Άσκηση $1^{η}$:

```
1.
(p \Leftrightarrow \neg q) \Rightarrow ((r \land s) \lor t)
((p \Rightarrow \neg q) \land (\neg q \Rightarrow p)) \Rightarrow ((r \land s) \lor t)
((\neg p \lor \neg q) \land (\neg \neg q \lor p)) \Rightarrow ((r \land s) \lor t)
\neg((\neg p \lor \neg q) \land (q \lor p)) \lor ((r \land s) \lor t)
(\neg(\neg p \lor \neg q) \lor \neg(q \lor p)) \lor ((r \land s) \lor t)
((\neg \neg p \land \neg \neg q) \lor (\neg q \land \neg p)) \lor ((r \land s) \lor t)
((p \land q) \lor (\neg q \land \neg p)) \lor ((r \land s) \lor t)
(((p \land q) \lor \neg q) \land ((p \land q) \lor \neg p)) \lor ((t \lor r) \land (t \lor s))
((p \lor \neg q) \land (q \lor \neg q) \land (p \lor \neg p) \land (q \lor \neg p)) \lor ((t \lor r) \land (t \lor s))
((p \lor \neg q) \land (q \lor \neg p) \land (p \lor \neg p) \land (q \lor \neg p) \lor (t \lor r)) \land ((p \lor \neg q) \land (q \lor \neg q) \land (p \lor \neg p) \land (q \lor \neg p) \lor (t \lor s))
((t \lor r) \lor (p \lor \neg q)) \land ((t \lor r) \lor (q \lor \neg q)) \land ((t \lor r) \lor (p \lor \neg p)) \land ((t \lor r) \lor (q \lor \neg p)) \land ((t \lor s) \lor (p \lor \neg q))
                           \wedge ((t \vee s) \vee (q \vee \neg q)) \wedge ((t \vee s) \vee (p \vee \neg p)) \wedge ((t \vee s) \vee (q \vee \neg p))
(t \lor r \lor p \lor \neg q) \land (t \lor r \lor q \lor \neg q) \land (t \lor r \lor p \lor \neg p) \land (t \lor r \lor q \lor \neg p) \land (t \lor s \lor p \lor \neg q) \land (t \lor s \lor q \lor \neg q)
                           \wedge (t \vee s \vee p \vee \neg p) \wedge (t \vee s \vee q \vee \neg p)
\{[t, r, p, \neg q], [t, r, q, \neg q], [t, r, p, \neg p], [t, r, \neg p, q], [t, s, p, \neg q], [t, s, q, \neg q], [t, s, p, \neg p], [t, s, \neg p, q]\}
Οι λίστες [t, r, q, \neg q], [t, r, p, \neg p], [t, s, q, \neg q], [t, s, p, \neg p] είναι πάντα TRUE. Άρα τελικά η CNF είναι:
\{[t, r, p, \neg q], [t, r, \neg p, q], [t, s, p, \neg q], [t, s, \neg p, q]\}
2.
(\forall x. \forall y. \exists z. q(x, y, z) \lor \exists x. \forall y. p(x, y)) \land \neg(\exists x. \exists y. p(x, y))
(\forall x. \forall y. \exists z. q(x, y, z) \lor \exists x. \forall y. p(x, y)) \land (\forall x. \forall y. \neg p(x, y))
(\forall x_1. \forall y_1. q(x_1, y_1, f(x_1, y_1)) \lor \forall y_2. p(c, y_2)) \land (\forall x_3. \forall y_3. \neg p(x_3, y_3))
(\forall x_1. \forall y_1. \forall y_2. (q(x_1, y_1, f(x_1, y_1)) \lor p(c, y_2))) \land (\forall x_3. \forall y_3. \neg p(x_3, y_3))
\forall x_1. \forall y_1. \forall w. \forall x_3. \forall y_3. ((q(x_1, y_1, f(x_1, y_1)) \lor p(c, y_2)) \land \neg p(x_3, y_3))
(q(x_1, y_1, f(x_1, y_1)) \lor p(c, y_2)) \land \neg p(x_3, y_3)
\{[q(x_1, y_1, f(x_1, y_1), p(c, y_2)], [\neg p(x_2, y_2)]\}
```

Άσκηση 2^{η} :

<u>1,2:</u>

$$\Delta^I = \{a, b, c\}$$

$$R^{I} = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, a)\}$$

Η ανακλαστική ισχύει αφού τα (a,a), (b,b), (c,c) ανήκουν στο R^I , καθώς ισχύει και η συμμετρική αφού για κάθε ζεύγος στοιχείων που ανήκει στο R^I , ανήκει στο R^I και το συμμετρικό του ((a,b),(b,a),(a,c),(c,a)) Η μεταβατική όμως δεν ισχύει καθώς ενώ τα (a,b), (c,a) ανήκουν στο R^I το (c,b) δεν ανήκει.

<u>1,3:</u>

$$\Delta^I = \{a, b, c\}$$

$$R^{I} = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$$

Η ανακλαστική ισχύει αφού τα (a,a), (b,b), (c,c) ανήκουν στο R^I , καθώς ισχύει και η μεταβατική αφού στο R^I ανήκουν τα (a,b), (b,c), (a,c). Όμως η συμμετρική δεν ισχύει αφού στο R^I ανήκει το (a,b) αλλά όχι το (b,a)

<u>2,3:</u>

$$\Delta^I = \{a, b, c\}$$

$$R^{I} = \{(a,b), (b,a), (b,c), (c,b), (a,c), (c,a)\}$$

Η μεταβατική ισχύει αφού ισχύει η ιδιότητα σε όλες τις περιπτώσεις, καθώς ισχύει και η συμμετρική αφού για κάθε ζεύγος στοιχείων που ανήκει στο R^I , ανήκει στο R^I και το συμμετρικό του. Όμως η ανακλαστική δεν ισχύει αφού στο R^I δεν ανήκουν τα (a,a), (b,b), (c,c).

Συμπεραίνουμε, λοιπόν, ότι καμία από τις προτάσεις δεν αποτελεί λογική συνέπεια άλλων προτάσεων.

Άσκηση 3^η:

- 1. $\forall x. \exists y. (A(x) \Rightarrow R(x,y) \land C(y))$
- 2. $\forall x. \exists y. (B(x) \Rightarrow S(y, x) \land D(y))$
- 3. $\forall x. (D(x) \Rightarrow A(x))$
- 4. $\forall x. \forall y. (S(x, y) \Rightarrow T(y, x))$
- 5. $\forall x. \forall y. \forall z. (T(x, y) \land R(y, z) \land C(z) \Rightarrow Q(x))$

Αρχικά μετατρέπουμε τις προτάσεις σε ΚΣΜ:

- 1. ⇒
 - $\forall x. \exists y. (\neg A(x) \lor (R(x,y) \land C(y))$
 - $\forall x. \exists y. (\neg B(x) \lor (S(y,x) \land D(y))$
 - $\forall x. (\neg D(x) \lor A(x))$
 - $\forall x. \forall y. (\neg S(x,y) \lor T(y,x))$
 - $\forall x. \forall y. \forall z. (\neg (T(x,y) \land R(y,z) \land C(z)) \lor Q(x))$
- 2. Μετακίνηση ¬
 - $\forall x. \exists y. (\neg A(x) \lor (R(x,y) \land C(y))$
 - $\forall x. \exists y. (\neg B(x) \lor (S(y,x) \land D(y))$
 - $\forall x. (\neg D(x) \lor A(x))$
 - $\forall x. \forall y. (\neg S(x,y) \lor T(y,x))$
 - $\forall x. \forall y. \forall z. (\neg T(x,y) \lor \neg R(y,z) \lor \neg C(z) \lor Q(x))$
- 3. Μοναδικά ονόματα για κάθε μεταβλητή
 - $\forall x. \exists y. (\neg A(x) \lor (R(x,y) \land C(y))$
 - $\forall z. \exists w. (\neg B(z) \lor (S(w,z) \land D(w))$
 - $\forall g. (\neg D(g) \lor A(g))$
 - $\forall k. \forall m. (\neg S(k,m) \lor T(m,k))$
 - $\forall n. \forall p. \forall q. (\neg T(n,p) \lor \neg R(p,q) \lor \neg C(q) \lor Q(n))$
- 4. Skolemization
 - $\forall x. (\neg A(x) \lor (R(x, f(x)) \land C(f(x)))$
 - $\forall z. (\neg B(z) \lor (S(f(z), z) \land D(f(z)))$
 - $\forall g. (\neg D(g) \lor A(g))$
 - $\forall k. \forall m. (\neg S(k,m) \lor T(m,k))$
 - $\forall n. \forall p. \forall q. (\neg T(n,p) \lor \neg R(p,q) \lor \neg C(q) \lor Q(n))$
- 5. Αφαίρεση των ∀
 - $\neg A(x) \lor (R(x, f(x)) \land C(f(x))$
 - $\neg B(z) \lor (S(f(z),z) \land D(f(z))$
 - $\neg D(g) \lor A(g)$
 - $\neg S(k,m) \lor T(m,k)$
 - $\neg T(n,p) \lor \neg R(p,q) \lor \neg C(q) \lor Q(n)$
- 6. Επιμερισμός διαζεύξεων
 - $(\neg A(x) \lor R(x, f(x)) \land (\neg A(x) \lor C(f(x)))$
 - $(\neg B(z) \lor (S(f(z),z)) \land (\neg B(z) \lor D(f(z)))$
 - $\neg D(g) \lor A(g)$
 - $\neg S(k,m) \lor T(m,k)$
 - $\neg T(n,p) \lor \neg R(p,q) \lor \neg C(q) \lor Q(n)$

Άρα τελικά:

```
1. [\neg A(x), R(x, f(x))], [\neg A(x), C(f(x))]

2. [\neg B(z), (S(f(z), z)], [\neg B(z), D(f(z))]

3. [\neg D(g), A(g)]

4. [\neg S(k, m), T(m, k)]

5. [\neg T(n, p), \neg R(p, q), \neg C(q), Q(n)]
```

Επίσης φέρνουμε σε ΚΣΜ και την άρνηση της $\forall x. (B(x) \Rightarrow Q(x))$:

Προσθέτω την άρνηση αυτού που θέλω να αποδείξω στην γνώση μου. Άρα 6. $[B(c), \neg Q(c)]$

Άσκηση 4^{η} :

- 1. $\forall x. \exists y. (X \acute{\omega} \rho \alpha(x) \Rightarrow (A \nu \acute{\eta} \kappa \epsilon \iota \Sigma \epsilon(x, y) \land H \pi \epsilon \iota \rho \circ \varsigma(y)))$
- 2. $\exists x. (X \acute{\omega} \rho \alpha(x) \land M \epsilon \gamma \alpha \lambda \acute{\upsilon} \tau \epsilon \rho o A \pi \acute{o} (\pi \lambda \eta \theta \upsilon \sigma \mu \acute{o} \varsigma(x), 300.000.000))$
- 3. $\forall x. \forall y1. \forall y2. \forall y3. (X \omega \rho \alpha(x) \wedge A \nu \eta \kappa \epsilon \iota \Sigma \epsilon(x, y1) \wedge A \nu \eta \kappa \epsilon \iota \Sigma \epsilon(x, y2) \wedge A \nu \eta \kappa \epsilon \iota \Sigma \epsilon(x, y3) \Rightarrow ((y3 = y1) \vee (y3 = y2) \vee (y1 = y2)))$
- 4. $\exists x. \forall y \big(X \dot{\omega} \rho \alpha(x) \wedge X \dot{\omega} \rho \alpha(y) \wedge A v \dot{\eta} \kappa \epsilon \iota \Sigma \epsilon(x, A \mu \epsilon \rho \iota \kappa \dot{\eta}) \wedge A v \dot{\eta} \kappa \epsilon \iota \Sigma \epsilon(y, E v \rho \dot{\omega} \pi \eta) \big) \Rightarrow M \epsilon \gamma \alpha \lambda \dot{\upsilon} \tau \epsilon \rho o A \pi \dot{o} \big(\pi \lambda \eta \theta v \sigma \mu \dot{o} \varsigma(x), \pi \lambda \eta \theta v \sigma \mu \dot{o} \varsigma(y) \big)$
- 5. $\exists x. \exists y. \forall z (X \acute{\omega} \rho \alpha(x) \land X \acute{\omega} \rho \alpha(y) \land X \acute{\omega} \rho \alpha(z) \land M \epsilon \gamma \alpha \lambda \acute{\upsilon} \tau \epsilon \rho o A \pi \acute{o}(\pi \lambda \eta \theta \upsilon \sigma \mu \acute{o}\varsigma(x), 1.000.000.000) \land M \epsilon \gamma \alpha \lambda \acute{\upsilon} \tau \epsilon \rho o A \pi \acute{o}(\pi \lambda \eta \theta \upsilon \sigma \mu \acute{o}\varsigma(y), 1.000.000.000) \land (x \neq y) \land (M \epsilon \gamma \alpha \lambda \acute{\upsilon} \tau \epsilon \rho o A \pi \acute{o}(\pi \lambda \eta \theta \upsilon \sigma \mu \acute{o}\varsigma(z), 1.000.000.000) \Rightarrow (z = x) \lor (z = y))$
- 6. $\forall x. X \dot{\omega} \rho \alpha(x) \land (x \neq K \dot{\nu} \alpha) \land (x \neq I \nu \delta \dot{\iota} \alpha) \Rightarrow M \varepsilon \gamma \alpha \lambda \dot{\upsilon} \tau \varepsilon \rho o A \pi \dot{o}(\pi \lambda \eta \theta \nu \sigma \mu \dot{o} \varsigma(K \dot{\nu} \alpha), \pi \lambda \eta \theta \nu \sigma \mu \dot{o} \varsigma(x)) \land M \varepsilon \gamma \alpha \lambda \dot{\upsilon} \tau \varepsilon \rho o A \pi \dot{o}(\pi \lambda \eta \theta \nu \sigma \mu \dot{o} \varsigma(I \nu \delta \dot{\iota} \alpha), \pi \lambda \eta \theta \nu \sigma \mu \dot{o} \varsigma(x))$

Άσκηση $5^{η}$:

1.
$$\forall x. (p(x) \Rightarrow q(a))$$

 $\forall x. (\neg p(x) \lor q(a))$
 $\neg p(x) \lor q(a)$
 $(\forall x. p(x)) \Rightarrow q(a)$
 $\neg (\forall x. p(x)) \lor q(a)$
 $\exists x. \neg p(x) \lor q(a)$
 $\neg p(c) \lor q(a)$

Παρατηρούμε ότι αν κάτι είναι ερμηνεία της πρώτης τότε είναι και ερμηνεία της δεύτερης, καθώς στην πρώτη πρόταση θα πρέπει να ισχύει για όλα τα x που ανήκουν στο Δ^I , ενώ στη δεύτερη περίπτωση αρκεί ένα.

2.
$$\exists x. (p(x) \Rightarrow q(a))$$
$$\exists x. (\neg p(x) \lor q(a))$$
$$\neg p(c) \lor q(a)$$
$$(\exists x. p(x)) \Rightarrow q(a)$$
$$\neg (\exists x. p(x)) \lor q(a)$$
$$\forall x. \neg p(x) \lor q(a)$$
$$\neg p(x) \lor q(a)$$
$$\Delta^{I} = \{a, b\}$$
$$p^{I} = \{(a)\}$$
$$q^{I} = \emptyset$$

Η συγκεκριμένη ερμηνεία είναι μοντέλο της πρώτης πρότασης καθώς για c=a (το c είναι μια σταθερά) το p(a)=T και το p(a)=F όποτε η πρόταση συνολικά είναι True, ενώ στη δεύτερη περίπτωση για p(a)=F είναι True ενώ για p(a)=F είναι False, άρα δεν είναι μοντέλο της.

Άσκηση 6η:

1.
$$r(x,b) \leftarrow r(a,x)$$

 $r(x,z) \leftarrow r(x,y), r(y,z)$
 $P = \{r(x,b) \leftarrow r(a,x), r(x,z) \leftarrow r(x,y), r(y,z)\}$
 $UP = \{a,b\}$
 $BP = \{r(a,a), r(b,b), r(a,b), r(b,a)\}$

2.
$$q(0) \leftarrow p(x) \leftarrow p(f(x))$$

 $P = \{q(0) \leftarrow, p(x) \leftarrow p(f(x))\}$
 $UP = \{0, f(0), f^{2}(0), ...\}$
 $BP = \{q(0), p(0), p(f(0)), p(f^{2}(0)), ...\}$

$Λσκηση <math>7^{η}$:

```
1. parent(x, y) \leftarrow father(x, y)
2. parent(x,y) \leftarrow mother(x,y)
3. sibling(y, z) \leftarrow parent(y, x), parent(z, x)
4. sibling(x, y) \leftarrow sibling(y, x)
5. grandparent(x, z) \leftarrow parent(x, y), parent(y, z)
6. cousin(y,z) \leftarrow grandparent(y,x), grandparent(z,x)
7. mother(A, B) \leftarrow
8. father(A,C) \leftarrow
9. mother(B, D) \leftarrow
10. mother(E, D) \leftarrow
11. father(F, E) \leftarrow
12. father(G, E) \leftarrow
1) Forward chaining:
    Θέλω να αποδείξω: \leftarrow cousin(A, F)
    13. από 2 και 7: parent(A,B)
    14. από 1 και 11: parent(F,E)
    15. από 1 και 9: parent(B,D)
    16. από 2 και 10: parent(E,D)
    17. από 5 και 13,15: grandparent(A,D)
    18. από 5 και 14,16: grandparent(F,D)
    19: από 6 και 17 και 18: cousin(A,F)
    επιτυχία
    Θέλω να αποδείξω: \leftarrow sibling(A, G)
    13. από 1 και 12: parent(G,E)
    14. από 2 και 7: parent(A,B)
    15. από 1 και 8: parent(A,C)
    παρατηρούμε ότι δεν υπάρχει κοινός γονιός μεταξύ των Α και G και άρα δεν υπάρχει μετονομασία του κανόνα
```

3 ώστε τα Α και G να βγουν αδέλφια. Άρα αποτυχία.

2) Backward chaining:

Θέλω να αποδείξω: $\leftarrow cousin(A, F)$

Προσθέτω στην γνώση μου την άρνηση του: $cousin(A,F) \leftarrow$

<pre> /6. Y/A, z/F /grandparent(A,x), grandparent(F,x) /5. allown per: grandparent(x, zi) ← parent(x, Yi), parent (Yi, Zi) /xi/A, zi/x, Yi/y /parent(A,y), parent(y,x), grandparent(F,x) /xi/A /mother(A,y), parent(y,x), grandparent(F,x) /xi/B /parent(B,x), grandparent(F,x) /xi/B, Yi/x /mother(B,x), grandparent(F,x) /grandparent(F,D) /grandparent(F,D) </pre>
5. allogn per: grandparent(x, z,) = parent(x, y,), parent (y, z,)
<pre> - parent(A,y), parent(y, x), grandparent(F,x) 2. x/A - mother(A,y), parent(y,x), grandparent(F,x) 7. y/B - parent(B,x), grandparent(F,x) 2. x/B, y/lx - mother(B,x), grandparent(F,x) 3. x/D </pre>
2. × /A <mother(a, <pre="" [7.="" grandparent(f,="" parent(y,="" x)="" x),="" y),="" y b=""></mother(a,>
<pre> -mother(A, y), parent(y, x), grandparent(F, x) 7. y18</pre>
<pre></pre>
←mother (B, x), grandparent(F, x)
9. ×10
=arandoaront (F. D)
5. × IF, 21D
<pre></pre>
<pre> father (F, Y), parent(y, D) </pre>
- Parent [E, D]
-mother(E,D)
D Z EMITUXIA

Θέλω να αποδείξω: $\leftarrow sibling(A, G)$

Προσθέτω στην γνώση μου την άρνηση του: $sibling(A,G) \leftarrow$

	(3. y/A, 216		
∠ DC	rrent(A,x), parent	(6 x)	
	.IA, Y. 1x 2. x. 1		1 - 1
< father(A, x), parent(6,x)	<pre>~ mother(A, x), i</pre>	parent(G,x)
8. x/	C	\7. x18	
← parent	(6, C)	-pavent (
1.x/G, y	1C 2.46, 41C	1. ×6, 418	
= father(G,C	mother(G,C)	< father (G, B)	<mother(g,b)< td=""></mother(g,b)<>
×	×	×	×
LA OTTOTA			

Άσκηση 8η:

- 1. $add(x,0,x) \leftarrow$
- 2. $add(x, s(y), s(z)) \leftarrow add(x, y, z)$

Θέλω να αποδείξω: $\leftarrow add(s(0), v, s(s(0)))$, με backward SLD άρα προσθέτω στην γνώση μου την άρνησή του $\leftarrow add(s(0), v, s(s(0)))$ και ξεκινάω από αυτόν τον κανόνα (τον ονομάζω 3.)

 <a h<="" th="">
←add (s(0) y s(0))
12. x(s(0), y(0
V
 n avrikatástasn Evar u=s(y) }=> u=s(o)
Y=0 J

Άσκηση 9η:

IN={a}

 $CN=\{A,B,C\}$

 $RN=\{r,s\}$

$$\Delta^I = \{a_0, a_1, a_2\}$$

$$\alpha^I = \{a_0\}$$

$$A^I=\{a_0,a_2\}$$

$$B^I=\{a_1\}$$

$$C^I = \{a_2\}$$

$$r^I = \{(a_1, a_0), (a_1, a_2)\}$$

$$s^I = \{(a_0, a_1), (a_2, a_1)\}$$