Sample Runs and Analysis.

1- Bisection

Inputs:

 $- x^3 - 0.165 * x^2 + 3.993 * 10^{-4} = 0$

- Initial guesses: $\{0, 0.11\}$

Precision: 0.00001Max iterations: 50

Outputs:

Root:0.0623785Time: 0.18179Iterations: 14

- Precision: $-8.54208 * 10^{-9}$

- Theoretical Error = //add the error here

Function plotting & step simulation.

Function plotting

Bisection 6th iteration

Bisection 3rd iteration

Comparison between the obtained root and number of iterations for each method.

Comparison between the relative error and number of iterations for each method.

2- False-Position

• First Test Case

Inputs:

 $-x^3 - 0.165 * x^2 + 3.993 * 10^{-4} = 0$

- Initial guesses: {0, 0.11}

Precision: 0.00001Max iterations: 50

Outputs:

- Root: 0.0623776 - Time: 0.0694955

- Iterations: 5

- Precision: $3.74479 * 10^{-8}$

- Theoretical Error = //add the error here

Comparison between the obtained root and number of iterations for each method.

False-Position 1st iteration

False-Position 5th (Last) iteration

Comparison between the relative error and number of iterations for each method.

Second Test Case

Inputs:

 $-x^3 - 0.165 * x^2 + 3.993 * 10^{-4} = 0$

Initial guesses: $\{0, 0.11\}$

Precision: 0.00001Max iterations: 50

Outputs:

Root: 0.999793Time: 1.94616Iterations: 50

- Precision: $4.03109 * 10^{-5}$

- Theoretical Error = //add the error here

Function plotting & step simulation.

Function plotting

False-Position 3th iteration

False-Position 6th iteration

<u>Node:</u> The difference between the plot for the 3^{rd} and the 6^{th} is very small because this method is very slow for this test case.

Comparison between the obtained root and number of iterations for each method.

Comparison between the relative error and number of iterations for each method

3- Fixed Point

Inputs:

 $- e^{-x} - x = 0$

- Initial guesses: {0}

 $-G(x)=e^{-x}$

Precision: 0.00001Max iterations: 50

Outputs:

Root: 0.567141Time: 1.95749Iterations: 22

- Precision: $3.3189 * 10^{-6}$

- Theoretical Error = //add the error here

Function Plotting

12th iteration plotting

Comparison between the relative error and number of iterations for each method

3rd iteration plotting

Comparison between the obtained root and number of iterations for each method.

4- Newton-Raphson

Inputs:

- Input equation: $x^3 - 0.165 * x^2 + 3.993 * 10^{-4} = 0$

Initial guesses: {0.05}Precision: 0.00001Max iterations: 50

Outputs:

Root: 0.0623776Time: 0.0633101Iterations: 3

- Precision: $5.24341 * 10^{-19}$

- Theoretical Error = //add the error here

Function plotting

First iteration

Second iteration

Third (last) iteration

Comparison between the obtained root and number of iterations for each method.

Comparison between the relative error and number of iterations for each method

5- Secant Method

Inputs:

- Input equation: $e^{-x} - x = 0$

Initial guesses: {0, 1}Precision: 0.00001Max iterations: 50

Outputs:

Root: 0.567143Time: 0.609435Iterations: 4

- Precision: $-2.53802 * 10^{-8}$

- Theoretical Error = //add the error here

exp(-x)-x

1
0.5
0
-0.5
-1
-1.5
-0.5
0
0.5
1
1.5

3rd iteration plotting

4rd (Last) iteration plotting

Comparison between the relative error and number of iterations for each method

Comparison between the obtained root and number of iterations for each method.