

Name: Amuru Likhitha Batch: COMETFWC019

Date: 06 July 2025

GATE 2009, ECE Question Number 38

Abstract

Simulation of latch behavior using Raspberry Pi Pico to demonstrate NAND and NOR latch transitions for the input combinations $(0,1) \rightarrow (1,1)$.

1. Components

Component	Qty
Pico2w	1
Push Buttons	2
LEDs	2
220Ω Resistors	4
Breadboard	1
Jumper Wires	10
Laptop with Thonny	1
IDE	

Table: Components used

4. Truth Tables

NAND Latch

<i>P</i> 1	P2	Output (Q1, Q2)
0	1	(1,0)
1	1	(1,0) (holds)

2. Setup

• GP15: Input P1 (Push Button)

• GP14: Input P2 (Push Button)

• GP16: NAND Q Output (LED)

• GP17: NOR Q Output (LED)

• GND and VBUS properly connected

3. Observation

• NAND Latch: $(0,1) \rightarrow (1,0) \rightarrow \text{holds at } (1,0)$

• NOR Latch: $(0,1) \rightarrow (1,0) \rightarrow \text{transitions to } (0,0)$

NOR Latch

<i>P</i> 1	P2	Output (Q1, Q2)
0	1	(1,0)
1	1	(0,0)

5. Circuit Image

${\bf 6.\ Hardware\ Code-MicroPython}$

```
from machine import Pin
import utime

P1 = Pin(15, Pin.IN, Pin.PULL_DOWN)
P2 = Pin(14, Pin.IN, Pin.PULL_DOWN)

nand_q = Pin(16, Pin.OUT)
nor_q = Pin(17, Pin.OUT)

nand_q_state = 1
nor_q_state = 1

while True:
    p1 = P1.value()
    p2 = P2.value()

if p1 == 0 and p2 == 1:
        nand_q_state = 1
```

7. GitHub Code Link

https://github.com/amuru052004/Likhitha_fwc/tree/main/Hardware/assembly

8. Conclusion

This project successfully demonstrates latch behavior for NAND and NOR gates using MicroPython and Raspberry Pi Pico.