Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 45

Lớp MH:

Bộ môn Toán ứng dụng

Họ và tên:

MSSV:

Thời gian: 90 phút. Không được dùng tài liệu.

Câu 1.	. Xét phương trình $x = \sqrt[3]{3 - \ln x}$ trên đoạn [1, 4]. Bằng phương pháp lặp điểm k	oất động,	với xấp x	κỉ ban đầu	$x_0 = 4$
tìm ngh	hiệm gần đúng và sai số tương ứng sau 3 bước lặp.				

Câu 2. Dùng công thức nội suy Newton tiến, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 3. Cho hệ phương trình $\begin{cases} x = 0.09x + 0.04y + 0.07z - 1 \\ y = -0.03x + 0.04y + 0.04z + 2 \end{cases}$. Bằng phương pháp lặp điểm bất động, với xấp z = -0.1x + 0.02y - 0.06z + 4

xỉ ban đầu $x_0 = -4$, $y_0 = -1$, $z_0 = -5$, tìm nghiệm gần đúng và sai số tương ứng sau 4 bước lặp.

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 22

Thời gian: 90 phút. Không được dùng tài liệu.

Họ và tên:

MSSV:

Lớp MH:

Câu 1. Xét phương trình $x^5 - x - \frac{1}{5} = 0$ trên đoạn $\left[-\frac{3}{2}, -\frac{4}{5} \right]$. Bằng phương pháp Newton, tìm nghiệm gần đúng và sai số tương ứng trong 4 bước lặp.

$$\textbf{Câu 2.} \ \, \textbf{Cho hệ phương trình} \left\{ \begin{array}{rrrr} 2x_1 & -0.22x_2 & +1.08x_3 & +0.04x_4 & =& -8 \\ 2.04x_1 & -& 6x_2 & -1.74x_3 & +0.9x_4 & =& 6 \\ 0.15x_1 & -& 0.3x_2 & +& 3x_3 & +0.51x_4 & =& -15 \\ -0.12x_1 & +0.69x_2 & +0.36x_3 & +& 3x_4 & =& -6 \end{array} \right. \ \, \textbf{Với xấp xỉ ban đầu } x^{(0)} = (5,1,3,-3)^T,$$

bằng phương pháp lặp điểm bất động, tìm nghiệm gần đúng sau 3 bước lặp.

Câu 3. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

X	-4	-1	1	2
У	20	2	0	20

Họ và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 57

Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Xét phương trình $x = e^{\frac{4x}{5}-1}$ trên đoạn	$\begin{bmatrix} 1 \\ 5 \end{bmatrix}$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 1$
tìm nghiệm gần đúng và sai số tương ứng sau	bước lặp.

Câu 2. Dùng công thức nội suy Newton lùi, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 14

Bộ môn Toán ứng dụng

Họ và tên:

MSSV:

Thời gian: 90 phút. Không được dùng tài liệu. Lớp MH:

Câu 1. Dùng công thức nội suy Newton tiến, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 2. Xét phương trình $x = \ln(x + 10) - 6$ trên đoạn [-6, -3]. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = -1$, tìm nghiệm gần đúng và sai số tương ứng sau 5 bước lặp.

Câu 3. Cho hệ phương trình $\begin{cases} x = 0.07x + 0.04y - 0.11z + 5 \\ y = -0.14x - 0.07y + 0.03z - 5 \end{cases}$. Bằng phương pháp lặp điểm bất động, với xấp z = -0.21x - 0.13y - 0.11z + 2

xỉ ban đầu $x_0 = 4$, $y_0 = 4$, $z_0 = 3$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 56

Bộ môn Toán ứng dụng

Họ và tên:

MSSV: Lớp MH:

Thời gian: 90 phút. Không được dùng tài liệu.

Câu 1. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

-2, -4) T , bằng phương pháp lặp điểm bất động, tìm nghiệm gần đúng sau 3 bước lặp.

Câu 3. Xét phương trình $x = \ln(x^2 + 3)$ trên đoạn [1, 3]. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 1$, tìm nghiệm gần đúng và sai số tương ứng sau 4 bước lặp.

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 84

Bộ môn Toán ứng dụng

Họ và tên:

Thời gian: 90 phút. Không được dùng tài liệu. MSSV:

Lớp MH:

Câu 2. Cho hệ phương trình $\begin{cases} x_1 = -0.39x_1 + 0.29x_2 - 2 \\ x_2 = 0.42x_1 - 0.15x_2 + 2 \end{cases}$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x^{(0)} = (-2,5)^T$, tìm nghiệm gần đúng và sai số tương ứng sau 5 bước lặp.

Câu 3. Xét phương trình $x = \frac{e^x}{3}$ trên đoạn [0, 1]. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 0$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 29

Thời gian: 90 phút. Không được dùng tài liệu.

Họ và tên: MSSV:

Lớp MH:

Câu 1. Xét phương trình $x = e^{\frac{4x}{5}-1}$ trên đoạn $\left[\frac{1}{5}, 1\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 1$, tìm nghiệm gần đúng và sai số tương ứng sau 5 bước lặp.

Câu 2. Dùng công thức nội suy Newton tiến, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 3. Cho hệ phương trình $\begin{cases} 6x + 2.16y - 0.36z = 0 \\ 0.48x + 8y - 3.68z = 8 \end{cases}$ Với xấp xỉ ban đầu $x_0 = 1, y_0 = 4, z_0 = -5$, bằng 0.32x - 4.56y + 8z = -8phương pháp lặp Gauss - Seidel, tìm nghiệm gần đúng sau 4 bước lặp.

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 77

Bộ môn Toán ứng dụng

Họ và tên:

MSSV:

Thời gian: 90 phút. Không được dùng tài liệu. Lớp MH:

	$\int x_1 = 0.2x_1$	$+ 0.01x_2 + 0.19x_3$	- 5	
Câu 1. Cho hệ phương trình	$\begin{cases} x_2 = 0.23x_1 \end{cases}$	$+ 0.06x_2 - 0.09x_3$	 1 . Với xấp xỉ ban đầ 	$u x^{(0)} = (-4, -3, 3)^T$, bằng
	$\int x_3 = -0.22x_1$	$-0.03x_2-0.24x_3$	+ 4	
1	1 1 1 A A	+/ \ +/ 1 1 1	k) $(k-1)$ \parallel λ \parallel λ'	, ·

phương pháp Gauss – Seidel, tìm nghiệm gần đúng và đánh giá $\|x^{(k)} - x^{(k-1)}\|_{\infty}$ sau 4 bước lặp.

Câu 2. Xét phương trình $x^4 - x - 1 = 0$ trên đoạn $\left[-2, -\frac{1}{2} \right]$. Bằng phương pháp Newton, tìm nghiệm gần đúng và sai số tương ứng trong 3 bước lặp.

Câu 3. Dùng công thức nội suy Newton tiến, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

х	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0
У	8	0	$-\frac{7}{2}$	-4

<i>y</i> 8	0	$-\frac{7}{2}$	-4		

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 88

Thời gian: 90 phút. Không được dùng tài liệu.

•	•		·ouii	۵g	aģiig		
)	và	tên	:				

MSSV: Lớp MH:

	$ \left(-x_1 + 0.17x_2 + 0.48x_3 = -3 \right) $
Câu 1. Cho hệ phương trình	$\left(-0.15x_1 - x_2 - 0.31x_3 = 0 \right)$. Với xấp xỉ ban đầu $x^{(0)} = (1, 2, -2)^T$, bằng
	$\left(-4.86x_1 - 2.07x_2 - 9x_3 = -27\right)$
phương pháp lặp điểm bất động	y, tìm nghiệm gần đúng sau 3 bước lặp.

Câu 2. Dùng công thức nội suy Newton tiến, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 3. Xét phương trình $x = \sqrt[5]{x + \frac{1}{5}}$ trên đoạn $\left[\frac{1}{2}, 2\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 2$, tìm nghiệm gần đúng và sai số tương ứng sau 5 bước lặp.

Đán án 14) a) $\Delta^0 y_i \equiv y_i, i = \overline{0, n}; \quad \Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i, k = \overline{1, n}, i = \overline{0, n-k}$ Bảng sai phân
 k'
 0
 1
 2

 0
 7
 12
 19

 1
 5
 7
 a) $g(x) = \ln(x+10) - 6$; $-6 \le -4.6137 \le g(x) \le -4.0541 \le -3...$ 0.25d 2 $x_{n+1} = g(x_n), n = 0, 1, \dots, \dots, \dots, \dots$ 0.25 b) Bảng giá trị trong đó x_1 , ε_n được **0.5đ**... $\frac{x_n}{-3.8028}$ 0.93426 -4.17590.12437 0.020699 -4.24870.0035731 -4.25060.00062069 3 a) $B = \begin{bmatrix} 0.07 & 0.04 & -0.11 \\ -0.14 & -0.07 & 0.03 \\ -0.21 & -0.13 & -0.11 \end{bmatrix}, g = \begin{bmatrix} 5 \\ -5 \\ 2 \end{bmatrix}, q = ||B||_{\infty} = 0.45 < 1 0.25d$ b) Bảng giá trị 1.0884 $4.964 -5.2926 1.4394 \mid 0.16439$ 22) $X_{n+1} = X_n - \frac{f(x_n)}{f'(x_n)}, n = 0, 1, \dots$ $|x_n-x^*|\leq \frac{M}{2m}|x_n-x_{n-1}|^2=\varepsilon_n, n\geq 1...$ 0.25đ $|f''(x)| \le M \ \forall x \in \left[-\frac{3}{2}, -\frac{4}{5}\right] \Rightarrow \text{chọn } M = 67.5.$

 $m = \min \left\{ \left| f'\left(-\frac{3}{2}\right) \right|, \left| f'\left(-\frac{4}{5}\right) \right| \right\} = 1.048. \dots$

b) Bảng giá trị trong đó x_1, ε_n được 0.5đ
$n \mid x_n \mid \varepsilon_n$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$egin{array}{c cccc} 2 & -1.0659 & 0.989 \ \hline 3 & -0.97239 & 0.28152 \ \hline \end{array}$
4 -0.94445 0.025149
2 a) $A = \begin{bmatrix} 2 & -0.22 & 1.08 & 0.04 \\ 2.04 & -6 & -1.74 & 0.9 \\ 0.15 & -0.3 & 3 & 0.51 \\ -0.12 & 0.69 & 0.36 & 3 \end{bmatrix}, b = \begin{bmatrix} -8 \\ 6 \\ -15 \\ -6 \end{bmatrix}.$ 0.25đ
$b_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, & \text{n\'eu } i \neq j \\ 0, & \text{n\'eu } i = j \end{cases}, g_i = \frac{b_i}{a_{ii}}. \dots \dots \dots \dots \dots \dots \dots \dots \dots $
$B = \begin{bmatrix} 0 & 0.11 & -0.54 & -0.02 \\ 0.34 & 0 & -0.29 & 0.15 \\ -0.05 & 0.1 & 0 & -0.17 \\ 0.04 & -0.23 & -0.12 & 0 \end{bmatrix}, g = \begin{bmatrix} -4 \\ -1 \\ -5 \\ -2 \end{bmatrix}, q = B _{\infty} = 0.78 < 1$
$x_i^{(k+1)} = \sum_{j < i} b_{ij} x_j^{(k+1)} + \sum_{j \ge i} b_{ij} x_j^{(k)} + g_i, i = \overline{1, n}, k = 0, 1, \dots $ 0.25 đ
b) Bảng giá trị
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3 a) $P(x) = \sum_{i=0}^{\infty} y_i L_i(x)$, $L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{\infty} \frac{x - x_j}{x_i - x_j}$
b) $L_0(x) = -\frac{(x-2)(x-1)(x+1)}{90} = -\frac{x^3}{90} + \frac{x^2}{45} + \frac{x}{90} - \frac{1}{45}$
$P(x) = x^3 + 5x^2 - 2x - 4$
29)
1 a) $g(x) = e^{\frac{4x}{5}-1}$; $\frac{1}{5} \le 0.43171 \le g(x) \le 0.81873 \le 1 \dots \dots$
$ g'(x) \le 0.65498 = q < 1 \ \forall x \in \left[\frac{1}{5}, 1\right]$
$x_{n+1} = g(x_n), n = 0, 1, \dots$ 0.25
$ x_n - x^* \le \frac{q}{1 - q} x_n - x_{n-1} , n \ge 1 \dots \dots$
b) Bảng giá trị trong đó x_1, ε_n được 0.5đ

n	X _n	ε_n
1	0.81873	0.34413
2	0.70821	0.20982
3	0.64828	0.11377
4	0.61793	0.057612
5	0.60311	0.028138

$$x_i^{(k+1)} = \sum_{j < i} b_{ij} x_j^{(k+1)} + \sum_{j \ge i} b_{ij} x_j^{(k)} + g_i, \quad i = \overline{1, n}, \quad k = 0, 1, \dots$$
 0.25đ

)

1 a)
$$g(x) = \sqrt[3]{3 - \ln x}$$
; $1 \le 1.1729 \le g(x) \le 1.4422 \le 4...$ 0.25d $|g'(x)| \le 0.16025 = q < 1 \ \forall x \in [1, 4]...$ 0.25d

$$x_{n+1} = g(x_n), n = 0, 1, \dots$$
 0.2

$$n$$
 x_n ε_n 11.17290.5394921.41620.04642631.38420.006115

$b_{ij} = \begin{cases} -\frac{a_{ij}}{a_{ii}}, & \text{n\'eu } i \neq j \\ 0, & \text{n\'eu } i = j \end{cases}, g_i = \frac{b_i}{a_{ii}}. \dots \dots \dots \dots \dots \dots \dots \dots \dots $				
$B = \begin{bmatrix} 0 & 0.19 & -0.21 & -0.14 \\ -0.23 & 0 & 0.02 & -0.25 \\ 0.12 & -0.06 & 0 & -0.57 \\ 0.11 & -0.49 & 0.15 & 0 \end{bmatrix}, g = \begin{bmatrix} 3 \\ -1 \\ 0 \\ 4 \end{bmatrix}, q = \ B\ _{\infty} = 0.75 < 1 \dots \dots$				
$x_i^{(k+1)} = \sum_{j < i} b_{ij} x_j^{(k+1)} + \sum_{j \ge i} b_{ij} x_j^{(k)} + g_i, i = \overline{1, n}, k = 0, 1, \dots $ 0.25đ				
b) Bảng giá trị				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
3 a) $g(x) = \ln(x^2 + 3)$; $1 \le 1.3863 \le g(x) \le 2.4849 \le 3$ 0.25đ				
$ g'(x) \le 0.57734 = q < 1 \ \forall x \in [1,3]$				
$X_{n+1} = g(X_n), n = 0, 1, \dots$ 0.25				
$ x_n - x^* \le \frac{q}{1-q} x_n - x_{n-1} , n \ge 1 \dots \dots$				
b) Bảng giá trị trong đó x_1, ε_n được 0.5đ				
$egin{array}{ c c c c c c c c c c c c c c c c c c c$				
57)				
1 a) $g(x) = e^{\frac{4x}{5}-1}$; $\frac{1}{5} \le 0.43171 \le g(x) \le 0.81873 \le 1 \dots \dots$				
$ g'(x) \le 0.65498 = q < 1 \ \forall x \in \left[\frac{1}{5}, 1\right]$				
$X_{n+1} = g(x_n), n = 0, 1, \dots$ 0.25				
$ x_n - x^* \le \frac{q}{1-q} x_n - x_{n-1} , n \ge 1$ 0.25đ				
b) Bảng giá trị trong đó x_1, ε_n được 0.5đ				
$\begin{array}{c cccc} n & x_n & \varepsilon_n \\ \hline 1 & 0.81873 & 0.34413 \\ 2 & 0.70821 & 0.20982 \\ 3 & 0.64828 & 0.11377 \\ 4 & 0.61793 & 0.057612 \\ 5 & 0.60311 & 0.028138 \\ \hline \end{array}$				
2 a) $\Delta^0 y_i \equiv y_i, \ i = \overline{0, n}; \Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i, \ k = \overline{1, n}, \ i = \overline{0, n-k} \dots \dots$				

)

$$|f''(x)| \le M \ \forall x \in \left[-2, -\frac{1}{2}\right] \Rightarrow \text{chọn } M = 48.0.$$

b) Bảng giá trị trong đó x_1, ε_n được 0.5đ			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Bảng sai phân			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
b) $P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{0}}{k!} \prod_{i=0}^{k-1} (t-i), t = \frac{x-x_{0}}{h}, x_{0} = -\frac{3}{2}, h = \frac{1}{2}.$			
$P(x) = -\frac{t(t-2)(t-1)}{4} + \frac{9t(t-1)}{4} - 8t + 8. \dots $			
$P(x) = -2x^3 + 3x^2 + x - 4$			
84)			
1 a) $P(x) = \sum_{i=0}^{n} y_i L_i(x)$, $L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$			
b) $L_0(x) = -\frac{x(x+1)(x+3)}{12} = -\frac{x^3}{12} - \frac{x^2}{3} - \frac{x}{4}$			
$P(x) = x^3 + 5x^2 + 1$			
2 a) $B = \begin{bmatrix} -0.39 & 0.29 \\ 0.42 & -0.15 \end{bmatrix}$, $g = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$, $q = \ B\ _{\infty} = 0.68 < 1 \dots$ 0.25d			
$x^{(k+1)} = Bx^{(k)} + g, x^{(k)} - x^* _{\infty} \le \frac{q}{1-q} x^{(k)} - x^{(k-1)} _{\infty} \dots \dots$			
b) Bảng giá trị			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

3

4

5

-0.64121

-1.4985

-0.9514

2.8254

1.8217

1.1626

0.867

1.6006

1.1305

n	X _n	ε_n
1	1.1708	0.30056
2	1.0651	0.038311
3	1.0482	0.0061462
4	1.0453	0.0010239
5	1.0449	0.00017166