Continuous Optimisation Theorems

Lemma 1. Let $f \in \mathcal{C}$, $x \in \mathbb{R}^n$, and $s \in \mathbb{R}^n$ with $s \neq 0$. Then

$$\nabla f(x)^T s < 0 \implies f(x + \alpha s) < f(x)$$
 $\forall \alpha > 0 \text{ suff. small}$

Lemma (Exact linesearch for quadratics). For $q(x) = g^T x + \frac{1}{2} x^T H x$, $\phi(\alpha) := q(x + \alpha s)$,

$$\alpha = -\frac{\nabla f(x)^T s}{s^T H s}$$

Definition (Armijo Condition). Choose $\beta \in (0, 1)$.

$$f(x^k + \alpha^k s^k) \le f(x^k) + \beta \alpha^k \nabla f(x^k)^T s^k$$

Lemma 2. Let $f \in C^1(\mathbb{R}^n)$ with ∇f Lipschitz continuous with L, then Armijo condition at k^{th} satisfied for all $\alpha \in [0, \alpha_{\max}^k]$ where

$$\alpha_{\max}^{k} = \frac{(\beta - 1) \nabla f (x^{k})^{T} s^{k}}{L||s^{k}||^{2}}$$

Lemma 3. Let $f \in C^1(\mathbb{R}^n)$ with ∇f Lipschitz continuous with L, then at k^{th} iteration,

$$\alpha^k \geq \min\left\{\alpha_{(0)}, \tau\alpha_{\max}^k\right\}$$

Theorem 4 (Convergence of GLM). Let $f \in C^1(\mathbb{R}^n)$ bounded below by f_{low} , and ∇f Lipschitz continuous. Then either

$$\exists l \ge 0 \ s.t. \ \nabla f\left(x^l\right) = 0$$

or

$$\lim_{k \to \infty} \min \left\{ \frac{\left| \nabla f \left(\boldsymbol{x}^k \right)^T \boldsymbol{s}^k \right|}{\left| \left| \boldsymbol{s}^k \right| \right|}, \left| \nabla f \left(\boldsymbol{x}^k \right)^T \boldsymbol{s}^k \right| \right\} = 0$$

Theorem 6 (Exact Linesearch Convergence). $f \in C^2$, x^* local minimizer of f with $\nabla^2 f(x^*)$ positive definite between λ_{\max}^* and λ_{\min}^* . With SD-e, if $x^k \to x^*$ as $k \to \infty$, then x^k converges linearly to x^* :

$$\rho \le \frac{\kappa(x^*) - 1}{\kappa(x^*) + 1} =: \rho_{SD}$$

where
$$\kappa\left(x^{*}\right) = \frac{\lambda_{\max}^{*}}{\lambda_{\min}^{*}} = \kappa\left(\nabla^{2} f\left(x^{*}\right)\right)$$
.

 $\textbf{Definition} \ (\text{Newton's Method}).$

$$s^{k} \coloneqq -\left(\nabla^{2} f\left(x^{k}\right)\right)^{-1} \nabla f\left(x^{k}\right)$$

Theorem 9 (Convergence of Newton bArmijo). • $f \in C^2(\mathbb{R}^n)$ bounded below.

- ∇f Lipschitz continuous.
- Newton's method + bArmijo linesearch.
- For all $k \geq 0$, eigenvalues of $\nabla^2 f(x^k)$ at iterates by positive and uniformly bounded below, away from zero, independently of k.

Then either

$$\exists l \geq 0 \ s.t. \ \nabla f\left(x^{l}\right) = 0$$

or

$$||\nabla f(x^k)|| \to 0$$

 $as k \to \infty$

Definition (Secant Approximation). $B^k \approx \nabla^2 f(x^k)$ where

$$\underbrace{\nabla f\left(x^{k+1}\right) - \nabla f\left(x^{k}\right)}_{\gamma^{k}} = B^{k+1} \underbrace{\left(x^{k+1} - x^{k}\right)}_{\delta^{k}}$$

Definition (SR1). $B^{k+1} := B^k + u^k (u^k)^T$ where

$$u^k = \frac{\gamma^k - B^k \delta^k}{\rho^k}$$

where $(\rho^k)^2 := (\gamma^k - B^k \delta^k)^T \delta^k > 0$

Definition (BFGS). $B^{k+1} := B^k + u^k (u^k)^T + v^k (v^k)^T$ where

$$u^{k} \left(u^{k} \right)^{T} = \frac{1}{\gamma^{T} \delta^{k}} \gamma^{k} \left(\gamma^{k} \right)^{T}$$

$$v^{k} \left(v^{k} \right)^{T} = -\frac{B^{k} \delta^{k} \left(B^{k} \delta^{k} \right)^{T}}{\left(\delta^{k} \right)^{T} B^{k} \delta^{k}}$$

where $(\rho^k)^2 := (\gamma^k - B^k \delta^k)^T \delta^k > 0$

Definition (Gauss-Newton). For nonlinear least-squares (NLS):

$$f(x) := \frac{1}{2} \sum_{j=1}^{m} (r_j(x))^2 = \frac{1}{2} ||r(x)||^2$$

where $r: \mathbb{R}^n \to \mathbb{R}^m$,

$$\nabla^{2} f(x) = J(x)^{T} J(x) + \underbrace{\sum_{j=1}^{m} r_{j}(x) \nabla^{2} r_{j}(x)}_{Negligible} suggests$$

$$J(x^{k})^{T} J(x^{k}) s^{k} = -J(x^{k})^{T} r(x^{k})$$

Definition (TR Decrease Param). $\rho^k := \frac{f(x^k) - f(x^k + s^k)}{f(x^k) - m_k(s^k)}$

Definition (Cauchy Point). $\alpha_c^k := \arg\min_{\alpha>0} m_k \left(-\alpha \nabla f\left(x^k\right)\right)$ subject to $||\alpha \nabla f\left(x^k\right)|| \le \Delta_k$

Theorem 11 (GTR Global Convergence).

- $f \in C^2(\mathbb{R}^n)$ bounded below.
- ∇f Lipschitz continuous.
- $m_k(s^k) \leq m_k(s_c^k)$ for all k.

Then either

$$\exists k \ge 0 \ s.t. \ \nabla f\left(x^k\right) = 0$$

or

$$\lim_{k \to \infty} ||\nabla f\left(x^k\right)|| = 0$$

Theorem 12 (Cauchy Model Decrease). *GTR with Cauchy decrease* $m_k(s^k) \le m_k(s^k)$ for all k,

$$f\left(x^{k}\right) - m_{k}\left(s^{k}\right) \ge f\left(x^{k}\right) - m_{k}\left(s_{c}^{k}\right) \ge \frac{1}{2}||\nabla f\left(x^{k}\right)|| \min\left\{\Delta_{k}, \frac{||\nabla f\left(x^{k}\right)||}{||\nabla^{2} f\left(x^{k}\right)||}\right\}$$

Theorem 13 (Lower bound on TR radius). $f \in C^2(\mathbb{R}^n)$, ∇f Lipschitz, Cauchy decrease. Suppose $\exists \epsilon > 0$ such that $||\nabla f(x^k)|| \ge \epsilon$ for all k, then

$$\exists c \in (0,1) \ indep \ of \ k \ s.t. \ \Delta_k \geq \frac{c}{L} \epsilon$$

Theorem 14 (At least one limit point is stationary). $f \in C^2(\mathbb{R}^n)$, ∇f Lipschitz, Cauchy decrease. Then either $\exists k \geq 0$ s.t. $\nabla f(x^k) = 0$ or

$$\lim\inf_{k\to\infty} ||\nabla f\left(x^k\right)|| = 0$$

Theorem 15 (Global Minimizer of TR Subproblem).

$$\underbrace{(H + \lambda^* I)}_{positive\ semidef} s^* = -g$$

with $\lambda^* \geq 0$, $\lambda^* (||s^*|| - \Delta) = 0$, and $||s^*|| \leq \Delta$

Definition (KKT of (CP)).

$$\nabla f(\hat{x}) = J_E(x)^T \hat{y} + J_I(x)^T \hat{\lambda}$$

$$c_E(\hat{x}) = 0$$

$$c_I(\hat{x}) \ge 0$$

$$\hat{\lambda}_i \ge 0$$

$$\hat{\lambda}_i c_i(\hat{x}) = 0$$

Definition (Lagrangian of (CP)).

$$\mathcal{L}(x, y, \lambda) := f(x) - y^T c_E(x) - \lambda^T c_I(x)$$
$$\nabla_x \mathcal{L}(x, y, \lambda) = \nabla f(x) - J_E(x)^T y - J_I(x)^T \lambda$$

so KKT implies $\nabla_x \mathcal{L}\left(\hat{x}, \hat{y}, \hat{\lambda}\right) = 0$

Theorem 16 (First Order Necessary Condition for (CP)). x^* local minimizer implies x^* KKT under one of the conditions:

- Slater: $\exists x \text{ s.t. } c_E(x) = Ax b = 0 \text{ and } c_I(x) > 0$
- LICQ: $\nabla c_i(x)$ linearly indep.

Definition (Convex Programming Problem). f(x) is a convex function, $c_i(x)$ is a concave function for all $i \in I$, and $c_E(x) := Ax - b$

Theorem 18 (Sufficient Optimality Conditions for Convex Problem). (CP) be convex programming problem, then KKT implies global minimizer.

Theorem 19 (Second-order Necessary Conditions). (CP) satisfies some CQ. Let x^* be a local minimizer, and (y^*, λ^*) are Lagrange multipliers of KKT at x^* .

Then,

$$s^{T} \nabla_{xx}^{2} \mathcal{L}\left(x^{*}, y^{*}, \lambda^{*}\right) s \geq 0$$
 $\forall s \in F\left(\lambda^{*}\right)$

Definition (Quadratic Penalty Function).

$$\Phi_{\sigma}(x) = f(x) + \frac{1}{2\sigma}||c(x)||^2$$

Theorem 21 (Global Convergence of Penalty Method). Apply basic quadratic penalty method. Assume $f, c \in C^1$, $y_i^k := -c_i(x^k)/\sigma^k$ for $i = 1, 2, \dots, m$, and

$$||\nabla \Phi_{\sigma^k}(x^k)|| \le \epsilon^k$$

where $\epsilon^k \to 0$.

Then, x^* is KKT, and $y^k \to y^*$, the vector of Lagrange multipliers of constraints

Theorem 22 (Global Convergence of Augmented Lagrangian). Assuming $f, c \in C^1$ in

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } c(x) = 0$$

let $y^k = u^k - \frac{c(x^k)}{\sigma^k}$ for some $u^k \in \mathbb{R}^m$, and assume that

$$||\nabla \Phi\left(x^k, u^k, \sigma^k\right)|| \le \epsilon^k$$

where $\epsilon^k \to 0, k \to \infty$. Additionally assume $x^k \to x^*$ where $\nabla c_i(x^*)$ are linearly independent.

Then, $y^k \to y^*$ as $k \to \infty$ with y^* satisfying $\nabla f(x^*) - J(x^*)^T y^* = 0$