## Изображения в компьютерном зрении Основные концепции и определения

Диц Даниил Денисович

НТУ Сириус

7 марта 2025 г.



### Что такое изображение?

- ▶ Изображение это визуальное представление объекта, сцены, человека или концепции.
- Оно может быть фотографией, рисунком, схемой, сканом и т.д.
- Изображение это также функция, а именно n-мерная функция.
- В двумерном случае (n=2) изображение описывается функцией F(X,Y), где X и Y пространственные координаты.

### Пространственные координаты



- Амплитуда F в точке  $(x_i, y_i)$  это интенсивность или уровень серого.
- Интенсивность определяет восприятие света и тени.
- **•** Координаты  $(x_i, y_i)$  называются пикселями (элементами изображения).

### Типы изображений



- ightharpoonup Функция F(X,Y) зависит от источника освещения и отражения объектом света
- ▶ 3D изображения: F(X, Y, Z), где  $(x_i, y_i, z_i)$  воксели.
- Примеры 3D изображений: медицинские сканы, МРТ, микроскопия.
- ightharpoonup Цветовые каналы:  $F_{\text{red}}(X,Y)$ ,  $F_{\text{green}}(X,Y)$ ,  $F_{\text{blue}}(X,Y)$ .
- Интенсивность цвета: от 0 (нет цвета) до 255 (максимальная интенсивность).



### Специальные типы изображений

Base





- ▶ Меченые изображения: Пиксели имеют метки (например, 1 передний план, 0 фон).
- **Бинарные изображения (маски):** Только две метки.
- ▶ 4D и 5D изображения: Добавляются время и каналы (например, 3D + время + каналы).

### HSV-цветовое пространство

#### Определение

HSV (Hue, Saturation, Value) - альтернативное представление цвета, где:

- ► **Hue (Оттенок)** основной цвет (0°-360°)
- ► Saturation (Насыщенность) интенсивность цвета (0-100%)
- ► Value (Яркость) яркость цвета (0-100%)

Математическое преобразование из RGB:

$$V = \max(R, G, B)$$

$$S = \begin{cases} \frac{V - \min(R, G, B)}{V} & \text{if } V \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$H = \begin{cases} 60^{\circ} \cdot \frac{G - B}{V - \min(R, G, B)} & \text{if } V = R \\ 60^{\circ} \cdot \left(2 + \frac{B - R}{V - \min(R, G, B)}\right) & \text{if } V = G \\ 60^{\circ} \cdot \left(4 + \frac{R - G}{V - \min(R, G, B)}\right) & \text{if } V = B \end{cases}$$

### Преимущества HSV и пример кода

#### Преимущества перед RGB

- ▶ Отделение цветовой информации от освещения
- Более интуитивное управление цветом
- Упрощение задач цветовой сегментации

### Изображения vs Видео

- Изображение: Статичное представление в один момент времени.
- Видео: Последовательность изображений с временной компонентой F(X,Y,T).
- ► Частота кадров (FPS) создает иллюзию движения.

### Изображения vs Табличные данные

- **Табличные данные:** Размерность определяется количеством признаков.
- Изображения: Размерность определяется пространственными координатами.
- Извлечение признаков: Для изображений традиционная предварительная обработка или глубокое обучение.
- Предварительная обработка: Для изображений изменение размера и нормализация интенсивности.

# Ключевые различия между типами данных

| N=                       | Характеристика             | Изображение                                | Видео                             | Аудио                                      |
|--------------------------|----------------------------|--------------------------------------------|-----------------------------------|--------------------------------------------|
| Табличные данные         |                            |                                            |                                   |                                            |
| Тип                      | Один момент времени        | Последовательность изображений             | Один момент времени               | Структурированные данные                   |
| Представление            | 2D массив пикселей         | 3D массив кадров                           | 1D массив сэмплов                 | 2D массив признаков                        |
| Форматы                  | JPEG, PNG, RAW             | MP4, AVI, MOV                              | WAV, MP3, FLAC                    | CSV, Excel                                 |
| Аугментация              | Поворот, кадрирование      | Временные изменения                        | Добавление шума                   | SMOTE, ADASYN                              |
| Извлечение признаков     | Границы, текстуры, цвета   | Границы, текстуры, цвета, оптический поток | Спектрограмма, МЕСС               | Статистический анализ                      |
| Модели                   | CNN                        | RNN, 3D CNN                                | CNN, RNN                          | Регрессия, Деревья решений                 |
| Задачи                   | Классификация, сегментация | Распознавание действий, трекинг            | Распознавание речи, идентификация | Регрессия, классификация                   |
| Вычислительная стоимость | Меньше                     | Больше                                     | Умеренная                         | Меньше                                     |
| Приложения               | Распознавание лиц          | Интерпретация языка жестов                 | Голосовые ассистенты              | Прогнозирование, обнаружение мошенничества |