Elliptic Curve Cryptographic Processor

Computer-Aided VLSI System Design Final Project

Team members: 謝宗翰、吳凱濠

Algorithm Design

I. 方法 1: 簡化 Modular Multiplication

在助教提供的 Modular Mul 算法中 $x \times y \mod q = MM(MM(x,y), R^2 \mod q)$ 會用到大量的乘法。若能簡化 Modular Mul 將可以減少大量計算。 在 Ed25519 中, $p = 2^{255} - 19$ 而 $2^{258} \pmod p = 152 \pmod p$,

 $2^{255} (mod p) = 19 (mod p)$, 我們利用這兩點數學式進行化簡。

I. 以 10 進位的95×46為例,根據 Karatsuba Algorithm 可得

 $a = 95 = (a_1 \times 10 + a_0),$

 $b = 46 = (b_1 \times 10 + b_0),$

藉由把a,b拆成高位及低位,得到H,M,L。並令 $\alpha=10$ (10 進位)

 $H = a_1 b_1 = 36$,

 $M = (a_0 + a_1)(b_0 + b_1) = 140,$

 $L = a_0 b_0 = 30$,

 $95 \times 46 = H \times 10^2 + L + (M - H - L) \times 10 = 4370$

 $\Rightarrow a \times b = \alpha^2 H + L + \alpha (M - H - L) = c$

- II. 因此,按照上述方法令 $\alpha = 2^{129}$, $C = 2^{258} H + 2^{129} (M H L) + L$
 - i. $C_h = H$, $C_l = 2^{129}(M H L) + L$
 - ii. 因為 $2^{258} (mod \ p) = 152 (mod \ p),$ 因此可以令 $T = 152C_h + C_l = 2^{255}T_h + T_l$
 - iii. 為了能利用 $2^{258} (mod \ p) = 152 (mod \ p)$,把 T_h 以 2^{255} 拆分高位及低位,得到

 $T_h = (T_{391}, T_{390}, \dots, T_{256}, T_{255})_2, \ T_l = (T_{254}, T_{253}, \dots, T_1, T_0)_2$

 $\Rightarrow T = 19T_h + T_l$

iv. 最後進行mod q判斷,如果T > q,則T = T - q,否則T = T

- II. 方法 2: Point Multiplication 減少 Point addition 與增加 Doubling 次數Point Multiplication 方面,我們採用比 Window Method 更有效率的 Sliding Window 的演算法,來達到 Doubling 次數最大化。以下為算法介紹。
 - I. Sliding Windows 演算法特點:
 - i. 僅預先計算 P 的奇數倍:如 P, 3P, 5P, 減少額外計算
 - ii. 跳過 0 的處理:遇到連續 0 時,只執行 Doubling。
 - iii. window 從 1 開始: window 從第一個 1 開始, 略過多餘的 0
 - II. 簡單的例子(Window size = 3):

$$scalar_m = 410 = (110011010)_2$$

 $\Rightarrow window = 110 | 0 | 110 | 10$

- i. first window (110): Dbl, Dbl, Add(3P), Dbl
- ii. Skip(0): Dbl
- iii. Second window(110): Dbl, Dbl, Add(3P), Dbl
- iv. $Third\ window(10)$: Dbl, Add(P), Dbl

III. 我們實作的細節

i. 我們這次 Final Project 採用 window size = 3 的算法,先將 P_3 , P_5 , P_7 計算好 Permute Table,並令 r=(0,1,1), P=(x,y,1)

$$P_d = 2P$$
, $P_3 = P_d + P$, $P_5 = 2P_d + P$, $P_7 = 2P_3 + P$

ii. 當 $index = 0 \sim 254$

如果
$$m[index] == 0$$
:

r = double

否則win = m[index: index + 2]:

$$win = "111": r = double \rightarrow double \rightarrow double \rightarrow add(P7)$$

$$win = "110": r = double \rightarrow double \rightarrow add(P3) \rightarrow double$$

$$win = "111": r = double \rightarrow double \rightarrow double \rightarrow add(P5)$$

$$win = "100": r = double \rightarrow add(P) \rightarrow double \rightarrow double$$

$$win = "11": r = double \rightarrow double \rightarrow add(P3) \rightarrow double$$

$$win = "10": r = double \rightarrow add(P) \rightarrow double$$

$$win = "1": r = double \rightarrow add(P)$$

index = index + len(win)

以 PAT1 來說,相較原本的 Double-Add 算法,Sliding Window 從 5312 cycle 減少至 4599 cycle。

- iii. 演算法流程
 - a. 讀取 M,X,Y,並令r = (0,1,1), index = 254, P = (X,Y,1)
 - b. 當index > 0:

 $Sliding\ Windows(r, P, M, index)$

- c. \diamondsuit index = 254, n = 1 進行 reduction
- d. 進行 $Point r(X_r, Y_r, Z_r)$ 的 reduction
 - 1. 當index > 0:

$$n = n \times n$$

如果index! = 2,4:

$$n = Z_r \times n$$

2. 此時 $n = Z_r^{-1} \mod q$,再將 n 與 X_r , Y_r 相乘得到 輸出 $X = X_r \times n$, $Y = Y_r \times n$

Hardware Implementation

I. 總體電路架構圖

II. Optimization Techniques: 乘法器 Pipeline, Input Reschedule 以及 Register Sharing

在我們設計中,兩數相乘需要 3 cycle 才能完成,以 double 來說,會用到 7 個乘法,若不進行 pipeline,至少需要 21 cycle 才能完成,並且需要 8 個 Register 儲存變數。

經過 Pipeline 以及 Input Reschedule 並分析 Register 的生命週期後,只需要 4 個 Register,9 cycle 便能完成運算

乘法器有 input: 乘法器運算: 快速 mod: 加減法:

	Doubling Pipeline Analysis										
Cycle	0	1	2	3	4	5	6	7	8		
XY=X+Y			XY								
C=XX	C										
D=YY		D									
H=ZZ			Н								
B=XYXY				В							
E=0-C			Е								
F=E+D				E-D	Н+Н						
Y3=F(E-D)					Y3						
J=F-(H+H)					F-2H						
Z3=FJ						Z3					
X3=(B-C-D)J							X3				
Input Reschedule & Register Sharing											
r1			X+Y		J						
r2			Е			B+E-D			Y3		
r3				E-D				Z3			
r4				F							

Point-Add Pipeline Analysis														
Cycle	0	1	2	3	4	5	6	7	8	9	10	11	12	13
X1X2	X1X2													
Y1Y2		Y1Y2												

Z1Z2			Z1Z2										
X1+Y1	X1+Y1												
X2+Y2		X2+Y2											
E=X1+Y1*X2+Y2				Е			*Y1Y2						
X1X2Y1Y2=d*X1X2*Y1Y2					d*X1X2								
Z1Z2_2=Z1Z2*Z1Z2						Z1Z2 ²							
I=Y1Y2+X1X2				I									
H=E-X1X2-Y1Y2						H=E - I							
F=Z1Z2_2-X1X2Y1Y2									F	*F			
X3=Z1Z2*H*F								Z1Z2*H					
G=Z1Z2_2+X1X2Y1Y2										G	*G		
Y3=Z1Z2*I*G									Z1Z2*I				
Z3=F*G												F*G	

III. Design of key modules

Module ed25519 負責與 Testbench 的 Handshake,主要包含了 FSM 以及 Counter,Counter 負責計算輸入 data 的 Index,FSM 流程如附圖。當接收完 X,Y,M 後,發送 enable 訊號給 module point 開始計算。當 module point 完成計算後,再由 ed25519 向 Testbench 輸出 data。

Sliding Window (point.v) Module

Sliding window 的 FSM 流程會因為 win 所接收到的值不同而不同。

 $win = "111": r = double \rightarrow double \rightarrow double \rightarrow add(P7)$

 $win = "110": r = double \rightarrow double \rightarrow add(P3) \rightarrow double$

 $win = "111": r = double \rightarrow double \rightarrow double \rightarrow add(P5)$

 $win = "100": r = double \rightarrow add(P) \rightarrow double \rightarrow double$

(為了簡化流程圖,省略了結尾的 win = 10, 11, 1 的流程)

Number mul Module

共分成三個 Stage

Stage 1: Multiplier 負責計算H,M,L

Stage 2:計算 $152C_h + C_l$

Stage 3: 計算 $T = 19T_h + T_l$ 以及判斷是否> q

Doubling & Point-add Module

根據 Input Reschedule & Register Sharing 來進行乘法器的 Input 選擇

APR Results

I. Screenshot of the layout

DRC/LVS results

i. verify_drc

```
Grc

(Ty DRC (MEM: 2500.7) ***

. Starting Verification
Initializing
Deleting Existing Violations
. Creating Sub-Areas
. Using new this company of violations
. Creating Sub-Areas
. Using new this company of violations
. Sub-Areas . (201.280 0.000 402.560 201.280) 1 of 81
. Sub-Areas . (201.280 0.000 402.560 201.280) 3 of 81
. Sub-Areas . (201.280 0.000 402.560 201.280) 3 of 81
. Sub-Areas . (402.560 0.000 603.80 201.280) 3 of 81
. Sub-Areas . (303.840 0.000 803.10 201.280) 4 of 81
. Sub-Areas . (303.840 0.000 803.10 201.280) 5 of 81
. Sub-Areas . (303.840 0.000 803.10 201.280) 5 of 81
. Sub-Areas . (306.840 0.000 803.10 201.280) 6 of 81
. Sub-Areas . (306.840 0.000 1207.680 201.280) 6 of 81
. Sub-Areas . (306.400 0.000 1207.680 201.280) 7 of 81
. Sub-Areas . (306.400 0.000 1207.680 201.280) 8 of 81
. Sub-Areas . (306.400 0.000 1500.240 201.280) 8 of 81
. Sub-Areas . (306.400 0.000 1500.240 201.280) 9 of 81
. Sub-Areas . (301.200 0.000 1500.240 201.280) 9 of 81
. Sub-Areas . (301.200 0.000 1500.240 201.280) 9 of 81
. Sub-Areas . (301.200 0.000 1500.240 201.280) 9 of 81
. Sub-Areas . (301.200 0.000 1500.240 201.280) 9 of 81
. Sub-Areas . (301.200 0.000 1500.240 201.260) 1 of 81
. Sub-Areas . (301.200 0.000 1200.400.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.400.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.400.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000.560) 1 of 81
. Sub-Areas . (301.200 0.000 1200.600 0.000 1200.600
. Sub-Areas . (301.200 0.000 1200.600 0.000 1200.600
. Sub-Areas . (301.200 0.000 1200.600 0.000 1200.600
. Sub-Areas . (301.200 0.0
                                                                                                                                                                                                                                Sub-Area : 63 complete 0 Viola.
Sub-Area : (0.000 1408 960 201.280 1610.240) 64 of 81.
Sub-Area : (0.000 1408 960 201.280 1610.240) 65 of 81.
Sub-Area : (3.6 complete 0 Viola.
Sub-Area : (3.6 Sub-
                                                         1207.680 402.560} 15 of 8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       ls.
1408.960 402.560} 16 of 81
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            ols.
1610.240 402.560} 17 of 8
End Verify DRC (CPU: 0:00:35.2 ELAPSED TIME: 35.00 MEM: 120.0M)
```

ii. Verify Connectivity

```
**** 00:07:45 **** Processed 130000 nets.
**** 00:07:45 **** Processed 135000 nets.
**** 00:07:45 **** Processed 145000 nets.
**** 00:07:45 **** Processed 145000 nets.
**** 00:07:45 **** Processed 150000 nets.
**** 00:07:45 **** Processed 150000 nets.
**** 00:07:45 **** Processed 150000 nets.
**** 00:07:45 **** Processed 165000 nets.
**** 00:07:45 **** Processed 165000 nets.
**** 00:07:46 **** Processed 175000 nets.
**** 00:07:46 **** Processed 180000 nets.
**** 00:07:46 **** Processed 185000 nets.
**** 00:07:46 **** Processed 195000 nets.
**** 00:07:48 *** Building data for Net VDS
    Begin Summary
Found no problems or warnings.
End Summary
     End Time: Mon Dec 16 00:07:49 2024
Time Elapsed: 0:00:09.0
        ******* End: VERIFY CONNECTIVITY *******

Verification Complete : 0 Viols. 0 Wrngs.

(CPU Time: 0:00:09.1 MEM: 217.188M)
```

iii. Verify Process Antenna

```
00000 nets processed: 0 violations
 innovus 2>
****** START VERIFY ANTENNA ******
                                                                                             105000 nets processed: 0 violations
110000 nets processed: 0 violations
******* START VERIFY ANTENNA *******
Report File: ed25519.antenna.rpt
LEF Macro File: ed25519.antenna.lef
5000 nets processed: 0 violations
10000 nets processed: 0 violations
20000 nets processed: 0 violations
20000 nets processed: 0 violations
35000 nets processed: 0 violations
30000 nets processed: 0 violations
30000 nets processed: 0 violations
                                                                                             115000 nets processed: 0 violations
120000 nets processed: 0 violations
125000 nets processed: 0 violations
                                                                                             130000 nets processed: 0 violations 135000 nets processed: 0 violations
                                                                                              140000 nets processed:
                                                                                                                                                 0 violations
                                                                                             145000 nets processed: 0 violations 150000 nets processed: 0 violations
35000 nets processed: 0 violations 40000 nets processed: 0 violations
                                                                                             155000 nets processed: 0 violations
160000 nets processed: 0 violations
165000 nets processed: 0 violations
45000 nets processed: 0 violations
50000 nets processed: 0 violations
55000 nets processed: 0 violations
                                                                                             170000 nets processed: 0 violations
175000 nets processed: 0 violations
60000 nets processed: 0 violations 65000 nets processed: 0 violations
                                                                                              180000 nets processed: 0 violations
                                                                                             185000 nets processed: 0 violations
190000 nets processed: 0 violations
70000 nets processed: 0 violations
75000 nets processed: 0 violations
                                                                                             80000 nets processed: 0 violations
85000 nets processed: 0 violations
90000 nets processed: 0 violations
95000 nets processed: 0 violations
```

III. Clock Trees result

IV. setup time and hold time with no timing violation

timeDesign S Hold views included: av_func_mode_max	Summary					
Hold mode	all	reg2reg	in2reg	reg2out	+ in2out	++ default
WNS (ns): TNS (ns): Violating Paths: All Paths:	0.000 0	0.867 0.000 0 6052	1.506 0.000 0 6052	2.458 0.000 0	N/A N/A N/A N/A	0.000 0.000 0
Density: 92.813%						+

V. critical path after post-route optimization

• Performance Evaluation

I. $x \times y \mod q$ 簡化比較 $(r + r \mod doubling$ 來實現)

Method	Mod Mul	Mod Add & Sub
$MM(MM(x,y),R^2 \bmod q)$	10754	2776
快速 mod	4691	3237

II. Double and Add 與 Sliding Window 演算法的比較因為在使用 Sliding window 時,會需要存下 P3, P5, P7 的 LUT,所以

面積比較大一點

	Algo	SYN Area	Num of Cycle	Clock Period	Area*Time
Multiplier = 4 cycle	Double and Add	1.8860	8088	10	152539.6800
	Sliding Window	2.0985	7089	10	148764.0828

	Algo	SYN Area	Num of Cycle	Clock Period	Area*Time
3.5.11.11	Double and Add	2.0766	5312	10	11031.00544
Multiplier = 1 cycle	Sliding Window	2.2334	4599	10	10455.3666

III. 與 Baseline 比較

	Layout Area	Num of Cycle	Clock Period (ns)	Area*Time
Baseline	3.790503	732086	10	27749741.79
Our method	2.985462	4599	10	13730.14231

IV. Layout 前後比較

	Layout Area	Num of Cycle	Clock Period (ns)	Area*Time
Before Layout	2.035552	4599	10	93,615.03648
After Layout	2.985462	4599	10	13730.14231