Opening the Black Box of Interaction in Visualization

Hans-Jörg Schulz¹, Tatiana v. Landesberger², Dominikus Baur³

VIS Tutorial 2014

- 1. Fraunhofer IGD, Rostock, Germany
- 2. TU Darmstadt, Darmstadt, Germany
- 3. Dominikus Baur Interfacery

PART III: INTERACTION METAPHORS AND GUIDELINES

Speaker: Dominikus Baur

Part 3: Interaction metaphors

Activities: What the user does to trigger a change in the computer (*Action*)

Metaphor: What the user thinks the computer is doing and vice versa (*Understanding*)

Architecture: What the computer actually does (*Reaction*)

6Ws of Interaction

WHY do we interact?

WHAT is the purpose?

HOW do we interact?

WHO interacts?

WHEN do we interact?

WHERE is interaction used?

[adapted from Roth13, Jansen et al 13]

ENABLE

INTERACTIVE DATA EXPLORATION

ENABLE UNDERSTANDABLE MEMORABLE INTERACTIVE DATA EXPLORATION

INTERACTION DESIGN

1_verplank-interaction-design.avi

Interaction design

- more of a craft than an (exact) science
- heuristics-based
- related/overlapping fields:
 - UXD (User Experience Design)
 - UID (User Interface Design)
 - Usability Engineering

• ...

The Disciplines of

ENABLE UNDERSTANDABLE MEMORABLE INTERACTIVE DATA EXPLORATION

PROCESS

What are you designing?

- Data exploration/analysis tool
- Data presentation
- (proof-of-concept for visualization technique)

Context

- Audience (researchers, analysts, general public)
- Platform (desktop, interactive surface, mobile)
- Data (fixed dataset with known insights, fixed dataset, real-time data)

Goals

- in-depth analysis
- casual exploration
- quick lookup

Data presentation architecture

- basically: prioritize aspects of your data
- which aspects to visualize how?
- start with static representations (along visual variables)
- additional info (details-on-demand) via interaction

Visual variables

Visual encoding

- depends on your data
- iterative process
- can be intertwined with or preceded by interaction

Interaction

- see various models from part 1
- based on goals and context
- for existing techniques: use learned interactions
- for novel techniques/platforms: use learned interactions from the platform

Interaction scale

Navigation (select view type)

Filtering/Highlighting (select perspectives on the data)

Microinteractions (details-on-demand)

GOAL

Visual Representation / Encoding

Data
Presentation
Architecture

Interaction

METAPHOR

HEURISTICS

HCI "Laws"

- Fitts' Law (Paul Fitts 1954)
- Hick's Law (William Edmund Hick 1952)
- Teslers' Law (Larry Tesler 1984)

Heuristics examples:

- Shneiderman: 8 golden rules
- Nielsen: 10 Usability Heuristics

•

8 golden rules

- 1. Strive for consistency.
- 2. Enable frequent users to use shortcuts.
- 3. Offer informative feedback.
- 4. Design dialog to yield closure.
- Offer simple error handling.
- 6. Permit easy reversal of actions.
- 7. Support internal locus of control.
- 8. Reduce short-term memory load.

Elmqvist et al.: Fluid Interaction

DG1: Use smooth animated transitions between states

DG2: Provide immediate visual feedback on interaction

DG3: Minimize indirection in the interface

DG4: Integrate user interface components in the visual representation

DG5: Reward interaction

DG6: Ensure that interaction ,never ends'

DG7: Reinforce a clear conceptual model

DG8: Avoid explicit mode changes

[Elmqvist et al. 2011]

BuzzFeed

Big Stories

Life

Quizzes

Lists

Videos

More ~

Get Our App!

10 Usability Guidelines You Just HAVE To Follow

Gulf of what?? Number 7 made me tear up a little.

posted on Aug. 14, 2014, at 8:14 a.m.

BUZZFEED IN

Meet The Two Brothers Shocking "Hood Prank" Videos People Can't St

1. Prevent errors

Connect with BuzzFeed A

Heuristics

- Absolute minimum of interaction design
- Usually tells you what NOT to do!
- Works well as checklist
- Can be used for evaluation

METAPHORS

"The essence of metaphor is understanding and experiencing one kind of thing in terms of another."

Lakoff & Johnson: Metaphors We Live By

Metaphors

- in IxD: mental model that both designers and users adhere to
- users can rely on knowledge about how one thing works to operate the other
- shortcut towards understanding and memorizing and interface

Metaphor example: desktop

Metaphor example: desktop

All Contacts

Q Search

A

F G H

M N

0

Q R S

U

V W

Casandra Adamek

Admin

Administrator

April Adrian

Katina Aguilera

Aku

Patricia Allaire

Kaye Almaraz

Dudley Andino

Fausto Andino

Anna Ankney

Anonymous

Casandra Adamek

Director Sales RR. Talker Co 314564

work 499 2124778

888 888888 home

7483 059318 mobile

im.kid.beans@example.biz email

48920 San Carlos 68292 Salt Lake City USA

notes

Edit

Share

Metaphors in visualization?

Visualizations as physical objects

http://twitpic.com/b53yc8/full

Visualizations as physical objects:

Heider-Simmer IIIusion

4_metaphor-physical.avi

5_metaphor-orientation-evernote.avi

6_metaphor-orientation-facebook.avi

7_fun-facebook-messages.avi

Metaphors: Benefits & caveats

Pro:

- clear entry point
- solves problems of discoverability and orientation

Con:

- too strict adherence, lose benefits of digital medium
- users expectations are created by metaphor

GOAL

Visual Representation / Encoding

Data
Presentation
Architecture

Interaction

METAPHOR

CONTEXT

Context

- Audience (researchers, analysts, general public)
- Platform (desktop, interactive surface, mobile)
- Data (fixed dataset with known insights, fixed dataset, real-time data)

Dynamic context: sensors

- more and more sensors in computers and phones
- intricate, real-time, super-human data
- especially useful for start-up

Trivial dynamic context

- time of day
- day of week/month

Dynamic context: geolocation

- second-most important dimension after time
- implemented in more or less every device
- works well in tandem with compass

Dynamic context: Others

- Camera
- Microphone
- Touch
- Device orientation
- Bio-sensors

EXAMPLE FOR ONE SPECIFIC DEVICE CONTEXT: MOBILE/TOUCH INTERACTION VILLUTORING THE BLACK OF INTERACTION TO SCHOOL TO LEAST TO US A SCHOOL TO U

8_mobile-interaction-nutshell.mp4

iviobile interaction in a nutshell:

X axis changes and keeps filters

Drag vertically along axis to sort by ascending order (hold to preview state and release for final change)

[Drucker et al.: TouchViz 2013]

9_touch-scatterplots.mp4

[Sadana et al.: AVI 2014]

[Sultanum et al.: ITS 2011]

Ergonomics

Ergonomics II

Discoverability

App: "FIGURE"

Learned interactions/conventions

Touch/mobile devices

- ergonomics
- context (social, environmental)
- discoverability
- learned interaction/conventions
- fun!

GOAL

Visual Representation / Encoding

Data
Presentation
Architecture

Interaction

METAPHOR