Problem Set 4 Nonlinear Specifications with Dummy Variables and Interactions

Continuing from last week's problem set, using the data set CPS78WNH.dta, es the relationship between wage rates and education and age different for women than for men? To estimate and test this, estimate a fully---interactive model by regressing the logarithm of the wage rate on years of education, age, and age squared, including a dummy variable indicating if the person is a women, and interactions of this dummy variable with education, age, and age-squared.

log_wage Coef. Std. Err. t P> t [95% Conf. Int	
260 0620267 0127206 4.87 0.000 0270001 0	erval]
age_squared 0005835	870733 000267 694564 076556 443258 012251 009663 506112

1. Test the null hypothesis that the same model applies to both men and women versus the alternative hypothesis that men and women follow different models.

		regress	log	wage	age	age	squared	female	educatn
--	--	---------	-----	------	-----	-----	---------	--------	---------

Source	SS	df	MS		ber of obs	=	457 72.06
Model Residual	42.8918917 67.257655	4 452	10.7229729	Pro	b > F quared R-squared	= =	0.0000 0.3894 0.3840
Total	110.149547	456	.241556023	_	t MSE	=	.38575
log_wage	Coef.	Std. Err.	t	P> t	[95% Co	 nf.	Interval]
age age_squared female educatn _cons	.0465571 0004066 356736 .0559797 .0460618	.010068 .0001277 .0377467 .0074208 .1920034	-3.18 -9.45 7.54	0.000 0.002 0.000 0.000 0.811	.026771 000657 430916 .041396 331268	7 7 1	.0663429 0001556 2825553 .0705632 .4233918

The coefficient for female has a p value of 0.000 which means that null hypothesis that the binary variable 'female' has no effect on the model can be rejected at the 1% level.

2. Is the percentage increase in wage rates for an additional year of education the same for men and women? Test the appropriate null hypothesis.

```
. regress log_wage age age_squared educatn female f_educatn f_age f_ag > e squared
```

Source	SS	df	MS		of obs	=	457
Model Residual	43.7178168 66.4317298	7 449	6.2454024 .147954855	F(7, 4 Prob > R-squa	· F ired	= = =	42.21 0.0000 0.3969 0.3875
Total	110.149547	456	.241556023	Root M	squared ISE	=	.38465
log_wage	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
age age_squared educatn female f_education f_age f_age_sqaured cons	.0620367 0005835 .0527068 .2737215 .0103007 039502 .000448 2131666	.0127396 .000161 .0085229 .4085129 .0173132 .0207235 .0002637 .2359878	4.87 -3.62 6.18 0.67 0.59 -1.91 1.70 -0.90	0.000 0.000 0.000 0.503 0.552 0.057 0.090 0.367	.0370 0008 .0359 5291 0237 0802 0000 6769	999 571 131 244 291 703	.0870733 000267 .0694564 1.076556 .0443258 .0012251 .0009663 .2506112

As the p value for f_education is over the 0.05, we can accept the null hypothesis that log_wage rises with age by the same about for female and male.

3. For men and women with a 4-year college degree, graph their expected wage rate age profiles on the same graph, and briefly describe and compare the shapes of the profiles. The wage rate age profile has the logarithm of the wage rate on the vertical axis, and age on the horizontal axis.

(As stata would crash overtime I tried graphing both functions in one plot, I superimposed the two images)

```
generate yhat_male = _b[_cons] + _b[age] * age + _b[age_squared] *
age_squared + _b[educatn] * 16

generate yhat_female = _b[_cons] + _b[age] * age + _b[age_squared] *
age_squared + _b[educatn] * 16 + _b[f_age] * age + _b[f_age_squared] *
age_squared + _b[f_educatn] * 16
```

