

Overview & course schedule

Modules	Date	Торіс
Registration	April 24 (Thursday)	Course introduction, geometrical transformations
	April 28 (Monday)	Point-based image registration
	May 1 (Thursday)	Intensity-based image registration
Segmentation	May 8 (Thursday)	Introduction to image segmentation
	May 15 (Thursday)	Segmentation in feature space
	May 19 (Monday)	Segmentation using graph-cuts
	May 22 (Thursday)	Statistical shape models
Deep learning for MIA	May 26 (Monday)	Convolutional neural networks
	June 2 (Monday)	Deep learning applications (registration)
	June 5 (Thursday)	Guest lecture by Danny Ruijters (principal scientist @ Philips, full professor @ TU/e)
	June 10 (Tuesday)	Deep learning applications (segmentation)
	June 12 (Thursday)	Unsupervised deep learning for medical image analysis

Overview & course schedule

Modules	Date	Торіс
Registration	April 24 (Thursday)	Course introduction, geometrical transformations
	April 28 (Monday)	Point-based image registration
	May 1 (Thursday)	Intensity-based image registration
Segmentation	May 8 (Thursday)	Introduction to image segmentation
	May 15 (Thursday)	Segmentation in feature space
	May 19 (Monday)	Segmentation using graph-cuts
		Statistical shape models
Deep learning for MIA	May 26 (Monday)	Convolutional neural networks
	June 2 (Monday)	Deep learning applications (registration)
	June 5 (Thursday)	Guest lecture by Danny Ruijters (principal scientist @ Philips, full professor @ TU/e)
	June 10 (Tuesday)	Deep learning applications (segmentation)
	June 12 (Thursday)	Unsupervised deep learning for medical image analysis

Study materials – medical image registration

- Primary: lecture slides, exercises, virtual reader
- Recommended reading relevant sections from: <u>Fitzpatrick, J.M., Hill, D.L. and Maurer Jr, C.R., Image registration.</u>

Outline

- Introduction to medical image registration
- Recap of linear algebra
- Geometrical transformations

Intended learning outcome

The student can:

- name possible causes of misalignment in medical images
- name different applications of medical image registration
- classify medical image registration methods using eight different criteria
- apply the basic principles of linear algebra (i.e., matrix-vector, vector-matrix products, transpose, norms, orthogonality, determinant) to image registration tasks
- use the determinant of a transformation matrix T to predict the orientation and magnification of an object transformed with T
- compose and combine rigid and affine transformations in 2D and 3D (and rewrite them using homogeneous coordinates)
- explain the difference between affine and non-linear registrations

Outline

- Introduction to medical image registration
- Recap of linear algebra
- Geometrical transformations

r/pics post: "I went to **Milan** to create a frame for this photo. Live frame."

Barcelona

Image registration:

- determination of a geometrical transformation
- that aligns **one view** of an object
- with another view of that object or another object.

IMAG/e TU/e

transformed moving image

moving image

You will implement this functionality during the image registration project!

Cause of misalignment

- Imaging system
 - Distortions caused by imaging system
- Patient/subject
 - Movements of patient
 - Movements of organs due to physiology
- Operator
 - Changes in positioning of patient in scanner
 - Changes in viewing angle
 - Changes caused by interventions (e.g. surgery, chemotherapy) in between acquisition of the images
- More...

Applications of image registration

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

Applications of image registration

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

MRI, information about anatomical structures

PET, information about function

Applications of image registration

- Combining information from different sources
- Comparison: differences in (groups of) subjects
- Comparison: monitoring changes in a single subject
- Segmentation
- Motion correction
- Image-guided treatment
- Atlas, model of average anatomy

Digital subtraction angiography

Without registration

With registration

Digital subtraction angiography

Classification of image registration

- Image dimensionality: 2D, 3D, 3D + time...
- Registration basis: point sets, intensity...
- Geometrical transformations: rigid, affine, nonlinear...
- Degree of interaction: automatic, semi-automatic
- Optimization procedure: closed-form solution, iterative
- Modalities: multi-modal, intra-modal
- Subject: inter-patient, intra-patient, atlas
- Object: head, vertebra, liver...

Image registration overview

Outline

 Introduction to medical image registration

Recap of linear algebra

Geometrical transformations

Kolter, Z. Do, C., Linear Algebra Review and Reference (http://cs229.stanford.edu/section/cs229-linalg.pdf)

Topics to review:

- Matrix-vector, vector-matrix products
- Transpose
- Norms
- Orthogonality
- Determinant

Scalars

Question: Which of the following is **not** typically considered a **scalar**?

- A. An integer like 7
- B. A real number like 3.14
- C. A grayscale pixel value
- D. A 1×1 matrix

Scalars

- · A scalar is a single number
- · Integers, real numbers, rational numbers, etc.
- · We denote it with italic font:

a, n, x

Vectors

Question: Which of the following denotes

this vector
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
?

- A. \mathbb{R}^n
- B. $\mathbb{R}^{1 \times n}$
- C. \mathbb{R}_1^n
- D. \mathbb{R}_n

Vectors

· A vector is a 1-D array of numbers:

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}. \tag{2.1}$$

- · Can be real, binary, integer, etc.
- Example notation for type and size:

 \mathbb{R}^n

Matrices

Question: What is the typical notation for a matrix with m rows and n columns?

- $A. \mathbb{R}^{n \times m}$
- B. $\mathbb{R}^{m \times n}$
- C. \mathbb{R}_n^m
- D. \mathbb{R}_m^n

Matrices

· A matrix is a 2-D array of numbers:

· Example notation for type and shape:

$$\boldsymbol{A} \in \mathbb{R}^{m \times n}$$

Matrix transpose

Question: If \mathbf{A} is a 2x3 matrix, what is the dimension of $\mathbf{A}\mathbf{A}^T$?

- A. 2x3
- B. 3x2
- C. 2x2
- D. 3x3

Matrix Transpose

Figure 2.1: The transpose of the matrix can be thought of as a mirror image across the main diagonal.

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}. \tag{2.9}$$

Matrix (Dot) product

Question: If $\mathbf{u} = [1, 2, 3]$ and $\mathbf{v} = [4, -1, 0]$, what is the dot product of \mathbf{u} and \mathbf{v} ?

- A. -1
- B. 6
- C. 4
- D. $4 \times 1 + (-1) \times 2 + 0 \times 3$

Matrix (Dot) Product

$$C = AB. (2.4)$$

$$C_{i,j} = \sum_{k} A_{i,k} B_{k,j}.$$
 (2.5)

Identity matrix

Question: which of the following is the 3x3 identity matrix I_3 ?

$$A. \quad \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$B. \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$C. \qquad \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

$$D. \qquad \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Identity Matrix

$$\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

Figure 2.2: Example identity matrix: This is I_3 .

$$\forall \boldsymbol{x} \in \mathbb{R}^n, \boldsymbol{I}_n \boldsymbol{x} = \boldsymbol{x}. \tag{2.20}$$

Systems of equations

Question: A system of linear equations is consistent and has a unique solution exactly when its coefficient matrix A satisfies which condition?

- A. $\det A = 0$
- B. rank A < number of unknowns
- C. A is square and det $A \neq 0$
- D. A has more rows than columns

Systems of Equations

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.11}$$

expands to

$$\boldsymbol{A}_{1::}\boldsymbol{x} = b_1 \tag{2.12}$$

$$\boldsymbol{A}_{2::}\boldsymbol{x} = b_2 \tag{2.13}$$

$$\dots \tag{2.14}$$

$$\boldsymbol{A}_{m,:}\boldsymbol{x} = b_m \tag{2.15}$$

System of Linear Equation

$$2.0x + 4.0y + 6.0z = 18$$

 $4.0x + 5.0y + 6.0z = 24$
 $3.0x + 1y - 2.0z = 4$

Matrix representation

$$A = \begin{bmatrix} 2.0 & 4.0 & 6.0 \\ 4.0 & 5.0 & 6.0 \\ 3.0 & 1.0 & -2.0 \end{bmatrix} \quad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad b = \begin{bmatrix} 18.0 \\ 24.0 \\ 4.0 \end{bmatrix}$$

Matrix inversion

Question: If A is an invertible $n \times n$ matrix, which relation holds?

- A. $A A^T = I$
- B. $A^{-1} A = I$
- C. det(A) = 0
- D. $A + A^{-1} = I$

Matrix Inversion

Matrix inverse:

$$\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n. \tag{2.21}$$

· Solving a system using an inverse:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{2.22}$$

$$\boldsymbol{A}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{A}^{-1}\boldsymbol{b} \tag{2.23}$$

$$I_n \mathbf{x} = \mathbf{A}^{-1} \mathbf{b} \tag{2.24}$$

Numerically unstable, but useful for abstract analysis

Norms

Question: Let $f: V \to \mathbb{R}$ be a candidate for a norm on a vector space V. Which of the following statements does **not** have to hold for f to qualify as a norm?

B.
$$f(\alpha x) = |\alpha| f(x)$$
 for all scalars α and $x \in V$.

- C. $f(x) \ge 0$ for all $x \in V$.
- D. f(xy) = f(x) f(y) for all $x,y \in V$.

Norms

- · Functions that measure how "large" a vector is
- Similar to a distance between zero and the point represented by the vector

•
$$f(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}$$

•
$$f(x + y) \le f(x) + f(y)$$
 (the triangle inequality)

•
$$\forall \alpha \in \mathbb{R}, f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$$

Special matrices and vectors

Question: Let A be a real $n \times n$ orthogonal matrix. Which of the following statements does NOT necessarily hold true?

A.
$$A^T = A^{-1}$$

- B. The determinant of A is either +1 or -1
- C. The columns of *A* form an orthonormal set
- D. A is a symmetric matrix, i.e., $A^T = A$

Special Matrices and Vectors

· Unit vector:

$$||x||_2 = 1. (2.36)$$

Symmetric Matrix:

$$\mathbf{A} = \mathbf{A}^{\top}.\tag{2.35}$$

Orthogonal matrix:

$$\mathbf{A}^{\top} \mathbf{A} = \mathbf{A} \mathbf{A}^{\top} = \mathbf{I}.$$

$$\mathbf{A}^{-1} = \mathbf{A}^{\top}$$
(2.37)

Determinant

Question: What is the determinant of matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

- A. 0
- B. 5
- C. 10
- D. -2

The Determinant

Symbol of Determinant

$$\det(\mathbf{A}) = |\mathbf{A}| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

 The determinant of a square matrix maps matrices to real scalars

Question: What is the determinant of the identity matrix det (1)?

Determinant of a transformation matrix **T**: the signed area of a unit square shape after transforming with **T**.

The sign reflects whether the orientation has changed.

Determinant of a transformation matrix T: the signed **area** of a unit square shape after transforming with T.

The **sign** reflects whether the orientation has changed.

Study materials

- Essence of linear algebra, 3Blue1Brown channel
- Kolter, Z. Do, C., Linear Algebra Review and Reference (http://cs229.stanford.edu/section/cs229-linalg.pdf)

Outline

 Introduction to medical image registration

- Recap of linear algebra
- Geometrical transformations

All examples will be for 2D geometrical shapes and images,

but they can be easily generalized to 3D.

Translation

$$x' = x + t_x$$

$$y' = y + t_y$$

$$\mathbf{x}' = \begin{bmatrix} x' \\ y' \end{bmatrix} \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \qquad \mathbf{t} = \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{x} + \mathbf{t}$$

Distance between two points in 2D:

$$D(\mathbf{x}, \mathbf{x}') = \sqrt{(x - x')^2 + (y - y')^2}$$

Scaling

$$x' = s_x x$$
$$y' = s_y y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{S}\mathbf{x} \qquad \mathbf{S} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix}$$

$$\overrightarrow{X}' = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$$

$$\widehat{\Phi}. \ \overrightarrow{X'} = \begin{bmatrix} X_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 \cdot X_1 + 0 \cdot y_1 \\ 0 \cdot X_1 + 2 \cdot y_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} X_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \overrightarrow{X}$$

(5).
$$f(\vec{x}_{\bullet}) = \vec{x}'$$
 what is $f(\cdot)$? $f(\cdot)$

Rotation

$$x' = \cos(\phi)x - \sin(\phi)y$$
$$y' = \sin(\phi)x + \cos(\phi)y$$
$$[x'] = [\cos(\phi)x - \sin(\phi)]$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{R} \mathbf{x}$$

$$\mathbf{R} = egin{bmatrix} \cos(\phi) & -\sin(\phi) \ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

Rotation

Not every matrix can be considered a rotation matrix.

$$\mathbf{R} = egin{bmatrix} \cos(\phi) & -\sin(\phi) \ \sin(\phi) & \cos(\phi) \end{bmatrix}$$

Rotation matrices:

Are orthogonal:

$$\mathbf{R}\mathbf{R}^{-1} = \mathbf{R}\mathbf{R}^{\mathsf{T}} = \mathbf{I}$$

Have determinant equal to 1:

$$\det(\mathbf{R}) = 1$$

Shearing

$$x' = x + h_x y$$

$$y' = h_y x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & h_x \\ h_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{x}' = \mathbf{H}\mathbf{x} \hspace{0.5cm} \mathbf{H} = egin{bmatrix} 1 & h_x \ h_y & 1 \end{bmatrix}$$

Reflection

Horizontal:

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Vertical:

$$x - x$$
 $y' = -x$

$$x' = x y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Composition of transformations

Rotation + translation (rigid):

$$\mathbf{x}' = \mathbf{R}\mathbf{x} + \mathbf{t}$$

Transformations can be combined by multiplying the transformation matrices.

Rotation, scaling + translation:

$$x' = RSx + t$$

$$x' = SRx + t$$

Composition of transformations

Note that matrix multiplication is not commutative:

$$T_1T_2x \neq T_2T_1x$$

First scaling, then rotation, then translation:

$$x' = RSx + t$$

First rotation, then scaling, then translation:

$$x' = SRx + t$$

Affine transformation

→ no restriction on the transformation parameters

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$
$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{t}$$

 It can be considered as a composition of any combination of rotations, scalings, shearings, reflections, and translations.

Affine transformation

• Affine transformation has **6 parameters**: 2×2 transformation matrix and 2×1 translation vector.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

• The combination of rotation, scaling, shearing, reflection + translation has **9 parameters**: 1 rotation angle, 2 scaling parameters, 2 shearing parameters, 2 reflection parameters and 2×1 translation vector.

$$\begin{bmatrix} \phi & s_x & s_y & h_x & h_y & r_x & r_y & t_x & t_y \end{bmatrix}$$

- However, the first 7 parameters are not <u>independent</u>.
- The first parameterization is more compact, the second more human-readable.
- → Affine transformation in 2D has only 6 degrees of freedom.

Affine transformation

In medical image registration, **reflections do not usually occur**, and it can be very problematic if two images are incorrectly registered with a reflection (e.g. can cause a surgical procedure to be performed on the wrong side of the body).

Thus, reflections should be excluded from affine registration.

$$\begin{bmatrix} \phi & s_x & s_y & h_x & h_y & t_x & t_y \end{bmatrix}$$

When using the unrestricted transformation matrix, a check for reflection can be made by examining $det(\mathbf{A})$. If a reflection has occurred $det(\mathbf{A}) < 0$.

$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{t}$$

Homogenous form

A transformation matrix and a translation vector can be combined when using homogeneous coordinates:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} \qquad \Longrightarrow \qquad \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

This largely simplifies the notation and implementation of complex transformations.

Example

$$\mathbf{T}_1 = \begin{bmatrix} 1 & 0 & t_{x,1} \\ 0 & 1 & t_{y,1} \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T}_2 = \begin{bmatrix} 1 & 0 & t_{x,2} \\ 0 & 1 & t_{y,2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_2 = \begin{bmatrix} 1 & 0 & t_{x,2} \\ 0 & 1 & t_{y,2} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T}_{1}\mathbf{T}_{2} = \begin{bmatrix} 1 & 0 & t_{x,1} \\ 0 & 1 & t_{y,1} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & t_{x,2} \\ 0 & 1 & t_{y,2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{x,1} + t_{x,2} \\ 0 & 1 & t_{y,1} + t_{y,2} \\ 0 & 0 & 1 \end{bmatrix}$$

Example

Rotation around an arbitrary point $\mathbf{x}_r = \begin{bmatrix} x_r \\ y_r \end{bmatrix}$:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_r \\ 0 & 1 & y_r \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -x_r \\ 0 & 1 & -y_r \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Inverse transformation in homogenous form

Inverse transformation can be achieved by taking the inverse of the transformation matrix:

$$\mathbf{\Gamma} = egin{bmatrix} a & b & t_x \ c & d & t_y \ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{T}^{-1} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}^{-1}$$

Affine transformation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c & t_x \\ d & e & f & t_y \\ g & h & i & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- How many rotation angles in 3D?
- How many degrees of freedom?

Non-linear transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = ax + by + t_x$$

$$y' = cx + dy + t_y$$
 Linear polynomial

$$x' = ax + by + t_x + u_1x^2 + u_2y^2 + u_3xy \dots$$
$$y' = cx + dy + t_y + v_1x^2 + v_2y^2 + v_3xy \dots$$

Non-linear transformations

Example – thin-plate spline

$$x' = ax + by + t_x + \sum_{i=1}^{N} u_i r_i^2 \ln r_i^2$$
$$y' = cx + dy + t_y + \sum_{i=1}^{N} v_i r_i^2 \ln r_i^2$$
$$r_i^2 = (x - x_i)^2 + (y - y_i)^2$$

Summary

The student can:

- name possible causes of misalignment in medical images
- name different applications of medical image registration
- classify medical image registration methods using eight different criteria
- apply the basic principles of linear algebra (i.e., matrix-vector, vector-matrix products, transpose, norms, orthogonality, determinant) to image registration tasks
- use the determinant of a transformation matrix T to predict the orientation and magnification of an object transformed with T
- compose and combine rigid and affine transformations in 2D and 3D (and rewrite them using homogeneous coordinates)
- explain the difference between affine and non-linear registrations

Thank you

r.su@tue.nl

Next: Image transformation, point-based registration

