A12 POLYNOMIALS P3

	(i) Find the value of a.	[2]
	When a has this value,	
	(ii) factorise $p(x)$,	[2]
	(iii) solve the inequality $p(x) > 0$, justifying your answer.	[2]
		9709/03/O/N/04
2	The polynomial $x^4 + 5x + a$ is denoted by $p(x)$. It is given that $x^2 - x + 3$ is a factor of $p(x)$,
	(i) Find the value of a and factorise $p(x)$ completely.	[6]
	(ii) Hence state the number of real roots of the equation $p(x) = 0$, justifying your answer.	[2]
	© UCLES 2005	9709/3/M/J/05
3	The polynomial $x^3 - 2x + a$, where a is a constant, is denoted by $p(x)$. It is given that (factor of $p(x)$).	x + 2) is a
	(i) Find the value of a.	[2]
	(ii) When a has this value, find the quadratic factor of $p(x)$.	[2]
	© UCLES 2007	9709/03/M/J/07
4	The polynomial $x^4 + 3x^2 + a$, where a is a constant, is denoted by $p(x)$. It is given that x^2 factor of $p(x)$. Find the value of a and the other quadratic factor of $p(x)$.	[4]
	© UCLES 2007	9709/03/O/N/07
5	The polynomial $4x^3 - 4x^2 + 3x + a$, where a is a constant, is denoted by $p(x)$. It is given the divisible by $2x^2 - 3x + 3$.	at $p(x)$ is
	(i) Find the value of a.	[3]
	(ii) When a has this value, solve the inequality $p(x) < 0$, justifying your answer.	[3]
	© UCLES 2008	9709/03/O/N/08

The polynomial $2x^3 + ax^2 - 4$ is denoted by p(x). It is given that (x - 2) is a factor of p(x).

	(i) Find the value of a.	[4]	
	(ii) When a has this value, find the real roots of the equation $p(x) = 0$.	[2]	
	© UCLES 2011	9709/31/O/N/11	
11	The polynomial $p(x)$ is defined by		
$p(x) = ax^3 - x^2 + 4x - a,$			
	where a is a constant. It is given that $(2x - 1)$ is a factor of $p(x)$.		
	(i) Find the value of a and hence factorise $p(x)$.	[4]	
	(ii) When a has the value found in part (i), express $\frac{8x-13}{p(x)}$ in partial fractions.	[5]	
	© UCLES 2011	9709/33/O/N/11	
12	Find the quotient and remainder when $2x^2$ is divided by $x + 2$.	[3]	
	© UCLES 2013	9709/31/M/J/13	
13	The polynomial $ax^3 - 20x^2 + x + 3$, where a is a constant, is denoted by $p(x)$. It is is a factor of $p(x)$.	given that $(3x + 1)$	
	(i) Find the value of a.	[3]	
	(ii) When a has this value, factorise $p(x)$ completely.	[3]	
	© UCLES 2013	9709/32/M/J/13	
14	The polynomial $8x^3 + ax^2 + bx + 3$, where a and b are constants, is denoted by $p((2x+1))$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(2x-1)$ the remainder		
	(i) Find the values of a and b.	[5]	

(ii) When a and b have these values, find the remainder when p(x) is divided by $2x^2 - 1$.

The polynomial $x^4 + 3x^3 + ax + 3$ is denoted by p(x). It is given that p(x) is divisible by $x^2 - x + 1$.

© UCLES 2013 9709/33/M/J/13

[3]

15	It is given	that $2 \ln(4x -$	$-5) + \ln(x +$	$1) = 3 \ln 3$.
----	-------------	-------------------	-----------------	------------------

(i) Show that
$$16x^3 - 24x^2 - 15x - 2 = 0$$
. [3]

(ii) By first using the factor theorem, factorise
$$16x^3 - 24x^2 - 15x - 2$$
 completely. [4]

(iii) Hence solve the equation
$$2\ln(4x-5) + \ln(x+1) = 3\ln 3$$
. [1]

© UCLES 2014 9709/31/M/J/14

- 16 (i) The polynomial f(x) is of the form $(x-2)^2g(x)$, where g(x) is another polynomial. Show that (x-2) is a factor of f'(x).
 - (ii) The polynomial $x^5 + ax^4 + 3x^3 + bx^2 + a$, where a and b are constants, has a factor $(x 2)^2$. Using the factor theorem and the result of part (i), or otherwise, find the values of a and b. [5]

© UCLES 2014 9709/32/M/J/14

17 The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by p(x). It is given that (3x + 1) is a factor of p(x), and that when p(x) is divided by (x - 2) the remainder is 21. Find the values of a and b.

© UCLES 2014 9709/31/O/N/14

- 18 The polynomial $4x^3 + ax^2 + bx 2$, where a and b are constants, is denoted by p(x). It is given that (x + 1) and (x + 2) are factors of p(x).
 - (i) Find the values of a and b. [4]
 - (ii) When a and b have these values, find the remainder when p(x) is divided by $(x^2 + 1)$. [3]

© UCLES 2014 9709/33/O/N/14

- 19 The polynomial $8x^3 + ax^2 + bx 1$, where a and b are constants, is denoted by p(x). It is given that (x + 1) is a factor of p(x) and that when p(x) is divided by (2x + 1) the remainder is 1.
 - (i) Find the values of a and b. [5]
 - (ii) When a and b have these values, factorise p(x) completely. [3]

© UCLES 2015 9709/31/O/N/15

20 (i) Show that (x + 1) is a factor of $4x^3 - x^2 - 11x - 6$. [2]

© UCLES 2015 9709/33/O/N/15

21	Find the quotient an	d remainder when	x^4 is divided	by $x^2 + 2x - 1$.

© UCLES 2017 9709/31/O/N/17

[3]

22 The polynomial $x^4 + 2x^3 + ax + b$, where a and b are constants, is divisible by $x^2 - x + 1$. Find the values of a and b. [5]

© UCLES 2018 9709/31/M/J/18

The polynomial $x^4 + 3x^3 + ax + b$, where a and b are constants, is denoted by p(x). When p(x) is divided by $x^2 + x - 1$ the remainder is 2x + 3. Find the values of a and b. [5]

© UCLES 2019 9709/32/O/N/19

24 The polynomial $6x^3 + ax^2 + bx - 2$, where a and b are constants, is denoted by p(x). It is given that (2x + 1) is a factor of p(x) and that when p(x) is divided by (x + 2) the remainder is -24. Find the values of a and b.

© UCLES 2019 9709/33/O/N/19