

Examen partiel – 15 Novembre 2019 Durée 1h30

Téléphones, calculettes et ordinateurs interdits. Le seul document autorisé est le formulaire des équivalences sur les expressions booléennes et des règles de la Déduction Naturelle. Inscrire votre nom et votre numéro de groupe de TD sur votre copie **et** sur le QCM à rendre.

Exercice 1 (7 points)				Q	CM à re	endre ave				
Nom:			Prénom:				Numéro de groupe :			
répor A pa	nse corre	cte et po	ur chaque	$r\'eponse$.	fausse un	quart de j	$point\ est$	$retir\acute{e}.$		$u\acute{e} pour chaque$ $(4(s_5,s_6(s_7))) de$
1.	s_1 peut $\square X$		élément de $\square \ \mathcal{F}_1$		ble : $\square \mathcal{F}_3$	$\square \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square~\mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \mathbb{F}(X, \mathcal{F}, \mathcal{P})$
2.	s_2 peut $\square X$	_ ~	élément de $\square \ \mathcal{F}_1$	l'enseml $\square \mathcal{F}_2$		$\square \mathcal{P}_0$	$\square \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\Box \ \mathbb{F}(X,\mathcal{F},\mathcal{P})$
3.	s_3 peut $\square X$		élément de $\square \ \mathcal{F}_1$			$\square \mathcal{P}_0$	$\square \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \ \mathbb{F}(X,\mathcal{F},\mathcal{P})$
4.	s_4 peut $\square X$		élément de $\square \; \mathcal{F}_1$		ble : $\square \mathcal{F}_3$	$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \mathbb{F}(X, \mathcal{F}, \mathcal{P})$
5.	s_5 peut $\square X$		élément de $\square \ \mathcal{F}_1$			$\square \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \mathbb{F}(X, \mathcal{F}, \mathcal{P})$
6.	s_6 peut $\square X$		élément de $\square \ \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \operatorname{I\!F}(X, \mathcal{F}, \mathcal{P})$
7.	s_7 peut $\square X$	être un \mathcal{F}_0	élément de $\square \; \mathcal{F}_1$		ble : $\square \mathcal{F}_3$	$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\Box \ \mathbb{F}(X,\mathcal{F},\mathcal{P})$
8.	cocher l $ \square s_1$		s qui appa $_3, s_4(s_5, s_6)$			rmule F_1 $\square \ s_4(s_5, s_5)$		$\square s_5$	$\square \ s_6(s_7)$	$\square \ s_7$
9.	cocher l $ \square s_1$		les atomiq $_3, s_4(s_5, s_6)$			ent dans la $\Box s_4(s_5, s_5)$		$F_1:$ $\square s_5$	$\square \ s_6(s_7)$	$\square \ s_7$
10.			$s = s_2$						que : $s_6 \Box \ s$	$=s_7$
On considère à présent la formule $F_2 = \forall z \ (((\exists y \ p(z,y)) \land q(f(y))) \Rightarrow (\forall y \ p(x,y))).$										
11.	cocher l	es variab	les appart	enant à l	$Free(F_2):$	$\Box x$	$\Box y$	$\exists z$		
	$\forall x \forall y \forall z$	$(((\exists y p(z))))$	les ayant $q(x,y) \wedge q(f(y))$	$(y))) \Rightarrow$	$(\forall y p(x,y))$	$))) \Box \ \forall z'$	$\forall x \forall y ((($	$\exists y p(z,y)$	$) \wedge q(f(y))$	$(\forall y p(x, y))) \Rightarrow (\forall y p(x, y)))$
13.	$\square \ \forall x \ ($	$((\exists y p(x,$	les ayant les (y) $\land q(f(x)) \land q(f(x))$	$(y))) \Rightarrow ($	$\forall x p(z,x)$))	$w (((\exists y p)$	$(w,y)) \wedge$		$F_2:$ $(\forall w p(x,w)))$ $(\forall z p(x,z)))$

Exercice 2 (8+12=20 points)

Avec les règles de la déduction naturelle prouver les deux formules ci-dessous (on pourra utiliser les règles dérivées du formulaire).

$$(\neg A \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg A) \Rightarrow (B \Rightarrow A)) \qquad ((\neg B \Rightarrow \neg A) \Rightarrow (B \Rightarrow A)) \Rightarrow (\neg A \Rightarrow \neg B)$$

Exercice 3 (1+2+5+2=10 points)

- 1. Soient F_1 et F_2 deux formules de $\mathbb{F}_0(\mathcal{F}, \mathcal{P})$. Donner la définition mathématique de $F_1 \not \models F_2$.
- 2. Soit F la formule $(\neg B \Rightarrow \neg A) \Rightarrow (B \Rightarrow A)$.
 - (a) Etant donnée une structure \mathbf{M} , calculer l'expression booléenne $[F]^{\mathbf{M}}$ en fonction de $\mathbf{I}_{\mathbf{M}}(A)$ et $\mathbf{I}_{\mathbf{M}}(B)$ (sans effectuer de simplification).
 - (b) En utilisant un raisonnement équationnel, simplifier l'expression booléenne $[F]^{\mathbf{M}}$ (indiquer à chaque étape le nom de l'équivalence utilisée). En déduire que $F \models \neg A \Rightarrow \neg B$.
 - (c) La formule F est-elle satisfiable? est-elle valide? (justifier)

Exercice 4 (1+2+(1+5)+(3+3)=15 points)

Soit $\mathcal{F} = \mathcal{F}_0 \cup \mathcal{F}_1 \cup \mathcal{F}_2$ un ensemble de symboles de fonctions avec $\mathcal{F}_0 = \{k_1, k_2\}, \mathcal{F}_1 = \{f\}$ et $\mathcal{F}_2 = \{g\}$.

- 1. Particulariser la définition de l'ensemble de termes $\mathcal{T}_0(\mathcal{F})$ pour l'ensemble $\mathcal{F} = \{k_1, k_2, f, g\}$.
- 2. Donner une définition inductive du nombre $\mathrm{nb}_f(t)$ d'occurrences du symbole de fonction f dans un terme $t \in \mathcal{T}_0(\mathcal{F})$.
- 3. On définit une structure M_1 dont le domaine est l'ensemble $\mathbb N$ des entiers naturels comme suit :

$$k_1^{\mathbf{M}_1} = 3$$
 $f^{\mathbf{M}_1} : \mathbb{N} \to \mathbb{N}$ $g^{\mathbf{M}_1} : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ $k_2^{\mathbf{M}_1} = 1$ $f^{\mathbf{M}_1}(n) = n$ $g^{\mathbf{M}_1}(n_1, n_2) = n_1 \times n_2$

- (a) Calculer $[g(f(k_1), g(k_2, k_1))]^{\mathbf{M}_1}$.
- (b) Montrer par induction que pour tout terme $t \in \mathcal{T}_0(\mathcal{F})$, il existe un entier $n \in \mathbb{N}$ tel que $[t]^{\mathbf{M}_1} = 3^n$.
- 4. Soit p un symbole de prédicat d'arité 2 et F la formule $p(f(k_1), k_1) \vee p(g(k_1, f(k_1)), k_2)$.
 - (a) Définir une structure \mathbf{M}_2 telle que $[F]^{\mathbf{M}_2} = 1$. (justifier)
 - (b) Définir une structure \mathbf{M}_3 telle que $[F]^{\mathbf{M}_3} = 0$. (justifier)

LU3IN006 Logique

Corrigé de l'examen partiel du 15/11/2019

► CORRIGÉ DE L'EXERCICE 1.

Les arbres de syntaxe abstraite des formules F_1 et F_2 sont (les occurrences de variable libre sont encadrées sur l'arbre représentant F_2 , les autres occurrences sont liées) :

						$p\left(z,y\right)$					
1.	s_1 peut $\square X$		elément de $\square \mathcal{F}_1$		ole : $\square \mathcal{F}_3$	$oxtimes \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\boxtimes \mathbb{F}(X, \mathcal{F}, \mathcal{P})$	²)
2.	s_2 peut $\square X$		elément de $\square \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$oxtimes \mathcal{P}_2$	$\square \mathcal{P}_3$	\square IF $(X, \mathcal{F}, \mathcal{F})$?)
3.	s_3 peut $\boxtimes X$		elément de $\square \ \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \mathbb{F}(X, \mathcal{F}, \mathcal{P})$?)
4.	s_4 peut $\square X$		elément de $\square \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	$\square ext{ } \mathbb{F}(X,\mathcal{F},\mathcal{F})$?)
5.	s_5 peut $\boxtimes X$		elément de $\square \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	\square IF $(X, \mathcal{F}, \mathcal{F})$?)
6.	s_6 peut $\square X$		elément de $\boxtimes \mathcal{F}_1$			$\square \; \mathcal{P}_0$	$\square \; \mathcal{P}_1$	$\square~\mathcal{P}_2$	$\square \mathcal{P}_3$	$\square \mathbb{F}(X,\mathcal{F},\mathcal{F})$	2)
7.	s_7 peut $\boxtimes X$	être un é $\boxtimes \mathcal{F}_0$	elément de $\square \mathcal{F}_1$	l'ensemb $\square \mathcal{F}_2$		$\square \; \mathcal{P}_0$	$\square \mathcal{P}_1$	$\square \; \mathcal{P}_2$	$\square \mathcal{P}_3$	\square IF $(X, \mathcal{F}, \mathcal{F})$	2)
8.	cocher $\square s_1$		s qui appar $_3, s_4(s_5, s_6)$					$\boxtimes s_5$	$\boxtimes s_6(s_7)$	$\boxtimes s_7$	
9.	cocher $\boxtimes s_1$		les atomiqu $_3, s_4(s_5, s_6)$	_					$\square \ s_6(s_7)$	$\square s_7$	
10.			$s = s_2$							$=s_7$	
11. cocher les variables appartenant à $Free(F_2)$: $\boxtimes x$ $\boxtimes y$ $\square z$											
12. cocher les formules qui correspondent à une clôture universelle de F_2 : $\boxtimes \forall x \forall y \forall z (((\exists y p(z,y)) \land q(f(y))) \Rightarrow (\forall y p(x,y))) \Box \forall z \forall x \forall y (((\exists y p(z,y)) \land q(f(y))) \Rightarrow (\forall y p(x,y))) \Box \forall z (((\exists y p(z,y)) \land q(f(y))) \Rightarrow (\forall y p(x,y))) \Box \forall z (((\exists y p(z,y)) \land q(f(y))) \Rightarrow (\forall y p(x,y)))$											

13. cocher les formules ayant la même signification (i.e. logiquement équivalente) que F_2 :

$$\square \ \forall x \ (((\exists y \ p(x,y)) \land q(f(y))) \Rightarrow (\forall x \ p(z,x))) \\ \boxtimes \ \forall z \ (((\exists x \ p(x,y)) \land q(f(y))) \Rightarrow (\forall y \ p(x,y))) \\ \boxtimes \ \forall x \ (((\exists x \ p(x,x)) \land q(f(y))) \Rightarrow (\forall x \ p(x,x))))$$

► Corrigé de l'exercice 2.

$$\begin{array}{|c|c|c|}\hline \langle 1 \rangle & \operatorname{montrons} \; (\neg A \Rightarrow \neg B) \Rightarrow ((\neg B \Rightarrow \neg A) \Rightarrow (B \Rightarrow A)) \\ \hline \langle 2 \rangle & \operatorname{supposons} \; h_1 : \neg A \Rightarrow \neg B, h_2 : \neg B \Rightarrow \neg A, h_3 : B, \operatorname{montrons} \; A \\ \hline \langle 3 \rangle & \operatorname{supposons} \; h_4 : \neg A, \operatorname{montrons} \; \operatorname{false} \\ \hline \langle 4 \rangle & \operatorname{montrons} \; \neg B \\ \hline \langle 4 \rangle & \operatorname{CQFD} \; (D_\Rightarrow \operatorname{avec} \; h_1, h_4) \\ \hline \langle 5 \rangle & \operatorname{montrons} \; B \\ \hline \langle 5 \rangle & \operatorname{CQFD} \; (Ax \operatorname{avec} \; h_3) \\ \hline \langle 3 \rangle & \operatorname{CQFD} \; (E_\neg) \\ \hline \langle 2 \rangle & \operatorname{CQFD} \; (A\operatorname{bs}) \\ \hline \langle 1 \rangle & \operatorname{CQFD} \; (I_\Rightarrow^3) \\ \hline \end{array}$$

► Corrigé de l'exercice 3.

(1) $F_1 \models F_2$ si et seulement si pour toute structure \mathbf{M} , $[F_1]^{\mathbf{M}} = [F_2]^{\mathbf{M}}$.

(2)
$$F = (\neg B \Rightarrow \neg A) \Rightarrow (B \Rightarrow A)$$

(a)

$$[F]^{\mathbf{M}} = \overline{[\neg B \Rightarrow \neg A]^{\mathbf{M}}} + [B \Rightarrow A]^{\mathbf{M}} = \overline{[\neg B]^{\mathbf{M}}} + [\neg A]^{\mathbf{M}} + (\overline{[B]^{\mathbf{M}}} + [A]^{\mathbf{M}})$$

$$= \overline{[\overline{B}]^{\mathbf{M}}} + \overline{[A]^{\mathbf{M}}} + (\overline{\mathbf{I}_{\mathbf{M}}(B)} + \mathbf{I}_{\mathbf{M}}(A)) = \overline{\overline{\mathbf{I}_{\mathbf{M}}(B)}} + \overline{\mathbf{I}_{\mathbf{M}}(A)} + (\overline{\mathbf{I}_{\mathbf{M}}(B)} + \mathbf{I}_{\mathbf{M}}(A))$$

(b) En posant $x = \mathbf{I}_{\mathbf{M}}(A)$ et $y = \mathbf{I}_{\mathbf{M}}(B)$, on a :

$$[F]^{\mathbf{M}} = \overline{\overline{y}} + \overline{x} + (\overline{y} + x) \stackrel{E1.2}{=} \overline{y + \overline{x}} + (\overline{y} + x) \stackrel{E4.4}{=} (\overline{y} \cdot \overline{x}) + (\overline{y} + x) \stackrel{E1.2}{=} (\overline{y} \cdot x) + (\overline{y} + x)$$

$$\stackrel{E3.1}{=} (\overline{y} + x) + (\overline{y} \cdot x) \stackrel{E4.2}{=} ((\overline{y} + x) + \overline{y}) \cdot ((\overline{y} + x) + x) \stackrel{E3.1}{=} ((x + \overline{y}) + \overline{y}) \cdot ((\overline{y} + x) + x)$$

$$\stackrel{E3.4 \times 2}{=} (x + (\overline{y} + \overline{y})) \cdot (\overline{y} + (x + x)) \stackrel{E3.5 \times 2}{=} (x + \overline{y}) \cdot (\overline{y} + x) \stackrel{E3.1}{=} (x + \overline{y}) \cdot (x + \overline{y})$$

$$\stackrel{E2.5}{=} x + \overline{y} = \mathbf{I}_{\mathbf{M}}(A) + \overline{\mathbf{I}_{\mathbf{M}}(B)}$$

On a donc bien $F \sqsubseteq \neg A \Rightarrow \neg B$ puisque :

$$\mathbf{I_{M}}(A) + \overline{\mathbf{I_{M}}(B)} \stackrel{E1.2}{\equiv} \overline{\overline{\mathbf{I_{M}}(A)}} + \overline{\mathbf{I_{M}}(B)} = \overline{[\neg A]^{\mathbf{M}}} + [\neg B]^{\mathbf{M}} = [\neg A \Rightarrow \neg B]^{\mathbf{M}}$$

- (c) F est satisfiable puisque pour toute structure \mathbf{M}_1 telle que $\mathbf{I}_{\mathbf{M}_1}(A) = 1$ on a $[F]^{\mathbf{M}_1} = 1 + \overline{\mathbf{I}_{\mathbf{M}_1}(B)} \stackrel{E3.3}{\equiv} 1$ mais F n'est pas valide puisque pour une structure \mathbf{M}_2 telle que $\mathbf{I}_{\mathbf{M}_2}(A) = 0$ et $\mathbf{I}_{\mathbf{M}_2}(B) = 1$ on a $[F]^{\mathbf{M}_2} = \mathbf{I}_{\mathbf{M}_2}(A) + \overline{\mathbf{I}_{\mathbf{M}_2}(B)} = 0 + \overline{1} = 0 + 0 = 0$.
- ► Corrigé de l'exercice 4.
- (1) Définition inductive de $\mathcal{T}_0(\mathcal{F})$:

 $k_1 \in \mathcal{T}_0(\mathcal{F}), k_2 \in \mathcal{T}_0(\mathcal{F}).$

Si $t \in \mathcal{T}_0(\mathcal{F})$, alors $f(t) \in \mathcal{T}_0(\mathcal{F})$.

Si $t_1, t_2 \in \mathcal{T}_0(\mathcal{F})$, alors $g(t_1, t_2) \in \mathcal{T}_0(\mathcal{F})$.

(2) Définition inductive du nombre $\mathrm{nb}_f(t)$ d'occurrences du symbole f dans un terme $t \in \mathcal{T}_0(\mathcal{F})$:

$$nb_f(t) = \begin{cases} 0 & \text{si } t = k_1 \text{ ou } t = k_2 \\ 1 + nb_f(t') & \text{si } t = f(t') \\ nb_f(t_1) + nb_f(t_2) & \text{si } t = g(t_1, t_2) \end{cases}$$

(3.a)
$$[g(f(k_1), g(k_2, k_1))]^{\mathbf{M}_1} = g_1^{\mathbf{M}}(f^{\mathbf{M}_1}(k_1^{\mathbf{M}_1}), g^{\mathbf{M}_1}(k_2^{\mathbf{M}_1}, k_1^{\mathbf{M}_1})) = g^{\mathbf{M}_1}(f^{\mathbf{M}_1}(3), g^{\mathbf{M}_1}(1, 3))$$
$$= g^{\mathbf{M}_1}(3, 3) = 9$$

- (3.b) Raisonnement par induction sur t.
- (B) Si $t = k_1$, alors $[k_1]^{\mathbf{M}_1} = 3 = 3^1$.

Si $t = k_2$, alors $[k_2]^{\mathbf{M}_1} = 1 = 3^0$.

(4.a) On définit la structure \mathbf{M}_2 dont le domaine est l'ensemble des entiers relatifs $|\mathbf{M}_2| = \mathbb{Z}$ et telle que :

$$k_1^{\mathbf{M}_2} = 1$$
 $f^{\mathbf{M}_2} : \mathbb{Z} \to \mathbb{Z}$ $g^{\mathbf{M}_2} : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ $p^{\mathbf{M}_2} \subseteq \mathbb{Z}$ $k_2^{\mathbf{M}_2} = 0$ $f^{\mathbf{M}_2}(n) = -n$ $g^{\mathbf{M}_2}(n_1, n_2) = n_1 + n_2$ $p^{\mathbf{M}_2} = \{(n_1, n_2) \mid n_1 = n_2\}$

On a $[F]^{\mathbf{M}_2} = \mathbf{I}_{\mathbf{M}_2}(p(f(k_1), k_1)) + \mathbf{I}_{\mathbf{M}_2}(p(g(k_1, f(k_1)), k_2)) = 0 + 1 = 1 \text{ car }:$

$$(i) \ [f(k_1)]^{\mathbf{M}_2} = f^{\mathbf{M}_2}(k_1^{\mathbf{M}_2}) = f^{\mathbf{M}_2}(1) = -1 \ \text{et} \ k_1^{\mathbf{M}_2} = 1, \ \text{et} \ \mathbf{I}_{\mathbf{M}_2}(p(f(k_1), k_1)) = 0 \ \text{puisque} \ (-1, 1) \notin p^{\mathbf{M}_2}.$$

$$(ii) \ [g(k_1,f(k_1))]^{\mathbf{M}_2} = g^{\mathbf{M}_2}(k_1^{\mathbf{M}_2},f^{\mathbf{M}_2}(k_1^{\mathbf{M}_2})) = g^{\mathbf{M}_2}(1,f^{\mathbf{M}_2}(1)) = g^{\mathbf{M}_2}(1,-1) = 0 \text{ et } k_2^{\mathbf{M}_2} = 0 \text{ et donc } \mathbf{I}_{\mathbf{M}_2}(p(g(k_1,f(k_1)),k_2)) = 1 \text{ puisque } (0,0) \in p^{\mathbf{M}_2}.$$

(4.b) On définit la structure \mathbf{M}_3 dont le domaine est l'ensemble des entiers relatifs $|\mathbf{M}_3| = \mathbb{Z}$ et telle que :

$$k_1^{\mathbf{M}_3} = 1$$
 $f^{\mathbf{M}_3} : \mathbb{Z} \to \mathbb{Z}$ $g^{\mathbf{M}_3} : \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}$ $p^{\mathbf{M}_3} \subseteq \mathbb{Z}$ $k_2^{\mathbf{M}_3} = 2$ $f^{\mathbf{M}_3}(n) = -n$ $g^{\mathbf{M}_3}(n_1, n_2) = n_1 + n_2$ $p^{\mathbf{M}_3} = \{(n_1, n_2) \mid n_1 = n_2\}$

On a $[F]^{\mathbf{M}_3} = \mathbf{I}_{\mathbf{M}_3}(p(f(k_1), k_1)) + \mathbf{I}_{\mathbf{M}_3}(p(g(k_1, f(k_1)), k_2)) = 0 + 0 = 0$ car :

$$(i) \ [f(k_1)]^{\mathbf{M}_3} = f^{\mathbf{M}_3}(k_1^{\mathbf{M}_3}) = f^{\mathbf{M}_3}(1) = -1 \ \text{et} \ k_1^{\mathbf{M}_3} = 1, \ \text{et} \ \mathbf{I}_{\mathbf{M}_3}(p(f(k_1), k_1)) = 0 \ \text{puisque} \ (-1, 1) \notin p^{\mathbf{M}_3}.$$

$$(ii) \ [g(k_1,f(k_1))]^{\mathbf{M}_3} = g^{\mathbf{M}_3}(k_1^{\mathbf{M}_3},f^{\mathbf{M}_3}(k_1^{\mathbf{M}_3})) = g^{\mathbf{M}_3}(1,f^{\mathbf{M}_3}(1)) = g^{\mathbf{M}_3}(1,-1) = 0 \text{ et } k_2^{\mathbf{M}_3} = 2 \text{ et donc } \mathbf{I}_{\mathbf{M}_3}(p(g(k_1,f(k_1)),k_2)) = 0 \text{ puisque } (0,2) \notin p^{\mathbf{M}_3}.$$