Analogue Electronics 1 (EE204FZ)

Tutorial 2

Q1. Circle the correct answer.
1. A certain depletion-type MOSFET is biased at $V_{\rm GS}$ = 0 V. Its datasheet specifies $I_{\rm DSS}$ = 20 mA and the value of the drain current A. 0 A B. cannot be determined C. 20 mA D. very high
 2. The effective channel length of an n-channel MOSFET in saturation decreases with an increase in A. drain voltage B. gate voltage C. source voltage D. body voltage
 3. The main advantage of CMOS is its A. high power rating B. lower power consumption C. small signal operation D. switching capability
4. Which of the following statements on using MOSFETs as resistors is NOT true? A. Device resistance can be voltage controlled B. In the triode region ($V_{GS} > V_{T}$ and V_{DS} is small), MOSFETs can be used as adjustable resistors with high resistance values C. MOSFET resistors usually have smaller footprints than other on-chip resistors D. MOSFET resistors can be very precise
 5. When an input signal reduces the channel size of a MOSFET, the process is called A. gate charging B. enhancement C. substrate connecting D. depletion
Q2. Answer the following questions.
1. How would you create a small and voltage controllable resistor using a MOSFET? State the two

Low

advantages of this device.

2. Figure Q2 shows a circuit implementation of an inverter using MOSFETs. Explain its operation. In your explanation, explain why the use of MOSFETs can lead to a very power efficient implementation for logic gates.

Fig. Q2

Q3. Determine in which mode (depletion, enhancement or neither) each depletion-type MOSFET in Fig Q3 is biased. Explain your reason briefly.

Q4. An enhancement-type PMOS transistor in Fig Q4 has $\mu_p C_{ox}(W/L) = 80 \,\mu\text{A/V}^2$, $|V_T| = 1.5 \,\text{V}$ and $|\lambda| = 0.02 \text{ V}^{-1}$. The gate is connected to ground and the source to +5 V. Find the drain current for V_D = +4 V, +1.5 V, 0 V, and -5 V.

Fig Q4

Q5. The MOSFET circuit shown in Fig Q5 uses a MOSFET with $\mu_{\rm n}C_{\rm ox}(W/L)$ = 250 μ A/V², $V_{\rm T}$ = 0.5 V. For R = 100 ohm and $V_{\rm DD}$ = +5 V, solve MOSFET's device current and drain voltage, and indicate whether the device is operating in the saturation region or the triode region.

Fig Q5