& Main results Recall our goal is to classify oil finite duil meps of IH. · Reduce to finite dan't alg.

Affine Hecke alg. 1H Cluter Z(IH) = R(T) [9,9+] IH has basis FTURN WEW, XEP], countable dimension

Schur's lemma gives Lemma For any Shiple IH-Mod M, ZUH) acts by scalar.

Thus, I als homomorphism X. Z(IH) - Q, st.

Z(IH) -> End (M) is Z -> X(+) Id.

Since Zelri) = R(T)W[9,9+]. Such X corresponds to a Selvishiple element a = (5, +) = G*CX, St. 7(7) = Z(a) V ZEZ(IH)

Denote $\chi_a: Z(Ir1) \longrightarrow C_a$ $Z \longmapsto Z(G)$ Define the specialized affine Heave alg $[H_a: = C_a \mathcal{B}_{Z(Ir)}]^{H}$.

Hence, we only used to classify Mers of $[H_a: = C_a \mathcal{B}_{Z(Ir)}]^{H}$.

By definition, $[H_a]$ has diff $[H_W]^2$.

· Geometric interpretation of Ha

 $\alpha = (s,t) \in G \times C^{*}$ Semisimple. \widetilde{N}^{α} , N^{α} , Z^{α} α -fixed polits. \widetilde{N}^{α} is smooth $Z^{\alpha} = \widetilde{N}^{\alpha} \times_{\alpha} \widetilde{N}^{\alpha}.$

Prop: 7 alg. isomorphism

— H_A ~ H_{*} (Z^A, C). BM homo697.

pf. A= (a> EG×C* subgr generated by a.

Then we have definition 14 ~ C & (1H) $\simeq C_0 \otimes K^{G \times C^*}(Z)$ Kazhdau-Cusztig, Gradung KA(2) = R(A)(8) (Gxc) 6,2 (6) $=\mathbb{C}_{a}\otimes_{\mathbb{R}(A)}\mathbb{K}^{A}(Z)$ [ocalization, ra = (27 mil 1). resa

Thin 5 11.10 1 isomorphism

mortille Va Ca⊗_{R(A)} K^A(z^A) $\stackrel{eV}{\simeq} K_{C}(Z^{A})$ RR=(IATd ga) uchx $\stackrel{\text{RR}}{=} H_*(Z^A, \mathbb{C})$ Bivariant Riemann-Roch Thm 5 4 1 INTERNA Invertible, cha isomorphism = H* (Z°, €) =) RR is an isomorphism.

ra and ER preserve the consolution alg structures

Stoudard modules $\Omega = (S,t) \in G \times C^{*}, \\
N^{\alpha} = \{x \in \mathbb{N} \mid S \times S^{1} = t \cdot x\}, \quad \tilde{N}^{\alpha} = \{(x,b) \in \mathbb{N}^{\alpha} \times \mathbb{B}^{\alpha} \mid x \in b\} \}$ $\chi \in \mathbb{N}^{\alpha}, \quad \mathbb{N}^{-1}(x) = \mathbb{B}^{1}_{x} = \{b \in \mathbb{B} \mid b \in \mathbb{B}^{\alpha}, x \in b\} \subseteq \mathbb{B}.$ Since $S \times S^{-1} = t \times$, $\exp(x \cdot x)$ and S generate a solvable subgrate S and S generate a solvable subgrate S.

=) B_x is non-empty.

By Consolition, H_{*}(Z^a) \(\alpha\) H_{*}(B_x')

 $(CS, \pi) = G(S, \pi) / G(S, \pi)^{\frac{3}{2}}$

G(s,x) = simultaneous centralizer in G of s and x.

CCS, x7 @ H* (Bx), commutes with the H*(Zc)-action.

Def. $C(s,x)^{2} = \begin{cases} Shiple C(s,x) - modules in H_{x}(D_{x}^{s}) \end{cases} / \sim$ $V \gamma \in C(s,x)^{2}, \quad K_{a,x,\gamma} = Hen_{C(s,x)}(\gamma, H_{x}(D_{x}^{s}))$

It's called the Standard Hx(Za)-module.

· Costandard modules & Simple modules

 $\chi \in N^{\alpha}$, $U = G(s) \cdot \chi \leq N^{\alpha}$. $G(s) - orbit of \chi$. $S = \{ \circ \text{ col transverse } \varsigma \text{ like to } O \text{ at } \chi \text{ see Def 3.219 [CG]} \}$

 $S:=\mu^{-1}(S)$ S \mathcal{N}^{c} , \mathcal{D}_{x}^{s} is a homotopy retract of S.

I commuting actions of the (20) Gud ((5, x) on H*(5)

tef: (05tandard H*(2°)-module.

Hom_{ccr,r} (y, H, (s)),

Prop. Assume t is not a root of unity, then Laix, y = a Let (N:= \(\gamma = (s,t) \in Gx (\frac{\pi}{\pi}, \pi \in N^a), \pi \in C(s, \pi)\) \(\sis \text{semisurp} \) \(\AdG \) Here, Gartsons by canjugation. (x,+) and (x',+') are G(s)-conjugate, if I gEG(s), s.t. x'= g xg-1, and conjugation by g Intertwhes ((s, x)-module y and ((s, x')-module v'. Main theorem (De ligne-Longlands-Lusztig conjecture, Kashdan-Lucztig, Ghasburg theorem) Assume tis Not a not of unity, then { Laxy] (axy) EM is a Complete list of sample IH-modules, such that qact, by mult by tECX

Thus, La.x,y = Image of Standard module in the Co-standard mod

 $\underline{\text{Def}}$. $L_{a,x} = \underline{\text{Im}} \, \Psi$.

= (La. x, y 8 4.

Recarl. Deligne - Langlands - Lusztig. Sfinite duit inter of Half Jell (S, x, y) (Sx57=qx, y e C(S, x)) $S \times S^{-1} = P \times A \times S \times S \times S^{(s,t)} = N^{a}$ Remarks: 1) a=(5,t) & G×C* Semisimple (on be thought of "Coursel characters" of the corresponding simple 14-10-3 dules. 2) Kazhdau and Luszeig proved that Na is a finite union of G(s)-orbits. Thus, there are only factly many simple IH-modules with a fixed central diaracter. 3) the proof uses sheaf-theoretic methods