Solution

Section 1.3 – Rational Functions

Exercise

Determine all asymptotes of the function: $y = \frac{3x}{1-x}$

Solution

VA: x = 1 *HA*: y = -3

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function: $y = \frac{x^2}{x^2 + 9}$

Solution

VA: n/a $x^2 + 9 \neq 0$ *HA*: y = 1

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function: $y = \frac{x-2}{x^2 - 4x + 3}$

Solution

$$x^{2} - 4x + 3 = 0 \implies x = 1, 3$$
$$y = \frac{x}{x^{2}} \to 0$$

VA: x = 1, x = 3 **HA**: y = 0

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function: $y = \frac{3}{x-5}$

Solution

VA: x = 5 HA: y = 0

Hole: n/a Oblique asymptote: n/a

 $y = \frac{x^3 - 1}{2 + 1}$ Determine all asymptotes of the function:

Solution

VA: none HA: none

Hole: n/a

Oblique asymptote: y = x

 $x^{2} + 1 \overline{\smash)x^{3} - 1}$ $-x^{3} - x$ -x - 1 $y = x - \frac{x + 1}{x^{2} + 1}$

Exercise

 $y = \frac{x^3 + 3x^2 - 2}{x^2 + 4}$ Determine all asymptotes of the function:

Solution

VA: $x = \pm 2$

HA: n/a

Hole: n/a

Oblique asymptote: y = x + 3

$$x + 3$$

$$x^{2} - 4) x^{3} + 3x^{2} - 2$$

$$-x^{3} + 4x$$

$$3x^{2} + 4x - 2$$

$$-3x^{2} + 12$$

$$4x + 10$$

$$y = x + 3 + \frac{4x + 10}{x^{2} + 4}$$

Exercise

 $y = \frac{3x^2 - 27}{(x+3)(2x+1)}$ Determine all asymptotes of the function:

Solution

 $y = \frac{3x^2 - 27}{(x+3)(2x+1)} = \frac{3(x^2 - 9)}{(x+3)(2x+1)} = \frac{3(x+3)(x-3)}{(x+3)(2x+1)} = \frac{3(x-3)}{(2x+1)}$

VA: x = -3, $-\frac{1}{2}$ **HA**: $y = \frac{3}{2}$

Hole: n/a

Oblique asymptote: n/a

Determine all asymptotes of the function: $y = \frac{x-3}{x^2-9}$

Solution

$$x^{2} - 9 = 0 \rightarrow \boxed{x = \pm 3}$$
$$y = \frac{x - 3}{(x - 3)(x + 3)}$$
$$= \frac{1}{x + 3}$$

VA: x = 3 HA: y = 0

Hole: $x = 3 \rightarrow y = \frac{1}{6}$ Oblique asymptote: n / a

Exercise

Determine all asymptotes of the function: $y = \frac{6}{\sqrt{x^2 - 4x}}$

Solution

$$x^{2} - 4x = 0$$

$$\Rightarrow x(x - 4) = 0 \rightarrow \boxed{x = 0, 4}$$

VA: x = 0, x = 4 **HA**: y = 0

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function: $y = \frac{5x-1}{1-3x}$

Solution

VA: $x = \frac{1}{3}$ **HA**: $y = -\frac{5}{3}$

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function: $f(x) = \frac{2x - 11}{x^2 + 2x - 8}$

Solution

VA: x = 2, x = -4 *HA*: y = 0

Hole: n/a Oblique asymptote: n/a

Determine all asymptotes of the function: $f(x) = \frac{x^2 - 4x}{x^3 - x}$

Solution

$$f(x) = \frac{x(x-4)}{x(x^2-1)}$$
$$= \frac{x-4}{x^2-1}$$

VA: x = -1, x = 1 HA: y = 0

Hole: $x = 0 \rightarrow y = 4$ *Oblique asymptote*: n / a

Exercise

Determine all asymptotes of the function: $f(x) = \frac{x-2}{x^3-5x}$

Solution

VA: x = 0, $x = \pm \sqrt{5}$ **HA**: y = 0

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{4x}{x^2 + 10x}$

Solution

$$x^2 + 10x = 0 \rightarrow x = 0, -10$$

Domain: $(-\infty, -10) \cup (-10, 0) \cup (0, \infty)$

$$f(x) = \frac{4x}{x(x+10)}$$
$$= \frac{4}{x+10}$$

VA: x = -10 HA: y = 0

Hole: $x = 0 \rightarrow y = \frac{4}{10} \Rightarrow hole \left(0, \frac{2}{5}\right)$ **Oblique asymptote**: n / a

Exercise

Determine all asymptotes of the function $f(x) = \frac{3-x}{(x-4)(x+6)}$

VA: x = -6 and x = 4 **HA**: y = 0

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$

Solution

$$2x^3 - x^2 - 3x = x(2x^2 - x - 3) = 0 \rightarrow x = 0, -1, \frac{3}{2}$$

$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$$

$$= \frac{x^3}{x(2x^2 - x - 3)}$$

$$= \frac{x^2}{2x^2 - x - 3}$$

VA: x = -1 and $x = \frac{3}{2}$ **HA**: $y = \frac{1}{2}$

Hole: $x = 0 \rightarrow y = 0 \Rightarrow hole(0, 0)$ Oblique asymptote: n / a

Exercise

Determine all asymptotes of the function $f(x) = \frac{3x^2 + 5}{4x^2 - 3}$

Solution

$$4x^2 - 3 = 0 \quad \to \quad x = \pm \frac{\sqrt{3}}{2}$$

Domain:
$$\left(-\infty, -\frac{\sqrt{3}}{2}\right) \cup \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right) \cup \left(\frac{\sqrt{3}}{2}, \infty\right)$$

VA:
$$x = -\frac{\sqrt{3}}{2}$$
 and $x = \frac{\sqrt{3}}{2}$ **HA**: $y = \frac{3}{4}$

Hole: n/a Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{x+6}{x^3 + 2x^2}$

$$x^3 + 2x^2 = x^2(x+2) = 0 \rightarrow x = 0, -2$$

Domain: $(-\infty, -2) \cup (-2, 0) \cup (0, \infty)$

VA: x = 0 and x = 2 **HA**: y = 0

Hole: n/aOblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^2 + 4x - 1}{x + 3}$

Solution

VA: x = -3

HA: n/a

Hole: n/a

Oblique asymptote: y = x + 1

$$x+3 \overline{\smash)x^2+4x-1}$$

$$\frac{-x^2-3x}{x}$$

$$\frac{-x-3}{4}$$

$$x+1 \over x+3)x^{2} + 4x - 1$$

$$-x^{2} - 3x \over x - 1$$

$$-x-3 \over -4$$

$$f(x) = \frac{x^{2} + 4x - 1}{x+3} = x+1 - \frac{4}{x+3}$$

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^2 - 6x}{x - 5}$

Solution

$$x - 5 = 0 \rightarrow x = 5$$

Domain: $(-\infty, 5) \cup (5, \infty)$

$$f(x) = \frac{x^2 - 6x}{x - 5}$$
$$= x - 1 - \frac{5}{x - 5}$$

VA: x = 5

HA: N/A

Hole: N/A

Oblique asymptote: y = x - 1

$$x-5 \overline{\smash)x^2 - 6x}$$

$$-x^2 + 5x$$

$$-x$$

$$\frac{-x^2 + 5x}{-x}$$

$$\frac{x-5}{-5}$$

Determine all asymptotes of the function $f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$

Solution

$$x^{2} + 2x - 1 = 0 \rightarrow x = -1 \pm \sqrt{2}$$
Domain: $\left(-\infty, -1 - \sqrt{2}\right) \cup \left(-1 - \sqrt{2}, -1 + \sqrt{2}\right) \cup \left(-1 + \sqrt{2}, \infty\right)$

$$f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$$
$$= x - 3 + \frac{8x - 7}{x^2 + 2x - 1}$$

VA:
$$x = -1 \pm \sqrt{2}$$

Hole:
$$n / a$$

Oblique asymptote:
$$y = x - 3$$

$$\frac{x-3}{x^2+2x-1}$$
 x^3-x^2+x-4

$$\frac{-x^3 - 2x^2 + x}{2}$$

$$-3x^2 + 2x - 4$$

$$3x^2 + 6x - 3$$

$$8x - 7$$

Exercise

Determine all asymptotes of the function $f(x) = \frac{4x}{x^2 + 10x}$

Solution

$$x^2 + 10x = 0 \rightarrow x = 0, -10$$
 Domain: $(-\infty, -10) \cup (-10, 0) \cup (0, \infty)$

$$f(x) = \frac{4x}{x(x+10)} = \frac{4}{x+10}$$

$$VA: x = -10$$

$$HA: y=0$$

Hole:
$$x = 0 \rightarrow y = \frac{4}{10} \Rightarrow hole \left(0, \frac{2}{5}\right)$$

Oblique asymptote:
$$n/a$$

Exercise

Determine all asymptotes of the function $f(x) = \frac{3-x}{(x-4)(x+6)}$

Domain:
$$(-\infty, -6) \cup (-6, 4) \cup (4, \infty)$$

VA:
$$x = -6$$
 and $x = 4$ **HA**: $y = 0$

$$HA: y=0$$

Determine all asymptotes of the function $f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$

Solution

$$2x^3 - x^2 - 3x = x(2x^2 - x - 3) = 0 \rightarrow x = 0, -1, \frac{3}{2}$$

Domain: $(-\infty, -1) \cup (-1, 0) \cup (0, \frac{3}{2}) \cup (\frac{3}{2}, \infty)$

$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x} = \frac{x^3}{x(2x^2 - x - 3)} = \frac{x^2}{2x^2 - x - 3}$$

VA: x = -1 and $x = \frac{3}{2}$

HA: $y = \frac{1}{2}$

Hole: $x = 0 \rightarrow y = 0 \Rightarrow hole(0, 0)$

Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{3x^2 + 5}{4x^2 - 3}$

Solution

$$4x^2 - 3 = 0 \quad \rightarrow \quad x = \pm \frac{\sqrt{3}}{2}$$

Domain:
$$\left(-\infty, -\frac{\sqrt{3}}{2}\right) \cup \left(-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}\right) \cup \left(\frac{\sqrt{3}}{2}, \infty\right)$$

VA:
$$x = -\frac{\sqrt{3}}{2}$$
 and $x = \frac{\sqrt{3}}{2}$

HA:
$$y = \frac{3}{4}$$

Hole: n/a

Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{x+6}{x^3 + 2x^2}$

Solution

$$x^3 + 2x^2 = x^2(x+2) = 0 \rightarrow x = 0, -2$$
 Domain: $(-\infty, -2) \cup (-2, 0) \cup (0, \infty)$

VA: x = 0 and x = 2

HA: y=0

Hole: n/a

Oblique asymptote: n/a

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^2 + 4x - 1}{x + 3}$

Solution

$$x+3=0 \rightarrow x=-3 \qquad Domain: (-\infty, -3) \cup (-3, \infty)$$

$$\frac{x+1}{x+3} \overline{\smash)x^2+4x-1}$$

$$\frac{-x^2-3x}{x-1}$$

$$\frac{-x-3}{-4}$$

$$f(x) = \frac{x^2+4x-1}{x+3} = x+1-\frac{4}{x+3}$$

$$VA: x=-3 \qquad HA: n/a$$

Hole: n/a

Oblique asymptote: y = x + 1

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^2 - 6x}{x - 5}$

Solution

$$x-5=0 \rightarrow x=5$$

$$x-5 \sqrt{x^2-6x}$$

$$x-5 \sqrt{x^2-6x}$$

$$-x^2+5x$$

$$-x$$

$$x-5$$

$$-5$$

$$f(x) = \frac{x^2-6x}{x-5} = x-1-\frac{5}{x-5}$$
Domain: $(-\infty, 5) \cup (5, \infty)$

$$VA: x=5$$

$$HA: N/A$$

$$Hole: N/A$$
Oblique asymptote: $y=x-1$

Exercise

Determine all asymptotes of the function $f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$

$$x^{2} + 2x - 1 = 0 \rightarrow x = -1 \pm \sqrt{2}$$

$$\textbf{Domain}: \left(-\infty, -1 - \sqrt{2}\right) \cup \left(-1 - \sqrt{2}, -1 + \sqrt{2}\right) \cup \left(-1 + \sqrt{2}, \infty\right)$$

$$138$$

$$x^{2} + 2x - 1 \overline{\smash)x^{3} - x^{2} + x - 4}$$

$$-x^{3} - 2x^{2} + x$$

$$-3x^{2} + 2x - 4$$

$$3x^{2} + 6x - 3$$

$$8x - 7$$

$$f(x) = \frac{x^{3} - x^{2} + x - 4}{x^{2} + 2x - 1}$$

VA:
$$x = -1 \pm \sqrt{2}$$

HA: N/A

Hole: N/A

Oblique asymptote: y = x - 3

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{-3x}{x+2}$$

Solution

VA: x = -2 *HA*: y = -3

 $= x - 3 + \frac{8x - 7}{x^2 + 2x - 1}$

x	y
0	0
1	-1
-1	3

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$

Solution

VA: x = 1, x = -3

HA: y=0

Hole: n/a Oblique asymptote: n/a

х	y
-5	-0.33
-2	0.33
0	-1/3
4	0.24

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{2x^2 - 2x - 4}{x^2 + x - 12}$$

Solution

VA: x = -4, 3 *HA*: y = 2

x	y
-5	7
-2	-0.8
0	1/3
4	2.5
5	2

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{-2x^2 + 10x - 12}{x^2 + x}$$

Solution

VA: x = -1, 0 HA: y = -2

Hole: n/a OA: n/a

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x^2 - x - 6}{x + 1}$$

Solution

$$\begin{array}{r}
x-2 \\
x+1 \overline{\smash)x^2 - x - 6} \\
\underline{x^2 + x} \\
-2x - 6 \\
\underline{-2x - 2} \\
-4
\end{array}$$

VA: x = -1 HA: n/a

Hole: n/a **OA**: y = x - 2

x	y
2	0
-2	0
0	-6

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x^3 + 1}{x - 2}$$

Solution

VA: x = 2 HA: n/a

Hole: n/a **OA**: $y = x^2 + 2x + 4$

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$$

Solution

$$f(x) = \frac{(2x-3)(x+2)}{(x+1)(x+2)}$$
$$= \frac{2x-3}{x+1}$$

VA: x = -1 HA: y = 2

Hole: (-2, 7) **OA**: n/a

x	y
0	-3
_3	0
2	

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x-1}{1-x^2}$$

Solution

$$f(x) = \frac{x-1}{(x+1)(1-x)}$$
$$= -\frac{1}{x+1}$$

VA: x = -1 HA: y = 0

Hole: $(1, -\frac{1}{2})$ **OA:** n/a

x	y
0	-1
-2	1

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x^2 + x - 2}{x + 2}$$

Solution

$$f(x) = \frac{(x+2)(x-1)}{x+2}$$
$$= x-1$$

VA: n/a

HA: n/a

Hole: (-2, -3) **OA**: n/a

x	y
0	-1
1	0

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

Solution

$$f(x) = \frac{(x^2 - 4)(x - 2)}{x - 2}$$
$$= x^2 - 4$$

VA: n/a

HA: n/a

Hole: (2, 0) **OA**: n/a

x	у
0	-4
-2	0

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f\left(x\right) = \frac{2x^2 - 3x - 1}{x - 2}$$

Solution

$$\begin{array}{r}
2x+1 \\
x-2 \overline{\smash)2x^2 - 3x - 1} \\
\underline{-2x^2 + 4x} \\
x-1 \\
\underline{-x+2} \\
1
\end{array}$$

VA: x = 2

HA: y=1

Hole: n / a **OA**: y = 2x + 1

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f\left(x\right) = \frac{2x+3}{3x^2 + 7x - 6}$$

Solution

$$3x^2 + 7x - 6 = 0 \implies x = -3, \frac{2}{3}$$

VA: x = -3 and $x = \frac{2}{3}$

HA: y = 0

Hole: n/a

OA: n/a

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph

$$f(x) = \frac{x^2 - 1}{x^2 + x - 6}$$

Solution

$$x^2 + x - 6 = 0 \implies \underline{x = -3, 2}$$

VA: x = -3 and x = 2 **HA**: y = 1

Hole: n/a

OA: n/a

$$1 = \frac{x^2 - 1}{x^2 + x - 6}$$

$$x^2 + x - 6 = x^2 - 1$$

x	y
0	<u>1</u>
5	1
±1	0
-4	<u>5</u> 2

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{-2x^2 - x + 15}{x^2 - x - 12}$$

Solution

$$x^2 - x - 12 = 0 \implies \underline{x = -3, 4}$$

Domain: $(-\infty, -3) \cup (-3, 4) \cup (4, \infty)$

VA: x = 4 HA: y = -2

Hole:
$$\left(-3, -\frac{11}{7}\right)$$
 OA: n / a

x	y
0	$-\frac{5}{4}$
<u>5</u> 2	0

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{1}{x-3}$$

Solution

VA: x = 3 HA: y = 0

x	y
0	$-\frac{1}{3}$
1	$-\frac{1}{2}$

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{-2}{x+3}$$

Solution

VA: x = -3

HA: y=0

Hole: n/a OA: n/a

x	у
0	$-\frac{2}{3}$
1	$-\frac{1}{2}$

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x}{x+2}$$

Solution

VA: x = -2 *HA*: y = 1

x	у
0	0
1	$\frac{1}{3}$

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x-5}{x+4}$$

Solution

VA: x = -4 *HA*: y = 1

Hole: n/a OA: n/a

x	y
0	$-\frac{5}{4}$
5	0

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{2x^2 - 2}{x^2 - 9}$$

Solution

$$x^2 = 9 \rightarrow x = \pm 3$$

VA: $x = \pm 3$ *HA*: y = 2

Hole: n/a

OA: n/a

x	y
0	<u>2</u> 9
±1	0
±5	3

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 - 3}{x^2 + 4}$$

Solution

 $VA: n/a \qquad HA: y = 1$

Hole: n/a OA: n/a

x	у
0	$-\frac{3}{4}$
$\pm\sqrt{3}$	0

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 + 4}{x^2 - 3}$$

Solution

$$x^2 - 3 = 0 \quad \to \quad x = \pm \sqrt{3}$$

VA: $x = \pm \sqrt{3}$ **HA**: y = 1

x	у
0	$-\frac{4}{3}$
±3	<u>13</u> 6

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2}{x^2 - 6x + 9}$$

Solution

$$x^2 - 6x + 9 = 0 \quad \rightarrow \quad x = 3$$

VA: x = 3 HA: y = 1

Hole: n/a OA: n/a

x	у
0	0
1	$\frac{1}{4}$

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{x^2 + x + 4}{x^2 + 2x - 1}$$

Solution

$$x^2 + 2x - 1 = 0$$
$$x = \frac{-2 \pm \sqrt{8}}{2}$$

 $=-1\pm\sqrt{2}$

VA: $x = -1 \pm \sqrt{2}$ *HA*: y = 1

Hole: n/a

OA: n/a

x	у
0	-4
1	3
-5	<u>12</u> 7

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{2x^2 + 14}{x^2 - 6x + 5}$$

Solution

VA: x = 1, 5 HA: y = 2

Hole: n/a

OA: n/a

x	у
0	<u>14</u> 5
2	$-\frac{22}{3}$
-5	16 15
10	<u>214</u> 45

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 - 4x - 5}{2x + 5}$$

$$\frac{\frac{1}{2}x - \frac{13}{4}}{2x + 5 x^2 - 4x - 5}$$

$$\frac{x^2 + \frac{5}{2}x}{-\frac{13}{2}x - 5}$$

VA: $x = -\frac{5}{2}$ *HA*: n / a

Hole: n/a **OA:** $y = \frac{1}{2}x - \frac{13}{2}$

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x-3}{x^2 - 3x + 2}$$

Solution

$$x^2 - 3x + 2 \rightarrow \underline{x = 1, 2}$$

VA: x = 1, 2 HA: y = 0

Hole: n/a OA: n/a

x	у
0	$-\frac{3}{2}$
3	0
$\frac{3}{2}$	6

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{x^2 + 2}{x^2 + 3x + 2}$$

Solution

$$x^2 + 3x + 2 \quad \rightarrow \quad \underline{x = -1, -2}$$

VA: x = -1, -2 HA: y = 1

x	y
0	1
$-\frac{3}{2}$	-17
-4	3

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x-2}{x^2 - 3x + 2}$$

Solution

$$x^2 - 3x + 2 \quad \to \quad \underline{x = 1, 2}$$

$$f(x) = \frac{x-2}{(x-2)(x-1)}$$
$$= \frac{1}{x-1}$$

VA: x = 1 HA: y = 0

Hole: (2, 1) **OA**: n/a

x	у
0	-1

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 + x}{x + 1}$$

Solution

$$f(x) = \frac{x(x+1)}{x+1}$$

$$= x$$

VA: n/a

HA: n/a

Hole: (-1, -1) **OA**: n/a

Hole:
$$\left(-3, -\frac{11}{7}\right)$$
 OA: n/a

x	y
0	0

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 - 2x}{x - 2}$$

Solution

$$f(x) = \frac{x(x-2)}{x-2}$$

$$= x$$

VA: n/a HA: n/a

Hole: (2, 2) *OA*: n/a

Hole:
$$\left(-3, -\frac{11}{7}\right)$$
 OA: n / a

x	y
0	0

Exercise

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f\left(x\right) = \frac{x^2 - 3x}{x + 3}$$

Solution

$$\begin{array}{r}
x-6 \\
x+3 \overline{\smash)x^2 - 3x} \\
\underline{x^2 + 3x} \\
-6x-5
\end{array}$$

VA: x = -3 HA: n/a

Hole: n/a **OA**: y = x - 6

x	y
0	0
3	0

Determine all asymptotes (if any) (Vertical Asymptote, Horizontal Asymptote; Hole; Oblique Asymptote) and sketch the graph of

$$f(x) = \frac{x^3 + 3x^2 - 4x + 6}{x + 2}$$

Solution

Hole:
$$n/a$$

Hole: n/a **OA**: $y = x^2 + x - 6$

x	у
0	3
1	2

Exercise

Find an equation of a rational function f that satisfies the given conditions

 $\begin{cases} vertical \ asymptote: \ x = 4 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 3 \end{cases}$

Solution

Vertical Asymptote:

$$f(x) = \frac{1}{x-4}$$

Horizontal Asymptote: $f(x) = \frac{-x+a}{x-4}$

$$f\left(x\right) = \frac{-x + a}{x - 4}$$

x-intercept:

$$f(x=3) = \frac{-3+a}{3-4} = 0 \implies \underline{a=3}$$

$$f(x) = \frac{-x+3}{x-4}$$

Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical \ asymptote: \ x = -4, x = 5 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: \ -2 \end{cases}$$

Solution

Vertical Asymptote:
$$f(x) = \frac{1}{(x+4)(x-5)}$$

Horizontal Asymptote:
$$f(x) = \frac{3}{2} \frac{(x+a)(x+b)}{(x+4)(x-5)}$$

x-intercept:
$$f(x = -2) = \frac{3}{2} \frac{(-2+a)(-2+b)}{0 = (-2+a)(-2+b)}$$

 $a = b = 2$

$$f(x) = \frac{3}{2} \frac{(x-2)^2}{x^2 - x - 20}$$
$$= \frac{3x^2 - 12x + 12}{2x^2 - 2x - 40}$$

Exercise

Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical\ asymptote:\ x = 5\\ horizontal\ asymptote:\ y = -1\\ x - intercept:\ 2 \end{cases}$$

Vertical Asymptote:
$$f(x) = \frac{1}{x-5}$$

x-intercept:
$$f(x) = \frac{x-2}{x-5}$$

Horizontal Asymptote:
$$f(x) = -\frac{x-2}{x-5}$$

$$f(x) = -\frac{x-2}{x-5}$$

Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical \ asymptote: \ x = -2, \ x = 0 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ 2, \quad f(3) = 1 \end{cases}$$

Solution

Vertical Asymptote:
$$f(x) = \frac{1}{x(x+2)}$$

x-intercept:
$$f(x) = \frac{x-2}{x(x+2)}$$

Horizontal Asymptote:
$$f(x) = \frac{a(x-2)}{x(x+2)}$$

$$f(3)=1 \longrightarrow \frac{a(1)}{(3)(5)}=1 \implies \underline{a=15}$$

$$f\left(x\right) = \frac{15x - 30}{x^2 + 2x}$$

Exercise

Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical \ asymptote: \ x = -3, \ x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \quad f(0) = -2 \\ hole: \ x = 2 \end{cases}$$

Vertical Asymptote:
$$f(x) = \frac{1}{(x+3)(x-1)}$$

x-intercept:
$$f(x) = \frac{(x+1)}{(x+3)(x-1)}$$

Horizontal Asymptote:
$$f(x) = \frac{a(x+1)}{(x+3)(x-1)}$$

$$f(0) = -2$$
 $\rightarrow \frac{a}{-3} = -2$ $\Rightarrow \underline{a = 6}$

Hole at
$$x = 2$$
: $f(x) = \frac{6(x+1)(x-2)}{(x^2+2x-3)(x-2)}$

$$f(x) = \frac{6x^2 - 6x - 12}{x^3 - 7x + 6}$$

Find an equation of a rational function f that satisfies the given conditions

$$\begin{cases} vertical\ asymptote:\ x=-1,\ x=3\\ horizontal\ asymptote:\ y=2\\ x-intercept:\ -2,\ 1\\ hole:\ x=0 \end{cases}$$

Vertical Asymptote:
$$f(x) = \frac{1}{(x+1)(x-3)}$$

Horizontal Asymptote:
$$f(x) = \frac{2}{(x+1)(x-3)}$$

x-intercept:
$$f(x) = \frac{2(x+2)(x-1)}{(x+1)(x-3)}$$

Hole at
$$x = 0$$
: $f(x) = \frac{2x(x+2)(x-1)}{x(x+1)(x-3)}$

$$f(x) = \frac{2x^3 + 2x^2 - 4x}{x^3 - 2x^2 - 3x}$$