DẠNG TOÁN DÀNH CHO ĐỔI TƯỢNG HỌC SINH 7-8 ĐIỂM

Dạng 1. Tìm m để hàm số đạt cực trị tại x = x0

Burớc 1. Tính $y'(x_0), y''(x_0)$

Buốc 2. Giải phương trình $y'(x_0) = 0 \Rightarrow m$?

Bước 3. Thế m vào $y''(x_0)$ nếu giá trị $\begin{bmatrix} y'' > 0 \rightarrow x_0 = CT \\ y'' < 0 \rightarrow x_0 = CD \end{bmatrix}$

Dạng 1.1 Hàm số bậc 3

(Mã 110 - 2017) Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt Câu 1. cuc đai tai x = 3.

A. m = -1

B. m = -7

C. m = 5

(Chuyên Hạ Long 2019) Tìm m để hàm số $y = x^3 - 2mx^2 + mx + 1$ đạt cực tiểu tại x = 1Câu 2.

A. không tồn tai m.

B. $m = \pm 1$.

C. m = 1.

D. $m \in \{1; 2\}$.

Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + mx + 1$ đạt cực tiểu tại x = 2. Câu 3.

B. m > 4.

C. $0 \le m < 4$.

(THPT Đoàn Thượng - Hải Dương 2019) Tìm các giá trị thực của tham số m để hàm số Câu 4. $y = \frac{1}{2}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A. m = 1, m = 5. **B.** m = 5. **C.** m = 1.

D. m = -1.

(THPT An Lão Hải Phòng 2019) Có bao nhiều số thực m để hàm số Câu 5. $y = \frac{1}{3}x^3 - mx^2 + (m^2 - m + 1)x + 1$ đạt cực đại tại x = 1.

A. 0

C. 1

D. 3

(THPT Đoàn Thượng – Hải Dương) Tìm các giá trị thực của tham số m để hàm số Câu 6. $y = \frac{1}{2}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A. m = 1, m = 5.

B. m = 5.

C. m = 1.

D. m = -1.

(THPT Thăng Long - Hà Nội - Lần 2 - 2019) Tìm tập hợp tất cả các giá trị của m để hàm số Câu 7. $y = x^3 + (3m-1)x^2 + m^2x - 3$ đạt cực tiểu tại x = -1.

A. {5;1}.

B. {5}.

C. \emptyset

D. {1}.

(THPT Kinh Môn - 2019) Tìm tất cả các giá trị thực của tham số m để hàm số Câu 8. $y = \frac{1}{3}x^3 - mx^2 + (m+1)x - 1$ đạt cực đại tại x = -2?

A. m = 2.

C. Không tồn tai m. **D.** m = -1.

(Chuyên $\overline{\mathbf{D}}\mathbf{H}\mathbf{S}\mathbf{P}\mathbf{H}\mathbf{N}$ - $\mathbf{L}\mathbf{\hat{a}}\mathbf{n}$ 3 - $\mathbf{2019}$) Tập hợp các số thực m để hàm số Câu 9. $y = x^3 - 3mx^2 + (m+2)x - m$ đạt cực tiểu tại x = 1 là.

A. $\{1\}$.

B. $\{-1\}$.

 \mathbf{C} . \emptyset .

D. R.

NGUYỄN BẢO VƯƠNG - 0946798489 Dạng 1.2 Hàm số đa thức bá

	Dạng 1.2 Hàm số đa thức bậc cao, hàm căn thức				
Câu 10.	(Chuyên QH Huế - L tại $x = 1$.	ần 2 - 2019) Xác định t	ham số m sao cho hàr	m số $y = x + m\sqrt{x}$ đạt cực trị	
	A. $m = -2$.	B. $m = 2$.	C. $m = -6$.	D. $m = 6$.	
Câu 11.	`	ng Hoa Thám - Hưng $x^2 + 2019$ đạt cực tiểu t	· · · · · · · · · · · · · · · · · · ·	ả tham số thực <i>m</i> để hàm số	
	A. $m = 0$.	B. $m = -2$.	C. $m = 1$.	D. $m = 2$.	
Câu 12.	(Chuyên Trần Phú H	ải Phòng 2019) Cho hài	m số $y = f(x)$ xác đị	tịnh trên tập số thực $\mathbb R$ và có	
	đạo hàm $f'(x) = (x - \sin x)$	$(x-m-3)(x-\sqrt{9-4})$	$\overline{m^2}$) ³ $\forall x \in \mathbb{R} \ (m \ \text{là th})$	ham số). Có bao nhiêu giá trị	
	nguyên của <i>m</i> để hàm	$s\hat{o} y = f(x)$ đạt cực tiểu	u tại $x = 0$?		
	A. 6	B. 7	C. 5	D. 4	
Câu 13.		Có bao nhiều giá $(2-4)x^4+1$ đạt cực tiểu		tham số <i>m</i> để hàm số	
	A. Vô số	B. 3	C. 5	D. 4	
Câu 14.	(Chuyên Quang Trun	g- Bình Phước 2019)	Tất cả các giá trị thực	\mathbf{r} c của tham số m để hàm số	
	$y = \frac{x^5}{5} - \frac{mx^4}{4} + 2$ dat of				
	A. $m \in \mathbb{R}$.	B. $m < 0$.	C. Không tồn tại m .	. D. $m > 0$.	
Câu 15.				–2019;2019) để hàm số	
	$y = \frac{m-1}{5}x^5 + \frac{m+2}{4}x^4 + \dots$	-m+5 đạt cực đại tại x	= 0 ?		
	A. 101.	B. 2016.		D. 10.	
Câu 16.		Có bao nhiều giá $(x^2-9)x^4+1$ đạt cực tiểu		tham số <i>m</i> để hàm số	
	A. 6	B. Vô số		D. 7	
Câu 17.				tham số m để hàm số	
	,	$(x^2-16)x^4+1$ đạt cực tiểu			
	A. 8	B. Vô số	C. 7	D. 9	
Câu 18.	Có bao nhiều giá trị ngư đại tại $x = 0$?	ıyên của tham số m để l		$5)x^7 + (m^2 - 25)x^6 + 1$ đạt cực	
	A. 8	B. 9	C. Vô số	D. 10	
Câu 19.		Có bao nhiều giá $-1)x^4 + 1$ đạt cực tiểu tạ		ham số <i>m</i> để hàm số	
	A. 3	B. 2	C. Vô số	D. 1	
	Dạng 2. Tìm m để hàm số có n cực trị • Hàm số có n cực trị $\Leftrightarrow y' = 0$ có n nghiệm phân biệt.				
		$= ax^3 + bx^2 + cx + d:$			
	+ Hàm số có hai điểm	cực trị khi $\begin{cases} a \neq 0 \\ b^2 - 3ac > \end{cases}$	0.		
	+ Hàm số không có cực trị khi $y'=0$ vô nghiệm hoặc có nghiệm kép.				

• Xét hàm số bậc bốn trùng phương $y = ax^4 + bx^2 + c$.

+ Hàm số có ba cực trị khi ab < 0. + Hàm số có 1 cực trị khi $ab \ge 0$. Biết rằng hàm số $y = (x+a)^3 + (x+b)^3 - x^3$ có hai điểm cực trị. Mệnh đề nào sau đây là đúng? Câu 1. **A.** $ab \leq 0$. **C.** ab > 0. **B.** ab < 0. (THPT Hai Bà Trưng - Huế - 2019) Tìm tất cả các giá trị của tham số thực m để hàm số Câu 2. $y = mx^3 - 2mx^2 + (m-2)x + 1$ không có cực tri **B.** $m \in (-6,0)$. **C.** $m \in [-6,0)$. **A.** $m \in (-\infty, 6) \cup (0, +\infty)$. D. $m \in [-6; 0].$ ($\mathbf{D}\hat{\mathbf{e}}$ Tham Khảo 2017) Tìm tất cả các giá trị thực của tham số m để hàm số Câu 3. $y = (m-1)x^4 - 2(m-3)x^2 + 1$ không có cực đại? **A.** $1 < m \le 3$ **B.** $m \le 1$ **D.** $1 \le m \le 3$

(Chuyên Sơn La - Lần 2 - 2019) Để đồ thị hàm số $y = -x^4 - (m-3)x^2 + m+1$ có điểm cực đại Câu 4. mà không có điểm cực tiểu thì tất cả các giá tri thực của tham số m là

A. $m \ge 3$.

B. m > 3.

C. m < 3.

(Quang Trung - Bình Phước - Lần 5 - 2019) Cho hàm số $y = x^4 - 2mx^2 + m$. Tìm tất cả các giá Câu 5. trị thực của m để hàm số có 3 cực trị

A. m > 0.

B. $m \ge 0$.

C. m < 0.

D. $m \le 0$.

Câu 6. (Chuyên Hà Tĩnh - Lần 1 - 2019) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = m^2 x^4 - (m^2 - 2019m)x^2 - 1$ có đúng một cực trị?

A. 2019.

B. 2020.

C. 2018.

D. 2017.

(THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số $y = x^3 - 3(m+1)x^2 + 3(7m-3)x$. Gọi Câu 7. S là tập các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là **A.** 2. **B.** 4. **C.** 0. D. Vô số.

(HSG - TP \rightarrow \rightarrow Nẵng - 2019) Tim tất cả các giá trị của tham số m để hàm số Câu 8. $y = x^4 + 4mx^3 + 3(m+1)x^2 + 1$ có cực tiểu mà không có cực đại.

A. $m \in \left(-\infty; \frac{1-\sqrt{7}}{3}\right]$. **B.** $m \in \left[\frac{1-\sqrt{7}}{3}; 1\right] \cup \{-1\}$.

C. $m \in \left[\frac{1+\sqrt{7}}{3}; +\infty\right]$. **D.** $m \in \left[\frac{1-\sqrt{7}}{3}; \frac{1+\sqrt{7}}{3}\right] \cup \{-1\}$.

(HSG 12 - Bắc Ninh - 2019) Cho hàm số f(x) có đạo hàm $f'(x) = x^2(x+1)(x^2+2mx+5)$. Có Câu 9. tất cả bao nhiều giá trị nguyên của m để hàm số có đúng một điểm cực trị?

A. 0.

B. 5.

C. 6.

(THPT Hùng Vương Bình Phước 2019) Tìm tất cả các giá trị của tham số m để hàm số Câu 10. $y = -\frac{x^3}{2} + mx^2 - 2mx + 1$ có hai điểm cực trị.

A. 0 < m < 2.

B. m > 2.

C. m > 0.

 $\mathbf{D.} \begin{bmatrix} m > 2 \\ m < 0 \end{bmatrix}.$

Câu 11. (THPT Ba Đình 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + 2mx + m$ có cực đại và cực tiểu?

A. $m < \frac{3}{2}$.

B. $m < -\frac{3}{2}$. **C.** $m \le \frac{3}{2}$. **D.** $m > \frac{3}{2}$.

(Chuyên Bắc Giang 2019) Tập hợp các giá trị của m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x + 1$ có Câu 12. hai cưc tri là:

NGUYĒN BẢO VƯƠNG - 0946798489 **A.** $(-\infty; -1] \cup [2; +\infty)$ **B.** $(-\infty; -1) \cup (2; +\infty)$ **C.** (-1; 2)**D.** [-1;2]Câu 13. (THPT Quỳnh Lưu 3 Nghệ An 2019) Cho hàm số $y = mx^4 - x^2 + 1$. Tập hợp các số thực m để hàm số đã cho có đúng một điểm cực tri là C. $[0; +\infty)$. D. $(-\infty; 0)$. **A.** $(0;+\infty)$. **B.** $(-\infty; 0]$.

Câu 14. (THPT Yên Định Thanh Hóa 2019) Cho hàm số $y = mx^4 + (2m+1)x^2 + 1$. Tìm tất cả các giá trị thực của tham số m để hàm số có đúng một điểm cực tiểu.

A. Không tồn tại m.

B. $m \ge 0$.

C. $m \ge -\frac{1}{2}$. **D.** $-\frac{1}{2} \le m \le 0$.

Câu 15. (Cụm Liên Trường Hải Phòng 2019) Tìm số các giá trị nguyên của tham số m để hàm số $y = x^4 + 2(m^2 - m - 6)x^2 + m - 1$ có ba điểm cực trị.

A. 6.

B. 5.

D. 3.

(THCS - THPT Nguyễn Khuyến 2019) Hàm số $y = mx^4 + (m-1)x^2 + 1 - 2m$ có một điểm cực Câu 16. tri khi

A. $0 \le m \le 1$.

B. $m \le 0 \lor m \ge 1$.

C. m = 0.

D. $m < 0 \lor m > 1$.

Câu 17. (Chuyên Lam Sơn Thanh Hóa 2019) Có tất cả bao nhiều giá trị nguyên của m trên miền [-10;10] để hàm số $y = x^4 - 2(2m+1)x^2 + 7$ có ba điểm cực trị?

A. 20

B. 10

C. Vô số

D. 11

Câu 18. (THPT An Lão Hải Phòng 2019) Cho hàm số $y = mx^4 + (m^2 - 6)x^2 + 4$. Có bao nhiều số nguyên m để hàm số có ba điểm cực trị trong đó có đúng hai điểm cực tiểu và một điểm cực đại?

Câu 19. (THPT Nguyễn Khuyến 2019) Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^4 + (m-1)x^2 + 1 - 2m$ có một cực trị.

A. $m \ge 1$

B. $m \le 0$

C. 0 ≤ *m* ≤ 1 **D.** $m \le 0 \cup m \ge 1$

Cai - 2020) Cho hàm số f(x) có Câu 20. (Chuyên Lào hàm $f'(x) = x^2(x+2)^4(x+4)^3[x^2+2(m+3)x+6m+18]$. Có tất cả bao nhiều giá trị nguyên của m để hàm số f(x) có **đúng** một điểm cực trị?

B. 5.

C. 8.

D. 6.

(Chuyên Sơn La - 2020) Gọi S là tập hợp những giá trị của tham số m để hàm số sau không có Câu 21. cuc tri trên \mathbb{R} .

 $f(x) = \frac{1}{4}m^2 \cdot e^{4x} + \frac{1}{3}m \cdot e^{3x} - \frac{1}{2}e^{2x} - (m^2 + m - 1)e^x$. Tổng tất cả các phần tử của tập S bằng

B. $\frac{2}{2}$. **C.** $\frac{1}{2}$.

D. -1.

Dạng 3. Đường thẳng đi qua 2 điểm cực trị

Phương trình hai đường thẳng đi qua 2 điểm cực trị của hàm số bậc ba là phần dư của phép chia của y cho y'

• Phân tích (bằng cách chia đa thức y cho y'): $y = y' \cdot q(x) + h(x) \Rightarrow \begin{cases} y_1 = h(x_1) \\ y_2 = h(x_2) \end{cases}$

• Đường thẳng qua 2 điểm cực tri là y = h(x).

Câu 1.	(Mã 123 - 2017) Đồ thị hàm số $y = x^3 - 3x^2 - 9x + 1$ có hai cực trị A và B . Điểm nào dưới đây thuộc đường thẳng AB ?					
	A. $M(0;-1)$	B. $N(1;-10)$	C. $P(1;0)$	D. $Q(-1;10)$		
Câu 2.	góc với đường thẳng đi	qua hai điểm cực trị củ	a đồ thị hàm số $y = x^3$			
	A. $m = \frac{3}{2}$	B. $m = \frac{3}{4}$	C. $m = -\frac{1}{2}$	D. $m = \frac{1}{4}$		
Câu 3.				song song với đường thẳng		
		của đồ thị hàm số $y = x$		1		
	A. $m = \frac{3}{4}$.	B. $m = \frac{1}{2}$.	C. $m = -\frac{3}{4}$.	D. $m = -\frac{1}{2}$.		
Câu 4.	đường thẳng AB .			. Điểm nào dưới đây thuộc		
	,	` ,	C. $N(1;-10)$.			
Câu 5.				am số <i>m</i> để đường thẳng n cực trị của đồ thị hàm số		
		B. $-\frac{1}{6}$.	C. $m = \frac{1}{6}$.	D. $-\frac{1}{3}$.		
Câu 6.	(TT Tân Hồng Phong - 2018) Tìm tổng tất cả các giá trị thực của tham số m sao cho đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = 2x^3 + 3(m-1)x^2 + 6m(1-2m)x$ song song đường thẳng $y = -4x$.					
	A. $m = -\frac{1}{3}$.	B. $m = \frac{2}{3}$.	C. $m = -\frac{2}{3}$.	D. $m = 1$.		
Câu 7.	(THPT Xuân Hòa-Vì	ĭnh Phúc- 2018) Biết đ	$\hat{o} \text{ thị hàm số } y = x^3 - 3x$	c+1 có hai điểm cực trị A ,		
	B. Khi đó phương trìn A. $y = 2x-1$.	h đường thẳng AB là \mathbf{B} , $y = -2x + 1$.	C. $y = -x + 2$.	D. $y = x - 2$.		
Câu 8.		+m có hai điểm cực tr		số <i>m</i> để đồ thị hàm số m trên đường thẳng đi qua		
	A. $m = -1$.	B. $m = -5$.	C. $m = 3$.	D. $m = 2$.		
Câu 9.	Câu 9. (Nguyễn Khuyến 2019) Đường thẳng nối hai điểm cực đại và cực tiểu của đồ t $y = x^3 - 2x + m$ đi qua điểm $M(-3;7)$ khi m bằng bao nhiêu?					
	A. 1.	B. −1.	C. 3.	D. 0.		
Câu 10.				tham số <i>m</i> để đường thẳng n cực trị của đồ thị hàm số		
	$\mathbf{A.} \ m = \frac{1}{6}.$	B. $-\frac{1}{3}$.	C. $\frac{1}{3}$.	D. $-\frac{1}{6}$.		
Câu 11.		_	_	cực trị của đồ thị hàm số Tìm giá trị nhỏ nhất của		

P = abc + ab + c.

A.
$$-\frac{16}{25}$$
.

C.
$$-\frac{25}{9}$$
.

Câu 12. (Chuyên Ha Long - 2018) Tìm tất cả giá tri thực của tham số m để đồ thi hàm số $y = x^3 - 3mx^2 + 2$ có hai điểm cực trị A và B sao cho các điểm A, B và M(1; -2) thẳng hàng.

A.
$$m = \sqrt{2}$$
.

B.
$$m = -\sqrt{2}$$
. **C.** $m = 2$.

C.
$$m = 2$$
.

D.
$$m = -\sqrt{2}$$
; $m = \sqrt{2}$.

Dạng 4. Tìm m để hàm số bậc 3 có cực trị thỏa mãn điều kiện cho trước

- **\star Bài toán tổng quát**: Cho hàm số $y = f(x; m) = ax^3 + bx^2 + cx + d$. Tìm tham số m để đồ thị hàm số có 2 điểm cực trị x_1 , x_2 thỏa mãn điều kiện K cho trước?
- A Phương pháp:
- **Bước 1**. Tập xác định $D = \mathbb{R}$. Tính đạo hàm: $y' = 3ax^2 + 2bx + c$.
- **Bước 2**. Để hàm số có 2 cực trị \Leftrightarrow y' = 0 có 2 nghiệm phân biệt \Leftrightarrow $\begin{cases} a_{y'} = 3a \neq 0 \\ \Delta_{y'} = (2b)^2 4.3ac > 0 \end{cases}$

và giải hệ này sẽ tìm được $m ∈ D_1$.

- **Bước 3**. Gọi x_1 , x_2 là 2 nghiệm của phương trình y' = 0. Theo Viét, ta có: $\begin{cases} S = x_1 + x_2 = -\frac{b}{a} \\ P = x_1 x_2 = \frac{c}{a} \end{cases}$
- **Bước 4**. Biến đổi điều kiện K về dạng tổng S và tích P. Từ đó giải ra tìm được $m \in D_2$.
- **Bước 5**. Kết luận các giá trị *m* thỏa mãn: $m = D_1 \cap D_2$.

ULuu ý:

- Hàm số bậc 3 không có cực trị $\Leftrightarrow y' = 0$ không có 2 nghiệm phân biệt $\Leftrightarrow \Delta_{y'} \le 0$.
- Trong trường hợp điều kiện K liên quan đến hình học phẳng, tức là cần xác định tọa độ 2 điểm cực trị $A(x_1; y_1)$, $B(x_2; y_2)$ với x_1 , x_2 là 2 nghiệm của y' = 0. Khi đó có 2 tình huống thường gặp sau:
- Nếu giải được nghiệm của phương trình y' = 0, tức tìm được x_1 , x_2 cụ thể, khi đó ta sẽ thế vào hàm số đầu đề y = f(x;m) để tìm tung độ y_1 , y_2 tương ứng của A và B.
- Nếu tìm không được nghiệm y' = 0, khi đó gọi 2 nghiệm là x_1 , x_2 và tìm tung độ y_1 , y_2 bằng cách thế vào phương trình đường thẳng nối 2 điểm cực trị.

Để viết phương trình đường thẳng nối hai điểm cực trị, ta thường dùng phương pháp tách đạo hàm (phần dư bậc nhất trong phép chia y cho y'), nghĩa là:

- Phân tích (bằng cách chia đa thức y cho y'): $y = y' \cdot q(x) + h(x) \Rightarrow \begin{cases} y_1 = h(x_1) \\ y_2 = h(x_2) \end{cases}$
- Đường thẳng qua 2 điểm cực trị là y = h(x).

Dạng toán: Tìm tham số m để các hàm số sau có cực trị thỏa điều kiện cho trước (cùng phía, khác phía d):

<u>Vị trí tương đối giữa 2 điểm với đường thẳng</u>: Cho 2 điểm $A(x_A; y_A)$, $B(x_B; y_B)$ và đường thẳng d: ax + by + c = 0. Khi đó:

- Nếu (ax_A+by_A+c)·(ax_B+by_B+c) < 0 thì A, B nằm về 2 phía so với đường thẳng d.
 Nếu (ax_A+by_A+c)·(ax_B+by_B+c) > 0 thì A, B nằm cùng phía so với đường d.
 Trường hợp đặc biệt:
 Để hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trực tung

 $Oy \Leftrightarrow phương trình y' = 0 \ có 2 nghiệm trái dấu và ngược lại.$

• $D\hat{e}$ hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trục hoành $Ox \Leftrightarrow d\hat{o}$ thị hàm số y = f(x) cắt trục Ox tại 3 điểm phân biệt \Leftrightarrow phương trình hoành độ giao điểm f(x) = 0 có 3 nghiệm phân biệt (áp dụng khi nhẩm được nghiêm).

Dang toán: Tìm m để các hàm số sau có cực trị thỏa điều kiên cho trước (đối xứng và cách đều):

- igstar $ag{Bài}$ toán $ag{1}$. Tìm m để đồ thị hàm số có $ag{2}$ điểm cực trị A,B đổi xứng nhau qua
- **Bước 1**. Tìm điều kiện để hàm số có cực đại, cực tiểu \Rightarrow *m* ∈ D_1 .
- **Bước 2**. Tìm tọa độ 2 điểm cực trị A, B. Có 2 tình huống thường gặp:
- + Một là y' = 0 có nghiệm đẹp x_1, x_2 , tức có $A(x_1; y_1), B(x_2; y_2)$.
- + Hai là y' = 0 không giải ra tìm được nghiệm. Khi đó ta cần viết phương trình đường thẳng nối 2 điểm cực trị là Δ và lấy $A(x_1; y_1), B(x_2; y_2) \in \Delta$.
- **Bước 3**. Gọi $I\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$ là trung điểm của đoạn thẳng AB.

Do A, B đối xứng qua d nên thỏa hệ $\begin{cases} \Delta \perp d \\ I \in d \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AB} \cdot \overrightarrow{u_d} = 0 \\ I \in d \end{cases} \Rightarrow m \in D_2.$

- **Bước 4**. Kết luận $m = D_1 \cap D_2$.
- \star Bài toán 2. Tìm m để đồ thị hàm số có 2 điểm cực trị A, B cách đều đường thẳng d:
- **Bước 1**. Tìm điều kiện để hàm số có cực đại, cực tiểu $\Rightarrow m \in D_1$.
- **Bước 2**. Tìm tọa độ 2 điểm cực trị A, B. Có 2 tình huống thường gặp:
- + Một là y' = 0 có nghiệm đẹp x_1 , x_2 , tức có $A(x_1; y_1)$, $B(x_2; y_2)$.
- + Hai là y' = 0 không giải ra tìm được nghiệm. Khi đó ta cần viết phương trình đường thẳng nối 2 điểm cực trị là Δ và lấy $A(x_1; y_1), B(x_2; y_2) \in \Delta$.
- **Bước 3.** Do A, B cách đều đường thẳng d nên $d(A;d) = d(B;d) \Rightarrow m \in D_2$.
- **Bước 4**. Kết luận $m = D_1 \cap D_2$.
- **Thu ý**: Để 2 điểm A, B đối xứng nhau qua điểm $I \Leftrightarrow I$ là trung điểm AB.
- Với giá trị nào của tham số m để đồ thị hàm số $y = x^3 3x^2 + m$ có hai điểm cực trị A, B thỏa Câu 1. mãn OA = OB (O là gốc tọa độ)?

A.
$$m = \frac{3}{2}$$
.

B.
$$m = 3$$

C.
$$m = \frac{1}{2}$$
. D. $m = \frac{5}{2}$.

D.
$$m = \frac{5}{2}$$

- (Đề Tham Khảo 2017) Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị của hàm Câu 2. số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 1)x$ có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng d: y = 5x - 9. Tính tổng tất cả các phần tử của S.
 - **A.** 3

- **D.** 0
- (Chuyên Biên Hòa Hà Nam 2020) Có tất cả bao nhiều giá trị thực của tham số m để đồ thị Câu 3. hàm số $y = \frac{2}{3}x^3 - mx^2 - 2(3m^2 - 1)x + \frac{2}{3}$ có hai điểm cực trị có hoành độ x_1 , x_2 sao cho $x_1x_2 + 2(x_1 + x_2) = 1$.

- **B.** 0.
- C. 3.
- **D.** 2.
- (Chuyên KHTN 2020) Có bao nhiều giá trị nguyên của tham số m để đồ thị hàm số Câu 4. $y = mx^3 - (2m-1)x^2 + 2mx - m - 1$ có hai điểm cực trị nằm về hai phía của trục hoành?

	$\mathbf{A.} \begin{bmatrix} m \ge -2 \\ m \le -6 \end{bmatrix}.$	B. $m \ge -2$.	C. $m \le -6$.	$\mathbf{D.} \begin{cases} \begin{bmatrix} m > -2 \\ m < -6 \end{bmatrix} \\ m \neq \frac{-3}{2} \end{cases}$
	L			$m \neq \frac{3}{2}$
âu 6.	(THPT Lê Quy Đớ	ôn Điện Biên 2019) Cl	no hàm số $y = \frac{1}{2}mx^3$	$-(m-1)x^2 + 3(m-2)x + 2018$
	_		<i>J</i>	àm số có hai điểm cực trị $x_1; x_2$
	thỏa mãn $x_1 + 2x_2 =$	_	2 .	• • 17
	A. $\frac{40}{9}$	B. $\frac{22}{9}$	C. $\frac{25}{4}$	D. $\frac{8}{2}$
	,	7	т	3
Câu 7.	số thực. Giá trị của		u đây để đồ thị hàm số	$mx^2 - 3m - 1$ với m là một than 6 đã cho có hai điểm cực trị đố
	A. $m \in (-1;1]$.	B. $m \in (-3; -1]$.	C. $m \in (3;5]$.	D. $m \in (1;3]$.
Câu 8.	Có bao nhiêu giá trị	nguyên của tham số m	để đồ thị hàm số $y =$	$x^3 - 8x^2 + (m^2 + 11)x - 2m^2 + 2$
		àm về hai phía của trục		,
	A. 4.	B. 5.	C. 6.	D. 7.
				1) 1 0/1 1:4 :
Câu 9.		2019) Cho hàm số $y =$	y	•
Câu 9.	trị của số tự nhiên m	< 20 để đồ thị hàm số c	ó hai điểm cực trị nằm	về hai phía trục hoành?
	trị của số tự nhiên <i>m</i> A. 18.	e < 20 để đồ thị hàm số c B. 19 .	ó hai điểm cực trị nằm C. 21.	về hai phía trục hoành? D. 20 .
	trị của số tự nhiên <i>m</i> A. 18. (Chuyên KHTN 2	< 20 để đồ thị hàm số c B. 19 . 019) Có bao nhiêu giá	ó hai điểm cực trị nằm C. 21. trị nguyên của tham	về hai phía trục hoành? D. 20. số <i>m</i> để đồ thị của hàm sơ
	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	e < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha	ó hai điểm cực trị nằm C. 21. trị nguyên của tham	về hai phía trục hoành? D. 20. số <i>m</i> để đồ thị của hàm s
	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1.	ó hai điểm cực trị nằm C. 21. trị nguyên của tham	về hai phía trục hoành?
'âu 10.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4.	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ii điểm cực trị và hai đ	n về hai phía trục hoành? D. 20. số <i>m</i> để đồ thị của hàm so tiểm cực trị đó nằm về hai phí
Câu 10.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ai điểm cực trị và hai đ	về hai phía trục hoành? D. 20. số <i>m</i> để đồ thị của hàm sơ
Câu 10.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the	 ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ D) Tìm tất cả cả các đả mãn x₁² + x₂² = 6 	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ
Câu 10. Câu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the B. $m = 3$	 ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ D) Tìm tất cả cả các đả mãn x₁² + x₂² = 6 C. m = -1 	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. m=1
Câu 10. Câu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the B. $m = 3$	 ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ D) Tìm tất cả cả các đả mãn x₁² + x₂² = 6 C. m = -1 	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ
Câu 10. Câu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the B. $m = 3$ nguyên của m để hàm	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ ð Tìm tất cả cả các đã mãn $x_1^2 + x_2^2 = 6$ C. $m = -1$ số $f(x) = 2x^3 - 6x^2 - 6$	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. m=1
Câu 10. Câu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c B. 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? B. 1. D. 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the B. $m = 3$ nguyên của m để hàm B. 9.	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ O) Tìm tất cả cả các các mãn $x_1^2 + x_2^2 = 6$ C. $m = -1$ Số $f(x) = 2x^3 - 6x^2 - 6$ C. 2.	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. m=1 m+1 có các giá trị cực trị trá D. 3.
Câu 10. Câu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)$	x < 20 để đồ thị hàm số c \mathbf{B} . 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? \mathbf{B} . 1. \mathbf{D} . 4. \mathbf{h} É Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the \mathbf{B} . $m = 3$ nguyên của m để hàm \mathbf{B} . 9. \mathbf{ng} Yên) Cho hàm số y	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ ð Tìm tất cả cả các các đã mãn $x_1^2 + x_2^2 = 6$ C. $m = -1$ số $f(x) = 2x^3 - 6x^2 - $ C. 2. $= 2x^3 + 3(m-1)x^2 + 6$	về hai phía trục hoành? D. 20. số m để đồ thị của hàm s tiểm cực trị đó nằm về hai phí D. $m=1$ $m+1$ có các giá trị cực trị trấ D. 3. $(m-2)x-1$ với m là tham s
'âu 10. 'âu 11.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (m+1)x^$	x < 20 để đồ thị hàm số c \mathbf{B} . 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? \mathbf{B} . 1. \mathbf{D} . 4. \mathbf{h} É Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the \mathbf{B} . $m = 3$ nguyên của m để hàm \mathbf{B} . 9. \mathbf{ng} Yên) Cho hàm số y	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ D) Tìm tất cả cả các các đã mãn $x_1^2 + x_2^2 = 6$ C. $m = -1$ Số $f(x) = 2x^3 - 6x^2 - 6$ C. 2. $= 2x^3 + 3(m-1)x^2 + 6$ To có điểm cực đại và đị	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. m=1 m+1 có các giá trị cực trị trá D. 3. (m-2)x-1 với m là tham siểm cực tiểu nằm trong khoản
'âu 10. 'âu 11. 'âu 12.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (k$ hác nhau đối với trự A. 2. C. 3. (THPT Lương Thuy $y = x^3 - 3x^2 + mx - x$ A. $y = x^3 - 3x^2 + mx - x$ Có bao nhiều giá trị dấu? A. 7. (Thi thử SGD Hươ thực. Tìm tất cả các $(-2;3)$. A. $m \in (-1;4) \setminus \{3\}$.	x < 20 để đồ thị hàm số c \mathbf{B} . 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? \mathbf{B} . 1. \mathbf{D} . 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the \mathbf{B} . $m = 3$ nguyên của m để hàm \mathbf{B} . 9. \mathbf{B} 9. \mathbf{B} 9. \mathbf{B} 9. \mathbf{B} \mathbf{G} 10. \mathbf{G} 10. \mathbf{G} 11. \mathbf{G} 12. \mathbf{G} 13. \mathbf{G} 14. \mathbf{G} 15. \mathbf{G} 15. \mathbf{G} 16. \mathbf{G} 17. \mathbf{G} 18. \mathbf{G} 18. \mathbf{G} 19. $$	ó hai điểm cực trị nằm C. 21. trị nguyên của tham ti điểm cực trị và hai đ Đ) Tìm tất cả cả các các đã mãn $x_1^2 + x_2^2 = 6$ C. $m = -1$ số $f(x) = 2x^3 - 6x^2 - 6$ C. 2. $= 2x^3 + 3(m-1)x^2 + 6$ ố có điểm cực đại và đị C. $m \in (1;3)$.	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm s tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. $m=1$ $m+1$ có các giá trị cực trị trá D. 3. $(m-2)x-1$ với m là tham s iểm cực tiểu nằm trong khoản D. $m \in (-1;4)$.
Câu 10. Câu 11. Câu 12.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (khác nhau đối với trụ A. 2. C. 3. (THPT Lương Thy y = x^3 - 3x^2 + mx - (km) - (km) - (km) Có bao nhiều giá trị dấu? A. 7. (Thi thử SGD Hươ thực. Tìm tất cả các (-2;3). A. m \in (-1;4) \setminus \{3\}. (THPT Cẩm Bình$	k < 20 để đồ thị hàm số c \mathbf{B} . 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? \mathbf{B} . 1. \mathbf{D} . 4. The Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the \mathbf{B} . $m = 3$ nguyên của m để hàm \mathbf{B} . 9. \mathbf{B} . 9. \mathbf{B} 9. \mathbf{B} \mathbf{G} Cho hàm số \mathbf{G} giá trị của \mathbf{G} để hàm số \mathbf{G} b. \mathbf{G} (3;4). Hà Tỉnh 2019) Cho hàm	ó hai điểm cực trị nằm \mathbf{C} . 21. trị nguyên của tham ti điểm cực trị và hai đ \mathbf{P}) Tìm tất cả cả các các đả mãn $x_1^2 + x_2^2 = 6$ \mathbf{C} . $m = -1$ \mathbf{S} ố $f(x) = 2x^3 - 6x^2 - 6$ \mathbf{C} . 2. \mathbf{E} = $2x^3 + 3(m-1)x^2 + 6$ \mathbf{C} có điểm cực đại và đị \mathbf{C} . $m \in (1;3)$. In số $y = x^3 - 3mx^2 + 4$	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. $m=1$ $m+1$ có các giá trị cực trị trá D. 3. $(m-2)x-1$ với m là tham sơ iểm cực tiểu nằm trong khoảng D. $m \in (-1;4)$. $4m^2-2$ có đồ thị (C) và điểm
Câu 9. Câu 10. Câu 11. Câu 13.	trị của số tự nhiên m A. 18. (Chuyên KHTN 2 $y = x^3 - (m+1)x^2 + (khác nhau đối với trụ A. 2. C. 3. (THPT Lương Thy y = x^3 - 3x^2 + mx - (km) - (km) - (km) Có bao nhiều giá trị dấu? A. 7. (Thi thử SGD Hươ thực. Tìm tất cả các (-2;3). A. m \in (-1;4) \setminus \{3\}. (THPT Cẩm Bình$	k < 20 để đồ thị hàm số c \mathbf{B} . 19. 019) Có bao nhiều giá $(m^2 - 2)x - m^2 + 3$ có ha ục hoành? \mathbf{B} . 1. \mathbf{D} . 4. hế Vinh Hà Nội 2019 1 đạt cực trị tại x_1, x_2 the \mathbf{B} . $m = 3$ nguyên của m để hàm \mathbf{B} . 9. \mathbf{ng} Yên) Cho hàm số y giá trị của m để hàm số \mathbf{B} . $m \in (3; 4)$. Hà Tỉnh 2019) Cho hàr ác giá trị nguyên dương	ó hai điểm cực trị nằm \mathbf{C} . 21. trị nguyên của tham ti điểm cực trị và hai đ \mathbf{P}) Tìm tất cả cả các các đả mãn $x_1^2 + x_2^2 = 6$ \mathbf{C} . $m = -1$ \mathbf{S} ố $f(x) = 2x^3 - 6x^2 - 6$ \mathbf{C} . 2. \mathbf{E} = $2x^3 + 3(m-1)x^2 + 6$ \mathbf{C} có điểm cực đại và đị \mathbf{C} . $m \in (1;3)$. In số $y = x^3 - 3mx^2 + 4$	n về hai phía trục hoành? D. 20. số m để đồ thị của hàm sơ tiểm cực trị đó nằm về hai phí c giá trị của tham số m đ D. m=1 m+1 có các giá trị cực trị trá D. 3. (m-2)x-1 với m là tham sơ iểm cực tiểu nằm trong khoảng

C. 1.

(Chuyên Hạ Long - Quảng Ninh - 2020) Cho hàm số $y = x^3 - (m+6)x^2 + (2m+9)x - 2$. Tìm

D. 3.

NGUYỄN <mark>BẢO</mark> VƯƠNG - 0946798489

B. 2.

 $m\,$ để đồ thị hàm số có hai điểm cực trị nằm về hai phía của trục hoành.

A. 4.

Câu 5.

		^				
TAI	LIĔU	ON	THI	THP	TOG	2021

C. $m \in (3;4)$. **D.** $m \in (-1;4)$.

	A. –21	B. -39	C. –8	D. $3\sqrt{11}-13$		
Câu 17.	(Chuyên Bắc Ninh 2	2019) Gọi S là tập c	ác giá trị dương của	tham số m sao cho hàm		
	số $y = x^3 - 3mx^2 + 27x + 3m - 2$ đạt cực trị tại x_1, x_2 thỏa mãn $ x_1 - x_2 \le 5$. Biết $S = (a; b]$. Tính					
	T=2b-a.					
	A. $T = \sqrt{51} + 6$	B. $T = \sqrt{61} + 3$	C. $T = \sqrt{61} - 3$	D. $T = \sqrt{51} - 6$		
Câu 18.	(Sở Bắc Giang 2019) Gọi S là tập hợp	các giá trị nguyên củ	a tham số <i>m</i> để hàm số		
	$y = \frac{x^3}{3} - 2x^2 + mx + 3$ co	ó hai điểm cực trị x x	<4 Số nhần tử của S1	nằnα		
	-					
GA 40	A. 5.	B. 3.		D. 4.		
Câu 19.			trị $x_1; x_2 (x_1 < x_2)$ thỏa n	nam số m để hàm số		
	A. $m = 5$.	B. $m = \frac{1}{2}$.	C. $m = 3$.	D. $m = \frac{7}{2}$.		
Câu 20.	Có bao nhiêu giá trị ng	guyên của tham số m	để điểm $M(2m^3; m)$ tạo	với hai điểm cực đại, cực		
		The state of the s		ot tam giác có diện tích nhỏ		
	nhất?	50,				
	A. 0	B. 1 — — — — — — — — — — — — — — — — — —	_	D. không tồn tại		
Câu 21.			_	n để đường thẳng đi qua hai		
	điểm cực đại, cực tiểu của đồ thị hàm số $y = x^3 - 3mx + 2$ cắt đường tròn (C) có tâm $I(1)$ kính bằng 1 tại hai điểm phân biệt A,B sao cho diện tích tam giác IAB đạt giá trị lớn nhất.					
	_		<u> </u>	_		
	A. $m = \frac{2 \pm \sqrt{3}}{3}$	B. $m = \frac{2 \pm \sqrt{3}}{2}$	C. $m = \frac{1 \pm \sqrt{3}}{2}$	D. $m = \frac{2 \pm \sqrt{3}}{2}$		
Câu 22.	(VTED 2019) Biết đồ	thi hàm số $v = x^3 + ax$	$a^2 + bx + c$ có hai điểm c	eure trị $M(x_1; y_1), N(x_2; y_2)$		
			nhất của biểu thức $P =$			
				_		
	A. $-\frac{49}{4}$	B. $-{4}$	$\frac{1}{36}$	D. $-\frac{1}{6}$		
Câu 23.	Cho hàm số $y = x^3 - 3x$	$mx^2 + 3(m^2 - 1)x - m^3 -$	m (m là tham số). Gọ	i A, B là hai điểm cực trị		
				$\stackrel{\circ}{\text{em}} I$, A , B tạo thành tam		
	giác nội tiếp đường tròn	có bán kính bằng $\sqrt{5}$	là			
	A. $\frac{4}{17}$.	B. $\frac{14}{}$.	C. $-\frac{2}{17}$.	D. $\frac{20}{}$.		
Cân 24	= '	= '	= '	= '		
Cau 24.				m để đường thẳng đi qua		
				kính $\sqrt{2}$ tại hai điểm phân		
			on nhất. Chọn khẳng địn			
	A. $m_0 \in (3;4)$.	D. $m_0 \in (1, 2)$.	C. $m_0 \in (0;1)$.	D. $m_0 \in (2,3)$.		
	Facebook Nguyễn Vương https://www.facebook.com/phong.baovuong Trang 9					

(THPT Lê Quy Đôn Điện Biên 2019) Cho hàm số $y = 2x^3 + 3(m-1)x^2 + 6(m-2)x - 1$ với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm

Câu 16. (Chuyên Lam Sơn Thanh Hóa 2019) Tổng tất cả các giá trị thực của tham số m để hàm số: $y = 3x^3 + 2(m+1)x^2 - 3mx + m - 5$ có hai điểm cực trị $x_1; x_2$ đồng thời $y(x_1).y(x_2) = 0$ là:

trong khoảng (-2;3).

A. $m \in (-1;3) \cup (3;4)$. **B.** $m \in (1;3)$.

NGUYĚN BẢO VƯƠNG - 0946798489

Câu 25.	(Chuyên Lương Văn Chánh - Phú Yên - 2018) Cho hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}mx^2 - 4x - 10$, với m				
	là tham số; gọi x_1 , x_2 là các điểm cực trị của hàm số đã cho. Giá trị lớn nhất của biểu thức $P = (x_1^2 - 1)(x_2^2 - 1)$ bằng				
	A. 4.	B. 1.	C. 0.	D. 9.	
Câu 26.	(Chuyên Lương Văn	Chánh - Phú Yên - 2	018) Cho hàm số $y = x$	$x^3 - 3mx^2 + 3(m^2 - 1)x - m^3$,	
				i <i>m</i> thay đổi, điểm cực đại	
	của đồ thị $\left(C\right)$ luôn nằn	n trên một đường thẳng	d cố định. Xác định hệ	\hat{c} số góc k của đường thẳng	
	d.	1			
	A. $k = -\frac{1}{3}$.	B. $k = \frac{1}{3}$.	C. $k = -3$.	D. $k = 3$.	
Câu 27.	(Chuyên Hùng Vươn	g - Phú Thọ - 2018)	Biết m_0 là giá trị củ	a tham số m để hàm số	
	$y = x^3 - 3x^2 + mx - 1$ có đúng?	hai điểm cực trị x_1, x_2	sao cho $x_1^2 + x_2^2 - x_1 x_2 =$	=13. Mệnh đề nào dưới đây	
	A. $m_0 \in (-1;7)$.	B. $m_0 \in (7;10)$.	C. $m_0 \in (-15; -7)$.	D. $m_0 \in (-7; -1)$.	
Câu 28.	(THPT Thanh Miện l	- Hải Dương 2018) B	iết rằng đồ thị hàm số	$f(x) = \frac{1}{3}x^3 - \frac{1}{2}mx^2 + x - 2$	
	_		trị là độ dài hai cạnh c	ủa tam giác vuông có cạnh	
	huyền là $\sqrt{7}$. Hỏi có m: A. 3.	ay gia trị của <i>m</i> ? B. 1.	C. Không có m.	D. 2.	
Câu 29.	(Phan Đăng Lưu -	Huế - 2018) Gọi A	3011	c trị của đồ thị hàm số	
	· ·	_ 10°		n giác MAB có chu vi nhỏ	
	nhất, đặt $T = 4x_0 + 2015$ A. $T = 2017$.	5. Trong các khẳng định $\mathbf{B}. \ T = 2019$.			
Câu 30.			-	D. $T = 2018$. m sao cho đồ thị hàm số	
	$y = x^3 - 3mx^2 + 4m^3$ có phần tư thứ nhất là	điểm cực đại và cực tiể	eu đối xứng với nhau qu	a đường phân giác của góc	
	A. $\frac{\sqrt{2}}{2}$.	B. $\frac{1}{2}$.	C. 0.	D. $\frac{1}{4}$.	
Câu 31.	(THPT Triệu Thị Trin $y = x^3 - 5x^2 + (m+4)x$			rc m sao cho đồ thị hàm số	
	$\mathbf{A}. \varnothing.$		C. $(-\infty;3)\cup(3;4)$.		
		. , ,		,	
Câu 32.	(CTN - LÂN 1 - 2018)	Biết $\frac{a}{b}$ (trong đó $\frac{a}{b}$ là	phân số tối giản và a ,	$b \in \mathbb{N}^*$) là giá trị của tham	
	số m để hàm số y	$y = \frac{2}{3}x^3 - mx^2 - 2(3m^2 - \frac{1}{3}m^2 - \frac{1}{3}m^$	-1) $x + \frac{2}{3}$ có 2 điểm	cực trị x_1 , x_2 sao cho	
	$x_1 x_2 + 2(x_1 + x_2) = 1$. Ti				
CA 22		B. $S = 25$.		D. $S = 34$.	
Câu 33.			a tham sô <i>m</i> đê điêm ₍ m số phần tử của tập hợ	cực tiểu của đồ thị hàm số p $(-5;6) \cap S$.	

A. 2.

B. 5. **C.** 3.

D. 4.

Câu 34. (THPT Nghen - Hà Tĩnh - 2018) Cho hàm số $y = -x^3 + 3x^2 + 3(m^2 - 1)x - 3m^2 - 1$. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại, cực tiểu nằm bên trái đường thẳng x = 2?

A. 3.

B. 1.

- C. 2.
- Câu 35. (Chuyên Hạ Long 2018) Tìm tất cả giá trị thực của tham số m để đồ thị hàm số $y = x^3 - 3mx^2 + 2$ có hai điểm cực trị A và B sao cho các điểm A, B và M(1; -2) thẳng hàng.

A. $m = \sqrt{2}$.

- **B.** $m = -\sqrt{2}$.
- **D.** $m = -\sqrt{2}$; $m = \sqrt{2}$.
- **Câu 36.** (THPT Nam Trực Nam Định 2018) Cho hàm số $y = \frac{m}{3}x^3 (m-1)x^2 + 3(m-2)x + 2$. Hàm số đạt cực trị tại x_1, x_2 thỏa mãn $x_1 + 2x_2 = 1$ khi m = a và m = b. Hãy tính tổng a + b.

- $C_{\bullet} \frac{5}{2}$.
- **(THPT Cao Bá Quát 2018)** Cho hàm số $y = 2x^3 3(m+1)x^2 + 6mx + m^3$. Tìm m để đồ thị **Câu 37.** hàm số có hai điểm cực tri A, B sao cho đô dài $AB = \sqrt{2}$.

A. m = 0.

- **B.** m = 0 hoặc m = 2. **C.** m = 1.
- (THPT Phú Lương Thái Nguyên 2018) Tìm tất cả các giá trị của tham số m để đồ thị hàm Câu 38. số $y = mx^3 - 3mx^2 + 3m - 3$ có hai điểm cực trị A, B sao cho $2AB^2 - (OA^2 + OB^2) = 20$ (trong đó O là gốc tọa độ)

A. m = -1.

- **B.** m = 1.
- C. m = -1 $m = -\frac{17}{11}$ D. m = 1 $m = -\frac{17}{11}$

Dạng 5. Tìm m để hàm số trùng phương có cực trị thỏa mãn điều kiện cho trước

Một số công thức tính nhanh "thường gặp" liên quan cực trị hàm số $y = ax^4 + bx^2 + c$

1 <i>cực trị</i> : $ab \ge 0$	3 <i>cực trị: ab</i> < 0
a > 0: 1 cực $a < 0$: 1 cực đại tiểu	a > 0: 1 cực $a < 0$: 2 cực đại, 2 cực tiểu 1 cực tiểu

$$A(0;c), B\left(-\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right), C\left(\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right) \Rightarrow AB = AC = \sqrt{\frac{b^4}{16a^2} - \frac{b}{2a}}, BC = 2\sqrt{-\frac{b}{2a}}$$

với $\Delta = b^2 - 4ac$

Phương trình qua điểm cực trị: $BC: y = -\frac{\Delta}{4a}$ và $AB, AC: y = \pm \left(\sqrt{\frac{-b}{2a}}\right)^3 x + c$

Gọi
$$\widehat{BAC} = \alpha$$
, luôn có: $8a(1 + \cos\alpha) + b^3(1 - \cos\alpha) = 0 \Rightarrow \cos\alpha = \frac{b^3 + 8a}{b^3 - 8a}$ và $S^2 = -\frac{b^5}{32a^3}$

Phương trình đường tròn đi qua $A, B, C: x^2 + y^2 - (c+n)x + c.n = 0$, với $n = \frac{2}{b} - \frac{\Delta}{4a}$ và bán

kính đường tròn ngoại tiếp tam giác là $R = \left| \frac{b^3 - 8a}{8ab} \right|$

(THPT Lương Thế Vinh - 2018) Cho hàm số $y = x^4 - 2x^2 + 2$. Diện tích S của tam giác có ba Câu 1. đỉnh là ba điểm cực trị của đồ thị hàm số đã cho có giá trị là

	_			
NGIIY	VÊN R	ÁΩ	VIIONG	- 0946798489

A. S = 3.

B. $S = \frac{1}{2}$.

C. S = 1.

D. S = 2.

(Chuyên Lê Hồng Phong - 2018) Tìm m đề đồ thị hàm số $y = x^4 - 2mx^2 + 1$ có ba điểm cực trị Câu 2. A(0; 1), B, C thỏa mãn BC = 4?

A. $m = \sqrt{2}$.

B. m = 4.

C. m = +4.

D. $m = \pm \sqrt{2}$.

(Đề Minh Họa 2017) Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số Câu 3. $y = x^4 + 2mx^2 + 1$ có ba điểm cực trị tạo thành một tam giác vuông cân

A. $m = \frac{1}{3\sqrt{9}}$.

B. m = 1.

C. $m = -\frac{1}{\sqrt[3]{\Omega}}$. **D.** m = -1.

(Mã 105 -2017) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số $y = x^4 - 2mx^2$ có Câu 4. ba điểm cực tri tao thành một tam giác có diên tích nhỏ hơn 1.

A. 0 < m < 1

B. m > 0

C. $0 < m < \sqrt[3]{4}$

D. m < 1

(Chuyên Nguyễn Trãi - Hải Dương - Lần 2 - 2020) Cho hàm số $y = x^4 - 2mx^2 - 2m^2 + m^4$ có Câu 5. đồ thị (C). Biết đồ thị (C) có ba điểm cực trị A, B, C thỏa mãn ABCD là hình thoi với D(0;-3). Số *m* thuộc khoảng nào sau đây?

A. $m \in \left(\frac{1}{2}; \frac{9}{5}\right)$.

B. $m \in \left(\frac{9}{5}; 2\right)$. **C.** $m \in \left(-1; \frac{1}{2}\right)$. **D.** $m \in \left(2; 3\right)$.

(THPT Lê Quý Đôn Đà Nẵng 2019) Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị Câu 6. hàm số $y = x^4 - 2(m+1)x^2 + m^2$ có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông. Số phần tử của tập hợp S là

A. 2.

B. 0.

C. 4.

(THPT Đoàn Thượng - Hải Phòng 2019) Cho hàm số $y = x^4 - 2mx^2 + 1$ (1). Tổng lập phương Câu 7. các giá trị của tham số m để đồ thị hàm số (1) có ba điểm cực trị và đường tròn đi qua 3 điểm này có bán kính R = 1 bằng

A. $\frac{5-\sqrt{5}}{2}$.

B. $\frac{1+\sqrt{5}}{2}$.

C. $2+\sqrt{5}$. **D.** $-1+\sqrt{5}$.

Câu 8. (THPT Minh Châu Hưng Yên 2019) Tìm tất cả các giá trị thực của tham số m để đồ thị hàm $s \circ y = x^4 - 2m^2x^2 + m + 4$ có ba điểm cực trị tạo thành ba đỉnh của một tam giác đều?

A. $m \in \{0; \sqrt{3}; -\sqrt{3}\}$ **B.** $m \in \{0; \sqrt[6]{3}; -\sqrt[6]{3}\}$ **C.** $m \in \{\sqrt[6]{3}; -\sqrt[6]{3}\}$ **D.** $m \in \{-\sqrt{3}; \sqrt{3}\}$

(THPT Quang Trung Đống Đa Hà Nội 2019) Tìm m để đồ thị hàm số $y = x^4 - 2m^2x^2 + 1$ có 3 Câu 9. điểm cực trị lập thành một tam giác vuông cân.

A. m = 1.

B. $m \in \{-1, 1\}$.

C. $m \in \{-1,0,1\}$.

D. $m \in \emptyset$.

(Toán Học Tuổi Trẻ Số 5) Tìm tất cả các giá trị m sao cho đồ thị hàm số Câu 10. $y = x^4 + (m+1)x^2 - 2m - 1$ có ba điểm cực trị là ba đỉnh của một tam giác có một góc bằng 120° .

A. $m = -1 - \frac{2}{\sqrt[3]{3}}$. **B.** $m = -1 - \frac{2}{\sqrt[3]{3}}$, m = -1.

C. $m = -\frac{1}{\sqrt[3]{2}}$. **D.** m < -1.

(Chuyên Lương Văn Chánh - Phú Yên - 2018) Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị (C) của hàm số $y = x^4 - 2m^2x^2 + m^4 + 5$ có ba điểm cực trị, đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành một tứ giác nội tiếp. Tìm số phần tử của S.

A. 1.

B. 0.

(Chuyên Quang Trung - 2018) Cho hàm số $y = x^4 - 2mx^2 - 2m^2 + m^4$ có đồ thị (C). Biết đồ thị Câu 12. (C) có ba điểm cực trị A, B, C và ABDC là hình thoi trong đó D(0;-3), A thuộc trục tung. Khi đó *m* thuộc khoảng nào?

A. $m \in \left(\frac{9}{5}; 2\right)$.

B. $m \in \left(-1; \frac{1}{2}\right)$. **C.** $m \in \left(2; 3\right)$. **D.** $m \in \left(\frac{1}{2}; \frac{9}{5}\right)$.

(THPT Nguyễn Huệ - Ninh Bình - 2018) Cho hàm số $y = -x^4 + 2mx^2 + 2$ có đồ thị (C_m) . Tìm Câu 13. m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

A. $m = \sqrt[3]{3}$.

B. $-m = \sqrt[3]{3}$.

(CHUYÊN ĐHSPHN - 2018) Gọi A, B, C là các điểm cực trị của đồ thị hàm số Câu 14. $y = x^4 - 2x^2 + 4$. Bán kính đường tròn nội tiếp tam giác ABC bằng

B. $\sqrt{2} + 1$.

C. $\sqrt{2} - 1$.

(Hồng Bàng - Hải Phòng - 2018) Cho hàm số $y = x^4 + 2(m-4)x^2 + m + 5$ có đồ thị (C_m) . Tìm Câu 15. m để $\left(C_{m}\right)$ có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O làm trọng tâm.

A. m = 1 hoặc $m = \frac{17}{2}$. **B.** m = 1.

C. m = 4.

D. $m = \frac{17}{2}$.

(Chuyên Vĩnh Phúc 2018) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số Câu 16. $y = x^4 - 2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

B. 0 < m < 1. **C.** $0 < m < \sqrt[3]{4}$.

(Liên Trường - Nghệ An -2018) Gọi m_0 là giá trị của tham số m để đồ thị hàm số Câu 17. $y = x^4 + 2mx^2 - 1$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$. Mệnh đề nào sau đây đúng

A. $m_0 \in (-1;0]$.

B. $m_0 \in (-2, -1]$. **C.** $m_0 \in (-\infty, -2]$. **D.** $m_0 \in (-1, 0)$.

(Chuyên Bắc Ninh - 2018) Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số $y = x^4 - 2(m+1)x^2 + m^2$ có ba điểm cực trị tạo thành một tam giác vuông cân.

A. m=0

B. m = -1; m = 0.

C. m = 1.

D. m = 1; m = 0.

(THPT Triệu Thị Trinh - 2018) Cho hàm số: $y = x^4 + 2mx^2 + m^2 + m$. Tìm m để đồ thị hàm số Câu 19. có 3 điểm cực trị lập thành tam giác có một góc bằng 120°.

A. $m = \frac{-1}{\sqrt{2}}$.

B. $m = \frac{1}{\sqrt[3]{3}}$. **C.** $m = \frac{-1}{\sqrt[3]{3}}$. **D.** $m = \frac{1}{\sqrt{3}}$.

(THPT Thái Phiên - Hải Phòng - 2018) Đồ thị hàm số $y = x^4 - 2mx^2 - m$ có ba điểm cực trị và **Câu 20.** đường tròn đi qua ba điểm cực trị này có bán kính bằng 1 thì giá trị của m là:

A. $m = 1; m = \frac{1 + \sqrt{5}}{2}$. **B.** $m = 1; m = \frac{-1 + \sqrt{5}}{2}$.

C. $m = -1; m = \frac{-1 + \sqrt{5}}{2}$. D. $m = -1; m = \frac{-1 - \sqrt{5}}{2}$.

Dạng 6. Tìm m để hàm số bậc 2 trên bậc 1 có cực trị thỏa mãn yêu cầu bài toán

(Toán Học Tuổi Trẻ Số 5) Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm Câu 1. $s\acute{0} y = \frac{x^2 + 2x + 3}{2x + 1}.$

A. y = 2x + 2.

B. y = x + 1. **C.** y = 2x + 1. **D.** y = 1 - x.

NGUYĒN	N BẢO VƯƠNG - 094	16798489				
Câu 2.	(DHQG Hà Nội - 2020) Điều kiện của tham số m để hàm số $y = \frac{x^2 - mx}{1 - x}$ có cực đại và cực tiểu					
	là	B. $m > -1$.				
Câu 3.	(Chuyên KHTN thị hàm số $y = \frac{x^2}{x^2}$		là tập hợp tất cả các	giá trị thực của tham số m để đồ		
		** ' =	ông tại O. Tổng tất c C. 4.	cả các phần tử của S bằng \mathbf{D} . 5.		
Câu 4.	(Chuyên Lê Hồn	ng Phong - Nam Định - 2	020) Biết rằng đồ th	$i(H): y = \frac{x^2 + 2x + m}{x - 2} \text{ (v\'oi } m \text{ là}$		
	tham số thực) có l $th{\rm ams} AB$.	nai điểm cực trị là A,B . H	lãy tính khoảng cách	từ gốc tọa độ $O(0;0)$ đến đường		
	A. $\frac{2}{\sqrt{5}}$.	B. $\frac{\sqrt{5}}{5}$.	C. $\frac{3}{\sqrt{5}}$.	D. $\frac{1}{\sqrt{5}}$.		
Câu 5.	thị hàm số $y = \frac{x^2}{x^2}$ cả các phần tử của	$\frac{+mx+m^2}{x-1}$ có hai điểm cự S bằng:	rc trị A, B . Khi $\angle AC$	giá trị thực của tham số m để đồ $DB = 90^{\circ}$ thì tổng bình phương tất		
	A. $\frac{1}{16}$.	B. 8.	$C \cdot \frac{1}{8}$.	D. 16.		
Câu 6.				$= \frac{x^2 - mx}{x + 1}$ có hai điểm cực trị A ,		
	A. $m > 2$.		C. $1 < m < 2$.			
Câu 7.	(Cụm 5 Trường	Chuyên - ĐBSH - 2018)	Cho hàm số $y = \frac{x^2 - y}{y}$	$\frac{- m x+4}{ x- m }$. Biết rằng đồ thị hàm số		
	biệt và thẳng hàng		n số giá trị <i>m</i> sao c C. 1.	ho ba điểm A , B , $C(4;2)$ phân		
Câu 8.	A. 0. (THCS - THPT			D. 3. m để hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt		
	cực đại tại điểm x A. $m = -1$.		C. $m = 1$.	x + m D. $m = 3$.		

(THPT Nam Trực - Nam Định - 2018) Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{2x - 2m}$. Để hàm số có cực đại và cực tiểu, điều kiện của tham số m là: Câu 9.

 $\mathbf{A.} \begin{bmatrix} m < -1 \\ m > 2 \end{bmatrix}$

B. -1 < m < 2. **C.** -2 < m < 1. **D.** $\begin{bmatrix} m < -2 \\ m > 1 \end{bmatrix}$.

Câu 10. (Chuyên Nguyễn Dình Triểu - Dồng Tháp - 2018) Để hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt cực đại tại x=2 thì m thuộc khoảng nảo? **B.** (-4;-2). **C.** (-2;0). **D.** (2;4).

A. (0;2).

Câu 11. (Chuyên Quốc Học Huế 2019) Cho hàm số $y = x + p + \frac{q}{x+1}$ đạt cực đại tại điểm A(-2;-2). Tính pq.

A. pq = 2.

B. $pq = \frac{1}{2}$. **C.** $pq = \sqrt{3}$. **D.** pq = 1.

Câu 12. Cho hàm số $y = \frac{x^2 + mx + 1}{x + m}$ (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số có giá trị cực đại là 7.

A. m = 7.

B. m = 5. **C.** m = -9. **D.** m = -5.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-70pKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương & https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

• https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!