

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по домашнему заданию

по курсу «Анализ Алгоритмов»

на тему: «Графовые модели программ»

Студент группы $\underline{ИУ7-51Б}$	(Полича доло)	Постнов С. А. (Фамилия И.О.)	
	(Подпись, дата)	(Фамилия И.О.)	
Преподаватель		Волкова Л. Л.	
	(Подпись, дата)	(Фамилия И.О.)	
Преподаватель		Строганов Ю. В	
	(Полпись, дата)	(О.И випимеФ)	

Содержание

1 Выполнение задания						
	1.1	Реализуемый алгоритм				
	1.2	Выбор	языка программирования	3		
	1.3	Код пр	рограммы	3		
	1.4	4 Модели программ				
		1.4.1	Граф управления программы	5		
		1.4.2	Информационный граф программы	6		
		1.4.3	Операционная история программы	7		
		1.4.4	Информационная история программы	8		

1 Выполнение задания

1.1 Реализуемый алгоритм

Расчет значения полинома по схеме Горнера.

1.2 Выбор языка программирования

Для выполнения домашнего задания был выбран язык С++.

1.3 Код программы

Листинг 1.1 – Реализация алгоритма расчета значения полинома по схеме Горнера

```
1 int main() {
       srand(time(0));
2
3
                                                      // (1)
       int power = 2;
 4
       arrayT < double > koefs(power + 1);
                                                      // (2)
5
6
       for (int i = 0; i \le power; ++i) {
7
                                                      // (3)
8
           koefs[i] = rand() \% 10 - 5;
                                                      // (4)
           cout << "Коэффициент при х^"
9
                << power - i << ": "
10
                << koefs[i] << endl;
11
12
       }
13
       int n = 5;
14
                                                      // (5)
       arrayT < double > xValues(n);
                                                      // (6)
15
16
17
       for (int i = 0; i < n; ++i)
                                                      // (7)
           xValues[i] = rand() \% 10 - 5;
18
                                                      // (8)
19
20
       for (int i = 0; i < n; ++i) {
                                                      // (9)
21
```

```
// (10)
           double x = xValues[i],
22
                                                      // (11)
23
                   cur,
                                                      // (12)
24
                   prev;
25
           for (int j = 0; j \le power; ++j) {
                                                      // (13)
26
27
               cur = koefs[j];
                                                      // (14)
28
29
                if (j)
                                                      // (15)
30
                                                      // (16)
31
                    prev = cur + x * prev;
32
                else
                                                      // (17)
33
                    prev = cur;
           }
34
35
           cout << "Результа для x= "
                                                      // (18)
36
                << xValues[i] << ": "
37
38
                << prev << endl;
      }
39
40 }
```

1.4 Модели программ

На рисунках 1.1–1.4 представлены графовыем модели программы.

1.4.1 Граф управления программы

Рисунок 1.1 – Граф управления

1.4.2 Информационный граф программы

Рисунок 1.2 – Информационный граф

1.4.3 Операционная история программы

Рассчитаем значение полинома вида x+1 для значений x=1,2.

Рисунок 1.3 – Операционная история

1.4.4 Информационная история программы

Рисунок 1.4 – Информационная история

Возможность распараллеливания

Один из способов — разделить вычисления на несколько частей, каждую из которых будет обрабатывать свой поток. Например, можно разделить массив коэффициентов на равные подмассивы и запустить вычисление частей полинома в отдельных потоках. То есть каждый поток будет обрабатывать новый подмасив как отдельный полином.