

Ninth exercise class

UNIVERSITY OF COPENHAGEN

Class 5

Introduction to numerical programming and analysis

Asker Nygaard Christensen Spring 2021

Plan

- 1. Problem Set 5, P.2-P.4
- 2. P.5 and P.6, intuition
- 3. Self work 15:40-16:45
- 4. Going through P.5 and P.6 together
- 5. Recap

Problem Set 5, P.2-P.4

PS₅

I don't have to many direct notes for problem set 5, P.2-P.4, since there are many references already. I have uploaded my version of the answers if you're interested in <u>alternative solutions</u>. There is also an faster implementation of the sieve of Eratosthenes in the last problem (which you'll need if you have a crack at project Euler).

P.2-P.4

P.2 Factorical. If recursion is messing with your mind you can watch this video, which is explains it quit nicely, using the factorial as an example.

They also made <u>this video</u>, with a slightly more complicated example.

- P.3 **Bubble sort**. As noted, you can use the *bubble_sort()* from the lectures, the change you have to make, is to make the function sort in descending order instead of ascending.
- P.4 **Linear search**. As noted, take inspiration from *linear_search()* from the lectures. And notice that this time you are not looking for an exact match

P.5 and P.6, intuition

P.5-P.6

For **Bisection** and **Finding prime numbers** there is no corresponding functions in the lectures. So these are a bit harder. There are, however, algorithmic 'cooking recipes' to use a guide. I'll try to explain the intuition now, and then we'll go through the answer at the end of class.

P.5, intuition

P.6, intuition

Definition of prime: A prime number is a natural number, greater than 1 that is not a product of two smaller natural numbers.

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Self work 15:40-16:45

Going through P.5 and P.6

together

Recap

Euler

You're very welcome to ask my questions about Euler problems also.

ALSO: Remember to do your peer feedback, they're a requirement

for the exam!

