Rahul Singh¹ Maneesh Sahani² Arthur Gretton²

 1 Department of Economics Massachusetts Institute of Technology

²Gatsby Computational Neuroscience Unit University College London

NeurIPS, 2019

The main idea

- IV regression: strategy to learn causal relationship from confounded observational data
- RKHS methods: ML with statistical guarantees
- we propose RKHS approach to IV regression
 - easily implemented (3 lines of code)
 - consistent and minimax optimal
 - outperforms state-of-the-art alternatives
- bridge between econometrics and machine learning

Outline

- Framework
 - IV
 - RKHS
- 2 Algorithm
 - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Outline

- Framework
 - IV
 - RKHS
- - Estimation
 - Convergence rates
- - Sigmoid design
 - Demand design

Framework

00000000000000

- we wish to learn h, the nonlinear structural relationship between input X and output Y
 - 'if we **intervened** on X, what would be the effect on Y?'
 - counterfactual prediction
- observations of (X, Y) confounded by unobserved e
- (single-stage) regression of Y on X is a badly biased estimator of h

Confounding Sigmoid design

Figure: Sigmoid design from Chen and Christensen (2018). X is confounded. Note the additional correlation in observed (X, Y)

Confounding Naive, single-stage approach

Figure: Kernel ridge regression on the sigmoid design

Framework

00000000000000

- we wish to learn h, the nonlinear structural relationship between input X and output Y
- observations of (X, Y) confounded by unobserved e
- instrument Z is independent of Y conditional on (X, e)
 - intuitively: Z only influences Y via X, identifying h

Figure: IV DAG

Examples

Economists and epidemiologists use instrumental variables to overcome issues of

- imperfect compliance
- selection bias
- strategic interaction

Example Imperfect compliance

In RCTs, patients do not always do what they are assigned

- Y is patient health
- X is consumption of the drug
- e is (unobserved) patient income
- Z is assignment of the drug

Figure: IV DAG

Example Selection bias

Sometimes there is a natural experiment (Angrist 1990)

- Y is lifetime earnings
- X is military service
- e is (unobserved) 'ability'
- Z is draft lottery number

Figure: IV DAG

Example Strategic interaction

The original application is demand estimation (Wright 1928)

- Y is sales
- X is price
- e is market forces
- Z is supply cost shifter

Figure: IV DAG

Outline

- Framework
 - IV
 - RKHS
- 2 Algorithm
 - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Assume

$$Y = h(X) + e$$
, $\mathbb{E}[e|Z] = 0$

Observations:

- \bullet if X = Z, then reduces to unconfounded input case
- helps to identify h when X is confounded
- 3 includes scenario of both confounded and unconfounded inputs
- includes scenario of multiplicative error

Operator equation

Taking conditional expectations of both sides yields

$$\mathbb{E}[Y|Z] = \mathbb{E}_{X|Z}h(X)$$

Note that

- LHS is a function
- RHS is a composition
 - **1** stage 1 conditional expectation operator $\mathbb{E}_{X|Z}$
 - 2 stage 2 structural function h

Solving this operator equation is an ill-posed problem To recover a well-posed problem, we impose smoothness and Tikhonov regularization Framework

Operator equation is

$$\mathbb{E}[Y|Z] = \mathbb{E}_{X|Z}h(X)$$

In our model

- LHS is a function. $\mathbb{E}[Y|Z]: \mathcal{Z} \to \mathbb{R}$
 - \bullet we assume it lives in RKHS $\mathcal{H}_\mathcal{Z}$
 - ullet corresponding feature map $\phi:\mathcal{Z}
 ightarrow \mathcal{H}_{\mathcal{Z}}$
- structural function $h: \mathcal{X} \to \mathbb{R}$
 - ullet we assume it lives in RKHS $\mathcal{H}_\mathcal{X}$
 - ullet corresponding feature map $\psi: \mathcal{X} o \mathcal{H}_{\mathcal{X}}$
- ullet conditional expectation operator $E:\mathcal{H}_\mathcal{X} o \mathcal{H}_\mathcal{Z}$
 - ullet we assume it lives in tensor-product RKHS $\mathcal{H}_\Gamma\subset\mathcal{H}_\mathcal{X}\otimes\mathcal{H}_\mathcal{Z}$

RKHS recap

- an RKHS is a smooth subset of L₂
 - it has a penalized inner product
 - for appropriate choice of feature map, it is dense in L_2 (universal)
- the prior $\mathcal{P}(b,c)$ is an assumption with two parameters
 - $b \in (1, \infty]$. Bigger b means smaller effective input dimension
 - 2 $c \in (1,2]$. Bigger c means smoother CEF
- typically used as hypothesis space for single-stage regression
 - pairs well with Tikhonov regularization
 - closed form solution due to representer theorem

Outline

- Tramework
 - IV
 - RKHS
- 2 Algorithm
 - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Framework

$$\boxed{\mathbb{E}[Y|Z] = \mathbb{E}_{X|Z}h(X)}$$

Partition observations into 2 distinct subsets of sizes n and m

• estimate conditional expectation operator E

$$E_{\lambda}^{n} = \underset{E \in \mathcal{H}_{\Gamma}}{\operatorname{argmin}} \mathcal{E}_{\lambda}^{n}(E)$$

$$\mathcal{E}_{\lambda}^{n}(E) = \frac{1}{n} \sum_{i=1}^{n} \|\psi(x_{i}) - E^{*}\phi(z_{i})\|_{\mathcal{H}_{\mathcal{X}}}^{2} + \lambda \|E\|_{\mathcal{H}_{\Gamma}}^{2}$$

2 estimate structural function h using estimate of E

$$h_{\xi}^{m} = \operatorname*{argmin}_{h \in \mathcal{H}_{\mathcal{X}}} \hat{\mathcal{E}}_{\xi}^{m}(h)$$

$$\hat{\mathcal{E}}_{\xi}^{m}(h) = \frac{1}{m} \sum_{i=1}^{m} [y_{i} - [E_{\lambda}^{n}h](z_{i})]^{2} + \xi \|h\|_{\mathcal{H}_{\mathcal{X}}}^{2}$$

The algorithm

Repeated applications of the representer theorem yield a closed form solution.

Let X and Z be matrices of n observations. Let \tilde{y} and \tilde{Z} be a vector and matrix of m observations.

$$W = K_{XX}(K_{ZZ} + n\lambda I)^{-1}K_{Z\tilde{Z}}$$
$$\hat{\alpha} = (WW' + m\xi K_{XX})^{-1}W\tilde{y}$$
$$h_{\xi}^{m}(x) = (\hat{\alpha})'K_{Xx}$$

where K_{XX} and K_{ZZ} are the empirical kernel matrices i.e.

$$[K_{XX}]_{ij} = \langle \psi(x_i), \psi(x_j) \rangle_{\mathcal{H}_{\mathcal{X}}}$$
$$[K_{ZZ}]_{ij} = \langle \phi(z_i), \phi(z_i) \rangle_{\mathcal{H}_{\mathcal{Z}}}$$

Outline

- Framework
 - IV
 - RKHS
- 2 Algorithm
 - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Stage 1 convergence rate

$$\boxed{\mathbb{E}[Y|Z] = \mathbb{E}_{X|Z}h(X)}$$

Under the regularity conditions

- lacktriangledown $\mathcal X$ and $\mathcal Z$ are Polish spaces
- ullet the problem is correctly-specified; $E_{
 ho} \in \mathcal{H}_{\Gamma}$
- $oldsymbol{0}$ a stage 1 prior $\mathcal{P}(c_1)$ is satisfied

Choose
$$\lambda = n^{-\frac{1}{c_1+1}}$$
. Then

$$\|E_{\lambda}^n - E_{\rho}\|_{\mathcal{H}_{\Gamma}} = O_{\rho}\left(n^{-\frac{1}{2}\cdot\frac{c_1-1}{c_1+1}}\right)$$

Stage 1 convergence rate Discussion

The stage 1 convergence rate is

$$\|E_{\lambda}^n - E_{\rho}\|_{\mathcal{H}_{\Gamma}} = O_p\left(n^{-\frac{1}{2}\cdot\frac{c_1-1}{c_1+1}}\right)$$

- ullet $c_1 \in (1,2]$ measures the smoothness of $E_
 ho$
- ullet at best, $\|E_{\lambda}^n-E_{
 ho}\|_{\mathcal{H}_{\Gamma}}=O_p\bigg(n^{-\frac{1}{6}}\bigg)$
- we actually have an exact, non-asymptotic bound
- it may not be the tightest possible bound
- the argument extends classic proofs by Smale and Zhou (2005, 2007)

Stage 2 convergence rate

$$\mathbb{E}[Y|Z] = \mathbb{E}_{X|Z}h(X)$$

Under the regularity conditions above as well as

- $oldsymbol{0} \ \mathcal{Y}$ is a Polish space and Y is bounded a.s.
- $z \mapsto \mathbb{E}_{X|Z=z} \psi(X)$ is injective (characteristic property)
- the stage 2 operator family is bounded in trace norm and Hölder continuous in operator norm
- lacktriangledown the problem is correctly-specified; $h_{
 ho} \in \mathcal{H}_X$
- **o** a stage 2 prior $\mathcal{P}(b,c)$ is satisfied

Choose
$$\lambda = n^{-\frac{1}{c_1+1}}$$
, $\xi = m^{-\frac{b}{bc+1}}$, and $n = m^{\frac{b(c+1)}{bc+1} \cdot \frac{(c_1+1)}{\iota(c_1-1)}}$. Then

$$\mathcal{E}(h_{\varepsilon}^m) - \mathcal{E}(h_{\rho}) = O_p(m^{-\frac{bc}{bc+1}})$$

The stage 2 convergence rate is

$$\mathcal{E}(h_{\xi}^{m}) - \mathcal{E}(h_{\rho}) = O_{p}(m^{-\frac{bc}{bc+1}})$$

- $b \in (1, \infty]$ measures the effective input dimension
- ullet $c\in(1,2]$ measures the smoothness of $h_
 ho$
- we actually have an exact, non-asymptotic bound
- the argument extends proofs by Szabó et al. (2016)

The stage 2 convergence rate is

$$\mathcal{E}(h_{\xi}^{m}) - \mathcal{E}(h_{\rho}) = O_{p}(m^{-\frac{bc}{bc+1}})$$

- KIV achieves the minimax optimal rate of single-stage regression (Caponnetto and De Vito 2007)
- KIV learns the causal relationship with confounded data equally well as single-stage regression learns the causal relationship with unconfounded data

The optimal ratio between stage 1 and stage 2 samples sizes is

$$n = m^{\frac{b(c+1)}{bc+1} \cdot \frac{(c_1+1)}{\iota(c_1-1)}}$$

- $\iota \in (0,1]$ is the Hölder continuity parameter
- use more samples in stage 1 than stage 2
- as far as we know, this is a novel prescription for IV

- - |\/
 - RKHS
- - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Sigmoid design Chen and Christensen (2018)

Figure: X is confounded. Additional correlation in observed (X, Y)

RKHS regression Black box machine learning

Figure: Single-stage regression with an infinite dictionary of basis functions, Tikhonov regularization

Sieve IV Newey and Powell (2003)

Figure: Two-stage regression with a finite dictionary of basis functions, spectral cut-off regularization

Smooth IV Carrasco, Florens, and Renault (2007)

Figure: Nadaraya-Watson style kernel smoothing, Tikhonov regularization

Deep IV Hartford et al. (2017)

Figure: Neural nets

KIV Singh, Sahani, and Gretton (2019)

Figure: Two-stage regression with an infinite dictionary of basis functions, Tikhonov regularization

Sieve IV Updated by Singh, Sahani, and Gretton (2019)

Figure: iseTwo-stage regression with an finite dictionary of basis functions, Tikhonov regularization

Comparison of methods Sigmoid design

Figure: Comparison of methods varying training sample size

Simulations 00000000000

Outline

- - |\/
 - RKHS
- - Estimation
 - Convergence rates
- Simulations
 - Sigmoid design
 - Demand design

Comparison of methods Demand design

Figure: Comparison of methods varying training sample size

Summary

- IV regression: strategy to learn causal relationship from confounded observational data
- RKHS methods: ML with statistical guarantees
- we propose RKHS approach to IV regression
 - easily implemented (3 lines of code)
 - 2 consistent and minimax optimal
 - outperforms state-of-the-art alternatives
- bridge between econometrics and machine learning

Going ahead

- consider mis-specified case
- prove stage 2 convergence in RKHS norm (implies sup norm)
- inference: derive uniform confidence bands
- open to ideas!

For Further Reading I

W. Newey and J. Powell Instrumental variable estimation of nonparametric models. *Econometrica*, 71(5):1565–1578, 2003.

S. Smale and D. Zhou
Shannon sampling II: Connections to learning theory.

Applied and Computational Harmonic Analysis,
19(3):285–302, 2005.

For Further Reading II

S. Smale and D. Zhou Learning theory estimates via integral operators and their approximations. Constructive Approximation, 26(2):153–172, 2007.

Z. Szabó, B. Sriperumbudur, B. Póczos, and A. Gretton Learning theory for distribution regression.

Journal of Machine Learning Research, 17(152):1–40, 2016.