Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Ayudantía 11

MAT1106 — Introducción al Cálculo Fecha: 2020-10-05

Problema 1:

Sean x_n e y_n dos sucesiones tales que $x_n \leq y_n$ para todo $n \in \mathbb{N}$. Demuestre que si x_n no es acotada entonces y_n no es acotada.

Solución problema 1:

Problema 2:

Demuestre que para todo par de números reales x, y distintos existe un racional z tal que x < z < y. Hint: Usar propiedad arquimediana y parte entera.

Solución problema 2:

Problema 3:

Demuestre que la sucesión

$$x_n = \sum_{k=1}^n \frac{1}{n}$$

cumple que $x_{2^n} \ge \frac{n+1}{2}$ para todo $n \in \mathbb{N}$.

Solución problema 3:

_

Problema 4:

Demuestre que todo sucesión creciente y no acotada x_n cumple que su límite existe y lím $_{n\to\infty}\,x_n=\infty.$

Solución problema 4:

Problema 5:

Sea x_n una sucesión se denota s_n a la sucesión de las sumas parciales:

$$s_n = \sum_{k \le n} x_k$$

Demuestre que si todos los términos de x_n son positivos, entonces s_n es creciente. Demuestre también que si para todo $n \in \mathbb{N}$ se tiene que $x_n > \varepsilon$ para algún $\varepsilon > 0$, entonces $\lim_{n \to \infty} s_n = \infty$.

Solución problema 5: