数值线代の题库二

by 23 大数据 miracle

1. 证明: $x \in \mathcal{X}_{LS}$ 当且仅当

$$A^{\mathrm{T}}Ax = A^{\mathrm{T}}b$$

2. 证明 QR 分解定理, 即设 $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$, 则 A 有 QR 分解:

$$A = Q \begin{bmatrix} R \\ 0 \end{bmatrix}$$

其中 $Q \in \mathbb{R}^{m \times m}$ 是正交矩阵, $R \in \mathbb{R}^{n \times n}$ 是具有非负对角元的上三角阵; 而且当 m = n 且 A 非奇异时, 上述分解是唯一的.

- 3. 假设 x 和 y 是 \mathbb{R}^n 中的两个单位向量. 给出一种使用 Givens 变换的算法, 计算一个正交矩阵 Q, 使得 Qx=y.
- 4. 设 x 和 y 是 \mathbb{R}^n 中的两个非零向量. 给出一种算法来确定一个 Householder 变换 H, 使得 $Hx=\alpha y$, 其中 $\alpha\in\mathbb{R}$.
- 5. 设 $A \in \mathbb{R}^{m \times n}$, 且存在 $X \in \mathbb{R}^{n \times m}$ 使得对于每一个 $b \in \mathbb{R}^m$, x = Xb 均极小化 $||Ax b||_2$. 证明:AXA = A 和 $(AX)^T = AX$.
- 6. 利用等式

$$||A(x + \alpha w) - b||_2^2 = ||Ax - b||_2^2 + 2\alpha w^{\mathrm{T}} A^{\mathrm{T}} (Ax - b) + \alpha^2 ||Aw||_2^2$$

证明: 如果 $x \in \mathcal{X}_{LS}$, 那么 $A^{T}Ax = A^{T}b$.

7. 若迭代矩阵 M 的范数 ||M|| = q < 1, 则迭代法 $x_k = Mx_{k-1} + g$ 所产生的近似解 x_k 与准确解 x_* 的误差有如下估计式:

$$||x_k - x_*|| \le \frac{q^k}{1 - q} ||x_1 - x_0||, \quad ||x_k - x_*|| \le \frac{q}{1 - q} ||x_{k-1} - x_k||$$

- 8. 若线性方程组 Ax = b 的系数矩阵 A 对称, 而且其对角元 $a_{ii} > 0$ $(i = 1, \dots, n)$, 则 Jacobi 迭代 法收敛的充分必要条件是 A 和 2D A 都正定.
- 9. 若矩阵 A 是严格对角占优的或不可约对角占优的,则 A 非奇异且则 Jacobi 迭代法和 G-S 迭代 法都收敛.
- 10. 设 $B \in \mathbb{R}^{n \times n}$ 满足 $\rho(B) = 0$. 证明对于任意的 $g, x_0 \in \mathbb{R}^n$, 迭代格式 $x^{(k+1)} = Bx^{(k)} + g$, $k = 0, 1, 2, \ldots$ 最多迭代 n 次就可以得到方程组 x = Bx + g 的精确解.

- 11. 设 A 是具有正对角元素的非奇异对称矩阵. 证明: 若求解方程组 Ax = b 的 G-S 迭代法对任意 初始近似皆收敛,则 A 必定是正定的.
- 12. 若存在对称正定矩阵 P, 使得

$$B = P - H^{\mathrm{T}}PH$$

为对称正定矩阵, 求证: 迭代法

$$x_{k+1} = Hx_k + b, \quad k = 0, 1, 2, \cdots$$

收敛.

- 13. 证明: 若系数矩阵 A 是严格对角占优的或不可约对角占优的, 且松驰因子 $\omega \in (0,1)$, 则 SOR 迭代法收敛.
- 14. 证明: 若 A 为具有正对角元的实对称矩阵, 则 JOR 方法收敛的充分必要条件是 A 与 $2\omega^{-1}D A$ 均为正定对称矩阵. 其中, JOR 迭代为

$$x_{k+1} = x_k - \omega D^{-1} (Ax_k - b)$$

或者

$$x_{k+1} = (I - \omega D^{-1}A)x_k + \omega D^{-1}b$$

15. 设 x_k 由最速下降法产生, 证明:

$$\phi(x_k) \le \left[1 - \frac{1}{\kappa_2(A)}\right] \phi(x_{k-1})$$

其中 $\kappa_2(A) = ||A||_2 ||A^{-1}||_2$.

- 16. 证明: 当最速下降法在有限步求得极小值时, 最后一步迭代的下降方向必是 A 的一个特征向量.
- 17. $A \in \mathbb{R}^{n \times n}$ 对称正定, $p_1, \ldots, p_k \in \mathbb{R}^n$ 满足 $p_i^T A p_i = 0$, $i \neq j$. 证明 p_1, \ldots, p_k 线性无关.
- 18. 设 A 是一个只有 k 个互不相同特征值的 $n \times n$ 实对称矩阵, r 是任一 n 维实向量. 证明: 子空间 span $\{r, Ar, \ldots, A^{n-1}r\}$ 的维数至多是 k.
- 19. 证明: 如果系数矩阵 A 至多有 l 个互不相同的特征值,则共轭梯度法至多 l 步就可得到方程组 Ax = b 的精确解.
- 20. 证明: 用共轭梯度法求得的 x_k 有如下的误差估计:

$$||x_k - x_*||_2 \le 2\sqrt{\kappa_2} \left(\frac{\sqrt{\kappa_2} - 1}{\sqrt{\kappa_2} + 1}\right)^k ||x_0 - x_*||_2$$

其中 $\kappa_2 = \kappa_2(A) = ||A||_2 ||A^{-1}||_2$.

21. 设 $A \in \mathbb{R}^{n \times n}$ 是对称正定的, \mathcal{X} 是 \mathbb{R}^n 的一个 k 维子空间. 证明: $x_k \in \mathcal{X}$ 满足

$$||x_k - A^{-1}b||_A = \min_{x \in \mathcal{X}} ||x - A^{-1}b||_A$$

的充分必要条件是

$$r_k = b - Ax_k$$

垂直于子空间 \mathcal{X} , 其中 $b \in \mathbb{R}^n$ 是任意给定的.