Quality vs Time

Polynomial Time Approximation Schemes

Outline

- PTAS and FPTAS
 - Polynomial Time Algorithms for NP-Hard Problems
- Knapsack
 - PTAS
 - FPTAS (exercise session)

Outline

- PTAS and FPTAS
 - Polynomial Time Algorithms for NP-Hard Problems
- Knapsack
 - PTAS
 - FPTAS (exercise session)

Learning Objectives:

You are able to

- 1. restate the definition of a PTAS and an FPTAS
- 2. describe a PTAS algorithm for Knapsack
- 3. state the runtime of the PTAS algorithm for Knapsack

Hard Problems:

We believe that NP-hard problems cannot be solved (exactly) in polynomial time.

Approximation:

For example, there is a greedy 2-approximation to Knapsack.

Hard Problems:

We believe that NP-hard problems cannot be solved (exactly) in polynomial time.

Approximation:

For example, there is a greedy 2-approximation to Knapsack.

Can we do better?

Hard Problems:

We believe that NP-hard problems cannot be solved (exactly) in polynomial time.

Approximation:

For example, there is a greedy 2-approximation to Knapsack.

Can we do better?

Trade time for approximation ratio:

Polynomial time approximation scheme (PTAS):

A $(1+\epsilon)$ -approximation in time $n^{O(f(\epsilon))}$, where $f(\epsilon)$ is allowed to be any function of ϵ .

Hard Problems:

We believe that NP-hard problems cannot be solved (exactly) in polynomial time.

Approximation:

For example, there is a greedy 2-approximation to Knapsack.

Can we do better?

Trade time for approximation ratio:

Polynomial time approximation scheme (PTAS):

A $(1 + \epsilon)$ -approximation in time $n^{O(f(\epsilon))}$, where $f(\epsilon)$ is allowed to be any function of ϵ .

Fully polynomial time approximation scheme (FPTAS):

A $(1+\epsilon)$ -approximation in time poly $(n,1/\epsilon)$

Outline

- PTAS and FPTAS
 - Polynomial Time Algorithms for NP-Hard Problems
- Knapsack
 - PTAS
 - FPTAS (exercise session)

Sauerkraut

Value v_1 : Weight w_1 :

Chocolate

Value v_2 :
Weight w_2 :

Apple

Value: v_3 : Weight: w_3 :

Capacity C

Maximize *S*

$$\Sigma_{S\subseteq I}V(S)$$

Subject to

$$W(S) \leq C$$

V(S): sum of values

W(S): sum of weights

Sauerkraut

Value v_1 : Weight w_1 :

Chocolate

Value v_2 : Weight w_2 :

Apple

Value: v_3 : Weight: w_3 :

Bounded Knapsack:

You can pick each item at most once.

Capacity C

Maximize *S*

$$\Sigma_{S\subseteq I}V(S)$$

Subject to

$$W(S) \leq C$$

V(S): sum of values

W(S): sum of weights

Plan:

Suppose we know the cost OPT of the optimum solution S^* .

- 1. We can guess all the items with value at least ϵ · OPT in S^* .
- 2. If the largest value of any item is at most ϵ · OPT, then greedy is a $(1 + \epsilon)$ —approximation.

Plan:

Suppose we know the cost OPT of the optimum solution S^* .

- 1. We can guess all the items with value at least ϵ · OPT in S^* .
- 2. If the largest value of any item is at most ϵ · OPT, then greedy is a $(1 + \epsilon)$ —approximation.

Lemma:

If no item has value larger than ϵ · OPT, then Greedy is a $(1-\epsilon)$ -approximation.

Greedy:

Iteratively pick the item i with the best marginal gain v_i/w_i

Observation:

Order items descending according to the marginal gain. Suppose Greedy takes the first k-1 items.

Then $OPT \leq \sum_{i=1}^{k} v_i$

Proof (sketch):

If the greedy choices exactly fit the capacity, there is no better way to choose. Therefore, we can only lose the value of the best remaining item, i.e.,

$$\mathsf{OPT} \leq \Sigma_{i=1}^{k-1} v_i + v_k = \Sigma_{i=1}^k v_i$$

Lemma:

If no item has value larger than $\epsilon \cdot \mathsf{OPT}$, then Greedy is a $(1-\epsilon)$ -approximation.

Proof:

Let v_{max} be the most valuable item. OPT $\leq \sum_{i=1}^{k-1} v_i + v_k \leq \sum_{i=1}^{k-1} v_i + v_{\text{max}}$

$$(1 - \epsilon) \cdot \mathsf{OPT} \le \Sigma_{i=1}^{k-1} v_i$$

Observation:

Order items descending according to the marginal gain. Suppose Greedy takes the first k-1 items.

Then $OPT \leq \sum_{i=1}^{k} v_i$

Proof (sketch):

If the greedy choices exactly fit the capacity, there is no better way to choose. Therefore, we can only lose the value of the best remaining item, i.e.,

$$\mathsf{OPT} \leq \Sigma_{i=1}^{k-1} v_i + v_k = \Sigma_{i=1}^k v_i$$

Observation:

The optimum solution has at most $1/\epsilon$ items with value at least ϵ · OPT

Otherwise the value of OPT is larger than OPT.

Algorithm (that knows OPT):

Let \bar{I} be the set of items with value at most $\epsilon \cdot \mathsf{OPT}$

For all possible set of items H, s.t., $|H| \le 1/\epsilon$ Consider H as a partial solution. Run Greedy on items in $\bar{I} \setminus H$.

Return the best solution found this way.

Algorithm (that knows OPT):

Let \bar{I} be the set of items with value at most $\epsilon \cdot \mathsf{OPT}$

For all possible set of items H, s.t., $|H| \le 1/\epsilon$ Consider H as a partial solution. Run Greedy on items in $\bar{I} \setminus H$.

Return the best solution found this way.

Guess the set of "valuable items"

Algorithm (that knows OPT):

Let \bar{I} be the set of items with value at most $\epsilon \cdot \mathsf{OPJ}$

For all possible set of items H, s.t., $|H| \leq 1/\epsilon$ Consider H as a partial solution. Run Greedy on items in $\bar{I} \setminus H$.

Return the best solution found this way.

Guess the set of "valuable items"

Select the rest greedily

Consider the iteration where H is "guessed correctly", i.e., it contains the same items with value at least ϵ · OPT as the optimal solution.

Now, the only loss can come from running greedy in $\bar{I} \setminus H$.

Consider the iteration where H is "guessed correctly", i.e., it contains the same items with value at least ϵ · OPT as the optimal solution.

Now, the only loss can come from running greedy in $\bar{I} \setminus H$.

Lemma:

If no item has value larger than ϵ · OPT, then Greedy is a $(1 - \epsilon)$ -approximation.

Consider the iteration where H is "guessed correctly", i.e., it contains the same items with value at least ϵ · OPT as the optimal solution.

Now, the only loss can come from running greedy in $\bar{I} \setminus H$.

Lemma:

If no item has value larger than ϵ · OPT, then Greedy is a $(1 - \epsilon)$ -approximation.

We get a $(1 - \epsilon)$ -approximation algorithm when we know OPT.

Exponential Guessing

We have a $(1 - \epsilon)$ -approximation when we know OPT

Guess all values $(1 + \epsilon)^i$ up to $\Sigma_j^n v_j = F$ as the value of the optimum. Clearly OPT cannot be larger than the sum of all values.

Notice that $F = (1 + \epsilon)^{O(\log F)}$

Exponential Guessing

We have a $(1 - \epsilon)$ -approximation when we know OPT

Guess all values $(1 + \epsilon)^i$ up to $\Sigma_j^n v_j = F$ as the value of the optimum. Clearly OPT cannot be larger than the sum of all values.

Notice that $F = (1 + \epsilon)^{O(\log F)}$

When we guess $i = \text{ceil}(\log \text{OPT})$, we can use the algorithm that knows OPT with another $(1 + \epsilon)$ -factor error.

Exponential Guessing

We have a $(1 - \epsilon)$ -approximation when we know OPT

Guess all values $(1 + \epsilon)^i$ up to $\Sigma_j^n v_j = F$ as the value of the optimum. Clearly OPT cannot be larger than the sum of all values.

Notice that $F = (1 + \epsilon)^{O(\log F)}$

When we guess $i = \text{ceil}(\log \text{OPT})$, we can use the algorithm that knows OPT with another $(1 + \epsilon)$ -factor error.

We get a $(1 - O(\epsilon))$ -approximation without knowing OPT.

Notice that we can always re-write $\epsilon' = O(\epsilon)$ and obtain a $(1 + \epsilon')$ -approximation for a small ϵ'

The Runtime

Theorem:

There is a PTAS for the Knapsack problem.

Algorithm:

Guess H with size at most $1/\epsilon$ and run greedy on the rest.

The Runtime

Theorem:

There is a PTAS for the Knapsack problem.

Algorithm:

Guess H with size at most $1/\epsilon$ and run greedy on the rest.

$$F = \sum_{i} v_{i}$$

Runtime:

- 1. There at most $\binom{n+1}{(1/\epsilon)} \le (n+1)^{1/\epsilon}$ subsets of n items. The +1 comes from allowing to not take an item.
- 2. Greedy takes polynomial time
- 3. Roughly $\log F$ guesses for OPT

Dominated by the $(n+1)^{1/\epsilon}$ term.

The Runtime

Remark:

The input is roughly n bits. We can describe a number of size 2^n with n bits.

Therefore, $\log F$ can be polynomial in n. Gives at most a constant factor to the exponent.

Runtime:

- 1. There at most $\binom{n+1}{(1/\epsilon)} \le (n+1)^{1/\epsilon}$ subsets of n items. The +1 comes from allowing to not take an item.
- 2. Greedy takes polynomial time
- 3. Roughly $\log F$ guesses for OPT

Dominated by the $(n+1)^{1/\epsilon}$ term.

Wrap-up

Algorithm:

Guess the set of valuable items in the optimal solution.

Run greedy on the rest.

Get a $(1 + \epsilon)$ -approximation.

Runtime:

Need roughly $n^{\frac{1}{\epsilon}}$ guesses.

Theorem:

There is a PTAS for the Knapsack problem.