MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2017/2018

POC0335 – ORGANIC CHEMISTRY

(Foundation in Life Sciences students only)

4 June 2018 2.30 p.m. – 4.30 p.m.

(2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 5 pages only excluding the cover page.
- 2. Answer ALL questions.
- 3. Please write all your answers in the answer booklet provided.
- 4. Distribution of marks for each question is given.

Instructions: Answer ALL questions.

Question 1 [10 marks]

a. How many primary, secondary, tertiary and quaternary carbon atom are there in the following molecule? $[4 \times \frac{1}{2} \text{ mark}]$

- b. Give the structural formulae of the products formed when 2-methyl-2-butene reacts with: $[2 \times 1 \text{ mark}]$
 - (i) hydrogen in the presence of platinum
 - (ii) steam in the presence of phosphoric acid
- c. (i) Give the formulae of the three structural isomers of an alkene with the molecular formula of C_4H_8 .
 - (ii) One of the above isomers shows a type of stereoisomerism. Draw the structure of the stereoisomers and suggest how these stereoisomers can be distinguished.

 [2 marks]

- d. Show by giving equations and conditions for the conversions of 1-propanol to 2-propanol. [2 marks]
- e. Arrange the following compounds in order of increasing boiling points. Explain your answer. [1 mark]

CH₃CH₂CH₂CH₂CH₂CH₃, HOCH₂CH₂CH₂CH₂OH, CH₃CH₂CH₂CH₂CH₂OH

Question 2 [10 marks]

- a. Give the structures of the monosubstituted products formed when benzene is treated with the following under suitable conditions. [2 × 1 mark]
 - (i) CH₃CH2CHCH₃ Cl

- b. Write equations (show structures) for these reactions.
 - (i) oxidation of 4-ethyl-methylbenzene with hot acidified K₂Cr₂O₇

[1 mark]

(ii) conversion of benzene to benzoic acid

[2 marks]

c. Correct the following incorrect names:

 $[3 \times 1 \text{ mark}]$

- (i) 2,4,6-tribromobenzene
- (ii) 3-hydroxynitrobenzene
- (iii) para-methylbromobenzene
- d. Normally, benzene gives electrophilic substitution reactions rather than electrophilic addition reactions although it contains double bonds. Explain briefly about this statement. [1 mark]
- e. Nitration reactions of aromatic system usually give only one mononitro substitution product even when an excess of nitrating reagent is used. Explain briefly about this statement. [1 mark]

Question 3 [10 marks]

a. Give IUPAC name for the following compounds:

 $[4 \times 1 \text{ mark}]$

(i)

$$\stackrel{\circ}{\bigcirc} - \stackrel{\circ}{\bigcirc} - C - CH_2CH_2CH_3$$

(iii)

(iv)

(ii)

- b. Draw the structures of aldehydes or ketones that give these alcohols on reduction with lithium aluminium hydride. [3 × 1 mark]
 - (i) 2-phenylethanol
 - (ii) 2,5-heptadiol
 - (iii) 4-chlorophenylmethanol
- c. Compare briefly the physical properties (boiling point and solubility in water) of aldehydes and ketones with other nonpolar compounds of comparable molecular weight.

 [1 mark]
- d. Which of the following compounds are acetals?

[1 mark]

(1)

(2)

(3)

e. Identify the secondary amines from the following structures:

[1 mark]

CH₃ | CH₃CHCH₂NH₂

(1)

(2)

(3)

Question 4 [10 marks]

a. Name the carboxylic acids and alcohols from which each of the following ester is derived.
 [2 × 1 mark]

(i) (ii) $COOCH_3$ COOCH₂CH=CH₂

- b. Draw the structures of the organic products in the following reactions. $[3 \times 1 \text{ mark}]$
 - (i) 4-chlorobenzoic acid with aqueous sodium hydroxide.
 - (ii) 2-chlorobenzoic acid with aqueous sodium carbonate
 - (iii) ethanoic acid with ammonia
- c. Which of the compounds in each of the following pairs is more acidic? $[2 \times \frac{1}{2} \text{ mark}]$

(i) O O ∥ ∥ CH₃COH or ClCH₂COH

(ii) O O ∥ HCOH or CH₃COH

d. Give the IUPAC name for the following structures:

 $[3 \times 1 \text{ mark}]$

(i) O O H_3C C H_2 -C H_2 -C H_2 -C H_2 -C H_2 -OH

(ii) H_2N COH C_6H_1 C_{11} C_{12} $C_{$

e. Carboxylic acids have higher boiling points than other types of organic compounds of comparable molecular weight. Explain briefly about this statement. [1 mark]

Question 5 [10 marks]

a. Convert the chair conformation below to a Haworth projection (draw only the β -anomer) and then to a Fischer projection (draw only the D-monosaccharide).

 $[2 \times 1 \text{ mark}]$

- b. For the following mixtures of amino acids, predict the direction of each component during electrophoresis. [Isoelectric point: glutamic acid = 3.08; phenylalanine = 5.48; valine = 5.96; histidine = 7.59] [2 × 1 mark]
 - (i) Glutamic acid and phenylalanine at pH 5.0.
 - (ii) Valine and histidine at pH 7.59.
- c. Much research has been carried out in recent years investigating the exact structure of silk. A silk fibre is composed of many identical protein chains, which are mainly made from the amino acids glycine, alanine and serine, with smaller amounts of four other amino acids.

$$NH_2-CH_2-COOH$$
 $NH_2-CH-COOH$ $NH_2-CH-COOH$ CH_3 CH_2OH CH_3 CH_2OH CH_3 CH_3 CH_3 CH_3 CH_3

(i) Amino acids can exist as zwitterions. Draw the zwitterionic structure for glycine.

[1 mark]

- (ii) Draw the structural formula of a portion of the silk protein, showing three amino acid residues (Gly-Ala-Ser). Label a peptide bond on your structure. [2 marks]
- d. Figure below shows the structure of D-Mannose. Draw structures for the products you would expect to obtain from the reaction of D-Mannose with each of the following reagents.

 [3 × 1 mark]
 - (i) NaBH₄

 (ii) Oxidizing agent in basic solution

 (iii) Enzyme-catalyzed oxidation

 HO-C-H

 H-C-OH

 H-C-OH

 CH₂OH

End of Paper