

Střední průmyslová škola a Vyšší odborná škola, Písek, Karla Čapka 402, Písek $18\text{-}20\text{-}\mathrm{M}/01 \; \mathrm{Informační} \; \mathrm{technologie}$

Maturitní práce

Dálkové ovládání zásuvek NETIO

Téma číslo 12

autor:

Milan Jiříček, B4.I

vedoucí maturitní práce:

Ing. Břetislav Bakala

Písek 2020/2021

Anotace

Maturitní práce se zaměřuje na porovnání platforem ESP8266 a ESP32. Cílem je vytvořit ovladač pro ovládání zásuvek značky NETIO s webovou aplikací pro konfiguraci a zjistit, která platforma je vhodna pro realizaci funkčního vzorku z hlediska spotřeby energie a reakční doby.

Annotation

The graduation thesis focuses on the comparison of the ESP8266 and ESP32 platforms. The goal is to create a driver for controlling NETIO sockets with a web application for configuration and to find out which platform is suitable for the implementation of a functional sample in terms of energy consumption and response time.

Poděkování Chtěl bych poděkovat panu učiteli Ing. Břetislavovi Bakalovi za odborné vedení práce a cenné rady, které mi pomohly tuto práci zkompletovat. Rád bych také poděkoval Ing. Břetislavovi Bakalovi za cenné rady, věcné připomínky a vstřícnost při konzultacích a vypracování bakalářské práce. V neposlední řadě chci poděkovat Mgr. Haně Maříkové a Mgr. Vladimíře Špirhanzlové za pomoc při gramatické a stylistické kontrole.

Obsah

1	Teorie										
	1.1	Aplika	ce pro WiFi Managment	4							
	1.2	Netio	zásuvka Cobra	4							
	1.3	a tak	dale	4							
2	Měì	Měření spotřeby a času ESP8266									
	2.1	Kontin	nuální režim	5							
		2.1.1	Klidový stav	5							
		2.1.2	WiFi připojení	5							
		2.1.3	Odeslání HTTP requestu s připojenou WiFi	7							
	2.2	Enable	e režim	9							
		2.2.1	Klidový stav	9							
		2.2.2	WiFi připojení	9							
		2.2.3	HTTP request	10							
		2.2.4	Ohodnocení výsledků	10							
	2.3	Deep s	sleep režim	10							
		2.3.1	Klidový stav	10							
		2.3.2	Ohodnocení výsledků	10							
3	Záv	ěr		11							
Přílohy											
\mathbf{A}	Příl	oha		14							

Kapitola 1

Teorie

- 1.1 Aplikace pro WiFi Managment
- 1.2 Netio zásuvka Cobra
- 1.3 a tak dale

Kapitola 2

Měření spotřeby a času ESP8266

2.1 Kontinuální režim

2.1.1 Klidový stav

Podmínky

Výsledek

2.1.2 WiFi připojení

Cílem měření je zjistění rychlostí připojení různými způsoby k přístupovému body, spotřeby a následné porovnání případů.

Dynamické přidělení IP adresy

Měření proběhlo za použití DHCP protokolu, kde by přístupový pod měl zvolit IP adresu pro zařízení. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření bylo provedeno 5x. Průměrný čas se pohybuje okolo 4.7 s. Jak je možno vidět na grafu, tak dvě WiFi připojení trvaly o 2 sekundy kratší dobu. Toto chování přisuzuji rozmanitému provozu na Přístupovém bodu, který zárověň probíhá s měřením. viz. obr.

2.1

Obrázek 2.1: Měření dynamického připojení k AP

Obrázek 2.2: Měření statického připojení k AP

Statické přidělení IP adresy

Použita byla statická adresa, která byla přidělena ESP8266 před připojením na AP. Bylo provedeno za podmínek:

- Napájeno z USB
- \bullet Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření proběhlo 5x. Průměrný čas byl 3.7 s, což je o průměrně o sekundu rychlejší než v případě DHCP. Hodnoty grafu jsou stabilní.

Zabezpečený AP

viz. obr. 2.2

Připojení na access point je šifrované. Bylo provedeno za podmínek:

Obrázek 2.3: Měření zabezpečeného připojení k AP

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- IP adresa je nastavena staticky
- Přístupový bod se nachází 3.5 m od zařízení
- Bylo použito zabezpečení WPA2-PSK

Průměrný čas byl 4.7 s.

viz. obr. 2.3

Závěr

Z výsledků měření je nejrychlejší připojení pomocí statické IP adresy, nicméně je velice náročné nastavit IP adresu, masku a bránu pro běžného uživatele. Připojení s DHCP je pomalejší průměrně o 1 s než případ se statickou IP adresou. DHCP vyniká jednoduchostí použití pro běžného uživatele. K zabezpečené WiFI trvá stejně dlouho jako s DHCP. viz tabulka 2.1

2.1.3 Odeslání HTTP requestu s připojenou WiFi

Cílem měření je zjistit čas odesílání HTTP requestu a následné odpovězení zásuvky NETIO. Pokus byl proveden za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velitosti $0.7\,\Omega$

Pořadí	Dynamické	Statické	Zabezpečení
1.	$5.3385\mathrm{s}$	$3.589\mathrm{s}$	$4.733\mathrm{s}$
2.	$5.3445\mathrm{s}$	$3.583\mathrm{s}$	$4.733\mathrm{s}$
3.	$3.619\mathrm{s}$	$3.631\mathrm{s}$	$4.733\mathrm{s}$
4.	$5.333\mathrm{s}$	$3.481\mathrm{s}$	$4.733\mathrm{s}$
5.	$3.627\mathrm{s}$	$3.613\mathrm{s}$	$4.733\mathrm{s}$
Průměr	$3.5794\mathrm{s}$	$4.6524\mathrm{s}$	$4.709\mathrm{s}$

Tabulka 2.1: Porovnání hodnot naměřené připojením k WiFi

Pořadí	připojené k WiFi
1.	$778.9\mathrm{ms}$
2.	$743\mathrm{ms}$
3.	$772.9\mathrm{ms}$
4.	$744.5\mathrm{ms}$
5.	$623.1\mathrm{ms}$
Průměr	$732.48\mathrm{ms}$

Tabulka 2.2: Čas odeslání HTTP requestu a reakce zásuvky

- ESP8266 zkontroluje připojení k WiFi a pokud není navázáno, pokusí se ho navázat
- Načtení uložené konfigurace WiFi trvá 300 ms
- ESP ukončí reakci, pokud dostane zpětnou vazbu od zásuvky

Jelikož ESP přestane reagovat až po odpovězení zásuvky, dokážeme zjistit celkový čas včetně zapnutí, zkontrolování WiFi připojení, sestavení a odeslání HTTP requestu, reakce zásuvky a zpracování HTTP zprávy.

viz tabulka 2.2

Obrázek 2.4: Měření klidového režimu enable případu

2.2 Enable režim

2.2.1 Klidový stav

Podmínky

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $10\,\Omega$
- pin enable byl připojen manuálně
- Napětí bylo měřeno Analog Discovery 2

Výsledek

Po připojení ESP8266 proud nevzrostl a drží se stále na $240\,\mu\text{A}$, což neodpovídá teoretickým hodnotám, které by se měly pohybovat okolo $3\,\mu\text{A}$.

2.2.2 WiFi připojení

Podmínky

- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- WiFi je nastavena pevně zadaná v programu
- WiFi nevyužívá žádného zabezpečení
- IP adresa byla nastavena staticky

2.2.3 HTTP request

Podmínky

- \bullet Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- WiFi je nastavena zachována v ESP z předchozího měření

2.2.4 Ohodnocení výsledků

Výsledky klidového režimu neodpovídají teoretické hodnotě uvedené v officiálním datasheetu. Důvodem je nízká citlivost zařízení Analog Discovery 2. Pro přesnější měření je žádoucí použít micro ampérmetr.

Počáteční spuštění ESP8266 trvá déle než v ostatních případech. Hlavní důvod spočívá v rozdílném načítání než v případě deep sleep... Doplním

2.3 Deep sleep režim

2.3.1 Klidový stav

Podmínky

- Napájení z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $10\,\Omega$
- ESP8266 je probuzeno každých 5 s

2.3.2 Ohodnocení výsledků

Kapitola 3

Závěr

Seznam tabulek

2.1	Porovnání hodnot naměřené připojením k WiFi	8
2.2	Čas odeslání HTTP requestu a reakce zásuvky	8

Seznam obrázků

2.1	Měření dynamického připojení k AP	6
2.2	Měření statického připojení k AP	6
2.3	Měření zabezpečeného připojení k AP	7
2.4	Měření klidového režimu enable případu	9

Příloha A

Příloha

Literatura

- [1] PříJMENÍ AUTORA, Jméno autora. *Název knihy*. Místo vydání: Nakladatelství, Rok. ISBN ISBN.
- [2] PříJMENÍ AUTORA, Jméno autora. *Název práce*. Místo, Rok. Druh práce. Univerzita, Fakulta, Katedra. Vedoucí diplomové práce jméno.