

<u>Título completo</u>

Nome

Instituto de Matemática e Estatística (IME-USP)

MÊS / ANO

Estrutura da apresentação

- 1 Exemplos com texto
- 2 Exemplos com equações e imagens
- 3 Exemplos com código
- 4 Conclusão

Texto corrido

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ipsum velit, cursus quis ligula eu, malesuada aliquet massa. Quisque non convallis felis, a auctor eros. Etiam sit amet turpis a sapien pulvinar malesuada quis quis nisi. Quisque scelerisque volutpat ligula vel mollis. Nam sit amet tristique erat, sit amet cursus mi.

Texto em tópicos numerados

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- 1 Lorem ipsum dolor sit amet.
- 2 Lorem ipsum dolor sit amet.

Texto em tópicos

Lorem ipsum dolor sit amet, consectetur adipiscing elit:

- Lorem ipsum dolor sit amet.
- Lorem ipsum dolor sit amet.

Uma imagem

Figure: Legenda da imagem

Duas imagens

(a) Legenda 1

(b) Legenda 2

Equações

Equações de Navier-Stokes Forma expandida (3D):

$$\rho\left(\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right) + f_x$$

$$\rho\left(\frac{\partial v}{\partial t} + u\frac{\partial v}{\partial x} + v\frac{\partial v}{\partial y} + w\frac{\partial v}{\partial z}\right) = -\frac{\partial p}{\partial y} + \mu\left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right) + f_y$$

$$\rho\left(\frac{\partial w}{\partial t} + u\frac{\partial w}{\partial x} + v\frac{\partial w}{\partial y} + w\frac{\partial w}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu\left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2}\right) + f_z$$

onde $\mathbf{v} = (u, v, w)$ é o campo de velocidade, p é a pressão, ρ é a densidade, μ é a viscosidade dinâmica e \mathbf{f} representa forças externas.

Python

```
def calcular_dobro(x):
    """Retorna o dobro do número"""
    return 2 * x

# Testando a função
numero = 5
resultado = calcular_dobro(numero)
print(f"O dobro de {numero} é {resultado}")
```

C

```
#include <stdio.h>

int main() {
    int numero = 5;
    int dobro = 2 * numero;

printf("O dobro de %d eh %d\n", numero, dobro);
    return 0;
}
```

C++

```
1 #include <iostream>
2 using namespace std;
4 int main()
      int numero = 5;
      int dobro = 2 * numero;
      cout << "O dobro de " << numero;</pre>
8
      cout << " eh " << dobro << endl;
9
      return 0;
10
11 }
12
```

```
# Função para calcular o dobro
calcular_dobro <- function(x) {
   return(2 * x)
}

# Testando a função
numero <- 5
resultado <- calcular_dobro(numero)
print(paste("O dobro de", numero, "é", resultado))</pre>
```

Java

Referências

- [Lor63] Edward N. Lorenz. "Deterministic Nonperiodic Flow". In: Journal of the Atmospheric Sciences 20.2 (1963), pp. 130–141.
- [Rud76] Walter Rudin. *Principles of Mathematical Analysis*. 3rd ed. New York: McGraw-Hill, 1976. ISBN: 007054235X.
- [Tao06] Terence Tao. "Nonlinear Evolution Equations". Ph.D. Thesis. Princeton, New Jersey: Princeton University, 2006.

Fim da apresentação!