Započetí testu	Thursday, 16. December 2021, 11.07
Stav	Dokončeno
Dokončení testu	Thursday, 16. December 2021, 12.10
Délka pokusu	1 hodina 2 min.
Známka	10,00 z možných 21,00 (48%)
Úloha 1 Správně Bodů 2,00 / 2,00	

Komprimuje signál <u>frame-001.bin</u> na bázi kosinové transformace (použijte funkce *dct* a *idct* definované v MATLABu). Pro danou kompresi (aproximaci) použijte prvních **55 komponent DCT spektra**. Signál je uložen jako binární soubor bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*. Původní a dekomprinovaný signál si pro kontrolu ilustrativně zobrazte.

Spočítejte výkony původního i komprimovaného signálu a určete jaké procento výkonu původního signálu je zahrnuto v signálu komprimovaném.

Vyberte jednu z nabízených možností:

- 0 18.11 %
- 0 99.76 %
- 0 61.88 %
- O 53.65 %
- 78.09 %

Vaše odpověď je správná.

Správná odpověď je: 78.09 %.

3

Úloha **2**Správně
Bodů 2,00 / 2,00

Určete reálné KEPSTRUM signálu <u>frame-001.bin</u> (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*). Signál váhujte Hammingovým oknem příslušné délky. Zobrazte celé vypočítané kepstrum.

Vyberte jednu z nabízených možností:

2 of 9 16/12/2021, 12:09

Vaše odpověď je správná.

>

Určete kosinovou transformaci DCT-1 signálu <u>frame-000.bin</u> (uloženo jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*. Segment před výpočtem **váhujte Hammingovým oknem** odpovídající délky a jako výsledek uveďte prvních 8 koeficientů DCT spektra.

POZN. DCT-1 signálu délky N je definovaná jako

$$X^{c1}[k] = 2 \sum_{n=0}^{N-1} lpha[n] x[n] \cos rac{\pi k n}{N-1}, \; ext{kde} \; lpha[n] = \left\{egin{array}{ll} 0.5 & ext{pro} \; n=0, \; N-1, \ & & & \ 1 & ext{pro} \; 1 \leq n \leq N-2 \end{array}
ight.$$

Vyberte jednu z nabízených možností:

- 0.00588 0.04170 0.04039 0.04504 0.03497 0.03736 0.03612 -0.13869 ...
- -0.00530 0.02988 0.01618 0.02754 0.01862 -0.04409 -0.05706 0.33871 ...
- -0.03748 -0.01485 -0.01516 -0.00513 -0.08508 -0.34627 0.22806 0.49868 ...
- O -0.01977 -0.00313 0.00941 0.00390 -0.09808 -0.00781 0.30113 0.00636 ...
- -0.10662 -0.00532 -0.12560 -0.01053 -0.12254 -0.05747 -0.33862 0.43275 ...

Vaše odpověď je správná.

Správná odpověď je: -0.10662 -0.00532 -0.12560 -0.01053 -0.12254 -0.05747 -0.33862 0.43275

4

Úloha **4**Nesprávně Bodů 0,00 / 2,00

Spočítejte vyhlazený odhad vzájemné spektrální výkonové hustoty (CPSD) Welchovou metodou pro signály x a y uložené v mat-souboru <u>sig_xy_04.mat</u> (pro načtení do MATLABu použijte "*load sig_xy_04.mat*"). Signály jsou vzorkované kmitočtem fs = 16 kHz a pro výpočet volte následující parametry:

- délku krátkodobého segmentu volte 512 vzorků,
- krátkodobé segmenty váhujte Hammingovým oknem,
- segmentujte s 50% překryvem,
- počet bodů FFT volte stejný, jako je délka segmentu,
- počítejte s implicitním jednostranným odhadem CPSD reálných signálů.

Určete, který z následujících obrázků je požadovaným odhadem **fáze CPSD v radiánech!**

Vyberte jednu z nabízených možností:

5 of 9 16/12/2021, 12:09

×

Vaše odpověď je chybná.

>

Úloha 5	
Správně	
Bodů 2,00 / 2,00	

Určete EUKLIDOVSKOU KEPSTRÁLNÍ VZDÁLENOST na bázi LPC KEPSTRA mezi dvěma signály <u>frame-001.bin</u> a <u>frame-012.bin</u> (oba signály jsou uloženy jako binární soubory bez hlavičky, pro načtení do MATLABu použijte funkci *loadbin*). Počítejte LPC kepstrum, řád LPC modelu volte p=16 a signály váhujte Hammingovým oknem příslušné délky. Vzdálenost počítejte z prvních 13 koeficientů včetně nultého koeficientu c[0], tj. z koeficientů c[0]-c[12].

Pro výpočet vzdálenosti použijte funkci <u>cde.m</u> (POZN. Funkci je třeba stáhnout do aktuálního adresáře!!).

٧	yberte	jedr	nu z	nab	ízený	/ch	možností:
---	--------	------	------	-----	-------	-----	-----------

- 0 4.0801
- 0.3137
- 0 1.9460
- 2.6185
- 0 6.7823

Vaše odpověď je správná.

Správná odpověď je: 2.6185.

Úloha **6** Nesprávně

Bodů 0,00 / 3,00

Stacionární signál mix vzniknul součtem stacionárních signálů sig (čistý signál) a noise (šum pozadí), tj. mix = sig + noise. Určete odhad amplitudového spektra čistého signálu (sig) na základě amplitudového spektrálního odečítání s dvoucestným usměrněním. Komplexní spektra v jednotlivých krátkodobých segmentech jsou uložená v mat-souboru SO_FFT_sigs_01.mat v maticích noiFFT resp. mixFFT (jednotlivá krátkodobá spektra délky 512 jsou v řádcích daných matic). Jako výsledek uveďte hodnoty prvních 10 frekvenčních komponent určeného amplitudového spektra 1. segmentu signálu sig.

Vyberte jednu z nabízených možností:

- 2,4051 3,877 3,5593 4,6802 3,4651 2,3941 1,0092 0,0057704 3,3319 4,0527
- 0,014583 0,048628 0,046576 0,18772 1,4553 0,54022 0,15727 0,056011 1,3484 0,75783
- 7,36062 0,0101542 0 0 0 9,64077 0 0 31,5646 25,0647
- -8,07855 -8,04596 12,2988 -3,4212 -1,5268 16,1438 8,0591 -0,0101742 14,9577 29,194

Vaše odpověď je chybná.

▼TEST 1 - C102 (11:00) Správna odpoveď je: 2,4051 3,877 3,5593 4,6802 3,4651 2,3941 1,0092 0,0057704 3,3319 4,0527. Přejít na...

Pomocné materiály a odkazy >

>

Swit daaø r éng ňsh								
Kon Raktůjte 0Pá/s2,0	0	◎ f y in □						
MATLÁBu		ožęநှှရှိ _{ga} gat-souboru <u>sigs_2chan_08.mat</u> (pro načtení do erenční funkci, konkrétně MSC (Magnitude Square Moje kurzy						
	átkodobého segmentu - <i>64 ms</i> ,	Známky						
dijní oddělení dijní oddělení	í - <i>Hammingovo okno</i> odpovídající délky,	Odhlásit se						
	tace - s 50% překryvem,							
_								
odle Applau FFT	- stejný, jako je <i>délka krátkodobého segmentu.</i>							
		ané MSC). Výsledek uveďte s minimální přesností na 3 platné						
021 Centrum znak Orcete pru		ané MSC). Výsledek uveďte s minimální přesností na 3 platné						
⁰²¹	isternou hodnotu vypočíta m ernou konerenc i (tj. p. ໍລາກěrnou hodnotu vypočíta	ané MSC). Výsledek uveďte s minimální přesností na 3 platné						
⁰²¹	ostrefnou konerenci (tj. p. ůměrnou hodnotu vypočíta 0,061413	ané MSC). Výsledek uveďte s minimální přesností na 3 platné						
o21 Copten zprů cifry. Odpověď: Správná od	ostrefnou konerenci (tj. p. ůměrnou hodnotu vypočíta 0,061413	ané MSC). Výsledek uveďte s minimální přesností na 3 platné						

Vypočítejte **bázi KLT transformace** pro signál, jehož realizace máte k disposici v matici *sigframes* uložené v mat-souboru <u>sigframes_001.mat</u> (pro načtení do MATLABu použijte "load sigframes_001.mat", jednotlivé realizace jsou potom v řádcích dané matice). První bázový vektor volte pro nejvýznamnější komponentu.

Určete prvních 10 komponent KLT spektra pro 1. realizaci daného signálu, tj. signálu v 1. řádku matice realizací *sigframes*.

Vyberte jednu z nabízených možností:

0	15,6306	2,3623	1,02653	0,113117	-4,4892	0,443338	0,138842	-0,217906	0,297267	0,408761	
0	-8,70865	-7,18586	-10,6346	-0,068236	-3,10637	-0,0730385	5 0,20914	6 0,916566	0,331789	0,403458	
0	10,4801	-3,8263	-9,97702	0,0759761	-2,5585	-0,556175	-0,1091	-1,90919 0	,802893 -0),477474	
0	-2,18375	-3,30649	-13,1264	0,0681266	-4,50854	1,05757	0,035855	2,69728	1,32337	-0,862214 🗙	
0	-11,2229	2,2972	-16,6076	0,0442373	-4,36969	0,640648	-0,050865	9 -3,24971	-1,33051	-0,442262	

Vaše odpověď je chybná.

Správná odpověď je: 10,4801 -3,8263 -9,97702 0,0759761 -2,5585 -0,556175 -0,1091 -1,90919 0,802893 -0,477474.

>

8 of 9 16/12/2021, 12:09

Úloha 9		
Nesprávně		
Bodů 0,00 / 2,00		
Jaký je odstup signálu od šumu (SNR) zašuměného signálu Oba signály jsou uloženy jako binární soubory bez hlavičky, pr Vypočítané SNR v dB uveďte s přesností na 2 desetinná čísla	o načtení do MA	•
Úloha 10		
Správně		
Bodů 2,00 / 2,00		
Určete zkreslení delšího signálu SA012S01.CSX na bázi keps nezkreslený signál je SA012S01.CS0. Oba signály jsou uložer použijte funkci <i>loadbin</i> . Počítejte reálné kepstrum po segment váhování každého segmentu Hammingovým oknem. Počet ke počítejte na bázi Euklidovské vzdálenosti včetně nultého ko Pro výpočet vzdálenosti použijte funkci cde.m (POZN. Funkci Vyberte jednu z nabízených možností: 2.812 0.946 1.080	ny jako binární so tech délky <i>wlen:</i> epstrálních koefi peficientu c[0], tj	oubory bez hlavičky, pro načtení do MATLABu =512 s 50% překryvem a uvažujte implicitní centů (bez c[0]) volte <i>cp=20</i> a vzdálenost . z koeficientů c[0]-c[20] .
0 7.313		
O 3.382		

Vaše odpověď je správná.

Správná odpověď je: 2.812.

2