

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 3, 2014 Электронный журнал,

Электронный журнал, per. Эл. N ФС77-39410 om 15.04.2010 ISSN 1817-2172

 $http://www.math.spbu.ru/diffjournal\\ e-mail:jodiff@mail.ru$

Управление в нелинейных системах

Метод положительно инвариантных конусов для эволюционных систем с кубическими и периодическими нелинейностями

С. А. Попов¹
Математико-механический факультет,
Санкт-Петербургский государственный университет,
Санкт-Петербург

Аннотация

Рассматривается метод положительно инвариантных конусов для эволюционных уравнений с кубической нелинейностью типа Дуффинга и с периодичекской нелинейностью. Для уравнений первого типа доказывается существование положительно инвариантного ограниченного множества. Для уравнений второго типа доказывается ограниченность решений. Приводится лемма о нестрогой разделимости квадратичных конусов в оснащенном гильбертовом пространстве.

Abstract

We investigate the method of positively invariant cones for evolutionary variational equations with monotone nonlinearities in a rigged Hilbert space structure. A theorem of existence and uniqueness is stated for such class of systems. In the paper we consider cubic nonlinearity of Duffing-type and periodic

¹Работа выполнена при поддержке Немецко-российского междисциплинарного научного центра (G-RISC) и Германской службы академических обменов (DAAD), Министерства Образования и Науки РФ и Санкт-Петербургского государственного университета.

nonlinearity. The existense of a positively invariant bounded set is proved for equations of the first type. The boundedness of solutions is proved for equations of the second type. A lemma on non-strict seperation of quadratic cones in a rigged Hilbert space is stated.

1 Введение

В данной работе изучается метод положительно инвариантных конусов для общих эволюционных систем. Метод положительно инвариантных конусов с использованием частотной теоремы впервые был представлен для обыкновенных дифференциальных уравнений в работах ([4], [15]). В работе ([4]) был доказан аналог кругового критерия абсолютной устойчивости нелинейных систем управления, дающий ограниченность решения нелинейных систем управления с периодической нелинейностью. Однако, в этой и последующих работах ([5], [13]) рассмотрен лишь только случай дифференциальных уравнений, заданных на конечномерных пространствах. В данной работе приводится аналог этого результата для случая эволюционных уравнений с периодической нелинейностью на оснащенном гильбертовом пространстве. В частности, сюда входят некоторые дифференциальные уравнения в частных производных с периодической нелинейностью.

Метод инвариантных конусов в данной работе рассматривается также для эволюционных систем с кубической нелинейностью типа Дуффинга, для которых доказана теорема о существовании положительно инвариантного выпуклого множества. Для этого в работе доказана обобщенная лемма о разделении конусов ([12]) для случая нестрогой разделимости. Впервые такая задача была рассмотрена для обыкновенных дифференциальных уравнений с нелинейностью типа Дуффинга в работе ([6]).

Переходим к краткому изложению содержания статьи. Данная работа состоит из трех глав и одного приложения. В первой главе рассмотрены вопросы существования решения для одного класса эволюционных уравнений с монотонной нелинейностью. Во второй главе изучаются эволюционные уравнения типа Дуффинга, используя при этом метод положительно инвариантных конусов. В третьей главе рассматривается ограниченность решений эволюционных систем с периодической нелинейностью. Важную роль в доказательстве ограниченности решений играет построение сетки положительно инвариантных конусов, которая получается с помощью леммы о строгой разделимости квадратичных конусов. В приложении для полноты изложения

приведена частотная теорема Лихтарникова-Якубовича ([7]) для эволюционных систем.

2 Системы управления с монотонной нелинейностью

Рассмотрим оснащение вещественного гильбертова пространства Y_0 , то есть тройку

$$Y_1 \subset Y_0 \subset Y_{-1},\tag{1}$$

в которой Y_1 и Y_{-1} - также вещественные гильбертовы пространства, и вложения плотны и непрерывны. Пусть $(\cdot,\cdot)_i$ и $\|\cdot\|_i, i=1,0,-1$ - скалярное произведение и норма в Y_i соответственно. Непрерывность вложения означает, что существуют такие константы $\kappa>0$ и $\kappa'>0$, что

$$||y||_0 \le \kappa ||y||_1 , \quad \forall y \in Y_1 \tag{2}$$

И

$$\kappa' \|y\|_{-1} \le \|y\|_0 , \quad \forall y \in Y_0 .$$
 (3)

Предположим, что оснащение (1) - (3) реализовано как показано в ([1], [18]). Также полагаем, что в гильбертовой тройке пространств (1) даны только $Y_1 \subset Y_0$, где для простоты предполагаем $\kappa = 1$. Введем на Y_0 следующую норму:

$$||y||_{-1} := \sup_{0 \neq \eta \in Y_1} \frac{|(y, \eta)_0|}{||\eta||_1} \tag{4}$$

и обозначим через Y_{-1} замыкание Y_0 по этой норме. Тогда Y_{-1} может быть рассмотрено как третье пространство в оснащении (1) (см. [1, 18]). Это пространство также можно рассматривать как сопряжённое к Y_1 относительно Y_0 . Продолжив по непрерывности функцию $(u,v)_0$ на $Y_{-1}\times Y_1$, получим скобку двойственности между Y_{-1} и Y_1 , то есть билинейную форму $(\cdot,\cdot)_{-1,1}$ на $Y_{-1}\times Y_1$, которая совпадает с $(\cdot,\cdot)_0$ на $Y_0\times Y_1$ и удовлетворяет неравенству

$$|(h,y)_{-1,1}| \le ||h||_{-1}||y||_1, \quad \forall h \in Y_{-1}, \ \forall y \in Y_1.$$
 (5)

В соответствии с гильбертовой тройкой пространств (1) рассмотрим три линейных оператора

$$A \in \mathcal{L}(Y_1, Y_{-1}), \quad B \in \mathcal{L}(\mathbb{R}, Y_{-1}), \quad C \in \mathcal{L}(Y_0, \mathbb{R}).$$
 (6)

Вместе с оператором $A \in \mathcal{L}(Y_1, Y_{-1})$ мы будем рассматривать сопряжённый относительно Y_0 оператор $A^+ \in \mathcal{L}(Y_1, Y_{-1})$, который рассматривается

в соответствии с ([1])

$$(Ay, \eta)_{-1,1} = (A^+\eta, y)_{-1,1}, \quad \forall y, \eta \in Y_1.$$
 (7)

Если $A^+ = A$, то оператор A называется самосопряжённым относительно Y_0 . Самосопряжённость относительно Y_0 может быть введена подобным образом и для линейных операторов, действующих между другими пространствами в гильбертовой тройке (1).

Построение некоторых вспомогательных эволюционных вариационных уравнений основывается на функциональных пространствах, которые мы введём в ближайшее время.

Если даны $-\infty \le T_1 < T_2 \le +\infty$ - два произвольных числа, то мы определим норму для измеримых функций по Бохнеру ([18]) в $L^2(T_1,T_2;Y_j)$, j=1,0,-1, как

$$||y||_{2,j} := \left(\int_{T_1}^{T_2} ||y(t)||_j^2 dt \right)^{1/2} . \tag{8}$$

Через $\mathcal{W}(T_1,T_2;Y_1,Y_{-1})$ обозначим пространство функций y таких, что $y\in L^2(T_1,T_2;Y_1),\,\dot y\in L^2(T_1,T_2;Y_{-1})$ и нормой

$$||y||_{\mathcal{W}(T_1,T_2;Y_1,Y_{-1})} := (||y||_{2,1}^2 + ||\dot{y}||_{2,-1}^2)^{1/2} . \tag{9}$$

По теореме вложения ([14, 18]) можно полагать, что любая функция из $\mathcal{W}(T_1, T_2; Y_1, Y_{-1})$ принадлежит $C(T_1, T_2; Y_0)$. Мы будем использовать это предположение относительно операторов A, B, C.

Рассмотрим относительно гильбертовой тройки пространств $Y_1 \subset Y_0 \subset Y_{-1}$ на интервале $J \subset \mathbb{R}$ следующее уравнение:

$$\dot{y} = Ay + B\phi(t, Cy) + f(t), \qquad (10)$$

где $f \in L^2_{loc}(J; Y_{-1})$.

Решением (10) назовём функцию $y \in L^2_{loc}(J; Y_1) \cap C(J; Y_0)$ такую, что $\dot{y} \in L^2_{loc}(J; Y_{-1})$ и y удовлетворяет уравнению (10) в вариационном смысле, то есть для почти всех $t \in J$

$$(\dot{y}(t) - Ay(t) - B\phi(t, Cy(t)) - f(t), \ \eta - y(t))_{-1,1} = 0, \quad \forall \eta \in Y_1.$$
 (11)

Для того чтобы получить свойства существования и единственности решения рассматриваемой задачи ([9]), введем следующее предположение.

(A) Нелинейность $\phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ удовлетворяет следующему свойству. Семейство операторов $\{\mathbb{A}(t)\}_{t\in\mathbb{R}}:=-A-B\phi(t,C\cdot): Y_1\to Y_{-1}$ такое, что для каждого $t\in\mathbb{R}$ оператор $\mathbb{A}(t)$ монотонный, семинепрерывный, такой что выполнено неравенство

$$\|\mathbb{A}(t)y\|_{-1} \le c_1 \|y\|_1 + c_2, \quad \forall y \in Y_1, \tag{12}$$

где $c_1 > 0$ и $c_2 \in \mathbb{R}$ константы.

Также предположим, что

$$(\mathbb{A}(t)y, y)_{-1,1} \ge c_3 \|y\|_1^2 + c_4, \quad \forall y \in Y_1, \tag{13}$$

где $c_3>0$ и $c_4\in\mathbb{R}$ константы.

Для этого случая мы имеем следующие результаты существования и единственности ([9]).

Теорема 1 Пусть выполнено предположение (**A**). Тогда для любого $f \in L^2_{loc}(\mathbb{R}_+; Y_{-1})$ и любого $y_0 \in Y_0$ существует единственное решение $y \in L^2_{loc}(\mathbb{R}_+; Y_1) \cap C(\mathbb{R}_+; Y_0)$ уравнения (11) такое, что $y(0) = y_0$. А также для любого T > 0 верно

$$||y||_{L^2(0,T;Y_1)} \le k_1(||f||_{L^2(0,T;Y_{-1})}, ||y_0||_0)$$
(14)

u

$$||y||_{C([0,T];Y_0)} \le k_2(||f||_{L^2(0,T;Y_{-1})}, ||y_0||_0),$$
 (15)

 $cde\ k_1(\cdot,\cdot)\ u\ k_2(\cdot,\cdot)$ - непрерывные и неубывающие по каждой переменной функции.

3 Эволюционные системы управления Лурье с нелинейностью типа Дуффинга

Пусть $\mathcal{V}_1 \subset \mathcal{V}_0 \subset \mathcal{V}_{-1}$ - оснащение вещественного гильбертова пространства \mathcal{V}_0 , то есть тройка гильбертовых пространств с компактным и непрерывным вложением. Обозначим через $(\cdot,\cdot)_{\mathcal{V}_j}$ и $\|\cdot\|_{\mathcal{V}_j}$, j=1,0,-1, скалярное произведение и норму в $\mathcal{V}_j(j=1,0,-1)$ соответственно, и через $(\cdot,\cdot)_{\mathcal{V}_{-1},\mathcal{V}_1}$ - скобку двойственности между \mathcal{V}_{-1} и \mathcal{V}_1 . Пусть $A_0 \in \mathcal{L}(\mathcal{V}_1,\mathcal{V}_{-1})$ - линейный оператор, $b_0 \in \mathcal{V}_{-1}$ - обобщённый вектор, $c_0 \in \mathcal{V}_0$ - вектор и $d_0 \leq 0$ - число. Введем линейные операторы $C_0 \in \mathcal{L}(\mathcal{V}_0,\mathbb{R})$ и $B_0 \in \mathcal{L}(\mathbb{R},\mathcal{V}_{-1})$, соответствующие векторам

 c_0 и b_0 , которые определяются следующим образом: $C_0\nu=(c_0,\nu)_{\mathcal{V}_0},\ \forall\ \nu\in\mathcal{V}_0,$ и $B_0\xi:=\xi b_0,\ \forall\xi\in\mathbb{R}.$

Предположим, что $\phi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ и $g: \mathbb{R} \to \mathbb{R}$ - две скалярные функции. Рассмотрим систему непрямого управления, которая формально записывается как

$$\dot{\nu} = A_0 \nu + b_0 [\phi(t, w) + g(t)],$$

$$\dot{w} = (c_0, \nu)_{\nu_0} + d_0 [\phi(t, w) + g(t)]. \tag{16}$$

Перепишем (16) как систему управления в стандартном виде. Для этого рассмотрим гильбертову тройку пространств $Z_1 \subset Z_0 \subset Z_{-1}$, в которой $Z_j := \mathcal{V}_j \times \mathbb{R}, \ j = 1, 0, -1$. Скалярное произведение $(\cdot, \cdot)_{Z_j}$ в Z_j вводится соотношением $((\nu_1, w_1), (\nu_2, w_2))_{Z_j} := (\nu_1, \nu_2)_{\mathcal{V}_j} + w_1 w_2$, где $(\nu_1, w_1), (\nu_2, w_2) \in Z_j$, произвольные. Скобка двойственности между Z_{-1} и Z_1 , определённая для $(h, \xi) \in \mathcal{V}_{-1} \times \mathbb{R} = Z_{-1}$ и $(\nu, \varsigma) \in \mathcal{V}_1 \times \mathbb{R} = Z_1$, записывается следующим образом:

$$((h,\xi),(\nu,\varsigma))_{Z_{-1},Z_1} := (h,\nu)_{\mathcal{V}_{-1},\mathcal{V}_1} + \xi \varsigma$$
.

Пусть $\hat{b} := \begin{bmatrix} b_0 \\ d_0 \end{bmatrix} \in Z_{-1}$ и $\hat{c} := \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in Z_0$. Предположим, что операторы $\hat{C} \in \mathcal{L}(Z_0, \mathbb{R})$ и $\hat{B} \in \mathcal{L}(\mathbb{R}, Z_{-1})$ представлены как

$$\hat{C}z = (\hat{c}, z)_{Z_0}, \quad \forall z \in Z_0, \qquad \hat{B}\xi = \xi \hat{b}, \quad \forall \xi \in \mathbb{R},$$

и оператор $\hat{A} \in \mathcal{L}(Z_1, Z_{-1})$ определён как

$$\hat{A} := \begin{bmatrix} A_0 & 0 \\ C_0 & 0 \end{bmatrix}.$$

Теперь рассмотрим систему

$$\dot{z} = \hat{A}z + \hat{B}\left[\phi(t, w) + g(t)\right], \ w = \hat{C}z,$$
 (17)

эквивалентную (16) при $z=(\nu,w)$. Если выбрать $-\infty \leq T_1 < T_2 \leq +\infty$ произвольными, то мы определим норму для измеримых по Бохнеру функций в $L^2(T_1,T_2;Z_j), j=1,0,-1$, как

$$||z||_{2,j} := \left(\int_{T_1}^{T_2} ||z(t)||_{Z_j}^2 dt \right)^{1/2} . \tag{18}$$

Пусть $\mathcal{W}(T_1,T_2;Z_1,Z_{-1})$ - пространство функций z таких, что $z\in L^2(T_1,T_2;Z_1)$ и $\dot{z}\in L^2(T_1,T_2;Z_{-1})$, с нормой

$$||z||_{\mathcal{W}(T_1,T_2;Z_1,Z_{-1})} := (||z||_{2,-1}^2 + ||\dot{z}||_{2,-1}^2)^{1/2} . \tag{19}$$

Введём предположения (A1) – (A6) относительно оператора $A_0 \in \mathcal{L}(\mathcal{V}_1, \mathcal{V}_{-1})$, векторов $b_0 \in \mathcal{V}_{-1}$ и $c_0 \in \mathcal{V}_0$ и функций ϕ и g.

(A1) Для любого T>0 и любой $f=(f_1,f_2)\in L^2(0,T;\mathcal{V}_{-1}\times\mathbb{R})$ задача

$$\dot{\nu} = A_0 \nu + f_1(t) ,
\dot{w} = (c_0, \nu)_{\nu_0} + f_2(t) , \quad (\nu(0), w(0)) = (\nu_0, w_0)$$
(20)

корректно поставлена, то есть для произвольных $(\nu_0, w_0) \in Z_0$, $(f_1, f_2) \in L^2(0, T; \mathcal{V}_{-1} \times \mathbb{R})$ существует единственное решение $(\nu, w) \in \mathcal{W}(0, T; Z_1, Z_{-1})$, удовлетворяющее (20) в вариационном смысле, и которое непрерывно зависит от начальных данных, то есть

$$\|(\nu, w)\|_{\mathcal{W}(0,T; Z_1, Z_{-1})}^2 \le k_3 \|(\nu_0, w_0)\|_{\mathcal{V}_0 \times \mathbb{R}}^2 + k_4 \|(f_1, f_2)\|_{2, -1}^2 , \qquad (21)$$

где $k_3 > 0$ и $k_4 > 0$ - некоторые константы.

- (A2) Существует $\lambda > 0$ такое, что $A_0 + \lambda I$ гурвицев оператор.
- (A3) Для любых $T>0,\ (\nu_0,w_0)\in Z_1\times\mathbb{R},\ (\tilde{\nu}_0,\tilde{w}_0)\in Z_1\times\mathbb{R}$ и $(f_1,f_2)\in L^2(0,T;\mathcal{V}_1\times\mathbb{R})$ решение прямой задачи (20) и решение смежной задачи

$$\dot{\tilde{\nu}} = -(A_0^+ + \lambda I)\tilde{\nu} + f_1(t),
\dot{\tilde{w}} = -C_0^+ \tilde{w} - \lambda \, \tilde{w} + f_2(t),$$
(22)

непрерывно по t в сильном смысле по норме пространства $\mathcal{V}_1 \times \mathbb{R}$.

(A4) Пара (A_0,b_0) - L^2 - управляема, то есть для произвольного $\nu_0\in\mathcal{V}_0$ существует управление $\xi\left(\cdot\right)\in L^2(0,\infty;\mathbb{R})$ такое, что задача

$$\dot{\nu} = A_0 \nu + b_0 \xi$$
, $\nu(0) = \nu_0$

корректно поставлена в вариационном смысле на $(0,\infty)$.

Введём передаточную функцию для тройки (A_0^c, b_0^c, c_0^c) как

$$\chi(p) = (c_0^c, (A_0^c - pI^c)^{-1} b_0^c)_{Z_0}, \quad p \in \rho(A_0^c).$$

(A5) Предположим, что $\lambda > 0$ и $\kappa_1 > 0$ - параметры, где λ из предположения (A2). Тогда:

$$\lambda d_0 + \operatorname{Re}(-i\omega - \lambda)\chi(i\omega - \lambda) + \kappa_1 |\chi(i\omega - \lambda) - d_0|^2 \le 0, \quad \forall \omega \ge 0.$$
 (23)

(A6) Функция $\phi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ непрерывна и $\phi(t,0) = 0$, $\forall t \in \mathbb{R}$. Функция $g : \mathbb{R} \to \mathbb{R}$ принадлежит $L^2_{loc}(\mathbb{R};\mathbb{R})$. Существуют числа $\kappa_1 > 0$ (из (A5)), $0 \le \kappa_2 < \kappa_3 < +\infty$, $\beta_1 < \beta_2$ и $\zeta_2 < \zeta_1$ такие, что

a)
$$\beta_1 < q(t) < \beta_2, \tag{24}$$

для почти всех t из произвольного компактного временного интервала;

b)

$$(\phi(t,w) + \beta_i)(w - \zeta_i) \le \kappa_1(w - \zeta_i)^2, \ i = 1, 2,$$

$$\forall t \in \mathbb{R}, \ \forall w \in [\zeta_2, \zeta_1]; \tag{25}$$

c)

$$\kappa_2(w_1 - w_2)^2 \le (\phi(t, w_1) - \phi(t, w_2))(w_1 - w_2) \le \kappa_3(w_1 - w_2)^2,
\forall t \in \mathbb{R}, \ \forall w_1, w_2 \in [\zeta_2, \zeta_1].$$
(26)

Замечание 1 Нелинейность, обладающая свойствами b) u c) называется нелинейностью типа Дуффинга. Для конечномерного случая уравнение c нелинейностью типа Дуффинга было рассмотрено в работе ([2]).

Далее будем предполагать, что решение уравнения (17) для любого T > 0 принадлежит пространству $\mathcal{W}(0,T;Z_1,Z_{-1})$. Тогда мы покажем существование решений с начальными данными из определённого множества. Для этого нам понадобятся некоторые вспомогательные результаты.

Предположим, что $Y_1 \subset Y_0 \subset Y_{-1}$ - гильбертово оснащение пространства $Y_0, \|\cdot\|_j, (\cdot, \cdot)_j$ - норма и скалярное произведение соответственно, и $(\cdot, \cdot)_{-1,1}$ - скобка двойственности между Y_{-1} и Y_1 . Рассмотрим линейную систему

$$\dot{y} = Ay, \quad w = (c, y)_0,$$
 (27)

где $A \in \mathcal{L}(Y_1, Y_{-1})$ и $c \in Y_0$.

Предположим, что для каждого $y_0 \in Y_0$ существует единственное решение $y(\cdot, y_0)$ системы (27) в $\mathcal{W}(0, \infty; Y_1, Y_{-1})$, удовлетворяющее условию $y(0, y_0) = y_0$. В дальнейшем нам понадобится это предположение.

- (A7) Пространство Y_0 можно разложить $Y_0 = Y_0^+ \oplus Y_0^-$ так, что верно следующее:
 - а) Для каждого $y_0 \in Y_0^+$ мы имеем $\lim_{t\to\infty} y(t,y_0) = 0$, и для каждого $y_0 \in Y_0^-$ существует единственное решение $y_-(t) = y(t,y_0)$ системы (27), определённое на $(-\infty,0)$, такое, что $\lim_{t\to-\infty} y_-(t) = 0$ и $(c,y(t,y_0))_0 = 0$, $\forall\,t\geq0$ тогда и только тогда, когда $y_0=0$.

b) Для каждого $y_0 \in Y_0^+$ равенство $(c, y(t, y_0))_0 = 0$, $\forall t \leq 0$ выполняется тогда и только тогда, когда $y_0 = 0$, и для каждого $y_0 \in Y_0^-$ равенство $(c, y(t, y_0))_0 = 0$, $\forall t \leq 0$ выполняется тогда и только тогда, когда $y_0 = 0$.

Далее, запись $L \geq 0$ для линейного оператора $L \in \mathcal{L}(Z)$, где Z - гильбертово пространство, означает, что L - положительный, то есть, $(z, Lz)_Z > 0$, $\forall z \in Z \setminus \{0\}$; $L \leq 0$ означает, что -L - положительный.

Следующая лемма связана с нестрогим разделением квадратичных конусов с помощью специальных функционалов. Для дальнейшего изложения введем некоторые определения. Предположим, что H - гильбертово пространство со скалярным произведением (\cdot,\cdot) . Конусом в H назовём множество $\mathcal{C} \subset H$, $\mathcal{C} \neq \emptyset$ такое, что если $u \in \mathcal{C}$, $\zeta \in \mathbb{R}$, то $\zeta u \in \mathcal{C}$.

Предположим, что $P \in \mathcal{L}(H), P = P^*$. Тогда множество $\mathcal{C} := \{u \in H \mid (u, Pu) \leq 0\}$ - конус, который мы будем называть $\kappa \epsilon a \partial pamuчным$.

Предположим, что существует разложение $H=H^+\oplus H^-$ такое, что $P_{|H^+}\geq 0$ и $P_{|H^-}\leq 0$. Тогда квадратичный конус $\{u\in H\,|\, (u,Pu)\leq 0\}$ назовём квадратичным конусом размерности $\dim H^-$.

Лемма 1 Предположим что:

- 1. $Y_1 \subset Y_0 \subset Y_{-1}$ тройка оснащенных гильбертовых пространств со скалярными произведениями $(\cdot,\cdot)_i$, соответствующими нормами $\|\cdot\|_i$, i=1,0,-1 и скобкой двойственности $(\cdot,\cdot)_{-1,1}$ между Y_{-1} и Y_1 ;
- 2. существует оператор $P \in \mathcal{L}(Y_{-1}, Y_0) \cap \mathcal{L}(Y_0, Y_1)$, самосопряжённый и положительный в Y_0 такой, что

$$C := \{ y \in Y_0 \, | \, (y, Py)_0 \le 0 \}$$
 - одномерный квадратичный конус;

3. существуют векторы $r \in Y_0$, $h \in Y_{-1}$ и $b \in Y_{-1}$, такие что Ph = r, $(h,r)_{-1,1} = 0$, Pb = h, (h,b) < 0, (r,b) < 0, а также $2(h,Py)_{-1,1} = (r,y)_0$ $\forall y \in Y_0$.

Тогда справедливы включения

$${y \in Y_0 | (y, Py)_0 < 0, (r, y)_0 < 0} = {y \in Y_0 | (y, Py)_0 < 0, (h, y)_{-1} < 0}, (28)$$

$$\{y \in Y_0 | (y, Py)_0 \le 0, (h, y)_{-1} \le 0\} \subset \{y \in Y_0 | (y, Py)_0 \le 0, (r, y)_0 \le 0\},$$
 (29)

$${y \in Y_0 | (y, Py)_0 \le 0, (r, y)_0 < 0} \subset {y \in Y_0 | (y, Py)_0 \le 0, (h, y)_{-1} \le 0}, (30)$$

$$\{y \in Y_0 | (y, Py)_0 \le 0, (h, y)_{-1} \le 0, (r, y)_0 = 0\} = \{y \in Y_0 | Py = \mu r, \mu \in [0, +\infty)\}.$$
(31)

Доказательство. Обозначим через y_0 такой вектор из Y_0 , что $Py_0 = h$, а через $y_1 \in Y_{-1}$ такой вектор, что $Py_1 = r$. Из условия леммы $(r, y_0)_0 = (h, y_1)_{-1} < 0$, $(h, y_0)_{-1} = (y_0, Py_0)_0 < 0$, $(r, y_1)_{-1} = (y_1, Py_1)_{-1} = 0$. Как показано в ([12]), при условиях леммы выполнено

$$\{y \in Y_0 | (y, Py)_0 < 0\} \cap \{y \in Y_0 | (r, y)_0 = 0\} = \emptyset,$$
 (32)

$${y \in Y_0 | (y, Py)_0 \le 0} \cap {y \in Y_0 | (h, y)_{-1} = 0} = {0}.$$
 (33)

Докажем (28). Пусть для некоторого вектора $y \in Y_0$ выполнено $(y, Py)_0 < 0$, $(r,y)_0 < 0$, но $(h,y)_{-1} \geq 0$. Тогда из (33) $(h,y)_{-1} \neq 0$. Определим вектор $z \in Y_0$ по формуле $z = y + \alpha_1 y_0$, где $\alpha_1 = -(h,y)_0/(h,y_0)_{-1} > 0$. Из равенства $(h,z)_{-1} = 0$ и (33) следует $(z,Pz)_0 \geq 0$, но $(z,Pz)_0 = (y,Py)_0 + \alpha_1^2(y_0,Py_0)_0 + 2\alpha_1(y_0,Py)_0$, где $(y,Py)_0 < 0$, $(y_0,Py_0)_0 = 0$, поэтому $(y,Py_0)_0 > 0$. Определим вектор $z_1 \in Y_0$ по формуле $z_1 = y_1 - \beta_1 y_0$, где $\beta_1 = (r,y)_0/(r,y_0)_0 > 0$. Из равенства $(r,z_1)_0 = 0$ и (32) вытекает, что $(z_1,Pz_1)_0 \geq 0$, откуда $(y,Py_0)_0 < 0$, что противоречит с выведенным ранее неравенством $(y,Py_0)_0 > 0$. Обратное включение в (28), а также включения в (29) и (30) доказываются аналогично.

Для доказательства (31) достаточно показать, что при сделанных предположениях

$$\{y \in Y_0 | (y, Py)_0 \le 0, (r, y)_0 = 0\} = \{y \in Y_0 | y = \mu y_1, \mu \in (-\infty, +\infty)\}.$$
 (34)

Вектор вида μy_1 , очевидно, принадлежит множеству в левой части (34), так как $(y_1, Py_1) = (r, y_1)_{-1} = 0$. Допустим, что существует вектор $y \in Y_{-1}$, линейно независимый с y_1 , такой, что $(y, Py)_{-1} \leq 0$ и $(r, y)_{-1} = 0$. Из (32) $(h, y) \neq 0$. Определим вектор $z_2 = y_1 - \alpha_2 y$, где $\alpha_2 = (h, y_1)/(h, y)_{-1}$. Так как y и y_1 линейно независимы, то $z_2 \neq 0$. Очевидно, $(h, z_2) = 0$, откуда $(z_2, Pz_2) > 0$. В то же время $(z_2, Pz_2) = (y_1, Py_1) + \alpha_2^2(y, Py)_0 - 2\alpha_2(y_1, Py_1)_{-1} < 0$. Полученное противоречие доказывает (34). \square

Замечание 2 Данная лемма является обобщением аналогичной леммы из ([6]) на случай бесконечномерных пространств.

Приведем формулировку леммы из [2], которая будет использоваться при доказательстве теоремы 2.

Лемма 2 Предположим, что $t_0 \ge 0$, $k(\cdot), R(\cdot), V_i(\cdot), U_i(\cdot)$: $[t_0, \infty) \to \mathbb{R}$, i=1,2, - непрерывные функции и $\varkappa_1 > \varkappa_2$ - числа такие, что выполнены следующие условия:

1) В некоторой окрестности множества

$$\mathbb{T}_1 := \{ t \in (t_0, \infty) \mid R(t) = \varkappa_1, \ V_i(t) \le 0, \ i = 1, 2, \ U_1(t) \le 0 \}$$

 ϕ ункция R не возрастает, и в некоторой окрестности множества

$$\mathbb{T}_2 := \{ t \in (t_0, \infty) \mid R(t) = \varkappa_2, \ V_i(t) \le 0, \ i = 1, 2, \ U_2(t) \ge 0 \}$$

 ϕ ункция R не убывает.

2) В некоторой окрестности множества

$$\mathbb{T}_3 := \{ t \in (t_0, \infty) \mid \varkappa_2 \le R(t) \le \varkappa_1, \ V_i(t) \le 0, \ i = 1, 2, \ U_1(t) = 0 \}$$

функция U_1 не возрастает, и в некоторой окрестности множества

$$\mathbb{T}_4 := \{ t \in (t_0, \infty) \mid \varkappa_2 \le R(t) \le \varkappa_1 , \ V_i(t) \le 0 , \ i = 1, 2 , \ U_2(t) = 0 \}$$

 ϕ ункция U_2 не убывает.

- 3) На множестве $\{t \in (t_0, \infty) \mid \varkappa_2 \leq R(t) \leq \varkappa_1\}$ функция $k(\cdot)$ неотрицательна, и функция $t \mapsto V_i(t) + \int_0^t k(\tau) V_i(\tau) d\tau$, i = 1, 2, не возрастает.
- 4) $R(t_0) \in [\varkappa_2, \varkappa_1], \ V_i(t_0) \le 0, \quad i = 1, 2, \ U_1(t_0) \le 0, \ U_2(t_0) \ge 0.$

Тогда для любого $t \geq t_0$ верно, что $R(t) \in [\varkappa_2, \varkappa_1], \ V_i(t) \leq 0, \quad i = 1, 2, U_1(t) \leq 0, \ U_2(t) \geq 0.$

Следующая теорема дает существование положительно инвариантного выпуклого множества для системы (16). В работе ([12]) была доказана аналогичная теорема для случая строгого разделения конусов.

Теорема 2 Предположим, что для системы (16) выполнены (**A1**) – (**A7**). Тогда существует замкнутое, положительно инвариантное и выпуклое множество \mathcal{G} такое, что

$$\{(\nu, w) \in \mathcal{V}_1 \times \mathbb{R} \mid \nu = 0, w \in [\zeta_2, \zeta_1]\} \subset \mathcal{G} \subset \{(\nu, w) \in \mathcal{V}_1 \times \mathbb{R} \mid w \in [\zeta_2, \zeta_1]\}.$$

$$(35)$$

Доказательство аналгоично доказательству из ([12]) с применением леммы 1 о нестрогом разделении конусов.

Доказательство. Рассмотрим систему (16) в форме (17). По теореме Лихтарникова-Якубовича (Приложение А) предположения **(A1)**, **(A3)**,

(A4), (A6) гарантируют существование линейного непрерывного оператора $\hat{P} \in \mathcal{L}(Z_{-1}, Z_0) \cap \mathcal{L}(Z_0, Z_1)$, который является самосопряжённым в Z_0 , такого, что следующая квадратичная форма в $Z_1 \times \mathbb{R}$:

$$W(z,\xi) := 2\left((\hat{A} + \lambda I)z + \hat{b}\,\xi, \hat{P}z \right)_{Z_{-1},Z_1} + \left(\kappa_1(\hat{c},z)_{Z_0} - \xi \right) (\hat{c},z)_{Z_0},$$

удовлетворяет неравенству

$$W(z,\xi) \le 0 , \quad \forall z \in Z_1, \quad \forall \xi \in \mathbb{R} .$$
 (36)

Подставив $\xi = 0$ в (36), получаем следующее неравенство

$$2((\hat{A} + \lambda I)z, \hat{P}z)_{Z_{-1}, Z_1} \le -\kappa_1(\hat{c}, z)_{Z_0}^2, \quad \forall \ z \in Z_1.$$
 (37)

В силу (A2) существует разложение $Z_0=Z_0^+\oplus Z_0^-$ при dim $Z_0^-=1$ такое, что выполняется (A7) для $Y_j=Z_j, j=1,0,-1,\ A=\hat{A}+\lambda I$ и $c=\hat{c}$. Из (37) следует, что для любого $z_0\in Z_0$ решение $z(\cdot)$ системы

$$\dot{z} = (\hat{A} + \lambda I)z, \quad z(0) = z_0 \tag{38}$$

удовлетворяет неравенству

$$V(y(t, y_0)) - V(y(s, y_0)) \le -\int_s^t (c, y(\tau, y_0))_0^2 d\tau.$$
 (39)

при $V(z)=(z,\hat{P}z)_{Z_0}$ и $c=\hat{c}$. Тогда по лемме 4 из ([12]) выполнено

$$\hat{P}_{|Z_0^+} \ge 0$$
 и $\hat{P}_{|Z_0^-} \le 0$. (40)

Таким образом, мы показали, что множество $\hat{\mathcal{C}} := \{z \in Z_0 \mid (z, \hat{P}z)_{Z_0} \leq 0\}$ является одномерным квадратичным конусом. Также из (36) следует, что

$$2(\hat{b}, \hat{P}z)_{Z_{-1}, Z_1} = (\hat{c}, z)_{Z_0}, \quad \forall z \in Z_1.$$
 (41)

Заметим, что в скобке двойственности $(\cdot,\cdot)_{Z_{-1},Z_1}$ мы имеем

$$(\hat{b}, \hat{c})_{Z_{-1}, Z_1} = d_0 \le 0. (42)$$

Вариант строгого неравенства в (42) относится к случаю строго разделения конусов, который рассмотрен в работе ([12]). Рассморим случай $(\hat{b},\hat{c})_{Z_{-1},Z_{1}}=0$.

При выполнении (40) - (42) все гипотезы леммы 1 выполнены, поэтому справедливы включения (28) - (31), (33), где вектор $r=\hat{c}$ и обобщённый

вектор $h=\hat{b}$. Выберем точки $z_1=(0,\zeta_1)\in\mathcal{V}_1\times\mathbb{R}$ и $z_2:=(0,\zeta_2)\in\mathcal{V}_1\times\mathbb{R}$. Очевидно, что

$$(\hat{c}, z_1)_{Z_0} = \zeta_1, \ \hat{A}z_1 = 0, \ (\hat{c}, z_2)_{Z_0} = \zeta_2, \ \hat{A}z_2 = 0.$$
 (43)

Определим вдоль произвольного решения $z(\cdot)$ уравнения (17) функции

$$\hat{V}_i(t) := (z(t) - z_i, \ \hat{P}(z(t) - z_i))_{Z_0},
\hat{U}_i(t) := (\hat{c}, z(t) - z_i)_{Z_0}, \ i = 1, 2,$$

и введём множество

$$\mathcal{G} := \{ z \in Z_1 \mid (z - z_i, \hat{P}(z - z_i))_{Z_0} \le 0, \ i = 1, 2, \ (\hat{c}, z)_{Z_0} \in [\zeta_2, \zeta_1] \}. \tag{44}$$

Так как выполнены (40) и (33), то множество \mathcal{G} выпукло и ограничено. Покажем, что \mathcal{G} положительно инвариантно для решений уравнения (17). Для этого мы применим лемму 4 из ([12]) для временного интервала $[t_0, \infty)$, функций $k(t) \equiv 2\lambda$, $V_i(t) = \hat{V}_i(t)$, $U_i(t) = \hat{U}_i(t)$ и чисел $\varkappa_1 = w_1$, $\varkappa_2 = w_2$. Из (36) следует, что для $i = 1, 2, t_0 \le s \le t$, вдоль решения z(t) и $w(t) = (\hat{c}, z(t))_{Z_0}$

$$\hat{V}_{i}(\tau) \mid_{s}^{t} + 2\lambda \int_{s}^{t} \hat{V}_{i}(\tau) d\tau$$

$$\leq -\int_{s}^{t} \left[\kappa_{1}(w(\tau) - \zeta_{i}) - (\phi(\tau, w(\tau)) + \beta_{i}) \right] (w(\tau) - \zeta_{i}) d\tau$$

$$+ \int_{s}^{t} (g(\tau) - \beta_{i})(w(\tau) - \zeta_{i}) d\tau .$$
(45)

Воспользовавшись (A6), мы заключаем, что для i=1,2 и всех $t\geq s\geq t_0$ таких, что

$$w(\tau) \in [\zeta_{2}, \zeta_{1}], \tau \in [s, t],$$

$$\int_{s}^{t} [\kappa_{1}(w(\tau) - \zeta_{i}) - (\phi(\tau, w(\tau)) + \beta_{i})](w(\tau) - \zeta_{i}) d\tau \ge 0$$

$$\int_{s}^{t} (g(\tau) - \beta_{i}) (w(\tau) - \zeta_{i}) d\tau \le 0.$$
(46)

Таким образом, из (45) и (46) следует, что для i=1,2 и $t\geq s\geq t_0$ мы имеем

$$\hat{V}_i(\tau)|_s^t + 2\lambda \int_s^t \hat{V}_i(\tau)d\tau \le 0 ,$$

то есть, функции $t \mapsto \hat{V}_i(t) + 2\lambda \int_0^t \hat{V}_i(\tau) d\tau$ не возрастают. Получили, что условие 3) леммы 4 из [12] выполнено. В силу $z(t_0) \in \mathcal{G}$, условие 4) леммы также выполнено.

Далее, через \mathbb{T}_i , i=1,2,3,4 мы будем обозначать множества, которые определены в лемме 2. Из (31) следует, что если $t\in\mathbb{T}_1$, тогда $z(t)=z_1$. Таким образом, из (16) и (25) следует, что

$$\dot{w}(t) = d_0[\phi(t, w(t)) + g(t)] < 0.$$
(47)

Аналогично можно показать, что w(t) не возрастает в окрестности \mathbb{T}_2 .

Из (31) и равенства $(\hat{b},\hat{c})_{Z_{-1},Z_1}=0$ следует, что для $t\in\mathbb{T}_3$ мы имеем $z(t)=z_1$, и в силу (44) и (**A6**) имеем

$$\dot{\hat{U}}_1(t) = (\dot{z}(t), \hat{c})_{Z_{-1}, Z_1} = (\hat{A}z(t) + \hat{b} [\phi(t, w(t)) + g(t)], \hat{c})_{Z_{-1}, Z_1}$$

$$= (\hat{b}, \hat{c})_{Z_{-1}, Z_1} [\phi(t, w_1) + g(t)] < 0.$$

Аналогично можно показать, что $\hat{U}_2(t)$ не возрастает вблизи \mathbb{T}_4 .

Таким образом, мы проверили все предположения леммы 2. Следовательно, \mathcal{G} положительно инвариантно. Остаётся показать включение (35). Пусть $z = (0, w) \in \mathcal{V}_1 \times \mathbb{R}$, где $w \in [w_2, w_1]$. Так как $(\hat{c}, z)_{Z_0} = w$, то вложение (35) верно, если

$$(z - z_i, \hat{P}(z - z_i))_{Z_0} \le 0, \quad i = 1, 2.$$
 (48)

Из (31) и (43) следует, что для выполнения (48) достаточно, чтобы из $\hat{A}z=0$ вытекало $(z,\hat{P}z)_{Z_0}\leq 0$. Но последнее неравенство следует из (37), так как

$$2\lambda(z,\hat{P}z)_{Z_0} \le -\kappa_1(\hat{c},z)_{Z_0}^2 \le 0$$
.

4 Эволюционные уравнения с периодической нелинейностью

В этой главе будем рассматривать эволюционные системы, где нелинейность является периодической относительно части пространственных переменных функцией.

Рассмотрим тройку оснащенных гильбертовых пространств $Y_1 \subset Y_0 \subset Y_{-1}$, которая вводится аналогично тому, как она введена в первой главе.

Пусть $A: Y_1 \to Y_{-1}$ линейный непрерывный оператор, имеющий ноль, как собственное число, b – вектор из Y_{-1} , c – вектор из Y_0 . Определим операторы $C \in \mathcal{L}(Y_0, \mathbb{R})$ и $B \in \mathcal{L}(\mathbb{R}, Y_{-1})$ следующим образом:

$$Cy = (c, y)_0, \ \forall y \in Y_0, \ B\xi = \xi b, \ \forall \xi \in \mathbb{R}.$$
 (49)

Определим также нелинейность $\phi: \mathbb{R} \to \mathbb{R}$, которая является периодической функцией с периодом ζ .

Рассмотрим задачу Коши для эволюционного вариационного уравнения ([11])

$$\dot{y}(t) = Ay(t) + B\phi(Cy(t)),
y(0) = y_0 \in Y_0.$$
(50)

Функция $y \in \mathcal{W}(T_1, T_2; Y_1, Y_{-1}) \cap C(T_1, T_2; Y_0)$ называется решением (50) на (T_1, T_2) , если $y(0) = y_0$ и уравнение (50) выполнено в вариационном смысле (11).

В дальнейшем будем предполагать что для решения (50) выполнены свойства существования и единственности решения. Также будем предполагать в дальнейшем что $\lambda>0$ некоторое фиксированное число. Введем некоторые предположения.

(F1) Для любого T>0 и любого $f\in L^2(0,T;Y_1)$ задача

$$\dot{y} = (A + \lambda I)y + f(t), \quad y(0) = y_0$$
 (51)

корректно поставлена, т. е. для произвольного $y_0 \in Y_0, f \in L^2(0, T; Y_{-1})$ существует единственное решение $y \in \mathcal{W}(0, T; Y_1, Y_{-1})$, удовлетворяющее (51) в том смысле что

$$(\dot{y},\eta)_{-1,1} = ((A+\lambda I)y,\eta)_{-1,1} + (f(t),\eta)_{-1,1}, \ \forall \eta \in Y_1, \$$
для п. в. $t \in [0,T]$

и зависящее непрерывно от начальных данных, т. е.

$$||y(\cdot)||_{\mathcal{W}(0,T;Y_1,Y_{-1})}^2 \le c_1 ||y_0||_0^2 + c_2 ||f||_{2,-1}^2, \tag{52}$$

где $c_1 > 0$ и $c_2 > 0$ некоторые константы.

(F2) Пара $(A + \lambda I, B)$ L^2 -управляема ([7]), т. е. для произвоьного $y_0 \in Y_0$ существует управление $\xi(\cdot) \in L^2(0, \infty; \mathbb{R})$ такое что задача

$$\dot{y} = (A + \lambda I)y + B\xi, \quad y(0) = y_0$$
 (53)

хорошо обусловлена на полуоси $[0, +\infty)$, т. е. существет решение $y(\cdot) \in L^{\infty}$ с $y(0) = y_0$.

Обозначим через H^c and L^c комплексификацию вещественного линейного пространства H и вещественного линейного оператора L, соответственно, и введем через

$$\chi(p) = C^{c} (A^{c} - pI^{c})^{-1} B^{c}, \quad p \in \rho(A^{c})$$
(54)

передаточную функцию тройки (A^c, B^c, C^c) .

Следующее предположение описывает класс нелинейностей, которые мы будем рассматривать в будущем.

(F3) Предположим, что ϕ принадлежит сектору $M[\kappa_1, \kappa_2]$, т. е.

$$\kappa_1 \le \frac{\phi(w)}{w} \le \kappa_2 \ w \ne 0. \tag{55}$$

Следующая теорема связана с постороением конусной сетки. Введем некоторые определения.

Теорема 3 Предполжим что с некоторым $\lambda > 0$ выполнены следующие условия для системы (50)

1) Рассмотрим уравнение

$$\dot{y} = (A + \lambda I)y\tag{56}$$

в Y_0 . Пространство Y_0 может быть разложено на $Y_0 = Y_0^- \oplus Y_0^+$ где $dim Y_0^- =: 1$. Обозначим через $y(\cdot, y_0)$ глобальное решение (56), удовлетворяющее $y(0, y_0) = y_0$. Для любого $y_0 \in Y_0^-$ будем предполагать, что $\lim_{t \to -\infty} y(t, y_0) = 0$ и для любого $y_0 \in Y_0^+$ будем предполагать, что $\lim_{t \to +\infty} y(t, y_0) = 0$;

2) Выполнено частотное условие

$$\operatorname{Re}[(1 + \chi(i\omega - \lambda)\kappa_1)^*(1 + \chi(i\omega - \lambda)\kappa_2)] < 0 \ \forall \omega \in \mathbb{R}; \tag{57}$$

3) $(b,c)_{-1} < 0$.

Тогда система (50) устойчива по Лагранжу, т. е. любое решение системы (50) ограничено на $[t_0, +\infty)$.

Доказательство. Пусть $y(\cdot, t_0, y_0)$ - решение системы (50) с $y(t_0, t_0, y_0) = y_0$. Пусть $d \in Y_1$ - собственная функция оператора A, которая соответствует нулевому собственному числу, такая что $(C, d) = \zeta$.

По теореме Лихтарникова-Якубовича (Приложение A) существует оператор $P=P^*\in\mathcal{L}(Y_{-1},Y_0)\cap\mathcal{L}(Y_0,Y_1)$ и число $\delta>0$, такие что

$$2((A+\lambda I)y + B\xi, Py)_{-1,1} + (\kappa_2^{-1}\xi - Cy)(\kappa_1^{-1}\xi - Cy) \le -\delta(\|y\|_1^2 + |\xi|^2) \quad \forall y \in Y_1, \xi \in \mathbb{R}.$$
(58)

Подставив в (58) $\xi = 0$, получаем наравенство

$$2((A + \lambda I)y, Py)_{-1,1} + (Cy)^{2} \le -\delta ||y||_{1}^{2} \ \forall y \in Y_{1}.$$
 (59)

В силу неравенства (59), предположения 1) теоремы, а также наблюдаемости пары $(A+\lambda I,C)$, мы можем использовать обобщенную лемму Ляпунова ([10]), в силу которой существует разложение $Y_0=Y_0^+\oplus Y_0^-$ при $\dim Y_0^-=1$ такое, что выполняется

$$P_{|Y_0^+} \ge 0$$
 и $P_{|Y_0^-} \le 0$. (60)

Рассмотрим функцию Ляпунова $V(y)=(y,Py)_0$. Ее производная в силу системы (50)

$$\dot{V}(y(t)) = 2(Ay(t) + B\phi(Cy(t)), Py(t))_0 \tag{61}$$

Тогда из соотношения (58) и предположения (**F3**) получаем, что для v(t) := V(y(t)), где y - решение (50) выполнено

$$\frac{d}{dt}v(t) \le -2\lambda v(t)$$
 для п. в. $t \ge t_0$. (62)

Отсюда, в силу леммы 3.1.1 ([13]), множество $\{y|(y,Py)_0<0\}$ является положительно инвариантным для системы (50).

Из вышесказанного следует что $\mathcal{C} := \{y \in Y_1 | (y, Py)_0 < 0\}$ является положительно инвариантным квадратичным конусом размерности 1.

Легко проверить, что для решений системы (50) выполнено соотношение

$$y(t, t_0, y_0) - jd = y(t, t_0, y_0 - jd) \quad \forall t \ge t_o, j \in \mathbb{Z}.$$
 (63)

Следовательно внутренность

$$\Omega_j := \{ y \in Y_1 | (y - jd, P(y - jd))_0 < 0 \}$$
(64)

квадратичного конуса

$$\{y \in Y_1 | (y - jd, P(y - jd))_0 \le 0\}$$
(65)

является положительно инвариантным множеством.

В силу условия 3) в формулировке теоремы, по лемме 5 ([12]) существует вектор $r \in Y_0$, такой что

$$\operatorname{int} \mathcal{C} \cap \{ y \in Y_1 | (y, r)_0 = 0 \} = \emptyset. \tag{66}$$

Подставив в (58) $y=d,\ \xi=0,$ получаем $(d,Pd)_{-1,1}<0.$ Следовательно можно найти такое j, что

$$|(r, y_0)_0| < j|(r, d)_0|, \quad (y_0, Py_0)_0 \mp (y_0, Pd)_0 + j^2(d, Pd)_0 < 0.$$
 (67)

Из вышесказанного следует, что

$$y(t, t_0, y_0) \in \Gamma_j := \Omega_j \cap \Omega_{-j}. \tag{68}$$

Теперь покажем, что

$$|(r, y(t, t_0, y_0))_0| < j|(r, d)_0| \quad t \ge t_0.$$
(69)

Действительно, если это не так, то существует $\bar{t} > t_0$, такое что $|(r,y(t,t_0,y_0))_0| = j|(r,d)_0|$. А это значит, что для $\sigma=1$ или $\sigma=-1$ имеем $(y(\bar{t},t_0,y_0+\sigma jd),P(y(\bar{t},t_0,y_0)+\sigma jd))_0>0$, что противоречит условию $y(t,t_0,y_0)\in\Gamma_j$.

Теперь покажем ограниченность $y(t,t_0,y_0)$. В силу условия (66) оператор P может быть представлен в форме $P=M-\tau(r,r)_0$, где M - положительно определенный оператор, а τ положительное число.

Пусть ε будет положительным числом, таким что $M > \varepsilon I$. Для решения $y(t) = y(t, t_0, y_0)$, которое удовлетворяет неравенствам (68) и (69) справедливо

$$\varepsilon ||y(t) - jd||^{2} \le (y(t) - jd, M(y(t) - jd))_{0}
= (y(t) - jd, P(y(t) - jd))_{0} + \tau |(r, y(t) - jd)_{0}|^{2}
< \tau [2(r, y)_{0}^{2} + 2j^{2}(r, d)^{2}]
< 4\tau j^{2}(r, d)^{2}$$
(70)

для $t \geq t_0$, что означает ограниченность $y(\cdot, t_0, y_0)$ на $[t_0, +\infty)$. \square

Замечание 3 Эволюционные уравнения (50) описывают широкий класс дифференциальных уравнений в частных производных с периодическими нелинейностями. Например, можно показать, что уравнение синус-Гордона ([17]) может быть представлено в виде (50).

Приложение А

Частотная теорема для эволюционных систем

Для полноты изложения представим формулировку частотной теоремы Лихтарникова-Якубовича для эволюционных систем. Эта теорема дает необ-

ходимые и достаточные условия разрешимости некоторых операторных неравенств. В приложении предполагается, что все пространства и операторы комплексны, звездочка обозначает комплексное сопряжение.

Предположим что Y_1, Y_0, Y_{-1} гильбертовы пространства со скалярными произведениями $(\cdot, \cdot)_1, (\cdot, \cdot)_0, (\cdot, \cdot)_{-1}$ и нормами $\|\cdot\|_1, \|\cdot\|_0, \|\cdot\|_{-1}$, соответственно. Рассмотрим оснащение оснащение комплексного гильбертова пространства

 $Y_1 \subset Y_0 \subset Y_{-1}^{-1}$. Пусть Ξ будет также гильбертовым пространством со скалярным произведением (\cdot, \cdot) и нормой $\|\cdot\|_{\Xi}$.

Пусть A и B – линейные непрерывные операторы $A \in \mathcal{L}(Y_1,Y_{-1}), B \in \mathcal{L}(\Xi,Y_{-1})$. Введем следующие предположения.

(**H1**) Оператор $A \in \mathcal{L}(Y_1,Y_{-1})$ является регулярным, т. е., для любого $T>0,\ y_0\in Y_1,\psi_T\in Y_1$ и $f\in L^2(0,T;Y_0)$ решение прямой задачи Коши

$$\dot{y} = Ay + f(t), y(0) = y_0, \ a. \ a. \ t \in [0, T]$$

и двойственной задачи Коши

$$\dot{\psi} = -A^*\psi + f(t), \psi(T) = \psi_T, \ a. \ a. \ t \in [0, T]$$

сильно непрерывны по t по норме пространства Y_1 .

(**H2**) Пара (A,B) L^2 - управляема, т.е., для произвольного $y_0 \in Y_0$ существует управление $\xi(\cdot) \in L^2(0,\infty;\Xi)$ такое что задача Коши

$$\dot{y} = Ay + B\xi, y(0) = y_0$$

корректно поставлена на полуоси $[0,\infty)$, т.е., существует решение $y(\cdot)\in L^{\infty}$, удовлетворяющее $y(0)=y_0$.

(Н3) Пусть $\mathcal{F}(y,\xi)$ – эрмитова форма на $Y_1 \times \Xi$, т. е.,

$$\mathcal{F}(y,\xi) = (F_1y,y)_{-1,1} + 2\operatorname{Re}(F_2y,\xi)_{\Xi} + (F_3\xi,\xi)_{\Xi},$$

где

$$F_1 = F_1^* \in \mathcal{L}(Y_1, Y_{-1}), F_2 \in \mathcal{L}(Y_0, \Xi), F_3 = F_3^* \in \mathcal{L}(\Xi, \Xi).$$

Определим число

$$\alpha := \sup_{\omega, y, \xi} (\|y\|_1^2 + \|\xi\|_{\Xi}^2)^{-1} \mathcal{F}(y, \xi),$$

где супремум берется по всем тройкам $(\omega, y, \xi) \in \mathbb{R}_+ \times Y_1 \times \Xi$, таким что $i\omega y = Ay + B\xi$.

 $^{^{1}}$ Построение оснащения гильбертова пространства в комплексном случае аналогично вещественному случаю

Теорема 4 (Частотная теорема Лихтарникова-Якубовича для неособого случая, ([7])) Предположим что для линейных операторов $A \in \mathcal{L}(Y_1,Y_{-1}), B \in \mathcal{L}(\Xi,Y_{-1})$ и эрмитовой формы \mathcal{F} на $Y_1 \times \Xi$ выполнены предположения (**H1**), (**H2**). Тогда существует оператор $P = P^* \in \mathcal{L}(Y_{-1},Y_0) \cap \mathcal{L}(Y_0,Y_1)$ и число $\delta > 0$ такие что

$$2\operatorname{Re}(Ay + B\xi, Py)_{-1,1} + \mathcal{F}(y,\xi) \le -\delta(\|y\|_1^2 + \|\xi\|_{\Xi}^2), \forall (y,\xi) \in Y_1 \times \Xi, \quad (71)$$

тогда и только тогда, когда выполнено частотное условие $\alpha < 0$ где α берется из **(H3)**.

Замечание 4 Если в (71) операторы A, B и все пространства вещественны, тогда оператор P, который является решением этого неравенства, также может быть взят вещественным ([7]).

Список литературы

- [1] Березанский, Ю. М., "Разложение по собственным функциям самосопряженных операторов", Наукова думка, Киев, (1965).
- [2] Блягоз, З. У., Леонов, Г. А., Частотные критерии устойчивости в большом нелинейных систем, Вестник ЛГУ, 13, (1978), 18-23.
- [3] Буркин, И. М., Якубович, В. А., Частотные условия существования двух почти периодических решений у нелинейной системы автоматического регулирования, Сибирск. математ. журн., **16**, 5, (1975), 916 924.
- [4] Леонов, Г. А., *Об ограниченности траекторий фазовых систем*, Сибирский математ. журн., **15**, 3, (1974), 687–692.
- [5] Леонов, Г. А., Φ азовая синхронизация. Теория и приложения, Автомат. и телемех., **67**, 10, (2006), 47 85.
- [6] Леонов, Г. А., Чурилов, А. Н., Частотные условия ограниченности решений фазовых систем, Динамика систем, 10, (1976), 3-20.
- [7] Лихтарников, А. Л., Якубович, В. А., *Частотная теорема для уравнений эволюционного типа*, Сибирск. математ. журн., **17**, 5, (1976), 1069–1085.

- [8] Лихтарников, А. Л., Якубович, В. А., Дихотомия и абсолютная устойчивость неопределенных нелинейных систем в гильбертовых пространствах, Алгебра и анализ, 9, 6, (1997), 132–155.
- [9] Brézis, H., Problemes unilateraux, J. Math. Pures Appl., 51, (1972), 1–168.
- [10] Datko, R., Extending a theorem of A. M. Liapunov to Hilbert spaces, J. Math. Pures Appl., **32**, (1970), 610–616.
- [11] Duvant, G., Lions, J. L., "Inequalities in Mechanics and Physics", Springer-Verlag, Berlin, (1976).
- [12] Kalinin, Yu. N., Reitmann, V., Almost periodic solutions in control systems with monotone nonlinearities, Differential equations and control processes, 4, (2012), 40–68.
- [13] Leonov, G. A., Reitmann, V., Smirnova, V. B., "Non-Local Methods for Pendulum-Like Feedback Systems", Teubner, Stuttgart, (1992).
- [14] Lions, J. L., Magenes, E., "Non-Homogeneous Boundary Value Problems and Applications", Springer. Berlin, vol. I–III, (1972).
- [15] Noldus, E., New direct Lyapunov-type method for studying synchronization problems, Automatika, 13, 2, (1977), 139–151.
- [16] Popov, S. A., Reitmann, V., Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions, Discrete Contin. Dyn. Syst., 34, 1, (2014), 249–267.
- [17] Webb, G. F., A bifurcation problem for a nonlinear hyperbolic partial differential equation, SIAM Journal on Mathematical Analysis, 10, 5, (1979), 922—932.
- [18] Wloka, J., "Partial Differential Equations Cambridge Univ. Press. Cambridge, (1987).