EXPERIMENT 01:MDP REPRESENTATION

'AIM:
To represent any one real world problem in Markov Decision Problem(MDP).
PROBLEM STATEMENT:
Problem Description:
Move a coin to reach the goal in a 3*3 grid.
'State Space:
{0,1,2,3,4,5,6,7,8}
'Sample State:
2
Action Space:
{Up[0],Down[1],Left[2],Right[3]}
Sample Action:
Down[1]
Reward Function:
To reach goal ->+1(Reward) Otherwise ->0

'GRAPHICAL REPRESENTATION:

'PYTHON REPRESENTATION:

```
Ð
# Creating Dictionary
P={
    0:{
        0:[(0.666,0,0.0,False),(0.333,3,0.0,False)],
        1:[(0.333,3,0.0,False),(0.333,0,0.0,False),(0.333,1,0.0,False)],
        2:[(0.666,0,0.0,False),(0.333,3,0.0,False)],
        3:[(0.333,1,0.0,False),(0.333,0,0.0,False),(0.333,3,0.0,False)]
    },
    1:{
        0:[(0.333,1,0.0,False),(0.333,0,0.0,False),(0.333,2,0.0,False)],
        1:[(0.333,4,0.0,False),(0.333,0,0.0,False),(0.333,2,0.0,False)],
        2:[(0.333,0,0.0,False),(0.333,1,0.0,False),(0.333,4,0.0,False)],
        3:[(0.333,2,0.0,False),(0.333,1,0.0,False),(0.333,4,0.0,False)]
    },
    2:{
        0:[(0.666,2,0.0,False),(0.333,1,0.0,False)],
        1:[(0.333,5,0.0,False),(0.333,1,0.0,False),(0.333,2,0.0,False)],
        2:[(0.333,1,0.0,False),(0.333,2,0.0,False),(0.333,5,0.0,False)],
        3:[(0.666,2,0.0,False),(0.333,5,0.0,False)]
    },
```

```
3:{
    0:[(0.333,0,0.0,False),(0.333,3,0.0,False),(0.333,4,0.0,False)],
    1:[(0.333,6,0.0,False),(0.333,3,0.0,False),(0.333,4,0.0,False)],
    2:[(0.333,3,0.0,False),(0.333,0,0.0,False),(0.333,6,0.0,False)],
    3:[(0.333,4,0.0,False),(0.333,0,0.0,False),(0.333,6,0.0,False)]
},
4:{
    0:[(0.333,1,0.0,False),(0.333,3,0.0,False),(0.333,5,0.0,False)],
    1:[(0.333,7,0.0,False),(0.333,3,0.0,False),(0.333,5,0.0,False)],
    2:[(0.333,3,0.0,False),(0.333,1,0.0,False),(0.333,7,0.0,False)],
    3:[(0.333,5,0.0,False),(0.333,1,0.0,False),(0.333,7,0.0,False)]
},
5:{
    0:[(0.333,2,0.0,False),(0.333,4,0.0,False),(0.333,5,0.0,False)],
    1:[(0.333,8,1.0,True),(0.333,4,0.0,False),(0.333,5,0.0,False)],
    2:[(0.333,4,0.0,False),(0.333,1,0.0,False),(0.333,7,0.0,False)],
    3:[(0.333,5,0.0,False),(0.333,1,0.0,False),(0.333,7,0.0,False)]
},
6:{
    0:[(0.333,3,0.0,False),(0.333,6,0.0,False),(0.333,7,0.0,False)],
    1:[(0.666,6,0.0,False),(0.333,7,0.0,False)],
    2:[(0.666,6,0.0,False),(0.333,3,0.0,False)],
    3:[(0.333,7,0.0,False),(0.333,3,0.0,False),(0.333,6,0.0,False)]
},
7:{
    0:[(0.333,4,0.0,False),(0.333,6,0.0,False),(0.333,8,1.0,True)],
    1:[(0.333,7,0.0,False),(0.333,6,0.0,False),(0.333,8,1.0,True)],
    2:[(0.333,6,0.0,False),(0.333,4,0.0,False),(0.333,7,0.0,False)],
    3:[(0.333,8,1.0,True),(0.333,4,0.0,False),(0.333,7,0.0,False)]
},
8:{
    0:[(0.333,5,0.0,False),(0.333,7,0.0,False),(0.333,8,1.0,True)],
    1:[(0.666,8,1.0,True),(0.333,7,0.0,False)],
    2:[(0.333,7,0.0,False),(0.333,5,0.0,False),(0.333,8,1.0,True)],
    3:[(0.666,8,1.0,True),(0.333,5,0.0,False)]
}
```

}

OUTPUT:

```
In [3]: P
Out[3]: {0: {0: [(0.666, 0, 0.0, False), (0.333, 3, 0.0, False)],
                  1: [(0.333, 3, 0.0, False), (0.333, 0, 0.0, False), (0.333, 1, 0.0, False)],
                  2: [(0.666, 0, 0.0, False), (0.333, 3, 0.0, False)],
3: [(0.333, 1, 0.0, False), (0.333, 0, 0.0, False), (0.333, 3, 0.0, False)]},
                 1: {0: [(0.333, 1, 0.0, False),
                    (0.333, 0, 0.0, False),
                     (0.333, 2, 0.0, False)],
                  1: [(0.333, 4, 0.0, False), (0.333, 0, 0.0, False), (0.333, 2, 0.0, False)],
                  2: [(0.333, 0, 0.0, False), (0.333, 1, 0.0, False), (0.333, 4, 0.0, False)], 3: [(0.333, 2, 0.0, False), (0.333, 1, 0.0, False), (0.333, 4, 0.0, False)]},
                 2: {0: [(0.666, 2, 0.0, False), (0.333, 1, 0.0, False)],
                  1: [(0.333, 5, 0.0, False), (0.333, 1, 0.0, False), (0.333, 2, 0.0, False)], 2: [(0.333, 1, 0.0, False), (0.333, 2, 0.0, False), (0.333, 5, 0.0, False)], 3: [(0.666, 2, 0.0, False), (0.333, 5, 0.0, False)]},
                 3: {0: [(0.333, 0, 0.0, False),
                    (0.333, 3, 0.0, False),
                     (0.333, 4, 0.0, False)],
                  1: [(0.333, 6, 0.0, False), (0.333, 3, 0.0, False), (0.333, 4, 0.0, False)],
2: [(0.333, 3, 0.0, False), (0.333, 0, 0.0, False), (0.333, 6, 0.0, False)],
3: [(0.333, 4, 0.0, False), (0.333, 0, 0.0, False), (0.333, 6, 0.0, False)]},
                 4: {0: [(0.333, 1, 0.0, False),
                    (0.333, 3, 0.0, False),
                     (0.333, 5, 0.0, False)],
                  1: [(0.333, 7, 0.0, False), (0.333, 3, 0.0, False), (0.333, 5, 0.0, False)],
                  2: [(0.333, 3, 0.0, False), (0.333, 1, 0.0, False), (0.333, 7, 0.0, False)], 3: [(0.333, 5, 0.0, False), (0.333, 1, 0.0, False), (0.333, 7, 0.0, False)]},
                 5: {0: [(0.333, 2, 0.0, False),
                    (0.333, 4, 0.0, False)
                    (0.333, 5, 0.0, False)],
                1: [(0.333, 8, 1.0, True), (0.333, 4, 0.0, False), (0.333, 5, 0.0, False)],
2: [(0.333, 4, 0.0, False), (0.333, 1, 0.0, False), (0.333, 7, 0.0, False)],
3: [(0.333, 5, 0.0, False), (0.333, 1, 0.0, False), (0.333, 7, 0.0, False)]],
6: {0: [(0.333, 3, 0.0, False),
                    (0.333, 6, 0.0, False),
(0.333, 7, 0.0, False)],
                1: [(0.666, 6, 0.0, False)], (0.333, 7, 0.0, False)],

2: [(0.666, 6, 0.0, False), (0.333, 3, 0.0, False)],

3: [(0.333, 7, 0.0, False), (0.333, 3, 0.0, False)],

7: {0: [(0.333, 4, 0.0, False),
                    (0.333, 6, 0.0, False),
(0.333, 8, 1.0, True)],
                  1: [(0.333, 7, 0.0, False), (0.333, 6, 0.0, False), (0.333, 8, 1.0, True)],
2: [(0.333, 6, 0.0, False), (0.333, 4, 0.0, False), (0.333, 7, 0.0, False)],
3: [(0.333, 8, 1.0, True), (0.333, 4, 0.0, False), (0.333, 7, 0.0, False)]},
                 8: {0: [(0.333, 5, 0.0, False), (0.333, 7, 0.0, False),
                    (0.333, 8, 1.0, True)],
                  1: [(0.666, 8, 1.0, True), (0.333, 7, 0.0, False)],
2: [(0.333, 7, 0.0, False), (0.333, 5, 0.0, False), (0.333, 8, 1.0, True)],
3: [(0.666, 8, 1.0, True), (0.333, 5, 0.0, False)]}}
```

RESULT:

Thus a real world problem is represented as Markov Decision Problem in the following ways successfully:

- 1. Graphical Representation
- 2. Python Representation