Real Estate Loans Presentation 2 1975-2016

By: Matt Gaetz, Ryan Mowery, & Vinny Ditmore

Reintroduction

Data Set:

- United States Commercial Banking Real Estate Loans (1975-2016)

Goals of Project:

- Prove that our model's residuals resemble white noise
- To create a model that accurately forecasts our data

Data Set Time Series

Real Estate Loans From All Commercial Banks

Real Estate Loans from all
 Commercial Banks (1975-2016)

- Monthly Data
- Range 130- 4,115 Billions

Checking Seasonality Commercial Bank Loans

Period = 504

REL Data Transformation

Our data shows very high variance so we decided to try some transformations

We tried:

- Log
- Log Return
- Square Root
- Reciprocal

We found the log transformation was the best and seemed to fix our variance problem

Original vs. Log Transformation

Choosing a Model

- Options
 - ARMA
 - ARIMA
 - SARMA
 - SARIMA
 - ARCH/GARCH

- We decided use an ARIMA Model
 - o Differencing helps de trend our data

Differencing

Differenced & Log Transformed REL

Differenced Twice & Log Transformed REL

Differenced Thrice & Log Transformed REL

ACF & PACF Plots

ACF of REL log transformed

PACF of REL log transformed

ACF of Differenced twice & Log transformed REL

PACF of Differenced twice & Log transformed REL

Fitting Model

Models

Model1: ARIMA (1,2,1)

Model2: ARIMA (2,2,1)

Model3: ARIMA (3,2,1)

Model 4: ARIMA (1,2,2)

Model #	sigma^2 est.	aic	# of significant predictors
1	2.153e-05	-3963.09	2
2	2.151e-05	-3961.53	2
3	2.151e-05	-3959.53	2
4	2.151e-05	-3961.52	2

Plot of Residuals- Model 1

Plot of Residuals - REL Model 1

ACF/ PACF Comparison

ACF Model- REL Log Transformed

PACF Model- REL Log Transformed

ACF Model- REL Model 1

PACF Model- REL Model 1

How did we do?

sigma^2 estimated as 2.153e-05: log likelihood = 1984.54, aic = -3963.09

R Studio Our Group > summary(model1) > auto.arima(X1) Series: X1 Call: ARIMA(2,2,3)arima(x = Y1, order = c(1, 2, 1))Coefficients: Coefficients: ar2 ma1 ma2 ma3 ar1 -0.9044-0.6243 0.2369 -0.2019-0.6841ar1 ma1 0.0929 0.1007 0.0809 0.0639 0.3217 -0.8706s.e. 0.0869 s.e. 0.0555 0.0291 sigma^2 estimated as 170: log likelihood=-1999.59

AIC=4011.18

AICc=4011.35

BIC=4036,49

Forecast and Accuracy Statistics

Accuracy Statistics	Our Model	Model R Choose
ME	-1.320754e- 06	.2561468
RMSE	0.00464070 8	12.94644
MAE	0.00287536 3	5.768789
MPE	0.00042743 27	0.04381222
MAPE	0.04091886	0.3037068
MASE	0.03281393	0.05218125

All Finished Any Questions?

HPI by State Compared to 2008 Peak

