Summary of the training functions in Matlab's NN toolbox Vladimir Vacic

Training functions in Matlab's NN Toolbox:

Function name	Algorithm
trainb	Batch training with weight & bias learning rules
trainbfg	BFGS quasi-Newton backpropagation
trainbr	Bayesian regularization
trainc	Cyclical order incremental training w/learning functions
traincgb	Powell -Beale conjugate gradient backpropagation
traincgf	Fletcher-Powell conjugate gradient backpropagation
traincgp	Polak-Ribiere conjugate gradient backpropagation
traingd	Gradient descent backpropagation
traingdm	Gradient descent with momentum backpropagation
traingda	Gradient descent with adaptive lr backpropagation
traingdx	Gradient descent w/momentum & adaptive lr backpropagation
trainlm	Levenberg-Marquardt backpropagation
trainoss	One step secant backpropagation
trainr	Random order incremental training w/learning functions
trainrp	Resilient backpropagation (Rprop)
trains	Sequential order incremental training w/learning functions
trainscg	Scaled conjugate gradient backpropagation

Performance of different training functions:

Function	traiı	ning	valida	ation	testi	ing	tir	ne
name	mean	stdev	mean	stdev	mean	stdev	mean	stdev
trainb	0.6456	0.7246	0.6302	0.6946	0.6386	0.7081	2.511	3.3835
trainbfg	0.0096	0.0032	0.0199	0.0084	0.0209	0.0046	7.3219	4.5702
trainbr	7.6088	3.5328	18.9761	10.219	149.8294	32.2893	18.5063	8.927
trainc	0.0072	0.0015	*	*	0.0374	0.0066	466.072	163.5241
traincgb	0.0102	0.0026	0.0193	0.0069	0.0203	0.0059	4.3389	1.886
traincgf	0.0112	0.0033	0.0199	0.0091	0.0202	0.0051	4.9752	2.4127
traincgp	0.0114	0.003	0.0213	0.0093	0.0216	0.0045	4.0544	1.9337
traingd	0.0265	0.0055	0.0332	0.0099	0.0323	0.0029	13.003	4.4432
traingdm	0.5528	0.34	0.5556	0.3221	0.5592	0.3499	1.2875	0.3697
traingda	0.0244	0.0063	0.0293	0.0084	0.0310	0.0037	5.2	2.222
traingdx	0.0394	0.0312	0.0448	0.0317	0.0445	0.0274	5.4219	3.526
trainlm	0.0065	0.0027	0.0199	0.0066	0.0231	0.0037	8.5762	3.494
trainoss	0.013	0.0038	0.0204	0.0081	0.0205	0.0035	5.1703	2.8221
trainr	0.0077	0.0014	*	*	0.3319	0.0042	422.3888	148.2313
trainrp	0.0137	0.0045	0.0207	0.0059	0.0229	0.0035	7.4954	3.8277
trains	2.0723	1.5461	*	*	2.1834	1.6277	0.1893	0.0188
trainscg	0.0114	0.0035	0.0213	0.0109	0.0218	0.0073	4.3171	1.7394

^{*} do not support validation vectors, algorithms ignored validation datasets

a) Training function details:

Trainb

(Batch training with weight & bias
learning rules)

 epochs: 100
 goal: 0
 max_fail: 5

show: 25

time: Inf

goal: 0

Trainbfq

(BFGS quasi-Newton backpropagation)

epochs: 100
show: 25

time: Inf
min_grad: 1.0000e-006
max_fail: 5
searchFcn: 'srchbac'
scale_tol: 20
alpha: 0.0010
beta: 0.1000
delta: 0.0100
gama: 0.1000
low_lim: 0.1000
up_lim: 0.5000
maxstep: 100

minstep: 1.0000e-006

Trainbr

(Bayesian regularization)

bmax: 26

epochs: 100
show: 25
goal: 0
time: Inf
min_grad: 1.0000e-010
max_fail: 5
mem_reduc: 1
mu: 0.0050
mu_dec: 0.1000
mu_inc: 10
mu_max: 1.0000e+010

Trainc

(Cyclical order incremental training
w/learning functions)

epochs: 100
 goal: 0
 show: 25
 time: Inf

Traincgb

(Powell-Beale conjugate gradient backpropagation)

epochs: 100

show: 25 goal: 0 time: Inf min_grad: 1.0000e-006 max_fail: 5 searchFcn: 'srchcha' scale_tol: 20 alpha: 0.0010 beta: 0.1000 delta: 0.0100 gama: 0.1000 low_lim: 0.1000 up_lim: 0.5000 maxstep: 100 minstep: 1.0000e-006 bmax: 26

Traincgf

(Fletcher-Powell conjugate gradient backpropagation)

goal: 0
time: Inf
min_grad: 1.0000e-006
max_fail: 5
searchFcn: 'srchcha'
scale_tol: 20
alpha: 0.0010
beta: 0.1000
delta: 0.0100
gama: 0.1000
low_lim: 0.1000
up_lim: 0.5000
maxstep: 100
minstep: 1.0000e-006

bmax: 26

epochs: 100

show: 25

Traincgp

(Polak-Ribiere conjugate gradient backpropagation)

epochs: 100
 show: 25
 goal: 0
 time: Inf
min_grad: 1.0000e-006
max_fail: 5

```
searchFcn: 'srchcha'
                                                         lr_dec: 0.7000
    scale_tol: 20
                                                         lr_inc: 1.0500
       alpha: 0.0010
                                                       max_fail: 5
        beta: 0.1000
                                                   max_perf_inc: 1.0400
                                                           mc: 0.9000
       delta: 0.0100
        gama: 0.1000
                                                       min_grad: 1.0000e-006
      low_lim: 0.1000
                                                         show: 25
      up_lim: 0.5000
                                                           time: Inf
     maxstep: 100
minstep: 1.0000e-006
bmax: 26
                                               Trainlm
                                               (Levenberg-Marquardt backpropagation)
Traingd
                                                      epochs: 100
(Gradient descent backpropagation)
                                                       goal: 0
                                                    max fail: 5
      epochs: 100
                                                   mem_reduc: 1
       qoal: 0
                                                    min_grad: 1.0000e-010
         lr: 0.0100
                                                         mu: 0.0010
                                                      mu_dec: 0.1000
    max_fail: 5
   min_grad: 1.0000e-010
                                                      mu_inc: 10
       show: 25
                                                      mu_max: 1.0000e+010
       time: Inf
                                                       show: 25
                                                        time: Inf
Traingdm
                                               Trainoss
(Gradient descent with momentum
backpropagation)
                                               (One step secant backpropagation)
      epochs: 100
                                                      epochs: 100
                                                        show: 25
       goal: 0
         lr: 0.0100
                                                        goal: 0
   max_fail: 5
                                                        time: Inf
        mc: 0.9000
                                                    min grad: 1.0000e-006
   min_grad: 1.0000e-010
                                                    max_fail: 5
                                                   searchFcn: 'srchbac'
       show: 25
                                                   scale_tol: 20
       time: Inf
                                                       alpha: 0.0010
                                                       beta: 0.1000
                                                       delta: 0.0100
Traingda
                                                       gama: 0.1000
(Gradient descent with adaptive lr
                                                     low_lim: 0.1000
backpropagation)
                                                     up_lim: 0.5000
                                                     maxstep: 100
          epochs: 100
                                                     minstep: 1.0000e-006
           goal: 0
                                                        bmax: 26
             lr: 0.0100
          lr_inc: 1.0500
         lr_dec: 0.7000
                                               Trainr
       max_fail: 5
   max_perf_inc: 1.0400
                                               (Random order incremental training
       min_grad: 1.0000e-006
show: 25
                                               w/learning functions)
           time: Inf
                                                   epochs: 100
                                                     goal: 0
                                                     show: 25
                                                     time: Inf
Traingdx
(Gradient descent w/momentum & adaptive
lr backpropagation)
                                               Trainrp
          epochs: 100
                                               (Resilient backpropagation - Rprop)
            qoal: 0
             lr: 0.0100
                                                     epochs: 100
```

show: 25 goal: 0 time: Inf

min_grad: 1.0000e-006

max_fail: 5
delt_inc: 1.2000
delt_dec: 0.5000
delta0: 0.0700
deltamax: 50

Trainscg

(Scaled conjugate gradient backpropagation)

epochs: 100
 show: 25
 goal: 0
 time: Inf

min_grad: 1.0000e-006

max_fail: 5

sigma: 5.0000e-005 lambda: 5.0000e-007

Trains

(Sequential order incremental training
w/learning functions)

passes: 1

Function name	Algorithm	# Parameters
Trainb	Batch training with weight & bias learning rules	5
trainbfg	BFGS quasi-Newton backpropagation	17
Trainbr	Bayesian regularization	11
trainc	Cyclical order incremental training w/learning functions	4
traincgb	Powell -Beale conjugate gradient backpropagation	17
traincgf	Fletcher-Powell conjugate gradient backpropagation	17
traincgp	Polak-Ribiere conjugate gradient backpropagation	17
traingd	Gradient descent backpropagation	7
traingdm	Gradient descent with momentum backpropagation	8
traingda	Gradient descent with adaptive lr backpropagation	10
traingdx	Gradient descent w/momentum & adaptive lr backpropagation	11
trainlm	Levenberg-Marquardt backpropagation	11
trainoss	One step secant backpropagation	17
trainr	Random order incremental training w/learning functions	4
trainrp	Resilient backpropagation (Rprop)	10
trains	Sequential order incremental training w/learning functions	1
trainscg	Scaled conjugate gradient backpropagation	8

Optimizing NN training function parameters:

Since the number of free parameters was too big for an exhaustive analysis, only three functions that perform well with the default parameters were selected for fine tuning, in hopes of having them perform even better. For brevity and clarity, only the performance on the test set was reported.

trainbfg (BFGS quasi-Newton backpropagation)

Varying the min_grad parameter did not yield any significant increases nor decreases in accuracy and running time, except when the values became really big (4 orders of magnitude bigger than the default value).

min_grad	mean(mse) std	mean(time) std	0.027
1.00E-10	0.0205 0.0051	6.8422 3.1826	0.026
1.00E-09	0.0217 0.0048	5.9687 3.8304	0.005
1.00E-08	0.0211 0.0043	5.9157 3.9046	0.024
1.00E-07	0.0205 0.0036	5.8890 2.6894	0.022
1.00E-06	0.0197 0.0031	5.6061 3.2403	0.021
1.00E-05	0.0191 0.0033	5.4954 2.7394	0.02
1.00E-04	0.0192 0.0032	5.2858 2.7135	0.019 2 3 4 5 6 7 8 9 10
1.00E-03	0.0207 0.0043	5.0813 2.2273	
1.00E-02	0.0191 0.0024	5.5312 2.4237	
1.00E-01	0.0268 0.0038	1.9578 0.6510	

Scale_tols in the range of [30, 5] seem to perform better then the default parameter value 20.

Scale_tol	mean(mse) std	mean(time) std	0.028
100	0.0250 0.0080	5.8173 3.1563	0.025
50	0.0218 0.0039	4.5469 2.0129	0.024
30	0.0202 0.0033	5.6533 2.2628	
20	0.0212 0.0048	4.8873 2.1727	0.023
10	0.0196 0.0043	5.6171 2.5485	0.022
5	0.0209 0.0046	5.4219 2.6609	0.021
3	0.0233 0.0059	5.4159 3.4750	0.02
2	0.0209 0.0048	5.0751 3.1815	0.019 2 3 4 5 6 7 8 9
1	0.0220 0.0063	5.6748 2.9298	

Varying alpha obtained better results at the expense of longer running times. Values above 0.1 were not feasible to use due to prohibitively long training time (probably the algorithm would not converge).

alpha	mean(mse) std		mean(time	e) std
0.1	0.0196	0.0053	5.8435	2.9714
0.05	0.0215	0.0077	5.9922	2.9526
0.01	0.0193	0.0046	8.0282	5.3354
0.005	0.0195	0.0061	6.5624	2.9396
0.001	0.0199	0.0041	6.0922	3.0140
0.0005	0.0190	0.0031	6.6971	3.2757
0.0001	0.0205	0.0041	5.3377	3.0052

Varying beta also gave us a range of good possible values:

beta	mean(mse) std	mean(time	e) std
0.1	0.0214	0.0047	6.3846	3.1003
0.05	0.0208	0.0033	6.5406	2.5756
0.01	0.0196	0.0037	6.1031	2.9170
0.005	0.0198	0.0026	7.5577	3.6887
0.001	0.0214	0.0051	5.9122	2.7882
0.0005	0.0210	0.0035	5.8984	3.0984
0.0001	0.0208	0.0061	5.7998	2.8141

Varying delta did not determine a candidate or candidate range for the best possible prediction:

delta	mean(mse) std	mean(time	e) std
0.1	0.0203	0.0036	6.0764	3.2230
0.05	0.0195	0.0040	5.6482	2.8962
0.01	0.0205	0.0039	6.0282	2.6551
0.005	0.0214	0.0062	6.4155	3.7637
0.001	0.0212	0.0078	5.8043	2.6148
0.0005	0.0195	0.0032	5.4079	2.4490
0.0001	0.0200	0.0038	4.7436	1.8676

Varying gamma we obtained that value of 0.005 yields the best prediction:

gamma	mean(mse) std	mean(time	e) std
0.1	0.0225	0.0063	7.1439	3.9628
0.05	0.0222	0.0060	6.5423	3.0900
0.01	0.0224	0.0055	5.8436	3.2640
0.005	0.0182	0.0020	6.3408	3.1270
0.001	0.0221	0.0068	6.0769	2.7400
0.0005	0.0204	0.0038	5.5592	2.9364
0.0001	0.0211	0.0041	6.4016	2.9683

trainbrp (Resilient backpropagation)

Accuracy monotonically increases with the decrease in delta0:

Delta0	mean(mse) std	mean(time	e) std
3	17.1146	10.9054	0.7090	0.1956
2	14.8043	11.5706	1.2808	1.8624
1	4.1029	4.7021	2.1822	2.5085
0.5	0.6666	0.9552	3.3709	2.8963
0.2	0.1122	0.1683	3.5992	2.4327
0.1	0.0272	0.0088	4.6016	2.2128
0.05	0.0231	0.0020	4.3931	1.9445
0.02	0.0241	0.0037	3.7456	2.1454
0.01	0.0271	0.0069	3.6063	2.1918

Accuracy monotonically decreases with the increase in delt_inc:

delt_inc	mean(mse) std	mean(time	e) std
2	0.0001	0.0002	1.1428	0.7061
3	0.0004	0.0002	0.6551	0.2762
5	0.0734	0.1151	0.6188	0.1825
20	1.6494	2.9597	0.7650	0.2391
30	2.1809	1.6639	0.7491	0.2189
50	2.7150	2.6276	0.8731	0.2515
100	2.8118	2.2356	0.9153	0.2703

Best experimentally determined value for delt_dec was 0.2.

delt_dec	mean(mse) std		mean(time	e) std
1	0.5870	0.2982	1.3856	1.2098
0.5	0.0485	0.0744	3.6001	2.0620
0.2	0.0280	0.0043	4.5614	2.0696
0.1	0.5886	0.6400	2.5849	2.7867
0.05	0.5586	1.0577	4.4033	2.7499
0.02	0.3650	0.5901	3.6333	3.0410
0.01	0.6378	1.0649	3.8626	2.9429

trainblm (Levenberg-Marquardt backpropagation)

Accuracy monotonically increases with the decrease in mu.

mu	mean(mse) std		mean(time) std	
0.05	0.0262 0.	0078	7.2922	2.9351
0.01	0.0239 0.	0027	8.4438	3.5154
0.005	0.0239 0.	0047	8.7093	3.5562
0.001	0.0227 0.	0030	8.7765	3.3478
0.0005	0.0238 0.	0039	10.3217	5.1618
0.0001	0.0217 0.	0043	8.6296	3.7355

Varying mu_dec did not significantly influence the accuracy in any observable way:

std
4.4332
5.2101
5.6052
5.0435
7.3443
9.2759

