Enabling Semitrusted Proxies for Data Spaces

Nikos Fotiou, <u>George Xylomenos</u>

Data Spaces

Data Spaces

- A collection of technologies that enables interoperable and secure data sharing
- Entities:
 - Context broker
 - Content provider
 - Content consumer

The ETSI NGSI-LD API – Item representation

- Data items are represented as JSON-LD objects, and they have:
 - An identifier
 - A type
 - Attributes and corresponding values
- The attributes that may exist for a type are defined in a context

```
"id": "urn:ngsi-ld:Car:001",
    "type": "Car",
    "brand": {
        "type": "Property",
        "value": "BWM"
    },
    "dateVehicleFirstRegistered": {
        "type": "Property",
        "value": "2012"
    },
    "emissionsCO2": {
        "type": "Property",
        "value": "22"
    },
    "@context": [
        "https://example.com/data-models.context-ngsild.jsonld"
    ]
}
```

The ETSI NGSI-LD API - Data access

- Retrieve all/some attributes based on item id
- Retrieve all/some attributes of all items of a specific type
- Temporal queries
- Subscription to changes in attributes

Secure and Efficient Data Spaces - SeEDS

What SeEDS does better?

- Context broker is centralized single point of failure, scalability issues
 - Information-Centric Networking architecture as an in-network, distributed "broker"
- Application layer API Subscriptions for same event handled using multiple unicasts
 - Information-Centric networking allows ubiquitous content caching
- Context broker can manipulate data 🔁 broker should be trusted
 - Data-centric security solution based on self-certifying data
 - Selective content revelation scheme
 - Trusted and semi-trusted brokers

Selective revelation

- Content producer signs entire item
 - Each attribute+salt is hashed
 - Then, list of hashes is signed
 - Broker reveals some attributes+salt and hashes of hidden attributes

Semi-trusted proxies

Overview

- Proxies mediate between entities
 - Translating NGSI-LD to ICN messages
- Publishing proxy: fully trusted by publisher
 - Explicitly trusted to sign publisher's data
 - Certificate binds proxy's key to provider's
- Subscribing proxy: semi-trusted by consumers
 - Reveals only selected attributes
 - Only trusted to filter content

Proxy authorization

- Provider creates public/private key pair
 - DID_p of provider is thumbprint of public key
 - Self-signs certificate including DID_p
- Publishing proxy creates public/private key pair
 - Provider issues certificate for proxy's key
 - Includes namespace allocated to proxy
- Consumers can easily verify authorization
 - Certificates may be sent with the content

Filtering & Retrieval

- A consumer asks for a partial item
 - Only some attributes are requested
 - Either due to authorization or preference
- Publishing proxy sends the entire item
 - Item can be cached
 - Can be used to satisfy different requests
- Subscribing proxy filters the attributes
- Consumer verifies signature over attributes and hashes

Evaluation

Performance: proof generation

- Prototype implementation
 - Python implementation of did:self
 - Jwcrypto library, NIST P-256 elliptic curve
 - Apple M4 CPU and 16 GB of RAM
- Proof generation
 - 1000 random JSON objects with 100 attributes
 - Proof generation: 2.433 ms average (6.711 max)

Performance: proof verification

- For each generated object
 - Randomly select 5-50 attributes
 - Reveal only those, verify content
 - Proof verification: <0.5 ms

Security

- Attacker manipulating network traffic
 - Any unauthorized modification is detected
- Malicious subscribing proxy
 - May suppress attributes (only reveal hashes)
 - Can mitigate by also signing attribute list (not values)
- Malicious publishing proxy
 - Wants to impersonate a trusted proxy
 - Cannot include its key in publisher's certificate

Summary

Conclusion & Future work

- SeEDS is an ICN-based Data Space implementation
 - Distributed brokers
 - Caching and multicast
 - End-to-end security
 - Selective content revelation
 - Plus: subscriptions, temporal filters, filter migration,
- SeEDS prototype nearing completion
 - Currently tested in NDN testbed
 - Will be released in October 2025

Thank you

xgeorge@aueb.gr

