試験問題		試験日	曜日	時限	担当者
科目名	数学 II	2014年7月25日	金	2	田崎

答えだけではなく、考え方や計算の筋道を簡潔に書くこと(単純な計算問題は答えだけでもいいが)。解答の順番は(0番以外)自由。解答用紙の裏面も使用してよい。試験後、答案を受け取りにくること。2015年1月を過ぎたら、答案を予告なく処分する。

- **0. これは冒頭に書くこと。**レポートの提出や修正の状況を書け(冒頭に何も記述がなければ、レポートは提出していないとみなす)。レポートは、返却済みのものも新規のものも、今日の答案にはさんで提出すること。
- **1.** m, ω, f_0 を実定数とする(ただし $\omega > 0$)。一次元運動のニュートン方程式

$$m \frac{d^2}{dt^2} x(t) = \begin{cases} f_0 \sin(\omega t) & 0 \le t \le \pi/\omega \\ 0 & t \ge \pi/\omega \end{cases}$$

- の一般解を求めよ。ただし、任意定数としてx(0)と $v(0) := \dot{x}(0)$ を使え。
- **2.** γ, α, ω を実定数とする。常微分方程式

$$\frac{d}{dt}x(t) = -\gamma x(t) + \alpha \cos(\omega t) \tag{1}$$

- の一般解を以下の手順にしたがって求めよ。
 - (a) $\alpha = 0$ とした斉次の常微分方程式の一般解を求めよ。
 - (b) 微分方程式 (1) の特解で $x_{ps}(t) = A \sin(\omega t) + B \cos(\omega t)$ と書けるものを求めよ (A, B) は求めるべき定数)。
 - (c) (a) と (b) での解を足して (1) の一般解を求めよ。任意定数を初期値 x(0) を用いて表わせ。
- **3.** α , β を正の定数とする。以下の常微分方程式の一般解を求めよ((a) では x(t) > 0 とする)。任意定数として初期値 x(0) を使え。

(a)
$$\frac{dx(t)}{dt} = \frac{\alpha e^{\beta t}}{\{x(t)\}^2}$$
 (b) $\frac{dx(t)}{dt} = \alpha \cos(\beta t) \left(1 + \{x(t)\}^2\right)$ (2)

4. α, β, γ を定数とし、常微分方程式

$$\frac{dx(t)}{dt} = \alpha t x(t) + \beta \cos(\gamma t) \exp\left[\frac{\alpha}{2} t^2\right]$$
 (3)

を次の手順(定数変化法)で解け。

- (a) 解を $x(t) = C(t) \exp[(\alpha/2) t^2]$ という形に書き、C(t) が満たす微分方程式を求めよ。
- (b) C(t) についての微分方程式の一般解を求め、(3) の一般解を求めよ。任意定数 を x(0) によって表せ。
- 5. α, β, γ を実数とするとき、3次元の(幾何)ベクトル $\mathbf{a} = (1, \alpha, 0), \mathbf{b} = (0, 1, \beta),$ $\mathbf{c} = (\gamma, 0, 1)$ についてベクトル三重積 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ を計算せよ。また、 $\mathbf{a}, \mathbf{b}, \mathbf{c}$ が線形独立であるために α, β, γ が満たすべき条件を求めよ。
- 6. 計算せよ。

(a)
$$\begin{pmatrix} 1 - \sqrt{2}i \\ 2 - \sqrt{3}i \\ 1 + \sqrt{3}i \end{pmatrix}^{\dagger} \begin{pmatrix} 1 - \sqrt{2}i \\ 3 - \sqrt{3}i \\ 2 + \sqrt{3}i \end{pmatrix}$$
(b)
$$\begin{pmatrix} a & b & 0 \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ c & a & 0 \\ 0 & c & a \end{pmatrix}$$
 (c)
$$\begin{pmatrix} 2 & -4 & 3 \\ 3 & 4 & 2 \\ -1 & -2 & 4 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}$$
(d)
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} a & b & c \end{pmatrix}$$
 (e)
$$\det \begin{bmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 4 & 7 & 2 \\ 5 & -2 & 2 \end{pmatrix} \end{bmatrix}$$

7. 任意の $d \times d$ 行列 $A = (a_{i,j})_{i,j=1,\dots,d}$ と $B = (b_{i,j})_{i,j=1,\dots,d}$ について、 $(AB)_{i,j}$ および Tr[AB] を A と B の成分を用いて表わせ。その結果を用いて Tr[AB] = Tr[BA] が成り立つことを証明せよ。