On the Importance of Subword Information for Morphological Tasks in Truly Low-Resource Languages

A ä L چ ش T w ŭ L

Yi Zhu¹ Benjamin Heinzerling^{2,3} Ivan Vulić ¹ Michael Strube⁴ Roi Reichart⁵ Anna Korhonen¹

¹Language Technology Lab, University of Cambridge ²RIKEN AIP ³Tohoku University ⁴Heidelberg Institute for Theoretical Studies ⁵Technion, IIT

Heidelberg Institute for Theoretical Studies

tl;dr

- ► Subwords are great, but how do they perform in low-resource settings?
- ► This work: thorough analysis of several subword methods
- ► Three morphological tasks, 16 languages
- ► Simulated and actual low-resource settings
- ➤ Simulate two types of scarcity: scarce embedding training data and scarce task data
- ► Scarcity of task data has a much larger impact
- ► No subword method best in all settings, but character n-gram often strongest, followed by BPE.

Subword Method	S	
Word	dishonestly	_
morf	(dishonest, ly)	
charn	(dis, ish, sho,, tly, dish, isho, shon,, stly, disho, ishon, shone,, estly, dishon, ishone, shones,, nestly)	
bpe1e3	(d, ish, on, est, ly)	
bpe1e4	(dish, on, est, ly)	
bpe1e5	(dishonest, ly)	

Three Morphological Tasks

- ► Fine-grained entity typing (FGET): $Lincolnshire \rightarrow /location/county$ Data: Wikidata + Freebase
- Morphological tagging (MTAG): her → {Gen=Fem, Num=Sing, Per=3, Poss=Yes, PronType=Prs}

Data: Universal Dependencies

Named entity recognition (NER): $Barack\ Obama\ (\rightarrow person)\ was\ born\ in\ Hawaii\ (\rightarrow location).$

Data: WikiAnn

16 Languages: Embedding and Task Data (Tokens)

	Agglutinative					Fusional						Introflexive		Isolating		
	BM	BXR	MYV	TE	TR	ZU	EN	FO	GA	GOT	MT	RUE	AM	HE	YO	ZH
EMB	40K	372K	207K	5M	5M	69K	5M	1.6M	4.4M	18K	1.5M	282K	659K	5M	542K	5M
FGET	29K	760	740	13K	60K	36K	60K	30K	56K	289	2.7K	1.5K	2.2K	60K	15K	60K
NER	345	2.4K	2.1K	9.9K	167K	425	8.9M	4.0K	7.6K	475	1.9K	1.6K	1.0K	107K	3.4K	_
MTAG	_	_	_	1.1K	3.7K	_	24K	_	_	3.4K	1.1K	_	_	5.2K	_	4.0K
BERT				√	\checkmark		√		√					√	√	$\overline{\hspace{1em}}$

		,	Agglutinat	ive				Intro	Isolat			
	BM	BXR	MYV	TE	ZU	FO	GA	GOT	MT	RUE	$\overline{\mathrm{AM}}$	YO
morf	52.43	52.47	79.11	57.79	53.00	54.43	50.77	29.90	49.48	50.38	41.82	83.43
charn	56.09	57.33	81.69	58.83	56.34	58.44	52.62	34.02	54.46	58.59	45.65	84.85
bpe1e3	53.61	51.30	81.13	58.73	55.41	56.04	50.74	31.55	52.79	55.57	47.99	85.22
bpe1e4	54.20	53.81	81.93	59.24	55.67	56.67	51.47	26.39	52.15	54.81	47.05	84.42
GET bpe1e5	-	53.80	80.00	58.13	-	56.31	51.52	-	51.52	52.52	44.74	83.39
ft	51.91	57.96	81.05	57.79	52.62	53.74	49.67	31.96	53.95	53.64	44.80	83.71
w2v	52.28	42.19	76.86	56.99	52.95	53.07	49.07	24.53	46.61	47.36	36.81	82.56
bert	_	_	-	49.20	-	-	47.09	_	_	_	_	81.76
morf	73.29	76.58	83.40	77.01	65.22	84.29	86.94	59.49	74.37	81.87	66.67	90.01
charn	83.02	81.59	93.22	88.23	74.47	91.08	88.95	84.99	83.56	88.70	72.92	94.68
bpe1e3	77.22	79.33	89.00	85.82	71.91	89.73	89.18	81.03	81.63	85.30	70.84	92.35
ER bpe1e4	76.43	79.73	89.00	85.44	65.22	89.25	88.48	70.59	80.26	86.39	64.07	92.47
bpe1e5	-	80.65	89.36	84.02	-	88.66	89.48	-	81.64	86.12	68.95	93.07
ft	73.29	79.81	88.57	86.88	58.16	89.48	89.18	58.16	81.64	83.54	68.29	92.58
w2v	69.57	79.66	87.50	82.97	62.37	87.81	87.99	58.56	79.43	84.21	61.37	89.57
bert	_	_	_	82.31	_	_	88.45	-	-	_	_	95.53

Takeaways

- ► Scarcity of task data has a much larger impact than scarcity of embedding data.
- ➤ Subword-informed architectures are better than word-based methods in most cases, particularly in low resource settings (e.g., ZU, BM, GOT).
- ► When available, multilingual BERT performs well in MTAG and NER, but subword models are better in FGET. Gap becomes smaller or disappears with more embedding training data.
- ► No one-size-fits-all method, but character n-grams often strongest, followed by BPE.

