Name	Index No
I Vallic	

P425/1

PURE MATHEMATICS

Paper 1

3 hours

UGANDA ADVANCE CERTIFICATE OF EDUCATION

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES

Answer all the **eight** questions in section **A** and any **five** questions from section **B**.

Any additional question(s) answered will **not** be marked.

All necessary working **must** be shown clearly.

Silent non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

- 1. Solve the equation: $6 \tan^2 x 4 \sin^2 x = 1$, for $0^0 \le x \le 360^0$. (05 marks)
- 2. If α and β are the roots of the quadratic equation $x^2 + px + q = 0$, express $(\alpha \beta^2)(\beta \alpha^2)$ in terms of p and q. (05 marks)
- 3. Find the equations of the lines through (2,3) which makes angle of 45^0 with the line x-2y=1.

4. If
$$x^2 + 2xy + 3y^2 = 1$$
, show that $(x + 3y)^3 \frac{d^2y}{dx^2} + 2 = 0$. (05 marks)

- 5. Use the substitution y = mx to solve the equations $x^2 + 4xy + y^2 = 13$ and $2x^2 + 3xy = 8$. (05 marks)
- 6. Calculate the volume generated by rotating the area bounded by the curve $y = 2\cos\left(x \frac{\pi}{3}\right)$, the y-axis, the x-axis and the line $x = \frac{\pi}{2}$ through 2π radians about x-axis.

- 7. The vector equation of the line, L is given by $\mathbf{v} = \mathbf{i} + \mathbf{j} + \lambda(p\mathbf{i} + q\mathbf{j}) + \mathbf{k}$, where λ is a real parameter. Given that the point (2, 4, 1) lies on L, find the;
 - (i) Values of p and q.
 - (ii) Angle between L and the positive x-axis. (05 marks)
- 8. Show that $\int_0^{\frac{\pi}{4}} \frac{\sec^2 x}{4 \tan^2 x} dx = \frac{1}{4} \ln 3.$ (05 marks)

SECTION B: (60 MARKS)

- **9.** (a) Prove by induction that $8^n 7n + 6$ is divisible by 7. (06 marks)
 - (b) Expand $\sqrt{\frac{1+5x}{1-5x}}$, as far as the term in x^3 . Taking the first three terms and $x = \frac{1}{9}$, evaluate $\sqrt{14}$, correct to four significant figures. (06 marks)
- **10.** (a) Solve the equation $16 \sin x \cos x = \tan x + \cot x$, for $0^0 \le x \le 180^0$. (06 marks)
 - (b) In a triangle ABC, prove that $\frac{bc}{ab+ac} = \frac{\csc(B+C)}{\csc B + \csc C}$. (06 marks)
- 11. (a) Differentiate with respect to x;
 - (i) $y = \sqrt{1 + 4x^2}$.
 - (ii) $\sin^2 5x$. (06 marks)
 - (b) If $y = \sqrt{\frac{x}{2x+1}}$, find the value of $\frac{dy}{dx}$ when x = 4. (06 marks)
- 12. (a) Express the complex number $z_1 = 4i$ and $z_2 = 2 2i$ in trigonometric form. Hence evaluate $\frac{z_1}{z_2}$. (06 marks)
 - (b) Find the values of x and y given that $\frac{x}{2+3i} \frac{y}{3-2i} = \frac{6+2i}{1+8i}$. (06 marks)
- 13. A hemispherical bowl of radius r cm is initially full of water. The water runs out of the small hole at the bottom of the bowl at a constant rate which is such that it would empty the bowl in 24 seconds. Given that when the depth of the water is x, the volume is $\frac{1}{3}\pi x^2(3a-x)$ cm³, prove that the depth is decreasing at a rate of $\frac{r^3}{36x(2a-x)}$ cm/s. Find after what time the depth is $\frac{1}{2}$ cm and the rate the water level is decreasing. (12 marks)
- 14. Show that if the chord joining the points $P(ap^2, 2ap)$ and $Q(aq^2, 2aq)$ on the parabola $y^2 = 4ax$ passes through the focus, then pq = -1.

The tangent at point P meets the line through Q parallel to the axis of the parabola at R. Prove that the line x + a = 0 bisects PR. (12 marks)

15. The vector equations of two planes $\pi 1$ and $\pi 2$ are $\mathbf{r} = 2\mathbf{i} + 4\mathbf{j} + 3\mathbf{k} + \alpha(-\mathbf{i} + 2\mathbf{k}) + \beta(\mathbf{i} + 2\mathbf{j} + 8\mathbf{k})$ and

$$r = 2i + 4j + 3k + \alpha(-i + 2k) + \beta(i + 2j + 8k)$$
 and
 $r = -3i - 3j + \lambda(-i - j - k) + \mu(-3i - 4j - 2k)$ respectively.

- (a) Find the Cartesian equation of each plane. (05 marks)
- (b) If L is the line of intersection of the two planes above, find the;
 - (i) Equation of the line in vector form.
 - (ii) Coordinates of the foot of the perpendicular from the point (-1, -5, -10) to line L. (07 marks)
- **16.** (a) Solve the differential equation $\frac{dy}{dx} + ky = 2$ where k is a constant for which y = 3 when x = 0.
 - (b) A colony of bacteria which is initially of size 1500 increases at a rate proportional to its size such that after t hours, its population is N.
 - (i) Write down an equation connecting t and N.
 - (ii) If the size of the colony increases to 3000 in 20 hours, solve the equation to find N in terms of t.
 - (iii) What size is the colony when t = 80 hours?
 - (iv) How long did it take to the nearest minutes for the population to increase from 2000 to 3000? (07 marks)