It can also be proven that E'_1, E'_2, E'_3 are lower triangular (see Theorem 8.5).

In general, we let

$$E'_{k} = P_{n-1} \cdots P_{k+1} E_{k} P_{k+1}^{-1} \cdots P_{n-1}^{-1}$$

and we have

$$E'_{n-1}\cdots E'_1P_{n-1}\cdots P_1A=U,$$

where each E'_{ij} is a lower triangular matrix (see Theorem 8.5).

It is remarkable that if pivoting steps are necessary during Gaussian elimination, a very simple modification of the algorithm for finding an LU-factorization yields the matrices L, U, and P, such that PA = LU. To describe this new method, since the diagonal entries of L are 1s, it is convenient to write

$$L = I + \Lambda$$
.

Then in assembling the matrix Λ while performing Gaussian elimination with pivoting, we make the same transposition on the rows of Λ (really Λ_{k-1}) that we make on the rows of A (really A_k) during a pivoting step involving row k and row i. We also assemble P by starting with the identity matrix and applying to P the same row transpositions that we apply to A and Λ . Here is an example illustrating this method.

Example 8.3. Given

$$A = A_1 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & -1 \end{pmatrix},$$

we have the following sequence of steps: We initialize $\Lambda_0 = 0$ and $P_0 = I_4$. The first pivot is $\pi_1 = 1$ in row 1, and we subtract row 1 from rows 2, 3, and 4. We get

$$A_2 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & -2 & -1 & -1 \end{pmatrix} \quad \Lambda_1 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad P_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

The next pivot is $\pi_2 = -2$ in row 3, so we permute row 2 and 3; we also apply this permutation to Λ and P:

$$A_3' = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & -2 & -1 & -1 \end{pmatrix} \quad \Lambda_2' = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \quad P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Next we subtract row 2 from row 4 (and add 0 times row 2 to row 3). We get

$$A_3 = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & -2 \end{pmatrix} \quad \Lambda_2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \quad P_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$