Analysis of the ToothGrowth data

octopacks
March 27, 2018

Synopsis

This report performs a basic exploratory data analysis of the **ToothGrowth data** in the R "datasets" package. The data measures the effect of Vitamin C on tooth growth in 60 Guinea pigs. The response is the length of odontoblasts (which are cells responsible for tooth growth). Each animal received one of three dose levels of Vitamin C (0.5, 1 and 2 mg/day) by one of two delivery methods, orange juice (OJ) or ascorbic acid (VC).¹

Loading & summarizing the data

The ToothGrowth dataset is loaded into R and a brief summary of the data is shown below:

```
library(datasets)  # load the datasets package

data("ToothGrowth")  # load the ToothGrowth dataset

attach(ToothGrowth)

summary(ToothGrowth)  # a basic summary of the ToothGrowth data
```

```
##
         len
                      supp
                                    dose
           : 4.20
                                      :0.500
##
    Min.
                     OJ:30
                              Min.
##
    1st Qu.:13.07
                     VC:30
                              1st Qu.:0.500
   Median :19.25
                              Median :1.000
##
    Mean
            :18.81
                              Mean
                                      :1.167
    3rd Qu.:25.27
##
                              3rd Qu.:2.000
    Max.
            :33.90
                              Max.
                                      :2.000
```

```
table(ToothGrowth$dose, ToothGrowth$supp)
```

The above table shows there are 30 observations each for the two supplement types and 10 observations each for the three dose levels i.e. a total of 60 observations in the data. The summary tells us that the tooth length ranges from 4.20 to 33.90 with a median of 19.25 and mean of 18.81

Exploratory data analyses

The below boxplots show some basic exploratory data analyses and help us gain more insight into the dataset.

Tooth length vs. Supplement type: Comparison by dose levels


```
axis.text.y = element_text(size = 10)) +
theme(strip.text = element_text(size = 12, color = "blue", face = "bold.italic")) +
ggtitle("Tooth length vs. Dose levels:\nComparison by supplement type")
```

Tooth length vs. Dose levels: Comparison by supplement type

Hypothesis testing

To compare tooth growth by supplement type and dose amount, we will use a t-test.

t.test(len ~ supp, data = ToothGrowth, paired = FALSE, var.equal = FALSE)

• Comparison of tooth growth by supplement type: To test the Null hypothesis H_0 that the difference in means of tooth growth for the two supplement types OJ & VC is zero.

```
# variances of tooth lengths for supplement type OJ
var(subset(ToothGrowth$len, supp == "OJ"))

## [1] 43.63344

# variances of tooth lengths for supplement type VC
var(subset(ToothGrowth$len, supp == "VC"))

## [1] 68.32723
```

##

```
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156 7.5710156
## sample estimates:
## mean in group OrangeJuice mean in group Vitamin C
## 20.66333 16.96333
```

The p-value for the above t-test is 0.06 which is greater than 5%, and the confidence interval contains 0. So we accept the null hypothesis that the supplement type has no effect on tooth growth.

• Comparison of tooth growth by dose amount: To test the **Null hypothesis** H_0 that the difference in means of tooth growth for a pair of dose amounts is zero.

```
# variances of tooth lengths for dose amount 0.5
var(ToothGrowth$len[ToothGrowth$dose == 0.5])
## [1] 20.24787
# variances of tooth lengths for dose amount 1.0
var(ToothGrowth$len[ToothGrowth$dose == 1.0])
## [1] 19.49608
# variances of tooth lengths for dose amount 2.0
var(ToothGrowth$len[ToothGrowth$dose == 2.0])
## [1] 14.24421
t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 1.0)), var.equal = FALSE)
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5
                       mean in group 1
              10.605
##
                                19.735
t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(0.5, 2.0)), var.equal = FALSE)
```

```
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -11.799, df = 36.883, p-value = 4.398e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -18.15617 -12.83383
## sample estimates:
## mean in group 0.5
                       mean in group 2
##
              10.605
                                26.100
t.test(len ~ dose, data = subset(ToothGrowth, dose %in% c(1.0, 2.0)), var.equal = FALSE)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
            19.735
                            26.100
##
```

The p-values of the t-tests for all three dose amount pairs are less than 5%, and the confidence intervals do not contain zero. So we reject the null hypothesis and conclude that tooth growth increases with an increase in dose amount of Vitamin C.

Conclusions and Assumptions

Conclusions:

- 1. The supplement type (orange juice or ascorbic acid) has no effect on tooth growth in guinea pigs
- 2. Tooth growth in guinea pigs increase with an increase in dose levels of Vitamin C

Assumptions:

- 1. The sample of 60 guinea pigs is representative of the entire population
- 2. The distribution of sample means follows the Central Limit Theorem
- 3. The variances of the two groups being compared are different

A published version of this report on RPubs can be found at this link.

References:

1. R Documentation: The Effect of Vitamin C on Tooth Growth in Guinea Pigs