

CD4510BM/CD4510BC BCD Up/Down Counter CD4516BM/CD4516BC Binary Up/Down Counter

General Description

The CD4510BM/CD4510BC and CD4516BM/CD4516BC are monolithic CMOS up/down counters which count in BCD and binary, respectively.

The counters count up when the up/down input is at logical "1" and vice versa. A logical "1" preset enable signal allows information at the parallel inputs to preset the counters to any state synchronously with the clock. The counters are advanced one count at the positive-going edge of the clock if the carry in, preset enable, and reset inputs are at logical "0". Advancement is inhibited when any of these three inputs are at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" when the counter reaches its maximum count in the "up" mode or its minimum count in the "down" mode, provided the carry input is at logical "0" state. The counters are cleared asynchro-

nously by applying a logical "1" voltage level at the reset input

All inputs are protected against static discharge by diode clamps to both V_{DD} and $V_{SS}. \label{eq:vss}$

Features

■ Wide supply voltage range

3.0V to 15V

■ High noise immunity

0.45 V_{DD} (typ.)

Low power TTL compatibility

Fan out of 2 driving 74L or 1 driving 74LS

■ Parallel load "jam" inputs

TL/F/5990-1

Low quiescent power dissipation

0.25 μ W/package (typ.) @ V_{CC}=5.0V

■ Motorola MC14510, MC14516 second source

Connection Diagram

Dual-In-Line Package

Order Number CD4510B* or CD4516B*

*Please look into Section 8, Appendix D for availability of various package types.

Top View

Truth Table

Clock	Reset	Preset Enable	Carry In	Up/Down	Output Function
×	1	×	×	x	Reset to Zero
×	0	1	×	×	Set to P1, P2, P3, P4
~	0	0	0	1	Count Up
	0	0	0	0	Count Down
_	0	0	x	×	№ Change
×	0	0	1	х	No Change

Positive Transition

Negative Transition

C = Don't Care

Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

DC Supply Voltage (V_{DD})

-0.5V to +18V

Input Voltage (VIN) Storage Temperature Range (T_S) -0.5V to $V_{DD} + 0.5V$ -65°C to +150°C

Power Dissipation (Pn)

Dual-In-Line Small Outline 700 mW 500 mW

Lead Temp. (T₁) (Soldering, 10 sec.)

260°C

Recommended Operating

Conditions (Note 2)

DC Supply Voltage (Vnn)

Input Voltage (VIN)

Operating Temperature Range CD4510BM, CD4516BM CD4510BC, CD4516BC

3V to 15V 0V to V_{DD}

-55°C to +125°C -40°C to +85°C

DC Electrical Characteristics CD4510BM/CD4516BM (Note 2)

O	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
Symbol			Min	Max	Min	Тур	Max	Min	Max	J
I _{DD}	Quiescent Device Current	$\begin{aligned} & V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS} \\ & V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS} \\ & V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS} \end{aligned}$		5 10 20		0.05 0.1 0.15	5 10 20		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V, I_O < 1\mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.05 0.05 0.05		0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V
V _{OH}	High Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V, I_O < 1\mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V
V _{IL}	Low Level Input Voltage	$\begin{array}{l} I_O < 1 \; \mu A \\ V_{DD} = 5 V, V_O = 0.5 V \text{ or } 4.5 V \\ V_{DD} = 10 V, V_O = 1 V \text{ or } 9 V \\ V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V \end{array}$		1.5 3.0 4.0		2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V V
V _{IH}	High Level Input Voltage	$\begin{aligned} & I_O < 1 \; \mu\text{A} \\ &V_{DD} = 5\text{V}, V_O = 0.5\text{V or } 4.5\text{V} \\ &V_{DD} = 10\text{V}, V_O = 1\text{V or } 9\text{V} \\ &V_{DD} = 15\text{V}, V_O = 1.5\text{V or } 13.5\text{V} \end{aligned}$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25		3.5 7.0 11.0		V V
l _{OL}	Low Level Output Current (Note 3)	$\begin{aligned} &V_{IH} = V_{DD}, V_{IL} = 0V \\ &V_{DD} = 5V, V_{O} = 0.4V \\ &V_{DD} = 10V, V_{O} = 0.5V \\ &V_{DD} = 15V, V_{O} = 1.5V \end{aligned}$	0.64 1.6 4.2		0.51 1.3 3.4	0.8 2.0 7.8		0.36 0.9 2.4		mA mA mA
ЮН	High Level Output Current (Note 3)	$\begin{aligned} &V_{IH} = V_{DD}, V_{IL} = 0V \\ &V_{DD} = 5V, V_{O} = 4.6V \\ &V_{DD} = 10V, V_{O} = 9.5V \\ &V_{DD} = 15V, V_{O} = 13.5V \end{aligned}$	-0.64 -1.6 -4.2	2	-0.51 -1.3 -3.4	-0.8 -2.0 -7.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	V _{DD} = 15V, V _{IN} = 0V V _{DD} = 15V, V _{IN} = 15V		-0.1 0.1		-10 ⁻⁵	-0.1 0.1		-1.0 1.0	μA μA

DC Electrical Characteristics CD4510BC/CD4516BC (Note 2)

		Conditions	-40°C		+ 25°C			+ 85°C		Units
Symbol	Parameter	Collabora		Max	Min	Тур	Max	Min	Max	
I _{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 10V, V_{IN} = V_{DD} \text{ or } V_{SS}$ $V_{DD} = 15V, V_{IN} = V_{DD} \text{ or } V_{SS}$		20 40 80		0.05 0.1 0.15	20 40 80		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$V_{IH} = V_{DD}, V_{IL} = 0V, I_O < 1 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	> >
V _{OH}	High Level Output Voltage	$V_{IH} = V_{DD}$, $V_{IL} = 0V$, $ I_O < 1 \mu A$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95	:	> > >

DC Electrical Characteristics CD4510BC/CD4516BC (Note 2) (Continued)

Combal	Parameter	Conditions	40°C		+ 25°C			+ 85°C		Units
Symbol		Conditions	Min	Max	Min	Тур	Max	Min	Max	
V _{IL}	Low Level Input Voltage	$\begin{split} & I_O < 1 \mu A \\ &V_{DD} = 5 V, V_O = 0.5 V \text{ or } 4.5 V \\ &V_{DD} = 10 V, V_O = 1 V \text{ or } 9 V \\ &V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V \end{split}$		1.5 3.0 4.0		2.25 4.5 6.75	1.5 3.0 4.0		1.5 3.0 4.0	>>>
V _{IH}	High Level Input Voltage	$\begin{split} & I_O < 1 \mu A \\ &V_{DD} = 5 V, V_O = 0.5 V \text{ or } 4.5 V \\ &V_{DD} = 10 V, V_O = 1 V \text{ or } 9 V \\ &V_{DD} = 15 V, V_O = 1.5 V \text{ or } 13.5 V \end{split}$	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25		3.5 7.0 11.0		>>>
loL	Low Level Output Current (Note 3)	$\begin{aligned} &V_{IH} = V_{DD}, V_{IL} = 0V \\ &V_{DD} = 5V, V_{O} = 0.4V \\ &V_{DD} = 10V, V_{O} = 0.5V \\ &V_{DD} = 15V, V_{O} = 1.5V \end{aligned}$	0.52 1.3 3.6		0.44 1.1 3.0	0.8 2.0 7.8		0.36 0.9 2.4		mA mA mA
Юн	High Level Output Current (Note 3)	$\begin{aligned} &V_{IH} = V_{DD}, V_{IL} = 0V \\ &V_{DD} = 5V, V_{O} = 4.6V \\ &V_{DD} = 10V, V_{O} = 9.5V \\ &V_{DD} = 15V, V_{O} = 13.5V \end{aligned}$	-0.52 -1.3 -3.6		-0.44 -1.1 -3.0	-0.8 -2.0 -7.8		-0.36 -0.9 -2.4		mA mA mA
IIN	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.3 0.3		-10 ⁻⁵	-0.3 0.3		-1.0 1.0	μA μA

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

Note 3: IOH and IOL are tested one output at a time.

Switching Time Waveforms

TL/F/5990-2

AC Electrical Characteristics* CD4510BM/CD4510BC, CD4516BM/CD4516BC

 $T_A = 25^{\circ}C$, $C_L = 50$ pF, $R_L = 200$ k, $t_{rCL} = t_{fCL} = t_{r} = t_{f} = 20$ ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
OCKED OPERA	TION					
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		220	500	ns
4110 461	Clock to Q Outputs	V _{DD} = 10V		100	200	ns
	•	V _{DD} = 15V		80	180	ns
t _{PHL} , tPLH	Propagation Delay Time	$V_{DD} = 5V$		315	630	ns
, , , , , , , , , , , , , , , , , , , ,	Clock to Carry Output	$V_{DD} = 10V$	Ì	130	260	ns
	·	V _{DD} = 15V		100	200	ns
t _{THL} , t _{TLH}	Transition Time Q	V _{DD} = 5V		100	200	ns
1110	and Carry Outputs	V _{DD} = 10V	1	50	100	ns
		$V_{DD} = 15V$		40	80	ns
t _{WL} , t _{WH}	Minimum Clock Pulse Width	V _{DD} = 5V		160	315	ns
W.C. VIII		V _{DD} = 10V		65	130	ns
		V _{DD} = 15V		50	100	ns
t _{rCL} , t _{fCL}	Maximum Clock Rise	V _{DD} = 5V	15			μs
100 100	and Fall Time	V _{DD} = 10V	15			μs
		V _{DD} = 15V	15			μs
tsu	Minimum Carry In Setup Time	$V_{DD} = 5V$		100	220	ns
-50	•	V _{DD} = 10V		40	80	ns
		$V_{DD} = 15V$		35	70	ns
tsu	Minimum Up/Down Setup Time	V _{DD} = 5V		200	420	ns
-00	, .	V _{DD} = 10V	ŀ	70	170	ns
		V _{DD} = 15V		60	150	ns
fcL	Maximum Clock Frequency	$V_{DD} = 5V$	1.5	3.1		MH:
·OL	, ,	V _{DD} = 10V	3.8	7.6		MH:
		$V_{DD} = 15V$	5.0	10.0		MH
C _{IN}	Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance (Note 4)	Per Package		65		pF
SET/PRESET	ENABLE OPERATION					
t _{PHL} , t _{PLH}	Propagation Delay Time Reset/	V _{DD} = 5V		285	570	ns
THE TER	Preset Enable to Q Output	$V_{DD} = 10V$	1	115	230	ns
		V _{DD} = 15V		95	195	ns
t _{PHL} , t _{PLH}	Propagation Delay Time Reset/	V _{DO} ≈ 5V		420	860	ns
400 400	Preset Enable to Carry Output	$V_{DD} = 10V$		170	350	ns
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V _{DD} = 15V	l	140	290	ns
twH	Minimum Reset/Preset Enable	V _{DD} = 5V		90	200	ns
-4411	Pulse Width	$V_{DD} = 10V$		40	100	ns
		V _{DD} = 15V		35	80	ns
t _{REM}	Minimum Reset/Preset Enable	$V_{DD} = 5V$		170	330	ns
-r.c.m	Removal Time	V _{DD} = 10V		70	140	ns
		V _{DD} = 15V		60	120	ns
RRY INPUT O	PERATION					
t _{PHL} , t _{PLH}	Propagation Delay Time Carry	V _{DD} = 5V		260	500	ns
700 700	, , ,		1	1 440	220	l ns
1112 121	In to Carry Output	$V_{DD} = 10V$		110	220	118

^{*}AC Parameters are guaranteed by DC correlated testing.

Note 4: Dynamic power dissipation (P_D) is given by: $P_D = (C_{PD} + C_U) V_{DD}^2 f + P_D$; where $C_L = load$ capacitance; f = f frequency of operation; $P_Q = Q_{DD}^2 f + P_D$; where $P_D = Q_D^2 f + P_D$ is given by: $P_D = Q_D^2 f + P_D$; where $P_D = Q_D^2 f + P_D$ is given by: $P_D = Q_D^2 f + P_D$; where $P_D = Q_D^2 f + P_D$ is given by: $P_D = Q_D^2 f + P_D$.

