Artificial Intelligence Chapter : Clustering

Marouane Ben Haj Ayech

Outline

- Presentation
- Kmeans
- Hierarchical clustering
- Clustering in practice
- Clustering in real world

Presentation

Prediction

Prediction task	Description	Output Nature	Examples
Clustering	Grouping data points into clusters based on similarity or patterns, often used for unsupervised learning.	Unlabeled classes or clusters	- Customer segmentation based on purchase behavior.

Learning

Learning Type	Dataset Type	Prediction Tasks	Learning models
Unsupervised	Unlabeled	Clustering	K-Means Gaussian Mixture Models (GMM) Hierarchical Clustering DBSCAN

Presentation

Technique	Learning Process	Prediction Process	Hyperparameters	
Kmeans	 Initialize cluster centers Iteratively until max_iter: (1) Estimate clusters (2) Update cluster centers (3) Check convergence based on a cost function 	Find the nearest cluster center for a new data point	K: number of clustersmax_iter: max number of iterationsepsilon: convergence threshold	
	Model			
	- Cluster centers			

Learning process

Hyperparameters

- K: number of clusters
- max_iter: max number of iterations
- epsilon: convergence threshold

Learning Algorithm

- Randomly initialize K cluster centers as data points
- For t From 0 To max iter-1:
 - Step 1: Determine the clusters: find the nearest cluster center for each data point
 - For x in X:
 - cluster_id = argmin distance(x, cluster_center_i)
 - Step 2: Update cluster centers: a cluster center is the mean of data points that belongs to the cluster
 - For each cluster_center_i :
 - cluster_center_i = mean(cluster_i)
 - Step 3 : Check convergence : compute cost function and check if it doesn't change enough
 - Compute cost_function (total sum of distances between each data point and its nearest cluster center)
 - If |cost_function(t) cost_function(t-1)|< epsilon Then break

Prediction process

- Let w be a new data point
- Determine which cluster x belongs to : find the nearest cluster center to x cluster_id = argmin distance(x, cluster_center_i)

Hierarchical clustering

Hierarchical Clustering Type	Learning Process	Prediction Process	Hyperparameters	
Agglomerative	 -Initialization: Each data point is a cluster -Iteratively merges clusters based on similarity. -Produces a dendrogram to visualize the hierarchy of clusters 	-Compute distances from a new data point to each cluster center -Determine the nearest cluster	 affinity (euclidean,) linkage (ward, single, complete, average) distance_threshold (None or float) n_clusters (None or int) compute_full_tree : auto or bool 	
	Model			
	Dendogram (No parameters)			

Clustering in practice

- Kmeans implementation
 - Define Kmeans as a Python class
 - Define hyperparameters as attributes
 - Define parameters as attributes
 - Define learning process as fit() method
 - Define prediction process as predict() method

Clustering in practice

- Clustering on simple data
 - We apply clustering on simple dataset using a pre-implemented Kmeans in Scikit-learn library.
- Clustering on real data
 - We apply clustering on pseudo real dataset based on the following steps:
 - Data preprocessing
 - Normalization
 - Data reduction
 - Kmeans