CSC 348 – Homework #5

Astrid Augusta Yu

May 21, 2020

1

Contents

1 Questions

2	Additional Lemmas with Proofs	4			
3	Scratch Work	6			
1	Questions				
	1. $f(n) = n^2 + 1$ is not 1-1.				
	<i>Proof.</i> Consider $-1, 1 \in \mathbb{R}$. Note that $1 \neq -1$, but that $f(-1) = f(1) = 1^2 + 1 = 2$. The is not 1-1 by definition of 1-1.	nus, f ^_^)>			
	2. $f(x) = n^5$ is 1-1.				
<i>Proof.</i> Suppose for some $x, y \in \mathbb{R}$, $f(x) = f(y)$.					
	$x^5=y^5$				
	$\sqrt[5]{x^5}=\sqrt[5]{y^5}$	(1)			
	x = y				
	Thus, by definition of 1-1, f is 1-1.	^_^)>			
	3. $f(n) = n - 1$ is onto.				
	<i>Proof.</i> Let $y \in \mathbb{R}$. Note that $y = (y+1) - 1 = f(y+1)$. Since $(y+1) - 1 \in \mathbb{R}$, $f(x)$ is by definition of onto.	s onto ^_^)>			
	4. $f(n) = n^2 + 1$ is not onto.				
	<i>Proof.</i> Consider $0 \in \mathbb{R}$. Note that $x = \sqrt{0-1} \notin \mathbb{R}$. Because of this, no $x \in \mathbb{R}$ such $f(x) = x^2 + 1 = 0$ is possible. Therefore, by definition of onto, f is not onto.	that ^_^)>			

5. $f(n) = \sqrt[5]{n}$ is onto.

Proof. Let $y \in \mathbb{R}$. Note that $y = \left(\sqrt[5]{y}\right)^5 = f\left(\sqrt[5]{y}\right)$. Since $\left(\sqrt[5]{y}\right)^5 \in \mathbb{R}$, f(x) is onto by definition of onto.

6. $f: \mathbb{N} \to \mathbb{N}$; f(n) = 2n is injective, but not surjective.

Proof of injectivity. Suppose
$$n = 3$$
 d(^_^)>

Proof of non-surjectivity. Suppose d(^_^)>

7. $f: \mathbb{N} \to \mathbb{N}$; $f(n) = \sqrt{n}$ is surjective, but not injective.

8. $f: \mathbb{N} \to \mathbb{N}$; $f(n) = (-1)^n + n$ is one-to-one and onto.

Proof of injectivity. Suppose $a, b \in \mathbb{N}$ and f(a) = f(b).

By the definition of those functions,

$$(-1)^a + a = (-1)^b + b (2)$$

Note that the terms $(-1)^a$ and $(-1)^b$ will either be 1 or -1, which are both odd. Thus, $(-1)^a$ and $(-1)^b$ are always odd.

Case 1. f(a) = f(b) is even.

By Lemma 1, since this value is even, its addends have the same sign. Thus, a and b must be odd.

By definition of odd, there exists some $i, j \in \mathbb{Z}$ such that a = 2i + 1 and b = 2j + 1.

$$(-1)^{2i+1} + a = (-1)^{2j+1} + b$$

$$((-1)^2)^i \cdot (-1)^1 + a = ((-1)^2)^j \cdot (-1)^1 + b$$

$$-1 + a = -1 + b$$

$$a = b$$
(3)

Thus, f(n) is 1-1 for even n.

Case 2. f(a) = f(b) is odd.

By Lemma 1, since this value is even, its addends have the same sign. Thus, a and b must be odd.

By definition of odd, there exists some $i, j \in \mathbb{Z}$ such that a = 2i and b = 2j.

$$(-1)^{2i} + a = (-1)^{2j} + b$$

$$((-1)^{2})^{i} + a = ((-1)^{2})^{j} + b$$

$$1 + a = 1 + b$$

$$a = b$$
(4)

Thus, f(n) is 1-1 for even n.

Since both cases are true, f(n) is a 1-1 function.

d(^_^)>

Proof of surjectivity. Suppose $y \in \mathbb{N}$. We will prove that there always exists some $n \in \mathbb{N}$ such that f(n) = y.

Case 1. y is even.

By definition of even, for some $i \in \mathbb{N}$, y = 2i.

Consider f(y+1).

$$f(y+1) = (-1)^{y+1} + (y+1)$$

$$= (-1)^{2i+1} + y + 1$$

$$= ((-1)^2)^i \cdot (-1)^1 + y + 1$$

$$= 1 \cdot (-1) + y + 1$$

$$= y$$
(5)

Thus, if y is even, then f(y+1) = y.

Case 2. y is odd.

By definition of odd, for some $i \in \mathbb{N}$, y = 2i + 1.

Consider f(y-1).

$$f(y-1) = (-1)^{y-1} + (y-1)$$

$$= (-1)^{(2i+1)-1} + y - 1$$

$$= (-1)^{2i} + y - 1$$

$$= ((-1)^2)^i + y - 1$$

$$= 1 + y - 1$$

$$= y$$
(6)

Thus, if y is odd, then f(y-1) = y.

Therefore, for all $y \in \mathbb{N}$, there exists a value $n \in \mathbb{N}$ such that f(n) = y. Thus, f is onto. $d(^-)>$

9. (a)
$$(f \circ g)(x) = (e^x)^2 + 1 = e^{2x} + 1$$

(b)
$$(q \circ f)(x) = e^{x^2 + 1}$$

10.

Theorem 1. Let $f: B \to C$ and $g: A \to B$. If f and g are onto, then $f \circ g$ is onto.

Proof. Suppose $c \in C$. By definition of f as an onto function, there exists a $b \in B$ such that f(b) = c. It follows that there exists an $a \in A$ such that g(a) = b by definition of g as an onto function. Therefore, there always exists some $a \in A$ such that $(f \circ g)(a) = c$.

Thus, by definition of onto, if f and g are onto, then $f \circ g$ is onto.

d(^_^)>

11. (a)

Theorem 2. Let $f: B \to C$ and $g: A \to B$. $f \circ g$ being onto does not imply that g is onto.

Proof. Consider the case when $A = B = C = \mathbb{R}$, $f(x) = \ln x$, and $g(x) = x^2$. It follows that $(f \circ g)(x) = \ln(x^2)$.

Claim 1. f is onto.

Proof. Let $y \in \mathbb{R}$. Note that $y = \ln(e^y) = f(e^y)$. Since $e^y \in \mathbb{R}$, f(x) is onto by definition of onto.

Claim 2. q is not onto.

Proof. Consider $-1 \in \mathbb{R}$. Note that $x = \sqrt{-1} \notin \mathbb{R}$. Therefore, there is no such $x \in \mathbb{R}$ such that g(x) = -1. Thus, g is not onto.

Claim 3. $f \circ g$ is onto.

Proof. Let $y \in \mathbb{R}$. Note that $y = \ln\left(\left(e^{\frac{y}{2}}\right)^2\right) = f\left(e^{\frac{y}{2}}\right)$. Since $e^{\frac{y}{2}} \in \mathbb{R}$, f(x) is onto by definition of onto.

Notice that $f \circ g$ is onto, but g is not onto. Therefore, $f \circ g$ being onto does not imply that g is onto.

d(^_-^)>

(b)

Theorem 3. Let $f: B \to C$ and $g: A \to B$. $f \circ g$ being onto implies that f is onto.

Proof. Suppose $c \in C$. By definition of $f \circ g$ as an onto function, there exists an $a \in A$ such that $(f \circ g)(a) = f(g(a)) = c$. Note that the existence of f(g(a)) requires $g(a) \in B$, so $g(a) \in B$.

Let b = g(a). Thus, f(b) = c. Therefore, if $f \circ g$ is onto then f is onto.

2 Additional Lemmas with Proofs

Lemma 1. Let $a, b \in \mathbb{Z}$. a + b is even if and only if a and b have the same parity, and odd if and only if a and b have different parities. (Reproduced from homework 4).

Proof. Case 1. a and b are both even.

By definition of even:

$$a = 2k$$

$$b = 2l$$
(7)

Therefore,

$$a+b = 2k+2l$$

$$= 2(k+l)$$
(8)

Let m = k + l. Then

$$a + b = 2m \tag{9}$$

By definition of even, a + b is even.

Case 2. a and b are both odd.

By definition of odd:

$$a = 2k + 1$$

$$b = 2l + 1$$

$$(10)$$

Therefore,

$$a+b = 2k+1+2l+1$$

= 2(k+l+1) (11)

Let m = k + l + 1. Then,

$$a + b = 2m \tag{12}$$

By definition of even, a + b is even.

Case 3. a and b have different parity.

WLOG let a be even and b be odd. By definition of even:

$$a = 2k \tag{13}$$

By definition of odd:

$$b = 2l + 1 \tag{14}$$

Therefore,

$$a+b = 2k + 2l + 1$$

= 2(k + l) + 1 (15)

Let m = k + l. Then,

$$a+b=2m+1\tag{16}$$

By definition of odd, a + b is odd.

In Summary:

a parity	b parity	a+b parity
even	even	even
even	odd	odd
odd	even	odd
odd	odd	even

Therefore, a + b is only even when a's parity = b's parity, and only odd when a's parity \neq b's parity, concluding the lemma.

d(^_^)>

3 Scratch Work