

IT Automation Terraform Driver 【実習編】

※本書では「Exastro IT Automation」を「ITA」として記載します。

Exastro IT Automation ver 1.10 Exastro developer

Exastro

目次

- 1.はじめに
 - 1.1 はじめに
 - 1.2 作業環境
- 2. 実習 Terraform Driver
 - 2.1 シナリオ
 - 2.2 事前準備
- 3. 仕込み編
 - 3.1 インターフェース情報の登録
 - 3.2 Organizationの登録と連携
 - 3.3 Workspaceの登録と連携
 - 3.4 作業パターン(Movement)の登録
 - 3.5 Module素材の登録
 - 3.6 Policy素材の登録
 - 3.7 Policy Setの登録
 - 3.8 Policy SetとPolicyの紐付け
 - 3.9 Policy SetとWorkspaceの紐付け
 - 3.10 MovementにModule素材を指定

- 4. 実行編
 - 4.1 オペレーションの登録
 - 4.2 変数値の設定
 - 4.3 Planを確認
 - 4.4 PolicyCheckログを確認
 - 4.5 VMのサイズを変更して再度確認
 - 4.6 再度PolicyCheckログを確認
 - 4.7 作業実行
 - 4.8 実行状態確認
 - 4.9 数値を変更して再度実行

1. はじめに

1.1 はじめに

メインメニュー

●本書では、メニューグループの「**Terraform**」について、実践形式で学習いただけます。

1.2 作業環境

作業環境

- ●本書で使用する作業環境は以下の通りです。
- ITAホストサーバとは他に、Terraform環境(Terraform Cloudの場合はアカウント)および AWS、Azureのアカウントをご用意ください。

ITAホストサーバ	Terraform	ターゲット
CentOS7(※)ITA ver 1.9	Terraform Enterprise orTerraform Cloud	AWSMicrosoft Azure

※今回はホストサーバーとしてCentOS7を利用致しますが、ITAはRHEL7系およびRHEL8系のOSで導入いただけます。

2. 実習 Terraform Driver

2.1 シナリオ

|シナリオについて

本シナリオは、ITAのTerraform Driverを利用して、パブリッククラウド上(AWS、Azure)に VMを作成するPlanを確認します。

その後、定義されたポリシーに沿った設定を行い各クラウドにVMを作成します。

【仕込み編】の内容を一度設定すると、以降の操作は【実行編】を繰り返し行うことで、対象の再設定・再登録を行うことができます。(自動化)

2.2 事前準備(1/7)

Moduleの作成①

●本シナリオで使用する4つのModuleを作成します。

【注意】文字コードは"UTF-8"、改行コードは"LF"、拡張子は"tf"で作成してください。

ファイル名:

aws_create_instance_variables.tf

AWSインスタンス作成用の変数定義ファイルです。 変数には具体値変数が代入されます。

```
variable "aws info"{
 type = object({
  access key = string
  secret key = string
  region = string
 })
variable "ami" {}
variable "key name" {}
variable "security group" {}
variable "tags name" {}
variable "hello_tf_instance_count" {
  default = 2
variable "hello_tf_instance_type" {
  default = "t2.micro"
```

2.2 事前準備(2/7)

Moduleの作成②

ファイル名: aws_create_instance.tf

AWSインスタンス作成用のリソース定義ファイルです。 セキュリティグループ、キーペアは事前にAWSで作成・用意します。

```
provider "aws" {
 access key = var. aws info.access key
 secret_key = var. aws_info.secret_key
 region = var. aws info.region
resource "aws_instance" "hello-tf-instance" {
 ami = var.ami
 key name = var.key name
 security_groups = [var.security_group]
 tags = {
  Name = "${var.tags name}-${count.index+1}"
 count = var.hello tf instance count
 instance_type = var.hello_tf_instance_type
```

2.2 事前準備(3/7)

Moduleの作成③

ファイル名: azure_create_instance_valiables.tf

Azureインスタンス作成用の変数定義ファイルです。変数には具体値変数が代入されます。

```
variable "azure info"{
 type = object({
  subscription id = string
  tenant id = string
  client id = string
  client secret = string
variable "resource group name" {}
variable "security group" {}
variable "location" {}
variable "Vnet_name" {}
variable "Vnet_address_space" {}
variable "subnet_name" {}
variable "address prefixes" {}
variable "public ip name" {}
variable "allocation method" {}
variable "domain_name_label" {}
variable "network interface name" {}
```

```
variable "NIC_name" {}
variable "VM_name" {}
variable "VM_size" {}
variable "publisher" {}
variable "offer" {}
variable "sku" {}
variable "source_image_version" {}
variable "admin_username" {}
variable "ssh_public_key" {}
variable "os_disk_name" {}
variable "caching" {}
variable "storage_account_type" {}
variable "VM_count" {}
```

2.2 事前準備(4/7)

Moduleの作成④ (1/3)

ファイル名: azure_create_instance.tf

Azureインスタンス作成用のリ ソース定義ファイルです。

リソースグループと、そのネット ワークセキュリティグループ、仮 想ネットワークの作成。

また、作成するVM台数分の仮想 マシン本体、ディスク、ネット ワークインターフェースの作成を 行います。

```
provider "azurerm" {
  features {}
  subscription_id = var. azure_info.subscription_id
    client_id = var. azure_info.client_id
    client_secret = var. azure_info.client_secret
    tenant_id = var. azure_info.tenant_id
}

resource "azurerm_resource_group" "hogehoge" {
  name = var.resource_group_name
  location = var.location
}
```

```
resource "azurerm network security group" "hogehoge" {
  name =var.security group
  location = azurerm resource group.hogehoge.location
  resource group name = azurerm resource group.hogehoge.name
  security rule {
                         = "SSH"
     name
                        = 1001
     priority
     direction
                        = "Inbound"
                        = "Allow"
     access
                        = "Tcp"
     protocol
                             = "*"
     source port range
     destination port range
    source address prefix
     destination address prefix = "*"
  security rule {
                         = "HTTP"
     name
                        = 1002
     priority
     direction
                        = "Inbound"
     access
                        = "Allow"
                         = "Tcp"
     protocol
     source_port_range
     destination port range
                              = "80"
    source address prefix
     destination address prefix = "*"
```

2.2 事前準備(5/7)

Moduleの作成④ (2/3)

2.2 事前準備(6/7)

Moduleの作成④ (3/3)

```
resource "azurerm network interface security group association" "hogehoge" {
 count = var.VM count
 network interface id
                      = azurerm network interface.hogehoge[count.index].id
 network_security_group_id = azurerm_network_security_group.hogehoge.id
resource "azurerm_linux_virtual_machine" "hogehoge" {
 count
                = var.VM count
                 = "${var.VM_name}-${count.index}"
 name
 resource_group_name = azurerm_resource_group.hogehoge.name
                = azurerm resource group.hogehoge.location
 location
 size
               = var.VM size
                     = var.admin username
 admin username
 network_interface_ids = [azurerm_network_interface.hogehoge[count.index].id]
 admin ssh key {
 username = var.admin username
 public_key = var.ssh_public_key
 os disk {
                  = "${var.os_disk_name}-${count.index}"
  name
                 = var.caching
  caching
  storage_account_type = var.storage_account_type
 source image reference {
  publisher = var.publisher
  offer = var.offer
         = var.sku
  version = var.source_image_version
```

2.2 事前準備(7/7)

Policyの作成

ファイル名:

limit-proposed-monthly-cost.sentinel

月額のコストを制限するポリシー です。

月額コストが\$50を上回る場合は Applyを行いません。

また、その月額コストの総見積り が出力されます。

AWS,Azureどちらのクラウドにおいても適用可能です。

```
import "tfrun"
import "decimal"
limit = decimal.new(50)
cost limit by workspace = func() {
 if tfrun.cost estimate else null is null {
   print("no cost estimates available")
   return false
 workspace name = tfrun.workspace.name
 proposed_cost = decimal.new(tfrun.cost_estimate.proposed_monthly_cost)
 if proposed_cost.less_than(limit) {
   print("Proposed monthly cost", proposed_cost.string,
    "of workspace", workspace_name,
    "is under the limit: $", limit)
   return true
 if proposed_cost.greater_than(limit) {
   print("Proposed monthly cost", proposed_cost.string,
     "of workspace", workspace_name,
    "is over the limit: $", limit)
   return false
cost_validated = cost_limit_by_workspace()
main = rule {
 cost_validated
```

3. 仕込み編

3.1 インターフェース情報の登録(1/2)

User Tokenの発行

- Terraform DriverからTerraformに連携するために、Terraformからユーザートークンを発行する必要があります。
- ●ブラウザよりTerraformにログインし、[User Setting]→[Tokens]→[Creat an API token] の順に押下することで発行することができます。

3.1 インターフェース情報の登録(2/2)

| インターフェース情報

- ●連携するTerraformのHostnameと、発行したUserTokenを入力します。
 - ※ITAに連携できるTerraformは1つのみのため、インストール時に最初からある項目を更新して値を入力する必要があります。

「Terraform」メニューグループ>「インターフェース情報」メニュー

- ① 「一覧」サブメニューの登録済み項目に表示されている 「更新」ボタン を押下する。
- ② 各項目へ下表のように入力し「登録」ボタンを押下する。

Hostname	User Token
(Terraformのドメイン名)	(任意でご入力下さい)

3.2 Organizationの登録と連携(1/2)

Organizationを登録する

Organizationを作成しましょう。

「Terraform」メニューグループ > 「Organizations管理」メニュー

- ① 「登録」サブメニューの 「登録開始」ボタン を押下する。
- ② 各項目へ下表のように入力し、[登録]を押下する。

Organization Name	Email address
ITAlearn_org	(任意でご入力下さい)

3.2 Organizationsの登録と連携(2/2)

Organizationを連携する

- ●「Organization管理」メニューでOrganizationの項目を作成した後、「連携状態チェック」ボタンを押下することで対象のTerraformに追加したOrganizationがあるかどうかをチェックすることができます。
- ●「登録なし」であれば「登録」ボタンを押下することで対象のTerraformに Organizationを作成できます。

3.3 Workspaceの登録と連携(1/2)

Workspaceを登録する

Workspaceを作成しましょう。

「Terraform」メニューグループ > 「Workspaces管理」メニュー

- ① 「登録」サブメニューの 「登録開始」ボタン を押下する。
- ② 各項目へ下表のように入力し「登録」ボタンを押下する。

Organization	Workspace Name
ITAlearn_org	ITA-demo-AWS
ITAlearn_org	ITA-demo-Azure

3.3 Workspaceの登録と連携(2/2)

Workspaceを連携する

- ■「Workspaces管理」メニューでWorkspaceの項目を作成した後「連携状態チェック」 ボタンを押下することで、対象のTerraformに追加したWorkspaceがあるかどうかを チェックすることができます。
- ●「登録なし」であれば「登録」ボタンを押下することで、対象のTerraformに Workspaceを作成できます。

※WorkspaceはOrganization上に作成されるため、必ず先にOrganizationを対象のTerraformに作成しておく必要があります

3.4 作業パターン(Movement)の登録

Movementを作成する

先のplaybookを関連付けるMovementを登録しましょう。

「Terraform」メニューグループ > 「Movement一覧」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目で下表のように選択または入力し「登録」ボタンを押下する。

Movement名	Terraform利用情報 Organization:Workspace	
VM作成(AWS)	ITA-demo-AWS	
VM作成(Azure)	ITA-demo-Azure	

3.5 Module素材の登録

Moduleを登録する

作成したModuleをITAに登録しましょう。

「Terraform」メニューグループ > 「Module素材集」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 「ファイルの選択」ボタンを押下しModuleを選択、 「事前アップロード」ボタンを押下する。
- ③ 各項目へ下表のように入力し、「登録」ボタンを押下する。

3.6 Policy素材の登録

Policyを登録する

作成したPolicyをITAに登録しましょう。

「Terraform」メニューグループ > 「Policies管理」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 「ファイルの選択」ボタンを押下しPolicyを選択、「事前アップロード」ボタンを押下 する。
- ③ 各項目へ下表のように入力し、「登録」ボタンを押下する。

Policy名	Policy素材
limit-proposed-monthly-cost	limit-proposed-monthly-cost.sentinel

3.7 Policy Setの登録

Policy Setを登録する

Policy SetをITAに登録しましょう。

「Terraform」メニューグループ > 「Policy Sets管理」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

3.8 Policy SetとPolicyの紐付け

Policy SetとPolicyを紐付ける

作成したPolicy SetとPolicyを紐付けましょう。

「Terraform」メニューグループ > 「PolicySet-Policy紐付管理」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

Policy Set	Policy
1:PolicySet_demo	1:limit-proposed-monthly-cost

3.9 Policy SetとWorkspaceの紐付け

Policy SetとWorkspaceを紐付ける

作成したPolicy SetとWorkspaceを紐付けましょう。

「Terraform」メニューグループ > 「PolicySet-Workspace紐付管理」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

Policy Set	Organization:Workspace	
1:PolicySet_demo	ITAlearn_org:ITA-demo-AWS	
1:PolicySet_demo	ITAlearn_org:ITA-demo-Azure	

3.10 MovementにModule素材を指定

MovementにModuleを紐付ける

作成したMovementとModule素材を関連付けましょう。

「Terraform」メニューグループ > 「Movement-Module紐付」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

4. 実行編

4.1 オペレーションの登録

オペレーションを新規登録する

オペレーションを作成しましょう。

「基本コンソール」メニューグループ > 「オペレーション一覧」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

オペレーション名	実施予定日時
Terraform_demo	(任意でご入力下さい)

※ 「実施予定日時」は管理用の項目です。自動的に処理が実行されるわけではありません。

4.2 変数値の設定(1/4)

| 変数に数値を設定する

Moduleの変数に具体的な数値を設定しましょう。

「Terraform」メニューグループ > 「代入値管理」メニュー

- ① 「登録」サブメニューの「登録開始」ボタンを押下する。
- ② 各項目へ下表のように入力し、「登録」ボタンを押下する。

※具体的な設定値については以降のスライドで説明します。

4.2 変数値の設定(2/4)

以下の具体値を設定する(1/3)

代入値の登録は以下の表を参考に行ってください。

オペレーション	Movement	変数名	メンバー変数	具体値
Terraform_demo	VM作成(AWS)	security_group		ita-demo-sg [※]
Terraform_demo	VM作成(AWS)	key_name		ita-demo-key <u></u>
Terraform_demo	VM作成(AWS)	aws_info	access_key	(AWSアクセスキー)
Terraform_demo	VM作成(AWS)	aws_info	secret_key	(AWSシークレットキー)
Terraform_demo	VM作成(AWS)	aws_info	region	(任意のリージョン)
Terraform_demo	VM作成(AWS)	tags_name		ita-demo-instance
Terraform_demo	VM作成(AWS)	hello_tf_instance_type		t2.large
Terraform_demo	VM作成(AWS)	hello_tf_instance_count		3
Terraform_demo	VM作成(AWS)	ami		(任意のAMI)

- ※セキュリティグループ、キーペアは事前に作成しておく必要があります。
- ※「access_key, secret_key, region」については「aws_create_instance_variables.tf」にてobject型で記述しているため「変数名:aws_info」を選択の上「メンバー変数」をそれぞれ選択します。

4.2 変数値の設定(3/4)

| 以下の具体値を設定する(2/3)

代入値の登録は以下の表を参考に行ってください。

オペレーション	Movement	変数名	メンバー変数	具体値
Terraform_demo	VM作成(Azure)	azure_info	subscription_id	
Terraform_demo	VM作成(Azure)	azure_info	tenant_id	(Azure認証情報)
Terraform_demo	VM作成(Azure)	azure_info	client_id	(AZUI 色版心品工刊学队)
Terraform_demo	VM作成(Azure)	azure_info	client_secret	
Terraform_demo	VM作成(Azure)	resource_group_name		ita-demo-rg
Terraform_demo	VM作成(Azure)	location		japaneast
Terraform_demo	VM作成(Azure)	security_group		ita-demo-security-group
Terraform_demo	VM作成(Azure)	Vnet_name		ita-demo-vnet
Terraform_demo	VM作成(Azure)	Vnet_address_space		10.0.0.0/16
Terraform_demo	VM作成(Azure)	subnet_name		ita-demo-subnet
Terraform_demo	VM作成(Azure)	address_prefixes		10.0.2.0/24
Terraform_demo	VM作成(Azure)	public_ip_name		ita-demo-public-ip
Terraform_demo	VM作成(Azure)	allocation_method		Dynamic
Terraform_demo	VM作成(Azure)	domain_name_label		(任意のグローバルなドメイン名)

^{※「}subscription_id, tenant_id, client_id, client_secret」については「azure_create_instance_variables.tf」にてobject型で記述しているため「変数名:azure_info」を選択の上「メンバー変数」をそれぞれ選択します。

4.2 変数値の設定(4/4)

以下の具体値を設定する(3/3)

代入値の登録は以下の表を参考に行ってください。

オペレーション	Movement	変数名	具体値
Terraform_demo	VM作成(Azure)	network_interface_name	ita-demo-nwif
Terraform_demo	VM作成(Azure)	NIC_name	ita-demo-NIC
Terraform_demo	VM作成(Azure)	VM_name	ita-demo-web-azure
Terraform_demo	VM作成(Azure)	publisher	OpenLogic
Terraform_demo	VM作成(Azure)	offer	CentOS
Terraform_demo	VM作成(Azure)	sku	8_2
Terraform_demo	VM作成(Azure)	source_image_version	latest
Terraform_demo	VM作成(Azure)	os_disk_name	ita-demo-os-disk
Terraform_demo	VM作成(Azure)	storage_account_type	Standard_LRS
Terraform_demo	VM作成(Azure)	caching	ReadWrite
Terraform_demo	VM作成(Azure)	admin_username	ita-demo
Terraform_demo	VM作成(Azure)	ssh_public_key	(任意のSSH公開鍵)※
Terraform_demo	VM作成(Azure)	VM_size	Standard_B2MS
Terraform_demo	VM作成(Azure)	VM_count	3

[※]事前に用意したSSH公開鍵を利用してください。入力する具体値はSSH公開鍵のテキスト「ssh-rsa xxxxxxxxx~」となります。

4.3 Planを確認

Plan確認を実施する

前項までの操作で、実行するMovementの作成と代入値の登録が終了しました。 次にPlan確認を実施し、Moduleが定義されたポリシーに沿っているか確認します。

「Terraform」メニューグループ > 「作業実行」メニュー

4.4 PolicyCheckログを確認

PolicyCheckログを確認する

押下後の画面遷移先で、ステータスが「**完了(異常)**」となっていることが確認できます。 画面下に移動し、PolicyCheckログを確認しましょう。

4.5 VMのサイズを変更して再度確認

VMのサイズを変更して再度実行する。

最後に、デプロイするVMのサイズを変更して同様に実行します。

「Terraform」メニューグループ > 「代入値管理」メニューから、下表を参考に具体値を変更し、4.3同様にPlan確認を実施しましょう。

変更前

オペレーション	Movement	変数名	具体値
Terraform_demo	VM作成(AWS)	hello_tf_instance_type	t2.large
Terraform_demo	VM作成(Azure)	VM_size	Standard_B2MS

デプロイするインスタンスサイズ

AWS: $t2.large \rightarrow t2.micro$

Azure: Standard_B2MS → Standard_B1LS

Tips

変更後

オペレーション Movement 変数名 具体値
Terraform_demo VM作成(AWS) hello_tf_instance_type t2.micro
Terraform demo VM作成(Azure) VM size Standard B1LS

4.6 再度PolicyCheckログを確認

再びPolicyCheckログを確認する

押下後の画面遷移先で、ステータスが「**完了**」となっていることが確認できます。 画面下に移動しPolicyCheckログを確認後、Movementを実際に実行しましょう。

4.7 作業実行

Movementを実行する

実行するModuleが定義したポリシーを適用していることが確認できました。 最後にMovementを実行し、結果を対象ホストで確認してください。

「Terraform」メニューグループ > 「作業実行」メニュー

4.8 実行状態確認

| Movementの詳細結果を確認する

実行後の画面遷移先で、実行ステータスやログを確認することができます。 投入データや出力データを確認することも可能です。

Tips

投入データや結果データをまとめた Zipファイルをダウンロードできます。

Tips

結果はAWS、Azureアカウントにアクセスし各3台のVMが新たに作成されているかを確認してください。

4.9 数値を変更して再度実行(1/2)

インスタンス数を変更して再度実行する

最後に、デプロイするインスタンス数を変更して同様に実行します。

「Terraform」メニューグループ > 「代入値管理」メニューから、下表を参考に具体値を変更し、4.3同様に作業実行しましょう。

変更前

オペレーション	Movement	変数名	具体値
Terraform_demo	VM作成(AWS)	hello_tf_instance_count	3
Terraform_demo	VM作成(Azure)	VM_count	3

デプロイするインスタンス数を

Tips

AWS : $3 台 \rightarrow 5 台 に 増設$ Azure : $3 台 \rightarrow 1 台 に 減設$

変更後

オペレーション	Movement	変数名	具体値
Terraform_demo	VM作成(AWS)	hello_tf_instance_count	5
Terraform_demo	VM作成(Azure)	VM_count	1

4.9 数値を変更して再度実行(2/2)

【インスタンスの増減を確認

AWS・Azureにブラウザから接続し、VMインスタンスの数が変更した通りに増減している か確認しましょう。

Azure

