COMP3270 Chapter 6 Teacher Notes

Slide 11

Consider the Chain Rule: P(x1, x2, x3, ...) = P(x1)P(x2|x1)P(x3|x1,x2) ...

It follows from the Chain Rule

P(x1, e1, x2, e2, x3, e3) =

P(x1) P(e1|x1) P(x2|x1, e1) P(e2|x1, e1, x2) P(x3|x1, e1, x2, e2) P(e3|x1, e1, x2, e2, x3)

Assuming that:

x2 [⊥] e1 | x1

e3 <u>L</u> x1, e1, x2, e2 | x3

It follows:

P(x1, e1, x2, e2, x3, e3) = P(x1) P(e1|x1) P(x2|x1) P(e2|x2) P(x3|x2) P(e3|x3)

Slide 13

Does this mean that evidence variables are guaranteed to be independent? A: No, they tend to correlated by the hidden state

Slide 15

X_{t}	X_{t+1}	$P(X_{t+1} X_t)$
$+_{\mathbf{X}}$	+x	0.2
+ _X	-X	0.8
-x	+ _X	0.6
-x	-X	0.4

X_{t}	E_{t}	$P(E_t X_t)$
+ _X	+e	0.5
+ _X	-e	0.5
-x	+e	0.9
-x	-е	0.1

X_1	$P(X_1)$
+ _X	0.7
-X	0.3

Apply the Joint Distribution of an HMM formula! P(X1, E1, X2, E2) = P(X1) P(E1|X1) P(X2|X1) P(E2|X2)

 $P(X1, E1=+e, X2,E2=-e) = P(X1) P(E1=+e \mid X1) P(X2 \mid X1) P(E2=-e|X2)$

X1	X2	P(X1) P(E1=+e X1) P(X2 X1) P(E2=-e X2)
+x	+x	0.7 * 0.5 * 0.2 * 0.5 = 0.035
+x	-x	0.7 * 0.5 * 0.8 * 0.1 = 0.028
-x	+x	0.3 * 0.9 * 0.6 * 0.5 = 0.081
-x	-x	0.3 * 0.9 * 0.4 * 0.1 = 0.0108

Slide 16

$$P(X2, E1=+e, E2=-e) = ?$$

X2	P(X1) P(E1=+e X1) P(X2 X1) P(E2=-e X2)
+x	0.7 * 0.5 * 0.2 * 0.5 + 0.3 * 0.9 * 0.6 * 0.5 = 0.035 + 0.081 = 0.116
-x	0.7 * 0.5 * 0.8 * 0.1 + 0.3 * 0.9 * 0.4 * 0.1 = 0.028 + 0.0108 = 0.0388

Slide 48

$$B(+r) = 0.8182$$

$$B(-r) = 0.1818$$

$$B'(X_{t+1}=+r) = 0.7 * 0.8182 + 0.3 * 0.1818 = 0.6273$$

$$B'(X_{t+1}=-r) = 0.3 * 0.8182 + 0.7 * 0.1818 = 0.3727$$

Slide 49

$$B(X_{t+1} = +r) \propto 0.9 * 0.6273 = 0.5646$$

$$B(X_{t+1} = -r) \propto 0.2 * 0.3727 = 0.0745$$

$$z = 0.5646 + 0.0745 = 0.6391$$

$$B(X_{t+1} = +r) = 0.5646 / z = 0.8834$$

$$B(X_{t+1} = -r) = 0.0745 / z = .1166$$