RELEVANCE OF USING A GENETIC ALGORITHM IN WEB PAGE CUSTOMIZATION

Bonavero Yoann

LIRMM, CNRS, UM2 Berger-Levrault

March 2014

Reminder of the global context

The context

- The context
- Input data
 - Variables
 - **Objectives**

- Population evolution
- "Portail citoyen" example
- Possible optimizations
 - Graph splitting
 - Alternative color system

Resolution is based on

- A set of variables
- A set of objectives
- Some end criteria
 - Time
 - Generations
 - satisfaction

Variables

Some kind of variables

Input data

•000000

- Text size
- Text weight
- Size
- Color
- etc.

Color type variable

A solution

Representation

- $[V_1, V_2, ..., V_i]$ a set of variable
- v_i a value of V_i

Input data 0000000

Objectives and relations

Input data

0000000

Objectives functions

Objectif / Constraint / Preference

- Size
- Color contrast
- Luminance contrast
- Luminance
- Original context proximity
- etc.

Definition

 $C: V_i \geq x$, V_i size is greater or equal to x

Representation

SizeConstraint

+ minSize : integer

eval(s : Solution) : float

Contrast constraint

Definition

 $C: contrast(V_i, V_i) \geq x$, Contrast between V_i and V_i is greater of equal to x%. With $i \neq j$.

Representation

ContrastConstraint

+ minContrast : integer

eval(s : Solution) : float

- The contex
- 2 Input data
 - Variable
 - Objectives

3 Population evolution

- 4 "Portail citoyen" example
- Possible optimizations
 - Graph splitting
 - Alternative color system

Evolution of the population

Evolution of the population

Input data

Evolution of the population

Input data

Other operators

- Selection
- Parent selection
- Union

- "Portail citoyen" example

Main menu

Initial context			
Mon accueil	Text 255 255 255	Background 000 170 195	Constrast 2.79/21
Accueil	203 205 205	000 170 195	1.74/21
Mon profil	255 255 255	249 144 004	2.33/21
Profil	205 205 205	046 046 046	8.54/21
Abonnements	205 205 205	046 046 046	8.54/21
Mes services	255 255 255	154 194 057	2.07/21
Enfance	205 205 205	046 046 046	8.54/21

Input data

Application of NSGA-II

Some figures

- 12 color variables
- 19 objectives functions
- 32 768 values in color domain
- About 10^{54} combinations
- 400 individual in population
- 5% of mutation
- Polynomial complexity: $19 \times 400^2 \ (mn^2)$

Application of NSGA-II

The context

- Possible optimizations
 - Graph splitting
 - Alternative color system

HSP color system

HSP

- H: hue [0,360]
- S : saturation [0.0,1.0]
- P : Perceived braightness
 - $P = \sqrt{0.299 \times R^2 + 0.587 \times G^2 + 0.114 \times B^2}$