Тема: Определенный интеграл

- 2^{0} . Интегральные суммы Дарбу и Римана.
- 3^{0} . Определение интеграла Римана. Пример: интеграл ступенчатой функции. Теорема об ограниченности интегрируемой по Риману функции.
- ${f 4}^0$. Критерий Римана интегрируемости функции.
- 5^0 . Колебание функции и критерий Римана интегрируемости в терминах колебаний 6^0 . Лемма о последовательности разбиений 7^0 . Мелкость разбиения. Теорема об интеграле Римана как пределе сумм Дарбу со стремящейся к нулю мелкостью.

 2^0 . Пусть функция f(x) задана на промежут-ке Δ с разбиением $au(\Delta)=\{\Delta_1,\Delta_2,\dots\Delta_N\}$. Введем следующие обозначения:

$$m_i = \inf_{x \in \Delta_i} f(x), \quad M_i = \sup_{x \in \Delta_i} f(x); \quad m_i \leqslant M_i.$$

Если $\Delta_i = < x_{i-1}, x_i >$, то его длина задается равенством

$$|\Delta_i| = |x_i - x_{i-1}|$$

и обозначается иногда как Δx_i (приращение переменной x на промежутке $< x_{i-1}, x_i >)$.

Определение. Для заданной функции f(x), $x \in \Delta$, линейные комбинации вида

$$s(f, au) = \sum_{i=1}^N m_i |\Delta_i| \quad ext{ } \mathcal{U} \quad S(f, au) = \sum_{i=1}^N M_i |\Delta_i|$$

называются нижней и верхней интегральной суммой Дарбу соответственно.

Из этого определения сразу следует, что для заданных f и τ нижняя сумма Дарбу не пре-

восходит верхнюю, т.е. справедливо неравенство

$$s(f, au)\leqslant S(f, au). \hspace{1cm} ig(\mathrm{D}_{\leqslant} ig)$$

Лемма (поведение сумм Дарбу при измельчении). Пусть разбиение $\tau(\Delta)$ промежутка Δ является продолжением разбиения $\tau'(\Delta)$ этого же промежутка. Тогда справедливы оценки

$$s(f, au') \leqslant s(f, au) \leqslant S(f, au) \leqslant S(f, au').$$
 (D, au, au')

Лемма. Для заданной функции f(x), $x \in \Delta$, и любых двух разбиений $\tau'(\Delta)$ и $\tau''(\Delta)$ промежутка Δ соответствующие им верхние и нижние суммы Дарбу связаны соотношениями

$$s(f, \tau') \leqslant S(f, \tau''), \quad s(f, \tau'') \leqslant S(f, \tau').$$

Доказательство. Согласно лемме об общем продолжении найдется разбиение $au(\Delta)$ про-

межутка Δ , являющееся одновременно продолжением как $\tau'(\Delta)$, так и $\tau''(\Delta)$.

По предыдущей лемме при измельчении сетки от $\tau'(\Delta)$ до $\tau(\Delta)$ нижняя сумма Дарбу не убывает, а верхняя — не возрастает:

$$s(f, \tau') \leqslant s(f, \tau), \quad S(f, \tau) \leqslant S(f, \tau').$$

Аналогично, измельчение сетки от $au''(\Delta)$ до $au(\Delta)$ приводит к неравенствам

$$s(f, \tau'') \leqslant s(f, \tau), \quad S(f, \tau) \leqslant S(f, \tau'').$$

Комбинируя последние четыре неравенства с оценкой $s(f, au)\leqslant S(f, au)$, получаем первое из доказываемых неравенств

$$s(f, au') \leqslant s(f, au) \leqslant S(f, au'').$$

Меняя здесь местами разбиения $\tau'(\Delta)$ и $\tau''(\Delta)$, получаем и второе из доказываемых неравенств.

Пусть есть разбиение $au(\Delta) = \{\Delta_1, \Delta_2, \dots \Delta_N\}$ промежутка Δ . В каждом из мелких промежутков Δ_i выберем какую-нибудь точку ξ_i и свяжем с вектором $\xi = (\xi_1, \xi_2, \dots, \xi_N)$ понятие интегральной суммы Римана.

Определение. Для данной функции f = f(x), $x \in \Delta$, и разбиения $\tau(\Delta)$ промежутка Δ линейная комбинация вида

$$\sigma(f, au) = \sum_{i=1}^{N} f(\xi_i) |\Delta_i|,$$

где любая точка $\boldsymbol{\xi_i}$ лежит в промежутке $\boldsymbol{\Delta_i}$, называется интегральной суммой Римана функции f.

Иное обозначение интегральной суммой Римана, используемое далее:

$$\sigma(f; au,\xi),$$
 где $\xi=(\xi_1,\xi_2,\ldots,\xi_N).$

Для заданной функции f(x), $x \in \Delta$, при любом выборе точек ξ_i из промежутков Δ_i , $i=1,2,\ldots,N$, соответствующие этой функции интегральные суммы Римана и Дарбу, как

это следует из их определений, связаны между собой соотношениями

$$s(f, au)\leqslant\sigma(f; au,\xi)\leqslant S(f, au).$$

Более того справедливы следующие равенства

$$s(f, au) = \inf_{oldsymbol{\xi}} \sigma(f; au,oldsymbol{\xi}); \hspace{0.5cm} S(f, au) = \sup_{oldsymbol{\xi}} \sigma(f; au,oldsymbol{\xi}).$$

Точные нижние грани здесь берутся по всему му множеству векторов $\xi=(\xi_1,\xi_2,\ldots,\xi_N)$ с компонентами ξ_i из Δ_i , $i=1,\ldots,N$.

 3^0 . Как уже установлено выше, для любых двух разбиений $au'(\Delta)$ и $au''(\Delta)$ промежутка Δ справедлива оценка

$$s(f, \tau') \leqslant S(f, \tau'').$$

Фиксируя здесь разбиение $\tau''(\Delta)$ и заставляя разбиение $\tau'(\Delta)$ пробегать все допускаемые для него значения, получаем оценку

$$\sup_{oldsymbol{ au}} s(f, au) \leqslant S(f, au'').$$

В свою очередь, заставляя разбиение $\tau''(\Delta)$ в последнем неравенстве пробегать также все допускаемые для него значения, приходим к соотношению

$$\sup_{oldsymbol{ au}} s(f, au) \leqslant \inf_{oldsymbol{ au}} S(f, au).$$

Точные нижняя и верхняя грани здесь берутся по всевозможным разбиениям τ промежутка Δ с любым конечным числом узлов.

Определение. Для данной функции f(x), $x \in \Delta$, величины

называются соответственно нижним и верхним интегралом Дарбу от функции f по промежутку Δ .

Перепишем соотношение $(\underline{\mathbf{J}}\overline{\mathbf{J}})$ с учетом толь-

ко что данного определения. Тогда получим

$$\underline{J}(f)\leqslant ar{J}(f).$$

Эта оценка объясняет, почему величину $\underline{J}(f)$ называют нижним интегралом Дарбу, а $\bar{J}(f)$ — верхним интегралом.

Отметим, что вехний и нижний интегралы Дарбу зависят лишь от функции f и никак не зависят от исходного разбиения τ промежутка Δ .

Определение. Если для данной функции f(x), $x \in \Delta$, нижний и верхний интегралы Дарбу от нее, взятые по промежутку Δ , конечны и равны между собой, то функция f(x) называется интегрируемой по Риману на промежутке Δ . При этом число

$$J(f) = \underline{J}(f) = \bar{J}(f)$$

называют интегралом Римана от функции f по Δ .

Для интеграла Римана от функции f по Δ , если он существует, используется обозначение

$$\int\limits_{\Delta}f(x)dx.$$

Из определения интеграла Римана сразу получается следующая его двусторонняя оценка через суммы Дарбу:

$$s(f, au)\leqslant\int\limits_{\Delta}f(x)dx\leqslant S(f, au) \qquad orall\, au= au(\Delta).$$

Интеграл от функции f не зависит от того, как обозначена независимая переменная: x, y, z, или как-то еще. Иными словами, справедливы равенства

$$\int\limits_{\Delta}f(x)dx=\int\limits_{\Delta}f(y)dy=\int\limits_{\Delta}f(z)dz=\ldots.$$

Примеры интегрируемых по Риману функций дают так называемые ступенчатые функции. **Определение.** Функция f(x), $x \in \Delta$, называется ступенчатой на промежутке Δ , если существует такое разбиение

$$au(\Delta) = \{\Delta_1, \Delta_2, \dots \Delta_N\}$$

этого промежутка, что

$$f(x) = C_{m i} \qquad orall \, x \in \Delta_{m i}; \quad i = 1, 2, \dots, N,$$

где C_i не зависит от x из Δ_i .

Иными словами, f(x) — ступенчатая на промежутке Δ , если она кусочно-постоянна на этом промежутке.

Любая ступенчатая функция интегрируема по Риману и при этом

$$\int\limits_{\Delta}f(x)dx=\sum\limits_{i=1}^{N}C_{i}|\Delta_{i}|.$$

Теорема (ограниченность интегрируемых функций). *Если функция интегрируема по Риману на промежутке числовой оси, то она ограничена на этом промежутке.*

Доказательство. Пусть функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ . Предположим, что эта функция неограничена сверху на Δ , т.е. что

$$\sup_{x \in \Delta} f(x) = +\infty. \tag{UnB}$$

Возьмем произвольное разбиение

$$au(\Delta) = \{\Delta_1, \Delta_2, \dots \Delta_N\}$$

промежутка Δ . Из условия неограниченности (UnB) следует, что в разбиении $\tau(\Delta)$ найдется мелкий промежуток Δ_i , $|\Delta_i|>0$, такой, что функция f(x) на нем также неограничена сверху:

$$\sup_{x\in\Delta_i}f(x)=+\infty.$$

Но в этом случае верхняя интегральная сумма Дарбу $S(f,\tau)$ также неограничена сверху:

$$S(f, au) = \sum_{j=1}^N M_j |\Delta_j| = M_i |\Delta_i| + \sum_{j
eq i} M_j |\Delta_j| = +\infty.$$

Учитывая, что разбиение $\tau(\Delta)$ промежутка Δ здесь произвольно, заключаем, что верхний интеграл Дарбу от функции f(x), взятый по промежутку Δ , также бесконечен:

$$ar{J}(f) = \inf_{ au} S(f, au) = +\infty.$$

Но по условию функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ и, в соответствии с определением, ее верхний интеграл Дарбу $\bar{J}(f)$ должен быть конечен.

Это противоречит полученному равенству и, следовательно, сделанное изначально предположение о неограниченности функции f(x) неверно.

Аналогично, предположив, что функция f(x) неограничена снизу на Δ , т.е. что

$$\inf_{x\in\Delta}f(x)=-\infty,$$

с необходимостью получим неограниченность снизу соответствующего функции нижнего интеграла Дарбу:

$$\underline{J}(f) = \sup_{\boldsymbol{\tau}} s(f, \boldsymbol{\tau}) = -\infty.$$

Таким образом, интегрируемая по Риману функция обязана быть ограниченной как снизу так и сверху.

Отметим, что ограниченность функции на промежутке — это необходимое, но не достаточное условие интегрируемости функции по Риману. Пример ограниченной, но не интегрируемой по Риману функции дает

функция Дирихле. Эта функция определяется на отрезке [0,1] числовой оси следующим образом. В рациональных точках отрезка ее значения полагают равными единице, а во всех остальных точках отрезка [0,1] она полагается равной нулю. Докажите в качестве упражнения, что эта ограниченная функция не является интегрируемой по Риману на [0,1].

 4^0 . Укажем некоторые условия, которые необходимы и достаточны для интегрируемости функции по Риману.

Теорема (критерий Римана). Функция f(x), $x \in \Delta$, интегрируема по Риману на промежут-ке Δ тогда и только тогда, когда для любого $\varepsilon > 0$ существует разбиение $\tau_{\varepsilon}(\Delta)$ промежутка Δ такое, что разность соответствующих этому разбиению верхней и нижней

сумм Дарбу удовлетворяет неравенству

$$S(f, \tau_{\varepsilon}) - s(f, \tau_{\varepsilon}) < \varepsilon.$$
 (R₁)

Доказательство. Установим существование разбиения $au_{arepsilon}(\Delta)$ промежутка Δ с оценкой (\mathbf{R}_1) при условии, что исходная функция интегрируема. Согласно определению интеграла Римана J(f) имеют место равенства

$$J(f) = \sup_{\tau} s(f, \tau) = \inf_{\tau} S(f, \tau).$$

Пользуясь известными свойствами точных верхней и нижней граней и задавшись любым $\varepsilon>0$, выберем такие два разбиения $\tau_{\varepsilon}'(\Delta)$ и $\tau_{\varepsilon}''(\Delta)$ промежутка Δ , для которых выполняются неравенства

$$J(f) - rac{arepsilon}{2} < s(f, au_{arepsilon}') \leqslant J(f);$$

$$J(f)\leqslant S(f, au_{arepsilon}'')< J(f)+rac{arepsilon}{2}.$$

Согласно лемме о продолжении для выбранных разбиений $\tau_{\varepsilon}'(\Delta)$ и $\tau_{\varepsilon}''(\Delta)$ найдется некоторое общее их продолжение $\tau_{\varepsilon}(\Delta)$.

При этом соответствующие верхние и нижние суммы Дарбу связаны следующим образом:

$$s(f, \tau'_{\varepsilon}) \leqslant s(f, \tau_{\varepsilon}), \quad S(f, \tau_{\varepsilon}) \leqslant S(f, \tau''_{\varepsilon}).$$

Учитывая еще, что

$$s(f, au_{\mathcal{E}})\leqslant S(f, au_{\mathcal{E}}),$$

получаем следующие последовательные неравенства:

$$J(f) - rac{arepsilon}{2} < s(f, au_{arepsilon}') \leqslant s(f, au_{arepsilon}) \leqslant$$

$$\leqslant S(f, au_{arepsilon}) \leqslant S(f, au_{arepsilon}'') < J(f) + rac{arepsilon}{2}.$$

Исключив из этой цепочки первое и четвертое неравенства, получим

$$J(f) - rac{arepsilon}{2} < s(f, au_{arepsilon}) \leqslant S(f, au_{arepsilon}) < J(f) + rac{arepsilon}{2}.$$

Как следствие этих соотношений имеем для разбиения $au_{arepsilon}(\Delta)$ искомую оценку (\mathbf{R}_1) :

$$S(f, au_{arepsilon})-s(f, au_{arepsilon})$$

Установим достаточность существования разбиения $au_{arepsilon}(\Delta)$ промежутка Δ с оценкой (\mathbf{R}_1)

для интегрируемости функции f(x). Пусть $au_{arepsilon}(\Delta)$ — это разбиение промежутка с условием (R_1) . Тогда согласно определению верхнего и нижнего интегралов Дарбу имеем следующие неравенства:

$$s(f, au_{\mathcal{E}})\leqslant ar{J}(f)\leqslant ar{J}(f)\leqslant S(f, au_{\mathcal{E}}).$$

Следовательно, справедливы соотношения

$$ar{J}(f) - \underline{J}(f) \leqslant S(f, au_{\mathcal{E}}) - s(f, au_{\mathcal{E}}) < arepsilon$$
 .

Последнее неравенство здесь справедливо в силу условия (\mathbf{R}_1) .

Таким образом, верхний и нижний интегралы Дарбу связаны отношением

$$0\leqslant ar{J}(f)-ar{J}(f)$$

В частности, из полученной оценки следует конечность интегралов Дарбу $\underline{J}(f)$ и $\bar{J}(f)$.

Перейдя в последнем неравенстве к пределу при $\varepsilon \to 0$, получим в результате совпадение верхнего и нижнего интегралов Дарбу: $\underline{J}(f) = \bar{J}(f)$.

Таким образом, все условия из определения интеграла Римана выполнены. Это означает, что функция f(x) интегрируема по Риману на промежутке Δ .

 5^0 . Пусть есть функция f(x), $x \in D_f$, и множество $g \subset D_f$. Распространенной метрической характеристикой поведения функции на множестве g является колебание функции f(x) на указанном множестве.

Определение. Колебанием функции f(x) на множестве $g \subset D_f$ называется разность

$$\omega(f;g) = \sup_{x \in g} f(x) - \inf_{x \in g} f(x).$$

В качестве упражнения подсчитайте колебание функции $\sin x$ на промежутке $[0,2\pi)$.

Любая ограниченная функция f(x), $x \in D_f$, имеет на произвольном подмножестве g своей области определения, $g \subset D_f$, конечное и неотрицательное колебание $\omega(f;g)$.

Кроме того имеет место оценка

$$|f(x)-f(y)|\leqslant \omega(f;g) \qquad orall x,y\in g.$$

Для любого разбиения

$$au(\Delta) = \{\Delta_1, \Delta_2, \dots \Delta_N\}$$

промежутка Δ числовой оси разность соответствующих верхней и нижней сумм Дарбу функции f(x), $x \in \Delta$, допускает представление в виде линейной комбинации колебаний f(x) на мелких промежутках разбиения $\tau(\Delta)$.

Точнее имеет место равенство

$$S(f, au)-s(f, au)=\sum_{j=1}^N(M_j-m_j)|\Delta_j|=$$

$$= \sum_{j=1}^{N} \omega(f; \Delta_j) |\Delta_j|. \qquad (\Sigma \omega)$$

Это замечание позволяет сформулировать критерий Римана интегрируемости функции в терминах ее колебаний.

Теорема (критерий Римана в терминах колебаний). Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке Δ тогда и только тогда, когда для любого $\varepsilon > 0$ существует такое разбиение $\tau_{\varepsilon}(\Delta) = \{\Delta_1, \Delta_2, \dots \Delta_N\}$ промежутка Δ , что

$$\sum_{j=1}^{N} \omega(f; \Delta_j) |\Delta_j| < \varepsilon. \tag{R'_1}$$

Для обоснования теоремы в приведенной формулировке достаточно воспользоваться уже доказанным критерием интегрируемости функции по Риману и применить его к представлению (Σ_{ω}) разности верхней и нижней сумм Дарбу в терминах локальных колебаний функции.

 6^{0} . В качестве удобного следствия критерия Римана докажем следующее утверждение. Лемма (о последовательности разбиений). Функция f(x), $x \in \Delta$, интегрируема по Риману на промежутке 🛆 тогда и только тогда, когда существует последовательность $\{ au_{m{k}}(\Delta)\}_{m{k}=1}^{\infty}$ разбиений промежутка Δ , обладающая следующим предельным свойством:

$$\lim_{k \to +\infty} [S(f, \tau_k) - s(f, \tau_k)] = 0. \tag{1}$$

Если последовательность $\{\tau_k(\Delta)\}_{k=1}^{\infty}$ разбиений обладает свойством (1), то функция f(x) не только интегрируема на промежутке Δ , но и удовлетворяет при этом следующим предельным равенствам:

$$\int_{\Delta} f(x)dx = \lim_{k \to +\infty} S(f, \tau_k) = \lim_{k \to +\infty} s(f, \tau_k). \quad (2)$$

Доказательство. Убедимся в достаточности существования последовательности разбиений $au_k(\Delta)$, $k=1,2,\ldots$, с предельным свойством (1) для интегрируемости по Риману функции f(x).

Взяв произвольное $\varepsilon > 0$, найдем такое разбиение $\tau_k(\Delta)$ из рассматриваемой последовательности с условием (1), для которого выполняется оценка

$$S(f, \tau_k) - s(f, \tau_k) = \sum_{j=1}^{N} \omega(f; \Delta_j) |\Delta_j| < \varepsilon.$$

При этом выполнено условие (\mathbf{R}_1') и, согласно уже установленному критерию Римана, функция f(x) интегрируема на Δ .

Убедимся, что условия (1)-(2) с необходимостью выполняются для интегрируемой по промежутку Δ функции.

Взяв $\varepsilon = \frac{1}{k} > 0$, где k натуральное, воспользуемся критерием Римана и найдем такое разбиение $au_{arepsilon} \equiv au_{m{k}}(\Delta)$ промежутка Δ , для которого выполняются оценки

$$0\leqslant S(f, au_{m{k}})-s(f, au_{m{k}})\leqslant rac{1}{k}.$$

Переходя здесь к пределу при $k \to +\infty$, получаем искомое равенство (1).

Далее, интеграл Римана $J(f) = \int\limits_{\Delta} f(x) dx$, как это уже установлено, связан с верхней и

нижней суммами Дарбу на разбиении $au_k(\Delta)$ следующими соотношениями:

$$0 \leqslant J(f) - s(f, au_k) \leqslant S(f, au_k) - s(f, au_k).$$

Переходя здесь к пределу при $k \to +\infty$ и пользуясь (1), получим

$$0\leqslant \lim_{k o +\infty} [J(f)-s(f, au_k)]\leqslant$$

$$\leqslant \lim_{k o +\infty} [S(f, au_k) - s(f, au_k)] = 0.$$

Это означает, что интеграл $\int\limits_{\Delta} f(x) dx$ представляет собой предел последовательности нижних сумм Дарбу, соответствующих разбиениям τ_k промежутка интегрирования:

$$\int\limits_{\Delta}f(x)dx=\lim_{k
ightarrow+\infty}s(f, au_{k}).$$

Аналогично рассматривается последовательность верхних сумм Дарбу, для каждой из которых справедлива оценка

$$0 \leqslant S(f, au_{m{k}}) - J(f) \leqslant S(f, au_{m{k}}) - s(f, au_{m{k}}).$$

Переходя здесь к пределу при $k \to +\infty$ и пользуясь (1), получаем

$$0\leqslant \lim_{k o +\infty}[S(f, au_k)-J(f)]\leqslant$$

$$\leqslant \lim_{k o +\infty} [S(f, au_k) - s(f, au_k)] = 0.$$

Следовательно, интеграл $\int_{\Delta}^{f(x)dx}$ равен пределу последовательности верхних сумм Дарбу, соответствующих разбиениям τ_k промежутка интегрирования:

$$\int\limits_{\Delta}f(x)dx=\lim_{k
ightarrow+\infty}S(f, au_k).$$

Таким образом, оба равенства в (2) полностью доказаны.

 7^{0} . Возьмем произвольное разбиение

$$au(\Delta) = \{\Delta_1, \dots \Delta_N\}$$

промежутка 🛆 на мелкие промежутки

$$\Delta_i = \langle x_{i-1}, x_i \rangle,$$

где $i=1,\dots,N$. Длину малого промежутка Δ_i , то есть число $h_i=x_i-x_{i-1}$, называют *шагом* $\mathit{сетки}\ au(\Delta)$.

Определение. Максимальный из шагов сетки $\tau(\Delta)$ называют ее мелкостью и обозначают как $|\tau|$:

$$| au| = \max_{i=1,...,N} h_i = \max_{i=1,...,N} |\Delta_i|.$$

Отметим, что для любого конечного промежутка всегда найдется разбиение со сколь угодно малой мелкостью. Такое разбиение можно получить, взяв, например, равномерное распределение N узлов на промежутке при достаточно большом N.

В теории интеграла главную роль играют такие разбиения, мелкость которых при неограниченном увеличении числа узлов N стремится к нулю.

Теорема (предел сумм Дарбу). Пусть функция f(x) интегрируема по Риману на промежутке $\Delta \subset D_f$.

Тогда для любой последовательности разбиений $\{\tau_k(\Delta)\}_{k=1}^{\infty}$ промежутка Δ со стремящейся к нулю мелкостью $|\tau_k|$ выполняются следующие предельные равенства:

$$\lim_{k\to +\infty} s(f,\tau_k) = \lim_{k\to +\infty} S(f,\tau_k) = \int\limits_{\Delta} f(x) dx. \ (\mathbf{R_{lim}})$$

 \mathcal{A} оказательство. Пусть последовательность $\{ au_k(\Delta)\}_{k=1}^\infty$ разбиений промежутка Δ имеет в пределе исчезающую мелкость:

$$\tau_k(\Delta) = \{\Delta_1^k, \dots \Delta_{N_k}^k\} \qquad \Rightarrow \qquad \lim_{k \to +\infty} |\tau_k| = 0.$$

Задавшись интегрируемой функцией f(x), введем следующее обозначение

$$\Lambda_{m{k}} = \sum_{j=1}^{N_k} \omega(f; \Delta_j^{m{k}}) |\Delta_j^{m{k}}| = S(f, au_{m{k}}) - s(f, au_{m{k}}).$$

Если доказать предельное равенство

$$\lim_{k \to +\infty} \Lambda_k = 0 \; \Leftrightarrow \; \lim_{k \to +\infty} [S(f,\tau_k) - s(f,\tau_k)] = 0,$$

то искомые предельные соотношения (${
m R}_{
m lim}$) получаются по той же схеме, что и равенства (2), т.е. переходом к пределу при $k \to +\infty$ в неравенствах

$$0 \leqslant J(f) - s(f, \tau_{\boldsymbol{k}}) \leqslant S(f, \tau_{\boldsymbol{k}}) - s(f, \tau_{\boldsymbol{k}}),$$

$$0\leqslant S(f, au_{m{k}})-J(f)\leqslant S(f, au_{m{k}})-s(f, au_{m{k}}),$$

где через J(f) обозначен интеграл $\int\limits_{\Delta}^{f(x)dx}$. Таким образом, доказательство теоремы сводится к обоснованию равенства

$$\lim_{k \to +\infty} \Lambda_k = 0.$$

Заметим, что из интегрируемости функции f(x) следует ее ограниченность на промежутке Δ , т.е. существование такой конечной

постоянной M, что

Из определения колебания функции получа- ем теперь

$$\Delta_{m{j}}^{m{k}} \subset \Delta \quad \Rightarrow \quad \omega(f; \Delta_{m{j}}^{m{k}}) \leqslant 2M.$$

Далее, пусть $\varepsilon > 0$. Тогда согласно критерию интегрируемости Римана найдется та-

кое разбиение $au_{arepsilon}(\Delta)=\{\Delta_1^{arepsilon},\dots\Delta_{N_{arepsilon}}^{arepsilon}\}$ промежут-ка Δ , для которого справедливо неравенство

$$S(f, au_{arepsilon}) - s(f, au_{arepsilon}) < arepsilon.$$

Для всех достаточно больших номеров k мелкость $| au_k|$ не превосходит длины любого из мелких промежутков $\Delta_j^{arepsilon}$, $j=1,2,\ldots,N_{arepsilon}$. Разбиения $au_k(\Delta)$ именно с этими номерами условимся рассматривать далее.

Сумму $\Lambda_{m{k}}$ разобьем на два слагаемых

$$\Lambda_{k} = \Lambda_{k}^{*} + \Lambda_{k}^{**}.$$

В первую сумму Λ_k^* включаем те и только те слагаемые $\omega(f; \Delta_j^k) |\Delta_j^k|$, для которых малый промежуток Δ_j^k из $\tau_k(\Delta)$ не содержится ни в одном из малых промежутков Δ_l^ε из разбиения $\tau_\varepsilon(\Delta)$.

Слагаемое же Λ_k^{**} включает в себя те и только те величины $\omega(f; \Delta_j^k) |\Delta_j^k|$, которые не вошли в первую сумму Λ_k^* . Заметив, что

$$|\Lambda_{\boldsymbol{k}}| \leqslant |\Lambda_{\boldsymbol{k}}^*| + |\Lambda_{\boldsymbol{k}}^{**}|,$$

оценим поочередно обе величины в правой части последнего неравенства.

В частичной сумме Λ_k^* содержится не более чем N_{ε} неотрицательных слагаемых. Для

каждого из них справедлива следующая оцен-ка сверху:

$$\omega(f;\Delta_j^k)|\Delta_j^k|\leqslant 2M\max_{l=1,...,N_k}|\Delta_l^k|=2M| au_k|.$$

Суммируя эти неравенства по всем допустимым значениям j, получаем неравенство

$$|\Lambda_{m{k}}^{m{*}}|\leqslant 2M| au_{m{k}}|\cdot N_{m{arepsilon}}.$$

Вторая частичная сумма Λ_{k}^{**} , согласно ее же

определению, допускает следующее специальное представление:

$$\Lambda_k^{**} = \sum_{l=1}^{N_{arepsilon}} \left(\sum_{\{j: \Delta_j^k \subset \Delta_l^{arepsilon}\}} \omega(f; \Delta_j^k) |\Delta_j^k|
ight).$$

Внутреннее суммирование здесь происходит по всем тем индексам $j,\ 1\leqslant j\leqslant N_k$, для которых $\Delta_j^k\subset\Delta_l^{arepsilon}.$

Если для заданного номера l, $1\leqslant l\leqslant N_{\mathcal{E}}$, промежутков Δ_{j}^{k} , вложенных в промежуток $\Delta_{l}^{\mathcal{E}}$, вообще нет, то внутренняя сумма в приведенном представлении величины Λ_{k}^{**} полагается равной нулю.

Колебание $\omega(f;\Delta_j^k)$ допускает следующую оценку сверху:

$$\Delta_j^k \subset \Delta_l^arepsilon \ \Rightarrow \ \ \omega(f;\Delta_j^k) \leqslant \omega(f;\Delta_l^arepsilon).$$

Подставляя это неравенство в рассматриваемое представление суммы Λ_k^{**} , получаем неравенства

$$0\leqslant \Lambda_k^{**}\leqslant \sum_{l=1}^{N_{arepsilon}}\omega(f;\Delta_l^{arepsilon}) \left(\sum_{\{j:\Delta_j^k\subset\Delta_l^{arepsilon}\}}|\Delta_j^k|
ight).$$

Для фиксированного номера k промежутки Δ_j^k , $1\leqslant j\leqslant N_k$, попарно не пересекаются в соответствии с определением разбиения.

По этой причине справедливо неравенство

$$\sum_{\{j:\Delta_j^k\subset\Delta_l^arepsilon\}} |\Delta_j^k|\leqslant |\Delta_l^arepsilon|.$$

Таким образом, для второй частичной суммы Λ_k^{**} справедлива следующая оценка сверху:

$$|\Lambda_{m{k}}^{**}| \leqslant \sum_{m{l}=1}^{N_{m{arepsilon}}} \omega(f; \Delta_{m{l}}^{m{arepsilon}}) |\Delta_{m{l}}^{m{arepsilon}}| = S(f, au_{m{arepsilon}}) - s(f, au_{m{arepsilon}}) < arepsilon.$$

Последнее неравенство здесь имеет место согласно изначальному выбору разбиения τ_{ε} .

Объединяя полученные верхние оценки частичных сумм Λ_k^* и Λ_k^{**} , приходим к неравенствам

$$|\Lambda_{\pmb{k}}| \leqslant |\Lambda_{\pmb{k}}^{\pmb{*}}| + |\Lambda_{\pmb{k}}^{\pmb{*}}| \leqslant 2M| au_{\pmb{k}}| \cdot N_{\pmb{arepsilon}} + arepsilon.$$

Таким образом, для верхнего и нижнего пределов последовательности $|\Lambda_k|$ при $k o \infty$

справедливы оценки

$$0\leqslant \varliminf_{k o\infty} |\Lambda_k|\leqslant \varlimsup_{k o\infty} |\Lambda_k|\leqslant arepsilon.$$

Здесь ε — любое положительное число, причем верхний и нижний пределы от этого параметра не зависят.

Переходя в полученных оценках к пределу при $\varepsilon \to 0$, получаем существование нулевого

предела последовательности Λ_k :

$$\lim_{k\to\infty}\Lambda_k=\varliminf_{k\to\infty}|\Lambda_k|=\varlimsup_{k\to\infty}|\Lambda_k|=0.$$

Таким обрахом, искомые предельные соотношения ($\mathbf{R_{lim}}$) установлены.