# Ranking Preferences Deduction Based on Semantic Similarity for the Stable Marriage Problem

Michaël Guedj

UTEC INT, School of IT and New Technologies UTEC – CCI Seine-et-Marne michael.guedj@seineetmarne.cci.fr

ICCI-CC 2016 - Stanford, USA

#### Presentation Outline

- 1 The Stable Marriage Problem
- 2 Semantic Matching for the Job Seeking Problematic
- 3 Proposal: Stable Marriage Problem Using the Underlying Semantic Structure
- 4 Conclusion

#### Presentation Outline

- 1 The Stable Marriage Problem
- 2 Semantic Matching for the Job Seeking Problematic
- 3 Proposal: Stable Marriage Problem Using the Underlying Semantic Structure
- 4 Conclusion

# Stable Marriage Problem

- Set of men  $M = \{m_1, ..., m_n\};$
- Set of women  $W = \{w_1, ..., w_n\};$
- A preference function  $\pi$ .

#### Preference Function $\pi$

$$\pi: \left\{ egin{array}{ll} m \longrightarrow \langle w_{\mathsf{a}},...,w_{\mathsf{b}} 
angle & \mathsf{a} \ \mathsf{permutation} \ \mathsf{of} \ W \ \longrightarrow \langle m_{\alpha},...,m_{eta} 
angle & \mathsf{a} \ \mathsf{permutation} \ \mathsf{of} \ M \end{array} 
ight.$$

## Preference Function – Example

- $M = \{m_1, m_2, m_3\}$
- $W = \{w_1, w_2, w_3\}$

#### **Preferences**

| Males                  | Females                |
|------------------------|------------------------|
|                        | $w_1: m_1 > m_2 > m_3$ |
|                        | $w_2: m_3 > m_1 > m_2$ |
| $m_3: w_3 > w_1 > w_2$ | $w_3: m_2 > m_1 > m_3$ |

# Matching

 $\mathfrak{M}\subset M\times W$  such that each man (resp. woman) appears in exactly one oredered pair in the set  $\mathfrak{M}.$ 

Example for 
$$M = \{m_1, m_2, m_3\}$$
 and  $W = \{w_1, w_2, w_3\}$ :

$$\mathfrak{M}_1 = \{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}.$$

# **Blocking Pair**

A couple  $(m, w) \notin \mathfrak{M}$  such that there exists  $m_x \in M$  and  $w_x \in W$  such that:

- $(m, w_x) \in \mathfrak{M};$
- $(m_X, w) \in \mathfrak{M};$
- m prefers w over his partner;
- w prefers m over her partner.

#### Blocking Pair - Example

#### Preferences

| Males                  | Females                |
|------------------------|------------------------|
| $m_1: w_1 > w_2 > w_3$ | $w_1: m_1 > m_2 > m_3$ |
| $m_2: w_2 > w_1 > w_3$ | $w_2: m_3 > m_1 > m_2$ |
| $m_3: w_3 > w_1 > w_2$ | $w_3: m_2 > m_1 > m_3$ |

$$\mathfrak{M}_1 = \{(m_1, w_2), (m_2, w_3), (m_3, w_1)\}$$

 $(m_1, w_1)$  is a blocking pair for  $\mathfrak{M}_1$  because:

- $m_1$  prefers  $w_1$  over  $w_2$ ;
- $w_1$  prefers  $m_1$  over  $m_3$ .

## Stable Matching

**Definition:** A matching  $\mathfrak M$  is stable if there is no blocking pair for  $\mathfrak M$ .

## Stable Matching – Example

#### Preferences

| Males                  | Females                |
|------------------------|------------------------|
| $m_1: w_1 > w_2 > w_3$ | $w_1: m_1 > m_2 > m_3$ |
| $m_2: w_2 > w_1 > w_3$ | $w_2: m_3 > m_1 > m_2$ |
| $m_3: w_3 > w_1 > w_2$ | $w_3: m_2 > m_1 > m_3$ |

$$\mathfrak{M}_2 = \{(m_1, w_1), (m_2, w_2), (m_3, w_3)\}.$$

 $\mathfrak{M}_2$  is stable.

# Classical Results [Shapley & Gale 1962]

```
1: procedure GALE-SHAPLEY(The sets M and W of resp. the
   men and the women)
       while there is a bachelor man m do
2:
          w \leftarrow the first woman in \pi(m) to which m has not yet
3:
   proposed:
          if w is single then
4:
              match m with w;
5:
          else if m' <_w m where m' is w's current partner then
6:
              match m with w and set m' bachelor:
7:
8:
          else
              w rejects m and m remains bachelor;
9:
          end if
10:
11:
       end while
12: end procedure
```

# Classical Results [Shapley & Gale 1962]

**Theorem:** The Gale-Shapley algorithm computes a stable matching in  $O(n^2)$ -time (man-optimal and woman-pessimal).

**Corollary:** For any instance of the Stable Marriage Problem, there exists a stable matching.

## The Compact Stable Marriage Problem

- Using a compact preference formalism as input for the Stable Marriage Problem.
- Introduced by [Pilotto-al 09] using CP-nets.
- Modification of the primitives of the resolution algorithm.
- CP-nets may be not so natural.

#### Presentation Outline

- 1 The Stable Marriage Problem
- 2 Semantic Matching for the Job Seeking Problematic
- 3 Proposal: Stable Marriage Problem Using the Underlying Semantic Structure
- 4 Conclusion

## The Job Seeking/Recruitment Problem

#### Goal:

- Retrieve a list of job positions to a job applicant based on his/her preferences;
- Generate a list of job candidates to a recruiter based on the job requirements.

# Resolution [Zhong-al 02] and [Bizer-al 05]

- Profiles of the actors using concepts from a taxonomy.
- Semantic Ranking using this taxonomy.

#### Example of a Taxononomy (Skills Hierarchy)



#### **Profiles**

$$r = [ASP, BigData]$$
  
 $s_1 = [JEE, SQL]$   
 $s_2 = [Scala, BigData]$ 



#### Weightened Profiles

```
r = [(ASP, 0.7), (BigData, 0.3)]

s_1 = [(JEE, 0.5), (SQL, 0.5)]

s_2 = [(Scala, 0.5), (BigData, 0.5)]
```



#### Semantic Similarity

$$\begin{aligned} sim_c(c_1,c_2) &= 1 - d_c(c_1,c_2) \\ sim_c(ASP,JEE) &= 1 - d_c(ASP,JEE) = \frac{7}{8} \\ sim_c(ASP,Scala) &= 1 - d_c(ASP,Scala) = \frac{5}{8} \end{aligned}$$



#### Semantic Distance

$$sim_c(c_1, c_2) = 1 - d_c(c_1, c_2)$$

$$d_c(c_1, c_2) = d_c(c_1, cpp) + d_c(c_2, cpp)$$
  
 $d_c(c_x, cpp) = milestone(cpp) - milestone(c_x)$ 

$$milestone(c_x) = \frac{1}{2k^{level(c_x)}}$$



#### Competence Level Similarity

$$sim_p(\mathit{cl}_1,\mathit{cl}_2) = \left\{ egin{array}{ll} 1 - lpha(\mathit{cl}_1 - \mathit{cl}_2) & ext{if } \mathit{cl}_1 > \mathit{cl}_2 \\ 1 & ext{otherwise} \end{array} 
ight.$$
 where  $0 \leq lpha \leq \frac{1}{4}$ 

## Global Similarity of Two Profiles

$$\mathit{Sim}(r,s) = \sum_{i} w(r_i). \max_{j} \{ sim_c(r_i,s_j). sim_p(p_{r_i},p_{s_j}) \}$$
 where  $\sum_{i} w(r_i) = 1$ 

## Global Similarity of Two Profiles

$$r = [(ASP, 0.7), (BigData, 0.3)]$$
  
 $s_1 = [(JEE, 0.5), (SQL, 0.5)] \longrightarrow Sim(r, s_1) \simeq 0.82$   
 $s_2 = [(Scala, 0.5), (BigData, 0.5)] \longrightarrow Sim(r, s_2) \simeq 0.72$ 



#### Presentation Outline

- 1 The Stable Marriage Problem
- 2 Semantic Matching for the Job Seeking Problematic
- 3 Proposal: Stable Marriage Problem Using the Underlying Semantic Structure
- 4 Conclusion

# Proposal: Semantic Stable Marriage Problem

Derive the choices of the agents (men and women) without that these ones have actually given explicitly their choices.

 $\rightarrow$  Using the underlying semantic structure.

# Extending the metaphor of the "marriage"

- Consider another problem: the Dating Problem.
- Goal: give a ranking over the other sex's members.

Here we consider the resolution, previously exposed, of the Job Seeking Problem (similar to the Dating Problem).

# Preprocessing Using the Semantic Similarity

- Operate a preprocessing (to obtain the ranks) over the actors before running the Gale-Shapley Algorithm.
- To do this we have to consider a ranking measure, based on the semantic similarity measure Sim defined in the state of the art of the Job Seeking Problem resolution.

# Preprocessing Using the Semantic Similarity

```
1: procedure Gale-Shapley_With_Preprocessed_Ranking(The
    sets M and W of resp. the men and the women)
       // Find the preferences
       for m \in M do
 3:
           \pi(m) \leftarrow \text{rank the women in } W \text{ following } Sim_m;
 4:
      end for
 5:
     for w \in W do
 6:
           \pi(w) \leftarrow \text{rank the men in } M \text{ following } Sim_w;
 7:
       end for
8:
       Gale-Shapley(M, W);
 9:
10: end procedure
```

#### Presentation Outline

- 1 The Stable Marriage Problem
- 2 Semantic Matching for the Job Seeking Problematic
- 3 Proposal: Stable Marriage Problem Using the Underlying Semantic Structure
- 4 Conclusion

#### Conclusion

- An method to resolve the Compact Stable Marriage Problem using a semantic approach.
- $\rightarrow$  Simple approach.
- $\bullet \to \mathsf{Allow}$  a convenient way to resolve the Stable Marriage Problem.

#### **Future Work**

- Study of the Stable Marriage Problem variants.
- A "better" similarity measure using a different type of taxonomy.