CONJUNTOS

1. Conceitos

Conjunto é sinônimo de agrupamento, coleção, etc...

Elemento do conjunto são os objetos, ou números que constituem o conjunto.

Conjunto vazio é o aquele que não possui elemento algum, e indica-se por \varnothing ou, simplesmente, por $\{$ $\}$.

Conjunto unitário é o aquele que possui apenas um elemento.

2. Representação dos Conjuntos

a) Por enumeração

Pela designação de seus elementos. Escreve-se os elementos entre chaves, separando-os por vírgula ou ponto e vírgula.

Exemplo: O conjunto dos números ímpares positivos é: {1, 3, 5, 7, 9,...}

b) Por propriedade

Quando todos os elementos de um conjunto, e somente eles, satisfazem a uma propriedade, podemos descrever o conjunto especificando essa propriedade.

Exemplo: $A = \{ x \mid x \text{ \'e impar e } 1 \le x < 11 \} \text{ \'e o conjunto } \{ 1, 3, 5, 7, 9 \}.$

c) Por diagrama (Diagrama de Venn-Euler)

Exemplo:

Exercícios

01. Sendo o conjunto universo o conjunto dos estados do Brasil e sendo:

 $A = \{x | x \text{ \'e estado onde a língua oficial \'e o alemão}\}$

 $B = \{x | x \text{ \'e estado onde não existem praias}\}$

 $C = \{x | x \text{ \'e estado banhado pelo oceano Pacífico}\}$

 $D = \{x | x \text{ \'e estado cujo nome começa com a letra T} \}$

Some os valores associados às afirmações verdadeiras:

- 01. A é vazio
- 02. B é unitário
- 04. C é vazio
- 08. D é unitário

02. Escreva o conjunto expresso pela propriedade:

- a) x é um número natural par
- b) x é um número natural múltiplo de 5 e menor que 31.

03. Escreva uma propriedade que define o conjunto:

- a) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
- b) {11, 13, 15, 17}

04. Represente os seguintes conjuntos por extensão de seus elementos:

- a) $A = \{x \in N \mid x \le 4\}$
- b) $A = \{x \in N \mid 2 < x \le 6\}$
- c) $A = \{x \in Z \mid -2 \le x < 0\}$
- d) $A = \{x \in N \mid x^2 4x 5 = 0\}$
- e) $A = \{x \in R_+ \mid 2x^2 + x = 0\}$
- f) $A = \{x \in Q \mid -3x^2 + 2x = 0\}$

3. Relação - Elemento e Conjunto - Pertinência

- Se um elemento é constituinte de um conjunto significa que ele pertence ao conjunto. Esta relação é representada pelo símbolo ∈.
- Se um elemento não é constituinte de um conjunto significa que ele não pertence ao conjunto. Esta relação é representada pelo símbolo ∉.

Exemplo: Dado o conjunto A = $\{2, 5, 7\}$ podemos afirmar que $2 \in A$ e $3 \notin A$.

4. Relação - Conjunto e Conjunto

- **a)** Igualdade de conjuntos → dois conjuntos A e B são iguais se. e somente se, possuem os mesmos elementos.
- b) Subconjunto de um conjunto → um conjunto A é subconjunto de B quando todo elemento de A também é elemento de B. Esta relação é representada pelos símbolos:

Exemplo: Dados os conjuntos: $A = \{2, 3\}$ e $B = \{2, 3, 4, 5, 6\}$ então:

A ⊂ B ⇒ lê-se A "está contido" em B

B ⊃ A ⇒ lê-se B "contém" A

LEMBRE-SE: O conjunto vazio está contido em qualquer conjunto, ou seja, é subconjunto que qualquer outro conjunto.

5. Conjunto das Partes de um Conjunto - P(A)

Chamamos conjuntos das partes de um conjunto P(A) aquele formado por todos os subconjuntos de A, ou seja, cada subconjunto de A é considerado um **elemento** de P(A).

OBSERVAÇÕES:

- De um modo geral, para qualquer conjunto A, o conjunto vazio e o próprio conjunto A são seus subconjuntos.
- Na relação entre P(A) e seus elementos, utiliza-se os símbolos de Pertinência (∈, ∉). Assim, se {x} é um elemento de P(A), podemos escrever {x} ∈ P(A).
- Se o conjunto A tem "n" elementos, então P(A) tem 2^n elementos.

Exemplo: Dado A = $\{1, 3\} \Rightarrow P(A) = \{\emptyset, \{1\}, \{3\}, A\}$ onde podemos afirmar que: $\emptyset \in P(A)$; $\{1\} \in P(A)$; $\{3\} \in P(A)$ e $A \in P(A)$, como A tem 2 elementos $\Rightarrow P(A)$ tem $2^2 = 4$ elementos.

Exercícios

05. Seja A = {1, 2, {2}, {3}, ∅}

Assinale V nas sentenças verdadeiras e F nas falsas.

06. Sendo A = { \emptyset , a, {b}} com {b} \neq a \neq b \neq \emptyset , então:

- a) $\{\emptyset, \{b\}\}\subset A$
- c) $\{\emptyset, b\} \subset A$

e) $\{\emptyset, \{a\}\}\subset A$

b) $\{a, b\} \subset a$

 $d) \quad \{\{a\},\,\{b\}\} \subset A$

07. (PUC) Para os conjuntos $A = \{a\} \in B = \{a, \{A\}\}\$ podemos afirmar que:

a) $B \subset A$

c) $A \in B$

e) $\{A\} \in B$

b) A = B

d) a = A

08. Sendo A = $\{1, 9, 8\}$, B = $\{1, 5, 0\}$ e C = $\{2, 4, 5, 6, 8\}$, assinale V nas sentenças verdadeiras e F nas falsas:

- a) () $1 \in A$
- g) () $0 \in A$
- b) () 1 ∈ B
- h) () $0 \in B$
- c) () $1 \in C$
- i) () $0 \in C$ j) () $A = \{x \mid x \text{ \'e algarismo de 1989}\}$
- d) () $8 \in A$ e) () $8 \in B$
- j) () A = {x | x é algarismo de 1989}
 k) () B = {x | x é algarismo do ano e que o Brasil foi
- f) ()8 ∈ C
- descoberto}
 I) () C = {x | x \(\text{ in the model} \) compressed on the 0 \(\text{e} \) 10}
- **09.** Sejam $A = \{a\}$, $B = \{a, b\}$, $C = \{a, b, c\}$ e $D = \{a, b, c, d\}$, some os valores associados as afirmações verdadeiras:
- 01. A ⊂ B

08. $C \subset D$

02. B ⊂ A

16. $B \subset D$

04. $B \subset C$

32. $D \subset A$

6. Operações com Conjuntos

6.1 - Intersecção

Se A e B são dois conjuntos quaisquer, a intersecção de A e B é o conjunto formado pelos elementos que pertencem simultaneamente a A e B.

A intersecção dos conjuntos A e B e representada por A \cap B (lê-se "A inter B").

$$A \cap B = \{x \mid x \in A \ e \ x \in B\}$$

Exemplos: Se A = $\{a, b, c\}$ e B = $\{b, c, d\}$, então A \cap B = $\{b, c\}$

Observação: Se A \cap B = \emptyset , ou seja, A e B não tem elemento comum, dizemos que A e B são **disjuntos**.

Se A =
$$\{1, 2, 3\}$$
 e B = $\{4, 5\}$, então A \cap B = \emptyset

6.2 - União

Se A e B são dois conjuntos quaisquer, a união de A e B é o conjunto formado pelos elementos que pertencem a A ou a B.

A união dos conjuntos A e B e representada por A∪B (lê-se "A união B").

$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

Exemplos: Se A = $\{a, b, c\}$ e B = $\{b, c, d\}$, então A \cup B = $\{a, b, c, d\}$.

6.3 - Diferença

Se A e B são dois conjuntos quaisquer, a diferença de A para B é o conjunto formado pelos elementos de A que não pertencem a B.

A diferença dos conjuntos A para B e representada por A – B.

$$A - B = \{ x \mid x \in A \ e \ x \notin B \}$$

Observações:

- A - B é diferente de B - A

Exemplo: Se A = $\{a, b, c, d\}$ e B = $\{c, d, e, f\}$, então A - B = $\{a, b\}$ e B - A = $\{e, f\}$

- Quando B é subconjunto de A (B \subset A), a diferença A - B chama-se **conjunto** complementar de B em relação a A e representa-se por C_A^B . Assim temos:

$$C_{\Delta}^{B} = A - B$$
, com $B \subset A$

Exemplo: Se A = $\{a, b, c, d\}$ e B = $\{c, d\}$, então $C_A^B = A - B = \{a, b\}$

Exercícios

10. Dados $A = \{0, 1, 3\}, B = \{0, 3, 5\} \in C = \{3, 7, 8\}, calcule:$

a) A ∪ B

f) $B \cap C$

k) $(A \cup B) \cap C$

b) $A \cap B$

g) A – B h) B – A I) $(A \cap B) \cup C$

c) $A \cap C$ d) $A \cup C$

i) A – C

m) $(A \cup B) - (A \cup C)$

e) $B \cup C$

j) C – A

n) $(A \cap B) - (A \cap C)$

11. (FCM-MG) Sendo A = {1, 3, 5, 7,...} e B = $\left\{x \in Q \mid x > -\frac{1}{2}\right\}$, todas as

afirmativas abaixo são corretas, exceto:

- a) A B = A
- c) A ⊂ B

e) $A \cup B = B$

b) 379 ∈ A

d) $\frac{3}{7} \in B$

12. Dados os conjuntos:

 $A = \{ x \mid x \text{ \'e um n\'umero natural primo menor do que 10} \}$

 $B = \{x \mid x \text{ é um número natural múltiplo de 2 e menor que 9}\}$

 $C = \{ x \mid x \in \text{um número natural divisor de } 12 \}$

Determine:

a)
$$(A \cup B) \cap C$$

c)
$$(C - A) \cap B$$

d) (
$$A \cup B$$
) – ($B \cap C$)

13. (MACK-SP) Dados o conjunto A = {3, {3}} e as proposições:

$$I - 3 \in A$$

II -
$$\{3\} \subset A$$
 então:

III -
$$\{3\} \in A$$

- a) apenas as proposições I e II são verdadeiras.
- b) apenas as proposições II e III são verdadeiras.
- c) apenas as proposições I e III são verdadeiras.
- d) todas as proposições são verdadeiras.
- e) nenhuma proposição é verdadeira.

14. (FMJ) São dados os conjuntos
$$A = \{0, 1, 2, 3\}$$
, $B = \{2, 3, 4\}$ e $C = \{1, 2, 3, 4, 5, 6\}$.

O conjunto X tal que C – X = A \cap (B \cup C) é:

c)
$$\{4, 6\}$$

15. (PUCC-SP) Considerando N =
$$\{0, 1, 2, 3, 4, ...\}$$
, A = $\{x \in N^* \mid \frac{24}{x} = n, n \in N\}$ e

B = { $X \in N \mid 3x + 4 < 2x + 9$ }, podemos afirmar que:

- a) $A \cup B$ tem 8 elementos.
- c) $A \cup B = A$
- e) B A = B

- b) $A \cap B$ tem 4 elementos.
- d) $A \cap B = A$

$$A \cup B \cup C = \{n \in N \mid 1 \le n \le 10\}$$

$$A \cap B = \{2, 3, 8\}$$

$$A \cap C = \{2, 7\}$$

$$B \cap C = \{2, 5, 6\}$$

$$A \, \cup \, B = \{n \, \in \, N \mid 1 \leq n \leq 8\}$$

O coniunto C é:

- a) {2, 5, 6, 8}
- c) {2, 5, 6, 7, 9, 10}
- e) {9, 10}

- b) {2, 5, 6, 7}
- d) {2, 5, 6, 9}
- 17. (UFSC) Considere o diagrama ao lado e determine a soma dos números associados às afirmativas verdadeiras.
- 01. A \cap B \cap C = II \cup IV
- 02. $A B = I \cup V$
- 04. (A \cup B) \cap C = IV \cup V \cup VI
- 08. $(A \cap B) A = III \cup V$
- 16. $(A \cup B) \supset (B \cap C)$

- 18. (UFMG) Na figura, R é um retângulo, T é um triângulo e C, um círculo. A região hachurada é:
- a) $C R \cap T$
- b) T \cap C R
- c) T \cup C R
- d) $R \cup C T$
- e) $R \cap C T$

- 19. (UFU-MG) Sejam A, B e C três conjuntos em um universo U. Qual a alternativa FALSA, dentre as seguintes relacionadas?
- a) $C_{(A \cap B)} = C_A \cup C_B$

d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

b) $A \cup (A \cap B) \subset A$ c) $A \cap (A \cup B) \subset B$

- e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- **20.** (UFRGS) A condição necessária e suficiente para que $A \subset B$, $B \subset C$ e C ⊂ A é:
- a) $A = B = C = \emptyset$
- c) A = B = C

e) A = C

- b) $A = C = \emptyset$
- d) $C = \emptyset$
- 21. (UFSC 86) Dados A e B dois conjuntos não vazios, disjuntos. Determine a soma dos números associados às afirmações verdadeiras.
- 01. $(A \cup B) (A \cap B) = A$
- 02. A \cap B = \emptyset
- 04. B A = B

- 08. $(A \cup B) \cap A = (A \cup B) B$
- 16. $(A \cap B) \subset (A \cup B)$
- 32. (A − B) \cap B = Ø

- 23. (UFAL) Se A e B sao dois conjuntos nao vazios tais que: A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}, A - B = \{1, 2, 3, 6, 7\} e B - A = \{4, 8\} então A \cap B \(\epsilon\) B \(\epsilon\) conjunto:
- a) \varnothing c) $\{5\}$ e) $\{1, 3, 4, 6, 7, 8\}$ b) $\{1, 4\}$
- **24.** (UFAL) Sejam A e B subconjuntos de um conjunto X, tais que $X A = \{0, 1, 5, 6\}$ e $X B = \{0, 4, 6\}$. Se A \cap B = $\{2, 3\}$, o conjunto A \cup B é igual a:
 a) $\{1, 4, 5\}$ c) $\{1, 2, 3, 4\}$ e) $\{0, 2, 4, 5, 6\}$ b) $\{0, 2, 3, 5\}$ d) $\{1, 2, 3, 4, 5\}$

7. Número de elementos de um conjunto

Sendo A um conjunto com um número finito de elementos, representa-se por n(A) o número de elementos de A.

Sendo X e Y dois conjuntos quaisquer, com número finito de elementos, temse:

$$\begin{array}{ll} \text{Se } X \cap Y \neq \varnothing \Rightarrow & n(X \cup Y) = n(X) + n(Y) - n(X \cap Y) \\ & n(X - Y) = n(X) - n(X \cap Y) \end{array}$$

$$\begin{array}{ll} \text{Se } X \cap Y = \varnothing \Rightarrow & n(X \cup Y) = n(X) + n(Y) \\ \text{Se } Y \subset X & \Rightarrow & n(X - Y) = n(X) - n(Y) \end{array}$$

Exercícios

- **25.** (PUC-SP) Se A, B e A \cap B são conjuntos com 90, 50 e 30 elementos, respectivamente, então o número de elementos de A \cup B é:
- a) 10 b) 70 c) 85 d) 110 e) 170
- **26.** Numa academia com 496 alunos, 210 fazem natação, 260 fazem musculação e 94 não fazem natação nem musculação. Determine o número de alunos que fazem:
- a) natação ou musculação;
- b) natação e musculação;
- c) natação e não fazem musculação.

- **27.** (FGV-SP) Em certo anos, ao analisar os dados dos candidatos ao concurso vestibular para o curso de graduação em administração, nas modalidades Administração de Empresas e Administração Pública, conclui-se que:
- 80% do número total de candidatos optaram pela modalidade Administração de Empresas;
- 70% do número total de candidatos eram do sexo masculino;
- 50% do número de candidatos à modalidade Administração Pública eram do sexo masculino;
- 500 mulheres optaram pela modalidade Administração Pública.

O número de candidatos do sexo masculino à modalidade Administração de Empresas foi:

- a) 4000
- b) 3500
- c) 3000
- d) 1500
- e) 1000
- **28.** (UFSE) Os senhores A, B e C concorriam à liderança de certo partido político. Para escolher o líder, cada eleitor votou apenas em dois candidatos de sua preferência. Houve 100 votos para A e B, 80 votos para B e C e 20 votos para A e C. Em conseqüência:
- a) venceu A, com 120 votos.
- b) venceu A, com 140 votos.
- c) A e B empataram em primeiro lugar.
- d) venceu B, com 140 votos.
- e) venceu B, com 180 votos.
- **29.** (ACAFE) Numa pesquisa de preferência pelas disciplinas de Matemática (M), Física (F) e Português (P), feitas aos alunos de um colégio, foram colhidos os seguintes resultados:

Disciplina	M	F	Р	MeF	MeP	FeP	M, FeP
Alunos	400	300	200	150	50	30	20

O número total de alunos entrevistados foi de:

- a) 900
- b) 690
- c) 650
- d) 500
- e) 140

30. (UFLA-MG) Numa comunidade são consumidos os tipos de leite A, B e C. Feita uma pesquisa de mercado sobre o consumo desses produtos, foram colhidos os resultados:

LEITE	NÚMERO DE CONSUMIDORES	
Α	100	
В	150	
С	200	
AeB	20	
BeC	40	
A e C	30	
A, B e C	10	
Nenhum dos três	160	

Determine quantas pessoas:

- a) foram consultadas?
- b) consomem apenas dois tipos de leite?
- c) não consomem leito do tipo B?
- d) não consomem o leite tipo A ou não consomem o leite tipo B?

31. (UFV-MG) Fez-se, em uma população, uma pesquisa de mercado sobre o consumo de sabão em pó de três marcas A, B e C. Em relação à população consultada e com o auxílio dos resultados da pesquisa tabelados abaixo:

Marcas	Α	В	С	AeB	AeC	BeC	A, B e C	Nenhuma delas
Número de consumidores	109	203	162	25	28	41	5	115

Determine:

- a) o número de pessoas consultadas:
- b) o número de pessoas que não consomem as marcas A ou B;
- c) o número de pessoas que consomem pelo menos duas marcas;
- d) a porcentagem de pessoas que consomem as marcas A e B e não consomem a marca C;
- e) a percentagem de pessoas que consomem apenas a marca C.

32. (FGV-SP) Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:

A: 48% A e B: 18% B e C: 25% C: 50% A e C: 15%

nenhuma das três marca: 5%

- a) Qual a porcentagem dos entrevistados que consomem as três marcas A, B e C?
- b) Qual a porcentagem dos entrevistados que consomem uma e apenas uma das três marcas?

33. (PUC-MG) O número de elementos da união de dois conjuntos A e B é $n(A \cup B) = 15$. Se n(A) = 7 e $n(A \cap B) = 3$, n(B - A) é igual a:

- a) 6
- b) 7
- c) 8
- d) 9
- e) 10

34. (UFSC) Considerando o diagrama ao lado, determine o número de subconjunto que podemos obter com os elementos do conjunto: $(A-B)\cup (B\cap C)$

35. (ACAFE) Seja um conjunto tal que:

$$A - \{1, 2, 3, 7, 8\} = \{4\}$$

е

$$A \cap \{1, 2, 3, 5, 6\} = \{1, 2, 3\}$$

O menor número de elementos que A pode ter é:

- a) 6
- b) 5
- c) 4
- d) 3
- e) 2

8. Intervalos

Sabendo que o conjunto dos números reais (\mathbb{R}) é um conjunto contínuo, denominamos intervalo qualquer subconjunto contínuo de \mathbb{R} . Os intervalos podem ser representados por colchetes ou parênteses.

Considerando-se a pertinência dos extremos, os intervalos podem ser:

a) Intervalo aberto \Rightarrow os números reais extremos não pertencem ao intervalo.

Exemplo: Sejam a e b dois números reais e a < b, então o intervalo aberto será: $a,b = \{x \in \mathbb{R} \mid a < x < b\}$

b) Intervalo fechado → os números reais extremos pertencem ao intervalo.

Exemplo: Sejam a e b dois números reais e a < b, então o intervalo fechado será: $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$

c) Intervalo fechado à esquerda → o número real extremo inferior pertence ao intervalo, porém o extremo superior não pertence.

Exemplo: Sejam a e b dois números reais e a < b, então o intervalo fechado à esquerda será: $[a,b[=[a,b)=\{x\in\mathbb{R}\ \big|\ a\leq x< b\}$

d) Intervalo fechado à direita → o número real extremo inferior não pertence ao intervalo, porém o extremo superior pertence.

Exemplo: Sejam a e b dois números reais e a < b, então o intervalo fechado à direita será: $]a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$

e) Intervalos Infinitos -> um dos extremos do intervalo está no infinito.

Exemplo: Sejam a um número real, então podemos definir os seguintes intervalos infinitos: $[a, +\infty[= [a, +\infty) = \{ x \in \mathbb{R} \mid x \geq a \}$

$$(a, +\infty[= (a, +\infty) = \{ x \in \mathbb{R} \mid x > a \}$$

]-\omega, a] = (-\omega, a] = \{ x \in \mathbb{R} \ x \leq a \}

]-
$$\infty$$
, a[= (- ∞ , a) = { x \in \mathbb{R} | x < a }

Observação: O intervalo $(-\infty, +\infty) = \mathbb{R}$

Exercícios

- **36.** (FMJ-SP) Dados os intervalos A =]-2,1] e B = [0, 2], então A \cap B e A \cup B são respectivamente:
- a)]0, 1[e]-2, 2[
- c) [0, 1] e]-2, 2]
- e) [0, 1[e [-2, 2]

- b)]0, 1] e]-2, 2]
- d) [0, 1[e [-2, 2[
- **37.** (FGV-SP) Dados os conjuntos: $A = \{ x \in \mathbb{R} \mid x > 6 \} e B = \{ x \in \mathbb{R} \mid x < 3 \}$, qual a sentença correta?
- a) A ⊂ B

d) $A \cap B = \{ x \mid x > 3 \}$

b) $A \cap B = \emptyset$

e) $A \cup B = |R|$

- c) $A \cup B = \{x \mid 3 < x < 6\}$
- **38.** Se A =]- ∞ , 2], B = [2, + ∞ [e C =]1, 2], então o número de elementos de (A \cap B) C é:
- a) infinito
- b) um
- c) zero
- d) dois
- e) indeterminado
- **39.** (PUC-MG) Sendo A = { $x \in R \mid -2 \le x < 3$ } e B = { $x \in Z \mid -2 < x \le 3$ }, é correto afirmar:
- a) $A \cup B = A$
- c) $A \cap B = A$

e) $A \cap B = B$

- b) $A \cup B \subset Z$
- d) $A \cap B \subset Z$
- **40.** (UFGO) Dados os conjuntos:

A = $\{x \in R \mid 1 \le x < 7\}$; B = $\{x \in R \mid (x + 1)(x - 5) < 0\}$ e C = $\{x \in R \mid x^2 = 5x\}$, o conjunto A \cap (C \cup B) é:

a) (-1, 7)

c) [1, 5]

e) {0, 3}

- b) $\{3\} \cup (5, 7)$
- d) (5, 7)

TESTES DE FIXAÇÃO

95. Se M = $\{\{a,b\}, \{b\}, b, \{\}\},$	então:		
a) $b \subset M$ b) $\{a,b\} \subset M$	$\begin{array}{ll} c) & a \in M \\ d) & \{b\} \in M \end{array}$	e)	n.d.a
96. (FUVEST) Considere os I. Se $X \cap Y = X$, então $X \subset \mathbb{R}$ II. $X \cup \emptyset = \emptyset$ III. Se $A \subset X$ e $A \subset Y$, então A Associando V ou F a cada afir a) F,F,V b) V,F,V	$Y \subset (X \cup Y).$	me seja verdadeira	
97. (UNIP-SP) O número de é:	conjuntos X q	ue satisfazem (1, 2	$\} \subset X \subset \{1,2,3,4\}$
a) 3 b) 4	c) 5 d) 6	e)	7
98. (SJRP-adaptada) Some of 01. {a; b} = {b; a} 02. {a; b} = {a; a; b; b} 04. (a;b) ≠ {a; b} 08. {b} ∈ {a; {b}} 16. (a; b) = (b; a)	os valores ass	ociados às afirmaç	ões verdadeiras:
99. (FATEC-SP) Se A = {0,1} 1}}}, então:	$B = \{\{1\}, \{0, \}\}$	1}} e C = {0, 1, {1},	{0, 1}, {{1}, {0,
 a) A ⊂ B b) A ∩ B = {0, 1} c) A − B = Ø 		d) $C - (A \cup B) \subset e$ $(A \cap C) \in B$: B
100. (CESGRANRIO) Se X concluir que:	e Y são conji	untos e $X \cup Y = Y$, pode-se sempre
a) X ⊂ Y		d) $Y \subset X$	

b) $X = \emptyset$ c) X = Y e) $X \cap Y = Y$

	ando-se os conjuntos Z, dos al dos números seguintes <i>nã</i>	
3	c) 0	e) 2,0123
a) $-\frac{3}{2}$	d) $\frac{3}{5}$	
b) -0,777	^{u)} 5	
	s os conjuntos $A = \{x \in N x \in S\}$. O conjunto D, tal que D =	
a) {-3, -2, -1, 0, 7, 9}	c) {2, 4, 5}	e) {1, 3}
b) Ø	d) {-3, -1}	
103. (MACK-SP) Sejam os O conjunto (B − A)∩C é:	conjuntos: $A = [0, 3]; B =]-6$	∞ , 3] e C = (-2, 3],
a) Ø	c)]-2, +∞[e)]-2, 3[
b)]-∞, 0[d) [-2, 0[
104. (CESGRANRIO) Se A $C = \{x \in R x \ge 0\}$, então o	= $\{x \in R x < 1\}, B = \{x \in R -1\}$	1 < x ≤ 3} e
a) $\{x \in R \mid -1 < x < 0\}$	$d) \{x \in R \mid x\}$	c < 3}
b) $\{x \in R \mid -1 < x \le 0\}$	e) $\{x \in R \mid x \in R \mid $	•
c) $\{x \in R -1 < x < 1\}$, , ,	
105. (EFOA-MG) Seja R	o conjunto dos números rea	ais, N o conjunto dos
	onjunto dos números racion	

falsa?

- $Q \cup N \subset R$ a)
- $Q \cup N = R$ c)
- e) $Q \cap R \neq R$

- $Q\cap N\subset R$ b)
- $Q \cap R = Q$ d)

106. (FATEC-SP) Se A = $\{x \mid x = 2n, n \in N\}$ e B = $\{x \mid x = n^2, n \in N\}$, então:

- a) $A \cap B = \{x \mid x = (2n)^2, n \in N\}$
- b) $A \cap B = \{x \mid x = 4n, n \in N\}$
- c) $A \cup B = \{x \mid x = 2n + 4, n \in N\}$
- d) $A B = \{x \mid x = 2n n^2, n \in N\}$
- e) $A \cup B = \{x \mid x = n^2, n \in N\}$

107. (UFSC) Dados os conjuntos: $A = \{a, b, c\}$, $B = \{a, c, e, g\}$ e $C = \{a, b, d, f\}$, calcule o número dos elementos do conjunto $(A \cap B) \times (C - B)$.

108. (UFSC) Considere o diagrama:

Calcule a soma dos elementos (B \cap C) – A .

109. (FESP) Sejam A, B e C conjuntos tais que A \cap C = C e B \cap C = \emptyset , então:

a)
$$\hat{A} \cup \hat{B} = \hat{B}$$

c)
$$B \cup C \subset A$$

e)
$$A \subset B$$

b)
$$B \cap C \subset A$$

d)
$$A \cap B = B$$

110. (PUC-SP) Supondo A, B e C três conjuntos não vazios, assinale a alternativa correta:

a)
$$A \subset C$$
, $B \cap C = \emptyset \Rightarrow A \cap B \neq \emptyset$

b)
$$A \subset B$$
, $C \cap A = \emptyset \Rightarrow C \subset B$

c)
$$A \subset B$$
, $C \subset B \Rightarrow A \cap C \neq \emptyset$

d)
$$A \subset B$$
, $B \cap C = \emptyset \Rightarrow A \cap C \neq \emptyset$

e)
$$A \subset B$$
, $C \cap A = \emptyset \Rightarrow (A \cap B) \subset B$

111. ((MACK-SP) Se A e B são dois conjuntos tais que A \subset B e A \neq \varnothing , então:

- a) sempre existe $x \in A$ tal que $x \notin B$.
- b) sempre existe $x \in B$ tal que $x \notin A$.
- c) se $x \in B$ então $x \in a$.
- d) se $x \notin B$ então $x \notin a$.
- e) A \cap B = \emptyset

112. (FCC-SP) Se A = $\{x \in N^* \mid \frac{30}{x} = n \in N\}$ e B = $\{x \in N \mid x = 3n, \text{ com } n \in N\}$,

o número de elementos de A \cap B é:

b) {4, 5, 6, 7, 8}	d) {4, 5}	
	3, 5, 6, 7, 8}, B = $\{1, 2, 3, 6, 8\}$ 6 b) $(B - A) \cap C = \{1\}$ e) n.d.a.	
115. (ACAFE) Supondo que	$\begin{cases} A \cup B = \{1, 2, 3, 4, 5, 6, 7, \\ A \cap B = \{4, 5\} \\ A - B = \{1, 2, 3\} \end{cases}$	^{8}} , então B é:
a) {6, 7, 8} b) {4, 5, 6, 7, 8}	c) {1, 2, 3, 4} d) {4, 5}	e) Ø
116. (CESGRANRIO) Sejam e $M \cup P = \{1, 3, 4\}$, então M	n M, N e P conjuntos. Se ∪N∪P é:	$M \cup N = \{ 1, 2, 3, 5 \}$
a) ∅ b) {1,3}	c) {1, 3, 4} d) {1, 2, 3, 5}	e) {1, 2, 3, 4, 5}
117. (MACK-SP) Sendo A = complementar de B em A é:	{ 1, 2, 3, 5, 7, 8} e B = {2, 3, 7	'}, então o
a) Ø b) {8}	c) {8, 9, 10} d) {9, 10, 11,}	e) {1, 5, 8}
118. (UFU-MG) Se A e B so $C_U^B \cap A = \emptyset$, então tem-se n	ão dois subconjuntos não-va ecessariamente:	zios de U tais que
a) A ⊂ Bb) B ⊂ A	$C) A \cap B = \emptyset$	e) $B \cap C_U^A = \emptyset$
119. (UNIFAP) Dentre as se é:	ntenças abaixo envolvendo co	onjuntos, a verdadeira
a) $N \subset Z \subset Q \subset Ir \subset R$	d) $A \cap B = B$	

113. Sabendo que A \cup B = {1, 2, 3, 4, 5, 6, 7, 8}, A \cap B = {4, 5}, A – B = {1, 2,

e) Ø

c) {1, 2, 3, 4}

3}, então B é: a) {6, 7, 8}

c) $A \cap B = \{\} \Rightarrow A = \{\} \text{ ou } B = \{\}$

120. A região hachuriada, na figura abaixo, representa o conjunto:

- a) B (A \cup C)
- b) $(A \cap B \cap C) A$
- c) $(A \cup C) A$
- d) $(A \cup B) A$
- e) D − (A ∪ C)

121. (UNIVALI-SC) Na figura ao lado estão representados os conjuntos não vazios A, B, e C. A região hachurada representa o conjunto:

- a) $(A \cap B) C$
- b) $(A \cap C) B$
- c) C B
- d) A C
- e) $A \cap C$

122. (UCPel-RS) No diagrama abaixo, a parte sombreada representa:

- a) E ∩ G
- b) $(E \cap F) \cap G$
- c) E G
- d) $G_R^{(E \cup F)}$
- e) (E ∩ G) F

123. (ACAFE) Dados dois conjuntos A e B distintos e não vazios sendo A um subconjunto de B, podemos afirmar CORRETAMENTE que:

a) $A \cup B = A$

d) A \cap B = \emptyset

b) $C_B^A \cap (A - B) = \emptyset$

e) $C_B^A \cup (A - B) = B$

c) A - B = B - A

124. (FATEC-SP) O conjunto A tem 20 elementos: A \cap B tem 12 elementos; o A \cup B tem 60 elementos. O número de elementos do conjunto B é:

- a) 28
- b) 36
- c) 40
- d) 48
- e) 52

a) 35	b) 15	c) 50	d) 45	e) 20		
candidato B, 3	SC) Numa eleiç 9%, e o número votos em branco é b) 8,4%	de votos nulos é	$\frac{2}{3}$ do de voto			
127. (ESAL) Foi consultado um certo número de pessoas sobre as emissoras de TV que habitualmente assistem. Obteve-se o resultado seguinte: 300 pessoas assistem ao canal A; 270 assistem ao canal B das quais 150 assistem ambos os canais A e B e 80 assistem outros canais distintos de A e B. O número de pessoas consultadas é:						
a) 800 b) 720		570 500	e) 600	U .		
	,		gostam de ma			
129. (EFEI-MG) Dos 80 alunos de uma turma, 15 foram reprovados em matemática, 11 em física e 10 em química. Oito alunos foram reprovados simultaneamente em matemática e física, seis em matemática e química e quatro em física e química. Sabendo que três alunos foram reprovados nas três disciplinas, determinar quantos alunos não foram reprovados em nenhuma dessas disciplinas.						
130. (UFU-MG) Num grupo de estudantes, 80% estudam inglês, 40% estudam francês e 10% não estudam nenhuma destas duas línguas. Nesse grupo, a porcentagem de alunos que estudam ambas as línguas é:						
a) 25% b) 50%	c) d)	15% 33%	e) 30°	%		

125. (FGV-SP) Sejam A, B e C conjuntos finitos. O número de elementos de A \cap B é 30, o número de elementos de A \cap C é 20 e o número de elementos de A \cap B \cap C 15. Então o número de elementos de A \cap (B \cup C) é:

a) 3

c) 30

e) 90

b) 18

d) 45

133. (UFU-MG) São dados os conjuntos:

D = divisores positivos de 24

M = múltiplos positivos de 3

 $\mathsf{S}=\mathsf{D}\cap\mathsf{M}$

n = número de subconjuntos de S

Portanto, n é igual a:

- a) 64
- b) 16
- c) 32
- d) 8
- e) 4

134. (UFSC - 88) Numa escola de 1030 alunos, foi feita uma pesquisa. Cada aluno poderia optar por até duas áreas de estudo. A tabela indica o resultado:

,	,
Área	Optantes
X	598
у	600
Z	582
хеу	250
y e z	300
x e z	200

Calcule o número de alunos que optaram somente pela área y.

135.(ACAFE) Dados os conjuntos A = $\{x \in R \mid -3 < x < 5\}$ e B = $\{x \in Z \mid -1 < x < 7\}$. Quantos elementos possui A \cap B?

a) infinitos

c) 7

e) 5

b) 8

d) 6

136. (ACAFE) Da então:	ados os conj	untos $A = \{x \in$	$N \mid 2 \le x < 5$ } e B = {	$x \in Z \mid -2 < x \le 5$,
a) A \cup B =]-2, 5] b) $C_B^A = \emptyset$	•	$A - B = B - A$ $A \subset B$	e) n(A \cup E	B) = n(A) + (B)
137. (PUC-SP) S se concluir que: a) x ≤ -1 ou x ≥ 3		ero real x tal q	ue x ∉]-1, 2], x < 0	ou $x \ge 3$, pode- $\le 1 \text{ ou } x > 3$
b) $x < -1$ ou $x \ge 3$		d) x < -1 ou x		2100770
138. (ACAFE) Se	ejam a, b, c	∈ ℝ com a < b	< c. O conjunto]a,c	[–]b,c[é:
				e) [b, c]
139. (FCC-SP) D a) P ∪ Q = [-1, 1 b) 3 ∈ P − Q	_	untos P = [2, 7 c) 5 ∉ P ∪ Q d) [3, 4] ⊂ P ∩	,	nos afirmar que: – Q =]-3, 2]
,	na dos núme = [-2, -1) ∪ [: R – {-1, 3}	ros associados	- ∞, -1) ∪ [1, ∞) e s às afirmações verd	- /
$C = \{x \in R \mid x = 0\}$,003.10 ² }, o	valor de (A ∩ l	B = $\{x \in R \mid x < \frac{1}{3}\}$ B) \cup C é: $d) \left[\frac{1}{4}, \frac{1}{3}\right]$	
142. (UnB - DF subconjuntos dis		onjunto {a, b,	c, d, e, f, g} o nún	nero máximo de
a) 21		c) 64	d) 32	e) 256

Conjuntos	
-----------	--

143. (FEI - SP) Se n é o número de subconjuntos não vazios do conjunto formado pelos múltiplos estritamente positivos de 5, menores que 40, então o valor de n é:

- a) 127
- b) 125
- c) 124
- d) 120
- e) 110

144. (FUVEST) Sendo: $A = \{2, 3, 5, 6, 9, 13\} \in B = \{a^b \mid a \in A, b \in A \in a \neq b\}, o$ número de elementos de B que são pares é:

- a) 5
- b) 8
- c) 10
- d) 12
- e) 13

145. (FUVEST) Os números x e y são tais que $5 \le x \le 10$ e $20 \le y \le 30$. O maior valor possível de $\frac{x}{v}$ é :

- a) $\frac{1}{6}$
- b) $\frac{1}{4}$ c) $\frac{1}{3}$
- e) 1

146. (FUVEST) Se -4 < x < -1 e 1 < y < 2, então xy e $\frac{2}{x}$ estão no intervalo:

a)]-8,-1[

- c)]-2, -1[
- e)]-1, $-\frac{1}{2}$ [

- b)]-2, $-\frac{1}{2}$ [
- d)]-8, $-\frac{1}{2}$ [
- 147. (ENEM) Imagine uma eleição envolvendo 3 candidatos A, B e C e 33 eleitores (votantes). Cada eleitor vota fazendo uma ordenação dos três candidatos. Os resultados são os seguintes:

Ordenação	Nº de votantes
ABC	10
ACB	04
BAC	02
ВСА	07
CAB	03
СВА	07
Total de votantes	33

A primeira linha do quadro descreve que 10 eleitores escolheram A em 1º lugar, B em 2º lugar, C em 3º lugar e assim por diante. Considere o sistema de eleição no qual cada candidato ganha 3 pontos quando é escolhido em 1º lugar; 2 pontos quando é escolhido em 2º lugar e 1 ponto se é escolhido em 3º lugar. O candidato que acumular mais pontos é eleito. Nesse caso,

- A é eleito com 66 pontos.
- B é eleito com 70 pontos. d)
- b) A é eleito com 68 pontos.
- e) C é eleito com 68 pontos.
- B é eleito com 68 pontos.

148. (UFSC - 98) Sejam A e B dois conjuntos, onde (A ∪ B) possui 134 elementos e (A \cap B) possui 49 elementos. Se A possui 15 elementos a mais do que B, então determine o número de elementos de A.

149. Um conjunto A possui k elementos e um conjunto B possui k+2 elementos. Se B possui 48 subconjuntos a mais que A, determinar k.

150. (UFSC) Sejam os conjuntos: $A = \{x \in N \mid |x - 2| \le 5\}$ e $B = \{x \in Z \mid |x + 2| > 3\}$. Determine a soma dos elementos de A \cap B.

 $A = \{x \in R \mid x < 1\}, \qquad B = \{x \in R \mid -1 < x \le 3\} \quad e$ 151. (CESGRANRIO) Se $C = \{x \in R \mid x \ge 0\}$, então o conjunto que representa $(A \cap B) - C$ é:

a) $\{x \in R \mid -1 < x < 0\}$

d) $\{x \in R \mid x \leq 3\}$

b) $\{x \in R \mid -1 < x \le 0\}$

e) $\{x \in R \mid x > -1\}$

c) $\{x \in R \mid -1 < x < 1\}$

152.(UFMG) Se A= $\left\{ x \in R \mid x > \frac{5}{8} \right\}$, B= $\left\{ x \in R \mid x < \frac{2}{3} \right\}$ e C= $\left\{ x \in R \mid \frac{5}{8} \le x < \frac{3}{4} \right\}$ então $(A \cup C) \cap B$ é:

- $a) \quad \left\{x \in R \mid x < \frac{2}{3}\right\} \qquad \qquad c) \quad \left\{x \in R \mid \frac{5}{8} \leq x < \frac{2}{3}\right\} \qquad \qquad e) \quad \left\{x \in R \mid \frac{5}{8} \leq x \leq \frac{3}{4}\right\}$
- b) $\left\{ x \in R \mid x \le \frac{3}{4} \right\}$ d) $\left\{ x \in R \mid x \ge \frac{5}{8} \right\}$

153. (MACK-SP) Sejam os conjuntos $A = \{x \in R \mid 0 \le x \le 3\}, B = \{x \in R \mid x \le 3\}$ e $C = \{x \in R \mid -2 \le x \le 3\}$. O conjunto $(B - A) \cap C$ é:

a) Ø

d) $\{x \in R \mid -2 \le x < 0\}$

b) $\{x \in R \mid x < 0\}$

e) $\{x \in R \mid -2 < x < 3\}$

c) $\{x \in R \mid x > -2\}$

154. (FUVEST) Sejam os conjuntos $X = \{x \mid x \in Z \text{ e } |x+1| < 3\}$ e $Y = \{y \mid y \in Z \in |2y| > 1\}$. O número de elementos do conjunto $X \cap Y$ é:

a) 1

e) maior que 5

b) 3

d) 5