

Integrated Complex Advanced Robotic Unmanned System

David Gitz, EE, ICARUS Lead Engineer

Topics:

- System Description
- Capabilities and Technologies
- System Specifications
- Q&A

System Description

Vehicle

Vehicle

 Quad-Rotor design – Offers simpler control system with fewer moving parts than a single rotor helicopter and minor reduction in lift capacity

Vehicle

- 2 "Brains", 1 SoM Board and 1 Parallax PropellerTM uC
- SoM handles waypoint navigation, mission planning, vehicle health.
- PropellerTM uC handles PWM generation.
- In the event of an in-air mishap, PropellerTM uC can take over Vehicle and land safely.

Vehicle Specifications

- Sensors: 3-Axis Accelerometer, 3-Axis Gyroscope, 3-Axis Magnetometer (INU), Digital Compass, Altimeter, GPS, 7 Ultrasonic Sensors
- Power: 8 Brushless DC 200 Watt Motors, 4 Micro Servo's,
 2 Lithium-Ion 11.1V 5 Amp-Hours Batteries, 4 18A Electronic
 Speed Controllers, 5V and 3.3V Linear Voltage Regulators.
- Control: SoM Controller (Primary), Propeller Controller (Secondary), custom PCB.
- Communications: Xbee Radio for Command/Control, Video Transmitter, Wi-Fi (Field programming, tentative).
- Fabrication: ~50% COTS, ~50% produced by MakerBot/Ponoku.

Movement

Prototype Systems

Safety System

Heat Removal System

Test-Fixture Attachment System

Vehicle w/ Prototype Systems

RCU

- Custom PCB insideXbox-36o Controller
- Features Mode and Error Display, Vehicle Battery Indicator, Force-Feedback and 5 hours of continuous operation.

RCU Specifications

- Communications: XBee Radio for Command/Control
- Input/Output: 9 Switches/Buttons, 2 Dual-Axis Joysticks, GPS Sensor, 10-Segment LED, LCD Screen, Vibrating Motors.
- Power: 2 Ni-Mh AA Batteries, 3.3 and 5V Boost Converters.

<u>GCS</u>

- Includes computer, touch-screen monitor and batteries for field operation.
- Communications Radio and Video Receiver
- Heavy-duty field transportable case

GCS Interface

- Manual Control
 - Vehicle Sensor Display
 - Vehicle Health/Feedback System
- Autonomous Control
 - Set, Transmit Waypoints
- Communications
 - View Network Status
- Configuration/Debugging

- Google Earth Integration
 - Fully controllable Google Earth (location search, zoom, pan, etc).
- View Waypoints and Vehicle Location/Path

GCS Specifications

- Software: National Instruments LabView integrated with Google Earth mapping software.
- Power: 2 12V 26Amp-Hour Batteries, 12oV AC Power Inverter, Vehicle battery fast charger.
- Communications: XBee Radio for Command/Control, Video Receiver

Test-Stand

- Used for Vehicle
 Calibration and Capacity
 measurements
- Able to Pivot vertically, rotate continuously and pitch/yaw/roll on Test-Fixture Assembly
- Power applied to Vehicle via Slip-Ring – No tangled wires

Capabilities

Capabilities - Planned		
Manual Control via RCU or GCS	Simple Calibration and Testing via Test-Stand	
Limited Autonomous Navigation via RCU	Error Display on RCU and GCS	
Extended Autonomous Navigation via GCS	Force-Feedback on RCU	
Automatic Takeoff, Hover and Landing	Vehicle Health Reporting	

Capabilities - Future		
Real-Time Video Transmission to GCS	Image Capture	
Wireless airborne programming	Advanced Hover modes	
Vehicle Status Audio via RCU	Extended Range	
Configurable Payloads	Terrain Following	
Extended Flight Duration	Obstacle Avoidance	
Swarm Autonomy	Vehicle Status - Audio	

Technologies

Technologies - Planned		
Command/Control Network Monitoring	Inertial Navigation Unit (INU) w/ Altitude and Heading Reference System (AHRS)	
Power Management	Primary/Secondary Controller Implementation	
Waypoint Navigation	Communications Protocol	
Co-Axial Rotors	Tilt Rotors	

Technologies - Future	
3d Feedback	Audio Commands
Automatic Landing Pad	Cellular Network
Cel-Phone Control	Target Detection
Data Storage	GCS Interface (MATLAB)
JAUS Interoperability	Motor Heat Dissipation
R/C Control	RCU Testing Software
Recovery System	Wireless Charging
Satellite Communications	Simultaneous Localization and Mapping (SLAM)

System Specifications

- Range: ~1.5 km LOS (~3km with Xbee Mesh Network)
- Duration:
 - Vehicle: ~12 min (100% Throttle), ~20 min (Hover)
 - RCU: ~4-6 hrs
 - GCS: ~4-6 hrs (including field charging Vehicle)
- Speed: ~2 4 kph
- Weight: ~5.5 lbs
- Size: 48" x 48" x 10.5"
- Propeller Rotation: Max: 3,000 RPM
- Vertical Thrust: ~7.8 lbs

Questions?

- Contact:
 - David Gitz: <u>david.gitz@icarusuav.com</u>
 - Ben Wasson: ben.wasson@icarusuav.com

