- 1. Para o circuito abaixo
 - a. Se A=1 e B=0, qual o valor de Q?
 - b. Se A=0, qual o valor de Q?

2. Escrever a equação Booleana na forma soma de produtos para Tabela verdade abaixo

	Inpu	Output			
Α	В	С	F		
0	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	1		
1	0	0	0		
1	0	1	1		
1	1	0	1		
1	1	1	0		

- 3. Para o circuito abaixo:
 - a. Escrever a equação Booleana para Q= ...
 - b. Se A=0, qual será a equação para Q =

4.

- a. Desenhe o circuito para o código Verilog abaixo: module test(input a, input b, input c, output f, output g); assign $f = ((b \land c) \& \sim a) | (\sim (b \land c) \& a);$ assign g = b&(a | c) | a&c; endmodule
 - b. Qual o valor de f e g, se a=1, b=1, c=0.

- 5. Considere a representação em Complemento de 2 com 6 bits incluindo o sinal.
 - a. Escreva em binário com complemento de 2, os números A=+13, B=-17.
 - b. Faça a soma A+B e escreva o resultado em decimal e em complemento de 2 com 6 bits (incluso o sinal).

6. Seja A um número de 1 bit (0 ou 1). Seja B um número de 3 bits em complemento de 2. Construir a tabela verdade para F = (A+1) * B com X bits em complemento de 2. O valor de X deve ser estimado para que a saida seja capaz de representar o maior e o menor valor da função.
