厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

第一章 总复习题

- 1. 设 *A* 是 *n* 阶方阵, 求证:
- (1) 若对任意的 n 维列向量 X 都有 AX = 0, 则 A = 0;
- (2) 若对任意的 n 阶方阵 B 都有 AB = 0, 则 A = 0;
- (3) 若对任意的 n 阶方阵 B 都有 AB = B, 则 A = E.

证明: (1) 将 A 按列分块为 $A=(A_1,A_2,\cdots,A_n), \varepsilon_i (i=1,2,\cdots,n)$ 为 n 维标准列向量,由条件得 $A\varepsilon_i=A_i=0 (i=1,2,\cdots,n)$,所以 A=0;反之当 A=0时,对任意的 n 维列向量 X 显然有 AX=0.

- (2) 由条件当 B=E 时, 0=AB=AE=A, 故 A=0; 反之当 A=0 时,对任意的 n 阶方阵 B, 显然有 AB=0.
- (3) 条件等价于对任意的 n 阶方阵 B 都有 (A-E)B=0, 由 (2) 的结论得 A-E=0, 即 A=E. \square
 - 2. 一个 n 阶方阵 $A = (a_{ij})$ 的 **迹** 定义为 $tr(A) = a_{11} + a_{22} + \cdots + a_{nn}$. 求证:
 - (1) $\operatorname{tr}(A+B) = \operatorname{tr}(A) + \operatorname{tr}(B)$;
 - (2) $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

证明: (1) 显然.

(2) 假定 C = AB, D = BA, $C = (c_{ij})_{n \times n}$, $D = (d_{ij})_{n \times n}$, 则

$$tr(AB) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ik} b_{ki} = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{ki},$$

$$\operatorname{tr}(BA) = \sum_{k=1}^{n} d_{k,k} = \sum_{k=1}^{n} \sum_{i=1}^{n} b_{ki} a_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ik} b_{ki}.$$

即 $\operatorname{tr}(AB) = \operatorname{tr}(AB)$. \square

3. 证明:不存在非零的 n 阶方阵 A, B, 使得 AB - BA = E.

证明: 因为 $\operatorname{tr}(AB-BA)=0\neq n=\operatorname{tr}(E),$ 故不存在 n 阶方阵 A,B, 使 AB-BA=E. \square

4. 设 A,B 是 n 阶方阵,满足 $A=\frac{1}{2}(B+E)$. 求证: $A^2=A$ 的充分必要条件是 $B^2=E$.

证明: 必要性: $\frac{1}{4}(B^2 + 2B + E) = (\frac{1}{2}(B + E))^2 = A^2 = A = \frac{1}{2}(B + E)$, 整理得: $B^2 = E$;

充分性: 由 $A = \frac{1}{2}(B+E)$, 得 B = 2A-E, 又 $B^2 = 4A^2-4A+E=E$, 所 以 $A^2 = A$. \square

- 5. 证明:
- (1) 上三角阵的乘积是上三角阵;
- (2) 上三角阵可逆的充分必要条件是对角元均非零;
- (3) 可逆的上三角阵的逆矩阵是上三角阵.

证明: (1) 设 A, B 均为上三角阵, A 的第 i 列为 $A_i = \sum_{j=1}^i a_{ji} \varepsilon_j$, B 的第 i 列为 $B_i = \sum_{j=1}^i b_{ji} \varepsilon_j$. 则 AB 的第 i 列为 $AB_i = A \sum_{j=1}^i b_{ji} \varepsilon_j = \sum_{j=1}^i b_{ji} A_j = \sum_{j=1}^i \sum_{k=1}^j b_{ji} a_{kj} \varepsilon_k = \sum_{k=1}^i (\sum_{j=k+1}^i b_{ji} a_{kj}) \varepsilon_k$, 故命题得证.

A 可逆 $\Leftrightarrow \det A = \prod_{i=1}^n a_{ii} \neq 0 \Leftrightarrow$ 对角元 $a_{ii} \neq 0 (i=1,2,\cdots,n)$.

- (3) 因为 $A^{-1} = \frac{A^*}{\det A}$, A 为上三角阵,则 A^* 的第 (i,j) 元素为 A_{ji} , 当 i>j 时, A_{ji} 为 n-1 阶上三角阵且其第 (j,j) 为 0 的行列式,故 $A_{ji}=0$,从而 A^{-1} 也为上三角阵.
 - 6. 设 AB = A + B. 求证: (1)A E 可逆; (2)AB = BA.

证明: (1) 因 AB = A + B, 故 (A - E)(B - E) = E, 所以 A - E 可逆, 且逆矩阵为 B - E.

- (2) 由可逆阵定义知, (A-E)(B-E)=E=(B-E)(A-E), 展开可得 AB=BA. \square
- 7. 一个 n 阶方阵 A 不可逆的充分必要条件是存在非零的 n 阶方阵 B, 使得 AB=0.

证明: 必要性: 设 r(A)=r, A 不可逆, 因此 r< n 且存在可逆矩阵 P,Q, 使得 $A=P\left(\begin{array}{cc} E_r & 0 \\ 0 & 0 \end{array}\right)Q.$ 令 $B=Q^{-1}\left(\begin{array}{cc} 0 & 0 \\ 0 & E_{n-r} \end{array}\right),$ 则因 Q 可逆, 所以

r(B) = n - r > 0, 从而 $B \neq 0$, 且

$$AB = P \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} QQ^{-1} \begin{pmatrix} 0 & 0 \\ 0 & E_{n-r} \end{pmatrix} = 0.$$

充分性: 反证法. 若 A 可逆, 则 $B = A^{-1}0 = 0$, 与设矛盾. 故 A 不可逆. \square 8. 证明:

- (1) 与矩阵 $diag\{1, 2, 3, \dots, n\}$ 可交换的 n 阶方阵是对角阵;
- (2) 与所有 $E(i, j), i, j = 1, 2, \dots, n$ 可交换的 n 阶对角阵是数量阵;
- (3) 与所有 n 阶方阵都可交换的矩阵是数量阵.

证明: (1) 设与矩阵 $D = \text{diag}\{1, 2, 3, \dots, n\}$ 可交换的矩阵为 $A = (a_{ij})_{n \times n}$, 下证 A 为对角阵. 事实上, AD 的第 (i, j) 元为 ja_{ij} , 而 DA 的第 (i, j) 元为 ia_{ij} , 由 AD = DA, $ja_{ij} = ia_{ij}$, 得当 $i \neq j$ 时, $a_{ij} = 0$, 所以 A 是对角阵.

- (2) 设对角阵 $A = \text{diag}\{a_{11}, a_{22}, \dots, a_{nn}\}$ 与所有 $E(i, j), i, j = 1, 2, \dots, n$ 可交换. 由 $E(i, j)A = a_{ij}E(i, j) = AE(i, j) = a_{ii}E(i, j)$, 得 $a_{ii} = a_{jj}$. 所以结论成立.
 - (3) 由 (1)(2) 和单位矩阵能与任意矩阵交换可得. □

9. 设
$$A^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ -2 & -4 & 2 & 0 \\ 0 & -2 & 0 & 2 \end{pmatrix}$$
, 求 A^{-1} 和 A .

解: 因 $\det A^* = -8$ 目 $A \neq 4$ 阶矩阵,所以 $\det A = -2$.

$$A^{-1} = \frac{A^*}{\det A} = \begin{pmatrix} -\frac{1}{2} & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 1 & 2 & -1 & 0\\ 0 & 1 & 0 & -1 \end{pmatrix}; A = (A^{-1})^{-1} = \begin{pmatrix} -2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ -2 & 2 & -1 & 0\\ 0 & 1 & 0 & -1 \end{pmatrix}.$$

10. 设四阶可逆方阵 $A = (X_1, X_2, X_3, X_4), B = (X_4, X_3, X_2, X_1),$

$$P = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}. \ \vec{x} \ B^{-1} \ \color=depth{\mbox{\color=}}\ A^{-1}, P, Q \ \color=depth{\mbox{\color=}}\ \color=depth{\color=}\ \color=depth{$$

解: 易知 $B = APQ \cdot P^{-1} = P \cdot Q^{-1} = Q$, 所以 $B = Q^{-1}P^{-1}A^{-1} = QPA^{-1}$.

11. 设 $A = (a_{ij})_{n \times n}$ 是 n 阶方阵,满足 $AA^T = E$,且 $\det A = -1$. 求证: $a_{ij} = -A_{ij}$, $i, j = 1, 2, \dots, n$, 其中 A_{ij} 是 a_{ij} 的代数余子式.

证明: 因为 $AA^T = E$, 所以 A 可逆, 且 $A^{-1} = A^T$. 又由 $\det A = -1$, 得 $A^{-1} = rac{A^*}{|A|} = -A^*$,所以 $A^T = -A^*$,即 $a_{ij} = -A_{ij}, \, i,j = 1,2,\cdots,n$. \square

12. 设A是m阶可逆阵,D是n阶方阵,则

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(A)\det(D - CA^{-1}B).$$

证明: 因为 A 可逆, 所以

$$\begin{pmatrix} E_m & 0 \\ -CA^{-1} & E_n \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} A & B \\ 0 & D - CA^{-1}B \end{pmatrix}.$$

两边取行列式得 $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = \det(A)\det(D - CA^{-1}B)$. \square

13. 设 A 为 n 阶可逆阵, α 是 n 维列向量, b 为常数. 记分块矩阵

$$P = \left(\begin{array}{cc} E & 0 \\ -\alpha^T A^* & \det A \end{array} \right), Q = \left(\begin{array}{cc} A & \alpha \\ \alpha^T & b \end{array} \right).$$

- (1) 计算并化简 PQ;

$$\begin{array}{ll} (2) \ \text{证明:} & Q \ \text{可逆的充分必要条件是} \ \alpha^T A^{-1} \alpha \neq b. \\ \textbf{解:} & (1) \ PQ = \left(\begin{array}{cc} A & \alpha \\ 0 & \det A(b - \alpha^T A^{-1} \alpha) \end{array} \right). \end{array}$$

(2) 由 (1) 得 $\det(PQ) = \det(P)\det(Q) = \det(A)^2(b - \alpha^T A^{-1}\alpha)$. 又 A 可逆, $\det P = \det A \neq 0$, $\det Q = \det(A)(b - \alpha^T A^{-1}\alpha)$. 所以 Q 可逆的充分必要条件是 $\det Q \neq 0$, $\mathbb{P} \alpha^T A^{-1} \alpha \neq b$.

(万琴解答)