ADAGRAD OPH mizing Technique.

Sample ci) 2i 3i

1 0.2 3.4

2 0.4 3.8

3 0.6 4.2

4 0.8 4.6.

Manual calculations!

Step 1:
$$[x_1y_7]$$
, $N=0.1$, $ep=2$, $m=1$
 $c=-1$, $G_{1m}=G_{1c}=0$, $E=10$

$$g_c = -(3.4 - 1(0.2) + 1)$$

Step 5:
$$G_{1m} = G_{1m} + (g_{m})^{2}$$

= $0 + (-0.84)^{2}$

= 0.7056
 $G_{C} = G_{1C} + (g_{C})^{2}$

= $0 + (-4.2)^{2}$
 $G_{C} = 17.64$

Step 6: $\Delta m = \frac{N}{2} \times g_{m}$
 $\sqrt{g_{m} + g_{m}}$
 $\Delta C = -\frac{N}{2} \times g_{c}$
 $\sqrt{g_{c} + g_{c}}$
 $\Delta m = \frac{-0.1}{\sqrt{0.705 + 10.8}} \times (-0.84)$
 $\Delta C = \frac{-0.1}{\sqrt{17.64 + 10.8}} \times (-4.2)$

Step 7: $m = m + \Delta m = 1 + 0.1 = 1.1$
 $C = C + \Delta C = -1 + 0.1 = -0.9$

Step 8: sample = 2
Step 9:
1
f(2>ns) 90 to next step
else 90 to step 4
Step 4: 1 gm = $-(3.8 - (1.1)(0.4) + 0.9)$ 0
= $-(4.1 - 0.44)0.4$
= -1.7
 1 gc = -4.26
Step 5: 1 Gm = 1 6.7056 + 1 6 - 1 7 = 1 7 = 1 8.59.
 1 9c = -4.26
Step 6: 1 7 Am = -0.1 × -1.7 = 1 7 × -1.7 = 1 7 × 1 8 = 1 9 Ac = 1 9.17 = 1 9 × 1 9.26 × 1 9 × $^$

Step 7:
$$m = 1.1 + 0.089$$

 $= 1.189$
 $c = -0.9 + 0.07$
 $c = -0.83$
Step 8: $S = 3 > n$. 90 to next step
Step 9: it = 2
Step 10: if $(2 > 2)$ 90 to step 3
Step 3: g sample = 1
Step 4: $g_m = -(3.4 - (1.189)(0.2) + 0.83)$
 0.2
 $g_m = -(4.23 - 0.13) \times 0.2$
 $g_m = -0.8$
 $g_c = -(3.4 - (1.189)(0.2) + (0.83)$
 $g_c = -4$
Step 5: $g_m = 3.59 + (-0.8)^2$
 $g_m = -4$

Ac = 88.78+ (-4)?

Ac = 61.78

$$\Delta m = \frac{-0.1}{4.23+10^3} \times (-0.8)$$

$$\Delta m = 0.08/2.056$$

$$\Delta m = 0.038$$

$$\Delta c = (-0.1)(-4)$$

$$\sqrt{51.78+10^3}$$

$$\Delta c = 0.4/7.195$$

$$\Delta c = 0.056$$

Step 7; $m = 1.189+0.038$

$$m = 1.227$$

$$c = -0.83+0.056$$

$$c = -0.774$$
Step 8; sample = 2
$$step 9: 272 \text{ go to step 4}$$

Step 6:
$$Jm = -(3.8 - (1.227)(0.4) + 0.774)(0.4)$$

 $= -(4.574 - 0.49)0.4$
 $Jm = -1.633$
 $Jc = -4.084$
Step 5: $Lm = 4.23 + (-1.633)^2$
 $Lm = 6.89$
 $Lm = 6.99$
 $Lm = 6.$

Step8: sample=3

step9: 3>2 gots next step

Step 10: it = 3

step 11: if (its > no. of its)

3 > 2 go to next

step 12: Print mec value o

m = [.25]

C = -0.725