Entwurf, Analyse und Umsetzung von Algorithmen

Divide and Conquer, Master theorem

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science

Entwurf, Analyse und Umsetzung von Algorithmen

Structure

Divide and Conquer

Concept

Maximum Subtotal

Recursion Equations

Substitution Method

Recursion Tree Method

Master theorem

Master theorem (Simple Form)

Master theorem (General Form)

Introduction

Concept:

- Divide the problem into smaller subproblems
- Conquer the subproblems through recursive solving.
 If subproblems are small enough solve them directly
- Connect all subsolutions to solve the overall problem
- ▶ Recursive application of the algorithm on smaller subproblems
- Direct solving of small subproblems

Maximum Subtotal

Input:

► Sequence *X* of *n* integers

Output:

Maximum sum of an uninterrupted subsequence of X and its index boundary

Table: input values

Output: Sum: 187, Start: 2, End: 6

Maximum Subtotal

Idea:

- ► Solve the left / right half of the problem recursively
- Combine both solutions into an overall solution
- ► The maximum is located in the left half (A) or the right half (B)
- ► The maximum interval can overlap with the border (C)

Maximum Subtotal

Principle:

- ▶ Small problems are solved directly: $n = 1 \Rightarrow \max = X[0]$
- ▶ Big problems are decomposed into two subproblems and solved recursively. Subsolutions *A* and *B* are returned.
- ► To solve C we have to calculate rmax and lmax
- ▶ The overall solution is the maximum of A, B and C

```
def maxSubArray(X, i, j):
    if i == j: # trivial case
        return (X[i], i, i)
    # recursive subsolutions for A, B
    m = (i + j) // 2
    A = \max SubArray(X, i, m)
    B = \max SubArray(X, m + 1, j)
    # rmax and lmax for cornercase C
    C1, C2 = rmax(X, i, m), lmax(X, m + 1, j)
    C = (C1[0] + C2[0], C1[1], C2[1])
    # compute solution from results A, B, C
    return max([A, B, C], key=lambda i: i[0])
```

```
#Alternative trivial case
def maxSubArray(X, i, j):
    # trivial: only one element
    if i == j:
        return (X[i], i, i)
    # trivial: only two elements
    if i + 1 == j:
        return max([
            (X[i], i, i).
            (X[i], i, i),
            (X[i] + X[j], i, j)
        ], key=lambda item: item[0])
    ... # continue as before
```

```
#Implementation max
def max(a, b, c):
    if a > b:
        if a > c:
             return a
        else:
             return c
    else:
        if c > b:
             return c
        else:
             return b
```

```
#Alternative implementation max
def max(a, b):
    if a > b:
        return a
    else:
        return b
def maxTripel(a, b, c):
    return max(max(a,b),c)
```

```
#Implementation left maximum
def lmax(X, i, j):
    maxSum = (X[i], i)
    s = X[i]
    # sum up from the lower index going up
    # (from left to right)
    for k in range(i+1, j+1):
        s += X[k]
        if s > maxSum[0]:
            maxSum = (s, k)
    return maxSum
```

return maxSum

```
#Implementation right maximum
def rmax(X, i, j):
    maxSum = (X[j], j)
    s = X[i]
    # sum up from the upper index going down
    # (from right to left)
    for k in range(j-1, i-1, -1):
        s += X[k]
        if s > maxSum[0]:
            maxSum = (s, k)
```

Maximum Subtotal

Table: Imax example

index	i	i + 1			<i>j</i> − 1 -41 49 90	j
X	58	-53	26	59	-41	31
sum	58	5	31	90	49	80
lmax	58	58	58	90	90	90

- ▶ The sum and lmax are initialized with X[i]
- ▶ We iterate over X from i + 1 to j and update sum
- ▶ If *sum* > *lmax*, then *lmax* gets updated

Maximum Subtotal


```
def maxSubArray(X, i, j):
    if i == j:
                                           # 0(1)
        return (X[i], i, i)
                                           # 0(1)
    m = (i + j) // 2
                                           # 0(1)
    A = \max SubArray(X, i, m)
                                           \# T(n/2)
    B = \max SubArray(X, m + 1, j)
                                           \# T(n/2)
    C1 = rmax(X, i, m)
                                           \# O(n)
    C2 = lmax(X, m + 1, j)
                                           # O(n)
    C = (C1[0] + C2[0], C1[1], C2[1])
                                           # 0(1)
    return max([A, B, C], \
                                           # 0(1)
        key=lambda item: item[0])
```

Maximum Subtotal - Number of steps T(n)

Recursion equation:

$$T(n) = \begin{cases} \underbrace{\Theta(1)}_{\text{trivial case}} & n = 1 \\ \underbrace{2 \cdot T\left(\frac{n}{2}\right)}_{\text{solving of subproblems}} & \underbrace{\Theta(n)}_{\text{combination of solutions}} & n > 1 \end{cases}$$

There exist two constants a and b with:

$$T(n) \leq \begin{cases} a & n=1\\ 2 \cdot T\left(\frac{n}{2}\right) + b \cdot n & n>1 \end{cases}$$

ightharpoonup We define $c := \max(a, b)$:

$$T(n) \leq \begin{cases} c & n=1\\ 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n & n>1 \end{cases}$$

Maximum Subtotal - Illustration of T(n)

Figure: illustration of the runtime

Maximum Subtotal - Illustration of T(n)

Figure: recursion tree method

Maximum Subtotal - Illustration of T(n)

Depth:

- ▶ Top level with depth i = 0
- ▶ Lowest level with $2^i = n$ elements

$$\Rightarrow i = \log_2 n$$

Runtime:

▶ A total of $\log_2 n + 1$ levels costing $c \cdot n$ each
The costs of merging the solutions and solving the trivial problems are the same in this case

$$T(n) = c \cdot n \log_2 n + c \cdot n \in \Theta(n \log n)$$

Maximum Subtotal - Summary

Summary:

- ▶ Direct solution is slow with $\mathcal{O}(n^3)$
- ▶ Better solution with incremental update of sum was $\mathcal{O}(n^2)$
- ▶ Divide and conquer approach results in $O(n \log n)$
- ▶ There is an approach running in $\mathcal{O}(n)$, under the assumption that all subtotals are positive

Maximum Subtotal

Figure: scanning the array in linear time

```
#Implementation - linear runtime
def maxSubArray(X):
    # sum, start index
    rMax, irMax = 0, 0 # current maximum
    tMax, itMax = 0, 0 # total maximum
    for i in range(len(X)):
        if rMax == 0:
            irMax = i
        rMax = max(0. rMax + X[i])
        if rMax > tMax:
            tMax, itMax = rMax, irMax
    return (tMax, itMax)
```

Recursion Equation

Recursion equation:

Runtime description for recursive functions:

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ \underbrace{a \cdot T\left(\frac{n}{b}\right)}_{\text{solving of } a} + \underbrace{f(n)}_{\text{slicing and subproblems}}_{\text{splicing of with reduced}} \text{subsolutions} \\ \text{input size } \frac{n}{b} \end{cases}$$

Recursion Equation

Recursion equation:

Runtime descripion for recursive functions:

$$T(n) = \begin{cases} f_0(n) & n = n_0 \\ a \cdot T\left(\frac{n}{b}\right) + f(n) & n > n_0 \end{cases}$$

- ▶ n_0 is usually small, $f_0(n_0) \in \Theta(1)$
- ▶ Usually, a > 1 and b > 1
- ▶ Dependent on the strategy of solving T(n) f_0 is ignored
- T(n) is only defined for integers of $\frac{n}{b}$, which is often ignored in benefit of a simpler solution

Substitution Method

Substitution Method:

- Guess the solution and prove it with induction
- Example:

$$T(n) = \begin{cases} 1 & n = 1 \\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 1 \end{cases}$$

► Assumption: $T(n) = n + n \cdot \log_2 n$

Substitution Method

Induction:

- Induction basis (for n = 1): $T(1) = 1 + 1 \cdot \log_2 1 = 1$
- ▶ Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\stackrel{!A}{=} 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot \log_2 \frac{n}{2}\right) + n$$

$$= 2 \cdot \left(\frac{n}{2} + \frac{n}{2} \cdot (\log_2 n - 1)\right) + n$$

$$= n + n \log_2 n - n + n$$

$$= n + n \log_2 n$$

Substitution Method

Substitution Method:

- Alternative assumption
- Example:

$$T(n) = \begin{cases} 1 & n = 1\\ 2 \cdot T\left(\frac{n}{2}\right) + n & n > 0 \end{cases}$$

- ▶ Assumption: $T(n) \in O(n \log n)$
- ▶ Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$

Substitution Method

Induction:

- ▶ Solution: Find c > 0 with $T(n) \le c \cdot n \log_2 n$
- ▶ Induction step (from $\frac{n}{2}$ to n):

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + n$$

$$\leq 2 \cdot \left(c \cdot \frac{n}{2} \log_2 \frac{n}{2}\right) + n$$

$$= c \cdot n \log_2 n - c \cdot n \log_2 2 + n$$

$$= c \cdot n \log_2 n - c \cdot n + n$$

$$\leq c \cdot n \log_2 n, \quad c \geq 1$$

Recursion Tree Method

Recursion tree method:

- Can be used to make assumptions about the runtime
- Example:

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + \Theta(n^2) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$

Recursion Tree Method

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^{2}$$

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^{2}$$

$$T(n) = 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^{2}$$

$$T\left(\frac{n}{4}\right) \cdot C\left(\frac{n}{4}\right)^{2}$$

$$T\left(\frac{n}{4}\right) \cdot C\left(\frac{n}{4}\right)^{2} \cdot C\left(\frac{n}{4}\right)^{2}$$

$$T\left(\frac{n}{4}\right) \cdot C\left(\frac{n}{4}\right)^{2} \cdot C\left(\frac{n}{4}\right)^{2} + c \cdot n^{2}$$

Figure: recursion tree of example

Recursion Tree Method

Figure: levels of the recursion tree

Recursion Tree Method Costs

Costs of connecting the partial solutions:

(excludes the last layer)

- ► Size of partial problems on level i: $s_i(n) = \left(\frac{1}{4}\right)^i \cdot n$
- Costs of partial problems on level *i*:

$$T_{i_p}(n) = c \cdot \left(\left(\frac{1}{4}\right)^i \cdot n\right)^2$$

- Number of partial problems on level i: $n_i = 3^i$
- Costs on level *i*:

$$T_i(n) = 3^i \cdot c \cdot \left(\left(\frac{1}{4}\right)^i \cdot n\right)^2 = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$$

Recursion Tree Method Costs

Costs of solving partial solutions: (only the last layer)

- ▶ Size of partial problems on the last level: $s_{i+1}(n) = 1$
- ▶ Costs of partial problem on the last level: $T_{i+1_p}(n) = d$
- With this the depth of the tree is:

$$\left(\frac{1}{4}\right)^i \cdot n = 1 \qquad \Rightarrow n = 4^i \qquad \Rightarrow i = \log_4 n$$

▶ Number of partial problems on the last level:

$$n_{i+1} = 3^{\log_4 n} = n^{\log_4 3} \leftarrow \text{next slide}$$

► Costs on the last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

Fun with logarithm

Logarithm

▶ Transforming $3^{\log_4 n}$ using general log rules

$$\log_4 n = \log_4 \left(3^{\log_3 n}\right)$$
 using $n = 3^{\log_3 n}$
= $\log_3 n \cdot \log_4 3$ using $\log a^b = b \cdot \log a$

- ► This proves the general log rule $\log_b c = \log_a c \cdot \log_b a$
- ► Now the whole expression:

$$3^{\log_4 n} = 3^{\log_3 n \cdot \log_4 3}$$
 using reformulation above
$$= \left(3^{\log_3 n}\right)^{\log_4 3}$$
 using $x^{a \cdot b} = (x^a)^b$
$$- n^{\log_4 3}$$

► This term will recur in the master theorem

Total costs

Total costs:

- ► Costs of level i: $T_i(n) = \left(\frac{3}{16}\right)^i \cdot c \cdot n^2$
- ► Costs of last level: $T_{i+1}(n) = d \cdot n^{\log_4 3}$

$$T(n) = \underbrace{\sum_{i=0}^{(\log_4 n) - 1} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{\text{geometric series,}} + \underbrace{d \cdot n^{\log_4 3}}_{\text{grows a lot}} \in \mathcal{O}(n^2)$$

$$\underbrace{\sum_{i=0}^{\log_4 n} \left(\frac{3}{16}\right)^i \cdot c \cdot n^2}_{\text{geometric series,}} + \underbrace{d \cdot n^{\log_4 3}}_{\text{grows a lot}} \in \mathcal{O}(n^2)$$

Here: The costs of connecting the partial problems dominate

Geometric Series

▶ Geometric progression:

Quotient of two neighboring sequence parts is constant

$$2^0, 2^1, 2^2, \dots, 2^k$$

Geometric series:

The series (cumulative sum) of a geometric sequence

► For | *q* |< 1:

$$\sum_{k=0}^{\infty} a_0 \cdot q^k = \frac{a_0}{1-q} \implies \text{constant}$$

Proof of $O(n^2)$

Proof of $\mathcal{O}(n^2)$:

▶ We know:

$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$

$$\leq 3T\left(\frac{n}{4}\right) + c \cdot n^2$$

Assumption: $T(n) \in \mathcal{O}(n^2)$, so there exists a k > 0 with

$$T(n) \leq k \cdot n^2$$

Proof of $O(n^2)$

Proof of $\mathcal{O}(n^2)$:

▶ Presumption: $T(n) \in \mathcal{O}(n^2)$, so there exists a k > 0 with

$$T(n) < k \cdot n^2$$

Substitution method:

$$T(n) \le 3 \cdot T\left(\frac{n}{4}\right) + c \cdot n^2$$

$$\le 3k \cdot \left(\frac{n}{4}\right)^2 + c \cdot n^2$$

$$= \frac{3}{16}k \cdot n^2 + c \cdot n^2$$

$$\le k \cdot n^2 \qquad \text{for } k \ge \frac{16}{13}c$$

Master theorem

Master theorem:

▶ Solution approach for a recursion equation of the form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- ightharpoonup T(n) is the runtime of an algorithm ...
 - \triangleright ... which divides a problem of size n in a partial problems
 - which solves each partial problem recursively with a runtime of $T\left(\frac{n}{h}\right)$
 - \blacktriangleright ... which takes f(n) steps to merge all partial solutions

Master theorem (Simple Form)

Master theorem:

- In the examples we have seen that ...
 - ► Either the runtime of connecting the solutions dominates
 - Or the runtime of solving the problems dominates
 - Or both have equal influence on runtime
- ▶ **Simple form:** Special case with runtime of connecting the solutions $f(n) \in O(n)$

Master theorem (Simple Form)

Simple form:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + \underbrace{c \cdot n}_{\text{ls any } f(n)}, \quad a \ge 1, b > 1, c > 0$$
Is any f(n)
in general form

► This yields a runtime of:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b \\ \Theta(n \log n) & \text{if } a = b \\ \Theta(n) & \text{if } a < b \end{cases}$$

Master theorem (Simple Form)

Figure: simple recursion equation with a = 3, b = 2

Case 1: a > b

- ▶ Three partial problems with $\frac{1}{2}$ the size
- Solving the partial problems dominates (last layer, leaves)
- ightharpoonup Runtime of $\Theta(n^{\log_b a})$

Master theorem (Simple Form)

Figure: simple recursion equation with a = 2, b = 2

Case 2: a = b

- ► Two partial problems with $\frac{1}{2}$ the size
- Each layer has equal costs, log *n* layers
- ▶ Runtime of $\Theta(n \log n)$

Master theorem (Simple Form)

Figure: simple recursion equation with a = 2, b = 3

Case 3: a < b

- ► Two partial problems with $\frac{1}{3}$ the size
- Connecting all partial solutions dominates (first layer, root)
- ▶ Runtime of $\Theta(n)$

Master theorem (Simple Form)

For a recursion equation like

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n, \quad a \ge 1, b > 1, c > 0$$

... yields a runtime of:

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b \\ \Theta(n \log_b n) & \text{if } a = b \\ \Theta(n) & \text{if } a < b \end{cases}$$

▶ Proof with *geometric series*: Number of operations per layer grows / shrinks by constant factor $\frac{a}{b}$

Master theorem (General Form)

Master theorem (general form):

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n), \quad a \ge 1, b > 1$$

- ▶ Case 1: $T(n) \in \Theta(n^{\log_b a})$ if $f(n) \in \mathcal{O}(n^{\log_b a \varepsilon})$, $\varepsilon > 0$ Solving the partial problems dominates (last layer, leaves)
- ► Case 2: $T(n) \in \Theta(n^{\log_b a} \log n)$ if $f(n) \in \Theta(n^{\log_b a})$ Each layer has equal costs, $\log_b n$ layers

Master theorem (General Form)

Master theorem (general form):

► Case 3: $T(n) \in \Theta(f(n))$ if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ Connecting all partial solutions in first layer (root) dominates

Regularity condition:

$$a \cdot f\left(\frac{n}{b}\right) \le c \cdot f(n), \quad 0 \le c \le 1,$$

 $n > n_0$

Master theorem (General Form) - Case 1

Case 1 - Example:
$$T(n) \in \Theta(n^{\log_b a})$$

 $f(n) \in O(n^{\log_b a - \varepsilon}), \ \varepsilon > 0$
Solving the partial problems dominates (last layer, leaves)

$$T(n) = 8 \cdot T(\frac{n}{2}) + 1000 \cdot n^{2}$$

$$a = 8, \ b = 2, \ f(n) = 1000 \cdot n^{2}, \ \underbrace{\log_{b} a = \log_{2} 8 = 3}_{n^{3} \text{ leaves}}$$

$$f(n) \in \mathcal{O}(n^{3-\varepsilon}) \Rightarrow T(n) \in \Theta(n^{3})$$

$$T(n) = 9 \cdot T(\frac{n}{3}) + 17 \cdot n$$

$$a = 9, \ b = 3, \ f(n) = 17 \cdot n, \ \log_b a = \log_3 9 = 2$$

$$f(n) \in \mathcal{O}(n^{2-\varepsilon}) \Rightarrow T(n) \in \Theta(n^2)$$

54/61

if

Master theorem (General Form) - Case 2

Case 2:
$$T(n) \in \Theta(n^{\log_b a} \log n)$$
 if $f(n) \in \Theta(n^{\log_b a})$
Each layer has equal costs, $\log n$ layers

$$T(n) = 2 \cdot T(\frac{n}{2}) + 10 \cdot n$$

$$a = 2, \ b = 2, \ f(n) = 10 \cdot n, \ \log_b a = \log_2 2 = 1$$

$$f(n) \in \Theta(n^{\log_2 2}) \Rightarrow T(n) \in \Theta(n \log n)$$

$$n^{1 \text{ leaves}}$$

$$T(n) = T(\frac{2n}{3}) + 1$$

$$a = 1, \ b = \frac{3}{2}, \ f(n) = 1, \ \underbrace{\log_b a = \log_{3/2} 1 = 0}_{n^0 \text{ leaves} = 1 \text{ leaf}}$$

$$f(n) \in \Theta(n^{\log_{3/2} 1}) \Rightarrow T(n) \in \Theta(n^0 \log n) = \Theta(\log n)$$

Master theorem (General Form) - Case 3

Case 3:
$$T(n) \in \Theta(f(n))$$
 if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ Connecting all partial solutions in first layer (root) dominates

$$T(n) = 2 \cdot T(\frac{n}{2}) + n^2$$

$$a = 2, \ b = 2, \ f(n) = n^2, \ \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

$$f(n) \in \Omega(n^{1+\varepsilon})$$

Master theorem (General Form) - Case 3

Case 3:
$$T(n) \in \Theta(f(n))$$
 if $f(n) \in \Omega(n^{\log_b a + \varepsilon})$, $\varepsilon > 0$ Connecting all partial solutions in first layer (root) dominates

- $T(n) = 2 \cdot T(\frac{n}{2}) + n^2$
- $f(n) \in \Omega(n^{1+\varepsilon})$
- ► Check if regularity condition also holds:

$$a \cdot f\left(\frac{n}{b}\right) \le c \cdot f(n)$$

$$2 \cdot \left(\frac{n}{2}\right)^2 \le c \cdot n^2 \quad \Rightarrow \frac{1}{2} \cdot n^2 \le c \cdot n^2 \quad \Rightarrow c \ge \frac{1}{2}$$

$$\Rightarrow T(n) \in \Theta(n^2)$$

Master theorem (General Form)

Master theorem:

► Not always applicable: $T(n) = 2 \cdot T(\frac{n}{2}) + n \log n$

$$a = 2, \ b = 2, \ f(n) = n \log n, \ \underbrace{\log_b a = \log_2 2 = 1}_{n^1 \text{ leaves}}$$

- ▶ Case 1: $f(n) \notin O(n^{1-\varepsilon})$
- ► Case 2: $f(n) \notin \Theta(n^1)$
- ▶ Case 3: $f(n) \notin \Omega(n^{1+\varepsilon})$

n log n is asymptotically larger than n, but not polynominal larger

Master theorem - Summary

Master theorem:

$$T(n) = a \cdot T\left(\frac{n}{b}\right) + f(n)$$

- Three cases depending on the dominance of the terms
- ▶ Case 1: Solving the partial problems is polynominal bigger than merging all solutions

$$T(n) \in \Theta(n^{\log_b a}),$$
 $T(n) \in \Theta(\text{number of leaves})$

► Case 2: Each layer has equal costs $T(n) \in \Theta(n^{\log_b a} \log n)$, $\log n$ layers

► Case 3: Connecting all partial solutions is polynominal bigger than solving all partial problems

$$T(n) \in \Theta(f(n))$$

Further Literature

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms. MIT Press, Cambridge, Mass, 2001.
- [MS08] Kurt Mehlhorn and Peter Sanders.
 Algorithms and data structures, 2008.
 https://people.mpi-inf.mpg.de/~mehlhorn/
 ftp/Mehlhorn-Sanders-Toolbox.pdf.

Further Literature

Master theorem

[Wik] Master theorem

https://en.wikipedia.org/wiki/Master_theorem