Exponentialfunktionen

Vereinfachte Schreibweise

$$e^x =: exp(x)$$

Ableitungsregeln

Sei $I\subseteq\mathbb{R}$ ein Intervall und seien $b:I\to(0,\infty)$ und $r:I\to\mathbb{R}$ differenzierbare Funktionen.

Durch

$$f(x) = b(x)^{r(x)} \qquad , x \in I$$

wird eine Funktion $f:I\to (0,\infty)\to \mathbb{R}$ definiert.

Es gilt die Darstellung:

$$f(x) = exp(r(x)\ln(b(x)))$$

also folgt mit der Ketten- und Produktregel die Differenzierbarkeit und

$$f'(x) = exp(r(x)\ln(b(x))) \left(r'(x)\ln(b(x)) + r(x)\frac{b'(x)}{b(x)}\right)$$

• für r konstant und b(x) = x

$$f(x) = x^r = exp(r \ln(x))$$
$$f'(x) = exp(r \ln(x)) \left(\frac{r}{x}\right) = x^r \frac{r}{x} = rx^{(r-1)}$$

• Für b > 0 und r(x) = x

$$f(x) = b^x = exp(x \ln(b))$$

$$f'(x) = exp(x \ln(b)) \ln(b) = b^x \ln(b)$$

Regeln von de l'Hospital

Satz

Seien f,g definiert, differenzierbar und $g'(x) \neq 0$ für alle $x \neq a$ in einer Umgebung von $a \in \mathbb{R} \cup \{-\infty, \infty\}$. In jeder der beiden Situation

1.
$$f(x) \to 0$$
 und $g(x) \to 0$ für $x \to a$

2.
$$f(x) \to \pm \infty$$
 und $g(x) \to \pm \infty$ für $x \to a$

gilt dann:

$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)} \in \mathbb{R} \cup \{-\infty, \infty\} \Rightarrow \lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

Warnungen

• Aus der Existenz von $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ darf unter der Voraussetzung " $\frac{0}{0}$ " auf die Existenz von $\lim_{x \to a} \frac{f(x)}{g(x)}$ geschlossen werden. Umgekehrt kann aber $\lim_{x \to a} \frac{f(x)}{g(x)}$ existieren, obwohl $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ nicht existiert.

Beispiel
$$f(x) = x^2 \cos(\frac{1}{x}), \quad g(x) = x, \quad a = 0$$

$$\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} f'(x)$$
 existiert nicht

Aber
$$\lim_{x\to 0} x^2 \cos(\frac{1}{x}) = 0$$

ullet Die Voraussetzung " $\frac{0}{0}$ " bzw. " $\frac{\infty}{\infty}$ " muss bestehen und jedes Mal geprüft werden!

Beispiel

$$\lim_{x\to 0}\frac{\sin(x)}{x^2}=\underbrace{\lim_{x\to 0}\frac{\cos(x)}{2x}}_{\text{nicht },\frac{0}{0}\text{"}}=\underbrace{\lim_{x\to 0}\frac{-\sin(x)}{2}}_{\text{nicht },\frac{0}{0}\text{"}}=0$$

obiges ist falsch!!

Version 1.0 - 10. Januar 2017