TEST REPORT

Reference No. : WTS16S1165060-1E

FCC ID..... : 2AKHBFT101

Applicant : Fantem Technologies (Shenzhen) Co., Ltd

District, Shenzhen, Guangdong, China

Manufacturer...... : Fantem Technologies (Shenzhen) Co.,Ltd

Address 5th Floor, Yingtang Building, South 5th Road, HI-tech Park, Nanshan

District, Shenzhen, Guangdong, China

Factory : Fantem Technologies (Shenzhen) Co., Ltd

North, 3/F, Yitoa Technology Industrial Park, Baihua Yuan Rd., The

Address : Second Industrial Area, Guangming Sub-districtOffice, Guangming New

District, Shenzhen, Guangdong, China

Product Name : Cube

Model No. : FT101-A

Brand Name : Fantem

Standards : FCC CFR47 Part 15 Section 15.249: 2016

Date of Receipt sample.... : Nov. 11, 2016

Date of Test.....: Nov. 12 – 30, 2016

Date of Issue : Dec. 24, 2016

Test Result : Pass

Note.....: This report is for Z-wave Function

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Philo Zhong / Manager

Zero Zhou / Test Engineer

2 Contents

			Page			
1		ER PAGE				
2		TENTS				
3	REVIS	SION HISTORY	3			
4	GENE	ERAL INFORMATION	4			
	4.1 4.2 4.3 4.4 4.5 4.6	GENERAL DESCRIPTION OF E.U.T DETAILS OF E.U.T CHANNEL LIST STANDARDS APPLICABLE FOR TESTING TEST FACILITY Z-WAVE TEST MODE				
5	EQUII	PMENT USED DURING TEST	7			
	5.1 5.2 5.3	EQUIPMENTS LIST MEASUREMENT UNCERTAINTY TEST EQUIPMENT CALIBRATION	8			
6	TEST	SUMMARY	9			
7	CONDUCTED EMISSION					
	7.1 7.2 7.3 7.4	E.U.T. OPERATION EUT SETUP MEASUREMENT DESCRIPTION TEST RESULT				
8	RADI	ATION EMISSION TEST	13			
	8.1 8.2 8.3 8.4 8.5 8.6	EUT OPERATION TEST SETUP SPECTRUM ANALYZER SETUP TEST PROCEDURE FREQUENCY RANGE OF RADIATED MEASUREMENTS TEST RESULT				
9	PERIO	ODIC OPERATION	20			
10	BAND	D EDGE	21			
	10.1 10.2	TEST PROCEDURE TEST RESULT				
11	BAND	OWIDTH MEASUREMENT	22			
	11.1 11.2	TEST PROCEDURE TEST RESULT				
12	ANTE	NNA REQUIREMENT	23			
13	РНОТ	TOGRAPHS OF TEST SETUP AND EUT	24			

Reference No.: WTS16S1165060-1E Page 3 of 24

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S1165060-1E	Nov. 11, 2016	Nov. 12 – 30, 2016	Dec. 09, 2016	original	-	replaced
WTS16S1165060-1E	Nov. 11, 2016	Nov. 12 – 30, 2016	Dec. 23, 2016	revision1	updated test report	replaced
WTS16S1165060-1E	Nov. 11, 2016	Nov. 12 – 30, 2016	Dec. 24, 2016	revision2	updated test report	valid

4 General Information

4.1 General Description of E.U.T.

Product Name	: Cube
Model No.	: FT101-A
Model Description	: N/A
Wi-Fi Specification	: 2.4G: 802.11b/g/n HT20/n HT40
Bluetooth Version	: Bluetooth v4.0 Containing Classic and LE mode
Z-wave	: Support
NFC	: Support, working on passive mode.
Hardware Version	: AA
Software Version	: 1.0.0.1

4.2 Details of E.U.T.

Operation Frequency	: Wi-Fi: 802.11b/g/n HT20: 2412~2462MHz	
	802.11n HT40: 2422-2452MHz	
	Bluetooth: 2402~2480MHz	
	Z-wave: 908.40MHz,908.42MHz	
Max. RF output power	:Wi-Fi(2.4G): 9.40dBm	_
	Bluetooth: 8.30dBm	
	Z-wave: 99.87dBuV@3m	
Type of Modulation	: Wi-Fi: CCK, OFDM	
	Bluetooth: GFSK, Pi/4 DQPSK,8DPSK	
	Z-wave: FSK	
	NFC: ASK/2ASK	
Antenna installation	: Wi-Fi/Bluetooth: internal permanent antenna	
	Z-wave: internal permanent antenna	
	NFC: Frame antenna	
Antenna Gain	: Wi-Fi: 1.5dBi	
	Bluetooth: 1.5dBi	
	Z-wave: -3dBi	
Technical Data	: DC 5V, 2A powered by adapter	
	(Adapter Input: 100-240V~, 50-60Hz, 0.25A)	
Adapter	: Manufacturer: ME TECHNOLOGY Co., LTD	
	Model No.: G101U-050200B-1	

Reference No.: WTS16S1165060-1E Page 5 of 24

4.3 Channel List

Z-wave Test Mode						
Channel No. Frequency (MHz) Channel No. Frequency (MHz)						
0	908.40	1	908.42			

4.4 Standards Applicable for Testing

The tests were performed according to following standards:

FCC CFR47 Part 15 Section 15.249: 2016

Telecommunication-RADIO FREQUENCY DEVICES-Intentional Radiators-Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• IC - Registration No.:7760A-1

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A-1, Octorber 15, 2015.

• FCC Test Site 1#- Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#- Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014

4.6 Z-wave Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests.

And according to Part 15.31(m).

Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencies	Location in the range of operation
1 MHz or less	1	Middle.
1 to 10 MHz	2	1 near top and 1 near bottom.
More than 10 MHz	3	1 near top, 1 near middle and 1 near bottom

Reference No.: WTS16S1165060-1E Page 6 of 24

The Frequency range of this product over 908.40MHz to 908.42MHz is less than 1MHz, so only one channel 908.42MHz was recorded and reported.

Test mode	Upper channel	
Z-wave Transmitting	908.42MHz	

5 Equipment Used during Test

5.1 Equipments List

Conducted Emissions Test Site 1#							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017	
2.	LISN	R&S	ENV216	101215	Sep.12, 2016	Sep.11, 2017	
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017	
Condu	cted Emissions Test	Site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017	
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017	
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017	
4.	Cable	LARGE	RF300	-	Sep.12, 2016	Sep.11, 2017	
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#			
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	R&S	FSP	100091	Apr.29, 2016	Apr.28, 2017	
2	Amplifier	Agilent	8447D	2944A10178	Jan.13, 2016	Jan.12, 2017	
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct.17, 2016	Oct.16, 2017	
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	33 6	Apr.09, 2016	Apr.08, 2017	
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017	
8	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017	
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#			
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017	
3	Amplifier	ANRITSU	MH648A	M43381	Apr.13, 2016	Apr.12, 2017	
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017	

RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12, 2016	Sep.11, 2017
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12, 2016	Sep.11, 2017

5.2 Measurement Uncertainty

Parameter		Uncertainty		
Radio Frequency		± 1 x 10 ⁻⁶		
RF Power		± 1.0 dB		
RF Power Density		± 2.2 dB		
		± 5.03 dB		
Radiated Spurious		(Bilog antenna 30M~1000MHz)		
Emissions test		± 5.47 dB		
		(Horn antenna 1000M~25000MHz)		
Conducted Spurious		± 3.64 dB (AC mains 150KHz~30MHz)		
Emissions test				

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S1165060-1E Page 9 of 24

6 Test Summary

Test Items	Test Requirement	Result			
Conducted Emissions	15.207	С			
	15.249(a)	С			
Radiated Emission	15.209				
	15.205(a)				
Periodic Operation	15.35(c)	С			
	15.249	С			
Band Edge	15.205				
	15.209				
Bandwidth	15:215(c)	С			
Antenna Requirement	15.203	С			
Note: C=Compliance; NC=Not Compliance; NT=Not Tested; N/A=Not Applicable.					

Reference No.: WTS16S1165060-1E Page 10 of 24

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207
Test Method: ANSI C63.10:2013;ANSI C63.4:2014

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

 Limit:
 Frequency (MHz)
 Limit (dBμV)

 Qsi-peak
 Average

 0.15 to 0.5
 66 to 56*
 56 to 46*

 0.5 t
 5
 60

60

50

Test Result: Pass Inot applicable (Remark)

5 to 30

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Z-wave Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Test Result

Live line:

Neutral line:

Reference No.: WTS16S1165060-1E Page 13 of 24

8 Radiation Emission Test

Test Requirement: FCC Part15 Paragraph 15.249&15.209&15.205

Test Method: ANSI 63.10: 2013;ANSI C63.4:2014

Measurement Distance: 3m

Test Result: Pass Pass

15.249(a) Limit:

Fundamental frequency	Field strength of fundamental		Field strength of harmonics	
	mV/m	dBuV/m	uV/m	dBuV/m
902-928 MHz	50	94	500	54
2400-2483.5 MHz	50	94	500	54
5725-5875 MHz	50	94	500	54
24.0-24.25 GHz	250	108	2500	68

15.209 Limit:

13.209 Eillit.					
_	Field Strength		Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m Distance uV/m		uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40(29.54+40)	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾ =(40)	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾ =(43.5)	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾ =(46)	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾ =(54)	

Note: RF Voltage(dBuV)=20 log₁₀ RF Voltage(uV)

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Z-wave Transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30MHz to 1GHz.

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH:	Z	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz
	Video Bandwidth	10Hz

Reference No.: WTS16S1165060-1E Page 16 of 24

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X, Y, Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), after pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS16S1165060-1E Page 17 of 24

8.5 Frequency range of radiated measurements.

According to FCC 47 CFR Section 15.33:

- (a) For an intentional radiator, the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:
- (1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- (2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.
- (3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
- (4) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a)(1) through (a)(3) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

Result: So the Frequency range of radiated form: 9 KHz to 10GHz.

Reference No.: WTS16S1165060-1E Page 18 of 24

8.6 Test Result

Test Frequency: 9 KHz~30 MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 10GHz

Frequenc	Receive Turn		_	RX Antenna		Correcte	Composto d	FCC Part 15.249/209/205	
y	r Reading	Detector	table Angle	Height	Pola r	d Factor	Corrected Amplitude	Limit	Margi n
(MHz)	(dBµV)	(PK/QP)	Degre e	(m)	(H/V)	(dB/m)	(dBµV/m)	(dBµV/m)	(dB)
713.85	34.85	QP	51	1.2	Н	6.73	41.58	46.00	-4.42
908.42	79.30	PK	142	1.6	Н	7.69	86.99	114.00	-27.01
908.42	92.18	PK	269	1.3	٧	7.69	99.87	114.00	-14.13
1816.84	52.18	PK	126	0.9	Η	-15.28	36.90	74.00	-37.10
1816.84	60.09	PK	203	0.8	٧	-15.28	44.81	74.00	-29.19
3655.00	50.74	PK	73	1.4	Н	-9.40	41.34	74.00	-32.66
3655.00	51.47	PK	146	2.3	V	-9.40	42.07	74.00	-31.93
4885.00	58.67	PK	29	1.6	Н	-1.76	56.91	74.00	-17.09
4885.00	55.37	PK	236	1.4	V	-1.76	53.61	74.00	-20.39

AV = Peak +20Log10 (duty cycle) =PK+ (-10.12) [refer to section 9 for more detail]

AV = 1 eak 120Log to (duty cycle) = 1 K1 (-10.12) [Telef to Section 9 for more detail]						
Frequency	PK	RX Antenna	Duty cycle	AV	FCC Part 15.249/209/205	
Frequency	FK	Polar	Factor		Limit	Margin
(MHz)	(dBµV/m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
908.42	86.99	Н	-10.12	76.87	94.00	-17.13
908.42	99.87	V	-10.12	89.75	94.00	-4.25
1816.84	36.90	Н	-10.12	26.78	54.00	-27.22
1816.84	44.81	V	-10.12	34.69	54.00	-19.31
3655.00	41.34	Н	-10.12	31.22	54.00	-22.78
3655.00	42.07	V	-10.12	31.95	54.00	-22.05
4885.00	56.91	Н	-10.12	46.79	54.00	-7.21
4885.00	53.61	V	-10.12	43.49	54.00	-10.51

9 Periodic Operation

The duty cycle was determined by the following equation:

To calculate the actual field intensity, the duty cycle correction factor in decibel is needed for later use and can be obtained from following conversion

Duty Cycle(%)=Total On interval in a complete pulse train/ Length of a complete pulse train * % Duty Cycle Correction Factor(dB)=20 * Log₁₀(Duty Cycle)

Total transmission time(ms)	31.20
Length of a complete transmission period(ms)	100*
Duty Cycle(%)	31.20
Duty Cycle Correction Factor(dB)	-10.12

(* Note: the transmitter operates for longer than 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. So the Length of a complete transmission period=100ms)

Refer to the duty cycle plot (as below)

Reference No.: WTS16S1165060-1E Page 21 of 24

10 Band Edge

Test Requirement: 15.249(d): Emissions radiated outside of the specified frequency

bands, except for harmonics, shall be attenuated by at least 50 dB

below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100 kHz, VBW = 300 kHz, Sweep = auto
 Detector function = peak, Trace = max hold

10.2 Test Result

Reference No.: WTS16S1165060-1E Page 22 of 24

11 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.215(c)

Test Method: ANSI C63.10:2013

Test Mode: Transmitting

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyser: RBW = 3 KHz, VBW = 10 KHz

11.2 Test Result

Frequency (MHz)	20dB Bandwidth Emission (kHz)	99% Bandwidth Emission (kHz)
908.42	95.81	92.22

Reference No.: WTS16S1165060-1E Page 23 of 24

12 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one Internal permanent antenna, the gain is -3dBi. meets the requirements of FCC 15.203.

Reference No.: WTS16S1165060-1E Page 24 of 24

13 Photographs of test setup and EUT

Note: Please refer to appendix: WTS16S1165060E_Photo.

=====End of Report=====