

planetmath.org

Math for the people, by the people.

every finite dimensional subspace of a normed space is closed

 ${\bf Canonical\ name} \quad {\bf Every Finite Dimensional Subspace Of ANormed Space Is Closed}$

Date of creation 2013-03-22 14:58:56 Last modified on 2013-03-22 14:58:56 Owner Mathprof (13753) Last modified by Mathprof (13753)

Numerical id 14

Author Mathprof (13753)

Entry type Corollary
Classification msc 46B99
Classification msc 15A03
Classification msc 54E52

Theorem 1 Any finite dimensional subspace of a normed vector space is closed.

Proof. Let $(V, \|\cdot\|)$ be such a normed vector space, and $S \subset V$ a finite dimensional vector subspace.

Let $x \in V$, and let $(s_n)_n$ be a sequence in S which converges to x. We want to prove that $x \in S$. Because S has finite dimension, we have a basis $\{x_1,...,x_k\}$ of S. Also, $x \in \operatorname{span}(x_1,...,x_k,x)$. But, as proved in the case when V is finite dimensional (see this http://planetmath.org/EverySubspaceOfANormedSpaceOfFiniwe have that S is closed in $\operatorname{span}(x_1,...,x_k,x)$ (taken with the norm induced by $(V,\|\cdot\|)$) with $s_n \to x$, and then $x \in S$. QED.

0.0.1 Notes

The definition of a normed vector space requires the ground field to be the real or complex numbers. Indeed, consider the following counterexample if that condition doesn't hold:

 $V = \mathbb{R}$ is a \mathbb{Q} - vector space, and $S = \mathbb{Q}$ is a vector subspace of V. It is easy to see that $\dim(S) = 1$ (while $\dim(V)$ is infinite), but S is not closed on V.