Theorem (Perpendicularity Lemma)

Let AB and CD be two intersecting lines. Then, $AB \perp CD \iff CA^2 - CB^2 = DA^2 - DB^2$.

Theorem (Perpendicularity Lemma)

Let AB and CD be two intersecting lines. Then, $AB \perp CD \iff CA^2 - CB^2 = DA^2 - DB^2$.

Let $AB \perp CD$. Let $AB \cap CD = O$.

Theorem (Perpendicularity Lemma)

Let AB and CD be two intersecting lines. Then, $AB \perp CD \iff CA^2 - CB^2 = DA^2 - DB^2$.

Let $AB \perp CD$. Let $AB \cap CD = O$.

 $\triangle ACO,\, \triangle BCO,\, \triangle ADO,\, \text{and}\,\, \triangle BDO$ are right triangles, by the Pythagorean Theorem:

$$\mathit{CA}^2 - \mathit{CB}^2 = (\mathit{OC}^2 + \mathit{OA}^2) - (\mathit{OC}^2 + \mathit{OB}^2) = (\mathit{OD}^2 + \mathit{OA}^2) - (\mathit{OD}^2 + \mathit{OB}^2) = \mathit{DA}^2 - \mathit{DB}^2.$$

Perpendicularity Lemma

Perpendicularity Lemma

Let $CA^2-CB^2=DA^2-DB^2.$ We discuss the case where $O\in AB$ and $O\in CD.$ Let $AA_1\perp CD.$ and $BB_1\perp CD.$

Perpendicularity Lemma

Let $CA^2-CB^2=DA^2-DB^2$. We discuss the case where $O\in AB$ and $O\in CD$. Let $AA_1\perp CD$, and $BB_1\perp CD$. $\triangle CAA_1$, $\triangle CBB_1$, $\triangle DAA_1$, and $\triangle DBB_1$ are right, by the Pythagorean Theorem:

$$CA^{2} - CB^{2} = DA^{2} - DB^{2} \Leftrightarrow (CA_{1}^{2} + AA_{1}^{2}) - (CB_{1}^{2} + BB_{1}^{2}) = (DA_{1}^{2} + AA_{1}^{2}) - (DB_{1}^{2} + BB_{1}^{2})$$

$$\Rightarrow CA_{1}^{2} - CB_{1}^{2} = DA_{1}^{2} - DB_{1}^{2} \Rightarrow CA_{1}^{2} - DA_{1}^{2} = CB_{1}^{2} - DB_{1}^{2} \Rightarrow CA_{1} - DA_{1} = CB_{1} - DB_{1}$$

$$\Rightarrow CA_{1} - CB_{1} = DA_{1} - DB_{1} \Rightarrow -A_{1}B_{1} = A_{1}B_{1} \Rightarrow A_{1}B_{1} = 0 \Rightarrow A_{1} \equiv B_{1}.$$

Perpendicularity Lemma

Let $CA^2-CB^2=DA^2-DB^2$. We discuss the case where $O\in AB$ and $O\in CD$. Let $AA_1\perp CD$, and $BB_1\perp CD$. $\triangle CAA_1$, $\triangle CBB_1$, $\triangle DAA_1$, and $\triangle DBB_1$ are right, by the Pythagorean Theorem:

$$\begin{split} & CA^2 - CB^2 = DA^2 - DB^2 \Leftrightarrow (CA_1^2 + AA_1^2) - (CB_1^2 + BB_1^2) = (DA_1^2 + AA_1^2) - (DB_1^2 + BB_1^2) \\ & \Rightarrow CA_1^2 - CB_1^2 = DA_1^2 - DB_1^2 \Rightarrow CA_1^2 - DA_1^2 = CB_1^2 - DB_1^2 \Rightarrow CA_1 - DA_1 = CB_1 - DB_1 \\ & \Rightarrow CA_1 - CB_1 = DA_1 - DB_1 \Rightarrow -A_1B_1 = A_1B_1 \Rightarrow A_1B_1 = 0 \Rightarrow A_1 \equiv B_1. \end{split}$$

Therefore, the perpendiculars to CD from A and B pass through a common point on CD, so they must be the same line, i.e. $AB \perp CD$.

Perpendicularity Lemma

Let $CA^2-CB^2=DA^2-DB^2$. We discuss the case where $O\in AB$ and $O\in CD$. Let $AA_1\perp CD$, and $BB_1\perp CD$. $\triangle CAA_1$, $\triangle CBB_1$, $\triangle DAA_1$, and $\triangle DBB_1$ are right, by the Pythagorean Theorem:

$$CA^{2} - CB^{2} = DA^{2} - DB^{2} \Leftrightarrow (CA_{1}^{2} + AA_{1}^{2}) - (CB_{1}^{2} + BB_{1}^{2}) = (DA_{1}^{2} + AA_{1}^{2}) - (DB_{1}^{2} + BB_{1}^{2})$$

$$\Rightarrow CA_{1}^{2} - CB_{1}^{2} = DA_{1}^{2} - DB_{1}^{2} \Rightarrow CA_{1}^{2} - DA_{1}^{2} = CB_{1}^{2} - DB_{1}^{2} \Rightarrow CA_{1} - DA_{1} = CB_{1} - DB_{1}$$

$$\Rightarrow CA_{1} - CB_{1} = DA_{1} - DB_{1} \Rightarrow -A_{1}B_{1} = A_{1}B_{1} \Rightarrow A_{1}B_{1} = 0 \Rightarrow A_{1} \equiv B_{1}.$$

Therefore, the perpendiculars to CD from A and B pass through a common point on CD, so they must be the same line, i.e. $AB \perp CD$.

In the cases where O is not between A and B or between C and D, the proof follows exactly the same steps. There might be a different operation when dealing with the line segments (addition or subtraction) depending on the configuration, but the result will always be the same.

Perpendicularity Lemma - Example 1

Example

Prove that the medians AA', BB' of $\triangle ABC$ are perpendicular if and only if $a^2 + b^2 = 5c^2$, where AB = c, BC = a, and CA = b.

Example

Prove that the medians AA', BB' of $\triangle ABC$ are perpendicular if and only if $a^2 + b^2 = 5c^2$, where AB = c, BC = a, and CA = b.

Note that $A'B' = \frac{c}{2}$, by the Perpendicularity Lemma AA', BB' are perpendicular if and only if:

$$AB^2 - AB'^2 = A'B^2 - A'B'^2 \Leftrightarrow c^2 - \frac{b^2}{4} = \frac{a^2}{4} - \frac{c^2}{4} \Leftrightarrow a^2 + b^2 = 5c^2.$$

Orthocenter of excentres is the incenter

Example

Let I_A , I_B , and I_C be the excenters opposite of A,B, and C in $\triangle ABC$, respectively. Prove that the incenter of $\triangle ABC$ is the orthocenter of $\triangle I_AI_BI_C$.

Orthocenter of excentres is the incenter

Orthocenter of excentres is the incenter

Let I be the incenter of $\triangle ABC$. AI and AI_B are internal and external angle bisectors.

$$\angle \textit{IAI}_{\textit{B}} = \angle \textit{IAC} + \angle \textit{CAI}_{\textit{B}} = \frac{\angle \textit{A}}{2} + \frac{180^{\circ} - \angle \textit{A}}{2} = 90^{\circ}.$$

Orthocenter of excentres is the incenter

Let I be the incenter of $\triangle ABC$. AI and AI_B are internal and external angle bisectors.

$$\angle \mathit{IAI}_B = \angle \mathit{IAC} + \angle \mathit{CAI}_B = \frac{\angle A}{2} + \frac{180^\circ - \angle A}{2} = 90^\circ.$$

Similarly, $\angle IAI_C = 90^\circ$. Therefore $\angle IAI_B + \angle IAI_C = 180^\circ$, thus $A \in I_BI_C$, and lines I_A and IA are the same, both are perpendicular to I_BI_C , so I_AA is an altitude in $\triangle I_AI_BI_C$.

Orthocenter of excentres is the incenter

Let I be the incenter of $\triangle ABC$. AI and AI_B are internal and external angle bisectors.

$$\angle IAI_B = \angle IAC + \angle CAI_B = \frac{\angle A}{2} + \frac{180^{\circ} - \angle A}{2} = 90^{\circ}.$$

Similarly, $\angle IAI_C = 90^\circ$. Therefore $\angle IAI_B + \angle IAI_C = 180^\circ$, thus $A \in I_BI_C$, and lines I_A and IA are the same, both are perpendicular to I_BI_C , so I_AA is an altitude in $\triangle I_AI_BI_C$.

Similar for I_BB , I_CC . Hence, I is the orthocenter of $\triangle I_AI_BI_C$.

Tangent Segments of the Incircle

Theorem (Tangent Segments of the Incircle)

Let ω be the incircle in $\triangle ABC$. Let D be the tangent point of ω to the side BC. Prove that AB+CD=AC+BD.

Tangent Segments of the Incircle

Theorem (Tangent Segments of the Incircle)

Let ω be the incircle in $\triangle ABC$. Let D be the tangent point of ω to the side BC. Prove that AB + CD = AC + BD.

Let E and F be the tangent points of ω with the sides CA and AB, respectively.

Theorem (Tangent Segments of the Incircle)

Let ω be the incircle in $\triangle ABC$. Let D be the tangent point of ω to the side BC. Prove that AB + CD = AC + BD.

Let E and F be the tangent points of ω with the sides CA and AB, respectively.

(AE, AF), (BF, BD), and (CD, CE) are pairs of tangent segments from A, B, and C to ω , thus:

$$AF = AE, BF = BD, CD = CE \Rightarrow AB + CD = AF + FB + CD = AE + EC + BD = AC + BD.$$

Theorem (Tangent Segments of the Excircles)

Let ω and ω_A be the incircle and the A-excircle in $\triangle ABC$. Let A_1 , B_1 , and C_1 be the tangent points of ω with the sides BC, CA, and AB, respectively. Let A_2 , B_2 , and C_2 be the tangent points of ω_A with the lines BC, CA, and AB. Prove that:

- **1** $AB + BA_2 = AC + CA_2$.
- **2** $BA_2 = CA_1$, i.e. $A_1M = MA_2$, where M is the midpoint of BC.

Tangent Segments of the Excircles

Tangent Segments of the Excircles

By tangent segments from A, B, and C to ω_A , $AB_2 = AC_2$, $BA_2 = BC_2$, $CA_2 = CB_2$. Thus:

$$AB + BA_2 = AB + BC_2 = AC_2 = AB_2 = AC + CB_2 = AC + CA_2.$$

Tangent Segments of the Excircles

By tangent segments from A, B, and C to ω_A , $AB_2 = AC_2$, $BA_2 = BC_2$, $CA_2 = CB_2$. Thus:

$$AB + BA_2 = AB + BC_2 = AC_2 = AB_2 = AC + CB_2 = AC + CA_2.$$

The sum of both sides equals the perimeter of $\triangle ABC$, so if s denotes the semi-perimeter:

$$BA_2 = s - AB$$

Tangent Segments of the Excircles

By tangent segments from A, B, and C to ω_A , $AB_2 = AC_2$, $BA_2 = BC_2$, $CA_2 = CB_2$. Thus:

$$AB + BA_2 = AB + BC_2 = AC_2 = AB_2 = AC + CB_2 = AC + CA_2.$$

The sum of both sides equals the perimeter of $\triangle ABC$, so if s denotes the semi-perimeter:

$$BA_2 = s - AB$$

By the theorem Tangent Segments of the Incircle: $AC + BA_1 = AB + CA_1$. Similarly:

$$CA_1 = s - AB \Rightarrow BA_2 = CA_1 \Rightarrow A_1M = MA_2.$$

Theorem (Carnot's Extended Theorem)

Let P, Q, and R be points in the plane of triangle ABC. Then, the lines ℓ_P, ℓ_Q , and ℓ_R , which are the perpendiculars from P, Q, and R to BC, CA, and AB, respectively, are concurrent if and only if:

$$PB^2 - PC^2 + QC^2 - QA^2 + RA^2 - RB^2 = 0.$$

Carnot's Extended Theorem

Carnot's Extended Theorem

For (\Rightarrow) , let ℓ_P,ℓ_Q , and ℓ_R , be concurrent and let the point of concurrence be X. By the Perpendicularity Lemma, $XP\perp BC$, so $PB^2-PC^2=XB^2-XC^2$, and similarly for others, then

$$XB^2 - XC^2 + XC^2 - XA^2 + XA^2 - XB^2 = 0.$$

Carnot's Extended Theorem

For (\Rightarrow) , let ℓ_P, ℓ_Q , and ℓ_R , be concurrent and let the point of concurrence be X. By the Perpendicularity Lemma, $XP \perp BC$, so $PB^2 - PC^2 = XB^2 - XC^2$, and similarly for others, then

$$XB^2 - XC^2 + XC^2 - XA^2 + XA^2 - XB^2 = 0.$$

Now for (\Leftarrow), let $PB^2 - PC^2 + QC^2 - QA^2 + RA^2 - RB^2 = 0$. Let $X = \ell_P \cap \ell_Q$. Then by (\Rightarrow) $XB^2 - XC^2 + XC^2 - XA^2 + RA^2 - RB^2 = 0$, or $XB^2 - XA^2 = RB^2 - RA^2$, so by the Perpendicularity Lemma $XR \perp AB$, hence $X \in \ell_R$.

January 1, 2025

Carnot's Extended Theorem - Example 1

Example

Let ABC be a triangle, and draw isosceles triangles BCD, CAE, ABF externally to ABC, with BC, CA, AB as their respective bases. Prove that the lines through A, B, C perpendicular to the lines through EF, FE, and DE, respectively, are concurrent.

Carnot's Extended Theorem - Example 1 - Solution

Carnot's Extended Theorem - Example 1 - Solution

Since
$$AE = EC$$
, $CD = DB$, and $FB = FA$, therefore

$$AE^2 - AF^2 + BF^2 - BD^2 + CD^2 - CE^2 = 0.$$

Since AE = EC, CD = DB, and FB = FA, therefore

$$AE^2 - AF^2 + BF^2 - BD^2 + CD^2 - CE^2 = 0.$$

Thus by the Carnot's Extended Theorem, the lines through A,B,C perpendicular to the lines through EF,FE, and DE, respectively, are concurrent.

Carnot's Extended Theorem - Example 2

Example

Let I_a, I_b , and I_c be the excenters of triangle ABC opposite the vertices A, B and C, respectively. Let A_1, B_1 , and C_1 be the tangent points of the A-, B-, and C-excircles with the sides BC, CA, and AB, respectively. Prove that the lines I_aA_1, I_bB_1 , and I_cC_1 are concurrent.

Carnot's Extended Theorem - Example 2 - Solution

The three perpendiculars are concurrent if and only if, by Carnot's Extended Theorem,

$$I_a B^2 - I_a C^2 + I_b C^2 - I_b A^2 + I_c A^2 - I_c B^2 = 0.$$

Carnot's Extended Theorem - Example 2 - Solution

By the theorem Tangent Segments of The Excircles, $BA_1 = s - c = AB_1$, where s is the semi-perimeter of $\triangle ABC$. Similarly with other sides. Let x = s - c, y = s - b, and z = s - a. Let r_a, r_b , and r_c be the radii of the A-, B-, and C-excircle, respectively. Then

$$\begin{split} I_a B^2 &= r_a^2 + x^2, \ I_a C^2 = r_a^2 + y^2 \\ I_b C^2 &= r_b^2 + z^2, \ I_b A^2 = r_b^2 + x^2 \\ I_c A^2 &= r_c^2 + y^2, \ I_c B^2 = r_c^2 + z^2 \end{split}$$

By applying Pythagorean Theorem six times:

$$\underbrace{(r_a^2 + x^2)}_{I_aB^2} - \underbrace{(r_a^2 + y^2)}_{I_aC^2} + \underbrace{(r_b^2 + z^2)}_{I_bC^2} - \underbrace{(r_b^2 + x^2)}_{I_bA^2} + \underbrace{(r_c^2 + y^2)}_{I_cA^2} - \underbrace{(r_c^2 + z^2)}_{I_cB^2} = 0.$$

Hence, I_aA_1, I_bB_1 , and I_cC_1 are concurrent.

Carnot's Extended Theorem - Example 3

Example

Let P, Q, and R be points in the plane of triangle ABC. Then, the perpendiculars from P, Q, and R to BC, CA, AB, respectively, are concurrent if and only if the perpendiculars from C, A, and B to PQ, QR, and RP, respectively, are concurrent.

Carnot's Extended Theorem - Example 3 - Solution

Carnot's Extended Theorem - Example 3 - Solution

Let ℓ_P,ℓ_Q , and ℓ_R , be the perpendiculars from P,Q, and R to BC,CA, and AB, respectively. By the Carnot's Extended Theorem, they are concurrent if and only if

$$PB^2 - PC^2 + QC^2 - QA^2 + RA^2 - RB^2 = 0.$$

Carnot's Extended Theorem - Example 3 - Solution

Let ℓ_P,ℓ_Q , and ℓ_R , be the perpendiculars from P,Q, and R to BC,CA, and AB, respectively. By the Carnot's Extended Theorem, they are concurrent if and only if

$$PB^2 - PC^2 + QC^2 - QA^2 + RA^2 - RB^2 = 0.$$

Now by rearranging the terms, we have $CP^2 - CQ^2 + AQ^2 - AR^2 + BR^2 - BP^2 = 0$, which stands if and only if the perpendiculars from C,A, and B to PQ,QR, and RP, respectively, are concurrent.

Carnot's Extended Theorem - Example 4

Example

ABCDEF is a convex hexagon such that AB = BC, CD = DE and EF = FA. Prove that the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are concurrent.

Carnot's Extended Theorem - Example 4

Example

ABCDEF is a convex hexagon such that AB = BC, CD = DE and EF = FA. Prove that the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are concurrent.

In $\triangle ABC$, AB = BC, thus the angle bisector of $\angle ABC$ is also the perpendicular bisector of AC.

Carnot's Extended Theorem - Example 4

Example

ABCDEF is a convex hexagon such that AB = BC, CD = DE and EF = FA. Prove that the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are concurrent.

In $\triangle ABC$, AB = BC, thus the angle bisector of $\angle ABC$ is also the perpendicular bisector of AC. Therefore the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are the perpendicular bisectors of AC, CE, and EA.

Carnot's Extended Theorem - Example 4

Example

ABCDEF is a convex hexagon such that AB = BC, CD = DE and EF = FA. Prove that the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are concurrent.

In $\triangle ABC$, AB = BC, thus the angle bisector of $\angle ABC$ is also the perpendicular bisector of AC. Therefore the angle bisectors of $\angle ABC$, $\angle CDE$, and $\angle EFA$ are the perpendicular bisectors of AC, CE, and EA. They meet at O, the circumcenter of $\triangle ACE$.

Carnot's Extended Theorem - Example 5

Example

Three circles intersect pairwise as shown. Prove that AD, BE, and CF are concurrent.

Carnot's Extended Theorem - Example 5

Example

Three circles intersect pairwise as shown. Prove that AD, BE, and CF are concurrent.

Since $O_1O_2 \perp AD$, $O_2O_3 \perp BE$, $O_3O_1 \perp CF$, and $AO_1^2 - AO_2^2 + BO_2^2 - BO_3^2 + CO_3^2 - CO_1^2 = 0$. By the Carnot's Extended Theorem, AD, BE, and CF are concurrent.

The Butterfly Theorem

Theorem (Butterfly Theorem)

Let M be the midpoint of a chord PQ of a circle ω , through which two other chords AB and CD are drawn. Let $AD \cap PQ = X$ and $BC \cap PQ = Y$. Prove that M is also the midpoint of XY.

The Butterfly Theorem

Theorem (Butterfly Theorem)

Let M be the midpoint of a chord PQ of a circle ω , through which two other chords AB and CD are drawn. Let $AD \cap PQ = X$ and $BC \cap PQ = Y$. Prove that M is also the midpoint of XY.

Let ω 's center O. MP = MQ, so $OM \perp PQ$. To prove XM = MY, we need $\angle MOX = \angle MOY$.

The Butterfly Theorem

Theorem (Butterfly Theorem)

Let M be the midpoint of a chord PQ of a circle ω , through which two other chords AB and CD are drawn. Let $AD \cap PQ = X$ and $BC \cap PQ = Y$. Prove that M is also the midpoint of XY.

Let ω 's center O. MP = MQ, so $OM \perp PQ$. To prove XM = MY, we need $\angle MOX = \angle MOY$. Let $OR \perp AD$ and $OS \perp BC$, then AR = RD and BS = SC.

Theorem (Butterfly Theorem)

Let M be the midpoint of a chord PQ of a circle ω , through which two other chords AB and CD are drawn. Let $AD \cap PQ = X$ and $BC \cap PQ = Y$. Prove that M is also the midpoint of XY.

Let ω 's center O. MP = MQ, so $OM \perp PQ$. To prove XM = MY, we need $\angle MOX = \angle MOY$. Let $OR \perp AD$ and $OS \perp BC$, then AR = RD and BS = SC.

$$\angle DAM \equiv \angle DAB \stackrel{\omega}{=} \angle DCB \equiv \angle MCB \text{ and } \angle AMD = \angle CMB$$
$$\Rightarrow \triangle AMD \sim \triangle CMB \Rightarrow \frac{AD}{AM} = \frac{CB}{CM}$$

The Butterfly Theorem

$$\frac{AD}{AM} = \frac{CB}{CM} \Rightarrow \frac{2AR}{AM} = \frac{2CS}{CM} \Rightarrow \frac{AR}{AM} = \frac{CS}{CM} \Longrightarrow \triangle AMR \sim \triangle CMS \Rightarrow \angle MRA = \angle MSC \quad (*)$$

The Butterfly Theorem

$$\frac{AD}{AM} = \frac{CB}{CM} \Rightarrow \frac{2AR}{AM} = \frac{2CS}{CM} \Rightarrow \frac{AR}{AM} = \frac{CS}{CM} \Longrightarrow \triangle AMR \sim \triangle CMS \Rightarrow \angle MRA = \angle MSC \quad (*)$$

Since $OM \perp PQ$, $OR \perp AD$, and $\angle ORX + \angle OMX = 180^\circ$, so OMXR is a cyclic quadrilateral. Similarly OMYS is also a cyclic quadrilateral.

The Butterfly Theorem

$$\frac{AD}{AM} = \frac{CB}{CM} \Rightarrow \frac{2AR}{AM} = \frac{2CS}{CM} \Rightarrow \frac{AR}{AM} = \frac{CS}{CM} \Longrightarrow \triangle AMR \sim \triangle CMS \Rightarrow \angle MRA = \angle MSC \quad (*)$$

Since $OM \perp PQ$, $OR \perp AD$, and $\angle ORX + \angle OMX = 180^\circ$, so OMXR is a cyclic quadrilateral. Similarly OMYS is also a cyclic quadrilateral.

Therefore,

$$\angle MOX \stackrel{OMXR}{=} \angle MRX \equiv \angle MRA \stackrel{(*)}{=} \angle MSC \equiv \angle MSY \stackrel{OMYS}{=} \angle MOY.$$

The Butterfly Theorem

$$\frac{AD}{AM} = \frac{CB}{CM} \Rightarrow \frac{2AR}{AM} = \frac{2CS}{CM} \Rightarrow \frac{AR}{AM} = \frac{CS}{CM} \Longrightarrow \triangle AMR \sim \triangle CMS \Rightarrow \angle MRA = \angle MSC \quad (*)$$

Since $OM \perp PQ$, $OR \perp AD$, and $\angle ORX + \angle OMX = 180^\circ$, so OMXR is a cyclic quadrilateral. Similarly OMYS is also a cyclic quadrilateral.

Therefore,

$$\angle MOX \stackrel{OMXR}{=} \angle MRX \equiv \angle MRA \stackrel{(*)}{=} \angle MSC \equiv \angle MSY \stackrel{OMYS}{=} \angle MOY.$$

Thus $\triangle MXO \cong \triangle MYO$, or MX = MY, thus M is also the midpoint of XY.

The Butterfly Theorem

The Butterfly Theorem in converse

Theorem (The Butterfly Theorem in converse)

Denote by M the point of intersection of the chords AB and CD of a circle ω .

 ℓ is a line passing through M such that $X = AD \cap \ell$ and $Y = BC \cap \ell$, and MX = MY.

Then $OM \perp \ell$.

The Butterfly Theorem - Example 1

Example

(O) and (I) are circumcircle and incircle, respectively, of $\triangle ABC$. Lines through BI and CI intersect (O) at E and F, respectively. Let K and D be the intersections of AI with EF and BC. If AB + AC = 2BC, prove that IK = ID.

The Butterfly Theorem - Example 1 - Solution

The Butterfly Theorem - Example 1 - Solution

Let M be the intersection of AI and the circle (O), $M \not\equiv A$. See above on the right.

$$\angle AMC = \angle ABD, \angle BAD = \angle CAM \Rightarrow \triangle BAD \sim \triangle MAC \Rightarrow \frac{MC}{MA} = \frac{BD}{BA}.$$

The Butterfly Theorem - Example 1 - Solution

Note that BI is the angle bisector in $\triangle DBA$, and CI is the angle bisector in $\triangle DCA$, so

$$\frac{BD}{BA} = \frac{ID}{IA} = \frac{CD}{CA} = \frac{BD + CD}{BA + CA} = \frac{BC}{2BC} = \frac{1}{2} \Rightarrow MA = 2MC.$$

The Butterfly Theorem - Example 1 - Solution

Furthermore $\angle MIC = \frac{\angle A + \angle C}{2} = \angle ICM$, thus $\triangle MIC$ is isosceles at M, so MI = MC. therefore $MI = \frac{1}{2}MA$, so MI = IA.

Consider the circle (O). Chords BE and CF intersecting at I. A line through I intersects BC and EF at D and K, respectively. Since IM = IA, by the Butterfly Theorem IK = ID.

The Butterfly Theorem - Example 2

Example

The radii of the circles ω and γ have the same length. The circles intersect each other at A and B. Let O be the midpoint of AB. Chord CD of ω through O intersects γ at P. Chord EF of γ through O intersects ω at Q. Prove that AB, CQ, and EP are concurrent.

CThe Butterfly Theorem - Example 2 - Solution

CThe Butterfly Theorem - Example 2 - Solution

Let H and K be the second intersections of CD and EF with γ and omega, respectively. Let $S=CQ\cap AB,\ S'=EF\cap AB,\ \text{and}\ M=DK\cap AB.$

CThe Butterfly Theorem - Example 2 - Solution

Consider the circle ω , chords CD and KQ intersecting at O. A line through O intersects CQ and KD at S and M, respectively. Since OA = OB, by the Butterfly Theorem OS = OM.

CThe Butterfly Theorem - Example 2 - Solution

Now, the radii of the circles ω and γ have the same length, thus O is midpoint of PD ($\triangle IOP \cong \triangle I'OD$) and KE. Therefore PKDE is a parallelogram, so OS' = OM. So OS = OS'. Hence, AB, CQ, and EP are concurrent.