Laplace Transforms:

Laplace Transform of Standard Functions

$L\{1\} = \frac{1}{s}$	$L\{t^n\} = \frac{n!}{s^{n+1}}, n = 1, 2, 3$ Where n is a positive integer
$L\left\{e^{at}\right\} = \frac{1}{s-a}$	$L\left\{e^{-at}\right\} = \frac{1}{s+a}$
$L\{\sin at\} = \frac{a}{s^2 + a^2}$	$L\{\cos at\} = \frac{s}{s^2 + a^2}$
$L\{\sinh at\} = \frac{a}{s^2 - a^2}$	$L\{\cosh at\} = \frac{s}{s^2 - a^2}$
$L\{u(t)\} = \frac{1}{s}$	$L\{u(t-a)\} = \frac{e^{-as}}{s}$

Properties of the Laplace transform:

f(t)	$L\{f(t)\} = F(s)$
Translation (first Shifting Theorem)	$L\left\{e^{at}f\left(t\right)\right\} = F\left(s-a\right)$
Multiplication by t	$L\{t^n \mid f(t)\} = (-1)^n \frac{d^n}{ds^n} \{F(s)\}$
Time scale	$L\{f(at)\} = \frac{1}{a}F\left(\frac{s}{a}\right)$
Integration	$L\left\{\int_{0}^{t} f(t) dt\right\} = \frac{1}{s} L\left\{f(t)\right\}$
Division by t	$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s) ds.$

Transform of a Periodic Function: If f(t) is periodic with a period T, then

$$L\{f(t)\} = \frac{1}{\left(1 - e^{-sT}\right)} \int_{0}^{T} e^{-st} f(t) dt .$$

Second Shifting Theorem:

If
$$F(s) = L\{f(t)\}\$$
and $a > 0$, then $L\{f(t-a)u(t-a)\} = e^{-as}L\{f(t)\}$.

Transforms of the derivatives:

$$L\{f'(t)\} = sL\{f(t)\} - f(0)$$

$$L\{f''(t)\} = s^2 L\{f(t)\} - s f(0) - f'(0)$$

$$L\{f^n(t)\} = s^n L\{f(t)\} - s^{n-1} f(0) - s^{n-2} f'(0) - s^{n-2} f''(0) - \cdots - f^{n-1}(0)$$

Inverse Laplace Transform:

Transform	Inverse Transform
$F(s) = L\{f(t)\}$	$f(t) = L^{-1}\big\{F(s)\big\}$
$L\left\{t^n\right\} = \frac{n!}{s^{n+1}}$	$\frac{t^{n-1}}{(n-1)!} = L^{-1} \left\{ \frac{1}{s^n} \right\}$
Where n is a positive integer	Where n is a positive integer
$L\left\{e^{at}\right\} = \frac{1}{s-a}$	$e^{at} = L^{-1} \left\{ \frac{1}{s-a} \right\}$
$L\{\sinh at\} = \frac{a}{s^2 - a^2}$	$\sinh at = L^{-1} \left\{ \frac{a}{s^2 - a^2} \right\}$
$L\{\cosh at\} = \frac{s}{s^2 - a^2}$	$\cosh at = L^{-1} \left\{ \frac{s}{s^2 - a^2} \right\}$
$L\{\sin at\} = \frac{a}{s^2 + a^2}$	$\sin at = L^{-1} \left\{ \frac{a}{s^2 + a^2} \right\}$
$L\{\cos at\} = \frac{s}{s^2 + a^2}$	$\cos at = L^{-1} \left\{ \frac{s}{s^2 + a^2} \right\}$

Formulae on Shifting rule:

$$L[e^{at}cosbt] = \frac{s-a}{(s-a)^2+b^2}$$

$$L[e^{at}sinbt] = \frac{b}{(s-a)^2+b^2}$$

$$L[e^{-at}cosbt] = \frac{s+a}{(s+a)^2+b^2}$$

$$L[e^{-at}sinbt] = \frac{b}{(s+a)^2+b^2}$$

$$L[e^{at}sinhbt] = \frac{b}{(s-a)^2-b^2}$$

$$L[e^{at}coshbt] = \frac{s-a}{(s-a)^2-b^2}$$

$$L[e^{-at}coshbt] = \frac{s+a}{(s+a)^2-b^2}$$

$$L[e^{-at}sinhbt] = \frac{b}{(s+a)^2-b^2}$$

$$L^{-1}\left[\frac{s-a}{(s-a)^2+b^2}\right] = e^{at}cosbt$$

$$L^{-1}\left[\frac{b}{(s-a)^2+b^2}\right] = e^{at}sinbt$$

$$L^{-1}\left[\frac{s+a}{(s+a)^2+b^2}\right] = e^{-at}cosbt$$

$$L^{-1}\left[\frac{b}{(s+a)^2+b^2}\right] = e^{-at}sinbt$$

$$L^{-1}\left[\frac{b}{(s-a)^2-b^2}\right] = e^{at}sinhbt$$

$$L^{-1}\left[\frac{s-a}{(s-a)^2-b^2}\right] = e^{at}coshbt$$

$$L^{-1}\left[\frac{s+a}{(s+a)^2-b^2}\right] = e^{-at}coshbt$$

$$L^{-1}\left[\frac{b}{(s+a)^2-b^2}\right] = e^{-at}sinhbt$$

Convolution Theorem:

Let f(t) and g(t) be piecewise continuous on $[0,\infty)$ and $F(s) = L\{f(t)\}$ & $G(s) = L\{g(t)\}$.

Then,
$$L^{-1}\left\{F\left(s\right)G\left(s\right)\right\} = \int_{0}^{t} f\left(u\right)g\left(t-u\right)du$$
.