Definition 1. Let the M-transform be defined by

$$\mathcal{M}\phi(\xi) := \sqrt{2} \int_0^{+\infty} \cos(\xi \sqrt{u}) \frac{\phi(u)}{\sqrt{u}} du$$

Definition 2. For any function ϕ defined on \mathbb{R}^+ , let C the operator defined by

$$C\phi(t) = \phi(t^2), \quad t \in \mathbb{R}$$

For any function even function ϕ defined on \mathbb{R} , $C^{-1}\phi$ is a function defined on \mathbb{R}^+ by

$$C^{-1}\phi(u) = \phi(\sqrt{u})$$

Definition 3. We note $S\left(\sqrt{\mathbb{R}^+}\right)$ the space of ϕ such that $C\phi \in S(\mathbb{R})$. Let $S_p(\mathbb{R})$ the subspace of even functions that belong to the Schwartz class.

Proposition 1. $CS\left(\sqrt{\mathbb{R}^+}\right) = S_p(\mathbb{R})$

Proposition 2. The operator $\mathcal{M}: \mathcal{S}\left(\sqrt{\mathbb{R}^+}\right) \longrightarrow S_p(\mathbb{R})$ is a bijection, with inverse

$$\mathcal{M}^{-1}f = \sqrt{2} \int_0^{+\infty} \cos(\xi \sqrt{u}) f(\xi) d\xi$$