2 Suppose $\{K_{\delta}\}$ is a family of kernels that satisfies:

- (i) $|K_{\delta}(x)| \leq A\delta^{-d}$ for all $\delta > 0$.
- (ii) $|K_{\delta}(x)| \leq A\delta/|x|^{d+1}$ for all $\delta > 0$.
- (iii) $\int_{-\infty}^{\infty} K_{\delta}(x) dx = 0$ for all $\delta > 0$.

Thus K_{δ} satisfies conditions (i) and (ii) of approximations to the identity, but the average value of K_{δ} is 0 instead of 1. Show that if f is integrable on \mathbb{R}^d , then

$$(f * K_{\delta})(x) \to 0$$
 for a.e. x , as $\delta \to 0$.

Solution Let f be integrable on \mathbb{R}^d . By definition,

$$\begin{aligned} |(f * K_{\delta})(x)| &= \left| (f * K_{\delta})(x) - f(x) \int_{\mathbb{R}^{d}} K_{\delta} \right| \\ &= \left| \int_{\mathbb{R}^{d}} f(x - y) K_{\delta}(y) \, \mathrm{d}y - \int_{\mathbb{R}^{d}} f(x) K_{\delta}(y) \, \mathrm{d}y \right| \\ &\leq \int_{\mathbb{R}^{d}} |f(x - y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y \\ &= \int_{|y| \leq \delta} |f(x - y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y + \sum_{n=0}^{\infty} \int_{2^{n} \delta \leq |y| \leq 2^{n+1} \delta} |f(x - y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y. \end{aligned}$$

By property (i), we have

$$\int_{|y|<\delta} |f(x-y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y \le \frac{A}{\delta^d} \int_{|y|<\delta} |f(x-y) - f(x)| \, \mathrm{d}y = A\mathcal{A}(\delta),$$

where \mathcal{A} is as defined in the book.

By property (ii), we have for each $n \geq 0$,

$$\int_{2^{n}\delta \leq |y| \leq 2^{n+1}\delta} |f(x-y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y \leq \frac{A\delta}{(2^{n+1}\delta)^{d+1}} \int_{|y| \leq 2^{n+1}\delta} |f(x-y) - f(x)| \, \mathrm{d}y \\
= \frac{A}{2^{n+1}(2^{n+1}\delta)^{d}} \int_{|y| \leq 2^{n+1}\delta} |f(x-y) - f(x)| \, \mathrm{d}y \\
= A'2^{-n} \mathcal{A}(2^{n+1}\delta).$$

Let $\varepsilon > 0$

We pick $N \in \mathbb{N}$ large enough so that $\sum_{n \ge N} 2^{-n} < \varepsilon$.

By Lemma 2.2, we can make δ small enough so that for each $i = 0, \dots, N-1$, we have

$$\mathcal{A}(2^n\delta) < \frac{\varepsilon}{N}.$$

By the same lemma, we also have that $A(\delta) \leq M$ for some M > 0 for all δ .

Hence, putting the estimates together, we have

$$\int_{|y| \le \delta} |f(x - y) - f(x)| |K_{\delta}(y)| \, \mathrm{d}y \le \sum_{n=0}^{N-1} A' 2^{-n} \mathcal{A}(2^{n+1} \delta) + \sum_{n=N}^{\infty} A' 2^{-n} \mathcal{A}(2^{n+1} \delta)$$

$$\le \frac{A\varepsilon}{N} + (N-1) \frac{A'\varepsilon}{N} + A' M\varepsilon$$

$$\le C\varepsilon,$$

for some C.

Since ε was arbitrary, it follows from $|(f * K_{\delta})(x)| \leq C\varepsilon$ that $(f * K_{\delta})(x) \xrightarrow{\delta \to 0} 0$.

- **3** Suppose 0 is a point of (Lebesgue) density of the set $E \subseteq \mathbb{R}$. Show that for each of the individual conditions below there is an infinite sequence of points $x_n \in E$, with $x_n \neq 0$, and $x_n \to 0$ as $n \to \infty$.
 - a. The sequence also satisfies $-x_n \in E$ for all n.
 - b. In addition, $2x_n$ belongs to E for all n.

Generalize.

Solution Let t be a non-zero real number such that $|t| \le 1$. We will show that there is a sequence $\{x_n\}_{n \ge 1} \subseteq E \setminus \{0\}$ converging to 0 such that $x_n/t \in E$ for all $n \ge 1$, also. This will generalize both (a) and (b), by taking t = -1 and t = 1/2, respectively.

Let r > 0. Consider the sets $(-r, r) \cap E$ and $(-r, r) \cap tE := \{tx \mid x \in E\}$. Note that both of these sets are measurable since E and tE are measurable, and since measurable sets are closed under finite intersections. Then

$$m((-r,r) \cap tE) = m\left(t\left(-\frac{r}{|t|}, \frac{r}{|t|}\right) \cap tE\right)$$
$$= m\left(t\left[\left(-\frac{r}{|t|}, \frac{r}{|t|}\right) \cap E\right]\right)$$
$$= |t|m\left(\left(-\frac{r}{|t|}, \frac{r}{|t|}\right) \cap E\right)$$
$$\geq |t|m((-r,r) \cap E).$$

The last inequality holds since $|t| \leq 1$, so

$$(-r,r)\subseteq\left(-rac{r}{|t|},rac{r}{|t|}
ight).$$

This gives us

$$m((-r,r) \cap tE) + m((-r,r) \cap E) \ge (1+|t|)m((-r,r) \cap E).$$

By definition,

$$\lim_{r \to 0} \frac{m((-r,r) \cap E)}{2r} = 1,$$

so for any $\varepsilon > 0$, there exists R > 0 such whenever 0 < r < R, we have

$$\left| \frac{m((-r,r) \cap E)}{2r} - 1 \right| < \varepsilon \implies \frac{m((-r,r) \cap E)}{2r} > 1 - \varepsilon.$$

In particular, since 1/(1+|t|) < 1, we can choose ε so that

$$\frac{m((-r,r)\cap E)}{2r} > \frac{1}{1+|t|}.$$

Combining with the previous inequality, we get that

$$m((-r,r) \cap tE) + m((-r,r) \cap E) \ge (1+|t|)m((-r,r) \cap E) > 2r = m((-r,r)).$$

Thus, the intersection of $(-r,r) \cap E$ and $(-r,r) \cap tE$ must have positive measure. Otherwise, discarding the intersection from both sets, we can invoke the subset property and additivity of Lebesgue measure to conclude that

$$m((-r,r)\cap tE)+m((-r,r)\cap E)=m(((-r,r)\cap tE)\cup ((-r,r)\cap E))\leq 2r,$$

which is a contradiction, so their intersection has positive measure. In particular, it is non-empty for all r.

Thus, we can define x_n as follows:

Let
$$0 < x_1 \in (-r_1, r_1) \cap E \cap tE$$
 for any $r_1 > 0$. Then $x_1 \in tE \implies x_1/t \in E$.

Take
$$r_2 = |x_1|/2$$
. Then pick $0 < x_2 \in (-r_2, r_2) \cap E \cap tE \neq \emptyset$.

Proceeding inductively, we construct a sequence with $|x_n| \le |x_{n-1}|/2 \implies |x_n| \le |x_1|/2^{n-1}$ for all n with $x_n/t \in E$ for all $n \ge 1$. The sequence clearly converges to 0 as $n \to \infty$, since $1/2^{n-1} \xrightarrow{n \to \infty} 0$, as desired.

4 Prove that if f is integrable on \mathbb{R}^d , and f is not identically zero, then

$$f^*(x) \geq \frac{c}{|x|^d}, \quad \text{for some } c > 0 \text{ and all } |x| \geq 1.$$

Conclude that f^* is not integrable on \mathbb{R}^d . Then, show that the weak type estimate

$$m(\{x \mid f^*(x) > \alpha\}) \le \frac{c}{\alpha}$$

for all $\alpha > 0$, whenever $\int |f| = 1$, is best possible in the following sense: if f is supported in the unit ball with $\int |f| = 1$, then

$$m(\{x \mid f^*(x) > \alpha\}) \ge \frac{c'}{\alpha}$$

for some c' > 0 and all sufficiently small α .

[Hint: For the first part, use the fact that $\int_{B} |f| > 0$ for some ball B.]

Solution Let f be integrable on \mathbb{R}^d and not identically 0.

Since f is not identically 0, there exists a ball $B \subseteq \mathbb{R}^d$ centered at the origin with finite radius such that $\int_B |f| > 0$, which implies, by definition, that $f^*(x) > 0$ for all $x \in \mathbb{R}^d$, since we can make any ball around x large enough to include all of B. We can also scale B so that its radius is $R \ge 1$.

 $x \in B$

In this case, we have, by definition,

$$f^*(x) \ge \frac{1}{v_d R^d} \int_B |f| \ge \frac{1}{v_d R^d |x|^d} \int_B |f| := \frac{c_0}{|x|^d}.$$

 $x \notin B$

We can take the ball $D := B_{|x|+R}(0)$, which satisfies $x \in D$ and $B \subseteq D$. Notice that $|x| + R \le |x| + R|x|$, since $|x| \ge 1$. Then

$$f^*(x) \geq \frac{1}{m(D)} \int_D |f| \geq \frac{1}{v_d(|x|+R)^d} \int_B |f| \geq \frac{1}{v_d(|x|+R|x|)^d} \int_B |f| = \frac{1}{v_d|x|^d(1+R)^d} \int_B |f| \coloneqq \frac{c_1}{|x|^d}.$$

Take $c = \min\{c_0, c_1\}$ to get that $f^*(x) \ge c/|x|^d$ whenever $|x| \ge 1$, as desired.

Hence, f^* is not integrable on \mathbb{R}^d since $1/|x|^d$ is not integrable on $\{x \in \mathbb{R}^d \mid |x| \ge 1\}$.

Let f be supported in the unit ball B_1 with $\int |f| = 1$. In particular, f satisfies the conditions of the first part of this problem.

For $|x| \ge 1$, we have, from the first part of the problem, that $f^*(x) \ge c/|x|^d$, for some c > 0 and $|x| \ge 1$.

Notice that given any $\alpha > 0$, we have

$$\left\{x \in \mathbb{R}^d \mid 1 \le |x| < \left(\frac{c}{\alpha}\right)^{1/d}\right\} = \left\{x \in \mathbb{R}^d \mid f^*(x) \ge \frac{c}{|x|^d} > \alpha\right\} \subseteq \left\{x \in \mathbb{R}^d \mid f^*(x) > \alpha\right\}.$$

Hence, by the subset property of Lebesgue measure,

$$v_d\left(\frac{c}{\alpha} - 1\right) = v_d\frac{c}{\alpha} - v_d(1^d) = m\left(\left\{x \in \mathbb{R}^d \mid 1 \le |x| < \left(\frac{c}{\alpha}\right)^{1/d}\right\}\right) \le m\left(\left\{x \in \mathbb{R}^d \mid f^*(x) > \alpha\right\}\right).$$

If $\alpha < c/2$, then

$$m(\lbrace x \in \mathbb{R}^d \mid f^*(x) > \alpha \rbrace) \ge v_d \left(\frac{c - \alpha}{\alpha}\right) \ge \frac{v_d c}{2\alpha} := \frac{c'}{\alpha},$$

where $c' = v_d c/2$.

1 Show that properties (i) and (ii) in the definition of a Hilbert space imply property (iii): the Cauchy-Schwarz inequality $|\langle f,g\rangle| \le \|f\| \cdot \|g\|$ and the triangle inequality $\|f+g\| \le \|f\| + \|g\|$.

[Hint: For the first inequality, consider $\langle f + \lambda g, f + \lambda g \rangle$ as a positive quadratic function of λ . For the second, write $||f + g||^2$ as $\langle f + g, f + g \rangle$.]

Solution Cauchy-Schwarz inequality:

Let $\lambda \in \mathbb{C}$.

Then since $\langle f + \lambda g, f + \lambda g \rangle = ||f + \lambda g||^2 \ge 0$,

$$\begin{split} 0 & \leq \langle f + \lambda g, f + \lambda g \rangle \\ & = \langle f, f + \lambda g \rangle + \lambda \langle g, f + \lambda g \rangle \\ & = \overline{\langle f + \lambda g, f \rangle} + \lambda \overline{\langle f + \lambda g, g \rangle} \\ & = \overline{\langle f, f \rangle} + \lambda \overline{\langle g, f \rangle} + \lambda \overline{\langle (f, g) + \lambda \langle g, g \rangle} \\ & = \|f\|^2 + \lambda (\overline{\langle f, g \rangle} + \overline{\langle f, g \rangle}) + \lambda^2 \|g\|^2 \end{split}$$

Take $\lambda = -\langle f, g \rangle / ||g||^2$. Then

$$\begin{split} 0 & \leq \|f\|^2 + \lambda(\langle f, g \rangle + \overline{\langle f, g \rangle}) + \lambda^2 \|g\|^2 \\ & = \|f\|^2 + \frac{-\langle f, g \rangle^2}{\|g\|^2} - \frac{|\langle f, g \rangle|^2}{\|g\|^2} + \frac{\langle f, g \rangle^2}{\|g\|^2} \\ |\langle f, g \rangle|^2 & \leq \|f\|^2 \|g\|^2 \\ |\langle f, g \rangle| & \leq \|f\| \|g\|, \end{split}$$

so Cauchy-Schwarz holds.

Triangle inequality:

Taking $\lambda = 1$ in the calculation above, we find that

$$||f + g||^2 = ||f||^2 + ||g||^2 + \langle f, g \rangle + \overline{\langle f, g \rangle}.$$

 $\langle f,g \rangle + \overline{\langle f,g \rangle} = \operatorname{Re} \langle f,g \rangle$, so using the triangle inequality on $\mathbb R$ with the usual metric, we get

$$||f+g||^2 \le ||f||^2 + ||g||^2 + 2|\langle f, g \rangle| \le ||f||^2 + ||g||^2 + 2||f|||g|| = (||f|| + ||g||)^2.$$

Taking square roots on both sides preserves inequality since \sqrt{x} is an increasing function on $[0, \infty)$, so we get

$$||f + g|| \le ||f|| + ||g||$$

as desired.

2 In the case of equality in the Cauchy-Schwarz inequality we have the following. If $\|\langle f, g \rangle\| = \|f\| \|g\|$ and $g \neq 0$, then f = cg for some scalar c.

[Hint: Assume ||f|| = ||g|| = 1 and $\langle f, g \rangle = 1$. Then f - g and g are orthogonal, while f = f - g + g. Thus, $||f||^2 = ||f - g||^2 + ||g||^2$.]

Solution Note that if ||f|| = 0, then by definition, f = 0, so f = 0g. Assume from now on that f is not identically 0. Assume, without loss of generality, that ||f|| = ||g|| = 1. Given any f and g, we can normalize them by dividing by ||f|| and ||g||, respectively. Then by the result, we have that

$$\frac{f}{\|f\|} = c \frac{g}{\|g\|} \implies f = c \frac{\|f\|}{\|g\|} g,$$

so the result holds for a general f and g.

Assume from now on that f and g are normalized.

Notice that $\langle f - g, g \rangle = \langle f, g \rangle - \langle g, g \rangle = 1 - 1 = 0$, so f - g and g are orthogonal. Hence, by the calculation in Exercise 1,

$$||f||^2 = ||f - g + g||^2 = ||f - g||^2 + ||g||^2.$$

But $||f||^2 = ||g||^2$, so we get that $||f - g||^2 = 0 \iff f = g$, as desired.

4 Prove from the definition that $\ell^2(\mathbb{Z})$ is complete and separable.

Solution $\ell^2(\mathbb{Z})$ is complete:

Let $\{x^{(n)}\}_{n\geq 1}$ be a Cauchy sequence in $\ell^2(\mathbb{Z})$. By definition, for all $\varepsilon>0$, there exists $N\in\mathbb{N}$ such that for all $n,m\geq N$,

$$||x^{(n)} - x^{(m)}|| = \left(\sum_{k = -\infty}^{\infty} |x_k^{(n)} - x_k^{(m)}|^2\right)^{1/2} < \sqrt{\varepsilon} \implies |x_k^{(n)} - x_k^{(m)}| < \varepsilon \ \forall k.$$

Thus, for every k, the sequence $\{x_k^{(n)}\}_{n\geq 1}$ is Cauchy in \mathbb{R} , which is complete. Hence, it converges to some $x_k\in\mathbb{R}$.

We'll now show that $\{x^{(n)}\}_{n\geq 1}$ converges to $x\coloneqq\{x_k\}_{k=-\infty}^\infty$ in the $\ell^2(\mathbb{Z})$ norm.

Fix $M \in \mathbb{N}$. Since $\{x^{(n)}\}_{n\geq 1}$ is Cauchy in $\ell^2(\mathbb{Z})$, for $n, m \geq N$,

$$\sum_{k=-M}^{M} |x_k^{(n)} - x_k^{(m)}|^2 < \varepsilon$$

Since the sum is finite, we can take $m \to \infty$ to get

$$\sum_{k=-M}^{M} |x_k^{(n)} - x_k|^2 \le \varepsilon.$$

Then the sum as a sequence of M is monotonically increasing, since each $|x_k^{(n)} - x_k|^2 \ge 0$, and the sum is bounded by ε for all M, so by the monotone convergence theorem,

$$\sum_{k=-M}^{M} |x_k^{(n)} - x_k|^2 \xrightarrow{M \to \infty} \sum_{k=-\infty}^{\infty} |x_k^{(n)} - x_k|^2 \le \varepsilon,$$

so the sequence converges to x in the $\ell^2(\mathbb{Z})$ norm.

We'll now show that $x \in \ell^2(\mathbb{Z})$.

For $n \geq N$, we have, by the triangle inequality, that

$$||x|| \le ||x^{(n)} - x|| + ||x^{(n)}||.$$

Since $x^{(n)} \xrightarrow{n \to \infty} x$ in the $\ell^2(\mathbb{Z})$ norm, $||x^{(n)} - x|| \le \varepsilon < \infty$. Since $x^{(n)} \in \ell^2(\mathbb{Z})$, $||x^{(n)}|| < \infty$. Hence, their sum is finite, so $||x|| < \infty \implies x \in \ell^2(\mathbb{Z})$.

Thus, $\ell^2(\mathbb{Z})$ is complete.

 $\ell^2(\mathbb{Z})$ is separable:

Consider $e^{(i)}$, where $e^{(i)}_j = 1$ if i = j and 0 if $i \neq j$. Then $\{e^{(i)}\}_{i \in \mathbb{Z}}$ is a countable collection since \mathbb{Z} is countable.

Fix $x \in \ell^2(\mathbb{Z})$.

Since

$$\sum_{k=-\infty}^{\infty} |x_k|^2 < \infty,$$

for all $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$\sum_{k=-\infty}^{\infty} |x_k|^2 - \sum_{k=-N}^{N} |x_k|^2 < \varepsilon^2.$$

Then consider the linear combination

$$x^{(N)} \coloneqq \sum_{k=-N}^{N} x_k e^{(k)},$$

and note that $x_k^{(N)} = x_k$ for all $-N \le k \le N$.

Thus,

$$||x - x^{(N)}||^2 = \sum_{k = -\infty}^{\infty} |x_k - x_k^{(N)}|^2 = \sum_{k = -\infty}^{\infty} |x_k|^2 - \sum_{k = -N}^{N} |x_k|^2 < \varepsilon^2 \implies ||x - x^{(N)}|| < \varepsilon,$$

since all terms are 0 except for |k| > N.

Hence, as ε was arbitrary, it follows that the set of linear combinations of $\{e^{(i)} \mid i \in \mathbb{Z}\}$ is dense in $\ell^2(\mathbb{Z})$, so $\ell^2(\mathbb{Z})$ is separable.