DISCIPLINA: Matemática Discreta I

PROFa.: Karla Lima

EACH-USP

October 15, 2018

Intuitivamente ...

- É uma coleção não-ordenada de objetos,
- todos os objetos em um conjunto gozam de uma mesma propriedade,
- qualquer objeto que contenha a propriedade é um elemento do conjunto e qualquer objeto que não tem a propriedade não é um elemento.

Notação

 Letras maiúsculas denotam conjuntos e o símbolo ∈ denota que um elemento pertence ao conjunto.

Exemplo 1: Se $A = \{violeta, mostarda, vermelho\}$, então mostarda $\in A$ e púrpura $\notin A$.

Considerações

- A **ordem** na qual os elementos são escritos não importa;
- Cada **elemento de um conjunto** é listado apenas uma vez;
- Dois conjuntos são iguais se contêm os mesmos elementos.

Considerações

- A **ordem** na qual os elementos são escritos não importa;
- Cada elemento de um conjunto é listado apenas uma vez;
- Dois conjuntos são iguais se contêm os mesmos elementos.

$$A = B$$
 significa $(\forall x)[(x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)]$

Descrição de Conjuntos

As diversas formas pelas quais descreveremos um conjunto são

- 1 listando (ou listando parcialmente) os elementos,
- usando recursão para descrever como gerar o conjunto de elementos, ou
- descrevendo uma propriedade P que caracterize o conjunto de elementos.

Descrição de Conjuntos

A notação para um conjunto cujos elementos sejam caracterizados como tendo a propriedade P é $\{x|P(x)\}$.

$$S = \{x | P(x)\} \text{ significa } (\forall x)[(x \in S \to P(x)) \land (P(x) \to x \in S)]$$

todo elemento de S tem a propriedade P e tudo o que tem a propriedade P é um elemento de S.

Exercício

Descreva cada um dos seguintes conjuntos, fornecendo-lhes uma propriedade característica.

$$a-\{1,4,9,16\}$$

b-
$$\{2, 3, 5, 7, 11, 13, 17, \ldots\}$$

Alguns conjuntos mais usados

- $\mathbb N$ conjunto de todos os inteiros não-negativos (0 $\in \mathbb N$)
- $\ensuremath{\mathbb{Z}}$ conjunto de todos os inteiros
- ${\mathbb Q}$ conjunto de todos os números racionais
- \mathbb{R} conjunto de todos os números reais
- $\mathbb C$ conjunto de todos os números complexos

R

Conjuntos Relações entre Conjuntos Conjuntos de Conjuntos Operações Binárias e Unária

Conjuntos

Exemplo

Se
$$S = \{x | x \in \mathbb{N} \ e \ x < 0\}$$
 então $S = ?$

Exemplo

$$A = \{x | (\exists y)(y \in \{0, 1, 2\} e x = y^3)\}$$

Exemplo

$$B = \{x | x \in \mathbb{N} \ e \ (\exists y)(y \in \mathbb{N} \to x \le y)\}$$

Exemplo

$$C = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \mathbb{N} \to x \le y)\}$$

Exercício

Descreva cada um dos conjuntos definidos abaixo.

a-
$$A = \{x | x \in \mathbb{N} \ e \ (\forall y)(y \in \{2, 3, 4, 5\} \to x \ge y)\}$$

b-
$$B = \{x | (\exists y)(\exists z)(y \in \{1,2\} \ e \ z \in \{2,3\} \ e \ x = y + z)\}$$

- Para A = {2,3,5,12} e B = {2,3,4,5,9,12}, todo elemento de A é também um elemento de B. Quando isto acontece, dizemos que A é um subconjunto de B.
- Se A é um subconjunto de B, escrevemos, $A \subseteq B$. Se $A \subseteq B$ mas $A \neq B$, então A é dito um **subconjunto próprio** de B e denotado por $A \subset B$

Exemplo

Seja

$$A = \{1, 7, 9, 15\}$$

$$B = \{7, 9\}$$

$$C = \{7, 9, 15, 20\}$$

Então as seguintes sentenças (dentre outras) são todas verdadeiras:

$$B \subseteq C$$
, $15 \in C$

$$B \subseteq A$$
, $\{7,9\} \subseteq B$

$$B \subset A$$
, $\{7\} \subseteq A$

$$A \nsubseteq C$$
, $\emptyset \subseteq C$

Exemplo

Seja

$$A = \{x | x \in \mathbb{R} \ e \ x^2 - 4x + 3 = 0\}$$

е

$$B = \{x | x \in \mathbb{N} \text{ e } 1 \le x \le 4\}$$

Prove que $A \subset B$.

- A e B são iguais se contêm os mesmos elementos.
- $A = B \Leftrightarrow A \subseteq B \ e \ B \subseteq A$

- A e B são iguais se contêm os mesmos elementos.
- $A = B \Leftrightarrow A \subseteq B \ e \ B \subseteq A$

Exemplo

Prove que

$$A = \{x | x \in \mathbb{N} \text{ e } x^2 < 15\} = B = \{x | x \in \mathbb{N} \text{ e } 2x < 7\}$$

- Dado um conjunto S, podemos criar um novo conjunto cujos elementos sejam todos os subconjuntos de S.
- Este novo conjunto é chamado de **conjunto das partes** de S, $\mathcal{P}(S)$.
- $\mathcal{P}(S)$ conterá pelo menos o \emptyset e o próprio S ($\emptyset \subseteq S$ e $S \subseteq S$).

Exemplo

Para $A = \{1, 2, 3\}$, qual P(A) ?

Exercício

Se S tem n elementos então $\mathcal{P}(S)$ tem quantos elementos (prove por indução)?

- Uma operação binária atua sobre dois números e uma operação unária atua sobre um único número.
- Um par ordenado é denotado por (x, y), onde x é o primeiro componente do par e y é o segundo.
- A ordem é importante em um par ordenado; portanto, os conjuntos {1,2} e {2,1} são iguais mas os pares ordenados (1,2) e (2,1) não o são.
- Dois pares ordenados (x, y) e (u, v) são iguais apenas quando x = u e y = v.

Exercício

Seja $S = \{3,4\}$. Liste todos os pares ordenados (x,y) de elementos de S,

Definição: Operação Binária

• É uma **operação binária** sobre um conjunto S se para qualquer par ordenado (x,y) de elementos de S, $x\circ y$ existe, é único (**bem-definida**) e é um elemento de S (S é fechado sob a operação) .

A adição, subtração e multiplicação são todas operações binárias em \mathbb{Z} . Por exemplo, quando realizamos a adição no par ordenado de inteiros (x,y), x+y existe, é único e é inteiro. E a divisão?

Exemplo

As operações lógicas de conjunção, disjunção, implicação e equivalência são operações binárias no conjunto das wffs proposicionais.

Uma operação pode não ser uma operação binária em um conjunto S por três motivos:

- Existem elementos $x, y \in S$ para os quais $x \circ y$ não existe.
- Existem elementos $x, y \in S$ para os quais $x \circ y$ fornece mais de um resultado.
- Existem elementos $x, y \in S$ para os quais $x \circ y$ não pertence a S.

Exemplo

Seja
$$x \circ y$$
 definida em \mathbb{N} por $x \circ y = \begin{cases} 1 \text{ se } x \geq 5 \\ 0 \text{ se } x \leq 5 \end{cases}$

Exemplo

A subtração é uma operação binária em N?

Exercícios

ESTUDAR OPERAÇÃO ENTRE CONJUNTOS!