

NextRAN-Al

ETH- Huawei Sweden

Marco Bertuletti <u>mbertuletti@iis.ee.ethz.ch</u>

Yichao Zhang <u>yiczhang@iis.ee.ethz.ch</u>

Mahdi Abdollahpour <u>mahdi.abdollahpout@unibo.it</u>

Alessandro Vanelli-Coralli <u>avanelli@iis.ee.ethz.ch</u>

Luca Benini <u>lbenini@iis.ee.ethz.ch</u>

PULP Platform

Open Source Hardware, the way it should be!

youtube.com/pulp_platform

Outline

- Models currently under study
- Details on the model architecture
- Computational complexity of models

Focus on CSI and full MIMO AI-receivers

- Channel State Information (CSI)
 - Influences the performance of the receiver (BER vs SNR)
 - Must be performed on the edge, to avoid data transfer on the fronthaul and low-latency
 - Compute requirements scale with the MIMO-size (UEs/BW and number of antennas)
- We target full MIMO receivers → full implementation of the low-PHY
 - Direct comparison with the work on PUSCH
 - Partial model-driven and data-driven rx, depending on blocks with highest perf. gains

Models currently under study

Name	Processing	NSC	NRXxNTX	Modulation	Model	Gain wrt conventional receiver @BER10 ⁻³	
Deep-RX SIMO	Ch.Est. + Det.	312	2x1	16QAM	ResNet	2.5 dB *	
Deep-RX MIMO	Ch.Est. + Det.	312	16x4	16QAM	ResNet	2.5 dB *	
Neural-RX	Ch.Est. + Det.	1584	4x2	16QAM	CGNN	1.7 dB *	
Neural-RX RT	Ch.Est. + Det.	1584	4x2	16QAM	CGNN	1.0 dB *	
Extend to more subcarriers, RX, TX for B5G use-cases							

^{*} LS Channel Estimation + LMMSE Detection

1. DeepRX-SIMO: architecture

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9345504

- Channel Estimation + DMR extraction + Detection
- Concatenate inputs, channel and pilots
- Based on ResNet (Depthwise separable convolutions + ReLU activation)

1. DeepRX-SIMO: summary

Parameters				
NRX x NTX	2x1			
NSC	312			
Modulation	16QAM			
Channel Evaluation	TDL-A, TDL-E			

NeuralRX

DeepRX

DeepRX-MIMO

LS Che+LMMSE Det.

NeuralRX-RT

2. DeepRX-MIMO: architecture

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9500518

- Channel Estimation + DMR extraction + Detection
- Extension of DeepRX to handle multiple spatial streams

- MRC (Minimum-Ratio combining) = partial equalization, hypothesis that TX experience orthogonal channel realizations.
- 2. Learned sparse multiplication + partition in 3 streams and multiplication.

2. DeepRX-MIMO: summary

Parameters				
NRX x NTX	16 x 4			
NSC	312			
Modulation	16QAM			
Channel Evaluation	TDL-A, TDL-E			

Trainable param.s

https://arxiv.org/pdf/2312.02601

Concatenation of inputs and input CNN (ResNet based)

https://arxiv.org/pdf/2312.02601

- PU
- Concatenation of inputs and input CNN (ResNet based)
- Fully-Connected layer over the depth of «state-tensor»
- 3. Message-Passing = averaging on the TX dimension

Message

Passing

https://arxiv.org/pdf/2312.02601

- Concatenation of inputs and input CNN (ResNet based)
- Fully-Connected layer over the depth of «state-tensor»
- Message-Passing = averaging on the TX dimension
- 4. Concatenation with previous state + pilots

https://arxiv.org/pdf/2312.02601

- Concatenation of inputs and input CNN (ResNet based)
- Fully-Connected layer over the depth of «state-tensor»
- 3. Message-Passing = averaging on the TX dimension
- Concatenation with previous state + pilots and «state-update»

4. NeuralRX-RT

https://arxiv.org/pdf/2409.02912

Extension of NeuralRX for Real-Time execution:

- Target 1ms latency → reduce number of state-update iterations (higher BER)
- Add site-specific fine-tuning (few thousands iterations and data-samples)

4. NeuralRX-RT

FLOPs Neural-RX & Neural-RX RT

Param.s Neural-RX & Neural-RX RT

Extension of NeuralRX for Real-Time execution:

- Target 1ms latency → reduce number of state-update iterations (higher BER)
- Add site-specific fine-tuning (few thousands iterations and data-samples)

3/4. NeuralRX: summary

Parameters				
NRX x NTX	4 x 2			
NSC	1584			
Modulation	16QAM			
Channel Evaluation	TDL-B, TDL-C			

ΔSNR[dB]@BER=0.001 vs LS-Che + LMMSE-Det.

Computational complexity for conventional algorithms far below Al-models

Trainable param.s

We choosed to explore NeuralRX

Advantages of NeuralRX over other models

- **Flexible** = the same trained model supports different number of users, different number of subcarriers, different modulation schemes
- It generalizes well to many different channel models
- It is open-sourced and tested already on a real-time and standard compliant scenario (NeuralRX RT)

Open-issues & Next Steps:

- Reduce model size and computational complexity for edge-deployment
- Possibly extend to more subcarriers, transceivers

3/4. NeuralRX on TeraPool

FLOPs/s vs TeraPool's

Trainable param.s vs TeraPool's Memory

The number of operations per cycle required to TeraPool skyrockets.

However the memory required to store the trainable parameters is adequate.

→ Need to push the performance

We choosed to explore NeuralRX

Advantages of NeuralRX over other models

- **Flexible** = the same trained model supports different number of users, different number of subcarriers, different modulation schemes
- It generalizes well to many different channel models
- It is open-sourced and tested already on a real-time and standard compliant scenario (NeuralRX RT)

Next Steps:

- Reduce model size and computational complexity for edge-deployment
- Possibly extend to more subcarriers, transceivers
- Adequate TeraPool's computation per cycle

