Continuité

[000670]

Pratique

Exercice 1

Soit f la fonction réelle à valeurs réelles définie par

$$f(x) = \begin{cases} x & \text{si } x < 1\\ x^2 & \text{si } 1 \le x \le 4\\ 8\sqrt{x} & \text{si } x > 4 \end{cases}$$

- 1. Tracer le graphe de f.
- 2. *f* est elle continue?
- 3. Donner la formule définissant f^{-1} .

Indication \blacktriangledown Correction ▼

[000671]

Exercice 2

Soit $f: \mathbb{R} \setminus \{1/3\} \to \mathbb{R}$ telle que $f(x) = \frac{2x+3}{3x-1}$. Pour tout $\varepsilon > 0$ déterminer δ tel que, $(x \neq 1/3 \text{ et } |x| \leq \delta) \Rightarrow |f(x) + 3| \leq \varepsilon$.

Que peut-on en conclure?

Indication ▼ Correction ▼

Exercice 3

Les fonctions suivantes sont-elles prolongeables par continuité sur \mathbb{R} ?

a)
$$f(x) = \sin x \cdot \sin \frac{1}{x}$$
; b) $g(x) = \frac{1}{x} \ln \frac{e^x + e^{-x}}{2}$;
c) $h(x) = \frac{1}{1 - x} - \frac{2}{1 - x^2}$.

Indication ▼ Correction ▼ [000677]

2 **Théorie**

Exercice 4

Soient *I* un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue, telle que pour chaque $x \in I$, $f(x)^2 = 1$. Montrer que f = 1 ou f = -1.

Indication ▼ Correction ▼

Soit I un intervalle ouvert de \mathbb{R} , f et g deux fonctions définies sur I.

1. Soit $a \in I$. Donner une raison pour laquelle :

$$\left(\lim_{x\to a} f(x) = f(a)\right) \Rightarrow \left(\lim_{x\to a} |f(x)| = |f(a)|\right).$$

2. On suppose que f et g sont continues sur I. En utilisant l'implication démontrée ci-dessus, la relation $\sup(f,g)=\frac{1}{2}(f+g+|f-g|)$, et les propriétés des fonctions continues, montrer que la fonction $\sup(f,g)$ est continue sur I.

Indication ▼ Correction ▼ [000639

Exercice 6

Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue admettant une limite finie en $+\infty$. Montrer que f est bornée. Atteint-elle ses bornes? Indication \blacktriangledown Correction \blacktriangledown [000646]

3 Etude de fonctions

Exercice 7

Déterminer les domaines de définition des fonctions suivantes

$$f(x) = \sqrt{\frac{2+3x}{5-2x}}$$
; $g(x) = \sqrt{x^2-2x-5}$; $h(x) = \ln(4x+3)$.

Correction ▼ [000686]

Exercice 8

Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que pour chaque $x \in \mathbb{R}$, f(x) = f(2x). Montrer que f est constante.

Indication ▼ Correction ▼ [000680]

Exercice 9

Soit $f:[0,1] \to [0,1]$ croissante, montrer qu'elle a un point fixe.

Indication: étudier

$$E = \{ x \in [0,1] \mid \forall t \in [0,x], f(t) > t \}.$$

Indication ▼ Correction ▼ [000653]

Indication pour l'exercice 1 ▲

Ditinguer trois intervalles pour la formule définissant f^{-1} .

Indication pour l'exercice 2 ▲

Le " ε " vous est donné, il ne faut pas y toucher. Par contre c'est à vous de trouver le " δ ".

Indication pour l'exercice 3 A

Oui pour le deux premières en posant f(0) = 0, g(0) = 0, non pour la troisième.

Indication pour l'exercice 4 A

Ce n'est pas très dur mais il y a quand même quelque chose à démontrer : ce n'est pas parce que f(x) vaut +1 ou -1 que la fonction est constante. Raisonner par l'absurde et utiliser le théorème des valeurs intermédiaires.

Indication pour l'exercice 5 ▲

- 1. On pourra utiliser la variante de l'inégalité triangulaire $|x-y| \ge ||x|-|y||$.
- 2. Utiliser la première question pour montrer que |f-g| est continue.

Indication pour l'exercice 6 ▲

Il faut raisonner en deux temps : d'abord écrire la définition de la limite en $+\infty$, en fixant par exemple $\varepsilon = 1$, cela donne une borne sur $[A, +\infty]$. Puis travailler sur [0,A].

Indication pour l'exercice 8 ▲

Pour *x* fixé étudier la suite $f(\frac{1}{2^n}x)$.

Indication pour l'exercice 9

Montrer que $c = \sup E$ est un point fixe. Pour cela montrer que $f(c) \le c$ puis $f(c) \ge c$.

Correction de l'exercice 1

- 1. Le graphe est composé d'une portion de droite au dessus des $x \in]-\infty, 1[$; d'une portion de parabole pour les $x \in [1,4]$, d'une portion d'une autre parabole pour les $x \in]4,+\infty$. (Cette dernière branche est bien une parabole, mais elle n'est pas dans le sens "habituel", en effet si $y = 8\sqrt{x}$ alors $y^2 = 64x$ et c'est bien l'équation d'une parabole.)
 - On "voit" immédiatemment sur le graphe que la fonction est continue (les portions se recollent!). On "voit" aussi que la fonction est bijective.
- 2. La fonction est continue sur $]-\infty,1[,]1,4[$ et $]4,+\infty[$ car sur chacun des ces intervalles elle y est définie par une fonction continue. Il faut examiner ce qui se passe en x=1 et x=4. Pour x<1, f(x)=x, donc la limite à gauche (c'est-à-dire $x\to 1$ avec x<1) est donc +1. Pour $x\ge 1$, $f(x)=x^2$ donc la limite à droite vaut aussi +1. Comme on a f(1)=+1 alors les limites à gauche, à droite et la valeur en 1 coïncident donc f est continue en x=1.

Même travail en x = 4. Pour $x \in [1,4]$, $f(x) = x^2$ donc la limite à gauche en x = 4 est +16. On a aussi f(4) = +16. Enfin pour x > 4, $f(x) = 8\sqrt{x}$, donc la limite à droite en x = 4 est aussi +16. Ainsi f est continue en x = 4.

Conclusion : f est continue en tout point $x \in \mathbb{R}$ donc f est continue sur \mathbb{R} .

3. Le graphe devrait vous aider : tout d'abord il vous aide à se convaincre que f est bien bijective et que la formule pour la bijection réciproque dépend d'intervalles. Petit rappel : le graphe de la bijection réciproque f⁻¹ s'obtient comme symétrique du graphe de f par rapport à la bissectrice d'équation (y = x). Ici on se contente de donner directement la formule de f⁻¹. Pour x ∈] -∞, 1[, f(x) = x. Donc la bijection réciproque est définie par f⁻¹(y) = y pour tout y ∈] -∞, 1[. Pour x ∈ [1,4], f(x) = x². L'image de l'intervalle [1,4] est l'intervalle [1,16]. Donc pour chaque y ∈ [1,16], la bijection réciproque est définie par f⁻¹(y) = √y. Enfin pour x ∈]4, +∞[, f(x) = 8√x. L'image de l'intervalle]4, +∞[est donc]16, +∞[et f⁻¹ est définie par f⁻¹(y) = 164x² pour chaque y ∈]16, +∞[.

Nous avons définie $f^{-1}: \mathbb{R} \to \mathbb{R}$ de telle sorte que f^{-1} soit la bijection réciproque de f.

C'est un bon exercice de montrer que f est bijective sans calculer f^{-1} : vous pouvez par exemple montrer que f est injective et surjective. Un autre argument est d'utiliser un résultat du cours : f est continue, strictement croissante avec une limite $-\infty$ en $-\infty$ et $+\infty$ donc elle est bijective de $\mathbb R$ dans $\mathbb R$ (et on sait même que la bijection réciproque est continue).

Correction de l'exercice 2

Commençons par la fin, trouver un tel δ montrera que

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad |x - x_0| < \delta \Rightarrow |f(x) - (-3)| < \varepsilon$$

autrement dit la limite de f en $x_0 = 0$ est -3. Comme f(0) = -3 alors cela montre aussi que f est continue en $x_0 = 0$.

On nous donne un $\varepsilon > 0$, à nous de trouver ce fameux δ . Tout d'abord

$$|f(x)+3| = \left|\frac{2x+3}{3x-1}+3\right| = \frac{11|x|}{|3x-1|}.$$

Donc notre condition devient :

$$|f(x)+3| < \varepsilon \quad \Leftrightarrow \quad \frac{11|x|}{|3x-1|} < \varepsilon \quad \Leftrightarrow \quad |x| < \varepsilon \frac{|3x-1|}{11}.$$

Comme nous voulons éviter les problèmes en $x = \frac{1}{3}$ pour lequel la fonction f n'est pas définie, nous allons nous placer "loin" de $\frac{1}{3}$. Considérons seulement les $x \in \mathbb{R}$ tel que $|x| < \frac{1}{6}$. Nous avons :

$$|x| < \frac{1}{6} \Rightarrow -\frac{1}{6} < x < +\frac{1}{6} \quad \Rightarrow \quad -\frac{3}{2} < 3x - 1 < -\frac{1}{2} \quad \Rightarrow \quad \frac{1}{2} < |3x - 1|.$$

Et maintenant explicitons δ : prenons $\delta < \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11}$. Alors pour $|x| < \delta$ nous avons

$$|x| < \delta = \varepsilon \cdot \frac{1}{2} \cdot \frac{1}{11} < \varepsilon \cdot |3x - 1| \cdot \frac{1}{11}$$

ce qui implique par les équivalences précédentes que $|f(x)+3| < \varepsilon$.

Il y a juste une petite correction à apporter à notre δ : au cours de nos calculs nous avons supposé que $|x|<\frac{1}{6}$, mais rien ne garantie que $\delta \leq \frac{1}{6}$ (car δ dépend de ε qui pourrait bien être très grand, même si habituellement ce sont les ε petits qui nous intéressent). Au final le δ qui convient est donc:

$$\delta = \min(\frac{1}{6}, \frac{\varepsilon}{22}).$$

Remarque finale : bien sûr on savait dès le début que f est continue en $x_0 = 0$. En effet f est le quotient de deux fonctions continues, le dénominateur ne s'annulant pas en x_0 . Donc nous savons dès le départ qu'un tel δ existe, mais ici nous avons fait plus, nous avons trouvé une formule explicite pour ce δ .

Correction de l'exercice 3 ▲

1. La fonction est définie sur \mathbb{R}^* t elle est continue sur \mathbb{R}^* . Il faut déterminer un éventuel prolongement par continuité en x = 0, c'est-à-dire savoir si f a une limite en 0.

$$|f(x)| = |\sin x| |\sin 1/x| \le |\sin x|.$$

Donc f a une limite en 0 qui vaut 0. Donc en posant f(0) = 0, nous obtenons une fonction $f : \mathbb{R} \longrightarrow \mathbb{R}$ qui est continue.

2. La fonction g est définie et continue sur \mathbb{R}^* . Etudions la situation en 0. Il faut remarquer que g est la taux d'accroissement en 0 de la fonction $k(x) = \ln \frac{e^x + e^{-x}}{2}$: en effet $g(x) = \frac{k(x) - k(0)}{x - 0}$. Donc si k est dérivable en 0 alors la limite de g en 0 est égale à la valeur de k' en 0.

Or la fonction k est dérivable sur \mathbb{R} et $k'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ donc k'(0) = 0. Bilan : en posant g(0) = 0 nous obtenons une fonction g définie et continue sur \mathbb{R} .

3. *h* est définie et continue sur $\mathbb{R} \setminus \{-1,1\}$.

$$h(x) = \frac{1}{1-x} - \frac{2}{1-x^2} = \frac{1+x-2}{(1-x)(1+x)} = \frac{-1+x}{(1-x)(1+x)} = \frac{-1}{(1+x)}.$$

Donc h a pour limite $-\frac{1}{2}$ quand x tend vers 1. Et donc en posant $h(1) = -\frac{1}{2}$, nous définissons une fonction continue sur $\mathbb{R} \setminus \{-1\}$. En -1 la fonction h ne peut être prolongée continuement, car en -1, h n'admet de limite finie.

Correction de l'exercice 4 A

Comme $f(x)^2 = 1$ alors $f(x) = \pm 1$. Attention! Cela ne veut pas dire que la fonction est constante égale à 1 ou -1. Supposons, par exemple, qu'il existe x tel que f(x) = +1. Montrons que f est constante égale à +1. S'il existe $y \neq x$ tel que f(y) = -1 alors f est positive en x, négative en y et continue sur I. Donc, par le théorème des valeurs intermédiaires, il existe z entre x et y tel que f(z) = 0, ce qui contredit $f(z)^2 = 1$. Donc f est constante égale à +1.

Correction de l'exercice 5

- 1. On a pour tout $x, y \in \mathbb{R}$ $|x-y| \ge ||x|-|y||$ (c'est la deuxième formulation de l'inégalité triangulaire). Donc pour tout $x \in I$: $||f(x)|-|f(a)|| \le |f(x)-f(a)|$. L'implication annoncée résulte alors immédiatement de la définition de l'assertion $\lim_{x\to a} f(x) = f(a)$.
- 2. Si f,g sont continues alors $\alpha f + \beta g$ est continue sur I, pour tout $\alpha,\beta \in \mathbb{R}$. Donc les fonctions f+g et f-g sont continues sur I. L'implication de 1. prouve alors que |f-g| est continue sur I, et finalement on peut conclure :

La fonction $\sup(f,g) = \frac{1}{2}(f+g+|f-g|)$ est continue sur I.

Correction de l'exercice 6 ▲

Notons ℓ la limite de f en $+\infty$:

$$\forall \varepsilon > 0 \quad \exists A \in \mathbb{R} \quad x > A \Rightarrow \ell - \varepsilon \le f(x) \le \ell + \varepsilon.$$

Fixons $\varepsilon = +1$, nous obtenons un A correspondant tel que pour x > A, $\ell - 1 \le f(x) \le \ell + 1$. Nous venons de montrer que f est bornée "à l'infini". La fonction f est continue sur l'intervalle fermé borné [0,A], donc f est bornée sur cet intervalle : il existe m,M tels que pour tout $x \in [0,A]$, $m \le f(x) \le M$. En prenant $M' = \max(M,\ell+1)$, et $m' = \min(m,\ell-1)$ nous avons que pour tout $x \in \mathbb{R}$, $m' \le f(x) \le M'$. Donc f est bornée sur \mathbb{R} .

La fonction n'atteint pas nécessairement ses bornes : regardez $f(x) = \frac{1}{1+x}$.

Correction de l'exercice 7

- 1. Il faut que le dénominateur ne s'annule pas donc $x \neq \frac{5}{2}$. En plus il faut que le terme sous la racine soit positif ou nul, c'est-à-dire $(2+3x) \times (5-2x) \geq 0$, soit $x \in [-\frac{2}{3}, \frac{5}{2}]$. L'ensemble de définition est donc $[-\frac{2}{3}, \frac{5}{2}]$.
- 2. If faut $x^2 2x 5 \ge 0$, soit $x \in]-\infty, 1-\sqrt{6}] \cup [1+\sqrt{6}, +\infty[$.
- 3. Il faut 4x + 3 > 0 soit $x > -\frac{3}{4}$, l'ensemble de définition étant $] -\frac{3}{4}, +\infty[$.

Correction de l'exercice 8 A

Fixons $x \in \mathbb{R}$ et soit y = x/2, comme f(y) = f(2y) nous obtenons $f(\frac{1}{2}x) = f(x)$. Puis en prenant $y = \frac{1}{4}x$, nous obtenons $f(\frac{1}{4}x) = f(\frac{1}{2}x) = f(x)$. Par une récurrence facile nous avons

$$\forall n \in \mathbb{N} \quad f(\frac{1}{2^n}x) = f(x).$$

Notons (u_n) la suite définie par $u_n = \frac{1}{2^n}x$ alors $u_n \to 0$ quand $n \to +\infty$. Par la continuité de f en 0 nous savons alors que : $f(u_n) \to f(0)$ quand $n \to +\infty$. Mais $f(u_n) = f(\frac{1}{2^n}x) = f(x)$, donc $(f(u_n))_n$ est une suite constante égale à f(x), et donc la limite de cette suite est f(x)! Donc f(x) = f(0). Comme ce raisonnement est valable pour tout $x \in \mathbb{R}$ nous venons de montrer que f est une fonction constante.

Correction de l'exercice 9 A

- 1. Si f(0) = 0 et c'est fini, on a trouver le point fixe! Sinon f(0) n'est pas nul. Donc f(0) > 0 et $0 \in E$. Donc E n'est pas vide.
- 2. Maintenant E est un partie de [0,1] non vide donc $\sup E$ existe et est fini. Notons $c = \sup E \in [0,1]$. Nous allons montrer que c est un point fixe.
- 3. Nous approchons ici $c = \sup E$ par des éléments de E: Soit (x_n) une suite de E telle que $x_n \to c$ et $x_n \le c$. Une telle suite existe d'après les propriétés de $c = \sup E$. Comme $x_n \in E$ alors $x_n < f(x_n)$. Et comme f est croissante $f(x_n) \le f(c)$. Donc pour tout f(c); comme f(c); comme f(c) alors à la limite nous avons f(c).
- 4. Nous utilisons maintenant le fait que les élements supérieurs à $\sup E$ ne sont pas dans E: Soit (y_n) une suite telle que $y_n \to c$, $y_n \ge c$ et telle que $f(y_n) \le y_n$. Une telle suite existe car sinon c ne serait pas égal à $\sup E$. Nous avons $f(c) \le f(y_n) \le y_n$ et donc à la limite $f(c) \le c$.
 - Nous concluons donc que $c \le f(c) \le c$, donc f(c) = c et c est un point fixe de f.