Notes on Programming Language Concepts and More

Tadayoshi Kamegai

First Version : Jan 29, 2025 Last Update : Jan 29, 2025

Contents

	Denotational Semantics	1
	1.1 An Aside on Continuity	2
	1.2 Fixed Point Theorems	4
	1.3 The Factorial Function	5
2	Basics of Category Theory	5
3	Monads	5
	3.1 In Category Theory	5

1 Denotational Semantics

This section is concerned about the approach of giving meaning to programming languages by constructing objects (called denotations) that describe meanings of expressions.

Definition 1.1 Given a partially ordered set D, we define a **directed set** to be a $S \subseteq D$ such that every pair of elements of S has an upper bound.

Definition 1.2 Let D be a partially ordered set with order \sqsubseteq . We define the **least upper bound** (lub) of a subset $S \subseteq D$ denoted $\bigsqcup S$ if it satisfies:

- $\bigsqcup S$ is greater than or equal to every element in S; $\forall x \in S, \ x \sqsubseteq \bigsqcup S$
- $\bigsqcup S$ is the smallest such element; $\forall y \in D, (\forall x \in S, x \sqsubseteq y) \implies (\bigsqcup S \sqsubseteq y)$

Definition 1.3 Let D be a partially ordered set over \sqsubseteq . We say that a function $f: D \to E$ is **continuous** (or Scott continuous) if it preserves least upper bounds for directed sets. That is, for every directed set S,

$$f(\bigsqcup S) = \bigsqcup f(S)$$

Definition 1.4 We say that a partial ordered set (D, \sqsubseteq) is an ω -complete partial order $(\omega$ -cpo) if every countable ascending chain $(d_0 \sqsubseteq d_1 \sqsubseteq \ldots)$ has a least upper bound, written $\bigsqcup_{n\geq 0} d_n$.

Additionally, we say (D, \sqsubseteq) is a cpo with bottom, if it has a least element $\bot \in D$ (over \sqsubseteq).

Remark 1.5 Note the distinction between complete partial orders (including dcpo and ccpo) and complete lattices. Notably, we don't force every subset to have a suprema.

Definition 1.6 Let D be an ω -cpo and $f: D \to D$. We say that $d \in D$ is a **fixed point** of f if f(d) = d. We say it is a **prefixed point** if $f(d) \sqsubseteq d$

Definition 1.7 Given ω -cpos D, D', we say that a function $f: D \to D'$ is **monotonic** if

$$\forall d, d' \in D, d \sqsubseteq d' \implies f(d) \sqsubseteq f(d')$$

Proposition 1.8 Scott continuous functions are monotonic.

Proof. Let $f: D \to D'$ over ω -cpos D, D'. Suppose we take $d, d' \in D$ such that $d \sqsubseteq d'$. Then, by continuity,

$$f(d') = f(d \sqcup d') = f(d) \sqcup f(d')$$

It therefore follows from the definition of directed suprema that $f(d) \subseteq f(d')$.

Theorem 1.9 (Kleene's Fixed Point Theorem for ω -cpos) Let D be a ω -cpo with bottom, and $f: D \to D$ be a continuous function. Define

$$lfp(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\bot)$$

Then lfp(f) is the least fixed point of f.

Proof. We first show that lfp(f) is a fixed point of f. Noting that f is continuous, we have

$$f(\operatorname{lfp}(f)) = f(\bigsqcup_{n \in \mathbb{N}} f^n(\bot))$$

$$= \bigsqcup_{n \in \mathbb{N}} f^{n+1}(\bot)$$

$$= \bigsqcup_{n \in \mathbb{N}} f^{n+1}(\bot) \sqcup \{\bot\}$$

$$= \bigsqcup_{n \in \mathbb{N}} f^n(\bot)$$

$$= \operatorname{lfp}(f)$$

This shows lfp(f) is a fixed point.

Let d be any prefixed point. Noting that $\bot \sqsubseteq d$, as scott-continuous functions are monotone, we have $f(\bot) \sqsubseteq f(d)$. As d is a prefixed point, $f(\bot) \sqsubseteq d$, and inductively $f^n(\bot) \sqsubseteq d$. This gives

$$lfp(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\bot) \sqsubseteq d$$

As all fixed points are prefixed points, this shows lfp(f) is the least fixed point of f.

1.1 An Aside on Continuity

Scott continuity has an interpretation under continuity in the topological sense, which we will discuss in this subsection.

Notation 1.10 Given a partially ordered set (D, \sqsubseteq) and a set $X \subseteq D$, we write

- $\bullet \uparrow X = \{d \in D : \exists x \in X, x \sqsubseteq d\}$
- $\downarrow X = \{d \in D : \exists x \in X, d \sqsubseteq x\}$

Where it is clear, we may write $\uparrow x$ to represent $\uparrow \{x\}$ and similarly for $\downarrow x$.

Definition 1.11 We call a set to be an **upper set** if $\uparrow X = X$. If $\downarrow X = X$, then we say that X is a **lower set**.

Remark 1.12 As \sqsubseteq is reflexive, we have $X \subseteq \uparrow X$. Therefore, to prove X is an upper set, it suffices to show that $\uparrow X \subseteq X$.

Definition 1.13 Let (D, \sqsubseteq) be a partially ordered set. A subset $O \subseteq D$ is called **Scott-open** if is an upper set that is inaccessible by directed suprema. That is, all directed sets S with a supremum in O have a non-empty intersection with O.

Proposition 1.14 The Scott-open subsets of a partially ordered set (D, \sqsubseteq) form a topology on D, which is called the **Scott topology** and written as (D, τ) .

Proof. Start by noting that \emptyset and D are both trivially Scott open.

Consider a family of Scott open sets $\mathcal{U} = \{U_i\}_{i \in I}$. Take any $x \in \uparrow (\bigcup \mathcal{U})$. Then, there exists an $i \in I$ such that $y \in U_i$ and $y \sqsubseteq x$. Now,

$$x \in \uparrow U_i = U_i \subseteq \bigcup \mathcal{U}$$

Henceforth $\uparrow (\bigcup \mathcal{U}) \subseteq \bigcup \mathcal{U}$ and equality follows. Now, let $X \subseteq D$ be a directed subset such that $\bigcup X \in \bigcup \mathcal{U}$. Then, there exists a $i \in I$ such that $\bigcup X \in U_i$. Then as U_i is Scott open, $X \cap U_i \neq \emptyset$. Using

$$X \cap U_i \subseteq \bigcup_{i \in I} (X \cap U_i) = X \cap \bigcup_{i \in I} U_i = X \cap (\bigcup \mathcal{U})$$

We see that $X \cap (\bigcup \mathcal{U}) \neq \emptyset$. Thus $\bigcup \mathcal{U}$ is Scott open.

Take any $U, V \in \tau$ and let $x \in \uparrow (U \cap V)$. Then, there exists a $y \in U \cap V$ with $y \subseteq x$. Now, as U and V are both upper sets, we have

$$x \in (\uparrow U) \cap (\uparrow V) = U \cap V$$

This gives $\uparrow (U \cap V) \subseteq U \cap V$. Now, let $X \subseteq D$ be a directed subset such that $\bigsqcup X \in U \cap V$. As U and V are Scott open, there exists a $u \in X \cap U$ and $v \in X \cap V$. As X is directed, there exists a $x \in X$ such that $u \sqsubseteq x$ and $v \sqsubseteq x$. Now,

$$x \in X \cap ((\uparrow U) \cap (\uparrow V)) = X \cap (U \cap V)$$

Hence, $D \cap (U \cap V) \neq \emptyset$. Thus $U \cap V$ is Scott open.

Proposition 1.15 Let (D, \Box) be a partially ordered set. For any $d \in D$, $D \setminus (\downarrow d)$ is Scott open.

Proof. Let $x \in \uparrow (D \setminus \downarrow d)$. Then there exists a $y \in D \setminus \downarrow d$ such that $y \sqsubseteq x$. Suppose for a contradiction that $x \in \downarrow d$. That is, $x \sqsubseteq d$. By transitivity of \sqsubseteq , $y \sqsubseteq p$. This contradicts $y \in D \setminus \downarrow d$. Therefore $x \in D \setminus \downarrow d$. Thus, $D \setminus \downarrow d$ is an upper set.

Now consider a directed set $X \subseteq D$ such that $\bigsqcup X \in D \setminus \downarrow d$. Then, $\bigsqcup X \not\sqsubseteq d$. Suppose for a contradiction that $X \cap (D \setminus \downarrow d) = \emptyset$. This gives $X \subseteq \downarrow d$. This means that d is an upper bound for X, giving $\bigsqcup X \sqsubseteq d$, which is a contradiction. Thus, $X \cap (D \setminus \downarrow d) \neq \emptyset$. This shows $D \setminus \downarrow d$ is inaccessible by directed suprema, meaning it is Scott open.

Lemma 1.16 If f is continuous under the Scott topology, it is monotonic.

Proof. Let $f: D \to E$ be continuous under the Scott topology. Take $x, x' \in D$ such that $x \sqsubseteq x'$. Supose for a contradiction that $f(x) \not\sqsubseteq f(x')$. Then, $f(x) \in E \setminus f(x')$. Noting this set is Scott open, we have $x \in f^{-1}(E \setminus f(x'))$ which is also Scott open by continuity. As this set is upper closed, it follows that $x' \in f^{-1}(E \setminus f(x'))$. Now,

$$x' \in f^{-1}(E \setminus \downarrow f(x')) \implies f(x) \in E \setminus \downarrow f(x')$$

 $\implies f(x') \sqsubseteq f(x')$

which is a contradiction. Hence, it follows that $f(x) \sqsubseteq f(x')$.

Theorem 1.17 A function between partially ordered sets (D, \sqsubseteq) is Scott continuous if and only if it is continuous with respect to the Scott topology.

Proof. (\Rightarrow) Suppose that $f: D \to E$ is Scott continuous. Take any Scott open set U in E. We want to show that $f^{-1}(U)$ is Scott open. Specifically, we wish to show that U is (i) an upper set and (ii) all directed sets with a supremum in $f^{-1}(U)$ has a non-empty intersection with $f^{-1}(U)$.

- For (i), take any $x \in f^{-1}(U)$ such that $f(x) \in U$. Given $x \sqsubseteq x'$, by monotonicity of Scott continuous functions we have $f(x) \sqsubseteq f(x')$. As U is an upper set, we have $f(x') \in U$. It follows that $x' \in f^{-1}(U)$.
- For (ii), Take $X \subseteq D$ be any directed set such that $\bigsqcup X \in f^{-1}(U)$. That is, $f(\bigsqcup X) \in U$. By Scott continuity, $\bigsqcup f(X) \in U$. As U is Scott open, we have $f(X) \cap U \neq \emptyset$. Equivalently, there is a $x \in X$ such that $f(x) \in U$. Thus, $x \in f^{-1}(U)$, therefore it is inaccessible by a directed suprema.
- (\Leftarrow) Suppose that f is continuous in the Scott topology, such that for any Scott open set $U \in E$, $f^{-1}(U)$ is Scott open in D. We wish to show that f is Scott continuous, such that for any directed set $X \subseteq D$ with a supremum,

$$f(\mid X) = \mid f(X)$$

We prove this by showing that $f(\coprod X)$ is (i) an upper bound and (ii) the least upper bound with respect to f(X).

- For (i), note that as f is monotone from Lemma 1.16, given any $x \in X$, we have $x \sqsubseteq \bigsqcup X$, meaning $f(x) \sqsubseteq f(|X|)$. This shows $|f(X) \sqsubseteq f(|X|)$.
- For (ii), Suppose for a contradiction that $f(\bigsqcup X) \not\sqsubseteq \bigsqcup f(X)$. Then, $f(\bigsqcup X) \in E \setminus \bigcup \bigsqcup f(X)$. It follows that $\bigsqcup X \in f^{-1}(E \setminus \bigcup \bigsqcup f(X))$. As this is Scott open, $X \cap f^{-1}(E \setminus \bigcup \bigsqcup f(X)) \neq \emptyset$. Taking x to be an element in this, we have $f(x) \in f(X)$ and $f(x) \in E \setminus \bigcup \bigsqcup f(X)$. The latter transforms into $f(x) \not\sqsubseteq \bigsqcup f(X)$, contradicting with $f(x) \in f(X)$. We therefore have $f(\bigsqcup X) \sqsubseteq \bigsqcup f(X)$.

1.2 Fixed Point Theorems

We write a brief section on some theorems regarding fixed points.

Theorem 1.18 (Bourbaki-Witt Theorem)

Theorem 1.19 (Knaster-Tarski Theorem)

4

1.3 The Factorial Function

Definition 1.20 Given two sets A and B, an **empty function** is a partial function $A \rightarrow B$ that has no defined maps from elements of A. Alternatively, if we interpret this as a function from A to Option B that takes $a \mapsto \mathsf{Nothing}$. We often write \bot to represent this function.

Proposition 1.21 The set of partial functions from \mathbb{N} to \mathbb{N} with the standard \sqsubseteq on partial functions is a ω -cpo.

Example 1.22

Consider the factorial function which might be recursively defined as

```
int factorial(int n) {
    if (n == 0)
        then 1;
    else
        n * factorial(n-1);
}
```

under a programming context. We will write f to represent this function.

To give meaning to this f, we model this through an approximation as a partial function $\mathbb{N} \to \mathbb{N}$ starting with the empty function. We introduce a function $F: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ defined by the map

$$f \mapsto \{0 \mapsto 1\} \oplus \{n \mapsto n * f(n-1) : n \in \mathbb{N} \setminus \{0\}\}$$

where \oplus represents an overloading of function maps. Then we define $F^0(\bot) = \bot$ and $F^{n+1}(\bot) = F(F^n(\bot))$. This process builds a sequence of $\mathbb{N} \to \mathbb{N}$. Note that this sequence satisfies $F^n \sqsubseteq F^{n+1}$. As $\mathbb{N} \to \mathbb{N}$ is an ω -cpo, by Kleene's Fixed Point Theorem, setting

$$f := \bigsqcup_{n \in \mathbb{N}} F^n(\bot)$$

this define a suitable interpretation of the recursive function defined above. Notice that we take the least fixed point on F, as we are talking about functions that terminate.

2 Basics of Category Theory

3 Monads

3.1 In Category Theory

A monad is an endofunctor with additional structure (two natural transformations). In pop culture, we often say that a monad is a "monoid in the category of endofunctors" (for some fixed category).

Definition 3.1 (Monad) Let C be a category. A **monad** on C is a triple (T, η, μ) where $T : C \to C$ is an endofunctor, $\eta : 1_C \to T$ (where 1_C is the identity functor on C), $\mu : T^2 \to T$, satisfying the following coherence conditions:

- $\mu \circ T\mu = \mu \circ \mu T$ where $T\mu$ and μT are formed by horizontal composition
- $\mu \circ T\eta = \mu \circ \eta T = 1_T$ where 1_T is the identity transformation from T to T.

Alternatively, we can write these using two commutative diagrams

$$\begin{array}{cccc}
T^3 & \xrightarrow{T\mu} & T^2 & & & T & \xrightarrow{\eta T} & T^2 \\
(i) & \mu T & & \downarrow \mu & & & (ii) & T\eta \downarrow & \downarrow \mu \\
T^2 & \xrightarrow{\mu} & T & & & T^2 & \xrightarrow{\mu} & T
\end{array}$$

$$(ii) \quad T \xrightarrow{\eta T} T^{2}$$

$$\downarrow \mu$$

$$T^{2} \xrightarrow{} T$$