Install Librarys and Data:

```
> library(e10/1)  # e10/1 paketi Naive Bayes fonksiyonunu bunun içinden gelecek
> library(pROC)
> library(dplyr)
> library(gpglot2)
> library(psych)
> library(rpart.plot)
> library(stropart.plot)
> library(stropart.plot)
> library(stropart.plot)
> library(stropart.plot)
> library(fayet.plot)
> library(stropart.plot)
> library(stropart.plot
```

Summary:

> summary(df)

, Danmar J (ar)					
Sales	CompPrice	Income	Advertising	Population	Price
Min. : 0.000	Min. : 77	Min. : 21.00	Min. : 0.000	Min. : 10.0	Min. : 24.0
1st Qu.: 5.390	1st Qu.:115	1st Qu.: 42.75	1st Qu.: 0.000	1st Qu.:139.0	1st Qu.:100.0
Median : 7.490	Median :125	Median : 69.00	Median : 5.000	Median :272.0	Median :117.0
Mean : 7.496	Mean :125	Mean : 68.66	Mean : 6.635	Mean :264.8	Mean :115.8
3rd Qu.: 9.320	3rd Qu.:135	3rd Qu.: 91.00	3rd Qu.:12.000	3rd Qu.:398.5	3rd Qu.:131.0
Max. :16.270	Max. :175	Max. :120.00	Max. :29.000	Max. :509.0	Max. :191.0
ShelveLoc	Age	Education Ur	ban US		
Bad : 96 Mi	n. :25.00	Min. :10.0 No	:118 No :142		
Good : 85 1s	t Qu.:39.75	1st Qu.:12.0 Ye	s:282 Yes:258		
Medium:219 Me	dian :54.50	Median :14.0			
Me	an :53.32	Mean :13.9			
3r	d Qu.:66.00	3rd Qu.:16.0			
Ma	x. :80.00	Max. :18.0			

Plot-Histogram:

cihat df\$sales histogramı

Data Partition and Train:

```
> hist(df$Sales , main = "cihat df$sales histogram1")
> df$Sales <- as.factor(ifelse(df$Sales <= 8, "Low", "High"))</pre>
> set.seed(123)
> train_indeks <- createDataPartition(df$Sales, p = 0.8, list = FALSE, times = 1)</pre>
> train <- df[train_indeks,]</pre>
> test <- df[-train_indeks,]</pre>
> train_x <- train %>% select(-Sales)
> train_y <- train$Sales</pre>
> test_x <- test %>% select(-Sales)
> test_y <- test$Sales</pre>
> nb_model <- naiveBayes(Sales ~ ., data = train)
> summary(nb_model)
> summary(nb_model)
Length Class Mode
apriori 2 table numeric
tables 10 -none- list
levels 2 -none- character
isnumeric 10 -none- logical
call 4 -none- call
> predicted_values <- predict(nb_model, test , type="raw")
> tb <- table(predict(nb_model, test ), test_y)
> confusionMatrix(tb, positive = "High")
Confusion Matrix and Statistics
Confusion Matrix and Statistics:
> predicted_values <- predict(nb_model, test , type="raw")
> tb <- table(predict(nb_model, test ), test_y)
> confusionMatrix(tb, positive = "High")
Confusion Matrix and Statistics
         test_y
          High Low
   High 23
                    5
               9 42
   Low
                       Accuracy: 0.8228
                          95% CI: (0.7206, 0.8996)
      No Information Rate : 0.5949
      P-Value [Acc > NIR] : 1.248e-05
                           Kappa: 0.6248
  Mcnemar's Test P-Value: 0.4227
                  Sensitivity: 0.7188
                  Specificity: 0.8936
              Pos Pred Value : 0.8214
              Neg Pred Value: 0.8235
                    Prevalence: 0.4051
             Detection Rate: 0.2911
    Detection Prevalence: 0.3544
         Balanced Accuracy: 0.8062
           'Positive' Class : High
```

Precision – Recall – F1 Score:

ROC Curve:

