Compiling Faust with Ondemand

Yann Orlarey

June 2022

Identifiers and Marking

Fresh identifier representing memory locations

- $id_s[S.T] = m$ unique scalar identifier for S in time context T;
- \bullet id_v[[S.T]] = v unique vector identifier for S in time context T ;
- $id_t[T] = t$ unique scalar identifier representing the current time in time context T.

Marking recursive definitions

- $mark[Xi.T] = \varnothing$: not yet marked;
- $\max \|Xi.T\| \leftarrow v$: mark it with identifier v;
- ullet mark $[\![Xi.T]\!]=v$: already marked with v.

Function cs[[.]] : $\mathbb{S} \times \mathbb{T} \to \mathbb{M} \times \mathcal{P}(\mathbb{I})$

Number

$$(\mathsf{num}) \overline{\hspace{0.2cm}} \mathsf{cs} \llbracket k.T \rrbracket = k \times \varnothing$$

User interface

$$(\mathsf{ctrl}) \overline{\hspace{0.2cm}} \mathsf{cs} \llbracket u.T \rrbracket = u \times \varnothing$$

Inputs

$$\begin{array}{c} \text{(input)} \\ \hline \quad \text{cs} \llbracket \mathbf{I}_c.T \rrbracket = \mathbf{I}_c \times \varnothing \end{array}$$

Numerical Operation

$$\begin{split} \operatorname{cs}[\![S_1.T]\!] &= M_1 \times J_1 \\ \operatorname{cs}[\![S_2.T]\!] &= M_1 \times J_2 \\ &\vdots \\ \operatorname{id}_{\mathsf{V}}[\![\star(M_1,M_2,\ldots)]\!] &= m \\ \\ (\operatorname{nop}) & \overline{ \text{cs}[\![\star(S_1,S_2,\ldots).T]\!] = m \times \{T \vdash m := \star (M_1,M_2,\ldots)\} \bigcup_i J_i } \end{split}$$

Downsampling

The downsampling $S_1 \downarrow S_2$ appears at the entrance of an ondemand. This means that compiling $S_1 \downarrow S_2$ into the $M_2.T$ time environment (where M_2 is the compiled version of S_2) is like compiling S_1 into the T time environment and using a variable to do the downsampling.

$$\begin{split} \operatorname{cs}[\![S_1.T]\!] &= M_1 \times J_1 \\ \operatorname{cs}[\![S_2.T]\!] &= M_2 \times J_2 \\ \operatorname{id}_{\mathbf{s}}[\![M_1.T]\!] &= m \\ J_3 &= \{T \vdash m {:=} M_1\} \\ \hline \operatorname{cs}[\![(S_1 {\downarrow} S_2).M_2.T]\!] &= m \times J_3 \cup J_1 \cup J_2 \end{split}$$

Upsampling

The $S_1 \uparrow S_2$ upsampling appears at the output of an ondemand. It is necessary to compile S_1 into the clock time reference S_2 (which is added to the current time reference). The signal S_1 must also be stored in a variable to do the upsampling.

$$\begin{split} \cos[\![S_2.T]\!] &= M_2 \times J_2 \\ \cos[\![S_1.M_2.T]\!] &= M_1 \times J_1 \\ \operatorname{id_s}[\![M_1.M_2.T]\!] &= m \\ J_3 &= \{M_2.T \vdash m {:=} M_1\} \\ \hline \cos[\![(S_1 {\uparrow} S_2).T]\!] &= m \times J_1 \cup J_1 \cup J_2 \end{split}$$

Delay

$$\begin{split} \operatorname{cs}[\![S_1.T]\!] &= M_1 \times J_1 \\ \operatorname{cs}[\![S_2.T]\!] &= M_2 \times J_2 \\ \operatorname{id}_{\mathbf{v}}[\![M_1.T]\!] &= v \\ \operatorname{id}_{\mathbf{t}}[\![T]\!] &= t \\ (\operatorname{up}) & & \\ \overline{-\operatorname{cs}[\![(S_1@S_2).T]\!]} &= v[t,M_2] \times J_3 \cup J_1 \cup J_2 \\ \end{split}$$

Signal Compilation: recursion

First visit

If it is the first visit, we have $\max[X_i.T] = 0$:

```
\begin{split} \operatorname{id_v}[\![X_i.T]\!] &= v \\ \operatorname{mark}[\![X_i.T]\!] &\leftarrow v \\ \operatorname{def}[\![X]\!] &= (...,S_i,...) \\ \operatorname{cs}[\![S_i.T]\!] &= M_i \times J_i \\ \operatorname{cs}[\![S_d.T]\!] &= M_d \times J_d \\ \operatorname{id_t}[\![T]\!] &= t \\ (\operatorname{r1}) & \underbrace{J_3 &= \{T \vdash v[t,0] \text{:=} M_i\} \cup \{T \vdash t \text{:=} t+1\}}_{\operatorname{cs}[\![(X_i@S_d).T]\!]} &= v[t,M_d] \times J_3 \cup J_i \cup J_d \end{split}
```

Signal Compilation: recursion

Next visits

If it is not the first visit, we have $mark[X_i.T] = v$:

$$\begin{split} \operatorname{cs}[\![S_d.T]\!] &= M_d \times J_d \\ \operatorname{id_t}[\![T]\!] &= t \\ \hline \operatorname{cs}[\![(X_i@S_d).T]\!] &= v[t,M_d] \times J_d \end{split}$$

Global compilation

```
\begin{split} \mathsf{Global} & \mathsf{comp}[\![.]\!] : \mathbb{S}^n \to \mathcal{P}(\mathbb{I}) \\ & \qquad \qquad \vdots \\ & \qquad \qquad \mathsf{cs}[\![S_i.1]\!] = M_i \times J_i \\ & \qquad \qquad J_i' = \{1 \vdash \mathsf{0}_i {:=} M_i\} \cup J_i \\ & \qquad \qquad \vdots \\ & \qquad \qquad (\mathsf{comp}) \overline{\qquad \qquad } \vdots \\ & \qquad \qquad (\mathsf{comp}) \overline{\qquad \qquad } \vdots \\ & \qquad \qquad & \qquad \qquad \vdots \\ & \qquad \qquad & \qquad \qquad & \qquad \\ \end{split}
```