Video Action Recognition

Ekapol Chuangsuwanich Nvidia IVA workshop

Action Recognition in Videos

Image: UCF101

Action Recognition in Videos

Key points: A video is a series of images!

The model should:

- Be able to handle images
- Has the concept of time

Action recognition with voting

• Deep Neural Network (DNN) framework on each frame

Single fully connected layer

Deep Neural Network (DNN) framework on full sequence

Deep Neural Network (DNN) framework on full sequence

Problem: need a way to handle sequence of different length

 Recurrent Neural Network remembers the past by passing previous information as input to the next stage

New input feature = [original input feature, output of the layer at previous time step]

 Recurrent Neural Network remembers the past by passing previous information as input to the next stage

New input feature = [original input feature, output of the layer at previous time step]

 Recurrent Neural Network remembers the past by passing previous information as input to the next stage

Same setting of parameters (shared weights across time)

Long Short-Term Memory (LSTM)

Mostly used version of recurrent layer. Can choose to remember, forget, and output information

j is the index of the LSTM cell

$$o_t^j = \sigma \left(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + V_o \mathbf{c}_t \right)^j$$

$$f_t^j = \sigma \left(W_f \mathbf{x}_t + U_f \mathbf{h}_{t-1} + V_f \mathbf{c}_{t-1} \right)^j$$

$$i_t^j = \sigma \left(W_i \mathbf{x}_t + U_i \mathbf{h}_{t-1} + V_i \mathbf{c}_{t-1} \right)^j$$

$$\tilde{c}_t^j = \tanh \left(W_c \mathbf{x}_t + U_c \mathbf{h}_{t-1} \right)^j$$

$$c_t^j = f_t^j c_{t-1}^j + i_t^j \tilde{c}_t^j$$

$$o_t^j = \sigma \left(W_o \mathbf{x}_t + U_o \mathbf{h}_{t-1} + V_o \mathbf{c}_t \right)^j$$

ResNet (CNN)

- Gradient vanishing makes it hard to train CNN with many layers
 - Use residual connection

He, et al. 2016

ResNet + LSTM

3D Convolutional Neural Networks

- Concatenate the images along time axis to get a 4-D data (3D from image [255x255x3] + 1D from time)
 - We can think of the whole video as a block of 4D input and do 3D convolution on it

Lab 4: Overview

In this lab, we will explore a few options on how to do action recognition on UCF 101 dataset, including:

- Create a baseline by doing image classification on only one sampled frame of the videos
 - Use ResNet as a base model for transfer learning. Train only the last layer on out data
 - Unfreeze some layers and train further
- Build a CNN + LSTM model for video input
 - Use ResNet as a feature extractor then feed the inputs to LSTM layers
- Discuss other possible model and performance of each one, including [CNN+LSTM trained from scratch, 3D convolutional neural networks, 3D CNN+dense layers]