/TYO YHUBEPCUTET UTMO

«Моделирование»

АЛИЕВ Тауфик Измайлович, Лектор:

доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

6. СИСТЕМЫ С ПРИОРИТЕТНЫМ ОБСЛУЖИВАНИЕМ

- 1. Базовая модель с неоднородным потоком
- 2. Характеристики системы с ДО БП и ДО ОП
- 3. Характеристики системы с ОП в режиме перегрузки
- 4. Характеристики системы с АП
- 5. Дисциплины обслуживания со смешанными приоритетами (ДО СП)
- 6. GPSS-модель разомкнутой CeMO с неоднородным потоком и приоритетами

Литература

для самостоятельной подготовки

1. Алиев Т.И. Моделирование дискретных систем. — СПб: СПбГУ ИТМО, 2009. — 363 с. (раздел 4 «Аналитическое моделирование», параграф 4.3)

https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm

2. Алиев Т.И., Муравьева-Витковская Л.А., Соснин В.В. Моделирование: задачи, задания, тесты. Учебное пособие. - СПб.: НИУ ИТМО, 2011. – 197 с.

(раздел 1 *параграф 1.3 пункты 1.3.4 – 1.3.6*; раздел 2 *параграф 2.2* (задачи 2.14 – 2.21); раздел 4 *параграф 4.4*)

https://books.ifmo.ru/book/686/modelirovanie:_zadachi,_zadaniya,_testy.htm

Базовая модель с неоднородным потоком заявок

Деление на классы:

- 1) разные длительности обслуживания;
- 2) разные приоритеты.

<u>Дисциплины обслуживания (ДО):</u> БП, ОП, АП, СП, ...

Две группы характеристик обслуживания заявок:

- характеристики <u>по кажедому классу</u> (потоку) заявок: y_i , ρ_i , l_i , m_i , w_i , u_i ($i=\overline{1,N}$);
- •характеристики объединенного (суммарного) потока заявок:

$$\Lambda = \sum_{i=1}^{H} \lambda_i; \quad Y = \sum_{i=1}^{H} y_i; \quad R = \sum_{i=1}^{H} \rho_i; \quad L = \sum_{i=1}^{H} l_i; \quad M = \sum_{i=1}^{H} m_i;$$

$$W=\sum_{i=1}^{H}\xi_iw_i$$
; $U=\sum_{i=1}^{H}\xi_iu_i$; $\xi_i=\lambda_i/\Lambda\leq 1$ $(i=\overline{1,H})$ - вероятность того, что заявка принадлежит классу i

Характеристики системы с ДО БП и ДО ОП

$$w_k^{\text{БП}} = \frac{\sum_{i=1}^{H} \lambda_i b_i^2 (1 + \nu_i^2)}{2(1 - R)} \quad (k = 1, ..., H)$$

$$R = \sum_{i=1}^{H} \rho_i = \sum_{i=1}^{H} \lambda_i b_i < 1$$

$$w_k^{\text{O}\Pi} = \frac{\sum_{i=1}^H \lambda_i b_i^2 (1 + \nu_i^2)}{2(1 - R_{k-1})(1 - R_k)} \quad (k = 1, \dots, H)$$

$$R_{k-1} = \sum_{i=1}^{k-1} \rho_i;$$
 $R_k = \sum_{i=1}^k \rho_i$ $(R_0 = 0)$

Характеристики системы с ОП в режиме перегрузки

$$Y = y_1 + y_2 + y_3 = \lambda_1 b_1 + \lambda_2 b_2 + \lambda_3 b_3$$

Характеристики системы с АП

$$w_{k}^{\text{A}\Pi} = \frac{\sum_{i=1}^{k} \lambda_{i} b_{i}^{2} (1 + v_{b_{i}}^{2})}{2(1 - R_{k-1})(1 - R_{k})} + \frac{R_{k-1}b_{k}}{1 - R_{k-1}} \qquad (k = 1, \dots, H); \qquad R_{k} = \sum_{i=1}^{k} \rho_{i}$$

$$w_{k}^{\text{HO}} \qquad w_{k}^{\text{HO}} \qquad w_{k}^{\text{HO}} < w_{k+1}^{\text{HO}}$$

$$w_{k}^{\text{HO}} > w_{k+1}^{\text{HC}}$$

Закон сохранения времени ожидания

$$R = \sum_{i=1}^{H} \rho_i < 1$$

- система без потерь;
- система не простаивает, если есть заявки;
- при прерывании обслуживание по экспоненциальному закону;
- потоки заявок простейшие, и длительности обслуживания не зависят от интенсивностей потоков заявок.

$$Const = C_w = w^{\text{BII}} \sum_{i=1}^{H} \rho_i = Rw^{\text{BII}}$$

$$\sum_{i=1}^{H} \rho_i w_i = \frac{R \sum_{i=1}^{H} \lambda_i b_i^2 (1 + \nu_i^2)}{2(1 - R)}$$

Модификация закона сохранения:

$$\sum_{i=1}^{H} \rho_{i} u_{i} = \frac{R \sum_{i=1}^{H} \lambda_{i} b_{i}^{2} (1 + \nu_{i}^{2})}{2(1 - R)} + \sum_{i=1}^{H} \rho_{i} b_{i}$$

$$C_{u} = Const$$

При
$$b_i=b=\mathrm{const}$$
 для всех $i=\overline{1,H}$: $\sum_{i=1}^{H}\lambda_iw_i=L=Const.$ ДО

Дисциплины обслуживания со смешанными приоритетами (ДО СП)

$$Q^{\mathbf{O}\Pi} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Q^{\mathbf{A}\Pi} = \begin{bmatrix} 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$Q^{\text{C}\Pi_{1}} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 1 & 1 \\ 2 & 1 & 2 & 0 & 2 & 2 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

GPSS-модель разомкнутой CeMO с неоднородным потоком и приоритетами

Met 2 SEIZE Uzel 2

> **ADVANCE** (Exponential(50,0,10)+Exponential(50,0,10))

RELEASE Uzel 2

TRANSFER ,Met 1

GENERATE (Exponential(10,0,50)),,,,2

QUEUE QUz1 k2

PREEMPT Uzel_1,PR,,25

DEPART QUz1 k2

ADVANCE 10,5

RETURN Uzel 1

TERMINATE

PREEMPT A,[B],[C],[D],[E]

В=PR – приоритетный режим (АП)

[режим прерывания]

– метка для прерв.транзакта [СБС]

D – номер параметра для $T_{\pi o}$

E=RE – режим удаления

RETURN

(Сотл.пр.; → Спр.; → Сзад.)

/TYO YHUBEPCUTET UTMO

«Моделирование»

АЛИЕВ Тауфик Измайлович, Лектор:

доктор технических наук, профессор

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники