Diabetes Readmission Analysis

Abdulla Elkhadrawy, Afm Khan, Theodore Jeliazkov, Daniel Lines, Andrew Qian, Rahul Ramarao

Introduction

Overview

- Dataset covers 10 years (1999-2008) of clinical records from 130 US hospitals
- Contains 101,766 instances of hospitalized patients diagnosed with diabetes
- 47 features including patient details, hospital metrics, lab tests, medications

Introduction

Importance

- Evaluating readmission risk
- Improving diabetes management and glycemic control in hospitals
- Reducing healthcare costs and complications from suboptimal care

Goal

Develop a predictive model to identify high-risk patients for better diabetes management during hospital stays.

The A1C blood test is used to diagnose diabetes and monitor the efficacy of diabetes treatment. It provides a measure of average blood glucose levels over the past 3 months.

- Lower than 5.7%: normal
- Between 5.7% and 6.5%: prediabetes
- Greater than 7%: elevated to high risk

A1C and Estimated Average Glucose Levels

	A1C Percentage		l Average e (EAG)
In-range	< 5.7%	< 117 mg/dL	6.5 mmol/L
Prediabetes	5.7-6.4%	117-137 mg/dL	6.5-7.6 mmol/L
Diabetes	> 6.4%	> 137 mg/dL	> 7.6 mmol/L
- 1	6.5%	140 mg/dL	7.8 mmol/L
Increased risk of complications	7.0%	154 mg/dL	8.6 mmol/L
	7.5%	169 mg/dL	9.4 mmol/L
Comp	8.0%	183 mg/dL	10.1 mmol/L
a risk o	8.5%	197 mg/dL	10.9 mmol/L
crease	9.0%	212 mg/dL	11.8 mmol/L
Ē	9.5%	226 mg/dL	12.6 mmol/L
į	10%	240 mg/dL	13.4 mmol/L

Data Focus

Selected for individuals labelled with A1C test results over 7 and over 8, emphasizing patients at high risk of complications and readmission

Clinical Significance

Variables

- Insulin
- Age Group
- Weight

Variable Relationships

- Higher Age Groups → Weight Gain
- Excess body weight → Type 2
 Diabetes
- Excess body fat → lower insulin sensitivity

patient_nbr	race	gender	age	weight
80041266	Caucasian	Female	[80-90)	[50-75)
103586670	Caucasian	Male	[70-80)	[100-125)
67852377	?	Male	[50-60)	[75-100)
81133947	Caucasian	Male	[50-60)	[75-100)
107804349	Caucasian	Male	[70-80)	[50-75)
24514578	?	Female	[30-40)	[50-75)
74612331	Caucasian	Female	[70-80)	[75-100)
5236596	Caucasian	Male	[0-10)	[0-25)
84952215	Caucasian	Male	[60-70)	[75-100)
82870227	Caucasian	Female	[50-60)	[75-100)
103008159	Caucasian	Male	[30-40)	[75-100)
107536383	Caucasian	Male	[70-80)	[75-100)
85220019	Caucasian	Female	[60-70)	[0-25)
21053511	Caucasian	Male	[60-70)	[25-50)
76773537	Caucasian	Female	[80-90)	[50-75)
47503989	Caucasian	Female	[50-60)	[150-175)
91560816	Caucasian	Male	[70-80)	[0-25)
5884920	Caucasian	Female	[10-20)	[50-75)
110849184	Caucasian	Female	[80-90)	[25-50)
28481058	Caucasian	Male	[60-70)	[75-100)
78657957	Caucasian	Male	[50-60)	[100-125)
10975032	Caucasian	Female	[50-60)	[100-125)
6363873	Caucasian	Female	[70-80)	[50-75)
88846479	AfricanAmerican	Female	[40-50)	[50-75)
65086533	Caucasian	Male	[50-60)	[50-75)
61504731	Caucasian	Male	[70-80)	[50-75)

Clinical Significance

Number of Lab Procedures

 Positive Correlation: Patients have more severe diabetes and need extra care and face increased risk of readmission

Exploratory Data Analysis

Exploratory Data Analysis

Exploratory Data Analysis

Logistic Regression: Data Preprocessing

- -Not all data is quantitative
- Must encode categorical variables with integer values

Ordinal Encoding

Grades	
Α	
В	
С	
D	
Fail	

Grades	Encoded
Α	4
В	3
С	2
D	1
Fail	0

4 4 4 4

Logistic Regression + Interactions

- Binary outcomes: situations where the response variable will be 0 or 1 (false or true)
 - In logistic regression, binary outcomes are modeled using the logistic function
- Interactions between highly correlated variables
 - o Interactions occur when the effect of one predictor variable on the outcome depends on the value of another predictor variable
- Logistic Regression with Interactions
 - This gives a better picture of how variables work together to predict outcomes, but it needs careful thinking, testing, and understanding because it can get a bit tricky to interpret the results.

Model Training

- N = 288 patients (test on 20%)
- Using feature importance
- Using previous clinical knowledge to build model
 - Prevents superficial assumptions of your data
 - Prevents overfitting to data that might not be the highest quality

4 4 4 4

Model Formula

```
Logit (Readmission) = \beta 0 + \beta 1*Age + \beta 2*Weight + \beta 3*Insulin + \beta 4*Number_of_Labs + \beta 5*Time_in_Hospital + \beta 6*Discharge_ID + \beta 11* (Age*Insulin) + \beta 12* (Insulin*Weight) + \beta 12* (Age*Weight) + \beta 7*Number In Patient Visit
```

Model Performance

AUC = 0.77 Accuracy = 0.74 F1Score = 0.77 Precision = 0.77 Recall = 0.77

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$F1 \, Score = 2 \times \frac{Precision \times Recall}{Projection}$$

Next Steps

- Utilize improved data for building stronger, more reliable models.
- Highlight the potential for physicians to incorporate these models as supplementary tools in patient care.
- Consider prolonging hospital stays and conducting additional tests for patients flagged by the model as having a high likelihood of readmission.

