

Blocking-Waived Estimation: Improving the Worst-Case End-To-End Delay Analysis in Switched Ethernet

49th IEEE Conference on Local Computer Networks (LCN)
Caen, France

Lijie Yang¹, Théo Docquier², <u>Ludovic Thomas</u>³, Ye-Qiong Song²

¹Carnegie Mellon University, USA

²Université de Lorraine & LORIA. France

³CNRS & LORIA, France

- 1 Introduction
- 2 Response-Time Analysis
- 3 Pessimism in Response-Time Analysis
- 4 Blocking-Waived Estimation
- 5 Comparison of the Approaches
- 6 Conclusion

Focus on Time-Sensitive Networks

Classic Ethernet Time-Sensitive Networks

Safety-critical applications

IEEE Time-Sensitive Networking (TSN)
IETF Deterministic Networking (DetNet)

^{- [}Bouillard, Boyer, Le Corronc 2018] Anne Bouillard, Marc Boyer, and Euriell Le Corronc [Oct. 2018]. Deterministic Network Calculus. https://doi.org/10.1002/9781119440284. John Wiley & Sons, Inc. DOI: 10.1002/9781119440284

Network calculus

■ Compositionnal performance Analysis

In our paper Reduce the pessimism of Response-time analysis

Presentation of Response-Time Analysis (RTA) in Switched Networks

Response-Time Analysis (RTA) in Switched Networks

$$I_i^k = \max_{m \in \mathsf{LP}_i} C_m + \sum_{j \in \mathsf{EP}_i \cup \mathsf{HP}_i} \left(\left\lfloor \frac{I_i^k}{T_j} \right\rfloor + 1 \right) C_j$$

Response-Time Analysis (RTA) in Switched Networks

1: **procedure** RTA_DELAYBOUNDATNODE(k, i) 2: $I_i^{k,0} \leftarrow 0$

7; ← 0
 repeat

4:
$$I_{i}^{k,n+1} \leftarrow \max_{m \in \mathsf{LP}_{i}} C_{m} + \sum_{j \in \mathsf{EP}_{i} \cup \mathsf{HP}_{j}} \left(\left\lfloor \frac{I_{i}^{k,n}}{T_{j}} \right\rfloor + 1 \right) C_{j}$$
5:
$$\mathsf{until} \ I_{i}^{k,n+1} = I_{i}^{k,n}$$

6: $w_i^k \leftarrow I_i^{k,n} + C_i$

7: return w_i^k

8: end procedure

VI.: Virtual Link

Response-Time Analysis (RTA) in Switched Networks

Algorithm RTA end-to-end delay bound of VL i1: procedure RTA_ENDTOENDDELAYBOUND(i) 2: $W_i \leftarrow 0$ 3: for hop k in path of VL i do 4: $w_i^k \leftarrow \text{RTA_DELAYBOUNDATNODE}(k, i)$ 5: $W_i \leftarrow W_i + w_i^k$ 6: end for

8: end procedure

Pessimism of Response-Time Analysis (RTA)

Source of pessimism

Does not capture the serialisation

Time

Algorithm RTA end-to-end delay bound of VL i

```
1: procedure RTA_ENDTOENDDELAYBOUND(i)
2: W_i \leftarrow 0
3: for hop k in path of VL i do
4: w_i^k \leftarrow RTA_DELAYBOUNDATNODE(k,i)
5: W_i \leftarrow W_i + w_i^k
6: end for
7: return W^i
8: end procedure
```

VL: Virtual Link

Blocking-Waived Estimation (BWE): Reduce the Pessimism of RTA

VI.: Virtual link

Blocking-Waived Estimation: Reduce the Pessimism of RTA

	Algorithm BWE blocking computation for VL	i
	1: procedure BWE_BLOCKING_ANALYSIS([w	$(\lambda_i^k]_{k \in [0,n]}$
	2: $\beta \leftarrow [\dots]_{k \in [1,n]} \qquad \triangleright \beta[k] =$	$=\sum_{m<}$
Almosithus DVVC and to and dalas has a defivile	3: $current_sum \leftarrow 0$	_
Algorithm BWE end-to-end delay bound of VL i	4: for $k \in [0, n]$ do	
1: procedure BWE_ENDTOENDDELAYBOUND(i)	5: $\mu_k \leftarrow w_i^k - C_i$	

5: 6:

Q٠

10.

13:

14.

15:

16:

- 1: **procedure** BWE_ENDToENDDELAYBOUND(i)
- 3:
 - for hop k in path of VL i do
 - $w_i^k \leftarrow \text{RTA_DELAYBOUND} \frac{\text{ATNODE}(k, i)}{k}$
 - end for
- - $W_i \leftarrow \text{BWE_BLOCKING_ANALYSIS}([w_i^k]_{k \in [0,n]})$
 - - - - 11: 12.

17: end procedure

else

end for

 $W_i \leftarrow C_i + \max(W_i, \beta[k])$

 $\beta[k] \leftarrow \mathsf{current_sum}$

end if

if k=0 then

 $W_i \leftarrow C_i + w_i^k$

 $current_sum = current_sum + \mu_k$

- end for

for $k \in [0, n]$ do

- return W_i

Yang, Docquier, Thomas, Song

return W^i

end procedure

VI · Virtual Link

6.

Comparison of the Approaches on an Industrial Use-Case

End-to-end delay bound per virtual link

VL: Virtual link (flow)

BAG: Bandwidth Allocation Gap (minimum period)

ADFX: Avionics Full-duplex Ethernet

- [Rox, Ernst 2010] Jonas Rox and Rolf Ernst [Apr. 2010]. "Formal Timing Analysis of Full Duplex Switched Based Ethernet Network Architectures". In: SAE Technical Paper Series. https://doi.org/10.4271/2010-01-0455. SAE International. DOI:

10.4271/2010-01-0455

Comparison of the Approaches on an Industrial Use-Case

End-to-end delay bound per virtual link

Key takeaway

Significant reduction of the pessimism with respect to RTA (response-time analysis)

Comparison of the Approaches on an Industrial Use-Case

Key takeaway

Comparable, sometimes better performances with respect to network calculus [Tsai, et al. 2023]

End-to-end delay bound per virtual link

BWE: Blocking-waived estimation

NC: Network calculus

- [Tsai, et al. 2023] Chun-Tso Tsai, Seyed Mohammadhossein Tabatabaee, Stéphan Plassart, and Jean-Yves Le Boudec [2023]. Saihu: A Common Interface of Worst-Case Delay Analysis Tools for Time-Sensitive Networks.

https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration.arXiv: 2303.14565 [cs.NI]

Conclusion

Blocking-Waived Estimation (BWE) reduces the pessimism of RTA (response-time analysis) by taking into account the **serialisation effect** and by analysing the intrications between **blocking time** of concurrent flows and the **transmission time** of the flow of interest.

Tested on an industrial use-case, BWE reveals:

- A significant reduction of the delay-bound pessimism (estimated by simulation) with respect to RTA.
- Comparable performances with respect to network calculus.

Perspectives include:

- To evaluate the performance of BWE with respect to other approaches on **broader use-cases**.
- To compare the **time complexity** of BWE with respect to other approaches.
- To use BWE on **other scheduling policies**, e.g., the TSN credit-based shaper.

lijiey@andrew.cmu.edu
ludovic.thomas@cnrs.fr

Bibliography I

- [Bouillard, Boyer, Le Corronc 2018] Bouillard, Anne, Marc Boyer, and Euriell Le Corronc (Oct. 2018). Deterministic Network Calculus. https://doi.org/10.1002/9781119440284. John Wiley & Sons, Inc. DOI: 10.1002/9781119440284.
- [Rox, Ernst 2010] Rox, Jonas and Rolf Ernst (Apr. 2010). "Formal Timing Analysis of Full Duplex Switched Based Ethernet Network Architectures". In: SAE Technical Paper Series.
 - https://doi.org/10.4271/2010-01-0455. SAE International. DOI: 10.4271/2010-01-0455.
- [Tsai, et al. 2023] Tsai, Chun-Tso et al. (2023). Saihu: A Common Interface of Worst-Case Delay Analysis Tools for Time-Sensitive Networks.
 - https://github.com/adfeel220/Saihu-TSN-Analysis-Tool-Integration.arXiv: 2303.14565 [cs.NI].