Comparative study of Post-Quantum Key-Exchange Mechanisms and its implementations

Aditya Bhardwaj

Contents

PQ algorithms chosen for standardization by NIST (National Institute of Standards and Technology)

The base idea

Comparison and visualization

Key exchange mechanism

Sharing a secret between two parties without revealing the secret to any third parties

- Two most widespread algorithms used
 RSA and Diffie-Hellman
- Elliptic Curve Cryptography -

ECDH → Elliptic Curve Diffie-Hellman ECDHE → (Elliptic Curve Diffie-Hellman Ephemeral)

The Quantum Threat

Difficult problems

- Integer Factorization, Discrete Logarithm
- Shor algorithm \rightarrow 1994 Factorization in polynomial time
- Grover's search algorithm → 1996
 Search for an element in √N steps for total N elements

Post-Quantum Cryptography

Quantum-safe mathematical techniques

- Lattices
- Error correcting codes
- Multivariate equations
- Supersingular elliptic curve isogenies

NIST initiated a process to evaluate and standardize one or more quantum-resistant public-key cryptographic algorithms

Post-Quantum Cryptography Standardization

Quantum-safe mathematical techniques

- PQCrypto 2016, Deadline end of 2017
- 23 signature schemes and 59 PKE/KEM schemes

Finalists

- Lattice-based: CRYSTALS-Kyber, NTRU Prime, FrodoKEM
- Code-based: BIKE, Classic McEliece, HQC

PQC Standardization - NIST Security Levels

- Each algorithm has different parameters
- Different security levels

Levels	Definition, as least as hard to break as
1	To recover the key of AES-128 by exhaustive search
2	To find a collision in SHA-256 by exhaustive search
3	To recover the key of AES-192 by exhaustive search
4	To find a collision in SHA-384 by exhaustive search
5	To recover the key of AES-256 by exhaustive search

Post-Quantum Cryptography Standardization

Quantum-safe mathematical techniques

- PQCrypto 2016, Deadline end of 2017
- 23 signature schemes and 59 PKE/KEM schemes

Finalists

- Lattice-based: CRYSTALS-Kyber, NTRU Prime, FrodoKEM
- Code-based: BIKE, Classic McEliece, HQC

- **Infinite set of points** generated by addition, subtraction of vectors
- Same lattice can be generated by different 'basis'

- Some problems are hard... given a bad basis

- Some problems are hard... given a bad basis
- But easy with good basis

$$3x - 2y + 1z = 5$$

$$4x + 3y - 3z = 1$$

$$-6x + 4y - 7z = 3$$

$$x \quad y \quad z \quad c$$

$$3 \quad -2 \quad 1 \quad 5$$

$$4 \quad 3 \quad -3 \quad 1$$

$$-6 \quad 4 \quad -7 \quad 3$$

 $A * s = t \Rightarrow$ Gaussian elimination

 $A * s + e = t \Rightarrow Reduction to lattice hard problem$

Learning with errors problem

- $A * s = t \Rightarrow$ Gaussian elimination
- $A * s + e = t \Rightarrow$ Reduction to lattice hard problem

Large structure! Can use polynomials for fast multiplication

Module learning with errors problem

every matrix entry is a polynomial in $\mathbb{Z}_q[x]/(x^n+1)$

- $A * s = t \Rightarrow$ Gaussian elimination
- $A * s + e = t \Rightarrow$ Reduction to lattice hard problem

Polynomials for fast multiplication \rightarrow Fast Fourier Transform

Module learning with errors problem

every matrix entry is a polynomial in $\mathbb{Z}_q[x]/(x^n+1)$

- $A * s = t \Rightarrow$ Gaussian elimination
- $A * s + e = t \Rightarrow$ Reduction to lattice hard problem

Polynomials for fast multiplication \rightarrow Fast Fourier Transform

Ring-LWE

4	1	11	10
3	4	1	11
2	3	4	1
12	2	3	4
9	12	2	3
10	9	12	2
11	10	9	12

$$q = 13$$

degree is at most 3

Ring elements $r \in R_q = \mathbb{Z}_q[X]/(X^n + 1)$:

- Coefficients integers modulo q
- ▶ Degree at most n-1 i.e. $r = r_0 + r_1 \cdot X + \cdots + r_{n-1} \cdot X^{n-1} \in \mathbb{Z}_q[X]/(X^n+1)$
- ▶ Coefficient Embedding $r = (r_0, \ldots, r_{n-1}) \in \mathbb{Z}_a^n$

$$4 + 1x + 11x^{2} + 10x^{3}$$

 $(4 + 1x + 11x^{2} + 10x^{3}) x$

$$4x + 1x^2 + 11x^3 + 10x^4 \mod x^4 + 1$$

$$-10 \mod 13 = 3$$

Crystal KYBER and NTRU

- **LWE** works with vectors of integers
- **RING LWE** works with polynomials
- Module LWE works with vectors of polynomials

KYBER works with **Module LWE**
$$-Z_q(X)/(X^n + 1)$$

NTRU Prime -
$$Z_q(X)/(X^n - x - 1)$$

Nth degree TRUncated polynomial ring

Methodology

A KEM offers three functions:

outputs public and private key

- generates a random value ss and encrypts it to ct using the public key pk

- decrypts ciphertext ct to plaintext ss using private key sk

Methodology

- outputs public and private key

 generates a random ss and encrypts it to ct using the public key pk

 decrypts ciphertext ct to plaintext ss using private key sk

- \rightarrow Space
- → Performance

Running the algorithms locally

```
KFM Details:
  Name: Kyber512
  Version: https://github.com/pq-crystals/kyber/commit/74cad307858b61e434490c75f812cb9b9ef7279b
 Claimed NTST level: 1
 Is IND-CCA: true
 Length public key (bytes): 800
 Length secret key (bytes): 1632
 Length ciphertext (bytes): 768
 Length shared secret (bytes): 32
Client public key:
3E 23 92 76 30 3A C5 92 ... D9 A5 70 84 42 77 12 39
It took 1716026 nanosecs to generate the key pair.
It took 447834 nanosecs to encapsulate the secret.
It took 49322 nanosecs to decapsulate the secret.
Client shared secret:
BB 4B FD 55 89 CD 27 39 ... C7 96 A6 65 B5 CA A0 AD
Server shared secret:
BB 4B ED 55 89 CD 27 39 ... C7 96 A6 65 B5 CA A0 AD
Shared secrets coincide? true
```

Space requirements

Performance

Hardness of decoding randomly generated linear codes

Hardness of decoding randomly generated linear codes

Error correcting codes → Hamming Code

G' is a generator matrix that helps create codeword

 \rightarrow Has a decoding algorithm

G' is a generator matrix

 $S \rightarrow invertible matrix$

 $P \rightarrow permutation matrix$

G' is a generator matrix

G' is a generator matrix

Main idea:

Error correcting code with fast, efficient decoding algorithm

Hamming code 4-bit messages → 7-bit codewords

- Classic McEliece ⇒ Binary Gappa Code
- **BIKE** ⇒ QC-MDPC (Quasi-cyclic moderate-density parity-check)

- Classic McEliece ⇒ Binary Gappa Code
- BIKE ⇒ QC-MDPC (Quasi-cyclic moderate-density parity-check)

- Classic McEliece ⇒ Binary Gappa Code
- BIKE ⇒ QC-MDPC (Quasi-cyclic moderate-density parity-check)

- Classic McEliece ⇒ Binary Gappa Code
- BIKE ⇒ QC-MDPC (Quasi-cyclic moderate-density parity-check)

Classic McEliece

- Fast encapsulation and decapsulation
- Smallest ciphertext among all NIST submissions

But...

$$G' = S * G * P$$

VERY large public-key sizes

BIKE (Bit Flipping Key Encapsulation)

- Smallest ciphertext

- Smaller public-key size

5122 bytes

- Not CCA-secure

1357824 bytes in Classic McEliece

Performance

Wrapping it up

- NIST has chosen KYBER for standardisation
- Others are kept as alternatives

Being implemented

- WireGuard VPN
- TLS
- IPSec
- OpenSSH 9.0 has NTRU implemented