Master IFA 1ère année

$TD\ n^{\circ}\ 1$ Sémantique du Calcul Propositionnel

Exercice 1 Donnez les sous-formules de la formule :

$$[(q \lor \neg p) \Rightarrow (\neg \neg q \lor \neg p)] \land [(\neg \neg q \lor \neg p) \Rightarrow (\neg p \lor q)]$$

Exercice 2 Appliquez le diagrame de Quine à la formule suivante :

$$\varphi = ((c \Rightarrow ((b \lor a) \land d)) \land (b \Leftrightarrow (a \land (c \lor d))) \land (c \Rightarrow a)) \lor ((b \land a) \Rightarrow d)$$

Exercice 3 On considère les formules $\varphi = p \land (\neg q \Rightarrow (q \Rightarrow p))$ et $\psi = (p \lor q) \Leftrightarrow (\neg p \lor \neg q)$

- 1. Soit v une valuation. Déterminer, si c'est possible, $[\varphi]_v$ et $[\psi]_v$ dans chacun des cas suivants :
 - (a) on sait que v(p) = 0 et v(q) = 1;
 - (b) on sait que v(p) = 0;
 - (c) on sait que v(q) = 1;
- 2. Ces deux formules sont-elles satisfaisables? Valides?

Exercice 4 Quelles sont les valuations qui donnent même valeur à $p \wedge q$ et $p \Rightarrow q$?

Exercice 5 Montrez qu'une formule φ est valide si et seulement si $\neg \varphi$ n'est pas satisfaisable.

Exercice 6 Une formule φ est dite *contingente* lorsqu'elle est satisfaisable et non valide. Dire si les formules suivantes sont valides, insatisfaiables ou contingentes :

- 1. $(p \Rightarrow q) \Rightarrow p$
- 2. $p \Rightarrow (q \Rightarrow p)$
- 3. $(p \land q) \Leftrightarrow (p \Rightarrow \neg q)$
- 4. $(p \lor q) \land (\neg p \lor q) \land (\neg q \lor p) \land (\neg p \land \neg q \land r) \land (\neg r \lor s)$

Exercice 7 Soit φ une formule du calcul propositionnel.

- 1. Que peut-on dire de $mod(\varphi)$ lorsque φ est contingente?
- 2. Soient φ et ψ deux formules propositionnelles. Que pensez-vous des affirmations suivantes :
 - (a) si φ est contingente, alors $\neg \varphi$ l'est également;
 - (b) si φ et ψ sont contingentes, alors $\varphi \vee \psi$ et $\varphi \wedge \psi$ sont contingentes;
 - (c) si $\varphi \lor \psi$ est insatisfaiable alors φ et ψ sont insatisfaiables;
 - (d) si $\varphi \wedge \psi$ est valide alors φ et ψ sont valides;