Position of Fermi Level E_F in Doped Semiconductors

- i) intrinsic mid-gap, $E_g/2$
- ii) **n-type**: characterised by n(C.B.) >> p(V.B.) (10²² m⁻³) (10¹⁰m⁻³)

Accounted for by E_F moving up to bottom of C.B. (see JA pg. 124-127 for more detail)

At usual temperatures, the picture above holds true.

Possibility of V.B. electron crossing E_g is negligible. As T \uparrow from 0K, first electrons to reach C.B. come from donor levels, - so behaves like intrinsic semiconductor with gap reduced to E_i and E_F located at the middle of this gap.

 $\label{eq:local_problem} All \ donors \ ionised \\ n = N_d + \ 'intrinsic' \\ electrons \ from \ V.B. \\ Latter \ significant \ when \ kT>>E_g$

As 'intrinsic' carriers become more dominant, as $T \uparrow E_F$ moves to mid-gap

As Nd \(\frac{1}{2}\), 'intrinsic' behaviour sets in at higher temperatures.

Precise position of E_F is by calculation. σ_i can be higher than σ_n at very high temperatures, so not true extrinsic behaviour.

By similar arguments, E_F well below mid-gap and near V.B., only moving towards $E_g/2$ at very high T's.

Summary: (at RT)

Compensation Doping

Occurs when semiconductor is doped with *both* acceptors and donors

Compensation occurs when the extra e⁻ of donors fall into incomplete bands of acceptors, so that no e⁻ or holes **produced** (-recombination)

e.g. planar diode, transistor Na Na Si

planar diode

so there are semiconductors containing N_{d} and N_{a} – need to know σ for device design.

e.g. Si doped with 10²¹m⁻³ acceptors (N_a), i.e. p-type **initial**ly

Then doped with 10^{22} m⁻³ donors (N_d).

All the 10^{21} holes from acceptors recombine with 10^{21} electrons from donors, leaving the material **n-type 10^{22} - 10^{21} = 9.** 10^{21} m⁻³ – still a high concentration. Net density $n(9. 10^{21}) < N_d (10^{22})$ because of the presence of acceptors – called compensation.

Therefore magnitude of $|N_d-N_a|$ determines net carrier density and the sign (+ or -) gives the majority carrier type.

$$N_d > N_a - n$$
-type

$$N_a > N_d - p$$
-type

General Case

temp.

For electrical neutrality, assuming that T is such that dopants are completely ionised:

negative charge = positive charge

$$n + N_a = p + N_d \tag{3}$$

$$\underline{\mathbf{always}}, \qquad \qquad \mathsf{np} = \mathsf{n_i}^2 \tag{4}$$

Using (3) in (4)
$$n + (N_a - N_d) = n_i^2/n$$

 $n^2 + (N_a - N_d)n - n_i^2 = 0$

$$n = \frac{(N_d - N_a) \pm \sqrt{(N_d - N_a)^2 + 4n_i^2}}{2}$$

$$n = \frac{(N_d - N_a)}{2} + \frac{(N_d - N_a)\sqrt{1 + \left(\frac{2n_i}{(N_d - N_a)}\right)^2}}{2}$$

carriers from dopants intrinsically generated carriers

For p-type level, use eqn. (4) $p=n_i^2/n$

can always use this relationship – especially when $n_i \sim (N_d - N_a)$

Case 1: Extrinsic (doped) material

$$(N_d-N_a) >> n_i$$

e.g. $10^{22} - 10^{21} >> 10^{16}$

 2^{nd} term under $\sqrt{} \rightarrow 1$, and

$$n \approx \frac{(N_d - N_a)}{2} + \frac{(N_d - N_a)\sqrt{1}}{2} = N_d - N_a$$

$$p = \frac{n_i^2}{n} = \frac{n_i^2}{N_d - N_a}$$

e.g. n=9.
$$10^{21}$$
 m⁻³, p≈ 10^{20} m⁻³

If $N_a > N_d$, $p = N_a - N_d$ and

$$n = \frac{n_i^2}{N_a - N_d}$$

Case 2: Near Intrinsic Semiconductor

 made by doping extrinsic material with just sufficient opposite type dopant to attempt to fully compensate and hence produce a net carrier concentration due to dopants of near zero – carriers then nearly all come from e-h pairs from intrinsic process.

i.e.
$$n_i >> |N_d-N_a|$$

'1' is negligible in 2^{nd} term under $\sqrt{}$, therefore

$$n \approx \frac{(N_d - N_a)}{2} + \frac{(N_d - N_a)\sqrt{\left(\frac{2n_i}{(N_d - N_a)}\right)^2}}{2}$$

$$n \approx \frac{\left(N_d - N_a\right)}{2} + n_i \approx n_i = p$$

Practically it is difficult to get the dopants to cancel exactly to get this condition

e.g. if 10^{22}m^{-3} donors and want to make it intrinsic ($\sim 10^{16}\text{m}^{-3}$), we need acceptors of 1.000001 x 10^{22}m^{-3} – impossible to control to this accuracy!