STAT 346/446 Lecture 4

Methods of finding point estimators

CB Sections 7.1 - 7.2, DS Sections 7.5, 7.2 - 7.4

- Method of Moments
- Maximum Likelihood
 - examples
 - Invariance property
- Bayes Estimators
 - Binomial-Beta model
 - Proportionality argument
 - Normal-Normal model

Note: We skip CB Section 7.2.4

Statistical Inference

 Model: Distribution of the population can be described with a distribution function (pmf or pdf) of a known form but with unknown parameters

$$f(x \mid \theta_1, \ldots, \theta_k)$$

- So if we know the values of the parameters, we know all there is to know about the population.
- Sometimes the parameter values θ_j have interpretable or physical meaning
 - E.g. population proportion of some trait of interest
- Sometimes we are interested in a function of a parameter $\tau(\theta_j)$
- **Inference:** Have a sample X_1, X_2, \dots, X_n from $f(x \mid \theta)$ and want to use it to learn about the value of θ

Point estimation

Point estimator

A **point estimator** is any function $W(X_1, X_2, ..., X_n)$ of a sample

• Any statistic is a point estimator

A point estimate

A point estimate is the realized value of a point estimator

Example:

Estimator:
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 Estimate: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

• where $x_1, x_2, ..., x_n$ are the realized (observed) values of the sample $X_1, X_2, ..., X_n$

Method of Moments (MOM)

A sample X_1, X_2, \dots, X_n from a population with pmf/pdf $f(x \mid \theta_1, \dots, \theta_k)$

- Idea: Match the first k sample moments with population moments and solve for parameters
- Define sample moments:

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i^1, \quad m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2, \quad \dots, \quad m_k = \frac{1}{n} \sum_{i=1}^n X_i^k,$$

Population moments:

$$\mu'_1 = E(X^1), \quad \mu'_2 = E(X^2), \quad \dots, \quad \mu'_k = E(X^k)$$

are usually functions of $\theta_1, \ldots, \theta_k$

Method of Moments (MOM)

A sample X_1, X_2, \dots, X_n from a population with pmf/pdf $f(x \mid \theta_1, \dots, \theta_k)$

Get k equations with k unknowns:

$$m_{1} = \mu'_{1}(\theta_{1}, \dots, \theta_{k})$$

$$m_{2} = \mu'_{2}(\theta_{1}, \dots, \theta_{k})$$

$$\vdots$$

$$m_{k} = \mu'_{k}(\theta_{1}, \dots, \theta_{k})$$

Solution will be functions of m_1, \ldots, m_k

$$\hat{\theta}_j = h_j(m_1, \dots, m_k)$$
 $j = 1, \dots, k$

If some population moments μ'_1 are zero, continue with higher order moments until you have k equations.

Examples of MOMs

A sample X_1, X_2, \dots, X_n from a population with pmf/pdf $f(x \mid \theta_1, \dots, \theta_k)$

Find the MOM estimators for these populations:

- 1. $N(\mu, \sigma^2)$
- 2. Poisson(λ) ... on the board ...
- 3. Gamma(α, β)
- 4. t_{ν}

Possible problems with MOM estimators

- Don't always exist
- May give estimates that are not in the parameter space
- Not always unique can use higher moments or central moments

Maximum Likelihood Estimators

Likelihood Function

The joint pdf or pmf of a sample X_1, \ldots, X_n is called a **Likelihood function** when considered a function of it's parameters

$$L(\theta \mid \mathbf{x}) = f(\mathbf{x} \mid \theta) \qquad \theta \in \Theta$$

• When X_1, \ldots, X_n is a random sample we have

$$L(\theta \mid \mathbf{x}) = f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

• log-likelihood function: $\ell(\theta \mid \mathbf{x}) = \log(L(\theta \mid \mathbf{x}))$

Maximum Likelihood Estimators

Maximum likelihood estimator (MLE)

For each possible observation \mathbf{x} let $\hat{\theta}(\mathbf{x})$ be the parameter value that maximizes $L(\theta \mid \mathbf{x})$. Then the statistic

$$\hat{ heta}(\mathbf{X})$$

is called the **Maximum Likelihood Estimator** of θ .

- Intuition: Given the data we observed, pick the value of θ that makes the likelihood (and therefore the joint pdf) the largest.
 - I.e. pick the parameter that makes the data "most likely"
- By restricting the optimization to the parameter space Θ we get estimates that are valid parameter values.
- Has the same problems as any optimization problem global maximum may not exist or may be hard to find

makes observed pick the 8 tuch data most likely: f(x18,) (201×)2cr L(02)= f(x,102) . 4(x2/02)- (X3 (B3) observations X11 ... , Xn By dranging I we change the pdf f(x(0)

Finding Maximum Likelihood Estimators

- Differentiation
 - 1. Find *extreme points* in the *interior* of Θ by setting the first derivative equal to zero
 - Check whether points give maximum (e.g. using second derivatives)
 - 3. Check boundary points
- Monotone functions
 - Often useful when domain depends on the parameter
- Often easier to maximize the log-likelihood it gives the same result since

$$\hat{\theta}(\mathbf{X}) = \arg\max_{\theta \in \Theta} L(\theta \mid \mathbf{X}) = \arg\max_{\theta \in \Theta} \ell(\theta \mid \mathbf{X})$$

Finding maximum using one variable calculus

• If the likelihood function is differentiable (w.r.t θ) the MLE can be found easily: Set

$$\frac{d}{d\theta}L(\theta\mid\mathbf{x})=0$$
 or, if easier: $\frac{d}{d\theta}\ell(\theta\mid\mathbf{x})=0$

and solve for θ to find *extreme points* in the *interior* of Θ .

We have a maximum if

$$\left. \frac{d^2}{d\theta^2} L(\theta \mid \mathbf{x}) \right|_{\theta = \hat{\theta}} < 0 \qquad \text{or:} \qquad \left. \frac{d^2}{d\theta^2} \ell(\theta \mid \mathbf{x}) \right|_{\theta = \hat{\theta}} < 0$$

where $\hat{\theta}$ is the solution from above

• If Θ is bounded, check whether the boundary points of give a larger value of $L(\theta \mid \mathbf{x})$

Example 1 – Poisson

• Let X_1, X_2, \ldots, X_n be a random sample from Poisson(λ). Find the MLE of λ . on the torust.

Example 2: Discrete distribution

on observation, L(0) = f(x 10)

• Let X be a discrete random variable with pmf that depends on θ and $\theta \in \{0, 1, 2, 3\}$. The pmf, for different values of θ :

• Find the MLE for θ

Example 2: Discrete distribution

• Let X be a discrete random variable with pmf that depends on θ and $\theta \in \{0, 1, 2, 3\}$. The pmf, for different values of θ :

	X				2 ots?
$f(x \mid \theta)$	1	2	3	4	X' X ²
$\theta = 0$	<u>1</u>	<u>1</u>	$\frac{1}{4}$	<u>1</u>	23
$\theta = 1$	1/2	0	0	<u>1</u> 2	etc.
$\theta = 2$	<u>1</u>	<u>1</u>	<u>1</u>	0	
$\theta = 3$	0	<u>1</u>	0	<u>1</u>	

2 obs?
$$L(\theta) = f(x, (0)) f(x_{2}|\theta)$$

 $\frac{x_{1} x_{2}}{23} = 0 = 2 = 3 = 0$
 $\frac{(\frac{1}{4})^{2}}{(\frac{1}{4})^{2}} = 0 = 2$
elc.

• Find the MLE for θ

Example 3: Uniform

• Let X_1, X_2, \ldots, X_n be a random sample from Uniform $(0, \theta), \theta > 0$. Find the MLE for θ

on the board

Example 4: Another uniform distribution

• Let X_1, X_2, \ldots, X_n be a random sample from $\mathrm{Uniform}(\theta - \frac{1}{2}, \theta + \frac{1}{2})$ Find the MLE for θ

on the board

Example 5: Normal distribution

• Let $X_1, X_2, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$ Find the MLE for μ and σ^2

on the board

Finding maximum using two variable calculus

- To verify that a function $L(\theta_1, \theta_2 \mid \mathbf{x})$ has a *local* maimum at $(\hat{\theta}_1, \hat{\theta}_2)$ the following three conditions must hold
 - 1. First order partial derivatives are zero

$$\left. \frac{\partial}{\partial \theta_1} \textit{L}(\theta_1, \theta_2 \mid \boldsymbol{x}) \right|_{ \begin{array}{c} \theta_1 = \hat{\theta}_1, \\ \theta_2 = \hat{\theta}_2 \end{array}} = 0 \quad \text{and} \quad \left. \frac{\partial}{\partial \theta_2} \textit{L}(\theta_1, \theta_2 \mid \boldsymbol{x}) \right|_{ \begin{array}{c} \theta_1 = \hat{\theta}_1, \\ \theta_2 = \hat{\theta}_2 \end{array}} = 0$$

2. At least one second-order partial derivatives is negative

$$\left. \frac{\partial^2}{\partial \theta_1^2} \textit{L}(\theta_1, \theta_2 \mid \boldsymbol{x}) \right|_{ \begin{array}{c} \theta_1 = \hat{\theta}_1, \\ \theta_2 = \hat{\theta}_2 \end{array}} < 0 \quad \text{or} \quad \left. \frac{\partial^2}{\partial \theta_2^2} \textit{L}(\theta_1, \theta_2 \mid \boldsymbol{x}) \right|_{ \begin{array}{c} \theta_1 = \hat{\theta}_1, \\ \theta_2 = \hat{\theta}_2 \end{array}} < 0$$

3. The Jacobian of the second order partial derivatives is positive

$$\left| \begin{array}{ccc} \frac{\partial^2}{\partial \theta_1^2} L(\theta_1, \theta_2 \mid \boldsymbol{x}) & \frac{\partial^2}{\partial \theta_1 \theta_2} L(\theta_1, \theta_2 \mid \boldsymbol{x}) \\ \frac{\partial^2}{\partial \theta_2 \theta_1} L(\theta_1, \theta_2 \mid \boldsymbol{x}) & \frac{\partial^2}{\partial \theta_2^2} L(\theta_1, \theta_2 \mid \boldsymbol{x}) \end{array} \right|_{\theta_1 = \hat{\theta}_1, \theta_2 = \hat{\theta}_2} > 0$$

MLE for the Normal distribution

- Let X_1, X_2, \dots, X_n be a random sample from $N(\mu, \sigma^2)$
- We saw that the MLE for μ and σ^2 are

$$\hat{\mu}^{\mathsf{MLE}} = \overline{X}$$
 and $(\widehat{\sigma^2})^{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

Note that

$$(\widehat{\sigma^2})^{\mathsf{MLE}} = (\widehat{\sigma^2})^{\mathsf{MOM}} = \frac{n-1}{n}S^2$$
 where $S^2 = \frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X})^2$

• MLE for the standard deviation σ ?

Invariance property of MLEs

Theorem: Invariance property of MLE

If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\cdot)$, the MLE of $\tau(\hat{\theta})$ is $\tau(\hat{\theta})$.

Example

- $X_1, X_2, ..., X_n$ i.i.d. $N(\mu, \sigma^2)$
- Since MLE for σ^2 is

$$(\widehat{\sigma^2})^{\mathsf{MLE}} = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

we get that the MLE for $\sigma = \sqrt{\sigma^2}$ is

$$(\widehat{\sigma})^{\mathsf{MLE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

Bayes Estimators

- 1. X_1, X_2, \dots, X_n is a random sample from $f(x \mid \theta)$
- 2. θ is an unknown constant
- 3. Use observed data x_1, x_2, \dots, x_n to learn about θ
 - Via estimators and sampling distributions

Bayesian inference

- 1. X_1, X_2, \dots, X_n is a random sample from $f(x \mid \theta)$
 - But the "likelihood" $f(\mathbf{x} \mid \theta)$ is viewed as the joint *conditional* pmf/pdf of X_1, X_2, \dots, X_n given θ .
- 2. θ is a random variable with a **prior distribution** $p(\theta)$
- 3. Use observed data x_1, x_2, \dots, x_n to learn about θ
 - By obtaining the **posterior distribution** $p(\theta \mid \mathbf{x})$

Bayesian Statistics

STAT 448: Bayesian Theory with Applications

- A Bayesian model specifies both
 - a likelihood $f(\mathbf{x} \mid \theta)$
 - and a prior distribution $p(\theta)$
- Note that together they define the joint distribution of the data and the parameters, (\mathbf{x}, θ) since

$$p(\mathbf{x}, \theta) = f(\mathbf{x} \mid \theta)p(\theta)$$

- Bayesian inference is all contained in the posterior $p(\theta \mid \mathbf{x})$
- A point estimator in this setting is just a on-number summary of the posterior distribution (mean, median or mode)

Posterior distribution

The posterior distribution follows from Bayes theorem

$$p(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta)p(\theta)}{m(\mathbf{x})}$$

where

$$m(\mathbf{x}) = \int f(\mathbf{x} \mid \theta) p(\theta) d\theta$$

• The posterior mean of θ is called the **Bayes estimator** of θ

$$\hat{\theta}^B = E(\theta \mid \mathbf{X} = \mathbf{x})$$

• Like any other point estimator, $\hat{\theta}^B$ is a function of X_1, \dots, X_n (a statistic)

Binomial-Beta model

• Suppose $Y \sim \text{Binomial}(n, \theta)$. Then

$$f(y \mid \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}, \quad y = 0, 1, \dots, n$$

- Goal: Learn about (estimate) the population proportion, θ .
 - Need to pick a prior distribution for θ , with support on (0,1).
- Popular prior distribution: $\theta \sim \text{Beta}(\alpha, \beta)$

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \, \theta^{\alpha - 1} \, (1 - \theta)^{\beta - 1} \qquad \text{for } 0 < \theta < 1$$

where α and β are known

Posterior for Binomial-Beta model

First find the marginal pdf

$$m(y) = \int f(y \mid \theta) p(\theta) d\theta$$

$$= \int_{0}^{1} {n \choose y} \theta^{y} (1 - \theta)^{n-y} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$= \cdots \quad \text{on the board}$$

$$= \frac{{n \choose y} \Gamma(\alpha + \beta) \Gamma(\alpha + \gamma) \Gamma(\beta + n - \gamma)}{\Gamma(\alpha)\Gamma(\beta) \Gamma(\alpha + \gamma) \Gamma(\alpha + \gamma)}$$

STAT 346/446 Theoretical Statistics II

Lecture 4

Posterior for Binomial-Beta model

The posterior pdf is

$$p(\theta \mid y) = \frac{f(y \mid \theta) p(\theta)}{m(y)}$$

$$= \frac{\binom{n}{y} \theta^{y} (i-\theta)^{n-y}}{\binom{n}{y} \Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{x-1} (i-\theta)^{x-1}$$

$$= \frac{\binom{n}{y} \Gamma(\alpha+\beta) \Gamma(\alpha+y) \Gamma(\beta+n-y)}{\Gamma(\alpha)\Gamma(\beta) \Gamma(\alpha+\beta+n)}$$

$$= \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\alpha+y) \Gamma(\beta+n-y)} \theta^{x+y-1} (i-\theta)^{x+n-y-1}$$

$$= p \alpha \beta \delta \beta \text{ Beta}(x+y) \beta^{x+n-y}$$

Bayes estimator for Binomial-Beta model

- Recall that the mean of the $Beta(\alpha, \beta)$ distribution is $\frac{\alpha}{\alpha+\beta}$
- So the Bayes estimator of θ is

$$\hat{\theta}^{B} = \frac{\alpha + \gamma}{\alpha + \gamma + \beta + n - \gamma} = \frac{\alpha + \gamma}{\alpha + \beta + n} \approx \gamma + \alpha + \beta \text{ are small compared to } \gamma \text{ and } n.$$

- Conjugacy: Prior and Posterior are from the same family of distributions
 - E.g. $\theta \sim \mathrm{Beta}(\alpha, \beta)$ and $\theta \mid y \sim \mathrm{Beta}(\tilde{\alpha}, \tilde{\beta})$

Proportionality argument

Note that

$$p(\theta \mid \mathbf{x}) = \frac{f(y \mid \theta) \ p(\theta)}{m(y)} \propto f(y \mid \theta) \ p(\theta)$$

- Sometimes we can recognize the functional form (of θ) as the kernel of a known pdf
- Example: Binomial-Beta model

$$p(\theta \mid y) \propto \binom{n}{y} \theta^{y} (1-\theta)^{n-y} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$
$$\propto \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$$
$$\propto \text{pdf of the Beta}(\alpha+y,\beta+n-y) \text{ distribution.}$$

Normal-Normal model

• Let $X_1, X_2, ..., X_n$ be a random sample from $N(\theta, \sigma^2)$, where σ^2 is known. Joint likelihood:

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \theta)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2\right)$$

...

$$\propto \exp\left(-rac{1}{2\sigma^2}\left[-2 heta n\overline{x}+n heta^2
ight]
ight)$$

Normal-Normal model

• Prior distribution on θ : $\theta \sim N(\mu_0, \tau_0^2)$

$$p(\theta) = \frac{1}{\sqrt{2\pi} \ \tau_0} \exp\left(-\frac{(\theta - \mu_0)^2}{2\tau_0^2}\right)$$

$$\propto \exp\left(-rac{1}{2}\left[rac{ heta^2}{ au_0^2}-rac{2 heta\mu_0}{ au_0^2}
ight]
ight)$$

In general the kernel of a normal distribution:
$$exp \left(-\frac{1}{2} \int \frac{variable^2}{variance} - \frac{2 \cdot variable \cdot mean}{variance}\right)$$

Posterior for Normal-Normal model

Posterior distribution:

$$\begin{split} \rho(\theta \mid \mathbf{x}) &\propto \exp\left(-\frac{1}{2\sigma^2}\left[-2\theta n\overline{x} + n\theta^2\right]\right) \; \exp\left(-\frac{1}{2}\left[\frac{\theta^2}{\tau_0^2} - \frac{2\theta\mu_0}{\tau_0^2}\right]\right) \\ &= \exp\left(-\frac{1}{2}\left[\theta^2\left(\frac{1}{\tau_0^2} + \frac{n}{\sigma^2}\right) - 2\theta\left(\frac{\mu_0}{\tau_0^2} + \frac{n\overline{x}}{\sigma^2}\right)\right]\right) \\ &\propto \; \text{pdf of } \mathrm{N}(\mu_1, \tau_1^2) \end{split}$$

Posterior for Normal-Normal model

• The posterior distribution of θ is $N(\mu_1, \tau_1^2)$ where

$$\tau_1^2 = \left(\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}\right)^{-1} = \frac{\sigma^2/n \, \tau_0^2}{\sigma^2/n + \tau_0^2}$$

$$\mu_1 = \tau_1^2 \left(\frac{\mu_0}{\tau_0^2} + \frac{n\overline{x}}{\sigma^2}\right) = \frac{\tau_0^2}{\sigma^2/n + \tau_0^2} \overline{x} + \frac{\sigma^2/n}{\sigma^2/n + \tau_0^2} \mu_0$$

- Posterior mean is a weighted average of data average (\overline{x}) and prior mean (μ_0) .
 - Weights depend on σ^2 , n, and τ_0^2

STAT 346/446