Záróvizsga tételek / Final examination (2019)

1 A verifikáció és validáció technikáinak áttekintése: V&V feladatok a fejlesztési folyamat tipikus lépései során. Kritikus rendszerek jellegzetességei.	1 Overview of verification and validation techniques: V&V activities during the typical steps of development processes. Properties of critical systems.
2 Forráskód ellenőrzés : A statikus analízis eszközök típusai. Ellenőrzés által detektált tipikus hibák. Ellenőrzési módszerek és tulajdonságaik. Az absztrakt interpretáció alapelvei.	2 Verifying source code : Types of static analysis tools. Typical bugs found by static analysis. Verification methods and their properties. Basics of abstract interpretation.
3 Szoftver tesztelés alapjai : Tesztelés definíciója és céljai. Tesztelési alapfogalmak. Tesztelés folyamata, szintjei és típusai. Teszt orákulumok típusai.	3 Overview of software testing : Definitions and goals of testing. Basic concepts. Test process, test levels and test types. Types of test oracles.
4 Specifikáció alapú teszttervezés: Specifikáció alapú módszerek áttekintése. Döntési táblák. Kombinatorikus módszerek, n-wise testing.	4 Specification-based testing : Overview of specification-based methods. Decision tables. Combinatorial testing, n-wise testing.
5 Struktúra alapú teszttervezés : Struktúra alapú módszerek áttekintése. Vezérlési folyam alapú kritériumok alapfogalmai. Feltétel, C/DC és MC/DC lefedettségek.	5 Structure-based testing : Overview of structure-based methods. Concepts for control-flow criteria. Condition, C/DC and MC/DC coverage.
6 Kód alapú tesztgenerálás : Kód alapú tesztgenerálás célja és korlátai. Módszerek: szimbolikus végrehajtás, véletlen generálás, annotáció alapú és keresés alapú generálás. Tipikus kihívások és eszközök.	6 Code-based test generation: Goals and limits of test generation based on code. Methods: symbolic execution, random generation, annotation and search-based generation. Typical challenges and tools.
7 Modell alapú tesztelés : A modell alapú tesztgenerálás alapfeladatai és előnyei. MBT folyamata: modellezés, tesztkiválasztási kritériumok, generálás és végrehajtás. Eszközök.	7 Model-based testing : types and benefits of model-based testing. MBT process: modeling, test selection criteria, generation and execution. Tools.
8 Regressziós tesztelés: Regressziós tesztelés megközelítései. Regressziós tesztek kiválasztása. Tesztek osztályozása. Mohó algoritmus.	8 Regression testing: regression testing approaches. Regression test selection. Classification of tests. Greedy algorithm for regression test selection.
9 Architektúra ellenőrzése : Architektúra leírása, nyelvek. ATAM. Szisztematikus átvizsgálási módszerek (interfész analízis, hibahatás analízis). Modell alapú vizsgálatok (megbízhatóság, teljesítmény analízise).	9 Verifying the architecture: Architecture design and languages. ATAM. Systematic verification methods (interface analysis, fault effects analysis). Model-based evaluation (performance, dependability).
10 Megbízhatósági analízis: Szolgáltatásbiztonság jellemzői és metrikái. Megbízhatósági blokkdiagramok felépítése és használata. Markov láncok használata a megbízhatósági analízisben.	10 Dependability analysis: Attributes of dependability. Dependability metrics. Using reliability block diagrams. Markov models for dependability analysis. Rewards.
11 Futásidőbeli verifikáció: Célkitűzések és használati esetek. Futásidejű verifikáció referencia automaták, temporális követelmények vagy szekvencia diagramok alapján.	11 Runtime verification: Goals and use cases. Runtime verification based on reference automata, temporal logic properties and sequence diagrams.