IMC Problems

August 17, 2023

Problem 1.

We have f''(7x+1) = f''(x) for all $x \in \mathbb{R}$, and we also have f''(x) = f''((x-1)/7) for all $x \in \mathbb{R}$.

For any $x \in \mathbb{R}$ consider

$$x_n = \frac{x}{7^n} - \frac{1}{7^{n-1}} - \frac{1}{7^{n-2}} - \dots - \frac{1}{7}$$

Then we have $f''(x) = f''(x_n)$ for all n. Letting $n \to \infty$, f''(x) is constant for all $x \in \mathbb{R}$. Hence $f(x) = ax^2 + bx + c$ for some a, b, c. Finally, we get $b = \frac{1}{3}a, c = \frac{1}{36}a$.

Problem 2.

We have $AB^3 = B^3C + 2A$ and $B^3C = AB^3 + 2C$ hence C = -A

Thus $B^3 - I = I - ABA$ and $B^3 + I = 3I - ABA$. Multiplying these, we get $B^6 - I = 3I - 4ABA + ABA^2BA = 3I - 4ABA + AB^4A = 3I - 4(2I - B^3) + A^6 = -5I + 4B^3 + B^6$.

Therefore we have $B^3 = I$, thus $B^6 = A^6 = I$, as desired.

Problem 3.

We see that $P(x,y) = x^2 + y^2$ works. First, we see that the equality holds for all $x, y, z, t \in \mathbb{R}$, so we will just extend to \mathbb{C} . Thus we have $P(x,y)P(z,t) = P(xz-yt,xt+yz) \ \forall \ x,y,z,t \in \mathbb{C}$.

WLOG, P is not constant, then x = y = 0 gives us P(0,0) = 0. P has zero when $x^2 + y^2 = 0$, so let's take y = ix and t = -iz, we have P(x, ix)P(z, -iz) = P(0,0) = 0. Hence, we must have P(x, ix) = 0 or P(z, iz) = 0.

WLOG P(x, ix) = 0, then $P(x, y) = (x^2 + y^2)Q(x, y) + yR(x) + S(x)$. Letting y = ix then ixR(x) + S(x) = 0, but R and S have real coefficients, we have R(x) = S(x) = 0, or $P(x, y) = (x^2 + y^2)Q(x, y)$. Repeating with Q(x, y) we get $P(x, y) = (x^2 + y^2)^n$ for some non negative integer n.

Problem 4.

We can either take the sum, or take the product of a_i s. It seems that summation does not lead us to anywhere, so let's take the product.

By taking the product $a_i \cdot a_2 \dots a_{p-1}$, we have

$$\prod_{i=1}^{p-1} (i^{k-1} + 1) \equiv 1 \pmod{p}$$

Let g to be the generator (mod p) then it holds that

$$\prod_{i=1}^{p-2} (g^{(k-1)i} + 1) \equiv 1 \pmod{p} \tag{1}$$

.

Let k-1=dx and p-1=dy, then we have:

$$\prod_{i=1}^{p-2} (g^{(k-1)i} + 1) \equiv \prod_{i=1}^{y-1} (g^{dxi} + 1)^d \equiv \prod_{i=1}^{y-1} (g^{di} + 1)^d \pmod{p}$$

In the other hand, in $\mathbb{F}_p[X]$ we have

$$X^{y} - 1 = \prod_{i=0}^{y-1} (X - g^{di})$$

Hence in (1), LHS is equal to $(1 - (-1)^y)^d \pmod{p}$, thus we must have $y \equiv 1 \pmod{2}$ and thus $2^d \equiv 1 \pmod{p}$. Thus, we conclude that $a_2 \equiv 4 \pmod{p}$.

Problem 6.

The answer is no.

We consider the map: $2^a \cdot 3^b \mapsto a + b \cdot i$. Then the problem can be reformulated as follow:

Initially we have the matrix $A = \begin{pmatrix} 1 & i \\ 1 & 2 \end{pmatrix}$. Each step, we choose a row or a column of A and add of subtract the chosen row entry-wise by the other row. Can we obtain $A = \begin{pmatrix} 1 & 2 \\ 1 & i \end{pmatrix}$?

Suppose it is possible. It is trivial to see that the operation does not change the determinant of A. The first and the last state of A have different determinant, contradiction.

Problem 7.

Only able to solve the first direction. The answer is $\alpha = \frac{1}{e-1}$. Let us find a function f such that f(0) = 0, f(1) = 1 and

$$f(x)' = f(x) + \alpha \ \forall \ x \in \mathbb{R}$$

It is easy to check such a function has the form $f(x) = ae^x + b$. Hence we get a = 1/(e-1) and b = -1/(e-1). How choosing f(x) we get $\alpha = 1/(e-1)$.

Problem 8.

Let $N = \binom{n}{2}$ and let d_1, d_2, \dots, d_N denote the d(u, v)s. Then the problem is equivalent to

$$\sum_{1 \le i \le j \le N} \frac{(d_i - d_j)^2}{d_i d_j} \ge \frac{(n-1)^2 (n-2)}{4}$$

Now we wish to bound LHS. The idea is to inspect the length between the vertices. First we consider d((u, v)) = 1, this happen if and only if (u, v) forms an edge and thus there are exactly n - 1 such pairs (u, v).

WLOG, $d_1, \ldots, d_{n-1} = 1$, thus $d_i \ge 2$ for all $i \ge n-1$. Hence we have that LHS $\ge \sum_{i=1}^{n-1} \sum_{j=n}^{N} \frac{(2 \cdot (1)_j - 1 \cdot (1)_i)^2}{2 \cdot (1)_j} = \frac{(n-1)^2 (n-2)}{4}$, as desired.

In addition, it is possible choose choose a tree for $d_i = 2$ for all $i \ge n - 1$, which make equality happens, thus the inequality is tight.

Problem 10.

The answer is yes.

Choose a fixed and large inter k and consider a sufficient large N. Let $a_n = \sum_{i=1}^n \frac{n!}{i!}$

Let $\mathcal{A} = \{ p \in \mathbb{P} \mid \exists N \leq m < n \leq N+k, \ p \text{ divides } 1+m+m\cdot(m+1)+\cdots+m\cdot(m+1)\dots(n-2) \}$

The main claim is that: $\forall p \notin \mathcal{A}$, then at most one of a_N, \ldots, a_{N+k} is divisible by p.

Indeed, suppose there are $N \leq m < n < N + k$ s.t $p \mid a_m$ and $p \mid a_n$. then we have:

 $p \mid a_m \text{ and } p \mid 1 + m + m \cdot (m+1) + m \cdot (m+1) \dots (n-1)a_m$. Hence $p \mid 1 + m + m \cdot (m+1) + m \cdot (m+1) + \dots (n-2)$ for some $N < m < n \le N + k$, contradiction.

Let us count $|\mathcal{A}|$. Since there are at most k^2 pairs (m, n) with N < m < n < N + k and each pair give at most $O(\log(n)/\log(\log(n)))$ primes divisors. Hence $|\mathcal{A}| = O(\log(n)/\log(\log(n)))$.

Now we explain why each pair (m,n) give at most $O(\log(n)/\log(\log(n)))$ prime divisors. It is well known that $\omega(M) = O(\log(M)/\log(\log(M)))$ where $\omega(M)$ is the number of prime divisors of M. Since, each pair (m,n) gives us a value T in the form $T=1+m+m\cdot(m+1)+m\cdot(m+1)+\dots(n-1)$, which is bounded by $O(N^k)$, hence the number of its prime divisor is also bounded by $O(\log(T)/\log(\log(T))) = O(\log(N)/\log(\log(N)))$

Finally, consider $\frac{a_N}{N!}$, $\frac{a_{N+1}}{(N+1)!}$,..., $\frac{a_{N+k}}{(N+k)!}$. For each $p \notin \mathcal{A}$ and $p \leq N$, at most one value a_i is divisible by p, and for each j s.t a_j is not divisible by p, then g(j) must be divisible by $p^{v_p(n!)}$, hence at least k values g(j) must be divisible by $p^{v_p(N!)}$. Thus we have: $g(N)g(N+1)\ldots g(N+k) \geq \frac{N!^k}{\prod_{p \in \mathcal{A}} p^{v_p(N!)}} \geq \frac{N!^k}{2^{N \cdot O(\log(N)/\log(\log(N))}}$. Hence, one of $g(N), g(N+1), \ldots, g(N+k)$ must be greater than $\frac{N!^{k/(k-1)}}{N^{o(N)}}$, as desired.