Exercise 1

a) Results for a logistic regression for high cholesterol status follow. The global tests are all significant indicating that at least one of the predictors is significant. The type 3 analysis indicates that we would lose significantly more information about the response than expected due to chance if we remove the AgeAtStart term. If we were to remove any of the other terms from the full model, we would not lose significantly more information than expected due to chance. The sex and smoking terms are highly insignificant in the type 3 analysis and weight status is slightly insignificant.

The parameter estimates lead to similar conclusions about the predictors. Age at start is definitely significant (and has a positive relationship with high cholesterol status), and the other parameter estimates are all insignificant.

Based on these results, we would want to keep AgeAtStart in the model and will want to remove one or more of the other terms, though we could not remove them all at once because significant highly correlated predictors could be insignificant in a Type 3 sense simply because they are providing similar information. We would want to add or remove terms one at a time to get to a final model.

Testing Global Null Hypothesis: BETA=0									
Test	Chi-Square	DF	Pr > ChiSq						
Likelihood Ratio	27.8623	5	<.0001						
Score	26.8925	5	<.0001						
Wald	25.4685	5	0.0001						

Type 3 Analysis of Effects							
Effect	DF	Wald Chi-Square	Pr > ChiSq				
Sex	1	0.5167	0.4722				
Weight_Status	2	5.1887	0.0747				
AgeAtStart	1	16.7764	<.0001				
Smoking	1	0.0937	0.7595				

Analysis of Maximum Likelihood Estimates									
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq			
Intercept		1	-3.1345	0.6524	23.0817	<.0001			
Sex	Male	1	0.0724	0.1007	0.5167	0.4722			
Weight_Status	Underweight	1	-0.7067	0.7225	0.9567	0.3280			
Weight_Status	Overweight	1	0.5780	0.3728	2.4043	0.1210			
AgeAtStart		1	0.0515	0.0126	16.7764	<.0001			
Smoking		1	0.00272	0.00890	0.0937	0.7595			

b) Using stepwise selection, we find that age at start is the only significant predictor of high cholesterol status.

Summary of Stepwise Selection									
	Effe	ect		Number	Score	Wald		Variable	
Step	Entered	Removed	DF			Chi-Square			
1	AgeAtStart		1	1	21.1401		<.0001	Age at Start	

Looking at the parameter estimates, we see a statistically significant positive relationship between age at the start and having high cholesterol. Being one year older at the start would correspond to an expected increase of .0528 in the log-odds of having high cholesterol. The odds ratio shows this corresponds to a multiplicative increase of 1.054 in the odds of having high cholesterol for each year older an individual is at the start.

Analysis of Maximum Likelihood Estimates									
Parameter	ter DF Estimate		Standard Error	Wald Chi-Square	Pr > ChiSq				
Intercept	1	-2.7122	0.5173	27.4878	<.0001				
AgeAtStart	1	0.0528	0.0117	20.4218	<.0001				

Odds Ratio Estimates								
Effect	Point Estimate	2 2 7 3 1 1 3 2 3 2						
AgeAtStart	1.054	1.030	1.079					

Exercise 2

a) Starting with all previous predictors and cholesterol, we model high blood pressure status. The global tests are all significant, telling us that at least one of predictors has some predictive power.

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	47.5962	6	<.0001				
Score	44.9630	6	<.0001				
Wald	41.1667	6	<.0001				

The type 3 analysis indicates that removing weight status or age at start would result in significant loss of information, but removal of any one of the other terms from the full model would not.

The parameter estimates for age at start and for comparing overweight to normal weight are both significant and positive, while sex, underweight compared to normal, smoking, and cholesterol all have insignificant parameter estimates.

Based on these results, we would want to keep age at start and weight status in the model, and would want to remove one or more of the other predictors.

Type 3 Analysis of Effects							
Effect	DF	Wald Chi-Square	Pr > ChiSq				
Sex	1	0.0293	0.8641				
Weight_Status	2	18.3451	0.0001				
AgeAtStart	1	7.8153	0.0052				
Smoking	1	0.4649	0.4953				
Cholesterol	1	3.0630	0.0801				

	Analysis of Maximum Likelihood Estimates									
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq				
Intercept		1	-3.3034	0.7431	19.7600	<.0001				
Sex	Male	1	-0.0173	0.1012	0.0293	0.8641				
Weight_Status	Underweight	1	-0.6759	0.7227	0.8749	0.3496				
Weight_Status	Overweight	1	0.8255	0.3736	4.8822	0.0271				
AgeAtStart		1	0.0361	0.0129	7.8153	0.0052				
Smoking		1	-0.00613	0.00899	0.4649	0.4953				
Cholesterol		1	0.00379	0.00216	3.0630	0.0801				

b) Using stepwise selection, we see that age at start and weight status are the only significant predictors of high blood pressure status.

	Summary of Stepwise Selection										
	Effect			Number	Score	Wald		Variable			
Step	Entered	Removed	DF			Chi-Square					
1	Weight_Status		2	1	28.2459		<.0001	Weight Status			
2	AgeAtStart		1	2	13.9317		0.0002	Age at Start			

The parameter estimates for age at start and overweight compared to normal are again significant and positive, while underweight compared to normal weight is not significant. The odds ratios show that we would expect statistically significant increases in odds of high blood pressure as age increases and from normal to overweight weight status. In particular, the expected odds of high blood pressure would be

multiplied by 1.045 for every year increase in age at start, and the expected odds for overweight individuals to have high blood pressure would be 2.774 times that of normal weight individuals. The odds is not significantly different for normal and underweight individuals.

Analysis of Maximum Likelihood Estimates									
Parameter		DF	Estimate	Standard Error	Wald Chi-Square				
Intercept		1	-2.8487	0.6125	21.6327	<.0001			
Weight_Status	Underweight	1	-0.7115	0.7218	0.9715	0.3243			
Weight_Status	Overweight	1	0.8659	0.3726	5.4016	0.0201			
AgeAtStart		1	0.0442	0.0120	13.6604	0.0002			

Odds Ratio Estimates									
Effect	Point 95% Wald Estimate Confidence Lim								
Weight_Status Underweight vs Normal	0.573	0.067	4.912						
Weight_Status Overweight vs Normal	2.774	1.750	4.397						
AgeAtStart	1.045	1.021	1.070						

Exercise 3

a) Fitting with all predictors, the scaled deviance is about 2.7 so we estimate a scale to account for overdispersion.

Model Information				
Data Set	WORK.EPIL			
Distribution	Poisson			
Link Function	Log			
Dependent Variable	P4			

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	54	145.8141	2.7003				
Scaled Deviance	54	145.8141	2.7003				
Pearson Chi-Square	54	135.5868	2.5109				
Scaled Pearson X2	54	135.5868	2.5109				
Log Likelihood		591.2912					
Full Log Likelihood		-166.7912					
AIC (smaller is better)		343.5825					
AICC (smaller is better)		344.7146					
BIC (smaller is better)		353.9702					

After estimating the scale, we obtain the following results. Only the parameter estimate for baseline (BL) is significant, and it is positive indicating an expected increase in seizure count for increased baseline seizure count.

Since we have estimated the scale, we should refer to the F statistics for the type 1 and type 3 analyses. The type 1 analysis indicates that, in the order given, the count after one period of treatment (P1), the treatment indicator, and the baseline value are all significant. Type 3 analysis indicates that only removing the baseline count from the full model would result in a significant loss of information. We will definitely want to keep baseline count in the model, but at least one of the other terms can be removed. We will have to check which if any of the other terms should be kept.

Criteria For Assessing Goodness Of Fit							
Criterion	DF	Value	Value/DF				
Deviance	54	145.8141	2.7003				
Scaled Deviance	54	54.0000	1.0000				
Pearson Chi-Square	54	135.5868	2.5109				
Scaled Pearson X2	54	50.2125	0.9299				
Log Likelihood		218.9756					
Full Log Likelihood		-166.7912					
AIC (smaller is better)		343.5825					
AICC (smaller is better)		344.7146					
BIC (smaller is better)		353.9702					

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error			Wald Chi-Square	Pr > ChiSq		
Intercept	1	0.9023	0.5019	-0.0814	1.8861	3.23	0.0722		
P1	1	0.0039	0.0058	-0.0076	0.0154	0.44	0.5049		
Treat	1	-0.3100	0.1782	-0.6593	0.0392	3.03	0.0819		
BL	1	0.0195	0.0042	0.0113	0.0277	21.85	<.0001		
Age	1	0.0120	0.0144	-0.0162	0.0402	0.70	0.4032		
Scale	0	1.6432	0.0000	1.6432	1.6432				

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

	LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq			
Intercept	476.2487									
P1	217.7231	1	54	95.74	<.0001	95.74	<.0001			
Treat	200.8566	1	54	6.25	0.0155	6.25	0.0124			
BL	147.6894	1	54	19.69	<.0001	19.69	<.0001			
Age	145.8141	1	54	0.69	0.4083	0.69	0.4046			

	LR Statistics For Type 3 Analysis									
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq				
P1	1	54	0.45	0.5065	0.45	0.5037				
Treat	1	54	3.06	0.0860	3.06	0.0803				
BL	1	54	20.18	<.0001	20.18	<.0001				
Age	1	54	0.69	0.4083	0.69	0.4046				

b) Sequentially removing terms, we find that baseline is significant and treatment has a type 3 p-value of .055 and its parameter estimate has a p-value slightly greater than .05, so we would have baseline count as the only predictor in the model. (Note: It would probably be better to treat baseline as an offset – a known fixed value for each observation – rather than a predictor in this case. This would give a more accurate modeling of change in seizure count, which is really what we are interest in, and would potentially result in a significant result for the treatment effect. However, we did not discuss offsets in class).

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	57	159.9413	2.8060					
Scaled Deviance	57	57.0000	1.0000					
Pearson Chi-Square	57	151.2008	2.6526					
Scaled Pearson X2	57	53.8851	0.9454					
Log Likelihood		208.2074						
Full Log Likelihood		-173.8548						
AIC (smaller is better)		351.7097						
AICC (smaller is better)		351.9240						
BIC (smaller is better)		355.8648						

With the baseline count model, we find that baseline is significant in both the type 1 and type 3 analyses. The baseline parameter estimate is .0209 indicating that the seizure count after four periods of treatment increases slightly as baseline count increases. Specifically, for an increase of one in the baseline count, we would expect the count after 4 periods of treatment to be multiplied by $e^{.0209} = 1.021$, so we would expect a 2.1% increase in the number of seizures after four treatment periods for each additional seizure prior to treatment. In this model, we do not see a significant effect from the treatment at a .05 level, though it would be significant at a .1 level and might be significant if the baseline count were treated as an offset as mentioned before.

Analysis Of Maximum Likelihood Parameter Estimates									
Parameter	DF	Estimate	Standard Error			Wald Chi-Square	Pr > ChiSq		
Intercept	1	1.0897	0.1295	0.8360	1.3435	70.84	<.0001		
BL	1	0.0209	0.0017	0.0176	0.0242	156.27	<.0001		
Scale	0	1.6751	0.0000	1.6751	1.6751				

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

LR Statistics For Type 1 Analysis								
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq	
Intercept	476.2487							
BL	159.9413	1	57	112.73	<.0001	112.73	<.0001	

LR Statistics For Type 3 Analysis							
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq	
BL	1	57	112.73	<.0001	112.73	<.0001	

The residuals for the model generally look OK. The distribution of residuals versus observation number shows no major issues. Plotted against the predicted values, it appears there may a slight upward trend which would indicate a slight tendency to overpredict at the low end and underpredict at the higher end.

Exercise 4

a) Fitting count after one treatment period as a function of treatment, baseline count and age, the scaled deviance is about 3.4 so we estimate a scale to account for overdispersion.

Model Information					
Data Set	WORK.EPIL				
Distribution	Poisson				
Link Function	Log				
Dependent Variable	P1				

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	55	187.3802	3.4069					
Scaled Deviance	55	187.3802	3.4069					
Pearson Chi-Square	55	199.4665	3.6267					
Scaled Pearson X2	55	199.4665	3.6267					
Log Likelihood		908.6710						
Full Log Likelihood		-191.9378						
AIC (smaller is better)		391.8756						
AICC (smaller is better)		392.6163						
BIC (smaller is better)		400.1857						

After estimating the scale, we obtain the following results. Both the parameter estimate for age and the estimate for baseline are statistically significant and positive.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	55	187.3802	3.4069					
Scaled Deviance	55	55.0000	1.0000					
Pearson Chi-Square	55	199.4665	3.6267					
Scaled Pearson X2	55	58.5476	1.0645					
Log Likelihood		266.7139						
Full Log Likelihood		-191.9378						
AIC (smaller is better)		391.8756						
AICC (smaller is better)		392.6163						
BIC (smaller is better)		400.1857						

Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error			Wald Chi-Square	Pr > ChiSq			
Intercept	1	-0.2411	0.5045	-1.2299	0.7477	0.23	0.6328			
Treat	1	-0.1189	0.1710	-0.4540	0.2163	0.48	0.4869			
BL	1	0.0257	0.0018	0.0222	0.0293	204.16	<.0001			
Age	1	0.0465	0.0144	0.0182	0.0748	10.40	0.0013			
Scale	0	1.8458	0.0000	1.8458	1.8458					

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

Since we have estimated the scale, we should refer to the F statistics. The type 1 analysis indicates that, in the order given, the baseline count and age are significant. Type 3 analysis indicates the same, so our final model would contain those two terms.

LR Statistics For Type 1 Analysis										
Source	Deviance Num DF Den DF F Value Pr > F Chi-Square Pr >									
Intercept	746.4361									
Treat	745.4460	1	55	0.29	0.5920	0.29	0.5898			
BL	222.2496	1	55	153.57	<.0001	153.57	<.0001			
Age	187.3802	1	55	10.23	0.0023	10.23	0.0014			

	LR Statistics For Type 3 Analysis										
Source	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq					
Treat	1	55	0.48	0.4896	0.48	0.4867					
BL	1	55	163.79	<.0001	163.79	<.0001					
Age	1	55	10.23	0.0023	10.23	0.0014					

b) Fitting the model with baseline count and age as predictors, we get the following results.

Criteria For Assessing Goodness Of Fit								
Criterion	DF	Value	Value/DF					
Deviance	56	189.0289	3.3755					
Scaled Deviance	56	56.0000	1.0000					
Pearson Chi-Square	56	200.1801	3.5746					
Scaled Pearson X2	56	59.3036	1.0590					
Log Likelihood		268.9505						
Full Log Likelihood		-192.7621						
AIC (smaller is better)		391.5243						
AICC (smaller is better)		391.9606						
BIC (smaller is better)		397.7569						

Analysis Of Maximum Likelihood Parameter Estimates										
Parameter	DF	Estimate	Standard Error			Wald Chi-Square	Pr > ChiSq			
Intercept	1	-0.3815	0.4630	-1.2890	0.5259	0.68	0.4099			
BL	1	0.0257	0.0018	0.0222	0.0292	205.86	<.0001			
Age	1	0.0494	0.0138	0.0225	0.0764	12.92	0.0003			
Scale	0	1.8373	0.0000	1.8373	1.8373					

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

LR Statistics For Type 1 Analysis									
Source	Deviance	Num DF	Den DF	F Value	Pr > F	Chi-Square	Pr > ChiSq		
Intercept	746.4361								
BL	231.9037	1	56	152.43	<.0001	152.43	<.0001		
Age	189.0289	1	56	12.70	0.0008	12.70	0.0004		

	LR Statistics For Type 3 Analysis										
Source	Num DF	Pr > ChiSq									
BL	1	56	165.11	<.0001	165.11	<.0001					
Age	1	56	12.70	0.0008	12.70	0.0004					

Baseline count and age are significant in the type 1 and type 3 analyses as expected, and their parameter estimates are as well. Age and baseline count are both positively related to seizure count after one period of treatment. For an increase of one in the baseline count, we would expect the count after one period of treatment to be multiplied by $e^{.0257} = 1.026$, so we would expect a 2.6% increase in the number of seizures after one treatment period for each additional seizure prior to treatment. For a one year increase in age, we would expect a multiplicative increase of $e^{.0494} = 1.051$ in seizures after one period of treatment, so we would expect 5.1% more seizures for each additional year of age.

Looking at the residuals for this model, there are no issues with the distributional assumption. The residuals versus observation number show no extreme large residuals, and the residuals versus predicted values seem fine as well. There may be a slight upward trend, but it is much less than in the previous model and is of no concern here.

Comparing the two models, we find that baseline count is a significant positive predictor of seizure count after one period and after four periods of treatment. Age is a significant positive predictor after one period but not after four periods. The difference between active treatment and placebo is highly insignificant after one treatment period, but barely insignificant after four periods, so there appears to be no short term impact from the active treatment, but there may be some impact over longer periods of time.