

OIPE
JUL 20 2006
U.S. TRADEMARK OFFICE
SEQUENCE LISTING

<110> TOOLGEN, Inc.
<120> Regulatory Zinc Finger Proteins
<130> Q88285
<140> US 10/538,041
<141> 2005-06-08
<150> US 60/431,892
<151> 2002-12-09
<160> 129
<170> PatentIn version 3.2
<210> 1
<211> 23
<212> PRT
<213> Homo sapiens
<400> 1

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu
1 5 10 15
Arg Arg His Gly Arg Thr His
20

<210> 2
<211> 23
<212> PRT
<213> Homo sapiens
<400> 2

Tyr Ser Cys Gly Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys
1 5 10 15
Arg Arg His Cys Ile Leu His
20

<210> 3
<211> 23
<212> PRT
<213> Homo sapiens
<400> 3

Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu
1 5 10 15
Asn Arg His Arg Arg Thr His
20

<210> 4
<211> 23
<212> PRT
<213> Homo sapiens

<400> 4

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu
1 5 10 15

Thr Arg His Gln Lys Ile His
20

<210> 5
<211> 23
<212> PRT
<213> Homo sapiens

<400> 5

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His
20

<210> 6
<211> 23
<212> PRT
<213> Homo sapiens

<400> 6

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu
1 5 10 15

Thr Arg His Lys Lys Ser His
20

<210> 7
<211> 23
<212> PRT
<213> Homo sapiens

<400> 7

Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln Ser Ser Asn Leu
1 5 10 15

Thr Val His Gln Lys Ile His
20

<210> 8
<211> 23
<212> PRT

<213> Homo sapiens

<400> 8

Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu
1 5 10 15

Ile Arg His Gln Arg Thr His
20

<210> 9

<211> 25

<212> PRT

<213> Homo sapiens

<400> 9

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His
20 25

<210> 10

<211> 23

<212> PRT

<213> Homo sapiens

<400> 10

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
1 5 10 15

Lys Thr His Thr Arg Thr His
20

<210> 11

<211> 23

<212> PRT

<213> Homo sapiens

<400> 11

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His
20

<210> 12

<211> 23

<212> PRT

<213> Homo sapiens

<400> 12

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1 5 10 15

Ile Arg His Gln Arg Thr His
20

<210> 13
<211> 23
<212> PRT
<213> Homo sapiens

<400> 13

Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu
1 5 10 15

Asn Val His Arg Arg Ile His
20

<210> 14
<211> 23
<212> PRT
<213> Homo sapiens

<400> 14

Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Ser Leu
1 5 10 15

Arg Arg His Glu Thr Thr His
20

<210> 15
<211> 23
<212> PRT
<213> Homo sapiens

<400> 15

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu
1 5 10 15

Ile Arg His Gln Arg Ile His
20

<210> 16
<211> 23
<212> PRT
<213> Homo sapiens

<400> 16

Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu
1 5 10 15

Thr Arg His Lys Arg Ile His
20

<210> 17
<211> 23
<212> PRT
<213> Homo sapiens

<400> 17

Tyr Glu Cys Asp His Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu
1 5 10 15

Asn Val His Lys Arg Thr His
20

<210> 18
<211> 23
<212> PRT
<213> Homo sapiens

<400> 18

Phe Leu Cys Gln Tyr Cys Ala Gln Arg Phe Gly Arg Lys Asp His Leu
1 5 10 15

Thr Arg His Met Lys Lys Ser
20

<210> 19
<211> 24
<212> PRT
<213> Artificial

<220>
<223> Artificial zinc finger domain

<400> 19

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu
1 5 10 15

Gln Arg His Val Arg Asn Ile His
20

<210> 20
<211> 83
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 20

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu
1 5 10 15
Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys

<210> 21
<211> 83
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 21

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys

<210> 22
<211> 83
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 22

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys

<210> 23
<211> 83
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 23

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys
50 55 60

Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr
65 70 75 80

Gly Glu Lys

<210> 24
<211> 84
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 24

Tyr Glu Cys Asp His Cys Gly Lys Ser Phe Ser Gln Ser Ser His Leu
1 5 10 15

Asn Val His Lys Arg Thr His Thr Gly Glu Lys Pro Phe Leu Cys Gln
20 25 30

Tyr Cys Ala Gln Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met

35

40

45

Lys Lys Ser His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln
50 55 60

Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His
65 70 75 80

Thr Gly Glu Lys

<210> 25

<211> 83

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 25

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys

<210> 26

<211> 84

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 26

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Leu Cys Gln Tyr Cys Ala Gln

50

55

60

Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met Lys Lys Ser His
65 70 75 80

Thr Gly Glu Lys

<210> 27
<211> 83
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 27

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys

<210> 28
<211> 85
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 28

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu
1 5 10 15

Gln Arg His Val Arg Asn Ile His Thr Gly Glu Lys Pro Tyr Arg Cys
20 25 30

Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His
35 40 45

Lys Arg Ile His Thr Gly Glu Lys Pro Phe Leu Cys Gln Tyr Cys Ala
50 55 60

Gln Arg Phe Gly Arg Lys Asp His Leu Thr Arg His Met Lys Lys Ser
65 70 75 80

His Thr Gly Glu Lys
85

<210> 29
<211> 84
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 29

Tyr Arg Cys Lys Tyr Cys Asp Arg Ser Phe Ser Asp Ser Ser Asn Leu
1 5 10 15

Gln Arg His Val Arg Asn Ile His Thr Gly Glu Lys Pro Tyr Arg Cys
20 25 30

Glu Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His
35 40 45

Lys Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly
50 55 60

Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His
65 70 75 80

Thr Gly Glu Lys

<210> 30
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 30

Tyr Ser Cys Gly Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys
1 5 10 15

Arg Arg His Cys Ile Leu His Thr Gly Glu Lys Pro Tyr Ile Cys Arg
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr

65

70

75

80

Gly Glu Lys Pro Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val
85 90 95

Ser Ser Ser Leu Arg Arg His Glu Thr Thr His Thr Gly Glu Lys
100 105 110

<210> 31
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 31

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Ser Cys Gly
20 25 30

Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys Arg Arg His Cys
35 40 45

Ile Leu His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 32
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 32

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp
20 25 30

His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg

35

40

45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys
50 55 60

Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Ser Cys Gly Ile Cys Gly Lys Ser Phe Ser Asp
85 90 95

Ser Ser Ala Lys Arg Arg His Cys Ile Leu His Thr Gly Glu Lys
100 105 110

<210> 33

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 33

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser
20 25 30

Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys
50 55 60

Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp
85 90 95

Lys Ser Cys Leu Asn Arg His Arg Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 34

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 34

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Gly
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 35

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 35

Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu
1 5 10 15

Arg Arg His Gly Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 36

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 36

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys
35 40 45

Ile Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu
100 105 110

Lys

<210> 37

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 37

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Asp Cys Gly Lys
50 55 60

Ser Phe Ser Gln Ser Ser Ser Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 38

<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 38

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser
20 25 30

Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys
85 90 95

Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 39
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 39

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp
85 90 95

Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 40
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 40

Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val Ser Ser Asn Leu
1 5 10 15

Asn Val His Arg Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys
50 55 60

Thr Trp Lys Phe Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe
85 90 95

Thr Gln Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu
100 105 110

Lys

<210> 41
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 41

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr

65

70

75

80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 42

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 42

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 43

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 43

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 44
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 44

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu Lys Pro Tyr Lys
20 25 30

Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Ile Arg
35 40 45

His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys
50 55 60

Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe
85 90 95

Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu
100 105 110

Lys

<210> 45
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 45

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu

1	5	10	15
Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys			
20	25	30	
Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr			
35	40	45	
Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys			
50	55	60	
Ala Phe Ser Val Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr			
65	70	75	80
Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln			
85	90	95	
Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr Gly Glu Lys			
100	105	110	

<210> 46
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 46

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu			
1	5	10	15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met			
20	25	30	

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln			
35	40	45	

Arg Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys			
50	55	60	

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr			
65	70	75	80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg			
85	90	95	

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys			
100	105	110	

<210> 47
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 47

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu Lys Pro Tyr Lys
20 25 30

Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg
35 40 45

His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser Asp Cys
50 55 60

Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg Arg Thr
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe
85 90 95

Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr Gly Glu
100 105 110

Lys

<210> 48

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 48

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asn
20 25 30

Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu Ile Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 49
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 49

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe
85 90 95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu
100 105 110

Lys

<210> 50
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 50

Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu
1 5 10 15

Thr Thr His Lys Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe

85

90

95

Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu
100 105 110

Lys

<210> 51
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 51

Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Leu
1 5 10 15

Arg Arg His Glu Thr Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Thr Cys Lys Gln Cys Gly Lys Ala Phe Ser Val
85 90 95

Ser Ser Ser Leu Arg Arg His Glu Thr Thr His Thr Gly Glu Lys
100 105 110

<210> 52
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 52

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu
1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Lys
20 25 30

Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Leu Arg Arg His Glu
35 40 45

Thr Thr His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 53
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 53

Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe Ala Arg Ser Asp
1 5 10 15

Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu Lys Pro Tyr Lys
20 25 30

Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg
35 40 45

His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Lys Gln Cys
50 55 60

Gly Lys Ala Phe Ser Val Ser Ser Leu Arg Arg His Glu Thr Thr
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe
85 90 95

Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu
100 105 110

Lys

<210> 54
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 54

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu

1	5	10	15
Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Gly			
20	25	30	
Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln			
35	40	45	
Lys Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys			
50	55	60	
Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr			
65	70	75	80
Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln			
85	90	95	
Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu Lys			
100	105	110	

<210> 55
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein
<400> 55

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu			
1	5	10	15
Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg			
20	25	30	
Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln			
35	40	45	
Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly Gln Cys Gly Lys			
50	55	60	
Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln Lys Ile His Thr			
65	70	75	80
Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg			
85	90	95	
Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys			
100	105	110	

<210> 56
<211> 111
<212> PRT
<213> Artificial
<220>
<223> artificial zinc finger protein

<400> 56

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Ile Cys Arg
20 25 30

Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys Ala Phe Arg Trp
85 90 95

Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 57

<211> 111

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 57

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys
50 55 60

Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg
85 90 95

Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 58

<211> 111

<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 58

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys
20 25 30

Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Lys Gln Cys Gly Lys Ala Phe Gly Cys
85 90 95

Pro Ser Asn Leu Arg Arg His Gly Arg Thr His Thr Gly Glu Lys
100 105 110

<210> 59
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 59

Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Gly
20 25 30

Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu Thr Arg His Gln
35 40 45

Lys Ile His Thr Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg
50 55 60

Gly Phe Ser Arg Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg
85 90 95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys

100 105 110

<210> 60
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 60

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu
1 5 10 15

Ile Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Glu
20 25 30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys
35 40 45

Ile Ile His Thr Gly Glu Lys Pro Tyr Arg Cys Glu Glu Cys Gly Lys
50 55 60

Ala Phe Arg Trp Pro Ser Asn Leu Thr Arg His Lys Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 61
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 61

Tyr Glu Cys Asn Tyr Cys Gly Lys Thr Phe Ser Val Ser Ser Thr Leu
1 5 10 15

Ile Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu
20 25 30

Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys
35 40 45

Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys
50 55 60

Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln
85 90 95

Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr Gly Glu Lys
100 105 110

<210> 62
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 62

Tyr Glu Cys Glu Lys Cys Gly Lys Ala Phe Asn Gln Ser Ser Asn Leu
1 5 10 15

Thr Arg His Lys Lys Ser His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Glu Cys Asp His Cys Gly Lys Ala Phe Ser Val
85 90 95

Ser Ser Asn Leu Asn Val His Arg Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 63
<211> 113
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 63

Tyr Thr Cys Ser Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu
1 5 10 15

Asn Arg His Arg Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys
20 25 30

Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Asn Tyr Cys Gly Lys

50 55 60
Thr Phe Ser Val Ser Ser Thr Leu Ile Arg His Gln Arg Ile His Thr
65 70 75 80
Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys Thr Trp Lys Phe
85 90 95
Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg His Thr Gly Glu
100 105 110
Lys

<210> 64
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 64

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Thr Cys Ser
20 25 30

Asp Cys Gly Lys Ala Phe Arg Asp Lys Ser Cys Leu Asn Arg His Arg
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Phe Gln Cys Lys Thr Cys Gln Arg
50 55 60

Lys Phe Ser Arg Ser Asp His Leu Lys Thr His Thr Arg Thr His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 65
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 65

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1 5 10 15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met
20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys
50 55 60

Ala Phe Thr Gln Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Val Cys Ser Lys Cys Gly Lys Ala Phe Thr Gln
85 90 95

Ser Ser Asn Leu Thr Val His Gln Lys Ile His Thr Gly Glu Lys
100 105 110

<210> 66

<211> 113

<212> PRT

<213> Artificial

<220>

<223> artificial zinc finger protein

<400> 66

Phe Gln Cys Lys Thr Cys Gln Arg Lys Phe Ser Arg Ser Asp His Leu
1 5 10 15

Lys Thr His Thr Arg Thr His Thr Gly Glu Lys Pro Tyr Thr Cys Lys
20 25 30

Gln Cys Gly Lys Ala Phe Ser Val Ser Ser Leu Arg Arg His Glu
35 40 45

Thr Thr His Thr Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys
50 55 60

Thr Trp Lys Phe Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg
65 70 75 80

His Thr Gly Glu Lys Pro Tyr Lys Cys Pro Asp Cys Gly Lys Ser Phe
85 90 95

Ser Gln Ser Ser Ser Leu Ile Arg His Gln Arg Thr His Thr Gly Glu
100 105 110

Lys

<210> 67

<211> 111

<212> PRT

<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 67

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Pro
20 25 30

Asp Cys Gly Lys Ser Phe Ser Gln Ser Ser Ser Leu Ile Arg His Gln
35 40 45

Arg Thr His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85 90 95

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
100 105 110

<210> 68
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 68

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1 5 10 15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Ser Cys Gly
20 25 30

Ile Cys Gly Lys Ser Phe Ser Asp Ser Ser Ala Lys Arg Arg His Cys
35 40 45

Ile Leu His Thr Gly Glu Lys Pro Tyr Glu Cys Glu Lys Cys Gly Lys
50 55 60

Ala Phe Asn Gln Ser Ser Asn Leu Thr Arg His Lys Lys Ser His Thr
65 70 75 80

Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys Ala Phe Arg Gln
85 90 95

Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr Gly Glu Lys
100 105 110

```

<210> 69
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 69

Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu
1           5          10          15

Thr Arg His Gln Arg Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Lys
20          25          30

Gln Cys Gly Lys Ala Phe Gly Cys Pro Ser Asn Leu Arg Arg His Gly
35          40          45

Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu Glu Cys Gly Lys
50          55          60

Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys Ile Ile His Thr
65          70          75          80

Gly Glu Lys Pro Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg
85          90          95

Lys Ser Asn Leu Ile Arg His Gln Arg Thr His Thr Gly Glu Lys
100         105         110

```

```

<210> 70
<211> 111
<212> PRT
<213> Artificial

<220>
<223> artificial zinc finger protein

<400> 70

Tyr Ile Cys Arg Lys Cys Gly Arg Gly Phe Ser Arg Lys Ser Asn Leu
1           5          10          15

Ile Arg His Gln Arg Thr His Thr Gly Glu Lys Pro Tyr Lys Cys Glu
20          25          30

Glu Cys Gly Lys Ala Phe Arg Gln Ser Ser His Leu Thr Thr His Lys
35          40          45

Ile Ile His Thr Gly Glu Lys Pro Tyr Ser Cys Gly Ile Cys Gly Lys
50          55          60

Ser Phe Ser Asp Ser Ser Ala Lys Arg Arg His Cys Ile Leu His Thr
65          70          75          80

Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe Asn Arg
85          90          95

```

Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu Lys
 100 105 110

<210> 71
 <211> 113
 <212> PRT
 <213> Artificial

<220>
 <223> artificial zinc finger protein

<400> 71

Tyr Lys Cys Gly Gln Cys Gly Lys Phe Tyr Ser Gln Val Ser His Leu
 1 5 10 15

Thr Arg His Gln Lys Ile His Thr Gly Glu Lys Pro Tyr Lys Cys Met
 20 25 30

Glu Cys Gly Lys Ala Phe Asn Arg Arg Ser His Leu Thr Arg His Gln
 35 40 45

Arg Ile His Thr Gly Glu Lys Pro Tyr Val Cys Asp Val Glu Gly Cys
 50 55 60

Thr Trp Lys Phe Ala Arg Ser Asp Glu Leu Asn Arg His Lys Lys Arg
 65 70 75 80

His Thr Gly Glu Lys Pro Tyr Lys Cys Met Glu Cys Gly Lys Ala Phe
 85 90 95

Asn Arg Arg Ser His Leu Thr Arg His Gln Arg Ile His Thr Gly Glu
 100 105 110

Lys

<210> 72
 <211> 96
 <212> PRT
 <213> Homo sapiens

<400> 72

Asp Ala Lys Ser Leu Thr Ala Trp Ser Arg Thr Leu Val Thr Phe Lys
 1 5 10 15

Asp Val Phe Val Asp Phe Thr Arg Glu Glu Trp Lys Leu Leu Asp Thr
 20 25 30

Ala Gln Gln Ile Val Tyr Arg Asn Val Met Leu Glu Asn Tyr Lys Asn
 35 40 45

Leu Val Ser Leu Gly Tyr Gln Leu Thr Lys Pro Asp Val Ile Leu Arg
 50 55 60

Leu Glu Lys Gly Glu Glu Pro Trp Leu Val Glu Arg Glu Ile His Gln

65

70

75

80

Glu Thr His Pro Asp Ser Glu Thr Ala Phe Glu Ile Lys Ser Ser Val
85 90 95

<210> 73
<211> 260
<212> PRT
<213> Homo sapiens

<400> 73

Tyr Leu Pro Asp Thr Asp Asp Arg His Arg Ile Glu Glu Lys Arg Lys
1 5 10 15

Arg Thr Tyr Glu Thr Phe Lys Ser Ile Met Lys Lys Ser Pro Phe Ser
20 25 30

Gly Pro Thr Asp Pro Arg Pro Pro Arg Arg Ile Ala Val Pro Ser
35 40 45

Arg Ser Ser Ala Ser Val Pro Lys Pro Ala Pro Gln Pro Tyr Pro Phe
50 55 60

Thr Ser Ser Leu Ser Thr Ile Asn Tyr Asp Glu Phe Pro Thr Met Val
65 70 75 80

Phe Pro Ser Gly Gln Ile Ser Gln Ala Ser Ala Leu Ala Pro Ala Pro
85 90 95

Pro Gln Val Leu Pro Gln Ala Pro Ala Pro Ala Pro Ala Met
100 105 110

Val Ser Ala Leu Ala Gln Ala Pro Ala Pro Val Pro Val Leu Ala Pro
115 120 125

Gly Pro Pro Gln Ala Val Ala Pro Pro Ala Pro Lys Pro Thr Gln Ala
130 135 140

Gly Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln Leu Gln Phe Asp Asp
145 150 155 160

Glu Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr Asp Pro Ala Val Phe
165 170 175

Thr Asp Leu Ala Ser Val Asp Asn Ser Glu Phe Gln Gln Leu Leu Asn
180 185 190

Gln Gly Ile Pro Val Ala Pro His Thr Thr Glu Pro Met Leu Met Glu
195 200 205

Tyr Pro Glu Ala Ile Thr Arg Leu Val Thr Ala Gln Arg Pro Pro Asp
210 215 220

Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly Leu Pro Asn Gly Leu Leu
225 230 235 240

Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala Asp Met Asp Phe Ser Ala

245

250

255

Leu Leu Ser Gln
260

<210> 74
<211> 127
<212> PRT
<213> *Sacharromyces cerevisiae*

<400> 74

Asn Phe Asn Gln Ser Gly Asn Ile Ala Asp Ser Ser Leu Ser Phe Thr
1 5 10 15

Phe Thr Asn Ser Ser Asn Gly Pro Asn Leu Ile Thr Thr Gln Thr Asn
20 25 30

Ser Gln Ala Leu Ser Gln Pro Ile Ala Ser Ser Asn Val His Asp Asn
35 40 45

Phe Met Asn Asn Glu Ile Thr Ala Ser Lys Ile Asp Asp Gly Asn Asn
50 55 60

Ser Lys Pro Leu Ser Pro Gly Trp Thr Asp Gln Thr Ala Tyr Asn Ala
65 70 75 80

Phe Gly Ile Thr Thr Gly Met Phe Asn Thr Thr Met Asp Asp Val
85 90 95

Tyr Asn Tyr Leu Phe Asp Asp Glu Asp Thr Pro Pro Asn Pro Lys Lys
100 105 110

Glu Ile Ser Met Ala Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser
115 120 125

<210> 75
<211> 63
<212> PRT
<213> *Homo sapiens*

<400> 75

Val Ser Val Thr Phe Glu Asp Val Ala Val Leu Phe Thr Arg Asp Glu
1 5 10 15

Trp Lys Lys Leu Asp Leu Ser Gln Arg Ser Leu Tyr Arg Glu Val Met
20 25 30

Leu Glu Asn Tyr Ser Asn Leu Ala Ser Met Ala Gly Phe Leu Phe Thr
35 40 45

Lys Pro Lys Val Ile Ser Leu Leu Gln Gln Gly Glu Asp Pro Trp
50 55 60

<210> 76
<211> 12

<212> DNA
<213> Homo sapiens

<400> 76
gtttgggagg tc 12

<210> 77
<211> 12
<212> DNA
<213> Homo sapiens

<400> 77
tgggaggtca ga 12

<210> 78
<211> 12
<212> DNA
<213> Homo sapiens

<400> 78
gtcagaaaata gg 12

<210> 79
<211> 12
<212> DNA
<213> Homo sapiens

<400> 79
gccagagccg gg 12

<210> 80
<211> 12
<212> DNA
<213> Homo sapiens

<400> 80
gagcggggag aa 12

<210> 81
<211> 12
<212> DNA
<213> Homo sapiens

<400> 81
ggggagaggg ac 12

<210> 82
<211> 12
<212> DNA
<213> Homo sapiens

<400> 82
gtggggagag gg 12

<210> 83
<211> 12
<212> DNA
<213> Homo sapiens

<400> 83
ggggcagggg aa 12

<210> 84
<211> 12
<212> DNA
<213> Homo sapiens

<400> 84
gacagggcct ga 12

<210> 85
<211> 12
<212> DNA
<213> Homo sapiens

<400> 85
ggtgtgggtc ga 12

<210> 86
<211> 12
<212> DNA
<213> Homo sapiens

<400> 86
caagtgggga at 12

<210> 87
<211> 12
<212> DNA
<213> Homo sapiens

<400> 87
gggtgggggg ag 12

<210> 88
<211> 12
<212> DNA
<213> Homo sapiens

<400> 88
agggggtggg gg 12

<210> 89
<211> 12
<212> DNA
<213> Homo sapiens

<400> 89		
gggtggggag ag		12
<210> 90		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 90		
gagcgagcag cg		12
<210> 91		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 91		
agaaaataggg gg		12
<210> 92		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 92		
gggggtgggg gg		12
<210> 93		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 93		
agagccgggg tg		12
<210> 94		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 94		
aggaaagctg gg		12
<210> 95		
<211> 12		
<212> DNA		
<213> Homo sapiens		
<400> 95		
gtgggtgagt ga		12
<210> 96		
<211> 12		

<212> DNA
<213> Homo sapiens

<400> 96
gtgtggggtt ga 12

<210> 97
<211> 12
<212> DNA
<213> Homo sapiens

<400> 97
gttgagggtg tt 12

<210> 98
<211> 12
<212> DNA
<213> Homo sapiens

<400> 98
gaggggtgttga 12
<210> 99
<211> 12
<212> DNA
<213> Homo sapiens

<400> 99
ggtgttggag cg 12

<210> 100
<211> 12
<212> DNA
<213> Homo sapiens

<400> 100
ggggagaggg ac 12

<210> 101
<211> 12
<212> DNA
<213> Homo sapiens

<400> 101
tggggagagg ga 12

<210> 102
<211> 12
<212> DNA
<213> Homo sapiens

<400> 102
ggtggggaga gg 12

<210> 103

<211> 12
<212> DNA
<213> Homo sapiens

<400> 103
aggacgggt gg 12

<210> 104
<211> 12
<212> DNA
<213> Homo sapiens

<400> 104
gacagggacg gg 12

<210> 105
<211> 12
<212> DNA
<213> Homo sapiens

<400> 105
gaggagggag ca 12

<210> 106
<211> 12
<212> DNA
<213> Homo sapiens

<400> 106
gggggtcgag ct 12

<210> 107
<211> 12
<212> DNA
<213> Homo sapiens

<400> 107
gaagggaaag ct 12

<210> 108
<211> 12
<212> DNA
<213> Homo sapiens

<400> 108
aatgaagggg aa 12

<210> 109
<211> 12
<212> DNA
<213> Homo sapiens

<400> 109
gcggctcggt cc 12

<210> 110
<211> 12
<212> DNA
<213> Homo sapiens

<400> 110
gggcgggcccggg 12

<210> 111
<211> 12
<212> DNA
<213> Homo sapiens

<400> 111
aaaaaaagggggggg 12

<210> 112
<211> 12
<212> DNA
<213> Homo sapiens

<400> 112
gcagcgggtta gg 12

<210> 113
<211> 12
<212> DNA
<213> Homo sapiens

<400> 113
gggaaagtag ag 12

<210> 114
<211> 12
<212> DNA
<213> Homo sapiens

<400> 114
agagaagtcg ag 12

<210> 115
<211> 12
<212> DNA
<213> Homo sapiens

<400> 115
gagagagacggg 12

<210> 116
<211> 12
<212> DNA
<213> Homo sapiens


```

<220>
<221> misc_signal
<222> (3401)..(3403)
<223> translation start site

<400> 120
gaattctgtg ccctcaactcc cctggatccc tgggcaaagc cccagaggga aacacaaaca      60
ggttgttgta acacacccctg ctgggtacca ccatggagga cagttggctt atgggggtgg      120
gggggtgcctg gggccacgga gtgactggtg atggctatcc ctccttggaa cccctccagc      180
ctcctcttag cttcagattt gtttatttgt ttttactaa gacctgctct ttcaggtctg      240
ttggctcttt taggggctga agaaggccga gttgagaagg gatgcaaggg agggggccag      300
aatgagccct tagggctcag agcctccatc ctgccccaaag atgtctacag cttgtgctcc      360
tggggtgcta gaggcgacca aggaggaaag ttagtggctt cccttccata tcccgttcat      420
cagcctagag catggagccc aggtgaggag gcctgcctgg gagggggccc tgagccagga      480
aataaacatt tactaactgt acaaagacct tgtccctgct gctggggagc ctgccaagtg      540
gtggagacag gactagtgca cgaatgatgg aaaggaggg ttgggggtggg tgggagccag      600
ccctttcct cataagggcc ttaggacacc ataccgatgg aactgggggt actggggagg      660
taacctagca cctccaccaa accacagcaa catgtgctga ggatggggct gactaggtaa      720
gctccctgga gcgttttgtt taaattgagg gaaattgctg cattcccatt ctcagtccat      780
gcctccacag aggctatgcc agctgttaggc cagaccctgg caagatctgg gtggataatc      840
agactgactg gcctcagagc cccaaactttg ttccctgggg cagcctggaa atagccaggt      900
cagaaaaccag ccaggaattt ttccaagctg cttccatat gcaagaatgg gatgggggcc      960
tttgggagca cttaggaaag atgtggagag ttggagggaaa agggggcttg gaggttaaggg      1020
aggggactgg gggaggata ggggagaagc tgtgagcctg gagaagtgc caagggatcc      1080
tgagggaaatg ggggagctga gacgaaaccc ccatttctat tcagaagatg agctatgagt      1140
ctgggcttgg gctgatagaa gccttggccc ctggcctggc gggagctctg ggcagctggc      1200
ctacagacgt tccttagtgc tggcggttag gtttgaatca tcacgcaggc cctggcctcc      1260
acccgcccccc accagcccccc tggcctcagt tccctggcaa catctggggt tgggggggca      1320
gcaggaacaa gggcctctgt ctgcccagct gcctccccct ttgggaaaaa ccagactcca      1380
cagtgcatac gtgggctcca acaggtcctc ttccctccca gtcactgact aaccccgaa      1440
ccacacagct tcccgttctc agctccacaa acttggtgcc aaattcttct cccctggaa      1500
gcatccctgg acacttccca aaggacccca gtcactccag cctgttggtt gccgctcact      1560
ttgatgtctg caggccagat gagggtccca gatggcacat tgtagaggg acacactgtg      1620

```

gccctgtgc ccagccctgg gctctctgta catgaagcaa ctccagtccc aaatatgtag	1680
ctgtttggga ggtcagaaat agggggtcca ggagocaaact ccccccaccc ccttccaaa	1740
gcccattccc tcttagcca gagccggggt gtgcagacgg cagtcactag gggcgctcg	1800
gccaccacag ggaagctggg tgaatggagc gagcagcgtc ttcgagatg aggacgtgtg	1860
tgtctgtgtg ggtgagttag tgggttgag ggtgttggag cggggagaag	1920
gccagggtc actccaggat tccaacagat ctgtgtgtcc ctctccccac ccgtccctgt	1980
ccggctctcc gcctccctt gcccccttca atattcctag caaagaggga acggctctca	2040
ggccctgtcc gcacgtaacc tcactttcct gctccctcct cgccaatgcc ccgcgggcgc	2100
gtgtctctgg acagagttc cggggcgga tggtaattt tcaggctgtg aaccttggtg	2160
ggggtcgagc ttcccttca ttgcggcggt ctgcgggcca ggcttcactg ggctccgca	2220
gagcccgggc ccgagccgcg tgtggagggg ctgaggctcg cctgtccccg ccccccgggg	2280
cgggcccgggg gcggggtccc ggcggggcgg agccatgcgc ccccccctt ttttttaaa	2340
agtcggctgg tagcggggag gatcgccggag gcttggggca gccgggtagc tcggaggtcg	2400
tggcgctgg ggctagcacc agcgctctgt cgggaggcgc agcggttagg tggaccggc	2460
agcggactca ccggccaggg cgctcggtgc tggaatttga tattcattga tccgggtttt	2520
atcccttttc tttttctta aacattttt ttaaaactg tattgtttct cgtttaatt	2580
tattttgct tgccattccc cacttgaatc gggccgacgg cttggggaga ttgctctact	2640
tccccaaatc actgtggatt ttggaaacca gcagaaagag gaaagaggta gcaagagctc	2700
cagagagaag tcgaggaaga gagagacggg gtcagagaga gcgcgccggc gtgcgagcag	2760
cgaaagcgac aggggcaaag tgagtgacct gctttgggg gtgaccgccc gagcgcggcg	2820
tgagccctcc cccttggat cccgcagctg accagtcgcg ctgacggaca gacagacaga	2880
caccggcccc agccccagct accacccctt cccggccgg cggcggacag tggacgcggc	2940
ggcgagccgc gggcaggggc cggagccgc gcccggaggg ggggtggagg ggtcgccggc	3000
tcgcggcgtc gcaactgaaac tttcgtcca acttctggc ttttctcgct tcggaggagc	3060
cgtggccgc gcgggggaag ccgagccgag cggagccgcg agaagtgcata gctcggccgc	3120
ggaggagccg cagccggagg agggggagga ggaagaagag aaggaagagg agagggggcc	3180
gcagtggcga ctccggcgtc ggaagccggg ctcatggacg ggtgaggccgg cggtgtgcgc	3240
agacagtgtct ccagccgcgc ggcgtccca ggcctggcc cgggcctcgg gccggggagg	3300
aagagtagct cggcgaggcg ccgaggagag cggccgcggc cacagccgaa gccggagagg	3360
gagcgcgagc cgcgcggcc cgggtcggtc ctccgaaacc atgaactttc tgctgtcttg	3420

ggtgcattgg agccttgcct tgctgctcta cctcoaccat gccaaaggtaa gcggtcgtgc 3480

<210> 121
<211> 8024
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (3731)..(3731)
<223> mRNA start site

<220>
<221> misc_feature
<222> (3959)..(3961)
<223> ATG

<400> 121
ccgggctgag ctcagtcatt ttgccctgag gactataagt ggactattat gcagcacttt 60
ctttttatt attattacta ttaagccaag taagttctta acagctaaca cctgagctgg 120
tggctctgag aagcctcttc actccttcac gggagacggg accattcaca tgaagatcct 180
acattgttgt ttttttttt ttggaggtcg aaaaaggta ctgttaggag gcttctggg 240
ccttgctcc tctccctcaa tttattaccc ctccagtgcc tgatgacgta cagggagact 300
tccacccgat aatgacatgg ctttgttat ttcacaaaatt cccagcattt actgttaatc 360
agacccagtt tgaaccaccc ccaaggggct tgcagtctaa acagctcaact ttgctcagcc 420
tcttcctgag gtcaggcact gtcttgctaa ggccgacatc agctcatgcc cattttacag 480
atggggaaac tgagaatgct aagaagtgaa atagcgtaag gttataacaac taacagggag 540
acagcctaaa cttgaaccca accggaagcc caacatggcc ccaagccttc ctcgaacccc 600
aggacttggc aaagcgggctg tcctgggta aagcatggca gaaggcctt gggtccaagc 660
taagtgaggg tcctgtttct agatcacctg gccaggtgca gtggctcatg cctgtaatcc 720
cagcactttg ggaggctgag gcgggaggat tgcttgagct caaaagttt agtccagccc 780
ggccaataca gcgagacctc gtctctacta aaaaagaaaa caaaaaatta gctgagtgtg 840
tagtcccagc tactcaggag actgaggctg gaggattgct taagcctgga agtttggagc 900
tgttagagcta tgatagagcc actgcacttt agcctggca atggagcaag atactatctc 960
aaaaaaaaaa aaatatatat ataggtcccc ttgtccctct gctgagaagt aaccagatct 1020
ggaaaagatt tagtcacctt ggtccaacta tttcttcac ataaagaaaa aaaaaggcaa 1080
tgccagacctt cccatggggc cagctctgcc tgaggcctt gcaggtacct ctgtttgtct 1140
gccccggggc acagtggcag attggcagg gcagcttgca gtgaggattg ctgatggatg 1200
agctcctagt gtacctagcc agccattac tcacaaacag ctattgagca cctactatgt 1260

gcccagcact ggaggtacaa ctggcaacaa cacaatccg ggcttgctcc atggagggtga	1320
caatctaaat gcggtgagg gtcagctaac aagtgcagaa gttctctta agagctcaa	1380
gaagctccaa ccagaaggac tggcagggg atccagaagg catccccag tggctactcc	1440
aatggagtgg cttctccatt caggcaaacc tgaatggat aagtattgg caggaagatc	1500
tggggccggg ggtcatccag tggaaagggg agagatgacg cggtcagcat ggcggaaaca	1560
caggagcaga aaggaagcag gtggaaagcc aggtcaaggg ccagggcac ggaaagggt	1620
cagatgcaga taagttagt cttcctggt catcattcat ccgaattca tccttacctg	1680
tgctttgtt gcctccattg cacagctgag gaggccaggg cctgcggagg ttgagagtgt	1740
gctcagggag ccccccggagc aaagtggaaag ccagattcca gatcagtct gctggaaatt	1800
cccgctccc aaaagccctg ctggctgtca gtccccagtc accacaagca cctatcctgt	1860
gtgggtggc ctgcagttct gggagatata tcagctgcct gcagcgtcct ttgctgaact	1920
cacagcaaat aggagagaca gggaggggtc cttggaaagc cctaaattga gcttgcgtg	1980
ggagtccctgg gaagaaagga gcctcatcct atcaaagcc gggggaaaga catcagatc	2040
cctctgctca ggtcagctgg cacaggtggg tctccaggcc tgggtctcac ttccccagag	2100
ggtgtttcg ggtggccca ggctgaggga ggaaagccca cctccatgt cattttgcaa	2160
atggggagtc agggacctag agatggaaag acaacacagc aagtgaggga tgggttctag	2220
gtccccctgca ccctgcaccc tgcaccctgg ccaacgatgt ctatttggca ccagatctgc	2280
aggctcatct gggggacccc aggacccaga ggcagccggg ttgcatctcg aagctgtgag	2340
ctgcagccca ggaagggtcca ggtctgggtg ggcgtccca agcaggctgc aggcccaagg	2400
aggaacaaag atcctctcaa ggggtgcgga gctgaggttc cggtcctgcc aaagccactt	2460
gatgacccccc aagtgcaccc ctttctgcac ctcagagaag agccctcaag cctccaggt	2520
cccccctccagg ggcacgaata agcccccagca gggttctgaa ggggtcccaag gaatctccct	2580
gtggggatgc ggtggaggtg gaggaggctg cgggtggcctg gggacatctc tggcacagg	2640
tgctgggtgt atgagagatg gggtaggcac caagccccct gcagctgtgg ctggcgggc	2700
ctgcaggaag ggcaggcag gtcctcagg gaccacaaag aacaggggtt ttcacaccta	2760
ggtgggcctg catctagcta ggccagtccc catcaggcca taatggc acgtggaggt	2820
agaaccatga gtgagagagg ggaggcttcc agaggctgg cctgggtccc tgctagattg	2880
agggctctgg ctatggtaca tggatatttc tgctgtggaa tcaaaggagc agggatgct	2940
gaatatcccc tctggcccta tgccctgcta cctgtccctt cacggaaggg tgtgtgtga	3000
gggggtgcag gaccaggcct ccctgggtgc atctctgcca cttgcaccc ttggctcaggt	3060

ggacctccac caggtattca gaactccagc ccagaaacgc gccaaaggctg tggggccaag	3120
acctaggggg tgggggtggc ctcccctcccg cctgtagcca aagggtcctc cttgcccag	3180
ccaggccccg gtgtcgctta ctgctttat ccaccctcc ttcccaggcc ggtcctcaag	3240
gccccagcaa aggaaccaag ttcccgtgag cctccgaaag gcgaaggga ggcagcagcc	3300
gctggcttct gcgcccacta ggagcttcgg atgcccagt tagggctgcg ccaaggcggc	3360
cggagcagag agggagacgg ggacggggac aggcaaggac aaagtgcag aggcaaaaact	3420
ggctgaaaag cagaagtgtt ggagccgcca agggcgggc cgaacaggc cgtggggccgg	3480
gcggagccaa ggggtggggc cggggctccct ccaggtggca ctcgcggcgc tagtccccag	3540
cctccctccct tccccccggc ctgattggca ggcggcctgc gaccagccgc gaacgccaca	3600
gcgccccggg cgcccaggag aacgcgaacg gccccccgcg ggagcgggcg agtaggaggg	3660
ggcgccgggc tatatatata gcggtcgcc ctggggcgccc cctggcgctc agggaggcgc	3720
gcactgctcc tcagagtccc agtccagcc ggcgcgttcc cgcccggttc gccgctccat	3780
gcagccgggg tagagcccg cgcccggggg ccccgctcgct tgccctccgc acctccctcg	3840
ttgcgcactc cgcggcgagg tggccgtgc gctcccgccg gccgccacag ggcgcagctct	3900
gccccccagc ttcccgggcg cactgaccgc ctgaccgacg cacggccctc gggccgggat	3960
gtcgccggccc gggacggccg cggtagcgct gctcccgccg gtcctgctgg cttgctggc	4020
gcccctggcg ggccgaggggg gogccgcccgc acccactgca cccaaacggca cgctggaggc	4080
cgagctggag cgccgctggg agagcctggt ggcgctctcg ttggcgcgcc tgccgggtggc	4140
agcgcagccc aaggaggcgg ccgtccagag cggcgccggc gactacctgc tgggcatcaa	4200
gcggctgcgg cggctctact gcaacgtggg catcgcttcc cacctccagg cgctccccga	4260
cgcccgcatc ggcggcgccgc acgcggacac cccgcacagt gagtggcgccg gccaggcgcg	4320
aagggggcggg ggcggggggc aacggccgccc gggccaaccc gtcagtcac actctgagac	4380
cctcgccggg cacctgctcg gggggcccccgg gaaccggggc ggactcgccg tccggccct	4440
tctgacgcgg ggctggggac gcagacactc ttggctccgg cagcccagcg caaccctga	4500
ggtcggcgccgc cgcctcccgcc cttcagaaac tcgggctccg agcgccgaat tccagcgcc	4560
tcgcccgtgg gcacaggcg cgcgggtcag ccacaggggg cccgagacac ggcggccggc	4620
ctggcccagg ctggggaaacc gctggggtcg ggctcgccgc tgaagggtccg ggactgggtg	4680
cggccggccgg gggtccctta cacaggcaag ctaatctgag ctagcgcagg cttggctcc	4740
ggaggcccta gagggcagct tgggctctgg aggcccttgg gggcggtgc gccgggaacc	4800
ctggcccttt atccccaaacc ccacccaga aatagggtcc cggaggcga acaagccgag	4860

gggcggagtg ggccaggat cacctgcccc gcaatgacct gcgcggcgcc cccaggcctg	4920
ctggagctct cgcccggtga gcggggcggtg gtgagcatct tcggcggtgc cagccggttc	4980
ttcggtggcca tgagcagcaa gggcaagctc tatggctcggtg aggggtctgg	5040
ctaggcacct agttggaaac agcggacatg gctagcaggc tcgtggcttc tccagccccca	5100
cctgtgcctg ggtcttggag ggggtggcagg gtcaccaggt cacgggaccg gcaggcctcc	5160
ccagacaaag gaagcagccc caaggcagga acaatgaggt tcctgccatc cctgagtggg	5220
ccccctccag accgaggaaa gggcgctatt gagagccctt cccttctcta gtccagaggg	5280
gttaggtctca gtgttggaaac tgcgggcttg aggctggaca cgcaggaaat gaattctctg	5340
gctgcttaggt gcagggcagg tggtgagagc accagctgtt gtgggctggc catgtcccct	5400
tctcaccctg tgtgggtctt gacaccttaa ctgctcagca gagacatctc agccaggg	5460
gggggggtggg acagaaggaaa gttctgaccc ctggcttcag gctgggtacc ttgccaaga	5520
ggtgccccag ccctgacact gccctgctt gctcagccc ttcttcaccg atgagtgcac	5580
gttcaaggag attctccttc ccaacaacta caacgcctac gagtcctaca agtaccccg	5640
catgttcatc gccctgagca agaatggaa gaccaagaag gggAACCGAG tgtcgcccac	5700
catgaaggta acccacttcc tccccaggct gtgaccctcc agaggaccct tgcctcagcc	5760
tcgggaagcc cctgggaggg cagtgccgag ggtcaccttg gtgcactttc ttggatgaa	5820
gagtttaatg caagagtagg tgtaagatat ttAAATTAAAT tATTTAAATG tgtatatatt	5880
gccaccaaat tatttatagt tctgcgggtg tgTTTTAAAT tttctgggg ggAAAAAAAAG	5940
acaaaaacaaa aaaccaactc tgactttct ggtcaacacag tggagaatct taccattgga	6000
tttcttaac ttgtcaaaag ttgtcacgag tgtgtgtcta ttctgtgttt taaaaaaagg	6060
tgacattgga ttccgatgtc atccccgtta gtatggcggtg gagcatctct gtctggaaag	6120
gcccgccctga ggcttggca gccagttcag ggagctccca ggcttggctc tcggctagca	6180
tcctcagagg cccactccct ttgtgccctg ttgttattaa tcgggacata tcggttact	6240
tcgggtacag aaagtgcggt gttgaagtcc tcgctgccac tctgtttta gatctgcca	6300
gactgacctt tgaactttcc ttagtcaat cttccctcgat ctaccagatg ggagagaccc	6360
ttggacaact ttataaaactc ctgtttgcct ttttggatc agcgacagcc cccatcgctg	6420
tgactattgg ggAAAAGACG aagcttttc ataaattcca tggagaggaa tcaatatccc	6480
actggaaaggc tagaaatgga caagatagtg tatttgcattt cacaacaaa accctagtga	6540
tgaaaaataa tttgtatgg cagatgcttc tgatgggttg atagaatatg ttttgaaaa	6600
caaaccatcg aaccccccgc cccacccca aaacgggctt ccctgtgttt agggagctt	6660

gggctagaac tagctacgt ttttaggtga aatgtccttg taattgtaca aagcacttgg	6720
tgcagtgtt gcgtggagca gcctgctgct ttctgatgca ttccctgtt aagtgcgtt	6780
aacatctacc tcacaagccc taaaacccc ggcaaaaccc acagaaaagct catacccggt	6840
gcaggagttt gccatccaa gtggctttt ttccatatgt agccaaaaag gattgcagat	6900
agcgtcggtg cgtccattc gaacctgtc acgttgagc tatcttacc ctgtgattta	6960
cttttagtaa gggtgatcat ggtgaaaata tttcagaca gctgttacag tacactata	7020
ggtcaccaag taacttata ttttctta tatatttac aaatgttaacc cctgtcattg	7080
aagcaaccgt ggaagaggca gggtcggtga tgttaaaaa aagttccgag gtgtggcaa	7140
acatthaatt ttaatgaatg actttttaga gtttatacaa aatgaccta gcttgctacc	7200
agaaatgctc cgaatgttc gtcagactt taatactctc ctaggatgt tctgaactgt	7260
ctcccgaaatt aacttatgg gagtctacag acagaagac tggaaaatct gattggagtt	7320
tttgtcttc acattcctt tggaaactct ttgttcaat gcaaatcatc gactaaaaat	7380
actattctta accaaggcct ggaagaaaaga agacacttgc aaagccgcta agacaggacc	7440
acacatctta aactgctgtt cctaccatgc actaaactgt tttaagtt taaaccacac	7500
cctaggctcc aggagtgttc aggaaagatg gtgtttagt gtctccatgc tggtggcgt	7560
tgggggtgtt ggagggatca tccgtcgact ttctgaattt taatgtattc acttagtaac	7620
aaaccatgtat tgccttaaat gccttaaattt attatgagat ttcttgcctc agagcccaat	7680
cagattgtca ggaattaaca tgtgttaggt ttgatcaccc ttgaccactt cttatagata	7740
tttcttcaac aaatcatgtg tgatgcctgt aggaacacaa ctgtacctt aaaatattgt	7800
tttcatattt ctgtgatggg gattcgaggt tcctgtatgt gccactgtt tcagaatctg	7860
tagtttata caggtgccga ccctcggtt gatgtatgtg ctgtgcacat tgacatgtg	7920
accgacaatg ataagcgttt atcgtgtata aaaagacacc actggactgg atgtacacaa	7980
ctggaaaagg aattaaaagg tattaaaatt gtgccttgaa atgc	8024

```

<210> 122
<211> 7000
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (4389)..(4389)
<223> mRNA start site

<220>
<221> misc_feature

```

<222> (4454) .. (4456)

<223> ATG

<400> 122
aatggtaatg agtatccatc tagtattaa gtatttacat aaattgcagt 60
acttaaagta atctcttac aagttatTTT atcaaaaact tttcagacac aatttttgg
ggatttattc aaactgttta acacttaaga agtactggct taccttggag atactgctcg 120
tttggttca gaccactgtg atcaagcaaa aatcgcaata aagcaaggta catgaatttt
ttttcgTTT cccagtgcAT ataaaagtta cacagcagac tattaagtgt gcaacagcat 180
tatgtttaaa aatgtccata ccttaactta aaaatacttt attgttaaaa aatgctaACG 240
atcatataAG ccttcagcga gtgataatct ttttgctgat ggagggttG gcttgatgtt
cagagcTTG ctgtggctt ggcttaaggc ttaaggGAAT attgcagctg gtttgatctt 300
ctatctAGAC tgctcaaATT ttctgcATA cagcaataAG gctgctctgc tctttatca 360
tttgtgtgtt cactggagta gcacttctAA ctTGOTTCAA gaACTTTCT tttgcatttG
caactcggat aactggtgca agaggactgg ctTTTGACCT aactcatctt tgggcatGCC 420
tttccccAAA agcttaattt atttctAGCT ttGATTTCa aggaAGAGAC gCGCAACTCT 480
tcctttcact tgagtactta gaggtcatttG caggGCTATC aattggccta atttcaataA 540
tGTTGTGTT taggaaATAG agaAGCCTGA ggggagggag agagacGGGT gaacAGCTG
tcAGTGGAGT agtcagaATA cacacatgaa tggattaAGT ttgggttGtG gtttggtG 600
cccAAAACAA ttatggcAGT aacatcaaAG atcaCTGATC acagatcatc atgtAAAATA 660
ataaggAAAT atttGAAATA ttGCAAGAAT tacAAAATG tgacacGGAG acacaAAAGTG 720
agcacatGCT gtgggAAAAA CGGCACCAAC agacttGCTC aattcGAGGA caccacAAAAA 780
cttaatttGT AAAAACACAT tatctgtgaa gtacaATAA GTGAAGGGCA atAAAATGAT 840
gtatgcctat gtaaggcaAT cagtagatGA tgggaaaaAA acattGcatG atttagaaaa 900
aacAAAGAGA atatGTTATC AAAATGACTA aactaATAcG ataattAGA tttcatttGA 960
gtatttctt atagtttGA gagatttAA attatgtatt attttataAA ttattatGGA 1020
ggatctccta tataccAGT ctcagactta ttttggtGAT tatactctGG aacatgtGAT 1080
tcttctcctc gtggggTTAA AAAAATTAT accatcctat ggggtatGAC taatctGAAT 1140
ctcacacttG aatattactt tgggatcttA ggcaAGTTA ttaAGAATAA AAATAACTTA 1200
ctatgtttCC tcaactataA aatgagaATT ttaataatCT taaacttACT gtaaggatGA 1260
aataatttC aatagtatgt aatatgtGc ttagcataca ttaagatCTC agtGtatatt 1320
agcaacaatt tcagtaaAGA aagaccaaAT aattttGTC aagaaatATG aatataAA 1380
aataatttC aatagtatgt aatatgtGc ttagcataca ttaagatCTC agtGtatatt 1440
agcaacaatt tcagtaaAGA aagaccaaAT aattttGTC aagaaatATG aatataAA 1500
aataatttC aatagtatgt aatatgtGc ttagcataca ttaagatCTC agtGtatatt 1560
aataatttC aatagtatgt aatatgtGc ttagcataca ttaagatCTC agtGtatatt 1620
agcaacaatt tcagtaaAGA aagaccaaAT aattttGTC aagaaatATG aatataAA 1680

ttatatagtt tttaagttgt atttaccata tttaatgtga cagtaaaaaaa agtcacgaaa	1740
atgtgtgacc taataagttt attcagtttt ctaatgtcct gaaccctta tctcagatgg	1800
atttgctcc aaacttataa caataattt caacoctgac tctagtttt tttctgaga	1860
aaaaaaaaata aatagaaaaca ctgttcttt tcttcctta cctacaggaa tttacttaca	1920
aaaaaatcta acttcttta aaaacagcct taatccctg ttgggccaag ggaaaacttt	1980
tccattgttc tctgaaggtt tgctaaaaaa aaaattactg tcaagaggca gatcaataga	2040
agaaaaggca tacacattt tttgatcata atttacaca acccgagagc cttagaaca	2100
aagacccaaa gttacaaaag aaattgtcca ttttatgct tagttcaac aaagtgtggg	2160
caggtgtgga gaaatacaac tggacaaaag gaatatgatc tcatactca acactgagtg	2220
gggacgcctg gcaaggtgag attcttcctg gtatctctgt gcagttactca ttccttctgg	2280
gtatggggca ggaccttctt tggaaatgggg tcttatgagc tacatcaaa caaggttaggt	2340
cagataatgt ctatggcc agatttcaca cagaaagtgg aggtgttaga gtgatatgct	2400
taggtttat ggctggtttgg gaaaaaagggg ttctggtttc taggagccac ctggaaag	2460
agggattcta gtttctatgc ctcgccttgg gggagaatga agggccggag actggagagc	2520
aggagaaggt cagagagagc tgattctgag gtcttcattt ggggtatcat tttctgagc	2580
ccctacaccc taataaagca caagagatgc agtggagcaa ttcagggtca cggtcaggct	2640
atgcattgaa ctgagatttc ccaaaaagtc tactgaacag taaaaagaaa gtaaaatgga	2700
tcctggggac accagacaga ggctgacaaa tgattttaa gtaaggagaa aatgataaaa	2760
gagaaggatt agcaatagaa acgggtcata taaaatagat ccctcaaaag gaattctt	2820
aatccctagc ttctcttagat atcccacaac ctcaggact tatcaggcag gttgttttc	2880
cctgaaagtg gggtaaggg agctggagga caaatgaagg tggatgtgg agggaggct	2940
gttctgtgga tgagttaat tcagccccac aatcacttct gtacagctac ccaccgtct	3000
agtcattccc acatttggcc tgcttcttt tcctctgtgg acagggcac tttctctac	3060
taatatccat ctcagagaga tacagggca agtaccctc agcatccatt agaaataaag	3120
caggctcttgc tttaaagtta ccagagcatc cacctctggg tgcaaagaca aattctctga	3180
atcaagttag gggtctggc aatgatctca caaggatttg ataccttagga gtccccccat	3240
gcccatacaa gtcctcatc ttccactta cacttggga agctggctgt cgtgtacagg	3300
cagatgaagc tggaaaagag aggcataattc agtactcactg aattcaaaca gcttgaggga	3360
tttccggta aagtcaatcc taaccagtgt atacgtacat acacaccaac atgtgtgaat	3420
gtgttgtgtg cacgtgtgtg cctgtacaag tccacatggc atatttacct gtcagggaca	3480

ggctatggac aatgactgtt tcctggactt tctctaaaaa agtcagatca gacaagttt 3540
tttgtatac ttgggtaaa tgtgtggtat ttcgtgagtt tggcagttt tgaaaaaaaaa 3600
aaaaaaaaaa aaaaaaaaaa aaagctgcct gctctgagcc catggggcag gggcaatttt 3660
ttcatctgac aatctgcgtg ctttgtttt gcttgcttat tttggccccca caataaccaca 3720
ccctttctt aactaacctc tttctacctg ggctggacgt gcctgggctc tcctccctgg 3780
ccccgctccc acctctccc ggtctctaaa cccctagaga acctgtgtca gtgtttgaa 3840
tccctcagtt gctctagcag gaaaactaga cagatttagga gctggggcac atttggctga 3900
aagacagctc ttgccttct tcttatgctg ctcccccttc ctctttccc aaatagatat 3960
ataaacacat gtatttcct gtttaaattt agcgaattgg tcccctgcct gtgccttgat 4020
ttagccatttgg ggcctcagcct tgctccccc ttccctactc ggataggagc cactgggatc 4080
tggagctcca gcttccaaat tgaagctggc ctcaggccag gtgacccctt ctttctaagt 4140
ttctttccta agcgtgggt tggggggagg cggggatgg ggggggttgc agggatctgt 4200
ttggtgctgt tgaagggggg gcgagtgagg aaaggagggg gctggaagag agtaaaggc 4260
tgggttaaa cagtttctta ccgtaaagagg gagttcagac ctagatctt ccagttaaatc 4320
acacaacaaa cttagctcat cgcaataaaa agcagctcag agccgactgg ctcttttagg 4380
caactgactcc gaacaggatt ct当地ccca ggcattctcct ccagagggat ccgccagccc 4440
gtccagcagc accatgtggg tgaccaaact cctgccagcc ctgctgctgc agcatgtcct 4500
cctgcatttc ctccctgctcc ccatcgccat cccctatgca ggttagttcc cttcttctc 4560
ttcattatta gtatttagtat ttaactctcc tgctaacctt ccctattcct tttaacaccc 4620
tcttttacc ctattccag catccttctt gaactcagta tggtagtata gtttctaaaaa 4680
gctctcatta tgctttttt gacattctt tttgttggat tttgaatagc atttaaaatg 4740
ataattaact ttccctcaac tcccctccac ctccaaacccca agccccgtcc cacttagcct 4800
aatagttgtg gattatgaga tagggaggaa gtgctaatac tggctgaact tggctgcttt 4860
ggacaagttt aaagctaaag agagggtctg gtctgaagag gcaagagtga tggctcagtc 4920
ggcaggaagt catccttttc cagagaacaa ttttcatga taatgcacta ctccacatca 4980
ccttagtcaac atttggagcc aaattacgac tttgtacagg tttcattttt gaggaggcag 5040
aataaaactct gagtatttgc atatcataaa aatgaaagag aaagcctt tttaaagatc 5100
ttattcttc tgggtacgga tgcctgcct ttgaaactgc agtgcacgga gactttgatt 5160
aaagctgcag aactgccccat ctctgtctcc cactttctcc cttggatttg ccgtttgggg 5220
aqqaqttqct tggaaagttca tattgcttgg agattttagag atctcgtttgc ctgctctggg 5280

aagtttctct	tgttatcagg	gcaagaggaa	acatctgtat	tttgggttat	cattgttagag	5340
gctgaggtgc	caacgggaga	aggcagtcaa	tatcaagggt	aggcgccagg	gaataaaaaga	5400
gtgggaacaa	atgcccagat	ggagacatgg	ccttttaca	atataaaaaa	gagaactggc	5460
tgtatcttt	gagatggtaa	atatgacatt	tatcagacct	ttgatctagt	ttttgatatg	5520
gtacaagggt	taaaaaactc	aagaatttc	taaatgc当地	ggaaaatcat	tcaacccacc	5580
tggtttctt	ttatTTgtg	aagtggccc	tttggaaaat	gacactgttt	ggaaagggtc	5640
actctgaaag	catTTtagta	agatttctga	agaagtgaaa	aagcagtgag	ttcaaata	5700
gcaggttatac	atgcttgaca	tgtgtcatgt	taaaatcgct	tcacagggtc	gggtgcgg	5760
gctcacgcct	gtaatcccag	cacttggga	ggccgaggcg	ggcagatcac	gaggtcagga	5820
gattgagacc	atcctagcta	acaagggtcaa	accctgtctc	tactaaaaat	acaaaaaatt	5880
agccaggcgt	ggtggcaggc	acctgttagtc	ccacctactt	gggaggctga	ggcaggagac	5940
tctcttgaac	ctgggaggtg	gggggttgcag	tgagccgaga	ttgtgtcacc	gcacttcagc	6000
ctggggAACG	gagcaagact	ccatctcaag	aagaagaaga	aaaaaaatgct	tcacagatga	6060
ctgctggttt	aggggatttt	gagcttaat	tgaaataatg	gctaataattt	tgagggtttt	6120
cattttaaa	gattaaaatg	tcactgttct	taagtagaaat	ctggttacct	gaattcatct	6180
gtgctaacgc	aaggggaacg	cagtgtggaa	aacccaaaca	gtagatcaac	cgtaggcagt	6240
gtctatttgt	tttcggcatg	cattatgaac	tttggcagg	agacatacat	ttgtattat	6300
atttcacttt	gcctaata	gaaatgactg	tgtttctga	gtacaggcag	aatgcagccc	6360
aagagtgc	gcaggcaagg	agagtccagt	tggaaattac	aaatatgctg	tgaataattc	6420
ctgaagtgg	taattctaaa	attgtcatca	aaggagggtg	cgccttgc	tagatggcca	6480
gtttgatagt	tttttttaat	aacctttaaa	ataaaaaata	tgggtagcct	cttagaacac	6540
acaaagttt	ttcttttta	aatgacattt	aatattgact	attagaggt	ttctttgtt	6600
gttactagct	ttgattataa	ttatttattc	tatgaattt	tattgtatg	tattgtaaaa	6660
taacacattt	ttaggaaaga	agtataact	gtaagttgac	aaccagttat	caacagaata	6720
cactatggag	atactttttt	aaaagcttaa	gaaatattca	atataatggg	cccccgccat	6780
ctttgttagga	gttagcctat	atagaattac	cctctattca	ctcccaccta	catggaaac	6840
aaatatccaa	tcctctgtaa	taaaagaagc	attaaatgag	cacctaata	tcaagagtat	6900
gtggggatg	taaagatgaa	caaataagaa	aggaacttaa	atTTgtttag	caactgat	6960
gaaccaagta	gtaaagtaca	tctcacttaa	ttctataa			7000

<211> 26
<212> PRT
<213> Artificial

<220>
<223> zinc finger consensus

<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (3)..(6)
<223> any amino acid, some may be missing

<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (10)..(10)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> any amino acid, often aromatic

<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (15)..(15)
<223> any amino acid

<220>
<221> MISC_FEATURE

```

<222> (16)..(16)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (17)..(17)
<223> any amino acid, often hydrophobic

<220>
<221> MISC_FEATURE
<222> (18)..(18)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (19)..(19)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (22)..(22)
<223> any amino acid

<220>
<221> MISC_FEATURE
<222> (23)..(25)
<223> any amino acid, some may be missing

```

<400> 123

Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa													
1	5	10	15										
Xaa Xaa Xaa His Xaa Xaa Xaa Xaa Xaa His													
20	25												

```

<210> 124
<211> 26
<212> PRT
<213> Artificial

<220>
<223> RDER Motif for a zinc finger domain

<220>
<221> misc_feature
<222> (2)..(2)
<223> any amino acid

<220>
<221> misc_feature
<222> (3)..(6)
<223> any amino acid, some may be missing

```

```

<220>
<221> misc_feature
<222> (8)..(10)
<223> any amino acid

<220>
<221> misc_feature
<222> (11)..(11)
<223> any amino acid, frequently aromatic

<220>
<221> misc_feature
<222> (12)..(12)
<223> any amino acid

<220>
<221> misc_feature
<222> (14)..(14)
<223> any amino acid

<220>
<221> misc_feature
<222> (17)..(17)
<223> any amino acid, typically hydrophobic

<220>
<221> misc_feature
<222> (18)..(18)
<223> any amino acid

<220>
<221> misc_feature
<222> (21)..(21)
<223> any amino acid

<220>
<221> misc_feature
<222> (22)..(22)
<223> any amino acid

<220>
<221> misc_feature
<222> (23)..(25)
<223> any amino acid, some may be missing

<400> 124

Cys Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Arg Xaa Asp Glu
1 5 10 15

Xaa Xaa Arg His Xaa Xaa Xaa Xaa Xaa His
20 25

```

```

<210> 125
<211> 6
<212> PRT
<213> Artificial

```

```
<220>
```

<223> exemplary linker consensus

<220>
<221> misc_feature
<222> (3)..(3)
<223> Glu or Gln

<220>
<221> misc_feature
<222> (4)..(4)
<223> Arg or Lys

<220>
<221> misc_feature
<222> (6)..(6)
<223> Tyr or Phe

<400> 125

Thr Gly Xaa Xaa Pro Xaa
1 5

<210> 126
<211> 30
<212> PRT
<213> Artificial

<220>
<223> Exemplary N-terminal sequences

<400> 126

Met Val Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Glu Leu Pro Pro Lys
1 5 10 15

Lys Lys Arg Lys Val Gly Ile Arg Ile Pro Gly Glu Lys Pro
20 25 30

<210> 127
<211> 30
<212> DNA
<213> Artificial

<220>
<223> primer sequence

<400> 127
cggggtaccc cctcccagtc actgactaac

30

<210> 128
<211> 30
<212> DNA
<213> Artificial

<220>
<223> primer sequence

<400> 128
ccgctcgagt ccggcggtca cccccaaaaag 30

<210> 129
<211> 89
<212> PRT
<213> Homo sapiens

<400> 129

Glu Arg Pro Tyr Ala Cys Pro Val Glu Ser Cys Asp Arg Arg Phe Ser
1 5 10 15

Arg Ser Asp Glu Leu Thr Arg His Ile Arg Ile His Thr Gly Gln Lys
20 25 30

Pro Phe Gln Cys Arg Ile Cys Met Arg Asn Phe Ser Arg Ser Asp His
35 40 45

Leu Thr Thr His Ile Arg Thr His Thr Gly Glu Lys Pro Phe Ala Cys
50 55 60

Asp Ile Cys Gly Arg Lys Phe Ala Arg Ser Asp Glu Arg Lys Arg His
65 70 75 80

Thr Lys Ile His Leu Arg Gln Lys Asp
85