

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended): A method of fourth-order, blind identification of two sources in a system including a number of sources P and a number N of reception sensors receiving [[the]] observations, the sources having different tri-spectra, comprising the following steps:

- a) fourth-order whitening of the observations received on the reception sensors in order to orthonormalize the direction vectors of the sources in [[the]] matrices of quadricovariance of the observations used,
- b) joint diagonalizing of several whitened matrices of quadricovariance to identify the spatial signatures of the sources.

2. (currently amended): The method according to claim 1, wherein the observations used correspond to [[the]] time-domain averaged matrices of quadricovariance defined by:

$$Q_s(\tau_1, \tau_2, \tau_3) = \sum_{p=1}^P c_p(\tau_1, \tau_2, \tau_3) (\mathbf{a}_p \otimes \mathbf{a}_p^*) (\mathbf{a}_p \otimes \mathbf{a}_p^*)^H \quad (4a)$$

$$= A_Q C_s(\tau_1, \tau_2, \tau_3) A_Q^H \quad (4b)$$

where A_Q is a matrix with a dimension ($N^2 \times P$) defined by $A_Q = [(\mathbf{a}_1 \otimes \mathbf{a}_1^*), \dots, (\mathbf{a}_P \otimes \mathbf{a}_P^*)]$, $C_s(\tau_1, \tau_2, \tau_3)$ is a diagonal matrix with a dimension ($P \times P$) defined by $C_s(\tau_1, \tau_2, \tau_3) = \text{diag}[c_1(\tau_1, \tau_2, \tau_3), \dots, c_P(\tau_1, \tau_2, \tau_3)]$ and $c_p(\tau_1, \tau_2, \tau_3)$ is defined by:

$$c_p(\tau_1, \tau_2, \tau_3) = \langle \text{Cum}(s_p(t), s_p(t-\tau_1)^*, s_p(t-\tau_2)^*, s_p(t-\tau_3)) \rangle \quad (5)$$

3. (previously presented): The method according to claim 2, comprising the following steps:

Step 1: estimating, through \hat{Q}_{ss} of the matrix Q_{ss} , from the L observations $x(t/T_s)$ using a non-skewed and asymptotically consistent estimator.

Step 2: eigen-element decomposition of \hat{Q}_{ss} , the estimation of the number of sources P and the

limiting of the eigen-element decomposition to the P main components:

$Q; \hat{x} \approx E; \hat{x} \Lambda; \hat{x} E; \hat{x}^H$, where $\Lambda; \hat{x}$ is the diagonal matrix containing the P eigenvalues with the highest modulus and $E; \hat{x}$ is the matrix containing the associated eigenvectors.

Step 3: building of the whitening matrix: $T; \hat{x} = (\Lambda; \hat{x})^{-1/2} E; \hat{x}^H$.

Step 4: selecting K triplets of delays $(\tau_1^k, \tau_2^k, \tau_3^k)$ where $|\tau_1^k| + |\tau_2^k| + |\tau_3^k| \neq 0$.

Step 5: estimating , through $Q; \hat{x}(\tau_1^k, \tau_2^k, \tau_3^k)$, of the K matrices $Q_x(\tau_1^k, \tau_2^k, \tau_3^k)$.

Step 6: computing of the matrices $T; \hat{x} Q; \hat{x}(\tau_1^k, \tau_2^k, \tau_3^k) T; \hat{x}^H$ and the estimation, by $U; \hat{x}_{\text{sol}}$, of the unitary matrix U_{sol} by the joint diagonalizing of the K matrices $T; \hat{x} Q; \hat{x}(\tau_1^k, \tau_2^k, \tau_3^k) T; \hat{x}^H$

Step 7: computing $T; \hat{x}^H U; \hat{x}_{\text{sol}} = [B; \hat{x}_1 \dots B; \hat{x}_P]$ and the building of the matrices $B; \hat{x}_l$ sized $(N \times N)$.

Step 8: estimating , through $a; \hat{x}_p$, of the signatures a_q ($1 \leq q \leq P$) of the P sources in applying a decomposition into elements on each matrix $B; \hat{x}_l$.

4. (currently amended): The method according to claim 1, comprising evaluating quality of [[the]] identification of the associated direction vector in using a criterion:

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \dots, \alpha_P) \quad (16)$$

where

$$\alpha_p = \min_{1 \leq q \leq P} d(a_p, \hat{a}_q) \quad (17)$$

and where $d(u, v)$ is the pseudo-distance between the vectors u and v , such that:

$$d(u, v) = 1 - \frac{|u^H v|^2}{(u^H u)(v^H v)} \quad (18)$$

5. (previously presented): The method according to claim 1, a fourth-order cyclical after the step a) of fourth-order whitening.

6. (previously presented): The method according to claim 5, wherein the identification step is performed in using fourth-order statistics.

7. (previously presented): The method according to claim 1 wherein the number of sources P is greater than or equal to the number of sensors.

8. (previously presented): The method according to claim 1, comprising goniometry using the identified signature of the sources.

9. (previously presented): The method according to claim 1, comprising spatial filtering after the identified signature of the sources.

10. (previously presented): The use of the method according to claim 1, for use in a communications network.

11. (currently amended): The method according to claim 2, comprising evaluating quality of [[the]] identification of the associated direction vector in using a criterion

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \dots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \leq i \leq P} [d(\alpha_p, \hat{\alpha}_i)]$$

and where $d(u, v)$ is the pseudo-distance between the vectors u and v , such that:

$$d(u, v) = 1 - \frac{|u^H v|^2}{(u^H u)(v^H v)}$$

12. (currently amended): The method according to claim 3, comprising evaluating quality of [[the]] identification of the associated direction vector in using a criterion

$$D(A, \hat{A}) = (\alpha_1, \alpha_2, \dots, \alpha_P)$$

where

$$\alpha_p = \min_{1 \leq i \leq P} [d(\alpha_p, \hat{\alpha}_i)]$$

and where $d(u, v)$ is the pseudo-distance between the vectors u and v , such that:

$$d(u, v) = 1 - \frac{|u^H v|^2}{(u^H u)(v^H v)}$$

13. (previously presented): The method according to claim 2, a fourth-order cyclical after the step a) of fourth-order whitening.

14. (previously presented): The method according to claim 2, wherein the identification step is performed in using fourth-order statistics.

15. (previously presented): The method according to claim 2, wherein the number of sources P is greater than or equal to the number of sensors.

16. (previously presented): The method according to claim 2, comprising goniometry using the identified signature of the sources.

17. (previously presented): The method according to claim 3, a fourth-order cyclical after the step a) of fourth-order whitening.

18. (previously presented): The method according to claim 3, wherein the identification step is performed in using fourth-order statistics.

19. (previously presented): The method according to claim 3, wherein the number of sources P is greater than or equal to the number of sensors.

20. (previously presented): The method according to claim 3, comprising goniometry using the identified signature of the sources.