Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

2 de noviembre de 2020

Introducción

Definición (Anillo)

Sea F un conjunto no-vacío, la cual poseé las operaciones de

- a) la **SUMA** $+ : \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$ tal que $(\forall a, b \in \mathbb{F})(a + b \in \mathbb{F})$, es decir, \mathbb{F} es cerrada con respecto +, y además satisface los siguientes axiomas:
 - 1) $(\forall a, b \in \mathbb{F})(a + b = b + a)$ (conmutativa).
 - 2) $(\forall a, b, c \in \mathbb{F})(a + (b + c) = (a + b) + c)$ (asociativa).
 - 3) Existe un elemento $0 \in \mathbb{F}$, llamado neutro aditivo (en este caso, **cero**), tal que $(\forall a \in \mathbb{F})(a + 0 = a)$.
 - 4) Existe el elemento simétrico (opuesto): $(\forall a \in \mathbb{F})(\exists b \in \mathbb{F})(a+b=0)$, y lo denotamos por b=-a.

- b) del **PRODUCTO** $\cdot : \mathbb{F} \times \mathbb{F} \longrightarrow \mathbb{F}$ tal que $(\forall a, b \in \mathbb{F})(a \cdot b \in \mathbb{F})$, es decir, \mathbb{F} es cerrado con respecto \cdot , y además satisface los siguientes axiomas:
 - 5) $(\forall a, b, c \in \mathbb{F})(a \cdot (b \cdot c) = (a \cdot b) \cdot c)$ (asociativa).
 - 6) $(\forall a, b, c \in \mathbb{F})(a \cdot (b+c) = a \cdot b + a \cdot c)$

 $(distributiva\ respecto\ +).$

Este conjunto \mathbb{F} con las operaciones indicadas se le llama **ANILLO**.

Notar que un anillo \mathbb{F} es conmutativo con respecto +.

Definición (Anillo Conmutativo y Anillo con Unidad)

Si un anillo $\mathbb F$ es conmutativa con respecto \cdot , diremos que $\mathbb F$ es un **ANILLO CONMUTATIVO**

Si en un anillo $\mathbb F$ existe un elemento $1 \in \mathbb F$ no nulo, llamado neutro multiplicativo (en este caco, **uno**) tal que $(\forall a \in \mathbb F)(a \cdot 1 = a)$, entonces diremos $\mathbb F$ es un **ANILLO CON UNIDAD**

Ejemplo

- 1. El conjunto de los números enteros $\mathbb Z$ es un anillo conmutativo con unidad.
- 2. El conjunto $A = \{(a,b)/a, b \in \mathbb{Z}\}$ con respeto a las operaciones
 - 1) SUMA (a, b) + (c, d) = (a + c, b + d) y el
 - 2) PRODUCTO $(a, b) \cdot (c, d) = (a \cdot c, b \cdot d)$

tiene la estructura de anillo conmutativo con unidad.

Ejercicio

Encuentre al menos dos conjuntos que no sean anillos.

Proposición

Sea $\mathbb F$ un anillo y para todo $a,b\in\mathbb F$ se tiene

- 1. $a \cdot 0 = 0$ y $0 \cdot a = 0$
- 2. $a \cdot b + a \cdot (-b) = 0$ y $b \cdot a + (-b) \cdot a = 0$.
- 3. $(-a) \cdot (-b) = a \cdot b$.

En efecto: Para todo $a, b \in \mathbb{F}$ se tiene:

- 1. $a \cdot (b+0) = a \cdot b + a \cdot 0 = a \cdot b$ (propiedad distributiva), de la última igualdad y usando la existencia del elemento simétrico para $a \cdot b$, obtenemos que $a \cdot 0 = 0$, la segunda parte queda como ejercicio.
- 2. Ejercicio.
- 3. Usando 2) y la existencia del elemento simétrico obtenemos $(-a) \cdot (-b) = -(a \cdot (-b)) = -(-a \cdot b) = a \cdot b$.

Definición (Cuerpo)

Sea \mathbb{F} un anillo conmutativo con unidad tal que (Para cada $a \in \mathbb{F}$ no nulo) $(\exists b \in \mathbb{F})(a \cdot b = 1)$.

El elemento b es llamado inverso multiplicativo y lo denotamos por $b = a^{-1}$.

Tal anillo se le llama CUERPO.

Nota de aquí en adelante denotaremos $ab = a \cdot b$.

Espacios Vectoriales

Ahora denotamos por \mathbb{K} , el cual es llamado cuerpo de los escalares, donde \mathbb{K} puede ser \mathbb{C} ó \mathbb{R} ó \mathbb{Q} , etc.

Definición

Sea V un conjunto no-vacío sobre el cuerpo \mathbb{K} , diremos que V es un espacio vectorial (también llamado $\mathbb{K}-$ espacio vectorial), la cual está provisto de operaciones

- suma $+: V \times V \longrightarrow V$, tal que es cerrada, es decir, $(\forall u, v \in V)(u + v \in V)$ y para todo $u, v, w \in V$ se tiene
 - 1) u + v = v + u (conmutativo).
 - 2) (u + v) + w = u + (v + w) (asociativo).
 - 3) Existe un elemento $\mathbf{0} \in V$, llamado elemento neutro aditivo, (también llamado cero), tal que

$$(\forall u \in V)(u + \mathbf{0} = u).$$

- 4) (Para cada $v \in V$)($\exists w \in V$)($v + w = \mathbf{0}$). El elemento w es llamado el **opuesto** de v, y lo denotamos por w = -v.
- producto por un escalar $\cdot : \mathbb{K} \times V \longrightarrow V$, tal que es cerrada, es decir, $(\forall u \in V, \ \forall \lambda \in \mathbb{K})(\lambda v \in V)$ y para todo $u, v \in V$ y todo $\lambda, \gamma \in \mathbb{K}$ se tiene
 - 1) $\lambda(\gamma v) = (\lambda \gamma)v$.
 - 2) $(\lambda + \gamma)\mathbf{v} = \lambda\mathbf{v} + \gamma\mathbf{v}$.
 - 3) $\lambda(u+v)=\lambda u+\lambda v$.
 - 4) 1v = v.

Nota Los elementos del \mathbb{K} —espacio vectorial son llamados **vectores**. De aquí en adelante simplemente llamaremos a V espacio vectorial, a menos que tengamos espacios vectoriales definidos sobre diferentes cuerpos.

A los elementos de K son llamados escalares.

Nota

- 1. Si $\mathbb{K} = \mathbb{Q}$, diremos que V es un espacio vectorial racional.
- 2. Si $\mathbb{K} = \mathbb{R}$, se dice que V es un espacio vectorial real.
- 3. Si $\mathbb{K} = \mathbb{C}$, diremos que V es un espacio vectorial complejo.

Ejemplo

Daremos algunos ejemplos de espacios vectoriales.

1. Consideremos le conjunto

$$\mathcal{L} = \{ v = (v_1, v_2) \in \mathbb{R}^2 / 4v_1 - 3v_2 = 0 \},$$

es un espacio vectorial sobre real.

2. Sea A un conjunto no-vacío y definamos el conjunto

$$\mathbb{K}_A = \{f : A \longrightarrow \mathbb{K}/f \text{ es una función}\}$$

provisto de las operaciones

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x),$$

para todo $f, g \in \mathbb{K}_A$, y toto $\lambda \in \mathbb{K}$. \mathbb{K}_A es espacio vectorial.

3. el conjunto

$$D = \{f : \mathbb{R} \longrightarrow \mathbb{R}/f \text{ es diferenciable en } x = 1\},$$

es un espacio vectorial con las operaciones definidas en el item 2).

4. Sea $n \in \mathbb{N}$ y definamos el conjunto

$$S=\{\{a_n\}/a_n\in\mathbb{R}\},$$

con las operaciones

$${a_n} + {b_n} = {a_n + b_n}$$
$$\lambda {a_n} = {\lambda a_n},$$

con $\lambda \in \mathbb{R}$, es espacio vectorial real.

Proposición

En todo espacio vectorial V, se satisface, para todo $u, v, w \in V$ y todo $\lambda \in \mathbb{K}$:

- 1. El elemento neutro aditivo es único.
- 2. el elemento opuesto (también llamado simétrico) de un vector es único.
- 3. 0v = 0, $\lambda 0 = 0$.
- 4. Si $\lambda v = \mathbf{0}$, entonces $\lambda = 0$ o $v = \mathbf{0}$.
- 5. Si u + v = u + w, entonces v = w.
- 6. -(u+v)=-u+(-v).
- 7. (-1)v = -v.

Prueba:

1. Supongamos que existen dos neutros aditivos ${\bf 0}$ y ${\bf 0}$ ' en V, luego

$$0 = 0 + 0' = 0' + 0 = 0'.$$

2. Supongamos que existen dos opuestos v^\prime y $v^{\prime\prime}$ de v en V, luego

$$v' = v' + 0 = v' + (v + v''), v + v'' = 0$$

= $(v' + v) + v'' = 0 + v'', v' + v = 0$
= v'' .

- 3. Ejercicio.
- 4. Ejercicio.

5.

$$v = v + \mathbf{0} = v + (u + (-u)) = (v + u) + (-u)$$

= $(w + u) + (-u)$ hipótesis
= $w + (u + (-u)) = w + \mathbf{0}$
= w .

- 6. Ejercicio.
- 7. Ejercicio.

Definición

Sean V un espacio vectorial sobre \mathbb{K} , y un subconjunto $S \subset V$ no vacío, diremos que S es un **subespacio** de V, si es un espacio vectorial con las operaciones definidas en V.

Ejemplo

- 1. $V_0 = \{\mathbf{0}\}$ es el subespacio vectorial de cualquier espacio vectorial V .
- 2. Sea $V = \mathbb{R}^3$, entonces los únicos subespacios de V son $\{\mathbf{0}\}$, todas las rectas que pasan por el origen, todos los planos que pasan por el origen y \mathbb{R}^3 .

Proposición

Sean V un espacio vectorial y $S \subset V$ un subconjunto no-vacío, entonces S es un subespacio si, y solo si

$$\alpha u + \beta v \in S$$
, para todo $u, v \in S, \alpha, \beta \in \mathbb{K}$.

Prueba:

- \implies) S es un subespacio por lo tanto S es un espacio vectorial y de hecho satisface el enunciado.
- \iff Sean $u, v \in S$, entonces en particular escojamos $\alpha = \beta = 1$, entonces

$$u + v = 1u + 1v \in S$$
,

ahora hagamos $v = \mathbf{0}$, $\beta = 1$, entonces $\alpha u = \alpha u + 1\mathbf{0}$.

Definición (Combinación Lineal)

Sean V un espacio vectorial y los vectores $v^1, v^2, \cdots, v^r \in V$, entonces estos vectores son llamados **combinación lineal** a toda expresión de la forma

$$\lambda_1 v^1 + \lambda_2 v^2 + \cdots + \lambda_r v^r,$$

donde $\lambda_1, \lambda_2, \cdots, \lambda_r \in \mathbb{K}$.

El conjunto $A \subset V$ se llama combinación lineal de elementos de A a toda combinación lineal de un número finito de elementos de A.

