Espacios de Lebesgue

De aquí en adelante (Ω, F, μ) es un espacio de medida. Si se requieren más se pondrán subíndices.

Recordamos que $\mathcal{L}^p(\mu)$ es el conjunto de funciones medibles p-integrables. La función $\|\cdot\|_p$ define una seminorma y tomando $\mathcal{N}(\mu)$ como las funciones que se anulan casi en todas partes podemos definir el espacio

$$L^p(\mu) := \mathcal{L}^p(\mu)/N(\mu)$$

que sí es un espacio normado con la norma $\|\cdot\|_p$. De hecho, es un espacio de Banach.

Teorema 1 (Riesz-Fischer). $L^p(\mu)$ es un espacio de Banach.

Demostraci'on. Vamos a probar que todas las series absolutamente sumables son sumables.

Caso $1 \le p < \infty$: Sea $(f_n)_{n \in \mathbb{N}}$ con $f_n \in L^p(\mu)$ tal que

$$\sum_{n\in\mathbb{N}} \|f_n\|_p \le M < \infty. \tag{1}$$

Consideremos las sumas parciales puntuales $G_n(x) = \sum_{k=1}^n |f_k(x)|$. Nótese que son no negativas y crecientes. Además, G_n es una suma finita de funciones medibles, así que es medible. Por otro lado, $G_n(x) \uparrow \sum_{n \geq 1} |f_n(x)| =: G(x)$ que está dominada por la serie en (1). Así, por el Teorema de Convergencia Dominada (TCD) tenemos que

$$\lim_{n \to \infty} \int G_n(x) \, d\mu = \int G(x) \, d\mu. \tag{2}$$

En particular,

$$\lim_{n \to \infty} \int G_n(x)^p d\mu = \int G(x)^p d\mu =: I.$$
 (3)

Y por lo tanto $I \leq M^p$ pues basta tomar límite en la expresión:

$$\left(\int G_n(x)^p \right)^{1/p} = \|G_n\|_p \le \sum_{n \in \mathbb{N}} \|f_n\|_p \le M < \infty.$$

Esto nos dice que $G^p \in L^1(\mu)$ y juntándolo con lo anterior concluimos que $0 \le G^p < \infty$ μ -ctp. De esta forma, el candidato a límite de la serie es

$$F(x) = \begin{cases} \sum_{n \in \mathbb{N}} f_n(x) &, G(x) < \infty \\ 0 &, e.o.c \end{cases}$$
 (4)

Dado que $|F(x)| \leq G(x)$, $F \in L^p(\mu)$. Además, F es medible porque TODO. Queda ver la convergencia. Dado que $|F(x) - \sum_{k=1}^n f_k(x)|$ está dominado por G

para cada x, en particular $|F(x) - \sum_{k=1}^n f_k(x)|^p$ está dominado por G^p . Luego, por TCD nos queda

$$\lim_{n \to \infty} \int |F(x) - \sum_{k=1}^{n} f_k(x)|^p = 0.$$
 (5)

El Teorema de Representación de Riesz

Sea $1 \le p \le \infty$ y q su exponente conjuntado (1/q + 1/p = 1). Definamos

$$\langle \cdot, \cdot \rangle \colon L^p(\mu) \times L^q(\mu) \to \mathbb{K}$$

$$f, g \mapsto \int fg \, d\mu. \tag{6}$$

Notar que el mapa está bien definido, en efecto, aplicando Hölder:

$$\int |fg| \, d\mu \le ||f||_p ||g||_q < \infty.$$

Esto nos permite definir un funcional lineal en $L^p(\mu)$ para cada elemento de $L^q(\mu)$ dado por:

$$l_q f := \langle f, g \rangle.$$

La linealidad viene por la line
lidad de la integral y $\|l_g\|_{(L^p(\mu))^*} \leq \|g\|_q$. Más aún, el mapa $\Phi \colon L^q(\mu) \to (L^p(\mu))^*$ dado por $g \mapsto l_g$ es lineal, acotado e inyectivo.

Teorema 2 (Representación de Riesz). Supongamos que $(\Omega, \mathcal{F}, \mu)$ es σ -finito. Si $1 \leq p < \infty$, entonces Φ es un isomorfismo isométrico.

El resto de esta sección está dedicada a probar este teorema. Algunas consecuencias:

1. $(\ell^p)^* \cong \ell^q$, esto es sale del teorema al poner el espacio de medida $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ donde μ es la medida de contar.

2.

Teorema 3 (Radon-Nikodýn). Sean μ, ν medidas σ -finitas tal que $\nu \ll \mu$. Entonces existe una única función h no negativa medible tal que $\nu(E) = \int_E h \, d\mu$.

Recordar que como casi todo en medida, la unicidad es μ -ctp al igual que lo es la no negatividad. Por otro lado, nótese que el teorema es válido para funciones a valores reales. No obstante, considerando la parte real e imaginaria se puede extender a valores complejos. Por último, se usa la notación $h = \left[\frac{d\nu}{d\mu}\right]$ y se dice que h es la derivada de Radon-Nikodýn.

Demostración. La demostración se divide en dos pasos. En primer lugar lo probaremos para medidas finitas, y luego lo extendemos para medidas σ -finitas. El argumento de usar la Representación de Riesz para espacios de Hilbert se atribuye a Von Neumann.

<u>Paso I:</u> Supongamos que μ y ν son finitas. Consideremos la medida $\lambda = \mu + \nu$. Notar que $\lambda(E) = 0 \iff \mu(E) = 0$ pues $\nu \ll \mu$. Consideremos el mapa

$$l: L^2(\lambda) \to \mathbb{R}$$

 $f \mapsto \int f \, d\mu.$

El mapa es lineal por la linealidad de la integral y es acotado porque μ es finita i.e. $||l|| \leq \mu(\Omega)^{1/2}$. Así, por el Teorema de Representación de Riesz para espacios de Hilbert, existe un único $g \in L^2(\lambda)$ tal que

$$\int f \, d\mu = \int f g \, d\lambda \quad \forall f \in L^2(\lambda).$$

Como las medidas son finitas, se sigue que

$$\int f(1-g) \, d\mu = \int fg \, d\nu \quad \forall f \in L^2(\lambda). \tag{7}$$

Notar que $0 < g \le 1$ λ -ctp (que es lo mismo que μ -ctp). En efecto,

$$\mu(\{g \le 0\}) \le \int \mathbb{1} (g \le 0) d\mu$$

$$\le \int \mathbb{1} (g \le 0) (1 - g) d\mu$$

$$\stackrel{(7)}{=} \int \mathbb{1} (g \le 0) g d\nu \le 0.$$

De manera similar,

$$0 > \int \mathbb{1} (1 - g < 0) (1 - g) d\mu = \int \mathbb{1} (1 - g < 0) g d\nu \ge 0.$$

Así que podemos tomar un representa que esté estrictamente entre $0 < g \le 1$ y podemos definir $h = \frac{1-g}{g}$. Sea E un conjunto medible y definamos la sucesión de funciones $f_n := \mathbbm{1}(E \cap \{g \ge 1/n\}) \frac{1}{g}$. Como la medida es finita, $f_n \in L^2(\lambda)$ y aplicando la Ecuación (7) nos queda

$$\int f_n(1-g) \, d\mu = \int f_n g \, d\nu,$$

es decir,

$$\int_{E \cap \{q > 1/n\}} \frac{1-g}{g} \, d\mu = \int_{E \cap \{q > 1/n\}} \, d\nu.$$

Dado que $E \cap \{g \ge 1/n\} \uparrow E$, se sigue el resultado.

Paso 2: Supogamos ahora que μ y ν son σ -finitas. Sean Ω_n tal que $\Omega_n \uparrow \Omega$ y cada uno tiene medida finita. Por lo anterior, para cada n existe una función h_n tal que $\nu(E) = \int h_n \mathbb{1}(E) d\mu$ con $E \in \mathcal{F} \cap \Omega_n =: S_n$. Además, $\nu(E) = \int h_{n+1} \mathbb{1}(E) d\mu$ pues $\Omega_n \subset \Omega_{n+1}$. Se sigue que $h_{n+1}|_{\Omega_n} = h_n$ (igualdad ctp). Extendamos cada h_n por cero fuera de Ω_n . Nótese que h_n sigue siendo S_n medible. Definamos $h = \lim_{n \to \infty} h_n$. Es claro que $h_n \uparrow h$ y para todo $E \mathcal{F}$ medible se tiene que $\nu(E) = \lim_{n \to \infty} \nu(\Omega_n \cap E)$. Usando TCM concluimos que

$$\nu(E) = \lim_{n \to \infty} \int_{E \cap \Omega_n} h_n \, d\mu = \lim_{n \to \infty} \int_{E \cap \Omega} h \, d\mu = \int_E h \, d\mu.$$

Definición 1 (Operador Positivo). Decimos que $t \in (L^p_{\mathbb{R}})^*$ es positivo si $t(f) \ge 0$ para todo $f \in L^p_{\mathbb{R}}$.

Teorema 4 (Descomposición de Funcionales). Sea $t \in (L^p_{\mathbb{R}})^*$ con $1 \leq p < \infty$, entonces $t = t_+ - t_-$ con t_\pm un funcional positivo.

Paso 1: Definamos t_+ para funciones positivas $f \in L^p_{\mathbb{R}}$ como

$$t_+ \coloneqq \sup_{0 \le g \le f} t(g).$$

Vamos a probar que t_+ es lineal. Observemos que si $0 \le g \le f$ entonces $t(g) \le t(f)$. Sean $f_1, f_2 \in L^p_{\mathbb{R}}$. Sean $0 \le g_i \le f_i$. Luego, $t(g_i) \le t(f_i)$ y por lo tanto $\sup_{0 \le g_i \le f_i} t(g_i) \le t(f_i)$. Sumando ambos términos y tomando supremo sobre los $0 \le h \le f_1 + f_2$ nos queda:

$$t_{+}(f_1) + t_{+}(f_2) \le t_{+}(f_1 + f_2).$$