

<u>Help</u>

sandipan_dey >

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Calendar</u> <u>Discussion</u> <u>Notes</u>

* Course / Review / Practice exam (untimed, with solutions).

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

21:39:20

1

1/1 point (ungraded)

Suppose that $f\left(x,y
ight)=xy+y^3$. At the moment, x=2 and y=1 . We can either increase x by 0.04 or increase $m{y}$ by $m{0.01}$. We would like to make $m{f}$ as large as we can. Which of the two options makes $m{f}$ bigger?

increase $m{x}$ by $m{0.04}$

igotimes increase y by 0.01

Solution:

Computing the partial derivatives of $f\left(x,y
ight)$ at $\left(2,1
ight)$ gives

$$egin{aligned} f_x &= y &\Longrightarrow f_x\left(2,1
ight) = 1, \ f_y &= x + 3y^2 &\Longrightarrow f_y\left(2,1
ight) = 5. \end{aligned}$$

This means:

- 1. Increasing x by 0.04 changes f by about $f_x\left(2,1
 ight)\cdot\Delta x=\left(1
 ight)\left(0.04
 ight)=0.04$.
- 2. Increasing y by 0.01 changes f by about $f_y\left(2,1
 ight)\cdot\Delta x=\left(5
 ight)\left(0.01
 ight)=0.05.$

Therefore the second option makes f bigger.

Submit

1 Answers are displayed within the problem

2

1/1 point (ungraded)

Suppose that the height above sea-level at the point (x,y) is $h\left(x,y\right)$. At every point, a hiker going in the positive y direction is going downhill. Which one of the following functions could be the function $h\left(x,y\right)$?

$$left x^3 - x^2y - y$$

 $x^3 + x^2y + y$

None of the above

Solution:

We are given that any hiker going in the positive $m{y}$ -direction is going downhill; that is, $m{f}$ decreases when $m{y}$ increases along the hiker's path. Therefore, $f_y\left(x,y
ight)<0$. Computing f_y for each of the three options gives

•
$$f_y=-x^2-1$$
,

- $f_y=-x^2+1$,
- $f_y = x^2 + 1$.

The first option is the only one for which $oldsymbol{f_y}$ is always negative.

Submit

• Answers are displayed within the problem

2. Practice Exam

Topic: Review / 2. Practice Exam

Add a Post

Hide Discussion

Show all posts by recent activity by recent activity

(Staff) A typo in the solution 2

"is going hill" - not "downhill"?

< Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>