IN THE CLAIMS

What is claimed is:

1	1.	A memory cell, comprising:
2		a first node for storing a first potential;
3		a second node for storing a second potential; and
4		a capacitor having plates coupled between the first node and
5		second node, a portion of at least one plate of the capacitor comprising a
6		first interconnect wiring that interconnects circuit components of the
7		memory cell.
1	2.	The memory cell of claim 1, further comprising:
2		a first inverter having an input coupled to the first node and an
3		output coupled to the second node; and
4		a second inverter having an input coupled to the second node
5		and an output coupled to the first node; wherein
6		the first node stores a true data value and the second node
7		stores a complementary data value.
1	3.	The memory cell of claim 1, further including:
2		a first access transistor coupled to the first node; and
3		a second access transistor counled to the second node

1	4.	The memory cell of claim 1, further including:
2		transistor gates formed from a gate layer; and
3		the first conductive interconnect wiring is formed over the gate layer
4		and includes a plurality of conductive layers, at least one of the conductive
5		layers forming at least a portion of a first plate of the capacitor.
		·
1	5 .	The memory cell of claim 4, wherein:
2		the first conductive interconnect wiring includes a bottom
3		conductive layer, a dielectric layer formed over the bottom conductive
4		layer, and a top conductive layer formed over the dielectric layer, the top
5		conductive layer forming at least a portion of the first plate of the
6		capacitor.
1	6.	The memory cell of claim 4, further including:
2		a second conductive interconnect wiring formed over the first
3		conductive interconnect wiring that forms at least a portion of a second
4		plate of the capacitor.
1	7.	The memory cell of claim 6, wherein:
2		the second conductive interconnect wiring comprises titanium;
3		the bottom conductive layer comprises titanium nitride; and
4		the top conductive layer comprises titanium.

1	8.	A method of forming a capacitor in an integrated circuit, comprising the steps of:
2		depositing an insulating layer over a plurality of capacitor
3		structures, each capacitor structure comprising a dielectric layer disposed
4		between a first interconnect layer and a second interconnect layer;
5		forming a recess in the insulating layer according to a capacitor
6		mask pattern to expose the second interconnect layer of at least two
7		capacitor structures; and
8		forming a third interconnect layer within the recess that is in
9		electrical contact with the exposed second interconnect layers of the at
10		least two capacitor structures.
		·
1	9.	The method of claim 7, wherein:
2		the insulating layer comprises silicon oxide.
1	10.	The method of claim 7, wherein:
2		the third interconnect layer comprises titanium.
1	11.	The method of claim 8, further including:
2		prior to depositing the insulating layer
3		forming the first interconnect layer;
4		forming the dielectric layer over the first interconnect layer;
5		forming the second interconnect layer over the dielectric layer;
6		and

/		etching through the first interconnect layer, the dielectric layer,
8		and the second interconnect layer to form the capacitor structures.
1	12 .	The method of claim 11, wherein:
2		the first interconnect layer comprises titanium nitride; and
3		the second interconnect layer comprises titanium.
1	13.	The method of claim 11, wherein:
2		after forming the capacitor structures
3		depositing a spacer insulating layer over the capacitor
4		structures; and
5		anisotropically etching the spacer insulating layer to form
6		insulating spacers on side surfaces of the capacitor structures while
7		exposing the second interconnect layer of the capacitor structures.
1	14.	The method of claim 8, further including:
2		the step of forming a recess in the insulating layer includes etching
3		a portion of the first insulating layer; and
4		after forming the third interconnect layer, chemical-mechanical
5		polishing to remove portions of the third interconnect layer outside of the
6		recess.
1	15 .	A method of forming an integrated circuit memory cell, comprising the steps of:

2		forming a first interconnect wiring that electrically connects a
3		plurality of transistor gates to transistor diffusion regions, the first
4		interconnect wiring pattern comprising at least one dielectric layer
5		between top and bottom conductive layers; and
6		forming a second interconnect layer over the first interconnect
7		wiring in electrical contact with the top conductive layers to form a
8		capacitor, the capacitor including a first plate comprising the top
9		conductive layer, a second plate comprising the second interconnect
10		layer, and a capacitor dielectric comprising the at least one dielectric layer.
1	16.	The method of claim 15, wherein:
2		the step of forming the first interconnect wiring includes
3		forming the bottom conductive layer having a thickness of no more
4		than about 1000 angstroms;
5		forming the at least one dielectric layer having a total thickness of
6		less than about 80 angstroms;
7		forming the top conductive layer having a thickness of no more than
8		about 300 angstroms; and
9	•	etching through the bottom conductive layer, at least one dielectric
10		layer and the top conductive layer according to a first wiring pattern.
1	17 .	The method of claim 15, further including:
2		forming insulating sidewalls on the sides of the first interconnect

3		wiring.
1	18.	The method of claim 17, wherein:
2		the step of forming insulating sidewalls includes
3		depositing a layer of silicon nitride having a thickness of no more
4		than about 500 angstroms; and
5		anisotropically etching the layer of silicon nitride.
1	19 .	The method of claim 15, wherein:
2		the first interconnect wiring includes
3		a first wiring portion that electrically connects a gate of at least a
4		first memory cell transistor to a source/drain region of a second memory
5		cell transistor, and
6		a second wiring portion that electrically connects a gate of at least a
7		second memory cell transistor to a source/drain region of the first memory
8		cell transistor.
		•
1	20 .	The method of claim 19, wherein:
2		the first and second wiring portions are formed on an interconnect
3		insulator layer;
4		the first wiring portion is electrically connected to the gate of the

first memory cell transistor by a first local contact that extends through the

interconnect insulator layer; and

5

6

7	the second wiring portion is electrically connected to the gate of the
8	second memory cell transistor by a second local contact that extends
9	through the interconnect insulator layer.
1	

.