Practical Implementation of PCA on Satellite Images

Image Corresponding to First PC

R Band image after applying PCA does not carry any significant information about the region. It can be neglected for increasing classification accuracy.

Image Corresponding to Second PC

G Band image after applying PCA does carry not much enough information about the region. It can also be neglected for increasing classification accuracy.

Image Corresponding to Third PC

B Band image after applying PCA carry most significant information about the region. Here Dimensionality reduction will ensure less computationally complexity.

Image Corresponding to Fourth PC

I Band image after applying PCA also carry most significant information about the region. Here Dimensionality reduction will ensure less computationally complexity.

Steps to be followed for Dimensionality reduction

Find the Covariance matrix for 4 dimensional feature vector (R, G, B, I) being considered 512 *512 size image for taking feature values for all the Image band. The size of Covariance matrix: 4 * 4. The Covariance Matrix is as follows:

	1	2	3	4
1	7.3905	6.3713	8.8583	2.0594
2	6.3713	6.6022	8.8505	3.5768
3	8.8583	8.8505	15.7501	3.9673
4	2.0594	3.5768	3.9673	37.8072

Compute the Eigen Vector and Eigen Value of the Covariance
Matrix. It is as follows:

		1	2	3	4
	1	0.5797	0.6532	0.4545	0.1749
Eigen Vector —	→ 2	-0.8049	0.3701	0.4154	0.2063
	3	0.1222	-0.6605	0.6830	0.2867
	4	0.0322	-0.0014	-0.3929	0.9190
		'			<u> </u>
		1	2	3	4
Eigen Values —	→ 1	0.5264	0	0	0

Diagonal elements

	1	2	3	4
1	0.5264	0	0	0
2	0	2.0388	0	0
3	0	0	24.7450	0
4	0	0	0	40.2399

 For each Eigen value of the covariance matrix the corresponding Eigen vector has to be computed for R, G, B and I band Image.

Apply Linear Transformation in the following manner

$$Y_k = \sum_{i=1}^M a_{ki} X_i$$

 $a_{ki} = Transformation Matrix$

$$X_i = Feature\ vector$$

$$k = 1, 2, 3 \dots M$$
 no of featurs

Principal Components :

Few Points to display output image

 Apply this command to display the principal component(PC) image for visualization purposes:

imshow(histeq(uint8(out_img1)));

• If **sum of the Eigen values** = **Sum of the variance** (Diagonal element of covariance matrix) of the covariance matrix then the Eigen values for the corresponding covariance matrix is correct.