Segundo Recuperatorio – CUERPO RÍGIDO –

La forma de entrega es en archivo de texto (pdf, docx, doc, ...) que debe comenzar con tú APELLIDO.

No olvides poner EN CADA HOJA nombre, apellido y curso.

<u>Si solo tenés un recuperatorio el plazo de entrega es de 2 horas. Si tenés más de un recuperatorio el plazo de entrega es de 3 horas</u>

Cuando sea necesario tomar $g=10 \frac{m}{s^2}$

- 1. Los puntos A y B de la barra de 1 m de longitud se deslizan sobre las superficies planas. La velocidad del punto B es $v_B = 2 i \left(\frac{m}{s}\right)$.
- a) ¿Cuáles son las coordenadas del centro instantáneo de rotación de la barra?
- b) Use el centro instantáneo para determinar la velocidad del punto A.

2. Las masas A y B de la figura son de 8kg cada una y la polea cilíndrica tiene un radio de $20\,cm$. El coeficiente de rozamiento entre A y el plano, inclinado 37° respecto a la horizontal, es de 0,25. Se abandona el sistema a sí mismo partiendo del reposo y se mide un desplazamiento de las masas de 1,8m en 2s. Calcular la masa de la polea.

- 3. Una esfera maciza tiene una velocidad inicial de $4\frac{m}{s}$ cuando empieza a subir por un plano inclinado rodando sin resbalar. A que altura llega por encima del nivel de partida al momento de detenerse.
- 4. Un disco homogéneo, que puede girar alrededor de un eje vertical, pasa del reposo a $90 \, r.p.m$. en $10 \, s$. Su peso es de $25 \, N$ y el diámetro $1 \, m$. Calcular:
 - a. Fuerza constante capaz de producir dicho movimiento, aplicada en la periferia del disco durante

- b. Energía cinética cuando el disco gira a 90 r.p.m.
- c. Cuando va girando a dicha velocidad se acopla a él otro disco coaxial de $50\,N$ de peso y $50\,cm$ de diámetro. Calcular la velocidad angular del conjunto formado por ambos.
- d. Calcular la variación de la energía cinética del sistema.

5. El bloque A de la figura, de masa $m_A = 5 \, kg$, posee una velocidad $v = 4 \, \frac{m}{s}$ sobre una mesa horizontal lisa. El cilindro, de masa $m_B = 10 \, kg$ y radio R, está inicialmente en reposo y puede girar sin rozamiento en torno a su eje. Cuando el extremo izquierdo de A abandona el cilindro no hay deslizamiento entre ambos. Calcular el trabajo de las fuerzas de rozamiento existentes entre A y B.

$$I_{cilindro} = \frac{M \cdot r^2}{2}$$

6. Se construye una estación espacial en forma de anillo hueco de $5 \cdot 10^4 kg$ de masa. Los integrantes de la tripulación caminan sobre una cubierta formada por la superficie interior de la pared cilíndrica exterior del anillo, con $100 \, m$ de radio. Cuando se construyó, el anillo se puso a girar en torno a su eje de modo que las personas en el interior experimentan una aceleración en caída libre efectiva igual a g. (La figura muestra el anillo junto con algunas otras partes que forman una aportación despreciable al momento de inercia total.) La rotación se logró al encender dos pequeños cohetes

unidos tangencialmente a puntos opuestos sobre el exterior del anillo.

- a. ¿Qué cantidad de movimiento angular adquiere la estación espacial?
- b. ¿Durante qué intervalo de tiempo se deben encender los cohetes si cada uno ejerce un empuje de 125 *N* ?

$$I_{anillo} = M.r^2$$

CONDICIÓN DE APROBACIÓN: 3 EJERCICIOS BIEN