Convergence tests

Test for Divergence: If
$$\lim_{n\to\infty} a_n \neq 0$$
, then $\sum_{n=1}^{\infty} a_n$ diverges.

Integral Test:

Suppose that f is a continuous, positive, decreasing function on $[1, \infty)$ and that $a_n = f(n)$.

Then
$$\int_{1}^{\infty} f(x) dx$$
 and $\sum_{1}^{\infty} a_n$ either both converge or both diverge.

Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\sum b_n$ converges and $a_n \leq b_n$ for all n, then $\sum a_n$ also converges. If $\sum b_n$ diverges and $a_n \geq b_n$ for all n, then $\sum a_n$ also diverges.

Limit Comparison Test:

Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c$ where c is a finite number that is *not zero*, the either both series converge or both diverge.

Alternating Series Test:

If the alternating series $\sum_{0}^{\infty} (-1)^{n-1} b_n$ with $b_n \ge 0$ satisfies $b_{n+1} \le b_n$ for large n and $\lim_{n \to \infty} b_n = 0$, then the series converges.

Ratio Test:

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
, then $\sum_{1}^{\infty} a_n$ diverges.

If
$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=1$$
, then the Ratio Test is inconclusive.

Root Test:

If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$$
, then $\sum_{1}^{\infty} a_n$ converges absolutely.

If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$$
, then $\sum_{1}^{\infty} a_n$ diverges.

If
$$\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$$
, then the Root Test is inconclusive.