Fastcampus

Computer Science School

Network Basic(1)

Network

Network

우리는 어떻게 다른 컴퓨터와 통신하고, 웹서핑을 할 수 있을까?

Network

A computer network or data network is a telecommunications network which allows nodes to share resources.

--> 컴퓨터간 리소스를 공유 가능하게 만드는 통신망

Charcteristics of Network

- 컴퓨터사이의 리소스를 공유
- 네트워크로 연결된 다른 컴퓨터에 접근하여 파일을 생성, 수정, 삭제할 수 있음
- 프린터와 스캐너, 팩스 등의 출력장치에 네트워크를 연결하여 여러 컴퓨터 가 동시 접근 가능

Requirements of Network

- Network Cable
- Distributor(Switch Hub)
- Router
- Network card

커버 범위에 따른 네트워크 구분

LAN

- Local Area Network(근거리 통신망)
- 학교, 회사 등 가까운 지역의 좁은 범위

WAN

- Wide Area Network(광역 통신망)
- 국가, 대륙 등 넓은 지역을 커버

MAN

- Metropolitan Area Network(도시권 통신망)
- LAN < MAN < WAN

WLAN

- Wireless Local Area Network(무선 근거리 통신망)
- IEEE 802.11 표준을 기반
- http://standards.ieee.org/about/get/802/802.11.html

802.11 == wifi ????

802.11 != wifi

802.11: IEEE에서 개발된 표준 무선통신기술

wifi: 와이파이 얼라이언스의 상표. 802.11 기술을 사용하는 무선 근거리 통신

망 제품

wifi

wifi a, b, g, n, ac

Another way of Networking

- Lifi(IEEE 802.15.7r1)
- Power line Networking(IEEE 1901)

Star, Ring, Bus

Network Topology

Submarine Cable Map

https://www.submarinecablemap.com/

Ethernet

- 전세계의 사무실이나 가정에서 일반적으로 사용되는 유선 LAN에서 가장 많이 활용되는 기술 규격
- ether == 에테르 == 빛의 매질
- IEEE 802.3 규약 기반
- OSI 7 Layer에서 Data-link Layer 에 위치
- http://standards.ieee.org/about/get/802/802.3.html

Network OSI 7 layer

- 0 pen S ystems I nterconnection Reference Model
- 국제 표준화기구에서 개발한 컴퓨터 네트워크 프로토콜 디자인과 통신을 계층으로 나누어 설명한 것

Packet

- 데이터를 한번에 전송할 단위로 자른 데이터의 묶음 혹은 그 크기
- 1492 ~ 1500 bytes(프로토콜에 따라 다름)
- 네트워크에서는 바이트(byte)라는 표현 대신 옥텟(octet)으로 표현

Network OSI 7 layer

Application Layer

- 사용자에게 네트워크 자원에 대한 접근을 제공
- 네트워크 활동들에 대한 모든 기본적인 인터페이스를 제공
- 사용자에게 보이는 유일한 계층

Presentation Layer

- 응용 계층으로 부터 전송 받거나 전달되는 데이터의 인코딩과 디코딩
- 안전하게 데이터를 사용하기 위해 몇 가지 암호화와 복호화 형식 보유

Session Layer

- 두 대의 컴퓨터 사이의 세션이나 대화(Dialogue)를 관리
- 모든 통신 장비를 연결하고 관리하며 종료
- 순간적으로 연결이 끊어지는 것을 막고 호스트 사이의 연결을 적절하게 종 료시키기 위한 기능과 연결이 단방향인지 양방향인지에 대한 것을 담당

Transport Layer

- 아래 계층에 신뢰성 있는 데이터를 전송할 수 있게 함
- 흐름 제어, 분할, 재조립, 오류 관리를 포함하지만 전송 계층은 지점과 지점 간의 오류가 없음을 보장
- 연결 지향적인 프로토콜과 비연결 지향적인 프로토콜을 제공하며, 방화벽과 프록시 서버가 이 계층에서 동작

Network Layer

- 가장 복잡한 OSI 계층 중 하나로, 물리적인 네트워크 사이의 라우팅을 담당하며, 라우터가 이 계층에서 동작
- 네트워크 호스트의 논리적인 주소(IP 주소같은)를 관리하고 패킷을 분할해 프로토콜을 식별하는 기능, 오류 탐지 같은 몇 가지 경우를 담당

Datalink Layer

- 물리적인 네트워크 사이의 데이터 전송을 담당
- 물리적인 장비를 식별하는 데 사용되는 주소 지정 체계(Addressing Schema)와 데이터가 변조되지 않았음을 확증하기 위한 오류 확인을 제공
- 브리지와 스위치가 이 계층에서 동작하는 물리적인 장비

Physical Layer

- 네트워크 데이터가 전송될 때 사용되는 물리적 매개체
- 전압, 허브, 네트워크 어댑터, 리피터, 케이블 명세서를 포함해 모든 하드웨 어의 물리적이고 전자적인 특성을 정의
- 연결을 설정하고 종료하며, 공유된 통신 자원을 제공하고, 아날로그를 디지 털로, 디지털을 아날로그로 변환

Network OSI 7 layer

Network OSI 7 layer

HTTP

HyperText Transfer Protocol

- www상에서 정보를 주고받는 프로토콜
- TCP, UDP를 활용함
- HTTP method: GET, POST, PUT, DELETE

HTTP

- HTTP/1.1: connection reuse
- HTTP/2: multiplex(all resource from single connection)
- HTTP/3:

HTTP/3 will not use TCP anymore...

QUIC(Quick UDP Internet Connections, by google, 2012)

FTP

File Transfer Protocol

- 서버와 클라이언트 사이에 파일전송을 위한 프로토콜
- but, 보안에 매우 취약(패킷 가로채기, 무차별 대입, ...)
- 현재는 FTPS(FTP-SSL), SFTP(simple FTP), SSH(Secure SHell) 등을 사용

SMTP

Simple Mail Transfer Protocol

• Internet에서 메일을 보내기 위한 프로토콜

TCP/IP

Transmission Control Protocol / Internet Protocol

• 전송제어 프로토콜 + 송수신 호스트의 패킷교환을 위한 프로토콜

TCP

- 전송제어프로토콜 / Transmission(Transfer) Control Protocol
- 근거리 통신망이나 인트라넷, 인터넷에 연결된 컴퓨터에서 실행되는 프로 그램 간에 일련의 옥텟(==byte)을 안정적으로, 순서대로, 에러없이 교환할 수 있게 함

STREAM

• 문자형식의 데이터가 열의 형태로 연속성을 띄게 됨

DATAGRAM

• 하나의 패킷이 발신지와 수신지 정보를 모두 담고 있는 독립적인 패킷

STREAM socket

- 연결형 스트림 소켓은 두개의 시스템 이 연결된 후 데이터를 교환
- 패킷 순서 신경쓰지 않아도 되어 안정적인 데이터 전송 가능

DATAGRAM socket

- 비연결형 데이터그램 소켓은 명시적으로 연결되지 않은 상태 로 데이터를 주고 받음
- 연결과 해제 과정이 없어 빠른 데이터 교환이 가능

IP

IPv4, IPv6

- Internet Protocol version 4
 - 32bit로 구성
 - 0.0.0.0 ~ 255.255.255.255
 - 0000 0000.0000 0000. 0000 0000. 0000 0000
 - 2^32 = 42.9억
 - 5개의 클래스를 가지며, 상위 3개의 클래스를 가짐
 - A(1~126)
 - B(128~191.XXX)
 - C(192~223.XXX.XXX)
 - **■** D()
 - **■** E()

IP	용도		
0.0.0.0/8	자체 네트워크		
10.0.0.0/8	사설 네트워크		
127.0.0.0/8	루프백(loopback) 즉, 자기자신		
169.254.0.0/16	링크 로컬(link local)		
172.16.0.0/12	사설 네트워크		
192.0.2.0/24	예제 등 문서에서 사용		
192.88.99.0/24	6to4 릴레이 애니캐스트		
192.168.0.0/16	사설 네트워크		
198.18.0.0/15	네트워크 장비 벤치마킹 테스트		
224.0.0.0/4	멀티캐스트		
240.0.0.0/4	미래 사용 용도로 예약		

127.0.0.1 vs 192.168.0.x

127.0.0.1

- Loopback: 컴퓨터가 가지고 있는 무조건 반대신호를 반환하는 대역
- Localhost

192.168.0.x

• LAN에서 라우터가 할당한 내컴퓨터의 IP address

Global IPv4 depletion

IPv4, IPv6

- Internet Protocol version 6
 - 128bit로 구성
 - 0000:0000:0000:0000:0000:0000:0000 ~
 FFFF:FFFF:FFFF:FFFF:FFFF
 - 0 2^128 = 16*16*16*16*16*16^8 = 340,282,366,920,938,463,463
 ,374,607,431,768,211,456 = 3.4*10^38

Public, Private

Public IP address

• Globally Unique

Private IP address

• Private network 내에서 유효

DNS

- Domain Name System
- 외우기 힘들며, 더 힘들어질 ip address를 사람이 판별하기 쉬운 url을 매핑하는 시스템

ipconfig / ifconfig

현재 컴퓨터와 연결된 네트워크 정보를 확인할 수 있음

MAC

- Media Access Control address
- 12개의 16진수로 구성

ARP

- Address Resolution Protocol
- IP address -> MAC address

Subnetmask

- 커다란 네트워크를 효율적으로 분배하여 사용하기 위한 방법
- 할당받은 하나의 IP주소를 네트워크 환경에 맞춰 적절히 나누어줌
- IPv4 기준 2진수로 구성
- 255.255.255.255
- 1111 1111 . 1111 1111 . 1111 1111 . 1111

Default Subnetmask

- 네트워크를 서브넷으로 나누지 않아도 기본적으로 할당
- Class C
- 255.255.255.0
- 1111 1111.1111 1111.1111 1111.0000 0000
- Class B
- 255.255.0.0
- 1111 1111.1111 1111.0000 0000.0000 0000
- Class A
- 255.0.0.0
- 1111 1111.0000 0000.0000 0000.0000 0000

\$ ping

```
$ ping www.google.com
$ ping www.naver.com
$ ping www.fastcampus.co.kr
```

UDP

User(Universal) Datagram Protocol

- 데이터그램을 전송하기 위한 프로토콜
- 메시지 수신확인x, 도착순서 예측x
- 빠른 속도, 적은 오버헤드

TCP vs UDP segment

TCP Segment Header Format								
Bit #	0	7	8	15	16	23	24	31
0	Source Port				Destination Port			
32	Sequence Number							
64	Acknowledgment Number							
96	Data Offset Res Flags Window Size							
128	Header and Data Checksum				Urgent Pointer			
160	Options							

UDP Datagram Header Format									
Bit #	0	7	8	15	16	23	24	31	
0	Source Port			Destination Port					
32	Length			Header and Data Checksum					

intranet vs Internet vs internet

- intranet: internet의 www기술을 활용하여 특정 단체의 내부 정보시스템을 구축하는 것 혹은 그 네트워크
- Internet(International Network): TCP/IP를 활용하여 정보를 주고 받는 통신 네트워크(www)
- internet(internetwork): 패킷을 교환하는 방식으로 기기간의 정보를 주고 받는 방식

BUT!! AP가 Internet을 internet으로 표현하는 style guide 를 발표!!

- e-mail --> email
- Web site --> website

Socket

Socket

• Virtual End Point where entities can perform inter-process communication.

So, Socket is ...

떨어져 있는 두 컴퓨터를 연결해주는 과정

parameters

socket family(family) - AF_INET, AF_UNIX, AF_BLUETOOTH socket type(type) - SOCK_STREAM, SOCK_DGRAM

setsockopt()

setsockopt() sets a socket option

SOL_SOCKET the level argument to getsockopt or setsockopt to manipulate the socket-level options described in this section.

SO_REUSEADDR for security(packet hijacking)

socket 통신도 통신이므로.. 통신보안!!

TLS(Transport Layer Security) - 프로토콜에 의한 암호화 SSI(Secure Socket Layer) - 포트에 의한 암호화