Joint wo BPS die algebra action on the cohomology of New Davism and S. Shlepel Mejia Nakajima quiver varieties

Q quiver No Kac-Moody algebrage generators and relations representation theory: highest weight modules simple quotient.

Nakajima 30's: geometric realisation of the rep. of ora by means of "quiver varieties"

1 noncompact Hyperkähler varieties.

A Generalised Kac - Moody aloghras

\[
\begin{align*}
& \Pi - vector \space & \((-i-) : \hat{h} \times \rightarrow \text{A} & \text{blinear Jarm} \\
\Phi' \capper \hat{h} & \text{ret of fortive voots} \\
\text{Assumptions} : & \left(\hat{h}_i, \hat{h}_i \right) \in \mathbb{Z} \in 0 & \text{V} & \text{i} \div i \in \frac{1}{2} \in 0 \\
\text{(h}_i, \hat{h}_i \right) \in \mathbb{Z} \in 0 & \text{V} & \text{i} \div i \in \frac{1}{2} \in 0 \\
\text{(h}_i, \hat{h}_i \right) \in \mathbb{Z} \in 0 & \text{V} & \text{i} \div i \in \frac{1}{2} \text{1} \\
\text{Cy} & = \Phi & \text{Gi} & \mathbb{Q} - \text{vector space}, & \text{"space of positive of the colling of

$$\begin{array}{l} \times \left[h, h' \right] = 0 & \forall h, h' \in h \\ \times \left[h, \lambda i' \right] = \pm \left(h, h \right) \lambda i' & \lambda i' \in \mathcal{Y}i' \\ \times \left[\lambda i, \lambda_{3}^{V} \right] = \text{Siz} \; \lambda_{3}^{V} \left(\lambda i \right) h i \\ \times \left[\lambda_{i'} \right]^{1 - \left(h i, h \right)} \left(\lambda_{3}^{V} \right) = 0 \; \text{if} \; \left(h i, h_{3}^{V} \right) = 0 \; \text{or} \; \left(h i, h_{1}^{V} \right) = 0 \\ \text{Sever relations} \end{array}$$

Trichotomy of roots hi, i E of come in 3 kinds

- · real: (hishi) = I
- * isotropic: (hi, hi) = 0 imaginary.

 hyperbolic: (hi, hi) < 0

Many facts true for semissimple Lie algebras remain true for GldM algebas.

- · triangular decomposition of a = They of & They
- · They is gen. by & or/ Serre relations only.

Goal of the talk: * explaining how such die algebras arise from geometry.

* These Lie algebras act on the cohomology of highly relevant moduli spaces.

B Cohomological Hall algebras and BPS algebras
2CY Abelian categories A
keep an example in mind- gemetric: * C smooth projective curve, $\mu \in \mathbb{R}$ slope
It = semistable Higgs bundles of slope u or C
(F, O) F coh. sheaf on C θ : P \rightarrow P \otimes \mathbb{Z}_{c}^{2} Higgs field.
* A = Coh H-sst (S) S symplectic surface H polarisation produced Hilkert polynomial.
algebraic: A = Rep To rep. of the prepagative algebra of Q
Q \overline{Q} \overline{Q} = fath algebra of quiver double \overline{Q} \overline
To = CQ/IP

topological: $\mathcal{H}=$ Rep $\mathcal{T}_{1}(C,x)$ $x \in C$. C genus q > hiemann surface. In g^{al} : A such that $\operatorname{Ext}^{2-i}(M,N) \cong \operatorname{Ext}^{i}(N,M)^{*}$ functorially. COHA: TH Mut stack of objects and good moduli's Dt (Mit) constructible derived category of Mit monoidale structure O: Mot × Mot - Mot 70 y := 0x (Poy). 0-1 M-1 E-1 N-0 Eact A $\mathcal{M}_{\mathcal{A}} \times \mathcal{M}_{\mathcal{A}} \xrightarrow{\mathcal{A}} \mathcal{M}_{\mathcal{A}}$ underlying cathle complex of the sheaf A := JH* DQ mt & Dc (MA) theoretic CoHA

$$\mathcal{A} = \left(\qquad \qquad \mathcal{A}^{-1} \stackrel{\mathcal{A}^{-1}}{\rightarrow} \mathcal{A}^{0} \stackrel{\mathcal{A}^{0}}{\rightarrow} \mathcal{A}^{0} \stackrel{\mathcal{A}^{0}}{\rightarrow} \mathcal{A}^{0} \right)$$

We cut a subalgebra. Catting objects in triangulated categories is done using t-structures.

· standard t-structure

· ferverse {-structure : best suited for us.

Define BPJ := PH°(A) "shoot-th. BPS associative" algebra

Prof: m gives a multiplication on BYA
Proof: PHi(A) = 0 Ki < 0.

Going back to actual algebras:

$$Te: \mathcal{M}_{\mathcal{A}} \longrightarrow pt$$
 $TC_{*} \mathcal{A} = H_{*}^{BM}(\mathcal{M}_{\mathcal{A}})$ subalgebra

 $TC_{*} \mathcal{BPJ}_{\mathcal{A}} = : \mathcal{BPS}_{\mathcal{A}}$

Examples: C smooth projecure genus
$$72$$
 $\mathcal{A} = \text{Higgs} \circ \text{sst}(C)$
 $\pi_0(\mathcal{M}_{\text{ct}}) = \mathbb{Z}_{70} \qquad f = \mathbb{Q}$
 $(-,-): \mathbb{Q} \times \mathbb{Q} \longrightarrow \mathbb{Q}$
 $r,s \longmapsto 2(1-g)rs$

"totally negative": $(\mathbb{Q}_{70}, \mathbb{Q}_{70}) \subset \mathbb{Q}_{70}$

Che BPS lie algebra
BPS A, hie := 72t

Since The Cofor GKM, it is natural to see of as the "full" BPS he algebra.

It acts on the cohomology of the spaces of feamed objects in It no Lecomposition into highest eneight simple modules.

e.g: in the example above, BPS At like = Free (IH (M Pol)).

The Jull CoHA

Chm (DHS) We have an isomorphism of vector spaces $H^{BM}(\mathcal{M}_{OL}) \simeq \text{Sym} \left(\mathcal{H}_{D}^{+} \otimes H^{*}(BC^{*})\right)$ total symmetric power

 \rightarrow gives a connection between the size of \mathcal{R}_{d}^{+} and that of $H^{BH}(\mathcal{M}_{dt})$.

Ingredients of the froof a) Decomposition thin for LLY categories: (Davison) JH* DQnc & Dc (Mrt) is a semisimple complex (Davism) © Description of the top-CoHA of the strictly seminispotent une for preprojective algebras of quiver (H) (b) details A 2CY my JH MrA 3 x a corresponds to $P = \bigoplus P_i^{mi}$ f = Eti, Ki En J collection of simple of t Q = (7, arrows) # { 7; -> 7; } = ent^(2; 2;). Q z is the Louble of some (non-unique) quiver Q2 $(\mathcal{M}_{\mathcal{A}}, \infty) \sim (\mathcal{U}, y) \rightarrow (\mathcal{M}_{\mathcal{H}_{\mathcal{Q}}}, \mathcal{O}_{\mathcal{M}})$

with etale honzontal maps.

details

Q = (Qo, Qn)

Regrangian substack.

MTTO

THO

MSSN

JH

MTO

Submonni TTO

A* is not a loop

H*(! 1) H*(1 SM) > H°(A SSN)

H*(i! ATTQ) =: H*(ATTQ) > H°(ATTQ) subalgebra.

H°(ATra) has a C-libear bousis given by irreducible components of Arche Chozec]

Chm [H] H° (Are) = T(re) where red is

Basec's hie algebra of Q

[when I has no loops, this is the KM algebra of Q].

if loops, need to take them into account.

With our formalism for GKMs,

 $f = \mathbb{Q}^{\mathbb{Q}}$ (-,-): $f \times f \to \mathbb{Q}$ symmetrised Galer form Of = (Z> x Qoin) U Qoed Qoin C Qo verties with at least I loop & real without loops Vi€ O+ yi = Q The is the positive fact of Jay, GRM generated by Cy. Representations of GKMs (highest weight) $\lambda \in h^* \text{ linear form}$ $\Delta : \nabla (f) \to \mathbb{Q} \quad 1 \text{- Jimensional sepresentation}.$ V(ozy) ~ V(ry) & V(y) & V(ry),

No Space

Subalgebra d: V(ky) - C 1 dimensional rep. M(1):= $V(O_{G}) \otimes V$ Verma module $V(H_{G})$ L(1):= smallest nonzero quotient of M(1)
exists by general considerations.