Esercizi di Algebra 2

Corso di Laurea in Matematica Università degli Studi di Palermo

BOZZA

Giuseppe Metere e Manuel Mancini 27 dicembre 2022

Indice

In	trod	uzione	V				
1	Teo	ria dei gruppi	1				
	1.1	Proprietà universali	1				
	1.2	Azioni di gruppi	4				
	1.3	Teoremi di Sylow	10				
	1.4	Gruppi abeliani	15				
2	Teoria dei campi 17						
	2.1	Estensioni	17				
	2.2	Polinomio minimo	22				
	2.3	Campo di spezzamento	27				
	2.4	Caratteristica p	29				
	2.5	Polinomi Ciclotomici	30				

iv INDICE

Introduzione

Queste note contengono esercizi svolti di algebra, tratti da temi d'esame e dalle esercitazioni per il corso di Algebra 2 dell'Università degli Studi di Palermo. Sono state predisposte allo scopo di accompagnare la preparazione degli studenti per la prova scritta dell'esame, e non hanno alcuna pretesa di originalità.

Capitolo 1

Teoria dei gruppi

1.1 Proprietà universali, gruppi liberi e presentazioni di gruppi

Esercizio 1.1: prova d'esame del 16/09/2020 - n° 2

Sia $f: G \to H$ un omomorfismo di gruppi, e N < G un sottogruppo normale di G tale che $f(N) = \{1_H\}$. Dimostrare che f fattorizza univocamente per la proiezione canonica $\pi: G \to G/N$, i.e. che esiste uno e un solo omomorfismo di gruppi $k: G/N \to H$ tale che $k \circ \pi = f$.

Soluzione. Ricordiamo che π è definita dalla posizione $\pi(x) = xN$, per $x \in G$. Allora è immediato definire k(xN) = f(x). Infatti k è ben definita: se è dato $y \in G$ tale che yN = xN, allora esiste $n \in N$ tale che y = xn. Pertanto, si avrà

$$k(yN) = f(y) = f(xn) = f(x)f(n) = f(x)1_H = f(x) = k(xN)$$
.

Inoltre k è omomorfismo, poiché

$$k(xN x'N) = k(xx'N) = f(xx') = f(x) f(x') = k(xN) k(x'N)$$
.

Infine, k soddisfa $k \circ \pi = f$. In effetti, se $x \in G$, si ha

$$k \circ \pi(x) = k(\pi(x)) = k(xN) = f(x).$$

L'unicità di k è immediata: se anche $k' \colon G/N \colon H$ soddisfa le condizioni, abbiamo, per ogni $xN \in G/N$

$$k'(xN) = k'(\pi(x)) = k(\pi(x)) = k(xN)$$
.

Esercizio 1.2: prima prova parziale del 10/11/2020 - n° 2

Dimostrare che il gruppo G con presentazione

$$G = \langle x, y \mid x^3, y^4, xyx^2y^3 \rangle$$

è isomorfo a $(\mathbb{Z}_{12}, +)$.

Soluzione. È sufficiente dimostrare che |G| = 12 e che G sia ciclico, ovvero che ammetta un elemento di periodo 12.

G è generato da un elemento x di periodo 3 e da un elemento y di periodo 4. Allora la terza relazione si può scrivere nel seguente modo:

$$1_G = xyx^2y^3 = xyx^{-1}y^{-1},$$

ovvero i generatori x e y di G commutano. Da ciò segue che G è un gruppo abeliano e i suoi elementi sono le potenze

$$x^i y^j$$
, con $i = 0, 1, 2, j = 0, 1, 2, 3$

Dunque G ha esattamente 12 elementi. Inoltre

$$o(xy) = mcm\{o(x), o(y)\} = mcm\{3, 4\} = 12,$$

così G è un gruppo ciclico. Si conclude che $G \cong (\mathbb{Z}_{12}, +)$.

Esercizio 1.3: prova d'esame del 28/06/2021 - n° 2

Si consideri il gruppo moltiplicativo

$$G = \left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}_2 \right\}$$

Dopo avere dimostrato che G è un gruppo non abeliano di ordine 8, si descrivano i suoi sottogruppi propri, specificando quali di essi siano normali.

A quale dei due gruppi non abeliani di ordine 8 è isomorfo G? Motivare la risposta.

Soluzione. La moltiplicazione riga per colonna di due matrici unitriangolari superiori ci permette di scrivere il gruppo G come l'insieme delle terne $(a,b,c) \in \mathbb{Z}_2^3$ con moltiplicazione

$$(a, b, c)(x, y, z) = (a + x, b + y, c + z + ay).$$

ed elemento neutro (0,0,0). Allora G è un gruppo di ordine 8 ed è non abeliano in quanto

$$(1,0,1)(0,1,1) = (1,1,1) \neq (1,1,0) = (0,1,1)(1,0,1).$$

G possiede due elementi di periodo 4, precisamente le terne (1,1,0) e (1,1,1), e cinque elementi di periodo 2. Così G ha esattamente cinque sottogruppi di ordine 2

$$\langle (1,0,0)\rangle; \langle (0,1,0)\rangle; \langle (0,0,1)\rangle; \langle (1,0,1)\rangle; \langle (0,1,0)\rangle;$$

e tre sottogruppi di ordine 4, di cui uno ciclico

$$\langle (1,1,0) \rangle = \{(0,0,0), (1,1,0), (0,0,1), (1,1,1)\},\$$

e due isomorfi al gruppo di Klein

$$\{(0,0,0),(1,0,0),(0,0,1),(1,0,1)\},\$$

$$\{(0,0,0),(0,1,0),(0,0,1),(0,1,1)\}.$$

I tre sottogruppi di ordine 4 sono tutti normali, in quanto hanno indice 2 in G. Si verifica inoltre che l'unico sottogruppo normale di ordine 2 è quello generato dalla terna (0,0,1) ed esso coincide con il centro Z(G). Infine la mappa

$$(1,1,0) \mapsto \rho, (1,0,0) \mapsto \sigma$$

definisce un isomorfismo di gruppi $f: G \leftrightarrows D_4$. Si osserva infatti che vale la relazione

$$[(1,1,0)(1,0,0)]^2 = (0,0,0).$$

Allo stesso risultato si poteva arrivare anche per esclusione, ragionando sull'ordine degli elementi, e osservando che l'unico altro gruppo non abeliano di ordine 8 è il gruppo dei quaternioni Q_8 .

1.2 Azioni di gruppi, equazione delle classi di un gruppo e G-insiemi

Esercizio 1.4: Prima Prova Parziale del 10/11/2020 - n° 1

Si consideri la funzione $f: \mathbb{R} \times \mathbb{C} \to \mathbb{C}$ definita dalla formula $f(t, z) = z \cdot e^{it}$, per $t \in \mathbb{R}$ e $z \in \mathbb{C}$.

- (i) Dimostrare che f definisce un'azione t * z = f(t, z) del gruppo $(\mathbb{R}, +)$ sull'insieme \mathbb{C} dei numeri complessi.
- (ii) Calcolare orbita e stabilizzatore di un generico $z \in \mathbb{C}$.

Soluzione.

(i) Per ogni $z \in \mathbb{C}$, si ha

$$0 * z = z \cdot e^{i0} = z$$

Inoltre, per $s, t \in \mathbb{R}$, si calcola:

$$s*(t*z) = s*(z \cdot e^{it}) = (z \cdot e^{it}) \cdot e^{is} = z \cdot e^{i(s+t)} = (s+t)*z.$$

(ii) Per $z = 0_{\mathbb{C}}$ si ha

$$\mathsf{Orb}(0) = \{0\}, \qquad \mathsf{Stab}(0) = \mathbb{R}.$$

Per $z_0 \in \mathbb{C}^*$, invece si calcola

$$\mathsf{Orb}(z_0) = \{ z_0 \cdot e^{it} \, | \, t \in \mathbb{R} \} \,,$$

cioè la circonferenza con centro nell'origine, passante per z_0 ;

$$\mathsf{Stab}(z_0) = \{ t \in \mathbb{R} \,|\, z \cdot e^{it} = z \} \,,$$

cioè il sottogruppo additivo dei reali $\{2k\pi \mid k \in \mathbb{Z}\}.$

Esercizio 1.5: prova d'esame del 10/11/2020 - n° 2

Scrivere l'equazione delle classi di un gruppo non abeliano di ordine 39.

Soluzione. Poiché G non è abeliano, $Z(G) \neq G$. Se fosse |Z(G)| = 13, si avrebbe che G/Z(G) sarebbe ciclico, e quindi G abeliano; analogamente, se fosse |Z(G)| = 3. Quindi possiamo concludere |Z(G)| = 1.

Poiché i centralizzanti degli elementi di G sono sottogruppi il cui ordine divide l'ordine di G, essi possono avere ordine 13 o ordine 3. Quindi, si ha la relazione 39 = 1 + 3a + 13b, con a e b interi non negativi. L'unica soluzione a = 4 b = 2 ci da l'equazione delle classi di G:

$$39 = 1 + 3 + 3 + 3 + 3 + 13 + 13$$

Esercizio 1.6: prova d'esame del 20/01/2021 - n° 1

Calcolare la cardinalità della classe di coniugio dell'elemento

$$\sigma = (12)(34)$$

nel gruppo di permutazioni S_n , con $n \geq 4$. Successivamente, dopo averne ricordato la definizione, calcolare la cardinalità del centralizzante di σ in S_n .

Soluzione. Una permutazione $\tau \in S_n$ è coniugata a σ se e solo se τ e σ hanno la stessa struttura ciclica. Quindi, la classe di coniugio $\bar{\sigma}$ di σ ha tanti elementi quante sono le coppie di due cicli distinti di S_n :

$$\bar{\sigma} = \{ \tau \in S_n \mid \tau = (ab)(cd) \}.$$

Quindi si calcola $|\bar{\sigma}| = \frac{n(n-1)(n-2)(n-3)}{8}$, dove abbiamo diviso per 8 perché la stessa permutazione (ab)(cd) può essere scritta anche scambiando a con b, c con d e (ab) con (cd). Infine, per il teorema Orbita/Stabilizzatore, si ha che

$$|S_n| = |\bar{\sigma}| \cdot |Z_{S_n}(\sigma)|$$
,

Da cui si calcola $|Z_{Sn}(\sigma)| = 8(n-4)!$.

Esercizio 1.7: prova d'esame del 3/02/2021 - n° 2

Sia Γ un sottogruppo di ordine 8 del gruppo simmetrico \mathbb{S}_7 . Dimostrare che esiste $i \in \{1, ..., 7\}$ tale che, per ogni $\gamma \in \Gamma$, si abbia $\gamma(i) = i$. Suggerimento: studiare l'equazione delle classi dell'azione canonica di Γ su $\{1, ..., 7\}$.

Soluzione. Considero l'azione canonica

$$\Gamma \times \{1, ..., 7\} \to \{1, ..., 7\}$$
$$(\gamma, i) \to \gamma(i)$$

Si deve dimostrare che la cardinalità del sottoinsieme X degli elementi di $\{1,...,7\}$ che sono fissati da tutti gli elementi di Γ è non nulla. Ma Γ è un 2-gruppo e dall'equazione delle classi dell'azione canonica di Γ su $\{1,...,7\}$ si ricava che

$$7 = |\{1, ..., 7\}| \equiv |X| \pmod{2},$$

 $\cos |X| \ge 1.$

Esercizio 1.8: prova d'esame del 17/02/2021 - n° 2

Sia $X = \{1, 2, 3, 4, 5\}$. Si consideri l'azione * del gruppo simmetrico \mathbb{S}_5 sull'insieme $X^3 = X \times X \times X$ definita da,

$$\sigma * (x, y, z) = (\sigma(x), \sigma(y), \sigma(z))$$

per $\sigma \in \mathbb{S}_5$, e $(x, y, z) \in X^3$. Determinare le orbite di * e dedurre, per ogni orbita, la cardinalità del relativo stabilizzatore.

Suggerimento: studiare le orbite di (1,1,1), (1,2,1), (1,2,3).

Soluzione. Studiamo le orbite dell'azione e l'ordine dei relativi stabilizzatori.

- (i) $Orb(1,1,1) = \{(\sigma(1),\sigma(1),\sigma(1)) \mid \sigma \in \mathbb{S}_5\} = \{(x,x,x) \mid x \in X\}.$ Inoltre $|Stab(1,1,1)| = \frac{|\mathbb{S}_5|}{|Orb(1,1,1)|} = \frac{120}{5} = 24.$
- (ii) $Orb(1,2,1) = \{(\sigma(1), \sigma(2), \sigma(1)) \mid \sigma \in \mathbb{S}_5\} = \{(x,y,x) \mid x,y \in X, x \neq y\}$. Inoltre

$$|Stab(1,2,1)| = \frac{|\mathbb{S}_5|}{|Orb(1,2,1)|} = \frac{120}{20} = 6.$$

(iii) $Orb(1,1,2) = \{(\sigma(1), \sigma(1), \sigma(2)) \mid \sigma \in \mathbb{S}_5\} = \{(x,x,y) \mid x,y \in X, x \neq y\}$. Inoltre

$$|Stab(1,1,2)| = \frac{|\mathbb{S}_5|}{|Orb(1,1,2)|} = \frac{120}{20} = 6.$$

(iv) In modo analogo $Orb(2,1,1)=\{(x,y,y)\mid x,y\in X,x\neq y\}.$ In oltre

$$|Stab(2,1,1)| = \frac{|\mathbb{S}_5|}{|Orb(2,1,1)|} = \frac{120}{20} = 6.$$

(v) Infine $Orb(1,2,3) = \{(\sigma(1), \sigma(2), \sigma(3)) \mid \sigma \in \mathbb{S}_5\} = \{(x,y,z) \mid x,y,z \in X, x \neq y, x \neq z, y \neq z\}$. Inoltre

$$|Stab(1,2,3)| = \frac{|\mathbb{S}_5|}{|Orb(1,2,3)|} = \frac{120}{60} = 2.$$

In effetti $Stab(1,2,3) = \{(1),(45)\}.$

Si osserva che quelle trovate sono tutte le orbite dell'azione in quanto esse costituiscono una partizione dell'insieme X^3 .

Esercizio 1.9: prova d'esame del 14/04/2021 - n° 2

Dati H, K sottogruppi di un gruppo G, definiamo l'insieme

$$X = \{hk \mid h \in H \ e \ k \in K\} \subseteq G.$$

Verificare che la legge $(h, k) * x = hxk^{-1}$ (per $h \in H$, $k \in K$ e $x \in X$) definisce un'azione * transitiva del gruppo $H \times K$ sull'insieme X.

Soluzione. Dimostriamo che * definisce un'azione.

- (a) $1_{H\times K} * x = (1_G, 1_G) * x = 1_G x 1_G^{-1} = x$, per ogni $x \in X$;
- (b) $(h', k') * [(h, k) * x] = (h', k') * (hxk^{-1}) = h'(hxk^{-1})k'^{-1} = (h'h)x(k'k)^{-1} = (h'h, k'k) * x = [(h', k')(h, k)] * x$, per ogni $(h, k), (h', k') \in H \times K$ e per ogni $x \in X$.

Inoltre l'azione è transitiva perché, per ogni $x \in X$, x = hk con $h \in H$ e $k \in K$. Dunque

$$x = hk = h1_G(k^{-1})^{-1} = (h, k^{-1}) * 1_G,$$

 $\cos X = Orb(1_G).$

Esercizio 1.10: prova d'esame del 9/06/2021 - n° 2

Dato il gruppo $G = GL_3(\mathbb{Z}_2)$ delle matrici invertibili a coefficienti in nel campo \mathbb{Z}_2 , si consideri l'azione di G sull'insieme di vettori colonna $X = \mathbb{Z}_2^3$ data dalla moltiplicazione di matrici.

- (i) Dimostrare che l'orbita di $\underline{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ è l'insieme $X \setminus \{0\}$.
- (ii) Determinare l'ordine dello stabilizzatore di \underline{v} e descriverne la struttura.

Soluzione.

- (i) Sia $A \in GL_3(\mathbb{Z}_2)$. Allora $A \cdot \underline{v} = A^1$, dove A^1 indica la prima colonna della matrice A. Poiché A è invertibile, A^1 può essere qualunque vettore di X, tranne il vettore nullo. Dunque l'orbita del vettore \underline{v} è proprio $X \setminus \{0\}$.
- (ii) Dal Teorema Orbita-Stabilizzatore si deduce che

$$|Stab(\underline{v})| = \frac{|G|}{|Orb(\underline{v})|}.$$

Per determinare la cardinalità di G ragioniamo nel seguente modo: la prima colonna di una generica matrice di G può essere scelta in modo arbitrario a meno di escludere la colonna nulla, ovvero può variare in $2^3-1=7$ modi. Fissata la prima colonna, la seconda non deve essere un multiplo della prima e quindi può essere scelta in $2^3-2=6$ modi. Infine l'ultima colonna non deve essere una combinazione lineare delle prime due e quindi può variare in $2^3-2^2=4$ modi. Così $|G|=7\cdot 6\cdot 4=168$ e dunque l'ordine dello stabilizzatore di \underline{v} è

$$|Stab(\underline{v})| = \frac{168}{7} = 24.$$

Infine è facile verificare che $Stab(\underline{v})$ consiste di tutte le matrici invertibili di $GL_3(\mathbb{Z}_2)$ tali che la prima colonna è proprio il vettore \underline{v} .

Esercizio 1.11: prova d'esame del 12/07/2021 - n° 1

Sia dato l'insieme $V = \{(x_1, x_2, x_3) \in (\mathbb{F}_5)^3 \mid x_1 + x_2 + x_3 = 0\}$.

- (i) Calcolare la cardinalità di V.
- (ii) Verificare che la legge $*\colon S_3 \times V \to V$ data da

$$\sigma * (x_1, x_2, x_3) = (x_{\sigma^{-1}(1)}, x_{\sigma^{-1}(2)}, x_{\sigma^{-1}(3)})$$

definisce un'azione del gruppo simmetrico S_3 su V.

(iii) Determinare le orbite di tale azione.

Soluzione.

- (i) V è un sottospazio vettoriale di dimensione 2 di $(\mathbb{F}_5)^3$, dunque ha cardinalità $5^2 = 25$.
- (ii) Per ogni $(x_1, x_2, x_3) \in V$ si ha

$$id_{S_3} * (x_1, x_2, x_3) = (x_{id(1)}, x_{id(2)}, x_{id(3)}) = (x_1, x_2, x_3).$$

Inoltre, per ogni $\sigma,\tau\in S_3$ e per ogni $(x_1,x_2,x_3)\in V$ si ha

$$\sigma * (\tau * (x_1, x_2, x_3)) = \sigma * (x_{\tau^{-1}(1)}, x_{\tau^{-1}(2)}, x_{\tau^{-1}(3)}) = \sigma * (y_1, y_2, y_3) = \sigma * (y_1, y_2, y_3) = \sigma * (y_1, y_2, y_3)$$

(dove $y_i = x_{\tau^{-1}(i)}$, per ogni i = 1, 2, 3)

$$= (y_{\sigma^{-1}(1)}, y_{\sigma^{-1}(2)}, y_{\sigma^{-1}(3)}) = (x_{\tau^{-1}(\sigma^{-1}(1))}, x_{\tau^{-1}(\sigma^{-1}(2))}, x_{\tau^{-1}(\sigma^{-1}(1))}) =$$

$$= (x_{(\sigma \circ \tau)^{-1}(1)}, x_{(\sigma \circ \tau)^{-1}(2)}, x_{(\sigma \circ \tau)^{-1}(3)}) = (\sigma \circ \tau) * (x_1, x_2, x_3).$$

(iii) Ricordando che, per ogni $(x_1, x_2, x_3) \in V$,

$$Orb(x_1, x_2, x_3) = \{ \sigma * (x_1, x_2, x_3) \mid \sigma \in S_3 \},$$

si ha

$$- Orb(0,0,0) = \{(0,0,0)\};$$

$$- Orb(0,1,4) = \{(0,1,4), (1,0,4), (4,1,0), (0,4,1), (1,4,0), (4,0,1)\};$$

$$- Orb(0,2,3) = \{(0,2,3), (2,0,3), (3,2,0), (0,3,2), (2,3,0), (3,0,2)\};$$

$$- Orb(1,1,3) = \{(1,1,3), (1,3,1), (3,1,1)\};$$

$$- Orb(1,2,2) = \{(1,2,2), (2,2,1), (2,1,2)\};$$

$$- Orb(4,4,2) = \{(4,4,2), (4,2,4), (2,4,4)\};$$

$$- Orb(4,3,3) = \{(4,3,3), (3,4,3), (3,3,4)\}.$$

1.3 Teoremi di Sylow e applicazioni

Esercizio 1.12: prova d'esame del 16/09/2020 - n° 1

Sia p un numero primo, \mathbb{F}_p il campo con p elementi, e $\Gamma = GL_2(\mathbb{F}_p)$ il gruppo delle matrici invertibili 2×2 a valori in \mathbb{F}_p .

- (i) Dimostrare che l'ordine di Γ è $(p^2-1)(p^2-p)$.
- (ii) Dedurre che i p-sottogruppi di Sylow di Γ sono p+1.

Soluzione.

- (i) Sia $\alpha \in \Gamma$, allora $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ con $a, b, c, d \in \mathbb{F}_p$ tali che $ad bc \neq 0$. Quante sono le possibili matrici che soddisfano questa condizione? Procediamo in questo modo: per la prima riga possiamo scegliere a e b in \mathbb{F}_p con la condizione che non siano entrambi nulli, quindi abbiamo p^2-1 scelte; per la seconda riga possiamo scegliere c e d con la condizione che la seconda riga non sia un multiplo della prima, quindi abbiamo p^2-p scelte. In conclusione, in Γ ci sono esattamente $(p^2-1)(p^2-p)$ matrici.
- (ii) Poiché $(p^2-1)(p^2-p)=p(p+1)(p-1)^2$, è chiaro che l'ordine dei p-sottogruppi di Sylow è p. Di conseguenza, il sottogruppo $P \leq \Gamma$ generato dalla matrice $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, i.e.

$$P = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} & \text{t.c.} \quad x \in \mathbb{F}_p \right\}$$

è un p-sottogruppo di Sylow di Γ . Essendo i p-sottogruppi di Sylow tutti coniugati fra loro, si ha che il loro numero è precisamente $n_p = [\Gamma : N_{\Gamma}(P)]$. Possiamo allora calcolare il normalizzante $N_{\Gamma}(P)$.

Sia α definita come al punto (i). Si ha che $\alpha \in N_{\Gamma}(P)$ se e solo se coniuga $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ con un'altra matrice di P. Si può calcolare

$$\alpha \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \alpha^{-1} = \frac{1}{ad - bc} \begin{pmatrix} ad - bc - ac & a^2 \\ -c^2 & ad - bc + ac \end{pmatrix}.$$

Concludiamo che $\alpha \in N_{\Gamma}(P)$ se e solo se c = 0. Di conseguenza, si ha $|N_{\Gamma}(P)| = p(p-1)^2$, e quindi $n_p = p+1$.

Esercizio 1.13: prova d'esame del 20/01/2021 - n° 2

Determinare il numero degli elementi di ordine 7 in un gruppo semplice di ordine 168.

Soluzione. Sia $|G| = 168 = 2^3 \cdot 3 \cdot 7$. I 7-sottogruppi di Sylow di |G| sono sottogruppi ciclici di ordine 7: ognuno di essi contiene esattamente 6 elementi di periodo 7 più l'identità. Detto n_7 il numero di 7-sottogruppi di Sylow, si ha

$$n_7 \equiv 1 \pmod{7}$$
 e $n_7 \mid 24$

da cui si ricava $n_7 \in \{1,8\}$. Ora, poiché G è un gruppo semplice, $n_7 \neq 1$ (altrimenti l'unico 7-Sylow sarebbe normale), e quindi $n_7 = 8$. Per il teorema di Lagrange, due 7-sottogruppi di Sylow distinti hanno intersezione banale; d'altro canto, tutti gli elementi di periodo 7 appartengono a qualche 7-sottogruppo di Sylow. In conclusione, calcoliamo $6 \cdot 8 = 48$ elementi di periodo 7 in G.

Esercizio 1.14: prova d'esame del 3/02/2021 - n° 1

Si consideri il gruppo moltiplicativo delle matrici:

$$G = \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} : a \in \mathbb{Z}_7, b \in \{1, 2, 4\} \right\}$$

- (i) Determinare gli elementi di ordine 7 e di ordine 3 di G.
- (ii) Descrivere esplicitamente i sottogruppi di Sylow di G.

Soluzione.

(i) Si osserva che |G|=21. Per induzione su $n\in\mathbb{N}$ si dimostra che

$$\begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}^n = \begin{pmatrix} 1 & a + ab + ab^2 + \dots + ab^{n-1} \\ 0 & b^n \end{pmatrix}$$

In particolare

$$\begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}^3 = \begin{pmatrix} 1 & a(1+b+b^2) \\ 0 & b^3 \end{pmatrix},$$

così gli elementi di periodo 3 di G sono tutte e sole le matrici con $b \in \{2,4\}$ e $a \in \mathbb{Z}_7$. In modo analogo si ottiene che

$$\begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}^7 = \begin{pmatrix} 1 & a + ab + ab^2 + ab^3 + ab^4 + ab^5 + ab^6 \\ 0 & b \end{pmatrix},$$

così gli elementi di periodo 7 di G sono le matrici con b = 1 e $a \neq 0$. Si osserva che in questo modo abbiamo ottenuto tutte la matrici di G (ad esclusione delle matrice identità), dunque non esiste nessun elemento di G di periodo 21, ovvero G non è ciclico.

(ii) Dal terzo Teorema di Sylow si ricava che $n_7 \equiv 1 \pmod{7}$ e $n_7|3$, dunque $n_7 = 1$. Allora esiste un unico 7-sottogruppo di Sylow di G di cardinalità 7 ed esso sarà formato dalle matrici

$$\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
,

ovvero dall'unità e da tutti e soli gli elementi di periodo 7 di G. Inoltre si ricava che $n_3 \equiv 1 \pmod{7}$ e $n_3|7$, dunque $n_3 = 1$ oppure $n_3 = 7$. Sicuramente $n_3 \neq 1$, perchè in G ci sono 14 elementi di periodo 3, così esistono sette 3-sottogruppi di Sylow di G a due a due distinti e ciascuno essi sarà formato dall'unità e da due matrici di periodo 3 di G. In particolare, in ogni 3-sottogruppo di Sylow di G troveremo una matrice con G0 e una matrice con G1.

Esercizio 1.15: prova d'esame del 17/02/2021 - n° 1

Provare che un gruppo di ordine 300 non è semplice.

Soluzione. Sia G un gruppo di ordine $300 = 2^2 \cdot 3 \cdot 5^2$. Allora il numero di 5-sottogruppi di Sylow di G è tale che

$$n_5 \equiv 1 \; (mod \; 5) \; e \; n_5 | 12$$

Dunque $n_5 \in \{1, 6\}$. Se $n_5 = 1$, allora esiste un unico 5-sottogruppo di Sylow di G e quindi G non è semplice. Suppongo invece che $n_5 = 6$ e considero l'azione di coniugio del gruppo G sull'insieme X dei suoi sei 5-sottogruppi di Sylow. Tale azione è equivalente ad un omomorfismo di gruppi

$$\varphi: G \to Sym(X),$$

con |Sym(X)| = 6!. Chiaramente φ non è un monomorfismo, perché |G| = 300 non divide 6!. D'altro canto φ non è l'omomorfismo banale, perché altrimenti per ogni $P \in X$ e per ogni $g \in G$ si avrebbe $gPg^{-1} = P$, il che non può essere perché P non è un sottogruppo normale di G. Allora $Ker(\varphi)$ è un sottogruppo normale proprio di G e, dunque, G non è un gruppo semplice.

Esercizio 1.16: prova d'esame del 14/04/2021 - n° 1

Dimostrare che i 2-sottogruppi di Sylow del gruppo di permutazioni \mathbb{S}_6 sono tutti isomorfi a $\mathbb{D}_4 \times \mathbb{Z}_2$, e determinarne il numero.

Soluzione. Si osserva subito che $|\mathbb{S}_6| = 6! = 2^4 \cdot 3^2 \cdot 5$. Per dimostrare che tutti i 2-sottogruppi di Sylow di \mathbb{S}_6 sono isomorfi a $\mathbb{D}_4 \times \mathbb{Z}_2$ è sufficiente osservare che \mathbb{S}_6 contiene i sottogruppi

$$H = \langle (1234), (12)(34) \rangle \cong \mathbb{D}_4,$$

$$K = \langle (56) \rangle \cong \mathbb{Z}_2.$$

Risulta che

- (a) il generatore di K commuta con i generatori di H, così HK = KH e $HK \leq G$;
- (b) $H \cap K = \{(1)\}, \cos |HK| = |H||K| = 8 \cdot 2 = 16 \text{ e } HK \cong H \times K \cong \mathbb{D}_4 \times \mathbb{Z}_2;$
- (c) $H \times K$ è un 2-sottogruppo di Sylow di S_6 .

Dunque tutti i 2-sottogruppi di Sylow di \mathbb{S}_6 sono isomorfi a $\mathbb{D}_4 \times \mathbb{Z}_2$. Infine il numero n_2 di tali sottogruppi si ottiene moltiplicando il numero di modi di scegliere 4 elementi tra 6 per il numero di immersioni non isomorfe del gruppo \mathbb{D}_4 in \mathbb{S}_6 , ovvero

$$n_2 = \binom{6}{4} \cdot 3 = 45.$$

In effetti $45 \equiv 1 \pmod{2}$ e $45 \left| \frac{6!}{2^4} \right| = 45$.

Esercizio 1.17: prova d'esame del 9/06/2021 - n° 1

Sia p un numero primo. Dimostrare che, per n > 1, un gruppo di ordine $p^n(p+1)$ non può essere semplice.

Soluzione. Sia n > 1 e supponiamo per assurdo che un gruppo G di ordine $p^n(p+1)$ sia semplice. Allora, dal terzo Teorema di Sylow, si deduce che il numero n_p di p-sottogruppi di Sylow di G

è <math>p+1. L'azione di coniugio di G sull'insieme dei suoi p-sottogruppi di Sylow produce un omomorfismo di gruppi $f: G \to S_{p+1}$. Studiamo il nucleo di f. Se fosse Ker(f) = G, per la transitività dell'azione, G avrebbe un unico p-sottogruppo di Sylow: contraddizione.

Se invece fosse $\mathsf{Ker}(f) = 1$, allora f sarebbe un monomorfismo, e si otterrebbe nuovamente una contraddizione, in quanto $|f(G)| = |G| = p^n(p+1)$ non divide (p+1)! per n>1. In conclusione, $\mathsf{Ker}(f)$ è un sottogruppo normale proprio di G, che quindi non è semplice.

Esercizio 1.18: prova d'esame del 28/06/2021 - n° 1

Sia G un gruppo finito, e p un primo che divide |G|. Detta N l'intersezione dei p-sottogruppi di Sylow di G, dimostrare che:

- (i) N è un p-sottogruppo normale di G;
- (ii) se K è un p-sottogruppo normale di G, allora $K \leq N$.

Soluzione. Sia $|G| = p^k m$, con (p, m) = 1 e sia P un p-sottogruppo di Sylow di G. Allora

$$N = \bigcap_{g \in G} gPg^{-1}.$$

(i) Per ogni $x \in G$ si ha che

$$xNx^{-1} = \bigcap_{g \in G} (xg)P(xg)^{-1} = N,$$

dunque N è un sottogruppo normale di G.

(ii) Sia K un p-sottogruppo normale di G. Allora K è contenuto in un p-sottogruppo di Sylow di G e, per ogni $x \in G$, si ha che $xKx^{-1} = K$. Così K è contenuto in tutti i p-sottogruppi di Sylow di G e, dunque, $K \subseteq N$.

Esercizio 1.19: prova d'esame del 15/09/2021 - n° 1

Delle due proposizioni scritte sotto, solo una è vera. Dimostrare l'affermazione vera e portare un controesempio per quella falsa.

- (i) Presi due sottogruppi di S_6 di ordine 4, essi sono isomorfi.
- (ii) Presi due sottogruppi di S_6 di ordine 9, essi sono isomorfi.

Soluzione. L'affermazione (i) è falsa. Infatti, in S_6 il sottogruppo $\langle (1234) \rangle$ è ciclico di ordine 4, mentre, per esempio, $\langle (12), (34) \rangle$ è isomorfo al gruppo di Klein.

L'affermazione (ii) è vera. Infatti, poiché

$$S_6 = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 2^4 \cdot 3^2 \cdot 5$$

ogni sottogruppo di ordine 9 è un 3-sottogruppo di Sylow, ed essi sono tutti coniugati fra loro (per Sylow II) e a fortiori isomorfi.

Esercizio 1.20: prova d'esame del 15/09/2021 - n° 2

Sia G un gruppo semplice di ordine 168, e sia H un sottogruppo di G tale che |H| è multiplo di 7.

- (i) Calcolare il numero di elementi di G di periodo 7.
- (ii) Dopo aver verificato che H contiene un 7-sottogruppo di Sylow P, determinare l'ordine del normalizzante $N_G(P)$. Infine dedurre che non può essere |H| = 14.

Soluzione.

(i) Scriviamo $168 = 2^3 \cdot 3 \cdot 7$. Per il terzo Teorema di Sylow, si ha che il numero dei 7-sottogruppi di Sylow è

$$n_7 \equiv 1 \mod 7$$
 $n_7 \mid 24$

Dalla semplicità di G, deduciamo $n_7 \neq 1$, per cui necessariamente $n_7 = 8$. Per il teorema di Lagrange, gli otto sottogruppi di Sylow hanno intersezione banale. Inoltre, essendo ciclici, contengono ciascuno sei elementi di ordine 7. Infine, ovviamente ogni elemento di ordine 7 di G appartiene a un qualche 7-sottogruppo di Sylow. Di conseguenza, abbiamo $6 \cdot 8 = 48$ elementi di ordine 7 in G.

(ii) Per il teorema di Cauchy, H contiene un sottogruppo P di ordine 7, che è necessariamente un 7-sottogruppo di Sylow di G. Ricordiamo ora che l'indice del normalizzante di P in G è pari alla cardinalità dell'orbita di P per l'azione di coniugo, i.e. (per Sylow II) proprio il numero n_7 dei sottogruppi di Sylow coniugati a P; da questo si deduce immediatamente $|N_G(P)| = 21$. Infine, se fosse |H| = 14 si avrebbe [H:P] = 2, da cui P normale in H. Ma allora, $H \leq N_G(P)$, e per il teorema di Lagrange, questa è una contraddizione, perché 14 non divide 21.

1.4 Gruppi abeliani finiti

Esercizio 1.21: prova d'esame del 12/07/2021 - n° 4

Classificare, a meno di isomorfismi, il gruppo abeliano degli elementi invertibili dell'anello \mathbb{Z}_{32} .

Soluzione. Il gruppo degli elementi invertibili dell'anello \mathbb{Z}_{32} è un gruppo abeliano di ordine $\varphi(32)=16$

$$\mathcal{U}(\mathbb{Z}_{32}) = \{[1], [3], [5], [7], [9], [11], [13], [15], [17], [19], [21], [23], [25], [27], [29], [31]\}.$$

Esso contiene un sottogruppo ciclico di ordine 2 ed un sottogruppo ciclico di ordine 8 ad intersezione banale:

$$H = \langle [31] \rangle = \{ [1], [31] \},$$

$$K = \langle [3] \rangle = \{[1], [3], [9], [27], [17], [19], [25], [11]\}.$$

K è un sottogruppo normale, in quanto ha indice 2 in $\mathcal{U}(\mathbb{Z}_{32})$. Dunque possiamo concludere che

$$\mathcal{U}(\mathbb{Z}_{32}) = HK \cong \mathbb{Z}_2 \times \mathbb{Z}_8.$$

Capitolo 2

Teoria dei campi

2.1 Estensioni di campi

Esercizio 2.1: Seconda Prova Parziale del 22/01/2021 - n° 2

Dimostrare che la mappa

$$\Phi: a+b\sqrt{2} \mapsto a-\sqrt{2}$$

con $a, b \in \mathbb{Q}$, definisce un isomorfismo di campi $\mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$.

Soluzione. Per prima cosa, è necessario dimostrare che Φ definisce un omomorfismo di anelli unitari. Infatti, Φ preserva la somma:

$$\begin{array}{rcl} \Phi(a+b\sqrt{2}) + \Phi(c+d\sqrt{2}) & = & a-b\sqrt{2}+c-d\sqrt{2} \\ & = & a+c-(b+d)\sqrt{2} \\ & = & \Phi\left((a+c)+(b+d)\sqrt{2}\right) \\ & = & \Phi\left((a+b\sqrt{2})+(c+d\sqrt{2})\right), \end{array}$$

preserva il prodotto:

$$\begin{split} \Phi(a+b\sqrt{2}) \cdot \Phi(c+d\sqrt{2}) &= (a-b\sqrt{2}) \cdot (c-d\sqrt{2}) \\ &= ac + 2bd - (ac+bd)\sqrt{2} \\ &= \Phi\left(ac + 2bd + (ac+bd)\sqrt{2}\right) \\ &= \Phi\left((a+b\sqrt{2}) \cdot (c+d\sqrt{2})\right) \end{split}$$

e preserva banalmente anche l'unità. Poiché $\mathbb{Q}(\sqrt{2})$ è un campo, si vede subito che l'ideale $\ker(\Phi) = (0)$, quindi Φ è iniettiva. Infine, tale mappa è

suriettiva, perché, per ogni $a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2})$, si ha

$$\Phi(a - b\sqrt{2}) = a + b\sqrt{2}.$$

Sia ora Ψ un generico automorfismo del campo $\mathbb{Q}(\sqrt{2})$. Ovviamente, $\Psi(1) = 1$ per definizione, e infatti ogni Ψ fissa il sottocampo primo \mathbb{Q} . Poiché Φ preserva il prodotto, valgono le uguaglianze

$$(\Psi(\sqrt{2}))^2 = \Psi(\sqrt{2}) \cdot \Psi(\sqrt{2}) = \Psi(\sqrt{2} \cdot \sqrt{2}) = \Phi(2) = 2$$

da cui otteniamo $\Psi(\sqrt{2}) = \pm \sqrt{2}$. Ora, Ψ , visto come applicazione lineare tra spazi vettoriali su \mathbb{Q} , è determinato dai valori che assume sulla base $\{1, \sqrt{2}\}$. In conclusione, se $\Psi(\sqrt{2}) = \sqrt{2}$, allora $\Psi = Id$, se invece $\Psi(\sqrt{2}) = -\sqrt{2}$, allora $\Psi = \Phi$.

Esercizio 2.2: prova d'esame del 3/02/2021 - n° 4

Data l'estensione di campi $F \to E$, sia $p(x) \in F[x]$ un polinomio non costante. Dimostrare che se $\alpha \in E$ è trascendente su F, allora anche $p(\alpha)$ è trascendente su F.

Soluzione. Se per assurdo $p(\alpha) \in E$ fosse un elemento trascendente su F, allora esisterebbe un polinomio $f(x) \in F[x]$ tale che $f(p(\alpha)) = 0$. In tal modo α sarebbe radice del polinomio $(f \circ p)(x) \in F[x]$, e ciò è un assurdo in quanto $\alpha \in E$ è trascendente su F.

Esercizio 2.3: prova d'esame del 17/02/2021 - n° 4

Determinare il massimo comune divisore dei polinomi

$$p(x) = x^4 + 3x^3 + 2x^2 + 4$$
 e $q(x) = x^2 + 3x + 2$

nell'anello di polinomi $\mathbb{Z}_5[x]$.

Soluzione. Dividendo il polinomio p(x) per il polinomio q(x) si ottiene che

$$p(x) = q(x)x^2 - 1$$

Dunque

$$1 = -p(x) + x^2 q(x)$$

è un'identità di Bézout per i polinomi p(x) e q(x). Ne segue che

$$MCD(p(x), q(x)) = 1.$$

Estensioni 19

In alternativa, si osserva che q(x) = (x+2)(x+1) e le sue radici 3 e 4 non sono radici del polinomio p(x), dunque

$$MCD(p(x), q(x)) = 1.$$

Esercizio 2.4: prova d'esame del 9/06/2021 - n° 3

Data una estensione di campi $F \to E$ di grado finito, sia $f(x) \in F[x]$ un polinomio di grado p primo, irriducibile su F. Dimostrare che se f(x) è riducibile su E, allora p divide il grado [E:F]. Vale il viceversa?

Soluzione. Sia α una radice di f(x). Allora $[F(\alpha) : F] = deg(f(x)) = p$, in quanto f(x) è irriducibile su F, e $[E(\alpha) : E] < p$, poiché f(x) è riducibile su E. Inoltre

$$[E(\alpha):F] = [E(\alpha):F(\alpha)][F(\alpha):F] = p[E(\alpha):F(\alpha)],$$
$$[E(\alpha):F] = [E(\alpha):E][E:F].$$

Così il numero primo p divide il prodotto $[E(\alpha) : E][E : F]$ e, poiché p non divide $[E(\alpha) : E]$, si conclude che p divide il grado [E : F].

Esercizio 2.5: prova d'esame del 9/06/2021 - n° 4

Sia I l'ideale generato dal polinomio $x^4 + x^3 + x + 3$ in $\mathbb{Z}_5[x]$. Verificare se l'anello quoziente $\mathbb{Z}_5[x]/I$ sia un campo.

Soluzione. Si verifica facilmente che il polinomio $f(x) = x^4 + x^3 + x + 3$ non ha radici sul campo \mathbb{Z}_5 . Allora supponiamo che f(x) si spezzi nel prodotto di due fattori di secondo grado

$$f(x) = (x^2 + ax + b)(x^2 + Ax + B),$$

oppure

$$f(x) = (2x^2 + ax + b)(3x^2 + Ax + B).$$

Di seguito si analizzerà solamente il primo caso, dal quale si ottiene il sistema

$$\begin{cases} a+A=1\\ B+b+aA=0\\ aB+bA=1\\ bB=3 \end{cases}$$

Dalla quarta equazione si trova che (b, B) = (1, 3) oppure (b, B) = (4, 2) (le altre due possibilità sono speculari). Nel primo caso si raggiunge un assurdo in quanto le prime due equazioni si riducono a

$$\begin{cases} a + A = 1 \\ aA = 1 \end{cases}$$

e non si hanno soluzioni in \mathbb{Z}_5 . Nel secondo caso il sistema si riduce a

$$\begin{cases} a+A=1\\ aA=-1\\ 2a+4b=1 \end{cases}$$

Le prime due equazioni sono soddisfatte solo per la coppia (a, A) = (3, 3), ma sostituendo tale risultato nella terza equazione si ottiene

$$2 \cdot 3 + 4 \cdot 3 = 1 + 2 = 3 \neq 1.$$

L'altro caso si risolve in modo analogo e si conclude che l'anello quoziente $\mathbb{Z}_5[x]/I$ è un campo, in quanto il polinomio $f(x) = x^4 + x^3 + x + 3$ è irriducibile su \mathbb{Z}_5 .

Esercizio 2.6: prova d'esame del 28/06/2021 - n° 4

In un campo F di caratteristica 5, consideriamo un elemento α che non ammetta radice quinta in F, i.e. tale che non esista $a \in F$, $a^5 = \alpha$. Dimostrare che il polinomio $f(x) = x^5 - \alpha$ è irriducibile in F[x].

Soluzione. Il polinomio $f(x)=x^5-\alpha$ non ammette radici sul campo F in quanto non esiste la radice quinta di α in F. Supponiamo allora che f(x) si spezzi nel prodotto di un fattore di secondo grado e di un fattore di terzo grado

$$f(x) = p(x) \cdot q(x).$$

 $I \ metodo$

Se a è radice di p(x), a è anche radice di $x^5 - \alpha$. Per Forbenius, $x^5 - \alpha = x^5 - a^5 = (x-a)^5$, da cui $p(x) = x^2 - 2ax + a^3$. Concludiamo $-2a \in F \Rightarrow a \in F$, contraddizione.

II metodo

Senza perdere in generalità, analizziamo solo il caso in cui entrambi i fattori siano monici:

$$p(x) = x^2 + ax + b$$
 $q(x) = x^3 + cx^2 + dx + e$.

Estensioni 21

Moltiplicando e confrontando i coefficienti, otteniamo il sistema di equazioni:

$$\begin{cases} a+c=0\\ b+ac+d=0\\ bc+ad+e=0\\ bd+ae=0\\ be=\alpha \end{cases}$$

Risolvendo il sistema dall'alto verso il basso per sostituzione si ottiene

$$\begin{cases} c = -a \\ d = a^2 - b \\ e = -a^3 + 2ab \\ b^2 + 2ab + a^4 = (b + a^2)^2 = 0 \\ be = \alpha \end{cases}$$

e dunque

$$\begin{cases} b = -a^2 \\ e = -a^3 - 2a^3 = -3a^3 = 2a^3 \end{cases}$$

Infine, sostituendo nella quinta ed ultima equazione, si ottiene

$$be = (-a^2)(2a^3) = 3a^5 = (3a)^5 = \alpha$$

e tale equazione non ha soluzione perché non esiste in F la radice quinta di α . Dunque il polinomio $f(x) = x^5 - \alpha$ è irriducibile sul campo F.

Esercizio 2.7: prova d'esame del 12/07/2021 - n° 3

Sia K un campo con caratteristica p > 0. Dimostrare che l'insieme $K' = \{\alpha^p \mid \alpha \in K\}$ è un sottocampo di K.

Soluzione. K' è un sottocampo di K in quanto è l'immagine dell'endomorfismo di Frobenius $F: K \to K$, definito da $F(\alpha) = \alpha^p$, per ogni $\alpha \in K$. Si osserva che, se K è un campo finito, allora F è un automorfismo e K' = K.

Esercizio 2.8: prova d'esame del 15/09/2021 - n° 4

Sia $\omega = e^{2\pi i/3} \in \mathbb{C}$ e A l'anello $\mathbb{Z}[\omega]$, i.e. il sottoanello di \mathbb{C} generato da ω . Sia infine (2) $\subset A$ l'ideale principale di $2 \in A$. Dimostrare che l'anello quoziente A/(2) è un campo finito. Quale?

Soluzione. Il sottoanello di $\mathbb C$ generato da ω può essere descritto come insieme di coppie di interi:

$$A = \mathbb{Z}[\omega] = \{a + b\omega \mid a, b \in \mathbb{Z} \text{ e } \omega^2 = -\omega - 1\}$$

Ora, poiché l'ideale principale generato da $2 \in A$ è dato dall'insieme $\{2k + 2h\omega \mid k, h \in \mathbb{Z}\}$, si verifica subito che le classi dell'anello quoziente A/(2) sono univocamente determinati dalla parità di a e b nell'espressione $a + b\omega$, e possono quindi essere rappresentati dagli elementi $0, 1, \omega$ e $1 + \omega$. Contempliamo la tavola di moltiplicazione:

	•	1	ω	$1+\omega$
	1	1	ω	$1+\omega$
	ω	ω	$1+\omega$	1
1	$+\omega$	$1+\omega$	1	ω

Si vede che ogni elemento diverso da zero ammette inverso, pertanto trattasi di un campo. Per il teorema di classificazione dei campi finiti, il campo in questione è \mathbb{F}_4 .

Una soluzione alternativa usa le proprietà astratte dell'anello A. Esso, infatti, può essere descritto dalla proprietà universale dell'anello di polinomi $\mathbb{Z}[x]$, come quoziente $\mathbb{Z}[x]/(x^2+x+1)$. Allora si hanno i seguenti isomorfismi canonici di anelli unitari:

$$A/(2) \cong \frac{\mathbb{Z}[x]/(x^2+x+1)}{(2)} \cong \frac{\mathbb{Z}[x]}{(x^2+x+1,2)}$$
$$\cong \frac{\mathbb{Z}[x]/(2)}{(x^2+x+1)} = \frac{\mathbb{F}_2[x]}{(x^2+x+1)} \cong \mathbb{F}_4$$

2.2 Estensioni algebriche semplici e polinomio minimo di un elemento algebrico

Esercizio 2.9: prova d'esame del 16/09/2020 - n° 3

Dato il polinomio $p(x) = x^5 - 3$ a coefficienti razionali, dimostrare che esso ammette cinque radici distinte $\theta_1, \theta_2, \dots, \theta_5 \in \mathbb{C}$, e che i campi $\mathbb{Q}(\theta_1), \mathbb{Q}(\theta_2), \dots, \mathbb{Q}(\theta_5)$ sono distinti a due a due.

Soluzione. Il polinomio $p(x) = x^3 - 5$ è irriducibile su \mathbb{Q} per il criterio di Eisenstain, con p = 3 ed ammette radici multiple per il criterio di separabilità.

Per $i=1,\ldots,5$ definiamo $F_i=\mathbb{Q}(\theta_i)$. Delle cinque radici, una, e una sola (diciamo θ_1), è reale, per cui F_1 è un sottocampo dei reali, e di conseguenza $F_1 \neq F_i$, per $i=2,\ldots,5$. Per dimostrare ora che i restanti quattro campi F_2,\ldots,F_5 sono diversi tra loro, assumiamo che $F_i=F_j$ con $2\leq i,j\leq 5$. Sia σ un isomorfismo $F_i\to F_1$ tale che $\sigma(\theta_i)=\theta_1$ (un tale isomorfismo esiste, come ampiamente discusso a lezione). Poiché abbiamo assunto $F_i=F_j$, si ha che $\theta_j\in F_i$, e inoltre:

$$p(\sigma(\theta_i)) = \sigma(p(\theta_i)) = \sigma(0) = 0$$
.

Quindi, $\sigma(\theta_j)$ è una radice reale di p(x), e per quanto ricordato sopra, $\sigma(\theta_j) = \theta_1$. Tuttavia, anche $\sigma(\theta_i) = \theta_1$. Essendo σ iniettiva, questo implica $\theta_i = \theta_j$.

Esercizio 2.10: prova d'esame del 16/09/2020 - n° 4

Verificare se il polinomio $q(x) = x^2 - \sqrt{2}$ sia riducibile su $\mathbb{Q}(\sqrt{2})$.

Soluzione. Essendo di secondo grado, il polinomio q(x) è riducibile su $\mathbb{Q}(\sqrt{2})$ se e solo se ammette una radice, i.e. se e solo se esistono $a, b \in \mathbb{Q}$ tali che $(a + b\sqrt{2})^2 = \sqrt{2}$. Si ottiene il sistema:

$$\begin{cases} a^2 + 2b^2 = 0\\ 2ab = 1 \end{cases}$$

che non ammette soluzioni razionali.

Esercizio 2.11: prova d'esame del 20/01/2021 - n° 3

Si consideri il polinomio $p(x) = x^4 + 3x + 3$.

- (i) Verificare che p(x) è un polinomio irriducibile su \mathbb{Q} .
- (ii) Calcolare il grado dell'estensione $\mathbb{Q} \hookrightarrow \mathbb{Q}(\alpha)$, dove α è una radice di p(x).
- (iii) Dedurre che p(x) è irriducibile su $\mathbb{Q}(\alpha)$.

Soluzione.

(i) Il polinomio p(x) è irriducibile su \mathbb{Q} per il criterio di Eisenstein con p=3.

(ii) Si consideri il diagramma commutativo di estensioni di campi

Essendo p(x) irriducibile su \mathbb{Q} , si ha che $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$. D'altro canto, anche $x^3 - 2$ è irriducibile su \mathbb{Q} , e $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$. Per la legge dei gradi si ha:

$$4 \cdot 3 = 12 \mid [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}].$$

Ora, poiché $p(\alpha) = 0$, detto m(x) il polinomio minimo di α su $\mathbb{Q}(\sqrt[3]{2})$, si ha che $m(x) \mid p(x)$. Dunque, $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] \leq 4$,

$$[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] \cdot 3 \le 4 \cdot 3 = 12.$$

In conclusione, otteniamo $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] = 12.$

(iii) Infine, dal punto (ii) otteniamo immediatamente che il grado di m(x) è 4, e poiché come abbiamo visto $m(x) \mid p(x)$, si ha che il polinomio p(x) = m(x) è irriducibile in quanto polinomio minimo di α su $\mathbb{Q}(\alpha, \sqrt[3]{2})$.

Esercizio 2.12: Seconda Prova Parziale del 22/01/2021 - n° 1

Si consideri il polinomio $p(x) = x^3 - 2x - 2$.

- (i) Verificare che p(x) è un polinomio irriducibile su \mathbb{Q} .
- (ii) Detta α una radice di p(x), determinare una base \mathcal{B} di $\mathbb{Q}(\alpha)$, visto come spazio vettoriale su \mathbb{Q} .
- (iii) Scrivere il valore dell'elemento

$$(1 + \alpha + \alpha^2)^{-1} \in \mathbb{Q}(\alpha)$$

come combinazione lineare dei valori della base \mathcal{B} .

Soluzione.

(i) Il polinomio p(x) è irriducibile per il criterio di Eisenstein.

(ii)
$$\mathcal{B} = \{1, \alpha, \alpha^2\}$$

(iii) Poniamo

$$(1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2) = 1$$

e svolgiamo i calcoli modulo p(x), cioè con la condizione $\alpha^3=2\alpha+2$. Otteniamo il sistema

$$\begin{cases} a + 2b + 2c = 1 \\ a + 3b + 4c = 0 \\ a + b + 3c = 0 \end{cases}$$

che ha soluzione (a,b,c)=(5/3,1/3,-2/3). L'elemento da calcolare risulta quindi essere:

$$\frac{1}{3}(5+\alpha-2\alpha^2).$$

Esercizio 2.13: prova d'esame del 14/04/2021 - n° 4

Determinare il polinomio minimo di $\sqrt{2}\sqrt{6+\sqrt{3}}$ su \mathbb{Q} .

Soluzione. Poniamo

$$x = \sqrt{2}\sqrt{6 + \sqrt{3}}.$$

Segue che

$$x^2 = 12 + 2\sqrt{3},$$

così

$$x^2 - 12 = 2\sqrt{3}$$

ed elevando entrambi i membri nuovamente al quadrato

$$x^4 - 24x^2 + 144 = 12.$$

Dunque considero il polinomio $p(x) = x^4 - 24x^2 + 132 \in \mathbb{Q}[x]$. Esso è monico ed ammette $\sqrt{2}\sqrt{6} + \sqrt{3}$ come radice. Infine p(x) è irriducibile su \mathbb{Q} in quanto, ponendo $t = x^2$, l'equazione

$$t^2 - 24t + 132 = 0$$

ammette due soluzioni distinte non razionali $t_{1,2}=12\pm2\sqrt{3}$ e la fattorizzazione in $\mathbb{R}[x]$ è unica. Così p(x) è proprio il polinomio minimo di $\sqrt{2}\sqrt{6+\sqrt{3}}$ su \mathbb{Q} .

Esercizio $2.1\overline{4}$: prova d'esame del $12/0\overline{7}/2021$ - n° $\overline{4}$

Si consideri l'estensione $\mathbb{Q}(\pi^3) \hookrightarrow \mathbb{Q}(\pi)$.

- (i) Verificare che $\pi^2 \notin \mathbb{Q}(\pi^3)$.
- (ii) Determinare il polinomio minimo di π^2 su $\mathbb{Q}(\pi^3)$.

Soluzione.

(i) Se fosse $\pi^2 \in \mathbb{Q}(\pi^3)$, allora si avrebbe che

$$\pi^2 = \frac{a_n(\pi^3)^n + \dots + a_1\pi^3 + a_0}{b_m(\pi^3)^m + \dots + b_1\pi^3 + b_0},$$

dove $a_0, ..., a_n, b_0, ..., b_m \in \mathbb{Q}$ e $a_n \neq 0 \neq b_m$. Così si otterrebbe un'equazione polinomiale a coefficienti razionali

$$b_m \pi^{3m+2} + \dots + b_1 \pi^5 + b_0 \pi^2 - (a_n \pi^{3n} + \dots + a_1 \pi^3 + a_0) = 0$$

e ciò implicherebbe che π sarebbe radice del polinomio a coefficienti razionali

$$p(x) = b_m x^{3m+2} + \dots + b_1 x^5 + b_0 x^2 - (a_n x^{3n} + \dots + a_1 x^3 + a_0),$$

il che è un assurdo.

(ii) Il polinomio $p(x)=x^3-\pi^6=x^3-(\pi^3)^2\in\mathbb{Q}(\pi^3)[x]$ ammette π^2 come radice ed è irriducibile su $\mathbb{Q}(\pi^3)$ in quanto la sua fattorizzazione su $\mathbb{R}[x]$ è

$$p(x) = x^3 - (\pi^2)^3 = (x - \pi^2)(x^2 + \pi^2 x + \pi^4).$$

Dunque il polinomio minimo di π^2 su $\mathbb{Q}(\pi^3)$ è proprio p(x).

Esercizio 2.15: prova d'esame del 15/09/2021 - n° 3

Dopo avere verificato che il polinomio $m(x) = x^3 - x^2 + 1$ è irriducibile su \mathbb{Q} , si consideri il campo $L = \mathbb{Q}(\alpha)$, dove α ha polinomio minimo m(x) su \mathbb{Q} .

- (i) Determinare una base di L su \mathbb{Q} .
- (ii) Scrivere il valore

$$\frac{\alpha^5}{\alpha^3 + \alpha + 3}$$

come combinazione lineare degli elementi della base trovata.

Soluzione. Per il lemma di Gauss, il polinomio m(x) non ha radici razionali, ed essendo di terzo grado, questo implica che m(x) è irriducibile.

(i) Essendo m(x) di terzo grado, si ha ad esempio la base

$$\mathcal{B} = \{1, \alpha, \alpha^2\}$$

(ii) Per svolgere il resto dell'esercizio, useremo sistematicamente la riduzione $\alpha^3 = \alpha^2 - 1$. Calcoliamo il reciproco di $\alpha^2 + \alpha + 2$ utilizzando l'identità di Bézout:

$$5 = (\alpha^3 - \alpha^2 + 1)(\alpha^2 + \alpha + 2) - (\alpha - 2)(\alpha^2 + \alpha + 2)$$
$$5 = (\alpha^3 - \alpha^2 - \alpha + 3)(\alpha^2 + \alpha + 2)$$
$$5 = (-\alpha + 2)(\alpha^2 + \alpha + 2)$$

Si ottiene subito:

$$\frac{\alpha^5}{\alpha^3 + \alpha + 3} = \frac{-\alpha - 1}{\alpha^2 + \alpha + 2} = \frac{1}{5}(-\alpha - 1)(\alpha + 2) = \frac{1}{5}(\alpha^2 - \alpha - 2).$$

2.3 Campo di spezzamento di un polinomio

Esercizio 2.16: prova d'esame del 20/01/2021 - n° 4

Calcolare il grado del campo di spezzamento di x^4+4 sul campo ${\cal F}$ nei casi seguenti:

(i)
$$F = \mathbb{Q}$$
 (ii) $F = \mathbb{R}$

Soluzione. Il polinomio in questione si scompone in $\mathbb{Z}[x]$ come segue,

$$x^4 + 4 = (x^2 + x + 1)(x^2 - x + 1)$$
.

e ha esattamente 4 radici complesse $x=\pm 1\pm i$. Quindi si ha immediatamente:

(i)
$$\Sigma = \mathbb{Q}(i)$$
 (ii) $\Sigma = \mathbb{R}(i) = \mathbb{C}$

Esercizio 2.17: prova d'esame del 17/02/2021 - n° 3

Si consideri il polinomio $f(x) = x^6 - 5 \in \mathbb{Q}[x]$.

- (i) Scrivere il polinomio f(x) come prodotto dei suoi fattori irriducibili su $\mathbb{Q}(\sqrt[6]{5})$.
- (ii) Calcolare il grado dell'estensione $\mathbb{Q} \to \Sigma$, dove Σ è il campo di spezzamento di f(x) su \mathbb{Q} .

Soluzione.

(i) Si osserva che

$$x^{6} - 5 = (x^{3} - \sqrt{5})(x^{3} + \sqrt{5}) =$$
$$= (x - \sqrt[6]{5})(x^{2} + \sqrt[6]{5}x + \sqrt[3]{5})(x + \sqrt[6]{5})(x^{2} - \sqrt[6]{5}x + \sqrt[3]{5})$$

e i polinomi di secondo grado $x^2 + \sqrt[6]{5}x + \sqrt[3]{5}$ e $x^2 - \sqrt[6]{5}x + \sqrt[3]{5}$ sono irriducibili su $\mathbb{Q}(\sqrt[6]{5})$ in quanto non hanno radici in tale campo.

(ii) Il campo di spezzamento Σ del polinomio f(x) sul campo \mathbb{Q} si ottiene estendendo il campo $\mathbb{Q}(\sqrt[6]{5})$ con una radice sesta primitiva dell'unità, ad esempio $\omega = e^{\frac{\pi i}{3}}$, la quale soddisfa la relazione $\omega^2 - \omega + 1 = 0$. Infatti risulta che $\sqrt[6]{5}\omega$ è radice del polinomio $x^2 - \sqrt[6]{5}x + \sqrt[3]{5}$ e $\sqrt[6]{5}\omega^2$ è radice di $x^2 + \sqrt[6]{5}x + \sqrt[3]{5}$. Inoltre si ha che

$$[\Sigma: \mathbb{Q}(\sqrt[6]{5})] = 2,$$

in quanto il polinomio $x^2 - x + 1$ è un polinomio monico, irriducibile su $\mathbb{Q}(\sqrt[6]{5})$ ed ammette ω come radice, ovvero è il polinomio minimo di ω sul campo $\mathbb{Q}(\sqrt[6]{5})$. Sfruttando il Teorema dei Gradi, si conclude che

$$[\Sigma:\mathbb{Q}] = [\Sigma:\mathbb{Q}(\sqrt[6]{5})][\mathbb{Q}(\sqrt[6]{5}):\mathbb{Q}] = 2 \cdot 6 = 12.$$

2.4 Campi finiti e campi in caratteristica p

Esercizio 2.18: prova d'esame del 10/11/2020 - n° 4

Sia f(x) un polinomio irriducibile di terzo grado sul campo \mathbb{F}_p , con p numero primo. Dimostrare che il campo di spezzamento di f(x) su \mathbb{F}_p ha p^3 o p^6 elementi.

Soluzione. Sia α una radice di f. Si ha $[F_p(\alpha) : \mathbb{F}_p] = 3$, e $f(x) = (x-\alpha)g(x)$ in $\mathbb{F}_p(\alpha)[x]$, con g(x) polinomio di secondo grado. Ci sono due possibilità. Se g(x) è riducibile in $\mathbb{F}_p(\alpha)[x]$, esso non può che scomporsi nel prodotto di due fattori lineari; pertanto $\mathbb{F}_p(\alpha)$ è il campo di spezzamento che si cercava, e ha esattamente p^3 elementi. In caso contrario, sia β una radice di g(x). Il campo $\mathbb{F}_p(\alpha,\beta)$ è il campo di spezzamento cercato, ha grado 2 su $\mathbb{F}_p(\alpha)$, e quindi grado 6 su \mathbb{F}_p .

Esercizio 2.19: prova d'esame del 14/04/2021 - n° 3

Determinare il grado del campo di spezzamento del polinomio $f(x) = x^{21} - [1]$ su \mathbb{F}_3 .

Soluzione. La caratteristica di \mathbb{F}_3 è 3, dunque $f(x) = (x^7 - [1])^3$, così il campo di spezzamento di f(x) coincide con il campo di spezzamento di $g(x) = x^7 - [1]$. Inoltre

$$g(x) = \Phi_1(x)\Phi_7(x) = (x - [1])\Phi_7(x),$$

dove $\Phi_7(x)$ è il settimo polinomio ciclotomico a coefficienti in \mathbb{F}_3 . Ogni radice a di $\Phi_7(x)$ è tale che $a^7 = [1]$, quindi a ha periodo 7 nel gruppo moltiplicativo del campo di spezzamento Σ di f(x), con $|\Sigma| = 3^n$ (in quanto Σ è un \mathbb{F}_3 -spazio vettoriale). Da questo, si deduce che 7 divide $3^n - 1$ e la minima estensione di campi di \mathbb{F}_3 per cui ciò accade si ottiene per n = 6. Quindi, per il Teorema di Cauchy per i gruppi, $a \in \mathbb{F}_{3^6} = \mathbb{F}_3(a)$ e quest'ultimo è il campo di spezzamento Σ cercato.

2.5 Polinomi Ciclotomici

Esercizio 2.20: prova d'esame del 3/02/2021 - n° 3

Sia $\Phi_{15}(x)$ il 15-esimo polinomio ciclotomico a coefficienti razionali, e sia Σ il campo di spezzamento di $\Phi_{15}(x)$ su \mathbb{Q} .

- (i) Determinare il grado dell'estensione $\mathbb{Q} \to \Sigma$.
- (ii) Calcolare $\Phi_{15}(x)$.

Soluzione.

(i) Il polinomio ciclotomico $\Phi_{15}(x)$ è irriducibile sul campo \mathbb{Q} e le sue radici sono tutte e sole le radici primitive quindicesime dell'unità

$$\varepsilon^k = e^{\frac{2k\pi i}{15}},$$

con (k, 15) = 1, ovvero k = 1, 2, 4, 7, 8, 11, 13, 14. Segue che il campo di spezzamento di $\Phi_{15}(x)$ sul campo \mathbb{Q} è dato dall'estensione algebrica semplice $\mathbb{Q}(\varepsilon)$. Si può concludere che

$$[\Sigma:\mathbb{Q}] = deg(\Phi_{15}(x)) = \varphi(15) = 8,$$

dove φ è la funzione di Eulero.

(ii) Dalla teoria sui polinomi ciclotomici, è ben noto che

$$\prod_{d|15} \Phi_d(x) = x^{15} - 1$$

Ne segue che

$$\Phi_{15}(x) = \frac{x^{15} - 1}{\Phi_1(x)\Phi_3(x)\Phi_5(x)} =$$

$$= \frac{x^{15} - 1}{(x - 1)(x^2 + x + 1)(x^4 + x^3 + x^2 + x + 1)} =$$

$$= \frac{x^{15} - 1}{x^7 + x^6 + x^5 - x^2 - x - 1}$$

La divisione polinomiale ci restituisce il risultato

$$\Phi_{15}(x) = x^8 - x^7 + x^5 - x^4 + x^3 - x + 1$$

Esercizio 2.21: prova d'esame del 28/06/2021 - n° 3

Sia $\zeta = e^{2\pi i/5} \in \mathbb{C}$. Dopo aver calcolato il grado $[\mathbb{Q}(\zeta) : \mathbb{Q}]$, verificare che si ha $\mathbb{Q} \subset \mathbb{Q}(\zeta + \zeta^4) \subset \mathbb{Q}(\zeta)$.

Soluzione. Il grado $[\mathbb{Q}(\zeta):\mathbb{Q}]$ è 4 in quanto il polinomio minimo dell'estensione di campi $\mathbb{Q} \hookrightarrow \mathbb{Q}(\zeta)$ è il quinto polinomio ciclotomico $\phi_5(x) = x^4 + x^3 + x^2 + x + 1$.

L'inclusione $\mathbb{Q}(\zeta + \zeta^4) \subseteq \mathbb{Q}(\zeta)$ è immediata in quanto $\zeta \in \mathcal{C} \setminus \mathbb{R}$, mentre

$$\zeta + \zeta^4 = \zeta + \bar{\zeta} = 2\Re(\zeta) \in \mathbb{R}.$$

Per verificare che vale l'inclusione propria $\mathbb{Q} \subset \mathbb{Q}(\zeta + \zeta^4)$, dimostriamo che $\zeta + \zeta^4$ non è un numero razionale.

I metodo

Calcoliamo

$$(\zeta + \zeta^4)^2 = \zeta^2 + 2 + \zeta^3 =$$

da cui

$$\zeta + \zeta^4 + \zeta^2 + 2 + \zeta^3 = 1$$

dove abbiamo usato il fatto che la somma di tutte le n radici n-esime dell'unità è 0.

Quindi, $\zeta + \zeta^4$ soddisfa l'equazione $z^2 + z = 1$ che fornisce l'unica soluzione reale positiva:

$$z = \frac{-1 + \sqrt{5}}{4} \in \mathbb{R} \setminus \mathbb{Q}.$$

II metodo

Poiché $\zeta + \zeta^4 = 2\cos\left(\frac{2\pi}{5}\right)$, è opportuno osservare che

$$\cos\left(\frac{4\pi}{5}\right) = \cos\left(2\pi - \frac{4\pi}{5}\right) = \cos\left(\frac{6\pi}{5}\right).$$

Sia $x = \frac{2\pi}{5}$, così $\cos(2x) = \cos(3x)$ e, usando le formule di duplicazione del coseno, si ottiene

$$2\cos^2(x) - 1 = 4\cos^3(x) - 3\cos(x).$$

Ponendo $y = \cos(x)$, si ha che

$$(y-1)(4y^2 + 2y - 1) = 0,$$

e, escludendo la soluzione y=1 e ricordando che nel primo quadrante il coseno assume valori compresi tra 0 e 1, si ottiene che

$$y = \cos(x) = \cos\left(\frac{2\pi}{5}\right) = \frac{-1 + \sqrt{5}}{4} \in \mathbb{R} \setminus \mathbb{Q}.$$

Così $\zeta + \zeta^4$ non è un numero razionale.

Bibliografia

[1] P. Aluffi, Algebra: Chapter 0, Graduate Studies in Mathematics, American Mathematical Society (2008).