Задание 2. «Вес и сжатие»

Реальные жидкости сжимаемы. Эксперименты показывают, что относительное уменьшение $\frac{\Delta V}{V_0}$ объема реальной жидкости ($\Delta V = (V - V_0) < 0$) прямо пропорционально

увеличению внешнего давления $\Delta p = p - p_0$

$$\frac{\Delta V}{V} = -\beta \, \Delta p \qquad \Rightarrow \qquad \Delta V = -\beta \, V \Delta p \,,$$

где коэффициент β — сжимаемость жидкости. Знак минус в (1) отражает тот факт, что при увеличении внешнего давления ($\Delta p > 0$) объем жидкости уменьшается.

Рассмотрим горизонтальный слой реальной жидкости глубиной H, находящийся в постоянном гравитационном поле земли. Плотность жидкости у поверхности слоя ρ_0 , ее сжимаемость β . Атмосферное давление p_0 (рис. 01).

- **1. «Самосжатие»** Поскольку давление в жидкости увеличивается с глубиной, то нижние слои будут сжаты сильнее верхних.
- **1.1** Оцените уменьшение ΔH глубины слоя реальной жидкости под действием собственного веса. Вычислите ΔH для мирового океана, принимая, $H=10,0\,\kappa M$, плотность несжатой морской воды $\rho_0=1,03\cdot 10^3\,\frac{\kappa c}{M^3}$, сжимаемость морской воды $\beta=4,71\cdot 10^{-10}\,\Pi a^{-1}$, $g=9,81\frac{M}{c^2}$.

- **1.2** «Плотность» Найдите зависимость $\rho(h)$ плотности воды от глубины h погружения. На сколько процентов увеличивается плотность морской воды на дне океана $\rho(H=10\,\kappa M)$ по сравнению с ее плотностью у поверхности?
- **1.3** «Давление» Найдите зависимость давления p(h) реальной жидкости от глубины h погружения. Атмосферное давление p_0 .
- **1.4. «Утонувший летучий голландец»** При какой плотности ρ_1 однородный брусок, начавший тонуть у поверхности мирового океана, «зависнет» на глубине $h=5,00\,\kappa m$?

В ряде учебных пособий рассматривается равномерно заряженная по объему жидкость. Будем считать, что способ ее получения уже известен.

- **2.** «Заряженная жидкость» Рассмотрим слой <u>несжимаемой</u> непроводящей жидкости глубиной H. Плотность жидкости ρ , объемная плотность ее заряда постоянна и равна γ . Ускорение свободного падения g. Атмосферное давление p_0 .
- **2.1** Найдите зависимость давления p(h) заряженной жидкости от глубины погружения h .
 - **2.2** Оцените максимально возможную толщину слоя H_{max} заряженной жидкости.
- 2.3 Определите массу m непроводящего незаряженного кубика с ребром длиной a, если при опускании в заряженную жидкость он плавает в ней так, что его верхняя грань касается поверхности жидкости.