Statistical inference - Tutorial 3

Estevão B. Prado

April 12, 2021

1 Exercise 1

1) We know that $\{X_i\}_{i=1}^n \sim \text{Negative Binomial}(r,p)$, where r is known. We have that

$$f(x;r,p) = {x-1 \choose r-1} p^r (1-p)^{x-r}.$$
 (1)

1.1 Part a

To solve this exercise, we'll use the definition of Exponential family distributions that's given in section 4.3 of **Sufficiency and the Rao-Blackwell Theorem** (weeks 6 and 7).

Definition. A k-parameter member of the exponential family has a density or frequency function of the form

$$f(\underline{x}; heta) = \exp\left[\sum_{1}^{k} c_i(heta) T_i(\underline{x}) + d(heta) + S(\underline{x})
ight]$$

for $\underline{x} \in A$ where the set A does not depend on θ .

That is, we need to show that f(x;r,p) has the same form of $f(x;\theta)$. For instance, we can

rewrite f(.) as follows.

$$f(x;r,p) = {x-1 \choose r-1} p^r (1-p)^{x-r},$$
(2)

$$= \exp\left[\log\left[\binom{x-1}{r-1}p^r(1-p)^{x-r}\right]\right],\tag{3}$$

$$= \exp\left[\log\binom{x-1}{r-1} + r\log(p) + (x-r)\log(1-p)\right], \text{ by rule of log}, \tag{4}$$

$$=\exp\left[S(x)+d(p)+c(p)\times T(x)\right],\tag{5}$$

where $S(x) = \log {x-1 \choose r-1}$, $d(p) = r \log(p)$, c(p) = log(1-p) and T(x) = x-r, where r is known.

1.2 Part b

We recall the Factorisation Theorem, which is introduced in section 4.1 (Sufficiency) on page 2.

Theorem. A necessary and sufficient condition for $T(\underline{X})$ to be sufficient for θ is that the joint density (or probability mass function) factors in the form

$$f(\underline{x};\theta) = g(T(\underline{x});\theta)h(\underline{x})$$

i.e. f denends on θ through T only.

$$\prod_{i=1}^{n} f(x_i; r, p) = \prod_{i=1}^{n} {x_i - 1 \choose r - 1} p^r (1 - p)^{x_i - r},$$
(6)

$$= \prod_{i=1}^{n} \left[{x_i - 1 \choose r - 1} \right] p^{nr} (1 - p)^{\sum_{i=1}^{n} (x_i - r)}, \tag{7}$$

$$= p^{nr} (1-p)^{\sum_{i=1}^{n} (x_i-r)} \prod_{i=1}^{n} \left[{x_i - 1 \choose r-1} \right],$$
 (8)

$$= g(T(\mathbf{x}); p)h(\mathbf{x}), \tag{9}$$

where $T(\mathbf{x}) = \sum_{i=1}^{n} (x_i - r)$ is the sufficient statistics for p.

Exercise 3

We know that $\{X_i\}_{i=1}^n \sim \text{Negative Binomial}(r,p)$, where r is known. We have that

$$f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n - x}.$$
 (10)

Part a

It's possible to answer this using two approaches: Factorisation Theorem or via a corollary of the Factorisation theorem, which uses the MLE. First, we use the FT as follows.

Theorem. A necessary and sufficient condition for $T(\underline{X})$ to be sufficient for θ is that the joint density (or probability mass function) factors in the form

$$f(\underline{x};\theta) = g(T(\underline{x});\theta)h(\underline{x})$$

i.e. f denends on θ through T only.

$$\prod_{i=1}^{n} f(x_i; k, p) = \prod_{i=1}^{n} {k \choose x_i} p^{x_i} (1-p)^{k-x_i},$$
(11)

$$= \prod_{i=1}^{n} \left[\binom{k}{x_i} \right] p^{\sum_{i=1}^{n} x_i} (1-p)^{\sum_{i=1}^{n} (k-x_i)}, \tag{12}$$

$$= p^{\sum_{i=1}^{n} x_i} (1-p)^{nk - \sum_{i=1}^{n} x_i} \prod_{i=1}^{n} \left[\binom{k}{x_i} \right], \tag{13}$$

$$=g(T(\mathbf{x});p)h(\mathbf{x}),\tag{14}$$

where $T(\mathbf{x}) = \sum_{i=1}^{n} x_i - r$ is the sufficient statistics for p.

Another possibility is to use a corollary of the Factorisation theorem. To use it, we first need to find the MLE of the parameter of interest (p).

Corollary of Factorisation theorem

If T is sufficient for θ , the MLE for θ is a function of T.

Here, we know that the MLE is $\hat{p} = \sum_{i=1}^{n} x_i/nk$. Hence, as the sufficient statistics T is a function of \hat{p} , we conclude that $T = \sum_{i=1}^{n} x_i$, as n and k are known.

Part b

First, we know that $\mathbb{E}(X_i) = kp$ and $\mathbb{V}(X_i) = kp(1-p)$. Again, there are two ways to answer this. For instance, we could show that \hat{p} is an unbiased estimator (i.e., $\mathbb{E}(\hat{p}) = p$) and that $\mathbb{V}(\hat{p})$ attains the Cramer-Rao Lower bound. I guess this is the easiest way to show what we need.

The second alternative is to use the Lehmann-Scheffe Theorem.

Theorem. (Lehmann-Scheffe) If T is a complete sufficient statistic and $\hat{\theta}$ is an unbiased estimator of θ , then $\hat{\theta}_1 = \mathrm{E}(\hat{\theta}|T)$ is the unique best unbiased estimator of θ .

Completeness is tricky to prove, but it holds for most distributions we consider (Binomial, Exponential, Normal....)

We know that $\hat{p} = \sum_{i=1}^{n} x_i/nk$ is unbiased because

$$\mathbb{E}(\hat{p}) = \mathbb{E}\left(\frac{\sum_{i=1}^{n} X_i}{nk}\right),\tag{15}$$

$$= \frac{\sum_{i=1}^{n} \mathbb{E}(X_i)}{nk}, (X_i's \text{ are i.i.d})$$
 (16)

$$= \frac{n\mathbb{E}(X_i)}{nk}, (X_i's \text{ are i.i.d})$$
(17)

$$=\frac{\mathbb{E}(X_i)}{k},\tag{18}$$

$$=\frac{kp}{k},\tag{19}$$

$$= p. (20)$$

In addition, recall that in a) we found that $T = \sum_{i=1}^n x_i$ is a sufficient statistics for p. However, by the Lehmann-Scheffe Theorem T is a **complete sufficient statistics** for p because the completeness of sufficient statistics holds for all exponential distributions (see section 4.3, page 6), which is the case of the Binomial distribution. Consequently, if $\mathbb{E}(\hat{p})$ is unbiased estimator and T is a **complete sufficient statistics**, then \hat{p} is BUE.

Part c

To answer this, we need to get back all the way to weeks 2 and 3 (MLE, page 9) and refresh our memory about the Invariance property of the MLE.

Invariance property of the MLE

Definition. If $\hat{\theta}$ is the mle of a parameter θ then for any function $g(\hat{\theta})$ is the mle of $g(\theta)$.

That is, the MLE for $g(p) = kp(1-p)^{k-1}$ is $g(\hat{p}) = k\hat{p}(1-\hat{p})^{k-1}$, where $\hat{p} = \sum_{i=1}^{n} x_i/nk$.

Part d

First, we'll take the hint and we'll consider an unbiased estimator of g(p) in the form of

$$\tilde{g(p)} = \begin{cases} 1, & \text{if } X_1 = 1\\ 0, & \text{otherwise.} \end{cases}$$
 (21)

Hence, we can check that

$$\mathbb{E}(\tilde{g(p)}) = 1 \times p(X_1 = 1) + 0 \times p(X_1 \neq 1), \tag{22}$$

$$= p(X_1 = 1), (23)$$

$$=g(p). (24)$$

In addition, we that $T = \sum_{i=1}^{n} x_i$ and that consequently $T \sim \text{Binomial}(nk, p)$. Now, let's recall the Rao-Blackwell Theorem.

Theorem. (Rao-Blackwell) Let $\hat{\theta}$ be an estimator for θ and let T be a sufficient statistic. Let $\hat{\theta}_1$ be another estimator for θ constructed as $\hat{\theta}_1 = \mathrm{E}(\hat{\theta}|T)$. Then $MSE(\hat{\theta}_1) \leq MSE(\hat{\theta})$. The inequality is strict unless $\hat{\theta}_1 = \hat{\theta}$.

Based on the theorem above, we have an estimator for g(p), which g(p), and we have a sufficient statistics $T = \sum_{i=1}^{n} x_i$. Still according to the theorem, a natural estimator for g(p) is given by $\mathbb{E}(g(p)|T)$. We know that

$$\mathbb{E}(\tilde{g(p)}|T) = p(X_1 = 1|T = t), \tag{25}$$

$$=\frac{p(T=t|X_1=1)p(X_1=1)}{P(T=t)}, \text{due to Bayes' theorem} \tag{26}$$

$$=\frac{p(T=t-1)p(X_1=1)}{P(T=t)},$$
(27)

$$= \frac{\operatorname{Binomial}(t-1; n-1, p)kp(1-p)^{k-1}}{\operatorname{Binomial}(t; n, p)}$$
 (28)

$$=\frac{\binom{(n-1)k}{t-1}k}{\binom{nk}{t}}.$$
(29)

Along with the Lehmann-Scheffe Theorem, we have that $\mathbb{E}(\tilde{g(p)}|T)$ is BUE for g(p).