Exam

Introduction to signals and systems

Signals

analog signals, examples

discrete signals, examples

digital signals

Systems

linear

time invariant

realizable

stable

Introduction to signals and systems cont.

Filters

definition

the special role of the trigonometric system

transfer function, impulse response function

filters in the time domain (convolution)

filters in the frequency domain (multiplication)

Examples

the RC circuit

Butterworth filters

the discrete version of the RC circuit

Fourier transforms

Periodic case

Fourier coefficients

Fourier transform

basic properties

Discrete Fourier transform

definition

connnection with the periodic case

basic properties

fast Fourier transform

Fourier transform cont.

Aperiodic case

definition of the Fourier transform

basic properties

examples: ideal filter, sinc, rect functions etc.

AD conversion

Discretization

uniform sampling

the effect of sampling in the frequency domain

the alias phenomenon

the Nyquist frequency

antialias filters: analog, discrete

AD conversion cont.

Quantization

linear quantization

nonlinear quantization

quantization as a compression technique

logarithmic quantization in the telephone standard: companders

the role of quantization in the JPEG image compression algorithm

Windowing

the need for windowing

definition of window functions

rectangular window: the bad properties

the points of view of window construction

triangular window: construction, properties

Hahn window: construction, properties

Music compression

MPEG

sound as a physical phenomenon

the psychoacoustic model

hearing threshold

frequency masking

temporal masking

the Bark scale, critical bands

the steps of mpeg compression

Analog filters

the ideal filter, the RC filter
the mathematical model of analog filters
the transfer function
stable filters in view of the transfer function
stable filters in view of the transfer function

Discrete filters

FIR and IIR filters
the mathematical model of discrete filters
stable filters in view of the transfer function
realizable filters in view of the transfer function

Simple transforms

rotation, bilinear, bicubic transforms

transforms of the intensity function

histogram equalization

Filtering in the space domain

the general model

masks

linear and nonlinear smoothing

image sharpening: gradient, Laplace operator

applications

Filtering in the frequency domain

the general model

spectrum, phase

which types of noise can be detected, filtered

applications

Edge detection

edge types, the role of the derivative

gradient, Laplace

examples for simple masks: Sobel, Prewitt, Laplace

how to treat noise

the LoG transform

the Marr-Hildreth algorithm

the Canny algorithm

Still image compression, JPEG

light

eye: receptors

the steps of the JPEG algorithm

the RGB-YCbCr color space transform

the modified discrete cosine transform