

Visualizing Quadratics

Computer Vision

Carnegie Mellon University (Kris Kitani)

Equation of a circle

$$1 = x^2 + y^2$$

Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at

$$f(x,y) = 1$$

what do you get?

Equation of a circle

$$1 = x^2 + y^2$$

Equation of a 'bowl' (paraboloid)

$$f(x,y) = x^2 + y^2$$

If you slice the bowl at f(x,y)=1 what do you get?

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Just two different ways to express a quadratic.

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$
 'sliced at 1'

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} x \\ y \end{array} \right]$$

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \stackrel{=}{\overset{5}{\longrightarrow}}$$

$$f(x,y) = \left[egin{array}{ccc} x & y \end{array}
ight] \left[egin{array}{ccc} 2 & 0 \ 0 & 1 \end{array}
ight] \left[egin{array}{ccc} x \ y \end{array}
ight] \ rac{1}{5}$$

and slice at 1

What happens to the gradient in x?

increases gradient in **x** 'thins the bowl in x'

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

and slice at 1

What happens to the gradient in y?

$$f(x,y) = \left[\begin{array}{cc} x & y \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right]$$

and slice at 1

What happens to the gradient in y?

increases gradient in **y** 'thins the bowl in y'

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What's the shape?
What are the eigenvectors?
What are the eigenvalues?

Recall

Singular Value Decomposition

orthogonal: inner (dot) product between columns/rows is zero **norm (unit vector):** magnitude of each column/row is equal to 1

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = \begin{bmatrix} x & y \end{bmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix}$$

Result of Singular Value Decomposition (SVD)

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$f(x,y) = x^2 + y^2$$

$$f(x,y) = \left[\begin{array}{ccc} x & y \end{array} \right] \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right] \left[\begin{array}{ccc} x \\ y \end{array} \right]$$

Result of Singular Value Decomposition (SVD)

Recall:

you can smash this bowl in the y direction

you can smash this bowl in the x direction

$$\mathbf{A} = \begin{bmatrix} 3.25 & 1.30 \\ 1.30 & 1.75 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

$$\mathbf{A} = \begin{bmatrix} 7.75 & 3.90 \\ 3.90 & 3.25 \end{bmatrix} = \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix} \begin{bmatrix} 0.50 & -0.87 \\ -0.87 & -0.50 \end{bmatrix}^{T}$$
Eigenvectors

Eigenvalues

We will need this to understand...

Error function

(for Harris corners, which we'll cover next)

The surface E(u,v) is locally approximated by a quadratic form

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$

$$M = \sum \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Conic section of Error function

Since M is symmetric, we have $M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$

We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Ellipse equation:

$$\left[\begin{array}{cc} u & v \end{array} \right] M \left[\begin{array}{c} u \\ v \end{array} \right] = 1$$
 'isocontour'

