

Matching and synthetic controls

Nils Droste

2021 ClimBEco course

Introduction

watening

exact match distance match machine-learning

model comparis example

Synthetic Controls

intuition estimation current developmen

Reference

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

Introduction

Matching

exact match distance match machine-learning model compariso

Synthetic Control

estimation current developme

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

matching approaches

Introduction

Matching

exact match distance match

model comparis

example

Synthetic Control

estimation current developme

example

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning

Introduction

Matching

exact match distance match machine-learnin

model compariso example

Synthetic Contro

estimation current developme

References

Synopsis: Today, we will be looking into methods that help us find (aka *match*) or simulate (aka *synthesize*) a control group for inferring causal effects from observational data, and its recent developments

In particular, we will develop an understanding of

- matching approaches
 - classical
 - machine-based learning
- synthetic controls

Intuition

Introduction

Matchina

exact match distance match machine-learning model compariso

Synthetic Control

intuition

current developme

References

STORY OF THE PROPERTY OF THE P

Consider a situation where the untreated are very different from the treated:

Image source: Schleicher et al. 2020

Intuition

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

Image source: Sizemore and Alkurdi 2019

Introduction

Intuition

Consider a situation where the untreated are very different from the treated:

Matching, def: any method that strategically subsamples dataset to balance covariate distribution in treated and control groups such that after matching both groups share an equal probability of treatment.

Non-Random Treatment Assignment

Average Treatment Effect on the Treated + Selection Bias

Image source: Image source: Sizemore and Alkurdi 2019

→ matching is a *pre-analytical procedure*, allowing unbiased inference.

Introduction

Matching

exact match distance match machine-learning

model comparis example

Synthetic Contro

estimation current developme

example

Procedure

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Control

Synthetic Contro

estimation

current developm example

Procedure

Causal Inference

Introduction

Matching

distance match model comparison

Image source: Schleicher et al. 2020

Introduction

Matching

distance match machine-learning model comparison example

Synthetic Control

intuition estimation current development example

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]

Introduction

Matching

distance match machine-learning model comparison example

Synthetic Contro

estimation current developmen

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$

Introduction

Matching

distance match machine-learning model comparisor example

Synthetic Contro

estimation current development example

References

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$

$$\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$$
 or propensity score can be used for matching

Introduction

- stable unit treatment value assumption (SUTVA)
 - treating one individual unit does not affect another's (potential) outcome
 - treatment is comparable [no (strong) variation in treatment]
- unconfoundedness (strong ignorability)
 - \blacksquare $(Y(1), Y(0)) \perp D$: treatment assignment is independent of the outcomes
 - i.e. no omitted variable bias (recall the storch example)
 - \blacksquare or, at least, conditional unconfoundedness $(Y(1), Y(0)) \perp D|X$
- $\rightarrow \pi(X_i) = Pr(D_i = 1|X_i)$ or propensity score can be used for matching
- → but should maybe not (King and R. Nielsen 2019), we will see alternatives

Overview

Here is a general overview of possible matching methods

Introduction

Matching exact match

exact match distance match machine-learning model compariso

Synthetic Control

Synthetic Contro

estimation current developmen

example

References

Image source: Sizemore and Alkurdi 2019

Introduction

Matching exact match

exact match distance match machine-learning model compariso

oxampio . . .

Synthetic Controls

estimation current development example

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

Introduction

Matching exact match

distance match machine-learning model compariso

Synthetic Controls

estimation
current developmen

References

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

How to find the sufficiently similar subsamples?

Introductio

Matching

distance match machine-learning model compariso

Synthetic Controls

Synthetic Contro

estimation current developmen

.

Consider that we aim to estimate *conditional average treatment effect* (CATE) (cf. Abrevaya, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
 (1)

King and Nielsen (2019) formulate a general pruning (*matching*) function *M*:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

Matching

Consider that we aim to estimate conditional average treatment effect (CATE) (cf. Abrevava, Hsu and Lieli 2015)

$$CATE = E(Y(1) - Y(0)|X = x)$$
(1)

King and Nielsen (2019) formulate a general pruning (matching) function M:

$$X_{\ell} = M(X|A_{\ell}, T_i = 1, T_j = 0, \delta) \equiv M(X|A_{\ell}) \subseteq X$$
 (2)

providing X_{ℓ} , subset of matched observation based on condition A_{ℓ} .

ightarrow in what follows we will look at different pruning method ℓ to produce the best matched subset δ .

Exact matching

Introduction

Matching

exact match

machine-learnin model comparis

example

Synthetic Controls

Intuition

estimation current developme

example

References

For exact matching we find exactly equal pairs

$$X_{EM} = M(X|X_i = X_j) \tag{3}$$

Note: X can be a vector of covariates.

Coarsened Exact Matching (CEM)

Introduction

evact match

exact match

machine-learning

example

Synthetic Control

intuition estimation

current developme example

References

For coarsened exact matching we approximate

$$X_{CEM} = M(X|C_{\delta}(X_i) = C_{\delta}(X_i))$$
 (4)

where C_{δ} is a vector of same dimensions as X, but coarsened values, e.g. at "natural breakpoints" such as years in one school type, levels of income, etc.

Mahalanobis Distance Method (MDM)

For multidimensional data, we can identify nearest neighbours in an n-dimensional space.

exact match

distance match

model comparis

Synthetic Control

Synthetic Contro

estimation current developme

example

References

$$md(X_i, X_j) = \{(X_i - X_j)^{\top} S^{-1} (X_i - X_j)\}^{\frac{1}{2}}$$

(Above) Mahalanobis distance measure, where S denotes the covariance matrix of X. [24]

(Left) A contour plot is overlaid on a Mahalanobis distance scatter plot of 100 observations randomly drawn from a bivariate normal distribution. The centroid, in blue, is the reference point for distance between two points.

Image credit and description: Statistics How To: Mahalanobis Distance, Simple Definitions, Examples. Retrieved 10-08-2019 from: https://www.statisticshowto.datasciencecentral.com/mahalanobis-distance/

Propensity score matching (PSM)

Introduction

exact match

distance match

distance match

model comparis

Synthetic Control

Synthetic Contro

estimation

current develop

example

Poforoncos

<u>Advantages</u>	<u>Disadvantages</u>
solves matching problem for high dimensions	misspecification of PS model = bad matches
many available R packages for easy implementation	matched pairs may be dissimilar across X

Image source: Sizemore and Alkurdi 2019

Introductior

exact match

distance match

machine-learn

model comparis example

Synthetic Control

Intuition

estimation current developm

current developm example

Introduction

exact match

distance match

machine-learnir model comparis

model comparis example

Synthetic Control

intuition

current developme

References

> m.out

A matchit object

- method: Optimal full matching

- distance: Propensity score

- estimated with logistic regression

- number of obs.: 614 (original), 614 (matched)

- target estimand: ATT

- covariates: age, educ, race, married, nodegree, re74, re75

Introduction

Matching

exact match

distance match

model compariso

Synthetic Controls

Synthetic Control

estimation

current developme

References

plot(m.out, type = "ecdf", which.xs = c("age", "re74", "married")

Code source: Greifer 2020

Introductior

avact match

dietance match

machine-learn

model comparise example

Synthetic Control

detailes

estimation current developme

current developme example

Introduction

Matching

distance match

machine-learnin model comparis

model comparis example

Synthetic Contro

estimation

current development example

References

Code source: Greifer 2020

Intermediate discussion

Introduction

exact match

distance match

machine-learning

model compariso example

Synthetic Contro

estimation current developme

ехапре

References

There is a bit of critique on PSM

- King and Nielsen (2019)
 - "PSM is ... uniquely blind to the often large portion of imbalance"
 - "easy to avoid by switching to one of the other popular methods of matching"
 - i.e.: CEM and MDM
- Sizemore and Alkurdi (2019)
 - test PSM against machine learning based methods
 - logistic PSM > random forest PSM > genetic matching
 - CEM ???

Random forest (RF)

RF are multiple regression trees classifying the data by partitioning

Code source: Wikipedia

We can use this to predict treatment (aka propensity scores)

Introduction

exact match

distance match

machine-learning

example

Synthetic Contro

estimation current developmen

eXtreme Gradient Boosting (XGBoost)

Machine learning such as XGBoost or even ensembles can also be used to

Code source: Quant Insti

Matching exact match

machine-learning

example

Synthetic Contro

estimation current development

Genetic matching

Genetic Matching combines PSM and MDM

$GMD(X_i, X_j, W) = \sqrt{(X_i)^T (S^{-\frac{1}{2}})^T W S^{-\frac{1}{2}} (X_i - X_j)}$ (5)

Image source: Sizemore and Alkurdi 2019

Introduction

watening

distance match

machine-learning

model comparise example

Synthetic Controls

Synthetic Control

estimation

current developri

comparison - fitting distributions

Introduction

Matching exact match

exact match
distance match
machine-learning
model comparison

example

Synthetic Control

Synthetic Contro

estimation current development example

comparison - mean absolute error

troductio

Matching

exact match distance match

model comparison

example

Synthetic Control

intuition

estimation

current development example

comparison - summary

Introduction

Matching exact match

distance match

model comparison

onumpro

Synthetic Control

estimation current developmen

References

for the comparison above I used nearest neighbour matching, reducing sample size

comparison - summary

Introduction

exact match

distance match machine-learning

model comparison example

Synthetic Control

Synthetic Control

estimation current developm

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)

Introduction

exact match

distance match machine-learning model comparison

Synthetic Controls

estimation current developmer example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)

Introduction

exact match

distance match machine-learning model comparison

example

Synthetic Control

estimation current development example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)

Introductio

Matchin

exact match distance match machine-learning

model comparison example

Synthetic Control

estimation current developme example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include MatchIt, Matching, and PanelMatch

Introductio

Matchin

distance match machine-learnin

model comparison example

Synthetic Control

estimation current development example

- for the comparison above I used nearest neighbour matching, reducing sample size
- maximizing post-match balance does not necessarily improve explanatory model power (Colson et al. 2016)
- possibly both sample size and balance need to be taken into account (King, Lucas and R. A. Nielsen 2017)
- latest approaches include almost exact matching (Dieng et al. 2018a; Dieng et al. 2018b), text matching (Roberts, Stewart and R. A. Nielsen 2020), generalized optimal matching (Kallus 2020)
- R packages include MatchIt, Matching, and PanelMatch
- for the debate around propensity score matching (King and R. Nielsen 2019), see also Hünermund, (2019)

an example

Introduction

exact match

distance match machine-learning

example

Synthetic Control

intuition estimation

example

References

The state of the s

Ferraro and Hanauer (2014) use matching approach (MDM) to assess the effect of protected areas on poverty reduction

Causal model of PA on poverty effects, source: Ferraro and Hanauer 2014

Synthetic Controls

What if we do only have *one* treated unit?

140 — California rest of the U.S. 120 per-capita cigarette sales (in packs) 80 9 . Passage of Proposition 99 -> 20 1970 1975 1980 1990 1995 2000

California introduces tobacco control in 1988, cf. Abadie et al. 2010

1985 year

Matching

intuition

a case and an idea

How about we compare to a weighted average of untreated?

.

exact match

machine-learnin model comparis example

Synthetic Control

intuition

estimation current developmen example

California introduces tobacco control in 1988, cf. Abadie et al. 2010

and a notation

Introduction

evact match

distance match machine-learning model comparison

Synthetic Control

Synthetic Control

estimation current developmen

References

$\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$ (6)

"In other words, the imputed control outcome for the treated unit is a linear combination of the control units, with intercept μ and weights w_i for control unit i." (Doudchenko and Imbens 2020: 7)

the process

We compare the treated to the non-treated

Introduction

exact match

distance match machine-learning model comparisor

Synthetic Control

intuition

estimation current developmen example

Figure 5. Per-capita cigarette sales gaps in California and placebo gaps in 34 control states (discards states with pre-Proposition 99 MSPE twenty times higher than California's).

the process

and compute the difference to a counterfactual weighted set of untreated

.....

exact match

distance match machine-learning model compariso

Synthetic Control

intuition

estimation current development example

Figure 3. Per-capita cigarette sales gap between California and synthetic California.

Recall the ordinary least square estimate (OLS)

OLS, img source: Gavrilova, 2020

Introduction

Matching

exact match distance match

model comparison example

Synthetic Controls

estimation

current developm

ntroduction

exact match

exact match distance match machine-learning model compariso

Synthetic Controls

Synthetic Contro

estimation

example

References

For $\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$

 μ and w_i can, in principle, be estimate with OLS (cf. Doudchenko and Imbens 2020)

$$(\hat{\mu}^{ols}, \hat{w}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2$$
(7)

ntroduction

exact match

exact match distance match machine-learning model comparison

Synthetic Control

Synthetic Contro

estimation

current developme example

References

For $\hat{Y}_{t,post}(0) = \mu + \sum_{i=1}^{N} w_i Y_{i,T}^{obs}$

 μ and w_i can, in principle, be estimate with OLS (cf. Doudchenko and Imbens 2020)

$$(\hat{\mu}^{ols}, \hat{w}^{ols}) = \arg\min_{\mu, w} \sum_{s=1}^{T_0} \left(Y_{0, T_0 - s + 1}^{obs} - \mu - \sum_{i=1}^{N} w_i \cdot Y_{0, T_0 - s + 1}^{obs} \right)^2$$
(7)

Abadie et al. 2010 impose conditions, $\mu = 0$, $\sum_{i=1}^{N} w_i = 1$, and $w_i \ge 0 \forall i$.

Introduction

exact match

distance match

model comparis

Synthetic Control

intuition

estimation

current developn

References

For covariate vector X we would want to minimize (cf. Doudchenko and Imbens 2020)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

This mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$ and other covariates.

Introduction

exact match

distance match

model comparis example

Synthetic Contro

estimation

current develo

example

References

NAME OF THE PARTY OF THE PARTY

For covariate vector X we would want to minimize (cf. Doudchenko and Imbens 2020)

$$\|Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\|_2^2 = \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)^T \left(Y_{t,pre}^{obs} - \mu - \mathbf{w}^T Y_{c,pre}^{obs}\right)$$
(8)

This mathing is often performed on lagged outcomes $Y_{t-(1,...,T)}$ and other covariates. So, in simpler terms, $||X_{treat} - X_{control}W||$ which resembles a balancing approach (á la matching).

See Doudchenko and Imbens (2020) for a balanced, cross-validated, elastic net type penalty approach, combining Lasso and ridge regressions to regularize *w*.

current development

Introductio

Matching

distance match

model comparise

Synthetic Centre

Synthetic Control

estimation

current development

References

Arkhangelsky et al. 2019 suggest a synthetic diff-in-diff approach, where SynthControl:

$$(\hat{\mu}, \hat{\beta}, \hat{\tau}^{sc}) = \arg\min_{\mu, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{N} T (Y_{it} - \mu - \beta_t - W_{it}\tau)^2 \hat{w}_i^{SC}$$
(9)

DiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{did}) = \arg\min_{\mu, \alpha, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{T} T(Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2$$
(10)

SynthDiD:

$$(\hat{\mu}, \hat{\alpha}, \hat{\beta}, \hat{\tau}^{sdid}) = \arg\min_{\mu, \beta, \tau} \sum_{t=1}^{N} \sum_{t=1}^{T} T (Y_{it} - \mu - \alpha_i - \beta_t - W_{it}\tau)^2 \hat{w}_i \hat{\lambda}_t$$
 (11)

intermediate summary

current development

A synthetic control approach allows us to

- compare a single treated unit group with an untreated guasi-counterfactual
- you can compute placebo tests for the effect on an untreated unit
- so far, has not been widely applied (for examples see Abadie 2020)
- I think it is so far underestimated (i.e. by applied researchers)

Causal Inference 2021 ClimBEco course 35/40

software

Introduction

Matching

exact match distance match machine-learning model comparison

Synthetic Controls

Synthetic Control

estimation

current deve

example

References

available packages

- Synth
- synthdid
- scul
- gsynth

an example

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU

Emission Trading System (ETS) on CO₂ emissions

Effect of the EU ETS over time, source: Bayer and Aklin 2020

example

an example

Introduction

watching

exact match
distance match
machine-learning

Synthetic Control

Synthetic Contro

estimation current developm

example

References

Total Control Control

Bayer and Aklin (2020) use synthetic controls to assess the effect of EU Emission Trading System (ETS) on CO₂ emissions

Effect of the EU ETS over time, source: Bayer and Aklin 2020

References I

Introduction

exact match

distance match machine-learning model comparison

Synthetic Contro

intuition

current developme example

- Abadie, Alberto (2020). 'Using Synthetic Controls: Feasibility, Data Requirements, and Methodological Aspects'. In: *Journal of Economic Literature*.
- Abadie, Alberto et al. (2010). 'Synthetic control methods for comparative case studies: Estimating the effect of California's Tobacco control program'. In: *Journal of the American Statistical Association* 105.490, pp. 493–505. DOI: 10.1198/jasa.2009.ap08746.
- Abrevaya, Jason, Yu Chin Hsu and Robert P. Lieli (2015). 'Estimating Conditional Average Treatment Effects'. In: *Journal of Business and Economic Statistics* 33.4, pp. 485–505. DOI: 10.1080/07350015.2014.975555.
- Arkhangelsky, Dmitry et al. (2019). 'Synthetic difference in differences'. URL: http://www.nber.org/papers/w25532.
- Bayer, Patrick and Michaël Aklin (2020). 'The European Union Emissions Trading System reduced CO2 emissions despite low prices'. In: *Proceedings of the National Academy of Sciences of the United States of America* 117.16, pp. 8804–8812, DOI: 10.1073/ppas.1918128117.
- Colson, K. Ellicott et al. (2016). 'Optimizing matching and analysis combinations for estimating causal effects'. In: Scientific Reports 6.March, pp. 1–11. DOI: 10.1038/srep23222. URL: http://dx.doi.org/10.1038/srep23222.
- Dieng, Awa et al. (2018a). 'Almost-Exact Matching with Replacement for Causal Inference'. In: arXiv, pp. 1–28. URL: http://arxiv.org/abs/1806.06802.

References II

Introduction

Matching exact match

distance match machine-learning

model comparisc example

Synthetic Contro

estimation

current developme example

- Dieng, Awa et al. (2018b). 'Collapsing-Fast-Large-Almost-Matching-Exactly: A Matching Method for Causal Inference'. In: arXiv, pp. 1–27. URL: https://arxiv.org/pdf/1806.06802.pdf.
- Doudchenko, Nikolay and Guido W Imbens (2020). 'Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis'. URL:
 - http://arxiv-export-lb.library.cornell.edu/pdf/1610.07748.
- Ferraro, Paul J. and Merlin M. Hanauer (2014). 'Quantifying causal mechanisms to determine how protected areas affect poverty through changes in ecosystem services and infrastructure'. In: *Proceedings of the National Academy of Sciences of the United States of America* 111.11, pp. 4332–4337. DOI: 10.1073/pnas.1307712111.
- Kallus, Nathan (2020). 'Generalized optimal matching methods for causal inference'. In: Journal of Machine Learning Research 21, pp. 1–54. arXiv: 1612.08321.
- King, Gary, Christopher Lucas and Richard A. Nielsen (2017). 'The Balance-Sample Size Frontier in Matching Methods for Causal Inference'. In: *American Journal of Political Science* 61.2, pp. 473–489. DOI: 10.1111/ajps.12272.
- King, Gary and Richard Nielsen (2019). 'Why Propensity Scores Should Not Be Used for Matching'. In: *Political Analysis* 27.4, pp. 435–454. DOI: 10.1017/pan.2019.11.
- Roberts, Margaret E., Brandon M. Stewart and Richard A. Nielsen (2020). 'Adjusting for Confounding with Text Matching'. In: *American Journal of Political Science* 64.4, pp. 887–903. DOI: 10.1111/ajps.12526.

References III

Introduction

overt match

distance match machine-learning model comparisor example

Synthetic Control

Synthetic Control

estimation current development

References

Schleicher, Judith et al. (2020). 'Statistical matching for conservation science'. In: Conservation Biology 34.3, pp. 538–549. ISSN: 15231739. DOI: 10.1111/cobi.13448.

Sizemore, Samantha and Raiber Alkurdi (2019). Matching Methods for Causal Inference: A Machine Learning Update. URL: https://humboldt-wi.github.io/blog/research/applied%7B%5C_%7Dpredictive%7B%5C_%7Dmodeling%7B%5C_%7D19/matching%7B%5C_%7Dmethods/ (visited on 01/05/2021).

