Complex Numbers

Shiv Shankar Dayal

July 16, 2022

Geometrical Representation

Lte $z_1=x_1+iy_1$ and $z_2=x_2+iy_2$ be two complex numbers which are represented by two points P_1 and P_2 in the following diagrams.

Addiiton

Addition of Two Complex Numbers

Clearly,
$$z = z_1 + z_2 = x_1 + x_2 + i(y_1 + y_2)$$
.

Let P_1M, P_2L and PN be parallel to the y-axis; P_1K be parallel to the x-axis. This implied that triangle OP_2L and PP_1K are congruent.

We have
$$P_1K = OL = x_1$$
 and $P_2L = PK = y_1$

Thus,
$$ON = OM + MN = OL + P_1K = x_1 + x_2$$

and
$$PN = PK + KN = P_2L + P_1M = y_2 + y_1$$

So we can say that coordinates of P are (x_1+x_2,y_1+y_2) which represents the complex number z.

We also see that this obeys vector addition i.e. $OP_1 + OP_2 = OP_1 + P_1P = OP$

Subtraction

Subtraction

We first represent $-z_2$ by P_2' so that P_2P_2' is bisected at O. Complete the parallelogram OP_1PP_2' . Then it can be easily seen that P represented the difference z_1-z_2 .

As OP_1PP_2' is a parallelogram so $P_1P=OP_2'$. Using vetor notation, we have,

$$z_1 - z_2 = OP_1 - OP_2 = OP_1 + OP_2' = OP_1 + P_1P = P_2P1$$

It follows that the complex number z_1-z_2 is represented by the vector P_1P_2 , where points P_1 and P_2 represent the complex numbers z_1 and z_2 respectively.

It should be noted that $arg(z_1-z_2)$ is the angle through which OX must be rotated in the anticlockwise direction to make it parallel with P_1P_2 .

Multiplication

For multiplication it is convenient to use Euler's formula of complex numbers.

Let
$$z_1=r_1e^{i\theta_1}$$
 and $z_2=r_2e^{i\theta_2},$ then clealry, $z_1z_2=r_1r_2e^{i(\theta_1+\theta_2)}$

Division

For division also it is convenient to use Euler's formula of complex numbers.

Let
$$z_1=r_1e^{i\theta_1}$$
 and $z_2=r_2e^{i\theta_2},$ then clealry, $z_1/z_2=r_1/r_2e^{i(\theta_1-\theta_2)}$

Three Important Results

$$\begin{split} z_1-z_2&=\overrightarrow{OP}-\overrightarrow{OQ}=\overrightarrow{QP}\\ \\ \therefore |z_1-z_2|&=|\overrightarrow{QP}|=QP \text{ which is nothing but distance between }P \text{ and }Q.\\ \\ arg(z_1-z_2) \text{ is the angle made by }\overrightarrow{QP} \text{ with }x\text{-axis whis is nothing but }\theta. \end{split}$$

$$\theta = \alpha - \beta = arg(z_3 - z_1) - arg(z_2 - z_1) \Rightarrow \theta = arg\frac{z_3 - z_1}{z_2 - z_2}$$

Similarly if three complex numbers are vertices of a triangle then angles of those vertices can also be computed using previous results.

Similarly, for four points to be concyclic where those points are represented by z_1, z_2, z_3 and z_4 if

$$arg\left(\frac{z_2 - z_4}{z_1 - z_4}, \frac{z_1 - z_3}{z_2 - z_4}\right) = 0$$

Any Root of an Imaginary Number is an Imaginary Number

Let iy be an imaginary number such that $y \neq = 0$

Let $\sqrt[n]{iy} = a, :: iy = a^n$

If a is real then a^n will also be real which is not possib; as iy is an imaginary number so a will also be imaginary.

Square Root of a Complex Number

Consider a complex number z=x+iy and let us say that $\sqrt{x+iy}=a+ib \Rightarrow x+iy=(a^2-b^2)+2abi$

$$\Rightarrow x = a^2 - b^2, y = 2ab$$

then we can write

$$a^2 + b^2 = \sqrt{(a^2 - b^2)^2 + 4a^2b^2}$$

Thus, from these two equations we can write

$$a = \pm \sqrt{\frac{\sqrt{x^2 + y^2} + x}{2}}, b = \pm \sqrt{\frac{\sqrt{x^2 + y^2} - x}{2}}$$

Cube Roots of Unity

Let
$$x=1^{1/3}\Rightarrow x^3=1\Rightarrow x^3-1=0\Rightarrow (x-1)(x^2+x+1)=0$$

$$x=-1,\frac{-1\pm\sqrt{-3}}{2}$$

It can be easily verified that if $\omega=\frac{-1+\sqrt{3}i}{2}$ then $\omega^2=\frac{-1-\sqrt{3}i}{2}$

Thus, three roots of cube root of unity are $1, \omega$ and ω^2 .

It can be easily verified that $1+\omega+\omega^2=0$ (because ω is one of the roots) and $\omega^3=1$.