Math 393: Homework 2

Anthony Brice October 4, 2016

Exercise 4.6

$$\langle 0 \rangle = \{0\}$$

$$\langle 1 \rangle = \mathbb{Z}_{12}$$

$$\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$$

$$\langle 3 \rangle = \{0, 3, 6, 9\}$$

$$\langle 4 \rangle = \{0, 4, 8\}$$

$$\langle 5 \rangle = \mathbb{Z}_{12}$$

$$\langle 6 \rangle = \{0, 6\}$$

$$\langle 7 \rangle = \mathbb{Z}_{12}$$

$$\langle 8 \rangle = \langle 4 \rangle$$

$$\langle 9 \rangle = \langle 3 \rangle$$

$$\langle 10 \rangle = \langle 2 \rangle$$

$$\langle 11 \rangle = \mathbb{Z}_{12}$$
 .

Figures 1–6 exhibit each visually.

Figure 1: A visual representation of $\mathbb{Z}_{12}=\langle 1 \rangle=\langle 5 \rangle=\langle 7 \rangle=\langle 11 \rangle.$

Figure 2: A visual representation of $\langle 2 \rangle = \langle 10 \rangle$.

Figure 3: A visual representation of $\langle 3 \rangle = \langle 9 \rangle$.

Figure 4: A visual representation of $\langle 4 \rangle = \langle 8 \rangle$.

Figure 5: A visual representation of $\langle 6 \rangle$.

Figure 6: A visual representation of $\langle 0 \rangle$.

Exercise 4.8

Claim. The cyclic subgroups of D₆ are exactly

$$\begin{split} \langle s_n \rangle &= \{s_n, r_0\}, & \forall n \in \{0, 1, \dots, 5\} \\ \langle r_1 \rangle &= \{r_0, r_1, r_2, r_3, r_4, r_5\} \\ \langle r_2 \rangle &= \{r_0, r_2, r_4\} \\ \langle r_3 \rangle &= \{r_0, r_3\} \\ \langle r_0 \rangle &= \{r_0\}. \end{split}$$

Proof. Since a cyclic subgroup by definition must generate from a single element in the group, there exist at most 12 cyclic groups of D₆. Then we need only verify that $\langle r_4 \rangle$ and $\langle r_5 \rangle$ are already included in the above list. We have that $\langle \mathbf{r}_4 \rangle = \langle \mathbf{r}_2 \rangle$ and $\langle \mathbf{r}_5 \rangle = \langle \mathbf{r}_1 \rangle$.

Exercise 4.12

Claim. Let a be an element of a group G of order n. Then the positive integer k satisfying $a^k = a^{-1}$ is defined by k = |a|t-1 for all $t \in \mathbb{Z}_{>0}$ satisfying $a^{|\alpha|t} = e$.

Proof.

$$\begin{split} \alpha^k &= \alpha^{-1} \\ \iff & \alpha \alpha^k = \alpha \alpha^{-1} \\ \iff & \alpha^{k+1} = \varepsilon \,. \end{split}$$

Thus |a| divides k+1 and k+1=|a|t for some $t \in \mathbb{Z}$ (by Corollary 4.14). Then k = |a|t - 1. \Box

Exercise 4.19

Part a)

Claim. Let $GL_n(\mathbb{Z})$ be the set of all $n \times n$ matrices having integer entries and having determinant equal to 1 or -1. Then $GL_n(\mathbb{Z})$ is a subgroup of $\mathrm{GL}_{\mathfrak{n}}(\mathbb{R}).$

Proof. We will show that $GL_n(\mathbb{Z})$ satisfies all three conditions of Proposition 4.3.

Let $A, B \in GL_n(\mathbb{Z})$. Then AB = C must be integer valued, and det(C)must be 1 or -1 since det(AB) = det(A) det(B). Then $C \in GL_n(\mathbb{Z})$, and $\mathrm{GL}_n(\mathbb{Z})$ is closed under our operation, satisfying the first condition.

Clearly the identity matrix $I \in GL_n(\mathbb{Z})$, satisfying the second condition.

Consider $A \in GL_n(\mathbb{Z})$. We have that $det(A^{-1}) = 1/det(A) = 1$ or -1, and since det(A) = 1 or -1 we also have that A^{-1} is integer valued. Then $A^{-1} \in GL_n(\mathbb{Z})$, satisfying the third condition.

Part b)

Claim. Let $\mathrm{SL}_n(\mathbb{Z})$ be the set of all $n \times n$ matrices having integer entries and having determinant equal to 1. Then $\mathrm{SL}_n(\mathbb{Z})$ is a subgroup of $\mathrm{GL}_n(\mathbb{Z})$.

Proof. Let $A, B \in SL_n(\mathbb{Z})$. Then AB = C must be integer valued, and since

$$det(C) = det(AB)$$

$$= det(A) det(B)$$

$$= 1,$$

C must be in $SL_n(\mathbb{Z})$.

Clearly $I \in SL_n(\mathbb{Z})$.

Consider $A \in SL_n(\mathbb{Z})$. We have that

$$\det(A^{-1}) = \frac{1}{\det(A)} = 1.$$

And since det(A) = 1, A^{-1} must also be integer valued. Thus $A^{-1} \in SL_n(\mathbb{Z})$.

Part c)

Claim. Let S be the subset of $\mathrm{GL}_n(\mathbb{R})$ consisting of all $n \times n$ matrices having integer entries. Then matrix multiplication does not define a group operation on S.

Proof. Assume for the purpose of contradiction that matrix multiplication does define a group operation on S. Then S is a subgroup of $\mathrm{GL}_n(\mathbb{R})$.

Let $A \in S$ be an integer-valued matrix with determinant not equal 1 or -1. Then A^{-1} is not integer valued yet A^{-1} must be in S, thus we have a contradiction.

Exercise 4.23

Claim. Let H be a finite subset of group G. Then H is a subgroup of G if and only if

- (i) If a and b lie in H, then ab lies in H,
- (ii) H is nonempty.

Proof. Let H be a finite subgroup of G. Then if $a, b \in H$ then $ab \in H$ by condition (1) of the subgroup test, and H is nonempty by condition (2).

Now let H be a finite subset of group G, and assume that H is nonempty and that if $a,b \in H$ then $ab \in H$. We will show that there exists an identity element $e \in H$ and for all a there exists $a^{-1} \in H$. Since H is finite we have that $a^m = a^k$ where $m \neq k$. Let m > k, then $a^{m-k} = e$. Then $aa^{m-k-1} = e$, thus $a^{m-k-1} = a^{-1}$.

Exercise 5.2

Part a)

Since the groups are finite and commutative,

$$\begin{split} \langle 3,5 \rangle \in & \ U_{16} = \{3^n 5^m : n,m \in \mathbb{Z}\} \\ & = \{3^0 5^0, 3^0 5^1, \dots, 3^1 5^0, 3^1 5^1, \dots\} \\ & = U_{16} \, . \end{split}$$

$$\begin{split} \langle 9, 15 \rangle \in U_{16} &= \{ 9^n 15^m : n, m \in \mathbb{Z} \} \\ &= \{ 9^0 15^0, 9^0 15^1, \dots, 9^1 15^0, 9^1 15^1, \dots \} \\ &= \{ 1, 7, 9, 15 \} \, . \end{split}$$

Part b)

$$\langle r_4, s_0 \rangle \in D_8 = \{r_0, r_4, s_0, s_4\}.$$

$$\langle r_2, s_0 \rangle \in D_8 = D_8$$
.

Part c)

Exercise 5.3

Claim. U₁₄ is cyclic.

Proof. It suffices to show that $\langle a \rangle = U_{14}$ for some $a \in U_{14}$.

$$\langle 3 \rangle = \{1, 3, 5, 9, 11, 13\}.$$

Claim. U₁₅ is not cyclic.

Proof. It suffices to show that $\langle a \rangle \neq U_{15}$ for all $a \in U_{15}$.

$$\langle 1 \rangle = \{1\}$$

 $\langle 2 \rangle = \{1, 2, 4, 8\}$
 $\langle 4 \rangle = \{1, 4\}$
 $\langle 6 \rangle = \{1, 6\}$
 $\langle 7 \rangle = \{1, 4, 7, 13\}$
 $\langle 8 \rangle = \{1, 2, 4, 8\}$
 $\langle 11 \rangle = \{1, 11\}$

$$\langle 13 \rangle = \{1, 4, 7, 13\}$$

$$\langle 14 \rangle = \{1, 14\}.$$

Exercise 5.5

Part a)

Claim. $\langle a, b \rangle = \langle gcd(a, b) \rangle$ for any $a, b \in \mathbb{Z}$.

Proof. Note that addition is commutative, so

$$\langle a, b \rangle = \{a^n b^m : n, m \in \mathbb{Z}\}\$$

= $\{na + mb : n, m \in \mathbb{Z}\}.$

Note that since gcd(a, b) divides any linear combination of a and b, gcd(a, b) must be the smallest positive linear combination of a and b. Thus $\langle gcd(a, b) \rangle = \langle a, b \rangle$.

Part b)

Claim. $\langle a, b \rangle = \langle \gcd(a, b, n) \rangle$ for any $a, b \in \mathbb{Z}_n$.

Proof. Addition modulo n is still commutative, so

$$\langle a, b \rangle = \{a^p b^q : p, q \in \mathbb{Z}\}$$

= $\{pa + qb \mod n : p, q \in \mathbb{Z}\}$

Then let c = gcd(a, b, n). *TODO:* Show that any pa + qb can be expressed as rc and vice versa.

Exercise 5.7

Part a)

Claim. $\langle a, b \rangle = \langle a^{-1}, b \rangle$.

Proof.

$$\begin{split} \langle a,b\rangle = & \{s_1^{n_1}s_2^{n_2}\cdots s_k^{n_k}: s_i \in \{a,b\}, n_i \in \mathbb{Z}_{\neq 0}\} \\ = & \langle a^{-1},b\rangle \end{split}$$

since $\{\alpha^{n_i}: n_i \in \mathbb{Z}_{\neq 0}\} = \{(\alpha^{-1})^{n_i}: n_i \in \mathbb{Z}_{\neq 0}\}. \hspace{1cm} \square$

Part b)

Claim. $\langle a, b \rangle = \langle a, a^{-1}b \rangle$.

Proof. Similar to the proof above, note that one may map any expression for the elements of $\langle a,b\rangle$ of the form given in Proposition 5.5 to an equivalent expression for the elements of $\langle a,a^{-1}b\rangle$ by replacing each b in the first expression with $aa^{-1}b$. Since the mapped expression satisfies for $\langle a,a^{-1}b\rangle$ the form given in Proposition 5.5, and because this map forms a bijection by mapping any expression for an element of $\langle a,a^{-1}b\rangle$ that does not include $aa^{-1}b$ to itself, $\langle a,b\rangle=\langle a,a^{-1}b\rangle$.

Part c)

Claim. $\langle a, b \rangle = \langle a, ab \rangle$.

Proof. As above, we can create a bijection from the expressions generated by $\langle a,b\rangle$ to equivalent elements generated by $\langle a,ab\rangle$ by replacing every b with $a^{-1}ab$ and vice versa, and mapping any expression in $\langle a,b\rangle$ that does not have b to itself and any expression in $\langle a,ab\rangle$ that does not have $a^{-1}ab$ to itself. Thus $\langle a, b \rangle = \langle a, ab \rangle$.