are clearly linear. Similarly, the maps in_i: $E_i \to E_1 \times \cdots \times E_p$ given by

$$in_i(u_i) = (0, \dots, 0, u_i, 0, \dots, 0)$$

are injective and linear. If $\dim(E_i) = n_i$ and if $(e_1^i, \dots, e_{n_i}^i)$ is a basis of E_i for $i = 1, \dots, p$, then it is easy to see that the $n_1 + \dots + n_p$ vectors

$$(e_1^1, 0, \dots, 0), \qquad \dots, \qquad (e_{n_1}^1, 0, \dots, 0),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(0, \dots, 0, e_1^i, 0, \dots, 0), \quad \dots, \quad (0, \dots, 0, e_{n_i}^i, 0, \dots, 0),$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$(0, \dots, 0, e_1^p), \qquad \dots, \qquad (0, \dots, 0, e_{n_p}^p)$$

form a basis of $E_1 \times \cdots \times E_p$, and so

$$\dim(E_1 \times \cdots \times E_n) = \dim(E_1) + \cdots + \dim(E_n).$$

Let us now consider a vector space E and p subspaces U_1, \ldots, U_p of E. We have a map

$$a: U_1 \times \cdots \times U_p \to E$$

given by

$$a(u_1,\ldots,u_p)=u_1+\cdots+u_p,$$

with $u_i \in U_i$ for i = 1, ..., p. It is clear that this map is linear, and so its image is a subspace of E denoted by

$$U_1 + \cdots + U_n$$

and called the sum of the subspaces U_1, \ldots, U_p . By definition,

$$U_1 + \dots + U_p = \{u_1 + \dots + u_p \mid u_i \in U_i, \ 1 \le i \le p\},\$$

and it is immediately verified that $U_1 + \cdots + U_p$ is the smallest subspace of E containing U_1, \ldots, U_p . This also implies that $U_1 + \cdots + U_p$ does not depend on the order of the factors U_i ; in particular,

$$U_1 + U_2 = U_2 + U_1.$$

Definition 6.3. For any vector space E and any $p \geq 2$ subspaces U_1, \ldots, U_p of E, if the map a defined above is injective, then the sum $U_1 + \cdots + U_p$ is called a *direct sum* and it is denoted by

$$U_1\oplus\cdots\oplus U_p$$
.

The space E is the direct sum of the subspaces U_i if

$$E = U_1 \oplus \cdots \oplus U_p$$
.