Université Sultan Moulay Slimane

Département : ITG

Module : Systèmes d'exploitation

Ecole Supérieure de Technologie de Béni Mellal

Filière: GI+ARI

Année universitaire: 2022-2023

Support de cours

SYSTÈMES D'EXPLOITATION

CHAPITRE III: LES COMMANDES LINUX I

Plan

- □ Introduction
- ☐ Se documenter sur le fonctionnement de Linux
- ☐ Manipulation de fichiers
- ☐ Contrôler l'accès aux fichiers
- ☐ Gestion des utilisateurs
- ☐ Gestion des processus

Introduction

→Linux- Les commandes

Syntaxe:

- commande [options] <arguments>
- séparateur : caractère espace

ATTENTION: Toutes les commandes

s'écrivent en minuscule.

Commande

• Action à accomplir ou application à démarrer

Arguments

• Objets ou fichiers auxquels la commande s'applique

Options

- Modification du comportement de la commande
- Commencent généralement par un **-** (moins)

Se documenter sur le fonctionnement de Linux

→ La commande: man

Syntaxe

man [nom de la commande]

Description

- Permet d'accéder a la documentation d'utilisation d'une commande (i.e. les pages de man).
- Les pages de man décrivent les syntaxes, les options, les arguments des commandes.
- Elles décrivent les résultats des évaluations et le format de ces résultats.

Exemple

man ls : affiche la page de manuel pour la commande ls

> Pour obtenir des man pages en français : sudo apt-get install manpages-fr

Syntaxe

pwd

Description

• Affiche le nom du répertoire courant

Syntaxe

cd

Description

• permet de changer de répertoire courant.

Exemple:

```
$ pwd
/home/etu/toto
$ cd projets/gl
$ pwd
/home/etu/toto/projets/gl
$ cd ..
$ pwd
/home/etu/toto/projets
$ cd ../../etu/toto
$ pwd
/home/etu/toto
$ cd /usr/bin
$ pwd
/usr/bin
$ cd /../../home/./etu/./..
$ pwd
/home
```


Syntaxe

ls [options] [nom_fichiers]

Description

- Affiche le contenu d'un répertoire.
- Par défaut, si aucun nom de fichier répertoire n'est indiqué, la commande affiche le contenu du répertoire courant.

Options

-R	Afficher récursivement le contenu des sous-répertoires.
-a	Afficher tous les fichiers des répertoires, y compris les fichiers commençant par un '.'
-i	Afficher le numéro d'index (i-noeud) de chaque fichier à gauche de son nom.
-l	En plus du nom, afficher le type du fichier, les permissions d'accès, le nombre de liens physiques, le nom du propriétaire et du groupe, la taille en octets, et l'horodatage.

Exemple

\$ ls -ail

Syntaxe

basename [nom_fichiers]

Description

• Elimine les répertoires en tête du chemin d'accès du fichier.

Syntaxe

dirname [nom_fichiers]

Description

• La commande **dirname** ne conserve que les répertoires en tête du chemin d'accès du fichier.

Exemple

```
$ basename / usr/local/bin/lynx
lynx
```

\$ dirname / usr/local/bin/lynx
/usr/local/bin

Syntaxe

file [options] [nom_fichier]

Description

• Affiche le type d'un fichier (répertoire, exécutable binaire,...).

Options

• -b pour que la sortie affichera uniquement le type de fichier en omettant le nom de fichier

Exemple

```
$ file demo.php
demo.php: PHP script, ASCII text
$ file -b demo.php
PHP script, ASCII text
```

Syntaxe

mkdir [options] [chemins/nom_rép]

Description

- Création d'un ou de plusieurs répertoires aux endroits spécifies par les chemins.
- Si le chemin est occupe par un fichier ou un répertoire, il y a un message d'erreur

Options

-p : Créer les répertoires parents s'ils manquent

Exemple

\$ mkdir monrep

Syntaxe

rmdir [options] [chemins/nom_rép]

Description

- supprime un répertoire vide indiqué
- rm -r : pour supprimer récursivement des répertoires non-vides,

Options

• -p: Pour supprimer un sous-répertoire vide et son répertoire parent.

Exemple

```
$ rmdir monrep_vide
```

\$ rmdir monrepNvide failed to remove 'monrepNvide': Directory not empty

\$ rm -r monrepNvide

Attention! Si vous supprimez un dossier non vide à l'aide **rmdir-r**, tous les répertoires et fichiers qu'il contient seront définitivement supprimés.

Syntaxe

mv [chemin_source] [chemin_cible]

Description

- Déplace/Renomme un fichier ou répertoire.
- Modifie le chemin d'accès a la source qui devient le chemin cible.
- Le chemin source disparait et le chemin cible est crée.
- Le fichier ou répertoire pointe reste le même.
- La cible doit être un chemin non occupé ou un répertoire

Options

- **-b** (b=backup) :effectue une sauvegarde des fichiers avant de les déplacer. La copie porte le même nom suivi d'un tilde.
- -i (i=interactive) :demande confirmation avant pour chaque fichier.
- **-u** (u=update) :pour ne pas supprimer le fichier si sa date de modification est postérieure à celle du fichier remplaçant.

Exemple

```
$ ls -i
65338 fichier1 65340 fichier2
$ mv fichier1 fichier3
$ ls -i
65340 fichier2 65338 fichier3
$ mv fichier2 ...
$ ls -i ../fichier2
65340 ../fichier2
```

Syntaxe

cp [options] [chemin_source] [chemin_cible]

Description

- Copie le fichier source vers la cible.
- La source doit être un fichier ordinaire (pas un répertoire),
- Si la cible :
 - o est le chemin d'un répertoire existant, le fichier sera copie dans ce répertoire et conservera son nom.
 - o ne correspond pas a un répertoire existant, le fichier sera copie avec le nom cible.

Options

- -R :recopie récursive, permet de copier toute une arborescence
- -i :avertit l'utilisateur de l'existence d'un fichier du même nom et lui demande s'il veut le remplacer.
- -p :effectue une copie en gardant le propriétaire et le groupe d'origine.
- -v : affiche en clair le nom des fichiers copiés.

Exemple

```
s ls -il
65338 -rw-r--r-- 1 SBakkkouri cigm 0 20 jan 17 :58 fichier3
$ cp fichier3 fichier4
s ls -il
65338 -rw-r--r-- 1 estbm cigm 0 20 jan 17 :58 fichier3
65341 -rw-r--r-- 1 estbm cigm 0 20 jan 18 :01 fichier4
$ mkdir -p Repi/ESTBM
$ cp fichier3 Repi
$ ls Repi
Fichier3 FSTBM
$ cp -r Repi Rep2
$ ls -R Rep2
fichier3 Rep1/ESTBM
```

Syntaxe

rm [options] [chemin/nom_fich]

Description

• Supprime le fichier pointe par le(s) chemin(s).

Options

- -d :Supprime un répertoire vide à l'aide de rm.
- -r :Supprime un répertoire non vide et son contenu.
- -f : cette option force la suppression même si le fichier n'est pas disponible pour l'écriture.
- -i : Affiche une invite avant la suppression de chaque fichier.

Exemple

→ Supprimer un répertoire non vide et ses sous-répertoires sous Linux

```
$ rm -d Directory_1
$ rm -r Directory_1 Directory_2 Directory_3
```

→ Supprimer un ou plusieurs un fichier sous Linux

```
$ rm file.txt
$ rm file1.txt file2.txt file3.txt
$ rm -i file1.txt file2.txt file3.txt
```

Le terminal vous demande de confirmer chaque suppression de fichier.

\rightarrow Les liens

Les liens sont utiles pour faire apparaître un même fichier dans plusieurs endroits, même avec des noms différents.

Les types des liens : il existe deux types de liens, à savoir :

- a) Lien symbolique
- b) Lien physique

→ <u>Les liens symboliques</u>

- Fait référence à un fichier dans un répertoire.
- Si suppression du fichier source alors le lien sera considéré comme "cassé".
- Utile dans le cas des fichiers binaires (commandes)

→ <u>Les liens physiques</u>

- Associe deux ou plusieurs fichiers à un même espace disque
- Les deux fichiers restant indépendants.
- Le fichier sera supprimé seulement si tous ces liens sont supprimés
- Utile dans le cas des fichiers de données

\rightarrow Les liens

→ <u>Les liens symboliques</u>

→ <u>Les liens physiques</u>

Syntaxe

In [options] [fich_source] [fich_lien]

Description

- Crée un lien sur le fichier ou répertoire spécifié.
- Par défaut, la commande crée un lien physique
 - Si *fich_source* est effacé, l'inode continue à exister et est encore accessible au moins par le *fich_lien*.

Options

- -s : Création de lien symbolique
 - Si fich_source est supprimé, fich_lien référencera un fichier qui n'existe plus, alors le lien sera considéré comme "cassé"

Exemple

```
→ Création de liens physique
$ ls -i
65329 fichier
65350 fichier2
$ In fichier fichier3
$ ls -i
65329 fichier
65350 fichier2
65329 fichier3
$ rm fichier
$ ls -i
65350 fichier2
65329 fichier3
$ In fichier3 fichier4
65350 fichier2
65329 fichier3
65329 fichier4
```

Exemple

```
→ Création de liens symbolique
$ ls -i
65350 fichier2
65329 fichier3
65329 fichier4
$ ln -s fichier3 fichier5
$ ls -i
65350 fichier2
65329 fichier3
65329 fichier4
65378 fichier5 ☐ fichier3
$ rm fichier3
$ ls -i
65350 fichier2
65329 fichier4
65378 fichier5 ☐ fichier3
$ cat fichier5
cat :fichier5 :No such file or directory
```

→ <u>Autres commandes utiles:</u>

- \$ touch [nom_fich]: permet de créer un nouveau fichier vide
- snl [nom_fich]: permet d'afficher un fichier texte en numérotant les lignes. Par défaut, les lignes vides ne sont pas numérotées.
- \$ cat [nom_fich] :affiche le contenu du fichier à l'écran en ASCII
- **s more** [nom_fich] :affiche progressivement un fichier à l'écran (page par page): Entrer = descend d'une ligne, Espace = descend d'une page, q = quitte
- \$ diff [nom_fich1] [nom_fich2] :affiche les différences entre fich1 et fich2
- \$ locate [logiciel] :indique les fichiers associés au logiciel
- **type** [exécutable] :indique le chemin d'un exécutable
- \$ du -h [nom_rép] :donne la taille du contenu du répertoire
- \$ df -h :donne l'espace disponible par partition, -h indique d'utiliser les unités usuelles

Syntaxe

chmod [droit] [nom_fich]

Description

- Modifie les droits et permissions accordes par le propriétaire aux différents utilisateurs du système.
- Il existe plusieurs notations des droits:
 - 1. <u>La notation alphanumérique</u>:(ugoa) (+/-) (rwx)
 - o **u**: user (utilisateur), **g**: group, **o**: other (autre), **a**: All (tous les utilisateurs)
 - o **r**: read (lecture), **w**: write (écriture), **x**: execute (exécution)
 - + :est utilisé pour attribuer de nouveaux droits de fichier à une catégorie d'utilisateurs
 - o :Supprime un droit de fichier à une catégorie d'utilisateurs.
 - 2. <u>La notation octale</u>:
 - o 4: Read (Lire), 2: Write (Ecrire), 1: Execute (Exécuter), 0: Aucun droit

Position binaire	Valeur octale	Les droits	Commentaire
000	0		Aucun droits
001	1	x	Executable
010	2	- w -	Ecriture
011	3	- w x	Ecrire et executer
100	4	r	Lire
101	5	r - x	Lire et executer
110	6	rw-	Lire et ecrire
111	7	rwx	Lire ecrire et executer

Exemples

La notation alphanumérique :

\$ chmod a+rwx EST.txt

<u>La notation octale</u>:

\$ chmod 751 ESTBM.txt

Utilisateur	U	G	0
Droits d'accès	rwx	r - x	x
Position binaire	1 1 1	101	0 0 1
Octale	7	5	1

Syntaxe

umask [valeur]

Description

- Permet de définir des droits d'accès par défaut pour l'ensemble des fichiers et des répertoires que vous créez. c'est à dire les permissions attribués à un fichier ou un répertoire lors de sa création.
- Comme la commande *chmod*, *umask* utilise un code numérique pour représenter les droits d'accès absolus aux fichiers. Toutefois, la méthode de calcul du code de la commande umask est différente de celle de la commande *chmod*.

Remarque! Par défaut:

Tous les **fichiers** que vous créez ont les droits d'accès (en lecture, écriture, mais non en exécution) suivants :

rw-rw- (mode **666**)

Tous les **répertoires** créés ont les droits d'accès (en lecture, écriture et exécution) suivants **rwxrwxrwx** (mode **777**)

<u>exemple</u>

\$ umask 022

- → Comme pour le code numérique de la commande **chmod**, les trois chiffres à utiliser avec la commande **umask** sont les suivants :
 - Le premier chiffre contrôle les droits d'accès de l'utilisateur propriétaire.
 - Le deuxième chiffre contrôle les droits d'accès d'un groupe d'utilisateurs.
 - Le troisième chiffre contrôle les droits d'accès des autres utilisateurs.
- → Pour déterminer la valeur à utiliser pour la commande *umask*, vous devez soustraire la valeur des droits d'accès souhaités des droits d'accès par défaut en cours affectés aux fichiers. Le résultat de l'opération représente la valeur à utiliser pour la commande *umask*.

Par défaut :

Fichier: 666: rw-rw-rw, Répertoire: 777: rwxrwxrwx

\$ umask 022

- Création d'un fichier : 666 022 = 644 : rw- r-- r--
- **Création d'un répertoire:** 777 022 = 755: rwx r-x r-x

umask Value	Default File		Default Directory	
Octal (xyz)	Permissions	666 - xyz	Permissions	777 - xyz
000	rw-rw-rw	666	rwxrwxrwx	777
002	rw-rw-r	664	rwxrwxr-x	775
022	rw-rr	644	rwxr-xr-x	755
026	rw-r	640	rwxr-xx	751
046	rww	620	rwx-wxx	731
062	rwr	604	rwxxr-x	715
066	rw	600	rwxxx	711
222	rrr	444	r-xr-xr-x	555
600	rw-rw-	066	xrwxrwx	177
666		000	XX	111
777		000		000

\rightarrow Autres commandes:

- **chown** [options] [username] :[group-name] [nom_fich]: Modifier le propriétaire et le groupe d'un fichier
- **chgrp** [options] [group-name] [nom_fich] : Modifier le groupe d'un fichier.

\rightarrow Exemples

\$ chown estbm:group2 EST.txt

\$ chgrp group3 EST.txt

Remarquez bien les ":" entre **estbm** et **group2**, « estbm » correspond au nom du propriétaire et « group2" correspond au nom du groupe.

Sous Linux, un utilisateur est une personne physique ou virtuelle possédant des droits d'accès au système.

- Un groupe est, aussi pour Linux, un ensemble d'utilisateurs qui partagent les mêmes fichiers et répertoires. Nous verrons que les fichiers accordent des droits d'accès réglables à ces groupes.
- Chaque utilisateur doit faire partie au moins d'un groupe, son *groupe primaire*. Celui-ci est défini au moment de la création du compte, et *par défaut*, l'utilisateur appartient à un nouveau groupe créé, portant son nom.
- Chaque utilisateur est identifié par un numéro (UID).
- Les utilisateurs peuvent se regrouper dans des groupes identifiés par (GID).
- Le super-utilisateur root est l'administrateur du système. Il possède tous les droits sur le système, les fichiers et les utilisateurs, les autres ne peuvent pas modifier le système.

• Si l'on veut devenir *root* temporairement pour une commande, utiliser sudo.

\$ sudo nom_commande

- → Tout ce qui concerne la gestion et l'authentification des utilisateurs est inscrit dans un seul fichier /etc/passwd
- → La gestion des groupes est assurée par /etc/group
- → Les mots de passe cryptés sont maintenant placés dans /etc/shadow, par sécurité lisible seulement par root.

→ Structure de /etc/passwd

Ce fichier comprend 7 champs, séparés par le symbole :

- Nom de connexion
- Ancienne place du mot de passe crypté
- Numéro d'utilisateur UID, sa valeur est le véritable identifiant pour le système Linux; l'uid de root est 0, le système attribut conventionnellement un uid à partir de 500 aux comptes créés.
- Numéro de groupe GID, dans lequel se touve l'utilisateur par défaut; le gid de root est 0, des groupes d'utilisateurs au delà de 500
- Nom complet, il peut être suivi d'une liste de renseignements personnels
- Rép. personnel (c'est également le rép. de connexion)
- Shell, interprétateur de commandes (par défaut /bin/bash)

→ Structure de /etc/group

Ce fichier comprend 4 champs, séparés par le symbole « : »

- x pour remplacer un mot de passe non attribué maintenant
- Numéro de groupe, c-à-d l'identifiant GID
- La liste des membres du groupe

\rightarrow Les principales commandes

→ Ajouter un utilisateur au système

\$ useradd [options] [nom_utilisateur]

Options

- -u *uid* :pour fixer l'identifiant **UID**
- **-g** *gid* :indiquer le **GID** de l'utilisateur
- **-G** *liste* : fixe l'appartenance de l'utilisateur à une liste de groupes secondaires (séparateur , sans espace)
- -s shell: indiquer le shell de connexion (/bin/bash, /bin/false, ...), par défaut bash
- -d rep. Personnel: indiquer le répertoire home à créer, par défaut dans le répertoire /home
- -e date-expiration : fixe la date d'expiration du compte (format MM/JJ/AA)
- -m : pour créer le répertoire personnel, par défaut /home/utilisateur.

Exemple

\$ useradd ESTBM **-u** 1200 **-g** 520 **-G** groupes **-s** /bin/bash

\rightarrow Les principales commandes

→ Modifier le compte d'un utilisateur

```
* usermod [options] [nom_utilisateur]
```

- Les options sont les mêmes que useradd
- → Ajouter un utilisateur à un groupe

```
* adduser [nom_utilisateur] [nom_groupe]
```

→ Suppression d'un utilisateur

```
$ userdel [-r] [nom_utilisateur]
```

- o L'option -r supprime aussi le rép. personnel et les fichiers de l'utilisateur
- La commande supprime toute trace de l'utilisateur dans le fichier de configuration : /etc/passwd y compris dans les groupes d'utilisateurs.
- → Ajouter / changer le mot de passe d'un utilisateur

```
* passwd [nom_utilisateur]
```

 \rightarrow Les principales commandes

→ Afficher la liste des utilisateurs :

```
s compgen –u ou s cat /etc/passwd
```

 \rightarrow Afficher la liste des groupes

```
$ compgen -g ou $ cat /etc/group
```

→ Lister tous les groupes (primaire et secondaires) d'un utilisateur :

```
$ groups [nom_utilisateur]
```

→ Ajouter un groupe au système

```
$ groupadd [nom_groupe]
```

→ Supprimer un groupe

```
* groupdel [nom_groupe]
```

o Le groupe est supprimé du fichier /etc/group.

\rightarrow Les principales commandes

→ Afficher la liste des utilisateurs qui sont connectés au système:

* who [options]

- Option [-b] : afficher le dernier démarrage du système
- → affiche le nom d'utilisateur actuel qui est connecté:

s whoami

→ Afficher l'utilisateur qui est connecté et ce qu'il fait:

\$ W

Un système d'exploitation se compose de processus. Ces derniers, sont exécutés dans un ordre bien précis et observent des liens de parenté entre eux.

- On distingue **deux catégories** de processus, ceux axés sur l'environnement utilisateur et ceux sur l'environnement matériel.
- Lorsqu'un programme s'exécute, le système va créer un processus en plaçant les données et le code du programme en mémoire et en créant **une pile d'exécution**.
- Un processus est donc une instance d'un programme auquel est associé un environnement processeur (compteur ordinal, registres, etc.) et un environnement mémoire.

→ Chaque processus dispose :

- D'un PID: Process IDentifiant, identifiant unique de processus;
- O D'un **PPID**: **Parent Process IDentifiant**, **identifiant unique de processus parent**.

→ Visualisation des processus

Syntaxe

ps [options]

Description

- affiche l'état des processus en cours.
- Sans option précisée, la commande *ps* n'affiche que les processus exécutés à partir du terminal courant.

Options

- **-e** :Affiche tous les processus.
- **-f** : Affiche des informations supplémentaires.
- -aux :donne des informations , qui l'a lancé, quelles ressources il utilise, son état, son nom, son PID (un numéro unique identifiant chacun).

→ La commande de gestion des processus

Syntaxe

kill [-signal] [PID/processus_name]

Description

• envoie un signal d'arrêt à un processus

Code	Signal	Description
2	SIGINT	Interruption du processus (kbd:[CTRL+D])
9	SIGKILL	Terminaison immédiate du processus
15	SIGTERM	Terminaison propre du processus
18	SIGCONT	Reprise du processus
19	SIGSTOP	Suspension du processus

Exemple

\$ kill -9 1664

\rightarrow Autre commandes:

- \$ killall :permet de fermer un ensemble de processus.
- **pstree** :affiche l'arbre hiérarchique des processus, permettant de trouver le processus parent d'un processus donné.
- **s at** options time permet de lancer une commande à un moment précis.
- \$ chkconfig pour gérer les services et le niveau de démarrage

Remarques

- Un processus qui ne répond plus est représenté par la lettre 'Z' (zombie).
- Un processus normalement inactif est représenté par la lettre 'S' (sommeil).
- En appuyant simultanément sur les touches kbd:[CTRL+Z], le processus synchrone est temporairement suspendu.