Лабораторная работа №2.2.6 Определение энерги активации по температурной зависимости вязкости жидкости

Рожков А. В.

20 февраля 2024 г.

Цель работы: измерение скорости падения шариков при разной температуре жидкости; вычисление вязксоти жидкости по закону Стокса и расчет энергии активации.

В работе используются: стеклянный цилиндр с исследуемой жидкостью (глицерин); термостат; секундомер; горизонтальный компаратор; микроскоп; мелкие шарики (диаметром 1-2 мм).

1 Теоретическая часть

1.1 Энергия активации

Для того чтобы перейти в новое состояние, молекула жидкости должна преодолеть участки с большой потенциальной энергией, превышающей среднюю тепловую энергию молекул. Для этого тепловая энергия молекул должна — вследствие флуктуации — увеличиться на некоторую величину W, называемую энергией активации. Температурная зависимость вязкости жидкости при достаточно грубых предположениях можно опистаь формулой

$$\eta \sim Ae^{W/kT}$$
(1)

Из формулы (1) следует, что существует линейня зависимость между величинами $ln\eta$ и 1/T, и энергию активации можно найти по формуле

$$W = k \frac{d(\ln \eta)}{d(1/T)} \tag{2}$$

1.2 Измерение вязкости

По формуле Стокса, если шарик радиусом r и со скоростью v движется в среде с вязкостью η , и при этом не наблюдается турбулентных явлении, тормозящую силу можно найти по формуле (3)

$$F = 6\pi \eta \frac{d}{2}v \tag{3}$$

Для измерения вязкости жидкости рассмотрим свободное падение шарика в жидкости. При медленных скоростях на шарик действуют силы Архимеда и Стокса, выражения для которых мы знаем. Отсюда находим выражения для установившейся скорости шарика и вязкости жидкости

$$v_{\rm ycr} = \frac{2}{9}g\frac{d^2}{4}\frac{\rho - \rho_{\rm m}}{\eta} \tag{4}$$

$$\eta = \frac{2}{9} g \frac{d^2}{4} \frac{\rho - \rho_{\text{m}}}{v_{\text{vct}}} \tag{5}$$

Как видим, измерив установившуюся скорость шарика и параметры системы можно получить вязкость по формуле (5).

1.3 Экспериментальная установка

Для измерений используется стеклянный цилиндрчиеский сосуд B, наполненный исследуемой жидкостью (глицерин). Диаметр сосуда ≈ 3 см, длина ≈ 25 см. На стенках сосуда нанесены две метки на некотором расстоянии друг от друга. Верхняя метка должна располагаться ниже уровня жидкости с таким расчетом, чтобы скорость шарика к моменту прохождения этой метки успевала установиться. Измеряя расстояние между метками, b время падения определяют установившуюся скорость шарика $v_{\rm уст}$. Сам сосуд B помещен в рубашку D, омываемую водой из термостата. При работающем термостате температура воды в рубашке D, а потому и температура жидкости 12 равна температуре воды в термостате. Схема прибора (в разрезе) показана на рис. 1.

Рис. 1: Установка для определения коэффициента вязкости жидкости.

2 Ход работы

2.1 Измерение диаметра шариков

Выбираем 12 стальных и 12 стеклянных шариков. Из-за неидеальности формы измерения производим в 2 случайных направлениях при помощи микроскопа и усредняем. Данные измерений приведены в таблице 1. Погрешность измерений $\sigma_d=0.02$ мм. Плотности шариков:

$$ho_{\mathrm{стекло}} = 2.5 \ \mathrm{г/cm}^3$$
 $ho_{\mathrm{сталь}} = 7.8 \ \mathrm{г/cm}^3$

Nºo	Материал	Диаметр, мм
1	Стекло	2,07
2	Стекло	2,08
5	Стекло	2,11
6	Стекло	2,1
9	Стекло	2,09
11	Стекло	2,12
13	Стекло	2,09
14	Стекло	2,12
17	Стекло	2,09
18	Стекло	2,12
21	Стекло	2,12
22	Стекло	2,16

No	Материал	Диаметр, мм
3	Сталь	0,85
4	Сталь	0,75
7	Сталь	0,81
8	Сталь	0,72
10	Сталь	0,71
12	Сталь	0,84
15	Сталь	0,78
16	Сталь	0,91
19	Сталь	0,83
20	Сталь	0,91
23	Сталь	0,78
24	Сталь	0,79

Таблица 1: Измеренные диаметры шариков

2.2 Измерение установившихся скоростей падения шариков

Измеренные длины частей цилиндра установки (см. рис. 1):

$$l_1 = l_2 = (10 \pm 0.1) \text{ cm}$$

Измерения производим для 6 значений температуры от 25 до 50 °C. При помощи секундомера измеряем время прохождения шариком участков l_1 и l_2 . Усредняем значение, вычислеям установившуюся скорость шариков в жидкости. По графику на рис. 2 определим плотность глицерина для каждой температуры. По формуле (5) рассчитываем вязкость глицерина. Результаты представлены в таблице 2.

Рис. 2: График плотности глицерина в зависимости от температуры.

Ŋo	Материал	T, K	t_{l_1}, c	t_{l_1}, c	$t_{\rm cp}, { m c}$	$v_{ m yct}$, MM/ c	$ ho_{\Gamma}$ лиц, $\Gamma/{ m cm}^3$	η , м Π а * с
1	Стекло	298	27,9	27,85	27,875	3,587443946	1,258	808
2	Стекло	298	27,26	27,06	27,16	3,681885125	1,258	795
3	Сталь	298	29,08	29	29,04	3,443526171	1,258	747
4	Сталь	298	34,83	34,51	34,67	2,884338044	1,258	695
5	Стекло	303	18,76	18,87	18,815	5,314908318	1,256	568
6	Стекло	303	18,56	18,67	18,615	5,372011818	1,256	556
7	Сталь	303	21,89	21,85	21,87	4,572473708	1,256	511
8	Сталь	303	26,6	26,64	26,62	3,756574005	1,256	492
9	Стекло	308	12,64	12,71	12,675	7,889546351	1,253	376
10	Сталь	308	17,64	18,14	17,89	5,589714925	1,253	321
11	Стекло	308	12,21	12,08	12,145	8,233841087	1,253	370
12	Сталь	308	14,82	15,19	15,005	6,664445185	1,253	377
13	Стекло	313	8,64	8,53	8,585	11,64822365	1,251	255
14	Стекло	313	8,4	8,38	8,39	11,91895113	1,251	256
15	Сталь	313	10,83	10,97	10,9	9,174311927	1,251	236
16	Сталь	313	8,4	8,23	8,315	12,02645821	1,251	246
17	Стекло	318	6,67	6,42	6,545	15,27883881	1,249	195
18	Стекло	318	6,4	6,49	6,445	15,5159038	1,249	197
19	Сталь	318	8,07	8,13	8,1	12,34567901	1,249	199
20	Сталь	318	7,03	6,77	6,9	14,49275362	1,249	204
21	Стекло	323	4,8	4,81	4,805	20,81165453	1,247	147
22	Стекло	323	4,86	4,61	4,735	21,11932418	1,247	151
23	Сталь	323	5,53	5,58	5,555	18,00180018	1,247	121
24	Сталь	323	5,67	5,75	5,71	17,51313485	1,247	127

Таблица 2: Результаты измерений установившившихся скоростей шариков и соответствующих плотностей глицерина

2.3 Вычисление числа Рейнольдса, оцена времени и пути релаксации. Анализ применимости формулы Стокса

Для каждого из опытов вычислим число Рейнольдса Re (6), оценим время релаксации τ (7) и путь релаксации S (8). Результаты представлены в таблице 3.

$$Re = \frac{d}{2} \frac{v_{\text{уст}} \rho_{\text{глиц}}}{\eta} \tag{6}$$

$$\tau = \frac{2}{9} \frac{d^2}{4} \frac{\rho}{\eta} \tag{7}$$

$$S = v_{\text{ycr}} \tau \tag{8}$$

Nº	материал	T, K	η , м Π а $*$ с	Re	τ , MC	S, mkm
1	Стекло	298	808	0,006	0,74	2,64
2	Стекло	298	795	0,006	0,76	2,78
3	Сталь	298	747	0,002	0,42	1,44
4	Сталь	298	695	0,002	0,35	1,01
5	Стекло	303	568	0,012	1,09	5,79
6	Стекло	303	556	0,013	1,10	5,92
7	Сталь	303	511	0,005	0,56	2,54
8	Сталь	303	492	0,003	0,46	1,72
9	Стекло	308	376	0,027	1,61	12,74
10	Сталь	308	321	0,008	0,68	3,80
11	Стекло	308	370	0,030	1,68	13,87
12	Сталь	308	377	0,009	0,81	5,40
13	Стекло	313	255	0,060	2,38	27,71
14	Стекло	313	256	0,062	2,43	29,02
15	Сталь	313	236	0,019	1,11	10,23
16	Сталь	313	246	0,028	1,46	17,58
17	Стекло	318	195	0,102	3,12	47,60
18	Стекло	318	197	0,104	3,16	49,09
19	Сталь	318	199	0,032	1,50	18,52
20	Сталь	318	204	0,040	1,76	25,52
21	Стекло	323	147	0,187	4,24	88,16
22	Стекло	323	151	0,189	4,30	90,78
23	Сталь	323	121	0,073	2,19	39,36
24	Сталь	323	127	0,068	2,13	37,25

Таблица 3: Результаты вычисления Re, τ, S

Как видим, во всех экспериментах число Рейнольдса меньше 1, а путь релаксации пренебрежимо мал. Следовательно формула Стокса применима.

2.4 График зависимости $ln\eta$ от 1/T

По методу наименьших квадратов вычислим угол наклона прямой.

$$k_{\text{\tiny HAKJI}} = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = (6570 \pm 160) \text{K}$$

Прямая, полученная по МНК не проходит через 0. Это объясняется тем, что в формуле (1) есть константа A. Коэффициент b прямой соответсвенно равен lnA.

Рис. 3: График зависимости $ln\eta$ от 1/T.

2.5 Вычисление энергии активации

При помощи формулы (2) рассчитаем энергию активации:

$$W = k * k_{\text{накл}} = 1.38 * 10^{-23} \text{Дж/K} * 6570 \text{ K} = 90.66 \text{ зДж}$$

2.6 Оценка погрешностей

Случайная погрешность коэффициента наклона прямой:

$$\sigma_{k_{\text{\tiny HAKJ}}} = \frac{1}{\sqrt{24}} \sqrt{\frac{\left\langle y^2 \right\rangle - \left\langle y \right\rangle^2}{\left\langle x^2 \right\rangle - \left\langle x \right\rangle^2} - k_{\text{\tiny HAKJ}}^2} = 160~K$$

Полная погрешность энергии активации:

$$\sigma_W = k * \sigma_{k_{\text{накл}}} = 1.38 * 10^{-23} \text{Дж/K} * 160 K = 2 з \text{Дж}$$

3 Вывод

$$W=(91\pm2)$$
зДж

Измерили скорости падения шариков при разной температуре жидкости, вычислили вязкость жидкости по закону Стокса и рассчитали энергию активации. Полученная вязкость глицерина при $25^{\circ}C$ совпадает с табличным значением.