

TRIGONOMETRY TOMO VIII

Feedback

Del gráfico, determine el signo de cos\(\beta \)

γ β

Recuerda:

$$\beta \in IIIC$$

$$\therefore \cos \beta = (-)$$

Del gráfico, determine el signo de: $F = \sec \theta . \sec \beta . \cot \alpha$

$$F = (-) (+) (+)$$

$$F = (-) (+)$$

$$\therefore$$
 $\mathbf{F} = (-)$

Determine el signo de $\csc(\frac{\beta}{2})$ si se tiene el siguiente gráfico:

Resolución:

$$\beta \in IIIC$$

$$180^{\circ} < \beta < 270^{\circ} \quad \times \frac{1}{2}$$

$$90^{\circ} < \frac{\beta}{2} < 135^{\circ}$$

$$\rightarrow \frac{\beta}{2} \in IIC$$

$$\therefore \csc\left(\frac{\beta}{2}\right) = (+)$$

Recuerda:

Determine el valor numérico de:

$$E = (20\cos 180^{\circ} + 8\csc 90^{\circ})^{2}$$

Recuerda:

R.T	0°;360°	90°	180°	270 °
SEN	0	1	0	-1
COS	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

$$E = (20\cos 180^{\circ} + 8\csc 90^{\circ})^{2}$$

$$E = (20(-1) + 8(1))^2$$

$$E = (-20 + 8)^2$$

$$E = (-12)^2$$

Si α = 10°, calcule el valor numérico de:

 $A = 10 \csc 9\alpha - 3 \cos 36\alpha - 8 \tan 18\alpha$

Recuerda:

R.T	0°; 360°	90°	180°	270 °
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

$$A = 10 \csc 9\alpha - 3 \cos 36\alpha - 8 \tan 18\alpha$$

$$A = 10(1) - 3(1) - 8(0)$$

$$A = 10 - 3$$

Determine el valor numérico de x si:

$$sen270^{\circ} = \frac{7x + 13}{5 - x}$$

R.T	0°; 360°	90°	180°	27 0°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N	1	N.D	-1

Resolución:

$$sen270^{\circ} = \frac{7x + 13}{5 - x}$$

$$-1 = \frac{7x + 13}{5 - x}$$

$$-5 + x = 7x + 13$$

$$-5 - 13 = 6x$$

iMuy bien!

$$-18 = 6x$$

Indique cuáles de los siguientes ángulos son coterminales.

- I. $340^{\circ} \text{ y} 200^{\circ}$
- II. 490° y -230°
- III. 710° y 10°

Recuerda:

 α y β son ángulos coterminales, entonces: α - β =360° n; n \in \mathbb{Z}

$$1340^{\circ} - (-200^{\circ}) = 540^{\circ} (\text{no es múltiplo de } 360^{\circ})$$

III
$$710^{\circ}$$
 - 10° = 700° (no es múltiplo de 360°)

Del gráfico

Reduzca

$$\mathbf{M} = \frac{18\cos\beta}{\cos\alpha} - \frac{5\cot\alpha}{\cot\beta}$$

Resolución:

$$\mathbf{M} = \frac{18\cos\beta}{\cos\alpha} - \frac{5\cot\alpha}{\cot\beta}$$

Recuerda:

$$cos\alpha = cos\beta$$

 $cot\alpha = cot\beta$

Reemplazamos

$$M = \frac{18\cos\beta}{\cos\beta} - \frac{5\cot\alpha}{\cot\alpha}$$

$$M = 18(1) - 5(1)$$

iMuy bien!

$$M=13$$

Si α y θ son ángulos coterminales, tal que cot α = 1; efectúe

$$N = 5\cot\alpha - \frac{\cot\theta}{5}$$

Recuerda:

$$\cot \alpha = \cot \theta = 1$$

Resolución:

$$N = 5\cot\alpha - \frac{\cot\theta}{5}$$

$$N = 5\cot\alpha - \frac{\cot\alpha}{5}$$

$$N = 5(1) - \frac{(1)}{5}$$

iMuy bien!

$$\therefore N = \frac{24}{5}$$

Lucia compró un terreno en forma de rectángulo, tal como se muestra en la figura.

$$\mathbf{h} = (12\sqrt{3} \tan \alpha) \,\mathbf{m}$$

$$b = (30 \text{ sen}\alpha) \text{ m}$$

Si α y 30° son ángulos coterminales, ¿cuál es el área de dicho terreno?

Resolución

Por propiedad de ángulos coterminales $RT(\alpha)$ = $RT(30^\circ)$

Entonces:

 $b = 30 \operatorname{sen} \alpha$

 $b = 30 sen 30^{\circ} h = 12$

b = 30(1/2)

b = 15m

$$h = 12\sqrt{3} tan 30^{\circ}$$

 $h = 12\sqrt{3} \tan \alpha$

$$h = 12\sqrt{3}.\frac{1}{\sqrt{3}}$$

h = 12 m

Reemplazar:

$$S = (15 m)(12 m)$$

El área del terreno es $180m^2$