

Points: 390.300000000007 Rank: 1302

Forecasting passenger traffic \$\triangle\$

Problem Submissions Leaderboard Editorial

RATE THIS CHALLENGE

Given an airport's total monthly passenger counts for a period of N months, forecast its passenger count for the next 12 months.

Input Format

The first line contains an integer, N, denoting the number of months of passenger data. The N subsequent lines each contain the monthly passenger counts in the form of N tab-separated values:

- 1. The first value is $MonthNum_{\perp}X$, where X is an an integer denoting the month number.
- 2. The second value is an integer denoting the number of passengers for that month.

Scoring

The final score obtained upon submitting your code is solely dependent on the hidden test case. We will compute the mean of the magnitude of the percentage difference by comparing your expected answers with the actual sessions for each of the missing records in all test cases (samples included).

 $d=\sumrac{|expected-computed|}{expected} imes 100$ (for all forecasted values in all test cases).

Your final score on a scale of 100 will be: $2.5 imes MAX(40-d/12,\ 0)$

If the mean value of d exceeds 40% (i.e.: your predictions are off by 40% or more on average), you will score zero. If your predictions are right on target, you will score 100.

When you hit \mathbf{Run} \mathbf{Code} (instead of submit), we will run your solution against the sample test only. At that time, the visible score will be normalized out of $\mathbf{1}$ rather than $\mathbf{100}$. In case your program throws an error (or has an incorrect output format) for a single test case, the overall score assigned will be zero.

You may make no more than 15 submissions for this problem, during the contest.

Constraints

N < 150

Output Format

For each line i (where $1 \le i \le 12$), print the forecasted passenger count for month number N+i on a new line.

Sample Input

The following is a truncated version of the first Test Case:

60

MonthNum_1 1226800 MonthNum_2 926891 MonthNum_3 782725

....._0_2

MonthNum_4 1023038

∞

MonthNum_5 1126293 MonthNum_6 692565 MonthNum_7 1165880 MonthNum_8 1207156 MonthNum_9 1129954 MonthNum_10 745100 MonthNum_11 1059346 MonthNum_12 1168555 MonthNum_13 1317458 MonthNum_14 528045 MonthNum_15 1220238 MonthNum_16 874557 MonthNum_17 1033389 MonthNum_18 1034165 MonthNum_19 812094 MonthNum_20 1351419 MonthNum_21 801822 MonthNum_22 1044266 MonthNum_23 722871 MonthNum_24 742100 MonthNum_25 839471 MonthNum_26 1201199 MonthNum_27 796265 MonthNum_28 953887 MonthNum_29 1124602 MonthNum_30 1070181 MonthNum_31 1160366 MonthNum_32 1131150 MonthNum_33 1151813 MonthNum_34 1065316 MonthNum_35 914800 MonthNum_36 1093034 MonthNum_37 937898 MonthNum_38 991612 MonthNum_39 865649 MonthNum_40 990565 MonthNum_41 965414 MonthNum_42 949248 MonthNum_43 1168905 MonthNum_44 593112 MonthNum_45 1156922 MonthNum_46 870095 MonthNum_47 1023262 MonthNum_48 788327 MonthNum_49 543605 MonthNum_50 510786 MonthNum_51 734714 MonthNum_52 1133025 MonthNum_53 1461091 MonthNum_54 635481 MonthNum_55 1104107 MonthNum_56 844960 MonthNum_57 1271967 MonthNum_58 574319 MonthNum_59 1063900 MonthNum_60 724737

Sample Output


```
1563178
1312558
1312558
1388316
1325942
1312550
587396
1293945
1061128
590392
1092215
1446327
```

Explanation

The 12 printed lines of output are the forecasted passenger counts for the 12 months following month 60 (i.e.: 61 through 72.

