- 1. (i) The additive inverse is not available for all entries.
- (ii) If y_1, y_2 are two solutions, then for $y = y_1 + y_2$, $xy' + y = 6x^2 \neq 3x^2$.
- (iii) The sum of two solutions is not a solution.
- (iv) The 0 matrix is not there.
- 2. (i) It is a subspace spanned by x, x^2, \ldots, x^n .
- (ii) It is a subspace spanned by $1, x^3, \dots, x^n$.
- (iii) It is a subspace spanned by $\{x^{2j+1}: 0 < 2j + 1 \le n\}$.
- 3. Suppose $a + b \cos t + c \sin t \equiv 0$ on $[-\pi, \pi]$, where $a, b, c \in \mathbb{R}$. Putting t = 0, a + b = 0. Putting $t = -\pi$, a b = 0. Thus, a = b = 0. Consequently, $c \sin t \equiv 0$, which means c = 0 as well. This shows S_1 is linearly independent.

On the other hand, $\cos^2 t + \sin^2 t \equiv 1$, which shows S_2 is linearly dependent.

- 4. Note that v_1, v_2, v_3 are linearly dependent.
- 5. $\dim(W_1) = n$, $\dim(W_2) = n(n+1)/2 = \dim(W_3)$, $\dim(W_4) = n(n-1)/2$. To see these, note, for example, that to specify a symmetric matrix it is enough to specify the diagonal entries and entries above the diagonal, which are $1+2+\cdots+n=n(n+1)/2$ in number. Similarly for upper triangular matrices. A skew-symmetric matrix is specified by entries above diagonal, because the diagonal entries are all zero.
- 6. That $V \times W$ is a vector space is straightforward. If v_1, \ldots, v_n is a basis of V and w_1, \ldots, w_m is a basis of W, then $\{(v_i, 0), (0, w_j) : 1 \le i \le n, 1 \le j \le m\}$ is a basis of $V \times W$.
 - 7. That T is linear is clear, the matrix of T is just \mathbf{A} .
 - 8. Straight calculation.
- 9. In an inner product space the norm is defined as $||v||^2 = \langle v, v \rangle$. Thus, $||v+w||^2 + ||v-w||^2 = \langle v+w, v+w \rangle + \langle v-w, v-w \rangle = ||v||^2 + \langle v, w \rangle + \langle w, v \rangle + ||w||^2 + ||v||^2 \langle v, w \rangle \langle w, v \rangle + ||w||^2 = 2(||v||^2 + ||w||^2).$
- 10. As matrix multiplication is linear in each component and as the trace is linear, $\langle A, B \rangle = \operatorname{trace}(A^*B)$ is linear in both A and B. Note that for any matrix C, $\operatorname{trace}(C) = \operatorname{trace}(C^t) = \operatorname{trace}(C^*)$. Thus, $\langle A, B \rangle = \operatorname{trace}(A^*B)^* = \operatorname{trace}(B^*A) = \overline{\langle B, A \rangle}$. Finally, the (j, k)-th entry of A^*A is $\langle a_j, a_k \rangle$ where a_j is the j-th column of A. Thus $\langle A, A \rangle = \sum_j ||a_j||^2$. This is zero if and only if all a_j are zero.
- 11. Let $V = C[-\pi, \pi]$. Define $\langle -, \rangle : V \times V \to \mathbb{R}$ by $\langle f, g \rangle = \int_{-\pi}^{\pi} f(t)g(t) dt$. It is clear that $\langle -, \rangle$ is an inner product. It is an easy exercise in calculus that $\langle \sin nt, \cos mt \rangle = 0$ for all n, m, while $\langle \sin mt, \sin nt \rangle = 0$ unless $m = n \neq 0$ and $\langle \sin nt, \sin nt \rangle = \pi$ for $n \neq 0$. Similarly, $\langle \cos nt, \cos mt \rangle = 0$ if $m \neq n$, while $\langle \cos nt, \cos nt \rangle = \pi$ if $n \neq 0$ and 2π if n = 0.

- 12. As T is Hermitian $\langle Tv, w \rangle = \langle v, Tw \rangle$.
- $\frac{\text{(i)}}{\langle Tv, v \rangle} = \langle v, Tv \rangle$, which, by the properties of the inner product, is equal to
- (ii) If $Tv = \lambda v$, where $v \neq 0$, then $\lambda \langle v, v \rangle = \langle v, \lambda v \rangle = \langle v, Tv \rangle = \langle Tv, v \rangle = \langle \lambda v, v \rangle = \overline{\lambda} \langle v, v \rangle$. Thus, $\lambda = \overline{\lambda}$.
- (iii) As λ , μ are real, $\lambda \langle v, w \rangle = \langle \lambda v, w \rangle = \langle Tv, w \rangle = \langle v, Tw \rangle = \langle v, \mu w \rangle = \mu \langle v, w \rangle$. As $\lambda \neq \mu$, it follows that $\langle v, w \rangle = 0$.
 - (iv) Let $v \in W^{\perp}$. Let $w \in W$. Then $\langle Tv, w \rangle = \langle v, Tw \rangle = 0$ as $Tw \in W$.