Свойства счетных множеств

- (1) $B \subset A$ и A счетно, то B не более, чем счетно (н.б.ч.с);
- (2) Если A счетно и B счетно, то $A \times B$ счетно;
- (3) Объединение не более, чем счетного набора не более, чем счетных множеств не более, чем счетно;
- (4) Если A бесконечно, то \exists счетное $B: B \subset A$;

Утв. 1. Если A - счетно, то:

- 1) если существует инъекция $f: B \to A$, то B н.б.ч.с.;
- 2) если существует сюръекция $f: A \to B$, то B н.б.ч.с.;
- \square 1) $f \colon B \to \underbrace{f(B)}_{\text{обл. Знач f}}$ биекция и $f(B) \subset A$ счетно $\Rightarrow f(B)$ н.б.ч.с. $\Rightarrow B$ н.б.ч.с. по определению.
- 2) Опредлим отображение $g \colon B \to A$ следующим образом:

$$\forall b \in B, \exists k \in K = \{a : f(a) = b\} \neq \emptyset : g(b) = k,$$

где множество K непустое, так как у нас сюръекция. Так как f - функция, то g - инъекция. Применяя пункт 1) получим, что B - н.б.ч.с.

Рис. 1: Сюръекция

Rm: 1. Комментарий к доказательству:

 $B \neq \emptyset$ и на B есть сюръекция \Leftrightarrow у каждого элемента B есть прообраз, но он может быть не один (не инъективно). $\forall b \in B$ укажем тот a (выделено синим на рисунке), куда будем возвращаться.

Разным элементам из B, точно не будут соответствовать одни и те же элементы из прообраза, иначе f могло бы отображать один элемент в несколько, а f - это функция и каждому сопостовляет ровно 1 элемент \Rightarrow разным b и c будут соответствовать разные элементы из A. Поэтому из B в A установили инъекцию \Rightarrow по первому пункту B - н.б.ч.с.

Счетность декартовых произведений

(2) Если A - счетно и B - счетно, то $A \times B$ - счетно.

□ Можно пересчитывать по диагонали: справа - налево, сверху - вниз.

Пусть стоит клетка на пересечении k-ой строки и l-го столбца. Она стоит на диагонали с номером k+l-1. Последняя клетка на n-ой диагонали имеет номер: $1+2+3+\ldots+(n-1)+n=\frac{n(n+1)}{2}$.

2-ая диагональ \Rightarrow последний элемент = 1 + 2 = 3, 3-ья диагональ \Rightarrow последний элемент = 1 + 2 + 3 = 6.

Рис. 2: Метод пересчета по диагонали

Если считать по столбцам, то (k,l) элемент отстоит от 1-го столбца на (l-1) шаг \Rightarrow присвоим номер клетке

$$(k,l) \mapsto \frac{(k+l-1)(k+l)}{2} - (l-1),$$

как число шагов вправо от последнего номера на диагонали \Rightarrow получили явную формулу, устанавливающую биекцию $A \times B \mapsto \mathbb{N}$.

Следствие 1. A_1, \ldots, A_n - счетные множества, то $A_1 \times \ldots \times A_n$ - счетное множество (доказательство по индукции).

Счетность объединения множеств

(3) Объединение н.б.ч.с. набора н.б.ч.с. множеств - н.б.ч.с.

 \square Пусть есть множество $A_{\alpha} = \{a_{\alpha\beta} \mid \beta \in J_{\alpha} - \text{н.б.ч.с.}\}$, где $\alpha \in I$ - н.б.ч.с. множество. Покажем, что $\bigcup_{\alpha \in I} A_{\alpha}$ - не более, чем счетно. Если множество н.б.ч.с., то существует сюръекция из $\mathbb N$ в это множество:

(а) Если множество счетное, то существует биекция.

Рис. 3: Сопоставление № конечному множеству

(b) Если множество конечное, то отображение на первые n элементов - биекция, оставшиеся куда-то переводятся \Rightarrow получается сюръекция.

Тогда есть сюръекция $f\colon \mathbb{N} \to \mathrm{I}$. Также $\forall \alpha, A_\alpha = \{a_{\alpha\beta} \mid \beta \in \mathrm{J}_\alpha$ - н.б.ч.с. $\}$ поэтому для каждой α сюръекция будет своя $g_\alpha\colon \mathbb{N} \to \mathrm{J}_\alpha$.

Установим отображение

$$\mathbb{N} \times \mathbb{N} \mapsto \bigcup_{\alpha \in \mathcal{I}} A_{\alpha},$$

как $(n,m)\mapsto a_{f(n)g_{f(n)}(n)}$ - сюръекция \Rightarrow объединение - н.б.ч.с. по утверждению выше.

Объяснение для детей: пересчитываем по диагонали, если элемент был посчитан - не считаем, если считать нечего - то тоже не считаем.

Рис. 4: Пересчет объединения н.б.ч.с набора н.б.ч.с. множеств

Либо все элементы закончатся, либо будуте считать бесконечно долго и получим бесконечно долгий пересчет. Формальное доказательство - то же самое что и здесь.

Пример: Множество рациональных чисел $\mathbb{Q} \subset \mathbb{Z} \times \mathbb{N}$ - счетно, так как: \mathbb{Z} - счетное множество, \mathbb{N} - счетное множество \Rightarrow декартово произведение - счетно $\Rightarrow \mathbb{Q}$ - н.б.ч.с. Так как $\mathbb{N} \subset \mathbb{Q} \Rightarrow \mathbb{Q}$ - счетно.

(4) Если A - бесконечно, то \exists счетное $B: B \subset A$.

 \square Поскольку A - не является конечным, то $A \neq \emptyset$, $a_1 \in A$. $A \setminus \{a_1\} \neq \emptyset$ - поскольку A не является конечным $\Rightarrow a_2 \in A \setminus \{a_1\}, \ldots, a_{n+1} \in A \setminus \{a_1, \ldots, a_n\} \Rightarrow$ получили набор $\{a_n\} \subset A$: для разных номеров - это различные элементы \Rightarrow установлена биекция между этим набором и $\mathbb N$.

Упр. 1. Если A - бесконечное и C - счетное, то $A \cup C \sim A$.

Пример Кантора

 $\{0,1\}^{\infty}$ - множество всех бесконечных последовательностей из 0 и 1.

Утв. 2. Множество $\{0,1\}^{\infty}$ - не является счетным.

 \square (От противного): Предположим, что можно занумеровать эти последовательности натруальными числами: I: $0110\dots$; II: $1110\dots$; , ..., n: ...; Возьмем такую последовательность: 1-ый элемент из 1-ой последовательности, 2-ой элемент из 2-ой последовательности, ..., n-ый элемент из n-ой последовательности и так далее.

Возьмем отрицание данной последовательности, то есть: $0 \to 1$ и $1 \to 0$.

Этой последовательности в списке нет, поскольку на 1-ом месте у нее находится не то, что у 1-ой последовательности, на 2-ом месте - не то, что у 2-ой, на n-ом месте - не то, что у n-ой и так далее \Rightarrow от каждой в списке отличается в диагональном элементе \Rightarrow такой последовательности нет \Rightarrow для любого пересчета будет указана последовательность, которая там не находится.

Теорема Кантора-Берштейна

Теорема 1. (Кантора Берштейна): Если $A \sim B' \subset B$ и $B \sim A' \subset A \Rightarrow A \sim B$.

Рис. 5: Отображения множеств: $f \colon A \to B', g \colon B \to A', g \circ f \colon A \to A_2$

 \square Множество A биективно отображается на B', множество B биективно отображается на A'. Возьмем композицию этих отображений. Композиция биекций - это биекция, поэтому мы можем заключить, что $A \sim A_2$.

$$f: A \to B', g: B \to A', g \circ f: A \to A_2$$

Перерисуем картинку следующим образом: множества $A_0 = A$, $A_1 = A'$ и $A_2 = A_2$.

Рис. 6: Разбиение исходного множества A

Идея: $A_2 \subset A_0$ и $A_2 \sim A_0$ значит все, что находится между ними также должно быть равномощно $A_0 = A$. Зная, что $A_0 \sim A_2$ хотим показать, что $A_0 \sim A_2 \Rightarrow A_0 \sim A_1$, тогда $A \sim A' \sim B \Rightarrow A \sim B$.

Рис. 7: Построение множеств A_{2n+1} и A_{2n}

Есть биекция $h\colon A_0\to A_2$. Она же переводит A_1 в некое множество, пусть: $A_3=h(A_1)$. В множестве A_1 есть $A_2\Rightarrow A_2\subset A_0\Rightarrow$ биекция переводит A_2 в некое множество $A_4=h(A_2)$. Продолжаем по аналогии и получаем: $A_5=h(A_3),\,A_6=h(A_4),\ldots$, и так далее. Обозначим центр, как D он может быть пустым. Получим:

$$A_{2n+1} = h(A_{2n-1}), A_{2n} = h(A_{2n-2})$$

Построим следующие множества: $C_0 = A_0 \setminus A_1$, $C_1 = A_2 \setminus A_3$.

Проверим, что $C_0 \sim C_1$: $A_0 \xrightarrow{h} A_2$ - биекция, $A_0 \supset A_1 \xrightarrow{h} A_3 \subset A_2$ - биекция \Rightarrow поскольку h - биекция, то $h: A_0 \setminus A_1 \to A_2 \setminus A_3 \Rightarrow C_0 \sim C_1$.

Рис. 8: Построение множеств C_m и D_k

Далее построим следующие множества: $C_1 = A_2 \setminus A_3$, $C_2 = A_4 \setminus A_5$.

Покажем, что $C_1 \sim C_2$, аналогично проверенному: $A_2 \xrightarrow{h} A_4$ - биекция, $A_2 \supset A_3 \xrightarrow{h} A_5 \subset A_4$ - биекция \Rightarrow поскольку h - биекция, то $h: A_2 \setminus A_3 \to A_4 \setminus A_5 \Rightarrow C_1 \sim C_2$.

И так далее по аналогии. Получим биекцию h которая переводит эти слои друг в друга:

$$C_1 \xrightarrow{h} C_2 \xrightarrow{h} C_3 \xrightarrow{h} \dots$$

Поскольку слоев бесконечно много, то первый слой биективно перекладываем внутрь. Таким образом - все закрашенные круги сдвигаются внутрь, а все незакрашенные (обозначим их, как D_k) остаются на месте:

$$A_0 = C_0 \cup D_0 \cup C_1 \cup D_1 \cup \ldots \cup D$$
$$A_1 = D_0 \cup C_1 \cup D_1 \cup \ldots \cup D$$

Устанавливаем биекцию $F: D_i \to D_i, F: C_i \to C_{i+1}$. Множества попарно не пересекаются и для каждого установлен переход $\Rightarrow A_0 \to A_1$ - биекция.

Теорема Кантора

Теорема 2. $A \nsim 2^A$

Предположим противное, что $\exists f \colon A \to 2^A$ - биекция. Тогда по этому отображению $a \to f(a)$, где f(a) - множество. Рассмотрим множество $C = \{a \colon a \notin f(a)\} \subset A$ - это те элементы a, образ которых их не содержит. Так как $C \subset A$, то по построению $\exists b \in A \colon f(b) = C$, поскольку у нас биекция. В случае $b \in f(b) = C \Rightarrow b \notin f(b)$ - противоречие. В случае $b \notin f(b) \Rightarrow b \in C = f(b)$ - противоречие. Поэтому не существует такой биекции \Rightarrow множества не равномощны.

Упр. 2. Сравнить с парадоксом Рассела.

В 2^A есть набор подмножеств, вида $\{a\}$ - одноэлементные подмножества, где $a \in A$. Этот набор отождествляется с A или равномощен A. Таким образом $A \sim C \subset 2^A$, но $A \nsim 2^A \Leftrightarrow A$ - меньше по мощности, чем множество всех подмножеств 2^A .

Rm: 2. Множество всех подмножеств \mathbb{N} не может быть счетным по теореме Кантора: $2^{\mathbb{N}} \sim \mathbb{N}$.

Данный пример ничем не отличается от предыдущего примера про несчетные множества: Возьмем последовательность $B \in 2^{\mathbb{N}}$, состоящую из 0 и 1. Выпишем последовательность натуральных чисел $1, 2, \ldots, n, \ldots$ и будем ставить 1 если $n \in B$ и 0 если $n \notin B$. Таким образом напротив каждого натурального числа будет 0 или 1. Следовательно есть биекция: $2^{\mathbb{N}} \sim \{0,1\}^{\infty}$.

Упр. 3. Сравнить обоснование примера Кантора и доказательства теоремы Кантора.