CH 7 - Linear Diophantine Equations

Luke Lu • 2025-10-27

Recall the Extended Euclidean Algorithm

$$253x + 143y = d, d = \gcd(253, 143)$$

i	x	y	r	q
i = 1	1	0	253	0
i = 2	0	1	143	0
i = 3	1	-1	110	1
i=4	-1	2	33	1
i = 5	4	-7	11	3
i = 6	-13	23	0	3

Diophantine Equations

 \bigcirc **Tip** — Simplest Linear Diophantine Equation: ax = b

For all integers a, b, and c, with a, b both not zero, the linear Diophantine equation

$$ax + by = c$$

(in variable x and y) has integer solution if and only if $d \mid c$, where $d = \gcd(a, b)$

Proof

Let $a, b, c \in \mathbb{Z}$; $a, b \neq 0$; $d = \gcd(a, b)$

We prove two implications:

Suppose
$$\exists x_0, y_0 \in \mathbb{Z}, ax_0 + by_0 = c$$

Since $d = \gcd(a, b)$, we have $d \mid a, d \mid b$.

Since $x_0, y_0 \in \mathbb{Z}$, by DIC, $d \mid (ax_0 + by_0)$

2. \Leftarrow Suppose $d \mid c$.

Then by defintion $\exists l \in \mathbb{Z} \text{ s.t } c = l \cdot d$.

By Bézout's Lemma, $\exists s, t \in \mathbb{Z}$ s.t.

as + bt = d. Multiply the equation by $l \Longrightarrow asl + btl = dl = a(ls) + b(lt) = c$.

Since $s, l, t \in \mathbb{Z}$, we have integer solution to the Diophantine equation, namely x = ls, y = lt

ស Info — Linear Diophantine Equation Theorem, Part 2 (LDET 2)

Let a, b, c be integers with a, b both not zero, and define $d = \gcd(a, b)$. If $x = x_0$ and $y = y_0$ is one particular integer solution to the linear Diophantine equation ax + by = c, then the set of all solutions is given by

$$\left\{(x,y): x=x_0+\frac{b}{d}n, y=y_0+\frac{a}{d}n, n\in\mathbb{Z}\right\}$$

Proof

Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. Let $d = \gcd(a, b)$

Suppose $x = x_0, y = y_0$ is one particular solution to LDE ax + by = c

Let
$$A = \left\{ (x,y) : x = x_0 + \frac{b}{d}n, y = y_0 + \frac{a}{d}n, n \in \mathbb{Z} \right\}$$

Let
$$B = \{(x,y) : ax + by = c, x, y \in \mathbb{Z}\}$$

We want to show

1. $A \subseteq B$, suppose $(x,y) \in A$, then $x = x_0 + \frac{b}{d}n$, $y = y_0 + \frac{a}{d}n$, $n \in \mathbb{Z}$

Note, since $d \mid a, d \mid b \Longrightarrow \frac{b}{d}, \frac{a}{d} \in \mathbb{Z}$

So
$$x = x_0 + \frac{b}{d}n \in \mathbb{Z}$$
 and $y = y_0 + \frac{a}{d}n \in \mathbb{Z}$

Now substitute in x, y to then LHS of the linear Diophantine equation.

Then
$$ax + by = a(x_0 + \frac{b}{d}n) + b(y_0 + \frac{a}{d}n) = ax_0 + \frac{ab}{d}n + by_0 - \frac{ab}{d}n$$

$$\implies ax_0 + by_0 = c.$$

$$\therefore (x,y) \in B \Longrightarrow A \subseteq B$$

2. $B \subseteq A$ consider $(x, y) \in B$, then $x, y \in \mathbb{Z}$ and ax + by = c.

We also have (x_0, y_0) is a solution to the LDE, so $ax_0 + by_0 = c$

Substract those equations: $ax + by - ax_0 - by_0 = 0 \Longrightarrow a(x - x_0) + b(y - y_0) = c$

Then
$$a(x - x_0) = -b(y - y_0)$$

Note, since $a, b \neq 0, d = \gcd(a, b) > 0, \frac{a}{d}$ and $-\frac{b}{d} \in \mathbb{Z}$

So
$$\frac{a}{d}(x-x_0) = -\frac{b}{d}(y-y_0) \Longrightarrow \frac{b}{d} \mid \left(\frac{a}{b}(x-x_0)\right)$$

By Division by GCD, $\gcd\left(\frac{a}{d}, -\frac{b}{c}\right) = 1$

By Coprimeness and Divisibility, $\frac{b}{d} \mid (x-x_0).$

By definition of divisibility, $\exists n \in \mathbb{Z}, x - x_0 = \frac{b}{d}n$ in other words, $x = x_0 + \frac{b}{d}n$.

Substitute
$$y-y_0=rac{b}{d}n$$
 and isolate: $-rac{a}{d}\left(rac{b}{d}n
ight)=-rac{b}{d}y-y_0\Longrightarrow y=y_0-rac{a}{d}n$

$$\div (x,y) \in A, \text{so } B \subseteq A$$

Examples:

Are there integer solutions to the following linear Diophantine equation:

1.
$$253x + 143y = 11$$

ANS: YES
$$x = 4, y = -7$$

2.
$$253x + 143y = 155$$

ANS: LDET 1 says there exists a solution if and only if $11 \mid 155$.

However, $11 \nmid 155$. Hence there are no integer solutions

3.
$$253x + 143y = 154$$

ANS: LDET 1 says there exists a solution if and only if 11 | 154. 11 | $(11 \cdot 14)$.

By multipling the equation of example 1 by 14:

$$14 \cdot (253x + 143y) = 14 \cdot 11 = 253 \cdot (14x) + 143 \cdot (14y) = 154, x = 56, y = -98$$

4.
$$343x + 259y = 658$$

ANS: Has a solution, x = -282, y = 376

To find all solutions, we apply LEDT 2, the solution set is

$$\{(x,y): -282+37n, y=376-49n, n\in\mathbb{Z}\}$$

5. A customers has a large quantity of dimes and quarters. In how many ways can she pay exactly for an items that costs \$ 2.65?

ANS: Let x be number of quarters and y be number of dimes.

Consider LDE: 25x + 10y = 265. We look for non-negative integer solutions.

By inspection, x = 9, y = 4 is one particular solution

By LDET 2, we have $\{x,y\}: 9+2n, 4-5n, n\geq 0$ We get $n=\{-4,-3,-2,-1,0\}$ that satisfy the inequalities.