Analysis 1

Tutorium 4

27.11.2020

1. Rechnungen mit komplexen Zahlen. Berechnen Sie Real- und Imaginärteil der komplexen Zahlen "\(\mathbb{F} - \mathbb{H} \) \(\mathbb{E}_{interpolarise} \)

$$z_1 = \frac{1}{i}$$
, $z_2 = \left(\frac{1+i}{\sqrt{2}}\right)^8$, $z_3 = \frac{1+i}{1-i}$, und $z_4 = \sum_{n=1}^6 \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^n$

- (a) direkt in der Darstellung mit Real- und Imaginärteil,
- (b) unter Verwendung der Polardarstellung.

Veranschaulichen Sie sich die Rechnungen-auch graphisch in der komplexen Ebene.

$$2 = \frac{1}{\sqrt{2}} = 1 \cdot (\frac{1}{\sqrt{2}})^{2} + (\frac{1}{\sqrt{2}})^{2} = \sqrt{\frac{1}{2} + \frac{1}{2}} = \sqrt{7} = 1$$

$$2 = \frac{1}{\sqrt{2}} = 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 2 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$= 1 \cdot (\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}) = e^{i\frac{\pi}{4}}$$

$$2 = a+bi , \quad \alpha \in \mathbb{R}^{+}$$

$$2b: |\alpha z| = \alpha |z|$$

$$|\alpha = |z|$$

$$|\alpha + \alpha bi|$$

$$|\alpha^{2} + b^{2}| = \alpha |\alpha^{2} + b^{2}|$$

$$\frac{z_2}{z_1 z_2} = |z_2| \left(\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)\right)$$

$$\frac{z_1}{z_2} = |z_1| |z_2| \left(\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)\right)$$

$$\frac{z_2}{z_1} = \frac{1}{z_2} \left(\cos (8 \cdot \frac{\pi}{4}) + i \sin (8 \cdot \frac{\pi}{4})\right) = 1$$

$$\frac{z_2}{z_2} = \frac{1}{z_1} \left(\cos (8 \cdot \frac{\pi}{4}) + i \sin (8 \cdot \frac{\pi}{4})\right) = 1$$

$$\frac{z_1}{z_2} = \frac{1}{z_1} \left(\cos (8 \cdot \frac{\pi}{4}) + i \sin (8 \cdot \frac{\pi}{4})\right) = 1$$

 $z_1 = |z_1| (\omega \varphi_1 + i \sin \varphi_1)$

Augmonnuen, $(\mathcal{U}_i)_{i \in J}$ ist eine Familie von offenen Heyen in des Relation topologie von M, sodass M = UU. E = E: E = E , $|E| < \infty$, sodass noch immer M = U M. U, ist offer in M U; E TH (=) M = W n M für ein $\widetilde{\mathcal{V}}_{i} \in \mathcal{T}_{\mathbb{R}}$ if offer in R Benerhe, dass $M = \bigcup_{i \in I} \mathcal{U}_i = \bigcup_{i \in I} (\widetilde{\mathcal{U}}_i \cap M) = (\bigcup_{i \in I} \widetilde{\mathcal{U}}_i) \cap M$ offene Wordech. mit offen theyon in R Ui. M ist leampaint in TR, also hat die offene The decking (4) ist eine endlike Teiliterdeden, dh es gibt ESI endlich, mit $H \subseteq \bigcup \mathcal{U}$. M=Mn (Vice Vi) = U (Mn Vi)

offene Henger µ ⊆ R koupalit In R= M beschrault A Magesdi FreR: YmeH: |m| < 1. millinges Satz zu Nouputtlest Deispiel eines topologischen Raumes, des kompalit ist $(2 \text{ ridst } \subseteq \mathbb{R}) : \mathbb{R} \cup \{\pm \infty\}$ Cu 2 603

Treuning on Rubben: $A \subseteq \mathbb{R}$ $X \subseteq \mathbb{R} \setminus A$ Frage: Gibt es offene blengen U, V, \mathbb{R} $A \subseteq U, X \in V, U \cap V = \emptyset$?

hought (abophlossnes x = a? V A wilt bought Intervall.) Jede beschränkte Folge $(a_n)_{n \in \mathbb{N}}$ in \mathbb{R} besitzt mindestens einen Häufungspunkt.

wichtia!

Beweis: Mit Hilfe der Beschränktheit der gegebenen Folge $(a_n)_{n\in\mathbb{N}}$ wählen wir ein $M \geq 0$, so dass für

alle $n \in \mathbb{N}$ gilt: $|a_n| \leq M$. Betrachten wir die Menge

$$\begin{array}{ll} K & = & \{x \in \mathbb{R} \mid \text{für alle genügend großen } n \text{ gilt: } a_n \geq x\} \\ & = & \{x \in \mathbb{R} \mid \exists \ m \in \mathbb{N} \ \forall \ n > m : \ a_n \geq x\}. \end{array}$$

Es gilt $-M \in K$, weil für alle n (und damit erst recht für alle genügend großen $n \in \mathbb{N}$) gilt: $a_n \geq -M$. Also ist $K \neq \emptyset$.

Weiter ist M eine obere Schranke von K. (Beweis hierzu: Es sei $x \in K$ gegeben; zu zeigen ist nun $x \leq M$. Weil für alle genügend großen $n \in \mathbb{N}$ gilt: $a_n \geq x$, finden wir ein $n \in \mathbb{N}$ mit $a_n \geq x$, so dass

 $x \leq a_n \leq |a_n| \leq M$ und damit die Behauptung $x \leq M$ folgt. Nach dem Vollständigkeitsaxiom existiert das Supremum $x \leq M$ folgt. beschränkten Menge K.

 $X \in \mathcal{K}$ Wir zeigen nun: s ist ein Häufungspunkt von $(a_n)_{n \in \mathbb{N}}$. Hierzu sei $\varepsilon > 0$ gegeben. Zu zeigen ist nun, dass unendlich viele Folgenglieder von $(a_n)_{n\in\mathbb{N}}$ in $U_{\epsilon}(s)$ liegen. Weil s eine obere Schranke von K ist und $s + \varepsilon > s$ gilt, folgt $s + \varepsilon \notin K$. Nach der Definition von K bedeutet das:

$$\neg\exists\ m\in\mathbb{N}\ \forall\ n>m:\ a_n\geq s+\varepsilon,$$

anders gesagt:

$$\forall m \in \mathbb{N} \exists n > m : a_n < s + \varepsilon,$$

$$\forall m \in \mathbb{N} \exists n > m : a_n < s + \varepsilon,$$

d.h. es gibt unendlich viele $n \in \mathbb{N}$ mit $a_n < s + \varepsilon$. Die Zahl s ist obere Schranke von K, die Zahl $s - \varepsilon$ jedoch nicht, da $s - \epsilon$ kleiner als die kleinste obere Schranke $s = \sup K$ von K ist. Wir finden also ein $x \in K$ mit $s - \varepsilon < x \le s$, d.h. für alle genügend großen $n \in \mathbb{N}$ gilt: $a_n \ge x > s - \varepsilon$, anders gesägt $\exists \ m \in \mathbb{N} \ \forall \ n > m: \ a_n \ge x > s - \varepsilon.$

Wir schließen: Unendlich viele der Folgenglieder müssen zwischen $s - \varepsilon$ und $s + \varepsilon$ liegen, d. h. die ε -Umgebung $U_{\varepsilon}(s) = |s - \varepsilon, s + \varepsilon|$ von s enthält unendlich viele Folgenglieder. Das war zu zeigen.

Illustration zum Beweis des Satzes von Bolzano-Weierstraß:

weedl. ucle

((-1)") NEW bestrought durch

(da (<1)" = 1-11"=1)

Aufgabe 2. Es sei $P\subseteq\mathbb{C}$ die Menge der Eckpunkte eines regelmäßigen n-Ecks mit Zentrum $0\in\mathbb{C}$, wobei $n\in\mathbb{Z}_{\geq 2}$. Wir nehmen an, dass ein Eckpunkt auf der reellen Achse liegt, sagen wir $a\in\mathbb{R}\cap P$.

(a) Schreibe P als Menge in aufzählenden Notation. Stelle hierbei die Elemente aus P in Polarkoordinaten dar.

(b) Zeige: $\sum_{z \in P} z = 0$.

$$\Rightarrow \int_{n}^{3} a_{n} dx \quad \text{Pullskelle}$$

$$\text{uon} \quad 1+3_{n}+\cdots+5_{n}^{n-1}$$

$$\Rightarrow \sum_{p \in P} p = \left(\sum_{i=1}^{n-1} 3_{i}^{i} a_{i}\right) + a = -a+a$$

$$= 0.$$

$$P = \left(\sum_{i=1}^{n} S_{i} a \right) + a = -1$$

$$= a \left(\sum_{i=1}^{n} S_{i} \right) =$$

$$= \alpha \left(\underbrace{\sum_{i=1}^{n} \sum_{i}^{i}} \right) = -\alpha$$

$$= -1 + 1 + \sum_{i=1}^{n} \frac{1}{2}$$