Matematică - Calcul diferențial și integral Seminar - Săptămâna 6

*Exerciții recomandate: 6.1(i, iii), 6.2, 6.3, 6.4

***Rezerve:** 6.1(ii), 6.6(iii), 6.7(i)

S6.1 Să se decidă care dintre aplicațiile date în continuare sunt liniare și care nu:

- i) $f: \mathbb{R}^3 \to \mathbb{R}^2$, $f(x_1, x_2, x_3) = (x_1 x_2, 4x_3 + 1)$;
- ii) $f: \mathbb{R} \to \mathbb{R}^3$, $f(x) = (-x, 4x, 7x^2)$;
- iii) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (2x_1 x_2, -3x_1 + x_2)$;
- iv) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x_1, x_2) = (-4x_1 + 3x_2, x_1 + x_2, 5x_1 6x_2)$.

S6.2 Fie $T: \mathbb{R}^3 \to \mathbb{R}^3$ un endomorfism a cărui matrice în baza canonică $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ este următoarea:

$$A = \left[\begin{array}{rrr} -1 & 1 & 2 \\ 3 & 3 & 4 \\ 2 & 1 & 1 \end{array} \right].$$

- i) Să se calculeze T(1, -2, 3).
- ii) Să se determine matricea lui T în baza $\{(2,3,-1),(0,-2,1),(-1,-1,1)\}.$
- iii) Să se afle Im(T) și rang(T).
- iv) Să se afle Ker(T) și def(T).

S6.3 Fie $T: \mathbb{R}^2 \to \mathbb{R}^3$ definită prin:

$$T(x_1, x_2) = (x_1 - x_2, x_1 + x_2, 2x_1 + 3x_2).$$

- a) Să se arate că T este o aplicație liniară și să se scrie matricea corespunzătoare în perechea de baze canonice din \mathbb{R}^2 și \mathbb{R}^3 .
- b) Să se afle matricea operatorului T în raport cu bazele $\hat{B} = \{(1, -1), (2, 3)\}$ şi $\hat{B}' = \{(1, 2, 3), (-2, 1, 3), (1, -1, 1)\}.$
- **S6.4** Fie aplicația liniară $T: \mathbb{R}^3 \to \mathbb{R}^3$, definită prin:

$$T(x_1, x_2, x_3) = (4x_1 + 5x_2 - 2x_3, -2x_1 - 2x_2 + x_3, -x_1 - x_2 + x_3), \ \forall \ (x_1, x_2, x_3) \in \mathbb{R}^3.$$

- a) Să se determine valorile proprii ale lui T și subspațiile proprii corespunzătoare.
- b) Să se precizeze dacă matricea lui T poate fi adusă la forma diagonală şi, în caz afirmativ, să se găsească o bază față de care matricea lui T are forma diagonală.
- **S6.5** Fie endomorfismele

$$T_1(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, x_1 + x_2 - x_3 - x_4, x_1 - x_2 + x_3 - x_4, x_1 - x_2 - x_3 + x_4),$$

$$\forall (x_1, x_2, x_3, x_4) \in \mathbb{R}^4$$

şi

$$T_2(x_1, x_2, x_3) = (2x_1 + x_2 + x_3, 2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + 4x_3), \ \forall \ (x_1, x_2, x_3) \in \mathbb{R}^3$$

- a) Să se afle valorile proprii și vectorii proprii corespunzători;
- b) Să se afle subspațiile proprii și dimensiunile lor;
- c) Să se analizeze posibilitatea diagonalizării lui T_1 şi T_2 . În caz afirmativ, să se afle baza în care se manifestă forma diagonală, matricea schimbării de bază în cauză, precum şi forma diagonală.
- **S6.6** Fie $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ endomorfismul care, în raport cu baza alcătuită din $b_1 = (1, -1)$ şi $b_2 = (0, 1)$, are matricea

$$\left[\begin{array}{cc} 3 & 1 \\ -1 & 3 \end{array}\right].$$

De asemenea, fie $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ un endomorfism care, față de vectorii $v_1 = (2,1)$ și $v_2 = (-1,1)$, are matricea

$$\left[\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right].$$

Să se determine matricea endomorfismului $T_2 - T_1$ în raport cu sistemul de vectori $\{v_1, v_2\}$, precum și matricea lui $T_2 \circ T_1$ față de baza canonică a lui \mathbb{R}^2 .

- **S6.7** Care dintre endomorfismele date mai jos este diagonalizabil? În caz afirmativ, să se determine forma diagonală în cauză.
 - i) $T(x_1, x_2, x_3) = (-x_1 + x_2, x_1 2x_2 + x_3, x_2 x_3), \forall (x_1, x_2, x_3) \in \mathbb{R}^3;$
 - ii) $T(x_1, x_2, x_3) = (-2x_1 + 2x_2, 2x_1 4x_2 + 2x_3, 2x_2 2x_3), \forall (x_1, x_2, x_3) \in \mathbb{R}^3;$
 - iii) $T(x_1, x_2, x_3) = (x_1 x_2, -x_1 + 2x_2 x_3, -x_2 + x_3), \forall (x_1, x_2, x_3) \in \mathbb{R}^3.$

Bibliografie recomandată

- 1. Irinel Radomir, Andreea Fulga Analiză matematică. Culegere de probleme (cap.IV), Ed. Albastră, Cluj-Napoca, 2005.
- **2.** Veronica Teodora Borcea, Cătălina Ileana Davideanu, Corina Forăscu *Algebră liniară*, Ed. "Gh. Asachi", Iași, 2000.
- **3.** O. Dogaru, Cristina Stamin Algebră liniară. Calcul vectorial (exerciții și probleme), Editura "Fair Partners", București, 2008.
- 4. Kenneth Kuttler Solutions Manual in Linear Algebra, The Saylor Foundation, 2013.
- **5.** Erling Stormer *Positive Linear Maps of Operator Algebras*, Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, 2014.

2