

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>«Информатика и системы управления»</u>
КАФЕДРА <u>«Программное обеспечение ЭВМ и информационные технологии»</u>
Лабораторная работа № <u>1</u>
Дисциплина Конструирование компиляторов
Тема Распознавание цепочек регулярного языка
Вариант №2
Студент Котляров Н.А.
Группа <u>ИУ7-22М</u>
Преподаватель <u>Ступников А.А.</u>

Задание

Напишите программу, которая в качестве входа принимает произвольное регулярное выражение, и выполняет следующие преобразования:

- 1) По регулярному выражению строит НКА.
- 2) По НКА строит эквивалентный ему ДКА.
- 3) По ДКА строит эквивалентный ему КА, имеющий наименьшее возможное количество состояний.

Указание. Воспользоваться минимизацией ДКА, алгоритм за $O(n^2)$ с построением пар различимых состояний.

4) Моделирует минимальный КА для входной цепочки из терминалов исходной грамматики.

Результаты и выводы

Минимальный ДКА

Входные данные		Результат
Рег.выражение	Строка	
a+b	aaaab	Да
	bbaaa	Нет
	abab	Нет
	ab	Да
	abc	Нет

Контрольные вопросы

- 1. Какие из следующих множеств регулярны? Для тех, которые регулярны, напишите регулярные выражения.
 - а. Множество цепочек с равным числом нулей и единиц. Не является регулярным множеством
 - b. Множество цепочек из $\{0, 1\}^*$ с четным числом нулей и нечетным числом единиц. $((00|11)^*((01|10)(00|11)^*(01|10)(00|11)^*)^*)(010|1)((00|11)^*((01|10)(00|11)^*)^*)$
 - с. Множество цепочек из $\{0, 1\}^*$, длины которых делятся на 3. $((0|1)(0|1)(0|1))^*$
 - d. Множество цепочек из $\{0, 1\}^*$, не содержащих подцепочки 101. 0*(1|00+)*0*
- 2. Найдите праволинейные грамматики для тех множеств из вопроса 1, которые регулярны.

b	С	d
$S \rightarrow 0A 1B$	$S \rightarrow A$	$S \rightarrow 0S 1A \epsilon$
$A \rightarrow 0S 1C$	$A \rightarrow 0B 1B \epsilon$	$A \rightarrow 00A 1B \epsilon$
$B \rightarrow 0C 1S \epsilon$	$B \rightarrow 0C 1C$	$B \rightarrow 0S 0$
$C \rightarrow 0B 1A$	$C \rightarrow 0A 1A$	·
·	·	

3. Найдите детерминированные и недетерминированные конечные автоматы для тех множеств из вопроса 1, которые регулярны Соотвествующие иллюстрации содержаться в директории graph/b.

Файлы b_NFA.png и b_DFA.png

c.

Файлы c_NFA.png и c_DFA.png

d.

Файлы c_NFA.png и c_DFA.png

4. Найдите конечный автомат с минимальным числом состояний для языка, определяемого автоматом $M = (\{A, B, C, D, E\}, \{0, 1\}, d, A, \{E, F\})$, где функция задается таблицей

Состояние	Вход		
	0	1	
A	В	С	
В	E	F	
С	A	A	
D	F	E	
Е	D	F	
F	D	Е	

Рисунок 1 -- 4 задание

Использовался метод различимых состояний.

Таблица неэквивалентности:

	A	В	С	D	E	F
A						
В						
С						
D						
E						
F						

Вектор классов эквивалентности:

A	В	С	D	E	F
0	1	2	1	3	3

Стартовая вершина: А

Терминальная вершина: Е

Минимальный КА:

