1045	
Name	:

- 1. (12 pts) Draw the Lewis structures of the following: CIF₃, N₂O, and XeF₂. Determine the electron group and molecular geometries and hybridization of the central atom. Is the molecule polar?
- (a) ClF₃

Electron Group Geometry:

Molecular Geometry:

Polar or Nonpolar?:

Hybridization of C:

T-shaped

Polar

Sp³cl

(b) N₂O

Electron Group Geometry: Inlar

Molecular Geometry: Inlar

Polar or Nonpolar?: polar

Hybridization of N. 5P

(c) XeF₂

Electron Group Geometry: Ingenal Ingramidal

Molecular Geometry: Iinear
Polar or Nonpolar?: rongelar
Hybridization of Xe: sp3d

2. (7 pts.) (a) What are the hybridizations of the three carbon atoms, the two oxygen atoms, and the nitrogen atom?

$$: N = C - C_{2} - C_{3} - C_{4} - H$$

$$H$$

- O_1 : $5p^2$ O_2 : $5p^3$
- (b) How many sigma bonds and pi bonds does the molecule have?

8	sigma	bonds
	0	

- _____ pi bonds
- (c) Which bond angle is smaller a or b? Why?
- (b) is the smaller angle. Both O(#2) & C(#2) have a tetrahedral electron-group geometry. Based on that the predicted angler are 109-5° but O has two hombonding group & two bonding group which exert greater repulsion so the bond H-O-H bond angle is < 109-5°
- 3. (4 pts.) (a) Identify the following as a sigma bond or pi bond? (b) Would it be easier to rotate around a σ bond or around a π bond? Why? (c) Which one is generally stronger? Why?

TI bond

- (b) or is easier to rotate because all electron density is concentrated on internuclear axis.
- (c) of is stronger because the averlap is more efficient.
- 4. (2 pts.) Rank the following in order of increasing length and increasing strength:

N≡N N—N N=N

$$\frac{N-N < N=N < N \equiv N}{\text{strength}}$$