Université Laval	Examen partiel informatique
Faculté des Sciences et de Génie	Hiver 2017
École d'actuariat	Date: 25 février 2017

Act-2001 Introduction à l'actuariat 2 Professeur: Etienne Marceau

Nom de famille de l'étudiant | Prénom de l'étudiant | Matricule

Instructions:

- L'examen contient 5 questions à développement.
- Le total des points est de **111 points**.
- La durée est de 180 minutes.
- Veuillez écrire votre nom sur le questionnaire.
- Veuillez écrire vos réponses dans le présent cahier seulement.
- Veuillez faire vos brouillons sur les documents prévus à cet effet.
- Veuillez retourner le présent cahier, les annexes et le papier brouillon à la fin de l'examen.

Questions	Points obtenus	Points
1		30
2		20
3		35
4		12
5		14
Total		111

© Etienne Marceau, 2017.

1. (30 points). Soit un portefeuille de n contrats d'assurance IARD dont les coûts sont représentés par les v.a. i.i.d. $X_1, ..., X_n$. Par convention,

$$X_i \sim X \sim BNComp\left(r, q; F_B\right)$$

avec
$$r = 0.4, q = \frac{10}{11}$$
 et

$$B \sim Gamma\left(\alpha = 1.5, \beta = \frac{1.5}{1000}\right).$$

Les coûts totaux en sinistres pour l'ensemble du portefeuille sont représentés par la v.a.

$$S_n = X_1 + \dots + X_n.$$

On définit $W_n = \frac{S_n}{n}$.

Questions : (Note : pour les fins de cette question, on effectue les calculs en sommant de 0 jusqu'à $k_0 = 1000$).

- (a) (10 points). Calculs pour un contrat :
 - i. ... écrire l'expression de $F_{X_1}(x)$;
 - ii. ... calculer $F_{X_1}(0)$, $F_{X_1}(50)$, $F_{X_1}(100)$

(Vérification: $F_{X_1}(30) = 0.9628382$);

- iii. ... expliquer comment obtenir la $VaR_{0.95}(X_1)$;
- iv. ... calculer $VaR_{0.95}(X_1)$;
- v. ... donner l'expression de la $TVaR_{0.95}(X_1)$; et
- vi. ... calculer $TVaR_{0.95}(X_1)$.
- (b) (10 points). Comportement de S_n :
 - i. Faire le développement nécessaire en utilisant des fonctions fréquemment utilisées en actuariat, probabilité et statistique (pour caractériser des distributions, comme des "fonctions génératrices" et des "transformées") appropriées pour identifier la loi de S_n .
 - ii. Indiquer les paramètres de la loi de S_n .
 - iii. Établir la relation entre la fonction de répartition de W_n et celle de S_n .
 - iv. Établir la relation entre la VaR de W_n et celle de S_n en évoquant la propriété appropriée des mesures de risque.
 - v. Établir la relation entre la TVaR de W_n et celle de S_n en évoquant la propriété appropriée des mesures de risque.
- (c) (10 points). Calculs pour un portefeuille de n = 200 contrats :
 - i. ... écrire l'expression de $F_{S_n}(x)$;
 - ii. ... calculer $F_{W_n}(0)$, $F_{W_n}(50)$, $F_{W_n}(100)$

(Vérification: $F_{W_n}(30) = 0.3274431$);

iii. ... expliquer comment obtenir la $VaR_{0.99}(S_n)$;

iv. ... calculer $VaR_{0.99}(W_n)$;

v. ... donner l'expression de la $TVaR_{0.99}(S_n)$; et

vi. ... calculer $TVaR_{0.99}(W_n)$.

Solution : (Note : pour les fins de cette question, on effectue les calculs en sommant de 0 jusqu'à $k_0 = 1000$).

- (a) (10 points). Calculs pour un contrat :
 - i. ... écrire l'expression de $F_{X_1}(x)$;

On a

$$F_{X_1}(x) \simeq \Pr(M_1 = 0) + \sum_{k=1}^{k_0} \Pr(M_1 = k) H(x; \alpha k, \beta)$$

avec $\alpha = 1.5, \beta = \frac{1.5}{1000}$

ii. ... calculer $F_{X_1}(0)$, $F_{X_1}(50)$, $F_{X_1}(100)$

(**Vérification**: $F_{X_1}(30) = 0.9628382$);

Valeurs:

iii. ... expliquer comment obtenir la $VaR_{0.95}(X_1)$;

Optimize ou uniroot

iv. ... calculer $VaR_{0.95}(X_1)$;

Valeurs:

v. ... donner l'expression de la $TVaR_{0.95}(X_1)$; et

$$TVaR_{\kappa}(X_1) \simeq \frac{1}{1-\kappa} \sum_{k=1}^{k_0} \Pr(M_1 = k) \frac{\alpha k}{\beta} \overline{H}(x; \alpha k + 1, \beta)$$

avec $\alpha = 1.5, \beta = \frac{1.5}{1000}$

vi. ... calculer $TVaR_{0.95}(X_1)$.

Valeurs:

- (b) (10 points). Comportement de S_n :
 - i. Faire le développement nécessaire en utilisant des fonctions fréquemment utilisées en actuariat, probabilité et statistique (pour caractériser des distributions, comme des "fonctions génératrices" et des "transformées") appropriées pour identifier la loi de S_n .

Pour t > 0, on a

$$\mathcal{L}_{S_n}(t) = E\left[e^{-tS_n}\right]$$

$$= E\left[e^{-t(X_1 + \dots + X_n)}\right]$$

$$= E\left[e^{-tX_1} \times \dots \times e^{-tX_n}\right]$$

$$= E\left[e^{-tX_1}\right] \times \dots \times E\left[e^{-tX_n}\right] \text{ (indépendance)}$$

$$= E\left[e^{-tX}\right]^n \text{ (i.d.)}$$

$$= (\mathcal{L}_X(t))^n$$

On sait que

$$\mathcal{L}_{X}(t) = E\left[e^{-tX}\right]$$

$$= \mathcal{P}_{M}\left(E\left[e^{-tB}\right]\right)$$

$$= \mathcal{P}_{M}\left(\mathcal{L}_{B}(t)\right).$$

On définit

$$N_n = M_1 + \dots + M_n,$$

avec

$$\mathcal{P}_{N_n}(s) = \mathcal{P}_{M_1}(s) \times ... \times \mathcal{P}_{M_n}(s)$$
$$= (\mathcal{P}_M(s))^n \text{ (iid)},$$

à partir duquel on déduit

$$N_n \sim BN (n \times r, q)$$

Alors, on obtient

$$\mathcal{L}_{S_n}(t) = (\mathcal{L}_X(t))^n$$

$$= (\mathcal{P}_M(\mathcal{L}_B(t)))^n$$

$$= \mathcal{P}_{N_n}(\mathcal{L}_B(t)),$$

permettant de conclure

$$S_n \sim BNComp\left(n \times r, q; F_B\right)$$

ii. Indiquer les paramètres de la loi de S_n .

Paramètres :
$$n\times r = n\times 0.4$$
 ; $q=\frac{10}{11}$ et

$$B \sim Gamma\left(\alpha = 1.5, \beta = \frac{1.5}{1000}\right).$$

iii. Établir la relation entre la fonction de répartition de W_n et celle de S_n . On a

$$W_n = \frac{1}{n} S_n$$

On déduit

$$F_{W_n}(x) = \Pr(W_n \le x)$$

= $\Pr(S_n \le nx)$

iv. Établir la relation entre la VaR de W_n et celle de S_n en évoquant la propriété appropriée des mesures de risque.

Propriété = homogénéité :

$$VaR_{\kappa}(W_n) = VaR_{\kappa}\left(\frac{S_n}{n}\right) = \frac{1}{n}VaR_{\kappa}(S_n).$$

v. Établir la relation entre la TVaR de W_n et celle de S_n en évoquant la propriété appropriée des mesures de risque.

Propriété = homogénéité :

$$VaR_{\kappa}(W_n) = VaR_{\kappa}\left(\frac{S_n}{n}\right) = \frac{1}{n}VaR_{\kappa}(S_n).$$

(c) (10 points). Calculs pour un portefeuille de n = 200 contrats :

i. ... écrire l'expression de $F_{S_n}(x)$;

On a

$$F_{S_n}(x) \simeq \Pr(N_n = 0) + \sum_{k=1}^{k_0} \Pr(N_n = k) H(x; \alpha k, \beta)$$

avec $\alpha = 1.5, \beta = \frac{1.5}{1000}$

ii. ... calculer $F_{W_n}(0)$, $F_{W_n}(50)$, $F_{W_n}(100)$

(Vérification: $F_{W_n}(30) = 0.3274431$);

Valeurs

iii. ... expliquer comment obtenir la $VaR_{0.99}(S_n)$;

iv. ... calculer $VaR_{0.99}(W_n)$;

Valeurs:

v. ... donner l'expression de la $TVaR_{0.99}\left(S_{n}\right)$;

On a

$$TVaR_{\kappa}(S_n) \simeq \frac{1}{1-\kappa} \sum_{k=1}^{k_0} \Pr(N_n = k) \frac{\alpha k}{\beta} \overline{H}(x; \alpha k + 1, \beta)$$

avec $\alpha = 1.5, \beta = \frac{1.5}{1000}$ et

vi. ... calculer $TVaR_{0.99}(W_n)$. Valeurs : 2. (20 points). Les coûts pour un contrat sont représentés par la v.a. X où

$$X = \begin{cases} 0 & , M = 0 \\ \sum_{k=1}^{M} B_k & , M > 0 \end{cases},$$

où $\underline{B} = \{B_k, k \in \mathbb{N}^+\}$ forme une suite de v.a. i.i.d., qui est aussi indépendante de la v.a. de fréquence

$$M \sim BN\acute{e}g\left(r = 1.5, q = \frac{1}{3}\right).$$

Par convention, on a

$$B_k \sim B \sim Pareto(\alpha, \lambda), \quad k \in \mathbb{N}^+,$$

avec les valeurs suivantes pour la fonction d'excès moyen

$$e_{50}(B) = 200$$
 et $e_{200}(B) = 500$,

οù

$$e_d(B) = E[B - d|B > d]$$
 , $d \ge 0$.

Questions:

- (a) (4 points). Développer les expressions pour calculer les valeurs exactes des paramètres α et λ de la loi de B à partir de l'information fournie. Il ne faut pas utiliser un outil d'optimisation. Fournir les valeurs obtenues.
- (b) (7 points). Pour calculer les réalisations $X^{(j)}$ de X, on utilise dans l'ordre les réalisations de la v.a. $U \sim Unif(0,1)$ produite avec le générateur du logiciel R.

On fixe set.seed(20170222) et les 5 premières réalisations de U sont les suivantes :

j	1	2	3	4	5
$U^{(j)}$	0.4831139	0.6902162	0.6244983	0.3149235	0.5731779

Produire m=100000 (cent mille) réalisations $(M^{(j)},X^{(j)})$ de (M,X) selon la procédure suivante :

- Étape 1 : Simuler $M^{(j)}$.
- Étape 2 : Simuler $X^{(j)}$ selon la valeur de $M^{(j)}$.
- Répéter les étapes 1 et 2 pour j = 1, 2, ..., m.

On fournit les réponses suivantes :

- i. (1 point). Détailler l'étape 2.
- ii. (3 points). Calculer $M^{(2)}$ et $X^{(2)}$.

(Vérification : $M^{(1)} = 2$ et $X^{(1)} = 105.2748$)

- iii. (3 points). Calculer $M^{(m)}$ et $X^{(m)}$. (Vérification : $M^{(m-1)} = 4$ et $X^{(m-1)} = 1333.778$)
- (c) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_1 = \Pr(X > 1200)$.

(Vérification : $Pr(X > 1400) \simeq 0.03136$)

- i. Indiquer l'expression de l'approximation.
- ii. Indiquer la valeur.
- (d) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_2 = E\left[\max\left(X 1200; 0\right)\right]$.

(Vérification : $E[\max(X - 1400; 0)] \simeq 54.75892$)

- i. Indiquer l'expression de l'approximation.
- ii. Indiquer la valeur.
- (e) (3 points). Po et Zie désirent appliquer la méthode Monte-Carlo avec les m réalisations de X pour calculer approximativement des espérances de fonctions de X. Po propose d'évaluer $\varphi_1 = E\left[\mathrm{e}^{0.001X}\right]$; Zie suggère d'évaluer $\varphi_2 = E\left[\mathrm{e}^{-0.001X}\right]$. Un seul des 2 membres de l'équipe a raison. Qui ? Po ? Zie ?
 - i. Justifier le choix et calculer la valeur pouvant être évaluée.
 - ii. Indiquer l'expression de l'approximation.
 - iii. Indiquer la valeur.

Solution:

(a) (4 points). Développer les expressions pour calculer les valeurs exactes des paramètres α et λ de la loi de B à partir de l'information fournie. Il ne faut pas utiliser un outil d'optimisation. Fournir les valeurs obtenues. On a

$$e_d(B) = E[B - d|B > d] = \frac{\lambda}{\alpha - 1} + \frac{d}{\alpha - 1}.$$

Pour $d_1 < d_2$, on observe

$$e_{d_2}(B) - e_{d_1}(B) = \frac{d_2 - d_1}{\alpha - 1}.$$

(1 point). On déduit

$$\alpha = 1 + \frac{d_2 - d_1}{e_{d_2}(B) - e_{d_1}(B)}.$$

(1 point). On obtient

$$\alpha = 1 + \frac{200 - 50}{500 - 200} = 1.5.$$

(1 point). On déduit

$$\lambda = \left(e_d(B) - \frac{d}{\alpha - 1} \right) \times (\alpha - 1)$$
$$= e_d(B) \times (\alpha - 1) - d.$$

(1 point). On obtient

$$\lambda = 200 \times 0.5 - 50 = 50$$

ou

$$\lambda = 500 \times 0.5 - 200 = 50$$

(b) (7 points). Pour calculer les réalisations $X^{(j)}$ de X, on utilise dans l'ordre les réalisations de la v.a. $U \sim Unif(0,1)$ produite avec le générateur du logiciel R.

On fixe set.seed(20170222) et les 5 premières réalisations de U sont les suivantes :

j		1	2	3	4	5
U^{0}	(j)	0.4831139	0.6902162	0.6244983	0.3149235	0.5731779

Produire m=100000 (cent mille) réalisations $\left(M^{(j)},X^{(j)}\right)$ de (M,X) selon la procédure suivante :

- Étape 1 : Simuler $M^{(j)}$.
- Étape 2 : Simuler $X^{(j)}$ selon la valeur de $M^{(j)}$.
- Répéter les étapes 1 et 2 pour j=1,2,...,m.

On fournit les réponses suivantes :

- i. (1 point). Détailler l'étape 2.
- ii. (3 points). Calculer $M^{(2)}$ et $X^{(2)}$.

(Vérification : $M^{(1)} = 2$ et $X^{(1)} = 105.2748$)

Valeurs:

iii. (3 points). Calculer $M^{(m)}$ et $X^{(m)}$.

(Vérification : $M^{(m-1)} = 4$ et $X^{(m-1)} = 1333.778$)

Valeurs:

(c) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_1 = \Pr(X > 1200)$.

(Vérification : $Pr(X > 1400) \simeq 0.03136$)

i. (1.5 points). Indiquer l'expression de l'approximation.

$$\psi_1 = \Pr(X > 1200) = E\left[1_{\{X > 1200\}}\right] \simeq \frac{1}{m} \sum_{j=1}^m 1_{\{X^{(j)} > 1200\}}.$$

ii. (1.5 points). Indiquer la valeur.

Valeurs:

(d) (3 points). Appliquer la méthode Monte-Carlo avec les m réalisations de X pour évaluer approximativement $\psi_2 = E \left[\max (X - 1200; 0) \right]$.

(Vérification : $E[\max(X - 1400; 0)] \simeq 54.75892$)

i. (1.5 points). Indiquer l'expression de l'approximation.

$$\psi_2 = E\left[\max\left(X - 1200; 0\right)\right] \simeq \frac{1}{m} \sum_{j=1}^m \max\left(X^{(j)} - 1200; 0\right).$$

ii. (1.5 points). Indiquer la valeur.

Valeurs:

- (e) (3 points). Po et Zie désirent appliquer la méthode Monte-Carlo avec les m réalisations de X pour calculer approximativement des espérances de fonctions de X. Po propose d'évaluer $\varphi_1 = E\left[\mathrm{e}^{0.001X}\right]$; Zie suggère d'évaluer $\varphi_2 = E\left[\mathrm{e}^{-0.001X}\right]$. Un seul des 2 membres de l'équipe a raison. Qui ? Po ? Zie ?
 - i. (1 point). Justifier le choix et calculer la valeur pouvant être évaluée. La relation

$$\varphi_1 = E\left[e^{0.001X}\right] = \mathcal{M}_X\left(0.001\right)$$

= $\mathcal{P}_M\left(\mathcal{M}_B\left(0.001\right)\right)$

est valide si

$$\mathcal{M}_{B}\left(t\right) = E\left[e^{tB}\right]$$

existe pour t>0. Ce n'est pas le cas pour la loi de Pareto. La relation

$$\varphi_2 = E\left[e^{-0.001X}\right] = \mathcal{L}_X (0.001)$$
$$= \mathcal{P}_M (\mathcal{L}_B (0.001))$$

est valide pour tout t > 0, quand B est une v.a. positive. En effet,

$$\mathcal{L}_{B}\left(t\right) = E\left[e^{-tB}\right],$$

existe pour tout t > 0., peu importe la loi de B (à la condition que la v.a. B soit positive, ce qui est le cas pour

$$B \sim Pareto(\alpha, \lambda)$$
.

Conclusion: Zie a raison.

ii. (1 point). Indiquer l'expression de l'approximation. On a

$$\varphi_2 = E\left[e^{-0.001X}\right] \simeq \frac{1}{m} \sum_{j=1}^m e^{-0.001X^{(j)}}.$$

iii. (1 point). Indiquer la valeur. Valeurs : 3. (35 points). Les coûts pour les 3 lignes d'affaires d'un portefeuille d'une société d'assurance sont représentés par les v.a. indépendantes $X_1,\,X_2$ et X_3 avec

$$F_{X_1}(x) = 1 - \exp\left(-\left(\lambda_1 x\right)^{\tau_1}\right)$$
, $F_{X_2}(x) = \left(\frac{x^{\tau_2}}{\lambda_2^{\tau_2} + x^{\tau_2}}\right)$ et $F_{X_3}(x) = 1 - \left(\frac{\lambda_3}{\lambda_3 + x^{\tau_3}}\right)^{\alpha_3}$, $x \ge 0$.

Hypothèses:

i	α_i	λ_i	τ_i
1	_	$\frac{1}{50}$	$\frac{1}{2}$
2	_	20	2.5
3	2.5	100	2

Les coûts pour le portefeuille sont définis par la v.a. S où

$$S = X_1 + X_2 + X_3$$
.

On a recours générateur par défaut de R pour produire m = 100000 (cent mille) réalisations de (U_1, U_2, U_3) où U_1, U_2, U_3 sont des v.a. i.i.d. de loi uniforme standard.

On fixe set.seed(20160419). On produit dans l'ordre $\left(U_1^{(1)}, U_2^{(1)}, U_3^{(1)}\right), \left(U_1^{(2)}, U_2^{(2)}, U_3^{(2)}\right), ..., \left(U_1^{(m)}, U_2^{(m)}, U_3^{(m)}\right)$:

	1 (1)	()	
j	$U_1^{(j)}$	$U_2^{(j)}$	$U_3^{(j)}$
1	0.7401186	0.8075052	0.1863795
2	0.0482047	0.3257164	0.7577736
222	0.4429194	0.2506679	0.9950111

Questions:

- (a) (9 points). Démontrer l'expression de la fonction quantile de X_i , notée par $F_{X_i}^{-1}$, à partir de la fonction de répartition, pour i = 1, 2, 3.
 - i. Développement de $F_{X_1}^{-1}$. On a

 - ii. Développement de $F_{X_2}^{-1}$. iii. Développement de $F_{X_3}^{-1}$.
- (b) (7 points). Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. On utilise $U_i^{(j)}$ pour calculer $X_i^{(j)}$ pour j = 1, ..., m et i = 1, 2, 3.
 - i. (1 points). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3.
 - ii. (3 points). Indiquer la réalisation #3 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$.

iii. (3 points). Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. Les valeurs de vérification sont les suivantes :

	j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
	1	90.791846	135.743454	2.127185
ĺ	2	0.122044	7.765915	100.519552
Ī				
ĺ	m	17.145322	9.935460	3.248869

(c) **(6 points).** Avec les résultats de l'item (3b), calculer une approximation de $TVaR_{\kappa}(X_i)$, i = 1, 2, 3, pour $\kappa = 0$ et 0.99.

(Vérification : $TVaR_{0.9}\left(X_{1}\right)\simeq433.9941$; $TVaR_{0.9}\left(X_{2}\right)\simeq426.0334$; $TVaR_{0.9}\left(X_{3}\right)\simeq435.4609$)

- i. Indiquer l'expression de l'approximation.
- ii. Indiquer la valeur.
- (d) (3 points). Produire m réalisations $S^{(j)}$ de S:
 - i. Indiquer la méthode pour y parvenir.
 - ii. Indiquer les réalisations #3 et #4 de S.
- (e) (2 points). Avec les résultats de l'item (3d), calculer une approximation de $TVaR_{\kappa}(S)$ pour $\kappa = 0$ et 0.99.

(Vérification : $TVaR_{0.9}(S) \simeq 1270.645$)

- i. Indiquer l'expression de l'approximation.
- ii. Indiquer la valeur.
- (f) **(6 points).** En utilisant de façon astucieuse les statistiques d'ordres, les propriétés des sup, et un passage à la limite, démontrer que

$$\sum_{i=1}^{3} TVaR_{\kappa}(X_{i}) \ge TVaR_{\kappa}\left(\sum_{i=1}^{3} X_{i}\right), \text{ pour } \kappa \in (0,1).$$

Note : Il ne faut pas faire la démonstration basée sur les fonctions indicatrices et ni celle basée sur la fonction stop-loss.

(g) (2 points). Comparer (3c) et (3e) en regard de (3f).

Solution:

- (a) (9 points). Démontrer l'expression de la fonction quantile de X_i , notée par $F_{X_i}^{-1}$, à partir de la fonction de répartition, pour i = 1, 2, 3.
 - i. (3 points). Développement de $F_{X_1}^{-1}$.
 - ii. (3 points). Développement de $F_{X_2}^{-1}$.

...

- iii. (3 points). Développement de $F_{X_3}^{-1}$.
- (b) (7 points). Utiliser la méthode inverse pour produire m réalisations $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$ de $\left(X_1^{(j)}, X_2^{(j)}, X_3^{(j)}\right)$. On utilise $U_i^{(j)}$ pour calculer $X_i^{(j)}$ pour j = 1, ..., m et i = 1, 2, 3.
 - i. (1 points). Fournir l'expression de $X_i^{(j)}$ en fonction de $F_{X_i}^{-1}$ et $U_i^{(j)}$, i=1,2,3. On a

$$X_i^{(j)} = F_{X_i}^{-1} \left(U_i^{(j)} \right)$$

pour i = 1, 2, 3.

- ii. (3 points). Indiquer la réalisation #3 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. Valeur:
- iii. (3 points). Indiquer la réalisation #4 de $(X_1^{(j)}, X_2^{(j)}, X_3^{(j)})$. Valeur :

Les valeurs de vérification sont les suivantes :

j	$X_1^{(j)}$	$X_2^{(j)}$	$X_3^{(j)}$
1	90.791846	135.743454	2.127185
2	0.122044	7.765915	100.519552
\overline{m}	17.145322	9.935460	3.248869

(c) **(6 points).** Avec les résultats de l'item (3b), calculer une approximation de $TVaR_{\kappa}(X_i)$, i = 1, 2, 3, pour $\kappa = 0$ et 0.99.

(Vérification : $TVaR_{0.9}(X_1) \simeq 433.9941$; $TVaR_{0.9}(X_2) \simeq 426.0334$; $TVaR_{0.9}(X_3) \simeq 435.4609$)

i. Indiquer l'expression de l'approximation.

Pour $\kappa = 0$, on a

$$TVaR_{\kappa}(X_i) = E[X_i] = \frac{1}{m} \sum_{i=1}^{m} X_i^{(j)}$$

Pour $\kappa = (0,1)$ et pour $\kappa \times m$ entier (noté j_0), on a

$$TVaR_{\kappa}(X_{i}) = \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=1}^{m} X_{i}^{(j)} \times 1_{\left\{X_{i}^{(j)} > X_{i}^{[j_{0}]}\right\}}$$
$$= \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=j_{0}+1}^{m} X_{i}^{[j]}$$

οù

$$X_i^{[1]} < \dots < X_i^{[m]}$$

ii. Indiquer la valeur.

Valeurs: ...

- (d) (3 points). Produire m réalisations $S^{(j)}$ de S:
 - i. (1 point). Indiquer la méthode pour y parvenir.
 On a

$$S^{(j)} = X_1^{(j)} + X_2^{(j)} + X_3^{(j)}$$

- ii. (2 points). Indiquer les réalisations #3 et #4 de S. Valeurs :
- (e) (2 points). Avec les résultats de l'item (3d), calculer une approximation de $TVaR_{\kappa}(S)$ pour $\kappa = 0$ et 0.99.

(Vérification : $TVaR_{0.9}(S) \simeq 1270.645$)

i. (1 point). Indiquer l'expression de l'approximation.

Pour $\kappa = 0$, on a

$$TVaR_{\kappa}(S) = E[S] \simeq \frac{1}{m} \sum_{i=1}^{m} S^{(i)}$$

Pour $\kappa = (0,1)$ et pour $\kappa \times m$ entier (noté j_0), on a

$$TVaR_{\kappa}(S) \simeq \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=1}^{m} S^{(j)} \times 1_{\{S^{(j)} > S^{[j_0]}\}}$$

$$\simeq \frac{1}{(1-\kappa)} \frac{1}{m} \sum_{j=j_0+1}^{m} S^{[j]}$$

οù

$$S^{[1]} < \dots < S^{[m]}$$

- ii. (2 points). Indiquer la valeur.
- (f) **(6 points).** En utilisant de façon astucieuse les statistiques d'ordres, les propriétés des sup, et un passage à la limite, démontrer que

$$\sum_{i=1}^{3} TVaR_{\kappa}(X_{i}) \geq TVaR_{\kappa}\left(\sum_{i=1}^{3} X_{i}\right), \text{ pour } \kappa \in (0,1).$$

Note : Il ne faut pas faire la démonstration basée sur les fonctions indicatrices et ni celle basée sur la fonction stop-loss.

Pour la démonstration, on a recours au lemme suivant :

Lemme #1. Soit une v.a. Y avec fonction de répartition F_Y . Soit une suite de v.a. i.i.d. $Y^{(1)}$, ..., $Y^{(m)}$ où $Y^{(i)} \sim Y$, i = 1, 2, ..., m. Alors, on a

$$TVaR_{\kappa}(Y) = \lim_{m \to \infty} \frac{\sum_{j=\lfloor m\kappa \rfloor + 1}^{m} Y^{[j]}}{|m(1 - \kappa)|} \text{ (p.s.)},$$
 (1)

où $Y^{[1]} \leq Y^{[2]} \leq ... \leq Y^{[m-1]} \leq Y^{[m]}$ sont les statistiques d'ordre de $Y^{(1)}$, ..., $Y^{(m)}$ et $\lfloor u \rfloor$ correspond à la partie entière de u.

Démonstration.

Lemme #2. Soit une suite de v.a. i.i.d. $Y^{(1)}$, ..., $Y^{(m)}$ où $Y^{(j)} \sim Y$, j = 1, 2, ..., m. Pour un entier j_0 tel que $1 \leq j_0 + 1 \leq m$ $(j_0 \in \{0, 1, 2, ..., m - 1\})$, l'égalité suivante est vérifiée

$$\sum_{j=j_0+1}^m Y^{[j]} = \sup \left\{ Y^{(i_{j_0+1})} + \dots + Y^{(i_m)}; 1 \le i_{j_0+1} < \dots < i_m \le m \right\}.$$

Soit un vecteur de v.a. $\underline{X} = (X_1, X_2, X_3)$ dont la fonction de répartition est désignée par F_X .

Soient la suite de couple de v.a. i.i.d. $\underline{X}^{(j)}$, j pour j = 1, 2, ...m. On définit $S = X_1 + X_2 + X_3$ et $S^{(j)} = X_1^{(j)} + X_2^{(j)} + X_3^{(j)}$, pour j = 1, 2, ..., m.

Par le **Lemme 1**, on a

$$TVaR_{\kappa}(S) = \lim_{m \to \infty} \frac{\sum_{j=\lfloor m\kappa \rfloor + 1}^{m} S^{[j]}}{|m(1 - \kappa)|} \text{ (p.s.)},$$

où $Y^{[1]} \leq Y^{[2]} \leq ... \leq Y^{[m-1]} \leq Y^{[m]}$ sont les statistiques d'ordre de $S^{(1)}$, ..., $S^{(m)}$ et [u] correspond à la partie entière de u.

On fixe $j_0 = \lfloor m\kappa \rfloor$.

On a

$$\sum_{j=\lfloor m\kappa\rfloor+1}^{m} S^{[j]} = \sum_{j=j_0+1}^{m} S^{[j]}$$

$$= \sup \left\{ S^{\left(i_{j_0+1}\right)} + \dots + S^{\left(i_m\right)}; 1 \leq i_{j_0+1} < \dots < i_m \leq m \right\} \text{ (Lemme 2)}$$

$$= \sup \left\{ \left(X_1^{\left(i_{j_0+1}\right)} + X_2^{\left(i_{j_0+1}\right)} + X_3^{\left(i_{j_0+1}\right)} \right) + \dots + \left(X_1^{\left(i_m\right)} + X_2^{\left(i_m\right)} + X_3^{\left(i_m\right)} \right); 1 \leq i_{j_0+1} < \dots \right\}$$

$$= \sup \left\{ \left(X_1^{\left(i_{j_0+1}\right)} + \dots + X_1^{\left(i_m\right)} \right) + \left(X_2^{\left(i_{j_0+1}\right)} + \dots + X_2^{\left(i_m\right)} \right) + \left(X_3^{\left(i_{j_0+1}\right)} + \dots + X_3^{\left(i_m\right)} \right) \right\}$$

$$\leq \sup \left\{ \left(X_1^{\left(i_{j_0+1}\right)} + \dots + X_1^{\left(i_m\right)} \right); 1 \leq i_{j_0+1} < \dots < i_m \leq m \right\}$$

$$+ \sup \left\{ \left(X_2^{\left(i_{j_0+1}\right)} + \dots + X_2^{\left(i_m\right)} \right); 1 \leq i_{j_0+1} < \dots < i_m \leq m \right\}$$

$$+ \sup \left\{ \left(X_3^{\left(i_{j_0+1}\right)} + \dots + X_3^{\left(i_m\right)} \right); 1 \leq i_{j_0+1} < \dots < i_m \leq m \right\}$$

$$= \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_1^{[j]} + \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_2^{[j]} + \sum_{j=\lfloor m\kappa\rfloor+1}^{m} X_3^{[j]}.$$

Il suffit de diviser par $[m(1-\kappa)]$ et de faire tendre $m \to \infty$ et on déduit le résultat voulu en appliquant le **Lemme 1**.

(g) (2 points). Comparer (3c) et (3e) en regard de (3f).

La relation en (3f) correspond à la propriété de sous-additivité. Cette dernière est en lien avec l'effet positif de la mutualisation. En comparant (3c) et (3e), on observe la mutualisation conduit à un effet positif.

4. (12 points). Soit la v.a. X définie par

$$X = 300 \times V \times I$$
,

où les v.a. $V \sim Beta(2,1)$ et $I \sim Bern(0.05)$ sont indépendantes. On doit calculer deux primes selon les 3 mesures de risque suivantes :

$$\Pi_{\eta}^{var}(X) = E[X] + \eta \times Var(X)$$
 et $\Pi_{\kappa}^{VaR}(X) = VaR_{\kappa}(X)$

Questions:

- (a) (1 point). On observe $X \in [0, x_{\text{max}}]$. Quelle est la valeur de x_{max} ?
- (b) (4 points). Calculer $\Pi_5^{var}(X)$.
 - i. Développer l'expression exacte.
 - ii. Fournir la valeur.
- (c) (4 points). Calculer $\Pi_{\kappa}^{VaR}(X)$, pour $\kappa = 0.5$ et $\kappa = 0.999999$.
 - i. Développer l'expression exacte.

(Note: ne pas utiliser les outils d'optimisation de R).

- ii. Fournir les valeurs.
- (d) (1 point). Calculer $\varphi = \lim_{\kappa \to 1} \prod_{\kappa}^{VaR} (X)$. Est-ce que $\varphi < x_{\text{max}}, \ \varphi = x_{\text{max}}, \ \text{ou } \varphi > x_{\text{max}}$?
- (e) **(2 points).** Quelle mesure n'induit pas une marge de risque excessive (no-rip-off)? Quelle mesure induit une marge excessive?

Solution:

(a) (1 point). On observe $X \in [0, x_{\text{max}}]$. Quelle est la valeur de x_{max} ? On a

$$x_{\text{max}} = 300.$$

- (b) (4 points). Calculer $\Pi_5^{var}(X)$.
 - i. (2 points). Développer l'expression exacte. On a

$$E[X] = 300 \times E[I] \times E[V]$$

$$= 300 \times q \times \frac{a}{a+b}$$

$$= \dots$$

On a

$$Var(X) = 300^2 \times (E[I] \times Var(V) + Var(I) \times E[V^2])$$

= ...

ii. (2 points). Fournir la valeur.

Valeur:

- (c) (4 points). Calculer $\Pi_{\kappa}^{VaR}(X)$, pour $\kappa = 0.5$ et $\kappa = 0.999999$.
 - i. (2 points). Développer l'expression exacte.

(Note : ne pas utiliser les outils d'optimisation de R). On a

$$F_X(x) = 1 - q + q \times F_B(x)$$
$$= 1 - q + q \times F_V\left(\frac{x}{300}\right)$$

pour $x \in [0, 300]$.

On sait

$$F_V(y) = y^2$$
,

pour $y \in [0, 1]$.

On sait aussi

$$F_V^{-1}(u) = u^{0.5},$$

pour $u \in [0, 1]$.

Si $u \in [0, 0.95]$, on a

$$F_X^1\left(u\right) = 0$$

Si $u \in (0.95, 1)$, on a

$$F_X^{-1}(u) = 300 \times F_V^{-1} \left(\frac{u - 0.95}{0.05} \right)$$
$$= 300 \times \left(\frac{u - 0.95}{0.05} \right)^{0.5}$$

On sait

$$VaR_{\kappa}\left(X\right) = F_{X}^{-1}\left(\kappa\right)$$

pour $\kappa \in (0,1)$.

ii. (2 points). Fournir les valeurs.

Valeurs:

(d) (1 point). Calculer $\varphi = \lim_{\kappa \to 1} \prod_{\kappa}^{VaR} (X)$. Est-ce que $\varphi < x_{\text{max}}, \ \varphi = x_{\text{max}}, \ \text{ou} \ \varphi > x_{\text{max}}$?

On observe

$$\varphi = \lim_{\kappa \to 1} \Pi_{\kappa}^{VaR}(X) = \lim_{\kappa \to 1} VaR_{\kappa}(X)$$

$$= \lim_{\kappa \to 1} 300 \times \left(\frac{\kappa - 0.95}{0.05}\right)^{0.5} (\kappa > 0.95)$$

$$= 300 \times \lim_{\kappa \to 1} 3 \left(\frac{\kappa - 0.95}{0.05}\right)^{0.5}$$

$$= 300 \times 1$$

$$= 300$$

$$= x_{\text{max}}$$

(e) (2 points). Quelle mesure n'induit pas une marge de risque excessive (no-rip-off)? Quelle mesure induit une marge excessive?

La mesure $\Pi_{\kappa}^{VaR}\left(X\right)$ n'induit par de marge de risque excessive.

La mesure

$$\Pi_{\eta}^{var}(X) = E[X] + \eta \times Var(X) > x_{\text{max}}$$

quand

$$\eta > \frac{x_{\max} - E[X]}{Var(X)}.$$

Elle peut induire une marge de risque excessive.

5. (14 points). Soit un portefeuille de contrats d'assurance IARD dont les coûts sont représentés par les v.a. indépendantes

$$X_{1,1},...,X_{1,n_1}$$
 et $X_{2,1},...,X_{2,n_2}$.

Hypothèses pour le contrat (1, i), $i = 1, 2, ..., n_1$:

coûts totaux du contrat : $X_{1,i} \sim X_1 \sim PoisComp\left(\lambda_1; F_{B_1}\right)$ $\lambda_1 = 0.05$ nombre de sinistres du contrat : $M_{1,i} \sim M_1 \sim Pois\left(\lambda_1\right)$ $\lambda_1 = 0.05$ montant du sinistre k du contrat : $B_{1,i,k} \sim B_{1,i} \sim B_1 \sim Pareto\left(1.3,3\right)$

Hypothèses pour le contrat (2, i), $i = 1, 2, ..., n_2$:

coûts totaux du contrat : $X_{2,i} \sim X_2 \sim PoisComp(\lambda_2; F_{B_2})$ $\lambda_2 = 0.1$ nombre de sinistres du contrat : $M_{2,i} \sim M_2 \sim Pois(\lambda_2)$ $\lambda_2 = 0.1$ montant du sinistre k du contrat : $B_{2,i,k} \sim B_{2,i} \sim B_2 \sim Pareto(1.5, 5)$

Les coûts totaux en sinistres pour l'ensemble du portefeuille sont représentés par la v.a.

$$S = \sum_{l=1}^{2} \sum_{i=1}^{n_l} X_{l,i}.$$

Le nombre total de sinistres pour l'ensemble du portefeuille est représenté par la v.a.

$$N = \sum_{l=1}^{2} \sum_{i=1}^{n_l} M_{l,i}.$$

Questions:

- (a) (3 points). Comportement de N.
 - i. Utiliser les fgp pour démontrer que

$$N \sim Pois(\lambda_S)$$
.

- ii. Préciser la valeur de λ_S en fonction de λ_1 , λ_2 , n_1 et n_2 .
- (b) (5 points). Comportement de S.
 - i. Démontrer que $S \sim PoisComp(\lambda_S; F_C)$, i.e.,

$$S = \begin{cases} 0 & , N = 0 \\ \sum_{k=1}^{N} C_k & , N > 0 \end{cases}$$

où $\underline{C} = \{C_k, k \in \mathbb{N}^+\}$ forme une suite de v.a. i.i.d., qui est aussi indépendante de la v.a. N. De plus, $C_k \sim C$, $k = k \in \mathbb{N}^+$.

- ii. Pour faire la démonstration, on doit recourir à un seul des outils suivants : (1) les fgms ou bien (2) les transformées de Laplace-Stieltjes. Justifier votre choix.
- iii. Donner l'expression de F_C en fonction de $\lambda_1, \lambda_2, n_1, n_2, F_{B_1}$, et F_{B_2} .
- (c) (6 points). Calculs à effectuer avec $n_1 = 20$ et $n_2 = 10$.
 - i. Calculer $VaR_{0.99}(N)$ et $TVaR_{0.99}(N)$.
 - ii. Utiliser un outil d'optimisation pour calculer $VaR_{0.99}(C)$.
 - iii. Calculer $Pr(N = 2, C_1 > 100, C_2 > 200)$.

Solution:

- (a) (3 points). Comportement de N.
 - i. (2.5 points). Utiliser les fgp pour démontrer que

$$N \sim Pois(\lambda_S)$$
.

On définit

$$N = \sum_{l=1}^{2} \sum_{i=1}^{n_l} M_{l,i}.$$

On a

$$\begin{split} \mathcal{P}_{N}\left(s\right) &= \Pi_{l=1}^{2} \Pi_{i=1}^{n_{l}} \mathcal{P}_{M_{l,i}}\left(s\right) \text{ (indépendance)} \\ &= \Pi_{l=1}^{2} \Pi_{i=1}^{n_{l}} \mathrm{e}^{\lambda_{l,i}(s-1)} \\ &= \Pi_{l=1}^{2} \Pi_{i=1}^{n_{l}} \mathrm{e}^{\lambda_{l}(s-1)} \text{ (id dans chaque classe)} \\ &= \Pi_{l=1}^{2} \mathrm{e}^{n_{l} \lambda_{l}(s-1)} \\ &= \mathrm{e}^{(n_{1} \lambda_{1} + n_{2} \lambda_{2})(s-1)}, \end{split}$$

à partir duquel on déduit

$$N \sim Pois (\lambda_S = n_1 \lambda_1 + n_2 \lambda_2)$$

- ii. (0.5 point). Préciser la valeur de λ_S en fonction de λ_1 , λ_2 , n_1 et n_2 . Valeur : $\lambda_S = n_1 \lambda_1 + n_2 \lambda_2$
- (b) (5 points). Comportement de S.
 - i. (3 points). Démontrer que $S \sim PoisComp(\lambda_S; F_C)$, i.e.,

$$S = \begin{cases} 0 & , N = 0 \\ \sum_{k=1}^{N} C_k & , N > 0 \end{cases}$$

où $\underline{C} = \{C_k, k \in \mathbb{N}^+\}$ forme une suite de v.a. i.i.d., qui est aussi indépendante de la v.a. N. De plus, $C_k \sim C$, $k = k \in \mathbb{N}^+$.

Pour t > 0, on a

$$\mathcal{L}_{S_n}(t) = E\left[e^{-tS}\right]$$

$$= \Pi_{l=1}^2 \Pi_{i=1}^{n_l} \mathcal{L}_{X_{l,i}}(t) \text{ (indépendance)}$$

$$= \Pi_{l=1}^2 \Pi_{i=1}^{n_l} e^{\lambda_{l,i} \left(\mathcal{L}_{B_{l,i}}(t)-1\right)}$$

$$= \Pi_{l=1}^2 \Pi_{i=1}^{n_l} e^{\lambda_l \left(\mathcal{L}_{B_l}(t)-1\right)} \text{ (i.d. par classe)}$$

$$= \Pi_{l=1}^2 e^{n_l \lambda_l \left(\mathcal{L}_{B_l}(t)-1\right)}$$

$$= e^{\sum_{l=1}^2 n_l \lambda_l \left(\mathcal{L}_{B_l}(t)-1\right)}$$

$$= e^{\lambda_S(\mathcal{L}_C(t)-1)},$$

οù

$$\mathcal{L}_{C}\left(t
ight)=rac{n_{1}\lambda_{1}}{\lambda_{S}}\mathcal{L}_{B_{1}}\left(t
ight)+rac{n_{2}\lambda_{2}}{\lambda_{S}}\mathcal{L}_{B_{2}}\left(t
ight)$$

On conclut

$$S \sim PComp(\lambda_S; F_C)$$

avec

$$\lambda_S = n_1 \lambda_1 + n_2 \lambda_2$$

et

$$F_C(x) = \frac{n_1 \lambda_1}{\lambda_S} F_{B_1}(x) + \frac{n_2 \lambda_2}{\lambda_S} F_{B_2}(x)$$

pour $x \geq 0$.

ii. (1 point). Pour faire la démonstration, on doit recourir à un seul des outils suivants
: (1) les fgms ou bien (2) les transformées de Laplace-Stieltjes. Justifier votre choix.
La relation

$$\mathcal{M}_{X_{t}}(t) = \mathcal{P}_{M_{t}}(\mathcal{M}_{B_{t}}(t))$$

est valide si

$$\mathcal{M}_{B_{l}}\left(t\right) = E\left[e^{tB_{l}}\right]$$

existe pour t > 0. Ce n'est pas le cas pour la loi de Pareto. La relation

$$\mathcal{L}_{X}\left(t\right)=\mathcal{P}_{M}\left(\mathcal{L}_{B}\left(t\right)\right)$$

est valide pour tout t > 0, quand B est une v.a. positive. En effet,

$$\mathcal{L}_{B}\left(t\right) = E\left[e^{-tB}\right],$$

existe pour tout t > 0., peu importe la loi de B (à la condition que la v.a. B soit positive, ce qui est le cas pour

$$B_l \sim Pareto(\alpha_l, \lambda_l)$$
 pour $l = 1, 2$.

iii. (1 point). Donner l'expression de F_C en fonction de λ_1 , λ_2 , n_1 , n_2 , F_{B_1} , et F_{B_2} . On a

$$F_C(x) = \frac{n_1 \lambda_1}{\lambda_S} F_{B_1}(x) + \frac{n_2 \lambda_2}{\lambda_S} F_{B_2}(x)$$

pour $x \ge 0$.

(c) (6 points). Calculs à effectuer avec $n_1 = 20$ et $n_2 = 10$. On a

$$\lambda_S = n_1 \lambda_1 + n_2 \lambda_2$$

$$= 20 \times 0.05 + 10 \times 0.1$$

$$= 2$$

 et

$$F_{C}(x) = \frac{n_{1}\lambda_{1}}{\lambda_{S}}F_{B_{1}}(x) + \frac{n_{2}\lambda_{2}}{\lambda_{S}}F_{B_{2}}(x)$$

$$= \frac{1}{2} \times \left(1 - \left(\frac{3}{3+x}\right)^{1.3}\right) + \frac{1}{2} \times \left(1 - \left(\frac{5}{5+x}\right)^{1.5}\right)$$

pour $x \ge 0$.

- i. (2 points). Calculer $VaR_{0.99}(N)$ et $TVaR_{0.99}(N)$.
- ii. (2 points). Utiliser un outil d'optimisation pour calculer $VaR_{0.99}\left(C\right)$. Valeur :
- iii. (2 points). Calculer $\varphi = \Pr(N = 2, C_1 > 100, C_2 > 200)$. On a

$$\varphi = \Pr(N = 2) \times \Pr(C_1 > 100) \times \Pr(C_2 > 100)$$

= ...