Pamäte v počítači

Pamäť

Miesto pre ukladanie digitálnych údajov (dát)

Dáta môžu tvoriť inštrukcie programu, alebo hodnoty (premenné),

s ktorými program pracuje

 Sú ukladané v pamäťových bunkách ako rôzne (magenticky, opticky, mechanicky, elektronicky) reprezentované čísla binárnej sústavy, teda jednotky a nuly

- Základné charakteristiky pamätí:
 - Kapacita [GB]
 - Prístupová doba [ms, ns]
 - Prenosová rýchlosť [MB/s]
 - Technológia čítania a zápisu

Delenie pamätí

Podľa prístupu:

- So sekvenčným prístupom prístupový čas závisí od umiestnenia informácie v pamäti (treba sa presunúť na dané miesto)
- S priamym prístupom prístupový čas nezávisí od umiestnenia informácie v pamäti (stačí poznať adresu)

Podľa počtu zápisov

- Read only memory (ROM) nedá sa zapísať, len čítať
- Write once, read many (WORM) dá sa zapísať len raz, čítať viackrát
- Rewritable memory (RWM) dá sa prepisovať

Podľa umiestnenia

- Interné sú priamo spojené s matičnou doskou
- Externé k matičnej doske sa pripájajú cez káble a konektory

Delenie pamätí

- Podľa energetickej závislosti
 - Energeticky závislé (volatile) pre uchovanie dát potrebujú neustále napájanie
 - Energeticky nezávislé (non-volatile) pre uchovanie dát nepotrebujú napájanie
- Podľa technológie zápisu
 - Optické zapisuje sa svetlom
 - · Magnetické zapisuje sa zmenou magnetického poľa
 - Mechanické zapisuje sa fyzickým poškodením materiálu
 - Elektronické zapisuje sa zmenou elektronických vlastností materiálu (dotovanie hradiel MOSFET tranzistorov)

Pamäte v osobnom počítači

- Interné
 - RAM
 - Cache
 - Registre CPU
 - CMOS
- Externé
 - HDD
 - SSD
 - USB Flash
 - Optické mechaniky (CD, DVD, BD)
 - Sieťové úložiská
 - Archivačné dátové pásky

Rýchlosti pamätí v počítači

Rýchlosti pamätí v počítači

Computer Action	Avg Latency	Normalized Human Time	
3GhzCPU Clock cycle 3Ghz	0.3 ns	1 s	
Level 1 cache access	0.9 ns	3 s	
Level 2 cache access	2.8 ns	9 s	
Level 3 cache access	12.9 ns	43 s	
RAM access	70 - 100ns	3.5 to 5.5 min	
NVMe SSD I/O	7-150 μs	2 <u>hrs</u> to 2 days	
Rotational disk I/O	1-10 <u>ms</u>	11 days to 4 mos	
Internet: SF to NYC	40 <u>ms</u>	1.2 years	
Internet: SF to Australia	183 <u>ms</u>	6 years	
OS virtualization reboot	4 s	127 years	
Virtualization reboot	40 s 1200 years		
Physical system reboot	90 s	3 Millenia	

Table 1: Computer Time in Human Terms i

Kapacita pamäte

- Základnou jednotkou pamäťovej kapacity v počítačoch je jeden bit (b)
- Bit je skratka anglických slov binary digit
- Pamäť s kapacitou jeden bit dokáže uchovať dve hodnoty o a 1
- Keďže bit je veľmi malá jednotka, vo väčšine prípadov sa používajú odvodené jednotky – bajty (B), pričom platí, že jeden bajt je 8 bitov (1B = 8b)

Násobky bitov

- Násobky bitov môžeme určovať v desiatkovej alebo dvojkovej sústave
- Rozoznávame SI predpony (kilo-, mega-,...) a binárne predpony (kibi-, mebi-, ...)

Predpona	Skr.	Množstvo			
Bajt	В	1B			
Kilobajt	kB	10 ³ B = 1000 B			
Megabajt	МВ	10 ⁶ B = 1000 kB			
Gigabajt	GB	10 ⁹ B = 1000 MB			
Terabajt	ТВ	10 ¹² B = 1000 GB			
Petabajt	РВ	10 ¹⁵ B = 1000 TB			
Exabajt	EB	10 ¹⁸ B = 1000 PB			
Zettabajt	ZB	10 ²¹ B = 1000 EB			
Desiatkové (dekadické) predpony					

Predpona	Skr.	Množstvo			
Bajt	В	1B			
Kibibajt	KiB	2 ¹⁰ B = 1024 B			
Mebibajt	MiB	2 ²⁰ B = 1024 KiB			
Gibibajt	GiB	2 ³⁰ B = 1024 MiB			
Tebibajt	TiB	2 ⁴⁰ B = 1024 GiB			
Pebibajt	PiB	2 ⁵⁰ B = 1024 TiB			
Exbibajt	EiB	2 ⁶⁰ B = 1024 PiB			
Zebibajt	ZiB	2 ⁷⁰ B = 1024 EiB			
Dvojkové (binárne) predpony					

Interné pamäte

RAM, Cache, CMOS

Operačná pamäť – základná charakteristika

- Operačná pamäť uchováva dáta a inštrukcie programov, ktoré sú aktuálne spustené (vrátane jadra operačného systému)
- V dnešnej dobe je realizovaná ako DRAM (dynamic RAM) pamäťové bunky sú tvorené MOSFET tranzistorom a kondenzátorom
- Je interná, energeticky závislá, RWM, elektronická, s priamym prístupom

Operačná pamäť – dátový prenos

- Dáta sa prenášajú po slovách, ktoré majú 64b (8B)
- RAM je synchrónna pamäť a preto je potrebné mať synchronizačný signál (tzv. hodiny) obdĺžnikového tvaru
- To, koľko dát sa dá preniesť v jednom hodinovom cykle, určuje parameter označovaný ako Data Rate (DR):
 - SDR (Single Data Rate) prenáša jedno slovo (8B)
 - DDR (Double Data Rate) prenáša dve slová (16B)
 - DDR2 (Double Data Rate II) prenáša štyri slová (32B)
 - DDR₃ (Double Data Rate III) prenáša osem slov (64B)
 - DDR4 (Double Data Rate IV) prenáša osem slov (64B) ale dvojnásobnou frekvenciou

Operačná pamäť – dátový prenos

Specifications	SDR SDRAM	DDR1	DDR2	DDR3	DDR4
Internal Rate (MHz)	100 to 166	133 to 200 MHz	133 to 200 MHz	133 to 200 MHz	133 to 200 MHz
Bus clock (MHz)	100 to 166	133 to 200	266 to 400	533 to 800	1066 to 1600
Prefetch	1n	2n	4n	8n	8n
Data rate (MT/s)	100 to 166	266 to 400	533 to 800	1066 to 1600	2133 to 3200
Transfer rate (GB/s)	0.8 to 1.3	2.1 to 3.2	4.2 to 6.4	8.5 to 14.9	17 to 21.3
Voltage	3.3	2.5/2.6	1.8	1.35/1.5	1.2

Špeciálne RAM pre servery

ECC (Error Correction Code)

- Je to špeciálny typ RAM, ktorý dokáže detegovať a opraviť chyby dát vzniknuté prevrátením jedného bitu z o na 1 a naopak, najčastejšie spôsobené kozmickými časticami alebo radiáciou alfa častíc
- Je potrebný pre rôzne kritické finančné, zdravotnícke, priemyselné aplikácie, ktorých poškodenie dát môže znamenať ohrozenie zdravia alebo majetku
- Klasické 64b "slovo" v RAM je rozšírené o ECC informáciu
- Musí ich podporovať aj CPU a matičná doska

Buffered (registered) RAM

- Pri štandardných RAM je počet RAM modulov obmedzený pamäťovým radičom a jeho elektrickými parametrami
- Buffered RAM obsahujú na RAM module špeciálny čip (register), ktorý odľahčuje pamäťový radič od prílišného odberu elektrickej energie a tým umožní zvýšiť počet použitých RAM modulov na matičnej doske
- Musí podporovať CPU a matičná doska

Cache

- Cache je interná, energeticky závislá, elektronická, RWM vyrovnávacia pamäť s priamym prístupom
- Vyrovnáva rýchlosti medzi RAM (pomalšia) a registrami procesora (mega rýchle)
- V prípade, že by sme nemali cache, <u>procesor by nemohol niekoľko</u> <u>hodinových cyklov robiť nič</u>, pretože by musel čakať na dáta z RAM
- Tri úrovne cache:
 - L1 veľmi rýchla, veľmi drahá, veľmi malá kapacita; delí sa na dátovú a inštrukčnú
 - L2 pomalšia a lacnejšia ako L2, väčšia kapacita
 - L₃ najväčšia kapacita spomedzi cache, najpomalšia cache

Cache

- Z dôvodu, že L1 cache pamäť má veľmi malú kapacitu (pretože je drahá), je potrebné, aby sa priebežne napĺňala a vyprázdňovala aktuálne potrebnými dátami
- Na napĺňanie cache pamäte slúžia rôzne predpovedné (predikčné) algoritmy, v rámci ktorých sa CPU snaží odhadnúť, aké dáta bude onedlho potrebovať
- Dáta sa pripravujú do L3 cache, odkiaľ putujú do L2 a potom, podľa ich povahy, do L1d alebo do L1i cache
- Na vyprázdňovanie cache pamäte sa používajú algoritmy LRU (last recently used) alebo LFU (last frequently used)

CMOS

- Elektronická, RWM, energeticky závislá, interná pamäť s priamym prístupom, ktorá uchováva nastavenia BIOSu
- Musela byť napájaná batériou, čo bolo aj z dôvodu možnej obnovy nastavení do továrenských v prípade zlej konfigurácie
- Batéria "poháňala" CMOS v prípade, že bol počítač odpojený od zdroja energie (ATX) alebo vždy v prípade AT zdrojov
- Dnes už sa nastavenia UEFI uchovávajú vo Flash pamäti a batéria slúži len na poháňanie obvodu hodín reálneho času (RTC)

Externé pamäte

HDD, SSD, BluRay

HDD, archivačné dátové pásky

- Externá, magnetická, energeticky nezávislá, RWM pamäť so sekvenčným prístupom
- Dáta sa ukladajú na platne (pásku) pokryté magneticky vodivým materiálom
- Zapisujú sa a čítajú sa prostredníctvom zmeny magnetického poľa
- Záznam je trvácny, disk sa opotrebováva pomaly, má najmenšiu cenu za GB kapacity

HDD, archivačné dátové pásky

SSD, Flash pamäte

- Externá, elektronická, energeticky nezávislá, RWM pamäť s priamym prístupom
- Dáta sa ukladajú do MOSFET tranzistorov s plávajúcim (môže ale nemusí byť vytvorené) hradlom
- Zapisujú sa a čítajú sa prostredníctvom možnosti/nemožnosti prechodu prúdu cez tranzistor
- Záznam je menej trvácny ako u HDD, disk sa opotrebováva rýchlejšie, SSD má zatiaľ najvyššiu cenu za GB kapacity

SSD, Flash pamäte

MEMORY STICK PRODUCT MAGIC GATE

Lexar Professional 1066x

Optické disky – CD, DVD, BD

- Externá, optická, energeticky nezávislá, ROM/WORM/RWM pamäť so sekvenčným prístupom
- Dáta sa ukladajú do záznamovej vrstvy optického disku "vypaľovaním", teda poškodením záznamovej vrstvy
- Dáta sa čítajú prostredníctvom vyslaného a (ne)odrazeného svetla
- Záznam je trvácny, disky sú náchylné na mechanické poškodenie, optické vlastnosti materiálu časom degradujú

Optické disky – CD, DVD, BD

Mechanické pamäte

- Dáta sa zapisujú mechanickým poškodením záznamovej vrstvy (predierovaním, vtlačením a pod.)
- Čítajú sa väčšinou magneticky (gramoplatne), prípadne opticky (dierne štítky a pásky), ojedinele mechanicky
- Majú veľmi malú hustotu záznamu

Mechanické pamäte

Hierarchická štruktúra externých pamätí

- Disk (drive) je fyzické zariadenie hardvér, ktoré používame na ukladanie dát (HDD, SSD, Flash, CD, DVD, BD)
- Partícia (partition) je časť disku väčšinou sa vytvárajú podľa funkcionality (systémová, dátová, bootovacia, ...); môže sa nazývať aj zväzok (volume)
- Priečinok (folder) alebo adresár (directory) je oblasť na disku, ktorá obsahuje súbory alebo podpriečinky/podadresáre, väčšinou patriace jednému programu alebo príbuzné podľa použitia (hry, fotky, filmy,...)
- Súbor (file) je pomenovaná (meno.prípona) množina dát, ktoré spolu nejakým spôsobom súvisia