The group G is isomorphic to the group labelled by [504, 156] in the Small Groups library. Ordinary character table of $G \cong PSL(2,8)$:

	1a	2a	3a	7a	7b	7c	9a	9b	9c	
χ_1	1	1	1	1	1	1	1	1	1	
χ_2	7	-1	-2	0	0	0	1	1	1	
χ_3	7	-1	1	0	0	0	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	
χ_4	7	-1	1	0	0	0	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^2 - E(9)^7$	
χ_5	7	-1	1	0	0	0	$-E(9)^2 - E(9)^7$	$-E(9)^4 - E(9)^5$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	
χ_6	8	0	-1	1	1	1	-1	-1	-1	
χ_7	9	1	0	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	0	0	0	
χ_8	9	1	0	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	$E(7)^2 + E(7)^5$	0	0	0	
χ_9	9	1	0	$E(7)^2 + E(7)^5$	$E(7)^3 + E(7)^4$	$E(7) + E(7)^6$	0	0	0	

Trivial source character table of $G \cong PSL(2,8)$ at p = 7:

Normalisers N_i					N_1		1	N_2
p-subgroups of G up to conjugacy in G					P_1		1	P_2
Representatives $n_j \in N_i$	1a	2a	3a	9a	9c	9b	1 <i>a</i>	2a
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	28	4	1	1	1	1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 1 \cdot \chi_9$	35	3	-1	-1	-1	-1	0	0
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	-1	-2	1	1	1	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	-1	1	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^7$	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	7	-1	1	$-E(9)^2 - E(9)^7$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	$-E(9)^4 - E(9)^5$	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		-1	1	$-E(9)^4 - E(9)^5$	$-E(9)^2 - E(9)^7$	$E(9)^2 + E(9)^4 + E(9)^5 + E(9)^7$	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$		1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9$	8	0	-1	-1	-1	-1	1	-1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(3, 4, 6, 9, 5, 8, 7)]) \cong C7$

 $N_1 = Group([(1,2)(3,4)(6,7)(8,9),(1,3,2)(4,5,6)(7,8,9)]) \cong PSL(2,8)$ $N_2 = Group([(3,4,6,9,5,8,7),(1,2)(4,7)(5,9)(6,8)]) \cong D14$