Das Matrix-Tree-Theorem

Bachelorarbeit der Fakultät für Mathematik der Ludwig-Maximilians-Universität München

vorgelegt von

Christopher Mann

geboren in Freising

München, den

Contents

1 Einleitung							
2	Technische Lemmas und Definitionen						
3	Das Matrix-Tree-Theorem						
	3.1 T	Tutte's Matrix-Tree-Theorem	5				
	3.2 K	Kirchhoff's Matrix-Tree-Theorem	5				
4	Anzah	l Spannbäume für bestimmte Graphenklassen	6				
	4.1 D	Der vollständige Graph K_n (Satz von Cayley)	6				
	4.2 v	ollständige multipartite Graphen	7				
	4.3 C	Cartesische Produkte von Graphen	7				
	4.4 F	F_n (Fan)(Fächer?)	7				
	4.5 W	V_n (Räder)	7				
	4.6 c	irculant Graphs	8				

1 Einleitung

2 Technische Lemmas und Definitionen

V1: Wir beginnen damit, ein paar wichtige Begriffe einzuführen und uns ein paar Lemmas zurechtzulegen.

Lemma 2.1 produkt der eigenwerte = summe der Hauptminoren

Lemma 2.2 eigenwerte kartesisches Produkt v. Graphen (Kronekersumme Aidb + idaB)

Definition 2.3 *Definition Laplacematrix* L_n

Definition 2.0.1 *Definition Kirchoff Matrix* K_D

Definition 2.0.2 *Definition Multigraph*

Definition 2.0.3 *Definition out-branching (aboreszenz?)*

V2:

Im Verlauf dieser Arbeit werden wir immer wieder die Anzahl der Spannbäume eines Graphen ausrechnen, daher definieren wir k(G) als die Anzahl der Spannbäume eines beliebigen Graphen G.

3 Das Matrix-Tree-Theorem

Nachdem wir nun alle notwendigen Lemmas und Definitionen beisammen haben, können wir mit dem wichtigsten Teil dieser Arbeit anfangen, dem Beweis des Matrix-tree-theorems selbst. Wir beweisen zuerst eine Version für gerichtete Multigraphen, bevor wir uns der Version für ungerichtete Graphen als einem Spezialfall davon widmen.

3.1 Tutte's Matrix-Tree-Theorem

Satz 3.1.1 (Tutte's Matrix-Tree-Theorem) Sei D ein gerichteter Multigraph mit Kirchoffmatrix K(D). Die Anzahl der out-branchings aus dem Knoten i ist gleich der $det(K_{\bar{i}}(D))$.

Beweis:

3.2 Kirchhoff's Matrix-Tree-Theorem

Satz 3.2.1 (Kirchoff 's Matrix Tree Theorem) *Sei G ein ungerichteter Graph und L*_n *die dazugehörige Laplacematrix. Dann gilt:*

- (1) Die Anzahl der Spannbäume von G gleich einem beliebigen Kofaktor von L_n .
- (2) Die Anazahl der Spannbäume von G ist gleich $\frac{1}{n}\lambda_1...\lambda_{n-1}$, wobei $\lambda_1,...,\lambda_{n-1}$ die Eigenwerte von L_n sind, die ungleich null sind.

Beweis:

4 Anzahl Spannbäume für bestimmte Graphenklassen

Nachdem Kirchhoff's Matrix-Tree-Theorem nun bewiesen ist, werden wir damit im Folgenden Formeln für die Berechnung der Anzahl der Spannbäume für verschiedene Klassen von ungerichteten Graphen finden. Begegnen werden uns unter Anderem der vollständige Graph, multipartite Graphen, Räder und as Quadrat eines Kreises (Square of a cycle)). Dabei werden wir uns an der ein- oder anderen Stelle ein paar Eigenschaften bestimmter Matrizen, Determinanten, aber auch zum Beispiel von Chebychev-polynomen zunutze machen, da das Ausrechnen eines Kofaktors der Laplacematrix hier oft nicht der schnellste und intelligenteste Weg ist um ans Ziel zu kommen.

4.1 Der vollständige Graph K_n (Satz von Cayley)

Als Einstieg soll der vollständige Graph mit n Knoten kurz K_n dienen.

Satz 4.1.1 (Satz von Cayley) K_n besitzt genau n^{n-2} verschiedene Spannbäume.

Beweis:

Ein sehr ähnlicher Beweis findet sich in [2]. Wir wollen das Matrix-Tree-Theorem verwenden und betrachten deshalb die Determinante der Matrix $M_n \in M_{n-1}(\mathbb{Z})$, die durch das Streichen der ersten Zeile und Spalte der Laplacematrix $L_n \in M_n(\mathbb{Z})$ von K_n entsteht:

$$M_n := \begin{pmatrix} n-1 & -1 & \dots & \dots & -1 \\ -1 & n-1 & -1 & \dots & \dots & -1 \\ -1 & -1 & n-1 & -1 & \dots & -1 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & \dots & \dots & \dots & -1 & n-1 \end{pmatrix}$$
 (1)

Da sich die Determinante durch elementare Zeilen- und Spaltenoperationen nicht ändert, dürfen wir die erste Spalte von allen anderen subtrahieren und erhalten:

$$det(M_n) := det \begin{pmatrix} n-1 & -n & \dots & \dots & -n \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
 (2)

Mit demselben Argument wie oben addieren wir zur ersten Zeile alle übrigen und es ergibt sich:

$$det(M_n) := det \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ -1 & n & 0 & \dots & \dots & 0 \\ -1 & 0 & n & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ -1 & 0 & \dots & \dots & 0 & n \end{pmatrix}$$
(3)

Wir berechnen den Wert dieser Determinante durch Entwicklung nach der ersten Zeile. Weil die Matrix M_n eine $n-1 \times n-1$ Matrix ist, gilt:

$$det(M_n) = n^{n-2} (4)$$

Nach Kirchhoff's Matrix-Tree-Theorem ist genau das die Anzahl der Spannbäume des K_n

4.2 vollständige multipartite Graphen

4.3 Cartesische Produkte von Graphen

In diesem Teil zeigen wir, was im Bezug auf die Anzahl der Spannbäume geschieht, wenn man das kartesische Produkt von Graphen bildet.

4.4 F_n (Fan)(Fächer?)

Nun werden wir Fan-Graphen F_n betrachten. Diese entstehen wenn wir an einen Pfad-Graphen P_{n-1} einen weiteren Knoten so ankleben, dass er mit allen übrigen Knoten adjazent ist.

Wir wollen in diesem Kapital folgendes über die Anzahl der Spannbäume in Fan-Graphen zeigen:

(5)

Diesmal halten wir uns an einen Beweis von Bogdanowicz [1]

4.5 W_n (Räder)

Der vorletzte Stop auf unserer Reise sind die sogenannten Wheel-Graphen. Hier wird zu einem zyklischen Graphen C_n mit Knoten $\{v_1,..,v_n\}$, $n \ge 3$ ein weiterer Knoten z hinzugefügt, der mit allen anderen Knoten benachbart ist, sodass der Wheel-Graph W_n entsteht (Achtung: W_n hat n+1 Knoten).

Satz 4.1 Für die Anzahl der Spannbäume in einem Rad gilt:

$$k(W_n) = \left(\frac{3+\sqrt{5}}{2}\right) + \left(\frac{3+\sqrt{5}}{2}\right)^n - 2 \tag{6}$$

Beweis:

Um die Formel für die Berechnung der Anzahl der Spannbäume eines solchen Graphen herzuleiten, lassen wir von [3] inspirieren. Wir beobachten, dass wir den Fan-Graphen F_n bekommen, wenn wir die Kante v_1v_n aus W_n entfernen. Die Anzahl der Spannbäume von F_n kennen wir bereits von oben. Wir werden zeigen, dass $k(W_n) = k(F_n) + 2\sum_{j=2}^n k(F_{j-1})$; damit können wir danach die Anzahl der Spannbäume von W_n berechnen. Als ersten Schritt dahin beweisen wir, dass für $n \ge 3$ die nachfolgende rekursive Beziehung gilt:

$$k(W_{n+1}) = k(F_{n+1}) + k(F_n) + k(W_n)$$
(7)

Um das zu tun, werden die Spannbäume von W_{n+1} in drei verschiedene Klassen einteilen:

- 1) Alle Spannbäume, die die Kante v_1v_{n+1} nicht enthalten; das sind genau die Spannbäume von F_{n+1} .
- 2) Alle Spannbäume, die die Kante v_1v_{n+1} enthalten, jedoch nicht die Kante v_1z ; das sind die Spannbäume des Graphen W_{n+1}/v_1v_{n+1} , den wir durch Kontraktion der Kante v_1v_{n+1} aus W_{n+1} erhalten dieser Graph ist aber W_n .
- 3) Alle Spannbäume, die die Kanten v_1v_{n+1} und v_1z beinhalten; das sind die Spannbäume des Graphen, den wir durch die Kontraktion der Kante v_1z gewinnen, also von F_n , wie wir aus der nachfolgenden Grafik entnehmen können.

Wie wir sehr leicht sehen können ist jeder Spannbaum von W_{n+1} in genau einer dieser Klassen, also gilt die Rekursion.

Unsere Formel lässt sich - zum Beispiel durch vollständige Induktion über $n \in \mathbb{N}$ - sehr einfach verifizieren.

Nachdem wir im vorherigen Kapitel herausgefunden haben, wieviele Spannbäume Fan-Graphen haben, können wir das sofort in die Formel einsetzen, und erhalten:

Damit haben wir erfolgreich gezeigt, dass für die Anzahl der Spannbäume in W_n gilt:

4.6 circulant Graphs

Wir nennen einen Graphen circulant mit n Knoten, wenn für $n \in \mathbb{N}$ und eine Menge $I \subset \{1,..,\lfloor \frac{n}{2} \rfloor\} \subset \mathbb{N}$ gilt, dass jeder Knoten v genau zu jedem Knoten $(v+i)(\mod n)$ mit $i \in I$ benachbart ist; wir bezeichnen solch einen Graphen kurz mit C_n^I .

Wir erinnern uns, dass eine $n \times n$ Matrix zyklisch genannt wird, falls jede Spalte aus der vorherigen durch Anwendung der Permutation (1...n) hervorgeht. Das ist bei den Adjazenzmatrizen unserer circulant Graphs, aufgrund dessen, wann Konten benachbart sind, natürlich der Fall. Zu Gute kommt uns das bei der Berechnung der Anzahl von Spannbäumen in circulant Graphs, denn die Eigenwerte einer zyklischen Matrix sind wohlbekannt.Um die Formel für die Anzahl der Spannbäume überhaupt zu verstehen, müssen wir einen weiteren Begriff einführen.Nachdem wir nun alles beisammen haben, formulieren wir folgenden Satz:

Satz 4.6.1 Für die Anzahl der Spannbäume in circulant Graphs von Grad d gilt:

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right)\right), falls \, d \, gerade \, ist \tag{8}$$

$$k\left(C_{n}^{I}\right) = \frac{1}{n} \prod_{j=1}^{n-1} \left(4 \sum_{i \in I} \sin^{2}\left(\frac{ij\pi}{n}\right) - (-1)^{j} + 1\right), falls \, dungerade \, ist \tag{9}$$

Beispiel 4.6.2 (C_n^2 - Das Quadrat eines Kreises)

References

- [1] Zbigniew Bogdanowicz. Formulas for the number of spanning trees in a fan. *Applied Mathematical Sciences (Ruse)*, pages 781 786, 01 2008.
- [2] Dietlinde Lau. Algebra und Diskrete Mathematik. Vol. 2, Lineare Optimierung, Graphen und Algorithmen, Algebraische Strukturen und Allgemeine Algebra mit Anwendungen. Springer, 2004.
- [3] J Sedlacek. On the skeletons of a graph or digraph. *Proc. Calgary International Conference on Combinatorial Structures and their Applications, Gordon and Breach*, pages 387–391, 1970.

Selbständigkeitserklärung

Ich versichere hiermit, die vorliegende Arbeit mit dem Titel
Das Matrix-Tree-Theorem
selbständig verfasst zu haben und keine anderen als die angegebenen Quellen und Hilfsmittel ver wendet zu haben.
Christopher Mann
München, den