Algorithmic Game Theory

LECTURE 3

RITWIZ KAMAL | IIEST, SHIBPUR 12/23/2019

Main points covered:

- Single-Parameter Environments
- Allocation and Payment Rules
- Some Useful Definitions
- Myerson's Lemma
- Proof of Myerson's Lemma
- Applying the payment formula

RITWIZ KAMAL | IIEST, SHIBPUR 12/23/2019 2

Single-Parameter Environments

(1/2)

- A generalization of the mechanism design problems introduced in Lecture 2
- Setup:
 - 'n' agents (bidders)
 - ► Each agent *i* has a private valuation v_i, her value "per unit of stuff" that she requires
 - ► There's a feasible set X

Each element of X is a non-negative n-vector $(x_1, x_2, ..., x_n)$ where x_i denotes the "amount of stuff" given to agent i

AUCTION	MECHANISM
bidder	agent
bid	report
valuation	valuation

Single-Parameter Environments

(2/2)

Some Examples to make things clear →

- ▶ Single-item auction → Here X is the set of 0-1 vectors that have at most one 1 i.e., $\sum_{i=1}^{n} x_i \le 1$
- ▶ k-Unit Auctions → There are k identical items and each bidder can get at most one. ∴ X is the set of 0-1 vectors such that $\sum_{i=1}^{n} x_i \le k$
- Sponsored search auctions \rightarrow Here, X is the set of n-vectors corresponding to the assignment of bidders to slots i.e., if bidder i is assigned to slot j then x_i is equal to α_i (CTR of slot j)

Allocation and Payment Rules

RECAP: In a sealed-bid auction, we need to make two decisions viz. 1)who wins and 2) who pays what

- ▶ We can formalize these as *allocation* and *payment rules* in 3 steps:
 - Collect bids $b = (b_1, b_2, ..., b_n) \mid b = bid vector / bid profile ·$

Direct-revelation mechanism (agents directly reveal their private valuations)

- ▶ [allocation rule] Choose a feasible allocation $x(b) \in X \subseteq \mathbb{R}^n$ as a function of the bids
- ▶ [payment rule] Choose payments $p(b) \in \mathbb{R}^n$ as a function of the bids

Our new quasilinear utility model \rightarrow Agent i receives utility $u_i(b) = v_i \cdot x_i(b) - p_i(b)$ when the bid profile is b.

Note: We must have

- 1. $p_i(b) \ge 0$ [so that seller does not have to pay to the agents]
- 2. $p_i(b) \le b_i \cdot x_i(b)$ [so that a truthful agent has non-negative utility] Therefore, $p_i(b) \in [0, b_i \cdot x_i(b)]$

Some Useful Definitions

(1/2)

Implementable Allocation Rule:

An allocation rule x for a single-parameter environment is "implementable" if there is a payment rule p such that the direct-revelation mechanism (x,p) is DSIC.

Example →

- In a single-item auction, we award the item to the highest bidder.
- Is this allocation rule implementable?

YES!

The second-price payment rule is the answer as it renders the mechanism DSIC

☐ An Observation:

If we had wanted an allocation rule that awarded the item to 2nd highest bidder, then we cannot call it implementable!

There is no payment rule possible for such an allocation!

Some Useful Definitions

(2/2)

Monotone Allocation Rule:

An allocation rule x for a single-parameter environment is monotone if for every agent i and bids b_{ij} by the other agents, the allocation $x_{ij}(z,b_{ij})$ is non-decreasing in her bid z.

In simple words, in a monotone allocation rule, bidding higher can only get you more stuff

Examples →

- In a single-item auction, allocating the item to highest bidder is "monotone"
 - ▶ If the winner(highest bidder) keeps raising her bid, she still remains winner!
- In single-item auction, allocating the item to 2nd highest bidder is "non-monotone"
 - ▶ If the winner(2nd highest bidder) raises her bid significantly, she may lose!
- The welfare maximizing allocation rule for sponsored search auctions where ith highest bidder gets the ith highest slot is "monotone"
 - On raising her bid, the bidder's position can only increase!

Myerson's Lemma

Fix a single-parameter environment:

- a) An allocation rule x is implementable if and only if it is monotone
- b) If x is monotone, then there is a unique payment rule for which the direct-revelation mechanism (x,p) is DSIC and $p_i(b) = 0$ whenever $b_i = 0$
- c) The payment rule in (b) is given by an explicit formula

$$p_i(b_i, \mathbf{b}_{-i}) = \sum_{j=1}^{l} z_j \cdot [jump \ in \ x_i(\cdot, b_{-i}) \ at \ z_j]$$

where, z_1 , z_2 ,..., z_l are the breakpoints of the allocation function $x_i(\cdot, b_{-i})$ in the range $[0, b_i]$

Prof. Roger Myerson University of Chicago

Proof of Myerson's Lemma

(1/3)

Let us fix a single-parameter environment and consider \mathbf{x} to be an allocation rule that may or may not be monotone.

To show: There exists a payment rule \mathbf{p} such that the mechanism (\mathbf{x},\mathbf{p}) is DSIC

We will use shorthand x(z) for $x_i(z,b_{-i})$ and p(z) for $p_i(z,b_{-i})$ when agent i bids 'z' Now,

Suppose (x,p) is DSIC and consider any $0 \le y \le z$

Case 1: Agent i has private valuation z and submits false bid y. Then,

$$z.x(z) - p(z) \ge z.x(y) - p(y)$$
 ...(1)
Utility of bidding z Utility of bidding y

Case 2: Agent i has private valuation y and submits false bid z. Then,

$$y.x(y) - p(y) \ge y.x(z) - p(z)$$
 ...(2)
Utility of bidding y Utility of bidding z

Two examples of possible allocation curves

Proof of Myerson's Lemma

(2/3)

Rearranging (1) and (2) we get a "payment difference sandwich"

$$z.[x(y) - x(z)] \le p(y) - p(z) \le y.[x(y) - x(z)]$$
 ...(3)

The payment difference sandwich already implies that every implementable allocation rule is monotone

 \rightarrow We can say x is monotone!

Next,

We consider x to be piece-wise constant [Fig.(b)]-

We fix z and let y tend to z from above $(y \downarrow z)$

- 0 if there is no jump in x at z
- ▶ Tending to z.h if there is a jump of magnitude h at z
- Therefore, [jump in p at z] = z.[jump in x at z] ...(4)
- ▶ Combining (4) with the initial condition p(0)=0, we get the required payment formula!

Proof of Myerson's Lemma

(3/3)

Thus we have derived the payment formula for a piece-wise constant function

$$p_i(b_i, \mathbf{b}_{-i}) = \sum_{j=1}^{l} z_j \cdot [jump \ in \ x_i(\cdot, b_{-i}) \ at \ z_j]$$

Where, z_1 , z_2 ,..., z_l are the breakpoints of the allocation function $x_i(\cdot, b_{-i})$ in the range $[0, b_i]$

NOTE: The payment formula can be generalized to a case where x is not piece-wise constant. The formula would then take a form as follows:

$$p_i(b_i, \boldsymbol{b}_{-i}) = \int_0^{b_i} z \cdot \frac{d}{dz} x_i(z, b_{-i}) dz$$

for every agent i, bid b_i and bids b_{-i} by other agents.

Applying the Payment Formula

(1/2)

- Single-item Auctions →
- Allocation Rule allocates item to the highest bidder
- Fixing a bidder i and bids b_{-i} by other agents, the function $x_i(z, b_{-i})$ is 0 upto $B=\max_{j!=i} b_j$ and 1 thereafter
- Therefore, it is piece-wise constant!
- We can apply the payment formula
 - If $b_i < B$, payment = 0
 - If b_i > B, there is a single breakpoint (jump of 1 at B), payment = B

Thus, Myerson's Lemma regenerates the second-price payment rule as a special case!

Applying the Payment Formula (2/

- ▶ Sponsored Search Auctions →
- There are k slots with CTRs $\alpha_1 \ge \alpha_2 \ge ... \ge \alpha_k$
- Allocation rule assigns jth highest bidder to jth best slot
- The rule is monotone and welfare-maximizing (assuming truthful bids)
- We can apply Myerson's payment formula
 - Re-index bids in the bid profile b as $b_1 \ge b_2 \ge ... \ge b_n$ first
 - Considering only first bidder, we can imagine bidder raising her bid from 0 to \mathbf{b}_1 , holding other bids fixed
 - The allocation $x_i(z,b_{-i})$ ranges from 0 to α_1 as z ranges from 0 to b_1 , with a jump of $\alpha_j \alpha_{j+1}$ at the point where z becomes the j^{th} highest bid in the profile (z,b_{-i}) , namely b_{i+1} !
- Thus in general,

$$p_i(b) = \sum_{j=i}^k b_{j+1}(\alpha_j - \alpha_{j+1})$$
 for the ith highest bidder (where $\alpha_{k+1} = 0$)

References

Twenty Lectures on Algorithmic Game Theory by Tim Roughgarden, 2016, Cambridge University Press

https://www.youtube.com/playlist?list=PLEGCF-WLh2RJBqmxvZ0_ie-mleCFhi2N4

RITWIZ KAMAL | IIEST, SHIBPUR 12/23/2019 14

THANK YOU

RITWIZ KAMAL | IIEST, SHIBPUR 12/23/2019 15