Problem 1

Problem 2

1) a)
$$A = [0\ 0\ 0\ 1\ 1]$$
 $B = [1\ 1\ 0\ 0\ 0\ 0]$ $D = [2\ 0\ 0\ 0\ 0]$ $[0\ 0\ 0\ 1\ 1]$ $[0\ 0\ 0\ 1\ 1]$ $[0\ 0\ 0\ 0\ 1\ 1]$ $[0\ 0\ 0\ 0\ 1]$ $[0\ 0\ 0\ 0\ 0\ 0]$ $[0\ 1\ 0\ 0\ 0\ 0\ 0]$ $[0\ 1\ 0\ 0\ 0\ 0\ 0]$ $[0\ 1\ 0\ 0\ 0\ 0\ 1]$ $[0\ 0\ 0\ 0\ 1\ 0]$ $[0\ 0\ 0\ 0\ 1\ 0]$ $[0\ 0\ 0\ 0\ 1\ 0]$

2) D 为对角矩阵, 其中对角线上第 i 行 i 列的元素 D(i, i)为顶点 i 的度数 $C = BB^T$ 对角线元素 C(i, i)为顶点 i 度数, 其他元素 C(i, j)为 i, j 邻接关系 D = C − A 将所有 C(i, i) ($i \neq i$)转化为 0. 剩余对角线元素 C(i, i)为顶点 i 度数

[0001]

[0001]

[00010]

[00001]

Problem 3

存在双射 f: V1→V2, g: E1→E2

[00010]

a bde	A CFG	f(a) = F	g(ab) = AF	g(ae) = FH
b acf	B DEH	f(b) = A	g(bc) = AG	g(bf) = AC
c bdg	C AEH	f(c) = G	g(cd) = DG	g(cg) = EG
d ach	D BFG	f(d) = D	g(ad) = DF	g(dh) = BD
e afh	E B C G	f(e) = H	g(ef) = CH	
f beg	F ADH	f(f) = C	g(fg) = CE	
g cfh	G ADE	f(g) = E	g(gh) = BE	
h deg	H BCF	f(h) = B	g(eh) = BH	

 \forall e ∈ E1, ϕ (e)={u, v}当且仅当 g(e) ∈ E2, ϕ (g(e))={f(u), f(v)}, [左图]和[右图的补图]同构

Problem 4

具有 4 个顶点的非同构简单图共有 11 个, 如图

- 1) 包含 C3 的有(5), (8), (9), (10), (11), 共 5 个
- 2) 无孤立点的有(3), (6), (7), (8), (9), (10), (11), 共7个
- 3) 无向图是二部图的充要条件是至少有两个顶点, 且所有回路的长度均为偶数 则(1), (2), (3), (4), (6), (7), (8)都是二部图, 共7个

Problem 5

设 G 的顶点数为 n, 简单图 G 和 G⁻的和是 n 阶完全图,又 G 和 G⁻同构,则 n 阶完全图的边数 n(n-1)/2 是 G 的边数的两倍, n(n-1)是 4 的倍数又 G 是正则图, G 的边数是 n 的倍数,设边数为 $kn(k \in N)$,有 2kn=n(n-1)/2, n-1=4k, $(n-1)\equiv 0 \pmod 4$,即 $n\equiv 1 \pmod 4$

Problem 6

