Real analysis I

12: 14,141,1414,14142,...

D<1x-x01<8=>1f(x)-61<E

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x}{n!} + o(x^{n})$$

Зміст

4	-	ниці функції	8		
	4.1	Означення границь функцій	8		
	4.2		10		
	4.3		12		
	4.4	Перша чудова границя	15		
	4.5	Складенно-показникова функція	15		
	4.6	Друга чудова границя	15		
	4.7	Порівняння функцій, відношення О-велике, о-маленьке та еквівалентності	17		
5	Неперервність функції 20				
	5.1	Неперервність в точці	20		
	5.2		22		
	5.3	Існування неперервної оберненої функції	23		
	5.4		24		
	5.5		25		
6	Диференціювання 27				
-	6.1	• • ·	27		
	6.2		30		
	6.3	Дотична та нормаль до графіку функції	31		
	6.4	Диференціал функції	32		
	6.5	Інваріантність форми першого диференціалу	32		
	6.6	Приблизне обчислення значень для диференційованих функцій	33		
	6.7	Похідна та диференціал вищих порядків	33		
	6.8	Неінваріантність форми другого диференціалу	35		
	6.9	Похідна від параметрично заданої функції	35		
		Основні теореми	35		
		Дослідження функції	37		
	0.11	6.11.1 На монотонність	37		
			38		
		6.11.3 На опуклість	39		
		6.11.4 На асимптоти	41		
	6 12		42		
		Формула Тейлора	43		
	0.10	жормула топлора	40		

Необхідні тулзи для розвитку матана

Шкільні речі та трошки про те, як розвивати множину дійсних чисел

Уже з такими числами було більш-менш ознайомлено в школі. Починалось все з натуральних чисел:

$$\mathbb{N} = \{1, 2, 3, \dots\}$$

Далі пішли цілі числа:

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Саме в цілих числах ми змогли визначити вже операцію +, але цього недостатньо. Потім раціональні числа:

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, \ n \in \mathbb{N} \right\}$$

А тут вже ми змогли визначити операцію \cdot , і цього теж мало. Насправді, всі ці множини та операції +, \cdot можна спробувати дуже строго формалізувати, проте цього робити не планую. Це не сильно вплине на якість вивчення матана.

Настав саме час дослідити поле дійсних чисел – \mathbb{R} . Одна з головних мотивацій зробити – це прямокутний трикутник зі сторонами 1.

За теоремою Піфагора, ми вже знаємо, що $x^2 = 1^2 + 1^2 \implies x^2 = 2$. І от тут виникли проблеми:

Proposition 0.0.1 $\not\exists x \in \mathbb{Q} : x^2 = 2$. Aбо, інакше кажучи, $\sqrt{2} \notin \mathbb{Q}$.

Proof.

!Припустімо, що все ж таки $\exists x \in \mathbb{Q}$, тобто $x = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$, нескоротимий дріб, для якого

$$x^2=2 \implies \frac{m^2}{n^2}=2 \implies m^2=2n^2.$$

Оскільки $2n^{2^n}$ це парне число, то m^2 – також парне, а тому m – парне, тоді таке число представимо у вигляді $m=2k, k \in \mathbb{Z}$.

$$4k^2 = 2n^2 \implies 2k^2 = n^2$$

Оскільки $2k^2$ – це парне число, то n^2 – також парне, а тому n – парне, тоді таке число представимо у вигляді $n=2l, l\in \mathbb{Z}$.

Проте m,n одночасно не можуть бути парними, оскільки ми отримаємо скоротимий дріб, а, за умовою, ми не брали таких. Суперечність!

Отже, наше припущення було невірним.

Саме це твердження ε головною мотивацією розвивати нову множину. У грубому сенсі, це все означає, що множина $\mathbb Q$ – неповна множина, тобто на числовій прямій ε "дірки". І саме $\mathbb R$ прибирає ці самі "дірки".

Множину \mathbb{R} можна конструювати як набір нескінченних десяткових дробів. Наприклад, число $\sqrt{2} = 1.41421356237\dots$ Там же можна визначити всі операції. Конструкцією \mathbb{R} займемося згодом.

Принцип математичної індукції

Definition 0.0.2 Числова множина E називається **індуктивною**, якщо

$$\forall x \in E : x + 1 \in E$$

Theorem 0.0.3 Множина натуральних чисел N – мінімальна індуктивна множина, що містить 1.

Remark 0.0.4 Переформулюю математичною мовою дану теорему:

 $\forall E$ – індуктивна: $1 \in E \implies \mathbb{N} \subset E$.

Proof.

- 1) Те, що \mathbb{N} індуктивна, зрозуміло, тому що $\forall k \in \mathbb{N} : k+1 \in \mathbb{N}$.
- 2) Оскільки $1 \in E$ і, більш того, вона є індуктивною, то $2 \in E, 3 \in E, ..., k \in E$.

A тому $\forall k \in \mathbb{N} \Rightarrow k \in E$. Таким чином, $\mathbb{N} \subset E$.

Corollary 0.0.5 Принцип математичної індукції

Розглянемо числову множину $E = \{n \in \mathbb{N} : P(n)\}$. Тут P(n) – це деяка умова.

Тоді якщо $1 \in E$ та індуктивна, то $E = \mathbb{N}$.

Авторське скорочення: МІ – математична індукція.

За умовою наслідка, маємо, що $E \subset \mathbb{N}$. Оскільки $1 \in E$ та індуктивна, то за попередньою теоремою, $\mathbb{N} \subset E$. Отже, $E = \mathbb{N}$.

Про що цей наслідок: ми хочемо стверджитись, що P(n) виконується при будь-яких $n \in \mathbb{N}$. Для цього треба зробити три кроки:

1. База індукції

Перевіряємо, що P(1) виконується.

2. Крок індукції

Вважаємо, що P(n) – виконано. Показуємо, що P(n+1) виконується.

Двома кроками доводимо, що наша множина E – індуктивна, що містить одиницю. Отже, МІ доведено, а тому P(n) виконується завжди.

Example 0.0.6 Довести, що $1 + 2 + \cdots + n = \frac{n(n+1)}{2}$

Тут множина $E = \left\{ n \in \mathbb{N} : 1 + 2 + \dots + n = \frac{n(n+1)}{2} \right\}.$

1. База індукції

$$1 \in E \Rightarrow 1 = \frac{1(1+1)}{2} = 1$$

2. Крок індукції

Нехай $k \in E$, тобто $1 + 2 + \dots + k = \frac{k(k+1)}{2}$

Доведемо, що $k+1 \in E$

Доведемо, що
$$k+1\in E$$

$$1+2+\cdots+k+(k+1)=\frac{k(k+1)}{2}+k=\frac{k(k+1)+2k}{2}=\frac{(k+1)(k+2)}{2}$$
 Отже, $k+1\in E$. А значить, $E=\mathbb{N}$, тобто наша формула виконується $\forall n\in\mathbb{N}$. МІ доведено.

Example 0.0.7 Довести, що $\forall n \in \mathbb{N} \setminus \{1\} : 2^n \geq n$.

Тут множина $E = \{n \in \mathbb{N} \setminus \{1\} : 2^n \ge n\}.$

1. База індукції

$$2 \in E \Rightarrow 2^2 \ge 2$$

2. Крок індукції

Нехай $k \in E$, тобто $2^k \ge k$.

Доведемо, що $k+1 \in E$. Маємо

$$2^{k+1} = 2 \cdot 2^k \ge 2k = k+k > k+1$$

Отже, $k+1 \in E$, тобто $E = \mathbb{N} \setminus \{1\}$, тобто наше твердження виконується $\forall n \neq 1$. МІ доведено.

Основні нерівності

Theorem 0.0.8 Нерівність Бернуллі

Для всіх x > -1 виконано $(1+x)^n > 1 + nx$, $\forall n > 1$.

Proof.

Доведення за MI по n.

- 1. База індукції: при n=1: $(1+x)^1 \geq 1+1 \cdot x$. Нерівність виконується.
- 2. Крок індукції: нехай для фіксованого n нерівність виконується. Доведемо для значення n+1. $(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1 + (n+1)x + nx^2 \ge 1 + (n+1)x$

Отже, така нерівність справедлива $\forall n > 1$.

MI доведено.

Theorem 0.0.9 Нерівність Коші

Для всіх
$$a_1,\ldots,a_n>0$$
 виконано $\dfrac{a_1+\cdots+a_n}{n}\geq \sqrt[n]{a_1\cdots a_n}, \ \forall n\geq 1.$

Proof.

Тимчасове перепозначення: $A_n = \frac{a_1 + \dots + a_n}{n}, \quad G_n = \sqrt[n]{a_1 \cdots a_n}.$

Зрозуміло, що $\frac{A_n}{A_{n-1}} > 0 \implies \frac{A_n}{A_{n-1}} - 1 > -1$. Тоді за нерівністю Бернуллі,

$$\left(1 + \left(\frac{A_n}{A_{n-1}} - 1\right)\right)^n \ge 1 + n \cdot \left(\frac{A_n}{A_{n-1}} - 1\right) \implies \frac{(A_n)^n}{(A_{n-1})^n} \ge \frac{a_n}{A_{n-1}} \implies (A_n)^n \ge a_n (A_{n-1})^{n-1}, \forall n \ge 1.$$
 Тоді $(A_n)^n \ge a_n (A_{n-1})^{n-1} \ge \dots \ge a_n a_{n-1} \dots a_1.$

Отже, $A_n \geq G_n$, що й хотіли довести.

Біноміальні коефіцієнти, біном Ньютона

Definition 0.0.10 Факторіалом натурального числа називають таке число:

$$n! = n \cdot (n-1) \dots 2 \cdot 1$$

Домовленість: 0! = 1.

Corollary 0.0.11 (n+1)! = (n+1)n!

Definition 0.0.12 Біноміальним коефіцієнтом назвемо ось таке число:

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Інтерпретація того числа: серед n студентів обрати k студентів, що будуть відраховані. При цьому неважливо, у якому порядку k студентів стануть в ряд.

Proposition 0.0.13 $C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$

$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-(k+1))!}$$

Proof.
$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-(k+1))!} =$$
За властивістю факторіала, $(n-k)! = (n-k-1)!(n-k)$, а також $(k+1)! = (k+1)k!$
$$= \frac{n!}{k!(n-k)(n-k-1)!} + \frac{n!}{k!(k+1)(n-k-1)!} = \frac{n!}{k!(n-k-1)!} \left(\frac{1}{n-k} + \frac{1}{k+1}\right) =$$
$$= \frac{n!}{k!(n-k-1)!} \frac{n+1}{(n-k)(k+1)!} =$$
Зиоту за вредствотно факторіа на $(n+1)n! = (n+1)!$ а також

Знову за властивістю факторіала, (n+1)n! = (n+1)!, а також

$$(n-k)(n-k-1)! = (n-k)!, (k+1)k! = (k+1)!$$

Трикутник Паскаля

В школі були такі формули:

$$(a+b) = a+b$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = ?$$

Приберімо зараз літери a, b та отримаємо такий малюнок:

По краях трикутника ми будемо завжди з одиницями. Червоне число 3 взялося шляхом додавання двох чисел зверху: 1+2. Якщо дотримуватись аналогічних міркувань, то ми зможемо розширити трикутник Паскаля:

Трикутник Паскаля

Із цього трикутника ми тепер можем знайти $(a+b)^4$, якщо знати, як повернути літери: $(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$

Формула починається з a^4 та b^0 . А далі степінь a зменшуємо на одиницю, а степінь b, навпаки, збільшуємо на одиницю. А тепер узагальнімо це:

Theorem 0.0.14 Біном Ньютона

$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + C_n^n a^0 b^n.$$

Якщо коротко, можна записати як $(a+b)^n = \sum_{k=0} C_n^k a^{n-k} b^k$.

Proof.

Дану формулу доведемо за MI по числу $n \in \mathbb{N}$.

- 1. База індукції. $n=1 \implies (a+b)^1 = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = a+b$
- 2. Крок індукції. Припустимо, що для фіксованого n формула виконана, тобто $(a+b)^n = \sum_{n=0}^\infty C_n^k a^{n-k} b^k$.

Перевіримо цю формулу для n+1.

$$(a+b)^{n+1} = (a+b)(a+b)^n \stackrel{\text{припущення MI}}{=} (a+b) \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k+1} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^{k+1} = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_{k=0}^n C_n^k a^{n-k} b^k + \sum_{k=0}^n C_n^k a^{n-k} b^k = \sum_$$

$$a^{n+1} + \sum_{k=1}^{n} C_n^k a^{n-k+1} b^k + \sum_{k=0}^{n-1} C_n^k a^{n-k} b^{k+1} + \frac{b^{n+1}}{b^{n+1}}$$

В другій сумі ми замінимо лічильник: m = k + 1

Було: $0, 1, 2, \ldots, n-1$

Замінимо літеру
$$m=k$$
, сума від цього не зміниться
$$= a^{n+1} + \sum_{k=1}^{n} C_n^k a^{n-k+1} b^k + \sum_{k=1}^{n} C_n^{k-1} a^{n-k+1} b^k + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + \sum_{k=1}^{n} a^{n-k+1} b^k \left(C_n^k + C_n^{k-1} \right) + b^{n+1} = a^{n+1} + a^{$$

$$a^{n+1} + \sum_{k=1}^n a^{n-k+1} b^k C_{n+1}^k + b^{n+1} = C_{n+1}^0 a^{n+1} b^0 + \sum_{k=1}^n a^{n-k+1} b^k C_{n+1}^k + C_{n+1}^{n+1} a^0 b^{n+1} = \sum_{k=0}^{n+1} C_{n+1}^k a^{n-k+1} b^k = \sum_{k=0}^{n+1} a^{n-k+1} b^k C_{n+1}^k + \sum_{k=1}^{n+1} a^{n-k$$

 $(a+b)^{n+1}$ МІ доведено.

4 Границі функції

Залишу для початку загублену теорему, яка нам знадобиться надалі.

Theorem 4.0.1 Задано множину $A \subset \mathbb{R}$.

a – гранична точка $A\iff\exists \{a_n,n\geq 1\}\subset A:\lim_{n\to\infty}a_n=a,$ причому $\forall n\geq 1:a_n\neq a.$

Proof.

 \Longrightarrow Дано: a — гранична точка A, тоді $\forall \varepsilon > 0: (a - \varepsilon, a + \varepsilon) \cap A$ — нескінченна множина. $\varepsilon = 1: \exists a_1 \in (a-1, a+1) \cap A$

$$\varepsilon = \frac{1}{2} : \exists a_2 \in \left(a - \frac{1}{2}, a + \frac{1}{2}\right) \cap A$$

. Побудували послідовність $\{a_n, n \geq 1\}$, таку, що $a_n \in \left(a - \frac{1}{n}, a + \frac{1}{n}\right) \cap A$. Тобто $a - \frac{1}{n} < a_n < a + \frac{1}{n}$. За теоремою про двох поліцаїв, якщо $n \to \infty$, то отримаємо, що $\exists \lim_{n \to \infty} a_n = a$.

 \sqsubseteq Дано: $\exists \{a_n, n \geq 1\} \subset A : \forall n \geq 1 : a_n \neq a : \lim_{n \to \infty} a_n = a$. Тобто за умовою, $\forall \varepsilon > 0 : \exists N : \forall n \geq N : |a_n - a| < \varepsilon \implies a_n \in (a - \varepsilon, a + \varepsilon)$. А отже, $(a - \varepsilon, a + \varepsilon) \cap A$ - нескінченна множина, тож a – гранична точка.

4.1 Означення границь функцій

Definition 4.1.1 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A. Число b називається **границею функції в точці** x_0 , якщо

$$\forall \varepsilon>0:\exists \delta(\varepsilon)>0: \forall x\in A: x\neq x_0: |x-x_0|<\delta \Rightarrow |f(x)-b|<\varepsilon$$
 означення Коші

$$\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 означення Гейне

Позначення: $\lim_{x \to x_0} f(x) = b$.

Theorem 4.1.2 Означення Коші \iff Означення Гейне.

Proof.

 \Rightarrow Дано: означення Коші, тобто $\forall \varepsilon > 0: \exists \delta > 0: \forall x \in A: x \neq x_0: |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon.$ Зафіксуємо послідовність $\{x_n, n \geq 1\} \subset A$ таку, що $\forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0$. На це ми мали права, оскільки x_0 – гранична точка A.

Нехай $\varepsilon > 0$. Тоді для нашого заданого $\exists \delta$, а для нього $\exists N : \forall n \geq N : |x_n - x_0| < \delta \implies |f(x_n) - b| < \varepsilon$. Таким чином, $\lim_{n \to \infty} f(x_n) = b$ – тим самим виконано означення Гейне.

 \sqsubseteq Дано: означення Гейне, або $\forall \{x_n, n \geq 1\} \subset A: x_n \neq x_0: \forall n \geq 1: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$. !Припустимо, що означення Коші не виконується, тобто виконується заперечення означення: $\exists \varepsilon^* > 0: \forall \delta > 0: \exists x_\delta \in A: x_\delta \neq x_0: |x_\delta - x_0| < \delta \Rightarrow |f(x_\delta) - b| \geq \varepsilon^*$.

Зафіксуємо $\delta=\frac{1}{n}$. Тоді побудуємо послідовність $\{x_n,n\geq 1\}$ таким чином, що $x_n\in A, x_n\neq x_0$, а також $|x_n-x_0|<\frac{1}{n}\Longrightarrow \exists\lim_{x\to\infty}x_n=x_0$ за теоремою про поліцаї, але водночас $|f(x_n)-b|\geq \varepsilon^*$. Отже, суперечність!

Remark 4.1.3 Границя функції має єдине значення.

Випливае з означення Гейне, оскільки границя числової послідовності – едина.

Example 4.1.4 Задано функцію
$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{x^3 - 2x^2}{x - 2}$$
. Довести, що $\lim_{x \to 2} \frac{x^3 - 2x^2}{x - 2} = 4$. За означенням Коші, ми хочемо, щоб $\forall \varepsilon > 0: \exists \delta > 0: \forall x: x \neq 2: |x - 2| < \delta \Rightarrow \left| \frac{x^3 - 2x^2}{x - 2} - 4 \right| < \varepsilon$.
$$\left| \frac{x^3 - 2x^2}{x - 2} - 4 \right| = \left| \frac{x^2(x - 2)}{x - 2} - 4 \right| = |x^2 - 4| = |x - 2||x + 2|$$

Необхідно якось обмежити |x+2|, щоб було все чудово. Можемо попросити, щоб $|x-2|<\underset{=\delta^*}{1}$. Тоді $-1< x-2<1 \Rightarrow |x+2|<5$.

$$|$$
 \leq $|$ $|$ $|$ $|$ $|$ $|$

А щоб отримати бажану оцінку, ми додатково просимо, щоб $|x-2|<\frac{\varepsilon}{5}$.

Ми використали одночасно нерівності |x-2|<1, а також $|x-2|<\frac{\varepsilon}{5}$. Тому щоб дістатись до оцінки $\left|\frac{x^3-2x^2}{x-2}-4\right|<\varepsilon$, необхідно вказати $\delta=\min\left\{1,\frac{\varepsilon}{5}\right\}$ — тоді наше означення Коші буде виконаним. Отже, $\lim_{x\to 2}\frac{x^3-2x^2}{x-2}=4$.

Example 4.1.5 Задано функцію $f \colon \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{|x|}{x}$. Довести, що не існує границі $\lim_{x \to 0} \frac{|x|}{x}$. За означенням та запереченням Гейне, зафіксуємо наступну послідовність: $\left\{ x_n = \frac{(-1)^n}{2n}, n \ge 1 \right\}$, де $\lim_{n \to \infty} x_n = 0$. Але $\lim_{n \to \infty} \frac{|x_n|}{x_n} = \begin{bmatrix} 1, n = 2k \\ -1, n = 2k - 1 \end{bmatrix}$ — не збіжна, бо має різні часткові границі. Таким чином, прийшли до висновку: границі не існує.

Definition 4.1.6 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A. Функція **прямує** до **нескінченності в точці** x_0 , якщо:

$$\forall E>0:\exists \delta(E)>0: \forall x\in A: x\neq x_0: |x-x_0|<\delta\Rightarrow |f(x)|>E$$
 означення Коші

$$\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \infty$$
 означення Гейне

Позначення: $\lim_{x \to x_0} f(x) = \infty$.

Якщо виконується f(x) > E (це більш сильна вимога за |f(x)| > E), то тоді $\lim_{x \to x_0} f(x) = \infty$. Якщо виконується f(x) < -E (це більш сильна вимога за |f(x)| > E), то тоді $\lim_{x \to x_0} f(x) = -\infty$.

Example 4.1.7 Задано функцію $f \colon \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{1}{x^2}.$ Доведемо, що $\lim_{x \to 0} \frac{1}{x^2} = +\infty.$ За означенням Коші, що ми хочемо, щоб $\forall E > 0 : \exists \delta > 0 : \forall x : x \neq 0 : |x| < \delta \Rightarrow \frac{1}{x^2} > E.$ Із останньої нерівності, $x^2 < \frac{1}{E}$, тому одразу встановимо $\delta = \frac{1}{\sqrt{E}}.$ Отже, $\lim_{x \to 0} \frac{1}{x^2} = +\infty.$

Example 4.1.8 Можна довести, що $\lim_{x\to 0} \frac{1}{x} = \infty$. Однак не можна визначити, чи $+\infty$ або $-\infty$.

Definition 4.1.9 Задано функцію $f \colon A \to \mathbb{R}$ та ∞ – гранична точка для A. Число b називається **границею функції** при $x \to \infty$, якщо

$$\forall \varepsilon > 0: \exists \Delta(\varepsilon) > 0: \forall x \in \mathbb{R}: |x| > \Delta \Rightarrow |f(x) - b| < \varepsilon$$
 означення Коші

$$\forall \{x_n, n \geq 1\} \subset \mathbb{R}: \forall n \geq 1: \lim_{n \to \infty} x_n = \infty \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 означення Гейне

Позначення: $\lim_{x \to \infty} f(x) = b$.

Якщо $x \to +\infty$, то ми вимагаємо $x > \Delta$ замість $|x| > \Delta$.

Якщо $x \to -\infty$, то ми вимагаємо $x < \Delta$ замість $|x| > \Delta$.

Example 4.1.10 Задано функцію $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x}$. Доведемо, що $\lim_{x \to +\infty} \frac{1}{x} = 0$.

За означенням Коші, ми вимагаємо, щоб $\forall \varepsilon > 0 : \exists \Delta > 0 : \forall x : x > \Delta \Rightarrow \left| \frac{1}{x} \right| < \varepsilon$.

Із цієї оцінки ми можемо встановити $\Delta = \frac{1}{\epsilon}$. А тому $\lim_{x \to +\infty} \frac{1}{x} = 0$. Аналогічними міркуваннями можна довести, що $\lim_{x\to -\infty} \frac{1}{x} = 0$.

Remark 4.1.11 Аналогічними міркуваннями можна самостійно записати означення Коші та означення Гейне для випадку, коли в нас $\lim_{x \to \infty} f(x) = \infty$.

 ${f Remark}$ 4.1.12 Для інших варіацій границь функції: $\lim_{x o x_0} f(x) = \infty, \lim_{x o \infty} f(x) = b, \lim_{x o \infty} f(x) = \infty$ – еквівалентність двох означень, за Коші та за Гейне, також залишається в силі.

Remark 4.1.13 Надалі всюди я буду розглядати лише $\lim_{x \to x_0} f(x)$, де $x_0 \in \mathbb{R}$ - гранична точка деякої множини; а чому дорівнює - неважливо. Для випадку $x \to \infty$ (або $+\infty$, або $-\infty$) аналогічно.

Definition 4.1.14 Задано функцію $f\colon A\to \mathbb{R}$ та $x_0\in \mathbb{R}$ - гранична точка для A.Якщо $\lim_{x\to x_0}f(x)=\infty$, то функцію f(x) називають **нескінченно великою (н.в.) в т.** x_0 .

Якщо $\lim_{x\to x_0} f(x)=0$, то функцію f(x) називають **нескінченно малою (н.м.) в т.** x_0 .

Definition 4.1.15 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A. Функція f називається **обмеженою в точці** x_0 , якщо

$$\exists C > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| \le C$$

Або ще можна так сказати:

$$\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \{f(x_n), n \geq 1\} - \text{обмежена}$$

Theorem 4.1.16 Обидва означення є еквівалентними.

Proof.

 \Rightarrow Дано: $\exists C > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \implies |f(x)| \le C$.

Оскільки x_0 – гранична точка A, то створімо послідовність $\{x_n, n \geq 1\} \subset A$, щоб $x_n \stackrel{n \to \infty}{\longrightarrow} x_0$. Тоді для нашого $\delta>0:\exists N:\forall n\geq N:|x_n-x_0|<\delta\implies|f(x_n)|\leq C.$ Отже $\{f(x_n),n\geq 1\}$ — обмежена.

 \sqsubseteq Дано: $\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0 \implies \{f(x_n), n \geq 1\}$ — обмежена.

!Припустимо, що перше означення не виконане, тобто

нармустико, що перти съпа и перти объекти не виконане, тоото $\forall C>0: \forall \delta>0: \exists x_\delta \in A: x_\delta \neq x_0: |x_\delta-x_0|<\delta \Longrightarrow |f(x_\delta)|>C.$ Нехай C>0 та $\delta=\frac{1}{n}.$ Тоді $\exists x_n \in A: x_n \neq x_0: |x_n-x_0|<\frac{1}{n},$ тож $\lim_{n\to\infty} x_n=x_0,$ тоді за дано, маємо, що $\{f(x_n), n\geq 1\}$ – обмежена. Проте ми побудували таку послідовність, щоб $|f(x_n)|>C,$ а це свідчить про необмеженість. Суперечність!

4.2 Односторонні границі та границі монотонних функцій

Definition 4.2.1 Задано функцію $f: A \to \mathbb{R}$, та $x_0 \in \mathbb{R}$ – гранична точка для A. Числом *b* називають **границею справа**, якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall x \in A: x_0 < x < x_0 + \delta \Rightarrow |f(x) - b| < \varepsilon \qquad \qquad \text{означення Коші}$$

$$\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n > x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b \qquad \qquad \text{означення Гейне}$$

Позначення: $\lim_{x \to x_0^+} f(x) \stackrel{\text{afo}}{=} \lim_{x \to x_0 + 0} f(x) = b.$

Числом b називають **границею зліва**, якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall x \in A: x_0 - \delta < x < x_0 \Rightarrow |f(x) - \tilde{b}| < \varepsilon \qquad \qquad \text{означення Коші}$$

$$\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n < x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \tilde{b} \qquad \qquad \text{означення Гейне}$$

Позначення: $\lim_{x \to x_{\alpha}^{-}} f(x) \stackrel{\text{a6o}}{=} \lim_{x \to x_{0} - 0} f(x) = \tilde{b}.$

Theorem 4.2.2 Задано функцію $f \colon A \to \mathbb{R}$, та $x_0 \in \mathbb{R}$ – внутрішня та гранична точка для A.

$$\exists \lim_{x \to x_0} f(x) = b \iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

$$\exists \lim_{x \to x_0} f(x) = b \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

$$\iff \forall \varepsilon > 0: \exists \delta: \forall x \in A: |x-x_0| < \delta \Rightarrow \begin{cases} x-x_0 < \delta \\ x_0-x < \delta \end{cases} \Rightarrow |f(x)-b| < \varepsilon \iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

Remark 4.2.3 Для функції $f(x)=\sqrt{x}$ є границя $\lim_{x\to 0+0}\sqrt{x}=0$, але не існує $\lim_{x\to 0-0}\sqrt{x}$. Тобто не існує $\lim_{x\to 0} \sqrt{x}$ — звісно, ні. Ми маємо $\lim_{x\to 0} \sqrt{x} = \lim_{x\to 0+0} \sqrt{x} = 0$.

Справа в тому, що попередню теорему можна застосовувати, коли точка $x_0=0$ була б визначена одночасно десь лівіше й правіше. А область визначення $A = [0, +\infty)$, тобто ми вже не можемо розглядати границі зліва.

Example 4.2.4 Повернімось до функції $f(x) = \frac{|x|}{x}$. Ми довели, що границя в точці x = 0 не існує, проте $\lim_{x \to 0+0} \frac{|x|}{x} = 1$ $\lim_{x \to 0-0} \frac{|x|}{x} = -1$.

Definition 4.2.5 Задано функцію $f:(a,b) \to \mathbb{R}$.

Функцію f називають **монотонно**:

- **строго зростаючою**, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) > f(x_2);$
- не спадною, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2);$
- **строго спадною**, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) < f(x_2);$
- не зростаючою, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \leq f(x_2)$.

Зростаюча або спадна строго або нестрого функція f називається просто монотонною.

Example 4.2.6 Зокрема $f(x) = \sqrt{x}$ монотонно строго зростає. Дійсно нехай $x_1, x_2 \in [0, +\infty)$ піді-

брані так, що
$$x_1>x_2$$
. Тода маємо такий ланцюг:
$$f(x_1)-f(x_2)=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}>0 \implies f(x_1)>f(x_2).$$

Definition 4.2.7 Функція $f: A \to \mathbb{R}$ називається **обмеженою** (на множині A), якщо

$$\exists M > 0 : \forall x \in A : |f(x)| \le M$$

Theorem 4.2.8 Задано функцію $f\colon (a,b)\to \mathbb{R}$ – монотонна. Тоді $\exists\lim_{x\to b^-}f(x)=d$ та $\exists\lim_{x\to a^+}f(x)=c$.

Proof.

Доведу лише першу границю і буду вважати, що функція строго спадна. Для решти аналогічно.

Отже, нехай f – строго спадає, тобто $\forall x_1, x_2 \in (a,b): x_1 > x_2 \implies f(x_1) < f(x_2)$. У нашому випадку $d = \inf_{x \in (a,b)} f(x)$. У інфімума виникає кілька випадків.

I. $\inf_{x \in (a,b)} f(x)$ – скінченне.

Доведемо, що вона є границею зліва. За критерієм inf, маємо наступне:

- 1) $\forall x \in (a,b) : f(x) \ge d$;
- 2) $\forall \varepsilon > 0 : \exists x_{\varepsilon} \in (a,b) : f(x_{\varepsilon}) < d + \varepsilon$.

Оберемо $\delta = b - x_{\varepsilon} > 0$. Тоді $\forall x \in (a,b) : b - x < \delta \Rightarrow x > b - (b - x_{\varepsilon}) = x_{\varepsilon} \implies f(x) < f(x_{\varepsilon})$. Звідси справедлива нерівність $d - \varepsilon < d \le f(x) < f(x_{\varepsilon}) < d + \varepsilon \Rightarrow |f(x) - d| < \varepsilon$.

Остаточно, за означенням Коші, $\exists \ \lim_{\cdot} \ f(x) = d.$

II.
$$\inf_{x \in (a,b)} f(x) = -\infty$$
.

Тоді функція f – необмежена знизу на $(a,b) \implies \forall E > 0 : \exists x_E \in (a,b) : f(x_E) < -E$.

Оберемо $\delta = b - x_E > 0$. Тоді $\forall x \in (a,b) : b - \delta < x < b \implies f(x) < f(x_E) < -E$. Остаточно, за означенням Коші, $\exists \lim_{x \to b^-} f(x) = -\infty$.

Допускається випадок, коли $a=-\infty$ та/або $b=+\infty$. Окремо це розписувати не буду, проте доведення буде цілком аналогічним, просто трошки інше означення границі треба застоувати.

Example 4.2.9 Розглянемо декілька прикладів.

1) $f(x) = e^{-x}$ – монотонно спадає на \mathbb{R} , тому існують такі границі:

$$\lim_{x \to +\infty} e^{-x} = \inf_{x \in \mathbb{R}} e^{-x} = 0, \quad \lim_{x \to -\infty} e^{-x} = \sup_{x \in \mathbb{P}} e^{-x} = +\infty;$$

1)
$$f(x) = e^{-x}$$
 — монотонно спадає на \mathbb{R} , тому існують такі границі:
$$\lim_{x \to +\infty} e^{-x} = \inf_{x \in \mathbb{R}} e^{-x} = 0, \quad \lim_{x \to -\infty} e^{-x} = \sup_{x \in \mathbb{R}} e^{-x} = +\infty;$$
2) $f(x) = \operatorname{arctg} x$ — монотонно зростає на \mathbb{R} , тому існують такі границі:
$$\lim_{x \to +\infty} \operatorname{arctg} x = \sup_{x \in \mathbb{R}} \operatorname{arctg} x = \frac{\pi}{2}, \quad \lim_{x \to -\infty} \operatorname{arctg} x = \inf_{x \in \mathbb{R}} \operatorname{arctg} x = -\frac{\pi}{2}.$$

4.3 Основні властивості

Theorem 4.3.1 Арифметичні властивості нескінченно малих та великих функцій

Задані функції $f,g,h\colon A\to\mathbb{R}$ - відповідно н.м., н.в., обмежена в $x_0\in\mathbb{R}$ - гранична точка для A.

1)
$$f(x) \cdot h(x)$$
 – н.м. в точці x_0 ;

2)
$$\frac{1}{f(x)}$$
 – н.в. в точці x_0 ;

$$\frac{1}{g(x)}$$
 – н.м. в точці x_0 .

Зафіксуємо $\{x_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} x_n = x_0$. Тоді за Гейне, $\lim_{n \to \infty} f(x_n) = 0$, $\lim_{n \to \infty} g(x_n) = \infty$, отже:

$$\{f(x_n), n \ge 1\}$$
 – H.M.;

$$\{g(x_n), n \ge 1\}$$
 – H.B.;

$$\{h(x_n), n \ge 1\}$$
 – обмежена.

 $\{h(x_n), n \ge 1\}$ — оомежена. За властивостями границь послідовності, $\{f(x_n) \cdot h(x_n)\}$ — н.м., $\left\{\frac{1}{f(x_n)}\right\}$ — н.в., $\left\{\frac{1}{g(x_n)}\right\}$ — н.м. Ну а тому існують відповідні границі: $\lim_{n \to \infty} f(x_n)h(x_n) = 0$, $\lim_{n \to \infty} \frac{1}{f(x_n)} = \infty$, $\lim_{n \to \infty} \frac{1}{g(x_n)} = 0$. За Гейне, отримаємо бажане: $\lim_{x \to x_0} f(x)h(x) = 0$ $\lim_{x \to x_0} \frac{1}{f(x)} = \infty$ $\lim_{x \to x_0} \frac{1}{g(x)} = 0$.

За Гейне, отримаємо бажане:
$$\lim_{x\to x_0} f(x)h(x) = 0$$
 $\lim_{x\to x_0} \frac{1}{f(x)} = \infty$ $\lim_{x\to x_0} \frac{1}{g(x)} = 0$.

Example 4.3.2 Знайти границю $\lim_{x\to 0} x \cos \frac{1}{x}$.

Маємо функцію f(x)=x – н.м. в т. $x_0=0$. Маємо функцію $h(x)=\cos\frac{1}{x}$ – обмежена в т. $x_0=0$, бо

 $|h(x)| \le 1$. Тоді за щойно доведеними властивостями, f(x)h(x) – н.м., тобто $\lim_{r \to 0} x \cos \frac{1}{r} = 0$.

Theorem 4.3.3 Задано функцію $f: A \to \mathbb{R}$, що містить границю в т. x_0 . Тоді вона є обмеженою в околі т. x_0 .

Proof.

$$\exists \lim_{x \to x_0} f(x) = b \implies \forall \varepsilon > 0 : \exists \delta : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Зафіксуємо
$$\varepsilon = 1$$
, тоді $|f(x) - b| < 1$.

$$|f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < 1 + |b|.$$

Покладемо c=1+|b|. А тому отримаємо $\forall x \in A: |x-x_0| < \delta \Rightarrow |f(x)| < c$. Отже, обмежена.

Example 4.3.4 Зокрема функція $f(x) = x \cos \frac{1}{x}$ – обмежена в околі т. x = 0, тому що містить там

Theorem 4.3.5 Арифметика границь

Задано функції $f,g\colon A\to\mathbb{R},$ такі, що $\exists\lim_{x\to x_0}f(x)=b_1,\ \exists\lim_{x\to x_0}g(x)=b_2.$ Тоді:

1)
$$\forall c \in \mathbb{R} : \exists \lim_{x \to x_0} cf(x) = cb_1;$$

2)
$$\exists \lim_{x \to x_0} (f(x) + g(x)) = b_1 + b_2;$$

3) $\exists \lim_{x \to x_0} f(x)g(x) = b_1b_2;$

3)
$$\exists \lim_{x \to x_0} f(x)g(x) = b_1b_2$$

4)
$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{b_1}{b_2}$$
 при $b_2 \neq 0$.

Випливають з властивостей границь числової послідовності, якщо доводити за Гейне. Доведу лише перший підпункт для прикладу.

$$\forall \{x_n, n \geq 1\} \subset A : \forall n \geq 1 : x_n \neq x_0 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b.$$
 Тоді $\forall c \in \mathbb{R} : \lim_{n \to \infty} cf(x_n) = c \lim_{n \to \infty} f(x_n) = cb_1.$ Таким чином, $\exists \lim_{x \to x_0} cf(x) = cb_1.$

Example 4.3.6 Обчислити границю:
$$\lim_{x\to 0} \frac{x^2-1}{2x^2-2x-1}$$
.

Example 4.3.6 Обчислити границю:
$$\lim_{x\to 0}\frac{x^2-1}{2x^2-2x-1}.$$

$$\lim_{x\to 0}\frac{x^2-1}{2x^2-x-1}=\frac{\lim_{x\to 0}(x^2-1)}{\lim_{x\to 0}(2x^2-x-1)}=\frac{\lim_{x\to 0}x^2-\lim_{x\to 0}1}{2\lim_{x\to 0}x^2-\lim_{x\to 0}1}=\frac{0-1}{0-0-1}=1$$

Theorem 4.3.7 Задані функцію $f \colon A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A. Відомо, що в околі т. x_0 функція f(x) < c та $\exists \lim_{x \to x_0} f(x) = b$. Тоді $b \le c$.

Proof.

За Гейне, $\forall \{x_n, n \geq 1\} \subset A: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$. За властивостями границь числової послідовності, $b \le c$.

Corollary 4.3.8 Задані функції $f,g\colon A\to\mathbb{R}$ такі, що в околі т. $x_0\in\mathbb{R}$ - гранична точка для A справедлива $f(x) \leq g(x)$. Також $\exists \lim_{x \to x_0} f(x) = b_1$, $\exists \lim_{x \to x_0} g(x) = b_2$. Тоді $b_1 \leq b_2$. Вказівка: розглянути функцію h(x) = f(x) - g(x).

Theorem 4.3.9 Теорема про 3 функції

Задані функції $f,g,h\colon A\to\mathbb{R}$ та $x_0\in\mathbb{R}$ – гранична точка для A. Відомо, що в околі т. x_0 виконується: $f(x) \le g(x) \le h(x)$ та $\exists \lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = a$. Тоді $\exists \lim_{x \to x_0} g(x) = a$.

Випливає з теореми про поліцаїв числової послідовності

Remark 4.3.10 Теорема спрацьовує для границь, що дорівнюють нескінченностями. Хоча можна й без цього. Наступний приклад це покаже.

Example 4.3.11 Обчислити $\lim_{x \to \infty} [x]$.

Для початку обчислимо $\lim_{x \to +\infty} \frac{1}{[x]}$. А далі згадаємо оцінку: x-1 < [x] < x.

А отже, $\frac{1}{x} < \frac{1}{[x]} < \frac{1}{x-1}$, це виконано для скільки завгодно великих x. Оскільки $\lim_{x \to +\infty} \frac{1}{x} = 0$, $\lim_{x \to +\infty} \frac{1}{x-1} = 0$, то за теоремою про двох поліцаїв, $\lim_{x \to +\infty} \frac{1}{[x]} = 0$. Остаточно, $\lim_{x \to +\infty} [x] = +\infty$.

Theorem 4.3.12 Критерій Коші

Задано функцію $f\colon A\to\mathbb{R}$ та $x_0\in\mathbb{R}$ – гранична точка для A

$$\exists \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) : \forall x_1, x_2 \in A : x_1, x_2 \neq x_0 : \begin{cases} |x_1 - x_0| < \delta \\ |x_2 - x_0| < \delta \end{cases} \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Proof.

$$\forall \varepsilon > 0 : \exists \delta : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x) - b| < \frac{\varepsilon}{2}.$$

Тоді $\forall x_1, x_2 \in A: |x_1-x_0| < \delta$ і одночачно $|x_2-x_0| < \delta$

$$|f(x_1) - f(x_2)| = |f(x_1) - b + b - f(x_2)| \le |f(x_1) - b| + |f(x_2) - b| < \varepsilon.$$

Отримали праву частину критерія.

Розглянемо послідовність $\{t_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} t_n = x_0$.

Тоді за означенням,
$$\exists N : \forall n, m \geq N : \begin{cases} |t_n - x_0| < \delta \\ |t_m - x_0| < \delta \end{cases} \Rightarrow |f(t_n) - f(t_m)| < \varepsilon.$$

Отримаємо, що $\{f(t_n), n \ge 1\}$ – фундаментальна послідовність, тому збіжна, тобто $\exists \lim_{n \to \infty} f(t_n) = b$. А тепер час відповісти на питання, чи буде границя функції залежати від вибіру послідовності. Бо критерій Коші дає відповідь на збіжність, але не знає куди.

!Припустимо, що є послідовність $\{s_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} s_n = x_0$. Тоді за аналогічними міркуваннями, $\exists \lim_{n \to \infty} f(s_n) = a$, уже інша границя.

Побудуємо послідовність $\{p_n, n \geq 1\}$ таким чином, що $p_{2k} = t_k, p_{2k-1} = s_k$. Тобто $\{s_1, t_1, s_2, t_2, \dots\}$. Тут $\exists \lim_{n \to \infty} p_n = x_0$. Тоді знову за аналогічними міркуваннями, $\exists \lim_{n \to \infty} f(p_n)$, але чому буде дорівнювати, зараз побачимо.

Оскільки
$$\exists \lim_{n \to \infty} f(p_n)$$
, то одночасно $\exists \lim_{k \to \infty} f(p_{2k}) = b$, $\exists \lim_{k \to \infty} f(p_{2k-1}) = a$. У збіжної послідовності є лише одна часткова послідовність, тому $a = b$. Суперечність!

Це означає, що границя не залежить від вибору послідовності. Тому за Гейне, отримаємо, що $\exists \lim_{x \to x_0} f(x) = b.$

Theorem 4.3.13 Границя від композиції функції

Задано функції $f\colon A o B,\,g\colon B o \mathbb{R}$ та композиція h=g(f(x)). Більш того, $x_0,y_0\in \mathbb{R}$ – граничні точки відповідно для A,B та $\exists \lim_{x\to x_0} f(x) = y_0$ та $\exists \lim_{y\to y_0} g(y) = b$. Тоді $\exists \lim_{x\to x_0} h(x) = b$.

Це ще називають "заміною в границях"

$$\exists \lim_{y \to y_0} g(y) = b \overset{\text{def.}}{\Longrightarrow} \ \forall \varepsilon > 0 : \exists \delta : \forall y \in B : y \neq y_0 : |y - y_0| < \delta \Rightarrow |g(y) - b| < \varepsilon$$

$$\exists \lim_{x \to x_0} f(x) = y_0 \overset{\text{def.}}{\Longrightarrow} \ \forall \delta > 0 : \exists \tilde{\delta} : \forall x \in A : x \neq x_0 : |x - x_0| < \tilde{\delta} \Rightarrow |f(x) - y_0| < \delta$$
 Таким чином, можемо отримати: $\forall \varepsilon > 0 : \exists \delta > 0 \Rightarrow \exists \tilde{\delta} : \forall x \in A : x \neq x_0 : |x - x_0| < \tilde{\delta} \Rightarrow |f(x) - y_0| = |y - y_0| < \delta \Rightarrow |g(y) - b| = |g(f(x)) - b| = |h(x) - b| < \varepsilon$ Отже, $\exists \lim_{x \to x_0} h(x) = b$.

Example 4.3.14 Обчислити границю: $\lim_{x \to 1} \frac{x^3 - 2x^8 + 1}{x^{40} - 3x^{10} + 2}$

Ми не розпишемо це арифметичними властивостями, тому що (поки що за означенням Коші) ліміт чисельника – нуль, ліміт знаменика – нуль. І це – невизначеність.

Проведемо заміну:
$$x=t+1$$
. Оскільки $x\to 1$, то тоді $t\to 0$. А далі порахуємо таку границю:
$$\lim_{t\to 0}\frac{(t+1)^3-2(t+1)^8+1}{(t+1)^{40}-3(t+1)^{10}+2}\stackrel{\Phi\text{-ла}}{=}\lim_{t\to 0}\frac{(t^3+3t^2+3t+1)-2(t^8+8t^7+\cdots+8t+1)+1}{(t^{40}+40t^{39}+\cdots+40t+1)-3(t^{10}+10t^9+\cdots+10t+1)+2}=\\ =\lim_{t\to 0}\frac{(t^3+3t^2+3t)-2(t^8+8t^7+\cdots+8t)}{(t^{40}+40t^{39}+\cdots+40t)-3(t^{10}+10t^9+\cdots+10t)}=\lim_{t\to 0}\frac{(t^2+3t+3)-2(t^7+8t^6+\cdots+8)}{(t^{39}+40t^{38}+\cdots+40)-3(t^9+10t^8+\cdots+10)}=\\ \frac{3-2\cdot 8}{40-3\cdot 10}=-\frac{13}{10}$$
 Отже, $\lim_{x\to 1}\frac{x^3-2x^8+1}{x^{40}-3x^{10}+2}=-\frac{13}{10}$.

Більш детально, як тут використалась теорема про композицію. У нас $h(x)=g(f(x))=\dfrac{x^3-2x^8+1}{x^{40}-3x^{10}+2},$ від якої ми шукаємо ліміт. Далі, $f(x)=x-1, \qquad g(y)=\dfrac{(y+1)^3+2(y+1)^8+1}{(y+1)^{40}-3(y+1)^{10}+2}.$

від якої ми шукаємо ліміт. Далі,
$$f(x) = x - 1$$
, $g(y) = \frac{(y+1)^3 + 2(y+1)^6 + 1}{(y+1)^{40} - 3(y+1)^{10} + 2}$

Знаємо, що $\lim_{x\to 1} f(x) = 0$, тобто $y\to 0$.

Знаємо, що $\lim_{y\to 0} g(y) = -\frac{13}{10}$ – цей ліміт ми вже рахували через арифметичні властивості.

Тому початковий ліміт, тобто $\lim_{x\to 0} h(x) = -\frac{13}{10}$. Надалі такі деталі розписувати не будемо.

4.4 Перша чудова границя

Розглянемо такий геометричний малюнок:

Відокремимо з малюнку наступні дані: $|AB| = \sin x$, |AC| = x, $|KC| = \operatorname{tg} x$.

Зрозуміло, що $|AB| < |AC| < |KC| \implies \sin x < x < \operatorname{tg} x$.

Розглянемо обидві сторони нерівності:

$$\sin x < x \implies \frac{\sin x}{x} < 1.$$

$$\sin x < x \implies \frac{\sin x}{x} < 1.$$

$$x < \operatorname{tg} x = \frac{\sin x}{\cos x} \Rightarrow \frac{\sin x}{x} > \cos x = 1 - 2\sin^2 \frac{x}{2} > 1 - 2\frac{x^2}{4} = 1 - \frac{x^2}{2}.$$

$$1 - \frac{x^2}{4} < \sin x < 1$$

Можна розширити інтервал до $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, оскільки нерівність не змінюється. Тому за теоремою про 3 функції, маємо наступне:

Theorem 4.4.1 I чудова границя

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Corollary 4.4.2 Наслідки І чудової границі $1) \lim_{x\to 0} \frac{\operatorname{tg} x}{x} = 1 \qquad 2) \lim_{x\to 0} \frac{\arcsin x}{x} = 1 \qquad 3) \lim_{x\to 0} \frac{\arctan x}{x} = 1$

1)
$$\lim_{x \to 0} \frac{\operatorname{tg} x}{x} = 1$$

2)
$$\lim_{x\to 0} \frac{\arcsin x}{x} =$$

$$3) \lim_{x \to 0} \frac{\arctan x}{x} =$$

- 1) Вказівка: $\lg x = \frac{\sin x}{\cos x}$. Необіхдно знати про неперервність $\cos x$. (буде в наступному розділі)
- 2) $B \kappa a s i e \kappa a : \arcsin x = t$.
- 3) Bказівка: arctg x = t.

4.5 Складенно-показникова функція

Definition 4.5.1 Задано функції $f,g:A\to\mathbb{R}$ так, що f(x)>0. Задано число $a>0, a\neq 1$. Степенево-показниковою функцією називають функцію такого вигляду:

$$f(x)^{g(x)} = a^{g(x)\log_a f(x)}$$

Proposition 4.5.2 Степенево-показникова функція не залежить від основи правої частини.

Proof.

Зафіксуємо числа $a,b>0, a,b\neq 1$. Тоді

$$a^{g(x)\log_a f(x)} = a^{g(x)\frac{\log_b f(x)}{\log_b a}} = a^{g(x)\log_b f(x)\log_a b} = \left(a^{\log_a b}\right)^{g(x)\log_b f(x)} = b^{g(x)\log_b f(x)}.$$

Таким чином, байдуже, що обирати, все чудово працює.

Зазвичай степенево-показникову функцію визначають через число Ойлера, тобто через e:

$$f(x)^{g(x)} = e^{g(x)\ln f(x)}$$

Example 4.5.3 Зокрема маємо такі приклади:
$$f(x) = x^x, g(x) = \left(1 + \frac{1}{x}\right)^x, h(x) = x^{\sqrt{2}}.$$

Степеневу функцію $y=x^{\alpha}, \alpha \in \mathbb{R}$ можна визначити як $y=e^{\alpha \ln x}$ при x>0.

Друга чудова границя 4.6

Доведемо, що існує $\lim_{x\to +\infty} \left(1+\frac{1}{[x]}\right)^{[x]}=e$ за Гейне.

Ми знаємо той факт, що $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$, тобто $\forall \varepsilon>0:\exists N:\forall n\geq N:\left|\left(1+\frac{1}{n}\right)^n-e\right|<\varepsilon.$ Нехай є послідовність $\{x_n,n\geq 1\}$ така, що $\lim_{n\to\infty}x_n=+\infty.$ Тоді $\lim_{n\to\infty}[x_n]=+\infty$

Тоді $\exists N': \forall n \geq N': [x_n] > N$, а оскільки $[x_n] \in \mathbb{N}$, то тоді $\left| \left(1 + \frac{1}{[x_n]} \right)^{[x_n]} - e \right| < \varepsilon$.

Отже,
$$\lim_{n\to\infty}x_n=+\infty\implies\lim_{n\to\infty}\left(1+\frac{1}{[x_n]}\right)^{[x_n]}=e$$
. За Гейне, $\lim_{x\to+\infty}\left(1+\frac{1}{[x]}\right)^{[x]}=e$

Наступне відомо, що $\forall x \in \mathbb{R}$ справедлива нерівність: $[x] \leq x < [x] + 1$.

Тоді можна дійти до цієї нерівності:

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^{x} < \left(1 + \frac{1}{[x]}\right)^{[x]+1}.$$

Тоді можна дійти до цієї нерівності:
$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1}.$$
 Нехай $x \to +\infty$, тоді відповідно $[x] \to +\infty$ та $[x]+1 \to +\infty$.
$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} = \frac{\left(1 + \frac{1}{[x]+1}\right)^{[x]+1}}{1 + \frac{1}{[x]+1}} \to \frac{e}{1} = e$$

$$\left(1+\frac{1}{[x]}\right)^{[x]+1} = \left(1+\frac{1}{[x]}\right)^{[x]} \left(1+\frac{1}{[x]}\right) \to e \cdot 1 = e.$$
 I це все при $x \to +\infty$. Тоді за теоремою про поліцаїв, отримаємо ще одну чудову границю:

Theorem 4.6.1 II чудова границя

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Corollary 4.6.2 Наслідки II чудової границі
$$1) \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e \qquad 2) \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e \qquad 3) \lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1$$

$$4) \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad 5) \lim_{x \to 0} \frac{(1 + x)^\alpha - 1}{x} = \alpha.$$

4)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
 5) $\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$

1)
$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x \stackrel{x = -t}{=} \lim_{t \to +\infty} \left(1 - \frac{1}{t} \right)^{-t} = \lim_{t \to \infty} \left(1 + \frac{1}{t-1} \right)^t \stackrel{t-1 = y}{=} \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^{y+1} = \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right) \lim_{y \to +\infty} \left(1 + \frac{1}{y} \right)^y = 1 \cdot e = e$$

- 2) Вказівка: $\frac{1}{x} = t$.
 3) Вказівка: використати властивість логарифма. Необіхндо знати про неперервність $\ln x$.
- 4) $B \kappa a s i s \kappa a : x = \ln(1+t)$.
- 5) $B \kappa a 3 i 6 \kappa a : 1 + x = e^t$.

Example 4.6.3 Обчислити границю $\lim_{x\to 0} \frac{\ln(\cos 2x)}{\ln(\cos 3x)}$ – універсальний приклад.

$$\lim_{x \to 0} \frac{\ln(\cos 3x)}{\ln(\cos 3x)} = \lim_{x \to 0} \frac{\ln(1 + (\cos 2x - 1))}{\ln(1 + (\cos 3x - 1))} = \lim_{x \to 0} \frac{\frac{\ln(1 + (\cos 2x - 1))}{\cos 2x - 1}}{\frac{\ln(1 + (\cos 3x - 1))}{\cos 3x - 1}} \cdot \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{\ln(\cos 3x)}{\ln(\cos 3x)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x - 1)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x - 1)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x - 1)} = \lim_{x \to 0} \frac{\ln(\cos 2x - 1)}{\ln(\cos 3x - 1)} = \lim_{x \to 0} \frac{\ln(\cos 3x - 1)}{\ln(\cos 3$$

$$=\frac{\lim_{x\to 0}\frac{\ln(1+(\cos 2x-1))}{\cos 2x-1}}{\lim_{x\to 0}\frac{\ln(1+(\cos 3x-1))}{\cos 3x-1}}\lim_{x\to 0}\frac{\cos 2x-1}{\cos 3x-1}$$

Заміна для першої границі: $\cos 2x - 1 = t$. Оскільки $x \to 0$, то звідси $t \to 0$.

Заміна для другої границі: $\cos 3x - 1 = t$. Оскільки $x \to 0$, то звідси $t \to 0$.

Звели ці ліміти до ІІ чудових границь.

$$= \frac{\lim_{t \to 0} \frac{\ln(1+t)}{t}}{\lim_{t \to 0} \frac{\ln(1+t)}{t}} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \lim_{x \to 0} \frac{1 - \cos 2x}{1 - \cos 3x} = \frac{1}{1} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos 3x - 1} = \frac{1}{1} \lim_{x$$

$$= \lim_{x \to 0} \frac{2 \sin^2 x}{2 \sin^2 \frac{3x}{2}} = \lim_{x \to 0} \frac{\frac{\sin^2 x}{x^2}}{\frac{\sin^2 \frac{3x}{2}}{4}} \cdot \frac{x^2}{\frac{9x^2}{4}} = \frac{\lim_{x \to 0} \frac{\sin^2 x}{x^2}}{\lim_{x \to 0} \frac{\sin^2 \frac{3x}{2}}{\frac{9x^2}{4}}} \lim_{x \to 0} \frac{x^2}{\frac{9x^2}{4}} = \frac{\lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x}}{\lim_{x \to 0} \frac{3x}{2} \lim_{x \to 0} \frac{3x}{2}} \cdot \frac{4}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x}}{\frac{\sin x}{2} \lim_{x \to 0} \frac{3x}{2}} \cdot \frac{4}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0} \frac{\sin^2 x}{2}} \cdot \frac{1}{9} = \frac{1}{1 \lim_{x \to 0}$$

Заміна для границь в знаменнику: $\frac{3x}{2} = t$. Оскільки $x \to 0$, то звідси $t \to 0$.

Звели ці ліміти до І чудових границь.

$$\lim_{x \to 0} \frac{\sin x}{x} \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{1} = \frac{1}{1 \cdot 1} \cdot \frac{4}{9} = \frac{4}{9}$$

$$\lim_{t \to 0} \frac{\sin t}{t} \lim_{t \to 0} \frac{\sin t}{t} \cdot \frac{4}{9} = \frac{4}{9}$$

4.7 Порівняння функцій, відношення О-велике, о-маленьке та еквівалентності

Definition 4.7.1 Задано функції $f,g:A\to \mathbb{R}$ та $x_0\in \mathbb{R}$ – гранична точка для A. Функція f називається **порівнянною** з функцією g, якщо

$$\exists L>0: \exists \delta>0: \forall x\in A: x\neq x_0: |x-x_0|<\delta\Rightarrow |f(x)|\leq L|g(x)|$$

Позначення: $f(x) = O(g(x)), x \to x_0$.

Інакше називають, що f обмежена відносно g при $x \to x_0$. Або просто кажуть, що $f \in \mathbf{O}$ -великою від g при $x \to x_0$.

Theorem 4.7.2 Властивості

Маємо наступні властивості:

- 1) $f(x) = O(g(x)), x \to x_0 \iff \frac{f(x)}{g(x)}$ обмежена в околі точки $x_0.$
- 2) Якщо $\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = c$, то $f(x) = O(g(x)), x \to x_0$.
- 3) Нехай $f_1(x) = O(g(x)), f_2(x) = O(g(x)).$ Тоді всюди при $x \to x_0$ маємо:
 - a) $f_1(x) + f_2(x) = O(g(x));$
 - б) $\forall \alpha \in \mathbb{R} : \alpha f_1(x) = O(g(x));$
 - B) $\forall \alpha \neq 0 : f_1(x) = O(\alpha g(x)).$
- 4) Нехай f(x) = O(g(x)), g(x) = O(h(x)). Тоді $f(x) = O(h(x)), x \to x_0.$

Proof.

Доведу лише 3) а). Інші зрозуміло.

$$f_1(x) = O(g(x)) \Rightarrow \exists L_1 : \exists \delta_1 : \forall x : |x - x_0| < \delta_1 \Rightarrow |f_1(x)| \le L_1 |g(x)|$$

$$f_2(x) = O(g(x)) \Rightarrow \exists L_2 : \exists \delta_2 : \forall x : |x - x_0| < \delta_2 \Rightarrow |f_2(x)| \le L_2 |g(x)|$$

Тоді $\exists \delta = \min\{\delta_1, \delta_2\} : \forall x : |x - x_0| < \delta \Rightarrow$

$$|f(x_1) + f(x_2)| \le |f(x_1)| + |f(x_2)| \le (L_1 + L_2)|g(x)|.$$

A TOMY $f_1(x) + f_2(x) = O(q(x))$.

Example 4.7.3 Довести, що $x + x^2 = O(x), x \to 0$.

Знайдемо наступну границю:

$$\lim_{x \to 0} \frac{x + x^2}{x} = \lim_{x \to 0} (1 + x) = 1. \text{ Отже, } x + x^2 = O(x), x \to 0.$$

Remark 4.7.4 В математичному аналізі О-велике не використовується часто, це більше вже для дослідження алгоритмів в комп'ютерних науках. Зокрема існує такий алгоритм Binary Search для пошуку елемента в відсортованому масиві. Складність алгоритму оцінюється в $O(\log_2 n)$, де n – кількість елементів.

Definition 4.7.5 Задано функції $f, g: A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A. Функція f називається **знехтувально малою** відносно g, якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)|$$

Позначення: $f(x) = o(g(x)), x \to x_0$.

Інакше кажуть, що f - нескінченно мала більш високого порядку, ніж g при $x \to x_0$. Або просто кажуть, що $f \in$ о-малою від g при $x \to x_0$.

Theorem 4.7.6 Властивості

Маємо наступні властивості:

- 1) $f(x) = o(g(x)), x \to x_0 \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$
- 2) Нехай $f_1(x) = o(g(x)), f_2(x) = o(g(x))$. Тоді всюди при $x \to x_0$ маємо:

- a) $f_1(x) + f_2(x) = o(g(x));$
- 6) $\forall \alpha \in \mathbb{R} : \alpha f_1(x) = o(g(x));$
- B) $\forall \alpha \neq 0 : f_1(x) = o(\alpha g(x)).$
- 3) Нехай f(x) = o(g(x)), g(x) = o(h(x)). Тоді $f(x) = o(h(x)), x \to x_0.$

Доведу лише 1), інші зрозуміло.

$$\begin{aligned} f(x) &= o(g(x)), x \to x_0 \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)| \iff \\ \left| \frac{f(x)}{g(x)} - 0 \right| < \varepsilon \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0. \end{aligned}$$

Example 4.7.7 Довести, що $x^3 - x^2 - x + 1 = o(x - 1), x \to 1$.

Знайдемо наступну границю:

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) - (x - 1)}{x - 1} = \lim_{x \to 1} (x^2 - 1) = 0.$$
 Отже, $x^3 - x^2 - x + 1 = o(x - 1), x \to 1.$

Theorem 4.7.8 Інші властивості

Додатково справедливі такі властивості:

- 1) Нехай f(x) = o(g(x)) та g(x) = O(h(x)). Тоді $f(x) = o(h(x)), x \to x_0$.
- 2) Нехай f(x) = O(g(x)) та g(x) = o(h(x)). Тоді $f(x) = o(h(x)), x \to x_0$.
- 3) Нехай f(x) = o(g(x)). Тоді $f(x) = O(g(x)), x \to x_0$.

Proof.

1),2) для обох випадків

$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \frac{g(x)}{h(x)} = (\text{обм *H.м.}) = 0 \Rightarrow f(x) = o(h(x)), x \to x_0.$$

3) Випливає з властивості 2) О-великого.

Definition 4.7.9 Задано функції $f,g:A\to\mathbb{R}$ та $x_0\in\mathbb{R}$ – гранична точка для A. Функція f називається **еквівалентною** до g, якщо

$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Позначення: $f(x) \sim g(x), x \to x_0$.

Тобто функції f(x) та g(x) в околі т. x_0 мають однакову поведінку.

Theorem 4.7.10 $f(x) \sim g(x), x \to x_0 \iff f(x) - g(x) = o(g(x))$

Proof.

$$f(x) \sim g(x), x \to x_0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \iff \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \iff f(x) - g(x) = o(g(x))$$

Theorem 4.7.11 Граничний перехід

Задано $f_1(x) \sim g_1(x)$ та $f_2(x) \sim g_2(x), x \to x_0$. Тоді:

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} g_1(x) g_2(x);$$

2)
$$\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}$$
.

За умовою, що принаймні один з чотирьох лімітів існує, не обов'язково скінченний.

Proof.

Із початкових умов отримаємо, що:

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = 1, \ \exists \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = 1.$$
 Тоді маємо

Початкових умов отримаемо, що.
$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = 1, \ \exists \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = 1. \ \text{Тоді маємо:}$$
1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} \frac{f_1(x) f_2(x) g_1(x) g_2(x)}{g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_1(x) f_2(x)}{g_1(x) g_2(x)} \lim_{x \to x_0} g_1(x) g_2(x) = \lim_{x \to x_0} g_1(x) g_2(x).$$
2)
$$\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{f_1(x) g_1(x) g_2(x)}{f_2(x) g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_1(x) g_2(x)}{f_2(x) g_1(x)} \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}.$$

2)
$$\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_1(x)g_2(x)}{f_2(x)g_1(x)g_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_2(x)}{f_2(x)g_1(x)} \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g$$

Remark 4.7.12 Еквівалентні функції дійсно задають відношення еквівалентності.

Використовуючи всі наслідки від чудових границь, ми можемо отримати наступні еквівалентні функції, коли $x \to 0$.

$$\sin x \sim x \qquad \ln(1+x) \sim x$$

$$\operatorname{tg} x \sim x \qquad e^{x} - 1 \sim x$$

$$\operatorname{arcsin} x \sim x \qquad (1+x)^{\alpha} - 1 \sim \alpha x$$

$$\operatorname{arctg} x \sim x \qquad a^{x} - 1 \sim x \ln a$$

Example 4.7.13 Обчислити границю $\lim_{x\to 0} \frac{\arcsin x\cdot (e^x-1)}{1-\cos x}$.

Маємо, з таблиці еквівалентності:
$$\lim_{x\to 0} \frac{\arcsin x \cdot (e^x - 1)}{1 - \cos x} = \lim_{x\to 0} \frac{x \cdot x}{2\sin^2 \frac{x}{2}} = \lim_{x\to 0} \frac{x \cdot x}{2\frac{x^2}{4}} = 2.$$

Remark 4.7.14 Узагальнене зауваження:

$$f(x) = O(1), x \to x_0 \iff f(x)$$
 – обмежена в околі т. x_0 .

$$f(x) = o(1), x o x_0 \iff f(x)$$
 – н.м. функція в околі т. x_0 .

Неперервність функції 5

5.1Неперервність в точці

Definition 5.1.1 Задано функцію $f: A \to \mathbb{R}$ та точка $x_0 \in A$.

Функція f(x) називається **неперервною в точці** x_0 , якщо

$$\forall \varepsilon>0:\exists \delta(\varepsilon)>0: \forall x\in A: |x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon$$
 означення Коші

$$\forall \{x_n, n \geq 1\} \subset A: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0)$$
 означення Гейне

Definition 5.1.2 Задано функцію $f \colon A \to \mathbb{R}$ та $x_0 \in \mathbb{R}$ – гранична точка для A.

Число b називається границею функції в точці x_0 , якщо

Позначення: $\lim_{x \to x_0} f(x) = b$.

Theorem 5.1.3 Означення Коші \iff Означення Гейне.

Доведення ϵ аналогічним з означеннями Kowi, Гейне в границях.

Proposition 5.1.4 Задано функцію $f \colon A \to \mathbb{R}$ та $x_0 \in A$ – ізольована. Тоді f – неперервна в точці x_0 .

Proof.

Якщо x_0 – ізольована, то $\exists \delta^* > 0 : U_{\delta^*} \cap A = \{x_0\}.$

Нехай
$$\varepsilon>0$$
. Тоді $\exists \delta=\delta^*>0: \forall x\in A: |x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon.$

Якщо
$$x \in A$$
 та $|x - x_0| < \delta$, то звідси $x = x_0$. А для нього $|f(x) - f(x_0)| = 0 < \varepsilon$.

Proposition 5.1.5 Стандартне означення неперервності функції в точці

Задано функцію $f \colon A \to \mathbb{R}$ та $x_0 \in A$ – гранична точка.

f – неперервна в точці $x_0 \iff \lim_{x \to x_0} f(x) = f(x_0).$

Proof.

 \leftarrow Дано: f – неперервна в т. x_0 .

Нехай є $\{x_n, n \geq 1\}$, причому $\forall n \geq 1: x_n \neq x_0$, оскільки $x_0 \in A$ - гранична, та $\lim_{n \to \infty} x_n = x_0$. Тоді $f(x_n) o f(x_0)$. Отже, за Гейне, $\exists \lim_{x o x_0} f(x) = f(x_0)$.

$$\Longrightarrow$$
 Дано: $\exists \lim_{x \to x_0} f(x) = f(x_0)$. Тоді за Коші, $\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in A : 0 < |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$. За Коші означення неперервності, отримали, що f – неперервна в т. x_0 .

Example 5.1.6 Пояснювальний приклад, навіщо ми створили нестандартне означення.

Маємо функцію $f(x) = \sqrt{x^2(x^2 - 1)}$, яка визначена на $(-\infty, -1] \cup [1, +\infty)$, а також в точці x = 0. I ось точка $x_0 = 0$ – ізольована точка. Отже, можна вважати, що f – неперервна в точці x_0 .

Example 5.1.7 Розглянемо функцію
$$f(x) = \begin{cases} \frac{\sin x}{x}, x \neq 0 \\ 1, x = 0 \end{cases}$$
 . У точці x_0 функція $f(x)$ є неперерв

ною, оскільки
$$\lim_{x\to 0}\frac{\sin x}{x}$$
 І чудова границя $1=f(0).$

Definition 5.1.8 Задана функція $f: A \to \mathbb{R}$ та точка $x_0 \in A$.

Функція f називається **розривною в точці** x_0 , якщо в цій точці функція не є неперервною. А сама точка x_0 називається **точкою розриву**.

Remark 5.1.9 Лише граничні точки можуть бути точками розриву, а в ізольованій завжди функція неперервна.

Класифікації точок розриву

I роду

- усувна, якщо $\exists \lim_{x \to x_0} f(x) \neq f(x_0);$ стрибок, якщо $\exists \lim_{x \to x_0 + 0} f(x), \ \exists \lim_{x \to x_0 0} f(x),$ але при цьому $\lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 0} f(x).$

II роду

якщо виконується один з 4 випадків:

- 1) $\lim_{x \to x_0 0} f(x) = \infty$ 2) $\lim_{x \to x_0 + 0} f(x) = \infty$
- 3) $\exists \lim_{x \to x_0 0} f(x)$ (якщо лівіше точка x_0 функція визначена)
 4) $\exists \lim_{x \to x_0 + 0} f(x)$ (якщо правіше точка x_0 функція визначена).

Example 5.1.10 Розглянемо тепер функцію
$$f(x) = \begin{cases} \frac{\sin x}{x}, x \neq 0 \\ 0, x = 0 \end{cases}$$

У цьому випадку точка x_0 буде розривом I роду, зокрема усувною, оскільки $\lim_{x\to 0}\frac{\sin x}{x}\stackrel{\text{I чудова границя}}{=}1\neq f(0)=0.$

Example 5.1.11 Розглянемо функцію
$$f(x) = \begin{cases} 2x - \frac{x-2}{|x-2|}, x \neq 2\\ 2, x = 2 \end{cases}$$

Тут проблема виникає в т. $x_0 = 2$. Розглянемо границі в різні сторони:

$$\lim_{x \to 2-0} \left(2x - \frac{x-2}{2-x} \right) = \lim_{x \to 2-0} (2x-1) = 3$$

$$\lim_{x \to 2+0} \left(2x - \frac{x-2}{x-2} \right) = \lim_{x \to 2+0} (2x+1) = 5$$

Обидва ліміти не рівні, а отже, $x_0 = 2$ — розрив I роду, зокрема стрибок.

Example 5.1.12 Маємо функцію $f(x) = \frac{1}{x+1}$ та f(-1) = 0. Проблема в точці $x_0 = -1$. Але принаймні по одну сторону, наприклад $\lim_{x\to -1^+0}=\frac{1}{x+1}=+\infty$, матимемо нескінченність. Тому одразу точка $x_0 = -1$ – розрив II роду.

До речі, якби функція f була визначена на $\mathbb{R}\setminus\{-1\}$, то f була би, технічно кажучи, неперервною. I не треба було би досліджувати на точки розриву.

Theorem 5.1.13 Арифметичні властивості неперервних функцій

Задано функції $f,g:A\to\mathbb{R}$ та $x_0\in A$. Відомо, що f,g – неперервні в точці x_0 . Тоді:

- 1) $\forall c \in \mathbb{R} : (cf)(x)$ неперервна в точці x_0 ;
- 2) (f+g)(x) неперервна в точці x_0 ;
- 3) (fg)(x) неперервна в точці x_0 ; 4) $\frac{f}{g}(x)$ неперервна в точці x_0 при $g(x_0) \neq 0$.
- (1), (2), (3), (4) всі вони випливають із означення. Але в 4) більш детально розпишу одну штуку.

Переконаємось, що все буде коректно визначено в 4). g – неперервна в x_0 , тобто $\forall \varepsilon > 0 : \exists \delta : \forall x \in \mathbb{R}$ $A: |x - x_0| < \delta \Rightarrow |g(x) - g(x_0)| < \varepsilon.$

Оберемо
$$\varepsilon = \frac{|g(x_0)|}{2}$$
. Тоді $g(x_0) - \varepsilon < g(x) < g(x_0) + \varepsilon$.

Якщо
$$g(x_0) > 0$$
, то $\varepsilon = \frac{g(x_0)}{2} \Rightarrow 0 < g(x) < \frac{3}{2}g(x_0)$.

Якщо
$$g(x_0) < 0$$
, то $\varepsilon = -\frac{g(x_0)}{2} \Rightarrow \frac{3}{2}g(x_0) < g(x) < \frac{1}{2}g(x_0) < 0$.
Тобто $\exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow g(x) \neq 0$. Отже, наше означення є коректним.

Theorem 5.1.14 Неперервність композиції

Задано функції $f\colon A\to B, g\colon B\to \mathbb{R}$ та $h=g\circ f$. Відомо, що f неперервна в точці $x_0\in A$; та gнеперервна в точці $f(x_0) = y_0 \in B$. Тоді h – неперервна в точці x_0 . Випливає з означення та властивості композиції.

Definition 5.1.15 Функція $f: A \to \mathbb{R}$ називається **неперервною на множині** A, якщо

$$f$$
 – неперервна $\forall x \in A$.

Позначення: C(A) – множина неперервних функцій в A.

5.2Неперервність функції на відрізку

Надалі ми розглядаємо лише функції $f \in C([a,b])$, тобто неперервні функції на відрізку. Саме для них будуть працювати нижчезгадані теореми.

Theorem 5.2.1 Теорема Ваєрштраса 1

Задано функцію $f \in C([a,b])$. Тоді вона є обмеженою на [a,b].

Proof.

!Припустимо, що f не ϵ обмежено, тобто $\forall n \geq 1: \exists x_n \in [a,b]: |f(x_n)| > n$. Отримаємо послідовність $\{x_n, n \ge 1\}$. Є два випадки, тому виділимо 2 підпослідовності:

- 1) $\{x_{n_k}, k \ge 1\} : f(x_{n_k}) > n_k;$
- 2) $\{x_{n_m}, m \ge 1\} : f(x_{n_m}) < -n_m$.

Розглянемо другу. Вона є обмеженою, оскільки $\{x_{n_m}, m \geq 1\} \subset [a,b]$. Тоді за Ваєрштрасом, для підпослідовності $\{x_{n_{m_p}}, p \geq 1\}$: $\exists \lim_{n \to \infty} x_{n_{m_p}} = x_*$. Тому за означенням Гейне і за неперервністю, $\exists \lim_{p \to \infty} f(x_{n_{m_p}}) = f(x_*)$. Але водночас ми маємо, що функція не є обмеженою знизу, тобто $\exists \lim_{p \to \infty} f(x_{n_{m_p}}) = -\infty$. Суперечність!

Для першого пункту все аналогічно і теж буде суперечність.

Отже, f – все ж таки обмежена на [a,b].

Theorem 5.2.2 Теорема Ваєрштраса 2

Задано функцію $f \in C([a,b])$. Тоді f досягає найбільшого та найменшого значень. Тобто:

$$\exists x_* \in [a, b] : f(x_*) = \min_{x \in [a, b]} f(x)$$

$$\exists x_* \in [a,b] : f(x_*) = \min_{x \in [a,b]} f(x);$$
$$\exists x^* \in [a,b] : f(x^*) = \max_{x \in [a,b]} f(x).$$

Proof.

Доведемо, що f досягає найменшого значення. Для найбільшого буде аналогічно.

Нехай $\inf_{x \in [a,b]} f(x) = c$. За критерієм inf, отримаємо наступне:

 $\forall x \in [a,b]: f(x) \geq c;$ $\forall \varepsilon > 0: \exists x_{\varepsilon} \in [a,b]: f(x_{\varepsilon}) < c + \varepsilon.$ Зафіксуємо $\varepsilon = \frac{1}{n}$. Тоді $\exists x_n \in [a,b]: c \leq f(x_n) < c + \frac{1}{n}$. Ми також маємо обмежену послідовність $\{x_n, n \geq 1\} \subset [a,b]$. Тому за Ваєрштрасом, для послідовності $\{x_{n_k}, k \geq 1\}$ існує $\lim_{n \to \infty} x_{n_k} = x_*$. Отже, за Гейне і за неперервністю, $\exists \lim_{k \to \infty} f(x_{n_k}) = f(x_*).$

Але водночас $\exists x_{n_k} \in [a,b]: c \leq f(x_{n_k}) < c + \frac{1}{n_k}$. Коли $k \to \infty$, то за теоремою про поліцаїв, $\exists \lim_{k \to \infty} f(x_{n_k}) = c$. Таким чином, отримали, що $c = f(x_*) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$.

Theorem 5.2.3 Теорема Больцано-Коші про нульове значення

Задано функцію $f \in C([a,b])$, причому $f(a) \cdot f(b) < 0$. Тоді $\exists x_0 \in (a,b) : f(x_0) = 0$.

Proof.

Будемо доводити випадок, коли f(a) < 0, f(b) > 0. Маємо відрізок [a, b].

Встановимо середину $c=\frac{a+b}{2}$. Розіб'ємо відрізок навпіл: [a,c],[c,b]. Якщо f(c)=0, то доведено. Інакше два випадки: або f(c)<0 — тоді беремо відрізок [c,b]; або f(c)>0 — тоді беремо відрізок

Обраний відрізок позначимо за $[a_1,b_1]$, для якої $f(a_1) < 0, f(b_1) > 0$.

Встановимо $c_1=\frac{a_1+b_1}{2}$. Розіб'ємо знову навпіл: $[a_1,c_1],[c_1,b_1]$. Аналогічно якщо $f(c_1)=0$, доведено. Інакше знову два випадки: або $f(c_1)<0$ — тода беремо відрізок $[c_1,b_1]$; або $f(c_1)>0$ — тоді беремо відрізок $[a_1, c_1]$.

Обраний відрізок позначимо за $[a_2, b_2]$, для якої $f(a_2) < 0, f(b_2) > 0$.

В результаті маємо вкладені відрізки $[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\dots$ Довжина кожного з відрізків $\frac{b-a}{2n}$, а також $\forall n \geq 1: f(a_n) < 0, f(b_n) > 0.$

За теоремою Кантора, $\exists ! x_0 \in \mathbb{R} : \forall n \geq 1 : x_0 \in [a_n, b_n]$. Значить, $\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = f(x_0) \le 0$ $\lim_{n \to \infty} b_n = x_0 \implies \lim_{n \to \infty} f(b_n) = f(x_0) \ge 0.$ Отже, $f(x_0) = 0$.

Corollary 5.2.4 Теорема Больцано-Коші про проміжкове значення

Задано функцію $f \in C([a,b])$. Тоді $\forall L \in \begin{bmatrix} [f(a),f(b)]\\ [f(b),f(a)] \end{bmatrix} : \exists x_L \in [a,b] : f(x_L) = L.$ Вказівка: розглянути функцію q(x) = f(x)

5.3 Існування неперервної оберненої функції

Lemma 5.3.1 Задано функцію $f \in C([a,b])$ та строго монотонно зростаюча. Тоді E(f) = [c,d], де c = f(a), d = f(b).

Для строго спадної функції всі леми знизу (і ця лему в тому числі) будуть аналогічними.

Маємо множину $E(f) = \{f(x) : x \in [a,b]\}$. Якщо $y \in E(f)$, то тоді $\exists x \in [a,b] : y = f(x)$. А оскільки a < x < b, то тоді $f(a) < y < f(b) \implies y \in [f(a), f(b)]$. Отже, $E(f) \subset [f(a), f(b)]$. Якщо $y \in [f(a), f(b)]$, то тоді за теоремою про проміжне значення, $\exists x \in [a, b] : y = f(x) \implies y \in [a, b]$ E(f). Отже, $[f(a), f(b)] \subset E(f)$

А це означає, що E(f) = [f(a), f(b)].

Lemma 5.3.2 Задано функцію $f \in C([a,b])$ та строго монотонно зростаюча. Тоді f – бієкція.

Proof.

!Припустимо, що $\forall y : \exists x_1, x_2 \in [a, b] : y = f(x_1), y = f(x_2)$, але при цьому $x_1 \neq x_2$.

Якщо $x_1 > x_2$, то тоді $f(x_1) > f(x_2)$, що не можливо.

Якщо $x_1 < x_2$, то тоді $f(x_1) < f(x_2)$, що не можливо.

Виникає суперечність! Тому $\forall y: \exists ! x \in [a,b]: y=f(x)$. Отже, f – бієкція.

Із цих двох лем ми отримали обернену функцію $g:[c,d] \to [a,b]$, для якої спрацьовують такі леми:

Lemma 5.3.3 Задано функцію $f \in C([a,b])$ та строго монотонно зростаюча. Тоді $g = f^{-1}$ також строго монотонно зростаюча.

Proof.

Зафіксуємо $y_1, y_2 \in [c, d]$ так, щоб $y_1 > y_2$.

!Припустимо, що $g(y_1) \le g(y_2)$. Тоді отримаємо $y_1 = f(g(y_1)) \le f(g(y_2)) = y_2$. Суперечність! Отже, $y_1 > y_2 \implies g(y_1) > g(y_2)$, тобто g – строго монотонно зростає.

Lemma 5.3.4 Задано функцію $f \in C([a,b])$ та строго монотонно зростаюча. Тоді $g \in C([c,d])$.

Proof.

!Припустимо, що $\exists y_0=f(x_0)\in [c,d]$, де функція g не є неперервною, тоді за Гейне, $\exists \{y_n,n\geq 1\}\subset$ $[c,d]: \forall n \geq 1: y_n \neq y_0: \lim_{n \to \infty} y_n = y_0$, але $\lim_{n \to \infty} g(y_n) \neq g(y_0)$, тобто $\exists \delta^* > 0: \forall N: \exists n \geq N: |g(y_n) - g(y_0)| \geq \delta^*$.

Тут $g(y_n)=x_n$ та $g(y_0)=x_0$, тоді $|x_n-x_0|\geq \delta^*$ Зокрема для $N=1:\exists n_1\geq N,$ для $N=n_1+1:\exists n_2>n_1,$. . .

Коротше, є підпослідовність $\{x_{n_k}, k \ge 1\}$, для якої $|x_{n_k} - x_0| \ge \delta^*$

Оскільки $\{y_n\}\subset [c,d]$, то тоді $\{x_n\}\subset [a,b]$, ну й $\{x_{n_k}\}\subset [a,b]$ - обмежена. Тоді за Больцано-Ваєрштрасом, $\exists \{x_{n_{k_m}}, m \geq 1\}$ така, що $\lim_{m \to \infty} x_{n_{k_m}} = x_{00}$. За граничним переходом, маємо, що $|x_{00} - x_0| \ge \delta^*.$

Оскільки $f \in C([a,b])$, то звідси, $\lim_{m \to \infty} f(x_{n_{k_m}}) \lim_{m \to \infty} f(g(y_{n_{k_m}})) = \lim_{m \to \infty} y_{n_{k_m}} = y_0 = f(x_0) = f(x_{00})$. Виходить, що $x_{00} \neq x_0$, але $f(x_{00}) = f(x_0)$. Але ж f – бієкція. Суперечність!

Склеюючи всі чотири леми, ми сформуємо одну теорему

Theorem 5.3.5 Задано функцію $f: [a, b] \to [c, d]$ – строго монотонна і неперервна. Тоді існує функція $g:[c,d]\to[a,b]$ – строго монотонна (як і f) і неперервна, яка є оберненою до f.

Remark 5.3.6 Така теорема працює, якщо відрізок [a,b] замінити на (a,b],[a,b),(a,b), навіть не обов'язково скінченні числа.

Неперервність елементарних функцій

0) Задано функцію f(x) = x. Тоді $f \in C(\mathbb{R})$.

Proof.

$$\forall \varepsilon > 0 : \exists \delta = \varepsilon : \forall x : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |x - x_0| < \delta = \varepsilon \implies f(x) = x \in C(\mathbb{R}).$$

1) Задано функцію $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ (многочлен). Тоді $f \in C(\mathbb{R})$.

Proof.

Оскільки $x \in C(\mathbb{R})$, то $x^n = x \cdot \cdots \cdot x \in C(\mathbb{R})$ як добуток функцій $\forall n \geq 1$. Отже, $f(x) = a_0 + a_1 x + a_2 x + a_3 x + a_4 x + a_4 x + a_5 x + a_5$ $\cdots + a_n x^n \in C(\mathbb{R})$ як сума неперервних функцій, множених на константу.

2) Задано функцію $f(x) = \sin x$. Тоді $f \in C(\mathbb{R})$.

Proof.

Вже відома давно нерівність:

$$1 - \frac{x^2}{2} < \frac{\sin x}{x} < 1 \Rightarrow x - \frac{x^3}{2} < \sin x < x$$

 $1-\frac{x^2}{2}<\frac{\sin x}{x}<1\Rightarrow x-\frac{x^3}{2}<\sin x< x.$ Якщо $x\to 0$, то за теоремою про 2 поліцая, $\lim_{x\to 0}\sin x=0=\sin 0$ – неперервна лише в т. 0.

Перевіримо неперервність в т. $x_0 \in \mathbb{R}$:

$$\lim_{x \to x_0} (\sin x - \sin x_0) = \lim_{x \to x_0} 2 \sin \frac{x - x_0}{2} \cos \frac{x + x_0}{2} =$$

$$x \to x_0$$
 $x \to x_0$ $x \to x_0$ Проведемо заміну: $\frac{x \to x_0}{2} = t$. Тоді $t \to 0$
$$= \lim_{t \to 0} 2 \sin t \cos(t + x_0) \xrightarrow{\text{н.м.}} \overset{*}{=} \overset{\text{обм.}}{=} 0 \Rightarrow \lim_{x \to x} \sin x = \sin x_0 \implies f(x) = \sin x \in C(\mathbb{R}).$$

3) Задано функцію $f(x) = \cos x$. Тоді $f \in C(\mathbb{R})$.

Proof.

Розпишемо $\cos x = \sin\left(\frac{\pi}{2} - x\right)$. Оскільки $\frac{\pi}{2} - x \in C(\mathbb{R})$ та $\sin x \in C(\mathbb{R})$, то звідси $\cos x \in C(\mathbb{R})$ як

- 4) Задано функцію $f(x)=\operatorname{tg} x$. Тоді $f\in C\left(\mathbb{R}\setminus\left\{\frac{\pi}{2}+\pi k,k\in\mathbb{Z}\right\}\right)$. 5) Задано функцію $f(x)=\operatorname{ctg} x$. Тоді $f\in C\left(\mathbb{R}\setminus\left\{\pi k,k\in\mathbb{Z}\right\}\right)$.

Proof.

Розпишемо $\operatorname{tg} x = \frac{\sin x}{\cos x}$. Оскільки $\sin x \in \mathbb{R}, \cos x \in \mathbb{R},$ то врахуючи умову $\cos x \neq 0$ $\Longrightarrow x \neq \frac{\pi}{2} + \pi k, k \in \mathbb{Z}$, маємо tg $x \in C\left(\mathbb{R} \setminus \left\{\frac{\pi}{2} + \pi k, k \in \mathbb{Z}\right\}\right)$ як частка. Для ctg x аналогічні міркування.

6) Задано функцію $f(x) = \arcsin x$. Тоді $f \in C([-1,1])$.

Proof.

Маємо функцію $g(x) = \sin x$, що визначена на $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$. На цьому проміжку вона монотонно строго зростає, неперервна. Отже, за теоремою про існування оберненої функції, $g^{-1}(x) = f(x) = \arcsin x \in$ C([-1,1]).

- 7) Задано функцію $f(x)=\arccos x$. Тоді $f\in C([-1,1])$. Вказівка: $\arcsin x+\arccos x=\frac{\pi}{2}$.
- 8) Задано функцію $f(x) = \operatorname{arctg} x$. Тоді $f \in C(\mathbb{R})$.

Маємо функцію $g(x)=\operatorname{tg} x$, що визначена на $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$. На цьому проміжку вона монотонно строго зростає, неперервна. Отже, за теоремою про існування оберненої функції, $g^{-1}(x) = f(x) = \operatorname{arctg} x \in$ $C(\mathbb{R})$.

9) Задано функцію $f(x)=\arctan x$. Тоді $f\in C(\mathbb{R})$. Вказівка: $\arctan x+\arctan x=\frac{\pi}{2}$.

10) Задано функцію $f(x)=a^x.$ Тоді $f\in C(\mathbb{R}).$

Proof.

Перш за все покажемо, що $\lim_{x\to 0}a^x=1$. Нехай $\varepsilon>0$. Розглядаємо випадок a>1.

Оскільки $\lim_{n\to\infty} \sqrt[n]{a}=1$, то $\exists N_1: \forall n\geq N_1: |a^{\frac{1}{n}}-1|<\varepsilon$. Зокрема $|a^{\frac{1}{N_1}}-1|<\varepsilon$.

Нехай є послідовність $\{x_n, n \geq 1\}$, де $\lim_{n \to \infty} x_n = 0$. Тоді $\exists N_2 : \forall n \geq N_2 : |x_n| < \frac{1}{N_1}$.

Тоді $\forall n \geq N_2: |a^{|x_n|}-1| < \left|a^{\frac{1}{N_1}}-1\right| < \varepsilon.$ Отже, $\lim_{n \to \infty} a^{|x_n|} = 1$. Для 0 < a < 1 маємо $b = \frac{1}{a}$.

А далі оскільки $-|x_n| \le x_n \le |x_n|$, то звідси $a^{-|x_n|} \le a^{x_n} \le a^{|x_n|}$, тоді за теоремою про двох поліцаїв, $\lim_{n\to\infty} a^{x_n} = 1$.

Тоді за Гейне, отримаємо, що $\lim_{x\to 0}a^x=1=a^0$ - неперервна в т. x=0.

$$\lim_{x \to x_0} a^x = \lim_{x \to x_0} a^{x - x_0} a^{x_0} = a^{x_0} \implies a^x \in C(\mathbb{R}).$$

11) Задано функцію $f(x) = \log_a x$. Тоді $f \in C((0, +\infty))$. Вказівка: теорема про існування оберненої функції.

12) Задано функцію $f(x) = \sqrt[n]{x^m}$. Тоді $f \in C([0, +\infty))$.

Proof.

Оскільки $x^n \in C(\mathbb{R})$, як наслідок $x^n \in C([0, +\infty))$, то тоді $\sqrt[n]{x} \in C([0, +\infty))$ як обернена функція. Отже, $\sqrt[n]{x^m} \in C([0, +\infty))$ як добуток.

13) Задані функції $f,g\colon A\to \mathbb{R},$ причому f(x)>0. Відомо, що $f,g\in C(A).$ Тоді $f^g\in C(A).$

Proof.

Розпишемо $f(x)^{g(x)} = e^{g(x) \ln f(x)}$.

Маємо $f(x) \in C(A) \implies \ln f(x) \in C(A)$. Далі $g(x) \in C(A) \implies g(x) \ln f(x) \in C(A)$. Нарешті, $e^x \in C(A) \implies e^{g(x) \ln f(x)} = f(x)^{g(x)} \in C(A)$.

14) Задано функцыю $f(x) = x^{\alpha}, \alpha \in \mathbb{R}$. Тоді $f \in C((0, +\infty))$. Випливае з пункту 13).

5.5 Рівномірна неперервність

Definition 5.5.1 Функція $f: A \to \mathbb{R}$ називається рівномірно неперервною на множині A, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x_1, x_2 \in A : |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Позначення: $C_{\text{unif}}(A)$ – множина рівномірно неперервних функцій на A.

Proposition 5.5.2 Задано функцію $f \in C_{\text{unif}}(A)$. Тоді $f \in C(A)$. Випливає з означення рівномірної неперервності.

Example 5.5.3 Доведемо, що функція $f(x) = \sqrt{x} \in C_{\mathrm{unif}}([0, +\infty))$. Розглянемо нерівність для точок $x_1, x_2 \in [0, +\infty)$ так, щоб $|x_1 - x_2| < \delta$.

 $|f(x_1)-f(x_2)|=|\sqrt{x_1}-\sqrt{x_2}|=\sqrt{|\sqrt{x_1}-\sqrt{x_2}|^2}\leq \sqrt{|\sqrt{x_1}-\sqrt{x_2}||\sqrt{x_1}+\sqrt{x_2}|}=\sqrt{|x_1-x_2|}<\sqrt{\delta}=\varepsilon.$ Якщо зафіксуємо $\delta=\varepsilon^2$, то отримаємо, що $f\in C_{\mathrm{unif}}([0,+\infty)).$

Example 5.5.4 Розглянемо функцію $f(x) = \ln x$, де $x \in (0,1)$. Доведемо, що $f(x) \notin C_{\text{unif}}((0,1))$.

Заперечення рівномірної неперервності має такий вигляд:

 $\exists \varepsilon^* > 0 : \forall \delta > 0 : \exists x_{1\delta}, x_{2\delta} \in A : |x_{1\delta} - x_{2\delta}| < \delta, \text{ all } |f(x_{1\delta}) - f(x_{2\delta})| \ge \varepsilon^*.$

$$|\ln x_{1\delta} - \ln x_{2\delta}| = \left|\ln \frac{x_{1\delta}}{x_{2\delta}}\right| \ge 1 = \varepsilon^*$$
, якщо $\frac{x_{1\delta}}{x_{2\delta}} \ge e$.

 $|\ln x_{1\delta} - \ln x_{2\delta}| = \left|\ln \frac{x_{1\delta}}{x_{2\delta}}\right| \ge 1 = \varepsilon^*, \text{ якщо } \frac{x_{1\delta}}{x_{2\delta}} \ge e.$ Ми вже зафіксували $\varepsilon^* = 1$, а тепер лишилось надати $x_{1\delta}, x_{2\delta}$. Маємо $x_{1\delta} \ge ex_{2\delta}$, а також $|x_{1\delta} - x_{2\delta}| < \delta$. Оскільки δ в нас довільне, то $\exists n : \frac{1}{n} < \delta$. Оберемо $x_{1\delta} = \frac{e}{3n}, x_{2\delta} = \frac{1}{3n}$. $x_{1\delta} \ge ex_{2\delta}$ буде виконана. $|x_{1\delta} - x_{2\delta}| = \frac{e}{3n} - \frac{1}{3n} = \frac{e-1}{3n} < \frac{1}{n} < \delta$. Що ми отримали: $\exists \varepsilon^* - 1 : \forall s \in \mathbb{R}$

$$|x_{1\delta} - x_{2\delta}| = \frac{e}{3n} - \frac{1}{3n} = \frac{e-1}{3n} < \frac{1}{n} < \delta$$

$$\exists arepsilon^* = 1: \forall \delta: \exists n: \exists x_{1\delta} = \frac{e}{3n}, x_{2\delta} = \frac{1}{3n}: |x_{1\delta} - x_{2\delta}| < \frac{1}{n} < \delta, \text{ але } |f(x_{1\delta}) - f(x_{2\delta})| \geq 1.$$
 Що й доводить те, що функція НЕ є рівномірно неперервною.

Проте в звортному напрямку твердження буде працювати, якщо зробити додаткове обмеження. Це буде записано в наступній теоремі:

Theorem 5.5.5 Теорема Кантора

Задано функцію $f \in C([a,b])$. Тоді $f \in C_{\text{unif}}([a,b])$.

Proof.

!Припустимо, що вона не є рівномірно неперервною, тобто

$$\exists arepsilon^* > 0: \forall \delta: \exists x_{1\delta}, x_{2\delta} \in [a,b]: |x_{1\delta} - x_{2\delta}| < \delta \Rightarrow |f(x_{1\delta}) - f(x_{2\delta})| \geq arepsilon^*.$$
 Розглянемо $\delta = \frac{1}{n}$. Тоді $x_{1\delta}, x_{2\delta} = x_{1n}, x_{2n}$.

Створимо послідовність $\{x_{1n}, n \geq 1\}$ - обмежена, бо всі в відрізку [a,b], тому для $\{x_{1n_k}, k \geq 1\}$:

Оскільки $|x_{1n}-x_{2n}|<\frac{1}{n}$, то маємо, що $|x_{1n_k}-x_{2n_k}|<\frac{1}{n_k}$. Тоді $x_{1n_k}-\frac{1}{n_k}< x_{2n_k}< x_{1n_k}+\frac{1}{n_k}$. Якщо $k\to\infty$, то за теоремою про поліцаї, $\exists\lim_{k\to\infty}x_{2n_k}=x_0$. За умовою неперервності, отримаємо, що $\lim_{k\to\infty}f(x_{1n_k})=\lim_{k\to\infty}f(x_{2n_k})=f(x_0)$. Але $\varepsilon\le|f(x_{1n_k})-f(x_{2n_k})|\to 0$, коли $k\to\infty$. Суперечність!

Але
$$\varepsilon \leq |f(x_{1n_k}) - f(x_{2n_k})| \to 0$$
, коли $k \to \infty$. Суперечність!

Example 5.5.6 Функція $arcsin x \in C([-1,1])$, тоді за теоремою Кантора, $arcsin x \in C_{unif}([-1,1])$.

6 Диференціювання

6.1 Основні означення

Definition 6.1.1 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in A$ – гранична точка для A. Функцію f називають **диференційованою** в т. x_0 , якщо

$$\exists L \in \mathbb{R} : f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0$$

Proposition 6.1.2 Задано f – диференційована в точці x_0 . Тоді f – неперервна в точці x_0 .

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} (L(x - x_0) + o(x - x_0)) = 0 \implies \lim_{x \to x_0} f(x) = f(x_0).$$

Proposition 6.1.3 Функція f – диференційована в точці $x_0 \iff \exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \stackrel{\text{позн.}}{=} f'(x_0) =$ L.

Definition 6.1.4 Число $f'(x_0)$ називають **похідною** функції в точці x_0 , якщо ліміт існує.

Proof.

Ргоот.
$$f - \text{диференційована в т. } x_0 \iff \exists L : f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0 \iff \exists L : o(x - x_0) = f(x) - f(x_0) - L(x - x_0), x \to x_0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0) - L(x - x_0)}{x - x_0} = 0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = L = f'(x_0).$$

Remark 6.1.5 Задамо $\Delta x = x - x_0$, яку називають **прирістом аргумента**. Тоді похідну функції в точці x_0 можна записати іншою формулою: $f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$. А диференційованість ось так: $f(x_0 + \Delta x) - f(x_0) = L\Delta x + o(\Delta x), \Delta x \to 0$.

Proposition 6.1.6 Арифметичні властивості

Задано функції f,g — диференційовані в точці x_0 , причому $f'(x_0),g'(x_0)$ — їхні похідні. Тоді:

- 1) $\forall c \in \mathbb{R} : cf$ диференційована в точці x_0 , а її похідна $(cf)'(x_0) = cf'(x_0)$;
- 2) $f \pm g$ диференційована в точці x_0 , а її похідна $(f+g)'(x_0) = f'(x_0) + g'(x_0)$;
- 2) $f \pm g$ диференційована в точці x_0 , а її похідна $(f \cdot g)(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$; 4) $\frac{f}{g}$ диференційована в точці x_0 при $g(x_0) \neq 0$, а її похідна $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{(g(x_0))^2}$.

Proof.

Оскільки f,g – диференційовані в точці $x_0,$ то маємо при $x \to x_0$ $f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0);$

 $g(x) - g(x_0) = g'(x_0)(x - x_0) + o(x - x_0).$

Доведемо почергово кожний пункт.

1)
$$(cf)(x) - (cf)(x_0) = cf(x) - cf(x_0) = c(f(x) - f(x_0)) = c(f'(x_0)(x - x_0) + o(x - x_0)) = cf'(x_0)(x - x_0) + o(x - x_0)$$

Отже, cf – диференційована в точці x_0 та має похідну в червоному.

2)
$$(f+g)(x) - (f+g)(x_0) = (f(x)+g(x)) - (f(x_0)+g(x_0)) = (f(x)-f(x_0)) + (g(x)-g(x_0)) = f'(x_0)(x-x_0) + o(x-x_0) + g'(x_0)(x-x_0) + o(x-x_0) = (f'(x_0)+g'(x_0))(x-x_0) + o(x-x_0)$$
 Отже, $f+g$ – диференційована в точці x_0 та має похідну в червоному.

3)
$$(fg)(x) - (fg)(x_0) = f(x)g(x) - f(x_0)g(x_0) = f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0) = f(x)(g(x) - g(x_0)) + g(x_0)(f(x) - f(x_0)) = f(x)(g'(x_0)(x - x_0) + o(x - x_0)) + g(x_0)(f'(x_0)(x - x_0) + o(x - x_0)) =$$

$$= f(x)(g(x_0)(x - x_0) + o(x - x_0)) + g(x_0)(f(x_0)(x - x_0) + o(x - x_0)) =$$

$$= f(x)g'(x_0)(x - x_0) + f(x)o(x - x_0) + g(x_0)f'(x_0)(x - x_0) + g(x_0)o(x - x_0) =$$

$$= (f'(x_0)g(x_0) + f(x_0)g'(x_0))(x - x_0) + (f(x) - f(x_0) + f(x_0))o(x - x_0) + o(x - x_0) =$$

$$= (f'(x_0)g(x_0) + f(x_0)g'(x_0))(x - x_0) + (f'(x_0)(x - x_0) + o(x - x_0))o(x - x_0) + o(x - x_0)) = 0$$

Використовуються формули о-маленьких, які є на практичному pdf-файлі

Отже, $f \cdot g$ – диференційована в т. x_0 та має похідну в червоному.

4) доведу трошки інакше. Спочатку покажемо, що $\frac{1}{q}$ має похідну

$$\left(\frac{1}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{1}{g(x)} - \frac{1}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{g(x_0) - g(x)}{(x - x_0)g(x)g(x_0)} = -\frac{1}{(g(x_0))^2}$$
 Отже, $\frac{1}{g}$ — диференційована в т. x_0 , а тому за 3), $\frac{f}{g} = f \cdot \frac{1}{g}$ — диференційована в т. x_0 . Похідна
$$\left(\frac{f}{g}\right)'(x_0) = f'(x_0)\frac{1}{g(x_0)} - f(x_0)\frac{1}{(g(x_0))^2} = \frac{f'(x_0)g(x_0) - f(x_0)g(x_0)}{(g(x_0))^2}$$

Для всіх функціях диференційованість доведена.

Proposition 6.1.7 Похідна від композиції функцій

Задано функції f, g та $h = g \circ f$. Відомо, що f – диференційована в точці x_0 , а g - диференційована в точці $y_0 = f(x_0)$. Тоді функція h – диференційована в точці x_0 , а її похідна $h'(x) = g'(f(x_0)) \cdot f'(x_0)$.

Proof.

f — диференційована в точці x_0 , тобто $f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0), x \to x_0$. g — диференційована в точці y_0 , тобто $g(y) - g(y_0) = g'(y_0)(y - y_0) + o(y - y_0), y \to y_0$. $h(x) - h(x_0) = g(f(x)) - g(f(x_0)) = g'(f(x_0))(f(x) - f(x_0)) + o(f(x) - f(x_0)) = g'(f(x_0))(f'(x_0)(x - x_0) + o(x - x_0)) + o(f(x) - f(x_0)) = 0$ Оскільки $x \to x_0$, то звідси $f(x) \to f(x_0)$. Зрозуміло, що $o(f(x) - f(x_0)) = o(x - x_0)$. $g'(f(x_0))f'(x_0)(x - x_0) + o(x - x_0), x \to x_0$ Отже, $g \circ f = h$ — диференційована в т. x_0 та має похідну в червоному.

Proposition 6.1.8 Похідна від оберненої функції

Задано функції f,g — взаємно обернені. Відомо, що f — диференційована в точці x_0 та $f'(x_0) \neq 0$. Тоді g — диференційована в точці $y_0 = f(x_0)$, а її похідна $g'(y_0) = \frac{1}{f'(x_0)}$.

Proof.

f — диференційована в точці x_0 , тобто $f(x)-f(x_0)=f'(x_0)(x-x_0)+o(x-x_0), x\to x_0$. Також через взаємну оберненість маємо, що $x=g(y), x_0=g(y_0)$, тоді рівняння матиме вигляд $f(g(y))-f(g(y_0))=f'(x_0)(g(y)-g(y_0))+o(g(y)-g(y_0)), g(y)\to g(y_0)$ $y-y_0=f'(x_0)(g(y)-g(y_0))+o(y-y_0), y\to y_0$. $g(y)-g(y_0)=\frac{1}{f'(x_0)}(y-y_0)+o(y-y_0), y\to y_0$. Отже, g — диференційована в точці y_0 та має похідну в червоному.

Definition 6.1.9 Функція $f \in$ диференційованою на множині A, якщо

 $\forall x \in A: f$ – диференційована в точці x_0

Таблиця похідних елементарних функцій

f(x)	f'(x)
const	0
$x^{\alpha}, \alpha \neq 0$	$\alpha \cdot x^{\alpha-1}$
e^x	e^x
a^x	$a^x \cdot \ln a$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
$\ln x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \cdot \ln a}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
-arctg x	$\frac{1}{1+x^2}$
$\operatorname{arcctg} x$	$-\frac{1}{1+x^2}$
$\ln(x + \sqrt{1 + x^2})$	$\frac{1}{\sqrt{1+x^2}}$

Почергово доведемо кожну похідну:

1)
$$f(x) = const$$

 $f'(x_0) = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0$

2)
$$f(x) = x^{a}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{x^{\alpha} - x_0^{\alpha}}{x - x_0} \stackrel{x - x_0 = t \to 0}{=} \lim_{t \to 0} \frac{(t + x_0)^{\alpha} - x_0^{\alpha}}{t} = x_0^{\alpha - 1} \lim_{t \to 0} \frac{\left(1 + \frac{t}{x_0}\right)^{\alpha} - 1}{\frac{t}{x_0}} = \alpha x_0^{\alpha - 1}$$

3)
$$f(x) = e^x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{e^x - e^{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{e^{x_0}(e^{x - x_0} - 1)}{x - x_0} = e^{x_0}$$

4)
$$h(x) = a^x$$

Перепишемо інакше: $h(x) = e^{x \cdot \ln a}$

Побачимо, що $y=f(x)=x\cdot \ln a$, а в той час $g(y)=e^y\Rightarrow h(x)=g(f(x))$

Тоді за композицією, $h'(x_0)=g'(y_0)f'(x_0)=e^{y_0}\ln a=e^{x_0\ln a}\ln a=a^{x_0}\ln a$

$$5) \ f(x) = \sin x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2 \sin \frac{x - x_0}{2} \cos \frac{x - x_0}{2}}{x - x_0} = \lim_{x \to x_0} \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cos \frac{x - x_0}{2} = \cos x_0$$

6)
$$h(x) = \cos x = \sin\left(\frac{\pi}{2} - x\right)$$

$$f(x) = \frac{\pi}{2} - x, \ g(y) = \sin y \Rightarrow h(x) = g(f(x))$$

Отже,
$$h'(x_0) = g'(y_0)f'(x_0) = \cos y_0(-1) = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$

$$7) \ f(x) = \operatorname{tg} x$$

Aбо
$$f(x) = \frac{\sin x}{\cos x}$$

Або
$$f(x) = \frac{\sin x}{\cos x}$$

Тоді $f'(x) = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$

8) $f(x) = \operatorname{ctg} x$

За аналогічними міркуваннями до 7.

9)
$$g(y) = \ln y$$

Маємо функцію
$$f(x) = e^x$$
, тоді f, g - взаємно обернені

Маємо функцію
$$f(x)=e^{x_0}$$
, то $g'(y_0)=\frac{1}{f'(x_0)}=\frac{1}{e^{x_0}}=\frac{1}{e^{\ln y_0}}=\frac{1}{y_0}$

$$10) \ f(x) = \log_a x$$

A60
$$f(x) = \frac{\ln x}{\ln a} \Rightarrow f'(x_0) = \frac{1}{\ln a} \frac{1}{x_0}$$

11)
$$g(y) = \arcsin y$$

Маємо функцію $f(x) = \sin x$, тоді f,g - взаємно обернені

Тоді оскільки
$$f'(x_0) = \cos x_0$$
, то $g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{\cos x_0} = \frac{1}{\cos(\arcsin y_0)} = \frac{1}{\cos(\arcsin y_0)}$

$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin y_0)}} = \frac{1}{\sqrt{1 - y_0^2}}$$

Важливо, що тут функція $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$

12)
$$f(x) = \arccos x$$

A60
$$f(x) = \frac{\pi}{2} - \arcsin x \Rightarrow f'(x_0) = -\frac{1}{\sqrt{1 - x_0^2}}$$

13)
$$g(y) = \operatorname{arctg} y$$

3a аналогічними міркуваннями до 11., але тут вже $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R},\,f(x)=\operatorname{tg} x$

14)
$$f(x) = \operatorname{arcctg} x$$

3a аналогічними міркуваннями до 12., але $\frac{\pi}{2}$ – $\arctan x$

15)
$$f(x) = \ln(x + \sqrt{1 + x^2})$$

$$f'(x_0) = \frac{1}{x_0 + \sqrt{1 + x_0^2}} \cdot (x + \sqrt{1 + x^2})'_{x = x_0} = \frac{1 + \frac{1}{2\sqrt{1 + x_0^2}} \cdot (1 + x^2)'_{x = x_0}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}}$$

Example 6.1.10 Обчислити похідну функції $f(x) = \sqrt[3]{\frac{1+x^2}{1-x^2}} + 2024.$

$$f'(x) = \left(\sqrt[3]{\frac{1+x^2}{1-x^2}} + 2024\right)' + \left(\left(\frac{1+x^2}{1-x^2}\right)^{\frac{1}{3}}\right)' + (2024)' = \frac{1}{3}\left(\frac{1+x^2}{1-x^2}\right)^{-\frac{2}{3}} \cdot \left(\frac{1+x^2}{1-x^2}\right)' + 0 = \frac{1}{3}\left(\frac{1+x^2}{1-x^2}\right)^{-\frac{2}{3}} \frac{2x(1-x^2) + 2x(1+x^2)}{(1-x^2)^2} = \frac{1}{3}\left(\frac{1+x^2}{1-x^2}\right)^{-\frac{2}{3}} \frac{4x}{(1-x^2)^2}$$

Похідні по один бік

Definition 6.2.1 Односторонню похідну функції f(x) в точці x_0 називають:

-якщо **справа**:
$$f'(x_0+0) \stackrel{\text{afo}}{=} f'(x_0+0) = \lim_{x \to x_0+0} \frac{f(x) - f(x_0)}{x - x_0}$$

-якщо справа:
$$f'(x_0+0) \stackrel{\text{a6o}}{=} f'(x_0+0) = \lim_{x \to x_0+0} \frac{f(x)-f(x_0)}{x-x_0}$$
 - якщо зліва: $f'(x_0-0) \stackrel{\text{a6o}}{=} f'(x_0-0) = \lim_{x \to x_0-0} \frac{f(x)-f(x_0)}{x-x_0}$.

Theorem 6.2.2 Функція f – диференційована в точці $x_0 \iff$ вона містить похідну зліва та справа, а також $f'(x_0 + 0) = f'(x_0 - 0)$.

Proof.

f — диференційована в точці $x_0 \iff \exists f'(x_0)$, тобто \exists границя $\iff \exists$ та сама границя зліва та справа, які рівні \iff вона містить похідну зліва та справа та $f'(x_0^+) = f'(x_0^-)$.

Example 6.2.3 Знайти похідну функції f(x) = |x|.

Якщо x > 0, то $f(x) = x \implies f'(x) = 1$.

Якщо x < 0, то $f(x) = -x \implies f'(x) = -1$.

Перевіримо існування похідної в точці $x_0 = 0$.

$$f'(0+0) = \lim_{x \to 0+0} \frac{|x| - |0|}{x - 0} = 1 \qquad f'(0-0) = \lim_{x \to 0-0} \frac{|x| - |0|}{x - 0} = -1$$

$$\implies f'(0+0) \neq f'(0-0), \text{ отже } \not\supseteq f'(0).$$

До речі кажучи, похідну функції можна переписати інакше: $f'(x) = \frac{|x|}{x}$.

Також приклад того, що f в точці 0 неперервна, але не диференційована — контрприклад. Тобто зворотне твердження **Prp. 6.1.2** не працює.

Remark 6.2.4 У першому означенні розділу взагалі треба вимагати т. $x_0 \in A$ бути внутрішньою. Утім в рамках аналізу \mathbb{R} гранична точка теж припустима, оскільки ми маємо таке поняття як похідна справа та зліва, $f'(x_0+0), f'(x_0-0)$. Чого не можна сказати буде в аналізі \mathbb{R}^n , який будемо проходити пізніше.

Якщо мені дадуть функцію $f:[0,1]\to\mathbb{R}$, де $f(x)=e^x$, то з похідними в внутрішніх точок все зрозуміло. А ось на кінцях, що не є вже внутрішніми, але граничними, $\exists f'(0)=f'(0+0)$, а також $\exists f'(1)=f'(1-0)$.

6.3 Дотична та нормаль до графіку функції

Definition 6.3.1 Пряма $y = k(x - x_0) + f(x_0)$ називається дотичною до графіку функції f(x) в точці x_0 , якщо

$$f(x) - [k(x - x_0) + f(x_0)] = o(x - x_0), x \to x_0$$

Proposition 6.3.2 Функція f має дотичну в точці $x_0 \iff f$ – диференційована в точці x_0 . При цьому $k = f'(x_0)$.

Proof.

$$f$$
 має дотичну в точці $x_0 \iff f(x) - [k(x-x_0) + f(x_0)] = o(x-x_0), x \to x_0 \iff f(x) - f(x_0) = k(x-x_0) + o(x-x_0), x \to x_0 \iff f$ — диференційована в точці $x_0, k = f'(x_0)$.

Таким чином, рівняння дотичної задається формулою

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Definition 6.3.3 Пряма, яка проходить через точку дотику $(x_0, f(x_0))$ та перпендикулярна до дотичної, називається **нормаллю до графіку функції** f(x) **в точці** x_0 .

Знайдемо безпосередньо рівняння нормалі. Маємо рівняння дотичної: $f'(x_0)(x-x_0)-(y-f(x_0))=0$. Нормальний вектор дотичної задається координатами $\vec{n}=(f'(x_0);-1)$. Тоді для рівняння нормалі даний вектор буде напрямленим. Нам також відомо, що нормаль проходить через т. $(x_0,f(x_0))$, а отже,

отже,
$$\frac{x - x_0}{f'(x_0)} = \frac{y - f(x_0)}{-1} \Rightarrow f'(x_0)(y - f(x_0)) = -(x - x_0).$$

Таким чином, рівняння нормалі задається формулою

$$y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0)$$

Example 6.3.4 Знайти дотичну до графіку функції $f(x) = 2\cos x + 5$ в точці $x_0 = \frac{\pi}{2}$. $y = f'(x_0)(x - x_0) + f(x_0)$

$$f(x_0)=f(\frac{\pi}{2})=5$$

$$f'(x_0)=f'(\frac{\pi}{2})=-2\sin x|_{x=\frac{\pi}{2}}=-2$$
 Отже, маємо:
$$y=-2(x-\frac{\pi}{2})+5=-2x+(5-\pi).$$

Ліричний відступ

Тут вже виникає необхідність поговорити про похідну функції, якщо вона раптом стане рівною нескінченність. І дійсно, ми можемо допускати такий випадок.

$$f'(x_0)=\lim_{x o x_0}rac{f(x)-f(x_0)}{x-x_0}=\pm\infty$$
 Одразу зауважу, що просто ∞ границі бути не може.

Example 6.3.5 Нехай є функція $f(x) = \sqrt[3]{x^2}$. Знайдемо похідну цієї штуки в точці $x_0 = 0$.

$$f'(0) = \lim_{x \to 0} \frac{\sqrt[3]{x^2} - 0}{x} = \lim_{x \to 0} \frac{1}{\sqrt[3]{x}} = \infty$$

Проте для існування похідної необхідно і достатнью існування похідних з різних боків, а тут

Проте для існування похідної
$$f'(0^-) = \lim_{x \to 0^-} \frac{\sqrt[3]{x^2} - 0}{x} = -\infty$$
 $f'(0^+) = \lim_{x \to 0^+} \frac{\sqrt[3]{x^2} - 0}{x} = +\infty.$ Зрозуміло, що жодним шнюм

Зрозуміло, що жодним чином $f'(0-0) \neq f'(0+0)$, тож похідна існувати точно не може.

А тепер повернімось до геометричних застосувань. Вже відомо, що $f'(x_0) = \operatorname{tg} \alpha$ для дотичних. Якщо $f'(x_0) \to \pm \infty$, тобто $\operatorname{tg} \alpha \to \pm \infty$, то тоді кут $\alpha \to \pm \frac{\pi}{2}$. Тобто це означає, що ми матимемо справу з дотичною, яка є вертикальною прямою в т. x_0 , тобто $x = x_0$.

Example 6.3.6 Нехай є функція $f(x) = \sqrt[3]{x-1}$. Знайдемо похідну цієї штуки в точці $x_0 = 1$.

$$f'(1) = \lim_{x \to 1} \frac{\sqrt[3]{x-1} - 0}{x-1} = \lim_{x \to 1} \frac{1}{\sqrt[3]{(x-1)^2}} = +\infty$$

Похідна існує. Це можна навіть перевірити, пошукавши похідну зліва та справа.

Тоді дотичною графіка функції f в точці $x_0 = 0$ буде вертикальна пряма x = 1.

6.4 Диференціал функції

Definition 6.4.1 Задано функцію f – диференційована. **Диференціалом** функції f в точці x_0 називають вираз

$$df(x_0, \Delta x) = f'(x_0)\Delta x.$$

Example 6.4.2 Розглянемо функцію f(x) = x. Вона має похідну f'(x) = 1, тому диференційована. Тоді диференціал $df(x, \Delta x)$ запишеться так: $df(x, \Delta x) = \Delta x$

Зазвичай надалі опускають другий аргумент диференціалу та пишут уже так: $dx = \Delta x$. А тому диференціал функції f можна записати іншим чином:

$$df(x_0) = f'(x_0) dx$$

Remark 6.4.3 Геометричний зміст диференціала функції f(x) в т. x_0 – це приріст дотичної.

Інваріантність форми першого диференціалу 6.5

Задано функцію f(x) – диференційована. Тоді диференціал df(x) = f'(x) dx.

Нехай задано функцію x = x(t) – теж диференційована. Отримаємо складену функцію f(x(t)), від якої знайдемо диференціал.

$$df(x(t)) = (f(x(t)))' dt = f'(x(t))x'(t) dt = f'(x(t)) dx(t)$$

Отримали, що df(x(t)) = f'(x(t)) dx(t).

Коли x – залежна змінна, то формула диференціалу все рівно залишається такою самою. Це й є інваріантність форми першого диференціалу.

6.6 Приблизне обчислення значень для диференційованих функцій

Задано функцію f – диференційована в точці x_0 . Тоді за твердженням, функція має дотичну $y = f'(x_0)(x - x_0) + f(x_0)$, для якого:

$$f(x) - y = o(x - x_0), x \to x_0.$$

Права частина – якесь нескінченно мале число, яким можна знехтувати. Тому коли x 'близьке' до x_0 , тобто $|x-x_0| \ll 1$, то маємо: $f(x) - y \approx 0$, тому маємо таку формулу:

$$f(x) \approx f'(x_0)(x - x_0) + f(x_0)$$

Example 6.6.1 Знайти приблизно значення $\sqrt{65}$.

Перетворимо значення іншим чином:

$$\sqrt{65} = \sqrt{64 \cdot \frac{65}{64}} = 8\sqrt{\frac{65}{64}} = 8\sqrt{1 + \frac{1}{64}}.$$

А тепер розглянемо функцію $f(x) = 8\sqrt{x}$. Тут $x = \frac{65}{64}$, в той час $x_0 = 1$.

$$|x - x_0| = \left| \frac{65}{64} - 1 \right| = \frac{1}{64} \ll 1$$

Знайдемо значення функції та похідну в т. x_0 :

$$f(x_0) = f(1) = 8$$

$$f'(x_0) = f'(1) = 8\frac{1}{2\sqrt{x}}|_{x=1} = 4$$

Таким чином, отримаємо:

$$\sqrt{65} \approx 4\left(\frac{65}{64} - 1\right) + 8 = \frac{1}{16} + 8 = 8.0625.$$

6.7 Похідна та диференціал вищих порядків

Definition 6.7.1 Задано функцію f, для якої $\exists f'(x)$.

Похідною 2-го порядку від f(x) називають

$$f''(x) = (f'(x))',$$

якщо така похідна існує.

Definition 6.7.2 Задано функцію f, для якої $\exists f^{(n)}(x)$.

Похідною (n+1)-го порядку від f(x) називають

$$f^{(n+1)}(x) = (f^{(n)}(x))',$$

якщо така похідна існує.

Example 6.7.3 Знайдемо похідну n-го порядку функції $f(x) = \cos x$.

$$g(x) = \cos x \Rightarrow g'(x) = -\sin x \Rightarrow g''(x) = -\cos x \Rightarrow g'''(x) = \sin x \Rightarrow g^{(4)}(x) = \cos x \Rightarrow \dots$$

Продовжувати можна довго, але можемо помітити, що:

$$\cos x = \cos x$$

$$-\sin x = \cos \left(x + \frac{1\pi}{2}\right) = (\cos x)'$$

$$-\cos x = \cos(x+\pi) = \cos\left(x+\frac{2\pi}{2}\right) = (\cos x)''$$

$$\sin x = \cos\left(x + \frac{3\pi}{2}\right) = (\cos x)^{\prime\prime\prime}$$

. Спробуємо ствердити, що працює формула: $(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$. Покажемо, що для (n+1)-го члену це теж виконується.

$$(\cos x)^{(n+1)} = \left((\cos x)^{(n)}\right)' = \left(\cos\left(x + \frac{n\pi}{2}\right)\right)' = -\sin\left(x + \frac{n\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} + \frac{\pi}{2}\right) = \cos\left(x + \frac{(n+1)\pi}{2}\right)$$
 Остаточно отримаємо, що для функції $f(x) = \cos x$ існують похідні
$$\forall n \geq 1: f^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right).$$

А тепер уявімо собі іншу проблему. Задано функції f,g, для яких існують n похідних. Спробуємо знайти $(fg)^{(n)}$. Будемо робити по черзі:

$$\begin{array}{l} (fg)'=f'g+fg'\\ (fg)''=((fg)')'=(f'g+fg')'=(f'g)'+(fg')'=(f''g+f'g')+(f'g'+fg'')=f''g+2f'g'+fg''\\ (fg)'''=((fg)'')'=(f''g+2f'g'+fg'')'=f'''g+2f''g'+2f'g''+f'g''+fg'''=f'''g+3f''g'+3f''g''+fg'''\end{array}$$

Це можна продовжувати до нескінченності, але можна зробити деякі зауваження, що форма виразу схожа дуже на формулу Бінома-Ньютона, якщо порядок похідної замінити уявно на степінь. Тоді якщо посилатись на MI, то доведемо таку формулу:

Theorem 6.7.4 Формула Ляйбніца

$$(f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x)$$

Example 6.7.5 Знайти похідну n-го порядку функції $y = x^2 \cos x$.

$$f(x) = x^2 \Rightarrow f'(x) = 2x \Rightarrow f''(x) = 2 \Rightarrow f'''(x) = 0 \Rightarrow \dots$$

$$\begin{aligned} &f(x) = x &\Rightarrow f(x) = 2x \Rightarrow f(x) = 2 \Rightarrow f(x) = 0 \Rightarrow \dots \\ &\text{Коротше, } \forall n \geq 3: f^{(n)}(x) = 0. \\ &g(x) = \cos x &\Rightarrow \forall n \geq 1: g^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right) \end{aligned}$$

Скористаємось формулою Ляйбніца:

$$y^{(n)} = (f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x) =$$

$$= C_n^0 f(x) g^{(n)}(x) + C_n^1 f'(x) g^{(n-1)}(x) + C_n^2 f''(x) g^{(n-2)}(x) + C_n^3 f'''(x) g^{(n-3)}(x) + \dots + C_n^n f^{(n)}(x) g(x) =$$

$$= f(x) g^{(n)}(x) + n f'(x) g^{(n-1)}(x) + \frac{n(n-1)}{2} f''(x) g^{(n-2)}(x) + 0 =$$

$$= x^2 \cos\left(x + \frac{n\pi}{2}\right) + 2nx \cos\left(x + \frac{(n-1)\pi}{2}\right) + n(n-1)\cos\left(x + \frac{(n-2)\pi}{2}\right).$$
Tyt зауважу, що
$$\cos\left(x + \frac{(n-1)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \frac{\pi}{2}\right) = \sin\left(x + \frac{n\pi}{2}\right)$$

$$\cos\left(x + \frac{(n-2)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \pi\right) = -\cos\left(x + \frac{n\pi}{2}\right)$$

$$= [x^2 - n(n-1)]\cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right).$$

$$y^{(n)} = [x^2 - n(n-1)]\cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right).$$

Definition 6.7.6 Диференціалом n-го порядку функції f(x) називають такий диференціал:

$$d^n f = d(d^{n-1} f)$$

Це можна переписати трошки інакше:

$$df = f' dx$$

$$d^2f = d(df) = d(f'dx) = dx\,d(f') = dx\,f''\,dx = f''\,(dx)^2$$
 Частіше позначають $(dx)^2 = dx^2$ ось так. Тоді

$$d^2 f = f'' dx^2$$

Продовжуючи за МІ, отримаємо:

$$d^n f = f^{(n)} dx^n$$

Example 6.7.7 Маємо функцію $f(x) = \cos x$, знайдемо диференціал n-го порядку. Знаємо похідну $f^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right)$, тому диференціал $d^n\cos x = \cos\left(x + \frac{n\pi}{2}\right)dx^n$.

Неінваріантність форми другого диференціалу

Задано функцію f(x) – диференційована. Тоді другий диференціал $d^2 f(x) = f''(x) dx^2$.

Нехай задано функцію x = x(t) – теж диференційована. Отримаємо складену функцію f(x(t)), від якої знайдемо другий диференціал.

$$d^{2}f(x(t)) = (f(x(t)))'' dt^{2} = [f'(x(t))x'(t)]' dt^{2} = [f''(x(t))(x'(t))^{2} + f'(x(t))x''(t)] dt^{2} = f''(x(t))(x'(t))^{2} dt^{2} + f'(x(t))x''(t) dt^{2} = f''(x(t))dx(t)^{2} + f'(x(t)) d^{2}x(t)$$

Отримали, що $d^2 f(x(t)) \neq f''(x(t)) dx(t)^2$.

Маємо уже випадок неінваріантності. Єдине, що якщо х- - якась лінійна функція, то тоді інваріантність залишається.

6.9 Похідна від параметрично заданої функції

Задано параметричну функцію $y: \begin{cases} y=y(t) \\ x=x(t) \end{cases}$

Мета: знайти y_x' - похідну функції з

Ми знаємо, що $dy = y_x' dx \Rightarrow y_x' = \frac{dy}{dx}$. Знайдемо ці диференціали:

$$\begin{cases} dx = x_t' \, dt \\ dy = y_t' \, dt \end{cases} \Rightarrow y_x' = \frac{dy}{dx} = \frac{y_t'}{x_t'}.$$
 Таким чином:

$$y'_{x}: \begin{cases} y'_{x} = \frac{y'_{t}(t)}{x'_{t}(t)} \\ x = x(t) \end{cases}$$

Example 6.9.1 Знайти похідну від функції: $y: \begin{cases} x = \ln t \\ y = t^3 \end{cases}$

$$x'_{t} = \frac{1}{t}, y'_{t} = 3t^{2} \implies y'_{x} : \begin{cases} x = \ln t \\ y'_{x} = \frac{3t^{2}}{\frac{1}{t}} = 3t^{3} \end{cases}$$

Сюди ми ще повернемосн

Знайдемо другу похідну:
$$y_{x^2}^{\prime\prime}(t)=(y_x^\prime(t))_x^\prime=\frac{(y_x^\prime(t))_t^\prime}{x_t^\prime(t)}=\frac{y_{t^2}^{\prime\prime}(t)x_t^\prime(t)-x_{t^2}^{\prime\prime}(t)y_t^\prime(t)}{(x_t^\prime(t))^3}.$$

Складно виглядає, тому краще повернемось до прикладу

Маємо
$$y: \begin{cases} x=\ln t \\ y=t^3 \end{cases}$$
 , $x_t'=\frac{1}{t}, y_t'=3t^2 \implies y_x'=3t^3$

Тоді отримаємо, що
$$y_{x^2}''=\frac{(y_x')_t'}{x_t'}=\frac{9t^2}{t^3}=\frac{9}{t} \implies y_{x^2}'': \begin{cases} x=\ln t \\ y_{x^2}''=\frac{9}{t} \end{cases}$$

6.10 Основні теореми

Theorem 6.10.1 Лема Ферма

Задано функцію $f:(a,b)\to\mathbb{R}$ – диференційована в точці $x_0\in(a,b)$. Більш того, в точці x_0 функція f приймає найбільше (або найменше) значення. Тоді $f'(x_0) = 0$.

Розглянемо випадок, коли в точці x_0 досягається max. Для min аналогічно.

Тобто маємо
$$\forall x \in (a,b): f(x_0) \geq f(x)$$
. Оскільки $\exists f'(x_0)$, то тоді $\exists f'(x_0^+), \exists f'(x_0^-).$ $f'(x_0^+) \stackrel{\text{def.}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\stackrel{\leq 0}{> 0} \right) \leq 0.$

$$f'(x_0^-) \stackrel{\text{def.}}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{< 0} \right) \geq 0.$$

Таким чином,
$$0 \le f'(x_0^+) = f'(x_0^+) \le 0 \implies f'(x_0^-) = f'(x_0^+) = 0 \implies f'(x_0) = 0.$$

Remark 6.10.2 Головне питання, чому не відрізок або напівінтервал.

Розглянемо функцію $f(x) = e^x$ на [0,2]. На кінцях f приймає відповідно найбільше та найменше значення, проте $f'(0) = 1, f'(2) = e^2$, ненульові похідні.

Theorem 6.10.3 Теорема Ролля

Задано функцію $f:[a,b]\to\mathbb{R}$, причому $f\in C([a,b])$ та диференційована на (a,b). Більш того, f(a) = f(b). Тоді $\exists \xi \in (a, b) : f'(\xi) = 0$.

Proof.

Оскільки $f \in C([a,b])$, то за теоремою Ваєрштраса,

$$\exists x_1 \in [a, b] : f(x_1) = \min_{x \in [a, b]} f(x).$$

$$\exists x_2 \in [a, b] : f(x_2) = \max_{x \in [a, b]} f(x).$$

Розглянемо два випадки:

I.
$$f(x) = const \implies f'(x) = 0, \forall x \in (a, b), \xi = x.$$

 $II. f(x) \neq const \implies$ або є x_1 , або є x_2 , або навіть обидва. Якщо беремо x_2 , то функція f приймає найбільше значення, тому за лемою Ролля, $f'(x_2) = 0 \implies \xi = x_2$. Для x_1 – аналогічно.

Remark 6.10.4 Диференційованість в точці $x_0 = a, x_0 = b$ не обов'язкова.

Маємо функцію $f(x) = \sqrt{1-x^2}$. Що в нас ϵ : f(-1) = f(1), $f \in C([-1,1])$, диференційована всюди, але не в точці $x_0 = \pm 1$. При цьому $\exists \xi = 0 : f'(\xi) = 0$.

Theorem 6.10.5 Теорема Лагранжа

Задано функцію $f\colon a,b]\to \mathbb{R},\, f\in C([a,b])$ та диференційована на (a,b). Тоді $\exists c\in (a,b):$

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Розглянемо функцію $h(x) = (f(x) - f(a)) - \frac{f(b) - f(a)}{b - a}(x - a)$. За сумою та добутками, маємо, що $h \in C([a,b])$ і теж диференційована на (a,b).

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b}$$

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$
 Зауважимо, що $h(a) = 0$ та $h(b) = 0 \Rightarrow h(a) = h(b).$ Тому за теоремою Ролля, $\exists \xi = c \in (a,b): f'(c) = 0 \implies f'(c) = \frac{f(b) - f(a)}{b - a}.$

Corollary 6.10.6 Наслідки з теореми Лагранжа

Справедливі наступні твердження:

- 1) Якщо $\forall x \in (a,b) : f'(x) = 0$, то f(x) = const;
- 2) Якщо $\forall x \in (a, b) : f'(x) = k$, то f(x) = kx + q;
- 3) Нехай g така ж за властивостями як і f. Якщо $\forall x \in (a,b): f'(x) = g'(x),$ то f(x) = g(x) + C;
- 4) Якщо додатково f' обмежена, то f задовольняє умові Ліпшиця (буде згодом).

Перед цим все ж таки наведу означення.

Definition 6.10.7 Задано функцію $f:[a,b] \to \mathbb{R}$.

Функція f задовольняє умові Ліпшиця, якщо

$$\exists L > 0 : \forall x_1, x_2 \in [a, b] : |f(x_1) - f(x_2)| \le L|x_1 - x_2|$$

Щоб зрозуміти сенс, я зміню трошки означення.

Зафіксую точки x_1 , а $x_2 = x$ Перепишу останню нерівність в іншому вигляді:

$$|f(x_1) - f(x)| \le L|x_1 - x| \implies -L|x_1 - x| + f(x_1) \le f(x) \le L|x_1 - x| + f(x_1)$$

Це означає, що в кожній точці $x_1 \in [a,b]$ графік функції f(x) буде лежати в блакитній області. Ліва та права частини – це прямі.

Proof.

Тепер можемо довести всі наслідки.

1) $\exists c: f(b) - f(a) = f'(c)(b-a) \implies f(b) = f(a)$. Але взагалі-то кажучи $\exists c \in (x_1, x_2) \subset (a, b):$ $f(x_1) = f(x_2)$. Kopotine, f(x) = const.

- 2) Розглянемо функцію g(x) = f(x) kx, теж неперервна і диференційована на (a,b). Тоді g'(x) = $f'(x) - k \implies g'(x) = 0 \stackrel{1}{\Longrightarrow} g(x) = q$. Отже, g(x) = kx + q.
- 3) Розглянемо функцію h(x) = f(x) g(x), теж неперервна і диференційована на (a,b). Тоді h'(x) = $f'(x) - g'(x) = 0 \stackrel{1}{\Longrightarrow} h(x) = C \Longrightarrow f(x) = g(x) + C.$
- 4) $\exists c \in (x_1, x_2) \subset (a, b) : f(x_2) f(x_1) = f'(c)(x_2 x_1) \implies |f(x_2) f(x_1)| = |f'(c)||x_2 x_1| \le |f'$ $M|x_2-x_1|$. Тоді встановлюючи L=M, маємо умову Ліпшиця.

Усі наслідки доведені.

Example 6.10.8 Зокрема функція $f(x) = \sqrt{x^2 + 5}$ задовольняє умові Ліпшиця на \mathbb{R} , оскільки $f'(x) = \frac{x}{\sqrt{x^2 + 5}}$ – обмежена. Дійсно, $f'(x) \to \pm 1, x \to \pm \infty$, а також f' зростає.

Theorem 6.10.9 Теорема Коші

Задані функції $f,g\colon [a,b]\to \mathbb{R},\ f,g\in C([a,b])$ та диференційовані на (a,b). При цьому $g'(x)\not\equiv 0$. Тоді $\exists c\in (a,b): \frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}.$ Доводиться аналогічно як теорема Лагранжа.

Вказівка: розглянути функцію $h(x) = (f(x) - f(a)) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a)).$

Remark 6.10.10 Із теореми Коші випливає як раз теорема Лагранжа, якщо g(x) = x.

Example 6.10.11 Довести нерівність: $|\arctan a - \arctan b| \le |a - b|$.

Оскільки
$$\arctan x$$
 — неперервна на $[a,b]$ та диференційована на (a,b) , то за теоремою Лагранжа, $\exists c \in (a,b): (\arctan x)'_{x=c} = \frac{\arctan b - \arctan a}{b-a}.$ Тобто $\frac{1}{1+c^2} = \frac{\arctan b - \arctan a}{b-a}.$ Тоді $|\arctan a - \arctan b| = \left|\frac{1}{1+c^2}\right| |a-b| \le |a-b|.$

Дослідження функції 6.11

6.11.1 На монотонність

Означення монотонної функції можна побачити в розділу про границі функції. Тому перейдемо безпосередньо до теорем.

Theorem 6.11.1 Задано функцію
$$f\colon (a,b)\to \mathbb{R}$$
 та f диференційована на (a,b) . Функція f нестрого монотонно
$$\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix} \Leftrightarrow \forall x\in (a,b): \begin{bmatrix} f'(x)\geq 0 \\ f'(x)\leq 0 \end{bmatrix}.$$

Proof.

Розглянемо випадок зростаючої функції. Для спадної аналогічно.

 \Rightarrow Дано: f – нестрого зростає, тобто $x_2 > x_1 \implies f(x_2) \ge f(x_1)$. Оскільки диференційована

$$\exists f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\geq 0}{\geq 0}\right) \geq 0.$$

$$\exists f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\leq 0}\right) \geq 0.$$

$$\exists f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\le 0}{\le 0} \right) \ge 0.$$

а отже, $\forall x_0 \in (a, b) : f'(x_0) \ge 0.$

 $\vdash \sqsubseteq$ Дано: $\forall x \in (a,b): f'(x) \geq 0$. Зафіксуємо такі x_1,x_2 , щоб $x_2 > x_1$. Розглянемо функцію тепер на $\overline{\text{відрізку}} [x_1, x_2] \subset (a, b)$. В кожній точці цього відрізку є похідна, тож $f \in C([x_1, x_2])$. Також можна розглядати диференційованість на (x_1, x_2) . Тоді за Лагранжом,

$$\exists c \in (x_1, x_2) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0.$$

Остаточно, $f(x_2) \ge f(x_1)$, тобто монотонно нестрого зростає.

Theorem 6.11.2 Задано функцію $f:(a,b)\to\mathbb{R}$ та f диференційована на (a,b).

Функція
$$f$$
 строго монотонно $\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix} \leftarrow \forall x \in (a,b) : \begin{bmatrix} f'(x) > 0 \\ f'(x) < 0 \end{bmatrix}$

Доведення ϵ аналогічним.

Remark 6.11.3 A тепер питання, куди зникла імплікація \implies в цій теоремі.

Нехай задано функцію $f:(-1,1)\to\mathbb{R}$, де $f(x)=x^3$. Вона строго монотонно зростає. Маємо похідну $f'(x) = 3x^2$. Вона не для всіх точках строго додатна: для x = 0 маємо, що f'(x) = 0.

6.11.2 На локальні екстремуми

Definition 6.11.4 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in A$.

Точку x_0 називають точкою **локального**

```
максимуму, якщо \exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \cap A : f(x_0) \geq f(x);
                                  \exists \delta > 0 : \forall x \in (x_0 - \delta, x_0 + \delta) \cap A : f(x_0) \le f(x).
мінімуму, якщо
```

Локальний максимум або мінімум ще називають точками локального екстремуму. Якщо нерівність строга, то екстремуми називають **строгими** та не розглядаємо в околі точці x_0 .

Definition 6.11.5 Задано функцію $f: A \to \mathbb{R}$ та $x_0 \in A$.

Точку x_0 називають **критичною**, якщо

$$f'(x_0) = 0$$
 as $\not\exists f'(x_0)$

Theorem 6.11.6 Необхідна умова екстремума

Задано функцію $f:(a,b)\to\mathbb{R}$ та $x_0\in(a,b)$ – локальний екстремум. Тоді x_0 – критична точка.

Розглянемо випадок точки максимуму. Для мінімума аналогічно.

 x_0 – локальна точка максимуму, тобто в околі точки x_0 функція f приймає найбільшого значення. Тоді за лемою Ферма, при існуванні похідної в точці $x_0, f'(x_0) = 0$. Або $\not \exists f'(x_0)$.

Remark 6.11.7 Пояснювальний приклад, чому нас точки з неіснуючою похідною цікавить.

Маємо f(x) = |x|. У точці $x_0 = 0$ похідної нема, проте вона є точкою локального мінімуму.

Remark 6.11.8 Інший приклад, чому ця умова не є достатньою.

Маємо $f(x) = x^3$, її похідна $f'(x) = 3x^2 \stackrel{f'(x)=0}{\Longrightarrow} x_0 = 0$, але вона не є естремумом, оскільки минулого разу дізнались, що така функція зростає всюди.

Theorem 6.11.9 Достатня умова для екстремума

Задано функцію $f\colon (a,b) \to \mathbb{R}$ та $x_0 \in (a,b)$ – критична точка. Відомо, що $\exists \delta > 0 \,:\, \forall x \in$ $\int (x_0 - \delta, x_0) : f'(x) \le 0$ (або нерівності навпаки). Тут я беру $\delta > 0$, щоб інтервал цілком по- $(x_0, x_0 + \delta) : f'(x) \ge 0$

трапляв в інтервал (a, b). Тоді x_0 – точка локального мінімуму (максимуму).

При строгої нерівності екстрему буде строгим.

Proof.

Розглянемо випадок, коли $\forall x \in \begin{cases} (x_0 - \delta, x_0) : f'(x) \leq 0 \\ (x_0, x_0 + \delta) : f'(x) \geq 0 \end{cases}$. (для нерівностей навпаки все аналогі-

чно). Тоді звідси f – спадає на $(x_0 - \delta, x_0)$ і зростає на $(x_0, x_0 + \delta)$. Або математично, $\forall x \in (x_0 - \delta, x_0)$: $f(x_0) < f(x)$ to $\forall x \in (x_0, x_0 + \delta) : f(x_0) < f(x)$.

За означенням, це й є точка локального мінімуму.

Remark 6.11.10 Робимо такий висновок: щоб знайти локальний екстремум, треба спочатку знайти всі критичні точки, а потім дослідити, які значення похідним вона приймає навколо.

Example 6.11.11 Задано функцію $f(x) = x^3 - 3x^2 - 9x + 2$. Знайдемо всі локальні екстремуми. Спочатку шукаємо критичні точки:

$$f'(x) = 3x^2 - 6x - 9$$

$$f'(x) = 0 \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow x = -1, x = 2$$

Перевіримо екстремуми на інтервалі.

Стрілки вказують на зростання або на спадання функції на даному інтервалі. Тоді можемо зробити висновок, що x = -1 – локальний максимум, а x = 2 – локальний мінімум.

6.11.3 На опуклість

Розглянемо графік функції f(x) на множині A. Оберемо точки $x_1, x_2 \in A$ так, що $x_1 > x_2$. Це приклад так називаємої опуклої функції вниз, коли на множині А справедлива нерівність:

$$\forall x \in A : f(x) \le l(x)$$

Прийняте трошки інше означення, а це просто пояснення, звідки все це береться.

Знайдемо рівняння прямої, що проходить через точки $(x_1, f(x_1)), (x_2, f(x_2)).$

$$\frac{x - x_1}{x_2 - x_1} = \frac{l(x) - f(x_1)}{f(x_2) - f(x_1)} \implies l(x) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1).$$

 $\ddot{\text{I}}$ ї підставити можна в нерівність, проте таке означення все рівно не є зручним. Зафіксуємо $\lambda \in [0,1]$ та розглянемо точку $x = \lambda x_1 + (1 - \lambda) x_2$. Для довільних λ точка $x \in [x_1, x_2]$. А якщо це рівняння

розв'язти відносно
$$\lambda$$
, ми отримаємо, що:
$$\lambda = \frac{x_2 - x}{x_2 - x_1} \qquad 1 - \lambda = \frac{x - x_1}{x_2 - x_1}.$$

$$x = \frac{x_2 - x}{x_2 - x_1} x_1 + \frac{x - x_1}{x_2 - x_1} x_2$$
, це все $\forall x_1 < x < x_2$.
Але поки що обмежимось першим виглядом. Підставимо цю точку в рівняння прямої.

$$l(x) = l(\lambda x_1 + (1 - \lambda)x_2) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(\lambda x_1 + (1 - \lambda)x_2 - x_1) =$$

$$= f(x_1) + (f(x_2) - f(x_1))(1 - \lambda) = \lambda f(x_1) + (1 - \lambda)f(x_2).$$

Таким чином, якщо повернутись до нерівності, то отримаємо наступне:

$$\forall \lambda \in [0,1]: f(\lambda x_1 + (1-\lambda)x_2)) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

А ось таке означення можна використовувати подалі для інших досліджень.

Аналогічні міркування будуть для опуклої функції вгору, але тут нерівність навпаки.

Definition 6.11.12 Задано функцію $f: A \to \mathbb{R}$.

Цю функцію називають опуклою вгору, якщо

$$\forall x_1, x_2 \in A : \forall \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Remark 6.11.13 Якщо $\lambda \in (0,1)$, то тоді нерівність строга.

Lemma 6.11.14 Лема про 3 хорди

Функція
$$f:A\to\mathbb{R}$$
 опукла вниз \Longleftrightarrow справедлива нерівність:
$$\frac{f(x)-f(x_1)}{x-x_1}\le \frac{f(x_2)-f(x_1)}{x_2-x_1}\le \frac{f(x_2)-f(x)}{x_2-x}, \text{ де } x\in(x_1,x_2)\subset A.$$
 Нерівність каже: кутовий коефіцієнт $PP_1\le$ кутовий коефіцієнт $P_2P_1\le$ кутовий коефіцієнт P_2P_1

Remark 6.11.15 Для опуклої вгору нерівність навпаки. Для строгої опуклості нерінвість строга.

Proof.

Зафіксуємо точки
$$x_1, x_2 \in A$$
 та точку $x \in (x_1, x_2)$. f – опукла вниз $\iff f(x) \leq \frac{x_2 - x}{x_2 - x_1} f(x_1) + \frac{x - x_1}{x_2 - x_1} f(x_2) \iff (x_2 - x_1) f(x) \leq (x_2 - x) f(x_1) + (x - x_1) f(x_1) \iff (f(x) - f(x_1)) (x_2 - x_1) \leq (f(x_2) - f(x)) (x - x_1) \iff \frac{f(x) - f(x_1)}{x - x_1} \leq \frac{f(x_2) - f(x)}{x_2 - x}$ Середня нерівність мене поки що не цікавить, це я так, щоб було.

Lemma 6.11.16 Задано функцію $f: A \to \mathbb{R}$ – диференційована на A. f - опукла вниз $\iff f'$ не спадає на A.

Proof.

$$\Rightarrow$$
 Дано: f — опукла вниз. Розглянемо точки $x_1, x_2 \in A$, тоді $\frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x)}{x_2 - x}$. Ба більше, оскільки f — диференційована, то $\exists f'(x_1), \exists f'(x_2)$. Тоді отримаємо ось що, використо-

вуючи границі в нерівностях:

$$f'(x_1) = \lim_{x \to x_1 + 0} \frac{f(x) - f(x_1)}{x - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$
 Отже, $\forall x_1, x_2 \in A : x_2 > x_1 \implies f'(x_2) \ge f'(x_1).$
$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \lim_{x \to x_2 - 0} \frac{f(x_2) - f(x)}{x_2 - x} = f'(x_2).$$

 $\overline{\mu}$ диференційована на A, то за теоремою Лагранжа,

диференциована на
$$A$$
, то за теоремою Лагранжа, $f'(x_1) = \frac{f(c) - f(c_1)}{c - c_1} \Longrightarrow \frac{f(c) - f(c_1)}{c - c_1} \le \frac{f(c_2) - f(c)}{c_2 - c}.$ Тоді маємо, що f – випукла вниз.

Remark 6.11.17 Майже аналогічно доводиться для строгої опуклості.

Єдине, що в першій частині доведення треба застосувати теорему Лагранжа для точок $z_1 \in (x_1, x)$ та $z_2 \in (x, x_2)$.

Theorem 6.11.18 Задано функцію $f:(a,b)\to\mathbb{R}$ та f диференційована двічі на (a,b).

Функція
$$f$$
 нестрого опукла $\begin{bmatrix} \text{вниз} \\ \text{вгору} \end{bmatrix} \iff \forall x \in (a,b) : \begin{bmatrix} f''(x) \geq 0 \\ f''(x) \leq 0 \end{bmatrix}$.

Proof.

f – опукла вниз на $(a,b) \iff f'$ – не спадає на $(a,b) \iff \forall x \in (a,b) : f''(x) \geq 0$. Аналогічно для опуклої вгору.

Theorem 6.11.19 Задано функцію $f\colon (a,b)\to \mathbb{R}$ та f диференційована двічі на (a,b).

Функція
$$f$$
 строго опукла $\begin{bmatrix} \text{вниз} \\ \text{вгору} \end{bmatrix} \iff \forall x \in (a,b) : \begin{bmatrix} f''(x) > 0 \\ f''(x) < 0 \end{bmatrix}$

Доведення аналогічне.

Example 6.11.20 Функція $f(x) = x^2$ буде опуклою вниз, оскільки f''(x) = 2 > 0.

Definition 6.11.21 Задано функцію $f: A \to \mathbb{R}$ – диференційована в точці x_0 – внутрішня точка. Точку $(x_0, f(x_0))$ називають **точкою перегину**, якщо

$$\exists \delta > 0$$
: інтервали $(x_0 - \delta, x_0), (x_0, x_0 + \delta)$ мають різну опуклість

Example 6.11.22 Maemo $f(x) = \frac{(x-1)^3}{4} + 2$.

 $f''(x)=\frac{3}{2}(x-1)=0$. Тут буде точка $x_0=1$ – точка перегину. Дійсно, якщо x>1, то f''(x)>0; також якщо x<1, то f''(x)<0. Отже, на $(-\infty,1)$ - випукла догори, а на $(1,+\infty)$ - випукла донизу.

Example 6.11.23 Magmo $f(x) = \sqrt[3]{x}$.

$$f''(x) = \frac{1}{3} \left(-\frac{2}{3}\right) x^{-\frac{5}{3}}$$
. Тут буде точка $x_0 = 0$ – точка перегину. Водночас

$$\exists y'(0^+) = \lim_{x \to 0^+} \frac{\sqrt[3]{x} - 0}{x - 0} = +\infty \quad \exists y'(0^-) = \lim_{x \to 0^-} \frac{\sqrt[3]{x} - 0}{x - 0} = +\infty.$$

Example 6.11.24 Маємо $f(x) = \sqrt{|x|}$.

Тут точка $x_0 = 0$ не може бути точкою перегину, оскільки $\not\exists f'(0)$.

Theorem 6.11.25 Необхідна умова для перегину

Задано функцію $f: A \to \mathbb{R}$ та точка $x_0 \in A$ – точка перегину. Тоді $f''(x_0) = 0$. Тут все зрозуміло.

Theorem 6.11.26 Достатня умова для перегину

Задано функцію $f\colon A\to\mathbb{R},\ f\in C(A)$ та диференційована в околі точці x_0 та має другу похідну. Якщо по обидва боки від точки x_0 маємо протилежні знаки, то тоді x_0 – точка перегину. Тут теж все зрозуміло.

Theorem 6.11.27 Нерівність Єнсена

Задано функцію $f\colon (a,b) \to \mathbb{R}$ - опукла вниз. Тоді $\forall \alpha_1,\dots,\alpha_n \in (0,1): \alpha_1+\dots+\alpha_n=1:$ $f(\alpha_1 x_1 + \dots + \alpha_n x_n) \leq \alpha_1 f(x_1) + \dots + \alpha_n f(x_n).$

Proof.

Доведення проведемо за MI по числу n.

База індукції: n=2. Тоді $\forall \alpha_1, \alpha_2: \alpha_1+\alpha_2=1 \Rightarrow \alpha_2=1-\alpha_1:$

 $f(\alpha_1 x_2 + \alpha_2 x_2) = f(\alpha_1 x_2 + (1 - \alpha_1) x_2) < \alpha_1 f(x_1) + (1 - \alpha_1) f(x_2)$, бо наша функція опукла вниз.

Припущення індукції: для n-1 нерівність виконана.

 $Крок\ indykuii$: доведемо, що для n де виконано. Маємо:

 $\forall \alpha_1, \ldots, \alpha_n \in (0,1) : \forall x \in (a,b) :$

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) = f\left(\alpha_n x_n + (1 - \alpha_n)\left(\frac{\alpha_1}{1 - \alpha_n} x_1 + \dots + \frac{\alpha_{n-1}}{1 - \alpha_{n-1}} x_{n-1}\right)\right) \leqslant$$

Зауважу, що $\frac{\alpha_1}{1-\alpha_n}+\cdots+\frac{\alpha_{n-1}}{1-\alpha_{n-1}}=1$ та всі доданки >0.

Example 6.11.28 Розглянемо функцію $f(x) = \ln x$.

Вона є опуклою вгору, тому що $f''(x) = -\frac{1}{x^2} < 0$. Тоді за нерівністю Єнсена, отримаємо:

 $\ln(\alpha_1x_1+\cdots+\alpha_nx_n)>\alpha_1\ln x_1+\cdots+\alpha_n\ln x_n$, де $\alpha_1+\cdots+\alpha_n=1$. Можемо встановити $\alpha_1=\cdots=\alpha_n=\frac{1}{n}$, сума буде також рівна одинички. Прийдемо до такої

нерівності: $\ln \frac{x_1 + \dots + x_n}{n} \ge \frac{1}{n} (\ln x_1 + \dots + \ln x_n).$

6.11.4 На асимптоти

Definition 6.11.29 Пряма y = kx + b називається **похилою асимптотою** функції f, якщо

$$\lim_{x \to \pm \infty} (f(x) - (kx + b)) = 0.$$

Theorem 6.11.30 y = kx + b – похила асимптота $\iff k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$ та $b = \lim_{x \to \pm \infty} (f(x) - kx)$.

Proof.

 \Longrightarrow Дано: y=kx+b - похила асимптота, тобто $\lim_{x\to\pm\infty}(f(x)-(kx+b))=0.$

Тоді
$$\lim_{x\to\pm\infty}\frac{f(x)-(kx+b)}{x}=0$$
. Це трошки перепишемо:
$$\lim_{x\to\pm\infty}\left(\frac{f(x)}{x}-k-\frac{b}{x}\right)=0\implies\lim_{x\to\pm\infty}\left(\frac{f(x)}{x}-k\right)=0\implies k=\lim_{x\to\pm\infty}\frac{f(x)}{x}.$$
 Водночає оскільки $\lim_{x\to\pm\infty}(f(x)-kx-b)=0$, то звідси $b=\lim_{x\to\pm\infty}(f(x)-kx)$.

для f.

Example 6.11.31 Маємо функцію $f(x) = \frac{\sin 10x}{x} + x$. З'ясуємо, чи має вона асимптоту.

Знайдемо спочатку перший коефіцієнт:

$$k=\lim_{x\to+\infty}rac{f(x)}{x}=\lim_{x\to+\infty}\left(rac{\sin10x}{x}+1
ight)=0+1=1.$$
 Знаходимо другий коефіцієнт:

Бнаходимо другии коефицент.
$$b = \lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} \left(\frac{\sin 10x}{x} + x - x \right) = 0.$$

 $\mathcal{I}_{\mathcal{I}\mathcal{I}\mathcal{I}} - \infty$ все аналогічно.

Таким чином, y = x – похила асимптота.

Remark 6.11.32 У випадку k=0 пряму називають горизонтальною асимптотою.

Definition 6.11.33 Пряма $x = x_0$ називається **вертикальною асимптотою** функції f(x), якщо виконується одна з чотирьох умов:

$$\lim_{x \to x_0 + 0} f(x) = \pm \infty$$
 або $\lim_{x \to x_0 - 0} f(x) = \pm \infty$

Example 6.11.34 Задано функцію $f(x) = e^{\frac{1}{x-1}}$. Розглянемо т. $x_0 = 1$.

$$\lim_{x \to 1+0} e^{-\frac{1}{x-1}} = +\infty.$$

Таким чином, $x_0 = 1$ – вертикальна асимптота.

Правила Лопіталя 6.12

Theorem 6.12.1 I правило Лопіталя

Задані функції f,g – диференційовані на (a,b) та $\forall x \in (a,b): g'(x) \neq 0$. Також відомо, що:

1)
$$\exists \lim_{x \to b^{-}} f(x) = 0, \exists \lim_{x \to b^{-}} g(x) = 0;$$

2)
$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L.$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$$

Tym можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне.

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} =$$

Proof. $\lim_{x\to b^-}\frac{f(x)}{g(x)}=\lim_{x\to b^-}\frac{f(x)-f(b)}{g(x)-g(b)}$ — Функцію f довизначимо, щоб $f\in C([x,b])$, бо існує ліміт. Тоді за теоремою Коші, $\exists c\in (x,b):$

$$\frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(c)}{g'(c)}$$
. Тут $x < c < b$. Коли $x \to b^-$, $b \to b^-$. Отже, $c \to b^-$.

$$\equiv \lim_{c \to b^{-}} \frac{f'(c)}{g'(c)} = L.$$

Випадок, коли
$$L=\infty$$
, маємо, що $\frac{g'(x)}{f'(x)} \to 0$, а тому $\frac{g(x)}{f(x)} \to 0 \implies \frac{f(x)}{g(x)} \to \infty$.

Example 6.12.2 Обчислити границю $\lim_{x\to 0} \frac{x-\sin x}{x^3}$.

Маємо $f(x) = x - \sin x, g(x) = x^3$ - обидва неперервні та диференційовані. Також $f(x) \to 0, g(x) \to 0$, якщо $x \to 0$. Тепер з'ясуємо, куди прямує $\frac{f'(x)}{g'(x)}$

$$\lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{x}{2}}{3x^2} = \lim_{x \to 0} \frac{2x^2}{3x^2 \cdot 4} = \frac{1}{6}.$$

Всі пункти І правила Лопіталя виконуються. Отже, $\lim_{x\to 0}\frac{x-\sin x}{x^3}=\frac{1}{c}$

Theorem 6.12.3 II правило Лопіталя

Задані функції f, g — диференційовані на (a, b) та $\forall x \in (a, b) : g'(x) \neq 0$. Також відомо, що:

$$1) \exists \lim_{x \to b^{-}} g(x) = +\infty;$$

2)
$$\exists \lim_{x \to b^-} \frac{f'(x)}{g'(x)} = L.$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L.$$

Тут можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне.

Proof.

Одразу нехай $\varepsilon > 0$, далі знадобиться

Маємо
$$\lim_{x \to b^-} \frac{f'(x)}{g'(x)} = L \implies \exists \delta_1 : \forall x : b - \delta_1 < x < b \Rightarrow \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon.$$
 Також $\lim_{x \to b^-} g(x) = +\infty \implies \exists \delta_2 : \forall x : b - \delta_2 < x < b \Rightarrow g(x) > 0.$

Також
$$\lim_{x \to b^{-}} g(x) = +\infty \implies \exists \delta_2 : \forall x : b - \delta_2 < x < b \Rightarrow g(x) > 0.$$

Позначимо точки $b-\delta_1=c_1, b-\delta_2=c_2$. Розглянемо точку $x>\max\{c_1,c_2\}$, тоді за теоремою Коші, $\exists \theta \in (c_1,x): \frac{f(x)-f(c_1)}{g(x)-g(c_1)}=\frac{f'(\theta)}{g'(\theta)}$. Звідси для точки $\theta \in (c_1,b): \left|\frac{f(x)-f(c_1)}{g(x)-g(c_1)}-L\right|<\varepsilon$.

Дріб поділимо на g(x). Ми це можемо, оскільки g(x)>0 для $x>\max\{c_1,c_2\}$

$$\frac{f(x) - f(c_1)}{g(x) - g(c_1)} = \frac{\frac{f(x)}{g(x)} - \frac{f(c_1)}{g(x)}}{1 - \frac{g(c_1)}{g(x)}} \implies \frac{f(x)}{g(x)} - \frac{f(x) - f(c_1)}{g(x)} = \frac{f(c_1)}{g(x)} - \frac{f(x) - f(c_1)}{g(x)} = \frac{f(c_1)}{g(x)} - \frac{f(x) - f(c_1)}{g(x)} = \frac{g(c_1)}{g(x)}.$$

визначені, тоді $\frac{f(c_1)}{g(x)} \to 0$, $\frac{g(c_1)}{g(x)} \to 0$. Дріб $\frac{f(x) - f(c_1)}{g(x) - g(c_1)}$ обмежена за використаною теоремою Коші, тому все чудово. З'ясуємо, куди прямує права частина, якщо $x \to b^-$. Ми знаємо, що $g(x) \to +\infty$, ну а $f(c_1), g(c_1)$ —

Отже,
$$\frac{f(x)}{g(x)} - \frac{f(x) - f(c_1)}{g(x) - g(c_1)} \to 0$$
, тож $\left| \frac{f(x)}{g(x)} - \frac{f(x) - f(c_1)}{g(x) - g(c_1)} \right| < \varepsilon$. За нерівністю трикутника, маємо, що $\left| \frac{f(x)}{g(x)} - L \right| < 2\varepsilon$.

Остаточно, $\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$.

Випадок, коли $L = +\infty$ ($-\infty$ аналогічно). Ми задаємо E > 0, тоді $\exists \delta_1 : \forall x \in (b - \delta_1, b) \Rightarrow \frac{f'(x)}{g'(x)} > E$. Також $\exists \delta_2 : \forall x \in (b - \delta_2, b) \Rightarrow g(x) > 0.$

Знову позначу $c_1 = b - \delta_1, c_2 = b - \delta_2$. За аналогічними міркуваннями, $\implies \frac{f(x) - f(c_1)}{g(x) - g(c_1)} > E$. де

Оскільки $g(x) \to \infty$, то $\frac{1}{g(x)} \to 0$, тобто $-1 < \frac{1}{g(x)} < 1$ для деякого δ' , маємо $c_3 = b - \delta'$. Тому якщо

$$x > \max\{c_1, c_2, c_3\}, \text{ TO}$$

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(c_1)}{g(x) - g(c_1)} + \frac{f(c_1)}{g(x)} - \frac{f(x) - f(c_1)}{g(x)} \frac{g(c_1)}{g(x)} > E - f(c_1) + Eg(c_1) \implies \frac{f(x)}{g(x)} \to +\infty.$$

Example 6.12.4 Обчислити границю $\lim_{x\to 0^+} x^x$.

$$\lim_{x\to 0^+} x^x = \lim_{x\to 0^+} e^{x\ln x} = e^{x\to 0^+} \frac{\ln x}{\frac{1}{x}} =$$
 Перевіримо цю границю за Лопіталем:
$$\lim_{x\to 0^+} \frac{(\ln x)'}{(\frac{1}{x})'} = \lim_{x\to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0.$$
 Отже, можемо продовжувати наш дани

$$\lim_{x \to 0^+} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

Отже, можемо продовжувати наш ланцюг обчислення:

$$\Box e^0 = 1$$

Remark 6.12.5 Якщо виникає $x \to \pm \infty$, то можна застосувати правило Лопіталя, використавши заміну $t = \frac{1}{r}$, де $t \to 0^{\pm}$.

 ${f Remark~6.12.6}$ Границю $\lim_{x o 0} \frac{\sin x}{x}$ в жодному (!) випадку не можна рахувати за Лопіталем, хоча й результат буде таким самим. Все це тому, що $(\sin x)'$ ми отримали завдяки цієї границі, ми посилаємось на те, що ми знаємо цю границю уже (!). Коротше, замнений круг відносно логічної послідовності виклада.

6.13 Формула Тейлора

Задача цього підрозділу полягає в тому, що ми хочемо навчитись апроксимувати функцію в вигляді многочлена навколо певній точці. Маємо функцію f(x) та точці x_0 .

Перше наближення до многочлену – це буде $y = f(x_0)$. Досить грубе наближення.

Друге наближення до многочлену – це буде $y = f(x_0) + f'(x_0)(x - x_0)$, якщо функція диференційована. А це вже – дотична, яка дає вже нормальне наближення.

Третє наближення до многочлену – це буде $y = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2$, якщо функція двічі диференційована. Ділю я навпіл, тому що я вимагаю, щоб $y'' = f''(x_0)$. Це вже краще наближення, використовуючи знання випуклості функції. Тощо, тощо, тощо...

Definition 6.13.1 Задано функцію f – диференційована n разів в точці x_0 .

Многочленом Тейлора функції f в точці x_0 називається такий многочлен порядка n:

$$P_n(x,x_0) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n.$$

Оскільки ми на кожному наближенні вимагали рівність похідних в точці x_0 , то для многочлена Тейлора має бути теж саме.

Lemma 6.13.2 $f^{(k)}(x_0) = (P_n(x, x_0))^{(k)}(x_0)$.

Я буду собі наближувати щоразу – і тоді в мене виникне певна похибка. Для цієї похибки є теорема, яку наведу після розмови, бо сприйняти буде важко.

Розглянемо функцію f-n разів диференційована в точці x_0 та многочлен Тейлора $P_n(x,x_0)$.

Розглянемо функцію $g(t) = f(x) - P_n(x, t)$, або більш розгорнуто

$$g(t) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^n\right).$$

 $g(x_0) \stackrel{\text{позн.}}{=} r_n(x,x_0) = f(x) - P(x,x_0)$, позначимо це як залишковий член – та сама похибка. Тут вимагаємо, щоб функція f була n разів диференційована на відрізку $[x_0,x]$, коли в нас $x_0 < x$.

Також вимагатимемо, щоб функція f мала похідну n+1 порядку на інтервалі (x_0,x) . (**)

Маючи (*),(**), ми можемо знайти похідну функції g, тоді:

$$g'(t) = -\left(f'(t) - \frac{f'(t)}{1!} + \frac{f''(t)}{1!}(x-t) - \frac{2f''(t)}{2!}(x-t) + \frac{f'''(t)}{2!}(x-t)^2 + \cdots - \frac{nf^{(n)}(t)}{n!}(x-t)^{n-1} + \frac{f^{(n+1)}(t)}{n!}(x-t)^n\right)$$
 $g'(t) = -\frac{f^{(n+1)}(t)}{n!}(x-t)^n$. Згідно з (*),(**) ми можемо сказати, що $g \in C([x_0, x])$ та диференційована в (x_0, x) . Додамо ще функцію $\varphi \not\equiv 0$ з такими самими умовами. Тоді за теоремою Коші,
$$\exists c \in (x_0, x) : \frac{g(x) - g(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{g'(c)}{\varphi'(c)} \implies r(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \frac{f^{(n+1)}(c)}{n!}(x-c)^n.$$
 Отримали загальну формулу залишкового члена, але мене буде цікавити інший формат. Тому нехай задано функцію $\varphi(t) = (x-t)^{n+1}$, яка потрапляє під всіма умовами. Толі маємо, що

$$\exists c \in (x_0, x) : \frac{g(x) - g(x_0)}{\varphi(x) - \varphi(x_0)} = \frac{g'(c)}{\varphi'(c)} \implies r(x, x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \frac{f^{(n+1)}(c)}{n!} (x - c)^n$$

$$r_n(x,x_0) = \frac{\varphi(x) - \varphi(x_0)}{\varphi'(c)} \frac{f^{(n+1)}(c)}{n!} (x-c)^n = \frac{-(x-x_0)^{n+1}}{-(n+1)(x-c)^n} \frac{f^{(n+1)}(c)}{n!} (x-c)^n = \frac{f^{(n+1)}(c)}{(n+1)!} (x-x_0)^{n+1}.$$

Theorem 6.13.3 Теорема Тейлора (у формі Лагранжа)

Задано функцію f — диференційована n разів на $[x_0,x]$ при $x_0 < x$ та має похідну n+1 порядка на (x_0,x) . Тоді $\exists c \in (x_0,x)$, така, що функція f представляється у вигляді

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}.$$

Інше представлення формули Тейлора буде таким:

Ми знову розглянемо функцію $g(x) = f(x) - P_n(x, x_0)$, але цього разу ми спробуємо довести, що $f(x) - P_n(x, x_0) = o((x - x_0)^n), x \to x_0.$

$$f(x) - P_n(x, x_0) = o((x - x_0)^n), x \to x_0.$$
 Зрозуміло, що $g(x_0) = g'(x_0) = \cdots = g^{(n)}(x_0) = 0.$ Тепер обчислимо таку границю:
$$\lim_{x \to x_0} \frac{g(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{g'(x)}{n(x - x_0)^{n-1}} = \lim_{x \to x_0} \frac{g''(x)}{n(n-1)(x - x_0)^{n-2}} = \cdots = \lim_{x \to x_0} \frac{g^{(n)}(x)}{n!} = 0.$$
 Тут ми використовували n разів I правило Лопіталя. Таким чином, ми сформували теорему:

Theorem 6.13.4 Теорема Тейлора (у формі Пеано)

Задано функцію f – диференційована n разів в точці x_0 . Тоді

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n), x \to x_0.$$

Remark 6.13.5 Існують такі функції, де в певній точці апроксимація не спрацьовує. Такі функції

називають **неаналітичними**. Зокрема
$$f(x)=egin{cases} e^{-\frac{1}{x^2}},x\neq 0 \\ 0,x=0 \end{cases}$$
 . У точці $x_0=0$ вийде многочлен Тейлора $P_n(x,0)\equiv 0.$

Основні розклади в Тейлора

Всі вони розглядатимуться в точці $x_0 = 0$, всюди $x \to x_0$.

I.
$$e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+o(x^n);$$

II. $\sin x=\frac{x}{1!}-\frac{x^3}{3!}+\cdots+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+o(x^{2n+2});$

III. $\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots+\frac{(-1)^n}{(2n)!}x^{2n}+o(x^{2n+1});$

IV. $(1+x)^\alpha=1+\frac{\alpha x}{1!}+\frac{\alpha(\alpha-1)x^2}{2!}+\cdots+\frac{\alpha(\alpha-1)\dots(\alpha-(n-1))x^n}{n!}+o(x^n);$

V. $\ln(1+x)=x-\frac{x^2}{2}+\cdots+(-1)^{n-1}\frac{x^n}{n}+o(x^n).$

А тепер полягає питання, який розклад використовувати: за Лагранжем чи Пех

А тепер полягає питання, який розклад використовувати: за Лагранжем чи Пеано. Відповідь на ці питання дадуть приклади нижче.

Example 6.13.6 Обчислити границю функції
$$\lim_{x\to 0} \frac{e^x-1-\sin x-\frac{x^2}{2}}{x(1-\cos x)}$$

Маємо, що

$$\lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x(1 - \cos x)} = \lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{2x \sin^2 \frac{x}{2}} = 2 \lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x^3} \equiv 2 \lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x^3} = 2 \lim_{x \to 0} \frac{$$

то тоді краще через Пеано розписувати.

Example 6.13.7 Обчислити $\sin 1^{\circ}$ із точністю до 10^{-6} .

Для дурних як я: 'із точністю до 10^{-6} ' означає, що реальна відповідь відрізняється від приблизної відповіді не більше ніж на 10^{-6} .

$$\sin x = \frac{x}{1!} - \frac{x^3}{3!} + \dots + \frac{(-1)^n}{(2n-1)!} x^{2n-1} + \frac{f^{(2n+1)}(c)}{(2n+1)!} x^{2n+1}.$$

відповіді не більше ніж на
$$10^{-6}$$
. Маємо $f(x)=\sin x$. Розклад цієї формули має такий вигляд:
$$\sin x=\frac{x}{1!}-\frac{x^3}{3!}+\cdots+\frac{(-1)^n}{(2n-1)!}x^{2n-1}+\frac{f^{(2n+1)}(c)}{(2n+1)!}x^{2n+1}.$$
 У нашому випадку $1^\circ=\frac{\pi}{180}$, тоді $c\in\left(0,\frac{\pi}{180}\right)$. Щоб порахувати з точністю до 10^{-6} , треба, щоб залишковий член був менше за цю похибку, тобто
$$\left|\frac{f^{(2n+1)}(c)}{(2n+1)!}x^{2n+1}\right|<10^{-6}$$

$$\left|\frac{\cos c}{(2n+1)!}x^{2n+1}\right|=\frac{|\cos c||x^{2n+1}|}{(2n+1)!}\leq \frac{|x^{2n+1}|}{(2n+1)!}\leq \frac{\pi^{2n+1}}{(2n+1)!180^{2n+1}}<\frac{1}{(2n+1)!45^{2n+1}}<\frac{1}{1000000}.$$
 Методом перебора можна отримати, що $n=2$. Тоді . π

$$\sin\frac{\pi}{180} \approx \frac{\pi}{180} - \frac{\pi^3}{180^3 3!} = a.$$

 $\sin\frac{\pi}{180}\approx\frac{\pi}{180}-\frac{\pi^3}{180^33!}=a.$ Дійсно, якщо порахувати $|\sin 1^\circ-a|$, то різниця не є більше 10^{-6} .

Тобто коли треба приблизне обчислення, то тоді краще через Лагранжа розписувати.

Перше зауваження: насправді, для n=1 різниця вже не перебільшує нашу похибку. Проте це дуже складно перевірити в нерівностях.

Друге зауваження: якщо оцінювати нерівності дуже грубо, то тоді n було б великим числом, що не є гарно. Нас не цікавить дуже точне значення.

Додаткові матеріали на згодом

- 1. Загальне означення границі числової послідовності (не стандартне звичне)
- 2. Ірраціональність числа e
- 3. Теорема: будь-яка послідовність має монотонну підпослідовність
- 4. Загальне означення границі функції
- 5. Порядок однієї функції відносно іншої
- 6. Функція Діріхле, Рімана та їхня поведінка на неперервність
- 7. Теорема про монотонну функцію, яка має розриви (кількість якої не більше, ніж зліченна)
- 8. Теорема про обернену функцію, якщо функція задана не на відрізку
- 9. Формула Фаа-ді-Бруно
- 10. Теорема Дарбу
- 11. Друга достатню умову випуклості функції
- 12. Теорема: f опукла \iff дотична в т. x_0 лежить нижче графіка
- 13. Узагальнене означення асимптоти
- 14. Випукла функція на (a,b) є неперервною

Література та джерела

- 1. Викладачі ІПСА: Подколзін Г.Б., Богданський Ю.В.
- 2. Про дійсні числа та дедекіндовий переріз
- 3. Трушин Б.В.
- 4. Лекторий ФПМИ: Лукашов А.Л.
- 5. Дороговцев А.Я. "Математический анализ"
- 6. Бойцев А.А.