

Information Retrieval

Efficient Matching

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

Search components

Search components

Query processing overview

Query processing overview

Document matching

Scan postings lists for all query terms

[aquarium fish]

Document matching

Scan postings lists for all query terms

[aquarium fish]

Score matching documents

$$\circ f(q,d) = \sum_{t \in q} f(t,d)$$

index access cost

- memory paging (I/O)
- in-memory processing (CPU)

scoring cost

decompression + scoring (CPU)

Index access cost

Inherent cost of matching documents to queries

- Query length (number of posting lists)
- Posting lists length (number of postings per list)

Traversal direction

TAAT: inverted lists processed in sequence

More memory efficient (sequential access)

DAAT: inverted lists processed in parallel

- Uses less memory (no accumulators)
- Handles complex queries (Boolean, proximity)
- De facto choice for modern search engines

Inverted lists processed in parallel

Inverted lists processed in parallel

```
2:3
                      3:4
                              8:4
В
                                      9:2
              5:2
                      5:3
                                     10:1
                                              11:7
                              6:7
            1:13
                                    5:5
                                            6:7
                                                    7:2
                     2:8
                                                            8:9
                                                                    9:2
                                                                            10:1
scores
                             3:4
```

Inverted lists processed in parallel

```
2:3
                      3:4
                              8:4
В
                                      9:2
              5:2
                      5:3
                              6:7
                                     10:1
                                             11:7
            1:13
                                    5:5
                                            6:7
                                                    7:2
                     2:8
                                                            8:9
                                                                           10:1
scores
                             3:4
```

Inverted lists processed in parallel

What if we only want the top k results?

Dynamic pruning

Dynamic pruning strategies aim to make scoring faster by only scoring a subset of the documents

- \circ Assume user is only interested in the top k results
- \circ Check if a document can make it to the top k
- Early terminate (or even skip) unviable documents

Effectiveness guarantees

Safe: exhaustive (i.e. no pruning) matching

Score safe: top k with correct scores

Rank safe: top k with correct order

Set safe: top *k* with correct documents

Unsafe: no correctness guarantees whatsoever

MaxScore [Turtle and Flood, IPM 1995]

In a multi-term query, not all terms are worth the same

- Some will be "essential" for scoring documents
- Others will be "non-essential" terms

Key idea

- Traverse "essential" terms first (in DAAT mode)
- Check "non-essential" terms only if promising

MaxScore (k = 2)

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

- top k = 2
- ?
- ?
- $\theta = 0$

- terms sorted by inc. max-score
- $^{\circ}$ pivot chosen as least term that cumulatively beats threshold heta
- terms at least as promising as the pivot deemed "essential"
 - others are "non-essential"

MaxScore (k = 2)

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" lists only if they are promising
- \circ update top k results and heta

$$top k = 2$$

$$\theta = 0$$

top k = 2

Each list has an upper bound (aka max-score)

 $\theta = 0$

 \circ Top k results have acceptance threshold heta

1:13

- process "essential" lists first
- process "non-essential" listsonly if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising
- \circ update top k results and heta

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

- process "essential" lists first
- process "non-essential" listsonly if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

$$top k = 2$$

1:13

2:8

 $\theta = 8$

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• A:
$$(2 + 3 + 4 = 9 > \theta)$$
 \checkmark

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising
 - A: $(2 + 3 + 4 = 9 > \theta)$ \checkmark
 - list miss on docid 5!

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising
 - A: $(7 + 4 = 11 > \theta)$ \checkmark
 - list miss on docid 6!

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• A:
$$(2 + 4 = 6 \le \theta) X$$

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• A:
$$(5 + 4 = 9 > \theta)$$
 \checkmark

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• B:
$$(1 + 9 = 10 > \theta)$$
 \checkmark

top k = 2

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

 $\theta = 9$

8:9

1:13

- process "essential" lists first
- process "non-essential" listsonly if they are promising
 - B: $(1 + 9 = 10 > \theta)$
 - list miss on docid 10!

top k = 2

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

 $\theta = 9$

8:9

1:13

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

process "essential" lists first

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

top k = 2 | 1:13 | 8:9 | $\theta = 9$

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• B:
$$(7 + 9 = 16 > \theta)$$
 \checkmark

Each list has an upper bound (aka max-score)

- process "essential" lists first
- process "non-essential" listsonly if they are promising

• B:
$$(7 + 9 = 16 > \theta)$$

$$top k = 2$$

$$\theta = 9$$

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

8:9

C 16 7 1:6 2:5 5:3 6:7 10:1 11:7

1:13

top k = 2

 $\theta = 9$

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta

top k = 2

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

 $\theta = 12$

11:12

1:13

- process "essential" lists first
- process "non-essential" lists
 only if they are promising
- \circ update top k results and heta
- \circ update pivot on heta changes

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

2 / 16 postings skipped≈ 12% savings

$$top $k = 2$$$

$$\theta = 12$$

MaxScore limitations

MaxScore relies on "non-essential" terms for skipping

- Naïve DAAT performed on "essential" terms
 It may take long for a term to become "non-essential"
- It may be a poor term (low max-score)
- It may get hard to make the heap (high threshold)

Hindered efficiency, particularly for long queries

WAND [Broder et al., CIKM 2003]

MaxScore fully evaluates "essential" lists

- Not all documents in "essential" lists are promising
 Key idea
- Evaluate documents (not lists) if they are promising (i.e. have a promising cumulative upper bound)

Each list has an upper bound (aka max-score)

- terms sorted by inc. docid
- $^{\circ}$ pivot chosen as least term that cumulatively beats threshold heta
- terms managed dynamically
 - lists synced to pivot document
 - terms re-sorted on every move

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- locate pivot term p
- evaluate pivot document if present in all lists up to p; else align lists up to p

$$top k = 2$$

$$\theta = 0$$

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

$$top k = 2$$

$$\theta = 0$$

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
 - list miss on docid 5!

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
 - list miss on docid 7!

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p
 - list miss on docid 10!

top k = 2

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

 $\theta = 9$

8:9

1:13

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

top k = 2 | 1:13 | 8:9 | $\theta = 9$

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

- locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

$$top k = 2$$

1:13

8:9

 $\theta = 9$

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

$$top k = 2$$

$$\theta = 9$$

Each list has an upper bound (aka max-score)

- \circ locate pivot term p
- \circ evaluate pivot document if present in all lists up to p; else align lists up to p

$$top k = 2$$

$$\theta = 9$$

Each list has an upper bound (aka max-score)

- B 12 5 1:4 5:2 7:2 8:5 9:2 11:5
 - top k = 2 | 1:13 | 11:12 | $\theta = 12$

- \circ locate pivot term p
- $^{\circ}$ evaluate pivot document if present in all lists up to p; else align lists up to p
- re-sort terms by docid

Each list has an upper bound (aka max-score)

 \circ Top k results have acceptance threshold heta

5 / 16 postings skipped≈ 31% savings

In-memory WAND [Fontoura et al., VLDB 2011]

Substantial reduction in processed postings

- Particularly efficient for long queries
- But latency only improved for disk-based indexes
- No memory paging for in-memory indexes!
- Pivot management offsets gains in skipping
- Solution: align all cursors before a new re-sort

Block-Max WAND [Ding and Suel, SIGIR 2011]

Block-Max WAND [Ding and Suel, SIGIR 2011]

Block-Max WAND [Ding and Suel, SIGIR 2011]

max-score of t: 17

- block max-score of b_1 : 17
- block max-score of b_2 : 16
- block max-score of b_3 : 11

mean absolute error: 6.7

Variable-sized blocks [Mallia et al., SIGIR 2017]

max-score of t: 17

- block max-score of b_1 : 12
- block max-score of b_2 : 17
- block max-score of b_3 : 11

mean absolute error: 6.2

Impact-sorted blocks [Ding and Suel, SIGIR 2011]

max-score of t: 17

- block max-score of b_1 : 17
- block max-score of b_2 : 11
- block max-score of b_3 : 4

mean absolute error: 2.7

Docid reassignment [Ding and Suel, SIGIR 2011]

max-score of t: 17

- block max-score of b_1 : 17
- block max-score of b_2 : 11
- block max-score of b_3 : 4

mean absolute error: 2.7

Impact-layered blocks [Ding and Suel, SIGIR 2011]

max-score of t: 17

- block max-score of b_1 : 17
- block max-score of b_2 : 11
- block max-score of b_3 : 4

mean absolute error: 2.7

Summary

Efficient matching for subsecond response times

- \circ Skip postings (or lists) that won't help make the top k Carefully play with upper bounds and thresholds
- Can be extended with blocks, layers, list orderings
 Can always trade-off safety for efficiency
- Anytime ranking for QoS [Lin and Trotman, ICTIR 2015]

References

Scalability Challenges in Web Search Engines, Ch. 4

Cambazoglu and Baeza-Yates, 2015

Efficient Query Processing Infrastructures

Tonellotto and Macdonald, SIGIR 2018

Efficient Query Processing for Scalable Web Search

Tonellotto et al., FnTIR 2018

References

Query evaluation: strategies and optimizations

Turtle and Flood, IP&M 1995

Efficient query eval. using a two-level retrieval process

Broder et al., CIKM 2003

Faster top-k document retr. using block-max indexes

Ding and Suel, SIGIR 2011

Coming next...

Vector Space Models

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br