A critical review on the state-of-the-art of Lambert's problem solvers

Jorge Martínez¹ & Manuel Sanjurjo²

¹Undegraduate Aerospace Engineer ²PhD Aerospace Engineer

Universidad Carlos III de Madrid

International Conference on Astrodynamics Tools and Techniques 8th Edition

The Lambert's problem

- Initially posed by Johann Heinrich Lambert in a letter to Leonhard Euler.
- Many applications: orbit determination, trajectory design and intercepting maneuvers.

The revival of the problem

Since the 60s, many solutions have been proposed in the form of computer algorithms.

Classification according to free-parameter and inheritance

The following classification can be performed over selected algorithms according to the free-parameter employed and their inheritance on other solvers.

Elements comparison

Any Lambert's solver requires from the following four elements: a free-parameter, an initial guess sub-routine, a root finder and a velocity construction procedure.

The following table provides each one of these elements for the algorithms considered.

	Method					
	Gooding	Avanzini	Arora	Izzo		
Free-parameter	X	e_T	k	ξ		
Initial guess	Bi-linear	x = 0	Rational formulae	Linear approximation		
Root finder	Halley	Regula-falsi	Halley	Householder		
Velocity vectors	v_r and v_{θ}	COE to RV	f and g functions	v_r and $v_ heta$		

Performance comparison: the metrics

The following metrics were established to assess the performance of the solvers:

- Number of iterations as function of τ and $\Delta\theta$.
- Only direct transfer arcs (M = 0) are considered with $\rho = 2$.
- Time per iteration.
- Total computation time.
- Absolute tolerance 10^{-5} and relative one 10^{-7} .

Time measurements might be affected by machine specifications and running processes.

Source code files

All solvers were implemented in Python and provided in the form of a library https://github.com/jorgepiloto/lamberthub

Solver performance: Gooding 1990

Routines as in the original article: TLAMB, XLAMB and VLAMB. Maximum of three iterations. Lowest time per iteration. Accurate and robust.

Solver performance: Avanzini 2008

First of its class. Provides a deep understanding of the problem's geometry. Simple to implement. Lack of initial guess. Low order convergence root solver.

Solver performance: Arora 2013

Very robust initial guess procedure, although too much time devoted to it. Low number of iterations due and high order convergence method. Stable and accurate.

Solver performance: Izzo 2015

Very popular solver. Lowest total computation time. Accurate, robust and easy to implement. Shows the best overall performance.

Obtained results and conclusion

The following conclusions can be done regarding any Lambert's problem solver:

- A robust initial guess is crucial, although the procedure must remain as simple as possible.
- High-order convergence root finders are preferred.
- Performance is driven by high iteration workload with low total computation time.

Method	Average iterations	Time per iter	Total time	Iter workload
Gooding 1990	2.57	$23.78~\mu$ s/iter	754.83 μ s	8.10 %
Avanzini 2008	4.46	$153.23~\mu$ s/iter	$2679.74~\mu s$	25.50 %
Arora 2013	2.06	$37.80~\mu \mathrm{s/iter}$	$558.50~\mu$ s	13.94 %
Izzo 2015	2.32	$36.37~\mu$ s $/$ iter	441.29 μ s	19.12 %

Future work

All the results presented in here might be expanded by:

- Adding more solvers.
- Addressing the multi-revolution scenario.
- Explore a performance from GPU parallelization point of view.
- The initial value problem, also known as Kepler's problem.
- Memory cost and profiling.

References

Gooding 1990

A procedure for the solution of Lambert's orbital boundary-value problem

Celestial Mechanics and Dynamical Astronomy 48(2), 145-165.

Arora 2013

A fast and robust multiple revolution Lambert algorithm using a cosine transformation Paper AAS

Avanzini 2008

A simple Lambert algorithm

Journal of guidance, control and dynamics 31(6), 1587-1594.

Izzo 2015

Revisiting Lambert's problem

Celestial Mechanics and Dynamical Astronomy 121(1), 1-15.

Questions?