Time Allowed: 60 minutes

NATIONAL UNIVERSITY OF SINGAPORE

SCHOOL OF COMPUTING SEMESTER 2 (2018/2019) MID-TERM EXAMINATION FOR

CS3223: DATABASE SYSTEMS IMPLEMENTATION

March 2019

NAME:			MATRIC NUMBER:						
answe	paper contain or (only ON of read the questions.	E answer)	for each	question.	Write yo	ur answe	rs in the	table giv	en. You
Section A (10 Marks)									
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
1.	(b) Th (c) Fo (d) Fo (e) (a) (f) (b) (g) (a)		order of to am height am number ll B+-tree,	he tree is possible is r of data of the minimum.	d, which on the state of the st	of the foll 2d ber of da	owing sta	tements is	s/are
2.	Consider a primary ke primary ke Suppose w Assume th (a) 20	ey is 4 byte ey. Let eac re adopt F at leaf no	es. We wo h index/d ORMAT	ould like to ata page b 1 for the l	o build a l be 4k (409 3+-tree (i.	B+-tree for the second by B+-tree for the se	or the data and point re stored a	file on the	ne ytes.
3.	Referring t (a) 1	to Questio (b)		eight of th	ne tree is (d) 4	(e)	5		

4. Consider a hard disk with the following specifications.

3840 RPM

10 platters, and 2 surfaces each platter

Usable capacity: 10GB Number of cylinders: 256

1 block = 4 KB

20% overhead between blocks (gaps)

Track-to-track seek time: 2 ms Average seek time: 20 ms

There are X blocks per track, where X is

(a) 128

(b) 256

(c) 512

(d) 1024

(e) 4096

- 5. Referring to Question 4. Which of the following statements is/are TRUE?
 - (a) The average rotational delay is approximately 7.81ms
 - (b) The transfer time of reading a block without a gap is approximately 0.02ms
 - (c) The transfer time of reading a block with a gap is approximately 0.03ms
 - (d) The average time to access a block (without the gap) is approximately 27.83ms
 - (e) All of the above
 - (f) None of the above
- 6. Referring to Question 4. Suppose we store a 2-level B+-tree (Format 2) on 2 consecutive cylinders of the disk. Furthermore, suppose the data file is also stored on the consecutive cylinder after the leaf level. For example, root level of the tree is at track X, level 2 (leaf level) is at track X+1, and the data is stored at track X+2. What is the average access cost to perform a single record retrieval?
 - (a) 27.49ms
 - (b) 47.49ms
 - (c) 83.49ms
 - (d) None of the above
- 7. Referring to Question 6. What is the average access cost to perform a range query that requires accessing 2 adjacent leaf nodes, and 10 data pages that are randomly scattered across the track.
 - (a) 117.99
 - (b) 135.99
 - (c) 288.99
 - (d) 455.99
 - (e) None of the above

8.	Insert the following keys (in binary) into an initially empty Linear Hash table in the
	order given: 1111, 1100, 0011, 0000, 1010, 1011, 1110, 0001. Suppose each bucket
	contains 2 records, and a split occurs whenever a bucket overflows. Suppose the first
	bucket is labelled as 0 (as in the lecture), where is the position of the next pointer at
	the end of the insertion?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4
- (f) 5
- (g) 6
- 9. Which of the following statements is TRUE? For hash-based techniques, we do not consider ordering within primary and overflow buckets.
 - (a) Linear Hashing is order independent
 - (b) B+-tree is order independent
 - (c) Extensible Hashing is order independent
 - (d) Static Hashing is order independent
 - (e) (a) and (b) and (d)
 - (f) (a) and (c)
 - (g) (c) and (d)
 - (h) None of the above
 - (i) All of the above
- 10. Which of the following join algorithms can always operate with just 3 buffer pages (You should account for both input and output pages)?
 - (a) Block nested-loops join
 - (b) Sort-merge join
 - (c) Hash join
 - (d) (a) and (b)
 - (e) (a) and (c)
 - (f) (b) and (c)
 - (g) All of the above.
 - (h) None of the above.

Section B (10 marks)

- 1. (4 marks) Consider sorting a file R. R has 30 pages, and each page can hold only one record. Suppose we have 5 buffer pages.
 - (a) (1 mark) What is the I/O cost to sort this file using the external sort algorithm (that uses internal sort)?

(b) (1 mark) Suppose we adopt replacement selection instead of internal sort. Suppose using replacement selection results in sorted runs of twice the size of a run (compared to the internal sort above). Note that the last run is the exception and may be smaller. What is the I/O cost to perform the sort? You can ignore the output buffer for generating the sorted runs.

(c) (2 marks) What is the number of sequential and random I/Os for generating the sorted runs in part (b)? For simplicity, we assume that pages of a run or a file is always stored in the same track/cylinder sequentially. Moreover, assume that different runs or files are always stored on different tracks/cylinders.

2. (2 marks) Insert the following keys into an Extensible Hash table: 1111, 0000, 0111, 0011, 1011. Each bucket can hold only 2 records. Show the final structure.

3. (1 mark) Consider the sort-merge join between tables R and S where $|R| \le |S|$. Suppose both tables are already sorted. What is the minimum cost (best case) in terms of number of I/Os that we can possibly get?

4. (3 marks) Consider the query: SELECT R.* from R, S WHERE R.a = S.b

Let |R| = 500, ||R|| = 10000, |S| = 1000 and ||S|| = 10000. Suppose there is an index on R.a and another index on S.b. For simplicity, suppose the indexes are unclustered, and both indexes have height of 3 (i.e., leaf nodes are at level 3). Moreover, assume that all R.a values are unique in R, and all S.b values are unique in S. We also assume that only 50% of the tuples match, i.e., 50% of the R.a values appear in S.b. What is the (optimal) cost to process this query under the following three schemes:

- (a) Using nested index join where R is the outer table.
- (b) Using nested index join where S is the outer table.
- (c) Using both indexes to compute the join. For simplicity, suppose each index has 100 leaf nodes.

~~~~~~~~~~~~~~~	End of Paper	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	End of Faper	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~