HYBRID ASSEMBLY

Welcome!

Today

Assemble bacterial genome using two methods

Large genome strategy (eukaryotic organisms)
Small genome strategy (bacterial / protist / fungal organisms)

By the end of the session

Understand role of long and short reads Aware of challenges Troubleshoot your own assembly

First 20 mins

Long read technology

Nanopore, PacBio, use cases

Genome assembly

Genome, exome, transcriptome, mitochondria, metagenomic assembly Mammals, plants, protists, bacteria

Hybrid genome assembly

Repeats

Base-level accuracy & structural accuracy

The relationship between NGS and TGS

	Nanopore	PacBio	Illumina
Read length	1+ Mbp	25 Kbp	100 - 250 bp
Per-base accuracy	90 - 95%	88 - 99% (HiFi)	> 99.9%
Cheapest hardware	\$1k - 200k	\$500k	\$25k - 800k
Cost per bp	\$50 - 100	\$50 - 100	\$25 - 50

Short read niche

- Variant detection (small INDEL, SNP)
- Transcriptomics (RNA, scRNA seq)

Long read niche

- Structural variant detection
- Transcript isoform detection
- Pathogen detection
- Epigenetics

Short read niche

- Variant detection (small INDEL, SNP)
- Transcriptomics (RNA, scRNA seq)

Long read niche

- Structural variant detection
- Transcript isoform detection
- Pathogen detection
- Epigenetics

Base-level information

Structural information

Nanopore

Low cost

1000 USD for minion + 2 flow cells + reagents

Portable

500g

Simple

library preparation < 15 mins (no PCR required)

The MinION sequencer. Image credit: Oxford Nanopore Technologies

Nanopore

PacBio

High-accuracy long reads

> 99% accuracy (HiFi reads)

Multiple run methods

Choose between throughput or accuracy

Heading

Transcript isoform detection

Image credit: Pacific Biosciences of California, Inc

PacBio

Continuous Long Read (CLR)

PacBio

Circular Consensus Sequencing (CCS)

Base calling

Genome Assembly

Different organism
Different method

The Genome

The Genome

Be careful about DNA source

Bacteria: sample a single clonal colony from culture media

Human: cultured cell line

If anything else, there will be foreign DNA contamination.

Microbiome from human cheek swab, multiple organisms in any environmental sample

Can use software filtering methods to identify and remove contaminating DNA

Eukaryotic genomes

Nuclear genome

23 chromosomes

Linear chromosomes

Large genome \sim 6,400,000,000bp (2000x)

~ 30000 genes

Often diploid (2 copy of each chromosome), can be polyploid

Coding sparse: < 2% genome

Repetitive DNA 40% - 80% of genome

Hard to assemble

Mitochondrial genome

16kbp

37 genes

Haploid

Hundreds - thousands of mitochondria per cell

Prokaryotic genomes

Chromosome

Single chromosome (usually)

Chromosomes are circular

Small genome ~ 3,000,000bp

~ 4000 genes

Haploid (1 copy of chromosome)

Relatively easy to assemble

Plasmids

Often 10 - 200 kb

Many copies of each plasmid per cell

Can have multiple different plasmids in single organism (1 - 4 common)

Some convey anti-microbial resistance & virulence

Process of transforming sequence reads into a more cohesive picture

True genome

Process of transforming sequence reads into a more cohesive picture

Process of transforming sequence reads into a more cohesive picture

Process of transforming sequence reads into a more cohesive picture

Reads

DNA fragments sequenced by platform

Reads

DNA fragments sequenced by platform

Contig

Unbroken assembled piece of genome sequence

Reads

DNA fragments sequenced by platform

Contig

Unbroken assembled piece of genome sequence

Scaffold

2 or more contigs on same chromosome with known relative position

Reads

DNA fragments sequenced by platform

Contig

Unbroken assembled piece of genome sequence

Scaffold

2 or more contigs on same chromosome with known relative position

Coverage

Ratio of sequenced base pairs to genome length. 30x coverage of human genome (3.2 Gbp) would require 100Gb sequence data.

Reads

DNA fragments sequenced by platform

Contig

Unbroken assembled piece of genome sequence

Scaffold

2 or more contigs on same chromosome with known relative position

Coverage

Ratio of sequenced base pairs to genome length. 30x coverage of human genome (3.2 Gbp) would require 100Gb sequence data.

Depth

Number of reads sampling a given nucleotide

Average depth: 6X

Reads

DNA fragments sequenced by platform

Contig

Unbroken assembled piece of genome sequence

Scaffold

2 or more contigs on same chromosome with known relative position

Coverage

Ratio of sequenced base pairs to genome length. 30x coverage of human genome (3.2 Gbp) would require 100Gb sequence data.

Depth

Number of reads sampling a given nucleotide

Assembly Graph

Contigs and the connections between contigs

Assembly completeness levels

Complete

All chromosomes are gapless and have no runs of 10 or more ambiguous bases

Plasmids and organelles may or may not be included in the assembly but if present then the sequences are gapless

Chromosome

There is sequence for one or more chromosomes

May be a chromosome without gaps or a chromosome containing scaffolds or contigs with gaps between them

May also be unplaced or unlocalized scaffolds

Scaffold

Some sequence contigs have been connected across gaps to create scaffolds

le know the relative placement of two contigs

Scaffolds are all unplaced or unlocalized

Contig

Nothing is assembled beyond the level of sequence contigs.

No understanding of relative positions of contigs.

Contigs do not represent complete chromosomes or plasmids

Representing a genome

Keep in mind:

- Haploid representation (single sequence) even in diploid or polypoid organisms
- Assembly may be derived from a single individual or (usually) a group
 - Bacteria DNA extracted from thousands of individual cells
 - Hg38 consists of sequence from > 50 individual people
- Genetic variation exists within any population
 - For very good assemblies (like Hg38), each position ideally represents the most common allele among the population
 - Even for Hg38 this isn't always true

Depositing and accessing genomes

Repeats

Why do we need long reads anyway?

ROLE OF LONG READS

Copy 1 Copy 2

Interspersed Repeat:

Section of DNA

Occurs in multiple places

Extra copy of gene

More protein produced

New version of gene

New function (some mutation)

ROLE OF LONG READS

Copy 1

Copy 2

Interspersed Repeat:

Section of DNA

Occurs in multiple places

Extra copy of gene

More protein produced

New version of gene

New function (some mutation)

45% of Human Genome

ROLE OF LONG READS

Copy 1 Copy 2

Interspersed Repeat:

Section of DNA

Occurs in multiple places

Extra copy of gene

More protein produced

New version of gene

New function (some mutation)

45% of Human Genome

Tandem Repeat:

Short Repeating Sequence

Side by side

Copy 1 Copy 2

When long reads matter

Long reads provide information about the structural layout of the genome which short sequences cannot. For small, repeat light genomes (bacterial), not as important to use long reads

For large genomes with repeats (human, plant, mammal, eukaryotes in general) highly needed.

Hybrid Assembly

The beautiful combination of long and short reads

Key steps

Preprocessing

Data assessment
Read filtering
Genome size estimation

Assembly

Create draft genome

Polishing

Improve Draft

Quality Assessment

Check assembly Troubleshooting

Key steps

Assembly

Startpoint today

Polishing

Quality Assessment

Data assessment
Read filtering
Genome size estimation

Preprocessing

Create draft genome

Improve Draft

Check assembly Troubleshooting

1. Preprocessing

Data assessment

Was sequencing successful? Is read quality adequate? Nanoplot / fastqc + multiqc

Read filtering

Remove lowest quality reads from our pool Long reads - filtlong Short reads - fastp / trimmomatic

Genome size estimation

Helps some assembly tools by providing estimate Jellyfish / Meryl + GenomeScope

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

3. Polishing

2 Main hybrid methods

Large genomes: Long-reads-first

4. Quality Assessment

Analyse the quality of assembly produced

Compare to a similar genome already sequenced: QUAST

Attempt to locate genes we believe should be present: BUSCO

Let's do it

Assessing Assemblies

Genome fraction

Proportion of true genome spanned by assembled contigs

Genome fraction

Proportion of true genome spanned by assembled contigs

Mismatches

Differing base at position between assembly and reference genome

Genome fraction

Proportion of true genome spanned by assembled contigs

Mismatches

Differing base at position between assembly and reference genome

Indels

Runs of added or deleted bases relative to a reference

Contig

Organism's True Genome

Genome fraction

Proportion of true genome spanned by assembled contigs

Mismatches

Differing base at position between assembly and reference genome

Indels

Runs of added or deleted bases relative to a reference

N50

50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value

Genome fraction

Proportion of true genome spanned by assembled contigs

Mismatches

Differing base at position between assembly and reference genome

Indels

Runs of added or deleted bases relative to a reference

Contig

Organism's True Genome

N50

50% of the entire assembly is contained in contigs or scaffolds equal to or larger than this value

Misassemblies

Structural variation between assembly and reference genome

Benchmarking Universal Single-Copy Orthologs

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Ortholog

Gene present in multiple organisms

Evolved from common ancestor

Benchmarking Universal Single-Copy Orthologs

Single-Copy

Appears once in organisms

No duplicates allowed

Benchmarking Universal Single-Copy Orthologs

Single-Copy

Appears once in organisms

No duplicates allowed

Benchmarking Universal Single-Copy Orthologs

Universal

You define the **clade**

Bacillus subtilis:

? Bacteria; Terrabacteria group; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; Bacillus subtilis group

Benchmarking Universal Single-Copy Orthologs

Universal

You define the clade

Bacillus subtilis:

? Bacteria; Terrabacteria group; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; Bacillus subtilis group

124 BUSCOs

450 BUSCOs

Results

Quast

Genome statistics	■ nanopore_draft_assembly
Genome fraction (%)	97.598
Duplication ratio	1.009
Largest alignment	692 020
Total aligned length	3 980 483
NGA50	252 801
LGA50	5
Misassemblies	
# misassemblies	0
Misassembled contigs length	0
Mismatches	
# mismatches per 100 kbp	77.65
# indels per 100 kbp	550.99
# N's per 100 kbp	0
Statistics without reference	.
# contigs	29
Largest contig	692 065
Total length	3 986 877
Total length (>= 1000 bp)	3 986 877

BUSCO

Short-reads-first

Short-reads-first

Short-reads-first

Fine-tuning & technical considerations

Why do we need long reads anyway?

Assembly stages

Quast

	Nanopore Draft	Nanopore Draft + Pilon Polishing	Unicycler
genome fraction (%)	97.6	97.602	97.92
# contigs	30	30	10
# mismatches per 100kb	80.59	9.75	3.28
# indels per 100kb	552.98	35.25	1.74

BUSCO

Nanopore Draft

Nanopore Draft + Pilon Polishing

Unicycler

Tool parameters Unicycler Bridging Modes

Quast

	Conservative	Normal	Bold
genome fraction (%)	97.916	97.920	97.952
# contigs	11	10	8
# mismatches per 100kb	3.23	3.28	3.33
# indels per 100kb	1.64	1.74	1.94

BUSCO

Conservative

C:98.4%[S:98.2%,D:0.2%],F:0.4%,M:1.2%,n:450 Complete BUSCOs (C) Complete and single-copy BUSCOs (S) 442 Complete and duplicated BUSCOs (D) 1 Fragmented BUSCOs (F) Missing BUSCOs (M) Total BUSCO groups searched

Normal

C:98.4%[S:98.2%,D:0.2%],F:0.4%,M:1.2%,n:450 Complete BUSCOs (C) Complete and single-copy BUSCOs (S) 442 Complete and duplicated BUSCOs (D) Fragmented BUSCOs (F) Missing BUSCOs (M) Total BUSCO groups searched

Bold

C:98.4%[S:98.2%,D:0.2%],F:0.4%,M:1.2%,n:450 Complete BUSCOs (C) 443 Complete and single-copy BUSCOs (S) 442 Complete and duplicated BUSCOs (D) 1 Fragmented BUSCOs (F) Missing BUSCOs (M) Total BUSCO groups searched

Run times & resources

FLYE

Genome	Genome size	Input data	CPU time	RAM
E.coli	5 Mbp	250 Mb	2 h	2 Gb
C.elegans	100 Mbp	4 Gb	100 h	31 Gb
A.thaliana	135 Mbp	10 Gb	100 h	59 Gb
D.melanogaster	140 Mbp	4 Gb	130 h	33 Gb
D.melanogaster	140 Mbp	17 Gbp	150 h	70 Gb
Human NA12878	3200 Mbp	112000 Gbp	3000 h	394 Gb

FLYE scaling:

CPU time - 1hr per Mb genome size RAM - log relationship

Multithreading usually available:

3000 cpu hours = 48 real hours on machine with 64 cores

Ensure your compute has enough RAM to handle the genome!

Run times & resources

Genome	Genome size	Assembler	Genome fraction	Complete Single copy BUSCOs (%)	Mismatch + indel rate (per 100 kbp)	Time (h)	Memory (Gb)
E. coli		Canu	99.6	4	1354.2	0.5	4
	E Mbp	Flye	99.9	15	1089.3	0.2	12
	5 Mbp	SPAdes	98.3	98	1.3	0.5	114
		Unicycler	99.9	99.5	3.3	0.5	22
C. elegans 100 Mbp		Canu	99.7	96.8	125.7	4	14
	100 Mbp	Flye	99.6	98.0	103.6	1	90
	TOO MIDP	SPAdes	92.0	90.8	16.8	2	75
		Unicycler	97.0	97.1	90.2	24	105
H. sapiens 3		Canu	95.1	94.6	165.4	562	59
	2200 Mbp	Flye	95.5	89.7	284.9	120	400
	3200 Mbp	SPAdes	NA	NA	NA	∞	∞
		Unicycler	NA	NA	NA	∞	∞

Machine has 64 cores and 720 Gb RAM. Figures are approximate.

Many tools! Pick the one which suits your requirements

	Long read assembly		Polishing		
Tool	Properties	Tools	Reads type		
Flye	Best overall	Racon	Long read polishing		
Canu	Low RAM requirement	Medaka	Long read polishing (only ONT)		
Miniasm+	Good contiguity & plasmid assembly	Pilon	Short reads		
Shasta	Low resource usage, low runtime	NextPolish	Short reads		

Special cases: If reads are PacBio Hifi, can use HiCanu (purpose-built)

Thank you!