

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Tutoria em Programação de Computadores I BCC701 Laços Aninhados

Exercício 1

Seja $f : R2 \rightarrow R$ definida por:

$$f(x,y) = \begin{cases} (1/(x^*y)) + \text{math.sin}(x+y) & \text{se } x + y \text{ for par} \\ ((y^{**}2)-(4^*x))^{**}(1/2) & \text{se } x * y \text{ for impar} \\ (x+y)^{**}(1/3) & \text{nos demais casos} \end{cases}$$

Escreva um programa para gerar a tabela de valores dessa função (conforme o exemplo a seguir), para valores de **x** e **y** nos seguintes intervalos:

- $2 \le x \le 30$ (com incrementos de 2 em x)
- $3 \le y \le 24$ (com incrementos de 3 em y)

A seguir, um exemplo de execução do programa.

Exemplo de exercução

X/Y	I	3	6	9	12	15	18	21	24
2	1	1.71	1.07	2.22	1.03	2.57	0.94	2.84	0.78
4	1	1.91	-0.50	2.35	-0.27	2.67	0.01	2.92	0.28
6	1	2.08	-0.51	2.47	-0.74	2.76	-0.90	3.00	-0.98
8	1	2.22	1.01	2.57	0.92	2.84	0.77	3.07	0.56
10	1	2.35	-0.27	2.67	-0.00	2.92	0.28	3.14	0.53
12	1	2.47	-0.74	2.76	-0.90	3.00	-0.98	3.21	-0.99
14	1	2.57	0.92	2.84	0.77	3.07	0.56	3.27	0.30
16	1	2.67	0.00	2.92	0.28	3.14	0.53	3.33	0.75
18	1	2.76	-0.90	3.00	-0.98	3.21	-0.99	3.39	-0.91
20	1	2.84	0.77	3.07	0.56	3.27	0.30	3.45	0.02
22	1	2.92	0.28	3.14	0.53	3.33	0.75	3.50	0.90
24	1	3.00	-0.98	3.21	-0.99	3.39	-0.91	3.56	-0.77
26	1	3.07	0.56	3.27	0.30	3.45	0.02	3.61	-0.26
28	1	3.14	0.54	3.33	0.75	3.50	0.90	3.66	0.99
30	1	3.21	-0.99	3.39	-0.91	3.56	-0.77	3.71	-0.56

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 2

Uma Seguência de Collatz modificada pode ser definida do seguinte modo:

- Dado um número inteiro positivo n, se o resto da divisão inteira de n por 3 for 0, divida n por 3 (n/3);
- se o resto for 1, multiplique n por 4, some 2 e divida o resultado por 3 ((4n+2)/3);
- se o resto for 2, multiplique n por 2, subtraia 1 e divida o resultado por 3 ((2n-1)/3).
- Repita esse processo para o valor obtido, e assim sucessivamente, até que o valor obtido seja igual a 1.

Escreva um programa que:

- 1) pergunte ao usuário se ele quer calcular uma sequência (s/S/n/N);
- 2) em caso afirmativo, leia um valor inteiro positivo **n** e imprima os valores da *Sequência* de *Collatz* para **n**. (OBS: Não é necessário verificar se o valor digitado é válido)
- 3) o processo se repete até que seja digitado (n/N).

Segue um exemplo de execução do programa.

Exemplo de exercução

```
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
Digite um número inteiro positivo: 12
Sequencia de Collatz:
12 4 6 2 1
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
                                                     sim
ERRO: Resposta inválida: SIM
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
                                                     j
ERRO: Resposta inválida: J
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
Digite um número inteiro positivo: 231
Sequencia de Collatz:
231 77 51 17 11 7 10 14 9 3 1
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
                                                     Não
ERRO: Resposta inválida: NÃO
Deseja calcular a Sequência de Collatz (s/S/n/N) ?
Fim do Programa!
```


Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 3

A corrente que flui através de um diodo semicondutor, é dada pela equação:

$$i_{D} = I_{o} * \left(e^{\frac{q * vD}{k * T}} - 1 \right)$$

onde:

i_D = corrente no diodo, em amp

V_D = voltagem no diodo, em volts

 I_0 = perda de corrente no diodo, em amp

q = carga de elétron, 1.602 x 10-19 coulomb

k = constante de Boltzmann, 1.38 x 10-23 joule/K

T = temperatura, em Kelvin

A perda de corrente I_0 é de 2.0 x 10-6 amp. Escreva um programa que leia a temperatura de trabalho do diodo (T) e calcule a corrente (I_D) através do diodo, para cada valor da voltagem de -1.0 V a 0.6 V, em intervalos de 0.1 V. Ao final, o programa deve perguntar ao usuário se deseja sair ou executar novamente solicitando uma nova temperatura. O programa deve executar pelo menos uma vez.

Exemplo de execução

```
Informe a temperatura (em Kelvin): 350
Tensão | Corrente
 -1.0 \quad I \quad -0.0
 -0.9 \mid -0.0
 -0.8 \mid -0.0
 -0.7
      1 -0.0
 -0.6
      | -0.0
 -0.5
      | -0.0
      | -0.0
 -0.3 | -0.0
      1 -0.0
 -0.1
      | -0.0
      1 -0.0
 -0.0
  0.1
      1 0.0
      | 0.0
  0.2
  0.3
      0.0
  0.4 | 1.2
  0.5
      | 31.9
  0.6 | 878.5
Deseja sair? (s/S/n/n): N
Informe a temperatura (em Kelvin): 273.15
Tensão | Corrente
 -1.0
      1 -0.0
 -0.9
      1 -0.0
 -0.8
       1 -0.0
 -0.7
      | -0.0
      1 -0.0
 -0.6
 -0.5
      | -0.0
 -0.4
       | -0.0
```


Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

-0.3 -0.0
-0.2 -0.0
-0.1 -0.0
-0.0 -0.0
0.1 0.0
0.2 0.0
0.3 0.7
0.4 48.3
0.5 3385.7
0.6 237338.5
eseja sair? $(s/S/n/n)$: sim
RRO: opção inválida ! sim
eseja sair? (s/S/n/n):
RRO: opção inválida !
eseja sair? (s/S/n/n): s
im do Programa !
im do l'iograna .

Instituto de Ciências Exatas e Biológicas – ICEB

Departamento de Computação - DECOM

Exercício 4

Seja f a seguinte função definida em \Re^2 :

$$f(x,y) = \begin{cases} (x*y) / (x+y) & \text{se } x = y \\ (x**2) + (y**2) & \text{se } (x+y) \text{ \'e impar} \\ x+y & \text{nos demais casos} \end{cases}$$

Escreva um programa para gerar a tabela da função f para valores de x e y nos seguintes intervalos: $1 \le x \le 8$ e $1 \le y \le x$, sendo x e y ambos incrementados de f em f, conforme ilustrado no exemplo a seguir.

Exemplo de exercução

	TABELA DA FUNÇÃO									
x/y	1	2	3	4	5	6	7	8		
1 I	0.5									
2	5.0	1.0								
3	4.0	13.0	1.5							
4	17.0	6.0	25.0	2.0						
5 I	6.0	29.0	8.0	41.0	2.5					
6	37.0	8.0	45.0	10.0	61.0	3.0				
7	8.0	53.0	10.0	65.0	12.0	85.0	3.5			
8	65.0	10.0	73.0	12.0	89.0	14.0	113.0	4.0		