Gaussian Graphical Model Demo

Clayton W. Seitz

February 18, 2022

Outline

One-dimensional case

Let's first consider a toy example and work our way to the Gaussian graphical model. The standard definition of the 1D Gaussian is

$$P(x|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (1)

We'd like to maximize the log-likelihood \mathcal{L}_{θ} of the parameters $\theta = (\mu, \sigma)$ i.e.

$$\theta^* = \operatorname*{argmin}_{\theta} - \log P(\theta|X)$$

Bayesian Inference

We can use Bayesian inference to estimate the optimal parameters θ given a sample of data drawn from P(x).

$$P(\theta|x) = \frac{P(x|\theta)P(\theta)}{\int_{\theta} P(x|\theta)P(\theta)d\theta}$$
 (2)

In MAP estimation, we try to maximize the numerator as a function of θ . In MLE we assume a uniform prior and try to maximize $P(x|\theta) = \prod_{i=1}^{N} P(x_i|\theta)$.

Those are standard methods (which work nicely in this simple case) but let's try and use MCMC instead

Metropolis MCMC

Let
$$\tilde{P}(\theta|x) = P(x|\theta)P(\theta)$$

In the Metropolis algorithm, we randomly choose starting parameter values μ_0 and σ_0 . We will define two proposal distributions $T_{\mu}(\mu'|\mu) = \mathcal{N}(\mu, \sigma_{\mu}^2)$ and $T_{\sigma}(\sigma'|\sigma) = \mathcal{N}(\sigma, \sigma_{\sigma}^2)$

Iterate:

- ▶ Draw $\mu' \sim T_{\mu}(\mu'|\mu)$, $\sigma' \sim T_{\sigma}(\sigma'|\sigma)$
- lacksquare Compute $a_{\mu}=\min\left(1,rac{P(\mu)}{P(\mu')}
 ight)$, $a_{\sigma}=\min\left(1,rac{P(\sigma)}{P(\sigma')}
 ight)$
- ▶ Accept μ' w.p. a_{μ} and σ' w.p. a_{σ}

MCMC Run: 1D Gaussian Parameters

References I