PATENT APPLN. NO. 09/524,575
RESPONSE TO NOTICE OF NON-COMPLIANT AMENDMENT

PATENT

REMARKS

Table 2 has been amended to correct a typographical error. Specifically, in Example 7 "Adsorbent-catalyst E" has been amended to --Adsorbent-catalyst C--. A person of ordinary skill in the art would recognize that "Adsorbent-catalyst E" in Example 7 in Table 2, an example within the scope of the present invention, is an error because the adsorbent in Adsorbent-catalyst E is β -zeolite (95) which is not an adsorbent within the scope of the present invention.

The amendment to Table 2 was originally submitted in a Submission Under 37 C.F.R. § 1.114 accompanying a Request for Continued Examination filed October 31, 2005. In the Notice of Non-Compliant Amendment dated November 7, 2005, the Office indicates that the amended Table 2 submitted October 31, 2005, does not contain markings.

The attached Table 2 is a copy of the Table 2 submitted on October 31, 2005. The attention of the Office is directed to the row "Example 7", column "Order of mounting of system components*". The amendment to the table is properly marked as "Catalyst D \rightarrow Adsorbent-catalyst [[E]] \mathcal{L} Catalyst D". I.e., the table is marked to indicate the deletion of "E" and the addition of "C".

•

PATENT APPLN. NO. 09/524,575
RESPONSE TO NOTICE OF NON-COMPLIANT AMENDMENT

PATENT

Amended Table 2 attached hereto as well as amended Table 2 submitted on October 31, 2005, are properly marked. Entry of the amendment to Table 2 is in order and is respectfully requested.

Also attached hereto is a copy of amended Table 2 in which the marked amendments have been circled by hand.

In the event that this paper is not considered to be timely filed, applicants hereby petition for an appropriate extension of time. The fee for any such extension may be charged to our Deposit Account No. 111833.

In the event any additional fees are required, please also charge our Deposit Account No. 111833.

Respectfully submitted,

KUBOVCIK & KUBOVCIK

Ronald J. Kubovcik Reg. No. 25,401

Atty. Case No. SEI-142-133
The Farragut Building
Suite 710
900 17th Street, N.W.
Washington, D.C. 20006
Tel: (202) 887-9023
Fax: (202) 887-9093
RJK/jbf

;

Table 2

3.3

Posi syst moun (mm)	Position of system mounting* (mm)	Order of mounting of system companents**	Hydrocarbons reduction from 0 to 150 seconds (%)	Total hydrocarbons emission in FTP (g/mile)
	600	Catalyst: A→Adsorbent-catalyst C→Catalyst B (850°C) (850°C)	78	0.046
	600	Adsorbent-catalyst A→ Catalyst C (850°C) (850°C)	72	0.059
	1000	Catalyst A→Adsorbent E→ Catalyst B→ Catalyst C (850°C) (750°C) (750°C) (750°C)	65	0.055
	νοου	Adsorbent-catalyst B+ Catalyst C (750°C)	62	0.059
	1000	Catalyst C→Adsorbent D→ Catalyst A→ Catalyst B (850°C) (850°C) (850°C)	899	0.049
	1000	Adsorbent B→ Catalyst C (750°C) {750°C}	. 63	0.072
	1000	Catalyst D→ Adsorbent-catalyst [[3]] C→ Catalyst D (850°C)	08	0.042
	800	Catalyst D→ Adsorbent-catalyst H→ Catalyst D (850°C) (850°C) (850°C)	82	0.039
	000	Catalyst D→ Adsorbent-catalyst I→ Catalyst D (850°C) (850°C)	181	0,040
	600	Catalyst A→Adsoxbent-catalyst G→Catalyst B {850°C}	38	0.108
	600	Catalyst A-Adsorbent O-+ Catalyst B (850°C) (850°C) (850°C)	39	860.0
	600	Catalyst A→ Assorbent-catalyst F→ Catalyst B (850°C) (850°C)	46	0.090

26-1

1

ŧξ

	•
	3

parative 1000 Catalyst A-Addochent-catalyst G-Catalyst C (750°C) (750°	1000 Catalyst A-Addoorbent-catalyst G-Catalyst C	Toparative	W moarative	mple 6 mple 7	G G Stance F Strange F Str
lyst G+Catalyst B+Catalyst C (750°C) (750°C) alyst E-> Catalyst B-> Catalyst C (750°C) the direction of exhaust gas flow.	lyst G+Catalyst B+Catalyst C (750°C) (750°C) alyst E-> Catalyst B-> Catalyst C (750°C) (750°C) the direction of exhaust gas flow.	1000	1000	1000	rom engine ing from th e during du
	28 12 29 Figures in parenth	lyst G→Catalyst B→Catalyst (750°C) (750°C)	alyst E- Catalyst B- Catalyst (750°C) (750°C)	Adsorbent H Catalyst C (750°C) (750°C) Adsorbent H (750°C)	exhaust port to point of system closest to said port. Trability test.

26-2

i

Catalyst C
1yst C 1yst B 0°C) 4talyst D 5t D 5t D
Catalyst D . (850°C)
Adsorbent-catalyst I→ Catalyst D 81 (850°C) (850°C)
Catalyst A→Adsorbent-catalyst G→Catalyst B (850°C) (850°C) (850°C)
Catalyst B 39 (850°C)
Assorbent-catalyst F Catalyst B 46 (850°C)

0.186

12

0.104

0.108

40

Catalyst A→Adsorbent-catalyst G→Catalyst B→Catalyst C

(750°C)

(850°C)

0.137

28

O

Catalyst (

Catalyst B→ (750°C)

Catalyst A→ Adsorbent-catalyst E→

(750°C)

(850°C)

Catalyst C (750°C)

Adsorbent J→ (750°C)

(750°C)

(750°C)

28		st upstream component in the direction of exhaust was fine as
		, tel 1911
	ast port to point of system closest to said port,	of pohanot
	t to	100
	closes	direc
υ	system (th the
yst)°C)	ο£	lent
dsorbent H→ Catalyst C (750°C) (750°C)	point	Compor
±	ţ	am
lsorbent (750°C)	port	upstre
130 175	ıst	,

Figures in parentheses indicate an inlet of exhaust gas flow. temperature during durability test.

26-2