9.6 12 Because (5,R) is a poset, we know R is reflex -ive, so R-1 is reflexive. If (a,b) E R-1 and a + b, we know (b.a) 6 R, because (a, b) ∈ R-1, (b, a) ∉ R-1, b + a, so R-1 is antisymmetry. If (a, b) E R-1, (b, c) ER-1, then (b, a) ER, (c, b) ER, because R is transitive, we get (c,a) ER, then (a,c) ER-1, we Know Rt is transitive. So (S, R-1) is also a poset 28. For example, C2, 6 CR, (6, 12) ER, (2,12) is not in the covering relation so we can know the covering relation has: (1,2), (1.3), (2,4), (2,6), (3,6), (4,12), (6,12) 35. a) {1,3,4} {2,3,4} {1,2} b {1}, {2}, {4} c) No d) No e){2,4} {2,3,4} f) {2,4}

44. a) The poset is not a lattice, because 6 and 9 don't have

b) The poset is a lattice. Because each element can divides the

9) {3,4}, {4}

h) {3,4}

a upper bound

next one. So every pair of elements has both a least upper bound and greatest lower bound.

- c) The poset is a lattice, since it has a liner order. We can know the least upper bound of the two elements is the smaller.

 The greast lower bound is the loger number.
- d) The poset is a lattice. If A and B are the power sets of set 5. Then the least upper bound is ANB, the greast lower bound is AUB

抽象代数

20.(a) No,it's not a commutative operation. Because

a*b=C,b*a=a, So a*b+b*a

(b) a*(b*c) = a*c = b(a*b)*c = c*c = b

(C) No, It's not an associative operation

For example, $c \times cb \times a = c \times a = c$, $(c \times b) \times a = a \times a = b$ So $c \times cb \times a \neq (c \times b) \times a$

24. 2^{n²}

26. (A)

a	a	a	۵	Ь	a	۵	a	Ь			
Ь	α	Q		a		Ь	a	۵			
0				2				3			
*	a	Ь	*	a	Ь		a	Ь			
a	a	α	α	a	a	a	ь а	Ь			
Ь	Ь	a	Ь	α	Ь	Ь	a	α			
θ			Œ	⑤			6				
	a		*	a	Ь		a				
	Ь		a	Ь	a	۵	a	Ь			
Ь	Ь	۵	Ь	a	Ь	Ь	Ь	٥			
	(T)			a			ത				

<u>*</u>	a	Ь	*	a	Ь	*	a	Ь		
۵	a	₽	a	a	a	α	Ь	Ь		
Ь	a	Ь	Ь	Ь	Ь	Ь	Ь	a		
							D			
	a	Ь	*	a	Ь	*	a	Ь		
a	Ь	Ь	a	a	Ь	α	b	a		
Ь	a	Ь	Ь	Ь	Ь	Ь	Ь	Ь		
B			(P)				· (B)			
*	a	Ь								
a	Ь	Ь								
Ь	Ь	Ь								
Ö										
OOOSSOOODO AVE commutative.										
28. Because a < a, then a = a * a, so < is veflexive. If a < b and										
$b \le a$, then $b = a * b$, $a = b * a$, $a * b = b * a$, so $\le is$ antisymmetry.										
If a≤band b≤c, then a≤c. a=a*b=a*(b*c)=										
axc, so we know < is transitive. So ca, <) is a poset.										
a=uxb=a*(axb)=a*(axb), so a < axb. Same, b < axb.										
So axb is the upper bound of a and b. If cza and czb.										
a * b = a * (b * c) = (a * b) * c , so a * b < c . Then we know										
LUB (a.b)=a*b										