

ى ^{بۇرىكى} نىڭ ئېلىرىنى لىل	■ مدلسازی خوب و ایدهآل
	■ برای فهم بهتر یک مدل خوب و یک مدل ایدهآل، مثـالی از مس مکانیابی بـدون ظرفیـت تسـهیلات (apacitated Facility Location آورده شده است.
	- مدل سازی اول (P1): ■ پارامترها:
	و f : هزینه ثابت مکان زام. i_j مکان i_j هشتری i_j ام. i_j متغییر هما: i_j متغییر هما: i_j
	 منتیر صد. ۲ : ۱ اگر در مکان زام تهسیل قرار گیرد برابر یک، در غیر این صورت برابر صفر است. ۲ : نسبت تفاضایی که مشتری آنام از مکان زام خدمت می گیرد.
14	برالماريزی عندصحيح- مقدمای بر يرالمورزی عندصحيح

spiritifyatis.	■ مدلسازی خوب و ایدهآل- ادامه
sitt des	$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{j=1}^{n} f_{j} y_{j}$
	$\sum_{i=1}^{n} x_{ij} = 1; \forall i = 1, 2,, m;$
	$\sum_{i=1}^{m} x_{ij} \leq m y_{j}; \forall j = 1, 2,, n;$
	$x_{ij} \ge 0; \forall i = 1, 2,, m;, j = 1, 2,, m;$ $y_j \in \{0, 1\}; \forall j = 1, 2,, m;$
10	پر شامروزی عدد صحح- مقدمای پر برناماروزی عدد صحح

مدلسازی خوب و ایده آل- ادامه

■ تعریف یک پوسته محدب (Convex Hull)

 $conv(X) = \{x : x = \sum_{i=1}^{t} \lambda_i x^i, \sum_{i=1}^{t} \lambda_i = 1, for \lambda_i \ge 0, i = 1, 2, ..., t \text{ over}$ $all \text{ feasible subsets } \{x^1, x^2, ..., x^t\} \text{ of } X\}$

برنامه ریزی عددصحیح- مقدمهای بر برنامه ریزی عدد صحیح

5"	Ď.	نبد	4	ب	
	1	k	4	ì	
ě	d	Į		٠	
		ir.	2		

مدلسازی خوب و ایده آل- ادامه

- گزاره اول: یک پوسته محدب، یک چند وجهی (Polyhedron) است.
 - . در X قرار دارد. Conv(X) قرار دارد. X قرار دارد.
 - بر اساس دو گزاره بیان شده، داریم.

 $IP: \{\max\ Cx: x\in X\} = LP: \{\max\ Cx: x\in conv(X)\}$

 P_2 تعریف: اگر یک مجموعه R^n مل را داشته باشیم، و دو مدل P_1 و باشد، آنگاه P_1 را باشد. P_1 را بهتر است اگری

برنامهریزی عددصحیح-مقدمهای بر برنامهریزی عدد صحیح

■ مدلسازی خوب و ایده آل- ادامه

مثال از مسئله کولهپشتی

فرض كنيد داريم:

 $X = \{(0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,1,0,1), (0,0,1,1)\}$

سه مدل ریاضی زیر نیز موجود است.

 $P_1 = \{x \in \mathbb{R}^4 : 0 \le x \le 1,83x_1 + 61x_2 + 49x_3 + 20x_4 \le 100\}$

 $P_2 = \{x \in R^4 : 0 \le x \le 1, 4x_1 + 3x_2 + 2x_3 + x_4 \le 4\}$

 $P_3 = \{x \in \mathbb{R}^4 : 0 \le x \le 1, 4x_1 + 3x_2 + 2x_3 + x_4 \le 4 \\ x_1 + x_2 + x_3 \le 1,$

 $x_1 + x_2 + x_3$ $x_1 + x_4 \le 1\}$

 $P_3 \subset P_2 \subset P_3, P_3 = conv(X)$

**

برنامهریزی عددصحیح-مقدمه ای بر برنامه ریزی عدد صحیح

مطالعات بيشتر

- Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt, G., ... & Wolsey, L. A. (Eds.). (2009). 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-art. Springer Science & Business Media.
- Schrijver, A. (1998). Theory of linear and integer programming. John Wiley & Sons.
- Hu, T. C. (1969). Integer programming and network flows.
 WISCONSIN UNIV MADISON DEPT OF COMPUTER SCIENCES.

۲,

برنامهریزی عددصحیح- مقدمهای بر برنامهریزی عدد صحی

