

FLAME-RETARDANT TAPE

Veröffentlichungsnummer JP5017727 Veröffentlichungsdatum: 1993-01-26

Erfinder HOTTA KOICHI; NAKAJIMA MASAO; HACHITANI

HISAHIRO

Anmelder: TOPPAN PRINTING CO LTD, TOYO INK MFG CO

Klassifikation:

- Internationale: C

C09J7/02; C09J7/02; (IPC1-7): C09J7/02;

H01B7/34

- Europäische:

Anmeldenummer: JP19910195745 19910710

Prioritätsnummer(n): JP19910195745 19910710

Datenfehler hier melden

Zusammenfassung von JP5017727

PURPOSE:To provide a flame-retardant tape excellent in flame retardancy, adherability and the storage stability in rolled state, also easy to produce. CONSTITUTION:A composition prepared by incorporating (A) 100 pts.wt. of an adhesive comprising A1: 10-45 pts.wt. of a copolyester resin, -15 to 10 deg.C in glass transition point and 30-50 deg.C in softening point, A2: I-20 pts.wt. of a second copolyester resin, -30 to -5 deg.C in glass transition point and 90-120 deg.C in softening point, A3: 20-65 pts.wt. of a flame retarder, and A4: 1-10 pts.wt. of silica with (B) 1-3 pts.wt. of a compound having two or more isocyanate (e.g. hexamethylene diisocyanate) as curing agent and (C) 5-25 pts.wt. of titanium dioxide, is applied on a base material sheet to form an adhesive layer, thus obtaining the objective tape.

Daten sind von der esp@cenet Datenbank verfügbar - Worldwide

· Y ·

(19)日本国特許庁 (JP)

(51) Int.Cl.5

C 0 9 J 7/02

(12) 公開特許公報(A)

庁内整理番号

6770-4J

(11)特許出願公開番号

特開平5-17727

(43)公開日 平成5年(1993)1月26日

技術表示箇所

最終頁に続く

// H O 1 B 7/34	JKB 6770-4J JLE 6770-4J B 7244-5G						
		審査請求 未請求 請求項の数2(全 4 頁)					
(21)出願番号	特顏平3-195745	(71)出願人 000003193 凸版印刷株式会社					
(22)出願日	平成3年(1991)7月10日	東京都台東区台東1丁目5番1号					
		(71)出願人 000222118 東洋インキ製造株式会社 東京都中央区京橋2丁目3番13号					
		(72)発明者 堀田 幸一 東京都台東区台東一丁目5番1号 凸版印 刷株式会社内					

(72)発明者 中島 正雄

刷株式会社内

FΙ

(54) 【発明の名称】 難燃テープ

(57)【要約】

【目的】 難燃性や接着性は無論のこと、ロール状態での保存安定性(耐プロッキング性等)や製造の容易な難燃テープを提供する。

識別記号

JJZ

【構成】基材シートの一面に、ガラス転移点が-15 $^{\circ}$ \sim 10 $^{\circ}$ 、軟化点が30 $^{\circ}$ \sim 50 $^{\circ}$ の共重合ポリエステル樹脂の第1 成分を10 \sim 45 $^{\circ}$ 重量部と、ガラス転移点が-30 $^{\circ}$ \sim -5 $^{\circ}$ 、軟化点が90 $^{\circ}$ \sim -120 $^{\circ}$ の共重合ポリエステル樹脂の第2 成分を $1\sim 20$ 重量部と、難燃剤を $20\sim 65$ 重量部と、無水ケイ酸(SiO2)を $1\sim 10$ 重量部、からなる接着剤100 重量部に対し、硬化剤として2 以上のイソシアネート基を有する化合物を $1\sim 3$ 重量部加えた接着剤層を塗布形成する。

東京都台東区台東一丁目5番1号 凸版印

1

【特許請求の範囲】

【請求項1】基材シートの一面に、

(イ) ガラス転移点が-15℃~10℃、軟化点が30 ℃~50℃の共重合ポリエステル樹脂の第1成分を10 ~45重量部と、

(ロ) ガラス転移点が-30℃~-5℃、軟化点が90 ℃~120℃の共重合ポリエステル樹脂の第2成分を1 ~20重量部と、

- (ハ) 難燃剤を20~65重量部と、
- (二) 無水ケイ酸 (SiO2) を1~10重量部、 からなる接着剤100重量部に対し、硬化剤として2以 上のイソシアネート基を有する化合物を1~3重量部加 えた接着剤層が塗布形成されていることを特徴とする難 燃テープ。

【請求項2】前記接着剤に、酸化チタン(TiOz)を 5~25重量部加えることを特徴とする難燃テープ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、AV機器、OA機器等 の内部配線に使用されるフラットケーブルの被覆材に用 20 いる難燃テープに関する。

[0002]

【従来の技術】フラットケーブルは、AV機器、OA機 器等の内部配線に使用されるものであり、その形状の一 例を図1に示す。このようなフラットケーブルの製造 は、アルミニウム等の金属線からなる幅0.5~1.0 mm、厚さ70~150 μ程度の複数の導線2を平行に 配置し、基材シートの一面にハロゲン系等の難燃剤を含 む接着剤層を設けた難燃テープ1を上下方向から、接着 によりなされる。

【0003】かかる難燃テープに要求される特性は、難 燃性や接着性は無論のこと、ロール状態での保存安定性 (耐プロッキング性等) や製造の容易性が望まれる。 [0004]

【発明が解決しようとする課題】 従来よりブロッキング 防止のために、基材シートの非接着剤層側にシリコン系 剥離剤層を設けたり、基材シート上にプライマー層を介 してプロッキング防止剤を添加した接着剤層を設けるこ とが行なわれているが、接着剤層/基材シート/剥離剤 40 層あるいは接着剤層/プライマー層/基材シートの3層 構成であり、製造工程が複雑という課題がある。

【0005】他方、難燃剤として、ハロゲン系のデカブ ロモジフェニルエーテルが用いられているが、分解時に 有害なダイオキシンが発生するため、使用を差し控える べきである。しかし、他の難燃剤はデカプロモジフェニ ルエーテルより難燃効果が低いので、添加量を増やさな ければならず、その結果、接着力が低下するという課題 も生じた。

[0006]

【課題を解決するための手段】本発明は上記の課題に鑑 みてなされたものであって、基材シートの一面に、ガラ ス転移点が-15℃~10℃、軟化点が30℃~50℃ の共重合ポリエステル樹脂の第1成分を10~45重量 部と、ガラス転移点が-30℃~-5℃、軟化点が90 ℃~120℃の共重合ポリエステル樹脂の第2成分を1 ~20重量部と、難燃剤を20~65重量部と、無水ケ イ酸 (SiO₂) を1~10重量部、からなる接着剤1 00重量部に対し、硬化剤として2以上のイソシアネー 10 ト基を有する化合物を1~3重量部加えた接着剤層が塗 布形成されていることを特徴とする難燃テープにより課 題を解決した。

【0007】なお、前記接着剤に、酸化チタン(TiO 2) を5~25重量部加えることも含まれる。

[8000]

【作用】本発明の難燃テープは、共重合ポリエステル樹 脂の第1成分によって、基材シートへの接着剤層の接着 力が強く、かつ熱ラミネート時に軟化して接着剤層同士 の良好な接着状態が得られ、共重合ポリエステル樹脂の 第2成分によって、難燃テープの耐熱性を向上させるこ とが可能となる。また硬化剤は、共重合ポリエステル樹 脂成分と反応し、接着に関与しない難燃剤とブロッキン グ防止効果を有する無水ケイ酸等を加えても所望の接着 性を発揮することができる。

【0009】さらに、前記接着剤に酸化チタンを加えれ ば、導線とはりあわせたときの隠蔽性が向上する。

【0010】本発明を図2を用いて更に説明する。本明 細書中の基材シート3とは、難燃テープ1の構造的支持 体となるもので、任意の材質でよいが、例えば、プラス 剤層を互いに内側に配置し、熱ラミネートを行なうこと 30 チックフィルムが好適である。プラスチックフィルムと しては、厚さ1~200 μ mのポリエステル、ポリエチ レン、ポリプロピレン、ポリ塩化ビニル、ポリアミド、 あるいはこれらの積層フィルムが使用できる。

> 【0011】また、難燃テープをフラットケーブルの被 覆材に使用する場合には、厚さ10~50μmのポリエ ステルフィルムが好ましい。10μm未満では、強度が 不足し、50 µmを越えるとフレキシピリティに欠けて 導線の被覆が困難だからである。

> 【0012】接着剤層4中の共重合ポリエステル樹脂と は、具体的には、酸成分としてテレフタル酸を主成分と し、アルコール成分としてエチレングリコール成分を主 成分とし、その酸成分又は、アルコール成分の一部を他 の酸又は、アルコールに置換してその結晶性を低下さ せ、溶剤溶解性又は、分散性としたものである。他の酸 としては、イソフタル酸、アジピン酸、ジフェニルジカ ルポン酸などが使用でき、他のアルコールとしては、 1, 4-プタンジオール、1, 4ジシクロヘキサンジメ タノール、1,4シクロヘキサンジメチロール、ピス (4-β-ヒドロキシエトキシフェニル) スルホンシク

50 ロヘキサンジオールなどが使用できる。

3

【0013】共重合ポリエステル樹脂の第1成分は、ガ ラス転移点が-15℃~10℃、軟化点が30℃~50 ℃であり、第2成分と比較して軟らかく、基材シートへ の接着力が強く、かつ熱ラミネート時に軟化して接着剤 層同士の良好な接着状態が得られる。なおその配合比 は、接着剤中10~45重量部であり、前記割合より少 ない場合、接着性が悪く、前記割合より多い場合には、 耐ブロッキング性及び難燃テープの耐熱性が低下する。

【0014】共重合ポリエステル樹脂の第2成分は、ガ 0℃であり、第1成分と比較して硬く、難燃テープの耐 熱性を向上させる。なおその配合比は、接着剤中1~2 0 重量部であり、この第2成分の含量比が上記割合より 多い場合には、熱ラミネート時に樹脂が軟化しにくくな り、また、熱ラミネートの際の設定温度が高温になる。

【0015】 難燃剤は、エチレンピステトラブルロフタ ルイミド(EBTBPI)、エチレンピスジプロモノル ポルナンジカルポキシイミド (EBDNDO)、テトラ プロモ無水フタル酸(TBPAH)、ヘキサプロモサイ 化アンチモン、水酸化アルミニウム、酸化スズ等無機系 のものが使用できる。ただし、難燃剤の熱分解時に、ダ イオキシンを発生するデカプロジフェニルエーテルの使 用は好ましくない。

るのが好ましい。20重量部以下の場合は、難燃性が低 下し、65重量部以上の場合は、接着力が低下するので 好ましくない。

【0017】無水ケイ酸(SiOz)は、プロッキング 防止のため添加する。1次粒子の平均粒径は、5~40 30 nmの範囲にあるが、実際には、会合して大きな粒径を*

*有している。

【0018】硬化剤は、基材シートとの密着性を上げ、 かつ、安定した接着力を得るために添加されるもので、 接着剤100重量部に対して、硬化剤1~3重量部使用 する。硬化剤1重量部以下では、基材シートと接着剤層 との間で界面剥離がおこり、3重量部以上では、接着剤 層が硬化しすぎ、接着力を上げるため、熱ラミネートの 際の設定温度を上げなくてはならない。

4

【0019】硬化剤としては、2以上のイソシアネート ラス転移点が-30℃ \sim -5℃、軟化点が90℃ \sim 12<math>10基を有する化合物で、例えばヘキサメチレンジイソシア ネート、トルエンジイソシアネート、メチレンジイソシ アネート、キシレンジイソシアネートなどが使用でき

> 【0020】また、貼り合わせたときの導線の隠蔽性を 上げるために、酸化チタンを5~25重量部添加しても 良い。

[0021]

【実施例】共重合ポリエステル樹脂の第1成分として、 ガラス転移点が2℃、軟化点40℃である樹脂、共重合 クロドデカン(HBCD)等のハロゲン系の物や、三酸 20 ポリエステル樹脂の第2成分として、ガラス転移点が-20℃、軟化点105℃である樹脂、難燃剤として、エ チレンピステトラプロモフタルイミド、平均粒径が16 nmの無水ケイ酸、そして酸化チタン、溶剤はMEK/ トルエン=1/1を用いて、表中の実施例1~5、比較 例1~7のような配合比を変えた接着剤を、基材シート であるポリエステルフィルム25μ上に乾燥状態で43 μ塗布形成した。

【0022】実施例と比較例の評価を表1に示す。

[0023]

【表1】

	· 接着剤				硬化剂	接着力	プロッキ ング性	難燃性	総合 評価	
	ポリエステル樹脂		PP-144 R.S.	無水	酸化		V-/	g/5cm		<u>4</u> 4,1119
<u>.</u>	第1成分	第2成分	難燃剤	ケイ酸	チタン		Kg/cm	g/ JCm		
実施例1 実施例2 実施例3 実施例4 実施例5	4 0 3 1 4 0 4 0 2 7	5 1 4 5 5 3	4 5 4 5 4 5 4 5 4 5	3 3 7 3 3	2 5	2 2 2 2 2 2	2. 0 1. 8 1. 2 1. 0 1. 8	1 0 0 0 0	00000	00000
比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7	4 0 2 0 4 0 4 0 4 0 4 0	2 5 5 5 5 5	4 5 4 5 4 5 4 5 1 0 4 5 4 5	3303355	3 5 7 7 7	2 2 2 2 2 5 5	3.5555555555555555555555555555555555555	1 5 0 3 0 0 2 0 0 5 0 0	0000×00	× × × × ×

【0024】接着力は、試料の接着剤層同士を、温度1 60℃、圧力4kg/cm²、2秒の条件でヒートシー ルバーにて貼り合わせ後、インストロン型引張試験機を 使用して50mm/分の引張スピードでT型剥離を行う ことにより測定したものである。

mの試料の接着剤層面とポリエステルフィルムの背面と をあわせ、400g/cm²の荷重をかけながら50℃ のオープンに48時間放置した後、室温で300mm/ 分の引張スピードでT型剥離を行うことにより測定した ものである。

【0025】耐ブロッキング性は、50mm×200m 50 【0026】難燃性は、UL規格の94VTW-Oに達

5

するかどうかを測定したものであり、〇は合格、×は不 合格を示す。

【0027】総合評価は、接着力については1.0kg/cm以上、プロッキングについては100g/5cm以下、難燃性についてはUL94VTW-O合格の条件を全て満たす場合のみをOとし、1つでも満たさない場合を×とする。

【0028】なお、従来例である、接着剤層/プライマー層/基材シートの3層構成品の接着強度は1.0kg/cm程度であった。

[0029]

【発明の効果】本発明に係わる難燃テープは、基材シートの上に接着剤層を設ける簡単な層構成でありながら、 難燃性,接着性,保存安定性(耐ブロッキング性等)と も満足すべきものである。

【0030】また、接着剤層の接着力が高く、難燃剤の 添加量を増やすことができるので、難燃効果の高いデカ プロモジフェニルエーテルを使用しなくても良く、ダイ オキシン問題から逃れられる。

[0031]

【図面の簡単な説明】

【図1】フラットケーブルの形状を示す説明図である。

【図2】本発明に係わる難燃テープの断面図である。

10 【符号の説明】

- 1 難燃テープ
- 2 導線
- 3 基材フィルム
- 4 接着剤層

【図1】

【図2】

フロントページの続き

(72)発明者 蜂谷 壽宏

東京都中央区京橋2丁目3番13号 東洋インキ製造株式会社内