Laplace Transforms

Definition

Let x(t) be a continuous-time signal and let s be a complex number such that $s=\sigma+j\omega$. Then,

$$\mathcal{L}\{x(t)\} = X(s) = \int_0^\infty x(au) e^{-s au} d au$$

where $\mathcal{L}\{x(t)\} = X(s)$ is the **Laplace Transform** of x(t).

Properties

Linearity

•
$$\mathcal{L}\{c_1x_1(t) + c_2x_2(t)\} = c_1\mathcal{L}\{x_1(t)\} + c_2\mathcal{L}\{x_2(t)\}$$

Exponential Shift

•
$$\mathcal{L}\{e^{\alpha t}x(t)\} = X(s-\alpha)$$

Derivatives

•
$$\mathcal{L}\left\{\frac{d}{dx}(x(t))\right\} = sX(s) - x(0)$$

Integrals

•
$$\mathcal{L}\{\int_0^t x(\tau) d\tau\} = \frac{X(s)}{s}$$

Convolution

•
$$\mathcal{L}\{(x*y)(t)\} = X(s)Y(s)$$

Initial Value Theorem

$$ullet \ x(0) = \lim_{s o\infty} sX(s)$$

Final Value Theorem

$$\bullet \ \lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$$

Condition: all poles of sX(s) must have strictly negative real parts.

Laplace Transform Table

Signal $x(t)$ for $t \geq 0$	${\bf Laplace\ Transform\ } X(s)$
$\delta(t)$	1
$\delta^{(n)}(t)$	s^n
u(t)	$\frac{1}{s}$
t^n	$\frac{n!}{s^{n+1}}$
$e^{lpha t}f(t)$	F(s-lpha)
$e^{lpha t}$	$\frac{n!}{(s-lpha)^{n+1}}$
$sin(\omega_0 t)$	$rac{\omega_0}{s^2+\omega_0^2}$
$cos(\omega_0 t)$	$rac{s}{s^2 + \omega_0^2}$