CS 425 Homework 3

Mukai Yu

Monday, March 30, 2022

		Process	Vote For
		P2	P2 (self)
1.	(a)	Р3	P3 (self)
		P4	Р3
		P5	P2

No leader will be elected for term 2.

(b) Process | Vote For P2 | P2 (self) |
P3 | P3 (self) |
P4 | P2 |
P5 | P2

P2 will be elected for term 2.

- (c) i) (160, 500] ms
 - ii) [100, 140) ms
 - iii) (140, 160) ms

(d)

 $P(another\ process\ also\ calls\ election)$

$$= 1 - P(P_3 \ doesn't \ call \ \cup \ P_4 \ doesn't \ call \ \cup \ P_5 \ doesn't \ call)$$

$$= 1 - P(P_3 \ doesn't \ call)P(P_4 \ doesn't \ call)P(P_5 \ doesn't \ call)$$

$$=1-\frac{500-(105+30)}{400}\times\frac{500-(105+25)}{500}\times\frac{400-(105+10)}{400}$$

 ≈ 0.1876

2. (a) Yes, scenario as follows:

Term 1:

 S_1 : 1, 1, 1

 S_2 : 1

 S_3 : 1

 S_1 is the leader, it is initialized to be the leader or it gets votes from all three processes, and it replicates the 1s for S_2 and S_3 .

Term 2:

 S_1 : 1, 1, 1

 S_2 : 1, 2, 2

 S_3 : 1

 S_2 is the leader, it gets vote from itself and S_3 , only appends 2s to its own log.

Term 3:

 S_1 : 1, 1, 1

 S_2 : 1, 2, 2

 S_3 : 1, 1

 S_1 is the leader, it gets vote from itself and S_3 , and replicates a 1 to S_3 .

(b) Yes, scenario as follows:

Term 1:

 S_1 : 1, 1, 1

 S_2 : 1, 1

 S_3 : 1, 1

 S_1 is the leader, it is initialized to be the leader or it gets votes from all three processes, and it replicates the 1s for S_2 and S_3 .

Term 2:

 S_1 : 1, 1, 1

 S_2 : 1, 1, 2

 S_3 : 1, 1

 S_2 is the leader, it gets votes from all three processes, only appends a 2 to its own log.

(c) No.

 S_3 must be the leader of term 3 since it's the only process with an entry in term 3. Similarly S_2 must be the leader of term 2.

 S_1 must be the leader of term 1 since it's has the most up-to-date log of term 1.

Thus, by the time S_3 initiates new election for term 3, the system must have the following log:

 S_1 : 1, 1, 1

 S_2 : 1, 1, 2

 S_3 : 1, 1

But in this situation S_3 will be rejected by both S_1 and S_2 , thus the final entries are invalid.

(d) Yes, scenario as follows:

Term 1:

 S_1 : 1, 1, 1

 S_2 : 1

 S_3 : 1

 S_1 is the leader, it is initialized to be the leader or it gets votes from all three processes, and it replicates the 1s for S_2 and S_3 .

Term 2:

 S_1 : 1, 1, 1

 S_2 : 1, 2, 2

 S_3 : 1, 2

 S_2 is the leader, it gets votes from all three processes, appends 2s to its own log and replicate a 2 to S_3 .

Term 3:

 S_1 : 1, 1, 1

 S_2 : 1, 2, 2

 S_3 : 1, 2, 3

 S_3 is the leader, it gets votes from itself and S_1 , and only append a 3 to its own log.

(e) Yes, similar to (a):

Term 1:

 S_1 : 1, 1

 S_2 : 1

 S_3 : 1

 S_1 is the leader, it is initialized to be the leader or it gets votes from all three processes, and it replicates the 1s for S_2 and S_3 .

Term 2:

 S_1 : 1, 1

 S_2 : 1, 2, 2

 S_3 : 1

 S_2 is the leader, it gets votes from all three processes, appends 2s to its own log.

 S_1 can start new election after it voted S_2 as the leader of term 2, updated currentTerm

to 2, and starts a new election (due to timeout, etc.) without appending any entries from term 2.

Term 3:

 S_1 : 1, 1, 3, 3

 S_2 : 1, 2, 2

 S_3 : 1, 1, 3

 S_1 is the leader, it gets votes from itself and S_3 , appends 3s to its own log, and replicate 1 and 3 to S_3 .

3. (a)
$$P(H(x||seed) < T) = \frac{2^{226}}{2^{256}} = 2^{-30} \approx 0.0000000009313$$

(b) Probability of finding a winning solution is the same since sample with replacement is adopted, thus:

$$\begin{split} &P(finding~a~solution~in~10~hours)\\ &= 1 - P(finding~no~solution~in~10~hours)\\ &= 1 - (1 - P(H(x||seed) < T))^{10 \times 60 \times 60 \times 2^5}\\ &= 1 - (1 - 2^{-30})^{10 \times 60 \times 60 \times 2^5}\\ &\approx 0.00107 \end{split}$$

(c) Similar to (b), probability of 1 machine finding a winning solution in 5 hour is:

$$P(finding \ a \ solution \ in \ 5 \ hours)$$

$$= 1 - P(finding \ no \ solution \ in \ 5 \ hours)$$

$$= 1 - (1 - P(H(x||seed) < T))^{5 \times 60 \times 60 \times 2^{5}}$$

$$= 1 - (1 - 2^{-30})^{5 \times 60 \times 60 \times 2^{5}}$$

$$\approx 0.00053629794404936608349774400922752$$

Thus the probability of 5000 machine finding a winning solution in 5 hour is:

$$P(1 \text{ machine finding a solution in 5 hours})$$

= $1 - P(\text{ no machine finding a solution in 5 hours})$
= $1 - (1 - P(\text{finding a solution in 5 hours}))^{5000}$
= $1 - (1 - 2^{-30})^{(5 \times 60 \times 60 \times 2^5)^{5000}}$
 ≈ 0.9316