1) Let X_1, X_2, X_3, X_4 and $X_5 \sim$	iid Gamma $(2,5)$.The mean of Gamma	a $(lpha,eta)$ is $rac{lpha}{eta}$. Find the mean $lpha$	of the distribution X_1+	$X_2 + X_3 + X_4 + X_5$

Sum of 2 jid gamma random voiriables is, Gamma (d, tob., B)

where

XV Oramma (v, p)

y ~ Gamma (d2, b)

$$\Rightarrow E[X_1 + X_2 + X_3 + X_4 + X_5] = E[Gamma(2+2+2+2,5)]$$

$$\Rightarrow D = 2$$

2) Let
$$X_1, X_2$$
 and $X_3 \sim$ iid Normal($0,9$). Find the mean of $X_1^2 + X_2^2 + X_3^2$.

We know,

Square of iid Normal(0,02) = Gamma
$$\left(\frac{1}{2}, \frac{1}{2n^2}\right)$$

$$\Rightarrow$$
 $\chi_1^2 = Gamma \left(\frac{1}{2}, \frac{1}{2 \times 9} \right)$

$$\frac{3}{2} = \frac{27}{1/18}$$

3) Let
$$X_1, X_2, X_3$$
 and $X_4 \sim$ iid Normal $(0,4)$. Find the variance of $X_1^2 + X_2^2 + X_3^2 + X_4^2$.

We know,

$$\chi^2 = Gamma\left(\frac{1}{2}, \frac{1}{2\sigma^2}\right)$$

$$= \frac{1}{2}, \frac{1}{2 \times 4}$$

$$X_1^2 + X_2^2 + X_3^2 + X_4^2 = Gamma \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$$

$$= \frac{1}{2} \text{ Var} \left(\text{Gramma} \left(2, 1/8 \right) \right) = \frac{2}{(1/8)^2} = \frac{123}{(1/8)^2}$$