tone counting vs baseline

Statistics: p-values adjusted for search volume

otation p values adjusted for coalon volume								
set-level	cluster-level		peak-level				mm mm mm	
рс	$p_{\text{FWE-corr} \text{FDR-corr}}^{k}$	p_{uncorr}	$p_{FWE-conFDR}$	$_{\text{-corr}}^{\mathcal{T}}$ ($Z_{_{\equiv}}$	$p_{\rm uncorr}$			
	1.000 0.536 6 1.000 0.575 5 0.963 0.246 19	0.338 0.383 0.097	0.999 0.29 1.000 0.33 1.000 0.33	0 3.79 3.0 4 3.73 3.0 4 3.73 3.0	50 0.000 50 0.000	52 -46 -16	-42 18 14 2 4 62	
	1.000 0.720 1 1.000 0.693 2 1.000 0.516 7 1.000 0.575 5	0.720 0.594 0.301 0.383	1.000 0.34 1.000 0.37 1.000 0.39 1.000 0.41	0 3.68 3.5 5 3.66 3.5	55 0.000 53 0.000	42 56 -60 48	-86 12 -66 4 -46 0 34 -8	
	1.000 0.720 1 1.000 0.516 7 1.000 0.720 1	0.720 0.301 0.720	1.000 0.41 1.000 0.45 1.000 0.50	9 3.62 3.9 0 3.59 3.4 0 3.54 3.4	50 0.000 17 0.000 12 0.000	32 -28 -50	-80 48 -64 -4 -40 32	
	1.000 0.623 4 1.000 0.516 7 1.000 0.693 2 1.000 0.536 6	0.437 0.301 0.594 0.338	1.000 0.50 1.000 0.51 1.000 0.54 1.000 0.57	6 3.52 3.4 5 3.49 3.3	0.000 88 0.000	-60 -18 12 -28	-14 10 -92 8 -86 50 -32 -40	
	1.000 0.720 1 1.000 0.693 2 1.000 0.720 1	0.720 0.594 0.720	1.000 0.58 1.000 0.61 1.000 0.61	7 3.46 3.3 4 3.43 3.3 6 3.43 3.3	35 0.000 33 0.000 32 0.000	8 -38 -56	-72 42 -78 8 34 -20	
	1.000 0.693 2 1.000 0.685 3 1.000 0.720 1	0.594 0.505 0.720	1.000 0.62 1.000 0.64 1.000 0.66	9 3.40 3.3 0 3.39 3.3	30 0.000 29 0.001	18 -32 24	-58 32 -76 -2 -64 -18	
	1.000 0.693 2 1.000 0.693 2 1.000 0.623 4 1.000 0.536 6	0.594 0.594 0.437 0.338	1.000 0.66 1.000 0.72 1.000 0.75 1.000 0.80	3 3.35 3.2 0 3.33 3.2	25 0.001 23 0.001	14 -64 -56 -14	52 24 -24 46 24 22 4 16	
	1.000 0.720 1 table shows 3 local	0.720 maxima	1.000 0.80 more than 8.0	7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 1 1 1 1 1	0.001	12	-18 52	

Height threshold: T = 3.18, p = 0.001 (1.00**D**)egrees of freedom = [1.0, 96.0] Extent threshold: k = 0 voxels FWHM = 8.1 8.0 7.9 mm mm mm; 4.1 4.0 4.0 {voxels} Expected voxels per cluster, $\langle k \rangle = 7.072$ Volume: 1784456 = 223057 voxels = 3215.8 resels Expected number of clusters, $\langle c \rangle = 34.22$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 64.36 voxels FWEp: 5.323, FDRp: 4.613, FWEc: 97, FD**Reg** 84