

Efficient Smartphone Position Detection Using Neural Networks

Mobile Sensing Systems Lab

Farshid Tavakolizadeh Omar Al-Safi

Introduction

- → Context Awareness
- → Challenges
 - Difficulties in Training
 - Variety of User Behaviors
 - Multiple Devices

Implementation

- → Sample Collection
- → Training
- Prediction

Sample Collection

- → NoSQL Database on AWS EC2
- → RESTful Server in Node.js

Sample Collection

- → Sampling Rate of 500ms.
- Position Labels: "InHand", "SidePocket", "Idle", "Handbag".
- → Experimental Noise

```
{"t":1440867810092,"v0":1013.56,"n":"pressure","p":"InHand","e":0},

{"t":1440867810113,"v0":-0.17266846,"v1":-0.0725708,"v2":9.80484
,"n":"gravity","p":"InHand","e":0},

{"t":1440867810114,"v0":0.064941406,"v1":0.09411621,"v2":-0.1418457,n"
:"linacc","p":"InHand","e":0},

...
```


Training

- → Query
- → Sensor Fusion
- → Exporting
- → Training Model

Training: Query

- → RESTful API
- → Query on Specific Timeframe
- → JSON Format

Training: Sensor Fusion

```
Raw sample data (revisited):
{"t":1440867810092,"v0":1013.56,"n":"pressure","p":"InHand","e":0},
{"t":1440867810113,"v0":-0.17266846,"v1":-0.0725708,"v2":9.80484 ,"n":"gravity","p":"InHand","e":0},
{"t":1440867810114,"v0":0.064941406,"v1":0.09411621,"v2":-0.1418457,n":"linacc","p":"InHand","e":0},
{"t":1440796909166,"v0":-0.11802673,"v1":0.48486328,"v2":-0.20988464,"n":"rotation","p":"SidePocket","e":0},
{"t":1440796909202,"v0":19,"n":"light","p":"SidePocket","e":0},
...
```

- → Remove experimental noise
- → Fuse sensor data
- → Add mathematical features

Sample Pool:

496654 raw sensor readings

29464 training instances

Training: Conversion and Exporting

```
@relation 1441901290 complex features
@attribute linaccX numeric
                                                                                           HTTP
@attribute linaccY numeric
@attribute linaccZ numeric
                                                                                  REST
                                                                                                    Preprocessing,
                                                                                          GET /list
                                                                    get resources
@attribute linaccMag numeric
                                                           NoSQL
                                                                                   API
                                                                                                     Sensor data
@attribute rotationX numeric
                                                           Database
                                                                                 Server
                                                                                                        fusion
@attribute rotationY numeric
@attribute rotationZ numeric
@attribute pressure numeric
                                                                                                        Export
@attribute light numeric
@attribute proximity numeric
                                                                                                       Training
@attribute gravityX numeric
                                                                                                        Data
                                                                                                       (ARFF)
@attribute gravityY numeric
@attribute gravityZ numeric
@attribute position {SidePocket,Idle,InHand,Handbag}
```

@data

0.0261 0.0170 0.0154 0.0294 0.4287 0.8387 -0.1052 1010.6511 11.6 0 -4.1589 -0.1735 -8.8652 SidePocket 0.0228 0.0761 0.0212 0.1441 0.4263 0.8775 -0.1043 1010.6517 11.6 0 -4.1935 -0.1815 -8.8630 SidePocket ...

^{*} For the sake of this presentation, all values are truncated to four floating digits

Training: Model

Training Data ARFF Weka 3.7 Training Model

Multilayer Perceptron Nodes: 13 - 8 - 8 - 4

29464 instances

SidePocket: 5350

Idle: 11348

InHand: 7270

Handbag: 5496

Learning rate: 0.3

Iterations: 500

Training: Model

10-folds cross validation

99.8% accuracy over training data

	SidePocket	Idle	InHand	Handbag
SidePocket	5326	0	2	22
Idle	1	11347	0	0
InHand	0	0	7270	0
Handbag	13	0	0	5483

Prediction

- → Real-time sensor data transmission
- → Pre-processing
 - Sensor data fusion
 - Mathematical features
- → Classification

Evaluation

24774 raw sensor readings

1266 training instances

	SidePocket	Idle	InHand	Handbag
SidePocket	267	1	0	38
Idle	0	288	0	0
InHand	1	21	238	2
Handbag	10	53	0	347

	SidePocket	Idle	InHand	Handbag
Precision	96%	79%	100%	90%
Recall	87%	100%	91%	85%
Accuracy	86%	79%	92%	80%

Average91% precision 91% recall

84% accuracy

Demo

Q & A