Oplossingsstrategie

Opmerking 1. Deze open-source cursus is in ontwikkeling. Leerkrachten en leerlingen die van dit materiaal gebruik maken kunnen eenvoudig fouten/verbetering/... melden:

- via de 'wijzig' knop kan je zelf kleine fouten en typo's aanpassen. (extra uitleg)
- een mail sturen naar info@wiksunde.opmaat.org

Dit materiaal wordt ontwikkeld als open-source project via zulip.

Vraagstukken in de kinematica kan je vaak op dezelfde manier banaderen. Elke opgave blijft echter anders, creativiteit is dus noodzakelijk.

- (a) Lees het vraagstuk aandachtig. Zorg dat je duidelijk weet wat er gevraagd wordt.
 - als je correct de snelheid op t_3 berekent maar de snelheid op t_2 was gevraagd, is dat een jammere fout . . .
 - ullet als je correct de postitie op t_1 berekent maar de positie op t_0 was gevraagd, is dat een jammere fout
 - ...
- (b) Kies het systeem (object, lichaam, massa, geheel van lichamen) waarvan je een onbekende posititie, snelheid of versnelling wilt berekenen.
- (c) Maak een tekening van dit systeem. Teken een coördinaatsas.
- (d) Bepaal de gegevens uit het vraagstuk. Welke heb je nodig om de oplossing te bepalen?
- (e) Gebruik de bewegingsvergelijkingen voor positie, snelheid en versnelling om het gevraagde te berekenen.
- (f) Heeft je oplossing de juiste eenheiden en grootteorde? De snelheid van een tennisbal in de eenheid $\frac{s}{m^2}$ is waarschijnlijk fout. Als het enkele minuten duurt voordat de bowlingbal de kegels raakt, heb je waarschijnlijk ergens een (reken)fout gemaakt . . .