Durata della prova: 1h 30'

Esame di Logica e Algebra

Politecnico di Milano - Ingegneria Informatica - Appello telematico Luglio 2020

Tutte le risposte devono essere motivate. Gli esercizi vanno svolti in bella copia su fogli numerati e poi scannerizzati con lo stesso ordine di svolgimento dell'esame. Il primo foglio deve contenere nome cognome e matricola. Il numero massimo di fogli ammessi è di 6 pagine. Il file da caricare deve essere in formato pdf e quando lo salvate sul vostro OneDrive va nominato come "vostro-codice-persona".

- 1. (a) Scrivere una formula f(A, B, C) che ammetta la tavola di verità qui a fianco.
 - (b) Argomentando bene la risposta, dire se $\neg A \land C \vdash_L f(A,B,C)$ usando la risoluzione.
 - (c) Scrivere una formula g(A,B,C) non equivalente a f(A,B,C) che non sia una tautologia tale che $\{f(A,B,C), \neg g(A,B,C)\}$ sia un insieme di formule insoddisfacibile.

A	$\mid B \mid$	$\mid C \mid$	f(A, B, C)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

Soluzione:

- a) Dato che il numero di "1" presenti nella tabella è minore del numero di "0", possiamo costruire una formula f(A,B,C) in forma normale disgiuntiva: $f(A,B,C) \equiv (\neg A \land \neg B \land C) \lor (\neg A \land B \land C) \lor (A \land \neg B \land C)$.
- b) Dal teorema di correttezza e completezza della teoria L, abbiamo che $\neg A \land C \vdash_L f(A,B,C)$ se e solo se $\neg A \land C \vdash_L f(A,B,C)$ e questo è equivalente a dire che l'insieme di formule $\{\neg A \land C, \neg f(A,B,C)\}$ è insoddisfacibile. Dal teorema di correttezza e completezza per refutazione abbiamo che $\{\neg A \land C, \neg f(A,B,C)\}$ è insoddisfacibile se e solo se dall'insieme di clausole $\{\neg A \land C, \neg f(A,B,C)\}^c$ che si ottengono da questo insieme di formule si ottiene la clausola vuota per risoluzione. Calcoliamo $\{\neg A \land C, \neg f(A,B,C)\}^c$, da $\neg f(A,B,C)$ ricaviamo le clausole $\{A,B,\neg C\}, \{A,\neg B,\neg C\}, \{\neg A,B,\neg C\}, e$ dalla prima formula ricaviamo le clausole $\{\neg A\}, \{C\}$. Un possibile modo per ottenere la clausola vuota è dato dalla seguente derivazione per risoluzione:

c) Dobbiamo cercare una formula g(A, B, C) tale che per ogni modello v di f(A, B, C) non sia modello di $\neg g(A, B, C)$, cioè sia un modello di g(A, B, C). Quindi g(A, B, C) deve avere gli stessi modelli di f(A, B, C), corrispondenti alle righe in cui f(A, B, C) è vera. Dato che g(A, B, C) non deve essere equivalente a f(A, B, C) basta che la tavola di verità di g differisca da quella di f per esempio sulla prima riga, cioè facciamo in modo che nell'interpretazione w(A) = w(B) = w(C) = 0 la f.b.f. g(A, B, C) valga "1". Quindi abbiamo $g(A, B, C) \equiv f(A, B, C) \vee (\neg A \wedge \neg B \wedge \neg C)$. Notiamo che g(A, B, C) non è una tautologia.

- 2. In \mathbb{Z}_6 sia D l'insieme dei divisori dello zero. Si consideri la relazione $R \subseteq \mathbb{Z}_6 \times \mathbb{Z}_6$ così definita: aRb se e solo se $a, b \in D \cup \{[0]_6\}$.
 - (a) Disegnare il grafo d'adiacenza di R. Di quali proprietà gode R?
 - (b) Esiste la chiusura d'ordine di R?
 - (c) Si disegni il grafo d'adiacenza della chiusura d'equivalenza T di R e si costruisca l'insieme quoziente \mathbb{Z}_6/T .
 - (d) Si consideri la funzione $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ coì definita:

$$f([a]_6) = \begin{cases} [0]_6 & \text{se } M.C.D(a,6) \neq 1\\ [a]_6 & \text{altrimenti} \end{cases}$$

e si dica se è un morfismo del monoide (\mathbb{Z}_6 , ·) (rispetto al prodotto di classi).

- (e) Si dica se Ker f = T.
- (f) Si consideri la seguente f.b.f della logica del primo ordine:

$$\mathcal{F} = \forall x \exists y \left(A(x, y) \Rightarrow \exists z \left(\left(A(x, z) \land \neg E(x, z) \right) \Rightarrow A(z, x) \right) \right)$$

e si dica se è vera, falsa, soddisfacibile ma non vera nelle seguenti interpretazioni:

- dominio \mathbb{Z}_6 , A(x,y) sia R e E(x,z) l'uguaglianza;
- dominio \mathbb{Z}_6 , A(x,y) sia T e E(x,z) l'uguaglianza;

La precedente formula è logicamente valida?

Soluzione:

a) I divisori dello zero di \mathbb{Z}_6 sono $D = \{[2]_6, [3]_6, [4]_6\}$, quindi il grafo di adiacenza di R è il seguente:

Le proprietà di cui gode R sono la simmetria (tutti gli archi hanno la doppia freccia) e la transitività (tutti gli elementi da cui parte almeno un arco sono collegati fra di loro con archi bidirezionali).

- b) Non può esistere la chiusura d'ordine di R perchè qualunque relazione che contiene R contiene anche le coppie $([2]_6, [4]_6)$ e $([4]_6, [2]_6)$ quindi non può essere antisimmetrica.
- c) La chiusura d'equivalenza T di R si ottiene chiudendo riflessivamente, quindi $T = R \cup \{([1]_6, [1]_6), ([5]_6, [5]_6)\}$. Il suo grafo d'adiacenza é il seguente:

L'insieme quoziente $\mathbb{Z}_6/T = \{\{[0]_2, [2]_6, [3]_6, [4]_6\}, \{[1]_6\}, \{[5]_6\}\}$

d) Ricordiamo la seguente tavola moltiplicativa di (\mathbb{Z}_6,\cdot) :

	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$ [5]_6 $
$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$	$[0]_{6}$
$[1]_{6}$	$[0]_{6}$	$[1]_{6}$	$[2]_{6}$	$[3]_{6}$	$[4]_{6}$	$[5]_6$
$[2]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$	$[0]_{6}$	$[2]_{6}$	$[4]_{6}$
$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$	$[0]_{6}$	$[3]_{6}$
$[4]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$	$[0]_{6}$	$[4]_{6}$	$[2]_{6}$
$[5]_{6}$	$[0]_{6}$	$[5]_{6}$	$[4]_{6}$	$[3]_{6}$	$[2]_{6}$	$[1]_{6}$

Dalla tavola di composizione della moltiplicazione fra classi in \mathbb{Z}_6 si può notare che:

$$-\text{ se } x,y \in \{[1]_6,[5]_6\} \text{ allora } f(x) = x, f(y) = y \text{ e } x \cdot y \in \{[1]_6,[5]_6\}; \text{ quindi } f(x \cdot y) = x \cdot y \text{ e così } f(x \cdot y) = f(x) \cdot f(y);$$

- se $x, y \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$, abbiamo che $x \cdot y \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$ quindi $f(x \cdot y) = [0]_6 = f(x) = f(y)$, quindi anche in questo caso $f(x \cdot y) = f(x) \cdot f(y)$;
- se $x \in \{[1]_6, [5]_6\}$ e $y \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$ allora $f(x) = x, f(y) = [0]_6$ e quindi $f(x) \cdot f(y) = [0]_6$; inoltre $x \cdot y \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$ e quindi $f(x \cdot y) = [0]_2$ da cui segue che $f(x \cdot y) = f(x) \cdot f(y)$.

Pertanto f è un morfismo ed in particolare si può osservare che è un morfismo di monoidi poichè $f([1]_6) = [1]_6$.

- e) Notiamo che $(a,b) \in Ker(f)$ se e solo se $a,b \in \{[0]_6,[2]_6,[3]_6,[4]_6\}$, oppure a=b con $a \in \{[1]_6,[5]_6\}$, quindi Ker(f) è esattamente la chiusura riflessiva di R, cioè T.
- f) La formula è chiusa quindi in qualunque interpretazione essa è vera o falsa mentre non può essere soddisfacibile ma non vera.
 - Nella prima interpretazione la formula è interpretata nel seguente modo: per ogni x esiste un y tale che se $(x,y) \in R$, allora esiste uno z tale che se $(x,z) \in R$ con $x \neq z$, allora $(z,x) \in R$. La formula è vera. Infatti se $x \in \{[1]_6, [5]_6\}$ allora l'antecedente non è mai soddisfatto dato che non esiste nessun y con $(x,y) \in R$. Se invece $x \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$, basta prendere un qualunque $z \neq x$ con $z \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$ per soddisfare il conseguente della formula \mathcal{F} e quindi soddisfare la formula stessa.
 - Nella seconda interpretazione la formula è ancora vera: le motivazioni sono le stesse del caso precedente se $x \in \{[0]_6, [2]_6, [3]_6, [4]_6\}$ mentre nel caso in cui $x \in \{[1]_6, [5]_6\}$ si ha che l'antecedente A(x, y) è ora soddisfatto (basta prendere y = x) e però non esiste nessuno $z \neq x$ tale che $(x, z) \in T$, pertanto la sottoformula $A(x, z) \land \neg E(x, z)$ non è soddisfatta e quindi il conseguente dell'intera formula \mathcal{F} risulta soddisfatto.

La formula \mathcal{F} è logicamente valida, infatti per ogni relazione R su X che interpreta A(x,y), per ogni $x \in X$, se $(x,x) \notin R$, allora prendendo y=x, l'antecedente di \mathcal{F} è non soddisfatto, quindi \mathcal{F} è soddisfatta, invece se $(x,x) \in R$ prendendo y=x, l'antecedente di \mathcal{F} è soddisfatto, e prendendo z=x, la formula $A(x,z) \land \neg E(x,z)$ è non soddisfatta, rendendo il consequente di \mathcal{F} soddisfatto. Quindi in entrambi i casi l'intera formula \mathcal{F} è soddisfatta e pertanto essa risulta essere vera.

E' possibile dimostrare che la formula è logicamente valida anche usando la risoluzione per la logica del primo ordine. Innanzitutto neghiamo la formula data e portiamola in forma normale prenessa:

$$\neg \mathcal{F} \equiv \neg \forall x \exists y \left(A(x,y) \Rightarrow \exists z \left((A(x,z) \land \neg E(x,z)) \Rightarrow A(z,x) \right) \right) \equiv$$

$$\equiv \neg \forall x \exists y \exists z \left(A(x,y) \Rightarrow \left((A(x,z) \land \neg E(x,z)) \Rightarrow A(z,x) \right) \right) \equiv$$

$$\equiv \exists x \forall y \forall z \neg \left(A(x,y) \Rightarrow \left((A(x,z) \land \neg E(x,z)) \Rightarrow A(z,x) \right) \right)$$

Scriviamo, ora, la forma di Skolem della formula ottenuta eliminando il primo quantificatore esistenziale dal prefisso e sostituendo con la costante c ogni occorrenza della variabile x da esso quantificata:

$$\forall y \forall z \neg (A(c,y) \Rightarrow ((A(c,z) \land \neg E(c,z)) \Rightarrow A(z,c)))$$

Trasformiamo in forma a clausole la matrice della precedente formula:

$$\neg \left(\neg A(c,y) \lor \left(\neg \left(A(c,z) \land \neg E(c,z) \right) \lor A(z,c) \right) \right) \equiv$$

$$\equiv A(c,y) \land A(c,z) \land \neg E(c,z) \land \neg A(z,c)$$

Dopo la separazione delle variabili, si ottengono così le clausole di input $\{A(c,y)\}$, $\{A(c,z)\}$, $\{\neg E(c,z_1)\}$, $\{\neg A(z_2,c)\}$. Applicando la sostituzione $\sigma = \{c/z_2, c/y\}$ alla prima e all'ultima clausola si ottengono le clausole $\{A(c,c)\}$, $\{\neg A(c,c)\}$, la cui risolvente è proprio la clausola vuota.

3. Sia $A = \{(a, b) : a, b \in \mathbb{R}, b \neq 0\}$ e sia \star l'operazione interna su A definita da:

$$(a,b) \star (c,d) = (a+bc,bd)$$

- (a) Si mostri che (A, \star) è un gruppo;
- (b) È commutativo?
- (c) Si consideri la seguente formula della logica del primo ordine:

$$\forall x \forall y \forall z (E(p(x,y),p(x,z)) \Rightarrow E(y,z))$$

e un'interpretazione avente come dominio l'insieme A e in cui la lettera funzionale E è interpretata dalla relazione di uguaglianza e la lettera funzionale p dall'operazione interna \star vista nei punti precedenti. Dire se la formula è vera, falsa, soddisfacibile ma non vera in questa interpretazione

Soluzione:

a) L'esercizio già afferma che l'operazione \star è interna, quindi verifichiamo che A sia un semigruppo mostrando l'associatività:

$$((a,b) \star (c,d)) \star (e,f) = (a+bc,bd) \star (e,f) = (a+bc+bde,bdf)$$
$$(a,b) \star ((c,d) \star (e,f)) = (a,b) \star (c+de,df) = (a+bc+bde,bdf)$$

che sono uguali. Per mostrare che è un gruppo basta provare che ha identità e inverso destro (teorema sui gruppi presente sulle dispense). Per l'identità imponiamo l'equazione $(a,b)\star(c,d)=(a,b)$ cioè (a+bc,bd)=(a,b), quindi d=1,c=0. Quindi si verifica poi facilmente che $(a,b)\star(0,1)=(a,b)$ per ogni $a,b\in\mathbb{R}$. Per l'inverso imponiamo l'equazione $(a,b)\star(x,y)=(0,1)$ cioè (a+bx,by)=(0,1) da cui y=1/b, x=-a/b (ricordarsi che $b\neq 0$). Quindi si verifica che $(a,b)\star(-a/b,1/b)=(0,1)$.

- b) Non è commutativo infatti $(1,2) \star (3,1) = (7,2)$, mentre $(3,1) \star (1,2) = (4,2)$ che sono diversi.
- c) La formula è chiusa, quindi è vera o falsa. Nell'interpretazione data si traduce in: per ogni $x, y, z \in A$ se $x \star y = x \star z$, allora y = z che è vera in tutti i gruppi. Infatti basta moltiplicare l'equazione $x \star y = x \star z$ per x^{-1} a sinistra per ottenere che y = z (legge di cancellazione a sinistra per i gruppi).