Diferencial Total e Incremento Total

El incremento total de una función z = f(x, y) en el punto $P(x_0, y_0)$ se define como la función incrementada menos la función sin incrementar.

$$\Delta_f = f(x + \Delta x, y + \Delta y) - f(x, y)$$

Diferencial total de la función z = f(x, y) se define como la suma de las derivadas parciales diferentes de cero multiplicado por su diferencial considerando los incrementos de 2° orden son aproximadamente cero

z = f(x, y) en el punto $P(x_0, y_0)$

$$df(x_0, y_0) = \frac{\partial f(x_0, y_0)}{\partial x} dx + \frac{\partial f(x_0, y_0)}{\partial y} dy$$

Si W = f(x, y) la diferencial será

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$$

Aplicación de la Diferencial

La diferencia total de una función se puede aplicar al cálculo de errores y al cálculo de las derivadas parciales expresado en forma implícita.

Cálculo de Errores

Error Absoluto

Utilizando la diferencial total es posible determinar el valor absoluto de una variación de la variable independiente respecto a la variable dependiente

Error Relativo

Es la relación que existe entre la diferencial total dividido entre la función también se puede expresar como error porcentual

$$\xi r = \frac{\left[df\right]}{\left[f\right]} = \frac{\left[df\left(x_0, y_0\right)\right]}{\left[f\left(x_0, y_0\right)\right]}$$

Error Porcentual

$$\% \xi r = \frac{[df(x_0, y_0)]}{[f(x_0, y_0)]} * 100$$

Cálculo de la diferencial de una función

Dada la función: $z = xy^2 + \ln(x^2 + y^2)$ Determinar dz

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
$$\frac{\partial z}{\partial x} = x^2 + \frac{2x}{x^2 y^2}$$
$$\frac{\partial z}{\partial y} = 2xy + \frac{2y}{x^2 + y^2}$$

$$df = \left(y^{2} + \frac{2x}{x^{2} + y^{2}}\right) dx + \left(2xy + \frac{2y}{x^{2} + y^{2}}\right) dy$$

Ejemplo:

- 1. Al medir un terreno rectangular de 8m de largo se cometió un error de 0.0025m y al medir el ancho 6 m se cometió un error de 0.0016m. Determinar:
- a) la variación del área utilizando incremento total.
- b) La variación del área utilizando diferencial total
- c) El error porcentual en la medida de área del terreno rectangular

Función
$$A = xy$$
 $Punto(6,8)$ $\Delta x = dx = 0.0016;$ $\Delta y = dy = 0.0025$

a) Incremento Total

Sin saber cálculo
$$\begin{cases} \Delta A = A(x + \Delta x, y + \Delta y) - A(x, y) \\ \Delta A = (6 + 0.0016)(8 + 0.0025) - 6 * 8 \\ \Delta A = 0.027804 \end{cases}$$

b) Diferencial Total

$$dA = \frac{\partial A}{\partial x}dx + \frac{\partial A}{\partial y}dy$$
 Sabiendo Cálculo

$$\frac{\partial A}{\partial x} = y = 8$$

$$\frac{\partial A}{\partial y} = x = 6$$

$$dA = 8(0.0016) + 6(0.0025)$$

$$dA = 0.0278$$

c) error Porcentual

% error
$$df = \frac{[dA]}{[A]} * 100$$

$$A = 6 * 8 = 48$$

% error =
$$\frac{[0.0278]}{[48]} * 100$$

$$\% \text{ error} = 0.05\%$$