Département d'informatique

EMD Bases de Données 2L

Corrigé

Question de cours : (03 pts)

1- Quel est la différence entre un schéma de relation et un schéma de base de données relationnelle ?

une extension est l'ensemble des tuples (contenu évolutif).

Quel est la différence entre une intension et une extension dans une BD relationnelle ?
 Réponse : Une intension c'est la description par les attributs (structure fixe) ;

Exercices 1: Normalisation (04 pts)

Soit le schéma relationnel R (A, B, C, D, E, H) et l'ensemble des dépendances fonctionnelles associé $F = \{AB \rightarrow C ; B \rightarrow D ; D \rightarrow E ; A \rightarrow C\}$

1- Déterminer les attributs clés et les attributs non clés :

Réponse: ***** On commence par le calcul d'une couverture minimale*****

- Couverture minimale : On remarque directement que la Df AB→C est une Df non élémentaire et redondante (car on a la Df A→C dans l'ensemble F); donc on la supprime. Les Dfs restantes sont élémentaires non redondantes
 => F⁰ = {B→D; D→E ; A→C}(0.25 pt)
- Les attributs qui n'existent jamais en parties droites des DF de F° sont des attributs clé : Donc A, B, H sont des attributs clé. Si (ABH)⁺= ABHCDE Alors ABH est la seule clé de R et les attributs A,B,H sont les seuls attributs clé de R.

- (Si la fermeture de cet ensemble d'attribut = l'ensemble de tous les attributs de la relation, alors cet ensemble forment une clé de la relation (et se sera la seule car elle est composée des attribut qui n'existent pas en partie droite des DFs de F))
- (ABH)⁺= ABHCDE ; donc ABH est une clé de R (c'est la seule clé)
- Attributs clé : A,B,H (0.5 pt)
- Attributs non clé : C,D,E (0.25 pt)
- 2- Quelles sont les clés candidates de R?
- 3- Quelle est la FN de R? Justifier.
 - Réponse : R est en 1FN...(0.5 pt), elle n'est pas en 2FN (à cause de la DF B→D Par exemple)...(0.5 pt)
- 4- Proposer une décomposition de R si elle n'est pas en 3FN.
 - Réponse : Décomposition de R :

$$G = \{B \rightarrow D ; D \rightarrow E ; A \rightarrow C\}$$

- $G_1 = \{B \rightarrow D\} \Rightarrow R_1(B,D); DF: B \rightarrow D \dots (0.25 pt)$
 - $G_2 = \{D \rightarrow E\} \implies R_2(D,E); DF: D \rightarrow E \dots (0.25 pt)$
 - $G_3 = \{A \rightarrow C\} => R_3(A,C); DF: A \rightarrow C \dots (0.25 pt)$
- Comme la clé (ABH) n'appartienne à aucune des relations R₁, R₂, R₃ et pour que la décomposition soit sans perte d'information, on rajoute une dernière R4 relation qui contient la clé et sans aucune DF.

$$R_4(A,B,H)$$
 ... $(0.25 pt)$

```
Exercice 2 : AR et SQL (7 pts)

Soir le schéma relationnel suivant :
```

LIVRE (Code_liv, Titre, Nb_Chap)

Auteur (Code_Aut, Code_Liv, Nom_Aut pays)

ETUDIANT (Matricule, Nom, specialite)

EMPRUNT (Code_Liv, Matricule, Date Emprunt, Date retour)

Ecrire les requêtes suivantes en AR et en SQL

1- Titres des livre écrits par l'auteur 'Gardarin'.

- AR: Res :=
$$\Pi_{\text{Titre}}$$
 (Livre \bigcirc ($\sigma_{\text{Nom_Aut='Gardarin'}}$ (Auteur)))) (1 pt)

FROM Livre, Auteur

WHERE Livre.Code_Liv = Auteur.Code_Liv

AND Nom Aut = 'Gardarin';

- Ou bien : SELECT Titre

FROM Livre

- Where Code Liv IN (SELECT Code liv

FROM Auteur

- Where Nom_Aut = 'Gardarin'); (1 pt)

(Réponse en AR et en SQL: 2pts)

- 2- Noms des étudiants qui ont emprunté des livres le '30/09/2020'.
- $AR: \Pi_{Nom}$ (ETUDIANT \bigcirc ($\sigma_{Date_Emprunt} = 30/09/2020$, (EMPRUNT))) (1 pt)

- SQL: SELECT Nom

FROM Etudiant

Where Matricule IN (SELECT Matricule

FROM **EMPRUNT**

Date_Emprunt = $\frac{30}{09}/2020$; (1 pt)

3- Noms des étudiants qui n'ont pas emprunté des livres le '30/09/2020'.

Res := :
$$\Pi_{\text{Nom}}$$
 (ETUDIANT) - Π_{Nom} (ETUDIANT) ($\sigma_{\text{Date_Emprunt}} = 30/09/2020$, (EMPRUNT))) (1 pt)

- SQL : SELECT Nom

FROM Etudiant

Where Matricule NOT IN (SELECT Matricule

FROM **EMPRUNT**

Where Date_Emprunt = '30/09/2020'); (1 pt)

- 4- Livres qui sont empruntés par tous les étudiants.
- Res := $\Pi_{\text{Code,Matricule}}$ (EMPRUNT) / $\Pi_{\text{Matricule}}$ (ETUDIANT) (1 pt)