Progress on Mazur's Program B

David Zureick-Brown

Emory University
Slides available at http://www.mathcs.emory.edu/~dzb/slides/

University of Wisconsin, Madison

September 07, 2017

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$

Background - Image of Galois

$$G_{\mathbb{Q}} := \operatorname{\mathsf{Aut}}(\overline{\mathbb{Q}}/\mathbb{Q})$$
 $E[n](\overline{\mathbb{Q}}) \cong (\mathbb{Z}/n\mathbb{Z})^2$

$$ho_{E,n} \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{Aut}} E[n] \cong \operatorname{\mathsf{GL}}_2(\mathbb{Z}/n\mathbb{Z})$$

$$ho_{E,\ell^{\infty}} \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{GL}}_2(\mathbb{Z}_{\ell}) = \varprojlim_n \operatorname{\mathsf{GL}}_2(\mathbb{Z}/\ell^n\mathbb{Z})$$

$$ho_E \colon \ G_{\mathbb{Q}} o \operatorname{\mathsf{GL}}_2(\widehat{\mathbb{Z}}) = \varprojlim_n \operatorname{\mathsf{GL}}_2(\mathbb{Z}/n\mathbb{Z})$$

Background - Galois Representations

$$\rho_{E,n} \colon G_{\mathbb{Q}} \twoheadrightarrow H(n) \hookrightarrow \mathsf{GL}_2(\mathbb{Z}/n\mathbb{Z})$$

$$G_{\mathbb{Q}}\left\{egin{array}{c} \overline{\mathbb{Q}} \\ \overline{\mathbb{Q}}^{\ker
ho_{E,n}} = \mathbb{Q}(E[n]) \\ dash \\ \mathbb{Q} \end{array}
ight.
ight.$$

Problem (Mazur's "program B")

Classify all possibilities for H(n).

Example - torsion on an ellitpic curve

If E has a K-rational **torsion point** $P \in E(K)[n]$ (of exact order n) then:

$$H(n) \subset \left(\begin{array}{cc} 1 & * \\ 0 & * \end{array}\right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = P$$

$$\sigma(Q) = a_{\sigma}P + b_{\sigma}Q$$

Example - Isogenies

If *E* has a *K*-rational, **cyclic isogeny** $\phi \colon E \to E'$ with ker $\phi = \langle P \rangle$ then:

$$H(n) \subset \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right)$$

since for $\sigma \in G_K$ and $Q \in E(\overline{K})[n]$ such that $E(\overline{K})[n] \cong \langle P, Q \rangle$,

$$\sigma(P) = a_{\sigma}P$$

$$\sigma(Q) = b_{\sigma}P + c_{\sigma}Q$$

Example - other maximal subgroups

Normalizer of a split Cartan:

$$\mathcal{N}_{\mathsf{sp}} = \left\langle \left(egin{array}{cc} * & 0 \ 0 & * \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ -1 & 0 \end{array}
ight)
ight
angle$$

$H(n) \subset N_{\mathsf{sp}} \text{ and } H(n) \not\subset C_{\mathsf{sp}} \text{ iff}$

- there exists an unordered pair $\{\phi_1, \phi_2\}$ of cyclic isogenies,
- neither of which is defined over K
- ullet but which are both defined over some quadratic extension of K
- and which are Galois conjugate.

Sample subgroup (Serre)

$$\ker \phi_2 \ \subset \ H(8) \ \subset \ \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_2 = 3$$

$$\downarrow^{\phi_2} \qquad \qquad \downarrow^{\phi_2} \qquad \qquad \downarrow$$

$$I + 2M_2(\mathbb{Z}/2\mathbb{Z}) \ \subset \ H(4) \ = \ \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) \qquad \dim_{\mathbb{F}_2} \ker \phi_1 = 4$$

$$\downarrow^{\phi_1} \qquad \qquad \downarrow^{\phi_1} \qquad \qquad \downarrow$$

$$H(2) \ = \ \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$$

$$\chi \colon \operatorname{\mathsf{GL}}_2(\mathbb{Z}/8\mathbb{Z}) o \operatorname{\mathsf{GL}}_2(\mathbb{Z}/2\mathbb{Z}) imes (\mathbb{Z}/8\mathbb{Z})^* o \mathbb{F}_2 imes (\mathbb{Z}/8\mathbb{Z})^* \cong \mathbb{F}_2^3.$$

$$\chi = \operatorname{sgn} \times \operatorname{det}$$

$$H(8) := \chi^{-1}(G), G \subset \mathbb{F}_2^3.$$

Sample subgroup (Dokchitser²)

$$H(2) = \left\langle \left(egin{array}{cc} 0 & 1 \ 3 & 0 \end{array}
ight), \left(egin{array}{cc} 0 & 1 \ 1 & 1 \end{array}
ight)
ight
angle \cong \mathbb{F}_3
times D_8.$$

$$\operatorname{im}
ho_{E,4} \subset H(4) \Leftrightarrow j(E) = -4t^3(t+8).$$
 $X_H \cong \mathbb{P}^1 \xrightarrow{j} X(1).$

A typical subgroup

$$\begin{split} \ker \phi_4 &\subset H(32) &\subset \operatorname{GL}_2(\mathbb{Z}/32\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 4 \\ & \downarrow^{\phi_4} & \downarrow \\ \ker \phi_3 &\subset H(16) &\subset \operatorname{GL}_2(\mathbb{Z}/16\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & \downarrow^{\phi_3} & \downarrow \\ \ker \phi_2 &\subset H(8) &\subset \operatorname{GL}_2(\mathbb{Z}/8\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 2 \\ & \downarrow^{\phi_2} & \downarrow \\ \ker \phi_1 &\subset H(4) &\subset \operatorname{GL}_2(\mathbb{Z}/4\mathbb{Z}) & \operatorname{dim}_{\mathbb{F}_2} \ker \phi_2 = 3 \\ & \downarrow^{\phi_1} & \downarrow \\ & H(2) &= \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \end{split}$$

Non-abelian entanglements

There exists a surjection $\theta \colon \operatorname{GL}_2(\mathbb{Z}/3\mathbb{Z}) \to \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z})$.

$$\operatorname{im} \rho_{E,6} \subset H(6) \Leftrightarrow K(E[2]) \subset K(E[3])$$

Classification of Images - Mazur's Theorem

Theorem

Let E be an elliptic curve over \mathbb{Q} . Then for $\ell > 11$, $E(\mathbb{Q})[\ell] = \{0\}$.

In other words, for $\ell > 11$ the mod ℓ image is not contained in a subgroup conjugate to

$$\begin{pmatrix} 1 & * \\ 0 & * \end{pmatrix}$$
.

Classification of Images - Mazur; Bilu, Parent

Theorem (Mazur)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell > 37$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right).$$

Theorem (Bilu, Parent)

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>13$ the mod ℓ image is not contained in a subgroup conjugate to

$$\left\langle \left(\begin{array}{cc} * & 0 \\ 0 & * \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \right\rangle.$$

Main conjecture

Conjecture

Let E be an elliptic curve over $\mathbb Q$ without CM. Then for $\ell>37$, $\rho_{E,\ell}$ is surjective.

Serre's Open Image Theorem

Theorem (Serre, 1972)

Let E be an elliptic curve over K without CM. The image of $\rho_{\rm E}$

$$\rho_E(G_K) \subset \operatorname{GL}_2(\widehat{\mathbb{Z}})$$

is open.

Note:

$$\mathsf{GL}_2(\widehat{\mathbb{Z}}) \cong \prod_p \mathsf{GL}_2(\mathbb{Z}_p)$$

"Vertical" image conjecture

Conjecture

There exists a constant N such that for every E/\mathbb{Q} without CM

$$\left[\rho_{\mathsf{E}}(\mathsf{G}_{\mathbb{Q}}):\mathsf{GL}_{2}(\widehat{\mathbb{Z}})\right]\leq \mathsf{N}.$$

Remark

This follows from the " $\ell > 37$ " conjecture.

Problem

Assume the " $\ell > 37$ " conjecture and compute N.

Main Theorems

Rouse, ZB (2-adic)

The index of $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$ divides 64 or 96; all such indicies occur.

Zywina (mod ℓ)

Classifies $\rho_{E,\ell}(G_{\mathbb{Q}})$ (modulo some conjectures).

Zywina (all possible indicies)

The **index** of $\rho_{E,N}(G_{\mathbb{Q}})$ divides 220, 336, 360, 504, 864, 1152, 1200, 1296 or 1536.

Morrow (composite level)

Classifies $\rho_{E,2\cdot\ell}(G_{\mathbb{Q}})$.

Camacho-Li-Morrow-Petok-ZB (composite level)

Classifies $\rho_{E,\ell_1^n\cdot\ell_2^m}(G_{\mathbb{Q}})$ (partially).

Main Theorems continued

Zywina-Sutherland

Parametrizations in all **prime power** level, g=0 and g=1, r>0 cases.

Gonzalez-Jimenez, Lozano-Robledo

Classify E/\mathbb{Q} with $\rho_{E,n}(G_{\mathbb{Q}})$ abelian.

Brau-Jones, Jones-McMurdy (in progress)

Equations for X_H for entanglement groups H.

Rouse–ZB for other primes (in progress)

Partial progress; e.g. for $N = 3^n$.

Derickx-Etropolski-Morrow-van Hoejk-ZB (in progress)

Classify possibilities for cubic torsion.

Some applications and complements

Theorem (R. Jones, Rouse, ZB)

- **1 Arithmetic dynamics**: let $P \in E(\mathbb{Q})$.
- **2** How often is the order of $\widetilde{P} \in E(\mathbb{F}_p)$ odd?
- **3** Answer depends on $\rho_{E,2^{\infty}}(G_{\mathbb{Q}})$.
- Examples: 11/21 (generic), 121/168 (maximal), 1/28 (minimal)

Theorem (Various authors)

Computation of $S_{\mathbb{Q}}(d)$ and S(d) for particular d.

Theorem (Daniels, Lozano-Robledo, Najman, Sutherland)

Classification of $E(\mathbb{Q}(3^{\infty}))_{tors}$

More applications

Theorem (Sporadic points)

Najman's example $X_1(21)^{(3)}(\mathbb{Q})$; "easy production" of other examples.

Theorem (Jack Thorne)

Elliptic curves over \mathbb{Q}_{∞} are modular.

(One step is to show $X_0(15)(\mathbb{Q}_{\infty})=X_0(15)(\mathbb{Q})=\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/4\mathbb{Z}$.)

Theorem (Zywina)

Constants in the Lang-Trotter conjecture.

Cremona Database, 2-adic images

Index, # of isogeny classes

- 1,727995
- 2,7281
- 3, 175042
- 4, 1769
- 6.57500
- 8.577
- 12,29900
- 16,235
- 24,5482
- 32, 20
- 48, 1544
- 64, 0 (two examples)
- 96 , 241 (first example $X_0(15)$)
- CM . 1613

Cremona Database

Index, # of isogeny classes

64, 0
$$j = -3 \cdot 2^{18} \cdot 5 \cdot 13^3 \cdot 41^3 \cdot 107^3 \cdot 17^{-16}$$

$$j = -2^{21} \cdot 3^3 \cdot 5^3 \cdot 7 \cdot 13^3 \cdot 23^3 \cdot 41^3 \cdot 179^3 \cdot 409^3 \cdot 79^{-16}$$

Rational points on $X_{ns}^+(16)$ (Heegner, Baran)

Fun 2-adic facts

- All indicies dividing 96 occur infinitely often; 64 occurs only twice.
- The 2-adic image is determined by the mod 32 image
- 1208 different images can occur for non-CM elliptic curves
- There are 8 "sporadic" subgroups.

More fun 2-adic facts

If E/\mathbb{Q} is a non-CM elliptic curve whose mod 2 image has index

- 1, the 2-adic image can have index as large as 64.
- 2, the 2-adic image has index 2 or 4.
- 3, the 2-adic image can have index as large as 96.
- 6, the 2-adic image can have index as large as 96;
- (although some quadratic twist of E must have 2-adic image with index less than 96).

Modular curves

Definition

- $X(N)(K) := \{(E/K, P, Q) : E[N] = \langle P, Q \rangle\} \cup \{\text{cusps}\}$
- $X(N)(K) \ni (E/K, P, Q) \Leftrightarrow \rho_{E,N}(G_K) = \{I\}$

Definition

 $\Gamma(N) \subset H \subset \mathsf{GL}_2(\widehat{\mathbb{Z}})$ (finite index)

- $X_H := X(N)/H$
- $X_H(K) \ni (E/K, \iota) \Leftrightarrow H(N) \subset H \mod N$

Stacky disclaimer

This is only true up to twist; there are some subtleties if

- $j(E) \in \{0, 12^3\}$ (plus some minor group theoretic conditions), or
- \bigcirc if $-I \in H$.

Rational Points on modular curves

Mazur's program B

Compute $X_H(\mathbb{Q})$ for all H.

Remark

- Sometimes $X_H \cong \mathbb{P}^1$ or elliptic with rank $X_H(\mathbb{Q}) > 0$.
- Some X_H have sporadic points.
- Can compute $g(X_H)$ group theoretically (via Riemann–Hurwitz).

Fact

$$g(X_H), \gamma(X_H) \to \infty \text{ as } \left[H: \mathsf{GL}_2(\widehat{\mathbb{Z}})\right] \to \infty.$$

Minimality

Definition

- $H \subset H' \Leftrightarrow X_H \to X_{H'}$
- Say that *H* is **minimal** if
 - **1** $g(X_H) > 1$ and
 - $P(X_{H'}) \leq H' \Leftrightarrow g(X_{H'}) \leq 1$
- Every modular curve maps to a minimal or genus ≤ 1 curve.

Definition

We say that H is **arithmetically minimal** if

- ullet det $(H)=\widehat{\mathbb{Z}}^*$, and
- 2 a few other conditions.

Template

- **①** Compute all arithmetically minimal $H \subset GL_2(\mathbb{Z}_2)$
- ② Compute equations for each X_H
- 3 Find (with proof) all rational points on each X_H .

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_2)$

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_3)$

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_5)$

Gratuitous picture – subgroups of $GL_2(\mathbb{Z}_{11})$

Numerics, $\ell = 2$

318 curves X_H with $-I \in H$ (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	57	18	20	4

Finding Equations – Basic idea

- **1** The canoncial map $C \hookrightarrow \mathbb{P}^{g-1}$ is given by $P \mapsto [\omega_1(P) : \cdots : \omega_g(P)]$.
- ② For a general curve, this is an embedding, and the relations are quadratic.
- For a modular curve,

$$M_k(H) \cong H^0(X_H, \Omega^1(\Delta)^{\otimes k/2})$$

given by

$$f(z) \mapsto f(z) dz^{\otimes k/2}$$
.

Equations – Example: $X_1(17) \subset \mathbb{P}^4$

$$q - 11q^{5} + 10q^{7} + O(q^{8})$$

 $q^{2} - 7q^{5} + 6q^{7} + O(q^{8})$
 $q^{3} - 4q^{5} + 2q^{7} + O(q^{8})$
 $q^{4} - 2q^{5} + O(q^{8})$
 $q^{6} - 3q^{7} + O(q^{8})$

$$xu + 2xv - yz + yu - 3yv + z^{2} - 4zu + 2u^{2} + v^{2} = 0$$

$$xu + xv - yz + yu - 2yv + z^{2} - 3zu + 2uv = 0$$

$$2xz - 3xu + xv - 2y^{2} + 3yz + 7yu - 4yv - 5z^{2} - 3zu + 4zv = 0$$

Equations – general

- **1** $H' \subset H$ of index 2, $X_{H'} \to X_H$ degree 2.
- ② Given equations for X_H , compute equations for $X_{H'}$.
- **3** Compute a new modular form on H', compute (quadratic) relations between this and modular forms on H.
- **Main technique** if $X_{H'}$ has "new cusps", then write down Eisenstein series which vanish at "one new cusp, not others".

318 curves (excluding pointless conics)

Genus	0	1	2	3	5	7
Number	175	52	56	18	20	4
Rank of Jacobian						
0		25	46	_	_	??
1		27	3	9	10	??
2			7	_	_	??
3				9	_	??
4					_	??
5					10	??

More 2-adic facts

- 1 There are 8 "sporadic" subgroups
 - Only one genus 2 curve has a sporadic point
 - Six genus 3 curves each have a single sporadic point
 - 3 The genus 1, 5, and 7 curves have no sporadic points
- ② Many accidental isomorphisms of $X_H \cong X_{H'}$.
- **1** There is one H such that $g(X_H) = 1$ and $X_H \in X_H(\mathbb{Q})$.

3	g = 0	Handled by Sutherland-Zywina
	g = 1	all rank zero
	g = 4	$map\;to\;g=1$
	g = 2	Chabauty works
	g = 4	no 3-adic points
	g=3	Picard curves; descent works, try Chabauty
	g = 4	3 left; have models, \geq 3 rational points
	g = 6	trigonal, with model, ≥ 3 rat pts
	g = 12	gonality \leq 9, plane model, degree 121
	g = 43	New ideas needed

$$\ell = 3$$
 example

$$X_H$$
: $-x^3y + x^2y^2 - xy^3 + 3xz^3 + 3yz^3 = 0$

5	g = 0 (10 level 5, 3 level 25)	All level 5 curves are genus 0
	g = 4 (4 level 25)	No 5-adic points
	g = 2 (2 level 25)	Rank 2, A ₅ mod 2 image
	g = 4 (3 level 25)	All isomorphic.
		Each has 5 rational points
		Each admits an order 5 aut
		Simple Jacobian
	g = 8, 14, 22, 36 (levels 25 and 125)	No models (or ideas, yet)

7	g = 1, 3	[Z, 4.4] handles these, $X_H(\mathbb{Q})$ is finite.
	g = 19, 26, level 49	Maps to one of the 6 above
	g=1, level 49	[SZ] handles this one (rank 0)
	g = 3, 19, 26, level 49, 343	Map to curve on previous line
	g=12, level 49	Handled by
		Greenberg–Rubin–Silverberg–Stoll
	g = 9, 12, 69, 94	No models (or ideas, yet)

11	all maximal are genus one	
	only positive rank is $X_{ns}(11)$	
		aama haya amayadia mainta
	All but one are ruled out by Zywina	some have sporadic points;
		[Z, Theorem 1.6]
	g=5, level 11	[Z, Lemma 4.5]
	g = 5776, level 121	"Challenge "

Zywina handles all level 13 except for the cursed curve

13 $g = 2, 3$, level 13 (8 total)	
g = 8, level 169	$X_0(13^2)$, handled by Kenku
$X_{ns}(13)$	Cursed. Genus 3, rank 3.
	No torsion. Some points
	Probably has maximal mod 2 image
	Solved by Balakrishnan, Müller

Explicit methods: highlight reel

- Local methods
- Chabauty
- Elliptic Chabauty
- Mordell–Weil sieve
- étale descent
- Pryms
- Equationless descent via group theory.
- New techniques for computing Aut C.

Pryms
$$D \xrightarrow{\iota - id - (\iota(P) - P)} \ker_0(J_D \to J_C) =: \Prym(D \to C)$$

$$et \downarrow C$$

Example (Genus $C = 3 \Rightarrow \text{Genus } D = 5$)

- C: Q(x, y, z) = 0
- $Q = Q_1 Q_3 Q_2^2$

$$D_{\delta}: Q_{1}(x, y, z) = \delta u^{2}$$

$$Q_{2}(x, y, z) = \delta uv$$

$$Q_{3}(x, y, z) = \delta v^{2}$$

- $Prym(D_{\delta} \to C) \cong Jac_{H_{\delta}}$,
- H_{δ} : $v^2 = -\delta \det(M_1 + 2xM_2 + x^2M_3)$.

Thanks

Thank you!