Группы

Определения

Группа [29, с. 139]

Определение

Множество G и бинарная операция «*> образуют группу $\{G,*\}$ если выполняются следующие свойства:

- 1. ассоциативность операции «*»: $(g_1*g_2)*g_3=g_1*(g_2*g_3)$, $\forall g_1,g_2,g_3\in G$;
- 2. существует нейтральный элемент $e \in G$ такой, что $e * g = g * e = g, \forall g \in G;$
- 3. для любого элемента $g \in G$ существует обратный элемент $g^{-1} \in G$ такой, что $g * g^{-1} = g^{-1} * g = e, \forall g \in G.$
- Структура абстрактной группы определяется заданием результата групповой операции для любой пары элементов из G.
- Если групповая операция «*» является умножением «·», то группа называется мультипликативной.
- В случае если «*» является сложением «+», то группа называется аддитивной.

Коммутативная группа

Определение

Группы $\{G,*\}$ называться коммутативной или абелевой, если для операции ** наряду со свойствами 1–3 выполняется свойство коммутативности:

4.
$$g_1*g_2=g_2*g_1, \forall g_1,g_2\in G$$

Нейтральный элемент часто обозначают символом единицы 1_G (для мультипликативной группы) или нуля 0_G (для аддитивной группы). Нижним индексом указывают на группу, для которой этот элемент является нейтральным.

Группы

Примеры

Группы относительно операции сложения «+»

- \mathbb{Z} множество целых чисел,
- Q множество рациональных чисел,
- $2\mathbb{Z}$ множество четных целых чисел,
- ullet \mathbb{R} множество действительных чисел,
- ullet ${\mathbb C}$ множество комплексных чисел,
- \mathbb{H} множество кватернионов,
- $\mathrm{Mat}(m \times n, \mathbb{P})$ множество матриц $m \times n$ с элементами из поля \mathbb{P} ,
- ullet P[x] множество многочленов с действительными коэффициентам,
- C(X) множество непрерывных функций на отрезке X.

Группы относительно операции умножения «·»

- ullet $\mathbb{Q}/\{0\}$ множество рациональных чисел исключая 0,
- ullet $\mathbb{R}/\{0\}$ множество действительных чисел исключая 0,
- $\mathbb{C}/\{0\}$ множество комплексных чисел исключая 0.

Группа $\mathrm{Mat}(m \times n, \mathbb{P})$ единственная, из всех перечисленных выше групп, не является абелевой. Чаще всего поле \mathbb{P} это или поле действительных \mathbb{R} или комплексных \mathbb{C} чисел.

Матричные группы

В множестве квадратных матриц $\mathrm{Mat}(n \times n, \mathbb{P}) \stackrel{\mathrm{not}}{=} \mathrm{Mat}(n, \mathbb{P})$ с операцией умножения «·» выделяют следующие важные группы.

- ullet GL (n,\mathbb{P}) полная линейная группа квадратных матриц M, т.ч. $\det(M) \neq 0_{GL}, orall M \in \mathrm{GL}(n,\mathbb{P}).$
- ullet $\mathrm{SL}(n,\mathbb{P})$ унимодулярная группа квадратных матриц M, т.ч. $\det(M)=1_{SL}, \forall M\in \mathrm{SL}(n,\mathbb{P}).$
- ullet $\mathrm{O}(n)\in\mathrm{GL}(n,\mathbb{R})$ ортогональная группа квадратных матриц M таких, что:

$$M^TM=MM^T=I\Leftrightarrow \det(MM^T)=(\det(M))^2=1,$$

где ${\cal M}^T$ — транспонированная матрица, I — единичная матрица.

• $SO(n) \in O(n)$ — специальная ортогональная группа. В группу входят только те матрицы, у которых $\det(M)=1, \forall M \in SO(n)$