), (3\ 4), \dots, (n-1\ n) \rangle$. Considerando a prova do item (b), tem-se que para i=2,

$$(1\ 2) \in \langle (1\ 2), (2\ 3), (3\ 4), \dots, (n-1\ n) \rangle.$$

Por indução em $i, \forall i \geq 2$, e adotando-se a hipótese de que

$$(1 \ i) \in \langle (1 \ 2), (2 \ 3), (3 \ 4), \dots, (n-1 \ n) \rangle$$

 $(1 \ i)(i \ i+1)(1 \ i) = (1 \ i+1).$

Assim, $\forall i \geq 2$,

$$(1 \ i) \in \langle (1 \ 2), (2 \ 3), (3 \ 4), \dots, (n-1 \ n) \rangle,$$

como queríamos mostrar.

Proposição 7.0.11. Seja $\alpha \in S_n$, tal que $\alpha = \sigma_1 \sigma_2 \dots \sigma_k$ é uma fatoração qualquer como produto de transposições. Então a paridade de k é única, isto é, ou k é sempre par para qualquer fatoração de α em transposições, ou k é sempre ímpar para qualquer fatoração de α em transposições. Em outras palavras, a paridade do número de transposições numa fatoração de uma permutação $\alpha \in S_n$ é invariante. Essa paridade define a paridade (ou sinal) da permutação.

Demonstração. Vide demonstração da proposição V.10.5 do livro Elementos de Álgebra [1].

Definição 7.0.12. Seja α um elemento de S_n . α é dito permutação par se α é escrito como um produto de uma quantidade par de transposições.

Proposição 7.0.13. Seja $A_n = \{\alpha \in S_n \mid \alpha \text{ é permutação par}\}$. É verdade que $A_n \leq S_n$ de índice 2. $(A_n \text{ é chamado de grupo alternado ou grupo de permutações pares})$

Demonstração. Considere a função $\psi: S_n \to \{1, -1\}$, onde $\{1, -1\} = (\mathbb{Z}/2\mathbb{Z})^*$ (único grupo multiplicativo de dois elementos), tal que $\psi(\alpha) = 1$ se α é par e $\psi(\alpha) = -1$ se α é ímpar. Note que ψ é bem definida pela proposição 7.0.9. Mostraremos agora que ψ é um homomorfismo. Considere $\alpha, \beta \in S_n$. Para o primeiro caso e sem perda de generalidade, considere também que α seja par e β seja ímpar, então

$$\psi(\alpha\beta) = -1 = \psi(\alpha)\psi(\beta).$$

Considere agora o caso em que ambos α e β são pares (cuja demonstração é análoga ao caso em que ambos são ímpares),

$$\psi(\alpha\beta) = +1 = \psi(\alpha)\psi(\beta).$$

Isso mostra que ψ é um homomorfismo. Ora, como S_n possui tantos elementos ímpares quantos pares, tem-se que ψ é um homomorfismo sobrejetivo.

Proposição 7.0.14. Seja H um subgrupo de S_n , então ou $H < A_n$ ou o índice $(H: H \cap A_n) = 2$.

Demonstração. Consideremos o homomorfismo

$$\psi: S_n \to \{1, -1\},\$$

definido por

$$\psi(\alpha) = \begin{cases} 1, & \text{se } \alpha \text{ \'e par,} \\ -1, & \text{se } \alpha \text{ \'e impar.} \end{cases}$$

Restrinjimos ψ a H e consideramos a função

$$\psi|_H: H \to \{1, -1\}.$$

Como ψ é um homomorfismo, sua restrição $\psi|_H$ também o é. Note que o núcleo de $\psi|_H$ é dado por

$$\ker(\psi|_H) = \{\alpha \in H \mid \psi(\alpha) = 1\},\$$

isto é,

$$\ker(\psi|_H) = H \cap A_n.$$

Pelo Primeiro Teorema de Isomorfismo, temos

$$H/(H \cap A_n) \simeq \operatorname{im}(\psi|_H).$$

Como im $(\psi|_H)$ é um subgrupo de $\{1,-1\}$, e este possui apenas dois subgrupos (o trivial $\{1\}$ e o próprio $\{1,-1\}$), temos duas possibilidades:

- 1. Se im $(\psi|_H) = \{1\}$, então $\psi(\alpha) = 1$ para todo $\alpha \in H$; ou seja, todos os elementos de H são pares, isto é, $H \leq A_n$.
- 2. Se $\operatorname{im}(\psi|_H) = \{1, -1\}$, então $H/(H \cap A_n)$ é isomorfo a $\{1, -1\}$ e, portanto, tem exatamente 2 elementos. Assim,

$$[H:H\cap A_n]=2.$$

Logo, ou H está contido em A_n ou $[H:H\cap A_n]=2$, como queríamos demonstrar. \square

Definição 7.0.15. Considere $n \geq 2$. Se $\rho \in S_n$ e se $\rho = (a_{11} \dots a_{1r_1}) \dots (a_{t1} \dots a_{tr_t})$ é sua decomposição em ciclos disjuntos com $r_1 \leq r_2 \leq \dots \leq r_t$, então

$$\{r_1,\ldots,r_t\}$$

é chamado de tipo de decomposição de ρ .

Lema 7.0.16. Considere $n \geq 2$. Para uma permutação $\rho \in S_n$, tal que $\rho = (a_{11} \dots a_{1r_1}) \dots (a_{t1} \dots a_{tr_t})$ a sua decomposição em ciclos disjuntos, tem-se as seguintes afirmações:

a) Se $\sigma \in S_n$, então a permutação par $\sigma \rho \sigma^{-1}$ tem a decomposição em ciclos disjuntos

$$\sigma \rho \sigma^{-1} = (\sigma(a_{11}) \dots \sigma(a_{1r_1})) \dots (\sigma(a_{t1}) \dots \sigma(a_{tr_t})).$$

- b) Reciprocamente, se $\rho, \rho' \in S_n$ são permutações com o mesmo tipo de decomposição, então existe $\sigma \in S_n$ tal que $\rho' = \sigma \rho \sigma^{-1}$.
- c) Se as permutações $\rho, \rho' \in S_n$ têm o mesmo tipo de decomposição e se as permutações ρ e ρ' deixam pelo menos duas letras fixas, então existe $\mu \in A_n$ tal que $\rho' = \mu \rho \mu'$.

Demonstração. (a) Seja $\sigma \in S_n$ e considere um dos ciclos de ρ , digamos,

$$\gamma = (a_{11} \, a_{12} \, \dots \, a_{1r_1}).$$

Seja $x = \sigma(a_{11})$. Então, temos:

$$\sigma \rho \sigma^{-1}(x) = \sigma \Big(\rho \big(\sigma^{-1}(x) \big) \Big) = \sigma \Big(\rho(a_{11}) \Big) = \sigma(a_{12}).$$

De forma similar, para $j=1,\ldots,r_1$, definindo $x_j=\sigma(a_{1j})$, obtemos

$$\sigma \rho \sigma^{-1}(x_j) = \sigma(\rho(a_{1j})) = \sigma(a_{1,j+1}),$$

com a convenção de que $a_{1,r_1+1}=a_{11}$. Assim, a ação de $\sigma\rho\sigma^{-1}$ sobre os elementos $\sigma(a_{11}), \sigma(a_{12}), \ldots, \sigma(a_{1r_1})$ corresponde ao ciclo

$$(\sigma(a_{12}) \, \sigma(a_{13}) \, \dots \, \sigma(a_{1r_1+1})) = (\sigma(a_{1r_1+1}) \, \sigma(a_{12}) \, \dots \, \sigma(a_{1r_1}))$$
$$= (\sigma(a_{11}) \, \sigma(a_{12}) \, \dots \, \sigma(a_{1r_1})).$$

Como os ciclos da decomposição de ρ são disjuntos, o mesmo argumento vale para cada um deles e, portanto,

$$\sigma\rho\sigma^{-1} = (\sigma(a_{11})\,\sigma(a_{12})\,\ldots\,\sigma(a_{1r_1}))\cdots(\sigma(a_{t1})\,\sigma(a_{t2})\,\ldots\,\sigma(a_{tr_t})).$$

(b) Suponha que as decomposições em ciclos disjuntos de ρ e ρ' sejam

$$\rho = (a_{11} \, a_{12} \, \dots \, a_{1r_1}) \, (a_{21} \, a_{22} \, \dots \, a_{2r_2}) \, \cdots \, (a_{t1} \, a_{t2} \, \dots \, a_{tr_t})$$

 \mathbf{e}

$$\rho' = (b_{11} b_{12} \dots b_{1r_1}) (b_{21} b_{22} \dots b_{2r_2}) \dots (b_{t1} b_{t2} \dots b_{tr_t}).$$

Como os ciclos correspondentes possuem o mesmo comprimento, podemos definir uma bijeção $\sigma: \{1, 2, \dots, n\} \to \{1, 2, \dots, n\}$ da seguinte maneira:

$$\sigma(a_{ij}) = b_{ij}$$
, para $i = 1, ..., t \ e \ j = 1, ..., r_i$,

e, se existirem pontos fixos (isto é, elementos que não aparecem em nenhuma das notações dos ciclos), definimos σ de modo que eles se mantenham fixos. Assim, $\sigma \in S_n$.

Pela parte (a), temos

$$\sigma \rho \sigma^{-1} = (\sigma(a_{11}) \sigma(a_{12}) \dots \sigma(a_{1r_1})) \cdots (\sigma(a_{t1}) \sigma(a_{t2}) \dots \sigma(a_{tr_t})).$$

Pela definição de σ , isto é

$$\sigma \rho \sigma^{-1} = (b_{11} b_{12} \dots b_{1r_1}) (b_{21} b_{22} \dots b_{2r_2}) \dots (b_{t1} b_{t2} \dots b_{tr_t}) = \rho',$$

o que prova o item (b).

(c) Pela parte (b), existe $\sigma \in S_n$ tal que

$$\rho' = \sigma \rho \sigma^{-1}$$
.

Se σ for par (isto é, $\sigma \in A_n$), basta tomar $\mu = \sigma$.

Caso contrário, suponha que σ seja ímpar. Como tanto ρ quanto ρ' deixam pelo menos duas letras fixas, seja $i, j \in \{1, 2, ..., n\}$ tais que

$$\rho(i) = i, \quad \rho(j) = j, \quad \rho'(i) = i, \quad \rho'(j) = j.$$

Considere a transposição $\tau = (i j)$. Pela definição de transposição, τ é impar e, como i e j são pontos fixos de ρ e de ρ' , temos que τ comuta com ambas as permutações. Definindo

$$\mu = \tau \, \sigma$$

observamos que $\mu \in A_n$, pois o produto de duas permutações ímpares é par. De fato,

$$\mu \rho \mu^{-1} = \tau \sigma \rho \sigma^{-1} \tau^{-1}$$
.

Como $\tau^{-1} = \tau$ e τ comuta com ρ' (já que ρ' fixa $i \in j$), obtemos

$$\mu \rho \mu^{-1} = \tau \rho' \tau = \rho'.$$

Portanto, existe $\mu \in A_n$ tal que $\rho' = \mu \rho \mu^{-1}$, concluindo o item (c).

Proposição 7.0.17. Para $n \geq 3$:

- a) Todo elemento de A_n é um produto de 3-ciclos.
- b) Sejam $a,b\in\{1,2,\ldots,n\},$ com $a\neq b,$ então

$$A_n = \langle \{abl \mid l = 1, 2, \dots, n; l \neq a, b\} \rangle.$$

Demonstração. (a) Seja $\alpha \in A_n$. Pela Proposição 7.0.11, a paridade do número de transposições numa fatoração de α é invariante; portanto, por ser par, α pode ser escrita como um produto de um número par de transposições:

$$\alpha = \tau_1 \tau_2 \cdots \tau_{2k}, \quad \tau_i \text{ transposições.}$$

Agrupando as transposições em pares, temos:

$$\alpha = (\tau_1 \tau_2)(\tau_3 \tau_4) \cdots (\tau_{2k-1} \tau_{2k}).$$

Mostraremos que cada produto $\tau_{2i-1}\tau_{2i}$ pode ser escrito como produto de 3-ciclos.

Caso 1: Se as duas transposições compartilham um elemento, isto é, se

$$\tau_{2i-1} = (a b)$$
 e $\tau_{2i} = (b c)$,

com a, b, c distintos, e sem perda de generalidade, então:

$$(ab)(bc) = (abc),$$

ou seja, o produto é um 3-ciclo.

Caso 2: Se as transposições são disjuntas, isto é, se

$$\tau_{2i-1} = (a b)$$
 e $\tau_{2i} = (c d)$,

com a, b, c, d todos distintos, então pode-se verificar que:

$$(a b)(c d) = (a b)(a c)(a c)(c d) = (a c b)(a c d).$$

Ou seja, o produto de duas transposições disjuntas pode ser escrito como produto de dois 3-ciclos.

Em ambos os casos, cada par de transposições é expresso como produto de 3-ciclos. Assim, α , que é o produto de um número par de transposições, pode ser reagrupada em produtos de 3-ciclos. Concluímos que todo elemento de A_n pode ser escrito como produto de 3-ciclos.

(b) Seja fixos $a, b \in \{1, 2, ..., n\}$ com $a \neq b$. Pela parte (a), sabemos que A_n é gerado por 3-ciclos. Mostraremos que, a partir dos 3-ciclos da forma

$$(a b l), l \in \{1, 2, ..., n\} e l \neq a, b,$$

é possível obter qualquer 3-ciclo de S_n (e, portanto, de A_n).

Seja (x y z) um 3-ciclo arbitrário. Pela Proposição 7.0.16 (parte (b)), como todos os 3-ciclos possuem o mesmo tipo de decomposição, existe $\sigma \in S_n$ tal que

$$(x y z) = \sigma (a b l) \sigma^{-1},$$

para algum $l \neq a, b$.

Contudo, para garantir que o conjugador pertença a A_n , observe que, se σ não for par, como $n \geq 3$ existem pelo menos três letras e, portanto, podemos compor σ com uma transposição que fixe a e b (por exemplo, uma transposição $\tau = (l_1 l_2)$ com $l_1, l_2 \notin \{a, b\}$) de modo que $\mu = \tau \sigma \in A_n$. Note que, como a e b estão fixos por essa transposição, temos:

$$\mu (a b l) \mu^{-1} = \tau \sigma (a b l) \sigma^{-1} \tau^{-1} = \tau (\sigma (a b l) \sigma^{-1}) \tau^{-1} = \sigma (a b l) \sigma^{-1},$$

pois τ comuta com o 3-ciclo $\sigma(abl)\sigma^{-1}$ (já que os pontos a e b permanecem fixos).

Portanto, qualquer 3-ciclo é conjugado (por um conjugador par) a um 3-ciclo da forma $(a\,b\,l)$. Como A_n é gerado pelos 3-ciclos, conclui-se que

$$A_n = \langle \{(a \, b \, l) \mid l \in \{1, 2, \dots, n\}, \, l \neq a, b\} \rangle.$$

Definição 7.0.18. Um grupo A é simples se A e $\{e\}$ são seus únicos subgrupos normais.

Teorema 7.0.19. Seja n=3 ou $n\geq 5$. Então A_n é um grupo simples.

Demonstração. Seja N um subgrupo normal não trivial de A_n . Nosso objetivo é mostrar que $N=A_n$.

Caso 1: n = 3. Observa-se que A_3 possui exatamente 3 elementos, ou seja, $A_3 \simeq \mathbb{Z}/3\mathbb{Z}$ é um grupo cíclico de ordem primo. Assim, os únicos subgrupos (e, em particular, os únicos subgrupos normais) de A_3 são $\{e\}$ e A_3 . Portanto, A_3 é simples.

Caso 2: $n \ge 5$. Seja $1 \ne \tau \in N$. Pela Proposição 7.0.17, todo elemento de A_n pode ser escrito como um produto de 3-ciclos. Existem duas possibilidades:

(a) Se τ é um 3-ciclo, então temos um 3-ciclo não trivial em N.

(b) Se τ não é um 3-ciclo, considere sua decomposição em ciclos disjuntos. Em algum dos fatores haverá um ciclo de comprimento diferente de 1 e, utilizando as técnicas já demonstradas (por exemplo, o fato de que o produto de duas transposições disjuntas pode ser escrito como o produto de dois 3-ciclos, como na igualdade

$$(ab)(cd) = (acb)(acd),$$

que foi verificada anteriormente), pode-se encontrar, por conjugação, um 3-ciclo que esteja contido em N.

Em ambos os casos, concluímos que N contém um 3-ciclo não trivial.

Pela Proposição 7.0.17 (item (b)) e pelo Lema 7.0.16 (parte (c)), todos os 3-ciclos de A_n são conjugados entre si (na medida em que cada 3-ciclo deixa pelo menos duas letras fixas, o que ocorre para $n \geq 5$). Como N é normal, se contém um 3-ciclo ρ , então para todo $\sigma \in A_n$ temos

$$\sigma \rho \sigma^{-1} \in N$$
.

Ou seja, N contém todos os 3-ciclos de A_n .

Por fim, como A_n é gerado pelos 3-ciclos (vide Proposição 7.0.17, item (b)), temos que $N=A_n$.

Assim, os únicos subgrupos normais de A_n são $\{e\}$ e A_n , o que, de acordo com a Definição 7.0.18, significa que A_n é simples.

Proposição 7.0.20. O conjunto $K \subset S_4$ dado por

$$K = \{id, (12)(34), (13)(24), (14)(23)\}\$$

é um grupo abeliano.

Demonstração. Para provar que K é um grupo, basta verificar que K é não-vazio, fechado sob a operação de composição e que todo elemento tem seu inverso em K. É claro que $K \neq \emptyset$.

Em seguida, mostraremos o fechamento explicitamente montando a tabela de multiplicação dos elementos de K. Considere a seguinte tabela:

• A linha referente ao elemento id mostra que, para qualquer $g \in K$, $id \cdot g = g$.

• Observa-se que as demais linhas possuem como produto elementos que pertencem a K. Por exemplo:

$$-(12)(34)\cdot(13)(24)=(14)(23)\in K.$$

$$-(13)(24) \cdot (14)(23) = (12)(34) \in K.$$

Como K satisfaz o fechamento sob a operação e a existência de inversos, concluímos que K é um grupo. Além disso, pela tabela de multiplicação é claro pela simetria que K é abeliano, pois a multiplicação é comutativa. Assim, K é um grupo abeliano.

Definição 7.0.21. O grupo de quatro elementos

$$K = \{id, (12)(34), (13)(24), (14)(23)\}\$$

é chamado de grupo de Klein.

Proposição 7.0.22. Sejam a, b, c, d quatro elementos distintos de $\{1, 2, 3, 4\}$. Então, para todo $x \in S_4$, temos:

$$x\left((a\,b)(c\,d)\right)x^{-1} = \left(x(a)\,x(b)\right)\left(x(c)\,x(d)\right).$$

Em particular, se x é um 3-ciclo, então $x\left((a\,b)(c\,d)\right)x^{-1}$ é uma dupla transposição.

Demonstração. Observe que a proposição é um caso particular do Lema 7.0.16 (parte (a)). Assim, tem-se

$$x\left((a\,b)(c\,d)\right)x^{-1} = \left(x(a)\,x(b)\right)\left(x(c)\,x(d)\right),\,$$

que é uma dupla transposição.

Teorema 7.0.23. Os únicos subgrupos normais do grupo alternado A_4 são $\{id\}$, A_4 e o grupo de Klein (denotado aqui por K).

Demonstração. Sabemos que o grupo simétrico S_4 tem ordem 4! = 24. Seus elementos podem ser classificados e expressos como produtos de transposições (2-ciclos) da seguinte maneira:

1. Identidade:

2. Transposições (2-ciclos): 6 elementos

$$(12)$$
, (13) , (14) , (23) , (24) , (34) .

3. **3-ciclos:** 8 elementos Cada 3-ciclo pode ser escrito como o produto de 2 transposições, pois

$$(abc) = (ac)(ab).$$

Por exemplo, temos:

$$(123) = (13)(12), \quad (132) = (12)(13),$$

e os demais 3-ciclos:

$$(124)$$
, (142) , (134) , (143) , (234) , (243) .

4. **4-ciclos:** 6 elementos Cada 4-ciclo pode ser escrito como produto de 3 transposições. Por exemplo:

$$(1234) = (14)(13)(12).$$

Assim, temos os 4-ciclos:

$$(1234)$$
, (1243) , (1324) , (1342) , (1423) , (1432) .

5. Duplas transposições (produto de duas transposições disjuntas): 3 elementos Estes já estão na forma desejada:

A soma dos elementos é:

$$1+6+8+6+3=24.$$

Cada elemento de S_4 pode ser escrito como produto de transposições. Filtrando os elementos de S_4 que possuem uma expressão em transposições com número par de fatores, obtemos o grupo alternado A_4 . Assim, temos:

$$A_4 = \{id, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)\}.$$

Para provar que $K \triangleleft A_4$, basta mostrar que, para todo $a \in A_4$ e todo $k \in K$,

$$a k a^{-1} \in K$$
.

Fazemos isso em três casos:

Caso 1: a = e.

Temos

$$e k e^{-1} = k \in K$$
.

Caso 2: a é uma dupla transposição, ou seja, $a \in K$. Como K é abeliano, ak = ka e portanto

$$a k a^{-1} = k a a^{-1} = k \in K$$
.

Caso 3: $a \in \text{um } 3\text{-ciclo}$.

Tome

$$a = (pqr),$$

onde $\{p, q, r\} \subseteq \{1, 2, 3, 4\}$, e

$$k = (i j)(\ell m) \in K, \quad \{i, j, \ell, m\} = \{1, 2, 3, 4\}.$$

Então, pela proposição 7.0.22,

$$a k a^{-1} = (a(i) a(j)) (a(\ell) a(m)),$$

que é novamente uma dupla de transposições disjuntas, isto é,

$$a k a^{-1} \in \{(12)(34), (13)(24), (14)(23)\} = K.$$

Em todos os casos concluímos $a k a^{-1} \in K$, i.e., K é subgrupo normal de A_4 .

Resta mostrar que esses são os únicos subgrupos normais de A_4 .

Assim, suponhamos $H \leq A_4$, tal que $H \neq \{id\}$. Se H possui 3-ciclos, digamos (123), então também possui (123)⁻¹ = (132), assim como (324)(132)(324)⁻¹ = (124), pela definição de subgrupo normal. Ora, pela proposição 7.0.17, $A_4 = \langle (123), (124) \rangle = H$.

Por fim, se H não possui 3-ciclos, então deve possuir alguma dupla transposição, digamos (12)(34). Assim, H contêm também (234)(12)(34)(234) $^{-1}$ = (13)(24) e (12)(34)(13)(24) = (14)(23). Assim, H = K, mostrando a unicidade dos três subgrupos.

Proposição 7.0.24. a) Seja n = 3 ou $n \ge 5$. Então os únicos subgrupos normais de S_n são $\{id\}$, A_n e S_n .

b) Seja n=4. Então os únicos subgrupos normais de S_4 são $\{id\}$, A_4 , o grupo de Klein K e S_4 .

Demonstração. a) É claro que $\{id\}$, A_n e S_n são subgrupos normais de S_n .

Mostraremos agora a unicidade dos mesmos. Seja $H \triangleleft S_n$. Consideremos também o homomorfismo $\psi : H \to (\mathbb{Z}/2\mathbb{Z})^*$, já visto anteriormente com $\psi(\alpha) = 1$ se α é par e $\psi(\alpha) = -1$ se α é impar, para $\alpha \in S_n$.

Note que se H não contém um elemento ímpar, então $H \subseteq A_n$. Como H é normal em S_n , então $H \triangleleft A_n$. Assim, pelo teorema 7.0.19, temos que $H = A_n$ ou $H = \{id\}$. Se H contém um elemento ímpar, pela proposição 7.0.14, tem-se que ou o índice $(H:H\cap A_n)=2$ ou $H < A_n$. Assim, dividiremos em casos: Caso $H < A_n$: Como $H \triangleleft S_n$, temos que H é normal em A_n e, portanto, $H = A_n$ ou $H = \{id\}$, pelo teorema 7.0.19.

Caso $(H: H \cap A_n) = 2$: Como $H \triangleleft S_n$, então $H \cap A_n \triangleleft A_n$. E, pelo teorema 7.0.19, temse que $H \cap A_n = \{id\}$ ou $H \cap A_n = A_n$. Assim, |H| = 2 ou $H = S_n$, respectivamente.

Caso |H|=2, ou seja, $H\cap A_n=\{id\}$. Assim, $H=\{id,\tau\}$, onde τ é uma transposição. Ora, como H é um subgrupo, $\tau^2=id\in H$. Além disso, como H é normal, para qualquer $\sigma\in S_n$, $\sigma\tau\sigma^{-1}\in H$. Assim, $\sigma\tau\sigma^{-1}=id$ ou $\sigma\tau\sigma^{-1}=\tau$. No entanto, isso implica que τ comuta com todos os elementos de S_n , o que é uma contradição, pois τ não comuta com todas as permutações. Portanto, H não pode ter ordem 2.

Concluímos que os únicos subgrupos normais de S_n são $\{id\}$, A_n e S_n .

b) Para n=4, sabemos que A_4 possui exatamente três subgrupos normais: $\{id\}$, A_4 , e o grupo de Klein K, conforme demonstrado no teorema 7.0.23. Como $A_4 \triangleleft S_4$ e $(S_4:A_4)=2$, pelo Teorema da Correspondência, tem-se uma bijeção entre o conjunto dos subgrupos de S_4 que contêm A_4 e o conjunto dos subgrupos de S_4/A_4 , logo, qualquer subgrupo normal de S_4 que não esteja contido em A_4 deve ser igual a S_4 . Além disso, qualquer subgrupo normal de S_4 que esteja contido em A_4 deve ser um dos subgrupos normais de A_4 , ou seja, $\{id\}$, A_4 , ou K. Portanto, os únicos subgrupos normais de S_4 são $\{id\}$, A_4 , K, e S_4 .

Capítulo 8

Grupos Solúveis

Definição 8.0.1. Seja G um grupo. Uma série subnormal de G, denotada aqui por (*) é uma sequência de subgrupos

$$\{e\} = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G,$$

tal que cada G_i é um subgrupo normal de G_{i+1} para $i=0,1,\ldots,n-1$.

Observa-se que os grupos quocientes da série (*) são os grupos G_{i+1}/G_i , para $i=0,1,\ldots,n-1$.

Definição 8.0.2. O *comprimento* de uma série subnormal (*) é o número de fatores quocientes G_{i+1}/G_i que não são triviais.

Definição 8.0.3. Uma série subnormal (*) é um *refinamento* de outra série subnormal (*) se pode ser obtida de (*) pela inserção de subgrupos normais intermediários. O refinamento é dito próprio se insere ao menos um novo subgrupo normal não presente originalmente em (*).

Definição 8.0.4. Uma série subnormal é chamada de *série de composição* de G se não admite refinamento próprio.

Em particular, em uma série de decomposição, cada quociente é um grupo simples, pois caso contrário haveria como inserir um subgrupo normal próprio em G_{i+1}/G_i , refinando a série.

Proposição 8.0.5. Existem grupos que não admitem série de composição.

Demonstração. Por exemplo, o grupo aditivo (\mathbb{Z} , +) não admite série de composição. Suponha, por contradição, que \mathbb{Z} admita uma série de composição

$$0 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = \mathbb{Z}.$$

Sabemos que para toda série de composição, cada fator quociente G_{i+1}/G_i é um grupo simples. Vamos analisar o primeiro subgrupo da série, G_1 . Qualquer subgrupo não-trivial de \mathbb{Z} é da forma $m\mathbb{Z}$ para algum inteiro m > 0. Assim, $G_1 = m\mathbb{Z}$ para algum m > 0. Considere agora o quociente $G_1/G_0 = G_1/0 \cong m\mathbb{Z}$. Este quociente é isomorfo a \mathbb{Z} , pois $m\mathbb{Z} \cong \mathbb{Z}$ (pelo isomorfismo $f: \mathbb{Z} \to m\mathbb{Z}$ dado por f(k) = mk). Porém, \mathbb{Z} não é um grupo simples, pois contém $2\mathbb{Z}$ como subgrupo normal diferente de 0 e diferente do próprio \mathbb{Z} . Por definição, um grupo simples não pode conter subgrupos normais além do trivial e do próprio grupo. Isto contradiz a exigência de que todos os fatores quocientes numa série de composição sejam grupos simples. Portanto, $(\mathbb{Z}, +)$ não admite série de composição. \square

Proposição 8.0.6. Todo grupo finito $G \neq \{e\}$ admite uma série de composição.

Demonstração. Demonstraremos por indução sobre a ordem |G| do grupo. **Base:** Se |G| = 1, então $G = \{e\}$, que é o caso trivial excluído pelo enunciado. Se |G| = p é um número primo, então G é um grupo simples (pois qualquer subgrupo tem ordem 1 ou p pelo Teorema de Lagrange). Neste caso, a série

$$e = G_0 \triangleleft G_1 = G$$

é uma série de composição, pois $G_1/G_0 \cong G$ é simples.

Hipótese de indução: Suponha que todo grupo finito de ordem menor que |G| admite uma série de composição.

Passo indutivo: Para um grupo G de ordem |G| > p, consideramos dois casos:

Caso 1: Se G é simples, então a série $e \triangleleft G$ é uma série de composição, pois $G/e \cong G$ é simples.

Caso 2: Se G não é simples, então existe um subgrupo normal N de G tal que $e \neq N \neq G$. Como |N| < |G|, pela hipótese de indução, N admite uma série de composição:

$$e = N_0 \triangleleft N_1 \triangleleft N_2 \triangleleft \cdots \triangleleft N_k = N$$

Além disso, o grupo quociente G/N também tem ordem menor que |G|, portanto, pela hipótese de indução, G/N admite uma série de composição:

$$N/N = H_0/N \triangleleft H_1/N \triangleleft H_2/N \triangleleft \cdots \triangleleft H_m/N = G/N$$

onde $H_0 = N \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_m = G$ é uma sequência de subgrupos de G contendo N. Podemos então combinar estas duas séries para formar uma série subnormal para G:

$$e = N_0 \triangleleft N_1 \triangleleft N_2 \triangleleft \cdots \triangleleft N_k = N = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_m = G$$

Esta série é uma série de composição para G, pois:

Os quocientes N_{i+1}/N_i são simples, pois vêm da série de composição de N. Os quocientes H_{j+1}/H_j são isomorfos a $(H_{j+1}/N)/(H_j/N)$, que são simples, pois vêm da série de composição de G/N.

Portanto, todo grupo finito admite uma série de composição.

Definição 8.0.7. Duas séries subnormais de um grupo G

$$e = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n = G$$

e

$$e = H_0 \triangleleft H_1 \triangleleft H_2 \triangleleft \cdots \triangleleft H_m = G$$

são ditas equivalentes se n=m e existe uma permutação π do conjunto $1,2,\ldots,n$ tal que $G_i/G_{i-1} \cong H_{\pi(i)}/H_{\pi(i)-1}$ para $i=1,2,\ldots,n$. Em outras palavras, duas séries subnormais são equivalentes se elas possuem o mesmo número de fatores quocientes e estes fatores são isomorfos entre si, possivelmente em ordem diferente.

Referências Bibliográficas

[1] Arnaldo GARCIA and Yves LEQUAIN. *Elementos de Álgebra*. IMPA, Rio de Janeiro, 6. ed. edition, 2013. ISBN 978-85-244-0190-9.