Probabilità Appunti

Giovanni Palma e Alex Basta

Contents

	Introduzione	rage
Chapter 2	Spazi di probabilità discreti	Page
2.1	Concetti introduttivi	
2.2	Regole del calcolo probabilistico Assiomi della probabilita' — • Conseguenze degli assiomi —	
Chapter 3	Probabilita' Condizionata	Page
3.1	Eventi indipendenti	

Chapter 1

Introduzione

Appunti di Probabilità presi in base alle lezioni di Elly Shlein, qui si è piddini

Chapter 2

Spazi di probabilità discreti

2.1 Concetti introduttivi

Innanzi tutto andiamo a definire che cosa intendiamo per esperimento aleatorio, esito, probabilità Con la dicitura esperimento aleatorio indicheremo qualunque fenomeno (fisico, economico, sociale, ...) il cui esito non sia determinabile con certezza a priori. Il nostro obiettivo è di fornire una descrizione matematica di un esperimento aleatorio, definendo un modello probabilistico, un esito invece è un ipotetico risultato di un'esperimento aleatorio sulla base di un cosiddetto spazio campionario un insieme che contiene tutti gli esiti possibili dell'esperimento

Example 2.1.1

- Esperimento aleatorio: Lancio di un dado.
- Spazio campionario: $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- Esito: 4.

Note:

In casi piu' complessi ci saranno vari sotto-esperimenti aleatori, come 10 lanci di un dato.

Adesso forniamo vere e priorie definizioni

Definition 2.1.1: evento

Si definisce **evento** un'affermazione riguardante l'ipotetico esito univoco dell'esperimento, di cui si può affermare con certezza se è vero o falso una volta noto l'esito

Example 2.1.2

Esper. aleatorio: Lancio del dado A = "esce un numero pari"

Definition 2.1.2: Spazio camipionario

Lo spazio campionario è l'insieme di tutti i possibili esiti di un esperimento casuale e viene denotato con Ω

Notare che non si afferma "tutti e solo tutti", quindi **qualsiasi** insieme che contiene gli esiti possibili può essere considerato uno spazio campionario

Example 2.1.3 (Lancio dado)

Possiamo porre come spazio campionario:

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

ma anche

$$\Omega = \mathbb{R}$$

Definition 2.1.3: Esiti favorevoli

Esiti per cui un evento è vero sono detti esiti favorevoli.

Definition 2.1.4: Evento in termine di insiemi

Un evento si puo' definire anche come il sotto
insieme dello spazio campionario Ω formato da tutti gli esiti favor
evoli dell'evento.

Example 2.1.4

 $\Omega = \{1, 2, 3, 4, 5, 6\} \implies A = \text{"esce un numero pari"} \implies \{2, 4, 6\}$ sono gli esiti favorevoli dell'evento A.

Note:

La definizione insiemistica di un evento dipende dallo spazio campionario Ω definito, poiché l'evento è un sottoinsieme di Ω . Tuttavia, l'insieme degli esiti favorevoli di un evento è fisso, e rappresenta l'insieme evento di cardinalità massima possibile, ovvero l'insieme degli esiti favorevoli $A \subseteq \Omega$.

Definition 2.1.5

- \bullet Ω e' l'evento certo
- ullet \emptyset e' l'evento impossibile
- $\omega \in \Omega$ e' un evento elementare $(A = \{\omega\})$

Example 2.1.5

Lancio un dado.

A = "esce un numero tra 1 e 6"

B = "esce un numero maggiore di 6"

C = "esce il numero 3"

- Se $\Omega = \{1, 2, 3, 4, 5, 6\}$, allora:
 - $-A = \Omega$ (evento certo),
 - $-B = \emptyset$ (evento impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).
- Se $\Omega = \mathbb{R}$, allora:
 - $A = \{1, 2, 3, 4, 5, 6\}$ ⊂ Ω (evento quasi certo),
 - $-B = (6, +\infty)$ (evento quasi impossibile),
 - $-C = \{3\}$ (evento con un solo esito favorevole).

2.2 Regole del calcolo probabilistico

Ad ogni relazione logica possiamo associare un'operazione insiemistica:

Connettivi Logici	Connettvi Insiemistici	
$A \vee B$	$A \cup B$	
$A \wedge B$	$A \cap B$	
$\neg A$	A^c	
$A \implies B$	$A \subseteq B$	
$A \iff B$	A = B	

Note:

Nella prima colonna, A e B sono eventi come affermazioni, mentre nella colonna di destra sono degli insiemi.

2.2.1 Assiomi della probabilita'

Poniamo tre assiomi fondamentali da cui possiamo partire per derivare tutte le operazioni e proprieta' che ci servono:

Note:

Per noi tutti i sottoinsiemi di Ω sono eventi (anche se non sara' sempre cosi)

Definition 2.2.1: Assiomi fondamentali della probabilità

Assioma 1. A ciascun sottoinsieme (o evento) A di Ω è assegnato un numero $\mathbb{P}(A)$ che verifica:

$$0 \leq \mathbb{P}(A) \leq 1$$
.

Tale numero $\mathbb{P}(A)$ si chiama **probabilità** dell'evento A.

Assioma 2. $\mathbb{P}(\Omega) = 1$.

Assioma 3. Vale la proprietà di additività numerabile^a: sia $A_1, A_2, \ldots, A_n, \ldots$ una successione di sottoinsiemi di Ω tra loro disgiunti^b e sia

$$A = \bigcup_{n=1}^{\infty} A_n.$$

Allora

$$\mathbb{P}(A) = \sum_{n=1}^{\infty} \mathbb{P}(A_n).$$

Note:

Quindi, per il primo assioma, esiste una funzione probabilita' $\mathbb{P}(A): \mathcal{P}(\Omega) \to [0,1]$.

Definition 2.2.2: Probabilità discreta

Chiamo probabilità discreta una funzione probabilità \mathbb{P} a valori discreti, ovvero che può assumere un numero finito o al più numerabile di valori fra 0 e 1.

Vediamo una tale probabilità:

^aAnche detta σ -additività.

^bIn formule: $A_i \cap A_i = \emptyset$, per ogni $i \neq j$. In altri termini, non hanno elementi in comune.

Definition 2.2.3: Delta di Dirac

Sia $\Omega=\mathbb{R},\ x_0\in\mathbb{R},$ allora si chiama delta di Dirac centrato in x_0 la funzione:

$$\begin{split} \delta_{x_0}: \mathcal{P}(\mathbb{R}) &\to [0,1] \\ A &\mapsto \delta_{x_0}(A) = \begin{cases} 1 & x_0 \in A \\ 0 & x_0 \notin A \end{cases} \end{split}$$

Notare che per definizione, la funzione di Dirac è una probabilità discreta, dato che soddisfa tutti gli assiomi (ma non molto utile dato che assume solo due valori). Però, tramite le delta di Dirac siamo in grado di costruire qualunque altra probabilità discreta:

Sia $\Omega = \mathbb{R}$. Prendiamo un numero contabile n di eventi singoletto $x_1, x_2, \ldots, x_n \in \mathbb{R}$ a cui corrispondono $p_1, p_2, \ldots, p_n \in \mathbb{R}$ tale che:

$$\forall i = 1, ..., n. \ p_i \in [0, 1], \qquad \sum_{i=1}^n p_i = 1$$

Definiamo la funzione:

$$\mathbb{P}: \mathcal{P}(\Omega) \to [0,1]$$

$$A \mapsto \sum_{i=1}^{n} p_i \delta_{x_i}(A)$$

 \mathbb{P} è una combinazione lineare di delta di Dirac. Essendo una combinazione convessa, $\mathbb{P} \in [0,1]$ e si può dimostrare che soddisfa gli altri due assiomi (2 e 3), quindi è una probabilità discreta! Variando le x e le p è possibile generare qualsiasi funzione \mathbb{P} discreta.

Example 2.2.1

 $\Omega = \{1, 2, 3, 4, 5, 6\}, \ \forall i = 1, \dots, 6. \ x_i = i, \ p_i = \frac{1}{6}, \ \text{la funzione } \mathbb{P} \ \text{associata è:}$

$$P(A) = \sum_{i=1}^{6} \frac{1}{6} d_{x_i}(A)$$

$$A = \{1, 2, 3, 4, 5, 6\} \implies P(A) = 1$$

$$B = (6, +\infty) \implies P(B) = 0$$

$$C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\} \implies P(C) = 1$$

Definition 2.2.4

Si chiama evento quasi certo un evento A tale che $\mathbb{P}(A) = 1$.

Definition 2.2.5

Si chiama evento quasi impossibile un evento A tale che $\mathbb{P}(A) = 0$.

Posso allargare Ω quanto voglio perché tanto fuori dall'insieme minimo che comprende tutti gli eventi possibili le probabilità che aggiungo sono quasi impossibili e quindi hanno probabilità 0 e non cambiano il valore totale della somma.

2.2.2 Conseguenze degli assiomi

Theorem 2.2.1

Sia Ω spazio campionario e \mathbb{P} probabilità su Ω ((Ω , \mathbb{P}) è uno spazio di probabilità con \mathbb{P} : $\mathcal{P}(A) \to [0,1]$). Dagli assiomi 1, 2, 3 deduciamo le cose seguenti:

- 1. $\mathbb{P}(\emptyset) = 0$
- 2. Additività finita: $(A_i)_{i=1,\dots,n}$. $\forall i \neq j$. $A_i \cap A_j = \emptyset \implies \mathbb{P}\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mathbb{P}(A_i)$
- 3. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- 4. Monotonia: $A \subseteq B \implies \mathbb{P}(A) \leqslant \mathbb{P}(B)$

Dimostrazione: 1. Devo mostrare che $\mathbb{P}(\emptyset) = 0$. Per semplicità definiamo $p := \mathbb{P}(\emptyset)$. Uso l'assioma 3 con la successione $(A_n)_{n \in \mathbb{N}}$ dove $\forall i \in \mathbb{N}$. $A_i = \emptyset$, che sono tutti eventi disgiunti. Quindi:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i) = \sum_{i=1}^{\infty} p.$$

Inoltre:

$$\bigcup_{i=1}^{\infty} A_i = \emptyset \implies p = \sum_{i=1}^{\infty} p.$$

L'equazione è soddisfatta solo per p = 0.

2. Supponiamo di avere una sequenza finita disgiunta A_1, \ldots, A_n . Definisco $(B_i)_{i \in \mathbb{N}}$ tale che $B_i = A_i$ per $i = 1, \ldots, n$ e $B_i = \emptyset$ per i > n. Usando l'assioma 3:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) = \sum_{i=1}^{n} \mathbb{P}(A_i).$$

3. Per definizione di complemento, $A^c \cup A = \Omega$ e $A^c \cap A = \emptyset$. Per additività:

$$\mathbb{P}(A^c) + \mathbb{P}(A) = \mathbb{P}(\Omega) = 1$$
 (per l'assioma 2).

4. Se $A \subseteq B$, allora $B = A \cup (B \setminus A)$, con $A \in B \setminus A$ disgiunti. Per additività:

$$\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B \setminus A) \geqslant \mathbb{P}(A).$$

⊜

Theorem 2.2.2 Probabilità unione non disgiunta

Siano A e B eventi:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \tag{2.1}$$

Dimostrazione: $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$. Per additività:

$$\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B).$$

Osservando che:

$$\mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) = \mathbb{P}(A), \quad \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B) = \mathbb{P}(B),$$

si ottiene la formula.

Note:

La formula si complica con un numero di eventi maggiore di 2. Per n=3:

 $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(B \cap C) - \mathbb{P}(A \cap C) + \mathbb{P}(A \cap B \cap C).$

Chapter 3

Probabilita' Condizionata

Cosa significa a livello di calcolo conoscere un nuovo evento? Notazione:

 \bullet $\mathbb{P}(A|B)$: probabilita' dell'evento A condizionata a B

Domanda: se so che si e' verificato B, come cambia $\mathbb{P}(A)$?

Note:

 $\mathbb{P}(A|B) = \mathbb{P}(\cdot|B), B \subseteq \Omega$, quindi essendo sempre una probabilita' ha sempre tutte le proprieta' di una qualunque probabilita'. La probabilita' e' sempre relativa ad A, la B cambia solo come agisce \mathbb{P}

Example 3.0.1 (Probabilita' uniforme)

Lancio del dado: $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathbb{P}$ prop. uniforme

 $\mathbb{P}(\{\omega\}) = \frac{1}{|\Omega|}, \forall \omega \in \Omega, \text{ ovvero:}$

$$\mathbb{P}(A) = \frac{\text{casi favorevoli in } A}{\text{casi possibili}}$$

A= "esce un numero maggiore di 3" = $\{3,4,5,6\}$ e B= {"esce un numero pari"} = $\{2,4,6\}$, domanda $\mathbb{P}(A|B)$?

 $P(A) = \frac{4}{6}$ come abbiamo gia visto.

Ora facciamo che sappiamo che B si sia avverato. ATTENZIONE! cio' non vuol dire che cambia lo spazio campionario perche' l'esperimento e' lo stesso, ma cambiano i veri casi favorevoli e i veri casi possibili:

$$P(A|B) = \frac{\text{"veri casi favorevoli di A"}}{\text{veri casi possibili}} = \frac{|A \cap B|}{|B|} = \frac{2}{3}$$

Dado a 4 facce truccato:

$$\mathbb{P}(A|B) = \frac{\text{"probabilita' dei veri casi favorevoli di A"}}{\text{probabilita' dei veri casi possibili}} =$$

Definition 3.0.1: Probabilita' Condizionata

Prendo due eventi A, B, uno spazio di probabilita' (Ω, \mathbb{P}) con

$$\mathbb{P}(B) > 0$$

Definisco probabilita' condizionata a B di A la funzione:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Note:

Se ${\mathbb P}$ e' la probabilita' uniforme allora:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\frac{|A \cap B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{|A \cap B|}{|B|}$$

Note:

B e' fissato nella definizione di propbabilita' condizionata, ovvero:

$$\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$$

Quindi il ruolo di A e B e' completamente diverso

Note:

Se $B = \Omega$, allora $\mathbb{P}(A|B) = \mathbb{P}(A)$ dato che la conoscenza del fatto che si e' avverato Ω e' ovvio e non ci cambia. Se $A = \Omega$, allora $\mathbb{P}(\Omega|B) = 1$ (per proprieta', dato che e' sempre una probabilita')

Verifichiamo gli assiomi (fissiamo $B \subseteq \Omega$ con $\mathbb{P}(B) > 0$):

- 1. $\mathbb{P}(A|B) \in [0,1], \forall A \subseteq \Omega$
- 2. $\mathbb{P}(\Omega|B) = 1$
- 3. σ addittivita': $(A_i)_{i \in \mathbb{N}}$ disgiunti:

$$\mathbb{P}(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} \mathbb{P}(A_i | B)$$

Note:

La probabilita' condizionata in genere e' nota e si usa per calcolare la probabilita' dell'intersezione:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B)$$

Questa formula e' detta regola della catena. Vale in generalecon n eventi

Proposition 3.0.1

 $(A_i)_{i=1,\dots,n}, \mathbb{P}(A_1\cap\dots\cap A_{n-1})>0,$ allora:

$$\mathbb{P}(A_1 \cap ... \cap A_n) = \mathbb{P}(A_1)\mathbb{P}(A_2|A_1)\mathbb{P}(A_3|A_1 \cap A_2)...\mathbb{P}(A_n|A_1 \cap ... A_{n-1})$$

La condizione funziona grazie alla monotonia, dato che $0 < \mathbb{P}(A_1 \cap ... \cap A_{n-1}) \leq \mathbb{P}(A_1 \cap ... \cap A_j), 1 \leq j \leq n-1$

3.1 Eventi indipendenti

Si osservi la seguente definizione

Definition 3.1.1: Eventi indipendenti

Due eventi A, B si dicono indipendenti se:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \tag{3.1}$$

E viene denatato $A \perp \!\!\! \perp B$

Generalizzando:

Definition 3.1.2: Eventi indipendenti generale

Sia dati n eventi $A_1, A_2, ..., A_n$, essi si dicono indipendenti se:

$$\mathbb{P}(A_1 \cap ... \cap A_n) = \mathbb{P}(A_1) \cdot ... \cdot \mathbb{P}(A_n)$$

L'indipendenza tra due eventi e' una relazione simmetrica, ovvero:

$$A \perp\!\!\!\perp B \iff B \perp\!\!\!\perp A$$

In particolare si noti il seguente teorema:

Theorem 3.1.1 Teorema della simmetria tra eventi indipendenti

Sia $\mathbb{P}(B) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(A|B) = \mathbb{P}(A)$$

Dall'altro lato, sia $\mathbb{P}(A) > 0$ allora:

$$A \perp \!\!\!\perp B \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Dimostrazione: Verrà fornita solo la dimostrazione del primo punto, la seconda parte è analoga. Assumo $\mathbb{P}(B) > 0$, si ha:

• $A \perp \!\!\!\perp B \implies \mathbb{P}(A|B) = \mathbb{P}(A)$:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A\cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A)\cdot\mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$

• $\mathbb{P}(A|B) = \mathbb{P}(A) \implies A \perp \!\!\!\perp B$:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A|B) \cdot \mathbb{P}(B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

Note:

Si noti che se $\mathbb{P}(A)>0$ e $\mathbb{P}(B)>0$ allora, le tre uguaglianze seguenti sono equivalenti:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) \iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$$

Adesso fornirò un altro teorema piuttosto importante:

Proposition 3.1.1 Sull'indipendenza di eventi complomentari

Siano A, B due eventi indipendenti, allora:

$$A \perp\!\!\!\perp B \iff A^c \perp\!\!\!\perp B, A \perp\!\!\!\perp B^c, A^c \perp\!\!\!\perp B^c$$

Dimostrazione: Dimostro solo la prima parte, le altre sono analoghe. Assumo A, B due eventi indipendenti, debbo dimostrare la seguente uguaglianza:

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

Dato che

$$B = \Omega \cap B = (A \cup A^c) \cap B = (A \cap B) \cup (A^c \cap B)$$

E dato che $(A \cap B)e(A^c \cap B)$ sono disgiunti, per 2 (additività finita) si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B)$$

E dato che $A \perp \!\!\!\perp B$ si ha:

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(A^c \cap B) = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) + \mathbb{P}(A^c \cap B)$$

☺

$$\mathbb{P}(A^c \cap B) = \mathbb{P}(B) - \mathbb{P}(A \cap B) = \mathbb{P}(B) - \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathbb{P}(B) \cdot (1 - \mathbb{P}(A)) = \mathbb{P}(A^c) \cdot \mathbb{P}(B)$$

☺

Example 3.1.1 (Calcolo di eventi indipendenti con probabilita condizionata)

TESTO:

Si lancia un dado a 6 facce

A = "Esce un numero > 4"

B="Esce un numero pari"

Determinare P(A) e P(A|B)

DETTAGLIO SVOLGIMENTO:

$$\Omega = \{1, 2, 3, 4, 5, 6\}
A = \{5, 6\}
B = \{2, 4, 6\}
P(A) = $\frac{3}{6} = \frac{1}{3}$

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{\frac{1}{6}}{\frac{3}{6}} = \frac{1}{3}$$$$

Dato che P(A) = P(A|B), per il teorema 3.1 si ha che $A \perp \!\!\! \perp B$