The points O and P are on a horizontal plane, a distance $8 \,\mathrm{m}$ apart. A ball is thrown from O with speed $u\,\mathrm{m\,s}^{-1}$ at an angle θ above the horizontal, where $\tan\theta = \frac{4}{3}$. At the same instant, a model aircraft is launched with speed $5\,\mathrm{m\,s}^{-1}$ parallel to the horizontal plane from a point $4\,\mathrm{m}$ vertically above P. The model aircraft moves in the same vertical plane as the ball and in the same horizontal direction as the ball. The model aircraft moves horizontally with a constant speed of $5\,\mathrm{m\,s}^{-1}$. After $T\,\mathrm{s}$, the ball and the model aircraft collide.

(a) Find the value of T. [6]

(b) Find the direction in which the ball is moving immediately before the collision. [3]