Lycée Buffon	DM 15
MPSI	Année 2020-2021

devoir à rendre

Problème 1:

On considère une urne contenant N_1 boules blanches et N_2 boules noires indiscernables au toucher.

On pose $N = N_1 + N_2$.

On répète l'expérience suivante : on tire au hasard une boule dans l'urne et l'on replace dedans deux boules de la couleur obtenue.

À l'issue de la première expérience, l'urne contient donc N+1 boules et l'on note X_1 la variable aléatoire égale au nombre de boules blanches présentes dans l'urne. À l'issue de la deuxième expérience, l'urne contient donc N+2 boules et l'on note X_2 la variable aléatoire égale au nombre de boules blanches présentes dans l'urne.

Plus généralement, pour tout entier naturel k non nul, on note X_k la variable aléatoire égale au nombre de boules blanches présentes dans l'urne à l'issue de la k-ième expérience.

Pour tout k non nul, on note B_k l'évènement "la boule tirée lors de la k-ième expérience est blanche".

I. Étude d'un cas particulier :

On suppose ici que $N_1 = N_2 = 1$

- 1. Déterminer la loi de X_1 .
- 2. Déterminer la loi de X_2 .
- 3. Soit $n \in \mathbb{N}^*$. Prouver que X_n suit une loi uniforme sur [1, n+1]. On pourra faire une récurrence et utiliser le système complet $((X_n = k))_{1 \le k \le n+1}$ pour déterminer la loi de X_{n+1} .
- 4. Soit $n \in \mathbb{N}^*$. Déterminer la probabilité de B_{n+1} . On pourra utiliser la question précédente et la formule des probabilités totales
- 5. Pour tout entier n non nul, on considère la variable aléatoire $Y_n = \frac{X_n 1}{n}$.
 - (a) Soit $n \in \mathbb{N}^*$. Donner la loi de Y_n .
 - (b) Soit $x \in [0, 1]$.

Prouver que, pour tout entier n, on a $P(Y_n \le x) = \frac{1}{n+1} \lfloor nx+1 \rfloor$, où l'on note $\lfloor . \rfloor$ la partie entière.

(c) Pour tout réel x, déterminer $\lim_{n \to +\infty} P(Y_n \le x)$.

III. Retour au cas général:

- 1. Déterminer la probabilité des évènements B_1 et B_2 .
- 2. Soit $n \in \mathbb{N} \setminus \{0, 1\}$.

(a) Montrer que
$$\sum_{k=N_1}^{N_1+n-1} k P(X_{n-1}=k) = (N+n-1)P(B_n).$$

- (b) Soit $k \in [N_1, N_1 + n 1]$. Déterminez la probabilité de B_{n+1} sachant $B_n \cap (X_{n-1} = k)$ puis la probabilité de B_{n+1} sachant $\overline{B_n} \cap (X_{n-1} = k)$
- (c) En déduire que $P(B_{n+1}) = P(B_n)$.
- 3. Soit $n \in \mathbb{N}^*$. Déduire de la question précédente la probabilité de B_n et l'espérance de X_n .

Problème 2:

On se propose d'étudier le modèle de diffusion d'Ehrenfest.

On considère deux urnes U_1 et U_2 contenant à elles deux N boules avec $N \in \mathbb{N}^*$.

À chaque étape, on choisit de façon équiprobable un entier entre 1 et N. Si ce nombre est inférieur ou égal au nombre de boules contenues dans l'urne U_1 , alors on met une boule de l'urne U_1 dans l'urne U_2 ; sinon, on met une boule de l'urne U_2 dans l'urne U_1 .

Pour tout $n \in \mathbb{N}$, on note X_n la variable aléatoire égale au nombre de boules présentes dans l'urne U_1 à l'étape n. La variable aléatoire X_0 est donc égale au nombre de boules initialement présentes dans l'urne U_1 , la variable aléatoire X_1 est égale au nombre de boules présentes dans l'urne U_1 après un échange, ...

Par exemple, si l'urne U_1 contient initialement 3 boules et l'urne U_2 en contient 2, alors N=5 et $X_0=3$.

On choisit alors un entier de façon équiprobable entre 1 et 5. S'il est égal à 2, alors on met une boule de l'urne U_1 dans l'urne U_2 et l'on a $X_1=2$. On choisit alors de nouveau un entier de façon équiprobable entre 1 et 5. S'il est égal à 3, alors on met une boule de l'urne U_2 dans l'urne U_1 et l'on a $X_2=3$. On choisit alors de nouveau un entier de façon équiprobable entre 1 et 5. À l'issue de l'échange, on aura $X_3=2$ avec une probabilité de 3/5 et $X_3=4$ avec une probabilité de 2/5.

Pour tout
$$n \in \mathbb{N}$$
, on note $Y_n = \begin{pmatrix} P(X_n = 0) \\ P(X_n = 1) \\ \vdots \\ P(X_n = N) \end{pmatrix}$. On a donc :

$$\forall k \in [0, N], \quad Y_{n,k} = P(X_n = k).$$

I. Matrice de transition

- 1. On suppose que N=2.
 - (a) Prouver que, pour tout $n \in \mathbb{N}$, on a : $Y_{n+1} = A_2Y_n$ avec $A_2 = \begin{pmatrix} 0 & 1/2 & 0 \\ 1 & 0 & 1 \\ 0 & 1/2 & 0 \end{pmatrix}$.

Une récurrence n'est pas nécessaire

(b) La matrice A_2 est-elle semblable à une matrice diagonale?

Dans toute la suite $N \in \mathbb{N}^*$ est fixé.

2. On considère la matrice de $\mathcal{M}_{N+1}(\mathbb{R})$:

$$A = \begin{pmatrix} 0 & 1/N & 0 & \cdots & \cdots & 0 \\ 1 & 0 & 2/N & \ddots & & & \vdots \\ 0 & (N-1)/N & \ddots & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & \ddots & (N-1)/N & 0 \\ \vdots & & & \ddots & 2/N & 0 & 1 \\ 0 & & \cdots & \cdots & 1/N & 0 \end{pmatrix}$$

Prouver que : $\forall n \in \mathbb{N}, Y_{n+1} = AY_n$. Une récurrence n'est pas nécessaire

- 3. On note tA la matrice transposée de A. Déterminer lorsque N=2 et N=3, le noyau de ${}^tA-I_{N+1}$.
- 4. Prouver que, dans le cas général, le noyau de ${}^tA I_{N+1}$ n'est pas réduit à $\{0\}$.
- 5. En déduire que le noyau de $A I_{N+1}$ n'est pas réduit à $\{0\}$.

II. Détermination de l'espérance de la variable aléatoire X_n

Dans la suite, $n \in \mathbb{N}$ est fixé.

1. Quelles sont les valeurs que peut prendre la variable aléatoire $X_{n+1} - X_n$?

- 2. En déduire que $E(X_{n+1} X_n) = 1 \frac{2}{N}E(X_n)$.

 On pourra utiliser le système complet (" $X_n = k$ ")_{0<k<N}
- 3. En déduire l'expression de $E(X_n)$ en fonction de n et de $E(X_0)$.
- 4. On suppose N > 2. Déterminer la limite de $E(X_n)$ lorsque n tend vers $+\infty$ et en donner une interprétation.

III. Étude de la probabilité stationnaire

On s'intéresse dans cette question au noyau de $A - I_{N+1}$ que l'on notera E_1 .

1. Soit
$$X = \begin{pmatrix} x_0 \\ \vdots \\ x_N \end{pmatrix} \in E_1$$
.

Prouver que pour tout $k \in [0, N]$, $x_k = \binom{N}{k} x_0$.

- 2. En déduire la dimension de E_1 .
- 3. Calculer la somme $S = \sum_{k=0}^{N} {N \choose k}$.

On donnera son expression.

- 4. Prouver qu'il existe un unique vecteur $\pi = \begin{pmatrix} \pi_0 \\ \vdots \\ \pi_N \end{pmatrix} \in E_1$ tel que $\sum_{k=0}^N \pi_k = 1$.
- 5. On considère la variable aléatoire X_{∞} telle que :

$$X_{\infty}(\Omega) = \llbracket 0, N \rrbracket$$
 et $\forall k \in \llbracket 0, N \rrbracket$, $P(X_{\infty} = k) = \pi_k$.

Quelle est la loi suivie par X_{∞} ? Donner son espérance et sa variance.

6. On suppose que X_0 suit la même loi que X_{∞} . Déterminer la loi de X_n pour tout entier n et donner une interprétation.