

MAR 07, 2024

OPEN ACCESS

DOI:

dx.doi.org/10.17504/protocols.io. dm6gp3111vzp/v1

Document Citation: Sarah Nagel, Anna Schmidt, Matthias Meyer 2024. ssDNA2.0: Fill-in mix. protocols.io https://dx.doi.org/10.17504/protoc ols.io.dm6gp3111vzp/v1

License: This is an open access document distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Created: Jan 09, 2024

Last Modified: Mar 07, 2024

DOCUMENT integer ID: 93161

ssDNA2.0: Fill-in mix

Sarah Nagel¹, Anna Schmidt¹, Matthias Meyer¹

¹Max Planck Institute for Evolutionary Anthropology

Anya Patova

The Max Planck Institute for Evolutionary Anthropology

ABSTRACT

Protocol for the preparation of Fill-in mix for automated single-stranded DNA library preparation using the ssDNA2.0 method (Gansauge et al. 2020).

References

Gansauge, M.-T., Aximu-Petri, A., Nagel, S., & Meyer, M. (2020). Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nature Protocols, 15, 2279-2300.

Funders Acknowledgement:

Max Planck Society Grant ID: -

Note

The volume of Fill-in mix suffices for one 96-well library preparation plate (96 + 20 reactions to account for dead volumes and loss of reagent). It is advisable to prepare 10-20 mixes at once.

Materials

Reagent/consumable	Supplier	Catalogue number	Decontamination *	
Reagents				
Water, HPLC-grade	Sigma Aldrich/Merck	1153332500	UV	
Klenow reaction buffer (10x)	Thermo Fisher Scientific	EP0052	-	
25 mM each dNTP	Thermo Fisher Scientific	R1121	-	
Tween-20 †	Thermo Fisher Scientific	11417160	UV	
Extension primer CL128 §	Eurogentec	-	-	
Consumables				
5 ml screw cap tubes (rack 2d Lp W/barcode)	Thermo Fisher Scientific	NUNC374320-BR	-	

^{*} Decontamination of reagents and consumables should be performed as detailed in the Appendix.

Equipment

Label printer (e.g. Brady M611, cat. no. M611-EU-LABS) and tube labels (e.g. Labels for TLS2200/TLS PC Link/Polyester, cat. no. PTL-82-499)

Protocol

1. Prepare the Fill-in mix in a 5 ml screw-cap tube by combining the following reagents. Mix thoroughly by vortexing. Spin tube briefly in a microcentrifuge.

[†] Use to prepare a 2% (vol/vol) solution in water. NOTE: Tween-20 is highly viscous, pipette slowly and with care. § Order oligonucleotide CL128 at 10.0 μmol synthesis scale (Eurogentec, HPLC purified). Dissolve in TE buffer (See document in the Appendix for preparation of this buffer) at a concentration of 25 μM. Sequence: 5'-GTGACTGGAGTTCAGACGTGTGCTCTTCC*G*A*T*C*T-3' (* denotes phosphothioate (PTO) linkages).

protocols.io

Reagent	Volume (μl)	Final concentration in reaction
Water	3868.6	
Klenow reaction buffer (10x)	464	1x
25 mM each dNTP	46.4	200 μM each
25 µM CL128 oligonucleotide	116	25 pmol/rct
2% Tween-20 (v/v)	145	0.05%
sum	4640	

Note

[Labeling]

Prepare tube labels using Brady printer including name of the mix, date (dd.mm.yyyy), the name of the person who prepared the Fill-in mix and the batch number of the oligo used.

2. Freeze at -20 °C until used.

Note

[Documentation]

Note the lot/batch numbers of the reagents used for master mix preparation in Labfolder (orange fields).

Attention: Batches of oligonucleotides are labelled with Roman numerals (e.g. CL128 - VIII).

Appendix

Document

NAME

UV decontamination of reagents/buffers

CREATED BY

Elena Essel

PREVIEW