Ejercicios propuestos

- 1. Exprese la negación de las proposiciones siguientes y aplique las leyes de Morgan para simplificar esas negaciones.
 - $a) (p \wedge q) \vee r$

b) $(p \vee q) \wedge r$

- c) $(p \vee q) \wedge (p \vee r)$
- 2. Utilice las leyes distributivas y simplifique las proposiciones siguientes:
- a) $(p \vee \neg q) \wedge \neg p$ b) $(\neg p \vee \neg q) \wedge (p \vee q)$ c) $(\neg p \wedge q) \vee (\neg p \wedge \neg r) \vee (p \wedge q)$
- 3. Dados los valores de las proposiciones p=1, q=1, r=0, determínese el valor de las siguientes proposiciones:
 - a) $(p \land r) \rightarrow q$ b) $\neg (p \land \neg q \land r)$ c) $[p \land (r \lor q)] \rightarrow q$ d) $\neg [q \rightarrow (\neg p \lor \neg r)]$

- 4. Construya la tabla de verdad de las proposiciones siguientes:
 - $a) (p \wedge q) \rightarrow r$
- b) $(r \rightarrow a) \vee r$
- $c) (\neg p \lor q) \land (p \lor r)$
- d) Leyes transitivas: (llamadas silogismo hipotético)
 - $i) (p \to q) \land (q \to r) \Longrightarrow (p \to r)$ $ii) (p \leftrightarrow q) \land (q \leftrightarrow r) \Longrightarrow (p \leftrightarrow r)$
- 5. Describa de forma simbólica, es decir con letras y conectivas, las siguientes expresiones:
 - a) Si salto en vertical entonces caigo en el mismo sitio. He saltado y no he caído en el mismo sitio. Luego no he saltado en vertical.
 - b) Como la sucesión $\left\{\frac{1}{n}\right\}$ es una sucesión decreciente y una sucesión acotada, entonces la sucesión es convergente, y su límite es 0.
 - c) La gráfica de la función $f(x) = x^2 3x + 2$ es una parábola que corta al eje OX en los puntos x=1 y x=2, por ello, su vértice está situado en el punto de abcisa $x = \frac{3}{2}$.
- 6. Valídese mediante tabla de verdad las siguientes proposiciones:
 - $a) p \rightarrow (q \rightarrow r) \Longrightarrow q \rightarrow (p \rightarrow r)$
 - b) Ley del silogismo: $(p \rightarrow q) \Longrightarrow (q \rightarrow r) \rightarrow (p \rightarrow r)$
 - c) Ley de exportación: $(p \land q) \rightarrow r \iff p \rightarrow (q \rightarrow r)$
 - d) Ley de permutación: $p \to (q \to r) \iff q \to (p \to r)$
- 7. Valídese mediante refutación las leyes lógicas condicionales siguientes.
 - a) Leves del dilema constructivo:

- $(p \to r) \land (q \to r) \land (p \lor q) \Longrightarrow r$
- $(p \to r) \land (q \to s) \land (p \lor q) \Longrightarrow r \lor s$
- b) Ley del dilema destructivo: $(\neg p \lor \neg q) \land (r \to p) \land (s \to q) \Longrightarrow \neg r \lor \neg s$
- 8. Determine la forma clausulada de cada una de las siguientes proposiciones:
 - $a) (p \rightarrow q) \lor \neg q$
 - $b) \neg p \wedge (r \rightarrow \neg q)$
 - c) $[(\neg p \rightarrow \neg q) \lor \{(r \rightarrow p) \land (s \rightarrow q)\}] \rightarrow (\neg r \lor \neg s)$
 - $d) [(p \rightarrow q) \lor p] \rightarrow \neg (q \land p)$
 - e) Ley de resolución: $(\neg p \lor q) \land (p \lor r) \implies q \lor r$
- 9. Compruebe si cada pareja de proposiciones es una pareja de proposiciones equivalentes:
 - a) $(\neg p \lor \neg q) \land \neg p$ y $(\neg p \land \neg q) \lor \neg p$
 - b) $p \leftrightarrow (p \land q)$ y $\neg p \lor q$
- 10. Compruebe, construyendo su forma clausulada, si cada pareja de proposiciones es una pareja de proposiciones equivalentes:
 - a) $(\neg p \rightarrow \neg q) \land (r \rightarrow p) \land (s \rightarrow q)$ y $\neg (r \land s)$
 - b) $p \to (q \to r)$ y $(p \land q) \to r$
- 11. Construya dos proposiciones distintas que posean la misma tabla de verdad:
 - a) 1100 b) 11001101 c) 10101010 d) 0110 e) 11100011
- 12. ¿Cuáles de las tres proposiciones siguientes son equivalentes a la proposición $(p \lor r) \land (p \lor q)$?

$$a) p \wedge (q \vee r)$$

$$b)\ (p\to\neg r)\land (p\to\neg q)$$

c)
$$p \lor (q \land r)$$