分类:NB-丁兆云

学习目标

- ◆ 描述分类的一般过程
- ◆ 掌握朴素贝叶斯分类原理

主要内容

- ◆ 1. 分类概念及一般方法
- ◆ 2. 朴素贝叶斯

1. 分类概念

- ◆ 什么是分类?
 - 找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号
- ◆ 一般过程
 - 学习阶段
 - 建立描述预先定义的数据类或概念集的分类器
 - · 训练集提供了每个训练元组的类标号,分类的学习过程 也称为监督学习 (supervised learning)
 - 分类阶段
 - 使用定义好的分类器进行分类的过程

1. 分类概念

- ◆ 什么是分类?
 - 找出描述和区分数据类或概念的模型,以便能够使用模型预测类标号未知的对象的类标号
- ◆ 概念区分
 - 分类与预测
 - 分类是预测分类(离散、无序)标号;
 - 预测建立连续值函数模型;
 - 分类与聚类
 - 分类是有监督学习,提供了训练元组的类标号;
 - 聚类是无监督学习,不依赖有类标号的训练实例;

示例: 学习阶段

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof 7		yes
Dave Assistant Prof		6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

示例: 分类阶段

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

2. 朴素贝叶斯分类

介绍

- ➤ 托马斯·贝叶斯 Thomas Bayes (1701-1761)
- An essay towards solving a problem in the doctrine of chances, 1763

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

◆ 描述

■ 一所学校里面有 60% 的男生(boy), 40% 的女生(girl)。男生总是穿长裤 (pants), 女生则一半穿长裤一半穿裙子。随机选取一个穿长裤的学生, 他 (她) 是女生的概率是多大?

• 形式化

- 已知P(Boy)=60%, P(Girl)=40%, P(Pants | Girl)=50%, P(Pants | Boy)=100%
- 求: P(Girl|Pants)
- ◆ 解答

$$P(Girl|Pants) = \frac{P(Girl)P(Pants|Girl)}{P(Boy)P(Pants|Boy) + P(Girl)P(Pants|Girl)} = \frac{P(Girl)P(Pants|Girl)}{P(Pants)}$$

- ◆ 直观理解
 - 算出学校里面有多少穿长裤的,然后在这些人里面再算出有多少女生。

分类中的训练集与测试集

训练集

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	香
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	香
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

测试集

一个收入中等、信用度良好的 青年爱好游戏顾客。 是否会购买电脑呢?

2.2定义

$$P(Girl|Pants) = \frac{P(Pants|Gril)P(Girl)}{P(Pants)}$$

D: 待测试数据

h: 假设类别

h的似然概率

h的先验概率

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

h的后验概率

D的先验概率

问题

观察知识:一所学校里面有 60% 的男生(boy),
 40% 的女生(girl)。男生总是穿长裤(pants),女生则一半穿长裤一半穿裙子。

 不能够直接观察:随机选取一个穿长裤的学生, 你倾向于认为学生是男生还是女生?

提出假设

不能够直接观察: 随机选取一个穿长裤的学生, 你倾向于认为学生是男生还是女生?

对于不能直接观察到的部分,往往会提出假设。而对于不确定的事物,往往会有多个假设。

D: 待测试数据

h: 假设类别。

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

$$P(h_1|D) = \frac{P(D|h_1)P(h_1)}{P(D)}$$

$$P(h_2|D) = \frac{P(D|h_2)P(h_2)}{P(D)}$$

$$P(h_n|D) = \frac{P(D|h_n)P(h_n)}{P(D)}$$

- 对这些假设,往往涉及两个问题:
 - 1. 不同假设的可能性大小?
 - 2. 最合理的假设是什么?

提出假设

对于不能直接观察到的部分,往往会提出假设。而对于不确定的事物,往往会有多个假设。

D: 待测试数据

h: 假设类别

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

$$P(h_1|D) = \frac{P(D|h_1)P(h_1)}{P(D)} \stackrel{\mathcal{M}}{\approx} P(h_2|D) = \frac{P(D|h_2)P(h_2)}{P(D|h_2)P(h_2)} \stackrel{\mathcal{H}}{\gg} P(D|h_n)P(h_n) \stackrel{\mathcal{S}}{\approx} P(D|h_n)P(h_n) \stackrel{\mathcal{S}}{\approx} P(D) \stackrel{\mathcal{S}}{\approx} P($$

- 对这些假设,往往涉及两个问题:
 - 1. 不同假设的可能性大小?
 - 2. 最合理的假设是什么?

提出假设

对于不能直接观察到的部分,往往会提出假设。而对于不确定的事物,往往会有多个假设。

D: 待测试数据

h: 假设类别

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

$$P(h_1|D) = \frac{P(D|h_1)P(h_1)}{P(D)} \stackrel{\text{M}}{\approx} P(h_2|D) = \frac{P(D|h_2)P(h_2)}{P(D)} \stackrel{\text{H}}{\approx} P(D) = \frac{P(D|h_n)P(h_n)}{P(D)} \stackrel{\text{H}}{\approx} P(D) = \frac{P(D|h_n)P(h_n)}{P(D)} \stackrel{\text{H}}{\approx} P(D)$$

- ◆ 对这些假设,往往涉及两个问题: 哪个概率更大,则认为 D属于哪种类别更合理
 - 1. 不同假设的可能性大小?
 - 2. 最合理的假设是什么?

极大后验假设

- ◆ 极大后验假设定义
 - 学习器在候选假设集合H中寻找给定数据D时可能性最大的假设h, h被称为极大后验假设 (Maximum a posteriori: MAP)
- $P(h_1|D) = \frac{P(D)}{P(D)}$ $P(h_2|D) = \frac{P(D|h_2)P(h_2)}{P(D)}$ $P(h_n|D) = \frac{P(D|h_n)P(h_n)}{P(D)}$
 - 确定MAP的方法是用贝叶斯公式计算 每个候选假设的后验概率,计算式如下

$$h_{MAP} = \max_{h \in H} P(h|D)$$

- $= \max_{h \in H} P(D|h)P(h)/P(D)$
- $= \max_{h \in H} P(D|h)P(h)$

分类中的训练集与测试集

训练集

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	曹
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	杏
7	中	低	是	优	是
8	青	中	否	中	香
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

测试集

一个收入中等、信用度良好的青年爱好游戏顾客。

是否会购买电脑呢?

D待测试数据到底是什么呢?

分类中的训练集与测试集

训练集

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	曹
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	曹
7	中	低	是	优	是
8	青	中	否	中	香
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

测试集

一个收入中等、信用度良好的青年爱好游戏顾客。

是否会购买电脑呢?

D: 待测试数据 h的似然概率 h的先验概率 $P(h|D) = \frac{P(D|h)P(h)}{P(D)}$ h的后验概率 D的先验概率

$$h_{MAP} = \max_{h \in H} P(h|D)$$

$$= \max_{h \in H} P(D|h)P(h)/P(D)$$

$$= \max_{h \in H} P(D|h)P(h)$$

D待测试数据到底是什么呢?

对象是一个多维向量

◆ 已知:对象D是由多个属性组成的向量

■
$$D = \langle a_1, a_2, ..., a_n \rangle$$

一个收入中等、信用度良好的青年爱好游戏顾客。

◆ 目标 $h_{MAP} = \max_{h \in H} P(h|D)$ 是否会购买电脑呢? $= \max_{h \in H} P(D|h)P(h)/P(D)$ 是不会购买电脑呢? $= \max_{h \in H} P(D|h)P(h)$

$$h_{MAP} = \max_{h \in H} P(h| < a_1, a_2, ..., a_n >)$$

 $= \max_{h \in H} P(< a_1, a_2, ..., a_n > |h)P(h)$

- ◆ 问题
 - 计算P(< a₁,a₂,...,a_n > |h)时,当维度过高时,可用数据变得很稀疏,难以获得结果。

独立性假设

- ◆ 解决方法
 - 假设D的属性ai之间相互独立

•
$$P(\langle a_1, a_2, ..., a_n \rangle | h) = \prod_i P(a_i | h)$$

■
$$h_{MAP} = \max_{h \in H} P(h| < a_1, a_2, ..., a_n >)$$

 $= \max_{h \in H} P(< a_1, a_2, ..., a_n > |h)P(h)$
 $= \max_{h \in H} \prod_i P(a_i|h) P(h)$

- 优点
 - 获得估计的 $P(a_i|h)$ 比 $P(< a_1, a_2, ..., a_n > |h)$ 容易很多
 - 如果D的属性之间不满足相互独立,朴素贝叶斯分类的结果是贝叶斯分类的近似

 $h_{MAP} = \max_{h \in H} P(h| < a_1, a_2, ..., a_n >)$

 $= \max_{h \in H} P(\langle a_1, a_2, ..., a_n \rangle | h) P(h)$

2.3 朴素贝叶斯分类案例

训练集

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	香
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	香
7	中	低	是	优	是
8	青	中	否	中	香
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	否

测试集

一个收入中等、信用度良好的青年爱好游戏顾客。

是否会购买电脑呢?

一个收入中等、信用度良好的青年爱好游戏顾客。(答案保留小数点后三位)

年龄段	收入状况	爱好	信用度	购买电脑
中	高	否	中	是
老	中	否	中	是
老	低	是	中	是
中	低	是	优	是
青	低	是	中	是
老	中	是	中	是
青	中	是	优	是
中	中	否	优	是
中	高	是	中	是
	年龄段中 老老中青老青中	年龄段 收入状况 中 高 老 中 老 低 中 低 者 中 青 中 中 中	年龄段 收入状况 爱好 中 高 否 老 中 否 老 低 是 中 低 是 十 中 是 中 中 否	年龄段 收入状况 爱好 信用度 中 高 否 中 老 中 否 中 老 低 是 中 中 低 是 中 老 中 是 中 青 中 是 代 中 中 无 代

P(青年 | 购买) = 「填空1]

P(收入中等 | 购买) = [填空2]

P(爱好 | 购买) = [填空3]

P(信用中 | 购买) = [填空4]

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

正常使用填空题需3.0以上版本雨课堂

2.3 朴素贝叶斯分类案例

一个收入中等、信用度良好的青年爱好游戏顾客。

id	年龄段	收入状况	爱好	信用度	购买电脑	P(青年
3	中	高	否	中	是	
4	老	中	否	中	是	P(收入中
5	老	低	是	中	是	下(収入八十
7	中	低	是	优	是	
9	青	低	是	中	是	P(爱好
10	老	中	是	中	是	
11	青	中	是	优	是	P(信用中
12	中	中	否	优	是	「一川十
13	中	高	是	中	是	

P(青年 | 购买) = 2/9 = 0.222

P(收入中等 | 购买) = 4/9 = 0.444

P(爱好 | 购买) = 6/9 = 0.667

P(信用中 | 购买) = 6/9 = 0.667

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

 $P(X | 购买) = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$

一个收入中等、信用度良好的青年爱好游戏顾客。

id	年龄 段	收入状 况	爱 好	信用 度	购买电 脑
1	青	高	否	中	香
2	青	高	否	优	秦
6	老	低	是	优	퓶
8	青	中	否	中	善
14	老	中	否	优	香

P(青年 | 不买) =[填空1]

P(收入中等 | 不买) = [填空2]

P(爱好 | 不买) = [填空3]

P(信用中 | 不买) = [填空4]

$$P(\mathbf{X} | C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

2.3 朴素贝叶斯分类案例

一个收入中等、信用度良好的青年爱好游戏顾客。

id	年龄 段	收入状 况	爱 好	信用 度	购买电 脑	P(青年 不买) = 3/5 = 0.6
1	青	高	否	中	產	P(收入中等 不买) = 2/5 = 0.
2	青	高	否	优	蓋	
6	老	低	是	优	部	P(爱好 不买) = 1/5 = 0.2
8	青	中	否	中		
14	老	中	否	优	折	P(信用中 不买) = 2/5 = 0.4

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times ... \times P(x_n|C_i)$$

$$P(\mathbf{X}|\mathbf{\mathcal{T}},\mathbf{\mathcal{Y}}) = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$$

一个收入中等、信用度良好的青年爱好游戏顾客。

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	否
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	晋
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	北常使	是
13	中	高	是	中	是
14	老	中	否	优	香

$$h_{MAP} = \max_{h \in H} P(h| < a_1, a_2, ..., a_n >)$$
 $= \max_{h \in H} P(< a_1, a_2, ..., a_n > |h) P(h)$
 $= \max_{h \in H} \prod_{i} P(a_i|h) P(h)$
 $P(\mathbf{X}|C_i) P(C_i)$
 $P(C_{\mathbb{X}}) = [$
其空1]
 $P(C_{\mathbb{X}}) = [$
中(外买|X) =[
其空3]
 $P(\mathbb{X}|X) = [$
其空4]

2.3 朴素贝叶斯分类案例

一个收入中等、信用度良好的青年爱好游戏顾客。

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	否
2	青	高	否	优	香
3	中	高	否	中	是
4	老	中	否	中	是
5	老	低	是	中	是
6	老	低	是	优	否
7	中	低	是	优	是
8	青	中	否	中	質
9	青	低	是	中	是
10	老	中	是	中	是
11	青	中	是	优	是
12	中	中	否	优	是
13	中	高	是	中	是
14	老	中	否	优	香

$$h_{MAP} = \max_{h \in H} P(h| < a_1, a_2, ..., a_n >)$$
 $= \max_{h \in H} P(< a_1, a_2, ..., a_n > |h) P(h)$
 $= \max_{h \in H} \prod_{i} P(a_i|h) P(h)$
 $P(\mathbf{X}|C_i) P(C_i)$
 $P(C_{\mathbb{X}}) = 9/14 = 0.643$
 $P(C_{\mathbb{X}}) = 5/14 = 0.357$
 $P(\text{购买}|\mathbf{X}) = 0.044 \times 0.643$
 $= 0.028$
 $P(\mathbb{X}|\mathbf{X}) = 0.019 \times 0.357$
 $= 0.007$

→ 问题

■ 给定一封邮件,判定它是否属于垃圾邮件。按照先例,用 D 来表示邮件(注意 D 由 n个单词的属性合取< a₁, a₂,..., a_n >组成)。用 h+ 来表示垃圾邮件,h- 表示正常邮件,即目标空间H=<h+,h->。

◆ 形式化描述:

- P(h + |D) = P(h +) * P(D|h +) / P(D)
- P(h-|D) = P(h-) * P(D|h-)/P(D)

- 求解P(h + |D) = P(h +) * P(D|h+)/P(D)
 - P(h+)
 - 即计算已有训练集合中垃圾邮件的比例
 - $P(D|h+) = P(\langle a_1, a_2, ..., a_n \rangle |h+)$
 - 即计算垃圾邮件中完全包含 $a_1, a_2, ..., a_n$ 这n个单词的邮件比例。当n很大时,这几乎不可能。
 - 利用朴素贝叶斯 $P(\langle a_1, a_2, ..., a_n \rangle | h +) = \prod_i P(a_i | h +)$,对于每个 $P(a_i | h +)$,就是要求解单词 a_i 在垃圾邮件训练集合中出现的频率。
 - P(D)即单词 $a_1, a_2, ..., a_n$ 同时出现在一封邮件中的概率,可假设为常量。
- 同理求解P(h | D) = P(h -) * P(D|h -)/P(D)
- 比较P(h + | D)和P(h | D)的大小

◆ 已知

- 训练集合中垃圾邮件的比例为P(h+) = 0.2
- 训练集合中正常邮件的比例为P(h-)=0.8
- 单词出现频率表

分词	在垃圾邮件中出现 的比例	在正常邮件中出现 的比例
免费	0.3	0.01
奖励	0.2	0.01
网站	0.2	0.2

◆ 求解

■ 判断一封邮件D=<"免费","奖励", "网站">是否是垃圾邮件

- 已知
 - 训练集合中垃圾邮件的比例为P(h +) = 0.2
 - 训练集合中正常邮件的比例为P(h-)=0.8
 - 单词出现频率表

分词	在垃圾邮件中出现 的比例	在正常邮件中出现 的比例
免费	0. 3	0.01
奖励	0.2	0.01
网站	0. 2	0.2

- 求解
 - "网站">是否是垃圾邮件

■ 判断一封邮件D=< "免费" "奖励", "网站"
$$P(h+|D) = P(h+) * \frac{P(D|h+)}{P(D)} = [填空1]$$

正常使用填空题需3.0以上版本雨课堂

p(D)=1

假设

 $P(h-|D) = P(h-) * \frac{P(D|h-)}{P(D)}$

$$P(h+|D) = P(h+) * \frac{P(D|h+)}{P(D)}$$

$$= 0.2 * \frac{(0.3*0.2*0.2)}{P(D)} = 0.0096/P(D)$$

$$P(h-|D) = P(h-) * \frac{P(D|h-)}{P(D)}$$

$$= 0.8 * \frac{(0.01*0.01*0.2)}{P(D)} = 0.000016/P(D)$$

$$P(h + |D) > P(h - |D)$$

2.4 朴素贝叶斯分类-连续数据如何求概率

id	年龄	收入	爱好	信用	购买
1	青	高	否	中	香
2	青	高	否	优	香
3	中	低	否	中	杏
4	老	高	否	中	音
5	老	中	是	中	是
6	老	低	是	优	香
7	中	高	是	优	香
8	青	中	否	中	是
9	青	低	是	中	音
10	老	中	是	中	是

id	年龄	收入	爱好	信用	购买
1	青	125	否	中	新
2	青	100	否	优	香
3	中	70	否	中	香
4	老	120	否	中	香
5	老	95	是	中	是
6	老	60	是	优	香
7	中	220	是	优	否
8	青	85	否	中	是
9	青	75	是	中	香
10	老	90	是	中	是
	1	1 1 2	1 6	1 1	

预测 收入为121,无游戏爱好、信用良好的中年 人,是否购买

2.4 朴素贝叶斯分类-连续数据如何求概率

id	收入	购买
1	125	否
2	100	否
3	70	否
4	120	奮
5	95	是
6	60	否
7	220	否
8	85	是
9	75	否
10	90	是

假设 收入 服从正态分布

$$P(X_i | c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

$$P(X_i | c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(x_i - \mu_{ij})^2}{2\sigma_{ij}^2}}$$

$$P(|\chi \lambda = 121| No) = \frac{1}{\sqrt{2\pi} (54.54)} e^{-\frac{(121-110)^2}{2(2975)}}$$

$$=0.0072$$

2.5贝叶斯分类器总结

- ◆本质上是同时考虑了先验概率和似然概率的重要性
- ◆ 特点
 - 属性可以离散、也可以连续;
 - 数学基础坚实、分类效率稳定;
 - 对缺失和噪声数据不太敏感;
 - 属性如果不相关,分类效果很好

Iris数据集中每个属性在每个类别上的分布如下, 请同学们预估下,贝叶斯分类器是否适合iris数据 集

B 否

2.6参考文献

- ◆ 数学之美番外篇:平凡而又神奇的贝叶斯方法. 网络文章.
- 贝叶斯学派与频率学派有何不同?
 http://www.zhihu.com/question/20587
 681/answer/16023547

贝叶斯分类编程实践

- https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.h tml#sklearn.naive_bayes.GaussianNB
- https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialN
 B. html#sklearn.naive_bayes.MultinomialNB
- https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.ComplementNB .html#sklearn.naive_bayes.ComplementNB
- https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB. html#sklearn.naive_bayes.BernoulliNB
- https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.BernoulliNB. html#sklearn.naive_bayes.BernoulliNB
- 同学们可以尝试利用python读入本地iris数据集,来完成贝叶斯分类,分析其分类效果

第8次课后作业

- ◆ 第八次课后作业-在educoder平台上完成作业
- https://www.educoder.net/shixuns/uyl5pk2q/cha llenges
- https://www.educoder.net/shixuns/fg8nkf9y/chal lenges

提交作业截至时间: 2020年3月18日

◆问题?