Funções - Imagem Direta e Inversa

José Antônio O. Freitas

MAT-UnB

19 de setembro de 2020

Definição Seja $f: A \rightarrow B$

Seja $f: A \rightarrow B$ uma função.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$,

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta**

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P)

Seja $f: A \rightarrow B$ uma função.

Seja $f: A \rightarrow B$ uma função.

Seja $f: A \rightarrow B$ uma função.

$$f(P) =$$

Seja $f: A \rightarrow B$ uma função.

$$f(P) = \{f(x)$$

Seja $f: A \rightarrow B$ uma função.

$$f(P) = \{f(x) \mid x \in P\},\$$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é,

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto \acute{e} , f(P)

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$,

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa**

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(Q)$$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(Q) = \{ x \in A$$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é, $f^{-1}(Q)$

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é, $f^{-1}(Q)$ é o conjunto dos elementos de A

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é, $f^{-1}(Q)$ é o conjunto dos elementos de A que tem imagem em Ω

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é, $f^{-1}(Q)$ é o conjunto dos elementos de A que tem imagem em Q através de f.

Seja $f: A \rightarrow B$ uma função.

i) Dado $P \subseteq A$, chama-se **imagem direta** de P **segundo** f e indica-se por f(P) o subconjunto de B dado por

$$f(P) = \{f(x) \mid x \in P\},\$$

isto é, f(P) é o conjunto das imagens por f dos elementos de P.

ii) Dado $Q \subseteq B$, chama-se **imagem inversa** de Q **segundo** f e indica-se por $f^{-1}(Q)$ o subconjunto de A dado por

$$f^{-1}(Q) = \{x \in A \mid f(x) \in Q\},\$$

isto é, $f^{-1}(Q)$ é o conjunto dos elementos de A que tem imagem em Q através de f.

1) Seja $A = \{1, 3, 5, 7, 9\}$

1) Seja
$$A = \{1, 3, 5, 7, 9\}$$
 e $B = \{0, 1, 2, 3, \dots, 10\}$

1) Seja $A = \{1, 3, 5, 7, 9\}$ e $B = \{0, 1, 2, 3, \dots, 10\}$ e $f: A \rightarrow B$

$$f({1}) =$$

$$f(\{1\}) = \{f(1)\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7})$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5), f(7)}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$\textit{f}(\{3,5,7\}) = \{\textit{f}(3),\textit{f}(5),\textit{f}(7)\} = \{4,6,8\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

 $f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$
 $f(A)$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3, 5, 7\}) = \{f(3), f(5), f(7)\} = \{4, 6, 8\}$$

$$f(A) = \{f(1), f(7)\} = \{4, 6, 8\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3, 5, 7\}) = \{f(3), f(5), f(7)\} = \{4, 6, 8\}$$

$$f(A) = \{f(1), f(3), f($$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7),$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f({3,5,7}) = {f(3), f(5), f(7)} = {4,6,8}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} =$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset)$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) =$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x)\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\})$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3),f(5),f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1),f(3),f(5),f(7),f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x)\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\} = \emptyset$$

$$f(\{1\}) = \{f(1)\} = \{2\}$$

$$f(\{3,5,7\}) = \{f(3), f(5), f(7)\} = \{4,6,8\}$$

$$f(A) = \{f(1), f(3), f(5), f(7), f(9)\} = \{2,4,6,8,10\}$$

$$f(\emptyset) = \emptyset$$

$$f^{-1}(\{2,4,10\}) = \{x \in A \mid f(x) \in \{2,4,10\}\} = \{1,3,9\}$$

$$f^{-1}(\{0,1,3,5,7,9\}) = \{x \in A \mid f(x) \in \{0,1,3,5,7,9\}\} = \emptyset$$

2) Sejam $A = B = \mathbb{R}$

2) Sejam $A = B = \mathbb{R} \ e \ f : \mathbb{R} \to \mathbb{R}$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3})$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x)\}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$\mathit{f}([0,2]) = \{\mathit{f}(x) \in \mathbb{R} \mid 0 \leq x$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2\}$$

2) Sejam
$$A = B = \mathbb{R}$$
 e $f : \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$. Temos:

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\}$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9])$$

$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R}$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid f(x) \in [1,9]\}$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\}$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R}$$

$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2\}$$

$$f(\{1,2,3\}) = \{1,4,9\}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\}$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-1,-3]$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-1,-3] \cup [1,3]$$

$$f({1,2,3}) = {1,4,9}$$

$$f([0,2]) = \{f(x) \in \mathbb{R} \mid 0 \le x \le 2\} = \{x^2 \mid 0 \le x \le 2\} = [0,4]$$

$$f^{-1}([1,9]) = \{x \in \mathbb{R} \mid f(x) \in [1,9]\} = \{x \in \mathbb{R} \mid 1 \le f(x) \le 9\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 9\} = [-1,-3] \cup [1,3]$$

Seja $f:A \to B$ uma função

Seja $f: A \rightarrow B$ uma função e sejam P,

Seja $f:A \to B$ uma função e sejam $P,\ Q \subseteq A$,

Seja $f:A \to B$ uma função e sejam $P,\ Q \subseteq A,\ X,$

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

i) Se $P \subseteq Q$,

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- $ii) f^{-1}(X \cup Y)$

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X)$

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se
$$y \in f(P)$$
,

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y.

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$,

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$, então $x \in Q$

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$, então $x \in Q$ e daí $y \in f(Q)$.

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$, então $x \in Q$ e daí $y \in f(Q)$. Logo $f(P) \subseteq f(Q)$.

Seja $f: A \to B$ uma função e sejam $P, Q \subseteq A, X, Y \subseteq B$.

- i) Se $P \subseteq Q$, então $f(P) \subseteq f(Q)$.
- ii) $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Prova:

i) Se $y \in f(P)$, então existe $x \in P$ tal que f(x) = y. Mas como $P \subseteq Q$, então $x \in Q$ e daí $y \in f(Q)$. Logo $f(P) \subseteq f(Q)$.

ii) Seja $z \in f^{-1}(X \cup Y)$.

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$.

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$,

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup$

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$.

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$,

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$, então $z \in f^{-1}(Y)$

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$, então $z \in f^{-1}(Y)$ e assim $z \in f^{-1}(X) \cup f^{-1}(Y)$ então $z \in f^{-1}(X)$ então $z \in f^{-1}(X) \cup f^{-1}(Y)$ então $z \in f^{-1}(X)$ então então

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$, então $z \in f^{-1}(Y)$ e assim $z \in f^{-1}(X) \cup f^{-1}(Y)$.

ii) Seja $z \in f^{-1}(X \cup Y)$. Então $f(z) \in X \cup Y$. Se $f(z) \in X$, então $z \in f^{-1}(X)$ e daí $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $f(z) \in Y$, então $z \in f^{-1}(Y)$ e assim $z \in f^{-1}(X) \cup f^{-1}(Y)$. Logo, $f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$. Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$.

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$.

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subset f^{-1}(X \cup Y)$.

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$.

Portanto,

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$.

Portanto, $f^{-1}(X \cup Y) =$

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$.

Portanto, $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.

Agora, seja $z \in f^{-1}(X) \cup f^{-1}(Y)$. Se $z \in f^{-1}(X)$, então $f(z) \in X$, daí $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Se $z \in f^{-1}(Y)$, então $f(z) \in Y$ e assim $f(z) \in X \cup Y$, isto é, $z \in f^{-1}(X \cup Y)$. Logo $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X \cup Y)$.

Portanto, $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y)$.