华东师范大学 2020-2021 第一学期《线性代数 A》期末试卷 (A 卷)

姓 名: _____ 学 号:_____ 专 业: 考 场:

注意: 答案写在答题纸上。本试卷总分 100 分, 共有七题。

- 一、选择填空题 (每题 4 分, 共 20 分).
 - 1. 由三维实向量空间 $V = \mathbb{R}^3$ 中向量 $\alpha_1 = (1,0,3)^T$, $\alpha_2 = (0,3,2)^T$, $\alpha_3 = (-2,3,-4)^T$ 生成的 V 的子空间的维数为 _____.
 - 2. 以下集合构成三维实向量空间 $ℝ^3$ 的子空间的一个是 _____ (以下选项中 $X = (x_1, x_2, x_3)^T$).
 - (A) $W_1 = \{X \in \mathbb{R}^3 | x_1 + x_2 = 1\};$ (B) $W_2 = \{X \in \mathbb{R}^3 | 2x_1 + 3x_2 x_3 = 0\};$ (C) $W_3 = \{X \in \mathbb{R}^3 | x_1 + 2x_3 x_3 = 1\};$ (D) $W_4 = \{X \in \mathbb{R}^3 | x_1 x_2^2 = 0\}.$
 - 3. 设二阶实对称矩阵 A 的特征值为 1 和 2, 且特征值 1 对应的特征向量为 $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. 则 矩阵 A =______.

 - 5. 定义 [0,1] 上连续实函数全体 C[0,1] 上的内积为 $(f,g) = \int_0^1 f(x)g(x)dx$,则函数 f(x) = 1 与 g(x) = x 的夹角 =______,f 的长度 =_____.
- 二、(10分)已知二次型

$$f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + x_2^2 + 2x_2x_3.$$

将以上二次型化为标准形,求出所作的非退化线性代换,并给出二次型的正、负惯性指数.

三、(15 分) 已知线性方程组
$$\begin{cases} x_1 + 3x_2 - x_3 - 2x_4 = 3, \\ 2x_1 - x_2 + 2x_3 + 3x_4 = 9, \\ 3x_1 + 2x_2 + x_3 + x_4 = 12, \\ x_1 - 4x_2 + 3x_3 + 5x_4 = 6. \end{cases}$$

1. 求出以上线性方程组的一个特解,并给出此方程组所对应的齐次线性方程组的基础解系.

2. 给出方程组的通解.

四、(15 分) 已知实向量
$$\alpha_1 = \begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 0 \\ -1 \\ -1 \\ -1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}$, $\alpha_4 = \begin{bmatrix} -1 \\ 5 \\ 4 \\ 0 \end{bmatrix}$.

1. 证明:向量 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 构成四维实向量空间 \mathbb{R}^4 的一组基;

2. 求从基
$$\varepsilon_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $\varepsilon_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\varepsilon_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\varepsilon_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$ 到基 α_1 , α_2 , α_3 , α_4 的

过渡矩阵;

3. 求从基 α_1 , α_2 , α_3 , α_4 到基 ε_1 , ε_2 , ε_3 , ε_4 的过渡矩阵;

4. 分别给出向量
$$\gamma = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 2 \end{bmatrix}$$
 在以上两组基下的坐标.

五、(15 分) 设实对称矩阵
$$A = \begin{bmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{bmatrix}$$
.

1. 求矩阵 A 的特征值与相应的特征向量.

2. 求正交矩阵 Q 和对角矩阵 Λ , 使得 $Q^{-1}AQ = Q^{T}AQ = \Lambda$. 请给出计算过程.

六、(15 分) 已知矩阵
$$A = \begin{bmatrix} 2 & 2 & 0 \\ 8 & 2 & a \\ 0 & 0 & 6 \end{bmatrix}$$
 与对角阵 Λ 相似.

1. 求矩阵 A 的特征值, 并证明 a=0;

2. 求可逆矩阵 P 和 Λ 使得 $P^{-1}AP = \Lambda$.

3. 对任意正整数 k, 求 A^k .

七、(10 分) 已知 A 为 n 阶实对称矩阵, 满足 $A^3+A=2E_n$. 证明: $A=E_n$.

[试题结束]