1. Determine which sequences converge.

I.
$$\left\{\frac{n^5}{5^n}\right\}$$

II.
$$\left\{\frac{n}{(\ln n)^2}\right\}$$

III.
$$\left\{\frac{\cos n}{n}\right\}$$

2. Evaluate
$$\sum_{n=0}^{\infty} \frac{2^{n} + 3^{n}}{5^{n}}$$

A. 31/6

B. 17/3

C. 13/6

D. 14/3

E.)25/6

A. 31/6

A. 31

- 3. For a series $\sum_{n=1}^{\infty} a_n$ of positive terms, which statements are true.
 - I. If $\lim_{n\to\infty} n^2 a_n = L$, where $L \neq 0, \infty$, the series converges.
- (A.)I.
- II. If $\lim_{n\to\infty} \frac{a_n}{e^n} = L$, where $L \neq 0, \infty$, the series converges.
- B. I, II, III.
- III. If $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$, where $L \neq 0, \infty$, the series converges.
- C. I, IV.D. I, III.

IV. If $\lim_{n\to\infty} a_n = 0$, the series converges.

E. I, II, III, IV.

4. Determine which series converge.

I.
$$\sum_{n=0}^{\infty} \frac{n^5}{5^n}$$

II.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

III.
$$\sum_{n=1}^{\infty} \frac{\cos(\frac{1}{n})}{n}$$

- A. I and II converge, III diverges.
- B) I converges, II and III diverge.
- C. I and III converge, II diverges.
- D. III converges, I and II diverge.
- E. II and III converge, I diverges.
- T CONVERGES BY RATTO TEST.
- II DIVERGES BY INTEGRAL TEST,
- III DIVERGES BY LIMIT COMPARISON WITH 5 m.

5. For what values of
$$p$$
 does $\sum_{n=1}^{\infty} \frac{e^n}{(1+e^n)^p}$ converge.

A.
$$0$$

C.
$$p > 0$$

D.
$$p < e$$

E.
$$p \le 1$$

$$\frac{2m}{m \to \infty} \neq 0.$$

6. Evaluate
$$\lim_{n\to\infty} \frac{(3n^3 + 4n^2 + 1)^{2/3}}{3n^2 + 2}$$
.

$$= LIM \frac{m^{2}(3+4/m+1/m^{3})}{3m^{2}+2}$$

$$= LIM \frac{(3 + 4/m + 1/m^3)^{2/3}}{3 + 2/m^2}$$

$$= \frac{\frac{2}{3}}{3} = \frac{1}{3^{1/3}}$$

B.
$$1/3$$

$$(C.) 1/\sqrt[3]{3}$$

D.
$$\sqrt[3]{9}$$

E.
$$+\infty$$

7. If $S = \sum_{n=0}^{\infty} (-1)^n \frac{n}{2^n + 1}$, find the smallest N such that we can be sure that $|S_N - S| < \frac{1}{10}$, where S_N is the Nth partial sum.

$$|S_N - S| \leq \frac{N+1}{Z^{N+1} + 1}$$

A.
$$N = 4$$

$$\widehat{B}. N = 5$$

C.
$$N = 6$$

D.
$$N = 7$$

$$\frac{N+1}{Z^{N+1}+1} = \frac{1}{10}$$

E.
$$N = 8$$

$$\frac{Z^{N+1}+1}{N+1} > 10$$

$$N=4$$
 $\frac{33}{5} = 6\frac{3}{5}$

8. For the series
$$\sum_{n=1}^{\infty} \frac{n2^{2n+1}}{3^n}$$
, let $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$. Which statement below is true?

A.
$$L = \frac{2}{3}$$
 and the series converges.

A.
$$L = \frac{2}{3}$$
 and the series converges.

 $M \to D$
 M

B.
$$L = \frac{2}{3}$$
 and the series diverges.

$$\bigcirc L = \frac{4}{3}$$
 and the series diverges.

E. L = 1 and the series converges.

$$=\frac{4}{3}\frac{L1M}{m+1}=\frac{4}{3}$$

9. Find the interval of convergence for
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n3^n}$$
.

A. $(-\frac{1}{3}, \frac{1}{3}]$

B. $(-\frac{1}{3}, \frac{1}{3})$

C. $(-3, 3]$

D. $[-3, 3]$

E. $[-3, 3]$

E. $[-3, 3]$

E. $[-3, 3]$

SERIES CONV. IF $|x| \ge 3$ AWP DIV. IF $|x| \ge 3$, $R = 3$.

 $|x| = -3$.

 $|x| = 1$

10. Find the power series representation of $f(x) = \frac{x}{3+4x}$ centeged at 0.

 $|x| = 1$
 $|x| = 1$

A.
$$\left(-\frac{1}{3}, \frac{1}{3}\right]$$
B. $\left(\frac{-1}{3}, \frac{1}{3}\right)$
C. $\left(-3, 3\right]$
D. $\left[-3, 3\right]$
E. $\left[-3, 3$

11. Which statement about the series $\sum_{n=1}^{\infty} \frac{\sqrt{2n^2+4n}}{n^3+1}$ is true?

A. It diverges, by using the Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$.

B. It converges, by using the Limit Comparison Test with $\sum \frac{1}{n^2}$.

C. It converges by the Ratio Test.

D. It diverges by using the Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

E. It converges by the Alternating Series Test.

12. Find the power series representation of $\frac{d}{dx}\left(\frac{x}{1-2x^3}\right)$, centered at 0.

$$\frac{\Lambda}{1-Z\Lambda^3} = \Lambda \left(\frac{1}{1-Z\Lambda^3}\right)$$

$$= \sqrt{\sum_{M=0}^{\infty} (Z_{M}^{3})^{M}}$$

$$= \sum_{M=0}^{\infty} Z^{M} X^{3M+1}$$

A.
$$\sum_{n=0}^{\infty} 2^{3n} 3nx^{3n-1}$$

B.
$$\sum_{n=0}^{\infty} 2^n 3nx^{3n+1}$$

C.
$$\sum_{n=0}^{\infty} 2^n 3nx^{3n-1}$$

D.
$$\sum_{n=0}^{\infty} 6nx^{3n-1}$$

$$\underbrace{\text{E.}} \sum_{n=0}^{\infty} 2^n (3n+1) x^{3n}$$

$$\frac{\mathcal{L}\left(\frac{\mathcal{N}}{1-2\mathcal{N}^3}\right)}{\mathcal{L}\left(\frac{1-2\mathcal{N}^3}{1-2\mathcal{N}^3}\right)} = \sum_{m=0}^{\infty} z^m (3m+1) \mathcal{N}^{3m}$$