3. Transformaciones lineales

Recordemos que uno de los objetivos del Álgebra Lineal es caracterizar la solución de sistemas lineales, en el caso general de *m* ecuaciones con *n* incógnitas

$$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$$

$$\vdots \qquad \vdots \qquad = \vdots$$

$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m$$

donde los coeficientes están en K. El estudio de las transformaciones lineales y sus propiedades nos dan buenas herramientas para caracterizar las soluciones de sistemas lineales.

3.1. Definiciones y propiedades elementales

En esta sección V y W son espacios vectoriales sobre \mathbb{K} . Estudiaremos funciones de V en W con propiedades particulares.

Definición 3.1 *Una función* $T: V \rightarrow W$ *es llamada lineal si verifica*

$$T(u+v) = T(u) + T(v), \forall u, v \in V$$
(4)

$$T(\alpha v) = \alpha T(u), \forall u \in V, \forall \alpha \in \mathbb{K}.$$
 (5)

El conjunto de todas las funciones lineales de V en W se nota como $\mathcal{L}(V,W)$. Muchas veces se escribe Tu en lugar de T(u). Se refiere frecuentemente a estas funciones como **transformaciones lineales**. Si V=W, se escribe $\mathcal{L}(V,V)=\mathcal{L}(V)$ y se llama a $T\in\mathcal{L}(V)$ un operador lineal sobre V.

Ejemplo 3.1 1. La aplicación nula $0: V \to V$ que asigna a todo elemento $v \in V$ el $0 \in W$ es lineal.

- 2. La identidad $I: V \to V$ definida por Iv = v es lineal.
- 3. Consideremos $V = \mathbb{R}[x]$ el espacio vectorial de polinomios sobre \mathbb{R} y la aplicación $T : \mathbb{R}[x] \to \mathbb{R}[x]$ derivación, definida por T(p(x)) = p'(x). Luego para dos polinomios p(x), $q(x) \in \mathbb{R}[x]$, se tiene

$$T(p(x) + q(x)) = (p(x) + q(x))' = p'(x) + q'(x) = T(p(x)) + T(q(x)).$$

De manera similar para $p(x) \in \mathbb{R}[x]$ y un escalar $\alpha \in \mathbb{K}$ se tiene

$$T(\alpha p(x)) = (\alpha p(x))' = \alpha p'(x) = \alpha T(p(x)),$$

por lo tanto T es lineal.

4. Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la aplicación dada por T(x,y) = (x-2y,3x+y). Luego para $(x,y),(x',y') \in \mathbb{R}^2$ se tiene

$$T((x,y) + (x',y')) = T(x+x',y+y') = (x+x'-2(y+y'),3(x+x')+y+y') = (x-2y,3x+y) + (x'-2y',3x'+y') = T(x,y) + T(x',y').$$

Además para $\alpha \in \mathbb{R}$

$$T(\alpha(x,y)) = T(\alpha x, \alpha y) = (\alpha x - 2\alpha y, 3\alpha x + \alpha y) = \alpha(x - 2y, 3x + y) = \alpha T(x, y).$$

por lo tanto T es lineal. Más aun cualquier aplicación $T: \mathbb{K}^n \to \mathbb{K}^m$ definida por

$$T(x_1, \dots, x_n) = (a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{m1}x_1 + \dots + a_{mn}x_n),$$

con $a_{ij} \in \mathbb{K}$ es lineal. Esto podríamos escribirlo considerando $A = (a_{ij})_{n \times m}$ como Tx = xA.

- 5. No todas las funciones son lineales. Por ejemplo la exponencial $f(x) = e^x$ no es lineal pues $e^{2x} \neq 2e^x$. La función f(x) = x 1 no es lineal pues $f(x + y) = x + y 1 \neq x 1 + y 1 = f(x) + f(y)$.
- 6. Sea $\mathbb{K} = \mathbb{R}$ y $V = C(\mathbb{R})$ el espacio vectorial de todas las funciones continuas de \mathbb{R} en \mathbb{R} . Definimos $T: V \to V$ como

$$(Tf)(x) = \int_0^x f(t)dt.$$

Es decir a cada función continua f le asignamos su función integral. Entonces T es una transformación lineal de V en V.

Teorema 3.1 Sean V un espacio vectorial de dimensión finita, $\{v_1, \dots, v_n\}$ una base ordenada de V. Sea W un espacio vectorial sobre el mismo cuerpo \mathbb{K} y $w_1, \dots, w_n \in W$. Entonces existe una única transformación lineal $T: V \to W$ tal que $T(v_i) = w_i$ para $1 \le i \le n$.

<u>Demos</u>: Definamos la siguiente aplicación T sobre V. Para un $v \in V$, existe única n-upla (x_1, \dots, x_n) tal que $v = x_1v_1 + \dots + x_nv_n$, luego definimos

$$Tv = x_1w_1 + \cdots + x_nw_n.$$

T está bien definida (a cada vector $v \in V$ le asigna un vector $Tv \in W$). Veamos que T es lineal, sea $u = y_1v_1 + \cdots + y_nv_n \in V$ y $\alpha \in \mathbb{K}$. Resulta

$$T(\alpha v + u) = T((\alpha x_1 + y_1)v_1 + \dots + (\alpha x_1 + y_n)v_n) = (\alpha x_1 + y_1)w_1 + \dots + (\alpha x_1 + y_n)w_n = \alpha T(v) + T(u).$$

Supongamos que existe otra transformación lineal $S: V \to V$ tal que $Sv_i = w_i, 1 \le i \le n$. Luego para el vector v se tiene

$$Sv = S(\sum_{i=1}^{n} x_i v_i) = \sum_{i=1}^{n} x_i S(v_i) = \sum_{i=1}^{n} x_i w = Tv.$$

demostrando así la unicidad.

Observación 3.1 a) Si T es una transformación lineal de V en W, entonces la imagen de T no sólo es un subconjunto de W sino que es es un subespacio de W.

b) El conjunto de los vectores $v \in V$ tales que Tv = 0 es un subespacio de V.

Definición 3.2 Sea $T: V \to W$ una transformación lineal entre espacios vectoriales. Se define el espacio nulo de T o núcleo de T o ker o kernel de T al conjunto de vectores de V que son aplicados en el $0 \in W$

$$null(T) = ker(T) = \{v \in V : Tv = 0\}.$$

Ejemplo 3.2 Consideremos la transformación lineal derivación definida en el espacio de los polinomios $V = \mathbb{R}[x], T(p(x)) = p'(x)$. Luego

$$nul(T) = \{p(x) \in \mathbb{R}[x] : Tp(x) = 0\} = \{p(x) \in \mathbb{R}[x] : p(x) = cte\}.$$

Proposición 3.1 Sea $T: V \to W$ una transformación lineal. Luego nul(T) es un subespacio vectorial de V.

Demos: : Ejercicio

Observación 3.2 Recordemos que para una transformación lineal $T: V \to W$ se dice que es:

- *i) inyectiva si para todos* $u, v \in V$, $T(u) = T(v) \Rightarrow u = v$.
- ii) sobreyectiva si img(T) = W
- iii)biyectiva si T es inyectiva y sobreyectiva.

Proposición 3.2 Sea $T: V \to W$ una transformación lineal. Luego T es inyectiva si y solo si $nul(T) = \{0\}$.

<u>Demos</u>: ⇒) Supongamos T inyectiva. Como nul(T) es un subespacio de V, sabemos que $0 \in V$. Supongamos que existe otro vector $v \in V$ tal que está en el núcleo de T. Luego T(v) = 0 = T(0). Como T es inyectiva resulta v = 0.

 \Leftarrow) Supongamos que nul(T) = 0, sean $u, v \in V$ tal que Tu = Tv. Luego 0 = Tu - Tv = T(u - v), luego $u - v \in nul(T)$, i.e. u = v.

Definición 3.3 Las transformaciones lineales entre espacios vectoriales son también llamadas **homomor**-**fismos de espacios vectoriales** . El espacio $\mathcal{L}(V,W)$ también se nota como

$$Hom_{\mathbb{K}}(V, W) = \{T : V \to W : Tes, lineal\}.$$

Un homomorfismos $T: V \rightarrow W$ *también es llamado:*

- i) Monomorfismo si T es inyectivo.
- ii) Epimorfismo si T es sobreyectivo.
- iii) Isomorfismo si T es biyectivo.
- iv) Endomorfismo si V = W.
- v) Automorfismo si V = W y T es biyectivo.

Definición 3.4 Si V es de dimensión finita se dice que la dimensión de la img(T) es el rango de T.

Teorema 3.2 Sean V y W espacios vectoriales sobre \mathbb{K} y sea $T:V\to W$ una transformación lineal. Supongamos que $\dim(V)$ es finita. Luego

$$rang(T) + \dim(nul(T)) = \dim V.$$

<u>Demos</u>: Sea $\{v_1, v_2, \dots, v_k\}$ una base de nul(T). Existen v_{k+1}, \dots, v_k vectores en V tales que $\{v_1, \dots, v_n\}$ es base de V. Probaremos que $\{Tv_{k+1}, \dots, Tv_n\}$ es una base de img(T).

Los vectores Tv_1, \dots, Tv_n generan img(T) y como $Tv_j = 0$ para $1 \le j \le k$, se tiene que Tv_{k+1}, \dots, Tv_n generan img(T).

Para ver que son linealmente independientes, supongamos que existen escalares $c_i \in \mathbb{K}$ tales que

$$0 = \sum_{i=k+1}^{n} c_i(Tv_i) = \sum_{i=k+1}^{n} T(c_iv_i) = T(\sum_{i=k+1}^{n} c_iv_i) = 0.$$

Es decir que $u=\sum\limits_{i=k+1}^nc_iv_i\in nul(T)$. Como v_1,\cdots,v_k forman una base para nul(T) luego existen

escalares $b_i \in \mathbb{K}$ con $1 \le i \le k$ tales que $u = \sum_{i=1}^k b_i v_i$. Así

$$\sum_{i=1}^{k} b_i v_i - \sum_{i=k+1}^{n} c_i v_i = 0.$$

Como los v_1, \dots, v_n son l.i. resulta $b_1 = \dots = b_k = c_{k+1} = \dots = c_n = 0$.

El hecho que Tv_{k+1}, \dots, Tv_n formen una base de img(T) nos dice que rang(T) = n - k, como dim V = n y dim(nul(T)) = k, demostramos el enunciado.

Teorema 3.3 Si A es una matriz $m \times n$ con entradas en el campo \mathbb{K} entonces rang(A) por filas es igual al rang(A) por columnas.

<u>Demos</u>: Consideremos la transformación lineal $T \in \mathcal{L}(\mathbb{K}^{n+1}$ definida por T(x) = Ax. El espacio nulo de T es el espacio solución del sistema Ax = 0. La imagen de T es el conjunto de las matrices columnas $m \times 1$ y tales que Ax = y tiene alguna solución x.

Si A_1, \dots, A_n son las columnas de A entonces

$$Ax = x_1A_1 + \cdots + x_nA_n.$$

Por lo tanto la imagen de T es el subespacio generado por las columnas de A, vale decir que la imagen de T es el espacio columna de A.

$$rang(T) = rango por por columnas de A.$$

Así el Teorema 3.2 dice que si S es el espacio solución para Ax = 0, entonces

$$dim(S) + rango por columnas (A) = n.$$

Observemos que si R es una matriz escalonada reducida equivalente a A, con r filas no nulas, entonces Rx = 0 expresa a r de las incógnitas x_1, \dots, x_n en función de las restantes (n-r) incógnitas. Esto es decir, si r es la dimensión del espacio fila de A, entonces el espacio solución S tiene una base que consiste en n-r vectores:

$$dim(S) = n - rango por filas(A)$$
.

Luego surge lo que queríamos probar.

3.2. El álgebra de las transformaciones lineales

Teorema 3.4 Sean V y W espacios vectoriales sobre el cuerpo \mathbb{K} . Sean $T,S \in \mathcal{L}(V,W)$. La función (T+S) definida por

$$(T+S)(v) = Tv + Sv,$$

es una transformación lineal de V en W.

Si $\alpha \in \mathbb{K}$, la función (αT) definida por

$$(\alpha T)(v) = \alpha(Tv),$$

es una transformación lineal de V en W. El conjunto de todas las transformaciones lineales de V en W junto a la suma y producto por escalares recién definidas, es un espacio vectorial sobre el cuerpo \mathbb{K} . $(\mathcal{L}(V,W),\mathbb{K},+,\cdot)$.

<u>Demos</u>: .(T+S)(cv+u)=c(T+S)(v)+(T+S)(u), luego T+S es una transformación lineal. $(\alpha T)(cv+u)=c(\alpha T(v)+(\alpha T)(u)$, luego αT es una transformación lineal.

Para ver que $(\mathcal{L}(V, W), \mathbb{K}, +, \cdot)$ deben comprobarse los axiomas que definen un espacio vectorial. (Ejercicio).

Observación 3.3 a) Notaremos a este espacio vectorial como $\mathcal{L}(V, W)$.

b) $\mathcal{L}(V,W)$ es un subespacio vectorial del espacio vectorial de todas las funciones definidas de V en W.

Teorema 3.5 Sea V un espacio n-dimensional sobre \mathbb{K} y sea W un espacio m-dimensional sobre \mathbb{K} . Luego $\mathcal{L}(V,W)$ es de dimensión finita y es de dimensión nm.

<u>Demos</u>: Sean $B = \{v_1, \dots, v_n\}$ y $B' = \{w_1, \dots, w_m\}$ bases ordenadas de V y W respectivamente. Para cada par de naturales (p,q), con $1 \le p \le n$ y $1 \le q \le m$ definimos la transformación lineal E^{qp} de V en W como sigue

$$E^{qp}(v_j) = \delta_{jp} w_q = \begin{vmatrix} 0 & si \ j \neq p, \\ w_q & si \ j = p. \end{vmatrix}$$

De acuerdo al Teorema 3.1, existe una única transformación lineal de V en W que cumple estas condiciones. Veamos que las mn transformaciones E^{qp} forman una base para $\mathcal{L}(V,W)$.

Sea $T \in \mathcal{L}(V, W)$. Para cada $j, 1 \leq j \leq n$, sean A_{1j}, \dots, A_{mj} las coordenadas del Tv_j en la base ordenada B', es decir

$$Tv_j = \sum_{q=1}^m A_{qj} w_q.$$

Veamos que

$$T = \sum_{q=1}^{m} \sum_{p=1}^{n} A_{qp} E^{qp}.$$
 (6)

Sea *U* la transformación definida por el lado derecho de (6) entonces para cada *j* se tiene que

$$Uv_j = \sum_{q=1}^m \sum_{p=1}^n A_{qp} E^{qp}(v_j) = \sum_{q=1}^m \sum_{p=1}^n A_{qp} \delta_{jp} w_q = \sum_{q=1}^m A_{qj} w_q = Tv_j.$$

En consecuencia U = T.

Así (6) muestra que E^{qp} , $1 \le p \le n$, $1 \le q \le m$ generan $\mathcal{L}(V, W)$, falta probar que son independientes.

Si la transformación $U = \sum_{q=1}^{m} \sum_{p=1}^{n} A_{qp} E^{qp}$ es la transformación cero, entonces $Uv_j = 0, \forall j$, luego

 $\sum_{q=1}^{m} A_{qj} w_q = 0 \text{ y la independencia de los } w_q \text{ implica que } A_{qj} = 0, \forall q, j, \text{ como queríamos probar.} \quad \blacksquare$

Teorema 3.6 Sean V, W, Z espacios vectoriales sobre el cuerpo \mathbb{K} . Sea $T \in \mathcal{L}(V, W)$ $y \in \mathcal{L}(W, Z)$. Luego la composición $S \circ T$ definida por

$$(S \circ T)(v) := (ST)(v) := ST(v) := S(T(v))$$

es una transformación lineal de V en Z, i.e. $ST \in \mathcal{L}(V, Z)$.

$$\underline{\underline{\text{Demos}}}: (ST)(\alpha v + u) = (S(T(\alpha v + u)) = S(\alpha T(v) + T(u)) = \alpha S(T(v)) + S(T(u)) = \alpha (ST)(v) + (ST)(u).$$

Observación 3.4 Si en el Teorema 3.6 consideramos V = W = Z, T, S son operadores lineales ($T \in \mathcal{L}(V,V)$) y también lo es ST. De este modo $\mathcal{L}(V)$ tiene definida una "multiplicación" dada por la composición. En este caso TS también está definida pero en general $ST \neq TS$.

Notemos también que si T es un operador lineal sobre V, podemos componer a T con si mismo. Notaremos $T^2 := T \circ T = TT$ y en general $T^n := T \cdots T$ para $n \in \mathbb{N}$. Definimos $T^0 = I$ si $T \neq 0$.

Lema 3.1 Sea V un espacio vectorial sobre \mathbb{K} . Sean $S, T_1, T_2 \in \mathcal{L}(V)$. Sea $\alpha \in \mathbb{K}$, luego vale:

$$i)$$
 $IS = SI = S$.

$$ii) S(T_1 + T_2) = ST_1 + ST_2,$$
 $(T_1 + T_2)S = T_1S + T_2S$

$$iii) \alpha(ST_1) = (\alpha S)T = S(\alpha T).$$

Demos: Ejercicio

Ejemplo 3.3 Sea $B = \{v_1, \dots, v_n\}$ una base ordenada de un espacio vectorial V. Consideremos los operadores lineales E^{qp} que aparecen en la prueba del Teorema 3.5: $E^{qp}(v_j) = \delta_{jp}v_q$.

Estos n^2 operadores lineales forman una base del espacio de operadores lineales sobre V, $\mathcal{L}(V)$. A qué es igual la composición de E^{sr} con E^{qp} aplicado a un v_i

$$E^{sr}E^{qp}(v_i) = E^{sr}(\delta_{ip}v_q) = \delta_{ip}E^{sr}(v_q) = \delta_{ip}\delta_{qr}v_s$$

es decir

$$E^{sr}E^{qp} = \begin{vmatrix} 0, & si \ q \neq r, \\ E^{sp}, & si \ q = r. \end{vmatrix}$$

Sea $T \in \mathcal{L}(V)$. Vimos que si $A_j = [Tv_j]_{B'=B}$, $A = [A_1, \cdots, A_n]$, entonces $T = \sum_q \sum_p A_{qp} E^{qp}$.

Luego si $S = \sum_{s} \sum_{r} B_{sr} E^{sr}$ es otro operador $S \in \mathcal{L}(V)$, por el Lema 3.1 se tiene que

$$\begin{split} ST &= & (\sum_{s} \sum_{r} B_{sr} E^{sr}) (\sum_{q} \sum_{p} A_{qp} E^{qp}) = \\ &= & \sum_{s} \sum_{r} \sum_{q} \sum_{p} B_{sr} A_{qp} E^{sr} E^{qp} = \sum_{s} \sum_{p} \left(\sum_{q} B_{sq} A_{qp} \right) E^{sp} = \\ &= & \sum_{s} \sum_{p} (BA)_{sp} E^{sp}. \end{split}$$

Así, el efecto de componer T con S equivale a multiplicar las matrices B y A.

Observación 3.5 Recordemos que $T: V \to W$ es inversible si y sólo si existe $S: W \to V$) tal que ST es la identidad en V y TS es la identidad en W.

Si T es inversible la función S es única y se nota por T^{-1} . Más aun, T es inversible si y sólo si T es biyectiva.

Teorema 3.7 Sean V y W espacios vectoriales sobre \mathbb{K} y $T \in \mathcal{L}(V, W)$. Si T es inversible, entonces su inverso T^{-1} es una transformación lineal de W en V.

<u>Demos</u>: Sabemos que si $T \in \mathcal{L}(V, W)$ es inversible se tiene que $TT^{-1} = I_W$ y $T^{-1}T = I_V$. Sean $w_1, w_2 \in W$, $\alpha \in \mathbb{K}$. Sea $v_i = T^{-1}(w_i)$, i = 1, 2, es decir que v_i es el único vector de V tal que $Tv_i = w_i$.

Como T es lineal se tiene que

$$T(\alpha v_1 + v_2) = \alpha T(v_1) + T(v_2) = \alpha w_1 + w_2.$$

Así $\alpha v_1 + v_2$ es el único vector de V que T envía a $\alpha w_1 + w_2$. Luego

$$T^{-1}(\alpha w_1 + w_2) = \alpha v_1 + v_2 = \alpha T^{-1}(w_1) + T^{-1}(w_2),$$

luego T^{-1} es lineal.

Observación 3.6 Supongamos que $T: V \to W$ y $S: W \to Z$ son inversibles. Entonces ST es inversible y $(ST)^{-1} = T^{-1}S^{-1}$. Esta conclusión no requiere linealidad, sólo hay que chequear que efectivamente $T^{-1}S^{-1}$ es inversa a derecha e izquierda de ST.

Observación 3.7 Si T es lineal, entonces T(v-w) = Tv - Tw, luego Tv = Tw si y sólo si T(v-w) = 0, esto simplifica la verificación de T inyectiva.

Una transformación lineal T es no singular si $Tv = 0 \Rightarrow v = 0$, o sea si el espacio nulo de T es $\{0\}$.

Teorema 3.8 Sea $T \in \mathcal{L}(V, W)$. Luego T es no singular si y sólo si T lleva a cada subconjunto l.i. de V en un subconjunto l.i. de W.

Demos: ⇒) Sea *T* no singular. Sea $S \subset V$, *l.i.*. Si $v_1, \dots, v_k \in S$, entonces Tv_1, \dots, Tv_k son *l.i.* pues

$$0 = \alpha_1(Tv_1) + \cdots + \alpha_k(Tv_k) = T(\alpha_1v_1 + \cdots + \alpha_kv_k),$$

y como T es no singular

$$\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$$

de donde surge que $\alpha_i = 0$, $\forall i$ pues S es l.i.

 \Leftarrow) Supongamos T lleva conjuntos l.i. en conjuntos l.i. Sea $0 \neq v \in V$. Luego el conjunto $S = \{v\}$ es independiente y $\{Tv\}$ es independiente, por lo tanto $Tv \neq 0$. Esto muestra que $nul(T) = \{0\}$ y por lo tanto T no singular.

Definición 3.5 Si existe un isomorfismo de V en W, diremos que V y W son isomorfos

Observación 3.8 i) V es trivialmente isomorfo a V.

- ii) Si V es isomorfo a W vía un isomorfismo T, entonces W es isomorfo a V pues T^{-1} es un isomorfismo de W en V.
- iii) Si V es isomorfo a W y W es isomorfo a Z, entonces V es isomorfo a Z.

Por estas tres observaciones concluimos que la relación .es isomorfo a"define una relación de equivalencia en el conjunto de todos los espacios vectoriales.

Teorema 3.9 Todo espacio vectorial n-dimensional sobre el cuerpo \mathbb{K} es isomorfo al espacio vectorial \mathbb{K}^n .

<u>Demos</u>: Sea V un espacio vectorial n-dimensional sobre \mathbb{K} y sea $B = \{v_1, \dots, v_n\}$ una base ordenada de V.

Definimos la función $T:V\to \mathbb{K}^n$ como sigue, para $v\in V$, sea $Tv=(x_1,\cdots,x_n)$ la n-upla de coordenadas de v relativas a la base ordenada B, i.e. $v=x_1v_1+\cdots+x_nv_n$.

Esta aplicación así definida resulta lineal, inyectiva y sobreyectiva.

3.3. Representación de transformaciones lineales por matrices

Teorema 3.10 Sea V un espacio vectorial n-dimensional sobre un cuerpo \mathbb{K} y W un espacio vectorial m-dimensional sobre \mathbb{K} . Sea B una base ordenada de V y B' una base ordenada de W. Para cada transformación lineal $T \in \mathcal{L}(V, W)$ existe una matriz $m \times n$ A con entradas en \mathbb{K} tal que para cada vector $v \in V$

$$[Tv]_{B'} = A[v]_B$$
.

Más aun la asignación $T \to A$ es una correspondencia uno a uno entre el conjunto $\mathcal{L}(V, W)$ y $\mathcal{M}_{m \times n}(\mathbb{K})$.

Demos: Si $v = x_1v_1 + \cdots + x_nv_n \in V$, entonces

$$Tv = T(\sum_{i=1}^{n} x_{j}v_{j}) = \sum_{i=1}^{n} x_{j}(Tv_{j}) = \sum_{i=1}^{n} x_{j}(\sum_{i=1}^{m} A_{ij}w_{i}) = \sum_{i=1}^{m} (\sum_{i=1}^{n} A_{ij}x_{j})w_{i}.$$

Si X es la matriz de coordenadas de v en la base ordenada B, entonces esto muestra que AX es la matriz de coordenadas del vector Tv en la base ordenada B'. Observemos además que si A es cualquier matriz $m \times n$ sobre \mathbb{K} , entonces

$$T(\sum_{j=1}^{n} x_{j} v_{j}) = \sum_{i=1}^{m} (\sum_{j=1}^{n} A_{ij} x_{j}) w_{i}$$

define una transformación lineal $T \in \mathcal{L}(V, W)$, cuya matriz asociada relativa a las bases ordenadas B y B' es A.

Así esta matriz A asociada a T se llama matriz de T relativa a las bases B y B'.

Observación 3.9 A es la matriz cuyas columnas A_1, \dots, A_n son $A_j = [Tv_j]_{B'}$, $j = 1, \dots, n$. Si $S \in \mathcal{L}(V, W)$ es otra transformación lineal $y \in C = [C_1, \dots, C_n]$ es la matriz de S relativa a las bases ordenadas S S S entonces S S S entonces S S entonces S S es la matriz asociada a la transformación S S relativa a las bases S S S S entonces S S entonces S S es la matriz asociada a la transformación S relativa a las bases S S S S es la matriz asociada a la transformación S relativa a las bases S S es la matriz asociada a la transformación S relativa S relativa

$$\alpha A_i + C_i = \alpha [Tv_i]_{B'} + [Sv_i]_{B'} = [\alpha Tv_i + Sv_i]_{B'} = [(\alpha T + S)v_i]_{B'}.$$

En vista del teorema precedente y la observación podemos enunciar el siguiente

Teorema 3.11 Sea V un espacio vectorial n-dimensional sobre \mathbb{K} y sea W un espacio m-dimensional sobre \mathbb{K} . Para cada par de bases ordenadas B y B' para V y W respectivamente, la aplicación que a cada $T \in \mathcal{L}(V,W)$ le asigna $A \in \mathcal{M}_{m \times n}(\mathbb{K})$, su matriz asociada relativa a B y B', es un isomorfismo entre los espacios vectoriales $\mathcal{L}(V,W)$ y $\mathcal{M}_{m \times n}(\mathbb{K})$.

<u>Demos</u>: La función en cuestión es lineal, visto en la observación, y es biyectiva, visto en el teorema anterior.

Observación 3.10 Veamos que sucede con la representación de operadores lineales (transformaciones lineales de un espacio V en si mismo). Conviene usar la misma base ordenada B. Así llamaremos a la matriz de T como la matriz de T relativa a la base ordenada B.

Nota 3.1 Si T es un operador lineal sobre un espacio vectorial de dimensión finita V y $B = v_1, \cdots, v_n$ es una base ordenada de V, la matriz de T relativa a B es la matriz $n \times n$, A cuyas entradas A_{ij} están definidas por

$$Tv_j = \sum_{i=1}^n A_{ij}v_i, \qquad j=1,\cdots,n.$$

Debemos recordar que esta matriz que representa a T depende de la base ordenada B, para cada base ordenada obtendremos una matriz diferente que representa al mismo operador lineal T. Para hacer más explícita esta dependencia puede notarse como $[T]_B$ a la matriz del operador lineal T en la base ordenada B. La forma en la que esta matriz y la base ordenada describen al operador T es tal que para cada $v \in V$ se tiene

$$[Tv]_B = [T]_B[v]_B.$$

Ejemplo 3.4 Sea $V = \mathcal{M}_{n \times 1}(\mathbb{K})$. Sea $W = \mathcal{M}_{m \times 1}(\mathbb{K})$. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ fija. Sea $T \in \mathcal{L}(V, W)$ definida por T(X) = AX.

Sea B la base ordenada para V análoga a la base estándar en \mathbb{K}^n (el vector e_i es la matriz $n \times 1$ con un 1 en la fila i y 0 en las otras). Sea B' la base ordenada para W análoga a la base estándar en \mathbb{K}^m . Entonces la matriz de T relativa al par B, B' es la matriz A.

Ejemplo 3.5 Sea \mathbb{K} un cuerpo y T un operador sobre \mathbb{K}^2 definido por $T(x_1, x_2) = (x_1, 0)$. Es fácil ver que es un operador lineal sobre \mathbb{K}^2 . Sea $B = e_1, e_2$ la base ordenada estándar para \mathbb{K}^2 . Se tiene que

$$Te_1 = T(1,0) = (1,0),$$
 $Te_2 = T(0,1) = (0,0).$

La matriz de T en la base ordenada B es $[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

Ejemplo 3.6 Sea V el espacio de todos los polinomios sobre \mathbb{R} de grado menor o igual a 3, i.e.

$$V = \{p(x) : p(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3, c_i \in \mathbb{R}, i = 0, \dots, 3\}.$$

El operador derivada D va de V en V. Sea $B = \{f_1, f_2, f_3, f_4\}$ base ordenada de V con $f_i(x) = x^{j-1}$. Luego

$$\begin{array}{ll} (Df_1)(x)=0, & Df_1=0f_1+0f_2+0f_3+0f_4,\\ (Df_2)(x)=1, & Df_2=1f_1+0f_2+0f_3+0f_4,\\ (Df_3)(x)=2x, & Df_3=0f_1+2f_2+0f_3+0f_4,\\ (Df_4)(x)=3x^2, & Df_4=0f_1+0f_2+3f_3+0f_4. \end{array}$$

La matriz de D en la base ordenada B es

$$[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

<u>Demos</u>: Sean $B = \{v_1, \dots, v_n\}$, $B' = \{w_1, \dots, w_m\}$ y $B'' = \{z_1, \dots, z_p\}$. Para $v \in V$ cualquiera se tiene $[Tv]_{B'} = A[v]_B$, $[S(Tv)]_{B''} = B[Tv]_{B'}$, $[(ST)v]_{B''} = CA[v]_B$,

y por lo tanto por definición y unicidad de la matriz asociada, se tiene que D = CA. También puede demostrarse esto a través del cálculo

$$(ST)v_{j} = S(Tv_{j}) = S(\sum_{k=1}^{m} A_{kj}w_{k}) = \sum_{k=1}^{m} A_{kj}(Sw_{k}) = \sum_{k=1}^{m} A_{kj} \sum_{i=1}^{p} C_{ik}z_{i} = \sum_{i=1}^{p} (\sum_{k=1}^{m} C_{ik}A_{jk})z_{i}.$$

$$\therefore D_{ij} = \sum_{k=1}^{m} C_{ik}A_{kj},$$

como queríamos probar.

Observación 3.11 Si T y S son operadores lineales sobre V y los representamos mediante una única base ordenada B, entonces

$$[ST]_B = [S]_B [T]_B$$
.

Así la correspondencia que determina B entre operadores y matrices no sólo es un isomorfismo de espacios vectoriales sino que preserva productos. Una consecuencia de esto es que el operador lineal T será inversible si y solo si $[T]_B$ es una matriz inversible. Es decir que ST = TS = I equivale a $[S]_B[T]_B = [T]_B[S]_B = I$. Además cuando T es inversible resulta $[T^{-1}]_B = [T]_B^{-1}$.

Teorema 3.13 Sea V un espacio vectorial de dimensión finita sobre el cuerpo \mathbb{K} , y sean $B = v\{v_1, \dots, v_n\}$ y $B' = \{v'_1, \dots, v'_n\}$ bases ordenadas de V. Supongamos que T es un operador lineal sobre V. Si $P = [P_1, \dots, P_n]$ es la matriz $n \times n$ con columnas $P_j = [v'_j]_B$, entonces

$$[T]_{B'} = P^{-1}[T]_B P.$$

<u>Demos</u>: Por lo visto anteriormente, existe una única matriz $n \times n$ inversible P tal que para cada $v \in V$

$$[v]_B = P[v]_{B'},\tag{7}$$

donde $P = [P_1, \dots, P_n] \operatorname{con} P_j = [v'_j]_B$.

Por definición

$$[Tv]_B = [T]_B[v]_B. \tag{8}$$

Aplicando (7) a Tv se obtiene

$$[Tv]_B = P[Tv]_{B'}. (9)$$

Combinando (7), (8) y (9) se obtiene

$$[T]_B P[v]_{B'} = P[Tv]_{B'}$$
 o $P^{-1}[T]_B P[v]_{B'} = [Tv]_{B'}$

de donde $[T]_{B'} = P^{-1}[T]_B P$.

Observemos además que existe un único operador lineal S que lleva B en B' definido por

$$Sv_j = v'_j, j = 1, \cdots, n.$$

Este operador es inversible ya que lleva una base de V en una base de V. Precisamente la matriz P es la matriz del operador S en la base ordenada B. Pues, P está definida por $v'_j = \sum_{i=1}^n P_{ij}v_i$ y como $Sv_j = v'_j$, podemos escribir

$$Sv_j = \sum_{i=1}^n P_{ij}v_i.$$

Así $P = [S]_B$ por definición, como queríamos ver.

Ejemplo 3.7 Sea T el operador lineal sobre \mathbb{R}^2 definido por $T(x_1, x_2) = (x_1, 0)$. Vimos que

$$[T]_B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

Supongamos que $B' = \{(e'_1, e'_2\} \text{ con } e'_1 = (1, 1) \text{ y } e'_2 = (2, 1) \text{ es otra base ordenada de } \mathbb{R}^2.$ Entonces se tiene que

$$e'_1 = e_1 + e_2$$

 $e'_2 = 2e_1 + e_2$

Luego P es la matriz $P = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$.

 $Asi P^{-1} = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} y surge que$

$$[T]_{B'} = P^{-1}[T]_B P = \begin{bmatrix} -1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -2 \\ 1 & 2 \end{bmatrix}.$$

Es sencillo de comprobarlo pues

$$Te'_1 = (1,0) = -e'_1 + e'_2,$$

 $Te'_2 = (2,0) = -2e'_1 + 2e'_2.$

Ejemplo 3.8 Sea V el espacio vectorial del ejemplo 3.6. Sea $t \in \mathbb{R}$ y definamos $g_i(x) = (x+t)^{j-1}$, o sea

$$g_1 = f_1,$$

$$g_2 = tf_1 + f_2,$$

$$g_3 = t^2f_1 + 2tf_2 + f_3,$$

$$g_4 = t^3f_1 + 3t^2f_2 + 3tf_3 + f_4.$$

Como la matriz

$$P = \begin{bmatrix} 1 & t & t^2 & t^3 \\ 0 & 1 & 2t & 3t^2 \\ 0 & 0 & 1 & 3t \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

es inversible siendo

$$P^{-1} = \begin{bmatrix} 1 & -t & t^2 & -t^3 \\ 0 & 1 & -2t & 3t^2 \\ 0 & 0 & 1 & -3t \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

sigue que $B' = \{g_1, g_2, g_3, g_4\}$ es una base ordenada de V. Vimos en el ejemplo 3.6 que

$$[D]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Entonces la matriz del operador D en la base ordenada B' es

$$P^{-1}[D]_BP = \begin{bmatrix} 1 & -t & t^2 & -t^3 \\ 0 & 1 & -2t & 3t^2 \\ 0 & 0 & 1 & -3t \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & t & t^2 & t^3 \\ 0 & 1 & 2t & 3t^2 \\ 0 & 0 & 1 & 3t \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Es decir que D es representado por la misma matriz en las bases ordenadas B y B'.

Definición 3.6 Sean A y B matrices $n \times n$ sobre el cuerpo \mathbb{K} . Diremos que B es similar a A sobre \mathbb{K} si existe una matriz $n \times n$ inversible P sobre \mathbb{K} tal que $B = P^{-1}AP$.

3.4. Producto y cociente de espacios vectoriales

Como veníamos trabajando todos los espacios vectoriales involucrados en lo que sigue son sobre el mismo cuerpo IK.

Definición 3.7 Sean V_1, V_2, \dots, V_m espacios vectoriales sobre \mathbb{K} , se define el **producto de los e.v.** V_1, V_2, \dots, V_m como

$$V_1 \times V_2 \times \cdots \times V_m = \{(v_1, v_2, \cdots, v_m) : v_1 \in V_1, \cdots v_m \in V_m\}.$$

Definimos las siguientes operaciones en $V_1 \times \cdots \times V_m$: *adición:*

$$(u_1, \cdots, u_m) + (v_1, \cdots, v_m) = (u_1 + v_1, \cdots, u_m + v_m);$$

producto por escalares:

$$\alpha(u_1,\cdots,u_m)=(\alpha u_1,\cdots,\alpha u_m).$$

Teorema 3.14 Sean V_1, \dots, V_m espacios vectoriales sobre \mathbb{K} , luego $V_1 \times \dots \times V_m$ con las operaciones definidas es un espacio vectorial sobre \mathbb{K} .

Demos: : Ejercicio

Ejemplo 3.9 1. Consideremos $\mathbb{R}_2[x]$, el espacio de los polinomios de grado menor o igual a 2, y \mathbb{R}^3 , luego el espacio vectorial $\mathbb{R}_2[x] \times \mathbb{R}^3$, está constituido por pares ordenados, donde el primer elemento es un polinomio de grado menor o igual a 2 y el segundo un elemento de \mathbb{R}^3 . Por ejemplo

$$\left(7 - \pi x + \frac{7}{23}x^2, (1, 0, 1)\right) \in \mathbb{R}_2[x] \times \mathbb{R}^3.$$

2. $\mathbb{R}^3 \times \mathbb{R}^2$ es igual a \mathbb{R}^5 ? ¿Son isomorfos?

La respuesta a la primera pregunta es NO. Los elementos de $\mathbb{R}^2 \times \mathbb{R}$ son pares de forma $((x_1, x_2, x_3), (x_4, x_5))$ con $x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}$, mientras que los elementos de \mathbb{R}^5 son 5-uplas de forma $(x_1, x_2, x_3, x_4, x_5)$ con $x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}$.

Lo que si podemos asegurar es que son espacios vectoriales isomorfos siendo la transformación

$$\mathbb{R}^3 \times \mathbb{R}^2 \to \mathbb{R}^5$$

$$\mapsto (x_1, x_2, x_3, x_4, x_5),$$

claramente un isomorfismo.

Teorema 3.15 Sean V_1, \dots, V_m espacios vectoriales sobre \mathbb{K} de dimensión finita. Luego resulta $V_1 \times \dots \times V_m$ de dimensión finita y se verifica

$$dim(V_1 \times \cdots \times V_m) = dim(V_1) + \cdots + dim(V_m).$$

<u>Demos</u>: Elijamos una base B_j para cada espacios V_j , $j=1,\cdots,n$. Para cada uno de los vectores $u_i^j \in B_j$, $i=1,\cdots,\dim(V_j)$ consideremos el vector de $V_1 \times \cdots \times V_m$ que tiene al vector u_i^j en la entrada j-ésima y 0 en el resto de los lugares. La conjunto de todos esos vectores es linealmente independiente, genera el espacio $V_1 \times \cdots \times V_m$ y tiene cardinal $dim(V_1) + \cdots + dim(V_m)$.

Ejemplo 3.10 Sean V_1 , V_2 espacios vectoriales sobre el cuerpo K. La transformaciones

$$\begin{array}{cccc} \pi_j: & V_1 \times V_2 & \rightarrow & V_j \\ & (v_1, v_2) & \mapsto & \pi_j(v_1, v_2) = v_j \end{array} j = 1, 2,$$

llamadas proyecciones son transformaciones epimorfismos. Se tiene además que

$$\dim(nul(\pi_j) = \dim(V_{3-j}), j = 1, 2.$$

ESPACIO COCIENTE

Lema 3.2 Sea $U \subseteq V$ espacio vectorial sobre \mathbb{K} . La relación definida en V como

$$w \sim_{u} v \iff w - v \in U$$
,

es una relación de equivalencia.

Demos: Ejercicio

Nota 3.2 Como toda relación de equivalencia define una partición del conjunto en la que está definida dada por las clases de equivalencias. Recordemos que para $v \in V$ su clase de equivalencia está dada por

$$[v] = \{w \in V : w \sim_{U} v\} = \{w \in V : w - v \in U\} = \{w \in V : w \in v + U\} = v + U.$$

Si consideramos el espacio cociente de V por la relación \sim_u formado por las clases de equivalencias resulta

$$V/\sim_{u} = \{[v] : v \in V\} = \{v + U : v \in V\} = V/U.$$

Ejemplo 3.11.

Sea $V=\mathbb{R}^2$ y $U=\{(\alpha,-\frac{\alpha}{2})\in\mathbb{R}^2:\alpha\in\mathbb{R}\}$, claramente U es la recta de pendiente $-\frac{1}{2}$ que pasa por el origen. Así

$$[(2,3)] = (2,3) + U,$$

es la recta de \mathbb{R}^2 de pendiente $-\frac{1}{2}$ que pasa por el punto (2,3).

Definición 3.8 Sea $U \subseteq V$ espacio vectorial sobre \mathbb{K} . Definimos en el espacio cociente las siguientes operaciones de adición y multiplicación por escalares. Para $[v], [w] \in V/U$ y $\alpha \in \mathbb{K}$

$$[v] + [w] = [v + w] = (v + w) + U = (v + U) + (w + U),$$

 $\alpha[v] = [\alpha v] = (\alpha v) + U = \alpha(v + U).$

Lema 3.3 Las operaciones de adición y multiplicación por escalares en V/U están bien definidas.

<u>Demos</u>: . Debemos comprobar que efectivamente están bien definidas las operaciones, es decir, no dependen del representante de la clase de equivalencia que estemos considerando. Para ello sean $\hat{v} \in [v] = v + U$, es decir que $\hat{v} + U = v + U$ y $\hat{w} \in [w] = w + U$, así tenemos

$$[\hat{v}] + [\hat{w}] = [\hat{v} + \hat{w}] = \hat{v} + \hat{w} + U = \hat{v} + U + \hat{w} + U = (v + U) + (w + U) = [v] + [w].$$

De manera análoga resulta para $\hat{v} \in [v] = v + U$ y $\alpha \in \mathbb{K}$

$$\alpha[\hat{v}] = [\alpha \hat{v}] = \alpha(\hat{v} + U) = \alpha(v + U) = [\alpha v] = \alpha[v],$$

como queríamos demostrar.

Teorema 3.16 Sea $U \subseteq V$ espacio vectorial sobre \mathbb{K} . El conjunto cociente V/U con las operaciones definidas es un espacio vectorial sobre \mathbb{K} .

<u>Demos</u>: Habiendo probado que las operaciones están bien definidas, la demostración es sencilla. Notemos que el elemento neutro de V/U está dado por [0] = 0 + U = U y el opuesto de [v] es [-v].

Definición 3.9 Sea $U \subseteq V$ espacio vectorial sobre \mathbb{K} . La aplicación cociente π es la transformación lineal

$$\begin{array}{ccc} \pi: & V & \rightarrow & V/U \\ & v & \mapsto & \pi(v) = [v]. \end{array}$$

Ejercicio 3.1 *Probar que efectivamente* π *es una transformación lineal.*

Teorema 3.17 Sea $U \subseteq V$ espacio vectorial sobre \mathbb{K} , de dimensión finita. Luego se verifica

$$\dim(V/U) = \dim(V) - \dim(U).$$

<u>Demos</u>: Sea π la aplicación cociente de V en V/U. Por el Teorema 3.16 sabemos que $nul(\pi) = U$, además resulta claro que $img(\pi) = V/U$. Así usando el Teorema 3.2 resulta

$$\dim(V) = \dim(U) + \dim(img(\pi)) = \dim(U) + \dim(V/U),$$

obteniéndose lo buscado.

3.5. Funcionales lineales

Definición 3.10 Sea V un espacio vectorial sobre el cuerpo \mathbb{K} , una transformación lineal de V en \mathbb{K} se dice un funcional lineal sobre V.

Ejemplo 3.12 1. Sea \mathbb{K} un cuerpo, $y a_1, \dots, a_n \in \mathbb{K}$. Definimos una función sobre \mathbb{K}^n por

$$f(x_1,\cdots,x_n)=a_1x_1+\cdots+a_nx_n.$$

f es un funcional lineal sobre \mathbb{K}^n . Es el funcional lineal que se representa por la matriz $[a_1, \cdots, a_n]$ relativa a la base ordenada estándar de \mathbb{K}^n y la base $\{1\}$ de \mathbb{K}

$$a_j = f(e_j), \qquad j = 1, \cdots, n.$$

Todo funcional lineal sobre \mathbb{K}^n es de esta forma para algunos escalares a_1, \dots, a_n , pues

$$f(x_1, \dots, x_n) = f(\sum_{j=1}^n x_j e_j) = \sum_{j=1}^n f(x_j e_j) = \sum_{j=1}^n x_j f(e_j) = \sum_{j=1}^n x_j a_j.$$

- 2. Sea $n \in \mathbb{N}$ y \mathbb{K} un cuerpo. Si $A \in \mathcal{M}_{n \times n}(\mathbb{K})$, luego la traza define un funcional lineal sobre $\mathcal{M}_{n \times n}(\mathbb{K})$. Recordemos que si $A = (a_{ij})_{i,j=1}^n$ luego $trA = \sum_{i=1}^n a_{jj}$.
- 3. Sea $V = \mathbb{K}[x]$ el espacio de todos los polinomios de \mathbb{K} en si mismo. Sea $t \in \mathbb{K}$, definimos

$$L_t(p) = p(t),$$

luego L_t es un funcional lineal sobre V. L_t se dice la evaluación en t.

4. Sea [a,b] un intervalo cerrado de \mathbb{R} y sea C([a,b]) el espacio vectorial de las funciones continuas a valores reales sobre [a,b], Luego

$$L(g) = \int_a^b g(t)dt,$$

define un funcional lineal L sobre C([a,b]).

Definición 3.11 Si V es un espacio vectorial, el conjunto de todos los funcionales lineales sobre V forma un espacio vectorial. Es el espacio $\mathcal{L}(V, \mathbb{K})$, al que se nota V^* y se llama espacio dual de V.

$$V^* = \mathcal{L}(V, \mathbb{K}).$$

Observación 3.12 Si V es de dimensión finita, sabemos por el Teorema 3.5 que dim $V^* = \dim V$.

Sea $B = \{v_1, \dots, v_n\}$ una base ordenada de V. Por el Teorema 3.1 para cada i existe un único funcional lineal f_i sobre V tal que $f_i(v_i) = \delta_{ij}$.

Así obtenemos de B un conjunto de n funcionales lineales distintos f_1, \dots, f_n sobre V. Veamos que son l.i..

Sea
$$f = \sum_{i=1}^{n} c_i f_i$$
, luego

$$f(v_j) = \sum_{i=1}^{n} c_i f_j(v_j) = \sum_{i=1}^{n} c_i \delta i j = c_j.$$

En particular, si f es el funcional cero, $f(v_i) = 0$, $\forall j \ y \ por \ lo \ tanto \ todos \ los \ c_i \ son \ cero.$

Entonces $\{f_1, \dots, f_n\}$ son l.i. y ya sabemos que dim $V^* = n$, surge que $B^* = \{f_1, \dots, f_n\}$ es una base para V^* , es la llamada base dual de B.

Teorema 3.18 Sea V un espacio vectorial de dimensión finita sobre un cuerpo \mathbb{K} y sea $B = \{v_1, \dots, v_n\}$ una base ordenada de V. Entonces existe una única base dual $B^* = \{f_1, \dots, f_n\}$ de V^* tal que $f_i(v_j) = \delta_{ij}$. Para cada funcional lineal f sobre V se tiene que

$$f = \sum_{i=1}^{n} f(v_i) f_i,$$

y para cada vector $v \in V$ se tiene que $v = \sum_{i=1}^{n} f_i(v)v_i$.

Demos: Ya vimos que existe una única base que es la base dual de B.

Si $f \in V^*$, luego f es combinación lineal de los elementos f_i , $f = \sum_{i=1}^n c_i f_i$ y los escalares c_i deben ser

 $c_i = f(v_i)$. De manera similar, si $v = \sum_{i=1}^n x_i v_i \in V$, luego

$$f_j(v) = \sum_{i=1}^n x_i f_j(v_i) = \sum_{i=1}^n x_i \delta_{ij} = x_j.$$

Luego la única expresión para v como combinación lineal de los v_i es $v = \sum_{i=1}^n f(v_i)v_i$, como queríamos probar.

Observación 3.13 Si $B = \{v_1, \dots, v_n\}$ es una base ordenada de V y $B^* = \{f_1, \dots, f_n\}$ es la base dual, entonces f_i es precisamente la función que le asigna a cada vector $v \in V$ la coordenada i-ésima de v relativa a la base ordenada B. Así podemos llamar a f_i las funciones coordenadas para B. Si $f \in V^*$ y $f(v_i) = a_i$, entonces cuando

$$v = x_1v_1 + \cdots + x_nv_n$$
 \rightarrow $f(v) = a_1x_1 + \cdots + a_nx_n$

Es decir, si elegimos una base ordenada B para V y representamos a cada vector de V por la n-upla de sus coordenadas (x_1, \dots, x_n) relativas a B, luego cada funcional lineal sobre V tiene la forma $f(v) = a_1x_1 + \dots + a_nx_n$. Esto es la generalización natural del Ejemplo 1.

Ejemplo 3.13 Sea V el espacio vectorial de todos los polinomios de \mathbb{R} en \mathbb{R} con grado menor o igual a 2. Sean t_1, t_2, t_3 tres números reales cualesquiera y sea $L_i(p) = p(t_i)$. Resultan funcionales lineales sobre V, y son l.i. pues si $L = c_1L_1 + c_2L_2 + c_3L_3$ y L = 0 (L(p) = 0 para cada polinomio p en V) entonces aplicando L a los polinomios $1, x, x^2$ se obtiene

$$c_1 + c_2 + c_3 = 0,$$

$$t_1c_1 + t_2c_2 + t_3c_3 = 0,$$

$$t_1^2c_1 + t_2^2c_2 + t_3^2c_3 = 0,$$

y de aquí surge que $c_1 = c_2 = c_3 = 0$ pues la matriz

$$\begin{bmatrix} 1 & 1 & 1 \\ t_1 & t_2 & t_3, \\ t_1^2 & t_2^2 & t_3^2 \end{bmatrix}$$

es inversible cuando t_1 , t_2 , t_3 distintos.

Entonces los L_i son independientes y como la dim V=3, estos funcionales forman una base para V^* . Nos preguntamos cual es la base ordenada de V para la cual ésta es su base dual. Tal base $\{p_1, p_2, p_3\}$ para V debe satisfacer que $L_i(p_j) = \delta_{ij}$ es decir que $p_j(t_i) = \delta_{ij}$. Se obtiene fácilmente que dichos polinomios están dados por

$$p_1(x) = \frac{(x-t_2)(x-t_3)}{(t_1-t_2)(t_1-t_3)}, \quad p_2(x) = \frac{(x-t_3)(x-t_1)}{(t_2-t_1)(t_2-t_3)}, \quad p_3(x) = \frac{(x-t_1)(x-t_2)}{(t_3-t_1)(t_3-t_2)}.$$

La base $\{p_1, p_2, p_3\}$ para V es interesante pues se tiene que para cada $p \in V$ $p = p(t_1)p_1 + p(t_2)p_2 + p(t_3)p_3$. Así dados $c_1, c_2, c_3 \in \mathbb{R}$ cualesquiera, existe exactamente un polinomio p sobre \mathbb{R} que tiene al menos grado 2 p satisface $p(t_i) = c_i$, p = 1, 2, 3. Dicho polinomio es $p = c_1p_1 + c_2p_2 + c_3p_3$.

Observación 3.14 Relación entre funcional lineal y subespacio

Si f es un funcional lineal no nulo, entonces el rango de f es 1 pues la imagen de f es un subespacio no nulo del campo escalar y por lo tanto debe ser el campo escalar mismo.

Si el espacio V es de dimensión finita n, por el teorema de la dimensión sabemos que

$$\dim(nulf) = \dim V - 1 = n - 1.$$

Definición 3.12 En un espacio vectorial de dimensión finita n, un subespacio de dimensión n-1 se llama hiperespacio o hiperplano o subespacio de codimensión 1.

Definición 3.13 Si V es un espacio vectorial sobre \mathbb{K} y S es un subconjunto de V, el **anulador de** S es el conjunto S° de funcionales lineales sobre V tales que $f(v) = 0, \forall v \in S$.

Observación 3.15 i) S° es un subespacio vectorial aunque S no lo sea.

ii)
$$Si S = \{0\}, S^{\circ} = V^*.$$

iii) Si S = V, S° es el subespacio $\{0\}$ de V.

Teorema 3.19 Sea V un espacio vectorial de dimensión finita sobre el cuerpo IK, y sea W un subespacio de V entonces

$$\dim W + \dim W^{\circ} = \dim V.$$

<u>Demos</u>: Sea dim W = k y $\{v_1, \dots, v_k\}$ una base de W. Elijamos $v_{k+1}, \dots, v_n \in V$ tales que $B = \{v_1, \dots, v_n\}$ sea una base de V.

Sea $\{f_1, \dots, f_n\}$ la base de V^* dual de la base B de V. Veamos que $\{f_{k+1}, \dots, f_n\}$ es base de W° . Ciertamente $f_i \in W^\circ$ para $i = k+1, \dots, n$ pues $f_i(v_j) = \delta ij$ y $\delta_{ij} = 0$ si $i \ge k+1$ y $j \le k$.

De aquí sigue que para $i \ge k+1$, $f_i(v)=0$ cuando v es una combinación lineal de v_1,\cdots,v_n . Los

funcionales f_{k+1}, \dots, f_n son independientes, así que sólo falta ver que generan w° .

Sea $f \in V^*$. Ahora $f = \sum_{i=1}^n f(v_i) f_i$, luego si $f \in W^\circ$ se tiene que $f(v_i) = 0$, $i \le k$ y $f = \sum_{i=k+1}^n f(v_i) f_i$. Así se tiene que dim $W^\circ = n - k$.

Corolario 3.1 Si W es un subespacio k-dimensional de un espacio vectorial V n-dimensional, entonces W es la intersección de (n - k) hiperplanos de V.

<u>Demos</u>: En la demostración anterior, W es exactamente el conjunto de vectores v tales que $f_i(v) = 0$, $i = k + 1, \dots, n$. En el caso k = n - 1, W es el espacio nulo de f_n .

Corolario 3.2 Si W_1 y W_2 son subespacios de un espacio vectorial de dimensión finita, entonces $W_1 = W_2$ si y solo si $W_1^{\circ} = W_2^{\circ}$.

<u>Demos</u>: Si $W_1 = W_2$, obviamente $W_1^{\circ} = W_2^{\circ}$.

Si $W_1 \neq W_2$, entonces uno de los dos subespacios contiene un vector que no está en el otro. Supongamos que existe $v \in W_2$ y $v \notin W_1$.

Por lo anterior existe un funcional f tal que f(u) = 0, $\forall u \in W_1$ pero $f(v) \neq 0$. Entonces $f \in W_1^\circ$ pero $f \notin W_2^\circ$.

Ejemplo 3.14 Consideremos tres funcionales sobre \mathbb{R}^4 .

$$f_1(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + x_4$$

$$f_2(x_1, x_2, x_3, x_4) = 2x_2 + x_4$$

$$f_3(x_1, x_2, x_3, x_4) = -2x_1 - 4x_3 + 3x_4.$$

El subespacio que ellos anulan puede hallarse explícitamente al hallar la matriz escalonada reducida de

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 2 & 0 & 1 \\ -2 & 0 & -4 & 3 \end{bmatrix},$$

que es

$$B = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Luego los funcionales

$$g_1(x_1, x_2, x_3, x_4) = x_1 + 2x_3$$

$$g_2(x_1, x_2, x_3, x_4) = x_2$$

$$g_3(x_1, x_2, x_3, x_4) = x_4.$$

generan al mismo subespacio de $(\mathbb{R}^4)^*$ y anulan al mismo subespacio de \mathbb{R}^4 que f_1 , f_2 , f_3 . El subespacio anulado consiste en los vectores con

$$x_1 = -2x_3,$$
 $x_2 = x_4 = 0.$

Ejemplo 3.15 Sea W el subespacio de \mathbb{R}^5 generado por

$$v_1 = (2, -2, 3, 4, -1)$$

$$v_2 = (-1, 1, 2, 5, 2)$$

$$v_3 = (0, 0, -1, -2, 3).$$

$$v_4 = (1, -1, 2, 3, 0).$$

¿Cómo describimos a W° el anulador de W?

Formemos la matriz $A \times 5$ con los vectores filas v_1, \dots, v_4 y hallemos la forma escalonada reducida

$$A = \begin{bmatrix} 2 & -2 & 3 & 4 & -1 \\ -1 & 1 & 2 & 5 & 2 \\ 0 & 0 & -1 & -2 & 3 \\ 1 & -1 & 2 & 3 & 0 \end{bmatrix} \rightarrow R = \begin{bmatrix} 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Si f es el funcional lineal sobre \mathbb{R}^5

$$f(x_1, x_2, x_3, x_4, x_5) = \sum_{j=1}^{5} c_j x_j,$$

entonces $f \in W^{\circ}$ si y solo si $f(v_i) = 0$, $i = 1, \dots, 4$, por lo tanto, si y solo si

$$\sum_{j=1}^{5} A_{ij} c_j = 0, \ \ 1 \leqslant i \leqslant 4.$$

Esto es equivalente a

$$\sum_{j=1}^5 R_{ij}c_j = 0, \ 1 \leqslant i \leqslant 3.$$

o bien

$$c_1 - c_2 - c_4 = 0$$

$$c_3 + 2c_4 = 0$$

$$c_5 = 0$$

Obtenemos todos esos funcionales lineales f asignándoles valores arbitrarios a los escalares c_2 y c_4 , digamos $c_2 = a$ y $c_4 = b$, entonces hallar los correspondientes $c_1 = a + b$, $c_3 = -2b$ y $c_5 = 0$. Luego W° consiste de todos los funcionales lineales f de la forma

$$f(x_1, x_2, x_3, x_4, x_5) = (a+b)x_1 + ax_2 - 2bx_3 + bx_4.$$

La dimensión de W° es 2 y una base $\{f_1, f_2\}$ puede ser hallada tomando primero a = 1, b = 0 y luego a = 0, b = 1.

$$f_1(x_1, x_2, x_3, x_4, x_5) = x_1 + x_2, \quad f_2(x_1, x_2, x_3, x_4, x_5) = x_1 - 2x_3 + x_4.$$

Un funcional genérico de W $^{\circ}$ *tiene la forma f* = $\alpha f_1 + \beta f_2$.