Review of the Greenhouse Effect

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #9: Monday, January 30 2023

Lapse Rates

Which lapse rate is greater?

Lapse Rates

Saturation, Convection, and the Greenhouse Effect

Another Perspective on Band Saturation

- Instead of thinking of saturation as increasing absorption ...
- Think of saturation as raising the skin height
 - Skin height = the height at which the atmosphere becomes transparent enough to radiate out to space
 - The height of the top of the atmospheric layer in a layer model
 - The atmosphere becomes opaque at a certain wavelength when there are more than a certain number of molecules per square meter of an absorbing gas overhead.
 - The higher you go, the fewer molecules are overhead and the more are below your feet.
 - The atmosphere gradually becomes more transparent, but we pretend that this happens suddenly at a certain height.
 - Pressure and density fall exponentially as you go higher, so this approximation is reasonable.
- After band saturation sets in, adding more greenhouse gas raises the skin height.

Greenhouse effect

- Skin temp: $T_{\text{skin}} = T_{\text{bare rock}} = 254 \text{ K}.$
- Ground temp: $T_{\text{ground}} = T_{\text{skin}} + h_{\text{skin}} \times \text{ELR}$
 - ELR = Environmental Lapse Rate

Global warming

- Greater $CO_2 \rightarrow$ greater skin height.
- Warming: $\Delta T_{\text{ground}} = \Delta h_{\text{skin}} \times \text{env. lapse}$

Question

- Water vapor absorption is saturated, like CO₂.
 - Why does water vapor emit at warmer temperatures than CO₂?

- Near the ground, there is much more water vapor (15 times more)
- Above about 7 km, there is much more CO₂ (100 times more at 20 km)
 - Water vapor concentrations become small enough to be transparent to space at a much lower altitude than CO₂

Review of the Greenhouse Effect

Review of the Greenhouse Effect

1. Start with bare-rock temperature

This becomes skin temperature

2. Add simple layer atmosphere:

- Completely black to longwave radiation
- Top of atmosphere: skin temperature (same as bare-rock)
- Atmosphere insulates surface ⇒ surface heats up
- More layers ⇒ bigger greenhouse effect

3. Realistic longwave absorption:

- Atmosphere is not black
- Absorption depends on wavelength

4. Radiative-Convective equilibrium:

- Pure radiative equilibrium would have huge environmental lapse rate
 - 16 K/km
- Big lapse rate is unstable \Rightarrow convection
 - ELR (16 K/km) > ALR (6–10 K/km)
 - Convection mixes hot & cold air ⇒ reduces environmental lapse until it becomes stable
 - Reduces greenhouse effect

• Alternate perspective:

- Think of greenhouse effect in terms of raising the skin height instead of blocking heat flow.
- T_{skin} is always T~bare rock~
- $T_{ground} = T_{skin} + h_{skin} \times Environmental$ Lapse Rate

Questions & Discussion of Greenhouse Effect

Atmospheric Radiation Spectrum

