Learning as Inference

Bob L. T. Sturm

Before I took a COVID test, the doctor said 99% of the people in the area have COVID, and 90% of those with COVID are testing positive. A few days later the doctor called and said my test was positive, and that the probability I have COVID given this positive test is p% — I can't remember because I was in shock. Find the minimum value of p such that I can compute the probability I got a positive test but don't have COVID, and then compute the maximum probability I don't have COVID given my positive test.

P(+|7C (1 (2

Before I took a COVID test, the doctor said 99% of the people in the area have COVID, and 90% of those with COVID are testing positive. A few days later the doctor called and said my test was positive, and that the probability I have COVID given this positive test is p% — I can't remember because I was in shock. Find the minimum value of p such that I can compute the probability I got a positive test but don't have COVID, and then compute the maximum probability I don't have COVID given my positive test. Define:

- + is "positive test"
- \bigcirc C is "have COVID"

Before I took a COVID test, the doctor said 99% of the people in the area have COVID, and 90% of those with COVID are testing positive.

Translating:

ranslating:

P[
$$C$$
] = 0.99 (prior)

resulting about 4 letter : $\phi(x,y)$

•
$$P[C] = 0.99$$
 (prior)

•
$$P[C] = 0.99$$
 (prior)
• $P[+|C] = 0.9$ (likelihood)
• $P[+|C] = 0.9$ (likelihood)

The doctor called and said my test was positive, and that the probability I have COVID given this positive test is p% — I can't remember because I was in shock.

Translating:

- OMG I have "+" (evidence)

 P[C|+] = p (posterior)

 P[C|+] = p (posterior)

 P[C|+] = p (posterior)

Find the minimum value of $p \equiv P[C|+]$ such that I can compute the probability I got a positive test but don't have COVID *Translating:*

- I want to find $P[+|\neg C]$.
- I also know P[C|+] is a probability, and so its value must be in a range restricted by the axioms of probability.

Find the minimum value of $p \equiv P[C|+]$ such that I can compute the probability I got a positive test but don't have COVID *Translating:*

- I want to find $P[+|\neg C]$.
- I also know P[C|+] is a probability, and so its value must be in a range restricted by the axioms of probability.

Using Bayes':

$$P[+|\neg C] = \frac{P[\neg C|+]P[+]}{P[\neg C]} = \frac{(1-P[C|+])P[+]}{1-P[C]} = \frac{(1-p)P[+]}{1-P[C]}$$

since $P[\neg C|+] = 1 - P[C|+]$, and $P[\neg C] = 1 - P[C]$ as there are only two possibilities. We need to find P[+].

We know
$$P[+|C] = \frac{P[C|+]P[+]}{P[C]}$$
 and so solving for $P[+]$
$$P[+] = \frac{P[+|C]P[C]}{P[C|+]} = \frac{P[+|C]P[C]}{p}$$

We know:

$$P[+|\neg C] = \frac{(1-p)P[+]}{1-P[C]} \quad (4)$$

and we have just found

$$P[+] = \frac{P[+|C]P[C]}{p} \qquad (2)$$

Substituting the latter into the former produces

(1)
$$P[+|\neg C] = \frac{(1-P[C|+])}{1-P[C]} \underbrace{P[+|C]P[C]}_{P[C|+]} = \frac{P[C]}{1-P[C]} \underbrace{\frac{(1-P[C|+])}{P[C|+]}}_{P[C|+]} P[+|C] = \frac{P[C]}{1-P[C]} \underbrace{\frac{(1-p)}{p}}_{p} P[+|C].$$

Our crowning achievement:

$$P[+|\neg C] = \frac{P[C]}{1 - P[C]} \frac{(1 - p)}{p} P[+|C].$$

The left hand side must obey the axioms of probability, which

means
$$0 \le P[+|\neg C] \le 1$$
. So
$$0 \le \frac{P[C]}{1 - P[C]} \frac{(1 - p)}{p} P[+|C] \le 1$$

$$0 \le \frac{(1 - p)}{p} \le \frac{1 - P[C]}{P[C]} \frac{1}{P[+|C]}$$
 \bullet
$$0 \le \frac{(1 - p)}{p} \le \frac{1/100}{99/100} \frac{1}{9/10} \to 891/901 \le p \le 1$$

The minimum value of p such that I can compute the probability I got a positive test but don't have COVID:

$$p \ge 891/901$$

The maximum probability I don't have COVID given my positive test is thus:

$$P[\neg C|+] = 1 - P[C|+] = 1 - p \le 1 - 891/901 = 10/901.$$

Outline

- Introduction
 - Probabilistic Classification and Regression
 - Discriminative vs Generative Models
 - Parametric vs Non-parametric Inference
- Maximum Likelihood (ML) Estimation
 - Regression
 - Classification
- Special Cases
 - Naïve Bayes Classifier
 - Logistic Regression

Outline

- Introduction
 - Probabilistic Classification and Regression
 - Discriminative vs Generative Models
 - Parametric vs Non-parametric Inference
- Maximum Likelihood (ML) Estimation
 - Regression
 - Classification
- Special Cases
 - Naïve Bayes Classifier
 - Logistic Regression

Probabilistic Classification and Regression

In both cases we compute the posterior

$$\underline{Pr(y \mid X = x)} = \frac{Pr(x \mid Y = y)Pr(Y = y)}{Pr(X = x)}$$

Probabilistic Classification and Regression

In both cases we compute the posterior

$$Pr(y | X = x) = \frac{Pr(x | Y = y)Pr(Y = y)}{Pr(X = x)}$$

- Classification: Y is discrete, finite
- Regression: Y is continuous

Until now we assumed we knew:

•
$$Pr(Y = y) \equiv Pr(y) \leftarrow Prior$$

•
$$Pr(x | Y = y) \equiv Pr(x|y) \leftarrow$$
Likelihood

•
$$Pr(X = x) \equiv Pr(x) \leftarrow$$
Evidence

•
$$Pr(Y=y) \equiv Pr(y) \leftarrow \frac{\textit{Prior}}{}$$
• $Pr(x \mid Y=y) \equiv Pr(x \mid y) \leftarrow \frac{\textit{Likelihood}}{}$
• $Pr(X=x) \equiv Pr(x) \leftarrow \frac{\textit{Evidence}}{}$

Probabilistic Classification and Regression

In both cases we compute the posterior

$$Pr(y | X = x) = \frac{Pr(x | Y = y)Pr(Y = y)}{Pr(X = x)}$$

- Classification: Y is discrete, finite
- ullet Regression: Y is continuous

Until now we assumed we knew:

- $Pr(Y = y) \equiv Pr(y) \leftarrow Prior$
- $Pr(x | Y = y) \equiv Pr(x|y) \leftarrow$ Likelihood
- $Pr(X = x) \equiv Pr(x) \leftarrow$ Evidence

How can we obtain these distributions from data?

Learning as Inference

Given:

- the training data $\mathcal{D} = \{(\mathbf{x}, y)_1, (\mathbf{x}, y)_2, \dots, (\mathbf{x}, y)_N\}$
- a new observation x might my sell know to ke D

Estimate the posterior probability of y:

$$Pr(y|\mathbf{x}, \mathcal{D})$$

Discriminative vs Generative Models

Discriminative modeling:

- This models $Pr(y|\mathbf{x}, \mathcal{D})$ directly
- examples: logistic regression

Generative modeling:

- This models $Pr(\mathbf{x}|y, \mathcal{D})$
- example: Naive Bayes

Figure from Nguyen *et al.* 2015.

Parametric vs Non-parametric Inference

$$Pr(y|\mathbf{x}) = Pr(y|\mathbf{x}, \theta)$$

The distribution is characterized by parameters θ .

Parametric vs Non-parametric Inference

$$Pr(y|\mathbf{x}) = Pr(y|\mathbf{x}, \theta)$$

The distribution is characterized by parameters θ .

Parametric Inference:

- Estimate $\underline{\theta}$ using \mathcal{D} estimate powers from observations
- Compute $Pr(y|\mathbf{x},\hat{\theta})$ to make compute the posterior.

Learning corresponds to estimating θ

Parametric vs Non-parametric Inference

$$Pr(y|\mathbf{x}) = Pr(y|\mathbf{x}, \theta)$$

The distribution is characterized by parameters θ .

Parametric Inference:

- ullet Estimate heta using $\mathcal D$
- Compute $Pr(y|\mathbf{x}, \hat{\theta})$ to make inference.

Learning corresponds to estimating θ

Non-Parametric Inference:

- Estimate $\underline{Pr(\theta|\mathcal{D})} \longrightarrow (\underbrace{\text{state}}_{\theta \mid \mathcal{D}})$
- Compute $\underbrace{Pr(y|\mathbf{x},\mathcal{D})}_{Pr(\theta|\mathcal{D})}$ from $Pr(y|\mathbf{x},\theta,\mathcal{D})Pr(\theta|\mathcal{D})$ by marginalizing out θ

The number of parameters can grow with the data!

Three Approaches

Parametric inference:

- Maximum Likelihood (ML) Estimation (today)
- Maximum A Posteriori (MAP) Estimation (next time)

Non-parametric inference:

• Bayesian methods (a little today and the rest next time)

Fundamental Assumption: i.i.d.

Observations are independent and identically distributed (i.i.d.):

$$\mathcal{D} = \{\mathbf{o}_1, \dots, \mathbf{o}_N\}, \mathbf{o}_i = (\mathbf{x}, y)_i$$

The likelihood of the whole data set can be factorized:

$$Pr(\mathcal{D}) = Pr(\mathbf{o}_1, \dots, \mathbf{o}_N) = \prod_{i=1}^{N} Pr(\mathbf{o}_i)$$

where \mathbf{o}_i is a size of \mathbf{o}_i and \mathbf{o}_i in the \mathbf{o}_i contains \mathbf{o}_i and \mathbf{o}_i contains \mathbf{o}_i and \mathbf{o}_i contains \mathbf{o}_i and \mathbf{o}_i contains \mathbf{o}_i contains \mathbf{o}_i and \mathbf{o}_i contains $\mathbf{o$

Taking the log creates the log-likelihood:

eates the
$$log$$
-likelihood:
$$\log Pr(\mathcal{D}) = \sum_{i=1}^{N} \log Pr(\mathbf{o}_i)$$

Outline

- Introduction
 - Probabilistic Classification and Regression
 - Discriminative vs Generative Models
 - Parametric vs Non-parametric Inference
- Maximum Likelihood (ML) Estimation
 - Regression
 - Classification

- Special Cases
 - Naïve Bayes Classifier
 - Logistic Regression

Maximum Likelihood (ML) Estimate

$$Pr(\mathbf{x}|y) \equiv Pr(\mathbf{x}|y,\theta)$$
 or $Pr(y|\mathbf{x}) \equiv Pr(y|\mathbf{x},\theta)$

to describe a distribution the parameter values that make the data most likely.

ML optimality is defined as maximizing the likelihood of D:

$$\theta_{\mathsf{ML}} = \arg\max_{\theta} P(\mathcal{D}|\theta) = \arg\max_{\theta} \underbrace{\log P(\mathcal{D}|\theta)}_{\text{total density law field the field of t$$

• We can then approximate distributions given the data:

$$Pr(\mathbf{x}|y,\mathcal{D}) \approx Pr(\mathbf{x}|y,\theta_{\mathrm{ML}})$$
 or $Pr(y|\mathbf{x},\mathcal{D}) \approx Pr(y|\mathbf{x},\theta_{\mathrm{ML}})$

To allow an approximation of the provious distributions.

Probabilistic Linear Regression

Model (deterministic):

$$y = \mathbf{w}^T \mathbf{x} + \epsilon$$

But now:

$$\epsilon \sim \mathcal{N}(0,\sigma^2)$$

Therefore:

$$Y|X \sim \mathcal{N}(\mu_Y(\mathbf{x}), \sigma_Y^2(\mathbf{x}))$$

= $\mathcal{N}(\mathbf{w}^T \mathbf{x}, \sigma^2)$

Learning: find w that maximizes $Pr(y|\mathbf{x}, \mathbf{w}, \sigma^2)$

Maximize the posterior directly \implies discriminative method

MLE for Probabilistic Linear Regression

$$\begin{split} \log Pr(y|\mathbf{x},\mathbf{w},\sigma^2) &= \log \prod_{i} Pr(y_i|\mathbf{x}_i,\mathbf{w},\sigma^2) &\longrightarrow \text{(methyle them some red)}, \\ &= \sum_{i} \log Pr(y_i|\mathbf{x}_i,\mathbf{w},\sigma^2) &\longrightarrow \text{(methyle them some red)}, \\ &= \sum_{i} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}}\right] &: \text{Normal distribution apartial}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &= \sum_{i} \left[-\frac{1}{2}\log(2\pi\sigma^2) - \frac{(y_i-\mathbf{w}^T\mathbf{x}_i)^2}{2\sigma^2}\right] &\text{(only in algorithm)}, \\ &=$$

MLE for Probabilistic Linear Regression

$$\log Pr(y|\mathbf{x}, \mathbf{w}, \sigma^2) = \log \prod_{i} Pr(y_i|\mathbf{x}_i, \mathbf{w}, \sigma^2)$$

$$= \sum_{i} \log Pr(y_i|\mathbf{x}_i, \mathbf{w}, \sigma^2)$$

$$= \sum_{i} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - \mathbf{w}^T \mathbf{x}_i)^2}{2\sigma^2}} \right]$$

$$= \sum_{i} \left[-\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y_i - \mathbf{w}^T \mathbf{x}_i)^2}{2\sigma^2} \right]$$

$$\arg \max_{\mathbf{w}} Pr(y|x, \mathbf{w}, \sigma^2) = \arg \min_{\mathbf{w}} \sum_{i} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

NEAT-O! Choosing parameters that maximize $Pr(y|x, \mathbf{w}, \sigma^2) \equiv$ minimizing mean square error! (in this case)

MLE for Classification

Classification

features:
$$\mathbf{x} \in \mathbb{R}^d$$

class: $y \in \{y_1, \dots, y_K\}$

$$\underline{k_{\mathsf{MAP}}} = \arg \underbrace{\max_{k} Pr(y_k | \mathbf{x})}_{}$$

$$= \arg \max_{k} Pr(\mathbf{x} | y_k) Pr(y_k)$$

Assumption: Class Independence

samples from class i do not influence estimate for class $j,\ i \neq j$

Assumption: Class Independence

- distribution of \mathbf{x} for class y_k is the likelihood $Pr(\mathbf{x}|\theta_k)$
- \bullet in the following, we drop the class index k and write $Pr(\mathbf{x}|\theta)$
- also we call $\mathcal{D}=\{\mathbf{x}_1,\dots,\mathbf{x}_N\}$ the set of data point belonging to a single class y_k

$$\underline{X \sim \mathcal{N}(x|\mu,\sigma^2)} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \underline{\theta = \{\mu,\sigma^2\}}_{\text{(out parameters)}}$$

$$log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} log \mathcal{N}(x_n|\mu, \sigma^2)$$

$$X \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu, \sigma^2\}$$

$$\log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \mathcal{N}(x_n|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$

$$X \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu, \sigma^2\}$$

$$\log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \mathcal{N}(x_n|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log Pr(\mathcal{D}|\theta)}{d\mu}$$

$$X \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu, \sigma^2\}$$

$$\log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \mathcal{N}(x_n|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log Pr(\mathcal{D}|\theta)}{d\mu} = \sum_{n=1}^{N} \frac{(x_n - \mu)}{2\sigma^2}$$

$$X \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu, \sigma^2\}$$

$$\log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \mathcal{N}(x_n|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log Pr(\mathcal{D}|\theta)}{d\mu} = \sum_{n=1}^{N} \frac{(x_n - \mu)}{2\sigma^2} = \frac{\sum_{n=1}^{N} x_n - N\mu}{2\sigma^2} \iff$$

ML estimation of Gaussian mean

$$X \sim \mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \text{ with } \theta = \{\mu, \sigma^2\}$$

Log-likelihood of data (i.i.d. samples):

$$\log Pr(\mathcal{D}|\theta) = \sum_{n=1}^{N} \log \mathcal{N}(x_n|\mu, \sigma^2) = -N \log \left(\sqrt{2\pi\sigma^2}\right) - \sum_{n=1}^{N} \frac{(x_n - \mu)^2}{2\sigma^2}$$

$$0 = \frac{d \log Pr(\mathcal{D}|\theta)}{d\mu} = \sum_{n=1}^{N} \frac{(x_n - \mu)}{2\sigma^2} = \frac{\sum_{n=1}^{N} x_n - N\mu}{2\sigma^2} \iff$$

$$\underbrace{\mu_{\text{ML}}}_{} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

ML estimation of Gaussian parameters

$$\mu_{\text{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma_{\text{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\text{ML}})^2 \qquad (variance)$$

ML estimation of Gaussian parameters

$$\mu_{\mathsf{ML}} = \frac{1}{N} \sum_{n=1}^{N} x_n$$

$$\sigma_{\mathsf{ML}}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\mathsf{ML}})^2$$

- This is the same result as minimizing the sum of square errors!
- but now out assumptions are explicit (i.e., how the data is distributed)
- This estimate of the variance is biased, i.e., $\mathbb{E}[\sigma_{MI}^2] \sigma^2 \neq 0$. The unbiased ML estimate is

$$\sigma_{\mathsf{ML}}'^2 = \underbrace{1}_{N-1} \sum_{n=1}^{N} (x_n - \mu_{\mathsf{ML}})^2$$

Will I go and play orienteering given the forecast?

$$\begin{array}{lcl} x & \in & \{\mathsf{sunny}, \mathsf{overcast}, \mathsf{rainy}\} \\ y & \in & \{\mathsf{yes}, \mathsf{no}\} \end{array}$$

$$X \sim ?$$
 $Y \sim ?$
 $X|Y \sim ?$
 $Y|X \sim ?$

how shall there variables to distributed \S

\overline{n}	x_n	y_n	n	x_n	y_n					
example	outlook	play	example	outlook	play					
1	sunny	no	8	sunny	no					
2	sunny		10 9	sunny	yes					
3	overcast	yes	10	rainy	yes					
4	rainy	yes	11	sunny	yes					
5	rainy		12	overcast	yes					
6	6 rainy 7 overcast		13	overcast	yes					
7			14	rainy	no					

Will I go and play orienteering given the forecast?

$$\begin{array}{lcl} x & \in & \{\mathsf{sunny}, \mathsf{overcast}, \mathsf{rainy}\} \\ y & \in & \{\mathsf{yes}, \mathsf{no}\} \end{array}$$

$$X \sim \operatorname{Cat}(\lambda_1, \lambda_2, \lambda_3)$$
 $Y \sim ?$ when the $X|Y \sim ?$ $Y|X \sim ?$

	n	x_n	y_n play	n	x_n	y_n				
	example	ample outlook		example	outlook	play				
	1	sunny	unny no 8 sunny		sunny	no				
	2			9	sunny	yes				
	3			10	rainy	yes				
	4	rainy	yes	11	sunny	yes				
	5	5 rainy		12	overcast	yes				
	6 rainy 7 overcast		no	13	overcast	yes				
			yes	14	rainy	no				

Will I go and play orienteering given the forecast?

$$x \in \{\text{sunny}, \text{overcast}, \text{rainy}\}\$$

 $y \in \{\text{yes}, \text{no}\}$

$$X \sim \mathsf{Cat}(\lambda_1, \lambda_2, \lambda_3)$$
 $Y \sim \mathsf{Bernoulli}(\lambda)$ မှုဖ/၈၀ $X|Y \sim ?$ $Y|X \sim ?$

	111	ammi	g uata		
n example	x_n outlook	y_n play	n example	x_n	y_n play
ехаптріе	OULIOUK	play	ехаптріе	OULIOOK	piay
1	sunny	no	8	sunny	
2	sunny	no	9	sunny	yes
3	overcast	yes	10	rainy	yes
4	rainy	yes	11	sunny	yes
5	rainy	yes	12	overcast	yes
6	6 rainy		13	overcast	yes
7 overcast		yes	14	rainy	no

Will I go and play orienteering given the forecast?

$$x \in \{\text{sunny}, \text{overcast}, \text{rainy}\}\$$

 $y \in \{\text{yes}, \text{no}\}$

$$X \sim \mathsf{Cat}(\lambda_1, \lambda_2, \lambda_3)$$
 $Y \sim \mathsf{Bernoulli}(\lambda)$
 $X|Y \sim \mathsf{Cat}(\lambda_1', \lambda_2', \lambda_3')$
 $Y|X \sim \mathsf{Bernoulli}(\lambda')$
 $Y = (\gamma \text{ loss of large } \chi \text{ or b})$
 $\chi \in (\gamma \text{ loss of large } \chi \text{ or b})$
 $\chi \in (\gamma \text{ loss of large } \chi \text{ or b})$

	Training data										
\overline{n}	x_n	y_n	n .	x_n	y_n						
example	outlook	play	example	outlook	play						
1	sunny	no	8	sunny	no						
2	sunny	no	9	sunny	yes						
3	overcast	yes	10	rainy	yes						
4	rainy	yes	11	sunny	yes						
5	rainy	yes	12	overcast	yes						
6	rainy	no	13	overcast	yes						
7 overcas		yes	14	rainy	no						

$$\underbrace{Pr(y)} = \begin{cases} \lambda & \text{if } y = \text{yes} \\ 1 - \lambda & \text{if } y = \text{no} \end{cases}$$

- **1** compute (log) likelihood of the data $P(\mathcal{D}|\lambda)$
- $\textbf{ 9} \ \, \text{find} \, \, \lambda_{\text{ML}} \, \, \text{that} \, \, \underline{\text{optimizes}} \, \, P(\mathcal{D}|\lambda)$

\overline{n}	x_n	y_n	n	x_n	y_n
example	outlook	play	example	outlook	play
1	sunny	no	8	sunny	no
2	sunny	no	9	sunny	yes
3	overcast	yes	10	rainy	yes
4	rainy	yes	11	sunny	yes
5	rainy	yes	12	overcast	yes
6	rainy	no	13	overcast	yes
7	overcast	yes	14	rainy	no

$$Pr(y) = \begin{cases} \lambda & \text{if } y = \text{yes} \\ 1 - \lambda & \text{if } y = \text{no} \end{cases}$$

$$\begin{split} Pr(\mathcal{D}|\lambda) &=& \prod_n Pr(y_n|\lambda) = \prod_{n \text{ s.t. } y \text{ =yes }} \lambda \prod_{n \text{ s.t. } y \text{ =no}} (1-\lambda) \\ &=& \lambda^n (1-\lambda)^{N-n} \end{split}$$

$$Pr(y) = \begin{cases} \lambda & \text{if } y = \text{yes} \\ 1 - \lambda & \text{if } y = \text{no} \end{cases}$$

$$\begin{split} Pr(\mathcal{D}|\lambda) &= & \prod_{n} Pr(y_n|\lambda) = \prod_{n \text{ s.t. } y = \text{yes}} \lambda \prod_{n \text{ s.t. } y = \text{no}} (1 - \lambda) \\ &= & \lambda^n (1 - \lambda)^{N - n} \\ \log Pr(\mathcal{D}|\lambda) &= & n \log \lambda + (N - n) \log (1 - \lambda) \end{split}$$

$$Pr(y) = \begin{cases} \lambda & \text{if } y = \text{yes} \\ 1 - \lambda & \text{if } y = \text{no} \end{cases}$$

$$Pr(\mathcal{D}|\lambda) = \prod_{n} Pr(y_n|\lambda) = \prod_{n \text{ s.t. } y = \text{yes}} \lambda \prod_{n \text{ s.t. } y = \text{no}} (1 - \lambda)$$

$$= \lambda^n (1 - \lambda)^{N - n}$$

$$\log Pr(\mathcal{D}|\lambda) = n \log \lambda + (N - n) \log (1 - \lambda)$$

$$\frac{d}{d\lambda} \log Pr(\mathcal{D}|\lambda) = \frac{n - N\lambda}{\lambda (1 - \lambda)} = 0$$

$$Pr(y) = \begin{cases} \lambda & \text{if } y = \text{yes} \\ 1 - \lambda & \text{if } y = \text{no} \end{cases}$$

$$\begin{split} Pr(\mathcal{D}|\lambda) &= & \prod_{n} Pr(y_n|\lambda) = \prod_{n \text{ s.t. } y = \text{yes}} \lambda \prod_{n \text{ s.t. } y = \text{no}} (1 - \lambda) \\ &= & \lambda^n (1 - \lambda)^{N - n} \\ &\log Pr(\mathcal{D}|\lambda) &= & n \log \lambda + (N - n) \log (1 - \lambda) \\ \frac{d}{d\lambda} \log Pr(\mathcal{D}|\lambda) &= & \frac{n - N\lambda}{\lambda(1 - \lambda)} = 0 \iff \lambda_{\text{ML}} = \frac{n}{N} \end{split}$$

MLE Example: Discrete Variables

Will I go and play orienteering given the forecast?

$$\begin{array}{lcl} x & \in & \{\mathsf{sunny}, \mathsf{overcast}, \mathsf{rainy}\} \\ y & \in & \{\mathsf{yes}, \mathsf{no}\} \end{array}$$

$$Y \sim \operatorname{Bernoulli}(\lambda)$$
 $\lambda_{\mathsf{ML}} = \frac{9}{14}$
$$\left(\mathbf{Q} \cdot \mathbf{Q} - \mathbf{D} \cdot \mathbf{S} \right)$$

	n	x_n	y_n	n	x_n	y_n				
	example	outlook	2		outlook	play				
	1	sunny			no					
	2 sunny		no	9	sunny	yes				
	3	3 overcast		10	rainy	yes				
	4	rainy	yes	11	sunny	yes				
	5	5 rainy		12	overcast	yes				
	6 rainy 7 overcast		no	13	overcast	yes				
			yes	14	rainy	no				

MLE: Categorical

Similar derivation:

$$\lambda_{k,\mathsf{ML}} = \frac{n_k}{N}$$

where n_k is the number of examples of the kth category

$$X \sim \mathsf{Cat}(\lambda_{\mathsf{sunny}}, \lambda_{\mathsf{overcast}}, \lambda_{\mathsf{rainy}})$$

$$\underline{\lambda_{\mathsf{ML}}} = \left\{ \frac{5}{14}, \frac{4}{14}, \frac{5}{14} \right\}$$

	Training data										
\overline{n}	n x_n		y_n	n	x_n	y_n					
exa	ample	outlook	play	example	outlook	play					
1		sunny	no	8	s <u>unn</u> y	no					
2		sunny	no	9	sunny	yes					
3		overcast	yes	10	rainy	yes					
4		rainy	yes	11	sunny	yes					
5		rainy	yes	12	overcast	yes					
6	6 rainy		no	13	overcast	yes					
_7		overcast	yes	14	rainy	no					

MLE: Categorical

Similar derivation:

$$\lambda_{k,\mathsf{ML}} = \frac{n_k}{N}$$

where n_k is the number of examples of the kth category

$$X \sim \mathsf{Cat}(\lambda_{\mathsf{sunny}}, \lambda_{\mathsf{overcast}}, \lambda_{\mathsf{rainy}})$$

$$\lambda_{\mathsf{ML}} = \begin{cases} \frac{5}{14}, \frac{4}{14}, \frac{5}{14} \end{cases} \underbrace{\frac{\mathsf{Training data}}{n}}_{\substack{n \\ \mathsf{example}}} \underbrace{\frac{y_n}{y_n}}_{\substack{n \\ \mathsf{example}}} \underbrace{\frac{x_n}{y_n}}_{\substack{n \\ \mathsf{example}}} \underbrace{\frac{y_n}{n}}_{\substack{\mathsf{outlook}}} \underbrace{\frac{y_n}{p_{\mathsf{lay}}}}_{\substack{\mathsf{outlook}}} \underbrace{\frac{y_n}{p_{\mathsf{lay}}}}}_{\substack{\mathsf{outlook}}} \underbrace{\frac{y_n}{p_{\mathsf{lay}}}}_{\substack{\mathsf{outlook}}} \underbrace{\frac{y_n}{$$

MLE: Categorical

Similar derivation:

$$\lambda_{k,\mathsf{ML}} = \frac{n_k}{N}$$

where n_k is the number of examples of the kth category

X	\sim	$Cat(\lambda_{sunny}, \lambda_{overo})$	$at(\underline{\lambda_{sunny}}, \underline{\lambda_{overcast}}, \underline{\lambda_{rainy}})$								
	=		Training data								
λ_{ML}		$\left\{\frac{5}{14}, \frac{4}{14}, \frac{5}{14}\right\}$	n example	x_n outlook	y_n play	n example	x_n outlook	y_n play			
17/17	$ Y \sim Cat(\lambda'_1, \dots, \lambda'_n)$	C-1()/ 1/)	1	sunny	no	8	sunny	no			
$A \mid Y$		$Cat(\lambda_1,\ldots,\lambda_k)$	2	sunny	no	9	sunny	yes			
		$\left\{ \frac{2}{9}, \frac{4}{9}, \frac{3}{9} \right\}$	3	overcast	yes	10	rainy	yes			
$\lambda'_{ML}(yes)$	=		4	rainy	yes	11	sunny	yes			
IVIL (7			5	rainy	yes	12	overcast	yes			
		$=\left\{\frac{3}{5},0,\frac{2}{5}\right\}$	6	rainy	no	13	overcast	yes			
λ'_{n} (no)	=		7	overcast	yes	14	rainy	no			
/\ML(IIO)		15'~'5 f			<u> </u>						

But ... will I play orienteering given a rainy outlook?

$$\begin{array}{ll} Pr(y=\text{yes}|\text{outlook=rainy}) & = & \frac{Pr(\text{outlook=rainy}|y=\text{yes})Pr(y=\text{yes})}{Pr(\text{outlook=rainy})} \\ & = & \frac{\frac{3}{9}\frac{9}{14}}{\frac{5}{14}} = \frac{3}{5} \end{array}$$

But ... will I play orienteering given a rainy outlook?

$$Pr(y = \text{yes}|\text{outlook} = \text{rainy}) = \frac{Pr(\text{outlook} = \text{rainy}|y = \text{yes})Pr(y = \text{yes})}{Pr(\text{outlook} = \text{rainy})}$$

$$= \frac{\frac{3}{9} \frac{9}{14}}{\frac{5}{14}} = \frac{3}{5}$$

$$Pr(y = \text{no}|\text{outlook} = \text{rainy}) = \frac{Pr(\text{outlook} = \text{rainy}|y = \text{no})Pr(y = \text{no})}{Pr(\text{outlook} = \text{rainy})}$$

$$= \frac{\frac{2}{5} \frac{5}{14}}{\frac{5}{14}} = \frac{2}{5} \qquad \text{for } (1 - \frac{3}{5}).$$
Then
$$y_{\text{MAP}} = \arg(\max_{y} Pr(y|\text{outlook} = \text{rainy})) = y_{\text{es}} (3/5 > 2/5)$$

$$\downarrow \psi_{\text{sym}} = \exp(\max_{y} Pr(y|\text{outlook} = \text{rainy})) = y_{\text{es}} (3/5 > 2/5)$$

$$\downarrow \psi_{\text{sym}} = \exp(\max_{y} Pr(y|\text{outlook} = \text{rainy})) = y_{\text{es}} (3/5 > 2/5)$$

But ... will I play orienteering given a rainy outlook?

$$\begin{array}{ll} Pr(y=\text{yes}|\text{outlook=rainy}) & = & \frac{Pr(\text{outlook=rainy}|y=\text{yes})Pr(y=\text{yes})}{Pr(\text{outlook=rainy})} \\ & = & \frac{3}{9} \frac{9}{14} = \frac{3}{5} \\ \\ Pr(y=\text{no}|\text{outlook=rainy}) & = & \frac{Pr(\text{outlook=rainy}|y=\text{no})Pr(y=\text{no})}{Pr(\text{outlook=rainy})} \\ & = & \frac{2}{5} \frac{5}{14} = \frac{2}{5} \end{array}$$

Then

Source of confusion

Maximum a Posteriori (MAP) and Maximum Likelihood (ML)

even with parameters θ estimated with the ML optimality criterion:

$$\theta_{\mathsf{ML}} = \underset{\theta}{\arg\max} P(D|y,\theta) = \underset{\theta}{\arg\max} \prod_{\theta} P(x_n|y_n,\theta)$$

NB: ML parameter estimation is not ML regression/classification.

Outline

- Introduction
 - Probabilistic Classification and Regression
 - Discriminative vs Generative Models
 - Parametric vs Non-parametric Inference
- Maximum Likelihood (ML) Estimation
 - Regression
 - Classification
- Special Cases
 - Naïve Bayes Classifier
 - Logistic Regression

Problem: Curse of Dimensionality

n		\mathbf{x}_n			y_n
example	outlook	temperature	humidity	windy	play
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

 ${\it difficult\ to\ model\ } Pr({\it outlook}, {\it temperature}, {\it humidity}, {\it windy}|{\it play})$

Problem: Curse of Dimensionality

- Volume of feature space exponential in number of features.
- ullet ... \Longrightarrow need more and more data to model Pr(x,y) well

Problem: Curse of Dimensionality

- Volume of feature space exponential in number of features.
- ullet ... \Longrightarrow need more and more data to model Pr(x,y) well

Approximation: Naïve Bayes classifier

- All features (dimensions) regarded as conditionally independent.
- Instead of modelling one D-dimensional distribution: Pr(outlook, temperature, humidity, windy|play) $\underbrace{\text{model } D \text{ one-dimensional distributions}}_{Pr(\text{outlook}|\text{play}), Pr(\text{temperature}|\text{play}), Pr(\text{humidity}|\text{play}), Pr(\text{windy}|\text{play})}$

- \mathbf{x} is a vector (x_1, \dots, x_D) of attribute or feature values.
- Let $\mathcal{Y} = \{1, 2, \dots, K\}$ be the set of possible classes.
- MAP classification is

$$\underbrace{y_{\mathsf{MAP}}}_{y \in \mathcal{Y}} = \arg \max_{y \in \mathcal{Y}} \Pr(y \mid x_1, \dots, x_D) = \arg \max_{y \in \mathcal{Y}} \frac{\Pr(x_1, \dots, x_D \mid y) \Pr(y)}{\Pr(x_1, \dots, x_D \mid y)}$$

$$= \arg \max_{y \in \mathcal{Y}} \Pr(x_1, \dots, x_D \mid y) \Pr(y)$$

- x is a vector (x_1, \ldots, x_D) of attribute or feature values.
- Let $\mathcal{Y} = \{1, 2, \dots, K\}$ be the set of possible classes.
- MAP classification is

$$y_{\mathsf{MAP}} = \arg\max_{y \in \mathcal{Y}} Pr(y \mid x_1, \dots, x_D) = \arg\max_{y \in \mathcal{Y}} \frac{Pr(x_1, \dots, x_D \mid y) Pr(y)}{Pr(x_1, \dots, x_D)}$$
$$= \arg\max_{y \in \mathcal{Y}} Pr(\underline{x_1, \dots, x_D \mid y}) Pr(y)$$

• Naïve Bayes assumption:

Naïve Bayes assumption:
$$Pr(x_1, \ldots, x_D \mid y) = \prod_{d=1}^D Pr(x_d \mid y)$$
 are presumally independs.

- \mathbf{x} is a vector (x_1, \dots, x_D) of attribute or feature values.
- Let $\mathcal{Y} = \{1, 2, \dots, K\}$ be the set of possible classes.
- MAP classification is

$$y_{\mathsf{MAP}} = \arg \max_{y \in \mathcal{Y}} Pr(y \mid x_1, \dots, x_D) = \arg \max_{y \in \mathcal{Y}} \frac{Pr(x_1, \dots, x_D \mid y) Pr(y)}{Pr(x_1, \dots, x_D)}$$
$$= \arg \max_{y \in \mathcal{Y}} Pr(x_1, \dots, x_D \mid y) Pr(y)$$

• Naïve Bayes assumption:

$$Pr(x_1,...,x_D | y) = \prod_{d=1}^{D} Pr(x_d | y)$$

• MAP classification with Naïve Bayes:

$$y_{\mathsf{MAP}} = \arg\max_{y \in \mathcal{Y}} Pr(y) \prod_{d=1}^{D} Pr(x_d \,|\, y)$$

$$y_{\mathsf{MAP}} = \arg\max_{y \in \mathcal{Y}} Pr(y) \prod_{d=1}^{D} Pr(x_d \mid y)$$

Naïve Bayes is one of the most common learning methods. When to use:

- Moderate or large training set available.
- Feature dimensions are conditionally independent given class (or at least reasonably independent, still works with a little dependence).

Successful applications:

- Medical diagnoses (symptoms independent)
- Classification of text documents (words independent)

Example: Play Orienteering?

Question: Will I go and play orienteering given the forecast?

My measurements:

```
    outlook ∈ {sunny, overcast, rainy},
    temperature ∈ {hot, mild, cool},
```

• humidity \in {high, normal}, \subset windy \in {false, true}.

Possible decisions: $y \in \{\text{yes, no}\}$

Example: Play Orienteering?

What I did in the past:

\overline{n}		\mathbf{x}_n			y_n
example	outlook	temperature	humidity	windy	play
1	sunny	hot	high	false	no
2	sunny	hot	high	true	no
3	overcast	hot	high	false	yes
4	rainy	mild	high	false	yes
5	rainy	cool	normal	false	yes
6	rainy	cool	normal	true	no
7	overcast	cool	normal	true	yes
8	sunny	mild	high	false	no
9	sunny	cool	normal	false	yes
10	rainy	mild	normal	false	yes
11	sunny	mild	normal	true	yes
12	overcast	mild	high	true	yes
13	overcast	hot	normal	false	yes
14	rainy	mild	high	true	no

xample: Play Orienteering?

Counts of when I played orienteering (did not play)

	Outlook			emperatu	re	Humidity W		ndy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3 (2)	2 (2)	4 (2)	3 (1)	3 (4)	6 (1)	6 (2)	3 (3)
y N taged)	(did not	4 N bg).							

xample: Play Orienteering?

Counts of when I played orienteering (did not play)

Outlook			Т	emperatu	re	Hui	nidity	Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3 (2)	2 (2)	4 (2)	3 (1)	3 (4)	6 (1)	6 (2)	3 (3)

Prior of whether I played orienteering or not

	Play		
Counts:	yes	no	
	9	5	

Prior Probabilities:

xample: Play Orienteering?

Counts of when I played orienteering (did not play)

Outlook			Temperature			Humidity		Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
2 (3)	4 (0)	3 (2)	2 (2)	4 (2)	3 (1)	3 (4)	6 (1)	6 (2)	3 (3)

Prior of whether I played orienteering or not

Counts: $\frac{\text{Play}}{\text{yes}}$ no $\frac{\text{Prior Probabilities:}}{9}$ $\frac{\frac{\text{Play}}{\text{yes}}$ no $\frac{9}{14}$ $\frac{5}{14}$

Likelihood of attribute when orienteering played $Pr(x_i | y=yes)(Pr(x_i | y=no))$

Outlook			Temperature			Humidity		Windy	
sunny	overcast	rain	hot	mild	cool	high	normal	false	true
$\frac{2}{9} (\frac{3}{5})$	$\frac{4}{9} (\frac{0}{5})$	$\frac{3}{9} \left(\frac{2}{5} \right)$	$\frac{2}{9} (\frac{2}{5})$	$\frac{4}{9} \left(\frac{2}{5} \right)$	$\frac{3}{9} \left(\frac{1}{5} \right)$	$\frac{3}{9} \left(\frac{4}{5} \right)$	$\frac{6}{9} (\frac{1}{5})$	$\frac{6}{9} (\frac{2}{5})$	$\frac{3}{9} (\frac{3}{5})$

Example: Play Orienteering?

Inference: Use the learnt model to classify a new instance.

New instance:

$$\underline{\mathbf{x}} = (\text{sunny, cool, high, true})$$

Apply Naïve Bayes Classifier:

$$y_{\mathsf{MAP}} = \arg\max_{y \in \{\mathsf{yes, no}\}} Pr(y) \prod_{i=1}^4 Pr(x_i \mid y)$$

Example: Play Orienteering?

Inference: Use the learnt model to classify a new instance.

New instance:

$$\mathbf{x} = (\mathsf{sunny}, \, \mathsf{cool}, \, \mathsf{high}, \, \mathsf{true})$$

Apply Naïve Bayes Classifier:

$$(y_{\text{MAP}}) = \arg\max_{y \in \{\text{yes, no}\}} Pr(y) \prod_{i=1}^{4} Pr(x_i \mid y)$$

$$P(\mathsf{yes}) \ P(\mathsf{sunny} \ | \ \mathsf{yes}) \ P(\mathsf{cool} \ | \ \mathsf{yes}) \ P(\mathsf{high} \ | \ \mathsf{yes}) \ P(\mathsf{true} \ | \ \mathsf{yes}) = \frac{9}{14} \times \frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} = .005$$

$$P(\mathsf{no}) \ P(\mathsf{sunny} \ | \ \mathsf{no}) \ P(\mathsf{cool} \ | \ \mathsf{no}) \ P(\mathsf{high} \ | \ \mathsf{no}) \ P(\mathsf{true} \ | \ \mathsf{no}) = \frac{5}{14} \times \frac{3}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{3}{5} = \underbrace{.021}_{\mathsf{no} \ \mathsf{e}}$$

$$\implies y_{\mathsf{MAP}} = \mathsf{no}$$

Naïve Bayes: Independence Violation

Conditional independence assumption:

$$Pr(x_1, x_2, ..., x_D | y) = \prod_{d=1}^{D} Pr(x_d | y)$$

often violated – but it works surprisingly well anyway!

• Since dependencies ignored, naïve Bayes posteriors often unrealistically close to 0 or 1.

Different attributes say the same thing to a higher degree than we expect as they are correlated in reality.

Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute x_i ? Then

$$Pr(x_i|y) = 0 \implies Pr(y) \prod_{i=1}^{D} Pr(x_i|y) = 0$$
for some ν , y always
has the same value (y/ν) ,
 $y = 0$
 $y = 0$

Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute x_i ? Then

$$Pr(x_i \mid y) = 0 \implies Pr(y) \prod_{i=1}^{D} Pr(x_i \mid y) = 0$$

• **Simple solution:** add <u>pseudocounts</u> to all counts so that <u>no</u> count is zero

Naïve Bayes: Estimating Probabilities

• **Problem:** What if none of the training instances with target value y have attribute x_i ? Then

$$Pr(x_i \mid y) = 0 \implies Pr(y) \prod_{i=1}^{D} Pr(x_i \mid y) = 0$$

- **Simple solution:** add pseudocounts to all counts so that no count is zero
- This is a form of regularization or smoothing

Logistic Regression

Figure from Prince (Ch. 9)

• Binary classification problem: $y \in \{0,1\}$ treated as a regression problem: $\mathbf{x} \to \lambda$ (Bernoulli param.)

$$\begin{array}{lcl} Y|\mathbf{X} & \sim & \mathsf{Bernoulli}(\lambda(\mathbf{x})) \\ Pr(y|\mathbf{x}) & = & \lambda(\mathbf{x})^y (1-\lambda(\mathbf{x}))^{(1-y)} \\ \lambda(\mathbf{x}) & = & \mathsf{sigmoid}(\mathbf{w}^T\mathbf{x}) = \frac{1}{1+e^{-\mathbf{w}^T\mathbf{x}}} & \left(\begin{array}{c} \mathsf{solid}_{\mathcal{P}_{\lambda}, \, \mathsf{colored}} \\ \mathsf{sigmoid}_{\mathcal{P}_{\lambda}, \, \mathsf{colored}} \end{array} \right) \end{array}$$

Logistic Regression

Figure from Prince (Ch. 9)

Logistic Regression vs Gaussian Classifier

Different learning:

- Gaussians: generative model, optimize $Pr(\mathbf{x}|y_0)$ and $Pr(\mathbf{x}|y_1)$
- Logistic Regression: discriminative model, optimize $Pr(y_1|\mathbf{x})$

Logistic Regression: MLE

Learning: maximize $Pr(y|\mathbf{x})$ (discriminative method)

$$\begin{split} Pr(y|\mathbf{x},\mathbf{w}) &= \prod_{i=1}^{N} \lambda(\mathbf{x}_i)^{y_i} (1-\lambda(\mathbf{x}_i))^{(1-y_i)} \quad \text{(Bernelli, lower empty)} \\ \log Pr(y|\mathbf{x},\mathbf{w}) &= \sum_{i=1}^{N} \left[y_i \log \lambda(\mathbf{x}_i) + (1-y_i) \log \left(1-\lambda(\mathbf{x}_i)\right) \right] \\ &= \sum_{i=1}^{N} \left[y_i \log \operatorname{sig}(\mathbf{w}^T \mathbf{x}_i) + (1-y_i) \log \left(1-\operatorname{sig}(\mathbf{w}^T \mathbf{x}_i)\right) \right] \end{split}$$

Logistic Regression: MLE

Learning: maximize $Pr(y|\mathbf{x})$ (discriminative method)

$$Pr(y|\mathbf{x}, \mathbf{w}) = \prod_{i=1}^{N} \lambda(\mathbf{x}_i)^{y_i} (1 - \lambda(\mathbf{x}_i))^{(1-y_i)}$$

$$\log Pr(y|\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{N} \left[y_i \log \lambda(\mathbf{x}_i) + (1 - y_i) \log (1 - \lambda(\mathbf{x}_i)) \right]$$

$$= \sum_{i=1}^{N} \left[y_i \log \operatorname{sig}(\mathbf{w}^T \mathbf{x}_i) + (1 - y_i) \log \left(1 - \operatorname{sig}(\mathbf{w}^T \mathbf{x}_i) \right) \right]$$

Optimize by setting: no close form solution! Use gradient descent

$$\frac{d}{d\mathbf{w}} \log Pr(y|\mathbf{x}, \mathbf{w}) = \sum_{i=1}^{N} \left(y_i - \operatorname{sig}(\mathbf{w}^T \mathbf{x}_i) \right) \mathbf{x}_i = 0$$

$$\left(\operatorname{global minimum garanteed} \right)$$
Bob L. T. Sturm

Learning as Inference

Hints: derivatives of sigmoid

$$\operatorname{sig}(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

$$\frac{d}{d\mathbf{w}} \operatorname{sig}(\mathbf{w}^T \mathbf{x}) = \operatorname{sig}(\mathbf{w}^T \mathbf{x}) \left(1 - \operatorname{sig}(\mathbf{w}^T \mathbf{x})\right) \mathbf{x}$$

$$\frac{d}{d\mathbf{w}} \log \left(\operatorname{sig}(\mathbf{w}^T \mathbf{x})\right) = \frac{\operatorname{sig}(\mathbf{w}^T \mathbf{x}) \left(1 - \operatorname{sig}(\mathbf{w}^T \mathbf{x})\right)}{\operatorname{sig}(\mathbf{w}^T \mathbf{x})} \mathbf{x} = \left(1 - \operatorname{sig}(\mathbf{w}^T \mathbf{x})\right) \mathbf{x}$$

$$\frac{d}{d\mathbf{w}}\log\left(1-\operatorname{sig}(\mathbf{w}^T\mathbf{x})\right) = \frac{-\operatorname{sig}(\mathbf{w}^T\mathbf{x})\left(1-\operatorname{sig}(\mathbf{w}^T\mathbf{x})\right)}{1-\operatorname{sig}(\mathbf{w}^T\mathbf{x})}\mathbf{x} = -\operatorname{sig}(\mathbf{w}^T\mathbf{x})\mathbf{x}$$

Logistic Regression vs Conditional Gaussian

Number of parameters (D dimensions, 2 classes):

Gaussian distributions (equal priors)

$$2 \times D$$
 (mean vectors) $D(D+1)/2$ (shared covariance)

$$D(D+5)/2$$
 (total, quadratic in D)

Logistic Regression

D (weights)

(less parameter)

Gaussian distributions

- closed form solution
- generative model

Logistic Regression

- gradient descent
- discriminative model

Summary

- Introduction
 - Probabilistic Classification and Regression
 - Discriminative vs Generative Models
 - Parametric vs Non-parametric Inference
- Maximum Likelihood (ML) Estimation
 - Regression
 - Classification
- Special Cases
 - Naïve Bayes Classifier
 - Logistic Regression

Check your understanding!

Consider a dataset $\mathcal{D} = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_N, y_N)\}$ of N independent and identically distributed observations where each \mathbf{x}_n is a p-dimensional real vector. Assume the random variable Y_n is distributed Laplacian with a mean $\boldsymbol{\beta}^T\mathbf{x}_n$ and known scale parameter b>0. In other words, $Y_n|\mathbf{x}_n, \boldsymbol{\beta} \sim \mathcal{L}(\boldsymbol{\beta}^T\mathbf{x}_n, b)$. Define the a priori distribution of the parameters $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)$ multivariate Gaussian with parameters mean $\mathbf{0}$ and variance $\sigma^2\mathbf{I}$.

Check your understanding!

- **1** Derive the maximum likelihood (ML) estimate of β .
- Which of the following statements is not true? (There may be more than one.)
 - 1. As b increases and N remains constant, the ML estimate of β becomes poorer.
 - 2. As N increases and b remains constant, the ML estimate of ${\boldsymbol \beta}$ becomes poorer.
 - 3. As b decreases and N remains constant, the ML estimate of $\boldsymbol{\beta}$ becomes poorer.
 - 4. As N decreases and b remains constant, the ML estimate of ${\boldsymbol \beta}$ becomes poorer.