

Portable Pirate Radio with RDS: Broadcast Signal Intrusion with SDR

#whoami

- Vipin George
- Ad-hoc faculty at CEK
- License Radio amateur, Indian call sign: *VU3YVG*
- FCC registered US call sign: *KC9VED*
- Handled Internet plumbing for a Tier- 1 ISP
- M.Tech in Cyber Forensics and InfoSec
- Mozillian, Wikipedian
- Enjoys tinkering with Electronic gadgets, Shortwave DXing

- Samuel Morse
 - Telegraph (wires)
 - Morse Code

When you think of radio what are things that come to mind?

- What about wireless?
- How do you transmit a signal through the AIR?

 radio waves are transmitted across an electromagnetic spectrum

Electromagnetic Spectrum

 radio waves are transmitted across an electromagnetic spectrum

Popular transmitters

■ The Sputnik

Popular transmitters

The Watergate bug

Popular transmitters

Radio Ceylon

FM Signal

A stronger FM signal completely suppresses a weaker signal

A stronger FM signal completely suppresses a weaker signal

Radio waves follow an inverse square law for power density

Every time we double the distance, we receive only onefourth the power.

Signal Intrusion: Possibilities

Signal Intrusion: Applications

Hijacking the airwaves

The old school method

Hijacking the airwaves

- Software-defined radio (SDR) transceivers are much more flexible
- Software based signal processing

eg:

- 1. HackRF
- 1MHz to 6GHz, USB powered
- half-duplex transceiver
- **■** ₹ 27,230

Hijacking the airwaves

- 2. SparkFun bladeRF x40
- can tune from 300MHz to 3.8GHz
- full duplex transceiver
- ₹ 45,385.00

Any cheaper alternatives?

What's in it for me (WIIFM)?

- Raspberry Pi yep, that single board computer
- designed for teaching kids to code

- Raspberry Pi 3 \$35
- 1.2GHz x64 quad-core ARM CPU
- 1 GB RAM
- OS Raspbian, Debian based

Hijacking the airwaves: Raspberry Pi

Hijacking the airwaves - Software

rpitx

- radio transmitter for Raspberry Pi
- transmits RF directly to GPIO
- can handle frequencies from 5 KHz up to 1500 MHz.
- https://github.com/F50EO/rpitx
- Supports Slow Scan Television (SSTV)

Hijacking the airwaves - Hardware

Plug a wire on GPIO 4, Pin 7 of the GPIO header.

This acts as the antenna

Unknown guy talks ATC from his BATHTUB

■ Source: https://www.youtube.com/watch?v=ZvA_-linhg8

How to start...

- Do no harm to any existing communication systems
- Use appropriate Band-pass filters to ensure that we are transmitting only at the permitted frequency

How to start...

 http://www.learningaboutel ectronics.com/Articles/Band pass-filter-calculator.php

Enter the Low Cutoff Frequency

Enter the High Cutoff Frequency

Hz (hertz)

Hz (hertz)

Calculate

Transmitting the radio waves

- Make sure that you are confirming to local laws
- In India, if you have a ham radio license

```
IND05
          Amateur Service is permitted in the following bands:
          1820-1860 kHz
          3500-3700 kHz
          3890-3900 kHz
          7000-7200 kHz
          14000-14350 kHz
          18068-18168 kHz
          21000-21450 kHz
          24890-24990 kHz
          28000-29700 kHz
          50-54 MHz
          144-146 MHz
          434-438 MHz
```

Transmitting the radio waves

■ In India, if you have a ham radio license

		Remarks		
Category of License (New) and Bands	Frequency bands	Emission	Max DC Input Power unless Otherwise specified	Helliaiks
Restricted Grade	1820-1860* KHz	A3E,H3E, J3E,R3E	50 watts	
	3500-3700* KHz			
	3890-3900* KHz			Old "Grade II"
	7000-7100KHz			Licensees are
	7100-7200 KHz			also authorized to use A1A
	14000-14350 KHz			emission in these bands.
	18068-18168\$ KHz			(riese barios.
	21000-21450 KHz			
	24890-24990\$ KHz			
	28000-29700 KHz			
	50-54 MHz	F1B,F2B, F3E,F3C	10 Watts	
	144-146 MHz			Old "Grade II" Licensees are
	434-438@ MHz	-Do-	10 Watts	also authorized to use A1A
				and A2A
				emissions in
	4000 4000* KU			these bands

Transmitting the radio waves

- In India, if you have a ham radio license
- 144-146MHz band
 - F1B: Frequency-shift keying (FSK) telegraphy, such as RTTY
 - F2B: frequency modulation telegraphy with automatic reception
 - F3C: modulation frequency facsimile
 - F3E: FM speech communication

RDS - Radio Data System

 protocol for embedding small amounts of digital information in FM radio broadcasts

RDS - Radio Data System

- https://github.com/ChristopheJacquet/PiFmRds
- rt: radiotext to be transmitted, max 64 characters
- control it at run-time using a named pipe, perfect ploy for tunnelling data from an air-gapped system

■ Feed malicious frequencies to "Alternative Frequencies"

for hijacking RDS radio

Radio Direction Finding (RDF)

- "the art of locating a signal or noise source with portable receivers and directional antennas"
- used to locate or emergency beacons
- tracking down sources of interference on the ham bands, intentional or unintentional!
- Wireless Planning and Coordination
 Wing DoT does it

Radio Direction Finding (RDF)

- PR100 is a portable digital receiver
- covers all frequenciesfrom 9 kHz to 7.5 GHz
- **\$16,999.00**
- Alternative: RTL-SDR

Radio Direction Finding (RDF)

- Portable active directional antenna HE 100
- Triangulation

Lincolnshire Poacher Number Station

Source: https://www.youtube.com/watch?v=YnGnIOz6WTw

System Bus Radio

- Transmit RF directly from computer, laptop or phone without any transmitting hardware at all
- https://github.com/fulldecent/system-bus-radio
- https://fulldecent.github.io/system-bus-radio/

■ Tested on MacBook Air / Chrome with AM tuner at 1560 kHz

Demo

Please install Morse Code Reader from Google Play https://play.google.com/store/apps/ details?id=org.jfedor.morsecode&hl= en

Questions

Reach me

linkedin.com/in/vipingeo

<u>t.me/vipinonline</u>

www.vipinonline.com

Thank You!