Compiler Final

Dinh Duy Kha

May 27, 2021

Contents

1	Par	allel Architecture	2										
	1.1	Shared memory (SMP)	2										
		1.1.1 Cache Coherency	2										
	1.2	Distributed memory	3										
	1.3	Multithreading architectures	3										
		1.3.1 Superscalar	3										
		1.3.2 Multithreading	3										
		1.3.3 Simultaneous Multithreading (SMT)	3										
2	Synchronization 3												
	2.1		3										
	2.2	Event synchronization	3										
		2.2.1 Point-to-point	3										
		2.2.2 Barrier	3										
	2.3	Lock	4										
		2.3.1 Test & test & set	4										
		2.3.2 LL-SC	4										
		2.3.3 Ticket Lock	4										
		2.3.4 Array-based	4										
	2.4	Lock-free algorithms	4										
		2.4.1 List	4										
		2.4.2 Circular queue	4										
3	Dependence Analysis 4												
	3.1 Instruction scheduling / reordering												
	3.2	9 / 9	4										
4	Loop Transformations												
	4.1	•	4										
	4.2	2D loop	4										
	4.3	3D loop	4										
	4.4		4										
		•	4										
		4.4.2 Reversal	4										
			4										
		4.4.4 Tiling (Blocking)	4										

	4.5	4.4.6 4.4.7 4.4.8	Fusion	 	· · · ·	 	4 4 4 4
5	DN 5.1	5.1.2 5.1.3 XLA: A 5.2.1 5.2.2	-		· · · · · · · · · · · · · · · · · · ·	 	4 5 5 5 5 5 5 5
1	\mathbf{P}	arallel	l Architecture				
1.	1 5	Shared 1	memory (SMP)				
	• S	\mathbf{y} metric	multi-processors (SMP)				
	• A	ll CPUs	use single address space				
	• T	hreads, C	OpenMP				
	• C	ommunic	cation through load/store (implicit)				
			zation using locks and barriers				
		,	cache coherence				
1.	1.1	Cache	Coherency				
	1. Sı	nooping					
		 Multi Single Use 3 N S 	te controller snoop on the bus iple read-only copies on CPUs e modified copy on a CPU Invalidate other copies when a shared cacheline is update 3 states (MSI): Modified: writable Shared: read-only invalid: no data				
	(• I	e Invalidate Invalidate copies on update On cache miss:				

- Write-through: up-to-date
- Write-back: Force of most recent copy to update memory
- (b) Write Update
 - Update copies on update
 - On cache miss:
 - Write-through: up-to-date
 - Write-back: Force one of the sharer update memory
- (c) MESI Protocol
 - Add Exclusive: line exclusive to the CPU
 - $S \rightarrow M$: invalidate traffic
 - E -> M : no invalidate traffic
- 2. Directory

1.2 Distributed memory

- Each CPU access partial data
- Remaining through communication
- NUMA, Cluster
- MPI
- Communication using message passing (explicit)
- No cache coherence

1.3 Multithreading architectures

- 1.3.1 Superscalar
- 1.3.2 Multithreading
- 1.3.3 Simultaneous Multithreading (SMT)

2 Synchronization

- 2.1 Mutual exclusion
- 2.2 Event synchronization
- 2.2.1 Point-to-point
- 2.2.2 Barrier
 - 1. Centralized
 - 2. Combining tree

- 2.3 Lock
- 2.3.1 Test & test & set
- 2.3.2 LL-SC
- 2.3.3 Ticket Lock
- 2.3.4 Array-based
- 2.4 Lock-free algorithms
- 2.4.1 List
- 2.4.2 Circular queue

3 Dependence Analysis

- 3.1 Instruction scheduling / reordering
- 3.2 Parallelization

4 Loop Transformations

- 4.1 1D loop
- 4.2 2D loop
- 4.3 3D loop
- 4.4 Loop Transformations
- 4.4.1 Permutation
- 4.4.2 Reversal
- 4.4.3 Skew
- 4.4.4 Tiling (Blocking)
- 4.4.5 Fusion
- 4.4.6 Distribution (fission)
- 4.4.7 Index set splitting (loop peeling)
- 4.4.8 Unrolling
- 4.5 Unimodular Transformation

5 DNN Compilers

5.1 TVM

- Ingest models from Pytorch, Tensorflow, ONNX, MxNet
- Target archtecture x86, ARM, GPUs, MIPS, RISC-V
- Optimized for target platform

5.1.1 Operator Optimization

- 1. Halide progamming model:
 - Functional definition: What the function do
 - Schedule definitions: How should the function do it
- 2. TVM Scheduling Primitive
 - Primitives for optimizations

5.1.2 Automated optimization search: AutoTVM

• Use ML to learn the best code to be generated

5.1.3 Graph-level Optimization: Use Relay IR

- 1. Operator fusion
 - Fuse operators together to minimize

5.2 XLA: Accelerated Linear Algebra compiler

- Take tensorflow graphs, split out optimzied assembly
- TF Graph -> XLA Graph -> LLVM IR -> ASM code

5.2.1 TF2XLA

- Old TF: Look for optimized kernel in runtime library
- XLA: Look for tf2xla kernel to plug into TF graph

5.2.2 JIT

- Compile TF clusters of nodes into XLA graph
- Execute the whole cluster

5.2.3 Ahead-of-time compilation

- Use Graph Compiler
- Compile the entire XLA graph