Universidade de Aveiro, DETI

Arquitetura de Computadores I, Teste Prático

		AND LELIVO	•	
Nº Mec.:	_ Nome: _			

<u>NOTE BEM</u>: Leia atentamente todas as questões, comente o código usando a linguagem C e respeite a convenção de passagem de parâmetros e salvaguarda de registos que estudou. Na tradução para o *Assembly* do MIPS respeite rigorosamente os aspetos estruturais e a sequência de instruções indicadas no código original fornecido.

O código em C apresentado pode não estar funcionalmente correcto, pelo que **não deve ser interpretado**.

Este teste é constituído por 4 folhas.

1) Analise o programa *Assembly* seguinte e responda às questões que se seguem:

	.data		#	0×10010000
X1 :	.asciiz	"TEST1"	#	
	.align	2	#	
X2:	.space	20	#	
x3:				
	.text		#	0×00400000
	.globl	main		
main:	la	\$t4,X2	#	
	ori	\$t5,\$0,4	#	
	xor	\$t0,\$t0,\$t0	#	
	xor	\$t1,\$t1,\$t1	#	
L1:	beq	\$t0,\$t5,L2	#	
	add	\$t2,\$t0,\$t0	#	
	add	\$t3,\$t2,\$t2	#	
	addu	\$t3,\$t3,\$t4	#	
	sw	\$t2,0(\$t3)	#	
	add	\$t1,\$t1,\$t2	#	
	addi	\$t0,\$t0,1	#	
	j	L1	#	
L2:	sw	\$t1,4(\$t3)	#	
	jr	\$ra	#	

- a) Qual o espaço total de memória ocupado pela string "X1"?
- b) Qual o endereço de memória a que corresponde o label "x2"?
- c) Se "x2" for o endereço inicial de um array de inteiros, qual a dimensão máxima desse array?
- d) Se "x2" for o endereço inicial de um *array* de inteiros, qual o endereço de memória da posição x2[3] desse *array*?
- e) Qual o número total de bytes de memória usado pelo segmento de dados (x3-x1)?
- f) Considerando que a primeira instrução do trecho de código fornecido está armazenada a partir do endereço 0x0040000, quais os endereços a que correspondem os labels "L1" e "L2"? (note que a instrução "1a" é decomposta em duas instruções nativas).

L1: ______L2: _____

- g) Quantas vezes é realizado o ciclo de programa?
- h) Qual o valor da *word* de 32 bits armazenada pelo programa na posição **x2 [3]** do *array*?______
- i) Qual o valor do registo \$t1 no fim do programa?

\$t1:_____

j) Qual o endereço de memória acedido pela instrução "sw \$t1,4(\$t3)"?______

Arquitetura de Computadores I - TP1 -

N.º Mec.: _____ Nome: _____

2) Codifique em Assembly do MIPS a seguinte função split odd():

```
int split odd(int *a, int N, int *p odd )
                                                                 Variável
                                                                           Registo(s)
  int n even = 0;
                                                                    а
  int *p;
                                                                    Ν
                                                                  p_odd
  for (p = a; p < (a + N); p++)
                                                                 n_even
    if( (*p % 2) != 0 )
                                                                   *р
      *p_odd = *p;
      p_odd++;
    else
      n even++;
  return (N - n_even);
```

Label	Instrução em assembly	Comentário em C	Label	Instrução em assembly	Comentário em C
			_		
			•		
			-		
			-		
			,		

Arquitetura de Computadores I - TP1 -

N.º Mec.:	Nome:	

3) Codifique em Assembly do MIPS a seguinte função main ():

```
#define SIZE 7
int splito(int *, int, int *);

int main(void)
{
    static int val[SIZE] = {8, 4, 15, -1987, 9, 27, 16};
    static int odd[SIZE];
    int nodd, i;

    nodd = splito( val, SIZE, odd );
    print_string("Result is:");
    for( i=0; i < nodd; i++ ) {
        print_int10( odd[i] );
    }
    return 1;
}</pre>
```

Label	Instrução em assembly	Comentário em C	Label	Instrução em assembly	Comentário em C
			••		
			••		
			••		
			••		
			••		

Cotações: 1-25%, 2-25%, 3-25%, 4-25%

Arquitetura de Computadores I - TP1 -

N.º Mec.:	Nome:	

4) Codifique em Assembly do MIPS a seguinte função count ():

```
int isn( char, char );

int count(char *p, char c)
{
   int n=0;
   while ( *p != '\0' )
   {
        n = n + isn(*p, c);
        p++;
   }
   return n;
}

Variável Registo(s)

p

c

n

*p

return n;
```

Label	Instrução em assembly	Comentário em C	Label	Instrução em assembly	Comentário em C

Cotações: 1-25%, 2-25%, 3-25%, 4-25%