### Measuring quality of life under spatial frictions

Gabriel M. Ahlfeldt<sup>1</sup> Fabian Bald<sup>2</sup> Duncan Roth<sup>3</sup> Tobias Seidel<sup>4</sup>

17 March 2025

Rockwool Foundation Berlin

<sup>&</sup>lt;sup>1</sup>Humboldt University, BSoE, LSE, CEPR & CESifo

<sup>&</sup>lt;sup>2</sup>European University Viadrina, Frankfurt(Oder), BSoE

<sup>&</sup>lt;sup>3</sup>Institute for Employment Research (IAB), IZA & CESifo

<sup>&</sup>lt;sup>4</sup>University of Duisburg-Essen, CESifo & CRED

#### Motivation

- Productivity advantages and correspondingly higher wages have been identified as potential drivers of urbanization (Marshall, 1890; Combes and Gobillion, 2015; many more).
- Cities may also be attractive places to live as they host urban amenities such as ethnic restaurants, music venues, or art galleries.
- Measurement of quality of life (QoL) in the tradition of Rosen (1979) and Roback (1982) has shown little evidence for a positive urban quality-of-life premium (Ahlfeldt and Pietrostefani, 2019; Albouy, 2011).
- An accurate measurement is important to **understand location choices** and to determine optimal **provision of public goods/transfers**.

#### What we do

- Quantify measurement error in QoL when ignoring spatial frictions
  - Compare QoL in a quantitative spatial model (QSM) with spatial frictions to quality of life in frictionless framework
  - We consider mobility frictions (idiosyncratic preferences; local ties) and trade frictions (gravity; local non-tradable services)
  - Use **QSM** as data-generating process in a Monte Carlo study
- Application for Germany
  - QoL ranking of locations & urban QoL premium
- Accessible ABRSQOL-toolkit with user-friendly syntax available on <u>GitHub</u>
  - Implements numerical solver in MATLAB, R, Python, Stata

#### What we find

#### • Monte Carlos:

- For location with 50% higher 'true' QoL, downward bias in RR by about 25%
- RR underestimates urban QoL premium (easily qualitatively wrong)
- ⇒ Priority to account for both types of **mobility frictions**

#### • Application to Germany:

- Larger QoL differences
- Different QoL rankings (average change in rank: 17)
- Greater urban QoL premium
  City size elasticity of QoL: 0.29 vs. 0.12 in RR
  Urban wage premium: 0.06 (0.03 conditional on worker fixed effects)

### Literature (selection) & contributions

- QoL measurement and public-good valuation (no spatial frictions)
  - Theretical framework: Rosen (1979), Roback (1982)
  - QoL: Albouy, Leibovici & Warman (2013); Albouy & Lue (2015); Albouy & Stuart (2020); Blomquist, Berger & Hoehn (1988); Gabriel & Rosenthal (2004), Glaeser (2011), Glaeser & Gottlieb (2009), Shapiro (2006)
  - Public goods: Chay and Greenstone (2005) for clean air; Linden and Rockoff (2008) for safety; Cellini, Ferreira & Rothstein (2010) quality of public schools; Greenstone (2017) for review

### Literature (selection) & contributions

- Spatial frictions (but no QoL measurement)
  - Heterogeneous tastes: Moretti (2011), Ahlfeldt et al. (2015), Diamond (2016), Monte et al. (2018), etc.
  - Local ties: Zabek (2024), etc.
  - Tradable goods prices: Armington (1969), Allen & Arkolakis (2014), Redding (2016), Redding and Rossi-Hansberg (2017), etc.
  - Non-tradable prices: Moretti & Diamond (2021)

- ⇒ We quantify the role of spatial frictions for measurement of QoL
- $\Rightarrow$  We use the quantitative spatial model as data-generating process

# Stylized facts

### Stylized facts I



Notes: Unit of observation are the 141 local labour markets (LLM) in Germany.

#### Stylized facts II





(c) Housing vs. non-housing cost

(d) Real wage vs. residence pop. surplus

 $\it Notes$ : Unit of observation are the 141 local labour markets (LLM) in Germany.

## The model

### A QSM with canonical building blocks

- *J* locations (local labour markets)
  - $\bar{L}_m^b$  workers grew up in hometown  $m \in J$  (exogenous)
  - $\bar{L} = \sum_{m} \bar{L}_{m}^{b}$  workers in the economy choose residence  $i \in J$  (endogenous)
- Utility from tradables, non-tradables (services), floor space and QoL
  - Tradables: produced from labour
  - Non-tradables (services): produced from labour and floor space
  - Floor space: produced from capital and land
  - QoL: Locational fundamental (akin to TFP in production function)
- Spatial frictions
  - Mobility: Idiosyncratic taste shocks & local ties (dislike residence  $\neq$  hometown)
  - Trade: Costly traded goods & non-tradable services
  - No commuting (workers live and work in same local labour market)



Measuring quality of life

### QoL and measurement error

• Relative quality of life in full QSM:

$$\hat{A} = \frac{(\hat{P}^t)^{\alpha\beta} (\hat{p}^n)^{\alpha(1-\beta)} (\hat{p}^H)^{1-\alpha}}{\hat{w}} \left(\hat{L}/\hat{\mathcal{L}}\right)^{\frac{1}{\gamma}},$$

where 
$$\mathcal{L}_i \equiv \left(\sum_{m \in J} \Psi_m^b \bar{L}_m^b + (\exp[\xi] - 1) \Psi_i^b \bar{L}_i^b\right)$$
.

• QoL in Rosen-Roback:

$$\hat{A}_{RR} = \frac{(\hat{p}^H)^{1-\alpha}}{\hat{w}}$$

• Measurement error when no friction is taken into account:

$$\mathcal{E} \equiv \ln \frac{\hat{A}_{RR}}{\hat{A}} = \underbrace{-(1/\gamma)\ln\hat{L}}_{\text{idiosyncratic tastes}} \underbrace{+(1/\gamma)\ln\hat{\mathcal{L}}}_{\text{local ties}} \underbrace{-\alpha\beta\ln\hat{P}^t}_{\text{trade costs}} \underbrace{-\alpha(1-\beta)\ln\hat{p}^n}_{\text{local services}}$$

### Idiosyncratic tastes

$$\mathcal{E} \equiv \ln \frac{\hat{A}_{RR}}{\hat{A}} = \underbrace{-(1/\gamma)\ln\hat{L}}_{\text{idiosyncratic tastes}} \underbrace{+(1/\gamma)\ln\hat{\mathcal{L}}}_{\text{local ties}} \underbrace{-\alpha\beta\ln\hat{P}^t}_{\text{trade costs}} \underbrace{-\alpha(1-\beta)\ln\hat{p}^n}_{\text{local services}}$$

- Upward-sloping labour supply to the city
  - Small differences in wages do not trigger oceans of workers to move
  - Housing demand curve downward sloping
- Labour and housing **productivities matter** (unlike in RR)
  - RR wrongly attributes productivity (high wages and low rents) to low QoL
  - More productive cities grow larger  $\Rightarrow$  downward bias of urban QoL in RR

#### Local ties

$$\mathcal{E} \equiv \ln \frac{\hat{A}_{RR}}{\hat{A}} = \underbrace{-(1/\gamma)\ln\hat{L}}_{\text{idiosyncratic tastes}} \underbrace{+(1/\gamma)\ln\hat{\mathcal{L}}}_{\text{local ties}} \underbrace{-\alpha\beta\ln\hat{P}^t}_{\text{trade costs}} \underbrace{-\alpha(1-\beta)\ln\hat{p}^n}_{\text{local services}}$$

#### Sticky hometown population

- With strong local ties, hometown population tends to stay
- Even if wages are low and rents are high
- Hometown population matters (unlike in RR)
  - RR wrongly attributes low wages and high rents to high QoL
  - L increases in  $\bar{L}^b \Rightarrow$  upward bias of urban QoL in RR

#### Trade costs

$$\mathcal{E} \equiv \ln \frac{\hat{A}_{RR}}{\hat{A}} = \underbrace{-(1/\gamma)\ln\hat{L}}_{\text{idiosyncratic tastes}} \underbrace{+(1/\gamma)\ln\hat{\mathcal{L}}}_{\text{local ties}} \underbrace{-\alpha\beta\ln\hat{P}^t}_{\text{trade costs}} \underbrace{-\alpha(1-\beta)\ln\hat{p}^n}_{\text{local services}}$$

- Goods sourced from all other locations
  - Central locations face lower trade costs and lower prices
  - Lower living costs and higher real wages
- Market access matters (unlike in RR)
  - RR underestimates real wages and overestimates QoL
  - Larger cities have greater market access  $\Rightarrow$  upward bias of urban QoL in RR

#### Local services

$$\mathcal{E} \equiv \ln \frac{\hat{A}_{RR}}{\hat{A}} = \underbrace{-(1/\gamma)\ln\hat{L}}_{\text{idiosyncratic tastes}} \underbrace{+(1/\gamma)\ln\hat{\mathcal{L}}}_{\text{local ties}} \underbrace{-\alpha\beta\ln\hat{P}^t}_{\text{trade costs}} \underbrace{-\alpha(1-\beta)\ln\hat{p}^n}_{\text{local services}}$$

- QoL capitalizes into wages and rents
  - Lower wages reduce the price of local services
  - Higher rents increase the price of local services
- Role of local services depends on parameterization
  - RR may underestimate or overstimate QoL
  - $\bullet$  Positive or negative bias in urban QoL premium in RR

### Monte Carlo Study

- J = 144 artificial cities (12 × 12) in N = 1,000 artificial countries (iterations)  $\Rightarrow N \times J = 144,000$  equilibrium outcomes.
- Solve the full model numerically for randomly drawn fundamentals  $\{\ln A_i, \ln \bar{\varphi}_i, \ln \eta_i\}$  (by city) and parameters  $\{\gamma, \zeta\}$  (by country)
- Take canonical values for structural parameters from literature:  $\{\alpha = 0.7; \beta = 0.5; \delta = 0.3; \mu = 0.8; \sigma = 5\}.$
- $\tau_{ij} = (\exp[-\iota * \ln dist_{ij}])^{\frac{1}{1-\sigma}}$ . We take  $\iota = -1$  from the literature.
- Centrality measure:  $\mathcal{M}_i = \sum_{j \in J} (1/dist_{ij})$ .

#### Determinants of measurement error in Rosen-Roback



- **QoL** is underestimated for locations with high QoL  $\widehat{A}$  and vice versa.
- 2 Measurement error increases with greater mobility frictions, i.e. greater idiosyncratic tastes (lower values of  $\gamma$ ) and lower local ties (lower values of  $\xi$ ).

#### Determinants of measurement error in Rosen-Roback



- 1 In absolute terms, measurement error increases with higher QoL (c).
- 2 Similar for housing productivity, panel (d).

#### Determinants of measurement error in Rosen-Roback



- ...same for labour productivity, panel (e).
- 2 Large hometown pop. works in opposite direction (as expected), panel (f).

#### Heterogeneity in measurement error

| Frictions controlled:                                        | (1)     | (2)     | (3)     | (4)     | (5)     |
|--------------------------------------------------------------|---------|---------|---------|---------|---------|
| Trade Costs                                                  |         | ✓       |         |         |         |
| Local services                                               |         |         | ✓       |         |         |
| Local ties                                                   |         |         |         | ✓       |         |
| Idiosyncratic tastes                                         |         |         |         |         | ✓       |
| Measurement error: Intercept                                 | -0.288  | -0.305  | -0.300  | -0.169  | -0.090  |
| (Inverse) taste heterogeneity: $\gamma$ -3                   | 0.026   | 0.023   | 0.023   | 0.015   | 0.018   |
| Strength of local ties: $\xi$ -5                             | -0.017  | -0.015  | -0.015  | 0.015   | -0.037  |
| Market access: $\ln \hat{\mathcal{M}}$                       | -0.087  | -0.156  | -0.048  | -0.053  | -0.004  |
| Quality of life: $\ln(\hat{A}/1.5)$                          | -0.711  | -0.754  | -0.741  | -0.427  | -0.212  |
| Relative floor-space productivity : $\ln \hat{\tilde{\eta}}$ | -0.189  | -0.205  | -0.270  | -0.105  | 0.014   |
| Relative worker productivity: $\ln \hat{\bar{\varphi}}$      | -0.547  | -0.611  | -0.591  | -0.309  | -0.130  |
| Relative hometown population: $\ln \hat{L}^b$                | 0.073   | 0.062   | 0.065   | -0.132  | 0.223   |
| Observations                                                 | 144,000 | 144,000 | 144,000 | 144,000 | 144,000 |
| Adjusted $\mathbb{R}^2$                                      | 0.977   | 0.985   | 0.984   | 0.783   | 0.807   |

Notes: Each column represents a different measurement error for a location with 50% higher quality of life than the numéraire location, so  $\hat{A} = 1.5$ . All explanatory variables are expressed relative to a numéraire location. The mobility friction parameter  $\gamma$  and local ties valuation  $\xi$  are re-scaled to have a zero value at  $\gamma = 3$  and  $\xi = 5$ , respectively, so we can interpret the intercept as the measurement error for otherwise identical locations. All coefficients are highly significant.

### Insights

- Measurement error in RR for baseline city is -25% (=  $\exp[-0.288] 1$ )
  - City with  $\widehat{A} = 1.5$ , country with  $\gamma = 3$  (Redding 2016) and  $\xi = 5$  (Zabek 2024)
  - Increasing differences in  $\hat{\mathcal{M}}$ ,  $\hat{A}$ ,  $\hat{\eta}$  or  $\hat{\varphi}$  by 50% magnifies the bias by 2.6pp, 29.2pp, 5.5pp and 14.9pp, respectively.
  - The same change in  $\ln \hat{L}^b$  reduces the bias by 2.3pp (Location is more attractive, but real wage increases are falsely interpreted as a lower QoL).
- Mobility frictions matter more than trade frictions
  - Controlling for mobility frictions reduces the bias more
  - **Shapley:** Tradable goods, 10.1%; local services, 4.5%; idiosyncratic tastes, 18.8%; and local ties, 66.6%
- Need to control for local ties when controlling for idiosyncratic tastes
  - Else, measurement error may be even larger (in opposite direction)

### Urban Quality of Life Premium

- **Definition:** Elasticity of QoL with respect to city size.
  - In the DGP,  $\hat{L}(\hat{A},\hat{\eta},\hat{\varphi},\hat{\mathcal{M}},\hat{\bar{L}}^b) = c\hat{A}^{\gamma} \exp\left(\epsilon(\hat{\eta},\hat{\varphi},\hat{\mathcal{M}},\hat{\bar{L}}^b)\right)$
  - Can estimate the urban quality of life premium as follows:

$$\ln \hat{A} = \tilde{c} + \rho \ln \hat{L} + \underbrace{\left[-\frac{1}{\gamma}\epsilon\right]}_{\text{error term}}$$

- "Descriptive concept" since  $cov(L, \epsilon) \neq 0$
- RR does not even recover the descriptive statistic correctly:

$$\ln \hat{A}_{RR} = \tilde{c} + \rho_{RR} \ln \hat{L} + \underbrace{\left[\mathcal{E} - \frac{1}{\gamma}\epsilon\right]}_{\text{error term}}$$

• Additional bias since  $cov(L, \mathcal{E}) \neq 0$ 

#### Urban QoL premium biases



Notes: Each dot represents an estimate of bias in the urban QoL premium  $\mathcal{B} = \rho_{RR} - \rho$ .

- Urban QoL premium underestimated in RR unless  $\xi > 6$  (implausible).
- ② In the limit, with perfect mobility, bias converges to zero.

# Quantification for Germany

### Data (2015) & parameter values

- Price indices
  - Housing prices from Ahlfeldt, Heblich & Seidel (2023)
  - Goods and services prices from Weinand & von Auer (2020)
- Employment and wages from IAB based on universe of German workers
  - Using place of vocational training (Ausbildung) as hometown
- $\alpha = 2/3$ ; from  $1 \alpha = 0.33$  (Federal Statistical Office 2020)
- $\beta = 0.34$  (own estimate)
- $\gamma = 3$  from Krebs and Pflueger (2023)
- $\xi = 5.5$  (own estimate) somewhat larger than for US
  - Consistent with a greater share of workers living in their hometowns

|                    | QSM, best data |           | Rosen-Roback |                |         | QSM, crude data |                |         |
|--------------------|----------------|-----------|--------------|----------------|---------|-----------------|----------------|---------|
|                    | Rank           | $\hat{A}$ | Rank         | $\hat{A}_{RR}$ | (4)/(2) | Rank            | $\hat{A}_{CD}$ | (7)/(2) |
|                    | (1)            | (2)       | (3)          | (4)            | (5)     | (6)             | (7)            | (8)     |
| Hamburg            | 1              | 2.081     | 2            | 1.737          | 0.834   | 2               | 1.648          | 0.792   |
| München            | 2              | 2.033     | 1            | 1.963          | 0.965   | 3               | 1.644          | 0.809   |
| Berlin             | 3              | 1.851     | 3            | 1.678          | 0.907   | 1               | 1.758          | 0.950   |
| Frankfurt am Main  | 4              | 1.696     | 5            | 1.520          | 0.896   | 4               | 1.441          | 0.850   |
| Düsseldorf         | 5              | 1.566     | 12           | 1.335          | 0.853   | 5               | 1.392          | 0.889   |
|                    |                |           |              |                |         |                 |                |         |
| Freyung-Grafenau   | 137            | 0.538     | 126          | 0.688          | 1.278   | 139             | 0.547          | 1.017   |
| Kronach            | 138            | 0.526     | 132          | 0.651          | 1.237   | 140             | 0.538          | 1.021   |
| Stendal            | 139            | 0.522     | 141          | 0.575          | 1.101   | 130             | 0.617          | 1.183   |
| Vulkaneifel        | 140            | 0.519     | 107          | 0.773          | 1.488   | 141             | 0.525          | 1.010   |
| Uelzen             | 141            | 0.510     | 137          | 0.637          | 1.248   | 138             | 0.548          | 1.073   |
| Standard deviation |                | 0.276     |              | 0.253          |         |                 | 0.223          |         |

### Comparison of QoL rankings



### Relative QoL



### Urban quality-of-life premium vs. urban wage premium



(a) Urban quality of life premium

- (b) Urban wage premium
- Larger urban QoL premium when we account for spatial frictions
- 2 Urban QoL premium exceeds the urban wage premium!

# Conclusions

### Take-aways

- By abstracting from spatial frictions, estimates of QoL derived from the Rosen-Roback framework suffer from a downward measurement error that increases in city size.
- We document a positive urban QoL premium for Germany.
- Quality of life may be an important agglomeration force driving urbanisation—even more so than productivity.
- Our results matter for 'correct' valuation of amenities and the optimal design of spatial transfers.

# Additional material

## Theoretical Framework

#### Preferences

• Worker  $\omega$  from hometown m living in city i derives utility from the consumption of goods  $(C_{i\omega})$  and floor space  $(h_{i\omega})$  according to

$$U_{im\omega} = \left(\frac{C_{i\omega}}{\alpha}\right)^{\alpha} \left(\frac{h_{i\omega}}{1-\alpha}\right)^{1-\alpha} \exp[a_{im\omega}],\tag{1}$$

where  $C_{i\omega} = (Q_{i\omega}^t/\beta)^{\beta} (q_{i\omega}^n/(1-\beta))^{1-\beta}$  with

$$Q_{i\omega}^{t} = \left[\sum_{j \in J} \left(q_{ji\omega}^{t}\right)^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\sigma}{\sigma-1}} \tag{2}$$

and  $q_{i\omega}^n$  (local non-traded services).

### Mobility frictions

• The idiosyncratic amenity component  $\exp[a_{im\omega}] = \exp[a_{i\omega} + \mathbb{1}\{m=i\} \cdot (\xi/\gamma)]$  is modelled as a stochastic preference shock for each location i, that is shifted upwards if the residence corresponds to the hometown. In particular,  $a_{i\omega}$  is drawn from a type-I-extreme value (Gumbel) distribution:

$$F_i(a) = \exp\left(-\tilde{A}_i \exp\left\{-\left[\gamma a + \Gamma\right]\right\}\right) \text{ with } \gamma > 0, \tag{3}$$

where  $\tilde{A}_i \equiv (A_i)^{\gamma}$  represents the mean of the amenity shock and  $\Gamma$  is the Euler-Mascheroni constant.

- $A_i$  serves as an exogenous measure of quality of life (QoL).
- $\gamma$  governs the dispersion of individual amenity shocks for each group  $\Rightarrow$  introduces imperfect spatial arbitrage  $\Rightarrow$  inverse measure of mobility frictions.

### Technology: Floor space

• Supplied under perfect competition combining capital (supplied at an exogenous rate  $r_i^K$ ) with location-specific land,  $\bar{T}_i$ :

$$H_i^S = \eta_i \left(\frac{\bar{T}_i}{\delta}\right)^{\delta} \left(\frac{K_i}{1-\delta}\right)^{1-\delta}.$$
 (4)

- Total factor productivity  $\eta_i$  captures the role of regulatory (e.g. height regulations) and physical (e.g. a rugged surface) constraints (Saiz 2010).
- Floor space used for housing and as an input for local services.

### Technology: Tradables

- Each location produces a unique variety of a tradable intermediate good (Armington 1969) using a CES-aggregate of labor,  $L_i^t$ , as the sole production input under perfect competition according to  $q_i^t = \varphi_i L_i^t$
- Labour productivity  $\varphi_i = \bar{\varphi}_i L_i^{\zeta}$  is increasing in local employment according to agglomeration elasticity  $\zeta$ .
- $\tau_{ii} > 1$  units have to be shipped from j for one unit to arrive in i.
- Perfect competition implies  $p_{ji}^t = \tau_{ji} w_j / \varphi_j$

#### Technology: Local services

• Requires both labour and floor space:

$$q_i^n = \nu_i^n \left(\frac{L_i^n}{\mu}\right)^\mu \left(\frac{H_i^n}{1-\mu}\right)^{1-\mu},\tag{5}$$

where  $H_i^n$  denotes floor space input.

• Perfect competition implies  $p_i^n = \nu_i^n (w_i/\varphi_i)^\mu (p_i^H)^{1-\mu}$  and floor-space prices  $p_i^H$ .

#### Location choice

• Under the distributional assumptions on the idiosyncratic utility component, we obtain the probability that a worker from hometown m lives in location i:

$$\lambda_{im} = \frac{\left(A_i w_i / \mathcal{P}_i\right)^{\gamma} \cdot \exp\left[\mathbb{1}\left\{m = i\right\} \cdot \xi\right]}{\sum_{j \in J} \left(A_j w_j / \mathcal{P}_j\right)^{\gamma} \cdot \exp\left[\mathbb{1}\left\{m = j\right\} \cdot \xi\right]},\tag{6}$$

where  $\mathcal{P}_i \equiv \left(P_i^t\right)^{\alpha\beta} (p_i^n)^{\alpha(1-\beta)} (p_i^H)^{1-\alpha}$  is the aggregate consumer price index.

#### Location choice

• Summing over all hometown probabilities, we obtain the residential choice probability:

$$\lambda_i = \sum_m \lambda_{im} = \frac{(A_i w_i / \mathcal{P}_i)^{\gamma}}{\sum_{j \in J} (A_j w_j / \mathcal{P}_j)^{\gamma}} \left( \sum_{m \neq i} \Psi_m^b \bar{L}_m^b + \Psi_i^b \cdot \exp[\xi] \bar{L}_i^b \right) / \bar{L}, \quad (7)$$

with  $\Psi_m^b = \left(1 + \frac{(\exp[\xi]-1)(A_m w_m/\mathcal{P}_m)^{\gamma}}{\sum_{j\in J}(A_j w_j/\mathcal{P}_j)^{\gamma}}\right)^{-1} < 1$  being the utility discount associated with having left the hometown.

• Mobility of workers equalises expected utility in equilibrium.

### General equilibrium

- Given model primitives, a general equilibrium of the economy is referenced by a vector of the endogenous objects  $\mathbf{V} = \{L_i^n, L_i^t, p_i^H, p_i^n, P_i^t, r_i, w_i\}.$
- They are jointly determined by
  - Market clearing for tradables and services
  - Ploor-space and land market clearing
  - **3** National labour-market clearing:  $L_i = \lambda_i \bar{L}$  with  $\sum_{i \in J} \lambda_i = 1$
  - **4** Local labour resource constraint:  $L_i = L_i^n + L_i^t$
  - **6** Aggregate consumer price index:  $\mathcal{P}_i$

