Practical Introduction to Neural Network Potentials Day 4:

Message-passing neural network potentials

Review: Behler-Parrinello Neural Networks (BPNNs)

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$

AEVs: "Symmetry Functions"

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$

Remember: this is all a funny ploy to have constant length inputs that describe the atomic environment

Paper 1.

Atom-centered symmetry functions for constructing high-dimensional neural network potentials

Cite as: J. Chem. Phys. **134**, 074106 (2011); https://doi.org/10.1063/1.3553717 Submitted: 08 December 2010 • Accepted: 21 January 2011 • Published Online: 16 February 2011

Jörg Behler

Paper 1.

Atom-centered symmetry functions for constructing high-dimensional neural network potentials

Cite as: J. Chem. Phys. **134**, 074106 (2011); https://doi.org/10.1063/1.3553717 Submitted: 08 December 2010 • Accepted: 21 January 2011 • Published Online: 16 February 2011

Jörg Behler

Introduces *angular* resolution to the AEV as well. Anyone implement these?

AEVs: "Local Coulomb Vector"

$$\overrightarrow{x_i} = \{\frac{Z_j}{r_{ij}} \forall r_{ij} < r_c\}$$

	Pros	Cons
•	Exploits locality	
•	Efficient to compute	
•	Parameter-free	

AEVs: "Local Coulomb Vector"

$$\overrightarrow{x_i} = \{\frac{Z_j}{r_{ij}} \forall r_{ij} < r_c\}$$

Pros	Cons
 Exploits locality Efficient to compute Parameter-free 	 Cannot see beyond a cutoff radius Non-constant number of neighbors discontinuous

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$

	Pros	Cons
 Constant 	length for all atoms i	
• Smooth &	continuous	
• Exploits lo	cality	
Efficient to compute		

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$

Pros	Cons

- Constant length for all atoms i
- Smooth & continuous
- Exploits locality
- Efficient to compute

- Cannot see beyond a cutoff radius
- Some parameters $(\#k, \eta_k, R_k)$

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$

Pros	Cons

- Constant length for all atoms i
- Smooth & continuous
- Exploits locality
- Efficient to compute

- Cannot see beyond a cutoff radius
- Some parameters $(\#k, \eta_k, R_k)$
- Inflexible: How do we know a bunch of Gaussians is the best description of the environment?

Neural networks can express arbitrary functions, can we use those?

$$\overrightarrow{x_i} = NN(\bigcirc i)$$

$$\overrightarrow{x_i} = \left\{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \right\}_k$$
Inflexible

$$\overrightarrow{x_i} = NN(\bigcirc i)$$

Message-passing neural networks (MPNNs) create AEVs directly from coordinates

Molecules as graphs

A molecule can be represented by a graph ${\mathscr G}$ with nodes at nuclei and edges between nearby nuclei:

This "line structure" is a version of a molecular graph, where edges are chemical bonds

Molecules as graphs

Now, forget bonds and use only distances to judge proximity:

Molecules as graphs

By performing simple operations on this graph, we can build more informative AEVs.

1. Initialization

1. Initialization

2. Message generation

2. Message generation

2. Message generation

$$\overrightarrow{m}_{ij} = f_m(\overrightarrow{x}_i, \overrightarrow{x}_j, \overrightarrow{e}_{ij})$$

f can even be parameterized, since we can optimize the parameters with backpropagation

2. Message generation

$$\overrightarrow{m}_{ij} = f_m(\overrightarrow{x_i}, \overrightarrow{x_j}, \overrightarrow{e_{ij}})$$

$$f_m: \mathbb{R}^{2n_f+n_e} \to \mathbb{R}^{n_m}$$

3. Message accumulation

4. Node update

Update node states $\overrightarrow{x_i}$ based on message bundle \overrightarrow{M}_i

5. Readout (get atomic energies)

Pass each final AEV into an atomic function called a "readout"

$$E_i = f_R(\overrightarrow{x_i})$$

$$f_R : \mathbb{R}^{n_f} \to \mathbb{R}^1$$

6. Get loss, update weights

MPNN Blueprint

What element am I?

1. Initialize features $\overrightarrow{x}_{i}^{t=0}$

and edges \overrightarrow{e}_{ij}

$$r_{ij}$$
 or $\{exp(-\eta_k(r_{ij}-R_k)^2)\}_k$

or similar

2. Create a "message" $\overrightarrow{m}_{ji}^t$ from each atom j to i

$$\overrightarrow{m}_{ji}^{t} = f_m(\overrightarrow{x}_j^{t-1}, \overrightarrow{x}_i^{t-1}, \overrightarrow{e}_{ij})$$

3. Accumulate all messages received at each atom \emph{i}

$$\overrightarrow{M}_{i}^{t} = \sum_{i} \overrightarrow{m}_{ji}^{t}$$

4. Update atomic features $\overrightarrow{x}_i^{t+=1}$ based on messages

$$\overrightarrow{x}_{i}^{t} + = f_{U}(\overrightarrow{M}_{i}^{t}, \overrightarrow{x}_{i}^{t-1})$$

5. Readout atomic predictions

$$y_i = f_R(\overrightarrow{x}^T)$$

6. Compute loss, optimize the three functions that define the MPNN: f_m , f_U , and f_R

Repeat T times $(T \approx 2 - 5)$

Molecular mechanics

Behler-Parrinello neural network (BPNN)

Message-passing neural network (MPNN)

Inflexible AEV

$$\overrightarrow{x_i} = \{r_{ij}\}, \{\theta_{ijk}\}_{bonded}, \{\phi_{ijkl}\}_{bonded}$$

Inflexible energy function

$$E = \sum_{ij}^{bonded} E_{ij}^{bond} + E_{ijk}^{angle} + E_{ijkl}^{torsion} + \sum_{ij}^{non-bonded} E_{ij}^{elst} + E_{ij}^{vdW}$$

Inflexible AEV

$$\overrightarrow{x_i} = \{ \sum_{j} e^{-\eta_k (r_{ij} - R_k)^2} \}_k$$

Flexible energy function

Flexible AEV

Flexible energy function

