- 1. Boolean algebra
- 2. De Morgan's law
- 3. Positive and negative logic

Determining output value from a diagram

Reference: www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/

Implementing Circuits From Boolean Expressions

 When the operation of a circuit is defined by a Boolean expression, we can <u>draw a logic-circuit</u> diagram directly from that expression.

DV/VC 20 May 2010

Laws of Boolean Algebra

Commutative Laws

Associative Laws

$$A + (B + C) = (A + B) + C$$

Distributive Law

Rules of Boolean Algebra

1.
$$A + 0 = A$$

7.
$$A \cdot A = A$$

2.
$$A + 1 = 1$$

8.
$$A \cdot \overline{A} = 0$$

3.
$$A \cdot 0 = 0$$

9.
$$\overline{A} = A$$

4.
$$A \cdot 1 = A$$

10.
$$A + AB = A$$

5.
$$A + A = A$$

11.
$$A + \overline{A}B = A + B$$

6.
$$A + \overline{A} = 1$$

12.
$$(A + B)(A + C) = A + BC$$

- Rules 1 to 9 are obvious.
- Rule 10: A + AB = A

A	В	AB	A + AB	A -
0	0	0	0	L
	1	0		B —
1	0	0	1	
	1	1 1	1	

Rules 11 and 12 of Boolean Algebra

• Rule 11: $A + \overline{AB} = A + B$

A	В	AB	A + AB	A + B		
0	0	0	0	0		
0	1	1	1	1		
1	0	0	1	1		
1	1	0	1 1	1		

◆ Rule 12: (A + B)(A + C) = A + BC

A	В	C	A+B	A+C	(A+B)(A+C)	BC	A + BC
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1		1	1

Using Boolean Algebra to simplify expressions

$$y = A\overline{B}D + A\overline{B}\overline{D}$$
 \longrightarrow $y = A\overline{B}$

$$z = (\overline{A} + B)(A + B)$$
 \longrightarrow $z = B$

$$x = ACD + \overline{ABCD}$$
 \longrightarrow $x = ACD + BCD$

DeMorgan's Theorems

Theorem 1

$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

Remember:

Theorem 2

$$\overline{(x\cdot y)} = \overline{x} + \overline{y}$$

"Break the bar, change the operator"

- DeMorgan's theorem is very useful in digital circuit design
- It allows ANDs to be exchanged with ORs by using invertors
- DeMorgan's Theorem can be extended to any number of variables.

$$F = \overline{X.Y} + \overline{P.Q} \qquad \longleftarrow \quad \text{2 NAND plus 1 OR}$$

$$= \overline{X} + \overline{Y} + \overline{P} + \overline{Q} \quad \longleftarrow \quad \text{1 OR with some input invertors}$$

$$z = (\overline{A} + C) \cdot (B + \overline{D})$$
 \longrightarrow $z = A\overline{C} + \overline{B}D$

Implications of DeMorgan's Theorems(I)

 Determine the output expression for the circuit below and simplify it using DeMorgan's Theorem

Verify De Morgan's law using Truth Table:

A	В	Ā	B	A+B	A · B	$\overline{A + B}$	Ā·B	A·B	$\bar{A} + \bar{B}$
0	0	1	1	0	0	1	1	1	1
0	1	1	1	1	0	0	0	1	1
1	0	0	0	1	0	0	0	1	1
1	1	0	0	1	1	0	0	0	0

Positive and negative logic