EECS 391 Intro to Al

Reasoning with Continuous Variables

L17 Tue Nov 7

How do you model a world?

How to you reason about it?

Bayesian inference for continuous variables

- The simplest case is true or false propositions
- Can easily extend to categorical variables
- The probability calculus is the same for continuous variables

An example with distributions: coin flipping

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ , or 0 (tails) with probability I θ .
- The binomial distribution specifies the probability of the total # of heads, y, out of n trials:

$$p(y|\theta, n) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

The binomial distribution

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ , or 0 (tails) with probability I θ .
- The binomial distribution specifies the probability of the total # of heads, y, out of n trials:

$$p(y|\theta, n) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

The binomial distribution

- In Bernoulli trials, each sample is either I (e.g. heads) with probability θ , or 0 (tails) with probability I θ .
- The binomial distribution specifies the probability of the total # of heads, y, out of n trials:

$$p(y|\theta, n) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

Applying Bayes' rule

- Given n trials with k heads, what do we know about θ ?
- We can apply Bayes' rule to see how our knowledge changes as we acquire new observations:

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)} \int\limits_{\substack{\text{posterior}\\ \text{constant}}} p(y|\theta,n)p(\theta|n) d\theta$$

- We know the likelihood, what about the prior?
- Uniform on [0, 1] is a reasonable assumption, i.e. "we don't know anything".
- What is the form of the posterior?
- In this case, the posterior is just proportional to the likelihood:

$$p(\theta|y,n) \propto \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

Bayesian inference with continuous variables

Updating our knowledge with new information

Now we can evaluate the poster just by plugging in different values of y and n.

$$p(\theta|y,n) \propto \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

• Check: What goes on the axes?

Evaluating the posterior

• What do we know initially, before observing any trials?

What is our belief about θ after observing one "tail"? How would you bet? Is the p(θ >0.5) less or greater than 0.5? What about p(θ >0.3)?

Now after two trials we observe I head and I tail.

3 trials: I head and 2 tails.

4 trials: I head and 3 tails.

• 5 trials: I head and 4 tails.

Do we have good evidence that this coin is biased? How would you quantify this statement?

$$p(\theta > 0.5) = \int_{0.5}^{1.0} p(\theta|y, n) d\theta$$

Can we substitute the expression above?

No! It's not normalized.

Evaluating the normalizing constant

• To get proper probability density functions, we need to evaluate p(y|n):

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

Bayes in his original paper in 1763 showed that:

$$p(y|n) = \int_0^1 p(y|\theta, n)p(\theta|n)d\theta$$
$$= \frac{1}{n+1}$$

$$\Rightarrow p(\theta|y,n) = \binom{n}{y} \theta^y (1-\theta)^{n-y} (n+1)$$

More coin tossing

After 50 trials: 17 heads and 33 tails.

What's a good estimate of θ ?

There are many possibilities.

A ratio estimate

• Intuitive estimate: just take ratio $\theta = 17/50 = 0.34$

Estimates for parameter values

- maximum likelihood estimate (MLE)
 - derive by taking derivative of likelihood, setting result to zero, and solving

$$\frac{\partial \mathcal{L}}{\theta} = \binom{n}{y} \theta^y (1 - \theta)^{n - y} = 0$$

- ignores prior (or assumes uniform prior)
- $\theta^{\mathrm{ML}} = \frac{y}{n} \qquad \qquad \text{(derived on board)}$
- Maximum a posteriori (MAP)
 - derive by taking derivative of posterior, setting result to zero, and solving

The maximum a posteriori (MAP) estimate

- This just picks the location of maximum value of the posterior
- In this case, maximum is also at $\theta = 0.34$.

A different case

- What about after just one trial: 0 heads and I tail?
- MAP and ratio estimate would say 0.

• What would a better estimate be?

Does this make sense?

The expected value estimate

We defined the expected value of a pdf in the previous lecture:

$$E(\theta|y,n) = \int_0^1 \theta p(\theta|y,n) d\theta$$

$$= \frac{y+1}{n+2}$$

$$E(\theta|y=0,n=1) = \frac{1}{3}$$
 What happens for zero trials?
$$\theta$$

Much more coin tossing

• After 500 trials: 184 heads and 316 tails.

What's your guess of θ ?

Much more coin tossing

After 5000 trials: 1948 heads and 3052 tails.

True value is 0.4.

Posterior contains true estimate.

Is this always the case?

Laplace's example: proportion female births

- A total of 241,945 girls and 251,527 boys were born in Paris from 1745-1770.
- Laplace was able to evaluate the following

$$p(\theta > 0.5) = \int_{0.5}^{1.0} p(\theta|y, n) d\theta \approx 1.15 \times 10^{-42}$$

Laplace and the mass of Saturn

• Laplace used "Bayesian" inference to estimate the mass of Saturn and other planets. For Saturn he said:

It is a bet of 11000 to 1 that the error in this result is not within 1/100th of its value

Mass of Saturn as a fraction of the mass of the Sun	
Laplace (1815)	NASA (2004)
3512	3499.I

(3512 - 3499.1) / 3499.1 = 0.0037

Laplace is still wining.

Applying Bayes' rule with an informative prior

- What if we already know something about θ ?
- We can still apply Bayes' rule to see how our knowledge changes as we acquire new observations:

$$p(\theta|y,n) = \frac{p(y|\theta,n)p(\theta|n)}{p(y|n)}$$

- But now the prior becomes important.
- Assume we know biased coins are never below 0.3 or above 0.7.
- To describe this we can use a beta distribution for the prior.

A beta prior

• In this case, before observing any trials our prior is not uniform:

Coin tossing revisited

- What is our belief about θ after observing one "tail"?
- With a uniform prior it was:

What will it look like with our prior?

Coin tossing with prior knowledge

• Our belief about θ after observing one "tail" hardly changes.

• After 50 trials, it's much like before.

• After 5,000 trials, it's virtually identical to the uniform prior.

What did we gain?

