Appunti del corso di Istituzioni di Algebra 2015/2016

FUNTORI DERIVATI E APPLICAZIONI DELL'ALGEBRA OMOLOGICA

Agnese Gini

17 gennaio 2017

Indice

1	Moduli localmente liberi	2
2	Funtori derivati e dimensione coomologica	6
	2.1 Dimensione coomologica	. 6
	2.4 Funtori Derivati	. 8
	2.8.1 Il funtore Tor	. 16
3	Dimensione comologica di anelli noetheriani locali	20
	3.4.1 Prodotto esterno	. 23
	3.7 Complesso di Koszul	. 24
	3.9 Anelli noetheriani regolari	. 26
	3.14 Anelli graduati	. 32
4	Moduli piatti e projettivi	34

Capitolo 1

Moduli localmente liberi

Teorema 1.1. Sia A un anello noetheriano e M un A modulo finitamente generato. Allora sono equivalenti i seguenti fatti:

- a. M proiettivo;
- b. M_p libero per ogni p ideale primo di A;
- c. $M_{\mathfrak{m}}$ libero per ogni \mathfrak{m} ideale massimale di A;
- d. esistono $a_1, \ldots, a_n \in A$ tali che l'ideale $(a_1, \ldots, a_n) = A$ e M_{a_i} è un A_{a_i} modulo libero per $i = 1, \cdots, n$.

Definizione 1. Se valgono a, b e c M, allora si dice localmente libero.

Lemma 1. Sia A un anello locale noetheriano e M un A modulo proiettivo finitamente generato. Allora M è libero.

Dimostrazione. Indichiamo con \mathfrak{m} l'ideale massimale di A. Dato che il quoziente $M_{\mathfrak{m}M}$ è uno spazio vettoriale su $k=A_{\mathfrak{m}}$, possiamo prendere $\bar{x}_1,\ldots,\bar{x}_n$ una sua base con $x_i\in M$. Vogliamo mostrare che sono una base per M come A modulo. Per il lemma di Nakayama x_1,\ldots,x_n generano M; prendiamo adesso il morfismo

$$\begin{array}{cccc} f\colon & A^n & \twoheadrightarrow & M \\ & e_i & \mapsto & x_i \end{array}$$

se proviamo che è un isomorfismo, in particolare che $N \coloneqq \ker f = 0$ abbiamo finito. M è proiettivo e dunque la successione

$$0 \longrightarrow N \to A^n \xrightarrow{f} M \longrightarrow 0$$

spezza, ossia $A^n \simeq N \oplus M$. Quozientando per \mathfrak{m} otteniamo che

$$A^n/\mathfrak{m}A^n \simeq N/\mathfrak{m}N \oplus M/\mathfrak{m}M$$

Osserviamo che $A^n/\mathfrak{m}A^n=k^n$ e dato che passando f a quoziente otteniamo un omomorfismo suriettivo, dovremmo necessariamente avere che $N/\mathfrak{m}N=0$ che implica N=0.

Lemma 2. Sia A un anello noetheriano e p un suo ideale primo, M e N due A moduli finitamente generati. Se $M_p \simeq N_p$ allora esiste $a \notin p$ tale che $M_a \simeq N_a$.

Dimostrazione. Consideriamo le seguenti successioni

$$\begin{array}{ccccc} A^h & \xrightarrow{\alpha} & A^n & \twoheadrightarrow & M \\ & e_i & \mapsto & m_i \end{array}$$

$$\begin{array}{cccc} A^k & \xrightarrow{\beta} & A^n & \twoheadrightarrow & N \\ & e_i & \mapsto & n_i \end{array}$$

Localizzando con p si ha

$$A_p^h \longrightarrow A_p^m \longrightarrow M_p \longrightarrow 0$$

$$\varphi_2 \downarrow \qquad \varphi_1 \downarrow \qquad \varphi_0 \downarrow \qquad 0 \downarrow$$

$$A_p^k \longrightarrow A_p^n \longrightarrow N_p \longrightarrow 0$$

dove φ_0 è un isomorfismo con in inverso ψ_0 . Esiste $s \notin p$ tale che la matrice $n \times m$ che rappresenta φ_1 è

$$\left(\frac{a_{ij}}{s}\right)_{i=1...n} = 1...m$$

con $a_{ij} \in A$. In particolare φ_1 è una mappa tra $A_s^m \in A_s^n$; vogliamo mostrare ora che, a meno di sostituire opportunamente s, esistono anche $\tilde{\varphi}_2$ e $\tilde{\varphi}_0$ e che quest'ultima ha un'inversa $\tilde{\psi}_0$.

Per provare l'esistenza di $\tilde{\varphi}_2$ mi basta fare vedere che $\varphi_1 \circ \alpha(e_i) \in \operatorname{Im} \beta_s$; ma esiste $t \notin p$ tale che $\varphi_1 \circ \alpha(e_i) \in \operatorname{Im} \beta/t$. Sostituendo s con st abbiamo l'appartenenza voluta.

Definiamo adesso $\tilde{\varphi}_0(m_i) = g_s \varphi_1(e_i)$; noi vorremmo che $(\tilde{\varphi}_0)_p = \varphi_0$, ma questo discende dalla seguente catena di uguaglianze:

$$\tilde{\varphi}_0(m_i) = \tilde{\varphi}_0(f_s(e_i)) = g_s \varphi_1(e_i) = g \varphi_1(e_i) = \varphi_0(e_i) = \varphi_0(m_i)$$

Analogamente possiamo costruire $\tilde{\psi}_0$.

Dobbiamo mostrare che è l'inverso. Abbiamo che $(\psi_0 \circ \tilde{\varphi}_0)_p = id$ e $(\tilde{\varphi}_0 \circ \tilde{\psi}_0)_p = id$, allora $\tilde{\psi}_0 \circ \tilde{\varphi}_0(m_i) - m_i = 0$ in M_p e $\tilde{\varphi}_0 \circ \tilde{\psi}_0(m_i) - m_i = 0$ in N_p , cioè esiste $u \notin p$ tale che $u(\tilde{\psi}_0 \circ \tilde{\varphi}_0(m_i) - m_i) = 0$ e $u(\tilde{\varphi}_0 \circ \tilde{\psi}_0(m_i) - m_i) = 0$. Sostituendo s con su abbiamo che $\tilde{\psi}_0 \circ \tilde{\varphi}_0 = id$ e $\tilde{\varphi}_0 \circ \tilde{\psi}_0 = id$ e dunque $M_s = N_s$.

Dimostriamo, usando questi due lemmi, il Teorema 1.1:

Dimostrazione.

- a. \Rightarrow b. Consideriamo $p \in \text{Spec}A$, se M è proiettivo allora lo è anche M_p , allora per il Lemma 1 dato che A_p è locale si ha la tesi.
- b. \Rightarrow c. ovvio.
- c. \Rightarrow b. Sia $p \in \text{Spec}A$ e \mathfrak{m} un massimale che lo contiene; indichiamo con $S = A \setminus p$ e $R = A \setminus \mathfrak{m}$. Per ipotesi $M_{\mathfrak{m}}$ è libero, allora $M_p = S^{-1}M = S^{-1}M_{\mathfrak{m}}$ e dunque M_p è libero.
- d. \Rightarrow c. Sia \mathfrak{m} un massimale e $a_i \notin \mathfrak{m}$ e $R = A \setminus \mathfrak{m}$. Allora $R^{-1}M_{a_i}$ e quindi $M_{\mathfrak{m}}$ è libero.
- c. \Rightarrow d. Per ogni \mathfrak{m} si ha $M_{\mathfrak{m}} \simeq (A^n)_{\mathfrak{m}}$, allora per il Lemma 2 esiste $s_{\mathfrak{m}} \notin \mathfrak{m}$ tale che $M_{s_{\mathfrak{m}}} \simeq (A^n)_{s_{\mathfrak{m}}}$. Consideriamo l'ideale $I := (s_{\mathfrak{m}} | \mathfrak{m} \in \operatorname{Spec} A \text{ massimale})$, per costruzione I non è contenuto in nessun massimale e quindi I = A. Per noetherianità esiste un insieme finito di generatori a_1, \ldots, a_k , che sono gli elementi che cercavamo.
- c. \Rightarrow a. Facciamo prima una piccola osservazione

Osservazione 1.2.

– Se M e N sono due moduli su A, anello noetheriano, ed esiste $f \colon A \to B$ piatta su A, allora

$$B \otimes_A \operatorname{Hom}_A(M, N) =_{\Phi} \operatorname{Hom}_B(B \otimes_A M, B \otimes_A N)$$

dove
$$b \otimes \Phi(\beta \otimes m) = b\beta \Phi(m)$$
.
Se $M = A^n$ allora

$$B \otimes_A \operatorname{Hom}_A(A^n, N) \simeq B \otimes N^n =_{\Phi} (N \otimes_A B)^n$$

- In generale

$$A^{h} \longrightarrow A^{n} \longrightarrow M \longrightarrow 0$$

$$\otimes_{A}B \downarrow \qquad \otimes_{A}B \downarrow \qquad \otimes_{A}B \downarrow$$

$$B^{h} \longrightarrow B^{n} \longrightarrow M \otimes B \longrightarrow 0$$

Applicando il funtore $\operatorname{Hom}_A(_, N)$ (che è esatto a sinistra) e indicando con $M_B M \otimes B$:

$$0 \longrightarrow \operatorname{Hom}_A(M,N) \longrightarrow \operatorname{Hom}_A(A^n,N) \longrightarrow \operatorname{Hom}_A(A^h,N)$$

$$0 \longrightarrow \operatorname{Hom}_A(M_B, N_B) \to \operatorname{Hom}_A(B^n, N_B) \to \operatorname{Hom}_A(B^h, N_B)$$

Tuttavia applicando il funtore $B \otimes_A$ alla prima successione, usando il primo punto dell'osservazione e sfruttando la piattezza si ha anche

$$0 \to B \otimes \operatorname{Hom}_A(M,N) \to B \otimes \operatorname{Hom}_A(A^n,N) \to B \otimes \operatorname{Hom}_A(A^h,N)$$

Allora per il lemma dei cinque $\operatorname{Hom}_A(M_B, N_B) \simeq B \otimes \operatorname{Hom}_A(M, N)$.

Torniamo alla dimostrazione; per mostrare che M è proiettivo dimostriamo che è addendo diretto di un modulo libero, ossia che la successione

$$A^n \to M \to 0$$

spezza. Applicando il funtore $\operatorname{Hom}_A(M, \,\,)$ abbiamo la successione

$$\operatorname{Hom}_A(M,A^n) \to \operatorname{Hom}_A(M,M) \to 0$$

è esatta e proviamo che è esatta, in tal caso infatti trovando una controimmagine di id_M avremmo la tesi. $\operatorname{Hom}_A(M,A^n)$ è lui stesso un A modulo finitamente presentato, inoltre localizzando otteniamo

$$(\operatorname{Hom}_A(M,A^n))_{\mathfrak{m}} \to (\operatorname{Hom}_A(M,M))_{\mathfrak{m}} \to 0$$

Per quanto appena osservato (con $B = A_m$) tale successione equivale a

$$\operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, A_{\mathfrak{m}}^n) \to \operatorname{Hom}_{A_{\mathfrak{m}}}(M_{\mathfrak{m}}, M_{\mathfrak{m}}) \to 0$$

che però è esatta perché $M_{\mathfrak{m}}$ è libero. Allora abbiamo concluso dato che essere suriettivo è una proprietà locale.

Consideriamo A un dominio noetheriano e M un modulo proiettivo e finitamente generato, allora se $p \in \operatorname{Spec} A$ si ha $M_p = A_p^n$ per qualche n che non dipende da p (dimostrare). Si definisce $rango\ di\ M$ tale n. In particolare se rk M=1 diremo che è un $fibrato\ lineare$.

Proposizione 1. Siano M e N due moduli proiettivi di rango rispettivamente m e n. Allora

$$\operatorname{rk} M \otimes N = mn$$

Definizione 2. Pic(A) è l'insieme fibrati lineari a meno di isometria.

Proposizione 2. Se A è un dominio di Dedekind allora Pic(A) col prodotto tensore è isomorfo al gruppo delle classi laterali.

Capitolo 2

Funtori derivati e dimensione coomologica

2.1 Dimensione coomologica

Definizione 3. Sia \mathcal{A} una categoria abeliana,

$$dh(A) := \sup \{ n \mid \exists A, B \in Ob A : \operatorname{Ext}^n(A, B) \neq 0 \}$$

è la dimensione coomologica di \mathcal{A} .

Definizione 4. Sia \mathcal{A} una categoria abeliana e $X \in \text{Ob } \mathcal{A}$,

$$dhp_{\mathcal{A}}(X) := \sup \{ n \mid \exists B \in Ob \, \mathcal{A} \colon \operatorname{Ext}^{n}(X, B) \neq 0 \}$$

è la dimensione coomologica proiettiva di A; analogamente

$$dhi_{\mathcal{A}}(X) := \sup \{ n \mid \exists A \in Ob \, \mathcal{A} \colon \operatorname{Ext}^{n}(A, X) \neq 0 \}$$

Osservazione 2.2. Abbiamo visto che a partire da un triangolo distinto

$$A^{\bullet} \xrightarrow{f} B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow A^{\bullet}[1]$$

e un complesso D^{\bullet} abbiamo la successione esatta lunga

$$\cdots \longrightarrow \operatorname{Hom}(D, A^{\bullet}) \longrightarrow \operatorname{Hom}(D^{\bullet}, B^{\bullet}) \longrightarrow \operatorname{Hom}(D^{\bullet}, C^{\bullet}) \longrightarrow \operatorname{Hom}(D^{\bullet}, A[1]) \longrightarrow \operatorname{Hom}(D^{\bullet}, B^{\bullet}[1]) \longrightarrow \operatorname{Hom}(D^{\bullet}, C^{\bullet}[1]) \cdots$$

Scegliendo complessi della forma \underline{X}^{\bullet} abbiamo allora

$$0 \longrightarrow \operatorname{Hom}(D,A) \longrightarrow \operatorname{Hom}(D,B) \longrightarrow \operatorname{Hom}(D,C) \longrightarrow$$

$$\longleftarrow \operatorname{Ext}^{1}(D,A) \longrightarrow \operatorname{Ext}^{1}(D,B) \longrightarrow \operatorname{Ext}^{1}(D,C) \dots$$

Osservazione 2.3. Se P è proiettivo allora $\operatorname{Ext}^n(\underline{P}^{\bullet}, A^{\bullet}) = 0$ per ogni n > 0 e quindi $\operatorname{dhp}(P) = 0$. Analogamente se I è iniettivo $\operatorname{dhi}(I) = 0$.

Gli oggetti proiettivi, abbiamo visto, giocano un ruolo centrale nel calcolo degli Ext:

Proposizione 3. Sia \mathcal{A} una categoria abeliana con abbastanza proiettivi. Allora valgono i seguenti fatti:

- 1. Se per ogni $X \in \mathcal{A}$ e per ogni i > 0 $\operatorname{Ext}^i(P,X) = 0$, allora P è proiettivo.
- 2. Siano $A, B \in \mathcal{A}$. Se esiste una successione esatta

$$0 \longrightarrow B \longrightarrow P^k \longrightarrow \cdots \longrightarrow P^1 \longrightarrow A \longrightarrow 0$$

con P^i proiettivi, allora

$$dhp B = dhp A - k$$

Dimostrazione. 1. Dato un morfismo suriettivo $\beta \colon A \to B$, indicando con $\alpha = \ker \beta$ abbiamo una successione esatta corta

$$0 \longrightarrow K \xrightarrow{\alpha} A \xrightarrow{\beta} B \longrightarrow 0$$

Per l'osservazione 2.2 e usando che $\operatorname{Ext}^i(P,A)=0$ per ipotesi abbiamo che

$$0 \longrightarrow \operatorname{Hom}(P, K) \to \operatorname{Hom}(P, A) \to \operatorname{Hom}(P, B) \longrightarrow 0$$

è esatta; dunque esiste per ogni $f \in \text{Hom}(P, B)$ esiste $g \in \text{Hom}(P, A)$ tale che $\beta \circ g = f$. Questo è equivalente a dire P è proiettivo.

2. Mostriamo la tesi per induzione su k.

Se k=0 Abbiamo che $0\to B\to A\to 0$ è esatta, ossia A B sono isomorfi.

Se k=1 Allora $0\to B\to P\to A\to 0$ è esatta. Passando alla successione esatta lunga degli ${\rm Hom}(_,D)$ otteniamo

$$0 \longrightarrow \operatorname{Hom}(A,D) \longrightarrow \operatorname{Hom}(P,D) \longrightarrow \operatorname{Hom}(B,D)$$

$$\hookrightarrow \operatorname{Ext}^{1}(A,D) \longrightarrow \operatorname{Ext}^{1}(P,D) \longrightarrow \operatorname{Ext}^{1}(B,D) \dots$$

$$\hookrightarrow \operatorname{Ext}^{i}(A,D) \longrightarrow \operatorname{Ext}^{i}(P,D) \longrightarrow \operatorname{Ext}^{i}(B,D) \dots$$

Dato che P è proiettivo $\operatorname{Ext}^i(P,D)=0$ per ogni i>0, quindi $\operatorname{Ext}^i(A,D)\simeq \operatorname{Ext}^{i+1}(B,D)$. Passando al minimo si ottiene dhp $B=\operatorname{dhp} A+1$, Se k>1 Dalla successione esatta otteniamo due altre successioni esatte

Allora per ipotesi induttiva dh
p $A = \operatorname{dhp} C - k + 1$ e per il caso k = 1 invece dh
p $C = \operatorname{dhp} B - 1$, da cui

$$dhp A = dhp B - 1 - k + 1 = dhp B - k.$$

Questa proposizione ci permette anche di dare una condizione equivalente alla caratterizzazione della dimensione proiettiva in termini di risoluzioni proiettive minimali.

Corollario 1. Sia \mathcal{A} una categoria con abbastanza proiettivi, dh
pM=kse e solo se esiste

$$0 \to P^{-k} \to \cdots \to P^0 \to M \to 0$$

esatta di lunghezza minima e con P^i oggetti proiettivi.

Dimostrazione. Questa condizione è ovviamente sufficiente. Viceversa, per ipotesi esiste

$$0 \to N \to P^{-k+1} \to \cdots \to P^0 \to M \to 0$$

Ma dhp(N) = dhp(M) - k = 0, dunque N è proiettivo e questa è la successione cercata.

2.4 Funtori Derivati

Il funtore $F := \text{Hom}(M, _)$ con $M \in \text{Ob}\,\mathcal{A}$ è esatto a sinistra. Abbiamo visto che però presa una sequenza esatta corta

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

applicando F è ben definita la sequenza esatta lunga

$$0 \longrightarrow \operatorname{Hom}(M,A) \longrightarrow \operatorname{Hom}(M,B) \longrightarrow \operatorname{Hom}(M,C) \longrightarrow$$

$$\hookrightarrow \operatorname{Ext}^1(M,A) \longrightarrow \operatorname{Ext}^1(M,B) \longrightarrow \operatorname{Ext}^1(M,C) \dots$$

$$\hookrightarrow \operatorname{Ext}^i(M,A) \longrightarrow \operatorname{Ext}^i(M,B) \longrightarrow \operatorname{Ext}^i(M,C) \dots$$

che in un certo senso misura quanto F non sia esatto a sinistra. Vorremmo adesso estendere questo concetto ad un funtore qualsiasi che sia parzialmente esatto.

Sia \mathcal{A} una categoria abeliana con abbastanza iniettivi e proiettivi e \mathcal{B} anch'essa abeliana. Preso un funtore

$$F: \mathcal{A} \longrightarrow \mathcal{B}$$

esatto a sinistra, definiamo funtore derivato destro

$$RF: \mathcal{D}(\mathcal{A})^+ \longrightarrow \mathcal{D}(\mathcal{B})^+$$

un funtore tale che

- mandi triangoli distinti in triangoli distinti,
- sia "collegabile" con F.

In particolare se $A \in \text{Ob } \mathcal{A}$ allora $H^0(RF(\underline{A}^{\bullet}) = FA$.

Una prima possibilità per definirlo è

$$\bar{F} \colon \operatorname{Com} \mathcal{A}^+ \longrightarrow \operatorname{Com} \mathcal{B}^+$$

In modo che $A^{\bullet} \mapsto FA^{\bullet}$; tuttavia passando già in Kom \bar{F} non manda triangoli distinti in triangoli distinti.

Analogamente potremmo pensare di definire

$$K^+F: \operatorname{Kom} \mathcal{A}^+ \longrightarrow \operatorname{Kom} \mathcal{B}^+$$

In modo che $A^{\bullet} \mapsto FA^{\bullet}$; questo manda triangoli distinti in triangoli distinti, infatti consideriamo

$$X^{\bullet} \xrightarrow{f} Y^{\bullet} \longrightarrow \operatorname{Cono}(f) \xrightarrow{-\delta} X^{\bullet}[1]$$

in Kom $\mathcal{A}^+.$ Applicando Fsi ha

$$FX^{\bullet} \xrightarrow{Ff} FY^{\bullet} \to F(\operatorname{Cono}(f))$$

Questo però da un triangolo distinto perché

$$F(\operatorname{Cono}(f))^n = FA^n \oplus FB^n$$

e il bordo è

$$\begin{pmatrix} -F\partial_A & 0\\ Ff & F\partial_b \end{pmatrix}$$

perciò F(Cono(f)) = Cono(Ff).

Ancora una volta però questo funtore non è quello giusto perché non si comporta bene rispetto ai quasi isomorfismi. Preso f un quasi isomorfismo, allora passando alla categoria derivata otteniamo un isomorfismo. Se lo completiamo a triangolo distinto in Kom

$$A^{\bullet} \xrightarrow{f} B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow A^{\bullet}[1]$$

e applichiamo KF^+ otteniamo

$$FA^{\bullet} \xrightarrow{Ff} FB^{\bullet} \longrightarrow FC^{\bullet} \longrightarrow FA^{\bullet}[1]$$

f è un quasi isomorfismo perciò $H^{\bullet}(C)=0$, allora dovremmo avere $H^{\bullet}(FC)=0$ ma ciò non accade. Infatti F è esatto solo a sinistra e quindi applicandolo a

$$0 \to C^0 \to C^1 \to C^2 \to C^3 \to \dots$$

si perde l'esattezza già in FC^1 .

Questo problema è centrale per la buona definizione del funtore derivato a destra, quindi un Lemma che ci aiuti ad aggirare questo ostacolo.

Lemma 3. Sia $A^{\bullet} \in \text{Com}^+(A)$ tale che A^i è un oggetto iniettivo per ogni i e aciclico, ossia $H^i(A) = 0$ per ogni i. Allora A^{\bullet} spezza

$$A^i \simeq B^i(A) \oplus B^{i+1}(A)$$

Dimostrazione. Poichè A^0 è iniettivo allora

$$0 \to A^0 \to A^1$$

allora spezza, quindi $A^1=A^0\oplus C^1=B^1\oplus C^1$ e poichè gli A^i sono iniettivi allora lo è anche $C^1.$

Il complesso è aciclico, perciò $\ker \partial_A^1 = B^1$ e dunque la restrizione a C^1 è iniettiva:

$$0 \to C^1 \to A^1$$

ma allora $C^1\simeq B^2$ e dunque $A^1\simeq B^1(A)\oplus B^2(A)$. Iterando questo procedimento si ha la tesi. \Box

Osservazione 2.5. Se $A^{\bullet} \in \operatorname{Com}^+(\mathcal{A})$ tale che A^i è un oggetto iniettivo per ogni i e aciclico (come nel Lemma) Applicando un funtore F esatto a sinistra otteniamo $FA^i \simeq FB^i \oplus FB^{i+1}$ e il complesso

$$0 \to FA^0 \to FA^1 \to FA^2 \to FA^3 \to \dots$$

in cui il bordo agisce come l'identità su FB^{i+1} e zero su FB^i , anch'esso risulta aciclico.

L'idea per definire il complesso derivato è quindi quella di sfruttare che su questi particolari complessi applicando un funtore esatto a sinistra viene rispettata la comologia. Ricordiamo inoltre che se una categoria $\mathcal A$ ha abbastanza iniettivi, preso un complesso $A^{\bullet} \in \mathrm{Com}^+ \mathcal A$ esiste un complesso $I_A^{\bullet} \in \mathrm{Com}^+ \mathcal A$ fatto di oggetti iniettivi e un quasi isomorfismo

$$i_A \colon A^{\bullet} \longmapsto I_A^{\bullet}$$

tale che i_A^n è un monomorfismo per ognin.

Abbiamo anche osservato grazie al proprietà legate all'iniettività

$$\operatorname{Hom}_{\mathcal{D}(\mathcal{A})^{+}}(I_{A}^{\bullet}, I_{B}^{\bullet}) = \operatorname{Hom}_{\operatorname{Kom}^{+} \mathcal{A}}(I_{A}^{\bullet}, I_{B}^{\bullet}).$$

Questo fatto unito a quanto sopra ci da che esiste il seguente isomorfismo:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathcal{D}(\mathcal{A})^{+}}(A^{\bullet}, B^{\bullet}) & \xrightarrow{\sim} & \operatorname{Hom}_{\operatorname{Kom}^{+}\mathcal{A}}(I_{A}^{\bullet}, I_{B}^{\bullet}) \\ f & \longmapsto & i_{B} \circ f \circ i_{A}^{-1} \end{array}$$

Facilmente, grazie a queste osservazioni, otteniamo il seguente fatto

Proposizione 4. Sia \mathcal{A} una categoria con abbastanza iniettivi. La categoria dei complessi iniettivi limitati inferiormente $\operatorname{Kom}(\mathcal{I}_{\mathcal{A}})^+$ è naturalmente equivalente a $\mathcal{D}(\mathcal{A})^+$.

Questa proposizione da che la seguente è una buona definizione:

Definizione 5. Sia \mathcal{A} una categoria con abbastanza iniettivi e F un funtore esatto a sinistra. Il funtore derivato a destra

$$\begin{array}{ccccc} RF \colon & \mathcal{D}(\mathcal{A})^+ & \longrightarrow & \mathcal{D}(\mathcal{B})^+ \\ & A^{\bullet} & \longmapsto & F(I_A^{\bullet}) \\ & f & \mapsto & RF(g) \end{array}$$

dove se $f \in \operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ allora $g = i_B \circ f \circ i_A^{-1}$.

Analogamente si dimostra che

Proposizione 5. Sia \mathcal{A} una categoria con abbastanza proiettivi. La categoria dei complessi iniettivi limitati superiormente $\operatorname{Kom}(\mathcal{P}_{\mathcal{A}})^-$ è naturalmente equivalente a $\mathcal{D}(\mathcal{A})^-$.

Detto poi $p_A \colon P_A^{\bullet} \to A^{\bullet}$ un quasi isomorfismo tra una risoluzione proiettiva e un complesso, abbiamo la buona definizione del funtore derivato a sinistra

Definizione 6. Sia \mathcal{A} una categoria con abbastanza proiettivi e F un funtore esatto a destra. Il funtore derivato a sinistra è

$$\begin{array}{cccc} LF \colon & \mathcal{D}(\mathcal{A})^{-} & \longrightarrow & \mathcal{D}(\mathcal{B})^{-} \\ & A^{\bullet} & \longmapsto & F(P_{A}^{\bullet}) \\ & f & \mapsto & LF(h) \end{array}$$

dove se $f \in \operatorname{Hom}_{\mathcal{D}(\mathcal{A})}(A^{\bullet}, B^{\bullet})$ allora $h = p_B^{-1} \circ f \circ p_A$.

Definizione 7. Consideriamo la categoria degli A moduli. Il funtore $F(N) = M \otimes_A N$ è esatto a destra. Definiamo

$$\operatorname{Tor}_A^i(M,N) := H^{-i}(LF(N))$$

Esempio 2.6. Siano $M = \mathbb{Z}/_m$ e $N = \mathbb{Z}/_n$ due \mathbb{Z} moduli. Consideriamo risoluzione proiettiva (libera) di N

Se applichiamo $M \otimes _$ otteniamo

$$0 \longrightarrow M \otimes \mathbb{Z} \stackrel{n}{\longrightarrow} M \otimes \mathbb{Z} \longrightarrow 0$$

e ricordando che $M \otimes \mathbb{Z} = M$

$$0 \longrightarrow \mathbb{Z}/_{m\mathbb{Z}} \xrightarrow{n} \mathbb{Z}/_{m\mathbb{Z}} \longrightarrow 0$$

Se calcoliamo perciò la coomologia vediamo che

$$\operatorname{Tor}^{0}(M, N) = \mathbb{Z}/_{m\mathbb{Z}} \otimes \mathbb{Z}/_{n\mathbb{Z}} = \mathbb{Z}/_{d\mathbb{Z}}$$

$$\operatorname{Tor}^{1}(M, N) = \mathbb{Z}/_{d\mathbb{Z}}$$

 $con d = \gcd(m, n).$

Mostriamo che i funtori derivati così definiti hanno le proprietà che avevamo richiesto all'inizio del capitolo.

Lemma 4.

- i. Se $A \in \text{Ob } \mathcal{A}$ allora $H^0(RF(\underline{A}^{\bullet})) = FA$.
- ii. RF porta triangoli distinti in triangoli distinti.

Dimostrazione. i. A partire da una risoluzione iniettiva di \underline{A}^{\bullet}

of assore. If it partite data that its order one fineterival difference is
$$A \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

otteniamo una successione esatta

$$0 \longrightarrow A \longrightarrow I^0 \longrightarrow I^1$$

Poichè F è esatto a sinistra

$$0 \longrightarrow FA \longrightarrow FI^0 \longrightarrow FI^1$$

rimane esatta. Dato che $RF(\underline{A}^{\bullet}) = F(I^{\bullet})$ allora si ha proprio $H^0(RF(\underline{A}^{\bullet})) = FA$.

ii. Ogni triangolo

$$A^{\bullet} \longrightarrow B^{\bullet} \longrightarrow C^{\bullet} \longrightarrow A^{\bullet}[1]$$

grazie alla Proposizione 4 è quasi isomorfo al triangolo

$$I_A^{\bullet} \longrightarrow I_B^{\bullet} \longrightarrow I_C^{\bullet} \longrightarrow I_A^{\bullet}[1]$$

Applicare RF al primo è quindi come applicarlo al secondo, ci possiamo quindi ridurre a lavorare in Kom⁺. Per concludere basta ripetere le osservazioni fatte per K^+F , il nostro triangolo è isomorfo a

$$I_A^{\bullet} \xrightarrow{g} I_B^{\bullet} \longrightarrow \operatorname{Cono}(g) \longrightarrow I_A^{\bullet}[1]$$

applicando il funtore F e ricordando che F(Cono(g)) = Cono(Fg) si ha

$$FI_A^{\bullet} \xrightarrow{Fg} FI_B^{\bullet} \longrightarrow \operatorname{Cono}(Fg) \longrightarrow F(I_A^{\bullet})[1]$$

che è un triangolo distinto.

Definizione 8. Sia $A \in Ob \mathcal{A}$. Si definisce

$$R^i F(A) := H^i(RF(A))$$

inoltre diremo che A è adatto ad F se $R^iF(A) = 0$ per ogni i.

Esempio 2.7.

- Gli oggetti adatti per il tensore sono tutti e soli i moduli piatti.
- Gli oggetti adatti per $\operatorname{Hom}_A(M, \underline{\ })$ sono tutti e soli i moduli proiettivi.

Lemma 5. Consideriamo una successione esatta

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

1. Se A è adatto allora

$$0 \longrightarrow FA \xrightarrow{Ff} FB \xrightarrow{Fg} FC \longrightarrow 0$$

è esatta;

- 2. Se A, B adatti allora C adatto. Se A, C adatti allora B adatto.
- 3. Se $A^{\bullet} \in \text{Kom}^+ \mathcal{A}$ è aciclico e gli A^i sono tutti adatti, allora FA^{\bullet} è aciclico.
- 4. Gli oggetti iniettivi sono adatti.

Dimostrazione. Dall'esattezza, abbiamo in $Kom^+ A$ i quasi isomorfismi

È ben definita la successione esatta lunga

$$0 \to FA \to FB \to FC \to R^1FA \to R^1FB \to \dots$$

infatti il triangolo

$$I_A^{\bullet} \longrightarrow I_B^{\bullet} \longrightarrow I_C^{\bullet} \longrightarrow I_A^{\bullet}[1]$$

è distinto e applicatogli F va in un triangolo distinto, passando perciò in comologia e ricordando che le frecce nel diagramma all'inizio sono quasi isomorfismi (isomorfismi in coomologia), si ha la tesi.

Alla luce di questo fatto 1. e 2. sono ovvi.

3. Consideriamo il complesso

$$0 \to A^0 \to A^1 \to A^2 \to A^3 \to \dots$$

dato che è aciclico abbiamo le successioni esatte

$$0 \to A^0 \to A^1 \to B^2 \to 0$$

 \mathbf{e}

$$0 \rightarrow B^2 \rightarrow A^2 \rightarrow B^3 \rightarrow 0$$

Usando 2., otteniamo che B^2 è adatto e allora lo è anche B^3 . Applichiamo F:

$$0 \to FA^0 \to FA^1 \to FA^2 \to FA^3 \to \dots$$

Per 1. abbiamo che

$$0 \to FA^0 \to FA^1 \to FB^2 \to 0$$

è esatta. Per mostrare che $F(\boldsymbol{A}^{\bullet})$ è aciclico dobbiamo innanzi tutto far vedere che

$$\operatorname{Im} F\partial_A^1 = \ker F\partial_A^2$$

Consideriamo

$$0 \to FB^2 \xrightarrow{\alpha} FA^2 \xrightarrow{\beta} FB^3 \to 0$$

è esatta visto che è B^2 è adatto, allora

$$\operatorname{Im} F \partial_A^1 = \operatorname{Im} \alpha = \ker \beta = \ker F \partial_A^2$$

Iterando questo procedimento si ha la tesi.

Teorema 2.8. Se $A^{\bullet} \in \text{Com}^+$ è di oggetti adatti, allora

$$RF(A^{\bullet}) = F(A^{\bullet})$$

Dimostrazione. Il quasi isomorfismo

$$i_A \colon A^{\bullet} \longrightarrow I_A^{\bullet}$$

in Kom⁺ si completa a triangolo distinto.

$$A^{\bullet} \longrightarrow I_A^{\bullet} \longrightarrow C^{\bullet} \to A^{\bullet}[1]$$

Per ogni n quindi si ha la successione esatta

$$0 \to A^n \to I^n \to C^n \to 0$$

allora per il lemma precedente i C^n sono oggetti adatti. Dalla sequenza esatta lunga in comologia otteniamo anche che il complesso C^{\bullet} è aciclico. Applicando F:

$$0 \to FA^n \to FI_A^n \to FC^n \to 0$$

è esatta.

Vogliamo mostrare che $FA^{\bullet} \to FI_A^{\bullet}$ è un quasi isomorfismo. Ma dato che C^{\bullet} è fatto di oggetti adatti e è aciclico per il Lemma 5.3 FC^{\bullet} è aciclica e quindi la successione esatta lunga in comologia è

$$\cdots \to H^i(FA) \to H^i(FI) \to 0 \to H^{i+1}(FA) \to H^{i+1}(FI) \to 0 \to \cdots$$

Allora $F(A^{\bullet}) = F(I_A^{\bullet}) = RF(A^{\bullet})$ in $\mathcal{D}(\mathcal{B})^+$, che è quello che volevamo.

2.8.1 Il funtore Tor

Studiamo adesso il funtore derivato $\operatorname{Tor}_A(M, _)$, con M un A modulo, rispetto $F = M \otimes_A _$.

Proposizione 6. Se N è un A modulo proiettivo allora $\operatorname{Tor}^i(M,N)=0$ per ogni i>0.

 $Dimostrazione.\ N$ è proiettivo e quindi \underline{N}^{\bullet} è una sua risoluzione proiettiva. Applicando Fotteniamo il complesso

$$0 \to 0 \to N \otimes_A M \to 0 \to 0$$

la cui comologia è zero per $i \neq 0$.

Vale anche la proprietà simmetrica:

Proposizione 7. Se M è un A modulo piatto allora $\operatorname{Tor}^i(M,N)=0$ per ogni i>0.

Dimostrazione. Sia $P^{\bullet} \in \text{Com}^+$ è una risoluzione proiettiva di N.

$$\cdots \rightarrow P^{-2} \rightarrow P^{-1} \rightarrow P^0 \rightarrow 0$$

questo complesso è esatto ovunque tranne che in zero e quindi tensorizzando per M, che è piatto, l'esattezza si conserva per i < 0, che equivale a dire che $\operatorname{Tor}^i(M,N) = 0$ per ogni i > 0.

Sappiamo che $\operatorname{Tor}_A^0(M,N) = M \otimes_A N = N \otimes_A M = \operatorname{Tor}_A^0(N,M)$, in effetti si ha che questa simmetria è sempre valida. Vediamo alcuni fatti e osservazioni che ci aiuteranno a dimostrarlo:

Osservazione 2.9. Consideriamo una sequenza esatta corta

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

applicando F troviamo la sequenza esatta lunga

$$\cdots \longrightarrow \operatorname{Tor}^1(M,C) \to M \otimes A \longrightarrow M \otimes B \longrightarrow M \otimes C \longrightarrow 0$$

Se invece abbiamo

$$0 \to M_1 \overset{f}{\to} M_2 \overset{g}{\to} M_3 \to 0$$

e definiamo $F_i(X) := M_i \otimes_A X$. Allora sono definiti dei morfismi

$$F_1(X) \xrightarrow{f \otimes id} F_2(X)$$

$$F_2(X) \xrightarrow{g \otimes id} F_3(X)$$

e se M è proiettivo (piatto) allora

$$0 \longrightarrow M_1 \otimes X \longrightarrow M_2 \otimes X \longrightarrow M_3 \otimes X \longrightarrow 0$$

è esatta.

Lemma 6. Siano $F, G, H: \mathcal{A} \to \mathcal{B}$ funtori esatti a destra e una successione di funtori

$$0 \longrightarrow F \longrightarrow G \longrightarrow H \longrightarrow 0$$

esatta sui proiettivi con $\mathcal A$ è una categoria con abbastanza proiettivi e iniettivi. Allora

$$\cdots \to L^1G(X) \to L^1H(X) \to F(X) \to G(X) \to H(X) \to 0$$

è esatta.

Dimostrazione. Sia P_X^{\bullet} una risoluzione proiettiva di $\underline{X}^{\bullet},$ in ogni grado n

$$0 \longrightarrow F(P_X^n) \longrightarrow G(P_X^n) \longrightarrow H(P_X^n) \longrightarrow 0$$

è esatta per ipotesi.

Il tringolo

$$FP^{\bullet} \longrightarrow GP^{\bullet} \longrightarrow HP^{\bullet} \rightarrow FP^{\bullet}[1]$$

allora è distinto.

Applicando la successione esatta lunga si ha la tesi.

Corollario 2. Presa la seguente successione esatta di moduli

$$0 \rightarrow M_1 \stackrel{f}{\rightarrow} M_2 \stackrel{g}{\rightarrow} M_3 \rightarrow 0$$

Allora, preso un modulo X qualsiasi, la sequenza lunga

$$\cdots \to \operatorname{Tor}^1(M_2, X) \to \operatorname{Tor}^1(M_1, X) \to M_1 \otimes X \to M_2 \otimes X \to M_3 \otimes X \to 0$$

è esatta.

Dimostrazione. I funtori $F_i(X) := M_i \otimes_A X$ per i = 1, 2, 3 dell'osservazione verificano le ipotesi del lemma.

Quanto appena detto è sufficiente per mostrare la simmetria voluta, ossia:

Proposizione 8. Siano M, N due A moduli qualsiasi. Allora $\operatorname{Tor}_A^i(M, N) = \operatorname{Tor}_A^i(N, M)$ per ogni i.

Dimostrazione. Per calcolare $\operatorname{Tor}_A^i(M,N)$, prendiamo una risoluzione proiettiva P^{\bullet} di N e gli applichiamo $M \otimes _$. Chiamiamo adesso N' il nucleo della proiezione di P^0 su N; la seguente successione allora è esatta:

$$0 \longrightarrow N' \rightarrow P^0 \rightarrow N \longrightarrow 0$$

Abbiamo per il Corollario 2.8.1 con $M \otimes _$ la successione esatta lunga

$$\dots \operatorname{Tor}^{1}(M, N) \to M \otimes N' \to M \otimes P^{0} \to M \otimes N \to 0$$

$$\dots \to 0 \to \operatorname{Tor}^{2}(M, N) \to \operatorname{Tor}^{1}(M, N') \to 0 \to \dots$$
 (2.1)

Dove gli zeri compaiono al posto di $\mathrm{Tor}^i(M,P^0)$ dato che P^0 è proiettivo. Allora $\mathrm{Tor}^i(M,N)=\mathrm{Tor}^{i-1}(M,N')$ per ogni $i\geq 2$.

Analogamente col funtore $_\otimes M$ otteniamo:

$$\dots \operatorname{Tor}^{1}(N, M) \to N' \otimes M \to P^{0} \otimes M \to N \otimes M \to 0$$

$$\dots \to 0 \to \operatorname{Tor}^{2}(N, M) \to \operatorname{Tor}^{1}(N', M) \to 0 \to \dots$$
(2.2)

e quindi $\operatorname{Tor}^{i}(N, M) = \operatorname{Tor}^{i-1}(N', M)$ per ogni $i \geq 2$.

Osserviamo che essendo la risoluzione aciclica in P^{-1} abbiamo che il complesso

$$\cdots \rightarrow P^{-3} \rightarrow P^{-2} \rightarrow P^{-1} \rightarrow 0 \rightarrow \cdots$$

è una risoluzione per N'.

Mostriamo per induzione su i la tesi.

- i = 0 È noto che $M \otimes N = N \otimes M$.
- i=1 Dal caso i=0 e dalla prime parte delle successioni 2.1 e 2.2 si ha che allora $\mathrm{Tor}_A^1(M,N)=\mathrm{Tor}_A^1(N,M).$
- $i \geq 1$ Per ipotesi induttiva $\operatorname{Tor}_A^{i-1}(M,N') = \operatorname{Tor}_A^{i-1}(N',M)$ e dunque per quanto provato prima $\operatorname{Tor}_A^{i}(M,N) = \operatorname{Tor}_A^{i-1}(M,N') = \operatorname{Tor}_A^{i-1}(N',M) = \operatorname{Tor}_A^{i}(N,M)$.

Proposizione 9. I seguenti fatti sono equivalenti:

- (1) M è un A modulo piatto;
- (2) $\operatorname{Tor}_A^i(M,N)=0$ per ogni N e per ogni i>0;
- (3) $\operatorname{Tor}_A^1(M, N) = 0$ per ogni N.

Dimostrazione. Ovviamente $(1) \Rightarrow (2) \Rightarrow (3)$.

Supponiamo che valga (3) e consideriamo una successione esatta

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

Allora anche la successione

$$0 \longrightarrow M \otimes A \longrightarrow M \otimes B \longrightarrow M \otimes C \longrightarrow 0$$

è esatta e quindi M è piatto.

Capitolo 3

Dimensione comologica di anelli noetheriani locali

I risultati che abbiamo ottenuto riguardo Tor trovano applicazione nello studio degli anelli noetheriani locali e, per analogia, negli anelli graduati. A meno di specificare, in questo paragrafo indicheremo con (A, \mathfrak{m}) un anello noetheriano locale con massimale \mathfrak{m} e M un A modulo finitamente generato, inoltre con k indicheremo il campo residuo A/\mathfrak{m} .

Osservazione 3.1. I risulti che presenteremo continuano ad essere validi sostituendo nelle ipotesi A anello graduato con A_0 campo e M modulo graduato finitamente generato.

In primo luogo ci interessa capire come sono fatte le risoluzioni libere (proiettive/piatte) di M. Dato che è finitamente generato, possiamo definire n_0 il minimo numero di generatori di M e sappiamo che esiste un omomorfismo di moduli surgettivo tra $F^0 := A^{n_0}$ e M:

$$F^0 \xrightarrow{\partial^0} M \to 0$$

A partire da qui, iterativamente, possiamo costruire una risoluzione libera di M: indichiamo con n_i il minimo numero di generatori di $\ker \partial^{-i}$ e con $F^{-i} := A^{n_i}$.

Definizione 9. Una risoluzione

$$\dots \xrightarrow{\partial^{-4}} F^{-3} \xrightarrow{\partial^{-3}} F^{-2} \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \xrightarrow{\partial^0} M \to 0$$

costruita come sopra è detta risoluzione libera minimale.

Lemma 7. Una risoluzione libera di M è minimale se e solo se il complesso tensorizzato per k ha tutti i bordi nulli eccetto in zero, ossia $\bar{\partial}^{-i} := \partial^{-i} \otimes id_k = 0$ per i > 0.

Dimostrazione. Supponiamo che

$$\dots \xrightarrow{\partial^{-3}} F^{-2} \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \xrightarrow{\partial^0} M \to 0$$

sia una risoluzione libera minimale. Applichiamo il funtore $\otimes k$:

$$\dots \xrightarrow{\bar{\partial}^{-3}} F^{-2} \otimes k \xrightarrow{\bar{\partial}^{-2}} F^{-1} \otimes k \xrightarrow{\bar{\partial}^{-1}} F^0 \otimes k \xrightarrow{\bar{\partial}^0} M \otimes k \to 0$$

Osserviamo¹ che $M \otimes k \simeq k^{n_0}$ e $F^0 \otimes k \simeq k^{n_0}$ e quindi $\bar{\partial}^0$ è un isomorfismo (sono spazi vettoriali della stessa dimensione e il bordo è suriettivo), cosicché $\bar{\partial}^{-1} = 0$.

Supponiamo adesso $\bar{\partial}^{-j}$ sia zero per 0 < j < i. Chiamiamo M' il conucleo della mappa ∂^{-i} :

$$F^{-i} \xrightarrow{\partial^{-i}} F^{-i+1} \xrightarrow{\beta} M' \to 0$$

Se tensorizziamo questa sequenza esatta abbiamo

$$F^{-i} \otimes k \xrightarrow{\bar{\partial}^{-i}} F^{-i+1} \otimes k \xrightarrow{\bar{\beta}} M' \otimes k \to 0$$

Dato che il complesso è esatto M' è anche il nucleo di ∂^{-i+1} e quindi dato che è minimale $M' \otimes k = k^{n_i}$. Ci siamo ricondotti al caso base e quindi la tesi e vera per ipotesi induttiva.

Viceversa, supponiamo che $\bar{\partial}^{-i} = 0$ per i > 0. Allora $\bar{\partial}^{0}$ è iniettiva e dunque

$$n_0 \le \dim_k(M \otimes k) = \min \{ \# \text{ generatori di } M \} \le n_0$$

e quindi $n_0 = \min \{ \# \text{ generatori di } M \}$. Analogamente a come abbiamo fatto prima, sfruttando l'esattezza, ci si può ricondurre sempre a questo caso. In tal modo otteniamo che $n_i = \min \{ \# \text{ generatori di ker } \partial^{-i} \}$ per ogni i, che equvale a dire che la risoluzione libera presa è minimale.

Questo risulto ci permette di dimostrare un risultato molto importante a proposito della dimensione comologica proiettiva dei moduli finitamente generati su anelli locali noetheriani.

Teorema 3.2. Sia (A, \mathfrak{m}) un anello noetheriano locale con k campo residuo di \mathfrak{m} e M un A modulo finitamente generato. Siano poi $n = \operatorname{dhp} M$ e d la lunghezza di una risoluzione libera minimale di M. Allora n = d e

$$\operatorname{Tor}_A^i(M,k) \begin{cases} = 0 & i > d; \\ \neq 0 & i \leq d, \end{cases}$$

Inoltre se

$$\dots \xrightarrow{\partial^{-3}} F^{-2} \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \xrightarrow{\partial^0} M \to 0$$

è una risoluzione libera minimale $n_i = \dim_k \operatorname{Tor}_A^i(M, k)$.

¹Nakayama

Osservazione 3.3. $\operatorname{Tor}_A^i(M,k)$ è un k-spazio vettoriale. Infatti $\operatorname{Tor}_A^i(M,k) = \operatorname{Tor}_A^i(k,M)$ che è la comologia di una risoluzione proiettiva o piatta di M tensorizzata per k, i cui bordi sono proprio mappe di spazi vettoriali.

 $Dimostrazione.~d \geq n$ infatti ogni modulo libero è proiettivo. Se considerariamo poi risoluzione proiettiva di M, per calcolare i Tor tensorizziamo per k

$$0 \to P^{-n} \to \cdots \to P^{-2} \to P^{-1} \to P^0 \to 0 \to \cdots$$

allora chiaramente $\operatorname{Tor}_A^i(k,M)=0$ per i>n.

$$\dots \xrightarrow{\partial^{-3}} F^{-2} \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \xrightarrow{\partial^0} M \to 0$$

è una risoluzione libera minimale di M lunga s applicando $_\otimes k$ per il Lemma 7 otteniamo un complesso con i bordi tutti nulli: passando alla comologia quindi abbiamo che $\operatorname{Tor}_A^i(k,M) = F^{-i} \otimes k = k^{n_i}$ e $n_i = \dim_k \operatorname{Tor}_A^i(k,M)$. Inoltre

$$\operatorname{Tor}_{A}^{i}(M,k) \begin{cases} = 0 & i > s; \\ \neq 0 & i \leq s, \end{cases}$$

In genera vale che $s \geq d \geq n$ ma

$$\operatorname{Tor}_{A}^{i}(M,k) \begin{cases} = 0 & i > n; \\ \neq 0 & i \leq s, \end{cases}$$

e quindi $n+1 \ge s+1$, ossia $n \ge s \ge d \ge n$.

Osservazione 3.4. Il teorema ci dice che le risoluzioni libere minimali sono anche di lunghezza minima.

Corollario 3. Sia (A, \mathfrak{m}) un anello noetheriano locale con k campo residuo di \mathfrak{m} e M un A modulo finitamente generato. I seguenti fatti sono equivalenti:

- (1) M libero
- (2) M proiettivo
- (3) M piatto

Dimostrazione. (1) \iff (2) è Lemma 1.

- $(2) \iff (3)$ noto.
- (3) \iff (2) Per la Proposizione 9, $\operatorname{Tor}_{A}^{1}(k, M) = 0$ perciò una risoluzione libera minimale è lunga zero e quindi M é libero.

Corollario 4. Sia A un anello noetheriano e M un A modulo finitamente generato. I seguenti fatti sono equivalenti:

(1) M localmente libero.

- (2) M proiettivo
- (3) M localmente piatto

Dimostrazione. (1) \iff (2) è il Teorema 1.1. M proiettivo \iff M localmente piatto \iff M localmente libero. \square

Se (A, \mathfrak{m}) è un anello locale noetheriano, il Teorema 3.2 mette in relazione la lunghezza di una risoluzione libera minimale di un modulo finitamente generato M con i $\operatorname{Tor}^i(k, M)$, dove k è il campo residuo di \mathfrak{m} . Abbiamo mostrato tuttavia che il funtore derivato Tor è simmetrico nelle entrate, diventa quindi interessante lo studio delle risoluzioni dell' A modulo k. In questo paragrafo vedremo la costruzione, a tale scopo, del complesso di Koszul. Ci serve tuttavia introdurre alcune nozioni e risultati preliminari.

3.4.1 Prodotto esterno

Definizione 10. Sia A un anello commutativo con identità e M un A modulo. Diremo che

$$\Phi \colon M^k \longrightarrow \wedge^k M$$

è il prodotto esterno se

- 1. Φ è multilineare
- 2. Φ è alternante, ossia $\Phi(m_1, \ldots, m, m, \ldots, m_k) = 0$ (antisimmetrico).
- 3. Per ogni $\Psi \colon M^k \to U$ multilineare alternante esiste unico un omomorfismo di moduli $\Omega \colon \wedge^k M \to U$ tale che $\Psi = \Omega \circ \Phi$.

Osservazione 3.5. Sia char $k \neq 2$. Se φ è un applicazione alternante allora $\varphi(m_1, \ldots, m_k) = \varepsilon(\sigma)\varphi(m_{\sigma 1}, \ldots, m_{\sigma k})$ con $\sigma \in S_k$.

Proposizione 10. Il prodotto esterno esiste.

Dimostrazione. Esiste una mappa

$$\pi: M^k \longrightarrow M^{\otimes^k}$$
 $(m_1, \dots, m_k) \longmapsto m_1 \otimes \dots \otimes m_k$

Definiamo allora $\wedge^k M$ come M^{\otimes^k} modulo il gruppo generato dai podotti in cui compaiono due entrate uguali e p la proiezione. Allora $\Phi = p \circ \pi$. Le prime due proprietà del prodotto esterno valgono per costruzione; verifichiamo la terza: prendiamo $\Psi \colon M^k \to U$ alternante e multilineare, per la proprietà universale del prodotto tensore esiste Ω_1 tale che $\Psi = \Omega_1 \circ \pi$ e poichè è alternante passa a quoziente.

Osservazione 3.6.

- Indicheremo $\Phi(m_1,\ldots,m_k)=m_1\wedge\cdots\wedge m_k$.
- Se $M = A^n$, detta $\{e_1, \ldots, e_n\}$ la base canonica, per $I = \{i_1 < \ldots i_k \le n\}$ definiamo $e_I := e_{i_1} \wedge \cdots \wedge e_{i_k}$. Allora²

$$\{e_I: \#I = k\}$$

è una base di $\wedge^k M$.

• Sia $M = A^n$. Allora

$$\begin{cases} \wedge^0 M \coloneqq A \\ \wedge^n M = A \\ \wedge^k M = 0 \quad \text{per } k > n \end{cases}$$

• Sia $T: M \to N$ un omomorfismo di moduli, allora tramite $T^k: M^k \to N^k$ è indotto un omomorfismo $\wedge^k T: \wedge^k M \to \wedge^k N$. Se k = n è proprio la moltiplicazione per $\det(T)$.

3.7 Complesso di Koszul

Il nostro obiettivo è quello di costruire una risoluzione libera di $k = A/\mathfrak{m}$, per A anello noetheriano locale. Per fare questo prima definiamo le seguenti nozioni che valgono per A anello qualsiasi:

Definizione 11. $x_1, \ldots, x_n \in A$ si dice successione regolare se x_1 non è un divisore di zero in A e x_i non è un divisore di zero in A (x_1, \ldots, x_{i-1}) per ogni i.

Prendiamo una successione regolare di $x_1, \ldots, x_m \in A$ e indichiamo con $M = A^m$, allora $\underline{x} = (x_1, \ldots, x_m) \in M$. Il complesso di Koszul $K^{\bullet}(\underline{x})$ è

$$\dots 0 \xrightarrow{\partial_K^{-1}} \wedge^0 M \xrightarrow{\partial_K^0} \wedge^1 M \xrightarrow{\partial_K^1} \wedge^2 M \xrightarrow{\partial_K^2} \dots \xrightarrow{\partial_K^{m-1}} \wedge^m M \to 0 \dots$$

 $\operatorname{con} \, \partial_K^i = \underline{\ } \wedge \underline{x}.$

Affinché questo sia davvero un complesso c'è da verificare che $\partial_K^i \circ \partial_K^{i-1} = 0$, ma è ovviamente vero poiché il prodotto esterno è alternante e quindi $\partial_K^i \circ \partial_K^{i-1}(y) = y \wedge \underline{x} \wedge \underline{x} = 0$.

Per questo complesso vale una condizione necessaria e sufficiente sulla comologia legata alla scelta di \underline{x} , di cui noi mostreremo però solo la necessità.

²Non lo dimostriamo.

Teorema 3.8. Se $x_1, \ldots, x_m \in A$ è una successione regolare, allora

$$H^{i}(K^{\bullet}(\underline{x})) = \begin{cases} 0 & \text{se } i \neq m \\ A_{(x_{1}, \dots, x_{m})} & \text{se } i = m \end{cases}$$

Viceversa se $H^i(K^{\bullet}(\underline{x})) \neq 0$ solo in grado m la successione è regolare.

Dimostrazione. Dimostriamo la tesi per induzione su m.

m=1 Dato che M=A allora il complesso è

$$\dots 0 \xrightarrow{\partial_K^{-1}} A \xrightarrow{\partial_K^0} A \xrightarrow{\partial_K^1} 0 \to 0 \dots$$

con $\partial_k = \cdot x_1$. Dato che $x_1 \nmid 0$, ∂_K^0 è iniettiva e quindi $H^0 = 0$ e $H^1 = A/(x_1)$.

 $m\Rightarrow m+1$ Indichiamo con K_m^{\bullet} il complesso di Koszul ottenuto da $M_m=A^m$ e $x_1, \ldots, x_m \in A$, una successione regolare, e con K_{m+1}^{\bullet} il complesso di Koszul ottenuto da $M_{m+1} = M_m \oplus A\varepsilon = A^{m+1}$ con la successione regolare x_1, \ldots, x_{m+1} .

Allora $\wedge^0 M_{m+1} = \wedge^0 M_{m+1} = A$ e $\wedge^1 M_{m+1} = M_{m+1} = M_m \oplus A\varepsilon$, per 1 < k < m+1 abbiamo che $\wedge^k M_{m+1} = \wedge^k M_m \oplus (\wedge^{k-1} M_m \wedge A\varepsilon) =$ $A^{\binom{m+1}{k}}$.

Infatti abbiamo che una base³ di $\wedge^k M_{m+1}$ è data dagli e_I , con I = $\{i_1 < \dots i_k \le m\}$, più gli $e_J \wedge \varepsilon$, con $J = \{i_1 < \dots i_{k-1} \le m\}$.

Dobbiamo descrivere adesso il bordo ∂ del complesso. Ricordando come abbiamo definito il complesso di Koszul, indicando con x(m) = (x_1,\ldots,x_m) , per $e_I\in \wedge^k M_{m+1}$ poniamo sui generatori della prima

$$\partial_{m+1}^k(e_{i_1}\wedge\cdots\wedge e_{i_k})=e_{i_1}\wedge\cdots\wedge e_{i_k}\wedge(\underline{x}(m)+x_{m+1}\varepsilon)$$

e usando la multilinearità

$$\partial_{m+1}^k(e_{i_1}\wedge\cdots\wedge e_{i_k})=\partial_m^k(e_{i_1}\wedge\cdots\wedge e_{i_k})+x_{m+1}(e_{i_1}\wedge\cdots\wedge e_{i_k}\wedge\varepsilon)$$

Preso un generatore della seconda forma invece

$$\partial_{m+1}^{k}(e_{i_{1}} \wedge \cdots \wedge e_{i_{k-1}} \wedge \varepsilon) = e_{i_{1}} \wedge \cdots \wedge e_{i_{k-1}} \wedge \varepsilon \wedge (\underline{x}(m) + x_{m+1}\varepsilon)$$

$$= e_{i_{1}} \wedge \cdots \wedge e_{i_{k-1}} \wedge \varepsilon \wedge \underline{x}(m)$$

$$= -e_{i_{1}} \wedge \cdots \wedge e_{i_{k-1}} \wedge \underline{x}(m) \wedge \varepsilon$$

$$= -\partial_{m}^{k}(e_{i_{1}} \wedge \cdots \wedge e_{i_{k-1}}).$$

³Questi sono algebricamente indipendenti per costruzione, inoltre sono in numero esatto poichè $\binom{m+1}{k} = \binom{m}{k} + \binom{m}{k-1}$.

In altri termini

$$\partial_{m+1}^k = \begin{pmatrix} \partial_m^k & 0 \\ x_{m+1} & -\partial_m^k \end{pmatrix}$$

Abbiamo appena mostrato che, a meno del segno e di shiftare per uno, $K_{m+1}^{\bullet} = \operatorname{Cono}(f) \operatorname{per}$

$$f \colon \quad K_m^{\bullet} \quad \longrightarrow \quad K_m^{\bullet}$$

$$a \quad \longmapsto \quad -x_{m+1}a$$

e dunque $H^i(K_{m+1}^{\bullet}) \simeq H^{i+1}(\text{Cono}(f)).$

Abbiamo mostrato che la successione esatta corta

$$0 \longrightarrow K_m^{\bullet} \to \operatorname{Cono}(f) \to K_m^{\bullet}[1] \to 0$$

induce una successione esatta lunga in comologia, usando che per ipotesi induttiva $H^i(K_m^{\bullet}) = 0$ per $i \neq m$ otteniamo che $H^i(\text{Cono}(f)) = 0$ per i < m - 1 e

$$0 \to H^{m-1}(\operatorname{Cono}(f)) \to A/I \xrightarrow{\omega} A/I \to H^m(\operatorname{Cono}(f)) \to 0$$

con $I = (x_1, \ldots, x_m)$ e $\omega = -H^i(f)$. Dato che $x_1, \ldots, x_m, x_{m+1}$ è regolare, ω è la moltiplicazione per un elementi non nullo, allora è iniettiva, quindi $H^{m-1}(\operatorname{Cono}(f)) = 0$, e $H^m(\operatorname{Cono}(f)) = A/(I, x_{m+1})$. Ricomponendo quanto appena detto allora

$$H^{i}(K_{m+1}^{\bullet}(\underline{x})) = H^{i+1}(\operatorname{Cono}(f)) = \begin{cases} 0 & \text{se } i \neq m+1 \\ A_{(x_{1}, \dots, x_{m+1})} & \text{se } i = m+1 \end{cases}$$

3.9 Anelli noetheriani regolari

Torniamo al caso a cui siamo interessati, (A, \mathfrak{m}) un anello locale noetheriano, aggiungendo l'ipotesi che A sia regolare. Allora sappiamo che esistono dei generatori del massimale $\mathfrak{m}=(x_1,\ldots,x_m)$ tali che $m=\dim A$ e $\bar{x}_1,\ldots,\bar{x}_m$ sono una base del k-spazio vettoriale \mathfrak{m}_{m^2} . Questi elementi dell'anello godono anche di un'altra proprietà:

Lemma 8. x_1, \ldots, x_m sono una successione regolare di A.

Dimostrazione. Procediamo per induzione sulla dimensione dell'anello. A è un anello regolare e dunque è un dominio, perciò $x_i \nmid 0$ per ogni i. Se m=1allora è ovvio.

Sia
$$B = A/(x_1)$$
, allora dim $B = \dim A - 1 = m - 1$. Sia $p: A \rightarrow B$ la

proiezione a quoziente, il massimale di B \mathfrak{n} è generato da $p(x_2), \ldots, p(x_m)$ e $\mathfrak{n}_{\mathfrak{n}^2}$ dalle classi di questi elementi. Dato che sono esattamente m-1 allora sono una base. Per ipotesi induttiva allora sono una successione regolare di B, per il terzo teorema d'omomorfismo allora abbiamo la tesi.

Consegue immediatamente da questo fatto e dal Teorema 3.8:

Corollario 5. Sia (A, \mathfrak{m}) un anello locale noetheriano regolare di dimensione m, tale che $\mathfrak{m} = (x_1, \ldots, x_m)$. Allora $K^{\bullet}(\underline{x})$ è un complesso di moduli liberi tali che

$$H^{i}(K^{\bullet}(\underline{x})) = \begin{cases} 0 & \text{se } i \neq m \\ k & \text{se } i = m \end{cases}$$

dove $k = \frac{A}{m}$ è proprio il campo residuo. In particolare $K^{\bullet}(\underline{x})$ è una risoluzione libera di k.

Da questo otteniamo anche che:

Corollario 6. Per ogni A-modulo M, con A nelle ipotesi del corollario precedente, vale che $\operatorname{Tor}_A^i(k,M)=0$ se i<0 e i>m.

Dimostrazione. Basta calcolare la coomologia del complesso di Koszul ottenuto con i generatori dei massimali che ha proprio lunghezza m + 1.

Corollario 7. Sia (A, \mathfrak{m}) anello noetheriano locale regolare e $\mathfrak{m} = (x_1, \dots, x_m)$. Ogni A modulo finitamente generato

- ha una risoluzione libera lunga al più m;
- $\operatorname{dhp} M \leq m$.

Dimostrazione. Dato che $\operatorname{Tor}_A^i(k,M)=0$ se i<0 e i>m, il Teorema 3.2 ci dice che la minima lunghezza di una risoluzione libera di M finitamente generato, che è anche la dimensione comologica proiettiva, deve essere minore di m. Naturalmente quindi prendendo una risoluzione libera minimale questa sarà lunga al più m.

Sia (A, \mathfrak{m}) un anello noetheriano locale regolare di dimensione n. Abbiamo visto che $K^{\bullet}(\underline{x})$, con $(\underline{x}) = (x_1, \dots, x_n) = \mathfrak{m}$, è una risoluzione libera di k.

Lemma 9. $K^{\bullet}(\underline{x})$ è una risoluzione libera minimale di k.

Dimostrazione.Ricordiamo che $K^{\bullet}(\underline{x})$ è

$$\dots 0 \xrightarrow{\partial_K^{-1}} \wedge^0 A^n \xrightarrow{\partial_K^0} \wedge^1 A^n \xrightarrow{\partial_K^1} \wedge^2 A^n \xrightarrow{\partial_K^2} \dots \xrightarrow{\partial_K^{n-1}} \wedge^n A^n \to 0 \dots$$

 $\operatorname{con} \partial = \wedge \underline{x}.$

Per dire che è minimale usiamo il Lemma 7: se applichiamo $\underline{\quad} \otimes k$ il bordo diventa $\partial^s \otimes id_k$, ma per ogni $v \in \wedge^s A^n \ \partial^s(v) = v \wedge \underline{x} \in \mathfrak{m}A^n$, ricordando che $k = A/\mathfrak{m}$, abbiamo allora che $\partial(v) \otimes k = 0$.

Corollario 8. La dimensione comologica proiettiva di $k = A/\mathfrak{m}$ è proprio n.

In realtà vale qualcosa di molto più forte:

Teorema 3.10. Sia (A, \mathfrak{m}) un anello noetheriano locale regolare di dimensione n. Allora

$$n = dhA := sup \{dhp_A M \mid M \in A\text{-modulo }\}$$

Osservazione 3.11. Sappiamo che esiste un A modulo, cioè k, tale che dhp k=n, cosicché dh $A \geq n$. Per il Corollario 7, inoltre, se M è finitamente generato dhp $k \leq n$; se mostriamo l'ipotesi di finitezza è superflua allora abbiamo la tesi.

Enunciamo due lemmi più generali che ci serviranno per la dimostrazione del teorema:

Lemma 10. Se $\operatorname{Ext}^1(A/I, X) = 0$ per ogni ideale $I \subseteq A$, allora X è iniettivo.

Dimostrazione. Supponiamo di avere un morfismo iniettivo g e f come segue

Consideriamo la famiglia delle possibili estensioni di f

$$\mathcal{F} = \{ (N', f') \mid N \subset N' \subset M, \ f' \colon N' \to X \ e \ f'|_{N} = f \}$$

 $\mathcal{F} \neq \emptyset$ e le catene ammettono maggiorante rispetto all'ordinamento (N',f') < (N'',f'') se e solo se $N' \subseteq N''$ e $f''|_{N'}=f'$. Allora per il Lemma di Zorn esiste almeno un elemento massimale (N',f').

Supponiamo che $N' \neq M$, ossia esiste $m \in M \setminus N'$, e mostriamo che in tal caso possiamo costruire un'estensione di f' a $\langle N', m \rangle$.

Sia $I = \{a \in A : am \in N'\}$ e $\mu : A \to M$ la moltiplicazione per a destra per m; per costruzione $\mu(I) = N'$, invece chiamiamo $N'' = \mu(A)$. Vogliamo mostrare che $f' \circ \mu$ si estende anch'essa a tutto A. A tale scopo consideriamo la sequenza esatta

$$0 \longrightarrow I \longrightarrow A \rightarrow A/I \rightarrow 0$$

e applichiamo $\operatorname{Hom}(_, X)$. Per ipotesi otteniamo una sequenza esatta

$$0 \longrightarrow \operatorname{Hom}(I,X) \to \operatorname{Hom}(A,X) \cdot \operatorname{Hom}(A/I,X) \to 0$$

e grazie alla suriettività esiste $h = f' \circ \mu \in \text{Hom}(A, X)$. Possiamo definire quindi $f'': \langle N', m \rangle \to X$ come $n' + am \mapsto f'(n') + g(a)$. Il morfismo è ben definito, preso infatti $\bar{n} + \bar{a}m = n' + am$ allora $n' - \bar{n} = (\bar{a} - a)m \in N'$ cosicché $g(\bar{a} - a) = f'((\bar{a} - a)m) = f'(n' - \bar{n})$. Chiaramente $f''|_{N} = f$ e è un morfismo di A moduli, dunque è un'estensione. L'unica possibilità è quindi che N' = M e quindi X è iniettivo.

Ricordiamo che

$$\mathrm{dhp}_A(M) \coloneqq \sup \left\{ n \colon \exists N \ \text{ tale che } \mathrm{Ext}_A^n(M,N) \neq 0 \right\}$$

Lemma 11. Sia A un anello e I un suo ideale. Se $\operatorname{dhp}_A\left(A/I\right) \leq n$, allora per ogni A modulo $\operatorname{dhp}_A M \leq n$.

Dimostrazione. Consideriamo un modulo Y qualsiasi, per ipotesi

$$\operatorname{Ext}^{n+1}(A/I, Y) = 0.$$

Se esiste

$$0 \to Y \to I^0 \to I^1 \to \cdots \to I^{n-1} \to X \to 0$$

esatta con I^i iniettivi, allora $\operatorname{Ext}^{n+1}(A/I,Y) = \operatorname{Ext}^1(A/I,X) = 0$, cioè anche X è iniettivo. In particolare dato che la dimensione comologica iniettiva di un modulo è k se e solo se esiste

$$0 \to Y \to I^0 \to I^1 \to \cdots \to I^k \to 0$$

esatta di lunghezza minima e con I^i oggetti iniettivi⁴, allora ogni Y ha risoluzioni libere iniettive lunghe al più n.

Per definizione dire che per ogni Y dhi $Y \leq n$ è come dire che $\operatorname{Ext}_A^i(M,Y) = 0$ per ogni i > n, che a sua volta è equivalente al fatto che dhp_A $M \leq n$.

Per provare il teorema ci siamo ridotti a dimostrare che

Lemma 12. Sia (A, \mathfrak{m}) un anello noetheriano locale regolare di dimensione n. Allora per ogni I dhp_A $\binom{A}{I} \leq n$.

⁴Si dimostra come nel caso dei proiettivi.

Dimostrazione. $^{A}/_{I}$ è un A -modulo finitamente generato dato che A è un anello noetheriano. La tesi è dunque ovviamente vera per il Corollario 7. \square

Mostriamo ora che vale anche il viceversa:

Teorema 3.12. Sia (A, \mathfrak{m}) un anello noetheriano locale. Se $r = dhA < \infty$ allora A è regolare.

Dimostrazione. Se M è finitamente generato $\operatorname{dhp}_A M \leq r$, quindi k ha una risoluzione libera proiettiva lunga al più r. Dato che i Tor controllano tutte le lunghezza in effetti ogni modulo allora ha una risoluzione libera proiettiva lunga al più r.

Sia $n = \dim A$ e x_1, \ldots, x_s un insieme di genetarori di \mathfrak{m} . Per Nakayama allora le loro classi sono anche una k-base di $\mathfrak{m}/\mathfrak{m}^2$. Mostriamo per induzione su s la tesi.

s=0 Allora A è un campo, che è regolare per definizione.

s > 0 Procediamo per passi.

Passo (1). Esiste $x \in \mathfrak{m}/\mathfrak{m}^2$ che non è un divisore di zero.

Ricoridiamo che $\mathcal{D}(A) \cup \{0\} = \bigcup_{i=1}^t P_i$ con P_i primi associati; per il teorema di unicità della decomposizione primaria per ogni i esiste b_i tale che $\mathrm{Ann}(b_i) = P_i$. Vogliamo mostrare che $\mathfrak{m} \nsubseteq \mathfrak{m}^2 \cup_{i=1}^t P_i$. Per Nakayama $\mathfrak{m} \nsubseteq \mathfrak{m}^2$, altrimenti sarebbe zero, invece se $\mathfrak{m} \subseteq \bigcup_{i=1}^t P_i$ per il lemma di scansamento dovrebbe coincidere con uno dei primi; una terza possibilità è che $\mathfrak{m}^2 \cup_{i=1}^k P_i$ sia l'unione minimale che lo contiene (a meno di rinominare i primi), allora prendiamo $y_0 \in \mathfrak{m} \setminus \bigcup_{i=1}^k P_i$ e $y_j \in \mathfrak{m} \setminus (\mathfrak{m}^2 \cup_{i=1,i\neq j}^k P_i)$, l'elemento $y_1 + y_0 y_2 \cdots y_k \in \mathfrak{m}$ ma ciò è assurdo perché per la scelta degli y_i questa somma non può stare in \mathfrak{m} . Perciò l'unica possibilità è $\mathfrak{m} = P = \mathrm{Ann}\,a$. Per ipotesi esiste

$$\dots \xrightarrow{\partial^{-4}} F^{-3} \xrightarrow{\partial^{-3}} F^{-2} \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \xrightarrow{\partial^0} k \to 0$$

risoluzione libera minimale di k lunga r, allora $i(F^{-r}) \subseteq \mathfrak{m}F^{-r+1}$. Allora $ai(F^{-r}) \subseteq a\mathfrak{m}F^{-r+1} = 0$ che è assurdo poiché F^{-r} è libero. Perciò $\mathfrak{m} \not\subseteq \mathfrak{m}^2 \cup_{i=1}^t P_i$.

✓

Passo (2). Sia B = A/(x). Possiamo ridurci a dimostrare che dh $B < \infty$.

Sappiamo che dim $B = \dim A - 1 = n - 1$ e B locale noetheriano con massimale $\mathfrak{m}_B = \mathfrak{m}/(x)$. Dato che $\bar{x} \neq 0$ in $\mathfrak{m}/\mathfrak{m}^2$, possiamo⁵ supporre $x = x_1, x_1, x_2, \ldots, x_s$ sono una base di $\mathfrak{m}/\mathfrak{m}^2$ come k spazio vettoriale e \mathfrak{m}_B

⁵Le basi di uno spazio vettoriale hanno tutte la stessa cardinalità.

sarà generato da $\pi(x_2), \ldots, \pi(x_s)$. Se dimostriamo che dh $B < \infty$ ricaviamo, induttivamente, che B è regolare e quindi n-1=s-1, che ci da anche n=s, cioè A è regolare.

 \checkmark

Passo (3). Se dhp_B \mathfrak{m}_B è finita allora dh $B < \infty$.

Basta osservare che sostituendo a \mathfrak{m}_B una sua risoluzione libera finita nella successione esatta

$$0 \longrightarrow \mathfrak{m}_B \to B \longrightarrow k \longrightarrow 0$$

troviamo una risoluzione libera di $k = B/\mathfrak{m}_B = A/\mathfrak{m}$ e dunque dhp_B $k < \infty$.

 \checkmark

Passo (4). \mathfrak{m}_B è un fattore diretto di \mathfrak{m}_{xm} e quindi basta mostrare che dhp_B \mathfrak{m}_{xm} è finita.

Diciamo che $\mathfrak{m}_B = \mathfrak{m}/_{(x)}$ è un fattore diretto di $\mathfrak{m}/_{x\mathfrak{m}}$ sia come A che come B modulo. Infatti, consideriamo la mappa suriettiva

$$\Phi \colon \mathfrak{m}/x\mathfrak{m} \twoheadrightarrow \mathfrak{m}/(x)$$

e mostriamo che esiste una sezione, in tal caso avremmo $\mathfrak{m}/_{x\mathfrak{m}} = \mathfrak{m}/_{(x)} \oplus Z$. Vale che

$$\mathfrak{m}_{(x)} = (x_2, \dots, x_s) + (x)_{(x)} = (x_2, \dots, x_s)_{(x) \cap (x_2, \dots, x_s)}$$

Possiamo definire allora $s: x_i \mapsto x_i$ per i = 2, ..., n. La mappa s è ben definita, siamo $y \in (x) \cap (x_2, ..., x_s)$ allora

$$y = \sum_{i=2}^{s} f_i x_i = -f_1 x$$

quindi $\sum_{i=1}^{s} f_i x_i = 0$ in \mathfrak{m} e perciò anche in $\mathfrak{m}/\mathfrak{m}^2$. Abbiamo quindi una combinazione lineare a coefficienti in k degli x_i che è nulla, ma poiché sono una base gli $\bar{f}_i = 0$, ossia $f_i \in \mathfrak{m}$ per ogni i. In particolare allora $y = -f_1 x \in x\mathfrak{m}$.

 \checkmark

Passo (5). dhp \mathfrak{m}_{xm} è finita.

Diciamo che dhp $_B$ $\mathfrak{m}/_{x\mathfrak{m}} < \infty$ e per dimostrarlo costruiamo una sua risoluzione libera lunga al più r. Sappiamo per ipotesi che esiste una risoluzione libera di \mathfrak{m} come A modulo lunga al più r+1

$$0 \to F^{-r} \xrightarrow{\partial^{-r}} \dots \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \to 0$$

con $F^{-i} = A^{n_i}$. Osserviamo che $\mathfrak{m} \otimes B = \mathfrak{m} \otimes A/(x) = \mathfrak{m}/x\mathfrak{m}$, allora se applicando $\otimes B$ a tale complesso ottenessimo che

$$0 \to B^{n_k} \xrightarrow{\partial^{-k}} \dots \xrightarrow{\partial^{-2}} B^{n_1} \xrightarrow{\partial^{-1}} B^{n_0} \to 0$$

è aciclico avremmo la risoluzione che ci serve per concludere. Tuttavia la comologia di questo complesso è data proprio dai $\operatorname{Tor}^i(\mathfrak{m},B)$, che sono effettivamente zero per i>0. Infatti possiamo calcolarli a partire dalla risoluzione di B

$$0 \to A \xrightarrow{\cdot x} A \to 0$$

Chiaramente allora $\operatorname{Tor}^i(\mathfrak{m},B)=0$ per i>1. Inoltre tensorizzando per \mathfrak{m} otteniamo

$$0 \to \mathfrak{m} \xrightarrow{\cdot x} \mathfrak{m} \to 0$$

ma, per la scelta di x, questa mappa è iniettiva e dunque $\operatorname{Tor}^1(\mathfrak{m}, B) = 0$. \square

Corollario 9. Se A è un anello noetheriano locale regolare $p \in \text{Spec} A$, allora A_p è regolare.

Dimostrazione. $A\supset \mathfrak{m}\supset p$ e consideriamo A_p come A modulo. Allora ammette una risoluzione libera

$$0 \to F^{-n} \xrightarrow{\partial^{-n}} \dots \xrightarrow{\partial^{-2}} F^{-1} \xrightarrow{\partial^{-1}} F^0 \to 0$$

Applichiamo $_ \otimes A_p$

$$0 \to S^{-1}F^{-n} \xrightarrow{\partial^{-n}} \dots \xrightarrow{\partial^{-2}} S^{-1}F^{-1} \xrightarrow{\partial^{-1}} S^{-1}F^0 \to 0$$

per piattezza questa rimane esatta ed è quindi una risoluzione libera del campo residuo $k = S^{-1}(A/p)$.

Osservazione 3.13. Se dim $A_p=1$ e A è un dominio, allora A_p è un anello di valutazione discreta.

3.14 Anelli graduati

Studiando la dimensione di un anello noetheriano locale abbiamo incontrato questo risultato che correla gli anelli regolari con gli anelli graduati:

CAPITOLO 3. DIMENSIONE COMOLOGICA DI ANELLI NOETHERIANI LOCALI33

Teorema 3.15. Sia (A, \mathfrak{m}) un anello noetheriano locale tale che x_1, \ldots, x_m siamo una k-base di $\mathfrak{m}/\mathfrak{m}^2$. Allora A è un anello regolare se e solo se $Gr_{\mathfrak{m}}(A)$ è isomorfo a $k[u_1, \ldots, u_m]$ come anelli graduati.

Possiamo estendere quanto detto nel paragrafo precedente all'anello graduato $S = k[x_1, \ldots, x_n]$, considerando però solo i moduli graduati. Ricordiamo che un S modulo libero graduato $(S[k])^n = S^{k+n}$. Valgono con alcune accortezza allora i seguenti fatti:

- La lunghezza e la dimensione di una risoluzione libera minimale di un modulo M è controllata dai $Tor^{i}(k, M)$ dove k è lo S modulo S/S^{+} .
- x_1, \ldots, x_n sono una successione regolare.
- ($Teorema\ di\ Hilbert$) Ogni modulo finitamente generato ha una risoluzione lunga al più n.

Capitolo 4

Moduli piatti e proiettivi

Mostriamo adesso alcuni risultati sui moduli ottenibili grazie alla teoria sviluppata sulla comologia. Ricordiamo alcuni fatti:

Proposizione 11.

- 1. Se M è un A modulo piatto, allora Se $S^{-1}M$ è un $S^{-1}A$ modulo piatto.
- 2. M è un A modulo piatto se e solo se $M_{\mathfrak{m}}$ è piatto per ogni $\mathfrak{m} \in \operatorname{Spec}(A)$ massimale.

Dimostrazione. 1. Basta osservare che un $S^{-1}A$ modulo X è anche un A modulo e che

$$X \otimes_{S^{-1}A} S^{-1}M \simeq X \otimes_{S^{-1}A} (S^{-1}A \otimes_A M) \simeq X \otimes_A M$$

2. C'è da dimostrare solo che la condizione è necessaria. Consideriamo una successione di A moduli esatta

$$0 \to X \to Y$$

vogliamo mostrare che in

$$0 \to \ker f \to M \otimes X \xrightarrow{f} M \otimes Y$$

 $\ker f = 0$. Sappiamo che

$$0 \to X_{\mathfrak{m}} \to Y_{\mathfrak{m}}$$

è esatta e per ipotesi allora lo è anche

$$0 \to M_{\mathfrak{m}} \otimes X_{\mathfrak{m}} \to M_{\mathfrak{m}} \otimes Y_{\mathfrak{m}}$$

Ma $M_{\mathfrak{m}} \otimes B_{\mathfrak{m}} = (M \otimes B)_{\mathfrak{m}}$ e quindi

$$0 \to (M \otimes X)_{\mathfrak{m}} \to (M \otimes Y)_{\mathfrak{m}}$$

è esatta cosicché ker $f_{\mathfrak{m}} = 0$.

Vale essere zero è una proprietà locale.Infatti supponiamo che un modulo $K \neq 0$ sia tale che $K_{\mathfrak{m}} = 0$ per ogni $\mathfrak{m} \in \operatorname{Spec}(A)$ massimale, allora esistono un elemento $0 \neq k \in K$ e un massimale $\mathfrak{m} \supseteq \operatorname{Ann}(k)$; localizzando avremmo che $\frac{k}{1} = 0$ e quindi esisterebbe $s \in A \setminus \mathfrak{m}$ tale che sk = 0, ma per definizione $s \in I$. Assurdo.

Allora $\ker f = 0$ e quindi M è piatto.

Lemma 13. Sia A un anello commutativo con identità e M un A modulo. M è piatto se e solo se per ogni ideale $I \subseteq A$

$$\operatorname{Tor}_A^1({}^{A}\!\!/_{I},M)=0.$$

Dimostrazione. Ovviamente se M è piatto $\mathrm{Tor}_A^1(_,M)=0$. Mostriamo ora che questa condizione è sufficiente. Consideriamo una successione esatta corta

$$0 \longrightarrow X \xrightarrow{a} Y \longrightarrow Z \longrightarrow 0$$

e tensorizziamo per M

$$X \otimes M \xrightarrow{b} Y \otimes M \to Z \otimes M \longrightarrow 0$$

Se b è iniettiva allo abbiamo la tesi. Pocediamo per passi.

• Possiamo assumere che Y sia finitamente generato. Supponiamo per assurdo che esistano $x_i \in X$ e $m_i \in M$ tali che

$$\sum x_i \otimes m_i \neq 0$$

$$\sum a(x_i) \otimes m_i = 0$$

Ricordiamo che

$$Y \otimes M = \frac{\oplus Ae_{y,m}}{Rel}$$

dove Rel è l'insieme delle relazioni di equivalenza sugli elementi $e_{y,m}$. Chiamiamo Y' il modulo generato dagli $a(x_i)$ e da tutti gli altri elementi che nell'insieme Rel compaiono in relazione con gli $e_{a(x_i),m}$. Allora $\sum a(x_i) \otimes m_i = 0$ è zero anche in $Y' \otimes M$. Chiamiamo ora X' il modulo generato dagli x_i e $a' \colon X' \to Y'$ la restrizione di a, che quindi deve essere iniettiva. Supponiamo di aver dimostrato che b è iniettiva nel caso finitamente generato, allora $\sum x_i \otimes m_i = 0$ in $X' \otimes M$ e visto che le mappe di moduli portano zero in zero, usando l'immersione di $X' \otimes M$ in $X \otimes M$ abbastanza che $\sum x_i \otimes m_i = 0$.

• Se Y è finitamente generato allora Z è finitamente generato: per ipotesi $Z \simeq Y/a(X)$.

• b è iniettiva. $Z = \langle z_1, \dots, z_n \rangle_A$, possiamo allora scrivere una successione di moduli:

$$\begin{cases} Z_0 = Z_1 = \langle z_1 \rangle \\ Z_j = \langle z_1, \dots, z_j \rangle \end{cases}$$

Dato che $Z_j/Z_{j-1}=\langle z_j\rangle$ per ognijabbiamo un sequenza esatta corta

$$0 \to I_j \to A \to Z_{j/Z_{j-1}} \to 0$$

$$a \mapsto az_j$$

e dunque $Z_j/Z_{j-1} \simeq A/I_j$.

Per provare la tesi mi basta mostrare che $\operatorname{Tor}_A^1(Z,M)=0$. In particolare mostriamo che $\operatorname{Tor}_A^1(Z_j, M) = 0$ per ogni j.

Se
$$j = 1$$
 Tor $_A^1(Z_1, M) = \text{Tor}_A^1(A/I_1, M) = 0$.
Se $j > 1$ Applichiamo il funtore $- \otimes M$ a

$$0 \to Z_{j-1} \to Z_j \to A/I_j \to 0$$

e otteniamo che $\operatorname{Tor}_A^1(Z_j, M) = 0$, infatti

$$\cdots \to Z_{j-1} \otimes M \to Z_j \otimes M \to A/I_j \otimes M \to 0$$
$$\cdots \to 0 \to \operatorname{Tor}^1(Z_j, M) \to 0 \to \ldots$$

dato che $\operatorname{Tor}_A^1({}^A\!\!/_{I_j},M)=0$ per ipotesi mentre $\operatorname{Tor}_A^1(Z_{j-1},M)=0$ per ipotesi induttiva.

Definizione 12. La torsione di un modulo M è l'insieme

$$Tors(M) := \{ m \in M \mid Ann(M) \neq 0 \}$$

Lemma 14. Tors(M) è un gruppo. Se A è un dominio è anche un modulo.

Lemma 15. Siano A dominio e M un modulo piatto. Allora Tors(M) = 0

Dimostrazione. Se $a \neq 0$ allora è ben definita la successione esatta

$$0 \to A \xrightarrow{a} A \to A/(a) \to 0$$

Tensorizzando per M abbiamo

$$0 \to M \xrightarrow{a} M \to M/(a)M \to 0$$

In particolare la moltiplicazione per a che era iniettiva perché A è un dominio rimane iniettiva, grazie alla piattezza, e quindi Tors(M) = 0.

Lemma 16. Siano A dominio e M un modulo con Tors(M) = 0. Allora

$$\operatorname{Tor}_{A}^{1}(A/(a), M) = 0.$$

Dimostrazione. Se a=0, dato che A è libero, $\operatorname{Tor}_A^1(A,M)=0$. Se $a\neq 0$, consideriamo la successione del lemma precedente

$$0 \to A \xrightarrow{a} A \to A/(a) \to 0$$

e tensorizziamo per M abbiamo

$$\cdots \to \operatorname{Tor}_A^1(A/(a), M) \to M \xrightarrow{a} M \to M/(a)M \to 0$$

Ma $\ker(\cdot a) = 0$ perché che il modulo è senza torsione e visto che

$$\operatorname{Tor}_A^1(A,M) \to \operatorname{Tor}_A^1(A/(a),M) \to \ker(\cdot a)$$

è esatta, allora $\operatorname{Tor}_A^1({}^{A}\!\!/_{(a)},M)=0.$

Corollario 10. A PID e e M un modulo con Tors(M) = 0. Allora M è piatto.

Dimostrazione. A PID implica che per ogni I esiste a tale che I=(a), allora per ogni ideale $\operatorname{Tor}_A^1({}^A\!\!/_I,M)=0$ e dunque per il Lemma 13 M è piatto. \square

Esempio 4.1.

- Q è uno Z modulo che è piatto ma non proiettivo (né libero).
- $\mathbb{Z} \times \mathbb{Z} \times \dots \mathbb{Z} \times \dots$ è senza torsione e non è libero.

Osservazione 4.2. Proiettivo implica sempre piatto, lo conferma che per i > 0 per un moduli proiettivo i Tor sono tutti nulli.

Esempio 4.3.
$$A = \mathbb{C}[x,y]$$
 e $M = (x,y)$

rivedi..

VEDI FINE LEZIONE