1. 선분 $\overline{YA} = \overline{AB} = \overline{BC} \cdots \overline{NO} = \cdots$ 가 되도록 점 A, B, C, \cdots , N, O, \cdots 를 \overrightarrow{YX} , \overrightarrow{YZ} 위에 잡는다. 그 림과 같이 \overrightarrow{CD} 가 \overrightarrow{YZ} 에 수직일 때의 $\angle XYZ$ 의 크기를 a라 한다. 또한, \overrightarrow{NO} 가 \overrightarrow{YX} 에 수직일 때의 $\angle XYZ$ 의 크기를 b라 할 때, a-b의 값은? (단, \overrightarrow{YA} 를 첫 번째 선분이라고 할 때, \overrightarrow{NO} 는 15번째 선분이다.)

- ① 15°
- ② 15.5°
- ③ 16°
- 4 16.5°
- ⑤ 17°

2. 다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형 ABC에서 $\angle BAD : \angle CAD = 1 : 3$, $\overline{AD} \perp \overline{CE}$ 이다. $\angle DCE = 16$ 일 때, $\angle BAC$ 의 크기는?

- ① 64°
- ② 66°
- ③ 68°
- **4** 70 °
- ⑤ 72°

3. $\overline{AC} = \overline{BC}$ 인 이등변삼각형 ABC가 있다. $\angle A$ 의 이등분선과 \overline{BC} 와의 교점을 D라 하고, 점 D에서 $\angle B = \angle AED$ 이 되도록 선을 그어 \overline{AC} 와 교점을 E라 한다. $\overline{AB} = \overline{AD}$ 일 때, 옳지 않은 것은?

- \bigcirc $\overline{AE} = \overline{DC}$
- $\textcircled{4} \angle DEC = 4 \times \angle BAD$
- \bigcirc $\angle ADC = \frac{3}{2} \times \angle ABD$

4. 그림과 같이 $\triangle ABC$ 의 한 꼭짓점 C에서 $\angle A$ 의 이등분선의 연장선에 내린 수선의 발을 H라 하자. $\overline{AB}=\overline{AD}=6$ 이고 $\overline{AC}=10$ 일 때, \overline{AH} 의 길이는?

① 7

② 7.5

3 8

4 8.5

⑤ 9

5. $\triangle ABC$ 에서 $\angle ABF = \angle DBF$, $\overline{AD} = \overline{BD}$, $\overline{AE} = 3$, $\angle ADB = \angle AEB = 90$ 일 때, \overline{BF} 의 길이는?

1 6

2 7

③ 8

- **4** 9
- (5) 10

6. 폭이 일정한 종이 띠 EBFC를 그림과 같이 \overline{BC} 를 접는 선으로 접었을 때, \overline{EC} 와 \overline{BG} 가 만나는 점을 A, A에서 \overline{BC} 에 내린 수선의 발을 D라 하자. \langle 보기 \rangle 에서 항상 옳은 것만을 있는 대로 고른 것은?

- <보기>
- $\neg. \ \overline{BD} = \overline{DC}$
- \bot . $\angle ABD = \angle GAC$
- \Box . $\angle DCG = \angle DAC$
- \exists . $\angle GAC = 2 \angle ACD$
- ① ¬, ∟
- ② ¬, ⊏
- ③ ∟, ≥
- ④ ¬, ⊏, ≥
- ⑤ ∟, ⊏, ᡓ

7. 정사각형 ABCD에서 $\overline{AE}=4$, $\overline{CH}=2$ 이고 $\overline{EF}=\overline{FG}=\overline{GH}$ 일 때, 오각형 EFGHD의 넓이는?

- 12
- 2 16
- 3 20
- (4) 24
- **⑤** 30

8. $\angle B = 90^{\circ}$ 이고 $\overline{AB} = \overline{BC}$ 인 직각이등변삼각형 ABC에서 사각형 DEFG는 정사각형, $\overline{DB} + \overline{BE} = 16$, $\overline{BC} = 28$ 일 때, $\triangle DBE$ 의 넓이는?

- ① 23
- 2 24
- 3 25
- 4) 26
- ⑤ 27

9. 다음 그림과 같은 삼각형 ABC에서 BC의 중점을 M이라 하고, BC의 수직이등분선과 ∠A의 이등분선의 교점을 D라 하고, D에서 직선 AB, 직선 AC에 내린 수선의 발을 각각 점 E, F라 하자. 점 G는 직선 MD와 AC의 교점이고 AB=5, AC=12, GF=3일 때, BE의 길이를 구하면?

① 3

② 3.5

3 4

4.5

⑤ 5

10. $\angle C = 90^{\circ}$ 인 직각삼각형 ABC의 꼭짓점 C에서 \overline{AB} 에 내린 수선의 발을 D, \overline{BC} 의 중점을 E라고 할 때, 옳지 않은 것을 모두 고르면? (정답 2개)

- ① $\angle CDE = 90^{\circ} \angle ACD$
- ② $\angle ACD = \angle BDE$
- \bigcirc $\angle DCE = \angle DEC$
- $\textcircled{4} \angle CAD = \angle DEC$
- \bigcirc $\angle DEB = 2 \angle CAD$

11. 다음 그림과 같이 $\triangle ABC$ 의 내심 I를 지나면서 변 BC와 평행한 선분 DE를 그렸더니, \overline{BD} = 4cm, \overline{CE} = 5 cm이고, \overline{DE} 의 길이는 \overline{BC} 의 길이의 $\frac{3}{4}$ 배 이다. $\triangle ADE$ 의 둘레의 길이가 24 cm라 할 때, $\triangle ABC$ 의 둘레의 길이는?

- ① 30 cm
- ② 32 cm
- ③ 36 cm
- 4 38 cm
- ⑤ 40 cm

12. 그림에서 점 I는 $\triangle ABC$ 의 내심이고, \overline{CI} 의 연장선과 \overline{AB} 의 교점을 D, \overline{BI} 의 연장선과 \overline{AC} 의 교점을 E라고 하자. $\angle BDC + \angle BEC = 159\,^{\circ}$ 일 때, $\angle A$ 의 크기를 구하면?

- ① 44°
- ② 46°
- 348°
- 4) 50°
- ⑤ 52°

13. $\overline{AB} = 7$, $\overline{AC} = 24$, $\overline{BC} = 25$ 인 직각삼각형 ABC의 내심을 I라 하자. 점 I에서 변 BC에 내린 수선 의 발을 H, 변 BC의 중점을 M이라 할 때, 삼각형 IHM의 넓이는?

- ① 33
- 2 9
- 4) 12
- **14.** 그림에서 점 I는 $\triangle ABC$ 의 내심이고 $\overline{ED}//\overline{AC}$ 이 다. \overline{AC} =17cm, \overline{AE} =6cm, \overline{DC} =4cm이고 내접원 I의 반지름의 길이가 3cm일 때, 색칠한 부분의 넓 이는?

- ① $(81-9\pi) \text{ cm}^2$ ② $\left(\frac{81}{2}-9\pi\right) \text{cm}^2$
- $\left(\frac{27-9\pi}{2}\right)$ cm²
- $\left(\frac{81 9\pi}{2} \right) \text{cm}^2$
- $\left(\frac{81}{4} \frac{9}{2}\pi\right) \text{cm}^2$

15. 그림과 같이 \overline{AB} =6, \overline{AC} =10, \overline{BC} =8인 직각삼 각형 ABC의 내심을 I라 하자. 점 I에서 변 AC에 내린 수선의 발을 H, 변 AC의 중점을 M이라 할 때, △*IHM*의 넓이는?

1 1

② 2

- ③ 3
- (4) 4
- **⑤** 5
- **16.** 다음 그림은 $\angle C = 90^{\circ}$ 인 직각삼각형 ABC에서 점 O는 외심, 점 I는 내심이다. 점 P는 \overline{OC} 와 \overline{BI} 의 교점이고 $\angle A = 58$ 일 때, ∠BPC+∠ICP의 크기는?

- ① 129°
- \bigcirc 132 $^{\circ}$
- 3 140°
- (4) 145°
- (5) 148°
- **17.** 그림에서 두 점 O, I는 각각 $\overline{AC} = \overline{BC}$ 인 이등변 삼각형 ABC의 외심과 내심이다. $\angle C = 32^{\circ}$ 일 때, $\frac{2}{3}$ \angle IBO의 크기는?

- ① 10°
- 2 11°
- 312°
- 4 13°
- \bigcirc 14 $^{\circ}$

18. 다음 그림과 같이 점 O는 $\triangle ABC$ 의 외심이고 점 I는 $\triangle AOC$ 의 내심이다. $\angle B = 38^{\circ}$ 일 때, $\angle OIC$ 의 크기는?

- \bigcirc 76 $^{\circ}$
- ② 104°
- 3116°
- 4 128 $^{\circ}$
- ⑤ 152°

19. $\angle C = 90^{\circ}$ 인 직각삼각형 ABC에서 점 I가 $\triangle ABC$ 의 내심이고 그림과 같이 원이 외접하고 있 다. \overline{AB} = 10 cm, \overline{BC} = 6 cm, \overline{AC} = 8 cm일 때, 빗금 친 부분의 넓이는?

- ① $\left(\frac{25}{2}\pi + 10\right) \text{cm}^2$ ② $\left(\frac{25}{2}\pi + 16\right) \text{cm}^2$
- $3\left(\frac{25}{2}\pi+20\right)$ cm²
- $(25\pi+10)\,\mathrm{cm}^2$
- ⑤ $(25\pi + 20) \text{ cm}^2$

20. 두 점 I, O는 각각 $\angle C = 90$ °인 직각삼각형 ABC의 내접원과 외접원의 중심이고, 세 점 D, E, F는 각각 $\triangle ABC$ 의 내접원과 세 변 AB, BC, CA의 접점이다. $\angle B = 40^{\circ}$ 이고, $\overline{AB} = 18 \text{ cm}$,

 \overline{BC} + \overline{AC} = 24 cm일 때, \widehat{AC} - \widehat{DF} 의 길이는?

- ① $\frac{1}{6}\pi$ cm
- $2 \frac{1}{3}\pi \text{cm}$
- $3\frac{5}{6}\pi \text{ cm}$
- $4 \frac{4}{3}\pi \text{cm}$
- $\frac{11}{6}\pi \text{ cm}$

정답 및 해설

1) 정답 ④

THE 깊은 해설

 $\triangle ABY$ 에서 $\angle BAC = 2a$

 $\overline{BA} = \overline{BC}$ 이므로 $\angle ACB = \angle BAC = 2a$

이때, \overline{AB} 는 2번째 선분이다.

단서 이등변삼각형의 성질을 이용하여 각을 표현하자.

 $\triangle BYC$ 에서 $\angle CBD = 3a$

 $\overline{\textit{CB}} = \overline{\textit{CD}}$ 이므로 $\angle \textit{CDB} = \angle \textit{CBD} = 3a$

이때, \overline{BC} 는 3번째 선분이다.

 $\triangle DYC$ 에서 $\angle DCZ = a + 3a = 90$ °

4a = 90° $\therefore a = 22.5$ °

이때, \overline{CD} 는 4번째 선분이다.

같은 방법을 쓰면 \overline{NO} 는 15번째 선분이므로

오답 point

앞에서 구한 규칙을 잘 이용하여 몇 번째 선분인지, 각도 가 몇 도인지 구할 수 있다.

 $15b = 90^{\circ}$: b = 6

 $\therefore a-b=22.5-6=16.5$

2) 정답 ①

THE 깊은 해설

 $\angle BAD = a$ 라 하면 $\angle CAD = 3a$

단서 주어진 각도의 비를 이용하여 각을 표현하자.

 $\angle ABC = \angle ACB = \frac{180^{\circ} - 4a}{2} = 90^{\circ} - 2a$

오답 point

이등변삼각형의 성질을 이용하여 각을 표현할 수 있다.

 $\angle ACE = (90^{\circ} - 2a) - 16^{\circ} = 74^{\circ} - 2a$

 ΔACE 에서

 $3a + (74^{\circ} - 2a) + 90^{\circ} = 180^{\circ}$ $\therefore a = 16^{\circ}$

 $\therefore \angle BAC = 4a = 4 \times 16^{\circ} = 64^{\circ}$

3) 정답 ④

THE 깊은 해설

 $\overline{CA} = \overline{CB}$ 이므로 $\angle CAB = \angle CBA = 2a$ 라 하면

 $\overline{AB} = \overline{AD}$ 이므로 $\angle ABD = \angle ADB = 2a$

또한 $\triangle ABD \equiv \triangle AED(ASA$ 합동)이므로

 $\angle AED = \angle ADE = 2a, \ \angle BAD = \angle EAD = a$

단서 합동을 이용하여 크기가 같은 각을 찾자

이제 $\triangle ABD$ 의 세 내각의 합이 $180\,^{\circ}$ 이므로 $a+2a+2a=180\,^{\circ}$ \rightarrow $a=36\,^{\circ}$

이제 $\triangle ABD$, $\triangle ADE$, $\triangle EDC$ 가 이등변삼각형이므로

■ 오단 point

이등변삼각형임을 이용하여 길이가 같은 선분을 찾을 수 있다.

- ① $\overline{AB} = \overline{AD} = \overline{AE}$
- ② $\overline{CA} = \overline{CB}$ 이고 $\overline{CE} = \overline{BD}$ 이므로 $\overline{AE} = \overline{DC}$
- ③ $\overline{BD} = \overline{DE} = \overline{EC}$ 이므로 $\overline{AB} + \overline{BD} = \overline{AE} + \overline{EC} = \overline{AC}$
- ④ $\angle DEC = 108$ °, $4 \times \angle BAD = 4 \times 36$ ° = 144°이므로 $\angle DEC \neq 4 \angle BAD$
- ⑤ $\angle ADC = 108$ °, $\frac{3}{2} \times \angle ABD = \frac{3}{2} \times 72$ ° = 108° 이므로 $\angle ADC = \frac{3}{2} \angle ABD$

4) 정답 ③

THE 깊은 해설

점 C를 지나고 \overline{AB} 에 평행한 선분과 \overline{AH} 의 연장선의 교

점을 E라 하자. $\overline{\mathsf{AB}}$ 이 평행한 선분과 $\overline{\mathsf{AH}}$ 의 연장선을 이용하자.

 $\angle ABD = \angle BCE(엉)$

 $\angle ADB = \angle CDE$ (맞꼭지각)

이때. \overline{AB} = \overline{AD} = 6이므로 $\triangle ABD$ 는 이등변삼각형이다.

 $\therefore \angle ABD = \angle ADB = \angle CDE = \angle BCE$

 $\angle BAD = \angle CEA$ (엇각)이므로 $\triangle ACE$ 는 이등변삼각형이다.

 $\therefore \overline{DE} = \overline{CE} = \overline{AC} = 10$

한편, 이등변삼각형의 성질에 의해 점 H는 \overline{AE} 의 중점이므

 $\exists \overline{AH} = \frac{1}{2} \overline{AE} = \frac{1}{2} \times (6+10) = 8$

오답 point

이등변삼각형의 성질을 이용하여 선분의 길이를 구할 수 있다.

5) 정답 ①

THE 깊은 해설

 $\angle ABF = \angle DBF = \angle x$ 라 하면 $\angle B = 2 \angle x$ 이고

 $\triangle ABD$ 는 $\overline{AD} = \overline{BD}$ 인 이등변 삼각형이므로

 $\angle B = \angle BAD = 2 \angle x = 45^{\circ}$ $\therefore \angle x = 22.5^{\circ}$

단서 이등변삼각형임을 이용하여 각의 크기를 구하자

 ΔAFE 와 ΔBFD 에서

 $\angle BFD = \angle AFE$, $\angle BDF = \angle AEF = 90$ 이므로

 $\angle DBF = \angle EAF = 22.5^{\circ}$ $\therefore \angle BAC = 67.5^{\circ}$

 $\triangle ADC$ 에서 $22.5\degree+\angle C=90\degree$ 이므로

 $\angle C = 67.5^{\circ}$

따라서 $\angle BAC = \angle C = 67.5$ 이므로

 $\triangle ABC$ 는 $\overline{AB} = \overline{BC}$ 인 이등변삼각형이고.

이등변삼각형은 꼭지각의 이등분선이 밑변을

수직이등분하므로 $\overline{AE} = \overline{EC} = 3$

오답 point

이등변삼각형의 성질을 이용하여 선분의 길이를 구할 수 있다.

 $\triangle BDF$ 와 $\triangle ADC$ 에서

 $\overline{BD} = \overline{AD}$, $\angle BDF = \angle ADC = 90^{\circ}$

 $\angle FBD = \angle CAD = 22.5$ ° 이므로

 $\triangle BDF \equiv \triangle ADC (ASA$ 합동)이다.

즉 $\overline{BF} = \overline{AC} = 6$ 이다.

6) 정답 ④

THE 깊은 해설

접은 각의 크기가 같으므로 $\angle GBC = \angle FBC$

단서 접은 각의 크기는 같다는 것을 이용해 이등변삼각형을 찾자.

엇각의 크기가 같으므로 $\angle FBC = \angle ECB$

따라서 $\angle ABC = \angle ACB$ 이므로 $\triangle ABC$ 는

AB= AC인 이등변삼각형이다.

ㄱ. 그러므로 점 A에서 \overline{BC} 에 내린 수선의 발 D는 밑변을 수직이등분하므로 $\overline{BD} = \overline{DC}$

ㄴ. 동위각의 크기가 같으므로

 $\angle GAC = \angle ABF = 2 \angle ABD$

 \subseteq . $\angle ABC = \angle ACB = a$ 라 하면

 $\triangle BCG$ 에서 $\angle BCG = \angle DCG = 90^{\circ} - a$ 이고

 Δ CAD에서 \angle $DAC=90\,^{\circ}-a$ 이므로

 $\angle DCG = \angle DAC$

오답 point

이등변삼각형의 밑각은 같다는 것을 이용하여 각의 크기를 표현할 수 있다.

ㄹ. ∠*GAC*=2∠*ABD*인데

 $\angle ABD = \angle ACD$ 이므로 $\angle GAC = 2 \angle ACD$

따라서 옳은 것은 ㄱ, ㄷ, ㄹ이다.

7) 정답 ④

THE 깊은 해설

 $\triangle EAF$, $\triangle FBG$, $\triangle GCH$ 에서

 $\overline{FE} = \overline{GF} = \overline{HG} \quad \angle A = \angle B = \angle C = 90^{\circ}$

 $\angle EFA + \angle AEF = 90^{\circ}$

 $\angle EFA + \angle BFG = 90^{\circ}$ $\therefore \angle AEF = \angle BFG$

근거 각의 합이 90°임을 이용하여 크기가 같은 각을 찾자

 $\angle BFG + \angle FGB = 90^{\circ}$

 $\angle FGB + \angle CGH = 90^{\circ}$ $\therefore \angle BFG = \angle CGH$

따라서 $\triangle EAF \equiv \triangle FBG \equiv \triangle GCH(RHA$ 합동)이므로

 $\overline{AD} = \overline{AE} + \overline{ED} = \overline{AE} + \overline{CH} = 6$

오답 point

직각삼각형의 합동을 이용하여 선분의 길이를 구할 수 있다.

 $\therefore \Box ABCD = 6 \times 6 = 36$

 $\triangle EAF = \triangle FBG = \triangle GCH = \frac{1}{2} \times 4 \times 2 = 4$

따라서 오각형 EFGHD의 넓이는 $36-4\times3=24$ 이다.

8) 정답 ②

THE 깊은 해설

위의 그림처럼 점 G에서 \overline{AB} 에 내린 수선의 발을 점 P라

 $\triangle DBE$ 와 $\triangle GPD$ 에서 $\angle GPD = \angle DBE = 90^{\circ}$

 $\angle BDE + \angle GDP = 90^{\circ}$

 $\angle BDE + \angle DEB = 90^{\circ}$ $\therefore \angle GDP = \angle DEB$

 $\overline{DE} = \overline{DG}$ 이므로 $\triangle DBE \equiv \triangle GPD(RHA$ 합동)이다.

오답 point

각의 합이 90°임을 이용해 직각삼각형의 합동을 찾을 수 있다.

 $\overline{PD} = \overline{BE} = a$, $\overline{BD} = \overline{PG} = b$ 라 하면

 $\triangle ABC$ 가 직각이등변삼각형이므로 $\angle A = 45^{\circ}$,

따라서 $\triangle APG$ 도 직각이등변삼각형이므로

 $\overline{PG} = \overline{AP} = b$

다서 직각이등변삼각형임을 이용하여 변의 길이를 구하자

 $\overline{DB} + \overline{BE} = 16$ 이므로 $a+b=16\cdots$ ①

 $\overline{AB} = \overline{BC} = 28$ 이므로

 $\overline{BD} + \overline{PD} + \overline{AP} = a + 2b = 28 \cdots \bigcirc$

¬□-□을 하면 -b=-12 ∴b=12

b=12를 \bigcirc 에 대입하면 a+12=16 $\therefore a=4$

따라서 $\triangle BDE = 4 \times 12 \times \frac{1}{2} = 24$

9) 정답 ②

THE 깊은 해설

 $\angle AED = \angle AFD = 90^{\circ}$, \overline{AD} 는 공통,

 $\angle EAD = \angle FAD$ 이므로

 $\triangle AED = \triangle AFD(RHA$ 합동)

 $\therefore \overline{DE} = \overline{DF} \cdots \bigcirc \bigcirc$

다서 공통인 변을 이용하여 직각삼각형의 합동을 찾자

또한 \overline{AE} = \overline{AF} 이므로 \overline{BE} = x라 하면 \overline{AF} = 5+x $\therefore \overline{CF}$ = \overline{AC} - \overline{AF} = 12-(5+x)=7-x

보조선 \overline{BD} 와 \overline{CD} 를 그어본다.

 \overline{DM} 은 \overline{BC} 의 수직이등분선이므로

 $\triangle DBC$ 는 $\overline{DB} = \overline{DC} \cdots$ ②인 이등변삼각형이다.

∠ DEB = ∠ DFC = 90°···③, ①,②,③에 의해

 $\triangle BED \equiv \triangle CFD(RHS$ 합동)이다.

오답 point

합동을 통해 찾은 조건으로 또 다른 합동을 찾을 수 있다.

대응변의 길이는 서로 같으므로 $\overline{BE} = \overline{CF}$ x = 7 - x, 2x = 7 $\therefore x = 3.5$

10) 정답 ③, ④

THE 깊은 해설

 $\triangle BCD$ 에서 $\angle BDC = 90^{\circ}$,

점 E는 \overline{BC} 의 중점이므로 $\triangle BCD$ 의 외심이다.

따라서 $\overline{BE} = \overline{DE} = \overline{CE}$ 이다.

오답 point

직각삼각형의 외심의 성질을 이용하여 길이가 같은 선분을 찾을 수 있다.

이때, ∠*EBD* = *a*라고하면

 $\angle EBD = \angle EDB = a$.

 $\angle DEC$ 는 $\triangle EBD$ 의 외각이므로

 $\angle DEC = a + a = 2a$

단서 삼각형의 외각을 이용하여 각을 표현하자

또한 \overline{DE} = \overline{CE} 이므로

$$\angle EDC = \angle ECD = \frac{180° - 2a}{2} = 90° - a$$

한편, $\angle DAC + \angle DCA = \angle DAC + \angle CBA = 90$ ° 따라서 $\angle CBA = \angle DCA = a$ 이고,

 $\angle DAC = 90^{\circ} - a$ 이다.

 \bigcirc $\triangle DCE = 90^{\circ} - a \neq \triangle DEC = 2a$

 $\textcircled{4} \angle CAD = 90^{\circ} - a \neq \angle DEC = 2a$

11) 정답 ③

THE 깊은 해설

내심의 성질에 의해

 $\angle DBI = \angle CBI, \ \angle ECI = \angle BCI \ \cdots \ \bigcirc$

단서 내심의 성질을 이용하여 크기가 같은 각을 찾자

 $\overline{DE}//\overline{BC}$ 이므로

 $\angle DIB = \angle CBI, \ \angle EIC = \angle BCI \ \cdots \bigcirc$

 \bigcirc , \bigcirc 에 의해 $\angle DBI = \angle DIB$, $\angle ECI = \angle EIC$

■ 오답 point

각의 크기를 이용하여 길이가 같은 선분을 찾을 수 있다.

 $\triangle ADE$ 의 둘레의 길이가 $24\,\mathrm{cm}$ 이므로

 $\overline{AD} + \overline{DI} + \overline{EI} + \overline{AE} = \overline{AD} + \overline{DB} + \overline{EC} + \overline{AE}$

 $=\overline{AB}+\overline{AC}=24$

 $\overline{DE} = \frac{3}{4}\overline{BC} = 9 \text{ cm}$ 이므로 $\overline{BC} = 12 \text{ cm}$

따라서 $\triangle ABC$ 의 둘레의 길이는

 $\overline{AB} + \overline{AC} + \overline{BC} = 24 + 12 = 36 \text{ (cm)}$

12) 정답 ②

THE 깊은 해설

 $\angle ABI = \angle CBI = a$,

 $\angle ACI = \angle BCI = b$ 라 하면

 $2a + 2b + \angle A = 180^{\circ}$

 $\therefore a+b = \frac{180^{\circ} - \angle A}{2}$

오답 point

내심의 성질을 이용하여 각을 표현할 수 있다.

 $\angle BDC$ 는 $\triangle ACD$ 의 외각이므로

 $\angle BDC = b + \angle A$

 \angle BEC는 $\triangle ABE$ 의 외각이므로

 $\angle BEC = a + \angle A$

 $\angle BDC + \angle BEC = 159$ ° 이므로

 $(b + \angle A) + (a + \angle A) = 159^{\circ}$

 $(a+b) + 2 \angle A = 159^{\circ}$

다서 미리 구한 관계식을 대입하여 원하는 각의 크기를 구하자

 $\frac{180^{\circ} - \angle A}{2} + 2 \angle A = 159^{\circ}$

 $3 \angle A = 138$ ° $\therefore \angle A = 46$ °

오답 파헤치기

꼭짓점과 내심을 그은 선은 그 각을 이등분한다.

13) 정답 ⑤

THE 깊은 해설

 $\triangle ABC$ 의 내접원 I의 반지름의 길이를 r라 하면

$$\triangle ABC = \frac{1}{2} \times 24 \times 7 = \frac{1}{2} \times r \times (24 + 25 + 7)$$

S답 point

삼각형의 넓이를 이용하여 반지름의 길이를 구할 수 있다.

28r = 84 : r = 3

점 I에서 \overline{AB} 에 내린 수선의 발을 D라 하면 $\triangle BDI \equiv \triangle BHI(RHA 합동)$

단서 합동을 이용하여 길이가 같은 선분을 찾자

$$\overline{BD} = \overline{BH} = 7 - 3 = 4$$
, $\overline{BM} = \frac{1}{2}\overline{BC} = \frac{25}{2}$

$$\overline{MH} = \frac{25}{2} - 4 = \frac{17}{2}$$

$$\therefore \triangle IHM = \frac{1}{2} \times \frac{17}{2} \times 3 = \frac{51}{4}$$

오답 파헤치기

내접원의 반지름을 r이라고 하면, 삼각형의 넓이는 $(삼각형의 둘레) imes (반지름의 길이) imes <math>\frac{1}{2}$ 로 표현할 수 있다.

14) 정답 ④

THE 깊은 해설

내심의 성질에 의해

 $\angle BAI = \angle CAI, \ \angle ACI = \angle BCI \ \cdots \bigcirc$

단서 내심의 성질을 이용하여 크기가 같은 각을 찾자

또, $\overline{ED}//\overline{AC}$ 이므로

 $\angle CAI = \angle EIA, \ \angle ACI = \angle DIC \ \cdots \bigcirc$

①, ⓒ에서

 $\angle BAI = \angle EIA$, $\angle BCI = \angle DIC$ 이므로

 $\overline{AE} = \overline{EI} = 6 \text{ cm}, \overline{CD} = \overline{ID} = 4 \text{ cm}$

또, 점 I에서 \overline{AC} 에 내린 수선의 발을 H라 하면

 \overline{H} 는 내접원의 반지름의 길이와 같으므로

IH=3cm 오담 point

수선의 발을 내려 사각형의 넓이를 구하는데 쓸 수 있다.

따라서 색칠한 부분의 넓이는

 $\square AEDC$ 에서 반원을 뺀 값이다.

 $\frac{1}{2} \times (10 + 17) \times 3 - \frac{1}{2} \pi \times 3^2 = \frac{81 - 9\pi}{2} \; (\text{cm}^2)$

15) 정답 ①

THE 깊은 해설

오답 파헤치기

그림과 같이 점 *I*에서

 \overline{AB} , \overline{BC} 에 내린 수선의 발을

각각 D, E라 하고,

ID= *IE*= *IH*= r이라 하면

 $\square DBEI$ 는 한 변의 길이가 r인 정사각형이다.

오답 point

내심의 성질을 이용하여 정사각형을 찾을 수 있다.

따라서 $\overline{BD} = \overline{BE} = r$

이때, $\overline{AD} = \overline{AH} = 6 - r$

 $\overline{CE} = \overline{CH} = 8 - r$

 $\overline{AC} = \overline{AH} + \overline{CH} = (6-r) + (8-r) = 14 - 2r = 10$

주의 반지름의 길이를 이용하여 선분을 표현하자

 $\therefore r = 2$

그러므로 $\overline{AH} = 6 - 2 = 4$. $\overline{HH} = 2$

또한 점 M이 직각삼각형 ABC의 빗변의 중점이므로

 $\overline{AM} = \frac{1}{2} \times \overline{AC} = 5$

따라서 $\overline{HM} = \overline{AM} - \overline{AH} = 5 - 4 = 1$

 $\therefore \Delta IHM = \frac{1}{2} \times 2 \times 1 = 1$

16) 정답 ④

THE 깊은 해설

 $\angle BOC = 2 \angle A = 2 \times 58^{\circ} = 116^{\circ}$

오답 point

외심의 성질을 이용하여 각의 크기를 구할 수 있다.

 $\overline{OB} = \overline{OC}$ 이므로

 $\angle OBC = \angle OCB = \frac{180^{\circ} - 116^{\circ}}{2} = 32^{\circ}$

점 I는 $\triangle ABC$ 의 내심이므로

$$\angle IBC = \frac{1}{2} \angle B = \frac{1}{2} \times 32^{\circ} = 16^{\circ}$$

$$\angle ICB = \frac{1}{2} \angle C = 45^{\circ}$$

단서 삼각형의 내심의 성질을 이용하여 각의 크기를 구하자

 ΔPBC 에서

 $\angle BPC = 180^{\circ} - (16^{\circ} + 32^{\circ}) = 132^{\circ}$

 $\angle ICP = 45 \degree - 32 \degree = 13 \degree$

 $\therefore \angle BPC + \angle ICP = 132^{\circ} + 13^{\circ} = 145^{\circ}$

오답 파헤치기

삼각형의 중심각은 꼭지각의 두 배와 같다.

17) 정답 (5)

THE 깊은 해설

 $\triangle ABC$ 가 이등변삼각형이므로

 $\triangle OAB$, $\triangle IAB$ 역시 이등변삼각형이다.

오답 point

이등변삼각형의 외심과 내심을 이은 삼각형도 이등변삼각 형임을 확인할 수 있다.

 $\angle AOB = 2 \angle C = 64$ ° 에서

 $\angle OAB = \angle OBA = (180^{\circ} - 64^{\circ}) \div 2 = 58^{\circ}$

또한 $\angle AIB = 90\degree + \frac{1}{2} \angle C = 106\degree$ 이므로

 $\angle IAB = \angle IBA = (180^{\circ} - 106^{\circ}) \div 2 = 37^{\circ}$

단서 외심과 내심의 성질을 이용하여 각의 크기를 구하자

따라서

 $\angle IBO = \angle OBA - \angle IBA = 58\degree - 37\degree = 21\degree$

 $\therefore \frac{2}{3} \angle IBO = \frac{2}{3} \times 21^{\circ} = 14^{\circ}$

18) 정답 ③

THE 깊은 해설

점 O는 \overline{BC} 위의 점이므로

 $\angle A = 90$ ° 이고 $\overline{OA} = \overline{OB}$

■ 오답 point

외심이 한 변 위에 있으면 직각삼각형임을 이용할 수 있다.

즉, $\triangle ABO$ 는 이등변삼각형이다.

 $\angle OAB = \angle OBA = 38^\circ$

 $\angle OAC = 90^{\circ} - 38^{\circ} = 52^{\circ}$

 ΔAOC 에서

$$\angle OIC = \frac{1}{2} \angle OAC + 90^{\circ} = \frac{1}{2} \times 52^{\circ} + 90^{\circ} = 116^{\circ}$$

주의 외심과 내심을 이용하여 원하는 각의 크기를 구하자

19) 정답 ①

THE 깊은 해설

직각삼각형의 외심은 빗변의 중점이므로

오답 point

직각삼각형의 외심의 성질을 이용하여 반원의 넓이를 구할 수 있다.

외접원의 반지름의 길이는 $\frac{1}{2} \times 10 = 5 \text{ (cm)}$

반원의 넓이는 $\frac{1}{2} \times 5^2 \times \pi = \frac{25}{2} \pi \text{ (cm}^2\text{)}$

내접원의 반지름의 길이를 $r \operatorname{cm}$ 라 하면

$$\frac{1}{2} \times 6 \times 8 = \frac{1}{2} \times r \times (6 + 8 + 10) \quad \therefore r = 2 \text{ (cm)}$$

주의 삼각형의 넓이를 이용하여 내접원의 반지름의 길이를 구하자

 $\triangle ABI$ 의 넓이는 $\frac{1}{2} \times 10 \times 2 = 10 \text{ (cm}^2)$

따라서 색칠한 부분의 넓이는 $\frac{25}{2}\pi+10\,(\mathrm{cm}^2)$

오답 파헤치기

내접원의 반지름을 r이라고 하면, 삼각형의 넓이는 $(삼각형의 둘레) imes (반지름의 길이) imes <math>\frac{1}{2}$ 로 표현할 수 있다.

20) 정답 (5)

THE 깊은 해설

점 O는 $\triangle ABC$ 의 외심이므로 외접원의 반지름의 길이는 ____

 $\overline{OA} = \overline{OB} = \overline{OC} = 9cm$ 이고

 $\angle OBC = \angle OCB = 40^{\circ}$, $\angle OCA = 50^{\circ}$

 $\angle OAC = \angle OCA = 50$ 이므로 $\angle COA = 80$ °

따라서
$$\widehat{AC} = 18\pi \times \frac{80^{\circ}}{360^{\circ}} = 4\pi$$

점 I는 $\triangle ABC$ 의 내심이므로 내심의 성질에 의해

 $\overline{AD} = x \, cm$ 라 하면 $\overline{AD} = \overline{AF} = x \, cm$ 이고

 $\overline{BE} = \overline{BD} = (18 - x) cm, \overline{EC} = \overline{FC}$

 $\overline{BC} + \overline{AC} = 24 \, cm$ 이므로 $\overline{EC} = \overline{FC} = 3 \, cm$ 이고

오답 point

내심의 성질을 이용하여 선분의 길이를 표현할 수 있다.

 $\triangle ABC$ 의 내접원의 반지름의 길이는 3cm

또, $\angle BAC = 50^{\circ}$ 이고 $\angle IDA = \angle IFA = 90^{\circ}$ 이므로 \Box

*ADIF*에서 ∠*DIF*=130°

단서 사각형의 내각의 합이 360°임을 이용하여 각의 크기를 구하자

따라서
$$\widehat{DF} = 6\pi \times \frac{130^{\circ}}{360^{\circ}} = \frac{13}{6}\pi$$

$$\therefore 4\pi - \frac{13}{6}\pi = \frac{11}{6}\pi$$