

Centralna Komisja Egzaminacyjna w Warszawie

EGZAMIN MATURALNY 2010

MATEMATYKA POZIOM ROZSZERZONY

Klucz punktowania odpowiedzi

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów.

Zadanie 1. (0-4)

Modelowanie matematyczne	Rozwiązanie nierówności z wartością bezwzględną
--------------------------	---

<u>I sposób rozwiązania</u> (wyróżnienie na osi liczbowej przedziałów)

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

$x \in (-\infty, -2)$	$x \in \langle -2, 1 \rangle$	$x \in \langle 1, \infty \rangle$
$-2x-4-x+1 \le 6$	$2x+4-x+1 \le 6$	$2x+4+x-1 \le 6$
$-3x \le 9$	$x \le 1$	$3x \leq 3$
$x \ge -3$	W tym przypadku	$x \le 1$
W tym przypadku	rozwiązaniem nierówności	W tym przypadku
rozwiązaniem nierówności	$jest -2 \le x < 1$	rozwiązaniem nierówności jest
$jest -3 \le x < -2$		x = 1

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $-3 \le x \le 1$ lub zapisujemy odpowiedź: Zbiorem rozwiązań nierówności jest $\langle -3,1 \rangle$.

II sposób rozwiązania (zapisanie czterech przypadków)

Zapisujemy cztery przypadki:
$$\begin{cases} 2x+4 \ge 0 & \begin{cases} 2x+4 \ge 0 \\ x-1 \ge 0 \end{cases} & \begin{cases} 2x+4 < 0 \\ x-1 < 0 \end{cases} & \begin{cases} 2x+4 < 0 \\ x-1 < 0 \end{cases}$$

$\int 2x + 4 \ge 0$	$\int 2x + 4 \ge 0$	$\int 2x + 4 < 0$	$\int 2x + 4 < 0$
$\begin{cases} x-1 \ge 0 \end{cases}$	$\int x-1<0$	$\int x-1 \ge 0$	$\int x-1<0$
$\int 2x + 4 \ge 0$	$\int 2x + 4 \ge 0$		$\int 2x + 4 < 0$
$\begin{cases} x-1 \ge 0 \end{cases}$	$\begin{cases} x-1 < 0 \end{cases}$	niemożliwe	$\begin{cases} x-1 < 0 \end{cases}$
$2x+4+x-1 \le 6$	$2x+4-x+1 \le 6$		$\left -2x - 4 - x + 1 \le 6 \right $
$x \ge -2$	$x \ge -2$		$\int x < -2$
$\begin{cases} x \ge 1 \end{cases}$	$\begin{cases} x < 1 \end{cases}$		$\begin{cases} x < 1 \end{cases}$
$3x \le 3$	$x \le 1$		$\left -3x \le 9 \right $
$x \ge -2$			$\int x < -2$
$\begin{cases} x \ge 1 \end{cases}$	$x \in \langle -2,1 \rangle$		$\begin{cases} x < 1 \end{cases}$
$x \le 1$			$x \ge -3$
x=1			$x \in \langle -3, -2 \rangle$

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $-3 \le x \le 1$ lub zapisujemy odpowiedź: Zbiorem rozwiązań nierówności jest $\langle -3,1 \rangle$.

Schemat oceniania

• zapisze cztery przypadki: $\begin{cases} 2x+4 \ge 0 & \begin{cases} 2x+4 \ge 0 \\ x-1 \le 0 \end{cases} \begin{cases} 2x+4 < 0 & \begin{cases} 2x+4 < 0 \\ x-1 \le 0 \end{cases} \end{cases}$

I.
$$x \in (-\infty, -2)$$
 $-2x-4-x+1 \le 6$

II.
$$x \in \langle -2, 1 \rangle$$
 $2x + 4 - x + 1 \le 6$

III.
$$x \in \langle 1, \infty \rangle$$
 $2x + 4 + x - 1 \le 6$

 zdający poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, popełni błąd w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca

albo

 zdający poprawnie rozwiąże nierówności tylko w dwóch przedziałach i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami i konsekwentnie doprowadzi rozwiązanie do końca

albo

 zdający rozpatrzy cztery przypadki, poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach, stwierdzi, że jeden jest niemożliwy, popełni błąd w trzecim przypadku i konsekwentnie doprowadzi rozwiązanie do końca

III sposób rozwiązania (graficznie)

Rysujemy wykresy funkcji f(x) = |2x+4| + |x-1| i prostą o równaniu y = 6.

Wyróżniamy na osi liczbowej przedziały: $(-\infty, -2)$, $\langle -2, 1 \rangle$, $\langle 1, \infty \rangle$.

Zapisujemy wzór funkcji f w poszczególnych przedziałach bez wartości bezwzględnej, np.

$$f(x) = \begin{cases} -3x - 3 & \text{dla } x \in (-\infty, -2) \\ x + 5 & \text{dla } x \in \langle -2, 1 \rangle \\ 3x + 3 & \text{dla } x \in \langle 1, \infty \rangle \end{cases}$$

Rysujemy wykres funkcji f i prostą o równaniu y = 6

Odczytujemy odcięte punktów przecięcia się wykresu funkcji f i prostej o równaniu y = 6: x = -3 i x = 1.

Podajemy argumenty, dla których $f(x) \le 6$: $x \in \langle -3, 1 \rangle$.

Schemat oceniania

I.
$$x \in (-\infty, -2)$$
 $f(x) = -3x - 3$

II.
$$x \in \langle -2, 1 \rangle$$
 $f(x) = x + 5$

III.
$$x \in \langle 1, \infty \rangle$$
 $f(x) = 3x + 3$

lub

$$f(x) = \begin{cases} -3x - 3 & \text{dla } x \in (-\infty, -2) \\ x + 5 & \text{dla } x \in \langle -2, 1 \rangle \\ 3x + 3 & \text{dla } x \in \langle 1, \infty \rangle \end{cases}$$

Zadanie 2. (0-4)

Modelowanie matematyczne Rozwiązanie równania trygonometrycznego

Rozwiązanie

Przekształcamy równanie do postaci, w której występuje tylko jedna funkcja trygonometryczna:

$$2(1-\sin^2 x) - 5\sin x - 4 = 0$$

Porządkujemy to równanie i wprowadzamy niewiadomą pomocniczą:

$$-2\sin^2 x - 5\sin x - 2 = 0$$
, $t = \sin x$, gdzie $t \in \langle -1, 1 \rangle$. Równanie przyjmuje teraz postać:

$$2t^2 + 5t + 2 = 0$$

Rozwiązujemy równanie kwadratowe ze zmienną t:

$$\Delta = 9$$
 $t_1 = -2$ $t_2 = -\frac{1}{2}$ ale $t_1 \notin \langle -1, 1 \rangle$

Zapisujemy rozwiązania równania $\sin x = -\frac{1}{2}$ należące do przedziału $\langle 0, 2\pi \rangle$:

$$x = \frac{11\pi}{6}$$
 i $x = \frac{7}{6}\pi$.

Schemat oceniania

Zapisanie równania w zależności od jednej funkcji trygonometrycznej, np.

$$-2\sin^2 x - 5\sin x - 2 = 0$$
 lub $2\sin^2 x + 5\sin x + 2 = 0$.

Rozwiązanie, w którym jest istotny postęp2 pkt

Wprowadzenie pomocniczej niewiadomej, np. $t = \sin x$, zapisanie równania w postaci

$$-2t^2 - 5t - 2 = 0$$
 lub $2t^2 + 5t + 2 = 0$.

Rozwiązanie równania kwadratowego (t = -2 lub $t = -\frac{1}{2}$) i odrzucenie rozwiązania t = -2.

Uwaga

Zdający może od razu rozwiązywać równanie kwadratowe (w którym niewiadomą jest $\sin x$)

i zapisać rozwiązanie w postaci $\sin x = -\frac{1}{2}$ lub $\sin x = -2$ oraz zapisać, że równanie

 $\sin x = -2$ jest sprzeczne.

Rozwiązanie równania w podanym przedziale:

$$x = \frac{7}{6}\pi$$
 lub $x = \frac{11}{6}\pi$

alba

$$x = 210^{\circ} \text{ lub } x = 330^{\circ}$$

Zadanie 3. (0–4)

Użycie strategii	Rozwiązanie zadania, umieszczonego w kontekście
do rozwiązywania problemów	praktycznym, prowadzącego do równania kwadratowego

Rozwiązanie

Długości odcinków |BE| i |CF| są następujące: |BE| = 1 - 2x, |CF| = 1 - x.

Pole trójkąta AEF jest więc równe:

$$P_{AEF} = P_{ABCD} - P_{ABE} - P_{ECF} - P_{FDA} = 1 - \frac{1}{2}(1 - 2x) - \frac{1}{2} \cdot 2x \cdot (1 - x) - \frac{1}{2}x = x^2 - \frac{1}{2}x + \frac{1}{2}x = x^2$$

Pole trójkąta *AEF* jest funkcją zmiennej *x*: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ dla $x \in \left(0, \frac{1}{2}\right)$.

Ponieważ $x_w = -\frac{1}{2} = \frac{1}{4} \in \left\langle 0, \frac{1}{2} \right\rangle$, a parabola o równaniu $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ ma ramiona

skierowane "ku górze", więc dla $x = \frac{1}{4}$ pole trójkąta *AEF* jest najmniejsze.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp......2 pkt

Zapisanie pól trójkątów *ADF*, *ABE* i *CEF*: $P_{\triangle ADF} = \frac{1}{2}x$, $P_{\triangle ABE} = \frac{1-2x}{2}$

i
$$P_{\Delta CEF} = \frac{-2x^2 + 2x}{2} = -x^2 + x$$
.

Pokonanie zasadniczych trudności zadania......3 pkt

Zapisanie P_{AEF} w postaci trójmianu kwadratowego zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$.

Rozwiązanie pełne4 pkt

Wyznaczenie x, dla którego funkcja przyjmuje minimum: $x = \frac{1}{4}$.

II sposób rozwiązania (geometria analityczna)

Przyjmujemy współrzędne punktów na płaszczyźnie: A = (0,0), F = (x,1), E = (1,1-2x). Wyznaczamy pole trójkąta AFE:

$$P = \frac{1}{2} |(x-0)(1-2x-0) - (1-0)(1-0)| = \frac{1}{2} |x(1-2x) - 1| = \frac{1}{2} |x-2x^2 - 1| = \frac{1}{2} |2x^2 - x + 1|$$

$$P(x) = x^2 - \frac{1}{2} |x + \frac{1}{2}|$$

$$P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$$

Ponieważ $x_w = -\frac{1}{2} = \frac{1}{4} \in \left\langle 0, \frac{1}{2} \right\rangle$, a parabola o równaniu $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$ ma ramiona

skierowane "ku górze", więc dla $x = \frac{1}{4}$ pole trójkąta *AEF* jest najmniejsze.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do całkowitego		
rozwiązania zadania	. 1 pkt	
Wyznaczenie współrzędnych punktów na płaszczyźnie:	-	
A = (0,0), F = (x,1), E = (1,1-2x).		

$$P = \frac{1}{2} |(x-0)(1-2x-0) - (1-0)(1-0)| = \frac{1}{2} |x(1-2x) - 1| = \frac{1}{2} |x-2x^2 - 1| = \frac{1}{2} |2x^2 - x + 1|$$

Zapisanie P_{AEF} w postaci trójmianu kwadratowego zmiennej x: $P(x) = x^2 - \frac{1}{2}x + \frac{1}{2}$.

Rozwiązanie pełne4 pkt

Wyznaczenie x, dla którego funkcja przyjmuje minimum: $x = \frac{1}{4}$.

Zadanie 4. (0-4)

Użycie strategii	Stosowanie twierdzenia o reszcie z dzielenia wielomianów
do rozwiązywania problemów	

Rozwiązanie

Korzystając z warunków zadania zapisujemy układ równań

$$\begin{cases} 8+4a+2b+1=7\\ 27+9a+3b+1=10 \end{cases}$$
Z układu równań obliczamy *a* i *b*

$$\begin{cases} 4a+2b=-2\\ 9a+3b=-18 \end{cases}$$

$$\begin{cases} b=-2a-1\\ 9a-6a-3=-18 \end{cases}$$

$$\begin{cases} a=-5 \end{cases}$$

Warunki zadania są spełnione dla a = -5, b = 9.

Schemat oceniania

b = 9

8 + 4a + 2b + 1 = 7 albo 27 + 9a + 3b + 1 = 10

Pokonanie zasadniczych trudności zadania2pkt

Zapisanie układu równań:

$$\begin{cases} 8+4a+2b+1=7\\ 27+9a+3b+1=10 \end{cases}$$

Rozwiązanie pełne4 pkt.

Rozwiązanie układu równań: a = -5, b = 9.

Zadanie 5. (0-5)

Modelowanie matematyczne	Wykorzystanie własności ciągu arytmetycznego i ciągu
	geometrycznego

I sposób rozwiazania

Z własności ciągu arytmetycznego mamy: 2b = a + c. Stąd i z warunków zadania otrzymujemy, że : 2b = 10 czyli b = 5.

Z własności ciągu geometrycznego zapisujemy równanie: $(b+4)^2 = (a+1)\cdot(c+19)$.

Zatem otrzymujemy układ równań, np. $\begin{cases} b = 5 \\ a + c = 10 \\ (b + 4)^2 = (a + 1) \cdot (c + 19) \end{cases}$

Z drugiego równania wyznaczamy a = 10 - c lub c = 10 - a i wstawiamy do trzeciego równania.

Otrzymujemy równanie, np. $9^2 = (10 - c + 1)(c + 19)$ lub $9^2 = (a + 1)(10 - a + 19)$.

Przekształcamy to równanie i otrzymujemy równanie z niewiadomą c lub a, np.

$$c^2 + 8c - 128 = 0$$
 lub $a^2 - 28a + 52 = 0$.

Rozwiązaniem równania są:

$$c_1 = 8$$
, $c_2 = -16$ lub $a_1 = 2$, $a_2 = 26$.

Zatem szukanymi liczbami są: a = 2, b = 5, c = 8 lub a = 26, b = 5, c = -16.

Schemat oceniania do I sposobu rozwiązania

Wykorzystanie własności ciągu arytmetycznego (geometrycznego) i zapisanie odpowiedniego równania, np.

• 2b = a + c

albo

• $(b+4)^2 = (a+1)(c+19)$

$$\begin{cases} 2b = a+c \\ a+c = 10 \\ (b+4)^2 = (a+1)\cdot(c+19) \end{cases}$$

Przekształcenie układu równań do równania kwadratowego z niewiadomą c lub a, np.

$$c^2 + 8c - 128 = 0$$
 lub $a^2 - 28a + 52 = 0$

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)4 pkt

• poprawne rozwiązanie równania kwadratowego, odrzucenie jednego z rozwiązań i poprawne wyznaczenie drugiej trójki liczb

albo

• przekształcenie układu równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzenie rozwiązania do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

II sposób rozwiązania

Oznaczamy: przez a – pierwszy wyraz ciągu arytmetycznego, a przez r – różnicę tego ciągu. Wówczas $b=a+r,\ c=a+2r.$

Z własności ciągu arytmetycznego i z warunków zadania mamy 2a + 2r = 10, stąd a + r = 5 Z własności ciągu geometrycznego zapisujemy równanie, np.

$$(a+r+4)^2 = (a+1)(a+2r+19),$$

a następnie zapisujemy układ równań: $\begin{cases} a+r=5\\ \left(a+r+4\right)^2=\left(a+1\right)\left(a+2r+19\right) \end{cases}$

Z pierwszego równania wyznaczamy a = 5 - r i podstawiamy do drugiego równania.

Otrzymujemy równanie kwadratowe z niewiadomą r:

$$(5-r+r+4)^2 = (5-r+1)(5-r+2r+19)$$
 lub $r^2+18-63=0$.

Rozwiązaniami tego równania są: $r_1 = 3$ lub $r_2 = -21$.

Następnie obliczamy a, b, c.

Warunki zadania spełniają liczby: a = 2, b = 5, c = 8 lub a = 26, b = 5, c = -16.

Schemat oceniania II sposobu rozwiązania

Wprowadzenie oznaczeń: a – pierwszy wyraz ciągu arytmetycznego, r – różnica tego ciągu oraz wykorzystanie definicji ciągu arytmetycznego do zapisania odpowiedniego równania, np. 2a+2r=10 lub a+r=5

Rozwiązanie, w którym jest istotny postęp2 pkt Wykorzystanie własności ciągu geometrycznego i zapisanie układu równań, np.

$$\begin{cases} a+r=5\\ (a+r+4)^2 = (a+1)(a+2r+19) \end{cases}$$

Przekształcenie układu rownan do rownania z niewiadomą r, np.

$$(5-r+r+4)^2 = (5-r+1)(5-r+2r+19)$$
 lub $r^2+18-63=0$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 pkt

• poprawne rozwiązanie równania kwadratowego, odrzucenie jednego z rozwiązań, np. r < 0 i poprawne wyznaczenie drugiej trójki liczb

albo

• przekształcenie układu równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzenie rozwiązania do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Zadanie 6. (0–5)

Użycie i stosowanie strategii	Przeprowadzanie dyskusji trójmianu kwadratowego
do rozwiązywania problemów	z parametrem

I sposób rozwiązania (wzory Viète'a)

$$x^2 + mx + 2 = 0$$

Zapisujemy układ warunków:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13 \end{cases}$$

Rozwiazujemy pierwsza nierówność tego układu:

$$\Delta = m^2 - 8$$

 $\Delta > 0$

$$m^2 - 8 > 0$$

 $m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$

Aby rozwiązać drugą nierówność, najpierw przekształcimy lewą stronę nierówności, korzystając ze wzorów Viète'a:

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = (-m)^2 - 2 \cdot 2 = m^2 - 4$$

Rozwiązujemy zatem nierówność:

$$m^2 - 4 > 2m^2 - 13$$

 $m^2 - 9 < 0$, wiec $m \in (-3.3)$

Wyznaczamy wspólną część zbiorów rozwiązań układu nierówności:

$$m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$$
 i $m \in (-3, 3)$, wiec $m \in (-3, -2\sqrt{2}) \cup (2\sqrt{2}, 3)$.

II sposób rozwiązania (wzory na pierwiastki trójmianu)

Zapisujemy układ warunków:

$$\begin{cases} \Delta > 0 \\ x_1^2 + x_2^2 > 2m^2 - 13 \end{cases}$$

Rozwiązujemy pierwszą nierówność:

$$\Delta = m^2 - 8$$

$$\Delta > 0 \qquad m^2 - 8 > 0$$

$$m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$$

Obliczamy pierwiastki równania kwadratowego:

$$x_1 = \frac{-m + \sqrt{m^2 - 8}}{2}$$

$$x_2 = \frac{-m - \sqrt{m^2 - 8}}{2}$$

Obliczamy sumę kwadratów pierwiastków równania kwadratowego:

$$x_1^2 + x_2^2 = \left(\frac{-m + \sqrt{m^2 - 8}}{2}\right)^2 + \left(\frac{-m - \sqrt{m^2 - 8}}{2}\right)^2 =$$

$$= \frac{m^2 - 2m\sqrt{m^2 - 8} + m^2 - 8}{4} + \frac{m^2 + 2m\sqrt{m^2 - 8} + m^2 - 8}{4} =$$

$$= \frac{2m^2 + 2m^2 - 16}{4} = m^2 - 4$$

Rozwiązujemy drugą nierówność:

$$m^{2} - 4 > 2m^{2} - 13$$

 $m^{2} - 9 < 0$
 $m \in (-3,3)$

Wyznaczamy wspólną część zbiorów rozwiązań układu nierówności:

$$m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$$
 i $m \in (-3,3)$, wifec $m \in (-3,-2\sqrt{2}) \cup (2\sqrt{2},3)$.

Schemat oceniania

Rozwiązanie zadania składa się z trzech części.

a) Pierwsza polega na rozwiązaniu nierówności $\Delta > 0$, $m \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty)$. Za poprawne rozwiązanie tej części zdający otrzymuje **1 punkt.**

Uwaga

Jeżeli zdający rozwiązuje nierówność $\Delta \ge 0$, to nie otrzymuje punktu za tę część.

- b) Druga polega na rozwiązaniu nierówności $x_1^2 + x_2^2 > 2m^2 13$, $m \in (-3,3)$. Za tę część rozwiązania zdający otrzymuje **3 punkty**.
- c) Trzecia polega na wyznaczeniu części wspólnej rozwiązań nierówności z a) i b). Za poprawne rozwiązanie trzeciej części zdający otrzymuje **1 punkt**.

W ramach drugiej części rozwiązania wyróżniamy następujące fazy:

Rozwiązanie części b), w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania......1 pkt

- zapisanie nierówności $x_1^2 + x_2^2 > 2m^2 13$ w postaci równoważnej $m^2 4 > 2m^2 13$ albo
- wykorzystanie wzorów na pierwiastki trójmianu kwadratowego i zapisanie nierówności

$$\left(\frac{-m+\sqrt{m^2-8}}{2}\right)^2 + \left(\frac{-m-\sqrt{m^2-8}}{2}\right)^2 > 2m^2 - 13.$$

wyznaczenie części wspoinej rozwiązan nierowności i podanie odpowiedz $m \in (-3, -2\sqrt{2}) \cup (2\sqrt{2}, 3)$.

Zadanie 7. (0–6)

Użycie i stosowanie strategii	Stosowanie równań i nierówności do opisania zależności
do rozwiązywania problemów	w prostokątnym układzie współrzędnych

Rozwiązanie

Obliczamy odległość punktu A od prostej y = x + 1: $d = \frac{\left| -2 - 5 + 1 \right|}{\sqrt{1 + 1}} = 3\sqrt{2}$.

Obliczona odległość d jest równa długości wysokości trójkąta ABC poprowadzonej do boku BC. Znamy pole trójkąta ABC, więc obliczamy długość boku BC.

$$P_{ABC} = 15 \text{ stad } \frac{1}{2} d \cdot |BC| = 15 \text{ , wiec } |BC| = \frac{30}{3\sqrt{2}} = 5\sqrt{2}$$

Punkt C = (x, y) leży na prostej o równaniu y = x + 1, zatem C = (x, x + 1). Z warunków zadania mamy |AC| = |BC|, więc ze wzoru na długość odcinka zapisujemy równanie:

$$\sqrt{(x+2)^2 + (x+1-5)^2} = 5\sqrt{2}.$$

Rozwiązujemy otrzymane równanie:

$$\sqrt{(x+2)^2 + (x+1-5)^2} = 5\sqrt{2}$$
 ()²

$$x^2 + 4x + 4 + x^2 - 8x + 16 = 50$$

$$x^2 - 2x - 15 = 0$$

$$\Delta = 64$$
 $x_1 = 5$ $x_2 = -3$

Obliczamy rzędne punktów: $y_1 = 6$ $y_2 = -2$

Warunki zadania spełniają dwa punkty: $C_1 = (5,6)$ $C_2 = (-3,-2)$.

Schemat oceniania

$$\begin{cases} y = x + 1 \\ (x+2)^2 + (y-5)^2 = 50 \end{cases}$$

i sprowadzenie układu do równania kwadratowego: $x^2 - 2x - 15 = 0$.

Zadanie 8. (0–5)

Stosowanie rozumowania	Przeprowadzenie dowodu algebraicznego
i argumentacji	

Rozwiązanie

Zapisujemy współrzędne dwóch punktów leżących na wykresie funkcji $f(x) = \frac{1}{x^2}$ oraz na prostej równoległej do osi Ox, np. $A = \left(x, \frac{1}{x^2}\right)$, $B = \left(-x, \frac{1}{x^2}\right)$, gdzie $x \neq 0$.

Zapisujemy pole trójkąta ABC, gdzie C = (3,-1) w zależności od jednej zmiennej:

$$P_{\triangle ABC} = \frac{2 \cdot \left| x \right| \cdot \left| \frac{1}{x^2} + 1 \right|}{2} = \frac{1}{\left| x \right|} + \left| x \right|.$$

Wystarczy wobec tego udowodnić, (lub powołać się na znaną nierówność), że dla dowolnej liczby a>0 zachodzi nierówność $\frac{1}{a}+a\geq 2$. Po pomnożeniu obu stron nierówności przez a otrzymujemy nierówność równoważną $1+a^2\geq 2a$, czyli $a^2-2a+1\geq 0$, a więc nierówność $\left(a-1\right)^2\geq 0$.

Schemat oceniania

<u>Uwaga</u>

Zdający otrzymuje 0 punktów, jeżeli wybierze konkretne dwa punkty A oraz B i dla tych punktów obliczy pole trójkąta ABC.

Rozwiązanie, w którym postęp jest wprawdzie niewielki, ale konieczny na drodze do całkowitego rozwiązania1 pkt

Zapisanie współrzędnych dwóch punktów leżących na wykresie funkcji $f(x) = \frac{1}{x^2}$ oraz

na prostej równoległej do osi Ox, np. $A = \left(x, \frac{1}{x^2}\right)$, $B = \left(-x, \frac{1}{x^2}\right)$, gdzie $x \neq 0$.

$$P_{\Delta ABC} = \frac{2 \cdot |x| \cdot \left| \frac{1}{x^2} + 1 \right|}{2} = \frac{1}{|x|} + |x|$$

Uwaga

Zdający może założyć, że x > 0 i zapisać wzór na pole trójkąta w postaci:

$$P_{\triangle ABC} = \frac{2 \cdot x \cdot \left(\frac{1}{x^2} + 1\right)}{2} = \frac{1}{x} + x$$

Zdający może powołać się na (znane) twierdzenie o sumie liczby dodatniej i jej odwrotności.

Zadanie 9. (0–4)

Stosowanie rozumowania	Przeprowadzenie dowodu geometrycznego
i argumentacji	

Rozwiazanie

Czworokąt \overline{ABCD} jest równoległobokiem, czworokąt DCFE jest kwadratem, więc |AB| = |CD| = |CF|. W kwadracie CBHG odcinki BC i CG są równe.

Niech α oznacza kąt ABC danego równoległoboku. Wówczas $| \angle BCD | = 180^{\circ} - \alpha$.

W kwadratach *CDEF* oraz *CBHG* mamy $| < DCF | = | < DCF | = 90^{\circ}$, więc

$$| < FCG | = 360^{\circ} - (180^{\circ} - \alpha) - 90^{\circ} - 90^{\circ} = \alpha = | < ABC |$$
.

W trójkątach ABC i FCG mamy zatem: |AB| = |CF|, |BC| = |CG| oraz | < FCG | = | < ABC |, więc trójkąty ABC i FCG są przystające (cecha bkb). Stąd wnioskujemy, że |AC| = |FG|.

Schemat oceniania:

Zadanie 10. (0-4)

Modelowanie matematyczne	Obliczanie prawdopodobieństwa z zastosowaniem
	klasycznej definicji prawdopodobieństwa

Rozwiązanie

Zdarzeniami elementarnymi są trzywyrazowe ciągi o wartościach w zbiorze sześcioelementowym. Mamy model klasyczny. $|\Omega| = 6^3 = 216$.

Reszta z dzielenia kwadratu liczby całkowitej przez 3 może być równa 0 lub 1. Suma kwadratów trzech liczb będzie podzielna przez 3 wtedy, gdy każdy z nich będzie podzielny przez 3 albo gdy reszta z dzielenia każdego z nich przez 3 będzie równa 1.

Kwadraty liczb 3 i 6 są liczbami podzielnymi przez 3.

Kwadraty liczb 1, 2, 4 i 5 dają z dzielenia przez 3 resztę 1.

A możemy obliczać następująco:

I sposób

- □ ciągi o wartościach ze zbioru $\{3,6\}$ jest ich $2^3 = 8$, □ ciągi o wartościach ze zbioru $\{1,2,4,5\}$ – jest ich $4^3 = 64$, czyli $|A| = 2^3 + 4^3 = 72$
- II sposób
 - \Box ciagi stałe jest ich 6,
 - \Box ciągi, w których występują dwie liczby ze zbioru $\{3,6\}$ jest ich $2 \cdot 3 = 6$,
 - \Box ciągi, w których występują dwie liczby ze zbioru $\{1,2,4,5\}$ jest ich $4 \cdot 3 \cdot 3 = 36$,
 - \Box ciągi różnowartościowe o wartościach ze zbioru $\{1,2,4,5\}$ jest ich $4\cdot 3\cdot 2=24$,
 - czyli |A| = 6 + 6 + 36 + 24 = 72,

III sposób

- \Box ciągi, w których występują liczby dające tę sama resztę przy dzieleniu przez 3 jest ich $3 \cdot 2^3 = 24$,
- \square ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 1 i jedna liczba dająca przy dzieleniu przez 3 resztę 2 jest ich $3 \cdot 2 \cdot 2^2 = 24$,
- \Box ciągi, w których występują dwie liczby dające przy dzieleniu przez 3 resztę 2 i jedna liczba dająca przy dzieleniu przez 3 resztę 1 jest ich $3 \cdot 2 \cdot 2^2 = 24$,

czyli
$$|A| = 24 + 24 + 24 = 72$$
,

Zatem
$$P(A) = \frac{72}{216} = \frac{1}{3}$$
.

Schemat oceniania

Zadanie 11. (0-5)

Użycie i stosowanie strategii	Obliczanie objętości wielościanu z wykorzystaniem
do rozwiązywania problemów	trygonometrii

Uwaga

Strategię rozwiązania zadania można zrealizować na wiele sposobów. W każdym z nich wyróżniamy następujące etapy rozwiązania

- Poprawna interpretacja bryły i podanego kata dwuściennego w tej bryle.
- Wyznaczenie m lub h w zależności od a i α .
- Wyznaczenie jednej z wielkości: x, b, h_b (w zależności od a i α), z której można już wyznaczyć H.
- Wyznaczenie H w zależności od a i α .
- Wyznaczenie V w zależności od a i α .

Użyliśmy oznaczeń jak na rysunku

Rozwiązanie (wyznaczenie *m*, wyznaczenie *x*, wyznaczenie *H* z podobieństwa trójkątów *OCS* i *ECF*)

Wysokość podstawy ostrosłupa jest równa $h_p = \frac{a\sqrt{3}}{2}$.

Wyznaczamy wysokość FE trójkąta równoramiennego ABE

$$\operatorname{tg}\alpha = \frac{|FB|}{|BE|} = \frac{\frac{1}{2}a}{m}, \text{ stad } m = \frac{a}{2\operatorname{tg}\alpha}.$$

Wyznaczamy długość odcinka EC z twierdzenia Pitagorasa w trójkącie FCE:

$$x = \sqrt{{h_p}^2 - m^2}$$

$$x = \sqrt{\left(\frac{a\sqrt{3}}{2}\right)^2 - \left(\frac{a}{2\lg\alpha}\right)^2} = a\sqrt{\frac{3\lg^2\alpha - 1}{4\lg^2\alpha}} = \frac{a\sqrt{4\sin^2\alpha - 1}}{2\sin\alpha}$$

Z podobieństwa trójkątów OCS i ECF mamy

$$\frac{|OS|}{|OC|} = \frac{|EF|}{|EC|}, \text{ czyli } \frac{H}{\frac{2}{3}h_p} = \frac{m}{x}.$$

Stad
$$H = \frac{m \cdot \frac{2}{3} \cdot \frac{a\sqrt{3}}{2}}{\frac{a\sqrt{4}\sin^2\alpha - 1}{2\sin\alpha}} = \frac{\frac{a}{2\tan\alpha} \cdot \frac{a\sqrt{3}}{3}}{\frac{a\sqrt{4}\sin^2\alpha - 1}{2\sin\alpha}} = \frac{a\cos\alpha}{\sqrt{3}\sqrt{4\sin^2\alpha - 1}}.$$

Wyznaczamy objętość ostrosłupa:

$$V = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot H = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot \frac{a \cos \alpha}{\sqrt{3} \sqrt{4 \sin^2 \alpha - 1}} = \frac{a^3 \cos \alpha}{12 \sqrt{4 \sin^2 \alpha - 1}}.$$

Schemat oceniania

Uwaga

Nie wymagamy rysunku, jeżeli z dalszych obliczeń wynika, że zdający poprawnie interpretuje treść zadania. **Rozwiązanie, w którym jest istotny**2 pkt

Wyznaczenie wysokości *EF* trójkąta *ABE* w zależności od *a* i α : $m = \frac{a}{2 \operatorname{tg} \alpha}$. **Pokonanie zasadniczych trudności zadania**3 pkt

Wyznaczenie długości odcinka *EC*: $x = \frac{a\sqrt{4 \sin^2 \alpha - 1}}{2 \sin \alpha}$. **Rozwiązanie prawie całkowite**4 pkt

Wyznaczenie wysokości ostrosłupa: $H = \frac{a \cos \alpha}{\sqrt{3 \left(4 \sin^2 \alpha - 1\right)}}$. **Rozwiązanie pełne**5 pkt

Wyznaczenie objętości ostrosłupa: $V = \frac{1}{12} \frac{a^3 \cos \alpha}{\sqrt{4 \sin^2 \alpha - 1}}$.