Notes de cours

Analyse réelle I

Droite réelle, suites et séries, continuité et dérivabilité

Rédigé par : Mohammed D. Belgoumri

Révisé par : Personne pour l'instant

Table des matières

Page de garde										1							
Table des matières											1						
1	Dro	ite réelle achevée															2
2		Suites numériques									3						
	2.1	Généralités								٠							3
	2.2	Propriétés des suites réelles															6

Chapitre 1 Droite réelle achevée

Chapitre 2

Suites numériques

Dans la suite de ce chapitre, $(\mathbb{K}, +, \cdot)$ est l'un des deux corps $(\mathbb{R}, +, \cdot)$ ou $(\mathbb{C}, +, \cdot)$.

2.1 Généralités

Définition 1 (Suite numérique).

On appelle une suite numérique toute application $u : \mathbb{N} \to \mathbb{K}$. Une suite numérique est notée $(u_n)_{n \in \mathbb{N}}$ plutôt que :

$$\begin{cases} u: \mathbb{N} \to \mathbb{K} \\ n \mapsto u_n \end{cases}$$

 u_n (l'image de n par cette application) est appelée le terme $g\'{e}n\'{e}ral$ de la suite.

Définition 2 (Suite extraite).

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. On appelle une suite extraite ou sous suite de $(u_n)_{n\in\mathbb{N}}$ toute suite numérique $(v_n)_{n\in\mathbb{N}}$ de terme général $v_n=u_{\varphi(n)}$ où $\varphi:\mathbb{N}\to\mathbb{N}$ est une application croissante.

Théorème et définition 2.1 (Limite d'une suite, convergence, divergence).

— Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique. Il existe au plus un seul $\ell\in\mathbb{K}$ qui vérifie la condition :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - \ell| < \varepsilon$$

Un tel ℓ (s'il existe) est appelé la *limite* de $(u_n)_{n\in\mathbb{N}}$. On le note : $\lim_{n\to+\infty}u_n$, ou encore $\lim u_n$.

- Une suite est dite convergente ssi elle possède une limite $\ell \in \mathbb{K}$. Dans ce cas on dit que la suite converge vers ℓ et on écrit : $u_n \to \ell$
- Une suite qui n'est pas convergente est dite divergente.

Démonstration.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite numérique, $\varepsilon\in]0,+\infty[$ et $\ell,\ell'\in\mathbb{K}$ vérifient tous les deux :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - \ell| < \varepsilon$$

 $\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - \ell'| < \varepsilon$

On en déduit l'existence de $n_1, n_2 \in \mathbb{N}$ tels que :

$$\forall n \in \mathbb{N}, \quad n > n_1 \Rightarrow |u_n - \ell| < \frac{\varepsilon}{2}$$

 $\forall n \in \mathbb{N}, \quad n > n_2 \Rightarrow |u_n - \ell'| < \frac{\varepsilon}{2}$

En posant $n_0 = \max\{n_1, n_2\}$, on trouve que :

$$\forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |\ell - \ell'| = |\ell - u_n + u_n - \ell'| \le |u_n - \ell| + |u_n - \ell'| < \varepsilon$$

Autrement dit, on a:

$$\forall \varepsilon > 0, \quad |\ell - \ell'| < \varepsilon$$

D'où la conclusion : $\ell = \ell'$

Théorème 2.2.

Toute suite convergente est bornée. i.e : $Si(u_n)$ est convergente, alors il existe $M \in \mathbb{R}_+^*$ tel que :

$$\forall n \in \mathbb{N}, \quad |u_n| \leq M$$

Démonstration.

Soit (u_n) une suite convergente vers $\ell \in \mathbb{K}$ et $\varepsilon > 0$. D'après la définition de la limite, on a :

$$\exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - \ell| < \varepsilon$$

On en déduit que pour tout $n > n_0$, on a :

$$|u_n| - |\ell| \le |u_n - \ell| < \varepsilon \Rightarrow |u_n| < |\ell| + \varepsilon$$

Finalement, en posant $m = \max\{|u_n| | n \le n_0\}$ et $M = \max\{m, |\ell| + \varepsilon\}$ on a bien :

$$\forall n \in \mathbb{N}, \quad |u_n| \le M$$

Théorème 2.3 (Operations sur les suites convergentes).

Soient (u_n) et (v_n) deux suites convergentes vers $\ell \in \mathbb{K}$ et $\ell' \in \mathbb{K}$ respectivement. On a:

- (i) $(u_n + \lambda v_n)_{n \in \mathbb{N}}$ converge vers $\ell + \lambda \ell'$ quelque soit $\lambda \in \mathbb{K}$.
- (ii) $(|u_n|)_{n\in\mathbb{N}}$ converge vers $|\ell|$.
- (iii) $(\forall n \in \mathbb{N}, \quad u_n \le v_n) \Rightarrow \ell \le \ell'$
- (iv) $(u_n v_n)_{n \in \mathbb{N}}$ converge vers $\ell \ell'$.
- (v) $Si \ \forall n \in \mathbb{N}$, $u_n \neq 0 \ et \ \ell \neq 0$, alors $\left(\frac{1}{u_n}\right)_{n \in \mathbb{N}}$ converge vers $\frac{1}{\ell}$.
- (vi) Toute suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ extraite de (u_n) converge vers ℓ .

Démonstration.

(i) Soit $\varepsilon > 0$. Comme $u_n \to \ell$ et $v_n \to \ell'$, il existe $n_1, n_2 \in \mathbb{N}$ tels que :

$$\forall n \in \mathbb{N}, \quad n > n_1 \Rightarrow |u_n - \ell| < \frac{\varepsilon}{2}$$

 $\forall n \in \mathbb{N}, \quad n > n_2 \Rightarrow |v_n - \ell'| < \frac{\varepsilon}{2|\lambda|}$

En posant $n_0 = \max\{n_1, n_2\}$, on a pour tout $n > n_0$:

$$|u_n + \lambda v_n - \ell - \lambda \ell'| \leq |u_n - \ell| + |\lambda| \cdot |v_n - \ell'| < \frac{\varepsilon}{2} + |\lambda| \frac{\varepsilon}{2|\lambda|} = \varepsilon$$

Ce qui entraı̂ne que $\lim(u_n + \lambda v_n) = \ell + \lambda \ell'$

(ii) La conclusion suit directement de l'inégalité triangulaire :

$$\left| |u_n| - |\ell| \right| \le |u_n - \ell|$$

- (iii)
- (iv)
- (v)
- (vi) Soit $\varepsilon > 0$. D'après la définition de la limite, on a un $n_0 \in \mathbb{N}$ tel que :

$$\forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_n - \ell| < \varepsilon$$
 (*)

Or, φ est croissante. Elle vérifie donc $\varphi(n) \geq n$ pour tout $n \in \mathbb{N}$. Il en résulte en utilisant (*) que :

$$\forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow |u_{\varphi(n)} - \ell| < \varepsilon$$

Autrement dit : $u_{\varphi(n)} \to \ell$

Corollaire 2.4.

Une suite complexe converge ssi sa partie réelle et sa partie imaginaire convergent. Dans ce cas, on a :

$$\lim u_n = \lim \mathfrak{Re} \ (u_n) + i \ \lim \mathfrak{Im} \ (u_n)$$

2.2 Propriétés des suites réelles

Une différence importante entre $(\mathbb{R}, +, \cdot)$ et $(\mathbb{C}, +, \cdot)$ est le fait que \mathbb{R} est totalement ordonné. On peut donc parler des suites réelles qui deviennent arbitrairement grandes ou petites quand $n \to +\infty$, chose qu'on ne peut pas faire avec des suites complexes.

Définition 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle divergente. On dit que u_n tend $vers +\infty$ (resp. $-\infty$ ssi

$$\forall A \in \mathbb{R}, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad n > n_0 \Rightarrow u_n > A \text{ (resp. } u_n < A)$$

On note: $\lim u_n = +\infty \text{ (resp. } -\infty).$

Définition 4.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que u_n est :

- Majorée ssi : $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \leq M$.
- Minorée ssi $\exists m \in \mathbb{R}, \quad \forall n \in \mathbb{N}, \quad u_n \geq m$.
- Croissante (resp. strictement croissante) ssi : $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$. (resp. $u_{n+1} > u_n$).
- Décroissante (resp. strictement décroissante) ssi : $\forall n \in \mathbb{N}$, $u_{n+1} \leq u_n$. (resp. $u_{n+1} < u_n$).
- *Monotone*(resp. *strictement monotone*) ssi elle est croissante (resp. strictement croissante) ou décroissante (resp. strictement décroissante).

Théorème 2.5 (Suites monotones).

Soit u_n) $_{n\in\mathbb{N}}$ une suite réelle.

- (i) Si u_n est croissante et majorée, alors $\lim u_n = \sup_{n \in \mathbb{N}} u_n$.
- (ii) Si u_n est croissante et minorée, alors $\lim u_n = \inf_{n \in \mathbb{N}} u_n$.

Démonstration.

(i) Posons $\lambda := \sup_{n \in \mathbb{N}} u_n$. On a:

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \lambda - \varepsilon < u_{n_0} \le \lambda$$

 u_n étant croissante, $\lambda - \varepsilon < u_{n_0} \Rightarrow \lambda - \varepsilon < u_n$ pour tout $n \ge n_0$. Il en suite que :

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \in \mathbb{N}, \quad \lambda - \varepsilon < u_n \le \lambda < \lambda + \varepsilon$$

D'où la conclusion : $\lim u_n = \lambda$.

(ii) La démonstration s'obtient en appliquant le raisonnement précédent à $(-u_n)_{n\in\mathbb{N}}$.

Théorème et définition 2.6 (Suites adjacentes).

Soit (u_n) et v_n deux suites réelles telles que :

 $a. (u_n)$ est croissante.

b. (v_n) est décroissante.

 $c. (u_n - v_n) \to 0$

 (u_n) et v_n sont dites deux suites adjacentes. Elles convergent et vérifient $\lim u_n = \lim v_n$.