21. Circuitos com Resistências, Bobinas e Condensadores

Resistência Ideal

R - Resistência eléctrica

Unidade: **ohm** (Ω)

Lei de Ohm: $u_R(t) = R \cdot i_R(t)$

Para um condutor eléctrico:

$$R = \rho \cdot \frac{1}{A}$$

R[Ω] – Resistência eléctrica do condutor

 $\rho \ [\Omega \cdot m]$ - Resistividade do material condutor

l [m] – Comprimento do condutor

A [m²] – Área da secção recta transversal do condutor

Bobina Ideal

L - Coeficiente de auto-indução

Unidade: henry (H)

 $u_L(t) = L \cdot \frac{d[i_L(t)]}{dt}$

Para um solenóide:

 $L = \mu \cdot \frac{N^2 \cdot A}{1}$

L [H] – Coeficiente de autoindução do solenóide

μ [H·m⁻¹] – Permeabilidade (absoluta, não relativa) do material do núcleo (ar, no exemplo da figura)

N – Número de espiras do solenóide

A [m²] – Área da secção recta transversal do solenóide

l [m] – Comprimento do solenóide

Condensador Ideal

C - Capacidade

Unidade: **farad** (**F**)

<u>Para um condensador de placas</u> paralelas:

 $C = \varepsilon \cdot \frac{A}{d}$

C [F] - Capacidade do condensador

ε [F·m⁻¹] – Permitividade (absoluta, não relativa) do dieléctrico existente entre as placas (ar, no exemplo da figura)

A [m²] – Área da sobreposição das placas do condensador (área de cada placa, no caso de as placas serem iguais e estarem alinhadas uma com a outra)

d [m] – Distância existente entre as placas do condensador

Universidade do Minho

João Sena Esteves

21.1 Condensador Ideal Percorrido por uma Corrente Constante.

$$i_{C}(t) = C \cdot \frac{d[u_{C}(t)]}{dt} = I \quad \Rightarrow \quad \frac{d[u_{C}(t)]}{dt} = \frac{I}{C} = \frac{\Delta u_{C}(t)}{\Delta t} = \frac{u_{C}(t_{f}) - u_{C}(t_{i})}{t_{f} - t_{i}} \quad (V/s)$$

$$\Rightarrow \quad u_{C}(t_{f}) = \frac{I}{C} \cdot (t_{f} - t_{i}) + u_{C}(t_{i})$$

$$\mathbf{u}_{\mathbf{C}}(\mathbf{t}) = \frac{\mathbf{I}}{\mathbf{C}} \cdot \mathbf{t} + \mathbf{U}_{0}$$

$$t = t_0 \implies u_C(t) = 0$$

$$tg(\alpha) = \frac{d[u_C(t)]}{dt} = \frac{I}{C}$$

21.2 Bobina Ideal Submetida a uma Tensão Constante.

$$\begin{aligned} \mathbf{u}_{L}(t) &= L \cdot \frac{d[\mathbf{i}_{L}(t)]}{dt} = E \\ \Rightarrow \frac{d[\mathbf{i}_{L}(t)]}{dt} &= \frac{E}{L} = \frac{\Delta \mathbf{i}_{L}(t)}{\Delta t} = \frac{\mathbf{i}_{L}(t_{f}) - \mathbf{i}_{L}(t_{i})}{t_{f} - t_{i}} \quad (A/s) \end{aligned}$$

$$\Rightarrow \mathbf{i}_{L}(t_{f}) = \frac{E}{L} \cdot (t_{f} - t_{i}) + \mathbf{i}_{L}(t_{i})$$

$$i_{L}(t) = \frac{E}{L} \cdot t + I_{0}$$

$$t = t_0 \implies i_L(t) = 0$$

$$tg(\beta) = \frac{d[i_L(t)]}{dt} = \frac{E}{L}$$

21.3 Circuitos de Primeira Ordem

 Uma equação que envolve derivadas de uma ou mais variáveis dependentes (as incógnitas) em ordem a uma ou mais variáveis independentes designa-se equação diferencial.

- Uma equação que envolve derivadas de uma ou mais variáveis dependentes em ordem a uma variável independente designa-se equação diferencial ordinária.
- 3. A **ordem de uma equação diferencial** é a ordem máxima da(s) derivada(s) que nela figura(m).
- 4. Uma equação diferencial ordinária de primeira ordem possui apenas a primeira derivada de uma ou mais variáveis dependentes relativamente a uma variável independente.
- 5. Um circuito de primeira ordem implica a resolução de pelo menos uma equação diferencial de primeira ordem para determinar as tensões e as correntes em todos os seus componentes, mas não implica a resolução de nenhuma equação diferencial de ordem superior a 1.
- 6. Um circuito RC é constituído por uma ou mais resistências e um ou mais condensadores, podendo também ter uma ou mais fontes de energia.
 - Um circuito RC com apenas um condensador é um circuito de primeira ordem.
 - Um circuito RC com vários condensadores que podem ser substituidos por um único condensador sem alterar o funcionamento de nenhum dos restantes componentes é um circuito de primeira ordem.

Um circuito RC com vários condensadores que não podem ser substituidos por um único condensador sem alterar
o funcionamento de pelo menos algum dos restantes componentes é um circuito de ordem superior a 1.

Circuito RC de primeira ordem

7. Um circuito RL é constituído por uma ou mais resistências e uma ou mais bobinas, podendo também ter uma ou mais fontes de energia.

- Um circuito RL com apenas uma bobina é um circuito de primeira ordem.
- Um circuito RL com várias bobinas que podem ser substituídas por uma única bobina sem alterar o funcionamento de nenhum dos restantes componentes é um circuito de primeira ordem.

• Um circuito RL com várias bobinas que não podem ser substituídas por uma única bobina sem alterar o funcionamento de pelo menos algum dos restantes componentes é um circuito de ordem superior a 1.

Circuito RL de primeira ordem

21.4 Resposta Transitória de Circuitos RC de Primeira Ordem

Serão analisados circuitos RC de primeira ordem com apenas uma resistência e apenas um condensador ligados em série.

21.4.1 Ligação em Série de uma Resistência e um Condensador

Seja qual for o circuito onde uma resistência ideal se insere, a relação entre a tensão $\mathbf{u}_R(t)$ que existe entre os seus terminais e a corrente $\mathbf{i}_R(t)$ que a percorre – conhecida por Lei de Ohm – é sempre traduzida pela seguinte expressão (assumindo os sentidos positivos de $\mathbf{u}_R(t)$ e $\mathbf{i}_R(t)$ indicados na figura):

$$i_R(t) = \frac{u_R(t)}{R}$$
 (Lei de Ohm)

Seja qual for o circuito onde um condensador ideal se insere, a relação entre a tensão $\mathbf{u}_{\mathbf{C}}(t)$ que existe entre os seus terminais e a corrente $\mathbf{i}_{\mathbf{C}}(t)$ que o percorre é traduzida pela seguinte expressão (assumindo os sentidos positivos de $\mathbf{u}_{\mathbf{C}}(t)$ e $\mathbf{i}_{\mathbf{C}}(t)$ indicados na figura):

$$i_{C}(t) = C \cdot \frac{d[u_{C}(t)]}{dt}$$

 $\frac{d\big[u_{C}(t)\big]}{dt}$

Derivada em ordem ao tempo da tensão entre os terminais do condensador (em V/s)

A corrente $i_R(t)$ que passa na resistência e a corrente $i_C(t)$ que passa no condensador são **a mesma corrente**, ou seja

$$i_{R}(t) = i_{C}(t)$$

$$\frac{u_{R}(t)}{R} = C \cdot \frac{d[u_{C}(t)]}{dt}$$

A tensão $\mathbf{u}(t)$ aplicada ao conjunto dos dois componentes é igual à **soma** da tensão $\mathbf{u}_{\mathbf{R}}(t)$ que existe entre os terminais da resistência com a tensão $\mathbf{u}_{\mathbf{C}}(t)$ que existe entre os terminais do condensador, ou seja:

 $u(t) = u_R(t) + u_C(t)$

Assim sendo, é verdade que

 $\frac{\mathbf{u}(t) - \mathbf{u}_{\mathbf{C}}(t)}{\mathbf{R}} = \mathbf{C} \cdot \frac{\mathbf{d} \left[\mathbf{u}_{\mathbf{C}}(t) \right]}{\mathbf{d}t}$

 $u_R(t) = u(t) - u_C(t)$

A última expressão pode reescrever-se desta forma

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Para completar o circuito falta definir u(t). Nos pontos seguintes apresentam-se exemplos com diferentes u(t).

u(t) pode ser vista como a tensão de entrada do circuito RC. Para reforçar esta ideia pode redesenhar-se o esquema inicialmente proposto...

21.4.2 Resposta Natural do Circuito RC de Primeira Ordem

R pode ser a Resistência de Thévenin de um circuito passivo mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão
 u_C(t) permanece constante;
- O condensador está carregado com uma tensão U_0 no instante t = 0, ou seja, $u_C(0) = U_0$;
- O interruptor K é fechado no instante t = 0 e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = 0.

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = 0$$

A solução desta equação é a seguinte:

$$u_{C}(t) = \underbrace{U_{0} \cdot e^{-\frac{t}{RC}}}_{Estado}$$
Estado
Transitório

Para t≥0 a corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{0 - u_{C}(t)}{R} = \underbrace{-\frac{U_{0}}{R} \cdot e^{-\frac{t}{RC}}}_{\text{Estado}}$$

 $\label{eq:Valores inicial} \text{Valores inicials:} \begin{cases} u_C(0) = U_0 \\ i_C(0) = -\frac{U_0}{R} \end{cases} \qquad \text{Regime permanente:} \begin{cases} u_C(t \to \infty) = 0 \\ i_C(t \to \infty) = 0 \end{cases} \qquad \begin{array}{l} \text{Constante de tempo do circuito: } \tau = RC \, (s) \\ \textbf{τ \'e o tempo necessário para a tensão entre os terminais do condensador inicialmente carregado com uma tensão de valor <math>U_o$ atingir 36,8% de U_o

Resposta Natural do Circuito RC de Primeira Ordem:

$$u_{C}(t) = U_{0} \cdot e^{-\frac{t}{RC}}$$
$$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-\frac{t}{RC}}$$

$t = \tau$	$u_C(t) = U_0 \cdot e^{-1} = 0.368 \cdot U_0$
$t = 3\tau$	$u_C(t) = U_0 \cdot e^{-3} = 0.049 \cdot U_0$
$t = 5\tau$	$u_C(t) = U_0 \cdot e^{-5} = 0.007 \cdot U_0$

$t = \tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-1} = -0.368 \cdot \frac{U_{0}}{R}$
t = 3τ	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-3} = -0.049 \cdot \frac{U_{0}}{R}$
$t = 5\tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-5} = -0.007 \cdot \frac{U_{0}}{R}$

Se o interruptor K for fechado num instante $t = t_0$ em vez de ser fechado no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão u_C(t) permanece constante;
- O condensador está carregado com uma tensão U_0 no instante $t = t_0$, ou seja, $u_C(t_0) = U_0$;
- O interruptor K é fechado no instante $t = t_0$ e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = 0.)

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = 0$$

A solução desta equação é a seguinte:

$$u_{C}(t) = \underbrace{U_{0} \cdot e^{-\frac{1}{RC}(t-t_{0})}}_{\text{Estado}}$$

Para $t \ge t_0$ a corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{0 - u_{C}(t)}{R} = \underbrace{\frac{U_{0}}{R} \cdot e^{-\frac{1}{RC}(t - t_{0})}}_{\text{Estado}}$$

Resposta Natural do Circuito RC de Primeira Ordem:

$$\begin{aligned} \mathbf{u}_{\mathbf{C}}(t) &= \mathbf{U}_{0} \cdot \mathbf{e}^{-\frac{1}{R\mathbf{C}}(t-t_{0})} \\ \mathbf{i}_{\mathbf{C}}(t) &= -\frac{\mathbf{U}_{0}}{R} \cdot \mathbf{e}^{-\frac{1}{R\mathbf{C}}(t-t_{0})} \end{aligned}$$

$t - t_0 = \tau$		$u_C(t) = U_0 \cdot e^{-1} = 0.368 \cdot U_0$		
	$t - t_0 = 3\tau$	$u_C(t) = U_0 \cdot e^{-3} = 0.049 \cdot U_0$		
	$t - t_0 = 5\tau$	$u_C(t) = U_0 \cdot e^{-5} = 0.007 \cdot U_0$		

$t - t_0 = \tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-1} = -0.368 \cdot \frac{U_{0}}{R}$
$t - t_0 = 3\tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-3} = -0.049 \cdot \frac{U_{0}}{R}$
$t - t_0 = 5\tau$	$i_{C}(t) = -\frac{U_{0}}{R} \cdot e^{-5} = -0.007 \cdot \frac{U_{0}}{R}$

21.4.3 Resposta Forçada do Circuito RC de Primeira Ordem

E e R podem ser a Tensão de Thévenin e a Resistência de Thévenin de um circuito mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão
 u_C(t) permanece constante;
- O condensador está completamente descarregado no instante t = 0, ou seja, $u_C(0) = 0$;
- O interruptor K é fechado no instante t = 0 e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.)

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = \frac{E}{RC}$$

A solução desta equação é a seguinte:

$$u_{C}(t) = \underbrace{E}_{\begin{subarray}{c} Estado\\ Permanente \end{subarray}} \underbrace{-E \cdot e^{-\frac{t}{RC}}}_{\begin{subarray}{c} Estado\\ Transitório \end{subarray}}$$

Para $\ t \geq 0 \ a$ corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{E - u_{C}(t)}{R} = \underbrace{\frac{E}{R} \cdot e^{-\frac{t}{RC}}}_{\text{Estado}}$$
Transitório

$$\label{eq:Valores inicials:} \begin{cases} u_C(0) = 0 \\ i_C(0) = \frac{E}{R} \end{cases} \qquad \text{Regime permanente:} \begin{cases} u_C(t \to \infty) = E \\ i_C(t \to \infty) = 0 \end{cases} \qquad \begin{array}{l} \text{Constante de tempo do circuito: } \tau = RC \, (s) \\ \tau \, \, \text{\'e o tempo necess\'ario para a tensão entre os terminais do condensador inicialmente descarregado atingir 63,2% do seu valor final E} \end{cases}$$

Resposta Forçada do Circuito RC de Primeira Ordem:

$$u_{C}(t) = E - E \cdot e^{-\frac{t}{RC}}$$
$$i_{C}(t) = \frac{E}{R} \cdot e^{-\frac{t}{RC}}$$

$t = \tau$	$u_{C}(t) = E - E \cdot e^{-1} = 0,632 \cdot E$
$t = 3\tau$	$u_C(t) = E - E \cdot e^{-3} = 0.950 \cdot E$
$t = 5\tau$	$u_C(t) = E - E \cdot e^{-5} = 0.993 \cdot E$

$t = \tau$	$i_C(t) = \frac{E}{R} \cdot e^{-1} = 0.368 \cdot \frac{E}{R}$
$t = 3\tau$	$i_{C}(t) = \frac{E}{R} \cdot e^{-3} = 0,049 \cdot \frac{E}{R}$
t = 5τ	$i_{C}(t) = \frac{E}{R} \cdot e^{-5} = 0,007 \cdot \frac{E}{R}$

Se o interruptor K for fechado num instante $t = t_0$ em vez de ser fechado no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão u_C(t) permanece constante;
- O condensador está completamente descarregado no instante $t = t_0$, ou seja, $u_C(t_0) = 0$;
- O interruptor K é fechado no instante $t = t_0$ e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = \frac{E}{RC}$$

A solução desta equação é a seguinte:

$$u_{C}(t) = \underbrace{E}_{\substack{\text{Estado} \\ \text{Parmynenta}}} \underbrace{-E \cdot e^{-\frac{1}{RC}(t-t_{0})}}_{\substack{\text{Transitório} \\ \text{Transitório}}}$$

Para $t \ge t_0$ a corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{E - u_{C}(t)}{R} = \underbrace{\frac{E}{R} \cdot e^{-\frac{1}{RC}(t - t_{0})}}_{\text{Estado Transitório}}$$

Resposta Forçada do Circuito RC de Primeira Ordem:

$$\begin{aligned} \mathbf{u}_{\mathbf{C}}(t) &= \mathbf{E} - \mathbf{E} \cdot \mathbf{e}^{-\frac{1}{RC}(t - t_0)} \\ \mathbf{i}_{\mathbf{C}}(t) &= \frac{\mathbf{E}}{R} \cdot \mathbf{e}^{-\frac{1}{RC}(t - t_0)} \end{aligned}$$

$t - t_0 = \tau$	$u_C(t) = E - E \cdot e^{-1} = 0,632 \cdot E$	
$t - t_0 = 3\tau$	$u_C(t) = E - E \cdot e^{-3} = 0.950 \cdot E$	
$t - t_0 = 5\tau$	$u_C(t) = E - E \cdot e^{-5} = 0,993 \cdot E$	

$t-t_0=\tau$	$i_C(t) = \frac{E}{R} \cdot e^{-1} = 0,368 \cdot \frac{E}{R}$
$t - t_0 = 3\tau$	$i_C(t) = \frac{E}{R} \cdot e^{-3} = 0,049 \cdot \frac{E}{R}$
$t - t_0 = 5\tau$	$i_{C}(t) = \frac{E}{R} \cdot e^{-5} = 0,007 \cdot \frac{E}{R}$

21.4.4 Resposta Total do Circuito RC de Primeira Ordem

E e R podem ser a Tensão de Thévenin e a Resistência de Thévenin de um circuito mais complexo.

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão
 u_C(t) permanece constante;
- O condensador está carregado com uma tensão U_0 no instante t = 0, ou seja, $u_C(0) = U_0$;
- O interruptor K é fechado no instante t = 0 e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge 0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = \frac{E}{RC}$$

A solução desta equação é a seguinte:

$$\mathbf{u}_{\mathbf{C}}(t) = \underbrace{\begin{bmatrix} \mathbf{E} & -\mathbf{t} \\ \mathbf{E} & -\mathbf{E} \cdot \mathbf{e} \end{bmatrix}}_{\text{Estado}} + \underbrace{\begin{bmatrix} \mathbf{E} & -\mathbf{t} \\ \mathbf{C} \end{bmatrix}}_{\text{Estado}} + \underbrace{\begin{bmatrix} \mathbf{E} & -\mathbf{t} \\ \mathbf{C} \end{bmatrix}}_{\text{Transitório}}$$

Para $t \ge 0$ a corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{E - u_{C}(t)}{R} = \underbrace{\frac{E}{R} \cdot e^{-\frac{t}{RC}}}_{\text{Estado}} \underbrace{-\frac{U_{0}}{R} \cdot e^{-\frac{t}{RC}}}_{\text{Transitório}}$$

$$\label{eq:Valores inicial} \text{Valores inicials:} \begin{cases} u_C(0) = U_0 \\ i_C(0) = \frac{E - U_0}{R} \end{cases} \qquad \text{Regime permanente:} \begin{cases} u_C(t \to \infty) = E \\ i_C(t \to \infty) = 0 \end{cases} \qquad \begin{array}{l} \textbf{Constante de tempo do circuito: } \tau = RC \, (s) \\ \textbf{τ \'e o tempo necessário para a tensão entre os terminais do condensador inicialmente carregado com uma tensão de valor U_0 atingir o valor $0,632 \cdot (E - U_0) + U_0$$$

Resposta Total do Circuito RC de Primeira Ordem:

$$\begin{aligned} \mathbf{u}_{\mathrm{C}}(t) &= \mathbf{E} - \mathbf{E} \cdot \mathbf{e}^{-\frac{t}{RC}} + \mathbf{U}_{0} \cdot \mathbf{e}^{-\frac{t}{RC}} = \left(\mathbf{E} - \mathbf{U}_{0}\right) \cdot \left(1 - \mathbf{e}^{-\frac{t}{RC}}\right) + \mathbf{U}_{0} \\ \mathbf{i}_{\mathrm{C}}(t) &= \frac{\mathbf{E}}{R} \cdot \mathbf{e}^{-\frac{t}{RC}} - \frac{\mathbf{U}_{0}}{R} \cdot \mathbf{e}^{-\frac{t}{RC}} = \frac{\mathbf{E} - \mathbf{U}_{0}}{R} \cdot \mathbf{e}^{-\frac{t}{RC}} \end{aligned}$$

$t = \tau$	$\mathbf{u}_{\mathbf{C}}(\mathbf{t}) = (\mathbf{E} - \mathbf{U}_{0}) \cdot (1 - \mathbf{e}^{-1}) + \mathbf{U}_{0}$	$U_0 = 0.632 \cdot (E - U_0) + U_0$
$t = 3\tau$	$\mathbf{u}_{\mathrm{C}}(t) = \left(\mathbf{E} - \mathbf{U}_{0}\right) \cdot \left(1 - \mathbf{e}^{-3}\right) + \mathbf{U}_{0}$	$U_0 = 0.950 \cdot (E - U_0) + U_0$
$t = 5\tau$	$\mathbf{u}_{\mathbf{C}}(\mathbf{t}) = (\mathbf{E} - \mathbf{U}_{0}) \cdot (\mathbf{l} - \mathbf{e}^{-5}) + \mathbf{U}_{0}$	$U_0 = 0.993 \cdot (E - U_0) + U_0$

$t = \tau$	$i_{C}(t) = \frac{E - U_{0}}{R} \cdot e^{-1} = 0.368 \cdot \frac{E - U_{0}}{R}$
$t = 3\tau$	$i_{C}(t) = \frac{E - U_{0}}{R} \cdot e^{-3} = 0.049 \cdot \frac{E - U_{0}}{R}$
$t = 5\tau$	$i_{C}(t) = \frac{E - U_{0}}{R} \cdot e^{-5} = 0,007 \cdot \frac{E - U_{0}}{R}$

Se o interruptor K for fechado num instante $t = t_0$ em vez de ser fechado no instante t = 0 ...

Verificam-se as seguintes condições iniciais:

- O interruptor K está inicialmente aberto, garantindo que a corrente no condensador i_C(t) é nula e a sua tensão u_C(t) permanece constante;
- O condensador está carregado com uma tensão U_0 no instante $t = t_0$, ou seja, $u_C(t_0) = U_0$;
- O interruptor K é fechado no instante $t = t_0$ e permanece fechado a partir desse instante. Enquanto K estiver fechado, este circuito corresponde ao caso particular do circuito apresentado no ponto 2.1 em que u(t) = E.

Como já se tinha visto no ponto 2.1,

$$\frac{d[u_{C}(t)]}{dt} + \frac{u_{C}(t)}{RC} = \frac{u(t)}{RC}$$

Assim, para se determinar a tensão no condensador para $t \ge t_0$ é necessário resolver a seguinte **equação diferencial ordinária de primeira ordem**, na qual E, R e C são constantes e $u_C(t)$ é a incógnita:

$$\frac{d[u_C(t)]}{dt} + \frac{u_C(t)}{RC} = \frac{E}{RC}$$

A solução desta equação é a seguinte:

tte: Resposta Forçada Resposta Natural
$$u_{C}(t) = \underbrace{\frac{E}{E \text{stado}} - \frac{1}{RC}(t-t_{0})}_{\text{Estado}} + \underbrace{U_{0} \cdot e^{-\frac{1}{RC}(t-t_{0})}}_{\text{Estado}}$$
Permanente Estado
Transitório

Para $t \ge t_0$ a corrente no condensador (que é a mesma que passa na fonte e na resistência) é dada por

$$i_{C}(t) = \frac{u_{R}(t)}{R} = \frac{u(t) - u_{C}(t)}{R} = \frac{E - u_{C}(t)}{R}$$

$$\label{eq:Valores inicial} \text{Valores inicials:} \begin{cases} u_C(t_0) = U_0 \\ i_C(t_0) = \frac{E - U_0}{R} \end{cases} \qquad \text{Regime permanente:} \begin{cases} u_C(t \to \infty) = E \\ i_C(t \to \infty) = 0 \end{cases} \qquad \text{Constante de tempo do circuito: } \tau = RC \text{ (s)}$$

$$\tau \text{ \'e o tempo necess\'ario para a tens\~ao entre os terminais do condensador inicialmente carregado com uma tens\~ao de valor U_0 atingir o valor $0,632 \cdot (E - U_0) + U_0$ }$$

Resposta Total do Circuito RC de Primeira Ordem:

$$\begin{split} \mathbf{u}_{C}(t) &= E - E \cdot e^{-\frac{1}{RC}(t-t_{0})} + \mathbf{U}_{0} \cdot e^{-\frac{1}{RC}(t-t_{0})} = \left(E - \mathbf{U}_{0}\right) \cdot \left[1 - e^{-\frac{1}{RC}(t-t_{0})}\right] + \mathbf{U}_{0} \\ \mathbf{i}_{C}(t) &= \frac{E}{R} \cdot e^{-\frac{1}{RC}(t-t_{0})} - \frac{\mathbf{U}_{0}}{R} \cdot e^{-\frac{1}{RC}(t-t_{0})} = \frac{E - \mathbf{U}_{0}}{R} \cdot e^{-\frac{1}{RC}(t-t_{0})} \end{split}$$

Universidade do Minho João Sena Esteves

 $t - t_0 = 5\tau$

 $i_{C}(t) = \frac{E - U_{0}}{R} \cdot e^{-5} = 0,007 \cdot \frac{E - U_{0}}{R}$

Exercício: Preencha os quadros anexos à figura.

K₁ fechado	K₂ aberto	K₃ fechado
Tensão de Thév ao condensador	do	
Resitência de Thévenin do circuito ligado ao condensador		
Constante de te		
Valor de u c em i	regime permanente	

K₁ aberto	K ₂ fechado	K	₃ fechado
Tensão de Thév ao condensador	enin do circuito ligad	lo	
Resitência de Thévenin do circuito ligado ao condensador			
Constante de ter	mpo do circuito		

Valor de uc em regime permanente

K₁ fechado	K ₂ fechado	K ₃ fechado
Tensão de Thév ao condensador	do	
Resitência de Tr ligado ao conder		
Constante de ter		
Valor de u c em ı	regime permanente	

K ₁ aberto	K ₂ aberto	K;	3 techado
Resitência de Thévenin do circuito ligado ao condensador			

•	-	ł	√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
Resitência de T ligado ao conde	hévenin do circuito nsador		

Condições iniciais:

 K_1 aberto, K_2 aberto, K_3 fechado e $u_C = 0$.

- K_1 é fechado no instante t_0 e aberto 250ms depois.
- K_2 é fechado no instante t_0 + 500ms.
- K_3 é aberto no instante t_0 + 600ms e fechado quando u_C atinge 20V.

Valor máximo efectivamente atingido por u c	
Valor de uc no instante t ₀ + 51ms	
Instante em que $\mathbf{u}_{\mathbf{C}}$ atinge pela segunda vez o valor 15 \mathbf{V}	
Valor de I tal que K ₃ permaneça aberto 50ms	