Uso de framework o biblioteca de aprendizaje máquina para la implementación de una solución

September 9, 2022

Francisco Leonid Galvez Flores

A01174385

Enlace al repositorio en GitHub

1 Librerias:

```
[701]: import pandas as pd import numpy as np import seaborn as sns
```

Importamos las librerias necesarias para algunos procesos a realizar antes de la implementacion del modelo.

2 Importacion de la base de datos:

```
[702]: url = "https://raw.githubusercontent.com/G4LF0/MLAlgorithmFramework/main/
        ⇔breast-cancer.csv"
[703]: df = pd.read_csv(url)
      df.head(2)
[703]:
             id diagnosis radius_mean texture_mean perimeter_mean area_mean \
      0 842302
                        М
                                  17.99
                                               10.38
                                                               122.8
                                                                          1001.0
      1 842517
                        М
                                 20.57
                                               17.77
                                                               132.9
                                                                          1326.0
         smoothness_mean compactness_mean concavity_mean concave points_mean
      0
                 0.11840
                                   0.27760
                                                    0.3001
                                                                        0.14710
                                                                        0.07017
                 0.08474
                                   0.07864
                                                    0.0869
          ... radius_worst texture_worst perimeter_worst area_worst
                                                                2019.0
                     25.38
                                    17.33
      0
                                                     184.6
                     24.99
                                    23.41
                                                     158.8
                                                                1956.0
         . . .
         smoothness_worst compactness_worst concavity_worst concave points_worst \
```

0	0.162	2 0.6656	0.7119	0.2654
1	0.123	8 0.1866	0.2416	0.1860
	symmetry_worst	${\tt fractal_dimension_worst}$		
0	0.4601	0.11890		
1	0.2750	0.08902		

[2 rows x 32 columns]

Declaramos el dataframe con ayuda de la libreria de pandas, la base de datos se encuentra alojada en nuestro repositorio en GitHub.

3 Analisis exploratorio de los datos:

[704]:	<pre>df.isnull().sum()</pre>	
[704]:	id	0
	diagnosis	0
	radius_mean	0
	texture_mean	0
	perimeter_mean	0
	area_mean	0
	smoothness_mean	0
	compactness_mean	0
	concavity_mean	0
	concave points_mean	0
	symmetry_mean	0
	fractal_dimension_mean	0
	radius_se	0
	texture_se	0
	perimeter_se	0
	area_se	0
	smoothness_se	0
	compactness_se	0
	concavity_se	0
	concave points_se	0
	symmetry_se	0
	fractal_dimension_se	0
	radius_worst	0
	texture_worst	0
	perimeter_worst	0
	area_worst	0
	smoothness_worst	0
	compactness_worst	0
	concavity_worst	0
	concave points_worst	0
	symmetry_worst	0

```
fractal_dimension_worst (
dtype: int64
```

```
[705]: df.diagnosis = df.diagnosis.map({"M":1, "B":0})
df.shape
```

```
[705]: (569, 32)
```

```
[706]: sns.set(rc = {'figure.figsize':(25,16)})
sns.heatmap(df.corr(), annot=True, cmap= 'YlGnBu')
```

[706]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7ebbc6e150>

[707]: diagnosis radius_mean texture_mean perimeter_mean area_mean \
0 1 17.99 10.38 122.8 1001.0

```
compactness_mean
                                                              concave points_mean
          smoothness_mean
                                              concavity_mean
       0
                                                       0.3001
                   0.1184
                                                                            0.1471
          symmetry_mean
                              radius_worst
                                             texture_worst
                                                            perimeter_worst
       0
                 0.2419
                                      25.38
                                                     17.33
                                                                       184.6
                                        compactness_worst
          area_worst
                      smoothness_worst
                                                             concavity_worst
       0
              2019.0
                                 0.1622
                                                    0.6656
                                                                      0.7119
          concave points_worst
                                symmetry_worst fractal_dimension_worst
       0
                        0.2654
                                         0.4601
                                                                   0.1189
       [1 rows x 26 columns]
       sns.set(rc = {'figure.figsize':(25,16)})
       sns.heatmap(df.corr(), annot=True, cmap= 'YlGnBu')
[708]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eb6f81110>
```


En esta parte lo que hicimos fue analizar columnas que no tuvieran relacion con la variable a predecir, asi como tambien cambiamos el valor de algunos variables para convertirlas en binarias.

4 Division de los datos en trainig, validating and testing:

```
[709]: x = df.drop(["diagnosis"], axis = 1)
       y = df.diagnosis
[710]: from sklearn.model_selection import train_test_split
       x_train, x_test, y_train, y_test = train_test_split(x.values, y.values, u
        →train_size=0.9, random_state=16)
[711]: x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, train_size=0.
        \rightarrow7, random_state=16)
[712]: datos_n = [x_train.shape[0], x_val.shape[0], x_test.shape[0]]
[713]: df_mcd = pd.DataFrame({"Datos: ":["Training", "Validating", "Testing"],
                               "Registros": datos_n})
       df_mcd
[713]:
             Datos:
                      Registros
            Training
                            358
       1 Validating
                            154
             Testing
```

En esta parte lo que hacemos es divir el data set, al principio lo dividimos en un 90% para training y un 10% para test, despues lo que hacemos es que del 30% del 90% de training lo convertimos en validating.

5 Implementacion del modelo:

```
[714]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score

logreg = LogisticRegression(max_iter= 10000)
logreg.fit(x_train, y_train)
y_pred = logreg.predict(x_train)
```

Implementamos el algoritmo de regresion logistica con un numero de iteraciones maxima de 10,000.

Accuracy for training:

```
[715]: score =accuracy_score(y_train,y_pred)
accuracy_training = score
print("Accuracy for the training set is: ", round(score*100, 4))
```

Accuracy for the training set is: 95.8101

Accuracy for validating:

```
[716]: y_pred = logreg.predict(x_val)
score =accuracy_score(y_val,y_pred)
accuracy_validating = score
print("Accuracy for the training set is: ", round(score*100, 4))
```

Accuracy for the training set is: 96.1039

Accuracy for testing

```
[717]: y_pred = logreg.predict(x_test)
score =accuracy_score(y_test,y_pred)
accuracy_testing = score
print("Accuracy for the training set is: ", round(score*100, 4))
```

Accuracy for the training set is: 94.7368

6 Metricas:

Metricas del training:

[719]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eb6a08350>


```
[720]: from sklearn.metrics import classification_report

target_names = ['Sin tumor', 'Con tumor']
print(classification_report(y_train, y_pred, target_names=target_names))
```

	precision	recall	f1-score	support
Sin tumor Con tumor	0.96 0.95	0.97 0.93	0.97 0.94	226 132
accuracy macro avg weighted avg	0.96 0.96	0.95 0.96	0.96 0.95 0.96	358 358 358

Metricas del validating:

```
[721]: from sklearn import metrics

y_pred = logreg.predict(x_val)

confusion_matrix = metrics.confusion_matrix(y_val, y_pred)

confusion_matrix
```

```
[721]: array([[93, 1], [5, 55]])
```

```
[722]: sns.heatmap(confusion_matrix, annot=True)
```

[722]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eb69f40d0>


```
[723]: from sklearn.metrics import classification_report

target_names = ['Sin tumor', 'Con tumor']
print(classification_report(y_val, y_pred, target_names=target_names))
```

	precision	recall	f1-score	support
Sin tumor	0.95	0.99	0.97	94
Con tumor	0.98	0.92	0.95	60
accuracy			0.96	154
macro avg	0.97	0.95	0.96	154
weighted avg	0.96	0.96	0.96	154

Metricas del testing:

```
[724]: from sklearn import metrics

y_pred = logreg.predict(x_test)
    confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
    confusion_matrix
```

[724]: array([[36, 1], [2, 18]])

[725]: sns.heatmap(confusion_matrix, annot=True)

[725]: <matplotlib.axes._subplots.AxesSubplot at 0x7f7eb68cd190>


```
[726]: from sklearn.metrics import classification_report

target_names = ['Sin tumor', 'Con tumor']
print(classification_report(y_test, y_pred, target_names=target_names))
```

	precision	recall	f1-score	support
Sin tumor	0.95	0.97	0.96	37
Con tumor	0.95	0.90	0.92	20

accuracy			0.95	57
macro avg	0.95	0.94	0.94	57
weighted avg	0.95	0.95	0.95	57

7 Curva ROC

Training:

```
[727]: y_pred_proba = logreg.predict_proba(x_train)[::,1]
    fpr, tpr, _ = metrics.roc_curve(y_train, y_pred_proba)
    auc = metrics.roc_auc_score(y_train, y_pred_proba)
    plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
    plt.legend(loc=4)
    plt.show()
```


Validating:

```
[728]: y_pred_proba = logreg.predict_proba(x_val)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_val, y_pred_proba)
auc = metrics.roc_auc_score(y_val, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```


Testing:

```
[729]: y_pred_proba = logreg.predict_proba(x_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_proba)
auc = metrics.roc_auc_score(y_test, y_pred_proba)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```


Tenemos que decir que la curva ROC es un grafico en el que se ponen los valores positivos y falsos en cada eje, y como podemos ver dieron un muy buen accuracy en los tres datasets.

8 Tabla de accuracys:

```
[730]: Datos: Registros
0 Training 0.958101
1 Validating 0.961039
2 Testing 0.947368
```

Como podemos ver nuestro modelo dispone de muy poco error en el dataset de training y mucho menos error en el dataset de validacion, por lo que decimos que se encuentra en **balance**.

9 Predicciones:

```
[731]: df.head(2)
```

```
[731]:
                    radius_mean texture_mean perimeter_mean area_mean
          diagnosis
                                                                      1001.0
       0
                  1
                            17.99
                                          10.38
                                                           122.8
       1
                  1
                            20.57
                                          17.77
                                                           132.9
                                                                      1326.0
          smoothness_mean compactness_mean concavity_mean concave points_mean \
       0
                  0.11840
                                     0.27760
                                                       0.3001
                                                                            0.14710
                  0.08474
                                     0.07864
                                                       0.0869
                                                                            0.07017
       1
                         ... radius_worst texture_worst perimeter_worst
          symmetry_mean
       0
                 0.2419
                                      25.38
                                                      17.33
       1
                 0.1812
                                      24.99
                                                      23.41
                                                                        158.8
                         . . .
                      smoothness_worst compactness_worst
                                                             concavity_worst
              2019.0
                                 0.1622
                                                     0.6656
                                                                      0.7119
       0
              1956.0
                                 0.1238
                                                     0.1866
                                                                      0.2416
       1
          concave points_worst
                                symmetry_worst fractal_dimension_worst
       0
                        0.2654
                                         0.4601
                                                                  0.11890
                        0.1860
       1
                                         0.2750
                                                                  0.08902
       [2 rows x 26 columns]
      df.tail(2)
[732]:
[732]:
                       radius_mean texture_mean perimeter_mean
            diagnosis
                                                                    area_mean \
       567
                    1
                              20.60
                                            29.33
                                                            140.10
                                                                        1265.0
       568
                    0
                               7.76
                                            24.54
                                                             47.92
                                                                         181.0
            smoothness_mean
                             compactness_mean
                                                concavity_mean
                                                                 concave points_mean
       567
                    0.11780
                                       0.27700
                                                         0.3514
                                                                                0.152
       568
                    0.05263
                                       0.04362
                                                         0.0000
                                                                                0.000
                                               texture_worst perimeter_worst
                                 radius_worst
            symmetry_mean
                   0.2397
                                                        39.42
       567
                                       25.740
                                                                         184.60
       568
                   0.1587
                                        9.456
                                                        30.37
                                                                         59.16
                                                               concavity_worst
            area_worst
                        smoothness_worst
                                           compactness_worst
       567
                1821.0
                                  0.16500
                                                      0.86810
                                                                         0.9387
       568
                 268.6
                                  0.08996
                                                      0.06444
                                                                         0.0000
                                  symmetry_worst fractal_dimension_worst
            concave points_worst
       567
                            0.265
                                           0.4087
                                                                    0.12400
                            0.000
                                                                    0.07039
       568
                                           0.2871
```

Necesito retro de esto, entiendo que es generando un dataframe de prueba, pero como le especifico a la funcion el rango de valor minimo o maximo que puede tomar cada feature????

[2 rows x 26 columns]

```
[734]: from sklearn.datasets import make_blobs
       x_pred, _ = make_blobs(n_samples=5, centers=2, n_features=25, random_state=1)
       y_pred = logreg.predict(x_pred)
       for i in range(len(x_pred)):
         print("X=%s, Prediccion=%s" % (x_pred[i], y_pred[i]))
      X = \begin{bmatrix} -0.72845782 & 4.69207719 & -9.11257134 & -4.70774649 & -5.81201403 & -7.64029828 \end{bmatrix}
       -6.57288861 -2.60026731 -2.14022223 1.90796407 -0.0962929
                                                                      5.88996541
       -7.30745134 6.11823492 -9.956714
                                             3.56938727 -0.77773503 1.48943152
       -9.21446244 -6.34417423 6.84286602 9.59532625 -2.96950526 3.62412417
        7.32702498], Prediccion=0
      X = [6.66207513e+00 -7.74857828e+00 -8.42609747e+00 -7.22692234e+00]
        8.08342641e+00 -9.17740471e+00 -7.75986468e-01 9.20435790e+00
        4.76735928e-01 3.73579641e+00 -2.82080122e+00 4.48043019e+00
        7.22197876e+00 -9.49653324e+00 5.08070743e+00 1.03956020e+01
        5.19580765e+00 -3.70856875e+00 5.47546980e+00 -1.03703176e+01
       -3.30487462e-03 1.03588897e+01 -3.68635259e+00 -4.34464846e+00
       -7.53587330e+00], Prediccion=0
      X = \begin{bmatrix} -1.47299851 & 4.81654152 & -9.79941278 & -3.8343399 & -7.73554447 & -7.77566432 \end{bmatrix}
       -6.1529745 -1.95930155 -0.86573264 0.9614911 -1.99139466 3.0656596
       -5.48746065 7.6396888 -9.79610181 3.45294706 -2.2739048
       -7.63938979 -4.81346251 6.41838302 9.95881004 -4.82642828 4.01583475
        8.2683395 ], Prediccion=0
      X = [-2.34673261]
                        3.56128423 -10.66895863 -3.96601315 -8.18219253
        -7.91881241 -4.6149936
                                  -2.3467413 -2.25648607 -0.11129428
        -2.36326801 5.39684461 -5.86014725 6.92535308 -9.26133265
         5.50960534 -1.533745
                                   1.79099968 -6.89209091 -6.39022006
         4.87237318 9.01588879 -3.94041067
                                                 4.4330755
                                                               8.36676646], Prediccion=0
      X = [6.93843267 - 8.56533428 - 9.18628979 - 7.97650893 7.87800946 - 7.18690268]
       -2.43736344 9.50833658 -0.64897771 3.79884677 -5.30545973 4.85143626
        7.10141398 - 9.65885141 \ 4.22772468 \ 11.05097771 \ 6.93041484 - 6.24910202
        7.0217506 - 6.30782912 - 0.70411778 6.97264203 - 3.26437171 - 4.42541353
       -8.00334919], Prediccion=0
[735]: 1 = np.random.randint(low=0, high=52)
        x_pred = x_test[1:1+5]
[736]: y_pred = logreg.predict(x_pred)
[737]: y_pred
[737]: array([1, 0, 0, 0, 1])
[739]: pd.DataFrame({"Numero de prediccion": ["1", "2", "3", "4", "5"],
                     "Prediccion":y_pred})
        Numero de prediccion Prediccion
[739]:
       0
                            1
                                         1
```

1	2	0
2 3	3	0
3	4	0
4	5	1

10 Conclusion:

Si bien el dataset que le pasamos al algoritmo implementado era un dataset muy limpio al cual no le tuvimos que hacer una gran cantidad de modificaciones o transformacion, al implementar el algoritmo mediante un framework nos dimos cuenta que esto es mas facil que hacerlo a mano, de hecho, en la entrega anterior yo implemente este algoritmo a mano, enlace. En esta entrega el hecho de implementarlo con un framewor facilita el estarle jugando a algunos parametros, por lo que hace esto mucho mas facil.