

Đề tài: Dự báo giá chứng khoán dựa trên mô hình RNN và LSTM

Giảng viên hướng dẫn: PGS.TS. Nguyễn Đình Hân

Sinh viên thực hiện: Lê Ngọc Hà MSSV: 20216922

Lớp: MI2 01 - K66

Hà Nội, 01/2025

- 1 Bài toán dự báo giá chứng khoán
- Cơ sở lý thuyết
- 3 Xây dựng mô hình
- 4 Kết quả và đánh giá

- 1 Bài toán dự báo giá chứng khoán
- 2 Cơ sở lý thuyết
- 3 Xây dựng mô hình
- 4 Kết quả và đánh giá

Bài toán dự báo giá chứng khoán

Trong bối cảnh phát triển mạnh mẽ của thị trường tài chính, dự báo giá chứng khoán trở thành nhu cầu cấp thiết, giúp hỗ trợ đưa ra các quyết định đầu tư nhằm tối đa hoá lợi nhuân.

Một số phương pháp dự báo giá chứng khoán:

- Phân tích cơ bản.
- Phân tích kỹ thuật.
- Mô hình chuỗi thời gian.
- Phương pháp học máy.

- 1 Bài toán dự báo giá chứng khoán
- 2 Cơ sở lý thuyết
- 3 Xây dựng mô hình
- 4 Kết quả và đánh giá

Mô hình Recurrent Neural Network

Công thức của mô hình RNN được biểu diễn như sau:

$$h_t = f(W_r h_{t-1} + W_i x_t + b)$$
 (1)

$$y_t = W_v h_t \tag{2}$$

Input: Các giá trị đầu vào x_t **Output:** Các giá trị dự đoán y_t

Trong đó:

- x_t : Giá trị đầu vào
- h_t: Trạng thái ẩn
- y_t: Giá trị đầu ra
- f: Hàm kích hoat
- W_r : Trọng số giữa h_{t-1} và h_t
- W_i : Trọng số giữa h_t và x_t
- W_y : Trọng số giữa h_t và y_t
- b: Hệ số bias riêng

Cấu tạo của mô hình LSTM bao gồm các thành phần sau:

- 3 cổng chính: Forget Gate, Input Gate, Output Gate.
- Cell State (C): Thanh trạng thái bộ nhớ.
- Hidden State (h): Trạng thái ẩn.

Bước 1: Input là các giá trị x_t , h_{t-1} .

Bước 2: Giá trị x_t , h_{t-1} được xử lý tại Forget Gate.

$$f_t = \sigma(U_f * x_t + W_f * h_{t-1} + b_f)$$
 (3)

Trong đó:

- f_t : Đầu ra của Forget Gate tại t
- ullet σ : Hàm kích hoạt sigmoid
- U_f : Trọng số của đầu vào x_t
- x_t : Đầu vào ở bước hiện tại
- W_f : Trọng số của Forget Gate
- ullet h_{t-1} : Trạng thái ẩn tại t-1

Bước 3: Tại Input Gate sẽ quyết định thông tin nào cần được thêm vào trạng thái bộ nhớ c.

$$i_t = \sigma(U_i * x_t + W_i * h_{t-1} + b_i)$$

$$\tilde{c}_t = \tanh(U_c * x_t + W_c * h_{t-1} + b_c)$$

Trong đó:

- i_t : Đầu ra của Input Gate tại t
- ullet U_i : Trọng số giữa x_t và Input Gate
- ullet W_i : Trọng số giữa h_{t-1} và Input Gate
- \tilde{c}_t : Giá trị điều chỉnh
- tanh: Hàm kích hoạt
- U_c : Trọng số giữa x_t và \tilde{c}_t
- W_c : Trọng số giữa h_{t-1} và \tilde{c}_t

(4)

(5)

Bước 3: Tại Input Gate sẽ quyết định thông tin nào cần được thêm vào trạng thái bộ nhớ c.

$$c_t = f_t * c_{t-1} + i_t * \tilde{c_t} \tag{6}$$

Bước 4: Tại Output Gate điều chỉnh lượng thông tin được đề xuất ra ngoài y_t và truyền đến trạng thái ẩn tiếp theo h_t .

$$o_t = \sigma(U_o x_t + W_o h_{t-1} + b_o) \tag{7}$$

$$h_t = o_t \tanh(c_t) \tag{8}$$

Trong đó:

- o_t: Đầu ra của Output Gate tại t
- ullet U_o : Trọng số giữa x_t và Output Gate
- W_o : Trọng số giữa h_t và Output Gate

- 1 Bài toán dự báo giá chứng khoán
- 2 Cơ sở lý thuyết
- 3 Xây dựng mô hình
- 4 Kết quả và đánh giá

Phát biểu bài toán

Trong bài toán này sẽ tập trung dự báo giá chứng khoán với mã cổ phiếu FPT của Công ty Cổ phần Viễn thông FPT đã được giao dịch trên sàn HOSE. Đồng thời, sử dụng thư viện *vnstock* để thu thập dữ liệu.

Mô tả và tiền xử lý dữ liệu

Bộ dữ liệu là thông tin về giá và khối lượng giao dịch hàng ngày của Công ty cổ phần Viễn thông FPT trong khoảng thời gian 5 năm từ 20/11/2019 đến 20/11/2024.

```
time
                            high
                                      1 ow
                                            close
                                                     volume
                    open
     2019-11-20
                   24.64
                           24.64
                                    23.96
                                            24.05
                                                    2291760
     2019-11-21
                   24.05
                           24.18
                                    23.67
                                            23.71
                                                    3303950
                           24.18
                                    23.50
                                            23.71
     2019-11-22
                   23.84
                                                    1625820
     2019-11-25
                   23.75
                           24.13
                                    23.62
                                            23.96
                                                    1087990
     2019-11-26
                   24.13
                           24,22
                                    24.05
                                            24.18
                                                     968690
     2024-11-15
                  134.37
                          134.76
                                   131.69
                                           132.98
                                                    6574421
1248 2024-11-18
                  133.08
                          133.67
                                   131.59
                                           133.08
                                                    3910975
1249 2024-11-19
                  132.58
                          132.68
                                   129.00
                                           129.10
                                                    7652727
1250 2024-11-20
                 129,10
                          131.49
                                   125.83
                                           131,49
                                                    8474055
1251 2024-11-21
                 131.49
                          132.08
                                   130.10
                                           132.08
                                                    3183165
```

[1252 rows x 6 columns]

Tiền xử lý dữ liêu bao gồm:

- Chia tập dữ liệu: Test, Validation, Train.
- Chuẩn hoá dữ liệu về phạm vi [0,1].

Mức độ tương quan giữa các biến

Mức độ tương quan của các biến còn lại so với biến "close":

high	0.999762
low	0.999697
open	0.999454
volume	0.454607

Xây dựng và huấn luyện mô hình

Các siêu tham số	RNN đơn biến	RNN đa biến	LSTM đơn biến	LSTM đa biến	
timesteps	20	60	50	30	
hidden layers	[50,40]	[35,35]	[20,25]	[35,25]	
learning rate	0.003	0.006	0.002	0.003	
batch size	64	64	64	64	
epochs	150	300	300	250	

- 1 Bài toán dự báo giá chứng khoán
- 2 Cơ sở lý thuyết
- 3 Xây dựng mô hình
- 4 Kết quả và đánh giá

Kết quả mô hình

Kết quả mô hình

Mô hình	Biến sử dụng	MSE	RMSE	MAPE	R^2
RNN đơn biến	close	0.0068	0.0823	0.0364	0.9518
RNN đa biến	high, volume, close	0.0014	0.0380	0.0151	0.9827
LSTM đơn biến	close	0.0082	0.0907	0.0388	0.9157
LSTM đa biến	high, volume, close	0.0086	0.0929	0.0433	0.9332

Bảng: Chỉ số đánh giá kết quả dự báo giá chứng khoán cổ phiếu FPT

Đánh giá mô hình

- Các mô hình đa biến mang lại kết quả cao hơn so với mô hình đơn biến vì nó có thể khai thác được nhiều thông tin hơn từ dữ liệu, giúp mô hình nhận diện tốt hơn các tín hiệu phức tạp ảnh hưởng đến giá cổ phiếu.
- Trong bộ dữ liệu này không yêu cầu khả năng ghi nhớ dài hạn của các chuỗi nên trong trường hợp này, RNN có thể phát huy tối đa ưu điểm vì nó có khả năng xử lý các chuỗi dữ liệu có độ dài vừa phải mà không cần đến khả năng ghi nhớ lâu dài của LSTM.
- Tuy nhiên, nếu sau này chuỗi dữ liệu dài hơn hoặc phức tạp hơn thì LSTM có thể sẽ phát huy được hiệu quả cao hơn.

Kết quả đạt được

- Trang bị thêm các kiến thức về bài toán dự báo giá chứng khoán.
- Tìm hiểu về những kiến thức toán học như chuỗi thời gian, mạng nơ-ron, các siêu tham số, ôn lại các chỉ số đánh giá mô hình. Nghiên cứu chi tiết về hai mô hình là RNN và LSTM cùng các ưu, nhược điểm của từng mô hình.
- Tiến hành xây dựng và huấn luyện mô hình, xử lý các vấn đề vanishing gradient, overfitting trong quá trình huấn luyện mô hình. Kết hợp với các thư viện để tìm các siêu tham số giúp mô hình tối ưu hơn.
- So sánh và đánh giá kết quả mà hai mô hình RNN và LSTM đem lại.

Hướng phát triển tương lai

- Tối ưu các phương pháp khác nhau để thời gian tìm các siêu tham số nhanh hơn.
- Thử nghiệm mô hình trên nhiều bộ dữ liệu chứng khoán của các công ty khác nhau.
- Cải tiến mô hình hơn như làm giàu dữ liệu, đồng thời xây dựng một cơ sở dữ liệu để lưu trữ và phân tích giá chứng khoán...

Tài liệu tham khảo

- [1] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time series analysis: Fore- casting and control, 5th. Wiley, 2015.
- [2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press, 2016.
- [3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal rep- resentations by error propagation," Nature, vol. 323, no. 6088, pp. 533–536, 1986. DOI: 10.1038/323533a0.
- [4] R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Computation, vol. 1, no. 2, pp. 270–280, 1989. DOI: 10.1162/neco.1989.1.2.2
- [5] T. Mikolov, M. Karafiát, L. Burget, and J. Cernocký, "Recurrent neural net- work based language model," Interspeech, pp. 1045–1048, 2010. DOI: 10. 21437/Interspeech.2010-285.
- [6] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. DOI: 10.1162/neco.1997. 9.8.1735.

Tài liêu tham khảo

- [7] Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult," IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994. DOI: 10.1109/72.279181.
- [8] F. A. Gers and J. Schmidhuber, "Learning to forget: Continual prediction with lstm," in Proceedings of the International Conference on Artificial Neu- ral Networks (ICANN), Springer, 2000, pp. 850–855.
- [9] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," International Conference on Learning Representations (ICLR), 2015. [On-line]. Available: https://arxiv.org/abs/1412.69 [10] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, "Algorithms for hyper-parameter optimization," in Advances in Neural Information Processing Systems, vol. 24, 2011, pp. 2546–2554. [Online]. Available: https://papers. nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf.

CẨM ƠN THẦY/CÔ VÀ CÁC BẠN ĐÃ LẮNG NGHE!