Mownit Lab2

March 21, 2021

1 MOwNiT

1.1 Laboratorium 2

1.1.1 Analiza danych - DataFrames

- Zaawansowany pakiet do działania na tabelkach nxm danych
- Podobne do pandas DataFrames w Pythonie albo data.frame w R
- Specjalistyczne funkcje do statystyki
- W przypadku włąsnej instalacji należy zaistalować pakiet:

Pkg.add("DataFrames")

- DataFrame to rodzaj bazy danych in-memory
- Składa się z kolumn, do których odwołujemy się używając symboli
- Każda z kolumn może przechowywać inny typ (inaczej niż w dwuwymiarowych tablicach)
- od wersji 0.11 każda z kolumn jest typu Array $\{T,1\}$ gdzie T jest okreslonym typem danych (np. Float64)
- strona pakietu: https://github.com/JuliaStats/DataFrames.jl
- dokumentacja najnowszej wersji: https://juliadata.github.io/DataFrames.jl/stable/index.html

```
[1]: # za pierwszym razem instalujemy
# using Pkg
# Pkg.add("DataFrames")
```

```
[2]: # Tworzenie DataFrame
using DataFrames
df1=DataFrame()
df1.MojaKolumna= 1:4
df1.x2= [4,pi,sqrt(2), 42]
df1.Col3= [true,false, true, false]
show(df1)
```

4×3 DataFrame

```
        Row
        MojaKolumna
        x2
        Col3

        Int64
        Float64
        Bool

        1
        1
        4.0
        true

        2
        2
        3.14159
        false
```

```
3
                         1.41421
                                    true
                        42.0
                                   false
[3]: # ! - nie tworzy kopii, : - tworzy kopię
     typeof(df1[!,2])
[3]: Array{Float64,1}
[4]: typeof(df1.Col3)
[4]: Array{Bool,1}
[5]: # możemy też utworzyć DataFrame używając konstruktora
     df2=DataFrame(MojaKolumna=1:10,
         Col2=[2,pi, sqrt(2), 3, 4,2,pi, sqrt(2), 3, 4],
         Col3=[true,true,false,true,false,true,false,true,false])
[5]:
         MojaKolumna
                         Col2
                                 Col3
             Int64
                        Float64
                                 Bool
               1
                          2.0
      1
                                  1
      2
               2
                        3.14159
                                  1
      3
               3
                        1.41421
      4
               4
                          3.0
                                  1
      5
               5
                          4.0
                                  0
      6
               6
                          2.0
                                  1
      7
               7
                        3.14159
                                  1
      8
               8
                        1.41421
                                  0
      9
               9
                          3.0
                                  1
     10
               10
                          4.0
                                  0
[6]: # ilosc wierszy
     size(df2, 1)
[6]: 10
[7]: #ilosc kolumn
     size(df2, 2)
[7]: 3
[8]: # można odwoływać się po indeksie
     show(df2[:,2])
    [2.0, 3.141592653589793, 1.4142135623730951, 3.0, 4.0, 2.0, 3.141592653589793,
    1.4142135623730951, 3.0, 4.0]
[9]: # albo po symbolu kolumny
```

show(df2[!,:Co12])

[2.0, 3.141592653589793, 1.4142135623730951, 3.0, 4.0, 2.0, 3.141592653589793, 1.4142135623730951, 3.0, 4.0]

[10]: # wiersze lub podzbiory wierszy i kolumn uzyskujemy poprzez operator (:).⊔

→Wynikiem jest nowy DataFrame

show(df2[3,:])

DataFrameRow

Row MojaKolumna Col2 Col3
Int64 Float64 Bool

3 3 1.41421 false

[11]: # drugi i trzeci wiersz df2[2:3, :]

[12]: # druga kolumna drugiego i trzeciego wiersza df2[2:3, :Col2]

[12]: 2-element Array{Float64,1}:

3.141592653589793

1.4142135623730951

[13]: # druga i trzecia kolumna drugiego i trzeciego wiersza df2[2:3,[:Col2, :Col3]]

[13]: Col2 Col3 Float64 Bool 1 3.14159 1 2 1.41421 0

[14]: # pierwsze sześć wierszy
DataFrames.first(df2,6)

[14]: MojaKolumna Col2 Col3 Float64 Bool Int64 1 1 2.0 1 2 2 3.14159 1 3 3 1.41421 0 4 4 3.0 1 5 5 4.0 0 6 2.0 1

[15]: # ostatnie sześć wierszy
DataFrames.last(df2,6)

[15]:

	MojaKolumna	Col2	Col3
	Int64	Float64	Bool
1	5	4.0	0
2	6	2.0	1
3	7	3.14159	1
4	8	1.41421	0
5	9	3.0	1
6	10	4.0	0

[16]: # nazwy kolumn names(df2)

[16]: 3-element Array{String,1}:

"MojaKolumna"

"Co12"

"Col3"

[17]: # typy kolumn

eltype.(eachcol(df2))

[17]: 3-element Array{DataType,1}:

Int64

Float64

Bool

[18]: # podstawowe dane statystyczne o wartościach w kolumnie describe(df2)

[18]:

	variable	mean	\min	median	max	nmissing	$_{ m eltype}$
-	Symbol	Float64	Real	Float64	Real	Int64	DataType
1	MojaKolumna	5.5	1	5.5	10	0	Int64
2	Col2	2.71116	1.41421	3.0	4.0	0	Float64
3	Col3	0.6	0	1.0	1	0	Bool

[19]: using Statistics mean(df2.Col2)

[19]: 2.711161243192578

[20]: var(df2.Col2)

[20]: 0.9150284373648316

[21]: # Pkg.add("CSV")
using CSV
input="winequality.csv"
mydata=CSV.read(input, delim=";",DataFrame)

[21]:		fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	
_		Float64	Float64	Float64	Float64	Float64	Float64	
_	1	7.4	0.7	0.0	1.9	0.076	11.0	
	2	7.8	0.88	0.0	2.6	0.098	25.0	
	3	7.8	0.76	0.04	2.3	0.092	15.0	
	4	11.2	0.28	0.56	1.9	0.075	17.0	
	5	7.4	0.7	0.0	1.9	0.076	11.0	
	6	7.4	0.66	0.0	1.8	0.075	13.0	
	7	7.9	0.6	0.06	1.6	0.069	15.0	
	8	7.3	0.65	0.0	1.2	0.065	15.0	
	9	7.8	0.58	0.02	2.0	0.073	9.0	
	10	7.5	0.5	0.36	6.1	0.071	17.0	
	11	6.7	0.58	0.08	1.8	0.097	15.0	
	12	7.5	0.5	0.36	6.1	0.071	17.0	
	13	5.6	0.615	0.0	1.6	0.089	16.0	
	14	7.8	0.61	0.29	1.6	0.114	9.0	
	15	8.9	0.62	0.18	3.8	0.176	52.0	
	16	8.9	0.62	0.19	3.9	0.17	51.0	
	17	8.5	0.28	0.56	1.8	0.092	35.0	
	18	8.1	0.56	0.28	1.7	0.368	16.0	
	19	7.4	0.59	0.08	4.4	0.086	6.0	
	20	7.9	0.32	0.51	1.8	0.341	17.0	
	21	8.9	0.22	0.48	1.8	0.077	29.0	
	22	7.6	0.39	0.31	2.3	0.082	23.0	
	23	7.9	0.43	0.21	1.6	0.106	10.0	
	24	8.5	0.49	0.11	2.3	0.084	9.0	
	25	6.9	0.4	0.14	2.4	0.085	21.0	
	26	6.3	0.39	0.16	1.4	0.08	11.0	
	27	7.6	0.41	0.24	1.8	0.08	4.0	
	28	7.9	0.43	0.21	1.6	0.106	10.0	
	29	7.1	0.71	0.0	1.9	0.08	14.0	
	30	7.8	0.645	0.0	2.0	0.082	8.0	

[22]: describe(mydata)

[22]:

	variable	mean	\min	median	max	nmissing	eltype
	Symbol	Float64	Real	Float64	Real	Int64	DataType
1	fixed acidity	8.31964	4.6	7.9	15.9	0	Float64
2	volatile acidity	0.527821	0.12	0.52	1.58	0	Float64
3	citric acid	0.270976	0.0	0.26	1.0	0	Float64
4	residual sugar	2.53881	0.9	2.2	15.5	0	Float64
5	chlorides	0.0874665	0.012	0.079	0.611	0	Float64
6	free sulfur dioxide	15.8749	1.0	14.0	72.0	0	Float64
7	total sulfur dioxide	46.4678	6.0	38.0	289.0	0	Float64
8	density	0.996747	0.99007	0.99675	1.00369	0	Float64
9	pН	3.31111	2.74	3.31	4.01	0	Float64
10	sulphates	0.658149	0.33	0.62	2.0	0	Float64
11	alcohol	10.423	8.4	10.2	14.9	0	Float64
12	quality	5.63602	3	6.0	8	0	Int64

```
[23]: typeof(mydata)
```

[23]: DataFrame

```
[24]: size(mydata)
```

[24]: (1599, 12)

```
[25]: # Dzielenie DataFrame na podgrupy i działania na nich

# Split -Apply - Combine

#https://dataframes.juliadata.org/stable/man/split_apply_combine/

# rozdzielanie na podgrupy po jakości wina (quality)

# Split

wine_grouped=groupby(mydata, :quality)
```

[25]: GroupedDataFrame with 6 groups based on key: quality

First Group (681 rows): quality = 5

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	
	Float64	Float64	Float64	Float64	Float64	Float64	
1	7.4	0.7	0.0	1.9	0.076	11.0	
2	7.8	0.88	0.0	2.6	0.098	25.0	
3	7.8	0.76	0.04	2.3	0.092	15.0	
4	7.4	0.7	0.0	1.9	0.076	11.0	
5	7.4	0.66	0.0	1.8	0.075	13.0	
6	7.9	0.6	0.06	1.6	0.069	15.0	
7	7.5	0.5	0.36	6.1	0.071	17.0	
8	6.7	0.58	0.08	1.8	0.097	15.0	
9	7.5	0.5	0.36	6.1	0.071	17.0	
10	5.6	0.615	0.0	1.6	0.089	16.0	
11	7.8	0.61	0.29	1.6	0.114	9.0	
12	8.9	0.62	0.18	3.8	0.176	52.0	
13	8.9	0.62	0.19	3.9	0.17	51.0	
14	8.1	0.56	0.28	1.7	0.368	16.0	
15	7.6	0.39	0.31	2.3	0.082	23.0	
16	7.9	0.43	0.21	1.6	0.106	10.0	
17	8.5	0.49	0.11	2.3	0.084	9.0	
18	6.3	0.39	0.16	1.4	0.08	11.0	
19	7.6	0.41	0.24	1.8	0.08	4.0	
20	7.9	0.43	0.21	1.6	0.106	10.0	
21	7.1	0.71	0.0	1.9	0.08	14.0	
22	6.7	0.675	0.07	2.4	0.089	17.0	
23	8.3	0.655	0.12	2.3	0.083	15.0	
24	5.2	0.32	0.25	1.8	0.103	13.0	
25	7.3	0.45	0.36	5.9	0.074	12.0	
26	7.3	0.45	0.36	5.9	0.074	12.0	
27	8.1	0.66	0.22	2.2	0.069	9.0	
28	6.8	0.67	0.02	1.8	0.05	5.0	
29	7.7	0.935	0.43	2.2	0.114	22.0	
30	8.7	0.29	0.52	1.6	0.113	12.0	

Last Group (10 rows): quality = 3

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	
	Float64	Float64	Float64	Float64	Float64	Float64	
1	11.6	0.58	0.66	2.2	0.074	10.0	
2	10.4	0.61	0.49	2.1	0.2	5.0	
3	7.4	1.185	0.0	4.25	0.097	5.0	
4	10.4	0.44	0.42	1.5	0.145	34.0	
5	8.3	1.02	0.02	3.4	0.084	6.0	
6	7.6	1.58	0.0	2.1	0.137	5.0	
7	6.8	0.815	0.0	1.2	0.267	16.0	
8	7.3	0.98	0.05	2.1	0.061	20.0	
9	7.1	0.875	0.05	5.7	0.082	3.0	
10	6.7	0.76	0.02	1.8	0.078	6.0	

[26]: # podsumowanie ile jest win w każdej grupie combine(wine_grouped, nrow)

[26]: | quali

	quality	nrow
	Int64	Int64
1	5	681
2	6	638
3	7	199
4	4	53
5	8	18
6	3	10

[27]: combine(wine_grouped, "fixed acidity" => mean)

[27]:

	quality	fixed acidity_mean
	Int64	Float64
1	5	8.16725
2	6	8.34718
3	7	8.87236
4	4	7.77925
5	8	8.56667
6	3	8.36

[28]: # zliczenie liczby win o danej jakości i zawartości alkoholu, posortowane wine_grouped2=sort(combine(groupby(mydata, [:quality,:alcohol]),nrow=> :

→liczba), [:quality,:alcohol])

[28]:

	quality	alcohol	liczba
	Int64	Float64	Int64
1	3	8.4	1
2	3	9.0	1
3	3	9.7	1
4	3	9.8	1
5	3	9.9	1
6	3	9.95	1
7	3	10.2	1
8	3	10.7	1
9	3	10.9	1
10	3	11.0	1
11	4	9.0	2
12	4	9.05	1
13	4	9.1	2
14	4	9.2	3
15	4	9.3	2
16	4	9.4	2
17	4	9.6	6
18	4	9.7	2
19	4	9.8	3
20	4	9.9	1
21	4	10.0	4
22	4	10.1	1
23	4	10.3	1
24	4	10.4	3
25	4	10.5	1
26	4	10.9	3
27	4	11.0	4
28	4	11.1	1
29	4	11.2	3
30	4	11.3	1

```
[29]: # zapis do pliku
CSV.write("dataframe1.csv", wine_grouped2)
```

[29]: "dataframe1.csv"

1.1.2 Graficzna reprezentacja DataFrames

```
[30]: using DataFrames df = DataFrame(a = 1:10, b = map(x->2x,(1:10)), c = map(x->log(x),(1:10)), d=map(x-x) d=map(x-x
```

[30]:

	a	b	\mathbf{c}	d	e
	Int64	Int64	Float64	Float64	Int64
1	1	2	0.0	0.386491	1
2	2	4	0.693147	0.281443	0
3	3	6	1.09861	0.603057	1
4	4	8	1.38629	0.73946	0
5	5	10	1.60944	0.810854	1
6	6	12	1.79176	0.186859	0
7	7	14	1.94591	0.716171	1
8	8	16	2.07944	0.116305	0
9	9	18	2.19722	0.177662	1
10	10	20	2.30259	0.233535	0

[31]: # Mozna odwolywac sie bezposrednio do kolumn w poniższy sposób (gdyz sa typu⊔ → jednowymiarowych tablic # Array{T,1})

using Plots scatter(df.a, [df.b, df.c], colour = [:red :blue], yerr=df.d)

[31]:


```
[32]: # użycie opcji layout
scatter(df.a, [df.b, df.c], colour = [:red :blue], layout=2)
```

[32]:


```
[33]: # użycie opcji layout i grup
scatter(df.a, [df.b, df.c], group=df.e, colour = [:red :blue :green :black],
→layout=2)
```

[33]:

1.1.3 Zadanie

- Napisać program w języku Julia do obliczania iloczynu skalarnego wektorów (LinearAlgebra.dot) i mnożenia macierzy kwadratowej przez wektor z użyciem operatora *.
- Uruchomić i zmierzyć czasy działania obydwu funkcji każdej dla różnych rozmiarów wektorów. Dokonać 10 pomiarów dla każdego rozmiaru wektora.
- Czasy działania powinny być zapisywane do jednego pliku CSV. Należy zaplanować odpowiednią strukturę kolumn takiego pliku.
- Wczytać dane z w/w pliku do jednego DataFrame w języku Julia.
- Korzystająć z mechanizmów DataFrame w języku Julia obliczyć średnią i odchylenie standardowe, w taki sposób, aby narysować wykresy średnich czasów obliczenia operacji w zależności od rozmiaru wektora. Dodać słupki błędów do obydwu wykresów uzyskanych z obliczenia odchylenia standardowego.
- Należy zadbać o staranne podpisanie osi i wykresów.

1.1.4 Rozwiązanie

Funkcje:

[34]: using LinearAlgebra

```
[35]: function dot_product(x,y)
          return dot(x,y)
      end
[35]: dot_product (generic function with 1 method)
[36]: x = [1,2,3]
      y = [3,4,5]
      dot_product(x,y)
[36]: 26
[37]: function scalar_times_matrix(scalar, m)
          return scalar * m
      end
[37]: scalar_times_matrix (generic function with 1 method)
[38]: m1 = [1 5; 3 2]
      scalar1 = 6
      scalar_times_matrix(scalar1, m1)
[38]: 2×2 Array{Int64,2}:
       6 30
       18
          12
     time tests:
[39]: Otime dot_product(x,y)
      @time scalar_times_matrix(scalar1, m1)
       0.000003 seconds
       0.000003 seconds (1 allocation: 112 bytes)
[39]: 2×2 Array{Int64,2}:
        6 30
       18 12
[40]: rand(10)
[40]: 10-element Array{Float64,1}:
       0.8558386026774496
       0.704399624415722
       0.3280155865558867
       0.9379351938664204
       0.9773428947566583
       0.7842185646424709
       0.7018560624340788
```

```
0.855607147160194
       0.04489338134714993
[44]: function count_dot_product_timetest(range)
          dot_p_time = []
          for i=range
                println(i)
              x1 = rand(i)
              y1 = rand(i)
              push!(dot_p_time, @elapsed dot_product(x1,y1))
          return dot_p_time
      end
[44]: count_dot_product_timetest (generic function with 1 method)
[45]: count_dot_product_timetest(1000:1000:10000)
[45]: 10-element Array{Any,1}:
       1.67e-6
       3.6e-7
       6.1e-7
       8.5e-7
       9.1e-7
       1.04e-6
       1.17e-6
       1.31e-6
       1.44e-6
       1.62e-6
[46]: function count_scalar_times_matrix_timetest(range)
          times = []
          for i=range
              m = [rand(i) for j=1:i]
                println(m)
              push!( times, @elapsed scalar_times_matrix(rand(), m))
          return times
      end
[46]: count_scalar_times_matrix_timetest (generic function with 1 method)
[47]: count_scalar_times_matrix_timetest(5:5:5)
[47]: 1-element Array{Any,1}:
       0.071297963
```

0.02403169856818277

```
[48]: count_scalar_times_matrix_timetest(1000:1000:10000)
[48]: 10-element Array{Any,1}:
       0.016134337
       0.013399577
       0.018280244
       0.063499102
       0.174219639
       0.213000473
       0.187807184
       0.125771638
       0.186799449
       0.169232097
     Building a data frame
[52]: interval = 1000 #start and interval
      range = interval:interval:10*interval
      timetest_data = DataFrame(length = range,
          dot = count_dot_product_timetest(range),
          scalar = count_scalar_times_matrix_timetest(range))
[52]:
          length
                    dot
                             scalar
           Int64
                   Any
                              Any
       1
           1000
                  3.64e-6 \quad 0.00225909
       2
           2000
                  1.52e-6
                          0.00506711
       3
           3000
                  2.21e-6
                           0.0122022
       4
           4000
                  2.56e-6
                           0.0263606
       5
           5000
                  3.42e-6
                           0.029506
       6
           6000
                  3.78e-6
                           0.0401959
           7000
                  4.49e-6
                           0.0834425
       8
           8000
                  4.87e-6
                           0.193702
       9
           9000
                  5.75e-6
                           0.208038
      10
          10000
                           0.182438
                  6.3e-6
[53]: for i=1:9
          tmp = DataFrame(length = range,
          dot = count_dot_product_timetest(range),
          scalar = count_scalar_times_matrix_timetest(range))
          append!(timetest_data,tmp)
      end
[54]: timetest_data
```

[54]:

	length	dot	scalar
	Int64	Any	Any
1	1000	3.64e-6	0.00225909
2	2000	1.52e-6	0.00506711
3	3000	2.21e-6	0.0122022
4	4000	2.56e-6	0.0263606
5	5000	3.42e-6	0.029506
6	6000	3.78e-6	0.0401959
7	7000	4.49e-6	0.0834425
8	8000	4.87e-6	0.193702
9	9000	5.75e-6	0.208038
10	10000	6.3e-6	0.182438
11	1000	1.48e-6	0.0015613
12	2000	3.7e-7	0.00495143
13	3000	6.1e-7	0.0106986
14	4000	7.4e-7	0.0181781
15	5000	9.2e-7	0.0384263
16	6000	1.03e-6	0.316284
17	7000	1.22e-6	0.181065
18	8000	1.33e-6	0.238194
19	9000	1.49e-6	0.150924
20	10000	1.59e-6	0.199682
21	1000	2.03e-6	0.00228895
22	2000	3.6e-7	0.00511193
23	3000	5.9e-7	0.0109547
24	4000	6.3e-7	0.0184792
25	5000	8.7e-7	0.0287421
26	6000	1.001e-6	0.0526848
27	7000	1.13e-6	0.060837
28	8000	1.28e-6	0.0792995
29	9000	1.45e-6	0.0934194
30	10000	1.59e-6	0.19632

Save to file

```
[55]: CSV.write("timetests.csv", timetest_data)
```

[55]: "timetests.csv"

```
Read from file
```

```
[56]: my_timetest_data = CSV.read("timetests.csv", delim=",",DataFrame)
```

[56]:

	length	dot	scalar
	Int64	Float64	Float64
1	1000	3.64e-6	0.00225909
2	2000	1.52e-6	0.00506711
3	3000	2.21e-6	0.0122022
4	4000	2.56e-6	0.0263606
5	5000	3.42e-6	0.029506
6	6000	3.78e-6	0.0401959
7	7000	4.49e-6	0.0834425
8	8000	4.87e-6	0.193702
9	9000	5.75 e-6	0.208038
10	10000	6.3e-6	0.182438
11	1000	1.48e-6	0.0015613
12	2000	3.7e-7	0.00495143
13	3000	6.1e-7	0.0106986
14	4000	7.4e-7	0.0181781
15	5000	9.2e-7	0.0384263
16	6000	1.03e-6	0.316284
17	7000	1.22e-6	0.181065
18	8000	1.33e-6	0.238194
19	9000	1.49e-6	0.150924
20	10000	1.59e-6	0.199682
21	1000	2.03e-6	0.00228895
22	2000	3.6e-7	0.00511193
23	3000	5.9e-7	0.0109547
24	4000	6.3e-7	0.0184792
25	5000	8.7e-7	0.0287421
26	6000	1.001e-6	0.0526848
27	7000	1.13e-6	0.060837
28	8000	1.28e-6	0.0792995
29	9000	1.45 e-6	0.0934194
30	10000	1.59e-6	0.19632

```
[57]: names(my_timetest_data)
```

[57]: 3-element Array{String,1}:

"length"

"dot"

"scalar"

[58]: describe(my_timetest_data)

[58]:

	variable	mean	\min	median	max	nmissing	eltype
	Symbol	Float64	Real	Float64	Real	Int64	DataType
1	length	5500.0	1000	5500.0	10000	0	Int64
2	dot	1.39462e-6	3.5e-7	1.195e-6	6.3e-6	0	Float64
3	scalar	0.0805247	0.0015613	0.0407524	0.316284	0	Float64

[59]: sort(my_timetest_data)

[59]:

	length	dot	scalar
	Int64	Float64	Float64
1	1000	1.48e-6	0.0015613
2	1000	1.94e-6	0.00174932
3	1000	1.96e-6	0.00172581
4	1000	1.98e-6	0.00165277
5	1000	1.99e-6	0.00172213
6	1000	1.99e-6	0.00179711
7	1000	2.01e-6	0.0016456
8	1000	2.03e-6	0.00228895
9	1000	2.19e-6	0.00166728
10	1000	3.64e-6	0.00225909
11	2000	3.5e-7	0.00516651
12	2000	3.6e-7	0.00511193
13	2000	3.7e-7	0.00495143
14	2000	3.7e-7	0.00502901
15	2000	3.7e-7	0.00505884
16	2000	3.7e-7	0.00513876
17	2000	3.8e-7	0.00501253
18	2000	3.8e-7	0.005056
19	2000	3.8e-7	0.00511957
20	2000	1.52e-6	0.00506711
21	3000	5.9e-7	0.0109547
22	3000	6.0e-7	0.0108949
23	3000	6.1e-7	0.0106986
24	3000	6.1e-7	0.0109282
25	3000	6.1e-7	0.0109441
26	3000	6.1e-7	0.135208
27	3000	6.2e-7	0.0108007
28	3000	6.3e-7	0.0107364
29	3000	6.3e-7	0.0109288
30	3000	2.21e-6	0.0122022
			• • •

Group by length

[60]: my_data_grouped = groupby(my_timetest_data, :length)

[60]: GroupedDataFrame with 10 groups based on key: length

First Group (10 rows): length = 1000

	length	dot	scalar
	Int64	Float64	Float64
1	1000	3.64e-6	0.00225909
2	1000	1.48e-6	0.0015613
3	1000	2.03e-6	0.00228895
4	1000	1.99e-6	0.00179711
5	1000	1.99e-6	0.00172213
6	1000	1.98e-6	0.00165277
7	1000	2.01e-6	0.0016456
8	1000	1.96e-6	0.00172581
9	1000	1.94e-6	0.00174932
10	1000	2.19e-6	0.00166728

. . .

Last Group (10 rows): length = 10000

	length	dot	scalar
	Int64	Float64	Float64
1	10000	6.3e-6	0.182438
2	10000	1.59e-6	0.199682
3	10000	1.59e-6	0.19632
4	10000	1.59e-6	0.220918
5	10000	1.58e-6	0.191838
6	10000	1.52e-6	0.275361
7	10000	1.52e-6	0.190851
8	10000	1.55e-6	0.20593
9	10000	1.53e-6	0.272087
10	10000	1.5e-6	0.191683

Add means and standard deviation columns

[74]:

	length	dot_mean	dot_std	$scalar_mean$	$scalar_std$
	Int64	Float64	Float64	Float64	Float64
1	1000	2.121e-6	5.63372e-7	0.00180694	0.000254644
2	2000	4.85e-7	3.63784e-7	0.00507117	6.46483e-5
3	3000	7.72e-7	5.05411e-7	0.0234296	0.0392771
4	4000	9.15e-7	5.79296e-7	0.0227744	0.0101443
5	5000	1.148e-6	7.99136e-7	0.0303074	0.00321438
6	6000	1.2931e-6	8.74784e-7	0.0759262	0.0848919
7	7000	1.521e-6	1.04349e-6	0.15205	0.0973346
8	8000	1.773e-6	1.09367e-6	0.136518	0.0631795
9	9000	1.8911e-6	1.35602e-6	0.144653	0.0580555
10	10000	2.027e-6	1.50176e-6	0.212711	0.0337879

[75]: data_to_plot

[75]:

	length	dot_mean	dot_std	$scalar_mean$	$scalar_std$
	Int64	Float64	Float64	Float64	Float64
1	1000	2.121e-6	5.63372e-7	0.00180694	0.000254644
2	2000	4.85e-7	3.63784e-7	0.00507117	6.46483e-5
3	3000	7.72e-7	5.05411e-7	0.0234296	0.0392771
4	4000	9.15e-7	5.79296e-7	0.0227744	0.0101443
5	5000	1.148e-6	7.99136e-7	0.0303074	0.00321438
6	6000	1.2931e-6	8.74784e-7	0.0759262	0.0848919
7	7000	1.521e-6	1.04349e-6	0.15205	0.0973346
8	8000	1.773e-6	1.09367e-6	0.136518	0.0631795
9	9000	1.8911e-6	1.35602e-6	0.144653	0.0580555
10	10000	2.027e-6	1.50176e-6	0.212711	0.0337879

```
[76]: using Plots
    scatter(data_to_plot.length,
        [data_to_plot.dot_mean data_to_plot.scalar_mean],
        colour = [:violet :purple ],
        yerr= [data_to_plot.dot_std data_to_plot.scalar_std],
        label = ["2 linear matrices dot product" "square matrix times scalar"],
        title = "Means of time of computing different
        operations for different array sizes",
        xlab = "array length",
        ylab = "time"
    )
```

[76]:

Means of time of computing different operations for different array sizes


```
[77]: using Plots
    scatter(data_to_plot.length,
        [data_to_plot.dot_mean data_to_plot.scalar_mean],
        colour = [:violet :purple ],
        yerr= [data_to_plot.dot_std data_to_plot.scalar_std],
        label = ["2 linear matrices dot product" "square matrix times scalar"],
        title = "Means of time of computing different
        operations for different array sizes",
        xlab = "array length",
        ylab = "time",
        layout = (2,1)
    )
```

[77]:

Wykresy potwierdziły moje przypuszczenia. Jak widać na powyższych wykresach, czas obliczania iloczynu skalarnego 2-ch macierzy rośnie liniowo względem długości macierzy, natomiast obliczanie iloczynu macierzy kwadratowej przez skalar rośnie kwadratowo względem długości boku macierzy.

[]:	
[]:	
[]:	