Package 'CarletonStats'

August 22, 2023
Title Functions for Statistics Classes at Carleton College
Version 2.2
Description Includes commands for bootstrapping and permutation tests, a command for created grouped bar plots, and a demo of the quantile-normal plot for data drawn from different distributions.
License GPL-2
<pre>URL https://github.com/aloy/CarletonStats</pre>
BugReports https://github.com/aloy/CarletonStats/issues
Suggests grDevices, MASS, testthat
Encoding UTF-8
LazyData TRUE
NeedsCompilation no
RoxygenNote 7.2.3
Imports ggplot2, scales, patchwork
Author Laura Chihara [aut], Adam Loy [aut, cre] (https://orcid.org/0000-0002-5780-4611)
Maintainer Adam Loy <aloy@carleton.edu></aloy@carleton.edu>
Repository CRAN
Date/Publication 2023-08-22 16:50:09 UTC
R topics documented: anovaSummarized

2 anovaSummarized

anov	aSummarized	Anova F test	
Index			32
	summary.carlboot .		31
			28
	* *		27
	print.carlboot		27
	plot.carlboot		26
	permTestSlope		24
	permTestPaired		22
	permTestCor		20
	permTestAnova		18
	permTest		16
	missingLevel		16
	Milkshakes		15
	Icecream		14
	groupedBar		13

Description

ANOVA F test when given summarized data (sample sizes, means and standard deviations).

Usage

```
anovaSummarized(N, mn, stdev)
```

Arguments

N a vector with the sample sizes

mn a vector of means, one for each group in the sample

stdev a vector of standard deviations, one for each group in the sample

Details

Perform an ANOVA F test when presented with summarized data: sample sizes, sample means and sample standard devations.

Value

Returns invisibly a list

Treatment SS The treatment sum of squares (also called the "between sum of squares").

Residual SS Residual sum of squares (also called the "within sum of squares").

Degrees of Freedom

a vector with the numerator and denominator degrees of freedom.

boot 3

•••

Author(s)

Laura Chihara

Examples

```
#use the data set chickwts from base R
head(chickwts)

N <- table(chickwts$feed)
stdev <- tapply(chickwts$weight, chickwts$feed, sd)
mn <- tapply(chickwts$weight, chickwts$feed, mean)
anovaSummarized(N, mn, stdev)</pre>
```

boot

Bootstrap

Description

Bootstrap a single variable or a grouped variable

Usage

```
boot(x, ...)
## Default S3 method:
boot(
    x,
    group = NULL,
    statistic = mean,
    conf.level = 0.95,
    B = 10000,
    plot.hist = TRUE,
    plot.qq = FALSE,
```

4 boot

```
x.name = deparse(substitute(x)),
xlab = NULL,
ylab = NULL,
title = NULL,
seed = NULL,
...
)

## S3 method for class 'formula'
boot(formula, data, subset, ...)
```

Arguments

Χ	a numeric vector
• • •	further arguments to be passed to or from methods.
group	an optional grouping variable (vector), usually a factor variable. If it is a binary numeric variable, it will be coerced to a factor.
statistic	function that computes the statistic of interest. Default is the mean.
conf.level	confidence level for the bootstrap percentile interval. Default is 95%.
В	number of times to resample (positive integer greater than 2).
plot.hist	logical value. If TRUE, plot the histogram of the bootstrap distribution.
plot.qq	Logical value. If TRUE, create a normal quantile-quantile plot of the bootstrap distribution.
x.name	Label for variable name
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
seed	optional argument to set.seed
formula	a formula $y \sim g$ where y is a numeric vector and g a factor variable with two levels. If g is a binary numeric vector, it will be coerced to a factor variable. For a single numeric variable, formula may also be $\sim y$.
data	a data frame that contains the variables given in the formula.
subset	an optional expression indicating what observations to use.

Details

Perform a bootstrap of a statistic applied to a single variable, or to the difference of the statistic computed on two samples (using the grouping variable). If x is a binary vector of 0's and 1's and the function is the mean, then the statistic of interest is the proportion.

Observations with missing values are removed.

Value

A vector with the resampled statistics is returned invisibly.

bootCor 5

Methods (by class)

- boot(default): Bootstrap a single variable or a grouped variable
- boot(formula): Bootstrap a single variable or a grouped variable

Author(s)

Laura Chihara

References

Tim Hesterberg's website https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```
#ToothGrowth data (supplied by R)
#bootstrap mean of a single numeric variable
boot(ToothGrowth$len)

#bootstrap difference in mean of tooth length for two groups.
boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)

#same as above using formula syntax
boot(len ~ supp, data = ToothGrowth, B = 1000)
```

bootCor

Bootstrap the correlation

Description

Bootstrap the correlation of two numeric variables.

Usage

```
bootCor(x, ...)
## Default S3 method:
bootCor(
    x,
    y,
    conf.level = 0.95,
    B = 10000,
    plot.hist = TRUE,
    xlab = NULL,
    ylab = NULL,
    title = NULL,
    plot.qq = FALSE,
```

6 bootCor

```
x.name = deparse(substitute(x)),
y.name = deparse(substitute(y)),
seed = NULL,
...
)

## S3 method for class 'formula'
bootCor(formula, data, subset, ...)
```

Arguments

X	a numeric vector.
	further arguments to be passed to or from methods.
у	a numeric vector.
conf.level	confidence level for the bootstrap ercentile interval.
В	number of times to resample (positive integer greater than 2).
plot.hist	a logical value. If TRUE, plot the bootstrap distribution of the resampled correlation.
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
plot.qq	a logical value. If TRUE a normal quantile-quantile plot of the bootstraped values is created.
x.name	Label for variable x
y.name	Label for variable y
seed	optional argument to set.seed
formula	a formula of the form lhs ~ rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data	an optional data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.

Details

Bootstrap the correlation of two numeric variables. The bootstrap mean and standard error are printed as well as a bootstrap percentile confidence interval.

Observations with missing values are removed.

Value

The command returns the correlations of the resampled observations.

Methods (by class)

- bootCor(default): Bootstrap the correlation of two numeric variables.
- bootCor(formula): Bootstrap the correlation of two numeric variables.

bootPaired 7

Author(s)

Laura Chihara

References

Tim Hesterberg's website https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```
plot(states03$ColGrad, states03$InfMortality)
bootCor(InfMortality ~ ColGrad, data = states03, B = 1000)
bootCor(states03$ColGrad, states03$InfMortality, B = 1000)
```

bootPaired

Bootstrap paired data

Description

Perform a bootstrap of two paired variables.

Usage

```
bootPaired(x, ...)
## Default S3 method:
bootPaired(
 х,
 у,
  conf.level = 0.95,
 B = 10000,
  plot.hist = TRUE,
  xlab = NULL,
 ylab = NULL,
  title = NULL,
  plot.qq = FALSE,
  x.name = deparse(substitute(x)),
 y.name = deparse(substitute(y)),
  seed = NULL,
)
## S3 method for class 'formula'
bootPaired(formula, data, subset, ...)
```

8 bootPaired

Arguments

x a numeric vector.... further arguments to be passed to or from methods.

y a numeric vector.

conf. level confidence level for the bootstrap percentile interval.

B number of resamples (positive integer greater than 2).

plot.hist logical. If TRUE, plot the histogram of the bootstrap distribution.

xlab an optional character string for the x-axis label ylab an optional character string for the y-axis label title an optional character string giving the plot title

plot.qq logical. If TRUE, a normal quantile-quantile plot of the replicates will be created.

x.name Label for variable xy.name Label for variable y

seed optional argument to set.seed

formula a formula y ~ x where x, y are both numeric vectors

data a data frame that contains the variables given in the formula.

subset an optional expression indicating what observations to use.

Details

The command will compute the difference of x and y and bootstrap the difference. The mean and standard error of the bootstrap distribution will be printed as well as a bootstrap percentile interval.

Observations with missing values are removed.

Value

The command returns a vector with the replicates of the statistic being bootstrapped.

Methods (by class)

- bootPaired(default): Perform a bootstrap of two paired variables.
- bootPaired(formula): Perform a bootstrap of two paired variables.

Author(s)

Laura Chihara

References

Tim Hesterberg's website https://www.timhesterberg.net/bootstrap-and-resampling

bootSlope 9

Examples

```
#Bootstrap the mean difference of fat content in vanilla and chocolate ice
#cream. Data are paired becaues ice cream from the same manufacturer will
#have similar content.
Icecream
bootPaired(ChocFat ~ VanillaFat, data = Icecream)
bootPaired(Icecream$VanillaFat, Icecream$ChocFat)
```

bootSlope

Bootstrap the slope of a simple linear regression line

Description

Bootstrap theslope of a simple linear regression line. The bootstrap mean and standard error are printed as well as a bootstrap percentile confidence interval.

Usage

```
bootSlope(x, ...)
## Default S3 method:
bootSlope(
 х,
 у,
  conf.level = 0.95,
 B = 10000,
 plot.hist = TRUE,
 xlab = NULL,
  ylab = NULL,
  title = NULL,
  plot.qq = FALSE,
  x.name = deparse(substitute(x)),
 y.name = deparse(substitute(y)),
  seed = NULL,
## S3 method for class 'formula'
bootSlope(formula, data, subset, ...)
```

Arguments

```
x a numeric vector.... further arguments to be passed to or from methods.y a numeric vector.
```

10 bootSlope

conf.level	confidence level for the bootstrap percentile interval.
В	number of times to resample (positive integer greater than 2).
plot.hist	a logical value. If TRUE, plot the bootstrap distribution of the resampled slope.
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
plot.qq	a logical value. If TRUE a normal quantile-quantile plot of the bootstraped values is created.
x.name	Label for variable x
y.name	Label for variable y
seed	optional argument to set.seed
formula	a formula of the form lhs \sim rhs where lhs is a numeric variable giving the data values and rhs a factor with two levels giving the corresponding groups.
data	an optional data frame containing the variables in the formula formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.

Details

Observations with missing values are removed.

Value

The command returns the slopes of the resampled observations.

Methods (by class)

- bootSlope(default): Bootstrap the slope of a simple linear regression line
- bootSlope(formula): Bootstrap the slope of a simple linear regression line

Author(s)

Adam Loy, Laura Chihara

References

Tim Hesterberg's website https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```
plot(states03$ColGrad, states03$InfMortality)
bootSlope(InfMortality ~ ColGrad, data = states03, B = 1000)
bootSlope(states03$ColGrad, states03$InfMortality, B = 1000)
```

confint.carlboot 11

confint.carlboot	Calculate a CI from a carlboot object		
------------------	---------------------------------------	--	--

Description

Calculate percentile confidence intervals for a carlboot object.

Usage

```
## S3 method for class 'carlboot'
confint(object, parm = NULL, level = 0.95, ...)
```

Arguments

object The carlboot object to print.

parm not used in CarletonStats, just for generic consistency

level the confidence level

... not used

confIntDemo Confidence Interval Demonstration

Description

Draw many random samples and compute confidence interval. How many intervals capture the true mean?

Usage

```
confIntDemo(distr = "normal", size = 20, conf.level = 0.95)
```

Arguments

distribution of the population to be sampled. Options include "normal", "exponential",

"uniform" and "binary" (partial match allowed).

size sample size conf.level confidence level.

Details

This simulation will draw 100 random samples from a given population distribution and compute the correpsonding confidence intervals. The 100 intervals will be drawn with an indication of the ones that missed the true mean. A histogram of the population will also be created.

12 corDemo

Value

The command invisibly returns the fraction of intervals that capture the true mean.

Author(s)

Laura Chihara

Examples

```
confIntDemo()
confIntDemo(distr = "exponential", size = 40)
```

corDemo

Correlation demonstration

Description

For a given r, create a scatterplot of two variables with that correlation.

Usage

```
corDemo(r = 0)
```

Arguments

r

a number between -1 and 1. Enter any number r, latex, to exit the interactive session[

Details

Demonstrate the concept of correlation by inputting a number between -1 and 1 and seeing a scatter plot of two variables with that correlation. Once you invoke this command, you can continue to enter values for r. Type any number latex) to exit.

Author(s)

Laura Chihara

Examples

```
## Not run:
corDemo()
## End(Not run)
```

groupedBar 13

groupedBar	Grouped bar chart		
------------	-------------------	--	--

Description

Create a bar chart of a single categorical variable or a grouped bar chart of two categorical variables.

Usage

```
groupedBar(resp, ...)

## Default S3 method:
groupedBar(
    resp,
    condvar = NULL,
    percent = TRUE,
    print = TRUE,
    cond.name = deparse(substitute(condvar)),
    resp.name = deparse(substitute(resp)),
    ...
)

## S3 method for class 'formula'
groupedBar(formula, data = parent.frame(), subset, ...)
```

Arguments

resp	a factor variable. If resp is numeric, it will be coerced to a factor variable.
	further arguments to be passed to or from methods.
condvar	a factor variable to condition on. If NULL, then a bar plot of just the resp variable will be created. If condvar is numeric, it will be coerced to a factor variable.
percent	a logical value. Should the y-axis give percent or counts?
print	a logical value. If TRUE, print out the table.
cond.name	Label for variable condvar.
resp.name	Label for variable resp.
formula	a formula of the form $x \sim \text{condvar}$. If x or condvar is (are) not a factor variable, then it (they) will be coerced into one. Formula can also be $\sim x$ for a single factor variable.
data	a data frame that contains the variables in the formula.
subset	an optional vector specifying a subset of observations to be used.

Details

For a single factor variable, a bar plot. If two factor variables are given, then a bar plot of x conditioned by condvar. This command uses R's table command so missing values are automatically removed.

14 Icecream

Value

Returns invisibly a table of the variable(s).

Methods (by class)

- groupedBar(default): Grouped bar chart
- groupedBar(formula): Grouped bar chart

Author(s)

Laura Chihara

Examples

```
groupedBar(states03$Region)
## Not run:
groupedBar(states03$DeathPenalty, states03$Region, legend.loc = "topleft")
#Using a formula syntax:
groupedBar(~Region, data = states03)
groupedBar(DeathPenalty ~ Region, data = states03, legend.loc = "topleft")
## End(Not run)
```

Icecream

Ice cream data

Description

Nutritional information on vanilla and chocolate ice cream from a sample of companies.

Format

A data frame with 39 observations on the following 7 variables.

Brand Brand name

VanillaCalories Calories per serving in vanilla

VanillaFat Fat per serving (g) in vanilla

VanillaSugar Sugar per serving (g) in vanilla

ChocCalories Calories per serving in chocolate

ChocFat Fat per serving (g) in chocolate

ChocSugar Sugar per serving (g) in chocolate

Milkshakes 15

Source

Data collected by Carleton student Ann Butkowski (2008).

Examples

```
head(Icecream)
t.test(Icecream$VanillaCalories, Icecream$ChocCalories, paired = TRUE)
```

Milkshakes

Milkshakes (chocolate) Nutrional information on chocolate milk-shakes from a sample of restaurants.

Description

Milkshakes (chocolate) Nutrional information on chocolate milkshakes from a sample of restaurants.

Format

A data frame with 29 observations on the following 11 variables.

Restaurant Names of restaurants

Type Type of restaurant, Dine In Fast Food

Calories Calories per serving

Fat Fat per serving (g)

Sodium Sodium per serving (mg)

Carbs Carbohydrates per serving (g)

SizeOunces Size of milkshake (ounces)

CalPerOunce Calories per ounce

FatPerOunce Fat per ounce

CarbsPerOunce Carbohydrates per ounce

Source

Data collected by Carleton students Yoni Blumberg (2013) and Lindsay Guthrie (2013).

permTest

missingLevel

Missing observations in factors

Description

In data frames with factor variables, convert any observation with "" into <NA>.

Usage

```
missingLevel(data)
```

Arguments

data

a data frame with factor variables.

Details

In a factor variable with the level """, this command will convert this to an <NA>.

Value

Returns the same data frame with """ replaced by <NA> in factor variables.

Note

When importing data from comma separated files (for example), missing values in a categorical variable are often denoted by """. We often do not want to treat this as a level of a factor variable in R.

Author(s)

Laura Chihara

 ${\tt permTest}$

Permutation test

Description

Permutation test to test a hypothesis involving two samples.

permTest 17

Usage

```
permTest(x, ...)
## Default S3 method:
permTest(
 Х,
  group,
  statistic = mean,
 B = 9999,
  alternative = "two.sided",
  plot.hist = TRUE,
 plot.qq = FALSE,
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
)
## S3 method for class 'formula'
permTest(formula, data = parent.frame(), subset, ...)
```

Arguments

X	a numeric vector. If the function is the mean (fun = mean) and x is a binary numeric vector of 0's and 1's, then the test is between proportions.
	further arguments to be passed to or from methods.

... further arguments to be passed to or from methods.

group a factor variable with two levels. If group is a binary numeric vector, it will be

coerced into a factor variable.

statistic the statistic of interest.

B the number of resamples (positive integer greater than 2).

alternative the alternative hypothesis. Options are "two.sided", "less" or "greater".

plot.hist a logical value. If TRUE, the permutation distribution of the statistic is plotted.

plot.qq a logical value. If TRUE, then a normal quantile-quantile plot of the resampled

test statistic is created.

xlab an optional character string for the x-axis label ylab an optional character string for the y-axis label title an optional character string giving the plot title

seed optional argument to set.seed

formula a formula of the form y ~ group where y is numeric and group is a factor vari-

able.

data a data frame with the variables in the formula.

subset an optional expression specifying which observations to keep.

18 permTestAnova

Details

Permutation test to see if a population parameter is the same for two populations. For instance, test latex where latex denotes the population mean. The values of the numeric variable are randomly assigned to the two groups and the difference of the statistic for each group is calculated. The command will print the mean and standard error of the distribution of the test statistic as well as a P-value.

Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic.

Methods (by class)

```
permTest(default): Permutation testpermTest(formula): Permutation test
```

Author(s)

Laura Chihara

References

```
Tim Hesteberg's website: https://www.timhesterberg.net/bootstrap-and-resampling
```

Examples

```
permTest(states03$ViolentCrime, states03$DeathPenalty)
#using formula syntax
permTest(ViolentCrime ~ DeathPenalty, data = states03, alt = "less")
```

permTestAnova

Permutation test for ANOVA F-test

Description

Permutation test to see if the population mean is the same for two or more populations. For instance, test *latex* where *latex* denotes the population mean. The values of the numeric variable are randomly assigned to the groups and the ANOVA F statistic is calculated. The command will print the mean and standard error of the distribution of the test statistic as well as a P-value.

permTestAnova 19

Usage

```
permTestAnova(x, ...)

## Default S3 method:
permTestAnova(
    x,
    group,
    B = 9999,
    plot.hist = TRUE,
    plot.qq = FALSE,
    xlab = NULL,
    ylab = NULL,
    title = NULL,
    seed = NULL,
    ...
)

## S3 method for class 'formula'
permTestAnova(formula, data = parent.frame(), subset, ...)
```

Arguments

X	a numeric vector.
	further arguments to be passed to or from methods.
group	a factor variable with two or more levels. If group is a numeric vector, it will be coerced into a factor variable.
В	the number of resamples (positive integer greater than 2).
plot.hist	a logical value. If TRUE, the permutation distribution of the statistic is plotted.
plot.qq	a logical value. If TRUE, then a normal quantile-quantile plot of the resampled test statistic is created.
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
seed	optional argument to set.seed
formula	a formula of the form $y \sim group$ where y is numeric and group is a factor variable.
data	a data frame with the variables in the formula.
subset	an optional expression specifying which observations to keep.

Details

Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic.

20 permTestCor

Methods (by class)

- permTestAnova(default): Permutation test for ANOVA F-test
- permTestAnova(formula): Permutation test for ANOVA F-test

Author(s)

Adam Loy, Laura Chihara

References

Tim Hesteberg's website: https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```
permTestAnova(states03$ViolentCrime, states03$Region, B = 499)
#using formula syntax
## Not run:
permTestAnova(ViolentCrime ~ Region, data = states03, B = 9999)
## End(Not run)
```

permTestCor

Permutation test for the correlation of two variables.

Description

Hypothesis test for a correlation of two variables. The null hypothesis is that the population correlation is 0.

Usage

```
permTestCor(x, ...)
## Default S3 method:
permTestCor(
    x,
    y,
    B = 999,
    alternative = "two.sided",
    plot.hist = TRUE,
    plot.qq = FALSE,
    x.name = deparse(substitute(x)),
    y.name = deparse(substitute(y)),
    xlab = NULL,
```

permTestCor 21

```
ylab = NULL,
title = NULL,
seed = NULL,
...
)

## S3 method for class 'formula'
permTestCor(formula, data, subset, ...)
```

Arguments

X	a numeric vector.
	further arguments to be passed to or from methods.
У	a numeric vector.
В	the number of resamples to draw (positive integer greater than 2).
alternative	alternative hypothesis. Options are "two.sided", "less" or "greater".
plot.hist	a logical value. If TRUE, plot the distribution of the correlations obtained from each resample.
plot.qq	a logical value. If TRUE, plot the normal quantile-quantile plot of the correlations obtained from each resample.
x.name	Label for variable x
y.name	Label for variable y
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
seed	optional argument to set.seed
formula	a formula y ~ x where x, y are numeric vectors.
data	a data frame that contains the variables given in the formula.
subset	an optional expression indicating what observations to use.

Details

Perform a permutation test to test *latex*, where *latex* is the population correlation. The rows of the second variable are permuted and the correlation is re-computed.

The mean and standard error of the permutation distribution is printed as well as a P-value.

Observations with missing values are removed.

Value

Returns invisibly a vector of the correlations obtained by the randomization.

Methods (by class)

- permTestCor(default): Permutation test for the correlation of two variables.
- permTestCor(formula): Permutation test for the correlation of two variables.

22 permTestPaired

Author(s)

Laura Chihara

References

Tim Hesterberg's website: https://www.timhesterberg.net/bootstrap-and-resampling

Examples

```
plot(states03$HSGrad, states03$TeenBirths)
cor(states03$HSGrad, states03$TeenBirths)

permTestCor(states03$HSGrad, states03$TeenBirths)
permTestCor(TeenBirths ~ HSGrad, data = states03)
```

permTestPaired

Permutation test for paired data.

Description

Permutation test for paired data.

Usage

```
permTestPaired(x, ...)
## Default S3 method:
permTestPaired(
 х,
 у,
 B = 9999,
  alternative = "two.sided",
  plot.hist = TRUE,
 plot.qq = FALSE,
 x.name = deparse(substitute(x)),
  y.name = deparse(substitute(y)),
  xlab = NULL,
 ylab = NULL,
  title = NULL,
  seed = NULL,
)
## S3 method for class 'formula'
permTestPaired(formula, data, subset, ...)
```

permTestPaired 23

Arguments

X	a numeric vector.
	further arguments to be passed to or from methods.
У	a numeric vector.
В	the number of resamples.
alternative	the alternative hypothesis. Options are "two.sided", "less" and "greater".
plot.hist	a logical value. If TRUE, create a histogram displaying the permutation distribution of the statistic.
plot.qq	a logical value. If TRUE, include a quantile-normal plot of the permuation distribution.
x.name	Label for x variable
y.name	Label for y variable
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
seed	optional argument to set.seed
formula	a formula of the form $y \sim x$, where x , y are both numeric variables.
data	an optional data frame containing the variables in the formula. By default the variables are taken from environment(formula).
subset	an optional vector specifying a subset of observations to be used.

Details

For two paired numeric variables with n rows, randomly select k of the n rows (k also is randm) and switch the entries *latex* and then compute the mean of the difference of the two variables (y-x). Observations with missing values are removed.

Value

Returns invisibly a vector of the replicates of the test statistic (ex. mean of the difference of the resampled variables).

Methods (by class)

- permTestPaired(default): Permutation test for paired data.
- permTestPaired(formula): Permutation test for paired data.

Author(s)

Laura Chihara

References

Tim Hesterberg's website: https://www.timhesterberg.net/bootstrap-and-resampling

24 permTestSlope

Examples

```
#Does chocolate ice cream have more calories than vanilla ice cream, on average?
#H0: mean number of calories is the same
#HA: mean number of calories is greater in chocolate ice cream

permTestPaired(Icecream$VanillaCalories, Icecream$ChocCalories, alternative = "less")
permTestPaired(ChocCalories ~ VanillaCalories, data = Icecream, alternative = "greater")
```

permTestSlope

Permutation test for the Slope

Description

Hypothesis test for a slope of a simple linear regression model. The null hypothesis is that the population slope is 0.

Usage

```
permTestSlope(x, ...)
## Default S3 method:
permTestSlope(
  Х,
 у,
 B = 999,
  alternative = "two.sided",
 plot.hist = TRUE,
 plot.qq = FALSE,
  x.name = deparse(substitute(x)),
 y.name = deparse(substitute(y)),
  xlab = NULL,
  ylab = NULL,
  title = NULL,
  seed = NULL,
## S3 method for class 'formula'
permTestSlope(formula, data, subset, ...)
```

Arguments

```
x a numeric vector.... further arguments to be passed to or from methods.y a numeric vector.
```

permTestSlope 25

В	the number of resamples to draw (positive integer greater than 2).
alternative	alternative hypothesis. Options are "two.sided", "less" or "greater".
plot.hist	a logical value. If TRUE, plot the distribution of the slopes obtained from each resample.
plot.qq	a logical value. If TRUE, plot the normal quantile-quantile plot of the slopes obtained from each resample.
x.name	Label for variable x
y.name	Label for variable y
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
seed	optional argument to set.seed
formula	a formula $y \sim x$ where x, y are numeric vectors.
data	a data frame that contains the variables given in the formula.
subset	an optional expression indicating what observations to use.

Details

Perform a permutation test to test latex, where latex is the population slope. The rows of the second variable are permuted and the slope is re-computed.

The mean and standard error of the permutation distribution is printed as well as a P-value.

Observations with missing values are removed.

Value

Returns invisibly a vector of the slopes obtained by the randomization.

Methods (by class)

- permTestSlope(default): Permutation test for the slope
- permTestSlope(formula): Permutation test for the slope

Author(s)

Adam Loy, Laura Chihara

References

Tim Hesterberg's website: https://www.timhesterberg.net/bootstrap-and-resampling

26 plot.carlboot

Examples

```
plot(states03$HSGrad, states03$TeenBirths)
lm(HSGrad ~ TeenBirths, data = states03)

permTestSlope(states03$HSGrad, states03$TeenBirths)
permTestSlope(TeenBirths ~ HSGrad, data = states03)
```

plot.carlboot

Plot the bootstrap distribution in carlboot object

Description

Plot the bootstrap distribution returned as a carlboot object.

Usage

```
## S3 method for class 'carlboot'
plot(x, bins = 15, size = 5, xlab = NULL, ylab = NULL, title = NULL, ...)
## S3 method for class 'carlperm'
plot(x, bins = 15, size = 5, xlab = NULL, ylab = NULL, title = NULL, ...)
```

Arguments

x	The carlboot object to print.
bins	number of bins in histogram.
size	size of points.
xlab	an optional character string for the x-axis label
ylab	an optional character string for the y-axis label
title	an optional character string giving the plot title
	not used

Examples

```
boot_dist <- boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)
plot(boot_dist)

perm_dist <- permTest(states03$ViolentCrime, states03$DeathPenalty, B = 999)
plot(perm_dist)</pre>
```

print.carlboot 27

print.carlboot

Print a summary of an carlboot object

Description

Print summary statistics and confidence intervals for an carlboot object.

Usage

```
## S3 method for class 'carlboot'
print(x, ...)
## S3 method for class 'carlperm'
print(x, ...)
```

Arguments

x The carlboot object to print.

... not used

qqPlotDemo

Demonstration of the normal qq-plot.

Description

Demonstrate the normal quantile-quantile plot for samples drawn from different populations.

Usage

```
qqPlotDemo(
  n = 25,
  distribution = "normal",
  mu = 0,
  sigma = 1,
  df = 10,
  lambda = 10,
  numdf = 10,
  dendf = 16,
  shape1 = 40,
  shape2 = 5
)
```

28 states03

Arguments

n sample size

distribution population distribution. Options are "normal", "t", "exponential", "chi.square",
 "F" or "beta" (partial matches are accepted).

mu mean for the normal distribution.

sigma (positive) standard deviation for the normal distribution.

df (positive) degrees of freedom for the t-distribution.

lambda positive rate for the exponential distribution.

numdf (positive) numerator degrees of freedom for the chi-square distribution.

dendf (positive) denominator degrees of freedom for the chi-square distribution.

shape1 positive parameter for the beta distribution (shape1 = a). shape2 positive parameter for the beta distribution (shape2 = b).

Details

Draw a random sample from the chosen sample and display the normal qq-plot as well as the histogram of its distribution.

Value

Returns invisibly the random sample.

Author(s)

Laura Chihara

Examples

```
qqPlotDemo(n = 30, distr = "exponential", lambda = 1/3)
```

states03 *US government data, 2003*

Description

Census data on the 50 states from 2003.

states03

Format

A data frame with 50 observations on the following 24 variables.

State the 50 states

Region a factor with levels Midwest, Northeast, South, West

Pop Population in 1000

Births Number of births

Deaths Number of deaths

Pop18 Percent of population 18 years of age or younger

Pop65 Percent of population 65 years of age or older

HSGrad Percent of population 25 years of age or older with a high school degree

ColGrad Percent of population 25 years of age or older with a college degree

TeacherPay Average teachers salary in dollars

InfMortality Infant mortality per 1000 live births

TeenBirths Live births per 1000 15-19 year old females

ViolentCrime Violent crime per 100000 population

PropertyCrime Property crime per 100000 population

DeathPenalty State has death penalty?

Executions Number of executions 1977-2003

Poverty Percent of populaton below the poverty level

Unemp Percent unemployed (of population 16 years or older)

Uninsured Percent uninsured (3 year aveage)

Income Median household income in 1998 dollars

Earnings Average hourly earnings of production workers in manufacturing

Heart Deaths by heart disease per 100000 population

Vehicles Deaths by motor vehicle accidents per 100000 population

Homeowners Home ownership rate

Source

United States Census Bureau https://www.census.gov/

30 stemPlot

Description

Stem and leaf plot. Will accept a factor variable as a second argument to create stem plots for each of the levels.

Usage

```
stemPlot(x, ...)
## Default S3 method:
stemPlot(x, grpvar = NULL, varname = NULL, grpvarname = NULL, ...)
## S3 method for class 'formula'
stemPlot(formula, data = parent.frame(), subset, ...)
```

Arguments

х	a numeric variable.
	further arguments to be passed to or from methods.
grpvar	a factor variable. A stem plot of \boldsymbol{x} will be created for each level of the factor variable.
varname	name of the numeric variable. This is for printing the output only. Change if you want to print out a name different from the actual variable name.
grpvarname	name of the factor variable. This is for printing the output only. Change if you want to print out a name different from the actual variable name.
formula	a formula of the form $x \sim grpvar$ where x is numeric and grpvar is a factor variable.
data	a data frame with the variables in the formula.
subset	an optional expression specifying which observations to keep.

Details

This command is just an enhanced version of R's stem command. It allows the user to create the stem plot for a numeric variable grouped by the levels of a factor variable.

Methods (by class)

```
stemPlot(default): Stem and leaf plotstemPlot(formula): Stem and leaf plot
```

Author(s)

Laura Chihara

summary.carlboot 31

Examples

```
stemPlot(states03$Births, states03$Region)
stemPlot(Births ~ Region, data = states03)
```

summary.carlboot

Print a summary of an carlboot object

Description

Print summary statistics and confidence intervals, if desired, for an 1meresamp object.

Usage

```
## $3 method for class 'carlboot'
summary(object, ...)
## $3 method for class 'carlperm'
summary(object, ...)
```

Arguments

```
object The carlboot object to print.
... not used
```

Examples

```
boot_dist <- boot(ToothGrowth$len, ToothGrowth$supp, B = 1000)
summary(boot_dist)
perm_dist <- permTest(states03$ViolentCrime, states03$DeathPenalty, B = 999)
summary(perm_dist)</pre>
```

Index

* plot
groupedBar, 13
qqPlotDemo, 27
stemPlot, 30
* quantile-quantile
qqPlotDemo, 27
* randomization
boot, 3
bootPaired, 7
permTest, 16
permTestAnova, 18
permTestCor, 20
permTestPaired, 22
permTestSlope, 24
* randomiziation
bootCor, 5
bootSlope, 9
* resampling
boot, 3
bootCor, 5
bootPaired, 7
bootSlope, 9
permTest, 16
permTestAnova, 18
permTestCor, 20
permTestPaired, 22
permTestSlope, 24
* stem
stemPlot, 30
* test
permTest, 16
permTestAnova, 18
permTestCor, 20
permTestPaired, 22
permTestSlope, 24
* values
missingLevel, 16
anovaSummarized, 2

INDEX 33

```
boot, 3
bootCor, 5
bootPaired, 7
bootSlope, 9
confint.carlboot, 11
confIntDemo, 11
corDemo, 12
groupedBar, 13
Icecream, 14
Milkshakes, 15
missingLevel, 16
permTest, 16
permTestAnova, 18
permTestCor, 20
permTestPaired, 22
permTestSlope, 24
\verb|plot.carlboot|, 26|
plot.carlperm(plot.carlboot), 26
print.carlboot, 27
print.carlperm(print.carlboot), 27
qqPlotDemo, 27
set.seed, 4, 6, 8, 10, 17, 19, 21, 23, 25
states03, 28
\mathtt{stemPlot}, \textcolor{red}{30}
\verb|summary.carlboot|, 31|
summary.carlperm(summary.carlboot), 31
```