PC8171xNSZ Series SHARP

PC8171x NSZ Series

Low Input Current Type Photocoupler

■ Features

- 1. Low input current type(I_F=0.5mA)
- 2. High resistance to noise due to high common rejection voltage (CMR:MIN. 10kV/µs)
- 3. Compact dual-in line package
- 4. Isolation voltage(Viso:5kVrms)
- 5. Recognized by UL, file No. E64380

Applications

- 1. Programmable controllers
- 2. Facsimiles
- 3. Telephones

■ Rank Table

Model No.	Rank mark	Ic (mA)	Conditions
PC81710NSZ	A, B, C or no mark	0.5 to 3.0	
PC81711NSZ	A	0.6 to 1.5	
PC81712NSZ	В	0.8 to 2.0	I _F =0.5mA
PC81713NSZ	С	1.0 to 2.5	Vce=5V
PC81715NSZ	A or B	0.6 to 2.0	Ta=25°C
PC81716NSZ	B or C	0.8 to 2.5	
PC81718NSZ	A, B or C	0.6 to 2.5	

■ Absolute Maximum Ratings

 $(Ta=25^{\circ}C)$

(1u 25 C)							
	Parameter	Symbol	Rating	Unit			
Input	Forward current	IF	10	mA			
	*1 Peak forward current	IFM	200	mA			
	Reverse voltage	V_R	6	V			
	Power dissipation	P	15	mW			
Output	Collector-emitter voltage	Vceo	70	V			
	Emitter-collector voltage	VECO	6	V			
	Collector current	Ic	50	mA			
	Collector power dissipation	Pc	150	mW			
Total power dissipation		Ptot	170	mW			
Operating temperature		Topr	-30 to +100	°C			
Storage temperature		Tstg	-55 to +125	°C			
*2 Isolation voltage		Viso	5	kVrms			
*3 Soldering temperature		Tsol	260	°C			

^{*1} Pulse width<=100µs, Duty ratio=0.001

*3 For 10s

■ Outline Dimensions

^{*2 40} to 60% RH, AC for 1 minute, f=60Hz

■ Electro-optical Characteristics

■ Electro-optical Characteristics								
	Parameter S			Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		V_{F}	I _F =10mA	-	1.2	1.4	V
	Reverse current I		IR	V _R =4V	-	-	10	μΑ
	Terminal capacitance		Ct	V=0, f=1kHz	_	30	250	pF
Output	Collector dark current		Iceo	Vce=50V, I _F =0	_	-	100	nA
	Collector-emitter breakdown voltage		BVCEO	Ic=0.1mA, I _F =0	70	-	_	V
	Emitter-collector breakdown voltage		BVECO	I _E =10μA, I _F =0	6	-	_	V
Transfer characteristics	Collector current		Ic	I _F =0.5mA, V _{CE} =5V	0.5	-	3.0	mA
	Collector-emitter satur	ration voltage	VCE (sat)	I _F =10mA, I _C =1mA	_	_	0.2	V
	Isolation resistance		Riso	DC500V 40 to 60%RH	5×10 ¹⁰	1×10 ¹¹	_	Ω
	Floating capacitance		Cf	V=0, f=1MHz	-	0.6	1.0	pF
	Response time	Rise time	tr	Vc=2V, Ic=2mA, RL=100Ω	_	4	18	μs
		Fall time	tf		-	3	18	μs
	*1 Common mode rejection voltage CMR		CMR	Ta=25°C, R _L =470Ω, V _{CM} =1.5kV (peak), I _F =0mA, V _{CC} =9V, Vnp=100mV	10	_	_	kV/μs

^{*1} Refer to Fig.1.

Fig.1 Test Circuit for Common Mode Rejection Voltage

Fig.2 Forward Current vs. Ambient **Temperature**

Fig.3 Diode Power Dissipation vs. Ambient **Temperature**

Fig.4 Collector Power Dissipation vs. Ambient Temperature

Fig.6 Peak Forward Current vs. Duty Ratio

Fig.8 Current Transfer Ratio vs. Forward Current

Fig.5 Total Power Dissipation vs. Ambient Temperature

Fig.7 Forward Current vs. Forward Voltage

Fig.9 Collector Current vs. Collector-emitter Voltage

Fig.10 Relative Current Transfer Ratio vs.

Ambient Temperature

Fig.12 Collector Dark Current vs. Ambient Temperature

Fig.14 Response Time vs. Load Resistance (Saturation)

Fig.11 Collector - emitter Saturation Voltage vs. Ambient Temperature

Fig.13 Response Time vs. Load Resistance

Fig.15 Test Circuit for Response Time

Fig.16 Voltage Gain vs Frequency

Fig.18 Reflow Soldering

Only one time soldering is recommended within the temperature profile shown below.

Fig.17 Collector-emitter Saturation Voltage vs. Forward Current

