MA-106 Linear Algebra

H. Ananthnarayan

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

> 29th January 2018 D1 - Lecture 11

Random Attendance

1	170050044	Suraj
2	170050049	Pushpendra Jakhar
3	170050062	Amish Jain
4	170050077	Nama N V S S Hari Krishna
5	170050084	Sabbithi Naren Rahul
6	170070003	Pawar Atharv Amar
7	170070007	Anshul Tomar
8	170070023	Dipesh Hemchandra Tamboli
9	170070038	Jayesh Choudhary
10	170070041	Bevara Lakshmi Kowshik
1	17D070003	Shivani Vilas Nandgaonkar
12	17D070009	Madhur Sudarshan
13	17D070036	Aditya Khanna
14	17D070054	Vemula Madhavan
15	170050043	Aditya Sharma
16	170050050	Mahesh Lomrar

Recall: Basis and Dimension

- ullet A basis of a vector space V is a linearly independent subset $\mathcal B$ which spans V.
- A basis is a maximal linearly independent subset of V \Rightarrow any linearly independent subset in V can be extended to a basis of V.
- A basis is a minimal spanning set of V
 ⇒ every spanning set of V contains a basis.
- The number of elements in each basis is the same, and the dimension of V, $\dim(V) = \text{number of elements in a basis of } V$.
- $\mathcal{B} = \{v_1, \dots, v_n\}$ is a basis for $V \Leftrightarrow \text{every } v \in V \text{ can be uniquely written as a linear combination of } \{v_1, \dots, v_n\}.$
- dim $(\mathbb{R}^n) = n$, and the set $\mathcal{B} = \{v_1, \dots, v_n\} \subseteq \mathbb{R}^n$ is a basis of $\mathbb{R}^n \Leftrightarrow \mathcal{A} = (v_1 \cdots v_n)$ is invertible.

Example: A basis for \mathbb{R}^2

Pick $\mathbf{v_1} \neq 0$. Choose $\mathbf{v_2}$, not a multiple of $\mathbf{v_1}$. For any \mathbf{v} in \mathbb{R}^2 , there are unique scalars a and b such that $\mathbf{v} = a\mathbf{v_1} + b\mathbf{v_2}$. e.g., pick $\mathbf{v_1} = (1, -1)^T$, $\mathbf{v_2} = (0, 1)^T$, and let $\mathbf{v} = (1, 1)^T$.

Thus the lines a=0 and b=0 give a set of axes for \mathbb{R}^2 , and $\mathbf{v}=\mathbf{v}_1+2\mathbf{v}_2$.

With this basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$, the coordinates of \mathbf{v} will be $[\mathbf{v}]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Basis and Coordinates

A basis for $\mathcal{M}_{2\times 2}$, the vector space of 2 \times 2 matrices is

$$\mathcal{B} = \{e_{11}, e_{12}, e_{21}, e_{22}\}, \text{ where }$$

$$e_{11}=\begin{pmatrix}1&0\\0&0\end{pmatrix}, e_{12}=\begin{pmatrix}0&1\\0&0\end{pmatrix}, e_{21}=\begin{pmatrix}0&0\\1&0\end{pmatrix}, e_{22}=\begin{pmatrix}0&0\\0&1\end{pmatrix}.$$

(Check this!) Hence $dim(\mathcal{M}_{2\times 2})=4$.

Every 2 × 2 matrix $A = (a_{ij})$ can be written as

$$A = a_{11}e_{11} + a_{12}e_{12} + a_{21}e_{21} + a_{22}e_{22}.$$

For this fixed basis \mathcal{B} , the *coordinate vector* of A with respect to \mathcal{B} , denoted

$$[A]_{\mathcal{B}} = (a_{11}, a_{12}, a_{21}, a_{22})^T$$

completely determines the matrix A.

Since dim $(\mathcal{M}_{2\times 2})=4$, once we fix a basis, we will need 4 coordinates to describe each matrix.

5/13

Exercise: Find two bases and the dimension of $\mathcal{M}_{m \times n}$, the vector space of $m \times n$ matrices.

Coordinate Vectors

- Onsider the basis $\mathcal{B} = \{v_1 = (1, -1)^T, v_2 = (0, 1)^T\}$ of \mathbb{R}^2 , and $v = (1, 1)^T$. Note that $v = 1v_1 + 2v_2$. Hence, the coordinate vector of v w.r.t. \mathcal{B} is $[v]_{\mathcal{B}} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
- **Exercise:** Show that $\mathcal{B}_1 = \{1, x, x^2\}$ is a basis of \mathcal{P}_2 . The coordinate vector of $v = 2x^2 3x + 1$ w.r.t. \mathcal{B} is $[v]_{\mathcal{B}} = (1, -3, 2)^T$.
- **Section** Exercise: Show that $\mathcal{B}' = \{1, (x-1), (x-1)^2, (x-1)^3\}$ is a basis of \mathcal{P}_3 . HINT: Taylor expansion. Then $[x^3]_{\mathcal{B}'} = (_, _, _, _)^T$.

Observe: To write the coordinates, we have a to fix a basis \mathcal{B} , with a fixed *order* of elements in it!

The Four Fundamental Subspaces

Let A be an $m \times n$ matrix. Associated to A, we have four fundamental subspaces:

- The column space of A: $C(A) = \{v : Ax = v \text{ is consistent}\} \subseteq \mathbb{R}^m$.
- The null space of A: $N(A) = \{x : Ax = 0\} \subseteq \mathbb{R}^n$.
- The row space of $A = \text{Span}\{A_{1*}, \dots, A_{m*}\} = C(A^T) \subseteq \mathbb{R}^n$.
- The left null space of $A = \{x : x^T A = 0\} = N(A^T) \subseteq \mathbb{R}^m$.

Q: Why are the row space and the left null space subspaces?

Let *U* be the echelon form of *A*, and *R* its reduced form.

• Recall, N(A) = N(U) = N(R).

Observe: The rows of U(and R) are linear combinations of the rows of A, and vice versa \Rightarrow their row spaces are same, i.e.,

 $\bullet \ C(A^T) = C(U^T) = C(R^T).$

We now compute bases and dimensions for these special subspaces.

The Big Four: An Example

Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
. Find the four fundamental subspaces of A ,

their bases and dimensions.

Recall:

The reduced form of A is $R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

- The 1st and 2nd are pivot columns \Rightarrow rank(A) = 2.
- $v = \begin{pmatrix} a & b & c \end{pmatrix}^T$ is in $C(A) \Leftrightarrow Ax = v$ is solvable $\Leftrightarrow 2a b c = 0$.
- We can compute special solutions to Ax = 0. The number of special solutions to Ax = 0 is the number of free variables.

The Big Four: N(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $B = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

$$N(A) = \begin{cases} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} -c + 2d \\ -c - 2d \\ c \\ d \end{pmatrix} = c \begin{pmatrix} -1 \\ -1 \\ 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 2 \\ -2 \\ 0 \\ 1 \end{pmatrix} \end{cases}.$$

$$= \text{Span} \begin{cases} w_1 = \begin{pmatrix} -1 & -1 & 1 & 0 \end{pmatrix}^T, w_2 = \begin{pmatrix} 2 & -2 & 0 & 1 \end{pmatrix}^T \end{cases}.$$

$$w_1, w_2 \text{ are linearly independent (Why?)}$$

$$\Rightarrow \mathcal{B} = \{w_1, w_2\} \text{ forms a basis for } N(A) \Rightarrow \dim(N(A)) = 2.$$

A basis for N(A) is the set of special solutions.

dim(N(A)) = no. of free variables = no. of variables - rank(A)

Exercise: Show that $w = (-3, -7, 5, 1)^T$ in N(A). What is $[w]_B$?

H. Ananthnarayan D1- Lecture 11 29th January 2018

The Big Four: C(A)

For
$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$$
, reduced form $B = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. Write $A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \end{pmatrix}$ and $B = \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \end{pmatrix}$.

Recall: Relations between the column vectors of *A* are the same as the relations between column vectors of *B*.

 \Rightarrow $Ax = v_3$ has a solution has the same solution as $Rx = w_3$, and $Ax = v_4$ has a same solution as $Rx = w_4$.

Particular solutions are $(1,1,0,0)^T$ and $(-2,2,0,0)^T$ respectively $\Rightarrow v_3 = v_1 + v_2$, $v_4 = -2v_1 + 2v_2$.

Observe:

- v_1 and v_2 correspond to the pivot columns of A.
- $\{v_1, v_2\}$ are linearly independent. Why?
- $C(A) = \text{Span}\{v_1, \dots, v_4\} = \text{Span}\{v_1, v_2\}.$

Thus $\mathcal{B} = \{v_1, v_2\}$ is a basis of C(A). Q: What is $[v_i]_{\mathcal{B}}$?

The Big Four: Rank-Nullity Theorem

More generally, for an $m \times n$ matrix A,

- Let rank(A) = r. The r pivot columns are linearly independent since their reduced form contains an $r \times r$ identity matrix.
- For each non-pivot column A_{*j} of A, find particular solution of $Ax = A_{*j}$. Use this to write A_{*j} as a linear combination of the pivots columns. Thus

A basis for C(A) is given by the pivot columns of A.

$$dim(C(A)) = no. of pivot variables = rank(A).$$

Rank-Nullity Theorem: Let A be an $m \times n$ matrix. Then

$$\dim(C(A)) + \dim(N(A)) = \text{no. of variables} = n$$

The Big Four:
$$C(A^T)$$

Recall: If $A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}$, then $B = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.

Recall: R is obtained from A by taking non-zero scalar multiples of rows and their sums $\Rightarrow C(R^T) = C(A^T)$.

Observe: The non-zero rows of R will span $C(A^T)$, and they contain an identity submatrix \Rightarrow they are linearly independent.

Thus, the non-zero rows of R form a basis for $C(R^T) = C(A^T)$.

Exercise: Give two different basis for $C(A^T)$.

Since the number of non-zero rows of R = number of pivots of A, we have:

dim
$$C(A^T)$$
= no. of pivots of $A = rank(A)$.

• Recall that dim $C(A^T) = \text{rank}(A^T)$. Thus,

$$rank(A^T) = dim(C(A^T)) = rank(A)$$

The Big Four: $N(A^T)$

The no. of columns of A^T is m.

By Rank-Nullity Theorem, $rank(A^T) + dim(N(A^T)) = m$.

Hence:

$$\overline{\dim(N(A^T)) = m - \operatorname{rank}(A)}.$$

Exercise: Complete the example by finding a basis for $N(A^T)$.

$$A = \begin{pmatrix} 2 & 4 & 6 & 4 \\ 2 & 5 & 7 & 6 \\ 2 & 3 & 5 & 2 \end{pmatrix}, \text{ reduced form } R = \begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Q. Can you use R to compute the basis for $N(A^T)$? Why not?

A. Need the reduced form of
$$A^T$$
 which is
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.