Customer_Experience_in_R

R Programming: Customer Experience in R

Example

```
# Importing the data.table
library("data.table")
library(stats)
library(psych)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
       %+%, alpha
# Reading our dataset
# ---
hospitality_dt <- fread('http://bit.ly/HospitalityDataset')</pre>
View(hospitality_dt)
attach(hospitality_dt)
# What is the structure of the data?
#
head(hospitality_dt)
     {\tt user\_id\ gender\ timestamp\ survey\_completion\ score\ amount}
##
                                                                      branch
## 1: 621602 M 11:58.1
                                                        1320
                                                               Nairobi South
                                       TIMEDOUT
                 F 45:20.0
## 2: 242833
                                       FINISHED
                                                    5
                                                        1460 Nairobi Central
                                                               Nairobi South
## 3: 621602
                 M 00:36.0
                                       TIMEDOUT
                                                    - 1270
## 4: 621602
                 M 10:15.0
                                                    - 700
                                                               Nairobi North
                                       TIMEDOUT
                 M 54:58.1
## 5: 6345755
                                       TIMEDOUT
                                                         680
                                                               Nairobi North
                                                         460
## 6: 751525
                 M 35:52.7
                                       TIMEDOUT
                                                                Nairobi West
# How many variables and observations are there?
ncol(hospitality_dt)
## [1] 7
nrow(hospitality_dt)
## [1] 296852
#learn more about the dataset
help(hospitality_dt)
## No documentation for 'hospitality_dt' in specified packages and libraries:
```

```
## you could try '??hospitality_dt'
??hospitality_dt
## starting httpd help server ... done
str(hospitality_dt)
## Classes 'data.table' and 'data.frame': 296852 obs. of 7 variables:
                    : int 621602 242833 621602 621602 6345755 751525 6591998 401557 17887026 169745
## $ user id
## $ gender
                      : chr
                             "M" "F" "M" "M" ...
                             "11:58.1" "45:20.0" "00:36.0" "10:15.0" ...
## $ timestamp
                      : chr
                             "TIMEDOUT" "FINISHED" "TIMEDOUT" "TIMEDOUT" ...
## $ survey_completion: chr
                             "-" "5" "-" "-" ...
## $ score
                      : chr
                      : int 1320 1460 1270 700 680 460 570 1820 260 690 ...
## $ amount
## $ branch
                      : chr "Nairobi South" "Nairobi Central" "Nairobi South" "Nairobi North" ...
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt)
## [1] "data.table" "data.frame"
typeof(hospitality_dt)
## [1] "list"
length(hospitality_dt)
## [1] 7
names(hospitality_dt) #display variable names
                          "gender"
## [1] "user_id"
                                              "timestamp"
## [4] "survey_completion" "score"
                                              "amount"
## [7] "branch"
#attributes(hospitality_dt) #names(hospitality_dt), class(hospitality_dt), row.names(hospitality_dt)
summary(hospitality_dt)
                         gender
##
      user_id
                                          timestamp
                                                           survey_completion
                      Length: 296852
                                         Length: 296852
                                                           Length:296852
## Min.
         : 61047
## 1st Qu.: 374968
                      Class :character
                                         Class :character
                                                           Class : character
                                                           Mode :character
## Median : 688580
                     Mode :character
                                        Mode :character
## Mean
         : 2940497
## 3rd Qu.: 1257064
## Max.
          :18234387
##
      score
                          amount
                                         branch
## Length:296852
                     Min. : 1
                                      Length:296852
## Class:character 1st Qu.: 420
                                      Class : character
                      Median: 770
## Mode :character
                                      Mode : character
##
                      Mean : 1079
##
                      3rd Qu.: 1360
                      Max.
                             :66250
#distribution of input variables
table(hospitality_dt$gender)
##
##
       F
```

М

```
## 145009 151843
table(hospitality_dt\score)
##
##
                      1
                            10
                                     2
                                            3
                                                   4
                                                          5
                                                                  6
                                                                         7
                                                                                8
## 260450
            1161
                    333 23713
                                   358
                                          343
                                                 368
                                                         869
                                                                688
                                                                      1495
                                                                             3487
##
        9
##
     3587
table(hospitality_dt$branch)
##
##
              #N/A Nairobi Central
                                       Nairobi East
                                                      Nairobi North
                                                                       Nairobi South
##
                              53831
                                              20208
                                                               58088
                                                                               46222
##
      Nairobi West
                         Satellite
             79606
                              38896
##
# What is the missing data?
sum(is.na(hospitality_dt))
## [1] 0
# NB: Let's deal with "-" in our scores variable
# Assumption is that those customers did not fill in the survey
hospitality_dt$score[hospitality_dt$score == "-"] <- NA
head(hospitality_dt)
##
      user_id gender timestamp survey_completion score amount
                                                                         branch
## 1: 621602
                                         TIMEDOUT <NA>
                                                                  Nairobi South
                   М
                       11:58.1
                                                          1320
## 2: 242833
                   F
                       45:20.0
                                         FINISHED
                                                      5
                                                          1460 Nairobi Central
## 3: 621602
                       00:36.0
                                                           1270
                                                                  Nairobi South
                   М
                                         TIMEDOUT
                                                   <NA>
## 4: 621602
                   Μ
                       10:15.0
                                         TIMEDOUT
                                                   <NA>
                                                           700
                                                                  Nairobi North
## 5: 6345755
                       54:58.1
                                         TIMEDOUT
                                                   <NA>
                                                            680
                                                                  Nairobi North
                       35:52.7
                                                            460
                                                                   Nairobi West
## 6: 751525
                   М
                                         TIMEDOUT <NA>
# Getting rid of missing data, check size and preview
# Size of original dataset was 296852
hospitality_dt1 <- na.omit(hospitality_dt)
nrow(hospitality_dt1)
## [1] 36402
head(hospitality_dt1)
##
       user_id gender timestamp survey_completion score amount
                                                                          branch
## 1:
        242833
                    F
                        45:20.0
                                          FINISHED
                                                            1460 Nairobi Central
                                                       5
## 2: 1697459
                    Μ
                        39:01.6
                                          TIMEDOUT
                                                       9
                                                             690
                                                                    Nairobi East
## 3: 17144551
                    F
                        55:19.5
                                          TIMEDOUT
                                                       0
                                                            1380 Nairobi Central
## 4: 17887216
                    F
                        00:38.1
                                          TIMEDOUT
                                                       9
                                                             990
                                                                   Nairobi South
## 5:
        630299
                    F
                        03:49.9
                                          TIMEDOUT
                                                       9
                                                             840
                                                                   Nairobi West
## 6:
        607011
                        20:46.1
                                          TIMEDOUT
                                                      10
                                                             460
                                                                   Nairobi South
View(hospitality dt1)
attach(hospitality_dt1)
```

```
## The following objects are masked from hospitality_dt:
##
      amount, branch, gender, score, survey_completion, timestamp,
##
##
      user_id
str(hospitality_dt1)
## Classes 'data.table' and 'data.frame': 36402 obs. of 7 variables:
## $ user_id
                  : int 242833 1697459 17144551 17887216 630299 607011 17249001 6345132 17237328
                             "F" "M" "F" "F" ...
## $ gender
                      : chr
                             "45:20.0" "39:01.6" "55:19.5" "00:38.1" ...
## $ timestamp
                      : chr
## $ survey_completion: chr
                             "FINISHED" "TIMEDOUT" "TIMEDOUT" "TIMEDOUT" ...
                             "5" "9" "0" "9" ...
                      : chr
                             1460 690 1380 990 840 460 1200 2230 1080 1110 ...
## $ amount
                      : int
                             "Nairobi Central" "Nairobi East" "Nairobi Central" "Nairobi South" ...
## $ branch
                      : chr
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt1)
## [1] "data.table" "data.frame"
typeof(hospitality_dt1)
## [1] "list"
length(hospitality dt1)
## [1] 7
names(hospitality_dt1) #display variable names
## [1] "user id"
                          "gender"
                                              "timestamp"
## [4] "survey_completion" "score"
                                              "amount"
## [7] "branch"
summary(hospitality_dt1)
##
      user_id
                                          timestamp
                                                            survey_completion
                         gender
## Min. : 61047
                      Length:36402
                                         Length:36402
                                                            Length: 36402
## 1st Qu.: 473412
                      Class :character
                                         Class : character
                                                            Class : character
## Median : 941226
                     Mode :character
                                         Mode :character
                                                            Mode :character
         : 4362453
## Mean
## 3rd Qu.: 2616159
## Max.
          :18234387
                                         branch
##
      score
                          amount
## Length:36402
                                      Length: 36402
                      Min. : 1
## Class:character 1st Qu.: 430
                                      Class : character
## Mode :character
                      Median: 800
                                      Mode :character
##
                      Mean
                           : 1123
##
                      3rd Qu.: 1420
##
                      Max.
                             :33520
#distribution of input variables
table(hospitality_dt1$gender)
##
##
      F
## 18138 18264
```

table(hospitality_dt1\$score) ## ## ## 333 23713 table(hospitality_dt1\$amount)

##	85	1	77	1	92	1	93	97	1	82	83	67	1
##	1440	1450	1460	1470	1480	1485	1490	1493	1500	1510	1520	1530	1540
##	91	56	72	71	88	1	55	1	119	65	66	59	80
##	1550	1560	1565	1570	1575	1580	1584	1590	1594	1600	1608	1610	1620
##	65	83	1	64	1	49	1	53	1	79	1	52	58
##	1630	1640	1645	1650	1659	1660	1670	1680	1690	1700	1705	1706	1710
##	59	64	1	54	1	73	54	56	47	72	1	1	55
##	1712	1720	1730	1735	1740	1750	1751	1760	1770	1780	1790	1800	1810
##	1	59	59	1	52	61	1	65	48	60	48	63	60
##	1820	1826	1830	1836	1840	1850	1860	1870	1880	1890	1900	1910	1920
##	52	1	49	1	59	46	61	51	48	39	67	50	61
##	1930	1935	1940	1950	1960	1970	1980	1984	1990	2000	2010	2020	2030
##	31	1	52	53	54	33	68	1	31	132	43	47	45
##	2040	2050	2060	2064	2070	2080	2082	2090	2100	2110	2112	2120	2130
##	56	33	38	1	44	46	1	55	40	38	1	43	37
##	2140	2150	2160	2170	2180	2190	2200	2210	2220	2230	2240	2248	2250
##	48	39	45	55	62	48	57	41	38	43	46	1	35
##	2260	2270	2272	2280	2290	2300	2305	2310	2320	2330	2340	2346	2350
##	50	32	1	55	44	58	1	43	53	43	51	1	45
##	2360	2370	2380	2390	2400	2410	2420	2424	2430	2440	2450	2460	2470
##	51	39	45	26	47	41	38	1	45	50	36	54	50
##	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2592
##	33	29	56	29	46	27	31	27	34	41	48	18	1
##	2600	2610	2620	2630	2632	2640	2649	2650	2660	2670	2680	2690	2700
##	34	42	32	27	1	45	1	24	39	29	38	23	31
##	2710 25	2720 23	2727 1	2730 22	2740 24	2750 23	2760 30	2770 29	2780 27	2790 27	2800 30	2810 23	2820 21
## ##	2824	2830	2840	2850	2860	2870	2880	2890	2900	2910	2920	2930	2940
##	2024	2030	26	18	2000	14	30	18	22	2310	17	2930	2340
##	2950	2960	2970	2971	2980	2990	3000	3010	3020	3030	3035	3040	3050
##	16	18	15	1	20	23	46	10	14	17	1	15	14
##	3060	3070	3080	3090	3100	3110	3120	3130	3140	3150	3160	3170	3180
##	12	18	11	14	6	13	16	13	14	22	10	11	10
##	3190	3200	3210	3220	3230	3240	3250	3260	3270	3280	3290	3300	3310
##	12	27	15	16	9	12	15	10	9	14	13	16	10
##	3320	3330	3340	3350	3360	3370	3376	3380	3390	3400	3410	3420	3430
##	11	7	12	9	8	14	1	13	11	11	7	8	6
##	3440	3450	3460	3470	3480	3490	3500	3510	3520	3530	3540	3550	3560
##	12	8	6	11	11	14	15	3	9	9	12	8	9
##	3570	3580	3590		3610	3620	3630	3640	3650	3660	3670	3680	3690
##	8	15	10	47	5	7	7	5		16		8	6
##	3700	3710	3720	3730	3740	3750	3760	3770	3780	3790	3800		3820
##	27	6	11	7	8	7	5	6	9	5	8		3
##	3830	3840	3848	3850	3860	3870	3880	3890	3900	3910	3920		3940
##	9	9	1	3	6	6	8		9	11		9	7
##	3950	3960	3970	3980	3990	3999	4000	4010	4020	4030	4040	4050	4060
##	2	8	8	6	8	1		5	4	4	5		8
##	4070	4080	4090	4100	4110	4120	4130	4140	4150	4160	4170		4190
##	9	5		4020	5	5		8		6		4	10
## ##	4200 9	4210 9	4220	4230	4240 4	4250	4260	4270	4280	4290	4300	4310	4320 3
## ##	9 4330	9 4340	4 4350	4360	4 4370	8 4380	6 4400	6 4410	8 4420	1 4430	7 4440	1 4450	3 4460
##	4330	4340	4350		4370		3			4430	4440		4460
##					4500								4580
1T 1 T	1102	1110	1400	1400	1000	1010	1020	1000	10-10	1000	1000	1010	1000

```
##
                             6
                                    5
                                           4
                                                  2
                                                         3
               1
                                                                       1
                  4610
                         4620
                                4630
                                       4650
                                              4660
                                                     4670
                                                             4680
                                                                    4690
                                                                           4700
                                                                                  4710
                                                                                         4720
##
    4590
           4600
##
                             3
                                    2
                                           1
                                                  6
                                                         1
                                                                       2
                                                                              5
                                                                                     2
                                                                                            7
                                4770
                                       4780
                                                      4800
                                                                           4830
                                                                                  4840
                                                                                         4850
##
    4730
           4740
                  4750
                         4760
                                              4790
                                                             4810
                                                                    4820
##
        3
               3
                      2
                             1
                                    2
                                           1
                                                  3
                                                         5
                                                                4
                                                                       2
                                                                              1
                                                                                     5
           4870
                  4880
                         4890
                                4900
                                       4910
                                              4920
                                                      4930
                                                             4940
                                                                    4950
                                                                           4960
                                                                                  4972
                                                                                         4980
##
    4860
                             2
##
        4
               4
                      3
                                    3
                                           4
                                                  4
                                                         2
                                                                       1
                                                                              2
                                                                                     1
                                               5050
##
    4990
           5000
                  5010
                         5020
                                5030
                                       5040
                                                      5060
                                                             5070
                                                                    5080
                                                                           5090
                                                                                  5100
                                                                                         5110
##
        4
              14
                      4
                             1
                                    3
                                           2
                                                  2
                                                         2
                                                                2
                                                                       3
                                                                              2
                                                                                     1
                                                                                             2
                                5160
                                       5170
                                              5180
                                                                                  5230
                                                                                         5240
##
    5120
           5130
                  5140
                         5150
                                                      5190
                                                             5200
                                                                    5210
                                                                           5220
##
        2
               3
                      1
                             2
                                    3
                                           4
                                                  2
                                                                       2
                                                                              3
                                                                                     1
                                                         1
                                                                1
    5250
           5260
                  5280
                         5290
                                5300
                                       5310
                                               5320
                                                      5330
                                                             5340
                                                                    5350
                                                                           5360
                                                                                  5370
                                                                                         5380
##
##
                             4
                                    2
                                           3
                                                  2
                                                                4
                                                                       4
                                                                              2
                                                                                     1
                                                                                            3
        2
               1
                      1
                                                         1
                                5430
                                       5440
                                                      5460
                                                             5480
                                                                    5490
                                                                           5500
##
    5390
           5400
                  5410
                         5420
                                               5450
                                                                                  5510
                                                                                         5520
##
                                    4
                                           4
                                                                       2
                                                                                     2
        2
               3
                      1
                             1
                                                  3
                                                         1
                                                                5
                                                                              4
                                                                                             1
##
    5530
           5540
                  5550
                         5560
                                5570
                                       5580
                                               5590
                                                      5600
                                                             5610
                                                                    5620
                                                                           5630
                                                                                  5640
                                                                                         5650
                                           3
                                                                       2
                                                                                     2
##
                      2
                                    3
                                                  2
                                                                3
                                                                                             4
        2
               .3
                             1
                                                         1
                                                                              1
##
    5660
           5670
                  5680
                         5690
                                5710
                                       5730
                                              5740
                                                      5750
                                                             5760
                                                                    5780
                                                                           5800
                                                                                  5810
                                                                                         5820
                                    3
##
                      3
                             2
                                           1
                                                  2
                                                         3
                                                                3
                                                                              2
                                                                                     3
                                                                       1
                                                                                             1
##
    5830
           5880
                  5890
                         5900
                                5920
                                       5940
                                              5950
                                                     5960
                                                             5980
                                                                    6000
                                                                           6010
                                                                                  6020
                                                                                         6030
##
        3
               1
                      2
                             2
                                    1
                                           1
                                                  1
                                                         3
                                                                1
                                                                       6
                                                                              2
                                                                                     1
                                                                                             1
##
    6060
           6070
                  6090
                         6100
                                6120
                                       6130
                                              6140
                                                     6150
                                                             6160
                                                                    6170
                                                                           6180
                                                                                  6190
                                                                                         6200
##
                             3
                                    2
                                                  2
                                                                3
                                                                       1
                                                                                     1
        1
                      1
                                           1
                                                         1
                                                                              1
                                                                                             1
    6230
                  6280
                         6300
                                 6310
                                       6320
                                               6340
                                                      6370
                                                             6380
                                                                    6390
                                                                                  6410
                                                                                         6420
##
           6240
                                                                           6400
##
        3
               1
                      1
                             1
                                    1
                                           1
                                                  1
                                                         1
                                                                1
                                                                       1
                                                                              2
                                                                                     1
                                                                                             2
##
    6430
           6440
                  6450
                         6460
                                6480
                                       6490
                                              6500
                                                     6510
                                                             6520
                                                                    6540
                                                                           6550
                                                                                  6560
                                                                                         6570
##
                      2
                             2
                                    3
                                           2
                                                  2
                                                                2
                                                                       3
        1
               1
                                                         1
                                                                              1
                                                                                     1
                  6600
                         6620
                                6630
                                       6690
                                              6700
                                                      6710
                                                             6720
                                                                    6740
                                                                           6780
                                                                                  6790
##
    6580
           6590
                                                                                         6900
                                                                       2
##
                                                  3
                                                                2
        1
                      1
                             1
                                    1
                                           1
                                                         3
                                                                              1
                                                                                     1
                                                                                             1
##
    6930
           6950
                  7000
                         7010
                                7060
                                       7070
                                              7072
                                                      7090
                                                             7128
                                                                   7140
                                                                           7150
                                                                                  7160
                                                                                         7170
##
                             1
                                    1
                                           1
                                                  1
                                                                       1
                                                                              2
##
    7180
           7190
                  7200
                         7230
                                7350
                                       7410
                                              7450
                                                     7460
                                                             7470
                                                                   7510
                                                                           7520
                                                                                  7600
                                                                                         7630
##
                             1
                                           1
                                                  1
                                    1
                                                                       1
                  7740
                         7770
                                7780
                                       7970
                                              7990
                                                     8000
                                                             8020
                                                                   8030
                                                                           8090
                                                                                  8140
##
    7710
           7730
                                                                                         8160
##
                             1
                                                         2
                                                                              4
                      1
                                    1
                                           1
                                                  1
                                                                1
                                                                       1
                                                                                     1
    8190
           8210
                  8230
                         8250
                                8260
                                       8280
                                              8290
                                                     8300
                                                             8330
                                                                   8720
                                                                           8740
                                                                                  8780
                                                                                         8800
##
##
                                                  2
##
    8830
           8890
                  9000
                         9020
                                9040
                                       9210
                                              9220
                                                     9250
                                                             9270
                                                                   9279
                                                                           9350
                                                                                  9370
                                                                                         9400
                                                         2
##
        1
               1
                      1
                             1
                                    1
                                           1
                                                  1
                                                                1
                                                                       1
                                                                              1
                                                                                     1
                         9655
                  9600
                                9720
                                       9780
                                              9800
                                                     9930 10000 10130 10150 10270 10410
##
    9440
           9580
               1
                      1
                             1
                                    1
                                           1
                                                  1
                                                         1
                                                                2
                                                                       1
   11150 11360 12000 12100 12330 12540 12580 12840 13230 13770 14410 15080 15440
##
        1
               1
                      2
                             1
                                    1
                                           1
                                                  1
                                                         1
                                                                1
                                                                       1
                                                                              1
                                                                                     1
   16575 16820 17160 17380 17455 18960 20139 20970 21220 21640 22130 22900 23820
##
               1
                      1
                             1
                                    1
                                           1
                                                  1
                                                         1
                                                                1
                                                                       1
                                                                              1
                                                                                     1
## 25000 30000 30670 33520
               1
                      1
```

table(hospitality_dt1\$branch)

#N/A Nairobi Central Nairobi East Nairobi North Nairobi South ## ## Nairobi West Satellite ##

```
# What is the overall proportion of repeat customers?
#duplicated() function uses logical values to determine duplicated values.
#duplicated(hospitality_dt1$user_id)
sum(duplicated(hospitality_dt1$user_id))
## [1] 6749
dim(hospitality_dt1[duplicated(hospitality_dt1$user_id),])[1] #gives you number of duplicates
## [1] 6749
table(duplicated(hospitality_dt1$user_id))
## FALSE TRUE
## 29653 6749
mean(duplicated(hospitality_dt1$user_id))
## [1] 0.1854019
sum(duplicated(hospitality_dt1$user_id)) / nrow(hospitality_dt1)
## [1] 0.1854019
# How many times do customers come back on average?
#unique() function uses numeric indicators to determine unique values.
library(plyr)
#unique(hospitality_dt1$user_id)
#count(unique(hospitality_dt1$user_id))
#table(unique(hospitality dt1$user id))
dim(hospitality_dt1[unique(hospitality_dt1$user_id),])[1] #qives you number of uniques
## [1] 29653
# How many customers are repeat customers per branch?
sum(duplicated(hospitality_dt1[,c('user_id','branch')]))
## [1] 4574
# What is the NPS?
# Importing our NPS library
library(NPS)
# Converting score column to numeric
```

```
hospitality_dt1$score <- as.numeric(as.character(hospitality_dt1$score))
# Computing our NPS
nps(hospitality_dt1$score)
## [1] 0.6367782
# Here are the proportions of respondents giving each Likelihood to
# recommend response
prop.table(table(hospitality_dt1$score))
##
##
            0
                                   2
                                              3
                       1
## 0.031893852 0.009147849 0.009834624 0.009422559 0.010109335 0.023872315
                       7
                                   8
## 0.018900060 0.041069172 0.095791440 0.098538542 0.651420252
# Plotting a histrogram of the scores
# Lets first import tidyverse
library(tidyverse)
## -- Attaching packages -----
## <U+2713> tibble 2.1.3
                            <U+2713> dplyr
                                           0.8.3
## <U+2713> tidyr 1.0.0
                            <U+2713> stringr 1.4.0
                            <U+2713> forcats 0.4.0
## <U+2713> readr 1.3.1
## <U+2713> purrr 0.3.3
## -- Conflicts ----
                                                          ## x ggplot2::%+%()
                      masks psych::%+%()
## x ggplot2::alpha()
                      masks psych::alpha()
## x dplyr::arrange()
                      masks plyr::arrange()
## x dplyr::between()
                      masks data.table::between()
## x purrr::compact()
                      masks plyr::compact()
## x dplyr::count()
                      masks plyr::count()
## x dplyr::failwith() masks plyr::failwith()
## x dplyr::filter()
                      masks stats::filter()
## x dplyr::first()
                      masks data.table::first()
                      masks plyr::id()
## x dplyr::id()
## x dplyr::lag()
                      masks stats::lag()
## x dplyr::last()
                      masks data.table::last()
## x dplyr::mutate()
                      masks plyr::mutate()
                      masks plyr::rename()
## x dplyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
## x purrr::transpose() masks data.table::transpose()
 hospitality_dt1$score, breaks = -1:10,
 col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
```

Histogram of hospitality_dt1\$score


```
# Here's a barplot. It's very similar, though for categorical responses
# it's often slightly easier to interpret
#
barplot(
  prop.table(table(hospitality_dt1$score)),
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
)
```



```
# Is there a relationship between NPS segment and amount spent?
#
ggplot(hospitality_dt1, aes(x=score, y=amount)) + geom_point()
```


Exercise

```
#Build a data model with unique id only
hospitality_dt1[!duplicated(hospitality_dt1$user_id),] #gives you unique rows
##
           user_id gender timestamp survey_completion score amount
                                                                               branch
            242833
                             45:20.0
##
       1:
                                               FINISHED
                                                                 1460 Nairobi Central
          1697459
                             39:01.6
##
       2:
                                               TIMEDOUT
                                                             9
                                                                  690
                                                                         Nairobi East
                         М
##
       3: 17144551
                         F
                             55:19.5
                                               TIMEDOUT
                                                             0
                                                                 1380 Nairobi Central
                             00:38.1
                                                             9
                                                                  990
                                                                        Nairobi South
##
       4: 17887216
                         F
                                               TIMEDOUT
##
       5:
            630299
                             03:49.9
                                               TIMEDOUT
                                                             9
                                                                  840
                                                                         Nairobi West
##
## 29649:
            423355
                         М
                             00:28.5
                                               FINISHED
                                                           10
                                                                 1040
                                                                            Satellite
## 29650:
           1235116
                         М
                             04:42.4
                                               TIMEDOUT
                                                            8
                                                                  580
                                                                         Nairobi West
## 29651: 18205871
                         Μ
                             40:54.7
                                               FINISHED
                                                            3
                                                                 1600
                                                                        Nairobi South
## 29652:
            677307
                         F
                             25:32.0
                                               FINISHED
                                                                         Nairobi West
                                                           10
                                                                  570
## 29653:
             97324
                             54:03.2
                                               FINISHED
                                                           10
                                                                  530 Nairobi Central
#Data with unique id only
hospitality_dt2u <- hospitality_dt1[!duplicated(hospitality_dt1$user_id),]
View(hospitality_dt2u)
attach(hospitality_dt2u)
```

```
## The following objects are masked from hospitality_dt1:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user_id
## The following objects are masked from hospitality_dt:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user id
nrow(hospitality_dt2u)
## [1] 29653
mean(hospitality_dt2u$amount)
## [1] 1139.029
# Converting score column to numeric
hospitality_dt2u$score <- as.numeric(as.character(hospitality_dt2u$score))
# Computing our NPS
nps(hospitality_dt2u$score)
## [1] 0.6227026
# proportions of respondents giving each Likelihood to
prop.table(table(hospitality_dt2u$score))
##
##
## 0.033824571 0.009476276 0.010251914 0.009712339 0.010218190 0.024550636
## 0.019627019 0.042963612 0.099011904 0.096516373 0.643847166
#Histogram
hist(
  hospitality_dt2u$score, breaks = -1:10,
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
```

Histogram of hospitality_dt2u\$score


```
#Barplot
barplot(
  prop.table(table(hospitality_dt2u$score)),
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
)
```


ggplot(hospitality_dt2u, aes(x=score, y=amount)) + geom_point()

#For the unique userID data: separate the genders, find the average amount spent, find average NPS
hospitality_dt2uF <- hospitality_dt2u[hospitality_dt2u\$gender == "F"]
View(hospitality_dt2uF)
attach(hospitality_dt2uF)</pre>

```
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
head(hospitality_dt2uF)
```

##		user_id	gender	timestamp	survey_completion	score	${\tt amount}$	branch
##	1:	242833	F	45:20.0	FINISHED	5	1460	Nairobi Central
##	2:	17144551	F	55:19.5	TIMEDOUT	0	1380	Nairobi Central
##	3:	17887216	F	00:38.1	TIMEDOUT	9	990	Nairobi South
##	4:	630299	F	03:49.9	TIMEDOUT	9	840	Nairobi West
##	5:	6345132	F	42:13.1	TIMEDOUT	10	2230	Satellite

```
## 6: 17237328
                    F
                        59:23.9
                                          TIMEDOUT
                                                           1080
                                                                   Nairobi West
nrow(hospitality_dt2uF)
## [1] 14966
mean(hospitality_dt2uF$amount)
## [1] 1149.317
# Converting score column to numeric
hospitality dt2uF$score <- as.numeric(as.character(hospitality dt2uF$score))
# Computing our NPS
nps(hospitality_dt2uF$score)
## [1] 0.6015635
prop.table(table(hospitality dt2uF$score))
##
                                              3
##
                                  2
                                                                                6
## 0.03821997 0.01109181 0.01209408 0.01082454 0.01175999 0.02712816 0.02011225
            7
                       8
                                  9
                                             10
## 0.04102633 0.09494855 0.09615128 0.63664306
hospitality_dt2uM <- hospitality_dt2u[hospitality_dt2u$gender == "M"]
View(hospitality_dt2uM)
attach(hospitality_dt2uM)
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
head(hospitality_dt2uM)
       user_id gender timestamp survey_completion score amount
##
                                                                       branch
## 1: 1697459
                    М
                        39:01.6
                                          TIMEDOUT
                                                            690 Nairobi East
                        20:46.1
## 2:
       607011
                    М
                                          TIMEDOUT
                                                      10
                                                            460 Nairobi South
## 3: 17249001
                    М
                        35:08.6
                                         TIMEDOUT
                                                       7
                                                           1200 Nairobi South
## 4:
       703633
                    M
                        07:30.7
                                         TIMEDOUT
                                                      10
                                                            360
                                                                    Satellite
## 5:
        668285
                    М
                        24:28.9
                                         TIMEDOUT
                                                       7
                                                            590 Nairobi North
## 6: 17355338
                                         TIMEDOUT
                                                            420 Nairobi South
                    М
                        49:13.1
                                                      10
```

```
nrow(hospitality_dt2uM)
## [1] 14687
mean(hospitality_dt2uM$amount)
## [1] 1128.545
# Converting score column to numeric
hospitality_dt2uM$score <- as.numeric(as.character(hospitality_dt2uM$score))
# Computing our NPS
nps(hospitality_dt2uM$score)
## [1] 0.6442432
prop.table(table(hospitality_dt2uM$score))
##
##
             0
                                     2
                                                 3
                         1
## 0.029345680 0.007830054 0.008374753 0.008579015 0.008647103 0.021924151
                                     8
## 0.019132566 0.044937700 0.103152448 0.096888405 0.651188126
#Add a column with the word 'repeat' for repeated user ID and 'non-repeat' for unique user ID
#Data with repeated id only
hospitality_dt1[duplicated(hospitality_dt1$user_id),] #qives you duplicate rows
##
          user_id gender timestamp survey_completion score amount
##
      1: 17430789
                       F
                           28:02.5
                                            FINISHED
                                                         9
                                                               570 Nairobi Central
                       F
##
                           17:03.2
      2:
           328437
                                            FINISHED
                                                         10
                                                              1600
                                                                     Nairobi South
##
           668285
                           36:33.7
                                            TIMEDOUT
                                                         9
                                                               170
                                                                     Nairobi South
      3:
##
           206998
                       F
                           32:55.0
                                            FINISHED
                                                               950
                                                                     Nairobi North
      4:
                                                        10
      5:
           323566
                           08:43.0
                                            TIMEDOUT
                                                               500 Nairobi Central
##
## 6745:
           444277
                       F
                           01:03.8
                                            FINISHED
                                                        10
                                                               200
                                                                     Nairobi North
## 6746: 17158635
                           30:29.0
                                                               680
                                                                      Nairobi West
                       M
                                            FINISHED
                                                        10
## 6747: 2246544
                       F
                           37:53.3
                                            FINISHED
                                                         10
                                                               580
                                                                      Nairobi East
## 6748: 1147687
                       М
                           58:04.0
                                            FINISHED
                                                         9
                                                               300
                                                                     Nairobi South
## 6749:
          314116
                           58:53.3
                                            FINISHED
                                                               200
                                                                     Nairobi North
                       М
                                                          9
hospitality_dt2r <- hospitality_dt1[duplicated(hospitality_dt1$user_id),]
View(hospitality dt2r)
attach(hospitality_dt2r)
## The following objects are masked from hospitality_dt2uM:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
```

```
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user_id
nrow(hospitality_dt2r)
## [1] 6749
#Whatever is on the left of the <- sign "gets" whatever is on the right
hospitality_dt2r$repeat_customer<-"repeat"
hospitality_dt2u$repeat_customer<-"non-repeat"
#To join two data frames (datasets) vertically
hospitality_dt1new <- rbind(hospitality_dt2r, hospitality_dt2u)
View(hospitality dt1new)
attach(hospitality_dt1new)
## The following objects are masked from hospitality_dt2r:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uM:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
```

```
head(hospitality_dt1new)
      user_id gender timestamp survey_completion score amount
##
                                                                       branch
## 1: 17430789
                   F
                       28:02.5
                                        FINISHED
                                                          570 Nairobi Central
                       17:03.2
## 2:
       328437
                   F
                                        FINISHED
                                                    10
                                                         1600
                                                                Nairobi South
                   M
## 3:
       668285
                       36:33.7
                                        TIMEDOUT
                                                    9
                                                          170
                                                                Nairobi South
## 4:
       206998
                   F
                       32:55.0
                                        FINISHED
                                                    10
                                                          950
                                                                Nairobi North
                                                          500 Nairobi Central
## 5:
       323566
                       08:43.0
                                        TIMEDOUT
                                                    9
                   M
## 6: 1317686
                   М
                       13:35.8
                                        TIMEDOUT
                                                    10
                                                         1420
                                                                Nairobi South
##
     repeat customer
## 1:
              repeat
## 2:
              repeat
## 3:
              repeat
## 4:
              repeat
## 5:
              repeat
## 6:
              repeat
nrow(hospitality_dt1new)
## [1] 36402
str(hospitality_dt1new)
## Classes 'data.table' and 'data.frame':
                                           36402 obs. of 8 variables:
## $ user_id
                             17430789 328437 668285 206998 323566 1317686 317437 624684 336668 390899
                      : int
                             "F" "F" "M" "F" ...
## $ gender
                      : chr
                             "28:02.5" "17:03.2" "36:33.7" "32:55.0" ...
## $ timestamp
                      : chr
                             "FINISHED" "FINISHED" "TIMEDOUT" "FINISHED" ...
## $ survey_completion: chr
                             9 10 9 10 9 10 10 5 9 10 ...
## $ score
                      : num
## $ amount
                             570 1600 170 950 500 1420 190 780 1100 990 ...
                      : int
                             "Nairobi Central" "Nairobi South" "Nairobi South" "Nairobi North" ...
## $ branch
                      : chr
## $ repeat_customer : chr
                             "repeat" "repeat" "repeat" ...
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt1new)
## [1] "data.table" "data.frame"
typeof(hospitality_dt1new)
## [1] "list"
length(hospitality_dt1new)
## [1] 8
names(hospitality_dt1new) #display variable names
## [1] "user_id"
                          "gender"
                                              "timestamp"
## [4] "survey completion" "score"
                                              "amount"
## [7] "branch"
                          "repeat_customer"
summary(hospitality_dt1new)
##
      user id
                                          timestamp
                                                            survey_completion
                         gender
## Min.
              61047
                      Length: 36402
                                         Length: 36402
                                                            Length: 36402
## 1st Qu.: 473412
                     Class :character
                                         Class :character
                                                            Class : character
## Median: 941226
                      Mode :character
                                         Mode :character
                                                            Mode :character
```

Mean : 4362453

```
3rd Qu.: 2616159
##
##
    Max.
             :18234387
##
         score
                             amount
                                               branch
                                                                  repeat customer
            : 0.000
                                :
                                           Length: 36402
##
    Min.
                        Min.
                                      1
                                                                 Length: 36402
##
    1st Qu.: 8.000
                        1st Qu.: 430
                                           Class : character
                                                                  Class : character
##
    Median :10.000
                        Median :
                                    800
                                           Mode : character
                                                                 Mode :character
    Mean
           : 8.785
                        Mean
                                : 1123
    3rd Qu.:10.000
                        3rd Qu.: 1420
##
            :10.000
##
    Max.
                        Max.
                                 :33520
#distribution of input variables
table(hospitality_dt1new$gender)
##
##
        F
               М
## 18138 18264
table(hospitality_dt1new$score)
##
##
        0
               1
                      2
                             3
                                    4
                                           5
                                                  6
                                                         7
                                                                8
                                                                        9
                                                                             10
    1161
##
             333
                    358
                           343
                                  368
                                         869
                                                688
                                                      1495
                                                             3487
                                                                    3587 23713
table(hospitality_dt1new$amount)
##
                                          30
                                                                      70
                                                                             80
                                                                                     85
                                                                                           90
##
        1
               2
                      5
                            10
                                   20
                                                 40
                                                        50
                                                               60
                                           5
                                                                7
                                                                                           10
##
       10
               1
                      1
                             6
                                    4
                                                 11
                                                         8
                                                                       6
                                                                              6
                                                                                     1
##
       95
              99
                    100
                           110
                                  120
                                         128
                                                130
                                                       136
                                                              140
                                                                     150
                                                                            152
                                                                                   160
                                                                                          162
##
                                   10
                                                  7
                                                                      31
                                                                                   116
                                                                                            3
        1
               1
                     63
                            12
                                           1
                                                         1
                                                               12
                                                                              3
##
     168
             170
                    175
                           176
                                  180
                                         184
                                                185
                                                       190
                                                              192
                                                                     200
                                                                            202
                                                                                   208
                                                                                          210
##
        1
             607
                      1
                            29
                                  110
                                           3
                                                  6
                                                        73
                                                                7
                                                                     702
                                                                              1
                                                                                     7
                                                                                           63
##
     211
             215
                    216
                           220
                                  230
                                         234
                                                240
                                                       250
                                                              256
                                                                     258
                                                                            260
                                                                                   264
                                                                                          265
##
        2
               1
                      3
                          1310
                                  353
                                           2
                                                155
                                                       271
                                                                2
                                                                       1
                                                                            284
                                                                                      1
                                                                                             2
##
     270
                           293
                                  296
                                         300
             280
                    290
                                                304
                                                       305
                                                              308
                                                                     310
                                                                            315
                                                                                   320
                                                                                          330
##
     555
             71
                    294
                             1
                                    9
                                         352
                                                  2
                                                         2
                                                                1
                                                                     208
                                                                                   123
                                                                                          144
                                                                              1
##
     336
             337
                    340
                                  349
                                         350
                                                       356
                                                                     367
                                                                                          375
                           347
                                                352
                                                              360
                                                                            368
                                                                                   370
##
        9
               2
                    218
                                         173
                                                 13
                                                              142
                                                                              3
                                                                                   577
                             1
                                    1
                                                         1
                                                                       1
                                                                                            1
     377
                                         390
##
             380
                    384
                           385
                                  388
                                                391
                                                       392
                                                              393
                                                                     395
                                                                            398
                                                                                   400
                                                                                          405
##
             138
                      7
                             6
                                         317
                                                                       3
                                                                                   631
                                                                                             2
        1
                                                  1
                                                         1
                                                                1
                                                                              1
                    410
                           416
                                         422
##
     406
             408
                                  420
                                                424
                                                       425
                                                              430
                                                                     432
                                                                                   448
                                                                            440
                                                                                          450
##
                                  488
        1
               1
                     89
                             1
                                           1
                                                  2
                                                         1
                                                              180
                                                                       1
                                                                            773
                                                                                     1
                                                                                          231
     460
                           472
                                  480
##
             465
                    470
                                         490
                                                493
                                                       495
                                                              498
                                                                     500
                                                                            510
                                                                                   512
                                                                                          515
##
     274
               1
                    469
                             1
                                  336
                                         242
                                                  1
                                                         1
                                                                1
                                                                     408
                                                                            137
                                                                                      1
                                                                                             1
##
     520
             525
                    527
                           528
                                  530
                                         534
                                                540
                                                       544
                                                                     552
                                                                            555
                                                                                          568
                                                              550
                                                                                   560
                                  250
##
     274
               1
                      1
                             1
                                           1
                                                270
                                                         1
                                                              194
                                                                       2
                                                                              4
                                                                                   196
                                                                                            2
                                  592
##
     570
            576
                    580
                           590
                                         600
                                                604
                                                       605
                                                              608
                                                                     610
                                                                                   616
                                                                                          620
                                                                            615
##
     194
               2
                    199
                           184
                                    1
                                         335
                                                  1
                                                         4
                                                                1
                                                                     140
                                                                                      1
                                                                                          213
                                                                              1
##
     624
             625
                    630
                           640
                                  650
                                         656
                                                660
                                                       663
                                                              664
                                                                     666
                                                                            670
                                                                                   672
                                                                                          680
##
        3
               2
                    168
                           282
                                  146
                                           1
                                                263
                                                         2
                                                                1
                                                                       1
                                                                            169
                                                                                      3
                                                                                          174
##
     688
             690
                    696
                           700
                                  702
                                         704
                                                707
                                                       710
                                                              720
                                                                     725
                                                                            728
                                                                                   730
                                                                                          735
##
                           284
                                           2
                                                                                   207
                                                                                            2
        3
             316
                      3
                                                  1
                                                       166
                                                              169
                                                                       1
                                    1
                                                                              1
##
     736
            740
                    748
                           750
                                  752
                                         755
                                                760
                                                       765
                                                              768
                                                                     770
                                                                            780
                                                                                   790
                                                                                          792
##
            337
                           226
                                           2
                                                                                            2
        2
                      1
                                    2
                                                145
                                                         1
                                                                1
                                                                     159
                                                                            247
                                                                                   118
##
     800
             808
                    809
                           810
                                  816
                                         820
                                                828
                                                       830
                                                              832
                                                                     840
                                                                            847
                                                                                   850
                                                                                          853
```

##

##	860	864	870	872	880	886	888	890	900	904	905	910	920
##	210	2	127	4	298	1	1	248	194	1	1	169	267
##	928	930	932	940	945	948	950	952	960	965	970	975	980
##	2	163	1	223	1	1	192	1	185	1	133	1	169
##	985	987	990	996	1000	1006	1008	1010	1020	1021	1030	1035	1040
##	1	1	171	1	350	1	2	121	122	1	116	1	173
##	1047	1050	1053	1060	1065	1070	1080	1090	1097	1100	1104	1110	1112
##	1	147	2	148	1	114	163	185	1	155	1	134	1
##	1120	1128	1130	1135	1136	1140	1150	1155	1160	1170	1175	1180	1185
##	129	2	106	1	2	152	161	1	140	99	1	184	1
##	1190	1200	1204	1208	1210	1215	1220	1230	1240	1244	1250	1255	1256
##	108	176	1	1	116	1	126	97	96	1	95	1	1
##	1260	1270	1280	1285	1290	1295	1296	1300	1310	1320	1330	1340	1350
##	111 1360	104 1364	106 1370	1 1378	103	1 1385	1 1390	125 1400	91 1405	125	83 1420	98 1430	101 1435
## ##	85	1304	77	1370	1380 92	1305	93	97	1405	1410	83	67	1435
##	1440	1450	1460	1470	1480	1485	93 1490	1493	1500	82 1510	1520	1530	1540
##	91	56	72	71	88	1400	55	1493	119	65	66	59	80
##	1550	1560	1565	1570	1575	1580	1584	1590	1594	1600	1608	1610	1620
##	65	83	1	64	1	49	1	53	1	79	1	52	58
##	1630	1640	1645	1650	1659	1660	1670	1680	1690	1700	1705	1706	1710
##	59	64	1	54	1	73	54	56	47	72	1	1	55
##	1712	1720	1730	1735	1740	1750	1751	1760	1770	1780	1790	1800	1810
##	1	59	59	1	52	61	1	65	48	60	48	63	60
##	1820	1826	1830	1836	1840	1850	1860	1870	1880	1890	1900	1910	1920
##	52	1	49	1	59	46	61	51	48	39	67	50	61
##	1930	1935	1940	1950	1960	1970	1980	1984	1990	2000	2010	2020	2030
##	31	1	52	53	54	33	68	1	31	132	43	47	45
##	2040	2050	2060	2064	2070	2080	2082	2090	2100	2110	2112	2120	2130
##	56	33	38	1	44	46	1	55	40	38	1	43	37
##	2140	2150	2160	2170	2180	2190	2200	2210	2220	2230	2240	2248	2250
##	48	39	45	55	62	48	57	41	38	43	46	1	35
##	2260	2270	2272	2280	2290	2300	2305	2310	2320	2330	2340	2346	2350
##	50	32	1	55	44	58	1	43	53	43	51	1	45
##	2360	2370	2380	2390	2400	2410	2420	2424	2430	2440	2450	2460	2470
##	51	39	45	26	47	41	38	1	45	50	36	54	50
##	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2592
##	33	29	56	29	46	27	31	27	34	41	48		1
##	2600		2620	2630	2632			2650	2660	2670	2680		2700
## ##	34 2710	42 2720	32 2727	27 2730	1 2740	45 2750	1 2760	24 2770	39 2780	29 2790	2800	23 2810	31 2820
##	2710	2720	1	2730	24	2730	30	2170	2780	2790	30	23	2020
##	2824	2830	2840	2850	2860	2870	2880	2890	2900	2910	2920	2930	2940
##	1	20	26	18	20	14		18	22	21		20	21
##	2950	2960	2970	2971	2980	2990	3000	3010	3020	3030	3035	3040	3050
##	16	18	15	1	20	23		10	14	17	1	15	14
##	3060	3070	3080	3090	3100	3110	3120	3130	3140	3150	3160	3170	3180
##	12	18	11	14	6	13	16	13	14	22	10	11	10
##	3190	3200	3210	3220	3230	3240	3250	3260	3270	3280	3290	3300	3310
##	12	27	15	16	9	12	15	10	9	14	13	16	10
##	3320	3330	3340	3350	3360	3370	3376	3380	3390	3400	3410	3420	3430
##	11	7	12	9	8	14	1	13	11	11	7	8	6
##	3440	3450	3460	3470	3480	3490	3500	3510	3520	3530	3540	3550	3560
##	12	8	6	11	11	14	15	3	9	9	12	8	9

```
9440 9580 9600 9655 9720 9780 9800 9930 10000 10130 10150 10270 10410
##
                         1
                                     1
                                            1
                                                  1
                                                        2
                                                              1
                                                                          1
       1
             1
                   1
                               1
                                                                    1
## 11150 11360 12000 12100 12330 12540 12580 12840 13230 13770 14410 15080 15440
                   2
                         1
                               1
                                      1
                                            1
                                                  1
                                                              1
                                                                    1
                                                        1
## 16575 16820 17160 17380 17455 18960 20139 20970 21220 21640 22130 22900 23820
##
                   1
                         1
                               1
                                     1
                                            1
                                                  1
                                                        1
                                                              1
                                                                    1
                                                                          1
             1
## 25000 30000 30670 33520
##
       1
             1
                   1
table(hospitality_dt1new$branch)
##
##
              #N/A Nairobi Central
                                      Nairobi East
                                                      Nairobi North
                                                                      Nairobi South
##
                              6405
                                               2718
                                                               6694
                                                                               5749
                 1
      Nairobi West
                         Satellite
##
##
              8791
                              6044
table(hospitality_dt1new$repeat_customer)
## non-repeat
                  repeat
        29653
                    6749
# Can we build a logistic regression model to predict
# whether a customer will be a repeat customer or not?
hospitality_dt1new$repeat_customer <- factor(hospitality_dt1new$repeat_customer,
                                              levels = c("repeat", "non-repeat"),
                                       labels = c(0.1))
# Converting repeat customer column to numeric
#1. Gender-factor, score - numeric, amount - numeric
hospitality_dt1new$repeat_customer <- as.numeric(as.character(hospitality_dt1new$repeat_customer))
head(hospitality_dt1new)
##
       user_id gender timestamp survey_completion score amount
                                                                         branch
                        28:02.5
## 1: 17430789
                    F
                                          FINISHED
                                                            570 Nairobi Central
## 2:
                    F
                        17:03.2
                                                                  Nairobi South
        328437
                                          FINISHED
                                                      10
                                                           1600
## 3:
        668285
                    М
                        36:33.7
                                         TIMEDOUT
                                                      9
                                                            170
                                                                  Nairobi South
## 4:
        206998
                    F
                        32:55.0
                                         FINISHED
                                                      10
                                                            950
                                                                  Nairobi North
        323566
                        08:43.0
                                                            500 Nairobi Central
## 5:
                    М
                                         TIMEDOUT
                                                      9
                                                                  Nairobi South
## 6: 1317686
                        13:35.8
                                         TIMEDOUT
                                                      10
                                                           1420
                    Μ
##
      repeat_customer
## 1:
                    0
## 2:
                    0
## 3:
                    0
## 4:
                    0
## 5:
                    0
## 6:
                    0
hospnew.glm = glm(formula=repeat_customer ~ amount + score + gender , data = hospitality_dt1new,
```

family=binomial)

```
hospnew.glm
##
## Call: glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
       data = hospitality dt1new)
##
## Coefficients:
## (Intercept)
                                              genderM
                     amount
                                   score
##
    1.8627815
                 0.0000707
                              -0.0443532
                                           -0.1300867
##
## Degrees of Freedom: 36401 Total (i.e. Null); 36398 Residual
## Null Deviance:
                        34910
## Residual Deviance: 34800
                               AIC: 34800
summary(hospnew.glm)
##
## Call:
## glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
       data = hospitality_dt1new)
##
## Deviance Residuals:
##
      Min
                    Median
                1Q
                                   3Q
                                          Max
            0.5695 0.6366
                                        0.6976
## -2.3541
                              0.6600
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.863e+00 6.072e-02 30.679 < 2e-16 ***
## amount
              7.070e-05 1.339e-05
                                      5.281 1.29e-07 ***
## score
              -4.435e-02 6.224e-03 -7.126 1.03e-12 ***
              -1.301e-01 2.706e-02 -4.807 1.53e-06 ***
## genderM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 34909 on 36401 degrees of freedom
## Residual deviance: 34795 on 36398
                                      degrees of freedom
## AIC: 34803
## Number of Fisher Scoring iterations: 4
#amount spent, score and male gender are significant.
#The logistic regression coefficients give the change in the log odds of the outcome for
#a one unit increase in the predictor variable.
#For a one unit increase in amount spent, the log odds of being a repeat customer increases
#by 0.0000707
#For every one unit change in score, the log odds of repeat (versus non-repeat) decreases
#by -0.0443532
#Visiting Stony Hill coffee house being male versus being female changes the log odds of
#being a repeat customer by -0.1300867.
```

```
#confidence intervals for the coefficient estimates
## CIs using profiled log-likelihood
confint(hospnew.glm)
## Waiting for profiling to be done...
##
                       2.5 %
                                    97.5 %
## (Intercept) 1.744776e+00 1.982818e+00
               4.481482e-05 9.727911e-05
## score
               -5.665899e-02 -3.225732e-02
## genderM
              -1.831450e-01 -7.706445e-02
## CIs using standard errors
confint.default(hospnew.glm)
                       2.5 %
                                    97.5 %
## (Intercept) 1.743777e+00 1.981786e+00
## amount
               4.446038e-05 9.694222e-05
## score
              -5.655231e-02 -3.215412e-02
              -1.831252e-01 -7.704813e-02
## genderM
#exponentiate the coefficients and interpret them as odds-ratios
## odds ratios only
exp(coef(hospnew.glm))
## (Intercept)
                    amount
                                 score
                                           genderM
     6.4416292
                1.0000707
                             0.9566160
                                         0.8780193
#To put it all in one table, we use cbind to bind the coefficients and confidence intervals
#column-wise.
## odds ratios and 95% CI
exp(cbind(OR = coef(hospnew.glm), confint(hospnew.glm)))
## Waiting for profiling to be done...
                      OR
                             2.5 %
                                      97.5 %
## (Intercept) 6.4416292 5.7246174 7.2631852
              1.0000707 1.0000448 1.0000973
              0.9566160 0.9449162 0.9682574
## score
               0.8780193 0.8326474 0.9258302
## genderM
#For every one unit increase in amount spent, the odds of being a repeat customer
#(versus non-repeat) increases by a factor of 1.0000707
#We may also wish to see measures of how well our model fits. This can be particularly
#useful when comparing competing models.
#The output produced by summary(hospnew.glm) included indices of fit,
#including the null and deviance residuals and the AIC.
#One measure of model fit is the significance of the overall model. This test asks
#whether the model with predictors fits significantly better than a model with just an
#intercept (i.e., a null model).
```

```
#The test statistic is the difference between the residual deviance for the model
#with predictors and the null model. The test statistic is distributed chi-squared
#with degrees of freedom equal to the differences in degrees of freedom between the
#current and the null model (i.e., the number of predictor variables in the model).
#To find the difference in deviance for the two models (i.e., the test statistic),
#we use the command:
with(hospnew.glm, null.deviance - deviance)
## [1] 113.5097
#The degrees of freedom for the difference between the two models is equal to the number of
#predictor variables in the model, and can be obtained using:
with(hospnew.glm, df.null - df.residual)
## [1] 3
#the p-value can be obtained using:
with(hospnew.glm, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))
## [1] 1.927131e-24
#To see the model's log likelihood, we type:
logLik(hospnew.glm)
## 'log Lik.' -17397.51 (df=4)
#The chi-square of 113.5097 with 3 degrees of freedom and an associated p-value of less
#than 0.001 (1.927131e-24) tells us that our model as a whole fits significantly better
#than an empty model. This is sometimes called a likelihood ratio test.
#(the deviance residual is -2*log likelihood)
#-2*-17397.51=34795.02
#2. Gender-factor, score - factor, amount - numeric
#convert score to a factor to indicate that score should be treated as a categorical variable.
hospitality_dt1new$score <- factor(hospitality_dt1new$score)
hospnew1.glm = glm(formula=repeat_customer ~ amount + score + gender , data = hospitality_dt1new,
                  family=binomial)
hospnew1.glm
## Call: glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
       data = hospitality dt1new)
##
## Coefficients:
## (Intercept)
                     amount
                                               score2 score3
                                                                         score4
                                  score1
```

```
##
    1.826e+00
                 6.983e-05
                             -1.601e-01
                                          -1.284e-01
                                                       -1.957e-01
                                                                    -3.129e-01
##
                                                                       score10
       score5
                    score6
                                 score7
                                              score8
                                                           score9
                                                       -4.629e-01
                                                                    -4.126e-01
##
   -2.027e-01
                -1.365e-01
                             -8.466e-02
                                          -1.646e-01
##
      genderM
##
   -1.327e-01
##
## Degrees of Freedom: 36401 Total (i.e. Null); 36389 Residual
## Null Deviance:
                       34910
## Residual Deviance: 34770
                               AIC: 34790
summary(hospnew1.glm)
##
## Call:
## glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
      data = hospitality_dt1new)
##
## Deviance Residuals:
                     Median
                1Q
                                  3Q
                                          Max
## -2.3335
           0.5621
                     0.6367
                              0.6665
                                       0.7152
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.826e+00 8.777e-02 20.803 < 2e-16 ***
## amount
               6.983e-05 1.339e-05
                                     5.217 1.82e-07 ***
## score1
              -1.601e-01 1.736e-01 -0.922
                                             0.3567
## score2
              -1.284e-01 1.708e-01 -0.752
                                             0.4521
## score3
              -1.957e-01 1.704e-01 -1.149
                                             0.2506
## score4
              -3.129e-01 1.614e-01 -1.939
                                             0.0525 .
## score5
              -2.027e-01 1.257e-01 -1.612
                                              0.1070
## score6
              -1.365e-01 1.360e-01 -1.004
                                              0.3155
## score7
              -8.466e-02 1.125e-01 -0.752
                                              0.4518
## score8
              -1.646e-01 9.747e-02 -1.689
                                              0.0913 .
## score9
              -4.629e-01 9.524e-02 -4.860 1.17e-06 ***
## score10
              -4.126e-01 8.723e-02 -4.729 2.25e-06 ***
              -1.327e-01 2.708e-02 -4.900 9.61e-07 ***
## genderM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 34909 on 36401 degrees of freedom
## Residual deviance: 34767 on 36389 degrees of freedom
## AIC: 34793
##
## Number of Fisher Scoring iterations: 4
#We can test for an overall effect of score using the wald.test function of the aod library.
#The order in which the coefficients are given in the table of coefficients is the same
#as the order of the terms in the model.
#This is important because the wald.test function refers to the coefficients by their order
#in the model. We use the wald.test function. b supplies the coefficients, while Sigma supplies
#the variance covariance matrix of the error terms, finally Terms tells R which terms in the
```

```
#model are to be tested, in this case, terms 3 to 12.
library(aod)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), Terms = 3:12)
## Wald test:
## -----
##
## Chi-squared test:
## X2 = 78.9, df = 10, P(> X2) = 8.4e-13
#The chi-squared test statistic of 78.9, with 10 degrees of freedom is associated with
#a p-value of 8.4e-13 indicating that the overall effect of score is statistically significant.
#We can also test additional hypotheses about the differences in the coefficients for the
#different levels of score.
#Below we test that the coefficient for score=4 is equal to the coefficient for score=5.
#The first line of code below creates a vector l that defines the test we want to perform.
#In this case, we want to test the difference (subtraction) of the terms for score=4 and
#score=5 (i.e., the 6th and 7th terms in the model). To contrast these two terms, we multiply
#one of them by 1, and the other by -1. The other terms in the model are not involved in the
\#test, so they are multiplied by 0. The second line of code below uses L=l to tell R that we
#wish to base the test on the vector l (rather than using the Terms option as we did above).
1 \leftarrow cbind(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), L = 1)
## Wald test:
## -----
## Chi-squared test:
## X2 = 0.45, df = 1, P(> X2) = 0.5
#The chi-squared test statistic of 0.45 with 1 degree of freedom is associated with a p-value
#of 0.5, indicating that the difference between the coefficient for score=4 and the coefficient
#for score=5 is statistically not significant.
#Below we test that the coefficient for score=8 is equal to the coefficient for score=9.
m \leftarrow cbind(0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), L = m)
## Wald test:
## -----
## Chi-squared test:
## X2 = 22.9, df = 1, P(> X2) = 1.7e-06
#The chi-squared test statistic of 22.9 with 1 degree of freedom is associated with a p-value
#of 1.7e-06, indicating that the difference between the coefficient for score=8 and the
#coefficient for score=9 is statistically significant.
```

```
#how well our model fits. This can be particularly
#useful when comparing competing models.
#To find the difference in deviance for the two models (i.e., the test statistic),
#we use the command:
with(hospnew1.glm, null.deviance - deviance)
## [1] 141.8541
#The degrees of freedom for the difference between the two models is equal to the number of
#predictor variables in the model, and can be obtained using:
with(hospnew1.glm, df.null - df.residual)
## [1] 12
#the p-value can be obtained using:
with(hospnew1.glm, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))
## [1] 2.52885e-24
#To see the model's log likelihood, we type:
logLik(hospnew1.glm)
## 'log Lik.' -17383.34 (df=13)
#The chi-square of 141.8541 with 12 degrees of freedom and an associated p-value of
#less than 0.001 (2.52885e-24) tells us that our model as a whole fits significantly better
#than an empty model. This is sometimes called a likelihood ratio test.
#(the deviance residual is -2*log likelihood)
#-2*-17383.34=34766.68
#amount spent, Two terms of score (9 and 10) and male gender are significant.
#The logistic regression coefficients give the change in the log odds of the outcome for
#a one unit increase in the predictor variable.
#For a one unit increase in amount spent, the log odds of being a repeat customer increases
#by 0.00006983
#Ranking the Visit to Stony Hill coffee house with a score of 1 verses score of 0, changes
#the log odds of being a repeat customer by -0.1601
#Visiting Stony Hill coffee house being male versus being female changes the log odds of
#being a repeat customer by -0.1327.
#confidence intervals for the coefficient estimates
## CIs using profiled log-likelihood
```

```
confint(hospnew1.glm)
## Waiting for profiling to be done...
                       2.5 %
                                    97.5 %
## (Intercept) 1.656924e+00 2.001187e+00
## amount
               4.395304e-05 9.641197e-05
## score1
              -4.942257e-01 1.876942e-01
## score2
              -4.572990e-01 2.133936e-01
              -5.239745e-01 1.449628e-01
## score3
              -6.250790e-01 8.448885e-03
## score4
## score5
              -4.489203e-01 4.437360e-02
## score6
              -4.017752e-01 1.319643e-01
              -3.062864e-01 1.350283e-01
## score7
## score8
              -3.581797e-01 2.411979e-02
## score9
              -6.523597e-01 -2.787826e-01
## score10
              -5.869369e-01 -2.447564e-01
## genderM
              -1.857835e-01 -7.962413e-02
## CIs using standard errors
confint.default(hospnew1.glm)
##
                       2.5 %
                                    97.5 %
## (Intercept) 1.653783e+00 1.997818e+00
## amount
               4.359632e-05 9.607306e-05
## score1
              -5.003917e-01 1.802826e-01
## score2
              -4.631704e-01 2.063385e-01
## score3
              -5.295949e-01 1.381916e-01
## score4
              -6.292354e-01 3.380439e-03
## score5
              -4.491069e-01 4.379945e-02
## score6
              -4.031526e-01 1.300756e-01
## score7
              -3.051674e-01 1.358562e-01
## score8
              -3.556398e-01 2.642787e-02
## score9
              -6.496094e-01 -2.762587e-01
## score10
              -5.835333e-01 -2.415828e-01
              -1.857636e-01 -7.960758e-02
## genderM
#exponentiate the coefficients and interpret them as odds-ratios
## odds ratios only
exp(coef(hospnew1.glm))
## (Intercept)
                    amount
                                score1
                                            score2
                                                        score3
                                                                    score4
##
     6.2077640
               1.0000698
                             0.8520973
                                        0.8794875
                                                     0.8222575
                                                                 0.7313029
##
       score5
                    score6
                                score7
                                            score8
                                                        score9
                                                                   score10
##
    0.8165609
                 0.8723728
                             0.9188286
                                         0.8482279
                                                     0.6294341
                                                                 0.6619548
##
       genderM
##
     0.8757404
#To put it all in one table, we use cbind to bind the coefficients and confidence intervals
#column-wise.
## odds ratios and 95% CI
exp(cbind(OR = coef(hospnew1.glm), confint(hospnew1.glm)))
## Waiting for profiling to be done...
```

```
OR
                            2.5 %
                                   97.5 %
##
## (Intercept) 6.2077640 5.2431560 7.3978329
## amount 1.0000698 1.0000440 1.0000964
## score1
             0.8520973 0.6100431 1.2064645
            0.8794875 0.6329911 1.2378717
## score2
## score3
            0.8222575 0.5921623 1.1559965
## score4
            0.7313029 0.5352191 1.0084847
            0.8165609 0.6383170 1.0453728
## score5
            0.8723728 0.6691311 1.1410676
## score6
## score7
            0.9188286 0.7361757 1.1445691
## score8
            0.8482279 0.6989475 1.0244130
## score9
             0.6294341 0.5208154 0.7567044
## score10
             0.6619548 0.5560278 0.7828952
             0.8757404 0.8304533 0.9234634
## genderM
```

#For every one unit increase in amount spent, the odds of being a repeat customer #(versus non-repeat) increases by a factor of 1.0000698