Mingyang Xie

Research Interests

I am broadly interested in computer vision and machine learning, with a focus on computational photography and generative Al. I am actively looking for research internships for 2025.

The majority of my research projects involve dealing with degraded or unsatisfactory images/videos, including 3D reflection removal with Gaussian Splatting, 2D reflection removal with diffusion model, blind deconvolution with GAN, descattering, and HDR imaging with polarization camera, medical imaging, etc.

Education

2021–2026 University of Maryland, College Park, MD, USA

Ph.D. in Computer Science. GPA: 3.81/4.0.

Advisor: Christopher Metzler

2017-2021 Washington University in St. Louis, St. Louis, MO, USA

B.S. in Computer Science. GPA: 3.99/4.0.

Summa Cum Laude (Graduated with highest honors).

Advisors: Ulugbek Kamilov, Brendt Wohlberg

Publications & Preprints

* denotes equal contribution.

ECCV 2024 Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats

M. Xie*, H. Cai*, S. Shah, Y. Xu, B. Feng, J. Huang, C. Metzler. European Conference on Computer Vision, 2024. [Project Page]

CVPR 2024 WaveMo: Learning Wavefront Modulations to See Through Scattering

M. Xie*, H. Guo*, B. Feng, L. Jin, A. Veeraraghavan, C. Metzler.

Conference on Computer Vision and Pattern Recognition, 2024. [Project Page] [Paper Link]

Preprint Snapshot High-Dynamic-Range Imaging with a Polarization Camera

M. Xie*, M. Chan*, C. Metzler. Arxiv. [Paper Link]

Science NeuWS: Neural Wavefront Shaping for Guidestar-Free Imaging Through

Advances Static and Dynamic Scattering Media

B. Feng*, H. Guo*, M. Xie, V. Boominathan, M. Sharma, A. Veeraraghavan, C. Metzler.

Science Advances, 2023. [Science.org Frontpage Cover] [Paper Link]

IEEE JSAIT TurbuGAN: An Adversarial Learning Approach to Spatially-varying Multiframe

Blind Deconvolution with Applications to Imaging Through Turbulence.

B. Feng*, M. Xie*, C. Metzler.

IEEE Journal on Selected Areas in Information Theory, 2022. [Paper Link]

WACV 2022 PROVES: Establishing Image Provenance using Semantic Signatures

 $\underline{\mathsf{M.\ Xie}},\ \mathsf{M.\ Kulshrestha},\ \mathsf{S.\ Wang},\ \mathsf{J.\ Yang},\ \mathsf{A.\ Chakrabarti},\ \mathsf{N.\ Zhang},\ \mathsf{Y.\ Vorobeychik}.$

Winter Conference on Applications of Computer Vision, 2022. [Paper Link]

IEEE TCI Coll: Coordinate-Based Internal Learning for Tomographic Imaging

Y. Sun, J. Liu, M. Xie, B. Wohlberg, U. S. Kamilov.

IEEE Transactions on Computational Imaging (TCI), 2021. [Paper Link]

ICCVW 2021 Joint Reconstruction and Calibration Using Regularization by Denoising with Application to Computed Tomography

M. Xie*, J. Liu*, Y. Sun, B. Wohlberg, U. S. Kamilov. International Conference on Computer Vision Workshops (ICCVW), 2021. [Paper Link]

Research Experiences

Fall 2024 2D Transmission / Reflection Separation using Diffusion Model

University of Maryland. Advised by Christopher Metzler.

- O Developed a novel diffusion-model-based approach for single-view reflection removal.
- In submission to CVPR 2025.

Fall 2024 Masked Language Modeling for Video-Language Models

University of Maryland. Advised by Paola Cascante-Bonilla.

 Analyzed how masked language modeling affects the temporal reasoning ability of various video-language models.

Summer 2024 Languaged-guided Video Color Tonemapping

Research Internship at Dolby Laboratories. Advised by Vijay Kamarshi.

O Developed a diffusion-model-based approach for language-guided video color tone-mapping.

Spring 2024 3D Transmission / Reflection Separation using Flash Cues and Gaussian Splats

University of Maryland. Advised by Christopher Metzler.

 Developed a novel approach for separating transmitted and reflected 3D scenes by using Gaussian Splatting and unpaired flash and no-flash multi-view images.

2023 Learning Wavefront Modulations for Imaging Through Scattering

University of Maryland. Advised by Christopher Metzler & Ashok Veeraraghavan.

- Developed the 1st guidestar-free approach for wide-field-of-view & high-resolution imaging through non-sparse dynamic scattering media via neural representation.
- \circ Further developed a real-time (1000× faster) approach by optimizing a sequence of phase patterns displayed on a spatial light modulator (SLM) via end-to-end learning.

Spring 2023 Single-shot High Dynamic Range Imaging Using Polarization Camera

University of Maryland. Advised by Christopher Metzler.

- O Developed a novel single-shot HDR imaging methodology with a polarization camera.
- O Demonstrated 4dB improvement over software-only single-shot HDR baselines.

2022 Generative Adversarial Learning for Spatially Varying Blind Deconvolution

University of Maryland. Advised by Christopher Metzler.

- Developed a self-supervised image restoration GAN based on distribution matching.
- Achieved SOTA performance on imaging through air turbulence.

2021 Tomographic Reconstruction Using Continuous Neural Representation.

Washington University in St. Louis. Advised by Ulugbek Kamilov & Brendt Wohlberg.

- O Developed a CT image reconstruction approach using implicit neural representation.
- Demonstrated 1 dB improvement over baselines.

Awards

March 2024	Qualcomm Innovation Fellowship Finalist
August 2023	International Conference on Computational Photography 2023 Best Poster Award
June 2022	Runner-Up Award for CVPR 2022 5th UG2+ Atmospheric Turbulence Mitigation
2021 - 2022	Dean's Fellowship – University of Maryland
2018 - 2019	Dean's List – Washington University in St. Louis

Technical Skills

Languages Python, Matlab, C++

Optical Lab Spatial Light Modulator (SLM), Holographic Capture, 4F System, Interferometer

Other Tools Arduino, 3D Printing, Laser Cutting, AutoCAD, Fusion 360