

Lecture Seven Implementing VPN

© **Dr. M. Mahfuzul Islam** Professor, Dept. of CSE, BUET

What is VPN?

Types of VPNs

VPN Client Software

In a remote-access VPN, each host typically has VPN Client software

IOS SSL VPN

- Provides
 remote-access
 connectivity from any
 Internet-enabled host
- Uses a web browser and SSL encryption
- Delivers two modes of access:
 - Clientless
 - Thin client

VPN Optimized Routers

IPSec Clients

Provides remote users with secure VPN connections

GRE VPN Overview

OSI Layer 3 tunneling protocol:

- Encapsulates a wide variety of protocol packet types inside IP tunnels
- Creates a virtual point-to-point link to Cisco routers at remote points over an IP internetwork
- Uses IP for transport
- Uses an additional header to support any other OSI Layer 3 protocol as payload (for example, IP, IPX, AppleTalk)

Configuring GRE Tunnels

Using GRE

GRE does not provide encryption

IPSec Technology

- Works at the network layer, protecting and authenticating IP packets.
 - It is a framework of open standards which is algorithm-independent.
 - It provides data confidentiality, data integrity, and origin

authentication

IPSec Framework

Confidentiality

Integrity

Authentication

Pre-shared Key (PSK)

- •At the local device, the authentication key and the identity information (device-specific information) are sent through a hash algorithm to form hash_I. One-way authentication is established by sending hash_I to the remote device. If the remote device can independently create the same hash, the local device is authenticated.
- The authentication process continues in the opposite direction. The remote device combines its identity information with the preshared-based authentication key and sends it through the hash algorithm to form hash_R. hash_R is sent to the local device. If the local device can independently create the same hash, the remote device is authenticated.

RSA Signatures

- At the local device, the authentication key and identity information (device-specific information) are sent through the hash algorithm forming hash_I. hash_I is encrypted using the local device's private encryption key creating a digital signature. The digital signature and a digital certificate are forwarded to the remote device. The public encryption key for decrypting the signature is included in the digital certificate. The remote device verifies the digital signature by decrypting it using the public encryption key. The result is hash_I.
- Next, the remote device independently creates hash_I from stored information. If the
 calculated hash_I equals the decrypted hash_I, the local device is authenticated. After the
 remote device authenticates the local device, the authentication process begins in the
 opposite direction and all steps are repeated from the remote device to the local device.

Secure Key Exchange

IPSec Framework Protocols

Authentication Header

All data is in plaintext.

AH provides the following:

- Authentication
- Integrity

Encapsulating Security Payload

Data payload is encrypted.

ESP provides the following:

- Encryption
- Authentication
- Integrity

Authentication Header (AH)

(00ABCDEF)

R2

Data

IP HDR

Data

2. The hash builds a new AH header which is prepended to the original packet

Recomputed Received Hash Hash (00ABCDEF) (00ABCDEF)

4. The peer router hashes the IP header and data payload, extracts the transmitted hash and compares

IP HDR

Encapsulating Security Payload (ESP)

Function of ESP

- Provides confidentiality with encryption
- Provides integrity with authentication

Mode Type

Original data prior to selection of IPSec protocol mode

IPSec Associations

IPSec parameters are configured using IKE

Internet Key Exchange (IKE) Phases

IKE Phase 1 – First Exchange

Negotiates matching IKE policies to protect IKE exchange

IKE Phase 1 – Second Exchange

Establish Diffie-Hellman(DH) Key

$$(Y_B)^X \mod p = K$$

$$(Y_A^X) \mod p = K$$

A DH exchange is performed to establish keying material.

IKE Phase 1 - Third Exchange

Peer authentication methods

- PSKs
- RSA signatures
- RSA encrypted nonces

A bidirectional IKE SA is now established.

IKE Phase 1 – Aggressive Mode

IKE Phase 2

- IKE negotiates matching IPsec policies.
- Upon completion, unidirectional IPsec Security Associations(SA) are established for each protocol and algorithm combination.

IPSec VPN Negotiation

- 1. Host A sends interesting traffic to Host B.
- 2. R1 and R2 negotiate an IKE Phase 1 session.

 IKE SA IKE Phase 1 IKE SA
- 3. R1 and R2 negotiate an IKE Phase 2 session.

Information is exchanged via IPsec tunnel.

The IPsec tunnel is terminated.

Telecommuting

- Flexibility in working location and working hours
- Employers save on real-estate, utility and other overhead costs
- Succeeds if program is voluntary, subject to management discretion, and operationally feasible

Telecommuting Benefits

Organizational benefits:

- Continuity of operations
- Increased responsiveness
- Secure, reliable, and manageable access to information
- Cost-effective integration of data, voice, video, and applications
- Increased employee productivity, satisfaction, and retention

Social benefits:

- Increased employment opportunities for marginalized groups
- Less travel and commuter related stress

• Environmental benefits:

 Reduced carbon footprints, both for individual workers and organizations

Implementing Remote Access

Comparison of SSL and IPSec

	SSL	IPsec
Applications	Web-enabled applications, file sharing, e-mail	All IP-based applications
Encryption	Moderate Key lengths from 40 bits to 128 bits	Stronger Key lengths from 56 bits to 256 bits
Authenticatio	Moderate One-way or two-way authentication	Strong Two-way authentication using shared secrets or digital certificates
Ease of Use	Very high	Moderate Can be challenging to nontechnical users
Overall Securi	Moderate Any device can connect	Strong Only specific devices with specific configurations can connect

SSL VPN

Establishing SSL session

SSL VPN Design Considerations

- User connectivity
- Router feature
- Infrastructure planning
- Implementation scope

Cisco Easy VPN

- Negotiates tunnel parameters
- Establishes tunnels according to set parameters
- Automatically creates a NAT / PAT and associated ACLs
- Authenticates users by usernames, group names, and passwords
- Manages security keys for encryption and decryption
- Authenticates, encrypts, and decrypts data through the tunnel

Securing the VPN

Cisco IOS software Easy VPN Server

