Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML

Aniruddh Raghu, Maithra Raghu, Samy Bengio, Oriol Vinyals
ICLR 2020

Conventional Machine Learning

Datasets
$$D = \{(x_1, y_1), ... (x_N, y_N)\}$$

Model
$$\hat{y} = f_{\theta}(x)$$

Train Target
$$\theta^* = arg \min_{\theta} \mathcal{L}(D; \theta, w)$$

Conventional Machine Learning

Datasets
$$D = \{(x_1, y_1), ... (x_N, y_N)\}$$

Model
$$\hat{y} = f_{\theta}(x)$$

Train Target
$$\theta^* = arg \min_{\theta} \mathcal{L}(D; \theta, \omega)$$

 ω is a condition => 'how to learn' θ that depended on this solution. e.g. choice of optimizer for θ or function class for f, which we denote by ω .

Meta-Learning: Task-Distribution View

Meta train Dataset
$$\mathcal{D}_{source} = \left\{ \left(\mathcal{D}_{source}^{train}, \mathcal{D}_{source}^{val} \right)^{(i)} \right\}_{i=1}^{M}$$
 Meta test Dataset
$$\mathcal{D}_{target} = \left\{ \left(\mathcal{D}_{target}^{train}, \mathcal{D}_{target}^{val} \right)^{(i)} \right\}_{i=1}^{M}$$
 Meta train target
$$\omega^* = arg \max_{\omega} logp \left(\omega | \mathcal{D}_{source} \right) \qquad \text{meta-initialization}$$
 Meta test target
$$\theta^* = arg \max_{\omega} logp \left(\theta | \omega^*, \mathcal{D}_{target}^{train} \right)^{(i)} \qquad \text{adaptation}$$

Meta-Learning: Task-Distribution View

 $\mathcal{D}_{source} = \left\{ \left(\mathcal{D}_{source}^{train}, \mathcal{D}_{source}^{val} \right)^{(i)}
ight\}_{i=1}^{M}$ Meta train Dataset $\mathcal{D}_{target} = \left\{ \left(\mathcal{D}_{target}^{train}, \mathcal{D}_{target}^{val} \right)^{(i)} \right\}_{i=1}^{M}$ Meta test Dataset $\omega^* = arg \max_{i} logp(\omega | \mathcal{D}_{source})$ Meta train target $\theta^* = arg \max_{\theta} log(\omega^*, \mathcal{D}_{target}^{train})$ Meta test target Meta-Learning Meta-Objective Meta-Optimizer Application Curriculum

Meta-Learning: Task-Distribution View

Many tasks, little data for each task

Task 1 Dog/Cat

Task 2 Chair/Lion

Task 3 Plane/Tree

(Optimization-based) Meta Learning Algorithms

• Model Agnostic Meta Learning, (Finn et al), ICML 2017

(Optimization-based) Meta Learning Algorithms

• Model Agnostic Meta Learning, (Finn et al), ICML 2017

Outer Loop: meta-initialization; Inner Loop: adaptation

(Optimization-based) Meta Learning Algorithms

Model Agnostic Meta Learning, (Finn et al), ICML 2017

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: end for
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

(Optimization-based) Meta Learning Algorithms

Model Agnostic Meta Learning, (Finn et al), ICML 2017

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: **while** not done **do**

- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Sample K datapoints $\mathcal{D} = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i
- 6: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using $\overline{\mathcal{D}}$ and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)
- 7: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$
- 8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update
- 9: **end for**
- 10: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$ using each \mathcal{D}_i' and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

(Optimization-based) Meta Learning Algorithms

Model Agnostic Meta Learning, (Finn et al), ICML 2017

Meta initialization (outer loop)

$$\mathcal{L}_{\mathcal{T}_i}(f_{\phi}) = \sum_{\mathbf{x}^{(j)}, \mathbf{y}^{(j)} \sim \mathcal{T}_i} \mathbf{y}^{(j)} \log f_{\phi}(\mathbf{x}^{(j)}) + (1 - \mathbf{y}^{(j)}) \log(1 - f_{\phi}(\mathbf{x}^{(j)}))$$

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters 1: randomly initialize θ 2: **while** not done **do**

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: **for all** T_i **do**5: Sample K datapoints D = {**x**^(j), **y**^(j)} from T_i
6: Evaluate ∇_θL_{T_i} (f_θ) using D and L_{T_i} in Equati

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ using \mathcal{D} and $\mathcal{L}_{\mathcal{T}_i}$ in Equation (2) or (3)

7: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

8: Sample datapoints $\mathcal{D}'_i = \{\mathbf{x}^{(j)}, \mathbf{y}^{(j)}\}$ from \mathcal{T}_i for the meta-update

9: end for

10: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$ using each \mathcal{D}'_i and $\mathcal{L}_{\mathcal{T}_i}$ in Equation 2 or 3

11: end while

Outer Loop: meta-initialization; Inner Loop: adaptation

Q: How do hidden representations behave (during inner loop)?

Q: How do hidden representations behave (during inner loop)?

A: Measure Representation Similarity

Q: How do hidden representations behave (during inner loop)?

A: Measure Representation Similarity

- Freezing Layer Representations
 - Body = > the earlier layers
 - Head => the final layer
- At Test time => Freeze a contiguous subset of layers of the network
 (No Adaptation)

 The frozen layers are not updated at all to the test time task, and must reuse the features learned by the meta-initialization.

Freeze layers	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
None	46.9 ± 0.2	63.1 ± 0.4
1	46.5 ± 0.3	63.0 ± 0.6
1,2	46.4 ± 0.4	62.6 ± 0.6
1,2,3	46.3 ± 0.4	61.2 ± 0.5
1,2,3,4	46.3 ± 0.4	61.0 ± 0.6

Table 1: Freezing successive layers (preventing inner loop adaptation) does not affect accuracy, supporting feature reuse. To test the amount of feature reuse happening in the inner loop adaptation, we test the accuracy of the model when we freeze (prevent inner loop adaptation) a contiguous block of layers at test time. We find that freezing even all four convolutional layers of the network (all layers except the network head) hardly affects accuracy. This strongly supports the feature reuse hypothesis: layers don't have to change rapidly at adaptation time; they already contain good features from the meta-initialization.

Freeze layers	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
None	46.9 ± 0.2	63.1 ± 0.4
1	46.5 ± 0.3	63.0 ± 0.6
1,2	46.4 ± 0.4	rivial 62.6 ± 0.6
1,2,3	46.3 ± 0.4	61.2 ± 0.5
1,2,3,4	46.3 ± 0.4	61.0 ± 0.6

Table 1: Freezing successive layers (preventing inner loop adaptation) does not affect accuracy, supporting feature reuse. To test the amount of feature reuse happening in the inner loop adaptation, we test the accuracy of the model when we freeze (prevent inner loop adaptation) a contiguous block of layers at test time. We find that freezing even all four convolutional layers of the network (all layers except the network head) hardly affects accuracy. This strongly supports the feature reuse hypothesis: layers don't have to change rapidly at adaptation time; they already contain good features from the meta-initialization.

- Removes inner loop for all but head of network
- Much more computationally efficient, same performance
- Insights into meta learning and few shot learning

Method	Omniglot-20way-1shot	Omniglot-20way-5shot	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
MAML	93.7 ± 0.7	96.4 ± 0.1	46.9 ± 0.2	63.1 ± 0.4
ANIL	96.2 ± 0.5	98.0 ± 0.3	46.7 ± 0.4	61.5 ± 0.5

Method	HalfCheetah-Direction	HalfCheetah-Velocity	2D-Navigation
MAML	170.4 ± 21.0 363.2 ± 14.8	-139.0 ± 18.9	-20.3 ± 3.2
ANIL		-120.9 ± 6.3	-20.1 ± 2.3

Table 2: ANIL matches the performance of MAML on few-shot image classification and RL. On benchmark few-shot classification tasks MAML and ANIL have comparable accuracy, and also comparable average return (the higher the better) on standard RL tasks (Finn et al., 2017).

	Training: 5way-1shot			Training: 5way-5shot		
	Mean (s) Median (s) Speedup		Mean (s)	Median (s)	Speedup	
MAML	0.15	0.13	1	0.68	0.67	1
First Order MAML	0.089	0.083	1.69	0.40	0.39	1.7
ANIL	0.084	0.072	1.79	0.37	0.36	1.84

	Inference: 5way-1shot			Inference: 5way-5shot		
	Mean (s) Median (s) Speedup		Mean (s)	Median (s)	Speedup	
MAML	0.083	0.078	1	0.37	0.36	1
ANIL	0.020	0.017	4.15	0.076	0.071	4.87

Table 6: ANIL offers significant computational speedup over MAML, during both training and inference. Table comparing execution times and speedups of MAML, First Order MAML, and ANIL during training (above) and inference (below) on MiniImageNet domains. Speedup is calculated relative to MAML's execution time. We see that ANIL offers noticeable speedup over MAML, as a result of removing the inner loop almost completely. This permits faster training and inference.

Computational benefit of ANIL

- average speedup of 1.7x per training iteration over MAML.
- average speedup of 4.1x per inference iteration over MAML.

Figure 5: **MAML and ANIL learn very similarly**. Loss and accuracy curves for MAML and ANIL on MiniImageNet-5way-5shot, illustrating how MAML and ANIL behave similarly through the training process.

Model Pair	CCA Similarity	CKA Similarity
MAML-MAML	0.51	0.83
ANIL-ANIL	0.51	0.86
ANIL-MAML	0.50	0.83

Table 3: MAML and ANIL models learn comparable representations. Comparing CCA/CKA similarity scores of the of MAML-ANIL representations (averaged over network body), and MAML-MAML and ANIL-ANIL similarity scores (across different random seeds) shows algorithmic differences between MAML/ANIL does not result in vastly different types of features learned.

NIL: No Inner Loop Algorithm

NIL

- Train a model with ANIL/MAML algorithm
- At test time, remove the head of the trained model
- compute cosine similarities

Method	Omniglot-20way-1shot	Omniglot-20way-5shot	MiniImageNet-5way-1shot	MiniImageNet-5way-5shot
MAML	93.7 ± 0.7	96.4 ± 0.1	46.9 ± 0.2	63.1 ± 0.4
ANIL	96.2 ± 0.5	98.0 ± 0.3	46.7 ± 0.4	61.5 ± 0.5
NIL	96.7 ± 0.3	98.0 ± 0.04	48.0 ± 0.7	62.2 ± 0.5

Conclusion

MAML => Rapid Learning or Feature Reuse?