EE3731C Pattern Recognition 2

BT Thomas Yeo ECE, CIRC, Sinapse, Duke-NUS, HMS

- Problem 1: density estimation
 - Given data samples x_1, \dots, x_N , estimate p(x)
 - Suppose we assume p(x) is Gaussian with variance 1, then from previous class, ML estimate of mean $\mu_{ML} = \frac{1}{N} \sum_{n} x_n$, and so estimate of p(x) is $\mathcal{N}(\mu_{ML}, 1)$

- Problem 1: density estimation
 - Given data samples x_1, \dots, x_N , estimate p(x)
 - Suppose we assume p(x) is Gaussian with variance 1, then from previous class, ML estimate of mean $\mu_{ML} = \frac{1}{N} \sum_{n} x_n$, and so estimate of p(x) is $\mathcal{N}(\mu_{ML}, 1)$
 - What if we do not know what kind of distribution p is?

- Problem 1: density estimation
 - Given data samples x_1, \dots, x_N , estimate p(x)
 - Suppose we assume p(x) is Gaussian with variance 1, then from previous class, ML estimate of mean $\mu_{ML} = \frac{1}{N} \sum_{n} x_n$, and so estimate of p(x) is $\mathcal{N}(\mu_{ML}, 1)$
 - What if we do not know what kind of distribution p is?
- Problem 2: classification
 - Given input-output pairs $D = \{x_n, y_n\}_{n=1:N}$, learn mapping y = f(x)
 - What if we do not know what kind of function f is?
- Today: Non-parametric approach

Non-parametric Density Estimation: Parzen Window

- Previously assume parametric probability distributions (e.g. Gaussians), but now assume non-parametric
 - Does not mean no parameter!
 - Number and nature of parameters change with data
 - Less assumptions, but need much more data to work well
- Idea: Given x_1, \dots, x_N i.i.d. sampled from unknown p(x)
 - For particular x, count number of samples k falling in window of volume V centered at x
 - $-p(x) \approx \frac{k/N}{V}$
- Two approaches
 - Parzen windows: fix V, estimate k
 - KNN: fix k, determine V

Parzen Window

• Square cube: $\phi(u) = \begin{cases} 1 & |u_j| \le 0.5, j = 1, \dots, d \\ 0 & \text{otherwise} \end{cases}$

- $\phi(\frac{x-x_i}{h}) = \begin{cases} 1 & x_i \text{ inside hypercube of width } h \text{ centered at x} \\ 0 & \text{otherwise} \end{cases}$
- $k(x) = \sum_{i} \phi(\frac{x-x_i}{h}) = \#$ samples in hypercube
- Parzen window estimation:

$$p(x) = \frac{k(x)/N}{V} = \frac{\sum_{i} \phi(\frac{x-x_{i}}{h})/N}{h^{d}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^{d}} \phi\left(\frac{x-x_{i}}{h}\right)$$

Parzen Window as Histogramming

Parzen window estimate: $p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^d} \phi(\frac{x-x_i}{h})$

- Interpretation 1: At x, count fraction of samples in hypercube centered at x
- Example:
 - -6 samples at 2, 3, 4, 8, 10, 11

$$-d=1, h=3, x=1$$
:

$$p(1) = \frac{1}{6} \sum_{i=1}^{6} \frac{1}{3} \phi\left(\frac{1-x_i}{3}\right) = \frac{1}{18} [1+0+0+0+0+0] = \frac{1}{18}$$

Parzen Window as Interpolation

Parzen window estimate: $p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^d} \phi(\frac{x-x_i}{h})$

• Interpretation 2: At x, sum of N hypercubes centered at x_i

• Instead of hypercube, can use other windows (e.g., Gaussians):

$$\phi(u) \ge 0$$
 and $\int \phi(u)du = 1$,

guaranteeing $p(x) \ge 0$ and integrates to 1 because $\frac{1}{h^d} \int \phi\left(\frac{x-x_i}{h}\right) dx = 1$

• Window function used for interpolation: p(x) is weighted average of samples

Smooth Windows

Parzen window estimate: $p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^d} \phi(\frac{x-x_i}{h})$

• With smooth windows (e.g., Gaussians), resulting p(x) is smooth

Convergence Conditions

Parzen window estimate:
$$p_N(x) = \frac{k_N(x)/N}{V_N} = \frac{1}{N} \sum_{i=1}^N \frac{1}{h_N^d} \phi\left(\frac{x-x_i}{h_N}\right)$$

- As $N \to \infty$, want $p_N(x) \to \text{true } p(x)$
- 4 sufficient conditions
 - $-\sup_{u}\phi(u)<\infty$
 - $-\lim_{|u|\to\infty}\phi(u)\prod_{i=1}^d u_i=0$
 - $-\lim_{N\to\infty} V_N = 0$
 - $-\lim_{N\to\infty} NV_N = \infty$
- First two conditions easy to satisfy
- Last two conditions \implies volume around data sample must fall to 0, but at a rate slower than 1/N

N(0, 1) Window to Estimate N(0, 1)

-2

-2

-2

N(0, 1) Window to Estimate Bimodal Distribution

Setting Window Size h

Parzen window estimate: $p(x) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^d} \phi(\frac{x-x_i}{h})$

- In practice, N fixed, need to set h
- Can use cross-validation
 - Divide training data into training and validation set
 - For different h, compute estimate $p_h(x)$ from training set
 - "Test" on validation set: $\sum_{i} \log p_h(x_i)$, where $x_i \in \text{validation set}$
 - Pick h with highest log probability on validation set

K-Nearest Neighbor

K-Nearest Neighbors (KNN) Density Estimation

KNN estimate:
$$p_N(x) = \frac{k_N(x)/N}{V_N}$$

- Rather than fix window size, grows volume around x until $k_N(x)$ samples
- If p(x) high, then volume will be small; if p(x) low, then volume will be big

• Convergence:
$$p_N(x) \to p(x) \iff \begin{cases} \lim_{N \to \infty} k_N = \infty \\ \lim_{N \to \infty} k_N/N = 0 \end{cases}$$

- $\{x_n\}_{n=1:6} = \{2, 3, 4, 8, 10, 11\}, K = 3$
- At x = 0, V = 8, so p(x) = (K/N)/V = (3/6)/8 = 1/16

- $\{x_n\}_{n=1:6} = \{2, 3, 4, 8, 10, 11\}, K = 3$
- At x = 0, V = 8, so p(x) = (K/N)/V = (3/6)/8 = 1/16
- At x = 3, V = 2, so p(x) = (K/N)/V = (3/6)/2 = 1/4

- $\{x_n\}_{n=1:6} = \{2, 3, 4, 8, 10, 11\}, K = 3$
- At x = 0, V = 8, so p(x) = (K/N)/V = (3/6)/8 = 1/16
- At x = 3, V = 2, so p(x) = (K/N)/V = (3/6)/2 = 1/4
- At x = 2.5, V = 3, so p(x) = (K/N)/V = (3/6)/3 = 1/6

- $\{x_n\}_{n=1:6} = \{2, 3, 4, 8, 10, 11\}, K = 3$
- At x = 0, V = 8, so p(x) = (K/N)/V = (3/6)/8 = 1/16
- At x = 3, V = 2, so p(x) = (K/N)/V = (3/6)/2 = 1/4
- At x = 2.5, V = 3, so p(x) = (K/N)/V = (3/6)/3 = 1/6
- At x = 3.5, V = 3, so p(x) = (K/N)/V = (3/6)/3 = 1/6

- $\{x_n\}_{n=1:6} = \{2, 3, 4, 8, 10, 11\}, K = 3$
- At x = 0, V = 8, so p(x) = (K/N)/V = (3/6)/8 = 1/16
- At x = 3, V = 2, so p(x) = (K/N)/V = (3/6)/2 = 1/4
- At x = 2.5, V = 3, so p(x) = (K/N)/V = (3/6)/3 = 1/6
- At x = 3.5, V = 3, so p(x) = (K/N)/V = (3/6)/3 = 1/6
- In general, p(x) continuous but not differentiable
- In general, p(x) may not be proper distribution $(\int p(x)dx = \infty)$

Estimating N(0, 1) and Bi-modal Distribution

$$k_N = k_1 \sqrt{N}$$
$$k_1 = 1$$

Results do not look very impressive. For density estimation, most people use Parzen's approach. But KNN used for classification instead (see later slides)

Non-parametric Classification

Classification (Supervised Learning)

- Given features x, want to estimate label y
- Estimate joint density p(x,y) non-parametrically
- Suppose volume V around x capture K samples, k_c were from class y = c
 - Joint probability $p(x, y = c) = \frac{k_c/N}{V}$
 - Posterior $p(y = c|x) = \frac{p(x,y=c)}{\sum_{c'=1}^{C} p(x,y=c')} = \frac{(k_c/N)/V}{\sum_{c'=1}^{C} (k_{c'}/N)/V} = \frac{k_c}{\sum_{c'=1}^{C} k_{c'}} = \frac{k_c}{K}$
- ullet Therefore posterior probability of class c is simply fraction of neighbors with class label c
 - MAP estimation: output class c with highest posterior probability
- Above can be performed using Parzen's window or KNN
 - Parzen's window approach: Fix volume V and count the number of captured samples K
 - KNN approach of fixing K
- In practice, most people use KNN

- Suppose we have training set consisting of N images
 & each image is labeled as a human, cat or dog
- Given a test image x, and suppose we set K = 5
 - Out of N training images, we find 5 images closest to the test image
 - Of these 5 images, let's say 3 images are humans (i.e., $k_{human} = 3$), 1 image is a cat (i.e., $k_{cat} = 1$) and 1 image is a dog (i.e., $k_{dog} = 1$).
 - Then $p(y = human | x) = k_{human}/K = 3/5$
 - $p(y = cat | x) = k_{cat}/K = 1/5$
 - $p(y = dog | x) = k_{dog}/K = 1/5$
 - So the MAP estimate of x is human

Setting # Neighbors K

KNN estimate: $p(y = c|x) = \frac{k_c}{K}$

- In practice, N fixed, need to set K
- Can use cross-validation
 - Given training data $\{x_n, y_n\}_{n=1:N}$, divide into training $(\{x'_i, y'_i\}_{i=1:N_1})$ and validation $(\{x''_k, y''_k\}_{k=1:N_2})$ sets
 - For different K, use training set to classify class label on validation set: $\hat{y}_k'' = \operatorname{argmax}_c p(y = c|x_k'')$, which can then be compared with true class label y_k''
 - Pick K with lowest error on validation set
 - Note that test set was never touched

KNN Computational Complexity & Metrics

- Suppose features are D-dimensional => Compute distance between two samples require
 O(D) operations
- For test sample, to find closest neighbor among N training samples, need to compute distance between test sample and each training sample \Rightarrow N x O(D) = O(ND) operations
- To speed up:
 - Pruning/editing: for 1-NN, can remove data point surrounded by neighbors of the same class, resulting in subset of points (prototypes) used for classification

Red dots: class 1

Green dots: class 2

Blue lines: equidistant between 2 or more dots

Brown lines: 1-NN decision boundary

KNN Computational Complexity & Metrics

- Suppose features are D-dimensional => Compute distance between two samples require
 O(D) operations
- For test sample, to find closest neighbor among N training samples, need to compute distance between test sample and each training sample \Rightarrow N x O(D) = O(ND) operations
- To speed up:
 - Pruning/editing: for 1-NN, can remove data point surrounded by neighbors of the same class, resulting in subset of points (prototypes) used for classification
 - Special data structure, e.g., https://en.wikipedia.org/wiki/K-d tree
- Distance metrics
 - Minkowski $dist(a,b) = \left(\sum_{j=1}^{D} \left| a_j b_j \right|^p \right)^{1/p}$, where j indexes feature dimension
 - Euclidean if p = 2, Manhattan if p = 1

Summary

- Parzen window for density estimation
 - Interpretation 1: at x, count fraction of samples in volume centered at x
 - Interpretation 2: at x, p(x) is given by weighted average of neighbors, where weight is larger if neighbor is closer
- KNN neighbors for classification
 - -p(y=c|x) is fraction of K neighbors (in neighborhood of x) that are from class c

Optional Reading

• Duda & Hart Chapter 4.1-4.4, 4.5.5

Some figures taken from Dr. Tam and Dr. Sun

Additional Material

Convergence Proof of Parzen Window

- Let's establish some notations and explain what we mean by convergence
- Let $\delta_n(x) = \frac{1}{h_n^d} \phi(\frac{x}{h_n})$, where $\phi(x) \geq 0$ and $\int \phi(x) dx = 1$
- Parzen window estimate: $p_n(x) = \frac{1}{n} \sum_{i=1}^n \delta_n(x x_i)$
- $\lim_{h_n\to 0} \delta_n(x-x_i)$ is dirac delta function centered at x_i as $h_n\to 0$, i.e., $V_n\to 0$
- $p_n(x)$ depends on the samples x_1, \dots, x_n , so $p_n(x)$ is also random with some mean $\bar{p}_n(x)$ and variance $\sigma_n^2(x)$.
- We say $p_n(x)$ converges to p(x) in the mean square sense if $\lim_{n\to\infty} \bar{p}_n(x) = p(x)$ and $\lim_{n\to\infty} \sigma_n^2(x) = 0$

Convergence of Mean

• Let's consider convergence of the mean

$$\bar{p}_n(x) = E[p_n(x)]$$

$$= E\left[\frac{1}{n}\sum_{i=1}^n \delta_n(x - x_i)\right]$$

$$= \frac{1}{n}\sum_{i=1}^n E[\delta_n(x - x_i)]$$

$$= \int \delta_n(x - v)p(v)dv$$

- From previous slide, $\lim_{n\to\infty} \delta_n(x-v)$ is a delta function centered at x if $\lim_{n\to\infty} V_n = 0$
- Therefore $\lim_{n\to\infty} \bar{p}_n(x) = p(x)$ assuming p(x) continuous at x

Convergence of Variance

• $\sigma_n^2(x)$ is sum of independent variables $\frac{1}{n}\delta_n(x-x_i)$, therefore $\sigma_n^2(x)$ is sum of the variance of the independent variables, so

$$\sigma_n^2(x) = \sum_{i=1}^n E\left[\left(\frac{1}{n}\delta_n(x-v) - \frac{1}{n}\bar{p}_n(x)\right)^2\right]$$

$$= nE\left[\frac{1}{n^2}\delta_n^2(x-v)\right] - \frac{2}{n}\bar{p}_n^2(x) + \frac{1}{n}\bar{p}_n^2(x)$$

$$= \int \frac{1}{n}\delta_n^2(x-v)p(v)dv - \frac{1}{n}\bar{p}_n^2(x)$$

$$\leq \int \frac{1}{n}\left(\frac{1}{h_n^d}\phi\left(\frac{x-v}{h_n}\right)\right)\delta_n(x-v)p(v)dv$$

$$\leq \frac{\sup(\phi(\cdot))}{nh_n^d}\int \delta_n(x-v)p(v)dv$$

$$= \frac{\sup(\phi(\cdot))\bar{p}_n(x)}{nh_n^d} = C$$

• If $\sup_{u} \phi(u) < \infty$, and $\lim_{n \to \infty} V_n = \infty$, then $C \to 0$