<u>Dashboard</u> / My courses / <u>Graph Theory-HK3-0405</u> / <u>Tuần 6 - 7 - Đường đi ngắn nhất trên đồ thị</u> / <u>Bài tập 6 - Thuật toán Bellman - Ford</u>

Started on	Saturday, 21 June 2025, 11:10 PM
State	Finished
Completed on	Saturday, 21 June 2025, 11:41 PM
Time taken	30 mins 49 secs
Marks	2.00/2.00
Grade	10.00 out of 10.00 (100 %)

Question **1**Correct
Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị có hướng, có trọng số (có thể âm)** từ bàn phím và in ra chiều dài đường đi ngắn nhất từ đỉnh s đến đỉnh t (s và t cũng được đọc từ bàn phím).

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \le n < 100; 0 \le m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.
- Dòng cuối cùng chứa 2 số nguyên s và t.
- Dữ liệu đầu vào được đảm bảo là đồ thị không chứa chu trình âm.

Đầu ra (Output)

- In ra màn hình chiều dài của đường đi ngắn nhất từ s đến t. Nếu không có đường đi từ 1 đến n, in ra -1.
- Xem thêm ví dụ bên dưới.

Gợi ý

- Khi xét cung (u, v) nếu pi[u] = 00 thì bỏ qua cung này, không xét.
- Sau khi kết thúc thuật toán nếu pi[u] = oo thì có nghĩa là không có đường đi từ s đến t.

For example:

In	р	ut	Result
3	3		-2
1	2	3	
2	3	-5	
1	3	4	
1	3		
3	1		-1
1	2	5	
1	3		
6	9		10
1	2	7	
1	3	9	
1	5	14	
2	3	10	
2	4	15	
3	4	11	
3	5	2	
4	6	-10	
5	6	9	
1	6		

Answer: (penalty regime: 10, 20, ... %)

```
#include <stdio.h>
 2
    #define MAX_N 1000
    #define oo 999999
 3
 4
 5 int pi[MAX_N];
   int p[MAX N];
 7
   int path[MAX_N];
 9 v typedef struct{
10
        int u,v;
11
        int w;
    }Edge;
12
13
14 ▼
    typedef struct{
15
        int n,m;
16
        Edge edges[MAX_N];
    }Graph:
```

	Input	Expected	Got	
*	3 3 1 2 3 2 3 -5 1 3 4 1 3	-2	-2	*
*	3 1 1 2 5 1 3	-1	-1	~
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 -10 5 6 9 1 6	10	10	*
~	8 15 1 2 9 1 6 6 1 7 15 2 3 10 6 3 18 6 5 30 6 7 -8 7 5 20 3 5 -16 5 4 11 4 3 6 3 8 19 4 8 6 5 8 16 7 8 44 1 8	19	19	~
*	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 1 3 4 -11 3 5 3 4 6 6 5 6 9 1 6	4	4	~

Passed all tests! 🗸

Question author's solution (C):

```
1 |#include <staio.n>
 3 #define MAXM 500
 4 #define MAXN 100
 5 #define oo 999999
 6 #define NO_EDGE -1
 8 v typedef struct {
   int u, v;
9
10
      int w;
11 } Edge;
12
13 v typedef struct {
14
     int n, m;
     Edge edges[MAXM];
15
16 } Graph;
17
18 void init_graph(Graph *pG, int n) {
19
     pG->n = n;
20
       pG->m = 0;
21 }
22
```

Correct

Marks for this submission: 1.00/1.00.

Question **2**Correct

Mark 1.00 out of

1.00

Viết chương trình đọc một **đơn đồ thị có hướng, có trọng số (có thể âm)** từ bàn phím và in ra đường đi ngắn nhất từ đỉnh s đến đỉnh t (s và t cũng được đọc từ bàn phím).

Đầu vào (Input)

Dữ liệu đầu vào được nhập từ bàn phím với định dạng:

- Dòng đầu tiên chứa 2 số nguyên n và m $(1 \leq n < 100; 0 \leq m < 500)$
- m dòng tiếp theo mỗi dòng chứa 3 số nguyên u, v, w mô tả cung (u, v) có trọng số w $(0 \le w \le 100)$.
- Dòng cuối cùng chứa 2 số nguyên s và t.
- Dữ liệu đầu vào được đảm bảo là đồ thị không chứa chu trình âm.
- Luôn có đường đi từ s đến t.

Đầu ra (Output)

• In đường đi ngắn nhất từ s đến t theo mẫu:

```
s -> u1 -> u2 -> ... -> t
```

• Xem thêm ví dụ bên dưới.

Gợi ý

• Lần ngược theo p[u] để có được đường đi ngắn nhất.

For example:

Inpu	t	R	esu	lt		
3 3		2	->	1	->	3
2 1 3	3					
1 3 -	.5					
2 3 4	ı					
2 3						

Answer: (penalty regime: 10, 20, ... %)

```
1
   #include <stdio.h>
 2
   #define MAX_N 1000
 3
   #define oo 999999
 4
 5
   int pi[MAX_N];
   int p[MAX_N];
 6
   int path[MAX_N];
 7
 8
 9 ₹
   typedef struct{
10
        int u,v;
11
        int w;
12
   }Edge;
13
14 v typedef struct{
15
        int n,m;
        Edge edges[MAX_N];
16
17
    }Graph;
18
19 ▼
    void init_graph (Graph *pG, int n){
20
        pG->n = n;
21
        pG->m = 0;
22 }
```

	Input	Expected	Got	
~	3 3 2 1 3 1 3 -5 2 3 4 2 3	2 -> 1 -> 3	2 -> 1 -> 3	~
~	3 4 1 2 5 2 3 -6 1 3 2 3 2 7 1 2	1 -> 2	1 -> 2	~
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 15 3 4 11 3 5 2 4 6 -10 5 6 9 1 6	1 -> 3 -> 4 -> 6	1 -> 3 -> 4 -> 6	~
~	8 15 1 2 9 1 6 6 1 7 15 2 3 10 6 3 18 6 5 30 6 7 -8 7 5 20 3 5 -16 5 4 11 4 3 6 3 8 19 4 8 6 5 8 16 7 8 44 1 8	1 -> 2 -> 3 -> 5 -> 8	1 -> 2 -> 3 -> 5 -> 8	*
~	6 9 1 2 7 1 3 9 1 5 14 2 3 10 2 4 1 3 4 -11 3 5 3 4 6 6 5 6 9 1 6	1 -> 3 -> 4 -> 6	1 -> 3 -> 4 -> 6	~

Passed all tests! 🗸

Question author's solution (C):

1	#include <stdio.h></stdio.h>	A
2	Willie Tade (Sealo:11)	
3	#define MAXM 500	
	#define MAXN 100	
	#define oo 999999	

```
#define NO_EDGE -1
   8 v typedef struct {
   9
           int u, v;
  10
          int w;
  11
      } Edge;
  12
  13 → typedef struct {
          int n, m;
  14
           Edge edges[MAXM];
  15
      } Graph;
  16
  17
  18 void init_graph(Graph *pG, int n) {
  19
          pG->n = n;
  20
          pG->m = 0;
  21 }
  22
Correct
Marks for this submission: 1.00/1.00.
```

→ Bài tập 7 - Thuật toán Bellman -Ford (kiểm tra chu trình âm)

Jump to... \$

Bài tập 8 - Extended traffic ►