Particle spectrograph

Wave operator and propagator

•	$3r_{3}\partial_{\alpha}\mathcal{A}^{\alpha\beta}\partial_{\theta}\mathcal{A}_{\beta}^{\theta} + 6r_{3}\partial^{\prime}\mathcal{A}_{\alpha}^{\alpha\beta}\partial_{\theta}\mathcal{A}_{\beta}^{\theta} -$						
<u>*</u>	$3 r_{3} \partial_{\alpha} \mathcal{A}^{\alpha \beta i} \partial_{\theta} \mathcal{A}_{i \beta}^{\theta} + 6 r_{3} \partial^{i} \mathcal{A}_{\alpha}^{\alpha \beta} \partial_{\theta} \mathcal{A}_{i \beta}^{\theta} +$ $4 t_{2} \mathcal{A}_{i \theta \alpha} \partial^{\theta} f^{\alpha i} + 2 t_{2} \partial_{\alpha} f_{i \theta} \partial^{\theta} f^{\alpha i} - t_{2} \partial_{\alpha} f_{\theta i} \partial^{\theta} f^{\alpha i} -$						
$\mathcal{A}_{2^{-}}^{\#1}aeta_{\chi}$	$t_2 \partial_i f_{\alpha\theta} \partial^{\theta} f^{\alpha i} + t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - t_2 \partial_{\theta} f_{i\alpha} \partial^{\theta} f^{\alpha i} -$						$\sigma_{2}^{#1} \alpha \beta \chi$ 0 0
$f_{2}^{\#1}\alpha\beta$	0 0	$4t_{2} \mathcal{A}_{\alpha\theta_{I}} (\mathcal{A}^{\alpha_{I}\theta} + \partial^{\theta} f^{\alpha_{I}}) + 2t_{2} \mathcal{A}_{\alpha_{I}\theta} (\mathcal{A}^{\alpha_{I}\theta} + 2\partial^{\theta} f^{\alpha_{I}}) - 24r_{3} \partial_{\beta} \mathcal{A}_{I\theta\alpha} \partial^{\theta} \mathcal{A}^{\alpha\beta_{I}} + 6r_{5} \partial_{I} \mathcal{A}_{\theta \kappa}^{\kappa} \partial^{\theta} \mathcal{A}^{\alpha_{I}}_{\alpha} -$					$\begin{pmatrix} r_{2}^{\#1} & \zeta \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$
$\mathcal{A}_{2}^{\#1}\alpha\beta$	$6r_5 \partial_{\theta} \mathcal{R}_{l \kappa}^{\kappa} \partial^{\theta} \mathcal{R}^{\alpha l}_{\alpha} - 6r_5 \partial_{\alpha} \mathcal{R}^{\alpha l \theta} \partial_{\kappa} \mathcal{R}_{l \theta}^{\kappa} +$						$ \begin{array}{c} \sigma_{2}^{\#1} \\ \sigma_{2}^{\#} + \alpha \beta \\ \frac{2}{3k^{2} r_{3}} \\ 0 \\ 0 \end{array} $
	$f_{2}^{*1} + \alpha^{\beta}$ $\mathcal{A}_{2}^{*1} + \alpha^{\beta\chi}$	$12 r_{5} \partial^{\theta} \mathcal{A}^{\alpha_{l}}{}_{\alpha} \partial_{\kappa} \mathcal{A}_{l}^{\kappa}{}_{\theta}^{\kappa} + 6 r_{5} \partial_{\alpha} \mathcal{A}^{\alpha_{l}\theta} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa}{}_{l}^{\kappa} - $ $12 r_{5} \partial^{\theta} \mathcal{A}^{\alpha_{l}}{}_{\alpha} \partial_{\kappa} \mathcal{A}_{\theta}^{\kappa}{}_{l}^{\kappa}))[t, x, y, z] dz dy dx dt$					
•	$\sigma_{1^{+}\alpha\beta}^{\sharp 1}$	$\sigma^{\#2}_{1^+lphaeta}$	$ au_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\begin{array}{ccc} \sigma_{2+}^{*1} + \alpha \beta \\ \sigma_{2+}^{*1} + \alpha \beta \\ \sigma_{2-}^{*1} + \alpha \beta \chi \end{array}$
$\sigma_{1}^{\sharp 1} \dagger^{\alpha \beta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_1^{\#2} \uparrow^{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_1^{\#1} \uparrow^{\alpha}$	0	0	0	0	0	0	0
$\tau_1^{\#2} + ^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

 $\iiint (\frac{1}{6} \left(-4 t_3 \, \mathcal{A}_{\alpha \alpha}^{\alpha I} \, \mathcal{A}_{I \theta}^{\theta} + 6 \, f^{\alpha \beta} \, \tau_{\alpha \beta} + 6 \, \mathcal{A}^{\alpha \beta \chi} \, \sigma_{\alpha \beta \chi} + 8 t_3 \, \mathcal{A}_{\alpha \theta}^{\theta} \, \partial_{I} f^{\alpha I} - 8 t_3)$

 $\mathcal{R}_{i\theta}^{\theta} \partial^{i} f_{\alpha}^{\alpha} + 4 t_{3} \partial_{i} f_{\theta}^{\theta} \partial^{i} f_{\alpha}^{\alpha} - 3 r_{3} \partial_{\beta} \mathcal{R}_{i\theta}^{\theta} \partial^{i} \mathcal{R}_{\alpha}^{\alpha\beta}$

 $3r_3\partial_i\mathcal{R}^{\ \theta}_{\beta\ \theta}\partial^i\mathcal{R}^{\alpha\beta}_{\ \alpha} + 4t_3\partial_if^{\alpha i}\partial_\theta f^{\ \theta}_{\alpha} - 8t_3\partial^i f^{\alpha}_{\ \alpha}\partial_\theta f^{\ \theta}_i$

Quadratic (free) action

Massive and massless spectra

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$