Course Plan

Dr. Odelu Vanga

Computer Science and Engineering Indian Institute of Information Technology Sri City

odelu.vanga@iiits.in

January 05, 2021

Course Details

Course : Institute Elective
Title : Cryptography

Instructor : Dr. Odelu Vanga

Textbook:

 Cryptography and Network Security, Behrouz A Forouzan, Debdeep Mukhopadhyay, McGraw-Hill Education, 2011.

• Cryptography: Theory and Practice by Douglas Stinson, 3/e, 2006.

Course Details

Course : Institute Elective
Title : Cryptography
Instructor : Dr. Odelu Vanga

Textbook:

 Cryptography and Network Security, Behrouz A Forouzan, Debdeep Mukhopadhyay, McGraw-Hill Education, 2011.

• Cryptography: Theory and Practice by Douglas Stinson, 3/e, 2006.

References:

- "Cryptography and Network Security: Principles and Practice", William Stallings, 6th Edition, Pearson Education, 2014.
- "A course in number theory and cryptography", Neal Koblitz, Second Edition, Springer.
- "Handbook of Applied Cryptography", Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, CRC Press.
- "Blockchain Technology Overview", D. Yaga, P. Mell, N. Roby, and K. Scarfone, NISTIR 8202.
 - Classroom Lecture Notes

Component	Duration	Weightage(%)	Date &	Nature of
			Time	Component
Mid-Sem Exam	_	20%	_	Closed Book
End-Sem Exam	_	30%	_	Closed Book
Scheduled Quiz	_	30%	_	Closed Book
CPQ*	_	10%	_	Closed Book
Term Project	_	10%	_	Open Book

CPQ*: Class Participation Quiz

Term Project Details

• It should submit one page report, includes title and tentative plan work on/before January 30, 2021.

Term Project Details

- It should submit one page report, includes title and tentative plan work on/before January 30, 2021.
- Submit work implementation plan two pages, include abstract, experiments plan, and summary on/before March 20, 2021.

Term Project Details

- It should submit one page report, includes title and tentative plan work on/before January 30, 2021.
- Submit work implementation plan two pages, include abstract, experiments plan, and summary on/before March 20, 2021.
- Final project report should submit with experimental results on April 10, 2021.

Term Project Details

- It should submit one page report, includes title and tentative plan work on/before January 30, 2021.
- Submit work implementation plan two pages, include abstract, experiments plan, and summary on/before March 20, 2021.
- Final project report should submit with experimental results on April 10, 2021.
- I will announce the project viva dates based on the available time slots.

Make-ups and Notices

Make-up policy

- No Make-ups for Term Project.
- Makeup for other components is granted on prior permissions as per institute policy.

Make-ups and Notices

Make-up policy

- No Make-ups for Term Project.
- Makeup for other components is granted on prior permissions as per institute policy.

Consultation and Notices

- Doubt clarification hours Contact in Google classroom
- Notices/announcements regarding the course will be displayed in Google Classroom

Course Syllabus

Overview of Course Structure

M1: Number Theory Basics

Modular arithmetic, Primes, Euclidean Algorithm, Chinese
Remainder Theorem.

M2: Shannon's Theory
Perfect Secrecy, Entropy, Security analysis of Classical ciphers.

M3: Symmetric Key Cryptography
DES, Finite Fields, AES, Security Analysis.

M4: Public Key Cryptography RSA, ElGamal, Elliptic Curve Cryptography.

M5: Digital Signatures
Hash functions, Digital Signature Algorithm, ElGamal Digital Signature.

M6: Applications
Key Distribution, Diffie-Hellman Kay Exchange, Key Management in Distributed Systems.

History

Historical perspective

Before World War II (1940s)

- "Secret writing"
 - 1900 B.C. non-standard methods
 - Julius Caesar

Historical perspective

Before World War II (1940s)

- "Secret writing"
 - 1900 B.C. non-standard methods
 - Julius Caesar
- Modern theory starts around the U.S. Civil War (1861-1865)
 - Playfair

Historical perspective

Before World War II (1940s)

- "Secret writing"
 - 1900 B.C. non-standard methods
 - Julius Caesar
- Modern theory starts around the U.S. Civil War (1861-1865)
 - Playfair
- Extensive use of code books
 - Telegrams and commercial codes
 - Vernam cipher

World War-I (lasted in 1914 - 1918)

After World War II (1940s)

Claude Shannon and Information Theory (1948)

After World War II (1940s)

- Claude Shannon and Information Theory (1948)
- 1974, public interest resumes
 - Data Encryption Standard (DES, 1977)
 - "New Directions in Cryptography" (1976)
 - Diffie and Hellman's introduction of Public Key Cryptography

After World War II (1940s)

- Claude Shannon and Information Theory (1948)
- 1974, public interest resumes
 - Data Encryption Standard (DES, 1977)
 - "New Directions in Cryptography" (1976)
 - Diffie and Hellman's introduction of Public Key Cryptography
 - RSA (Rivest, Shamir, Adelman) (1977)
 - AES 128 (2001)
 - ECC (1984)

After World War II (1940s)

- Claude Shannon and Information Theory (1948)
- 1974, public interest resumes
 - Data Encryption Standard (DES, 1977)
 - "New Directions in Cryptography" (1976)
 - Diffie and Hellman's introduction of Public Key Cryptography
 - RSA (Rivest, Shamir, Adelman) (1977)
 - AES 128 (2001)
 - ECC (1984)

Hash Functions

- First design of cryptographic hash function proposed in 1970s
- More proposals emerged in the 1980s

Introduction to cryptography

Message Communication

Message Communication

• Symmetric-key cryptography sender, receiver keys are identical, that is, $K_A = K_B$.

Message Communication

- Symmetric-key cryptography sender, receiver keys are identical, that is, $K_A = K_B$.
- Asymmetric-key cryptography encryption key (public), decryption key (private), that is, $K_A \neq K_B$,

Confidentiality

- Confidentiality
- Integrity

- Confidentiality
- Integrity

Authentication

- Confidentiality
- Integrity

- Authentication
- Non-repudiation

- Confidentiality
- Integrity

- Authentication
- Non-repudiation

Security Notions

Unconditional security

 Given unlimited computational power, it is not possible to beak the cipher

Security Notions

Unconditional security

 Given unlimited computational power, it is not possible to beak the cipher

Computational security

 Given limited computing resources, breaking cipher is not possible (e.g., time needed for calculations is greater than age of universe)

Thank You