임계값에 따른 평가지표 확인

학습 내용

• 임계값을 조정하는 것에 따라 정밀도와 민감도가 변하는 것을 확인해 본다.

이진 분류 예측 - 예측을 0.1로 하는 것이 아니라 확률로 해보기

- 400개(음성), 50개(양성) 으로 이루어진 불균형 데이터
- 사용 함수 : decision_function(), predict_proba()
 - decision_function을 0으로, predict_proba를 0.5의 임계값으로 사용

01 데이터 준비하기

```
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import malearn
from sklearn.metrics import classification_report
import matplotlib.pyplot as plt
```

```
from mglearn.datasets import make_blobs
X, y = \text{make\_blobs}(n_\text{samples} = (400, 50),
                   centers=2, cluster_std=[7.0, 2],
                   random_state=22)
print(X.shape, y.shape)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

(450, 2)(450,)

C:\Users\front\angleanaconda3\lib\site-packages\sklearn\utils\deprecation.py:86: Future\arn ing: Function make_blobs is deprecated; Please import make_blobs directly from scikitlearn

warnings.warn(msg, category=FutureWarning)

```
plt.scatter(X[:,0], X[:,1],
            cmap=plt.cm.autumn, s=60, edgecolors='k')
```

Out[59]: <matplotlib.collections.PathCollection at 0x2c890912820>

임계값에 따른 값을 확인

In [60]: | mglearn.plots.plot_decision_threshold()

decision_threshold

- 클래스 1에 대해 상당한 작은 정밀도를 얻었음. 재현율은 절반
- 클래스 0의 샘플이 매우 많으므로 분류기는 소수인 클래스 (양성)1보다 클래스 (음성)0에 초 점.

모델 선택 및 학습 후, 예측

```
In [61]: | svc = SVC(gamma=.05).fit(X_train, y_train)
          pred = svc.predict(X_test)
          print(classification_report(y_test, pred))
```

	precision	recall	fl-score	support
0 1	0.97 0.35	0.89 0.67	0.93 0.46	104 9
accuracy macro avg weighted avg	0.66 0.92	0.78 0.88	0.88 0.70 0.89	113 113 113

임계값을 0에서 -0.8로 낮추기

• 1의 개수가 늘어난다.

```
# 0으로 분류
In [62]:
         decision_0 = svc.decision_function(X_test)
         decision_m08 = svc.decision_function(X_test) > -.8
         # TP - 잘 맞추는 것을 늘린다.
         print("임계값 0 일때 : 1(양성) 개수 :", decision_0.sum() )
         print("임계값 -0.8 일때 : 1(양성) 개수 :", decision_m08.sum() )
```

임계값 0 일때 : 1(양성) 개수 : 17 임계값 -0.8 일때 : 1(양성) 개수 : 28

• 0의 개수가 줄어든다.

```
In [63]: print("임계값 0 일때 : O(음성) 개수 :", len(decision_0) - decision_0.sum())
        print("임계값 -0.8 일때 : 0(음성) 개수 :", len(decision_m08) - decision_m08.sum() )
        임계값 0 일때
                     : 0(음성) 개수 : 96
```

임계값 -0.8 일때 : 0(음성) 개수 : 85

In [64]: | y_pred_lower_threshold = svc.decision_function(X_test) > -.8

print(classification_report(y_test, y_pred_lower_threshold))

	precision	recall	f1-score	support
0	1.00 0.32	0.82 1.00	0.90 0.49	104 9
accuracy macro avg weighted avg	0.66 0.95	0.91	0.83 0.69 0.87	113 113 113

임계값을 낮추는 것은

- 정밀도(precision) 0.35에서 0.32로 낮아지고
- 재현율(recall)-sensitivity(민감도)는 0.67에서 1로 올라감.
- 결론적으로 1(양성)의 수가 늘어나기 때문에 TP(진짜 양성)의 개수가 늘어난다.

정밀도와 재현율

- 정밀도(precision)
 - TP/(TP + NP): 예측 양성 것중에 얼마나 잘 맞추었을까?
- 재현율(recall):
 - TP/(TP + FN): 실제 양성 데이터의 얼마나 잘 맞추었을까?
 - 다른 말로 민감도(sensitivity), 적중률(hit rate), 진짜 양성 비율(TPR)이라고 합니다.

실습

- 임계값을 0보다 큰 값으로 조정해 보고 recall를 확인해 보기
- 임계값을 0으로 하고 recall과 기타 평가지표를 확인해 보기

기타 방법

- predict_proba()메서드는 출력이 0에서 1 사이로 고정
 - 보통은 0.5를 임계값-이는 양성과 음성이 50%분류이다.
 - 임계값을 높이는 것은 양성이 분류될 확률이 많이 나올 때, 수행