Characteristic Equation

Section 5.2

Learning Objectives:

- 1. Use the characteristic equation to find the eigenvalues of a matrix.
- 2. Define when two matrices are similar.

1 Characteristic polynomial

Recall: So far we have seen how to find eigenvectors if we are given eigenvalues. So far we do not know how to find the eigenvalues themselves.

Example 1. How do we find the eigenvalues of a matrix A?

Solution. In order to determine the eigenvalues of a matrix A, we must determine for which values λ

$$(A - \lambda I)\mathbf{x} = \mathbf{0}$$

has non-trivial solutions.

Note that $A - \lambda I$ has non-trivial solutions if and only if it is non-invertible (by the Invertible Matrix Theorem). Thus, an equivalent criteria for $A - \lambda I$ to have a non-trivial null space is that

$$\det(A - \lambda I) = 0.$$

Now, the key idea: If we compute $det(A - \lambda I)$ then we will get a polynomial in the variable λ ! So solving

$$\det(A - \lambda I) = 0$$

will simply mean to solve for the roots of some polynomial equation.

We call this equation the *characteristic equation*. We often write the polynomial $p_A(\lambda) = \det(A - \lambda I)$ to signify the fact that the determinant is a polynomial of the variable λ . We call $p_A(\lambda)$ the **characteristic polynomial**.

Example 2. Find the eigenvalues of

$$A = \left(\begin{array}{cc} 2 & 1 \\ -1 & 4 \end{array}\right).$$

Solution. Since

$$A - \lambda I = \left(\begin{array}{cc} 2 - \lambda & 1\\ -1 & 4 - \lambda \end{array}\right),\,$$

We can compute the characteristic polynomial:

$$\det(A - \lambda I) = \begin{vmatrix} 2 - \lambda & 1 \\ -1 & 4 - \lambda \end{vmatrix} = (2 - \lambda)(4 - \lambda) - (-1)(1) = 8 - 6\lambda + \lambda^2 + 1 = \lambda^2 - 6\lambda + 9.$$

Thus setting $det(A - \lambda I) = 0$ yields

$$\lambda^2 - 6\lambda + 9 = 0$$
$$(\lambda - 3)^2 = 0$$

Thus $\lambda = 3$ is the only eigenvalue. Since it is a repeated root, we say that $\lambda = 3$ has algebraic multiplicity 2.

The other big topic of the section is called "similarity."

Definition: Two matrices A and B are **similar** if there exists an invertible matrix P so that $A = PBP^{-1}$. Of course, this equation also means that $B = P^{-1}AP$, so A is similar to B if and only if B is similar to A.

Idea: In a lot of applications, it will be hard to compute eigenvalues for a matrix A, but oftentimes moving to a similar matrix B will make computing eigenvalues much easier. Luckily, it turns out that the eigenvalues of both matrices will always be the same!