附中联合训练 第三场

(限时: 180min)

题目名称	间谍网络	宫廷守卫	扩散
名称	age	guards	ppg
输入	age.in	guards.in	ppg.in
输出	age.out	guards.out	ppg.out
每个测试点时限	1秒	1秒	1秒
内存限制	128M	128	128
测试点数目	10	10	10
每个测试点分值	10	10	10
题目类型	传统	传统	传统

间谍网络(AGE)

【问题描述】

由于外国间谍的大量渗入,国家安全正处于高度的危机之中。如果 A 间谍手中掌握着关于 B 间谍的犯罪证据,则称 A 可以揭发 B。有些间谍收受贿赂,只要给他们一定数量的美元,他们就愿意交出手中掌握的全部情报。所以,如果我们能够收买一些间谍的话,我们就可能控制间谍网中的每一分子。因为一旦我们逮捕了一个间谍,他手中掌握的情报都将归我们所有,这样就有可能逮捕新的间谍,掌握新的情报。

我们的反间谍机关提供了一份资料,色括所有已知的受贿的间谍,以及他们愿意收受的具体数额。同时我们还知道哪些间谍手中具体掌握了哪些间谍的资料。假设总共有 n 个间谍 (n 不超过 3000),每个间谍分别用 1 到 3000 的整数来标识。

请根据这份资料,判断我们是否有可能控制全部的间谍,如果可以,求出我们所需要支付的最少资金。否则,输出不能被控制的一个间谍。

【输入】

输入文件 age.in 第一行只有一个整数 n。

第二行是整数 p。表示愿意被收买的人数,1≤p≤n。

接下来的 p 行,每行有两个整数,第一个数是一个愿意被收买的间谍的编号,第二个数表示他将会被收买的数额。这个数额不超过 20000。

紧跟着一行只有一个整数 r, $1 \le r \le 8000$ 。然后 r 行, 每行两个正整数, 表示数对 (A, B), A 间谍掌握 B 间谍的证据。

【输出】

答案输出到 age.out。

如果可以控制所有间谍,第一行输出 YES,并在第二行输出所需要支付的贿金最小值。 否则输出 NO,并在第二行输出不能控制的间谍中,编号最小的间谍编号。

【样例1】

age.in	age.out
3	YES
2	110
1 10	

【样例 2】

age.in	age.out
4	NO
2	3
1 100	
4 200	
2	
1 2	
3 /	

【数据规模】

对于 30%的数据,满足 1<=n<=10; 对于 100%的数据,满足 1<=n<=300;

宫廷守卫

【问题描述】

从前有一个王国,这个王国的城堡是一个矩形,被分为 M×N 个方格。一些方格是墙,而另一些是空地。这个王国的国王在城堡里设了一些陷阱,每个陷阱占据一块空地。

一天,国王决定在城堡里布置守卫,他希望安排尽量多的守卫。守卫们都是经过严格训练的,所以一旦他们发现同行或同列中有人的话,他们立即向那人射击。因此,国王希望能够合理地布置守卫,使他们互相之间不能看见,这样他们就不可能互相射击了。守卫们只能被布置在空地上,不能被布置在陷阱或墙上,且一块空地只能布置一个守卫。如果两个守卫在同一行或同一列,并且他们之间没有墙的话,他们就能互相看见。(守卫就像象棋里的车一样)

你的任务是写一个程序,根据给定的城堡,计算最多可布置多少个守卫,并设计出布置 的方案。

【输入】

第一行两个整数 M 和 $N(1 \le M, N \le 200)$,表示城堡的规模。

接下来M行N列的整数,描述的是城堡的地形。第i行i列的数用aii表示。

a_{i,j}=0,表示方格[i,j]是一块空地;

a_{i,i}=1,表示方格[i,j]是一个陷阱;

a_{i,j}=2,表示方格[i,j]是墙。

【输出】

第一行一个整数 K,表示最多可布置 K 个守卫。

此后 K 行,每行两个整数 xi 和 yi,描述一个守卫的位置。

【样例】

guards.in	guards.out
3 4	2
2000	1 2
2 2 2 1	3 3
0 1 0 2	

样例数据如图 5-2 (黑色方格为墙, 白色方格为空地, 圆圈为陷阱, G表示守卫)

【数据规模】

对于 30%的数据,满足 1<=n, m<=10;

对于 80%的数据,满足 1<=n, m<=100;

对于 100%的数据,满足 1<=n, m<=200;

扩散

【问题描述】

在平面上有n个点,一个点每过一个单位时间就会向4个方向(上下左右)扩散一个距离,如下图所示:

两个点 a 和 b 连通,记作 e(a,b),当且仅当 a、b 的扩散区域有公共部分。连通块的定义是块内的任意两个点 u、v 都必定存在路径 $e(u,a0),e(a0,a1),\cdots\cdots e(ak,v)$ 。给定平面上 n 个点的坐标,问最早什么时刻它们形成一个连通块。

【输入文件】

第一行一个数: n

下面 n 行,每行两个整数 x,y,代表一个点的坐标。

【输出文件】

一个整数,表示最早的时刻所有点形成的连通块。

【样例输入】

2

0 0

5 5

【样例输出】

5

【数据规模】

对于 20%的数据, 满足 1<=n<=5; 1<=x[i],y[i]<=50;

对于 100%的数据, 满足 1<=n<=50;1<=x[i],y[i]<=10^9