一阶常微分方程数值解中四种算法的实例比较

魏明强

(中国传媒大学理工学部,北京100024)

摘要: 常用的求解一阶常微分方程初值问题的单步方法有: Euler 法、梯形法、Taylor 级数法、Rungue – Kutta 法。本文借助 VC 软件,用四种方法求一个实例方程的数值解,通过比较求解结果来分析验证四种解法的误差精度。

关键词: 常微分方程; 数值解; Euler 法

中图分类号: 0241.81 文献标识码: A 文章编号: 1673 - 4793(2016) 02 - 0041 - 04

DOI:10.16196/j.cnki.issn.1673-4793.2016.02.007

The Comparison of Four Methods on the First Order Ordinary Differential Equation Numerical Solution

WEI Ming-qiang

(School of Sciences Communication University of China Beijing 100024 China)

Abstract: The single step method for solving the initial value problem of ordinary differential equation is: Euler method trapezoidal method Taylor series method Rungue – Kutta method. In this paper we use VC software to find the numerical solution of a practical example equation with four methods and analyze the accuracy of the four methods by comparing the results.

Keywords: ordinary differential equation; numerical solution; euler method

1 引言

本文讨论的是一阶常微分方程初值问题的数值求解。

$$\begin{cases} \frac{du}{dt} = f(t \ \mu) \\ u(t_0) = u_0 \end{cases}$$

其中f为t和u的已知函数和为给定的初值。该初值问题满足Lipschitz条件。

Euler 法是最基本的数值求解方法,其基本思想是利用折线近似替代积分曲线。基本形式是: $u_{n+1}=u_n+hf(t_n,\mu_n)$ 。 梯形法的基本思想是利用梯形的面积去近似替代积分区域的值,基本形式是: $u_{n+1}=u_n+\frac{h}{2}$ [f_n+f_{n+1}]。 Taylor 级数法先设初值问题具有 q+1 次的连续倒数 将求解的函数进行 Taylor 展开,利用其

前 n 项和近似替代它的值 其基本形式是: $u_{n+1} = u_n + hu_n' + \frac{h^2}{2!}u_n'' + \text{ldots} + \frac{h^q}{q!}u_n^{(q)}$ 。Rungue – Kutta 法是

收稿日期: 2015 - 11 - 05

作者简介: 魏明强(1991 -) 男(汉族) 江西南昌人,中国传媒大学理工学部硕士研究生. E-mail: weimingqiang@ cuc. edu. cn

对法是对 Taylor 级数的改造 其基本形式是: $u_{n+1} = u(t_n) + h \sum_{i=1}^{s} W_i K_i$ 其中:

$$\begin{cases} K_1 = f(t_n \ \mu(t_n)) \ , \\ K_i = f(t_n + h\alpha_i \ \mu(t_n) + h \sum_{j=1}^{i-1} \beta_{ij} K_j) \ \dot{i} = 2 \ , \cdots \ s \ , \end{cases}$$

2 利用四种方法求解实例

本文将以下面的一阶常微分方程为例子 利用四种方法求其数值解。

$$\begin{cases} \frac{du}{dt} = u^2 \\ u(0) = 1 \end{cases} \quad (0 \le t \le 0.9)$$

在求解该方程的过程中 选取步长 h=0.1 利用四种方法求解该方程在 t=0.1 0.2 0.3 0.4 0.5 0.6 , 0.7 0.8 0.9 等九个点处的数值解 将数值解的结果与其解析解的结果做分析比较 ,来验证四种方法的截断 误差与误差精度。

2.1 求解析解

该方程是简单的一阶常微分方程 求解过程如下:

$$\frac{du}{dt} = u^2 \Leftrightarrow \frac{du}{u^2} = dt \Leftrightarrow \int \frac{du}{u^2} = \int dt \Leftrightarrow -u^{-1} = t + c$$

$$\therefore u(0) = 1 \text{ f. } c = -1 \Leftrightarrow u = -\frac{1}{t-1}$$

2.2 Euler 法的求解

Euler 法的计算公式 $u_{n+1} = u_n + hf(t_n \mu_n)$ 代入该实例的基本条件得: $u_{n+1} = u_n + 0.1t_n^2$

2.3 梯形法的求解

梯形法的计算公式: $u_{n+1} = u_n + \frac{h}{2} [f_n + f_{n+1}]$

2.4 Taylor 法的求解

Taylor 法的计算公式:
$$u_{n+1} = u_n + hu'_n + \frac{h^2}{2!}u''_n + \cdots + \frac{h^q}{q!}u_n^{(q)}$$
 我们由: $u = -\frac{1}{t-1}$ 易知: $u' = u^2$ $\mu'' = 2u^3$ $\mu^{(3)} = 6u^4$ $\mu^{(4)} = 6u^5$ 代入该实例的基本条件得: $u_{n+1} = u_n + hu_n^2 + h^2u_n^3 + 2h^3u_n^4$

2.5 RK 法的求解

RK 法的计算公式:
$$u_{n+1} = u(t_n) + h \sum_{i=1}^{s} W_i K_i$$

代入该实例的基本条件得: $u_{n+1} = u_n + \frac{1}{6} h [K_1 + 2K_2 + 2K_3 + K_4]$
其中 K_1 , K_2 , K_3 , K_4 的值如下:

$$\begin{cases} K_1 = f(t_n \ \mu_n) \\ K_2 = f(t_n + \frac{1}{2}h \ \mu_n + \frac{1}{2}hK_1) \\ K_3 = f(t_n + \frac{1}{2}h \ \mu_n + \frac{1}{2}hK_2) \\ K_4 = f(t_n + h \ \mu_n + hK_3) \end{cases}$$

3 四种方法求解的效果比较

本文利用 VC6.0 软件 求解该实例方程。

利用四种求数值解的方法求其在区间 [0,1) 以内的数值解 在这里设置步长 h=0.1。 各种方法求解的结果如表 1。

t	解析解	Euler 法	梯形法	Taylor 法	RK 法
0.1	1.111111	1.100000	1.110500	1.112000	1.111110
0.2	1.250000	1. 221000	1. 248276	1. 252463	1.249998
0.3	1.428571	1.370084	1.424760	1.433898	1.428566
0.4	1.666667	1.557797	1.658736	1.677440	1.666653
0.5	2.000000	1.800470	1.983301	2. 021856	1.999963
0.6	2.500000	2. 124640	2.462398	2. 546719	2.499883
0.7	3.333333	2. 576049	3. 236426	3.444602	3.332844
0.8	5.000000	3. 239652	4. 677726	5. 321413	4. 996628
0.9	10.000000	4. 289186	8. 128768	11.263799	9.929124

表1 四种解法的数值解

其效果从图 1 可以很直观的看出。RK 方法和 Taylor 方法与解析解的值最为接近。近似度最差的就是一阶的 Euler 法 ,它的数值解与解析解相差最大 ,二阶的梯形法效果优于 Euler 法 ,但仍然很明显的弱于 Taylor 法和 RK 法。

四种方法的数值解与其解析解的误差如表 2。

从表 2 中,可以明显的看出 RK 方法的优越性,再此例中的 RK 法是四步四阶方法,Taylor 法也是四阶方法,梯形法是二阶方法,Euler 法是一阶方法。两种四阶方法的计算精度明显高于二阶方法和一阶方法。

从图 2 也可以很直观的看出 ,RK 方法求得的数值解的值是相当接近于数值解的 ,其误差几乎趋近于 0。 Euler 法逐步求解过后 ,其数值解逐渐偏离解析解。在误差绝对值的效果图中 ,同样可以很明显的看出各种 方法的精度依次是: RK 方法、Taylor 法、梯形法、Euler 法。

t	Euler 法	梯形法	Taylor 法	RK 法
0.1	0.011111	0.000611	0.000889	1E – 06
0.2	0.029	0.001724	0.002463	2E - 06
0.3	0.058487	0.003811	0.005327	5E - 06
0.4	0.10887	0.007931	0.010773	1.4E - 05
0.5	0. 19953	0.016699	0.021856	3.7E - 05
0.6	0.37536	0.037602	0.046719	0.000117
0.7	0.757284	0.096907	0.111269	0.000489
0.8	1.760348	0. 322274	0.321413	0.003372
0.9	5.710814	1.871232	1. 263799	0.070876

表 2 四种方法的误差

从编程代码来看,Taylor 法和 RK 法的计算量明显比 Euler 法和梯形法多。Taylor 法的计算量比 RK 法增加了 但是其运算精度没有提高。因此综合运算量和运算精度 四步四阶的 RK 法的优越性明显于其他方法。

4 结论

本文利用四种方法、对实例给出的一阶常微分方程求解后,通过比较分析数值解与解析解的结果,以及数值解的误差来分析四种常用求解微分方程数值解的求解效果。分析结果表明: RK 方法在保证计算量的基础上仍然具有很好精度。Euler 法和梯形法的计算过程虽然简洁,但是误差很大。Taylor 级数法的计算量相对四步四阶的 RK 方法增加了 精度却没有提高。

参考文献

- [1]王高雄 周之铭 朱思铭. 常微分方程(第二版) [M]. 北京:高等教育出版社 1983.
- [2]李庆扬 关治 白峰杉. 数值计算原理[M]. 北京:清华大学出版社 2001.
- [3]戴嘉尊,邱建贤. 微分方程数值解法[M]. 南京:东南大学出版社 2002.
- [4]李荣华,冯果沈. 微分方程数值解法[M]. 北京:高等教育出版社,1996.
- [5]东北师范大学微分方程教研室. 常微分方程(第二版) [M]. 北京:高等教育出版社 2005.
- [6]张艺 解烈军. 微分方程初值问题泰勒级数法的实现[J]. 大学数学 2007 (03).

(责任编辑:王谦)