9)

9)

9)

Name:						_			
Seat As	ssignment: _								
Specify	your EXAM I	D on the righ	t. Use 000 if	you do not kn	ow your exam	ı ID.			
Circle v	our LAB SE	CTION					0 이	0 이	0 ႍ
On old y	102	212	216	217	218		1 0	1 0	1 0
8:10	A102 Jackson	A212 Adam	A216 Min	A217 Siavash	A218 Erik		2 🔾	2 0	2 0
9:40	B102	B212	B216	B217	B218		3 🔾	3 🔾	3 🔾
0.40	Jackson	Dhruv	Min	Siavash	Erik		4 \circ	4)	4)
11:10	C102 Savannah	C212 Adam	C216 Will	C217 Siavash	C218 Erik		5 O	5 O	5 O
12:40	D102 Savannah	D212 Min	D216 Will	D217 Teague	D218 Eric		6 O	6 O	6 °
2:10	E102	E212	E216	E217	E218		7 🔾	7 0	7 이
2.10	Savannah	Adam	Dhruv	Teague	Eric		8 0	8 0	8 0
2.40	F102	F212	F216	F217	F218				

Instructions

Jackson

3;40

- Sit in your assigned seat.
- Do not open the exam until instructed to do so.

Will

• Completely color in the dot for your chosen answers on multiple choice.

Dhruv

- Do not leave if there is less than 5 minutes to go in the exam.
- When time is called, immediately stop writing, remain seated, and pass your exam to the center aisle.

Teague

Eric

• Working after time is called results in an automatic deduction.

Guidelines

- Assume 3 significant figures for all given numbers unless otherwise stated
- Show all of your work no work, no credit
- Write your final answer in the box provided
- · Include units for all answers and directions for all vectors

Thin rod 🔥	Solid disk z	Solid sphere
	$x \xrightarrow{r} y$	x y
$I_{center} = \frac{1}{12}mL^2$	$I_z = \frac{1}{2}mr^2$	$I = \frac{2}{5}mr^2$

1. (1 pt) The volume of a person is approximately:

	1 m ³	0.1 m ³	0.01 m ³	0.001 m ³
Ī	\circ	\circ	\circ	\circ

2. (1 pt) The angle of the vector $(12\hat{i} - 5.1\hat{j})$ ft counterclockwise from the x-axis is:

113°	157°	293°	337°
\circ	\circ	ं	ं

3. (1 pt)) In a FBD of box sitting on a flat surface, are the weight and normal force 3rd law partners?

Yes	No
0	\circ

4. (1 pt) The value of the friction force is:

10 lb	12 lb	16 lb
ं	\circ	ं

10) lb	20	lb	
	μs =	8.0	µ _k =	0.6

5. (1 pt) A spring loaded gun shoots a ball with a speed of 1.0 m/s. If the spring is compressed 3 times as far, the speed of the ball will be:

1.0 m/s	3.0 m/s	9.0 m/s
\circ	ं	0

6. (1 pt) The area under a force-time graph gives:

change in velocity	change in kinetic energy	change in momentum
ं	O	ं

7. (1 pt) A wheel is rotating in a clockwise direction with a constant angular velocity of 20 rev/sec. What is true about the net torque acting on the wheel?

Net torque is positive	Net torque is negative	Net torque is zero
	0	\circ

8. (1 pt) The direction of the torque vector is:

parallel to $ar{F}$	parallel to $ar{r}$	perpendicular to plane containing $ar{r} imes ar{F}$
\circ	\circ	\circ

9.	(3 pts) A cylindrical drinking glass has a diameter of 2.5 in and is 5.5 in tall. What is the volume of the drinking glass in cubic centimeters? (2.54 cm = 1.00 in)
10	. (3 pts) A car makes a 100 km trip. It travels the first 50 km at an average speed of 70 km/hr. How fast must it travel the second 50 km so that its average speed is 90 km/hr?
11.	. (3 pts) Jeremy Pruitt climbs to the top of Neyland Stadium and drops a football over the side. It falls 80 m to the ground below. How long is the ball in the air before it hits the ground? (assume negligible air resistance)

12. (3 pts) Michael pushes a 10 kg box across a level floor at a constant speed. He pushes with a force of 25 N as shown. What is the coefficient of kinetic friction between the box and the floor?

13. (3 pts) The graph below shows the velocity of a 5 kg object. What is the net force exerted on the object at t = 2 s?

14. (3 pts) A car travels around a flat horizontal curve with a radius of 200 ft. What is the maximum constant speed that the car can go around this curve without sliding ($\mu_k = 0.6$, $\mu_s = 0.8$)?

15. (3 pts) A force of $(3\hat{\imath} + 5\hat{\jmath})$ lb acts through a displacement of $(-6\hat{\imath} + 12\hat{\jmath})$ ft. Determine the amount of work that was done.

16. (3 pts) A 4 kg cart is traveling at 12 m/s. Determine the maximum distance d the cart can go up the incline if there is an energy loss of 50 J.

17. (3 pts) Determine the magnitude of the velocity of the ball after it bounces off the floor.

18. (3 pts) Your Rube Goldberg device has a Power T made out of a flat piece of wood with the dimensions shown. At what horizontal distance from the left edge should you place a hole on the dashed line so the T will be balanced when supported at the hole? (all dimensions are in inches)

19. (3 pts) Your Rube Goldberg device has a dog-shaped trigger. What is the net torque about point A with the forces applied as shown? (counterclockwise positive)

20. (3 pts) Your Rube Goldberg device has a velcro covered blob (53g) being shot at a velcro covered rod (89g) hanging vertically and pivoting about its center as shown. What is the rotational speed of the rod/blob combination the instant after the blob hits the end of the rod and they stick together?

21. (7 pts) Two ropes support a 100 lb sign as shown. The system is in equilibrium. What is the magnitude of T₁?

22. (7 pts) A child throws a ball with an initial speed of 8.0 m/s at an angle of 40° above the horizontal. The ball leaves her hand 1.0 m above the ground. Ignoring any effects from air resistance, determine how long the ball is in flight before it hits the ground.

23. (7 pts) A Ferris wheel with a radius of 14.0 m is turning about a horizontal axis through its center. The linear speed of a 60 kg passenger on the rim is constant and equal to 6.00 m/s. What is the magnitude of the force exerted by the seat on the passenger when she is at the lowest point on the Ferris wheel? (FBD = KD Required)

24. (7 pts) The two blocks are connected by a light rope. An upward force of 200 N is applied as shown. What is the tension in the rope connecting the two blocks? (**Two FBD = KD Required**)

What is the tension in the rope con

25. (7 pts) A 65 kg mass is dropped and has a speed of 23 m/s when it hits a spring with a stiffness of 5000 N/m. Assuming that the spring is not compressed at all before the mass hits it, determine the maximum amount the spring compresses.

26. (7 pts) A 20 pound cart moving to the right at 6 ft/s collides with a 25 pound cart that is initially at rest. After the collision, the 20 pound cart is moving to the right at 2 ft/s. Determine the coefficient of restitution of the collision.

27. (7 pts) A Rube Goldberg device has a marble (solid sphere) rolling up a ramp with an elevation change of 15 cm. What is the speed of the marble at the bottom in order for it to reach the top of the ramp with a speed of 0.8 m/s?

28. (7 pts) A Rube Goldberg device consists of an electric motor that will rotate a 0.1 m radius solid disk with a mass of 420g. The motor is 85% efficient. What is the angular acceleration when disk is spinning at 1900 rpm and the power input to the motor is 3.0 watts?