ROYAUME DU MAROC UNIVERSITE ABDELMALEK ESSAADI FACULTE DES SCIENCES ET TECHNIQUES TANGER

المملكة المغربية جسامسعة عبد المسالك السسعدي كليسة العلسوم والتسقينيات طنجة

Logiciels et systèmes intelligents (LSI) Département Informatique

Rapport de devoir 2

Méthodologies de l'IA S3

Développez une application Desktop Java

Réalisé par : Mahjoubi Redwane Ait-Abbou Samir Outaleb Asmaa

Encadré par : MR.M'hamed AIT KBIR

Remerciement

C'est avec un réel plaisir que nous adressons les plus sincères remerciements à notre chère professeur $\mathbf{MR.M'hamed\ AIT\ KBIR}$,

pour leurs conseils précieux, leur soutien et leur compréhension à ses étudiants.

Merci infiniment

Table des matières

Reme	erciement	11
Table	e des matières	iii
Table de		iv
Table	e des figures	iν
L'obj	ectif	1
0.1	Architecture du Projet :	2
0.2	Choix d'un modeles se labyrinthes :	2
0.3	Les Composantes du Labyrainthes :	3
0.4	Gagner un Bonus:	4
0.5	traverser un obstacle:	5
	demander de montrer le Goal :	
0.7	demander de montrer le plus proche bonus :	9
	Gérer le temps allouer pour le jeux :	
0.9	Gérer le score :	L 1
Conc	lusion	12

Table des figures

1	Maze
2	Architecture du Projet
3	Choix d'un modeles se labyrinthes
4	Les Composantes du Labyrainthes
5	Gagner un Bonus
6	traverser un obstacle
7	Avant demande de l'aide
8	après demande de l'aide
9	Autre Situaion
10	demander de montrer le plus proche bonus
11	Temps expiré
12	Gérer le score

L'objectif

représenter un problème comme un graphe d'états en donnant une convenable représentation et mettre en application les algorithmes des stratégies de recherche vus dans le cours

Figure 1 – Maze

Architecture du Projet

0.1 Architecture du Projet :

FIGURE 2 – Architecture du Projet

Choix d'un modeles se labyrinthes

0.2 Choix d'un modeles se labyrinthes :

Figure 3 – Choix d'un modeles se labyrinthes

Les Composantes du Labyrainthes

0.3 Les Composantes du Labyrainthes :

Figure 4 – Les Composantes du Labyrainthes

Gagner un Bonus

0.4 Gagner un Bonus:

Le joueur dispose d'un score nul au début qu'il peut alimenter en gagnant des bonus, 5 points par bonus.

Figure 5 – Gagner un Bonus

traverser un obstacle

0.5 traverser un obstacle:

le joueur perd 2 points quant-il traverse un obstacle .

FIGURE 6 – traverser un obstacle

demander de montrer le Goal

0.6 demander de montrer le Goal:

le joueur perd 1 points lorsqu'il demande de l'aide pour visualiser temporairement un chemin pour atteindre la sortie

FIGURE 7 – Avant demande de l'aide

FIGURE 8 – après demande de l'aide

FIGURE 9 – Autre Situaion

demander de montrer le plus proche bonus

0.7 demander de montrer le plus proche bonus :

le joueur perd des points lorsqu'il demande de l'aide pour visualiser temporairement un chemin pour atteindre un bonus (3xa points pour la sortie, a dépend de la stratégie à utiliser). Lors de la demande de d'aide, permettre le choix de la méthode de résolution : recherche en profondeur d'abord (a=1/3), recherche en largeur d'abord (a=2/3) ou A^* (a=1)

Figure 10 – demander de montrer le plus proche bonus

Gérer le temps allouer pour le jeux

0.8 Gérer le temps allouer pour le jeux :

le jeux s'arrete lorsque le temps s'expire

 $FIGURE\ 11-Temps\ expiré$

Gérer le score

0.9 Gérer le score :

le jeux s'arrete lorsque le joueur attient un score nul

FIGURE 12 – Gérer le score

Conclusion

ce mini projet nous a permet d'implementer les algorithmes de l'intelligence artificiel (Dfs,Bfs,A*) et de bien se familiariser avec java swing .