





# Bitcoin 社区

黄华威

副教授

中山大学 数据科学与计算机学院 Http://xintelligence.pro

### 课程大纲

Mook 2



| ● Week-1 9月2日 | 课程背景介绍, | <b>与区块链应用背景</b> 。 | ,比特币前传 |
|---------------|---------|-------------------|--------|
|---------------|---------|-------------------|--------|

• -- Part-1: 比特币与以太坊基础知识部分

 $\Omega \square \Omega \square$ 

| Week-2 | 3H3D  | Dittoin 参加,公内子参加   |       |
|--------|-------|--------------------|-------|
| Week-3 | 9月16日 | Bitcoin 基础:数据结构    |       |
| Week-4 | 9月23日 | Bitcoin 运行机制:交易模型、 | 与共识机制 |

D:4.4.1.4 甘心、泰切兴甘心

● Week-5 9月30日 Bitcoin 系统层面的知识( 林建入老师上课 ) ● Week-6 10月7日 Ethereum 概述 与 智能合约(林建入老师上课 )

● Week-7 10月14日 比特币的挖矿、分叉的原理

• Week-8 10月21日 比特币社区

• Week-9 10月28日 匿名、监管、与 区块链网络基础

● Week-10 11月4日 考试周(不上课)

• -- Part-2: 区块链工程实践课

Week-11 11月11日 微众合作开发课程1
Week-12 11月18日 微众合作开发课程2
Week-13 11月25日 微众合作开发课程3

● -- Part-3: 区块链研究启发

● Week-14 12月2日 以太坊其他:账户、状态、挖矿算法、可扩展性

● Week-15 12月9日 数据分析与反欺诈

● Week-16 12月16日 区块链的安全问题与攻击模型:攻击与防御

● Week-17 12月23日 区块链的分片技术、与网络"排队理论"

● Week-18 12月30日 区块链的互操作性

Week-19 1月6日 区块链 与 Game Theory: 以 FruitChain 为例



## 课前答疑-1:51%-based Double Spending

- (问) 老师,我还是不是很理解双花,既然失败的链的交易 还是会回滚到交易池,那同一笔钱怎么能花两次呢?
  - A付钱给B,B等交易确认再交货给A,交易确认了,B 就收到钱了。为什么会存在双花?
  - (追问)这个过程中A->B不是还没确认吗?感觉B只要不交货给A那就对B没有损失才对。

### 课前答疑:分叉攻击



#### 回顾双花支付:如何做到 一笔钱花两次?

- (1) A支付比特币给B,交易在一个块中确认(如何阻止或者逆转TX(A->B)?)
- (2) A重新构造一笔交易A→C,并打包进区块公布(分叉攻击,双重支付)
- (3) 包含双重支付的块率先找到下一个块,全网认可A→C, 交易A→B无效



### Other Tips of 51% attack



#### Definition:

- A 51% attack is an attack on a blockchain by a group of miners who control more than 50% of the network's mining hash rate.
- Changing historical blocks is difficult
  - due to the hard-coding of past transactions into the bitcoin software.

- If an <u>attacker is somehow able to control at least 51% of</u> the hash power of the network,
  - he or she can commit double spending.

### 51% attack is impossible in reality



- What could a 51% attacker be able to do?
  - he or she could reverse transactions and create a separate private blockchain / a fork



- However, the rapid growth of bitcoin has virtually insured that
  - this type of attack is impossible.



### 51% attack 引申思考



- ●51%攻击可以压制其他交易吗?
  - 如果他知道某些讨厌的人 (比如, Peter) 的地址, 攻击者可以让源于 Peter 地址的币都无法使用吗?
  - 攻击者可以做到:
    - ◆ 不打包那些包含来自Peter 的交易,
    - ◆ 轻易拒绝 create 包含来自 Peter 地址的交易的 new block
    - ◆ 拒绝在含有类似交易的 block 上延展
  - 但是,他不可以阻止
    - ◆ 这个交易被发送到绝大部分节点上, 否则, 大家就会发现了他 的攻击

### 课前答疑-2:比特币交易是如何打包的



● (问) 比特币的交易是如何被选中打包的?遵循什么原则?





### Mempool

- https://blog.kaiko.com/an-in-depth-guide-into-how-the-mempool-worksc758b781c608
- The mempool is the node's holding area for all the pending transactions.





- There are as many mempools as there are as nodes
  - As the Bitcoin network is distributed, not all nodes receive the same transactions at the same time, so some nodes store more TXs than others at some time.
  - Plus, everyone can run its own node with the hardware of his choice; so all nodes have a different RAM capacity to store unconfirmed transactions.
  - As a result, each node has its own version of the pending transactions
  - This explains the variety of mempool sizes & transactions counts found on different sources.



### How does a new block impact the Mempool?

When a node receives a new valid block, it removes all the transactions contained in this block from its mempool as well as the transactions that have conflicting inputs. This results in a sharp drop in the Mempool size:





### What happens when the node's memory get full?

- Unlike mining, there is no financial incentive for running a node.
- Therefore, the hardware dedicated to it tends to be limited and so a node's Mempool often max out its RAM.
- When this happens, in former versions of bitcoin, the node would just crash and restart with an empty Mempool.



### What happens when the node's memory get full?

- In recent versions of bitcoin (0.12+), if the Mempool size gets too close to the RAM capacity, the node sets up a minimal fee threshold.
- Transactions with fees per kB lower than this threshold are immediately removed from the Mempool,
- only new transactions with a fee per kB large enough are allowed access to the Mempool.

### 课前推荐 – Github book: Mastering Bitcion



#### https://github.com/bitcoinbook/bitcoinbook

#### Chapters

- Chapter 1: 'Introduction'
- Chapter 2: 'How Bitcoin Works'
- Chapter 3: 'Bitcoin Core: The Reference Implementation'
- Chapter 4: 'Keys, Addresses'
- Chapter 5: 'Wallets'
- Chapter 6: 'Transactions'
- Chapter 7: 'Advanced Transactions and Scripting'
- Chapter 8: 'The Bitcoin Network'
- · Chapter 9: 'The Blockchain'
- Chapter 10: 'Mining and Consensus'
- Chapter 11: 'Bitcoin Security'
- Chapter 12: 'Blockchain Applications'

### 课前视频



- What Do YOU Need to MINE ONE BITCOIN In 2020?!
  - https://www.youtube.com/watch?v=5V\_Ap0Iy\_M0



### **Outline & Keywords of this Class**





● Part 1:比特币安全机制的保障

● Part 2:挖矿的激励与策略

● Part 3: 社区

### 思考: 挖矿的安全性分析



- 假设BTC的大部分算力是掌握在 honest 旷工手里,有什么 安全保障?
  - #1. 恶意节点可以伪造一个交易把别人的钱转给自己吗?
    - ◆ 不能,因为有签名,别的 honest 节点不会承认,把它通过分叉废除了,该恶意 节点白费力气又损失了钱
  - #2. 恶意节点可以 double-spending 吗?
    - ◆ 很难,除非有 51% 算力
  - #3. 避免 selfish-mining
    - ◆ 悄悄挖不发布,为了获取更多的出块奖励,How to?

### Selfish Mining —— 自私挖矿



#### Definition

 A selfish miner hides the new block it just mined, and keeps to mine the next following this hidden one.

### • Motivation: Why mine secretly?

- Only himself knows a new block was just mined, such that others are mining following the wrong / old previous block
- 一旦发布出去,大家都会在新区块后边平等地开始竞争



## Selfish Mining —— 自私挖矿





#### Risks

**Huang LAB** 

www.xintelligence.pro

- 不发布的块有可能会浪费掉,所以还不如赶紧发布出去获取当前的出块奖励(落袋为安)
- The selfish miner may lose twice/multiple times



### Selfish Mining —— 自私挖矿



#### Revenue

 A selfish miner larger than 1/3 of the mining power would increase her revenue by deviating from the prescribed protocol and performing Selfish Mining.



### 思考: 挖矿的安全性分析



- 比特币的安全保障是什么?
  - 合谋发动51%-forking 攻击必须要占据系统中超过半数以上的计算力才可能成功 —— 几乎不可能
  - 当一个新区块来了,所有miner 都需要停止当前的挖矿,把新 block 添加后,继续挖;这样可行吗?
    - ◆ 不可行,因为 PoW mining 是一个无记忆性的过程,
    - ◆ 从任何时候开始挖,成功率都是一样的。
    - ◆ 这样就可以防止进行"预挖矿"

## **Outline & Keywords of this Class**



● Part 1:比特币安全机制的保障



● Part 2:挖矿的激励与策略

● Part 3: 社区

### 首先、几个关于比特币社区的问题:



• 谁在维护交易账本?

● 谁在制造新的比特币?

● 谁有权利批准哪个交易是正当有效的?

### 其次,一些事实



### • How Many Bitcoins Are There?

 https://www.buybitcoinworldwide.com/how-many-bitcoins-arethere/



### 挖矿的激励



- 谁在制造新的比特币?
  - 挖到矿的矿工
  - 挖矿的整体目的
    - Every bitcoin transaction must be added to the blockchain, in order to be considered successfully completed or valid.
- ●矿工的激励:
  - 出块奖励 block reward (currently 6.25 BTC),
  - 交易手续费: all fees sent with the transactions that were included in the block.

- tizo
- For this reason, miners have a financial incentive to prioritize the validation of transactions that include a higher fee.
- For someone looking to send funds and get a quick confirmation, the appropriate fee to include can vary greatly, depending on a number of factors.
- While the fee does not depend on the amount you're sending, it does depend on
  - network conditions at the time,
  - and the data size of your transaction.



#### Network Conditions

- a block on the bitcoin blockchain can only contain up to 1 MB of information
- the # of TXs included in a block is limited
- during the times of congestion, more TXs are waiting in the pool
- miners choose which transactions to include, prioritizing the ones with higher fees
- When the mempool is full
  - users compete to get their TXs into the next block by including higher and higher fees
  - ◆ Eventually, the market will reach a maximum equilibrium fee that users are willing to pay and the miners will work through the entire mempool in order
- Once network traffic has decreased
  - ◆ the equilibrium fee will go back down



#### Transaction Size

- block size: 1 MB of information
- TX size is an important consideration for miners
  - Smaller TXs are easier to validate; larger TXs take more work, and take up more space in the block.
- For this reason, miners prefer to include smaller TXs.
- A larger TX will require a larger fee to be included in the next block.
- Q: Who decide the TX fees?
  - Usually, there is **no** simple way to calculate a transaction size by hand.
  - ◆ Your BTC Wallet will automatically do this for you, and suggest an appropriate fee.



- Fees in your BTC Wallet
  - dynamic fees: wallet will calculate the appropriate fee for your TX taking into account current network conditions and TX size.
  - You can choose between a Priority fee and a Regular fee.
    - ◆ The Priority fee is calculated to get your TX included in a block within the hour.
    - ◆ The Regular fee is lower, and is for users who can afford to be a bit more patient; This type of TXs will typically take a bit more than an hour.
  - Advanced users can set custom fees for their TX in units of satoshi per byte (sat/b)
    - ◆ At a Risk: setting too low a fee may cause your TX to remain <u>unconfirmed</u> for a long time and possibly be rejected.
    - Q: What will happen when all BTC are out-of-mining?

### 挖矿的策略



- 1. 需要包括哪些交易?
  - 矿工可以选择将哪些交易放进他的区块里。
  - 默认的规则是选择那些交易费比较高的交易。

- 2.对哪一个区块进行挖矿运算?
  - 矿工可以选择在哪个区块上进行挖矿。
  - 默认的做法是在最长的那条区块链上继续挖下去。

### 挖矿的策略



- 3. 如何在同一高度的多个区块中做选择?
  - 如果两个不同的区块在同一时间被宣布发现,这就造成了一个区块的分叉,每个分叉的区块都是可以被延续下去的,因为它们都符合最长区块链原则。
  - 矿工必须选择其中一个区块接龙下去。
  - 默认的做法是选择最先被监听到的那一个区块。
- 什么时候宣布新的区块?
  - 矿工找到一个有效区块之后,他们要决定什么时候向比特币网络 宣布这一个区块。
  - 默认的做法是立刻宣布,
  - 但他们也可以选择等一下 —— 自私挖矿 or block withholding attack

### 为了挖到新块采取的策略——挖空块现象



- 空块: empty blocks
  - only header
  - empty TXs included in the block body

– What is the motivation behind empty blocks?

### 为了挖到新块采取的策略——Fork Attack



- 51% Forking Attack
  - What strategies can help attackers make it?
- ●通过贿赂进行分叉攻击
  - 抱团取暖:矿池,吸引别的 Miner 加入进来
  - 通过 Out-of-band 方式贿赂、给小费,争取把分叉链变成最长链
  - 这种攻击能否成功?
    - ◆ 有的矿工会反对:不要配合,要维护整体币圈生态
    - ◆ 有的矿工会心动:短期利益, who care 集体利益

## **Outline & Keywords of this Class**



● Part 1:比特币安全机制的保障

● Part 2: 挖矿的激励与策略



● Part 3: 社区

## 启动加密货币



### ● Bootstrapping 阶段:冷启动

#### Total Hash Rate (TH/s)

The estimated number of terahashes per second the bitcoin network is performing in the last 24 hours.



#### Average Block Size (MB)

The average block size over the past 24 hours in megabytes.



# 如何维护一个健康的挖矿生态



- ●什么时候可以保证 miners 会投入大量算力?
  - 得到的奖励是 BTC, 花费的是\$
- 如何保障币的价值持续高稳?
  - 用户普遍相信区块链的安全性

- ●安全性、生态健康程度、与BTC Price
  - 相互依赖、相互作用
  - 刚开始只有中本聪,后来知道的人、感兴趣的人越来越多
  - 挖矿的人越多,人们就会对区块链的安全越有信心
  - 每种其他的虚拟货币都要通过 bootstrapping 的考验



- 软分叉
  - 例如:对现有规则的收紧 (1MB 变为0.5MB)
  - 导致:
    - ◆未升级节点接受所有的新区块,因为它们都小于1MB已升级节点拒绝大于0.5MB的旧区块





#### 软分叉过程

- 区块 C 大于0.5MB, 因此被新矿工拒绝, 新矿工另外挖D。但旧矿工仍认为 其有效并在其上添加区块。
- 由于新矿工掌握了绝对优势算力,可以在自己的链上迅速添加区块D,E,F, 使其成为最长链。这时旧矿工就会放弃自己挖出的G和C二者,而转到DEF 链上去挖矿
- 结果:两侧矿工都会最终到ABDEF上挖矿,区块链不会分裂。
- 最重要的是,旧矿工挖出来的大于0.5MB的块都会被孤立掉,所以他们有很强的动机去升级到新版本以避免损失,不久就会达到矿工100%升级的状态。



- ●硬分叉
  - 例如:对现有规则的放宽 (1MB 变为 2MB)
  - 导致:
    - ◆未升级节点拒绝大于1MB的新区块已升级节点接受所有旧的区块,因为它们都小于2MB







#### • 硬分叉过程

- 区块 C 大于1MB, 所以被旧矿工拒绝而去挖区块D和G。
- 新矿工掌握了优势算力,此后迅速添加了区块E、F并成为最长链。
- 但是,旧矿工无法抛弃DG而转到最长链CEF上挖矿,因为CEF中包含了一个不符合他们规则要求的无效区块C
- 结果:旧矿工就在ABDG基础上继续添加区块,新矿工则在ABCEF上添加区块,导致区块链的分裂

# **Outline & Keywords of this Class**



● Part 1:比特币安全机制的保障

● Part 2: 挖矿的激励与策略

● Part 3: 社区



# 再谈比特币共识



- ●比特币协议达成共识两大障碍
  - 不完美的网络:信息延迟 与 节点down机
  - 某些节点故意搞破坏
- 分布式协议:FLP不可能结论
  - 由 Michael J. Fischer, Nance A. Lynch 与 Michael S. Paterson 在论文 Impossibility of distributed consensus with one faulty process 中证明的一个结论
  - 分布式理论中最为深刻的结论:在一个多进程异步系统中,只要有一个进程不可靠,那么旧不存在一个协议, 此协议能保证有限时间内使所有进程达成一致

# 再谈比特币共识



- 可是,FLP不可能结论是分是不是数据库的结论, 不能完全套用到比特币
- ●比特币打破了很多分布式数据库所做的假设
  - 比特币或许对分布式共识给出解决方案
  - 比特币实际运行远比理论上预示的好得多
  - 插曲:那么分布式理论研究是不是没有用了?
    - ◆ 理论结果可以让我们预测、预防未来可能出现的攻击和其他问题
    - ◆ 一旦完善了比特币分布式共识背后的理论运作机制,我们才能 对比特币的安全性和稳定性做出保证

# 再谈比特币共识



- 比特币打破了哪些经典模型所做的假设?
  - 比特币引进了奖励的理念:人们为了金钱奖励会变得 诚实起来
    - ◆ 可以说比特币是在特定的货币系统下解决了分布式共识问题
  - 2. 比特币体系包含随机性
    - ◆ 不用管一个共识的起点与终点
    - ◆随着时间流逝,比特币网络对某一个 Block 的认识与最终总体 共识相吻合的概率会越来越大
  - Bitcoin overcomes FLP results!



- 比特币设计简单,但是它能顺畅运行,背后有什么原因?
- 三个问题达成了共识
  - 规则的共识
  - 历史记录的共识
  - 比特币价值的共识





- 规则的共识
  - 规则:确保交易/block 有效的机制
  - 比特币运行的核心协议、数据结构

- 意义: to ensure
  - Bitcoin participants can communicate with each other for achieving the consensus



- ●历史记录的共识
  - 记录:已发生的交易

- 意义: to agree with
  - Bitcoin owners' unspent # of coins



- Bitcoin's Price 的共识
  - Price : measured in \$

- 意义: to ensure that
  - Everyone wants Bitcoin
  - Everyone can trade with Bitcoin



#### The genius of Bitcoin's Design

- It realizes that it is hard to achieve any of the three perspectives of consensus,
- because it is impossible to guarantee the consensus of rules in a decentralized, anonymous, and worldwide system

#### However, we see that

- Bitcoin somehow combine those 3 perspectives of consensus together and make them support each other
- But don't to be too optimistic! This consensus is fragile: it is mixed with technologies and social network issues.