Day-III Session-V Probability and Statistics for Data Science

Dr. Sibarama Panigrahi

Department of Computer Science & Engineering National Institute of Technology Rourkela

Motivation

- Whether my query point(Black point) is setosa, versicolor or virginica.
- Setosa (Definitely No)
- May be versicolor or virginica
 - We may answer probabilistically (which is more appropriate here)
 - 0.8 versicolor
 - 0.2 virginica

Last Session

We have used the concepts like Histogram, PDF, CDF, Mean, Variance, Standard Deviation, etc.

These are all concepts of **Probability and Statistics**

Random Variable

- A random variable is a variable that takes the outcomes of the random experiment as its value.
- In probability, a real-valued function, defined over the sample space of a random experiment, is called a random variable.

Random Variable

Types of Random Variable

- Discrete Random Variable:
 - A discrete random variable can take only a finite number of distinct values. (Sample Space has finite values)
 - Probability mass function (PMF) is used to describe probabilities of discrete random variables.
 - e.g. Tossing a coin, Rolling a die, Gender of a person, etc.

Continuous Random Variable:

- A continuous random variable can take infinite and uncountable set of values. (Sample Space has uncountable values)
- Probability density function (PDF) is used to describe the probabilities of continuous random variables.
- e.g. Height of a person, Weight of a person, etc.

Population & Sample

- In statistics, a **population** refers to the entire group of individuals or items about which you want to gather information.
- A **sample**, on the other hand, is a subset of the population that is selected for study.
- Q) What is the mean weight of humans?
- **Population:** Mean weight of all humans of the world (μ_{weight})
- **Sample:** Mean weight of a subset of population (Let 1000 humans)

$$(\overline{x_{weight}})$$

As sample size increases $\mu_{weight} = \overline{x_{weight}}$

- A normal distribution or Gaussian distribution is a type of continuous probability distribution for a <u>real-valued</u> <u>random</u> <u>variable</u>.
- The general form of its <u>probability density function</u> is

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

where μ is the mean, σ is the standard deviation and f(x) is the probability density function.

- Petal_lengths follow Gaussian distribution.
- Why to study distributions?
 - Simple models. Can infer conclusions from it.

- Observations:
 - As x moves away from μ , the probability reduces.
 - Normal Distribution Curve is symmetric about mean.
 - The bell shaped curve is reducing exponentially with a quadratic function.
 - Unimodal in nature with a single peak.

$$f(x) = rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$

- Standard Normal Distribution
 - When Mean=0, Variance=1

- Observation:
 - Minimum value 0, Maximum value 1
 - Value corresponding to mean is at the half of the CDF curve.
 - If variance is smaller, the CDF Curve is closer to the mean.

Observations:

- Let X is a continuous random variable following Gaussian distribution with mean(let 0) and variance (let 1).
 - Within mean± 1*standard deviation 68% points lie.
 - Within mean ± 2*standard deviation 95% points lie.
 - Within mean± 3*standard deviation 99.7% points lie.

- Suppose the random variable height of a person follows normal distribution with mean $\mu = 150$ cm and variance $\sigma^2 = 25$. What can you quickly infer from this?
 - 68% persons height lie between

■ 145 cm and 155 cm i.e.
$$[\mu - \sigma \text{ and } \mu + \sigma]$$

- 95% persons height lie between
 - 140 cm and 160 cm

i.e.
$$[\mu - 2\sigma \ and \ \mu + 2\sigma]$$

- 99.7% persons height lie between
 - 135 cm and 165 cm

i.e.
$$[\mu - 3\sigma \text{ and } \mu + 3\sigma]$$

Skewness

- **Skewness** is a measure of the asymmetry of the <u>probability</u> distribution of a real-valued random variable about its mean.
- **Positive Skew:** The right tail is longer.
- Negative Skew: The left tail is longer.

Kurtosis

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable.

- D: Laplace distribution, also known as the double exponential distribution, red curve (two straight lines in the log-scale plot), excess kurtosis = 3
- S: hyperbolic secant distribution, orange curve, excess kurtosis = 2
- L: logistic distribution, green curve, excess kurtosis = 1.2
- N: normal distribution, black curve (inverted parabola in the log-scale plot), excess kurtosis = 0
- C: raised cosine distribution, cyan curve, excess kurtosis = -0.593762...
- W: Wigner semicircle distribution, blue curve, excess kurtosis = -1
- U: uniform distribution, magenta curve (shown for clarity as a rectangle in both images), excess kurtosis = -1.2.

Kernel Density Estimation

kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation.

Comparison of the histogram (left) and kernel density estimate (right) constructed using \Box the same data. The six individual kernels are the red dashed curves, the kernel density estimate the blue curves. The data points are the rug plot on the horizontal axis.

Kernel Density Estimation

Kernel density estimate (KDE) with different bandwidths of a random sample of 100 points from a standard normal distribution. Grey: true density (standard normal). Red: KDE with h=0.05. Black: KDE with h=0.337.

Green: KDE with h=2.

Central Limits Theorem

- Let X be a random variable with finite population mean X and variance σ^2 which follows any distribution (not necessarily normal distribution).
- Let $s_1, s_2, s_3 \dots s_m$ be m random samples with each containing n observations and $\overline{s_1}, \overline{s_2}, \overline{s_3} \dots \overline{s_m}$ be their sample means respectively.
- Then the distribution formed by $\overline{s_1}, \overline{s_2}, \overline{s_3}, \dots \overline{s_m}$ is called sampling distribution of sample means which follows a normal distribution with mean \bar{X} and variance $\frac{\sigma^2}{n}$ as long as the sample size is large enough.

Uniform Distribution

Discrete Uniform Distribution

• If the random variable following uniform distribution is discrete then it is called discrete uniform distribution.

discrete uniform

Uniform Distribution

Continuous Uniform Distribution

• If the random variable following uniform distribution is continuous then it is called continuous uniform distribution.

Continuous uniform

Parameters	$-\infty < a < b < \infty$		
Support	[a,b]		
PDF	$ \begin{cases} \frac{1}{b-a} & \text{for } x \in [a,b] \end{cases} $		
	0 otherwise		
CDF	$ \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b] \\ 1 & \text{for } x > b \end{cases} $		
Mean	$\frac{1}{2}(a+b)$		
Median	$\frac{1}{2}(a+b)$		
Mode	any value in (a, b)		

Bernoulli distribution

It is the <u>discrete probability distribution</u> of a <u>random variable</u> which takes the value 1 with probability p and the value 0 with probability q=1-p.

Parameters	$0 \le p \le 1$		
	q=1-p		
Support	$k \in \{0,1\}$		
PMF	$\left\{ egin{aligned} q=1-p & ext{if } k=0 \ p & ext{if } k=1 \end{aligned} ight.$		
	(p		
CDF	$\begin{cases} 0 & \text{if } k < 0 \\ 1 - p & \text{if } 0 \le k < 1 \\ 1 & \text{if } k \ge 1 \end{cases}$		
Mean	p		
Median	$\begin{cases} 0 & \text{if } p < 1/2 \\ [0,1] & \text{if } p = 1/2 \\ 1 & \text{if } p > 1/2 \end{cases}$		
Mode	$\begin{cases} 0 & \text{if } p < 1/2 \\ 0, 1 & \text{if } p = 1/2 \\ 1 & \text{if } p > 1/2 \end{cases}$		

Binomial Distribution

The **binomial distribution** with parameters n and p is the <u>discrete</u> <u>probability distribution</u> of the number of successes in a sequence of n <u>independent experiments</u>, each asking a <u>yes—no question</u>, and each with its own <u>Boolean</u>-valued <u>outcome</u>: *success* (with probability p) or *failure* (with probability q=1-p).

Parameters	$n \in \{0,1,2,\ldots\}$ – number of trials $p \in [0,1]$ – success probability for each trial
	q=1-p
Support	$k \in \{0,1,\ldots,n\}$ – number of
	successes
PMF	$\binom{n}{k} p^k q^{n-k}$
CDF	$I_q(n-\lfloor k floor, 1+\lfloor k floor)$ (the regularized
	incomplete beta function)
Mean	np
Median	$\lfloor np floor$ or $\lceil np ceil$
Mode	$\lfloor (n+1)p floor \lceil (n+1)p ceil -1$

Log-normal distribution

- A log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed.
- Let X is a continuous random variable
- y = ln(X)
- if y follows normal distribution then X follows log-normal distribution.

Notation	$Lognormal(\mu, \sigma^2)$		
Parameters	$\mu \in (-\infty, +\infty)$ (logarithm of scale),		
	$\sigma > 0$		
Support	$x \in (0, +\infty)$		
PDF	$\frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{\left(\ln x - \mu\right)^2}{2\sigma^2}\right)$		
CDF	$\left[rac{1}{2} \left[1 + \operatorname{erf} \left(rac{\ln x - \mu}{\sigma \sqrt{2}} ight) ight] = \Phi \left(rac{\ln(x) - \mu}{\sigma} ight)$		

Log-normal distribution

Popular Applications

Human behavior

- The length of comments posted in Internet discussion forums follows a log-normal distribution.
- Users' dwell time on online articles (jokes, news etc.) follows a log-normal distribution.
- The length of chess games tends to follow a log-normal distribution.
- Onset durations of acoustic comparison stimuli that are matched to a standard stimulus follow a log-normal distribution.

Technology

- In reliability analysis, the log-normal distribution is often used to model times to repair a maintainable system.
- In wireless communication, "the local-mean power expressed in logarithmic values, such as dB or neper, has a normal (i.e., Gaussian) distribution." Also, the random obstruction of radio signals due to large buildings and hills, called shadowing, is often modeled as a log-normal distribution.
- Particle size distributions produced by comminution with random impacts, such as in ball milling.
- The file size distribution of publicly available audio and video data files (MIME types) follows a log-normal distribution over five orders of magnitude.
- File sizes of 140 million files on personal computers running the Windows OS, collected in 1999.
- Sizes of text-based emails (1990s) and multimedia-based emails (2000s).

Reference: https://en.wikipedia.org/wiki/Log-normal_distribution#Occurrence_and_applications

Power Law Distribution

An example power-law graph that demonstrates ranking of popularity. To the right is the long tail, and to the left are the few that dominate (also known as the 80–20 rule).

Pareto Distribution

• is a power-law probability distribution that is used in description of social, quality control, scientific, geophysical, actuarial, and many other types of observable phenomena.

Parameters	$x_{ m m}>0$ scale (real)	
	lpha > 0 shape (real)	
Support	$x \in [x_{\mathrm{m}}, \infty)$	
PDF	$rac{lpha x_{ m m}^{lpha}}{x^{lpha+1}}$	
CDF	$1-\left(rac{x_{ m m}}{x} ight)^lpha$	
Quantile	$x_{ m m}(1-p)^{-rac{1}{lpha}}$	
Mean	$\left\{egin{array}{ll} \infty & ext{for } lpha \leq 1 \ rac{lpha x_{ ext{m}}}{lpha - 1} & ext{for } lpha > 1 \end{array} ight.$	
Median	$x_{ m m}\sqrt[\alpha]{2}$	
Mode	$x_{ m m}$	

Pareto Distribution

- Take the log of two variables
- Plot it.
- If a straight line in log-log plot appears, then it is necessary but insufficient for power laws

A straight line on a log-log plot is necessary but insufficient evidence for power-laws, the slope of the straight line corresponds to the power law exponent.

Pareto Distribution

Applications

- All four variables of the household's budget constraint: consumption, labor income, capital income, and wealth.
- The sizes of human settlements (few cities, many hamlets/villages)
- File size distribution of Internet traffic which uses the TCP protocol (many smaller files, few larger ones)
- Hard disk drive error rates
- Clusters of Bose–Einstein condensate near absolute zero
- The values of oil reserves in oil fields (a few large fields, many small fields)
- The length distribution in jobs assigned to supercomputers (a few large ones, many small ones)
- The standardized price returns on individual stocks
- · Sizes of sand particles
- · The size of meteorites

Reference: https://en.wikipedia.org/wiki/Pareto_distribution#Occurrence_and_applications

Power Transform Box-Cox Transformation

- Suppose a random variable $X = [x_1, x_2, ..., x_n]$ follows pareto distribution.
- We want to apply a transformation to X, so that it will be transformed to $Y = [y_1, y_2, ..., y_n]$ which follows normal distribution.
- This can be achieved by using Box-Cox Transformation
- **Steps:**
 - Box-Cox(X) = λ

$$y_i = \begin{cases} \frac{x_i^{\lambda} - 1}{\lambda} & \text{if } \lambda \neq 0 \\ \lg(x_i) & \text{if } \lambda = 0 \end{cases}$$

Covariance

- **Covariance** is a measure of the *joint variability* of two random variables.
- If **cov(X, Y)** is greater than zero, then we can say that the covariance for any two variables is positive and both the variables move in the same direction.
- If **cov(X, Y)** is less than zero, then we can say that the covariance for any two variables is negative and both the variables move in the opposite direction.
- If cov(X, Y) is zero, then we can say that there is no relation between two variables.

Pearson's Correlation Coefficient

- The **Pearson correlation coefficient**(ρ) measures linear correlation between two sets of data.
- $\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_V}$
- Where σ_x = Standard deviation of X
- σ_{ν} =Standard deviation of Y
- Minimum value -1
- Maximum value 1

Pearson's Correlation Coefficient

Pearson correlation coefficient	Correlation type	Interpretation	Example
Between 0 and 1	Positive correlation	When one variable changes, the other variable changes in the same direction.	Baby length & weight: The longer the baby, the heavier their weight.
0	No correlation	There is no relationship between the variables.	Car price & width of windshield wipers: The price of a car is not related to the width of its windshield wipers.
Between 0 and –1	Negative correlation	When one variable changes, the other variable changes in the opposite direction.	Elevation & air pressure: The higher the elevation, the lower the air pressure.

Pearson's Correlation Coefficient

Several sets of (x, y) points, with the correlation coefficient of x and $y \stackrel{\square}{=}$ for each set. The correlation reflects the strength and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case the correlation coefficient is undefined because the variance of Y is zero

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Spearman's Rank Correlation Coefficient

- The Spearman correlation between two variables is equal to the Pearson correlation between the rank values of those two variables.
- Pearson's correlation assesses linear relationships, whereas

Spearman's correlation assesses monotonic relationships (whether

linear or not)

X	Υ	R _x	R _y
10	3		
15	7		
13	5		
8	1		

Spearman's Rank Correlation Coefficient

The Spearman correlation is less sensitive than the Pearson correlation to strong outliers that are in the tails of both samples. That is because Spearman's ρ limits the outlier to the value of its rank.

Correlation & Causation

Correlation doesn't imply Causation

Does this mean that consuming ice cream causes shark attacks?

Source: https://www.statology.org/correlation-does-not-imply- causation-examples/

Correlation & Causation

Correlation doesn't imply Causation

Does this mean that reduced measles cases is causing lower marriage rates?

Source: https://www.statology.org/correlation-does-not-imply-causation-examples/

Correlation & Causation

Correlation doesn't imply Causation

Does this mean that an increased number of high school graduates is leading to more pizza consumption in the United States?

Source: https://www.statology.org/correlation-does-not-imply-causation-examples/

• Thank You