Big Mart Sales Prediction

Objective

The goal of this project was to develop a machine learning model to predict sales for different products across various stores using historical sales data.

Data Understanding & Preprocessing

The dataset contained information about products, store attributes, and sales figures. Key steps in preprocessing included:

- **Handling Missing Values:** Missing values in numerical columns like Item_Weight were imputed using mean values, and categorical variables were handled using mode imputation.
- **Feature Engineering:** New features such as Outlet_Age were created, and categorical variables were encoded using One-Hot Encoding and Label Encoding.
- Outlier Treatment: Anomalies in Item_Visibility were identified and handled by replacing zero values with the median.
- Feature Scaling: Numerical features were standardized to ensure uniformity in model training.

Model Selection & Experimentation

Several regression models were tested to determine the best performing approach:

- Random Forest Regressor
- XGBRegressor

After evaluating model performance using metrics like RMSE (Root Mean Squared Error), it was observed that the **Random Forest Regressor performed best**, yielding the lowest error.

Key Factors Affecting Item Outlet Sales

Based on the visualizations and insights from the analysis, the following factors significantly influence Item Outlet Sales:

1. Item MRP (Maximum Retail Price)

A strong correlation was observed between Item_MRP and Item_Outlet_Sales, indicating that higher-priced items tend to generate higher sales.

2. Outlet Type

Supermarkets recorded higher sales compared to grocery stores, suggesting that store format and product variety impact revenue.

3. Outlet Location Type

Outlets in Tier-1 cities had higher sales than those in Tier-2 and Tier-3 cities, likely due to higher purchasing power and customer footfall.

4. Outlet Age

Newer outlets showed lower sales initially, while well-established outlets with more years in operation exhibited higher sales.

5. Item Visibility

Products with very low visibility had lower sales, highlighting the importance of product placement and marketing within stores.

6. Item Fat Content & Category

Certain product categories, especially perishable and high-demand items, contributed more to sales, while fat content variations had a minimal impact.

Findings & Conclusion

- Random Forest Regressor outperformed XGBRegressor, likely due to its robustness in handling diverse feature interactions and missing values.
- Further hyperparameter tuning on XGBoost could be explored to improve its performance.
- The final model can be used to make sales predictions for new data, aiding business decision-making for inventory management and revenue forecasting.

This systematic approach ensured a well-prepared dataset and effective model selection, leading to reliable predictions

Date: Submitted By:

19th February, 2025 Srinivasa Rao Pendela

+91 7093348767