试卷(三)

一、 单 坝 选 择 题 (母 题 3 分 , 共)	.5 分)		
1. 已知 A, B 为 3 阶方图	\mathbf{F} , $ \mathbf{A} = 1$, $ \mathbf{B} = -2$,	则行列	大
$ (2AB^*)^{-1}A =$		()
(A) $\frac{1}{32}$;	(B) $\frac{1}{8}$;		
(C) 2;	(D) $\frac{1}{2}$.		
2. 设 A 为 n 阶方阵,满足.	$A^2 = A$,且 $A \neq E$,则	()
(A) A 为可逆矩阵;	(B) A 为零矩阵;		
(C) A 为对称矩阵;	(D) A 为不可逆矩阵.		
3. 设线性方程组 $Ax = b$,	其中 A 为 $m \times n$ 矩阵, $b \neq$	0 ,且 n	ı <
n ,则方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$		(,
(A) 有唯一解;	(B) 有无穷多解;		
(C) 无解;	(D) 可能无解.		
4. 设向量组 α ₁ , α ₂ , ···, α	\mathbf{x}_s 可由向量组 $\mathbf{\beta}_1$, $\mathbf{\beta}_2$,…, $\mathbf{\beta}_t$	线性表	不
则		(
(A) $t > s$;			
(B) $r(\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_s) \leqslant$	$\mathbf{r}(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_t)$;		
((C) s > t:			

(D) $r(\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_t) \leqslant r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s)$.

5. 设A, B 为实对称矩阵,则()时,A 合同于B.

 $(A) r(\mathbf{A}) = r(\mathbf{B});$ $(B) \mathbf{A}, \mathbf{B}$ 为同型矩阵;

(C) A, B 正惯性指数相等; (D) A, B, C 同时成立.

二、填空题(毎题3分,共15分)

1. 设
$$\mathbf{A} = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} \\ a & b & -\frac{4}{\sqrt{18}} \\ \frac{2}{3} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} \end{bmatrix}$$
, 若 \mathbf{A} 为正交矩阵,则 $a =$

2. 设在 \mathbb{R}^2 中线性变换为 $\mathbb{A}\begin{bmatrix} x_1 \\ r_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_2 \end{bmatrix}$, 则 \mathbb{A} 在基 $\boldsymbol{\alpha}_1 =$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 下的矩阵为_____.

3. 设矩阵
$$A = \begin{bmatrix} 1 & a & 1 \\ a & 1 & b \\ 1 & b & 1 \end{bmatrix}$$
, 已知 A 相似于对角矩阵 $\begin{bmatrix} 0 & & \\ & 1 & \\ & & 2 \end{bmatrix}$,

则 $a = _____$, b =

= _____, b = _____. 4. 设 A 为 n 阶方阵,满足 $A^2 - 2A - 3E = O$,则 A 的特征值可能 取值为λ=

5. A 为 2×3 矩阵, r(A) = 2, 已知非齐次线性方程组 Ax = b 有 $\mathbf{m} \, \boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \mathbf{l} \, \boldsymbol{\alpha}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \, \boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \, 则对应齐次线性方程组$

Ax = 0 的通解为

三、计算题(每题 9 分,共 54 分)

1. 计算 *n* 阶行列式

$$D = \begin{vmatrix} x + a_1 & a_2 & a_3 & \cdots & a_n \\ a_1 & x + a_2 & a_3 & \cdots & a_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_1 & a_2 & a_3 & \cdots & x + a_n \end{vmatrix}.$$

2. 已知矩阵
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
, A^* 为其伴随矩阵, 且 A^* $BA = BA -$

2E, 求矩阵 B.

- 3. 已知 α_1 , α_2 , α_3 是 3 维线性空间 V 的一组基,设 $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 + \alpha_3$, $\beta_3 = a\alpha_1 + \alpha_2 \alpha_3$.
 - (1) a 取何值, β_1 , β_2 , β_3 也是 V 的基;
 - (2) 求 β₁, β₂, β₃ 到 α₁, α₂, α₃ 的过渡矩阵;
 - (3) 设 $\alpha = 2\alpha_1 + \alpha_2 \alpha_3$, 求 α 在基 β_1 , β_2 , β_3 下的坐标.

4. 设向量组
$$\boldsymbol{\alpha}_1 = \begin{bmatrix} \lambda \\ 1 \\ 1 \end{bmatrix}$$
, $\boldsymbol{\alpha}_2 = \begin{bmatrix} 1 \\ \lambda \\ 1 \end{bmatrix}$, $\boldsymbol{\alpha}_3 = \begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix}$, $\boldsymbol{\beta} = \begin{bmatrix} 1 \\ \lambda \\ \lambda^2 \end{bmatrix}$.

问: λ 取何值时 β 可由 α_1 , α_2 , α_3 线性表示?且在表示式不唯一时,求出所有的表示式.

5. 已知线性方程组(Ⅱ),(Ⅱ)是同解方程组,其中

(I):
$$\begin{cases} x_1 & +x_4 = 1, \\ x_2 & -2x_4 = 2, \\ x_3 + x_4 = -1, \end{cases}$$
(II):
$$\begin{cases} -2x_1 + x_2 + ax_3 - 5x_4 = 1, \\ x_1 + x_2 - x_3 + bx_4 = 4, \\ 3x_1 + x_2 + x_3 + 2x_4 = c. \end{cases}$$

- (1) 求(1)的通解;
- (2) 求([[)中的常数 a, b, c.
- 6. 已知三元实二次型 $f = x^T A x$ 经正交变换 x = Q y 化为标准形

 $y_1^2+y_2^2+5y_3^2$,且已知A 对应特征值 $\lambda=5$ 有一个特征向量 $\alpha_1=\begin{bmatrix}1\\1\\1\end{bmatrix}$,试求正交变换 x=Qy.

四、证明题(每题8分,共16分)

- 1. 已知A 为 $m \times n$ 矩阵,且m < n. 证明:存在n 阶非零矩阵B, 使 AB = O.
- 2. 设A, B 为n 阶矩阵,Q 为正交矩阵,且 $Q^{T}AQ$, $Q^{T}BQ$ 都是对角矩阵.证明: AB = BA.