Solution de l'examen partiel H2013

Problème no. 1 (25 points)

a) L'amplitude de la tension $v_s(t)$ est égale à 400 V. La valeur efficace de $v_s(t)$ est donc égale à $V_s = \frac{400}{\sqrt{2}} = 282.84 \text{ V}$

L'amplitude du courant $i_s(t)$ est égale à 30 A. La valeur efficace de $i_s(t)$ est donc égale à $I_s = \frac{30}{\sqrt{2}} = 21.21$ A

La fréquence de $v_s(t)$ est égale à: $f_0 = \frac{1}{T_0} = \frac{1}{20ms} = 50 \text{ Hz}$

Le courant $i_s(t)$ est arrière de phase de la tension $v_s(t)$ d'un angle de: $\phi = \frac{2ms}{20ms} \times 360 = 36^\circ$

L'ampèremètre indique la valeur efficace du courant $i_s(t)$: $I_s = 21.21$ A.

Le wattmètre indique la puissance active fournie à la charge:

$$P_s = V_s I_s \cos \phi = 282.84 V \times 21.21 A \times \cos(36^\circ) = 4853.3 W$$

Le facteur de puissance de la charge: $fp = cos(36^\circ) = 0.809$

b)

Puissance apparente: $S = V_s I_s = 5999VA$.

Puissance réactive:

$$Q = \sqrt{S^2 - P^2} = \sqrt{5999^2 - 4853.3^2} = 3526.1 \text{ VAR}$$

Puissance réative pour avoir un facteur de puissance de 0.9:

$$Q' = P \times tan(25.84^{\circ}) = 4853.3 \times 0.48428 = 2350.4 VAR$$

Puissance réative du condensateur C:

$$Q_C = Q - Q' = 3526.1 - 2350.4 = 1175.7 \text{ VAR}$$

Impédance du condensateur:
$$X_C = \frac{V_s^2}{Q_C} = \frac{(282.84)^2}{1175.7} = 68\Omega$$

La valeur du condensateur: $C = \frac{1}{2\pi f_0 X_C} = \frac{1}{100\pi \times 68} = 46.8 \mu F$

b) La tension $v_1(t)$ est **la moitié** (dans le temps) d'une tension sinusoïdale d'amplitude 240 V (la valeur efficace de cette tension est $\frac{240\,\text{V}}{\sqrt{2}} = 169.7\,\text{V}$. La valeur efficace de $v_1(t)$ sera donc égale à $V_1(\text{eff}) = \frac{169.7\,\text{V}}{\sqrt{2}} = 120\,\text{V}$.

La valeur efficace de la tension $v_2(t)$ peut être calculée en 57600 calculant la racine carrée de la surface moyenne sous la courbe $(v_2(t))^2$.

On a:

$$V_2(eff) = \sqrt{\frac{14400 + 57600 \times 2 + 14400}{4}} = 151.99V$$

Problème no. 2 (25 points)

a) La puissance active totale fournie à la charge est égale à:

$$P = P_1 + P_2 = 47817 + 20286 = 68103 W$$

L'angle ϕ de l'impédance de charge (l'angle ϕ de la puissance complexe S) est donné par la relation suivante:

$$tan\varphi \ = \ \sqrt{3} \bigg[\frac{P_1 - P_2}{P_1 + P_2} \bigg] \ = \ \sqrt{3} \bigg[\frac{47.817 - 20.286}{47.817 + 20.286} \bigg] \ = \ 0.7002$$

On déduit: $\phi = 35^{\circ}$

Le facteur de puissance de la charge est: $fp = cos \phi = cos(35^\circ) = 0.819 \text{ AR}$

L'indication du wattmètre no. 1 est $P_1 = V_{AC}I_A\cos(\phi - 30^\circ)$

On déduit:
$$I_A = \frac{P_1}{V_{AC}\cos(\phi - 30^\circ)} = \frac{47817}{2400 \times \cos(5^\circ)} = 20 \text{ A}$$

La puissance apparente totale de la charge est: $S = \sqrt{3} \times V_{AC} \times I_A = \sqrt{3} \times 2400 \times 20 = 83138 \text{ VA}$

La puissance réactive totale dans la charge est égale à:

$$Q = \sqrt{S^2 - P^2} = \sqrt{83138^2 - 68103^2} = 47686 \text{ VAR}$$

b) Un banc de 3 condensateurs en triangle est connectée en parallèle avec la charge.

La puissance active totale dans la charge n'a pas changé: $P = P_1 + P_2 = 20286 + 47817 = 68103 W$

Seulement l'angle ϕ a changé de signe: $\phi = -35^{\circ}$

La puissance réactive fournies par des condensateurs est donc deux fois la puissance réactive dans la charge inductive:

$$Q_C = 2 \times Q = 2 \times 47686 = 95374 \text{ VAR}$$

La réactance d'un condensateur Cx est:
$$X_{Cx} = \frac{(V_{AC})^2}{Q_C/3} = \frac{2400^2}{95374/3} = 181.18\Omega$$

La valeur d'un condensateur Cx est: $Cx = \frac{1}{X_{Cx} \times \omega} = \frac{1}{181.18 \times 120\pi} = 14.64 \mu F$

La valeur du courant
$$I_A$$
 n'a pas changé: $I_A = \frac{P_1}{V_{AC}\cos(\phi - 30^\circ)} = \frac{20286}{2400 \times \cos(-65^\circ)} = 20 \text{ A}$

Problème no. 3 (25 points)

a) On convertit la charge Y en Δ .

$$Z_{AB} = \frac{Z_A Z_B + Z_B Z_C + Z_C Z_A}{Z_C} = \frac{(5 \times 10) + (10 \times 25) + (25 \times 5)}{25} = 17\Omega$$

$$Z_{BC} = \frac{Z_A Z_B + Z_B Z_C + Z_C Z_A}{Z_A} = \frac{(5 \times 10) + (10 \times 25) + (25 \times 5)}{5} = 85\Omega$$

$$Z_{CA} = \frac{Z_A Z_B + Z_B Z_C + Z_C Z_A}{Z_B} = \frac{(5 \times 10) + (10 \times 25) + (25 \times 5)}{10} = 42.5\Omega$$

La tension V_{AN} est prise comme référence de phase: $V_{AN} = 1385.6 / 0^{\circ}$ V

Les courants de triangle sont:

$$I_{AB} = \frac{V_{AB}}{Z_{AB}} = \frac{2400 \angle 30^{\circ}}{17} = 141.176 \angle 30^{\circ} \text{ A}$$

$$I_{BC} = \frac{V_{BC}}{Z_{BC}} = \frac{2400 \angle -90^{\circ}}{85} = 28.235 \angle -90^{\circ} \text{ A}$$

$$I_{CA} = \frac{V_{CA}}{Z_{CA}} = \frac{2400 \angle 150^{\circ}}{42.5} = 54.471 \angle 150^{\circ} \text{ A}$$

Les courants de ligne sont:

$$I_A = I_{AB} - I_{CA} = (141.176 \angle 30^\circ) - (54.471 \angle 150^\circ) = 176.329 \angle 13.9^\circ A$$
 $I_B = I_{BC} - I_{AB} = (28.235 \angle -90^\circ) - (141.176 \angle 30^\circ) = 157.207 \angle -141.1^\circ A$
 $I_C = I_{CA} - I_{BC} = (54.471 \angle 150^\circ) - (28.235 \angle -90^\circ) = 74.704 \angle 130.9^\circ A$

Diagramme vectoriel

b) On relie le point commun N' de la charge et le neutre N de la source. Le système devient trois circuits indépendants. Les courants de ligne sont:

$$I_{A} = \frac{V_{AN}}{Z_{A}} = \frac{1385.6 \angle 0^{\circ}}{5} = 277.128 \angle 0^{\circ} A$$

$$I_{B} = \frac{V_{BN}}{Z_{B}} = \frac{1385.6 \angle -120^{\circ}}{10} = 138.564 \angle -120^{\circ} A$$

$$I_C = \frac{V_{CN}}{Z_C} = \frac{1385.6 \angle 120^{\circ}}{25} = 55.426 \angle 120^{\circ} A$$

Le courant du neutre est égal à la somme de ${\rm I_A}, {\rm I_B},$ et ${\rm I_C}:$

$$I_{N} = I_{A} + I_{B} + I_{C} = (277.128 \angle 0^{\circ}) + (138.564 \angle -120^{\circ}) + (55.426 \angle 120^{\circ}) = 193.99 \angle -21.8^{\circ} \text{ A}$$

L'indication du wattmètre no. 1 est $P_1 = V_{AC}I_A\cos\theta_1$ où θ_1 est l'angle entre V_{AC} et I_A

On a: $\theta_1 = -30^{\circ} - 0^{\circ} = -30^{\circ}$

Alors: $P_1 = 2400 \times 277.128 \times \cos(-30^\circ) = 576 \text{kW}$

L'indication du wattmètre no. 2 est $P_2 = V_{BC}I_B\cos\theta_2$ où θ_2 est l'angle entre V_{BC} et I_A

On a: $\theta_2 = -90^{\circ} - (-120^{\circ}) = 30^{\circ}$

Alors: $P_2 = 2400 \times 138.564 \times \cos(30^\circ) = 288 \text{kW}$

La somme (P₁ + P₂) dans ce cas ne représente rien de particulier.

Problème no. 4 (25 points)

a) La réactance propre de la bobine no.1 est:
$$X_1 = \omega L_1 = \frac{V_{s1}}{I_1} = \frac{240}{1.5915} = 150.8 \Omega$$

On déduit:
$$L_1 = \frac{X_1}{\omega} = \frac{150.8}{120\pi} = 0.4 \text{ H}$$

La réactance mutuelle est:
$$X_m = \frac{V_{21}}{I_1} = \frac{90}{1.5915} = 56.55 \Omega$$

On déduit:
$$M = \frac{X_m}{\omega} = \frac{56.55}{120\pi} = 0.15 \text{ H}$$

La réactance propre de la bobine no.2 est:
$$X_2 = \omega L_2 = \frac{V_{s2}}{I_2} = \frac{100}{3.8197} = 26.18 \Omega$$

On déduit:
$$L_2 = \frac{X_2}{\omega} = \frac{26.18}{120\pi} = 0.0694 \,\text{H}$$

La réactance mutuelle est:
$$X_m = \frac{V_{12}}{I_2} = \frac{216}{3.8197} = 56.55 \Omega$$

On déduit:
$$M = \frac{X_m}{\omega} = \frac{56.55}{120\pi} = 0.15 \,\text{H}$$
 (même valeur que celle calculée avant)

b) Le circuit équivalent du système est montré dans la figure suivante.

L'impédance vue par la source est:

$$Z_1 = j94.25 + \frac{(j56.55)(5 - j30.37)}{(j56.55) + (5 - j30.37)} = (22.508 + j32.948)\Omega = 39.902 \angle 55.7^{\circ}\Omega$$

Le courant I₁ est égal à: I₁ =
$$\frac{V_1}{Z_1} = \frac{240}{39.902 \angle 55.7^{\circ}} = 6.015 \angle -55.7^{\circ} \text{ A}$$

Le courant I₂ est calculé à partir de I₁ (par la loi du diviseur de courant):

$$I_2 = \frac{j56.55}{(j56.55) + (5 - j30.37)} \times I_1 = \frac{j56.55}{(j56.55) + (5 - j30.37)} \times (6.015 \angle -55.7^{\circ}) A$$

$$I_2 = 12.761 \angle -44.8^{\circ} A$$

La tension
$$V_2$$
 est : $V_2 = 5 \times I_2 = 63.805 \angle -44.8^{\circ} \text{ V}$

La puissance active fournie par la source V_{s1} est égale à:

$$P_{s1} = V_{s1}I_1\cos(55.7^\circ) = 240 \times 6.015 \times 0.564 = 814.3 \text{ W}$$