(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1^a Prova di accertamento — 4 aprile 2009

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (0, 2, 0, -1)$ e $u_2 = (1, 1, 1, 0)$. Sia V il sottospazio di \mathbb{R}^4 costituito dalle soluzioni del seguente sistema:

$$\begin{cases} x_1 + x_3 = x_2 + x_4 \\ x_3 + x_4 = 0. \end{cases}$$

- (a) Si determini la dimensione e una base di $U \cap V$.
- (b) Si determini la dimensione e una base di U + V.

Esercizio 2. Si determini per quali valori di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(0,1,-1) = (3,-1,0), f(-2,1,3) = (-t,-1,t+3) e il nucleo di f sia generato dal vettore $(1,t^2+3t,-2)$. Per i valori di t per cui f esiste si specifichi inoltre se essa è unica oppure no.

Esercizio 3. Si consideri la funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 0 & -1 & 1 \\ t & 1 & 0 & 0 \\ 0 & 2 & 3 & 1 \\ 1 & -1 & 1 & -2 \end{pmatrix}$$

Si determini per quali valori di $t \in \mathbb{R}$ la funzione f non \dot{e} suriettiva. Per tali valori di t si determini una base di Im(f).

Esercizio 4. Sia V uno spazio vettoriale e $v_1, v_2, v_3 \in V$.

- V F Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora v_1 appartiene al sottospazio generato da v_2 e v_3 ;
- \overline{V} \overline{F} Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora essi generano un sottospazio di dimensione 2 di V;
- V F Se i vettori v_1, v_2, v_3 sono linearmente dipendenti allora non esiste una base di V che contenga $v_1, v_2 \in v_3$.

Esercizio 5. Sia $f: \mathbb{R}^5 \to \mathbb{R}^3$ una funzione lineare.

- V F non può essere iniettiva;
- V F può essere iniettiva, ma solo se essa è anche suriettiva;
- |V||F| Ker f può avere dimensione 4.

Esercizio 6. Siano $U \in V$ sottospazi di \mathbb{R}^6 , con dim U = 4 e dim V = 3.

- |V||F| Se V non è contenuto in U allora $U \cap V = \{0\}$;
- |V||F| Se V non è contenuto in U allora $U+V=\mathbb{R}^6$;
- [V] [F] Deve necessariamente essere $1 \leq \dim(U \cap V) \leq 3$.

(Ingegneria dell'Energia, seconda squadra)

PROF. F. BOTTACIN

1^a Prova di accertamento — 4 aprile 2009

Esercizio 1. Si determini per quali valori di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che $f(1,1,0) = (2,0,-2), \ f(-2,4,3) = (t,t+1,1)$ e il nucleo di f sia generato dal vettore $(1,2t-t^2,-2)$. Per i valori di t per cui f esiste si specifichi inoltre se essa è unica oppure no.

Esercizio 2. Si consideri la funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 0 & -1 & 1 \\ 1 & 1 & -2 & 0 \\ 0 & t & 3 & 0 \\ -1 & -2 & 1 & -2 \end{pmatrix}$$

Si determini per quali valori di $t \in \mathbb{R}$ la funzione f non \dot{e} suriettiva. Per tali valori di t si determini una base di Im(f).

Esercizio 3. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (-2, 0, 0, 3)$ e $u_2 = (0, 1, 1, -1)$. Sia V il sottospazio di \mathbb{R}^4 costituito dalle soluzioni del seguente sistema:

$$\begin{cases} x_1 + x_2 = x_3 - x_4 \\ x_1 + 2x_2 = 0. \end{cases}$$

- (a) Si determini la dimensione e una base di $U \cap V$
- (b) Si determini la dimensione e una base di U + V.

Esercizio 4. Sia $f: \mathbb{R}^6 \to \mathbb{R}^4$ una funzione lineare.

- |V||F| Ker f può avere dimensione 5;
- V | F | f può essere iniettiva, ma solo se essa è anche suriettiva;
- |V||F| f non può essere iniettiva.

Esercizio 5. Sia W uno spazio vettoriale e $w_1, w_2, w_3 \in W$.

- \overline{V} \overline{F} Se i vettori w_1 , w_2 , w_3 sono linearmente dipendenti allora essi generano un sottospazio di dimensione 2 di W;
- V F Se i vettori w_1, w_2, w_3 sono linearmente dipendenti allora non esiste una base di W che contenga $w_1, w_2 \in w_3$;
- V F Se i vettori w_1, w_2, w_3 sono linearmente dipendenti allora w_3 appartiene al sottospazio generato da w_1 e w_2 .

Esercizio 6. Siano $U \in V$ sottospazi di \mathbb{R}^7 , con dim U = 3 e dim V = 5.

- $V \mid F \mid$ Deve necessariamente essere $1 \leq \dim(U \cap V) \leq 3$;
- |V||F| Se U non è contenuto in V allora $U+V=\mathbb{R}^7$;
- V Se U non è contenuto in V allora $U \cap V = \{0\}$.

(Ingegneria dell'Energia, seconda squadra)

Prof. F. Bottacin

1^a Prova di accertamento — 4 aprile 2009

Esercizio 1. Si determini per quali valori di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(1,1,0) = (0,2,-2), f(-2,1,3) = (t+2,5,t-3) e il nucleo di f sia generato dal vettore $(t^2-1,1,-2)$. Per i valori di t per cui f esiste si specifichi inoltre se essa è unica oppure no.

Esercizio 2. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (3, -1, 0, 0)$ e $u_2 = (1, 0, -1, 1)$. Sia V il sottospazio di \mathbb{R}^4 costituito dalle soluzioni del seguente sistema:

$$\begin{cases} x_1 + x_3 = 2x_4 - x_2 \\ x_2 - x_3 = 0. \end{cases}$$

- (a) Si determini la dimensione e una base di $U \cap V$.
- (b) Si determini la dimensione e una base di U + V.

Esercizio 3. Si consideri la funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 0 & -1 & 1 \\ -1 & 1 & -2 & -1 \\ 0 & -4 & 3 & 1 \\ 0 & t & 1 & 0 \end{pmatrix}$$

Si determini per quali valori di $t \in \mathbb{R}$ la funzione f non \hat{e} suriettiva. Per tali valori di t si determini una base di Im(f).

Esercizio 4. Siano $U \in V$ sottospazi di \mathbb{R}^7 , con dim U = 5 e dim V = 4.

- V F Se V non è contenuto in U allora $U + V = \mathbb{R}^7$;
- \overline{V} F Se V non è contenuto in U allora $U \cap V = \{0\}$;
- |V||F| Deve necessariamente essere $2 \le \dim(U \cap V) \le 4$.

Esercizio 5. Sia $f: \mathbb{R}^7 \to \mathbb{R}^3$ una funzione lineare.

- |V||F| Ker f può avere dimensione 5;
- V F f può essere iniettiva, ma solo se essa è anche suriettiva;
- V F non può essere iniettiva.

Esercizio 6. Sia V uno spazio vettoriale e $v_1, v_2, v_3 \in V$.

- V F Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora essi generano un sottospazio di dimensione 2 di V;
- V F Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora v_1 appartiene al sottospazio generato da v_2 e v_3 ;
- $V \ E$ Se i vettori v_1, v_2, v_3 sono linearmente dipendenti allora non esiste una base di V che contenga $v_1, v_2 \in v_3$.

(Ingegneria dell'Energia, seconda squadra)

PROF. F. BOTTACIN

1^a Prova di accertamento — 4 aprile 2009

Esercizio 1. Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (4, 0, -3, 0)$ e $u_2 = (-2, 1, 0, 2)$. Sia V il sottospazio di \mathbb{R}^4 costituito dalle soluzioni del seguente sistema:

$$\begin{cases} x_2 + x_3 = x_4 - 2x_1 \\ x_1 - x_4 = 0. \end{cases}$$

- (a) Si determini la dimensione e una base di $U \cap V$.
- (b) Si determini la dimensione e una base di U + V.

Esercizio 2. Si consideri la funzione lineare $f: \mathbb{R}^4 \to \mathbb{R}^4$ la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 0 & -1 & 1 \\ -1 & 0 & 0 & t \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 2 & -1 \end{pmatrix}$$

Si determini per quali valori di $t \in \mathbb{R}$ la funzione f non \hat{e} suriettiva. Per tali valori di t si determini una base di Im(f).

Esercizio 3. Si determini per quali valori di $t \in \mathbb{R}$ esiste una funzione lineare $f : \mathbb{R}^3 \to \mathbb{R}^3$ tale che f(-2,0,-1)=(t-1,2t,1), f(2,1,1)=(-2,-8,-2) e il nucleo di f sia generato dal vettore $(t^2-t,-1,1)$. Per i valori di t per cui f esiste si specifichi inoltre se essa è unica oppure no.

Esercizio 4. Sia V uno spazio vettoriale e $v_1, v_2, v_3 \in V$.

- V F Se i vettori v_1, v_2, v_3 sono linearmente dipendenti allora non esiste una base di V che contenga v_1, v_2 e v_3 ;
- \overline{V} \overline{F} Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora essi generano un sottospazio di dimensione 2 di V;
- V F Se i vettori v_1 , v_2 , v_3 sono linearmente dipendenti allora v_1 appartiene al sottospazio generato da v_2 e v_3 .

Esercizio 5. Siano U e V sottospazi di \mathbb{R}^5 , con dim U=4 e dim V=3.

- V | F | Se V non è contenuto in U allora $U \cap V = \{0\}$;
- $V \mid F$ Se V non è contenuto in U allora $U + V = \mathbb{R}^5$;
- V F Deve necessariamente essere $2 \leq \dim(U \cap V) \leq 3$.

Esercizio 6. Sia $f: \mathbb{R}^5 \to \mathbb{R}^4$ una funzione lineare.

- |V||F| Ker f può avere dimensione 4;
- |V||F| f non può essere iniettiva;
- $V \mid F \mid f$ può essere iniettiva, ma solo se essa è anche suriettiva.