106349 - Advanced probability

Nick Crawford

January 24, 2019

Abstract

1 Introduction. Summary of course through an example. Branching process

We have an individual that gives a birth to a random number of offsprings – random variable X. X define a distribution, i.e., $P: \mathbb{Z}^+ \to [0,1]$, i.e., $P(X=k) \in [0,1]$, and $\sum_{k=0}^{\infty} P(X=k) = 1$.

Definition 1.1. $f_X(\theta) = \sum_{k=0}^{\infty} \theta^k P(X=k)$ – moment-generating function.

The series is absolutely convergent for $\theta \in [-1, 1]$ since k sums to 1. For $\theta \in (-1, 1)$, f_x is analytic, thus we can differentiate it term-by-term:

$$f_X'(\theta) = \sum_{k>1} \theta^{k-1} P(X=k)$$

Since, f_X is analytic, knowing it means knowing P(X = k) and vice versa. Note that $f_X(0) = P(X = 0)$ and $f_X(1) = 1$. Also

$$f_X'(1) = \sum_{k>0}^{\infty} kP(X=k) = \mathbb{E}X = \mu$$

$$\lim_{\theta \to 1} \frac{f_X(1) - f_X(\theta)}{1 - \theta} = \lim_{\theta \to 1} \frac{1 - f_X(\theta)}{1 - \theta}$$

Note also that f_X is convex, since second derivative is positive.

Size of n^{th} generation Let $\left(X_r^{(n)}\right)_{n,r=1^{\infty}}$, where n is generation and r is offspring number (index) in n^{th} generation.

Assume $X_r^{(n)}$ are i.i.d. (independent, identically distributed) random variables. Identically distributed means

$$P(X_n^r = k) = P(X = k)$$

Independence means

$$P(\forall i < J \ X_{r_i}^{n_i} = k) = \prod_{i=1}^{J} P(X_{r_i}^{n_i} = k)$$

Define $z_1 = X_1^1$. $z_2 = \sum_{r=1}^{z_1} X_r^2$ an so on:

$$z_{n+1} = \sum_{r=1}^{z_n} X_r^n$$

We want to study asymptotics of z_n . Given U and V taking values in \mathbb{Z}^+ ,

$$\mathbb{E}[U|V=k] = \sum_{i=0}^{\infty} jP(U=j|V=k)$$

, where

$$P(U = j | V = k) = \frac{P(U = j, V = k)}{P(V = k)}$$

If U, V are independent, P(U=j|V=k) = P(U=j) and thus $\mathbb{E}[U|V=k] = \mathbb{E}U$.

Definition 1.2. Define random variable $\mathbb{E}[U|V]$ such that

$$\mathbb{E}[U|V] = \mathbb{E}[U|V = k]$$

if V = k.

Definition 1.3 (Tower property).

$$\mathbb{E}\big[\mathbb{E}[U|V]\big] = \mathbb{E}U$$

Define

$$f_n = \sum_{k=0}^{\infty} \sum_{k=0}^{\infty} \theta^k P(z_n = k) = \mathbb{E}\theta^{z_n}$$

Theorem 1.1.

$$f_{n+1}(\theta) = f_n(f_X(\theta))$$

or

$$f_n(\theta) = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}}(\theta))$$

Proof. Use tower property with $U^{z_{n+1}}$ and $V = \theta^{z_n}$. By tower property

$$\mathbb{E}[\theta^{z_{n+1}}] = \mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big]$$

$$\mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big] = \sum_{k=0}^{\infty} P(z_n = k) \mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n} = k]$$

What is $\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}=k]$?

$$\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}=k] = \mathbb{E}\left[\theta^{\sum_{j=1}^k X_j^{n+1}}|\theta^{z_n}=k\right] \stackrel{\text{independence}}{=} \mathbb{E}\left[\theta^{\sum_{j=1}^z X_j^{n+1}}\right] \stackrel{\text{independence}}{=} \prod_{j=1}^k \mathbb{E}\left[\theta^{X_j^{n+1}}\right] \stackrel{\text{i.d.}}{=} (f_X(\theta))^k$$

Thus

$$\mathbb{E}\big[\mathbb{E}[\theta^{z_{n+1}}|\theta^{z_n}]\big] = \sum_{k=0}^{\infty} P(z_n = k)(f_X(\theta))^k = f_n(f(\theta))$$

Also we can say

$$\mathbb{E}[\theta^{z_{n+1}}|z_n] = (f_X(\theta))^{z_n}$$

Study of z_n What is $\pi_n = P(z_n = 0) = f_n(0) = f(\pi_{n-1})$, probability that population is extinguished. Since $z_{n-1} = 0 \Rightarrow z_n = 0$, i.e. π_n is non-decreasing.

Let $P(z_n = 0 \text{ for some n}) = \pi$.

We hope that $\{z_n = 0\}$ such that

$$\bigcup_{n} \{z_n = 0\} = \{z_n = 0 \text{ for some n}\}\$$

i.e., $\pi = \lim_{n \to \infty} \pi_n$. We call π the extinction probability.

Theorem 1.2. If $\mu = \mathbb{E} > 1$ then π is a unique root of $\pi = f(\pi)$ and $\pi \in [0,1)$. If $\mu \leq 1, \pi = 1$.

If we look at $f(\pi)$ and π , they intersect in 1, and they can intersect in two points since f(x) is convex. There is second intersection iff $f'(1) = \mu > 1$.

Construction of X_n^r Construct set Ω , $f_{n,r}: \Omega \to \mathbb{Z}^+$ and \mathcal{F} a collection of subsets of Ω with $P: \mathcal{F} \to [0,1]$. Let $\Omega = \mathbb{Z}^+ \times \mathbb{Z}^+$, $\mathcal{F} = \{0,1\}^{\Omega}$.

The problem is when we have infinitely number of variables.

Example Example of not well-behaved triple (Ω, \mathcal{F}, P) . $\Omega = \mathbb{N}$. Now $\mathcal{F} = \{C \subset \mathbb{N} : C \text{ has density}\}$.

C has density means

$$\frac{|C \cap \mathbb{N}|}{n} \stackrel{n \to \infty}{\to} \rho(C)$$

However, for $C(m) = \{1, 2, \dots, m\}, \forall m \quad \rho(c_m), \text{ and }$

$$\rho\Big(\bigcup C_m\Big) = 1$$

Thus $(\mathbb{N}, \mathcal{F}, \rho)$ is not a good probability space, since it doesn't fulfills this $\pi_n \to \pi$ property. Note we can define other probabilities on naturals, for example

$$P(\{i\}) = 2^{-i}$$

Asymptotics of z_i Assuming $\pi \in (0,1)$, what is behavior of z_n ?

Definition 1.4. z_n is a Markov chain if

$$P(z_{n+1} = j | z_i = k_i \quad \forall i \le n) = P(z_{n+1} = j | z_n = k_n)$$

We can use to compute expectation:

$$\mathbb{E}[z_{n+1}|z_i = k_i \quad \forall i < n] = E[z_{n+1}|z_n = k_n]$$

Then, since $E\left[\sum_{i=1}^{J} X_i^n\right] = J\mu$

$$E[z_{n+1}|z_n] = \mu z_n$$

Let $M_n = \frac{z_n}{u^n}$ then $\mathbb{E}[M_n] = 1$. Also

$$\mathbb{E}[M_{n+1}|z_0,\ldots,z_n]=M_n$$

This is a definition of martingale with respect to z_0, \ldots, z_n .

Let (Ω, \mathcal{F}, P) we say S happens almost surely (a.s.) if

$$P(\{w \in \Omega : S \text{ is true for w}\}) = 1$$

Theorem 1.3 (Martingale convergence theorem). If M_n is a positive martingale then $\lim_{n\to\infty} M_N = M_\infty$ exists a.s. and

• $\mu \leq 1$. $M_{\infty} = 0$ a.s. That means $\mathbb{E}M_{\infty} = 0$ but $\mathbb{E}M_{=}1$, i.e.,

$$\mathbb{E}\Big[\liminf_{n\to\infty} M_n\Big] < [\liminf_{n\to\infty} \mathbb{E}[M_n]$$

• $\mu > 1$. If $M_{\infty} > 0$ with positive probability then $z_n \sim \mu^n M_{\infty}$.

Lemma 1.1 (Fatou's lemma).

$$\mathbb{E}\Big[\liminf_{n\to\infty} M_n\Big] \le \liminf_{n\to\infty} \mathbb{E}[M_n]$$

Theorem 1.4.

$$\mathbb{E}[M_{\infty}] = 1 \iff \mu > 1 \quad \text{ and } \mathbb{E}[X \log(X)] < \infty$$

2 Overview of measure theory

Notation

- S is a set.
- \mathcal{A} is algebra of subsets of S
 - 1. $S \in \mathcal{A}$
 - 2.

$$E \in \mathcal{A} \Rightarrow E^C \in \mathcal{A}$$

, where $E^C=S\setminus E$

3.

$$E_1, E_2 \in \mathcal{A} \Rightarrow E_1 \cup E_2 \in \mathcal{A}$$

meaning

$$E_1, E_2 \in \mathcal{A} \Rightarrow E_1 \cap E_2 \in \mathcal{A}$$

- \mathcal{F} is a σ -algebra if the last item works for countable union.
- $E\Delta F = E \setminus F \cup F \setminus E$

Definition 2.1. A measurable space is a pair $\{S, \mathcal{F}\}$.

Proposition 2.1. If we have $(\mathcal{F}_i)_{i\in I}$, then $\bigcap_{i\in I} \mathcal{F}$ is also a σ -algebra.

Definition 2.2. Let C be a collection of subsets of S. $\sigma(C)$ is a smallest σ -algebra containing C (σ -algebra generated by C). It is easy to construct one

$$I = \{ \mathcal{F} : \mathcal{F} \supset C \}$$

and then

$$\sigma(C) = \bigcap_{\mathcal{F} \in I} \mathcal{F}$$

Definition 2.3. Let $\{S, \mathcal{F}\}$ be a topological space. $\mathcal{B}(X)$ (Borel σ -algebra) is defined as σ -algebra generated by open sets. We denote $\mathcal{B} = \mathcal{B}(\mathbb{R})$.

Exercise

$$\pi(\mathbb{R}) = \{(-\infty, x], x \in \mathbb{R}\}\$$

Show that $\sigma(\pi(\mathbb{R})) = B$

Definition 2.4. Additive set function on a collection of sets \mathcal{F} is

$$\mu: \mathcal{F} \to [0, \infty)$$

$$\forall E, F \in \mathcal{F} E \cap F = \emptyset \quad \mu(E \cup F) = \mu(E) + \mu(F)$$

We say μ is σ -additive if same holds of countable infinite sets

$$\forall \{E_i\}_{i=1}^{\infty} E_i \cap E_j = \emptyset \quad \mu(E \cup F) = \sum_{i=1}^{\infty} \mu(E_i)$$

Definition 2.5. A triple (S, \mathcal{F}, μ) is a measure space if \mathcal{F} is a σ -algebra on S and μ is σ -additive on \mathcal{F} .

Definition 2.6. (S, \mathcal{F}, μ) is finite if $\mu(S) < \infty$

 (S, \mathcal{F}, μ) is σ -finite if

$$\exists \{E_i, \, \mu(E_i) < \infty\}_{i=1}^{\infty} \quad S = \bigcup_{i=1}^{\infty} E_i$$

Definition 2.7. If $\mu(S) = 1$, (S, \mathcal{F}, μ) is probability space.

Definition 2.8. E is null if $\mu(E) = 0$.

Definition 2.9. ϕ is said to be true almost everywhere with respect of μ if

$$\mu(X:\phi(X)=\text{False})=0$$

Results from measure theory

Definition 2.10. A collection of sets \mathcal{D} is called a π -system if $E, F \in \mathcal{D} \Rightarrow E \cap F \in \mathcal{D}$

Theorem 2.2 (Uniquess). Let \mathcal{D} be a π -system generating a σ -algebra \mathcal{F} . Let μ_1 and μ_2 be two finite measures on \mathcal{F} which agree on \mathcal{D} . Then $\mu_1 = \mu_2$.

Collary 2.2.1. $(S, \mathcal{F}, P_1), (S, \mathcal{F}, P_2)$ probability spaces, P1 = P2 on π -system \mathcal{D} , then $P_1 = P_2$.

Theorem 2.3 (Carathéodory's extension theorem). Let \mathcal{A} be an algebra of sets. $\mu_0: \mathcal{A} \to \mathbb{R}^+$ σ -additive set function on \mathcal{A} . Then exists unique extension $\bar{\mu}: \sigma(\mathcal{A}) \to \mathbb{R}^+$ such that $\bar{\mu} = \mu_0$.

Homework Lebesgue on \mathbb{R} . $\mathcal{A} = \{\text{open set}\}\$. If we have

$$O = \bigcup_{i=1}^{\infty} (a_i, b_i)$$

then

$$\mu_0(O) = \sum_{i=1}^{\infty} b_i - a_i$$

Check that μ_0 is well defined and σ -additive.

Lemma 2.1. (S, \mathcal{F}, μ) measure space. $A, B \in \mathcal{F}$, then

$$\mu(A \cup B) \le \mu(A) + \mu(B)$$

$$\mu\left(\bigcup_{i=1}^{\infty} F_i\right) \le \sum_{i=1}^{\infty} \mu(F_i)$$

If $\mu(S) < \infty$

$$\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$$

From that we get inclusion-exclusion:

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} \mu(A)_{i} - \sum_{i \neq j} \mu(A_{i} \cap A_{j}) + \dots + (-1)^{n-1} \mu\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Exercise Proof the lemma

Lemma 2.2. If $F_n \subseteq F_{n+1}$ then

$$\mu\left(\bigcup_{i=1}^{\infty} F_i\right) = \lim_{n \to \infty} \mu(F_n)$$

If $\mu(S) < \infty$ and $F_n \supseteq F_{n+1}$ then

$$\mu\left(\bigcap_{i=1}^{\infty} F_i\right) = \lim_{n \to \infty} \mu(F_n)$$

Proof. Assume $\mu(S) < \infty$. Define $F_{\infty} = \bigcup_{i=1}^{\infty} F_i$. Let $G_n = F_n \setminus F_{n+1}$. Then

$$F_{\infty} = \bigcup_{i=1}^{\infty} G_i$$

Meaning

$$\mu(F_{\infty}) = \sum_{i=1}^{\infty} G_i$$

$$\mu(F_n) = \sum_{k=1}^n G_k$$

Since measure is finite, the tail of series tends to 0, thus

$$\mu(F_{\infty}) - \mu(F_n) = \sum_{k=n}^{\infty} G_k \to 0$$

Then we can take complements and get the second statement.

Exercise Proof unconditionally

3 Recasting measure theory as probability

Definition 3.1. A probability space is a (Ω, \mathcal{F}, P) is a measure space such that $P(\Omega) = 1$. We call $\omega \in \Omega$ an outcome. $E \in \mathcal{F}$ is an event. P(E) is probability of the event.

Example Tossing finite or infinite sequence of coins.

Tossing 4 coins

$$\Omega = \{HHHH, HHHT, HHTH, \dots, TTTH, TTTT\}$$

$$\mathcal{F} = 2^{\Omega}$$

$$P(\omega \in \Omega) = \frac{1}{|\Omega|}$$

Tossing infinite number coins

$$\Omega = \left\{0, 1\right\}^{\mathbb{N}}$$

 Ω has a natural topology which is called a product topology. It is coarsest topology such that $\pi_i:\Omega\to\{0,1\}$ $\pi_i(\omega)=\omega_i$ is continuous.

Let $\mathcal{F} = \mathcal{B}(\Omega)$.

Smallest σ -algebra such that

$$\pi_i^{-1}(0) \subset \Omega \in \mathcal{F}$$
 $\pi_i^{-1}(1) \subset \Omega \in \mathcal{F}$

$$\pi_i(\Omega, \mathcal{F}) \to \left(\{0, 1\}, \{0, 1\}^{\{0, 1\}} \right)$$

Natural π -system \mathcal{F}_n smallest σ -algebra making π_1, \ldots, π_n measurable. Note that

Proposition 3.1.

$$\bigcup_n \mathcal{F}_n
eq \mathcal{F}$$

Proof. Define $S_n(\omega) = \sum_{i=1}^n \omega_n$.

$$X_n = \frac{S_n(\omega)}{n}$$

Define

$$Y(\omega) = \limsup X_n(\omega)$$

 $E = \left\{ \omega : Y(\omega) \ge \frac{1}{3} \right\}$

$$E \in \mathcal{F} \setminus \bigcup_n \mathcal{F}_n$$

What \mathcal{F}_n looks like? For example, \mathcal{F}_2 has 4 outcomes, deciding only first two tosses.

Note If we take $(\Omega_4, \mathcal{F}^{(4)}, P_4)$, restricting to $(\Omega_3, \mathcal{F}^{(3)}, P_3)$

$$P_4(\{(0,0,0,\omega_4)\}) = P_3(\{(0,0,0)\})$$

Thus we want P_{fair} defined on Ω to fulfill same property:

$$P_{fair}(E) = P_n(\tilde{E})$$

where $E \in \mathcal{F}_n$ and $\tilde{E} \in F^{(n)}$.

Definition 3.2. $E \subset \mathcal{F}$ occurs almost surely (a.s.) if P(E) = 1.

Definition 3.3 (\limsup and \liminf). Let $\{E_n\}$ be a sequence of events.

$$\limsup E_n = \bigcap_{m} \bigcup_{n \geq m} E_n = \{E_n \text{ occurs infenetely often (i.o.)}\} = \{\omega \in \Omega : \forall m \exists n(\omega) > m \quad \omega \in E_n(\omega)\}$$

Alternatively, (Ω, \mathcal{F}) and $\{E_n\}$ there is a natural map

$$I:\Omega \to \left\{0,1\right\}^N$$

$$\omega \mapsto \{1_{E_n}(\omega)\}$$

where

$$1_E(\omega) = \begin{cases} 0 & \omega \notin E \\ 1 & \omega \in E \end{cases}$$

Now

$$\liminf E_n = \bigcup_{m} \bigcap_{n > m} E_n = \{ E_n \text{ occurs eventually} \} = \{ \omega \in \Omega : \exists m(\omega) \ \forall n \geq m(\omega) \quad \omega \in E_n(\omega) \}$$

Remark Since everything is countable, if $E_n \in \mathcal{F}$, then $\limsup E_n$, $\liminf E_n \in \mathcal{F}$

We can write

$$\left\{\frac{S_n}{n} \to \frac{1}{2}\right\} = \left\{\limsup \frac{S_n}{n} \le \frac{1}{2}\right\} \cap \left\{\liminf \frac{S_n}{n} \ge \frac{1}{2}\right\}$$

Choose $q \in \mathbb{Q}^+$ and take a look at

$$\left\{ \liminf \frac{S_n}{n} > q \right\} = \liminf E_n(q)$$

where $E_n = \left\{ \omega : \frac{S_n}{n} > q \right\}$. In addition

$$\left\{\limsup \frac{S_n}{n} < q\right\} = \liminf F_n(q)$$

where $F_n = \{\omega : \frac{S_n}{n} < q\}$. Therefore $\{\liminf \frac{S_n}{n} > q\} \in \mathcal{F}$.

Finally,

$$\left\{\liminf \frac{S_n}{n} \ge \alpha\right\} = \bigcap_{q \le \alpha} \left\{\liminf \frac{S_n}{n} > q\right\}$$

Lemma 3.1 (Fatou's lemma).

$$P\Big[\liminf_{n\to\infty} E_n\Big] \le \liminf_{n\to\infty} p(E_n)$$

Proof.

$$\liminf_{n \to \infty} E_n = \bigcup_m \bigcap_{n > m} E_n$$

Sets $F_m = \bigcap_{n > m} E_n$ are increasing and $F_n \subseteq E_n$, thus

$$P\left[\liminf_{n\to\infty} E_n\right] = \lim_{n\to\infty} P(F_n) \le \liminf_{n\to\infty} P(E_n)$$

Lemma 3.2 (Fatou's lemma).

$$P\left[\limsup_{n\to\infty} E_n\right] \ge \limsup_{n\to\infty} p(E_n)$$

Proof. Note that $(\limsup E_n)^C = \liminf E_n^C$, thus this is straightforward form previous lemma.

Lemma 3.3 (First Borel-Cantelli lemma). Let $\{E_n\} \subseteq \mathcal{F}$ be a sequence of events s.t. $\sum_n P(E_n) < \infty$, then

$$P(E_n \text{ happens i.o.}) = 0$$

Proof.

$$P(E_n \text{ i.o.}) = P\left(\bigcap_{m} \bigcup_{n \ge m} E_n\right) \le P\left(\bigcup_{n \ge m} E_n\right) \le \sum_{n = m}^{\infty} P(E_n) \stackrel{m \to \infty}{\to} 0$$

Since $P(E_n \text{ i.o.})$ is independent on m, it got to be 0.

Example Fix $\epsilon > 0$. Look at $P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon\right)$.

Claim

$$P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon\right) \le \frac{12}{\epsilon^4} \frac{1}{n^2}$$

By 3.3 $P\left(\left|\frac{S_n(\omega)}{n} - \frac{1}{2}\right| > \epsilon \text{ i.o.}\right) = 0 \text{ thus}$

$$\left\{\frac{S_n}{n} \to \frac{1}{2}\right\} = \bigcap_{\epsilon > 0} \left\{ \left| \frac{S_n(\omega)}{n} - \frac{1}{2} \right| < \epsilon \text{ eventually} \right\} = 1$$

Definition 3.4. Let (S, \mathcal{F}) , (Ω, \mathcal{B}) be measurable spaces.

$$\phi: S \to \Omega$$

 ϕ is $((\mathcal{F}, \mathcal{B}))$ -measurable if $\forall B \in \mathcal{B} \quad \phi^{-1}(B) \in \mathcal{F}$.

Remark \mathcal{C} is collection of sets in Ω . $\phi^{-1}(\mathcal{C}) = \{\phi^{-1}(C) : C \in \mathcal{C}\}.$

•

$$\phi^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap \phi^{-1}(B_i)$$

•

$$\phi^{-1}\left(\bigcup_{i\in I} B_i\right) = \bigcup \phi^{-1}(B_i)$$

•

$$\phi^{-1}(B^C) = \left[\phi^{-1}(B)\right]^c$$

Lemma 3.4. Let $\sigma(\mathcal{C}) = \mathcal{B}$. ϕ is measurable iff $\phi^{-1}(\mathcal{C}) \subseteq \mathcal{F}$.

Collary 3.1.1. $\Omega = \mathbb{R}$, $\mathcal{B}(\mathbb{R})$ then ϕ is measurable iff

$$\forall x \, \phi^{-1}((-\infty, x]) \subseteq \mathcal{F}$$

Lemma 3.5. Let (S, \mathcal{F}) , (T, \mathcal{T}) , (Ω, \mathcal{B}) be measurable spaces. Let $\phi_1 : S \to T$ and $\phi_2 T \to \Omega$ measurable. Then $\phi_2 \circ \phi_1$ is measurable.

Proof. Let $B \in \mathcal{B}$. Then $\phi_2^{-1}(B) \in \mathcal{T}$, and thus $\phi_1^{-1}(\phi_2^{-1}(B)) \in \mathcal{F}$, meaning $(\phi_2 \circ \phi_1)^{-1}(B) \in \mathcal{F}$.

Lemma 3.6. $\Omega = \mathbb{R}$. Then $\{\phi | \phi \text{ is } \mathcal{F}, \mathcal{B}\text{-measurable}\}\$ is an algebra over \mathbb{R} .

Proof. Using previous lemma and the fact + is continuous, and thus measurable, we define $\Psi(s) = (\phi_1(s), \phi_2(s))$. Ψ is measurable. Take a look at

$$\Psi^{-1}((-\infty, x_1] \times (-\infty, x_2]) = \{s : \phi_1(s) \in (-\infty, x_1], \ \phi_2(s) \in (-\infty, x_2]\}$$

Notation

$$\phi: (S, \mathcal{F}) \to (\Omega, \mathcal{B})$$

We write $\phi \in \mathcal{F}$ for ϕ is \mathcal{F}, \mathcal{B} measurable.

Constructions preserved by measurability

Proposition 3.2. If $\{\phi_n\}_{n=1}^{\infty}$ measurable maps $(S, \mathcal{F}) \to (\Omega, \mathcal{B})$, then $\liminf \phi_n$, $\limsup \phi_n$, $\inf \phi_n$, \sup_n are also measurable.

Proof. For example, fpr infimum, we need to show that

$$\left\{ s \mid \inf_{n} \phi_n(s) \le c \right\} \in \mathcal{F}$$

or alternatively,

$$\left\{ s \mid \inf_{n} \phi_n(s) > c \right\} \in \mathcal{F}$$

which is just countable intersection:

$$\bigcap_{n} \{s : \phi_n(s) > c\}$$

Same for lim sup, which is just infimum of supremum:

$$\lim\sup\phi_n=\inf_m\left(\sup_{n\geq m}\phi_n\right)$$

Recall

 $S_n = \text{number of 1's until n}$

We can view s_n as a composition of projection and sum:

$$\omega \mapsto (\pi_1(\omega), \dots \pi_n(\omega)) \mapsto \sum_{i=1}^n \pi_i(\omega)$$

Both are continuous (projection from the definition of product topology) and thus measurable, and so is $\frac{S_n}{n}$.

4 Random variables

Definition 4.1. Let (Ω, \mathcal{F}, P) be a probability space. $X : \Omega \to (S, \mathcal{S})$ measurable is called a random variable.

Notation

$$\{\omega : X(\omega) \in A\} = X^{-1}(A)$$

We use notation like $X \in A$.

Basic constructions with random variables

Definition 4.2. Given a probability space (Ω, \mathcal{F}, P) and measurable (S, \mathcal{S}) , X induces measure \mathcal{L}_X on (S, \mathcal{S}) via

$$\mathcal{L}_X(E) = P(X \in E)$$

 \mathcal{L}_X is called marginal distribution of X or law of X.

Proposition 4.1. \mathcal{L}_X is countably additive set function.

If (S, \mathcal{S}) is \mathbb{R}, \mathcal{B} . By uniqueness theorem, \mathcal{L}_X if defined by

$$F_X(x) = \mathcal{L}_X((-\infty, x]) = P(X \in (-\infty, x])$$

Proposition 4.2. $\mathcal{L}_X \mapsto F_X$ is 1-1 and onto.

Proof. Uniqueness:

If μ , ν exists such that

$$\mu((-\infty, x]) = F_X(x) = \nu((-\infty, x])$$

then, since they agree on π -system, and thus are equal by uniqueness theorem.

Existence $\mu((-\infty, x])$ fulfills Carathéodory's extension theorem requirements, thus there exists unique extension.

We assume there exists Lebesgue measure on Borel sets ([0, 1], \mathcal{B} , λ).

Definition 4.3. A coupling of X,Y is (Ω,\mathcal{F},P) and $\tilde{X},\tilde{Y}:\Omega\to\mathbb{R}$ such that $\mu_{\tilde{X}}=\mu_X$ and $\mu_{\tilde{Y}}=\mu_Y$.

Theorem 4.3 (Skorokhod's representation (of a random variable X)). Given μ_X , μ_Y can we construct (Ω, \mathcal{F}, P) and $\tilde{X}, \tilde{Y} : \Omega \to \mathbb{R}$ such that $\mu_{\tilde{X}} = \mu_X$ and $\mu_{\tilde{Y}} = \mu_Y$, i.e., a coupling of X, Y.

Proof. Given increasing, right continuous F such that $F(-\infty) = 0$ and $F(\infty) = 1$. We want to define $X : [0,1] \to \mathbb{R}$ s.t. $F_X = F$.

$$X^{-}(\omega) = \inf \{x : F(x) \ge \omega\}$$

(We could also choose $X^+(\omega) = \inf\{x : F(x) \ge \omega\}$, which is a bit different)

We want to show that

$$\{\omega: X^-(\omega) \le x\} = \{\omega \le F(x)\}$$

 $X^{-}(\omega) \leq x$ means that $F(x) \geq \omega$ (by definition), verifying $\{\omega : X^{-}(\omega) \leq x\} \subseteq \{\omega \leq F(x)\}$

 $F(x) \ge \omega$ means $X^{-}(\omega) \le x$ (since F is increasing), finishing the proof.

Note, that X^+ and X^- disagree only on countable number of points.

 F_X is cumulative distribution function (CDF) or distribution function of X. We ask the question: what are set properties distinguish F_X ?

Proposition 4.4 (Properties of CDF). 1. F_X is non-decreasing

- 2. F_X is right continuous
- 3. $F_X(-\infty) = 0$

Proof. 1. If x < y, $(-\infty, x] \subseteq (-\infty, y]$, thus, from monotonicity of measure $F_X(x) \le F_X(y)$

2. we want to show

$$\lim_{x \downarrow x_0} F(x) = F(x_0)$$

Since if $E_n \downarrow E$, then $\mu(E_n) \to \mu(E)$

We can look on sequence $\{x_n\}$:

$$\omega \in \bigcap_{n} \{X \in (-\infty, x_n)\} \Rightarrow \forall n \quad X(\omega) \le x_n \Rightarrow X(\omega) \le x \Rightarrow \bigcap_{n} \{X \in (-\infty, x_n)\} \subseteq \{X \in (-\infty, x)\}$$

The other direction is obvious.

3. Since

$$\bigcap_{x} X^{-1} ((-\infty, x]) = \emptyset$$

4.1 Independence

 (Ω, \mathcal{F}, P) probability space. Let $\{\mathcal{J}_i\}_{i\in I}$ be a collection of sub- σ -algebras of \mathcal{F} .

Definition 4.4 (Independence of σ -algebras). Say $\{\mathcal{J}_i\}_{i\in I}$ are independent if

$$\forall i_1, \dots i_k \, \forall j \quad G_{ij} \in \mathcal{J}_i \quad P\left(\bigcap_{j=1}^k G_{ij}\right) = \prod_{j=1}^k P(G_{ij})$$

Definition 4.5 (Independence of random variables). Say $\{X_i\}_{i\in I}$ are independent if $\sigma(X_i)$ are independent.

Definition 4.6 (Independence of sets). Say $\{E_i\}_{i\in I}$ are independent if random variables $\mathbb{1}_{E_i}$ are independent.

Connection with elementary probability theory

Lemma 4.1 (Checking independence). Let \mathcal{F}_1 , \mathcal{F}_2 be σ -algebras, \mathcal{A}_1 , \mathcal{A}_2 π -systems such that $\sigma(\mathcal{A}_{\infty}) = \mathcal{F}_i$. Then \mathcal{F}_1 , \mathcal{F}_2 are independent iff

$$\forall A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2 \quad P(A_1 \cap A_2)P(A_1)P(A_2)$$

Proof. Given $E \in \mathcal{F}$ let $P_E(A) = P(A \cap E)$, a measure on (Ω, \mathcal{F}) . Given $A_1 \in \mathcal{A}_1$ consider $P_{A_1}|_{\mathcal{F}_2}$.

$$\forall A_2 \in A_2 P_{A_1}(A_2) = P(A_1)P(A_2)$$

Thus P_{A_1} and $P(A_2) \times P$ are measures on \mathcal{F}_2 agreeing on \mathcal{A}_2 .

$$\forall A_1 \in A_1, E_2 \in \mathcal{F}_2 \quad P(A_1 \cap E_2) = P(A_1)P(E_2)$$

Next iterate argument argument for \mathcal{F}_1

$$\forall E_2 \in \mathcal{F}_2 P_{E_2} = P(E_2)P$$

By uniqueness

$$\forall E_i \in \mathcal{F}_i \quad P(E_1 \cap E_2) = P(E_1)P(E_2)$$

Collary 4.4.1. To check X_1, \ldots, X_k are independent random variables it suffices

$$\forall x \in \mathbb{R}^k \quad P(X_i \le x_i) = \prod_{i=1}^k P(X_1 \le x_i)$$

Lemma 4.2 (Second Borel-Cantelli lemma). If $\sum_{i} P(E_i) = \infty$ and $\{E_i\}_{i=1}^{\infty}$ are independent, then

$$P(E_n \text{ i.o.}) = 0$$

Proof.

$${E_i \text{ i.o.}}^C = {E_i^C \text{ eventually}}$$

It's enough to show

$$P\left(\bigcap_{i\geq n} E_i^C\right) = 0$$

or, by truncating

$$P\left(\bigcap_{i\geq n}^k E_i^C\right) = 0$$

By independence

$$P\left(\bigcap_{i \ge n} E_i^C\right) \prod_{i=n}^k P(E_i^C) = \prod_{i=n}^k \left[1 - P(E_i)\right] \le e^{-\sum_{i=n}^k P(E_i)}$$

Since the sum tends to infinity, the exponent tends to 0.

Example Let $\{X_i\}_{i=1}^{\infty}$ be i.i.d. Exp(1) random variables, i.e.

$$P(X_i > x) = e^{-x}$$

We are interested in growth rate of $X_n \leq f(n)$.

If $f(n) = \alpha \log(n)$

$$P(X_n > f(n)) = e^{-f(n)} = n^{-\alpha}$$

Thus, from Lemmas 3.3, 4.2

$$P(X_n \ge \alpha \log(n) \text{ i.o.}) = \begin{cases} 0 & \alpha > 1\\ 1 & \alpha \le 1 \end{cases}$$

Define $L = \limsup_{n \to \infty} \frac{X_n}{\log(n)}$, then

$$P(L \ge 1) = P(X_n \ge \log(n) \text{ i.o.}) = 1$$

Finally, if we look at $E = \bigcup_{k=1}^{\infty} \{L \ge 1 + \frac{1}{k}\},\$

$$P(E) \le \sum_{k=1}^{\infty} P\left(L \ge 1 + \frac{1}{k}\right) \le \sum_{k=1}^{\infty} P\left(X_n \ge \left(1 + \frac{1}{2k}\right) \log(n)\right) = 0$$

thus $P(L \leq 1) = 1$.

Method of generation of i.i.d. uniform [a,b] variables We write $\omega = \sum_{i=1}^{\infty} \frac{\omega_i}{2^i}$

$$\begin{cases} w^{(1)} = \omega_1 \omega_3 \omega_6 \omega_{10} \omega_{15} \dots \\ w^{(2)} = \omega_2 \omega_5 \omega_9 \omega_{14} \dots \\ w^{(3)} = \omega_4 \omega_8 \omega_{13} \omega_{19} \dots \\ \vdots \end{cases}$$

Theorem 4.5 (Kolmogorov's zeroone law).

$$\mathcal{T}_n = \sigma(X_n, X_{n+1}, \dots)$$

$$\mathcal{T} = \bigcap_n \mathcal{T}_n$$

Suppose $\{X_n\}_{n=1}^{\infty}$ are independent, then $\forall A \in \mathcal{T}, P(A) \in \{0,1\}.$

Proof. We show that $P(A) = P(A)^2$.

We show that \mathcal{T} is independent of itself, $\forall A, B \in \mathcal{T}$ $P(A \cup B) = P(A) \cdot P(B)$.

 $\mathcal{T} \subset \mathcal{T}_1$. Consider $\mathcal{I}_{l,n} = \sigma(X_l, X_{l+1}, \dots, X_n)$

For n < k, take $A \in \mathcal{I}_{l,n}$, $B \in \mathcal{I}_{k,m}$, then A, B are independent.

Let $\Pi_n = \bigcup_{m>n+1} \mathcal{I}_{n+1,m}$. Π_n is π -system, and $\sigma(\Pi_n) = \mathcal{T}_n$. By lemma 4.1, $\mathcal{I}_{l,n}$ is independent on \mathcal{T}_n . Thus $\forall A \in \mathcal{I}_{l,n}$, $B \in \mathcal{T}_n$,

$$P(A \cap B) = P(A) \cdot P(B)$$

 $\mathcal{T}_1 = \sigma(\bigcup_n \mathcal{I}_{1,n})$, and thus \mathcal{T}_1 is independent from \mathcal{T} and since $\mathcal{T} \subseteq \mathcal{T}_1$, thus \mathcal{T} is independent of itself and

$$\forall A \in \mathcal{T} \quad P(A) = P(A \cap A) = P(A)^2$$

Collary 4.5.1. If $\{X_n\}_{n=1}^{\infty}$ i.i.d. $s_n = \sum_{i=1}^n X_i$ then $\forall c \in \mathbb{R}$ $P(\limsup \frac{S_n}{n} \geq c) \in \{0,1\}$. **Proposition 4.6.** Let $\{X_n\}_{n=1}^{\infty}$ i.i.d. $s_n = \sum_{i=1}^n X_i$ then $P(\limsup \frac{S_n}{n} \text{ exists}) \in \{0, 1\}$. If $P(\limsup \frac{S_n}{n} \text{ exists}) = 1$, then $\exists c \in [-\infty, \infty]$ such that $P(\limsup \frac{S_n}{n} = c) = 1$.

5 Integration theory

Definition 5.1 (Notation). (S, \mathcal{F}, μ) . Given $f: S \to \mathbb{R}$ measurable. We define

$$\mu(f) = \int_{S} f(S) \, \mathrm{d}\mu(S)$$

If $A \in \mathcal{F}$:

$$\mu(f_j A) = \mu(f \cdot \mathbb{1}_A) = \int_A f(S) \, \mathrm{d}\mu(S) = \int_A f \, \mathrm{d}\mu$$

Desirable properties of integral

1. Linearity

$$\int \alpha f + g \, \mathrm{d}\mu = \alpha \int f \, \mathrm{d}\mu + \int g \, \mathrm{d}\mu$$

2. Positivity:

$$f > 0 \Rightarrow \int f \,\mathrm{d}\mu > 0$$

3.

$$\int \mathbb{1}_A \, \mathrm{d}\mu = \mu(A)$$

Classes of functions we are going to consider:

1.

$$\mathcal{S} = \left\{ f(x) = \sum_{k=1}^{m} a_k \mathbb{1}_{A_k} \ a_k > 0, A_k \in \mathcal{F} \right\}$$

2.

 $\mathcal{P} = \{\text{positive measurable functions}\}\$

3.

$$\mathcal{I} = \left\{ f(x) = g(x) - h(x) | g, h \in \mathcal{P}, \int g \, \mathrm{d}\mu \text{ or } \int h \, \mathrm{d}\mu \text{ finite.} \right\}$$

Definition 5.2. For $\phi \in \mathcal{S}$ let $\mu_0(\phi) = \int_S \phi(S) d\mu_0 = \sum_{k=1}^m a_k \mu(A_k)$.

Definition 5.3. For $f \in \mathcal{P}$ let $\mu(\phi) = \sup_{\substack{\phi \in \mathcal{S} \\ \phi < f}} \mu_0(\phi)$.

Proposition 5.1. If $f = g \mu$ a.e., then $\mu(f) = \mu(g)$.

Lemma 5.1. If $\mu(f) = 0$ then f = 0 a.e.

Lemma 5.2.

$$\mu\Big((\min\{f,k\})\cdot \mathbb{1}_{\frac{1}{k}\leq f}\Big)\to \mu(f)$$

Proof. Given $\phi \in S^+$, $\phi \leq f$, for k large enough, $\phi \leq (\min\{f,k\}) \cdot \mathbbm{1}_{\frac{1}{k} \leq f}$. Since $\phi = \sum_{l=1}^m a_l \mathbbm{1}_{A_l}$ $\phi \leq f \cdot \mathbbm{1}_{\frac{1}{k} \leq f}$ and for k large enough $\phi \leq \min\{f, k\}$. Thus

$$\phi \leq \left(\min\left\{f,k\right\}\right) \cdot \mathbb{1}_{\frac{1}{k} \leq f}$$

and

$$\mu_0(\phi) \le \mu \left((\min\{f, k\}) \cdot \mathbb{1}_{\frac{1}{k} \le f} \right)$$

Taking the limit

$$\mu_0(\phi) \le \lim_{k \to \infty} \mu\left(\left(\min\left\{f, k\right\}\right) \cdot \mathbb{1}_{\frac{1}{k} \le f}\right)$$

By taking supremum over ϕ

$$\mu(f) \leq \lim_{k \to \infty} \mu \Big((\min \left\{ f, k \right\}) \cdot \mathbb{1}_{\frac{1}{k} \leq f} \Big)$$

Other direction is trivial and thus

$$\mu\Big((\min\{f,k\})\cdot \mathbb{1}_{\frac{1}{k}\leq f}\Big)\to \mu(f)$$

Theorem 5.2 (Monotone convergence theorem). Let $0 < f_n$ and $f_n \uparrow f$, then $\mu(f_n) \uparrow \mu(f)$

Proof. From lemma we can assume f is bonded and

$$\exists \epsilon \quad \{f > 0\} = \{f > \epsilon\}$$

If $\mu(f > \epsilon) = \infty$, then $\mu(f) = \infty$. Also

$$\left\{f_n > \frac{\epsilon}{2}\right\} \uparrow \left\{f \ge \frac{\epsilon}{2}\right\} \Rightarrow \mu\left(f_n > \frac{\epsilon}{2}\right) \to \mu(f \ge) \frac{\epsilon}{2}$$

Thus $\mu(f_n > \epsilon) \to \infty$

If $\mu(f > \epsilon) < \infty$, given $\delta > 0$, let

$$C_n = \{ |f - f_n| > \delta, f > \epsilon \}$$

Then $C_n \downarrow \emptyset$, thus $\forall \delta > 0 \ \mu(C_n) \to 0$.

Given $S \ni \phi \leq f$,

$$\phi = \phi \mathbb{1}_{f>\epsilon} = (\phi - \delta) \mathbb{1}_{f>\epsilon} + \delta \mathbb{1}_{f>\epsilon}$$

Let $\phi_n = (\phi - \delta) \mathbb{1}_{f > \epsilon} \mathbb{1}_{|f - f_n| < \delta}$. Obviously $\phi_n \le f_n$.

We claim

$$\exists C > 0 \quad |\mu_0(\phi_n) - \mu_0(\phi)| \le C \cdot (\delta + \mu(C_n))$$

since

$$\mu_0(\phi_n) = \mu_0(\phi) - \delta\mu(f > \epsilon, |f - f_n| > \delta) - \delta\mu(f > \epsilon)$$
$$|\mu_0(\phi_n) - \mu_0(\phi)| \le \delta\mu(f > \epsilon) + M\mu(C_n)$$

for $M \geq f$.

Since δ is arbitrary, $\lim_{n\to\infty} C \cdot (\delta + \mu(C_n)) = 0$, thus

$$\mu_0(\phi) \leq \lim_{n \to \infty} \mu_0(f_n)$$

Optimizing over ϕ we get

$$\mu(f) \leq \lim_{n \to \infty} \mu(f_n)$$

Collary 5.2.1. $f, g \in \mathcal{P}$ and $a \geq 0$ then

$$\mu(af + g) = a\mu(f) + \mu(g)$$

Proof. Taking staircase functions $\alpha_f^{(r)}$ and $\alpha_g^{(r)}$. Then $a\alpha_f^{(r)} + \alpha_g^{(r)} \uparrow af + g$ and

$$\mu \Big(a \alpha_f^{(r)} + \alpha_g^{(r)} \Big) = a \mu \Big(\alpha_f^{(r)} \Big) + \mu \Big(\alpha_g^{(r)} \Big)$$

By 5.2

$$\lim_{r \to \infty} \mu \left(a \alpha_f^{(r)} + \alpha_g^{(r)} \right) = \lim_{r \to \infty} a \mu \left(\alpha_f^{(r)} \right) + \mu \left(\alpha_g^{(r)} \right)$$
$$\mu(af + g) = a \mu(f) + \mu(g)$$

Collary 5.2.2.

$$\mu(\liminf f_n) \leq \liminf \mu(f_n)$$

Proof.

$$\lim\inf f_n = \sup_k \left[\inf_{\substack{n \ge k \\ g_k}} f_n \right]$$
$$g_k \uparrow \liminf f_n$$

From **5.2**

$$\mu(\liminf f_n) = \lim_k \mu(g_k) \le \liminf_k \mu(f_k)$$

Definition 5.4. Let f = g - h a.s. such that $g, h \ge 0$, and at most one of $\int g \, d\mu$, $\int h \, d\mu$ is infinite. Then define

$$\int f \, \mathrm{d}\mu = \int g \, \mathrm{d}\mu - \int h \, \mathrm{d}\mu$$

Proposition 5.3. $\int f d\mu$ is well defined.

Proof. If $g_1 - h_1 = f = g_2 - f_2$ a.s. it is true that

$$g_1 - g_2 + h_2 - h_1 = 0$$

$$g_1 + h_2 = g_2 + h_1$$

$$\int g_1 d\mu + \int h_2 d\mu = \int g_2 d\mu + \int h_1 d\mu$$

Since maximum one term on each side is infinite we can move the other one to the second side, getting the

$$\int g_1 d\mu - \int g_2 d\mu = \int h_1 d\mu - \int h_2 d\mu$$

as required

Definition 5.5.

$$f^{\pm}(\omega) = \max\left\{\pm f(\omega), 0\right\}$$

Definition 5.6. We say $f \in L^1(\mu)$ if $\exists g, h$ such that $f = g - h \int g \, d\mu + \int h \, d\mu < \infty$.

For $f \in L^1(\mu)$, $\int f d\mu = \int f^+ d\mu - \int f^- d\mu$. $|f| = f^+ + f^- \text{ and } f \in L^1(\mu) \iff \int |f| d\mu < \infty$.

Lemma 5.3. $L^1(\mu)$ is a vector space.

Proof. $f, g \in L^1(\mu)$ thus, since $|f + g| \le |f| + |g|$, $f + g \in L^1(\mu)$.

$$\int f + g \, d\mu = \int f^+ + g^+ \, d\mu - \int f^- + g^- \, d\mu = \int f \, d\mu + \int g \, d\mu$$

If $||f||_1 = \int f d\mu$ then $|||_1$ is a norm on $L^1(\mu)$

Further $L^1(\mu)$ is complete, i.e., each Cauchy sequence converges.

Lemma 5.4 (Reverse Fatou's Lemma). Let $\{f_n\}$ be a sequence of functions such that $0 \le f_n \le g$ such that $\int g \, \mathrm{d}\mu < \infty$. Then

$$\int \limsup f_n \, \mathrm{d}\mu \ge \lim \sup \int f_n \, \mathrm{d}\mu$$

Proof. Let $h_n = g - f_n$. By 3.2

$$\int \liminf h_n \, \mathrm{d}\mu \le \liminf \int h_n \, \mathrm{d}\mu$$

Using the fact $\liminf h_n = g - \limsup f_n$ we get the result.

Theorem 5.4 (Lebesgue's dominated convergence theorem). Let f_n be a sequence such that $|f_n| \leq g$ and $g \in L^1(\mu)$ and $f_n \to f$ then

$$\int f_n \to \int f$$

and

$$\int |f_n - f| \to 0$$

Proof. We first proof that $\int f_n \to \int f$.

Sine $|f_n| < g$, $g \pm f_n \ge 0$. Applying 3.2 to $g \pm f_n$:

$$\int \liminf f_n \le \liminf \int f_n$$

$$\int f \le \liminf \int f_n$$

and

$$\int \liminf (-f_n) \le \liminf \int (-f_n)$$
$$\int \limsup f_n \ge \lim \sup \int f_n$$

$$\int f \ge \limsup \int f_n \ge \liminf \int f_n \ge \int f$$

We have $h_n = |f_n - f|$, and $h_n \stackrel{a.s.}{\to} 0$ and $h_n \leq 2g$ so by first statement

$$0 = \lim_{n \to \infty} \int h_n$$

5.1 Integration on probability spaces and integration

Definition 5.7 (Expectation). Let (Ω, \mathcal{F}, P) be a probability space and $X : \Omega \to \mathbb{R}$ be a random variable.

$$\mathbb{E}[X] = \int X(\omega) \, \mathrm{d}P(\omega)$$

Theorem 5.5 (Bounded convergence theorem). Let $X_n \to X$ a.s. and $|X|_n \le C$. Then $\mathbb{E}[|X|_n - X]to0$.

independent of DCT. Define $E_{\epsilon} = \{\omega : |X_n(\omega) - X(\omega)| < \epsilon\}.$

$$\mathbb{E}[|X_n(\omega) - X|] = \mathbb{E}[|X_n - X| \mathbb{1}_{E_{\epsilon}}] + \mathbb{E}[|X_n - X| \mathbb{1}_{E_{\epsilon}^C}]$$

Since $|X_n - X| \mathbb{1}_{E_{\epsilon}} \le \epsilon \mathbb{1}_{E_{\epsilon}}$ and $|X_n - X| \mathbb{1}_{E_{\epsilon}^C} \le 2C \mathbb{1}_{E_{\epsilon}^C}$:

$$\mathbb{E}[|X_n(\omega) - X|] \le \epsilon \mathbb{1}_{E_{\epsilon}} + 2C \mathbb{1}_{E_{\epsilon}^C} \le \epsilon + 2cP((E_{\epsilon}^n)^C)$$

For some m > n

$$(E_{\epsilon}^n)^C = \{\omega : |X_n - X| > \epsilon\} \subseteq \{\omega : |X_m - X| > \epsilon\}$$

$$\bigcap_{n} F_{n,\epsilon} = \{ \omega : \limsup |X_n - X| => \epsilon \}$$

By continuity of measure

$$\lim_{n\to\infty} P(F_{n,\epsilon}) = 0$$

$$\lim_{n \to \infty} P((E_{\epsilon}^n)^C) = 0$$

Definition 5.8. Let $A \in \mathcal{F}$.

$$\int_A f \, \mathrm{d}\mu = \mu(f; A) = \mu(f \mathbb{1}_A)$$

We can look on it as constructing a new measure space: $(S \cap A = A, \mathcal{F}_A, \mu|_A)$ We claim that

$$\mu \bigg|_{A} (f) = \mu(f \mathbb{1}_{A})$$

Proposition 5.6 (The standard machine). 1. Check for $\mathbb{1}_E$.

- 2. Check for simple functions (use linearity)
- 3. Use MCT to check positive functions.
- 4. Use linearity to extend to L^1 .

Proposition 5.7. If $h, g : \mathbb{R} \to \mathbb{R}$ are Borel-measurable and X, Y are independent, then h(X), g(Y) are independent.

Proof. h(X), g(Y) are measurable, and σ -algebras generated by then are sub- σ -algebras of original ones, and thus they're independent.

Proposition 5.8. Suppose $X, Y \in L^1$ are independent and in L_1 , then $X \cdot Y \in L_1$ and

$$\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

Proof. $X = X^+ - X_-$ and $Y = Y^+ - Y^-$, by linearity its enough to check for X^{\pm} , Y^{\pm} .

So we can assume X, Y > 0. Denote $X_N = \max\{X, N\}$, $Y_N = \max\{X, N\}$, from 5.2 if the claim holds for X_N , Y_N , then it holds for X, Y.

Since now X, Y are bounded, we can find simple functions $\alpha^{(r)}(X) \to X$, $\alpha^{(r)}(Y) \to Y$.

From 5.5 the identity would hold for bounded functions if it holds for simple functions. From linearity it's enough to show for indicators:

$$\mathbb{E}1_E(X)1_F(Y) = P(X \in E, Y \in F) = P(X \in E)P(Y \in F) = \mathbb{E}1_E(X) \cdot \mathbb{E}1_F(Y)$$

Proposition 5.9. Let $X:(\Omega,\mathcal{F})\to(\mathbb{R},\mathcal{B})$. Let μ_X be a law of X on \mathbb{R} :

$$\mu_X(B) = P(X \in B)$$

let $h: \mathbb{R} \to \mathbb{R}$, then $\mathbb{E}[h(X)] = \int_{\mathbb{R}} h(x) \mu_X(\mathrm{d}x)$

Proof. Use the Standard machine.

 \square

Definition 5.9. Say $\nu \triangleleft \mu$ if $\mu(A) = 0 \Rightarrow \nu(A) = 0$. We say μ is absolutely continuous with respect to μ .

Theorem 5.10. S, \mathcal{F} is nice. $\nu \triangleleft \mu \iff \exists f \in L^1(\mu)$ and $f \geq 0$, $\int f \, \mathrm{d}\mu = 1$ such that $\nu(A) = \int_A f \, \mathrm{d}\mu$. We call $f = \frac{\partial \nu}{\partial \mu}$ a Radon-Nikodym derivative.

 $P(X = \cdot | Z =_j \text{ is probability measure on } \{x_1, \dots, x_m\} \text{ for } j \text{ fixed. } \mathbb{E}[X|z = z_j] = \sum_i x_i P(X = x_i | z = z_j \text{ is a conditional expectation. note that it is random variable: } \mathbb{E}[X|Z] = \sum_j \mathbb{E}[X|Z = z_j].$ Properties

- 1. $\mathbb{E}[X|Z] \in \sigma(Z)$
- 2. $\forall A \in \sigma(Z)$

$$\mathbb{E}\Big[\mathbbm{1}_A\cdot\mathbb{E}[X|Z]\Big]=\mathbb{E}[\mathbbm{1}_AX]$$

It's enough to check for $A = \{z_i\}$:

$$\mathbb{E}\Big[\mathbb{1}_A \mathbb{E}[X|Z]\Big] = P(Z=z_j) \mathbb{E}\Big[\mathbb{E}[X|z_j]\Big] = \sum_i x_i P(X=x_i, Z=z_j) = \mathbb{E}[\mathbb{1}_A X]$$

Definition 5.10. We say that Y is a conditional expectation of Z given \mathcal{J} if $Y \in \mathcal{J}$, $Y \in L^1(P)$ and $\forall A \in \mathcal{J} \mathbb{E}[Y\mathbb{1}_A] = \mathbb{E}[X\mathbb{1}_A]$ **Lemma 5.5.** If conditional expectation Y exists, it is unique up to sets of measure 0. Henceforth call Y by $\mathbb{E}[X|\mathcal{J}]$

Proof. Let Y, Y' two conditional expectations. We'll show that Y > Y' P a.s. then by symmetry Y = Y' P a.s. Let $A_n = \{Y > Y' + \frac{1}{n}\}, A_n \in \mathcal{J}$.

 $L^2(P) \text{ remark} \quad \text{For } X,Y \in L^2(P) \text{ define } \langle X,Y \rangle = \mathbb{E}[XY] \text{ and } \|X\| = \sqrt{\langle X,X \rangle} = \sqrt{\mathbb{E}[X^2]}. \text{ Parallelogram law: } \|X\| = \sqrt{\langle X,X \rangle} = \sqrt{\mathbb{E}[X^2]}.$

$$||X + Y||^2 + ||X - Y||^2 = 2||X||^2 + 2||Y||^2$$

Theorem 5.11. Let $K \subseteq L^2(P)$ be a closed convex subset, $X \in L^2(P)$ then $\exists ! Y \in K$ such that $\inf \{ ||X - Z|| : z \in K \} = ||X - Y||$, call $Y = P_K(X)$.

Proof. Let $Y_n \in K$ such that $||X - Y_n|| \to \Delta = \inf\{||X - Z|| : z \in K\}$ We claim Y_n is Cauchy.

$$||X - Y_n||^2 + ||X - Y_m||^2 = 2 ||X - \frac{Y_n + Y_m}{2}||^2 + \frac{1}{2}||Y_n - Y_m||^2$$

Since $\frac{Y_n+Y_m}{2} \in K$ by convexity, thus

$$2\left\|X - \frac{Y_n + Y_m}{2}\right\|^2 + \frac{1}{2}\|Y_n - Y_m\|^2 \ge 2\Delta^2 + \frac{1}{2}\|Y_n - Y_m\|^2$$

and

$$||X - Y_n||^2 + ||X - Y_m||^2 \to 2\Delta^2$$

thus

$$\frac{1}{2} \|Y_n - Y_m\|^2 \to 0$$

i.e., $\{Y_n\}$ is Cauchy and thus the limit exists and is in K.

If there are two different sequences, then from same identity, the distance between limits goes to 0.

Theorem 5.12. If $X \in L^1$ and $\mathcal{J} \subseteq \mathcal{F}$ then $\mathbb{E}[X|\mathcal{J}]$ exists

Definition 5.11. $P_K(X) = Y$, $P_K: L^2(P) \to V$. Then $P_K(X)$ is linear, contractive and self-adjoint.

We want to use P_K to define $\mathbb{E}[X|\mathcal{J}]$.

- For all $\mathcal{J} \subset \mathcal{F}$ containing all sets of measure 0 $\{Y, \mathbb{E}[Y^2]\}$ forms a closed subspace of $L^2(P)$ and $L^2(\Omega, \mathcal{J}, P)$ is called complete measure space.
- $L^2(\Omega, \mathcal{J}, P)$ is complete by Lemma.
- $L^2(\Omega, \mathcal{J}, P) \subseteq L^2(\Omega, \mathcal{F}, P)$

Definition 5.12. For $X \in L^2(\Omega, \mathcal{F}, P)$ and $\mathcal{J} \subseteq \mathcal{F}$ is complete then

$$\mathbb{E}[X|\mathcal{F}] = P_{L^2(\Omega, \mathcal{J}, P)}(X)$$

Proposition 5.13.

$$\mathbb{E}[\mathbb{1}_A X] = \mathbb{E}[\mathbb{1}_A P \cdot (X)]$$

Proof. The statement is equivalent to

$$\langle \mathbb{1}_A, X \rangle = \langle \mathbb{1}_A, P_{L^2(\mathcal{J})} X \rangle$$

However for $Y \in L^2(\Omega, \mathcal{J}, P), P \cdot Y = Y$:

$$\langle \mathbb{1}_A, X \rangle = \langle P \cdot \mathbb{1}_A, X \rangle = \langle \mathbb{1}_A, P \cdot X \rangle$$

Lemma 5.6. If $X \geq 0$ a.s. and $X \in L^2$ then $\mathbb{E}[X|\mathcal{J}] \geq 0$ a.s.

Proof. Let $A_n = \{\omega : \mathbb{E}[X|\mathcal{J}] < \frac{1}{n}\}$. We clame $P(A_n = 0)$.

$$0 \le \mathbb{E}[\mathbb{1}_{A_n} X] = \mathbb{E}[\mathbb{1}_{A_n} \mathbb{E}[X|\mathcal{J}]] \le -\frac{1}{n} \mathbb{1}_{A_n} \Rightarrow P(A_n) = 0$$

Note that to define conditional expectation $\mathbb{E}[X|\mathcal{J}]$ for $X \in L^1$, we can assume X > 0, since we can define

$$\mathbb{E}[X|\mathcal{J}] = \mathbb{E}[X^+|\mathcal{J}] - \mathbb{E}[X^-|\mathcal{J}]$$

So, let $X_n = \max\{X, n\}$, then $X_n \in L^2(\mathcal{F})$ so $\mathbb{E}[X_n | \mathcal{J}]$ exists, and $X_n \uparrow X$. We want that (a.s.) $\mathbb{E}[X_n | \mathcal{J}] \uparrow_n$ Take a look at $X_n - X_m \ge 0$ for n > m:

$$\mathbb{E}[X_n - X_m | \mathcal{J}] \ge 0$$

thus

$$\mathbb{E}[X_n|\mathcal{J}] \ge \mathbb{E}[X_m|\mathcal{J}]$$

so the sequence is increasing.

Let us define

$$\mathbb{E}[X|\mathcal{J}] = \lim_{n \to \infty} \mathbb{E}[X_n|\mathcal{J}]$$

Now $\forall A \in \mathcal{J}$, from monotone convergence,

$$\begin{split} \mathbb{E}[\mathbb{1}_A X_n] &\to \mathbb{E}[\mathbb{1}_A X] \\ \mathbb{E}[\mathbb{1}_A X_n] &= \mathbb{E}[\mathbb{1}_A \mathbb{E}[X_n | \mathcal{J}]] \end{split}$$

and also

$$\mathbb{E}[\mathbb{1}_A \mathbb{E}[X_n | \mathcal{J}]] \to \mathbb{E}[\mathbb{1}_A \mathbb{E}[X | \mathcal{J}]]$$

and thus

$$\mathbb{E}[\mathbb{1}_A X] = \mathbb{E}[\mathbb{1}_A \mathbb{E}[X|\mathcal{J}]]$$

i.e., it is the conditional expectation.

Proposition 5.14 (Properties of conditional expectations). 1. If $Y = \mathbb{E}[X|\mathcal{J}]$ a.s., then $\mathbb{E}[X] = \mathbb{E}[Y]$

2. If $X \in \mathcal{J}$, $\mathbb{E}[X|\mathcal{J}] = X$ a.s.

3.

$$\mathbb{E}[aX + Y|\mathcal{J}] = a\mathbb{E}[X|\mathcal{J}] + \mathbb{E}[Y|\mathcal{J}]$$

4. If $X \geq 0$ then $\mathbb{E}[X|\mathcal{J}] \geq 0$

5. If $X_n \uparrow X$ then $\mathbb{E}[X_n | \mathcal{J}] \uparrow \mathbb{E}[X | \mathcal{J}]$

6. If $X_n \ge 0$

 $\mathbb{E}[\liminf X_n | \mathcal{J}] \le \liminf \mathbb{E}[X_n | \mathcal{J}]$

7. $|X_n| \leq V(w)$ and $\mathbb{E}[V] < \infty, X_n \to X$ a.s., then

$$\mathbb{E}[X_n|\mathcal{J}] \to \mathbb{E}[X|\mathcal{J}]$$

8.

$$\mathbb{E}[c(X)|\mathcal{J}] \ge c(\mathbb{E}[X|\mathcal{J}])$$

9. For $\mathcal{H} \subseteq \mathcal{J} \subset \mathcal{F}$

$$\mathbb{E}[\mathbb{E}[X|\mathcal{J}]|\mathcal{H}] = \mathbb{E}[X|\mathcal{H}]$$

10. For $Z \in \mathcal{J}$:

$$\mathbb{E}[ZX|\mathcal{J}] = Z\mathbb{E}[X|\mathcal{J}]$$

11. For \mathcal{H} independent on $\sigma(X, \mathcal{J})$:

$$\mathbb{E}[X|\sigma(\mathcal{J},\mathcal{H})] = \mathbb{E}[X|\mathcal{J}]$$

Proposition 5.15 (Jensen's inequality). Proof. So let

$$S = \{a, b | ax + b \le c(x)\}$$

Let $S' \subset S$ be a countable dense subset.

$$\forall a, b \in S' \quad a\mathbb{E}[X|\mathcal{J}] + b \leq \mathbb{E}[c(X)|\mathcal{J}]$$

Since for convex function

$$c(x) = \sup_{ax+b \le c(x)} \left\{ ax + b \right\}$$

Optimizing over S' we get the Jensen inequality.

Proposition 5.16 (Hölder's inequality).

$$|\mathbb{E}[X|\mathcal{J}]|^p \le \mathbb{E}[X^p|\mathcal{J}]$$

If $\frac{1}{p} + \frac{1}{q} = 1$:

$$|\mathbb{E}[XY|\mathcal{J}]| < (\mathbb{E}[|X|^p|\mathcal{J}])^{\frac{1}{p}} + (\mathbb{E}[|Y|^q|\mathcal{J}])^{\frac{1}{q}}$$

Proposition 5.17 (Minkowski's inequality).

$$|\mathbb{E}[(X+Y)^p|\mathcal{J}]|^{\frac{1}{p}} \le |\mathbb{E}[X^p|\mathcal{J}]|^{\frac{1}{p}} + |\mathbb{E}[Y^p|\mathcal{J}]|^{\frac{1}{p}}$$

Example Let X, Z be random variable.

$$P((X,Z) \in A) = \int_A f_{(X,Z)}(x,z) \, \mathrm{d}x \, \mathrm{d}z$$

where $f_{(X,Z)}$ is called the joint distribution

Proposition 5.18.

$$\mathbb{E}[h(x)|\sigma(Z)] = \frac{\int f(x,z)h(x)\,\mathrm{d}x}{\int f(x,z)\,\mathrm{d}x} \mathbb{1}_{\int f(x,z)\mathrm{d}x \neq 0} = \phi(z)$$

Proof. We want to check that

$$\mathbb{E}[h(X); z \in \mathcal{B}] = \mathbb{E}[\phi(z); z \in \mathcal{B}]$$

$$\mathbb{E}[\phi(z); z \in \mathcal{B}] = \mathbb{E}[\phi(z)\mathbb{1}_{z \in \mathcal{B}}] = \int \phi(z)\mathbb{1}_{z \in \mathcal{B}}f(x, z) \, \mathrm{d}x \, \mathrm{d}z$$

$$\mathbb{E}[h(X); z \in \mathcal{B}] = \int \mathrm{d}z \left[\int f(x, z)h(x) \, \mathrm{d}x\right] \mathbb{1}_{z \in \mathcal{B}} = \int \left[\frac{\int f(x, z)h(x) \, \mathrm{d}x}{\int f(x, z) \, \mathrm{d}x}\right] \mathbb{1}_{z \in \mathcal{B}}f(u, z) \, \mathrm{d}u \, \mathrm{d}z = \int \phi(z)\mathbb{1}_{z \in \mathcal{B}}f(x, z) \, \mathrm{d}x \, \mathrm{d}z$$

Suppose $\mathcal{H}, \mathcal{J} \subseteq \mathcal{F}$ σ -algebras. We want to regard

$$X \in \mathcal{H} \mapsto \mathbb{E}[X|\mathcal{J}]$$

as the expectation corresponding to some probability distribution.

$$P(A|\mathcal{J}) = \mathbb{E}[\mathbb{1}_A|\mathcal{J}]$$

So $A, \omega \mapsto P(A||\mathcal{J})(\omega)$ is random set function on \mathcal{H} . For ω fixed a.s. is this a probability measure? Generally, no. **Definition 5.13.** Let $P(\cdot, \cdot) : \mathcal{F} \times \Omega \mapsto [0, 1]$ We say that P is a regular conditional probability distribution for \mathcal{J} if

- 1. $\forall F \in \mathcal{F}, P(F, \cdot)$ is a version of $\mathbb{E}[\mathbb{1}_F | \mathcal{J}]$.
- 2. a.e. $\omega \in \Omega$, $P(\cdot, \omega)$ is a probability measure on (Ω, \mathcal{F}) .

Proposition 5.19. Let X_1, \ldots, X_k be independent random variables. Given $h \in \mathcal{B}(\mathbb{R}^k)$

$$\gamma_n(x) = \mathbb{E}[h(x, X_2, \dots X_k)]$$

then

$$\gamma(X_1) = \mathbb{E}[h(X_1, \dots, X_k) | \sigma(X_1)]$$

Proof. If $C = \{h \in \mathcal{B}(\mathbb{R}^k) \text{ s.t. identity holds } \}$ then we check that C is monotone class. Note, for $A = A_1 \times \cdots \times A_k$ then

$$\mathbb{E}[\mathbb{1}_{A_1} \dots \mathbb{1}_{A_k} | \sigma(X_1)] = \mathbb{1}_{A_1} \mathbb{E}[\mathbb{1}_{A_2} \dots \mathbb{1}_{A_k} | \sigma(X_1)] = \mathbb{1}_{A_2} P(A_2 \cap \dots \cap A_k) = \gamma_n(x)$$

Example Let $\{X_i\}_{i=1}^{\infty}$ i.i.d. random variables and define

$$S_n = \sum_{i=1}^n X_i$$

Let

$$\mathcal{G}_n = \sigma(S_n, S_{n+1}, \dots) == \sigma(S_n, X_{n+1}, \dots)$$

What is

$$\mathbb{E}[X_1|\mathcal{G}_n] = \mathbb{E}[X_1|\sigma(\sigma(S_n),\sigma(X_{n+1},\dots))]$$

Since both X_1 and S_n is independent on $\sigma(X_{n+1},...)$ we can rewrite as

$$\mathbb{E}[X_1|\mathcal{G}_n] = \mathbb{E}[X_1|\sigma(\sigma(S_n), \sigma(X_{n+1}, \dots))] = \mathbb{E}[X_1|\sigma(S_n)]$$

We claim that

$$\mathbb{E}[X_1|S_n] = \frac{1}{n}S_n$$

since for $i \leq n$

$$\mathbb{E}[X_1|S_n] = \mathbb{E}[X_i|S_n]$$

Since

$$\mathbb{E}[\mathbb{E}[X_i|S_n]; \mathbb{1}_{S_n \in B}] = \mathbb{E}[X_i; \mathbb{1}_{S_n \in B}] = \int_{\mathbb{R}^n} x_i \mathbb{1}_B(x_1 + x_2 + \dots x_n) \prod_{i=1}^n d\mu(x_i) = \int_{\mathbb{R}^n} x_1 \mathbb{1}_B(x_1 + x_2 + \dots x_n) \prod_{i=1}^n d\mu(x_i) = \mathbb{E}[X_1; \mathbb{1}_{S_n \in B}] = \mathbb{E}[\mathbb{E}[X_1; \mathbb{1}_{S_n \in B}]] = \mathbb{E}[\mathbb{E}[X_1; \mathbb{1}_{S_n \in B}]] = \mathbb{E}[X_1; \mathbb{1}_{S_n \in B}] = \mathbb{E}[X_1; \mathbb{1}_{S_n \in B}$$

thus

$$S_n = \mathbb{E}[S_n|S_n] = \sum_{k=1}^n \mathbb{E}[X_k|S_n] = n\mathbb{E}[X_1|S_n]$$

6 Martingales

Definition 6.1 (Filtration). $\{\mathcal{F}_i\}_{i=0}^{\infty}$ sequence of σ -algebras is a filtration if

$$\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \subseteq \mathcal{F}_\infty \subseteq \mathcal{F}$$

where $\mathcal{F}_{\infty} = \sigma(\bigcup_{i=1}^{\infty} \mathcal{F}_i)$

Example Let $\{W_i\}_{i=0}^{\infty}$ sequence of random variables (stochastic process). Let $\mathcal{F}_i = \sigma(W_0, \dots W_i)$, then $\{\mathcal{F}_i\}_{i=0}^{\infty}$ is a filtration. **Definition 6.2** (Martingale). A sequence $\{X_n\}_{n=0}^{\infty}$ (sub-/super-) martingale with respect to $\{\mathcal{F}_n\}_{n=0}^{\infty}$ if

- 1. $X_n \in L^1(\mathcal{F}_n, P)$
- 2. $\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n \ (\geq \text{ for sub- and } \leq \text{ for super-}).$

We may assume $X_n = 0$ since if X_n is martingale, so is $Y_n = X_n - X_0$.

Example Let X_i be i.i.d. and $X_i \ge 0$ with $\mathbb{E}[X_i] = 1$.

$$M_n = \prod X_i$$

Then

$$\mathbb{E}[M_{n+1}|\mathcal{F}_n] = \mathbb{E}\left[\prod_{1}^{n+1} X_i|\mathcal{F}_n\right] = \mathbb{E}[X_{n+1}|\mathcal{F}_n] \prod X_i = \prod 1 \cdot \prod X_i = M_n$$

Example Consider $\vec{\mathbf{X}}_i$ i.i.d. vectors in \mathbb{R}^d with natural filtration \mathcal{F}_n and

$$ec{\mathbf{S}}_n = \sum ec{\mathbf{X}}_i$$

$$\mathbb{E}\Big[\vec{\mathbf{S}}_{n+1}|\mathcal{F}_n\Big] = \vec{\mathbf{S}}_n + \mathbb{E}\Big[\vec{\mathbf{X}}_{n+1}|\mathcal{F}_n\Big]$$

Thus if $\mathbb{E}\left[\vec{\mathbf{X}}_{n+1}|\mathcal{F}_n\right] = 0$, $\vec{\mathbf{S}}_n$ is martingale.

Example Let d=2 and $\vec{\mathbf{X}}_i$ be equiprobable out of $\pm \epsilon \hat{\mathbf{x}}, \pm \epsilon \hat{\mathbf{y}}$.

Given $f \in \mathcal{C}^3(\mathbb{R}^2)$ consider $Z_n = f(S_n^{\epsilon})$

Definition 6.3. f is (sub-/super-) harmonic if Z_n is a (sub-/super-) martingale

What happens for small ϵ :

$$\mathbb{E}[f(X_{n+1}|\mathcal{F}_n)] = \frac{1}{4}(f(\epsilon\hat{\mathbf{x}} + S_n) + f(-\epsilon\hat{\mathbf{x}} + S_n) + f(\epsilon\hat{\mathbf{y}} + S_n) + f(-\epsilon\hat{\mathbf{y}} + S_n)) =$$

$$= f(S_n) + \frac{1}{4}\left(\left[f(S_n + \epsilon\hat{\mathbf{x}}) - f(S_n)\right] + \left[f(S_n - \epsilon\hat{\mathbf{x}}) - f(S_n)\right] + \left[f(\epsilon\hat{\mathbf{y}} + S_n) - f(S_n)\right] + \left[f(-\epsilon\hat{\mathbf{y}} + S_n)\right) - f(S_n)\right]$$

For Taylor expansion we get

$$f(\epsilon \hat{\mathbf{x}} + \vec{\mathbf{S}}_n) = \epsilon \frac{\partial f}{\partial x} + \frac{\epsilon^2}{2} \frac{\partial^2 f}{\partial x^2} + \mathcal{O}(\epsilon^3)$$

thus

$$\mathbb{E}[f(X_{n+1}|\mathcal{F}_n)] = f(S_n) + \frac{\epsilon^2}{4} \nabla^2 f + \mathcal{O}(\epsilon^3)$$

i.e., we get a condition on the Laplacian of f which decides whether Z_n is martingale.

Information exposure martingale For some $\{\mathcal{F}_n\}_{n=1}^{\infty}$ and $X \in L^1(\Omega, \mathcal{F}, P)$

- $M_n = \mathbb{E}[X|\mathcal{F}_n]$ is a martingale by tower property.
- From Jensen $Z_n = \phi(M_n)$ is submartingale if ϕ is convex.

We'll show that

$$M_n \stackrel{L_1 \text{ a.s.}}{\to} \mathbb{E}[X|\mathcal{F}_{\infty}]$$

We are interested when $X = \mathbb{E}[X|\mathcal{F}_{\infty}]$.

Example Let X_n , \mathcal{F}_n be martingale. $X_n - X_{n-1}$ is an amount we won in n^{th} game.

Definition 6.4. C_n is predictable if $C_n \in \mathcal{F}_{n-1}$.

Definition 6.5 (Discrete stochastic integral). Discrete stochastic integral with respect to X is

$$(C \circ X)_n = \sum_{j=1}^n C_j (X_j - X_{j-1})$$

i.e., total amount won at time n won using strategy using gambling strategy C.

Proposition 6.1. If $X_n - X_{n-1}$ is (super)martingale with respect to \mathcal{F}_n and C_n are bounded and positive (not necessarily uniformly) then so is $C \circ X$.

Proof.

$$\mathbb{E}[(C \circ X)_n | \mathcal{F}_{n-1}] = \sum_{j=1}^n \mathbb{E}[C_j(X_j - X_{j-1}) | \mathcal{F}_{n-1}] = (C \circ X)_{n-1} + C_n \mathbb{E}[(X_n - X_{n-1}) | \mathcal{F}_{n-1}]$$

So what is expected winning $\mathbb{E}[(C \circ X)_n]$?

$$\mathbb{E}[(C \circ X)_n] = \mathbb{E}[\mathbb{E}[(C \circ X)_n | \mathcal{F}_{n-1}]] = \mathbb{E}[(C \circ X)_{n-1}]$$

by induction $\mathbb{E}[(C \circ X)_n] = \mathbb{E}[(C \circ X)_0] = 0.$

Similarly, if X is a supermartingale and $C \geq 0$,

$$\mathbb{E}[(C \circ X)_n] \le 0$$

Definition 6.6. $T: \Omega \to \mathbb{N}$ is called stopping time with respect to \mathcal{F}_n if $\forall n \{\omega : T(\omega) \leq n\} \in \mathcal{F}_n$. Equivalently is $\{T = n\} \in \mathcal{F}_n$.

Note that $\{T \ge n\} \in \mathcal{F}_{n-1}$, since its complementary of $\{T \le n-1\}$.

Definition 6.7. Given a process $\{X_n\}_n$ we say X_n is adapted to $\{\mathcal{F}_n\}_n$ if $\forall n \ X_n \in \mathcal{F}_n$.

Definition 6.8. Given an adapted process $\{X_n\}_n$ and stopping time T the stopped process

$$X_n^{(T)} = X_{\min\{T,n\}}$$

Lemma 6.1. If X_n is (super-/sub-)martingale, so is $X_n^{(T)}$.

Proof. Let $C_n = \mathbb{1}_{\{T \geq n\}}$ predictable, then

$$(C \circ X)_n = \sum_{k \le n} C_k (X_k - X_{k-1}) = \sum_{1 \le k \le n} \mathbb{1}_{T \ge k} (X_k - X_{k-1}) = X_{\min\{T, n\}} - X_0$$

By we already know that $(C \circ X)_n$ preserve martingale property.

Theorem 6.2. Let X_n be a supermartingale, then $\forall n \ \mathbb{E}[X_{\min\{T,n\}}] \leq \mathbb{E}[X_0]$.

Would the property survive under $n \to \infty$? No!

Example Let X_n be a SRW on \mathbb{Z} starting from 0.

$$T_1 = \inf \{ n : X_n = 1 \}$$

By theorem, $\mathbb{E}[X_{\min\{T,n\}}] = 0$. On the other hand, since $P(T < \infty) = 1$, $\mathbb{E}[X_T] = 1$. The problem is T doesn't have expectation.

Theorem 6.3 (Doob's optional sampling theorem). Let T be a stopping time and let X_n be a supermartingale. If one of the following holds

- 1. T is bounded
- 2. X is bounded
- 3. $\mathbb{E} < \infty$ and $|X_n X_{n-1}| \le K \ \forall n \ P$ a.s.

then $\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$.

Proof. 1.

$$\mathbb{E}[X_0] \ge \mathbb{E}[X_{\min\{T,n\}}]$$

Since

$$X_{\min\{T,n\}} \to X_T$$

a.s. since T is bounded, $|X_{\min\{T,n\}}| \leq \max |X_k|$ by dominated convergence theorem,

$$\mathbb{E}\big[X_{\min\{T,n\}}\big] \to \mathbb{E}[X_T]$$

2. Bounded convergence

3.

$$\left|X_{\min\{T,n\}}\right| \le K \cdot \min\{T,n\} \le KT$$

By DCT,

$$\mathbb{E}\big[X_{\min\{T,n\}}\big] \to \mathbb{E}[X_T]$$

Collary 6.3.1. If M is a martingale and $|M_n - M_{n-1}| \le K$ and C is predictable and $|C| \le K$ and $\mathbb{E}[T] < \infty$ then $\mathbb{E}[C \circ X] = 0$ Collary 6.3.2. If X is a positive supermartingale and $T < \infty$ a.s. then

$$\mathbb{E}[X_T] \leq \mathbb{E}[X_0]$$

Proof. Fatou lemma

Lemma 6.2. Let T be a stop time such that $\exists k > 0$ so that $\exists \epsilon > 0 \ \forall n > 0$

$$P(T \le n + k | \mathcal{F}_n) > \epsilon$$

Then $\mathbb{E}[T] < \infty$

Proof.

$$\mathbb{E}[T] = \sum_{i} P(T \ge j)$$

Consider J,

$$P(T \ge kJ) = \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}_{T \ge kJ}\mathbb{1}_{T \ge k(J-1)}|\mathcal{F}_{k(J-1)}\right]\right] = \mathbb{E}\left[\mathbb{1}_{T \ge k(J-1)}\underbrace{\mathbb{E}\left[\mathbb{1}_{T \ge kJ}|\mathcal{F}_{k(J-1)}\right]}_{\le 1-P(T \le kJ)\mathcal{F}_{k(J-1)}}\right] \le (1-\epsilon)P(T \ge k(J-1)) \le (1-\epsilon)^{J}$$

Thus $P(T \ge kJ)$ decays exponentially.

6.1 Markov chains

Let $\{X_n\}$ be a stochastic process taking values in (E, \mathcal{E}) and $\{\mathcal{F}_n\}$ be a filtration such that $X_n \in \mathcal{F}_n$.

Definition 6.9. $p: E \times \mathcal{E} \to [0,1]$ is a transition kernel on E if

- 1. $\forall e \in E \ P(e, \cdot)$ is a probability measure.
- 2. $\forall A \in \mathcal{E} \ p(\cdot, A) \in \mathcal{E}$

Definition 6.10. $\{X_n\}$ is a Markov chain with respect to \mathcal{F}_n with transition kernel p if $\forall A \in \mathcal{E}$

$$P(X_{n+1} \in A | \mathcal{F}_n) = p(X_n, A)$$

We can acquire

$$\mathbb{E}[h(X_{n+1}|\mathcal{F}_n)] = \int_{\mathbb{F}} p(X_n, \mathrm{d}e)h(e)$$

Given (E, \mathcal{E}, p) does $\exists X_n, \mathcal{F}_n$ Markov with kernel p? The answer is yes. Let $\Omega = E^{\mathbb{N}}, \mathcal{F} = E^{\bigotimes \mathbb{E}}$ and $\mathcal{F}_n = \sigma(X_i(\omega) : i \leq n)$. We want $X(\omega) = \omega_n$. We want to define law of $\{X_n\}$ by first specifying

$$P(A_0 \times A_1 \times \dots A_n \times E \times E \times \dots) = \mathbb{E}\left[\prod_{i=0}^n \mathbb{1}_{X_i \in A_i}\right] = \mathbb{E}\left[\prod_{i=0}^{n-1} \mathbb{1}_{X_i \in A_i} \mathbb{E}[\mathbb{1}_{X_n \in A_n} | \mathcal{F}_{n-1}]\right] = \mathbb{E}\left[\prod_{i=0}^{n-1} \mathbb{1}_{X_i \in A_i} p(X_{n-1}, A_n)\right] = \mathbb{E}\left[\prod_{i=0}^{n-1} \mathbb{1}_{X_i \in A_i} \int_{A_{n-1}} p(X_{n-2}, de) p(e, A_n)\right] = \dots = \mathbb{E}\left[\mathbb{1}_{X_0 \in A_0} \int_{A_1} \dots \int_{A_n} p(X_0, de_1) p(e_1, de_2) \dots p(e_{n-1}, de_n)\right]$$

Let law of X_0 be μ on E. Then

$$P(A_0 \times A_1 \times \dots A_n \times E \times E \times \dots) = \int_{A_0} \mu(\operatorname{d} e_0) \int_{A_1} p(X_0, \operatorname{d} e_1) \int_{A_2} p(e_1, \operatorname{d} e_2) \dots \int_{A_n} \dots p(e_{n-1}, \operatorname{d} e_n)$$

From now on we'll assume E is either finite or countable. In this case, Markov condition is $\exists p(i,j)$ such that

$$P(X_{n+1} = j | \mathcal{F}_n) = p(X_n, j)$$

And then

$$\mathbb{E}[h(X_{n+1})|\mathcal{F}_n] = \sum_{j \in E} P(X_n, j)h(j) = p \cdot j$$

where p is matrix and h is a vector.

Definition 6.11. h is called p-superharmonic if $p \cdot h \leq h$ or alternatively, if $Y_n = h(X_n)$ is a p-supermartingale.

Definition 6.12. Let $T_i = \inf \{ n \ge 1 : X_n = i \}.$

Definition 6.13. We say X_n is irreducible if $P_i(T_j < \infty) > 0$ where P_i is a law of X_n started with $X_0 = i$ with probability i.

Definition 6.14. We say X_n is irreducible recurrent if $\forall i, j \in E$ $P_i(T_j < \infty) = 1$.

Theorem 6.4. $\{X_n\}$ is irreducible recurrent on E iff all positive superharmonic are constant.

Proof. \Rightarrow : Let $\{X_n\}$ is irreducible recurrent on E and h a positive p-superharmonic function. Consider

$$\mathbb{E}_i \left[h \left(X_n^{T_j} \right) \right] \le h(i)$$

Thus by Fatou

$$\mathbb{E}_i \left[\liminf h \left(X_n^{T_j} \right) \right] \le h(i)$$

and now $h(i) \leq h(j)$. By symmetry, h(j) = h(i).

How to produce p-harmonic functions? Let $A \subseteq E$ be some set and $g: A \to \mathbb{R}$ be a bounded function. Assume $\forall i P_i(T_A < \infty) = 1$ and let $h(i) = \mathbb{E}_i[g(X_{T_A})]$.

Lemma 6.3. h is p-harmonic on A^c .

Proof. For $i \notin A$, $T_A \geq 1$.

$$P(X_{n+1} \in A | \mathcal{F}_n) = p(X_n, A)$$

$$\forall i \quad P_i(X_{n+1} \in A_i, X_{n+2} \in A_2 | \mathcal{F}_n) = \int_{A_1} p(X_n, de_1) \int_{A_2} p(X_n, de_2) = P(\hat{X}_1 \in A_1, \hat{X}_2 \in A_2)$$

where $\hat{X}_i = X_{n+i}$. Moreover

$$P(X_{n+i} \in F | \mathcal{F}_i) = P_{X_n}(\hat{X}_i \in F)$$

Thus

$$\mathbb{E}[g(X_{T_A})|\mathcal{F}_1] = \mathbb{E}_{X_1}[g(X_{T_A})] = h(X_1)$$

and

$$h(i) = \mathbb{E}_i[\mathbb{E}[g(X_{T_A})|\mathcal{F}_1]] = \mathbb{E}_i[h(X_1)] = \sum_j p_{ij}h_j = p \cdot h$$

Theorem 6.5 (Martingale convegrence). X is a supermartingale, $\sup_{n} \mathbb{E}[X_n] < \infty$ then $\lim_{n \to \infty} X_n = X_\infty$ exists a.s. (but not necessary in L^1)

Definition 6.15 (Uniform integrability). A collection C is uniformly integrable if $\forall \epsilon > 0 \ \exists K$ such that $\forall X \in C \ \mathbb{E}[|X|; |X| > K] < \epsilon$.

Example

$$X \in L^1 \Rightarrow C = \{ \mathbb{E}[X|\mathcal{J}] : \mathcal{J} \subseteq \mathcal{F} \text{ subalgebra} \}$$

Lemma 6.4. $X \in L^1$ then $\forall \epsilon > 0 \; \exists \delta \text{ such that } P(F) < \delta \text{ then } \mathbb{E}[|X|; F] < \epsilon$.

Theorem 6.6. $X_{nL^1} \rightarrow X \iff$

- 1. $\forall \epsilon > 0 \ P(|X|_n X > \epsilon) \to 0$
- 2. $\{X_n\}$, X are uniformly integrable.

 $Proof. \Rightarrow :$

From Markov we get

$$\epsilon P(|X_n - X| < \epsilon) \le \mathbb{E}[|X_n - X|]$$

Now we want to show uniform integrability:

$$\mathbb{E}[|X_n - X + X|; |X|_n > K] \le \mathbb{E}[|X_n - X|; |X_n| > K] + \mathbb{E}[|X|; |X_n| > K] \le \epsilon + \mathbb{E}[|X|; |X_n| > K]$$

Choose $K(\delta)$ such that $\sup \mathbb{E}|X_n| < \delta(\epsilon)$ use lemma for X to say $\mathbb{E}[|X|; |X_n| > K] < \epsilon$

Says $\forall \epsilon > 0 \ \exists n(\epsilon), K(\epsilon) \ \text{such that} \ \mathbb{E}[|X_n|; |X_n| > K] < \epsilon. \Leftarrow$:

Theorem 6.7. Let M_n be u.i. martingale. Then $\lim_{n\to\infty} M_n = M_\infty$ a.s. and in L_1 .

Proof. A.s. convergence follows from 6.5. Since convergence in probability follows from a.s. convergence, we get L_1 convergence.

Theorem 6.8 (Levy's upwards theorem). Let \mathcal{F}_n filtration $\eta \in L^1$ and $\mathcal{F}_{\infty} = \sigma(\bigcup_n \mathcal{F}_n)$. $M_n = \mathbb{E}[\eta|\mathcal{F}_n]$ is a u.i. martingale and $M_n \to M_{\infty}$ a.s. and L^1 and moreover, $M_{\infty} = \mathbb{E}[\eta|\mathcal{F}_{\infty}]$

Proof. If $F \in \mathcal{F}_n \ \forall r > n$:

$$\mathbb{E}[M_r; F] = \mathbb{E}[\mathbb{E}[M_r | \mathcal{F}_n]; F] = \mathbb{E}[M_n; F]$$

Thus

$$\mathbb{E}[M_{\infty}; F] = \mathbb{E}[M_n; F] = \mathbb{E}[\mathbb{E}[\eta | \mathcal{F}_{\infty}]; F]$$

So

$$F \mapsto \mathbb{E}[M_{\infty}; F]$$

$$F \mapsto \mathbb{E}[\mathbb{E}[\eta | \mathcal{F}_{\infty}]; F]$$

agree on $\bigcup \mathcal{F}$) n by π - λ they agree on \mathcal{F}_{∞} ,

Definition 6.16 (Backward filtration). \mathcal{F}_n is a backward filtration if $\mathcal{F}_n \supset \mathcal{F}_{n+1}$

Definition 6.17 (Backward martingale).

$$\mathbb{E}[M_n|\mathcal{F}_{n+1}] = M_{n+1}$$

Theorem 6.9 (Levy's downwards theorem). Let \mathcal{F}_n backward filtration $\eta \in L^1$ and $\mathcal{F}_\infty = \bigcap_n \mathcal{F}_n$ $M_n = \mathbb{E}[\eta|\mathcal{F}_n]$ is a u.i. martingale and $M_n \to M_\infty$ a.s. and L^1 and moreover, $M_\infty = \mathbb{E}[\eta|\mathcal{F}_\infty]$

Proof. Recheck upcrossing inequality works for backward martingale.

Theorem 6.10 (Kolmogorov's zero-one law). Let $\{X_i\}$ independent and $\mathcal{T} = \bigcap_n \sigma(X_n, \dots)$

$$\forall F \in \mathcal{T} \quad P(F) \in \{0, 1\}$$

Proof. Let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$ and $\eta = 1_F$ for $F \in \mathcal{T}$.

$$P(F) = \mathbb{E}[\eta | \mathcal{F}_n]$$

From Levy upward

$$\lim_{n\to\infty} \mathbb{E}[\eta|\mathcal{F}_n] = \mathbb{E}[\eta|\mathcal{F}_\infty] = \eta = \mathbb{1}_F$$

i.e. it's either 0 or 1.

Theorem 6.11 (Strong law of large numbers). X_i i.i.d. with $\mathbb{E}[|X_n|] < \infty$.

$$\frac{S_n}{n} \to \mathbb{E}[X_1]$$

Proof. Let $\mathcal{F}_n = \sigma(S_n, S_{n+1}, \dots)$.

$$\frac{S_n}{n} = \mathbb{E}\left[\frac{S_n}{n}|\mathcal{F}_n\right] = \frac{\sum \mathbb{E}[X_i|\mathcal{F}_n]}{n} = \mathbb{E}[X_1|\mathcal{F}_n]$$

We've shown that $\mathbb{E}[X_1|\mathcal{F}_n] = \frac{S_n}{n}$. Therefore by Levy downward

$$\frac{S_n}{n} \stackrel{\text{a.s.},L^1}{\to} A_{\infty} = \mathbb{E}[X_1 | \mathcal{F}_{\infty}]$$

Since both $\limsup \frac{S_n}{n} \in \mathcal{T}$, $\liminf \frac{S_n}{n} \in \mathcal{T}$ we get $\mathbb{E}[X|\mathcal{F}_{\infty}] \in \mathcal{T}$. By Kolmogorov 0-1 $\mathbb{E}[X|\mathcal{F}_{\infty}]$ is constant a.s. and thus equals $\mathbb{E}[X_1]$.

Let M_n be a martingale with respect to \mathcal{F}_n , $X_n = M_{n-n+1}$ and $q_n = \mathbb{E}[X^2|\mathcal{F}_{n-1}]$. Lemma 6.5.

 $\forall r < s \le t < u \quad \mathbb{E}[(M_u - M_t)(M_s - M_r)] = 0$

$$\mathbb{E}[(M_u - M_t)^2] = \sum_{k=t+1}^u \mathbb{E}[X_k^2]$$

Proof.

$$\mathbb{E}[M_u - M_t | \mathcal{F}_t] = 0$$

$$\mathbb{E}[(M_u - M_t)(M_s - M_r) | \mathcal{F}_t] = (M_s - M_r) \mathbb{E}[(M_u - M_t) | \mathcal{F}_t]$$

and

$$(M_u - M_t)^2 = \left(\sum_{k=t+1}^u X_k\right)^2 = \sum_{k,l=t+1}^u X_k X_l$$

Proposition 6.12. Let $N_t = M_t^2 - \sum_{i \leq t} q_i$ then N_t is a martingale.

Proof.

$$N_{t+1} - N_t = M_{t+1}^2 - M_t^2 - q_{t+1}$$
$$\langle N_{t+1} - N_t | \mathcal{F}_t \rangle = \langle M_{t+1}^2 - M_t^2 | \mathcal{F}_t \rangle = -q_{t+1}$$

But

$$M_{t+1}^2 = M_t^2 + (M_{t+1} - M_t)^2 + 2M_t(M_{t+1} - M_t)$$

Collary 6.12.1.

$$\sup_{n} \mathbb{E}[M_n^2] < \infty \iff \sum_{k} \mathbb{E}\Big[(M_{t+1} - M_t)^2 \Big] < \infty$$

Proof.

$$\mathbb{E}(M_{n+k} - M_n)^2 = \sum_{j=n}^{n+k} \mathbb{E}[(M_{j+1} - M_j)^2] \le \sum_{j=n}^{\infty} \mathbb{E}[(M_{j+1} - M_j)^2]$$

By Fatou

$$\mathbb{E}(M_{\infty} - M_n)^2 \le \sum_{j=n}^{\infty} \mathbb{E}[(M_{j+1} - M_j)^2]$$

Moreover by the equality at start of the proof we get

$$\mathbb{E}(M_{\infty} - M_n)^2 = \sum_{j=n}^{\infty} \mathbb{E}[(M_{j+1} - M_j)^2]$$

Also if M - 0 = 0

$$\mathbb{E}M_{\infty}^2 = \sum_{i=n}^{\infty} \mathbb{E}[X)^2]$$

Theorem 6.13. Let X_k be independent random variable such that $\mathbb{E}[X_k] = 0$ and $\sigma_k^2 < \infty$. Let $M_n = \sum X_k$

1. If $\sum \sigma_k^2 < \infty$, $M_n \to M_\infty$ a.s. and L^2 .

2. If $|X_i| \leq K < \infty$, then $\sum X_i$ converges a.s.

Proof. Since $\mathbb{E}[X_i] = 0$

$$\mathbb{E}[M_n|\mathcal{F}_{n-1}] = M_{n-1} + \mathbb{E}[X_n|\mathcal{F}_{n-1}]$$

By independence, M_n is \mathcal{F}_n martingale.

Recall N_t and note $q_{k+1} = \mathbb{E}[X_{k+1}] < \infty$.

Define $T_c = \inf \{i : |M_i| \ge c\}$

$$0 = \mathbb{E}\left[N_{\min\{T_c,n\}}\right] = \mathbb{E}[M_{\min\{T_c,n\}}^2] - \mathbb{E}\left[\sum_{k=1}^{\min\{T_c,n\}} \sigma_k^2\right]$$

Thus

$$\mathbb{E}\left[\sum_{k=1}^{\min\{T_c,n\}} \sigma_k^2\right] = \mathbb{E}[M_{\min\{T_c,n\}}^2] \le (c+k)^2$$

By Fatou

$$\mathbb{E}\left[\sum_{k=1}^{T_c} \sigma_k^2\right] \le (c+k)^2$$

If $\exists c < \infty$ such that $P(T_c = \infty) = 0$ we are done.

By assumption of a.s. convergence, $M_i \to M_\infty$ thus $\exists c$ such that $P(|M_i| < c) > 0$.

Lemma 6.6. If $|X_i| \leq K$, $\sum X_i$ converges, then $\sum \mathbb{E}[X_i]$ converges and $\sum \sigma_i^2 < \infty$

Proof. Let $X_i^* = X_i$, then both series converges, and we define $Y_i = X_i - X_i^*$ for which $\mathbb{E}[Y_i] = 0$. Thus, $\sum \sigma^2(Y_i) < \infty$ and thus $2 \sum \sigma^2(X_i) < \infty$. Now from part one, $Z_i = X_i - \mathbb{E}[X_i]$, we get $\sum X_i - \mathbb{E}[X_i]$ converges a.s. and so does $\sum \mathbb{E}[X_i]$

Lemma 6.7 (Cesaro's lemma). Let b_n be strictly increasing and positive and $b_0 = 0$. Let $\{V_n\}$ be a convergent sequence $V_n \to V_{\infty}$. Then

$$\frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1}) V_k \to V_\infty$$

Proof.

$$1 = \sum_{k=1}^{n} \frac{b_k - b_{k-1}}{b_n}$$

$$V_{\infty} = \sum_{k=1}^{n} \frac{b_k - b_{k-1}}{b_n} V_{\infty}$$

$$\left| V_{\infty} - \frac{1}{b_n} \sum_{k=1}^{n} (b_k - b_{k-1}) V_k \right| \le \frac{1}{b_n} \sum_{k=1}^{n} (b_k - b_{k-1}) |V_k - V_{\infty}|$$

For $\epsilon > 0$ choose N such that $|V_n - V_\infty| < \epsilon$, let $V_k, V_\infty < M$:

$$\frac{1}{b_n} \sum_{k=1}^n (b_k - b_{k-1})|V_k - V_\infty| \le 2M \cdot \frac{b_N}{b_n} + \epsilon \le 2\epsilon$$

Lemma 6.8 (Kroniker's lemma). Let $\{b_n\}$ be a sequence increasing to ∞ and $S-n=\sum_{i=1}^n x_i$. Then if

$$\sum \frac{x_n}{b_n}$$

converges, $\frac{S_n}{b_n} \to 0$.

Proof. Let $u_n = \sum_{k=1}^n \frac{x_k}{b_k}$, then $u_n - u_{n-1} = \frac{x_n}{b_n}$ and $u_n \to u_\infty = \sum_{k=1}^\infty \frac{x_k}{b_k}$. Then $x_n = b_n(u_n - u_{n-1})$ and

$$S_n = \sum_{k=1}^n x_k = \sum_{k=1}^\infty b_k (u_k - u_{k-1}) = b_n u_n - \sum_{k=1}^n (b_k - b_{k-1}) u_{k-1}$$

$$\frac{S_n}{b_n} = u_n - \sum_{k=1}^{n} \left(\frac{b_k - b_{k-1}}{b_n} \right) u_{k-1}$$

By Cesaro we get the required.

Lemma 6.9. Let $\mathbb{E}[W_i] = 0$ $\sum_k \frac{\mathbb{E}[W_k^2]}{k^2} < \infty$. Then $\frac{\sum_{k=1}^n W_i}{n} \to 0$

Proof. By Kroniker's lemma it's enough to show that $\frac{W_k}{k}$ converges. By previous discussion of random series this follows from $\sum_i \frac{\mathbb{E}W_k^2}{k^2} < \infty$.

Theorem 6.14 (Kolmogorov 3 series theorem). Let $\{X_i\}_{i=1}^{\infty}$ be independent random variables. Then $\sum_{i=1}^{\infty} X_i$ converges iff exists K such that

- 1. $\sum P(|X_i| \ge K) < \infty$
- 2. $\sum_{i} \mathbb{E}[X_{i}^{K}]$ convergent
- 3. $\sum_{i} \sigma^{2}([X_{i}^{K}])$ convergent

Proof. If $\sum X_i$ converges, $\lim |X_i| = 0$ a.s., thus $\forall i > I(k)$ sufficiently large $\sum_i X_i^k$ converges a.s. Since $\sum_i \sigma^2(X_i^k) < \infty$ by a previous lemma $\sum_i (X_i^k - \mathbb{E} X_i^K)$ converges a.s. But also by second part $\sum_i \mathbb{E} \left[X_i^K \right]$ convergent thus $\sum_{i=1}^{\infty} X_i$ converges

$$\begin{split} Y_i &= X \cdot \mathbb{1}_{|X| \leq i} \\ \mathbb{E}[Y_i] &= \mathbb{E}[X \mathbb{1}_{|X| \leq i}] \\ \lim \mathbb{E}[Y_i] &= \mathbb{E}[X] \end{split}$$

$$P(X_i \neq Y_i) = P(|X_i| \ge i) = P(|X| \ge i)$$

So

$$\sum P(X_i \neq Y_i) = \sum_i P(|X| \geq i) \leq \mathbb{E}[X] < \infty$$
$$\frac{\sigma^2(Y_i)}{i^2} = \frac{\sigma^2(Y_i)}{i^2} \leq \frac{\mathbb{E}[X^2 \leq i]}{i^2}$$

By MCT

$$\sum_i \frac{\sigma^2(Y_i)}{i} = \mathbb{E}\left[X^2 \sum \frac{\mathbb{1}_{|X| \le i}}{i^2}\right]$$
$$\sum_i \frac{\mathbb{1}_{|X| \le i}}{i^2} \le C \frac{1}{1 + |X|}$$

So

$$\sum_i \frac{\sigma^2(Y_i)}{i} = C \mathbb{E} \left[\frac{X^2}{1 + |X|} \right] < \infty$$

Theorem 6.15 (SLLN). Let $\{X_i\}_{i=1}^{\infty}$ be iid $X \in L^1$. Let $S_n = \sum_{i=1}^n X_i$ then $\stackrel{S_n}{\to} \stackrel{a.s.}{\to} \mu = \mathbb{E}[X]$

Proof. Let $Y_i = X \cdot \mathbb{1}_{|X| \leq i}$. Then we have $\frac{1}{n} \sum Y_i \stackrel{a.s.}{\to} \mu$

7 Weak convergence and CLT

Modes of convergence

1. $X_n \stackrel{a.s.}{\rightarrow} X$

2. $X_n \stackrel{prob.}{\rightarrow} X$

3. $X_n \stackrel{dist.}{\rightarrow} X$

Definition 7.1. S is called Polish space if it is complete, separable metric space.

Definition 7.2. Let μ_n and μ be measures on $(\mathcal{S}, \mathcal{B})$. We say $\mu_n \stackrel{d}{\to} \mu$ if $\forall f \in C_b(\mathcal{S})$:

$$\int_{\mathcal{S}} f(s) \, \mathrm{d}\mu_n(s) \to \int_{\mathcal{S}} f(s) \, \mathrm{d}\mu(s)$$

Reminder $C_b(S)$ is a Banach space with $||f||_{\infty} = \sup_{s \in S}$. $C_b^*(S)$ is dual space of signed measures and $P(S) \subset C_b^*(S)$ is a closed subspace.

Proposition 7.1. If $X_n \sim \mu_n$ and $X_n \to X$ a.s., then $\mu_n \to \mu$ weakly.

Proof. Let $f \in C_b(\mathbb{R})$

$$f(X_n) \to f(X)$$

a.s. and by BCT

$$\mathbb{E}[f(X_n)] = \mathbb{E}[f(X)]$$

Also the proposition works for convergence in probability.

We might guess that $F_n(x) \to F(x)$ pointwise is equivalent to weak convergence.

Theorem 7.2. If $\mu_n \stackrel{w}{\to} \mu$ then $\forall x F_n(x) \to F(x)$ in continuity points of F.

Proof. We want

$$\mathbb{E}_{\mu_n} \mathbb{1}_{(-\infty,x)} \to \mathbb{E}_{\mu} \mathbb{1}_{(-\infty,x)}$$

$$\forall \delta \in \mathbb{R} \ \mu_n(f_{\delta}) \to \mu(f_{\delta})$$

$$\mu(f_{\delta}(x)) \ge \limsup \mu_n(\mathbb{1}_{(-\infty,x)})$$

also $\mu(f_{\delta}) \le \mu_n(\mathbb{1}_{(-\infty,x+\delta)}) = F(x+\delta)$

$$\limsup F_n(x) \le \liminf F(x+\delta) = F(x)$$

we can do the same with negative δ if F is continuous, and thus

$$\mu_n \stackrel{w}{\to} \mu$$

Definition 7.3. Given (S_1, B_1, P_1) and (S_2, B_2, P_2) a measure Q on \mathbb{Q} is called a coupling of P_1 , P_2 if letting $X_i(S_1, S_2) = S_i$ the distribution of X_i under Q is P_i .

Theorem 7.3 (Skorohod representation theorem). Let μ_n , $n \in \mathbb{N}$ be a sequence of probability measures on a metric space S such that μ_n converges weakly to some probability measure μ_∞ on S as $n \to \infty$. Suppose also that the support of μ_∞ is separable. Then there exist random variables X_n defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that the law of X_n is μ_n for all n (including $n = \infty$) and such that X_n converges to X_∞ , \mathbf{P} -almost surely.

Theorem 7.4 (Helly's selection theorem).

7.1 Characteristic function

Definition 7.4. Given $\mu \sim X$ then $\phi_{\mu}(\theta) = \int e^{i\theta x} d\mu(x) = \mathbb{E}[e^{i\theta X}].$

- $\phi(0) = 1$
- $|\phi(\theta)| \leq 1$
- $\phi(\theta)$ is continuous in θ
- $\phi_X(-\theta) = \overline{\phi_X(\theta)}$
- $\phi_{aX+b}(\theta) = e^{i\theta b}\phi_X(a\theta)$

Theorem 7.5.

$$\phi_{X+Y}(\theta) = \phi_X(\theta)\phi_Y(\theta)$$

Theorem 7.6. $X \sim \mu \mapsto \phi_X(\theta)$ is one-to-one and invertible.

Theorem 7.7. $X_n \stackrel{w}{\to} X$ then $\phi_{X_n} \to \phi_X(\theta)$.

Theorem 7.8 (CLT). Let X_i be iid with mean 0 and variance 1. Let $S_n = \sum_n X_i$ then

$$\frac{S_n}{\sqrt{n}} \stackrel{w.}{\to} N(0,1)$$

Theorem 7.9 (Lévy Inversion). Let $a < b \in \mathbb{R}$. Then

$$\lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-i\theta a} - e^{-i\theta b}}{i\theta} \phi_X(\theta) d\theta = \frac{\mu(\{a\})}{2} + \mu((a,b)) + \frac{\mu(\{b\})}{2} = \frac{1}{2} [F(b) + F(b^-)] - \frac{1}{2} [F(a) + F(a^-)]$$

Proof.

$$\frac{e^{-i\theta a} - e^{-i\theta b}}{i\theta} = \int_a^b e^{-i\theta \lambda} \, \mathrm{d}\lambda$$

$$\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-i\theta a} - e^{-i\theta b}}{i\theta} \phi_X(\theta) d\theta = \frac{1}{2\pi} \int_{-T}^{T} \left[\int_{a}^{b} e^{-i\theta \lambda} d\lambda \right] \phi_X(\theta) d\theta = \int_{a}^{b} \mathbb{E} \left[\frac{1}{2\pi} \int_{-T}^{T} e^{i\theta(X - \lambda)} d\theta \right] d\lambda$$