

Comparison of Lower Tropospheric Water Vapor Vertical Distribution Measured with Raman lidar and DIAL and Their Impact of Data Assimilation in Numerical Weather Prediction Model

<u>Tetsu Sakai</u>¹, Satoru Yoshida¹, Tomohiro Nagai¹, Yasutaka Ikuta¹, Yoshinori Shoji¹

¹Meteorological Research Institute (MRI), Japan Meteorological Agency

09: Atmospheric temperature, water vapor, wind, turbulence, and waves
29 June, 12:10UTC

Wednesday_09_P16

Motivation

To investigate the potential utility of <u>water vapor lidar for</u> mesoscale numerical weather prediction.

Instrumentation

Prototype Vaisala DIAL (Newsom et al., JTECH 2020) and MRI Raman lidar (modified from

Sakai et al., JTECH 2007)

	Vaisala-DIAL	MRI-RL
Transmitter:		
Laser wavelength	911 nm and 910.6 nm	355 nm
Pulse Energy	9 μJ/pulse	200 mJ/pulse
Repetition Rate	10 kHz	10 Hz
Receiver:		
Telescope Diameter	15 cm and 28 cm	40 cm

Comparison of Vaisala-DIAL, MRI-RL, and Radiosonde

- Measurement ranges were between near ground and 1.5 km for for Vaisala-DIAL and 0.1 km-1 km in day and >2.5 km in night for MRI-RL.
- The values obtained with Vaisala-DIAL were lower than those obtained with radiosonde below 1km and higher than that above 1 km.

 4/6

Assimilation of lidar data into numerical weather prediction model

Lidar data:

- Period: 3–12 September : 2020 (10 days)
- · Observation site: Tsukuba, Japan (36N, 140E)
- · Quality control: measurement uncertainty < 30% and water vapor mixing ratio value between 0–30 g/kg

Numerical prediction model and data assimilation method:

- · Japan Meteorological Agency Nonhydrostatic mesoscale model (JMA, 2019)
- · Four-dimensional variational data assimilation method (Ikuta et al., JMSJ 2021)

The 30th International Laser Radar Conference (ILRC) virtual conference, June 26th - July 1st, 2022.

Result of data assimilation for Vaisala-DIAL and MRI-RL measurement

- Prediction assimilating MRI-RL data is slightly better than that assimilating Vaisala-DIAL data.
- Plausible reason for that is the smaller bias and RMSD of MRI-RL data than Vaisala-DIAL data.