Reliable Tensor Clusters

CC-BY 2021 James B. Wilson Colorado State University October 26, 2021

Applications

Data

Results of measurement & computation, e.g.

Mercury is 2.5cm high in tube.

Information

data used to make a decision, e.g.

Thermometer reads 38° F; I'll wear a coat.

The Data Problem

Turn data into information.

Nutrition Matrix

Nutrients×Produce data collected and used on diet problems.

	Apple	Beef	Egg	Filbert	 Strawberry
Carbs	13.8	1	2	4.8	 7.7
Protein	0.3	20.7	17.1	3.9	0.7
Fat	0.2	7.4	14.4	1.3	0.3
:	:				

Substitute other examples $minerals \times mines$, pollutants $\times water$ -source, keywords $\times authors$

Nutrition Tensor

Reality is more complex...

Nutrients \times Produce \times Farms \times Water Source \times Fertilizer

3

First Approximation of Tensor

Fox coefficients K and set $[n] = \{1, \dots, n\}$.

A hypermatrix (some call it a "tensor") is a function $\Gamma: [d_1] \times \cdots \times [d_\ell] \to K$.

$$K^{d_1 \times \cdots \times d_\ell} = \{\Gamma : [d_1] \times \cdots \times [d_\ell] \to K\}.$$

Technical matter: For general sets X_1, \ldots, X_ℓ $\Gamma: X_1 \times \cdots \times X_\ell \to K$ has *finite support* (only finitely many nonzero values).

4

Data collection chooses bases for convenience/practicality/instrumentation/safety/laws/...

- Measure each fruit, farm, fertilizer separately
- Choose nutrients a lab can measure (Carbs, Sugar, Vit. A, Vit. B...)

Data collection is basis dependent; Likely some qualities of nutrition are basis independent.

The Tensor-Data ProblemFind basis invariant properties of tensor data.
(This is now a math problem!)

Second Approximation of Tensor

A function $\langle \Gamma | : K^{X_1} \times \cdots \times K^{X_\ell} \rightarrow K$ where

$$\langle \Gamma | u_1, \ldots, u_\ell \rangle = \sum_{x_1 \in X_1} \cdots \sum_{x_\ell \in X_\ell} \Gamma_{x_1 \cdots x_\ell} u_{1x_1} \cdots u_{\ell x_\ell}.$$

→? Just reminds me to tell you this is same "multi-linear"

$$\langle t|u_a + \lambda \tilde{u}_a, u_{\bar{a}} \rangle = \langle t|u_a, u_{\bar{a}} \rangle + \lambda \langle t|\tilde{u}_a, u_{\bar{a}} \rangle$$

Example: Find change of basis matrices to get clusters

Then ask: What type? Are they unique? How to find them?

Tensors can store structured probabilities even non-stochastic such a quantum states.

Tensors can store structured probabilities even non-stochastic such a quantum states.

$$\Gamma_{abcde} = \sum_{s} \sum_{t} A_{abs} B_{cdt} C_{ste} \longleftrightarrow S \qquad t$$

$$\downarrow A \qquad \downarrow B$$

Now we've actually encoded particles whose states are entangled.

What is the boundary physics of a *Quantum Material*: a network of entangled particles?

What is the boundary physics of a *Quantum Material*: a network of entangled particles?

Graphic depicts a quantum *conductor* because quantum operator in red moves through material.

What is the boundary physics of a *Quantum Material*: a network of entangled particles?

Graphic depicts a quantum *conductor* because quantum operator in red moves through material.

What is the boundary physics of a *Quantum Material*: a network of entangled particles?

Graphic depicts a quantum *conductor* because quantum operator in red moves through material.

Boundary physics

Is just another way of asking if tensors are isomorphic:

In product notation

$$(Xu)*(Yv) = Z(u*v)$$

Boundary physics

Is just another way of asking if tensors are isomorphic:

In product notation

$$(Xu)*(Yv) = Z(u*v)$$

The Tensor Product

Main Idea

 $\mathsf{Data}\ \mathsf{table} \equiv \mathsf{Multiplication}\ \mathsf{Table}$

So study multiplication tables.

For finite sets

$$\boxtimes : R^m \times R^n \rightarrowtail R^{m \times n} \quad u \boxtimes v = uv^{\dagger} = \begin{bmatrix} u_1v_1 & \cdots & u_1v_n \\ \vdots & & \vdots \\ u_mv_1 & \cdots & u_mv_n \end{bmatrix}.$$

In general possibly infinite matrices, but finite support

$$\boxtimes : R^X \times R^Y \rightarrow R^{X \times Y} \qquad (u \boxtimes v)_{xy} = u_x v_y.$$

The Tensor Product

A right *R*-modules has a presentation

$$U_R = \operatorname{Pres}_R \langle X \mid S \rangle = R^X / \operatorname{Span} S$$

A left R-module has a presentation

$$_RV = \operatorname{Pres}_R\langle Y \mid T \rangle = R^Y / \operatorname{Span} T$$

Their **Tensor Product** is

$$U \otimes_R V = R^{X \times Y} / (R^X \boxtimes T + S \boxtimes R^Y)$$

along with the induced function

$$\otimes: U \times V \rightarrowtail U \otimes_R V$$
$$x \otimes y = x \boxtimes y + (R^X \boxtimes T + S \boxtimes R^Y).$$

$$U_R = \operatorname{Pres}_R \langle X \mid S \rangle = R^X / \operatorname{Span} S;$$

 $_R V = \operatorname{Pres}_R \langle Y \mid T \rangle = R^Y / \operatorname{Span} T$

Example

$$(\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z} \oplus \mathbb{Z}) \otimes (\mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z})$$

$$\begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix} / \begin{pmatrix} \begin{bmatrix} \mathbb{Z} \\ \mathbb{Z} \\ \mathbb{Z} \end{bmatrix} \begin{bmatrix} 4\mathbb{Z} & 8\mathbb{Z} \end{bmatrix} + \begin{bmatrix} 2\mathbb{Z} \\ 6\mathbb{Z} \\ 0\mathbb{Z} \end{bmatrix} \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \end{bmatrix} \\ = \begin{bmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{bmatrix} / \begin{bmatrix} 4\mathbb{Z} + 2\mathbb{Z} & 8\mathbb{Z} + 2\mathbb{Z} \\ 4\mathbb{Z} + 6\mathbb{Z} & 8\mathbb{Z} + 6\mathbb{Z} \\ 4\mathbb{Z} + 0\mathbb{Z} & 8\mathbb{Z} + 0\mathbb{Z} \end{bmatrix} \\ = \begin{bmatrix} \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ \mathbb{Z}/2\mathbb{Z} & \mathbb{Z}/2\mathbb{Z} \\ \mathbb{Z}/4\mathbb{Z} & \mathbb{Z}/8\mathbb{Z} \end{bmatrix}$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \ldots \right\rangle = \left\langle e_1, e_2, \ldots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1] imes \mathbb{N}} \Bigg/ \Bigg(2\mathbb{Z} oxtimes \mathbb{Z}^{\mathbb{N}} + \mathbb{Z} oxtimes egin{bmatrix} 1 & -2 & & & \ & 1 & -3 & \ & & \ddots & \ddots \end{bmatrix} \Bigg)$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \dots \right\rangle = \left\langle e_1, e_2, \dots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1]\times\mathbb{N}}\Bigg/\Bigg(2\mathbb{Z}\boxtimes\mathbb{Z}^\mathbb{N}+\mathbb{Z}\boxtimes\begin{bmatrix}1&-2&&\\&1&-3&\\&&\ddots&\ddots&\end{bmatrix}\Bigg)$$

$$\begin{bmatrix} 1 & -2 & & & \\ & 1 & -3 & & \\ & & \ddots & \ddots \\ 2 & 0 & & & \\ & 2 & 0 & & \\ & & \ddots & \ddots \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & & \\ & 1 & -3 & & \\ & & \ddots & \ddots \\ 0 & 4 & & \\ & 2 & 0 & & \\ & & \ddots & \ddots \end{bmatrix}$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \dots \right\rangle = \left\langle e_1, e_2, \dots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1]\times\mathbb{N}}\Bigg/\Bigg(2\mathbb{Z}\boxtimes\mathbb{Z}^\mathbb{N}+\mathbb{Z}\boxtimes\begin{bmatrix}1&-2&&\\&1&-3&\\&&\ddots&\ddots&\end{bmatrix}\Bigg)$$

$$\begin{bmatrix} 1 & -2 & & & \\ & 1 & -3 & & \\ & & \ddots & \ddots \\ 2 & 0 & & & \\ & 2 & 0 & & \\ & & \ddots & \ddots \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & & \\ & 1 & -3 & \\ & & \ddots & \ddots \\ 0 & 0 & & \\ & 2 & 0 & \\ & & \ddots & \ddots \end{bmatrix}$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \dots \right\rangle = \left\langle e_1, e_2, \dots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1]\times\mathbb{N}}\Bigg/\Bigg(2\mathbb{Z}\boxtimes\mathbb{Z}^\mathbb{N}+\mathbb{Z}\boxtimes\begin{bmatrix}1&-2&&\\&1&-3&\\&&\ddots&\ddots&\end{bmatrix}\Bigg)$$

$$\begin{bmatrix} 1 & -2 & & & \\ & 1 & -3 & & \\ & & \ddots & \ddots \\ 2 & 0 & & & \\ & 2 & 0 & & \\ & & \ddots & \ddots \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & & \\ & 1 & -3 & \\ & & \ddots & \ddots \\ 0 & 0 & & \\ & & 0 & 6 & \\ & & & \ddots & \ddots \end{bmatrix}$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \dots \right\rangle = \left\langle e_1, e_2, \dots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1]\times\mathbb{N}}\Bigg/\Bigg(2\mathbb{Z}\boxtimes\mathbb{Z}^\mathbb{N}+\mathbb{Z}\boxtimes\begin{bmatrix}1&-2&&\\&1&-3&\\&&\ddots&\ddots&\end{bmatrix}\Bigg)$$

$$\begin{bmatrix} 1 & -2 & & & \\ & 1 & -3 & & \\ & & \ddots & \ddots \\ 2 & 0 & & & \\ & 2 & 0 & & \\ & & \ddots & \ddots \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & & \\ & 1 & -3 & \\ & & \ddots & \ddots \\ 0 & 0 & & \\ & & 0 & 0 & \\ & & & \ddots & \ddots \end{bmatrix}$$

$$\mathbb{Z}/2\mathbb{Z}\otimes\mathbb{Q}$$

$$\mathbb{Q} = \left\langle \frac{1}{1!}, \frac{1}{2!}, \frac{1}{3!}, \ldots \right\rangle = \left\langle e_1, e_2, \ldots \mid e_n = (n+1)e_{n+1} \right\rangle$$

$$\mathbb{Z}^{[1] \times \mathbb{N}} / \left(2\mathbb{Z} \boxtimes \mathbb{Z}^{\mathbb{N}} + \mathbb{Z} \boxtimes \begin{bmatrix} 1 & -2 & \\ & 1 & -3 & \\ & & \ddots & \ddots \end{bmatrix} \right)$$

$$\mathbb{Z}^{1 \times \mathbb{N}} / \mathbb{Z} \boxtimes \begin{bmatrix} 1 & -2 & \\ & 1 & -3 & \\ & & \ddots & \ddots \end{bmatrix} \cong \mathbb{Q}$$

Theory

Tensor products are distributive

$$(u + \tilde{u}) \otimes v = u \otimes v + \tilde{u} \otimes v$$

$$u \otimes (v + \tilde{v}) = u \otimes v + u \otimes \tilde{v}$$

$$(U \oplus \tilde{U}) \otimes_{R} V = U \otimes_{R} V \oplus \tilde{U} \otimes_{R} V$$

$$U \otimes_{R} (V \oplus \tilde{V}) = U \otimes_{R} V \oplus U \otimes \tilde{V}$$

Theory

Tensor products have a 1.

$$U \otimes_R R \cong U$$

$$R \otimes_R V \cong V$$

Theory

Sometimes it is said tensor products are associative and commutative, that is nonsense

$$\mathbb{R}^{\otimes}$$

But in special cases, e.g. if R is commutative

$$U \otimes_R (V \otimes_R W) \cong (U \otimes_R V) \otimes_R W$$

 $U \otimes_R V \cong V \otimes_R U.$

But be warned $U_1 \otimes \cdots \otimes U_n$ is generally not defined!

Universal Mapping Property

Further fact
$$ur \boxtimes v = (ur)v^{\dagger} = u(rv)^{\dagger} = u \boxtimes rv$$
; so $ur \otimes v = u \otimes rv$.

Theorem

If $*: U \times V \rightarrowtail W$ is distributive and $\forall r \in R$, ur * v = u * rv then $\exists ! \widehat{*} : U \otimes_R V \to W$ where

$$u*v=\widehat{*}(u\otimes v).$$

In particular $U \otimes_R V$ does not depend on choice of presentations.

Whitney Tensor Product

Every module has its "regular" presentation

$$U_R = \operatorname{\mathsf{Pres}}_R \langle e_u, u \in U \mid e_{u+\tilde{u}} = e_u + e_{\tilde{u}}, e_{ur} = e_u r \rangle$$
 $R_R V = \operatorname{\mathsf{Pres}}_R \langle e_v, v \in V \mid e_{v+\tilde{v}} = e_v + e_{\tilde{v}}, e_{rv} = r e_v \rangle$

With these presentations we recover Whitney's definition (i.e. your textbook definition)

$$U \otimes_{R} V = R^{U \times V} / \left\langle \begin{array}{c} e_{u+\tilde{u}} \otimes e_{v} = e_{u} \otimes e_{v} + e_{\tilde{u}} \otimes e_{v}, \\ e_{u} \otimes e_{v+\tilde{v}} = e_{u} \otimes e_{v} + e_{u} \otimes e_{\tilde{v}}, \\ e_{ur} \otimes e_{v} = e_{u} \otimes e_{rv} \end{array} \right\rangle$$

So established methods are a special case.

Similar ideas picking up on matrix-vector product $R^{m \times n} \times R^n \longrightarrow R^m$ give rise to

$$U \oslash V \times V \rightarrow U$$

Which behave like fractions, e.g.

$$A \oslash K \cong A$$
 $A \to K \oslash (K \oslash A)$

$$A \oslash (B \otimes C) = A \oslash B \oslash C$$

I.e.

$$\mathsf{hom}(C \otimes B, A) \cong \mathsf{hom}(C, \mathsf{hom}(B, A))$$

Solving for Coordinates

 $\begin{array}{l} \textbf{Applications} \\ \text{We } \textit{have} \text{ a tensor.} & \text{Why would we want a tensor product?} \end{array}$

What if
$$R = R_1 \oplus R_2$$
?
$$(R_1 \oplus R_2)^X \longrightarrow U_R = \operatorname{Span} X$$

$$\times \qquad \qquad \times$$

$$(R_1 \oplus R_2)^Y \longrightarrow {}_RV = \operatorname{Span} Y$$

$$\downarrow \boxtimes \qquad \qquad \qquad \downarrow \otimes$$

$$(R_1 \oplus R_2)^{X \times Y} \longrightarrow U \otimes_{R_1 \oplus R_2} V$$

What if $R = R_1 \oplus R_2$?

$$R_{1}^{X} \oplus R_{2}^{X} \longrightarrow U_{1} \oplus U_{2}$$

$$\times \qquad \qquad \times$$

$$R_{1}^{Y} \oplus R_{2}^{Y} \longrightarrow V_{1} \oplus V_{2}$$

$$\downarrow \boxtimes \qquad \qquad \downarrow \otimes$$

$$R_{1}^{X \times Y} \oplus R_{2}^{X \times Y} \longrightarrow (U_{1} \otimes_{R_{1}} V_{1}) \oplus (U_{2} \otimes_{R_{2}} V_{2})$$

That's one of these:

...for which people are hunting!

Solve for **universal** *R*!

$$(?)^{X} \longrightarrow U_{?} = \operatorname{Span} X = U$$

$$\times \times \times \times$$

$$(?)^{Y} \longrightarrow {}_{?}V = \operatorname{Span} Y = V$$

$$\downarrow^{\boxtimes} \qquad \qquad \downarrow^{\otimes} \qquad \qquad \downarrow^{*}$$

$$(?)^{X \times Y} \longrightarrow U \otimes_{?} V \longrightarrow W$$

Solution is the Centroid

$$C(*) = \{(X, Y, Z) \mid Xu * v = Z(u * v) = u * (Yv)\}$$

Cluster Algorithm (W. 2008)

$$C(*) = \{(X,Y,Z) \mid Xu*v = Z(u*v) = u*(Yv)\}$$
 Random $\alpha \in C(*)$, if $\min_{\alpha}(x) = a(x)b(x)$ with $\deg a(x), \deg b(x) > 0$ and
$$1 = \operatorname{GCD}(a(x),b(x)) = s(x)a(x) + t(x)b(x)$$

Then
$$e = s(\alpha)a(\alpha)$$
; $f = t(\alpha)b(\alpha)$
Return $U = eU \oplus fU$, $V = eV \oplus fV$, $W = eW \oplus fW$.
Else try another α .

Theorem W. The resulting clusters are unique.

Other observation: Writing a product over larger coefficients makes for smaller dimensions.

Isomorphism testing speeds up by orders of magnitude.

Wakeup Pure Algebra; you're directly useful!

For data science tensors use is still spartan.

Different decompositions call for solving for different coordinate types, adjoints, nuclei, derivations, ...

Such ideas essentially the same arose in

- Kaplansky and Jacobson non-associative algebras.
- Mal'cev and Miyasnikov on Groups of finite Morley Rank.
- Finite Simple groups, e.g. Parker-Norton MeatAxe and Schneider's work
- W. Direct and central product decomps. of *p*-groups.

Look back...did R have to be a ring?

This quotient exists because we create a two-sided ideal. No use of associative ring R.

You can use **any non-associative algebra** A.

Assume Lie, e.g. [a, b] = ab - ba in a ring R.

With a lie algebra $ua \otimes v \neq u \otimes av$ but instead

$$[a,u\otimes v]=[a,u]\otimes v+u\otimes [a,v]$$

Lie tensor products

Definability

Whitney tensor product $U_0 \otimes_{R_1} \cdots \otimes_{R_n} U_n$ not generally well-defined (need bimodules or commutativity, i.e. constraints).

Lie tensor product $\exists U_1, \ldots, U_n \exists_L$ exists for arbitrary numbers of modules.

Lie tensor products

Global reach

Whitney tensor product $U_0 \otimes_{R_1} \cdots \otimes_{R_n} U_n$ (when defined) compares nearest neighbor relationships.

Lie tensor product $(U_1, \ldots, U_n)_L$ compares all modules to all others.

Lie tensor products

Size

Whitney Tensor Product

$$\dim U_0 \otimes_{R_1} \cdots \otimes_{R_n} U_n \approx \frac{\dim U_1 \cdots \dim U_n}{\dim R_1 \cdots \dim R_n}$$

Lie tensor product

$$\dim \mathcal{O}_1, \ldots, \mathcal{O}_n \mathcal{O}_L$$

given by subtle Clebsch-Gordan formulas, can actually be bounded by a constant while dim U_a go to infinity.

Universality of Derivation Tensors "Densors"

Theorem First-Maglione-W.

If a tensor T factors through a tensor product over any nonassociative algebra A then A then the tensor product $\otimes_A: U \times V \rightarrowtail U \otimes_A V$ factors through the Lie tensor product over the derivations of T.

In formally the Lie tensor product over derivations is universal.

Limits on Associativity

Theorem FMW

Over fields with some nondegeneracy conditions. If $\Omega \subset \operatorname{End}(U_1) \times \cdots \times \operatorname{End}(U_n)$ is closed to composition then the operators in Ω are limited to nearest neighbor interactions governed by binomials

$$X^{e_1} - X^{f_1}, \dots, X^{e_n} - X^{f_n}$$

where the neighborhood is given by the support of (e_i, f_i)

