Graph models and hypothesis testing

Graph models allow us to generate synthetic networks

Graph models allow us to generate synthetic networks

They allow us to capture and model properties observed in real networks

Graph models allow us to generate synthetic networks

They allow us to capture and model properties observed in real networks

Graph models can serve as hypotheses for mechanisms of network formation

Graph models allow us to generate synthetic networks

They allow us to capture and model properties observed in real networks

Graph models can serve as hypotheses for mechanisms of network formation

Allows us to explore how "similar" networks behave

Regular and random graphs

Regular

Random

Regular graphs

Regular graphs with 0 - 3 degree nodes

Regular Ring Lattice

Lattice graphs

Random graphs

The Erdos-Renyi model

Specified by a number of nodes, n, and either:

- a number of edges, m
- a probability of connection, p

All edges are equally likely to exist

It's a network after all

It's a network after all

It's a network after all

(triangles)

It's a network after all

Regular

(triangles) High **clustering coefficient**

(shortest paths)

High mean **geodesic path**

Random

Low clustering coefficient

Low mean geodesic path

It's a network after all

It's a network after all

"Scale-free" networks

"Scale-free" networks

Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509-512.

The Price model

For undirected networks, this model is known as the Barabasi-Albert model

Add nodes to a network one at a time.

Connect to existing nodes with probability **proportional to their degree**

$$p_i = rac{k_i}{\sum_j k_j},$$

Nodes that join the network earlier have higher degree

Community structure

Locally dense, globally sparse

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. PNAS, 99(12), 7821-7826.

Stochastic Block Models

Step I: Assign each node to a group

Step I: Assign each node to a group

• **Step 1**: Select some connection probabilities (mixing matrix)

Step I: Assign each node to a group

• **Step 1**: Select some connection probabilities (mixing matrix)

 Step 3: For each pair of nodes, add an edge with probability according to the group memberships

generation

Adjacency Matrix

Generating a network using the SBM

generation

Mixing Matrix

Generating a network using the SBM

Mixing Matrix

Different types of structure

assortative

Different types of structure

Geometric graphs

Generating a random geometric graph

Generating a random geometric graph

Step I: Assign each node to a random position in a 2D space

Generating a random geometric graph

Step I: Assign each node to a random position in a 2D space

Step 2: Connect nodes if they are within a given radius, *r*

Latent space models

Similar to random geometric graphs...

except edges are assigned according to a probability as a function of the distance

Null hypothesis testing

One sample (size = 5)

One sample (size = 5)

Distribution of means (1 sample)

One sample (size = 5)

Distribution of means (2 samples)

One sample (size = 5)

Distribution of means (10 samples)

One sample (size = 5)

Distribution of means (10,000 samples)

Mean = 16.00Sd = 5.00

Mean = 15.99Sd = 2.25

One sample (size = 5)

Distribution of means (10,000 samples)

Mean = 16.00Sd = 5.00

Mean = 15.99Sd = 2.25

Central limit theorem

The infamous P-value

P-VALUE

The probability, computed assuming that H_0 is true, that the test statistic would take a value as extreme or more extreme than that actually observed is called the **P-value** of the test. The smaller the **P-value**, the stronger the evidence against H_0 provided by the data.

Definition, pg 405
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

The infamous P-value

Figure 14.2 Comparison of p values and critical values of Z in a one-tailed test

The infamous P-value

Figure 14.2 Comparison of p values and critical values of Z in a one-tailed test

For networks we can use graph models as a null model

- Does the network appear to be significantly different from a random graph?
- Can specific properties of the observed network (e.g., clustering coefficient) be explained by a particular generative process?
- Two approaches to create samples:
 - permute edges/nodes in a way that is consistent with the graph model
 - "fit" a model to an observed network and generate networks from it

Network nodes can have properties or attributes (metadata)

social networks age, sex, ethnicity, race, etc.
food webs feeding mode, species body mass, etc.
internet data capacity, physical location, etc.
protein interactions molecular weight, association with cancer, etc.

How well do the metadata explain the network?

How well do the metadata explain the network?

1. Divide the network G into groups according to metadata labels M.

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2. Fit the parameters of an SBM and compute the entropy **H**(G,M)

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2 Fit the parameters of an SBM and compute the entropy **H**(G,M)

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2. Fit the parameters of an SBM and compute the entropy **H**(G,M)

Test statistic

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2. Fit the parameters of an SBM and compute the entropy **H**(G,M)
- 3. Compare this entropy to a distribution of entropies of networks partitioned using random permutations of the metadata labels.

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2. Fit the parameters of an SBM and compute the entropy **H**(G,M)
- 3. Compare this entropy to a distribution of entropies of networks partitioned using random permutations of the metadata labels.

How well do the metadata explain the network?

- 1. Divide the network G into groups according to metadata labels M.
- 2. Fit the parameters of an SBM and compute the entropy **H**(G,M)
- 3. Compare this entropy to a distribution of entropies of networks partitioned using random permutations of the metadata labels.

metadata is randomly assigned
→ model gives no explanation, high **H**

metadata correlates with structure

→ model gives good explanation, low H

Multiple networks; multiple metadata attributes

Network	Status	Gender	Office	Practice	Law School
Friendship Cowork	$< 10^{-6} < 10^{-3}$	0.034 0.094	$< 10^{-6}$ $< 10^{-6}$	0.033 $< 10^{-6}$	$0.134 \\ 0.922$
Advice	$ < 10$ $ < 10^{-6}$	0.010		$< 10^{-6}$	0.205

Multiple sets of metadata provide a significant explanation for multiple networks.

Lazega, The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership, Oxford University Press (2001).

Summary...

We can use graph models to simulate observed properties and form hypotheses

Null hypothesis tests are a popular way to test these hypotheses

Note: we can only accept/reject the null hypothesis

(more on this tomorrow)