#### Bibliometric Data Fusion for Biomedical Information Retrieval

ACM/IEEE Joint Conference on Digital Libraries 2023, Santa Fe, New Mexico, USA

Timo Breuer<sup>1</sup> Christin Katharina Kreutz<sup>1</sup> Philipp Schaer<sup>1</sup> Dirk Tunger<sup>2</sup>

<sup>1</sup>TH Köln - University of Applied Sciences, Germany

<sup>2</sup>Forschungszentrum Jülich, Germany

June 27, 2023

Technology Arts Sciences TH Köln





#### **Motivation**

Bibliometric measures are implicit relevance signals

Correlation between bibliometrics and relevance labels of IR test collections [1]

• How to exploit these relevance signals for document retrieval?

[1] Relevance assessments, bibliometrics, and altmetrics: a quantitative study on PubMed and arXiv, Breuer, Schaer, and Tunger, Scientometrics 2022



## Methodology

Q Retrieve a baseline ranking

**★ Fuse** the ranking list with additional bibliometric signals

**III Evaluate** the re-ranked result list



Figure: Bibliometric data fusion based on polyrepresentation.

#### **Research Questions**

- **RQ1** To what extent can bibliometric relevance signals be used as ranking criteria for biomedical information retrieval?
- **RQ2** Can bibliometric-enhanced data fusion methods improve the overall retrieval performance?

## **Research Questions**

- **RQ1** To what extent can bibliometric relevance signals be used as ranking criteria for biomedical information retrieval?
- **RQ2** Can bibliometric-enhanced data fusion methods improve the overall retrieval performance?



i) Rankings based on bibliometric measures





## **Polyrepresentation**

"Cognitively and functionally different representations of information objects may be used in information retrieval to enhance quality of results." [2]

• Enhance biomedical retrieval systems with bibliometric metadata like citations, altmetrics, etc.



Figure: Principle of polyrepresentation (reproduced from [2]).

#### **Data Fusion**

Combine multiple rankings for better retrieval effectiveness than the best single ranking.

Reciprocal Rank Fusion [3]:

$$RRF \operatorname{score}(d \in D) = \sum_{r \in R} \frac{1}{k + r(d)}$$

D is the document set, R is the set of fused rankings, r(d) is the rank r of document d, k is a fixed parameter set to 60.



Figure: Overview of the analyzed data fusion methods.

#### TREC Precision Medicine Abstract Task 2017 to 2019

TREC organized several biomedical shared task, e.g., Precision Medicine

Us Two tasks: Ranking of 1) medical abstracts and 2) clinical trials

Information needs / topics based on patient profiles

Table: Number of relevance judgements, of teams who submitted and of submitted runs per year of TREC-PM.

| Year | Topics | Qrels  | Teams | Runs |
|------|--------|--------|-------|------|
| 2017 | 30     | 22,642 | 29    | 125  |
| 2018 | 50     | 22,429 | 24    | 103  |
| 2019 | 40     | 18,316 | 14    | 62   |

## Retrieval Engines and Approaches of TREC-PM 2017 to 2019

- Most of the rankings are made with a Lucene-based retrieval engine
- Data fusion is a common technique
- Few systems use bibliometric metadata to rank scientific abstracts

Table: Overview of TREC-PM 2017 to 2019.

|            |                  | 2017 | 2018 | 2019 | $\sum$ |
|------------|------------------|------|------|------|--------|
|            | Reports per year | 20   | 20   | 14   | 54     |
|            | ElasticSearch    | 5    | 8    | 7    | 20     |
|            | Lucene           | 6    | 3    | 2    | 11     |
|            | Terrier          | 3    | 3    | 1    | 7      |
| ine        | unknown          | 1    | 2    | 2    | 5      |
| Engine     | Solr             | 2    | 2    | 1    | 5      |
|            | Galago           | 2    |      |      | 2      |
|            | Indri            | 1    | 1    |      | 2      |
|            | Whoosh           |      | 1    | 1    | 2      |
|            | Query expansion  | 16   | 14   | 12   | 42     |
|            | KB + ontologies  | 17   | 14   | 6    | 37     |
| les        | Re-ranking       | 6    | 7    | 9    | 22     |
| ach        | Embeddings       | 3    | 5    | 5    | 13     |
| Approaches | Data fusion      | 4    | 5    | 3    | 12     |
|            | LTR              | 1    | 3    | 5    | 9      |
|            | LLM              |      |      | 3    | 3      |
|            | Citation-based   | 2    |      |      | 2      |

## **Coverage of Bibliometric Metadata**



Citations,

**A**ltmetrics,

Publication years,

Research levels,

Impact factors.

Public resource hosted on Zenodo: https://doi.org/10.5281/zenodo.5883400

Table: Coverage of the bibliometrics wrt. judged abstracts

| Year | 2017        | 2018        | 2019        |
|------|-------------|-------------|-------------|
| С    | 14170 (66%) | 11214 (55%) | 11381 (61%) |
| Α    | 6134 (29%)  | 4547 (22%)  | 5639 (30%)  |
| Р    | 14586 (68%) | 11618 (57%) | 12221 (66%) |
| R    | 14067 (66%) | 11239 (55%) | 11707 (63%) |
| 1    | 11449 (53%) | 9246 (45%)  | 9387 (51%)  |







- High recall rates comply with our earlier work [1]
- **◆** Citations, Altmetrics, and Publication years are the most effective bibliometric relevance signals
- BM25 outperforms query-agnostic bibliometric rankings

|      | Model  | С                     | Α                   | P                      | R                    |                     | BM25   |
|------|--------|-----------------------|---------------------|------------------------|----------------------|---------------------|--------|
|      | Recall | 0.7853 <sup>ARI</sup> | 0.4162              | 0.7972 <sup>CARI</sup> | 0.7608 <sup>AI</sup> | 0.6301 <sup>A</sup> | 0.4640 |
| 7    | nDCG   | 0.4992 <sup>ARI</sup> | 0.3163              | $0.5069^{ARI}$         | 0.4666 <sup>AI</sup> | 0.4162 <sup>A</sup> | 0.4423 |
| 201  | AP     | $0.1812^{AI}$         | 0.1020              | $0.1733^{AI}$          | $0.1546^{A}$         | $0.1399^{A}$        | 0.1636 |
| 2    | P@10   | $0.2700^{R}$          | $0.2400^{R}$        | 0.2033                 | 0.1200               | $0.2500^{R}$        | 0.4667 |
|      | Bpref  | 0.1577                | 0.1434              | 0.1541                 | 0.1307               | 0.1444              | 0.2714 |
|      | Recall | 0.7916 <sup>ARI</sup> | 0.4066              | 0.8019 <sup>CARI</sup> | 0.7739 <sup>AI</sup> | 0.6438 <sup>A</sup> | 0.7828 |
|      | nDCG   | 0.5728 <sup>ARI</sup> | 0.3651              | 0.5671 <sup>ARI</sup>  | 0.5297 <sup>AI</sup> | 0.4744 <sup>A</sup> | 0.6376 |
| 2018 | AP     | 0.2905 <sup>ARI</sup> | 0.1765              | 0.2815 <sup>AI</sup>   | 0.2591 <sup>AI</sup> | 0.2261 <sup>A</sup> | 0.3195 |
| 2    | P@10   | 0.3760 <sup>R</sup>   | $0.3860^{R}$        | $0.3180^{R}$           | 0.2360               | 0.3420 <sup>R</sup> | 0.5680 |
|      | Bpref  | 0.2896 <sup>AI</sup>  | 0.2355              | $0.2809^{A}$           | 0.2612               | 0.2506              | 0.4852 |
|      | Recall | 0.8260 <sup>AI</sup>  | 0.4732              | 0.8849 <sup>CARI</sup> | 0.8435 <sup>AI</sup> | 0.6690 <sup>A</sup> | 0.7574 |
| 6    | nDCG   | 0.5754 <sup>ARI</sup> | 0.3693              | $0.6031^{ARI}$         | 0.5433 <sup>AI</sup> | 0.4818 <sup>A</sup> | 0.5870 |
| 2019 | AP     | 0.2756 <sup>ARI</sup> | 0.1633              | 0.2896 <sup>ARI</sup>  | 0.2442 <sup>A</sup>  | 0.2182 <sup>A</sup> | 0.2584 |
| 2    | P@10   | 0.3525 <sup>RI</sup>  | 0.2850 <sup>R</sup> | $0.3075^{R}$           | 0.1925               | 0.2850 <sup>R</sup> | 0.5125 |
|      | Bpref  | 0.2460 <sup>R</sup>   | 0.2064              | 0.2416                 | 0.2024               | 0.2283              | 0.3946 |



- High recall rates comply with our earlier work [1]
- **♦** Citations, Altmetrics, and Publication years are the most effective bibliometric relevance signals
- BM25 outperforms query-agnostic bibliometric rankings

| 1 1  |        |                       |              | P                      |                      |                     | BM25   |
|------|--------|-----------------------|--------------|------------------------|----------------------|---------------------|--------|
|      | Model  | С                     | Α            |                        | R                    | <u> </u>            |        |
| 1 1  | Recall | 0.7853 <sup>ARI</sup> | 0.4162       | 0.7972 <sup>CARI</sup> | 0.7608 <sup>AI</sup> | $0.6301^{A}$        | 0.4640 |
| _    | nDCG   | 0.4992 <sup>ARI</sup> | 0.3163       | $0.5069^{ARI}$         | 0.4666 <sup>AI</sup> | 0.4162 <sup>A</sup> | 0.4423 |
| 2017 | AP     | $0.1812^{AI}$         | 0.1020       | $0.1733^{AI}$          | $0.1546^{A}$         | $0.1399^{A}$        | 0.1636 |
| 2    | P@10   | $0.2700^{R}$          | $0.2400^{R}$ | 0.2033                 | 0.1200               | $0.2500^{R}$        | 0.4667 |
|      | Bpref  | 0.1577                | 0.1434       | 0.1541                 | 0.1307               | 0.1444              | 0.2714 |
|      | Recall | 0.7916 <sup>ARI</sup> | 0.4066       | 0.8019 <sup>CARI</sup> | 0.7739 <sup>AI</sup> | 0.6438 <sup>A</sup> | 0.7828 |
|      | nDCG   | $0.5728^{ARI}$        | 0.3651       | 0.5671 <sup>ARI</sup>  | 0.5297 <sup>AI</sup> | 0.4744 <sup>A</sup> | 0.6376 |
| 201  | AP     | $0.2905^{ARI}$        | 0.1765       | 0.2815 <sup>AI</sup>   | $0.2591^{AI}$        | 0.2261 <sup>A</sup> | 0.3195 |
| 2    | P@10   | $0.3760^{R}$          | $0.3860^{R}$ | $0.3180^{R}$           | 0.2360               | 0.3420 <sup>R</sup> | 0.5680 |
|      | Bpref  | $0.2896^{AI}$         | 0.2355       | 0.2809 <sup>A</sup>    | 0.2612               | 0.2506              | 0.4852 |
|      | Recall | 0.8260 <sup>AI</sup>  | 0.4732       | 0.8849 <sup>CARI</sup> | 0.8435 <sup>AI</sup> | 0.6690 <sup>A</sup> | 0.7574 |
|      | nDCG   | 0.5754 <sup>ARI</sup> | 0.3693       | $0.6031^{ARI}$         | 0.5433 <sup>AI</sup> | 0.4818 <sup>A</sup> | 0.5870 |
| 2019 | AP     | 0.2756 <sup>ARI</sup> | 0.1633       | $0.2896^{ARI}$         | 0.2442 <sup>A</sup>  | 0.2182 <sup>A</sup> | 0.2584 |
| 2    | P@10   | $0.3525^{RI}$         | $0.2850^{R}$ | $0.3075^{R}$           | 0.1925               | 0.2850 <sup>R</sup> | 0.5125 |
|      | Bpref  | $0.2460^{R}$          | 0.2064       | 0.2416                 | 0.2024               | 0.2283              | 0.3946 |



- High recall rates comply with our earlier work [1]
- **♦** Citations, Altmetrics, and Publication years are the most effective bibliometric relevance signals
- BM25 outperforms query-agnostic bibliometric rankings

|      |        | _                     | _                   | _                      |                      |                     |        |
|------|--------|-----------------------|---------------------|------------------------|----------------------|---------------------|--------|
|      | Model  | С                     | A                   | Р                      | R                    | ı                   | BM25   |
|      | Recall | 0.7853 <sup>ARI</sup> | 0.4162              | 0.7972 <sup>CARI</sup> | 0.7608 <sup>AI</sup> | $0.6301^{A}$        | 0.4640 |
| _    | nDCG   | 0.4992 <sup>ARI</sup> | 0.3163              | $0.5069^{ARI}$         | 0.4666 <sup>AI</sup> | 0.4162 <sup>A</sup> | 0.4423 |
| 2017 | AP     | $0.1812^{AI}$         | 0.1020              | $0.1733^{AI}$          | $0.1546^{A}$         | $0.1399^{A}$        | 0.1636 |
| 2    | P@10   | $0.2700^{R}$          | $0.2400^{R}$        | 0.2033                 | 0.1200               | $0.2500^{R}$        | 0.4667 |
|      | Bpref  | 0.1577                | 0.1434              | 0.1541                 | 0.1307               | 0.1444              | 0.2714 |
|      | Recall | 0.7916 <sup>ARI</sup> | 0.4066              | 0.8019 <sup>CARI</sup> | 0.7739 <sup>AI</sup> | 0.6438 <sup>A</sup> | 0.7828 |
| _    | nDCG   | 0.5728 <sup>ARI</sup> | 0.3651              | 0.5671 <sup>ARI</sup>  | 0.5297 <sup>AI</sup> | 0.4744 <sup>A</sup> | 0.6376 |
| 2018 | AP     | 0.2905 <sup>ARI</sup> | 0.1765              | 0.2815 <sup>AI</sup>   | 0.2591 <sup>AI</sup> | 0.2261 <sup>A</sup> | 0.3195 |
| 2    | P@10   | 0.3760 <sup>R</sup>   | $0.3860^{R}$        | $0.3180^{R}$           | 0.2360               | 0.3420 <sup>R</sup> | 0.5680 |
|      | Bpref  | 0.2896 <sup>AI</sup>  | 0.2355              | 0.2809 <sup>A</sup>    | 0.2612               | 0.2506              | 0.4852 |
|      | Recall | 0.8260 <sup>AI</sup>  | 0.4732              | 0.8849 <sup>CARI</sup> | 0.8435 <sup>AI</sup> | 0.6690 <sup>A</sup> | 0.7574 |
|      | nDCG   | 0.5754 <sup>ARI</sup> | 0.3693              | $0.6031^{ARI}$         | 0.5433 <sup>AI</sup> | 0.4818 <sup>A</sup> | 0.5870 |
| 2019 | AP     | 0.2756 <sup>ARI</sup> | 0.1633              | 0.2896 <sup>ARI</sup>  | 0.2442 <sup>A</sup>  | 0.2182 <sup>A</sup> | 0.2584 |
| 7    | P@10   | 0.3525 <sup>RI</sup>  | 0.2850 <sup>R</sup> | $0.3075^{R}$           | 0.1925               | 0.2850 <sup>R</sup> | 0.5125 |
|      | Bpref  | 0.2460 <sup>R</sup>   | 0.2064              | 0.2416                 | 0.2024               | 0.2283              | 0.3946 |



- High recall rates comply with our earlier work [1]
- **♦** Citations, Altmetrics, and Publication years are the most effective bibliometric relevance signals
- BM25 outperforms query-agnostic bibliometric rankings

|      |        | _                     | _                   | _                      |                      |                     |        |
|------|--------|-----------------------|---------------------|------------------------|----------------------|---------------------|--------|
|      | Model  | С                     | A                   | Р                      | R                    | ı                   | BM25   |
|      | Recall | 0.7853 <sup>ARI</sup> | 0.4162              | 0.7972 <sup>CARI</sup> | 0.7608 <sup>AI</sup> | $0.6301^{A}$        | 0.4640 |
| _    | nDCG   | 0.4992 <sup>ARI</sup> | 0.3163              | $0.5069^{ARI}$         | 0.4666 <sup>AI</sup> | 0.4162 <sup>A</sup> | 0.4423 |
| 2017 | AP     | $0.1812^{AI}$         | 0.1020              | 0.1733 <sup>AI</sup>   | $0.1546^{A}$         | $0.1399^{A}$        | 0.1636 |
| 2    | P@10   | $0.2700^{R}$          | $0.2400^{R}$        | 0.2033                 | 0.1200               | $0.2500^{R}$        | 0.4667 |
|      | Bpref  | 0.1577                | 0.1434              | 0.1541                 | 0.1307               | 0.1444              | 0.2714 |
|      | Recall | 0.7916 <sup>ARI</sup> | 0.4066              | 0.8019 <sup>CARI</sup> | 0.7739 <sup>AI</sup> | 0.6438 <sup>A</sup> | 0.7828 |
| _    | nDCG   | 0.5728 <sup>ARI</sup> | 0.3651              | 0.5671 <sup>ARI</sup>  | 0.5297 <sup>AI</sup> | 0.4744 <sup>A</sup> | 0.6376 |
| 2018 | AP     | 0.2905 <sup>ARI</sup> | 0.1765              | 0.2815 <sup>AI</sup>   | 0.2591 <sup>AI</sup> | 0.2261 <sup>A</sup> | 0.3195 |
| 2    | P@10   | $0.3760^{R}$          | $0.3860^{R}$        | $0.3180^{R}$           | 0.2360               | 0.3420 <sup>R</sup> | 0.5680 |
|      | Bpref  | $0.2896^{AI}$         | 0.2355              | 0.2809 <sup>A</sup>    | 0.2612               | 0.2506              | 0.4852 |
|      | Recall | 0.8260 <sup>AI</sup>  | 0.4732              | 0.8849 <sup>CARI</sup> | 0.8435 <sup>AI</sup> | 0.6690 <sup>A</sup> | 0.7574 |
|      | nDCG   | 0.5754 <sup>ARI</sup> | 0.3693              | $0.6031^{ARI}$         | 0.5433 <sup>AI</sup> | 0.4818 <sup>A</sup> | 0.5870 |
| 2019 | AP     | 0.2756 <sup>ARI</sup> | 0.1633              | 0.2896 <sup>ARI</sup>  | 0.2442 <sup>A</sup>  | 0.2182 <sup>A</sup> | 0.2584 |
| 2    | P@10   | $0.3525^{RI}$         | 0.2850 <sup>R</sup> | $0.3075^{R}$           | 0.1925               | 0.2850 <sup>R</sup> | 0.5125 |
|      | Bpref  | $0.2460^{R}$          | 0.2064              | 0.2416                 | 0.2024               | 0.2283              | 0.3946 |









Figure: Retrieval effectiveness of fused rankings based on bibliometric relevance signals.









# 🖈 😋 → 🖟 → Improvements of TREC-PM 2017 Abstract Task



Figure: Rank fusion-based improvements over the baseline runs for the TREC-PM Abstract task for 2017.





# ✓ 🗱 → 🔚 Improvements of TREC-PM 2018 and 2019



Figure: Rank fusion-based improvements over the baseline runs for the TREC-PM Abstract task for 2018 and 2019.







Figure: Number of systems vs. retrieval effectiveness before (dark) and after (light) bibliometric data fusion for nDCG@10 (blue) and nDCG@1000 (red) for TREC-PM. The dashed line corresponds to the total number of systems.









- **♦** Almost all retrieval systems significantly improve in terms of nDCG and AP.
- ♠ Tradeoffs between recall-based improvements and lowered precision.
- Results generalize with all data fusion algorithms and TREC-PM datasets.

Table: Bibliometric Data Fusion based on RRF

| Year                            | 2017       | 2018       | 2019     |
|---------------------------------|------------|------------|----------|
| Number of systems               | 125        | 103        | 62       |
| (Signif.*) improvements (nDCG)  | 125 / 125* | 103 / 103* | 62 / 61* |
| Average improvement (nDCG)      | 0.2378     | 0.2384     | 0.1815   |
| Overall change (nDCG)           | 0.2378     | 0.2384     | 0.1787   |
| (Signif.*) improvements (AP)    | 125 / 123* | 103 / 103* | 62 / 55* |
| Average improvement (AP)        | 0.1173     | 0.1849     | 0.1237   |
| Overall change (AP)             | 0.1163     | 0.1849     | 0.1161   |
| (Signif.*) improvements (P@10)  | 37 / 18*   | 46 / 19*   | 3 / 3*   |
| Average improvement (P@10)      | 0.1589     | 0.2221     | 0.16     |
| Overall change (P@10)           | -0.0299    | 0.0223     | -0.1518  |
| (Signif.*) improvements (Bpref) | 46 / 17*   | 47 / 36*   | 15 / 6*  |
| Average improvement (Bpref)     | 0.1047     | 0.1668     | 0.1294   |
| Overall change (Bpref)          | -0.0033    | 0.0244     | -0.0453  |









- **♦** Almost all retrieval systems significantly improve in terms of nDCG and AP.
- ♠ Tradeoffs between recall-based. improvements and lowered precision.
- Results generalize with all data fusion algorithms and TREC-PM datasets.

Table: Bibliometric Data Fusion based on RRF

| Year                            | 2017       | 2018       | 2019     |
|---------------------------------|------------|------------|----------|
| Number of systems               | 125        | 103        | 62       |
| (Signif.*) improvements (nDCG)  | 125 / 125* | 103 / 103* | 62 / 61* |
| Average improvement (nDCG)      | 0.2378     | 0.2384     | 0.1815   |
| Overall change (nDCG)           | 0.2378     | 0.2384     | 0.1787   |
| (Signif.*) improvements (AP)    | 125 / 123* | 103 / 103* | 62 / 55* |
| Average improvement (AP)        | 0.1173     | 0.1849     | 0.1237   |
| Overall change (AP)             | 0.1163     | 0.1849     | 0.1161   |
| (Signif.*) improvements (P@10)  | 37 / 18*   | 46 / 19*   | 3 / 3*   |
| Average improvement (P@10)      | 0.1589     | 0.2221     | 0.16     |
| Overall change (P@10)           | -0.0299    | 0.0223     | -0.1518  |
| (Signif.*) improvements (Bpref) | 46 / 17*   | 47 / 36*   | 15 / 6*  |
| Average improvement (Bpref)     | 0.1047     | 0.1668     | 0.1294   |
| Overall change (Bpref)          | -0.0033    | 0.0244     | -0.0453  |
|                                 |            |            |          |









- **♦** Almost all retrieval systems significantly improve in terms of nDCG and AP.
- ♠ Tradeoffs between recall-based. improvements and lowered precision.
- Results generalize with all data fusion algorithms and TREC-PM datasets.

Table: Bibliometric Data Fusion based on RRF

| Year                            | 2017       | 2018       | 2019     |
|---------------------------------|------------|------------|----------|
| Number of systems               | 125        | 103        | 62       |
| (Signif.*) improvements (nDCG)  | 125 / 125* | 103 / 103* | 62 / 61* |
| Average improvement (nDCG)      | 0.2378     | 0.2384     | 0.1815   |
| Overall change (nDCG)           | 0.2378     | 0.2384     | 0.1787   |
| (Signif.*) improvements (AP)    | 125 / 123* | 103 / 103* | 62 / 55* |
| Average improvement (AP)        | 0.1173     | 0.1849     | 0.1237   |
| Overall change (AP)             | 0.1163     | 0.1849     | 0.1161   |
| (Signif.*) improvements (P@10)  | 37 / 18*   | 46 / 19*   | 3 / 3*   |
| Average improvement (P@10)      | 0.1589     | 0.2221     | 0.16     |
| Overall change (P@10)           | -0.0299    | 0.0223     | -0.1518  |
| (Signif.*) improvements (Bpref) | 46 / 17*   | 47 / 36*   | 15 / 6*  |
| Average improvement (Bpref)     | 0.1047     | 0.1668     | 0.1294   |
| Overall change (Bpref)          | -0.0033    | 0.0244     | -0.0453  |
|                                 |            |            |          |









Rank-biased Precision [6]:

$$\text{RBP} = (1 - p) \cdot \sum_{i=1}^{d} r_i \cdot p^{i-1}$$

r; denotes relevance at rank i. p is the transition probability to the next document and models the user's patience.

The higher p, the more patient the user.



Figure: Number of system improvements vs. user persistence.

#### **Answers to the Research Questions**

RQ1: To what extent can bibliometric relevance signals be used as ranking criteria for biomedical information retrieval?

- Bibliometric relevance signals can indicate relevant literature to some extent.
- Bibliometric rankings are not as effective as term-based retrieval methods.
- Fusing bibliometric relevance signals is less effective than using them in isolation.

## **Answers to the Research Questions**

RQ1: To what extent can bibliometric relevance signals be used as ranking criteria for biomedical information retrieval?

- Bibliometric relevance signals can indicate relevant literature to some extent.
- Bibliometric rankings are not as effective as term-based retrieval methods.
- Fusing bibliometric relevance signals is less effective than using them in isolation.

# RQ2: Can bibliometric-enhanced data fusion methods improve the overall retrieval performance?

- For all systems of TREC-PM 2017 to 2019, the nDCG and AP scores can be improved.
- Not only weak baselines but also well-performing systems benefit from data fusion.
- The more patient the user, the higher the benefit.

#### Thank You!

Thank you for your attention. **Questions?** 









• https://github.com/irgroup/jcdl2023-data-fusion
• https://ir.web.th-koeln.de

#### References |

- [1] T. Breuer, P. Schaer, and D. Tunger, "Relevance assessments, bibliometrics, and altmetrics: A quantitative study on pubmed and arxiv," *Scientometrics*, vol. 127, no. 5, pp. 2455–2478, 2022.
- [2] B. Larsen, P. Ingwersen, and J. Kekäläinen, "The polyrepresentation continuum in IR," in *IliX*, ACM, 2006, pp. 88–96.
- [3] G. V. Cormack, C. L. A. Clarke, and S. Büttcher, "Reciprocal rank fusion outperforms condorcet and individual rank learning methods," in *SIGIR*, ACM, 2009, pp. 758–759.
- [4] J. A. Aslam and M. H. Montague, "Models for metasearch," in SIGIR, ACM, 2001, pp. 275–284.
- [5] S. Wu and F. Crestani, "Data fusion with estimated weights," in CIKM, ACM, 2002, pp. 648–651.
- [6] A. Moffat and J. Zobel, "Rank-biased precision for measurement of retrieval effectiveness," *ACM Trans. Inf. Syst.*, vol. 27, no. 1, 2:1–2:27, 2008.