

Instituto Politécnico Nacional Escuela Superior de Cómputo

Análisis de Algoritmos

Práctica 1: Determinación experimental de la complejidad temporal de un algoritmo.

Profesor: Dr. Benjamín Luna Benoso.
Grupo:
Semestre 2018-1

Observación: Para tener derecho a evaluación de la práctica, es necesario tener asistencia.

- 1. Desarrollar e implementar un algoritmo Suma que sume dos enteros en notación binaria bajo las siguientes consideraciones: Dos arreglos unidimensionales \mathbf{A} de tamaño n y \mathbf{B} de tamaño m con $k = log_2(n)$ y $t = log_2(m)$ almacenarán los números a sumar. La suma se almacenará en un arreglo \mathbf{C} .
 - i) El algoritmo debe de estar implementado con la notación vista en clase.
 - ii) Mostrar diversas gráficas para la función Suma que muestre tiempo vs r con r = m = n (considere diversos valores de r).
 - iii) Proponer una función g(n) tal que $Suma \in O(g(n))$ y g(n) sea mínima, en el sentido de que si $suma \in O(h(n))$, entonces $g(n) \in O(h(n))$.
 - iv) Mostrar conclusiones individuales.
- 2. Implementar el algoritmo de Euclides para encontrar el mcd de dos números enteros positivos m y n.

Euclides(m, n): $\text{while } n \neq 0 \text{ do}$ $r \leftarrow m \bmod n$ $m \leftarrow n$ $n \leftarrow r$ return m

- i) El algoritmo debe de estar implementado con la notación vista en clase.
- ii) Mostrar diversas gráficas para la función Euclides que muestre $tiempo\ vs$ ($diferentes\ valores\ de\ m\ y\ n$).
- iii) Proponer una función g(n) tal que $Euclides \in O(g(n))$ y g(n) sea mínima, en el sentido de que si $Euclides \in O(h(n))$, entonces $g(n) \in O(h(n))$ (Hint: Considere valores consecutivos de la suceción de Fibonacci para m y n).
- iv) Mostrar conclusiones individuales.

Resolver los siguientes problemas:

1. El siguiente algoritmo, es un algoritmo de ordenamiento llamado por selección (Select-Sort(A)). Calcular el orden de complejidad en el peor de los casos.

$$\begin{aligned} \mathbf{Select\text{-}Sort}(A[0,\dots,n-1]) \\ & \text{for } j \leftarrow 0 \text{ to } j \leq n-2 \text{ do} \\ & k \leftarrow j \\ & \text{for } i \leftarrow j+1 \text{ to } i \leq n-1 \text{ do} \\ & \text{if } A[i] < A[k] \text{ then} \\ & k \leftarrow i \\ & \text{Intercambia } (A[j],A[k]) \end{aligned}$$