— Machine Learning Notes —

Contents

1	Intr	oduction	2
	1.1	Math	2
		1.1.1 Eigenvalues and Eigenvectors	2
		1.1.2 Derivative and Hessian	2
2	Sup	ervised learning	3
	2.1	Least squares regression	3
	2.2	Gradient descent	3
	2.3	Derivative examples	4
	2.4	Convexity	4
	2.5	Backtracking line search	5
	2.6	Solve LSR	5
	2.7	Subgradient method	5

1 Introduction

ML: Tries to automate the process of **inductive inference**.

1. Deduction: Learning from rules

2. Induction: Learning from examples

1.1 Math

TODO: norms

TODO: determinant, trace, inverse

TODO: semidefinite, definite, indefinite

TODO: linear eq TODO: inverse proof

1.1.1 Eigenvalues and Eigenvectors

Example: $f(w) = 0.5w^T M w$

• Hessian: $\nabla^2 f(w) = M = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$

• Eigenvalues 1,3

• Function along eigenvectors like $1x^2$ and $3x^2$

1.1.2 Derivative and Hessian

$$L(w): \mathbb{R} \to \mathbb{R}^m \Rightarrow \nabla L(w) = \begin{pmatrix} \frac{\partial}{\partial w_1} L(w) \\ \vdots \\ \frac{\partial}{\partial w_n} L(w) \end{pmatrix} \Rightarrow \nabla L(w) = \begin{pmatrix} \frac{\partial L_1}{\partial w_1} & \frac{\partial L_2}{\partial w_1} & \dots & \frac{\partial L_m}{\partial w_1} \\ \frac{\partial L_1}{\partial w_2} & \frac{\partial L_2}{\partial w_2} & \dots & \frac{\partial L_m}{\partial w_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial L_1}{\partial w_d} & \frac{\partial L_2}{\partial w_d} & \dots & \frac{\partial L_m}{\partial w_d} \end{pmatrix}$$

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_d}(x) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_d \partial x_1}(x) & \dots & \frac{\partial^2 f}{\partial x_d \partial x_d}(x) \end{pmatrix}, \qquad x = \begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \in \mathbb{R}^d$$

2 Supervised learning

• input *X*, output *Y*

• training data: $(x^{(i)}, y^{(i)})_{i=1..n} \subset X \times Y$

• Goal: learn $f: X \to Y$ for model class F on examples

2.1 Least squares regression

 \tilde{X}, \tilde{w} are extended with bias:

$$\min_{\tilde{w}} \frac{1}{2} \left\| \tilde{X}\tilde{w} - y \right\|^2 \Rightarrow \min_{w} \frac{1}{2} \left\| Xw - y \right\|^2$$

Solve with gradient and set to zero:

$$L = \frac{1}{2} \sum_{i=1}^{n} ((X_i^T w_i) - y_i)^2$$

= $\frac{1}{2} \left(\sum_{i=1}^{n} (X_i^T w_i)^2 - 2(X_i^T w_i) y_i + y_i^2 \right)$

$$\nabla L = \frac{\partial}{\partial w} \left(\frac{1}{2} \left(\sum_{i=1}^{n} (X_i^T w_i)^2 - 2(X_i^T w_i) y_i + y_i^2 \right) \right)$$

$$= \frac{1}{2} \left(\sum_{i=1}^{n} 2(X_i^T X_i w_i) - 2(X_i^T) y_i \right)$$

$$= \sum_{i=1}^{n} X_i^T X_i w_i - X_i^T y_i$$

$$= X^T X w - X^T y$$

$$= X^T (X w - y)$$

$$\nabla L = X^T (Xw - y) = 0 \Rightarrow (X^T X)w = X^T y \Rightarrow w = (X^T X)^{-1} X^T y$$

2.2 Gradient descent

Alternative to least squares regression. Algorithm:

- 1. Compute gradient $\nabla L(w) = X^T(Xw y)$
- 2. Negative gradient shows to steepest descent
- 3. $w^{(t+1)} = w^{(t)} \gamma^{(t)} \cdot \nabla L(w^{(t)})$

2.3 Derivative examples

- $L(w) = w_1^2 + w_2^2$ $\Rightarrow \nabla L(w) = \begin{pmatrix} 2w_1 \\ 2w_2 \end{pmatrix}$
- $L(w) = ||w||_2^2 = w^T w$ $\Rightarrow \nabla L(w) = 2w$
- $L(w) = w^T A w$ $\Rightarrow \nabla L(w) = A w + A^T w$
- $L(w) = ||Xw y||^2 = w^T X^T X w y^T X w w^T X^T y + y^T y$ $\Rightarrow \nabla L(w) = 2X^T (Xw - y)$

2.4 Convexity

Set *C* convex if line between any two points of *C* in *C*. $\forall x,y \in C$ and $\lambda \in \mathbb{R}$ with $0 < \lambda < 1$:

$$\lambda x + (1 - \lambda)y \in C$$

Function $f: \mathbb{R}^d \to \mathbb{R}$ convex if (f) is a convex set and $\forall x, y \in (f), \lambda \in \mathbb{R}$ with $0 \le \lambda \le 1$:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Gradient descent returns global optimum for convex functions.

Optimization problem: $\min f(x), x \in X \subseteq \mathbb{R}^d$ has local minimizer $x^* \in X$ if $\exists \varepsilon > 0$ with:

$$\forall y \in X \text{ with } ||x^* - y|| \le \varepsilon : f(x^*) \le f(y)$$

Global minimizer if $f(x^*)$ is lowest of all optimizers.

Symmetric matrix A is positive semidefinite $(A \geq 0)$ if:

$$x^T A x > 0, \forall x$$

Positive definite $(A \succ 0)$ if $\forall x \neq 0$

Symmetric matrix A is positive semidefinite iff all eigenvalues are ≥ 0 and positive definite iff all > 0.

If function is one-dimensional: Convex if $f''(x) \ge 0$. If multidimensional: Convex if 2nd derivative is psd.

2.5 Backtracking line search

Algorithm:

- 1. Input: $x, \Delta x, \alpha \in (0, 0.5), \beta \in (0, 1)$
- 2. t = 1
- 3. while $f(x + t\Delta x) > f(x) + \alpha t \nabla f(x)^T \Delta x$:
- 4. $t = \beta t$

2.6 Solve LSR

- 1. $L(w) = \frac{1}{2} ||Xw y||_2^2$
- 2. $\nabla L(w) = X^T(Xw y)$
- 3. $\nabla L(w) = X^T X$ is symmetric and psd

2.7 Subgradient method

If function not differentiable, e.g. $||w||_1$

- gradient is subgradient (convex hull of gradients)
- choose constant step length