TTS VOICE CLASSIFICATION

Can you tell the difference?

PROBLEM STATEMENT

Can a machine learning model tell the difference between human speech and computer generated speech?

WHY?

- Detecting fraud, preserving privacy.
- Enhancing service, improving synthesis.
- Applications in security, privacy.
- Addressing challenges, enabling possibilities.

TABLE OF CONTENTS

01 DATA

What are we looking at?

02 Analysis

What can we find?

03 METRICS

What makes them different?

04 MODEL

Can our model tell them apart?

DATA

You are what you eat

(even in the metaverse)

DATA SUMMARY

01

HUMAN VOICE DATA

Recordings of humans reading a script

02

TTS SYNTHETIC VOICE DATA

Recordings of a trained TTS model's output given the same script

03

METADATA

Information about the humans and TTS models behind the audio

MOZILLA COMMON VOICE

- The Mozilla Common Voice (Moz) project is an open source initiative focused on creating a large, diverse voice dataset to improve speech recognition technology.
- The project relies on crowdsourced contributions from volunteers who record and validate audio clips in various languages and accents.

OUR SUBSET OF MOZ

- GOAL: As much as possible, balance the demographic metadata for our subset of speakers
- Resultant demographic data represents the most balanced subset of individuals

This was accomplished through iteration. The resultant Mozilla voice dataset is balanced.

SAMSUNG

SOMOS

- Contains synthetic and natural utterances, and human-assigned scores to evaluate naturalness.
- The dataset includes over 250,000 utterances, each with a unique combination of system ID, utterance ID, listener's choice, and listener ID.
- The dataset was created by Samsung using the LJSpeech Dataset and is used to develop machine learning models for speech recognition

SOMOS BREAKDOWN

- This data is broken into two types: Human & Synthetic
- The source material for their TTS model is from LJSpeech and utilizes a single female speaker in her fifties
- The data has been validated with Amazon's Mechanical Turk
- This validation process provides us with a Mean Opinion
 Score (MOS) which measures the naturalness of the speech

APTLY LABS (REAL OR FAKE)

- The Fake-or-Real (FoR) dataset contains approximately 60,000 utterances from real humans and computer generated speech. (equal split)
- Sourced text from the Arctic, LJSpeech, and VoxForge datasets
- Includes data from various TTS (Text-to-Speech) models such as Deep Voice 3 and Google Wavenet TTS
- There was no other metadata provided for this dataset

Open SLR

LIBRI TTS DATASET

- The dataset is comprised of approximately 585 hours of English read speech from the LibriVox project, recorded in a professional studio environment.
- The dataset includes over 5,000 hours of speech from more than 2,500 human speakers and is annotated with speaker and book information.
- Each utterance is aligned with its corresponding text transcription, making it suitable for training and evaluating text-to-speech systems.
- The model will use about 1/3 of the total dataset.

FINAL DATASET

This is what our final dataset looks like

- 1. Removed low MOS value files
- 2. Normalized the audio using RMS norm
- 3. Removed files with no/low audio signal
- 4. Added background noise and variance
- 5. Applied several filters, such as:
 - a. High Pass
 - b. Pitch shifting
 - c. Low level reverb

CLEANING

What steps did we take to improve the quality of our data?

EXPLORING

What can we find without computers?

WHAT ARE WE LOOKING FOR?

SPECTROGRAM

Representation of the frequency content of a sound signal over time

MFCCS

Mel-frequency cepstral coefficients represent the spectral envelope of a sound signal in a compressed form

SPECTRAL CENTROIDS

tell us about the "brightness" or "darkness" of a sound in a particular frequency range

WHAT ARE WE LOOKING FOR?

CHROMA

Helps to identify and distinguish between different notes and pitches in a person's voice as it changes over time

ZERO CROSSING RATE

Refers to the rate at which the speech signal changes from positive to negative or vice versa

SPECTRAL CONTRAST

Measures the difference in magnitude between peaks and valleys in the frequency spectrum

WHAT WE CAN SEE

WHAT WE CAN SEE

WHAT WE CAN SEE

THE ANSWER

WHAT WE HEAR?

ENTER: MACHINE LEARNING

What can our computers see that we can't?

HOW WE GOT OUR METRICS

Pydub

LIBROSA

Turns Audio into numbers

PYTORCH

Like Librosa, but lets you use your GPU

PYDUB

Pre-emphasis & manipulation

CONVERTING SOUND TO NUMBERS

CLASSICAL MM MODELS

SVM

Accuracy: 81% Recall: 80% F1: 78%

RANDOM FOREST

Accuracy: 90% Recall: 90%

F1: 90%

LOGISTIC REGRESSION

Accuracy: 79% Recall: 78% F1: 78%

Random Forest - Confusion Matrix

RF- MODEL RESULTS

Grid Search Parameters:

```
param_grid = {
    'n_estimators': [100, 200, 300],
    'criterion': ['gini', 'entropy'],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4],
    'max_features': ['sqrt', 'log2']
}
```

0 Predicted

CONVERTING SOUND TO IMAGES

CONVOLUTIONAL NEURAL NET

WHAT'S THE DIFFERENCE?

Can a CNN tell the difference?

YEAH, MOSTLY

Results:

Accuracy: 82% Validation Loss: .52

- Compressed PNGs
- Dataset quality
 - o APTLY TTS not good
- Dataset diversity
 - Moz too dominant

WHAT MADE THE CNN WORSE?

SUMMARY OF MODELS

□ 78%

LOGISTIC REGRESSION

Precision: 80% F1: 78%

81%

SVM

Precision: 80% F1: 80%

90%

RANDOM FOREST

Precision:90% F1:90%

82%

CNN

CONCLUSION

Is it possible?

Yes!

- Developing a machine learning model to discern between synthetic speech and human speech is entirely possible
- The models discussed previously all were better than the baseline
- Further tuning of the models could achieve better results
- Training a model on data from a specific situation would yield superior results

RECOMMENDATIONS

What could we do better?

- 1. Apply transfer learning from pre-trained models
- 2. Buy a better computer
- 3. Experiment with more complex neural network architectures.
- 4. Conduct more extensive hyperparameter tuning to optimize model performance.
- 5. Explore the impact of different feature extraction techniques, such as learning features directly from raw audio signals or using other types of acoustic features.

NEXT STEPS

What I plan to do next

- 1. Select only first 2 seconds of each clip
- 2. More aggressively trim the datasets
- 3. Train a TTS model and compare
- 4. Evaluate differences across demographics
- 5. How does text sentiment affect the result?

THANKS!

References:

- Fayek, H. (2016). Speech Processing for Machine Learning: Filter banks, MFCCs, and What's In-Between.
- McFee, B. et al. (2021). librosa: Audio and music signal analysis in Python.
- 3. Zero Crossing Rate. (n.d.). In ScienceDirect.
- Fedden, L. (2019). Comparative audio analysis with WaveNet, MFCCs, UMAP, t-SNE, and PCA.
- Mel Frequency Cepstral Coefficients. (n.d.). In Apple Machine Learning Research.
- 6. Burnwal, S. (2021). Speech Emotion Recognition.
- 7. Bhatia, K. (2019). Audio Signal Feature Extraction and Clustering.
- 8. Ambient Sounds. (n.d.). In Sound Jay.
- 9. English Speech Recognition and Text to Speech. (n.d.). In OpenSLR.
- 10. York Audio-Visual Speech Recognition Corpus. (n.d.). In York University.
- 11. Prosise, J. (2021). Audio Classification (CNN).
- 12. OpenAl. (2021). GPT-3.5.

