

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по Лабораторной работе №1 по курсу «Анализ Алгоритмов»

на тему: «Редакционное расстояние»

Студент группы ИУ7-51Б		Шубенина Д. В.	
	(Подпись, дата)	(Фамилия И.О.)	
Преподаватель		Волкова Л. Л.	
	(Подпись, дата)	(Фамилия И.О.)	
Преподаватель		Строганов Ю. В.	
	(Подпись, дата)	(Фамилия И.О.)	

Содержание

B	Введение								
1	Ана	алитич	ческая часть	4					
	1.1	1 Расстояние Левенштейна							
		1.1.1	Нерекурсивный алгоритм нахождения расстояния Ле-						
			венштейна	Ę					
	1.2	Расст	Расстояние Дамерау — Левенштейна						
		1.2.1 Рекурсивный алгоритм нахождения расстояния Да							
			рау — Левенштейна	6					
		1.2.2	Рекурсивный алгоритм нахождения расстояния Даме-						
			рау — Левенштейна с кэшированием	7					
		1.2.3	Нерекурсивный алгоритм нахождения расстояния Да-						
			мерау — Левенштейна	7					
	Выв	вод		8					
2	Кон	нструк	кторская часть	G					
	2.1	Требования к программному обеспечению							
	2.2	Требования вводу							
	2.3	Разработка алгоритмов							
	2.4	Описание используемых типов данных							
	Выв	вод		15					
3	Tex	НОЛОГ	ическая часть	16					
	3.1	Средо	ства реализации	16					
	3.2	Сведе	ения о модулях программы	16					
	3.3	Реали	изация алгоритмов	16					
	3.4	Функ	циональные тесты	22					
	Выв	вод		22					
4	Исс	следов	ательская часть	23					
	4.1	Техни	ические характеристики	23					
	4.2	Демог	нстрация работы программы	23					

4.3	Временные характеристики	24
4.4	Характеристики по памяти	27
4.5	Вывод	29
Заклю	чение	31
Списо	к использованных источников	32

Введение

Расстояние Левенштейна (также называемое редакционным расстоянием или дистанцией редактирования) — это метрика, которая измеряет разницу между двумя строками. Определяет минимальное количество операций вставки, удаления и замены символов, необходимых для преобразования одной строки в другую.

Расстояние Дамерау — Левенштейна является расширением расстояния Левенштейна, которое включает дополнительную операцию — транспозицию, чтобы обработать случаи, когда символы меняются местами или переупорядочиваются.

Расстояния Левенштейна и Дамерау — Левенштейна используются при решении следующих задач:

- 1) корректировка поискового запроса;
- 2) классификация текстов;
- 3) распознавание речи;
- 4) определение сходства между текстами.

Целью данной лабораторной работы является изучение, реализация и исследование алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна.

Необходимо выполнить следующие задачи:

- 1) изучить алгоритмы Левенштейна и Дамерау Левенштейна для нахождения редакционного расстояния между строками;
- 2) реализовать данные алгоритмы;
- 3) выполненить сравнительный анализ алгоритмов по затрачиваемым ресурсам (времени, памяти);
- 4) описать и обосновать полученные результаты в отчете.

Аналитическая часть

Расстояние Левенштейна

Расстояние Левенштейна между двумя строками — это минимальное количество операций вставки одного символа, удаления одного символа и замены одного символа на другой, необходимых для превращения строки в другую [1].

Введем следующие обозначения операций:

- $-\ w(a,b)$ цена замены символа a на символ b;
- $w(\varepsilon, b)$ цена вставки символа b;
- $\ w(a, \varepsilon)$ цена удаления символа a.

Каждая операция имеет определенную цену:

- **M** (от англ. match): w(a, a) = 0;
- **R** (от англ. replace): $w(a, b) = 1, a \neq b$;
- **I** (от англ. insert): $w(\varepsilon, b) = 1$;
- **D** (от англ. delete): $w(a, \varepsilon) = 1$.

Пусть имеется две строки S_1 и S_2 длиной m и n соотвественно. Расстояние Левенштейна $d(S_1,S_2) = D(m,n)$ рассчитывается по следующей рекуррентной формуле [2]:

$$D(m,n) = \begin{cases} 0, & \text{i} = 0, \text{j} = 0\\ i, & \text{j} = 0, \text{i} > 0\\ j, & \text{i} = 0, \text{j} > 0\\ \text{i} = 0, \text{j} > 0 \end{cases}$$

$$\text{i} = 0, \text{j} > 0$$

$$\text{j} = 0, \text{i} > 0$$

$$\text{j} = 0, \text{i} > 0$$

$$\text{j} = 0, \text{i} > 0$$

$$\text{j} = 0, \text{j} > 0$$

где сравнение символов строк S_1 и S_2 производится следующим образом:

$$\mathbf{m}(a,b) = \begin{cases} 0, & \text{если } a = b \\ 1, & \text{иначе} \end{cases}$$
 (1.2)

1.1.1 Нерекурсивный алгоритм нахождения расстояния Левенштейна

При увеличении значений m, n алгоритм поиска расстояния Левенштейна, использующий рекурсию, становится малоэффективным по времени за счет того, что в ходе работы алгоритма промежуточные значения D(i,j) вычисляются неоднократно.

Результаты промежуточных вычислений можно сохранять в матрицу размером $(n+1) \times (m+1)$, где m — длина строки S_1 , n — длина строки S_2 .

В ячейке [i,j] матрицы хранится значение $D(S_1[1..i], S_2[1..j])$. Первому элементу матрицы присвоено значение 0. Вся матрица заполняется в соотвествии с соотношением (1.1).

1.2 Расстояние Дамерау — Левенштейна

Расстояние Дамерау — Левенштейна — это расширение расстояния Левенштейна, определяющееся как минимальное количество операций вставки, удаления, замены и транспозиции Т (от англ. transposition).

Расстояние Дамерау — Левенштейна задается следующей рекуррент-

ной формулой:

$$D(m,n)=$$

$$\begin{cases} 0, & \mathrm{i}=0,\,\mathrm{j}=0 \\ i, & \mathrm{j}=0,\,\mathrm{i}>0 \\ j, & \mathrm{i}=0,\,\mathrm{j}>0 \end{cases}$$

$$= \begin{cases} D(i,j-1)+1, & \mathrm{ec} \mathrm{jn}\, i,\, j>1, \\ D(i-1,j)+1, & \mathrm{s}_1[i]=S_2[j-1], \ D(i-2,j-2)+1, \end{cases}$$

$$\begin{cases} D(i-1,j)+1, & \mathrm{s}_1[i-1]=S_2[j], \\ D(i-1,j)+1, & \mathrm{s}_1[i-1]=S_2[j], \end{cases}$$

$$\begin{cases} D(i,j-1)+1, & \mathrm{s}_1[i-1]=S_2[j], \\ D(i-1,j)+1, & \mathrm{s}_1[i-1]=S_2[j], \end{cases}$$

1.2.1 Рекурсивный алгоритм нахождения расстояния Дамерау — Левенштейна

Рекурсивный алгоритм поиска расстояния Дамерау — Левенштейна реализует формулу (1.3) следующим образом:

- 1) Если одна из строк пустая, возвращается длина другой строки.
- 2) Если последние символы двух строк совпадают, рекурсивно вызывается функция для остатков строк (без последних символов).
- 3) Иначе рекурсивно вызываются четыре варианта преобразования строки:
 - **Вставка**: к результату рекурсивного вызова для остатка первой строки добавляется 1.
 - **Удаление**: к результату рекурсивного вызова для остатка второй строки добавляется 1.

- **Замена**: к результату рекурсивного вызова для остатков строк добавляется 1.
- **Транспозиция**: если последние и предпоследние символы двух строк совпадают, к результату рекурсивного вызова для остатка строк добавляется 1.
- 4) Возвращается минимальное из четырех вариантов значение.

1.2.2 Рекурсивный алгоритм нахождения расстояния Дамерау — Левенштейна с кэшированием

При увеличении m и n рекурсивная реализация алгоритма поиска расстояния Дамерау — Левенштейна становится крайне не эффективной по времени, так как промежуточные значения расстояний между подстроками вычисляются неоднократно. Избавиться от повторяющихся вычислений можно с помощью матрицы $A_{m,n}$, в которую по ходу работы алгоритма сохраняются соотвествующие промежуточные значения D(i,j) расстояний.

Размер матрицы-кэша равен $(n+1) \times (m+1)$.

1.2.3 Нерекурсивный алгоритм нахождения расстояния Дамерау — Левенштейна

При увеличении значений m, n алгоритм нахождения расстояния Дамерау — Левенштейна, использующий рекурсию, становится менее эффективным по времени, поэтому вместо рекурсивной реализации можно использовать итеративную, для хранения промежуточных значений D(i,j) применяющую матрицу размером $(n+1)\times (m+1)$.

В ячейке [i,j] матрицы хранится значение $D(S_1[1..i], S_2[1..j])$. Первому элементу матрицы присвоено значение 0. Вся матрица заполняется в соотвествии с соотношением (1.3).

Вывод

В данном разделе были рассмотрены алгоритмы нахождения расстояний Левенштейна и Дамерау — Левенштейна — их рекурсивные и итеративные реализации. Также была рассмотрена оптимизация алгоритма поиска расстояния Дамерау — Левенштейна с помощью кэширования.

2 Конструкторская часть

В данном разделе будут приведены схемы алгоритмов нахождения расстояний Левенштейна и Дамерау — Левенштейна, описание используемых типов данных и структуры программного обеспечения.

2.1 Требования к программному обеспечению

К программе предъявлен ряд функциональных требований:

- наличие интерфейса для выбора действий;
- возможность ввода строк;
- возможность обработки строк, состоящих как из латинских символов, так и из кириллических;
- возможность произвести замеры процессорного времени работы реализованных алгоритмов поиска расстояний Левенштейна и Дамерау
 Левенштейна.

2.2 Требования вводу

- 1) На вход реализованным алгоритмам подаются две строки.
- 2) Строки могут включать как латинские, так и кириллические символы.
- 3) Буквы нижнего и верхнего регистра считаются разными символами.

2.3 Разработка алгоритмов

На рисунке 2.1 представлена схема матричного алгоритма поиска расстояния Левенштейна.

На рисунке 2.2 приведена схема матричной реализации алгоритма поиска расстояния Дамерау — Левенштейна.

На рисунке 2.3 представлена его рекурсивная реализация.

На рисунке 2.4 показана рекурсивная реализация алгоритма нахождения расстояния Дамерау — Левенштейна с использованием матрицыкэша.

Рисунок 2.1 – Схема матричного алгоритма Левенштейна

Рисунок 2.2 — Схема матричного алгоритма Дамерау — Левенштейна

Рисунок 2.3 – Схема рекурсивного алгоритма Дамерау — Левенштейна

Рисунок 2.4 — Схема рекурсивного алгоритма Дамерау — Левенштейна с использованием кэша

2.4 Описание используемых типов данных

При реализации алгоритмов будут использованы следующие типы данных:

- *строка* массив символов типа wchar_t;
- $\partial nuna\ cmpo\kappa u$ значение длины строки типа int;
- *матрица* двумерный массив значений типа int.

Вывод

В данном разделе на основе теоретических данных были перечислены требования к ПО. Также были построены схемы реализуемых алгоритмов на основе данных, полученных на этапе анализа.

3 Технологическая часть

В данном разделе приведены средства реализации программного обеспечения, сведения о модулях программы, листинг кода и функциональные тесты.

3.1 Средства реализации

В качестве языка программирования, используемого при написании данной лабораторной работы, был выбран C++ [3], так как в нем имеется контейнер std::wstring, представляющий собой массив символов std::wchar_t, и библиотека <ctime>, позволяющая производить замеры процессорного времени.

В качестве средства написания кода была выбрана кроссплатформенная среда разработки *Visual Studio Code* за счет того, что она предоставляет функционал для проектирования, разработки и отладки ПО.

3.2 Сведения о модулях программы

Данная программа разбита на следующие модули:

- main.cpp файл, содержащий точку входа в программу;
- matrix.cpp файл, содержащий функции создания матрицы, ее освобождения и вывода на экран;
- algorithms.cpp файл, содержащий реализации алгоритмов поиска расстояний Левенштейна и Дамерау Левенштейна;
- measure.cpp файл, содержащий функции, замеряющие процессорное время выполнения реализуемых алгоритмов.

3.3 Реализация алгоритмов

Листинг $3.1 - \Phi$ ункция **min**, используемая в реализациях алгоритмов

```
1 template <typename T>
2 static T min(T x, T y, T z)
3 {
4    return std::min(x, std::min(y, z));
5 }
```

Листинг 3.2 – Матричный алгоритм поиска расстояния Левенштейна (часть 1)

```
1 int LevNonRec(const std::wstring &word1, const std::wstring
     &word2, bool verbose)
2 {
3
       int len1 = word1.length();
       int len2 = word2.length();
5
       int **mat = Matrix :: Allocate(len2 + 1, len1 + 1);
       if (!mat)
8
           return -1;
9
       mat[0][0] = 0;
10
       for (int i = 0; i \le len2; ++i)
11
12
       {
           for (int j = 0; j \le len1; ++j)
13
           {
14
               if (i == 0)
15
16
               {
17
                    mat[i][j] = j;
18
               else if (j = 0)
19
20
               {
21
                    mat[i][j] = i;
22
               }
```

Листинг 3.3 – Матричный алгоритм поиска расстояния Левенштейна (часть 2)

```
else
2
               {
                    int cost = word1[j-1]!= word2[i-1];
3
 4
                    mat[i][j] = min(
5
6
                        mat[i - 1][j] + 1,
7
                        mat[i][j-1]+1,
                        mat[i - 1][j - 1] + cost);
8
9
               }
           }
10
      }
11
12
       if (verbose)
13
14
           Matrix::Print(mat, word1, word2);
15
       int res = mat[len2][len1];
16
       Matrix :: Free(mat, len2 + 1);
17
18
19
       return res;
20| \}
```

Листинг 3.4 – Матричный алгоритм поиска расстояния

Дамерау — Левенштейна (часть 1)

```
1 int DamLevNonRec(const std::wstring &word1, const std::wstring
     &word2, bool verbose)
2 {
3
      int len1 = word1.length();
      int len2 = word2.length();
4
5
      int **mat = Matrix :: Allocate(len2 + 1, len1 + 1);
6
7
      if (!mat)
8
           return -1;
9
10
      mat[0][0] = 0;
      for (int i = 0; i \le len2; ++i)
11
12
```

Листинг 3.5 – Матричный алгоритм поиска расстояния

Дамерау — Левенштейна (часть 2)

```
for (int j = 0; j \le len1; ++j)
2
           {
               if (i == 0)
3
 4
               {
5
                   mat[i][j] = j;
6
7
               else if (j == 0)
8
               {
9
                    mat[i][j] = i;
10
               }
               else
11
12
               {
                    int cost = word1[j-1]!= word2[i-1];
13
14
                   mat[i][j] = min(
15
                        mat[i - 1][j] + 1,
16
                        mat[i][j-1] + 1,
17
                        mat[i - 1][j - 1] + cost);
18
19
                    if (word1[j-2] = word2[i-1] \&\& word1[j-
20
                       1] = word2[i - 2])
                    {
21
22
                        mat[i][j] = std::min(
                            mat[i][j],
23
                            mat[i - 2][j - 2] + 1);
24
25
                    }
               }
26
           }
27
      }
28
29
       if (verbose)
30
31
           Matrix::Print(mat, word1, word2);
32
33
       int res = mat[len2][len1];
       Matrix::Free(mat, len2 + 1);
34
35
36
       return res;
37|}
```

Листинг 3.6 – Рекурсивный алгоритм поиска расстояния

Дамерау — Левенштейна

```
1 int DamLevRec(const std::wstring &word1, const std::wstring
     &word2, int ind1, int ind2)
  {
2
3
      if (ind1 == 0)
           return ind2;
       if (ind2 == 0)
6
           return ind1;
8
      int cost = word1[j-1] != word2[i-1];
9
      int res = min(
10
11
           DamLevRec(word1, word2, ind1, ind2 -1) + 1,
12
           DamLevRec(word1, word2, ind1 - 1, ind2) + 1,
           DamLevRec(word1, word2, ind1 -1, ind2 -1) + cost);
13
14
       if (ind1 > 1 \&\& ind2 > 1 \&\& word1[ind1 - 1] == word2[ind2 -
15
         2] \&\& word1[ind1 - 2] = word2[ind2 - 1])
           res = std :: min(res, DamLevRec(word1, word2, ind1 - 2,
16
              ind2 - 2) + 1);
17
18
      return res;
19 }
```

Листинг 3.7 – Рекурсивный алгоритм поиска расстояния

Дамерау — Левенштейна с кэшированием (реализация) (часть 1)

```
1 static int DamLevRecCacheImpl(const std::wstring &word1, const
     std::wstring &word2, int ind1, int ind2, int **memo)
  {
2
3
      if (ind1 == 0)
           return ind2;
4
5
6
      if (ind2 == 0)
7
           return ind1;
8
9
      if (memo[ind2][ind1] != -1)
           return memo[ind2][ind1];
10
11
12
      int cost = word1[j - 1] != word2[i - 1];
```

Листинг 3.8 – Рекурсивный алгоритм поиска расстояния

Дамерау — Левенштейна с кэшированием (реализация) (часть 2)

```
int res = min(
2
           DamLevRecCacheImpl(word1, word2, ind1, ind2 - 1, memo)
             + 1,
           DamLevRecCacheImpl(word1, word2, ind1 - 1, ind2, memo)
3
           DamLevRecCacheImpl(word1, word2, ind1 - 1, ind2 - 1,
4
             memo) + cost
5
      );
      if (ind1 > 1 \&\& ind2 > 1 \&\& word1[ind1 - 1] == word2[ind2 -
7
         2] && word1[ind1 - 2] = word2[ind2 - 1])
8
           res = std::min(res, DamLevRecCacheImpl(word1, word2,
             ind1 - 2, ind2 - 2, memo) + 1;
9
10
      memo[ind2][ind1] = res;
11
      return res:
12|}
```

Листинг 3.9 – Рекурсивный алгоритм поиска расстояния

Дамерау — Левенштейна с кэшированием (оберточная функция)

```
1 int DamLevRecCache(const std::wstring &word1, const
     std::wstring &word2)
2 {
       int len1 = word1.length();
3
       int len2 = word2.length();
 4
6
       int **memo = Matrix:: Allocate(len2 + 1, len1 + 1, -1);
7
       if (!memo)
8
           return -1;
9
10
       int res = DamLevRecCacheImpl(word1, word2, len1, len2,
         memo);
11
12
       Matrix :: Free (memo, len2 + 1);
13
       return res;
14 }
```

3.4 Функциональные тесты

Таблица 3.1 – Функциональные тесты

Входные данные		Расстояние и алгоритм				
		Левенштейна Дамерау — Л			– Левенштейна	
Строка 1	Строка 2	Итеративный	Итеративный	Рекурсивный		
				Без кэша	С кэшем	
a	b	1	1	1	1	
r	r	0	0	0	0	
сердце	солнце	3	3	3	3	
стол	стул	1	1	1	1	
КОТ	ток	2	2	2	2	
KTO	КОТ	2	1	1	1	
Вениамин	Венгрия	4	4	4	4	
СТОЛ	столы	1	1	1	1	

Вывод

Были реализованы алгоритмы Левенштейна (итеративно) и Дамерау — Левенштейна (итеративно, рекурсивно, рекурсивно с кэшированием). Проведено тестирование реализованных алгортимов.

4 Исследовательская часть

4.1 Технические характеристики

Технические характеристики устройства, на котором выполнялись замеры по времени:

- Процессор: Intel i5-1035G1 (8) @ 3.600 Гц.
- Оперативная память: 16 ГБайт.
- Операционная система: Manjaro Linux x86_64 (версия ядра Linux 5.15.131-1-MANJARO).

Во время проведения измерений времени ноутбук был подключен к сети электропитания и был нагружен только системными приложениями.

4.2 Демонстрация работы программы

На рисунке 4.1 показан пример работы разработанной программы для случая, когда пользователь выбирает действие «Запуск алгоритмов поиска расстояния Левенштейна» и вводит строки «кошка» и «броненосец».

```
Меню
1. Запуск алгоритмов поиска расстояния Левенштейна:
  1) Нерекурсивный Левенштейна.
  2) Нерекурсивный Дамерау-Левенштейна.
  3) Рекурсивный Дамерау-Левенштейна без кэша.
  4) Рекурсивный Дамерау-Левенштейна с кэшем.
2. Замерить время для реализованных алгоритмов.
0. Выход
Выберите опцию (0-2): 1
Введите 1-е слово: кошка
Введите 2-е слово: броненосец
Выводить матрицы для итеративных реализаций? [y/N]:
Минимальное кол-во операций:
  1) Нерекурсивный Левенштейна:
  2) Нерекурсивный Дамерау-Левенштейна:
  3) Рекурсивный Дамерау-Левенштейна без кэша:
  4) Рекурсивный Дамерау-Левенштейна с кэшем:
                Меню
1. Запуск алгоритмов поиска расстояния Левенштейна:
  1) Нерекурсивный Левенштейна.
  2) Нерекурсивный Дамерау-Левенштейна.
  3) Рекурсивный Дамерау-Левенштейна без кэша.
  4) Рекурсивный Дамерау-Левенштейна с кэшем.
2. Замерить время для реализованных алгоритмов.
0. Выход
Выберите опцию (0-2):
```

Рисунок 4.1 – Демонстрация работы программы

4.3 Временные характеристики

Исследование временных характеристик реализованных алгоритмов производилось на строках длинами:

- -1-10 с шагом 1 для всех реализаций;
- 10 200 с шагом 25 только для нерекурсивных реализаций.

В силу того, что время работы алгоритмов может колебаться в связи с различными процессами, происходящими в системе, для обеспечения более

точных результатов измерения для каждого алгоритма повторялись 500 раз, а затем бралось их среднее арифметическое значение.

На рисунке 4.2 показаны зависимости времени выполнения матричных реализаций алгоритмов Левенштейна и Дамерау — Левенштейна от длин входящих строк.

На рисунке 4.3 показаны зависимости времени выполнения рекурсивных реализаций алгоритмов Левенштейна и Дамерау — Левенштейна от длин входящих строк.

На рисунке 4.4 показаны зависимости времени выполнения рекурсивных реализаций алгоритма Дамерау — Левенштейна от длин входящих строк.

Рисунок 4.2 — Результат измерений времени работы нерекурсивных реализаций алгоритмов поиска расстояний Левенштейна и Дамерау — Левенштейна

Рисунок 4.3 — Результат измерений времени работы рекурсивных реализаций алгоритма поиска расстояния Дамерау — Левенштейна

Рисунок 4.4 — Результат измерений времени работы реализаций алгоритмов поиска расстояния Дамерау — Левенштейна

4.4 Характеристики по памяти

Введем следующие обозначения:

- -m длина строки S_1 ;
- n длина строки S_2 ;
- $\operatorname{size}(v)$ функция, вычисляющая размер входного параметра v в байтах;
- $-\ char$ тип данных, используемый для хранения символа строки;
- -int целочисленный тип данных.

Теоретически оценим объем используемой памяти итеративной реализацией алгоритма поиска расстояния Левенштейна:

$$M_{LevIter} = (m+1) \cdot (n+1) \cdot \operatorname{size}(int) + (m+n) \cdot \operatorname{size}(char) + + \operatorname{size}(int * *) + (m+1) \cdot \operatorname{size}(int *) + + 3 \cdot \operatorname{size}(int) + 2 \cdot \operatorname{size}(int) \quad (4.1)$$

где $(m+1) \cdot (n+1) \cdot \mathrm{size}(int)$ — размер матрицы,

size(int**) — размер указателя на матрицу,

 $(m+1) \cdot \text{size}(int*)$ — размер указателей на строки матрицы,

 $(m+n) \cdot \text{size}(char)$ — размер двух входных строк,

 $2 \cdot \text{size}(int)$ — размер переменных, хранящих длину строк,

 $3 \cdot \text{size}(int)$ — размер дополнительных переменных.

Для алгоритма поиска расстояния Дамерау— Левенштейна теоретическая оценка объема используемой памяти идентична.

Произведем оценку затрат по памяти для рекурсивных реализаций алгоритма нахождения расстояния Дамерау — Левенштейна.

Сперва рассчитаем объем памяти, используемой каждым вызовом функции поиска расстояния Дамерау — Левенштейна:

$$M_{call} = (m+n) \cdot \text{size}(char) + 2 \cdot \text{size}(int) + 3 \cdot \text{size}(int) + 8$$
 (4.2)

где $(m+n)\cdot \mathrm{size}(char)$ — объем памяти, используемый для хранения двух строк,

 $2 \cdot \mathrm{size}(int)$ — размер двух входных строк,

 $3 \cdot \text{size}(int)$ — размер дополнительных переменных,

8 байт — адрес возврата.

Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящих строк, поэтому максимальный расход памяти равен

$$M_{DLRec} = (m+n) \cdot M_{call} \tag{4.3}$$

где m+n — максимальная глубина стека вызовов,

 M_{call} — затраты по памяти для одного рекурсивного вызова.

Рекурсивная реализация алгоритма поиска расстояния Дамерау —

Левенштейна с кэшированием для хранения промежуточных значений использует матрицу (кэш), размер которой можно рассчитать следующим образом:

$$M_{cache} = (n+1) \cdot (m+1) \cdot \text{size}(int) + + \text{size}(int **) + (m+1) \cdot \text{size}(int*)$$
(4.4)

где $(n+1)\cdot (m+1)$ — количество элементов в кэше, $\mathrm{size}(int**)$ — размер указателя на матрицу, $(m+1)\cdot \mathrm{size}(int*)$ — размер указателя на строки матрицы.

Таким образом, затраты по памяти для рекурсивного алгоритма нахождения расстояния Дамерау — Левенштейна с использованием кэша:

$$M_{DLRecCache} = M_{DLRec} + M_{cache} (4.5)$$

4.5 Вывод

В результате исследования реализуемых алгоритмов по времени выполнения можно сделать следующие выводы:

- 1) При небольших длинах строк (длина < 5 симв.) разница между временем выполнения нерекурсивных реализаций алгоритмов Левенштейна и Дамерау Левенштейна незначительна. Однако, при увеличении длины обрабатываемых строк алгоритм поиска расстояния Дамерау Левенштейна выполняется на порядок дольше, что связано с обработкой дополнительного условия о перестановке символов (см. рис. 4.2).
- 2) Рекурсивная реализация алгоритма поиска расстояния Дамерау Левенштейна с использованием кэша работает на порядок быстрее реализации поиска этого расстояния без кэширования (см. рис. 4.3).
- 3) Время работы матричной и рекурсивной с кэшем реализаций алгоритма поиска расстояния Дамерау Левенштейна приблизительно

равны и выполняются на порядок быстрее в сравнении с рекурсивной реализацией поиска этого расстояния без кэширования (см. рис. 4.4).

В результате исследования алгоритмов по затрачиваемой памяти можно сделать вывод о том, что итеративные алгоритмы и рекурсивный алгоритм с кэшированием требуют больше памяти по сравнению с рекурсивным без оптимизаций. В реализациях, использующих матрицу, максимальный размер используемой памяти увеличивается пропорционально произведению длин строк, в то время как у рекурсивного алгоритма без кэширования объем затрачиваемой памяти увеличивается пропорционально сумме длин строк.

Заключение

В результате выполнения лаботарторной работы по исследованию алгоритмов поиска расстояния Левенштейна и Дамерау — Левенштейна были решены следующие задачи:

- 1) Описаны алгоритмы поиска расстояний Левенштейна и Дамерау Левенштейна;
- 2) Разработаны и реализованы соответствующие алгоритмы;
- 3) Создан программный продукт, позволяющий протестировать реализованные алгоритмы;
- 4) Проведен сравнительный анализ процессорного времени выполнения реализованных алгоритмов.
 - При небольших длинах строк (длина < 5 симв.) разница между временем выполнения нерекурсивных реализаций алгоритмов Левенштейна и Дамерау Левенштейна незначительна. При увеличении длин строк время работы матричного алгоритма поиска расстояния Дамерау Левенштейна становится больше, в связи с обработкой условия о перестановке символов.
 - Рекурсивный алгоритм поиска расстояния Дамерау Левенштейна выполняется на порядок дольше, чем тот же алгоритм, использующий кэширование.
 - Время работы матричного и рекурсивного с кэшированием алгоритмов поиска расстояния Дамерау Левенштейна приблизительно равно.
- 5) Выполнена теоретическая оценка объема затрачиваемой памяти каждым из реализованных алгоритмов: нерекурсивные алгоритмы и рекурсивный алгоритм с кэшированием, требуют больше памяти по сравнению с рекурсивным, не использующим кэширование, так как максимальный размер использования памяти у матричных реализаций увеличивается пропорционально произведений длин входящих строк, а у рекурсивных пропорционально их сумме.

Список использованных источников

- 1 А. Погорелов Д., М. Таразанов А. Сравнительный анализ алгоритмов редакционного расстояния Левенштейна и Дамерау-Левенштейна // Синергия Наук. 2019. URL: https://elibrary.ru/item.asp?id=36907767 (дата обращения 10.10.2023).
- 2 В. Траулько М. Программная реализация нечеткого поиска текстовой информации в словаер с помощью расстояния Левенштейна // Форум молодых ученых. 2017. URL: https://cyberleninka.ru/article/n/programmnaya-realizatsiya-nechetkogo-poiska-tekstovoy-informatsii-v-slovare-s-pomoschyu-rasstoyaniya-levenshteyna. (дата обращения 14.10.2023).
- 3 Документация по Microsoft C++ [Электронный ресурс]. Режим доступа: https://learn.microsoft.com/ru-ru/cpp/?view=msvc-170&viewFallbackFrom=vs-2017 (дата обращения: 25.09.2023).