

Simulation of Vehicle to Network Communication in Real Environment

Name: Pengzhan Jiang

Email: pjiang@kth.se

Programme: Information and Network Engineering (TINNM)

Track: Communication Engineering

Content

- Background
- Related Work
- System Model
- Result and Analysis
- Key Findings and Conclusion

Background

- Traditional Verification:
 - V2N systems tested via resource-intensive physical field testing.
 - Conducted late in the development process.
- Challenges:
 - Late discovery of design issues threatening project timeline and budget.
 - Difficult to identify root cause of field quality issue
- OEMs demand:

 Predict and evaluate V2N communication performance early in the development process.

Research Question and Goals

- Research Question:
 - How can we use simulation predict and evaluate V2N performance early?
 - What factors impact V2N performance in real driving environment?

Goals:

- Summarize and Compare Existing V2N Simulation tools
- Develop a V2N Simulation and Evaluation workflow
- Evaluate Performance under Various Conditions/Setups

Related works

- Open Source:
 - Simulation and Verification of Wireless Technologies (SIVERT)
 - Only for V2V.
 - Combining Unity 3D NS3 and SUMO
 - SIVERT 2 project is ongoing for V2N simulation
 - New York University Channel Simulator (NYUSIM)
 - Urban, suburban, highway
 - User Friendly

- Commercial:
 - MATLAB
 - channel customization
 - computation-resource demanding.
 - WinProp (Altair)
 - User friendly
 - Robust Simulation Engine

WinProp Component

Workflow

Planned Simulation Cases

- Channel Model (DPM versus IRT)
- Map/Driving environment
- Base station (BS) height
- Frequency Band
- Mobile station (MS)/vehicle setup
 - Speed
 - Antenna Gain
 - SISO versus MIMO
 - Antenna Spacing
- Update Map details

Simulation area: Scania STC test track

Base case(As Reference)

- V2N performance KPI
 - RSRP (Reference Signal Received Power)
 - RSRQ (Reference Signal Received Quality)
 - RSSI (Received Signal Strength Indicator)
 - Throughput
 - Data Rate

Map	Open Street Map + Topography
Base Station	Original information from operator
	48 m height
	Tilt 4°
Mobile Station	2 isotropic antenn with 0 dBi gain
	Speed 90 km/h
Frequency	3.5GHz(5G n78)
Bandwidth	80MHz
Simulation Scope	Area and Trajectory
Channel Model	Dominant Path Model

Case 1: Channel Model

Intelligent Ray Tracing (IRT) Model

Map with Topography

Map without Topography

Case 3: BS height

BS Height = 48m

BS Height = 100m

800MHz 2.6GHz 3.5GHz

Vehicle Velocity 90km/h

Vehicle Velocity 200km/h

Case 5: Mobile station(Antenna Gain)

Antenna Gain -6dBi

Antenna Gain -3dBi

Case 5: Mobile Station(MIMO vs. SISO)

2 Antennas OdBi

1 Antenna OdBi

Case 5: MS(Antenna Spacing)

1.0 wavelength 0.5 wavelength 0.25 wavelength

Update Map details

Updated Map

Subtraction result

Key Findings

- Accurate environmental modeling is crucial.
- Comparison of DPM and IRT showed similar results; IRT recommended for new scenarios.
- Low-frequency signals transmit farther; LOS critical for high-frequency communication at 3.5GHz.
- Increasing base station height enhances signal coverage.
- Mobile station gain and spatial diversity are essential; antenna spacing requires further investigation.
- Speed of the mobile must be considered in time-variant simulations.

Conclusion

- Critical Need Addressed:
 - Early verification and prediction of V2N communication performance.
- Methodology Development:
 - Complete simulation and evaluation methodology developed.
- Workflow and Simulation Methodology:
 - Feasible and effective for assessing V2N performance in real-world.
 - Emphasis on the impact of driving environment, topography, and vegetation on signal performance.

Future Work

- Expand scenarios for driving environment
 - Current project scenario: rural/ subrural
 - Potential expansion of scenarios to: urban, suburban, highway

- Potential applications in development process of telematic systems
 - Predict system performance in typical scenarios: urban, suburban, highway, rural
 - Buidling up system models for benchmarking and evaluation
 - o For example, evaluate impact of new antennas on system performance

Q&A