CHANGE OF VARIABLES FORMULAS

Double integrals:

$$\iint\limits_{D} f\,dA = \iint\limits_{D} f(x,y)dx\,dy = \iint\limits_{D^*} f(x(u,v),y(u,v)) \left|\frac{\partial(x,y)}{\partial(u,v)}\right| du\,dv = \iint\limits_{D^*} f(u,v)dA^*$$

Area elements:

Cartesian coordinates: dA = dx dy

Linear transformation

x = au + bv, y = cu + dv: dA = |ad - bc|du dv

Polar coordinates: $dA = r dr d\theta$

General case: $dA = \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$

Triple integrals:

$$\iiint\limits_W f \, dV = \iiint\limits_W f(x,y,z) dx \, dy \, dz =$$

$$\iiint\limits_{W,v} f(x(u,v,w),y(u,v,w),z(u,v,w)) \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| du \, dv \, dw = \iiint\limits_{W,v} f(u,v,w) dV^*$$

Volume elements:

Cartesian coordinates: dV = dx dy dz

Cylindrical coordinates: $dV = r dr d\theta dz$

Spherical coordinates: $dV = \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$

General case: $dV = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du \, dv \, dw$