Exercises #5

4.B.1 Prove the sufficiency part of Proposition 4.B.1.

A necessary and sufficient condition for the set of consumers to exhibit parallel, straight wealth expansion paths at any price vector p is that preferences admit indirect utility functions of the Gorman form with the coefficients w_t the same for every consumer i. That is:

$$v_i(p, w_i) = a_i(p) + b(p)w_i$$
.

Show also that if preferences admit the Gorman-form indirect utility functions with the same b(p), then preferences admit expenditure functions of the form $e_i \bullet (p, u_i) = c(p, u_i) + d_i(p)$.

4.B.1 By Roy's identity (Proposition 3.G.4) and $v_i(p, w_i) = a_i(p) + b(p)w_i$

$$x_{i}(p,w_{i}) = -\frac{1}{|\nabla_{w_{i}}v_{i}(p,w_{i})|}\nabla_{p}v_{i}(p,w_{i}) = -\frac{1}{|b(p)|}\nabla_{p}a_{i}(p) - \frac{w_{i}}{|b(p)|}\nabla_{p}b(p).$$

Thus $\nabla_{\mathbf{w}_i} \mathbf{x}_i(\mathbf{p}, \mathbf{w}_i) = -\frac{1}{b(\mathbf{p})} \nabla_{\mathbf{p}} b(\mathbf{p})$ for all i. Since the right-hand side is

identical for every i, the set of consumers exhibit parallel, straight expansion paths.

As for the second part, by (3.E.1),

$$e_i(p,u_i) = (u_i - a_i(p))/b(p).$$

Hence, by letting c(p)=1/b(p) and $d_1(p)=-a_1(p)/b(p)$, we obtain $e_1(p,u_1)=c(p)u_1+d_1(p)$.

Induct whility function: V: (p, v:) = a; (b) + b (b) v;

By Roy's Identity:

$$\mathcal{X}:\left(\frac{1}{2},\omega_{i}\right)=\frac{\sqrt{2}}{\sqrt{2}}\frac{\sqrt{2}\left(\frac{1}{2},\omega_{i}\right)}{\sqrt{2}}=\frac{\sqrt{2}}{\sqrt{2}}\frac{\alpha_{i}\left(\frac{1}{2}\right)}{\sqrt{2}}\frac{\sqrt{2}}{\sqrt{2}}\frac{\beta_{i}\left(\frac{1}{2}\right)\omega_{i}}{\beta_{i}\left(\frac{1}{2}\right)}$$

Fo:
$$\nabla_{i}$$
 $ni\left(p_{i}\nu_{i}\right) = -\frac{\nabla_{i}}{\nabla_{i}}\frac{b(p)}{\nu_{i}}$ $\forall i \rightarrow confirmers orbibit parallel, straight expansion batters$

Expruditue function:

$$e_{i}(p_{i}u_{i}) = \frac{u_{i} - a_{i}(p)}{U(p)} = \frac{1}{U(p)} u_{i} - \frac{a_{i}(p)}{U(p)} = c(p) u_{i} - d_{i}(p)$$

$$c(p) \qquad a_{i}(p)$$

(no i illux

when
$$c(b) = \frac{1}{b(b)}$$
 and $di(b) = \frac{a_i(b)}{b(b)}$

4.C.II (a) When deriving individual demands from the first-order conditions of utility maximization, we will neglect the nonnegativity constraints (which is investigated in Exercise 3.D.4(c)). In fact, we will later see that, for prices and wealths under consideration, the demands are always in the interior of the nonnegative orthant.

It follows directly from the first-order conditions that
$$\begin{split} x_1(\mathbf{p},\mathbf{w}/2) &= (x_{11}(\mathbf{p},\mathbf{w}/2),x_{21}(\mathbf{p},\mathbf{w}/2)) = (\mathbf{w}/2\mathbf{p}_1 - 4\mathbf{p}_1/\mathbf{p}_2, 4\mathbf{p}_1^2/\mathbf{p}_2^2), \\ x_2(\mathbf{p},\mathbf{w}/2) &= (x_{12}(\mathbf{p},\mathbf{w}/2),x_{22}(\mathbf{p},\mathbf{w}/2)) = (4\mathbf{p}_2^2/\mathbf{p}_1^2, \mathbf{w}/2\mathbf{p}_2 - 4\mathbf{p}_2/\mathbf{p}_1), \end{split}$$

Hence

$$\begin{split} x(\mathbf{p},\mathbf{w}) &= x_1(\mathbf{p},\mathbf{w}/2) + x_2(\mathbf{p},\mathbf{w}/2) \\ &= (\mathbf{w}/2\mathbf{p}_1 - 4\mathbf{p}_1/\mathbf{p}_2 + 4\mathbf{p}_2^2/\mathbf{p}_1^2, \ \mathbf{w}/2\mathbf{p}_2 - 4\mathbf{p}_2/\mathbf{p}_1 + 4\mathbf{p}_1^2/\mathbf{p}_2^2). \end{split}$$

(b) Denote the (£,k) entry of the Slutsky matrix $S_1(p,w)$ of consumer i by $s_{\xi k_1}(p,w)$. Since $\delta x_{21}(p,w/2)/\delta w_1=0$, $s_{221}(p,w/2)=\delta x_{21}(p,w/2)/\delta p_2=-8p_1^2/p_2^3$. Hence by Proposition 2.F.3, $s_{211}(p,w/2)=s_{121}(p,w/2)=8p_1/p_2^2$ and hence $s_{111}(p,w/2)=-8/p_2$. Thus $\begin{bmatrix} -8/p_2 & 8p_1/p_2^2 \end{bmatrix}$

$$S_{1}(p,w/2) = \begin{bmatrix} -8/p_{2} & 8p_{1}/p_{2}^{2} \\ 8p_{1}/p_{2}^{2} & -8p_{1}^{2}/p_{2}^{3} \end{bmatrix}.$$

Similarly, we can show that

$$S_{2}(p,w/2) = \begin{bmatrix} -8p_{1}^{2}/p_{2}^{3} & 8p_{2}/p_{1}^{2} \\ 8p_{2}/p_{1}^{2} & -8/p_{1} \end{bmatrix}.$$

We can also apply Proposition 2.F.3 to derive the Slutsky matrix S(p,w) of the aggregate demand function:

$$\begin{split} S(p,w) &= \begin{bmatrix} -\ w/4p_1^2 - \ 6/p_2 - 6p_2^2/p_1^3 & w/4p_1p_2 + 6p_1/p_2^2 + 6p_2/p_1^2 \\ w/4p_1p_2 + 6p_1/p_2^2 + 6p_2/p_1^2 & -\ w/4p_2^2 - \ 6/p_1 - 6p_1^2/p_2^3 \end{bmatrix} \\ \text{By Exercise 2.F.9(b) (and $S(p,w)p = 0$), if $dp \in \mathbb{R}^2$, $dp \neq 0$, and dp} \end{split}$$

is not proportional to p, then $dp \cdot S(P,w)dp < 0$. Thus, according to the small-type discussion after Proposition 2.F.3, the aggregate demand function x(p,w) satisfies the WA.

$$\alpha \qquad u_1 \left(x_{11}, x_{21} \right) = x_{11} + 4 \sqrt{x_{21}}$$

Individual Demand:

Consumer 1:

$$\beta = x_{11} + 4\sqrt{x_{21}} + \sqrt{u_{1} - x_{11} - x_{21}}$$

$$(x_{11})$$
: (x_{12}) : $(x_{$

$$(\chi_{21}): \chi_{21} - \gamma_{22} = 0 \quad (3) = \frac{3\chi_{21}^{-0.5}}{4z}$$

$$(): \mu_1 - \beta_1 \chi_{11} - \beta_2 \chi_{21} = 0$$

$$\left(\chi_{1}\right) + \left(\chi_{2}\right) : \frac{1}{p_{1}} = \frac{2\chi_{21}^{-0.5}}{p_{2}} \quad \langle \chi_{21} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{p_{1}} \end{bmatrix}^{2} \quad \langle \chi_{21} = \frac{4}{p_{1}^{2}} \\ \frac{1}{p_{2}^{2}} & \frac{1}{p_{2}^{2}} \end{bmatrix}^{2}$$

inpo (2).
$$\frac{1}{2} x^{11} + \frac{1}{2} \frac{1}{2} x^{2} = v$$
 (2) $\frac{x^{11}}{2} = \frac{1}{2} \left(v^{1} - \frac{1}{2} \frac{1}{2} \right)$

$$x_{1}(|y_{1}||w_{1}) = \begin{bmatrix} x_{11}(|y_{1}||w_{1}) & \frac{w_{1}}{|y_{1}|} & \frac{y_{1}}{|y_{2}|} \\ x_{21}(|y_{1}||w_{1}) & \frac{w_{1}}{|y_{2}|} & \frac{y_{1}}{|y_{2}|} \end{bmatrix}$$

$$\left(\chi_{12}\right): \quad \lambda \chi_{12}^{-0.5} - \left\{ \begin{array}{ccc} \beta_1 = 0 & \alpha \end{array} \right\} = \frac{\lambda \chi_{12}^{0.5}}{\beta_1}$$

$$\left(\chi_{22}\right): 1-\left(\chi_{22}\right): 1-$$

$$\left(\chi_{12}\right), \left(\chi_{12}\right): \frac{2\chi_{12}^{-0.5}}{p_1} = \frac{1}{p_2}$$
 $\chi_{12} = \left[\frac{1}{2}\left(\frac{p_1}{p_2}\right)\right]^{-2}$ $(\chi_{12} = 4)$

into
$$\left(\frac{1}{2}\right)$$
 = $\frac{1}{2}$ + $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$ + $\frac{1}{2}$ $\frac{1}{2}$

$$\chi_{2}\left(|_{1}, \nu_{2}\right) = \begin{bmatrix} \chi_{12}\left(|_{1}, \nu_{2}\right) \\ \chi_{21}\left(|_{1}, \nu_{2}\right) \end{bmatrix} = \begin{bmatrix} \frac{4|_{2}^{2}}{|_{2}^{2}|_{2}} \\ \frac{|_{2}^{2}|_{2}}{|_{2}^{2}|_{2}} \end{bmatrix}$$

$$= \frac{\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$S(p,\omega) = D_p h(p,\omega) = D_p x(p,\omega) + D_\omega x(p,\omega) \left[x(p,\omega)\right]^T$$

$$S(p,\omega) = \frac{\partial h_e(p,\omega)}{\partial p_\omega} = \frac{\partial x_e(p,\omega)}{\partial p_\omega} + \frac{\partial x_e(p,\omega)}{\partial \omega} x_\omega(p,\omega)$$

Individual Slutsky Matrix:

$$S_{1}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) = \begin{bmatrix} S_{111}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) & S_{121}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) \\ S_{221}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) & S_{221}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) \\ S_{221}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) & S_{221}\left(\begin{array}{c} \downarrow_{1} \omega_{1} \end{array}\right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\partial}{\partial p_{1}} \begin{bmatrix} \frac{\omega}{p_{1}} - \frac{4}{p_{1}} \\ \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{1}} - \frac{4}{p_{1}} \\ \frac{\partial}{\partial p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{1}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ + \begin{bmatrix} \frac{\partial}{\partial p_{1}} \begin{bmatrix} \frac{\omega}{p_{1}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{1}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{1}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} \\ - \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}} \begin{bmatrix} \frac{\omega}{p_{2}} \\ \frac{\partial}{\partial p_{2}} \end{bmatrix} & \frac{\partial}{\partial p_{2}$$

Coumbin 2

$$S_{2}\left(p_{1}\omega_{2}\right)=\begin{bmatrix}S_{112}\left(p_{1}\omega_{2}\right) & S_{122}\left(p_{1}\omega_{2}\right) \\ S_{212}\left(p_{1}\omega_{2}\right) & S_{222}\left(p_{1}\omega_{2}\right) \end{bmatrix}$$

$$\chi_{2}\left(p_{1}\omega_{2}\right)=\begin{bmatrix}\frac{4p_{2}^{2}}{p_{2}^{2}} \\ p_{1}^{2} \\ p_{2}\end{bmatrix}$$

$$= \frac{\partial}{\partial p_1} \left[\frac{4p_2^2}{p_1^2} \right] \frac{\partial}{\partial p_2} \left[\frac{4p_2^2}{p_1^2} \right] + \frac{\partial}{\partial p_1} \left[\frac{w_2}{p_2} - \frac{4p_2}{p_1} \right] + \frac{\partial}{\partial p_2} \left[\frac{w_2}{p_2} - \frac{4p_2}{p_1} \right]$$

$$\frac{\partial}{\partial w_2} \left(\frac{4 \beta_2^2}{\beta_1^2} \right) \left[\frac{4 \beta_2^2}{\beta_1^2} \frac{\omega_2}{\beta_2} - \frac{4 \beta_2}{\beta_1} \right]$$

$$\frac{\partial}{\partial w_2} \left(\frac{w_2}{\beta_2} - \frac{4 \beta_2}{\beta_1} \right) \left[\frac{4 \beta_2^2}{\beta_1^2} \frac{\omega_2}{\beta_2} - \frac{4 \beta_2}{\beta_1} \right]$$

$$= \begin{bmatrix} -\frac{8}{p_{2}} & \frac{8}{p_{2}} & \frac{8}{p_{2}} \\ \frac{1}{p_{1}^{2}} & \frac{1}{p_{2}^{2}} & \frac{1}{p_{1}} \end{bmatrix} \begin{bmatrix} \frac{1}{p_{2}} & \frac{1}{p_{2}} & \frac{1}{p_{2}} \\ \frac{1}{p_{2}} & \frac{1}{p_{2}} & \frac{1}{p_{2}} \end{bmatrix}$$

$$= \frac{8 p_2}{p_1^2} \frac{8 p_2}{p_1^2}$$

$$= \frac{8 p_2}{p_1^2} - \frac{8}{p_1}$$

$$x(h, u) = \begin{bmatrix} \frac{u}{2h_1} - \frac{4h_1}{h_2} + \frac{4h_2}{h_2} \\ \frac{4h^2}{h_2^2} + \frac{u}{2h_2} - \frac{4h_2}{h_1} \end{bmatrix}$$

where w= v, + wz - aggregate wealth

$$\chi_{1}\left(\left| \begin{array}{c} \lambda_{1} & \lambda_{1} \\ \lambda_{2} \\ \end{array} \right| = \begin{bmatrix} \frac{\omega_{1}}{\lambda_{1}} - \frac{\lambda_{1}}{\lambda_{2}} \\ \frac{\lambda_{2}}{\lambda_{2}} \end{bmatrix} = \begin{bmatrix} \frac{\omega_{2}}{\lambda_{2}} - \frac{\lambda_{1}}{\lambda_{2}} \\ \frac{\lambda_{2}}{\lambda_{2}} \end{bmatrix} = \chi_{1}\left(\left| \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \end{array} \right| = \chi_{1}\left(\left| \begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \end{array} \right| \right)$$

$$\chi_{2}\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \lambda_{1} \end{array}\right) = \begin{bmatrix} \frac{4}{p_{1}^{2}} \\ \frac{1}{p_{1}^{2}} \\ \frac{1}{p_{2}} \\ \frac{1}{p_{1}} \end{bmatrix} = \begin{bmatrix} \frac{1}{p_{1}^{2}} \\ \frac{1}{p_{1}^{2}} \\ \frac{1}{p_{2}^{2}} \\ \frac{1}{p_{1}} \end{bmatrix} = \chi_{2}\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \frac{1}{p_{2}} \\ \frac{1}{p_{2}} \end{array}\right) = \chi_{2}\left(\begin{array}{c} \lambda_{1} \\ \lambda_{2} \\ \frac{1}{p_{2}} \\ \frac{1}{p_{1}} \end{array}\right)$$

$$S_{A}\left(h_{1}\omega\right) = \begin{bmatrix} \frac{\partial}{\partial h_{1}} \times (h_{1}\omega) & \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \\ \frac{\partial}{\partial h_{1}} \times (h_{1}\omega) & \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \end{bmatrix} + \frac{\partial}{\partial \omega} \times (h_{1}\omega) \begin{bmatrix} \times (h_{1}\omega) \\ \times (h_{1}\omega) \end{bmatrix}^{T}$$

$$= \begin{bmatrix} \frac{\partial}{\partial h_{1}} \times (h_{1}\omega) + \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \\ \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \begin{bmatrix} \times (h_{1}\omega) \\ \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \end{bmatrix}^{T}$$

$$\times_{1}\left(h_{1}\omega\right) = \begin{bmatrix} \frac{\omega}{\lambda h_{1}} - \frac{\lambda h_{1}}{h_{2}} \\ \frac{\lambda h_{2}}{h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{1}\omega) \begin{bmatrix} \times (h_{1}\omega) \\ \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \end{bmatrix}^{T}$$

$$\times_{2}\left(h_{1}\omega\right) = \begin{bmatrix} \frac{\omega}{\lambda h_{2}} - \frac{\lambda h_{1}}{h_{2}} \\ \frac{\lambda h_{2}}{h_{2}} - \frac{\lambda h_{2}}{h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \end{bmatrix}^{T}$$

$$\times_{2}\left(h_{1}\omega\right) = \begin{bmatrix} \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}}{\lambda h_{2}} - \frac{\lambda h_{2}}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda h_{2}} - \frac{\lambda h_{2}\omega}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda h_{2}} - \frac{\lambda h_{2}\omega}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda h_{2}} - \frac{\lambda h_{2}\omega}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda h_{2}} - \frac{\lambda h_{2}\omega}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda h_{2}} - \frac{\lambda h_{2}\omega}{\lambda h_{2}} \end{bmatrix} + \frac{\partial}{\partial h_{2}} \times (h_{2}\omega) \begin{bmatrix} \times (h_{2}\omega) \\ \frac{\lambda h_{2}\omega}{\lambda$$

$$= \frac{\left[-\frac{\nu}{2\beta_{1}^{2}} - \frac{4}{\beta_{2}} - \frac{8\beta_{2}^{2}}{\beta_{2}^{2}} + \frac{4\beta_{1}}{\beta_{2}^{2}} + \frac{8\beta_{1}}{\beta_{2}^{2}} + \frac{2\beta_{1}}{\beta_{1}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} + \frac{2\beta_{1}}{\beta_{2}^{2}} + \frac{4\beta_{2}}{\beta_{2}^{2}} +$$

$$\begin{bmatrix}
-\frac{\omega}{\sqrt{1}} - \frac{\zeta}{\sqrt{2}} - \frac{6}{\sqrt{2}} - \frac{6}{\sqrt{2}} & \frac{6}{\sqrt{2}} + \frac{6}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} \\
-\frac{6}{\sqrt{1}} + \frac{6}{\sqrt{2}} - \frac{\omega}{\sqrt{2}} - \frac{6}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} - \frac{6}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} - \frac{6}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} - \frac{6}{\sqrt{2}}
\end{bmatrix}$$

wealth compression for price change:
$$dw = x(p, w) + 2p$$

Chain rule: $dx = Dp x(p, w) + dp + Dw x(p, w) + dw$

For
$$x(y, w)$$
 to satisfy the Uncompensated law of Demand we need:

To verify the WA, take any (p,w), (p',w') with $x(p,w) \neq x(p',w')$ and $p \cdot x(p',w') \leq w$. Define p'' = (w/w')p'. By homogeneity of degree zero, we have x(p'',w) = x(p',w'). From $(p''-p) \cdot [x(p'',w) - x(p,w)] < 0$, $p \cdot x(p'',w) \leq w$, and Walras' law, it follows that $p'' \cdot x(p,w) > w$. That is, $p' \cdot x(p,w) > w'$.

£ 0.

Show: if aggregate demand x (for) satisfies the Unompresented Law of Demand, then it satisfies ware.
Definition: LARP: if $\frac{1}{2} \cdot x(\frac{1}{p}, u) \leq u$ and $\frac{1}{2} \cdot x(\frac{1}{p}, u) + 2u(\frac{1}{p}, u) + 2u(\frac{1}{$
· Consider (fiv), (fiv) with x(fiv) \$ x (fiv) and
(b', v') affordable \leftarrow $p \cdot x \left(p', v' \right) \leq U$. $n(p_1 v)$ not affordable at (p', v')
We need to show that p'. x(p,v) > v' for WARP to hell.
· Let b"= ~ ~ b'.
· By homogenety of degree no, we have
$\chi\left(\begin{vmatrix} 1 \\ 0 \end{vmatrix}, \lambda \right) = \chi\left(\chi\left(\begin{vmatrix} 1 \\ 0 \end{vmatrix}, \chi\lambda\right)\right) \text{for } \chi \neq 0, \text{so } Q \neq \chi = \frac{1}{2},$
$= \varkappa \left(\frac{\omega}{\omega} \right)_{1}^{1} \frac{\omega}{\omega} \omega = \varkappa \left(\frac{1}{\omega} \right)_{1}^{1} \omega$
and so $x(\beta', w) = x(\beta', v)$.
· Assume Walna' Law:
$ \left p \cdot \kappa \left(p, \omega \right) \right = \omega $ $ \left a \cdot \kappa \left(p, \omega \right) \right = \omega $

