

©2021 ANSYS, Inc. All Rights Reserved. Unauthorized use, distribution or duplication is prohibited.

Ansys Fluent User's Guide

ANSYS, Inc.
Southpointe
2600 Ansys Drive
Canonsburg, PA 15317
ansysinfo@ansys.com
http://www.ansys.com
(T) 724-746-3304
(F) 724-514-9494

Release 2021 R2 July 2021

ANSYS, Inc. and Ansys Europe, Ltd. are UL registered ISO 9001: 2015 companies.

Copyright and Trademark Information

© 2021 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

Ansys, Ansys Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, service and feature names or trademarks are the property of their respective owners. FLEXIm and FLEXnet are trademarks of Flexera Software LLC.

Disclaimer Notice

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.

ANSYS, Inc. and Ansys Europe, Ltd. are UL registered ISO 9001: 2015 companies.

U.S. Government Rights

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

Third-Party Software

See the legal information in the product help files for the complete Legal Notice for Ansys proprietary software and third-party software. If you are unable to access the Legal Notice, contact ANSYS, Inc.

Published in the U.S.A.

Table of Contents

I. Getting Started	127
1. Introduction to Ansys Fluent	129
1.1.The Ansys Product Improvement Program	131
1.2. Program Capabilities	
1.3. Known Limitations in Ansys Fluent 2021 R2	136
2. Basic Steps for CFD Analysis using Ansys Fluent	155
2.1. Steps in Solving Your CFD Problem	155
2.2. Planning Your CFD Analysis	
3. Guide to a Successful Simulation Using Ansys Fluent	161
4. Starting and Executing Ansys Fluent	
4.1. Starting Ansys Fluent	
4.1.1. Selecting the Licensing Level	
4.1.2. Starting Ansys Fluent Using Fluent Launcher	
4.1.2.1. Setting General Options in Fluent Launcher	
4.1.2.2. Single-Precision and Double-Precision Solvers	
4.1.2.3. Setting Parallel Options in Fluent Launcher	
4.1.2.4. Setting Remote Options in Fluent Launcher	
4.1.2.5. Setting Scheduler Options in Fluent Launcher	
4.1.2.6. Setting Environment Options in Fluent Launcher	
4.1.3. Starting Ansys Fluent on a Windows System	
4.1.4. Starting Ansys Fluent on a Linux System	
4.1.5. Command Line Startup Options	
4.1.5.1. ACT Option	
4.1.5.2. Application Option	
4.1.5.3. Application Script Option	
4.1.5.4. Graphics Options	
4.1.5.5. Meshing Mode Option	
4.1.5.6. Performance Options	
4.1.5.7. Parallel Options	
4.1.5.8. Postprocessing Option	
4.1.5.9. Remote Visualization Options	
4.1.5.10. Scheduler Options	
4.1.5.11.Text Command Option	
4.1.5.12. Version, Release Options, and Environment Variables	
4.1.5.13. System Coupling Options	
4.1.5.14. Other Startup Options	
4.2. Running Ansys Fluent in Batch Mode	
4.2.1. Background Execution on Linux Systems	
4.2.2. Background Execution on Windows Systems	
4.2.3. Batch Execution Options	
4.3. Switching Between Meshing and Solution Modes	
4.4. Checkpointing an Ansys Fluent Simulation	
4.5. Cleaning Up Processes From an Ansys Fluent Simulation	
4.6. Exiting Ansys Fluent	
Glossary of Terms	
II. Meshing Mode	
1. Introduction to Meshing Mode in Fluent	
1.1. Meshing Approach	
1.2. Meshing Mode Capabilities	199

2. Starting Fluent in Meshing Mode	201
2.1. Starting the Dual Process Build	201
2.2. Dynamically Spawning Processes Between Fluent Meshing and Fluent Solution Modes	202
3. Graphical User Interface	205
3.1. User Interface Components	206
3.1.1. The Ribbon	206
3.1.2. The Workflow Tab	212
3.1.3. The Outline View Tab	213
3.1.4. The Graphics Window	220
3.1.5. Quick Search	220
3.1.6. The Console	221
3.1.7. The Toolbars	221
3.1.7.1. Pointer Tools	222
3.1.7.2. View Tools	223
3.1.7.3. Graphics Effects Tools	224
3.1.7.4. Mesh Display Tools	225
3.1.7.5. Visibility Tools	225
3.1.7.6. Copy Tools	226
3.1.7.7. Object Selection/Display Tools	226
3.1.7.8. Filter Toolbar	227
3.1.7.9. CAD Tools	227
3.1.7.10.Tools	228
3.1.7.11. Context Toolbar	228
3.1.8. ACT Start Page	228
3.2. Customizing the User Interface	
3.3. Setting User Preferences/Options	229
3.4. Using the Help System	231
3.4.1. Help for Text Interface Commands	231
3.4.2. Obtaining a Listing of Other License Users	
4. Text User Interface	233
5. Reading and Writing Files	
5.1. Shortcuts for Reading and Writing Files	235
5.1.1. Binary Files	
5.1.2. Reading and Writing Compressed Files	236
5.1.2.1. Reading Compressed Files	
5.1.2.2. Writing Compressed Files	
5.1.3. Tilde Expansion (LINUX Systems Only)	
5.1.4. Disabling the Overwrite Confirmation Prompt	
5.2. Mesh Files	
5.2.1. Reading Mesh Files	
5.2.1.1. Reading Multiple Mesh Files	
5.2.1.2. Reading 2D Mesh Files in the 3D Version of Fluent	
5.2.2. Reading Boundary Mesh Files	
5.2.3. Reading Faceted Geometry Files from Ansys Workbench in Fluent	
5.2.4. Appending Mesh Files	
5.2.5. Writing Mesh Files	
5.2.6. Writing Boundary Mesh Files	
5.3. Case Files	
5.3.1. Reading Case Files	
5.3.1.1. Reading Files Using the Legacy Format	
5.3.2. Writing Case Files	243

5.3.2.1. Writing Files Using the Legacy Format	244
5.4. Reading and Writing Size-Field Files	244
5.5. Reading Scheme Source Files	245
5.6. Creating and Reading Journal Files	245
5.7. Creating Transcript Files	247
5.8. Reading and Writing Domain Files	248
5.9. Importing Files	248
5.9.1. Importing CAD Files	249
5.10. Saving Picture Files	256
5.10.1. Using the Save Picture Dialog Box	256
6. Working With Fluent Guided Workflows	261
6.1. Getting Started with the Fluent Guided Workflows	261
6.1.1. Prerequisites for the Fluent Guided Workflows	262
6.1.2. Limitations of the Fluent Guided Workflows	263
6.1.3. Customizing Workflows	268
6.1.4. Understanding Task States	269
6.1.5. Operating on Tasks	270
6.1.6. Grouping Tasks	270
6.1.7. Editing Tasks	
6.1.8. Monitoring Task Updates	
6.1.9. Accessing Advanced Options	
6.1.10. Filtering Lists and Using Wildcards	
6.1.11. Saving and Loading Workflows	
6.1.12. Setting Preferences for Workflows	273
6.1.13. Getting Help for Workflow Tasks	
6.2. Using the Watertight Geometry Workflow	275
6.2.1. Importing Geometries	276
6.2.2. Importing Body of Influence Geometries	278
6.2.3. Adding Local Sizing	279
6.2.4. Generating the Surface Mesh	282
6.2.5. Setting Up Periodic Boundaries	288
6.2.6. Describing the Geometry	292
6.2.7. Applying Share Topology	292
6.2.7.1. Troubleshooting Gap Marking	294
6.2.8. Enclosing Fluid Regions	296
6.2.9. Creating Regions	299
6.2.10. Updating Regions	300
6.2.11. Adding Boundary Layers	301
6.2.12. Generating the Volume Mesh	304
6.2.13. Updating Boundaries	309
6.2.14. Improving the Surface Mesh	310
6.2.15. Adding Boundary Types	311
6.2.16. Improving the Volume Mesh	312
6.2.17. Transforming the Volume Mesh	312
6.2.18. Extruding the Volume Mesh	
6.2.19. Adding Linear Mesh Patterns	318
6.2.19.1. Creating Custom Patterns Using Scripts	
6.2.19.1.1. Examples of Creating Custom Patterns Using Scripts	324
6.2.19.1.1.1. Pattern Example Using Explicit Name Rule	
6.2.19.1.1.2. Pattern Example of Using Both Explicit and Regular Name Rule	326
6.2.20. Managing Zones	329

6.2.21. Modifying Mesh Refinement	331
6.2.22. Creating Local Refinement Regions	332
6.2.23. Running Custom Journal Commands	336
6.3. Using the Fault-tolerant Meshing Workflow	337
6.3.1. Importing CAD Geometries and Managing CAD Parts	337
6.3.1.1. Appending CAD Files	341
6.3.1.2. Working with the CAD Model Tree	342
6.3.1.3. Working with the Meshing Model Tree	344
6.3.1.4. Setting Properties for Meshing Model Objects	346
6.3.1.4.1. Creating Automatic Meshing Objects on a Per Part Basis	
6.3.1.4.2. Creating Customized Meshing Objects	
6.3.1.5. Performing Operations on Meshing Model Objects	352
6.3.1.5.1. Performing Transformation Operations on Meshing Model Objects	352
6.3.1.5.2. Performing Refaceting Operations on Meshing Model Objects	
6.3.1.5.3. Listing Meshing Operations	356
6.3.1.6. Faceting Considerations	
6.3.1.7. Setting Display Options for CAD Model and Meshing Objects	358
6.3.1.8. Using Hot Key Shortcuts in the Model Trees and the Graphics Window	359
6.3.2. Describing the Geometry and the Flow	
6.3.3. Enclosing Fluid Regions	361
6.3.4. Creating External Flow Boundaries	364
6.3.5. Creating Local Refinement Regions	
6.3.6. Identifying Construction Surfaces	
6.3.7. Extracting Edge Features	
6.3.8. Adding Thickness to Your Geometry	
6.3.9. Creating Porous Regions	
6.3.10. Identifying Regions	382
6.3.11. Defining Leakage Thresholds	
6.3.12. Updating Your Region Settings	
6.3.13. Choosing Mesh Control Options	
6.3.14. Adding Local Size Controls	
6.3.15. Generating the Surface Mesh	392
6.3.16. Updating Boundaries	395
6.3.17. Describing Overset Features	
6.3.17.1. Creating Collar Meshes	
6.3.17.2. Creating Component Meshes	398
6.3.18. Adding Boundary Layers	400
6.3.19. Identifying Deviated Faces	402
6.3.20. Generating the Volume Mesh	403
6.3.21. Creating Overset Mesh Interfaces	
6.3.22. Identifying Orphans	
6.3.23. Transforming the Volume Mesh	
6.3.24. Extruding the Volume Mesh	408
6.3.25. Separating Contacts	412
7. CAD Assemblies	413
7.1. CAD Assemblies Tree	
7.1.1. FMDB File	
7.1.2. CAD Entity Path	
7.1.3. CAD Assemblies Tree Options	
7.2. Visualizing CAD Entities	
7.3 Undating CAD Entities	416

7.4. Manipulating CAD Entities	
7.4.1. Creating and Modifying Geometry/Mesh Objects	417
7.4.2. Managing Labels	418
7.4.3. Setting CAD Entity States	
7.4.4. Modifying CAD Entities	419
7.5. CAD Association	
8. Size Functions and Scoped Sizing	421
8.1. Types of Size Functions or Scoped Sizing Controls	
8.1.1. Curvature	
8.1.2. Proximity	
8.1.3. Meshed	
8.1.4. Hard	
8.1.5. Soft	428
8.1.6. Body of Influence	
8.2. Defining Size Functions	
8.2.1. Creating Default Size Functions	
8.3. Defining Scoped Sizing Controls	
8.3.1. Size Control Files	
8.4. Computing the Size Field	
8.4.1. Size Field Files	
8.4.2. Using Size Field Filters	
8.4.3. Visualizing Sizes	
8.5. Using the Size Field	
9. Objects and Material Points	
9.1. Objects	
9.1.1. Object Attributes	
9.1.1.1. Creating Objects	
9.1.2. Object Entities	
9.1.2.1. Using Face Zone Labels	
9.1.3. Managing Objects	
9.1.3.1. Using hotkeys and onscreen tools	
9.1.3.1.1. Creating Objects for CAD Entities	
9.1.3.1.2. Creating Objects for Unreferenced Zones	
9.1.3.1.3. Creating Multiple Objects	444
9.1.3.1.4. Easy Object Creation and Modification	
9.1.3.1.5. Changing Object Properties	
9.1.3.1.6. Automatic Alignment of Objects	445
9.1.3.1.7. Remeshing Geometry Objects	
9.1.3.1.8. Creating Edge Zones	446
9.1.3.2. Using the Manage Objects Dialog Box	446
9.1.3.2.1. Defining Objects	
9.1.3.2.2. Object Manipulation Operations	448
9.1.3.2.3. Object Transformation Operations	449
9.2. Material Points	450
9.2.1. Creating Material Points	
10. Object-Based Surface Meshing	
10.1. Surface Mesh Processes	455
10.2. Preparing the Geometry	457
10.2.1. Using a Bounding Box	
10.2.2. Closing Annular Gaps in the Geometry	
10.2.3. Patching Tools	

	10.2.3.1. Using the Patch Options Dialog Box	459
	10.2.3.2. Using the Loop Selection Tool	462
	10.2.4. Using User-Defined Groups	463
	10.3. Diagnostic Tools	463
	10.3.1. Geometry Issues	464
	10.3.2. Face Connectivity Issues	465
	10.3.3. Quality Checking	466
	10.3.4. Summary	467
	10.4. Connecting Objects	467
	10.4.1. Using the Join/Intersect Dialog Box	470
	10.4.2. Using the Join Dialog Box	471
	10.4.3. Using the Intersect Dialog Box	472
	10.5. Advanced Options	472
	10.5.1. Object Management	472
	10.5.2. Removing Gaps Between Mesh Objects	473
	10.5.3. Removing Thickness in Mesh Objects	475
	10.5.4. Sewing Objects	477
	10.5.4.1. Resolving Thin Regions	479
	10.5.4.2. Processing Slits	479
	10.5.4.3. Removing Voids	479
11	. Object-Based Volume Meshing	481
	11.1. Volume Mesh Process	481
	11.2. Volumetric Region Management	483
	11.2.1. Computing and Verifying Regions	483
	11.2.2. Volumetric Region Operations	485
	11.3. Generating the Volume Mesh	
	11.3.1. Meshing All Regions Collectively Using Auto Mesh	487
	11.3.2. Meshing Regions Selectively Using Auto Fill Volume	489
	11.4. Cell Zone Options	490
12	. Manipulating the Boundary Mesh	
	12.1. Manipulating Boundary Nodes	
	12.1.1. Free and Isolated Nodes	
	12.2. Intersecting Boundary Zones	
	12.2.1. Intersecting Zones	
	12.2.2. Joining Zones	
	12.2.3. Stitching Zones	
	12.2.4. Using the Intersect Boundary Zones Dialog Box	
	12.2.5. Using Shortcut Keys/Icons	
	12.3. Modifying the Boundary Mesh	
	12.3.1. Using the Modify Boundary Dialog Box	
	12.3.2. Operations Performed: Modify Boundary Dialog Box	
	12.3.3. Locally Remeshing a Boundary Zone or Faces	
	12.3.4. Moving Nodes	
	12.4. Improving Boundary Surfaces	
	12.4.1. Improving the Boundary Surface Quality	
	12.4.2. Smoothing the Boundary Surface	
	12.4.3. Swapping Face Edges	
	12.5. Refining the Boundary Mesh	
	12.5.1. Procedure for Refining Boundary Zones	
	12.6. Creating and Modifying Features	
	12.6.1. Creating Edge Zones	513

12.6.2. Modifying Edge Zones	516
12.6.3. Using the Feature Modify Dialog Box	517
12.7. Remeshing Boundary Zones	
12.7.1. Creating Edge Zones	
12.7.2. Modifying Edge Zones	
12.7.3. Remeshing Boundary Face Zones	
12.7.4. Using the Surface Retriangulation Dialog Box	
12.8. Faceted Stitching of Boundary Zones	
12.9. Triangulating Boundary Zones	
12.10. Separating Boundary Zones	
12.10.1. Separating Face Zones using Hotkeys	
12.10.2. Using the Separate Face Zones dialog box	
12.11. Projecting Boundary Zones	
12.12. Creating Groups	
12.13. Manipulating Boundary Zones	
12.14. Manipulating Boundary Conditions	
12.15. Creating Surfaces	
12.15.1. Creating a Bounding Box	
12.15.1.1. Using the Bounding Box Dialog Box	
12.15.1.2. Using the Construct Geometry Tool	
12.15.2. Creating a Planar Surface Mesh	
12.15.2.1. Using the Plane Surface Dialog Box	
12.15.3. Creating a Cylinder/Frustum	
12.15.3.1. Using the Cylinder Dialog Box	
12.15.3.2. Using the Construct Geometry Tool	
12.15.4. Creating a Swept Surface	
12.15.4.1. Using the Swept Surface Dialog Box	
12.15.5. Creating a Revolved Surface	
12.15.5.1. Using the Revolved Surface Dialog Box	
12.15.6. Creating Periodic Boundaries	
12.16. Removing Gaps Between Boundary Zones	
12.17. Using the Loop Selection Tool	
13. Wrapping Objects	
13.1. The Wrapping Process	
13.1.1. Extract Edge Zones	
13.1.2. Create Intersection Loops	
13.1.2.1. Individually	
13.1.2.2. Collectively	
13.1.3. Setting Geometry Recovery Options	
13.1.4. Fixing Holes in Objects	
13.1.5. Shrink Wrapping the Objects	
13.1.6. Improving the Mesh Objects	
13.1.7. Object Wrapping Options	
13.1.7.1. Resolving Thin Regions During Object Wrapping	
13.1.7.2. Detecting Holes in the Object	
13.1.7.3. Improving Feature Capture For Mesh Objects	
14. Creating a Mesh	
14.1. Choosing the Meshing Strategy	
14.1.1. Boundary Mesh Containing Only Triangular Faces	
14.1.2. Mixed Boundary Mesh	
14.1.3. Hexcore Mesh	

	14.1.4. CutCell Mesh	569
	14.1.5. Rapid Octree Mesh	570
	14.1.6. Additional Meshing Tasks	571
	14.1.7. Inserting Isolated Nodes into a Tet Mesh	572
	14.2. Using the Auto Mesh Dialog Box	575
	14.3. Generating a Thin Volume Mesh	578
	14.4. Generating Pyramids	579
	14.4.1. Creating Pyramids	579
	14.4.2. Zones Created During Pyramid Generation	581
	14.4.3. Pyramid Meshing Problems	581
	14.5. Creating a Non-Conformal Interface	583
	14.5.1. Separating the Non-Conformal Interface Between Cell Zones	583
	14.6. Creating a Heat Exchanger Zone	
	14.7. Parallel Meshing	
	14.7.1. Auto Partitioning	
	14.7.1.1. Availability of Graphical User Interface Options After Parallel Meshing	
	14.7.1.2. Availability of Text Interface Options After Parallel Meshing	
	14.7.2. Computing Partitions	590
	14.7.3. Controlling the Threads	591
15	Generating Prisms	
	15.1. The Prism Generation Process	
	15.1.1. Zones Created During Prism Generation	
	15.2. Procedure for Creating Zone-based Prisms	
	15.3. Prism Meshing Options for Zone-Specific Prisms	
	15.3.1. Growth Options for Zone-Specific Prisms	
	15.3.1.1. Growing Prisms Simultaneously from Multiple Zones	
	15.3.1.2. Growing Prisms on a Two-Sided Wall	
	15.3.1.3. Ignoring Invalid Normals	
	15.3.1.4. Detecting Proximity and Collision	
	15.3.1.5. Splitting Prism Layers	
	15.3.1.6. Preserving Orthogonality	
	15.3.2. Offset Distances	
	15.3.3. Direction Vectors	
	15.3.4. Using Adjacent Zones as the Sides of Prisms	
	15.3.5. Post Prism Mesh Quality Improvement	
	15.3.5.1. Improving the Prism Cell Quality	
	15.3.5.2. Removing Poor Quality Cells	
	15.3.5.3. Improving Warp	
	15.4. Prism Meshing Options for Scoped Prisms	
	15.5. Prism Meshing Problems	
16	Generating Tetrahedral Meshes	
	16.1. Automatically Creating a Tetrahedral Mesh	
	16.1.1. Automatic Meshing Procedure for Tetrahedral Meshes	
	16.1.2. Using the Auto Mesh Tool	
	16.1.3. Automatic Meshing of Multiple Cell Zones	
	16.1.4. Automatic Meshing for Hybrid Meshes	
	16.1.5. Further Mesh Improvements	
	16.2. Manually Creating a Tetrahedral Mesh	
	16.2.1. Manual Meshing Procedure for Tetrahedral Meshes	
	16.3. Initializing the Tetrahedral Mesh	
	ro.s. i. initializing using the rei Dialog Box	b33

16.4. Refining the Tetrahedral Mesh	
16.4.1. Using Local Refinement Regions	
16.4.2. Refinement Using the Tet Dialog Box	
16.5. Common Tetrahedral Meshing Problems	
17. Generating the Hexcore Mesh	
17.1. Hexcore Meshing Procedure	
17.2. Using the Hexcore Dialog Box	
17.3. Controlling Hexcore Parameters	
17.3.1. Maximum or Minimum Cell Length	
17.3.2. Buffer Layers	
17.3.3. Peel Layers	
17.3.4. Defining Hexcore Extents	
17.3.4.1. Hexcore to Selected Boundaries	
17.3.5. Local Refinement Regions	
18. Generating Polyhedral Meshes	
18.1. Meshing Process for Polyhedral Meshes	
18.2. Steps for Creating the Polyhedral Mesh	
18.2.1. Further Mesh Improvements	
18.2.2. Transferring the Poly Mesh to Solution Mode	
19. Generating Poly-Hexcore Meshes	
19.1. Steps for Creating the Poly-Hexcore Mesh	
20. Generating the CutCell Mesh	
20.1. The CutCell Meshing Process	
20.2. Using the CutCell Dialog Box	
20.2.1. Handling Zero-Thickness Walls	
20.2.2. Handling Overlapping Surfaces	
20.2.3. Resolving Thin Regions	
20.3. Improving the CutCell Mesh	
20.4. Post CutCell Mesh Generation Cleanup	
20.5. Generating Prisms for the CutCell Mesh	
20.6. The Cut-Tet Workflow	
21. Generating Rapid Octree Meshes	
21.1. Using the Rapid Octree Mesher	
21.1.1. Geometry	
21.1.1.1 Specifying the Input Object	
21.1.1.2. Specifying the Volume	
21.1.1.3. Defining the Bounding Box	
21.1.1.4. Reporting the Base Length	
21.1.2. Boundary Treatment	
21.1.3. Mesh Parameters	
21.1.3.1. Custom Boundary Sizes	
21.1.3.1.1. Creating Size Functions	
21.1.3.1.2. Draw, Change, and Delete Functions	
21.1.3.2. Refinement Regions	
21.2. Limitations of the Rapid Octree Mesher	
22. Improving the Mesh	
22.1. Smoothing Nodes	
22.1.1. Laplace Smoothing	
22.1.2. Variational Smoothing of Tetrahedral Meshes	
22.1.3. Skewness-Based Smoothing of Tetrahedral Meshes	
22.2. Swapping	695

	22.3. Improving the Mesh	. 696
	22.4. Removing Slivers from a Tetrahedral Mesh	. 696
	22.4.1. Automatic Sliver Removal	. 697
	22.4.2. Removing Slivers Manually	. 697
	22.5. Modifying Cells	. 699
	22.5.1. Using the Modify Cells Dialog Box	
	22.6. Moving Nodes	
	22.6.1. Automatic Correction	
	22.6.2. Semi-Automatic Correction	
	22.6.3. Repairing Negative Volume Cells	. 703
	22.7. Cavity Remeshing	
	22.7.1. Tetrahedral Cavity Remeshing	
	22.7.2. Hexcore Cavity Remeshing	
	22.8. Manipulating Cell Zones	. 709
	22.8.1. Active Zones and Cell Types	. 709
	22.8.2. Copying and Moving Cell Zones	
	22.9. Manipulating Cell Zone Conditions	
	22.10. Using Domains to Group and Mesh Boundary Faces	
	22.10.1. Using Domains	
	22.10.2. Defining Domains	. 711
	22.11. Checking the Mesh	. 712
	22.12. Selectively Checking the Volume Mesh	. 713
	22.13. Checking the Mesh Quality	. 716
	22.14. Clearing the Mesh	. 716
23	. Examining the Mesh	. 719
	23.1. Displaying the Mesh	. 719
	23.1.1. Generating the Mesh Display using Onscreen Tools	. 719
	23.1.2. Generating the Mesh Display Using the Display Grid Dialog Box	. 721
	23.1.2.1. Mesh Display Attributes	. 721
	23.2. Controlling Display Options	. 724
	23.3. Modifying and Saving the View	. 727
	23.3.1. Mirroring a Non-symmetric Domain	. 727
	23.3.2. Controlling Perspective and Camera Parameters	. 727
	23.4. Composing a Scene	. 728
	23.4.1. Changing the Display Properties	. 729
	23.4.2. Transforming Geometric Entities in a Scene	. 729
	23.4.3. Adding a Bounding Frame	. 729
	23.4.4. Using the Scene Description Dialog Box	. 730
	23.5. Controlling the Mouse Buttons	. 732
	23.6. Controlling the Mouse Probe Function	. 735
	23.7. Annotating the Display	. 737
	23.8. Setting Default Controls	. 737
24	. Determining Mesh Statistics and Quality	. 739
	24.1. Determining Mesh Statistics	. 739
	24.2. Determining Mesh Quality	
	24.2.1. Determining Surface Mesh Quality	
	24.2.2. Determining Volume Mesh Quality	. 741
	24.2.3. Determining Boundary Cell Quality	. 742
	24.2.4. Quality Measure	
	24.3. Reporting Mesh Information	
Δ	Importing Roundary and Volume Meshes	753

A.1. GAMBIT Meshes	753
A.2. TetraMesher Volume Mesh	753
A.3. Meshes from Third-Party CAD Packages	753
A.3.1. I-deas Universal Files	755
A.3.1.1. Recognized I-deas Datasets	755
A.3.1.2. Grouping Elements to Create Zones for a Surface Mesh	755
A.3.1.3. Grouping Nodes to Create Zones for a Volume Mesh	756
A.3.1.4. Periodic Boundaries	756
A.3.1.5. Deleting Duplicate Nodes	756
A.3.2. PATRAN Neutral Files	756
A.3.2.1. Recognized PATRAN Datasets	756
A.3.2.2. Grouping Elements to Create Zones	757
A.3.2.3. Periodic Boundaries	757
A.3.3. Ansys Files	757
A.3.3.1. Recognized Datasets	757
A.3.3.2. Periodic Boundaries	758
A.3.4. ARIES Files	758
A.3.5. NASTRAN Files	758
A.3.5.1. Recognized NASTRAN Bulk Data Entries	758
A.3.5.2. Periodic Boundaries	759
A.3.5.3. Deleting Duplicate Nodes	759
B. Mesh File Format	761
B.1. Guidelines	761
B.2. Formatting Conventions in Binary Files and Formatted Files	761
B.3. Grid Sections	762
B.3.1. Comment	762
B.3.2. Header	763
B.3.3. Dimensions	763
B.3.4. Nodes	763
B.3.5. Periodic Shadow Faces	764
B.3.6. Cells	
B.3.7. Faces	766
B.3.8. Edges	768
B.3.9. Face Tree	769
B.3.10. Cell Tree	770
B.3.11. Interface Face Parents	770
B.4. Non-Grid Sections	771
B.4.1. Zone	
B.5. Example Files	
C. Shortcut Keys	
C.1. Shortcut Key Actions	
C.1.1. Entity Information	
Bibliography	
III. Solution Mode	
Using This Manual	
1. Typographical Conventions	
2. Mathematical Conventions	
1. Graphical User Interface (GUI)	
1.1. GUI Components	
1.1.1.The Ribbon	
1.1.2.The Outline View	803

1.1.3. Graphics Windows	. 806
1.1.4. Quick Search	. 810
1.1.5. Toolbars	. 810
1.1.5.1. The Standard Toolbar	. 811
1.1.5.2. The Graphics Toolbars	. 811
1.1.5.2.1. Mesh Display	. 812
1.1.5.2.2. Pointer Tools	. 812
1.1.5.2.3. View Tools	. 813
1.1.5.2.4. Visibility Tools	. 814
1.1.5.2.5. Copy Tools	. 815
1.1.5.2.6. Object Selection/Display Tools	. 815
1.1.5.2.7. Graphics Effects Tools	. 816
1.1.5.2.8. Additional Display Options	. 816
1.1.6. Task Pages	
1.1.7. The Console	. 817
1.1.8. Dialog Boxes	. 818
1.1.8.1. Input Controls	. 821
1.1.8.1.1. Tabs	. 821
1.1.8.1.2. Buttons	. 821
1.1.8.1.3. Check Boxes	. 821
1.1.8.1.4. Radio Buttons	. 821
1.1.8.1.5. Text Entry Boxes	. 821
1.1.8.1.6. Integer Number Entry Boxes	. 821
1.1.8.1.7. Real Number Entry Boxes	. 822
1.1.8.1.8. Filter Text Entry Boxes	. 822
1.1.8.1.9. Single-Selection Lists	. 822
1.1.8.1.10. Multiple-Selection Lists	. 823
1.1.8.1.11. Drop-Down Lists	. 824
1.1.8.1.12. Scales	. 824
1.1.8.2. Types of Dialog Boxes	. 825
1.1.8.2.1. Information Dialog Boxes	. 825
1.1.8.2.2. Warning Dialog Boxes	. 825
1.1.8.2.3. Error Dialog Boxes	. 826
1.1.8.2.4.The Working Dialog Box	. 826
1.1.8.2.5. Question Dialog Box	. 827
1.1.8.2.6.The Select File Dialog Box	. 827
1.1.9. Quick Property Editor for Boundaries	. 829
1.2. Customizing the Graphical User Interface	. 830
1.3. Setting User Preferences/Options	. 832
1.4. Fluent Graphical User Interface Other Languages	. 834
1.5. Having the Session Close After Sitting Idle	
1.5.1. Timeout Using the Set Idle Timeout Dialog Box	. 837
1.5.2. Timeout Using FLUENT_MAX_IDLE_TIMEOUT	. 838
1.5.3. Idle Timeout Limitations	. 838
1.6. Using the Help System	. 838
1.6.1. Task Page and Dialog Box Help	. 839
1.6.2. Obtaining License Use Information	. 839
1.6.3. Version and Release Information	. 839
2. Text User Interface (TUI)	. 841
3. Reading and Writing Files	. 843
3.1. Shortcuts for Reading and Writing Files	Q//

	2.1.1 Default File Cuffings	044
	3.1.1. Default File Suffixes	
	,	
	3.1.3. Detecting File Format	
	3.1.4. Recent File List	
	3.1.5. Reading and Writing Compressed Files	
	3.1.5.1. Reading Compressed Files	
	3.1.5.2. Writing Compressed Files	
	3.1.6. Tilde Expansion (Linux Systems Only)	
	3.1.7. Automatic Numbering of Files	
	3.1.8. Disabling the Overwrite Confirmation Prompt	
	Reading Mesh Files	
3.3.	Reading and Writing Case and Data Files	
	3.3.1. Reading and Writing Case Files	
	3.3.2. Reading and Writing Data Files	
	3.3.3. Reading and Writing Case and Data Files Together	
	3.3.4. Reading and Writing Files in the Legacy Format	
	3.3.5. Automatic Saving of Case and Data Files	854
3.4.	Reading Fluent/UNS and RAMPANT Case and Data Files	857
3.5.	Reading and Writing Profile Files	858
	3.5.1. Reading Profile Files	858
	3.5.2. Writing Profile Files	858
3.6.	Reading and Writing Boundary Conditions	860
3.7.	Writing a Boundary Mesh	861
3.8.	Reading Scheme Source Files	861
3.9.	Creating and Reading Journal Files	861
	3.9.1. Procedure	863
	3.9.2. Multiple Journal Files	864
3.10	D. Creating Transcript Files	
	1. Importing Files	
	3.11.1. ABAQUS Files	
	3.11.2.CFX Files	
	3.11.3. Meshes and Data in CGNS Format	
	3.11.4. EnSight Files	
	3.11.5. Ansys FIDAP Neutral Files	
	3.11.6. GAMBIT and GeoMesh Mesh Files	
	3.11.7. HYPERMESH ASCII Files	
	3.11.8. I-deas Universal Files	
	3.11.9. LSTC Files	
	3.11.10. Marc POST Files	
	3.11.11. Mechanical APDL Files	
	3.11.12. NASTRAN Files	
	3.11.13. PATRAN Neutral Files	
	3.11.14. PLOT3D Files	
	3.11.15. PTC Mechanica Design Files	
	3.11.16.Tecplot Files	
	3.11.17. Fluent 4 Case Files	
	3.11.18. PreBFC Files	
	3.11.19. Partition Files	
2 4 .	3.11.20. CHEMKIN Mechanism	
3.T	2. Exporting Solution Data	
	3.12.1. Exporting Limitations	8/6

3.13. Exporting Solution Data after a Calculation	877
3.13.1. ABAQUS Files	879
3.13.2. Mechanical APDL Input Files	879
3.13.3. ASCII Files	880
3.13.4. AVS Files	880
3.13.5.CDAT for CFD-Post and EnSight	880
3.13.6. CGNS Files	
3.13.7. Common Fluids Format - Post Files	883
3.13.8. Data Explorer Files	
3.13.9. EnSight Case Gold Files	
3.13.10. FAST Files	
3.13.11. FAST Solution Files	888
3.13.12. FieldView Unstructured Files	888
3.13.13. I-deas Universal Files	
3.13.14. NASTRAN Files	890
3.13.15. PATRAN Files	
3.13.16. TAITherm Files	891
3.13.17.Tecplot Files	
3.14. Exporting Steady-State Particle History Data	
3.15. Exporting Data During a Transient Calculation	
3.15.1. Creating Automatic Export Definitions for Solution Data	
3.15.2. Creating Automatic Export Definitions for Transient Particle History Data	898
3.16. Exporting to Ansys CFD-Post	
3.17. Parallel Exporting to Ansys EnSight	901
3.18. Managing Solution Files	
3.19. Mesh-to-Mesh Solution Interpolation	
3.19.1. Performing Mesh-to-Mesh Solution Interpolation	
3.19.2. Format of the Interpolation File	
3.20. Mapping Data for Fluid-Structure Interaction (FSI) Applications	
3.20.1. FEA File Formats	
3.20.2. Using the FSI Mapping Dialog Boxes	
3.21. Saving Picture Files	
3.21.1. Using the Save Picture Dialog Box	
3.21.1.1. Choosing the Picture File Format	
3.21.1.2. Specifying the Color Mode	
3.21.1.3. Choosing the File Type	
3.21.1.4. Defining the Resolution	
3.21.1.5. Picture Options	
3.21.2. Picture Options for PostScript Files	
3.21.2.1.Window Dumps (Linux Systems Only)	
3.21.2.2. Previewing the Picture Image	
3.22. Setting Data File Quantities	
3.23.The .fluent File	
3.24. Coupled Simulations in Ansys Fluent with Functional Mock-up Unit (FMU) Files	
Unit Systems	
4.1. Restrictions on Units	
4.2. Units in Mesh Files	
4.3. Built-In Unit Systems in Ansys Fluent	
4.4. Customizing Units	
4.4.1. Listing Current Units	
4.4.2 Changing the Units for a Quantity	929

4.

	4.4.3. Defining a New Unit	929
	4.4.3.1. Determining the Conversion Factor	930
5. I	Fluent Expressions Language	931
	5.1. Introduction to Expressions	931
	5.1.1. Expression Syntax	931
	5.1.1.1. Expression Data Types	931
	5.1.1.2. Expression Values	931
	5.1.1.3. Expression Operations and Functions	932
	5.1.2. Units Validation	938
	5.2. Expression Sources	938
	5.2.1. Field Variables	939
	5.2.2. Solution Variables	939
	5.2.3. Scientific Constants	940
	5.2.4. Aliases	940
	5.2.5. Profiles	941
	5.3. Creating and Using Expressions	942
	5.3.1. Directly Applied Expressions	943
	5.3.1.1. Expressions for Cell Zones and Boundary Conditions	943
	5.3.1.2. Expressions for Material Properties	946
	5.3.1.3. Expressions in the Console	947
	5.3.2. Named Expressions	947
	5.3.3. Context Specification	951
	5.3.4. Plotting Expressions	951
	5.3.5. Postprocessing Expressions	953
	5.3.6. Expression Manager	954
	5.4. Expression Examples	
	5.4.1. Parabolic Inflow Profile	
	5.4.2. Time-Varied Parabolic Inflow	
	5.4.3. Controlled Outlet Temperature	
	5.4.4. Computing Forces with Parameterized Angle of Attack	
	5.5. Appendix: Supported Field Variables	
6. I	Reading and Manipulating Meshes	
	6.1. Mesh Topologies	
	6.1.1. Examples of Acceptable Mesh Topologies	
	6.1.2. Face-Node Connectivity in Ansys Fluent	
	6.1.2.1. Face-Node Connectivity for Triangular Cells	
	6.1.2.2. Face-Node Connectivity for Quadrilateral Cells	
	6.1.2.3. Face-Node Connectivity for Tetrahedral Cells	
	6.1.2.4. Face-Node Connectivity for Wedge Cells	
	6.1.2.5. Face-Node Connectivity for Pyramidal Cells	
	6.1.2.6. Face-Node Connectivity for Hex Cells	
	6.1.2.7. Face-Node Connectivity for Polyhedral Cells	
	6.1.3. Choosing the Appropriate Mesh Type	
	6.1.3.1. Setup Time	
	6.1.3.2. Computational Expense	
	6.1.3.3. Numerical Diffusion	
	6.2. Mesh Requirements and Considerations	
	6.2.1. Geometry/Mesh Requirements	
	6.2.2. Mesh Quality	
	6.2.2.1. Mesh Element Distribution	
	6.2.2.2. Cell Quality	. 1034

	6.2.2.3. Smoothness		
	6.2.2.4. Flow-Field Dependency		
5.3	Mesh Sources		
	6.3.1. Ansys Meshing Mesh Files		
	6.3.2. Fluent Meshing Mode Mesh Files		
	6.3.3. Fluent Meshing Mesh Files		
	6.3.4. GAMBIT Mesh Files		
	6.3.5. GeoMesh Mesh Files		
	6.3.6. PreBFC Mesh Files		
	6.3.6.1. Structured Mesh Files		
	6.3.6.2. Unstructured Triangular and Tetrahedral Mesh Files		
	6.3.7. ICEM CFD Mesh Files		
	6.3.8. I-deas Universal Files		
	6.3.8.1. Recognized I-deas Datasets		
	6.3.8.2. Grouping Nodes to Create Face Zones		
	6.3.8.3. Grouping Elements to Create Cell Zones		
	6.3.8.4. Deleting Duplicate Nodes		
	6.3.9. NASTRAN Files		
	6.3.9.1. Recognized NASTRAN Bulk Data Entries		
	6.3.9.2. Deleting Duplicate Nodes		
	6.3.10. PATRAN Neutral Files		
	6.3.10.1. Recognized PATRAN Datasets		
	6.3.10.2. Grouping Elements to Create Cell Zones		
	6.3.11. Mechanical APDL Files		
	6.3.11.1. Recognized Ansys 5.4 and 5.5 Datasets		
	6.3.12. CFX Files		
	6.3.13. Using the fe2ram Filter to Convert Files		
	6.3.14. Removing Hanging Nodes/Edges		
	6.3.14.1. Limitations		
	6.3.15. Fluent/UNS and RAMPANT Case Files		
	6.3.16. FLUENT 4 Case Files		
	6.3.17. Ansys FIDAP Neutral Files		
	6.3.18. Reading Multiple Mesh/Case/Data Files		
	6.3.18.1. Reading Multiple Mesh Files via the Solution Mode of Fluent		
	6.3.18.2. Reading Multiple Mesh Files via the Meshing Mode of Fluent	10	47
	6.3.18.3. Reading Multiple Mesh Files via tmerge		
	6.3.19. Reading Surface Mesh Files	10	50
5.4	.Reference Frames		
	6.4.1. Creating and Using Reference Frames	10	51
5.5	Non-Conformal Meshes		
	6.5.1. Non-Conformal Mesh Calculations		
	6.5.1.1. The Periodic Boundary Condition Option	10	56
	6.5.1.2. The Periodic Repeats Option	10	58
	6.5.1.3. The Coupled Wall Option	10	60
	6.5.1.4. Matching Option	10	61
	6.5.1.5. The Mapped Option		
	6.5.1.6. The Static Option	10	64
	6.5.1.7. Interface Zones Automatic Naming Conventions	10	64
	6.5.1.7.1. Default (No Options Enabled)	10	65
	6.5.1.7.2. Periodic Boundary Condition	10	65
	6.5.1.7.3. Periodic Repeats	10	65

6.5.1.7.4. Coupled Wall	1065
6.5.1.7.5. Matching	
6.5.1.7.6. Mapped	
6.5.1.7.7. Static	
6.5.2. Non-Conformal Interface Algorithm	
6.5.3. Requirements and Limitations of Non-Conformal Meshes	
6.5.4. Using a Non-Conformal Mesh in Ansys Fluent	
6.5.4.1. Manually Creating Mesh Interfaces	
6.5.4.2. Transferring Motion Across a Mesh Interface	
6.6. Overset Meshes	
6.6.1. Introduction	
6.6.2. Overset Topologies	
6.6.3. Overset Domain Connectivity	
6.6.3.1. Hole Cutting	
6.6.3.1.1. Hole Cutting Control	
<u> </u>	
6.6.3.2. Overlap Minimization	
6.6.4. Diagnosing Overset Interface Issues	
6.6.4.1. Flood Filling Fails During Hole Cutting	
6.6.4.1.1. Incorrect Seed Cells	
6.6.4.1.2. Leakage Between Overlapping Boundaries	
6.6.4.2. Donor Search Fails Due to Orphan Cells	
6.6.5. Overset Mesh Adaption	
6.6.5.1. Donor Size Adaption	
6.6.5.2. Orphan Adaption	
6.6.5.3. Using Manual Overset Adaption	
6.6.5.4. Using Automatic Overset Adaption	
6.6.5.5. Overset Adaption Controls	
6.6.6. Overset Meshing Best Practices	
6.6.7. Overset Meshing Limitations and Compatibilities	
6.6.7.1. Limitations	
6.6.7.2. Compatibilities	
6.6.8. Setting up an Overset Interface	
6.6.9. Postprocessing Overset Meshes	
6.6.9.1. Overset Mesh Display	
6.6.9.2. Overset Field Functions	
6.6.9.3. Overset Cell Marks	
6.6.9.4. Overset Interface Listing	
6.6.9.5. Overset Postprocessing Limitations	
6.6.10. Writing and Reading Overset Files	
6.7. Controlling Flow in Narrow Gaps and Valves	
6.7.1. The Gap Model Approach	
6.7.2. Limitations of the Gap Model	
6.7.3. Recommendations for the Setup of a Simulation with Gaps	1113
6.7.4. Using the Gap Model	1113
6.8. Checking the Mesh	1119
6.8.1. Mesh Check Report	1120
6.8.2. Repairing Meshes	1121
6.9. Reporting Mesh Statistics	1124
6.9.1. Mesh Size	1124
6.9.2. Memory Usage	1125

6.9.2.1. Linux Systems	
6.9.2.2. Windows Systems	
6.9.3. Mesh Zone Information	
6.9.4. Partition Statistics	
6.10. Converting the Mesh to a Polyhedral Mesh	
6.10.1.Converting the Domain to a Polyhedra	
6.10.1.1. Limitations	
6.10.2. Converting Skewed Cells to Polyhedra	
6.10.2.1. Limitations	
6.10.3. Converting Cells with Hanging Nodes / Edges to Polyhedra	
6.10.3.1. Limitations	
6.11. Modifying the Mesh	
6.11.1. Merging Zones	
6.11.1.1.When to Merge Zones	
6.11.1.2. Using the Merge Zones Dialog Box	
6.11.2. Separating Zones	
6.11.2.1. Separating Face Zones	
6.11.2.1.1. Methods for Separating Face Zones	
6.11.2.1.2. Inputs for Separating Face Zones	
6.11.2.2. Separating Cell Zones	
6.11.2.2.1. Methods for Separating Cell Zones	
6.11.2.2.2. Inputs for Separating Cell Zones	
6.11.3. Fusing Face Zones	
6.11.3.1. Inputs for Fusing Face Zones	
6.11.3.1.1. Fusing Zones on Branch Cuts	
6.11.4. Creating Periodic Zones and Interfaces	
6.11.5. Decoupling Periodic Zones	
6.11.6. Slitting Face Zones	
6.11.6.1. Inputs for Slitting Face Zones	
6.11.7. Orienting Face Zones	
6.11.8. Extruding Face Zones	
6.11.8.1. Specifying Extrusion by Displacement Distances	
6.11.8.2. Specifying Extrusion by Parametric Coordinates	
6.11.9. Replacing, Deleting, Deactivating, and Activating Zones	
6.11.9.1. Replacing Zones	
6.11.9.2. Deleting Zones	
6.11.9.3. Deactivating Zones	
6.11.9.4. Activating Zones	
6.11.10. Copying Cell Zones	
6.11.11. Replacing the Mesh	
6.11.11.1. Inputs for Replacing the Mesh	
6.11.11.2. Limitations	
6.11.12. Managing Adjacent Zones	
6.11.12.1. Renaming Zones Using the Adjacency Dialog Box	
6.11.13. Reordering the Domain	
6.11.14. Scaling the Mesh	
6.11.14.1. Scaling the Entire Mesh	
6.11.14.1.1. Changing the Unit of Length	
6.11.14.1.2. Unscaling the Mesh	
6.11.14.1.3. Changing the Physical Size of the Mesh	
6 11 14 2 Scaling Individual Cell Zones	1161

6.11.15. Translating the Mesh	1161
6.11.15.1. Translating the Entire Mesh	1162
6.11.15.2. Translating Individual Cell Zones	1162
6.11.16. Rotating the Mesh	1163
6.11.16.1. Rotating the Entire Mesh	
6.11.16.2. Rotating Individual Cell Zones	
6.11.17. Improving the Mesh by Smoothing and Swapping	
6.11.17.1. Smoothing	
6.11.17.1.1. Quality-Based Smoothing	
6.11.17.1.2. Laplacian Smoothing	
6.11.17.1.3. Skewness-Based Smoothing	
6.11.17.2. Face Swapping	
6.11.17.2.1. Triangular Meshes	
6.11.17.2.2. Tetrahedral Meshes	
6.11.17.3. Combining Skewness-Based Smoothing and Face Swapping	
7. Cell Zone and Boundary Conditions	
7.1. Overview	
7.1.1. Available Cell Zone and Boundary Types	
7.1.2. The Cell Zone and Boundary Conditions Task Pages	
7.1.3. Changing Cell and Boundary Zone Types	
7.1.4. Setting Cell Zone and Boundary Conditions	
7.1.4. Setting Cell Zone and Boundary Conditions	
7.1.6. Changing Cell or Boundary Zone Names	
7.1.7. Defining Non-Uniform Cell Zone and Boundary Conditions	
7.1.7. Defining Non-Officent Zone and Boundary Conditions	
7.1.8.1. Creating a New Parameter	
7.1.8.2. Working With Advanced Parameter Options	
7.1.8.2.1. Defining Scheme Procedures With Input Parameters	
7.1.8.2.2. Defining UDFs With Input Parameters	
7.1.8.2.3. Using the Text User Interface to Define UDFs and Scheme Procedures With Parameters	•
7.1.9. Selecting Cell or Boundary Zones in the Graphics Display	
7.1.10. Operating and Periodic Conditions	
7.1.11. Highlighting Selected Boundary Zones	
7.1.12. Saving and Reusing Cell Zone and Boundary Conditions	
7.2. Cell Zone Conditions	
7.2.1. Fluid Conditions	
7.2.1.1. Inputs for Fluid Zones	
7.2.1.1.1 Defining the Fluid Material	
7.2.1.1.2. Defining Sources	
7.2.1.1.3. Defining Fixed Values	
7.2.1.1.4. Specifying a Laminar Zone	
7.2.1.1.5. Specifying a Reaction Mechanism	
7.2.1.1.6. Specifying the Rotation Axis	
7.2.1.1.7. Defining Zone Motion	
7.2.1.1.8. Defining Radiation Parameters	
7.2.2. Solid Conditions	
7.2.2.1. Inputs for Solid Zones	
7.2.2.1.1. Defining the Solid Material	
7.2.2.1.2. Defining a Heat Source	
7.2.2.1.3. Defining a Fixed Temperature	1200

7.2.2.1.4. Specifying the Rotation Axis for Boundary Zones	. 1200
7.2.2.1.5. Defining Zone Motion	. 1201
7.2.2.1.6. Defining Radiation Parameters	. 1206
7.2.3. Porous Media Conditions	. 1206
7.2.3.1. Limitations and Assumptions of the Porous Media Model	. 1207
7.2.3.2. Momentum Equations for Porous Media	. 1208
7.2.3.2.1. Darcy's Law in Porous Media	. 1208
7.2.3.2.2. Inertial Losses in Porous Media	. 1209
7.2.3.3. Relative Viscosity in Porous Media	. 1210
7.2.3.4. Treatment of the Energy Equation in Porous Media	. 1210
7.2.3.4.1. Equilibrium Thermal Model Equations	. 1210
7.2.3.4.2. Non-Equilibrium Thermal Model Equations	. 1211
7.2.3.5. Treatment of Turbulence in Porous Media	. 1212
7.2.3.6. Effect of Porosity on Transient Scalar Equations	. 1212
7.2.3.7. Modeling Porous Media Based on Physical Velocity	. 1212
7.2.3.7.1. Single Phase Porous Media	. 1213
7.2.3.7.2. Multiphase Porous Media	. 1213
7.2.3.7.2.1. The Continuity Equation	
7.2.3.7.2.2.The Momentum Equation	. 1214
7.2.3.7.2.3. The Energy Equation	. 1214
7.2.3.8. User Inputs for Porous Media	. 1215
7.2.3.8.1. Defining the Porous Zone	
7.2.3.8.2. Defining the Porous Velocity Formulation	
7.2.3.8.3. Defining the Fluid Passing Through the Porous Medium	. 1217
7.2.3.8.4. Enabling Reactions in a Porous Zone	. 1217
7.2.3.8.5. Including the Relative Velocity Resistance Formulation	
7.2.3.8.6. Defining the Viscous and Inertial Resistance Coefficients	. 1218
7.2.3.8.7. Deriving Porous Media Inputs Based on Superficial Velocity, Using a Known	
Pressure Loss	
7.2.3.8.8. Using the Ergun Equation to Derive Porous Media Inputs for a Packed Bed	
7.2.3.8.9. Using an Empirical Equation to Derive Porous Media Inputs for Turbulent Flo	
Through a Perforated Plate	
7.2.3.8.10. Using Tabulated Data to Derive Porous Media Inputs for Laminar Flow Throug	-
a Fibrous Mat	
7.2.3.8.11. Deriving the Porous Coefficients Based on Experimental Pressure and Veloci	-
Data	
7.2.3.8.12. Using the Power-Law Model	
7.2.3.8.13. Defining Porosity	
7.2.3.8.14. Specifying the Heat Transfer Settings	
7.2.3.8.14.1. Equilibrium Thermal Model	
7.2.3.8.14.2. Non-Equilibrium Thermal Model	
7.2.3.8.15. Specifying the Relative Viscosity	
7.2.3.8.16. Specifying the Relative Permeability	
7.2.3.8.17. Specifying the Capillary Pressure	
7.2.3.8.17.1. Brooks-Corey Model	
7.2.3.8.17.2. Van-Genuchten Model	
7.2.3.8.17.3. Leverett J-Function	
7.2.3.8.17.4. Skjaeveland Model	
7.2.3.8.17.5. Capillary Pressure Data in a Tabular Format	
7.2.3.8.17.5.1. Specifying Variables in a Tabular Format	. 1237 1238
/ / 3 O I / D CADIIIALV FLESSULE USA(IE	・エノつべ

700040 D.C.: . C	4044
7.2.3.8.18. Defining Sources	
7.2.3.8.19. Defining Fixed Values	
7.2.3.8.20. Suppressing the Turbulent Viscosity in the Porous Region	
7.2.3.8.21. Specifying the Rotation Axis and Defining Zone Motion	
7.2.3.9. Solution Strategies for Porous Media	
7.2.3.10. Postprocessing for Porous Media	
7.2.4. 3D Fan Zones	
7.2.4.1. Momentum Equations for 3D Fan Zones	
7.2.4.2. User Inputs for 3D Fan Zones	
7.2.4.2.1. Defining the Geometry of a 3D Fan Zone	
7.2.4.2.2. Defining the Properties of a 3D Fan Zone	
7.2.4.3. 3D Fan Zone Limitations	
7.2.5. Fixing the Values of Variables	
7.2.5.1. Overview of Fixing the Value of a Variable	
7.2.5.1.1. Variables That Can Be Fixed	
7.2.5.2. Procedure for Fixing Values of Variables in a Zone	
7.2.5.2.1. Fixing Velocity Components	1251
7.2.5.2.2. Fixing Temperature and Enthalpy	1252
7.2.5.2.3. Fixing Species Mass Fractions	1252
7.2.5.2.4. Fixing Turbulence Quantities	1252
7.2.5.2.5. Fixing User-Defined Scalars	1253
7.2.6. Locking the Temperature for Solid and Shell Zones	1253
7.2.7. Defining Mass, Momentum, Energy, and Other Sources	1253
7.2.7.1. Sign Conventions and Units	
7.2.7.2. Procedure for Defining Sources	1254
7.2.7.2.1. Mass Sources	1255
7.2.7.2.2. Momentum Sources	1256
7.2.7.2.3. Energy Sources	1256
7.2.7.2.4. Turbulence Sources	1256
7.2.7.2.4.1. Turbulence Sources for the k- ϵ Model	1256
7.2.7.2.4.2. Turbulence Sources for the Spalart-Allmaras Model	1256
7.2.7.2.4.3. Turbulence Sources for the k- ω Model	
7.2.7.2.4.4. Turbulence Sources for the Reynolds Stress Model	1256
7.2.7.2.5. Mean Mixture Fraction and Variance Sources	
7.2.7.2.6. P-1 Radiation Sources	
7.2.7.2.7. Progress Variable Sources	1257
7.2.7.2.8. NO, HCN, and NH3 Sources for the NOx Model	1257
7.2.7.2.9. User-Defined Scalar (UDS) Sources	
7.3. Operating Conditions	
7.3.1. Buoyancy-Driven Flows and Natural Convection	
7.3.1.1. Modeling Natural Convection in a Closed Domain	
7.3.1.2. The Boussinesq Model	
7.3.1.3. Limitations of the Boussinesq Model	1259
7.3.1.4. Steps in Solving Buoyancy-Driven Flow Problems	1259
7.3.1.5. If you are using the incompressible ideal gas law, check that the Operating Dens-	
ity	1261
7.3.1.5.1. Setting the Operating Density for a Single Phase Flow	
7.3.1.5.2. Setting the Operating Density for a Multiphase Flow	
7.3.1.6. Solution Strategies for Buoyancy-Driven Flows	
7.3.1.6.1. Guidelines for Solving High-Rayleigh-Number Flows	
7.4. Boundary Conditions	

7.4.1. Flow Inlet and Exit Boundary Conditions	. 1264
7.4.2. Using Flow Boundary Conditions	. 1264
7.4.2.1. Determining Turbulence Parameters	. 1265
7.4.2.1.1. Specification of Turbulence Quantities Using Profiles	. 1265
7.4.2.1.2. Uniform Specification of Turbulence Quantities	. 1266
7.4.2.1.3. Turbulence Intensity	. 1266
7.4.2.1.4. Turbulence Length Scale and Hydraulic Diameter	. 1267
7.4.2.1.5. Turbulent Viscosity Ratio	. 1268
7.4.2.1.6. Relationships for Deriving Turbulence Quantities	. 1268
7.4.2.1.7. Estimating Modified Turbulent Viscosity from Turbulence Intensity and Leng	th
Scale	. 1268
7.4.2.1.8. Estimating Turbulent Kinetic Energy from Turbulence Intensity	. 1268
7.4.2.1.9. Estimating Turbulent Dissipation Rate from a Length Scale	. 1269
7.4.2.1.10. Estimating Turbulent Dissipation Rate from Turbulent Viscosity Ratio	. 1269
7.4.2.1.11. Estimating Turbulent Dissipation Rate for Decaying Turbulence	. 1269
7.4.2.1.12. Estimating Specific Dissipation Rate from a Length Scale	. 1270
7.4.2.1.13. Estimating Specific Dissipation Rate from Turbulent Viscosity Ratio	. 1270
7.4.2.1.14. Estimating Reynolds Stress Components from Turbulent Kinetic Energy	. 1270
7.4.2.1.15. Specifying Inlet Turbulence for LES	. 1270
7.4.3. Pressure Inlet Boundary Conditions	. 1271
7.4.3.1. Inputs at Pressure Inlet Boundaries	. 1271
7.4.3.1.1. Summary	. 1271
7.4.3.1.1.1 Pressure Inputs and Hydrostatic Head	. 1272
7.4.3.1.1.2. Defining Total Pressure and Temperature	. 1273
7.4.3.1.1.3. Defining the Flow Direction	. 1274
7.4.3.1.1.4. Defining Static Pressure	. 1277
7.4.3.1.1.5. Prevent Reverse Flow	. 1277
7.4.3.1.1.6. Defining Turbulence Parameters	. 1278
7.4.3.1.1.7. Defining Radiation Parameters	. 1278
7.4.3.1.1.8. Defining Species Mass or Mole Fractions	. 1278
7.4.3.1.1.9. Defining Non-Premixed Combustion Parameters	. 1278
7.4.3.1.1.10. Defining Premixed Combustion Boundary Conditions	
7.4.3.1.1.11. Defining Discrete Phase Boundary Conditions	. 1278
7.4.3.1.1.12. Defining Multiphase Boundary Conditions	
7.4.3.1.1.13. Defining Open Channel Boundary Conditions	
7.4.3.2. Default Settings at Pressure Inlet Boundaries	
7.4.3.3. Calculation Procedure at Pressure Inlet Boundaries	
7.4.3.3.1. Incompressible Flow Calculations at Pressure Inlet Boundaries	
7.4.3.3.2. Compressible Flow Calculations at Pressure Inlet Boundaries	
7.4.4. Velocity Inlet Boundary Conditions	
7.4.4.1. Inputs at Velocity Inlet Boundaries	. 1280
7.4.4.1.1. Summary	
7.4.4.1.2. Defining the Velocity	
7.4.4.1.3. Setting the Velocity Magnitude and Direction	
7.4.4.1.4. Setting the Velocity Magnitude Normal to the Boundary	
7.4.4.1.5. Setting the Velocity Components	
7.4.4.1.6. Setting the Angular Velocity	
7.4.4.1.7. Defining Static Pressure	
7.4.4.1.8. Defining the Temperature	
7.4.4.1.9. Defining Outflow Gauge Pressure	
7 4 4 1 10. Defining Turbulence Parameters	. 1284

	4004
7.4.4.1.11. Defining Radiation Parameters	
7.4.4.1.12. Defining Species Mass or Mole Fractions	
7.4.4.1.13. Defining Non-Premixed Combustion Parameters	
7.4.4.1.14. Defining Premixed Combustion Boundary Conditions	
7.4.4.1.15. Defining Discrete Phase Boundary Conditions	
7.4.4.1.16. Defining Multiphase Boundary Conditions	
7.4.4.2. Default Settings at Velocity Inlet Boundaries	
7.4.4.3. Calculation Procedure at Velocity Inlet Boundaries	
7.4.4.3.1.Treatment of Velocity Inlet Conditions at Flow Inlets	
7.4.4.3.2. Treatment of Velocity Inlet Conditions at Flow Exits	
7.4.4.3.3. Density Calculation	
7.4.5. Mass-Flow Inlet Boundary Conditions	
7.4.5.1. Limitations and Special Considerations	
7.4.5.2. Inputs at Mass-Flow Inlet Boundaries	
7.4.5.2.1. Summary	
7.4.5.2.2 Selecting the Reference Frame	
7.4.5.2.3. Defining the Mass Flow Rate or Mass Flux	
7.4.5.2.4. More About Mass Flux and Average Mass Flux	
7.4.5.2.5. Defining the Total Temperature	
7.4.5.2.6. Defining Static Pressure	
7.4.5.2.7. Defining the Flow Direction	
7.4.5.2.8. Defining Turbulence Parameters	
7.4.5.2.9. Defining Radiation Parameters	
7.4.5.2.10. Defining Species Mass or Mole Fractions	
7.4.5.2.11. Defining Non-Premixed Combustion Parameters	
7.4.5.2.12. Defining Premixed Combustion Boundary Conditions	
7.4.5.2.13. Defining Discrete Phase Boundary Conditions	
7.4.5.2.14. Defining Open Channel Boundary Conditions	
7.4.5.3. Default Settings at Mass-Flow Inlet Boundaries	
7.4.5.4. Calculation Procedure at Mass-Flow Inlet Boundaries	
7.4.5.4.1. Flow Calculations at Mass Flow Boundaries for Ideal Gases	
7.4.5.4.2. Flow Calculations at Mass Flow Boundaries for Incompressible Flows	
7.4.5.4.3. Flux Calculations at Mass Flow Boundaries	
7.4.6. Mass-Flow Outlet Boundary Conditions	
7.4.6.1. Limitations	
7.4.6.2. Inputs at Mass-Flow Outlet Boundaries	
7.4.6.2.1. Summary	
7.4.6.2.2 Selecting the Reference Frame	
7.4.6.2.3. Defining the Mass Flow Rate or Mass Flux	
7.4.6.2.4. Defining Radiation Parameters	
7.4.6.2.5. Defining Discrete Phase Boundary Conditions	
7.4.6.3. Default Settings at Mass-Flow Outlet Boundaries	
7.4.6.4. Calculation Procedure at Mass-Flow Outlet Boundaries	
7.4.6.4.1. Exit Corrected Mass Flow Rate	
7.4.7. Inlet Vent Boundary Conditions	
7.4.7.1. Inputs at Inlet Vent Boundaries	
7.4.7.1.1. Specifying the Loss Coefficient	
7.4.8. Intake Fan Boundary Conditions	
7.4.8.1. Inputs at Intake Fan Boundaries	
7.4.8.1.1. Specifying the Pressure Jump	
7.4.9. Pressure Outlet Boundary Conditions	. 1303

7.4.9.1. Inputs at Pressure Outlet Boundaries	. 1303
7.4.9.1.1. Summary	
7.4.9.1.2. Defining Static Pressure	
7.4.9.1.3. Defining Backflow Conditions	
7.4.9.1.3.1. Prevent Reverse Flow	
7.4.9.1.4. Defining Radiation Parameters	
7.4.9.1.5. Defining Discrete Phase Boundary Conditions	
7.4.9.1.6. Defining Open Channel Boundary Conditions	
7.4.9.2. Default Settings at Pressure Outlet Boundaries	
7.4.9.3. Calculation Procedure at Pressure Outlet Boundaries	
7.4.9.3.1. Average Pressure Specification	
7.4.9.3.1.1. Strong Averaging	
7.4.9.3.1.2. Weak Averaging	
7.4.9.4. Other Optional Inputs at Pressure Outlet Boundaries	
7.4.9.4.1. Non-Reflecting Boundary Conditions Option	
7.4.9.4.2. Target Mass Flow Rate Option	
7.4.10. Pressure Far-Field Boundary Conditions	
7.4.10.1. Limitations	
7.4.10.2. Inputs at Pressure Far-Field Boundaries	
7.4.10.2.1. Summary	
7.4.10.2.2. Defining Static Pressure, Mach Number, and Static Temperature	
7.4.10.2.3. Defining static ressure, Machinary and Static remperature	
7.4.10.2.4. Defining Turbulence Parameters	
7.4.10.2.5. Defining Radiation Parameters	
7.4.10.2.6. Defining Species Transport Parameters	
7.4.10.3. Defining Discrete Phase Boundary Conditions	
7.4.10.4. Default Settings at Pressure Far-Field Boundaries	
7.4.10.5. Calculation Procedure at Pressure Far-Field Boundaries	
7.4.10.6. Tangency Correction	
7.4.11. Outflow Boundary Conditions	
7.4.11.1. Ansys Fluent's Treatment at Outflow Boundaries	
7.4.11.2. Using Outflow Boundaries	
7.4.11.3. Mass Flow Split Boundary Conditions	
7.4.11.4. Other Inputs at Outflow Boundaries	
7.4.11.4.1. Radiation Inputs at Outflow Boundaries	
7.4.11.4.2. Defining Discrete Phase Boundary Conditions	
7.4.12. Outlet Vent Boundary Conditions	
7.4.12.1. Inputs at Outlet Vent Boundaries	
7.4.12.1.1. Specifying the Loss Coefficient	
7.4.13. Exhaust Fan Boundary Conditions	
7.4.13.1. Inputs at Exhaust Fan Boundaries	
7.4.13.1.1. Specifying the Pressure Jump	
7.4.14. Degassing Boundary Conditions	
7.4.14.1. Limitations	
7.4.14.2. Inputs at Degassing Boundaries	
7.4.15. Wall Boundary Conditions	
7.4.15. Wall Boundary Collations	
7.4.15.1.1 Summary	
7.4.15.2. Wall Motion	
7.4.15.2. Wall Motion	
7.4.15.2.1. Defining a stationary wall	1320

7.4.15.2.3. Shear Conditions at Walls	1220
7.4.15.2.4. No-Slip Walls	
·	
7.4.15.2.5. Specified Shear	
7.4.15.2.6. Specularity Coefficient	
7.4.15.2.7. Marangoni Stress	
7.4.15.2.8. Partial Slip for Rarefied Gases	
7.4.15.2.9. Wall Roughness Effects in Turbulent Wall-Bounded Flows	
7.4.15.2.9.1. Standard Law-of-the-Wall Modified for Roughness	
7.4.15.2.9.1.1. Setting the Roughness Parameters	
7.4.15.2.9.2. Additional Roughness Models for Icing Simulations	
7.4.15.2.9.2.1. Specified Roughness	
7.4.15.2.9.2.2. NASA Correlation	
7.4.15.2.9.2.3. Shin-et-al	
7.4.15.2.9.2.4. ICE3D Roughness File	
7.4.15.3.Thermal Boundary Conditions at Walls	
7.4.15.3.1. Heat Flux Boundary Conditions	
7.4.15.3.2. Temperature Boundary Conditions	
7.4.15.3.3. Convective Heat Transfer Boundary Conditions	
7.4.15.3.4. External Radiation Boundary Conditions	
7.4.15.3.5. Combined Convection and External Radiation Boundary Conditions	
7.4.15.3.6. Augmented Heat Transfer	
7.4.15.3.7.Thin-Wall Thermal Resistance Parameters	
7.4.15.3.8. Thermal Conditions for Two-Sided Walls	
7.4.15.3.8.1. Orthogonality-Based Secondary Gradient Limiting at Coupled Two-Side	
Walls	
7.4.15.3.9. Shell Conduction	
7.4.15.3.10. Heat Transfer Boundary Conditions Through System Coupling	
7.4.15.3.11. Heat Transfer Boundary Conditions Across a Mapped Interface	
7.4.15.3.12. Temperature Jump for Rarefied Gases	
7.4.15.4. Species Boundary Conditions for Walls	
7.4.15.4.1. Reaction Boundary Conditions for Walls	
7.4.15.5. Radiation Boundary Conditions for Walls	
7.4.15.6. Discrete Phase Model (DPM) Boundary Conditions for Walls	
7.4.15.6.1. Wall Adhesion Contact Angle for VOF Model	
7.4.15.7. User-Defined Scalar (UDS) Boundary Conditions for Walls	
7.4.15.8. Wall Film Conditions for Walls	
7.4.15.9. Structural Model Conditions for Walls	
7.4.15.10. Default Settings at Wall Boundaries	
7.4.15.11. Shear-Stress Calculation Procedure at Wall Boundaries	
7.4.15.11.1. Shear-Stress Calculation in Laminar Flow	
7.4.15.11.2. Shear-Stress Calculation in Turbulent Flows	1355
7.4.15.12. Heat Transfer Calculations at Wall Boundaries	1355
7.4.15.12.1. Temperature Boundary Conditions	1355
7.4.15.12.2. Heat Flux Boundary Conditions	1356
7.4.15.12.3. Convective Heat Transfer Boundary Conditions	1356
7.4.15.12.4. External Radiation Boundary Conditions	
7.4.15.12.5. Combined External Convection and Radiation Boundary Conditions	
7.4.15.12.6. Calculation of the Fluid-Side Heat Transfer Coefficient	
7.4.15.13. The Ablation Condition at Wall Boundaries	1357
7.4.16. Perforated Wall Boundary Conditions	1360
7.4.16.1. Overview and Limitations	1360

7.4.16.2. Modeling Concept	
7.4.16.3. Setting Perforated Walls	1362
7.4.16.4. Procedure for Manual Setup of Perforated Walls	
7.4.16.5. Perforated Wall File Format	1370
7.4.16.6. Postprocessing for Perforated Walls	1373
7.4.17. Symmetry Boundary Conditions	
7.4.17.1. Examples of Symmetry Boundaries	
7.4.17.2. Calculation Procedure at Symmetry Boundaries	
7.4.18. Periodic Boundary Conditions	
7.4.18.1. Examples of Periodic Boundaries	
7.4.18.2. Inputs for Periodic Boundaries	
7.4.18.3. Default Settings at Periodic Boundaries	
7.4.18.4. Calculation Procedure at Periodic Boundaries	1378
7.4.19. Axis Boundary Conditions	1378
7.4.19.1. Calculation Procedure at Axis Boundaries	1379
7.4.20. Fan Boundary Conditions	1379
7.4.20.1. Limitations of Fan Boundary Conditions	1379
7.4.20.2. Fan Equations	1379
7.4.20.2.1. Modeling the Pressure Rise Across the Fan	1379
7.4.20.2.2. Modeling the Fan Swirl Velocity	1380
7.4.20.3. User Inputs for Fans	
7.4.20.3.1. Identifying the Fan Zone	1381
7.4.20.3.2. Defining the Pressure Jump	1381
7.4.20.3.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function	1382
7.4.20.3.2.2. Constant Value	1383
7.4.20.3.2.3. User-Defined Function or Profile	1383
7.4.20.3.2.4. Example: Determining the Pressure Jump Function	1383
7.4.20.3.3. Defining Discrete Phase Boundary Conditions for the Fan	1384
7.4.20.3.4. Defining the Fan Swirl Velocity	1385
7.4.20.3.4.1. Polynomial Function	1385
7.4.20.3.4.2. Constant Value	
7.4.20.3.4.3. User-Defined Function or Profile	1386
7.4.20.4. Postprocessing for Fans	1386
7.4.20.4.1. Reporting the Pressure Rise Through the Fan	1386
7.4.20.4.2. Graphical Plots	1386
7.4.21. Radiator Boundary Conditions	1386
7.4.21.1. Radiator Equations	1387
7.4.21.1.1. Modeling the Pressure Loss Through a Radiator	1387
7.4.21.1.2. Modeling the Heat Transfer Through a Radiator	1387
7.4.21.1.2.1. Calculating the Heat Transfer Coefficient	1388
7.4.21.2. User Inputs for Radiators	1388
7.4.21.2.1. Identifying the Radiator Zone	
7.4.21.2.2. Defining the Pressure Loss Coefficient Function	1389
7.4.21.2.2.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function	1390
7.4.21.2.2.2. Constant Value	1390
7.4.21.2.2.3. Example: Calculating the Loss Coefficient	
7.4.21.2.3. Defining the Heat Flux Parameters	1392
7.4.21.2.3.1. Polynomial, Piecewise-Linear, or Piecewise-Polynomial Function	1392
7.4.21.2.3.2. Constant Value	
7.4.21.2.3.3. Example: Determining the Heat Transfer Coefficient Function	
7 4 21 2 4 Defining Discrete Phase Boundary Conditions for the Radiator	1393

7.4.21.3. Postprocessing for Radiators	
7.4.21.3.1. Reporting the Radiator Pressure Drop	
7.4.21.3.2. Reporting Heat Transfer in the Radiator	
7.4.21.3.3. Graphical Plots	
7.4.22. Porous Jump Boundary Conditions	
7.4.22.1. User Inputs for the Porous Jump Model	
7.4.22.1.1. Identifying the Porous Jump Zone	1395
7.4.22.1.2. Defining Discrete Phase Boundary Conditions for the Porous Jump	1396
7.4.22.2. Postprocessing for the Porous Jump	1396
7.5. Editing Multiple Boundary Conditions at Once	1396
7.6. Boundary Acoustic Wave Models	
7.6.1. Turbo-Specific Non-Reflecting Boundary Conditions	1399
7.6.1.1. Overview	
7.6.1.2. Limitations	1399
7.6.1.3. Theory	1402
7.6.1.3.1. Equations in Characteristic Variable Form	
7.6.1.3.2. Inlet Boundary	
7.6.1.3.3. Outlet Boundary	
7.6.1.3.4. Updated Flow Variables	
7.6.1.4. Using Turbo-Specific Non-Reflecting Boundary Conditions	
7.6.1.4.1. Using the NRBCs with the Mixing-Plane Model	
7.6.1.4.2. Using the NRBCs in Parallel Ansys Fluent	
7.6.2. General Non-Reflecting Boundary Conditions	
7.6.2.1. Overview	
7.6.2.2. Restrictions and Limitations	
7.6.2.3. Theory	
7.6.2.4. Using the General Non-Reflecting Boundary Condition	
7.6.3. Impedance Boundary Conditions	
7.6.3.1. Restrictions and Limitations	
7.6.3.2.Theory	
7.6.3.3. Using the Impedance Boundary Condition	
7.6.3.4. Calculating Impedance Parameters	
7.6.4. Transparent Flow Forcing Boundary Conditions	
7.6.4.1. Restrictions and Limitations	
7.6.4.2. Theory	
7.6.4.3. Using the Transparent Flow Forcing Boundary Condition	
7.0.4.5. Osing the transparent flow Forcing Boundary Condition	
7.7.1. Steps for Using the User-Defined Fan Model	
7.7.2. Example of a User-Defined Fan	
7.7.2.1. Setting the User-Defined Fan Parameters	
7.7.2.1. Setting the Oser-Defined Fan Program	
7.7.2.3. Initializing the Flow Field and Profile Files	
7.7.2.4. Selecting the Profiles	
7.7.2.5. Performing the Calculation	
7.7.2.6. Results	
7.8. Profiles	
7.8.1. Profile Specification Types	
7.8.2. Profile File Formats	
7.8.2.1. Standard Profiles	
7.8.2.1.1. Example	1437
/ × / / I SV Profiles	1/1/7

7.8.3. Using Profiles	1/130
7.8.3.1. Checking and Deleting Profiles	
7.8.3.2. Viewing Profile Data	
7.8.3.3. Example	
·	
7.8.4. Reorienting Profiles	
7.8.4.1. Steps for Changing the Profile Orientation	
7.8.4.2. Profile Orienting Example	
7.8.5. Replicating Profiles	
7.8.5.1. Steps for Replicating a Profile	
7.8.6. Defining Transient Cell Zone and Boundary Conditions	
7.8.6.1. Standard Transient Profiles	
7.8.6.2. Tabular Transient Profiles	
7.8.6.3. Profiles for Moving and Deforming Meshes	
7.9. Coupling Boundary Conditions with GT-POWER	
7.9.1. Requirements and Restrictions	
7.9.2. User Inputs	
7.9.3. Torque-Speed Coupling with GT-POWER	
7.10. Coupling Boundary Conditions with WAVE	
7.10.1. Requirements and Restrictions	
7.10.2. User Inputs	
8. Physical Properties	
8.1. Defining Materials	
8.1.1. Physical Properties for Solid Materials	
8.1.2. Material Types and Databases	
8.1.3. Using the Create/Edit Materials Dialog Box	
8.1.3.1. Modifying Properties of an Existing Material	
8.1.3.2. Renaming an Existing Material	
8.1.3.3. Copying Materials from the Ansys Fluent Database	
8.1.3.4. 2.2 Copying Materials from the Ansys GRANTA MDS Database	
8.1.3.5. Creating a New Material	
8.1.3.6. Saving Materials and Properties	
8.1.3.7. Deleting a Material	
8.1.3.8. Changing the Order of the Materials List	
8.1.4. Using a User-Defined Materials Database	
8.1.4.1. Opening a User-Defined Database	
8.1.4.2. Viewing Materials in a User-Defined Database	
8.1.4.3. Copying Materials from a User-Defined Database	
8.1.4.4. Copying Materials from the Case to a User-Defined Database	
8.1.4.5. Modifying Properties of an Existing Material	
8.1.4.6. Creating a New Materials Database and Materials	
8.1.4.7. Deleting Materials from a Database	
8.2. Defining Properties Using Temperature-Dependent Functions	
8.2.1. Inputs for Polynomial Functions	
8.2.2. Inputs for Piecewise-Linear Functions	
8.2.3. Inputs for Piecewise-Polynomial Functions	
8.2.4. Inputs for NASA-9-Piecewise-Polynomial Functions	
8.2.5. Checking and Modifying Existing Profiles	
8.3. Density	
8.3.1. Defining Density for Various Flow Regimes	
8.3.1.1. Mixing Density Relationships in Multiple-Zone Models	
8.3.2. Input of Constant Density	1492

	8.3.3. Inputs for the Boussinesq Approximation	1492
	8.3.4. Compressible Liquid Density Method	1492
	8.3.4.1. Compressible Liquid Inputs	1493
	8.3.4.2. Compressible Liquid Density Method Availability	1496
	8.3.5. Density as a Profile Function of Temperature	
	8.3.6. Incompressible Ideal Gas Law	
	8.3.6.1. Density Inputs for the Incompressible Ideal Gas Law	1497
	8.3.7. Ideal Gas Law for Compressible Flows	
	8.3.7.1. Density Inputs for the Ideal Gas Law for Compressible Flows	
	8.3.8. Composition-Dependent Density for Multicomponent Mixtures	
8.4	. Viscosity	
	8.4.1. Input of Constant Viscosity	1501
	8.4.2. Viscosity as a Function of Temperature	1501
	8.4.2.1. Sutherland Viscosity Law	1502
	8.4.2.1.1. Inputs for Sutherland's Law	1502
	8.4.2.2. Power-Law Viscosity Law	1503
	8.4.2.2.1. Inputs for the Power Law	1503
	8.4.3. Defining the Viscosity Using Kinetic Theory	1504
	8.4.4. Composition-Dependent Viscosity for Multicomponent Mixtures	1504
	8.4.5. Viscosity for Non-Newtonian Fluids	1505
	8.4.5.1. Temperature Dependent Viscosity	1506
	8.4.5.2. Power Law for Non-Newtonian Viscosity	1507
	8.4.5.2.1. Inputs for the Non-Newtonian Power Law	1507
	8.4.5.3. The Carreau Model for Pseudo-Plastics	
	8.4.5.3.1. Inputs for the Carreau Model	1508
	8.4.5.4. Cross Model	
	8.4.5.4.1. Inputs for the Cross Model	
	8.4.5.5. Herschel-Bulkley Model for Bingham Plastics	
	8.4.5.5.1. Inputs for the Herschel-Bulkley Model	
8.5	.Thermal Conductivity	
	8.5.1. Constant Thermal Conductivity	
	8.5.2. Thermal Conductivity as a Function of Temperature	
	8.5.3. Thermal Conductivity Using Kinetic Theory	
	8.5.4. Composition-Dependent Thermal Conductivity for Multicomponent Mixtures	
	8.5.5. Anisotropic Thermal Conductivity for Solids	
	8.5.5.1. Anisotropic Thermal Conductivity	
	8.5.5.2. Biaxial Thermal Conductivity	
	8.5.5.3. Orthotropic Thermal Conductivity	
	8.5.5.4. Cylindrical Orthotropic Thermal Conductivity	
	8.5.5.5. Principal Axes and Principal Values	
	8.5.5.6. User-Defined Anisotropic Thermal Conductivity	
8.6	User-Defined Scalar (UDS) Diffusivity	
	8.6.1. Isotropic Diffusion	
	8.6.2. Anisotropic Diffusion	
	8.6.2.1. Anisotropic Diffusivity	
	8.6.2.2. Orthotropic Diffusivity	
	8.6.2.3. Cylindrical Orthotropic Diffusivity	
o -	8.6.3. User-Defined Anisotropic Diffusivity	
ŏ./.	Specific Heat Capacity	
	8.7.1. Input of Constant Specific Heat Capacity	1529 1529
	O. / . / DUPCHIC FIRAL CADACITY AS A FUNCTION OF TEMPORATURE	1779

8.7.3. Defining Specific Heat Capacity Using Kinetic Theory	1530
8.7.4. Specific Heat Capacity as a Function of Composition	1530
8.8. Radiation Properties	1531
8.8.1. Absorption Coefficient	1531
8.8.1.1. Inputs for a Constant Absorption Coefficient	1532
8.8.1.2. Inputs for a Composition-Dependent Absorption Coefficient	
8.8.1.2.1. Path Length Inputs	1532
8.8.1.2.1.1. Inputs for a Non-Gray Radiation Absorption Coefficient	
8.8.1.2.1.2. Effect of Particles and Soot on the Absorption Coefficient	
8.8.2. Scattering Coefficient	
8.8.2.1. Inputs for a Constant Scattering Coefficient	1533
8.8.2.2. Inputs for the Scattering Phase Function	
8.8.2.2.1. Isotropic Phase Function	1533
8.8.2.2.2. Linear-Anisotropic Phase Function	1533
8.8.2.2.3. Delta-Eddington Phase Function	1534
8.8.2.2.4. User-Defined Phase Function	1534
8.8.3. Refractive Index	1534
8.8.4. Reporting the Radiation Properties	1534
8.9. Mass Diffusion Coefficients	1534
8.9.1. Fickian Diffusion	1535
8.9.2. Full Multicomponent Diffusion	1536
8.9.2.1. General Theory	1536
8.9.2.2. Maxwell-Stefan Equations	1536
8.9.3. Anisotropic Species Diffusion	1537
8.9.4. Thermal Diffusion Coefficients	1538
8.9.4.1.Thermal Diffusion Coefficient Inputs	1538
8.9.5. Mass Diffusion Coefficient Inputs	1539
8.9.5.1. Constant Dilute Approximation Inputs	1540
8.9.5.2. Dilute Approximation Inputs	1541
8.9.5.3. Multicomponent Method Inputs	1541
8.9.5.4. Unity Lewis Number	1543
8.9.6. Mass Diffusion Coefficient Inputs for Turbulent Flow	1544
8.10. Standard State Enthalpies	1544
8.11. Standard State Entropies	1544
8.12. Unburnt Thermal Diffusivity	
8.13. Kinetic Theory Parameters	1545
8.13.1. Inputs for Kinetic Theory	
8.14. Operating Pressure	
8.14.1.The Significance of Operating Pressure	
8.14.2. Operating Pressure, Gauge Pressure, and Absolute Pressure	
8.14.3. Setting the Operating Pressure	
8.15. Using a Reference Pressure to Adjust the Gauge Pressure Field	
8.16. Real Gas Models	
8.16.1. Introduction	
8.16.2. Choosing a Real Gas Model	
8.16.3. Cubic Equation of State Models	
8.16.3.1. Overview and Limitations	
8.16.3.2. Equation of State	
8.16.3.3. Enthalpy, Entropy, and Specific Heat Calculations	
8.16.3.4. Critical Constants for Pure Components	
8 16 3 5 Calculations for Mixtures	1559

8.16.3.5.1. Using the Cubic Equation of State Real Gas Models	
8.16.3.5.2. Solution Strategies and Considerations for Cubic Equations of State Real C	
Models	
8.16.3.5.3. Using the Cubic Equation of State Models with the Lagrangian Dispersed Ph	
Models	
8.16.3.5.4. Postprocessing the Cubic Equations of State Real Gas Model	1569
8.16.4. The NIST Real Gas Models	
8.16.4.1. Limitations of the NIST Real Gas Models	1570
8.16.4.2.The REFPROP v9.1 Database	
8.16.4.3. Using the NIST Real Gas Models	
8.16.4.3.1. Activating the NIST Real Gas Model	1573
8.16.4.3.2. Creating Full NIST Look-up Tables	
8.16.4.3.3. Creating Binary Mixture Saturation Tables for Binary Mixtures	
8.16.4.3.4. Changing the REFPROP Library and Fluid Files	1580
8.16.4.4. Solution Strategies and Considerations for NIST Real Gas Model Simulation	1580
8.16.4.4.1. Writing Your Case File	1581
8.16.4.4.2. Postprocessing	1581
8.16.5.The User-Defined Real Gas Model	1581
8.16.5.1. Limitations of the User-Defined Real Gas Model	1581
8.16.5.2. Writing the UDRGM C Function Library	1584
8.16.5.3. Compiling Your UDRGM C Functions and Building a Shared Library File	1588
8.16.5.3.1. Compiling the UDRGM Using the Graphical Interface	1588
8.16.5.3.2. Compiling the UDRGM Using the Text Interface	1589
8.16.5.3.3. Loading the UDRGM Shared Library File	1590
8.16.5.4. UDRGM Example: Ideal Gas Equation of State	1590
8.16.5.4.1. Ideal Gas UDRGM Code Listing	1591
8.16.5.5. Additional UDRGM Examples	1594
8.16.6. Using Real Gas Property (RGP) Table Files	1594
8.16.6.1. Overview	1594
8.16.6.2. Defining Material Properties Using RGP Tables	1594
8.16.6.3. Defining Saturation Properties via RGP Tables	1595
9. Modeling Basic Fluid Flow	1597
9.1. User-Defined Scalar (UDS) Transport Equations	1597
9.1.1. Introduction	
9.1.2. UDS Theory	
9.1.2.1. Single Phase Flow	
9.1.2.2. Multiphase Flow	1598
9.1.3. Setting Up UDS Equations in Ansys Fluent	1599
9.1.3.1. Single Phase Flow	
9.1.3.2. Multiphase Flow	
9.2. Periodic Flows	
9.2.1. Overview and Limitations	
9.2.1.1. Overview	1607
9.2.1.2. Limitations for Modeling Streamwise-Periodic Flow	
9.2.2. User Inputs for the Pressure-Based Solver	
9.2.2.1. Setting Parameters for the Calculation of β	
9.2.3. User Inputs for the Density-Based Solvers	
9.2.4. Monitoring the Value of the Pressure Gradient	
9.2.5. Postprocessing for Streamwise-Periodic Flows	
9.3. Swirling and Rotating Flows	
9.3.1. Overview of Swirling and Rotating Flows	

9.3.1.1. Axisymmetric Flows with Swirl or Rotation	
9.3.1.1.1. Momentum Conservation Equation for Swirl Velocity	1614
9.3.1.2.Three-Dimensional Swirling Flows	1614
9.3.1.3. Flows Requiring a Moving Reference Frame	1615
9.3.2. Turbulence Modeling in Swirling Flows	1615
9.3.3. Mesh Setup for Swirling and Rotating Flows	1616
9.3.3.1. Coordinate System Restrictions	1616
9.3.3.2. Mesh Sensitivity in Swirling and Rotating Flows	1616
9.3.4. Modeling Axisymmetric Flows with Swirl or Rotation	1616
9.3.4.1. Problem Setup for Axisymmetric Swirling Flows	1617
9.3.4.2. Solution Strategies for Axisymmetric Swirling Flows	1617
9.3.4.2.1. Step-By-Step Solution Procedures for Axisymmetric Swirling Flows	1618
9.3.4.2.2. Improving Solution Stability by Gradually Increasing the Rotational or Swirl	
Speed	1619
9.3.4.2.2.1. Postprocessing for Axisymmetric Swirling Flows	1619
9.4. Compressible Flows	
9.4.1. When to Use the Compressible Flow Model	
9.4.2. Physics of Compressible Flows	
9.4.2.1. Basic Equations for Compressible Flows	
9.4.2.2. The Compressible Form of the Gas Law	
9.4.3. Modeling Inputs for Compressible Flows	
9.4.3.1. Boundary Conditions for Compressible Flows	
9.4.4. Floating Operating Pressure	
9.4.4.1. Limitations	
9.4.4.2.Theory	1624
9.4.4.3. Enabling Floating Operating Pressure	
9.4.4.4. Setting the Initial Value for the Floating Operating Pressure	
9.4.4.5. Storage and Reporting of the Floating Operating Pressure	
9.4.4.6. Monitoring Absolute Pressure	
9.4.5. Solution Strategies for Compressible Flows	
9.4.6. Reporting of Results for Compressible Flows	
9.5. Inviscid Flows	
9.5.1. Setting Up an Inviscid Flow Model	
9.5.2. Solution Strategies for Inviscid Flows	
9.5.3. Postprocessing for Inviscid Flows	
10. Modeling Flows with Moving Reference Frames	
10.1.Introduction	
10.2. Flow in Single Moving Reference Frames (SRF)	
10.2.1. Mesh Setup for a Single Moving Reference Frame	
10.2.2. Setting Up a Single Moving Reference Frame Problem	
10.2.2.1. Choosing the Relative or Absolute Velocity Formulation	
10.2.2.1.1. Example	
10.2.3. Solution Strategies for a Single Moving Reference Frame	
10.2.3.1. Gradual Increase of the Rotational Speed to Improve Solution Stability	
10.2.4. Postprocessing for a Single Moving Reference Frame	1637
10.3. Flow in Multiple Moving Reference Frames	
10.3.1.The Multiple Reference Frame Model	
10.3.1.1. Overview	
10.3.1.2. Limitations	
10.3.2. Mesh Setup for a Multiple Moving Reference Frame	
10.3.3. Setting Up a Multiple Moving Reference Frame Problem	

10.3.3.1. Setting Up Multiple Reference Frames	1642
10.3.4. Solution Strategies for MRF and Problems	1645
10.3.5. Postprocessing for MRF Problems	1646
11. Modeling Flows Using Sliding and Dynamic Meshes	1647
11.1.Introduction	
11.2. Sliding Mesh Examples	1648
11.3. The Sliding Mesh Technique	1650
11.4. Sliding Mesh Interface Shapes	
11.5. Using Sliding Meshes	
11.5.1. Requirements, Constraints, and Considerations	
11.5.2. Setting Up the Sliding Mesh Problem	
11.5.3. Solution Strategies for Sliding Meshes	
11.5.3.1. Saving Case and Data Files	
11.5.3.2. Time-Periodic Solutions	
11.5.4. Postprocessing for Sliding Meshes	
11.6. Using Dynamic Meshes	
11.6.1. Setting Dynamic Mesh Modeling Parameters	
11.6.2. Dynamic Mesh Update Methods	
11.6.2.1. Smoothing Methods	
11.6.2.1.1. Diffusion-Based Smoothing	
11.6.2.1.1.1. Diffusivity Based on Boundary Distance	
11.6.2.1.1.2. Diffusivity Based on Cell Volume	
11.6.2.1.1.3. Applicability of the Diffusion-Based Smoothing Method	
11.6.2.1.2. Spring-Based Smoothing	
11.6.2.1.2.1. Applicability of the Spring-Based Smoothing Method	
11.6.2.1.3. Linearly Elastic Solid Based Smoothing Method	
11.6.2.1.3.1. Applicability of the Linearly Elastic Solid Based Smoothing Method	
11.6.2.1.4. Smoothing from a Reference Position	
11.6.2.1.5. Laplacian Smoothing Method	
11.6.2.1.6. Boundary Layer Smoothing Method	
11.6.2.2. Dynamic Layering	
11.6.2.2.1. Applicability of the Dynamic Layering Method	
11.6.2.3. Remeshing	
11.6.2.3.1. Methods-Based Remeshing	
11.6.2.3.1.1. Local Remeshing Method	
11.6.2.3.1.1.1. Local Cell Remeshing Method	
11.6.2.3.1.1.2. Local Face Remeshing Method	
11.6.2.3.1.1.3. Local Remeshing Based on Sizing Function	
11.6.2.3.1.2. Cell Zone Remeshing Method	
11.6.2.3.1.2.1. Limitations of the Cell Zone Remeshing Method	
11.6.2.3.1.3. Face Region Remeshing Method	
11.6.2.3.1.3.1. Face Region Remeshing with Wedge Cells in Prism Layers	
11.6.2.3.1.3.2. Applicability of the Face Region Remeshing Method	
11.6.2.3.1.4. 2.5D Surface Remeshing Method	
11.6.2.3.1.4.1. Applicability of the 2.5D Surface Remeshing Method	
11.6.2.3.1.4.2. Using the 2.5D Model	
11.6.2.3.2. Unified Remeshing	
11.6.2.4. Volume Mesh Update Procedure	
11.6.2.5. Transient Considerations for Remeshing and Layering	
11.6.3. Feature Detection	
11.6.3.1. Applicability of Feature Detection	1710

11.6.4. In-Cylinder Settings	1711
11.6.4.1. Using the In-Cylinder Option	1716
11.6.4.1.1. Overview	1716
11.6.4.1.2. Defining the Mesh Topology	1717
11.6.4.1.3. Defining Motion/Geometry Attributes of Mesh Zones	1719
11.6.4.1.4. Defining Valve Opening and Closure	
11.6.5. Six DOF Solver Settings	1725
11.6.5.1. Setting Rigid Body Motion Attributes for the Six DOF Solver	1727
11.6.6. Implicit Update Settings	1729
11.6.7. Contact Detection Settings	1731
11.6.7.1. Flow Control Using Contact Zones	1733
11.6.7.2. Flow Control Using Contact Marks	1733
11.6.7.2.1. Selecting Parameters for Flow Control	1734
11.6.7.2.2. Modifying and Displaying Contact Cell Marks	1735
11.6.8. Defining Dynamic Mesh Events	
11.6.8.1. Procedure for Defining Events	1736
11.6.8.2. Defining Events for In-Cylinder Applications	1738
11.6.8.2.1. Events	1739
11.6.8.2.2. Changing the Zone Type	1739
11.6.8.2.3. Copying Zone Boundary Conditions	1739
11.6.8.2.4. Activating a Cell Zone	1739
11.6.8.2.5. Deactivating a Cell Zone	1739
11.6.8.2.6. Creating a Sliding Interface	1739
11.6.8.2.7. Deleting a Sliding Interface	1741
11.6.8.2.8. Changing the Motion Attribute of a Dynamic Zone	1741
11.6.8.2.9. Changing the Time Step Size	1741
11.6.8.2.10. Changing the Under-Relaxation Factor	1741
11.6.8.2.11. Inserting a Boundary Zone Layer	1741
11.6.8.2.12. Removing a Boundary Zone Layer	1742
11.6.8.2.13. Inserting an Interior Zone Layer	1742
11.6.8.2.14. Removing an Interior Zone Layer	1743
11.6.8.2.15. Inserting a Cell Layer	1744
11.6.8.2.16. Removing a Cell Layer	1744
11.6.8.2.17. Executing a Command	1744
11.6.8.2.18. Replacing the Mesh	1744
11.6.8.2.19. Resetting Inert EGR	1744
11.6.8.2.20. Diesel Unsteady Flamelet Reset	1744
11.6.8.3. Exporting and Importing Events	1745
11.6.9. Specifying the Motion of Dynamic Zones	
11.6.9.1. General Procedure	
11.6.9.1.1. Creating a Dynamic Zone	
11.6.9.1.2. Modifying a Dynamic Zone	
11.6.9.1.3. Checking the Center of Gravity	1745
11.6.9.1.4. Deleting a Dynamic Zone	
11.6.9.2. Stationary Zones	
11.6.9.3. Rigid Body Motion	
11.6.9.4. Deforming Motion	
11.6.9.5. User-Defined Motion	
11.6.9.5.1. Specifying Boundary Layer Deformation Smoothing	
11.6.9.6. System Coupling Motion	
11.6.0.7 Intrinsic ESI Motion	1757

11.6.9.8. Solution Stabilization for Dynamic Mesh Boundary Zones	1759
11.6.9.9. Solid-Body Kinematics	1760
11.6.10. Previewing the Dynamic Mesh	1763
11.6.10.1. Previewing Zone Motion	1763
11.6.10.2. Previewing Mesh Motion	1764
11.6.11. Steady-State Dynamic Mesh Applications	
11.6.11.1. An Example of Steady-State Dynamic Mesh Usage	
12. Modeling Turbomachinery Flows	
12.1. Frozen Gust / Inlet Disturbance Flow Modeling	
12.2. Blade Row Interaction Modeling	
12.2.1. Pitch-Change Models	
12.2.1.1. Pitch-Scale interface	
12.2.1.2. No Pitch-Scale interface	
12.2.1.3. Mixing-Plane interface	
12.2.2. Creating and Editing General Turbo Interfaces	
12.2.3. Legacy Mixing Plane Model	
12.2.3.1. Limitations	
12.2.3.2. Setting Up the Legacy Mixing Plane Model	
12.2.3.2.1. Modeling Options	
12.2.3.2.1.1. Fixing the Pressure Level for an Incompressible Flow	
12.2.3.2.1.2. Conserving Swirl Across the Mixing Plane	
12.2.3.2.1.3. Conserving Total Enthalpy Across the Mixing Plane	
12.2.3.3. Solution Strategies for Mixing Plane Problems	
12.3. Aerodynamic Damping (Blade Flutter Analysis)	
12.3.1.Traveling Wave Mode and Energy Method	
12.3.2. Setting up a Blade Flutter Case	
12.3.3. Reading the Mode Shapes	
12.3.4. Using Dynamic Mesh Zones in a Blade Flutter Simulation	
12.3.4.1.Turning on Dynamic Mesh	
12.3.4.2. Defining the Periodic Displacement of the Blades	
12.3.4.3. Creating and Applying Dynamic Mesh Zones	
12.3.5. Visualizing and Exporting Blade Flutter Harmonics	
12.3.6. Configuring Run Calculation Settings	
12.3.7. Postprocessing a Blade Flutter Simulation	
12.3.7.1 Postprocessing Harmonic Variables	
12.4. Turbomachinery Postprocessing	
12.4.1. Defining the Turbomachinery Topology	
12.4.1.1 Boundary Types	
12.4.2. Generating Reports of Turbomachinery Data	
12.4.2.1. Computing Turbomachinery Quantities	
12.4.2.1.1 Mass Flow	
12.4.2.1.1. Mass Flow	
12.4.2.1.3. Average Total Pressure	
12.4.2.1.4. Average Total Temperature	
12.4.2.1.5. Average Flow Angles	
12.4.2.1.6. Passage Loss Coefficient	
12.4.2.1.7. Axial Force	
12.4.2.1.8. Torque	
12.4.2.1.9. Efficiencies for Pumps and Compressors	
12.4.2.1.9.1. Incompressible Flows	
12.4.2.1.9.2. Compressible Flows	1817

12.4.2.1.10. Efficiencies for Turbines	1010
12.4.2.1.10. Efficiencies for Turbines	
·	
12.4.2.1.10.2. Compressible Flows	
12.4.3.1. Steps for Generating Turbomachinery Averaged Contour Plots	
12.4.4. Displaying Turbomachinery 2D Contours	
12.4.4.1. Steps for Generating Turbo 2D Contour Plots	
12.4.4.2. Contour Plot Options	
12.4.5. Generating Averaged XY Plots of Turbomachinery Solution Data	
· · · · · · · · · · · · · · · · · · ·	
12.4.5.1. Steps for Generating Turbo Averaged XY Plots	
12.4.6. Globally Setting the Turbomachinery Topology	
12.4.7. Turbomachinery-Specific Variables	
13. Modeling Turbulence	
13.1. Introduction	
13.2. Choosing a Turbulence Model	
13.2.1. Reynolds Averaged Navier-Stokes (RANS) Turbulence Models	
13.2.1.1. Spalart-Allmaras One-Equation Model	
13.2.1.2. k-ε Models	
13.2.1.3. k-ω Models	
13.2.1.4. Generalized k-ω (GEKO) Model	
13.2.1.5. Reynold Stress Models	
13.2.1.6. Laminar-Turbulent Transition Models	
13.2.1.7. Curvature Correction for the Spalart-Allmaras and Two-Equation Models	
13.2.1.8. Corner Flow Correction	
13.2.1.9. Production Limiters for Two-Equation Models	
13.2.1.10. Model Enhancements	
13.2.1.11. Wall Treatment for RANS Models	
13.2.1.12. Grid Resolution for RANS Models	
13.2.2. Scale-Resolving Simulation (SRS) Models	
13.2.2.1. Large Eddy Simulation (LES)	
13.2.2.2. Hybrid RANS-LES Models	
13.2.2.2.1. Scale-Adaptive Simulation (SAS)	
13.2.2.2.2 Detached Eddy Simulation (DES)	
13.2.2.2.3. Shielded Detached Eddy Simulation (SDES) and Stress-Blended Eddy Simulati	
(SBES)	
13.2.2.3. Zonal Modeling and Embedded LES (ELES)	
13.2.3. Grid Resolution SRS Models	
13.2.3.1. Wall Boundary Layers	
13.2.3.2. Free Shear Flows	
13.2.4. Numerics Settings for SRS Models	
13.2.4.1. Time Discretization	
13.2.4.2. Spatial Discretization	
13.2.4.3. Iterative Scheme	
13.2.4.3.1. Convergence Control	
13.2.5. Model Hierarchy	
13.3. Steps in Using a Turbulence Model	
13.4. Setting Up the Spalart-Allmaras Model	
13.5. Setting Up the k-ɛ Model	
13.5.1. Setting Up the Standard or Realizable k-ε Model	
13.5.2. Setting Up the RNG k-∈ Model	1853

13.6. Setting Up the k - ω Model	1855
13.6.1. Setting Up the Standard k-ω Model	1855
13.6.2. Setting Up the Baseline (BSL) k-ω Model	1856
13.6.3. Setting Up the Shear-Stress Transport k-ω Model	1858
13.6.4. Setting up the Generalized k-ω (GEKO) Model	
13.7. Setting Up the Transition k-kl-ω Model	1862
13.8. Setting Up the Transition SST Model	1863
13.9. Setting Up the Algebraic or Intermittency Transition Model	1864
13.10. Setting Up the Reynolds Stress Model	
13.11. Setting Up Scale-Adaptive Simulation (SAS) Modeling	1871
13.12. Setting Up the Detached Eddy Simulation Model	1873
13.12.1. Setting Up DES with the Spalart-Allmaras Model	1873
13.12.2. Setting Up DES with the Realizable k-ε Model	1875
13.12.3. Setting Up DES with the SST k-ω Model	1877
13.12.4. Setting Up DES with the BSL k-ω Model	1878
13.12.5. Setting Up DES with the Transition SST Model	1880
13.13. Setting Up the Large Eddy Simulation Model	1882
13.14. Model Constants	1883
13.15. Setting Up the Embedded Large Eddy Simulation (ELES) Model	1883
13.16. Setup Options for All Turbulence Modeling	1887
13.16.1. Including the Viscous Heating Effects	1888
13.16.2. Including Buoyancy Effects on Turbulence	1888
13.16.3. Including the Curvature Correction for the Spalart-Allmaras and Two-Equation Turk	oulence
Models	1890
13.16.4. Including Corner Flow Correction	1891
13.16.5. Including the Compressibility Effects Option	1893
13.16.6. Including Production Limiters for Two-Equation Models	1893
13.16.7. Vorticity- and Strain/Vorticity-Based Production	1894
13.16.8. Delayed Detached Eddy Simulation (DDES)	1894
13.16.9. Differential Viscosity Modification	1894
13.16.10. Swirl Modification	1894
13.16.11. Low-Re Corrections	1895
13.16.12. Shear Flow Corrections	1895
13.16.13. Turbulence Damping	1895
13.16.14. Including Pressure Gradient Effects	1895
13.16.15. Including Thermal Effects	1896
13.16.16. Including the Wall Reflection Term	1896
13.16.17. Solving the k Equation to Obtain Wall Boundary Conditions	1896
13.16.18. Quadratic Pressure-Strain Model	1896
13.16.19. Stress-Omega and Stress-BSL Models	1897
13.16.20. Subgrid-Scale Model	
13.16.21. Customizing the Turbulent Viscosity	
13.16.22. Customizing the Turbulent Prandtl and Schmidt Numbers	1898
13.16.23. Modeling Turbulence with Non-Newtonian Fluids	1898
13.16.24. Including Scale-Adaptive Simulation with ω -Based URANS Models	
13.16.25. Including Detached Eddy Simulation with the Transition SST Model	
13.16.26. Including the SDES or SBES Model with RANS Models	1899
13.16.27. Shielding Functions for the BSL / SST / Transition SST Detached Eddy Simulatio	n Mod-
el	
13.17. Defining Turbulence Boundary Conditions	1902
13 17 1 Wall Poughness Effects	1002

13.17.2. The Spalart-Allmaras Model	1903
13.17.3. k-ε Models and k-ω Models	1903
13.17.4. Reynolds Stress Model	1903
13.17.5. Large Eddy Simulation Model	1905
13.18. Providing an Initial Guess for k and ϵ (or k and ω)	
13.19. Solution Strategies for Turbulent Flow Simulations	
13.19.1. Mesh Generation	
13.19.2. Accuracy	1907
13.19.3. Convergence	
13.19.4. RSM-Specific Solution Strategies	
13.19.4.1. Under-Relaxation of the Reynolds Stresses	
13.19.4.2. Disabling Calculation Updates of the Reynolds Stresses	1909
13.19.4.3. Residual Reporting for the RSM	1909
13.19.5. LES-Specific Solution Strategies	1909
13.19.5.1. Temporal Discretization	1910
13.19.5.2. Spatial Discretization	1910
13.20. Postprocessing for Turbulent Flows	1910
13.20.1. Custom Field Functions for Turbulence	1919
13.20.2. Postprocessing Turbulent Flow Statistics	1919
13.20.3. Troubleshooting	1921
14. Modeling Thermal Energy	1923
14.1. Introduction	
14.2. Modeling Conductive and Convective Heat Transfer	
14.2.1. Solving Heat Transfer Problems	
14.2.1.1. Limiting the Predicted Temperature Range	
14.2.1.2. Modeling Heat Transfer in Two Separated Fluid Regions	
14.2.2. Solution Strategies for Heat Transfer Modeling	
14.2.2.1. Under-Relaxation of the Energy Equation	
14.2.2.2. Under-Relaxation of Temperature When the Enthalpy Equation is Solved	
14.2.2.3. Disabling the Species Diffusion Term	
14.2.2.4. Step-by-Step Solutions	
14.2.2.4.1. Decoupled Flow and Heat Transfer Calculations	
14.2.2.4.2. Coupled Flow and Heat Transfer Calculations	
14.2.2.5. Transient Conjugate Heat Transfer	
14.2.2.5.1. Specifying the Solid Time Step Size	
14.2.2.5.1.1. Automatic Time Step Size Calculation	
14.2.2.5.2. Loosely Coupled Conjugate Heat Transfer	
14.2.2.5.3. Time Averaged Explicit Thermal Coupling	
14.2.3. Postprocessing Heat Transfer Quantities	
14.2.3.1. Available Variables for Postprocessing	
14.2.3.2. Definition of Enthalpy and Energy in Reports and Displays	
14.2.3.3. Reporting Heat Transfer Through Boundaries	
14.2.3.4. Reporting Heat Transfer Through a Surface	
14.2.3.5. Reporting Averaged Heat Transfer Coefficients	
14.2.3.6. Exporting Heat Flux Data	
14.2.5. Shell Conduction	
14.2.5.1. Introduction	
14.2.5.2. Physical Treatment	
14.2.5.3. Limitations of Shell Conduction Walls	
14.2.5.4. Managing Conduction Walls	

14.2.5.5. Initializing Shells	1943
14.2.5.6. Locking the Temperature for Shells	
14.2.5.7. Postprocessing Shells	
14.3. Modeling Radiation	
14.3.1. Using the Radiation Models	
14.3.2. Setting Up the P-1 Model with Non-Gray Radiation	
14.3.3. Setting Up the DTRM	
14.3.3.1. Defining the Rays	
14.3.3.2. Controlling the Clusters	
14.3.3.3. Controlling the Clusters	
14.3.3.4. Writing and Reading the DTRM Ray File	
14.3.3.5. Displaying the Clusters	
14.3.4. Setting Up the S2S Model	
14.3.4.1. View Factors and Clustering Settings	
14.3.4.1.1.1 Setting the Split Angle for Clusters	
14.3.4.1.1. Setting the Split Angle for Clusters	
14.3.4.1.2. Setting Up the View Factor Calculation	
14.3.4.1.2.1. Selecting the Basis for Computing View Factors	
14.3.4.1.2.2. Selecting the Method for Computing View Factors	
14.3.4.1.2.3. Accounting for Blocking Surfaces	
14.3.4.1.2.4. Specifying Boundary Zone Participation	
14.3.4.2. Computing View Factors	
14.3.4.3. Reading View Factors into Ansys Fluent	
14.3.5. Setting Up the DO Model	
14.3.5.1. Angular Discretization	
14.3.5.2. Defining Non-Gray Radiation for the DO Model	
14.3.5.3. Enabling DO/Energy Coupling	
14.3.6. Setting Up the MC Model	
14.3.7. Defining Material Properties for Radiation	
14.3.7.1. Absorption Coefficient for a Non-Gray Model	
14.3.7.2. Refractive Index for a Non-Gray Model	
14.3.8. Defining Boundary Conditions for Radiation	
14.3.8.1. Inlet and Exit Boundary Conditions	
14.3.8.1.1. Emissivity	
14.3.8.1.2. Black Body Temperature	
14.3.8.2. Wall Boundary Conditions for the DTRM, P-1, S2S, and Rosseland Models	
14.3.8.2.1. Boundary Conditions for the S2S Model	
14.3.8.3. Wall Boundary Conditions for the DO Model	
14.3.8.3.1. Opaque Walls	
14.3.8.3.2. Semi-Transparent Walls	
14.3.8.4. Wall Boundary Conditions for the MC Model	
14.3.8.4.1. Opaque Walls	
14.3.8.4.2. Semi-Transparent Walls	
14.3.8.5. Solid Cell Zones Conditions for the DO or MC Models	
14.3.8.6. Thermal Boundary Conditions	
14.3.9. Solution Strategies for Radiation Modeling	
14.3.9.1. P-1 Model Solution Parameters	
14.3.9.2. DTRM Solution Parameters	
14.3.9.3. S2S Solution Parameters	
14.3.9.4. DO Solution Parameters	
14.3.9.5. MC Solution Parameters	1991

14.3.9.6. Running the Calculation	
14.3.9.6.1. Residual Reporting for the P-1 Model	1992
14.3.9.6.2. Residual Reporting for the DO Model	
14.3.9.6.3. Residual Reporting for the DTRM	1992
14.3.9.6.4. Residual Reporting for the S2S Model	
14.3.9.6.5. Disabling the Update of the Radiation Fluxes	1993
14.3.10. Postprocessing Radiation Quantities	1993
14.3.10.1. Available Variables for Postprocessing	1994
14.3.10.2. Reporting Radiative Heat Transfer Through Boundaries	1995
14.3.10.3. Overall Heat Balances When Using the DTRM	1995
14.3.10.4. Displaying Rays and Clusters for the DTRM	1995
14.3.10.4.1. Displaying Clusters	1996
14.3.10.4.2. Displaying Rays	1996
14.3.10.4.3. Including the Mesh in the Display	1997
14.3.10.5. Reporting Radiation in the S2S Model	1997
14.3.11. Solar Load Model	1998
14.3.11.1. Introduction	1999
14.3.11.2. Solar Ray Tracing	1999
14.3.11.2.1. Shading Algorithm	2000
14.3.11.2.2. Glazing Materials	2001
14.3.11.2.3. Inputs	2001
14.3.11.3. Solar Irradiation	2003
14.3.11.4. Solar Calculator	2003
14.3.11.4.1. Inputs/Outputs	2003
14.3.11.4.2. Theory	2004
14.3.11.4.3. Computation of Load Distribution	2005
14.3.11.5. Using the Solar Load Model	2006
14.3.11.5.1. User-Defined Functions (UDFs) for Solar Load	2006
14.3.11.5.2. Setting Up the Solar Load Model	2007
14.3.11.5.3. Setting Boundary Conditions for Solar Loading	2012
14.3.11.5.4. Solar Ray Tracing	2012
14.3.11.5.5. Solar Irradiation	2017
14.3.11.5.6. Text Interface-Only Commands	2019
14.3.11.5.6.1. Automatically Saving Solar Ray Tracing Data	2019
14.3.11.5.6.2. Automatically Reading Solar Data	2019
14.3.11.5.6.3. Aligning the Camera Direction With the Position of the Sun	2020
14.3.11.5.6.4. Specifying the Scattering Fraction	2020
14.3.11.5.6.5. Applying the Solar Load on Adjacent Fluid Cells	2020
14.3.11.5.6.6. Specifying Quad Tree Refinement Factor	2021
14.3.11.5.6.7. Specifying Ground Reflectivity	2021
14.3.11.5.6.8. Reverting to Single Band Implementation of DO Model	2021
14.3.11.5.6.9. Additional Text Interface Commands	2021
14.3.11.6. Postprocessing Solar Load Quantities	2022
14.3.11.6.1. Solar Load Animation at Different Sun Positions	2023
14.3.11.6.2. Reporting and Displaying Solar Load Quantities	2024
14.4. Modeling Periodic Heat Transfer	
14.4.1. Overview and Limitations	
14.4.1.1. Overview	2025
14.4.1.2. Constraints for Periodic Heat Transfer Predictions	2025
14.4.2.Theory	2026

14.4.2.1. Definition of the Periodic Temperature for Constant- Temperature Wall Condi- tions	2026
14.4.2.2. Definition of the Periodic Temperature Change σ for Specified Heat Flux Condi-	2020
tions	2027
14.4.3. Using Periodic Heat Transfer	
14.4.4. Solution Strategies for Periodic Heat Transfer	
14.4.5. Monitoring Convergence	
14.4.6. Postprocessing for Periodic Heat Transfer	
14.5. Modeling Heat Exchangers	
14.5.1. Choosing a Heat Exchanger Model	
14.5.2.The Dual Cell Model	
14.5.2.1. Restrictions	
14.5.2.2. Using the Dual Cell Heat Exchanger Model	
14.5.3. The Macro Heat Exchanger Models	
14.5.3.1. Restrictions	
14.5.3.2. Using the Ungrouped Macro Heat Exchanger Model	
14.5.3.2.1. Selecting the Zone for the Heat Exchanger	
14.5.3.2.2 Specifying Heat Exchanger Performance Data	
14.5.3.2.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions	
14.5.3.2.4. Defining the Macros	
14.5.3.2.4.1. Viewing the Macros	
14.5.3.2.5. Specifying the Auxiliary Fluid Properties and Conditions	
14.5.3.2.6. Setting the Pressure-Drop Parameters and Effectiveness	
14.5.3.2.6.1. Using the Default Core Porosity Model	
14.5.3.2.6.2. Defining a New Core Porosity Model	
14.5.3.2.6.3. Reading Heat Exchanger Parameters from an External File	
14.5.3.2.6.4. Viewing the Parameters for an Existing Core Model	
14.5.3.3. Using the Grouped Macro Heat Exchanger Model	
14.5.3.3.1. Selecting the Fluid Zones for the Heat Exchanger Group	
14.5.3.3.2. Selecting the Upstream Heat Exchanger Group	
14.5.3.3. Specifying the Auxiliary Fluid Inlet and Pass-to-Pass Directions	
14.5.3.3.4. Specifying the Auxiliary Fluid Properties	
14.5.3.3.5. Specifying Supplementary Auxiliary Fluid Streams	
14.5.3.3.6. Initializing the Auxiliary Fluid Temperature	
14.5.4. Postprocessing for the Heat Exchanger Model	
14.5.4.1. Heat Exchanger Reporting	
14.5.4.1. Computed Heat Rejection	
14.5.4.1.2. Inlet/Outlet Temperature	
14.5.4.1.4. Specific Heat	
14.5.4.2. Total Heat Rejection Rate	
14.5.5. Useful Reporting TUI Commands	
14.6. The Two-Temperature Model	
14.6.1. Using the Two-Temperature Model	
15. Modelling with Finite-Rate Chemistry	
15.1. Modeling Species Transport and Finite-Rate Chemistry	
15.1.1.1 Overview of User Inputs for Modeling Species Transport and Boostiegs	
15.1.1.1.Overview of User Inputs for Modeling Species Transport and Reactions	
15.1.1.2. Enabling Species Transport and Reactions and Choosing the Mixture Material	
15.1.1.3. Importing a Volumetric Kinetic Mechanism in CHEMKIN Format	

15.1.1.3.1. Using Ansys Encrypted Mechanisms	2096
15.1.1.3.2. Procedure for Importing Volumetric CHEMKIN Mechanisms	2096
15.1.1.3.3. CHEMKIN Mechanisms Included with Ansys Fluent	. 2100
15.1.1.4. Defining Properties for the Mixture and Its Constituent Species	2101
15.1.1.4.1. Defining the Species in the Mixture	
15.1.1.4.1.1. Overview of the Species Dialog Box	
15.1.1.4.1.2. Adding Species to the Mixture	
15.1.1.4.1.3. Removing Species from the Mixture	
15.1.1.4.1.4. Assigning the Last Species	
15.1.1.4.1.5.The Naming and Ordering of Species	
15.1.1.4.2. Defining Reactions	
15.1.1.4.2.1. Inputs for Reaction Definition	
15.1.1.4.2.2. Defining Species and Reactions for Fuel Mixtures	2114
15.1.1.4.3. Defining Zone-Based Reaction Mechanisms	
15.1.1.4.3.1. Inputs for Reaction Mechanism Definition	2114
15.1.1.4.4. Defining Physical Properties for the Mixture	. 2117
15.1.1.4.5. Defining Physical Properties for the Species in the Mixture	2117
15.1.1.5. Setting up Coal Simulations with the Coal Calculator Dialog Box	
15.1.1.6. Defining Cell Zone and Boundary Conditions for Species	2121
15.1.1.6.1. Diffusion at Inlets with the Pressure-Based Solver	. 2122
15.1.1.7. Defining Other Sources of Chemical Species	2122
15.1.1.8. Solution Procedures for Chemical Mixing and Finite-Rate Chemistry	2122
15.1.1.8.1. Stability and Convergence in Reacting Flows	
15.1.1.8.2.Two-Step Solution Procedure (Steady-state Only)	2123
15.1.1.8.3. Density Under-Relaxation	
15.1.1.8.4. Ignition in Steady-State Combustion Simulations	. 2123
15.1.1.8.5. Solution of Stiff Chemistry Systems	
15.1.1.8.6. Eddy-Dissipation Concept Model Solution Procedure	
15.1.1.9. Postprocessing for Species Calculations	
15.1.1.9.1. Averaged Species Concentrations	
15.1.2. Wall Surface Reactions and Chemical Vapor Deposition	
15.1.2.1. Overview of Surface Species and Wall Surface Reactions	
15.1.2.2. Importing a Surface Kinetic Mechanism in CHEMKIN Format	
15.1.2.2.1. Compatibility and Limitations for Gas Phase Reactions	
15.1.2.2.2. Compatibility and Limitations for Surface Reactions	
15.1.2.3. Manual Inputs for Wall Surface Reactions	
15.1.2.4. Including Mass Transfer To Surfaces in the Continuity Equation	
15.1.2.5. Wall Surface Mass Transfer Effects in the Energy Equation	
15.1.2.6. Modeling the Heat Release Due to Wall Surface Reactions	
15.1.2.7. Solution Procedures for Wall Surface Reactions	
15.1.2.8. Postprocessing for Surface Reactions	
15.1.3. Particle Surface Reactions	
15.1.3.1. User Inputs for Particle Surface Reactions	
15.1.3.2. Modeling Gaseous Solid Catalyzed Reactions	2135
15.1.3.3. Using the Multiple Surface Reactions Model for Discrete-Phase Particle Combus-	
tion	
15.1.4. Electrochemical Reactions	
15.1.4.1. Overview of Electrochemical Reactions	
15.1.4.2. User Inputs for Electrochemical Reactions	
15.1.4.3. Electrochemical Reaction Effects in the Energy Equation	2144 2144
LA LAMA DECHOLOCHERING I DEGCHON FRIECIS III DHE SOECIES HANSOON FONANON	/ 144

15.1.4.5. Including Mass Transfer in Continuity	
15.1.4.6. Solution Procedures for Electrochemical Reactions	2144
15.1.5. Species Transport Without Reactions	2145
15.1.6. Reacting Channel Model	2146
15.1.6.1. Overview and Limitations of the Reacting Channel Model	2146
15.1.6.2. Enabling the Reacting Channel Model	2147
15.1.6.3. Boundary Conditions for Channel Walls	
15.1.6.4. Postprocessing for Reacting Channel Model Calculations	
15.1.7. Reactor Network Model	
15.1.7.1. Overview and Limitations of the Reactor Network Model	2155
15.1.7.2. Solving Reactor Networks	2155
15.1.7.3. Postprocessing Reactor Network Calculations	2159
15.2. Modeling a Composition PDF Transport Problem	
15.2.1. Limitation	
15.2.2. Steps for Using the Composition PDF Transport Model	
15.2.3. Enabling the Lagrangian Composition PDF Transport Model	
15.2.4. Enabling the Eulerian Composition PDF Transport Model	
15.2.4.1. Defining Species Boundary Conditions	
15.2.4.1.1. Equilibrating Inlet Streams	
15.2.5. Initializing the Solution	
15.2.6. Monitoring the Solution	
15.2.6.1. Running Unsteady Composition PDF Transport Simulations	
15.2.6.2. Running Compressible Lagrangian PDF Transport Simulations	2170
15.2.6.3. Running Lagrangian PDF Transport Simulations with Conjugate Heat Transfer	
15.2.7. Postprocessing for Lagrangian PDF Transport Calculations	
15.2.7.1. Reporting Options	
15.2.7.2. Particle Tracking Options	
15.2.8. Postprocessing for Eulerian PDF Transport Calculations	2172
15.2.8.1. Reporting Options	
15.3. Using Chemistry Acceleration	2173
15.3.1. Using ISAT	2174
15.3.1.1 ISAT Parameters	2175
15.3.1.2. Monitoring ISAT	2175
15.3.1.3. Using ISAT Efficiently	2176
15.3.1.4. Reading and Writing ISAT Tables	
15.3.2. Using Dynamic Mechanism Reduction	
15.3.2.1. Mechanism Reduction Parameters	2179
15.3.2.2. Monitoring and Postprocessing Dynamic Mechanism Reduction	2181
15.3.2.3. Using Dynamic Mechanism Reduction Effectively	
15.3.3. Using Chemistry Agglomeration	
15.3.4. Dimension Reduction	
15.3.5. Using Dynamic Cell Clustering	
15.3.6. Using Dynamic Adaptive Chemistry with Ansys Fluent CHEMKIN-CFD Solver	2185
16. Modelling of Turbulent Combustion With Reduced Order	
16.1. Modeling Non-Premixed Combustion	
16.1.1. Steps in Using the Non-Premixed Model	210/
16.1.1. Preliminaries	
10.1.1.1.Fleiiiliilialies	2187
16.1.1.2. Defining the Problem Type	2187 2188
	2187 2188 2188
16.1.1.2. Defining the Problem Type	2187 2188 2188 2188

16.1.2.2. Specifying the Operating Pressure for the System	. 2194
16.1.2.3. Enabling a Secondary Inlet Stream	. 2194
16.1.2.4. Choosing to Define the Fuel Stream(s) Empirically	. 2195
16.1.2.5. Enabling the Rich Flammability Limit (RFL) Option	. 2196
16.1.3. Setting Up the Steady and Unsteady Diffusion Flamelet Models	
16.1.3.1. Choosing Adiabatic or Non-Adiabatic Options	
16.1.3.2. Specifying the Operating Pressure for the System	. 2198
16.1.3.3. Specifying a Chemical Mechanism File for Flamelet Generation	
16.1.3.4. Importing a Flamelet	
16.1.3.5. Using the Unsteady Diffusion Flamelet Model	
16.1.3.6. Using the Diesel Unsteady Laminar Flamelet Model	
16.1.3.6.1. Recommended Settings for Internal Combustion Engines	
16.1.3.7. Resetting Diesel Unsteady Flamelets	. 2203
16.1.4. Defining the Stream Compositions	. 2203
16.1.4.1. Setting Boundary Stream Species	. 2206
16.1.4.1.1 Including Condensed Species	. 2206
16.1.4.2. Modifying the Database	. 2206
16.1.4.3. Composition Inputs for Empirically-Defined Fuel Streams	. 2206
16.1.4.4. Modeling Liquid Fuel Combustion Using the Non-Premixed Model	. 2207
16.1.4.5. Modeling Coal Combustion Using the Non-Premixed Model	. 2207
16.1.4.5.1. Defining the Coal Composition: Single-Mixture-Fraction Models	. 2208
16.1.4.5.2. Defining the Coal Composition: Two-Mixture-Fraction Models	. 2209
16.1.4.5.3. Additional Coal Modeling Inputs in Ansys Fluent	. 2211
16.1.4.5.4. Postprocessing Non-Premixed Models of Coal Combustion	. 2212
16.1.4.5.5. The Coal Calculator	. 2212
16.1.5. Setting Up Control Parameters	
16.1.5.1. Forcing the Exclusion and Inclusion of Equilibrium Species	. 2215
16.1.5.2. Defining the Flamelet Controls	. 2216
16.1.5.3. Zeroing Species in the Initial Unsteady Flamelet	. 2217
16.1.6. Calculating the Flamelets	
16.1.6.1. Steady Diffusion Flamelet	
16.1.6.2. Unsteady Diffusion Flamelet	
16.1.6.3. Saving the Flamelet Data	
16.1.6.4. Postprocessing the Flamelet Data	
16.1.7. Calculating the Look-Up Tables	
16.1.7.1. Full Tabulation of the Two-Mixture-Fraction Model	
16.1.7.2. Stability Issues in Calculating Chemical Equilibrium Look-Up Tables	
16.1.7.3. Saving the Look-Up Tables	
16.1.7.4. Postprocessing the Look-Up Table Data	
16.1.8. Standard Files for Diffusion Flamelet Modeling	
16.1.8.1. Sample Standard Diffusion Flamelet File	
16.1.8.2. Missing Species	
16.1.9. Setting Up the Inert Model	
16.1.9.1. Setting Boundary Conditions for Inert Transport	
16.1.9.2. Initializing the Inert Stream	
16.1.9.2.1. Inert Fraction	
16.1.9.2.2. Inert Composition	
16.1.9.3. Resetting Inert EGR	
16.1.10. Defining Non-Premixed Boundary Conditions	
16.1.10.1. Input of Mixture Fraction Boundary Conditions	
16.1.10.2 Diffusion at Inlets	2243

16.1.10.3. Input of Thermal Boundary Conditions and Fuel Inlet Velocities	2243
16.1.11. Defining Non-Premixed Physical Properties	2243
16.1.12. Solution Strategies for Non-Premixed Modeling	2244
16.1.12.1. Single-Mixture-Fraction Approach	2244
16.1.12.2.Two-Mixture-Fraction Approach	
16.1.12.3. Starting a Non-Premixed Calculation From a Previous Case File	2245
16.1.12.3.1. Retrieving the PDF File During Case File Reads	2246
16.1.12.4. Solving the Flow Problem	
16.1.12.4.1. Under-Relaxation Factors for PDF Equations	2247
16.1.12.4.2. Density Under-Relaxation	
16.1.12.4.3. Tuning the PDF Parameters for Two-Mixture-Fraction Calculations	
16.1.13. Postprocessing the Non-Premixed Model Results	2248
16.1.13.1. Postprocessing for Inert Calculations	
16.2. Modeling Premixed Combustion	
16.2.1. Limitations of the Premixed Combustion Model	
16.2.2. Using the Premixed Combustion Model	
16.2.2.1. Enabling the Premixed Combustion Model	
16.2.2.2. Choosing an Adiabatic or Non-Adiabatic Model	
16.2.3. Setting Up the C-Equation and G-Equation Models	
16.2.3.1. Modifying the Constants for the Zimont Flame Speed Model	
16.2.3.2. Modifying the Constants for the Peters Flame Speed Model	
16.2.3.3. Additional Options for the G-Equation Model	
16.2.3.4. Defining Physical Properties for the Unburnt Mixture	
16.2.3.5. Setting Boundary Conditions for the Progress Variable	
16.2.3.6. Initializing the Progress Variable	
16.2.4. Postprocessing for Premixed Combustion Calculations	
16.2.4.1. Computing Species Concentrations	
16.3. Modeling Partially Premixed Combustion	
16.3.1. Limitations	
16.3.2. Using the Partially Premixed Combustion Model	
16.3.2.1. Setup and Solution Procedure	
16.3.2.2. Importing a Flamelet	
16.3.2.3. Flamelet Generated Manifold	
16.3.2.3.1. Premixed Flamelet Generated Manifolds	
16.3.2.3.1.1. Editing the Flamelet Grid Distribution	
16.3.2.3.2. Diffusion Flamelet Generated Manifolds	
16.3.2.3.3. Using the Heat Loss Modeling Capability for Nonadiabatic FGM	
16.3.2.4. Calculating the Look-Up Tables	
16.3.2.4.1. Postprocessing the Look-Up Tables with Flamelet Generated Manifolds	
16.3.2.5. Standard Files for Flamelet Generated Manifold Modeling	
16.3.2.5.1. Sample Standard FGM File	
16.3.2.6. Setting Premix Flame Propagation Parameters	
16.3.2.7. Modifying the Unburnt Mixture Property Polynomials	
16.3.2.8. Modeling Strained Laminar Flame Speed	
16.3.2.9. Modeling In Cylinder Combustion	
16.3.2.10. Postprocessing for FGM Scalar Transport Calculations	
17. Modeling Engine Ignition	
17.1. Using the Spark Model	
17.2. Using the Autoignition Models	
17.3. Using the Crevice Model	
17.3.1. Setup Procedure	2293

17.3.2. Crevice Model Solution Details	. 2296
17.3.3. Postprocessing for the Crevice Model	. 2296
17.3.3.1. Using the Crevice Output File	. 2297
18. Modeling Pollutant Formation	. 2301
18.1. NOx Formation	. 2301
18.1.1. Using the NOx Model	. 2301
18.1.1.1. Decoupled Analysis: Overview	
18.1.1.2. Enabling the NOx Models	
18.1.1.3. Defining the Fuel Streams	
18.1.1.4. Specifying a User-Defined Function for the NOx Rate	
18.1.1.5. Setting Thermal NOx Parameters	
18.1.1.6. Setting Prompt NOx Parameters	
18.1.1.7. Setting Fuel NOx Parameters	
18.1.1.7.1. Setting Gaseous and Liquid Fuel NOx Parameters	
18.1.1.7.2. Setting Solid (Coal) Fuel NOx Parameters	
18.1.1.8. Setting N2O Pathway Parameters	
18.1.1.9. Setting Parameters for NOx Reburn	
18.1.1.10. Setting SNCR Parameters	
18.1.1.11. Setting Turbulence Parameters	
18.1.1.12. Defining Boundary Conditions for the NOx Model	
18.1.2. Solution Strategies	
18.1.3. Postprocessing	
18.2. Soot Formation	
18.2.1. Using the Soot Models	
18.2.1.1. Setting Up the One-Step Model	
18.2.1.2. Setting Up the Two-Step Model	
18.2.1.3. Setting Up the Moss-Brookes Model and the Hall Extension	
18.2.1.3.1. Specifying a User-Defined Function for the Soot Oxidation Rate	
18.2.1.3.2. Specifying a User-Defined Function for the Soot Precursor Concentration	
18.2.1.3.3. Species Definition for the Moss-Brookes Model with a User-Defined Precurse	
Correlation	
18.2.1.4. Setting Up the Method of Moments Soot Model	
18.2.1.5. Defining Boundary Conditions for the Soot Model	
18.2.1.6. Reporting Soot Quantities	
18.3. Using the Decoupled Detailed Chemistry Model	
19. Predicting Aerodynamically Generated Noise	
19.1. Overview	
19.1.1. Direct Method	
19.1.2. Integral Method by Ffowcs Williams and Hawkings	
19.1.3. Method Based on Wave Equation	
19.1.4. Broadband Noise Source Models	
19.2. Using the Ffowcs Williams and Hawkings Acoustics Model	
19.2.1. Enabling the FW-H Acoustics Model	
19.2.1.1. Setting Model Constants	
19.2.1.2. Computing Sound "on the Fly"	
19.2.1.3. Writing Source Data Files	
19.2.1.3.1. Exporting Source Data Without Enabling the FW-H Model: Using the Ansys	3 .0
Fluent ASD Format	. 2349
19.2.1.3.2. Exporting Source Data Without Enabling the FW-H Model: Using the CGNS	
Format	2349
19.2.2 Specifying Source Surfaces	2351

	19.2.2.1. Saving Source Data	
	19.2.3. Specifying Acoustic Receivers	
	19.2.4. Specifying the Time Step Size	
	19.2.5. Postprocessing the FW-H Acoustics Model Data	
	19.2.5.1. Writing Acoustic Signals	
	19.2.5.2. Reading Unsteady Acoustic Source Data	
	19.2.5.2.1. Pruning the Signal Data Automatically	
	19.2.5.3. Reporting the Static Pressure Time Derivative	
	19.2.5.4. Using the FFT Capabilities for Sound Pressure Signals	
	19.2.6. FFT of Acoustic Sources: Band Analysis and Export of Surface Pressure Spectra	
	19.2.6.1. Using the FFT of Acoustic Sources	
	19.3. Using the Acoustics Wave Equation Model	
	19.3.1. Specifying Source Mask and Sponge Regions	
	19.3.2. Solution Controls for the Acoustics Wave Equation	
	19.3.3. Solution Initialization	
	19.3.4. Postprocessing	
	19.3.5. Using the Kirchhoff Integral Model	
	19.4. Using the Broadband Noise Source Models	
	19.4.1. Enabling the Broadband Noise Source Models	
	19.4.1.1. Setting Model Constants	
20	19.4.2. Postprocessing the Broadband Noise Source Model Data	
20	20.1. Introduction	
	20.1.1. Concepts	
	20.1.1.1 Uncoupled vs. Coupled DPM	
	20.1.1.2. Steady vs. Unsteady Tracking	
	20.1.1.3. Parcels	
	20.1.2. Limitations	
	20.1.2.1. Limitation on the Particle Volume Fraction	
	20.1.2.2. Limitation on Modeling Continuous Suspensions of Particles	
	20.1.2.3. Limitations on Modeling Particle Rotation	
	20.1.2.4. Limitations on Using the Cloud Model	
	20.1.2.5. Limitations on Using the Discrete Phase Model with Other Ansys Fluent Models	
	20.1.2.6. Limitations on Using the Hybrid Parallel Method	
	20.1.2.7. Limitations on Using the Lagrangian Wall Film Model	
	20.2. Steps for Using the Discrete Phase Models	
	20.2.1. Options for Interaction with the Continuous Phase	
	20.2.2. Steady/Transient Treatment of Particles	
	20.2.3. Tracking Settings for the Discrete Phase Model	
	20.2.4. Drag Laws	
	20.2.5. Physical Models for the Discrete Phase Model	. 2407
	20.2.5.1. Including Radiation Heat Transfer Effects on the Particles	
	20.2.5.2. Including Thermophoretic Force Effects on the Particles	
	20.2.5.3. Including Saffman Lift Force Effects on the Particles	
	20.2.5.4. Including the Virtual Mass Force and Pressure Gradient Effects on Particles	
	20.2.5.5. Monitoring Erosion/Accretion of Particles at Walls	
	20.2.5.6. Pressure Options for Vaporization Models	
	20.2.5.7. Enabling Pressure Dependent Boiling	
	20.2.5.8. Including the Effect of Droplet Temperature on Latent Heat	
	20.2.5.9. Including the Effect of Particles on Turbulent Quantities	
	20.2.5.10. Including Collision and Droplet Coalescence	

OOD FAALLEY ALDENG HEEL ALLE	0444
20.2.5.11. Including the DEM Collision Model	
20.2.5.12. Including Droplet Breakup	
20.2.5.13. Modeling Collision Using the DEM Model	
20.2.5.13.1. Limitations	
20.2.5.13.2. Numeric Recommendations	
20.2.6. User-Defined Functions	
20.2.7. Numerics of the Discrete Phase Model	
20.2.7.1. Numerics for Tracking of the Particles	
20.2.7.2. Including Coupled Heat-Mass Solution Effects on the Particles	
20.2.7.3. Tracking in a Reference Frame	
20.2.7.4. Node Based Averaging of Particle Data	
20.2.7.5. Linearized Source Terms	
20.2.7.6. Staggering of Particles in Space and Time	
20.2.7.7. Under-Relaxing Lagrangian Wall Film Height	
20.3. Setting Initial Conditions for the Discrete Phase	
20.3.1. Injection Types	
20.3.2. Particle Types	
20.3.3. Point Properties for Single Injections	
20.3.4. Point Properties for Group Injections	
20.3.5. Point Properties for Cone Injections	
20.3.6. Point Properties for Surface Injections	
20.3.6.1. Using the Rosin-Rammler Diameter Distribution Method for Surface Injections	
20.3.7. Point Properties for Volume Injections	
20.3.7.1. Using the Rosin-Rammler Diameter Distribution Method for Volume Injections	
20.3.8. Point Properties for Plain-Orifice Atomizer Injections	
20.3.9. Point Properties for Pressure-Swirl Atomizer Injections	
20.3.10. Point Properties for Air-Blast/Air-Assist Atomizer Injections	
20.3.11. Point Properties for Flat-Fan Atomizer Injections	
20.3.12. Point Properties for Effervescent Atomizer Injections	
20.3.13. Point Properties for File Injections	
20.3.13.1. Steady File Format	
20.3.13.2. Unsteady File Format	
20.3.13.3. User Input for File Injections	
20.3.14. Point Properties for Condensate Injections	
20.3.15. Using the Rosin-Rammler Diameter Distribution Method	
20.3.15.1.The Stochastic Rosin-Rammler Diameter Distribution Method	
20.3.16. Creating and Modifying Injections	
20.3.16.1. Creating Injections	
20.3.16.2. Modifying Injections	
20.3.16.3. Copying Injections	
20.3.16.4. Deleting Injections	
20.3.16.5. Listing Injections	
20.3.16.6. Reading and Writing Injections	
20.3.17. Defining Injection Properties	
20.3.18. Specifying Injection-Specific Physical Models	
20.3.18.1. Drag Laws	
20.3.18.2. Particle Rotation	
20.3.18.3. Rough Wall Model	
20.3.18.4. Brownian Motion Effects	
20.3.18.5. Breakup	
20.3.10 Specifying Turbulent Dispersion of Particles	2/169

20.3.19.1. Stochastic Tracking	
20.3.19.2. Cloud Tracking	
20.3.20. Custom Particle Laws	
20.3.21. Defining Properties Common to More than One Injection	
20.3.21.1. Modifying Properties	
20.3.21.2. Modifying Properties Common to a Subset of Selected Injections	
20.3.22. Point Properties for Transient Injections	
20.4. Setting Boundary Conditions for the Discrete Phase	
20.4.1. Discrete Phase Boundary Condition Types	
20.4.1.1. The reflect Boundary Condition	
20.4.1.2. The trap Boundary Condition	
20.4.1.3. The escape Boundary Condition	
20.4.1.4. The wall-jet Boundary Condition	
20.4.1.5. The wall-film Boundary Condition	
20.4.1.6. The interior Boundary Condition	
20.4.1.7. The user-defined Boundary Condition	
20.4.2. Default Discrete Phase Boundary Conditions	
20.4.3. Coefficients of Restitution	
20.4.4. Friction Coefficient	
20.4.5. Particle-Wall Impingement Heat Transfer	
20.4.6. Film Condensation Model	
20.4.7. Wall Boundary Layer Model	
20.4.8. Setting Particle Erosion and Accretion Parameters	
20.5. Particle Erosion Coupled with Dynamic Meshes	
20.5.1. Preliminaries	
20.5.2. Limitations	
20.5.3. Procedure for the Erosion Coupled with Dynamic Mesh Setup and Solution	
20.5.4. Postprocessing for Erosion Dynamic Mesh Calculations	
20.6. Setting Material Properties for the Discrete Phase	
20.6.1. Summary of Property Inputs	
20.6.2. Setting Discrete-Phase Physical Properties	
20.6.2.1. The Concept of Discrete-Phase Materials	
20.6.2.1.1. Defining Additional Discrete-Phase Materials	
20.6.2.2. Description of the Properties	
20.7. Solution Strategies for the Discrete Phase	
20.7.1. Performing Trajectory Calculations	
20.7.1.1. Uncoupled Calculations	
20.7.1.2. Coupled Calculations	
20.7.1.2.1. Procedures for a Coupled Two-Phase Flow	
20.7.1.2.2. Stochastic Tracking in Coupled Calculations	
20.7.1.2.3. Under-Relaxation of the Interphase Exchange Terms	
20.7.2. Resetting the Interphase Exchange Terms	
20.7.3. Patching the Wall Film	
20.8. Postprocessing for the Discrete Phase	
20.8.1. Displaying of Trajectories	
20.8.1.1. Options for Particle Trajectory Plots	
20.8.1.2. Controlling the Particle Tracking Style	
20.8.1.3. Controlling the Vector Style of Particle Tracks	
20.8.1.4. Importing Particle Data	14.27)
20.0.1.F. Dentials Filtration	
20.8.1.5. Particle Filtering	2533

20.8.2. Reporting of Trajectory Fates	2534
20.8.2.1. Trajectory Fates	2534
20.8.2.2. Summary Reports	2535
20.8.2.2.1. Elapsed Time	2537
20.8.2.2.2. Mass Transfer Summary	2537
20.8.2.2.3. Energy Transfer Summary	
20.8.2.2.4. Heat Rate and Energy Reporting	
20.8.2.2.4.1. Change of Heat and Change of Energy Reporting	
20.8.2.2.5. Combusting Particles	
20.8.2.2.6. Combusting Particles with the Multiple Surface Reaction Model	
20.8.2.2.7. Multicomponent Particles	
20.8.3. Step-by-Step Reporting of Trajectories	
20.8.4. Reporting of Current Positions for Unsteady Tracking	
20.8.5. Reporting of Interphase Exchange Terms (Discrete Phase Sources)	
20.8.6. Reporting of Discrete Phase Variables	
20.8.7. Reporting of Unsteady DPM Statistics	
20.8.8. Sampling of Trajectories	
20.8.9. Histogram Reporting of Samples	
20.8.9.1. Analysis, Investigation, and Reporting of Samples	
20.8.9.2. Data Reduction of Samples	
20.8.10. Summary Reporting of Current Particles	
20.8.11. Postprocessing of Erosion/Accretion Rates	
20.8.12. Assessing the Risk for Solids Deposit Formation During Selective Catalytic Reduction	
Process	
20.9. Parallel Processing for the Discrete Phase Model	
21. Modeling Macroscopic Particles	
21.1. Overview and Limitations	
21.2. Loading the MPM add-on Module	
21.3. Setting up Macroscopic Particle Model Simulations	
21.4. Modeling Macroscopic Particles	
21.4.1. Specifying Particle Tracking Parameters	
21.4.2. Specifying the Drag Law	
21.4.3. Defining Parameters for Particle-Particle and Particle-Wall Collisions	
21.4.4. Specifying Deposition Parameters	2577
21.4.5. Specifying Injection Parameters	
21.4.5.1. Defining MPM Injection Properties	
21.4.5.2. Inputs for point Injections	
21.4.5.3. Inputs for plane Injections	
21.4.5.4. Inputs for packing Injections	2585
21.4.5.5. Inputs for from-file Injections	2586
21.4.6. Defining Field Forces	2587
21.4.7. Initializing the MPM	2587
22. Modeling Multiphase Flows	2591
22.1.Introduction	2591
22.2. Steps for Using a Multiphase Model	2591
22.2.1. Enabling the Multiphase Model	2594
22.2.1.1. Inputs for the VOF Model	
22.2.1.2. Inputs for the Mixture Multiphase Model	
22.2.1.3. Inputs for the Eulerian Multiphase Model	
22.2.2. Choosing Volume Fraction Formulation	
22.2.2.1. Interface Modeling Type	
J /1	

22.2.2.2 Spatial Discretization Schemes for Volume Fraction	
22.2.2.3. Volume Fraction Limits	
22.2.2.4. Expert Options	
22.2.3. Solving a Homogeneous Multiphase Flow	
22.2.4. Modeling Buoyancy-Driven Multiphase Flow	
22.2.4.1. Setting the Operating Density for a Buoyancy-Driven Multiphase Flow	. 2606
22.2.4.2. The Boussinesq Approximation in a Multiphase Flow	. 2607
22.2.5. Modeling Compressible Flows	. 2607
22.2.6. Defining the Phases	. 2608
22.2.7. Including Body Forces	. 2609
22.2.8. Modeling Multiphase Species Transport	. 2610
22.2.9. Specifying Heterogeneous Reactions	. 2613
22.2.10. Including Mass Transfer Effects	. 2616
22.2.10.1. Alternative Modeling of Energy Sources	. 2619
22.2.10.2. Mass Transfer Mechanisms	. 2621
22.2.10.2.1. Constant-Rate Option	. 2621
22.2.10.2.2. User-Defined Option	. 2621
22.2.10.2.3. Population-Balance Mechanism	. 2622
22.2.10.2.4. Cavitation Mechanism	. 2622
22.2.10.2.5. Evaporation-Condensation Mechanism	. 2626
22.2.10.2.6. Species-Mass-Transfer Mechanism	. 2628
22.2.10.2.7. Boiling Mechanism	. 2631
22.2.11. Defining Multiphase Cell Zone and Boundary Conditions	. 2632
22.2.11.1. Steps for Setting Boundary Conditions	
22.2.11.2. Steps for Setting Cell Zone Conditions	. 2638
22.2.11.2. Decordence and Call Zama Conditions for the Michigan and the Individual Dhases	2640
22.2.11.3. Boundary and Cell Zone Conditions for the Mixture and the Individual Phases	. 20-0
22.2.11.3.1.VOF Model	
	. 2640
22.2.11.3.1. VOF Model	. 2640 . 2642
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649 . 2650
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649 . 2650 . 2652
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649 . 2650 . 2652
22.2.11.3.1. VOF Model	. 2640 . 2642 . 2643 . 2649 . 2649 . 2650 . 2652 . 2652
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems	. 2640 . 2642 . 2649 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver	. 2640 . 2642 . 2649 . 2649 . 2649 . 2650 . 2652 . 2652 . 2653 . 2653
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2652 . 2653 . 2653 . 2654
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2653 . 2654
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2652 . 2653 . 2653 . 2654 . 2654
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2654 . 2656
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3. Setting Up the VOF Model 22.3. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2654 . 2656 . 2656
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Outlet Group 22.3.5.5. Determining the Free Surface Level	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2654 . 2656 . 2656 . 2657 . 2657
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Inlet Group	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2654 . 2656 . 2656 . 2657 . 2657
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Outlet Group 22.3.5.5. Determining the Free Surface Level	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2656 . 2656 . 2656 . 2657 . 2657
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.2. Defining Outlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Outlet Group 22.3.5.5. Determining the Free Surface Level 22.3.5.6. Determining the Bottom Level	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2653 . 2654 . 2656 . 2656 . 2656 . 2657 . 2658 . 2658
22.2.11.3.1. VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.2. Defining Outlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Outlet Group 22.3.5.5. Determining the Free Surface Level 22.3.5.6. Determining the Bottom Level 22.3.5.7. Specifying the Total Height	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2654 . 2656 . 2656 . 2657 . 2658 . 2659 . 2659
22.2.11.3.1.VOF Model 22.2.11.3.2. Mixture Model 22.2.11.3.3. Eulerian Model 22.2.11.4. Steps for Copying Cell Zone and Boundary Conditions 22.2.12. Setting Initial Conditions 22.2.12.1. Setting Initial Volume Fractions 22.2.12.1. Options for Patching Volume Fraction 22.2.12.2. Setting the Initial Turbulence Field 22.3. Setting Up the VOF Model 22.3.1. Solving Steady-State VOF Problems 22.3.2. Guidelines for Using the Multiphase Pseudo Transient Solver 22.3.3. Including Coupled Level Set with the VOF Model 22.3.4. Mesh Adaption with the VOF Model 22.3.5. Modeling Open Channel Flows 22.3.5.1. Defining Inlet Groups 22.3.5.2. Defining Outlet Groups 22.3.5.3. Setting the Inlet Group 22.3.5.4. Setting the Outlet Group 22.3.5.5. Determining the Free Surface Level 22.3.5.6. Determining the Bottom Level 22.3.5.7. Specifying the Total Height 22.3.5.8. Determining the Velocity Magnitude	. 2640 . 2642 . 2649 . 2649 . 2650 . 2652 . 2653 . 2653 . 2654 . 2656 . 2656 . 2657 . 2657 . 2658 . 2659 . 2659

22.3.5.12. Choosing the Density Interpolation Method	2661
22.3.5.13. Open Channel Flow Compatibility with Velocity Inlet	2662
22.3.5.13.1. Velocity Inlet, Open Channel Flow, Steady-State	2662
22.3.5.13.2. Velocity Inlet, Open Channel Flow, Transient	2662
22.3.5.14. Limitations	
22.3.5.15. Recommendations for Setting Up an Open Channel Flow Problem	
22.3.6. Modeling Open Channel Wave Boundary Conditions	
22.3.6.1. Summary Report and Regime Check	
22.3.6.2. Transient Profile Support for Wave Inputs	
22.3.6.3. Alternative Stokes Wave Theory Variant	
22.3.7. Recommendations for Open Channel Initialization	
22.3.7.1. Reporting Parameters for Open Channel Wave BC Option	
22.3.8. Numerical Beach Treatment for Open Channels	
22.3.8.1. Solution Strategies	
22.3.9. Defining the Phases for the VOF Model	
22.3.9.1. Defining the Primary Phase	
22.3.9.2. Defining a Secondary Phase	
22.3.10. Defining Phase Interaction Terms	
22.3.10.1. Including Surface Tension and Adhesion Effects	
22.3.10.2. Discretizing Using the Phase Localized Compressive Scheme	
22.3.11. Setting Time-Dependent Parameters for the Explicit Volume Fraction Formulation	
22.3.12. Modeling Solidification/Melting	
22.3.13. Using the VOF-to-DPM Model Transition for Dispersion of Liquid in Gas	
22.3.13.1. Limitations on Using the VOF-to-DPM Model Transition	
22.3.13.2. Setting up the VOF-to-DPM Model Transition	
22.3.13.3. Best Practice Guidelines for Considering Diffuse Lumps	
22.3.13.4. Postprocessing for VOF-to-DPM Model Transition Calculations	
22.3.14. Using the DPM-to-VOF Model Transition	
22.3.14.1. Setting up the DPM-to-VOF Model Transition	
22.3.14.2. Limitations	
22.4. Setting Up the Mixture Model	
22.4.1. Defining the Phases for the Mixture Model	
22.4.1.1. Defining the Primary Phase	
22.4.1.2. Defining a Non-Granular Secondary Phase	
22.4.1.3. Defining a Granular Secondary Phase	
22.4.1.4. Defining the Interfacial Area Concentration via the Transport Equation	
22.4.1.5. Defining the Algebraic Interfacial Area Concentration	
22.4.1.6. Defining Drag Between Phases	
22.4.1.7. Defining the Slip Velocity	
22.4.1.8. Including Surface Tension and Wall Adhesion Effects	
22.4.2. Including Mixture Drift Force	
22.4.3. Including Cavitation Effects	
22.4.4. Including Semi-Mechanistic Boiling	
22.4.4.1. Overview and Limitations for the Semi-Mechanistic Boiling Model	
22.4.4.2. Using the Semi-Mechanistic Boiling Model	
22.4.4.3. Cell Zone Specific Boiling	
22.4.4.4. Expert Options for the Semi-Mechanistic Boiling Model	
22.4.4.5. Solution Strategies for the Semi-Mechanistic Boiling Model	
22.5. Setting Up the Eulerian Model	
22.5.1. Additional Guidelines for Eulerian Multiphase Simulations	
22.5.2 Defining the Phases for the Fulerian Model	2731

22.5.2.1. Defining the Primary Phase	
22.5.2.2. Defining a Non-Granular Secondary Phase	2731
22.5.2.3. Defining a Granular Secondary Phase	2732
22.5.2.4. Defining the Interfacial Area Concentration	2737
22.5.2.5. Defining the Interaction Between Phases	2739
22.5.2.5.1. Specifying the Drag Function	
22.5.2.5.1.1. Drag Modification	
22.5.2.5.2. Specifying the Restitution Coefficients (Granular Flow Only)	
22.5.2.5.3. Including the Lift Force	
22.5.2.5.4. Including the Lift Correlation	
22.5.2.5.5. Including the Wall Lubrication Force	
22.5.2.5.6. Including the Turbulent Dispersion Force	
22.5.2.5.7. Including Surface Tension and Wall Adhesion Effects	
22.5.2.5.8. Including the Virtual Mass Force	
22.5.3. Modeling Turbulence	
22.5.3.1. Including Turbulence Interaction Source Terms	
22.5.3.2. Customizing the k- ε Multiphase Turbulent Viscosity	
22.5.4. Including Heat Transfer Effects	
22.5.5. Using an Algebraic Interfacial Area Model	
22.5.6. Using the Algebraic Interfacial Area Density (AIAD) Model	
22.5.6.1. Limitations	
22.5.6.2. Procedure for Setting the AIAD Model	
22.5.6.3. Solution Strategies	
22.5.7. Using the Generalized Two Phase Flow (GENTOP) Model	
22.5.7.1. Limitations	
22.5.7.2. Steps for Using the GENTOP Model	
22.5.7.3. Solution Strategies	
22.5.8. Including the Dense Discrete Phase Model	
22.5.8.1. Defining a Granular Discrete Phase	
22.5.9. Including the Boiling Model	
22.5.10. Setting Up Polydisperse Boiling	
22.5.11. Including the Multi-Fluid VOF Model	
22.6. Population Balance Model	
22.6.1. Population Balance Model Setup	
22.6.1.1. Enabling the Population Balance Model	
22.6.1.1.1. Generated DQMOM Values	
22.6.1.2. Defining Population Balance Boundary Conditions	
22.6.1.2.1. Initializing Bin Fractions With a Log-Normal Distribution	
22.6.1.3. Specifying Population Balance Solution Controls	
22.6.1.4. Coupling With Fluid Dynamics	
22.6.1.5. Specifying Interphase Mass Transfer Due to Nucleation and Growth	
22.6.1.6. Size Calculator	
22.6.2. Postprocessing for the Population Balance Model	
22.6.2.1 Population Balance Solution Variables	
22.6.2.2. Reporting Derived Population Balance Variables	
22.6.2.2.1. Computing Moments	
22.6.2.2.2 Displaying a Number Density Function	
22.6.3. UDFs for Population Balance Modeling	
22.6.3.1. Population Balance Variables	
22.6.3.2. Population Balance DEFINE Macros	
22.6.3.2.1 DEFINE PB BREAK UP RATE FREO	

22.6.2.2.1.1. Usage	
22.6.3.2.1.1. Usage	. 2822
22.6.3.2.1.2. Example	. 2823
22.6.3.2.2.DEFINE PB BREAK UP RATE PDF	. 2823
22.6.3.2.2.1. Usage	. 2823
22.6.3.2.2.2. Example	. 2824
22.6.3.2.3. DEFINE_PB_COALESCENCE_RATE	. 2824
22.6.3.2.3.1. Usage	
22.6.3.2.3.2. Example	. 2825
22.6.3.2.4. DEFINE_PB_NUCLEATION_RATE	. 2825
22.6.3.2.4.1. Usage	. 2825
22.6.3.2.4.2. Example	. 2826
22.6.3.2.5. DEFINE_PB_GROWTH_RATE	. 2827
22.6.3.2.5.1. Usage	. 2827
22.6.3.2.5.2. Example	
22.6.3.3. Hooking a Population Balance UDF to Ansys Fluent	. 2828
22.6.4. DEFINE_HET_RXN_RATE Macro	. 2828
22.6.4.1. Description	. 2829
22.6.4.2. Usage	. 2829
22.6.4.3. Example	
22.6.4.4. Hooking a Heterogeneous Reaction Rate UDF to Ansys Fluent	. 2830
22.7. Setting Up the Wet Steam Model	
22.7.1. Using User-Defined Thermodynamic Wet Steam Properties	
22.7.2. Writing the User-Defined Wet Steam Property Functions (UDWSPF)	
22.7.3. Compiling Your UDWSPF and Building a Shared Library File	
22.7.4. Loading the UDWSPF Shared Library File	
22.7.5. UDWSPF Example	
22.8. Solution Strategies for Multiphase Modeling	
22.8.1. General Solution Strategies	
22.8.1.1. Coupled Solution for Eulerian Multiphase Flows	
22.8.1.2. Coupled Solution for VOF and Mixture Multiphase Flows	
22.8.1.3. Selecting the Pressure-Velocity Coupling Method	
22.8.1.3.1. Limitations and Recommendations of the Coupled with Volume Fraction C	
tions for the VOF and Mixture Models	2046
22.8.1.3.2. Solving N-Phase Volume Fraction Equations	. 2847
22.8.1.3.2. Solving N-Phase Volume Fraction Equations	. 2847 . 2847
22.8.1.3.2. Solving N-Phase Volume Fraction Equations	. 2847 . 2847 . 2850
22.8.1.3.2. Solving N-Phase Volume Fraction Equations	. 2847 . 2847 . 2850 . 2850
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls	. 2847 . 2847 . 2850 . 2850 . 2851
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855 . 2855
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855 . 2855 . 2856
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme	. 2847 . 2847 . 2850 . 2850 . 2851 . 2855 . 2855 . 2856 . 2856
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme 22.8.2.1.3. Discretization Scheme Selection	. 2847 . 2847 . 2850 . 2850 . 2851 . 2855 . 2855 . 2856 . 2856 . 2856
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme 22.8.2.1.3. Discretization Scheme Selection 22.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855 . 2856 . 2856 . 2856 . 2857 . 2857
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme 22.8.2.1.3. Discretization Scheme Selection 22.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation 22.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation	. 2847 . 2847 . 2850 . 2850 . 2851 . 2853 . 2855 . 2856 . 2856 . 2856 . 2857 . 2857
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme 22.8.2.1.3. Discretization Scheme Selection 22.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation 22.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation 22.8.2.1.6. Pressure-Velocity Coupling and Under-Relaxation for the Time-dependent	. 2847 . 2847 . 2850 . 2851 . 2853 . 2855 . 2855 . 2856 . 2856 . 2856 . 2857 . 2857
22.8.1.3.2. Solving N-Phase Volume Fraction Equations 22.8.1.4. Controlling the Volume Fraction Coupled Solution 22.8.1.5. Default and Stability Controls 22.8.1.5.1. Default Controls 22.8.1.5.2. VOF Solution Stability Controls 22.8.1.5.3. Text User Interface for VOF Stability Controls 22.8.1.6. Steady-State Solution Strategies 22.8.2. Model-Specific Solution Strategies 22.8.2.1. VOF Model 22.8.2.1.1. Setting the Reference Pressure Location 22.8.2.1.2. Pressure Interpolation Scheme 22.8.2.1.3. Discretization Scheme Selection 22.8.2.1.4. High-Order Rhie-Chow Face Flux Interpolation 22.8.2.1.5. Treatment of Unsteady Terms in Rhie-Chow Face Flux Interpolation	. 2847 . 2847 . 2850 . 2850 . 2851 . 2855 . 2855 . 2856 . 2856 . 2857 . 2858

	22.8.2.2.1. Setting the Under-Relaxation Factor for the Slip Velocity	2859
	22.8.2.2.2. Calculating an Initial Solution	2859
	22.8.2.3. Eulerian Model	2859
	22.8.2.3.1. Calculating an Initial Solution	2859
	22.8.2.3.2. Temporarily Ignoring Lift and Virtual Mass Forces	2860
	22.8.2.3.3. Using W-Cycle Multigrid	2860
	22.8.2.3.4. Including the Anisotropic Drag Law	
	22.8.2.3.5. Controlling NITA Solution Options via the Text Interface	2861
	22.8.2.4. Wet Steam Model	2862
	22.8.2.4.1. Boundary Conditions, Initialization, and Patching	2862
	22.8.2.4.2. Solution Limits for the Wet Steam Model	2862
	22.8.2.4.3. Solution Strategies for the Wet Steam Model	2862
	22.9. Multiphase Case Check	2863
	22.10. Postprocessing for Multiphase Modeling	2864
	22.10.1. Model-Specific Variables	
	22.10.1.1.VOF Model	2865
	22.10.1.2. Mixture Model	2865
	22.10.1.3. Eulerian Model	2865
	22.10.1.4. Multiphase Species Transport	2866
	22.10.1.5. Wet Steam Model	2868
	22.10.1.6. Dense Discrete Phase Model	
	22.10.2. Displaying Velocity Vectors	
	22.10.3. Reporting Fluxes	
	22.10.4. Reporting Forces on Walls	
	22.10.5. Reporting Flow Rates	
23	. Modeling Solidification and Melting	
	23.1. Setup Procedure	
	23.2. Procedures for Modeling Continuous Casting	
	23.3. Modeling Thermal and Solutal Buoyancy	
	23.4. Solution Procedure	
	23.5. Postprocessing	
24	. Modeling Fluid-Structure Interaction (FSI) Within Fluent	
	24.1. Overview and Limitations	
	24.2. Setting Up an Intrinsic Fluid-Structure Interaction (FSI) Simulation	
	24.2.1. Using Intrinsic FSI With Non-Conformal Interfaces	
25	. Modeling Eulerian Wall Films	
	25.1. Limitations	
	25.2. Overview of Using the Eulerian Wall Film Model	
	25.3. Setting Eulerian Wall Film Model Options	
	25.4. Setting Eulerian Wall Film Solution Controls	
	25.5. Setting Eulerian Wall Film Boundary, Initial, and Source Term Conditions	
	25.5.1. Specifying the Boundary Type	
	25.5.2. Setting the Source Terms	
	25.5.3. Setting the Phase Change	
	25.5.4. Setting the Surface Contact	
	25.5.5. Setting the DPM interaction	
	25.6. Coupling of Eulerian Wall Film with the VOF Multiphase Model	
	25.6. Coupling of Eulerian Wall Film with the VOF Multiphase Model	
)6	. Modeling Electric Potential Field and Lithium-ion Battery	
	26.1 Using the Electric Potential Model	2917

26.1.1. Limitation of the Electric Potential Model	. 2917
26.1.2. Setting Up the Electric Potential Model	. 2918
26.2. Using the Lithium-ion Battery Model	. 2919
26.2.1. Limitations of the Detailed Lithium-ion Battery Model	. 2920
26.2.2. Setting Up the Lithium-ion Battery Model	. 2920
26.3. Postprocessing Electric Potential Field and Li-ion Battery Quantities	
27. Modeling Batteries	
27.1.Introduction	
27.1.1. Overview	
27.1.2. General Procedure	
27.2. Using the MSMD-Based Battery Models	
27.2.1. Limitations	
27.2.2. Geometry Definition	
27.2.3. Setting up the Battery Model	
27.2.3.1. Specifying Battery Model Options	
27.2.3.2. Specifying Conductive Zones	
27.2.3.3. Specifying Electric Contacts	
27.2.3.4. Specifying Battery Model Parameters	
27.2.3.4.1. Inputs for the CHT Coupling Method	
27.2.3.4.2. Inputs for the FMU-CHT Coupling Method	
27.2.3.4.3. Inputs for the NTGK Empirical Model	
27.2.3.4.4. Inputs for the Equivalent Circuit Model	
27.2.3.4.4.1.The HPPC Library	
27.2.3.4.5. Inputs for the Newman's P2D Model	
27.2.3.4.6. Input for the User-Defined E-Model	
27.2.3.5. Hooking User-Defined Functions	
27.2.3.6. Specifying Advanced Options	
27.2.3.7. Specifying External and Internal Short-Circuit Resistances	
27.2.4. Using Parameter Estimation Tools	
27.2.4.1. Using Parameter Estimation Tools in the GUI	
27.2.4.2. Using Parameter Estimation Tools in the TUI	
27.2.4.2.1. Using the Parameter Estimation Tool for the NTGK Model in the TUI	
27.2.4.2.2. Using the Parameter Estimation Tool for the ECM Model in the TUI	
27.2.4.2.3. Using the Parameter Estimation Tool for the Ecin Model in the Port	. 2900
TUI	2002
27.2.5. Initializing the Battery Model	
27.2.5. Initializing the battery Model	
27.2.0. Modifying Material Properties	
27.2.8. Postprocessing the MSMD Battery Model	
27.2.o. Postpiocessing the Misinib Battery Model	
28.1. Using the PEMFC Model	
28.1.1. Overview and Limitations	
28.1.2. Geometry Definition for the PEMFC Model	
, , , , , , , , , , , , , , , , , , ,	
28.1.3. Installing the PEMFC Model	
28.1.5. Workflow for Using the PEMFC Module	
28.1.6. Setting Up the PEMFC Module	
28.1.6.1. Specifying Model Options (Model Tab)	
28.1.6.2. Specifying Model Parameters (Parameters Tab)	
28.1.6.3. Specifying Anode Properties (Anode Tab)	
28.1.6.3.1. Specifying Current Collector Properties for the Anode	. 3000

28.1.6.3.2. Specifying Flow Channel Properties for the Anode	
28.1.6.3.3. Specifying Porous Electrode Properties for the Anode	3002
28.1.6.3.4. Specifying Catalyst Layer Properties for the Anode	3004
28.1.6.3.5. Specifying Micro Porous Layer (Optional) Properties for the And	ode 3006
28.1.6.3.6. Specifying Cell Zone Conditions for the Anode	3007
28.1.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)	3007
28.1.6.4.1. Specifying Cell Zone Conditions for the Membrane	3009
28.1.6.5. Specifying Cathode Properties (Cathode Tab)	3009
28.1.6.5.1. Specifying Current Collector Properties for the Cathode	3009
28.1.6.5.2. Specifying Flow Channel Properties for the Cathode	3009
28.1.6.5.3. Specifying Porous Electrode Properties for the Cathode	3009
28.1.6.5.4. Specifying Catalyst Layer Properties for the Cathode	3010
28.1.6.5.5. Specifying Micro Porous Layer (Optional) Properties for the Cat	hode 3012
28.1.6.5.6. Specifying Cell Zone Conditions for the Cathode	3012
28.1.6.6. Setting the External Electrical Tabs (Electrical Tabs Tab)	3012
28.1.6.7. Setting Advanced Properties (Advanced Tab)	3013
28.1.6.7.1. Setting Contact Resistivities for the PEMFC Model	3014
28.1.6.7.2. Setting Coolant Channel Properties for the PEMFC Model (Opti	onal) 3015
28.1.6.7.3. Managing Stacks for the PEMFC Model	3016
28.1.6.8. Reporting on the Solution (Reports Tab)	3017
28.1.7. PEMFC Model Boundary Conditions	3020
28.1.8. Solution Guidelines for the PEMFC Model	3021
28.1.9. Postprocessing the PEMFC Model	3021
28.1.10. User-Accessible Functions	3023
28.1.10.1. Compiling the Customized PEMFC Source Code	3027
28.1.10.1.1. Compiling the Customized Source Code Under Linux	3027
28.1.10.1.2. Compiling the Customized Source Code under Windows	
28.2. Using the Fuel Cell and Electrolysis Model	3028
28.2.1. Overview and Limitations	3029
28.2.2. Geometry Definition for the Fuel Cell and Electrolysis Model	3029
28.2.3. Installing the Fuel Cell and Electrolysis Model	3030
28.2.4. Loading the Fuel Cell and Electrolysis Module	
28.2.5. Workflow for Using the Fuel Cell and Electrolysis Module	3030
28.2.6. Setting Up the Fuel Cell and Electrolysis Module	
28.2.6.1. Specifying Model Options (Model Tab)	3033
28.2.6.2. Specifying Model Parameters (Parameters Tab)	
28.2.6.3. Specifying Anode Properties (Anode Tab)	3037
28.2.6.3.1. Specifying Current Collector Properties for the Anode	
28.2.6.3.2. Specifying Flow Channel Properties for the Anode	
28.2.6.3.3. Specifying Porous Electrode Properties for the Anode	
28.2.6.3.4. Specifying Catalyst Layer Properties for the Anode	
28.2.6.3.5. Specifying Cell Zone Conditions for the Anode	
28.2.6.4. Specifying Electrolyte/Membrane Properties (Electrolyte Tab)	
28.2.6.4.1. Specifying Cell Zone Conditions for the Membrane	
28.2.6.5. Specifying Cathode Properties (Cathode Tab)	
28.2.6.5.1. Specifying Current Collector Properties for the Cathode	
28.2.6.5.2. Specifying Flow Channel Properties for the Cathode	
28.2.6.5.3. Specifying Porous Electrode Properties for the Cathode	
28.2.6.5.4. Specifying Catalyst Layer Properties for the Cathode	
28.2.6.5.5. Specifying Cell Zone Conditions for the Cathode	
28.2.6.6. Setting Advanced Properties (Advanced Tab)	

	28.2.6.6.1. Setting Contact Resistivities for the Fuel Cell and Electrolysis Model	
	28.2.6.6.2. Setting Coolant Channel Properties for the Fuel Cell and Electrolysis Mod-	
	el	
	28.2.6.6.3. Managing Stacks for the Fuel Cell and Electrolysis Model	
	28.2.6.7. Reporting on the Solution (Reports Tab)	
	28.2.7. Modeling Current Collectors	
	28.2.8. Fuel Cell and Electrolysis Model Boundary Conditions	3052
	28.2.9. Solution Guidelines for the Fuel Cell and Electrolysis Model	
	28.2.10. Postprocessing the Fuel Cell and Electrolysis Model	
	28.2.11. User-Accessible Functions	
	28.2.11.1. Compiling the Customized Fuel Cell and Electrolysis Source Code	
	28.2.11.1.1. Compiling the Customized Source Code Under Linux	
	28.2.11.1.2. Compiling the Customized Source Code Under Windows	
28.3	B. Using the Solid Oxide Fuel Cell With Unresolved Electrolyte Model	3060
	28.3.1. Limitation on Modeling Solid Oxide Fuel Cells	
	28.3.2. Installing the Solid Oxide Fuel Cell With Unresolved Electrolyte Model	3060
	28.3.3. Loading the Solid Oxide Fuel Cell With Unresolved Electrolyte Module	3060
	28.3.4. Solid Oxide Fuel Cell With Unresolved Electrolyte Module Set Up Procedure	3062
	28.3.5. Setting the SOFC Model	3065
	28.3.5.1. Setting the Parameters for the SOFC With Unresolved Electrolyte Model	3066
	28.3.5.2. Setting Up the Electrochemistry Parameters	3068
	28.3.5.3. Setting Up the Electrode-Electrolyte Interfaces	3070
	28.3.5.4. Setting Up the Electric Field Model Parameters	3072
	28.3.6. User-Accessible Functions for the Solid Oxide Fuel Cell With Unresolved Electrolyte	
	Model	3074
	28.3.6.1. Compiling the Customized Solid Oxide Fuel Cell With Unresolved Electrolyte Sou	rce
	28.3.6.1. Compiling the Customized Solid Oxide Fuel Cell With Unresolved Electrolyte Sou Code	
	Code	3075
	Code28.3.6.1.1. Compiling the Customized Source Code Under Linux	3075 3075
29. Mod	Code	3075 3075 3076
	Code	3075 3075 3076 3079
29.1	Code	3075 3075 3076 3079 3079
29.1 29.2	Code	3075 3075 3076 3079 3079
29.1 29.2	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics I. Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations	3075 3075 3076 3079 3079 3080
29.1 29.2	Code	3075 3075 3076 3079 3079 3080 3080
29.1 29.2	Code	3075 3076 3079 3079 3079 3080 3080
29.1 29.2	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics I. Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model	3075 3076 3079 3079 3079 3080 3081 3081
29.1 29.2	Code	3075 3075 3076 3079 3079 3080 3080 3081 3081
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics I. Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module	3075 3076 3079 3079 3079 3080 3081 3081 3081
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics I. Introduction 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation	3075 3076 3079 3079 3079 3080 3081 3081 3081 3081
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics I. Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module	3075 3076 3079 3079 3080 3081 3081 3081 3081 3081 3081
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module	3075 3075 3076 3079 3079 3080 3081 3081 3081 3081 3082 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model	3075 3076 3079 3079 3080 3080 3081 3081 3081 3081 3083 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2 Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method	3075 3076 3079 3079 3080 3080 3081 3081 3081 3081 3083 3083 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method 29.3.3.3. Applying an External Magnetic Field	3075 3076 3079 3079 3080 3081 3081 3081 3081 3081 3083 3083 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method 29.3.3.3. Applying an External Magnetic Field 29.3.3.4. Setting Up Boundary Conditions	3075 3076 3079 3079 3080 3081 3081 3081 3081 3081 3083 3083 3083 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method 29.3.3.3. Applying an External Magnetic Field 29.3.3.4. Setting Up Boundary Conditions 29.3.3.5. Solution Controls	3075 3076 3079 3079 3080 3081 3081 3081 3081 3083 3083 3083 3083 3083
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3. Henabling the MHD Model 29.3.3. Applying an External Magnetic Field 29.3.3.4. Setting Up Boundary Conditions 29.3.3.5. Solution Controls	3075 3076 3079 3079 3080 3081 3081 3081 3081 3083 3083 3083 3083 3083 3084 3085 3093 3094
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method 29.3.3.3. Applying an External Magnetic Field 29.3.3.4. Setting Up Boundary Conditions 29.3.3.5. Solution Controls 29.3.4. MHD Solution and Postprocessing 29.3.4. MHD Solution and Postprocessing	3075 3076 3079 3079 3080 3081 3081 3081 3081 3081 3083 3083 3083 3083 3084 3085 3094 3095
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3. Enabling the MHD Model 29.3.3. Selecting an MHD Method 29.3.3. Selecting an External Magnetic Field 29.3.3. Setting Up Boundary Conditions 29.3.4. Setting Up Boundary Conditions 29.3.4. MHD Solution and Postprocessing 29.3.4.1 MHD Model Initialization 29.3.4.2. Iteration	3075 3076 3079 3079 3080 3081 3081 3081 3081 3081 3083 3083 3083 3083 3085 3095 3095
29.1 29.2 29.3	Code 28.3.6.1.1. Compiling the Customized Source Code Under Linux 28.3.6.1.2. Compiling the Customized Source Code Under Windows deling Magnetohydrodynamics Introduction 2. Implementation 29.2.1. Solving Magnetic Induction and Electric Potential Equations 29.2.2. Calculation of MHD Variables 29.2.3. MHD Interaction with Fluid Flows 29.2.4. MHD Interaction with Discrete Phase Model 29.2.5. General User-Defined Functions 3. Using the Ansys Fluent MHD Module 29.3.1. MHD Module Installation 29.3.2. Loading the MHD Module 29.3.3. MHD Model Setup 29.3.3. MHD Model Setup 29.3.3.1. Enabling the MHD Model 29.3.3.2. Selecting an MHD Method 29.3.3.3. Applying an External Magnetic Field 29.3.3.4. Setting Up Boundary Conditions 29.3.3.5. Solution Controls 29.3.4. MHD Solution and Postprocessing 29.3.4. MHD Solution and Postprocessing	3075 3076 3079 3079 3079 3080 3081 3081 3081 3081 3081 3083 3083 3083 3083 3083 3084 3085 3095 3095

	29.4. Guidelines For Using the Ansys Fluent MHD Model	
	29.4.1. Installing the MHD Module	
	29.4.2. An Overview of Using the MHD Module	
	29.5. Definitions of the Magnetic Field	
	29.6. External Magnetic Field Data Format	
30.	. Modeling Continuous Fibers	
	30.1. Installing the Continuous Fiber Module	
	30.2. Loading the Continuous Fiber Module	
	30.3. Getting Started With the Continuous Fiber Module	
	30.3.1. User-Defined Memory and the Adjust Function Setup	
	30.3.2. Source Term UDF Setup	
	30.4. Fiber Models and Options	
	30.4.1. Choosing a Fiber Model	
	30.4.2. Including Interaction With Surrounding Flow	
	30.4.3. Including Lateral Drag on Surrounding Flow	
	30.4.4. Including Fiber Radiation Interaction	
	30.4.5. Viscous Heating of Fibers	
	30.4.6. Drag, Heat and Mass Transfer Correlations	
	30.5. Fiber Material Properties	
	30.5.1. The Concept of Fiber Materials	
	30.5.2. Description of Fiber Properties	
	30.6. Defining Fibers	
	30.6.1. Overview	
	30.6.2. Fiber Injection Types	
	30.6.3. Working with Fiber Injections	
	30.6.3.1. Creating Fiber Injections	
	30.6.3.2. Modifying Fiber Injections	
	30.6.3.3. Copying Fiber Injections	
	30.6.3.4. Deleting Fiber Injections	
	30.6.3.5. Initializing Fiber Injections	
	30.6.3.6. Computing Fiber Injections	
	30.6.3.7. Print Fiber Injections	
	30.6.3.8. Read Data of Fiber Injections	
	30.6.3.9. Write Data of Fiber Injections	
	30.6.3.10. Write Binary Data of Fiber Injections	
	30.6.3.11. List Fiber Injections	
	30.6.4. Defining Fiber Injection Properties	
	30.6.5. Point Properties Specific to Single Fiber Injections	
	30.6.6. Point Properties Specific to Line Fiber Injections	
	30.6.7. Point Properties Specific to Matrix Fiber Injections	
	30.6.8. Define Fiber Grids	
	30.6.8.1. Equidistant Fiber Grids	
	30.6.8.2. One-Sided Fiber Grids	
	30.6.8.3. Two-Sided Fiber Grids	
	30.7. User-Defined Functions (UDFs) for the Continuous Fiber Model	
	30.7.1. UDF Setup	
	30.7.1.1. Linux Systems	
	30.7.1.2. Windows Systems	
	30.7.2. Customizing the liber_lident_interface.c File for Your Fiber Model Application	
	JU, L. I. LAUHDIE, HEUL HUHSIEL CUEHKIEHK UDI	フィム/

30.7.2.2. Example: Fiber Specific Heat Capacity UDF	3128
30.7.3. Compile Fiber Model UDFs	
30.7.3.1. Linux Systems	3129
30.7.3.2. NT/Windows Systems	3130
30.7.4. Hook UDFs to the Continuous Fiber Model	3131
30.8. Fiber Model Solution Controls	3132
30.9. Postprocessing for the Continuous Fibers	3134
30.9.1. Display of Fiber Locations and Grid Points	
30.9.2. Exchange Terms of Fibers	
30.9.3. Analyzing Fiber Variables	
30.9.3.1. XY Plots	
30.9.3.2. Fiber Display	
30.9.4. Running the Fiber Module in Parallel	
31. Creating Reduced Order Models (ROMs)	
31.1. Defining a ROM	
31.2. Reduced Order Model (ROM) Evaluation in Fluent	
31.3. Exporting Reduced Order Model (ROM) Results from Fluent	
31.4. ROM Limitations	
32. Using the Solver	
32.1. Overview of Using the Solver	
32.1.1. Choosing the Solver	
32.2. Choosing the Spatial Discretization Scheme	
32.2.1. First-Order Accuracy vs. Second-Order Accuracy	
32.2.1.1. First- to Higher-Order Blending	
32.2.2. Other Discretization Schemes	
32.2.3. Choosing the Pressure Interpolation Scheme	3159
32.2.4. Choosing the Density Interpolation Scheme	3160
32.2.5. High Order Term Relaxation (HOTR)	3160
32.2.5.1. Limitations	3162
32.2.6. User Inputs	3163
32.3. Pressure-Based Solver Settings	3165
32.3.1. Choosing the Pressure-Velocity Coupling Method	3166
32.3.1.1. SIMPLE vs. SIMPLEC	3166
32.3.1.2. PISO	3167
32.3.1.3. Fractional Step Method	3167
32.3.1.4. Coupled	3168
32.3.1.5. User Inputs	3168
32.3.2. Mass Flux Types	3169
32.3.3. Setting Under-Relaxation Factors	3169
32.3.3.1. User Inputs	3170
32.3.4. Setting Solution Controls for the Non-Iterative Solver	3172
32.3.4.1. User Inputs	3173
32.3.4.2. Hybrid NITA for the VOF Model	3175
32.3.4.3. NITA Expert Options	3178
32.3.4.4. Compatibility of the NITA Scheme with Other Ansys Fluent Models	3178
32.3.5. Equation Order	3180
32.3.6. Using the Correction Form of Momentum Discretization	3180
32.4. Density-Based Solver Settings	3181
32.4.1. Changing the Courant Number	3182
32.4.1.1. Courant Numbers for the Density-Based Explicit Formulation	3182
32.4.1.2. Courant Numbers for the Density-Based Implicit Formulation	3182

32.4.1.3. User Inputs	3183
32.4.2. Convective Flux Types	3184
32.4.3. Convergence Acceleration for Stretched Meshes (CASM)	3184
32.4.4. Enabling High-Speed Numerics	3187
32.4.5. Preventing Divergence Using Local Under-Relaxation	3188
32.4.6. Specifying the Explicit Relaxation	
32.4.7. Turning On FAS Multigrid	3189
32.4.7.1. Setting Coarse Grid Levels	3189
32.4.7.2. Using Residual Smoothing to Increase the Courant Number	3190
32.5. Setting Algebraic Multigrid Parameters	3190
32.5.1. Specifying the Multigrid Cycle Type	3193
32.5.2. Setting the Termination and Residual Reduction Parameters	3193
32.5.3. Setting the Stabilization Method	3193
32.5.4. Additional Algebraic Multigrid Parameters	3194
32.5.4.1. Fixed Cycle Parameters	3195
32.5.4.2. Coarsening Parameters	3195
32.5.4.3. Smoother Types	3196
32.5.4.4. Flexible Cycle Parameters	3197
32.5.4.5. Setting the Verbosity	3197
32.5.4.6. Returning to the Default Multigrid Parameters	3198
32.5.5. Setting FAS Multigrid Parameters	3198
32.5.5.1. Combating Convergence Trouble	3198
32.5.5.2. "Industrial-Strength" FAS Multigrid	3198
32.6. Setting Solution Limits	
32.6.1. Limiting the Values of Solution Variables	3203
32.6.2. Adjusting the Positivity Rate Limit	3203
32.6.3. Resetting Solution Limits	3204
32.7. Setting Multi-Stage Time-Stepping Parameters	
32.7.1. Changing the Multi-Stage Scheme	3204
32.7.1.1. Changing the Coefficients and Number of Stages	3205
32.7.1.2. Controlling Updates to Dissipation and Viscous Stresses	3205
32.7.1.3. Resetting the Multi-Stage Parameters	3206
32.8. Selecting Gradient Limiters	3206
32.9. Initializing the Solution	
32.9.1. Initializing the Entire Flow Field Using Standard Initialization	3208
32.9.1.1. Saving and Resetting Initial Values	3210
32.9.2. Patching Values in Selected Cells	3210
32.9.2.1. Using Registers	
32.9.2.2. Using Field Functions	
32.9.2.3. Using Patching Later in the Solution Process	
32.10. Full Multigrid (FMG) Initialization	
32.10.1. Steps in Using FMG Initialization	
32.10.2. Convergence Strategies for FMG Initialization	
32.11. Hybrid Initialization	
32.11.1. Steps in Using Hybrid Initialization	
32.11.2. Solution Strategies for Hybrid Initialization	
32.12. Performing Steady-State Calculations	
32.12.1. Updating UDF Profiles	
32.12.2. Resetting Data	
32.12.3. Data Sampling for Steady Statistics	
32.13. Performing Pseudo Transient Calculations	3222

32.13.1. Setting Pseudo Transient Explicit Relaxation Factors	3224
32.13.1.1. User Inputs	3225
32.13.2. Setting Solution Controls for the Pseudo Transient Method	3226
32.13.3. Solving Pseudo-Transient Flow	3227
32.14. Performing Time-Dependent Calculations	3231
32.14.1. User Inputs for Time-Dependent Problems	3232
32.14.1.1. Additional Inputs	3247
32.14.2. CFL-Based Time Stepping	3247
32.14.2.1. The CFL-Based Time Stepping Algorithm	3247
32.14.2.2. Specifying Parameters for CFL-Based Time Stepping	3248
32.14.3. Error-Based Time Stepping	3249
32.14.3.1. The Error-Based Time Stepping Algorithm	3249
32.14.3.2. Specifying Parameters for Error-Based Time Stepping	3250
32.14.4. Multiphase-Specific Time Stepping	3251
32.14.4.1. The Multiphase-Specific Time Stepping Algorithm	3251
32.14.4.2. Specifying Parameters for Multiphase-Specific Time Stepping	3253
32.14.5. Postprocessing for Time-Dependent Problems	3255
32.15. Monitoring Solution Convergence	3256
32.15.1. Monitoring Residuals	3256
32.15.1.1. Definition of Residuals for the Pressure-Based Solver	3256
32.15.1.2. Definition of Residuals for the Density-Based Solver	3258
32.15.1.3. Overview of Using the Residual Monitors Dialog Box	3259
32.15.1.4. Printing and Plotting Residuals	3261
32.15.1.5. Storing Residual History Points	3262
32.15.1.6. Controlling Normalization and Scaling	3262
32.15.1.7. Choosing a Convergence Criterion	3263
32.15.1.8. Modifying Convergence Criteria	3265
32.15.1.9. Disabling Monitoring	3266
32.15.1.10. Plot Parameters	3266
32.15.1.11. Postprocessing Residual Values	
32.15.2. Monitoring Statistics	
32.15.3. Monitoring Solution Quantities	3268
32.16. Convergence Conditions	
32.16.1. Setting Up the Convergence Conditions Dialog Box	
32.17. Executing Commands During the Calculation	
32.17.1. Defining Macros	
32.17.2. Saving Files During the Calculation	
32.18. Automatic Initialization of the Solution and Case Modification	
32.18.1. Altering the Solution Initialization and Case Modification after Calculating	
32.19. Animating the Solution	
32.19.1. Creating an Animation Definition	
32.19.1.1. Guidelines for Creating an Animation Definition	
32.19.2. Playing an Animation Sequence	3285
32.19.2.1. Modifying the View	
32.19.2.2. Modifying the Playback Speed	
32.19.2.3. Playing Back an Excerpt	
32.19.2.4. "Fast-Forwarding" the Animation	
32.19.2.5. Continuous Animation	
32.19.2.6. Stopping the Animation	
32.19.2.7. Advancing the Animation Frame by Frame	
32 19 2.8 Deleting an Animation Sequence	3287

32.19.3. Saving an Animation Sequence	3287
32.19.3.1. Solution Animation File	3288
32.19.3.2. Picture File	3288
32.19.3.3. Video File	3289
32.19.4. Reading an Animation Sequence	3291
32.20. Checking Your Case Setup	
32.20.1. Automatic Implementation	
32.20.2. Manual Implementation	
32.20.2.1. Checking the Mesh	
32.20.2.2. Checking Model Selections	
32.20.2.3. Checking Boundary and Cell Zone Conditions	
32.20.2.4. Checking Material Properties	
32.20.2.5. Checking the Solver Settings	
32.21. Convergence and Stability	
32.21.1. Judging Convergence	
32.21.2. Step-by-Step Solution Processes	
32.21.2.1. Selecting a Subset of the Solution Equations	
32.21.2.1. Selecting a subset of the Solution Equations	
32.21.3. Modifying Algebraic Multigrid Parameters	
32.21.4. Modifying the Multi-Stage Parameters	
32.21.5. Robustness with Meshes of Poor Quality	
· · · · · · · · · · · · · · · · · · ·	
32.21.6. Warped-Face Gradient Correction	
32.21.7. Numerical Noise Filter for the Energy Equation	
32.22.1. Overview of Solution Steering	
32.22.2. Solution Steering Strategy	
32.22.2.1. Initialization	
32.22.3. Using Solution Steering	
33. Adapting the Mesh	
33.1. Using Adaption	
33.1.1. Adaption Example	
33.1.2. Adaption Guidelines	
33.2. Refining and Coarsening	
33.2.1. Predefined Criteria for Adaption	
33.2.1.1. Aerodynamics Adaption	
33.2.1.2. Combustion Adaption	
33.2.1.3. VOF Adaption	
33.3. Adaption Examples	
33.3.1. Boundary Cell Register	
33.3.2. Region Cell Register	
33.3.3. Field Variable Cell Registers (gradients, scaling, and so on)	
33.3.4. Expression Adaption Refinement	
33.4. Legacy Anisotropic Adaption	
33.4.1. Limitations of Legacy Anisotropic Adaption	
33.4.2. Performing Legacy Anisotropic Adaption	
33.4.3. Boundary Layer Redistribution	
33.5. Geometry-Based Adaption	
33.5.1. Performing Geometry-Based Adaption	
34. Creating Surfaces and Cell Registers for Displaying and Reporting Data	
34.1. Using Surfaces	
34 1 1 Zone Surfaces	3355

34.1.2. Partition Surfaces	3356
34.1.3. Imprint Surfaces	3358
34.1.4. Point Surfaces	3360
34.1.4.1. Using the Point Tool	3362
34.1.5. Structural Point Surfaces	3363
34.1.6. Line and Rake Surfaces	3365
34.1.6.1. Using the Line Tool	3367
34.1.6.1.1. Initializing the Line Tool	
34.1.6.1.2. Translating the Line Tool	
34.1.6.1.3. Rotating the Line Tool	
34.1.6.1.4. Resizing the Line Tool	
34.1.6.1.5. Resetting the Line Tool	
34.1.7. Plane Surfaces	
34.1.7.1. Using the Plane Tool	
34.1.8. Quadric Surfaces	
34.1.9. Iso-surfaces	
34.1.10. Clipping Surfaces	
34.1.11. Transforming Surfaces	
34.1.12. Grouping, Editing, Renaming, and Deleting Surfaces	
34.1.12.1. Grouping Surfaces	
34.1.12.2. Editing and Renaming Surfaces	
34.1.12.3. Deleting Surfaces	
34.1.12.4. Surface Statistics	
34.2. Using Cell Registers	
34.2.1. Region	
34.2.1.1. Defining a Region	
34.2.1.2. Setting Up a Region Cell Register	
34.2.2. Boundary	
34.2.3. Variable Limiter	
34.2.4. Field Variable	
34.2.4.1. Approaches For Deriving Field Values	
34.2.4.2. Setting Up a Field Variable Cell Register	
34.2.5. Residuals	
34.2.6. Volume	
34.2.6.1. Volume Cell Register Approach	
34.2.6.2. Setting Up a Volume Cell Register	
34.2.7. Yplus/Ystar	
34.2.7.1.Yplus/Ystar Approach	
34.2.7.2. Setting up a Yplus/Ystar Cell Register	
34.2.8. Manage Cell Registers	
34.2.9. Cell Register Operations	
34.2.10. Copying and Renaming Cell Registers	
35. Displaying Graphics	
35.1. Basic Graphics Generation	
35.1.1. Graphics Performance	
35.1.2. Displaying the Mesh	
35.1.2.1. Generating Mesh or Outline Plots	
35.1.2.2. Mesh and Outline Display Options	
35.1.2.2.1 Modifying the Mesh Colors	
35.1.2.2. Realistic Rendering of Materials	
35.1.2.2.3. Adding Features to an Outline Display	
33.1.2.2.3.7 Gaing reactives to air oddine Display	5 117

35.1.2.2.4. Drawing Partition Boundaries	3420
35.1.2.2.5. Shrinking Faces and Cells in the Display	3420
35.1.2.3. Creating and Using Mesh Plot Definitions	3422
35.1.3. Displaying Contours and Profiles	
35.1.3.1. Quickly Coloring Surfaces by Field Variable Value	
35.1.3.2. Generating Contour and Profile Plots	
35.1.3.3. Contour and Profile Plot Options	
35.1.3.3.1. Drawing Filled Contours or Profiles	
35.1.3.3.2. Specifying the Range of Magnitudes Displayed	
35.1.3.3.3. Including the Mesh in the Contour Plot	
35.1.3.3.4. Choosing Node or Cell Values and Node or Boundary Values	
35.1.3.3.5. Storing Contour Plot Settings	
35.1.3.4. Creating and Using Contour Plot Definitions	
35.1.4. Displaying Vectors	
35.1.4.1. Generating Vector Plots	
35.1.4.1. Generating vector riots	
· · ·	
35.1.4.3.1 Spelling the Newtons	
35.1.4.3.1. Scaling the Vectors	
35.1.4.3.2. Skipping Vectors	
35.1.4.3.3. Drawing Vectors in the Plane of the Surface	
35.1.4.3.4. Displaying Fixed-Length Vectors	
35.1.4.3.5. Displaying Vector Components	
35.1.4.3.6. Specifying the Range of Magnitudes Displayed	
35.1.4.3.7. Changing the Scalar Field Used for Coloring the Vectors	
35.1.4.3.8. Displaying Vectors Using a Single Color	
35.1.4.3.9. Including the Mesh in the Vector Plot	
35.1.4.3.10. Changing the Arrow Characteristics	
35.1.4.4. Creating and Managing Custom Vectors	
35.1.4.4.1. Creating Custom Vectors	
35.1.4.4.2. Manipulating, Saving, and Loading Custom Vectors	
35.1.4.5. Creating and Using Vector Plot Definitions	
35.1.5. Displaying Pathlines	
35.1.5.1. Steps for Generating Pathlines	
35.1.5.2. Options for Pathline Plots	
35.1.5.2.1. Including the Mesh in the Pathline Display	
35.1.5.2.2. Controlling the Pathline Style	
35.1.5.2.3. Controlling Pathline Colors	
35.1.5.2.4. "Thinning" Pathlines	
35.1.5.2.5. Coarsening Pathlines	
35.1.5.2.6. Reversing the Pathlines	
35.1.5.2.7. Plotting Oil-Flow Pathlines	
35.1.5.2.8. Controlling the Pulse Mode	3448
35.1.5.2.9. Controlling the Accuracy	3448
35.1.5.2.10. Plotting Relative Pathlines	
35.1.5.2.11. Generating an XY Plot Along Pathline Trajectories	3448
35.1.5.2.12. Saving Pathline Data	3449
35.1.5.2.12.1. Standard Type	3449
35.1.5.2.12.2. Geometry Type	3450
35.1.5.2.12.3. EnSight Type	3451
35.1.5.2.13. Choosing Node or Cell Values	3452
35.1.5.3. Creating and Using Pathline Definitions	3452

35.1.6. Displaying a Scene	
35.1.6.1. Generating a Scene	
35.1.7. Displaying Results on a Sweep Surface	3454
35.1.7.1. Steps for Generating a Plot Using a Sweep Surface	
35.1.7.2. Animating a Sweep Surface Display	
35.1.8. Hiding the Graphics Window Display	3456
35.2. Customizing the Graphics Display	
35.2.1. Embedded Graphics Window Dashboards	
35.2.1.1. Manually Embedding Windows	3460
35.2.1.2. Automatically Embedding Windows	3462
35.2.2. Advanced Graphics Overlays	3463
35.2.3. Managing Multiple Graphics Windows	3464
35.2.3.1. Setting the Active Window	3466
35.2.4. Showing Boundary Markers	
35.2.5. Changing the Legend Display	3467
35.2.5.1. Controlling the Titles, Axes, Ruler, Logo, and Colormap	3467
35.2.5.2. Editing the Legend	3468
35.2.5.3. Adding a Title to the Caption	3468
35.2.5.4. Enabling/Disabling the Axes	3468
35.2.5.5. Enabling/Disabling the Ruler	3468
35.2.5.6. Modifying and Displaying/Hiding the Logo	3469
35.2.5.7. Colormap Alignment	3469
35.2.6. Adding Text to the Graphics Window	3469
35.2.6.1. Adding Text Using the Annotate Dialog Box	3470
35.2.6.2. Editing Existing Annotation Text	
35.2.6.3. Clearing Annotation Text	3471
35.2.7. Changing the Colormap	3471
35.2.7.1. Colormap Nomenclature	3473
35.2.7.2. Predefined Colormaps	3473
35.2.7.3. Selecting a Colormap	3486
35.2.7.3.1. Specifying the Colormap Size and Scale	3487
35.2.7.3.2. Changing the Number Format	
35.2.7.4. Displaying Colormap Labels	
35.2.7.5. Creating a Customized Colormap	
35.2.7.6. Colormap References	
35.2.8. Adding Lights	
35.2.8.1. Controlling Lighting Effects with the Display Options Dialog Box	
35.2.8.2. Controlling Lighting Effects with the Lights Dialog Box	
35.2.8.3. Defining Light Sources	
35.2.8.3.1. Removing a Light	
35.2.8.3.2. Resetting the Light Definitions	
35.2.9. Modifying the Rendering Options	
35.2.9.1. Graphics Device Information	
35.3. Enhanced Graphics Visual Effects	
35.3.1. Predefined Graphics Effects Grouped for Optimization	
35.3.2. Graphics Effects Options	
35.4. Controlling the Mouse Button Functions	
35.5. Viewing the Application Window	
35.6. Controlling the Display State and Modifying the View	
35.6.1. Specifying a Display State	
35.6.2 Selecting a View	3507 3508

35.6.3. Manipulating the Display	3510
35.6.3.1. Scaling and Centering	3511
35.6.3.2. Rotating the Display	3511
35.6.3.2.1. Spinning the Display with the Mouse	3512
35.6.3.3. Translating the Display	3512
35.6.3.4. Zooming the Display	3513
35.6.4. Controlling Perspective and Camera Parameters	3514
35.6.4.1. Perspective and Orthographic Views	3514
35.6.4.2. Modifying Camera Parameters	3514
35.6.5. Saving and Restoring Views	3515
35.6.5.1. Restoring the Default View	3516
35.6.5.2. Returning to Previous Views	3516
35.6.5.3. Saving Views	3516
35.6.5.4. Reading View Files	3517
35.6.5.5. Deleting Views	3517
35.6.6. Mirroring and Periodic Repeats	3517
35.6.6.1. Periodic Repeats for Graphics	3520
35.6.6.2. Mirroring for Graphics	3521
35.7. Advanced Scene Composition	3522
35.7.1. Selecting the Object(s) to be Manipulated	3523
35.7.2. Changing an Object's Display Properties	3523
35.7.2.1. Controlling Visibility	3524
35.7.2.2. Controlling Object Color and Transparency	3525
35.7.3. Transforming Geometric Objects in a Scene	3526
35.7.3.1. Translating Objects	3527
35.7.3.2. Rotating Objects	
35.7.3.3. Scaling Objects	
35.7.3.4. Displaying the Meridional View	
35.7.4. Modifying Iso-Values	
35.7.4.1. Steps for Modifying Iso-Values	
35.7.5. Modifying Pathline Attributes	
35.7.6. Deleting an Object from the Scene	
35.7.7. Adding a Bounding Frame	
35.8. Animating Graphics	
35.8.1. Creating an Animation	
35.8.1.1. Deleting Key Frames	
35.8.2. Playing an Animation	
35.8.2.1. Playing Back an Excerpt	
35.8.2.2. "Fast-Forwarding" the Animation	
35.8.2.3. Continuous Animation	
35.8.2.4. Stopping the Animation	
35.8.2.5. Advancing the Animation Frame by Frame	
35.8.3. Saving an Animation	
35.8.3.1. Animation File	
35.8.3.2. Picture File	
35.8.3.3. MPEG File	
35.8.4. Reading an Animation File	
35.8.5. Notes on Animation	
35.9. Histogram and XY Plots	
35.9.1. Plot Types	
35.9.1.1. XY Plots	3537

35.9.1.2. Histograms	3538
35.9.1.3. Enhanced Interactive Plots	3539
35.9.2. XY Plots of Solution Data	3541
35.9.2.1. Steps for Generating Solution XY Plots	3541
35.9.2.2. Options for Solution XY Plots	3545
35.9.2.2.1. Including External Data in the Solution XY Plot	3545
35.9.2.2.2. Choosing Node or Cell Values	3545
35.9.2.2.3. Saving the Plot Data to a File	3546
35.9.3. Creating an XY Plot From Multiple Data Sources (Including Files)	3546
35.9.3.1. Steps for Generating XY Plots of Data from Multiple Sources	3546
35.9.4. XY Plots of Profiles	3548
35.9.4.1. Steps for Generating Plots of Profile Data	3548
35.9.4.2. Steps for Generating Plots of Interpolated Profile Data	3549
35.9.5. XY Plots of Circumferential Averages	3550
35.9.5.1. Steps for Generating an XY Plot of Circumferential Averages	3550
35.9.5.2. Customizing the Appearance of the Plot	3552
35.9.6. XY Plot File Format	3552
35.9.7. Residual Plots	3553
35.9.8. Histograms	3553
35.9.8.1. Steps for Generating Histogram Plots	3554
35.9.8.2. Options for Histogram Plots	
35.9.8.2.1. Specifying the Range of Values Plotted	3555
35.9.9. Modifying Axis Attributes	3555
35.9.9.1. Using the Axes Dialog Box	3556
35.9.9.1.1. Changing the Axis Label	
35.9.9.1.2. Changing the Format of the Data Labels	
35.9.9.1.3. Choosing Logarithmic or Decimal Scaling	
35.9.9.1.4. Resetting the Range of the Axis	
35.9.9.1.5. Controlling the Major and Minor Rules	
35.9.10. Modifying Curve Attributes	
35.9.10.1. Using the Curves Dialog Box	
35.9.10.1.1. Changing the Line Style	
35.9.10.1.2. Changing the Marker Style	
35.9.10.1.3. Previewing the Curve Style	
35.10. Fast Fourier Transform (FFT) Postprocessing	
35.10.1. Limitations of the FFT Algorithm	
35.10.2. Windowing	
35.10.3. Fast Fourier Transform (FFT)	
35.10.4. Using the FFT Utility	
35.10.4.1. Loading Data for Spectral Analysis	
35.10.4.2. Customizing the Input and Defining the Spectrum Smoothing	
35.10.4.2.1. Customizing the Input Signal Data Set	
35.10.4.2.2. Spectrum Smoothing Through Signal Segmentation	
35.10.4.2.3. Viewing Data Statistics	
35.10.4.2.4. Customizing Titles and Labels	
35.10.4.2.5. Applying the Changes in the Input Signal Data	
35.10.4.3. Customizing the Output	
35.10.4.3.1. Specifying a Function for the Y Axis	
35.10.4.3.2. Specifying a Function for the X Axis	
35.10.4.3.3. Specifying Output Options	
35.10.4.3.4. Specifying a Windowing Technique	35/0

35.10.4.3.5. Specifying Labels and Titles	3570
35.10.4.4. Performing a VRXPERIENCE Sound Analysis	3570
35.11. Cumulative Force, Moment, and Coefficients Plots	3573
35.11.1. Steps for Generating Cumulative Plots	3574
36. Reporting Alphanumeric Data	3577
36.1. Reporting Conventions	3577
36.2. Monitoring and Reporting Solution Data	3578
36.2.1. Creating Report Definitions	3578
36.2.1.1. Surface Report Definitions	3582
36.2.1.2. Volume Report Definitions	3583
36.2.1.3. Force and Moment Report Definitions	3585
36.2.1.4. Flux Report Definition	3590
36.2.1.5. Aerodamping Report Definition	3592
36.2.1.6. DPM Report Definition	3594
36.2.1.7. User Defined Report Definition	3596
36.2.1.7.1. User Defined Report Definition Function	3596
36.2.1.7.2. User Defined Report Definition Function Hooking	3597
36.2.1.8. Expression Report Definition	3597
36.2.2. Report Files and Report Plots	
36.2.2.1. Creating Report Files	3599
36.2.2.2. Creating Report Plots	3602
36.2.2.3. Moving Average Monitors	3605
36.2.2.4. Clearing File and Plot Histories	3608
36.3. Creating Output Parameters	3609
36.4. Fluxes Through Boundaries	3611
36.4.1. Generating a Flux Report	3611
36.4.2. Flux Reporting for Reacting Flows	3614
36.4.3. Flux Reporting with Particles	3615
36.4.4. Flux Reporting with Multiphase	3616
36.4.5. Flux Reporting with Other Volumetric Sources	3617
36.5. Forces on Boundaries	3617
36.5.1. Generating a Force, Moment, or Center of Pressure Report	3617
36.5.1.1. Example	3620
36.6. Projected Surface Area Calculations	3621
36.7. Surface Integration	3622
36.7.1. Generating a Surface Integral Report	3623
36.8. Volume Integration	3625
36.8.1. Generating a Volume Integral Report	3625
36.9. Histogram Reports	3626
36.10. Discrete Phase	3627
36.11. S2S Information	3627
36.12. Reference Values	3627
36.12.1. Setting Reference Values	3627
36.12.2. Setting the Reference Zone	3629
36.13. Summary Reports of Case Settings	3629
36.13.1. Modified Settings Summary	3629
36.13.2. Generating a Summary Report	3630
36.14. System Resource Usage	3631
36.14.1. Processor Information	3631
36.14.2. Memory Information	3632
36.14.3 Process and Model Timers	3633

37. Field Function Definitions	3635
37.1. Node, Cell, and Facet Values	3635
37.1.1. Cell Values	3635
37.1.2. Node Values	3636
37.1.2.1. Vertex Values for Points That Are Not Mesh Nodes	3636
37.1.3. Facet Values	3636
37.1.3.1. Facet Values on Zone Surfaces	3637
37.1.3.2. Facet Values on Postprocessing Surfaces	3637
37.2. Velocity Reporting Options	3637
37.3. Field Variables Listed by Category	3639
37.4. Alphabetical Listing of Field Variables and Their Definitions	3669
37.5. Custom Field Functions	3738
37.5.1. Creating a Custom Field Function	3738
37.5.1.1. Using the Calculator Buttons	3740
37.5.1.2. Using the Field Functions List	3740
37.5.2. Manipulating, Saving, and Loading Custom Field Functions	3741
37.5.3. Sample Custom Field Functions	3742
38. Parallel Processing	3745
38.1. Introduction to Parallel Processing	3745
38.1.1. Recommended Usage of Parallel Ansys Fluent	3747
38.2. Starting Parallel Ansys Fluent Using Fluent Launcher	3748
38.2.1. Setting Parallel Scheduler Options in Fluent Launcher	3750
38.2.2. Setting Additional Options When Running on Remote Linux Machines	3753
38.2.2.1. Setting Job Scheduler Options When Running on Remote Linux Machines	3755
38.3. Starting Parallel Ansys Fluent on a Windows System	
38.3.1. Starting Parallel Ansys Fluent on a Windows System Using Command Line Options	
38.3.1.1. Starting Parallel Ansys Fluent with the Microsoft Job Scheduler	3760
38.4. Starting Parallel Ansys Fluent on a Linux System	
38.4.1. Starting Parallel Ansys Fluent on a Linux System Using Command Line Options	
38.4.2. Setting Up Your Secure Shell Clients	
38.4.2.1. Configuring the ssh Client	
38.5. Mesh Partitioning and Load Balancing	
38.5.1. Overview of Mesh Partitioning	
38.5.2. Partitioning the Mesh Automatically	
38.5.2.1. Reporting During Auto Partitioning	
38.5.3. Partitioning the Mesh Manually and Balancing the Load	
38.5.3.1. Guidelines for Partitioning the Mesh	
38.5.4. Using the Partitioning and Load Balancing Dialog Box	
38.5.4.1. Partitioning	
38.5.4.1.1. Example of Setting Selected Cell Registers to Specified Partition IDs	
38.5.4.1.2. Partitioning Within Zones or Registers	
38.5.4.1.3. Reporting During Partitioning	
38.5.4.1.4. Resetting the Partition Parameters	
38.5.4.2. Load Balancing	
38.5.5. Mesh Partitioning Methods	
38.5.5.1. Partition Methods	
38.5.5.2. Optimizations	
38.5.5.3. Pretesting	
38.5.5.4. Using the Partition Filter	
38.5.6. Checking the Partitions	
20.2.0.1 INTERDIETING PARTITION STATISTICS	5/90

	38.5.6.2. Examining Partitions Graphically	3793
	38.5.7. Load Distribution	3793
	38.5.8. Troubleshooting	3793
	38.6. Using General Purpose Graphics Processing Units (GPGPUs) With the Algebraic Multigrid (AN	
	Solver	
	38.6.1. Requirements	
	38.6.2. Limitations	
	38.6.3. Using and Managing GPGPUs	
	38.7. Controlling the Threads	
	38.8. Checking Network Connectivity	
	38.9. Checking and Improving Parallel Performance	
	38.9.1. Parallel Check	
	38.9.2. Checking Parallel Performance	
	38.9.2.1. Checking Latency and Bandwidth	
	- · · · · · · · · · · · · · · · · · · ·	
	38.9.3. Optimizing the Parallel Solver	
	38.9.3.1. Increasing the Report Interval	
	38.9.3.2. Accelerating View Factor Calculations for General Purpose Computing on Graph	
	Processing Units (GPGPUs)	
	38.9.3.3. Accelerating Discrete Ordinates (DO) Radiation Calculations	
	38.9.4. Clearing the Linux File Cache Buffers	
39	. Using Simulation Reports	
	39.1. Overview of Simulation Reports	
	39.1.1. Limitations for Simulations Reports	
	39.2. Preparing Simulation Reports	
	39.2.1. Setting General Report Properties	
	39.2.2. Organizing Your Simulation Report	
	39.3. Generating Simulation Reports	
	39.4. Viewing Simulation Reports	3812
	39.4.1. Viewing System Information	3813
	39.4.2. Viewing Geometry and Mesh Information	3813
	39.4.3. Viewing Simulation Setup Information	3815
	39.4.4. Viewing Run Information	3819
	39.4.5. Viewing Solution Status	3820
	39.4.6. Viewing Named Expression Information	3821
	39.4.7. Viewing Report Definition Information	3821
	39.4.8. Viewing Plot Information	3821
	39.4.9. Viewing Contours, Vectors, Pathlines, XY Plots, Scenes, and Animations	3823
	39.4.9.1. Changing the Layout of Your Results	3827
	39.5. Saving Simulation Reports	
	39.6. Customizing Simulation Reports	
	39.6.1. Adding Additional Graphics to Your Report	
	39.6.2. Hiding and Showing Report Sections	
40	Design Analysis and Optimization	
	40.1.The Adjoint Solver	
	40.1.1. General Observables	
	40.1.2. General Operations	
	40.1.3. Discrete Versus Continuous Adjoint Solver	
	40.1.4. Discrete Adjoint Solver Overview	
	40.1.5. Adjoint Solver Stabilization	
	40.1.6. Solution-Based Adaption	
	·	
	40.1.7. Using The Data To Improve A Design	၁४५১

40.1.7.1. Smoothing and Mesh Morphing	. 3846
40.1.7.1.1. Polynomials-Based Approach	. 3846
40.1.7.1.2. Direct Interpolation Method	. 3847
40.1.7.1.3. Radial Basis Function (RBF)	. 3848
40.2. Using the Adjoint Solver	. 3848
40.2.1. Model Considerations for Using Adjoint Solver	
40.2.1.1. Basic Assumptions and Consistency Checks	
40.2.1.2. User-Defined Sources	
40.2.2. Defining Observables	
40.2.2.1. Creating New Observables	
40.2.2.2. Editing Observable Definitions	
40.2.2.3. Selecting an Observable for Sensitivity Calculation	
40.2.3. Solving the Adjoint	
40.2.3.1. Using the Adjoint Solution Methods Dialog Box	
40.2.3.2. Using the Adjoint Solution Controls Dialog Box	
40.2.3.2.1. Stabilization Strategies, Schemes, and Settings	
40.2.3.2.1.1. Dissipation Scheme	
40.2.3.2.1.2. Residual Minimization Scheme	
40.2.3.2.1.3. Spatial Stabilization Scheme	
40.2.3.2.1.4. Modal Stabilization Scheme	
40.2.3.3. Working with Adjoint Residual Monitors	
S ,	
40.2.3.4. Printing and Postprocessing the Adjoint Equation Residuals	
40.2.3.5. Running the Adjoint Calculation	
40.2.3.5.1. Automatic Saving of Case and Data Files During an Adjoint Calculation	
40.2.4. Postprocessing of Adjoint Solutions	
40.2.4.1. Field Data	
40.2.4.2. Scalar Data	
40.2.5. Modifying the Geometry Using the Design Tool	
40.2.5.1. Defining the Region for the Design Change	
40.2.5.2. Defining Region Conditions	
40.2.5.3. Exporting Sensitivity Data	
40.2.5.4. Defining Observable Objectives	
40.2.5.5. Defining Conditions for the Deformation	
40.2.5.6. Design Tool Numerics	
40.2.5.7. Shape Modification	
40.2.6. Using the Gradient-Based Optimizer	
40.3. The Mesh Morpher/Optimizer	
40.3.1. Limitations	
40.3.2. The Optimization Process	
40.3.3. Optimizers	
40.3.3.1. The Compass Optimizer	
40.3.3.2. The NEWUOA Optimizer	
40.3.3.3. The Simplex Optimizer	
40.3.3.4. The Torczon Optimizer	
40.3.3.5. The Powell Optimizer	
40.3.3.6. The Rosenbrock Optimizer	
40.4. Using the Mesh Morpher/Optimizer	
41. Performing System Coupling Simulations Using Fluent	
41.1. Performing System Coupling in Ansys Workbench	
41.2. Performing System Coupling in the GUI or CLI	
41.2.1. Generating a System Coupling File	. 3953

	41.3. Supported Capabilities and Limitations	3954
	41.4. Variables Available for System Coupling	3957
	41.4.1. Force transferred to System Coupling from a Wall Boundary	
	41.4.2. Force transferred to System Coupling from a Porous Jump Boundary	
	41.4.3. Displacement transferred from System Coupling	
	41.4.4. Displacement transferred from System Coupling to a Sliding Mesh Zone	3960
	41.4.5. Absolute Pressure Example	3960
	41.5. System Coupling Related Settings in Fluent	3960
	41.6. FSI Setup Recommendations for Fluent-Mechanical Couplings	3962
	41.6.1. Using Contact Detection for Fluent-Mechanical FSI Problems	3962
	41.6.2. Recommendations for Dynamic Mesh Settings for Fluent-Mechanical FSI	3964
	41.6.3. Pathologies & Candidate Resolutions for Fluent-Mechanical FSI	3966
	41.6.3.1. Mesh Folds within the First Coupling Steps	3967
	41.6.3.2. Deformed Prism Layers	3967
	41.6.3.2.1. Using Boundary Layer Smoothing and Region Face Remeshing	3968
	41.6.3.2.2. Overset Meshes	
	41.6.3.3. Interior Elements have High Skewness or Are Too Large/small	3974
	41.6.3.4. Divergence if Flow Block-Off is Established at the Beginning of a Run	3976
	41.7. How Fluent's Execution is Affected by System Couplings	3977
	41.8. Restarting Fluent Analyses as Part of System Couplings	3977
	41.8.1. Generating Fluent Restart Files	
	41.8.2. Specify a Restart Point in Fluent	3977
	41.8.3. Making Changes in Fluent Before Restarting	
	41.8.4. Recovering the Fluent Restart Point after a Workbench Crash	
	41.9. System Coupling case with Fluent using Patched Data	
	41.10. Running Fluent as a Participant from System Coupling's GUI or CLI	
	41.11. Troubleshooting Two-Way Coupled Analysis Problems	
	41.12. Product Licensing Considerations when using System Coupling	
	. Customizing Fluent	
3	. Task Page Reference Guide	
	43.1. Meshing Task Page	
	43.2. Setup Task Page	
	43.3. General Task Page	
	43.3.1. Scale Mesh Dialog Box	
	43.3.2. Mesh Display Dialog Box	
	43.3.3. Set Units Dialog Box	
	43.3.4. Define Unit Dialog Box	
	43.3.5. Mesh Colors Dialog Box	
	43.4. Models Task Page	
	43.4.1. Multiphase Model Dialog Box	
	43.4.2. Energy Dialog Box	
	43.4.3. Viscous Model Dialog Box	
	43.4.4. Radiation Model Dialog Box	
	43.4.5. View Factors and Clustering Dialog Box	
	43.4.6. Participating Boundary Zones Dialog Box	
	43.4.7. Solar Calculator Dialog Box	
	43.4.8. Heat Exchanger Model Dialog Box	
	43.4.9. Dual Cell Heat Exchanger Dialog Box	
	43.4.10. Set Dual Cell Heat Exchanger Dialog Box	
	43.4.11. Heat Transfer Data Table Dialog Box	
	43.4.12. NTU Table Dialog Box	4056

	43.4.13. Copy From Dialog Box	. 4057
	43.4.14. Ungrouped Macro Heat Exchanger Dialog Box	. 4057
	43.4.15. Velocity Effectiveness Curve Dialog Box	. 4062
	43.4.16. Core Porosity Model Dialog Box	. 4062
	43.4.17. Macro Heat Exchanger Group Dialog Box	. 4064
	43.4.18. Species Model Dialog Box	
	43.4.19. Coal Calculator Dialog Box	. 4091
	43.4.20. Integration Parameters Dialog Box	. 4095
	43.4.21. Flamelet 3D Surfaces Dialog Box	
	43.4.22. Flamelet 2D Curves Dialog Box	
	43.4.23. Unsteady Flamelet Parameters Dialog Box	. 4101
	43.4.24. Flamelet Fluid Zones Dialog Box	. 4102
	43.4.25. Select Transported Scalars Dialog Box	. 4103
	43.4.26. Distribution of Points Dialog Box	. 4103
	43.4.27. PDF Table Dialog Box	. 4105
	43.4.28. Spark Ignition Dialog Box	. 4109
	43.4.29. Set Spark Ignition Dialog Box	. 4110
	43.4.30. Autoignition Model Dialog Box	. 4111
	43.4.31. Inert Dialog Box	. 4114
	43.4.32. NOx Model Dialog Box	. 4116
	43.4.33. Soot Model Dialog Box	. 4125
	43.4.34. Sticking Coefficients Dialog Box	. 4135
	43.4.35. Mechanism Dialog Box	. 4135
	43.4.36. Reactor Network Dialog Box	. 4137
	43.4.37. Decoupled Detailed Chemistry Dialog Box	. 4140
	43.4.38. Reacting Channel Model Dialog Box	. 4141
	43.4.39. Reacting Channel 2D Curves Dialog Box	
	43.4.40. Discrete Phase Model Dialog Box	. 4145
	43.4.41. DEM Collisions Dialog Box	
	43.4.42. Create Collision Partner Dialog Box	
	43.4.43. Copy Collision Partner Dialog Box	
	43.4.44. Rename Collision Partner Dialog Box	
	43.4.45. DEM Collision Settings Dialog Box	
	43.4.46. Solidification and Melting Dialog Box	
	43.4.47. Acoustics Model Dialog Box	
	43.4.48. Acoustic Sources Dialog Box	
	43.4.49. Acoustic Receivers Dialog Box	
	43.4.50. Basic Shapes Dialog Box	
	43.4.51. Integration Surface Dialog Box	
	43.4.52. Interior Cell Zone Selection Dialog Box	
	43.4.53. Structural Model Dialog Box	
	43.4.54. Eulerian Wall Film Dialog Box	
	43.4.55. Potential/Li-ion Battery Dialog Box	
43	.5. Materials Task Page	
	43.5.1. Create/Edit Materials Dialog Box	
	43.5.2. Fluent Database Materials Dialog Box	
	43.5.3. GRANTA MDS Materials Dialog Box	
	43.5.4. Open Database Dialog Box	
	43.5.5. User-Defined Database Materials Dialog Box	
	43.5.6. Copy Case Material Dialog Box	
	43.5.7 Material Properties Dialog Roy	/110g

43.5.8. Edit Proper	ty Methods Dialog Box	4199
43.5.9. New Mater	rial Name Dialog Box	4200
43.5.10. Polynomi	al Profile Dialog Box	4200
	-Linear Profile Dialog Box	
	e-Polynomial Profile Dialog Box	
	Coefficient Piecewise-Polynomial Profile Dialog Box	
	otions Dialog Box	
	sible Liquid Dialog Box	
-	ned Functions Dialog Box	
	d Law Dialog Box	
	w Dialog Box	
	tonian Power Law Dialog Box	
	Nodel Dialog Box	
	del Dialog Box	
	Bulkley Dialog Box	
	nductivity Dialog Box	
43.5.24. Cylindrica	al Orthotropic Conductivity Dialog Box	4218
-	oic Conductivity Dialog Box	
	oic Conduction - Principal Components Dialog Box	
-	oic Conductivity Dialog Box	
-	Pialog Box	
•	Dialog Box	
43.5.30. Backward	Reaction Parameters Dialog Box	4229
	ly Efficiency Dialog Box	
	Dependent Reaction Dialog Box	
	-Dependent Reaction Dialog Box	
	Mass Fractions Dialog Box	
43.5.35. Reaction I	Mechanisms Dialog Box	4235
43.5.36. Site Paran	neters Dialog Box	4236
43.5.37. Mass Diffu	usion Coefficients Dialog Box	4237
43.5.38.Thermal D	Diffusion Coefficients Dialog Box	4239
43.5.39. UDS Diffu	sion Coefficients Dialog Box	4240
43.5.40. WSGGM U	Jser Specified Dialog Box	4241
43.5.41. Gray-Band	d Absorption Coefficient Dialog Box	4242
	lington Scattering Function Dialog Box	
	d Refractive Index Dialog Box	
	te Model Dialog Box	
43.5.45. Secondar	y Rate Model Dialog Box	4245
•	peting Rates Model Dialog Box	
	el Dialog Box	
	Diffusion-Limited Combustion Model Dialog Box	
	Combustion Model Dialog Box	
	Surface Reactions Dialog Box	
•	rial Dialog Box	
	ions Task Page	
	g Box	
	g Box	
	litions Dialog Box	
• •	Conditions Dialog Box	
	ut Parameter Dialog Box	
	alog Box	

	43.6.7. Replicate Profile Dialog Box	
	43.6.8. Orient Profile Dialog Box	
	43.6.9. Write Profile Dialog Box	
43.7	7. Boundary Conditions Task Page	
	43.7.1. Axis Dialog Box	
	43.7.2. Degassing Dialog Box	
	43.7.3. Exhaust Fan Dialog Box	
	43.7.4. Fan Dialog Box	
	43.7.5. Inlet Vent Dialog Box	4295
	43.7.6. Intake Fan Dialog Box	
	43.7.7. Interface Dialog Box	
	43.7.8. Interior Dialog Box	
	43.7.9. Mass-Flow Inlet Dialog Box	
	43.7.10. Mass-Flow Outlet Dialog Box	
	43.7.11. Outflow Dialog Box	
	43.7.12. Outlet Vent Dialog Box	4324
	43.7.13. Overset Dialog Box	4331
	43.7.14. Periodic Dialog Box	4331
	43.7.15. Porous Jump Dialog Box	4332
	43.7.16. Pressure Far-Field Dialog Box	4334
	43.7.17. Pressure Inlet Dialog Box	4340
	43.7.18. Pressure Outlet Dialog Box	4347
	43.7.19. Radiator Dialog Box	4356
	43.7.20. RANS/LES Interface Dialog Box	4358
	43.7.21. Symmetry Dialog Box	
	43.7.22. Velocity Inlet Dialog Box	4360
	43.7.23. Wall Dialog Box	4370
	43.7.24. Periodic Conditions Dialog Box	4389
	43.7.25. Perforated Walls Dialog Box	4390
43.8	3. Overset Interfaces Task Page	
	43.8.1. Create/Edit Overset Interfaces Dialog Box	
43.9	P. Dynamic Mesh Task Page	4396
	43.9.1. Mesh Method Settings Dialog Box	4399
	43.9.2. Mesh Smoothing Parameters Dialog Box	4402
	43.9.3. Advanced Remeshing Settings Dialog Box	4405
	43.9.4. Mesh Scale Info Dialog Box	4405
	43.9.5. Options Dialog Box	4406
	43.9.6. In-Cylinder Output Controls Dialog Box	4411
	43.9.7. Six DOF Properties Dialog Box	4412
	43.9.8. Flow Control Settings Dialog Box	4415
	43.9.9. Dynamic Mesh Events Dialog Box	4417
	43.9.10. Define Event Dialog Box	4418
	43.9.11. Events Preview Dialog Box	4420
	43.9.12. Dynamic Mesh Zones Dialog Box	4421
	43.9.13. Orientation Calculator Dialog Box	
	43.9.14. Zone Scale Info Dialog Box	
	43.9.15. Zone Motion Dialog Box	4431
	43.9.16. Mesh Motion Dialog Box	
	43.9.17. Autosave Case During Mesh Motion Preview Dialog Box	4434
43.	10. Reference Values Task Page	
	I 1 Solution Task Page	1127

43.12. Solution Methods Task Page	4438
43.12.1. Relaxation Options Dialog Box	4442
43.13. Solution Controls Task Page	4443
43.13.1. Equations Dialog Box	4446
43.13.2. Solution Limits Dialog Box	4447
43.13.3. Advanced Solution Controls Dialog Box	
43.14. Solution Initialization Task Page	4459
43.14.1. Acoustics Initialization Dialog Box	4462
43.14.2. Patch Dialog Box	4463
43.14.3. Hybrid Initialization Dialog Box	4464
43.15. Calculation Activities Task Page	4466
43.15.1. Autosave Dialog Box	4468
43.15.2. Data File Quantities Dialog Box	4470
43.15.3. Automatic Export Dialog Box	4471
43.15.4. Automatic Particle History Data Export Dialog Box	4476
43.15.5. Execute Commands Dialog Box	4478
43.15.6. Define Macro Dialog Box	4479
43.15.7. Automatic Solution Initialization and Case Modification Dialog Box	4480
43.16. Run Calculation Task Page	4481
43.16.1. Case Check Dialog Box	4491
43.16.2. Adaptive Time Stepping Dialog Box	4492
43.16.3. Simulation Status Dialog Box	4493
43.16.4. Solution Steering Dialog Box	4494
43.16.5. Acoustic Sources FFT Dialog Box	4496
43.16.6. Acoustic Signals Dialog Box	4502
43.16.7. Sampling Options Dialog Box	4504
43.16.8. Zone-Specific Sampling Options Dialog Box	4505
43.17. Results Task Page	4506
43.18. Graphics and Animations Task Page	4507
43.18.1. Profile Options Dialog Box	4510
43.18.2. Vector Options Dialog Box	4511
43.18.3. Custom Vectors Dialog Box	4512
43.18.4. Vector Definitions Dialog Box	4512
43.18.5. Path Style Attributes Dialog Box	4514
43.18.6. Ribbon Attributes Dialog Box	4514
43.18.7. Particle Filter Attributes Dialog Box	4515
43.18.8. Reporting Variables Dialog Box	4516
43.18.9. Track Style Attributes Dialog Box	4517
43.18.10. Particle Sphere Style Attributes Dialog Box	4518
43.18.11. Particle Vector Style Attributes Dialog Box	4519
43.18.12. Sweep Surface Dialog Box	
43.18.13. Create Surface Dialog Box	4522
43.18.14. Animate Dialog Box	4522
43.18.15. Save Picture Dialog Box	4525
43.18.16. Playback Dialog Box	4528
43.18.17. Video Options Dialog Box	
43.18.18. Advanced Video Quality Options Dialog Box	
43.18.19. Display Options Dialog Box	
43.18.20. Scene Description Dialog Box	
43.18.21. Display Properties Dialog Box	
43.18.22. Transformations Dialog Box	

	43.18.23. Iso-Value Dialog Box	4541
	43.18.24. Pathline Attributes Dialog Box	4542
	43.18.25. Bounding Frame Dialog Box	4542
	43.18.26. Views Dialog Box	4543
	43.18.27. Write Views Dialog Box	4545
	43.18.28. Mirror Planes Dialog Box	4545
	43.18.29. Graphics Periodicity Dialog Box	
	43.18.30. Camera Parameters Dialog Box	
	43.18.31. Lights Dialog Box	
	43.18.32. Colormap Dialog Box	
	43.18.33. Colormap Editor Dialog Box	
	43.18.34. Annotate Dialog Box	
	43.19. Plots Task Page	
	43.19.1. Solution XY Plot Dialog Box	
	43.19.2. Histogram Dialog Box	
	43.19.3. Plot Data Sources Dialog Box	
	43.19.4. Plot Profile Data Dialog Box	4567
	43.19.5. Plot Interpolated Data Dialog Box	
	43.19.6. Fourier Transform Dialog Box	
	43.19.7. VRXperience Sound Analysis Dialog Box	
	43.19.8. Cumulative Plot Dialog Box	
	43.19.9. Plot/Modify Input Signal Dialog Box	
	43.19.10. Axes Dialog Box	
	43.19.11. Curves Dialog Box	4583
	43.20. Reports Task Page	4585
	43.20.1. Flux Reports Dialog Box	4587
	43.20.2. Force Reports Dialog Box	4588
	43.20.3. Projected Surface Areas Dialog Box	4590
	43.20.4. Surface Integrals Dialog Box	4591
	43.20.5. Volume Integrals Dialog Box	4596
	43.20.6. Sample Trajectories Dialog Box	4598
	43.20.7. Trajectory Sample Histograms Dialog Box	4600
	43.20.8. Particle Summary Dialog Box	4603
	43.20.9. Heat Exchanger Report Dialog Box	4604
	43.20.10. Parameters Dialog Box	4605
	43.20.11. Use Input Parameter in Scheme Procedure Dialog Box	4608
	43.20.12. Use Input Parameter for UDF Dialog Box	4609
	43.20.13. Rename Dialog Box	4610
	43.20.14. Parameter Expression Dialog Box	4610
	43.20.15. Save Output Parameter Dialog Box	4612
	43.21. Parameters and Customization Task Page	4613
44	. Ribbon Reference Guide	4615
	44.1. File Ribbon Tab	4615
	44.1.1. File/Read/Mesh	4617
	44.1.1.1. Read Mesh Options Dialog Box	4617
	44.1.2. File/Read/Case	4618
	44.1.3. File/Read/Data	4618
	44.1.4. File/Read/Case & Data	
	44.1.5. File/Read/PDF	
	44.1.6. File/Read/ISAT Table	4619
	44.1.7 File/Read/DTRM Rays	4619

44.1.8. File/Read/View Factors	4619
44.1.9. File/Read/Profile	4619
44.1.10. File/Read/Scheme	4619
44.1.11. File/Read/Journal	4619
44.1.12. File/Write/Case	4619
44.1.13. File/Write/Data	4620
44.1.14. File/Write/Case & Data	4620
44.1.15. File/Write/PDF	4620
44.1.16. File/Write/ISAT Table	4621
44.1.17. File/Write/Flamelet	4621
44.1.18. File/Write/Profile	4621
44.1.19. File/Write/Autosave	4621
44.1.20. File/Write/Boundary Mesh	4621
44.1.21. File/Write/Start Journal	
44.1.22. File/Write/Stop Journal	
44.1.23. File/Write/Start Transcript	4621
44.1.24. File/Write/Stop Transcript	
44.1.25. File/Import/ABAQUS/Input File	
44.1.26. File/Import/ABAQUS/Filbin File	
44.1.27. File/Import/ABAQUS/ODB File	
44.1.28. File/Import/CFX/Definition File	
44.1.29. File/Import/CFX/Result File	
44.1.30. File/Import/CGNS/Mesh	4622
44.1.31. File/Import/CGNS/Data	4622
44.1.32. File/Import/CGNS/Mesh & Data	4622
44.1.33. File/Import/EnSight	4623
44.1.34. File/Import/FIDAP	
44.1.35. File/Import/GAMBIT	4623
44.1.36. File/Import/HYPERMESH ASCII	
44.1.37. File/Import/I-deas Universal	
44.1.38. File/Import/LSTC/Input File	
44.1.39. File/Import/LSTC/State File	
44.1.40. File/Import/Marc POST	
44.1.41. File/Import/Mechanical APDL/Input File	
44.1.42. File/Import/Mechanical APDL/Result File	
44.1.43. File/Import/NASTRAN/Bulkdata File	
44.1.44. File/Import/NASTRAN/Op2 File	
44.1.45. File/Import/PATRAN/Neutral File	
44.1.46. File/Import/PLOT3D/Grid File	
44.1.47. File/Import/PLOT3D/Result File	
44.1.48. File/Import/PTC Mechanica Design	
44.1.49. File/Import/Tecplot	
44.1.50. File/Import/Fluent 4 Case File	
44.1.51. File/Import/PreBFC File	
44.1.52. File/Import/Partition/Metis	
44.1.53. File/Import/Partition/Metis Zone	
44.1.54. File/Import/CHEMKIN Mechanism	
44.1.54.1. Import CHEMKIN Format Mechanism Dialog Box	
44.1.55. File/Import/FMU	
44.1.56. File/Export/Solution Data	
44 1 56 1 Export Dialog Box	4628

44.1.57. File/Export/Particle History Data	4633
44.1.57.1. Export Particle History Data Dialog Box	. 4633
44.1.58. File/Export/During Calculation/Solution Data	. 4635
44.1.59. File/Export/During Calculation/Particle History Data	
44.1.60. File/Export to CFD-Post	
44.1.60.1. Export to CFD-Post Dialog Box	4635
44.1.61. File/Table File Manager	
44.1.62. File/Solution Files	
44.1.62.1. Solution Files Dialog Box	
44.1.63. File/Interpolate	
44.1.63.1. Interpolate Data Dialog Box	
44.1.64. File/FSI Mapping/Volume	
44.1.64.1. Volume FSI Mapping Dialog Box	
44.1.65. File/FSI Mapping/Surface	
44.1.65.1. Surface FSI Mapping Dialog Box	
44.1.66. File/Save Picture	
44.1.67. File/Data File Quantities	
44.1.68. File/Batch Options	
44.1.68.1. Batch Options Dialog Box	
44.1.69. File/Idle Timeout	
44.1.69.1. Set Idle Timeout Dialog Box	
44.1.70. File/Exit	
44.2. Dialog Boxes Available from the Ribbon	
44.2.1.1D Simulation Library Dialog Box	
44.2.2. Activate Cell Zones Dialog Box	
44.2.3. Adaption Criteria Settings Dialog Box	
44.2.4. Adjacency Dialog Box	
44.2.5. Advanced Options Dialog Box	
44.2.6. Aerodamping Report Definition Dialog Box	
44.2.7. Animation Definition Dialog Box	
44.2.8. Anisotropic Adaption Dialog Box	
44.2.9. Application About to Exit Dialog Box	
44.2.10. Auto Partition Mesh Dialog Box	
44.2.11. Automatic Mesh Adaption Dialog Box	
44.2.12. Cell Register Display Options Dialog Box	
44.2.13. Compiled UDFs Dialog Box	
44.2.14. Conduction Layers Dialog Box	
44.2.15. Conduction Manager Dialog Box	
44.2.16. Contours Dialog Box	
44.2.17. Convergence Conditions Dialog Box	
44.2.18. Create/Edit Mesh Interfaces Dialog Box	
44.2.19. Create/Edit Turbo Interfaces Dialog Box	
44.2.20. Custom Field Function Calculator Dialog Box	. 4684
44.2.21. Custom Laws Dialog Box	4686
44.2.22. Deactivate Cell Zones Dialog Box	4687
44.2.23. Define Control Points Dialog Box	. 4687
44.2.24. Delete Cell Zones Dialog Box	4689
44.2.25. Display Options - Adaption Dialog Box	4690
44.2.26. Display States Dialog Box	4692
44.2.27. DPM Report Definition Dialog Box	4695
44.2.28. DPM Source Report Definition Dialog Box	. 4699

44.2.29. Drag Report Definition Dialog Box	4700
44.2.30. DTRM Graphics Dialog Box	. 4703
44.2.31. DTRM Rays Dialog Box	
44.2.32. Edit Gap Region Dialog Box	. 4706
44.2.33. Edit Mesh Interfaces Dialog Box	
44.2.34. Edit Report File Dialog Box	
44.2.35. Edit Report Plot Dialog Box	
44.2.36. Execute on Demand Dialog Box	4713
44.2.37. Expression Dialog Box	
44.2.38. Expression Editor Dialog Box	
44.2.39. Expression Manager Dialog Box	
44.2.40. Expression Report Definition Dialog Box	
44.2.41. Field Function Definitions Dialog Box	
44.2.42. Flux Report Definition Dialog Box	4725
44.2.43. Force Report Definition Dialog Box	
44.2.44. Fuse Face Zones Dialog Box	
44.2.45. Gap Model Dialog Box	4732
44.2.46. General Adaption Controls Dialog Box	
44.2.47. Geometry Based Adaption Controls Dialog Box	
44.2.48. Geometry Based Adaption Dialog Box	
44.2.49. Import Particle Data Dialog Box	
44.2.50. Imprint Surface Dialog Box	
44.2.51. Improve Mesh Dialog Box	4740
44.2.52. Injections Dialog Box	4741
44.2.53. Input Summary Dialog Box	4742
44.2.54. Interface Creation Options Dialog Box	
44.2.55. Interpreted UDFs Dialog Box	
44.2.56. Iso-Clip Dialog Box	. 4745
44.2.57. Iso-Surface Dialog Box	4746
44.2.58. Lift Report Definition Dialog Box	
44.2.59. Line/Rake Surface Dialog Box	. 4751
44.2.60. Manual Mesh Adaption Dialog Box	. 4752
44.2.61. Manage Adaption Criteria Dialog Box	. 4754
44.2.62. Mapped Interface Options Dialog Box	. 4755
44.2.63. Merge Zones Dialog Box	. 4756
44.2.64. Mesh Interfaces Dialog Box	. 4757
44.2.65. Mesh Morpher/Optimizer Dialog Box	4760
44.2.66. Mixing Planes Dialog Box	. 4770
44.2.67. Moment Report Definition Dialog Box	. 4773
44.2.68. Motion Settings Dialog Box	. 4775
44.2.69. Multi Edit Dialog Box	4781
44.2.70. New Report File Dialog Box	4782
44.2.71. New Report Plot Dialog Box	4784
44.2.72. Objective Function Definition Dialog Box	
44.2.73. Optimization History Monitor Dialog Box	4788
44.2.74. Parallel Connectivity Dialog Box	4790
44.2.75. Parameter Bounds Dialog Box	4790
44.2.76. Particle Tracks Dialog Box	. 4791
44.2.77. Partition Surface Dialog Box	4798
44.2.78. Partitioning and Load Balancing Dialog Box	4799
44 2 79 Pathlines Dialog Box	4804

	44.2.80. Plane Surface Dialog Box	4810
	44.2.81. Point Surface Dialog Box	4812
	44.2.82. Quadric Surface Dialog Box	4813
	44.2.83. Reduced Order Model Dialog Box	4815
	44.2.84. Reference Frame Dialog Box	4817
	44.2.85. Replace Cell Zone Dialog Box	
	44.2.86. Report Definitions Dialog Box	
	44.2.87. Report File Definitions Dialog Box	
	44.2.88. Report Plot Definitions Dialog Box	
	44.2.89. Residual Monitors Dialog Box	
	44.2.90. Rotate Mesh Dialog Box	
	44.2.91. S2S Information Dialog Box	
	44.2.92. Select Window Dialog Box	
	44.2.93. Separate Cell Zones Dialog Box	
	44.2.94. Separate Face Zones Dialog Box	
	44.2.95. Set Injection Properties Dialog Box	
	44.2.96. Set Multiple Injection Properties Dialog Box	
	44.2.97. Structural Point Surface Dialog Box	
	44.2.98. Surface Meshes Dialog Box	
	44.2.99. Surface Report Definition Dialog Box	
	44.2.100. Surfaces Dialog Box	
	44.2.101. Thread Control Dialog Box	
	44.2.102. Transform Surface Dialog Box	
	44.2.103. Translate Mesh Dialog Box	
	44.2.104. Turbo 2D Contours Dialog Box	
	44.2.105. Turbo Averaged Contours Dialog Box	
	44.2.106. Turbo Averaged XY Plot Dialog Box	
	44.2.107. Turbo Options Dialog Box	
	44.2.108. Turbo Report Dialog Box	
	44.2.109. Turbo Topology Dialog Box	
	44.2.110. UDF Library Manager Dialog Box	
	44.2.111. User-Defined Fan Model Dialog Box	
	44.2.112. User-Defined Function Hooks Dialog Box	
	44.2.113. User-Defined Memory Dialog Box	
	44.2.114. User Defined Report Definition Dialog Box	
	44.2.115. User-Defined Scalars Dialog Box	
	44.2.116. Vectors Dialog Box	
	44.2.117. Volume Report Definition Dialog Box	
	44.2.118. Warning Dialog Box	
	44.2.119. Zone Surface Dialog Box	
	s Fluent Model Compatibility	
•	Fluent File Formats	
	CFF File Format	
	B.1.1. CFF Case File Layout	
	B.1.2. CFF Solution Data File Layout	
	B.1.3. Variable Sized Data on Collected Element / Node Sets	
	Legacy Case and Data File Formats	
	B.2.1. Guidelines	
	B.2.1. Guidelines B.2.2. Formatting Conventions in Binary and Formatted Files	
	B.2.3. Grid Sections	
	B.2.3.1. Comment	
	D.Z.J. 1. COHHITCH	4020

B.2.3.2. Header	. 4897
B.2.3.3. Dimensions	. 4897
B.2.3.4. Nodes	. 4897
B.2.3.5. Periodic Shadow Faces	. 4898
B.2.3.6. Cells	. 4899
B.2.3.7. Faces	. 4901
B.2.3.8. Face Tree	. 4903
B.2.3.9. Cell Tree	. 4903
B.2.3.10. Interface Face Parents	. 4904
B.2.3.11. Example Files	
B.2.3.11.1. Example 1	
B.2.3.11.2. Example 2	
B.2.3.11.3. Example 3	
B.2.4. Other (Non-Grid) Legacy Case Sections	
B.2.4.1. Zone	
B.2.4.2. Partitions	
B.2.5. Data Sections	
B.2.5.1. Grid Size	
B.2.5.2. Data Field	
B.2.5.3. Residuals	
B.3. Mesh Morpher/Optimizer File Formats	
B.4. Conduction Settings File Format	
B.5. 3D Fan Curve File Format	
C. Controlling CHEMKIN-CFD Solver Parameters Using Text Commands	
C.1. Advanced Parameters Used in the Steady-State Solution Algorithm	
C.2. Setting Up Monitor Cells for the Ansys CHEMKIN-CFD Chemistry Solver	
C.3. Diagnostic Files and Error Messages	
C.4. Error Messages Printed in the Ansys Fluent Graphical User Interface	
C.5. Diagnostic Messages in the KINetics-log.txt File	
D. Nomenclature	
Bibliography	. 4933
IV. Workspaces	
1. Remote Visualization and Accessing Fluent Remotely	
1.1. Starting Remote Visualization	
1.1.1. Steps for Starting the Server	
1.1.1.1.Port Management	
1.1.2. Steps For Starting the Remote Visualization Client	. 4947
1.2. Using a Job Scheduler with Remote Visualization	. 4948
1.3. Operating in the Fluent Remote Visualization Environment	. 4948
1.3.1. Adding New Remote Client Connections	. 4948
1.3.2. Setting Preferences	. 4949
1.3.3. Initializing, Starting, Pausing, and Interrupting the Calculation	. 4950
1.3.4. Modifying Solution Settings	. 4952
1.3.5. Graphics Window Interactions and Context Menus	. 4953
1.3.6. Surfaces	
1.3.6.1. Point Surfaces	. 4955
1.3.6.2. Line Surfaces	. 4956
1.3.6.3. Rake Surfaces	. 4957
1.3.6.4. Plane Surfaces	. 4958
1.3.6.5. Iso-Surfaces	. 4962
1.3.7. Graphics Objects	. 4966

	1.3.7.1. Creating and Displaying Graphics objects	
	1.3.7.2. Creating and Displaying Plot objects	4968
	1.3.7.3. Creating and Displaying Scenes	
	1.3.7.4. Saving Pictures of the Graphics Window	4969
	1.3.7.5. Modifying the Views	4970
	1.3.7.6. Synchronizing with the Server	4970
	1.3.8. Messaging and Text Commands	4971
	1.3.9. Saving Case and Data Files	4972
	1.3.10. Disconnecting the Server and Client	4973
	1.3.10.1. Disconnecting from Within the Remote Client Session	4973
	1.3.10.2. Disconnecting from Within the Remote Server Session	4974
	1.3.11. Modifying Preferences	4974
	1.4. Python, Scripting and Transcripts in the Remote Client	4974
	1.4.1. Python Scripting	4975
	1.4.2. Starting and Stopping a Transcript	4977
	1.5. Remote Visualization Best Practices	
	1.6. Remote Visualization Client Environment Variables	4978
	1.7. Limitations	4979
2.	Fluent Icing	4981
	2.1. Overview of Fluent Icing	4981
	2.2. Known Limitations in Fluent Icing 2021 R2	4982
	2.3. Quick Start	4983
	2.4. Starting Fluent Icing	4985
	2.5. Fluent Icing Graphical User Interface Layout	4987
	2.6. Creating or Opening a Fluent Icing Project	4992
	2.6.1. Creating a Fluent Icing Project	
	2.6.2. Opening a Fluent Icing Project	
	2.6.3. Project Library	
	2.6.4. Project Close	
	2.7. Creating or Loading a Fluent Icing Simulation	
	2.7.1. Case File Requirements	
	2.7.2. Fluent Solver and License Requirements	
	2.7.3. Creating a New Simulation by Importing Loading a Case File	
	2.7.4. Loading a Simulation	
	2.7.5. Use Custom Solver Launch Settings to Load in Solver	
	2.7.6. Disconnecting from a Simulation	
	2.7.7. Duplicating a Simulation	
	2.7.8. Loading Multiple Simulations	
	2.8. Setting-Up a Fluent Icing Simulation	
	2.8.1. Setup	
	2.8.1.1. Airflow	
	2.8.1.2. Particles	
	2.8.1.3. lce	
	2.8.2. Boundary Conditions	
	2.8.2.1. Inlets	
	2.8.2.2. Walls	
	2.8.2.3. Outlets	
	2.8.3. Solution	
	2.8.3.1. Airflow	
	2.8.3.2. Particles	
	2833 Ica	5048

2.8.3.4. Multi-Shot	5050
2.8.4. Results	5053
2.8.4.1. Quick-View	5058
2.9. Using the Project View to Interact with Fluent Icing Simulations	5061
2.9.1. Simulation Folder Commands	5061
2.9.2. Run Folder Commands	5064
2.9.3. Case File Commands	5065
2.9.4. Solution File Commands	5067
2.9.5. The Use of Bold in Project View	5068
2.9.6. Project View Organization Options	5068
2.10. Post Processing with Viewmerical and CFD-Post from Fluent Icing	5073
2.10.1. Viewmerical	
2.10.1.1. Accessing Viewmerical from Quick-View	5074
2.10.1.2. Accessing Viewmerical from Project View	5074
2.10.1.3. Comparing Multiple Solutions with Viewmerical	5075
2.10.2. CFD-Post	5075
2.10.2.1. Accessing CFD-Post from Quick-View	5076
2.10.2.2. Accessing CFD-Post from Project View	5076
2.10.3. EnSight	5076
2.11. Preferences	5077
2.12. Advanced Settings	5078
2.13. File Types	5079
2.14. Appendix	
2.14.1. Python Console	5081
2.14.2. Data Structures	5083
2.14.3. Project API	5084
2.14.4 Fluent Journal Commands	5085

Release 2021 R2 - © ANSY	'S,Inc.All rights reserved Contains n	roprietary and confidential infor	nation
	'S,Inc.All rights reserved Contains p of ANSYS, Inc. and its subsidiaries	and affiliates.	

List of Figures

1.1. Ansys Fluent Architecture	130
4.1. The General Options Tab of Fluent Launcher	167
4.2.The Parallel Settings Tab of Fluent Launcher	
4.3. The Remote Tab of Fluent Launcher	
4.4.The Scheduler Tab of Fluent Launcher (Windows 64 Version)	171
4.5. The Environment Tab of Fluent Launcher	
4.6. The Batch Options Dialog Box	
8. Cell Types	
3.1. The User Interface Components	205
3.2. Clipping Plane and Clipping Plane Tool	208
3.3. The Watertight Geometry Workflow	213
3.4. The Outline View Tree	213
3.5. Model Level Menu	214
3.6. CAD Assemblies Tree	214
3.7. CAD Assemblies Menu	215
3.8. CAD Component/Body Level Menu	215
3.9. CAD Label Level Menu	216
3.10. Global Object Level Menu	216
3.11. Individual Object Level Menu	
3.12. Face Zone Labels Level Menu	218
3.13. Individual Label Menu	219
3.14. Unreferenced Zones Menu	219
3.15. The Graphics Effects Tools	224
3.16.The Mesh Display Tools	225
3.17. The Copy Tools	
3.18. The Object Selection/Display Tools	226
3.19. Preferences Dialog Box	
5.1. Splitting the Face of a Coiled Geometry	
5.2. Imported Coiled Geometry	256
6.1. The Dockable Workflow Editor	271
6.2. Setting the Default Workflow Editor View	271
6.3. Messages and Progress Bar During Meshing Tasks	
6.4. Example of a Self-Intersection: Double Faces Appear When Share Topology is Not Enabled	
6.5. Example of a Self-Intersection: Local Mesh Size is Significantly Larger Than the Pipe Thickness	286
6.6. Showing Marked Gaps	294
6.7. Applying Share Topology to Marked Gaps	295
6.8. Incomplete Gap Marking (Max Gap Distance = 0.12)	295
6.9. Complete Gap Marking (Max Gap Distance = 0.15)	295
6.10. Excessive Gap Marking Around a Washer (Max Gap Distance = 1.2)	296
6.11. Proper Gap Marking Around a Washer (Max Gap Distance = 0.8)	296
6.12. Example of a Single Surface Cap with Multiple Faces	297
6.13. Example of a Single Surface Cap with Multiple Faces	297
6.14. Example of an Annular Cap Type	298
6.15. Example of a Problematic Tilted Annular Opening	298
6.16. Example of a Self-Intersection: Additional Cap Intersects With Other Surfaces	299
6.17. Example of a Fluid and a Solid Volume Mesh	309
6.18. Example of a Copying and Rotating a Volume Mesh (Periodic)	313
6.19. Example of Copying and Translating a Volume Mesh (Periodic)	313
6.20. Example of a Geometry With Part Selected for Adding a Mesh Pattern	318

6.21. Example of a Geometry With a Preview of the Mesh Pattern	319
6.22. Example of a Geometry With a Mesh Pattern	320
6.23. An Example of a Custom Singular Pattern	324
6.24. An Example of a Custom Dual Pattern	
6.25. An Example of a Refinement Region Around a Car	332
6.26. An Example of Multiple Refinement Regions Around a Car	335
6.27. An Example of Multiple Refinement Regions Around a Vehicle	336
6.28. A CAD File Loaded into the CAD Model Tree	
6.29. Selected Portions of a CAD File Loaded into the Meshing Model Tree	344
6.30. CAD Properties of a Selected Per-Part Meshing Model Object	
6.31. Properties of a Selected Custom Meshing Model Object	350
6.32. Translation Example	354
6.33. Rotation Example	354
6.34. Faceting Example	357
6.35. Example of a Single Surface Cap with Multiple Faces	
6.36. Example of a Single Surface Cap with Multiple Faces	
6.37. Example of an Annular Cap Type	
6.38. Example of a Problematic Tilted Annular Opening	
6.39. Example of a Self-Intersection: Additional Cap Intersects With Other Surfaces	
6.40. An Example of an External Flow Boundary	
6.41. An External Flow Bounding Box	
6.42. An External Flow Boundary Around a Car	
6.43. An Example of a Refinement Region Around a Car	
6.44. An Example of Multiple Refinement Regions Around a Car	
6.45. An Example of Multiple Refinement Regions Around a Vehicle	
6.46. An Example of Addressing Sharp Angles - CAD Geometry	
6.47. An Example of Addressing Sharp Angles - Final Mesh	
6.48. Sharp Angles With and Without the Zones Separated By Face	
6.49. An Example of a Porous Region	
6.50. An Example of a Porous Region: Fins and Tubes in a Heat Exchanger	
6.51. The Points of a Porous Region	
6.52. The Buffer Size for a Porous Region	382
6.53. Identifying a Fluid Region in the Wake Behind a Car	383
6.54. Identifying Potential Leakages Within a Car	
6.55. Collar and Component Meshes for a Propeller and Hub Geometry	
6.56. A Collar Mesh for a Propeller and Hub Geometry	
6.57. A Component Mesh for a Propeller and Hub Geometry	
6.58. Example of Surface Mesh Quality Contours	403
6.59. Example of Orphan Cells in an Offset Mesh	
8.1. Use of Curvature Sizing	
8.2. Use of Proximity Sizing	
8.3. Use of the Face Boundary Option for Face Proximity	
8.4. Use of the Ignore Orientation Option for Face Proximity	
8.5. Use of Meshed Sizing	
8.6. Use of Soft Sizing	
8.7. Use of Body of Influence Sizing	
8.8. Contours of Size	
8.9. Display of Mesh Size Based on Size Field	
9.1. Mesh With Different Cell Zone Types	
9.2. Use of the Object Priority for Overlapping Objects	
9.3. Creating Objects—Example	

9.4. Objects Defined Using the Subtract Method	441
9.5. Using Material Points—Example	
9.6. Example—CutCell Mesh, Only Objects Defined	451
9.7. Example—Fluid Surface Extracted From Geometry Objects and Material Point	
10.1. Closing a Radial Gap	
10.2. Creating a Surface Using an Edge	
10.3. Creating a Surface Using Nodes	
10.4. Overlapping Surfaces	468
10.5. Connected Surfaces After Join	
10.6. Intersecting Surfaces	469
10.7. Connected Surfaces After Intersect	469
10.8. Orientation of Normals in Gap	474
10.9. Removing Gaps Between Objects—Face-Face Option	475
10.10. Removing Gaps Between Objects—Face-Edge Option	
10.11. Gap and Thickness Configurations	
10.12. Removing Thickness in Objects	
10.13. Mesh Objects to be Connected	478
10.14. Mesh Object Created by Sewing	
12.1. Free Nodes	
12.2. Example of a Thin Wall	494
12.3. Intersection of Boundary Zones	495
12.4. Intersection (A) Without and (B) With the Refine Option	
12.5. Partially Overlapping Faces	
12.6. Joining of Overlapping Faces	497
12.7. Remeshing of Joined Faces	497
12.8. Nearest Point Projection for Stitching	498
12.9. Surfaces Before Stitch	499
12.10. Surfaces After Stitch	499
12.11. Refining a Triangular Boundary Face	511
12.12. Boundary Mesh (A) Before and (B) After Refining Based on Proximity	511
12.13. Surface Mesh - Feature Angle = 60	514
12.14. Edge Zone for Face Zone Approach and Fixed Angle = 65	514
12.15. Edge Zones for Face Zone Approach and Fixed Angle = 55 (or Adaptive Angle)	515
12.16. Edge Zone for Face Seed Approach and Fixed Angle = 65	515
12.17. Edge Zones for Face Seed Approach and Fixed Angle = 55 (or Adaptive Angle)	516
12.18. Mesh (A) Before and (B) After Using the Faceted Stitch Option	523
12.19. Triangulating a Boundary Zone	524
12.20. Face Separation Based on Region	526
12.21. Face Separation Based on Cell Neighbor	526
12.22. Planar Points Method	534
12.23. Cylinder Defined by 3 Arc Nodes, Radial Gap, and Axial Delta	535
12.24. Cylinder Defined by 3 Arc Nodes and a Height Node	536
12.25. Cylinder Defined by Axial Points and Radii	537
12.26. Loop Selection Toolbar	544
13.1. Schematic Representation of Wrapping Process	549
13.2. Individual Object Loop	552
13.3. Collective Object Loops	
13.4. Overlaid Geometry Clipped with the Pan Plane	
13.5. Leak Detection Using the Pan Regions Dialog Box	
13.6. Wrapping Individual Objects	
13.7. Multiple Solids	

13.8. Single Solid Surface	
13.9. Extracting the Flow Volume	560
14.1. Possible Mesh Cell Shapes	566
14.2. Mesh with Prisms in a Boundary Layer Region	567
14.3. Surface Mesh Containing Only Tetrahedra	567
14.4. Surface Mesh	568
14.5. Hexcore Mesh	569
14.6. CutCell Mesh	570
14.7. Rapid Octree Mesh with Projection Boundary Treatment	570
14.8. Extending an Existing Tetrahedral Mesh Using Prisms	571
14.9. Example of a Non-Conformal Interface	
14.10. Mesh Generated Using Isolated Nodes to Concentrate Cells	574
14.11. Mesh Generated Without Using Isolated Nodes	574
14.12. Pyramid Cell—Transition from a Hexahedron to a Tetrahedron	579
14.13. Pyramid Cells Intersecting Each Other and Boundary	582
14.14. Fixed Intersecting Pyramid Cells Using Triangular Faces	583
14.15. Creating the Heat Exchanger Mesh	585
14.16. The Thread Control Dialog Box	591
15.1. Prism Shapes	593
15.2. Layer Heights Computed Using the Four Growth Methods	597
15.3. Different Growth Parameters on Adjacent Zones	601
15.4. Different Growth Parameters on Nonadjacent Zones—Using the Auto Mesh Option	602
15.5. Prism Growth on a Dangling Wall	603
15.6. Ignoring Invalid Normals	604
15.7. Collision of Prism Layers	605
15.8. Prism Layers Shrunk to Avoid Collision	605
15.9. Ignoring Areas of Proximity	606
15.10. Uniform Offset Distance Method	608
15.11. Minimum-Height Offset Distance Method	609
15.12. Last Ratio Method	610
15.13. Effect of Offset Smoothing	611
15.14. Uniform Direction Vector for a Straight-Sided Prism Region	611
15.15. Normal Direction Vectors for a Curved Prism Region	612
15.16. Normal Direction Vectors Before Smoothing	
15.17. Normal Direction Vectors After Smoothing	613
15.18. Effect of Adjacent Zone Angle	
15.19. Symmetry Zone and Car Wall Before Prism Generation	
15.20. Symmetry Zone and Car Wall After Prism Generation Without Retriangulation	615
15.21. Symmetry Zone and Car Wall After Prism Generation and Retriangulation	
15.22. Use of Multiple Scoped Prism Controls	620
15.23. Stair Stepped Prism Layers in Sharp Corner	
16.1. Local Refinement Region for the Tetrahedral Mesh	636
17.1. Hexcore Mesh Using (A) Buffer Layers = 1 (B) Buffer Layers = 2	645
17.2. Hexcore Mesh Using (A) Peel Layers = 0 (B) Peel Layers = 2	645
17.3. Hexcore to the Far-Field Boundary	647
17.4. Hexcore to Boundaries	648
17.5. Local Refinement Region for the Hexcore Mesh	
20.1. Schematic Representation of the Cartesian Grid Refinement Using Size Functions	662
20.2. Mesh After Refinement	
20.3. Mesh After Projection	663
20.4. Cells Separated After Decomposition	

20.5. CutCell Mesh After Boundary Recovery	
20.6. Mesh Generated for Geometry Having Zero-Thickness Baffles	
20.7. Recovering Overlapping Surfaces	
20.8. Resolving Thin Regions	
20.9. Rezoning Multiply Connected Faces	
20.10. Generating Prisms for the CutCell Mesh	674
20.11. Prism Growth Limitations—Volumes Sharing an Edge	
20.12. Prism Growth Limitations—Volumes Sharing an Edge	
20.13. Prism Growth Limitations—Volumes Sharing the Prism Base	
21.1.The Rapid Octree Dialog Box	
21.2.The Geometry Group Box	
21.3. Bounding Box Dialog Box	
21.4. Bounding Box Surrounding Geometry	
21.5. The Boundary Treatment List	
21.6. Mesh Generated by Cartesian Snapping	
21.7. Mesh Generated by Boundary Projection	
21.8. The Mesh Parameters Group Box	
21.9. Surface Mesh with Two Levels of Feature Angle Refinement and 10° Threshold	
21.10.The Surface Sizing Dialog Box	
21.11.The Rapid Octree Refinement Region Dialog Box	
21.12. Defeaturing Considerations	
22.1.2–3 and 3–2 Swap Configurations	
22.2.4–4 Swap Configuration	
22.3. Sliver Formation	
22.4. Movement of Boundary Nodes	
22.5. Cavity Around a Mirror Remeshed With Tetrahedra	
22.6. Cavity Around a Mirror Remeshed With Hexcore Mesh	
22.7. Copying and Translating a Cell Zone	
22.8. The Selective Mesh Check Dialog	
23.1. Mesh Display (A) With Shrink Factor = 0 (B) With Shrink Factor = 0.01	
23.2. Camera Definition	
23.3. Graphics Display with Bounding Frame	
23.4. The Navigation Branch of Preferences	
24.1. Ideal and Skewed Triangles and Quadrilaterals	
24.2. Vectors Used to Compute Ortho Skew/Inverse Orthogonal Quality for a Cell	
24.3. Vectors Used to Compute Ortho Skew Quality for a Face	
24.4. Calculating the Fluent Aspect Ratio for a Unit Cube	
1. Quadrilateral Mesh	
2. Quadrilateral Mesh with Periodic Boundaries	774
3. Quadrilateral Mesh with Hanging Nodes	
1.1. The GUI Components	
1.2.The Fluent Ribbon	803
1.3. The Fluent Outline View	804
1.4. Hover-Over Highlight	806
1.5. Graphics Window Context Menu: Single-Selection	
1.6. Graphics Window Context Menu: Multiple-Selection	808
1.7. Displaying Two Graphics Windows	809
1.8. The View Ribbon Tab	
1.9. The Standard Toolbar	811
1.10. The Graphics Toolbars	811
1.11. Mesh Display	812

1.12.The Pointer Tools	. 812
1.13. The View Tools	. 813
1.14. The Visibility Tools	. 814
1.15. The Copy Tools	. 815
1.16. The Object Selection/Display Tools	. 815
1.17.The Graphics Effects Tools	. 816
1.18. Additional Display Options	. 816
1.19. The Select File Dialog Box for Windows	. 827
1.20. The Select File Dialog Box for Linux Platforms	. 828
1.21. Another Version of the Select File Dialog Box for Linux Platforms	. 828
1.22. Quick Editor for a Velocity Inlet	
1.23. Fluent in Dark Theme	. 831
1.24. Component Dock	. 832
1.25. Preferences Dialog Box	. 833
1.26. Fluent GUI in Japanese	. 835
1.27. Fluent GUI in Korean	. 835
1.28. Fluent GUI in Chinese	. 836
1.29. Set Idle Timeout Dialog Box	. 837
1.30. Application About to Exit Dialog Box	
3.1.The Select File Dialog Box	
3.2.The Autosave Dialog Box	. 855
3.3.The Write Profile Dialog Box	. 859
3.4. Multiple Selection of Journal Files	
3.5. The Import Menu	. 867
3.6. The Export Dialog Box	. 878
3.7. The Export Particle History Data Dialog Box	. 893
3.8. The Calculation Activities Task Page	
3.9. The Automatic Export Dialog Box	
3.10.The Automatic Particle History Data Export Dialog Box	
3.11. The Export to CFD-Post Dialog Box	
3.12.The Solution Files Dialog Box	
3.13. The Interpolate Data Dialog Box	
3.14.The Volume FSI Mapping Dialog Box for Cell Zone Data	
3.15. The Surface FSI Mapping Dialog Box for Face Zone Data	
3.16.The Save Picture Dialog Box	
3.17. The Data File Quantities Dialog Box	
3.18. Import FMU File Dialog Box	
3.19. Import FMU File Dialog Box	
4.1. The Set Units Dialog Box	
4.2.The Define Unit Dialog Box	
5.1. Example Profile Expression	
5.2.The Expression Editor Dialog Box	
5.3. Example Expression for Water Density	
5.4. The Expression Dialog Box	
5.5. Plotting an Expression	
5.6. Expressions Postprocessing Field	
5.7. Expression Manager Dialog Box	
5.8. Contours of Velocity - Parabolic Inflow	
5.9. Parabolic Inflow Velocity Over Time	
5.10. Pipe Geometry Colored by ID (Heated Wall is Green)	
5.11. Contours of Temperature (outlet is closest)	

5.12. Plots of Inlet Temperature, Average Outlet Temperature, and Maximum Outlet Temperature	964
6.1. Cell Types	1016
6.2. Structured Quadrilateral Mesh for an Airfoil	1017
6.3. Unstructured Quadrilateral Mesh	1017
6.4. Multiblock Structured Quadrilateral Mesh	1018
6.5. O-Type Structured Quadrilateral Mesh	1018
6.6. Parachute Modeled With Zero-Thickness Wall	
6.7. C-Type Structured Quadrilateral Mesh	1019
6.8. 3D Multiblock Structured Mesh	1019
6.9. Unstructured Triangular Mesh for an Airfoil	1019
6.10. Unstructured Tetrahedral Mesh	1020
6.11. Hybrid Triangular/Quadrilateral Mesh with Hanging Nodes	1020
6.12. Non-Conformal Hybrid Mesh for a Rotor-Stator Geometry	1021
6.13. Polyhedral Mesh	
6.14. Face and Node Numbering for Triangular Cells	
6.15. Face and Node Numbering for Quadrilateral Cells	
6.16. Face and Node Numbering for Tetrahedral Cells	1024
6.17. Face and Node Numbering for Wedge Cells	1025
6.18. Face and Node Numbering for Pyramidal Cells	1026
6.19. Face and Node Numbering for Hex Cells	1027
6.20. An Example of a Polyhedral Cell	
6.21. Setup of Axisymmetric Geometries with the x Axis as the Centerline	1031
6.22. The Vectors Used to Compute Orthogonality	
6.23. Calculating the Aspect Ratio for a Unit Cube	
6.24. The Surface Meshes Dialog Box	
6.25. The Reference Frame Dialog Box	
6.26.The Motion Tab of the Reference Frame Dialog Box	
6.27. Point Surface Creation on Local Reference Frame	
6.28. Profile Definition on Local Reference Frame	
6.29. Completely Overlapping Mesh Interface Intersection	
6.30. Partially Overlapping Mesh Interface Intersection	
6.31.Two-Dimensional Non-Conformal Mesh Interface	
6.32. Non-Conformal Periodic Boundary Condition (Translational)	
6.33. Non-Conformal Periodic Boundary Condition (Rotational)	
6.34. Translational Non-Conformal Interface with the Periodic Repeats Option	
6.35. Rotational Non-Conformal Interface with the Periodic Repeats Option	
6.36. Non-Conformal Coupled Wall Interfaces	
6.37. Matching Non-Conformal Wall Interfaces	
6.38. Non-Conformal Mapped Interface with a Gap and Penetration	
6.39. A Circular Non-Conformal Interface	
6.40. The Mesh Interfaces Dialog Box for the One-to-One Method	
6.41. The Mesh Interfaces Dialog Box for the Many-to-Many Method	
6.42. The Interface Creation Options Dialog Box	
6.43. Managing One-to-One Interfaces from the Outline View Tree	
6.44. Managing One-to-One Interfaces from the Mesh Interfaces Dialog Box	
6.45. The Edit Mesh Interface Dialog Box	
6.46. Creating a Coupled Wall at a One-to-One Mesh Interface	
6.47. The Edit Mesh Interfaces Dialog Box	
6.48. Contours of Interface Overlap Fraction	
6.49. Displaying the Intersected Zone	
v.jv. The Create/Earl Mesti Michales Dialou Dax	1002

6.51. Transferring Displacements	
6.52. Projecting Nodes	
6.53. Overset Component and Background Mesh	1086
6.54. Solve Cells After Initialization	1087
6.55. Valid Overset Meshes with Components in Close Proximity	1088
6.56. Second Component Modifying Existing Body	1089
6.57. Existing Body Modification After Initialization	
6.58. Multiple Components Bridged by Collars Meshes	1090
6.59. Multiple Components with Collar Meshes Initialized	1090
6.60. Adding Fluid to a Region Using Cut Control	1091
6.61. Cut Controlled Region After Initialization	
6.62. Overset Component and Background Meshes Before Hole Cutting	1092
6.63. Overset Component and Background Meshes After Hole Cutting	1092
6.64. Overset Component and Background Meshes After Overlap Minimization	1093
6.65. Overset Mesh Before Hole Cutting	1094
6.66. Overset Mesh After Minimization Based on Boundary Distance	1094
6.67. Valid Overlap	1095
6.68. Invalid Overlap Creating Orphans	1097
6.69. Create/Edit Overset Interfaces Dialog Box	
6.70. Contours of Overset Cell Type: Background Mesh	
6.71. Contours of Overset Cell Type: Component Mesh	1109
6.72. The Gap Model Dialog Box	
6.73. The Edit Gap Region Dialog Box	1115
6.74. Controlling Gap Shape by Excluding Zones	1116
6.75. The Advanced Options Dialog Box	
6.76. The Mesh Display Dialog Box for a Gap Model Simulation	1118
6.77. The Solution Methods Task Page	1122
6.78. Connection of Edge Centroids with Face Centroids	1128
6.79. A Polyhedral Cell	1129
6.80. A Converted Polyhedral Cell with Preserved Hexahedral Cell Shape	1129
6.81. Treatment of Wedge Boundary Layers	1130
6.82. The Original Tetrahedral Mesh	1130
6.83. The Converted Polyhedral Mesh	1131
6.84. The Merge Zones Dialog Box	1135
6.85. The Separate Face Zones Dialog Box	1138
6.86. Cell Zone Separation Based on Region	
6.87. The Separate Cell Zones Dialog Box	
6.88. The Fuse Face Zones Dialog Box	
6.89. The Create Periodic Dialog Box	
6.90.The Replace Cell Zone Dialog Box	
6.91.The Delete Cell Zones Dialog Box	
6.92. The Deactivate Cell Zones Dialog Box	
6.93. The Activate Cell Zones Dialog Box	
6.94.The Select File Dialog Box	
6.95. The Adjacency Dialog Box	
6.96.The Scale Mesh Dialog Box	
6.97.The Translate Mesh Dialog Box	
6.98.The Rotate Mesh Dialog Box	
6.99. The Improve Mesh Dialog Box	
6.100. Result of Smoothing Operator on Node Position	
6.101. Initial Mesh Before Smoothing Operation	

6.102. Mesh Smoothing Causing Mesh-Line Crossing	1168
6.103. Examples of Cell Configurations in the Circle Test	
6.104. Swapped Faces to Satisfy the Delaunay Circle Test	
6.105.3D Face Swapping	
7.1. The Boundary Conditions Task Page	
7.2.The Copy Conditions Dialog Box	
7.3. The Parameters Dialog Box	
7.4. The New Input Parameter Selection	1183
7.5. The Parameter Expression Dialog Box	1184
7.6. Use Input Parameter in Scheme Procedure Dialog Box	1186
7.7. Use Input Parameter for UDF Dialog Box	1187
7.8. Selecting Multiple Boundaries for Display in the Graphics Window	1190
7.9. Example Operations for Multiple Selected Surfaces in the Graphics Window	1191
7.10.The Fluid Dialog Box	
7.11. Rotation Specified in the Absolute Reference Frame	
7.12. Rotation Specified Relative to a Moving Zone	1198
7.13.The Solid Dialog Box	
7.14. Single Rotating Solid Zone	
7.15. Rotating solid zone separated from another fluid or solid zone separated by a surface of revolutio	
7.16. Multiple rotating solid zones having the same material and motion specifications, separated by m	
interfaces or coupled walls.	
7.17.Two solids in contact where one is stationary and the other is moving with translational motion. T	
translational motion of the moving solid should be described in the Solid Motion tab	
7.18.Two solids in contact where one is stationary and the other is rotating. The rotational motion of th	
moving solid should be described in the Solid Motion tab. Both solids may also have rotation about the	
axis described in the Frame Motion tab	1205
7.19. Rotating solid with boundaries which are not tangential to the motion	1205
7.20. Two solids in contact with some squish. At the contact, the rotational motion has some normal co	m-
ponent, so the solver will not achieve global energy conservation. However, the temperature field migh	ıt still
be acceptable for engineering purposes	1206
7.21.The Fluid Dialog Box for a Porous Zone	1216
7.22. Cone Half Angle	1220
7.23. The Heat Transfer Settings Group Box of the Fluid Dialog Box	1228
7.24. The Fluid Dialog Box: Relative Permeability	1231
7.25. The Table Input Dialog Box for Relative Permeability	1232
7.26. Skjaeveland Correlation Behavior [131]	
7.27.The Table File Manager Dialog Box	
7.28. The Table Input Dialog Box for Capillary Pressure	
7.29.The Fluid Dialog Box for a 3D Fan Zone	
7.30.The Inflection Point Ratio of a Pitched Blade Turbine	
7.31. Fixing Values for the Flow in a Stirred Tank	
7.32. Defining a Source for a Tiny Inlet	
7.33. The Operating Conditions Dialog Box	
7.34. The Pressure Inlet Dialog Box	
7.35. Cylindrical Velocity Components in 3D, 2D, and Axisymmetric Domains	
7.36.The Velocity Inlet Dialog Box	
7.37.The Mass-Flow Inlet Dialog Box	
7.38. The Mass-Flow Outlet Dialog Box	
7.39.The Inlet Vent Dialog Box	1300
7 40 The Intake Fan Dialog Box	1302

7.41.The Pressure Outlet Dialog Box	
7.42. Pressures at the Face of a Pressure Outlet Boundary	1310
7.43. The Pressure Outlet Dialog Box with the Target Mass Flow Rate Option Enabled	
7.44. The Pressure Far-Field Dialog Box	1315
7.45. Choice of the Outflow Boundary Condition Location	1319
7.46. The Outflow Dialog Box	
7.47.The Outlet Vent Dialog Box	1322
7.48. The Exhaust Fan Dialog Box	1325
7.49.The Wall Dialog Box for a Moving Wall	1328
7.50.The Wall Dialog Box for Specified Shear	
7.51. The Wall Dialog Box for the Specularity Coefficient	1332
7.52. The Wall Dialog Box for Marangoni Stress	1333
7.53. The Wall Dialog Box for Partial Slip Shear Condition	1335
7.54. Downward Shift of the Logarithmic Velocity Profile	1337
7.55. Illustration of Equivalent Sand-Grain Roughness	1338
7.56.The Wall Dialog Box for High Roughness (Icing) Models	1340
7.57.The Wall Dialog Box (Thermal Tab)	1343
7.58. A Thin Wall	1345
7.59. Uncoupled Thin Walls	1347
7.60. 2D Interface with Penetration and Gaps	1350
7.61. The Wall Dialog Box for Temperature Jump Thermal Condition	1352
7.62. The Wall Dialog Box for Species Boundary Condition Input	1353
7.63. The Perforated Walls Dialog Box	1358
7.64. Modeling Perforated Walls	
7.65. Uniform and Discrete Approaches	
7.66.The Perforated Walls Dialog Box	
7.67.The Injection Holes Dialog Box	1365
7.68. The Static Setup Dialog Box (Uniform Injection)	
7.69.The Dynamic Setup Dialog Box (Uniform Injection)	
7.70. Injection Surface and Tangential Angles	
7.71. Use of Symmetry to Model One Quarter of a 3D Duct	
7.72. Use of Symmetry to Model One Quarter of a Circular Cross-Section	
7.73. Inappropriate Use of Symmetry	
7.74. Use of Periodic Boundaries to Define Swirling Flow in a Cylindrical Vessel	
7.75. Example of Translational Periodicity - Physical Domain	
7.76. Example of Translational Periodicity - Modeled Domain	
7.77.The Periodic Dialog Box	
7.78. Use of an Axis Boundary as the Centerline in an Axisymmetric Geometry	
7.79. The Fan Dialog Box	
7.80. Polynomial Profile Dialog Box for Pressure Jump Definition	
7.81. A Fan Located In a 2D Duct	
7.82. The Radiator Dialog Box	
7.83. Polynomial Profile Dialog Box for Loss Coefficient Definition	
7.84. A Simple Duct with a Radiator	
7.85. The Porous Jump Dialog Box	
7.86. The Multi Edit Wall Settings Dialog Box	
7.87. Mesh and Prescribed Boundary Conditions in a 3D Axial Flow Problem	
7.88. Mesh and Prescribed Boundary Conditions in a 3D Radial Flow Problem	
7.89. Mesh and Prescribed Boundary Conditions in a 2D Case	
7.30. FTESCHDEU INIEL ANGIES	140う

7.91. The Local Orthogonal Coordinate System onto which Euler Equations are Recasted for the General NRBC Method	. 1411
7.92. Waves Leaving and Entering a Boundary Face on Inflow and Outflow Boundaries. The Wave Amplitude	
are Shown with the Associated Eigenvalues for a Subsonic Flow Condition	
7.93. The Pressure Outlet Dialog Box With the Non-Reflecting Boundary Enabled	
7.94. The Impedance Data Fitting Dialog Box	
7.95. The Inlet, Fan, and Pressure Outlet Zones for a Circular Fan Operating in a Cylindrical Domain	
7.96. The User-Defined Fan Model Dialog Box	
7.97.The Fan Dialog Box	
7.98. Transverse Velocities at the Site of the Fan	
7.99. Static Pressure Jump Across the Fan	
7.100. The Profiles Dialog Box	
7.101. Example of Using Profiles as Boundary Conditions	
7.102. The Orient Profile Dialog Box	
7.103. Scalar Profile at the Outlet	
7.104. Problem Specification	. 1448
7.105. The Replicate Profile Dialog Box	
7.106. The 1D Simulation Library Dialog Box	
7.107. Using GT-POWER Data for Boundary Conditions	
7.108. Cell Zone Conditions for Torque-Speed Coupling with GT-POWER	
7.109. The 1D Simulation Library Dialog Box with WAVE Selected	
7.110. Using WAVE Data for Boundary Conditions	
8.1.The Materials Task Page	
8.2. The Materials Branch in the Outline View	. 1467
8.3. Fluent Database Materials Dialog Box	. 1469
8.4. GRANTA MDS Materials Dialog Box	. 1471
8.5. Open Database Dialog Box	. 1474
8.6. User-Defined Database Materials Dialog Box	. 1475
8.7. New Material Name Dialog Box	. 1476
8.8. Copy Case Material Dialog Box	. 1477
8.9. User-Defined Database Materials Dialog Box: Blank	. 1479
8.10. Material Properties Dialog Box: Blank	. 1480
8.11. Edit Property Methods Dialog Box	. 1481
8.12. The Polynomial Profile Dialog Box	. 1483
8.13. The Piecewise-Linear Profile Dialog Box	. 1485
8.14. Piecewise-Linear Definition of Viscosity as a Function of Temperature	. 1486
8.15. The Piecewise-Polynomial Profile Dialog Box	. 1487
8.16. The NASA-9-Coefficient Piecewise-Polynomial Profile Dialog Box	. 1489
8.17. Compressible Liquid Materials Setting	
8.18. Compressible Liquid Density Settings Panel	. 1495
8.19. Variation of Viscosity with Shear Rate According to the Carreau Model	
8.20. The Carreau Model Dialog Box	. 1508
8.21. Variation of Shear Stress with Shear Rate According to the Herschel-Bulkley Model	. 1510
8.22. The Create/Edit Materials Dialog Box	. 1511
8.23. The Anisotropic Conductivity Dialog Box	. 1515
8.24. The Biaxial Conductivity Dialog Box	. 1516
8.25. The Orthotropic Conductivity Dialog Box	
8.26. The Cylindrical Orthotropic Conductivity Dialog Box	. 1518
8.27. Unaligned Principal Axes	
8.28. The Anisotropic Conductivity - Principal Components Dialog Box	. 1521
8.29. The UDS Diffusion Coefficients Dialog Box	. 1523

8.30. The Anisotropic UDS Diffusivity Dialog Box	1525
8.31.The Orthotropic UDS Diffusivity Dialog Box	
8.32.The Cylindrical Orthotropic UDS Diffusivity Dialog Box	
8.33. The UDS Diffusion Coefficients Dialog Box	
8.34. Anisotropic Species Diffusion Matrix	
8.35. The Thermal Diffusion Coefficients Dialog Box	
8.36. The Mass Diffusion Coefficients Dialog Box for Dilute Approximation	
8.37. The Mass Diffusion Coefficients Dialog Box for the Multicomponent Method	
8.38. Connected and Disconnected Cell Zones	
8.39. Typical PT Diagram of a Pure Material	
8.40. Typical PV Diagram of a Pure Material	
8.41. The Cubic Equation of State Model for a Real-Gas Fluid	
8.42.The Cubic Equation of State Model for a Real-Gas Mixture	
8.43. The Operating Conditions for a Real Gas State	
8.44. The PV Diagram for the Cubic Equation of State Real Gas Model	
8.45. The Table Settings Dialog Box	
8.46. The RGP Table Saturation Data Dialog Box	1596
9.1.The User-Defined Scalars Dialog Box	
9.2. The Fluid Dialog Box with Inputs for Source Terms for a User-Defined Scalar	
9.3. The User Scalar Sources Dialog Box	
9.4. The Materials Dialog Box with Input for Diffusivity for UDS Equations	
9.5. The User-Defined Scalars Dialog Box for a Multiphase Flow	
9.6. Example of Periodic Flow in a 2D Heat Exchanger Geometry	
9.7. The Periodic Conditions Dialog Box	
9.8. The Periodic Dialog Box	
9.9. Periodic Pressure Field Predicted for Flow in a 2D Heat Exchanger Geometry	
9.10. Rotating Flow in a Cavity	
9.11. Swirling Flow in a Gas Burner	1617
9.12. Flow in a Converging-Diverging Nozzle	
10.1. Single Component (Blower Wheel Blade Passage)	
10.2. Multiple Component (Blower Wheel and Casing)	
10.3. Single Blade Model with Rotationally Periodic Boundaries	
10.4. The Fluid Dialog Box Displaying Frame Motion Inputs	
10.5. Geometry with the Rotating Impeller	
10.6. Absolute Velocity Vectors	
10.7. Relative Velocity Vectors	
10.8. The Solution Initialization Task Page for Moving Reference Frames	
11.1. Two Passing Trains in a Tunnel	
11.2. Rotor-Stator Interaction (Stationary Guide Vanes with Rotating Blades)	
11.3. Blower	
11.4. Initial Position of the Meshes	
11.5. Rotor Mesh Slides with Respect to the Stator	
11.6. 2D Linear Mesh Interface	
11.7. 2D Circular-Arc Mesh Interface	
11.8.3D Conical Mesh Interface	
11.9.3D Planar-Sector Mesh Interface	
11.10. The Mesh Interfaces Dialog Box	
11.11. Lift Coefficient Plot for a Time-Periodic Solution	
11.12. Contours of Static Pressure for the Rotor-Stator Example	
11.13. The Dynamic Mesh Task Page	
11.14. The Smoothing Tab of the Mesh Method Settings Dialog Box	

11.15. The Mesh Smoothing Parameters Dialog Box	
11.16.The Initial Mesh	
11.17. Valid Mesh After 45 Degree Rotation Using Diffusion-Based Smoothing	
11.18. Degenerated Mesh After 40 Degree Rotation Using Spring-Based Smoothing	
11.19. Effect of Diffusion Parameter of 0 on Interior Node Motion	
11.20. Effect of Diffusion Parameter of 1 on Interior Node Motion	
11.21. Spring-Based Smoothing on Interior Nodes: Start	
11.22. Spring-Based Smoothing on Interior Nodes: End	
11.23. Interior Nodes Extend Beyond Boundary (Spring Constant Factor = 1)	
11.24. Interior Nodes Remain Within Boundary (Spring Constant Factor = 0)	
11.25.The Undeformed Mesh	
11.26.The Deformed Mesh	
11.27. Zooming into the Undeformed Compliant Strip	
11.28. Zooming into the Deformed Compliant Strip with Boundary Layer Smoothing Applied	
11.29. Dynamic Layering	
11.30. Results of Splitting Layer with the Height-Based Option	
11.31. Results of Splitting Layer with the Ratio-Based Option	
11.32.The Layering Tab in the Mesh Method Settings Dialog Box	1687
11.33. Use of Sliding Interfaces to Transition Between Adjacent Cell Zones and the Dynamic Layering Cell	
Zone	
11.34. The Remeshing Tab in the Mesh Method Settings Dialog Box for Methods-Based Remeshing	
11.35. The Remeshing Tab in the Mesh Method Settings Dialog Box for Unified Remeshing	
11.36. Mesh at the End of a Dynamic Mesh Simulation Without Sizing Functions	
11.37. Mesh at the End of a Dynamic Mesh Simulation With Sizing Functions	
11.38. Sizing Function Determination at Background Mesh Vertex I	
11.39. Interpolating the Value of the Sizing Function	
11.40. Determining the Normalized Distance	
11.41. Expanding Cylinder Before Region Face Remeshing	
11.42. Expanding Cylinder After Region Face Remeshing	
11.43. Volume Decomposition for Prism Layers	
11.44. Volume Decomposition for the Base of the Prism Layers	1/03
11.45. Close-Up of 2.5D Extruded Flow Meter Pump Geometry Before Remeshing and Laplacian Smooth-	1704
ing	1704
11.46. Close-Up of 2.5D Extruded Flow Meter Pump Geometry After Remeshing and Laplacian Smoothing.	
11.47. The Remeshing Tab for the 2.5D Model	
11.48. 2.5D Extruded Gear Pump Geometry	
11.49. The Advanced Remeshing Settings Dialog Box	
11.50. Cross Section of a 3D Corner	
11.51.The In-Cylinder Tab of the Options Dialog Box	
11.52. Determining the Sign of the Piston Pin Offset	
11.53. The In-Cylinder Output Controls Dialog Box	
11.54. Sample Output File Showing Various Quantities	
11.55. A 2D In-Cylinder Geometry	
11.56. Mesh Topology Showing the Various Mesh Regions	
11.57. Mesh Associated With the Chosen Topology	
11.58. The Use of Sliding Interfaces to Connect the Exhaust Valve Layering Zone to the Remeshing Zone	
11.59. Mesh Sequence 1	
11.60. Mesh Sequence 2	
11.61. Mesh Sequence 3	
11.62. Mesh Sequence 4	
11.63. Mesh Sequence 5	1/22

11.64. Mesh Sequence 6	1722
11.65. Piston Position (m) as a Function of Crank Angle (deg)	
11.66. Intake and Exhaust Valve Lift (m) as a Function of Crank Angle (deg)	
11.67. Definition of Valve Zone Attributes (Intake Valve)	
11.68. The Six DOF Tab of the Options Dialog Box	1726
11.69. The Six DOF Properties Dialog Box	1728
11.70. A Check Valve with One DOF Translation	
11.71. The Implicit Update Tab of the Options Dialog Box	1730
11.72.The Contact Detection Tab of the Options Dialog Box	
11.73. The Flow Control Settings Dialog Box with Contact Zones	
11.74. The Flow Control Settings Dialog Box with Contact Marks	
11.75.The Dynamic Mesh Events Dialog Box	1736
11.76.The Define Event Dialog Box	1737
11.77. The Events Preview Dialog Box for In-Cylinder Flows	1738
11.78. The Define Event Dialog Box for the Creating Sliding Interface Option	1740
11.79. Boundary Zone Before Insertion	
11.80. Boundary Zone After Insertion	1742
11.81. Interior Zone Before Insertion	1743
11.82. Interior Zone After Insertion	1743
11.83. The Dynamic Mesh Zones Dialog Box for a Stationary Zone	1746
11.84. The Dynamic Mesh Zones Dialog Box for a Rigid Body Motion	1747
11.85. Orientation Calculator Dialog Box	
11.86. The Dynamic Mesh Zones Dialog Box for a Rigid Body Motion Using the Six DOF Solver	
11.87. The Dynamic Mesh Zones Dialog Box for a Deforming Motion with Cell Zone Options	
11.88. The Dynamic Mesh Zones Dialog Box for an Intrinsic FSI Zone	
11.89. Solid Body Rotation Coordinates	
11.90.The Zone Motion Dialog Box	
11.91.The Mesh Motion Dialog Box	
11.92. The Mesh Motion Dialog Box for Steady-State Dynamic Meshes	
11.93. Initial Object Position	
11.94.The Mesh Motion Dialog Box After 40 Updates	
11.95. Final Object Position After 40 Executions	
12.1. Frozen Gust variations	
12.2. Create/Edit Turbo Interfaces Dialog Box	
12.3. The Mixing Planes Dialog Box	
12.4. Passage Numbering from Profile Expansion	
12.5. Periodic Displacement Example for Real Only Mode Shape	
12.6. Periodic Displacement Example for Complex Mode Shape	
12.7. Aero Report Definition Dialog Box	
12.8. The Turbo Topology Dialog Box	
12.9. Turbomachinery Boundary Types	
12.10. The Turbo Report Dialog Box	
12.11. Pump or Compressor	
12.12. Turbine	
12.13. The Turbo Averaged Contours Dialog Box	
12.14. Turbo Averaged Filled Contours of Static Pressure	
12.15. The Turbo 2D Contours Dialog Box	
12.16. The Turbo Averaged XY Plot Dialog Box	
13.1. Velocity Profiles for Axi-symmetric Diffuser Flow (Case CS0 – Driver). Impact of Variation of \mathcal{C}_{SEP}	1833

13.2. Impact of Changes in \mathcal{C}_{MIX} on Free Mixing Layer. Left: Velocity Profiles, Right: Turbulence Kinetic Ener Profiles	
13.3. Impact of Changes in \mathcal{C}_{NW} on Backward Facing Jet with Heat Transfer. Left: Wall Shear Stress Coefficie	
C_f , Right: Wall Heat Transfer Coefficient, S_t	
13.4. Impact of Changes in C_{IET} on Free Jet Flows. Left: Plane Jet, Right: Round Jet	1834
13.5. Illustration of SST-URANS vs. SST-SAS Models	1840
13.6. The Viscous Model Dialog Box	
13.7. The Viscous Model Dialog Box Displaying the Spalart-Allmaras Production	1850
13.8. The Viscous Model Dialog Box Displaying the Standard k-ε Model	1852
13.9. The Viscous Model Dialog Box Displaying the RNG k- ϵ Model	1854
13.10.The Viscous Model Dialog Box Displaying the Standard k-ω Model	1856
13.11.The Viscous Model Dialog Box Displaying the BSL k- ω Model	1858
13.12.The Viscous Model Dialog Box Displaying the SST k- ω Model	
13.13. The Viscous Model Dialog Box with GEKO Options for the Full Model	
13.14. The Viscous Model Dialog Box for the Transition SST Model	
13.15. Transition Option enabled in Combination with the SST k- ω Model	1866
13.16. The Viscous Model Dialog Box Displaying the Reynolds Stress Model Options	
13.17. The Viscous Model Dialog Box Displaying the Stress-Omega Model Options	
13.18. Scale-Adaptive Simulation (SAS) in Combination with the SST Turbulence Model	
13.19. Scale-Adaptive Simulation (SAS) in Combination with the Transition SST Model	
13.20. The Viscous Model Dialog Box Displaying Options for DES with the Spalart-Allmaras Model	
13.21. The Viscous Model Dialog Box Displaying Options for DES with the Realizable k- ϵ Model	
13.22. The Viscous Model Dialog Box Displaying Options for DES with the SST k- ω Model	
13.23. The Viscous Model Dialog Box Displaying Options for DES with the BSL k- ω Model	
13.24. The Viscous Model Dialog Box Displaying Options for DES with the Transition SST Model	
13.25. The Viscous Model Dialog Box Displaying the Large Eddy Simulation Model Options	
13.26. Specifying an ELES Zone in the Fluid Dialog Box	
13.27. Specifying the RANS/LES Interface	
13.28. The RANS/LES Interface Dialog Box	
13.29. SST Model with the Buoyancy Effects: Only Turbulence Production Option Enabled	
13.30. The Viscous Model Dialog Box with Corner Flow Correction option enabled	
13.31. The Viscous Model Dialog Box with the SBES Options for ω -based RANS models	
13.32. Specifying Inlet Boundary Conditions for the Reynolds Stresses	
13.33.The Sampling Options Dialog Box	
13.34.The Zone-Specific Sampling Options Dialog Box	
14.1. Enabling the Energy Equation	
5 5	
14.3. Typical Counterflow Heat Exchanger Involving Heat Transfer Between Two Separated Fluid Streams . 14.4. The Run Calculation Task Page Showing Solid Time Stepping	
14.5. The Run Calculation Task Page with Loosely Coupled Conjugate Heat Transfer	
14.6. The Time Averaged Explicit Thermal Coupling Dialog Box	
14.7. A Boundary Wall with Shell Conduction	
14.8. A Two-Sided Wall with Shell Conduction	
14.9.The Conduction Manager Dialog Box	
14.10. Conduction Layers Dialog Box	
14.11. Shell Surface Names for a Boundary Wall	
14.12. Shell Surface Names for a Two-Sided Wall	
14.13. The Radiation Model Dialog Box (DO Model)	
14.14.The Radiation Model Dialog Box (Non-Gray P-1 Model)	
14.15. The DTRM Rays Dialog Box	

14.16.The Radiation Model Dialog Box (S2S Model)	1953
14.17.The View Factors and Clustering Dialog Box	1955
14.18.The Wall Dialog Box	1957
14.19. The Participating Boundary Zones Dialog Box	1961
14.20. The Thread Control Dialog Box	1965
14.21.The Radiation Model Dialog Box (Non-Gray DO Model)	
14.22. The Radiation Model Dialog Box with DO/Energy Coupling Enabled	1968
14.23. The Radiation Model Dialog Box (MC)	1970
14.24. The Wall Dialog Box Showing Radiation Conditions for an Opaque Wall	1974
14.25. The Wall Dialog Box Showing External Emissivity and External Radiation Temperature Thermal C	
tions	
14.26. The Wall Dialog Box for a Semi-Transparent Wall Boundary	1976
14.27. The Wall Dialog Box for an Interior Semi-Transparent Wall	1978
14.28. The Wall Dialog Box for an Opaque Wall with MC Model (Gray)	1979
14.29. The Wall Dialog Box for an Opaque Wall with MC Model (Boundary Source)	1980
14.30. The Wall Dialog Box for an Opaque Wall with MC Model (Polar Distribution with Expression)	1982
14.31. The Wall Dialog Box for an Opaque Wall with MC Model (Polar Distribution with Table)	1983
14.32. The Wall Dialog Box for an Opaque Wall with MC Model (Non-gray)	1984
14.33. The Wall Dialog Box Showing External Emissivity and External Radiation Temperature Thermal C	Condi-
tions	1985
14.34. The Wall Dialog Box for a Semi-transparent Wall with MC Model	1986
14.35.The Solid Dialog Box	1987
14.36.The Radiation Model Dialog Box (DTRM)	1990
14.37.The DTRM Graphics Dialog Box	1996
14.38. Ray Display	
14.39. The S2S Information Dialog Box	
14.40.The Radiation Model Dialog Box	2007
14.41. The Radiation Model Dialog Box (With Solar Load Model Solar Ray Tracing Option)	
14.42. The Radiation Model Dialog Box (with Solar Load Model Solar Irradiation Option)	
14.43. The Solar Calculator Dialog Box	
14.44. The Velocity Inlet Dialog Box	
14.45. The Wall Dialog Box	
14.46. The Wall Dialog Box	
14.47. The Porous Jump Dialog Box	
14.48. The Wall Dialog Box Radiation tab with Solar Irradiation	
14.49. The Contours Dialog Box	
14.50. The Execute Commands Dialog Box	
14.51. Temperature Field in a 2D Heat Exchanger Geometry With Fixed Temperature Boundary Condi-	
tions	
14.52. An Example of a Four-Pass Heat Exchanger	
14.53. Heat Exchanger Modeling Options	
14.54. The Heat Exchanger Model Dialog Box	
14.55. The Dual Cell Heat Exchanger Dialog Box	
14.56. The Set Dual Cell Heat Exchanger Dialog Box	
14.57. The Heat Rejection Tab	
14.58. The Performance Data Tab	
14.59.The Heat Transfer Data Table Dialog Box	
14.60. The Frontal Area Tab	
14.61. The Coupling Tab	
14.62. An Example of a Four-Pass Heat Exchanger	
14.63. The Heat Exchanger Model Dialog Box	2045

14.64. The Ungrouped Macro Heat Exchanger Dialog Box Displaying the Model Data Tab	2046
14.65. The Heat Transfer Data Table Dialog Box for the NTU Model	2047
14.66. The Ungrouped Macro Heat Exchanger Dialog Box Displaying the Geometry Tab	2048
14.67. The Ungrouped Macro Heat Exchanger Dialog Box Displaying the Auxiliary Fluid Tab	2049
14.68. 1x4x3 Macros	2052
14.69. Mesh Display With Macros	2053
14.70. The Core Porosity Model Dialog Box	2055
14.71.The Macro Heat Exchanger Group Dialog Box	2057
14.72. The Heat Transfer Data Table Dialog Box for the NTU Model	
14.73. The Macro Heat Exchanger Group Dialog Box - Geometry Tab	
14.74. The Macro Heat Exchanger Group Dialog Box - Auxiliary Fluid Tab	2060
14.75. The Macro Heat Exchanger Group Dialog Box - Supplementary Auxiliary Fluid Stream Tab	2061
14.76. The Heat Exchanger Report Dialog Box for Reporting Computed Heat Rejection	2065
14.77. The Heat Exchanger Report Dialog Box for Reporting the Inlet Temperature	2066
14.78. The Heat Exchanger Report Dialog Box for Reporting Mass Flow Rate	
14.79. The Heat Exchanger Report Dialog Box for Reporting Specific Heat	
14.80. The Volume Report Definition Dialog Box	
14.81.The Energy Dialog Box	2070
14.82.The Create/Edit Materials Dialog Box	2071
14.83. The Blottner Curve Fit Dialog Box	2072
14.84. Species Model Dialog Box with Settings for Two-Temperature Model	2073
14.85. Reactions Dialog Box with Settings for Two-Temperature Model	2074
14.86. The Fluid Dialog Box	2075
14.87. Pressure Far-Field Dialog Box	2076
14.88. Pressure Far-Field Dialog Box with Non-Equilibrium Boundary Option	
14.89. Two-sided Wall Dialog Box with Coupled Option	
14.90. The Solution Methods Task Page	
14.91. The Solution Controls Task Page	
14.92. The Equations Dialog Box	
14.93. The Residual Monitors Dialog Box	
15.1. The Species Model Dialog Box	
15.2. The Species Model Dialog Box Displaying the Thickened Flame Model	
15.3. The Select Boundary Species Dialog Box	
15.4. The Select Residual Monitored Species	
15.5. The Import CHEMKIN Format Mechanism Dialog Box for Volumetric Kinetics	
15.6. The Material Dialog Box When Importing CHEMKIN Transport Properties	
15.7. The Create/Edit Materials Dialog Box (Showing a Mixture Material)	
15.8. The Species Dialog Box	
15.9. The Reactions Dialog Box	
15.10. The Third-Body Efficiency Dialog Box	
15.11. The Pressure-Dependent Reaction Dialog Box	
15.12.The Coverage Dependent Reaction Dialog Box	
15.13. Backward Reaction Parameters Dialog Box	
15.14. The Reaction Mechanisms Dialog Box	
15.15. The Site Parameters Dialog Box	
15.16. The Coal Calculator Dialog Box	
15.17. The Import CHEMKIN Format Mechanism Dialog Box for Surface Kinetics	
15.18. The Species Model Dialog Box with Electrochemical Reactions Enabled	
15.19. The Reactions Dialog Box	
15.20.The Reaction Mechanisms Dialog Box	
15.21. Wall Potential Boundary Condition	

15.33 Outlined Confees Meek on the Desetting Channel Well	21.47
15.22. Optimal Surface Mesh on the Reacting Channel Wall	
15.23.The Reacting Channel Model Dialog Box	
15.24. The Reacting Channel Model Dialog Box (Group Inlet Conditions Tab)	
15.25. The Wall Boundary Condition Dialog Box for the Reacting Channel Model	
15.26. Reacting Channel 2D Curves Dialog Box (Plot)	
15.27. Reacting Channel 2D Curves Dialog Box (Report)	
15.28. Reactor Network Dialog Box (Steady-State Flow)	
15.29. Reactor Network Dialog Box - Expert Options	
15.30. The Species Model Dialog Box for Lagrangian Composition PDF Transport	
15.31. The Integration Parameters Dialog Box	
15.32. The Species Model Dialog Box for Eulerian Composition PDF Transport	
15.33. The Velocity Inlet Dialog Box for Eulerian Composition PDF Transport	
15.34. The Solution Initialization Task Page for Eulerian Composition PDF Transport	
15.35. The Run Calculation Task Page for Composition PDF Transport	
15.36. The Particle Tracks Dialog Box for Tracking PDF Particles	
15.37. The Integration Parameters Dialog Box	
15.38. The Select DAC Target Species Dialog Box	
16.1. Defining Equilibrium Chemistry	
16.2. Defining Steady Diffusion Flamelet Chemistry	
16.3. Defining Chemical Boundary Species	
16.4. Calculating Steady Diffusion Flamelets	
16.5. Calculating the Chemistry Look-Up Table	
16.6. The Species Model Dialog Box (Chemistry Tab)	
16.7. The Chemistry Tab for the Unsteady Diffusion Flamelet Model	
16.8. The Enabled Diesel Unsteady Flamelet Model	
16.9. The Unsteady Flamelet Parameters Dialog Box	
16.10.The Flamelet Fluid Zones Dialog Box	
16.11. The Species Model Dialog Box (Boundary Tab)	
16.12.The Coal Calculator Dialog Box	
16.13.The Species Model Dialog Box (Control Tab)	
16.14. The Species Model Dialog Box (Control Tab) for the Steady Diffusion Flamelet Model	
16.15. Method to Zero Out the Slow Chemistry Species	
16.16.The Species Model Dialog Box (Flamelet Tab)	
16.17. The Flamelet Tab for the Unsteady Diffusion Flamelet Model	
16.18. The Flamelet 2D curves Dialog Box	
16.19. The Flamelet 3D Surfaces Dialog Box	
16.20. Example 2D Plot of Flamelet Data	
16.21. Example 3D Plot of Flamelet Data	
16.22. The Species Model Dialog Box (Table) Tab Displaying Automated Grid Refinement	
16.23. The Species Model Dialog Box (Table) Tab Excluding Automated Grid Refinement	
16.24. The PDF Table Dialog Box (Non-Adiabatic Case With Flamelets)	
16.25. Mean Species Mole Fraction Derived From an Equilibrium Chemistry Calculation	
16.26. Mean Temperature Derived From an Equilibrium Chemistry Calculation	
16.27.3D Plot of Look-Up Table for Temperature Generated for a Simple Hydrocarbon System	
16.28.The Inert Model Dialog Box	
16.29.The Inert Model Dialog Box	
16.30. The Velocity Inlet Dialog Box Showing Mixture Fraction Boundary Conditions	
16.31.The Species Model Dialog Box for a Two-Mixture-Fraction Calculation	
16.32. Predicted Contours of Mixture Fraction in a Methane Diffusion Flame	
16.33. Predicted Contours of CO2 Mass Fraction Using the Non-Premixed Combustion Model	
16.34. The Species Model Dialog Box for Premixed Combustion	2253

16.35. The Species Model Dialog Box for the G-Equation Model	2254
16.36. The Progress Variable Definition Dialog Box	
16.37. Premixed Flamelet Generated Manifolds (Flamelet Tab)	
16.38. The Distribution of Points Dialog Box	
16.39. Diffusion Flamelet Generated Manifolds (Flamelet Tab)	
16.40. Non-adiabatic Premixed Flamelet Generated Manifolds (Flamelet Tab)	
16.41. The Species Model Dialog Box: Table Tab with no Automated Grid Refinement	
16.42. The Species Model Dialog Box: Table Tab Displaying Automated Grid Refinement	
16.43. The Select Transported Scalars Dialog Box	
16.44. The PDF Table Dialog Box (Adiabatic Case With FGM)	
16.45. The PDF Table Dialog Box (Non-Adiabatic Case With FGM)	
16.46. The Species Model Dialog Box(Premix Tab)	
16.47. The Species Model Dialog Box (Properties Tab)	
16.48. The Quadratic of Mixture Fraction Dialog Box	
16.49. The Piecewise Linear Dialog Box	
16.50. The Species Model Dialog Box: Strained Laminar Flame Speed	2283
16.51.The Flamelet 2D Curves Dialog Box	2284
17.1.The Spark Ignition Dialog Box	2288
17.2.The Set Spark Ignition Dialog Box	2289
17.3. The Ignition Delay Model in the Autoignition Model Dialog Box	2291
17.4. The Knock Model in the Autoignition Model Dialog Box	2291
17.5. The Ignition Delay Model for the Partially Premixed Combustion Model	2292
17.6. The Knock Model with the Partially Premixed Combustion Model Enabled	2293
17.7. Experimental Engine Mesh	2294
17.8. Cylinder Mass vs. Crank Angle	2296
17.9. Cylinder Pressure vs. Crank Angle	2297
17.10. Crevice Pressures	2299
18.1.The NOx Model Dialog Box	2303
18.2. The NOx Model Dialog Box Displaying the Fuel Streams	2306
18.3. The NOx Dialog Box Displaying the Reburn Reduction Method	2312
18.4. The NOx Dialog Box Displaying the SNCR Reduction Method	
18.5. The NOx Model Dialog Box and the Turbulence Interaction Mode Tab	2314
18.6.The Soot Model Dialog Box for the One-Step Model	
18.7.The Soot Model Dialog Box for the Two-Step Model	
18.8.The Soot Model Dialog Box for the Moss-Brookes Model	
$18.9. The \ Soot \ Model \ Dialog \ Box \ for \ the \ Moss-Brookes \ Model \ with \ a \ User-Defined \ Precursor \ Correlation \ .$	
18.10.The Piecewise-Polynomial Profile Dialog Box	
18.11. The Soot Model Dialog Box for the Method of Moments Model	
18.12. Sticking Coefficients for Soot Precursors	
18.13. Settings for the Nucleation Mechanism	
18.14. The Decoupled Detailed Chemistry Dialog Box	
19.1.The Acoustics Model Dialog Box	
$19.2. The \ Acoustics \ Model \ Dialog \ Box \ for \ a \ 3D \ Steady-State \ Case \ with \ a \ Single \ Moving \ Reference \ Frame \$	
19.3. The Acoustics Model Dialog Box for Exporting in CGNS Format	
19.4. The Acoustics Model Dialog Box	
19.5. The Interior Cell Zone Selection Dialog Box	
19.6. An Interior Source Surface	
19.7.The Acoustic Receivers Dialog Box	
19.8. The Run Calculation Task Page	
19.9. The Acoustic Signals Dialog Box	
19.10. The Read ASD Files Tab of the Acoustic Source FFT Dialog Box	2362

19.11. The Compute FFT Fields Tab of the Acoustic Source FFT Dialog Box	. 2363
19.12. The FFT Surface Variables Tab of the Acoustic Source FFT Dialog Box for the Octave Bands	. 2364
19.13. Bar Chart of Surface Pressure Level for Octave Bands	
19.14. The FFT Surface Variables Tab of the Acoustic Source FFT Dialog Box for a Set of Individual Modes	
19.15. The Write CGNS Files Tab of the Acoustic Source FFT Dialog Box	
19.16. The Acoustics Model Dialog Box	
19.17. The Basic Shapes Dialog Box	
19.18. The Acoustics Wave Equation Solver Controls Task Page	
19.19. The Acoustics Initialization Dialog Box	
19.20. Acoustics Model Dialog Box with Kirchhoff Integral Options	
19.21. Integration Surface Dialog Box	
19.22. The Acoustics Model Dialog Box for Broadband Noise	
20.1. Valid Configuration for the Lagrangian Wall film Model with Overset Mesh	
20.2. Invalid Configuration for the Lagrangian Wall film Model with Overset Mesh	
20.3. The Discrete Phase Model Dialog Box - Tracking Tab	
20.4. A Subtet Formed From Decomposing a Hexagonal Cell	
20.5. Degenerate Subtet in a Polyhedral Mesh	
20.6. Degenerate Subtet in a Hex Mesh	
20.7. Lagrangian Wall Film Tracking	
20.8. The Discrete Phase Model Dialog Box - Physical Models Tab	. 2407
20.9. Discrete Phase Model Dialog Box with DEM Collision Model	
20.10. Wall Boundary Condition for the DEM Model	
20.11. Collision Dialog Box	. 2415
20.12. DEM Collision Settings Dialog Box	. 2415
20.13. The Discrete Phase Model Dialog Box - UDF Tab	. 2418
20.14. The Discrete Phase Model Dialog Box - Numerics Tab	. 2420
20.15. Particle Injection Defining a Single Particle Stream	. 2430
20.16. Particle Injection Defining an Initial Spatial Distribution of the Particle Streams	. 2430
20.17. Particle Injection Defining an Initial Spray Distribution of the Particle Velocity	. 2430
20.18. Cone Injector Geometry	. 2435
20.19. Flat Fan Viewed from Above and from the Side	. 2444
20.20. Example of Cumulative Size Distribution of Particles	. 2449
20.21. Rosin-Rammler Curve Fit for the Example Particle Size Data	. 2450
20.22. The Injections Branch in the Outline View	. 2452
20.23. The Injections Dialog Box	. 2452
20.24. The Set Injection Properties Dialog Box	. 2455
20.25. Setting Surface Injection Properties	
20.26. Mean Trajectory in a Turbulent Flow	. 2469
20.27. Stochastic Trajectories in a Turbulent Flow	. 2470
20.28.The Custom Laws Dialog Box	
20.29. The Set Multiple Injection Properties Dialog Box	. 2472
20.30. Discrete Phase Boundary Conditions in the Wall Dialog Box	. 2477
20.31. "Trap" Boundary Condition for the Discrete Phase	. 2478
20.32. "Escape" Boundary Condition for the Discrete Phase	
20.33. The Wall Dialog Box: the Particle-Wall Heat Exchange Option	
20.34. The Set Injection Properties Dialog Box: Condensate Injection	
20.35. The Generic Erosion Model Parameters Dialog Box	. 2488
20.36. The Finnie Model Parameters Dialog Box	
20.37. The McLaury Model Parameters Dialog Box	
20.38. The Oka Model Parameters Dialog Box	. 2490
20.39 The DNV Model Parameters Dialog Box	2491

20.40. The Shear Stress Model Parameters Dialog Box	2491
20.41. The Erosion Dynamic Mesh Coupling Setup Dialog Box	2494
20.42. The Run Erosion-Dynamic Mesh Simulation Dialog Box	2496
20.43. The Graphics Objects Dialog Box	
20.44. The Components Tab	2504
20.45. Uncoupled Discrete Phase Calculations	2516
20.46. Coupled Discrete Phase Calculations	2517
20.47. Effect of Number of Source Term Updates on Source Term Applied to Flow Equations	2519
20.48. The Particle Tracks Dialog Box	
20.49. The Track Style Attributes Dialog Box	2526
20.50. The Particle Sphere Style Attributes Dialog Box	2527
20.51. Particles with the Vector Style	2529
20.52. Particles with the Centered Vector Style	2530
20.53. Particles with the Centered Cylinder Style	2531
20.54. The Particle Vector Style Attributes Dialog Box	2532
20.55.The Import Particle Data Dialog Box	2532
20.56. The Particle Filter Attributes Dialog Box	2533
20.57. The Reporting Variables Dialog Box	2542
20.58. The Sample Trajectories Dialog Box	2552
20.59. The Trajectory Sample Histograms Dialog Box	2554
20.60. The Trajectory Sample Histograms Dialog Box: Correlation	
20.61. The Trajectory Sample Histograms Dialog Box: Data File Reduction	2557
20.62.The Particle Summary Dialog Box	
20.63. The Shared Memory Option with Workpile Algorithm Enabled	2565
21.1. Macroscopic Particle Model Dialog Box (Particle Tracking Tab)	
21.2. Macroscopic Particle Model Dialog Box (Drag Tab)	
21.3. Macroscopic Particle Model Dialog Box (Collision Tab)	
21.4. Macroscopic Particle Model Dialog Box (Deposition Tab)	
21.5. Macroscopic Particle Model Dialog Box (Injection Tab)	
21.6. Macroscopic Particle Model Dialog Box (Attraction Forces Tab)	
21.7. Macroscopic Particle Model Dialog Box (Initialize MPM Tab)	
22.1. Multiphase Model Dialog Box for the VOF Model	
22.2. Multiphase Model Dialog Box for the Mixture Model	
22.3. Multiphase Model Dialog Box for the Eulerian Model	
22.4. Numerical Flotsams in the Volume Fraction Field	
22.5. The Volume Fraction Field for the Cell Based Flotsam Detection	
22.6. The Volume Fraction Field for the Node Based Flotsam Detection	
22.7.The Volume Fraction Field for the Node-Averaged Filtering	
22.8. The Operating Conditions Dialog Box for Multiphase Flows	
22.9. The Multiphase Model dialog box - Phases tab	
22.10. The Species Model Dialog Box with a Multiphase Model Enabled	
22.11.The Phase Properties Dialog Box	
22.12.The Reactions Tab for Heterogeneous Reactions	
22.13.The Mass Tab for Mass Transfer	
22.14. The Cavitation Model Dialog Box	
22.15. Table Input for Vaporization Pressure	
22.16. The Evaporation-Condensation Model Dialog Box (Eulerian Multiphase Model)	
22.17. The Species Mass Transfer Model Dialog Box	
22.18. The Pressure Inlet Dialog Box for a Mixture	
22.19. The Wall Dialog Box for a Mixture in a Multiphase Calculation with Wall Adhesion	
44.40. IVICADUITIU LITE CUITACT ATTUIE	∠ひろろ

22.21.The Porous Jump Dialog Box Displaying Jump Adhesion	
22.22.The Wall Dialog Box for a Phase	
22.23. The Pressure Outlet Dialog Box for a Phase	
22.24. The Cell Zone Conditions Task Page	
22.25. Mass-Flow Inlet Boundary Condition Dialog Box	
22.26. Determining the Free Surface Level and the Bottom Level	
22.27. Pressure Inlet for Open Channel Flow	
22.28. Density Interpolation Method for Open Channel Flow	
22.29. The Velocity Inlet for Open Channel Wave BC	
22.30. Segregated Velocity Inputs for Open Channel Wave BC	
22.31.The Velocity Inlet for Open Channel Wave BC (Explicit Formulation)	
22.32. The Solution Initialization Task Page	
22.33.The Fluid Dialog Box to Enable Numerical Beach	
22.34. Numerical Beach Sketch	
22.35. Defining the Primary Phase in the Phases Tab	
22.36. Defining the Secondary Phase in the Phases Tab	
22.37.The Multiphase Model Dialog Box (Forces Tab)	
22.38. The Multiphase Model Dialog Box for the VOF Model (Discretization Tab)	
22.39. The VOF-to-DPM Transition Parameters Dialog Box	
22.40.The DPM-to-VOF Transition Parameters Dialog Box	
22.41. DPM Particles at the Gas-Liquid Interface	
22.42. Surface Mesh Before the Model Transition is Triggered	
22.43. Gas-Liquid Interface after the Model Transition is Triggered	
22.44. Surface Mesh After the Mesh Adaption and Phase Transition	
22.45. Defining the Secondary Phase for the Mixture Model	
22.46. Defining a Granular Phase in the Mixture Model	
22.47. The Multiphase Model Dialog Box Displaying the Interfacial Area Concentration Settings	
22.48. The Multiphase Model Dialog Box for the Mixture Model (Forces Tab)	
22.49.The Evaporation-Condensation Model Dialog Box	
22.50. Boiling Model Expert Options	
22.51. Transition Function vs. Volume Fraction of Liquid	
22.52.The Multiphase Model Dialog Box for a Non-Granular Phase (Phases Tab)	
22.53.The Multiphase Model Dialog Box for a Granular Phase (Phases Tab)	
22.54. Syamlal Obrien Model Dialog Box	
22.55. Antal et al. Model Dialog Box	
22.56. Tomiyama Model Dialog Box	
22.57. Frank Model Dialog Box	
22.58. Hosokawa Model Dialog Box	
22.59. Lopez de Bertodano Model Dialog Box	
22.60. Simonin Model Dialog Box	
22.61. Burns et al. Model Dialog Box	
22.62. Diffusion—in—vof Model Dialog Box	
22.63. The Viscous Model Dialog Box for an Eulerian Multiphase Calculation	
22.64. Troshko-Hassan Model Dialog Box	
22.65. Sato Model Dialog Box	
22.66. Simonin-et-al Model Dialog Box	
22.67.The Multiphase Model Dialog Box for Heat Transfer	
22.68. The Multiphase Model Dialog Box for Interfacial Area	
22.69. Defining a Secondary Phase with the AIAD Continuous Phase Treatment	
22.70. Example of Defining a Secondary Entrained Phase for Droplets	
22.71. The AIAD Model Parameters Dialog Box	2766

22.72. The AIAD Entrainment Parameters Dialog Box	2767
22.73. The Dense Discrete Phase Model	
22.74. The Multiphase Model Dialog Box for DDPM	2773
22.75. The Set Injection Properties Dialog Box	2775
22.76. The Multiphase Model Dialog Box for a Granular Phase	2776
22.77. The Boiling Model	
22.78. The Multiphase Model Dialog Box for the Boiling Model (Phases Tab)	2780
22.79. Defining Forces in the Forces Tab	2781
22.80. The Boiling Model Dialog Box	2783
22.81. The Population Balance Model Dialog Box	2792
22.82. The Liao Aggregation Model Parameters Dialog Box	2796
22.83. The Surface Tension for Population Balance Dialog Box	2797
22.84. The Hamaker Constant for Population Balance Dialog Box	2797
22.85. The Prince and Blanch Model Parameters Dialog Box	2798
22.86. Liao Breakage Model Parameters Dialog Box	2799
22.87. The Surface Tension and Weber Number Dialog Box	
22.88. The Ghadiri Breakage Constant for Population Balance Dialog Box	2800
22.89. The Shape Factor for Parabolic PDF Dialog Box	2801
22.90. The Generalized pdf for multiple breakage Dialog Box	2801
22.91. The Population Balance Model Tab for the DQMOM Model	
22.92. DQMOM Values Produced From a PDF File	
22.93. Specifying Inlet Boundary Conditions for the Population Balance Model	
22.94. The Equations Dialog Box	
22.95. Setting the Secondary Phase for Hydrodynamic Coupling	
22.96. The Phase Interaction Tab for Non-reacting Species	
22.97. The Reactions Tab for a Heterogeneous Reaction	
22.98. The Size Calculator Dialog Box	
22.99. The Population Balance Moments Dialog Box	
22.100. The Number Density Function Dialog Box	
22.101. The Multiphase Model Dialog Box with the Wet Steam Model Selected (Pressure-Based)	
22.102. The Multiphase Model Dialog Box with the Wet Steam Model Selected (Density-Based)	
22.103. The Solution Methods Task Page Displaying The Pressure-Velocity Coupling Options	2846
22.104. The Solution Controls Task Page Displaying the Coupled Volume Fraction Method for the VOF and	
Mixture Models	2848
22.105. The Solution Controls Task Page Displaying the Coupled Volume Fraction Method for the Eulerian	2050
Multiphase Model	
<u> </u>	
22.107. The Velocity Limiting Treatment Dialog Box	
23.1. The Solidification and Melting Dialog Box	
23.2. The Create/Edit Materials Dialog Box for Melting and Solidification	
23.3. The Solidification and Melting Dialog Box	
23.4. Liquid Fraction Contours for Continuous Crystal Growth	
24.1.The Structural Model Dialog Box	
24.2. The Structure Tab of the Wall Dialog Box	
24.3. The Wall Dialog Box for a Two-Sided Wall	
25.1. The Eulerian Wall Film Dialog Box - Model Options and Setup tab (with DPM Interaction)	
25.2. The Eulerian Wall Film Dialog Box - Model Options and Setup tab (with Phase Interaction)	
25.3. Eulerian Wall Film Solution Controls (Steady Flow)	
25.4. Eulerian Wall Film Solution Controls (Unsteady Flow)	
25.6. Wall Dialog Box - Sources Terms Tab	
43.0. TTUIL DIGIOU DON - JUUICEJ ICIIIIJ IUD	Z 2 U /

25.7. Wall Dialog Box - Phase Change Tab	2908
25.8. Wall Dialog Box - Surface Contact Tab	2909
25.9. Wall Dialog Box - DPM Interaction Tab	2910
25.10. Wall Dialog Box - VOF Interaction Tab	
26.1.The Potential/Li-ion Battery Dialog Box - Lithium-ion Battery Model	
26.2. The Potential/Li-ion Battery Dialog Box - Echem Rate Tab	
26.3. The Potential/Li-ion Battery Dialog Box - Material Properties Tab	
26.4. The Potential/Li-ion Battery Dialog Box - Report Tab	
27.1. The Battery Model Option in the Outline View	
27.2.The Battery Model Dialog Box (Model Options Tab)	
27.3. The Calendar Life Parameters Dialog Box	
27.4. The Capacity Fade Table Dialog Box - Cycle Life	
27.5. The Battery Model Dialog Box (Conductive Zones Tab)	
27.6. The Battery Model Dialog Box (Electric Contacts Tab)	
27.7. Model Parameters Tab—CHT Coupling Method	
27.8. Model Parameters Tab—FMU-CHT Coupling Method	
27.9. Model Parameters Tab—NTGK Model	
27.10. NTGK U-parameter Data Table Dialog Box	
27.11.The Import Raw Data Dialog Box	
27.12.The Parameter Estimation Dialog Box for the NTGK Model	
27.13. Model Parameters Tab—Equivalent Circuit Model	
27.14.The Parameter Estimation Dialog Box for the ECM	
27.15.The HPPC Data Library Dialog Box	
27.16. Overview of the Folder Structure in the HPPC Library	
27.17. Model Parameters Tab—Newman's P2D Model	
27.18. The Echem Material Database Dialog Box	2967
27.19. Model Parameters Tab—User-Defined E-Model	
27.20. The Battery Model Dialog Box (UDF Tab)	2970
27.21.The Battery Model Dialog Box (Advanced Option Tab)	
27.22.The Material Database for Abuse Kinetics Dialog Box	
28.1. The PEMFC Option in the Outline View	
28.2. The Model Options in the PEM Fuel Cell Model Dialog Box	2992
28.3. The Parameters Tab of the PEM Fuel Cell Model Dialog Box	2996
28.4. The Anode Tab of the PEM Fuel Cell Model Dialog Box with Current Collector Selected	3000
28.5. The Anode Tab of the PEM Fuel Cell Model Dialog Box with Flow Channel Selected	3001
28.6. The Anode Tab of the PEM Fuel Cell Model Dialog Box with Porous Electrode Selected	3002
28.7.The Anode Tab of the PEM Fuel Cell Model Dialog Box with TPB Layer (Catalyst) Selected	3004
28.8. The Anode Tab of the PEM Fuel Cell Model Dialog Box with Micro Porous Layer Selected	3006
28.9.The Electrolyte Tab of the PEM Fuel Cell Model Dialog Box	3008
28.10. The Cathode Tab of the PEM Fuel Cell Model Dialog Box with TPB Layer (Catalyst) Selected	3010
28.11. The Advanced Tab of the Fuel Cell and Electrolysis Models Dialog Box for Contact Resistivities	3013
28.12. The Advanced Tab of the PEM Fuel Cell Model Dialog Box for Contact Resistivities	3014
28.13. The Advanced Tab of the PEM Fuel Cell Model Dialog Box for the Coolant Channel	3015
28.14. The Advanced Tab of the PEM Fuel Cell Model Dialog Box for Stack Management	3016
28.15. The Reports Tab of the PEM Fuel Cell Model Dialog Box	3018
28.16. The Fuel Cell and Electrolysis Option in the Tree	3032
28.17. The Model Options in the Fuel Cell and Electrolysis Models Dialog Box—PEMFC Enabled	3033
28.18. The Parameters Tab of the Fuel Cell and Electrolysis Models Dialog Box	3036
28.19. The Anode Tab of the Fuel Cell and Electrolysis Models Dialog Box With Current Collector Selected	3037
28.20. The Anode Tab of the Fuel Cell and Electrolysis Models Dialog Box With Flow Channel Selected	3038
28.21. The Anode Tab of the Fuel Cell and Electrolysis Models Dialog Box With Porous Electrode Selected	3039

28.22. The Anode Tab of the Fuel Cell and Electrolysis Models Dialog Box With TPB Layer (Catalyst) Selec-	
, , , , , , , , , , , , , , , , , , , ,	3040
28.23. The Electrolyte Tab of the Fuel Cell and Electrolysis Models Dialog Box	3041
28.24. The Cathode Tab of the Fuel Cell and Electrolysis Models Dialog Box With Current Collector Selec-	
•	3042
28.26. The Cathode Tab of the Fuel Cell and Electrolysis Models Dialog Box With Porous Electrode Selec-	50.5
,	3044
28.27.The Cathode Tab of the Fuel Cell and Electrolysis Models Dialog Box With TPB Layer (Catalyst) Selec-	
, e e e e e e e e e e e e e e e e e e e	3045
, , , , , , , , , , , , , , , , , , ,	
· · · · · · · · · · · · · · · · · · ·	
, , , , , , , , , , , , , , , , , , ,	
, , , , , , , , , , , , , , , , , , ,	
28.32. The Electric Conductivity Field in the Create/Edit Materials Dialog Box	
1 5	
,	
28.36. The Electrolyte and Tortuosity Tab in the SOFC Model Dialog Box	
28.37. The Electric Field Tab in the SOFC Model Dialog Box	
5	
g and the state of	
29.4. The MHD Model Dialog Box for Specifying a Moving Field	
29.5. The MHD Model Dialog Box for Importing an External Magnetic Field	3088
29.6. Apply External B0 Field Dialog Box	3089
29.7. Cell Boundary Condition Setup	3090
29.9. Wall Boundary Condition Setup	3092
29.10. Conducting Wall Boundary Conditions in Electrical Potential Method	
· · · · · · · · · · · · · · · · · · ·	
30.3. The Set Fiber Injection Properties Dialog Box	
30.4. The Set Fiber Injection Properties Dialog Box With Take-Up Point Properties	
30.5. Line Injections	
30.6. Matrix Injections	
30.7. Equidistant Fiber Grid	
30.8. One-Sided Fiber Grid	
30.9. Two-Sided Fiber Grid	
30.10. Three-Sided Fiber Grid	
30.11. Defining a Three-Sided Fiber Grid Using the Set Fiber Injection Properties Dialog Box	
30.12. The Fiber Model Dialog Box	
30.13. Fiber Solution Controls Dialog Box	
30.14. Displaying Fiber Locations Using the Contours Dialog Box	
30.15. The Fiber Mesh Display Dialog Box	
30.16. The Fiber Style Attributes Dialog Box	
30.17. The Fiber Display Dialog Box	
31.1.The Reduced Order Model Dialog Box	
31.2. The Write Profile Dialog Box	
32.1. The General Task Page	3156

32.2.The Solution Methods Task Page for the HOTR Option	3161
32.3. The Relaxation Options Dialog Box	
32.4. The Solution Methods Task Page for the Pressure-Based Segregated Algorithm	
32.5.The Solution Controls Task Page for the Pressure-Based Solver	
32.6. The Advanced Solution Controls Dialog Box for the Pressure-Based Segregated Non-Iterative Solver.	
32.7.The NITA Options Dialog Box	
32.8. The Solution Controls Task Page for the Density-Based Explicit Formulation	
32.9.The Solution Methods Task Page for the Density-Based Implicit Formulation	
32.10. The Multigrid Tab	
32.11.The Advanced Solution Controls Dialog Box	
32.12.The Solution Limits Dialog Box	
32.13.The Multi-Stage Tab	
32.14.The Solution Initialization Task Page	
32.15.The Patch Dialog Box	
32.16.The Solution Initialization Task Page for Hybrid Initialization	
32.17.The Hybrid Initialization Dialog Box	
32.18.The Run Calculation Task Page	
32.19.The Solution Methods Task Page	
32.20. The Solution Controls Task Page for the Pseudo Transient Runs	
32.21. The Advanced Solution Controls Dialog Box for the Pseudo Transient Method	
32.22.The Run Calculation Task Page for the User-Specified Pseudo Transient Time Step Method	
32.23. The Run Calculation Task Page for the Automatic Pseudo Transient Option	
32.24.Time-Dependent Calculation of Vortex Shedding (t=36.6 sec)	3231
32.25. Time-Dependent Calculation of Vortex Shedding (t=41.6 sec)	3232
32.26. The General Task Page for a Transient Calculation	
32.27.The Solution Methods Task Page for a Transient Calculation	
32.28. The Run Calculation Task Page for Implicit Transient Calculations	3238
32.29.The Zone-Specific Sampling Options Dialog Box	3243
32.30.The Sampling Options Dialog Box	3245
32.31. Lift Coefficient Plot for a Time-Periodic Solution	3255
32.32.The Residual Monitors Dialog Box	3260
32.33. The Residual Monitors Dialog Box with Advanced Options Shown	3261
32.34. The Residual Monitors Dialog Box Displaying Relative or Absolute Convergence	3264
32.35. Report File for 'flow-time', 'delta-time', and 'iters-per-timestep'	3268
32.36. Fluctuating Simulation Example	
32.37.The Execute Commands Dialog Box	3273
32.38.The Define Macro Dialog Box	
32.39. The Automatically Initialize Solution and Modify Case Option	
32.40.The Automatic Solution Initialization and Case Modification Dialog Box	
32.41. The Case Modification Tab	
32.42.The Run Calculation Task Page	
32.43. The Edit Automatic Initialization and Case Modifications Dialog Box	
32.44. The Animation Definition Dialog Box	
32.45.The Playback Dialog Box	
32.46. The Video Options Dialog Box	
32.47. The Advanced Video Quality Options Dialog Box	
32.48.The Case Check Dialog Box	
32.49.The Information Dialog Box	
32.50. The Mesh Tab in the Case Check Dialog Box	
32.51. The Models Tab in the Case Check Dialog Box	
32.52.The Boundaries and Cell Zones Tab in the Case Check Dialog Box	3298

32.53. The Materials Tab in the Case Check Dialog Box	3301
32.54. The Solver Tab in the Case Check Dialog Box	3302
32.55. The Run Calculation Task Page with Solution Steering Enabled	3315
32.56.The Solution Steering Dialog Box	3317
32.57. The FMG Settings Tab in the Solution Steering Dialog Box	3318
33.1. Turbine Cascade Mesh Before Adaption	3320
33.2. Turbine Cascade Mesh after Adaption	3321
33.3. The Manual Mesh Adaption Dialog Box	3323
33.4. The Automatic Mesh Adaption Dialog Box	3324
33.5. The General Adaption Controls Dialog Box	3325
33.6. Additional Refinement Layers: 1, 2, 3	3327
33.7.The Manage Adaption Criteria Dialog Box	3328
33.8. The Predefined Criteria Drop-Down List	3329
33.9. The Field Variable Register Dialog Box for the Refinement Criterion	3330
33.10.The Predefined Criteria Drop-Down List	3331
33.11. The Adaption Criteria Settings Dialog Box for the Flame Indicator Criterion	3332
33.12. The Expression Dialog Box for the Refinement Criterion	3333
33.13. The Field Variable Register Dialog Box for the Refinement Expression	3334
33.14. The Predefined Criteria Drop-Down List	3335
33.15. The Adaption Criteria Settings Dialog Box for the VOF-to-DPM [Advanced] Criterion	3335
33.16. The Expression Dialog Box for the Refinement Criterion	3336
33.17. The Field Variable Register Dialog Box for the Refinement Criterion	3337
33.18. Marking Boundary Cells	3338
33.19. Mesh Before Adaption	3339
33.20. Mesh after Boundary Adaption	3340
33.21. Wing Mesh Before Adaption	3341
33.22. Marking Cells Based on Region	3342
33.23. Wing Mesh After Region Cell Register-Based Adaption	3343
33.24. Field Variable Refinement Register	3344
33.25. Field Variable Coarsening Register	3344
33.26. Controls for Refining and Coarsening the Mesh	3345
33.27. Simple Expression Refinement Setting	3345
33.28. Cells Marked for Simple Expression Refinement	3346
33.29. Advanced Expression Refinement Setting	3346
33.30. Cells Marked for Advanced Expression Refinement	3347
33.31.The Anisotropic Adaption Dialog Box	3349
33.32.The Geometry Based Adaption Dialog Box	3351
33.33. The Geometry Based Adaption Controls Dialog Box	3351
34.1.The Zone Surface Dialog Box	
34.2. Contours of Cell Partitions on Partition Surface Overlaid on Mesh	3357
34.3. The Partition Surface Dialog Box	3357
34.4.The Imprint Surface Dialog Box	3359
34.5. Imprinted Surface (pink) Superimposed Over Imported Surface (white)	3360
34.6. The Point Surface Dialog Box	3361
34.7. The Point Tool	3362
34.8. Using the Point Tool with Front Faces Transparent	3363
34.9.The Structural Point Surface Dialog Box	3364
34.10.The Line/Rake Surface Dialog Box	3366
34.11.The Line Tool	3368
34.12.The Plane Surface Dialog Box	3370
34.13. The Plane Tool for the YZ Plane Method	3373

34.14. The Plane Tool for the Point and Normal Method	3374
34.15. The Plane Tool for the Three Points Method	3374
34.16. The Plane Tool for Creating Multiple Planes	3375
34.17.The Quadric Surface Dialog Box	
34.18. The Iso-Surface Dialog Box	3378
34.19. External Wall Surface Isoclipped to Values of x Coordinate	3380
34.20.The Iso-Clip Dialog Box	
34.21.The Transform Surface Dialog Box	3383
34.22.The Surfaces Dialog Box	3385
34.23. Region Register Dialog Box	3389
34.24. Boundary Register Dialog Box	3391
34.25. Limit Register Dialog Box	
34.26. Field Variable Register Dialog Box	3394
34.27. Residual Register Dialog Box	3396
34.28. Volume Change—Ratio of the Volumes of the Cells	3397
34.29. Volume Register Dialog Box	
34.30. Airfoil Wall Cells Marked by Y+ Values	3399
34.31. Yplus/Ystar Register Dialog Box	3400
34.32. Manage Cell Registers Dialog Box	
34.33. Report Register Dialog Box	3402
34.34. Manage Register Operations Dialog Box	
35.1. Performance Preferences	3407
35.2. Outline Display	
35.3. Mesh Edge Display	
35.4. Mesh Face (Filled Mesh) Display	
35.5. Node Display	
35.6. The Mesh Display Dialog Box	
35.7.The Mesh Colors Dialog Box (Classic Color Scheme)	
35.8. The Mesh Colors Dialog Box (Pastel Color Scheme)	
35.9. Mesh Display with Pastel Color Scheme	
35.10. Jeep with Multiple Materials Assigned	
35.11. Standard Outline of Complex Duct	
35.12. Feature Outline of Complex Duct	
35.13. Mesh Display with Shrink Factor = 0	
35.14. Mesh Display with Shrink Factor = 0.01	
35.15. Contours of Static Pressure	
35.16. Profile Plot of y Velocity	
35.17. Coloring Surfaces by Static Pressure	
35.18. The Contours Dialog Box	
35.19. The Profile Options Dialog Box	
35.20. Filled Contours of Static Pressure	
35.21. Filled Contours with Clip to Range On	
35.22. Filled Contours with Clip to Range Off	
35.23. Velocity Vector Plot	
35.24. The Vectors Dialog Box	
35.25. The Vector Options Dialog Box	
35.26. Velocity Vectors Generated Using the In Plane Option	
35.27.The Custom Vectors Dialog Box	
35.28. The Vector Definitions Dialog Box	
35.30. The Pathlines Dialog Box	
JJ.JV. THE TURNING DIGIOU DON	シャナナナ

35.31.The Scene Dialog Box	3453
35.32.The Sweep Surface Dialog Box	3455
35.33. The Create Surface Dialog Box	3456
35.34. Example of Embedded Windows	3458
35.35. Embedding a Window	3461
35.36. Exploded Scene Display of Temperature and Velocity	
35.37. Outline View 'Display in' Example	
35.38.The Select Window Dialog Box	
35.39. Boundary Markers on an Inlet and Outlet	3466
35.40. Graphics Window with Text Annotation	3469
35.41.The Annotate Dialog Box	3470
35.42. The Colormap Dialog Box	3472
35.43. The Colormap Quick-Edit Panel	
35.44. The Colormap with Skipped Labels	
35.45. The Colormap Editor Dialog Box	
35.46. Double-Click to Add Color Stops	
35.47.The Lights Dialog Box	3493
35.48. Model with Reflections Enabled	
35.49. Model with Static Shadows Enabled	3500
35.50. Model with Dynamic Shadows Enabled	3501
35.51. Model with Ground Plane Grid Displayed	
35.52. Model with All Graphics Effects Enabled	
35.53. The Navigation Branch of Preferences	3504
35.54. The Display States Dialog Box	3508
35.55. Using the Triad to Change the Orientation of the Object	3509
35.56.The Views Dialog Box	3510
35.57. The Camera Parameters Dialog Box	3511
35.58. Zooming In (Magnifying the Display)	3513
35.59. Zooming Out (Shrinking the Display)	3514
35.60. Camera Definition	3515
35.61.The Write Views Dialog Box	3517
35.62. Mirroring Across a Symmetry Boundary	3518
35.63. The Views Dialog Box	3518
35.64. Before Applying Periodicity	3519
35.65. After Applying Periodicity	3519
35.66. The Graphics Periodicity Dialog Box	3520
35.67. The Mirror Planes Dialog Box	3521
35.68. The Scene Description Dialog Box	3522
35.69. The Display Properties Dialog Box	
35.70. Velocity Vectors Translated Outside the Domain for Better Viewing	3526
35.71.The Transformations Dialog Box	3527
35.72.The Iso-Value Dialog Box	3528
35.73.The Pathline Attributes Dialog Box	3529
35.74. Graphics Display with Bounding Frame	
35.75.The Bounding Frame Dialog Box	3530
35.76. The Animate Dialog Box	
35.77. Sample XY Plot	
35.78. Sample Histogram	3539
35.79. Enabling Enhanced Plots	
35.80.The Solution XY Plot Dialog Box	
35.81. Geometry Used for XY Plot	

35.82. Data Plotted at Outlet Using a Plot Direction of (1,0,0)	3544
35.83. Data Plotted at Outlet Using a Plot Direction of (0,1,0)	3545
35.84.The Plot Data Sources Dialog Box	3547
35.85.The Plot Profile Data Dialog Box	3549
35.86.The Plot Interpolated Data Dialog Box	3550
35.87. Iso-Clips Created For Circumferential Averaging	3551
35.88. XY Plot of Circumferential Averages	3552
35.89.The Histogram Dialog Box	3554
35.90.The Axes Dialog Box	3556
35.91.The Curves Dialog Box	3558
35.92.The Fourier Transform Dialog Box	3563
35.93.The Plot/Modify Input Signal Dialog Box	
35.94. A-, B-, and C-Weighting Functions	
35.95. The VRXPERIENCE Sound Analysis Dialog Box	
35.96. The Cumulative Plot Dialog Box	
36.1. Report Definitions Dialog Box	
36.2. Surface Report Definition Dialog Box	
36.3. Volume Report Definition Dialog Box	
36.4. Force Report Definition Dialog Box	
36.5. Drag Report Definition Dialog Box	
36.6. Lift Report Definition Dialog Box	
36.7. Moment Report Definition Dialog Box	
36.8. Flux Report Definition Dialog Box	
36.9. DPM Source Report Definition Dialog Box	
36.10. Aerodamping Report Dialog Box	
36.11. DPM Report Definition Dialog Box	
36.12. User Defined Report Definition Dialog Box	
36.13. Expression Report Definition Dialog Box	
36.14. New Report File Dialog Box	
36.15. Report File Definitions Dialog Box	
36.16. Edit Report File Dialog Box	
36.17. New Report Plot Dialog Box	
36.18. Report Plot Definitions Dialog Box	
36.19. Edit Report Plot Dialog Box	
36.21. The Flux Reports Dialog Box	
36.22. The Flux Reports Dialog Box	
36.23. The Flux Reports Dialog Box	
36.24. The Flux Reports Dialog Box with DPM	
36.25. The Force Reports Dialog Box	
36.26. An Airfoil with its Computed Center of Pressure	
36.27. The Force Reports Dialog Box for a Center of Pressure Report	
36.28. The Projected Surface Areas Dialog Box	
36.29.The Surface Integrals Dialog Box	
36.30.The Volume Integrals Dialog Box	
36.31. The Reference Values Task Page	
36.32.The Modified Settings Summary Table	
36.33.The Input Summary Dialog Box	
37.1. Computing Node Values	
37.2. Cylindrical Velocity Components in 3D, 2D, and Axisymmetric Domains	
37.3. The Custom Field Function Calculator Dialog Box	

37.4. The Field Function Definitions Dialog Box	3741
38.1. Ansys Fluent Architecture	3746
38.2.The Parallel Settings Tab of Fluent Launcher	3749
38.3.The Scheduler Tab of Fluent Launcher (Windows 64 Version)	3751
38.4. The Remote Tab of Fluent Launcher	3754
38.5. Partitioning the Mesh	3768
38.6.The Auto Partition Mesh Dialog Box	3769
38.7.The Partitioning and Load Balancing Dialog Box	3771
38.8. The Weighting Tab in the Partitioning and Load Balancing Dialog Box	
38.9. The Partitioned Mesh	3777
38.10.The Partitioned ID Set to Zero	3778
38.11.The Partitioned ID Set to 1	3779
38.12.The Dynamic Load Balancing Tab	3781
38.13. Partitions Created with the Cartesian Axes Method	3785
38.14. Partitions Created with the Cartesian Strip or Cartesian X-Coordinate Method	3786
38.15. Partitions Created with the Principal Axes Method	3786
38.16. Partitions Created with the Principal Strip or Principal X-Coordinate Method	3787
38.17. Partitions Created with the Polar Axes or Polar Theta-Coordinate Method	3787
38.18.The Smooth Optimization Scheme	3788
38.19.The Merge Optimization Scheme	3788
38.20. The Thread Control Dialog Box	
38.21. The Parallel Connectivity Dialog Box	3797
39.1. Accessing the Simulation Report Outline Task Page	3806
39.2. The Simulation Report Outline Task Page	
39.3. The Report Sections Outline View	
39.4. Drag-and-Drop Rearrangement of Nodes	
39.5. Drag-and-Drop Onto a Node	
39.6. Drag and Drop Indicators	
39.7. Positioning Between Two Nodes	
39.8. A Generated Report	
39.9. An Example of the System Information Report Section	
39.10. An Example of the Geometry and Mesh Report Section (Mesh Quality)	
39.11. An Example of the Geometry and Mesh Report Section (Orthogonal Quality)	
39.12. An Example of the Physics / Models Settings	
39.13. An Example of the Physics / Material Properties Settings	
39.14. An Example of the Physics / Cell Zone Conditions Section	
39.15. An Example of the Physics / Boundary Conditions Section	
39.16. An Example of the Physics / Reference Values Section	
39.17. An Example of the Solver Settings Section	
39.18. An Example of the Run Information Section	
39.19. An Example of the Solution Status Section	
39.20. An Example of the Named Expressions Section	
39.21. An Example of the Report Definitions Section	
39.22. An Example of the Plots Section (Residuals)	
39.23. Hovering and Showing Data in a Plot	
39.24. Hovering and Comparing Data in a Plot	
39.25. Example of Contours	
39.26. Example of Vectors	
39.27. Example of Pathlines	
39.28. Example of XY Plots	
39.29. Example of a Scene	3826

39.30. Example of an Animation	. 3827
39.31. Layout Settings for Result Plots	. 3827
39.32. Example of Contours (Columns)	. 3828
40.1. Adjoint Observables Dialog Box	. 3853
40.2. Create New Observable Dialog Box (Observable Types)	
40.3. Create New Observable Dialog Box (Operation Types)	
40.4. Manage Adjoint Observables Dialog Box	. 3856
40.5. Adjoint Observables Dialog Box	. 3859
40.6. Adjoint Solution Methods Dialog Box	. 3860
40.7. The Stabilized Strategy and Scheme Settings Dialog Box	. 3866
40.8. The Dissipation Scheme Settings	. 3868
40.9. The Residual Minimization Scheme Settings	. 3869
40.10. Adjoint Residual Monitors Dialog Box	. 3875
40.11. Run Adjoint Calculation Dialog Box	. 3877
40.12. Adjoint Autosave Dialog Box	. 3878
40.13. Adjoint Reporting Dialog Box	. 3886
40.14. Design Tool Dialog Box	. 3887
40.15. A Cylindrical Region	. 3890
40.16. The Design Condition Display Options Dialog Box	. 3894
40.17. Specifying a Bounding Plane for Design Changes	. 3895
40.18.The Bounding Orientation Dialog Box	
40.19. The Strict Conditions Dialog Box	
40.20.The Design Export Dialog Box	. 3907
40.21.The Preview Morphing Dialog Box	. 3908
40.22. The Mesh History Dialog Box	
40.23.The Export STL Dialog Box	
40.24. Gradient-Based Optimizer Dialog Box	
40.25. Adjoint Optimizer Observables Dialog Box	
40.26. Adjoint Optimizer Conditions Dialog Box	
40.27. Adjoint Optimization History Monitor Dialog Box	
40.28. Adjoint Optimizer Autosave Dialog Box	
40.29. The Regions Tab of the Mesh Morpher/Optimizer Dialog Box	
40.30. The Regions Tab of the Mesh Morpher/Optimizer Dialog Box for an Unstructured Distribution	
40.31. Displaying the Control Points for a Regular Distribution	
40.32.The Define Control Points Dialog Box	
40.33. Displaying the Control Points for an Unstructured Distribution	
40.34. The Constraints Tab of the Mesh Morpher/Optimizer Dialog Box	
40.35. The Deformation Tab of the Mesh Morpher/Optimizer Dialog Box	
40.36. The Parameter Bounds Dialog Box	
40.37.The Motion Settings Dialog Box for a Regular Distribution	
40.38. The Motion Settings Dialog Box for an Unstructured Distribution	
40.39. The Optimizer Tab of the Mesh Morpher/Optimizer Dialog Box	
40.40. The Objective Function Definition Dialog Box	
40.41.The Optimization History Monitor Dialog Box	
41.1. Exporting System Coupling Files from Workbench	
41.2. Force transferred to System Coupling when Porous Jump Thickness is Non-Zero	
41.3. Undeformed mesh with diffusion smoothing	
41.4. Deformed mesh with diffusion smoothing	
41.6. Skewed prism cells due to translational motion between two bodies in close proximity	
41.7. Example geometry	
THE LANGE PER MEDITION & CONTROL & C	

41.9 Call Zana containing the inner boundary layer mach	2070
41.8. Cell Zone containing the inner boundary layer mesh	
41.10. Cell Zone containing the outer boundary layer mesh	
41.11. Prism layer mesh quality maintained for large deformations	
41.12. Overset mesh generated using 3 separate meshes	
41.13. Prism layer mesh quality is maintained	
41.14. Original Mesh (left) and deformed mesh (right) with smoothing and remeshing enabled	
41.15. Original Mesh (left) and deformed mesh (right) using smoothing and Region Face Remeshing	
43.1. The Basic Shapes Dialog Box	
43.2. Integration Surface Dialog Box	
43.3. Orientation Calculator Dialog Box	
43.4. The Acoustics Initialization Dialog Box	
1.The CFF Case File Layout	
2.The CFF Data File Layout	
3. Variable Sized Data Appended to the Case File	
4. Variable Sized Data Appended to the Data File	
5. Quadrilateral Mesh	
6. Quadrilateral Mesh with Periodic Boundaries	
7. Quadrilateral Mesh with Hanging Nodes	
1.1. Progress Bar with Start Server Option	
1.2. Progress Bar with Start Client Option	
1.3. Preferences Dialog Box	
1.4. Actions Ribbon Tab	
1.5. Run Calculation Properties	
1.6. Example Solution Methods	
1.7. Example Solution Controls	
1.8. Example Residuals Properties	
1.9. Creating a Contour Via the Context Menu	
1.10. Properties of a Point Surface	
1.11. Properties of a Line Surface	
1.12. Properties of a Rake Surface	
1.13. Properties of a Plane Surface	
1.14. Create Multiple Planes Dialog Box	
1.15. Properties of an Iso-Surface	
1.16. Create Multiple Iso-Surfaces Dialog Box	
1.17. Example Graphics Object Properties	
1.18. Example Plot Object Properties	
1.19. Scene Properties	
1.20. Scene Dialog Box	
1.21. Viewing Ribbon Tab	
1.22. Example of Sending a Command: Changing the Velocity Units to cm/s	
1.23. Writing Case and/or Data from the Client	
2.1.The Fluent Icing Graphical User Interface	
2.2. Hierarchical Structure of a Project Folder	
2.3. Pressure Far Field and Velocity Inlet Properties	
2.4. Mass Flow Inlet and Pressure Inlet Properties	

Release 2021 R2 - © A	ANSYS, Inc. All rights r of ANSYS, Inc.	eservedContains and its subsidiaries	proprietary and cor and affiliates.	nfidential information	on	

List of Tables

1.1. Supported Versions of Third-Party Software	151
4.1. Available Command Line Options for Linux and Windows Platforms	175
23.1. Default Style Attributes	724
24.1. Skewness Ranges and Cell Quality	
5. Mini Flow Chart Symbol Descriptions do	ccxcvii
3.1. CGNS Variables Supported by Ansys Fluent	869
3.2. FEA File Extensions for FSI Mapping	908
3.3. Units Associated with the Temperature Units Drop-Down List Selections	912
5.1. Operations and Functions	932
5.2. Solution Variables	939
5.3. Scientific Constants	940
5.4. Variable Aliases	940
7.1. Zone Types by Category	. 1174
7.2. Air-side Radiator Data	. 1391
7.3. Reduced Radiator Data	
7.4. CSV Profile Section Identifiers	. 1438
7.5. Profile Types and the Corresponding Required Field Labels	. 1438
8.1. Recommended Settings for Operating Pressure	. 1547
8.2. Temperature Limits for Droplet Materials in Ansys Fluent Database prodb.scm	. 1568
8.3. Fluids Supported by REFPROP v9.1	
14.1. NTU Model Vs. Simple Effectiveness Model	. 2032
15.1. Modified Specific Heat Capacity (Cp) Polynomial Coefficients	. 2118
19.1. Source Data Saved in Source Data Files	
20.1. Property Inputs for Inert Particles	
20.2. Property Inputs for Droplet Particles	
20.3. Property Inputs for Combusting Particles (Laws 1–4)	
20.4. Property Inputs for Combusting Particles (Law 5)	
20.5. Property Inputs for Multicomponent Particles (Law 7)	
20.6. Common Mean Diameters and Their Fields of Application	
22.1. Spatial Discretization Schemes for the VOF and Eulerian with Multi-Fluid VOF Models	
22.2. Spatial Discretization Schemes for the Eulerian Model without Multi-Fluid VOF	
22.3. Spatial Discretization Schemes for the Mixture Model	
22.4. Phase-Specific and Mixture Conditions for the VOF Model	
22.5. Phase-Specific and Mixture Conditions for the Mixture Model	. 2643
22.6. Phase-Specific and Mixture Conditions for the Eulerian Model (for Laminar Flow)	
22.7. Phase-Specific and Mixture Conditions for the Eulerian Model (with the Mixture Turbulence Model) .	. 2647
22.8. Phase-Specific and Mixture Conditions for the Eulerian Model (with the Dispersed Turbulence Mod-	
el)	. 2647
22.9. Phase-Specific and Mixture Conditions for the Eulerian Model (with the Per-Phase Turbulence Mod-	
el)	
22.10. Open Channel Boundary Parameters for the VOF Model	
22.11. Slope Limiter Discretization Scheme	
22.12. Parameters for the Coalescence and Breakage Kernels	
22.13. Parameters for the Coalescence and Breakage Kernels	
22.14. Macros for Population Balance Variables Defined in sg_pb.h	
28.1. User-Defined Scalar Allocations	
28.2. User-Defined Memory Allocations	
28.3. User-Defined Scalar Allocations	
28.4. User-Defined Memory Allocations	. 3054

28.5. User-Defined Memory Allocations	3064
28.6. User-Defined Scalar Állocations	3065
29.1. User-Defined Scalars in MHD Model	3085
29.2. MHD Vectors	3096
30.1. Source Terms and Corresponding UDFs	3107
35.1. Standard Views	3509
35.2. Numbers of Data Points Supported by the Prime-Factor FFT Algorithm	3562
35.3. Octave Band Frequencies and Weightings	3569
37.1. Expressions Category	3643
37.2. Pressure and Density Categories	3643
37.3. Velocity Category	
37.4. Temperature, Radiation, Solidification/Melting , and Two-Temperature Model Categories	3645
37.5. Turbulence Category	3647
37.6. Species, Reactions, Pdf, and Premixed Combustion Categories	3649
37.7. NOx, Soot, and Steady Unsteady Statistics Categories	
37.8. Phases, Discrete Phase Model, Granular Pressure, Granular Temperature, and Wall Film Cate	gor-
ies	3654
37.9. Properties Category	3657
37.10. Eulerian Wall Film Category	3658
37.11. Sensitivities Category	
37.12. Wall Fluxes, User Defined Scalars, and User Defined Memory Categories	3661
37.13. Cell Info and Mesh Categories	
37.14. Perforated Walls Category	
37.15. Mesh Category (Turbomachinery-Specific Variables)	3665
37.16. Residuals Category	
37.17. Derivatives Category	
37.18. Potential Category	
37.19. Lithium Category	
37.20. Acoustics Category	
37.21. Structure Category	
38.1. Examples for GPGPUs per Machine	
38.2. Supported Interconnects for the Windows Platform	
38.3. Available MPIs for Windows Platforms	
38.4. Supported MPIs for Windows Architectures (Per Interconnect)	
38.5. Supported Interconnects for Linux Platforms (Per Platform)	
38.6. Available MPIs for Linux Platforms	
38.7. Supported MPIs for Linux Architectures (Per Interconnect)	
41.1. Variables On Boundary Wall Regions	
41.2. Variables On Cell Zone Regions	
41.3. Variables On Porous Jump Boundary	
1. Moving Domain Models vs. Multiphase Models	
2. Multiphase Models vs. Turbulence Models	
3. Combustion Models vs. Multiphase Models	
4. Moving Domain Models vs. Turbulence Models	
5. Combustion Models vs. Moving Domain Models	
6. Combustion Models vs. Turbulence Models	
1. Summary of Basic CHEMKIN-CFD Parameters	
2. Summary of Advanced CHEMKIN-CFD Parameters	
3. Diagnostic Output Files Created During a CHEMKIN-CFD Run	
4. Error Messages that May Be Printed to the Fluent GUI	
5. Other Error Messages in KINetics-log.txt	492/

1.1. Remote Visualization Client Environment Variables	4978
2.1. Pressure Far-Field, Mapping of Airflow Fluent Icing Boundary Condition into Fluent & FENSAP Boundar	У
Conditions	5026
2.2. Velocity Inlet, Mapping of Airflow Fluent Icing Boundary Condition into Fluent & FENSAP Boundary	
Conditions	5027
2.3. Mass Flow Inlet, Mapping of Airflow Fluent Icing Boundary Condition into Fluent & FENSAP Boundary	
Conditions	5028
2.4. Pressure Inlet, Mapping of Airflow Fluent Icing Boundary Condition Into Fluent Boundary Conditions	5028

Release 2021 R2 - © ANSYS	S, Inc. All rights reserved Contair of ANSYS, Inc. and its subsidiari	ns proprietary and confidential	linformation	
	oi Aivot o, iric. and its subsidiari	es ana annates.		

cxxvi

Part I: Getting Started

The section describes getting started with Ansys Fluent.

- Introduction to Ansys Fluent (p. 129), introduction to Ansys Fluent.
- Basic Steps for CFD Analysis using Ansys Fluent (p. 155), basic steps for CFD analysis using Ansys Fluent.
- Guide to a Successful Simulation Using Ansys Fluent (p. 161), guide to a successful simulation using Ansys Fluent.
- Starting and Executing Ansys Fluent (p. 163), provides instructions for starting and executing Ansys Fluent.
- Glossary of Terms (p. 193), this glossary contains a listing of terms commonly used throughout the Ansys Fluent documentation.

Chapter 1: Introduction to Ansys Fluent

Ansys Fluent is a state-of-the-art computer program for modeling fluid flow, heat transfer, and chemical reactions in complex geometries.

Ansys Fluent is written in the C computer language and makes full use of the flexibility and power offered by the language. Consequently, true dynamic memory allocation, efficient data structures, and flexible solver control are all possible. In addition, Ansys Fluent uses a client/server architecture, which enables it to run as separate simultaneous processes on client desktop workstations and powerful compute servers. This architecture allows for efficient execution, interactive control, and complete flexibility between different types of machines or operating systems.

Ansys Fluent provides complete mesh flexibility, including the ability to solve your flow problems using unstructured meshes that can be generated about complex geometries with relative ease. Supported mesh types include 2D triangular/quadrilateral, 3D tetrahedral/hexahedral/pyramid/wedge/polyhedral, and mixed (hybrid) meshes. Ansys Fluent also enables you to refine or coarsen your mesh based on the flow solution.

You can read your mesh into Ansys Fluent, or, for 3D geometries, create your mesh using the meshing mode of Fluent (see the Fluent User's Guide (p. 1) for further details). All remaining operations are performed within the solution mode of Fluent, including setting boundary conditions, defining fluid properties, executing the solution, refining the mesh, and postprocessing and viewing the results.

The Ansys Fluent serial solver manages file input and output, data storage, and flow field calculations using a single solver process on a single computer. Ansys Fluent also uses a utility called cortex that manages Ansys Fluent's user interface and basic graphical functions. Ansys Fluent's parallel solver enables you to compute a solution using multiple processes that may be executing on the same computer, or on different computers in a network.

The Ansys Fluent solver manages file input and output, data storage, and flow field calculations. Processing involves an interaction between Ansys Fluent, a host process, and one or more compute-node processes. Ansys Fluent interacts with the host process and the compute node(s) using a utility called cortex, which manages Ansys Fluent's user interface and basic graphical functions.

Figure 1.1: Ansys Fluent Architecture

Compute Nodes

Ansys Fluent's serial solver uses a single compute node, whereas the parallel solver computes a solution using multiple compute nodes that may be executing on the same computer, or on different computers in a network.

For more information about Ansys Fluent's parallel processing capabilities, message passing interfaces (MPI), and so on, refer to Parallel Processing (p. 3745) in the User's Guide (p. 1).

All functions required to compute a solution and display the results are accessible in Ansys Fluent through an interactive interface.

For more information, see the following sections:

1.1. The Ansys Product Improvement Program

- 1.2. Program Capabilities
- 1.3. Known Limitations in Ansys Fluent 2021 R2

1.1. The Ansys Product Improvement Program

This product is covered by the Ansys Product Improvement Program, which enables Ansys, Inc., to collect and analyze *anonymous* usage data reported by our software without affecting your work or product performance. Analyzing product usage data helps us to understand customer usage trends and patterns, interests, and quality or performance issues. The data enable us to develop or enhance product features that better address your needs.

How to Participate

The program is voluntary. To participate, select **Yes** when the Product Improvement Program dialog appears. Only then will collection of data for this product begin.

How the Program Works

After you agree to participate, the product collects anonymous usage data during each session. When you end the session, the collected data is sent to a secure server accessible only to authorized Ansys employees. After Ansys receives the data, various statistical measures such as distributions, counts, means, medians, modes, etc., are used to understand and analyze the data.

Data We Collect

The data we collect under the Ansys Product Improvement Program are limited. The types and amounts of collected data vary from product to product. Typically, the data fall into the categories listed here:

Hardware: Information about the hardware on which the product is running, such as the:

- brand and type of CPU
- number of processors available
- · amount of memory available
- · brand and type of graphics card

System: Configuration information about the system the product is running on, such as the:

- operating system and version
- country code
- · time zone
- language used
- · values of environment variables used by the product

Session: Characteristics of the session, such as the:

- interactive or batch setting
- time duration
- · total CPU time used
- · product license and license settings being used
- · product version and build identifiers
- · command line options used
- number of processors used
- · amount of memory used
- · errors and warnings issued

Session Actions: Counts of certain user actions during a session, such as the number of:

- · project saves
- · restarts
- · meshing, solving, postprocessing, etc., actions
- · times the Help system is used
- · times wizards are used
- · toolbar selections

Model: Statistics of the model used in the simulation, such as the:

- number and types of entities used, such as nodes, elements, cells, surfaces, primitives, etc.
- number of material types, loading types, boundary conditions, species, etc.
- number and types of coordinate systems used
- · system of units used
- dimensionality (1-D, 2-D, 3-D)

Analysis: Characteristics of the analysis, such as the:

- · physics types used
- · linear and nonlinear behaviors
- time and frequency domains (static, steady-state, transient, modal, harmonic, etc.)
- · analysis options used

Solution: Characteristics of the solution performed, including:

- · the choice of solvers and solver options
- the solution controls used, such as convergence criteria, precision settings, and tuning options
- solver statistics such as the number of equations, number of load steps, number of design points, etc.

Specialty: Special options or features used, such as:

- · user-provided plug-ins and routines
- · coupling of analyses with other Ansys products

Data We Do Not Collect

The Product Improvement Program does *not* collect any information that can identify you personally, your company, or your intellectual property. This includes, but is not limited to:

- · names, addresses, or usernames
- file names, part names, or other user-supplied labels
- geometry- or design-specific inputs, such as coordinate values or locations, thicknesses, or other dimensional values
- · actual values of material properties, loadings, or any other real-valued user-supplied data

In addition to collecting only anonymous data, we make no record of where we collect data from. We therefore cannot associate collected data with any specific customer, company, or location.

Opting Out of the Program

You may *stop* your participation in the program any time you wish. To do so, select **Ansys Product Improvement Program** from the Help menu. A dialog appears and asks if you want to continue participating in the program. Select **No** and then click **OK**. Data will no longer be collected or sent.

The Ansys, Inc., Privacy Policy

All Ansys products are covered by the Ansys, Inc., Privacy Policy.

Frequently Asked Questions

1. Am I required to participate in this program?

No, your participation is voluntary. We encourage you to participate, however, as it helps us create products that will better meet your future needs.

2. Am I automatically enrolled in this program?

No. You are not enrolled unless you explicitly agree to participate.

3. Does participating in this program put my intellectual property at risk of being collected or discovered by Ansys?

No. We do not collect any project-specific, company-specific, or model-specific information.

4. Can I stop participating even after I agree to participate?

Yes, you can stop participating at any time. To do so, select **Ansys Product Improvement Program** from the Help menu. A dialog appears and asks if you want to continue participating in the program. Select **No** and then click **OK**. Data will no longer be collected or sent.

5. Will participation in the program slow the performance of the product?

No, the data collection does not affect the product performance in any significant way. The amount of data collected is very small.

6. How frequently is data collected and sent to Ansys servers?

The data is collected during each use session of the product. The collected data is sent to a secure server once per session, when you exit the product.

7. Is this program available in all Ansys products?

Not at this time, although we are adding it to more of our products at each release. The program is available in a product only if this *Ansys Product Improvement Program* description appears in the product documentation, as it does here for this product.

8. If I enroll in the program for this product, am I automatically enrolled in the program for the other Ansys products I use on the same machine?

Yes. Your enrollment choice applies to all Ansys products you use on the same machine. Similarly, if you end your enrollment in the program for one product, you end your enrollment for all Ansys products on that machine.

9. How is enrollment in the Product Improvement Program determined if I use Ansys products in a cluster?

In a cluster configuration, the Product Improvement Program enrollment is determined by the host machine setting.

10. Can I easily opt out of the Product Improvement Program for all clients in my network installation?

Yes. Perform the following steps on the file server:

- a. Navigate to the installation directory: [Drive:]\v212\commonfiles\globalsettings
- b. Open the file ANSYSProductImprovementProgram.txt.
- c. Change the value from "on" to "off" and save the file.

1.2. Program Capabilities

When in meshing mode, Ansys Fluent functions as a robust unstructured-volume-mesh generator (see Meshing Mode Capabilities (p. 199) in the Fluent User's Guide (p. 1) for further details). When in solution mode, Fluent allows you to simulate the following:

- 2D planar, 2D axisymmetric, 2D axisymmetric with swirl (rotationally symmetric), and 3D flows
- Flows on quadrilateral, triangular, hexahedral (brick), tetrahedral, wedge, pyramid, polyhedral, and mixed element meshes
- · Steady-state or transient flows
- Incompressible or compressible flows, including all speed regimes (low subsonic, transonic, supersonic, and hypersonic flows)
- · Inviscid, laminar, and turbulent flows
- Newtonian or non-Newtonian flows
- · Ideal or real gases
- Heat transfer, including forced, natural, and mixed convection, conjugate (solid/fluid) heat transfer, and radiation
- Chemical species mixing and reaction, including homogeneous and heterogeneous combustion models and surface deposition/reaction models
- Free surface and multiphase models for gas-liquid, gas-solid, and liquid-solid flows
- Lagrangian trajectory calculations for dispersed phase (particles/droplets/bubbles), including coupling with continuous phase and spray modeling
- · Cavitation model simulations
- Melting/solidification applications using the phase change model
- Porous media with non-isotropic permeability, inertial resistance, solid heat conduction, and porousface pressure jump conditions
- Lumped parameter models for fans, pumps, radiators, and heat exchangers
- · Acoustic models for predicting flow-induced noise
- · Inertial (stationary) or non-inertial (rotating or accelerating) reference frames
- Multiple moving frames using multiple reference frame (MRF) and sliding mesh options
- Mixing-plane model simulations of rotor-stator interactions, torque converters, and similar turbomachinery applications with options for mass conservation and swirl conservation
- · Dynamic mesh model simulations for domains with moving and deforming meshes
- Volumetric sources of mass, momentum, heat, and chemical species

- · Simulations that use a material property database
- Simulations in which the design is revised or optimized, using the adjoint solver or the mesh morpher/optimizer
- · Simulations customized by user-defined functions
- Dynamic (two-way) coupling with GT-POWER and WAVE
- Simulations that use the following add-on modules:
 - Battery module
 - Continuous fiber module
 - Macroscopic particle model (MPM) module
 - Fuel cell modules
 - Magnetohydrodynamics (MHD) module
 - Population balance module
- Fluent as a Server (documented separately)
- Fluent Icing

Ansys Fluent is available at three different licensing levels, which control the availability of the abovementioned features and functionalities:

- **Enterprise**—full access to all Fluent Meshing and Fluent solver capabilities, as documented in the Fluent User's Guide. Additionally, this licensing level provides access to Ansys EnSight, Polyflow, Ansys FENSAP-ICE, the Model Fuel Library, and the Fluent workspaces.
- **Premium**—full access to all Fluent Meshing and Fluent solver capabilities, as documented in the Fluent User's Guide.
- Pro—access to the Water-Tight Meshing workflow in Fluent Meshing and access to a reduced set of
 Fluent solver capabilities allowing the solution of incompressible and compressible steady-state,
 single-phase, turbulent, non-reacting flows, and heat transfer. See Ansys Capability Chart 2021 R2 for
 a comprehensive list of supported functionalities at the CFD-Pro licensing level. Note that only supported
 options and functionalities are displayed in the interface.

Ansys Fluent is ideally suited for incompressible and compressible fluid-flow simulations in complex geometries. Ansys Fluent's parallel solver enables you to compute solutions for cases with very large meshes on multiple processors, either on the same computer or on different computers in a network. Ansys, Inc. also offers other solvers that address different flow regimes and incorporate alternative physical models. Additional CFD programs from Ansys, Inc. include CFX, Ansys Icepak, and Ansys Polyflow.

1.3. Known Limitations in Ansys Fluent 2021 R2

This section lists limitations that are known to exist in Ansys Fluent. Where possible, suggested work-arounds are provided.

- · Graphical User Interface
 - (Linux only) Ansys Fluent does not support AMD Radeon Pro graphics cards and the Fluent session may close unexpectedly. (348500)
 - Dragging the Ansys Fluent application between 4K and non-4K displays may result in the application not scaling correctly. As a workaround, restart Ansys Fluent after relocating it to a new screen to make it appear as expected. (345352)
 - Ansys Fluent may hang unexpectedly if you have a non-default layout, such as tabbing the console and the graphics window, and you force the MSW graphics driver, either by using HOOPS_PIC-TURE=msw/win or by launching with the -driver msw option. (269471)
 - (Windows on 4K monitors) You may need to adjust your display scaling and layout settings to optimize the fit of the Fluent application on your monitor.
 - (Linux Only) Automatic scaling of the Ansys Fluent application window and graphics window interactivity are not compatible when viewed on a 4K monitor. If the application is scaled properly, interactions in the graphics window may not behave as expected. Set
 QT_AUTO_SCREEN_SCALE_FACTOR equal to 1 to have the application scale properly. (143229)
- File import/export (for a list of supported files, refer to the table in this section, under **Third-party software**)
 - You cannot read a default CFF case file (.cas.h5) when creating a bounded-by-surfaces design condition (as part of the adjoint design tool) or when creating an imprinted surface. Workaround: Legacy case files (.cas) can be read in these circumstances, so you can save your .cas.h5 file as a .cas file by opening it in a Fluent session and disabling the writing of CFF files (by entering the following text command: file/cff-files? no). (199821)
 - (Windows only) You cannot export files larger than 2GB to CGNS format. As a workaround, use a Linux machine to export files larger than 2GB to CGNS format. (259220)
 - Surfaces exported to EnSight format may contain a surface with an ID of zero. This is OK for importing into EnSight, but it will cause an error if you are importing into a non-Ansys third-party post-processing software, such as Paraview. As a workaround, create a zone surface for the surface with an ID of zero and export the newly created surface instead of the original. (254966)
 - CGNS files exported from TurboGrid 2019 R3 cannot be read into Ansys Fluent unless the Split
 Blade Faces By Geometry option is disabled in TurboGrid before you export the CGNS files. You
 can disable this option in TurboGrid by right-clicking 3D Mesh in the Mesh tab, selecting Edit in
 Command Editor and setting Split Blade Faces By Geometry to false. (121053)
 - If you change the File Storage Options settings in the Autosave dialog box, the solution history will be lost.
 - When exporting EnSight Case Gold files for transient simulations, the solver cannot be switched between serial and parallel, and the number of compute nodes cannot be changed for a given parallel run. Otherwise, the exported EnSight Case Gold files for each time step will not be compatible.
 - EnSight export with topology changes is not supported.

- To properly view Fieldview Unstructured (.fvuns) results from a serial or parallel Ansys Fluent simulation:
 - → Mesh files must be exported using the fieldview-unstruct-grid text command.
 - → Mesh and data files should all be exported from parallel Ansys Fluent sessions with the same number of nodes.
- Tecplot file import does not support the Tecplot360 file format.
- The maximum number of profiles that can be read into a single Fluent session is 50.
- The PARALLEL INDEPENDENT mode for Common Fluids File (CFF) file I/O is known to exhibit slow write performance. On parallel file systems, consider using the PARALLEL COLLECTIVE mode when writing CFF files. On other network file systems, consider using the HOST or NODE0 mode.
- If you are accessing a file using a Universal Naming Convention (UNC) path, you must ensure that
 you have permission to access to all of the folders in the path or you will not be able to open the
 file.
- (Windows only) The file filter available in the Select File dialog box may not work as expected, requiring you to manually select the desired file(s) without filtering aid. (174291)
- Files written by Ansys products do not support synchronization with Microsoft's OneDrive file hosting service. (187717 / 74067)

Mesh

- If your license preferences are set to Share a single license between applications when possible (under Tools>License Preferences...) and you have a Fluent Meshing session open, then you open the Fluent Solution workspace, Fluent Meshing hangs without a chance for you to save your session. As a workaround, change your license preference to Use a separate license for each application, which will prevent you from opening another Fluent session if there is already one open. (147834)
- Hover-over highlighting and Boundary Markers are not available in Meshing Mode. (241447)
- Boundary zone extrusion is not possible from faces that have hanging nodes.
- For simulations that involve the Fluent, Mechanical, and Meshing applications, meshing problems
 can arise in instances where there are multiple regions and contacts between them. In Fluent, a
 zone can only exist in a single contact region. The Mechanical and Meshing applications both use
 a different approach concerning contact regions when compared to Fluent.
- Ansys Fluent does not support FSI data mapping of edges and, therefore, it is not supported in 2D.
- At non-conformal interfaces, the **Matching** option is no longer allowed with the **Mapped** option.
 When opening a case set up in a previous release with both options enabled, you will be prompted to recreate the interface without the **Matching** option.
- If your mesh topology has a step-wise prism mesh near the walls, do not use node-based gradients with MUSCL.

Models

- Mass-Weighted Average report definitions are not supported for reduced order models because the ROM only has data available on cell face centers and cell centers. Instead, use Area-Weighted Average, Facet Average, Facet Minimum, or Facet Maximum report definitions. (281540)
- The physical velocity porous formulation may produce non-physical flow fields and poor convergence when porous resistance (Inertial or Viscous) values are less than or comparable to the change in the dynamic pressure across the porous interface (interior face zone separating the porous and non-porous cell zone). Switching the porous interface zone to a porous jump boundary is an effective way to overcome this issue. (61773)
- Ansys Fluent supports the Chemkin II format for Oppdif flamelet import only.
- The surface-to-surface (S2S) radiation model does not work with moving/deforming meshes.
- The DPM work pile algorithm is not compatible with the wall film boundary condition.
- For transient Lagrangian multiphase analysis with DPM unsteady particle tracking, atomizer or cone injections will release particles from the same position rather than from random positions in one of the following cases:
 - → Particle Time Step Size (set in the Discrete Phase Model dialog box) is smaller than Time Step Size (set in the Run Calculation task page)
 - → Re-randomization of the initial particle positions from iteration to iteration is disabled using the following text command:

```
define/models/dpm/numerics/re-randomize-every-iteration? [yes] no
```

To use random starting points for the particles, enter the following scheme commands in the Ansys Fluent console:

```
(rpsetvar 'dpm/random/seed-timestep-corrected? #t)
(dpm-parameters-changed)
```

Note that this change will also affect particle trajectories if stochastic tracking, particle breakup, or other mechanisms that involve random numbers are used. (176638)

- The shell conduction model is not applicable on moving walls.
- The heat exchanger model is not compatible with mesh adaption.
- The Fluent/Ansys Reaction Design KINetics coupling is not available on the win64 platform.
- DO-Energy coupling is recommended for large optical thickness cases (> 10) only.
- FMG initialization is not available with the shell conduction model.
- FMG initialization is not compatible with the unsteady solver.
- The MHD module is not compatible with Eulerian multiphase models.
- Bounded 2nd order discretization in time is not compatible with moving and deforming meshes.

- When simulating porous media, the value of the **Porosity** (defined in the **Fluid** dialog box) cannot be 0 or 1 (that is, it must be in between these values) if the non-equilibrium thermal model is enabled.
- When simulating porous media, the non-equilibrium thermal model is not supported with radiation and/or multiphase models.
- For porous media simulations, the relative velocity resistance formulation is not supported with axisymmetric-swirl when there are non-zero swirl resistances.
- The junction of a wall with shell conduction enabled and a non-conformal coupled wall is not supported. Such a junction will not be thermally connected, that is, there will be no heat transfer between the shell and the mesh interface wall.
- After you enable the Eulerian Wall Film model, Fluent will not allow you to save the mesh modifications, such as separating cells, extruding face zones, and changing the cell zones type. If you want to modify the mesh in Fluent, be sure to complete all mesh operations prior to enabling the Eulerian Wall Film model.
- The Transition SST model (also known as the γ -Re $_{\theta}$ model) is not Galilean invariant and should therefore not be applied to surfaces that move relative to the coordinate system for which the velocity field is computed; for such cases, the Intermittency Transition model (also known as the γ model) should be used instead.
- In simulations that use the discrete phase model, particle mass may be lost when simulation of transient particles released with constant parcel size is combined with auto-save of case files.
- User-defined wall functions are not compatible with the Eulerian multiphase formulation and cannot be used.
- The view factor files generated as part of a surface-to-surface radiation model calculation for version 16.0 or 16.1 of Fluent may not be compatible with newer versions if the **Matching** option was enabled for a mapped interface. For any case file with such a setup, you must recompute the view factors in the newer version to ensure correct results.

Parallel processing

- The discrete transfer radiation model (DTRM) is unavailable in the parallel solver.
- Note that on systems using large pages for memory allocation (such as Cray), the virtual memory usage reported by Fluent may be much higher than actual memory used. In this case resident memory (also reported by Fluent) is a more reliable guide.
- The Eulerian Wall-film model is not compatible with the DPM Domain option of the hybrid parallel DPM tracking. For such model combination, the **Use DPM Domain** option must be disabled in the **Parallel** tab of the **Discrete Phase Model** dialog box.
- Starting in version 18.0, Ansys Fluent will require approximately 60 MB more memory per node process compared to version 17.0–17.2.
- If you have OpenSSH inside C:\windows\system32 and want to run a mixed Windows-Linux simulation, Fluent may not be able to locate and execute the ssh command, and the following warning will be printed:

'ssh' is not recognized as an internal or external command, operable program or batch file.

You must specify the path of the actual ssh to be used: launching from the command line, use the -rsh option (for example, -rsh=c:\cygwin64\bin\ssh.exe); using Fluent Launcher, select **Other** from the **Remote Spawn Control** list in the **Remote** tab and enter the path in the text box (for example, c:\cygwin64\bin\ssh.exe).

In addition, you should add the location of ssh executable to the beginning of the PATH environment variable. (184255/176971)

- · Message Passing Interfaces (MPIs)
 - For Intel MPI + IB on Mellanox OFED 5.1, users will need to specify -pib.ofed instead of just -pib. (338029)
 - The IBM MPI has been discontinued by the vendor, and is no longer available in the standard installation of Fluent. The Intel MPI is now the default MPI, and is known to have the following limitations:
 - → The Intel MPI version upgrade in Fluent release 2019 R1 and later breaks compatibility with older releases on Windows when running on multiple processes. **Workaround:** To switch between running older releases and the latest release on a cluster, you must make sure that the appropriate services have been configured to run by the administrator as follows:
 - To switch from old to new (for example, 19.2 to 2021 R2), run the following command on all nodes from the command prompt with administrator privileges:

```
"C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2018.3.210\windows\mpi\intel64\bin\hydra_service.exe" -install
```

• To switch from new to old (for example, 2021 R2 to 19.2), run the following command on all nodes from the command prompt with administrator privileges:

```
"C:\Program Files (x86)\IntelSWTools\compilers_and_libraries_2017.4.210\windows\mpi\intel64\bin\
hydra_service.exe" -install
```

After installing both versions of Intel MPI, the I_MPI_ROOT environment variable should be deleted from all nodes.

```
(180338 / 292942)
```

- → On Windows or mixed Windows / Linux, it is not possible to dynamically spawn additional processes when switching from meshing mode to solution mode (either by setting the **Meshing Processes** to a lower value than the **Solver Processes** in Fluent Launcher or by using the /parallel/spawn-solver-process text command in meshing mode). If you are operating at the **Pro** capability level and you launch with **Solver Processes** > 1, those cores will also be started in the **Meshing** workspace, but the meshing will occur in serial because parallel meshing is not supported at the **Pro** capability level. (236195 / 257722)
- → By default, the Intel MPI may fail when mixing hardware for compute nodes. **Workaround:** Use the following environment setting:

```
I_MPI_PLATFORM zero
```

If you encounter issues that cannot be remedied using the supported MPI options, you can add the discontinued IBM MPI to your Fluent installation and use it as a last resort. It is provided as-is, and, going forward, Ansys, Inc. may be unable to address any issues reported about IBM MPI. To set it up, locate your Fluent installation and perform the following steps:

→ For Linux:

- Download the IBMMPI.gz package from the following website: https://release212.s3.amazon-aws.com/IBMMPI.TGZ?AWSAccessKeyId=AKIAJ6ZOVHCFGGNWYUKA&Expires=1639840801& Signature=nAHWdM6Fhr9JZ594N9Et%2FDb3Naw%3D
- 2. Move the package to the following directory where Fluent is installed: ansys_inc/.
- 3. Extract the package using the following command in the ansys inc/directory:

```
gunzip < IBMMPI.gz | tar -xvf -
```

→ For Windows:

- Download the IBMMPI.zip package from the following website: https://release212.s3.amazon-aws.com/IBMMPI.zip?AWSAccessKeyId=AKIAJ6ZOVHCFGGNWYUKA&Expires=1639840801& Signature=JBuLZJ26WUB%2B28qltrwMoQ9jEUw%3D
- 2. Extract the package.
- 3. Copy the v212 folder from within the extracted package and paste it in the following folder where Fluent is installed: ANSYS Inc\ (for example, C:\Program Files\ANSYS Inc\). This will overlay files in the existing v212 folder.
- The following error message may be encountered while postprocessing when using the Microsoft MPI (msmpi) on Windows:

```
[0] fatal error
Fatal error in MPI_Recv: Other MPI error, error stack:
MPI_Recv(...) failed
Out of memory
```

Workaround: Use the default Intel MPI (intel). (267120)

- Platform support and drivers
 - On Windows Server OS, Ansys Fluent supports only MS MPI for parallel runs. Installing the Intel MPI library will result in conflicts.
 - On Windows 7 and later, installing Ansys Fluent on any drive other than C: may result in issues arising from spaces in the pathname not getting converted to short file names. This is the result of a change in the default value for NtfsDisable8dot3NameCreation starting with Windows 7. If you need to install Ansys Fluent on any drive other than C: you must run the following command prior to installing Ansys Fluent:

```
fsutil 8dot3name set <driveletter> 0
```

where <driveletter> is the target drive letter including the colon (for example, D:).

The minimum OS requirements for Linux are SLES 11 SP2 or RHEL 6.

- The pathname length to the cpropep.so library (including the lib name) is limited to 80 characters.
 (Linux Opteron cluster using Infiniband interconnect only.)
- On Linux platforms, including a space character in the current working directory path is not supported.
- If you are installing Ansys Fluent 2021 R2 on a Windows machine that already has one or more
 previous versions of Ansys Fluent, then after installing the Intel MPI library from the prerequisites,
 make sure to delete the environment variable I_MPI_ROOT. Otherwise there will be a conflict while
 running previous Ansys Fluent versions in parallel mode.
- Remote Solver Facility (RSF) is no longer supported in Ansys Fluent.
- Itanium platform (Inia64) is no longer supported.
- Ansys Fluent uses several TCP/IP ports for communications and error handling. Port conflicts with other programs trying to use the same ports are handled by Ansys Fluent and generate warnings similar to the following:

```
428: mpt_accept: warning: incorrect exercise message "GET /" from 10.1.0.188 on port 56564
```

Long running large sessions are more prone to generating such warnings, but these are generally safe for you to ignore.

- If you lock the computer screen before the Fluent graphics are initialized, the Fluent session will not launch if you are using the OpenGL graphics driver. To avoid this issue with the OpenGL driver, you can use the alternative drivers x11 or null for Linux/unix and msw or null for Windows.
 You can specify an alternate graphics driver either by defining it in the HOOPS_PICTURE environment variable or using the -driver Fluent command line option.
- Fluent may terminate abnormally during launch when running on Community Enterprise OS (CentOS) 7.3 or Red Hat Enterprise Linux (RHEL) 7.3 when DISPLAY is set to a Virtual Network Computing (VNC) session. To attempt to resolve this, verify that you are using a supported graphics card and update the graphics card drivers (directly from the graphics card vendor website). If the issue persists, you can do one of the following: set the DISPLAY to a local machine; set the LD_PRELOAD environment variable to /usr/lib64/libstdc++.so.6; or use the alternative drivers x11 or null (either by defining it in the HOOPS_PICTURE environment variable or using the -driver Fluent command line option).

Remote display

- Connecting or disconnecting a VPN network while running a Fluent simulation will result in a failure because of changes to the network interface.
- If you experience an abnormal termination when running Fluent via a remote display, check you graphics card to ensure that you have a modern professional graphics card that is up-to-date (that is, the latest updated driver for that card, which is available on the company's website). If your system does not meet the graphics card requirements, launch Fluent using a completely software-based driver, such as MSW (Windows) or X11 (Linux).
- (Exceed onDemand and VNC Viewer) The **Num Lock** number keys and arrows may not function in the graphical user interface or console. As a workaround, you can define the XKB DEFAULT RULES

- environment variable set equal to base, which resolves the arrow keys' functionality. Number entries must still be completed using the number keys at the top of the standard keyboard. (172528)
- (Linux only) When running Ansys Fluent using the Virtual Network Computing (VNC), Nice DCV, or Exceed on Demand (EoD) applications, you may experience unexpected error messages due to a 3rd party issue. To resolve these errors, install the following packages: (185796)
 - → xcb-util-wm-0.4.1-5.el6.x86_64
 - → xcb-util-keysyms-0.4.0-1.el6.x86_64
 - → xcb-util-0.4.0-2.2.el6.x86_64
 - → compat-xcb-util-0.4.0-2.2.el6.x86_64
 - → xcb-util-image-0.4.0-3.el6.x86_64
- (Linux only) On some clusters without accelerated graphics, Fluent may not accept keyboard inputs.
 If you encounter this behavior, set the QT_XKB_CONFIG_ROOT environment variable equal to /usr/share/X11/xkb.
- · Cell Zones and Boundary Conditions
 - A reference frame is always displayed at its initial state (position and orientation) when displayed from the **Reference Frame** dialog box. While running a transient simulation for multiple time steps, a reference frame is displayed at its current state. After the calculation is completed, if you open the **Reference Frame** dialog box and display it, the reference frame triad will move back to its initial state. (184248)
 - Clicking **OK** within the **Reference Frame** dialog box will reset a reference frame to its initial state.
 If you do not intend to make changes to a reference frame, leave the dialog box by clicking **Cancel**. (184248)
- · Reference Frames
 - Fluid zones designated as 3D fan zones cannot have non-conformal interfaces.
- Solver
 - If you have enabled the application of poor mesh numerics using criteria based on the cell gradient quality, the number of cells to which it is applied may vary when performing single-precision calculations with different numbers of processes. Workaround: Use the double-precision solver. (362753)
 - The absolute and relative velocity formulations may yield different results in cases where a strong reversal of flow exists at a pressure outlet boundary.
 - The non-iterative time advancement (NITA) solver is applicable with only a limited set of models.
 See the Ansys Fluent User's Guide for more details.
 - NITA (using fractional time step method) is not compatible with porous media.
 - The following models are not available for the density-based solvers:
 - → Volume-of-fluid (VOF) model

- → Multiphase mixture model
- → Eulerian multiphase model
- → Non-premixed combustion model
- → Premixed combustion model
- → Partially premixed combustion model
- → Composition PDF transport model
- → Soot model
- → Rosseland radiation model
- → Melting/solidification model
- → Enhanced Coherent Flamelet model
- → Inert model: transport of inert species (EGR in IC engines)
- → Dense discrete phase model
- → Shell conduction model
- → Floating operating pressure
- → Spark ignition and auto-ignition models
- → Physical velocity formulation for porous media
- → Selective multigrid (SAMG)
- The pressure-based coupled solver is not available with the following features:
 - → Fixed velocity
- On some Linux platforms, pressing Ctrl+C will not interrupt the solution. A suggested workaround
 is to use the checkpoint mechanism in Fluent to save files and/or exit Fluent. (Checkpointing an
 Ansys Fluent Simulation in the Fluent User's Guide (p. 188))
- In certain cases with tetrahedral or hybrid meshes, the use of the Least-Squares Cell Based gradient method in combination with the cell-to-cell limiter may cause divergence. If this is observed, it is recommended that you either change the gradient method to Green-Gauss Node Based or change the limiter type to the cell-to-face limiter.
- Beginning in version 17.0, the warped-face gradient correction (WFGC) is not supported with shell conduction if the ability to define multi-layer shells has been disabled through the define/models/shell-conduction/multi-layer-shell text command.
- For transient and time-dependent cases, the solution advances to the next time step based on various inputs including time step size and convergence criteria, but it is not directly dependent

on the flow time interval specified when 'flow-time' is selected for monitoring (report definitions, autosaving, transient export and so on). For these flow time dependent operations, the action will occur when the flow time meets or exceeds the specified flow time interval.

- Note the following issues affecting residuals:
 - → Restarting cases that have the **High Order Term Relaxation** option enabled may produce a small residual jump after the restart. (178223)
 - → Restarting cases that have turbulent flow with a wall-function-based boundary treatment and a **No Slip** shear condition at the wall may produce a slightly different residual history compared to a continuous run. (165935)

These issues can occasionally impact the residual history of long transient simulations (such as those that use the LES, SRS, or SBES model) when the solutions for each time step are not deeply converged.

- For case files created in Release 19.2 or earlier and are steady, single phase, and use the pressure-based solver, the **Density** explicit relaxation factor in the **Solution Controls** task page is set to 1 in the following circumstances, even though it should be set to 0.25 (in order to match how a case file created in Release 2019 R1 would behave):
 - → if the physics includes reacting flow and/or species transport together with the pseudo transient solution method, and you click the **Default** button in the **Solution Controls** task page
 - → if you newly enable one or both of the following so that both are enabled:
 - a reacting flow model and/or the species transport model
 - · the pseudo transient solution method

Work-around: Manually enter 0.25 for Density in the Solution Controls task page. (182453)

- The following text command works appropriately for setting limits to default values, but fails to take action on solution controls and AMG controls:

```
> solve/set/set-controls-to-default
Set solution controls to default? [no] yes
Set AMG Controls to default? [no] yes
Set limits to default values? [no] yes
```

Work-around: Click the **Default** button in the **Solution Controls** task page and the **Multigrid** tab of the **Advanced Solution Controls** dialog box, respectively. As noted previously, for older steady-state, single-phase cases that use the pressure-based solver and involve reacting flow and/or species transport with the pseudo transient solution method, you must also manually set the **Density** explicit relaxation factor to 0.25 in the **Solution Controls** task page. (183926)

- The use of **Fractional Step** pressure-velocity coupling scheme with dynamic mesh layering is not supported. To run this combination, enter the following Scheme command before running the calculation: (rpsetvar 'dynamesh/layering/layering-before-move? #t).(125886)
- User-Defined

- For expressions evaluated for zone motion (moving reference frame or moving mesh), "Time" evaluates to the previous time step's flow time, whereas the "Time" argument of a DEFINE_TRAN-SIENT PROFILE used for zone motion will have the current time step's flow time. (147162)
- When you use curly brackets "{}" to specify the name of a defined object, such as a report definition or a cell register, automatic suggestions are disabled and you must provide the display name of that object. (118322)
- Expressions defined for fields in the Fixed Values tab of the Fluid and Solid cell zone dialog boxes cannot include units in the expression definition. (146295)
- Any scripts or journals that attempt to add menu items to Fluent pull-down menus (which have been replaced with the Fluent ribbon) will no longer work. You must create separate user-defined menus to house all user-defined menu items. For additional information about user-defined menus, see Adding Menus to the Right of the Ribbon in the Fluent Customization Manual.
- User-defined functions (UDFs)
 - Interpreted UDFs cannot be used with an Infiniband interconnect or, when running in parallel, on the Cray platform. The compiled UDF approach must be used instead.
 - The Visual Studio Express 2015 for Windows installer on Windows 10 installs libraries in non-standard locations. To ensure the use of Microsoft Visual Studio for UDF compiling (rather than the built-in compiler provided with the Fluent installation), you must instead use the Visual Studio Express 2015 for Desktop installer, or manually set the library path based on your local installation (for example, LIB="C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\lib\onecore\amd64";%LIB%).
- · Graphics, Reporting, and Postprocessing
 - (Linux only) Contour lines are not displayed when dynamic shadows are enabled. To make the contour lines display, you can disabled dynamic shadows either in the graphics window toolbar or in Preferences. (343770)
 - Keyframe Scene Animations of pathlines are only available for the non-persistent/"global" version
 of the Pathlines dialog box that does not have a Name field. This version of the dialog box is
 opened as described below: (269934)
 - → Right-clicking **Pathlines** in the Outline View tree and selecting **Edit...** (located under the **Results** branch).
 - → Clicking **Pathlines** and selecting **Edit...** under **Graphics** in the **Results** ribbon tab.
 - Unsteady statistics mean and rms values for custom field functions defined for dp/dt may show as zero. Contact support for a workaround. (199006)
 - (2D Only) Box select is only working for selecting surfaces if you drag from right-to-left. However, you can enable Edges or Faces in the Mesh Display dialog box to restore left-to-right box selection. You can also enable Show model edges in the Appearance branch of Preferences (accessed via File>Preferences...) to change the default mesh display behavior. (259419)
 - When you use curly brackets "{}" to specify the name of a defined object, such as another report definition, automatic suggestions are disabled and you must provide the display name of that object. (118322)

- When exporting a filled contour with contour lines to AVZ format, the contour lines will not be visible in the Ansys Viewer. As a workaround, you can create a scene containing 2 duplicate contour plots—one with filled contours, one with just contour lines (not filled). You can also disable the colormap for one of the plots so the plot only contains a single colormap. (137138)
- Monitors may continue to print/plot values, even if the zones on which they are defined are deactivated.
- If you are autosaving multiple scenes on a Windows machine, the **Headlight** lighting effect may inconsistently change its state (on/off). This can be avoided by rendering each scene in a separate graphics window.
- Mean and root-mean-squared-error (RMSE) quantities of custom field functions are only available for mixtures. In previous releases it was possible to specify these quantities for phases, which was an incorrect behavior. This behavior is no longer allowed in R16.0 or later releases. If you are running a pre-R16.0 case set to output such quantities in R2021 R2, you may get a segmentation error. To avoid the error, redefine the previously defined monitors reporting mean or RMSE quantities of phases.
- The mouse-annotate feature is no longer available. Annotations can still be created using the Annotate dialog box (see Annotate Dialog Box in the *Fluent User's Guide* (p. 4555) for additional information).
- Beginning in version 15.0, if a flux report for the heat transfer rate is generated on the wall of a moving solid, the reported values will include the convective heat flux due to the motion of the solid. Depending on the mesh and quality of the geometry representation, this may present flux values that are different than the flux specified in the boundary condition definition (for example, a non-zero flux may be reported for an adiabatic wall).
- If you import a case file that was created prior to Release 18.0 and that contains multiple monitors plotting in the same window, you must review the setup to ensure each report plot is assigned to a different window before running the calculation. If the plot windows are not reassigned, then plots assigned to the same window will be lost.
- It is possible to use text commands to create contour, vector, mesh, pathline, particle track, XY plot, and scene graphics objects with spaces in the name (for example, through the display/objects/create text command); however, objects with such names cannot be displayed using the display/objects/display text command, and attempting to do so will only result in the printing of an error. As a workaround, you can create graphics objects without spaces in the name or use the graphical user interface to display graphics objects with spaces in the name.
- In rare cases, the Curve Length X Axis Function for XY plots may not plot correctly, even if the curvilinear surface is piecewise linear and appears to be a single closed curve. A workaround is to use the Direction Vector X Axis Function.
- Transient statistics (Mean and RMS) reported for Fluent quantities that are nonlinear functions of the underlying solution variables represent evaluations of those quantities using the Mean or RMS values of the underlying solution variables. For instance, **Mean Velocity Magnitude** is computed as the magnitude of a vector constructed from the mean velocity components, and **Mean Pressure Coefficient** is computed as the pressure coefficient computed using the mean pressure. To construct the true Mean and/or RMS values of such quantities, you can define a custom field function and collect transient statistics of the custom field function. For example, define a custom field function vmag_cff = sqrt (Vx ^ 2 + Vy ^ 2 + Vz ^ 2), and report Mean and RMS of vmag_cff.

- Scene animations created using **Key Frames** in the **Animate** dialog box are not compatible with graphics displays on isosurfaces (contours, vectors, pathlines, particle tracks). Pathlines are not compatible with scene animations, regardless of the selected surface(s).
- When meshes contain a large number of cells (for example, ~150 million cells or higher), the meshing mode of Fluent may report an incorrect number of skewed cells, based on an incorrect inverse orthoskew (IOS) value. As a workaround, you can use the (tgapi-util-set-numberof-parallel-compute-threads 1) command. (168453)
- If you create an XY plot for display on a rake surface and you use the savable XY plot graphics object, accessed by clicking New... in the ribbon or outline view, then the results may not be displayed immediately. If they do not appear, click Curves... in the XY Plot dialog box and select a Symbol from the drop-down list in the Marker Style group box, click Apply, then redisplay the XY plot. (180547)

If you are viewing cell values (**Node Values** disabled) on an XY plot of a rake surface and the points are being shown as a continuous line, then you can change the **Pattern** to "empty" in the **Curves** - **Solution XY Plot** dialog box (**Line Style** group box). (180547)

- The transform operation in the Transform Surface dialog box is not available for user-created surfaces such as lines, points, iso-surfaces, and so on. To create a transformed line, point, iso-surface, or other user-created surface, you must manually translate the input point(s) and create a new line/point/iso-surface in the respective dialog box (Line/Rake, Point Surface, Iso-Surface, and so on).
- Density contour plots that include a solid region in the display will include the solid zone(s) in any range calculations and will show a density for the solid that does not reflect the actual case setup.
 Fluid zone densities are still displayed correctly. Selecting **Density...** and **Density All** in the **Contours of** drop-down lists will correctly display density values for solids and fluids. (155346)
- Special characters (/^*%@,<>{{}()?&~!=) should not be used in object names: they can affect how an object is rendered in the graphics display, and may make it so the object does not appear at all. (157473)
- For annotations, the foreground and background color options for text are not in sync with those specified in Preferences, but are instead controlled using the display/set/colors/foreground and display/set/colors/background text commands, respectively.
- For any meshing mode or solution mode session that displays graphics in the graphics window (including when running a batch job with the -gu command line option) and/or saves picture files, the rendering / saving speed will be significantly slower if you do not follow all of the following best practices:
 - → Run Cortex on a suitable machine with an appropriate graphics card and the latest drivers (for details, see the Ansys website). Note that you can assign Cortex to a particular machine using the -gui_machine=<hostname> command line option, or by selecting **Specify Machine** from the **Graphics Display Machine** list in the **Scheduler** tab of Fluent Launcher.
 - → Ensure that Cortex / the host process is run on a separate machine than that used for compute node 0. For example, do not include the machine assigned using the -gui_machine option as the first machine in the hosts file / machine list (specified using the -cnf=x command line option).

- \rightarrow Do not set the graphics driver to null, x11 (for Linux), or msw (for Windows).
- → When saving picture files, enable the **Fast hardcopy** option in the **Preferences** dialog box (under **Graphics**).
- Right-clicking point surfaces to display them from the Outline View tree is not working due to a 3rd party issue. As a workaround, you can display point surfaces using the **Mesh Display** dialog box. (181843)

· Fluent in Workbench

- In a Workbench project, if your Fluent case and data files are in the default common fluids format (CFF) and you also export a .cdat file, you may get an error message if you attempt to postprocess the results using CFD-Post. This is because when a .cdat file is exported, a legacy case file (.cas) is also written as the latest case, and so paired with the CFF data file (.dat.h5), and it is not possible to use a combination of legacy and CFF files in CFD-Post. Workaround: Manually write a new .cas.h5 and .dat.h5 file after the .cdat file is exported. (310992)
- When using Fluent in Workbench, importing Fluent Case and Data into a Fluent system will cause project updates to fail if **Submit** to **Design Point Service** is chosen for **Update Option**. As a workaround, you can right-click the **Solution** cell and choose**Refresh** prior to the project update, or select **RSM** under **Update Option** in the **Project Schematic Properties**. Projects that use the Import Fluent Case functionality only (without importing Data) or that start from Geometry/Mesh without Case file import are unaffected by this limitation. (277667)
- The **Automatic Skip** option for colormaps is not functioning as intended. As a workaround, you can manually specify the skip value. (273989)
- Fluent cases with either of:
 - → Legacy (pre-18.0) solution monitors that get converted to report definitions.
 - → Report file objects in which no filename is specified (from any release). may fail if updated in Workbench with the following message: "Update failed for the Solution component in Fluent. Value cannot be null. Parameter name: fileName". To avoid this issue you can first read the case into Fluent and either 1) delete the report file or 2) specify a valid filename for the report file. (146221)
- Coupling between Fluent and HFSS or Q3D Extractor is not supported.
- For two-way coupling between Maxwell and Fluent, by default Fluent uses the following zones: when mapping volumetric losses, the same list of zones that you selected for receiving volumetric losses in Fluent's Maxwell Mapping Volumetric dialog box are used; and when mapping surface losses, all cell zones are used. To change the zones that are used for feedback mapping, you can use a Scheme command, shown in the following example. This example specifies that only cell zone ID 1 and 2 are used: (em-set-feedback-map-cell-zone '(1 2)). Note that you can only specify the IDs of the cell zones as the arguments.
- In a Fluent analysis system, the Clear Generated Data option for the Solution cell will not clear the files associated with animations. To have the Clear Generated Data option clear the animation files as well, you must define the FLUENT_WB_REMOVE ALL_GENERATE_FILES as a system environment variable on your local machine, prior to opening Workbench.

· Fluent as a Server

- When running Fluent with the -aaS option, if you have a mesh with a very low cell count and have set a large number of iterations to be stored using the **Residual Monitors** dialog box (see Storing Residual History Points in the *Fluent User's Guide* (p. 3262)), you will see a relative degradation of performance. Reducing the number of stored iterations will reduce this degradation.
- When launching Fluent with the -gu or -g command line options and Fluent as a server enabled, Fluent will run with the graphic user interface minimized.
- Third-party software
 - Fluent-Platform LSF integration is not supported on the MS Windows platform.
 - Fluent-SGE integration is supported only on Linux platforms.
 - Wave and GT-POWER coupling are available only with stand-alone Ansys Fluent and not in the Workbench environment.
 - Supported versions of third-party software are listed below:

Table 1.1: Supported Versions of Third-Party Software

Third-Party Software	Supported Version	
Abaqus	6.14 ODB Library: 6.14.5	
Altair HYPERMESH	5.1	
AVS	5.0	
CGNS	3.3.1	
Cray MPI (MPT)	7.0	
Data Explorer	4.2	
EnSight 6 (TUI only)	Ensight 6	
EnSight Case Gold	10.1.6	
FAST	1.3	
Fieldview	16.0	
GT-POWER	Version 2021 Build 1	
Hierarchical Data Format version 5 (HDF5)	1.10.5	
HOOPS	23.00-1	
I-deas	I-deas NX Series 11	
Intel MPI	Linux: 2018.3.222	
	Windows with distributed memory on a cluster: 2018.3.210	
	Windows with shared memory on a local machine: 2019.8.254	
libpng	1.6.18	
LSTC-DYNA	970.0	

Third-Party Software	Supported Version
Microsoft MPI	10.0
MPCCI	3.0.5
NASTRAN	Bulk data input file - MSC.NASTRAN 2010
	OUTPUT2 data file - NX/NASTRAN 10
NIST	9.1
Open MPI	4.0.5
PATRAN	3.0
PTC MECHANICA	PTC/Mechanica Wildfire 4.0
Sundials	2.5.0
TECPLOT	Tecplot file format, version 11.2
VKI	4.4.6.r1
WAVE	2020.2
zlib	1.2.8

Other

- Images of embedded graphics windows captured using the Save Picture dialog box are saved without borders on the embedded windows, regardless of the setting specified in Preferences. (336851)
- (Operating under the **Pro** license) While the **user-defined** specification method is available for some fields, such as material properties, you cannot load user-defined functions, as they are not supported at the Pro capability level. (321331)
- Exports of Common Fluids Format Post files from Fluent may incorrectly specify the pressure gradient as zero. Contact support for a workaround. (239127, 243318)
- If the network connection is lost during a serial or parallel calculation, the Fluent session may terminate abnormally.
- The IRIS Image and HPGL hard copy formats are no longer supported in Ansys Fluent.
- When using Ansys Fluent with the Remote Solve Manager (RSM):
 - → Only one copy of a saved project that is in the pending state can reconnect successfully.
 - → Maxwell coupling is not supported.
 - → UDFs are supported with limitations as detailed in Submitting Fluent Jobs to Remote Solve Manager in Workbench User's Guide.
- The turbo-averaged contour plot in turbomachinery postprocessing may give an unexpected contour region in a selected topology.
- The Inverse Distance and Least Squares profile interpolation methods are not applicable when a profile is attached to cell zones.

- When opening Ansys Help from Fluent in Linux, you may receive an error message in the Linux console. This can result when another user has created the installation and run Fluent, thus creating a registry file; if you then run this same installation, there will be a permissions conflict. As a workaround, remove the registry file:

```
path/ansys_inc/v212/Tools/mono/Linux64/etc/mono/registry
```

(where *path* is the directory in which you have placed the release directory). Then change the permissions for the Mono platform in order to remove write access from the directory:

```
path/ansys_inc/v212/Tools/mono/Linux64/etc/mono
```

- On Windows, mesh reading into a serial Ansys Fluent session may fail if you use more than 20 million cells per core.
- Fluent does not support non-ASCII characters in the names of files, zones, and boundaries.
- When exiting a Fluent session on Linux that was started with the Load ACT option, Fluent may become unresponsive. If this occurs, the Fluent process must be manually terminated. In the console, the error message specifies that a corrupted double-linked list is responsible for the error. Because this unexpected shutdown occurs after the project has been saved, no data is lost.
- When Fluent is run on Linux with the Load ACT option, Fluent may repeatedly issue the following warning during solution iteration:

```
Unexpected error checking licensing server.
```

This warning is harmless and does not impact Fluent or ACT usage.

- When running a stand-alone instance of Fluent in a mixed Windows / Linux configuration or from a remote Windows installation, ACT does not open. To correct the problem, you must set the AWP ROOT212 environment variable to point to the Ansys installation directory.
- ACT with Ansys Fluent is disabled on Linux systems starting in Release 19.2. To use ACT with Ansys Fluent, use Release 19.2 or later on Windows or use Release 19.1 on Linux. (177173)
- If the network connection is lost during a serial or parallel calculation, the Ansys Fluent session may terminate abnormally.
- Ansys Fluent uses several TCP/IP ports for communications and error handling. Port conflicts with other programs trying to use the same ports are handled by Ansys Fluent and generate warnings similar to the following

```
428: mpt accept: warning: incorrect exercise message "GET /" from 10.1.0.188 on port 56564
```

Long running large sessions are more prone to generating such warnings, but these are generally save for you to ignore.

- · Remote Visualization Client
 - When running Ansys Fluent utilizing VirtualGL vglrun or EOD ssrun, Fluent may hang when writing image files. As a workaround, disable Use hardware acceleration under Save Picture Settings in the Graphics branch of Preferences (accessed via File>Preferences...). (252910)

 For a client session with multiple connected servers, only one server can receive commands through the **Send Command to Server** dialog box—that server is whichever one you send a command to first using this dialog box. As a workaround, you can use the Python console to control the other connected servers. (177632)

Fluent Meshing

- Limitations related to the Fluent guided meshing workflows are documented separately. See Limitations of the Fluent Guided Workflows (p. 263) for details.
- Before importing SpaceClaim files (.scdoc) into Fluent Meshing, you need to first enable the Set
 as the alternative license preference license preference option in SpaceClaim in order to uphold
 licensing preferences.
- Using journal (*.jou) or workflow (*.wft) files from previous releases may slow or even halt the volume mesh generation process. Workaround: For journal files, make sure that you add version-specific information to the beginning of your journal files (for example: /file/set-tui-version "19.5"). For workflow files, make sure that you have the Quality Warning Limit property in the Create Volume Mesh task set to a value closer to 0 (such as 0.05) instead of a value near 1. (163320)
- While writing case files in the CFF format (.cas.h5) in a mixed Windows/Linux environment, Fluent Meshing will only write files on the Linux nodes. To write such case files properly, you have to assign a mapped driver on the Windows side as the working directory, and then assign the remote working directory to the same path, where the mapped driver path is derived from.
- (Linux only) Geometries imported from Ansys Mechanical, Ansys DesignModeler, and Ansys Meshing depend on the Linux xmessage command. The following RedHat package managers should be installed before runtime:
 - → For SLES, xmessage-1.0.4-5.58.x86 64 (version may differ)
 - → For RHEL, xorg-x11-apps
- Meshes generated from Ansys Meshing that are then imported into Fluent Meshing may not include all interior faces. Workaround: In Ansys Meshing, ensure that all interior surfaces are assigned to be internal faces (that is, put into a Named Selection that includes the name "internal") before generating the mesh, such that all internal surfaces will then be accounted for when the mesh is imported into Fluent Meshing.
- After Ansys Fluent 19.2, you can no longer have multiple interior zones defined in a single cell zone. If your case file has such zones, they will not appear as available zones. **Workaround:** Read the mesh file into Ansys Fluent 19.2, and set the type for the interior zones to be 'wall' in order to restore the missing zones. (143347)

Chapter 2: Basic Steps for CFD Analysis using Ansys Fluent

Before you begin your CFD analysis using Ansys Fluent, careful consideration of the following issues will contribute significantly to the success of your modeling effort. Also, when you are planning a CFD project, be sure to take advantage of the customer support available to all Ansys Fluent users.

For more information, see the following sections:

- 2.1. Steps in Solving Your CFD Problem
- 2.2. Planning Your CFD Analysis

2.1. Steps in Solving Your CFD Problem

Once you have determined the important features of the problem you want to solve, follow the basic procedural steps shown below.

- 1. Define the modeling goals.
- 2. Create the model geometry and mesh.
- 3. Set up the solver and physical models.
- 4. Compute and monitor the solution.
- 5. Examine and save the results.
- 6. Consider revisions to the numerical or physical model parameters, if necessary.

Step 2. of the solution process requires a geometry modeler and mesh generator. You can use Design-Modeler and Ansys Meshing within Ansys Workbench or you can use a separate CAD system for geometry modeling and mesh generation. When meshing 3D geometries, you can also use the meshing mode of Fluent. Alternatively, you can use supported CAD packages to generate volume meshes for import into Ansys Fluent (see the User's Guide (p. 1)). For more information on creating geometry and generating meshes using each of these programs, refer to their respective manuals.

The details of the remaining steps are covered in the User's Guide (p. 1).

2.2. Planning Your CFD Analysis

For each of the problem-solving steps, there are some questions that you need to consider:

- · Defining the Modeling Goals
 - What results are you looking for, and how will they be used?

- → What are your modeling options?
- → What physical models will need to be included in your analysis?
- → What simplifying assumptions do you have to make?
- → What simplifying assumptions can you make?
- → Do you require a unique modeling capability?
 - Could you use user-defined functions (written in C)?
- What degree of accuracy is required?
- How quickly do you need the results?
- How will you isolate a piece of the complete physical system?
- Where will the computational domain begin and end?
 - → Do you have boundary condition information at these boundaries?
 - → Can the boundary condition types accommodate that information?
 - → Can you extend the domain to a point where reasonable data exists?
- Can it be simplified or approximated as a 2D or axisymmetric problem?

· Creating Your Model Geometry and Mesh

Ansys Fluent uses unstructured meshes in order to reduce the amount of time you spend generating meshes, to simplify the geometry modeling and mesh generation process, to enable modeling of more complex geometries than you can handle with conventional, multi-block structured meshes, and to enable you to adapt the mesh to resolve the flow-field features. Ansys Fluent can also use body-fitted, block-structured meshes (for example, those used by Ansys Fluent 4 and many other CFD solvers). Ansys Fluent is capable of handling triangular and quadrilateral elements (or a combination of the two) in 2D, and tetrahedral, hexahedral, pyramid, wedge, and polyhedral elements (or a combination of these) in 3D. This flexibility enables you to pick mesh topologies that are best suited for your particular application, as described in the User's Guide (p. 1).

For 3D geometries, you can create the mesh using the meshing mode of Fluent; otherwise, you must generate the initial mesh (whatever the element types used) outside of Fluent or use one of the CAD systems for which mesh import filters exist. When in solution mode, Fluent can be used to adapt all types of meshes (except for polyhedral), in order to resolve large gradients in the flow field.

The following questions should be considered when you are generating a mesh:

- Can you benefit from other Ansys, Inc. products such as CFX or Ansys Icepak?
- Can you use a quad/hex mesh or should you use a tri/tet mesh or a hybrid mesh?
 - → How complex is the geometry and flow?
 - → Will you need a non-conformal interface?

- What degree of mesh resolution is required in each region of the domain?
 - → Is the resolution sufficient for the geometry?
 - → Can you predict regions with high gradients?
 - → Will you use adaption to add resolution?
- Do you have sufficient computer memory?
 - → How many cells are required?
 - → How many models will be used?

Setting Up the Solver and Physical Models

For a given problem, you will need to:

- Import and check the mesh.
- Select the numerical solver (for example, density based, pressure based, unsteady, and so on).
- Select appropriate physical models.
 - → Turbulence, combustion, multiphase, and so on.
- Define material properties.
 - → Fluid
 - → Solid
 - → Mixture
- Prescribe operating conditions.
- Prescribe boundary conditions at all boundary zones.
- Provide an initial solution.
- Set up solver controls.
- Set up convergence monitors.
- Initialize the flow field.

· Computing and Monitoring Your Solution

- The discretized conservation equations are solved iteratively.
 - → A number of iterations are usually required to reach a converged solution.
- Convergence is reached when:
 - → Changes in solution variables from one iteration to the next are negligible.

- Residuals provide a mechanism to help monitor this trend.
- → Overall property conservation is achieved.
- The accuracy of a converged solution is dependent upon:
 - → Appropriateness and accuracy of physical models.
 - → Mesh resolution and independence.
 - → Problem setup.

· Examining and Saving Your Results

Examine the results to review the solution and extract useful data.

- Visualization tools can be used to answer such questions as:
 - → What is the overall flow pattern?
 - → Is there separation?
 - → Where do shocks, shear layers, and so on form?
 - → Are key flow features being resolved?
- Numerical reporting tools can be used to calculate the following quantitative results:
 - → Forces and moments
 - → Average heat transfer coefficients
 - → Surface and volume integrated quantities
 - → Flux balances

· Revising Your Model

Once your solution is converged, the following questions should be considered when you are analyzing the solution:

- Are physical models appropriate?
 - → Is flow turbulent?
 - → Is flow unsteady?
 - → Are there compressibility effects?
 - → Are there 3D effects?
- Are boundary conditions correct?
 - → Is the computational domain large enough?

- → Are boundary conditions appropriate?
- → Are boundary values reasonable?
- Is the mesh adequate?
 - → Can the mesh be adapted to improve results?
 - → Does the solution change significantly with adaption, or is the solution mesh independent?
 - → Does boundary resolution need to be improved?

Release 2021 R2 - © ANSYS, Inc. All rights reserved Contains proprietary and confidential information
of ANSYS. Inc. and its subsidiaries and affiliates.

Chapter 3: Guide to a Successful Simulation Using Ansys Fluent

The following guidelines can help you make sure your CFD simulation is a success. Before logging a technical support request, make sure you do the following:

1. Examine the quality of the mesh in Fluent.

There are two basic things that you should do before you start a simulation:

- Perform a mesh check to avoid problems due to incorrect mesh connectivity, and so on. In particular, you should be sure that the minimum reported cell volume is not negative.
- Look at maximum cell skewness (for example, using the **Compute** button in the **Contours** dialog box after initializing the model). As a rule of thumb, the skewness should be below 0.98. You can also use the **Report Quality** function to calculate the minimum cell orthogonality. You can find more details about mesh quality considerations in Mesh Quality in the *Fluent User's Guide* (p. 1031).

If there are mesh problems, you may have to re-mesh the problem.

2. Scale the mesh and check length units.

In Ansys Fluent, all physical dimensions are initially assumed to be in meters. You should scale the mesh accordingly. Other quantities can also be scaled independently of other units used. Ansys Fluent defaults to SI units.

- 3. Employ the appropriate physical models.
- 4. Set the energy under-relaxation factor between 0.95 and 1.

For problems with conjugate heat transfer, when the conductivity ratio is very high, smaller values of the energy under-relaxation factor practically stall the convergence rate.

5. Use node-based gradients with unstructured tetrahedral meshes.

The node-based averaging scheme is known to be more accurate than the default cell-based scheme for unstructured meshes, most notably for triangular and tetrahedral meshes.

6. Monitor convergence with residuals history.

Residual plots can show when the residual values have reached the specified tolerance. After the simulation, note if your residuals have decreased by at least 3 orders of magnitude to at least 10^{-3} . For the pressure-based solver, the scaled energy residual must decrease to 10^{-6} . Also, the scaled species residual may need to decrease to 10^{-5} to achieve species balance.

You can also monitor lift, drag, or moment forces as well as pertinent variables or functions (for example, surface integrals) at a boundary or any defined surface.

7. Run the CFD simulation using second order discretization for better accuracy rather than a faster solution.

A converged solution is not necessarily a correct one. You should use the second-order upwind discretization scheme for final results.

- 8. Monitor values of solution variables to make sure that any changes in the solution variables from one iteration to the next are negligible.
- 9. Verify that property conservation is satisfied.

After the simulation, note if overall property conservation has been achieved. In addition to monitoring residual and variable histories, you should also check for overall heat and mass balances. At a minimum, the net imbalance should be less than 1% of the smallest flux through the domain boundary.

10. Check for mesh dependence.

You should ensure that the solution is mesh-independent and use mesh adaption to modify the mesh or create additional meshes for the mesh-independence study.

11. Check to see that the solution makes sense based on engineering judgment.

If flow features do not seem reasonable, you should reconsider your physical models and boundary conditions. Reconsider the choice of the boundary locations (or the domain). An inadequate choice of domain (especially the outlet boundary) can significantly impact solution accuracy.

You are encouraged to collaborate with your technical support engineer in order to develop a solution process that ensures good results for your specific application. This type of collaboration is a good investment of time for both yourself and the Ansys Fluent support engineer.

Chapter 4: Starting and Executing Ansys Fluent

This chapter provides instructions for starting and executing Ansys Fluent.

- 4.1. Starting Ansys Fluent
- 4.2. Running Ansys Fluent in Batch Mode
- 4.3. Switching Between Meshing and Solution Modes
- 4.4. Checkpointing an Ansys Fluent Simulation
- 4.5. Cleaning Up Processes From an Ansys Fluent Simulation
- 4.6. Exiting Ansys Fluent

4.1. Starting Ansys Fluent

The following sections describe how start Ansys Fluent:

Important:

- Ensure your graphics driver is up-to-date to avoid issues with graphics displays (such as the display coming upside-down).
- If your %HOMEDRIVE% environment variable is set to a network drive and you experience issues such as delays in the Fluent Launcher appearing, add a copy of the preferences file to the %HOMEDRIVE% network location (%HOMEDRIVE%%HOMEPATH%\.fluent-conf\21.2.0\preferences). Refer to Setting User Preferences/Options (p. 832) for additional information on the preferences file location.
- 4.1.1. Selecting the Licensing Level
- 4.1.2. Starting Ansys Fluent Using Fluent Launcher
- 4.1.3. Starting Ansys Fluent on a Windows System
- 4.1.4. Starting Ansys Fluent on a Linux System
- 4.1.5. Command Line Startup Options

4.1.1. Selecting the Licensing Level

You specify the licensing level using the **Capability Level** drop-down list in the Fluent Launcher. The feature availability at the different licensing levels is discussed in Program Capabilities (p. 135).

4.1.2. Starting Ansys Fluent Using Fluent Launcher

You can interactively specify Ansys Fluent dimension, display, processing and other options using the Fluent Launcher.

To start the Fluent Launcher, do one of the following:

• Start Ansys Fluent from the Linux or Windows command line with no arguments.

- Start Ansys Fluent from the Windows Start menu.
- Start Ansys Fluent from the Windows desktop or Quick Launch bar.

Any options set in the Fluent Launcher will be retained for your next session.

Select the workspace you plane to use (the dividing line in the launcher separates the general-purpose Meshing and Solution workspaces from the application-specific option):

- **Meshing**—See Introduction to Meshing Mode in Fluent (p. 199) and subsequent chapters for further details about using the Fluent Meshing workspace.
- **Solution**—See Graphical User Interface (GUI) (p. 801) and subsequent chapters for further details about using the Fluent Solution workspace.
- Icing—See Fluent Icing (p. 4981) for further details about using the Fluent Icing workspace.

You can enable **Show Beta Workspaces** to expose additional workspaces that are not yet considered "full" features. These workspaces are documented in the Fluent User's Guide (p. 1).

Important:

The available workspaces depends on your licensing level. To learn more about your licensing options, refer to the Ansys Licensing documentation or speak with your sales representative.

Select a case | case and data | mesh | journal file to start with or specify the **Dimension** of the simulation you intend to perform. Beginning with a journal file allows you to automatically load the case, compile any user-defined functions, iterate until the solution converges, and write results to an output file.

Note:

Selecting a case file from the **Recent Files** list only loads the case file (after clicking **Start With Selected Options**), even if there is an associated data file in the same directory.

Select your required **Options**.

Choose to Display Mesh After Reading (disabled by default). This option is applicable only to
volume meshes and not surface meshes. All of the boundary zones will be displayed except for the
interior zones of 3D geometries.

Note:

You can override this option on a file-by-file basis using the **Display Mesh After Reading** option in the **Select File** dialog box that opens when you are reading in a file.

• Enable the **Load ACT** option to load Ansys ACT. For additional information on ACT, see Customizing Fluent in the *Fluent User's Guide* (p. 3983).

• Choose to perform solution calculations in **Double Precision** mode, if desired. (Default is single-precision mode) See Single-Precision and Double-Precision Solvers (p. 168) to help with your decision.

Note:

The **Meshing** workspace is always run in **Double Precision**. This option applies for the Solution workspace only.

• Enable **Start Server** to launch the Fluent workspace as a server so that you can launch the Fluent Remote Visualization Client and connect to this Fluent session. Refer to Remote Visualization and Accessing Fluent Remotely (p. 4945) to learn more about this option.

Select your Parallel (Local Machine) options.

- Set **Meshing Processes** to **1** to restrict the meshing calculations to a single processor core.
- Set **Solver Processes** to **1** to restrict the solution calculations to a single processor core.
- Set **Meshing Processes** more than 1 to allow multiple simultaneous processes. *Note that increasing the number of meshing processes also increases the solver processes to the same processor count.* See Setting Parallel Options in Fluent Launcher (p. 169) for additional information.
- Set **Solver Processes** more than 1 to allow multiple simultaneous processes. See Setting Parallel Options in Fluent Launcher (p. 169) for additional information.
- Set **Solver GPGPUs per Machine** to more than 0 to utilize your graphics card for solver computations.

Select **Show More Options** to expand the Fluent Launcher window to reveal more options. (Figure 4.1: The General Options Tab of Fluent Launcher (p. 167)). Note that once Fluent Launcher expands, the **Show More Options** button becomes the **Show Fewer Options** button, allowing you to hide the additional options.

Select **Show Learning Resources** to expand the Fluent Launcher window to reveal links to: Documentation, News, Tutorials, Online Resources, and Videos. Note that once Fluent Launcher expands, the **Show Learning Resources** button becomes the **Hide Learning Resources** button, allowing you to hide the links.

Important:

Fluent Launcher also appears when you start Ansys Fluent within Ansys Workbench. For more information, see the separate Ansys Fluent in Workbench User's Guide.

4.1.2.1. Setting General Options in Fluent Launcher

Set file and path options using the **General Options** tab in Fluent Launcher.

Figure 4.1: The General Options Tab of Fluent Launcher

- Enable Pre/Post Only to run Ansys Fluent with only the setup and postprocessing capabilities available. The default Ansys Fluent full solution mode allows you to set up, solve, and postprocess a problem, while Pre/Post Only will not allow you to perform calculations.
- 2. Specify the path of your current working directory using the **Working Directory** field or click to browse through your directory structure.

Note:

a Uniform Naming Convention (UNC) path cannot be set as a working directory. You need to map a drive to the UNC path (Windows only)

3. Specify the location of the Ansys Fluent installation on your system using the **Fluent Root Path** field, or click to browse through your directory structure. Try to use the UNC path if applicable.

Note:

The button automatically converts a local path to a UNC path if any matching shared directory is found (Windows only). Once set, various fields in Fluent Launcher (for example, parallel settings, etc.) are automatically populated with the available options, depending on the Ansys Fluent installations that are available.

4.1.2.2. Single-Precision and Double-Precision Solvers

Both single-precision and double-precision versions of Ansys Fluent are available on all computer platforms. For most cases, the single-precision solver will be sufficiently accurate, but certain types of problems may benefit from the use of a double-precision version. Several examples are listed below:

- If your geometry has features of very disparate length scales (for example, a very long, thin pipe), single-precision calculations may not be adequate. Note that nodal coordinates are always stored in double precision (even for the single-precision version of Ansys Fluent), so they are not a concern in this regard.
- If your geometry involves multiple enclosures connected via small-diameter pipes (for example, automotive manifolds), mean pressure levels in all but one of the zones can be quite large (since you can set only one global reference pressure location). Double-precision calculations may therefore be necessary to resolve the pressure differences that drive the flow, since these will typically be much smaller than the pressure levels.
- For conjugate problems involving high thermal-conductivity ratios and/or high-aspect-ratio meshes, convergence and/or accuracy may be impaired with the single-precision solver, due to inefficient transfer of boundary information.
- For multiphase problems where the population balance model is used to resolve particle size distributions, which could have statistical moments whose values span many orders of magnitude.

Note:

Ansys Fluent allows only a period to be used as a decimal separator. If your system is set to a European locale that uses a comma separator (for example, Germany), fields that accept numeric input may accept a comma, but may ignore everything after the comma. If your system is set to a non-European locale, numeric fields will not accept a comma at all.

Ansys Workbench accepts commas as decimal delimiters. These are translated into periods when data is passed to Ansys Fluent.

4.1.2.3. Setting Parallel Options in Fluent Launcher

The **Parallel Settings** tab allows you to specify settings for running Ansys Fluent in parallel.

Figure 4.2: The Parallel Settings Tab of Fluent Launcher

- (Meshing workspace only) Enter the number of processes to be used for meshing under Meshing Processes.
- 2. (Meshing and Solution workspaces only) Enter the number of processes to be used for solution under Solver Processes. On Linux with the Intel MPI, additional processes will be spawned as necessary when you change to solution mode, in order to bring the total number of processes to this value; this must be set to a value greater than or equal to Meshing Processes. For details on this dynamic spawning, see Dynamically Spawning Processes Between Fluent Meshing and Fluent Solution Modes (p. 202).
- 3. (**Meshing** and **Solution** workspaces only) If your machine is equipped with General Purpose Graphics Processing Units you can also specify **Solver GPGPUs per Machine**.

Refer to Parallel Processing in the *Fluent User's Guide* (p. 3745) for details on parallel processing using Fluent and Starting Parallel Ansys Fluent Using Fluent Launcher in the *Fluent User's Guide* (p. 3748) for additional details parallel process configuration options on this tab.

4.1.2.4. Setting Remote Options in Fluent Launcher

The **Remote** tab (Figure 4.3: The Remote Tab of Fluent Launcher (p. 170)) allows you to specify settings for running Ansys Fluent parallel simulations on Linux clusters, via the Windows interface.

Figure 4.3: The Remote Tab of Fluent Launcher

For additional information about this tab, see Setting Additional Options When Running on Remote Linux Machines (p. 3753).

4.1.2.5. Setting Scheduler Options in Fluent Launcher

Enable **Use Job Scheduler** to specify settings in the **Scheduler** tab (Figure 4.4: The Scheduler Tab of Fluent Launcher (Windows 64 Version) (p. 171)) for running Ansys Fluent with various job schedulers (for example, the Microsoft Job Scheduler for Windows, or LSF, SGE, PBS Pro, and Slurm on Linux).

Figure 4.4: The Scheduler Tab of Fluent Launcher (Windows 64 Version)

For additional information about this tab, see Setting Parallel Scheduler Options in Fluent Launcher (p. 3750).

4.1.2.6. Setting Environment Options in Fluent Launcher

The **Environment** tab (Figure 4.5: The Environment Tab of Fluent Launcher (p. 172)) allows you to specify compiler settings for compiling user-defined functions (UDFs) with Ansys Fluent (Windows only). The **Environment** tab also allows you to specify environment variable settings for running Ansys Fluent.

Figure 4.5: The Environment Tab of Fluent Launcher

Specify a batch file that contains UDF compilation environment settings by selecting the **Set up Compilation Environment for UDF** check box (enabled by default). Once selected, you can then enter a batch file name in the text field. By default, Fluent Launcher uses the udf. bat file that is located in the directory where Ansys Fluent is installed. It is recommended that you keep the default batch file, which is tested with MS Visual Studio C++ and Clang compilers (for supported versions, see Compiler Requirements for Windows Systems), as well as the built-in compiler (Clang) included with the Fluent installation. For more information about compiling UDFs, see the separate Fluent Customization Manual.

Under **Other Environment Variables**, enter or edit license file or environment variable information in the text field. For example, FLUENT_AFFINITY=<x> specifies the process binding (affinity) setting, in the same manner as the -affinity=<x> command line option (see Parallel Options (p. 179) for details). Using the **Default** button resets the default value(s).

4.1.3. Starting Ansys Fluent on a Windows System

There are two ways to start Ansys Fluent on a Windows system:

From the Windows Start menu, click Start > ANSYS 2021 R2 > Fluid Dynamics > Fluent 2021
 R2

This option starts Fluent Launcher (see Starting Ansys Fluent Using Fluent Launcher (p. 164)). The Fluent Launcher may also be accessed via an icon on your desktop or in the Quick Launch bar.

Note:

If the default "Ansys 2021 R2" program group name was changed when Ansys Fluent was installed, you will find the **Fluent** menu item in the program group with the new name that was assigned, rather than in the **Ansys 2021 R2** program group.

- From a Command Prompt window, type fluent version, where version is replaced with one of the four options specifying the dimension and precision of the solver.
 - 2d for the 2D, single-precision solver.
 - 3d for the 3D, single-precision solver.
 - 2ddp for the 2D, double-precision solver.
 - 3ddp for the 3D double-precision solver.

For additional information on starting Fluent from the command prompt, see Command Line Startup Options (p. 174).

Important:

To be able to start Ansys Fluent from the command prompt, be sure the path to your Ansys Fluent home directory is in your command search path environment variable by executing the setenv.exe program located in the Ansys Fluent directory (for example, C:\Program Files\ANSYS Inc\v212\fluent\ntbin\win64).

Tip:

You can also specify the number of processors or start Ansys Fluent in meshing mode from the Command Prompt.

- To specify the number of processors, type fluent version -tx, replacing version with the desired solver version and x with the number of processors. For example, fluent 3d -t4 to run the 3D version on 4 processors.
- To start in meshing mode, add the command line option -meshing. For example, fluent 3d -meshing to start in meshing mode.
- Both parallel and meshing mode may be combined. You must specify the number of meshing processes using -tmy. For example, fluent 3ddp -meshing -tm4 will start Ansys Fluent in meshing mode with 4 meshing processes. When switched to solution mode, the solver will be 3D, double precision and run 4 processes. It is not possible to switch from meshing mode to solution mode with a different number of processes on Windows, so if you need to run the calculation with a higher number of processes you must start a new session.

4.1.4. Starting Ansys Fluent on a Linux System

There are two ways to start Ansys Fluent on a Linux system:

- Start Fluent from the command line without specifying a version, and then use Fluent Launcher to choose the appropriate version along with other options. See Starting Ansys Fluent Using Fluent Launcher (p. 164) for details.
- Start the appropriate version from the command line by typing fluent version, where version is replaced with one of the four options specifying the dimension and precision of the solver.
 - 2d for the 2D, single-precision solver.
 - 3d for the 3D, single-precision solver.
 - 2ddp for the 2D, double-precision solver.
 - 3ddp for the 3D double-precision solver.

Tip:

You can also specify the number of parallel processors or start Ansys Fluent in meshing mode from the command line.

- To specify the number of processors, type fluent version -tx, replacing version with the desired solver version and x with the number of processors. For example, fluent 3d -t4 to run the 3D version on 4 processors.
- To start in meshing mode, add the command line option -meshing. For example, fluent 3d -meshing to start in meshing mode.
- Both parallel and meshing mode may be combined. You must specify the number of meshing processes using -tmy. For example, fluent 3ddp -meshing -tm4 -t8 will start Ansys Fluent in meshing mode with 4 meshing processes. When switched to solution mode, the solver will be 3D, double precision and run 8 processes; note that dynamically spawning additional processes in solution mode is only available on Linux with the default MPI.

Note:

Ansys Fluent automatically selects the best graphics driver and defaults to the X11 driver when it does not detect the required graphics support. You can use the HOOPS_PICTURE environment variable to force a particular graphics driver, if you feel it is necessary to use an alternate driver.

4.1.5. Command Line Startup Options

Table 4.1: Available Command Line Options for Linux and Windows Platforms (p. 175) lists the available command line arguments for Linux and Windows. More detailed descriptions of these options can be found in the following sections.

To obtain information about available startup options, you can type fluent -help before starting up Fluent.

Table 4.1: Available Command Line Options for Linux and Windows Platforms

Option	Platform	Description
-aas	all	Start Fluent in server mode.
-act	all	Load ACT on Fluent startup.
-affinity= <x></x>	all	Specifies the process binding (affinity) setting, as described in Parallel Options (p. 179).
-app=flremote	all	Launches the Remote Visualization Client.
-appscript= <scriptfile></scriptfile>	all	Runs the specified script in the specified application (must be used with the -app= <x> startup option.</x>
-command=" <tui command="">"</tui>	all	Executes the specified text command (<tui command="">) at Fluent startup.</tui>
-ccp <x></x>	Windows only	Uses the Microsoft Job Scheduler, where <x> is the head node name.</x>
-cflush	Linux only	Ensures that the file cache buffers are flushed.
-cnf= <x></x>	all	Specifies that <x> is the hosts file or (for Linux) machine list.</x>
-driver <name></name>	all	Sets the graphics driver (available drivers vary by platform, and include opengl, opengl2, x11, and null for Linux and opengl, opengl2, dx11, msw, and null for Windows).
-env	all	Show environment variables.
-g	all	Run without the GUI or graphics.
-gpgpu= <n></n>	Linux and Win64 only	Specifies the number of GPGPUs per machine that should be used for AMG acceleration. Only available in parallel.
-gr	all	Run without graphics.
-gu	all	Run without the GUI but with graphics. You cannot interact with the displayed graphics objects.
-gui_machine= <hostname></hostname>	Linux only	Specifies that <hostname> is used for running Cortex (the process that manages the GUI and graphics).</hostname>
-h <heap size=""></heap>	all	Specifies the heap space for Cortex (the process that manages the GUI and graphics)
-help	all	Display command line options.

Option	Platform	Description
-hidden	Windows only	Run in minimized mode.
-host_ip= <host:ip></host:ip>	all	Specifies that the IP interface <host:ip> is to be used by the host.</host:ip>
-i <journal></journal>	all	Reads the specified journal file(s). Read multiple journals at once as follows: -i example1.jou -i ex- ample2.jou -i example3.jou AAS Mode does not support multiple journals from the command line.
-meshing	all	Start Fluent in meshing mode (you must specify Fluent as either 3d or 3ddp).
-mpi= <mpi></mpi>	all	Specifies that the MPI implementation is <mpi> (for example, intel).</mpi>
-mpitest	all	Launches an MPI program to collect network performance data and prints to console (Linux) or to the working directory (Windows).
-nm	all	Do not display mesh after reading.
-p <ic></ic>	all	<pre>Specify interconnect; <ic>= {de- fault eth ib}</ic></pre>
-pcheck	Linux only	Check the network connections before spawning compute nodes.
-platform= <x></x>	Linux only	Loads a binary that is specially ported for a particular platform, as described in Performance Options (p. 179).
-post	all	Run the Ansys Fluent postprocessing-only executable.
-r	all	List all releases installed in the current directory.
-r <x></x>	all	Run release <x> of Ansys Fluent.</x>
-remote_node= <hostname></hostname>	Linux only	Specify the machine to be used for executing mpirun to launch the node processes; if = <hostname> is omitted, the first node in the hosts file will be used.</hostname>
-scheduler= <scheduler></scheduler>	Linux only	Run Ansys Fluent under a scheduler; <scheduler> can be set to lsf (LSF), pbs (PBS Professional), sge (Univa Grid Engine—formerly Sun Grid Engine), or slurm (Slurm).</scheduler>

Option	Platform	Description
-scheduler_account= <account></account>	Linux only	Specifies that the account is set to <account> when running under Slurm.</account>
-scheduler_custom_script	Linux only	Ensures the use of environment variables when using custom scheduler scripts.
-scheduler_headnode= <head-node></head-node>	Linux only	Specifies the scheduler job submission machine name.
-scheduler_opt= <opt></opt>	Linux only	Enables an additional option <opt> that is relevant for the selected scheduler; this command line option can be included multiple times.</opt>
-scheduler_pe= <pe></pe>	Linux only	Sets the parallel environment to <pe> when running under SGE.</pe>
-scheduler_queue= <queue></queue>	Linux only	Sets the scheduler queue or partition to <queue>.</queue>
-scheduler_stderr= <err-file></err-file>	Linux only	Sets the scheduler standard error file to <err-file>.</err-file>
-scheduler_stdout= <out-file></out-file>	Linux only	Sets the scheduler standard output file to <out-file>.</out-file>
-scheduler_tight_coupling	Linux only	Enables a job-scheduler-supported native remote node access mechanism.
-setenv=" <var>=<value>"</value></var>	all	Sets the environment variable <var> to <value>.</value></var>
-sifile= <name>.txt</name>	all	Run Ansys Fluent and start the remote visualization server. You can provide a path before the server info filename to specify where the file is created.
-stream	Linux only	Prints the memory bandwidth.
-t <x></x>	all	Specifies that the number of processors is <x>.</x>
-tm <x></x>	all	Specifies that the number of processors for meshing is <x>.</x>

4.1.5.1. ACT Option

fluent -act loads Ansys ACT at Fluent startup. For additional information about ACT in Fluent, see Customizing Fluent in the *Fluent User's Guide* (p. 3983).

4.1.5.2. Application Option

fluent -app=flremote launches either the Fluent Launcher or the specified dimension of Fluent (for example, 3ddp), along with the Fluent Remote Visualization Client. For additional information about the Fluent Remote Visualization Client, refer to Remote Visualization and Accessing Fluent Remotely (p. 4945).

4.1.5.3. Application Script Option

fluent -appscript, allows you to specify a script that will run in the specified application (-appscript must be used in conjunction with -app).

4.1.5.4. Graphics Options

Note:

Fluent automatically selects the best graphics driver for the given runtime environment, unless you choose a specific graphics driver with the fluent -driver command line option.

(Windows only) The OpenGL graphics driver is deprecated and in some instances may cause Ansys Fluent to close unexpectedly. It is recommended that you have a good supported graphics card to ensure the best performance.

fluent -driver allows you to specify the graphics driver to be used in the session. When enabling graphics display, you have various options: on Linux, the available drivers include fluent -driver opengl2, fluent -driver opengl2, and fluent -driver x11; on Windows, the available drivers include fluent -driver opengl2, fluent -driver opengl, fluent -driver opengl, fluent -driver dx11, and fluent -driver msw (the latter instructs Ansys Fluent to use the Operating Systems Windows driver). For both Linux and Windows, you can disable graphics display using fluent -driver null. For a comprehensive list of the drivers available to you, open a Fluent session, enter the display/set/rendering-options/driver text command, and then press the Enter key at the driver> prompt. For more details about using the driver options, see Hiding the Graphics Window Display (p. 3456) in the User's Guide (p. 1).

Note:

For any session that displays graphics in a graphics window and/or saves picture files, having the driver set to x11, msw, or null will cause the rendering / saving speed to be significantly slower.

fluent -gui_machine=<hostname> will run Cortex on a specified machine (<hostname>). This option is only available when running on Linux, and may be needed to ensure optimal graphics performance when running Fluent under a scheduler / load manager (using the -scheduler> option, as described in Scheduler Options (p. 181)).

Important:

(Exceed onDemand Only) When you are using the <code>-gui_machine</code> flag you must also use <code>-setenv="CORTEX_PRE=ssrun"</code> to specify the server side rendering to ensure accelerated graphics performance.

For example: fluent 3ddp -t2 -setenv="CORTEX_PRE=/opt/Exceed_connection_server_13.8_64/bin/ssrun" -scheduler=<scheduler> scheduler_queue=<queue> -gui_machine=<hostname>

Note that the path to ssrun may be different for your specific environment.

fluent -g will run Cortex without graphics and without the graphical user interface. This option is useful if want to submit a batch job.

fluent -gr will run Cortex without graphics. This option can be used in conjunction with the -i <journal> option to run a job in "background" mode.

fluent -gu will run Cortex without the graphical user interface but will open graphics windows and display graphics objects. You cannot interact with the displayed graphics objects.

To start Fluent and immediately read a journal file, type fluent -i <journal>, replacing <journal> with the name of the journal file you want to read.

fluent -h<heap size> will update the heap space for Cortex processes to the specified size. For example, fluent 3ddp -h50000000. The default heap size is 6000000.

fluent -nm will run Cortex without displaying the mesh in the graphics window.

Important:

Download graphics card driver updates directly from the graphics card vendor's website, for example www.nvidia.com. Do not use the "Update Driver" feature offered by the operating system as these can sometimes update to an older version of the driver.

4.1.5.5. Meshing Mode Option

fluent -meshing specifies that Fluent opens in meshing mode rather than the default solution mode. See the Fluent User's Guide (p. 1) for further details about the meshing mode.

4.1.5.6. Performance Options

-cflush specifies that memory is allocated in such a way as to ensure that all of the associated file cache buffers are flushed. This may resolve processing performance issues. For more details, see Clearing the Linux File Cache Buffers (p. 3803) in the User's Guide (p. 1).

-platform=<x> loads a binary that is specially ported for a particular platform. When <x>=intel, an AVX2 optimized binary is used that enhances performance when running on processors that support the AVX2 instruction set (available only on Linux).

-stream prints the memory bandwidth, using a variant of the STREAM benchmark. This information can be helpful in determining if your memory is set up in an optimal manner.

4.1.5.7. Parallel Options

These options are used in association with the parallel solver.

-affinity=<x> specifies the process binding (affinity) settings. The default behavior depends upon the platform on which you are running:

- When running on Linux, there are two options available:
 - If <x>= core, each process is assigned to an individual core in an optimized manner. This is the default for when running in exclusive mode, that is, when the machine is not already loaded.
 - If <x>= sock, processes are assigned to all cores in sockets rather than the individual cores. This is the default for when running in non-exclusive mode.
- When running on Windows, the default behavior depends upon the selected message passing interface (MPI).
 - For the Intel MPI (which is the default), Fluent by default allows Intel MPI to manage process binding. You can set -affinity=1 to use Fluent-managed affinity, which assigns each process to an individual core.
 - For the Microsoft MPI (which is the default when running under the Microsoft Job Scheduler), the scheduler itself manages process binding by default. Whereas, when the Microsoft MPI is selected for shared memory runs, Fluent by default assigns each process to an individual core.
- If $\langle x \rangle = \text{off}$, the Fluent-managed affinity settings are disabled for both platforms (Windows and Linux).
- $-\exp$ <x> (where <x> is the name of the head node) runs the parallel job through the Microsoft Job Scheduler as described in Starting Parallel Ansys Fluent with the Microsoft Job Scheduler (p. 3760) in the User's Guide (p. 1).
- -cnf=<x> (where <x> is the name of a hosts file or a list of Linux machines) spawns a compute node on each of the specified machines. For details, see Starting Parallel Ansys Fluent on a Windows System Using Command Line Options (p. 3758) or Starting Parallel Ansys Fluent on a Linux System Using Command Line Options (p. 3763) in the User's Guide (p. 1).
- -gpgpu=<n> specifies the number of general purpose graphics processing units (GPGPUs) per machine to be used for AMG acceleration. For more information, see Using General Purpose Graphics Processing Units (GPGPUs) With the Algebraic Multigrid (AMG) Solver in the *Fluent User's Guide* (p. 3794).
- -host ip=<host:ip> specifies the IP interface to be used by the host process.
- -mpi=<mpi> specifies that <mpi> is to be used for the MPI. You can skip this flag if you choose to use the default MPI.
- -mpiopt=<x> allows you to specify any additional MPI flags (<x>) to be included in the run (Linux only).
- -mpitest runs the mpitest program instead of Ansys Fluent to test the network.
- -p<ic> specifies the use of parallel interconnect <ic>, where <ic> can be any of the interconnects listed in Starting Parallel Ansys Fluent on a Windows System Using Command Line Options (p. 3758) or Starting Parallel Ansys Fluent on a Linux System Using Command Line Options (p. 3763) in the User's Guide (p. 1).
- -pcheck checks the network connections before spawning compute nodes (Linux only).

By default, the mpirun command (which launches the node processes) is executed on the compute node where the host process is spawned. You can use <code>-remote_node=<hostname></code> to specify a different machine for the execution of this command. If <code>=<hostname></code> is omitted, the first node in the hosts file will be used. (Linux only)

- -ssh specifies that SSH should be used to spawn remote processes. (Beginning with Ansys Fluent R16.0, SSH is used by default. This option is included primarily for backward compatibility with existing launch scripts, etc.)
- -t<x> specifies that <x> processors are to be used. For more information about starting the parallel version of Ansys Fluent, see Starting Parallel Ansys Fluent on a Windows System (p. 3758) or Starting Parallel Ansys Fluent on a Linux System (p. 3763) in the User's Guide (p. 1).
- -tm < x > specifies that < x > processors are to be used for meshing. This value must be less than or equal to the number of processes specified with -t < x >.

4.1.5.8. Postprocessing Option

fluent -post will run a version of Fluent that allows you to set up a problem or perform post-processing, but will not allow you to perform calculations. Running Ansys Fluent for pre- and postprocessing requires you to use the -post flag on startup. To use this option on Linux, launch Ansys Fluent by adding the -post flag after the version number, for example,

fluent 3d -post

To use this same feature from the graphical interface on Windows or Linux, select the **Pre/Post** option in the **General** tab of Fluent Launcher, as described in Starting Ansys Fluent Using Fluent Launcher (p. 164).

4.1.5.9. Remote Visualization Options

The -sifile=<name>.txt option starts Ansys Fluent and the server that is necessary for running the remote visualization client. For additional information on remote visualization, refer to Remote Visualization and Accessing Fluent Remotely (p. 4945).

Note:

You can specify the location for the server info file prior to the filename, for example <code>-sifile=D:/example_folder/server_info_example_name.txt.</code> If you do not provide a file path before the file name and you do not provide a path using the <code>SERVER_INFO_DIR</code> environment variable, then the file is saved in your working directory.

4.1.5.10. Scheduler Options

The -scheduler=<scheduler> option allows you to specify that your Linux session is run under a scheduler / load manager, where <scheduler> can be one of the following:

1sf: this allows you to run Ansys Fluent under IBM Spectrum LSF software, and thereby take
advantage of the checkpointing features of that load management tool. For further details, see
Part 1: Running Fluent Under LSF.

- pbs: this runs Ansys Fluent under Altair PBS Professional, and allows you to use the features of this software to manage your distributed computing resources. For further details, see Part 2: Running Fluent Under PBS Professional
- sge: this runs Ansys Fluent under Univa Grid Engine (previously known as Sun Grid Engine, or SGE) software, and allows you to use the features of this software to manage your distributed computing resources. For further details, see Part 3: Running Fluent Under SGE
- slurm: this runs Ansys Fluent under Slurm, and allows you to use the features of this software to manage your distributed computing resources. For further details, see Part 4: Running Fluent Under Slurm.

Note:

You can use the -scheduler=<scheduler> option along with the -gui_ma-chine=<hostname> (described in Graphics Options (p. 178)), in order to ensure optimal graphics performance. When running under Slurm, the -gui_machine=<hostname> is also needed to allow dynamic spawning (which is described in Dynamically Spawning Processes Between Fluent Meshing and Fluent Solution Modes (p. 202)), as well as the combination of Slurm + Open MPI + distributed memory on a cluster.

If you use custom scheduler scripts instead of relying on the standard Fluent option (-sched-uler=<scheduler>), your environment variables related to the job scheduler will not be used unless you include the -scheduler_custom_script option with the Fluent options in your script.

Other options are available when you use a scheduler: you can specify the scheduler job submission machine name using <code>-scheduler_headnode=<head-node></code> (by default it is <code>localhost</code>); you can specify a queue / partition using <code>-scheduler_queue=<queue></code>; you can enable an additional option for the scheduler using <code>-scheduler_opt=<opt></code> (note that you can include multiple instances of this option when you want to use more than one scheduler option); you can specify the name and directory of the scheduler standard error file using <code>-sched-uler_stderr=<err-file></code> (by default it is saved as <code>fluent.<PID>.e</code> in the working directory, where <code><PID></code> is the process ID of the top-level Fluent startup script); you can specify the name and directory of the scheduler standard output file using <code>-scheduler_stdout=<out-file></code> (by default it is saved as <code>fluent.<PID>.o</code> in the working directory); when running under Univa Grid Engine software, you can set the parallel environment using <code>-scheduler_pe=<pe>; and</code> when running under Slurm you can set the account using <code>-scheduler_account=<account=</code>

It is also possible to enable a job-scheduler-supported native remote node access mechanism using -scheduler_tight_coupling in Linux. For details about the MPI / job scheduler combinations that are supported for this tight coupling, see Running Fluent Using a Load Manager.

4.1.5.11. Text Command Option

The -command="<TUI command>" option allows you to specify that a single text command (<TUI command>) is executed at Fluent startup. The text command must be complete, that is, it cannot rely on further user input in the console after launching. Up to 10 instances of this option can be included, and the text commands will be executed in the order they are entered. When this option is used along with the -i <journal> option, the text commands are executed before the journal.

For example, you could enter the following to read a case and start a calculation: fluent 3d -command="file/read-case file_name.cas" -command="solve/initialize/initialize-flow" -command="sol iter 10".

4.1.5.12. Version, Release Options, and Environment Variables

fluent -r<x> will run release <x> of Ansys Fluent.

Typing fluent <version> -env, replacing <version> with the desired version, will list all environment variables before running Ansys Fluent.

Including the -setenv="<var>=<value>" option sets the environment variable <var> explicitly to <value> before launching Ansys Fluent. Note that you can include as many instances of this option as you need to set all of the relevant environment variables. You can also unset an environment variable by entering -setenv="<var>=".

4.1.5.13. System Coupling Options

The following command line options (in either Windows or Linux) can be used when Ansys Fluent is involved in a system coupling simulation.

- -schost="<x>" (where <x> is the name of the host machine, in quotes) specifies the host machine on which the coupling service is running (to which the co-simulation participant/solver must connect).
- -scport=<y> (where <y> is the port number) specifies the port on the host machine upon which the coupling service is listening for connections from co-simulation participants.
- -scname="<z>" (where <z> is the name of the participant, in quotes) specifies the unique name used by the co-simulation participant to identify itself to the coupling service (see Server File (sc-Server.scs) in the *System Coupling User's Guide* for more information).

The general syntax for invoking Ansys Fluent for system coupling is:

fluent 3d -schost=host name in quotes -scport=port number -scname=name of the solver in quotes

For instance:

```
fluent 3d -schost="machine1.domain.com" -scport=1234 -scname="Solution1"
```

Once Ansys Fluent loads the case, initialize the solution using the following command:

```
s i i
```

Once your case is initialized, start the system coupling by typing the following command in the Ansys Fluent text user interface (TUI):

```
(sc-solve)
```

For more information, see Performing System Coupling Simulations Using Fluent (p. 3951) in the Fluent User's Guide, as well as the System Coupling User's Guide.

4.1.5.14. Other Startup Options

There are other startup options that are not listed when you type the fluent -help command. These options can be used to customize your graphical user interface. For example, to change the Ansys Fluent window size and position you can either modify the .Xdefaults file described in Customizing the Graphical User Interface (p. 830) in the User's Guide (p. 1), or you can simply type the following command at startup:

```
fluent <version> -geometry <XX>x<YY>+<xx>-<yy>
```

where <XX> and <YY> are the width and height in pixels, respectively, and +<xx>-<yy> is the position of the window.

Therefore, typing fluent 3d -geometry 700x500+20-400 will start the 3D version of Ansys Fluent, sizing the Ansys Fluent console to 700x500 pixels and positioning it on your monitor screen at +20-400.

There are additional Qt command line startup options for modifying the graphical stylesheet and more, which can be found in Qt documentation.

4.2. Running Ansys Fluent in Batch Mode

Ansys Fluent can be used interactively, with input from and display to your computer screen, or it can be used in a batch or background mode in which inputs are obtained from and outputs are stored in files. Generally you will perform problem setup, initial calculations, and postprocessing of results in an interactive mode. However, when you are ready to perform a large number of iterative calculations, you may want to run Ansys Fluent in batch or background mode. This allows the computer resources to be prioritized, enables you to control the process from a file (eliminating the need for you to be present during the calculation), and also provides a record of the calculation history (residuals) in an output file. While the procedures for running Ansys Fluent in a batch mode differ depending on your computer operating system, Background Execution on Linux Systems (p. 184) provides guidance for running in batch/background on Linux systems, and Background Execution on Windows Systems (p. 186) provides guidance for running in batch/background on Windows systems.

For additional information, see the following sections:

- 4.2.1. Background Execution on Linux Systems
- 4.2.2. Background Execution on Windows Systems
- 4.2.3. Batch Execution Options

4.2.1. Background Execution on Linux Systems

To run Ansys Fluent in the background in a C-shell (csh) on a Linux system, type a command of the following form at the system-level prompt:

```
fluent 2d -g < inputfile > & outputfile &
```

or in a Bourne/Korn-shell, type:

```
fluent 2d -g < inputfile > outputfile 2>\&1 &
```

In these examples,

- fluent is the command you type to run Ansys Fluent interactively.
- -g indicates that the program is to be run without the GUI or graphics (see Starting Ansys Fluent (p. 163)).
- inputfile is a file of Ansys Fluent commands that are identical to those that you would type interactively.
- outputfile is a file that the background job will create, which will contain the output that Ansys Fluent would normally print to the screen (for example, the menu prompts and residual reports).
- & tells the Linux system to perform this task in background and to send all standard system errors (if any) to outputfile.

The file inputfile can be a journal file created in an earlier Ansys Fluent session, or it can be a file that you have created using a text editor. In either case, the file must consist only of text interface commands (since the GUI is disabled during batch execution). A typical inputfile is shown below:

```
; Read case file
rc example.cas
; Initialize the solution
/solve/initialize/initialize-flow
; Calculate 50 iterations
it 50
; Write data file
wd example50.dat
; Calculate another 50 iterations
it 50
; Write another data file
wd example100.dat
; Exit Fluent
exit
yes
```

This example file reads a case file example.cas, initializes the solution, and performs 100 iterations in two groups of 50, saving a new data file after each 50 iterations. The final line of the file terminates the session. Note that the example input file makes use of the standard aliases for reading and writing case and data files and for iterating. (it is the alias for /solve/iterate, rc is the alias for /file/read-case, wd is the alias for /file/write-data, etc.) These predefined aliases allow you to execute commonly used commands without entering the text menu in which they are found. In general, Ansys Fluent assumes that input beginning with a / starts in the top-level text menu, so if you use any text commands for which aliases do not exist, you must be sure to type in the complete name of the command (for example, /solve/initialize/initialize-flow). Note also that you can include comments in the file. As in the example above, comment lines must begin with a ; (semicolon).

An alternate strategy for submitting your batch run, as follows, has the advantage that the output-file will contain a record of the commands in the inputfile. In this approach, you would submit the batch job in a C-shell using:

```
fluent 2d -g -i inputfile >& outputfile &
```

or in a Bourne/Korn-shell using:

```
fluent 2d -g -i inputfile > outputfile 2>&1 &
```

4.2.2. Background Execution on Windows Systems

To run Ansys Fluent in the background on a Windows system, the following commands can be used:

```
fluent 3d -g -i journal

fluent 3d -g -wait -i journal

fluent 3d -hidden -i journal
```

In these examples,

- fluent is the command you type to run Ansys Fluent interactively.
- -q indicates that the program is to be run minimized in the task bar.
- -i journal reads the specified journal file.
- -wait is the command you type in a DOS batch file or some other script in a situation where the script must wait until Ansys Fluent has completed its run.
- -hidden is similar to the -wait command, but also runs Ansys Fluent completely hidden and non-interactively.

To get an output (or transcript) file while running Ansys Fluent in the background on a Windows system, the journal file must contain the following command to write a transcript file:

```
; start transcript file /file/start-transcript outputfile.trn
```

where the outputfile is a file that the background job will create, which will contain the output that Ansys Fluent would normally print to the screen (for example, the menu prompts and residual reports).

See Creating and Reading Journal Files (p. 861) in the User's Guide (p. 1) for details about journal files. See Creating Transcript Files (p. 865) in the User's Guide (p. 1) for details about transcript files.

4.2.3. Batch Execution Options

During a typical session, Ansys Fluent may require feedback from you in the event of a problem it encounters. Ansys Fluent usually communicates problems or questions through the use of **Error** dialog boxes, **Warning** dialog boxes, or **Question** dialog boxes. While executing Ansys Fluent in batch mode, you may want to suppress this type of interaction in order to, for example, create journal files more easily.

There are three common batch configuration options available to you when running Ansys Fluent in batch mode. You can access these options using the **Batch Options** dialog box (Figure 4.6: The Batch Options Dialog Box (p. 187)).

```
File → Batch Options...
```

Figure 4.6: The Batch Options Dialog Box

The **Batch Options** dialog box contains the following items:

Confirm File Overwrite

determines whether Ansys Fluent confirms a file overwrite. This option is turned on by default.

Hide Questions

allows you to hide **Question** dialog boxes. This option is turned off by default.

Exit on Error

allows you to automatically exit from batch mode when an error occurs. This option is disabled by default.

When run in batch mode through the command prompt or a journal file with **Exit on Error** enabled, Fluent will exit under the following circumstances:

- Normal run termination upon reaching the end of a journal (return value 0)
- Error returned during scripted text command execution (return value 1)
- Unexpected input (wrong type) to text command (return value 1)
- Licensing error (return value 2)

If an invalid text command is entered, Fluent will not exit, but proceed to the next text input.

Note that in Windows you must start Fluent with the -wait command line option.

file → set-batch-options

Any combination of these options can be turned on or off at any given time prior to running in batch mode.

Important:

Batch option settings are *not* saved with case files. They are meant to apply for the duration of the current Ansys Fluent session only. If you read in additional mesh or case files during

this session, the batch option settings will not be altered. As batch options are not saved with case files, journal files developed for use in batch mode should begin by enabling the desired batch option settings (if different from the default settings).

4.3. Switching Between Meshing and Solution Modes

You can switch from the meshing mode of Fluent to the solution mode by clicking the **Switch to Solution** button, located by default in the top left corner of the application window. The mesh from your meshing mode session will be transferred and read in the new solution mode session.

You can switch from the solution mode of Fluent to the meshing mode by using the switch-to-meshing-mode text command. Note that this text command is only available for 3D sessions, before you have read a mesh or case file.

Note:

When you read a non-conformal interface case file into meshing mode and later switched to the solution mode, note the following limitations:

- Zone ids may match, however, the corresponding zone names may be inconsistent.
- Boundary conditions on intersected threads are not preserved.
- Unassociated (dangling) non-conformal interface (NCI) surfaces remain present.

4.4. Checkpointing an Ansys Fluent Simulation

The checkpointing feature of Ansys Fluent allows you to save case and data files while your simulation is running. While similar to the autosave feature of Ansys Fluent (Automatic Saving of Case and Data Files (p. 854) in the User's Guide (p. 1)), which allows you to save files throughout a simulation, checkpointing allows you slightly more control in that you can save an Ansys Fluent job even after you have started the job and did not set the autosave option. Checkpointing also allows you to save case and data files and then exit out of Ansys Fluent. This feature is especially useful when you need to stop an Ansys Fluent job abruptly and save its data.

There are two different ways to checkpoint an Ansys Fluent simulation, depending upon how the simulation has been started.

1. Ansys Fluent running under LSF or SGE

Ansys Fluent is integrated with load management tools like LSF and SGE. These two tools allow you to checkpoint any job running under them. You can use the standard method provided by these tools to checkpoint the Ansys Fluent job.

For more information on using Ansys Fluent and SGE or LSF, see Part 3: Running Fluent Under SGE or Part 1: Running Fluent Under LSF, respectively.

2. Independently running Ansys Fluent

When not using tools such as LSF or SGE, a different checkpointing mechanism can be used when running an Ansys Fluent simulation. You can checkpoint an Ansys Fluent simulation while iterating/time-stepping, so that Ansys Fluent saves the case and data files and then continues the calculation, or so that Ansys Fluent saves the case and data files and then exits.

• Saving case and data files and continuing the calculation:

On Linux, create a file called check-fluent, that is,

```
/tmp/check-fluent
```

On Windows, create a file called check-fluent.txt, that is,

```
C:\temp\check-fluent.txt
```

• Saving case and data files and exiting Ansys Fluent:

On Linux, create a file called exit-fluent, that is,

```
/tmp/exit-fluent
```

On Windows, create a file called exit-fluent.txt, that is,

```
C:\temp\exit-fluent.txt
```

The saved case and data files will have the current iteration number appended to their file names.

Ansys Fluent offers an alternate way to checkpoint an unsteady simulation. While the default behavior is to checkpoint the simulation at the end of the current iteration, for unsteady simulations you have the option of completing all of the iterations in the current time-step before checkpointing. This can be set by entering the following Scheme command prior to running the unsteady simulation:

```
(ckpt/time-step? #t)
```

Now when you save the checkpoint file (as described previously), the case and data file will be saved at the end of the current time step and named accordingly. To switch back to the default checkpointing mechanism at the end of the current iteration, use the following Scheme command:

```
(ckpt/time-step? #f)
```

Important:

Note that the (ckpt/time-step? #t) command will have the effect only in the case of an unsteady simulation.

Note:

It is recommended that you do *not* use checkpointing when using Ansys Fluent in Workbench. However, if checkpointing is necessary, the <code>exit-fluent/exit-fluent.txt</code> file can be used and the file will be checked in its default location (the FFF/FLU system directory

containing the *.set file). If Ansys Fluent is calculating, then the existence of the file is equivalent to an **interrupt** command. Similarly, the check-fluent/check-fluent.txt file can be used to save the project on demand when Ansys Fluent is calculating.

4.5. Cleaning Up Processes From an Ansys Fluent Simulation

Ansys Fluent lets you easily remove extraneous processes in the event that an Ansys Fluent simulation must be stopped.

When a session is started, Ansys Fluent creates a cleanup-fluent script file. The script can be used to clean up all Ansys Fluent-related processes. Ansys Fluent creates the cleanup-script file in the current working directory with a filename that includes the machine name and the process identification number (PID) (for example, cleanup-fluent-mymachine-1234).

If the current directory does not possess the proper write permissions, then Ansys Fluent will write the cleanup-script file to your home directory.

If, for example, Ansys Fluent is started on a machine called thor and the process identification number is 32895, Ansys Fluent will create a cleanup-script called cleanup-fluent-thor-32895 in the current directory. To run the cleanup-script, and clean up all Ansys Fluent processes related to your session, on Linux platforms, type the following command in the console window:

sh cleanup-fluent-thor-32895

Or, if the shell script already has executable permissions, simply type:

cleanup-fluent-thor-32895

To clean up extraneous Ansys Fluent processes on Windows (serial or parallel), double-click the corresponding batch file (for example, cleanup-fluent-thor-32895.bat) that Ansys Fluent generates at the beginning of each session.

Important:

During a normal run, this file will be deleted automatically after exiting Ansys Fluent. In abnormal situations, you may use this batch file to clean up the Ansys Fluent processes. Once an Ansys Fluent session has been closed, you can safely delete any left over cleanup scripts from your working directory.

Important:

If an Ansys Fluent session hangs or freezes on Windows, and you want to view the complete contents of the Ansys Fluent console output in a transcript file, you should use the taskkill command through the DOS command prompt, rather than terminating the Ansys Fluent application through the **Windows Task Manager**.

4.6. Exiting Ansys Fluent

You can exit Ansys Fluent by selecting **Exit** in the **File** ribbon tab. If the present state of the program has not been written to a file, a **Question** dialog box will open to confirm if you want to proceed. You can cancel the exit and write the appropriate file(s) or you can continue to exit without saving the case or data.

Release 2021 R2 - © ANSYS, Inc. All rights reserved Contains proprietary and confidential information
of ANSYS. Inc. and its subsidiaries and affiliates.

Glossary of Terms

This glossary contains a listing of terms commonly used throughout the documentation.

- adaption (p. 193)
- case files (p. 193)
- cell types (p. 194)
- · computational fluid dynamics (CFD) (p. 194)
- console (p. 195)
- convergence (p. 195)
- cortex (p. 195)
- data files (p. 195)
- dialog boxes (p. 195)
- discretization (p. 195)
- GUI (p. 195)
- mesh (p. 195)
- models (p. 195)
- node (p. 195)
- postprocessing (p. 195)
- residuals (p. 195)
- skewness (p. 196)
- solvers (p. 196)
- terminal emulator (p. 196)
- TUI (p. 196)

adaption

A technique useful in improving overall mesh quality. The solution-adaptive mesh refinement feature of Ansys Fluent allows you to refine and/or coarsen your mesh based on geometric and numerical solution data. In addition, Ansys Fluent provides tools for creating and viewing adaption fields customized to particular applications.

case files

Files that contain the mesh, boundary conditions, and solution parameters for a problem. A case file also contains the information about the user interface and graphics environment.

cell types

The various shapes or units that constitute the base elements of a mesh. Ansys Fluent can use meshes composed of tetrahedral, hexahedral, pyramid, wedge, or polyhedral cells (or a combination of these).

Figure 8: Cell Types

computational fluid dynamics (CFD)

The science of predicting fluid flow, heat transfer, mass transfer (as in perspiration or dissolution), phase change (as in freezing or boiling), chemical reaction (for example, combustion), mechanical movement (for example, fan rotation), stress or deformation of re-

pyramid

polyhedron

wedge

lated solid structures (such as a mast bending in the wind), and related phenomena by solving the mathematical equations that govern these processes using a numerical algorithm on a computer.

console The console is part of the Ansys Fluent application window that al-

lows for text command input and the display of information.

convergence The point at which the solution is no longer changing with each

successive iteration. Convergence criteria, along with a reduction in residuals, also help in determining when a solution is complete. Convergence criteria are pre-set conditions on the residuals that indicate that a certain level of convergence has been achieved. If the residuals for all problem variables fall below the convergence criteria but are still in decline, the solution is still changing to a greater or lesser degree. A better indicator occurs when the residuals flatten in a traditional residual plot (of residual value vs. iteration). This point, sometimes referred to as convergence at the level of machine accuracy, takes time to reach, however, and may be beyond your needs. For this reason, alternative tools such as reports of forces,

heat balances, or mass balances can be used instead.

cortex A utility that manages Ansys Fluent's user interface and basic

graphical functions.

data files Files that contain the values of the flow field in each grid element

and the convergence history (residuals) for that flow field.

dialog boxes The separate windows that are used like forms to perform input

tasks. Each dialog box is unique and employs various types of input

controls that make up the form.

discretization The act of replacing the differential equations that govern fluid flow

with a set of algebraic equations that are solved at distinct points.

GUI The graphical user interface, which consists of the main Ansys Fluent

application window, dialog boxes, graphics windows, etc.

mesh A collection of points representing the flow field, where the equa-

tions of fluid motion (and temperature, if relevant) are calculated.

models Numerical algorithms that approximate physical phenomenon (for

example, turbulence).

node The distinct points of a mesh (p. 195) at which the equations of fluid

motion are solved.

postprocessing The act of analyzing the numerical results of your CFD simulation

using reports, integrals, and graphical analysis tools such as contour

plots, animations, etc.

residuals The small imbalance that is created during the course of the iterative

solution algorithm. This imbalance in each cell is a small, non-zero

value that, under normal circumstances, decreases as the solution

progresses.

skewness The difference between the shape of the cell and the shape of an

equilateral cell of equivalent volume. Highly skewed cells can de-

crease accuracy and destabilize the solution.

solvers Ansys Fluent has two distinct solvers, based on numerical precision

(single-precision vs. double-precision). Within each of these categories, there are solver formulations: pressure based; density based ex-

plicit; and density based implicit.

terminal emulator See console (p. 195).

TUI The text user interface, which consists of textual commands that

can be entered into the terminal emulator.