Problem Set: Single-agent Dynamic Discrete-Choice Models

In this problem set, we will explore computation and estimation of single-agent dynamic discretechoice models, with an emphasis on the Harold Zurcher model.

- 1. Compute the Harold Zurcher model.
 - Use the parameter estimates θ from the top of Table X in Rust's (1987) paper.
 - Compute $EV(x, i; \theta)$ using the value iteration procedure, described in Rust paper (and lecture notes).
 - Graph $EV(x, i; \theta)$, separately for i = 0, 1.
- 2. Simulate the Harold Zurcher model.
 - Assume there are N = 100 homogeneous buses, and you observe each for T = 10000 weeks. HZ makes replacement decision every week.
 - Initial values: take $x_{n0} = 0$, $i_{n0} = 0$ for all buses n.
 - For each week t, simulate the utility shocks ϵ_{0nt} , ϵ_{1nt} , the mileage x_{nt} , and replacement decision i_{nt} :
 - Draw ϵ_{0nt} , ϵ_{1nt} , independently from Type I extreme value distribution, with CDF $F(\epsilon) = \exp[-\exp(-(\epsilon 0.577))]$.*
 - Draw mileage x_{nt} from transition $G(x|x_{n,t-1},i_{n,t-1})$, which is multinomial as given in Rust paper.
 - Compute replacement decision

$$i_{nt} \equiv \operatorname{argmax}_{i=0,1} \left(u(x_{nt}, i; \theta) + \epsilon_{int} + \beta \cdot EV(x_{nt}, i; \theta) \right)$$

where you use $EV(x_{nt}, i; \theta)$ as computed in problem #1.

- After sequences of x, i are simulated for all buses, provide summary statistics of your simulated data.
- 3. Estimate the model using Rust's MLE/nested-fixed-point algorithm.
- 4. Estimate the model using the indirect Hotz-Miller method.

^{*}To simulate from a desired CDF F(x), draw uniform random variables $u \sim U[0,1]$, and transform $x = F^{-1}(u)$.