# 인적사항 및 주요경력



지원분야 비즈니스 빅데이터 분석 트랙 인적사항 이 름 김성범

생년 월일 1996년 5월 8일 (만 25세, 남)

연 락 처 010-9591-7640

이 메 일 tjdqja0508@naver.com

블 로 그 https://blog.naver.com/tjdqja0508

| 학 력           | 2021. 08 연세대학교 정보대학원 디지털서비스 연구실<br>2021. 08 순천향대학교 경영학과 졸업 (학점 3.59)<br>* 복수전공 : 빅데이터공학(학점 4.29)<br>* 동아리 : 빅데이터 분석 / 마케팅기획 / 창업<br>* 성적우수 장학금 2회, 특별장학금 3회 수상<br>2015. 02 신송고등학교 졸업                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 보유자격          | 2020 데이터 분석 준전문가 (ADsP), 컴퓨터활용능력 1급<br>2019 전산회계 1급, 회계관리 2급<br>2018 한국사검정능력1급, 워드프로세스 1급, 정보처리기능사<br>2016 MOS word                                                                                                                                                            |
| 수상경력          | 2021. 02 학내 프로젝트 중심 창업동아리 경진대회 장려상<br>2021. 02 공공 빅데이터 청년인턴십 우수인턴 NIA 원장상<br>2020. 11 서울특별시 빅데이터 캠퍼스 공모전 최우수상<br>(주제 : 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석)<br>2020. 12 학내 창업경진대회 장려상(주제 : 스마트폰 액세서리)<br>2020. 07, 12 학내 창업 결과 발표회 금상(주제 : 스마트폰 액세서리)<br>2019. 12 우체국 예금 서포터즈 개인 최우수 |
| 교육훈련<br>이력    | 2020. 12 행정안전부, 2020 공공 빅데이터 청년인턴십 확대운영<br>- 데이터 전문교육(200시간), 인천광역시청 인턴십(3개월)                                                                                                                                                                                                  |
| 핵심 역량         | (활용SW) R, Python, Q-GIS<br>(분석 및 관심 역량) 빅데이터 분석과제 기획, 변수·요인 탐색, 데이터<br>수집/정제, 통계, Business Intelligence, Machine·Deep Learning,<br>Data·Text Mining, Digital Marketing, Recommender System                                                                                     |
| 프로젝트<br>수행 이력 | - [2021. 01] 해양수산 빅데이터 활용 혁신 아이디어 제안 - [2020. 12] 지방세 체납징수 효율화를 위한 빅데이터 분석 - [2020. 11] 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석 - [2020. 07] 인스타그램 해시태그를 통한 사회 연결망 분석 - [2020. 07] 의정부 지역화폐를 활용한 소비패턴 분석 시각화 - [2019. 07] 해외 소비자 타겟 선정 및 시장 조사 Study Abroad                              |

## 수산품질 등급화를 통한 효율적인 양식장 가이드

| 프로젝트명     | 수산품질 등급화를 통한 효율적인 양식장 가이드                                                           |
|-----------|-------------------------------------------------------------------------------------|
| 배경 및 목적   | (배경) 다양한 외부 요인으로 양식장 관리의 어려움으로 인한 문제 발생<br>(목적) 문제를 사전에 예측하여 선제적 대응을 하는 AI기반 솔루션 제안 |
| 수행기간      | 2021. 01 ~ 2021. 01(약 1개월)                                                          |
| 팀 구성 및 역할 | 4인 1팀 / 프로젝트 매니저 및 분석 제안서 작성                                                        |
| 사용언어 및 도구 | Power Point(분석 제안서)                                                                 |
| 주요 활용 데이터 | 양식장 환경 정보, 해양기상정보, 어획정보, 수산물 데이터 등                                                  |
| 주요 분석 기법  | 군집분석(K-means), 선형회귀(Linear Regression), 시계열분석(ARIMA)                                |
| 산출물       | 해양수산 빅데이터 활용 혁신 아이디어 제안발표자료                                                         |

#### ■ 분석 방법

- 양식장 환경 정보와 해양기상 정보 등을 융합하여 비지도 학습인 K-means를 통해 3가지의 품질등급으로 '수산 품질 등급'을 정의함
- 수산물 시장가격과 어획량 데이터를 융합하여 지도 학습인 선형 회귀를 통해 '수산물 가격 예측'을 제공하여 합리적인 시장 활동을 위함

#### ■ 분석 결과



해양 수산 효율적인 관리 모델 개발

데이터 수집 & 분석

지속적인 모델 관리

- 품질종합점수의 분포에 따라 군집분석(K-means)를 이용하여 시장 유통, 가공산업 유통, 폐기 등급의 3단계로 제시
- 수산 산업 종사자에게 시장가격 예측을 통한 가격을 제안하여 합리적인 시장 활동 제안
- 지속가능한 AI 기반 수산 산업 가이드를 위하여 분석 모델의 **오류 최소화 필요**
- 데이터 축적과 주요한 파생변수 도출을
   통해 등급 분류 및 가격 예측 모델을
   제안

#### ■ 활용 및 기대효과

- ✓ 효율적인 양식장 관리 가이드를 통한 수산물 식중독 문제 해결 및 집단 폐기 예방
- ✓ 품질경쟁력 강화를 통한 수산 시장 소비 활성화
- ✓ 양식장 생산력 증가와 어촌소득 7.000만원 조기 달성 기대

## 지방세 체납징수 효율화를 위한 빅데이터 분석

| 프로젝트명     | 지방세 체납징수 효율화를 위한 빅데이터 분석(1/2)                                                   |
|-----------|---------------------------------------------------------------------------------|
| 배경 및 목적   | (배경) 지방세 체납액 증가에 따른 데이터 기반 정책 마련의 필요성<br>(목적) 체·수납 대상자 예측과 유형분류를 통한 효율적 징수활동 제안 |
| 수행기간      | 2020.10.5 ~ 2020.12.31(약 3개월)                                                   |
| 팀 구성 및 역할 | 개인 / 데이터 정제, 모델 구축, 모형 검정, 결과 해석                                                |
| 사용언어 및 도구 | R, Python, Excel                                                                |
| 주요 활용 데이터 | 체납·결손의 내부데이터와 NICE 신용정보의 외부데이터                                                  |
| 주요 분석 기법  | Logistic Regression, Neural Network, Random Forest, Decision tree               |
| 산출물       | [별첨] 인천광역시 지방세 체납 효율화 빅데이터 분석 보고서                                               |

### ■ 분석 방법

- 내·외부 데이터를 융합하고 **회수등급**을 중심으로 데이터 정제
- **탐색적 데이터 분석(EDA)**을 통한 체납징수 현황을 파악 후 **문제 정의**
- **앙상블(Ensemble)**과 **의사결정 나무(Decision tree)** 모형을 통해 효율적인 징수 활동 전개 제안하는 등 구체적인 해결 방안 제시

#### ■ 분석 프로세스



 내·외부 데이터를 활용하여 데이터 탐색 후 인사이트를 도출하고, 알맞은 분석 데이터 셋을 생성하여 모형 개발을 통해 결과를 해석하였음.

### ■ 주요 활용 분석 방법

- **앙상블(Ensemble) 모형**을 통한 체·수납 대상자 예측
- 의사결정 나무(Decision tree) 모형을 통한 체 수납 유형분류



## 지방세 체납징수 효율화를 위한 빅데이터 분석

| 프로젝트명 | 지방세 체납징수 효율화를 위한 빅데이터 분석(2/2) |
|-------|-------------------------------|
| 수행기간  | 2020.10.5 ~ 2020.12.31(약 3개월) |

#### ■ 분석 결과

#### <탐색적 데이터 분석>



- 인천시 체납징수 현황 파악을 통한 인사이트(Insight) 도출
- **회수등급**에 따른 체·수납 대상자에 대한 특성이 유의미한 것으로 파악

#### <체·수납 대상자 유형분류>



- 체·수납 대상자를 총 8개의 유형 분류를 통해 납세자의 패턴을 확인
- 이를 통한 납세자의 특성을 반영하여 **효율적인 징수활동** 전개

### ■ 활용 및 기대효과

- ✓ 연령, 지역, 체납정보, 신용정보를 통한 고지방법으로 차별화된 징수활동 전개
- ✓ 체납 대상자 유형 특성에 효율적인 징수 활동을 통한 민원 감소, 행정 효율 증대
- ✓ 체납·신용 데이터를 융합한 회수등급 갱신으로 데이터 기반 세무행정 실현

#### <체·수납 대상자 예측>

| 모형구분                | 우·불량 예측(A) | 우·불량 실제(B) | 정확도(A/B) |
|---------------------|------------|------------|----------|
| Logistic Regression | 45,499     | 71,592     | 63.55%   |
| Nerual Network      | 46,097     | 71,592     | 64.39%   |
| Random Forest       | 46,420     | 71,592     | 63.85%   |



| Logistic Regression |               | 68.08          | 27.6           | 36.16         |  |
|---------------------|---------------|----------------|----------------|---------------|--|
| Nerual Netw         | ork           | 69.19          | 29.07          | 38.38         |  |
| Random For          | Random Forest |                | 29.81          | 35.18         |  |
| Confusion Matrix    | Logie         | tic Regression | Nerual Network | Random Forest |  |
| Precision           | LOBIS         | 0.6419         | 0.6549         | 0.6600        |  |
| Accuracy            |               | 0.6355         | 0.6439         | 0.6485        |  |
| Recall              | 0.6219        |                | 0.6164         | 0.6201        |  |
| Specificity         | 0.6493        |                | 0.6717         | 0.6771        |  |
| FP_rate             | 0.3126        |                | 0.3099         | 0.3117        |  |
| F1 Score            | 0.6317        |                | 0.6351         | 0.6394        |  |
| Venne               | 0.0210        |                | 0.000          | 0.0071        |  |

- 앙상블(Ensemble) 모형 구축을 통한 체·수납 대상자 예측
- 정확도는 약 64%으로 회수등급과 다양한 요인에 대한 연구가 필요

### <기대효과 시뮬레이션>



실제 징수업무 적용 시 **절감비용**,

**환수금액** 시뮬레이션 결과 도출

효과 기대

■ 징수 활동 시 약 400만원의 비용절감

## 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석

| 프로젝트명     | 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석(1/2)                                        |
|-----------|---------------------------------------------------------------------------|
| 배경 및 목적   | (배경) 서울시 응급의료 전용헬기도입에 따른 인계점 선정 필요<br>(목적) 과학적 의사결정을 통한 효율적인 인계점 입지 분석 제안 |
| 수행기간      | 2020.08.24 ~ 2020.11.20(약 3개월)                                            |
| 팀 구성 및 역할 | 9인 1팀 / 팀장 및 프로젝트 매니저, 프로세스 기획 관리, 요인 선정                                  |
| 사용언어 및 도구 | R / Python / Excel                                                        |
| 주요 활용 데이터 | 교통정체, 중증응급환자, 응급의료 취약구역 관련 공공데이터                                          |
| 주요 분석 기법  | 계층 분석 과정(Analytic Hierarchy Process : AHP)                                |
| 산출물       | [별첨]「2020 서울시 빅캠공모전」_「Dr.헬기팀」_분석결과서                                       |

#### ■ 분석 방법

- 인계점 선정요인 데이터를 활용하여, 계층적 분석 과정(AHP)후 산출한 가중치를 이용하여 요인에 대한 상대적 중요도 도출
- 인계점 선정 요인에 대한 **가중치 종합 → 인계점 최적입지 선정**

### ■ 분석 프로세스



■ 요인들의 데이터를 수집 및 정제 후 계층 분석 과정(AHP)을 통해 가중치 산출하고, 우선비중구역을 도출하여 최적입지를 선정하고자 함.

### ■ 주요 활용 분석 방법

■ 계층 분석 과정(Analytic Hierarchy Process, AHP)을 이용한 요인 가중치 산출



## 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석

| 프로젝트명 | 서울시 응급의료 전용헬기를 위한 인계점 최적입지 분석(2/2) |
|-------|------------------------------------|
| 수행기간  | 2020.08.24 ~ 2020.11.20(약 3개월)     |

#### ■ 분석 결과

#### <인계점 선정 요인>



- 소방청 범부처 매뉴얼과 관련 연구논문 기반 정성적 자료로 접근
- '교통정체구역', '중증응급환자 발생구역', '응급의료 취약구역' 3가지 요인 선정

#### <공간 분석 시각화>



- AHP을 통한 가중치를 '**우선비중구역**'로 하나 종합점수인 **히트맵**으로 산출
- 서울 외곽 지역 및 도심지역에 인계점 우선설치 구역을 확인

#### <인계점 입지 분석>



- 인계점 우선비중구역 중 상위 30개의 격자 나열 후 **4개의 구**로 구분
- 인계점 조건에 해당하는 시설 중 실제
   활용가능한 시설을 필터링하여 위치표시

#### <인계점 최적입지 선정>



- 예시로 '강동구'에서 면적 별 총점 비교를 통해 '천호 1동'을 최적입지 분석
- '천호 1동'은 인계점 선정 **요인 3가지의** 특성을 보이며, 인계점 **활용 기준에 충족**

#### ■ 활용 및 기대효과

- ✓ 서울시 내 과학적인 인계점 선정으로 응급의료 전용헬기 운영활동 강화
- ✓ 서울시 골든타임 이수율 33%에서 42%으로 상승할 것으로 기대
- ✓ 지역별 특성을 고려하고, 공공 데이터를 활용한 **맞춤형 표준분석모델**로 활용 가능

## 인스타그램 해시태그를 통한 사회 연결망 분석

| 프로젝트명     | 인스타그램 해시태그를 통한 사회 연결망 분석(교내 과제)(1/2)                                    |
|-----------|-------------------------------------------------------------------------|
| 배경 및 목적   | (배경) SNS 사용자의 해시태그 분석을 통한 과학적 마케팅 필요<br>(목적) 연관 발생하는 키워드를 파악하여 新 마케팅 제안 |
| 수행기간      | 2020.04 ~ 2020. 07 (약 3개월)                                              |
| 팀 구성 및 역할 | 2인 1팀 / 팀장, 데이터 수집 및 정제, 네트워크 분석 및 시각화                                  |
| 사용언어 및 도구 | R                                                                       |
| 주요 활용 데이터 | 인스타그램 해시태그 크롤링                                                          |
| 주요 분석 기법  | SNA(Social Network Analysis)                                            |
| 산출물       | 인스타그램 해시태그를 통한 사회 연결망 분석(교내과제)                                          |

### ■ 분석 방법

- **키워드**를 중심으로 인스타그램 **해시태그**를 **크롤링**하여, 데이터 수집 및 정제
- R의 Igraph 패키지를 활용하여 네트워크를 시각화하고, 연결, 매개, 근접, 아이겐벡터 중심성을 이용한 네트워크 분석 시행
- 중심성에 위치한 키워드를 중심으로 과학적 의사결정 제안

### ■ 분석 프로세스



■ 지정 키워드와 같이 발생한 해시태그들의 관계를 파악하고자 데이터를 수집 및 정제하고, 이를 중심성 네트워크 분석을 통한 결론을 도출하였음.

### ■ 주요 활용 분석 방법

■ 사회 연결망 (Social Network Analysis, SNA)



## 인스타그램 해시태그를 통한 사회 연결망 분석

| 프로젝트명 | 인스타그램 해시태그를 통한 사회 연결망 분석(교내 과제)(2/2) |
|-------|--------------------------------------|
| 수행기간  | 2020.04 ~ 2020. 07 (약 3개월)           |

### ■ 분석 결과

#### <해시태그 네트워크 시각화>



- '그린카' 키워드를 중심으로 **서브그룹** 형성된 것을 확인
- 서브그룹간 연결하는 **특정 노드**를 파악

### <네트워크 중심성 분석>

| 중심성(평균)                 | 그린카      | 드라이브    | 여행      | 아반떼     | 커플                |
|-------------------------|----------|---------|---------|---------|-------------------|
| Edges                   | 4363     |         |         |         |                   |
| centralization          |          |         | 0.910   | 5       |                   |
| betweenness(269.7)      | 108982.2 | 1546.87 | 366.96  | 341.73  | <del>123.82</del> |
| closeness(0.0009685)    | 0.00187  | 0.00105 | 0.00102 | 0.00102 | 0.0010            |
| eigen_centrality(0.071) | 1        | 0.2578  | 0.1954  | 0.1525  | 0.1948            |

- 관심있는 특정 노드의 키워드를 선정하여 중심성 확인 필요
- 중심성의 평균을 임계 값으로 선정하고, 키워드들이 기준 이상인지 확인

#### <네트워크 키워드 출력>



- 형성된 네트워크 연결망 라벨을 띄워 해시태그 명을 파악
- 이를 통한 특정 노드들의 **키워드를 파악**

#### <네트워크 최종 중심성 분석>



- 실제 관심있는 키워드들이 임계 값 조정
   후 노드 간 연결이 되어있는지 출력
- 해당 키워드는 해시태그 간 **중심성**을 확인하고 新 마케팅 제안 시 참고

### ■ 활용 및 기대효과

- ✓ 기간별 분석을 통해 인사이트를 창출하여 新 마케팅 의사결정 제안
- ✓ 시즌 별 SNS 해시태그를 통한 마케팅으로 플랫폼 이용률 증가 기대
- ✓ SNS 마케팅 퍼포먼스 검증 및 해시태그 연관성 분석을 통해 향후 마케팅 활동 제안

## 의정부 지역화폐를 활용한 소비패턴 분석 시각화

| 프로젝트명 | 의정부 지역화폐를 활용한 소비패턴 분석 시각화 (교내 과제) |
|-------|-----------------------------------|
| 수행기간  | 2020.04 ~ 2020.07 (약 3개월)         |

### ■ 분석 방법

- 지역화폐 공공데이터를 R의 ggplot2을 활용한 데이터 시각화
- 월별, 금액별, 업종별, 매출 금액별에 따른 의정부 지역화폐 소비 패턴 파악

# ■ 분석 결과





- 업종별 매출액을 확인하고, 이를 지도 시각화하여 지역 소비 특성을 파악
- 시간에 따른 업종별 사용금액을 통한 지역화폐 소비 추이 파악

| 프로젝트명 | 해외 소비자 타겟 선정 및 시장 조사 Study Abroad (교내 과제) |
|-------|-------------------------------------------|
| 수행기간  | 2019.04 ~ 2019.07 (약 3개월)                 |

### ■ 분석 방법

- '동물가위'는 해외 시장에서 어떤 소비자 타겟 충일지 시장조사 활동
- '**구매의사**'와 '**가격결정**'에 대한 인구통계학 기반 가설을 수립

### ■ 분석 결과



연령, 성별, 자녀의 유무에 따라 제품의 구매의사의 차이를 확인



■ 디자인, 용도에 따른 제품의 **가격선정**의 차이를 확인

#### 교육훈련 이력

지속적인 경쟁력 확보를 위하여 지원분야에 대한 연구 및 트렌드 파악 등 적극적으로 활동하였습니다!

| 교육과정명     |    | 2020년 공공 빅데이터 청년인턴십 확대운영                    |
|-----------|----|---------------------------------------------|
| 주관 / 시행기관 |    | 행정안전부/ 한국지능정보사회진흥원                          |
| 교육훈련      | 기간 | 2020. 08. 24 ~ 2020. 09. 29/ 총 200시간(약 2개월) |
|           | 기관 | 씨에스리 컨소시엄(씨에스리, KPC)                        |
| 인턴훈련      | 기간 | 2020. 10. 05 ~ 2020. 12. 31                 |
|           | 기관 | 인천광역시청 데이터혁신담당관 빅데이터팀(납세협력담당관 배치)           |

#### 교육내용

#### 공공빅데이터 기획 분석 과정(144시간): 공공 빅데이터 직무 기본 및 분석 기술 배양

- ☑ 빅데이터 직무 기본교육: 4차산업과 공공 빅데이터 개요, 디자인씽킹 창의적 문제 해결법, 데이터 이해 및 데이터셋 모델링, 공공빅데이터 관련 법/제도 및 표준분석모델이해
- ☑ 빅데이터 과제 기획: 공공 빅데이터 분석 과제 기획, 빅데이터 분석·시각화 방법론(R, Q-GIS)
- ☑ 빅데이터 분석: 외부데이터 수집/정제(Python), 통계분석(R), 공간분석(Q-GIS)

#### 실무형 프로젝트 (56시간): 문제 해결형 프로젝트(해커톤)로 실무 역량 배양

- ☑ 빅데이터 분석과제 기획부터 분석, 시각화까지 분석 Life Cycle 전반에 대한 프로젝트
- ☑ 도메인에 대한 이해를 바탕으로 문헌조사 및 사례조사, 현황분석, 핵심 원인 도출, 가설 설정, 해결안 제시까지 진행
- ☑ 빅데이터 분석과제 기획, 분석 모델 개발, 데이터 정의, 수집/정제, 데이터 분석/시각화, 결과보고서 작성/ 발표

#### 취업지원특강 (16시간, 선택교과): 비즈니스 매너 배양, 취업 경쟁력 확보

- ☑ 취·창업을 위한 비즈니스 매너 및 이미지 메이킹
- ▨ 나를 알리는 이력서 작성과 면접전략