Multiple Regression

Module Content

- A. Review of Simple Linear Regression
- B. Multiple Regression
- C. Relationship to ANOVA and Analysis of Covariance

A. Review of Simple Linear Regression

	Time	DBP
Patient	X	y
1	0	72
2	5	66
3	10	70
4	15	64
5	20	66

	Time	DBP			
Patient	X	У	\mathbf{x}^2	y^2	xy
1	0	72	0	5,184	0
2	5	66	25	4,356	330
3	10	70	100	4,900	700
4	15	64	225	4,096	960
5	20	66	400	4,356	1,320
Sum	50	338	750	22,892	3,310
Mean	10	67.6			
SD	7.91	3.29			
SS	250	43.20	SS(xy)	-70	
b	-0.28				
a	70.4				

ANOVA

Source	df	SS	MS	F
Regression	1	19.6	19.6	2.49
Residual	3	23.6	7.89	
Total	4	43.2		

$$SS(Total) = SS(y) = 43.2$$

$$SS(Regression) = bSS(xy) = (-0.28)(-70) = 19.6$$

$$SS(Residual) = SS(Total) - SS(Regression) = 43.2 - 19.6 = 23.6$$

$$F = MS(Regression) / MS(Residual) = 2.49$$
 $F_{0.95}(1, 3) = 10.13$

Accept
$$H_0$$
: $\beta = 0$ since $F = 2.49 < F_{0.95}(1, 3) = 10.13$

$$R^2 = \frac{SS(Regression)}{SS(Total)} = \frac{19.6}{43.2} = 0.4537$$

B. Multiple Regression

For simple linear regression, we used the formula for a straight line, that is, we used the model:

$$Y=\alpha + \beta x$$

For multiple regression, we include more than one independent variable and for each new independent variable, we need to add a new term in the model, such as:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

Population Equation

The population equation is:

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

the β's are *coefficients for the independent variables* in the true or population equation and the x's are the values of the independent variables for the member of the population.

Sample Equation

The sample equation is:

$$\hat{y}_j = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k$$
,

where \hat{y}_j represents the regression estimate of the dependent variable for the jth member of the sample and the b's are estimates of the β 's.

The Multiple Regression Process

The process involves using data from a sample to obtain an overall expression of the relationship between the dependent variable y and the independent variables, the x's.

This is done in such a manner that the impact of the relationship of the x's collectively and individually on the value of y can be estimated.

The Multiple Regression Concept

Conceptually, multiple regression is a straight forward extension of the simple linear regression procedures.

Simple linear regression is a bivariate situation, that is, it involves two dimensions, one for the dependent variable Y and one for the independent variable x.

Multiple regression is a multivariable situation, with one dependent variable and multiple independent variables.

CARDIA Example

The data in the table on the following slide are:

Dependent Variable

$$y = BMI$$

Independent Variables

 $x_1 = Age in years$

 $x_2 = FFNUM$, a measure of fast food usage,

 x_3 = Exercise, an exercise intensity score

 $x_4 = Beers per day$

OBS	AGE	BMI	FFNUM	EXERCISE	BEER
1	26	23.2	0	621	3
2	30	30.2	9	201	6
3	32	28.1	17	240	10
4	27	22.7	1	669	5
5	33	28.9	7	1,140	12
6	29	22.4	3	445	9
7	32	23.2	1	710	15
8	33	20.3	0	783	11
9	31	25.6	1	454	0
10	33	21.2	3	432	2
11	26	22.3	5	1,562	13
12	34	23.0	2	697	1
13	33	26.3	4	280	2
14	31	22.2	1	449	5
15	31	19.0	0	689	4
16	27	20.8	2	785	3
17	36	20.9	2	350	7
18	35	36.4	14	48	11
19	31	28.6	11	285	12
20	36	27.5	8	85	5
Total	626	492.8	91	10,925	136
Mean	31.3	24.6	4.6	546.3	6.8

The REG Procedure

Model: MODEL1
Dependent Variable: bmi

Backward Elimination: Step 0

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	4 15 19	273.74877 71.37923 345.12800	68.43719 4.75862	14.38	<.0001

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	18.47774	6.45406	39.00436	8.20	0.0119
age	0.08424	0.18931	0.94239	0.20	0.6627
ffnum	0.42292	0.13671	45.53958	9.57	0.0074
exercise	-0.00107	0.00170	1.87604	0.39	0.5395
beer	0.32601	0.11518	38.12111	8.01	0.0127

One df for each independent variable in the model

The REG Procedure

Model: MODEL1
Dependent Variable bmi

Backward Elimination: Step 0

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	4	273.74877	68.43719	14.38	<.0001		
Error Corrected Total	15 19	71.37923 345.12800	4.75862				

b_0	Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
b_1	Intercept age	18.47774 0.08424	6.45406 0.18931	39.00436 0.94239	8.20 0.20	0.0119
b_2	▼ ffnum ▼ exercise	0.42292 -0.00107 0.32601	0.13671 0.00170	45.53958 1.87604 38.12111	9.57 0.39	0.0074 0.5395 0.0127
b_3	beer	0.32601	0.11518	38.12111	8.01	0.0127
b_4						

The REG Procedure

Model: MODEL1
Dependent Variable: bmi

Backward Elimination: Step 0

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	4 15 19	273.74877 71.37923 345.12800	68.43719 4.75862	14.38	<.0001

b_0	Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
b_1	Intercept age ffnum	18.47774 0.08424 0.42292	6.45406 0.18931 0.13671	39.00436 0.94239 45.53958	8.20 0.20 9.57	0.0119 0.6627 0.0074
b_2	exercise beer	-0.00107 0.32601	0.13671 0.00170 0.11518	1.87604 38.12111	0.39	0.5395
b_3						

The Multiple Regression Equation

We have,
$$b_0 = 18.478$$
, $b_1 = 0.084$, $b_2 = 0.422$, $b_3 = -0.001$, $b_4 = 0.326$

So,

$$\hat{y} = 18.478 + 0.084x_1 + 0.422x_2 - 0.001x_3 + 0.326x_4$$

The Multiple Regression Coefficient

The interpretation of the multiple regression coefficient is similar to that for the simple linear regression coefficient, except that the phrase "adjusted for the other terms in the model" should be added.

For example, the coefficient for Age in the model is $b_1 = 0.084$, for which the interpretation is that for every unit increase in age, that is for every one year increase in age, the BMI goes up 0.084 units, adjusted for the other three terms in the model.

Global Hypothesis

The first step is to test the global hypothesis:

$$H_0$$
: $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$

vs
$$H_1$$
: $\beta_1 \neq \beta_2 \neq \beta_3 \neq \beta_4 \neq 0$

The ANOVA highlighted in the green box at the top of the next slide tests this hypothesis:

$$F = 14.33 > F_{0.95}(4,15) = 3.06,$$

so the hypothesis is rejected. Thus, we have evidence that at least on of the $\beta_i \neq 0$.

The REG Procedure

Model: MODEL1
Dependent Variable: bmi

Backward Elimination: Step 0

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected Total	4 15 19	273.74877 71.37923 345.12800	68.43719 4.75862	14.38	<.0001
	Parameter	Standard			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	18.47774	6.45406	39.00436	8.20	0.0119
age	0.08424	0.18931	0.94239	0.20	0.6627
ffnum	0.42292	0.13671	45.53958	9.57	0.0074
exercise	-0.00107	0.00170	1.87604	0.39	0.5395
beer	0.32601	0.11518	38.12111	8.01	0.0127

Variation in BMI Explained by Model

The amount of variation in the dependent variable, BMI, explained by its regression relationship with the four independent variables is

$$R^2 = SS(Model)/SS(Total) = 273.75/345.13$$

= 0.79 or 79%

Tests for Individual Parameters

If the global hypothesis is rejected, it is then appropriate to examine hypotheses for the individual parameters, such as

$$H_0$$
: $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$.

P = 0.6627 for this test is greater than $\alpha = 0.05$,

so we accept
$$H_0$$
: $\beta_1 = 0$

Outcome of Individual Parameter Tests

From the ANOVA, we have

$$b_1 = 0.084, P = 0.66$$

 $b_2 = 0.422, P = 0.01$
 $b_3 = -0.001, P = 0.54$
 $b_4 = 0.326, P = 0.01$

So $b_2 = 0.422$ and $b_4 = 0.326$ appear to represent terms that should be explored further.

Stepwise Multiple Regression

Backward elimination

Start with all independent variables, test the global hypothesis and if rejected, eliminate, step by step, those independent variables for which $\beta = 0$.

Forward

Start with a "core" subset of essential variables and add others step by step.

Backward Elimination

The next few slides show the process and steps for the backward elimination procedure.

Global hypothesis

The REG Procedure

Model: MODEL1
Dependent Variable: bmi
Backward Elimination: Step 0

	A	nalysis of Varia	ance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	273.74877	68.43719	14.38	<.0001
Error	15	71.37923	4.75862		
Corrected Total	19	345.12800			

b_0	Variable	Estimate	Standard Error	Type II SS	F Value	Pr > F	
b ₁	Intercept age	18.47774 0.08424	6.45406 0.18931	39.00436 0.94239	8.20 0.20	0.0119	
	ffnum	0.42292	0.13671	45.53958	9.57	0.0074	
b_2	exercise beer	-0.00107 0.32601	0.00170 0.11518	1.87604 38.12111	0.39 8.01	0.5395 0.0127	
. /							

Backward Elimination Step 1

Variable age Removed: R-Square = 0.7904 and C(p) = 3.1980

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	272.80638	90.93546	20.12	<.0001
Error	16	72.32162	4.52010		
Corrected Total	19	345.12800			

The REG Procedure

Model: MODEL1

Dependent Variable: bmi

Backward Elimination: Step 1

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	21.28788	1.30004	1211.98539	268.13	<.0001
ffnum	0.42963	0.13243	47.57610	10.53	0.0051
exercise	-0.00140	0.00149	4.00750	0.89	0.3604
beer	0.32275	0.11203	37.51501	8.30	0.0109

Bounds on condition number: 1.7883, 14.025

Variable exercise Removed: R-Square = 0.7788 and C(p) = 2.0402

Mean

Analysis of Variance

Sum of

Source	DF	Squares	Squa		/alue	Pr > F
Model Error Corrected Total	2 17 19	268.79888 76.32912 345.12800	134.399 4.489		29.93	<.0001
Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F	
Intercept ffnum beer	20.29360 0.46380 0.33375	0.75579 0.12693 0.11105	3237.09859 59.94878 40.55414	720.97 13.35 9.03	<.0001 0.0020 0.0080	

Bounds on condition number: 1.654, 6.6161

All variables left in the model are significant at the 0.0500 level.

The SAS System The REG Procedure Model: MODEL1

Dependent Variable: bmi

Summary of Backward Elimination

Step	Variable Removed	Number Vars In	Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1 2	age exercise	3	0.0027 0.0116	0.7904 0.7788	3.1980 2.0402	0.20	0.6627 0.3604

Forward Stepwise Regression

The next two slides show the process and steps for Forward Stepwise Regression.

In this procedure, the first independent variable entered into the model is the one with the highest correlation with the dependent variable.

Model: MODEL1
Dependent Variable: bmi

Stepwise Selection: Step 1

Variable ffnum Entered: R-Square = 0.6613 and C(p) = 8.5625

Analysis of Variance

Source	DF	Squares	Sum of Square	Mean F Value	Pr > F
Model Error Corrected	1 18 Total 19	228.24473 116.88327 345.12800	228.24473 6.49351	35.15	<.0001
	Parameter	Standard			

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	21.43827	0.78506	4842.33895	745.72	<.0001
ffnum	0.70368	0.11869	228.24473	35.15	<.0001

Stepwise Selection: Step 2

Variable beer Entered: R-Square = 0.7788 and C(p) = 2.0402

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	268.79888	134.39944	29.93	<.0001
Error	17	76.32912	4.48995		
Corrected To	tal 19	345.12800			

Model: MODEL1
Dependent Variable: bmi

Stepwise Selection: Step 2

Variable	Parameter Estimate	Standard Error	Type II SS	F Value	Pr > F
Intercept	20.29360	0.75579	3237.09859	720.97	<.0001
ffnum	0.46380	0.12693	59.94878	13.35	0.0020
beer	0.33375	0.11105	40.55414	9.03	0.0080

Bounds on condition number: 1.654, 6.6161

All variables left in the model are significant at the 0.0500 level.

 \longrightarrow No other variable met the 0.1500 significance level for entry into the model.

Summary of Stepwise Selection

Step	Variable Entered	Variable Removed		Partial R-Square	Model R-Square	C(p)	F Value	Pr > F
1 2	ffnum beer		1 2	0.6613 0.1175	0.6613 0.7788	8.5625 2.0402		<.0001

C. Relationship to ANOVA and Analysis of Covariance

Multiple regression procedures can be used to analyze data from one-way ANOVA, randomized block, or factorial designs simply by setting up the independent variables properly for the regression analyses. To demonstrate this process, we will work with the one-way ANOVA problem for diastolic blood pressure on the following slide.

Blood pressure measurements for n = 30 children randomly assigned to receive one of three drugs

	Drug					
	A	В	C			
_	100	104	105			
	102	88	112			
	96	100	90			
	106	98	104			
	110	102	96			
	110	92	110			
	120	96	98			
	112	100	86			
	112	96	80			
	90	96	84			
Mean	105.8	97.2	96.5			

The ANOVA Approach

$$H_0$$
: $\mu_A = \mu_B = \mu_C$ vs H_1 : $\mu_A \neq \mu_B \neq \mu_C$

ANOVA				
Source	df	SS	MS	F
Among	2	536.47	268.23	3.54
Within	27	2043.70	75.69	
Total	29	2580.17		

Reject H_0 : $\mu_A = \mu_B = \mu_C$

since F = 3.54, is greater than $F_{0.95}(2,27) = 3.35$

Multiple Regression Approach

The multiple regression approach requires a data table such as the following, which means we need to code the drug groups in such a manner that they can be handled as independent variables in the regression model. That is, we need to prepare a data table such as the one below.

Person	y	\mathbf{x}_1	\mathbf{X}_2
1	100	?	?
2	102	?	?
•••	•••	•••	•••
n	84	?	?

Coding the Independent Variables

We can use a coding scheme for the xs to indicate the drug group for each participant. For three drugs we need two xs, with

```
x_1 = 1 if the person received drug A
```

= 0 otherwise

 $x_2 = 1$ if the person received drug B

= 0 otherwise

Implications of Coding Scheme

The values for x_1 and x_2 for the three drug groups are:

Drug	X ₁	X ₂
Α	1	0
В	0	1
С	0	0

It takes only two Xs to code the three drugs.

Use of Coding Scheme

Person 1 has (y = BP) = 100 and receives Drug A

Person 2 has (y = BP) = 102 and receives Drug B

Person 3 has (y = BP) = 105 and receives Drug C

Person	У	\mathbf{x}_1	\mathbf{x}_2
1	100	1	O
2	102	\mathbf{O}	1
3	105	\mathbf{O}	\mathbf{O}

Indicator Variables

These "indicator" variables provide a mechanism for including categories into analyses using multiple regression techniques. If they are used properly, they can be made to represent complex study designs.

Adding such variables to a multiple regression analysis is readily accomplished. For proper interpretation, one needs to keep in mind how the different variables are defined; otherwise, the process is straight forward multiple regression.

Complete Data Table

Person	У	X 1	X ₂
1	100	1	0
2	102	1	О
3	96	1	О
4	106	1	О
5	110	1	О
6	110	1	О
7	120	1	О
8	112	1	0
9	112	1	0
10	90	1	0
11	104	0	1
12	88	0	1
13	100	0	1
14	98	0	1
15	102	0	1
16	92	0	1
17	96	0	1
18	100	0	1
19	96	0	1
20	96	0	1
21	105	0	0
22	112	0	0
23	90	0	0
24	104	0	0
25	96	0	0
26	110	0	О
27	98	0	О
28	86	0	О
29	80	0	О
30	84	0	0

		Drug	
	Α	В	С
_	100	104	105
	102	88	112
	96	100	90
	106	98	104
	110	102	96
	110	92	110
	120	96	98
	112	100	86
	112	96	80
_	90	96	84

Coding Scheme and Means

 $x_1 = 1$ if the person received drug A

= 0 otherwise

 $x_2 = 1$ if the person received drug B

= 0 otherwise

$$eta_0 = \mu_C$$
 $b_0 = \overline{x}_C$ $\beta_1 = \mu_A - \mu_C$ $b_1 = \overline{x}_A - \overline{x}_C$ $\beta_2 = \mu_B - \mu_C$ $b_2 = \overline{x}_B - \overline{x}_C$ $\beta_1 = \beta_2 = 0$ implies $\mu_A = \mu_B = \mu_C$

The SAS System

Dependent Variable: Y		General Linear Models Procedure		Same as ANOVA	
Source Model Error	DF 2 27	Sum of Squares 536.46667 2043.70000	Mean Square 268.23333 75.69259	F Value 3.54	Pr > F 0.0430
Corrected Total	29	2580.16667			
	R-Square	C.V.	Root MSE	Y Mean	
	0.207919	8.714673	8.7001	99.833	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
X1 X2	1 1	534.01667 2.45000	534.01667 2.45000	7.06 0.03	0.0131 0.8586
Source	DF	Type III SS	Mean Square	F Value	Pr > F
X1 X2	1 1	432.45000 2.45000	432.45000 2.45000	5.71 0.03	0.0241 0.8586
Parameter	Estimate	T for H0: Parameter=0	Pr > T	Std Error Estimate	
INTERCEPT X1 X2	96.500000 9.3000000 0.7000000	0 2.39	0.0001 0.0241 0.8586	2.7512286 3.8908249 3.8908249	91

Sample Means

The model provides estimates

$$b_0 = \overline{x}_C = 96.5$$

$$b_1 = \overline{x}_A - \overline{x}_C = 9.3$$

$$b_2 = \overline{x}_B - \overline{x}_C = 0.7$$

So the drug means are:

Drug
$$A = 96.5 + 9.3 = 105.8$$

Drug B =
$$96.5 + 0.7 = 97.2$$

Drug
$$C = 96.5$$

Adjusted R²

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(n - 1)}{n - p - 1}$$

where,

n =sample size,

 $p = \text{number of parameters, including } \beta_0$

 R^2 = usually reported R^2

Standardized Regression Coefficients

$$b_i' = b_i \frac{s_i}{s_y}$$

where,

b' = standardized regression coefficients,

 s_i = standard deviation for x_i , and

 s_y = standard deviation for the dependent variable y