Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
6.1 Multiple-Choice and Bimodal Questions	C) inversely, directly
	D) directly, inversely
1) Electromagnetic radiation travels through	E) indirectly, not
vacuum at a speed of m/s.	
	6) Of the following, radiation has
A) 186,000	the shortest wavelength.
B) 125	
C) 3.00×10^8	A) X-ray
D) 10,000	B) radio
E) It depends on wavelength.	C) microwave
,	D) ultraviolet
2) The wavelength of light that has a frequency	E) infrared
of 1.20×10 ¹³ s ⁻¹ is m.	
01 1.20×10 5 15 III.	7) What is the frequency of light (s ⁻¹) that has
A) 25.0	a wavelength of 1.23×10^{-6} cm?
B) 2.50×10^{-5}	a wavelength of 1.23×10 cm ?
C) 0.0400	A) 3.69
D) 12.0	,
E) 2.5	B) 2.44×10^{16}
L) 2.3	C) 4.10×10^{-17}
3) Ham radio operators often broadcast on the	D) 9.62×10^{12}
6-meter band. The frequency of this	E) 1.04×10^{-13}
electromagnetic radiation is MHz.	
ciccuomagnetic radiation is witiz.	8) What is the frequency of light (s ⁻¹) that
A) 500	has a wavelength of 3.12×10^{-13} cm?
B) 200	has a wavelength of 3.12×10 cm?
C) 50	A) 3.69
D) 20	,
E) 2.0	B) 2.44×10^{16}
L) 2.0	C) 9.62×10^{12}
4) What is the frequency (a^{-1}) of	D) 4.10×10^{-17}
4) What is the frequency (s ⁻¹) of	E) 1.04×10^{-13}
electromagnetic radiation that has a	,
wavelength of 0.53 m?	9) What is the wavelength of light (nm) that
	has a frequency of 3.22×10^{14} s ⁻¹ ?
A) 5.7×10^8	has a frequency of 3.22 × 10 ° 5 °.
B) 1.8×10^{-9}	A) 932
C) 1.6×10^8	B) 649
D) 1.3×10^{-33}	C) 9.66×10^{22}
E) 1.3×10^{33}	,
L) 1.3^10	D) 9.32×10^{-7}
5) The energy of a photon of light is	E)1.07× 10^6
proportional to its frequency and	10.111
proportional to its frequency and proportional to its wavelength.	10) What is the wavelength of light (nm) that
proportional to its wavelength.	has a frequency $4.62 \times 10^{14} \mathrm{s}^{-1}$?

A) 932

A) directly, directly B) inversely, inversely

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
B) 649	wavelength of 13.2 nm is J.
C) 1.39×10^{23}	A) 9.55×10^{-25}
D) 1.54×10^{-3}	B) 1.62×10^{-17}
E) 1.07×10^6	C) 1.99×10^{-25}
	D) 4.42×10^{-23}
11) The wavelength of a photon that has an	, , , , , , , , , , , , , , , , , , ,
energy of 5.25×10^{-19} J is m.	E) 1.51×10^{-17}
energy of 6126 W16 V 18 m.	16) The energy of a photon that has a
A) 3.79×10^{-7}	frequency of $8.21 \times 10^{15} \mathrm{s}^{-1}$ is J.
B) 2.64×10^6	requeries of 0.21×10 5 is
C) 2.38×10^{23}	A) 8.08×10^{-50}
D) 4.21×10^{-24}	B) 1.99×10^{-25}
E) 3.79×10^7	C) 5.44×10^{-18}
,	D) 1.24×10 ⁴⁹
12) The energy of a photon that has a	E) 1.26×10^{-19}
wavelength of 9.0 m is J.	_,,
20	17) The energy of a photon that has a
A) 2.2×10^{-26}	frequency of $1.821 \times 10^{16} \mathrm{s}^{-1}$ is J.
B) 4.5×10^{25}	
C) 6.0×10^{-23}	A) 5.44×10^{-18}
D) 2.7×10^9	B) 1.99×10 ⁻²⁵
E) 4.5×10^{-25}	C) 3.49×10^{-48}
12) TH. 6	D) 1.21×10^{-17}
13) The frequency of a photon that has an	E) 5.44×10^{-18}
energy of $3.7 \times 10^{-18} \text{J} \text{ is } ___ \text{s}^{-1}$.	
A) 5.6×10^{15}	18) What is the frequency (s ⁻¹) of a photon
B) 1.8×10^{-16}	that has an energy of $4.38 \times 10^{-18} \mathrm{J}$?
C) 2.5×10^{-15}	
	A) 436
D) 5.4×10^{-8}	B) 6.61×10^{15}
E) 2.5×10^{15}	C) 1.45×10^{-16}
14) The energy of a photon that has a	D) 2.30×10^7
wavelength of 12.3 nm is J.	E) 1.31×10^{-9}
	10) WI (1 1 1 1 ())
A) 1.51×10^{-17}	19) What is the wavelength (angstroms) of a
B) 4.42×10^{-23}	photon that has an energy of 4.38×10^{-18} J?
C) 1.99×10^{-25}	A) 454
D) 2.72×10^{-50}	B) 2.30×10^7
E) 1.62×10^{-17}	C) 6.89×10 ¹⁵
	D) 1.45×10^{-16}
15) The energy of a photon that has a	E) 1.31×10^{-9}
	-, 1.01A10

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
20) A mole of red photons of wavelength 725 nm has kJ of energy.	B) violet C) red D) yellow E) green
A) 2.74×10^{-19}	25) Of the following rediction
B) 4.56×10^{-46}	25) Of the following, radiation has the shortest wavelength and
C) 6.05×10^{-3}	radiation has the greatest energy.
D) 165	gamma ultraviolet visible
E) 227	gamma unraviolet visiole
21) A	A) gamma, visible
21) A mole of yellow photons of wavelength	B) visible, gamma
527 nm has kJ of energy.	C) visible, ultraviolet
۸) 165	D) ultraviolet, gamma
A) 165 B) 227	E) gamma, gamma
C) 4.56×10^{-46}	26) What color of visible light has the highest
D) 6.05×10^{-3}	energy?
E) 2.74×10^{-19}	
20) 1: 1	A) violet
22) It takes 254 kJ/mol to eject electrons from	B) blue
a certain metal surface. What is the longest	C) red
wavelength of light (nm) that can be used to	D) green
eject electrons from the surface of this metal	E) yellow
via the photoelectric effect?	27) Which are of the following is considered
A) 471	27) Which one of the following is considered to be ionizing radiation?
B) 233	to be ionizing radiation?
C) 165	A) visible light
D) 725	B) radio waves
E) 552	C) X-rays
2,002	D) microwaves
23) Of the following, radiation	E) infrared radiation
has the longest wavelength and	,
radiation has the greatest energy.	28) Of the following transitions in the Bohr
gamma ultraviolet visible	hydrogen atom, the transition
	results in the emission of the highest-energy
A) ultraviolet, gamma	photon.
B) visible, ultraviolet	
C) gamma, gamma	A) $n = 1 \rightarrow n = 6$
D) visible, gamma	B) $n = 6 \rightarrow n = 1$
E) gamma, visible	C) $n = 6 \rightarrow n = 3$
24) 3371 (1	D) $n = 3 \rightarrow n = 6$
24) What color of visible light has the longest	E) $n = 1 \rightarrow n = 4$
wavelength?	20) Hoing Doba's acception for the conservation of
	29) Using Bohr's equation for the energy levels

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
determine the energy (J) of an electron in the n = 4 level.	B) 6.17×10 ¹⁴ C) 5.46×10 ⁻¹⁹
A) -1.36×10^{-19} B) -5.45×10^{-19}	D) 8.22×10^{14} E) 4.13×10^{19}
C) -7.34×10^{18} D) -1.84×10^{-29} E) $+1.84 \times 10^{-29}$	34) A spectrum containing only specific wavelengths is called a spectrum.
30) An electron in a Bohr hydrogen atom has	A) line B) continuous
an energy of -1.362×10^{-19} J The value of n for this electron is	C) visible D) Rydberg E) invariant
A) 1 B) 2 C) 3 D) 4	35) When the electron in a hydrogen atom moves from $n = 6$ to $n = 2$, light with a wavelength of nm is emitted.
E) 5	A) 93.8 P) 424
31) The energy (J) required for an electronic transition in a Bohr hydrogen atom from $n = 2$	B) 434 C) 487 D) 657
to $n = 3$ is J.	E) 410
A) 4.00×10^{-19}	36) When the electron in a hydrogen atom
B) 3.00×10^{-19}	moves from $n = 6$ to $n = 1$, light with a
C) -3.00×10^{-19}	wavelength of nm is emitted.
D) -7.90×10^{-19}	A \ 407
E) 4.60×10^{14}	A) 487 B) 411
32) Calculate the energy (J) change associated	C) 434
with an electron transition from $n = 2$ to $n = 5$	D) 93.8
in a Bohr hydrogen atom.	E) 657
A) 6.5×10^{-19}	37) When the electron in a hydrogen atom
B) 5.5×10^{-19}	moves from $n = 8$ to $n = 2$ light with a
C) 8.7×10^{-20}	wavelength of nm is emitted.
D) 4.6×10^{-19}	A) 657
E) 5.8×10^{-53}	B) 93.8
33) The fraguency of electromagnetic radiation	C) 411
33) The frequency of electromagnetic radiation required to promote an electron from $n = 2$ to n	D) 487 E) 389
= 4 in a Bohr hydrogen atom is	<i>D)</i> 307
Hz.	38) The $n = 2$ to $n = 6$ transition in the Bohr
	hydrogen atom corresponds to the
A) 4.13×10^{-19}	of a photon with a wavelength of

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
nm.	42) What is the de Duadia wavelength (m) of a
A) emission, 410	43) What is the de Broglie wavelength (m) of a 2.0 kg object moving at a speed of 50 m/s?
B) absorption, 410	2.0 kg object moving at a speed of 30 m/s:
C) absorption, 660	A) C C . 10=36
D) emission, 94	A) 6.6×10^{-36}
E) emission, 390	B) 1.5×10^{35}
L) Christian, 370	C) 5.3×10^{-33}
39) The $n = 5$ to $n = 3$ transition in the Bohr	D) 2.6×10^{-35}
hydrogen atom corresponds to the	E) 3.8×10^{34}
of a photon with a wavelength of	
nm.	44) What is the de Broglie wavelength (m) of a
iiii.	25 g object moving at a speed of 5.0 m/s?
A) absorption, 657	
B) absorption, 1280	A) 1.9×10^{32}
C) emission, 657	B) 5.3×10^{-33}
D) emission, 1280	C) 6.6×10^{-36}
E) emission, 389	·
,	D) 3.32×10^{-36}
40) The $n = 8$ to $n = 4$ transition in the Bohr	E) 3.02×10^{45}
hydrogen atom occurs in the	45. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
region of the electromagnetic spectrum.	45) At what speed (m/s) must a 10.0 mg object be moving to have a de Broglie wavelength of
A) infrared	$3.3 \times 10^{-41} \text{ m }$?
B) visible	
C) ultraviolet	A) 4.1
D) microwave	B) 1.9×10^{-11}
E) X-ray	C) 2.0×10^{12}
	D) 3.3×10^{-42}
41) The $n = 8$ to $n = 2$ transition in the Bohr	E) 9.1×10^{31}
hydrogen atom occurs in the	
region of the electromagnetic spectrum.	46) At what speed (m/s) must a 3.0 mg object
A) radio	be moving in order to have a de Broglie
B) X-ray	wavelength of 5.4×10^{-29} m?
C) infrared	
D) microwave	A) 1.6×10^{-28}
E) ultraviolet	B) 3.9×10^{-4}
,	C) 2.0×10^{12}
42) The deBroglie wavelength of a particle is	D) 4.1
given by	E) 6.3
	,
A) $h + mv$	47) The de Broglie wavelength of an electron
B) hmv	is 8.7×10^{-11} m. The mass of an electron is
C) <i>h/mv</i>	9.1×10^{-31} kg. The velocity of this electron is
D) mv/c	
E) <i>mv</i>	m/s.

Chapter 6: Electronic Structure of Atoms	
A) 8.4×10^3	
B) 1.2×10^{-7}	52) There are orbitals in the third
C) 6.9×10^{-5}	shell.
D) 8.4×10^6	A) 25
E) 8.4×10^{-3}	A) 25
1) 0.1710	B) 4 C) 9
48) The de Broglie wavelength of a bullet (7.5	D) 16
g) traveling at 700 m/s is m.	E) 1
	2) 1
A) 7.7×10^{33}	53) The subshell contains only
B) 1.3×10^{-34}	one orbital.
C) 6.2×10^{-29}	
D) 1.3×10^{-27}	A) 5d
E) 1.3×10^{-23}	B) 6f
L) 1.5×10	C) 4s
49) The de Broglie wavelength of a car	D) 3d
$(1.0 \times 10^3 \text{kg})$ traveling at 75 km/hr is	E) 1p
m.	54) There are orbitals in the
	second shell.
A) 3.2×10^{-38}	second sheri.
B) 8.8×10^{-39}	A) 1
C) 3.2×10^{-35}	B) 2
D) 1.4×10^{-35}	C) 4
E) 1.4×10^{35}	D) 8
E) 1.4×10	E) 9
50) The wavelength of an electron whose	55) The azimuthal quantum number is 3 in
velocity is 1.7×10^4 m/s and whose mass is	orbitals.
9.1×10^{-28} g is m.	of officials.
<i>S</i>	A) s
A) 4.3×10^{-11}	B) p
B) 12	C) d
C) 4.3×10^{-8}	D) f
D) 2.3×10^7	E) a
E) 2.3×10^{-7}	50 The n 1 shell contains
L) 2.3×10	56) The n = 1 shell contains p orbitals. All the other shells contain
51) The quantum number defines	p orbitals.
the shape of an orbital.	p oroitals.
•	A) 3, 6
A) spin	B) 0, 3
B) magnetic	C) 6, 2
C) principal	D) 3, 3
D) magnetic	E) 0, 6
E) phi	

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
57) The lowest energy shell that contains f orbitals is the shell with n =	62) How many p-orbitals are occupied in a Ne atom?
orbitals is the shell with h =	A) 5
A) 3	B) 6
B) 2	C) 1
C) 4	D) 3
D) 1	E) 2
E) 5	L) 2
2) 3	63) Each p-subshell can accommodate a
58) The principal quantum number of the first d subshell is	maximum of electrons.
d substitution	A) 6
A) 1	B) 2
B) 2	C) 10
C) 3	D) 3
D) 4	E) 5
E) 0	, -
,	64) How many quantum numbers are
59) The total number of orbitals in a shell is	necessary to designate a particular electron in
given by	an atom?
·	
A) I^2	A) 3
$B) n^2$	B) 4
C) 2n	C) 2
D) 2n+1	D) 1
E) 21+1	E) 5
60) In a hydrogen atom, an electron in a	65) A orbital is degenerate with a
orbital can absorb a photon, but	$5d_{\rm Z}^2$ in a many-electron atom.
cannot emit a photon.	·
	A) $5p_z$
A) 3s	B) $^{4d}z^2$
B) 2s	C) 5s
C) 3p	
D) 1s	D) ^{5d} xy
E) 3f	$E)$ ^{4d}zz
61)orbitals are spherically	66) The 3p subshell in the ground state of
symmetrical.	atomic xenon contains electrons.
A) s	A) 2
B) p	A) 2
C) d	B) 6
D) f	C) 8 D) 10
E) g	D) 10 E) 36
-/ D	E) 36

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
67) The second shell in the ground state of atomic argon contains electrons.	A) 3s
	B) 4s
A) 2	C) 4p
B) 6	D) 3d
C) 8	E) 4d
D) 18	
E) 36	73) The principal quantum number for the
CO) TTI 41 1 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1	outermost electrons in a Br atom in the ground
68) The 4d subshell in the ground state of	state is
atomic xenon contains electrons.	A > 2
A) 2	A) 2
A) 2	B) 3
B) 6	C) 4
C) 8	D) 5
D) 10 E) 26	E) 1
E) 36	74) The azimuthal quantum number for the
CO) [A :14.22.110 4.3 !- 4114	outermost electrons in a nitrogen atom in the
69) $[Ar]4s^23d^{10}4p^3$ is the electron	ground state is
configuration of a(n) atom.	ground state is
A) A a	A) 0
A) As	B) 1
B) V	C) 2
C) P	D) 3
D) Sb E) Sn	E) -1
E) 311	,
70) There are unpaired electrons	75) The electron configuration of a ground-
in a ground state phosphorus atom.	state Ag atom is
A) 0	A) $[Ar]4s^24d^9$
B) 1	B) $[Kr]5s^14d^{10}$
C) 2 D) 3	C) $[Kr]5s^23d^9$
E) 4	D) $[Ar]4s^14d^{10}$
2) !	E) $[Kr]5s^24d^{10}$
71) There are unpaired electrons	<i>D</i>) [111]35 14
in a ground state fluorine atom.	76) The ground state electron configuration for
	Zn is
A) 0	ZM 10
B) 1	A) $[Kr]4s^23d^{10}$
C) 2	
D) 3	B) $[Ar]4s^2 3d^{10}$
E) 4	C) $[Ar]4s^13d^{10}$
70) 7	D) $[Ar]3s^23d^{10}$
72) In a ground-state manganese atoms, the	E) $[Kr]3s^23d^{10}$
subshell is partially filled.	, L J

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
	B) 4
77) Which is the correct ground-state electron	C) 5
configuration for silver?	D) 6
	E) 7
A) $[Kr]5s^24d^9$	
B) $[Kr]5s^14d^{10}$	82) The largest principal quantum number in
C) $[Kr]5s^24d^{10}$	the ground state electron configuration of
D) [Xe]5s ² 4d ⁹	barium is
	A) 1
E) $[Xe]5s^14d^{10}$	B) 2
70) What is the control of the last of	C) 4
78) What is the correct ground-state electron	D) 5
configuration for molybdenum?	E) 6
A) [Kr]5s ¹ 4d ¹⁰	
	83) The largest principal quantum number in
B) [Kr]5s ² 4d ⁴	the ground state electron configuration of
C) $[Kr]5s^14d^5$	cobalt is
D) $[Kr]5s^24d^9$	A) 2
E) $[Kr]5s^24d^9$	B) 3
	C) 4
79) All of the have a valence	D) 7
shell electron configuration ns ¹ .	E) 9
A) noble gases	84) Elements in group have a np ⁶
B) halogens	electron configuration in the outer shell.
C) chalcogens	election configuration in the outer shell.
D) alkali metals	A) 4A
E) alkaline earth metals	B) 6A
	C) 7A
80) The elements in the period of	D) 8A
the periodic table have a core-electron	E) 5A
configuration that is the same as the electron configuration of neon.	
configuration of ficon.	85) Which group in the periodic table contains
A) first	elements with the valence electron
B) second	configuration of ns ² np ¹ ?
C) third	AN 4.4
D) fourth	A) 1A
E) fifth	B) 2A
04) 771 1	C) 3A D) 4A
81) The largest principal quantum number in	E) 8A
the ground state electron configuration of iodine is	<i>L)</i> 0/1
Touric 15	6.2 Multiple-Choice Questions

A) 1

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
1) Which one of the following is correct?	D) 2.75 E) 3.84
A) $v + \lambda = c$,
B) $v \div \lambda = c$	6) In the Bohr model of the atom,
$C) v = c\lambda$,
D) $\lambda = cv$	A) electrons travel in circular paths called
E) $v\lambda = c$	orbitals
<i>2,</i> •	B) electrons can have any energy
2) The photoelectric effect is	C) electron energies are quantized
2) The photoelectric effect is	D) electron paths are controlled by probability
A) the total reflection of light by metals giving	E) both A and C
them their typical luster	,
B) the production of current by silicon solar	7) The de Broglie wavelength of a 6.0 gram
cells when exposed to sunlight	bullet traveling at the speed of sound is
C) the ejection of electrons by a metal when	The speed of sound is 331 m/sec.
struck with light of sufficient energy	
D) the darkening of photographic film when	A) 2.7×10^{-34} m
exposed to an electric field	B) 3.3×10^{-34} m
E) a relativistic effect	•
,	C) 3.35×10^{-33} m
3) Low-frequency electromagnetic fields with	D) 2.7×10^{-37} m
potential biological effects have frequencies of	E) 6.6×10^{-31} m
Hz.	
	8) According to the Heisenberg Uncertainty
A) 10^{-3} - 10^{-5}	Principle, it is impossible to know precisely
B) 10 ⁻⁵ -10 ⁻⁹	both the position and the of an
C) 100-10,000	electron.
D) 400-700	A) mass
E) 1-1000	B) color
1) The weevelen of hight emitted from a	C) momentum
4) The wavelength of light emitted from a	D) shape
traffic light having a frequency of	E) charge
$5.75 \times 10^{14} \text{Hz is}$	
500	9) The de Broglie wavelength of a
A) 702 nm	will have the shortest wavelength
B) 641 nm	when traveling at 30 cm/s.
C) 674 nm	
D) 521 nm	A) marble
E) 583 nm	B) car
	C) planet
5) A radio station broadcasts at 103.5 MHz.	D) uranium atom
The wavelength of the signal is m.	E) hydrogen atom
A) 3.10	10) The uncertainty principle states that
B) 2.90	
C) 4.71	
•	

A) matter and energy are really the same thing

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms	
B) it is impossible to know anything with certainty	E) none of the above
C) it is impossible to know the exact position	15) Which of the subshells below do not exist
and momentum of an electron	due to the constraints upon the azimuthal
D) there can only be one uncertain digit in a	quantum number?
reported number	
E) it is impossible to know how many	A) 4 f
electrons there are in an atom	B) 4 d
	C) 4 p
11) All of the orbitals in a given electron shell	D) 4 s
have the same value of the	E) none of the above
quantum number.	,
•	16) An electron cannot have the quantum
A) principal	numbers $n =, 1 =, m_l$
B) azimuthal	=
C) magnetic	
D) spin	A) 2, 0, 0
E) psi	B) 2, 1, -1
	C) 3, 1, -1
12) All of the orbitals in a given subshell have	D) 1, 1, 1
the same value of the quantum	E) 3, 2, 1
number.	
	17) An electron cannot have the quantum
A) principal	numbers $n =, 1 =, m_l$
B) azimuthal	=
C) magnetic	
D) A and B	A) 6, 1, 0
E) B and C	B) 3, 2, 3
10 771	C) 3, 2, -2
13) Which one of the following is <u>not</u> a valid	D) 1, 0, 0
value for the magnetic quantum number of an	E) 3, 2, 1
electron in a 5 d subshell?	
A \ 2	18) Which one of the following is an incorrect
A) 2	subshell notation?
B) 3	
C) 0	A) 4f
D) 1	B) 2d
E) -1	C) 3s
14) Which of the subshalls below do not exist	D) 2p
14) Which of the subshells below do <u>not</u> exist	E) 3d
due to the constraints upon the azimuthal	
quantum number?	
A) 2d	19) Which one of the following is an incorrect
A) 2 d B) 2 s	orbital notation?
,	
C) 2 p D) all of the above	A) 2s
D) an or the above	B) $3p_y$

C) 3f A) 5s B) $5p_X$ E) 4s C) $4p_y$	
E) 4s C) 4p _y	
E) 4s C) 4p _y	
, 1 y	
20) Which quantum number determines the	
energy of an electron in a hydrogen atom? E) 5d ²	
25) William and a full was a second and a second and the second an	1
A) n 25) Which set of three quantum numbers (n, l	1,
B) E m _l) corresponds to a 3d orbital?	
C) m_l D) 1 A) 3, 2, 2	
D) 2 2 2	
E) n and 1 B) 3, 3, 2 C) 3, 2, 3	
$\mathcal{D}(2,1,0)$	
21) Which one of the quantum numbers does not result from the solution of the D) 2, 1, 0 E) 2, 3, 3	
Schrodinger equation?	
26) At maximum, an f-subshell can hold	
A) principal electrons, a d-subshell can hold	
B) azimuthal electrons, and a p-subshell can	
C) magnetic hold electrons.	
D) spin	
E) angular momentum A) 14, 10, 6	
B) 2, 8, 18	
22) Which quantum numbers must be the same C) 14, 8, 2	
for the orbitals that they designate to be D) 2, 12, 21	
degenerate in a one-electron system (such as E) 2, 6, 10	
hydrogen)? 27) If an electron has a principal quantum	
number (n) of 2 and an animuthal according	
number (1) of 2 the subshall designation is	
b) if that I only	
C) I and m _l	
D) m_l only A) $3p$	
E) n only	
C) 4s	
23) In a p_x orbital, the subscript x denotes the p_x orbital, the subscript x denotes the	
of the electron. E) 4d	
A) energy 28) Which one of the following represents an	ı
B) spin of the electrons acceptable set of quantum numbers for an	d
C) probability of the shell electron in an atom? (arranged as n, l, ml, and	u
D) size of the orbital m_S)	
E) axis along which the orbital is aligned	
A) 2, 2, -1, -1/2 24) The orbital is degenerate with B) 1, 0, 0, 1/2	
_ , , , , ,	
$5p_V$ in a many-electron atom. C) 3, 3, 3, 1/2	

- E) 3, 3, 3, -1/2
- 29) Which one of the following represents an acceptable possible set of quantum numbers (in the order n, l, m_l , and m_s) for an electron in an atom?
- A) 2, 1, -1, 1/2
- B) 2, 1, 0, 0
- C) 2, 2, 0, 1/2
- D) 2, 0, 1, -1/2
- E) 2, 0, 2, +1/2
- 30) Which one of the following orbitals can hold two electrons?
- A) $2p_X$
- B) 3s
- C) 4d_{xy}
- D) all of the above
- E) none of the above
- 31) Which quantum numbers must be the same for the orbitals that they designate to be degenerate in a many-electron system?
- A) n, l, and ml
- B) n only
- C) n, l, m_l , and m_s
- D) m_S only
- E) n and l only
- 32) Which one of the following represents an impossible set of quantum numbers for an electron in an atom? (arranged as n, l, m_l , and m_s)
- A) 2, 1, -1, -1/2
- B) 1, 0, 0, 1/2
- C) 3, 3, 3, 1/2
- D) 5, 4, 3, 1/2
- E) 5, 4, -3, -1/2
- 33) Which of the following is <u>not</u> a valid set of four quantum numbers? (n, l, m_l , m_s)

- A) 2, 0, 0, +1/2
- B) 2, 1, 0, -1/2
- C) 3, 1, -1, -1/2
- D) 1, 0, 0, +1/2
- E) 1, 1, 0, +1/2
- 34) Which of the following is a valid set of four quantum numbers?(n, l, m_l, m_s)
- A) 2, 1, 0, +1/2
- B) 2, 2, 1, -1/2
- C) 1, 0, 1, +1/2
- D) 2, 1, +2, +1/2
- E) 1, 1, 0, -1/2
- 35) Which electron configuration represents a violation of the Pauli exclusion principle?

36) Which electron configuration represents a violation of the Pauli exclusion principle?

37) Which electron configuration represents a violation of the Pauli exclusion principle?

38) Which one of the following is the correct electron configuration for a ground-state nitrogen atom?

1s	2s		2p	
$\uparrow \downarrow$	$\uparrow \downarrow$	1	1	1

- E) None of the above is correct.
- 39) Which electron configuration denotes an atom in its ground state?

- 40) The ground state electron configuration of Fe is ______.
- A) $1s^2 2s^2 3s^2 3p^6 3d^6$
- B) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$
- C) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
- D) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^6$
- E) $1s^2 2s^2 3s^2 3p^{10}$
- 41) The ground state electron configuration of Ga is _____.
- A) $1s^2 2s^2 3s^2 3p^6 3d^{10} 4s^2 4p^1$
- B) $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 4d^{10} 4p^1$
- C) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^1$
- D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4d^1$
- E) $[Ar]4s^23d^{11}$
- 42) The ground-state electron configuration of the element _____ is [kr]5s¹4d⁵.

- A) Nb
- B) Mo
- C) Cr
- D) Mn
- E) Tc
- 43) The ground-state electron configuration of _____ is [Ar]4s¹3d⁵
- A) V
- B) Mn
- C) Fe
- D) Cr
- E) K
- 44) Which one of the following configurations depicts an excited oxygen atom?
- A) $1s^2 2s^2 2p^2$
- B) $1s^2 2s^2 2p^2 3s^2$
- C) $1s^2 2s^2 2p^1$
- D) $1s^2 2s^2 2p^4$
- E) $[He]2s^22p^4$
- 45) Which one of the following configurations depicts an excited carbon atom?
- A) $1s^2 2s^2 2p^1 3s^1$
- B) $1s^2 2s^2 2p^3$
- C) $1s^2 2s^2 2p^1$
- D) $1s^2 2s^2 3s^1$
- E) $1s^2 2s^2 2p^2$
- 46) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

47) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

48) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

1s	2s		2p	
$_{\mathrm{D})}$ $\uparrow \downarrow$	$\uparrow\downarrow$	$\uparrow \downarrow$		
1s	2s		2p	
E) 1	1	1	1	1

- 49) The ground state configuration of fluorine is _____.
- A) $[He]2s^22p^2$
- B) [He]2s22p3
- C) $[He]2s^22p^4$
- D) [He]2s22p5
- E) [He]2s22p6
- 50) The ground state configuration of tungsten is ______.
- A) $[Ar]4s^23d^3$
- B) [Xe]6s²4f¹⁴5d⁴
- C) [Ne]3s1
- D) [Xe]6s24f7
- E) [Kr]5s24d105p5
- 51) The lowest orbital energy is reached when the number of electrons with the same spin is maximized. This statement describes
- A) Pauli Exclusion Principle
- B) Planck's constant
- C) deBroglie hypothesis
- D) Heisenberg Uncertainty Principle
- E) Hund's rule
- 52) The element that has a valence configuration of $4s^1$ is _____.
- A) Li
- B) Na
- C) K
- D) Rb
- E) Cs
- 53) Which of the following elements has a

ground-state electron configuration different from the predicted one?

- A) Cu
- B) Ca
- C) Xe
- D) Cl
- E) Ti
- 54) Which two elements have the same ground-state electron configuration?
- A) Pd and Pt
- B) Cu and Ag
- C) Fe and Cu
- D) Cl and Ar
- E) No two elements have the same ground-state electron configuration.
- 55) How many different principal quantum numbers can be found in the ground state electron configuration of nickel?
- A) 2
- B) 3
- C) 4
- D) 5
- E) 6
- 56) The valence shell of the element X contains 2 electrons in a 5s subshell. Below that shell, element X has a partially filled 4d subshell. What type of element is X?
- A) main group element
- B) chalcogen
- C) halogen
- D) transition metal
- E) alkali metal

6.3 Short Answer Questions

- 1) What wavelengths correspond to the visible region of the electromagnetic spectrum?
- 2) In the deBroglie formula describing the movement of an electron about the nucleus,

Chemistry, 11e (Brown/LeMay/Bursten/Murphy) Chapter 6: Electronic Structure of Atoms			
the quantity "mv" is called its	asymmetric.		
3) A spectrum containing radiation of specific wavelengths is called a	6) The larger the principal quantum number of an orbital, the lower is the energy of the electrons in that orbital.		
4) The shape of an orbital is defined by the azimuthal quantum number which is represented as letter	7) When the value of n is greater than or equal to 3, electrons can reside in d orbitals.		
5) All of the subshells in a given shell have the same energy in the hydrogen atom. In a many-electron atom, the subshells in a given shell do not have the same energy. Why?	8) An NMR spectrum results from photon irradiation in which the nuclear spin alignment is flipped.		
	6.5 Algorithmic Questions		
6) The largest principal quantum number in the ground state electron configuration of francium is7) The ground state electron configuration of scandium is	1) Electromagnetic radiation with a wavelength of 525 nm appears as green light to the human eye. The frequency of this light is $________________________$		
8) The electron configuration of the valence electrons of an atom in its ground state is ns ² np ³ . This atom is a group element.	A) 5.71×10^{14} B) 5.71×10^{5} C) 1.58×10^{2} D) 1.58×10^{11} E) 1.75×10^{-15}		
9) Elements in group have a np ⁵ electron configuration in the outer shell. 10) The ground state electron configuration of general is	2) An FM radio station broadcasts electromagnetic radiation at a frequency of 100.6 MHz. The wavelength of this radiation is m.		
copper is	A) 2.982×10 ⁶		
6.4 True/False Questions	B) 2.982		
1) The wavelength of radio waves can be longer than a football field.	C) 3.018×10 ¹⁶ D) 3.018×10 ¹⁰ E) 0.3353		
2) Black body radiation is the emission of light from metal surfaces.	3) Electromagnetic radiation with a wavelength of 525 nm appears as green light		
3) If a hydrogen atom electron jumps from the n=6 orbit to the n=2 orbit, energy is released.	to the human eye. The energy of one photon of this light is J.		
4) The square of Schrodinger's wave equation is called an orbital.	A) 1.04×10^{-31} B) 3.79×10^{-28}		
5) The electron density of the 2s orbital is	C) 3.79×10^{-19}		

Chemistry, 11e (Brown/LeMay/Bursten/Murphy)
Chapter 6: Electronic Structure of Atoms

- D) 1.04×10^{-22}
- E) 2.64×10^{18}
- 4) Electromagnetic radiation with a wavelength of 531 nm appears as green light to the human eye. The energy of one photon of this light is $3.74 \times 10^{-19} \, \text{J}$ Thus, a laser that emits $1.3 \times 10^{-2} \, \text{J}$ of energy in a pulse of light at this wavelength produces ______ photons in each pulse.
- A) 2.9×10^{-17}
- B) 9.2×10^{-24}
- C) 1.8×10^{19}
- D) 3.5×10^{16}
- E) 6.5×10^{13}
- 5) The de Broglie wavelength of an electron with a velocity of 6.00×10^6 m/s is

 _____ m. The mass of the electron is 9.11×10^{-28} g
- A) 8.25×10^9
- B) 8.25×10^{12}
- C) 1.21×10^{-16}
- D) 1.21×10^{-13}
- E) 1.21×10^{-10}
- 6) The element that corresponds to the electron configuration $1s^2 2s^2 2p^6$ is ______.
- A) sodium
- B) magnesium
- C) lithium
- D) beryllium
- E) neon
- 7) The complete electron configuration of argon, element 18, is ______.
- A) $1s^2 2s^2 2p^6 3s^2 3p^6$
- B) $1s^2 2s^2 2p^{10} 3s^2 3p^2$
- C) $1s^4 2s^4 2p^6 3s^4$

- D) $1s^4 2s^4 2p^{10}$
- E) $1s^6 2s^6 2p^2 3s^4$
- 8) The complete electron configuration of gallium, element 31, is ______.
- A) $1s^2 2s^2 2p^{10} 3s^2 3p^{10} 4s^2 3d^3$
- B) $1s^22s^22p^63s^23p^63d^{10}4s^24P^1$
- C) $1s^4 2s^4 2p^6 3s^4 3p^6 4s^4 3d^3$
- D) $1s^4 2s^4 2p^{10} 3s^4 3p^9$
- E) $1s^4 2s^4 2p^8 3s^4 3p^8 4s^3$
- 9) The condensed electron configuration of silicon, element 14, is ______.
- A) $[He]2s^42p^6$
- B) $[Ne]2p^{10}$
- C) $[Ne]3s^23p^2$
- D) $[He]2s^4$
- E) $[He] 2s^6 2p^2$
- 10) The condensed electron configuration of krypton, element 36, is ______.
- A) $[Kr]4s^23d^8$
- B) $\left[Ar \right] 4s^4$
- C) $\left[Kr \right] 4s^4 3d^8$
- D) $[Ar]3d^{10}4s^24p^6$
- E) $[Ar]4s^{4}3d^{4}$