Matematiikan ja tilastotieteen laitos

Topologia I

1. kurssikoe 26.2.2013

Kurssikokeessa saa olla mukana A4:n kokoinen yksipuoleinen muistilappu.

- 1. (teoriatehtävä) (i) Määrittele avoin joukko $A \subset X$ ja suljettu joukko $B \subset X$, kun (X, d) on metrinen avaruus.
- (ii) Näytä, että avoin kuula $B(a,r) = \{x \in X : d(x,a) < r\}$ on X:n avoin joukko kaikilla $a \in X$ ja r > 0.
- 2. Olkoon

$$d(s,t) = \log(1 + |s - t|), \quad s, t \in \mathbf{R}.$$

Näytä, että d on metriikka joukossa \mathbf{R} .

Muistutus: logaritmifunktion $x \mapsto \log(x)$ perusominaisuudet saa olettaa tunnetuiksi kurssista Analyysi I. Arvio

$$\log(1+u+v) \le \log(1+u) + \log(1+v), \quad u \ge 0, v \ge 0,$$

saattaa olla hyödyllinen.

3. Olkoon

$$A = \{(x, y, z) \in \mathbf{R}^3 : x + y < z < x^2 + y^2\}.$$

Näytä, että A on avoin joukko avaruuden \mathbf{R}^3 euklidisessa metriikassa.

4. Olkoon $(E,|\cdot|)$ normiavaruus, ja $a,b\in E$ kiinnitettyjä vektoreita. Määritellään kuvaus $f:\mathbf{R}\to E$ asettamalla

$$f(t) = ta + (1-t)b, \quad t \in \mathbf{R}.$$

Näytä: (i) f on Lipschitz-kuvaus $\mathbf{R} \to E$, (ii) f on jatkuva joukossa \mathbf{R} . Joukossa \mathbf{R} on tavallinen metriikka, ja normiavaruudessa E on normin määräämä metriikka d(u,v)=|u-v|, kun $u,v\in E$.