

MACHINE LEARNING COURSE END PROJECT

PRESENTED BY:

RAMYA 160122771085

HOUSE PRICE PREDICTION USING MACHINE LEARNING

INTRODUCTION

Predicting house prices is a critical task in the real estate industry, enabling stakeholders to make informed decisions.

This project aims to build a machine learning model to predict house prices using various features such as the number of rooms, location, and other relevant attributes.

DATASET

HousePricePrediction.csv

Features:

- Id
- MSSubClass
- MSZoning
- LotArea
- LotConfig
- BldgType
- OverallCond
- YearBuilt
- YearRemodAdd
- Exterior1st
- BsmtFinSF2
- TotalBsmtSF
- SalePrice

DATA PREPROCESSING

Identifying and separating categorical, integer, and float variables.

Conducting exploratory data analysis.

Handling missing values.

Encoding categorical variables using One-Hot Encoding.

Splitting the dataset

ALGORITHMS POSSIBLE

SVM-Support Vector Machine

Random Forest Regressor

CatBoost Classifier

I used here is SVM. SVM is a powerful and flexible machine learning algorithm that can be used forclassification and regression problems, goal is to categorize data into different classes.

EXECUTION

from sklearn import svm from sklearn.svm import SVC from sklearn.metrics import mean_absolute_percentage_error model_SVR = svm.SVR() model_SVR.fit(X_train,Y_train) Y_pred = model_SVR.predict(X_valid) print("Mean Absolute Percentage Error:", mean_absolute_percentage_error(Y_valid, Y_pred)) plt.figure(figsize=(10, 6)) plt.scatter(Y_valid, Y_pred, alpha=0.5) plt.xlabel("Actual Prices") plt.ylabel("Predicted Prices") plt.title("Actual Prices vs Predicted Prices") plt.show()

RESULTS

Mean Absolute Percentage Error: 0.18704778826125987

