4. gyakorlat

VALÓS SOROZATOK 1.

Emlékeztető. Legyen $(a_n): \mathbb{N} \to \mathbb{R}$ egy valós sorozat. Ekkor

• (a_n) konvergens, ha

$$\exists A \in \mathbb{R}, \ \forall \varepsilon > 0 \text{-hoz} \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon |a_n - A| < \varepsilon.$$

A-t a sorozat határértékének nevezzük,

• (a_n) divergens, ha nem konvergens, azaz

$$\forall A \in \mathbb{R}$$
-hez $\exists \varepsilon > 0, \ \forall n_0 \in \mathbb{N}$ -hoz $\exists n > n_0 \colon |a_n - A| \ge \varepsilon$

• (a_n) határértéke $+\infty$ (vagy a sorozat $+\infty$ -hez tart), ha

$$\forall P > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 : a_n > P$

• (a_n) határértéke $-\infty$ (vagy a sorozat $-\infty$ -hez tart), ha

$$\forall P < 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon a_n < P.$$

• Az (a_n) sorozatnak *van határértéke*, ha konvergens, vagy $(+\infty)$ -hez vagy pedig $(-\infty)$ -hez tart. Azt a tényt, hogy a sorozatnak a határérték $A \in \overline{\mathbb{R}}$, az alábbi szimbólumok valamelyikével jelöljük:

$$\lim(a_n) := A \in \overline{\mathbb{R}}, \qquad \lim_{n \to +\infty} a_n := A \in \overline{\mathbb{R}}, \qquad a_n \to A \in \overline{\mathbb{R}}, \text{ ha } n \to +\infty.$$

A továbbiakban

$$\lim(a_n) \in \mathbb{R}$$

jelöli azt, hogy az (a_n) sorozat konvergens, vagyis véges a határértéke, a

$$\lim(a_n) \in \overline{\mathbb{R}}$$

jelölés pedig azt fejezi ki, hogy az (a_n) sorozatnak van határértéke, azaz a sorozat vagy konvergens, vagy $+\infty$, vagy pedig $-\infty$ a határértéke.

Megjegyz'esek.

- 1. Sorozatok határértékének a vizsgálata a *definíció alapján* nem egyszerű feladat. A határértéket ui. először meg kell *sejteni*. (Ilyen "technikákra" előadáson láttunk példákat).
 - Most foglalkozzunk csak azzal, hogy a definíció alapján hogyan lehet belátni azt, hogy egy sorozat határértéke egy $\overline{\mathbb{R}}$ -beli A elem. Ehhez azt kell igazolni, hogy tetszőlegesen rögzített $\varepsilon > 0$, illetve $P \in \mathbb{R}$ számhoz (az ún. hibakorláthoz) van olyan $n_0 \in \mathbb{N}$ (ezt $k\ddot{u}sz\ddot{o}bindexnek$ nevezzük), hogy a sorozat ennél nagyobb indexű tagjaira bizonyos egyenlőtlenségek teljesülnek.
 - Az n_0 küszöbindex függ az ε -tól, illetve a P hibakorláttól. Világos, hogy egy küszöbindexnél nagyobb természetes szám is jó küszöbindex. A küszöbindex megadásánál nem törekszünk a legkisebb küszöbindex meghatározására.
- 2. Egy hibakorláthoz tartozó n_0 küszöbindex keresése mindig egy egyenlőtlenség vizsgálatára vezet. Azt kell belátnunk, hogy az egy n_0 -tól kezdve minden indexre teljesül. Ennek igazolásához megoldhatnánk a szóban forgó egyenlőtlenséget is; ez azonban az esetek többségében reménytelen feladat. Ezért küszöbindex keresésénél rendszerint a következő *ötletet* alkalmazzuk:
 - A sorozat tagjait megadó képletet (a határérték-típustól függően) több lépésben növeljük vagy csökkentjük addig, amíg a végén a küszöbindexre egy "ránézésre" megoldható egyenlőtlenséget nem kapunk.

1. Feladat. Tekintsük az (a_n) sorozat konvergenciájának a definícióját:

$$\exists A \in \mathbb{R}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon |a_n - A| < \varepsilon.$$

Módosítsuk ezt a következőképpen:

(*)
$$\exists A \in \mathbb{R} \ \acute{e}s \ \exists n_0 \in \mathbb{N}, \ \forall \varepsilon > 0 \ \acute{e}s \ \forall n > n_0 \colon |a_n - A| < \varepsilon.$$

 $Az(a_n)$ sorozat milyen tulajdonságát fejezi ki az utóbbi állítás?

Megoldás. Figyeljük meg, hogy (*) csupán sorrendben különbözik a konvergencia definíciójától.

Mit jelent a (*) állítás? Azt, hogy van olyan $A \in \mathbb{R}$ és $n_0 \in \mathbb{N}$, hogy az

$$|a_n - A| < \varepsilon$$

egyenlőtlenség minden pozitív ε számra igaz, ha $n > n_0$. Mivel $|a_n - A| \ge 0$, ezért ez csak úgy lehetséges, ha

$$|a_n - A| = 0 \qquad \iff \qquad a_n = A$$

minden $n > n_0$ indexre. Ez pedig pontosan azt jelenti, hogy a sorozat n_0 -nál nagyobb indexű tagjai mind A-val egyenlők, röviden: (a_n) "majdnem konstans sorozat".

Világos, hogy (*) \implies (a_n) konvergens sorozat. A fordított állítás azonban nem igaz, hiszen például az $\left(\frac{1}{n}\right)$ sorozat konvergens és 0 a határértéke, de erre a sorozatra a (*) állítás nyilván nem teljesül.

2. Feladat. A konvergencia definíciója alapján mutassuk meg, hogy

a)
$$\lim_{n \to +\infty} \frac{n}{2n-3} = \frac{1}{2}$$
, b) $\lim_{n \to +\infty} \frac{n^2+1}{2n^2+n+2} = \frac{1}{2}$, c) $\lim_{n \to +\infty} \left(\sqrt{n+3} - \sqrt{n+1}\right) = 0$.

Megoldás. Tetszőleges $\varepsilon > 0$ hibakorláthoz meg kell határozni egy lehetséges n_0 küszöbindexet!

a) A határérték definíciója szerint azt kell belátni, hogy

(*)
$$\forall \varepsilon > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \left| \frac{n}{2n-3} - \frac{1}{2} \right| < \varepsilon.$$

Ezt az állítást az egyenlőtlenség megoldásával is igazolhatnánk. Figyeljük meg, hogy elég azt bebizonyítani, hogy a szóban forgó egyenlőtlenség teljesül alkalmas n_0 küszöbindexnél nagyobb n-ekre. Ezért az egyenlőtlenség megoldása helyett egy lényegesen egyszerűbb utat fogunk követni: az

$$\left| \frac{n}{2n-3} - \frac{1}{2} \right|$$

kifejezést több lépésben egyre egyszerűbb kifejezésekkel *növeljük* addig, ameddig a végén a küszöbindexre egy "ránézésre" megoldható egyenlőtlenséget nem kapunk.

2

Legyen $\varepsilon > 0$ egy rögzített valós szám. Ekkor

$$\left| \frac{n}{2n-3} - \frac{1}{2} \right| = \left| \frac{2n - (2n-3)}{2(2n-3)} \right| = \frac{3}{2|2n-3|} = (2n-3 > 0 \text{ ha } \underline{n > 1}) =$$

$$= \frac{3}{2(2n-3)} = \frac{3}{4n-6} = \frac{3}{n + \underbrace{3(n-2)}_{\geq 0, \text{ ha } n > 1}} \leq \underbrace{\frac{3}{n} < \varepsilon}_{n > \frac{3}{\varepsilon}}.$$

Az utolsó egyenlőtlenség teljesül, ha $n > \frac{3}{\varepsilon}$. Legyen

$$n_0 := \max \left\{ \left\lceil \frac{3}{\varepsilon} \right\rceil, 1 \right\}.$$

Ha $n > n_0$ tetszőleges természetes szám, akkor az előzőek alapján fennáll az

$$\left| \frac{n}{2n-3} - \frac{1}{2} \right| < \varepsilon$$

egyenlőtlenség, ezért ε -hoz n_0 egy alkalmas küszöbindex. A (*) állítást, így a

$$\lim_{n \to +\infty} \frac{n}{2n-3} = \frac{1}{2}$$

egyenlőséget bebizonyítottuk.

b) A határérték definíciója szerint azt kell belátni, hogy

(*)
$$\forall \varepsilon > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \left| \frac{n^2 + 1}{2n^2 + n + 2} - \frac{1}{2} \right| < \varepsilon.$$

Most is meg tudnánk oldani az utolsó egyenlőtlenséget, de az előző feladat megoldásában vázolt utat fogjuk követni. Legyen $\varepsilon > 0$ egy rögzített valós szám. Ekkor

$$\left| \frac{n^2 + 1}{2n^2 + n + 2} - \frac{1}{2} \right| = \left| \frac{2(n^2 + 1) - (2n^2 + n + 2)}{2(2n^2 + n + 2)} \right| = \frac{|-n|}{2(2n^2 + n + 2)} = \frac{n}{2(2n^2 + n + 2)} \le \text{ (ha } n > 0) \le \frac{n}{4n^2} = \underbrace{\frac{1}{4n} < \varepsilon}_{n > \frac{1}{4\varepsilon}}.$$

Az utolsó egyenlőtlenség teljesül, ha $n > \frac{1}{4\varepsilon}$. Legyen

$$n_0 := \left[\frac{1}{4\varepsilon}\right].$$

Ekkor minden $n > n_0$ index esetén az

$$\left| \frac{n^2 + 1}{2n^2 + n + 2} - \frac{1}{2} \right| < \varepsilon$$

egyenlőtlenség teljesül, ezért ε -hoz n_0 egy alkalmas küszöbindex. A (*) állítást, így a

$$\lim_{n \to +\infty} \frac{n^2 + 1}{2n^2 + n + 2} = \frac{1}{2}$$

egyenlőséget bebizonyítottuk.

c) A határérték definíciója szerint azt kell belátni, hogy

(*)
$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \left| \left(\sqrt{n+3} - \sqrt{n+1} \right) - 0 \right| < \varepsilon.$

Az utolsó egyenlőtlenség megoldása most hosszadalmas lenne, viszont az előző feladatokban mutatott utat követve egyszerűen igazolhatjuk a (*) állítást.

Először azonban "gyöktelenítéssel" átalakítjuk a sorozat tagjait megadó kifejezést:

$$\left(\sqrt{n+3} - \sqrt{n+1}\right) \cdot \frac{\sqrt{n+3} + \sqrt{n+1}}{\sqrt{n+3} + \sqrt{n+1}} = \frac{(n+3) - (n+1)}{\sqrt{n+3} + \sqrt{n+1}} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}}$$

minden $n \in \mathbb{N}^+$ esetén. (Ebből már világosabb képet alkothatunk a sorozat tagjainak a viselkedéséről, ti. elég nagy n-ekre a sorozat tagjai tetszőlegesen közel lesznek 0-hoz.)

Legyen $\varepsilon > 0$ egy rögzített valós szám. Ekkor

$$\left| \left(\sqrt{n+3} - \sqrt{n+1} \right) - 0 \right| = \sqrt{n+3} - \sqrt{n+1} = \frac{2}{\sqrt{n+3} + \sqrt{n+1}} < \left(\text{elhagyjuk } \sqrt{n+3} > 0 \text{-t} \right) < \frac{2}{\sqrt{n+1}} < \left(\text{ha } n > 0 \right) < \frac{2}{\sqrt{n}} < \varepsilon.$$

Az utolsó egyenlőtlenség teljesül, ha $n > \frac{4}{\varepsilon^2}$. Legyen

$$n_0 := \left[\frac{4}{\varepsilon^2}\right].$$

Ekkor minden $n > n_0$ index esetén az

$$\left| \left(\sqrt{n+3} - \sqrt{n+1} \, \right) - 0 \right| < \varepsilon$$

egyenlőtlenség teljesül, ezért ε -hoz n_0 egy alkalmas küszöbindex. A (*) állítást, így a

$$\lim_{n \to +\infty} \left(\sqrt{n+3} - \sqrt{n+1} \right) = 0$$

egyenlőséget bebizonyítottuk.

3. Feladat. A definíció szerint az (a_n) sorozat $(+\infty)$ -hez tart, ha

$$\forall P > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon a_n > P.$$

4

Módosítsuk ezt a következőképpen:

$$\exists P > 0 \text{ \'es } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon a_n > P.$$

 $Az(a_n)$ sorozat milyen tulajdonságát fejezi ki az utóbbi állítás?

Megoldás. Figyeljük meg, hogy (**) csak abban különbözik a ($+\infty$)-hez tartás definíciójától, hogy ez utóbbiban az első " \forall " kvantor helyett a " \exists " kvantor szerepel.

Világos, hogy a (**) állítás azt fejezi ki, hogy a sorozat n_0 indexnél nagyobb indexű tagjai P-nél nagyobbak.

Nyilvánvaló, hogy $\lim(a_n) = +\infty \implies$ a (**) állítás. Ennek a megfordítása azonban nem igaz, hiszen például az $a_n = 2$ ($n \in \mathbb{N}$) sorozatra (**) P = 1-val teljesül, de (a_n) határértéke nem $+\infty$.

4. Feladat. A határérték definíciója alapján mutassuk meg, hogy

a)
$$\lim_{n \to +\infty} \frac{n^2 + 3n + 1}{n+3} = +\infty$$
, b) $\lim_{n \to +\infty} \frac{2 - 3n^2}{n+1} = -\infty$.

 $\pmb{Megold\'{a}s}$. Tetszőleges P hibakorláthoz meg kell határozni egy lehetséges n_0 küszöbindexet!

a) A $(+\infty)$ -hez definíciója szerint azt kell megmutatni, hogy

(*)
$$\forall P > 0\text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{n^2 + 3n + 1}{n + 3} > P.$$

Ezt az állítást az utolsó egyenlőtlenség megoldása helyett a 2. feladat megoldásaiban szereplő gondolatok felhasználásával igazoljuk. Nevezetesen: most az

$$\frac{n^2+3n+1}{n+3}$$

kifejezést több lépésben addig *csökkentjük*, ameddig a küszöbindexre egy olyan egyszerű egyenlőtlenséget nem kapunk, amelynek a megoldása már "ránézésre" is megállapítható.

Legyen tehát P > 0 egy tetszőlegesen rögzített valós szám. Ekkor azt kapjuk, hogy

$$\frac{n^2 + 3n + 1}{n + 3} > \frac{n^2}{n + 3} \ge \text{ (ha } n > 0) \ge \frac{n^2}{n + 3n} = \frac{n^2}{4n} = \underbrace{\frac{n}{4}}_{n > 4P}.$$

Az utolsó egyenlőtlenség igaz, ha n > 4P. Legyen

$$n_0 := [4P].$$

Ekkor $\forall n > n_0$ indexre az

$$\frac{n^2+3n+1}{n+3} > P$$

egyenlőtlenség teljesül, ezért P > 0-hoz n_0 egy alkalmas küszöbindex.

A (*) állítást, így a

$$\lim_{n \to +\infty} \frac{n^2 + 3n + 1}{n+3} = +\infty$$

egyenlőséget is bebizonyítottuk.

b) A $(-\infty)$ -hez definíciója szerint azt kell igazolni, hogy

(*)
$$\forall P < 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{2 - 3n^2}{n + 1} < P.$$

Szorozzuk meg az utolsó egyenlőtlenséget (-1)-gyel, és vegyük figyelembe, hogy ekkor az egyenlőtlenség iránya megfordul:

$$\frac{2 - 3n^2}{n + 1} < P \quad \iff \quad (-1) \cdot \frac{2 - 3n^2}{n + 1} > (-1) \cdot P \quad \iff \quad \frac{3n^2 - 2}{n + 1} > -P.$$

Legyen P<0 egy tetszőlegesen rögzített valós szám. Azt kell belátni, hogy az utolsó egyenlőtlenség egy alkalmas n_0 küszöbindextől kezdve igaz. Az előző megoldásban alkalmazott módszert követve azt kapjuk, hogy

$$\frac{3n^2 - 2}{n+1} = \frac{2n^2 + (n^2 - 2)}{n+1} > \text{ (ha } \underline{n > 1}, \text{ akkor } n^2 - 2 > 0) >$$
$$> \frac{2n^2}{n+1} \ge \frac{2n^2}{n+n} = \frac{2n^2}{2n} = \underbrace{n > -P}.$$

Legyen

$$n_0 := \max\{1, [-P]\}.$$

Ekkor $\forall n > n_0$ indexre a

$$\frac{3n^2 - 2}{n+1} > -P \qquad \iff \qquad \frac{2 - 3n^2}{n+1} < P$$

egyenlőtlenség teljesül, ezért P < 0-hoz n_0 egy alkalmas küszöbindex.

A (*) állítást, így a

$$\lim_{n \to +\infty} \frac{2 - 3n^2}{n + 1} = -\infty$$

egyenlőséget is bebizonyítottuk.