Lecture 1.3: Phylogenetic Methods

Popular phylogenetic methods

- 1. Maximum parsimony
- 2. Distance-based methods
- 3. Maximum likelihood
- 4. Bayesian inference

Model-based methods

Distance-Based Methods

Distance-based methods

brown bear cave bear black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC giant panda **CATTGGTTTACT**

brown bear cave bear black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC giant panda **CATTGGTTTACT**

brown bear cave bear black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC giant panda **CATTGGTTTACT**

brown bear cave bear black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC giant panda **CATTGGTTTACT**

brown bear cave bear black bear

CGTTAGTACACT CGATAGTTCACT CGTTAGTTTACC giant panda **CATTGGTTTACT**

Distance-based methods

Clustering algorithms

- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- Neighbour joining

Tree searching using optimality criteria

- Minimum evolution
- Least-squares inference

Strengths and weaknesses

Strengths

- Very quick method
- Deals with multiple substitutions and long-branch attraction

Weaknesses

- Does not use all information in alignment
- Loss of information in pairwise comparisons
- Unable to implement sophisticated evolutionary models

Likelihood of hypothesis H =

the probability of the data, given the hypothesis

Probability of?

Likelihood = sum of all possible scenarios

Likelihood is multiplied across sites

brown bear cave bear black bear giant panda L₁L₂L₃ ...

CGTTAGTACACT
CGATAGTTCACT
CGTTAGTTTACC
CATTGGTTTACT

Likelihood values are very small!

CGTTAGTACACT brown bear brown bear **CGATAGTTCACT** black bear cave bear **CGTTAGTTTACC** black bear cave bear giant panda CATTGGTTTACT giant panda lnL = -1203.83cave bear brown bear black bear cave bear brown bear black bear giant panda giant panda lnL = -1241.47lnL = -908.58

Likelihood optimisation

- Search through the space of possible trees and parameter values
- Calculate the likelihood for these
- Find best tree and model parameter values
- Multivariate optimisation

Searching tree space

Heuristic search

Heuristic search algorithms

Methods of proposing changes to trees that result in nearby trees:

- Nearest-neighbour interchange (NNI)
- Subtree prune and regraft (SPR)
- Tree bisection and reconnection (TBR)

Nearest-neighbour interchange (NNI)

Subtree prune and regraft (SPR)

Tree bisection and reconnection (TBR)

Heuristic search

- 1. Pick a starting tree (e.g., NJ or a random tree)
- 2. Use heuristic search to improve model parameters
- 3. Use heuristic search to improve branch lengths
- 4. Use NNI, SPR, and/or TBR to look for a better tree
- 5. Go to step 2

The result

A single set of maximum-likelihood estimates of model parameters

A single maximum-likelihood tree

Confidence intervals

- For MLEs of model parameters:
 - Can use the normal approximation (assumes symmetric variance around MLE)
 - 95% confidence interval is:
 MLE (1.96 x stdevMLE)
- We cannot construct a confidence interval for the tree
 - Instead, uncertainty is estimated indirectly using bootstrapping analysis

Bootstrapping

brown bear cave bear black bear giant panda

Repeat 1,000 times

Pseudoreplication

brown bear cave bear black bear giant panda

ATTACTGTCCCT ATTACTGTCCCA ATCACTGTTCCT GTTGCTATTCCT

Bootstrapping

Topology tests

Kishino-Hasegawa (KH) test

- Test statistic: Difference in log-likelihood between two candidate trees
- Problem: selection bias

Shimodaira-Hasegawa (SH) test

- Corrects for the selection bias in the KH test
- Very conservative test

Approximately-unbiased (AU) test

Less conservative than the SH test

Strengths and weaknesses

Strengths

- Rigorous statistical method
- Desirable statistical properties
- Highly robust to violations of assumptions

Weaknesses

- Not feasible to implement very parameter-rich models
- Searching tree-space can be difficult
- Need to rely on heuristic search methods
- Bootstrapping analysis is very slow

Software

PAUP

PhyML

Garli

MEGA

RAxML

Phylogenetic methods

	Algorithm- based	Optimality criterion	Other
No explicit substitution model		Maximum parsimony	
Explicit substitution model	Distance- based methods	Maximum likelihood	Bayesian inference

Go to **Practical 1b: Model selection in MEGA**

Go to Practical 1c: Maximum likelihood in PhyML