MA 205 Tutorial Batch 3 Recap-2

Siddhant Midha

① A sequence s_n is said to converge to s if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $n > N \implies |s_n - s| < \epsilon$.

- **①** A sequence s_n is said to converge to s if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $n > N \implies |s_n s| < \epsilon$.
- ② A series $\sum_n z_n$ is said to converge if the sequence $s_n := \sum_{i=0}^n z_n$ converges.

- **①** A sequence s_n is said to converge to s if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $n > N \implies |s_n s| < \epsilon$.
- ② A series $\sum_n z_n$ is said to converge if the sequence $s_n := \sum_{i=0}^n z_n$ converges.
- **3** Absolute Convergence: A series $\sum_n z_n$ is said to converge absolutely if $\sum_n |z_n|$ converges.

- **①** A sequence s_n is said to converge to s if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $n > N \implies |s_n s| < \epsilon$.
- ② A series $\sum_n z_n$ is said to converge if the sequence $s_n := \sum_{i=0}^n z_n$ converges.
- **3** Absolute Convergence: A series $\sum_n z_n$ is said to converge absolutely if $\sum_n |z_n|$ converges.
- \bullet Fact: Absolute Convergence \implies Convergence. Proof? Use the fact that $\mathbb C$ is complete.

- **①** A sequence s_n is said to converge to s if $\forall \epsilon > 0 \exists N \in \mathbb{N}$ s.t. $n > N \implies |s_n s| < \epsilon$.
- ② A series $\sum_n z_n$ is said to converge if the sequence $s_n := \sum_{i=0}^n z_n$ converges.
- **3** Absolute Convergence: A series $\sum_n z_n$ is said to converge absolutely if $\sum_n |z_n|$ converges.
- \bullet Fact: Absolute Convergence \implies Convergence. Proof? Use the fact that $\mathbb C$ is complete.

Convergence of Power Series

Given the power series,

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

such that $a_n \in \mathbb{C} \forall n$, $z_0 \in \mathbb{C}$, we have that *only one* of the following is true

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

such that $a_n \in \mathbb{C} \forall n, z_0 \in \mathbb{C}$, we have that *only one* of the following is true

1 P converges only at $z = z_0$.

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

such that $a_n \in \mathbb{C} \forall n, z_0 \in \mathbb{C}$, we have that *only one* of the following is true

- **1** P converges only at $z = z_0$.
- ② P converges at all $z \in \mathbb{C}$.

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

such that $a_n \in \mathbb{C} \forall n, z_0 \in \mathbb{C}$, we have that *only one* of the following is true

- **1** P converges only at $z = z_0$.
- 2 P converges at all $z \in \mathbb{C}$.
- **③** There exists $R \in \mathbb{R}$, ∞ > R > 0, such that P converges for all $z : |z z_0| < R$ and diverges for all $z : |z z_0| > R$.

Convergence of Power Series

Given the power series,

$$P = \sum_{n=0}^{\infty} a_n (z - z_0)^2$$

such that $a_n \in \mathbb{C} \forall n, z_0 \in \mathbb{C}$, we have that *only one* of the following is true

- **1** P converges only at $z = z_0$.
- 2 P converges at all $z \in \mathbb{C}$.
- **③** There exists $R \in \mathbb{R}$, ∞ > R > 0, such that P converges for all $z : |z z_0| < R$ and diverges for all $z : |z z_0| > R$.

Usually, we allow for $R = 0, \infty$ for convenience.

ano comments on the boundary!

Follow up theorem

Before that, one should ask, why is it that we cannot comment on the boundary? Hint: Convergence does *not* imply absolute convergence.

Follow up theorem

Before that, one should ask, why is it that we cannot comment on the boundary? Hint: Convergence does *not* imply absolute convergence.

Convergence of Power Series

The radius of convergence of a power series as defined before is given as

$$R = \frac{1}{|\limsup |a_n|^{1/n}}$$

Follow up theorem

Before that, one should ask, why is it that we cannot comment on the boundary? Hint: Convergence does *not* imply absolute convergence.

Convergence of Power Series

The radius of convergence of a power series as defined before is given as

$$R = \frac{1}{|\limsup |a_n|^{1/n}}$$

Herein, we allow for $R=0,\infty$ by letting $1/0=\infty,1/\infty=0$.

Definition

For a **real** sequence x_n , define,

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Points to be noted,

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Points to be noted,

• s_n is a **non-increasing** sequence. (Why?)

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Points to be noted.

- s_n is a **non-increasing** sequence. (Why?)
- Because of that, the limit of s_n always exists (can be $\pm \infty$). (Why?)

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Points to be noted.

- s_n is a **non-increasing** sequence. (Why?)
- Because of that, the limit of s_n always exists (can be $\pm \infty$). (Why?)
- Thus, the lim-sup always exists. The limit might not.

Definition

For a **real** sequence x_n , define,

$$s_n := \sup\{x_n, x_{n+1} \dots\} \forall n$$

Define, $\limsup x_n := \lim s_n$.

Points to be noted.

- s_n is a **non-increasing** sequence. (Why?)
- Because of that, the limit of s_n always exists (can be $\pm \infty$). (Why?)
- Thus, the lim-sup always exists. The limit might not.
- When the limit exists, the limsup is equal to the limit.

Some properties [Can Ignore]

Let x_n be the (real) sequence of interest, and let $-\infty < L < \infty$ be its limsup. Let s_n be defined as before.

- **①** Since s_n is non-increasing, given any $\epsilon > 0$, $\exists n_0 \in \mathbb{N}$ s.t. $s_{n_0} < L + \epsilon$.
- 2 By definition of s_{n_0} , we have

$$x_n \leq s_n < L + \epsilon \forall n \geq n_0$$

- **③** Now, assume that $\exists n_0 \in \mathbb{N}$ s.t. $x_n \leq L \epsilon \forall n \leq n_0$. This would imply $s_n \leq L \epsilon \forall n \leq n_0$. Not possible (Why?).
- Thus there are arbitrary large n s.t. $x_n > L \epsilon$.

Armed with these points, one can go through Slide-6,7 of Lecture 1C to understand the proof of the RoC better.

Let $\sum_{n} x_n$ be a complex series. Note the following,

• If $\sum_{n} x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition

- If $\sum_n x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition
- Note that $|x_n| \ge 0$ (thus $\sum_{k=0}^n |x_n|$ is monotonic increasing), we have that $\sum_n |x_n|$ converges iff $\sum_{k=0}^n |x_n|$ is bounded above. Necessary and Sufficient Condition

- If $\sum_n x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition
- Note that $|x_n| \ge 0$ (thus $\sum_{k=0}^n |x_n|$ is monotonic increasing), we have that $\sum_n |x_n|$ converges iff $\sum_{k=0}^n |x_n|$ is bounded above. Necessary and Sufficient Condition
- (Comparison test) If $x_n, y_n \in \mathbb{R}$, and $0 \le x_n \le y_n$, then
 - ① $\sum_n y_n$ converges $\Longrightarrow \sum_n x_n$ converges.

- If $\sum_n x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition
- Note that $|x_n| \ge 0$ (thus $\sum_{k=0}^n |x_n|$ is monotonic increasing), we have that $\sum_n |x_n|$ converges iff $\sum_{k=0}^n |x_n|$ is bounded above. Necessary and Sufficient Condition
- (Comparison test) If $x_n, y_n \in \mathbb{R}$, and $0 \le x_n \le y_n$, then
 - ① $\sum_n y_n$ converges $\Longrightarrow \sum_n x_n$ converges.
 - 2 $\sum_n x_n$ diverges $\implies \sum_n y_n$ diverges.
- (Ratio Test) Suppose $x_n \neq 0 \forall n$. Further suppose $|x_{n+1}/x_n| \to L$ as $n \to \infty$. Then,
 - **1** $L > 1 \implies$ divergence.
 - 2 $L < 1 \implies$ absolute convergence \implies convergence.
 - \bullet $L=1 \implies \mathsf{nada}$.

- If $\sum_n x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition
- Note that $|x_n| \ge 0$ (thus $\sum_{k=0}^n |x_n|$ is monotonic increasing), we have that $\sum_n |x_n|$ converges iff $\sum_{k=0}^n |x_n|$ is bounded above. Necessary and Sufficient Condition
- (Comparison test) If $x_n, y_n \in \mathbb{R}$, and $0 \le x_n \le y_n$, then
 - ① $\sum_n y_n$ converges $\Longrightarrow \sum_n x_n$ converges.
- (Ratio Test) Suppose $x_n \neq 0 \forall n$. Further suppose $|x_{n+1}/x_n| \to L$ as $n \to \infty$. Then,
 - **1** $L > 1 \implies$ divergence.
 - 2 $L < 1 \implies$ absolute convergence \implies convergence.
 - \bullet $L=1 \implies \mathsf{nada}$.
- (Root Test) Define $C := \limsup |x_n|^{1/n}$. Then,
 - **1** $C > 1 \implies$ divergence.
 - **2** $C < 1 \implies$ absolute convergence \implies convergence.

- If $\sum_n x_n$ converges, then $|x_n| \to 0$ as $n \to \infty$. Necessary Condition
- Note that $|x_n| \ge 0$ (thus $\sum_{k=0}^n |x_n|$ is monotonic increasing), we have that $\sum_n |x_n|$ converges iff $\sum_{k=0}^n |x_n|$ is bounded above. Necessary and Sufficient Condition
- (Comparison test) If $x_n, y_n \in \mathbb{R}$, and $0 \le x_n \le y_n$, then
 - ① $\sum_n y_n$ converges $\Longrightarrow \sum_n x_n$ converges.
- (Ratio Test) Suppose $x_n \neq 0 \forall n$. Further suppose $|x_{n+1}/x_n| \to L$ as $n \to \infty$. Then,
 - **1** $L > 1 \implies$ divergence.
 - 2 $L < 1 \implies$ absolute convergence \implies convergence.
 - \bullet $L=1 \implies \mathsf{nada}$.
- (Root Test) Define $C := \limsup |x_n|^{1/n}$. Then,
 - **1** $C > 1 \implies$ divergence.
 - **2** $C < 1 \implies$ absolute convergence \implies convergence.