THE CLOUD HUNTER'S PROBLEM: AN AUTOMATED DECISION ALGORITHM TO IMPROVE THE PRODUCTIVITY OF SCIENTIFIC DATA COLLECTION IN STOCHASTIC ENVIRONMENTS

SYS 6014 Decision Analysis, Spring 2020

ARTHUR SMALL, JASON B. STEFIK, JOHANNES VERLINDE, NATHANIEL C. JOHNSON

5 Feb 2020

Introduction: The problem

The Cloud Hunter's basic problem is to decide how to allocate a limited budget of flight time over the course of a field season.

Decisions must be made 1 day ahead, based on imperfect day-ahead forecasts of favorable conditions.

FORMAL MODEL OF THE DECISION PROBLEM

Model Setup

D: length of the field season in days

 $F \leq D$: number of flights in the Cloud Hunter's budget.

 $d = D, \dots, 1$: index of dates

 $f = F, \dots, 1$: index of flights

 X_d : random state variable : $X_d=1$ if conditions on date d are good, 0 otherwise.

 x_d : realized value of X_d

 a_d : binary control variable: $a_d=1$ if a flight is made on date d, 0 otherwise.

$$\mathbf{X} = \langle \mathbf{x}_{D}, ..., \mathbf{x}_{1} \rangle$$
: vector of conditions

$$a = \langle x_D, ..., x_1 \rangle$$
: vector of choices

DECISION RULE

DECISION TAKEN ON BASIS OF DAY-AHEAD FORECAST

Before taking each decision, actor receives a forecast signal $s_d \in \mathbb{S}$.

$$p(s) = \Pr\{x_d = 1 | s_d = s\}$$

.

DISTRIBUTION OF FORECAST SIGNALS

DISTRIBUTION OF FORECAST SIGNALS

- $\pi(s)$: unconditional, probability that forecast will take value s.
- $\pi(\cdot)$ defines a probability distribution over the set $\mathbb S$ of possible forecast signals.

INTERTEMPORAL OPTIMIZATION VIA DYNAMIC PROGRAMMING

FIGURE 1: Graphical representation of the decision algorithm.

PROBABILISTIC FORECASTING OF FAVORABLE CONDITIONS USING SELF-ORGANIZING MAPS

 $\ensuremath{\mathrm{Figure}}\xspace$ 2: 6 X 4 SOM grid for relative humidity profiles

13.3%	20.6%	4.4%	3.7%
1.5%	8.1%	1.5%	4.4%
0%	3.7%	4.4%	11.8%
2.9%	3.7%	7.4%	6.6%
0%	0%	0.7%	1.5%
0%	0%	0%	0%

 ${\rm Figure}\ 3:$ Conditional probability distribution of SOM state realizations following a forecast of SOM state 1

 ${\rm Figure}\ 4:$ Estimated probabilities of good conditions for data collection, as a function of day-ahead SOM forecast

RESULTS

FIGURE 5: Computed values for the value function V(d, f)

Dark line: simulated sequence of flight decisions

• Diagonal movements = fly dates, horizontal movements = no-fly dates

FIGURE 6: Results: the algorithm's simulated performance during 2009 field season, compared with realized performance of heuristic decision procedure.

The algorithm achieves a 21% increase in the number of successful flights.

	Heuristic procedure	Automated algorithm
Flights launched	56	66
Successes	28	34
Type I errors	28	32
Type II errors	17	11

 $FIGURE \ 7: \ Summary \ of \ outcomes$

Successes are flights launched on days with good conditions.

Type I errors are decisions to fly only to find no clouds.

Type II errors are decisions to stand down only to find that the desired conditions existed.