1. Prove that $n^2 \neq 2 \mod 3$, $\forall n \in \mathbb{Z}$

Theorem 1: if n is even then n^2 is even.

Proof by:

$$\forall n \in E, 2 | n \implies 2 | n^2$$
 by theorem 1
 $2 | n^2 = 2 \mod 0 \neq 2 \mod 3$

2. Fermat's Last theorem is a famous theorem in Math that was unproven for 200 years. The theorem says $\forall n > 2$, a, b, $c \in \mathbb{N} \implies a^n + b^n \neq c^n$. Another way to state this is $a^n + b^n = c^n$ has no integer solutions for n larger than 2. Use this theorem to prove that $\sqrt[n]{2}$ is irrational for n larger than 2.

Proof by:

$$\sqrt[n]{2} \in \mathbb{Q} \implies \exists a, b \in \mathbb{Z} : \gcd(a, b) = 1$$

$$\implies \sqrt[n]{2} = \frac{a}{b} \implies a^n = 2b^n$$

$$\implies a^n = b^n + b^n$$

Thus, this contradicts Fermat's Last theorem implying $\sqrt[n]{2}$ is irrational for n > 2.

Note: this is essentially zscoder's proof . No real credit here; I couldn't figure it out myself at first. It's pretty simple though, so I couldn't formulate something else that was better without adding unnecessary steps (originally completed in hw3).

- 3. Prove that for any $a, b, c \in \mathbb{Z}$, $\exists x, y \in \mathbb{Z}$: $a|bx + cy \iff a|b \land a|c$
- 4. Prove that for any n, a, $b \in \mathbb{Z}$, $n|a-b \iff a\%n = b\%n$

5. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Prove that

$$a \sim b \iff a \equiv b \mod n$$

is a n equivalence relation 9 for any n.

- 6. The greatest common divisor of natural numbers $a,b;\gcd(a,b)$, is the largest number δ such that $\delta|a\wedge\delta|b$
 - (a) Let $\delta = \gcd(b, a\%b)$, prove that $\delta|a \wedge \delta|b$
 - (b) Use part (a) to show that gcd(a, b) = gcd(b, a%b)

7. We defined the identity function

 $id: A \rightarrow A$, id(x) = x, has property: $\forall f: A \rightarrow A$, $id \circ f = f \circ id = f$

Prove that id is the only function that can have this property.