

Lab Report

_AB — 04

CSE — 206

Presented By:

• Name: Tunazzinur Rahman Kabbo

• Intake: 44

• **Sec:** 07

• **ID**: 19202103268

Presented To:

Iffat Tamanna

Lecturer, BUBT
Department of Computer Science & Engineering
Email: iffat@bubt.edu.bd

LAB-04

Name of the experiment: Construct and test various adder and subtractor circuits,

Description:

Adder: An adder is a digital circuit that performs addition of numbers. Adders are two types: (i) Half adders

(ii) Full adders

(i) Half Adder: A half adder is a type of adder, that is able to add two binary digits and provide the output plus a carry value. It has to two opinputs and two outputs. The common representation uses a XOR logic gate and an AND logic gate.

: Carry (C) = XY : Sum (S) = X'Y+XY' = X DY

Truth Table:

Х.	- 7	C	5.
0	0	0	0
0	1	0	. 1
1	0	0	1
1	1	1	0

Equipments:

- (i) LOGICSTATE
- (ii) LOGICPROBE
- (iii) XOR Geste (iv) AND Geste

Full Adders: A full adders cincuit is central to most digital circuits that perform addition. It is so called because it add, together two binary digits, plus a carry in digit to produce a sum and carry out digit. It has three if inputs and two outputs.

It can also be written with two half addery

Truth Table:

X	· Y	Z	C	۶
0	0	0	0	0
6	0	1	0	١
0	1	0	0	1
0	1	1	1	0
١	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	١	١

Equipments:

Normal Full Adder:

- (i) LOGIC PROBE
- (ii)LOGICSTATE
- (iii) 3 input AND Gente
- (iM) 4 input OR Grate
- (V) 3 input OR Geote
- (vi) 2 input AND Grate

Full Adder with hat addery:

- (i) LOGICPROBE
- (ii) LOGICSTATE
- (iii) XOR Gente
- (ir) AND Geate
- (V) OR Grate

Normal Full Adder

Subtractor: Subtractor aircuits take two binary numbers as input and strubtract one numbers from another. It gives two outputs.

(Difference and Borrow).

There are two types of subtreactors:

- (i) Half Subtractore (ii) Full Subtractore
- (i) Half Subtreacton: The half subtraction is a combinational circuit which is used to perform subtreaction of two bits. It has two inputs and two outputs. It doesn't consider the previous borrow.
 - .: Borrow (B) = X'Y
 - -: Difference (D) = X'Y+XY' = X DY = Adder'y Sum

Truth table:

×	Y	В	D
0 :	0	0	0
0	. }	1	-1
1	0	0	1
1	-	0	0

Equipments:

- (i) LOGICSTATE
- (ii) LOGICPROBE
- (iii) XOR Geate
- (ir) NOT Gente
- (v) AND Geste.

Full subreactors: A full subtreactor performs subtreaction involving three bits (X,Y,Z). Here (X,Y) are literal and Z is previous bornow. It has three inputs and two outputs. It consider the previous bornow.

-- Borrow, (B) = X'2+X'Y+YZ

= Difference(D) = X'Y'Z + X'YZ' + XY'Z'+ XY'Z'XYZ = Sum of full adder.

-: It can also be written with two half subtractory.

Then, Borrow, $(B) = \overline{X}Y + \overline{X}(\overline{X}\overline{\Theta}Y)$ Difference, $(D) = \overline{X}\overline{\Theta}(X\overline{\Theta}Y)$

Truth table:

X	Y	Z	B	D
00	0	0	0	0
	0		1	1
0	1	0	١	1
0	1		1	0
1	0	0	0	1
1	0		0	0
1	(0	0	0
(1	1	1	1

Equipments:

Normal Full Subtractor

- (i) LOGICPROBE
- (ii)LOGICSTATE
- (iù) AND Geste
- (iv) NOT Grate
- (v) 3 input OR Geate

Full Subtractore with two half subnactor

- (i) LOGICSTATE
- (ii) LOGICPROBE
- (iii) XOR Geste
- (iv) NOT Gente
- (V) AND beate
- (vi) OR Grate

Normal Full Subtractor

Full subtractor with two half subtractors

Conclusion:

- (i) We learn't how to implement Adder circuit.
- (ii) We learnt how to implement subtractore circuit.
- (iii) We learnt how to add two binary bits and find out carry and sum.
- (iv) We learnt how to subtract two on three bits and find out Borrow and the Difference.
- (v) We learnt implementation of full addern using half adders.
- (vi) We learnt implementation of full subtraction using half subtractory.

