Paper Title : Subtitle *

Apoorva Lal Stanford University

abstract goes here

Keywords: JEL keywords

CONTENTS

1	Introduction	2		
2 Model				
3 Estimation Framework				
4	Data4.1 Make plots in document4.2 Embedded plots	2 2 4		
5	Results5.1 Embed stargazer output			
6	Conclusion	6		
7	Appendix	6		

^{*}Acknowledgements here. Current version: June 10, 2018; Corresponding author: apoorval@stanford.edu.

1 Introduction

Main question: What is the average air speed velocity of a laden swallow?

Deaton (1997)

The quick brown fox jumped over the lazy dog¹.

2 Model

$$\max_{c_t, k_{t+1}} \sum_{t=1}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + k_{t+1} \le f(k_t) + (1 - \delta)k_t$

3 ESTIMATION FRAMEWORK

$$\begin{aligned} \text{outcome}_{ict} &= \alpha_i + \sum_{k=0}^2 \beta_{t-k}^p PPI_{ict-k} + \gamma_{ct} + \epsilon_{ict} \\ \text{outcome}_{ict} &= \alpha_i + \sum_{k=0}^2 \beta_{t-k}^p PPI_{ict-k} + \sum_{k=0}^2 + \beta_{t-k}^m CPI_{ict-k} + \\ &\gamma_c \times trend_t + \epsilon_{ict} \end{aligned}$$

4 Data

4.1 Make plots in document

¹but the dog's laziness is heavily debated

Figure 1: Made here

4.2 Embedded plots

Figure 2: Made somewhere else

5 Results

5.1 Embed stargazer output

Table 1

5.2 Embed standalone latex table

	(1)	(2)	(3)	(4)
	Linear	Quadratic	Spline	Interaction
	b/se	b/se	b/se	b/se
Population Growth	0.054^{*}	0.180*		0.085*
	(0.0017)	(0.0043)		(0.0053)
Population Growth Squared		-0.053*		
		(0.0017)		
pop_growth: below median			0.097^{*}	
			(0.0023)	
pop_growth: above median			-0.071*	
			(0.0049)	
above_median=1 \times Population Growth				-0.025*
				(0.0042)
Constant	-0.045*	-0.096*	-0.072*	-0.054^{*}
	(0.0016)	(0.0023)	(0.0019)	(0.0023)
Observations	1182563	1182563	1182563	1182563
R^2	0.001	0.002	0.002	0.001

6 Conclusion

Something significant

7 Appendix

BIBLIOGRAPHY

Deaton, Angus (1997). The Analysis of Household Surveys: A Microeconometric Approach to Development Policy. World Bank Publications. ISBN: 0-8018-5254-4.