Chcemy wygenerować wzór na zamianę zmiennych. Dawno dawno temu mogliśmy zrobić tak:

$$\int_{2}^{4} 2xe^{x^{2}}dx = |x^{2} = t, 2xdx = dt| = \int_{4}^{16} e^{t}dt.$$

Czyli w ogólności

$$\int_{\varphi(a)}^{\varphi(b)} f(x)dx = \int_{a}^{b} f(\varphi(t))\varphi'(t)dt.$$

Jak weźmiemy całkę

$$\int f(x,y)dxdy = \int dx \int f(x,y)dy = |r = \sqrt{x^2 + y^2}, \varphi = arctg(\frac{y}{x})| = \int dr \int d\varphi f(r,\varphi)??.$$

Rysunek 1: zmieniamy zmienne pojedynczo a nie jednocześnie $(x,y) \to (x,\varphi) \to (r,\varphi)$

$$\int dx \int dy f(x,y) = \|y = x \operatorname{tg} \varphi, dy = \frac{x}{\cos^2 \varphi} d\varphi \| = \int dx \int \frac{x}{\cos^2 \varphi} \varphi f(x, y(x, \varphi)) =$$

$$= \|x = r \cos \varphi, dx = dr \cos \varphi \| = \int d\varphi \int \frac{dr \cos \varphi r \cos \varphi}{\cos^2 \varphi} f(x(r, \varphi), y(x(r, \varphi))) =$$

$$= \int d\varphi \int dr f(r, \varphi) r, \operatorname{czyli} "??" = r.$$

To teraz w drugą stronę. $(y \to r)$, $(x \to \varphi)$

$$\begin{split} &\int \int f(x,y) dx dy = \|y = \sqrt{r^2 - x^2}, dy = \frac{2rdr}{2\sqrt{r^2 - x^2}}\| = \\ &= \int dx \int \frac{rdr}{\sqrt{r^2 - x^2}} f(x,y(x,r)) = \|x = r\cos\varphi, dx = -r\sin\varphi d\varphi\| = \\ &= -\int dr \int \frac{r\sin\varphi d\varphi r}{\sqrt{r^2 - x^2}} f(x(r,\varphi),y(x(r,\varphi),r)) = \\ &= -\int dr r^2 \int d\varphi \frac{\sin\varphi f(r,\varphi)}{\sqrt{r^2 - r^2\cos^2\varphi}} = -\int dr \int d\varphi f(r,\varphi) r. \end{split}$$

Dostaliśmy prawie to co trzeba (r). Tylko wpadł jakiś dziwny minus. Podobno minus zniknie gdy doprowadzimy do porządku granice zmiennej φ , bo x=

 $r\cos\varphi$ a cos jest malejący w tym przedziałe. (tablica dalej nie działa - minęły 3 miesiące - z marsa by już doszła więc wysyłają pewnie z Saturna - MKTM)

Niech
$$\psi \begin{bmatrix} r \\ \varphi \end{bmatrix} \rightarrow \begin{bmatrix} r \cos \varphi \\ r \sin \varphi \end{bmatrix}$$
.

$$\psi' = \begin{bmatrix} \cos \varphi & -r \sin \varphi \\ \sin \varphi & r \cos \varphi \end{bmatrix}$$

$$\|\psi'\| = r \cos^2 \varphi - (-r \sin^2 \varphi) = r.$$

Chcemy pokazać, że jeżeli $\varphi: A \to A, A \subset \mathbb{R}^n, \varphi$ - klasy $\mathcal{C}^1, \varphi^{-1}$ - klasy \mathcal{C}^1 , to możemy przedstawić φ jako złożenie dwóch transformacji, z których pierwsza nie zmienia n-1 zmiennych a druga nie zmienia 1 zmiennej (transformacje pierwotne/prymitywne albo inne ubogacające nazwy).

Dowód 1 (coś w rodzaju dowodu) φ możemy przedstawić jako

$$\varphi \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} \to \begin{bmatrix} \varphi_1(t_1, \dots, t_n) \\ \vdots \\ \varphi_n(t_1, \dots, t_n) \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

Pytanie 1 Czy istnieje odwzorowanie $\Theta^{-1}: A \to A$ takie, że

$$\Theta = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix} = \begin{bmatrix} t_1 \\ \vdots \\ t_{j-1} \\ t_{j+1} \\ \vdots \\ t_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_{j-1} \\ x_j \\ x_{j+1} \\ \vdots \\ x_n \end{bmatrix}.$$

 $(t_{i\neq j})$ mogą zostać zamiast zamieniać je na x_i . Dlaczego interesuje nas czy istnieje funkcja odwrotna? Bo jeżeli istnieje, to możemy zapisać

$$\varphi = \varphi \circ \Theta^{-1} \circ \Theta = \left(\varphi \circ \Theta^{-1}\right) \circ \Theta.$$

Wiemy, że φ - klasy \mathcal{C}^1 i φ^{-1} - klasy \mathcal{C}^1 i $\varphi:A\to A$. Mamy twierdzenie o lokalnej odwracalności!

 $det\varphi'\neq 0$, czyli w macierzy φ' istnieje prznajmniej 1 element niezerowy. (w rzeczywistości to zawsze będzie trochę więcej - nieśmiały warunek)

 $np. \frac{\partial \varphi^i}{\partial t^i} \neq 0.$ Oznacza to, że odwzorowanie

$$\eta: \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_{i-1} \\ t_i \\ t_{i+1} \\ \vdots \\ t_n \end{bmatrix} \to \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{j-1} \\ x_j = \varphi^i(t_1, \dots, t_n) \\ \vdots \\ x_n \end{bmatrix}.$$

Wtedy

 $i \det \eta' \neq 0$, więc istnieje η^{-1} . Czyli $\varphi = \varphi \circ \eta \circ \eta^{-1} = (\varphi \circ \eta) \circ \eta^{-1}$

$$\int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy f(x,y) = \int_{0}^{1} r dr \int_{0}^{2\pi} d\varphi f(r,\varphi)$$
 (1)

Twierdzenie 1 (O zamianie zmiennych)

Niech Θ, Ω - zbiory otwarte $w \mathbb{R}^n$ i $\xi : \Omega \to \Theta$, $f : \Theta \to \mathbb{R}$, f - ograniczona i całkowalna. ξ - klasy \mathcal{C}^1 na Ω , ξ^{-1} klasy \mathcal{C}^1 na Θ . Wtedy

$$\int_{\Theta} f(x)dx = \int_{\Omega} f(\xi(t))|\det \xi'(t)|dt.$$
 (2)

$$x = (x^1, \dots, x^n) \in \Theta, t = (t^1, \dots, t^n) \in \Omega$$

Dowód 2 (przez indukcję względem wymiaru przestrzeni)

- $dla \ n = 1$ $zrobione \ w \ I \ semetrze.$
- zakładamy, że prawdziwy jest napis

$$\int_{A'\subset\mathbb{R}^{n-1}}f(x)dx=\int_{\Omega'\subset\mathbb{R}^{n-1}}f(\xi(t))|det(\xi'(t))|, (\xi:\mathbb{R}^{n-1}\to\mathbb{R}^{n-1}).$$

Chcem pokazać, że prawdziwy jest napis

$$\int_{A\subset\mathbb{R}}f(x)dx=\int_{\Omega\subset\mathbb{R}^n}f(\xi(t))|det(\xi'(t))|.$$

Rysunek 2: $\Omega \to \Theta - f - \mathbb{R}$

Uwaga: wartośc bezwzględna oznacza, że musimy uważać przy rozstawianiu gra-

nic: $\begin{pmatrix} \int_a^b f \end{pmatrix} \ oznacza, \ \dot{z}e \ zakładamy, \ \dot{z}e \ a \leqslant b. \ Dowód \ przeprowadzamy \ dla \ \xi: \Theta \subset \mathbb{R}^n \to \Omega \subset \mathbb{R}^n \ takiego, \ \dot{z}e \ \xi \ nie \ zamienia \ jednej \ zmiennej.$

Obserwacja 1 Niech $K = \{(x,y), x^2 + y^2 \leq 1\}$, niech $K_a = \{(x,a), x^2 + a^2 \leq 1\}$. Wówczas $K = \bigcup_{a \in [-1,1]} K_a$, zatem $\int_K f = \int_{-1}^1 da \int_{K_a} f$

