

Bài tập về nhà số 5

Nền tảng toán học của các mô hình tạo sinh – PIMA

Chủ đề: Mô hình năng lượng

Người giải: Võ Hoàng Nhật Khang

1. Xét một máy Boltzmann gồm k nút $x:=(x_1,x_2,\ldots,x_k)\in\{0,1\}^k$ với b_1,b_2,\ldots,b_k lần lượt là các thiên vị của nút x_1,x_2,\ldots,x_k và w_{ij} là trọng số của cặp nút x_i và x_j . Hàm mật độ xác suất của mô hình là

$$p(x; W, b) := \frac{1}{Z} e^{-E(x; W, b)},$$

trong đó

- $W=(w_{ij})$ là ma trận trọng số.
- $b=(b_1,b_2,\ldots,b_k)$ là vector thiên vị.
- \bullet E là hàm năng lượng và E(x;W,b) là năng lượng ứng với cấu hình x và bộ tham số W,b.
- ullet $Z=\sum_{x\in\{0,1\}^k}e^{-E(x;W,b)}$ là hằng số chuẩn hóa.

Ta lấy D mẫu dữ liệu $\mathcal{D}:=\{d_1,d_2,\ldots,d_D\}$ độc lập và có cùng phân phối thực nghiệm

$$p_{\mathsf{data}}(x) = \frac{1}{D} \sum_{i=1}^{D} \delta(x, d_i),$$

với

$$\delta(\alpha, \beta) = \begin{cases} 1, & \alpha = \beta \\ 0, & \alpha \neq \beta \end{cases}.$$

Vì sao việc tối thiểu hóa phân kỳ Kullback-Leibler từ $p(x;\theta)$ đến p_{data} và tối đa hóa hàm log-hợp lý $\ln \mathcal{L}(\theta) = \ln p(\mathcal{D};\theta)$ của \mathcal{D} đối với bộ tham số $\theta := (W,b)$ là tương đương? Tức là chứng minh

$$\underset{\theta}{\operatorname{argmax}} \ln \mathcal{L}(\theta) = \underset{\theta}{\operatorname{argmin}} D_{\mathrm{KL}}(p_{\mathsf{data}} || p(x; \theta)),$$

trong trường hợp điểm cực trị θ tồn tại.

Lời giải:

Để chứng minh sự tương đương, ta cần chỉ ra rằng tối đa hóa $\ln \mathcal{L}(\theta)$ tương ứng với tối thiểu hóa $D_{\mathrm{KL}}(p_{\mathsf{data}} || p(x; \theta))$.

Hàm log-hợp lý của tập dữ liệu ${\mathcal D}$ được định nghĩa là

$$\ln \mathcal{L}(\theta) = \ln p(\mathcal{D}; \theta) = \sum_{i=1}^{D} \ln p(d_i; \theta), \tag{1}$$

trong đó $p(d_i; \theta) = \frac{1}{Z} e^{-E(d_i; W, b)}$

Phân kỳ Kullback-Leibler từ p_{data} đến $p(x;\theta)$ là

$$D_{\mathrm{KL}}(p_{\mathsf{data}} \| p(x; \theta)) = \sum_{x} p_{\mathsf{data}}(x) \ln \left(\frac{p_{\mathsf{data}}(x)}{p(x; \theta)} \right). \tag{2}$$

Thay $p_{\mathrm{data}}(x) = \frac{1}{D} \sum_{i=1}^{D} \delta(x,d_i)$ vào, ta được

$$D_{\mathrm{KL}}(p_{\mathsf{data}} || p(x; \theta)) = \sum_{x} \left(\frac{1}{D} \sum_{i=1}^{D} \delta(x, d_i) \right) \ln \left(\frac{\frac{1}{D} \sum_{j=1}^{D} \delta(x, d_j)}{p(x; \theta)} \right). \tag{3}$$

Vì $\delta(x,d_i)=1$ chỉ khi $x=d_i$, nên

$$D_{\mathrm{KL}}(p_{\mathsf{data}} \| p(x; \theta)) = \frac{1}{D} \sum_{i=1}^{D} \ln \left(\frac{\frac{1}{D}}{p(d_i; \theta)} \right) = \frac{1}{D} \sum_{i=1}^{D} \left(\ln \frac{1}{D} - \ln p(d_i; \theta) \right) \tag{4}$$

$$= -\ln D - \frac{1}{D} \sum_{i=1}^{D} \ln p(d_i; \theta)$$
 (5)

Do đó

$$D_{\mathrm{KL}}(p_{\mathsf{data}} || p(x; \theta)) = -\ln D - \frac{1}{D} \ln \mathcal{L}(\theta). \tag{6}$$

Vì $-\ln D$ là hằng số không phụ thuộc θ , việc tối thiểu hóa $D_{\mathrm{KL}}(p_{\mathrm{data}}\|p(x;\theta))$ tương đương với tối thiểu hóa $-\frac{1}{D}\ln \mathcal{L}(\theta)$, tức là tối đa hóa $\ln \mathcal{L}(\theta)$. Vậy:

$$\underset{\theta}{\operatorname{argmax}} \ln \mathcal{L}(\theta) = \underset{\theta}{\operatorname{argmin}} D_{\mathrm{KL}}(p_{\mathsf{data}} || p(x; \theta)). \tag{7}$$

- 2. Xét một máy Boltzmann hạn chế gồm m nút hiện $v=(v_1,v_2,\ldots,v_m)\in\{0,1\}^m$ và n nút ẩn $h=(h_1,h_2,\ldots,h_n)\in\{0,1\}^n$, trong đó:
 - $\theta=(W,b,c)$ là bộ tham số, với $W=(w_{ij})$ là ma trận trọng số, w_{ij} là trọng số giữa hai nút v_i và h_j ; $b=(b_1,b_2,\ldots,b_m)$ là vector thiên vị của vector biến hiện v; $c=(c_1,c_2,\ldots,c_n)$ là vector thiên vị của vector biến ẩn h.
 - $E(v,h;\theta)=-\sum_{i=1}^m\sum_{j=1}^nw_{ij}v_ih_j-\sum_{i=1}^mb_iv_i-\sum_{j=1}^nc_jh_j$ là hàm năng lượng.
 - $\bullet \ Z = \sum_{v,h} e^{-E(v,h;\theta)}$ là hằng số chuẩn hóa.

a) Việc giới hạn máy Boltzmann thành một đồ thị lưỡng phân, trong đó các nút ở cùng một lớp không còn tương tác làm cho thao tác tính toán các phân phối biên được thuận tiện hơn. Cu thể, chứng minh:

$$p(v;\theta) := \sum_{h} p(v,h;\theta) = \frac{1}{Z} \prod_{i=1}^{m} e^{b_i v_i} \prod_{j=1}^{n} \left(1 + e^{c_j + \sum_{i=1}^{m} w_{ij} v_i} \right).$$

Lời giải:

Ta bắt đầu từ định nghĩa

$$p(v;\theta) = \sum_{h} p(v,h;\theta) = \sum_{h} \frac{1}{Z} e^{-E(v,h;\theta)}.$$
 (8)

Với $E(v,h;\theta) = -\sum_{i=1}^m \sum_{j=1}^n w_{ij} v_i h_j - \sum_{i=1}^m b_i v_i - \sum_{j=1}^n c_j h_j$, ta có

$$e^{-E(v,h;\theta)} = \exp\left(\sum_{i=1}^{m} \sum_{j=1}^{n} w_{ij} v_i h_j + \sum_{i=1}^{m} b_i v_i + \sum_{j=1}^{n} c_j h_j\right)$$
(9)

Tổng theo h là

$$\sum_{h} e^{-E(v,h;\theta)} = \sum_{h_1=0}^{1} \cdots \sum_{h_n=0}^{1} \exp\left(\sum_{i=1}^{m} b_i v_i + \sum_{j=1}^{n} h_j \left(c_j + \sum_{i=1}^{m} w_{ij} v_i\right)\right).$$
(10)

Tách biệt các phần

$$\sum_{h} e^{-E(v,h;\theta)} = \exp\left(\sum_{i=1}^{m} b_i v_i\right) \prod_{j=1}^{n} \sum_{h_j=0}^{1} \exp\left(h_j \left(c_j + \sum_{i=1}^{m} w_{ij} v_i\right)\right).$$
 (11)

Với $h_j \in \{0,1\}$, ta tính

$$\sum_{h_j=0}^{1} \exp\left(h_j \left(c_j + \sum_{i=1}^{m} w_{ij} v_i\right)\right) = 1 + \exp\left(c_j + \sum_{i=1}^{m} w_{ij} v_i\right).$$
 (12)

Do đó

$$p(v;\theta) = \frac{1}{Z} \exp\left(\sum_{i=1}^{m} b_i v_i\right) \prod_{j=1}^{n} \left(1 + e^{c_j + \sum_{i=1}^{m} w_{ij} v_i}\right) = \frac{1}{Z} \prod_{i=1}^{m} e^{b_i v_i} \prod_{j=1}^{n} \left(1 + e^{c_j + \sum_{i=1}^{m} w_{ij} v_i}\right)$$
(13)

b) Xem xét thuật toán Gradient ascent trên hàm hợp lý được cập nhật như sau:

$$\theta^{(t+1)} = \theta^{(t)} + \eta \frac{\partial \ln \mathcal{L}(\theta^{(t)}|\tilde{v})}{\partial \theta^{(t)}},$$

trong đó

- $\theta^{(t+1)}$ và $\theta^{(t)}$ lần lượt là bộ tham số được cập nhật ở bước t+1 và t.
- $\eta > 0$ là tốc độ học (hằng số).
- $\frac{\partial \ln \mathcal{L}(\theta^{(t)}|\tilde{v})}{\partial \theta^{(t)}}$ là gradient của hàm log-hợp lý $\ln \mathcal{L}$ theo $\theta^{(t)}$ cho mẫu \tilde{v} .

Chứng minh rằng:

$$\frac{\partial \ln \mathcal{L}(\theta | \tilde{v})}{\partial \theta} = \mathbb{E}_{v, h \sim p(v, h)} \left[\frac{\partial E(v, h)}{\partial \theta} \right] - \mathbb{E}_{h \sim p(h | \tilde{v})} \left[\frac{\partial E(\tilde{v}, h)}{\partial \theta} \right].$$

Lời giải:

Hàm hợp lý cho mẫu \tilde{v} là

$$\mathcal{L}(\theta|\tilde{v}) = p(\tilde{v};\theta) = \frac{\sum_{h} e^{-E(\tilde{v},h;\theta)}}{Z}.$$
 (14)

Log-hợp lý

$$\ln \mathcal{L}(\theta|\tilde{v}) = \ln \left(\sum_{h} e^{-E(\tilde{v}, h; \theta)} \right) - \ln Z.$$
 (15)

Gradient theo θ

$$\frac{\partial \ln \mathcal{L}(\theta|\tilde{v})}{\partial \theta} = \frac{\partial}{\partial \theta} \ln \left(\sum_{h} e^{-E(\tilde{v}, h; \theta)} \right) - \frac{\partial \ln Z}{\partial \theta}. \tag{16}$$

Tính từng phần

$$\frac{\partial}{\partial \theta} \ln \left(\sum_{h} e^{-E(\tilde{v}, h; \theta)} \right) = -\mathbb{E}_{h \sim p(h|\tilde{v})} \left[\frac{\partial E(\tilde{v}, h)}{\partial \theta} \right], \tag{17}$$

và

$$\frac{\partial \ln Z}{\partial \theta} = -\mathbb{E}_{v,h \sim p(v,h)} \left[\frac{\partial E(v,h)}{\partial \theta} \right]. \tag{18}$$

Do đó

$$\frac{\partial \ln \mathcal{L}(\theta|\tilde{v})}{\partial \theta} = \mathbb{E}_{v,h \sim p(v,h)} \left[\frac{\partial E(v,h)}{\partial \theta} \right] - \mathbb{E}_{h \sim p(h|\tilde{v})} \left[\frac{\partial E(\tilde{v},h)}{\partial \theta} \right]$$
(19)

c) Thực tế, đại lượng $\mathbb{E}_{h\sim p(h|\tilde{v})}\left[\frac{\partial E(\tilde{v},h)}{\partial \theta}\right]$ có thể được tính toán dễ dàng (vì sao?). Ngược lại, trung bình $\mathbb{E}_{v,h\sim p(v,h)}\left[\frac{\partial E(v,h)}{\partial \theta}\right]$ lại mất nhiều chi phí tính toán vì phân phối đồng thời p(v,h) lấy trên tất cả cấu hình của v và h. Hãy đề xuất một phương pháp xấp xỉ $\mathbb{E}_{v,h\sim p(v,h)}\left[\frac{\partial E(v,h)}{\partial \theta}\right]$.

Lời giải:

Đại lượng $\mathbb{E}_{h\sim p(h|\tilde{v})}\left[\frac{\partial E(\tilde{v},h)}{\partial \theta}\right]$ dễ tính vì khi \tilde{v} cố định, các h_j độc lập, cho phép tính kỳ vọng riêng lẻ theo $p(h_j|\tilde{v})$.

Ngược lại, $\mathbb{E}_{v,h\sim p(v,h)}\left[\frac{\partial E(v,h)}{\partial \theta}\right]$ đòi hỏi tổng trên tất cả cấu hình v,h, rất tốn kém.

Phương pháp xấp xỉ: Sử dụng *phương pháp tương phản* (Contrastive Divergence, CD-k). Bắt đầu từ \tilde{v} , chạy Markov chain k bước (thường k=1) để lấy mẫu $v^{(k)},h^{(k)}$ và dùng $\frac{\partial E(v^{(k)},h^{(k)})}{\partial \theta}$ để xấp xỉ kỳ vọng.