양재 Al School 인공지능캠프

Lecture 5

Supervised Learning: 회귀 (Regression)

Lecture 5

Supervised Learning: 회귀(Regression)

수업 목표

1 Q Supervised Learning을 이해한다

Supervised learning이 Unsupervised learning과 어떻게 다른지 이해하고 해당하는 알고리즘에는 무엇이 있는지 알아봅시다.

2 O Regression의 다양한 방식을 알아본다

변수의 개수, cost 함수의 최소화 등, 여러가지 회귀 방식들을 알아봅시다.

Machine Learning

- Arthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed.
- Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to *learn* from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.

Machine Learning

 어떤 작업을 컴퓨터가 해야 할 때, 사람이 규칙을 정해주는 대신 컴퓨터 스스로가 데이터를 통해 패턴을 학습하는 방식

• 빅데이터 분석, 손 글씨 인식, 자연어 처리, 컴퓨터 비전 …

Machine Learning

크게 Supervised Learning 또는 Unsupervised Learning, Reinforcement Learning 으로 구분

Supervised Learning

특정 input 값에 대해 "정답 (label)" 이 있는 데이터가 주어진다.

Supervised Learning

• Regression : 어떤 input 값을 특정 output 값에 대응시켜주는 함수를 찾는 과정

Supervised Learning

• Classification : 주어진 input이 어느 카테고리에 있는지 판별

Regression

• 분포된 데이터를 방정식(Hypothesis)을 통해 결과의 값을 예측

Regression

면적 (x)	가격 (y _i)		
480	100		
580	125		
620	220		
890	230		
990	290		
•••	•••		

- h(x)를 어떻게 나타내야 할까?
- Linear Regression: $h(x) = \theta_0 + \theta_1 x$
- θ_i 의 값은 어떻게 결정해야 할까?

Cost Function

- $error = h(x_i) y_i$ 의 값을 최소화 하는 θ_i
- 에러값은 양수, 음수 일수도 있으므로 Mean-squre-error를 구한다
- $J(\theta_0, \theta_1) = \frac{1}{2m} (\sum_{i=1}^m (h(x_i) y_i)^2)$: Square error function
- m은 label의 개수

• 목표: \min_{θ_0,θ_1} θ_0 , θ_1)

볼록함수 (convex): 최소값을 쉽게 찾을 수 있음

$J(\theta_0, \theta_1)$

$J(\theta_0, \theta_1)$

$J(\theta_0,\theta_1)$

Gradient Descent

- 어떤 식의 최소 값을 찾아보자!
- E.g.) $y = 5x + 4x^2$ 의 최소값은

$$\frac{dy}{dx} = 5 + 8x = 0$$
 이 되는 $x = -0.625$, $y = -1.6$

- Gradient descent도 동일하게 미분 값을 이용한다
- 다만 각 식의 계수가 미지수 $y = \gamma + \alpha x + \beta x^2$

Gradient Descent

- h(x)의 최적 parameter를 찾는 방법
- Cost function을 최소화 하는 방식

```
repeat until convergence { \theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \quad \text{(for } j = 0 \text{ and } j = 1) }
```

- α : learning rate, $\alpha > 0$
- := : 할당 (assignment) 연산자
- θ_0, θ_1 은 한번에 업데이트 해야 한다

Correct

Incorrect

$$\begin{array}{ll} \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) & \operatorname{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) & \theta_0 := \operatorname{temp0} \\ \theta_0 := \operatorname{temp0} & \operatorname{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_1 := \operatorname{temp1} & \theta_1 := \operatorname{temp1} \end{array}$$

- learning rate (α) 값이 클수록 한번에 더 많이 이동
- α가 너무 작으면 수렴하는데 오래 걸리고, 너무 크면 최소값을 지나쳐 버릴 수도 있다
- $\frac{\partial J}{\partial \theta_i}$ 항은 다음에 이동할 방향과 크기를 결정

$$\frac{\partial J}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{2m} \left(\sum_{i=1}^m (\theta_0 + \theta_1 x_i - y_i)^2 \right) \right]$$

Repeat until convergence, do{

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \left(\sum_{i=1}^m (\theta_0 + \theta_1 x_i - y_i) \right)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \left(\sum_{i=1}^m (\theta_0 + \theta_1 x_i - y_i) x_i \right)$$

Multivariate Regression

면적	방의 개수	층 수	주변 역 개수	건축년도	가격 (y _i)
x_1	x_2	x_3	x_4	x_5	
480	5	1	1	10	100
580	3	1	2	5	125
620	1	1	3	1	220
890	4	2	2	15	230
990	6	2	3	4	290
•••	•••	•••	•••	•••	• • •

- 영향을 미치는 변수가 여러 개인 경우?
- $h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$
- n: 데이터의 개수; $x_j^{(i)}$: j번째 변수의 i번째 input

•
$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

•
$$x = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$
 , $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_n \end{bmatrix}$, $h(x) = \theta^T x$

Repeat until convergence, do{
$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \left(\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y_{i}) x_{j}^{(i)} \right), for (j = 0, 1, 2 \dots n)$$
}

Feature Scaling

• 모든 feature가 비슷한 범위에 있도록 만들어 준다

• E.g.
$$x_1 \ 0 \sim 2000 \Rightarrow x_1 \coloneqq \frac{x_1}{2000-0}, x_2 \colon 0 \sim 5 \Rightarrow x_2 \coloneqq \frac{x_2}{5}$$

• Feature들이 비슷한 범위에 있으면 수렴이 빠르다

Feature Scaling

- Mean normalization: Feature Scaling의 한 방법
- x_i 대신 $x_i \mu_i$ 로 바꿔 평균을 0 근처 값으로 만든다

• E.g.
$$x_1 := \frac{x_1 - 1000}{2000 - 0}$$
, $x_2 := \frac{x_2 - 2}{5}$

• $-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$

Polynomial Regression

면적 (x)	가격 (y _i)
480	100
580	125
620	220
890	230
990	290
•••	•••

- 만약 땅 가격이 면적의 제곱에 더 관련이 있다면?
- 일차 함수인 h(x)는 모델 예측에 부적합

Polynomial Regression

$$\theta_0 + \theta_1 x + \theta_2 \sqrt{x}$$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

- h(x)함수가 제곱근, 2차, 3차 함수 등의 곡선일수도 있다
- x^n 꼴을 사용한다면 feature scaling이 더욱 중요해진다
- $x: 1 \sim 100$, $x^2: 1 \sim 10,000$, $x^3: 1 \sim 1,000,000$

Learning Rate

• 목표:
$$\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0, \theta_1)$$
 $\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$

- Gradient descent가 어떻게 해야 잘 작동하는가?
- Learning rate α 를 어떻게 선택해야 할까?

Learning Rate

- α가 너무 작으면 수렴이 느림
- α가 너무 크면 수렴 안될 수도 있음 (overshootting)
- J(θ)의 변화 값이 일정 수준이상
 작아지면 수렴으로 판정
- α를 작은 값부터 천천히 늘려나가 보자: 0.001 -> 0.01 -> 0.03 ->
 0.1 ····

Lasso Regression

- Cost function에 L1 regularization 항을 추가
- Regularization?: overfitting 을 막기 위해 사용하는 기법, 중요하지 않은 계수 θ 를 0에 가깝게 만들어 모델의 복잡성을 줄인다.
- $J(\theta_0, \ \theta_1) = \frac{1}{2m} (\sum_{i=1}^m (h(x_i) y_i)^2) + \frac{\lambda}{2} \sum_{j=1}^n |\theta_j|$

Ridge Regression

• Cost function에 L2 regularization 항을 추가

•
$$J(\theta_0, \ \theta_1) = \frac{1}{2m} \left(\sum_{i=1}^m (h(x_i) - y_i)^2 \right) + \frac{\lambda}{2} \sum_{j=1}^n \theta_j^2$$

•
$$\theta_j \coloneqq \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \left(\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y_i \right) x_j^{(i)} \right)$$

Elastic Net Regression

- Ridge 회귀는 계수값을 0에 가깝게 만들지만 0은 아니므로 모델이 여전히 복잡할 수 있음
- Lasso 회귀는 너무 많은 계수를 0으로 만들어 모델의 정확성이 떨어질 수 있음

• 그러면 두 개를 같이 써보자!

Elastic Net Regression

•
$$J(\theta_0, \ \theta_1) = \frac{1}{2m} (\sum_{i=1}^m (h(x_i) - y_i)^2) + \frac{\lambda_2}{2} \sum_{j=1}^n \theta_j^2 + \frac{\lambda_1}{2} \sum_{j=1}^n |\theta_j|$$

• λ_1 과 λ_2 의 비율을 조정해 가며 모델을 만든다

상황에 맞게 계수를 정하는 것이 중요