- **Theorem**: A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.
- How to convert a k-tape TM M to a single tape TM S?
 - Put its tape into the format that represents all k tapes of M s.t.
 - The content the k tapes are concatenated and delimited by #.
 - Virtual head positions are marked with *.
 - S scans its tape from the first #, which marks the left-hand end, to the (k + 1)-st #, which marks the right-hand end, in order to determine the symbols under the virtual heads.
 - S makes a second pass to update the tapes according to the way that M's transition function dictates.
 - If at any point S moves one of the virtual heads to the right onto a #, S writes a blank symbol on this tape cell and shifts the tape contents, from this cell until the rightmost #, one unit to the right.
- Synonyms:
 - Decidable = Recursive.
 - Recognizable = Semi-decidable = Recursive enumerable.
- **Theorem**: Decidable languages are closed under complement, union, intersection, concatenation, Kleene star.
 - Complement L': On input w, run M on w, and accept iff M rejects.
 - Union $L_1 \cup L_2$: On input w, run M_1 and M_2 on w, and accept iff either accepts.
 - Intersection $L_1 \cap L_2$: On input w, run M_1 and M_2 on w, and accept iff both accepts.
 - Concatenation L_1L_2 : On input w, for each of the |w| + 1 ways to divide w as w_1w_2 : run M_1 on w_1 and M_2 on w_2 , and accept if both accept. Else reject.
 - Kleene star L^* : On input w, if $w = \varepsilon$ accept. Else, for each of the $2^{|w|-1}$ ways to divide w as w_1, \ldots, w_k ($w_i \neq \varepsilon$): run M on each w_i and accept if M accepts all. Else reject.
- Theorem: Recognizable languages are closed under union, intersection, concatenation, Kleene star.
- Theorem: If a language L is recognizable and its complement $L' = \Sigma^* L$ is also recognizable, then L is decidable.
- An NTM M accepts w if there is an accepting run, and rejects w if every run is rejecting.
- **Theorem**: A language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it.