Real Analysis Homework 2

Carson Connard

Problem 1

Let F be an increasing, right continuous function defined on \mathbb{R} and consider the measure μ_F induced by F on $\mathcal{B}_{\mathbb{R}}$. Show that (a) $\mu_F(\{a\}) = F(a) - F(a^-)$; (b) $\mu_F([a,b]) = F(b) - F(a^-)$; (c) $\mu_F([a,b]) = F(b^-) - F(a^-)$; (d) $\mu_F((a,b)) = F(b^-) - F(a)$.

Solution. We will solve the first problem, and use the result in other problems.

(a) First, let us consider the fact that

$$\{a\} = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, a\right].$$

Moreover, if we consider each $J_n := (a - \frac{1}{n}, a]$, we see that $J_1 \supset J_2 \supset \cdots$. Let us invoke the property of continuity from above of $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \mu_F)$, then we have the following:

$$\mu_F(\{a\}) = \mu\left(\bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, a\right]\right) = \lim_{n \to \infty} \mu\left(\left(a - \frac{1}{n}, a\right]\right) = \lim_{n \to \infty} (F(a) - F(a - 1/n))$$
$$= F(a) - \lim_{n \to \infty} F(a - 1/n).$$

Since F is increasing, we have that $\lim_{n\to\infty} F(a-1/n) = \lim_{x\to a^-} F(x) = F(a^-)$, and since F is only taken to be right continuous, we know that we cannot have that $\lim_{n\to\infty} F(a-1/n) = \lim_{x\to a} F(x) = F(a)$. So, $\mu(\{a\}) = F(a) - F(a^-)$.

(b) Observe that $[a, b] = (a, b] \cup \{a\}$. Then we have that $\mu_F([a, b]) = \mu_F((a, b]) + \mu_F(\{a\})$. Recall that in class we showed that $\mu_F((a, b]) = F(b) - F(a)$, and from part (a), we have

$$\mu_F([a,b]) = \mu_F((a,b]) + \mu_F(\{a\}) = (F(b) - F(a)) + (F(a) - F(a^-)) = F(b) - F(a^-).$$

(c) Observe that $[a,b] = [a,b) \cup \{b\}$. Then we have that $\mu_F([a,b]) = \mu_F([a,b]) + \mu_F(\{b\})$, or equivalently, $\mu_F([a,b]) = \mu_F([a,b]) - \mu_F(\{b\})$. From parts (a) and (b), we have

$$\mu_F([a,b]) = \mu_F([a,b]) - \mu_F(\{b\}) = (F(b) - F(a^-)) - (F(b) - F(b^-)) = F(b^-) - F(a^-).$$

(d) Observe that $(a, b) = (a, b] \setminus \{b\}$. Then we have that $\mu_F((a, b)) = \mu_F((a, b)) - \mu_F(\{b\})$. So from what we showed in class and from part (a), we have

$$\mu_F((a,b)) = \mu_F((a,b)) - \mu_F(\{b\}) = (F(b) - F(a)) - (F(b) - F(b^-)) = F(b^-) - F(a).$$

Problem 2

Let F be an increasing, right continuous function defined on \mathbb{R} . Let μ be the completion of the measure μ_F induced by F on $\mathcal{B}_{\mathbb{R}}$ and denote by \mathcal{M}_{μ} the domain of μ . So we have,

$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} (F(b_j) - F(a_j)) : E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\} \text{ for } E \in \mathcal{M}_{\mu}.$$

1

Prove the following statements. Let $E \in \mathcal{M}_{\mu}$.

(a)
$$\mu(E) = \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) : E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}.$$

Proof. (From Folland Lemma 1.17) Let us define $\nu(E) := \inf \left\{ \sum_{j=1}^{\infty} \mu((a_j, b_j)) : E \subset \bigcup_{j=1}^{\infty} (a_j, b_j) \right\}$. We aim to show that $\nu(E) = \mu(E)$. Now suppose that $E \subset \bigcup_{j=1}^{\infty} (a_j, b_j)$, in which each (a_j, b_j) is a countable (without loss of generality) disjoint union of half intervals of the form $(c_j^k, c_j^{k+1}]$, which we can denote I_j^k for $k \in \mathbb{N}$ and where $\{c_j\}$ is any sequence in which $c_j^1 = a_j$ and $c_j^k \to b_j$ as $k \to \infty$. Note that these I_j^k 's are indeed measurable, as each interval is of the form $\bigcap_n (c_j^k, c_j^{k+1} + 1/n)$, and each of these sets are open in \mathbb{R} . Clearly by this construction, $E \subset \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} I_j^k$, and so via countable additivity, we have

$$\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \mu(I_j^k) = \sum_{j=1}^{\infty} \mu((a_j, b_j))$$
 by construction of I_j^k
$$\geq \mu(E)$$
 def. of infimum.

So, we have shown that $\nu(E) \ge \mu(E)$.

Conversely, take some arbitrary $\epsilon > 0$. Then there exists some $\{(a_j, b_j]\}_{j=1}^{\infty}$ such that $E \subset \bigcup_{j=1}^{\infty} (a_j, b_j]$ and $\mu(E) \leq \sum_{j=1}^{\infty} \mu((a_j, b_j]) \leq \mu(E) + \epsilon$. Also for each j there exists some $\delta_j > 0$ such that $F(b_j + \delta_j) - F(b_j) < \epsilon/(2^j)$, which follows from the right continuity of F. Then we have $E \subset \bigcup_{j=1}^{\infty} (a_j, b_j + \delta_j)$ since we already have $E \subset \bigcup_{j=1}^{\infty} (a_j, b_j]$, and

$$\sum_{j=1}^{\infty} \mu((a_j, b_j + \delta_j)) \le \sum_{j=1}^{\infty} \mu((a_j, b_j]) + \epsilon \qquad \text{(since } (a_j, b_j + \delta_j) = (a_j, b_j] \cup [b_j, b_j + \delta_j) \text{ and } \sum_j \frac{\epsilon}{2^j} = \epsilon)$$

$$\le \mu(E) + 2\epsilon, \qquad \text{(since } \sum_{j=1}^{\infty} \mu((a_j, b_j]) \le \mu(E) + \epsilon)$$

and therefore $\nu(E) \leq \mu(E)$ since we can force $\epsilon \to 0$.

Therefore, $\mu(E) = \nu(E)$, and we have shown our desired result.

(b) $\mu(E) = \inf \{ \mu(U) : E \subset U \text{ and } U \text{ is open} \}.$

Proof. By part (a), we have that for any $\epsilon > 0$, there exists a set of intervals $\{(a_j,b_j)\}$ such that $E \subset \bigcup_{j=1}^{\infty}(a_j,b_j)$ and $\sum_{j=1}^{\infty}(a_j,b_j) \leq \mu(E) + \epsilon$. If we then take $U := \bigcup_{j=1}^{\infty}(a_j,b_j)$, then U must be open since it is a countable union of open sets, and we have that $E \subset U$ and $\mu(U) \leq \sum_{j=1}^{\infty}(a_j,b_j) \leq \mu(E) + \epsilon$. Since $E \subset U$ we have that by monotonicity, $\mu(E) \leq \mu(U)$, This implies that $\mu(E) \leq \mu(U) \leq \mu(E) + \epsilon$. Forcing ϵ to 0, we have that $\mu(E) = \inf\{\mu(U) : E \subset U, U \text{ open}\}$.

(c) $\mu(E) = \sup \{ \mu(K) : K \subset E \text{ and } K \text{ is compact} \}.$

Proof. Let us suppose that E is bounded. If E is closed, then by definition we have that E is compact, and therefore equality holds since K is then compact as well. If E is open, then let us take some open U such that $\overline{E} \setminus E \subset U$ such that $\mu(U) \leq \mu(\overline{E} \setminus E) + \epsilon$. Now define $K = \overline{E} \setminus U$. Then certainly K is compact since \overline{E} is bounded and via DeMorgan's Laws we have that $\overline{E} \setminus U = \overline{E} \cap U^c$ is closed, and also $K \subset E$, and

$$\mu(K) = \mu(E) - \mu(E \cap U) = \mu(E) - [\mu(U) - \mu(U \setminus E)] \ge \mu(E) - \mu(U) + \mu(\overline{E} \setminus E) \ge \mu(E) - \epsilon.$$

If E is unbounded, then take $E_j = E \cap (j, j+1]$. By the preceding argument, we have that for any $\epsilon > 0$ there exists some compact $K_j \subset E_j$ such that $\mu(K_j) \geq \mu(E_j) - \epsilon/(2^j)$. Denote $H_n = \bigcup_{j=-n}^n K_j$. Then H_n is also compact, $H_n \subset E$, and $\mu(H_n) \geq \mu(\bigcup_{j=-n}^n E_j) - \epsilon$. Since $\mu(E) = \lim_{n \to \infty} \mu(\bigcup_{j=-n}^n E_j)$, we have equality. \square

Problem 3

Let F be an increasing, right continuous function defined on \mathbb{R} . Let μ be the completion of the measure μ_F induced by F on $\mathcal{B}_{\mathbb{R}}$ and denote by \mathcal{M}_{μ} the domain of μ . If $E \subset X$ the following are equivalent:

- (a) $E \in \mathcal{M}_u$
- (b) $E = V \setminus N_1$, where V is a G_{δ} set and $\mu(N_1) = 0$
- (c) $E = H \cup N_2$, where H is an F_{σ} set and $\mu(N_2) = 0$

Proof. We will show $a \iff b$ and $a \iff c$.

 $(a \Longrightarrow b)$ Consider some bounded set $E \in \mathcal{M}_{\mu}$. Then by parts (b) and (c) of Problem 2, we have that for any $j \in \mathbb{N}$, there exists some sequence of open sets $\{U_j\}$ such that $E \subset U_j \subset U_{j-1} \ \forall j$ and a compact set K_j such that

$$\mu(U_j) - \frac{1}{2^j} \le \mu(E) \le \mu(K_j) + \frac{1}{2^j}.$$

Now let $V = \bigcap_{j=1}^{\infty} U_j$ and $H = \bigcup_{j=1}^{\infty} K_j$. Clearly V is a G_{δ} set by definition. Also we have that $E \subset V$ and $\mu(V) = \mu(E)$ due to how we defined our sets U_j . Let us take $N_1 = V \setminus E$, then $N_1 \in \mathcal{M}_{\mu}$ since $E, V \in \mathcal{M}_{\mu}$. Also since $E \subset V$, we have that $E = V \setminus N_1$. So if $\mu(E) < \infty$, we have that $\mu(N_1) = \mu(V) - \mu(E) = 0$.

Let us now consider some unbounded set E. Since μ is a σ -finite measure, we have that there exists a family of sets $\{E_k\}_{k\in\mathbb{N}}\subset\mathcal{M}_{\mu}$ such that $\mu(E_k)<\infty$ for all k, and that $E=\bigcup_{k=1}^{\infty}E_k$. Now by Problem 2a, we have that for each $k,n\in\mathbb{N}$ there exists some open set $U_{k,n}$ depending on k and n such that $E_k\subset U_{k,n}$, and $\mu(E_k)\leq \mu(U_{k,n})\leq \mu(E_k)+1/(n2^k)$. Let us define $U_n=\bigcup_{k=1}^{\infty}U_{k,n}$. Then certainly U_n is open since each $U_{k,n}$ is open, and $E\subset U_{k,n}\subset U_n$. Then we have the following:

$$\mu(E) \le \mu(U_n) \le \sum_{k=1}^{\infty} \mu(U_{k,n}) \le \sum_{k=1}^{\infty} \mu(E_k) + \sum_{k=1}^{\infty} \frac{1}{n2^k} = \mu(E) + \frac{1}{n}.$$

Now since $\mu(E_k) < \infty$, we see that

$$\mu(U_n \setminus E) \le \sum_{k=1}^{\infty} \mu(U_{k,n} \setminus E_k) = \sum_{k=1}^{\infty} (\mu(U_{k,n}) - \mu(E_k)) \le \sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{n}.$$

So taking now $V := \bigcap_{k=1}^{\infty} U_n$ (which is clearly a G_{δ} set), we see that $E \subset V$ and also

$$\mu(E) \ge \mu(V) \ge \mu(U_n) \ge \mu(E) + \frac{1}{n},$$

which yields $\mu(V) = \mu(E)$. Moreover, we have that $V \setminus E \in \mathcal{M}_{\mu}$ since both V and E are sets in \mathcal{M}_{μ} , and with that, we see

$$\mu(V \setminus E) \le \mu(U_n \setminus E) \le \frac{1}{n}$$

which gives that $\mu(V \setminus E) = 0$ when $n \to \infty$. Setting $N_1 := V \setminus E$, we see that $E = V \setminus N_1$.

 $(a \Longrightarrow c)$ Take some $E \in \mathcal{M}_{\mu}$. Then since σ -algebras are closed under complement, we have that $E^c \in \mathcal{M}_{\mu}$. By the previous section of the proof $(a \Longrightarrow b)$, we have that for some G_{δ} set V and some set N_1 such that $\mu(N_1) = 0$, we have that $E^c = V \setminus N_1 = V \cap N_1^c$ by DeMorgan's Laws. This implies that $E = (V \cap N_1^c)^c = V^c \cup N_1$. Since a complement of a G_{δ} set is an F_{σ} set, we have that V^c must be an F_{σ} set. If we then take $H = V^c$ and redefine $N_2 := N_1$, then we see that $E = H \cup N_2$ as desired.

 $(b \Longrightarrow a)$ Suppose $E = V \setminus N_1$ where V is a G_δ set and $\mu(N_1) = 0$. We know that $V \in \mathcal{M}_\mu$ as it is a G_δ set, and since μ is by definition a complete measure, we have that $N_1 \in \mathcal{M}_\mu$. So then we have $E = V \setminus N_1 \in \mathcal{M}_\mu$ since both both V and N_1 are in \mathcal{M}_μ .

 $(c \Longrightarrow a)$ Take some $E \in \mathcal{M}_{\mu}$ with $E = H \cup N_2$ where H is an F_{σ} set and $\mu(N_2) = 0$. We know that $H \in \mathcal{M}_{\mu}$ since it is an F_{σ} set, and since μ is by definition a complete measure, we have that $N_2 \in \mathcal{M}_{\mu}$ as well. Therefore we have that $E = H \cup N_2 \in \mathcal{M}_{\mu}$.

We have shown $b \iff a \iff c$, and we are done.

Problem 4

The following shows that Lebesgue measure in \mathbb{R} is translation invariant and has a simple behavior under dilations: If $E \subset \mathbb{R}$, and $s, r \in \mathbb{R}$ define the sets $E + s = \{x + s : x \in E\}$, and $rE = \{rx : x \in E\}$. Prove that if $E \in \mathcal{L}$, then $E + s \in \mathcal{L}$ for all $s, r \in \mathbb{R}$. Moreover, m(E + s) = m(E) and m(rE) = |r|m(E).

Proof. Let us recall that \mathcal{L} is the μ_F completion of \mathbb{R} , and the Lebesgue measure $m = \overline{\mu_F}$ where F(x) = x. In particular, that is $\mathcal{L} = \{E \cap F : E \in \mathcal{B}_{\mathbb{R}}, F \subset N, N \in \mathcal{B}_{\mathbb{R}}, m(N) = 0\}$. So, given that $E \in \mathcal{L}$, take $E = A \cup F$ where $A \in \mathcal{B}_{\mathbb{R}}$ and $F \subset N$ for some $N \in \mathcal{B}_{\mathbb{R}}$ such that m(N) = 0.

Now without loss of generality, we can take A and F to be disjoint via the constructions we have used in class and in previous homework. So, we have the following:

$$E + s = (A \cup F) + s = (A + s) \cup (F + s),$$

 $rE = r(A \cup F) = (rA) \cup (rF).$

Since Borel σ -algebras are invariant under translation and dilation, we have that E + s and rE are both contained in \mathcal{L} .

For the second part, take $E \in \mathcal{L}$ and $r, s \in \mathbb{R}$, and define $m_s = m$ and $m_r = |r|m$. Then we have that $m_s = m$ and $m_r = |r|m$ on finite disjoint unions of half intervals. So, let \mathcal{A} be an algebra of finite disjoint unions of half intervals, then we see that $\mathcal{B}_{\mathbb{R}}$ is the σ -algebra generated by \mathcal{A} . Now by Folland Theorem 1.14, we have that indeed, $m_s = m$ and $m_r = |r|m$ are restrictions on $\mathcal{B}_{\mathbb{R}}$.

Now for all $F \subset N$, we have that m(F+s) = m(rF) = m(F) = 0. Thus, we have the following.

$$\begin{split} m(E+s) &= m((A \cup F) + s) = m((A+s) \cup (F+s)) \\ &= m(A+s) + m(F+s) = m(A+s) = m(A) = m(A) + m(F) = m(A \cup F) = m(E), \\ m(rE) &= m(r(A \cup F)) = m((rA) \cup (rF)) = m(rA) + m(rF) \\ &= m(rA) = |r|m(A) = |r|m(A \cup F) = |r|m(E). \end{split}$$

We see that indeed m(E+s) = m(E) and m(rE) = |r|m(E).

Problem 5

Nonmeasurable sets in \mathbb{R} . Consider in [0,1) the equivalence relation $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Define N as the subset of [0,1) that contains exactly one element of each equivalence class. Show that N is not Lebesgue measurable.

Proof. Let us consider said set $N \subset [0,1)$ which contains exactly one member of each equivalence class. Let us take now $R = \mathbb{Q} \cap [0,1)$, and take $N_r := \{x+r: x \in N \cap [0,1-r)\} \cup \{x+r-1: x \in N \cap [1-r,1)\}$ for each $r \in R$. In other words, each N_r is obtained by shifting N to the right by r units, and then bringing the part of N which does not intersect with [0,1) to the left of N, which is equivalent to shifting the section of N which does not intersect with [0,1) to the left by one unit. Certainly by construction we have that $N_r \subset [0,1)$ for each $r \in R$, and every $x \in [0,1)$ belongs to precisely one N_r .

Now, if $y \in N$ and $y \sim x$, then we see that $x \in N_r$ where r = x - y for $x \geq y$, or where r = x - y + 1 for x < y. Note that for distinct r and r', we have that $N_r \cap N_{r'} = \emptyset$, as if there were some element in $N_r \cap N_{r'}$, then we have that there are two distinct elements of N which belong to the same equivalence class: this is a contradiction via the construction of N.

Consider now the Lebesgue measure m. Notice that by the countable additivity of measure and the property that $E \cong F$ implies that m(E) = m(F), we see that $m(N) = m(N \cap [0, 1 - r)) + m(N \cap [1 - r, 1)) = m(N_r)$. Moreover, since R is countable (it is simply a subset of the rationals) and $[0, 1) = \bigsqcup_{r \in R} N_r$, we have

$$m([0,1)) = \sum_{r \in R} m(N_r) = \sum_{n=1}^{\infty} m(N).$$

But recall that m([0,1)) is defined to be equal to 1-0=1: if we have that m(N)>0, then $\sum_{n=1}^{\infty} m(N)=\infty$, and if m(N)=0 then $\sum_{n=1}^{\infty} m(N)=0$. Certainly $0\neq 1\neq \infty$, and we have a contradiction.

Problem 6

Let (X, \mathcal{M}) be a measurable space.

(a) Prove that if $f: X \to \mathbb{R}$ is such that $\{x \in X : f(x) \ge r\}$ for all $r \in \mathbb{Q}$, then f is \mathcal{M} -measurable.

Proof. Consider some arbitrary $a \in \mathbb{R}$. It suffices to show that $[a, \infty) \in \mathcal{B}_{\mathbb{R}}$ implies that $f^{-1}([1, \infty)) \in \mathcal{M}$. We consider two cases: one for $a \in \mathbb{Q}$ and one for $a \in \mathbb{R} \setminus \mathbb{Q}$. If $a \in \mathbb{Q}$, then by our assumptions for f, we have that $f^{-1}([a, \infty)) = \{x \in X : f(x) \geq r\} \in \mathcal{M}$. If a is irrational, then we have that there exists some increasing sequence $\{a_i\}$ which converges to a. In this case, we have $f^{-1}([a_i, \infty))$ is measurable in \mathcal{M} and as such $f^{-1}(\bigcap_{i=1}^{\infty} [a_i, \infty))$ is measurable in \mathcal{M} . So, we have the following:

$$f^{-1}([a,\infty)) = f^{-1}\left(\bigcap_{i=1}^{\infty} [a_i,\infty)\right) = \bigcap_{i=1}^{\infty} f^{-1}([a_i,\infty)) \in \mathcal{M}.$$

So we have seen that $f^{-1}([a,\infty)) \in \mathcal{M}$ for all $a \in \mathbb{R}$. So, f must be \mathcal{M} -measurable.

(b) Prove that if $f: \mathbb{R} \to \mathbb{R}$ is monotone, then f is Borel measurable.

Proof. Consider $a \in \mathbb{R}$. It suffices to show that $f^{-1}([a,\infty)) \in \mathcal{B}_{\mathbb{R}}$. Since \emptyset and \mathbb{R} are included in $\mathcal{B}_{\mathbb{R}}$ by definition, let us assume for the sake of simplicity that $\emptyset \neq f^{-1}([a,\infty)) \neq \mathbb{R}$. Now, if there exists some $b \in \mathbb{R}$ such that for any c < b we have that f(c) < a, then $f^{-1}([a,\infty)) = f^{-1}([f(b),\infty))$. Loosely speaking, we can say that b can be considered to be the smallest element such that f(b) is greater than or equal to f(a). We claim now that $f^{-1}([f(b),\infty)) = [b,\infty)$. If we have some $x \in f^{-1}([f(b),\infty))$, then certainly $f(x) \geq f(b)$. Furthermore, since f is a monotone function, we see $x \geq b$ and $x \in [b,\infty)$. On the other hand, if $x \in [b,\infty)$, we have that $x \geq b$ and since f is monotone, we have that $f(x) \geq f(b)$ and thus $x \in f^{-1}([f(b),\infty))$. Therefore, we have that

$$f^{-1}([a,\infty)) = f^{-1}([f(b),\infty)) = [b,\infty) \in \mathcal{B}_{\mathbb{R}}.$$

Now let us suppose that there does not exist such a $b \in \mathbb{R}$. Because $f^{-1}(a,\infty) \neq \mathbb{R}$, we may assume that there exists a $c \in \mathbb{R}$ such that f(c) < a. Then there exists a bounded below, decreasing sequence $\{b_i\}$ such that $f(b_i) > a \, \forall i$. Indeed, $\{b_i\}$ is bounded below by c and it is decreasing since there does not exist a smallest element b such that $f(b) \geq a$. Now since f is monotone and $f^{-1}([a,\infty)) \neq \emptyset$, we may consider such a sequence which converges to some $b' := \inf\{f^{-1}([a,\infty))\}$.

We claim that $f^{-1}([a,\infty))=(b',\infty)$. So, take $x\in f^{-1}([a,\infty))$. By assumption, we have that there is no smallest element b such that $f(b)\geq f(a)$, and as such, we must have some $y\in f^{-1}([a,\infty))$ such that y< x. Thus b'< x and $x\in (b',\infty)$. On the other hand, take $x\in (b',\infty)$. Since $\{b_i\}\to b'$, we have some n such that $i\geq n$ implies that $x>b_i$. Because f is monotone, we have that $f(x)>f(b_i)$. Therefore f(x)>a and $x\in f^{-1}([a,\infty))$. Now since $(b',\infty)\in\mathcal{B}_{\mathbb{R}}$, we have that $f^{-1}([a,\infty))\in\mathcal{B}_{\mathbb{R}}$. So, we have that f is Borel measurable.