STA414

Lecture Notes

Yuchen Wang

January 31, 2020

Contents

1	Cha	apter 1: Real Numbers	2
	1.1	Discussion: The Irrationality of $\sqrt{2}$	2
	1.2	Preliminaries	2
	1.3	The axiom of completeness	
	1.4	Consequences of Completeness	4
	1.5	Cardinality	
		1.5.1 1-1 Correspondence	١
		1.5.2 Countable Sets	١
	1.6	Cantor's Theorem	(
2	Seq	uences and Series	٤
	2.1	The Limit of a Sequence	8
3	Met	tric Spaces and the Baire Category Theorem	8
	3.1	Basic Definitions	Ć
	3.2	Topology on Metric Spaces	(
	3.3	Baire's Theorem	[]
	3.4	The Baire Category Theorem	1
	3.5	Topology of (X, d)	1

1 Chapter 1: Real Numbers

1.1 Discussion: The Irrationality of $\sqrt{2}$

If we make natural numbers \mathbb{N} closed under subtraction, we obtain

$$\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$$

If we take the closure of \mathbb{Z} under division by non-zero numbers, we obtain

$$\mathbb{Q} = \{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}, (m, n) = 1 \}$$

Remark 1.1. (m,n)=1 means that if $d \in \mathbb{N}$ divides both m and n, then d=1.

Theorem 1.1. There is no $r \in \mathbb{Q}$ s.t. $r^2 = 2$.

Proof. Assume for contradiction that there are $m \in \mathbb{Z}.n \in \mathbb{N}$ s.t. $\frac{m}{n} = \sqrt{2}$ and (m,n) = 1.

Then $m^2 = 2n^2$ so that m^2 is an even complete square.

Suppose $m = p_1 \dots p_r$ where p_i s are prime numbers. Then $2n^2 = m^2 = p_1^2 \dots p_r^2 \implies p_i^2 = 2^2$.

Then $4|m^2$ and $2|n^2$, so n has to be even. Therefore both m and n are even.

Then 2|m and 2|n, which leads to a contradiction that if $d \in \mathbb{N}$ divides both m and n, then d = 1.

1.2 Preliminaries

Definition 1.1 (set). A <u>set</u> is any collection of objects.

Definition 1.2 (function). Given two sets A and B, a function from A to B is a rule or mapping that takes each element $x \in A$ and associates with it a single element of B. In this case, we write $(f : A \to B)$. It is the set of pairs $(A, B) \in A \times B$ s.t.

- 1. If $(x, y_1) \in f$ and $(x, y_2) \in f$, then $y_1 = y_2$.
- 2. For all $x \in A$, there is some $y \in B$ s.t. f(x) = y.

The set A is said to be the <u>domain</u> of f. The <u>range</u> of f is not necessarily equal to B but refers to the subset of B given by $\{y \in B : y = f(x) \text{ for some } x \in A\}$.

Example 1.1 (absolute value function). For every x,

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

Theorem 1.2 (triangle inequality).

$$|x+y| \le |x| + |y|$$

Proof.

$$(x+y)^{2} = x^{2} + y^{2} + 2xy$$

$$\leq |x|^{2} + |y|^{2} + 2|x||y|$$

$$= (|x| + |y|)^{2}$$

$$\Longrightarrow |x+y| = \sqrt{(x+y)^{2}}$$

$$\leq \sqrt{(|x| + |y|)^{2}}$$

$$= ||x| + |y||$$

$$= |x| + |y|$$

Definition 1.3 (maximum and minimum). Assume set $X \subseteq \mathbb{R}$. Then the maximum (minimum) of X is an element $a \in X$ s.t. for all $x \in X$, $x \le a(x \ge a)$.

Definition 1.4 (least upper bound / supremum). The <u>least upper bound</u> of X (denoted by $\sup(X)$) is a real number $a \in \mathbb{R}$ s.t.

- 1. For all $x \in X$, $x \le a$ (this means that a is an upper bound for X)
- 2. If b is an upper bound for X, then $a \leq b$

Example 1.2.

$$\max([0,1]) = 1$$
$$\min([0,1]) = 0$$
$$\sup((0,1)) = 1$$
$$\sup(\mathbb{R}), \sup(\mathbb{N}) DNE$$

1.3 The axiom of completeness

Definition 1.5 (initial segment). $X \subseteq \mathbb{Q}$ is said to be an initial segment if

- 1. $X \neq \emptyset$
- 2. For all $x, y \in \mathbb{Q}$, if x < y and $y \in X$, then $x \in X$.
- 3. $X \neq \mathbb{Q}$

Definition 1.6 (real numbers). $\mathbb{R} = \{ \sup(X) : X \text{ is an initial segment of } \mathbb{Q} \}$ Properties of \mathbb{R} :

- 1. \mathbb{R} is an ordered field
- 2. ???

Lemma 1.1 (supremum). Suppose $A \subseteq \mathbb{R}$ and $s \in \mathbb{R}$ is an upper bound for A. If $\forall \epsilon > 0, \exists a \in A, a + \epsilon > s$, then $s = \sup(A)$

Proof. (\iff) Assume for contradiction that $t \in \mathbb{R}$ is an upper bound for A and t < s.

Let $\epsilon = \frac{s-t}{2}$. Obviously $\epsilon > 0$.

But then $\forall a \in A, a + \epsilon \le t + \epsilon < s$, which is a contradiction.

 (\Longrightarrow) Assume for contradiction that $\epsilon_0 > 0$ and $\forall a \in A, a + \epsilon \leq S$

Then $\forall a \in A, a \leq S - \epsilon_0$.

So $s - \epsilon_0$ is an upper bound for A, which is a contradiction that $a + \epsilon > s$.

Theorem 1.3 (the axiom of completeness). If $X \subset \mathbb{R}$ is bounded above, then X has a least upper bound.

Proof. For $x \in X$, let Ax be the initial segment of \mathbb{Q} corresponding to x.

Since X is bounded above, pick $b \in \mathbb{R}$ s.t. $\forall x \in X, x < b$. Then $b \notin \bigcup_{x \in X} Ax$. Note that $\bigcup_{x \in X} Ax$ is an initial segment of \mathbb{Q} . Then $\sup(\bigcup_{x \in X} Ax)$ is $\sup(X)$.

1.4 Consequences of Completeness

Definition 1.7 (nested sequence of sets). Assume $\langle A_n : n \in \mathbb{N} \rangle$ is a sequence of sets.

 $\langle A_n : n \in \mathbb{N} \rangle$ is said to be <u>nested</u> if

$$A_{n+1} \subseteq A_n$$

Theorem 1.4 (Nested Interval Property). Assume $\langle I_n : n \in \mathbb{N} \rangle$ is a nested sequence of closed intervals of \mathbb{R} . Then

$$\bigcap_{n} I_n \neq \emptyset$$

Proof. Let $[a_n, b_n] = I_n$ where $a_n, b_n \in \mathbb{R}$.

Since $\langle I_n | n \in \mathbb{N} \rangle$ is nested,

$$a_n < a_{n+1} < b_{n+1} < b_n$$
 (†)

for all $n \in \mathbb{N}$

Let $A = \{a_n : n \in \mathbb{N}\}.$

Note that b_1 is an upper bound for A. So A has a supremum in \mathbb{R} .

We claim that $\sup(A) \in \cap I_n$.

By (\dagger) , for all $n \in \mathbb{N}$, $\sup(A) \leq b_n$

Obviously, for all $n \in \mathbb{N}$, $\sup(A) \ge a_n$

So $\forall n \in \mathbb{N}, a_n \leq \sup(A) \leq b_n$.

Therefore $\forall n \in \mathbb{N}, \sup(A) \in [a_n, b_n].$

Example 1.3.

$$\bigcap_{n\in\mathbb{N}}(0,\frac{1}{n})=\emptyset$$

$$\bigcap_{n\in\mathbb{N}} [0, \frac{1}{n}] = \{0\}$$

Theorem 1.5 (Archimedian Property). 1. For every $y \in \mathbb{R}$, there is $n \in \mathbb{N}$ s.t. $y \leq n$.

2. For every y > 0, there is $n \in \mathbb{N}s.t.\frac{1}{n} < y$.

Proof. (1) Assume for contradiction that \mathbb{N} is bounded in \mathbb{R} .

Let $\alpha = \sup(\mathbb{N})$. Then there is a natural number $n \in \mathbb{N}$ s.t. $n > \alpha - 1$.

But then $n+1 > (\alpha-1)+1 = \alpha$, which is a natural number greater than α , contradiction.

(2) Exercise.

Theorem 1.6 (density of \mathbb{Q} in \mathbb{R}). For every two real numbers a and b with a < b, there exists a rational number r satisfying a < r < b.

Proof. Let $n \in \mathbb{N}$ s.t. $\frac{1}{n} < b - a, 1 < nb - na$.

Let $m \in \mathbb{Z}$ s.t. na < m < nb.

Then $a < \frac{m}{n} < b$.

Pick $r = \frac{m}{n}$ and we are done.

1.5 Cardinality

"The size of a set"

1.5.1 1-1 Correspondence

Definition 1.8 (one-to-one and onto). A function $f: A \to B$ is one-to-one (1-1) if $a_1 \neq a_2$ in A implies that $f(a_1) \neq f(a_2)$ in B. The function f is onto if, given any $b \in B$, it is possible to find an element $a \in A$ for which f(a) = b.

Proposition 1.1. If $f: A \to B$ and $g: B \to C$ is 1-1, then $g \circ f: A \to C$ is 1-1.

Remark 1.2. If a function $f: A \to B$ is both 1-1 and onto, then there is a 1-1 correspondence between two sets.

Definition 1.9 (the same cardinality). The set A has the same cardinality as B if there exists $f: A \to B$ that is 1-1 and onto. In this case, we write $A \sim B$.

Proposition 1.2. If $A \sim B, B \sim C$, then $A \sim C$

Proposition 1.3. If $Card(A) \leq Card(B) \leq Card(C)$, then $Card(A) \leq Card(C)$

1.5.2 Countable Sets

A set A is countable if $\mathbb{N} \sim A$. An infinite set that is not countable is called an uncountable set.

Theorem 1.7. The set Q is countable.

Proof. Set $A_1 = \{0\}$ and for each $n \geq 2$, let A_n be the set given by

$$A_n = \{\pm \frac{p}{q} : \text{where } p, q \in \mathbb{N} \text{ are in lowest terms with } p + q = n\}$$

e.g.
$$A_2 = \{\frac{1}{1}, \frac{-1}{1}\}, A_3 = \{\frac{1}{2}, \frac{-1}{2}, \frac{2}{1}, \frac{-2}{1}\}$$

$$\mathbf{N}: \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ \cdots$$

$$\mathbf{Q}: \underbrace{0 \ \frac{1}{1} \ -\frac{1}{1}}_{A_1} \ \underbrace{\frac{1}{2} \ -\frac{1}{2} \ \frac{2}{1} \ -\frac{2}{1}}_{A_3} \ \underbrace{\frac{1}{3} \ -\frac{1}{3} \ \frac{3}{1} \ -\frac{3}{1}}_{A_4} \ \cdots$$

The above correspondence is onto because every rational number appears in the correspondence exactly once. The above correspondence is 1-1 because A_N were constructed to be disjoint so that no rational number appears twice.

Theorem 1.8. The set \mathbb{R} is uncountable.

Proof. Assume for contradiction that there does exist a bijection function $f : \mathbb{N} \to \mathbb{R}$. Let $x_1 = f(1), x_2 = f(2)$ and so on. Then since f is onto, can write

$$\mathbb{R} = \{x_1, x_2, x_3, x_4, \ldots\} \tag{1}$$

and be confident that every real number appears somewhere on the list.

We will now use the Nested Interval Property to produce a real number that is not there. Let I_1 be a closed interval that does not contain x_1 . given an interval I_n , construct I_{n+1} to satisfy $I_{n+1} \subseteq I_n$ and $x_{n+1} \notin I_{n+1}$.

If x_{n_0} is some real number from the list in (1), then we have $x_{n_0} \notin I_{n_0}$, and it follows that

$$x_{n_0} \notin \bigcap_{n=1}^{\infty} I_n$$

Since we are assuming that the list in (1) contains every real number, then

$$\bigcap_{n=1}^{\infty} I_n = \emptyset$$

However, the NIP asserts that $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$, which is a contradiction.

Theorem 1.9. If $A \subseteq B$ and B is countable, then A is either countable or finite.

Theorem 1.10. (i) If $A_1, A_2, ..., A_m$ are countable sets, then the union $A_1 \cup A_2 \cup ... \cup A_m$ is countable. (ii) If A_n is a countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is countable.

Theorem 1.11. The open interval $(0,1) = \{x \in \mathbb{R} : 0 < x < 1\}$ is uncountable.

1.6 Cantor's Theorem

Notation 1.1. Given a set A, the power set P(A) refers to the collection of all subsets of A.

Theorem 1.12 (Cantor's Theorem). Given any set A, there does not exist a function $f: A \to P(A)$ that is onto.

Proof. Assume, for contradiction, that $f: A \to P(A)$ is onto. For each element $a \in A$, f(a) is a particular subset of A. The assumption that f is onto means that every subset of A appears as f(a) for some $a \in A$. To arrive at a contradiction, we will produce a subset $B \subseteq A$ that is not equal to f(a) for any $a \in A$. Construct B using the following rule. For each element $a \in A$, consider the subset f(a). This subset of A may contain the element a or it may not. This depends on the function f. If f(a) does not contain a, then we include a in our set B: Let

$$B = \{ a \in A : a \notin f(a) \}$$

Since we have assumed that our function $f: A \to P(A)$ is onto, it must be that B = f(a') for some $a' \in A$.

Case 1 $a' \in B$

Then $a' \notin f(a') = B$, a contradiction.

Case 2 $a' \notin B$

Then $a' \in f(a') = B$, a contradiction.

Theorem 1.13 (Schröder-Bernstein Theorem). If there are 1-1 functions $f: A \to B$ and $h: B \to A$, then there is a bijection $g: A \to B$.

Proof. Claim: the statement of the theorem is equivalent to the following:

If $B \subseteq A$ and $f: A \to B$ is 1-1, then there is a bijection $g: A \to B$. (*)

proof of claim: theorem \implies (*):

Take $h: X \to Y$ with h(x) = x, then $X \subseteq Y$.

 $(*) \implies \text{theorem:}$

Let $f: A \to B$ and $h: B \to A$ be 1-1 functions, as in the theorem. We need to show that there is bijection $g: A \to B$.

Notice that $A \subseteq h(B)$ and $h \circ f : A \to h(B)$ is a 1-1 function. So by (*), there is a bijection $g_0 : A \to h(B)$. But $h : B \to h(B)$ is also a bijection. So $g = h^{-1} \circ g_0 : A \to B$ is a bijection (using the fact that bijections are closed under compositions).

Now it suffices to prove (*).

Assume set $X \subseteq Y$ and $f: Y \to X$. Let $W = \bigcup_{n=0}^{\infty} f^n(Y \setminus X)$.

Define $g: Y \to X$ by:

- If $y \in W$, then g(y) = f(y)
- If $y \in Z := Y \setminus W$, then q(y) = y

We need to show that $g: Y \to X$ is a well-defined bijection.

Since f is 1-1, for all m < n, $f^m(Y \setminus X) \cap f^n(Y \setminus X) = \emptyset$

Note that

$$Y \setminus W = Y \setminus \bigcup_{n=0}^{\infty} f^{n}(Y \setminus X)$$
$$= [Y \setminus (Y \setminus X)] \setminus \bigcup_{n=1}^{\infty} f^{n}(Y \setminus X)$$
$$= X \setminus \bigcup_{n=1}^{\infty} f^{n}(Y \setminus X)$$

Therefore for all $y \in Y, g(y) \in X$.

(Show g is 1-1) Now assume $y_1, y_2 \in Y$ and $g(y_1) = g(y_2)$. We show that $y_1 = y_2$.

Case 1 $y_1, y_2 \in W$

Then $g(y_1) = g(y_2) \implies f(y_1) = f(y_2) \implies y_1 = y_2$.

Case 2 $y_1 \in W$ but $y_2 \in Y \setminus W$

Then $g(y_1) = g(y_2) \implies f(y_1) = y_2$

Note that if $y_1 \in W$, then for some $n \geq 0, y_1 \in f^n(Y \setminus X)$

Then $y_2 \in f^{n+1}(Y \setminus X) \subseteq W$

So $y_2 \in W$, which leads to a contradiction.

Case 3 y_1, y_2 are both in $Z := Y \setminus W$

Then $g(y_1) = g(y_2) \implies y_1 = y_2$.

Therefore by case 1,2,3, g is 1-1.

(Show g is onto) Let $x \in X$. We need to find $y \in Y$ s.t. g(y) = X.

If $x \in \mathbb{Z}$, take y = x.

If $x \in \bigcup_{n=1}^{\infty} f^n(Y \setminus X)$, then fix $n \in \mathbb{N}$ s.t. $x \in f^n(Y \setminus X)$.

But $f^n(Y \setminus X) = f(f^{n-1}(Y \setminus X))$

Pick $y \in f^{n-1}(Y \setminus X)$ s.t. f(y) = x.

Then $y \in W$ and g(y) = x. Therefore g is onto.

2 Sequences and Series

2.1 The Limit of a Sequence

Definition 2.1 (sequence). A sequence is a function whose domain is \mathbb{N}

3 Metric Spaces and the Baire Category Theorem

Definition 3.1 (metric and metric space). Given a set X, a function $d: X \times X \to \mathbb{R}$ is a <u>metric</u> on X if for all $x, y \in X$:

- 1. $d(x,y) \ge 0$ with d(x,y) = 0 if and only if x = y;
- 2. d(x,y) = d(y,x);
- 3. for all $z \in X$, $d(x, y) \le d(x, z) + d(z, y)$

A metric space is a set X together with a metric d.

Example 3.1. The set \mathbb{R} considered with $d: \mathbb{R}^2 \to [0, \infty), (x, y) \mapsto |x - y|$ is a metric space.

Example 3.2. In general, \mathbb{R}^n considered with the Euclidean distance is a metric space.

$$d(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Example 3.3. Let x be a set. The discrete metric d on X is defined by

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Fact If (X, d) is a metric space, $d'(x, y) = \max\{1, d(x, y)\}$ for all $x, y \in X$, then (X, d') is also a metric space.

Example 3.4. Let $X = \{f : A \to \mathbb{R}\}$

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in A\}$$

if the supremum exists.

3.1 Basic Definitions

Definition 3.2. Let (X,d) be a metric space. A sequence $(X_n) \subseteq X$ <u>converges</u> to an element $x \in X$ if $\forall \epsilon > 0, \exists N \in \mathbb{N}, n \geq N \implies d(x_n, x) < \epsilon$.

Key property: If $\lim_{n\to\infty} x_n = x$, $\lim_{n\to\infty} x_n = y$, then x = y.

Proof. WTS d(x,y) = 0

Let $\epsilon > 0$. We will show that $d(x, y) < \epsilon$.

Since $\lim_{n\to\infty} x_n = x$, then $\exists N_1, \forall n \geq N_1, d(x_n, x) < \frac{\epsilon}{2}$

Since $\lim_{n\to\infty} x_n = y$, then $\exists N_2, \forall n \geq N_2, d(x_n, y) < \frac{\epsilon}{2}$

Take $n \ge \max(N_1, N_2)$, then $d(x, y) \le d(x_n, x) + d(x_n, y) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Proposition 3.1. Suppose (X, d) is a metric space, (X, τ) is a topological space, and $F \subseteq X$. If $\lim_{n\to\infty} x_n = x$, $(x_n) \subseteq F$ and F is closed, then $x \in F$.

Proof. Suppose $x \notin F$, i.e., $x \in X \setminus F$.

Since F is closed, then $X \setminus F$ is open, so there is $\epsilon > 0$ s.t. $B_{\epsilon}(x) \subseteq X \setminus F$.

Let N be such that $\forall n \geq N, d(x_n, x) < \epsilon$.

Then $x_n \in B_{\epsilon}(x)$, which implies that $(x_n) \subseteq X \setminus F$, a contradiction.

Proposition 3.2. Suppose (X, d) is a metric space and $F \subseteq X$. If F is not closed, then there exists $(x_n) \subseteq F$ and $x \notin F$ s.t. $\lim_{n \to \infty} x_n = x$.

Proof. If F is not closed, then $X \setminus F$ is not open, so there is $x \in X \setminus F$ s.t. $B_{\epsilon}(x) \not\subseteq X \setminus F$ for all $\epsilon > 0$. Take $x_n \in B_{1/n}(x) \setminus (X \setminus F) = B_{1/n}(x) \cap F$ for each $n \in \mathbb{N}$, then $(x_n) \subseteq F$ and $\lim_{n \to \infty} x_n = x$.

Definition 3.3 (Cauchy sequence). A sequence (x_n) in a metric space (x_n) in a metric space (X,d) is a Cauchy sequence if $\forall \epsilon > 0, \exists N \in \mathbb{N}, m, n \geq N \implies d(x_m, x_n) < \epsilon$.

Proposition 3.3. A convergent sequence is Cauchy.

Proof. Let (x_n) be a convergent sequence, so that $\lim_{n\to\infty} x_n = x$. To check (x_n) is Cauchy, let $\epsilon > 0$. We need to find N s.t. $\forall m, n \geq N, d(x_n, x_m) < \epsilon$.

Apply $\lim_{n\to\infty} x_n = x$ to $\frac{\epsilon}{2}$, we get N s.t. $\forall n \geq N, d(x, x_n) < \frac{\epsilon}{2}$.

Notice that N works for Cauchy:

Take $m, n \geq N$, then

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Remark 3.1. When $X = \mathbb{R}$ with the usual metric, A Cauchy sequence is convergent (the converse is true).

In general not true. For example, $X = \mathbb{R} \setminus \{0\}, d(x,y) = |x-y|, (x_n) = \frac{1}{n}$.

Definition 3.4 (completeness of metric spaces). A metric space (X, d) is <u>complete</u> if every Cauchy sequence in X converges to an element of X.

Example 3.5. $\mathbb{R}, d(x, y) = |x - y|$

Example 3.6. (X, d), d discrete metric.

Example 3.7.
$$C[0,1], d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| = ||f - g||_{\infty}$$

Example 3.8.
$$(\mathbb{N}^{\mathbb{N}}, d), d((x_n), (y_n)) = \frac{1}{\min\{n: x_n \neq y_n\}}$$
 where $\mathbb{N}^{\mathbb{N}} = \{x : \mathbb{N} \to \mathbb{N}\}.$

Definition 3.5. Let (X, d_1) and (Y, d_2) be metric spaces. A function $f: X \to Y$ is <u>continuous</u> at $x \in X$ if $\forall \epsilon > 0, \exists \delta > 0, d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \epsilon$.

3.2 Topology on Metric Spaces

Definition 3.6 (ϵ -neighbourhood). Given $\epsilon > 0$ and an element x in the metric space (X, d), the ϵ -neighbourhood of x is the set $V_{\epsilon}(x) = \{y \in X : d(x, y) < \epsilon\}$

Definition 3.7 (compactness). A subset K of a metric space (X, d) is <u>compact</u> if every sequence in K has a convergent subsequence that converges to a limit in K.

Definition 3.8 (closure and interior). Given a subset E of a metric space (X, d), the <u>closure</u> \bar{E} is the union of E together with its limit points. The <u>interior</u> of E is denoted by E° and is defined as

$$E^{\circ} = \{ x \in E : \exists V_{\epsilon}(x) \subseteq E \}$$

Remark 3.2. $(X,\tau), \tau \subseteq P(X), E \subseteq X$

- 1. $\bar{E} = \text{minimal closed superset of } E = \bigcap \{H : H \text{ closed }, H \supseteq E\}$
- 2. $E^{\circ} = \text{maximal open subset of } E = \bigcup \{U : U \text{ open }, U \subseteq E\}$

Example 3.9. (X,d) is a metric space, τ_d is the topology determined by d: $U \in \tau_d$ iff $\forall x \in U, \exists \epsilon > 0, B_{\epsilon}(x) \subseteq U$

 $F \subseteq X$

$$\bar{F} = \{ x \in X : \forall \epsilon > 0, B_{\epsilon}(x) \cap F \neq \emptyset \}$$
 (2)

$$= \bigcap \{H : H \text{ closed } H \supseteq F\} \tag{3}$$

$$= \{ \lim_{n \to \infty} x_n : (x_n) \subseteq F, \lim_{n \to \infty} x_n \text{ exists } \}$$
 (4)

$$F^{\circ} = \{ x \in X : \exists \epsilon > 0, B_{\epsilon}(x) \cap F \neq \emptyset \}$$
 (5)

$$= \bigcup \{ B_{\epsilon}(x) : \epsilon > 0, x \in F, B_{\epsilon}(x) \subseteq F \}$$

$$(6)$$

(7)

Definition 3.9 (density). A set $A \subseteq X$ is <u>dense</u> in the metric space (X, d) if $\bar{A} = X$. A subset E of a metric space (X, d) is <u>nowhere-dense</u> in X if \bar{E}° is empty.

3.3 Baire's Theorem

Definition 3.10 (nowhere-dense). A set E is <u>nowhere-dense</u> if \bar{E} contains no nonempty open intervals.

Theorem 3.1 (Baire's Theorem). The set of real numbers \mathbb{R} cannot be written as the countable union of nowhere-dense sets.

3.4 The Baire Category Theorem

Theorem 3.2. Let (X,d) be a complete metric space, and let $\{O_n\}$ be a countable collection of dense, open subsets of X. Then, $\bigcap_{n=1}^{\infty} \{O_n\}$ is not empty.

Proof.

Theorem 3.3 (Baire Category Theorem). A complete metric space is not the union of a countable collection of nowhere-dense sets.

Proof.

Theorem 3.4. The set

$$D = \{ f \in C[0,1] : f'(x) \text{ exists for some } x \in [0,1] \}$$

is a set of first category in C[0,1].

3.5 Topology of (X, d)

Definition 3.11 (topological space). A topological space is a pair (X, τ) , where X is a set and τ a subset of the power set of X which we call open such that

- 1. $\emptyset, X \in \tau$
- 2. $U_1, \ldots, U_n \in \tau \implies \bigcap_{i=1}^n U_i \in \tau$
- 3. $U_1, \ldots, U_n \in \tau \implies \bigcup_{i=1}^n U_i \in \tau$

Example 3.10. $(X, \{\emptyset, X\})$

Definition 3.12. (X, τ) is a discrete topological space iff $\tau = P(X)$.

Definition 3.13. A subset F of a topological space (X, τ) is closed if $X \setminus F$ is open.

Properties:

- 1. \emptyset, X are closed
- 2. If F_1, \ldots, F_n are closed, then $\bigcup_{i=1}^n F_i$ is closed
- 3. If F_1, \dots, F_n are closed, then $\bigcap_{i=1}^n F_i$ is closed