CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 14 FEBBRAIO 2020

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. Chi usufruisce dell'esonero non deve rispondere ad esercizi e domande marcate con ★.

Non è necessario consegnare la traccia.

★ Esercizio 1. In \mathbb{Z}_{10} si consideri l'operazione binaria * definita da: per ogni $a, b \in \mathbb{Z}_{10}$,

$$a * b = a + \bar{6}b.$$

- \bigstar (i) Decidere se * è commutativa e se è associativa.
- ★ (ii) Verificare se in (\mathbb{Z}_{10} , *) esistono elementi neutri a destra, neutri a sinistra, neutri.

Sia $P = {\overline{2n} \mid n \in \mathbb{Z}}.$

- $\bigstar(iii)$ Verificare che, per ogni $x \in P$, si ha $\bar{6}x = x$.
- \bigstar (iv) P è chiusa rispetto a *?
- \star (v) Se le domande hanno senso, decidere se l'operazione indotta da * su P è commutativa, se (P, *) è un semigruppo, se è un monoide, se è un gruppo.

Esercizio 2.

- ★ (i) Si spieghi perché è ben definita l'applicazione $f: X \in \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \mapsto \min X \in \mathbb{N}$.
- \bigstar (ii) f è iniettiva? f è suriettiva?
- $\bigstar(iii) \overleftarrow{f}(\{3\})$ è un insieme finito o infinito?
 - (iv) Indicato con \mathcal{R} il nucleo di equivalenza di f, si descrivano in modo esplicito $\left[\{0,5\}\right]_{\mathcal{R}}$ e $\left[\{2^n\mid n\in\mathbb{N}^*\}\right]_{\mathcal{R}}\cap\mathcal{P}(\{1,2,3\}).$

Esercizio 3. Si dica quando, per definizione, una relazione binaria ρ definita su in insieme S è antisimmetrica. Si stabilisca poi quali delle seguenti relazioni binarie sono e quali non sono antisimmetriche:

- (i) α , definita in $\mathcal{P}(\mathbb{Z})$ ponendo, per ogni $A, B \in \mathcal{P}(\mathbb{Z}), A \alpha B \iff A \cap \mathbb{N} \subseteq B \cap \mathbb{N}.$
- (ii) β , definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$, $a \beta b \iff a|2b$;

Esercizio 4. Sia σ la relazione d'ordine definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \sigma b \iff (a|b \wedge \operatorname{rest}(a,5) \leq \operatorname{rest}(b,5)).$$

- (i) Determinare l'insieme dei maggioranti di $\{5\}$ in (\mathbb{N}, σ) .
- (ii) Verificare che, per ogni $n \in \mathbb{N}$, i numeri $n \in 6n$ sono confrontabili rispetto a σ .
- (iii) Determinare in (\mathbb{N}, σ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (iv) Si trovino in (\mathbb{N}, σ) gli insiemi dei minoranti e dei maggioranti di $X := \{2, 10\}$ e, se esistono, inf X e sup X.
- (v) (N, σ) è un reticolo?
- (vi) Trovare in \mathbb{N} , o spiegare perché non esiste, un sottoinsieme infinito su cui σ induca una relazione d'ordine totale.
- (vii) Trovare due sottoinsiemi A e B di \mathbb{N} , tali che $B \subseteq A$, |A| = 5, |B| = 4, (A, σ) sia un reticolo non distributivo e (B, σ) sia un sottoreticolo booleano di (A, σ) .

Esercizio 5. Vero o falso (e perché?)

- (i) In $\mathbb{Z}_{11}[x]$, un polinomio f ammette $\bar{2}$ e $\bar{3}$ come radici se e solo $x^2 \bar{5}x \bar{5}$ divide f.
- (ii) $x^2 \bar{5}x \bar{5}$ è irriducibile in $\mathbb{Z}_{11}[x]$.
- (iii) Per ogni primo positivo p, il polinomio $x^2 \bar{5}x \bar{5}$ in $\mathbb{Z}_p[x]$ non è irriducibile.
- (iv) In $\mathbb{Z}_3[x]$, $(x^3 x + \bar{1})(x^3 x + \bar{2})$ è irriducibile.
- (v) In $\mathbb{Z}_{11}[x]$, i polinomi $g = \overline{7}x^2 + \overline{3}$ e $h = \overline{3}x^2 \overline{5}$ sono associati (per rispondere, utilizzare e risolvere esplicitamente un'equazione congruenziale).