Home ► Electrical Engineering ► Engr 17 F16 Tatro ► Homework ► Homework 9 - Chap 4 and 5

Started on Monday, 24 October 2016, 12:13 PM

State Finished

Completed on Monday, 24 October 2016, 12:14 PM

Time taken 1 min 15 secs

Grade 100.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

AP4.19_9ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown

$$V_{Th} = 8$$

$$R_{Th} = \begin{bmatrix} 1 \\ \end{bmatrix}$$
 (Ohm)

Correct

Correct

Mark 10.00 out of 10.00

P4.80_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Note that there are no independent sources in this circuit! You will have to provide an excitation to get a response.

$$V_{Th} = \begin{bmatrix} 0 & \checkmark & V \end{bmatrix}$$

$$R_{Th} = \begin{bmatrix} 40 & \checkmark & \Omega \text{ (Ohm)} \end{bmatrix}$$

Correct

Correct

Mark 10.00 out of 10.00

AP4.20_9ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Define the voltage at the left-most node as ν , and write two nodal equations with V_{Th} as the right node voltage.

$$V_{Th} = \boxed{30}$$

$$R_{Th} = \begin{bmatrix} 10 & & \\ &$$

Correct

Correct

Mark 10.00 out of 10.00

P4.79_10ed

Find the Thévenin equivalent circuit with respect to the terminals a,b for the circuit shown.

Hint: Note that there are no independent sources in this circuit! You will have to provide an excitation to get a response.

$$V_{Th} = \boxed{0}$$

$$R_{Th} = \boxed{15.38}$$
 $\checkmark \Omega \text{ (Ohm)}$

Correct

Correct

Mark 10.00 out of 10.00

AP4.21_9ed

a) Find the value of R that enable the circuit to deliver maximum power to the terminals a,b

$$R = 3$$
 $\checkmark \Omega$ (Ohm)

b) Find the maximum power delivered to R

$$P_R = 1200$$
 W

Correct

Correct

Mark 10.00 out of 10.00

P4.85_10ed

a) Find the value of the variable resistor R_0 in the circuit that will result in maximum power dissipation in the 6 Ω (Ohm) resistor. $~0 \leq R_0 \leq \infty$

$$R_0 = 0$$
 $\checkmark \Omega \text{ (Ohm)}$

b) Find the maximum power that can be delivered to the 6 Ω (Ohm) resistor.

$$P_{\text{max}} = 150$$
 \checkmark W

Correct

Correct

Mark 10.00 out of 10.00

P5.05_10ed

Assume the op amp is ideal.

Find current i_0 which flows through the 5k W (Ohm) resistor.

$$i_0 = \boxed{-1}$$
 \checkmark mA (milli Amp)

Correct

Correct

Mark 10.00 out of 10.00

P5.06 9ed

Assume the op amp is ideal.

Calculate v_1, v_0, i_2 , and i_0 .

$$v_1 = \boxed{-3}$$
 \vee \vee

$$v_{\rm O} = -14.25$$
 V

$$i_2 = 75$$
 $\checkmark \mu A (micro Amp)$

$$i_{\rm O} = 795$$
 $\checkmark \mu A \text{ (micro Amp)}$

Correct

Correct

Mark 10.00 out of 10.00

P5.07_10ed

Assume the op amp is ideal.

A voltmeter capable of a full-scale reading of 10 V is used to measure the output in the circuit in the figure below. What is the reading of the voltmeter?

$$v_{\rm m} = \boxed{7.7}$$

Correct

Correct

Mark 10.00 out of 10.00

P5.03_10ed

Assume the op amp is ideal.

Find i_L in this circuit. $i_L = 2$ \checkmark mA (milli Amps)

Correct