$\ensuremath{\mathsf{TEK4030}}$ - Assignment 3

andretis

November 2019

Project 1 - Motion control

In this project the task was to simulate the CrustCrawler in Gazebo and implement joint space PD control with gravity compensation.

I used the attached packages to run a base Gazebo simulation of the CrustCrawler.

Figure 1: View of bare minimum CrustCrawler simulation

I have made a launch file that launches the base Gazebo simulation with the CrustCrawler gripper enabled and using effort control. Then it launches a setpoint node and a control node. Launch signature:

\$ roslaunch motion_control pd_gravity_controller.launch

Nodes

To control the robot I made two nodes; a setpoint node publishing desired joint-angles, called **setpoint_node**, and a control node, called **pd_gravity_controller** subscribing to the desired joint angle and publishing control commands to CrustCrawler joints.

Figure 2: rqt_graph view of nodes and topics

Control law

The control law for joint space PD control with gravity compensation is as follows

$$u = g(q) + K_P \tilde{q} - K_D \dot{q}$$

This is implemented in $\mathbf{pd_gravity_control}$ node, updating the control input when it receives updated joint-states $(q \text{ and } \dot{q})$ from Gazebo-simulator. The gravity term is calculated using the $crustcrawler_lib$ package, and the K_P and K_D terms are provided by the $\mathbf{pd_gravity_control}$ node.

Dynamic reconfiguration of control parameters and desired joint angle

The controller and setpoint node supports dynamic reconfiguration of K_P , K_D and desired joint angle of joint-2. Using the controllers launch-file it will launch a rqt_reconfigure window where one can reconfigure control parameters and joint-angle.

Figure 3: Reconfiguration of parameters

Testing control parameters

In my implementation it is only desired angle of joint 2 that is changed, while all the other joints have set desired joint angle to 0.

Some good values of the control parameters was $K_P=100$ and $K_D=40$

Figure 4: Step response from $\theta_{d_2}=0$ to $\theta_{d_2}=1$