Q. What about LLG's?

Theorem: L is regular $\iff \exists \text{ LLG } G$ s.t. L = L(G).

Proof: Recall: for any language,

$$L^{\mathsf{R}} = \{ \boldsymbol{u}^{\mathsf{R}} \mid \boldsymbol{u} \in \boldsymbol{L} \}.$$

And for an **nfa** M, define the **reverse nfa** M^{R} by:

- 1. reversing all arrows and,
- 2. interchanging start and final states.

(Details on p. 3-12)

Notes:

(1) If
$$L(M) = L$$
 then $L(M^{\mathsf{R}}) = L^R$

(2) L is regular $\iff L^{\mathsf{R}}$ is regular (*)

Now: Given a Σ -LLG G with productions of form:

$$A \longrightarrow Bv$$
 and

$$A \longrightarrow v$$

(with $v \in \Sigma^*$)

Define **RLG** G^{R} , by replacing all such productions by:

$$A \longrightarrow v^{\mathsf{R}}B$$
 and

$$A \longrightarrow v^{R}$$
 (respectively)

Can check:
$$L(G^{\mathsf{R}}) = (L(G))^{\mathsf{R}}$$
 (**)

Hence:

$$L$$
 is regular \iff L^{R} is regular (by (*))

 \iff L^{R} is generated by an **RLG**, G

(by Theorem)

$$\iff$$
 L is generated by an **LLG**, G^{R} (by (**))