神经网络

2019年度南京大学"专创融合"特色示范课程培育项目

高阳

http://cs.nju.edu.cn/rl, 2019.11.05

神经网络

从生物神经网络到人工神经网络

高阳

http://cs.nju.edu.cn/gaoy, 2019.11.05

大纲

人工神经网络及其发展

感知机和感知机学习

多层神经网络

反向传播算法BP

大纲

人工神经网络及其发展

感知器学习

多层神经网络

反向传播算法BP

生物学基础

- ✓ 分布/并行计算模型
- ✓ 调整节点间的连接关系

□人脑

- ✓ 1011个神经元
- ✓ 每个神经元处理速度为10-3s
- ✓ 识别人脸,需要约100个神经元计算

发展历史

- □ 1943年,心理学家W. McCulloch和数理逻辑学家W. Pitts首次提出神经元的数学模型MP模型
- □ 1948年,冯.诺依曼提出相互再生自动机网络结构
- □ 1950s, F. Rosenblatt提出感知机模型
- □ 1960s, Widrow提出非线性多层自适应网络
- □ 1968年, Minsky的《感知机》一书
- □ 1982年和1984年,物理学家Hopfield在美国科学院院刊上发表ANN文章
- □ 2006年,Hinton发表深度信念网络→深度学习^{28x28} S2: f. maps 16@10x10 S4: f. maps 16@5x5 S2: f. maps 6@14x14 S2: f. maps 16@5x5 S2: f. maps 16@5x5 S2: f. maps 16@10x10 S2: f. ma

神经网络表示 - ALVINN

□ ALVINN : Autonomous Land Vehicle In a Neural Network

- 1993年, CMU研发
- □ 输入: 30*32的像素
- □ 4个隐藏节点

□ 输出: 30个驾驶动作(急剧左转、 急剧右转,正前方行进.....)

有向/无向?有环/无环?结构?

神经元基本结构

- **□** 输入X=[x₁,x₂,x₃,...]
- □ 权值W=[w₁,w₂,w₃,...]
- □ 激励函数 $f(net) = f(\Sigma(w_i * x_i))$

口偏置单元(bias unit) x_0 ,其对应权值为 w_0

MP神经元模型

逻辑与的神经元模型 (阈值为 ≥ 0, 大于等于输出1)

逻辑或的神经元模型 (阈值为≥0,小于输出0)

激励函数

 $f(\text{net}) = \frac{1}{1 + e^{-\lambda * net}}$

引入非线性激励函数,增强神经网络的表达能力

λ是挤压参数,值越大,区间[0,1] 上越接近直线。

激励函数的作用

饱和型激励函数的缺点:

- 1、梯度消失
- 2、非以0为中心
- 3、指数计算代价大

大纲

人工神经网络及其发展

感知机和感知机学习

多层神经网络

反向传播算法BP

感知机和感知机学习

- □ Frank Rosenblatt, 1957年, Cornell航空实验室(Cornell Aeronautical Laboratory)
- □最简单形式的前馈式人工神经网络
- □ 是一种二元线性分类器,使用特征向量作为输入,把矩阵上的输入x(实数值向量)映射到输出值f(x)上(一个二元的值)

感知器结构

感知器结构

- □非线性前馈网络
 - □ 同层内无互连
 - □ 不同层间无反馈
 - □ 由下层向上层传递
 - □ 输入输出均为离散值
 - □ 由阈值函数决定其输出

有监督的学习机制

- □c是常数,表示学习率
- □d是期望的输出,取值为1或-1
- □sign是感知机的输出,取值为1或-1

$$\Delta W_i = c(d - sign(\sum w_i * x_i)) X_i$$

- □ 期望输出和实际输出相同,不改变权值
- □实际输出为-1,期望输出为+1,则增加2cXi
- □实际输出为+1,期望输出为-1,则减少2cX_i

感知机的学习算法

- 1. 权值初始化
- 2. 输入样本对
- 3. 计算输出
- 4. 根据感知机学习规则调整权重
- 5. 返回到步骤2输入到下一对样本,直至对所有样本的实际输出与期望输出相等

例子

x ₁	x ₂	Output
1.0	1.0	1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1
7.9	8.4	- 1
7.0	7.0	-1
2.8	0.8	1
1.2	3.0	. 1
7.8	6.1 -1	

x ₁	x ₂	Output
1.0	1.0	1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1
7.9	8.4	-1
7.0	7.0	-1
2.8	0.8	· 1
1.2	3.0	. 1
7.8	6.1	-1

$$f(net)=f(w_0*x_0+w_1*x_1+w_2*x_2)$$

x₀是偏置单元,通常取1

假设初始权值为[-0.6,0.75,0.5] 对第一行数据来说 $f_1 = f(-0.6*1+0.75*1+0.5*1) = f(0.65) = 1$ 与期望值一样,所以W向量不变, $W_1 = W_0$

x ₁	X ₂	Output
1.0	1.0	: 1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1
7.9	8.4	-1
7.0	7.0	-1
2.8	0.8	1
1.2	3.0	1
7.8	6.1	-1

$$f(net)=f(w_0*x_0+w_1*x_1+w_2*x_2)$$

x_0 是偏置单元,通常取1

假设初始权值为[-0.6,0.75,0.5] 对第一行数据来说 $f_1 = f(-0.6*1+0.75*1+0.5*1) = f(0.65) = 1$ 与期望值一样,所以W向量不变, $W_1 = W_0$

 f_2 =f(-0.6*1+0.75*9.4+0.5*6.4)=f(9.65)=1 期望为-1,所以 W_2 = W_1 +0.2*(-2) X_2 W_2 =[-0.6,0.75,0.5]-0.4*[1,9.4,6.4]=[-1.00,-3.01,-2.06]

X ₁		X ₂	Output
1.0)	1.0	: 1
9.4	1	6.4	-1
2.:	5	2.1	1
8.0)	7.7	-1
0.:	5	2.2	1
7.9)	8.4	-1
7.0)	7.0	-1
2.	8	0.8	1
1.	2	3.0	1
7.	8	6.1	-1

$$f(net)=f(w_0*x_0+w_1*x_1+w_2*x_2)$$

x_0 是偏置单元,通常取1

假设初始权值为[-0.6,0.75,0.5] 对第一行数据来说 $f_1=f(-0.6*1+0.75*1+0.5*1)=f(0.65)=1$ 与期望值一样,所以W向量不变, $W_1=W_0$

 f_2 =f(-0.6*1+0.75*9.4+0.5*6.4)=f(9.65)=1 期望为-1,所以 W_2 = W_1 +0.2*(-2) X_2 W_2 =[-0.6,0.75,0.5]-0.4*[1,9.4,6.4]=[-1.00,-3.01,-2.06]

X₀固定为1 a固定为0.2

 $f_3 = f(-1*1-3.01*2.5-2.06*2.1) = f(-12.84) = -1$ $W_3 = W_2 + 0.2*2*X_3 = [-0.60, -2.01, -1.22]$

.

最终结果为W=[10.9, -1.3, -1.1]

感知机学习缺点

- 感知机模型属于单层神经网络,它不能解决—类非线性可分的问题。
- □典型的例子就是异或

表 10-2 异或真值表

х,	×2	输出	
1	1 0		
1	0	1	
0	1	1	
0	0	0	

图 10-3 异或问题。在二维空间 中没有可分离点集 { (0,0),(1,1) } 和 { (0,1),(1,0) } 的直线

感知机的表达能力

- □感知机是n维实例空间的超平面决策
- □ 候选假设空间H: 所有可能实数权向量的集合

$$H = \left\{ \overrightarrow{W} \middle| \overrightarrow{W} \in R^{(n+1)} \right\}$$

- □ 广义布尔函数 m-of-n: n个输入值至少有m个为真,则输出为真
- □二层神经网络可以表达所有的布尔函数
 - □与、或、与非、或非、异或......

异或问题

□ 权重向量(1,-1)、(-1,1)

输入		隐节点输出		输出节点	X ₁ XOR X ₂
X_1	X_2	H_1	H_2		
0	0	0	0	$-0.5 \rightarrow 0$	0
0	1	-1 → 0	1	0.5 → 1	1
1	0	1	-1 → 0	0.5 → 1	1
1	1	0	0	-0.5 → 0	0

感知机学习的不足

- □ 感知机学习一定可以收敛吗?
 - ✓ 前提是训练样例必须是线性可分的!!

- □ 如果训练样例不是线性可分的,怎么办?
 - ✓ 只能去找一个学习方法,去收敛到目标概念的最佳近似

感知机学习方法只适用在单层网络!

Delta规则

- □ Delta规则是基于错误(误差)平面的,错误(误差)平面是神经 网络所表示的函数在数据集上的累积误差。每一个神经网络 权值向量都对应误差平面中的一个点。
- □ 应用delta规则时,激励函数必须<mark>是连续的和可微分的。</mark>

二维坐标中的错误平面。常数c指示了学习步幅的大小

Delta规则

$$Error = \frac{1}{2} \sum_{i} (d_i - O_i)^2 \qquad \overrightarrow{o}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x}$$

$$\Delta W_{k} = -c \frac{\partial Error}{\partial W_{k}} = -c \frac{\partial Error}{\partial O_{i}} * \frac{\partial O_{i}}{\partial W_{k}}$$

$$\frac{\partial Error}{\partial O_i} = \frac{\partial (\frac{1}{2} \sum_{i} (d_i - O_i)^2)}{\partial O_i} = \frac{\partial \frac{1}{2} * (d_i - O_i)^2}{\partial O_i}$$

因为输出层中的节点的误差并不影响其他节点,因此

$$\frac{\partial \frac{1}{2} * (\mathbf{d}_i - \mathbf{O}_i)^2}{\partial O_i} = -(\mathbf{d}_i - \mathbf{O}_i)$$

与感知机学习方法一致!

Delta规则

$$\frac{\partial O_i}{\partial W_k} = X_k * f'(W_i X_i) = f'(\text{net}_i) * X_k$$

$$\vec{O}(\vec{x}) = \vec{w} \cdot \vec{x}$$

$$\Delta W_k = -c * [-(d_i - O_i) * f'(\text{net}_i) * X_k]$$

$$= c(d_i - O_i) f'(\text{net}_i) * X_k$$

思考与感知机学习规则的区别!

Delta规则分析

- □ 学习常数c对delta规则的性能有很重要的影响,c决定了在一步学习过程中权值变化的快慢,c越大,权值朝最优值移动的速度越快。然而,c过大会越过最优值或在最优值附近震荡。
- □ 尽管delta规则本身不能克服单层神经网络的局限,但是它的 一般形式是反传算法(BP)的核心,反传算法是多层神经网络 中的学习算法。

Delta规则分析

- □ 梯度下降 gradient descent
 - ✓ 搜索无限假设空间的有效策略
 - ✓ 无限假设空间: 连续的参数/可微
 - ✓ 缺点: 收敛速度慢/局部极小
- □ 随机梯度下降 stochastic gradient descent
 - ✓ 不需要计算总误差, 快/可以有效避免局部极小

$$\nabla E(\overrightarrow{w})$$
 $\nabla_{\mathsf{d}} E(\overrightarrow{w})$

大纲

人工神经网络及其发展

感知器学习

多层神经网络

反向传播算法BP

多层神经网络

多层神经网络

x_1	x_2	$a_1^{(2)}$	$a_2^{(2)}$	f(net)
0	0	0	1	0
0	1	0	0	1
1	0	0	0	1
1	1	1	0	0

多层神经网络的学习

为什么要使用隐层神经元

为什么???

隐藏层神经元实际为特征检测算子 (feature detector), 在多层神经网络 的学习过程中, 隐藏层神经元开始 逐步"发现"刻画训练数据的突出 特征。

大纲

人工神经网络及其发展

感知器学习

多层神经网络

反向传播算法BP

误差传播

反向传播算法Back Propagation

- □ 前向阶段: 网络突触的权值固定, <u>输入信号</u>在网络中正向一层一层传播, 直到到达输出端, 获得网络的输出。
- □ 反向阶段:通过比较网络的输出与期望输出,产生一个<u>误差</u> 信号。误差信号通过网络反向一层一层传播,在传播过程中对 网络突触的权值进行修正。

□ 信用分配 Credit assignment

- ✓ 对于输出层的权值修正计算是直接的,因为输出层对于外部世界可见,可以提供一个期望响应来指导神经元的行为。
- ✓ 在修正隐藏层的权值时,如何给隐藏层的神经元分配信用或者责任呢?

BP神经网络

- □BP神经网络
 - □三层或三层以上结构
 - □无反馈
 - □层内无互连
 - □输入层+输出层+隐含层
 - □采用误差反向传播学习算法

突触权值修正

偏导数代表一个敏感因子,决定了突触权值w_{ii}在权值空间的搜索方向。

此例权值下标ji

表示是由第i个节点连向第j个节点

$$\frac{\partial Error(n)}{\partial w_{ji}(n)} = \frac{\partial Error(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$

对于误差的定义

 $y_m(n)$

$$Error(n) = \frac{1}{2} \sum_{j} (d_{j}(n) - y_{j}(n))^{2} = \frac{1}{2} \sum_{j} e_{j}(n)^{2}$$

对于误差的定义

$$e_j(n) = (d_j(n) - y_j(n))$$

神经元i输出的函数信号

$$y_j(n) = \varphi_j(v_j(n))$$

诱导局部域

$$v_{j}(n) = \sum_{i=0}^{m} w_{ji}(n) y_{i}(n)$$

$$\frac{\partial Error(n)}{\partial w_{ji}(n)} = \frac{\partial Error(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)} \frac{\partial v_{j}(n)}{\partial w_{ji}(n)}$$

因此我们可以得到

 $y_m(n)$

$$\frac{\partial Error(n)}{\partial e_{j}(n)} = e_{j}(n)$$

$$\frac{\partial e_{j}(n)}{\partial y_{j}(n)} = -1$$

$$\frac{\partial y_{j}(n)}{\partial v_{j}(n)} = \varphi_{j}'(v_{j}(n))$$

$$\frac{\partial v_{j}(n)}{\partial w_{ii}(n)} = y_{i}(n)$$

因此可求的偏导数为

 $d_i(n)$

$$\frac{\partial Error(n)}{\partial w_{ii}(n)} = -e_j(n)\varphi_j'(v_j(n))y_i(n)$$

定义局域梯度delta_i(n)

$$delta_{j}(n) = -\frac{\partial Error(n)}{\partial v_{j}(n)}$$

因此权值修正定义为

$$\Delta w_{ji}(n) = \alpha * delta_j(n) * y_i(n)$$

权值修正的两种情况

□ Case1: 神经元j是输出层节点

$$\Delta w_{ji}(n) = \alpha * delta_j(n) * y_i(n)$$

求解局域梯度delta_i(n):

$$delta_{j}(n) = -\frac{\partial Error(n)}{\partial v_{j}(n)} = -\frac{\partial Error(n)}{\partial e_{j}(n)} \frac{\partial e_{j}(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)} = e_{j}(n)\varphi_{j}'(v_{j}(n))$$

因此权值修正值为:

$$\Delta w_{ji}(n) = \alpha * e_j(n) * \varphi_j'(v_j(n)) * y_i(n)$$

神经元是隐藏层节点

□ Case2: 神经元j是隐藏层节点

当神经元j位于网络隐藏层时,就没有对于神经元的指定期望输出。

隐藏层神经元不能直接访问,但是它们必须分担对网络输出的误差责任。 如何分配这种共担的责任,就是<u>信用分配问题</u>。

重新求解局域梯度delta_i(n)

$$delta_{j}(n) = -\frac{\partial Error(n)}{\partial v_{j}(n)} = -\frac{\partial Error(n)}{\partial y_{j}(n)} \frac{\partial y_{j}(n)}{\partial v_{j}(n)} = -\frac{\partial Error(n)}{\partial y_{j}(n)} \varphi_{j}'(v_{j}(n))$$

假设神经元k为输出层神经元

$$Error(n) = \frac{1}{2} \sum_{k} e_k^2(n)$$

计算隐藏层神经元j,对网络输出层神经元k的误差的责任。

则可求解

$$\frac{\partial Error(n)}{\partial y_{j}(n)} = \sum_{k} e_{k} \frac{\partial e_{k}(n)}{\partial y_{j}(n)} = \sum_{k} e_{k} \frac{\partial e_{k}(n)}{\partial v_{k}(n)} \frac{\partial v_{k}(n)}{\partial y_{j}(n)}$$

又因为

$$e_k(n) = d_k(n) - y_k(n) = d_k(n) - \varphi_k(v_k(n))$$
 所以

$$\frac{\partial Error(n)}{\partial y_j(n)} = -\sum_k e_k(n)\varphi_k'(v_k(n))w_{kj}(n)$$

根据局域梯度的定义, 可得

$$\frac{\partial Error(n)}{\partial y_{i}(n)} = -\sum_{k} delta_{k}(n)w_{kj}(n)$$

因此

$$delta_{j}(n) = \varphi_{j}'(v_{j}(n)) \sum_{k} delta_{k}(n) w_{kj}(n)$$

$$\Delta w_{ji}(n) = \alpha * delta_j(n) * y_i(n)$$

- □ 反向传播的误差信号的转变——局域梯度delta:
- □ 第一项仅依赖于神经元激励函数
- □ 第二项为反向上一层的输入加权和,其中第一项需要误差 e的知识,第二项体现了信用分配

sigmoid激励函数

λ是挤压参数,值越大,区间[0,1]上越接近直线。

$$f(\text{net}) = \frac{1}{1 + e^{-\lambda^* net}}$$

$$f'(net) = -\lambda e^{-\lambda} (1 + e^{-\lambda * net})^{-2}$$

$$= -\lambda (1 + e^{-\lambda * net})^{-1} \left[1 - (1 + e^{-\lambda * net})^{-1} \right]$$

$$= -\lambda f(net) (1 - f(net))$$

反向传播算法

初始化: 随机挑选突触权值

训练样本呈现:对训练集中的样本 进行后续计算

前向计算:每次迭代输入一个训练样本,并得到网络输出

反向计算: 首先反向传播计算每一层神经元的局域梯度delta, 然后计算修正值Δw修正突触权值

反向传播算法实例: 异或

- □ 初始化: 将所有的权值w初始化为0,并选择sigmoid(logistic)函数为神经元的激励函数。
- □ 训练样本的呈现: 训练样本为异或真值表-(0,0)→0; (0,1)→1;(1,0)→1; (1,1)→0, 并进行反复迭代。
- □ 后两步迭代过程: 以第一个输入样例(0,0)→0 为例。

适合ANN的学习问题

- 1. 实例用"属性-值"对表示
- 2. 目标函数输出可以为离散值/实数值/向量
- 3. 对训练数据的错误鲁棒
- 4. 需要长时间的训练
- 5. 测试时间短
- 6. 可理解性差

思考和讨论

- 1. 感知机的表达能力?
- 2. 隐藏节点的作用?
- 3. 感知机学习和Delta学习的区别?
- 4. BP学习算法?

实验

题目:实现BP神经网络学习算法。在UCI数据集中分别选择2个数据集(Audiology (Standardized), Credit Approval), 进行学习和分类。

评判预测性能的指标:准确率 (precision), 召回率(recall)、真阴性 (true negative)、真阳性 (true positive) (请查阅资料了解这四个指标的概念)。

谢 谢!