

Continuous Assessment Cover Sheet Faculty of Engineering

Module Details									
Module Code CE1913 Module Title Introduction to Sustainable Engineering									
Program: SLIIT/Cu	ırtin/SHU/		Course: B	Sc/ BEng/					
Stream: Civil/Elec	tronics/Mechanical/		•						

Assessment details			
Title	Final submission-Term	Group assignment	YES / NO
	Project	If yes, Group No.	05
Lecturer/ Instructor	Ms Manuri Senarathne	Date of Performance	
Due date	24/09/2021	Date submitted	24/09/2021

Student statement and signature

By this declaration, I/we confirm my/our understanding and acceptance that the work reported in this report is my/our own work. I/we also understand the consequences of engaging in plagiarism or copying others work without proper citation. Any material used in this work (whether from published sources, the internet or elsewhere) have been fully acknowledged and referenced and are without fabrication or falsification of data.

[Copying or plagiarism will result in a "0" mark for the continuous assessment and "F" for the module after an investigation on academic misconduct;

All academic misconduct is considered seriously and defined as dishonest and in direct opposition to the values of a learning community. Misconduct may result in penalties from failure to exclusion from the campus.

Further help and guidance on how to avoid academic misconduct can be obtained from your academic advisor/tutor]

By this declaration, I/we confirm my understanding and acceptance that-

- I/we have adhered to relevant ethical guidelines and procedures in the completion of the assignment.
- . I/we have not allowed another student to have access to or copy from this work.
- This work has not been submitted previously.

[The Institute may request an electronic copy of this work for submission to the Plagiarism detection facility (TURNITIN). You must make sure that an electronic copy of your work is available in these circumstances]

Details of the s	Details of the student/s submitting the assignment							
ID Number	Name (As per the institute records)							
En21466830	Jayawardene M.V.G .J	V dayawordene						
EN21481130	Vindipa K.G.V	Vind						
EN21485640	Dissanayake D.M.K. N	De l'imparie						
EN21482120	Perera M.A .D	Allinia.						
EN21492716	Isaka. N.A. T	Pata						

OFFICE USE ONLY

Receiving Officer (seal, signature, date)	Specific comn for improvement	nents about the work (including overall ent)	comments and guidelines
	https://youtu	u.be/5672SyPJhY	
	Tutor:	Signatura	Datos
	Tutor:	Signature:	Date:
	Marks:	[All marks are subject to external moderation	n and approval of board of examinations]

Sri Lanka Institute of Information TechnologyDepartment of Civil Engineering
CE1913 Introduction to Sustainable Engineering

		c	α		^
HVO	liiation	torm_	SIII	mission	,
Lya	luativii	101 111-	Dun	11111331011	4

A.1 Pı	roject title	A Sustainable Altern	ative to To	othbı	rush																	Proj	ject N	lo.
																						02	2	
A.2 G	roup memb	per Names					ID	D Number A.3 Mentor details									ı							
	M1	Jayawardene M.V.G .J					En	En21466830				Mentor name Ms. Manuri Senarathne												
	M2	Vindipa K.G.V					EN	N2148	8113	0	Mer	ntor si	ignat	ure										
	M3	Dissanayake D.M.K. N					EN	N214	8564	0	Eva	luatio	n da	te		24/09	9/202	21						
	M4	Perera M.A .D					EN	N2148	32120	0														
	M5	Isaka. N.A. T					E	N214	9271	6														
A.4 St	ubmission 2	2 (Questions 5 to 8)																						10%
Assess	sment elem	ent	LO		Lov	v con	npete	ncy 1	evel		1	Avera	ge co	ompe	tency	leve	:1		Hig	h cor	mpete	ency	level	
A.4.1	Report for ness. (10%)	rmatting and correct-	2	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
Formatting includes margins, correctness of fonts, section numbering, cover page, referencing style, figure and table numbering and captions, referencing etc.				rors	in th	e man e rep ical a	ort. I	t has	man		mad	easona le to c	onfo	rm to	the	stand		form	-	g sta	ndaro	ds giv	ven ir	ts the n D01 cal

	etness includes grammatical and ag mistakes as well.			mistakes. Guidelines given in D01 are substantially defaulted.						some spelling and grammatical mistakes.							and spelling mistakes.						
	refer Section B of this document l details on formatting.		Feed	lback	ς:																		
A.4.2	Answer to Q5 (20%)	1	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
nal pro	roblem/s associated with the origi- oduct has been identified correctly tion 5- what is the problem with oduct (by analyzing 1-iv)]		not i	dent	ified	in th	-			iden and respo	tified logic ect to viro	l but tal. Ide once on one	in the they a lentifie or r ntal/so sssing	are no ication nore ocial/	ot cle on wit aspec	ear th ets	iden with	tified resp and e	l corr ect to	ectly env	and	clear nenta	l, so-
A.4.3	Answer to Q6 (20%)	1	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	e alternatives are clearly identified that alternatives are available		Alternatives identified will eliminate no or only a few of the drawbacks/problems identified in Q5.					Alternatives identified will eliminate most of the drawbacks/problems identified in Q5.															

		Feed	lback	ζ:																		
A.4.4 Answer to Q7 (30%)	1	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
	Select a suitable al-																					
Have selected the best suitable alternative that can be manufactured/made (Q7- select the best alternative product to replace the original product to overcome the problem/s identified in v.)	ternative that can be manufac- tured/made by your group	suita man and	itable alternative that can be anufactured/made is not clear d logical. Have looked few of suitable alternative that can be manufactured/made is clear and logical to a considerable extent.							cal. Have looked at all the possi-												
		Feed	lback	κ:																		
A.4.5 Answer to Q8 (20%)	1	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
(Q8- Show how the redesign will solve the problems identified in Q v. and how the redesigned product is equal to the original product in performance)		facts sugg inter	s frongestee	n lite d alte purp	ratur rnati	e hov	v the		litera	ature ative	how	the s	ugge	ets frested anded	al-	erati	ws al ure he serve	ow th	ie sug	ggest	ed alt	terna-

5. What are the problems with the toothbrush (Considering the Life Cycle)?

Table 1 problems with the toothbrush

Stages of the	Problems associated													
lifecycle	Environmental	Social	Economical											
Extraction of raw materials	Biodiversity damage Natural habitat destruction, causing many species to be uprooted	Poor governance and weak institutional and legal frameworks Extraction of natural rubber is a laborintense process	 Waste of non-renewable sources Have to spend much money in extracting process Have to spend money when people are infected due to Sulphur gas when extracting Sulphur Have to spend more money on safety features in the process and product 											
Manufacturing process	 Water pollution when chemical release Air pollution due to toxic gases releasing resulting global warming Land pollution due to nylon dust 	 Sound pollution due to machines Can cause respiratory diseases from harmful gases 	 High level of energy use High cost in repairing machines Government labors laws and taxation policies 											

Hee of product	a NAisus planti	Compa kida maayak sir	. Como tunos of
Use of product	 Microplastics 	Some kids may chew	 Some types of
	released to the	bristles and it causes	toothbrushes are
	environment	some harmful effects	expensive, and some
		Brushing too hard can	people can't afford
		damage teeth and	them
		gums	
Disposal	Pollution of	People throw plastic	High labor cost for
	waterways.	toothbrushes instead	collecting and
	 Toothbrushes 	of recycling	partitioning the
	often ended up	Poor knowledge of	toothbrushes
	in waterways	recycling	according to the
	and oceans.	Overuse of the	recycling number
	 Harming the 	toothbrushes	
	marine life.		
	When burning		
	plastics, they		
	release		
	hazardous gas		
	into the air.		
	Soil fertility can		
	be lost.		

6) What alternatives are available?

Table 2 Available solutions

	What previous problems are addressed by the solution	Alternative solutions
Alternative to	Recyclable	PLA – biowaste plastic
handle	Reusable	Stainless steel
	Biodegradable	Bamboo sticks
	Minimize the land pollution	
	Minimize the use of non-renewable resources	
	Minimize the high cost of material	
	Reduce the high level of energy use	

	Minimize the high cost of machinery	
Alternative to rubber	 Minimize the use of renewable resources Minimize the labor-intense process in extraction of natural rubber 	Silicone
Alternative to bristles	 increases softness Minimize land pollution and air pollution (if burned) 	Silicone
	 Minimize the use of non-renewable resources Minimize the release of non-degradable waste material to land Minimize the high cost of material Reduce the high level of energy use 	Bamboo strands
	BiodegradableEffective at removing plaque and bacteria	Boar bristles
	 Minimize the use of renewable resources Reduce the high level of energy use 	castor oil

7. Select the best alternative product to replace the original product to overcome the problem identified in question 5.

The most sustainable option for plastic toothbrush handles is bamboo sticks. Bamboo has many properties and it is good for the oral cavity. Plastic can replace with this rapidly growing renewable resource and it can be fully composted.

Targeted problem to solve

- Preventing the waste of non-renewable sources
- Reduce the damage of biodiversity
- Minimize the waste of non-renewable sources
- Minimize land pollution, water pollution, and air pollution

Benefits to achieved

Bamboo grows fast in nature and it is not very expensive. It is lightweight, durable, and can be composted. This bamboo handle and bristles are strong, biodegradable, and have no negative impact on the planet. Since bamboo is a renewable source, we can recycle and reuse it. Bamboo does have a smaller ecological footprint than plastic. It contributes to reducing the Carbon footprint and Water footprint. The supply of bamboo toothbrushes may be an efficient process. It is an eco-friendly product and BPA-free

08) show how the redesign will solve the problems identified in Q 5. And how the redesigned product is equal to the original product in performance.

William Addis invented a modern toothbrush in England around 1780. The handle is made of beef bone, and the brush section is made of pig gold hair. In 1844 the first 3 rows of brushes were created. Modern toothbrushes are usually made of plastic handles and nylon fibres. Modern toothbrush handles come in many variants, including straight, angled, or curved handles. Toothbrushes are important for us to use every day and by using toothbrushes we can able protect our teeth and gum very healthy.

Toothbrushes, which are primarily made of plastic-based materials, have been blamed for the global pollution problem. It is mainly the synthetic material from which the plastic material is made that harms the environment. It is these synthetic materials that prevent plastic from decomposing naturally. Plastic toothbrushes pollute oceans and beaches. Plastic toothbrushes stain piles of rubbish and release chemicals into the air as they enter the pile. So, this results in even more damage to the environment. The bamboo toothbrushes were fine for everyone and people loved that the fact that they are biodegradable. And also, we can reduce the air pollution due to some toxic gases release, when manufacturing bamboo handles toothbrushes. So, the bamboo handle is better than the plastic handle. These boar bristles have fewer abrasive properties than nylon bristles which means your teeth get clean but your tooth enamel is not damaged. Mainly bamboo toothbrushes are considered sustainable because they can grow in nutritionally depleted soil and regenerates quickly. And a boar bristle brush is not vegan because it contains animal parts. The bristles from a boar are made of keratin. So rather than boar bristles, we have selected the best alternative as bamboo strands because bamboo is the fastest growing plant.

When we comparing the properties which we use for our product with the original product,

Table 3 Compare our product with the original product

	Description
Rubber grip replace	silicone is a highly flexible and will rebound to its original shape
with silicone	after it is flexed or bent.
Plastic handle replaces	Bamboo grows in natural environments and is not susceptible to
with the bamboo stick	lengthy and polluting production processes like plastic. Bamboo
	toothbrushes are also more durable and waterproof handle than the
	plastic toothbrushes
Bristles replace with	Natural bamboo bristles are very soft rather than plastic and are also
bamboo strands	gentle on our gum tissue and enamel. So, bamboo strands are more
	eco-friendly rather than plastic.

Reference

1. BORUNDA, A., 2021. Your plastic toothbrush is a bigger problem than you realize. [online] Environment. Available at:

https://www.nationalgeographic.com/environment/article/story-of-plastic-toothbrushes

[Accessed 14 June 2019].

2. West, L., 2021. Can You Recycle Your Toothbrush? [online] Tree hugger. Available at: https://www.treehugger.com/can-you-recycle-your-toothbrush-1203671

[Accessed 9 August 2019].

3. Rmis.jrc.ec.europa.eu. 2021. Raw Materials Information System. [online] Available at:

https://rmis.jrc.ec.europa.eu/?page=environmental-impacts-along-the-supply-chain-3dfccf

[Accessed 9 August 2021].

4. Martin1, P., 2018. What's the Difference Between Polypropylene Types?. [online] Machinedesign.com. Available at:

https://www.machinedesign.com/community/article/21837192/whats-the-difference-between-polypropylene-types

[Accessed 9 August 2021].

5. Properties, Uses, Products, Structure | Rilon, 2020)

Your Bibliography: Rilon. 2020. Polypropylene Fiber: Properties, Uses, Products, Structure | Rilon. [online] Available at:

https://rilonfibers.com/blog/polypropylene-fiber/

[Accessed 22 September 2021]

6. Elasto Proxy, I., 2021. Physical Properties of Rubber – a Buyer and Designer's Guide. [online] AZoM.com. Available at:

https://www.azom.com/article.aspx?ArticleID=11914

[Accessed 22 September 2021].

7. Polymerdatabase.com. 2021. Nylon Fibers. [online] Available at:

https://polymerdatabase.com/Fibers/Nylon.html [Accessed 22 September 2021]

PLAGIARISM SCAN REPORT

Report Generation Date: September 22,2021

Words: 1053

Characters: 7562

Excluded URL:

0%

Plagiarism

100%

Unique

0

Plagiarized Sentences

62

Unique Sentences

Content Checked for Plagiarism

5.) What are the problems with the toothbrush (Considering the Life Cycle)?

Table 1 - problems with the toothbrush

Stages of the lifecycle Problems associated

Environmental Social Economical

Extraction of raw materials • Biodiversity damage

- Natural habitat destruction, causing many species to be uprooted Poor governance and weak institutional and legal frameworks
- Extraction of natural rubber is a labor-intense process
- Waste of non-renewable sources
- Have to spend much money in extracting process
- Have to spend money when people are infected due to Sulphur gas when extracting Sulphur
- Have to spend more money on safety features in the process and product

Manufacturing process • Water pollution when chemical release

- Air pollution due to toxic gases releasing resulting global warming
- Land pollution due to nylon dust
- Sound pollution due to machines
- Can cause respiratory diseases from harmful gases
- High level of energy use
- High cost in repairing machines
- Government labors laws and taxation policies

Use of product • Microplastics released to the environment

- Some kids may chew bristles and it causes some harmful effects
- Brushing too hard can damage teeth and gums Some types of toothbrushes are expensive, and some people can't afford them

Disposal • People throw plastic toothbrushes instead of recycling

- Poor knowledge of recycling
- Excessive use of toothbrushes
- Excessive labor costs to assemble and disassemble toothbrushes according to the recycling number
- 6) What alternatives are available?

Table 2 - Available alternatives

What previous problems are addressed by the solution Alternative solutions

Alternative to handle • Recyclable PLA – biowaste plastic

- Reusable Stainless steel
- Biodegradable
- Minimize the land pollution
- Minimize the use of non-renewable resources
- Minimize the high cost of material
- Reduce the high level of energy use
- Minimize the high cost of machinery Bamboo sticks

Alternative to rubber • Minimize the use of renewable resources

• Minimize the labor-intense process in extraction of natural rubber Silicone

Alternative to bristles • increases softness

- Minimize land pollution and air pollution (if burned) Silicone
- Minimize the use of non-renewable resources
- Minimize the release of non-degradable waste material to land
- Minimize the high cost of material
- Reduce the high level of energy use Bamboo strands
- Biodegradable
- Effective in removing plaque and bacteria Boar bristles
- Minimize the use of renewable resources
- Reduce the high level of energy use castor oil

7. Select the best alternative product to replace the original product to overcome the problem identified in question 5.

Selected Alternative- Bamboo sticks to the plastic handle and Bamboo strands to bristles Why plastic handles and bristles can replace with bamboo?

The most sustainable option for plastic toothbrush handles is bamboo sticks. Bamboo has many properties and it is good for the oral cavity. Plastic can replace with this rapidly growing renewable resource and it can be fully composted.

Targeted problem to solve

- Preventing the waste of non-renewable sources
- Reduce the damage of biodiversity
- Minimize the waste of non-renewable sources
- Minimize land pollution, water pollution, and air pollution

Benefits to achieved

Bamboo grows fast in nature and it is not very expensive. It is lightweight, durable, and can be composted. This bamboo handle and bristles are strong, biodegradable, and have no negative impact on the planet. Since the bamboo is a renewable source, we can recycle and reuse it. Bamboo does have a smaller ecological footprint than

plastic. It contributes to reducing the Carbon footprint and Water footprint. The supply of bamboo toothbrushes may be an efficient process. It is an eco-friendly product and BPA-free.

08) show how the redesign will solve the problems identified in Q 5. And how the redesigned product is Page 3 equal to the original product in performance.

William Addis invented a modern toothbrush in England around 1780. The handle is made of beef bone, and the brush section is made of pig gold hair. In 1844 the first 3 rows of brushes were created. Modern toothbrushes are usually made of plastic handles and nylon fibers. Modern toothbrush handles come in many variants, including straight, angled or curved handles. Toothbrushes are important for us to use every day and by using toothbrushes we can able protect our teeth and gum very healthy. Toothbrushes, which are primarily made of plastic-based materials, have been blamed for the global pollution problem. It is mainly the synthetic material from which the plastic material is made that harms the environment. It is these synthetic materials that prevent plastic from decomposing naturally. Plastic toothbrushes pollute oceans and beaches. Plastic toothbrushes stain piles of rubbish and release chemicals into the air as they enter the pile. So This results in even more damage to the environment. The bamboo toothbrushes were fine for everyone and people loved that the fact that they are biodegradable. And also, we can reduce the air pollution due to some toxic gases release, when manufacturing bamboo handles toothbrushes. So, the bamboo handle is better than the plastic handle. These boar bristles have less abrasive properties than nylon bristles which means your teeth get clean but your tooth enamel is not damaged. Mainly bamboo toothbrushes is considered sustainable because it can grow in nutritionally depleted soil and regenerates quickly. And a boar bristle brush is not vegan because it contains animal parts. The bristles from a boar are made of keratin. So rather than boar bristles, we have selected the best alternative as bamboo strands because bamboo is the fastest growing plant.

When we comparing the properties which we use for our product with the original product,

Table 3 – compare our product with the original product Description

Rubber grip replace with silicone silicone rubber is highly flexible and will rebound or return to its original shape and configuration after it is flexed or bent.

Plastic handle replaces with the bamboo stick Bamboo shrubs grow in a natural environment and are not susceptible to long and contaminated product processes such as plastic Bamboo toothbrushes are also more durable and waterproof handle than the plastic toothbrushes.

Bristles replace with bamboo strands Natural bamboo bristles are very soft rather than plastic and are also gentle on our gum tissue and enamel. So bamboo strands are more eco-friendly rather than plastic.

Congrats! Your Content is 100% Unique.

