Advancing Food Volume and Weight Measurement: Integrative Approaches for Precision Portion Estimation

報告人:魏淩軒 衛政組

指導老師:張語恬老師

評論老師:蘇遂龍老師

報告日期:114/01/06

- 1 Introduction
- 2 Paper Chosen
- 3 Methods
- 4 Results
- 5 Discussion
- 6 Conclusion
- 7 Comment

Table of contents

Introduction

Dietary Intake and Chronic Diseases

A daily healthy diet and intake of essential nutrients can significantly affect the modern

C. Koliaki, S. Liatis, and A. Kokkinos. (2022)

Diet Intake and Disease Management

- Dietary portion management is one of the key to preventing and managing diabetes, cardiovascular diseases, and obesity.
- Maintaining an appropriate dietary intake supports and improves metabolic health,
 aids in weight control, and helps prevent chronic diseases.

Manuela Neuenschwander, Aurélie Ballon, Katharina S Weber et al.(2019)

Diet Management and Dietary Assessment

- With AI, the Internet of Things (IoT) and computer vision are allowed to use food applications to monitor and record their daily diet.
- Important parts in dietary assessment system.

Food Image and Nutrition Databases
Food Classes, Images, Type of Cuisine, Image Quality, Source

Y. Matsuda, H. Hoashi, and K. Yanai. (2012)

Food Classification Systems
Traditional Machine Learning, Deep Learning

L. Xiao, T. Lan, D. Xu, W. Gao, and C. Li.(2021)

Food Volume and Weight Estimation Systems

Stereo-based Approaches, Depth Camera, Pre-build shape templates, Perspective Transformation, Deep learning

P. Pouladzadeh, S. Shirmohammadi, and R. Al-Maghrabi.(2014)

Vision-based Dietary Assessment System

Percentage of Portion Estimation Approaches

Motivation

- The increasing prevalence of chronic diseases necessitates more accurate and accessible tools for diet monitoring.
- Current methods often lack precision or require specialized equipment that may not be accessible to the general population.

Fotios S. Konstantakopoulos, Eleni I. Georga, I. Fotiadis et al. (2024)

 There is potential to develop systems that are both accurate and user-friendly, making it easier for individuals to manage their daily diet effectively.

AIM

• To <u>compare</u> and <u>evaluate</u> three innovative systems designed for food volume and weight estimation.

Technique of food volume and weight estimation

Comparison

Evaluation

Effectiveness, strengths and challenges of measurement methods

Paper Chosen

Paper Chosen

Title	Authors	IF/Rank	Country	Journal
Paper 1 Eliminate the hardware: Mobile terminals-oriented food recognition and weight estimation system	Qinqiu Zhang et al(2022)	6.58/Q1	**	frontiers in Nutrition
Paper 2 Food Volume Estimation by Integrating 3D Image Projection and Manual Wire Mesh Transformations	Shamus P. Smith et al(2022)	5.8/Q1	* * *	EEEE ACCESS *********************************
FVEstimator: A novel food volume estimator Wellness model for calorie measurement and healthy living	Prachi Kadam et al(2022)	5.2/Q1	******* ******* ******* ********	Wheasurement Measurement Confederation Manusement Manusement Confederation Manusement Confederation Manusement Confederation Manusement Man

Methods

Overview of Methods

Title	Data Source of Images	Technique	Model
Paper 1 Eliminate the hardware: Mobile terminals-oriented food recognition and weight estimation system	Aliyun Cloud	Convex lens imaging principle	 Convolutional Neural Network (CNN)
Paper 2 Food Volume Estimation by Integrating 3D Image Projection and Manual Wire Mesh Transformations	• VISIDA	 3D Image Projection Manual Wire Mesh Reference Objects	Machine Learning
Paper 3 FVEstimator: A novel food volume estimator Wellness model for calorie measurementand healthy living	Established by the authorsCrowdsourcing	 Pixel Per Metric Method Reference Objects Hemispherical Equation 	Mask-basedR-CNNResNet model

Paper 1: Simplified Overview

Paper 1: Food Calculation Model (CNN)

Paper 1: Area Measurement

物距u、像距v 和焦距f $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$

Paper 2: Simplified Overview

Paper 2: Food Volume Estimation (3D Image Projection)

Capture 2D image and identify corners of reference object Generate 3D reference object and define 3D projection

Cover target food item with wire mesh (in 2D space)

Project wire mesh into 3D scene

Resize wire mesh (in 3D space) and generate volume

Paper 2: Food Volume Estimation (3D Image Projection)

BOWL 1 (67)

DOME 1 (26)

MED BOX 1 (700)

LRG BOX 1 (920)

Paper 3: Simplified overview (Mask-RCNN)

Paper 3: Food Volume Estimation

(Reference Objects)

Paper 3:

Food Volume estimation

Results

Food image area-actual food weight relationship model.

Character	Sample size	Pearson correlation	R^2	Linear correlation formula
Block/Thick bar	204	0.986**	0.971**	y = 2.5757x - 49.03
Slice/Silk	204	0.937**	0.878**	y = 1.9684x - 46.3
Grain/Granule	204	0.972**	0.944**	y = 2.2069x - 62.13
p < 0.05, p < 0.01.				

Scatter plot of food image area-actual food weight relationship.

Results of the first estimate with the training images with single, pair and triple estimate combinations. (Absolute Percentage Deviation)

$$APD = \frac{|Actual\ Value - Predicted\ Value|}{Actual\ Value} \times 100\%$$

Results of the second estimate, after volume feedback, with the training images with single, pair and triple estimate combinations.

Results of the testing trials for non-food objects over mean absolute percentage deviation and percentage error.

Results of the testing trials for single food items over mean absolute percentage deviation and percentage error.

Results of the testing trials with multiple food objects on one plate. Each food item was considered individually.

Results of testing trials with multiple food objects <u>served discretely</u>. Each food item was considered individually.

Volume estimation.

Table 1 Volume estimation.

Scenario	Shape of food item	Actual volume (Vol_A)	Estimated volume (Vol_E)	Accuracy
1	Amorphous	270.615	299.154	90.46% [37]
2	Convex	441.036	485.14	90.9% [27]
3	Regular(square)	130	132.1	98.5% [20]
4	Regular(circle)	79.0321	78.125	98.9% [27]

State-of-art algorithms comparison with FVEstimator model

Table 2
State-of-art algorithms comparison with FVEstimator model.

Scenario	Shape of food item	Actual calories	Estimated calories	Accuracy (FVEstimator)	Accuracy existing method
1	Amorphous	660	733	90.05%	89.83% [37]
2	Convex	1078	1185	90.98%	87% [27]
3	Regular(square)	344	349.8	98.4%	99.81% [20]
4	Regular(circle)	36.718	37.145	98.9%	91% [27]

Performance evaluation representation of FVEstimator Wellness model.

Table 3Performance evaluation representation of FVEstimator Wellness model.

Measure	Amorphous shape	Convex shape	Regular shape
Sensitivity	0.9259	0.9333	0.9836
Specificity	0.875	0.8889	0.9524
Precision	0.9091	0.875	0.9677
Negative predictive value	0.8974	0.9412	0.9756
Accuracy	0.9043	0.9091	0.9709
F1 score	0.9174	0.9032	0.9756
Matthews correlation coeffi- cient	0.8037	0.8192	0.939
False positive rate	0.125	0.1111	0.0476
False discovery rate	0.0909	0.125	0.0323
False negative rate	0.0741	0.0667	0.0164

Discussion

Discussion

Paper	Technique	Comparison & Evaluation	
★ **	Paper 1 • Convex lens imaging principle	Mobile-based food weight estimation without specialized hardware.	
Paper 1		Varying device specifications and difficulties with mixed or irregular dish remain challenges.	
Panor 2	• 3D Image Projection • Manual Wire Mesh • Reference Objects	Combination of 3D imaging and manual mesh transformations achieves high accuracy with irregular dish.	
raper 2		• Requires labor-intensive processes.	
		FVEstimator estimates volume for different scenarios, such as amorphous-shaped foods.	
 Reference Objects Hemispherical Equation 	Its reliance on controlled datasets(predefined food) limits real-world application.		

Discussion-Strengths

Mobile-based approach reduced hardware dependency, enhancing system accessibility and affordability.

Lameck Mbangula Amugongo, Alexander Kriebitz, Auxane Boch et al. (2022)

3D image approach provided high precision through user adjustments, ideal for professional settings.

Jamalia Sultana, Benzir Md Ahmed, A.K. Obidul et al. (2023)

Integrated health management model enabled calorie estimation and lifestyle support, expanding its application scope.

Fotios S. Konstantakopoulos, Eleni I. Georga, I. Fotiadis et al.(2024)

Discussion-Challenges

Sensitivity of mobile-based approach to lighting and background

variations.

Manual mesh adjustment in the 3D method may increase user burden.

Jamalia Sultana, Benzir Md Ahmed, A.K. Obidul et al. (2023)

Lameck Mbangula Amugongo, Alexander Kriebitz, Auxane Boch et al. (2022)

Integrated model requires extensive data to enhance predictive accuracy.

Fotios S. Konstantakopoulos, Eleni I. Georga, I. Fotiadis et al.(2024)

Conclusion

Conclusion

• Each method offers unique features, providing innovative solutions tailored to different application scenarios.

 These systems demonstrate how technological advancements can support precision nutrition estimation and dietary monitoring, offering new possibilities for health management

Comment

Comment

- 現行國、內外已有開發藉由圖片預測食物體積、質量以分析營養成分的應用程式,但針對微量元素與特定疾病(如腎臟相關疾病)進行飲食建議及管理,尚未發展完全。
- 就醫時的醫囑與衛教單,往往僅能提供單一化的飲食建議,且無法進行即時提醒和主動推播適合的飲食選項,讓患者難以持續追蹤及調整日常飲食;而透過食物餐盤辨識功能,除了可以提供即時且個人化的膳食建議外,更同時能促進長期飲食管理與健康追蹤。

Thank you!