FADE: A Task-Agnostic Upsampling Operator for Encoder-Decoder Architectures

Hao Lu, Wenze Liu, Hongtao Fu, Zhiguo Cao

CMPE593 Term Project Progress Presentation Kutay Eroğlu

Published in International Journal of Computer Vision (IJCV) 22 July 2024

• No task-agnostic upsampling operators exist for encoder-decoder architectures.

• No task-agnostic upsampling operators exist for encoder-decoder architectures.

• No task-agnostic upsampling operators exist for encoder-decoder architectures.

CARAFE

CARAFE

CARAFE

CARAFE

CARAFE

PA

CARAFE

PA

CARAFE

PA

CARAFE

PA

CARAFE

Figure 3: **FPN architecture with CARAFE**. CARAFE upsamples a feature map by a factor of 2 in the top-down pathway. It is integrated into FPN by seamlessly substituting the nearest neighbor interpolation.

CARAFE: Content-Aware ReAssembly of FEatures*

• No task-agnostic upsampling operators exist for encoder-decoder architectures.

Example of a semantic segmentation task

Example of an object detection task

Solution: Main Difference Dynamic Feature Upsampling

Main difference between dynamic upsampling operators on the use of encoder and/or decoder features

Overview of FADE Dynamic Feature Upsampling

self.kernel_generator = SemiShift(in_channels_en, in_channels_de,

up_kernel_size=up_kernel_size, scale=scale)

Dynamic Feature Upsampling Semi-shift Convolution

Figure 7 Fast implementations of semi-shift convolution. We present two forms of fast implementations: (left: H2L) high resolution matches low resolution, which is presented in our conference version (Lu et al., 2022b), and (right: L2H) low resolution matches high resolution, which is more memory efficient.

Overview of FADE Gated Feature Refinement

```
def forward(self, en, de):
    gate = self.gate_generator(de)
    kernels = F.softmax(self.kernel_generator(en, de), dim=1)
    return gate * en + (1 - gate) * self.carafe(de, kernels, self.up_kernel_size, self.scale)
```


Experimentation & Results

Disclaimer

- To test task-agnostic property
 - Focus: Semantic Segmentation & Object Detection

Example of an object detection task

Object Detection

- Model(s): Faster R-CNN (R50, R101)
 - Paper: mmdetection
 - My work: torchvision.models.detection.fasterrcnn_resnet50_fpn
 - Modify only upsampling stages in Feature Pyramid Network and remove skip connections.
- Dataset: MS COCO (Lin et al., 2014)
 - Obtained test/validation set through
 - Original website
 - Missing/corrupted annotation issue when put to Google Drive (%40 does not match)
 - FiftyOne*
 - Data/time efficient, harder to customize.
- Metrics: AP, AP₅₀ , AP₇₅, AP₈, AP_M, AP_L

Changes Made to FPN

Baseline Predictions Visualized torchvision.models.detection.fasterrcnn_resnet50_fpn

Baseline Metrics

```
Accumulating evaluation results...

DONE (t=6.87s).

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.370

Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.585

Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.398

Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211

Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.403

Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.482
```

Faster RCNN (Ren et al., 2015)	backbone	Params	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
FA2M (Wu et al., 2022)	R50	+23K	37.9	58.8	40.9	22.1	41.7	48.8
FAM (Li et al., 2020b)	R50	+0.8M	37.8	58.6	41.0	21.8	41.2	48.8
GD-FAM (Li et al., 2023)	R50	+0.5M	38.1	59.2	41.3	22.7	41.5	49.6
Nearest	R50	46.8M	37.4	58.1	40.4	21.2	41.0	48.1
CARAFE (Wang et al., 2019)	R50	+0.3M	38.6	59.9	42.2	23.3	42.2	49.7
IndexNet (Lu et al., 2022a)	R50	+8.4M	37.6	58.4	40.9	21.5	41.3	49.2
A2U (Dai et al., 2021)	R50	+0.1M	37.3	58.7	40.0	21.7	41.1	48.5
SAPA (Lu et al., 2022c)	R50	+0.1M	37.8	59.2	40.6	22.4	41.4	49.1
FADE	R50	+0.2M	37.8	58.8	40.8	21.2	41.2	49.4

FADE Metrics

- Hardware: T4 GPU (Google Colab)
- Number of datapoints: Around 70k.
 - Reduced size due to mismatch between annotations and images.
- Loss decreasing throughout iterations steadily.

Semantic Segmentation

- Model(s):
 - SegFormer (Xie et al., 2021) as transformer baseline (B1, B3, B4, B5)
 - Code: available via MMsegmentation
 - UPerNet (Xiao et al., 2018) as convolutional baseline (R50, R101)
 - Code: available via MMsegmentation
- Dataset: ADE20K (Zhou et al., 2017)
- Metrics: mloU, bloU

Future Directions

 Use already implemented data subsampler on train data to obtain a more manageable size.

• Idea:

- Use L2H instead of H2L
- Train both the baseline and modified model on subset.
 - Obtain more trustworthy comparison.

Wishful thinking:

- Plug FADE into SegFormer and compare results with baseline.
 - Train both models.
 - Possible issues: Time and computation

Appendix

- Feature Pyramid Networks for Object Detection
 - [1612.03144] Feature Pyramid Networks for Object Detection
- CARAFE: Content-Aware ReAssembly of Features
 - [1905.02188] CARAFE: Content-Aware ReAssembly of FEatures
- "FiftyOne": open-source tool facilitating visualization and access to COCO data resources.
 - FiftyOne FiftyOne 1.0.2 documentation

End of Progress Presentation Start of Final Presentation

Disclaimer: For the rest of this presentation, Faster R-CNN model with a ResNet-50-FPN backbone* will be referred to as the baseline model while the same model with only its upsampling operator changed from FPN to FADE will be referred to as the custom model.

Summary of Progress Checkpoint

Already Implemented Components

- Model training and validation flow
 - Extraction and transformation of MS COCO dataset
 - Training implementation
 - Validation implementation

Missing Parts

- Trustworthy comparison between custom and baseline model
 - Baseline model was fully pretrained, imported from PyTorch, which is more than likely to outperform the custom model due to optimized training procedure and amount of data used for training.
- Exception handling during training loop
 - Training halted when an out-of-bounds bounding box prediction was made. (This exception occurred only with initial set of hyperparameters)

How is the "Custom Model" Created?

- "Modify only the upsampling stages in FPN of the custom model."
- "Original skip connection in FPN is removed due to inclusion of gating mechanism."
- "All other settings remain unchanged."

Improving the performance of a deep learning model is a highly iterative process. To fully capture the thought process behind the experimentation, results are also presented iteratively alongside their corresponding adjustments.

Disclaimer:

Unless stated otherwise

- Training data is *randomly sampled* from train2017 split of MSCOCO* (total:118k, available: ~71k)
- No layers were frozen
- Evaluations are carried out with entire val2017 split of MSCOCO (total: 5k)

1. Train Custom Model for More Than 1 Epoch (train size: 5k)

Hyperparameters

```
"lr_scheduler": null,
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num epochs": 3,
```

Standard Average Precision (AP) metrics for Custom Model

```
Average Precision (AP) @[ IoU=0.50:0.95
                                                 all
                                                       maxDets=100 ] = 0.003
                                         area=
Average Precision (AP) @[ IoU=0.50
                                         area= all
                                                       maxDets=100 ] = 0.009
Average Precision (AP) @[ IoU=0.75
                                         area= all | maxDets=100 ] = 0.001
Average Precision (AP) @[ IoU=0.50:0.95 |
                                         area = small | maxDets = 100 ] = 0.002
Average Precision
                  (AP) @[ IoU=0.50:0.95 |
                                         area=medium | maxDets=100 ] = 0.004
                  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
Average Precision
```

★ To validate the training procedure, the baseline model was trained using the exact setup after obtaining unsatisfactory results with the custom model.

2. Train Baseline Model with Same Setup to Validate Training Procedure (train size: 5k)

AP metrics in order (Baseline, Custom)

```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.022
                                                                            Average Precision (AP) @[ IoU=0.50:0.95 |
                                                                                                                                    maxDets=100 ] = 0.003
                                                                                                                      area=
Average Precision (AP) @[ IoU=0.50
                                        area= all | maxDets=100 ] = 0.047
                                                                            Average Precision (AP) @[ IoU=0.50
                                                                                                                       area=
                                                                                                                              all
                                                                                                                                    maxDets=100 1 = 0.009
Average Precision (AP) @[ IoU=0.75
                                        area= all | maxDets=100 | = 0.018
                                                                            Average Precision (AP) @[ IoU=0.75
                                                                                                                                    maxDets=100 \ ] = 0.001
                                                                                                                      area=
                                                                                                                             all
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.018
                                                                            Average Precision (AP) @[ IoU=0.50:0.95 |
                                                                                                                                    maxDets=100 ] = 0.002
                                                                                                                      area= small
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.027
                                                                            Average Precision (AP) @[ IoU=0.50:0.95 |
                                                                                                                      area=medium | maxDets=100 ] = 0.004
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.030
                                                                            Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.004
```


• FADE's learnable gating mechanism starts from scratch, leading to higher initial loss.

Idea: Extending training to give the custom model enough time to learn the additional parameters introduced by FADE.

```
"lr_scheduler": null,
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num_epochs": 3,
```

3. Increase Epochs and Training Set Size (train size: 10k)

AP metrics in order [Best Custom model from prior experiment vs current experiment (Prior Custom), and (Current Custom)]

Average Precision	(AP) @[IoU=0.50:0.95	area= all				area= all	maxDets=100] = 0.010
	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.009	Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.024
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.001	Average Precision	(AP) @[IoU=0.75		maxDets=100] = 0.006
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.002	Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.006
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.004	Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.011
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.004	Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.014

Average Loss over Epochs for Current Custom

Naturally, results improved due to increased training time and dataset size. However, the loss began to stagnate between epochs 4 and 6.

Training logs showed oscillating loss around epoch 4, suggesting that the model's updates might be unstable during this phase. Introducing a learning rate decay at this point could help stabilize the training process.

```
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num_epochs": 10,
```

4. Introduce Learning Rate Decay & Warmup

(train size: 10k)

AP metrics in order Prior Custom and Current Custom

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.010	Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.019
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.024	Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.041
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.006	Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.017
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.006	Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.011
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.011	Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.021
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.014	Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.027

Average Loss over Epochs for Current Custom

StepLR (step_size=3, gamma=0.1) activated at ep6,

Warmup

Epoch 1: LR = 0.003333
 Epoch 2: LR = 0.006667

StepLR's effect is clearly visible as there is a significant drop in loss between epoch 6~8

However, initial learning phase is less steep, might need to reconsider warmup.

```
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num_epochs": 10,
```

5. Introduce Batch Normalization for Channel Compression and Feature Map Refinement

(train size: 10k)

AP metrics in order Prior Custom and Current Custom

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.019	Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.024
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.041	Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.048
Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.017	Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.021
		area= small	maxDets=100] = 0.011	Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.018
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.021	Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.026
			maxDets=100] = 0.027	Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.031

Average Loss over Epochs for Current Custom

⚠ Disclaimer: Batch normalization (BN) is already applied in original FPN implementation. However, during the implementation of FADE, BN was omitted due to a misunderstanding on my part regarding FADE's normalization process.

★ All parts except for batch normalization stayed the same with prior implementation.

Noticeable improvements are observed in the AP metrics

```
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num_epochs": 10,
```

6. Modify Learning Rate Decay Structure (Scheduled LR + StepLR)

(resulting learning rates shared below) (train size: 10k)

AP metrics in order Prior Custom and Current Custom

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.024	Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.023
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.048	Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.047
	(AP) @[IoU=0.75		maxDets=100] = 0.021	0	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.020
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.018	Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.015
			maxDets=100] = 0.026		(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.025
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.031	Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.030

Average Loss over Epochs for Current Custom


```
★ Resulting learning rates over epochs with the
modified approach

[0.005, 0.008, 0.009, 0.01, 0.01, 0.01, 0.001, 0.001,
0.001, 0.0001]

A slight drop in performance was observed.

Epoch 1-3: Higher learning rate for epoch 1 could be
a better starting point considering initial lower
loss levels without warmup. Also, a smoother rate
change between epoch 1-2 could improve learning.

Epoch 4-6: Model could benefit from a lower learning
rate considering the stagnating average loss.

**Total Country State **Total Country
```

```
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num epochs": 10,
```

It is worth noting that additional experiments were carried out to inform parameter tuning.

The intermediate steps are not detailed in the main experimentation section in order to maintain a clear narrative flow.

More information can be found in the appendix section.

7. Modify Learning Rate Decay Structure* (Scheduled LR only)

(resulting learning rates shared below) (train size: 10k)

AP metrics in order Prior Custom and Current Custom

Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.024	Average Precision	(AP) @[IoU=0.50:0.95	area= all	maxDets=100] = 0.028
Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.048	Average Precision	(AP) @[IoU=0.50	area= all	maxDets=100] = 0.057
	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.021	Average Precision	(AP) @[IoU=0.75	area= all	maxDets=100] = 0.025
Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.018	Average Precision	(AP) @[IoU=0.50:0.95	area= small	maxDets=100] = 0.018
Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100] = 0.026	Average Precision	(AP) @[IoU=0.50:0.95	area=medium	maxDets=100 1 = 0.027
Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100] = 0.031	Average Precision	(AP) @[IoU=0.50:0.95	area= large	maxDets=100 = 0.038

Average Loss over Epochs for Current Custom


```
def lr_schedule(epoch):
    ...
    Actual scheduler function is scaled by 0.01 (initial lr)
    This function showcases the resulting learning rates for simplicity.
    ...
    epoch += 1
    lr = 1.0

if epoch in (1, 2):
    lr = 1e-2
    elif epoch in (3, 4, 5, 6):
    lr = 4e-3
    elif epoch in (7, 8, 9):
    lr = 1e-3
    else:
    lr = 5e-4

return lr
```

```
"lr": 0.01,
"momentum": 0.9,
"weight_decay": 0.0005,
"num_epochs": 10,
```

Ground Truth vs Example Prediction

This is an example of a confident prediction.

Low confidence predictions (<0.5) are suppressed.

Custom model is not successful at distinguishing small object crowded by a bigger object.

Appendix

Other Experiments I

- Freeze backbone completely throughout entire training and remove learning rate scheduling completely. Use 0.01 constant learning rate.
 - The aim was to prevent diverging from learned weights of the pretrained model and only learn for FADE layers

Other Experiments II

- Use lr_schedule*
- No metrics or plot available for this setup since important information was obtained from change in average loss between epochs. Consequently, training was halted to begin a new experiment immediately, resulting in Experiment 7.

```
def lr schedule(epoch):
   Actual scheduler function is scaled by 0.01 (initial lr)
   This function showcases the resulting learning rates for simplicity.
    epoch += 1
   lr = 1.0
   if epoch == 1:
      lr = 6e-3
    elif epoch == 2:
     1r = 8e-3
    elif epoch in (3, 4):
     lr = 7e-3
    elif epoch in (5, 6, 7):
      lr = 1e-4
    else:
      1r = 5e-4
    return lr
```

Other Experiments III

- Increasing dataset size to 20k with lr_schedule*
 - Average loss @ epoch 10: 0.9229

Epoch [1/20] completed in 1:07:46
Learning Rate: Average Loss: 1.2521
Epoch [2/20] completed in 0:22:27
Learning Rate: Average Loss: 1.1223
Epoch [3/20] completed in 0:22:28
Learning Rate: Average Loss: 1.0924
Epoch [4/20] completed in 0:22:30
Learning Rate: Average Loss: 1.0800
Epoch [5/20] completed in 0:22:34

Epoch [6/20] completed in 0:22:34

Learning Rate: Average Loss: 0.9732

Epoch [7/20] completed in 0:22:35

Learning Rate: Average Loss: 0.9494

Epoch [8/20] completed in 0:22:34

Learning Rate: Average Loss: 0.9364

Epoch [9/20] completed in 0:22:33

Learning Rate: Average Loss: 0.9299

Epoch [10/20] completed in 0:22:30

Learning Rate: Average Loss: 0.9229

def lr schedule(epoch): epoch += 1 1r = 1.0if epoch in [1]: 1r = 1.0elif epoch in [2, 3, 4, 5]: 1r = 0.4elif epoch in [6, 7, 8, 9, 10] 1r = 0.1else: 1r = 0.05return 1r

Other Experiments IV

 Modify learning rate of the highest scoring experiment's (7) scheduler to lr_schedule*

```
def lr schedule(epoch):
    epoch += 1
   1r = 1.0
    if epoch in [1]:
      lr = 1.0
    elif epoch in [2, 3]:
     1r = 0.4
    elif epoch in [4, 5]:
     1r = 0.1
    elif epoch in [6, 7]:
      1r = 0.03
    elif epoch in [8, 9]:
      lr = 0.01
    else:
      1r = 0.001
    return lr
```

```
Epoch [1/20] completed in 0:26:44
Learning Rate: Average Loss: 1.3052
Epoch [2/20] completed in 0:11:14
Learning Rate: Average Loss: 1.2081
Epoch [3/20] completed in 0:11:15
Learning Rate: Average Loss: 1.1645
Epoch [4/20] completed in 0:11:15
Learning Rate: Average Loss: 1.0812
Epoch [5/20] completed in 0:11:14
Learning Rate: Average Loss: 1.0530
Epoch [6/20] completed in 0:11:17
Learning Rate: Average Loss: 1.0038
Epoch [7/20] completed in 0:11:17
Learning Rate: Average Loss: 0.9893
Epoch [8/20] completed in 0:11:17
Learning Rate: Average Loss: 0.9653
Epoch [9/20] completed in 0:11:19
Learning Rate: Average Loss: 0.9586
Epoch [10/20] completed in 0:11:18
Learning Rate: Average Loss: 0.9496
```