Introduction to pattern recognition

Outline:

- 1. What is pattern recognition?
- 2. How to perform pattern recognition?
- 3. Some examples
- 4. Components of a pattern recognition system
- 5. How to evaluate a pattern recognition system?

Introduction

Outline:

- 1. What is pattern recognition?
- 2. How to perform pattern recognition?
- 3. Some examples
- 4. Components of a pattern recognition system
- 5. How to evaluate a pattern recognition system?

Examples of patterns

What is pattern recognition?

- One of the most common applications of machine learning
- Important component of AI systems
- Aiming to give human perception capabilities to machines
- Process of recognizing regularities in data by using machine learning algorithms, based on statistical information, historical data, or the machine's memory.
- During recognition given objects are assigned to prescribed classes

People detection

Face recognition

License plate recognition

- OCR (Optical Character Recognition): handwritten, printed text,...
- Biometrics: face, finger prints, speech,...
- Medical diagnosis: X-ray, MRI analysis,...
- Biology: fruit, leaf,...
- Education
- Smart transportation: traffic light, traffic sign,...

- Security surveillance
- Entertainment, sport
- Agriculture
- Commercial
- Military technology: target recognition, satellite image analysis,...
 and more...

Introduction

Outline:

- 1. What is pattern recognition?
- 2. How to perform pattern recognition?
- 3. Some examples
- 4. Components of a pattern recognition system
- 5. How to evaluate a pattern recognition system?

The statistical way

- Problems with grid-by-grid comparison: too costly
- Solution: artificial intelligence/machine learning
- Two phases: learning and classification
- Learning: learn the rule from data (supervised and unsupervised)
- Classification: decide a pattern to a known category/class

Variability challenges

- Intra-class
- Ex: different typefaces of letter "T"

Schriftbild Schriftbild

Schriftbild
Schriftbild
Schriftbild

Variability challenges

Inter-class

Ex: lisianthus (hoa cát tường) and carnation (hoa cẩm chướng)

Introduction

Outline:

- 1. What is pattern recognition?
- 2. How to perform pattern recognition?

3. Some examples

- 4. Components of a pattern recognition system
- 5. How to evaluate a pattern recognition system?

Example 1

Problem analysis

- Set up a camera
- Take some sample images
- Note physical differences (features):
 - Length
 - Lightness
 - Width
 - Number and shape of fins
 - > Position of the mouth, etc...
- Classify fish

Implementation

To isolate fishes from one another and from the background

To reduce the data by measuring certain features

To discriminate salmon and sea bass (by statistical, by machine learning)

Feature selection

Sea bass is generally longer than salmon → Length becomes a feature.

Feature selection

- Lightness feature: better than length feature but not adequate
- Move the decision boundary toward smaller values of lightness to reduce the number of sea bass that are classified as salmon

Feature selection

Multiple features Lightness + width Fish $x = [x_1, x_2]$ width Lightness width salmon . sea bass 22 21 20 **Combination is better** 19 18 17 16 15

6

8

lightness

10

14

How many features

- More is not always better
- There could be redundancy
- Over complication can occur

Classification model selection

- There is a tradeoff between complexity of the decision rules and their performances to unknown patterns.
- Generalization: The ability of the classifier to produce correct results on novel patterns.
- Simplify the decision boundary!

Example 2

- Data:
- Images with people (positive)
- Images without people (negative)

- Modeling:
- HOG features
- SVM classification model

Best hyperplane Human Non-human

- Detecting:
- Sliding window
- Detecting aperson/non-personwithin a slidingwindow(HOG+SVM)

- Detecting:
- Sliding window
- Detecting a
 person/non-person
 within a sliding
 window
 (HOG+SVM)

- Image pyramic:
- To change the window size

https://www.youtube.com/watch?v=sDByl84n5mY

Introduction

Outline:

- 1. What is pattern recognition?
- 2. How to perform pattern recognition?
- 3. Some examples
- 4. Components of a pattern recognition system
- 5. How to evaluate a pattern recognition system?

Pattern recognition system

The design cycle

Performance evaluation

Computational complexity evaluation

Teachable machine

- https://teachablemachine.withgoogle.com/
- A web-based tool that:
- makes creating machine learning models (for sites, apps,...) fast,
 easy, and accessible to everyone no coding requires
- teaches a model to recognize images (from files/webcam), sounds
 (MP3, *.wav), poses (from files/webcam)

How to use teachable machine

https://youtu.be/DFBbSTvtpy4

https://youtu.be/n-zeeRLBgd0?t=50

https://youtu.be/CO67EQ0ZWgA

Fruit recognition:

https://www.youtube.com/watch?v=cBOSGQo1A10

Grading fruit:

https://www.youtube.com/watch?v=a8UZkCQqzNQ

Lung cancer prediction:

https://www.youtube.com/watch?v=JfZIJzWWhI0