Planned Missing Data in Longitudinal Dyadic Modeling

Alexander M. Schoemann ¹ John K. Sakaluk ²

¹East Carolina University

²University of Victoria

Developmental Methods 2016

Overview

- Dyadic data analyses
- Missing data handling
- Planned missing data designs with dyadic data

Dyadic Data

- Data collected from two individuals
 - Usually individuals have a social relationship
 - Usually measure the same variables on each member of the dyad
 - Responses within dyad are not independent

Dyadic Data

- Distinguishability whether dyad members can be "told apart"
 - AKA: Exchangeability
 - Distinguishable dyads (non-exchangeable): dyad where each member has a unique role
 - Heterosexual couples, parent and child, older and younger siblings
 - Indistinguishable dyads (exchangeable): dyad where both members have the same role
 - Homosexual couples, twins, friends, coworkers

Data Structures for dyadic data

- Three structures for dyadic data from a standard design
 - Individual (long)
 - Dyad (wide)
 - Pairwise
- Choice of the data structure depends on the analysis technique and the type of dyad

Individual data structure

- Each row represents an individual's score
 - There is a variable representing dyad membership
 - Between dyad variables are entered twice (once on each row)

Individual data structure

```
dpxyz
  1 1 1 5 9 3
  2 1 2 2 8 3
  3 2 1 6 3 7
## 4 2 2 4 6 7
## 5 3 1 3 6 5
## 6 3 2 9 7 5
```

Dyad data structure

- Each row represents a dyad
 - Responses from different members of the dyad are in different variables

Dyad data structure

```
d x.1 y.1 z.1 x.2 y.2 z.2
       5
## 3 2 6 3 7 4 6 7
## 5 3
       3
                     5
```

Longitudinal Dyadic Models

- Common models with dyads include:
 - Cross-lagged panel model Actor-Partner Interdependence Model (CP-APIM)
 - Growth curve models

CP-APIM

Growth Curve Model

Missing data in dyadic data

- Rarely discussed by dyadic researchers
 - Missing data strategies only mentioned in about 30% of dyadic papers
 - Deletion strategies tend to dominate (followed by FIML)
- Dependence in dyadic data provides special challenges with missing data.
 - Techniques need to incorporate distinguishability when recovering missing data

Patterns of missingness in longitudinal dyadic data

- Three patterns of missingness
 - Missing data by item
 - Missing data by time
 - Missing data by person
 - More on this later!

Planned missing data

- Missing data do not have to be a problem!
- Two types of planned missing data designs:
 - Time based planned missing data designs
 - Control participant entry into the study (e.g., cohort sequential design)
 - Participant based planned missing data designs
 - Randomly assign participants to receive only a subset of items

Planned missing data

- For dyadic data both planned missing data designs can be used
 - Participant based designs to reduce questionnaire length (e.g. 3-Forms planned missing data designs)
 - Time based planned missing data designs (e.g. control when dyads are measured in a longitudinal study)

Planned missing data

- A third type of planned missing data design is possible with dyadic data: dyad based planned missing
 - Some dyads have data from both members
 - Some dyads have data only collected from one dyad member
- This design can lead to cost savings/power increases compared to assessing all dyad members

Dyad	Person 1	Person 2
1	Χ	X
2	Χ	X
3	Χ	0
4	Ο	X

- Missing data in this designs can be assigned or naturally occurring
 - When missingness is assigned (dyads are randomly assigned to have 1 or 2 members measures) missingness is MCAR
 - When missingness is natural (only 1 member of a dyad responds) missingness is (probably) MAR or MNAR
 - Researchers should measure dyad/partner variables related to non-response

- Missing data should (if possible) be balanced across individuals
 - Equal missing for both members in distinguishable dyads
 - Missingness equally distributed across members for indistinguishable dyads
 - Data management

- Example power analysis with MCAR planned missing data
 - Total budget \$10000
 - Dyads: \$50 per dyad
 - Singles: \$10 per person
 - ullet With no planned missing n=200 dyads

Population model

N dyad	N individuals	Power
200	0	.637
190	50	.643
176	120	.667
111	445	.552

Longitudinal dyadic planned missing data

- Longitudinal designs provide additional complexity with planned missing data designs
 - Different members of a dyad can be missing at different times of measurement
 - Time and dyad planned missing data can be integrated into the same study
 - Accelerated longitudinal designs with dyad planned missing

Dyad	P1 T1	P2 T1	P1 T2	P2 T2
1	Χ	Χ	0	X
2	Χ	Ο	Χ	Χ
3	Χ	Ο	Ο	Χ
4	Ο	X	X	Ο

Longitudinal dyadic planned missing data

- Recommendations
 - Alternate which dyad member is missing across time points
 - e.g. if husband is missing at time 1, wife would be missing at time 2
 - Try to assess all dyads together for at least one time point

Future directions

- Provide guidance on dyadic planned missing data designs
 - Ratio of dyads to singles
 - Distribution of singles across dyad members
 - Distribution of singles across time

Thank you!

Slides from today at:

http://MARlab.org/Supplemental_Materials/

• email: schoemanna@ecu.edu

Simulation population values I

This is lavaan 0.5-20

```
## lavaan is BETA software! Please report any bugs.
                         rhs label est
##
            lhs op
## 1 SATISFACTION ~ ACT_HOUSE a -0.591
## 2 SATISFACTION ~ PART_HOUSE p 0.888
         PSATIS ~ ACT_HOUSE p
## 3
                                   0.888
         PSATIS ~ PART_HOUSE a -0.591
## 4
## 5
   SATISFACTION ~~ SATISFACTION v2 2.382
## 6
         PSATIS ~~
                       PSATIS v2 2.382
   ACT HOUSE ~~ ACT HOUSE v1 1.060
## 7
      PART HOUSE ~~ PART HOUSE v1 1.060
## 8
       ACT HOUSE ~~ PART HOUSE
                                   0.417
## 9
## 10 SATISFACTION ~1
                              int1
                                   4.791
```

Simulation population values II

```
## 11 PSATIS ~1 int1 4.791

## 12 ACT_HOUSE ~1 int2 1.630

## 13 PART_HOUSE ~1 int2 1.630

## 14 SATISFACTION ~~ PSATIS 0.812
```