# Modelowanie i identyfikacja – laboratorium 6.

Nieparametryczna identyfikacja statycznych systemów nieliniowych.

# Jądrowy estymator funkcji regresji

Paweł Wachel

# Wymagania wstępne:

- 1. Wymagania wstępne z poprzednich zajęć<sup>1</sup>.
- 2. Znajomość pojęć: system liniowy, nieliniowy, stacjonarny, niestacjonarny, dynamiczny, statyczny.
- 3. Znajomość konstrukcji i podstawowych własności jądrowego estymatora funkcji gęstości prawdopodobieństwa.

#### Zadania do wykonania:

1. Dany jest statyczny system nieliniowy z charakterystyką  $m(x) = \operatorname{atan}(a \cdot x)$ , gdzie a jest pewną stałą (w początkowych eksperymentach przyjąć dla uproszczenia a = 1). Wygenerować N-elementowy sygnał wejściowy  $\{X_n\}$  typu i.i.d. o rozkładzie U[-2,2]



Rysunek 1: Statyczny system nieliniowy z addytywnym zakłóceniem na wyjściu

oraz niezależny od niego sygnał zakłócający  $\{Z_n\}$  o rozkładzie normalnym  $\mathcal{N}\left(0,\sigma_Z^2\right)$ ,  $\sigma_Z^2$  jest dowolnie wybraną stałą.

- 2. Dysponując sekwencjami  $\{X_n\}$  i  $\{Z_n\}$  wyznaczyć odpowiadający im sygnał  $\{Y_n\}$ . Ciąg par obserwacji  $\{(X_1,Y_1),(X_2,Y_2),\ldots,(X_N,Y_N)\}$  będziemy oznaczać symbolem  $T_N$ . Wykreślić nieliniową charakterystykę systemu wraz z 'chmurą' pomiarów ze zbioru  $T_N$  (punkty na płaszczyźnie).
- 3. Zaimplementować jądrowy estymator funkcji regresji

$$\hat{m}_{N}(x) = \frac{\sum_{n=1}^{N} Y_{n} K\left(\frac{X_{n} - x}{h_{N}}\right)}{\sum_{n=1}^{N} K\left(\frac{X_{n} - x}{h_{N}}\right)},$$
(1)

<sup>&</sup>lt;sup>1</sup>Całkujemy wiedzę... przynajmniej do wakacji.

gdzie  $K(\cdot)$  jest funkcją jądra (por. wykład), a  $h_N$  jest parametrem wygładzania. Wykreślić estymator  $\hat{m}_N(x)$  w funkcji x (na tle prawdziwej charakterytyki m(x)) dla ustalonej wartości N (np. N=500), jądra prostokątnego i kilku przykładowych wartości parametru wygładzania  $h_N$ . Przedyskutować uzyskane wyniki.

- 4. Wykreślić estymator  $\hat{m}_N(x)$  w funkcji x dla różnych funkcji jądra (np. dla jąder omawianych na wykładzie), ustalonej wartości N (np. N=500) i ustalonego  $h_N$ . Przedyskutować uzyskane wyniki. Badania powtórzyć dla różnych wartości parametru a (patrz pkt. 1). Jaki wpływ na uzyskiwane wyniki estymacji ma kształt nieliniowości  $m(\cdot)$  w systemie (jaki jest wpływ parametru a)?
- 5. Wyznaczyć wartość h, która minimalizuje błąd

valid 
$$(h) = \frac{1}{2Q} \sum_{q=-Q}^{Q} \left[ \hat{m}_N \left( \frac{q}{Q} \right) - m \left( \frac{q}{Q} \right) \right]^2$$
.

Przyjąć Q = 100.

- 6. Dla tak wybranego h wykreślić i zinterpretować wykresy z p. 3. i 4.
- 7. Przeprowadzone badania powtórzyć dla zakłócenia o rozkładzie Cauchy'ego  $C\left(0,\gamma\right)$ , gdzie  $\gamma=0.01$ . Zmieniając parametr  $\gamma$  zbadać wpływ rozważanego zakłócenia na uzyskiwane rezultaty estymacji.

# Zadania dodatkowe:

1. Dla wybranej gęstości rozkładu prawdopodobieństwa wejściowego f(x) wygenerować L niezależnych, N-elementowych sekwencji pomiarowych typu wejście/wyjście i wyznaczyć błąd empiryczny

$$Err\{\hat{m}_N\} = \frac{1}{LM} \sum_{l=1}^{L} \sum_{m=1}^{M} \left[ \hat{m}_N^{[l]}(x_m) - m(x_m) \right]^2,$$

w którym  $\{x_1, x_2, \ldots, x_M\}$  jest sekwencją równoodlegych punktów z pewnego odcinka [a, b]. Przyjąć M = 100 oraz L = 10 i wykreślić  $Err\{\hat{m}_N\}$  w funkcji  $h_N$ . Przedyskutować uzyskane wyniki.

- 2. Wykreślić błąd  $Err\{\hat{m}_N\}$  w funkcji N. Następnie rozważyć zadanie identyfikacji, w którym  $E\{Z_n\} = 1$  (niezerowa wartość oczekiwana błędu na wyjściu). Wykreślić błąd  $Err\{\hat{m}_N\}$  i zinterpretować uzyskane wyniki.
- 3. Bazując na technice kroswalidacji omówionej w poprzednim ćwiczeniu zaproponować algorytm automatycznego strojenia estymatora  $\hat{m}_N$ , tj. algorytm doboru parametru wygładzania  $h_N$ .

# Literatura:

- 1. Jakubowski Jacek, Sztencel Rafał. Wstęp do teorii prawdopodobieństwa. Script, 2001.
- 2. Wasserman, Larry. All of statistics: a concise course in statistical inference. Springer Science & Business Media, 2013.
- 3. Wasserman, Larry. All of nonparametric statistics. Springer Science & Business Media, 2006.
- 4. Plucińska Agnieszka, Pluciński Edmund. Probabilistyka: rachunek prawdopodobieństwa, statystyka matematyczna, procesy stochastyczne. Wydawnictwa Naukowo-Techniczne, 2000.
- 5. Gajek Lesław, Kałuszka Marek. Wnioskowanie statystyczne: modele i metody. Wydawnictwa Naukowo-Techniczne, 1993.
- 6. Notatki z wykładu.