Formulario I3 - EYP1113 2024 - 02

Igualdades

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \, b^{n-k}; \qquad \sum_{k=x}^\infty \phi^k = \frac{\phi^x}{1-\phi} \quad \operatorname{si} |\phi| < 1;$$

$$\sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = \exp(\lambda); \qquad \sum_{x=0}^{\infty} \binom{x+k-1}{k-1} \phi^x = \frac{1}{(1-\phi)^k} \quad \text{si } 0 < \phi < 1 \text{ y } k \in \mathbb{N}, \quad \int_{-\infty}^{\infty} e^{-x^2/2} \, dx = \sqrt{2 \, \pi} \, dx$$

Propiedades función $\Gamma(\cdot)$ y $B(\cdot, \cdot)$

$$(1) \quad \Gamma(k) = \int_0^\infty u^{k-1} \, e^{-u} \, du = \mathrm{gamma}(k); \quad (2) \quad \Gamma(a+1) = a \, \Gamma(a); \quad (3) \quad \Gamma(n+1) = n!, \quad \mathrm{Si} \, \, n \in \mathbb{N}_0;$$

$$(4) \quad \Gamma(1/2) = \sqrt{\pi}; \quad (5) \qquad B(q,\,r) = \int_0^1 x^{q-1} \, (1-x)^{r-1} \, dx; \quad (6) \quad B(q,\,r) = \frac{\Gamma(q) \, \Gamma(r)}{\Gamma(q+r)} = \mathtt{beta}(q,r)$$

Distribución Gamma

$$(1) \quad \operatorname{Si} T \sim \operatorname{Gamma}(k,\,\nu), \operatorname{con} k \in \mathbb{N} \longrightarrow F_T(t) = 1 - \sum_{x=0}^{k-1} \frac{(\nu\,t)^x\,e^{-\nu\,t}}{x!}, \quad (2) \quad \operatorname{Gamma}(1,\,\nu) = \operatorname{Exp}(\nu)$$

Medidas descriptivas

$$\mu_X = \mathsf{E}(X), \quad \sigma_X^2 = \mathsf{E}\left[\left(X - \mu_X\right)^2\right], \quad \delta_X = \frac{\sigma_X}{\mu_X}, \quad \theta_X = \frac{\mathsf{E}\left[\left(X - \mu_X\right)^3\right]}{\sigma_X^3}, \quad K_X = \frac{\mathsf{E}\left[\left(X - \mu_X\right)^4\right]}{\sigma_X^4} - 3$$

$$M_X(t) = \mathsf{E}\left(e^{t\,X}\right), \quad \mathsf{E}[g(X)] = \left\{ \begin{array}{ll} \displaystyle \sum_{x \in \Theta_X} g(x) \cdot p_X(x) \\ \\ & , \quad \mathsf{Rango} = \max - \min, \quad \mathsf{IQR} = x_{75\,\%} - x_{25\,\%} \\ \\ \displaystyle \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx \end{array} \right.$$

$$\mathsf{Cov}(X,\,Y) = \mathsf{E}[(X - \mu_X) \cdot (Y - \mu_Y)] = \mathsf{E}(X \cdot Y) - \mathsf{E}(X) \cdot \mathsf{E}(Y) \qquad , \qquad \rho = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

Teorema de Probabilidades Totales

$$p_{Y}(y) = \sum_{x \in \Theta_{X}} p_{X,Y}(x,y); \qquad f_{X}(x) = \int_{-\infty}^{+\infty} f_{X,Y}(x,y) \, dy$$
$$p_{X}(x) = \int_{-\infty}^{+\infty} p_{X|Y=y}(x) \cdot f_{Y}(y) \, dy; \qquad f_{Y}(y) = \sum_{x \in \Theta_{X}} f_{Y|X=x}(y) \cdot p_{X}(x)$$

$$\mathsf{E}(X) = \int_{-\infty}^{+\infty} \mathsf{E}(X \,|\, Y = y) \cdot f_Y(y) \,dy \qquad \mathsf{E}(Y) = \sum_{x \in \Theta_X} \mathsf{E}(Y \,|\, X = x) \cdot p_X(x)$$

Teoremas de Esperanzas Iteradas

$$\mathsf{E}(Y) = \mathsf{E}[\mathsf{E}(Y \,|\, X)] \quad \mathsf{y} \quad \mathsf{Var}(Y) = \mathsf{Var}[\mathsf{E}(Y \,|\, X)] + \mathsf{E}[\mathsf{Var}(Y \,|\, X)]$$

Transformación

Sea Y = g(X) una función cualquiera, con k raíces:

$$f_Y(y) = \sum_{i=1}^k f_X\left(g_i^{-1}(y)\right) \cdot \left| \frac{d}{dy} g_i^{-1}(y) \right| \quad \text{o} \quad p_Y(y) = \sum_{i=1}^k p_X\left(g_i^{-1}(y)\right)$$

Sea Z = g(X, Y) una función cualquiera:

$$p_Z(z) = \sum_{g(x,y)=z} p_{X,Y}(x,y)$$

Sea Z = g(X, Y) una función invertible para X o Y fijo:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{X,Y}(g^{-1}, y) \left| \frac{\partial}{\partial z} g^{-1} \right| dy = \int_{-\infty}^{\infty} f_{X,Y}(x, g^{-1}) \left| \frac{\partial}{\partial z} g^{-1} \right| dx$$

Suma Normales Independientes

Consideremos X e Y variables aleatorias independientes con distribución Normal (μ_X, σ_X) y Normal (μ_Y, σ_Y) respectivamente. Si $Z = a + b \cdot X + c \cdot Y$, con a, b y c constantes, entonces

$$Z = a + b \cdot X + c \cdot Y \sim \mathsf{Normal}(\mu,\,\sigma), \quad \mu = a + b \cdot \mu_X + c \cdot \mu_Y \quad \mathsf{y} \quad \sigma = \sqrt{|b|^2 \cdot \sigma_X^2 + |c|^2 \cdot \sigma_Y^2}$$

Distribución Normal Bivariada

$$\begin{split} f_{X,Y}(x,y) &= \frac{1}{2\,\pi\,\sigma_X\,\sigma_Y\,\sqrt{1-\rho^2}} \times \exp\left\{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\,\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right)\right]\right\} \\ &\quad Y \,|\, X = x \sim \text{Normal}\left(\mu_Y + \frac{\rho\,\sigma_Y}{\sigma_X}\left(x-\mu_X\right),\,\sigma_Y\,\sqrt{(1-\rho^2)}\right) \\ &\quad X \sim \text{Normal}(\mu_X,\,\sigma_X) \qquad \text{e} \qquad Y \sim \text{Normal}(\mu_Y,\,\sigma_Y) \end{split}$$

Teorema del Límite Central

Sean X_1, \ldots, X_n variables aleatorias independientes e idénticamente distribuidas, entonces

$$Z_n = \frac{\displaystyle\sum_{i=1}^n X_i - n \cdot \mu}{\sqrt{n} \, \sigma} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} \longrightarrow Z \sim \mathsf{Normal}(0,1),$$

cuando $n \to \infty$, $\mathsf{E}(X_i) = \mu$ y $\mathsf{Var}(X_i) = \sigma^2$.

Mínimo y Máximo

Sean X_1, \ldots, X_n variables aleatorias continuas independientes con idéntica distribución (f_X y F_X), entonces para:

$$Y_1 = \min\{X_1, \dots, X_n\} \longrightarrow f_{Y_1} = n \left[1 - F_X(y)\right]^{n-1} f_X(y); \ Y_n = \max\{X_1, \dots, X_n\} \longrightarrow f_{Y_n} = n \left[F_X(y)\right]^{n-1} f_X(y)$$

Mientras que la distribución conjunta entre Y_1 e Y_n está dada por:

$$f_{Y_1,Y_n}(u,v) = n(n-1) [F_X(v) - F_X(u)]^{n-2} f_X(v) f_X(u), \qquad u \le v$$

Tabla Percentiles Distribución Normal Estándar

S_p	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
3.5	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998

Distribución	Densidad de Probabilidad	X_{Θ}	Parámetros	Esperanza y Varianza
Binomial	$\binom{n}{x} p^x (1-p)^{n-x}$	$x = 0, \dots, n$	u, p	$\mu_X = n p$ $\sigma_X^2 = n p (1-p)$ $M(t) = [pe^t + (1-p)]^n, t \in \mathbb{R}$
Geométrica	$p (1-p)^{x-1}$	$x=1,2,\dots$	d	$M(t) = p e^{t} / (1 - (1 - p)/p^{2})$ $M(t) = p e^{t} / (1 - (1 - p) e^{t}), t < -\ln(1 - p)$
Binomial-Negativa	$\binom{x-1}{r-1} p^r (1-p)^{x-r}$	$x=r,r+1,\dots$	g,	$\begin{split} \mu X &= r/p \\ \sigma_X^2 &= r (1-p)/p^2 \\ M\left(t\right) &= \left\{p e^t / [1-(1-p) e^t]\right\}^T, t < -\ln(1-p) \end{split}$
Poisson	$\frac{(\nu t)x e^{-\nu t}}{x!}$	$x = 0, 1, \dots$	7	$\mu X = \nu t$ $\sigma_X^2 = \nu t$ $M(t) = \exp \left[\lambda \left(e^t - 1\right)\right], t \in \mathbb{R}$
Exponencial	ν $e^{-\nu}x$	0 ∧I ₽	7	$\mu_X = 1/\nu$ $\sigma_X^2 = 1/\nu^2$ $M(t) = \nu/(\nu - t), t < \nu$
Gamma	$\frac{\nu^k}{\Gamma(k)} x^{k-1} e^{-\nu} x$	0 /\I 8	k, v	$\mu_X = k/\nu$ $\sigma_X^2 = k/\nu^2$ $M(t) = [\nu/(\nu - t)]^k, t < \nu$
Normal	$\frac{1}{\sqrt{2\pi\sigma}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$	8 V 8 V	μ , σ	$\mu_X = \mu$ $\sigma_X^2 = \sigma^2$ $M(t) = \exp(\mu t + \sigma^2 t^2/2), t \in \mathbb{R}$
Log-Normal	$\frac{1}{\sqrt{2\pi}(\zetax)}\exp\left[-\frac{1}{2}\left(\frac{\lnx-\lambda}{\zeta}\right)^2\right]$	0	s, ç	$\mu_X = \exp\left(\lambda + \frac{1}{2}\zeta^2\right)$ $\sigma_X^2 = \mu_X^2 \left(e^{\zeta^2} - 1\right)$ $E(X^r) = e^r \lambda M_Z(r\zeta), \text{ con } Z \sim \text{Normal}(0,1)$
Uniforme	$\frac{1}{(b-a)}$	а >I в >I	a, b	$\begin{split} \mu X &= (a+b)/2 \\ \sigma_X^2 &= (b-a)^2/12 \\ M(t) &= [e^t b - e^t a]/[t (b-a)], t \in \mathbb{R} \end{split}$
Beta	$\frac{1}{B(q,r)} \frac{(x-a)^{q-1} (b-x)^{r-1}}{(b-a)^{q+r-1}}$	а VI 8 VI Ф	a, r	$\mu_X = a + \frac{q}{q+r} (b - a)$ $\sigma_X^2 = \frac{q r (b-a)^2}{(q+r)^2 (q+r+1)}$
Hipergeométrica	$\binom{m}{\binom{N-m}{n}}\binom{M}{n}$	$\max\{0,n+m-N\} \leq x \leq \min\{n,m\}$	$N,\ m,\ n$	$\mu_X = n \frac{m}{N}$ $\sigma_X^2 = \left(\frac{N-n}{N-1}\right) n \frac{m}{N} \left(1 - \frac{m}{N}\right)$

Otras distribuciones

• Si $T \sim \text{Weibull}(\eta, \beta)$, se tiene que

$$F_T(t) = 1 - \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right] \quad f_T(t) = \frac{\beta}{\eta} \left(\frac{t}{\eta}\right)^{\beta - 1} \exp\left[-\left(\frac{t}{\eta}\right)^{\beta}\right], \quad t > 0$$

Con $\beta>0$, es un parámetro de forma y $\eta>0$, es un parámetro de escala. Si t_p es el percentil $p\times 100\,\%$, entonces

$$\ln(t_p) = \ln(\eta) + rac{1}{eta} \cdot \Phi_{\mathsf{Weibull}}^{-1}(p), \quad \Phi_{\mathsf{Weibull}}^{-1}(p) = \ln[-\ln(1-p)]$$

Mientras que su m-ésimo momento está dado por

$$E(T^m) = \eta^m \Gamma(1 + m/\beta)$$

$$\mu_T = \eta \Gamma \left(1 + \frac{1}{\beta} \right), \quad \sigma_T^2 = \eta^2 \left[\Gamma \left(1 + \frac{2}{\beta} \right) - \Gamma^2 \left(1 + \frac{1}{\beta} \right) \right]$$

■ Si $Y \sim \text{Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_Y(y) = \Phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right); \qquad f_Y(y) = \frac{1}{\sigma}\,\phi_{\text{Logistica}}\left(\frac{y-\mu}{\sigma}\right), \quad -\infty < y < \infty$$

donde

$$\Phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]} \quad {\rm y} \quad \phi_{\rm Logistica}(z) = \frac{\exp(z)}{[1+\exp(z)]^2}$$

son la función de probabilidad y de densidad de una Logística Estándar. $\mu \in \mathbb{R}$, es un parámetro de localización y $\sigma > 0$, es un parámetro de escala. Si y_p es el percentil $p \times 100 \%$, entonces

$$y_p = \mu + \sigma \, \Phi_{\mathsf{Log}(\mathsf{stica}}^{-1}(p) \quad \mathsf{con} \quad \Phi_{\mathsf{Log}(\mathsf{stica}}^{-1}(p) = \log \left(rac{p}{1-p}
ight)$$

Su esperanza y varianza están dadas por: $\mu_Y = \mu \quad {
m y} \quad \sigma_Y^2 = \frac{\sigma^2 \, \pi^2}{3}.$

■ Si $T \sim \text{Log-Log}(\text{stica}(\mu, \sigma))$, se tiene que

$$F_T(t) = \Phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right); \quad f_T(t) = \frac{1}{\sigma\,t}\,\phi_{\text{Logistica}}\left(\frac{\ln(t) - \mu}{\sigma}\right) \quad t > 0$$

Donde $\exp(\mu)$, es un parámetro de escala y $\sigma>0$, es un parámetro de forma. Si t_p es el percentil $p\times 100\,\%$, entonces

$$\ln(t_p) = \mu + \sigma \, \Phi_{\text{Logística}}^{-1}(p)$$

Para un entero m > 0 se tiene que

$$E(T^{m}) = \exp(m \mu) \Gamma(1 + m \sigma) \Gamma(1 - m \sigma)$$

El m-ésimo momento no es finito si $m \sigma \geq 1$.

Para
$$\sigma < 1$$
: $\mu_T = \exp(\mu) \Gamma(1 + \sigma) \Gamma(1 - \sigma)$

y para
$$\sigma < 1/2$$
: $\sigma_T^2 = \exp(2\,\mu)\,\left[\Gamma(1+2\,\sigma)\,\Gamma(1-2\,\sigma) - \Gamma^2(1+\sigma)\,\Gamma^2(1-\sigma)\right]$

• Un variable aleatoria T tiene distribución t-student (ν) si su función de densidad está dada por:

$$f_T(t) = \frac{\Gamma[(\nu+1)/2]}{\sqrt{\pi \nu} \Gamma(\nu/2)} \left(1 + \frac{t^2}{\nu}\right)^{-(\nu+1)/2}, \quad -\infty < t < \infty$$

- $\mu_T = 0$, para $\nu > 1$.
- $\sigma_T^2 = \frac{\nu}{\nu 2}$, para $\mu > 2$
- Si $T \sim \text{Fisher}(\eta, \nu)$, se tiene que

$$f_T(t) = \frac{\Gamma(\frac{\eta+\nu}{2})}{\Gamma(\eta/2)\Gamma(\nu/2)} \left(\frac{\eta}{\nu}\right)^{\frac{\eta}{2}} \frac{t^{\frac{\eta}{2}-1}}{\left(\frac{\eta}{\nu}+1\right)^{\frac{\eta+\nu}{2}}}, \quad t > 0$$

- $\mu_T = \frac{\nu}{\nu 2}$, para $\nu > 2$.
- $\sigma_T^2 = \frac{2 \nu^2 (\eta + \nu 2)}{\eta (\nu 2)^2 (\nu 4)}$, para $\nu > 4$.