Developing predictive models for COVID-19 diagnosis in paediatric patients

A case study about the potentials of Machine Learning in Public Health

By Anna Mas-Casadesús 15th July 2020

→ WHAT IS THE PROBLEM?

Children appear to have a **similar prevalence** of COVID-19 antibodies to adults

But most of them tend to present **mild or no symptoms**Making **COVID-19 diagnosis in children particularly difficult**

https://www.sjdhospitalbarcelona.org/en/kidscorona

■ WHAT IS THE PROBLEM?

Children appear to have a **similar prevalence** of COVID-19 antibodies to adults

But most of them tend to present **mild or no symptoms**Making **COVID-19 diagnosis in children particularly difficult**

https://www.sjdhospitalbarcelona.org/en/kidscorona

Dataset on paediatric patients with and without COVID-19 but similar symptoms

Children appear to have a **similar prevalence** of COVID-19 antibodies to adults But most of them tend to present mild or no symptoms Making COVID-19 diagnosis in children particularly difficult

https://www.sjdhospitalbarcelona.org/en/kidscorona

Dataset on paediatric patients with and without COVID-19 but similar symptoms

Contact with Dr. Antoni Soriano-Arandes

Children appear to have a **similar prevalence** of COVID-19 antibodies to adults But most of them tend to present mild or no symptoms Making COVID-19 diagnosis in children particularly difficult

https://www.sjdhospitalbarcelona.org/en/kidscorona

Dataset on paediatric patients with and without COVID-19 but similar symptoms

Contact with Dr. Antoni Soriano-Arandes

Machine Learning classification models to predict COVID-19 diagnose in children

BASIC DATA CLEANING & MANIPULATIONS

STANDARDISATION

BASIC DATA CLEANING & MANIPULATIONS

STANDARDISATION

MISSING DATA MANAGEMENT

MICE METHOD

Incomplete Dataset

Imputation

Completed data analysis

Combining results

Copies of the minority class Original dataset Oversampled dataset Synthetic TRAIN/TEST SPLIT IMBALANCED CLASSES SMOTE METHOD MANAGEMENT

19 CovidPos

67 CovidNeg

18 features

19 CovidPos

67 CovidNeg

18 features

Demographics

Symptoms

Previous conditions

Treatments

Tests

Evolution

Age

Gender

Respiratory symptoms Gastrointestinal symp.

Pneumonia

Fever

Immunosuppression

Immunodeficiency

Other previous cond.

Oxygen therapy

Antibiotics

Corticoids

Chest x-ray

Neutrocytes

Lymphocytes

C-reactive protein

Diagnosis delay

Adm. Intensive Care Unit

AGE

GENDER

19 CovidPos

67 CovidNeg

18 features

Demographics

Symptoms

Previous conditions

Treatments

Tests

Evolution

Age Gender

Respiratory symptoms

Gastrointestinal symp.

Pneumonia

Fever

Immunosuppression

Immunodeficiency

Other previous cond.

Oxygen therapy

Antibiotics

Corticoids

Chest x-ray

Neutrocytes

Lymphocytes

C-reactive protein

Diagnosis delay

Adm. Intensive Care Unit

RESPIRATORY

GASTROINTESTINAL

FEVER

PNEUMONIA

19 CovidPos

67 CovidNeg

18 features

Demographics Symptoms

Previous conditions

Treatments

Tests

Evolution

Age

Gender

Respiratory symptoms

Gastrointestinal symp.

Pneumonia

Fever

Immunosuppression

Immunodeficiency

Other previous cond.

Oxygen therapy

Antibiotics

Corticoids

Chest x-ray

Neutrocytes

Lymphocytes

C-reactive protein

Diagnosis delay

Adm. Intensive Care Unit

IMMUNOSUPPRESSION

IMMUNODEFICIENCY

OTHER PREVIOUS CONDITIONS

19 CovidPos

67 CovidNeg

18 features

Demographics
Symptoms
Previous conditions

Treatments

Tests

Evolution

Age

Gender

Respiratory symptoms

Gastrointestinal symp.

Pneumonia

Fever

Immunosuppresion

Immunodeficiency

Other previous cond.

Oxygen therapy

Antibiotics

Corticoids

Chest x-ray

Neutrocytes

Lymphocytes

C-reactive protein

Diagnosis delay

Adm. Intensive Care Unit

OXYGEN THERAPY

ANTIBIOTICS

CORTICOIDS

19 CovidPos

67 CovidNeg

18 features

Demographics
Symptoms
Previous conditions
Treatments

Tests

Evolution

Age

Gender

Respiratory symptoms

Gastrointestinal symp.

Pneumonia

Fever

Immunosuppresion

Immunodeficiency

Other previous cond.

Oxygen therapy

Antibiotics

Corticoids

Chest x-ray

Neutrocytes

Lymphocytes

C-reactive protein

Diagnosis delay

Adm. Intensive Care Unit

CHEST X-RAY

NEUTROCYTES

LYMPHOCYTES

C-REACTIVE PROTEIN

19 CovidPos

67 CovidNeg

18 features

Demographics
Symptoms
Previous conditions
Treatments
Tests
Evolution

Age Gender **Respiratory symptoms** Gastrointestinal symp. Pneumonia Fever **Immunosuppresion Immunodeficiency** Other previous cond. Oxygen therapy **Antibiotics Corticoids Chest x-ray Neutrocytes** Lymphocytes **C-reactive protein** Diagnosis delay **Adm. Intensive Care Unit**

DIAGNOSIS DELAY

ADMISSION TO INTENSIVE CARE UNIT

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation, RandomizedSearch strategy)

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation, RandomizedSearch strategy)

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation, RandomizedSearch strategy)

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,

 C_1

Dividing hyperplane

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,

 C_1

1) TRAIN DIFFERENT MACHINE LEARNING MODELS

Pipeline with different classification models (Stratified KFold cross-validation,

2) TRAIN BEST PERFORMING MODELS

Reduced pipeline with best performing models: Random Forests (Stratified KFold cross-validation, GridSearch strategy)

Best parameters output

Original model

```
{'clf__criterion': 'gini',
'clf__max_depth': 2,
'clf__min_samples_leaf': 2,
'clf__min_samples_split': 2}
```

Oversampled model

```
{'clf__criterion': 'entropy',
  'clf__max_depth': 3,
  'clf__min_samples_leaf': 3,
  'clf__min_samples_split': 8}
```


3) GLOBAL SURROGATE METHOD

Modelling of Decision Trees on Random Forest model predictions

3) GLOBAL SURROGATE METHOD

Modelling of Decision Trees on Random Forest model predictions

3) GLOBAL SURROGATE METHOD

Modelling of Decision Trees on Random Forest model predictions

4) MODEL PERFORMANCE EVALUATION

Accuracy, Precision, Recall, F1 Score, AUC Score, Confusion Matrix

4) MODEL PERFORMANCE EVALUATION

Accuracy, Precision, Recall, F1 Score, AUC Score, Confusion Matrix

4) MODEL PERFORMANCE EVALUATION

Accuracy, Precision, Recall, F1 Score, AUC Score, Confusion Matrix

WHAT IS THE DATA TELLING ME?

→ WHAT IS THE DATA TELLING ME?

→ WHAT IS THE DATA TELLING ME?

Decision Tree visualisations

Feature importance analyses & visualisations

→ WHAT IS THE DATA TELLING ME?

COVID POSITIVE CASE

Feature importance analyses & visualisations

COVID NEGATIVE CASE

CONCLUSIONS

- Intricacy and difficulties of real data
- Need to be resourceful and find solutions to data shortcomings
- Promising results despite small sample size
- Potential of Machine Learning techniques in clinical settings and public health

CONCLUSIONS

- Intricacy and difficulties of real data
- Need to be resourceful and find solutions to data shortcomings
- Promising results despite small sample size
- Potential of Machine Learning techniques in clinical settings and public health

NEXT STEPS

- Gather more data!
- Improve model
- Develop predictive models of paediatric COVID-19 severity
- Get in touch with stakeholders that could make good use of the generated knowledge
- Further projects and collaborations in the area (e.g. in talks: develop predictive models of adult COVID-19 diagnosis of a Barcelona GP)

THANKS!

amascasadesus@gmail.com

GitHub: /amascasadesus

LinkedIn: /amascasadesus

