ML2 DSEB W4 - GMM

Nguyen Tuan Duy - 11204971

February 2023

1 Problem 3

Pros and cons of GMM:

	GMM	K-means
	Useful for data points that fall at the border of two clusters	Not possible
Pros of GMM		
	(GMM is a soft clustering method)	(K-means is a hard clusterin
	Less sensitive to scale	More sensitive to data of var
	Don't assume spherical clusters	assume spherical clusters
Cons of GMM	Cannot work well with very irregular shape	Same
		Faster
	Comparatively slow	
		(performance scales linearly
	Manually specify number of clusters	Same
	Sensitive to outliers	Same (more sensitive)
	Sensitive to initialization conditions	
		Same
	(Starting point)	
	More complicated to implement and understand	Simpler

2 Problem 4

Example 1: data of varying sizes and density.

Figure 1: Original data

The original data contains 6 blobs varying in distances between blobs(green blob is very far from other blobs whereas blue blob is very close to cyan blob)

Figure 2: result from GMM

Figure 3: result from K-means

K-means has trouble clustering data where clusters are of varying sizes whereas gmm have no trouble.

Example 2: data with high covariance

Figure 4: Original data

Figure 5: result from GMM

Figure 6: result from K-means

Expample 3: datapoints fall at the border of two clusters:

Figure 7: some points are near decision boundary

In this case it is better to use soft clustering method (like GMM) rather than (K-means) $\,$