2.2.1

ИССЛЕДОВАНИЕ ВЗАИМНОЙ ДИФФУЗИИ ГАЗОВ

Егор Берсенев

1 Цель работы

- 1. Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов.
- 2. Определение коэффициента диффузии по результатам измерений.

2 Оборудование

Измерительная установка, форвакуумный насос, баллон с гелием, манометр, источник питания, секундомер, мультиметр.

3 Теоретическая часть

Определение 1. \mathcal{A} иффузия — самопроизвольное перемешивание молекул, происходящее вследствие их хаотичного теплового движения.

В системе, состоящей из двух компонентов: a и b, плотность потока вещества любого компонента определяется законом Фика:

$$j_a = -D_{ab} \frac{\partial n_a}{\partial x}, \quad j_b = -D_{ba} \frac{\partial n_b}{\partial x}$$
 (1)

где $D_{ab} = D_{ba} = D$ — коэффициент взаимной диффузии компонентов, а j_a, j_b — плотности потока частиц. Можно предположить, что концентрация воздуха в условиях опыта много больше концетрации примеси гелия, поэтому относительное её изменение в результате взаимной диффузии будет незначительным. Поэтому будем описывать только диффузию примеси гелия на стационарном фоне воздуха, и под концентрацией n будем понимать n_{He} .

3.1 Устройство установки

Где:

- 1. Ф.Н форвакуумный насос;
- 2. T выключатель;
- 3. П.Б предохранительный баллон;
- 4. V сосуды;
- 5. M манометр;
- 6. D датчики теплопроводности.

Концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему сосуда, и предположить, что процесс выравнивания концетраций происходит в основном из-за диффузии в трубке. Если бы концентрации в сосудах поддерживались постоянными и равными n_1 и n_2 , то в трубке бы установился стационарный поток частиц $J=-DS\frac{\partial n}{\partial x}$, одинаковый в каждом сечении трубки. Следовательно:

$$J = -DS \frac{n_1 - n_2}{l}. (2)$$

В квазистатическом приближении найдем:

$$V_1 \Delta n_1 = -V_2 \Delta n_2 = J \Delta t = -DS \frac{n_1 - n_2}{l} \Delta t \tag{3}$$

$$V_1 \frac{\mathrm{d}n_1}{\mathrm{d}t} = -DS \frac{n_1 - n_2}{l}, \quad V_2 \frac{\mathrm{d}n_2}{\mathrm{d}t} = DS \frac{n_1 - n_2}{l}.$$
 (4)

$$\frac{dn_1}{dt} - \frac{dn_2}{dt} = -DS \frac{n_1 - n_2}{l} \left(\frac{1}{V_1} + \frac{1}{V_2} \right). \tag{5}$$

$$\Delta n = \Delta n_0 e^{\frac{-t}{\tau}} \tag{6}$$

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{DS} \tag{7}$$

4 Ход работы

4.1 Параметры установки

$$V_1 = V_2 = 775 \pm 10 \text{cm}^3 = (0.775 \pm 0.001) \cdot 10^{-3} \, \text{m}^3 \qquad \frac{L}{S} = (5.3 \pm 0.1) \cdot 10^{-2} \, \frac{1}{\text{m}} =$$

Тогда константа установки:

$$c = \frac{V_1 V_2}{V_1 + V_2} \frac{L}{S} = 0.2 \pm 0.002 \,\mathrm{m}^2$$

4.2 Измерения

$\mathrm{P}=40\;\mathrm{Topp}$		P=120 торр			$ m P=200~ ext{торр}$			
Время, с	U, mV	ln U	Время, с	U, mV	ln U	Время, с	U, mV	ln U
0	7.55	2.02	0	5.91	1.78	0	5.325	1.67
10	7.16	1.97	10	5.75	1.75	10	5.14	1.64
20	6.68	1.90	20	5.57	1.72	20	5.01	1.61
30	6.24	1.83	30	5.38	1.68	30	4.88	1.59
40	5.83	1.76	40	5.2	1.65	40	4.8	1.57
50	5.43	1.69	50	5.01	1.61	50	4.66	1.54
60	5.05	1.62	60	4.83	1.57	60	4.56	1.52
70	4.66	1.54	70	4.66	1.54	70	4.41	1.48
80	4.33	1.47	80	4.5	1.50	80	4.3	1.46
90	4	1.39	90	4.39	1.48	90	4.2	1.44
100	3.7	1.31	100	4.21	1.44	100	4.1	1.41

$P=280\ { m topp}$			P = 360 торр			
Время, с	U, mV	ln U	Время, с	U, mV	ln U	
0	2.5	0.92	0	2.7	0.99	
10	2.42	0.88	10	2.66	0.98	
20	2.36	0.86	20	2.66	0.98	
30	2.29	0.83	30	2.57	0.94	
40	2.21	0.79	40	2.52	0.92	
50	2.15	0.77	50	2.47	0.90	
60	2.08	0.73	60	2.42	0.88	
70	2.02	0.7	70	2.37	0.86	
80	1.97	0.68	80	2.33	0.85	
90	1.91	0.65	90	2.28	0.82	
100	1.87	0.63	100	2.24	0.81	

4.3 Обработка результатов

По угловым коэффициентам графиков, используя равенство $D=\frac{a}{c}$ рассчитаем коэффициенты взаимных диффузий для разных давлений:

Р, торр	40	120	200	280	360
$1/P$, Topp^{-1}	0.025	0.0083	0.005	0.0036	0.0028
$\sigma_{1/P}$, Topp^{-1}	0.0062	0.002	0.00125	0.0009	0.0007
$\alpha \cdot 10^{-3}, c^{-1}$	-7.2	-3.4	-2.5	-2.9	-1.95
$\sigma_{\alpha} \cdot 10^{-3}, \mathrm{c}^{-1}$	0.7	0.12	0.1	0.1	0.11
$D, \mathrm{M}^2 \cdot \mathrm{c}^{-1}$	0.36	0.17	0.125	0.145	0.01
$\sigma_D \cdot 10^{-3}, \text{m}^2 \cdot \text{c}^{-1}$	5.04	2.38	1.75	2.03	1.4

Построим график $D(\frac{1}{P})$:

Апроксимируем полученную зависимость. Получим значение коэффициента – диффузии при атмосферном давлении:

$$D_{\rm atm} = (0.79 \pm 0.039) \, \frac{{\rm cm}^2}{{\rm c}}$$

Мы получили результат, близкий к табличному, с небольшой погрешностью. Оценим длину свободного пробега λ и размер молекулы d:

$$\lambda = 3D\sqrt{\frac{\mu}{3RT}} = (1.73 \pm 0.08) \cdot 10^{-7} \, \mathrm{m}$$

$$d = \sqrt{\frac{kT}{P\lambda}} \sim 6.4 \cdot 10^{-11}$$

5 Вывод:

Измеряя данные о теплопроводности газов мы получили коэффициент взаимной диффузии, которых сходится с табличным по порядку, но немного расходится по значащей величине $\left(D_{\text{табл}} = 0.63 \, \frac{\text{см}^2}{\text{c}}\right)$. Из коэффициента взаимной дифуузии мы оценили длину свободного пробега молекулы гелия и её размер. Расхождение с табличными данными можно объяснить недостаточной точностью измерений и грубостью используемой модели о том, что концентрация воздуха практически не меняется.