Statistik – Methoden zum Vergleich von zwei Gruppen

Nonparametrische Verfahren

Parametrische Tests

 Nutzen eine zugrundeliegende Verteilungsform (vielfach die Normalverteilung) zur Analyse der Daten

Nichtparametrische Tests

- Basieren auf keiner Verteilungsform
- Deshalb anwendbar, wenn parametrische Bedingungen nicht erfüllt sind

Nichtparametrische Tests kommen immer dann zum Einsatz, wenn die Voraussetzungen für parametrische Tests nicht erfüllt sind:

- Daten nicht metrisch skaliert
- Keine Normalverteilung
- Kleine Stichproben (Grenzwertsatz)

Vergleich mit parametrischen Tests

- + Auch für ordinale Daten geeignet
- + Für kleine Stichproben geeignet
- + Setzen keine Verteilung voraus
- Nichtparametrische Test gelten als robuster
- + Mehr Anwendungssituationen
- Weniger Power
- Geringer Aussagekraft (nur einfache Analysen)
- Für gleiche Aussagekraft werden deutlich mehr Daten benötigt
- Symmetrieanforderung

Wo möglich: Nutzen Sie parametrische Tests!

- Nicht-parametrische Methoden arbeiten mit den Rängen der Daten und nicht mit den Merkmalsausprägungen
- Rangbildung:
 - Ordnung der Daten nach Größe
 - Anschließende Durchnummerierung
 - Bei Bindungen (mehrere gleiche Werte) erfolgt Mittelwertbildung (Siehe: Spearman)

Parametrisch	Nicht-Parametrische Alternative
t-Test für eine Stichprobe	Wilcoxon-Test für eine Stichprobe
t-Test für unabhängige Stichproben	Mann-Whitney-U-Test /Wilcoxon-Test für unabhängige Stichproben
t-Test für gepaarte Stichproben	Wilcoxon-Test für gepaarte Stichproben
Pearson-Korrelation	Spearman-Korrelation

- Vorzeichenrangtest nach Wilcoxon
- Nicht-parametrische Alternative zum t-Test für eine Stichprobe
- Prüfung, ob der Median einer Stichprobe sich von einem Vorgabewert unterscheidet
- Gerichtete und ungerichtete Hypothesen möglich (einseitig/zweiseitig)
- Annahme, dass Daten aus einer symmetrischen Verteilung stammen

- Prüfung von Annahmen über das Symmetriezentrum der Grundgesamtheit
- Rangzahlbildung für die Daten x_i der Stichprobe mit Größe n
- Unabhängigkeit der Daten innerhalb der Stichprobe

Vorgehen

Bildung von transformierten Beobachtungen

 $x_i' = x_i - m_0$ mit m_0 Vorgabewert, gegen den geprüft wird

- Punkte mit $x'_i = 0$ werden nicht weiter berücksichtigt
- Vergabe von Rangzahlen R_i (von klein nach groß) für die Beträge $|x_i'|$
- Bei Bindung werden die Rangzahlen gemittelt

Vorgehen

• Den Rangzahlen R_i wird das Vorzeichen ihres x_i' zugewiesen: \tilde{R}_i

Teststatistik

$$T^{+} = \sum (positive \ Rangzahlen \ \widetilde{R}_{i}) = \sum_{i=1}^{n} c_{i} \widetilde{R}_{i}$$

$$(0. \ falls \ \widetilde{R}_{i} < 0.$$

$$mit c_i = \begin{cases} 0, falls \ \widetilde{R}_i < 0 \\ 1, falls \ \widetilde{R}_i > 0 \end{cases}$$

Kritische Werte $w_{n,\gamma}$

n	0,01	0,025	0,05	0,1	0,9	0,95	0,975	0,99
4	0	0	0	1	8	9	10	10
5	0	0	1	3	11	13	14	14
6	0	1	3	4	16	17	19	20
7	1	3	4	6	21	23	24	26
8	2	4	6	9	26	29	31	33
9	4	6	9	11	33	35	38	40
10	6	9	11	15	39	43	45	48
11	8	11	14	18	47	51	54	57
12	10	14	18	22	55	59	62	66
13	13	18	22	27	63	68	72	77
14	16	22	26	32	72	78	82	88
15	20	26	31	37	82	88	93	99
16	24	30	36	43	92	99	105	111
17	28	35	42	49	103	110	117	124
18	33	41	48	56	114	122	129	137
19	38	47	54	63	126	135	142	151
20	44	53	61	70	139	148	156	165

Hypothesen und deren Auswertung

Fall 1, einseitig

 H_0 : $\widetilde{x} \leq m_0$

 H_1 : $\widetilde{x} > m_0$

Für $T^+ > w_{n;1-\alpha}$

Verwerfen der Nullhypothese

Fall 2, einseitig

 H_0 : $\widetilde{x} \geq m_0$

 H_1 : $\widetilde{x} < m_0$

Für $T^+ < w_{n;\alpha}$

Verwerfen der Nullhypothese

Hypothesen und deren Auswertung

Fall 3, zweiseitig

 H_0 : $\widetilde{x} = m_0$

 H_1 : $\widetilde{x} \neq m_0$

Für $T^+ > w_{n;1-lpha_{/2}}$ oder $T^+ < w_{n;lpha_{/2}}$

Verwerfen der Nullhypothese

Große Stichprobenumfänge

Für große Stichprobenumfänge kann der Vorzeichenrangtest nach Wilcoxon durch einen Gaußtest (z-Test) approximiert werden

$$T^* = \frac{T^+ - \frac{n(n-1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$$

Die kritischen Werte des Tests erhält man dann aus der Z-Verteilung

Beispiel

Wir wollen Prüfen, ob die Ergebnisse einer Klausur aus einer Grundgesamtheit mit $m_0 = 63$ stammt (Fall 3)

Die Ergebnisse finden Sie in Beispiel_Klausur.xlsx

i	xi
1	73
2	54
3	65
4	53
5	57
6	70
7	55
8	62
9	69
10	71

Beispiel

i	x_i	x_i'	$ x_i' $	$ R_i $	\widetilde{R}_i	T^+
1	73	10	10	9,5	9,5	9,5
2	54	-9	9	8	-8	
3	65	2	2	2	2	2
4	53	-10	10	9,5	-9,5	
5	58	-5	5	3	-3	
6	70	7	7	5	5	5
7	55	-8	8	6,5	-6,5	
8	62	-1	1	1	-1	
9	69	6	6	4	4	4
10	71	8	8	6,5	6,5	6,5

$$T^{+} = 27$$

Beispiel

Für n = 10 und 1- α =0,95 ergibt sich:

$$w_{10;0,975} = 45$$

$$w_{10;0,025}=9$$

$$9 < T^+ = 27 < 45$$

Wir bleiben bei der Nullhypothese, das mittlere Klausurergebnis entspricht der Erwartung

- Test für gepaarte Stichproben nach Wilcoxon
- Nicht-parametrische Alternative zum 2t-Test für abhängige Stichproben
- Prüfung, ob sich die Paardifferenzen von 0 unterscheiden
- Annahme, dass Daten aus einer symmetrischen Verteilung stammen

Vorgehen

Hypothesen aufstellen

 H_0 : $\widetilde{X} = \widetilde{Y}$ Die untersuchten Gruppen unterscheiden sich **nicht** in ihrem Zentralmaß

 H_1 : $\widetilde{X} \neq \widetilde{Y}$ Die untersuchten Gruppen unterscheiden sich in ihrem Zentralmaß

Bildung der Differenzen

$$d_i = x_i - y_i$$

Vorgehen

- Vergabe von Rangzahlen R_i (von klein nach groß) für die Beträge $|d_i|$
- Aufsummieren der Ränge nach Vorzeichen getrennt R^+ , R^-

Teststatistik

$$w = min(R^+, R^-)$$

Die weitere Auswertung erfolgt analog zum Vorzeichenrangtest nach Wilcoxon (Einstichprobenfall)

Beispiel

Unsere Kandidaten haben eine weitere Prüfung geschrieben. Stimmen die Ergebnisse überein? (Fall 3)

Die Ergebnisse finden Sie in Beispiel_Klausur.xlsx

i	xi	yi
2	54	49
5	58	53
7	55	50
8	62	59
4	53	51
1	73	72
10	71	72
3	65	68
9	69	72
6	70	75

Beispiel

 H_0 : $\widetilde{X} = \widetilde{Y}$ Die untersuchten Gruppen unterscheiden sich nicht in ihrem Zentralmaß

 H_1 : $\widetilde{X} \neq \widetilde{Y}$ Die untersuchten Gruppen unterscheiden sich in ihrem Zentralmaß

Beispiel

i	x_i	y_i	d_i	$ d_i $	R_i	R^+	R^-
1	73	72	1	1	1,5	1,5	
2	54	49	5	5	8,5	8,5	
3	65	68	-3	3	5		5
4	53	51	2	2	3	3	
5	58	53	5	5	8,5	8,5	
6	70	75	-5	5	8,5		8,5
7	55	50	5	5	8,5	8,5	
8	62	59	3	3	5	5	
9	69	72	-3	3	5		5
10	71	72	-1	1	1,5		1,5

$$R^+ = 35; R^- = 20; w = min(35; 20) = 20$$

Beispiel

Für n = 10 und 1- α =0,95 ergibt sich:

$$w_{10;0,975} = 45$$

$$w_{10:0.025} = 9$$

$$9 < w = 20 < 45$$

Wir bleiben bei der Nullhypothese, die zweite Prüfung hat einen vergleichbaren Ausgang

- Test f
 ür unabh
 ängige Stichproben
- Nicht-parametrische Alternative zum 2t-Test für unabhängige Stichproben
- Prüfung, ob sich die die Zentrallage der Gruppen verändert
- Test lässt sich gerichtet und ungerichtet ausführen
- Annahme, dass Daten aus einer symmetrischen Verteilung stammen

Hypothesen und deren Auswertung

(n; m: Stichprobengrößen)

Fall 1, einseitig

 H_0 : $\widetilde{x} \leq \widetilde{y}$

 H_1 : $\widetilde{x} > \widetilde{y}$

Für $U > U_{n:m:1-\alpha}$ \vee

Verwerfen der Nullhypothese

Fall 2, einseitig

 H_0 : $\widetilde{x} \geq \widetilde{y}$

 H_1 : $\widetilde{x} < \widetilde{y}$

Für $U < U_{n;m;\alpha}$

Verwerfen der Nullhypothese

Hypothesen und deren Auswertung

Fall 3, zweiseitig

 H_0 : $\widetilde{x} = \widetilde{y}$

 H_1 : $\widetilde{x} \neq \widetilde{y}$

Für $U > U_{n;m;1-lpha_{/2}}$ oder $U < U_{n;m;lpha_{/2}}$

Verwerfen der Nullhypothese

Vorgehen

- Zusammenfassung der beiden Gruppen
- Größenordnung der Werte
- Vergabe der Ränge
- Gruppenweise Bildung der Rangsummen R_x , R_y

Vorgehen

$$U_x = mn + \frac{m(m+1)}{2} - R_x$$

$$U_y = mn + \frac{n(n+1)}{2} - R_y$$

Teststatistik

$$U \coloneqq \min\{U_x, U_y\}$$

Eine Tabelle mit kritischen U_{krit} findet sich z.B. bei wikipedia

Auf eine weitere Auswertung des Mann-Whitney-Tests wird hier verzichtet, da der Test im RCommander nicht hinterlegt ist.

Stattdessen gibt es die Möglichkeit für einen Test unabhängiger Stichproben einen weiteren Wilcoxon-Test zu nutzen.

Wilcoxon-Test für unabhängige Stichproben

Beispiel

Die Klausurergebnisse stammen nun von zwei unabhängigen Gruppen (Fall 3). Unterscheiden sich die Ergebnisse?

Die Ergebnisse finden Sie in Beispiel_Klausur.xlsx

i	xi	yi
2	54	49
5	58	53
7	55	50
8	62	59
4	53	51
1	73	72
10	71	72
3	65	68
9	69	72
6	70	75