IN THE SPECIFICATION

Please amend the paragraph at page 11, line 5 as follows:

which uses the punctual and late correlation outputs IP, IL_1 , IL_2 , IL_3 , . . ., IL_n as disclosed hereinafter in order to determined whether a fault exists. Alternatively or additionally, the processor 16 can use the early correlation outputs IE_1 , IE_2 , IE_3 , . . ., IE_m as disclosed hereinafter in order to determined determine whether a fault exists.--

Please amend the paragraph at page 19, line 12 as follows:

NA

--where $\underline{\tilde{d}}$ is a vector representing the decorrelated deviations generating the vector \underline{d} . Equation $\underline{(9)}$ (8) can be re-written according to the following equation:--

Please amend the paragraph at page 19, line 16 as follows:

23

--Then, combining equations $\frac{(6)}{(6)}$ and $\frac{(10)}{(5)}$ and $\frac{(9)}{(5)}$ produces the following equation:--

Please amend the paragraph at page 20, line 2 as follows:

AH

--By comparing equations $\frac{(6)}{(6)}$ and $\frac{(11)}{(7)}$ and $\frac{(10)}{(10)}$, it can be seen that D is given by following equation:--

Please amend the paragraph at page 21, line 4 as follows:

A5

--A normalization to $\sigma=1$ as required in the definition of χ^2 will be performed in equation (14) (13). The value $d[\chi^2]$ is a single value which has reduced thermal and multipath noise, which represents information regarding a plurality of correlation measurements, and which may be compared to a threshold D in order to determine the existence of a fault.--