Министерство науки и высшего образования Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Алтайский государственный технический университет им. И. И. Ползунова»

Факультет информационных технологий

Кафедра Прикладная математика	
Отчет защищен с оценко	ой
Преподаватель (подпись) "	А.В.Сорокин (и.о.фамилия) 022 г.
Отчет	
по дисциплине ОСНОВЫ МОДЕЛИРОВАНИЯ	F
Упражнение №6 РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИ СИМПЛЕКС-МЕТОДОМ СРЕДСТВАМИ MICROSO LIBREOFFICE CALC название работы	
<u>ЛР 09.03.04.05.007 О</u> обозначение документа	
Студент группы гр. ПИ-91	И.И.Шинтяпин
Преподаватель доцент, к.т.н. должность, ученое звание	А.В.Сорокин и.о., фамилия

Оглавление

Постановка задачи	2
Задание из 3 упражнения:	4
РЕШЕНИЕ ЗАДАЧИ СИМПЛЕКС-МЕТОДОМ СРЕДСТВАМИ MICROSOFT EXCEL	6
Заключение	18
Список используемых источников	19

Постановка задачи

Задача линейного программирования (ЗЛП) является одной из важных экономико-математических задач оптимизации. Описывается ЗЛП математически с помощью оптимизируемой целевой функции

$$F=c1x1+c2x2+...+cnxn$$
,

где c1, c2, ..., cn — набор весовых коэффициентов, обычно являющихся числами в денежном эквиваленте, x1,x2,...,xn — набор ресурсов, используемый для создания каких-то изделий. Функцию F необходимо или минимизировать, или максимизировать посредством изменения величин x1, x2, ..., xn. Записывается это так:

Кроме целевой функции в ЗЛП имеется система ограничений вида

где b1, b2, ..., bm – набор величин, как правило положительных, являющихся объемом имеющихся ресурсов, имеющихся в наличии.

Нестрогие неравенства могут быть и строгими.

Предполагается, что значения величин x1, x2, ..., xn неотрицательны $x1 \ge 0, x2 \ge 0, ..., xn \ge 0.$

Для решения ЗЛП используется известный симплекс метод, основанный на поиске решения на границе области, описываемой системой неравенств. Алгоритм, пробегая по граням и вершинам многогранника, ищет ту точку множества, которая дает оптимальное решение. Наглядным способом решения ЗЛП является графический метод. Его реализация позволяет наглядно понять суть метода поиска ЗЛП.

```
Рассмотрим ЗЛП вида
```

Использование графического метода возможно не всегда, а лишь в частных случаях:

Рассмотрим частный случай этой задачи с заданными сі,аіј и bj, i=1,2; j=1,2,3.

```
F=x1+1.5x2 → max

4x1+2x2 \le 12,

3x1+3.5x2 \le 10.5,

2x1+6x2 \le 12,

x1 \ge 0, x2 \ge 0.
```

Необходимо

- 1. Используя материал темы 2 и упражнения 3, изучить постановку задачи линейного программирования (ЗЛП).
- 2. Освоить методику решения ЗЛП с использованием программ Microsoft Excel (LibreOffice Calc) (см. разделы 3 и 4 данного учебного материала с.8 и с.22).
- 3. Используя построенную математическую модель ЗЛП, из упражения 3, реализовать поиск ее решения посредством программ Microsoft Excel «Поиск решений» (LibreOffice Calc «Решатель»). Настройки Microsoft Excel и LibreOffice Calc для решения оптимизационных задач приведены в соответственно в разделах 3 и 4 данного учебного материала.
- 4. Проанализировать результаты решения и сделать необходимые выводы.
- 5. Написать отчет о проделанной работе в текстовом редакторе Microsoft Word (LibreOffice Writer). Отчет должен содержать титульный лист по форме, содержание, Постановку задачи, решение задачи с использованием средств Microsoft Excel (LibreOffice Calc). В отчете можно использовать скриншоты, должны присутствовать графики. В отчете должно быть заключение, где рассказывается о решенной задаче, и способах преодоления трудностей, возникших при решении данной задачи. Должен быть список литературы, за основу которого можно взять список из данного учебного материала.

Задание из 3 упражнения:

Задание 28. На кондитерской фабрике изготовляют три вида творожков, для которых используют творог, масло и сгущенка. Творог покупается по цене 200 р. за 1 кг., масло по цене 600 р. за 1 кг., сгущенка – 200 р за 1 кг.

Продукт 1 должен содержать не менее 50% творога и не более 25% масла, продукт 2 - не менее 25% творога и не более 50% сгущенки, продукт 3 может содержать любое количество творога, масла и сгущенки. Продажная цена продукта 1 - 900 р. за кг, продукта 2 - 600 р., продукта 3 - 750 р. за кг. Запасы сырья ограничены: творог - 100 кг, масло - 100 кг, сгущеки -65 кг.

- 3. Какое количество продукта 2 следует производить, чтобы фабрика получала максимальную прибыль (кг)?
- 4. Какова максимальная прибыль (тыс.р.)?

Математическая модель:

Целевая функция:

Пусть:

Х1 - кол-во первого продукта (кг)

Х2 - кол-во второго продукта (кг)

ХЗ - кол-во третьего продукта (кг)

Тогда целевая функция дохода будет выглядеть следующим образом:

$$F = 900x1+600x2+750x3$$

Чтобы получить максимальную прибыль, необходимо максимизировать данную целевую функцию:

$$F = 900x1+600x2+750x3 \rightarrow MAX$$

продукт 1 содержит: 50% творога, 25% масла и 25% сгущенки продукт 2 содержит: 25% творога, 25% масла и 50% сгущенки продукт 3 содержит: 40% творога, 20% масла и 40% сгущенки

Тогда получим ограничения:

$$\begin{cases} 0.5x1 + 0.25x2 + 0.4x3 \le 100 \\ 0.25x1 + 0.25x2 + 0.2x3 \le 100 \\ 0.25x1 + 0.5x2 + 0.4x3 \le 65 \\ x1, x2, x3 \ge 0 \end{cases}$$

РЕШЕНИЕ ЗАДАЧИ СИМПЛЕКС-МЕТОДОМ СРЕДСТВАМИ MICROSOFT EXCEL

1. Установка надстройки Microsoft Excel «Поиск решения»

Открываем «файл» → «Параметры» → «Надстройки» → «Управление: Надстройки Excel»:

В появившемся окне выбираем требуемую надстройку Excel «Поиск решения» и нажимаем «Ок»

2. Алгоритм получения решения задачи линейного программирования в Microsoft Excel

Заносим в ячейки B2:D4 значения параметров левых частей ограничений a11,a12, a13, a21, a22, a23, a31, a32, a33:

A	А	В	С	D	
		Коэффициенты аіј		ij	
1	Задача линейного программирования				
2	a11 a12 a13=	0,5	0,25	0,4	
3	a21 a22 a23=	0,25	0,25	0,2	
4	a31 a32 a33=	0,25	0,5	0,4	
5					

Далее заносим в ячейки F2:F4 значения правых частей ограничений b1, b2, b3

	А	В	С	D	Е	F
1	Задача линейного программирования		ициенты а ти огранич	•		Ограничения - столбец свободных членов bi
2	a11 a12 a13=	0,5	0,25	0,4	b1=	100
3	a21 a22 a23=	0,25	0,25	0,2	b2=	100
4	a31 a32 a33=	0,25	0,5	0,4	b3=	65

Заносим в ячейки B5:D5 значения коэффициентов целевой функции c1, c2 и c3:

	A	В	С	D	Е	F
1	Задача линейного программирования	Ко∋фф в левой час	ициенты а ти ограни	•		Ограничения - столбец свободных членов bi
2	a11 a12 a13=	0,5	0,25	0,4	b1=	100
3	a21 a22 a23=	0,25	0,25	0,2	b2=	100
4	a31 a32 a33=	0,25	0,5	0,4	b3=	65
5	коэф. при целевой функции: c1 c2 c3	900	600	750		

Устанавливаем в ячейки B6, C6 и D6 значения переменных целевой функции x1, x2 и x3:

	A	В	С	D	Е	F
		Коэффициенты аіј			Ограничения - столбец	
1	Задача линейного программирования	в левой час	ти ограни	чений		свободных членов bi
2	a11 a12 a13=	0,5	0,25	0,4	b1=	100
3	a21 a22 a23=	0,25	0,25	0,2	b2=	100
4	a31 a32 a33=	0,25	0,5	0,4	b3=	65
5	коэф. при целевой функции: c1 c2 c3	900	600	750		
6	переменные: x1 x2 x3	0	0	0		

Вставляем в ячейку В7 выражение для целевой функции $F=c1*x1+c2*x2+c3x3 \rightarrow = CУММПРОИЗВ(B5:D5;B6:D6)$:

	B7 ▼ (ПРОИЗВ(В5:D5	;B6:D6)			
1	А	В	С	D	Е	F
1	Задача линейного программирования	Коэф¢ в левой ча	оициенты а сти ограни	•		Ограничения - столбец свободных членов bi
2	a11 a12 a13=	0,5	0,25	0,4	b1=	100
3	a21 a22 a23=	0,25	0,25	0,2	b2=	100
4	a31 a32 a33=	0,25	0,5	0,4	b3=	65
5	коэф. при целевой функции: c1 c2 c3	900	600	750		
6	переменные: x1 x2 x3	0	0	0		
7	Целевая функция: F=c1*x1+c2*x2+c3*x3=	0]			

Далее вставляем в ячейки H2:H4 выражения для левых частей ограничений-неравенств

- =СУММПРОИЗВ(В2:D2;В6:D6) → Н2
- =СУММПРОИЗВ(В3:D3;В6:D6) → Н3
- =СУММПРОИЗВ(В4:D4;В6:D6) → Н4

Вызов окна «Поиск решения». Для этого выбираем команды меню «Данные→Поиск решения»

В окне «Параметры поиска решения» в поле «Оптимизировать целевую функцию:» указываем адрес ячейки с целевой функцией, затем оптимизировать целевую функцию «до» «Максимум»:

Далее задаем в окне «Параметры поиска решения» в поле «Изменяя ячейки переменных:» изменяемые ячейки \$В\$6:\$D\$6, в которых хранятся

Задаем в окне «Параметры поиска решения» в поле «В соответствии с ограничениями:» выражения для ограничений. Для этого нажимаем кнопку «Добавить» и появившемся окне набираем выражение

ограничения, используя данные в уже созданных ячейках:

Затем нажимаем Ок

Также делаем для второго и третьего ограничений в виде неравенств: Параметры поиска решения Оптимизировать целевую функцию: \$B\$7 1 До: 0 Максимум Минимум Значения: Изменяя ячейки переменных: 1 \$B\$6:\$D\$6 В соответствии с ограничениями: \$H\$2 <= \$F\$2 <u>До</u>бавить \$H\$3 <= \$F\$3 \$H\$4 <= \$F\$4 Изменить **Удалить** Сбросить Загрузить/сохранить ☑ Сделать переменные без ограничений неотрицательными Выберите Поиск решения нелинейных задач методом ОПГ Параметры метод решения: Метод решения Для гладких нелинейных задач используйте поиск решения нелинейных задач методом ОПГ,

для линейных задач - поиск решения линейных задач симплекс-методом, а для негладких

Найти решение

Закрыть

задач - эволюционный поиск решения.

Справка

Включаем «галочку» в окне «Параметры поиска решения» в строке «Сделать переменные без ограничений неотрицательными». Данное условие задает ограничения на переменные значения x1>=0,x2>=0 и x3>=0. Затем в окне «Параметры поиска решения» в поле «Выберите метод решения» выбираем строку со значением «Поиск решения лин. задач симплекс-методом»:

В окне «Параметры поиска решения» нажимаем кнопку «Параметры», появляется окно «Параметры», в котором устанавливаем:

Точность ограничения: 0,0001,

Галочку использовать автоматическое масштабирование,

Целочисленная оптимальность (%): 0 Максимальное время в секундах: 100

Число итераций: 100

Затем в окне «Параметры поиска решения» нажимаем кнопку «Найти решение»:

В окне «Результаты поиска решения» выбираем строку со значением «Сохранить найденное решение»

Затем нажимаем копку «ОК» и видим решение:

6	переменные: x1 x2 x3	180	40	0
7	Целевая функция: F=c1*x1+c2*x2+c3*x3=	186000		

X1 = 180кг

X2 = 40кг

X3 = 0кг

Доход (максимум целевой функции) равен

F(X) = 186000P

Подсчитаем затраты:

Творог: 0.5x1+0.25x2+0.4x3=0.5*180+40*0.25=100кг Масло: 0.25x1+0.25x2+0.2x3=0.25*180+0.25*40=55кг Сгущенка: 0.25x1+0.5x2+0.4x3=0.25*180+0.5*40=65кг

Общие затраты: 200*100+600*55+200*65=66000Р

Прибыль = F(X3)-затраты=186000-66000=120000P

Заключение

Если сравнить полученный результат с результатом решения этой же задачи обычным симплекс методом в прошлом упражнении, то видно, что результаты отличаются лишь на сотые доли:

Чистая прибыль при ручном решении задачи обычным симплекс методом = 119925P

Чистая прибыль при решении задачи симплекс методом средствами MS Excel: 120000P

Очевидно, что такая незначительная разница получилась за счет погрешности округлений при решении данной задачи обычным симплекс методом. Это говорит о правильности расчетов при решении предыдущего упражнения.

Стоит заметить, что средства программы MS Excel позволяют достаточно гибко, точно и быстро решать различные задачи линейного программирования как симплекс методом, так и другими способами. Это позволяет экономить колоссальное количество времени, по сравнению с ручным решением данных задач обычным симплекс методом.

В процессе выполнения данной работы возникли трудности с выбором ячеек ограничений при добавлении ограничений.

Список используемых источников

- 1. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем: учеб. пособие, 2-е изд. перераб. и доп., М.: Финансы и статистика, 2006. 432 с.: ил.
- 2. Васильев А.Н. Числовые расчеты в Excel: Учебное пособие. СПб: Изд-во «Лань», 2014, 608 с.
- 3. Гладких Б.А. Методы оптимизации и исследование операций для бакалавров информатики. Ч.1. Введение в исследование операций. Линейное программирование: Учебное пособие. Томск: Из-во НТЛ, 2009, 200 с.
- 4. Горлач Б.А. Исследование операций: Учебное пособие. СПб: Изво «Лань», 2013, 448 с.
- 5. Есипов Б.А. Методы исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 304 с.
- 6. Мадера А.Г. Математические модели в управлении: Компьютерное моделирование в Microsoft Excel: Лабораторные работы. М.:РГГУ, 2007. 121 с.
- 7. Новиков, А.И. Экономико-математические методы и модели: учебник /А.И. Новиков. Москва: Издательско-торговая корпорация «Дашков и К°», 2017. -532 с.: ил. (Учебные издания для бакалавров). Библиогр. в кн. ISBN 978-5-394-02615-7; То же [Электронный ресурс]. URL: http://biblioclub.ru/ index.php?page=book&id=454090 (05.12.2020).
- 8. Ржевский С.В. Исследование операций: Учебное пособие. СПб: Изд-во «Лань», 2013, 480 с.