Heavy-flavour production

Estimation of γ , π^0 and η ratios in the photonic background in proton-proton collisions at $\sqrt{s}=7$ TeV with ALICE

Fabrizio Grosa

University of Turin, Italy

GSI Summer Student Program 2014

Outline

- Heavy-flavour production in heavy-ion collisions
- Photonic background
- Results and outlook

Quark-gluon plasma

 QCD predicts that under extreme conditions of very high temperature or energy densities, hadronic matter transit to a deconfined phase of matter called "quark-gluon plasma" (QGP)

- Collision: large number of hard scatterings between partons.
- Thermalization: the thermal equilibrium is reached.
- QGP: the fireball is created, in which quarks and gluons are free.

- Hadronization: the quarks and the glouns are recombined in hadrons.
- Chemical freeze-out: inelastic scattering cease.
- Kinetic freeze-out : elastic scattering cease.

Heavy-flavour production

Background of heavy-flavour hadron decays

- There are other sources of leptons which form the background for the heavy-flavour hadron semileptonic decay.
- The inclusive electrons and positrons are all the e^{\pm} measured. which are decay products of both hadrons carrying heavy quarks, and the background sources.
- After the subtraction of the background only the remaining p_T spectrum contains electrons from heavy-flavour hadron decays only.

Main sources of the photonic background

• Photon conversion: $\gamma \rightarrow e^+e^-$

• Dalitz decays: $\pi^0
ightarrow e^+ e^- \gamma \ \eta
ightarrow e^+ e^- \gamma \ \eta'
ightarrow e^+ e^- \gamma \ \omega
ightarrow e^+ e^- \pi_0 \ \Phi
ightarrow e^+ e^- \eta$

Main sources of the photonic background

ullet Photon conversion: $\gamma
ightarrow e^+e^-$

Dalitz decays:

$$\pi^0
ightarrow e^+ e^- \gamma \ \eta
ightarrow e^+ e^- \gamma \ \eta'
ightarrow e^+ e^- \gamma \ \omega
ightarrow e^+ e^- \pi_0 \ \phi
ightarrow e^+ e^- \eta$$

The aim of this study is to calculate the ratio between photon conversions and Dalitz decays in the photonic background

The ALICE detector

 ALICE is the experiment at LHC dedicated to heavy-ion collisions

- Inner Tracking System: first sub detector reached by the particles originating in the primary vertex
- Time Projection Chamber: the main tracking detector

Data samples

- simulated proton-proton collision events at $\sqrt{s} = 7 \, TeV$
 - decayed with Pythia 6
 - propagation through detectors described with *GEometry* ANd Tracking 3
 - tracks reconstructed with AliROOT
- this study is focused on proton-proton collisions because they are the reference system for the Pb-Pb collisions

Associated e[±]

e^{\pm} identification

dN/dP_T (c/GeV)

10³

 10^{2}

• Inclusive e^{\pm} \longrightarrow stringent cuts are required • Associated e^{\pm} \longrightarrow required • Inclusive e^{\pm}

P_⊤ (GeV/c)

relaxed cuts are required: tracks resolution is lost, but efficiency is maximised

Finally, using the MC truth information, only the tracks that really belong to e^\pm are selected

Invariant mass analysis

According to Special Relativity the four-momentum $p = (E, \vec{p})$ of a physics system is always conserved, and the mass of a particle is equal to:

$$m_i^2 = E_i^2 - \vec{p_i}^2 \equiv p_i^2$$

we can calculate the invariant mass of a particle from its decay products

$$m_{ee} = \sqrt{(\rho_1 + \rho_2)^2} = \sqrt{(E_1 + E_2)^2 - (\vec{\rho_1} + \vec{\rho_2})^2}$$

Invariant mass distributions from MC truth

Using the MC truth information is possible to know the mother particle of every e^+e^- pair \longrightarrow obtained the invariant mass distribution of each source

Distribution for photons

• For the photon conversion ———— exponentially modified Gaussian distribution:

$$\frac{dN}{dm_{ee}} = N_{\gamma} \cdot e^{-\frac{(m_{ee} - M_{\gamma})^2}{2\sigma^2}} + \Theta(m_{ee} - M_{\gamma}) e^{\frac{m_{ee} - M_{\gamma}}{\tau}}$$

Kroll-Wada distribution

$$\frac{dN}{dm_{ee}} = N_X \cdot \frac{2}{m_{ee}} \left\{ (1 + (m_{ee}/M_X)^2)^2 - 4(m_{ee}/M_X)^2 \right\}^{3/2} \sqrt{1 - \frac{4(m_e/M_X)^2}{(m_{ee}/M_X)^2}} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_{ee}/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_{ee}^2)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_e/M_X)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_e/M_X)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_e/M_X)^2 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \cdot \left\{ 1 + \frac{2(m_e/M_X)^2}{(m_e/M_X)^2} \right\} \cdot F_X(m_e/M_X)^$$

where $\left\{ \begin{array}{l} F_{\pi^0}(m_{\rm ee}^2) = \frac{1}{(1-5.5 \cdot m_{\rm ee}^2)^2} \\ F_{\eta}(m_{\rm ee}^2) = \frac{1}{(1-1.9 \cdot m_{\rm ee}^2)^2} \end{array} \right.$

Fit template

- Select e^+e^- pair with same γ , π^0 or η mother particle from MC truth
- Calculate their invariant mass and obtain the relative distribution
- Fit with the function which is the sum of the three contributions.

From MC truth

number of γ	418300 ± 600
number of π^0	362000 ± 600
number of η	42100 ± 200
n_{γ}/n_{π^0}	1.156 ± 0.003
n_{γ}/n_{η}	9.94 ± 0.05
$n_{\gamma}/(n_{\pi^0}+n_{\eta})$	1.035 ± 0.002

From the Fit

M_{γ}	0.01107 ± 0.00018 GeV/d	
M_{π^0}	0.1611 ± 0.0003 GeV/c ²	
M_{η}	0.558 ± 0.004 GeV/c ²	
Integral of γ	418300 ± 1100	
Integral of π^0	355000 ± 2000	
Integral of η	49200 ± 600	
I_{γ}/I_{π^0}	1.179 ± 0.007	
I_{γ}/I_{η}	8.50 ± 0.11	
$I_{\gamma}/(I_{\pi^0} + I_{\eta})$	1.035 ± 0.006	

Like-sign and Unlike-sign distributions

- Unlike-sign distribution
- \longrightarrow inclusive e^{\pm} + associated e^{\mp}
 - photonic signal + combinatorial background

- Like-sign distribution
 - \longrightarrow inclusive e^{\pm} + associated e^{\pm}
 - ----> combinatorial background

Photonic background

Fit of the photonic background

• The like-sign distribution is subtracted to the unlike-sign distribution

 The resulting photonic signal is fitted with the template obtained from the MC truth

Integral of γ	423000 ± 6000
Integral of π^0	354000 ± 4000
Integral of η	42000 ± 3000
I_{γ}/I_{π^0}	1.19 ± 0.02
I_{γ}/I_{η}	10.0 ± 0.8
$J_{\nu}/(J_{-0} + J_{0})$	1.07 + 0.02

Results

Particle	Number from MC truth	Relative statistical error	Integral from photonic signal fit	Relative statistical error
γ	418300 ± 600	0.14%	423000 \pm 6000	1.4%
π^0	362000 ± 600	0.17%	354000 ± 4000	1.1%
η	42100 ± 200	0.48%	42000 ± 3000	7.1%

Ratios	MC truth	Photonic signal fit	Gaussian test (num of σ)
γ/π^0	1.156 ± 0.003	1.19 ± 0.02	1.68
γ/η	9.94 ± 0.05	10.0 ± 0.8	0.07
$\gamma/(\pi^0 + \eta)$	1.035 ± 0.002	1.07 ± 0.02	1.73

Results

Particle	Number from MC truth	Relative statistical error	Integral from photonic signal fit	Relative statistical error
γ	418300 ± 600	0.14%	423000 \pm 6000	1.4%
π^0	362000 ± 600	0.17%	354000 ± 4000	1.1%
η	42100 ± 200	0.48%	42000 ± 3000	7.1%

Ratios	MC truth	Photonic signal fit	Gaussian test (num of σ)
γ/π^0	1.156 ± 0.003	1.19 ± 0.02	1.68
γ/η	9.94 \pm 0.05	10.0 \pm 0.8	0.07
$\gamma/(\pi^0+\eta)$	1.035 ± 0.002	1.07 ± 0.02	1.73

pp and Pb-Pb data

- look into proton-proton data and verify that the same ratios are found
- Pb-Pb events: What would be different?

pp and Pb-Pb data

- look into proton-proton data and verify that the same ratios are found
- Pb-Pb events : What would be different?

An excess of γ , due to the thermal photons generated by the fireball, is expected

the ratio between gamma conversion and Dalitz decavs should be larger

