PUBLIC TRANSPORT OPTIMIZATION USING IOT

Building an IoT-enabled public transportation optimization system involves a multi-step process, including setting up IoT sensors, data collection, and developing a data processing platform.

Here's a high-level overview of the steps involved:

Select IoT Sensors and Hardware:

Choosing appropriate IoT sensors and hardware for your public transportation optimization system. Here we are using GPS sensors for location data and passenger counters to track ridership.

Set Up IoT Sensors:

Installed and configured the IoT sensors in each public transportation vehicle. Connected them to a microcontroller or IoT development board (e.g., Raspberry Pi, Arduino) to collect data. Ensuring they have access to power and a reliable internet connection for data transmission.

Develop Python Script:

Created an Python script to run on each IoT sensor device. This script will collect data from the sensors and transmit it to the transit information platform in real-time. used libraries like requests for sending data to a web server.

Below is a Python script to send GPS and passenger count data:

import requests

import json

import time

from gps_module import get_gps_data # Implement a GPS module

from passenger_counter import count_passengers # Implement passenger counting module

```
# Define the URL of the transit information platform
transit_platform_url = "https://your-transit-platform-api.com"
while True:
# Gather GPS data
gps_data = get_gps_data()
# Gather passenger count data
passenger_count = count_passengers()
# Prepare data payload
data = {
"vehicle_id": "vehicle123",
"timestamp": int(time.time()),
"location": {
"latitude": gps_data["latitude"],
```

"longitude": gps_data["longitude"]

"passenger_count": passenger_count

},

}

Send data to the transit platform

```
response = requests.post(transit_platform_url, json=data)

if response.status_code == 200:

print("Data sent successfully")

else:

print(f"Failed to send data. Status code: {response.status_code}")
```

Adjust the data transmission interval as needed

time.sleep(30) # Send data every 30 seconds

Set Up the Transit Information Platform:

Created a backend platform to receive and process the data from IoT sensors. This platform can be built using technologies like Flask, Django, or a cloud-based solution like AWS or Google Cloud.

The platform should have APIs to receive and store the data.

Data Processing and Optimization:

On the transit information platform, processing the incoming data to optimize public transportation services. For example, analyzing ridership trends, vehicle locations, and schedule adjustments to improve service efficiency.

Data Visualization:

Implementing a dashboard or reporting system to visualize the collected data, helping transit authorities make informed decisions.

Scalability and Redundancy:

Ensuring that the system is scalable and has redundancy built-in to handle a large number of IoT sensors and ensure data reliability.

Security:

Implementing security measures to protect the data collected and transmitted by the IoT sensors.

Testing and Deployment:

Thoroughly test the entire system in a controlled environment before deploying it in the real transportation network.

Maintenance and Monitoring:

Regularly monitoring the IoT sensors, data transmission, and the transit information platform to ensure it functions correctly. Implement alerts for any anomalies.

Compliance and Privacy:

Ensuring that our system complies with privacy regulations and obtains necessary permissions to collect and process passenger data