USN: Ε C

Dayananda Sagar College of Engineering
Shavige Malleshwara Hills, Kumaraswamy Layout, Banashankari, Bangalore-560078, Karnataka
Tel: +91 80 26662226 26661104 Extn: 2731 Fax: +90 80 2666 0789 Web - http://www.dayanandasagar.edu Email: hod-ece@dayanandasagar.edu (An Autonomous Institute Affiliated to VTU, Approved by AICTE & ISO 9001:2008 Certified) (Accredited by National Assessment & Accreditation Council (NAAC) with 'A' grade)

Department of Electronics & Communication Engg. Continuous Internal Evaluation – II

Continuous internal Evaluation in								
Course Name : Computer Organization				11/11/2020				
Course Code : 18EC5DEACO			Day :	Wednesday				
Semester: 5 th Semester Timings				9:30-11:00AM				
Max Marks : 50 M Duration :				1½ Hrs.				
N o.		Question Description		Mk s	CO & Levels			
Q1	(a)	Which representation is most efficient to perform arithmetic operations or numbers? i) Sign-magnitude ii) 1's complement iii) 2'S complement iv) None of the		1				
	(b	If n bit is multiplied with n bit generates		_				

Q1	(a)	Which representation is most efficient to perform arithmetic operations on the numbers?		
		i) Sign-magnitude ii) 1's complement iii) 2'S complement iv) None of the mentioned		
	(b	If n bit is multiplied with n bit generates	1	
)	i) n/2 bit product ii) n bit product iii) 2n bit product iv) n ² it product The Booth recorded multiplier for 01110 is i) +1 0 0 -1 0 ii) -1 1 0 +1 0 iii) 0 +1 0 0 -1 iv) None of them		
	(c)			
	(d)	All the statements in a program will have common steps for execution. i)4 ii) 3 iii) 7 iv) 8	1	
	(e)	bus processor will take less time to execute an instruction. i)Single ii) double iii) Multiple iv) all of the above	1	
	(f) Represent the decimal value of 14 in 2's complement (a)0001111(b)1110000 (c)0001110(d)0101110		1	
	(g)	is used to choose between incrementing the PC or performing ALU operations. i) Conditional codes ii) Multiplexer iii) Control unit iv) None of the mentioned	1	
	(h)	If the control signals are generated by combinational logic, then they are generated by a type of controlled unit. i) Micro programmed ii) Software iii) Logic iv) Hardwired	1	
	(i)	gate need to active for loading a value to MAR. i)MARin ii) MARout iii) MDRin iv) none of the above	1	
	(j)	Register x, y, and z are used by i)programmer ii) Processor iii) both iv) none of the above	1	
Q2		Perform signed multiplication of following 2'scomplement numbers using i)Booth's Algorithm ii) bit-pair recoding method. a) A=010111 and B=110110 b) A=110101 and B=011011		CO3&L3
Q3		Elaborate the working of single bus organization with neat diagram.	10	C04&L2
Q4	(a)	Perform the multiplication of 9X15 using sequential multiplication with neat diagram. (5 bits)	5	C03&L3
	(b)	Explain with neat diagram the organization of fetching a word from memory.	5	C03&L3
		OR		
Q5		Show and explain how the micro code is generated for an instruction with example.	10	C03&L3
Q6	(a)	List the control sequences required to execute the instruction ADD R1,(R3) in single bus organization.		C04&L3
	(b)	Describe with neat diagram detailed Hardwired control organization.		C04&L3
		OR		
Q7		Elaborate the working of multiple bus organization with neat diagram.	10	C04&L3