IQ3111 - Modelamiento y Optimización de Procesos

Cuerpo docente: Andrés I. Cárdenas*, Jorge Aracena, Guillermo Lillo, Carolina Navarro y Alberto Peña

Pauta P1 Auxiliar 4

a) Plantee los conjuntos, parámetros y variables del problema. Superestructura

Figura 1: Superestructura del problema

A diferencia del auxiliar agregamos un flujo F4, para que las restricciones sean más simples.

Conjuntos

Existen dos formas de definir los conjuntos, la primera es separar los conjuntos por etapa o poner todos los reactores en uno mismos, para ambas opciones es importante tener cuidado en definir los conjuntos bien para cada restriccion. Usaremos la segunda opción.

• Rectores: R = [1,2,3,4]

Parámetros

Los costos de producción en este caso son relacionados con los flujos que entran por los reactores.

- Costos de compra de los reactores : $C_r(r)$; $\forall r \in R$; (\$)
- Costos de producción: C_p ; (\$/L)
- Conversión por reactor: $Conv_r(r); \forall r \in R$
- Demanda de producto: D_p ; (L)

Variables

- Existencia del reactor r: Y(r); $\forall r \in R$ (bool)
- Flujo de entrada al reactor r: $F(r) \in \mathbb{R}^+$; $\forall r \in R$; (L/s)
- Flujos de salida al reactor $r: O(r) \in \mathbb{R}^+$; $\forall r \in R$; (L/s)

b) Para las restriciones, determine las proposiciones lógicas asociadas, luego representarlas como disjunciones y finalmente como restricciones. Agrege las restricciones asociadas a balances de masa y demanda.

Proposiciones lógicas

Como se explicita en el enunciado, solo pueden existir las combinaciones de 2 de los reactores, por lo que, escribimos estas combiaciones en propociones lógicas, donde P_i tiene valor Verdadero si el rector exite y Falso si no existe. Solo dos reactores pueden ser verdaderos y el otro rector debe ser falso, con esa combinación el reactor 4 va a funcionar (Verdadero), por lo tanto, corresponde a una implicancia. Ahora el reactor 4 funciona (verdadero) solo si alguna de las combinaciones de reactores es verdadera.

- 1) $P_1 \wedge P_2 \wedge \sim P_3 \Rightarrow P_4$
- 2) $P_1 \wedge \sim P_2 \wedge P_3 \Rightarrow P_4$
- 3) $\sim P_1 \wedge P_2 \wedge P_3 \Rightarrow P_4$
- 4) $P_4 \Rightarrow (P_1 \land P_2) \lor (P_1 \land P_3) \lor (P_2 \land P_3)$

Disjunciones

Pasamos las proposiciones logicas a disjunciones, donde pasamos las expresiones a uniones "o". Usamos propiedades de implicación y distribución. (revisar)

1)
$$P_1 \land P_2 \land \sim P_3 \Rightarrow P_4$$

 $\Leftrightarrow \sim (P_1 \land P_2 \land \sim P_3) \lor P_4$
 $\Leftrightarrow \sim P_1 \lor \sim P_2 \lor P_3 \lor P_4$

2)
$$P_1 \land \sim P_2 \land P_3 \Rightarrow P_4$$

 $\Leftrightarrow \sim (P_1 \land \sim P_2 \land P_3) \lor P_4$
 $\Leftrightarrow \sim P_1 \lor P_2 \lor \sim P_3 \lor P_4$

3)
$$\sim P_1 \land P_2 \land P_3 \Rightarrow P_4$$

 $\Leftrightarrow \sim (\sim P_1 \land P_2 \land P_3) \lor P_4$
 $\Leftrightarrow P_1 \lor \sim P_2 \lor \sim P_3 \lor P_4$

4)
$$P_4 \Rightarrow (P_1 \land P_2) \lor (P_1 \land P_3) \lor (P_2 \land P_3)$$

 $\Leftrightarrow \sim P_4 \lor ((P_1 \land P_2) \lor (P_1 \land P_3) \lor (P_2 \land P_3))$
 $\Leftrightarrow (\sim P_4 \lor P_1 \lor P_2) \land (\sim P_4 \lor P_1 \lor P_3) \land (\sim P_4 \lor P_2 \lor P_3)$

Restricciones lógicas

Ahora las propisiones lógicas se escriben como restricciones, asociando P_i con su Y_i correspondiente, donde Y_i tiene valor de 1 o 0. Por ejemplo, $P_1 = Y_1$ y $P_1 = (1 - Y_1)$.

Para el caso de la ultima proposición logica, al estar unida por el conector "y", vamos a tener 3 restriciones asociadas (4, 5 y 6).

1)
$$(1-Y_1)+(1-Y_2)+Y_3+Y_4 \ge 1$$

-Y₁ - Y₂ + Y₃+ Y₄ > -1

2)
$$(1-Y_1)+ Y_2 + (1-Y_3)+ Y_4 \ge 1$$

 $-Y_1 + Y_2 - Y_3 + Y_4 \ge -1$

3)
$$Y_1 + (1-Y_2) + (1-Y_3) + Y_4 \ge 1$$

 $Y_1 - Y_2 - Y_3 + Y_4 \ge -1$

4)
$$(1-Y_4) + Y_1 + Y_2 \ge 1$$

5)
$$(1-Y_4) + Y_1 + Y_3 \ge 1$$

6)
$$(1-Y_4) + Y_2 + Y_3 \ge 1$$

Restricciones

- Coherencia entre flujos y existencias: $F_r \leq M * Y_r$, $\forall r \in R$
- Balance de masa : $F_r * Conv_r = O_r \quad \forall r \in R$
- Balance de masa: $\sum_{r \in [1,2,3]} O_r = F_4$
- Demanda: $O_4 \ge D_p$

c) Plantee la función Objetivo

$$\min \sum_{r \in R} C_r * Y_r + \sum_{r \in R} C_p * F_r \tag{1}$$