A - No Attacking

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 400 points

Problem Statement

There is a chessboard with N rows and N columns. Let (i,j) denote the square at the i-th row from the top and the j-th column from the left.

You will now place pieces on the board. There are two types of pieces, called rooks and pawns.

A placement of pieces is called a **good arrangement** when it satisfies the following conditions:

- Each square has zero or one piece placed on it.
- If there is a rook at (i,j), there is no piece at (i,k) for all k $(1 \leq k \leq N)$ where $k \neq j$.
- If there is a rook at (i,j), there is no piece at (k,j) for all k $(1 \le k \le N)$ where $k \ne i$.
- If there is a pawn at (i, j) and $i \geq 2$, there is no piece at (i 1, j).

Is it possible to place all A rooks and B pawns on the board in a good arrangement?

You are given T test cases; solve each of them.

Constraints

- $1 \le T \le 10^5$
- $1 \le N \le 10^4$
- $0 \leq A, B$
- $1 \le A + B \le N^2$
- All input values are integers.

Input

The input is given from Standard Input in the following format. Here, $case_i$ represents the i-th case.

```
T \mathbf{case}_1 \mathbf{case}_2 \vdots \mathbf{case}_T
```

Each test case is given in the following format.

Output

Print T lines. The i-th line should contain the answer for the i-th test case.

For each test case, print Yes if it is possible to place the pieces in a good arrangement and No otherwise.

Sample Input 1

```
8
5 2 3
6 5 8
3 2 2
11 67 40
26 22 16
95 91 31
80 46 56
998 2 44353
```


In the first test case, for example, you can place rooks at (1,1) and (2,4), and pawns at (3,3), (4,2), and (5,3) to have all the pieces in a good arrangement.

In the second test case, it is impossible to place all the pieces in a good arrangement.

B-Chmax

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

For a permutation $P=(P_1,P_2,\ldots,P_N)$ of $(1,2,\ldots,N)$, we define F(P) by the following procedure:

• There is a sequence $B=(1,2,\ldots,N)$.

As long as there is an integer i such that $B_i < P_{B_i}$, perform the following operation:

 $\circ~$ Let j be the smallest integer i that satisfies $B_i < P_{B_i}.$ Then, replace B_j with $P_{B_j}.$

Define F(P) as the B at the end of this process. (It can be proved that the process terminates after a finite number of steps.)

You are given a sequence $A=(A_1,A_2,\dots,A_N)$ of length N. How many permutations P of $(1,2,\dots,N)$ satisfy F(P)=A? Find the count modulo 998244353.

Constraints

- $1 \le N \le 2 \times 10^5$
- $1 \leq A_i \leq N$
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

Print the number, modulo 998244353, of permutations P that satisfy F(P)=A.

Sample Input 1

1

For example, if P=(2,3,1,4), then F(P) is determined to be (3,3,3,4) by the following steps:

- Initially, B = (1, 2, 3, 4).
- The smallest integer i such that $B_i < P_{B_i}$ is 1. Replace B_1 with $P_{B_1} = 2$, making B = (2,2,3,4).
- The smallest integer i such that $B_i < P_{B_i}$ is 1. Replace B_1 with $P_{B_1} = 3$, making B = (3,2,3,4).
- The smallest integer i such that $B_i < P_{B_i}$ is 2. Replace B_2 with $P_{B_2} = 3$, making B = (3,3,3,4).
- There are no more i that satisfy $B_i < P_{B_i}$, so the process ends. The current B = (3,3,3,4) is defined as F(P).

There is only one permutation P such that F(P) = A, which is (2, 3, 1, 4).

Sample Input 2

4 2 2 4 3

Sample Output 2

0

Sample Input 3

8 6 6 8 4 5 6 8 8

Sample Output 3

C - Swap on Tree

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

There is a tree with N vertices numbered 1 to N. The i-th edge connects vertices u_i and v_i .

Additionally, there are N pieces numbered 1 to N. Initially, piece i is placed on vertex i.

You can perform the following operation any number of times, possibly zero:

• Choose one edge. Let vertices u and v be the endpoints of the edge, and swap the pieces on vertices u and v. Then, delete the chosen edge.

Let a_i be the piece on vertex i. How many different possible sequences (a_1, a_2, \ldots, a_N) exist when you finish performing the operation? Find the count modulo 998244353.

Constraints

- 2 < N < 3000
- $1 \leq u_i < v_i \leq N$
- The graph given in the input is a tree.

Input

The input is given from Standard Input in the following format:

Output

Print the number, modulo 998244353, of possible sequences (a_1, a_2, \ldots, a_N) .

Sample Input 1

```
3
1 2
2 3
```

Sample Output 1

5

For example, the sequence $(a_1,a_2,a_3)=(2,1,3)$ can be obtained by the following steps:

- Choose the first edge, swap the pieces on vertices 1 and 2, and delete the edge. This results in $(a_1,a_2,a_3)=(2,1,3)$.
- Finish operating.

Also, the sequence $(a_1,a_2,a_3)=(3,1,2)$ can be obtained by the following steps:

- Choose the second edge, swap the pieces on vertices 2 and 3, and delete the edge. This results in $(a_1,a_2,a_3)=(1,3,2)$.
- Choose the first edge, swap the pieces on vertices 1 and 2, and delete the edge. This results in $(a_1,a_2,a_3)=(3,1,2)$.
- Finish operating.

The operation can yield the following five sequences:

- (1,2,3)
- (1,3,2)
- (2,1,3)
- (2,3,1)
- (3,1,2)

Sample Input 2

5 2 5 3 4 1 3 1 5

Sample Output 2

Sample Input 3

Sample Output 3

D - Rolling Hash

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 600 points

Problem Statement

You are given non-negative integers P and B. Here, P is prime, and $1 \leq B \leq P-1$.

For a sequence of non-negative integers $X=(x_1,x_2,\ldots,x_n)$, the hash value $\mathrm{hash}(X)$ is defined as follows.

$$\operatorname{hash}(X) = \left(\sum_{i=1}^n x_i B^{n-i}
ight) mod P$$

You are given M pairs of integers $(L_1,R_1),(L_2,R_2),\ldots,(L_M,R_M)$.

Is there a sequence of non-negative integers $A=(A_1,A_2,\ldots,A_N)$ of length N that satisfies the condition below?

- For all i $(1 \le i \le M)$, the following condition holds:
 - \circ Let s be the sequence $(A_{L_i},A_{L_i+1},\ldots,A_{R_i})$ obtained by taking the L_i -th to the R_i -th elements of A. Then, $\mathrm{hash}(s) \neq 0$.

Constraints

- $2 \le P \le 10^9$
- ullet P is prime.
- $1 \le B \le P 1$
- $1 \le N \le 16$
- $1 \leq M \leq \frac{N(N+1)}{2}$
- $1 \le L_i \le R_i \le N$
- $(L_i,R_i)
 eq (L_j,R_j)$ if i
 eq j.
- All input values are integers.

Input

The input is given from Standard Input in the following format:

Output

If there is a sequence that satisfies the condition in the problem statement, print Yes; otherwise, print No.

Sample Input 1

```
3 2 3 3
1 1
1 2
2 3
```

Sample Output 1

Yes

The sequence A=(2,0,4) satisfies the condition because $\operatorname{hash}((A_1))=2,\operatorname{hash}((A_1,A_2))=1,\operatorname{hash}((A_2,A_3))=1.$

Sample Input 2

```
2 1 3 3
1 1
2 3
1 3
```

No

No sequence satisfies the condition.

Sample Input 3

```
998244353 986061415 6 11
1 5
2 2
2 5
2 6
3 4
3 5
3 6
4 4
4 5
4 6
5 6
```

Sample Output 3

Yes

E - Rookhopper's Tour

Time Limit: $2 \sec / Memory Limit: 1024 MiB$

Score: $800\,\mathrm{points}$

Problem Statement

There is a grid with N rows and N columns. Let (i,j) denote the cell at the i-th row from the top and the j-th column from the left. Additionally, there is one black stone and M white stones.

You will play a single-player game using these items.

Here are the rules. Initially, you place the black stone at (A,B). Then, you place each of the M white stones on some cell of the grid. Here:

- You cannot place a white stone at (A, B).
- You can place at most one white stone per row.
- You can place at most one white stone per column.

Then, you will perform the following operation until you cannot do so:

- Assume the black stone is at (i, j). Perform one of the four operations below:
 - \circ If there is a white stone at (i,k) where (j < k), remove that white stone and move the black stone to (i,k+1).
 - \circ If there is a white stone at (i,k) where (j>k), remove that white stone and move the black stone to (i,k-1).
 - o If there is a white stone at (k,j) where (i < k), remove that white stone and move the black stone to (k+1,j).
 - \circ If there is a white stone at (k,j) where (i>k), remove that white stone and move the black stone to (k-1,j).
 - Here, if the cell to which the black stone is to be moved does not exist, such a move cannot be made.

The following figure illustrates an example. Here, B represents the black stone, W represents a white stone, . represents an empty cell, and 0 represents a cell to which the black stone can be moved.

```
..O...
..W...
.....
.....
.....
...B.WO
```

You win the game if all of the following conditions are satisfied when you finish performing the operation. Otherwise, you lose.

- All white stones have been removed from the grid.
- The black stone is placed at (A, B).

In how many initial configurations of the M white stones can you win the game by optimally performing the operation? Find the count modulo 998244353.

Constraints

- $2 \leq M \leq N \leq 2 imes 10^5$
- $1 \le A \le N$
- $1 \le B \le N$
- ullet N, M, A, and B are integers.

Input

The input is given from Standard Input in the following format:

$$N$$
 M A B

Output

Print the number, modulo 998244353, of possible configurations of the white stones that can lead to your victory.

Sample Input 1

6 4 2 3

4

For example, consider the white stones placed as shown in the following figure:

Here, you can win the game by moving the black stone in the following steps:

- Remove the white stone at (5,3) and move the black stone to (6,3).
- Remove the white stone at (6,5) and move the black stone to (6,6).
- Remove the white stone at (3,6) and move the black stone to (2,6).
- Remove the white stone at (2,4) and move the black stone to (2,3).
- Since all white stones have been removed from the grid and the black stone is placed at (A,B)=(2,3), you win the game.

There are four configurations of white stones that can lead to your victory.

Sample Input 2

5 3 1 3

Sample Output 2

0

Sample Input 3

200000 47718 21994 98917

Sample Output 3

F - Both Reversible

Time Limit: 2 sec / Memory Limit: 1024 MiB

Score: 1100 points

Problem Statement

A string T is called a **good string** when it satisfies the following condition:

- There is a pair of strings (A,B) that satisfies all of the following:
 - \circ Both A and B are non-empty.
 - $\circ A + B = T.$
 - $\circ \;\; \mathsf{Both} \, A + \mathrm{rev}(B) \, \mathsf{and} \, \mathrm{rev}(A) + B \, \mathsf{are} \, \mathsf{palindromes}.$

Here, A+B denotes the string formed by concatenating strings A and B in this order.

Also, rev(A) denotes the string formed by reversing the order of the characters in string A.

There is a string S of length N consisting of lowercase English letters and the character ?.

Among the $26^{(\mathrm{number\ of\ ?s})}$ ways to replace the ?s in S with lowercase English letters, how many result in a good string? Find the count modulo 998244353.

Constraints

- $2 < N < 5 \times 10^4$
- S is a string of length N consisting of lowercase English letters and ceil.

Input

The input is given from Standard Input in the following format:

N

S

Output

Print the number, modulo 998244353, of ways to replace the characters that satisfy the condition in the problem statement.

Sample Input 1

4 ?ba?

Sample Output 1

1

The string abab is good, because if we set A= ab and B= ab, then A+B= abab, and both A+ $\mathrm{rev}(B)=$ abba and $\mathrm{rev}(A)+B=$ baab are palindromes.

Among the strings that can be formed by replacing the ?s in S with lowercase English letters, there is only one good string, which is abab.

Sample Input 2

10 ?y?x?x????

Sample Output 2

676

Sample Input 3

30 ???a?????aab?a???c????c?aab???

Sample Output 3

193994800

Sample Input 4