4.1

or) 
$$I = log P(alota)$$

$$P(alota) = \prod_{t=1}^{7} P(X = X^{(t)})$$

$$= log (P(alota)) = \sum_{t=1}^{7} log P(X = X^{(t)})$$

$$= \sum_{t=1}^{20} (alog P(X = X^{(t)}))$$

$$= \sum_{t=1}^{20} (alog P(X = X^{(t)})$$

$$= \sum_{t=1}^{20} (alog P(X = X^{(t)}))$$

$$= \sum_{t=1}^{20$$



| 2) | for maximizing:                                                                                  |
|----|--------------------------------------------------------------------------------------------------|
|    |                                                                                                  |
|    |                                                                                                  |
|    | Degenange (Pd, d, de) =0                                                                         |
|    | Degenarge (Pd, A, A) = 0                                                                         |
|    |                                                                                                  |
|    | 0                                                                                                |
| 5  | $\frac{-(l+\lambda_1+\lambda_2(-1)^d=0)}{P_{ol}}$                                                |
|    | Pol                                                                                              |
|    |                                                                                                  |
| => | $P_{\ell} = \mathcal{A}(\ell) \qquad \dots (iii)$ $\mathcal{A}_{1} + \mathcal{A}_{2}(-1)^{\ell}$ |
|    | $\beta_1 + \beta_2(-1)^{-1}$                                                                     |
|    |                                                                                                  |
|    | Substituting in ii)                                                                              |
|    |                                                                                                  |
| 5  | 20 (1) 0 (0                                                                                      |
|    | $\geq$ $(-1)$                                                                                    |
|    | 0=1 \(\frac{1}{2}(-1)^{\text{d}}\)                                                               |
|    | 2 - 5 -                                                                                          |
| 5) | $\sum_{0=1}^{2} \frac{C_{20}}{2} = \sum_{0=1}^{2} \frac{C_{20+1}}{2} = 0$                        |
|    | 1+12                                                                                             |
|    |                                                                                                  |
| =) | (oner = Codd (1V)                                                                                |
|    | $\lambda_1 + \lambda_2$ $\lambda_1 - \lambda_2$                                                  |
|    |                                                                                                  |



a) P(X,) = Court, (n)  $\frac{ML}{P(X_{i+1}/N_{i})} = \frac{Count_{i}(X_{i}, N_{i})}{Count_{i}(X_{i})}$ B) P(xn) = Country (n)  $P(\mathcal{X}_{i}|X_{i+1}) = P(\mathcal{X}_{i+1}|\mathcal{X}_{i}) P(\mathcal{X}_{i})$ = Count; (n, n') \* \* Count; (n)
Count; (n) Count; (n) T = Court; (n,n')
Court; (n) e) P(X, X2 ... Xn) for first case:  $P(X_{i}, X_{2}, ... X_{n}) = \prod_{i=1}^{n} P(X_{i}^{(+)} | X_{i}^{(+)}) P(X_{i}^{(+)})$   $= \left(\prod_{i=1}^{n-1} P(X_{i+1} | X_{i}^{(+)}) P(X_{i}^{(+)})\right)$ 

(TT Count; (n, n') Count; (n)

T

Count; (n) For second case:  $P(X_1, \dots, Y_n) = P(Y_n) \prod_{i=1}^{n-1} P(Y_i, Y_i, \dots, Y_n)$  $= P(\mathcal{H}_n) \prod_{i=1}^{h-1} D(\mathcal{H}_i | \mathcal{H}_{i+1})$ = count, (n) TT Count; (n, n'), Count, (n)
T (=1 Count; +, (n) Count; (n) = Count, (n) TI Count; (n, n')
T (i=1 Count; (n) Thus, G, & G2 give rise to the same joint distribution over all prodes.

d) Original BN. (2<sub>3</sub>)  $P(\chi_1, \chi_2, \chi_3, \chi_4) = P(\chi_4) P(\chi_3 | \chi_4) P(\chi_2 | \chi_3)$   $* P(\chi_1 | \chi_2)$ New to B.N. :- $(\mathcal{H}_{3})$   $(\mathcal{H}_{3})$ P(x, x2, x3, x4) = P(x4) P(x3/x2, x4) P(x2) P(x1, x2) We can see that the maximum likelihood CP. To for the new network will be Completely different as we have gemoned constituenal dependence

and added it to X3. Thus, the resulting joint distritution for the sesult new B.N. will also be different.

# Q) 4.3

```
In [173]:
```

```
import math
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
```

## In [174]:

```
vocab_file = 'hw4_vocab.txt'
unigram_file = 'hw4_unigram.txt'
bigram_file = 'hw4_bigram.txt'
```

#### In [175]:

```
def getContents(filename):
    contents = []
    with open(filename) as f:
        for line in f:
            contents.append(line.strip('\n'))
    return contents
```

## In [176]:

```
vocabs = getContents(vocab_file)
unigram = getContents(unigram_file)
bigrams = getContents(bigram_file)
```

#### In [177]:

```
singleCount = {}

for i in range(len(vocabs)):
    singleCount[vocabs[i]] = int(unigram[i])
```

## In [178]:

```
doubleCountList = []
for bigram in bigrams:
    splitBigram = bigram.split()
    word1 = vocabs[int(splitBigram[0]) - 1]
    word2 = vocabs[int(splitBigram[1]) - 1]
    count = int(splitBigram[2])
    doubleCount[(word1, word2)] = count
    doubleCountList.append((word1, word2, count))
```

a)

## In [179]:

```
singleWordCountDf = pd.DataFrame(list(singleCount.items()), columns=['word', 'count'])
```

## In [180]:

```
unigramModelDf = singleWordCountDf
unigramModelDf['T'] = singleWordCountDf['count'].agg(sum)
unigramModelDf['P_u_w'] = unigramModelDf['count']/unigramModelDf['T']
unigramModelDf[unigramModelDf['word'].str.contains('^M')]
```

## Out[180]:

|     | word     | count  | Т        | P_u_w    |
|-----|----------|--------|----------|----------|
| 53  | MILLION  | 169479 | 81764926 | 0.002073 |
| 68  | MORE     | 139728 | 81764926 | 0.001709 |
| 76  | MR.      | 117873 | 81764926 | 0.001442 |
| 120 | MOST     | 64424  | 81764926 | 0.000788 |
| 121 | MARKET   | 63807  | 81764926 | 0.000780 |
| 125 | MAY      | 59680  | 81764926 | 0.000730 |
| 129 | M.       | 57514  | 81764926 | 0.000703 |
| 130 | MANY     | 56968  | 81764926 | 0.000697 |
| 158 | MADE     | 45777  | 81764926 | 0.000560 |
| 177 | MUCH     | 42076  | 81764926 | 0.000515 |
| 179 | MAKE     | 42065  | 81764926 | 0.000514 |
| 202 | MONTH    | 36378  | 81764926 | 0.000445 |
| 208 | MONEY    | 35740  | 81764926 | 0.000437 |
| 226 | MONTHS   | 33177  | 81764926 | 0.000406 |
| 229 | MY       | 32732  | 81764926 | 0.000400 |
| 246 | MONDAY   | 31233  | 81764926 | 0.000382 |
| 255 | MAJOR    | 30326  | 81764926 | 0.000371 |
| 274 | MILITARY | 28785  | 81764926 | 0.000352 |
| 286 | MEMBERS  | 27478  | 81764926 | 0.000336 |
| 355 | MIGHT    | 22370  | 81764926 | 0.000274 |
| 365 | MEETING  | 21728  | 81764926 | 0.000266 |
| 369 | MUST     | 21791  | 81764926 | 0.000267 |
| 373 | ME       | 21551  | 81764926 | 0.000264 |
| 374 | MARCH    | 21242  | 81764926 | 0.000260 |
| 384 | MAN      | 20677  | 81764926 | 0.000253 |
| 402 | MS.      | 19541  | 81764926 | 0.000239 |
| 403 | MINISTER | 19605  | 81764926 | 0.000240 |
| 459 | MAKING   | 17310  | 81764926 | 0.000212 |
| 472 | MOVE     | 17167  | 81764926 | 0.000210 |
| 478 | MILES    | 16841  | 81764926 | 0.000206 |

#### In [181]:

```
doubleWordCountDf = pd.DataFrame(doubleCountList, columns=['word1', 'word2', 'count'])
```

#### In [182]:

```
tempdf = doubleWordCountDf[doubleWordCountDf['word1'] == 'THE']
tempdf['P_b_W_w'] = doubleWordCountDf['count']/singleWordCountDf[singleWordCountDf['word']
```

C:\Users\vaibh\AppData\Local\Temp/ipykernel\_2148/3264781231.py:2: SettingWit hCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row\_indexer,col\_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user\_guide/indexing.html#returning-a-view-versus-a-copy)

tempdf['P\_b\_W\_w'] = doubleWordCountDf['count']/singleWordCountDf[singleWordCountDf['word'] == 'THE']['count'].values[0]

#### In [183]:

```
tempdf.sort_values(by='P_b_W_w', ascending=False)[:10]
```

#### Out[183]:

|      | word1 | word2       | count   | P_b_W_w  |
|------|-------|-------------|---------|----------|
| 993  | THE   | <unk></unk> | 2371132 | 0.615020 |
| 1058 | THE   | U.          | 51556   | 0.013372 |
| 1064 | THE   | FIRST       | 45186   | 0.011720 |
| 1060 | THE   | COMPANY     | 44949   | 0.011659 |
| 1050 | THE   | NEW         | 36439   | 0.009451 |
| 1165 | THE   | UNITED      | 33435   | 0.008672 |
| 1086 | THE   | GOVERNMENT  | 26230   | 0.006803 |
| 1029 | THE   | NINETEEN    | 25641   | 0.006651 |
| 1282 | THE   | SAME        | 24239   | 0.006287 |
| 1014 | THE   | TWO         | 23752   | 0.006161 |

```
In [184]:
```

```
sentence = "The stock market fell by one hundred points last week"
splitSentence = list(map(str.upper, sentence.split(' ')))
```

#### In [185]:

```
P_u = 1
for word in splitSentence:
    P_u = P_u * (unigramModelDf[unigramModelDf['word'] == word]['P_u_w'].values[0])
P_u = math.log(P_u)
```

## In [186]:

```
splitSentence.insert(0, '<s>')
```

#### In [187]:

## In [188]:

```
print(P_u)
print(P_b)
```

```
-64.50944034364878
```

Bigram model yeilds higher log-likelihood

## d)

#### In [189]:

```
sentence = "The sixteen officials sold fire insurance"
splitSentence = list(map(str.upper, sentence.split(' ')))
```

<sup>-40.91813213378977</sup> 

```
In [190]:
```

```
def getUnigramProb(word, log=True):
    prob = unigramModelDf[unigramModelDf['word'] == word]['P_u_w'].values[0]
    if log:
        return np.log(prob)
    else:
        return prob
```

## In [191]:

```
P_u = 0
for word in splitSentence:
   if word in unigramModelDf['word'].values:
        P_u = P_u + getUnigramProb(word)
```

## In [192]:

```
splitSentence.insert(0, '<s>')
```

## In [193]:

#### In [194]:

```
P_b = 0
for i in range(len(splitSentence) - 1):
    P_b = P_b + getBigramProb(splitSentence[i], splitSentence[i + 1])
```

```
C:\Users\vaibh\AppData\Local\Temp/ipykernel_2148/851827573.py:12: RuntimeWar
ning: divide by zero encountered in log
  return np.log(temp)
```

```
In [195]:
```

```
print(P_u)
print(P_b)
```

-44.291934473132606 -inf

e)

#### In [196]:

```
def getMixedProb(word1, word2, 1, log=True):
    prob = (1 * getUnigramProb(word2, False) + (1 - 1) * getBigramProb(word1, word2, False)
    if log:
        return np.log(prob)
    else:
        return prob
```

#### In [197]:

```
def getLogLikelihood(1):
    P_m = 0
    for i in range(1, len(splitSentence)):
        P_m = P_m + getMixedProb(splitSentence[i - 1], splitSentence[i], 1)
    return P_m
```

## In [198]:

```
dx = 0.01
l = 0
lList = []
P_m_list = []

while l <= 1:
    lList.append(l)
    P_m_list.append(getLogLikelihood(l))
    l += dx</pre>
```

C:\Users\vaibh\AppData\Local\Temp/ipykernel\_2148/1733256390.py:4: RuntimeWar
ning: divide by zero encountered in log
 return np.log(prob)

## In [199]:

```
plt.plot(lList, P_m_list)
plt.xlabel('lambda')
plt.ylabel('P_m')
```

## Out[199]:

Text(0, 0.5, 'P\_m')



## In [200]:

```
lList[P_m_list.index(max(P_m_list))] # Optimal value of Lambda
```

## Out[200]:

0.65000000000000004

# Q) 4.4

## In [31]:

```
nasdaq00 = 'nasdaq00.txt'
nasdaq01 = 'nasdaq01.txt'
```

```
In [39]:
```

```
def readFile(fileName):
    result = []
    with open(fileName) as f:
        for line in f:
            result.append(float(line.strip('\n')))
    return result
```

## In [40]:

```
stonks0 = readFile(nasdaq00)
stonks1 = readFile(nasdaq01)
```

#### In [143]:

```
def createDataset(stonks):
    y = []
    x = []
    for i in range(3, len(stonks)):
        y.append(stonks[i])
        x.append([stonks[i - 1], stonks[i - 2], stonks[i - 3]])
    return y, x
```

#### In [144]:

```
y0, x0 = createDataset(stonks0)
y1, x1 = createDataset(stonks1)
```

#### In [145]:

```
y0 = np.asarray(y0)
x0 = np.asarray(x0)
y1 = np.asarray(y1)
x1 = np.asarray(x1)
```

#### In [146]:

```
b0 = np.expand_dims(y0, axis=1) * x0
```

#### In [147]:

```
A0 = np.einsum('ij,ik->ijk', x0, x0)
```

```
In [148]:
w = np.linalg.inv(A0.sum(axis=0)) @ b0.sum(axis=0)
a)
In [149]:
W
Out[149]:
array([0.95067337, 0.01560133, 0.03189569])
b)
In [170]:
rmse0 = np.sqrt(np.mean((y0 - x0.dot(w))**2))
In [171]:
rmse1 = np.sqrt(np.mean((y1 - x1.dot(w))**2))
In [172]:
print(rmse0)
print(rmse1)
117.90844361778288
```

54.63604967519669