(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 October 2005 (06.10.2005)

PCT

(10) International Publication Number WO 2005/092598 A1

(51) International Patent Classification⁷: G03F 7/027 // B29K 33:00

B29C 67/00,

(21) International Application Number:

PCT/EP2005/051287

(22) International Filing Date: 21 March 2005 (21.03.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 04251653.4

22 March 2004 (22.03.2004) EF

(71) Applicant (for all designated States except US): HUNTS-MAN ADVANCED MATERIALS (SWITZERLAND) GmbH [CH/CH]; Klybeckstrasse 200, CH-4057 Basel (CH).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): PATEL, Ranjana C [GB/GB]; George Green Cottage, Little Hallingbury Essex CM22 7PP (GB). RHODES, Michael [GB/GB]; 30 Moneypiece Close, Haverhill Suffolk CB9 9NP (GB). ZHAO, Yong [CN/GB]; 21 Lucerne Close, Cambridge CB2 9SB (GB).
- (74) Agents: BARUH, Colette et al.; Huntsman (Europe) BVBA, Intellectual Property Department, Everslaan 45, B-3078 Everberg (BE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PHOTOCURABLE COMPOSITIONS

(57) Abstract: An optical moulding process is disclosed comprising the sequential steps of: (a)(y) forming a layer of a photocurable composition; and (bXz) irradiating selected areas of the composition in the layer with radiation from a radiation source, thereby curing the composition in said selected areas and repeating the steps a) and b) on top of an earlier cured layer to form a three dimensional structure, wherein the radiation source used in step b) is a non-coherent source of radiation and wherein the photocurable composition comprises at least two curable components: (i) 45% - 95% (and preferably at least 50%, more preferably at least 60%, e.g. at least 70%) by weight of the total curable components in the composition is a first component that is photocurable and that is such that, when cured in the presence of a photocuring initiator by exposure to UV radiation having an energy of 30 mJ/cm², at least 90% of the component is cured within 50 milliseconds; and (ii) 5% to 55% (and preferably 10 -40%, more preferably 15 to 30%, e.g. about 20%) by weight of the total curable components in the composition is a second component that results in the composition, on curing, shrinking, in a linear direction, by less than 3% and preferably that results in the composition having, after cure, a T_g of greater than 50° C, preferably at least 100°C and more preferably at least 120°C.

