

LogiCORE IP Processing System 7 (v4.00.a)

DS871 April 24, 2012 Product Specification

Introduction

The Processing System 7 IP is the software interface around the Zynq Processing System. The Zynq[™]-7000 family consists of an system-on-chip (SoC) style integrated processing system (PS) and a Programmable Logic (PL) unit, providing an extensible and flexible SoC solution on a single die.

The Processing System 7 IP acts as a logic connection between the PS and the PL while assisting users to integrate custom/embedded IPs with the processing system using Xilinx Platform Studio (XPS).

Features

- Enable/Disable I/O Peripherals (IOP)
- Enable/Disable AXI I/O ports (AIO)
- MIO Configuration
- Extended MULTIPLE USE I/Os (EMIO)
- ACP Transaction checker (ATC)
- Interconnect logic for EDK IP PS interface
- PL Clocks and Interrupts

LogiCORE IP Facts Table				
	Core	Specifics		
Supported Device Family ⁽¹⁾			Z	Zynq-7000
Supported User Interfaces				N/A
	Re	esources		
Configuration	LUTs	FFs	DSP Slices	Block RAMs
Configuration 1	Min 0 Max -	Min 0 Max -	Min 0 Max -	0
	Provid	ed with Co	re	1
Documentation			Product Sp	ecification
Design Files				Verilog
Example Design			No	t Provided
Test Bench			No	t Provided
Constraints File			No	t Provided
Supported S/W Drivers				NA
	Tested	Design Too	ols	
Design Entry Tools				
Simulation NA				
Synthesis Tools XST				
	S	Support		
Provided	by Xilinx, Inc	:.@ <u>www.xilin</u>	x.com/suppo	<u>rt</u>

^{1.} Supported derivatives are xc7z010, xc7z020, xc7z030, xc7z045.

Functional Description

The Processing System 7 wrapper instantiates the Processing System section of Zynq-7000 EPP for the programmable logic and external board logic. The wrapper includes unaltered connectivity and, for some signals, some logic functions. The architecture of the PS is described in the Zynq-7000 EPP Technical Reference Manual.

The Processing System 7 stitches the interface signals with the rest of the embedded system in the programmable logic. The programmable logic interfaces between the processing system and programmable logic mainly consists of three main groups: the extended multiplexed I/O (EMIO), programmable logic I/O, and the AXI I/O groups. The Zynq-7000 device configuration wizard configures the Processing System 7 IP. The Processing System 7 performs the functions described in the following subsections.

Figure 1: Processing System 7 Wrapper

Figure 2: Wrapper Logic

Unaltered Connectivity

DDR, MIO, POR/CLK/SRST are unaltered.

Note: GPIO width adjustment. The width of GPIO ports on EMIO are user selectable, width of the GPIO are adjusted in the pCore.

- TTC clocks and TTC WAVEO are made individual signals instead of array (2:0)
- FCLK are also made individual signals instead of array FCLKCLK (3:0)
- IRQP2F are made individual signals IRQ_P2F_DMAC_ABORT, IRQ_P2F_DMAC7, IRQ_P2F_DMAC6, IRQ_P2F_DMAC5, IRQ_P2F_DMAC4, IRQ_P2F_DMAC3, IRQ_P2F_DMAC2, IRQ_P2F_DMAC1, IRQ_P2F_DMAC0, IRQ_P2F_SMC, IRQ_P2F_QSPI, IRQ_P2F_CTI, IRQ_P2F_GPI0, IRQ_P2F_USB0, IRQ_P2F_ENET0, IRQ_P2F_ENET_WAKE0, IRQ_P2F_SDI00, IRQ_P2F_I2C0, IRQ_P2F_SPI0, IRQ_P2F_UART0, IRQ_P2F_CAN0, IRQ_P2F_USB1, IRQ_P2F_ENET1, IRQ_P2F_ENET_WAKE1, IRQ_P2F_SDI01, IRQ_P2F_I2C1, IRQ_P2F_SPI1, IRQ_P2F_UART1, IRQ_P2F_CAN1
- SPI or SPI* SSON are made individual signals SPI*_SS2_O, SPI*_SS1_O, SPI*_SS_O.

AXI Interface IDs

ID compression and decompression is done for all the AXI interfaces. ID compress/decompress logic for M_AXI ports are dependent on the C_M_AXI_GP*_ENABLE_STATIC_REMAP parameter. If this parameter is 1, M_AXI ID widths are compressed to 6 bits; otherwise it is 12 bits. For the rest of the slave, AXI interfaces ID width can be anything between 1 to the max ID width for a particular interface depending on user selection.

ACP Transaction Checker (ATC)

The ACP Transaction checker detects if a transaction is the correct type, size, and length. It implements a command pipelined stage and stalls command flow if the check fails. These are write transactions on the ACP port. ATC checks the qualifier of a valid write transaction. The functions performed by ATC follow.

- Checks if transaction is coherent.
- Checks transaction cacheline address.
- Checks transaction burst type, size and length.
- Stores transaction information like ID, burst type, size, length in FIFO.
- Throttles transaction and stalls commands if FIFO is full.
- Delays pipelined commands until all data for a transaction has flowed through.

I/O Peripherals (IOP)

I/O Peripherals (IOP) include QSPI, NOR/NAND Flash, UART, I2C, SPI, SDIO, GPIO, CAN, USB, and Ethernet. The interfaces for these IOPs can be routed to MIO ports and the EMIO interfaces as described in the *Zynq-7000 Extensible Processing Platform Technical Reference Manual* (UG585).

MIO Ports

The Zynq-7000 FPGA EPP design tools are used to configure the Zynq-7000 processing system MIO ports. There are 54 MIO ports available from the processing system. The wizard allows you to choose the peripheral ports to be connected to MIO ports.

Extended MIO (EMIO) Ports

Because there are only 54 MIO ports available to users, peripheral I/O ports beyond 54 can still be routed to the programmable logic through the EMIO interface. Alternative routing for IOP interfaces through programmable logic enables users to take fuller advantage of the IOP available on the processing system. The EMIO I2C, SPI, Ethernet MDIO, PJTAG, SDIO, GPIO 3-state enable signals are inverted in the processing System 7 IP.

The processing_system7 allows users to select GPIO up to 64 bits. Processing System 7 has control logic to adjust user-selected width to flow into PS7.

GigE MAC (Registering)

The Ethernet GMII TXD, TX_EN, TX_ER, COL and CRS signals are registered on TX_CLK, while the RXD, RX_DV and RX_ER signals are registered on RX_CLK.

Fabric Trace Monitor (FTM)

The fabric trace monitor (FTM) signals such as FTM TRACE DATA, VALID and ATID signals are also registered on FTMD_TRACEIN_CLK.

Signal Inverters (3-State)

Only the 3-state (*_T_n) signals are inverted. However SDIO $\{0,1\}$ _CMD_T and SDIO $\{0,1\}$ _DATA_T are inverted only if C_PS7_SI_REV is not a 1.0 version of silicon.

AXI I/O Ports (AIO)

The AXI I/O interface (AIO) group contains AXI interfaces between the Processing System Interconnect and the programmable logic. The AXI interfaces include two general purpose processing system master ports, two general purpose processing system slave ports along with four high performance ports and an accelerator coherency port (ACP). The ID widths of the slave ports are variable and Processing System 7 controls the ID width of these ports based on a user parameter that adjusts the ID width. ACP transactions are monitored by the ACP transactions checker (ATC).

Logic for EDK IP - Processing System Interface

Processing System 7 allows you to add EDK IPs in the programmable logic to be interfaced with the processing system. AIO can be usually used by an AXI-compliant master or slave to be connected to the ARM® system. Custom DMA functions can be implemented in the PL to oversee data movement irrespective of the processor's intervention. Custom logic in PL can control the state of processing system through cross triggers: EVENT, PS_POR_B, and PS_SRST_B. Processing system interrupts from IOPs are available to custom master interfaces in PL. The clock throttling FCLK_CLKTRIGO_N, FCLK_CLKTRIG1_N, FCLK_CLKTRIG2_N, FCLK_CLKTRIG3_N ports are reserved and not supported.

The AXI Interface from the processing system is AXI3 whereas all EDK IPs (AXI version) are AXI4 compliant so you must add AXI Interconnect IP before adding any EDK IP in the programmable logic.

Programmable Logic Clocks and Interrupts

The Processing System 7 employs logic to handle PL interrupts, the number which varies from 1 to 16 depending on your selection. The number of interrupts connected to IRQ_F2P are calculated and the logic ensures the correct order of an interrupt assignment. The processing system provides four clocks to the PL. Processing System 7 enables configuration of these clocks to be used in the PL. It allows you to use clock buffers. Processing System 7 inserts a BUFG for each of the PL clocks. If ethernet is added, no clock FCLK_CLK is used. The registering happens on Ethernet RX and TX clock.

I/O Signals

The Interrupt Control device has two interfaces. These are the Host Bus Interface (IPIF), and the User IP interface (IP). The I/O signals for the design are listed in Table 1.

Table 1: I/O Signals

100.0	7. 1/0 Olgilais					
Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description		
ENET	ENETO IO					
P1	ENETO_GMII_RX_CLK	EMIOENET0GMIIRXCLK	I	Receive clock		
P2	ENET0_GMII_CRS	EMIOENET0GMIICRS	I	Carrier sense from the PHY		
P2	ENET0_GMII_CRS	EMIOENET0GMIICRS	I	Carrier sense from the PHY		
P3	ENET0_GMII_COL	EMIOENET0GMIICOL	I	Collision detect from the PHY		
P4	ENET0_GMII_RXD[7:0]	EMIOENET0GMIIRXD[7:0]	I	Receive data from the PHY		
P5	ENET0_GMII_RX_ER	EMIOENET0GMIIRXER	I	Receive error signal from the PHY		
P6	ENET0_GMII_TX_CLK	EMIOENET0GMIITXCLK	I	Receive data valid signal from the PHY		
P7	ENET0_GMII_TXD[7:0]	EMIOENET0GMIITXD[7:0]	0	Transmit clock		
P8	ENET0_GMII_TX_EN	EMIOENET0GMIITXEN	0	Transmit data to the PHY		
P9	ENET0_GMII_TX_ER	EMIOENET0GMIITXER	0	Transmit enable to the PHY		
P10	ENET0_MDIO_MDC	EMIOENET0MDIOMDC	0	Management data clock to pin		
P11	ENET0_MDIO_I	EMIOENET0MDIOI	I	Management data input from MDIO pin		
P12	ENET0_MDIO_O	EMIOENET0MDIOO	0	Management data output to MDIO pin		
P13	ENET0_MDIO_T	EMIOENET0MDIOTN	0	Management data active-Low 3-state enable to MDIO pin, active-Low.		
P14	ENETO_PTP_SYNC_FRAME_ TX	EMIOENET0PTPSYNCFRAMETX	0	Asserted High synchronous to tx_clk if PTP sync frame is detected on transmit.		
P15	ENET0_PTP_DELAY_REQ_ TX	EMIOENET0PTPDELAYREQTX	0	Asserted High synchronous to tx_clk if PTP delay request frame is detected on transmit.		
P16	ENET0_PTP_PDELAY_REQ_ TX	EMIOENET0PTPPDELAYREQTX	0	Asserted High synchronous to tx_clk if PTP peer delay request frame is detected on transmit.		
P17	ENET0_PTP_PDELAY_ RESP_TX	EMIOENET0PTPPDELAYRESPTX	0	Asserted High synchronous to tx_clk if PTP peer delay response frame is detected on transmit.		
P18	ENET0_SOF_TX	EMIOENET0SOFTX	0	Asserted High synchronous to rx_clk if PTP sync frame is detected on receive.		

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P19	ENET0_PTP_SYNC_FRAME_ RX	EMIOENET0PTPSYNCFRAMERX	0	Asserted High synchronous to rx_clk if PTP delay request frame is detected on receive.
P20	ENET0_PTP_DELAY_REQ_ RX	EMIOENET0PTPDELAYREQRX	0	Asserted High synchronous to rx_clk if PTP peer delay request frame is detected on receive.
P21	ENET0_PTP_PDELAY_REQ_ RX	EMIOENET0PTPPDELAYREQRX	0	Asserted High synchronous to rx_clk if PTP peer delay response frame is detected on receive.
P22	ENET0_EXT_INTIN	EMIOENET0EXTINTIN	I	Ethernet interrupt input
ENET	1 10			
P23	ENET1_GMII_RX_CLK	EMIOENET1GMIIRXCLK	I	Receive clock
P24	ENET1_GMII_CRS	EMIOENET1GMIICRS	I	Carrier sense from the PHY
P25	ENET1_GMII_COL	EMIOENET1GMIICOL	I	Collision detect from the PHY
P26	ENET1_GMII_RXD[7:0]	EMIOENET1GMIIRXD[7:0]	I	Receive data from the PHY
P27	ENET1_GMII_RX_ER	EMIOENET1GMIIRXER	I	Receive error signal from the PHY
P28	ENET1_GMII_TX_CLK	EMIOENET1GMIITXCLK	I	Receive data valid signal from the PHY
P29	ENET1_GMII_TXD[7:0]	EMIOENET1GMIITXD[7:0]	0	Transmit clock
P30	ENET1_GMII_TXEN	EMIOENET1GMIITXEN	0	Transmit data to the PHY
P31	ENET1_GMII_TX_ER	EMIOENET1GMIITXER	0	Transmit enable to the PHY
P32	ENET1_MDIO_MDC	EMIOENET1MDIOMDC	0	Management data clock to pin
P33	ENET1_MDIO_I	EMIOENET1MDIOI	I	Management data input from MDIO pin
P34	ENET1_MDIO_O	EMIOENET1MDIOO	0	Management data output to MDIO pin
P35	ENET1_MDIO_T	EMIOENET1MDIOTN	0	Management data active-Low 3-state enable to MDIO pin, active-Low
P36	ENET1_PTP_SYNC_FRAME_ TX	EMIOENET1PTPSYNCFRAMETX	0	Asserted High synchronous to tx_clk if PTP sync frame is detected on transmit.
P37	ENET1_PTP_DELAY_REQ_ TX	EMIOENET1PTPDELAYREQTX	0	Asserted High synchronous to tx_clk if PTP delay request frame is detected on transmit.
P38	ENET1_PTP_PDELAY_REQ_ TX	EMIOENET1PTPPDELAYREQTX	0	Asserted High synchronous to tx_clk if PTP peer delay request frame is detected on transmit.
P39	ENET1_PTP_PDELAY_RESP_ TX	EMIOENET1PTPPDELAYRESPTX	0	Asserted High synchronous to tx_clk if PTP peer delay response frame is detected on transmit.
P40	ENET1_SOF_TX	EMIOENET1SOFTX	0	Asserted High synchronous to rx_clk if PTP sync frame is detected on receive.
P41	ENET1_PTP_SYNC_FRAME_ RX	EMIOENET1PTPSYNCFRAMERX	0	Asserted High synchronous to rx_clk if PTP delay request frame is detected on receive.
P42	ENET1_PTP_DELAY_REQRX	EMIOENET1PTPDELAYREQRX	0	Asserted High synchronous to rx_clk if PTP peer delay request frame is detected on receive.
	The state of the s		•	· ·

Table 1: I/O Signals (Cont'd)

Table 1. Ito Signals (Contu)				
Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P43	ENET1_PTP_PDELAY_REQ_ RX	EMIOENET1PTPPDELAYREQRX	0	Asserted High synchronous to rx_clk if PTP peer delay response frame is detected on receive.
P44	ENET1_EXT_INTIN	EMIOENET1EXTINTIN	I	Ethernet interrupt input.
TTC0	10			
P45	TTC0_WAVE_O[2:0]	EMIOTTC0WAVEO[2:0]	0	Waveform generated from TTC0
P46	TTC0_CLK_I[2:0]	EMIOTTC0CLKI[2:0]	I	Clock input for each timer
TTC1	10			
P47	TTC1_WAVE_O[2:0]	EMIOTTC1WAVEO[2:0]	0	Waveform generated TTC1
P48	TTC1_CLK_I[2:0]	EMIOTTC1CLKI[2:0]	I	Clock input for each timer
WDT	10			
P49	WDT_CLK_I	EMIOWDTCLKI	I	Clock input
P50	WDT_RST_O	EMIOWDTRSTO	0	Watchdog reset output
SPIO	0 IO			
P51	SPI0_SCLK_I	EMIOSPI0SCLKI	I	SPI slave clock
P52	SPI0_SCLK_O	EMIOSPI0SCLKO	0	SPI master clock output
P53	SPI0_SCLK_T	EMIOSPI0SCLKTN	0	SPI clock 3-state enable
P54	SPI0_MISO_I	EMIOSPI0MI	I	SPI MISO signal master input
P55	SPI0_MISO_O	EMIOSPI0MO	0	SPI MOSI signal master output
P56	SPI0_MOSI_T	EMIOSPI0MOTN	0	SPI MOSI signal 3-state enable
P57	SPI0_MOSI_I	EMIOSPI0MOTN	I	SPI MOSI signal slave input
P58	SPI0_MISO_O	EMIOSPI0SO	0	SPI MISO signal slave output
P60	SPI0_MISO_T	EMIOSPI0STN	0	SPI MISO signal 3-state enable
P61	SPI0_SS_I	EMIOSPI0SSIN	1	SPI slave select input
P62	SPI0_SS2_O SPI0_SS1_O SPI0_SS0_O	EMIOSPI0SSON[2:0]	0	SPI peripheral select outputs
P63	SPI0_SS_T	EMIOSPI0SSNTN	0	SPI peripheral select 3-state enable
SPIO ⁻	1 IO		"	
P64	SPI1_SCLK_I	EMIOSPI1SCLKI	I	SPI slave clock
P65	SPI1_SCLK_O	EMIOSPI1SCLKO	0	SPI master clock output
P66	SPI1_SCLK_T	EMIOSPI1SCLKTN	0	SPI clock 3-state enable
P67	SPI1_MISO_I	EMIOSPI1MI	I	SPI MISO signal master input
P68	SPI1_MISO_O	EMIOSPI1MO	0	SPI MOSI signal master output
P69	SPI1_MOSI_T	EMIOSPI1MOTN	0	SPI MOSI signal 3-state enable
P70	SPI1_MOSI_I	EMIOSPI1MOTN	I	SPI MOSI signal slave input
P71	SPI1_MISO_O	EMIOSPI1SO	0	SPI MISO signal slave output
P72	SPI1_MISO_T	EMIOSPI1STN	0	SPI MISO signal 3-state enable
P73	SPI1_SS_I	EMIOSPI1SSIN	I	SPI slave select input
		1	1	

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P74	SPI1_SS2_O SPI1_SS1_O SPI1_SS0_O	EMIOSPI1SSON[2:0]	0	SPI peripheral select outputs
P75	SPI1_SS_T	EMIOSPI1SSNTN	0	SPI peripheral select 3-state enable
I2C0	0			
P76	I2C0_SCL_I	EMIOI2C0SCLI	I	Actual state of the external SCL clock signal
P77	I2C0_SCL_O	EMIOI2C0SCLO	0	Clock level to be placed on SCL pin
P78	I2C0_SCL_T	EMIOI2C0SCLTN	0	3-state enable for the SCL output buffer
P79	I2C0_SDA_I	EMIOI2C0SDAI	I	Actual state of the external SDA signal
P80	I2C0_SDA_O	EMIOI2C0SDAO	0	Data bit to be placed on external SDA signal
P81	I2C0_SDA_T	EMIOI2C0SDATN	0	3-state enable for the SDA output buffer
12C1	0			
P82	I2C1_SCL_I	EMIOI2C1SCLI	I	Actual state of the external SCL clock signal
P83	I2C1_SCL_O	EMIOI2C1SCLO	0	Clock level to be placed on SCL pin
P84	I2C1_SCL_T	EMIOI2C1SCLTN	0	3-state enable for the SCL output buffer
P85	I2C1_SDA_I	EMIOI2C1SDAI	I	Actual state of the external SDA signal
P86	I2C1_SDA_O	EMIOI2C1SDAO	0	Data bit to be placed on external SDA signal
P87	I2C1_SDA_T	EMIOI2C1SDATN	0	3-state enable for the SDA output buffer
CANO	IO			
P88	CAN0_PHY_TX	EMIOCAN0PHYTX	0	CAN bus transmit signal
P89	CAN0_PHY_RX	EMIOCAN0PHYRX	I	CAN bus receive signal
CAN1	10		·	
P90	CAN1_PHY_TX	EMIOCAN1PHYTX	0	CAN bus transmit signal
P91	CAN1_PHY_RX	EMIOCAN1PHYRX	I	CAN bus receive signal
UART	0 10	-		
P92	UART0_TX	EMIOUART0TX	0	UART transmitter serial output pin
P93	UART0_RX	EMIOUART0RX	I	UART receiver serial input pin
P94	UART0_CTSN	EMIOUART0CTSN	I	Clear-to-send flow control
P95	UARTO_RTSN	EMIOUARTORTSN	0	Request-to-send flow control
P96	UARTO_DSRN	EMIOUART0DSRN	I	Modem data set ready
P97	UARTO_DCDN	EMIOUART0DCDN	I	Modem data carrier detect
P98	UARTO_RIN	EMIOUART0RIN	I	Modem ring indicator
P99	UART0_DTRN	EMIOUART0DTRN	0	Modem data terminal ready

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
UART	1 10		<u>"</u>	
P100	UART1_TX	EMIOUART1TX	0	UART transmitter serial output pin
P101	UART1_RX	EMIOUART1RX	ı	UART receiver serial input pin
P102	UART1_CTSN	EMIOUART1CTSN	I	Clear-to-send flow control
P103	UART1_RTSN	EMIOUART1RTSN	0	Request-to-send flow control
P104	UART1_DSRN	EMIOUART1DSRN	ı	Modem data set ready
P105	UART1_DCDN	EMIOUART1DCDN	I	Modem data carrier detect
P106	UART1_RIN	EMIOUART1RIN	ı	Modem ring indicator
P107	UART1_DTRN	EMIOUART1DTRN	0	Modem data terminal ready
SDIO	0 IO	+		1
P108	SDIO0_CLK	EMIOSDIO0CLK	0	Clock output to SD/SDIO slave device
P109	SDIO0_CLK_FB	EMIOSDIO0CLKFB	I	Clock feedback input to SD/SDIO slave device
P110	SDIO0_CMDO	EMIOSDIO0CMDO	0	Command indicator input
P111	SDIO0_CMDI	EMIOSDIO0CMDI	I	Command indicator output
P112	SDIO0_CMD_T	EMIOSDIO0CMDTN	0	Command indicator 3-state enable
P113	SDIO0_DATAI[3:0]	EMIOSDIO0DATAI[3:0]	ı	4-bit input data bus
P114	SDIO0_DATA_O[3:0]	EMIOSDIO0DATAO[3:0]	0	4-bit output data bus
P115	SDIO0_DATA_TN[3:0]	EMIOSDIO0DATATN[3:0]	0	4-bit output data bus, 3-state enable
P116	SDIO0_CDN	EMIOSDIO0CDN	ı	Card Detect
P117	SDIO0_WP	EMIOSDIO0WP	ı	Write Protect
P118	SDIO0_LED	EMIOSDIO0LED	0	LED Output
P119	SDIO0_BUSPOW	EMIOSDIO0BUSPOW	0	Selects SDIO bus power
P120	SDIO0_BUSVOLT[2:0]	EMIOSDIO0BUSVOLT[2:0]	0	Selects SDIO bus voltage
SDIO	1 IO		"	
P121	SDIO1_CLK	EMIOSDIO1CLK	0	Clock output to SD/SDIO slave device
P122	SDIO1_CLK_FB	EMIOSDIO1CLKFB	I	Clock feedback input to SD/SDIO slave device
P123	SDIO1_CMDO	EMIOSDIO1CMDO	0	Command indicator input
P124	SDIO1_CMDI	EMIOSDIO1CMDI	I	Command indicator output
P125	SDIO1_CMD_T	EMIOSDIO1CMDTN	0	Command indicator 3-state enable
P126	SDIO1_DATAI[3:0]	EMIOSDIO1DATAI[3:0]	I	4-bit input data bus
P127	SDIO1_DATA_O[3:0]	EMIOSDIO1DATAO[3:0]	0	4-bit output data bus
P128	SDIO1_DATA_TN[3:0]	EMIOSDIO1DATATN[3:0]	0	4-bit output data bus 3-state enable
P129	SDIO1_CDN	EMIOSDIO1CDN	I	Card Detect
P130	SDIO1_WP	EMIOSDIO1WP	I	Write Protect
P131	SDIO1_LED	EMIOSDIO1LED	0	LED Output
P132	SDIO1_BUSPOW	EMIOSDIO1BUSPOW	0	Selects SDIO bus power

Table 1: I/O Signals (Cont'd)

	7. 1/0 Signals (Contu)			
Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P133	SDIO1_BUSVOLT[2:0]	EMIOSDIO1BUSVOLT[2:0]	0	Selects SDIO bus voltage
GPIO	Ю			
P134	GPIO_I[(C_EMIO_GPIO_ WIDTH-1):0]	EMIOGPIOI[63:0]	I	GPIO port inputs
P135	GPIO_O[C_EMIO_GPIO_ WIDTH-1:0]	EMIOGPIOO[63:0]	0	GPIO port outputs
P136	GPIO_T[(C_EMIO_GPIO_ WIDTH-1):0]	EMIOGPIOTN[63:0]	0	3-state enable signals for GPIO port
TRAC	E IO		*	
P137	TRACE_CLK	EMIOTRACECLK	I	Trace clock input
P138	TRACE_CTL	EMIOTRACECTL	0	Trace control output
P139	TRACE_DATA[31:0]	EMIOTRACEDATA[31:0]	0	Trace data output
PJTA	G IO			
P140	PJTAG_TCK	EMIOPJTAGTCK	I	JTAG clock input
P141	PJTAG_TMS	EMIOPJTAGTMS	I	JTAG mode select
P142	PJTAG_TD_I	EMIOPJTAGTDI	I	JTAG data input
P143	PJTAG_TD_T	EMIOPJTAGTDTN	0	3-state enable for TDO
P144	PJTAG_TD_O	EMIOPJTAGTDO	0	JTAG data output
USB0	10			
P145	USB0_PORT_INDCTL	EMIOUSB0PORTINDCTL[1:0]	0	USB port indicator
P146	USB0_VBUS_PWRFAULT	EMIOUSB0VBUSPWRFAULT	I	USB power fault
P147	USB0_VBUS_PWRSELECT	EMIOUSB0VBUSPWRSELECT	0	USB power select
USB1	10			
P148	USB1_PORT_INDCTL	EMIOUSB1PORTINDCTL[1:0]	0	USB port indicator
P149	USB1_VBUS_PWRFAULT	EMIOUSB1VBUSPWRFAULT	I	USB power fault
P150	USB1_VBUS_PWRSELECT	EMIOUSB1VBUSPWRSELECT	0	USB power select
SRAN	I IO			
P151	SRAM_INTIN	EMIOSRAMINTIN	I	SRAM interrupt
PL CI	ock and Reset			
P152 P153 P154 P155	FCLK_CLK3 FCLK_CLK2 FCLK_CLK1 FCLK_CLK0	FCLKCLK[3:0]	0	Clocks to be used as frequency source in PL
P156 P157 P158 P159	FCLK_CLKTRIG3_N FCLK_CLKTRIG2_N FCLK_CLKTRIG1_N FCLK_CLKTRIG0_N	FCLKCLKTRIGN[3:0]	I	Signal to enable or halt clock pulse asynchronous to clock
P160 P161 P162 P163	FCLK_RESET3_N FCLK_RESET2_N FCLK_RESET1_N FCLK_RESET0_N	FCLKRESETN[3:0]	0	General reset signal from PS to PL

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
PL Id	le			
P164	FPGA_IDLE_N	FPGAIDLEN	I	Input to indicate PL AXI idle
P165	EVENT_EVENTI	EVENTEVENTI	I	EVENTI input for A9 MPCore wake up from WFE. Any transition on the EVENTI input from the PL causes a one-cycle pulse input to the A9 MPCore.
EVEN	IT IO			
P166	EVENT_EVENTO	EVENTEVENTO	O	EVENTO output of the A9 MPCore- Active when SEV is executed. A one-cycle pulse output from the A9 MPCore on EVENTO causes the PL EVENTO signal to toggle.
P167	EVENT_STANDBYWFE[1:0]	EVENTSTANDBYWFE[1:0]	0	Indicates A9[1:0]
P168	EVENT_STANDBYWFI[1:0]	EVENTSTANDBYWFI[1:0]	0	Indicates A9[1:0] is in Standby WFI state
DDR.	ARB IO			
P169	DDR_ARB[3:0]	DDRARB[3:0]	I	Input to DDR bypass
PL TF	RACE IO			
P170	FTMD_TRACEIN_DATA[31:0]	FTMDTRACEINDATA[31:0]	I	Trace input data
P171	FTMD_TRACEIN_VALID	FTMDTRACEINVALID	I	Trace input valid. Data is clocked into the FTM when valid is 1.
P172	FTMD_TRACEIN_CLK	FTMDTRACEINCLOCK	I	Trace input clock
P173	FTMD_TRACEIN_ATID[31:0]	FTMDTRACEINATID[3:0]	I	Trace ID
Cross	Trigger IO			
P174	FTMT_F2P_TRIG[3:0]	FTMTF2PTRIG[3:0]	I	PL Trigger
P175	FTMT_F2P_TRIGACK[3:0]	FTMTF2PTRIGACK[3:0]	0	PL Trigger Acknowledge
P176	FTMT_F2P_DEBUG[31:0]	FTMTF2PDEBUG[31:0]	I	Debug inputs from PL
P177	FTMT_P2F_TRIG[3:0]	FTMTP2FTRIG[3:0]	0	PS Trigger
P178	FTMT_P2F_TRIGACK[3:0]	FTMTP2FTRIGACK[3:0]	I	PS Trigger Acknowledge
P179	FTMT_P2F_DEBUG[31:0]	FTMTP2FDEBUG[31:0]	0	Debug outputs to PL
DMA(010			-
P180	DMA0_DAREADY	DMA0DAREADY	I	Peripheral ready
P181	DMA0_DATYPE[1:0]	DMA0DATYPE[1:0]	0	DMA request/ack type
P182	DMA0_DAVALID	DMA0DAVALID	0	DMA data valid
P183	DMA0_DRLAST	DMA0DRLAST	I	Last data of DMA transfer
P184	DMA0_DRREADY	DMA0DRREADY	0	DMA ready
P185	DMA0_DRTYPE[1:0]	DMA0DRTYPE[1:0]	0	Peripheral request/ack type
P186	DMA0_DRVALID	DMA0DRVALID	I	Peripheral data valid
P187	DMA0_RSTN	DMA0RSTN	0	Reset
P188	DMA0_ACLK	DMA0ACLK	I	Clock for DMA request transfers

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description	
DMA1 IO					
P189	DMA1_DAREADY	DMA1DAREADY	I	Indicates if the peripheral can accept the information that the DMAC provides on datype_ <x>[1:0].</x>	
P190	DMA1_DATYPE[1:0]	DMA1DATYPE[1:0]	0	Indicates the type of acknowledgement, or request that the DMAC signals: • b00: DMAC has completed the single DMA transfer. • b01: DMAC has completed the burst DMA transfer. • b10: DMAC requesting the peripheral to perform a flush request. • b11: Reserved	
P191	DMA1_DAVALID	DMA1DAVALID	0	Indicates when the DMAC provides valid control information: O: No control information is available. 1: datype_ <x>[1:0] contains valid information for the peripheral.</x>	
P192	DMA1_DRLAST	DMA1DRLAST	I	Indicates that the peripheral is sending the last data transfer for the current DMA transfer: • 0: Last data request is not in progress. • 1: Last data request is in progress. Note: The DMAC only uses this signal when drtype_ <x>[1:0] is b00 or b01.</x>	
P193	DMA1_DRREADY	DMA1DRREADY	0	Indicates if the DMAC can accept the information that the peripheral provides on drtype_ <x>[1:0]. • 0: DMAC not ready • 1: DMAC ready</x>	
P194	DMA1_DRTYPE[1:0]	DMA1DRTYPE[1:0]	0	Indicates the type of acknowledgement, or request, that the peripheral signals. • b00: Single level request • b01: Burst level request • b10: Acknowledging a flush request that the DMAC requested • b11: Reserved	
P195	DMA1_DRVALID	DMA1DRVALID	I	Indicates when the peripheral provides valid control information. O: No control information is available 1: drtype_ <x>[1:0] and drlast_<x> contain valid information for the DMAC.</x></x>	
P196	DMA1_RSTN	DMA1RSTN	0	Reset	
P197	DMA1_ACLK	DMA1ACLK	I	Clock for DMA request transfers	

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description	
DMA2 IO					
P198	DMA2_DAREADY	DMA2DAREADY	I	Indicates if the peripheral can accept the information that the DMAC provides on datype_ <x>[1:0].</x>	
P199	DMA2_DATYPE[1:0]	DMA2DATYPE[1:0]	0	 Indicates the type of acknowledgement, or request that the DMAC signals: b00: DMAC has completed the single DMA transfer. b01: DMAC has completed the burst DMA transfer. b10: DMAC requesting the peripheral to perform a flush request. b11: Reserved 	
P200	DMA2_DAVALID	DMA2DAVALID	0	Indicates when the DMAC provides valid control information: O: No control information is available. 1: datype_ <x>[1:0] contains valid information for the peripheral.</x>	
P201	DMA2_DRLAST	DMA2DRLAST	I	Indicates that the peripheral is sending the last data transfer for the current DMA transfer: • 0: Last data request is not in progress • 1: Last data request is in progress Note: The DMAC only uses this signal when drtype_ <x>[1:0] is b00 or b01.</x>	
P202	DMA2_DRREADY	DMA2DRREADY	0	Indicates if the DMAC can accept the information that the peripheral provides on drtype_ <x>[1:0]. • 0: DMAC not ready • 1: DMAC ready</x>	
P203	DMA2_DRTYPE[1:0]	DMA2DRTYPE[1:0]	0	Indicates the type of acknowledgement, or request that the peripheral signals. • b00: Single level request • b01: Burst level request • b10: Acknowledging a flush request that the DMAC requested • b11: Reserved	
P204	DMA2_DRVALID	DMA2DRVALID	I	Indicates when the peripheral provides valid control information. O: No control information is available. 1: drtype_ <x>[1:0] and drlast_<x> contain valid information for the DMAC.</x></x>	
P205	DMA2_RSTN	DMA2RSTN	0	Reset	
P206	DMA2_ACLK	DMA2ACLK	I	Clock for DMA request transfers	

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description	
DMA3 IO					
P207	DMA3_DAREADY	DMA3DAREADY	I	Indicates if the peripheral can accept the information that the DMAC provides on datype_ <x>[1:0].</x>	
P208	DMA3_DATYPE[1:0]	DMA3DATYPE[1:0]	0	 Indicates the type of acknowledgement, or request, that the DMAC signals: b00: DMAC has completed the single DMA transfer. b01: DMAC has completed the burst DMA transfer. b10: DMAC requesting the peripheral to perform a flush request. b11: Reserved 	
P209	DMA3_DAVALID	DMA3DAVALID	0	Indicates when the DMAC provides valid control information: O: No control information is available. 1: datype_ <x>[1:0] contains valid information for the peripheral.</x>	
P210	DMA3_DRLAST	DMA3DRLAST	I	Indicates that the peripheral is sending the last data transfer for the current DMA transfer: • 0: Last data request is not in progress. • 1: Last data request is in progress. Note: The DMAC only uses this signal when drtype_ <x>[1:0] is b00 or b01.</x>	
P211	DMA3_DRREADY	DMA3DRREADY	0	Indicates if the DMAC can accept the information that the peripheral provides on drtype_ <x>[1:0]. • 0: DMAC not ready • 1: DMAC ready</x>	
P212	DMA3_DRTYPE[1:0]	DMA3DRTYPE[1:0]	0	Indicates the type of acknowledgement, or request, that the peripheral signals. • b00: Single level request • b01: Burst level request • b10: Acknowledging a flush request that the DMAC requested • b11: Reserved	
P213	DMA3_DRVALID	DMA3DRVALID	ı	Indicates when the peripheral provides valid control information. O: No control information is available. 1: drtype_ <x>[1:0] and drlast_<x> contain valid information for the DMAC.</x></x>	
P214	DMA3_RSTN	DMA3RSTN	0	Reset	
P215	DMA3_ACLK	DMA3ACLK	Ţ	Clock for DMA request transfers	

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
Interr	upts			
P216	IRQ_F2P [7:0]	IRQF2P[7:0]	I	APU Peripherals interrupts 68 to 61
P217	IRQ_F2P [15:8]	IRQF2P[15:8]	ı	APU Peripherals interrupts 91 to 84
P218	Core0_nIRQ	IRQF2P[16]	I	APU CPU 0 nIRQ
P219	Core1_nIRQ	IRQF2P [17]	I	APU CPU 1 nIRQ
P220	Core0_nFIQ	IRQF2P [18]	ı	APU CPU 0 nFIQ
P221	Core1_nFIQ	IRQF2P [19]	I	APU CPU 1 nFIQ
P222	IRQ_P2F_DMAC_ABORT	IRQP2F[28]	0	DMAC0 Abort Interrupt
P223	IRQ_P2F_DMAC7 IRQ_P2F_DMAC6 IRQ_P2F_DMAC5 IRQ_P2F_DMAC4 IRQ_P2F_DMAC3 IRQ_P2F_DMAC2 IRQ_P2F_DMAC1 IRQ_P2F_DMAC1 IRQ_P2F_DMAC0	IRQP2F[27:20]	0	8 Interrupts for DMAC0
P224	IRQ_P2F_SMC	IRQP2F[19]	0	SMC interrupt
P225	IRQ_P2F_QSPI	IRQP2F[18]	0	Quad-SPI interrupt
P226	IRQ_P2F_CTI	IRQP2F[17]	0	Cross Trigger Interrupt
P227	IRQ_P2F_GPIO	IRQP2F[16]	0	GPIO interrupt
P228	IRQ_P2F_USB0	IRQP2F[15]	0	USB port #0 interrupt
P229	IRQ_P2F_ENET0	IRQP2F[14]	0	GEM port #0 interrupt
P230	IRQ_P2F_ENET_WAKE0	IRQP2F[13]	0	GEM port #0 wake interrupt
P231	IRQ_P2F_SDIO0	IRQP2F[12]	0	SDIO port #0 interrupt
P232	IRQ_P2F_I2C0	IRQP2F[11	0	I2C port #0 interrupt
P233	IRQ_P2F_SPI0	IRQP2F[10]	0	SPI port #0 interrupt
P234	IRQ_P2F_UART0	IRQP2F[9]	0	UART port #0 interrupt
P235	IRQ_P2F_CAN0	IRQP2F[8]	0	CAN port #0 interrupt
P236	IRQ_P2F_USB1	IRQP2F[7]	0	USB port #1 interrupt
P237	IRQ_P2F_ENET1	IRQP2F[6]	0	GEM port #1 interrupt
P238	IRQ_P2F_ENET_WAKE1	IRQP2F[5]	0	GEM port #1 wake interrupt
P239	IRQ_P2F_SDIO1	IRQP2F[4]	0	SDIO port #1 interrupt
P240	IRQ_P2F_I2C1	IRQP2F[3]	0	I2C port #1 interrupt
P241	IRQ_P2F_SPI1	IRQP2F[2]	0	SPI port #1 interrupt
P242	IRQ_P2F_UART1	IRQP2F[1]	0	UART port #1 interrupt
P243	IRQ_P2F_CAN1	IRQP2F[0]	0	CAN port #1 interrupt

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
PS M	aster, PL Slave - General P	urpose Port - M_AXI_GP0		
P244	M_AXI_GP0_ACLK	MAXIGP0ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P245	M_AXI_GP0_ARESETN	MAXIGP0ARESETN	0	Global reset signal. This signal is active-Low.
P246	M_AXI_GP0_AWID[C_M_AXI_G P0_THREAD_ID_WIDTH-1:0]	MAXIGP0AWID[11:0]	0	Write ID.
P247	M_AXI_GP0_AWADDR[31:0]	MAXIGP0AWADDR[31:0]	0	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P248	M_AXI_GP0_AWLEN[3:0]	MAXIGP0AWLEN[3:0]	0	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P249	M_AXI_GP0_AWSIZE[2:0]	MAXIGP0AWSIZE[1:0]	0	Burst size. M_AXI_GP0_AWSIZE[2] is not used.
P250	M_AXI_GP0_AWBURST[1:0]	MAXIGP0AWBURST[1:0]	0	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P251	M_AXI_GP0_AWLOCK[1:0]	MAXIGP0AWLOCK[1:0]	0	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P252	M_AXI_GP0_AWCACHE[3:0]	MAXIGP0AWCACHE[3:0]	0	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P253	M_AXI_GP0_AWPROT[2:0]	MAXIGP0AWPROT[2:0]	0	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P254	M_AXI_GP0_AWVALID	MAXIGP0AWVALID	0	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P255	M_AXI_GP0_AWREADY	MAXIGP0AWREADY	I	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P256	M_AXI_GP0_WID[C_M_AXI_ GP0_THREAD_ID_WIDTH-1:0]	MAXIGP0WID[11:0]	0	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P257	M_AXI_GP0_WDATA[31:0]	MAXIGPOWDATA[31:0]	0	Write data.
P260	M_AXI_GP0_WSTRB[3:0]	MAXIGP0WSTRB[3:0]	0	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds to WDATA[(8 x n) + 7:(8 x n)].
P261	M_AXI_GP0_WLAST	MAXIGP0WLAST	0	Write last. This signal indicates the last transfer in a write burst.
P262	M_AXI_GP0_WVALID	MAXIGP0WVALID	0	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P263	M_AXI_GP0_WREADY	MAXIGP0WREADY	I	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P264	M_AXI_GP0_BID[C_M_AXI_ GP0_THREAD_ID_WIDTH-1:0]	MAXIGP0BID[11:0]	I	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P265	M_AXI_GP0_BRESP[1:0]	MAXIGP0BRESP[1:0]	I	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P266	M_AXI_GP0_BVALID	MAXIGP0BVALID	I	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P267	M_AXI_GP0_BREADY	MAXIGP0BREADY	0	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P268	M_AXI_GP0_ARID[C_M_AXI_G P0_THREAD_ID_WIDTH-1:0]	MAXIGP0ARID[11:0]	О	Read address ID. This signal is the identification tag for the read address group of signals.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P269	M_AXI_GP0_ARADDR[31:0]	MAXIGP0ARADDR[31:0]	О	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P270	M_AXI_GP0_ARLEN[3:0]	MAXIGP0ARLEN[3:0]	0	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P271	M_AXI_GP0_ARSIZE[2:0]	MAXIGP0ARSIZE[1:0]	0	Burst size. This signal indicates the size of each transfer in the burst. M_AXI_GP0_ARSIZE[2] is not used.
P272	M_AXI_GP0_ARBURST[1:0]	MAXIGP0ARBURST[1:0]	0	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P273	M_AXI_GP0_ARLOCK[1:0]	MAXIGP0ARLOCK[1:0]	0	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P274	M_AXI_GP0_ARCACHE[3:0]	MAXIGPOARCACHE[3:0]	0	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P275	M_AXI_GP0_ARPROT[2:0]	MAXIGP0ARPROT[2:0]	0	Protection type. This signal provides protection unit information for the transaction.
P276	M_AXI_GP0_ARVALID	MAXIGP0ARVALID	0	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P277	M_AXI_GP0_ARREADY	MAXIGP0ARREADY	I	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P278	M_AXI_GP0_RID[C_M_AXI_ GP0_THREAD_ID_WIDTH-1:0]	MAXIGP0RID[11:0]	I	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P279	M_AXI_GP0_RDATA[31:0]	MAXIGP0RDATA[31:0]	I	Read data.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P280	M_AXI_GP0_RRESP[1:0]	MAXIGP0RRESP[1:0]	I	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P281	M_AXI_GP0_RLAST	MAXIGP0RLAST	I	Read last. This signal indicates the last transfer in a read burst.
P282	M_AXI_GP0_RVALID	MAXIGP0RVALID	I	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P283	M_AXI_GP0_RREADY	MAXIGP0RREADY	0	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P284	M_AXI_GP0_AWQOS[3:0]	MAXIGP0AWQOS[3:0]	0	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P285	M_AXI_GP0_ARQOS[3:0]	MAXIGP0ARQOS[3:0]	0	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
PS Ma	aster, PL Slave - General P	urpose Port - M_AXI_GP1	1	
P286	M_AXI_GP1_ACLK	MAXIGP1ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P287	M_AXI_GP1_ARESETN	MAXIGP1ARESETN	0	Global reset signal. This signal is active- Low.
P288	M_AXI_GP1_AWID[C_M_AXI_G P1_THREAD_ID_WIDTH-1:0]	MAXIGP1AWID[11:0]	0	Write ID.
P289	M_AXI_GP1_AWADDR[31:0]	MAXIGP1AWADDR[31:0]	0	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P290	M_AXI_GP1_AWLEN[3:0]	MAXIGP1AWLEN[3:0]	0	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P291	M_AXI_GP1_AWSIZE[2:0]	MAXIGP1AWSIZE[1:0]	0	Burst size. M_AXI_GP1_AWSIZE[2] is not used.
P292	M_AXI_GP1_AWBURST[1:0]	MAXIGP1AWBURST[1:0]	0	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P293	M_AXI_GP1_AWLOCK[1:0]	MAXIGP1AWLOCK[1:0]	О	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P294	M_AXI_GP1_AWCACHE[3:0]	MAXIGP1AWCACHE[3:0]	0	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P295	M_AXI_GP1_AWPROT[2:0]	MAXIGP1AWPROT[2:0]	0	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P296	M_AXI_GP1_AWVALID	MAXIGP1AWVALID	0	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P297	M_AXI_GP1_AWREADY	MAXIGP1AWREADY	I	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P298	M_AXI_GP1_WID[C_M_AXI_G P1_THREAD_ID_WIDTH-1:0]	MAXIGP1WID[11:0]	0	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P299	M_AXI_GP1_WDATA[31:0]	MAXIGP1WDATA[31:0]	0	Write data.
P300	M_AXI_GP1_WSTRB[3:0]	MAXIGP1WSTRB[3:0]	0	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds to WDATA[(8 x n) + 7:(8 x n)].
P301	M_AXI_GP1_WLAST	MAXIGP1WLAST	0	Write last. This signal indicates the last transfer in a write burst.
P302	M_AXI_GP1_WVALID	MAXIGP1WVALID	0	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P303	M_AXI_GP1_WREADY	MAXIGP1WREADY	I	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P304	M_AXI_GP1_BID[C_M_AXI_GP 1_THREAD_ID_WIDTH-1:0]	MAXIGP1BID[11:0]	I	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P305	M_AXI_GP1_BRESP[1:0]	MAXIGP1BRESP[1:0]	ı	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P306	M_AXI_GP1_BVALID	MAXIGP1BVALID	I	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P307	M_AXI_GP1_BREADY	MAXIGP1BREADY	0	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P308	M_AXI_GP1_ARID[C_M_AXI_G P1_THREAD_ID_WIDTH-1:0]	MAXIGP1ARID[11:0]	0	Read address ID. This signal is the identification tag for the read address group of signals.
P309	M_AXI_GP1_ARADDR[31:0]	MAXIGP1ARADDR[31:0]	0	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P310	M_AXI_GP1_ARLEN[3:0]	MAXIGP1ARLEN[3:0]	0	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P311	M_AXI_GP1_ARSIZE[2:0]	MAXIGP1ARSIZE[1:0]	0	Burst size. This signal indicates the size of each transfer in the burst. M_AXI_GP1_ARSIZE[2] is not used.
P312	M_AXI_GP1_ARBURST[1:0]	MAXIGP1ARBURST[1:0]	0	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P313	M_AXI_GP1_ARLOCK[1:0]	MAXIGP1ARLOCK[1:0]	0	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P314	M_AXI_GP1_ARCACHE[3:0]	MAXIGP1ARCACHE[3:0]	0	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P315	M_AXI_GP1_ARPROT[2:0]	MAXIGP1ARPROT[2:0]	0	Protection type. This signal provides protection unit information for the transaction.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P316	M_AXI_GP1_ARVALID	MAXIGP1ARVALID	0	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P317	M_AXI_GP1_ARREADY	MAXIGP1ARREADY	ı	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P318	M_AXI_GP1_RID[C_M_AXI_ GP1_THREAD_ID_WIDTH-1:0]	MAXIGP1RID[11:0]	1	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P319	M_AXI_GP1_RDATA[31:0]	MAXIGP1RDATA[31:0]	I	Read data.
P320	M_AXI_GP1_RRESP[1:0]	MAXIGP1RRESP[1:0]	1	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P321	M_AXI_GP1_RLAST	MAXIGP1RLAST	ı	Read last. This signal indicates the last transfer in a read burst.
P322	M_AXI_GP1_RVALID	MAXIGP1RVALID	I	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P323	M_AXI_GP1_RREADY	MAXIGP1RREADY	O	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P324	M_AXI_GP1_AWQOS[3:0]	MAXIGP1AWQOS[3:0]	0	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P325	M_AXI_GP1_ARQOS[3:0]	MAXIGP1ARQOS[3:0]	0	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
PS SI	ave, PL Master - General P	urpose Port - S_AXI_GP0	1	
P326	S_AXI_GP0_ACLK	SAXIGP0ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P327	S_AXI_GP0_ARESETN	SAXIGP0ARESETN	0	Global reset signal. This signal is active- Low.
P328	S_AXI_GP0_AWID[C_S_AXI_ GP0_ID_WIDTH-1:0]	SAXIGP0AWID[5:0]	I	Write ID.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P329	S_AXI_GP0_AWADDR[31:0]	SAXIGP0AWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P330	S_AXI_GP0_AWLEN[3:0]	SAXIGP0AWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P331	S_AXI_GP0_AWSIZE[2:0]	SAXIGP0AWSIZE[1:0]	I	Burst size. S_AXI_GP0_AWSIZE[2] is not used.
P332	S_AXI_GP0_AWBURST[1:0]	SAXIGP0AWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P333	S_AXI_GP0_AWLOCK[1:0]	SAXIGP0AWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P334	S_AXI_GP0_AWCACHE[3:0]	SAXIGP0AWCACHE[3:0]	I	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P335	S_AXI_GP0_AWPROT[2:0]	SAXIGP0AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P336	S_AXI_GP0_AWVALID	SAXIGP0AWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P337	S_AXI_GP0_AWREADY	SAXIGP0AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P338	S_AXI_GP0_WID[C_S_AXI_ GP0_ID_WIDTH-1:0]	SAXIGP0WID[5:0]	I	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P339	S_AXI_GP0_WDATA[31:0]	SAXIGP0WDATA[31:0]	I	Write data.
P340	S_AXI_GP0_WSTRB[3:0]	SAXIGP0WSTRB[3:0]	ı	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds to WDATA[(8 x n) + 7:(8 x n)].
P341	S_AXI_GP0_WLAST	SAXIGP0WLAST	I	Write last. This signal indicates the last transfer in a write burst.
P342	S_AXI_GP0_WVALID	SAXIGP0WVALID	ı	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P343	S_AXI_GP0_WREADY	SAXIGPOWREADY	O	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P344	S_AXI_GP0_BID[C_S_AXI_ GP0_ID_WIDTH-1:0]	SAXIGP0BID[5:0]	0	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P345	S_AXI_GP0_BRESP[1:0]	SAXIGP0BRESP[1:0]	0	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P346	S_AXI_GP0_BVALID	SAXIGP0BVALID	O	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P347	S_AXI_GP0_BREADY	SAXIGP0BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P348	S_AXI_GP0_ARID[C_S_AXI_ GP0_ID_WIDTH-1:0]	SAXIGP0ARID[5:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P349	S_AXI_GP0_ARADDR[31:0]	SAXIGP0ARADDR[31:0]	1	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P350	S_AXI_GP0_ARLEN[3:0]	SAXIGP0ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P351	S_AXI_GP0_ARSIZE[2:0]	SAXIGP0ARSIZE[1:0]	I	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_GP0_ARSIZE[2] is not used.
P352	S_AXI_GP0_ARBURST[1:0]	SAXIGP0ARBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P353	S_AXI_GP0_ARLOCK[1:0]	SAXIGP0ARLOCK[1:0]	1	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P354	S_AXI_GP0_ARCACHE[3:0]	SAXIGP0ARCACHE[3:0]	ı	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P355	S_AXI_GP0_ARPROT[2:0]	SAXIGP0ARPROT[2:0]	ı	Protection type. This signal provides protection unit information for the transaction.
P356	S_AXI_GP0_ARVALID	SAXIGP0ARVALID	I	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P357	S_AXI_GP0_ARREADY	SAXIGP0ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P358	S_AXI_GP0_RID[C_S_AXI_ GP0_ID_WIDTH-1:0]	SAXIGP0RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P359	S_AXI_GP0_RDATA[31:0]	SAXIGP0RDATA[31:0]	0	Read data.
P360	S_AXI_GP0_RRESP[1:0]	SAXIGP0RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P361	S_AXI_GP0_RLAST	SAXIGPORLAST	0	Read last. This signal indicates the last transfer in a read burst.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P362	S_AXI_GP0_RVALID	SAXIGPORVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P363	S_AXI_GP0_RREADY	SAXIGPORREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P364	S_AXI_GP0_AWQOS[3:0]	SAXIGP0AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P365	S_AXI_GP0_ARQOS[3:0]	SAXIGP0ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
PS SI	ave, PL Master - General P	urpose Port - S_AXI_GP1		
P366	S_AXI_GP1_ACLK	SAXIGP1ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P367	S_AXI_GP1_ARESETN	SAXIGP1ARESETN	0	Global reset signal. This signal is active-Low.
P368	S_AXI_GP1_AWID[C_S_AXI_ GP1_ID_WIDTH-1:0]	SAXIGP1AWID[5:0]	I	Write ID.
P369	S_AXI_GP1_AWADDR[31:0]	SAXIGP1AWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P370	S_AXI_GP1_AWLEN[3:0]	SAXIGP1AWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P371	S_AXI_GP1_AWSIZE[2:0]	SAXIGP1AWSIZE[1:0]	I	Burst size. S_AXI_GP1_AWSIZE[2] is not used.
P372	S_AXI_GP1_AWBURST[1:0]	SAXIGP1AWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P373	S_AXI_GP1_AWLOCK[1:0]	SAXIGP1AWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P374	S_AXI_GP1_AWCACHE[3:0]	SAXIGP1AWCACHE[3:0]	I	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P375	S_AXI_GP1_AWPROT[2:0]	SAXIGP1AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P376	S_AXI_GP1_AWVALID	SAXIGP1AWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P377	S_AXI_GP1_AWREADY	SAXIGP1AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P378	S_AXI_GP1_WID[C_S_AXI_ GP1_ID_WIDTH-1:0]	SAXIGP1WID[5:0]	ı	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P379	S_AXI_GP1_WDATA[31:0]	SAXIGP1WDATA[31:0]	I	Write data.
P380	S_AXI_GP1_WSTRB[3:0]	SAXIGP1WSTRB[3:0]	I	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)].
P381	S_AXI_GP1_WLAST	SAXIGP1WLAST	I	Write last. This signal indicates the last transfer in a write burst.
P382	S_AXI_GP1_WVALID	SAXIGP1WVALID	I	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P383	S_AXI_GP1_WREADY	SAXIGP1WREADY	0	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P384	S_AXI_GP1_BID[C_S_AXI_ GP1_ID_WIDTH-1:0]	SAXIGP1BID[5:0]	0	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P385	S_AXI_GP1_BRESP[1:0]	SAXIGP1BRESP[1:0]	0	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P386	S_AXI_GP1_BVALID	SAXIGP1BVALID	0	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P387	S_AXI_GP1_BREADY	SAXIGP1BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P388	S_AXI_GP1_ARID[C_S_AXI_ GP1_ID_WIDTH-1:0]	SAXIGP1ARID[5:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P389	S_AXI_GP1_ARADDR[31:0]	SAXIGP1ARADDR[31:0]	1	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P390	S_AXI_GP1_ARLEN[3:0]	SAXIGP1ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P391	S_AXI_GP1_ARSIZE[2:0]	SAXIGP1ARSIZE[1:0]	I	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_GP1_ARSIZE[2] is not used.
P392	S_AXI_GP1_ARBURST[1:0]	SAXIGP1ARBURST[1:0]	I	Burst type. The burst type coupled with the size information detail show the address for each transfer within the burst is calculated.
P393	S_AXI_GP1_ARLOCK[1:0]	SAXIGP1ARLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P394	S_AXI_GP1_ARCACHE[3:0]	SAXIGP1ARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P395	S_AXI_GP1_ARPROT[2:0]	SAXIGP1ARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.

www.xilinx.com

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description		
P396	S_AXI_GP1_ARVALID	SAXIGP1ARVALID	I	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid		
P397	S_AXI_GP1_ARREADY	SAXIGP1ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready		
P398	S_AXI_GP1_RID[C_S_AXI_ GP1_ID_WIDTH-1:0]	SAXIGP1RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.		
P399	S_AXI_GP1_RDATA[31:0]	SAXIGP1RDATA[31:0]	0	Read data.		
P400	S_AXI_GP1_RRESP[1:0]	SAXIGP1RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.		
P401	S_AXI_GP1_RLAST	SAXIGP1RLAST	0	Read last. This signal indicates the last transfer in a read burst.		
P402	S_AXI_GP1_RVALID	SAXIGP1RVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available		
P403	S_AXI_GP1_RREADY	SAXIGP1RREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready		
P404	S_AXI_GP1_AWQOS[3:0]	SAXIGP1AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.		
P405	S_AXI_GP1_ARQOS[3:0]	SAXIGP1ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.		
PS SI	PS Slave, PL Master - Accelerator Coherence Port - S_AXI_ACP					
P406	S_AXI_ACP_ACLK	SAXIACPACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.		
P407	S_AXI_ACP_ARESETN	SAXIACPARESETN	0	Global reset signal. This signal is active-Low.		
P408	S_AXI_ACP_AWID[C_S_AXI_A CP_ID_WIDTH-1:0]	SAXIACPAWID[2:0]	I	Write ID.		

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P409	S_AXI_ACP_AWADDR[31:0]	SAXIACPAWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P410	S_AXI_ACP_AWLEN[3:0]	SAXIACPAWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P411	S_AXI_ACP_AWSIZE[2:0]	SAXIACPAWSIZE[1:0]	I	Burst size. S_AXI_ACP_AWSIZE[2] is not used.
P412	S_AXI_ACP_AWBURST[1:0]	SAXIACPAWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P413	S_AXI_ACP_AWLOCK[1:0]	SAXIACPAWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P414	S_AXI_ACP_AWCACHE[3:0]	SAXIACPAWCACHE[3:0]	I	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P415	S_AXI_ACP_AWPROT[2:0]	SAXIACPAWPROT[2:0]	ı	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P416	S_AXI_ACP_AWVALID	SAXIACPAWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P417	S_AXI_ACP_AWREADY	SAXIACPAWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P418	S_AXI_ACP_WID[C_S_AXI_ ACP_ID_WIDTH-1:0]	SAXIACPWID[2:0]	I	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P419	S_AXI_ACP_WDATA[63:0]	SAXIACPWDATA[63:0]	I	Write data.
P420	S_AXI_ACP_WSTRB[7:0]	SAXIACPWSTRB[7:0]	1	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)].
P421	S_AXI_ACP_WLAST	SAXIACPWLAST	I	Write last. This signal indicates the last transfer in a write burst.
P422	S_AXI_ACP_WVALID	SAXIACPWVALID	ı	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P423	S_AXI_ACP_WREADY	SAXIACPWREADY	O	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P424	S_AXI_ACP_BID[C_S_AXI_ ACP_ID_WIDTH-1:0]	SAXIACPBID[2:0]	O	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P425	S_AXI_ACP_BRESP[1:0]	SAXIACPBRESP[1:0]	0	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P426	S_AXI_ACP_BVALID	SAXIACPBVALID	O	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P427	S_AXI_ACP_BREADY	SAXIACPBREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P428	S_AXI_ACP_ARID[C_S_AXI_ ACP_ID_WIDTH-1:0]	SAXIACPARID[2:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P429	S_AXI_ACP_ARADDR[31:0]	SAXIACPARADDR[31:0]	1	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P430	S_AXI_ACP_ARLEN[3:0]	SAXIACPARLEN[3:0]	1	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P431	S_AXI_ACP_ARSIZE[2:0]	SAXIACPARSIZE[1:0]	I	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_ACP_ARSIZE[2] is not used.
P432	S_AXI_ACP_ARBURST[1:0]	SAXIACPARBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P433	S_AXI_ACP_ARLOCK[1:0]	SAXIACPARLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P434	S_AXI_ACP_ARCACHE[3:0]	SAXIACPARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P435	S_AXI_ACP_ARPROT[2:0]	SAXIACPARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.
P436	S_AXI_ACP_ARVALID	SAXIACPARVALID	I	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P437	S_AXI_ACP_ARREADY	SAXIACPARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P438	S_AXI_ACP_RID[C_S_AXI_ ACP_ID_WIDTH-1:0]	SAXIACPRID[2:0]	О	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P439	S_AXI_ACP_RDATA[63:0]	SAXIACPRDATA[63:0]	0	Read data.
P440	S_AXI_ACP_RRESP[1:0]	SAXIACPRRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P441	S_AXI_ACP_RLAST	SAXIACPRLAST	О	Read last. This signal indicates the last transfer in a read burst.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P442	S_AXI_ACP_RVALID	SAXIACPRVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P443	S_AXI_ACP_RREADY	SAXIACPRREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P444	S_AXI_ACP_AWQOS[3:0]	SAXIACPAWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P445	S_AXI_ACP_ARQOS[3:0]	SAXIACPARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P446	S_AXI_ACP_AWUSER[4:0]	SAXIACPARUSER[4:0]	ı	User pins to inform the SCU about the cacheable nature of the transaction-sharable inner cache policy.
P447	S_AXI_ACP_ARUSER[4:0]	SAXIACPARUSER[4:0]	ı	User pins to inform the SCU about the cacheable nature of the transaction-sharable inner cache policy.
PS SI	ave, PL Master - High Perfe	ormance Port - S_AXI_HP0	1	
P447	S_AXI_HP0_ACLK	SAXIHP0ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P448	S_AXI_HP0_ARESETN	SAXIHP0ARESETN	0	Global reset signal. This signal is active-Low.
P449	S_AXI_HP0_AWID[C_S_AXI_ HP0_ID_WIDTH-1:0]	SAXIHP0AWID[5:0]	I	Write ID.
P450	S_AXI_HP0_AWADDR[31:0]	SAXIHP0AWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P451	S_AXI_HP0_AWLEN[3:0]	SAXIHP0AWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P452	S_AXI_HP0_AWSIZE[2:0]	SAXIHP0AWSIZE[1:0]	I	Burst size. S_AXI_HP0_AWSIZE[2] is not used.
P453	S_AXI_HP0_AWBURST[1:0]	SAXIHP0AWBURST[1:0]	ı	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P454	S_AXI_HP0_AWLOCK[1:0]	SAXIHP0AWLOCK[1:0]	ı	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P455	S_AXI_HP0_AWCACHE[3:0]	SAXIHP0AWCACHE[3:0]	ı	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P456	S_AXI_HP0_AWPROT[2:0]	SAXIHP0AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P457	S_AXI_HP0_AWVALID	SAXIHP0AWVALID	1	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P458	S_AXI_HP0_AWREADY	SAXIHP0AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P459	S_AXI_HP0_WID[C_S_AXI_ HP0_ID_WIDTH-1:0]	SAXIHP0WID[5:0]	ı	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P460	S_AXI_HP0_WDATA[C_S_AXI_ HP0_DATA_WIDTH-1:0]	SAXIHP0WDATA[63:0]	I	Write data.
P461	S_AXI_HP0_WSTRB[(C_S_ AXI_HP0_DATA_WIDTH/8)-1:0]	SAXIHP0WSTRB[7:0]	I	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)].
P462	S_AXI_HP0_WLAST	SAXIHP0WLAST	I	Write last. This signal indicates the last transfer in a write burst.
P463	S_AXI_HP0_WVALID	SAXIHP0WVALID	I	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P464	S_AXI_HP0_WREADY	SAXIHP0WREADY	0	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P465	S_AXI_HP0_BID[C_S_AXI_ HP0_ID_WIDTH-1:0]	SAXIHP0BID[5:0]	0	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P466	S_AXI_HP0_BRESP[1:0]	SAXIHP0BRESP[1:0]	0	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P467	S_AXI_HP0_BVALID	SAXIHP0BVALID	0	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P468	S_AXI_HP0_BREADY	SAXIHP0BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P469	S_AXI_HP0_ARID[C_S_AXI_ HP0_ID_WIDTH-1:0]	SAXIHP0ARID[5:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P470	S_AXI_HP0_ARADDR[31:0]	SAXIHP0ARADDR[31:0]	ı	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P471	S_AXI_HP0_ARLEN[3:0]	SAXIHP0ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P472	S_AXI_HP0_ARSIZE[2:0]	SAXIHP0ARSIZE[1:0]	I	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_HP0_ARSIZE[2] is not used.
P473	S_AXI_HP0_ARBURST[1:0]	SAXIHP0ARBURST[1:0]	ı	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P474	S_AXI_HP0_ARLOCK[1:0]	SAXIHP0ARLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P475	S_AXI_HP0_ARCACHE[3:0]	SAXIHP0ARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P476	S_AXI_HP0_ARPROT[2:0]	SAXIHP0ARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.
P477	S_AXI_HP0_ARVALID	SAXIHP0ARVALID	1	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P478	S_AXI_HP0_ARREADY	SAXIHP0ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P479	S_AXI_HP0_RID[C_S_AXI_ HP0_ID_WIDTH-1:0]	SAXIHP0RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P480	S_AXI_HP0_RDATA[C_S_AXI_ HP0_DATA_WIDTH-1:0]	SAXIHPORDATA[63:0]	0	Read data.
P481	S_AXI_HP0_RRESP[1:0]	SAXIHP0RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P482	S_AXI_HP0_RLAST	SAXIHP0RLAST	0	Read last. This signal indicates the last transfer in a read burst.
P483	S_AXI_HP0_RVALID	SAXIHP0RVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P484	S_AXI_HP0_RREADY	SAXIHP0RREADY	1	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P485	S_AXI_HP0_AWQOS[3:0]	SAXIHP0AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P486	S_AXI_HP0_ARQOS[3:0]	SAXIHP0ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P487	S_AXI_HP0_WCOUNT[7:0]	SAXIHP0WCOUNT[7:0]	0	Write Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P488	S_AXI_HP0_WRISSUECAP1EN	SAXIHP0WRISSUECAP1EN	I	Write Issuing capability of AFI. 1-selects wrlssuing Cap APB register 1

Table 1: I/O Signals (Cont'd)

	7. I/O Signals (Contu)			
Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P489	S_AXI_HP0_WACOUNT[7:0]	SAXIHP0WACOUNT[7:0]	0	
P490	S_AXI_HP0_RCOUNT[7:0]	SAXIHP0RCOUNT[7:0]	0	Read Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P491	S_AXI_HP0_RACOUNT[7:0]	SAXIHP0RACOUNT[7:0]	0	
P492	S_AXI_HP0_RDISSUECAP1EN	SAXIHP0RDISSUECAP1EN	I	Read Issuing capability of AFI. 1-selects rd Issuing Cap APB register 1
PS SI	ave, PL Master - High Perfo	ormance Port - S_AXI_HP1	•	
P493	S_AXI_HP1_ACLK	SAXIHP1ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P494	S_AXI_HP1_ARESETN	SAXIHP1ARESETN	0	Global reset signal. This signal is active- Low.
P495	S_AXI_HP1_AWID[C_S_AXI_ HP1_ID_WIDTH-1:0]	SAXIHP1AWID[5:0]	I	Write ID.
P496	S_AXI_HP1_AWADDR[31:0]	SAXIHP1AWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P497	S_AXI_HP1_AWLEN[3:0]	SAXIHP1AWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P498	S_AXI_HP1_AWSIZE[2:0]	SAXIHP1AWSIZE[1:0]	I	Burst size. S_AXI_HP1_AWSIZE[2] is not used.
P499	S_AXI_HP1_AWBURST[1:0]	SAXIHP1AWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P500	S_AXI_HP1_AWLOCK[1:0]	SAXIHP1AWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P491	S_AXI_HP1_AWCACHE[3:0]	SAXIHP1AWCACHE[3:0]	I	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P492	S_AXI_HP1_AWPROT[2:0]	SAXIHP1AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P493	S_AXI_HP1_AWVALID	SAXIHP1AWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P494	S_AXI_HP1_AWREADY	SAXIHP1AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P495	S_AXI_HP1_WID[C_S_AXI_ HP1_ID_WIDTH-1:0]	SAXIHP1WID[5:0]	1	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P496	S_AXI_HP1_WDATA[C_S_AXI_ HP1_DATA_WIDTH-1:0]	SAXIHP1WDATA[63:0]	I	Write data.
P497	S_AXI_HP1_WSTRB[(C_S_ AXI_HP1_DATA_WIDTH/8)-1:0]	SAXIHP1WSTRB[7:0]	I	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)].
P498	S_AXI_HP1_WLAST	SAXIHP1WLAST	I	Write last. This signal indicates the last transfer in a write burst.
P499	S_AXI_HP1_WVALID	SAXIHP1WVALID	I	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P500	S_AXI_HP1_WREADY	SAXIHP1WREADY	О	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P501	S_AXI_HP1_BID[C_S_AXI_ HP1_ID_WIDTH-1:0]	SAXIHP1BID[5:0]	О	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P502	S_AXI_HP1_BRESP[1:0]	SAXIHP1BRESP[1:0]	O	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.

www.xilinx.com

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P503	S_AXI_HP1_BVALID	SAXIHP1BVALID	0	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P504	S_AXI_HP1_BREADY	SAXIHP1BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P505	S_AXI_HP1_ARID[C_S_AXI_ HP1_ID_WIDTH-1:0]	SAXIHP1ARID[5:0]	ı	Read address ID. This signal is the identification tag for the read address group of signals.
P506	S_AXI_HP1_ARADDR[31:0]	SAXIHP1ARADDR[31:0]	4	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P507	S_AXI_HP1_ARLEN[3:0]	SAXIHP1ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P508	S_AXI_HP1_ARSIZE[2:0]	SAXIHP1ARSIZE[1:0]	ı	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_HP1_ARSIZE[2] is not used.
P509	S_AXI_HP1_ARBURST[1:0]	SAXIHP1ARBURST[1:0]	ı	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P510	S_AXI_HP1_ARLOCK[1:0]	SAXIHP1ARLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P511	S_AXI_HP1_ARCACHE[3:0]	SAXIHP1ARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P512	S_AXI_HP1_ARPROT[2:0]	SAXIHP1ARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.
P513	S_AXI_HP1_ARVALID	SAXIHP1ARVALID	1	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P514	S_AXI_HP1_ARREADY	SAXIHP1ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P515	S_AXI_HP1_RID[C_S_AXI_ HP1_ID_WIDTH-1:0]	SAXIHP1RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P516	S_AXI_HP1_RDATA[C_S_AXI_ HP1_DATA_WIDTH-1:0]	SAXIHP1RDATA[63:0]	0	Read data
P517	S_AXI_HP1_RRESP[1:0]	SAXIHP1RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P518	S_AXI_HP1_RLAST	SAXIHP1RLAST	0	Read last. This signal indicates the last transfer in a read burst.
P519	S_AXI_HP1_RVALID	SAXIHP1RVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P520	S_AXI_HP1_RREADY	SAXIHP1RREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P521	S_AXI_HP1_AWQOS[3:0]	SAXIHP1AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P522	S_AXI_HP1_ARQOS[3:0]	SAXIHP1ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P523	S_AXI_HP1_WCOUNT[7:0]	SAXIHP1WCOUNT[7:0]	0	Write Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P524	S_AXI_HP1_WRISSUECAP1EN	SAXIHP1WRISSUECAP1EN	I	Write Issuing capability of AFI. 1-selects wrlssuing Cap APB register 1
P525	S_AXI_HP1_WACOUNT[7:0]	SAXIHP1WACOUNT[7:0]	0	
P526	S_AXI_HP1_RCOUNT[7:0]	SAXIHP1RCOUNT[7:0]	0	Read Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P527	S_AXI_HP1_RACOUNT[7:0]	SAXIHP1RACOUNT[7:0]	0	
P528	S_AXI_HP1_RDISSUECAP1EN	SAXIHP1RDISSUECAP1EN	I	Read Issuing capability of AFI. 1-selects rd Issuing Cap APB register 1

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
PS SI	ave, PL Master - High Per	formance Port - S_AXI_HP2	<u> </u>	
P529	S_AXI_HP2_ACLK	SAXIHP2ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P530	S_AXI_HP2_ARESETN	SAXIHP2ARESETN	0	Global reset signal. This signal is active-Low.
P531	S_AXI_HP2_AWID[C_S_AXI_ HP2_ID_WIDTH-1:0]	SAXIHP2AWID[5:0]	I	Write ID.
P532	S_AXI_HP2_AWADDR[31:0]	SAXIHP2AWADDR[31:0]	ı	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.
P533	S_AXI_HP2_AWLEN[3:0]	SAXIHP2AWLEN[3:0]	1	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P534	S_AXI_HP2_AWSIZE[2:0]	SAXIHP2AWSIZE[1:0]	I	Burst size. S_AXI_HP2_AWSIZE[2] is not used.
P535	S_AXI_HP2_AWBURST[1:0]	SAXIHP2AWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P536	S_AXI_HP2_AWLOCK[1:0]	SAXIHP2AWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P537	S_AXI_HP2_AWCACHE[3:0]	SAXIHP2AWCACHE[3:0]	1	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P538	S_AXI_HP2_AWPROT[2:0]	SAXIHP2AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P539	S_AXI_HP2_AWVALID	SAXIHP2AWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P540	S_AXI_HP2_AWREADY	SAXIHP2AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P541	S_AXI_HP2_WID[C_S_AXI_ HP2_ID_WIDTH-1:0]	SAXIHP2WID[5:0]	I	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P542	S_AXI_HP2_WDATA[C_S_AXI_ HP2_DATA_WIDTH-1:0]	SAXIHP2WDATA[63:0]	ı	Write data.
P543	S_AXI_HP2_WSTRB[(C_S_ AXI_HP2_DATA_WIDTH/8)-1:0]	SAXIHP2WSTRB[7:0]	I	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)],
P544	S_AXI_HP2_WLAST	SAXIHP2WLAST	ı	Write last. This signal indicates the last transfer in a write burst.
P545	S_AXI_HP2_WVALID	SAXIHP2WVALID	ı	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P546	S_AXI_HP2_WREADY	SAXIHP2WREADY	0	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P547	S_AXI_HP2_BID[C_S_AXI_ HP2_ID_WIDTH-1:0]	SAXIHP2BID[5:0]	0	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P548	S_AXI_HP2_BRESP[1:0]	SAXIHP2BRESP[1:0]	0	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P549	S_AXI_HP2_BVALID	SAXIHP2BVALID	0	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P550	S_AXI_HP2_BREADY	SAXIHP2BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P551	S_AXI_HP2_ARID[C_S_AXI_ HP2_ID_WIDTH-1:0]	SAXIHP2ARID[5:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P552	S_AXI_HP2_ARADDR[31:0]	SAXIHP2ARADDR[31:0]	1	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P553	S_AXI_HP2_ARLEN[3:0]	SAXIHP2ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.
P554	S_AXI_HP2_ARSIZE[2:0]	SAXIHP2ARSIZE[1:0]	ı	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_HP2_ARSIZE[2] is not used.
P555	S_AXI_HP2_ARBURST[1:0]	SAXIHP2ARBURST[1:0]	ı	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P556	S_AXI_HP2_ARLOCK[1:0]	SAXIHP2ARLOCK[1:0]	ı	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P557	S_AXI_HP2_ARCACHE[3:0]	SAXIHP2ARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P558	S_AXI_HP2_ARPROT[2:0]	SAXIHP2ARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.
P559	S_AXI_HP2_ARVALID	SAXIHP2ARVALID	I	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P560	S_AXI_HP2_ARREADY	SAXIHP2ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P561	S_AXI_HP2_RID[C_S_AXI_ HP2_ID_WIDTH-1:0]	SAXIHP2RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.

Table 1: I/O Signals (Cont'd)

	,			
Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P562	S_AXI_HP2_RDATA[C_S_AXI_ HP2_DATA_WIDTH-1:0]	SAXIHP2RDATA[63:0]	0	Read data.
P563	S_AXI_HP2_RRESP[1:0]	SAXIHP2RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR
P564	S_AXI_HP2_RLAST	SAXIHP2RLAST	0	Read last. This signal indicates the last transfer in a read burst.
P565	S_AXI_HP2_RVALID	SAXIHP2RVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available
P566	S_AXI_HP2_RREADY	SAXIHP2RREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready
P567	S_AXI_HP2_AWQOS[3:0]	SAXIHP2AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P568	S_AXI_HP2_ARQOS[3:0]	SAXIHP2ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.
P569	S_AXI_HP2_WCOUNT[7:0]	SAXIHP2WCOUNT[7:0]	0	Write Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P570	S_AXI_HP2_WRISSUECAP1EN	SAXIHP2WRISSUECAP1EN	I	Write Issuing capability of AFI. 1-selects wrlssuing Cap APB register 1
P571	S_AXI_HP2_WACOUNT[7:0]	SAXIHP2WACOUNT[7:0]	0	
P572	S_AXI_HP2_RCOUNT[7:0]	SAXIHP2RCOUNT[7:0]	0	Read Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords
P573	S_AXI_HP2_RACOUNT[7:0]	SAXIHP2RACOUNT[7:0]	0	
P574	S_AXI_HP2_RDISSUECAP1EN	SAXIHP2RDISSUECAP1EN	I	Read Issuing capability of AFI. 1-selects rd Issuing Cap APB register 1
PS SI	ave, PL Master - High Perfo	ormance Port - S_AXI_HP3		
P575	S_AXI_HP3_ACLK	SAXIHP3ACLK	I	Global clock signal. All signals are sampled on the rising edge of the global clock.
P576	S_AXI_HP3_ARESETN	SAXIHP3ARESETN	0	Global reset signal. This signal is active-Low.
P577	S_AXI_HP3_AWID[C_S_AXI_ HP3_ID_WIDTH-1:0]	SAXIHP3AWID[5:0]	I	Write ID.
P578	S_AXI_HP3_AWADDR[31:0]	SAXIHP3AWADDR[31:0]	I	Write address. The write address bus gives the address of the first transfer in a write burst transaction. The associated control signals are used to determine the addresses of the remaining transfers in the burst.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P579	S_AXI_HP3_AWLEN[3:0]	SAXIHP3AWLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This signal indicates the size of each transfer in the burst. Byte lane strobes indicate exactly which byte lanes to update.
P580	S_AXI_HP3_AWSIZE[2:0]	SAXIHP3AWSIZE[1:0]	I	Burst size. S_AXI_HP3_AWSIZE[2] is not used.
P581	S_AXI_HP3_AWBURST[1:0]	SAXIHP3AWBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P582	S_AXI_HP3_AWLOCK[1:0]	SAXIHP3AWLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P583	S_AXI_HP3_AWCACHE[3:0]	SAXIHP3AWCACHE[3:0]	I	Cache type. This signal indicates the bufferable cacheable write-through write back and allocates attributes of the transaction.
P584	S_AXI_HP3_AWPROT[2:0]	SAXIHP3AWPROT[2:0]	I	Protection type. This signal indicates the normal privileged or secure protection level of the transaction and whether the transaction is a data access or an instruction access.
P585	S_AXI_HP3_AWVALID	SAXIHP3AWVALID	I	Write address valid. This signal indicates that valid write address and control information are available: 1: Address and control information available 0: Address and control information not available The address and control information remain stable until the address acknowledge signal AWREADY goes High.
P586	S_AXI_HP3_AWREADY	SAXIHP3AWREADY	0	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready.
P587	S_AXI_HP3_WID[C_S_AXI_ HP3_ID_WIDTH-1:0]	SAXIHP3WID[5:0]	I	Write ID tag. This signal is the ID tag of the write data transfer. The WID value must match the AWID value of the write transaction.
P588	S_AXI_HP3_WDATA[C_S_AXI_ HP3_DATA_WIDTH-1:0]	SAXIHP3WDATA[63:0]	I	Write data.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P589	S_AXI_HP3_WSTRB[(C_S_AXI _HP3_DATA_WIDTH/8)-1:0]	SAXIHP3WSTRB[7:0]	ı	Write strobes. This signal indicates which byte lanes to update in memory. There is one write strobe for each eight bits of the write data bus. Therefore WSTRB[n] corresponds toWDATA[(8 x n) + 7:(8 x n)].
P590	S_AXI_HP3_WLAST	SAXIHP3WLAST	I	Write last. This signal indicates the last transfer in a write burst.
P591	S_AXI_HP3_WVALID	SAXIHP3WVALID	1	Write valid. This signal indicates that valid write data and strobes are available. 1: Write data and strobes available 0: Write data and strobes not available.
P592	S_AXI_HP3_WREADY	SAXIHP3WREADY	O	Write ready. This signal indicates that the slave can accept the write data. 1: Slave ready 0: Slave not ready
P593	S_AXI_HP3_BID[C_S_AXI_HP3 _ID_WIDTH-1:0]	SAXIHP3BID[5:0]	O	Response ID. The identification tag of the write response. The BID value must match the AWID value of the write transaction to which the slave is responding.
P594	S_AXI_HP3_BRESP[1:0]	SAXIHP3BRESP[1:0]	O	Write response. This signal indicates the status of the write transaction. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR.
P595	S_AXI_HP3_BVALID	SAXIHP3BVALID	0	Write response valid. This signal indicates that a valid write response is available. 1: Write response available 0: Write response not available
P596	S_AXI_HP3_BREADY	SAXIHP3BREADY	I	Response ready. This signal indicates that the master can accept the response information. 1: Master ready 0: Master not ready
P597	S_AXI_HP3_ARID[C_S_AXI_ HP3_ID_WIDTH-1:0]	SAXIHP3ARID[5:0]	I	Read address ID. This signal is the identification tag for the read address group of signals.
P598	S_AXI_HP3_ARADDR[31:0]	SAXIHP3ARADDR[31:0]	1	Read address. The read address bus gives the initial address of a read burst transaction. Only the start address of the burst is provided and the control signals that are issued alongside the address detail how the address is calculated for the remaining transfers in the burst.
P599	S_AXI_HP3_ARLEN[3:0]	SAXIHP3ARLEN[3:0]	I	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address.

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P600	S_AXI_HP3_ARSIZE[2:0]	SAXIHP3ARSIZE[1:0]	I	Burst size. This signal indicates the size of each transfer in the burst. S_AXI_HP3_ARSIZE[2] is not used.
P601	S_AXI_HP3_ARBURST[1:0]	SAXIHP3ARBURST[1:0]	I	Burst type. The burst type coupled with the size information details how the address for each transfer within the burst is calculated.
P602	S_AXI_HP3_ARLOCK[1:0]	SAXIHP3ARLOCK[1:0]	I	Lock type. This signal provides additional information about the atomic characteristics of the transfer.
P603	S_AXI_HP3_ARCACHE[3:0]	SAXIHP3ARCACHE[3:0]	I	Cache type. This signal provides additional information about the cacheable characteristics of the transfer.
P604	S_AXI_HP3_ARPROT[2:0]	SAXIHP3ARPROT[2:0]	I	Protection type. This signal provides protection unit information for the transaction.
P605	S_AXI_HP3_ARVALID	SAXIHP3ARVALID	I	Read address valid. This signal indicates when High that the read address and control information is valid and remains stable until the address acknowledge signal ARREADY is High. 1: Address and control information valid 0: Address and control information not valid
P606	S_AXI_HP3_ARREADY	SAXIHP3ARREADY	0	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. 1: Slave ready 0: Slave not ready
P607	S_AXI_HP3_RID[C_S_AXI_HP3 _ID_WIDTH-1:0]	SAXIHP3RID[5:0]	0	Read ID tag. This signal is the ID tag of the read data group of signals. The RID value is generated by the slave and must match the ARID value of the read transaction to which it is responding.
P608	S_AXI_HP3_RDATA[C_S_AXI_ HP3_DATA_WIDTH-1:0]	SAXIHP3RDATA[63:0]	0	Read data.
P609	S_AXI_HP3_RRESP[1:0]	SAXIHP3RRESP[1:0]	0	Read response. This signal indicates the status of the read transfer. The allowable responses are OKAY, EXOKAY, SLVERR, and DECERR
P610	S_AXI_HP3_RLAST	SAXIHP3RLAST	0	Read last. This signal indicates the last transfer in a read burst.
P611	S_AXI_HP3_RVALID	SAXIHP3RVALID	0	Read valid. This signal indicates that the required read data is available and the read transfer can complete. 1: Read data available 0: Read data not available

Table 1: I/O Signals (Cont'd)

	Processing System 7 I/O Trung 7000 DS7 I/O Nome I/O December 1/O Decem						
Port	Name	Zynq-7000 PS7 I/O Name	I/O	Description			
P612	S_AXI_HP3_RREADY	SAXIHP3RREADY	I	Read ready. This signal indicates that the master can accept the read data and response information. 1: Master read 0: Master not ready			
P613	S_AXI_HP3_AWQOS[3:0]	SAXIHP3AWQOS[3:0]	I	Wr QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.			
P614	S_AXI_HP3_ARQOS[3:0]	SAXIHP3ARQOS[3:0]	I	Rd QOS bits. 4'hf is highest priority, 4'h0 is lowest priority.			
P615	S_AXI_HP3_WCOUNT[7:0]	SAXIHP3WCOUNT[7:0]	0	Write Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords			
P616	S_AXI_HP3_WRISSUECAP1EN	SAXIHP3WRISSUECAP1EN	I	Write Issuing capability of AFI. 1-selects wrlssuing Cap APB register 1			
P617	S_AXI_HP3_WACOUNT[7:0]	SAXIHP3WACOUNT[7:0]	0				
P618	S_AXI_HP3_RCOUNT[7:0]	SAXIHP3RCOUNT[7:0]	0	Read Data FIFO fill level. 7'b000_0001=1 Qword 7'b100_0000=64 Qwords			
P619	S_AXI_HP3_RACOUNT[7:0]	SAXIHP3RACOUNT[7:0]	0				
P670	S_AXI_HP3_RDISSUECAP1EN	SAXIHP3RDISSUECAP1EN	I	Read Issuing capability of AFI. 1-selects rd Issuing Cap APB register 1.			
PS CI	ock and Reset			-			
P671	PS_CLK	PSCLK	I	PS_CLK is the PS reference clock input.			
P672	PS_POR_B	PSPORB	I	PS_POR_B is used to hold the PS in reset until all PS power supplies are at required voltage levels.			
P673	PS_SRST_B	PSSRSTB	I	PS_SRST_B is used to force a PS system reset.			
Multip	olexed IO						
P674	MIO[53:0]	MIO[53:0]	Ю	Input/Output ports of the PS			
DDR I	0			-			
P675	DDR_Addr[14:0]	DDRA[14:0]	0	Address			
P676	DDR_BankAddr[2:0]	DDRBA[2:0]	0	Bank Address			
P677	DDR_CAS_n	DDRCASB	0	Column address select			
P678	DDR_CKE	DDRCKE	0	Clock enable			
P679	DDR_Clk_n	DDRCKN	0	Differential clock			
P680	DDR_CIk	DDRCKP	0	Differential clock			
P681	DDR_CS_n	DDRCSB	0	Chip select			
P682	DDR_DM[3:0]	DDRDM[3:0]	0	Data mask			
P683	DDR_DQ[31:0]	DDRDQ[31:0]	Ю	Data			
P684	DDR_DQS_n[3:0]	DDRDQSN[3:0]	Ю	Differential data strobe			
P685	DDR_DQS[3:0]	DDRDQSP[3:0]	Ю	Differential data strobe			
P686	DDR_DRSTB	DDRDRSTB	0	Reset			

Table 1: I/O Signals (Cont'd)

Port	Processing System 7 I/O Name	Zynq-7000 PS7 I/O Name	I/O	Description
P687	DDR_ODT	DDRODT	0	Output dynamic termination
P688	DDR_RAS_n	DDRRASB	0	Row address select
P689	DDR_VRN	DDRVRN	Ю	Used to calibrate input termination
P690	DDR_VRP	DDRVRP	Ю	Used to calibrate input termination
P691	DDR_WEB	DDRWEB		

Parameters

The Processing System 7 device can be parameterized for individual applications. Parameters related to enabling of interfaces or functions reflect the state of the Zynq-7000 device configuration and are not user-editable in the MHS file. The Zynq-7000 device configuration wizard available in the ZYNQ tab of XPS should be used to update the parameters mentioned in Table 2.

These parameter are updated in the Zynq configuration wizard (zynq tab). Ports related to specific peripherals are either valid or invalid. Invalid ports are not visible in the system GUI. Moreover the PCW database uses these parameters to initiate register write operation in the ps7_init.tcl or fsbl.

Table 2: Processing System 7 Design Parameters

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G1	C_Processing System 7_SI_REV	Revision of Zynq-7000 EPP silicon	PRODUCTION, 1.0, 2.0, 3.0	PRODUCTION	String
G2	C_USE_TRACE	Trace Ports are valid when this parameter value is 1.	0, 1	0	Integer
G3	C_USE_CROSS_ TRIGGER	Ports used to integrate PL triggers into SOC cross triggering system are valid when this parameter value is 1.	0, 1	0	Integer
G4	C_USE_CR_FABRIC	PS to PL clock, PL reset port is valid when this parameter value is 1.	0, 1	1	Integer
G5	C_USE_AXI_FABRIC_IDLE	PL idle Port is valid when this parameter value is 1.	0, 1	1	Integer
G6	C_USE_DDR_BYPASS	DDR arbitration bypass signal for four DDR ports are valid when this parameter value is 1.	0, 1	0	Integer
G7	C_USE_FABRIC_INTERRUPT	PL interrupts ports are valid when this parameter value is 1.	0, 1	0	Integer
G8	C_USE_PROC_EVENT_BUS	Processor event bus are valid when this parameter value is 1.	0, 1	0	Integer

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G9	C_EN_QSPI	Quad-SPI interrupt pin to PL is valid when this parameter value is 1 along with G7 = 1.	0, 1	0	Integer
G10	C_EN_SMC	SMC interrupt pin to PL is valid when this parameter value is 1 along with G7 = 1.	0, 1	0	Integer
G11	C_EN_EMIO_SRAM_INT	PL interrupt pin to SRAM is valid when this parameter value is 1.	0, 1	0	Integer
G12	C_INCLUDE_ACP_TRANS_ CHECK	Include ATC (ACP transaction checker)	0, 1	0	Integer
CANO Pa	arameters				
G13	C_EN_CAN0	CAN0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G14	C_EN_EMIO_CAN0	EMIO CAN0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G15	C_CAN0_BASEADDR	Base address of CAN0 control registers	Constant	0xE0008000	std_logic_vector
G16	C_CAN0_HIGHADDR	High address of CAN0 control registers	Constant	0xE0008FFF	std_logic_vector
CAN1 Pa	arameters		T.	1	
G17	C_EN_CAN1	CAN1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G18	C_EN_EMIO_CAN1	EMIO CAN1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G19	C_CAN1_BASEADDR	Base address of CAN1 control registers	Constant	0xE0009000	std_logic_vector
G20	C_CAN1_HIGHADDR	High address of CAN1 control registers	Constant	0xE0009FFF	std_logic_vector
ENETO F	Parameters				
G21	C_EN_ENET0	ENET0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G22	C_EN_EMIO_ENET0	EMIO ENET0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G23	C_ENET0_BASEADDR	Base address of ENET0 control registers	Constant	0xE000B000	std_logic_vector
G24	C_ENETO_ HIGHADDR	High address of ENET0 control registers	Constant	0xE000BFFF	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
ENET1 F	Parameters				
G25	C_EN_ENET1	ENET1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G26	C_EN_EMIO_ENET1	EMIO ENET1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G27	C_ENET1_BASEADDR	Base address of ENET1 control registers	Constant	0xE000C000	std_logic_vector
G28	C_ENET1_HIGHADDR	High address of ENET1 control registers	Constant	0xE000CFFF	std_logic_vector
GPIO Pa	rameters	'		,	'
G29	C_EN_GPIO	GPIO0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G30	C_EN_EMIO_GPIO	EMIO GPIO ports are valid when this parameter value is 1.	0, 1	0	Integer
G31	C_EMIO_GPIO_WIDTH	The width of GPIO ports	1:64	64	Integer
G32	C_GPIO_BASEADDR	Base address of GPIO control registers	Constant	0xE000A000	std_logic_vector
G33	C_GPIO_HIGHADDR	High address of GPIO control registers	Constant	0xE000AFFF	std_logic_vector
I2C0 Pai	rameters		II.	<u> </u>	-
G34	C_EN_I2C0	I2C0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G35	C_EN_EMIO_I2C0	EMIO I2C0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G36	C_I2C0_BASEADDR	Base address of I2C0 control registers	Constant	0xE0004000	std_logic_vector
G37	C_I2C0_HIGHADDR	High address of I2C0 control registers	Constant	0xE0004FFF	std_logic_vector
I2C1 Pai	ameters				
G38	C_EN_I2C1	I2C1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G39	C_EN_EMIO_I2C1	EMIO I2C1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G40	C_I2C1_BASEADDR	Base address of I2C1 control registers	Constant	0xE0005000	std_logic_vector
G41	C_I2C1_HIGHADDR	High address of I2C1 control registers	Constant	0xE0005FFF	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
PJTAG F	Parameters	<u> </u>			
G42	C_EN_PJTAG	PJTAG interface is enabled when this parameter is 1.	0, 1	0	Integer
G43	C_EN_EMIO_PJTAG	EMIO PJTAG ports are enabled when this parameter is 1.	0, 1	0	Integer
SDIO0 P	arameters				
G44	C_EN_SDIO0	SDIO0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G45	C_EN_EMIO_SDIO0	EMIO SDIO 0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G46	C_SDIO0_BASEADDR	Base address of SDIO0 control registers	Constant	0xE0100000	std_logic_vector
G47	C_SDIO0_HIGHADDR	High address of SDIO0 control registers	Constant	0xE0100FFF	std_logic_vector
SDIO1 P	arameters				-
G48	C_EN_SDIO1	SDIO1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G49	C_EN_EMIO_SDIO1	EMIO SDIO1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G50	C_SDIO1_BASEADDR	Base address of SDIO1 control registers	Constant	0xE0101000	std_logic_vector
G51	C_SDIO1_HIGHADDR	High address of SDIO1 control registers	Constant	0xE0101FFF	std_logic_vector
SPI0 Pai	rameters				-
G52	C_EN_SPI0	SPI0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G53	C_EN_EMIO_SPI0	EMIO SPIO0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G54	C_SPI0_BASEADDR	Base address of SPI0 control registers	Constant	0xE0006000	std_logic_vector
G55	C_SPI0_HIGHADDR	High address of SPI0 control registers	Constant	0xE0006FFF	std_logic_vector
SPI1 Pai	rameters				
G56	C_EN_SPI1	SPI1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G57	C_EN_EMIO_SPI1	EMIO SPI1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G58	C_SPI1_BASEADDR	Base address of SPI1 control registers	Constant	0xE0007000	std_logic_vector
G59	C_SPI1_HIGHADDR	High address of SPI1 control registers	Constant	0xE0007FFF	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
UARTO F	Parameters				
G60	C_EN_UART0	UART0 interface is enabled when this parameter is 1.	0, 1	0	Integer
G61	C_EN_EMIO_UART0	EMIO UART0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G62	C_UARTO_BASEADDR	Base address of UATRT0 control registers	Constant	0xE0000000	std_logic_vector
G63	C_UART0_HIGHADDR	High address of UART0 control registers	Constant	0xE0000FFF	std_logic_vector
G64	C_EN_MODEM_UART0	Enable MODEM UART0	0, 1	0	Integer
G65	C_EN_EMIO_MODEM_ UART0	Enable EMIO MODEM UART0	0, 1	0	Integer
UART1 F	Parameters				
G66	C_EN_UART1	UART1 interface is enabled when this parameter is 1.	0, 1	0	Integer
G67	C_EN_EMIO_UART1	EMIO UART1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G68	C_UART1_BASEADDR	Base address of UART1 control registers	Constant	0xE0001000	std_logic_vector
G69	C_UART1_HIGHADDR	High address of UART1 control registers	Constant	0xE0001000	std_logic_vector
G70	C_EN_MODEM_UART1	Enable MODEM UART1	0, 1	0	Integer
G71	C_EN_EMIO_MODEM_ UART1	Enable EMIO MODEM UART1	0, 1	0	Integer
TTC0 Pa	rameters				
G72	C_EN_TTC0	TTC0 interface is enabled when this parameter value is 1.	0, 1	0	Integer
G73	C_EN_EMIO_TTC0	EMIO TTC0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G74	C_TTC0_BASEADDR	Base address of TTC0 registers	Constant	0xE0104000	std_logic_vector
G75	C_TTC0_HIGHADDR	High address of TTC0 control registers	Constant	0xE0104FFF	std_logic_vector
TTC1 Pa	rameters				
G76	C_EN_TTC1	TTC1 interface is enabled when this parameter value is 1.	0, 1	0	Integer
G77	C_EN_EMIO_TTC1	EMIO TTC1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G78	C_TTC1_BASEADDR	Base address of TTC1 registers	Constant	0xE0105000	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G79	C_TTC1_HIGHADDR	High address of TTC1 control registers	Constant	0xE0105FFF	std_logic_vector
WDT Pa	rameters				
G80	C_EN_WDT	WDT interface is enabled when this parameter value is 1.	0, 1	0	Integer
G81	C_EN_EMIO_WDT	EMIO WDT ports are valid when this parameter value is 1.	0, 1	0	Integer
G82	C_EN_TRACE	Enable Trace	0, 1	0	Integer
G83	C_EN_EMIO_TRACE	Enable EMIO Trace	0, 1	0	Integer
USB0 Pa	arameters		П	I .	1
G84	C_EN_USB0	USB0 interface is enabled when this parameter value is 1.	0, 1	0	Integer
G85	C_USB0_BASEADDR	Base address of USB0 control registers	Constant	0xE0102000	std_logic_vector
G86	C_USB0_HIGHADDR	High address of USB0 control registers	Constant	0xE0102FFF	std_logic_vector
USB1 Pa	arameters		1	1	
G87	C_EN_USB1	USB1 interface is enabled when this parameter value is 1.	0, 1	0	Integer
G88	C_USB1_BASEADDR	Base address of USB1 control registers	Constant	0xE0103000	std_logic_vector
G89	C_USB1_HIGHADDR	High address of USB1 control registers	Constant	0xE0103FFF	std_logic_vector
AXI I/O I	Parameters		•		•
G90	C_USE_M_AXI_GP0	M_AXI_GP0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G91	C_USE_M_AXI_GP1	PS M_AXI_GP1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G92	C_USE_S_AXI_GP0	PS S_AXI_GP0 ports are valid when this parameter value is 1.	0, 1	0	Integer
G93	C_USE_S_AXI_GP1	PS S_AXI_GP1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G94	C_USE_S_AXI_ACP	PS S_AXI_ACP ports are valid when this parameter value is 1.	0, 1	0	Integer
G95	C_USE_S_AXI_HP0	PS S_AXI_HP0 ports are valid when this parameter value is 1.	0, 1	0	Integer

www.xilinx.com

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G96	C_USE_S_AXI_HP1	PS S_AXI_HP1 ports are valid when this parameter value is 1.	0, 1	0	Integer
G97	C_USE_S_AXI_HP2	PS S_AXI_HP2 ports are valid when this parameter value is 1.	0, 1	0	Integer
G98	C_USE_S_AXI_HP3	PS S_AXI_HP3 ports are valid when this parameter value is 1.	0, 1	0	Integer
G99	C_S_AXI_GP0_ENABLE_ LOWOCM_DDR	S_AXI_GP0 address range to access low OCM is valid when this parameter value is 1.	0, 1	0	Integer
G100	C_S_AXI_GP1_ENABLE_ LOWOCM_DDR	S_AXI_GP1 address range to access low OCM is valid when this parameter value is 1.	0, 1	0	Integer
G101	C_S_AXI_ACP_ENABLE_ HIGHOCM	S_AXI_ACP address range to access high OCM is valid when this parameter value is 1.	0, 1	0	Integer
G102	C_S_AXI_HP0_ENABLE_ HIGHOCM	S_AXI_HP0 address range to access high OCM is valid when this parameter value is 1.	0, 1	0	Integer
G103	C_S_AXI_HP1_ENABLE_ HIGHOCM	S_AXI_HP1 address range to access high OCM is valid when this parameter value is 1.	0, 1	0	Integer
G104	C_S_AXI_HP2_ENABLE_HIG HOCM	S_AXI_HP2 address range to access high OCM is valid when this parameter value is 1.	0, 1	0	Integer
G105	C_S_AXI_HP3_ENABLE_ HIGHOCM	S_AXI_HP3 address range to access high OCM is valid when this parameter value is 1.	0, 1	0	Integer
DMA Pa	rameters	1	I.		1
G106	C_USE_DMA0	DMA channel 0 ports on PS-PL interface are valid if this parameter value is 1.	0, 1	0	Integer
G107	C_USE_DMA1	Use DMA channel 1 ports on PS-PL interface are valid if this parameter value is 1.	0, 1	0	Integer
G108	C_USE_DMA2	Use DMA channel 2 ports on PS-PL interface are valid if this parameter value is 1.	0, 1	0	Integer

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G109	C_USE_DMA3	Use DMA channel 3 ports on PS-PL interface are valid if this parameter value is 1.	0, 1	0	Integer
DDR Pai	rameters				
G110	C_EN_DDR	DDR ports are valid when this parameter value is 1.	0, 1	0	Integer
G111	C_DDR_RAM_BASEADDR	DDR base address	Constant	0x0000000	std_logic_vector
G112	C_DDR_RAM_HIGHADDR	DDR high address	Range from 0x00000000 to maximum of 0x3FFFFFF	0x3FFFFFF	std_logic_vector
PL Inter	rupt Parameters	1	l.		
G113	C_NUM_F2P_INTR_INPUTS	Number of PLs to processing system interrupts	1:16	2	Integer
FCLK Pa	arameters	1	I.		
G114	C_FCLK_CLK0_FREQ	Frequency of FCLK_CLK0 in hertz	-	0	Integer
G115	C_FCLK_CLK1_FREQ	Frequency of FCLK_CLK1 in hertz	-	0	Integer
G116	C_FCLK_CLK2_FREQ	Frequency of FCLK_CLK2 in hertz	-	0	Integer
G117	C_FCLK_CLK3_FREQ	Frequency of FCLK_CLK3 in hertz	-	0	Integer
G118	C_FCLK_CLK0_BUF	Use buffered FCLK_CLK0 clock when this parameter value id "TRUE"	TRUE, FALSE	TRUE	STRING
G119	C_FCLK_CLK1_BUF	Use buffered FCLK_CLK1 clock when this parameter value id "TRUE"	TRUE, FALSE	TRUE	STRING
G120	C_FCLK_CLK2_BUF	Use buffered FCLK_CLK2 clock when this parameter value id "TRUE"	TRUE, FALSE	TRUE	STRING
G121	C_FCLK_CLK3_BUF	Use buffered FCLK_CLK3 clock when this parameter value id "TRUE"	TRUE, FALSE	TRUE	STRING
M_AXI_0	GP0 Parameters				
G122	C_M_AXI_GP0_PROTOCOL	AXI compliant protocol for M_AXI_GP0	-	AXI3	String
G123	C_M_AXI_GP0_ID_WIDTH	AXI transaction ID Width	12	12	Integer
G124	C_M_AXI_GP0_ADDR_ WIDTH	Address Width	Constant	32	Integer
G125	C_M_AXI_GP0_DATA_WIDTH	Data width	Constant	32	Integer
G126	C_M_AXI_GP0_SUPPORTS_ NARROW_BURST	Enable narrow burst support	0, 1	0	Integer

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G127	C_M_AXI_GP0_SUPPORTS_ REORDERING	Enable AXI transaction reordering	0, 1	0	Integer
G128	C_M_AXI_GP0_SUPPORTS_ THREADS	Enable AXI thread ID support	0, 1	1	Integer
G129	C_M_AXI_GP0_THREAD_ID_ WIDTH	AXI transaction thread ID Width	Constant	12	Integer
M_AXI_0	GP1 Parameters				
G130	C_M_AXI_GP1_PROTOCOL	AXI compliant protocol for M_AXI_GP1	-	AXI3	String
G131	C_M_AXI_GP1_ID_WIDTH	AXI transaction ID Width	12	12	Integer
G132	C_M_AXI_GP1_ADDR_ WIDTH	Address Width	Constant	32	Integer
G133	C_M_AXI_GP1_DATA_WIDTH	Data width	Constant	32	Integer
G134	C_M_AXI_GP0_SUPPORTS_ NARROW_BURST	Enable narrow burst support	0, 1	0	Integer
G135	C_M_AXI_GP1_SUPPORTS_ REORDERING	Enable AXI transaction reordering	0, 1	0	Integer
G136	C_M_AXI_GP1_SUPPORTS_ THREADS	Enable AXI thread ID support	0, 1	1	Integer
G137	C_M_AXI_GP1_THREAD_ID_ WIDTH	AXI transaction thread ID Width	Constant	12	Integer
S_AXI_C	SP0 Parameters		1	1	
G138	C_S_AXI_GP0_PROTOCOL	AXI compliant protocol for S_AXI_GP0	-	AXI3	String
G139	C_S_AXI_GP0_ID_WIDTH	AXI transaction ID Width	1:6	6	Integer
G140	C_S_AXI_GP0_ADDR_WIDTH	Address Width	Constant	32	Integer
G141	C_S_AXI_GP0_DATA_WIDTH	Data width	Constant	32	Integer
G142	C_S_AXI_GP0_BASEADDR	S_AXI_GP0 base address	Constant	0xE0000000	std_logic_vector
G143	C_S_AXI_GP0_HIGHADDR	S_AXI_GP0 high address	Constant	0xFFFFFFF	std_logic_vector
G144	C_S_AXI_GP0_LOWOCM_ DDR_BASEADDR	S_AXI_GP0 base address for low OCM and DDR address range	Range from 0x00000000 to 0x3FFFFFF	0x00000000	std_logic_vector
G145	C_S_AXI_GP0_LOWOCM_ DDR_HIGHADDR	S_AXI_GP0 high address for low OCM and DDR address range	Range from 0x00000000 to 0x3FFFFFFF	0x3FFFFFF	std_logic_vector
S_AXI_C	P1 Parameters		-	-	
G146	C_S_AXI_GP1_PROTOCOL	AXI compliant protocol for S_AXI_GP1	-	AXI3	String
G147	C_S_AXI_GP1_ID_WIDTH	AXI transaction ID Width	1:6	6	Integer
G148	C_S_AXI_GP1_ADDR_WIDTH	Address Width	Constant	32	Integer
G149	C_S_AXI_GP1_DATA_WIDTH	Data width	Constant	32	Integer
G150	C_S_AXI_GP1_BASEADDR	S_AXI_GP1base address	Constant	0xE0000000	std_logic_vector
G151	C_S_AXI_GP1_HIGHADDR	S_AXI_GP1 high address	Constant	0xFFFFFFF	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G152	C_S_AXI_GP1_LOWOCM_ DDR_BASEADDR	S_AXI_GP1 base address for low OCM and DDR address range	Range from 0x000000000 to 0x3FFFFFFF	0x00000000	std_logic_vector
G153	C_S_AXI_GP1_LOWOCM_ DDR_HIGHADDR	S_AXI_GP1 high address for low OCM and DDR address range	Range from 0x00000000 to 0x3FFFFFFF	0x3FFFFFF	std_logic_vector
S_AXI_A	ACP Parameters		T.		
G154	C_S_AXI_ACP_PROTOCOL	AXI compliant protocol for S_AXI_ACP	-	AXI3	String
G155	C_S_AXI_ACP_ID_WIDTH	AXI transaction ID Width	1:3	3	Integer
G156	C_S_AXI_ACP_ADDR_ WIDTH	Address Width	Constant	32	Integer
G157	C_S_AXI_ACP_DATA_WIDTH	Data width	Constant	64	Integer
G158	C_S_AXI_ACP_SUPPORTS_ USER_SIGNALS	Enable ACP user signal support	0, 1	1	Integer
G159	C_S_AXI_ACP_ARUSER_ WIDTH	Enable read address channel user signals	Constant	5	Integer
G160	C_S_AXI_ACP_AWUSER_ WIDTH	Enable write address channel user signals	Constant	5	Integer
G161	C_S_AXI_ACP_BASEADDR	S_AXI_ACP base address	Range from 0x00000000 to 0x3FFFFFFF	0x00000000	std_logic_vector
G162	C_S_AXI_ACP_HIGHADDR	S_AXI_ACP high address	Range from 0x00000000 to 0x3FFFFFFF	0x3FFFFFF	std_logic_vector
G163	C_S_AXI_ACP_HIGHOCM_ BASEADDR	S_AXI_ACP base address for high OCM and DDR address range	Constant	0xFFFC0000	std_logic_vector
G164	C_S_AXI_ACP_HIGHOCM_ HIGHADDR	S_AXI_ACP high address for high OCM and DDR address range	Constant	0xFFFFFFF	std_logic_vector
S_AXI_H	IP0 Parameters		1	1	
G165	C_S_AXI_HP0_PROTOCOL	AXI compliant protocol for S_AXI_HP0	-	AXI3	String
G166	C_S_AXI_HP0_ID_WIDTH	AXI transaction ID Width	1:6	6	Integer
G167	C_S_AXI_HP0_ADDR_WIDTH	Address Width	Constant	32	Integer
G168	C_S_AXI_HP0_DATA_WIDTH	Data width	32, 64	64	Integer
G169	C_S_AXI_HP0_BASEADDR	S_AXI_HP0 base address	Range from 0x00000000 to 0x3FFFFFF	0x00000000	std_logic_vector
G170	C_S_AXI_HP0_HIGHADDR	S_AXI_HP0 high address	Range from 0x00000000 to 0x3FFFFFF	0x3FFFFFF	std_logic_vector
G171	C_S_AXI_HP0_HIGHOCM_ BASEADDR	S_AXI_HP0 base address for high OCM and DDR address range	Constant	0xFFFC0000	std_logic_vector

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G172	C_S_AXI_HP0_HIGHOCM_ HIGHADDR	S_AXI_HP0 high address for high OCM and DDR address range	Constant	0xFFFFFFF	std_logic_vector
S_AXI_H	IP1 Parameters				
G173	C_S_AXI_HP1_PROTOCOL	AXI compliant protocol for S_AXI_HP1	-	AXI3	String
G174	C_S_AXI_HP1_ID_WIDTH	AXI transaction ID Width	1:6	6	Integer
G175	C_S_AXI_HP1_ADDR_WIDTH	Address Width	Constant	32	Integer
G176	C_S_AXI_HP1_DATA_WIDTH	Data width	32, 64	64	Integer
G177	C_S_AXI_HP1_BASEADDR	S_AXI_HP1 base address	Range from 0x00000000 to 0x3FFFFFFF	0x00000000	std_logic_vector
G178	C_S_AXI_HP1_HIGHADDR	S_AXI_HP1 high address	Range from 0x00000000 to 0x3FFFFFF	0x3FFFFFF	std_logic_vector
G179	C_S_AXI_HP1_HIGHOCM_ BASEADDR	S_AXI_HP1 base address for high OCM and DDR address range	Constant	0xFFFC0000	std_logic_vector
G180	C_S_AXI_HP1_HIGHOCM_ HIGHADDR	S_AXI_HP1 high address for high OCM and DDR address range	Constant	0xFFFFFFF	std_logic_vector
S_AXI_H	IP2 Parameters		,		'
G181	C_S_AXI_HP2_PROTOCOL	AXI compliant protocol for S_AXI_HP2	-	AXI3	String
G182	C_S_AXI_HP2_ID_WIDTH	AXI transaction ID Width	1:6	6	Integer
G183	C_S_AXI_HP2_ADDR_WIDTH	Address Width	Constant	32	Integer
G184	C_S_AXI_HP2_DATA_WIDTH	Data width	th 32, 64 64		Integer
G185	C_S_AXI_HP2_BASEADDR	S_AXI_HP2 base address	Range from 0x00000000 to 0x3FFFFFFF	0x00000000	std_logic_vector
G186	C_S_AXI_HP2_HIGHADDR	S_AXI_HP2 high address	Range from 0x00000000 to 0x3FFFFFFF	0x3FFFFFF	std_logic_vector
G187	C_S_AXI_HP2_HIGHOCM_ BASEADDR	S_AXI_HP2 base address for high OCM and DDR address range	Constant	0xFFFC0000	std_logic_vector
G188	C_S_AXI_HP2_HIGHOCM_ HIGHADDR	S_AXI_HP2 high address for high OCM and DDR address range	Constant	0xFFFFFFF	std_logic_vector
S_AXI_H	IP3 Parameters				
G189	C_S_AXI_HP3_PROTOCOL AXI compliant protocol for S_AXI_HP3 - AXI3		AXI3	String	
G190	C_S_AXI_HP3_ID_WIDTH	C_S_AXI_HP3_ID_WIDTH AXI transaction ID Width 1:6 6 Int		Integer	
G191	C_S_AXI_HP3_ADDR_WIDTH	Address Width	Constant	32	Integer
G192	C_S_AXI_HP3_DATA_WIDTH	Data width	32, 64	64	Integer

Table 2: Processing System 7 Design Parameters (Cont'd)

Generic	Parameter Name	Feature / Description	Allowable Values	Default Value	VHDL Type
G193	C_S_AXI_HP3_BASEADDR	S_AXI_HP3 base address	Range from 0x00000000 to 0x3FFFFFFF	0x00000000	std_logic_vector
G194	C_S_AXI_HP3_HIGHADDR	S_AXI_HP3 high address	Range from 0x00000000 to 0x3FFFFFFF	0x3FFFFFF	std_logic_vector
G195	C_S_AXI_HP3_HIGHOCM_ BASEADDR	S_AXI_HP3 base address for high OCM and DDR address range	Constant	0xFFFC0000	std_logic_vector
G196	C_S_AXI_HP3_HIGHOCM_ HIGHADDR	S_AXI_HP3 high address for high OCM and DDR address range	Constant	0xFFFFFFF	std_logic_vector
G197	C_M_AXI_GP0_ENABLE_ STATIC_REMAP	Enable compress/decompress AXI transaction ID feature	0, 1	0	Integer
G198	C_M_AXI_GP1_ENABLE_ STATIC_REMAP	Enable compress/decompress AXI transaction ID feature	0, 1	0	Integer

Ordering and Licensing Information

This Xilinx LogiCORE IP module is provided at no additional cost with the Xilinx® Integrated Software Environment (ISE®) Design Suite Embedded Edition software under the terms of the Xilinx End User License. The core is generated using the Xilinx ISE Embedded Edition software (EDK). Information about this and other Xilinx LogiCORE IP modules is available at the Xilinx Intellectual Property page. For information on pricing and availability of other Xilinx LogiCORE modules and software, contact your local Xilinx sales representative.

Reference Documents

Zynq-7000 Extensible Processing Platform Technical Reference Manual (UG585)

Support

Xilinx provides technical support for this LogiCORETM IP product when used as described in the product documentation. Xilinx cannot guarantee timing, functionality, or support of product if implemented in devices that are not defined in the documentation, if customized beyond that allowed in the product documentation, or if changes are made to any section of the design labeled *DO NOT MODIFY*.

Revision History

Date	Version	Revision
4/24/12	1.0	Initial Xilinx release

Notice of Disclaimer

The information disclosed to you hereunder (the "Materials") is provided solely for the selection and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.