Master 1 Bioinformatics

How to perform genetic diagnosis of rare disorders based on NGS data?

Morgane Baron morgane.baron@cnrs.fr

Rare genetic disorders

- ► Genetic disorder = when the illness is caused by one or more abnormalities in the genome
- Rare genetic disorder = when the abnormality is monogenic /located on one gene
- >5000 human diseases are caused by rare genetic disorders
- Only one abnormality can cause the illness!!

How to filter NGS data?

- → 23 mutations have been identified
- → These mutations are statistically associated with obesity and overweight

Pathogenicity of the variants

Diagnosis: ACMG criteria

- ► ACMG = American College of Medical Genetics and Genomics
- Consensus: criteria for classyfying pathogenic variants

Interest variants

Pathogenic P Likely Pathogenic LP

Causative variant

OR

Variant of Uncertain Signifiance VUS

No diagnosis

ACMG criteria

Diagnosis: ACMG criteria

ACMG STANDARDS AND GUIDELINES

RICHARDS et al. | Interpretation of sequence variants

Table 3 Criteria for classifying	ng pathogenic variants		
Evidence of pathogenicity	Category		
Very strong	PVS1 null variant (nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion) in a gene where LOF is a known mechanism of disease	Moderate	PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active s an enzyme) without benign variation
	Caveats: • Beware of genes where LOF is not a known disease mechanism (e.g., GFAP, MYH7)		PM2 Absent from controls (or at extremely low frequency if recessive) (Table 6) in Exome Sequencing Pro 1000 Genomes Project, or Exome Aggregation Consortium
	Use caution interpreting LOF variants at the extreme 3' end of a gene Use caution with splice variants that are predicted to lead to exon skipping but leave the remainder of the		Caveat: Population data for insertions/deletions may be poorly called by next-generation sequencing. PM3 For recessive disorders, detected in <i>trans</i> with a pathogenic variant
	protein intact Use caution in the presence of multiple transcripts		Note: This requires testing of parents (or offspring) to determine phase. PM4 Protein length changes as a result of in-frame deletions/insertions in a nonrepeat region or stop-loss.
Strong	PS1 Same amino acid change as a previously established pathogenic variant regardless of nucleotide change Example: Val—Leu caused by either G>C or G>T in the same codon		PM5 Novel missense change at an amino acid residue where a different missense change determined to pathogenic has been seen before
	Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level PS2 De novo (both maternity and paternity confirmed) in a patient with the disease and no family history		Example: Arg156His is pathogenic; now you observe Arg156Cys Caveat: Beware of changes that impact splicing rather than at the amino acid/protein level.
	Note: Confirmation of paternity only is insufficient. Egg donation, surrogate motherhood, errors in embryo transfer, and so on, can contribute to nonmaternity.	Supporting	PM6 Assumed de novo, but without confirmation of paternity and maternity PP1 Cosegregation with disease in multiple affected family members in a gene definitively known to cau
	PS3 Well-established in vitro or in vivo functional studies supportive of a darnaging effect on the gene or gene product		disease Note: May be used as stronger evidence with increasing segregation data
	Note: Functional studies that have been validated and shown to be reproducible and robust in a clinical diagnostic laboratory setting are considered the most well established.		PP2 Missense variant in a gene that has a low rate of benign missense variation and in which missense variation are a common mechanism of disease
	PS4 The prevalence of the variant in affected individuals is significantly increased compared with the prevalence in controls		PP3 Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)
	Note 1: Relative risk or OR, as obtained from case–control studies, is >5.0, and the confidence interval around the estimate of relative risk or OR does not include 1.0. See the article for detailed guidance.		Caveat: Because many in silico algorithms use the same or very similar input for their predictions, each algorithm should not be counted as an independent criterion. PP3 can be used only once in any evalu a variant.
	Note 2: In instances of very rare variants where case–control studies may not reach statistical significance, the prior observation of the variant in multiple unrelated patients with the same phenotype, and its absence in controls, may be used as moderate level of evidence.		PP4 Patient's phenotype or family history is highly specific for a disease with a single genetic etiology
10 10 20 10	Controls, may be used as moderate level of evidence.		PPS Reputable source recently reports variant as pathogenic, but the evidence is not available to the labor to perform an independent evaluation

Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology; Genet Med. 2015 May; 17(5)

Where find data?

- Databases: HGMD, clinVar, GnomAD....
- Data about known variants, for example:
- Presence of another variant at the same locus in a gene
- Allelic frequence in general populations
- Evidence of deleterious effect on the gene or on the gene product
- Scientific publication about mutations
- In vivo functionnal studies
- Alamut software is a convenient access to several databases of known variants
- Warning: always check that you explore the same transcript: NM_....

- Prediction algorhytmes:
- Splice site prediction
- Nucleotide conservation prediction

All these data are needed in order to classify the variants

PVS1 criterion (Pathogenicity Very Strong)

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Nonsense mutation: check the Amino Acid change: *=stop
Examples:
NM_000207.2 c.184C>T, p.(Gln62*)
NM_000207.2 c.324C>G, p.(Tyr108*)

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

```
Nonsense mutation: check the Amino Acid change: *=stop
Exemples:
gene INS (AD)
NM_000207.2 c.184C>T, p.(Gln62*) ht, AD
NM_000207.2 c.324C>G, p.(Tyr108*) ht, AD
cDNA protein
```

Where to check:

- NGS Annotation File
- Alamut software
- Public databases

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Frameshift mutation: deletion/insertion in which the number of deleted base pairs is not divisible by three: check the Amino Acid change and consequences Example: c.2711-2714del // p.(His905Alafs*34)

Warning: Indel of multiple of 3 nucleotides = indel of amino acid without frameshift

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Alamut

Frameshift mutation: in case of insertion or deletion: check the Amino Acid change and consequences Exemple:

NM_018534 c.2712-2715del // p.(His905Alafs*34)

Warning: Insertion /deletion of multiple of 3 nucleotides = indel of amino acid without frameshift

Where to check:

- NGS Annotation File
- Alamut software
- Public databases

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Splice site variant: at the boundary of an exon and an intron.
For example: gene GCK (AD)
Intronic:
NM_000162.3 c.46-4G>A, ht

Exonic: NM_000162.3 c.211G>C , ht (intron start after c.211)

Variant	Occurrences
_Variant i	Features
gDNA:	Chr7(GRCh38):g.44153464C>T
cDNA:	NM_000162.3(GCK):c.46-1G>A
Location	Intron 1 Mutalyzer
Type:	Substitution VariantValidator
Coding 8	Effect:
<i>₩</i> . A	A/AA p.?

Where to check:

- Alamut software
- Splicing prediction tools

Alamut

null variant = nonsense, frameshift, canonical ±1 or 2 splice sites, initiation codon, single or multiexon deletion

Initiation codon: first ATG = Methionine = M exemple: c.1A>G, p.?

Variant NM_000162.5(GCK):c.1A>G [Unsaved]

Variant Occurrences

Variant Features
gDNA: Chr7(GRCh38):g.44188953T>C
cDNA: NM_000162.5(GCK):c.1A>G

Location: Exon 1 Mutalyzer...

Type: Substitution VariantValidator...

Coding Effect: Start loss

AA/AA p.?

Alamut

single or multi-exon deletion

PS1 criterion (Pathogenicity Strong)

Same amino acid change as a previously established pathogenic variant regardless of nucleotide change

example: Val -> Leu caused by either G > C or G > T in the same codon

Can been checked in Alamut (database ClinVar) and/or in HGMD

PS1 criterion (Pathogenicity Strong)

HGMD

DM =Disease Mutation

DM= PS1! (read publication)

Publication

Variant: NM_000162.5(GCK):c.523G>C // p.Gly175Arg
Already present in HGMD (in this case with the same nucleotide change)

In HGMD, check by categories: Missense/nonsense, splicing mutations, insertions, deletions

PS1 criterion (Pathogenicity Strong)

ClinVar via Alamut

Variant:
Gene GCK (AD/AR)
NM_000162.5(GCK):c.217G>A,
p.(Gly73Arg), ht

Red =pathogenic

Orange = likely pathogenic

Green, uncertain signifiance

Red = PS1! (read publication)

PS3 criterion (Pathogenicity Strong)

Well-established in vitro or in vivo functional studies supportive of a damaging effect on the gene or gene product

reference with [Functional characterisation]= PS3! (read publication)

Estalella (2007) Clin Endocrinol (Oxf) 67, 538

Estalella (2008) J Hum Genet 53: 460 [Functional characterisation]

PM1 criterion (Pathogenicity Moderate)

PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation

Hotspot: pathogenic variant (red) in one residue before or after the interest variant without benign variant (green)

PM1 criterion (Pathogenicity Moderate)

PM1 Located in a mutational hot spot and/or critical and well-established functional domain (e.g., active site of an enzyme) without benign variation

HGMD

HGMD accession	HGMD codon change	HGMD amino acid change	HGVS (nucleotide)	HGVS (protein)	Variant class	Reported phenotype	Reference	Extra information
CM1812672	TTA-TCA	Leu662Ser	c.1985T>C	p.L662S	DM	Obesity	Kleinendorst (2018) J Med Genet 55, 578 Kleinendorst (2017) BMJ Case Rep 2017: [Additional report]	hg38 hg19 dbSNP
CM070187	CAT-CCT	His684Pro	c.2051A>C	p.H684P	DM	Obesity, early-onset	Farooqi (2007) N Engl J Med 356, 237 <u>Kimber (2008) Endocrinology 149: 6043</u> [Functional characterisation] <u>Clément (2018) Nat Med 24: 551</u> [Additional case report] 2 more reference(s)	hg38 hg19 dbSNP gnomAD
CM168926	TCT-TTT	Ser723Phe	c.2168C>T	p.S723F	DM	Obesity, severe	Hannema (2016) Horm Res Paediatr 85, 412 Kleinendorst (2017) BMJ Case Rep 2017: [Additional report] Kleinendorst (2018) J Med Genet 55: 578 [Additional report]	bg38 bg19

Example:

NM_002303.5(LEPR):c.2047C>T, p.(His683Tyr), ht

In case of misense or insertion or deletion, check missense variants

Hotspot: pathogenic variant DM in one residue before or after the interest variant without benign variant (green)

PM2 criterion (Pathogenicity Moderate)

PM2 Absent from controls (or at extremely low frequency if recessive) in GnomAD

Where to check?

gnomAD browser

gnomAD v2.1.1 ▼

Search

Variant ID	 Source 	Consequence	Annotation	Flags	Allele Count	Allele Number	Allele Frequency	Number of Homozygotes
11-2181011-T-C	E G	c.*71A>G	● 3' UTR		3	236228	1.27e-5	0 ^
11-2181016-C-T	E	p.Glu92Lys +	missense		1	211970	4.72e-6	0
11-2181023-T-C	E	p.Lys89Lys +	synonymous		1	220918	4.53e-6	0
11-2181028-T-C	G	p.Asn88Asp +	missense		1	31316	3.19e-5	0
11-2181029-C-T	E	p.Trp87Ter +	stop gained	LC pLoF pLoF flag	1	226462	4.42e-6	0
11-2181031-ATC	-A G	p.Arg86MetfsTer3 +	frameshift	LC pLoF pLoF flag	1	31194	3.21e-5	0
11-2181037-C-G	E	p.Glu85Gln †	missense		7	232958	3e-5	0

Example: NM_000207.2(INS): p.(Ile91Val), ht: PM2=yes

NM_000207.2(INS): p.(Glu92Lys), ht: PM2=no, homoz:PM2= yes

PM3 criterion (Pathogenicity Moderate)

- ▶ PM3 For <u>recessive disorders</u>, detected in *trans* with a pathogenic variant
- ▶ Note: This requires testing of parents (or offspring) to determine phase.

Two pathogenic variants in the same gene:

Sequencing of the parents:

- one parent is carrier of the two variants: PM3 = no
- each parent is carrier of one variant: PM3 = yes

PM4 criterion (Pathogenicity Moderate)

PM4 <u>Protein length</u> changes as a result of <u>in-frame</u> deletions/insertions in a <u>nonrepeat region</u> or stop-loss variants

Alamut

CUL4B), transcript vari	ant 1, mRNA.	© □ Voir tous les	transcrits	c.440	
TTGATGCGAAGATGGC					TGC
F D A K M A 30 13		S S S S S	S S S) P I <i>F</i>	15
φ			J Dele	etion	
Variant NM_003588		del [Unsaved]			
Caractéristiques			- D		
gDNA: ChrX(GRCh38):g.12056026	52_120560267del	PN	14: na	D
cDNA: NM_0	3588.3(CUL4B):c.42	6_431del	Maril III		
Localisation: Exon	3	Mutalyzer			
Type: Deletion	on	VariantValidator			
Effet sur le codage:	In-frame				
ASC 00/00	n (Ser145 Ser146d	۵۱۱			

PM5 criterion (Pathogenicity Moderate)

- Novel <u>missense</u> change at an amino acid residue where a different missense change determined to be pathogenic has been seen before
- Example: Arg156His is pathogenic; now you observe Arg156Cys
- NM_000162.5(GCK):c.67T>C, p.(Phe23Leu)

CM191975	CTG-CGG	Leu20Arg	c.59T>G	p.L20R	DM	Diabetes, gestational	Zubkova (2019) Acta Diabeto1,
CM074228	CTG-CCG	Leu20Pro	c.59T>C	p.L20P	DM	Diabetes, MODY	Estalella (2007) Clin Endocrinol (Oxf) 67, 538
CM096803	TTC-GTC	Phe23Va1	c.67T>G	p.F23V	DM	Diabetes, MODY	Osbak (2009) Hum Mutat 30, 1512
CM096790	CAG-TAG	Gln24Term	c.70C>T	p.Q24*	DM	Diabetes, MODY	Osbak (2009) Hum Mutat 30, 1512 <u>Xiong (2015) Science 347: 1254806 [Additional report]</u>

PM5: yes

PP1 criterion (Supporting Pathogenicity

- Cosegregation with disease in multiple affected family members in a gene definitively known to cause the disease
- Needs sequencing of more than thrre members of the family.
- PP1 = yes if the variant is carried only by ill family's members

PP2 criterion (Supporting Pathogenicity)

Missense variant in a gene that has a low rate of benign missense variation and in which missense variants are a common mechanism of disease

Where to check:

GnomAD: Constraint function

If Constraint (Missense) $Z \ge 1,75$, PP2= yes

PP3 criterion (Supporting Pathogenicity)

Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

Splicing predictors via Alamut

Example: splicing effect:

Where to check:

- Alamut
- Splicing predictors

	NM_000207.2(INS):c.187G>A - [c. 82 (Exon 2) - c.187+106 (Intron 2)] lamut Visual v. 2.15 rev. (
SpliceSiteFinder-like	
MaxEntScan	blue =splice site
NNSPLICE 3	[0-1]
GeneSplicer	[0-24]
	170 187+10 187+20 187+30
Reference Sequence	CGCCGGGAGGCAGAGGACCTGCAG <mark>G</mark> GTGAGCCAACTGCCCATTGCTGCCCCCTGGCCGCCCCCAG
SpliceSiteFinder-like	[0-100]
MaxEntScan	[0-16]
NNSPLICE 5	[0-1]
GeneSplicer	[0-21]
Branch Points	
SpliceSiteFinder-like	
MaxEntScan	[0-12] Less or no blue =
NNSPLICE 3	[0-1] no colico cito
GeneSplicer	no splice site
	170 187+10 187+20 187+30
Mutated Sequence	CCGCCGGGAGGCAGAGGACCTGCAG <mark>A</mark> GTGAGCCAACTGCCCATTGCTGCCCCCTGGCCGCCCCCAG
SpliceSiteFinder-like	[0-100]
MaxEntScan	[0-16]
NNSPLICE 5	[0-1]
GeneSplicer	[0-21] SOPHIA
Branch Points	

PP3 criterion (Supporting Pathogenicity)

Multiple lines of computational evidence support a deleterious effect on the gene or gene product (conservation, evolutionary, splicing impact, etc.)

Example: misense

Where to check:

- Alamut
- pathogenicity predictors

Missense Predictions
In oke Manually

Automatically computed

Align GVGD...

Class C65 (GV: 0.00 - GD: 101.29)

Deleterious (score: 0)

MutationTaster...

Disease causing (prob: 1)

PP3 = yes if:

SIFT: Deleterious

AND

Mutation Taster: Disease Causing

PP4 criterion (Supporting Pathogenicity)

Patient's phenotype or family history is highly specific for a disease with a single genetic etiology

example: HNf4A, GCK, HNF1A, HNF1B, ... MODY diabetes

Diagnosis: Rules to classify variants

Table 5 Rules for combining criteria to classify sequence variants

variants	
Pathogenic	(i) 1 Very strong (PVS1) AND
	(a) ≥1 Strong (PS1–PS4) OR
	(b) ≥2 Moderate (PM1–PM6) OR
	(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
	(d) ≥2 Supporting (PP1–PP5)
	(ii) ≥2 Strong (PS1–PS4) OR
	(iii) 1 Strong (PS1–PS4) AND
	(a)≥3 Moderate (PM1-PM6) OR
	(b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
	(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)

Likely pathogenic	(i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR
	(ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR
	(iii) 1 Strong (PS1–PS4) AND≥2 supporting (PP1–PP5) OR
	(iv) ≥3 Moderate (PM1–PM6) OR
	(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR
	(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)
Uncertain	(i) Other criteria shown above are not met OR
significance	 (ii) the criteria for benign and pathogenic are contradictory

Diagnosis: Rules to classify variants

Table 5 Rules for combining criteria to classify sequence variants

Pathogenic

- (i) 1 Very strong (PVS1) AND
 - (a) ≥1 Strong (PS1–PS4) OR
 - (b) ≥2 Moderate (PM1–PM6) OR
 - (c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
 - (d) ≥2 Supporting (PP1–PP5)
- (ii) ≥2 Strong (PS1–PS4) OR
- (iii) 1 Strong (PS1-PS4) AND
 - (a)≥3 Moderate (PM1-PM6) OR
 - (b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
 - (c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)

Example: selected criteria are:

- PVS1, PM1, PP2: the variant is pathogenic
- PS1, PS3, PM2: the variant is pathogenic
- PVS1: the variant is VUS (Variant Uncertain Signifiance)

Diagnosis: Rules to classify variants

Likely pathogenic (i) 1 Very strong (PVS1) AND 1 moderate (PM1-PM6) OR (ii) 1 Strong (PS1-PS4) AND 1-2 moderate (PM1-PM6) OR (iii) 1 Strong (PS1–PS4) AND≥2 supporting (PP1-PP5) OR (iv) ≥3 Moderate (PM1–PM6) OR (v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1-PP5) OR (vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1-PP5) Uncertain: (i) Other criteria shown above are not met OR significance (ii) the criteria for benign and pathogenic are

contradictory

Example: selected criteria are:

- PVS1, PM1: the variant is likely pathogenic
- PS1, PM2, PM5: the variant is likely pathogenic
- PM2, PP2, PP3, PP4: the variant is VUS (Variant Uncertain Signifiance)
- PV\$1 only: variant VU\$

Example 1: NM_000162.5(GCK):c.767del // p.Glu256Glyfs*38

Patient with Type 2 Diabetes

Variant to classify: NM_000162.5(GCK): c.767del // p.Glu256Glyfs*38, ht

Variant not found in controles (GnomAD)

GCK (known gene for diabetes), autosomal dominant

PVS1= yes PM4= no PM2= yes

PM3 = no

HGMD

CD097032	GGTGGAG^246GGGgACGAGGGCCG	c.739delG	p.(Asp247Thrfs*47)	DM	Diabetes, MODY	Osbak (2009) Hum Mutat 30, 1512
CD178808	CGAGTGG^258GGCgccTTCGGGGACT	c.775_777delGCC	p.(Ala259del)	DM	Diabetes, MODY	Delvecchio (2017) J Clin Endocrinol Metab 102, 1826

ClinVar via Alamut

PS1 = noPS3 = no

Phenotype patient is highly specific for a PP4= yes monogenic disease

Example 1: NM_000162.5(GCK):c.767del // p.Glu256Glyfs*38

No missense variant, PM5 = 0, PP2 = 0

c.769T>C, p.(Trp257Arg) PM1= yes

Example 1: conclusion

NM_000162.5(GCK):c.767del // p.Glu256Glyfs*38

Criteria:

PVS1

PM1 PM2

PP4

This variant is pathogenic for the disease

Example 2

Patient with MODY diabetes (diabetes of the young) HNF1A (NM_001306179.1):c.824_826del // p.(Glu275del)

Variant found in controles (GnomAD)

HNF1A (known gene for diabetes), autosomal dominant

PM2= no PM3= no

Alamut

no fs, no stop, no splice, PVS1= NO In frame, PM4= yes

Example 2

HNF1A (NM_001306179.1):c.824_826del //p.(Glu275del)

HGMD for indel

PS1 = yes

PS3 = yes

HGMD for missense

CGC-AGC Arg272Ser c.814C>A p.R272S Diabetes, MODY3 Bellanne-Chantelot (2008) Diabetes 57, 503 AAA-AAC Lys273Asn c.819A>C p.K273N Diabetes, MODY Ellard (2006) Hum Mutat 27, 854 GAA-GCA Glu275Ala c.824A>C p.E275A Bansal (2017) BMC Med 15, 213 Diabetes Ala276Asp c.827(>A p.A276D Bjorkhaug (2003) J Clin Endocrinol Metab 88, 920 GCC-GAC Diabetes, MODY

Phenotype patient is highly specific for a PP4= yes monogenic disease

PM1 = yes in HGMD; presence of missense variant before or after the variant

Example 2

Patient with MODY diabetes (diabetes of the young) HNF1A (NM_001306179.1):c.824_826del // p.(Glu275del)

Alamut

- ▶ PM1 = NO in clinvar
- ightharpoonup PM1 = yes in HGMD
- ► So PM1 =yes

PM4= yes, no repeat regions no splice, PV\$1= NO

or a

PP4= yes

Phenotype patient is highly specific for a monogenic disease

PM5 = no for indel

Example 2: conclusion

HNF1A (NM_001306179.1):c.824_826del //p.(Glu275del)

Criteria:

PS1

PS3

PM1

PM4

PP4

Table 5 Rules for combining criteria to classify sequence variants

Pathogenic

- (i) 1 Very strong (PVS1) AND
 - (a) ≥1 Strong (PS1-PS4) OR
 - (b) ≥2 Moderate (PM1-PM6) OR
 - (c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR
 - (d) ≥2 Supporting (PP1-PP5)
- (ii) ≥2 Strong (PS1-PS4) OR
- (iii) 1 Strong (PS1-PS4) AND
 - (a)≥3 Moderate (PM1-PM6) OR
 - (b)2 Moderate (PM1–PM6) AND ≥2 Supporting (PP1–PP5) OR
 - (c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)

