Optimization in Neural Networks

Tianxiang (Adam) Gao

September 23, 2024

Outline

Calculus Review: Extreme Values

2 Convergence Issues

Advanced Optimization Algorithm

Recap: Neural Network Training

We use a **training process** iteratively update the parameters in MLPs:

- ullet MLPs are **parameterized** function $f_{m{ heta}}$, where $m{ heta} = \{m{W}^\ell, m{b}^\ell\}$
- Universal Approximation Theorem (UAT): MLPs can approximate "any" function f^* arbitrarily accurate, provided sufficient parameters (and training samples).
- ullet Given a training set $\{x_i,y_i\}_{i=1}^\ell$ and a loss function ℓ , the training problem is:

$$\min_{\boldsymbol{\theta}} \quad \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

• This optimization problem can be solved using **gradient descent**, which gradually reduces the cost \mathcal{L} along the *steepest descent direction*:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \nabla \mathcal{L}(\boldsymbol{\theta})$$

where $\eta > 0$ is the **learning rate**.

The gradients in MLPs can be computed using the chain rule backward from the total cost.

Recap: Neural Network Training

- Using the computational graph, the gradients can be computed through backpropagation:
 - ullet Forward Propagation (biases omitted): Start with $oldsymbol{x}^0 = oldsymbol{x}$

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\} \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

ullet Backward Propagation (biases omitted): Start with $dm{z}^L = (m{x}^L - m{y}) \odot \phi'(m{z}^L)$

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\}$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}$$

• Random initialization is preferred over zero initialization to avoid the issue of symmetric patterns.

Questions

- How do I choose the right learning rate?
- How do I determine the appropriate width and depth of the network?
- Does gradient descent (GD) always converge?
- How can I speed up the training process?

Calculus Review: Extreme Values

Convergence Issues

Advanced Optimization Algorithm

Calculus Review: Extreme Values

Let f(x) be a real-valued function, where $x \in \mathbb{R}$.

Local Min. x_1, x_3, x_5, x_7, x_9 ; Local Max. x_2, x_4, x_6, x_8 ;

- The function f has an **local minimum** at point x=a if $f(a) \le f(x)$ when x is near a.
- The function f has an **local maximum** at point x=a if $f(a) \ge f(x)$ when x is near a.
- \bullet The point a is a global minimum or global maximum if the above property holds for all x.
- \bullet Fermat's Theorem: If f has a local min or max at x=a, then $f^{\prime}(a)=0$
- A point x = a is called **stationary** if f'(a) = 0.
- Gradient descent stops at stationary points:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}).$$

Concavity: the second derivative $f^{\prime\prime}$ describes whether f is concave up or concave down

- If f'' > 0, then f is concave up at x.
- If f'' < 0, then f is concave down at x.

The Second Derivative Test:

- If f'(a) = 0 and $f''(a) \ge 0$, then a is a local minimum
- If f'(a) = 0 and $f''(a) \le 0$, then a is a local maximum.

Conclusion

The goal of training in deep learning is to find a good local minimum that generalizes well.

Hessian Matrix

Let f(x) be a **multivariate** real-valued function, where $x \in \mathbb{R}^n$.

ullet A point $oldsymbol{x}=oldsymbol{a}$ is called **stationary point** if $abla f(oldsymbol{a})=oldsymbol{0}$, *i.e.*,

$$\nabla f(\boldsymbol{a}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{a})}{\partial x_1} & \cdots & \frac{\partial f(\boldsymbol{a})}{\partial x_n} \end{bmatrix}^{\top} = \boldsymbol{0}$$

• The **Hessian** matrix $H(w) \in \mathbb{R}^{n \times n}$ of f is the symmetric matrix of second-order partial derivatives:

$$\nabla^2 f(\boldsymbol{x}) = \boldsymbol{H}(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

• For the second-order mixed partial derivative $\frac{\partial^2 f}{\partial x \partial y}$ is the rate of change of $\frac{\partial f}{\partial x}$ w.r.t. y changes, holding x constant.

Significance of Hessian

Interpretation of the Hessian Matrix:

- The Hessian describes the **local curvature** of the function.
- ullet Positive definite Hessian H implies a local minimum, i.e., concave up in any direction.
- **Negative** definite Hessian implies a local maximum, *i.e.*, concave down in any direction.
- Indefinite Hessian implies a saddle point, i.e., concave up in some directions and concave down in others.

Compute the gradients and Hessian of the following functions:

•
$$f(x) = \frac{1}{2}(xw - y)^2$$

 $ullet f(oldsymbol{w}) = rac{1}{2} \|oldsymbol{X} oldsymbol{w} - oldsymbol{y}\|^2$, where

$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

 $\textbf{Instructions:} \ \ \mathsf{Discuss} \ \ \mathsf{these} \ \ \mathsf{questions} \ \ \mathsf{in} \ \ \mathsf{small} \ \ \mathsf{groups} \ \ \mathsf{of} \ \ \mathsf{2-3} \ \ \mathsf{students}.$

Compute the gradients and Hessian of the following functions:

- $f(x) = \frac{1}{2}(xw y)^2$, $f'(w) = x \cdot (xw y)$, and $f''(w) = x^2$.
- ullet $f(oldsymbol{w}) = rac{1}{2} \|oldsymbol{X} oldsymbol{w} oldsymbol{y}\|^2$, where

$$m{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}, \quad m{X} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \quad m{y} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

We have

$$\nabla f(\boldsymbol{w}) = \boldsymbol{X}^{\top}(\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}) = \begin{bmatrix} 3(3w_1 - 1) \\ w_2 \end{bmatrix} \quad \text{and} \quad \boldsymbol{H}(\boldsymbol{w}) = \begin{bmatrix} 9 \\ & 1 \end{bmatrix},$$

• Here 9 is the largest eigenvalue of \boldsymbol{H} , 1 is the smallest eigenvalue of \boldsymbol{H} , and their ratio is called conditional number $\kappa=9$.

Outline

Calculus Review: Extreme Values

2 Convergence Issues

Advanced Optimization Algorithm

Learning Rate

Learning Rate

One-Dimensional Linear Regression

Consider a simple one-dimensional linear regression problem:

$$\min_{w} \quad \mathcal{L}(w) = \ell(f_{\theta}(x), y) = \frac{1}{2}(wx - y)^{2},$$

where $w, x, y \in \mathbb{R}$.

- The function $f_{\theta}(x) = wx$ is a perceptron with linear activation, without a bias term.
- With gradient $\nabla \mathcal{L}(w) = x(wx y)$, the gradient descent update is:

$$w^+ = w - \eta \cdot x(wx - y),$$

where $\eta > 0$ is the learning rate.

• To find the stationary point:

$$\nabla \mathcal{L}(w) = 0 \implies x(wx - y) = 0 \implies w^* = \frac{y}{x}$$

Second derivative test:

$$\nabla^2 \mathcal{L}(w^*) = x^2 > 0,$$

i.e., w^* is a local minimum (and also a global minimum since $\mathcal L$ is concave up everywhere).

Recursive Formula for Gradient Descent on LSR

• The update rule for Gradient Descent applied to linear regression is:

$$w^{k+1} = w^k - \eta \cdot x(w^k x - y) = (1 - \eta x^2)w^k + \eta xy := aw^k + b,$$

where $a := 1 - \eta x^2$ and $b := \eta xy$.

ullet Using this recurrence relation, w^{k+1} can be expanded as:

$$w^{k+1} = aw^{k} + b$$

$$= a(aw^{k-1} + b) + b$$

$$= a^{2}w^{k-1} + ab + b$$

$$= a^{3}w^{k-2} + a^{2}b + ab + b$$

$$= a^{k+1}w^{0} + b\left(a^{k} + a^{k-1} + \dots + a + 1\right)$$

$$= a^{k+1}w^{0} + b\frac{1 - a^{k+1}}{1 - a}$$

$$= a^{k+1}(w^{0} - w^{*}) + w^{*},$$

where we use the geometric series $\sum_{i=0}^k a^i = \frac{1-a^{k+1}}{1-a}$ and $w^* = \frac{y}{x}$.

Impact of Learning Rate on Convergence

The recurrence relation:

$$w^{k+1} = a^{k+1}(w^0 - w^*) + w^*,$$

where $a=1-\eta x^2$, leads to the following behaviors as $k\to\infty$:

- Convergence: If $\eta < 2/x^2$, then |a| < 1, so $a^k \to 0$, and w^k converges to the minimum w^* .
- Oscillation: If $\eta = 2/x^2$, then a = -1, and w^k oscillates around w^* with $w^{k+1} = (-1)^{k+1}(w^0 w^*) + w^*$.
- Divergence: If $\eta > 2/x^2$, then |a| > 1, leading to $a^k \to \infty$, causing w^k to diverge.

Residual Dynamics in Gradient Descent

The update rule for Gradient Descent on LSR is:

$$w^{k+1} = w^k - \eta \cdot x(w^k x - y).$$

From this, we can derive a recurrence relation for the residual or error ε^{k+1} :

$$\varepsilon^{k+1} = w^{k+1}x - y$$

$$= \left[w^k - \eta \cdot x(w^k x - y)\right] x - y$$

$$= (1 - \eta x^2) \cdot \varepsilon^k$$

$$= a \cdot \varepsilon^k,$$

where $a:=1-\eta x^2$ and $\varepsilon^k=w^kx-y$ is the error at step k. Repeating this relation, we obtain:

$$\varepsilon^{k+1} = a^{k+1}\varepsilon^0.$$

where $\varepsilon^0=w^0x-y$ is the initial error.

Loss Landscape

Curse of Dimensionality in Optimization

 As the dimensionality of variables and the size of data increase, optimization becomes more challenging. For example, consider the following loss function:

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (\boldsymbol{w}^{\top} \boldsymbol{x}_i - y_i)^2 = \frac{1}{2n} \|\boldsymbol{X} \boldsymbol{w} - \mathbf{y}\|^2$$

ullet The recurrence relation for $oldsymbol{w}^{k+1}$ becomes:

$$w^{k+1} = \left(I - \frac{\eta}{n} X X^{\top}\right)^{k+1} (w^0 - w^*) + w^* = A^{k+1} (w^0 - w^*) + w^*,$$

where $oldsymbol{A} := oldsymbol{I} - rac{\eta}{n} oldsymbol{X} oldsymbol{X}^{ op}.$

The dynamics are governed by the matrix A, rather than a scalar. In deep learning, this system
becomes even more complex as A can change during training, making it difficult to maintain a
clear recurrence structure.

3D Loss Landscape Visualization

Consider a case where $w = (w_1, w_2)$. Below is the 3D contour of $\mathcal{L}(w)$:

The loss landscape is not always smooth and easy to optimize:

$$\boldsymbol{X} = \begin{bmatrix} 1 & 0.1 \\ 0 & 1 \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 3 & 0.1 \\ 0 & 1 \end{bmatrix}$$

Challenges in Gradient Descent: Zig-Zag Patterns

• In ill-conditioned systems, gradient descent can only progress with a small learning rate. The following examples illustrate different behaviors:

Key Observations

- Ill-conditioned systems cannot tolerate large learning rates.
- Even with a small learning rate, gradient descent may exhibit a zig-zag pattern.

III-Conditioned Systems

Consider the recurrence relation for ill-conditioned systems:

$$egin{aligned} oldsymbol{w}^{k+1} &= \left(oldsymbol{I} - rac{\eta}{n} oldsymbol{X} oldsymbol{X}^{ op}
ight)^{k+1} \left(oldsymbol{w}^0 - oldsymbol{w}^*
ight) + oldsymbol{w}^* \ &= \left[rac{1 - rac{9\eta}{2}}{1 - rac{\eta}{2}}
ight]^{k+1} \left(oldsymbol{w}^0 - oldsymbol{w}^*
ight) + oldsymbol{w}^*. \end{aligned}$$

where we use n=2 and

$$m{X} = \begin{bmatrix} 3 & & \\ & 1 \end{bmatrix}, \quad ext{and} \quad m{X} m{X}^{ op} = \begin{bmatrix} 9 & & \\ & 1 \end{bmatrix}$$

- From the first exponential, convergence requires $\eta < \frac{4}{9}$.
- \bullet From the second exponential, convergence requires $\eta < 4.$

Key Observations: Condition Number and Learning Rate

- ullet To ensure convergence, we must choose $\eta < \frac{4}{9}$.
- One direction converges much slower than the other, leading to the zig-zag behavior.
- This occurs because the condition number κ of the Hessian H(w) is large, i.e., $\kappa=9$.

Gradients Vanishing and Exploding

Gradients Vanishing and Exploding

Information Propagation in Deep Neural Networks

• Forward Propagation (biases omitted): Starting with $x^0 = x$,

$$egin{aligned} oldsymbol{z}^\ell &= oldsymbol{W}^\ell oldsymbol{x}^{\ell-1}, & orall \ell \in \{0, 1, 2, \dots, L\}, \ oldsymbol{x}^\ell &= \phi(oldsymbol{z}^\ell), \end{aligned}$$

where $\phi(z)$ is the activation function.

• Assuming a linear activation function $\phi(z)=z$ for simplicity:

$$oldsymbol{x}^\ell = oldsymbol{W}^\ell oldsymbol{x}^{\ell-1} = egin{bmatrix} a & \ & a \end{bmatrix}^\ell oldsymbol{x}^0 = a^\ell oldsymbol{x}^0.$$

As ℓ increases:

- If a > 1, then x^{ℓ} grows exponentially (explodes).
- If a < 1, then x^{ℓ} diminishes exponentially (vanishes).

Backward Propagation and Gradient Behavior

• Backward Propagation (biases omitted): Start with $dz^L = (x^L - y) \odot \phi'(z^L)$:

$$d\mathbf{z}^{\ell} = \left[(\mathbf{W}^{\ell+1})^{\top} d\mathbf{z}^{\ell+1} \right] \odot \phi'(\mathbf{z}^{\ell}), \quad \forall \ell \in \{1, 2, \dots, L-1\},$$
$$d\mathbf{W}^{\ell} = d\mathbf{z}^{\ell} \mathbf{x}^{(\ell-1)\top}.$$

• With linear activation, $\phi'(x) = 1$:

$$d\boldsymbol{z}^{\ell} = (\boldsymbol{W}^{\ell+1})^{\top} d\boldsymbol{z}^{\ell+1} = \begin{bmatrix} a & \\ & a \end{bmatrix} d\boldsymbol{z}^{\ell+1} = a^{L-\ell} d\boldsymbol{z}^{L}.$$

- As ℓ becomes far from L:
 - If a > 1, then dz^{ℓ} grows rapidly (exploding gradients).
 - If a < 1, then dz^{ℓ} diminishes rapidly (vanishing gradients).

Summary

Learning Rate:

- Small learning rates slow down the training.
- Large learning rates can cause oscillations or divergence.

Loss Landscape:

- The loss landscape is often ill-conditioned in DNNs, with local minima, maxima, and saddle points.
- Ill-conditioned local structure prevents using a large learning rate.

Gradient Vanishing and Exploding:

- Information propagation in DNNs can be unstable.
- Lower layers tend to have small gradient values due to vanishing gradients.
- Differing gradient scales can lead to ill-conditioned local structures.

Outline

Calculus Review: Extreme Values

Convergence Issues

3 Advanced Optimization Algorithm

Outline

Gradient Descent with Momentum

The Trajectory of Gradient Descent

Let us take a close look at the trajectory of gradient descent (GD):

Average Search Direction

• The **general** iterative training process is defined as:

$$\boldsymbol{w}^+ = \boldsymbol{w} - \eta \cdot \boldsymbol{v},$$

where v is the search direction, and η is the learning rate. We take $v = \nabla \mathcal{L}(w)$ for GD.

ullet Given a trajectory of GD up to the k-th iteration, the sequence of gradient directions is:

$$\{oldsymbol{g}^0, oldsymbol{g}^1, \cdots, oldsymbol{g}^{k-1}\}, \quad ext{where} \quad oldsymbol{g}^i =
abla \mathcal{L}(oldsymbol{w}^i) \quad \Longrightarrow \quad oldsymbol{v}^k = rac{1}{k} \sum_{i=0}^{k-1} oldsymbol{g}^i.$$

Smooth out noisy gradients and maintain a more stable descent trend over iterations

GD with Averaged Gradient Direction

By applying the idea of averaging the negative gradient direction, we have:

$$egin{aligned} oldsymbol{v}^{k+1} &= rac{1}{k+1} \sum_{i=0}^k oldsymbol{g}^i, \ oldsymbol{w}^{k+1} &= oldsymbol{w}^k - \eta \cdot oldsymbol{v}^{k+1}. \end{aligned}$$

• The cumulative average can be rewritten in a running update form:

$$egin{aligned} m{v}^{k+1} &= rac{1}{k+1} \left(\sum_{i=0}^{k-1} m{g}^i + m{g}^k
ight) \ &= rac{k}{k+1} \cdot rac{1}{k} \sum_{i=0}^{k-1} m{g}^i + rac{1}{k+1} m{g}^k \ &= rac{k}{k+1} m{v}^k + \left(1 - rac{k}{k+1}
ight) m{g}^k. \end{aligned}$$

Hence, gradient descent with an averaged gradient direction is given by:

$$\boldsymbol{v}^{k+1} = \beta_{k+1} \boldsymbol{v}^k + (1 - \beta_{k+1}) \boldsymbol{g}^k,$$

$$\boldsymbol{w}^{k+1} = \boldsymbol{w}^k - \eta \cdot \boldsymbol{v}^{k+1},$$

where $\beta_{k+1} = \frac{k}{k+1}$.

Gradient Descent with Momentum

• Fixing $\beta_{k+1} = \beta$ for $\beta \in (0,1)$, *i.e.*, $\beta = 0.9$, the update rule becomes:

$$\mathbf{v}^{k+1} = \beta \mathbf{v}^k + (1 - \beta) \mathbf{g}^k,$$

$$\mathbf{w}^{k+1} = \mathbf{w}^k - \eta \cdot \mathbf{v}^{k+1},$$

- Here, β controls how much influence past gradients (v^k) have on the current update versus the most recent gradient (g^k) .
- This method is also referred to as Gradient Descent (GD) with Momentum or accelerated GD:

$$\begin{aligned} \boldsymbol{w}^{k+1} &= \boldsymbol{w}^k - \eta \cdot \boldsymbol{v}^{k+1} \\ &= \boldsymbol{w}^k - \eta \cdot \left[\beta \boldsymbol{v}^k + (1-\beta) \boldsymbol{g}^k \right] \\ &= \boldsymbol{w}^k - \eta (1-\beta) \cdot \boldsymbol{g}^k + \beta \cdot \underbrace{\left(\boldsymbol{w}^k - \boldsymbol{w}^{k-1} \right)}_{\text{Momentum}}, \quad \text{as } \boldsymbol{w}^k = \boldsymbol{w}^{k-1} - \eta \cdot \boldsymbol{v}^k. \end{aligned}$$

The current update is influenced **both** by the latest gradient and the past movement (momentum).

Impact of Momentum in Gradient Descent

Gradient Descent with momentum:

$$\boldsymbol{w}^{k+1} = \boldsymbol{w}^k - \eta(1-\beta) \cdot \boldsymbol{g}^k + \beta \cdot (\boldsymbol{w}^k - \boldsymbol{w}^{k-1}).$$

- Gradient Descent (GD) converges in 84 steps with $\eta=0.22$, while GD with momentum converges in 36 steps with $\eta=0.63$ and $\beta=0.6$.
- For further reading, see this illustration on the impact of momentum.

Damping in Gradient Descent with Momentum

Gradient Descent with momentum:

$$\boldsymbol{w}^{k+1} = \boldsymbol{w}^k - \eta \cdot (1 - \beta) \cdot \boldsymbol{g}^k + \beta \cdot (\boldsymbol{w}^k - \boldsymbol{w}^{k-1}).$$

Key Observation

- ullet A large momentum factor eta can cause the loss to oscillate and not consistently decrease.
- This oscillation often occurs around the stationary point.

Summary

Gradient Descent with momentum:

$$\boldsymbol{w}^{k+1} = \boldsymbol{w}^k - \eta(1-\beta) \cdot \boldsymbol{g}^k + \beta \cdot (\boldsymbol{w}^k - \boldsymbol{w}^{k-1}).$$

- The current update is influenced by both the most recent gradient and the past movement.
- The search direction in GD with momentum is a running average of past gradients.
- Momentum allows for larger learning rates and faster convergence.
- ullet Too large a momentum factor eta can cause **damping** in the loss and oscillation around the stationary point.

Outline

Adaptive Gradient Descent

Divergent Gradient Scaling

During the GD, the **magnitudes** of the gradient coordinates can vary significantly. One approach is to **scale** the magnitudes so that each gradient coordinate has an order of $\mathcal{O}(1)$ magnitude.

• By applying the idea of a running average on the gradient magnitudes, the scaling factors are:

$$s^+ = \beta s + (1 - \beta) g^{\odot 2},$$

 $w^+ = w - \eta \cdot g \oslash \sqrt{s^+ + \varepsilon},$

where \odot denotes element-wise multiplication, $\sqrt{\cdot}$ represents the element-wise square root, \oslash denotes element-wise division, and ε is a small value (e.g., $\varepsilon=10^{-8}$) preventing dividing by zero.

- This method is called root mean squared propagation (RMSP).
- RMSProp is effectively an adaptive learning rate algorithm:

$$\boldsymbol{w}_{i}^{+} = \boldsymbol{w}_{i} - \eta_{i} \frac{\partial \mathcal{L}(\boldsymbol{w})}{\partial \boldsymbol{w}_{i}},$$

where $\eta_i = \frac{\eta}{\sqrt{s_i^+}}$ is the adaptive learning rate.

Each gradient coordinate has a unique, adaptive learning rate.

Performance of RMSProp

RMSProp:

$$s^+ = \beta s + (1 - \beta)g^{\odot 2},$$

 $w^+ = w - \eta \cdot g \oslash \sqrt{s^+}.$

- GD converges in 84 steps with $\eta = 0.22$.
- RMSProp converges in 43 steps with $\eta=0.07$ and in 10 steps with $\eta=0.22$.
- Note: RMSProp may not perform well with large learning rates.

Adam

The Adaptive Moment Estimation (Adam) algorithm combines the advantages of GD with momentum and RMSProp:

$$egin{aligned} oldsymbol{v}^+ &= eta_1 oldsymbol{v} + (1 - eta_1) oldsymbol{g}, \ oldsymbol{s}^+ &= eta_2 oldsymbol{s} + (1 - eta_2) oldsymbol{g}^{\odot 2}, \ oldsymbol{w}^+ &= oldsymbol{w} - \eta \cdot oldsymbol{v}^+ \otimes \sqrt{oldsymbol{s}^+}, \end{aligned}$$

where typical values in training DNNs are $\beta_1 = 0.9$ and $\beta_2 = 0.99$.

- GD converges in 84 steps with $\eta = 0.22$.
- GD with momentum converges in 35 steps with $\eta = 0.63$ and $\beta = 0.6$.
- RMSProp converges in 43 steps with $\eta = 0.07$.
- Adam converges in 32 steps with $\eta = 0.74$.

Summary

- ullet Adaptive gradient descent (AdaGrad) scales each gradient coordinate to have $\mathcal{O}(1)$ magnitudes.
- Adaptive methods provide an **adaptive learning rate** for each gradient coordinate.
- Typically, adaptive methods do not use large learning rates.
- Adam is a combination of momentum-based and adaptive scaling techniques, balancing fast convergence with gradient smoothing.

Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) Overview

Recap: Training deep neural networks as an optimization problem over parameters θ :

$$\min_{\boldsymbol{\theta}} \ \mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

• The gradient descent (GD) update rule is:

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) = \boldsymbol{\theta} - \eta \cdot \frac{1}{n} \sum_{i=1}^n \nabla_{\boldsymbol{\theta}} \ell_i(\boldsymbol{\theta}),$$

where $\ell_i(\boldsymbol{\theta}) := \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$ is the loss for sample i.

- ullet In practice, the number of training samples n can be extremely large (millions or even billions). Computing the gradient over all samples becomes computationally expensive.
- Stochastic Gradient Descent (SGD): Instead of computing the gradient over the full dataset, we randomly select a smaller batch \mathcal{B} of samples (called a mini-batch):

$$\boldsymbol{\theta}^+ = \boldsymbol{\theta} - \eta \cdot \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} \nabla_{\boldsymbol{\theta}} \ell_i(\boldsymbol{\theta})$$

• The size of the mini-batch $|\mathcal{B}|$ can vary. If $|\mathcal{B}|=1$, it is called **SGD**. Otherwise, it is called **mini-batch SGD**.

Mini-batch SGD and Epochs

- In mini-batch SGD, the entire dataset is typically divided into several mini-batches of a fixed size b.
- The mini-batches are often selected by random shuffling (or **permutation**), and the model is updated iteratively for each mini-batch.
- After processing all mini-batches once, we complete an epoch, and the process can be repeated for multiple epochs until convergence.
- Efficiency: Mini-batch SGD can be computationally efficient because each update is based on a subset of data, reducing the cost per iteration.
- Advanced Techniques: Mini-batch SGD can be combined with other optimization techniques, such as momentum, RMSProp, and Adam.

SGD vs. Full Batch Gradient Descent

- Stochastic Behavior: Unlike full-batch gradient descent, the loss function in SGD does not always decrease at every step due to the randomness of mini-batches. This can cause oscillations.
- Convergence Speed: Although SGD may take more iterations to converge in theory, it often converges faster in terms of wall-clock time due to its lower per-iteration computational cost.
- Trade-off: Full-batch GD ensures a consistent reduction in loss at each step, but the cost per iteration is high, especially for large datasets. SGD trades off some accuracy for faster convergence.