Practice 1: Vectors

Exercise: Finding a Perpendicular Vector

Context:

In linear algebra, two vectors are perpendicular (or orthogonal) if their dot product is zero. In this exercise, you will find a vector in \mathbb{R}^2 that is perpendicular to a given vector.

Given:

Let $\mathbf{v} = [2, 3]$.

Tasks:

1. Find a Perpendicular Vector:

• Find a non-zero vector $\mathbf{w} = [x, y]$ such that \mathbf{v} and \mathbf{w} are perpendicular.

2. Verification:

• Show that your chosen vector **w** indeed satisfies the condition $\mathbf{v} \cdot \mathbf{w} = 0$.

3. Unit Perpendicular Vector:

• Find a unit vector in the direction of \mathbf{w} by computing $\frac{\mathbf{w}}{\|\mathbf{w}\|}$, where $\|\mathbf{w}\|$ is the Euclidean norm of \mathbf{w} .

4. Bonus Discussion:

• Explain why there are infinitely many vectors perpendicular to ${\bf v}$ and describe the general form of all such vectors.

Exercise: Finding the Closest Word with 2D Embeddings

Context:

In NLP, words can be represented as vectors. Here, each word is represented by a 2-dimensional vector. By comparing these vectors using Euclidean distance and cosine similarity, you can determine which word is "closer" in meaning.

Given Word Embeddings:

cheese: [1, 2]mushroom: [3, 1]tasty: [2, 2]

Tasks:

1. Euclidean Distance:

- a. Compute the Euclidean distance between tasty and cheese.
- b. Compute the Euclidean distance between tasty and mushroom.
- c. Which word is closer to tasty based on the Euclidean distance?

2. Cosine Similarity:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- a. Compute the cosine similarity between **tasty** and **cheese** using the formula above.
- b. Compute the cosine similarity between tasty and mushroom.
- c. Based on cosine similarity, which word is closer to tasty?

3. Discussion:

- Compare the outcomes from the Euclidean distance and cosine similarity calculations.
- Discuss why one metric might be preferred over the other in different NLP applications.

Note

Cool video by 3blue1brown discussing word vectors (embeddings)

Exercise: Linear transformation matrix power

Tasks: 1. Matrix Power:

- Compute the matrix power of the following matrix A to the power of n:

$$A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$$

- What does the result represent in terms of linear transformations?

Exercise: Subspace

Tasks:

- 215. Տարթության կոոդինապական համակարգի սկզբնակետից ելնող վեկտորների հետևյալ բազմություններից յուրաքանչյուրի համար պարզել, արդյոք այն գծային ենթատարածություն է.
- ա) բոլոր վեկտորները, որոնց վերջնակետերը ընկած են տրված ուղղի վրա,
- r) բոլոր վեկտորները, որոնց վերջնակետերը ընկած չեն տրված ուղղի վրա,
- գ) բոլոր վեկտորները, որոնց վերջնակետերը ընկած են կոորդինատական համակարգի առաջին քառորդում,
- դ) բոլոր վեկտորները, որոնց վերջնակետերը ընկած են կոորդինատական համակարգի առաջին կամ երրորդ քաղորդում,

Figure 1: subspace exercise

Exercise: Vector Space

Definition Let V be a set on which two operations, called *addition* and *scalar multiplication*, have been defined. If \mathbf{u} and \mathbf{v} are in V, the *sum* of \mathbf{u} and \mathbf{v} is denoted by $\mathbf{u} + \mathbf{v}$, and if c is a scalar, the *scalar multiple* of \mathbf{u} by c is denoted by $c\mathbf{u}$. If the following axioms hold for all \mathbf{u} , \mathbf{v} , and \mathbf{w} in V and for all scalars c and d, then V is called a *vector space* and its elements are called *vectors*.

1. $\mathbf{u} + \mathbf{v}$ is in V .	Closure under addition
$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$	Commutativity
$3. (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$	Associativity
4. There exists an element 0 in V , called a zero vector , such that $\mathbf{u} + 0 = \mathbf{u}$.	
5. For each \mathbf{u} in V , there is an element $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = 0$.	
6. <i>c</i> u is in <i>V</i> .	Closure under scalar multiplication
$7. c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$	Distributivity
$8. (c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$	Distributivity
$9. \ c(d\mathbf{u}) = (cd)\mathbf{u}$	
$10. 1\mathbf{u} = \mathbf{u}$	

Figure 2: Poole vec space

Problem 3. Check if the following set is a vector space:

- a) $A = \mathbb{Z}$, with the usual operations + and \cdot ,
- b) $B = \left\{ \begin{bmatrix} 0 \\ 0 \\ a \end{bmatrix} \mid \text{ for all real numbers } a \in \mathbb{R} \right\}$ with the usual operations + and \cdot ,
- c) $C = \mathbb{R}^2 = \left\{ \begin{bmatrix} a \\ b \end{bmatrix} \mid \text{ for all numbers } a, b \in \mathbb{R} \right\}$, with the usual operation \cdot and the addition defined as: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 + 1 \end{bmatrix},$
- d) The set of all polynomials of degree ≤ 2 , with the usual operations + and \cdot .

Figure 3: vec space exercise