PAMSI_LAB

Wygenerowano przez Doxygen 1.8.6

Śr, 20 maj 2015 11:08:31

ii SPIS TREŚCI

Spis treści

1	Inde	ks hier	archiczny	1
	1.1	Hierard	chia klas	1
2	Inde	ks klas		2
	2.1	Lista k	das	2
3	Inde	eks pliko	ów	2
Ĭ	3.1	_	ou	2
	0.1	Lista p	MINOW	_
4	Dok	umenta	ıcja klas	3
	4.1	Dokun	nentacja szablonu klasy Benchmark< typ >	3
		4.1.1	Opis szczegółowy	4
		4.1.2	Dokumentacja konstruktora i destruktora	4
		4.1.3	Dokumentacja funkcji składowych	4
		4.1.4	Dokumentacja atrybutów składowych	5
	4.2	Dokum	nentacja szablonu klasy DrzewoAVL< typ >	6
		4.2.1	Opis szczegółowy	7
		4.2.2	Dokumentacja konstruktora i destruktora	7
		4.2.3	Dokumentacja funkcji składowych	7
		4.2.4	Dokumentacja atrybutów składowych	9
	4.3	Dokum	nentacja szablonu klasy DrzewoAVLTest< typ >	9
		4.3.1	Opis szczegółowy	10
		4.3.2	Dokumentacja funkcji składowych	10
	4.4	Dokum	nentacja szablonu klasy DrzewoBinarne< typ >	10
		4.4.1	Opis szczegółowy	11
		4.4.2	Dokumentacja konstruktora i destruktora	12
		4.4.3	Dokumentacja funkcji składowych	12
		4.4.4	Dokumentacja atrybutów składowych	13
	4.5		nentacja szablonu klasy DrzewoBinarneTest< typ >	13
		4.5.1	Opis szczegółowy	14
		4.5.2	Dokumentacja funkcji składowych	14
	4.6	_	nentacja szablonu klasy IDrzew< typ >	15
	4.0	4.6.1	Opis szczegółowy	15
		4.6.2	Dokumentacja funkcji składowych	15
	4.7			
	4.7		nentacja klasy IObserwator	17
		4.7.1	Opis szczegółowy	17
	4.0	4.7.2	Dokumentacja funkcji składowych	17
	4.8		nentacja klasy IObserwowany	18
		4.8.1	Opis szczegółowy	18

SPIS TREŚCI iii

		4.8.2 Dokumentacja funkcji składowych	18
	4.9	Dokumentacja klasy ITestable	19
		4.9.1 Opis szczegółowy	19
		4.9.2 Dokumentacja funkcji składowych	19
	4.10	Dokumentacja klasy Statystyka	20
		4.10.1 Opis szczegółowy	21
		4.10.2 Dokumentacja konstruktora i destruktora	21
		4.10.3 Dokumentacja funkcji składowych	21
		4.10.4 Dokumentacja atrybutów składowych	21
	4.11	Dokumentacja klasy Stoper	22
		4.11.1 Opis szczegółowy	23
		4.11.2 Dokumentacja konstruktora i destruktora	23
		4.11.3 Dokumentacja funkcji składowych	23
		4.11.4 Dokumentacja atrybutów składowych	24
	4.12	Dokumentacja szablonu struktury Wezel $<$ typ $>$	24
		4.12.1 Opis szczegółowy	25
		4.12.2 Dokumentacja konstruktora i destruktora	25
		4.12.3 Dokumentacja atrybutów składowych	25
	4.13	Dokumentacja szablonu struktury WezelAVL $<$ typ $>$ \dots	26
		4.13.1 Opis szczegółowy	26
		4.13.2 Dokumentacja konstruktora i destruktora	26
		4.13.3 Dokumentacja atrybutów składowych	26
5	Doku	ımentacja plików	27
	5.1	Dokumentacja pliku Benchmark.hh	27
		5.1.1 Opis szczegółowy	27
	5.2	Dokumentacja pliku DrzewoAVL.hh	27
	5.3	Dokumentacja pliku DrzewoAVLTest.hh	27
	5.4	Dokumentacja pliku DrzewoBinarne.hh	28
	5.5	Dokumentacja pliku DrzewoBinarneTest.hh	28
	5.6	Dokumentacja pliku IDrzew.hh	28
	5.7	Dokumentacja pliku IObserwator.hh	28
	5.8	Dokumentacja pliku IObserwowany.hh	28
		5.8.1 Dokumentacja definicji	29
	5.9	Dokumentacja pliku lTestable.hh	29
		5.9.1 Opis szczegółowy	29
	5.10	Dokumentacja pliku main.cpp	29
		5.10.1 Opis szczegółowy	30
		5.10.2 Dokumentacja funkcji	30
		5.10.3 Dokumentacja zmiennych	30

5.11 Dokumentacja pliku Pliki.cpp	30
5.11.1 Opis szczegółowy	31
5.11.2 Dokumentacja funkcji	31
5.12 Dokumentacja pliku Pliki.hh	31
5.12.1 Opis szczegółowy	32
5.12.2 Dokumentacja funkcji	32
5.13 Dokumentacja pliku Statystyka.cpp	33
5.13.1 Opis szczegółowy	33
5.14 Dokumentacja pliku Statystyka.hh	33
5.14.1 Opis szczegółowy	33
5.15 Dokumentacja pliku Stoper.cpp	33
5.16 Dokumentacja pliku Stoper.hh	33 34
5.18 Dokumentacja pliku WezelAVL.hh	34
5.10 Bokumentacja pliku WezelAVE.IIII	04
Indeks	35
1 Indeks hierarchiczny	
1.1 Hierarchia klas	
Ta lista dziedziczenia posortowana jest z grubsza, choć nie całkowicie, alfabetycznie:	
IDrzew< typ >	15
DrzewoAVL< typ >	6
DrzewoAVLTest< typ >	9
DrzewoBinarne< typ >	10
DrzewoBinarneTest< typ >	13
IObserwator	17
Statystyka	20
IObserwowany	18
Benchmark< typ >	3
ITestable	19
DrzewoAVLTest< typ >	9
DrzewoBinarneTest< typ >	13
Stoper	22
Wezel < typ >	24
WezelAVL< typ >	26

2 Indeks klas

2.1 Lista klas

3

Tutaj znajdują się klasy, struktury, unie i interfejsy wraz z ich krótkimi opisami:

	Benchmark< typ > Modeluje pojęcie Benchmarku	3
	DrzewoAVL< typ >	
	Definicja drzewa AVL	6
	DrzewoAVLTest< typ > Testowalne Drzewo AVL	9
	DrzewoBinarne < typ > DrzewoBinarne	10
	DrzewoBinarneTest< typ > Drzewo binarne testowalne	13
	IDrzew< typ > Definicja IDrzew	15
	IObserwator Klasa IObserwator	17
	IObserwowany Interfejs obserwowanego	18
	ITestable Modeluje interfejs programu	19
	Statystyka Modeluje pojęcie statystyki	20
	Stoper Klasa Stoper	22
	Wezel < typ > Klasa węzeł	24
	WezelAVL< typ > Wezeł drzewa AVL	26
3	Indeks plików	
3.	1 Lista plików	
Tu	taj znajduje się lista wszystkich plików z ich krótkimi opisami:	
	Benchmark.hh Definicja klasy Benchmark	27
	DrzewoAVL.hh	27
	DrzewoAVLTest.hh	27
	DrzewoRinarne hh	28

4 Dokumentacja klas 3

DrzewoBinarneTest.hh	28
IDrzew.hh	28
IObserwator.hh	28
IObserwowany.hh	28
ITestable.hh Definicja klasy ITestable	29
main.cpp Moduł główny programu	29
Pliki.cpp Definicje funkcji obslugi plikow	30
Pliki.hh Funkcje obslugi plikow	31
Statystyka.cpp Zawiera definicję metod klasy Statystyka	33
Statystyka.hh Zawiera definicję klasy Statystyka	33
Stoper.cpp	33
Stoper.hh	33
Wezel.hh	34
WezelAVL.hh	34

4 Dokumentacja klas

4.1 Dokumentacja szablonu klasy Benchmark< typ >

Modeluje pojęcie Benchmarku.

#include <Benchmark.hh>

Diagram dziedziczenia dla Benchmark< typ >

Metody publiczne

- Benchmark (const unsigned int ileProb, unsigned int *const ileDanych, const unsigned int ilePowtorzen) Konstruktor 2 argumentowy.
- void Test (ITestable &I, const std::string &nazwaPliku)

Testowanie algorytmu.

void DodajObserwatora (IObserwator *nowyObserwator)

Dodaje Obserwatora.

void UsunObserwatora (IObserwator *obserwator)

Usuwa Obserwatora.

void PowiadomObserwatorow ()

Powiadamia Obserwatorów.

Atrybuty prywatne

· unsigned int IleProb

llość prób.

unsigned int * IleDanych

Tablica liczności serii.

• unsigned int IlePowtorzen

llość powtórzeń

std::list< IObserwator * > ListaObserwatorow

Lista Obserwatorow.

4.1.1 Opis szczegółowy

template < class typ > class Benchmark < typ >

Modeluje pojęcie Benchmarku czyli objektu mierzącego czas wykonywania algoytmu

Definicja w linii 26 pliku Benchmark.hh.

4.1.2 Dokumentacja konstruktora i destruktora

4.1.2.1 template < class typ > Benchmark < typ >::Benchmark (const unsigned int *ileProb*, unsigned int *const ileDanych, const unsigned int ilePowtorzen) [inline]

Tworzy objekt klasy Benchmark i inicjuje nową statystykę dla objektu

Parametry

in	ileProb	- ilość prób, które zostaną wykonane
in	ileDanych	- wkaźnik na tablice z licznościami kolejnych serii
in	ilePowtorzen	- ilość powtórzeń każdej serii

Definicja w linii 71 pliku Benchmark.hh.

4.1.3 Dokumentacja funkcji składowych

4.1.3.1 template < class typ > void Benchmark < typ >::DodajObserwator (IObserwator * nowyObserwator) [inline], [virtual]

Dodaje obserwatora do listy obserwatorów danego objektu

Parametry

in	nowyObserwator	- wskaźnik na objekt będący obserwatorem
----	----------------	--

Implementuje IObserwowany.

Definicja w linii 113 pliku Benchmark.hh.

4.1.3.2 template < class typ > void Benchmark < typ >::PowiadomObserwatorow() [inline], [virtual]

Wywołuje u wszystkich aktywnych obserwatorów metodę Aktualizuj.

Implementuje IObserwowany.

Definicja w linii 133 pliku Benchmark.hh.

4.1.3.3 template < class typ > void Benchmark < typ >::Test (ITestable & I, const std::string & nazwaPliku) [inline]

Metoda testuje algorytm w okreslonej liczbie serii i powtórzeniach pomiary zapisuje do pliku podanego pez użytkownika

Parametry

in	1	- objekt klasy implementującej ITestable na której zostanie przeprowadzony
		test
in	nazwaPliku	- nazwa pliku z danymi do wczytania

Definicja w linii 87 pliku Benchmark.hh.

Usuwa danego obserwatora z listy obserwatorów

Parametry

in	obserwator	- wskaźnik na obserwatora który ma zostać usunięty
----	------------	--

Implementuje IObserwowany.

Definicja w linii 124 pliku Benchmark.hh.

4.1.4 Dokumentacja atrybutów składowych

4.1.4.1 template<class typ> unsigned int* Benchmark< typ>::lleDanych [private]

Tablica z licznościami elementów dla kojenych serii

Definicja w linii 42 pliku Benchmark.hh.

4.1.4.2 template < class typ > unsigned int Benchmark < typ >::llePowtorzen [private]

Ilość powtórzeń każdej serii

Definicja w linii 50 pliku Benchmark.hh.

4.1.4.3 template<class typ> unsigned int Benchmark< typ>::lleProb [private]

Ilość powtórzeń każdej seriii

Definicja w linii 34 pliku Benchmark.hh.

4.1.4.4 template < class typ > std::list < IObserwator* > Benchmark < typ >::ListaObserwatorow [private]

Lista aktywnych obserwatorów danego objektu

Definicja w linii 57 pliku Benchmark.hh.

Dokumentacja dla tej klasy została wygenerowana z pliku:

· Benchmark.hh

4.2 Dokumentacja szablonu klasy DrzewoAVL< typ>

Definicja drzewa AVL.

#include <DrzewoAVL.hh>

Diagram dziedziczenia dla DrzewoAVL< typ >

Metody publiczne

• DrzewoAVL ()

Konstruktor bezarumentowy.

∼DrzewoAVL ()

Destruktor.

void Insert (typ wartosc)

Insert.

void Remove (typ wartosc)

Remove.

WezelAVL< typ > * Search (typ wartosc)

Search.

· void CzyscDrzewo ()

CzyscDrzewo.

Metody prywatne

- WezelAVL< typ > * FindMin (WezelAVL< typ > *poszukiwacz)
- $\bullet \ \ \text{WezelAVL} < \mathsf{typ} > * \ \mathsf{FindSuccessor} \ (\mathsf{WezelAVL} < \mathsf{typ} > * \mathsf{poszukiwacz})$

FindSuccessor.

void RR (WezelAVL< typ > *A)

Rotacja RR.

void LL (WezelAVL< typ > *A)

Rotacja LL.

void RL (WezelAVL< typ > *A)

Rotacja RL.

void LR (WezelAVL< typ > *A)

Rotacja LR.

void Czysc (Wezel < typ > *wezel)

Czyści drzewo.

Atrybuty prywatne

WezelAVL< typ > * Korzen

Korzeń drzewa.

int LiczbaWezlow

Liczba Węzłów.

4.2.1 Opis szczegółowy

template<class typ>class DrzewoAVL< typ>

Pik zawiera definicję drzewa AVL.

The DrzewoAVL class

Klasa modeluje poęcie dzewa AVL.

Definicja w linii 19 pliku DrzewoAVL.hh.

4.2.2 Dokumentacja konstruktora i destruktora

```
4.2.2.1 template < class typ > DrzewoAVL < typ >::DrzewoAVL ( ) [inline]
```

Konstrunkto bezargumentowy zeruje liczbę węzłów i ustawia Korzen na NULL.

Definicja w linii 243 pliku DrzewoAVL.hh.

Destruktor zwalnia pamięć usuwając wszystkie węzły drzewa.

Definicja w linii 254 pliku DrzewoAVL.hh.

4.2.3 Dokumentacja funkcji składowych

Usuwa wszystkie węzły i zwalnia po nich pamięć leżące poniżej węzła podanego w argumecie (z nim włącznie) Parametry

```
wezel - węzeł od którego zaczyna się czyszczenie
```

Definicja w linii 227 pliku DrzewoAVL.hh.

```
4.2.3.2 template < class typ > void DrzewoAVL < typ >::CzyscDrzewo( ) [inline]
```

Usuwa wszystkie węzły drzewa, walnia po nich pamięć, następnie ustawia korzeń na NULL i Liczbę węzłów na 0. Definicja w linii 454 pliku DrzewoAVL.hh.

4.2.3.3 template
$$<$$
 class typ $>$ WezelAVL $<$ typ $>*$ DrzewoAVL $<$ typ $>::$ FindMin (WezelAVL $<$ typ $>*$ poszukiwacz) [inline], [private]

Szuka węzła o nejmniejeszej wartości, począwszy od węzła podanego w arunemcie.

Parametry

in	poszukiwacz	- węzeł startowy poszukwiań

Zwracane wartości

```
- wskaźnik na węzeł przechowujący najmniejszą wartość
```

Definicja w linii 44 pliku DrzewoAVL.hh.

Szuka poprzednika węzła podanego w artumencje wywołania.

Parametry

in	poszukiwacz	 węzeł którego poprzednik ma zostać znaleziony

Zwracane wartości

wskaźnik	na węzeł będący poprzednikiem

Definicja w linii 58 pliku DrzewoAVL.hh.

4.2.3.5 template < class typ > void DrzewoAVL < typ >::Insert (typ wartosc) [inline], [virtual]

Dodaje nową daną (węzeł) do struktury drzewa.

Parametry

			_
in	wartosc	- dana do dodania	

Implementuje IDrzew< typ >.

Definicja w linii 265 pliku DrzewoAVL.hh.

4.2.3.6 template < class typ > void DrzewoAVL < typ > ::LL (WezelAVL < typ > * A) [inline], [private]

Metoda wykonuje rotację LL, gdzie A jest węzłem głównym rotacji.

Parametry

in	Α	- wskaźnik do węzła głównego rotacji
----	---	--------------------------------------

Definicja w linii 111 pliku DrzewoAVL.hh.

4.2.3.7 template < class typ > void DrzewoAVL < typ >::LR (WezelAVL < typ > * A) [inline], [private]

Metoda wykonuje rotację LR, gdzie A jest węzłem głównym rotacji.

Parametry

in	Α	- wskaźnik do węzła głównego rotacji
----	---	--------------------------------------

Definicja w linii 185 pliku DrzewoAVL.hh.

4.2.3.8 template < class typ > void DrzewoAVL < typ >::Remove(typ wartosc) [inline], [virtual]

Usuwa węzeł przechowujący daną wartość.

Parametry

in	wartosc	- przechowywana wartość do usunuęcia z drzewa
----	---------	---

Implementuje IDrzew< typ >.

Definicja w linii 342 pliku DrzewoAVL.hh.

4.2.3.9 template < class typ > void DrzewoAVL < typ >::RL(WezelAVL < typ > * A) [inline], [private]

Metoda wykonuje rotację RL, gdzie A jest węzłem głównym rotacji.

Parametry

in	Α	- wskaźnik do węzła głównego rotacji

Definicja w linii 143 pliku DrzewoAVL.hh.

4.2.3.10 template < class typ > void DrzewoAVL < typ >::RR (WezelAVL < typ > * A) [inline], [private]

Metoda wykonuje rotację RR, gdzie A jest węzłem głównym rotacji.

Parametry

in	Α	- wskaźnik do węzła głównego rotacji

Definicja w linii 77 pliku DrzewoAVL.hh.

4.2.3.11 template < class typ > WezelAVL < typ > * DrzewoAVL < typ > ::Search (typ wartosc) [inline]

Wyszukuje i zwraca daną wartość z drzewa. W przypadku braku jej w drzewie i zwraca NULL

Parametry

in	wartosc	- wartość do znalezienia w drzewie

Zwracane wartości

```
- odnaleziona wartość / NULL gdy brak wartości
```

Definicja w linii 436 pliku DrzewoAVL.hh.

4.2.4 Dokumentacja atrybutów składowych

4.2.4.1 template < class typ > WezelAVL < typ > * DrzewoAVL < typ > ::Korzen [private]

Wskaźnik na węzeł będący korzeniem drzewa binarnego.

Definicja w linii 26 pliku DrzewoAVL.hh.

4.2.4.2 template<class typ> int DrzewoAVL< typ>::LiczbaWezlow [private]

Ilość węzłów w drzewie.

Definicja w linii 33 pliku DrzewoAVL.hh.

Dokumentacja dla tej klasy została wygenerowana z pliku:

• DrzewoAVL.hh

4.3 Dokumentacja szablonu klasy DrzewoAVLTest< typ >

Testowalne Drzewo AVL.

#include <DrzewoAVLTest.hh>

Diagram dziedziczenia dla DrzewoAVLTest< typ >

Metody publiczne

- void WczytajDane (std::string const nazwaPliku, unsigned int n)
 Wczytanie danych z pliku.
- void Start (const unsigned int k, std::string const nazwaPliku)
 Wykonanie części obliczeniowej programu.

· void Zwolnij ()

Zwalnia pamięć po teście.

4.3.1 Opis szczegółowy

template < class typ > class DrzewoAVLTest < typ >

Plik zawiera klasę modelującą pojęcie drzewa AVL z zaimplementowanymi metodami umożliwiajcymi jego testowanie

The DrzewoAVLTest class

Klasa modelująca drzewo AVL z implemetacją metod niezbędncyh do testowania.

Definicja w linii 22 pliku DrzewoAVLTest.hh.

4.3.2 Dokumentacja funkcji składowych

Metoda w której implementowana jest część obliczeniowa programu, której czas wykonania zostanie zmierzony.

Parametry

in	k	- ilość elementów dla których mają zostać wykonane obliczenia.
in	nazwaPliku	- nazwa pliku z danymi

Implementuje ITestable.

Definicja w linii 57 pliku DrzewoAVLTest.hh.

```
4.3.2.2 template < class typ > void Drzewo AVLTest < typ >::WczytajDane ( std::string const nazwaPliku, unsigned int n ) [inline], [virtual]
```

Wczytuje zadaną ilość danych do przetworzenia z pliku o zadanej nazwie.

Parametry

in	nazwaPliku	- nazwa pliku z danymi
in	n	- ilość danych do wczytania

Implementuje ITestable.

Definicja w linii 36 pliku DrzewoAVLTest.hh.

```
4.3.2.3 template < class typ > void Drzewo AVLTest < typ >::Zwolnij( ) [inline], [virtual]
```

Zwalnia pamięć zajmowaną przez objekty wykorzytsane do testów

Implementuje ITestable.

Definicja w linii 67 pliku DrzewoAVLTest.hh.

Dokumentacja dla tej klasy została wygenerowana z pliku:

DrzewoAVLTest.hh

4.4 Dokumentacja szablonu klasy DrzewoBinarne< typ >

DrzewoBinarne.

#include <DrzewoBinarne.hh>

Diagram dziedziczenia dla DrzewoBinarne< typ >

Metody publiczne

• DrzewoBinarne ()

Konstruktor bezarumentowy.

∼DrzewoBinarne ()

Destruktor.

• void Insert (const typ wartosc)

Dodaje element.

• void Remove (typ wartosc)

Remove.

Wezel < typ > * Search (typ wartosc)

Search.

• void CzyscDrzewo ()

CzyscDrzewo.

Metody prywatne

Wezel < typ > * FindMin (Wezel < typ > *poszukiwacz)

FindMin

Wezel < typ > * FindSuccessor (Wezel < typ > *poszukiwacz)

FindSuccessor.

void Czysc (Wezel < typ > *wezel)

Czyści drzewo.

Atrybuty prywatne

Wezel < typ > * Korzen

Korzeń drzewa.

int LiczbaWezlow

Liczba Węzłów.

4.4.1 Opis szczegółowy

template < class typ > class DrzewoBinarne < typ >

Plik zawiera definicje klasy DrzewoBinarne.

Klasa DrzewoBinarne

Klasa modeluje Drzewo Binarne.

Definicja w linii 19 pliku DrzewoBinarne.hh.

4.4.2 Dokumentacja konstruktora i destruktora

4.4.2.1 template < class typ > DrzewoBinarne < typ >::DrzewoBinarne () [inline]

Konstrunkto bezargumentowy zeruje liczbę węzłów i ustawia Korzen na NULL.

Definicja w linii 94 pliku DrzewoBinarne.hh.

4.4.2.2 template < class typ > DrzewoBinarne < typ >:: ~ DrzewoBinarne () [inline]

Destruktor zwalnia pamięć usuwając wszystkie węzły drzewa.

Definicja w linii 105 pliku DrzewoBinarne.hh.

4.4.3 Dokumentacja funkcji składowych

Usuwa wszystkie węzły i zwalnia po nich pamięć leżące poniżej węzła węzła podanego w argumecie (z nim włącznie)

Parametry

wezel	- węzeł od którego zaczyna się czyszczenie

Definicja w linii 78 pliku DrzewoBinarne.hh.

4.4.3.2 template < class typ > void DrzewoBinarne < typ >::CzyscDrzewo () [inline]

Usuwa wszystkie węzły drzewa, walnia po nich pamięć, następnie ustawia korzeń na NULL i Liczbę węzłów na 0. Definicja w linii 214 pliku DrzewoBinarne.hh.

Szuka węzła o nejmniejeszej wartości, począwszy od węzła podanego w arunemcie.

Parametry

in	poszukiwacz	- węzeł startowy poszukwiań

Zwracane wartości

```
- wskaźnik na węzeł przechowujący najmniejszą wartość
```

Definicja w linii 44 pliku DrzewoBinarne.hh.

4.4.3.4 template < class typ> Wezel< typ>* DrzewoBinarne< typ>:: FindSuccessor (Wezel< typ>* poszukiwacz) [inline], [private]

Szuka poprzednika węzła podanego w artumencje wywołania.

Parametry

in	poszukiwacz	- węzeł którego poprzednik ma zostać znaleziony

Zwracane wartości

wskaźnik na węzeł będący poprzednikiem

Definicja w linii 58 pliku DrzewoBinarne.hh.

4.4.3.5 template < class typ > void DrzewoBinarne < typ >::Insert (const typ wartosc) [inline], [virtual]

Dodaje element do drzewa binarnego

Parametry

in wartość do umieszczenia w drzewie.

Implementuje IDrzew< typ >.

Definicja w linii 116 pliku DrzewoBinarne.hh.

4.4.3.6 template < class typ > void Drzewo Binarne < typ >::Remove (typ wartosc) [inline], [virtual]

Usuwa węzeł przechowujący daną wartość.

Parametry

in	wartosc	- przechowywana wartość do usunuęcia z drzewa
----	---------	---

Implementuje IDrzew< typ >.

Definicja w linii 153 pliku DrzewoBinarne.hh.

4.4.3.7 template < class typ > Wezel < typ > * DrzewoBinarne < typ >::Search (typ wartosc) [inline]

Wyszukuje i zwraca daną wartość z drzewa. W przypadku braku jej w drzewie wyświetla stosowny błąd i zwraca NULL / 0

Parametry

in	wartosc	- wartość do znalezienia w drzewie
----	---------	------------------------------------

Zwracane wartości

```
- odnaleziona wartość
```

Definicja w linii 196 pliku DrzewoBinarne.hh.

4.4.4 Dokumentacja atrybutów składowych

4.4.4.1 template < class typ > Wezel < typ > * DrzewoBinarne < typ >::Korzen [private]

Wskaźnik na węzeł będący korzeniem drzewa binarnego.

Definicja w linii 26 pliku DrzewoBinarne.hh.

4.4.4.2 template < class typ > int DrzewoBinarne < typ >::LiczbaWezlow [private]

llość węzłów w drzewie.

Definicja w linii 33 pliku DrzewoBinarne.hh.

Dokumentacja dla tej klasy została wygenerowana z pliku:

· DrzewoBinarne.hh

4.5 Dokumentacja szablonu klasy DrzewoBinarneTest< typ >

Drzewo binarne testowalne.

#include <DrzewoBinarneTest.hh>

Diagram dziedziczenia dla DrzewoBinarneTest< typ >

Metody publiczne

- void WczytajDane (std::string const nazwaPliku, unsigned int n)
 Wczytanie danych z pliku.
- void Start (const unsigned int k, std::string const nazwaPliku)
 Wykonanie części obliczeniowej programu.
- void Zwolnij ()

Zwalnia pamięć po teście.

4.5.1 Opis szczegółowy

template < class typ > class DrzewoBinarneTest < typ >

Plik zawiera implemementację testowalnego drzewa binarnego.

The DrzewoBinaneTest class

Drzewo binarne z zaimplemetowanym interfejejsem do testów.

Definicja w linii 19 pliku DrzewoBinarneTest.hh.

4.5.2 Dokumentacja funkcji składowych

4.5.2.1 template < class typ > void DrzewoBinarneTest < typ >::Start (const unsigned int k, std::string const nazwaPliku
) [inline], [virtual]

Metoda w której implementowana jest część obliczeniowa programu, której czas wykonania zostanie zmierzony.

Parametry

in	k	- ilość elementów dla których mają zostać wykonane obliczenia.
in	nazwaPliku	- nazwa pliku z danymi

Implementuje ITestable.

Definicja w linii 54 pliku DrzewoBinarneTest.hh.

4.5.2.2 template < class typ > void Drzewo Binarne Test < typ >:: Wczytaj Dane (std::string const *nazwa Pliku*, unsigned int *n*) [inline], [virtual]

Wczytuje zadaną ilość danych do przetworzenia z pliku o zadanej nazwie.

Parametry

in	nazwaPliku	- nazwa pliku z danymi
in	n	- ilość danych do wczytania

Implementuje ITestable.

Definicja w linii 33 pliku DrzewoBinarneTest.hh.

4.5.2.3 template < class typ > void DrzewoBinarneTest < typ >::Zwolnij() [inline], [virtual]

Zwalnia pamięć zajmowaną przez objekty wykorzytsane do testów

Implementuje ITestable.

Definicja w linii 64 pliku DrzewoBinarneTest.hh.

Dokumentacja dla tej klasy została wygenerowana z pliku:

DrzewoBinarneTest.hh

4.6 Dokumentacja szablonu klasy IDrzew< typ >

Definicja IDrzew.

#include <IDrzew.hh>

Diagram dziedziczenia dla IDrzew< typ >

Metody publiczne

- virtual void Insert (typ wartosc)=0
 - Insert.
- virtual void Remove (typ wartosc)=0

Remove.

4.6.1 Opis szczegółowy

template < class typ > class IDrzew < typ >

Plik zawiera definicję interfejsu IDrzew

The IDrzewclass

Klasa czysto abstrancyjna modelująca interfejs użytkownika dla drzew.

Definicja w linii 17 pliku IDrzew.hh.

4.6.2 Dokumentacja funkcji składowych

4.6.2.1 template < class typ > virtual void IDrzew < typ >::Insert (typ wartosc) [pure virtual]

Dodaje nową daną (węzeł) do struktury drzewa.

Parametry

in	wartosc	- dana do dodania

Implementowany w DrzewoAVL< typ > i DrzewoBinarne< typ >.

4.6.2.2 template < class typ > virtual void IDrzew < typ >::Remove (typ wartosc) [pure virtual]

Usuwa węzeł przechowujący daną wartość.

Parametry

in	wartosc	- przechowywana wartość do usunuęcia z drzewa

Implementowany w DrzewoAVL< typ > i DrzewoBinarne< typ >.

Dokumentacja dla tej klasy została wygenerowana z pliku:

• IDrzew.hh

4.7 Dokumentacja klasy IObserwator

Klasa IObserwator.

```
#include <IObserwator.hh>
```

Diagram dziedziczenia dla IObserwator

Metody publiczne

virtual void Aktualizuj ()=0
 Aktualizuj.

4.7.1 Opis szczegółowy

Plik zawira definicję klasy IObsereator.

The IObserwator class

Klasa modeluje interfejs objektu będącego obserwatorem.

Definicja w linii 17 pliku IObserwator.hh.

4.7.2 Dokumentacja funkcji składowych

4.7.2.1 virtual void IObserwator::Aktualizuj() [pure virtual]

Aktualizuje dane na podstawie wydarzenie w objekcie obserowanym.

Implementowany w Statystyka.

Dokumentacja dla tej klasy została wygenerowana z pliku:

IObserwator.hh

4.8 Dokumentacja klasy IObserwowany

Interfejs obserwowanego.

#include <IObserwowany.hh>

Diagram dziedziczenia dla IObserwowany

Metody publiczne

virtual void DodajObserwatora (IObserwator *nowyObserwator)=0

Dodaje Obserwatora.

• virtual void UsunObserwatora (IObserwator *obserwator)=0

Usuwa Obserwatora.

virtual void PowiadomObserwatorow ()=0

Powiadamia Obserwatorów.

4.8.1 Opis szczegółowy

W pliku zawarta jest definicja interfejsu obserwowanego

The IObserwowany class

Klasa czysto wirtualna modelująca interfejs objektu obserwowanego.

Definicja w linii 19 pliku IObserwowany.hh.

4.8.2 Dokumentacja funkcji składowych

4.8.2.1 virtual void | Obserwowany::Dodaj | Obserwator (| IObserwator * nowy | Obserwator) | [pure virtual]

Dodaje nowego obserwatora do listy oserwatorów danego objektu.

Parametry

in	nowyObserwator	- wkaźnik na dodawanego obserwatora

Implementowany w Benchmark< typ >.

4.8.2.2 virtual void IObserwowany::PowiadomObserwatorow() [pure virtual]

Powiadamia obseratorów o wydarzeniu.

Implementowany w Benchmark< typ >.

4.8.2.3 virtual void IObserwowany::UsunObserwatora (IObserwator * obserwator) [pure virtual]

Usuwa danego obserwatora z listy obserwatorów danego objektu.

Parametry

in	obserwator	- obserwator do usunięcia z listy
----	------------	-----------------------------------

Implementowany w Benchmark< typ >.

Dokumentacja dla tej klasy została wygenerowana z pliku:

· IObserwowany.hh

4.9 Dokumentacja klasy ITestable

Modeluje interfejs programu.

#include <ITestable.hh>

Diagram dziedziczenia dla ITestable

Metody publiczne

- virtual void WczytajDane (std::string const nazwaPliku, unsigned int n)=0
 Wczytanie danych z pliku.
- virtual void Start (const unsigned int k, std::string const nazwaPliku)=0
 Wykonanie części obliczeniowej programu.
- virtual void Zwolnij ()=0
 Zwalnia pamięć po teście.

4.9.1 Opis szczegółowy

Modeluje interfejs do programów wykonywanch w ramach kursu.

Definicja w linii 24 pliku lTestable.hh.

4.9.2 Dokumentacja funkcji składowych

4.9.2.1 virtual void | Testable::Start (const unsigned int k, std::string const nazwaPliku) [pure virtual]

Metoda w której implementowana jest część obliczeniowa programu, której czas wykonania zostanie zmierzony. Parametry

in	k	- ilość elementów dla których mają zostać wykonane obliczenia.

Implementowany w DrzewoAVLTest< typ > i DrzewoBinarneTest< typ >.

4.9.2.2 virtual void | Testable::WczytajDane (std::string const nazwaPliku, unsigned int n) [pure virtual]

Wczytuje zadaną ilość danych do przetworzenia z pliku o zadanej nazwie.

Parametry

in	nazwaPliku	- nazwa pliku z danymi
in	n	- ilość danych do wczytania

Implementowany w DrzewoAVLTest< typ > i DrzewoBinarneTest< typ >.

```
4.9.2.3 virtual void | Testable::Zwolnij( ) [pure virtual]
```

Zwalnia pamięć zajmowaną przez objekty wykorzytsane do testów

 $Implementowany\ w\ DrzewoAVLTest < typ > i\ DrzewoBinarneTest < typ >.$

Dokumentacja dla tej klasy została wygenerowana z pliku:

· ITestable.hh

4.10 Dokumentacja klasy Statystyka

Modeluje pojęcie statystyki.

#include <Statystyka.hh>

Diagram dziedziczenia dla Statystyka

Metody publiczne

- Statystyka (const unsigned int iloscProb, unsigned int *proby, const unsigned int ilePowtorzen) Konstruktor z dwoma pramametrami.
- ∼Statystyka ()

Destruktor - zwaknia pamięć

void ZapiszStaty (std::string nazwaPliku) const

Zapisuje statysykę do pliku.

• void Aktualizuj ()

Aktualizuj.

Atrybuty prywatne

· unsigned int IleProb

llość prób.

unsigned int * Proba

Tablica z rozmiarami prób.

double * Czas

Średni czas wykonania danej próby.

• double SumaCzasuProby

Suma Czasu Proby.

• unsigned int IloscPowtorzen

Ilość Powtórzeń

unsigned int LicznikPowtorzen

Licznik Powtórzeń

unsigned int LicznikProb

Licznik Prób.

Stoper * MojStoper

Stoper.

4.10.1 Opis szczegółowy

Modeluje pojęcie statystyki, czyli średnich czasów wykonania metody dla różnyuch wielkości prób.

Definicja w linii 27 pliku Statystyka.hh.

- 4.10.2 Dokumentacja konstruktora i destruktora
- 4.10.2.1 Statystyka::Statystyka (const unsigned int iloscProb, unsigned int * proby, const unsigned int ilePowtorzen)

Konstruktor z dwoma paramatremi tworzy dynamiczne tablice przechowujące statystykę oraz wypełnia rozmiary prób.

Parametry

in	iloscProb	- liczbosc prob w ksperymencie
in	proby	- tablica z licznościami prób.

Definicja w linii 12 pliku Statystyka.cpp.

```
4.10.2.2 Statystyka::∼Statystyka() [inline]
```

Zwalnia pamięć zaalokowaną na dynamiczne tablicy przechowujące statystykę.

Definicja w linii 108 pliku Statystyka.hh.

4.10.3 Dokumentacja funkcji składowych

```
4.10.3.1 void Statystyka::Aktualizuj() [virtual]
```

Aktualizuje pozyskiwane dane dotyczące wyników testu: Jeżeli stoper nie odlicza to uruchamia odliczanie, Jeżeli stoper odlicza to go zatrzymuje i sumuje czasy powtórzeń. Gdy nasąpi wykonanie wszystkich pomiarów w próbie to uzupełnia talicę przechowywujacą średnie czasy każdej próby.

Implementuje IObserwator.

Definicja w linii 44 pliku Statystyka.cpp.

4.10.3.2 void Statystyka::ZapiszStaty (std::string nazwaPliku) const

Zapisuje statystystykę do pliku o nazwie podanej w argumencie. Plik zapisany zostaje w sposób, gdzie każda nowa linia wygląda następująco: RozmiarPróby,ŚredniCzas czas wyrażony jest w ms.

Parametry

in	nazwaPliku	- nazwa pliku do którego ma zostać zapisanaza statystyka
----	------------	--

Definicja w linii 25 pliku Statystyka.cpp.

4.10.4 Dokumentacja atrybutów składowych

```
4.10.4.1 double* Statystyka::Czas [private]
```

wskaźnik na tablica ze średnimi czasami wykonania kolejnych prób.

```
Definicja w linii 51 pliku Statystyka.hh.
```

4.10.4.2 unsigned int Statystyka::lleProb [private]

Ilość prób do utworzenia statystyki

Definicja w linii 35 pliku Statystyka.hh.

4.10.4.3 unsigned int Statystyka::lloscPowtorzen [private]

Przechowuje ilość wykonywanych powtórzeń pojedyńczego testu.

Definicja w linii 65 pliku Statystyka.hh.

4.10.4.4 unsigned int Statystyka::LicznikPowtorzen [private]

Zlicza ilosć wykonanych powtórzeń w danej próbie.

Definicja w linii 72 pliku Statystyka.hh.

4.10.4.5 unsigned int Statystyka::LicznikProb [private]

Zlicza ilosć prób wykonanych prób.

Definicja w linii 79 pliku Statystyka.hh.

4.10.4.6 Stoper* Statystyka::MojStoper [private]

Stoper wykorzystywany do pomiaru czasu.

Definicja w linii 86 pliku Statystyka.hh.

4.10.4.7 unsigned int* Statystyka::Proba [private]

Wskaźnik na tablicę zawierającą wielkości danych prób.

Definicja w linii 43 pliku Statystyka.hh.

4.10.4.8 double Statystyka::SumaCzasuProby [private]

Przechowuje sumę czasów pojedyńczych powtórzeń z danej próby.

Definicja w linii 58 pliku Statystyka.hh.

Dokumentacja dla tej klasy została wygenerowana z plików:

- · Statystyka.hh
- Statystyka.cpp

4.11 Dokumentacja klasy Stoper

```
Klasa Stoper.
```

```
#include <Stoper.hh>
```

Metody publiczne

• Stoper ()

Stoper.

• void Start ()

Start.

void Stop ()

Stop.

• void Reset ()

Reset.

• double DajPomiar () const

Pomiar.

• bool CzyOdmierza () const

Czy Odmierza.

Atrybuty prywatne

double CzasPoczatkowy

Czas Początkowy.

double CzasKoncowy

Czas Końcowy.

bool CzyLiczy

Czy Liczy.

4.11.1 Opis szczegółowy

Plik zawiera definicję klasy Stoper.

The Stoper class

Klasa modeluje stoper niezbędny do odliczania czasu.

Definicja w linii 20 pliku Stoper.hh.

4.11.2 Dokumentacja konstruktora i destruktora

```
4.11.2.1 Stoper::Stoper ( )
```

Kontruktor bezarumentowy zeruje czasy i ustawia wartość pola CzyLiczy na false.

Definicja w linii 3 pliku Stoper.cpp.

4.11.3 Dokumentacja funkcji składowych

4.11.3.1 bool Stoper::CzyOdmierza () const

Informuje czy stoper aktualinie liczy czy nie.

Zwracane wartości

true	- gdy odlicza
false	- gdy nie odlicza

Definicja w linii 29 pliku Stoper.cpp.

4.11.3.2 double Stoper::DajPomiar () const

Wyłuskuje czas pomiaru w ms.

Zwracane wartości

zwrca czas pomiaru wyrażon w ms

Definicja w linii 25 pliku Stoper.cpp.

```
4.11.3.3 void Stoper::Reset ( )
```

Resetuje stoper.

Definicja w linii 19 pliku Stoper.cpp.

```
4.11.3.4 void Stoper::Start ( )
```

Uruchamia odliczanie czasu.

Definicja w linii 9 pliku Stoper.cpp.

```
4.11.3.5 void Stoper::Stop ( )
```

Zatrzymuje odliczanie czasu.

Definicja w linii 14 pliku Stoper.cpp.

4.11.4 Dokumentacja atrybutów składowych

```
4.11.4.1 double Stoper::CzasKoncowy [private]
```

Czas w którym odliczanie czasu zostało zatrzymane.

Definicja w linii 34 pliku Stoper.hh.

```
4.11.4.2 double Stoper::CzasPoczatkowy [private]
```

Czas w którym stoper zaczął odliczać.

Definicja w linii 27 pliku Stoper.hh.

```
4.11.4.3 bool Stoper::CzyLiczy [private]
```

Zmienna przechowuje wartośc true gdy stoper aktualnie odlicza czas, lub false gdy jest zatrzymany.

Definicja w linii 42 pliku Stoper.hh.

Dokumentacja dla tej klasy została wygenerowana z plików:

- Stoper.hh
- · Stoper.cpp

4.12 Dokumentacja szablonu struktury Wezel < typ >

```
Klasa węzeł
```

```
#include <Wezel.hh>
```

Metody publiczne

- Wezel ()
- \sim Wezel ()

Atrybuty publiczne

typ Dana

Przechowywana wartość

• Wezel * Rodzic

Rodzic danego węzła.

• Wezel * Lewy

Lewy potomek.

Wezel * Prawy

Prawy potomek.

4.12.1 Opis szczegółowy

template < class typ> struct Wezel < typ >

Plik zawiera definicję strukntury Węzeł.

Struktura Węzeł

Struktura modeluje pojęcie węzła - elementu drzewa, na który składa się wartość, rodzic, lewy potomek i prawy potomek.

Definicja w linii 22 pliku Wezel.hh.

4.12.2 Dokumentacja konstruktora i destruktora

```
4.12.2.1 template < class typ > Wezel < typ >::Wezel( ) [inline]
```

Definicja w linii 54 pliku Wezel.hh.

```
4.12.2.2 template < class typ > Wezel < typ >::~Wezel() [inline]
```

Definicja w linii 60 pliku Wezel.hh.

4.12.3 Dokumentacja atrybutów składowych

```
4.12.3.1 template < class typ > typ Wezel < typ >::Dana
```

Pole przechowuje wartość elementu znajdującego się w danym węźle.

Definicja w linii 29 pliku Wezel.hh.

```
4.12.3.2 template < class typ> Wezel * Wezel < typ >::Lewy
```

Wskaźnik na lewego potomka danego węzła.

Definicja w linii 43 pliku Wezel.hh.

```
4.12.3.3 template < class typ> Wezel * Wezel < typ >::Prawy
```

Wskaźnik na prawego potomnka danego węzła.

Definicja w linii 50 pliku Wezel.hh.

```
4.12.3.4 template < class typ> Wezel* Wezel < typ>::Rodzic
```

Wskaźnik na rodzica danego węzła.

Definicja w linii 36 pliku Wezel.hh.

Dokumentacja dla tej struktury została wygenerowana z pliku:

• Wezel.hh

4.13 Dokumentacja szablonu struktury WezelAVL< typ >

```
Węzeł drzewa AVL.
```

```
#include <WezelAVL.hh>
```

Metody publiczne

• WezelAVL ()

Atrybuty publiczne

• typ Dana

Przechowywana wartość

• WezelAVL * Rodzic

Rodzic danego węzła.

WezelAVL * Lewy

Lewy potomek.

WezelAVL * Prawy

Prawy potomek.

· int WspRownowagi

4.13.1 Opis szczegółowy

```
template < class typ> struct WezelAVL < typ>
```

Plik zawiera definicję węzła wykorzytywanego w drzewie AVL.

Węzeł drzewa AVL

Struktura nędąca reprezentacją pojednyńczego węzła w drzewie AVL.

Definicja w linii 17 pliku WezelAVL.hh.

4.13.2 Dokumentacja konstruktora i destruktora

```
4.13.2.1 template < class typ> WezelAVL < typ>::WezelAVL ( ) [inline]
```

Definicja w linii 49 pliku WezelAVL.hh.

4.13.3 Dokumentacja atrybutów składowych

```
4.13.3.1 template < class typ> typ WezelAVL< typ>::Dana
```

Pole przechowuje wartość elementu znajdującego się w danym węźle.

Definicja w linii 24 pliku WezelAVL.hh.

 $\textbf{4.13.3.2} \quad \textbf{template}{<} \textbf{class typ}{>} \ \textbf{WezeIAVL}{*} \ \textbf{WezeIAVL}{<} \ \textbf{typ}{>} \text{::Lewy}$

Wskaźnik na lewego potomka danego węzła.

Definicja w linii 38 pliku WezelAVL.hh.

4.13.3.3 template < class typ > WezeIAVL * WezeIAVL < typ >::Prawy

Wskaźnik na prawego potomnka danego węzła.

Definicja w linii 45 pliku WezelAVL.hh.

```
4.13.3.4 template < class typ> WezeIAVL* WezeIAVL< typ>::Rodzic
```

Wskaźnik na rodzica danego węzła.

Definicja w linii 31 pliku WezelAVL.hh.

```
4.13.3.5 template < class typ> int WezelAVL < typ>::WspRownowagi
```

Definicja w linii 47 pliku WezelAVL.hh.

Dokumentacja dla tej struktury została wygenerowana z pliku:

WezelAVL.hh

5 Dokumentacja plików

5.1 Dokumentacja pliku Benchmark.hh

Definicja klasy Benchmark.

```
#include <ctime>
#include "Statystyka.hh"
#include "IObserwowany.hh"
#include <list>
#include "ITestable.hh"
```

Komponenty

class Benchmark< typ >
 Modeluje pojęcie Benchmarku.

5.1.1 Opis szczegółowy

Plik zawiera definicję klasy Benchmark wraz z definicją jej metod.

Definicja w pliku Benchmark.hh.

5.2 Dokumentacja pliku DrzewoAVL.hh

```
#include "IDrzew.hh"
#include "WezelAVL.hh"
```

Komponenty

class DrzewoAVL< typ >
 Definicja drzewa AVL.

5.3 Dokumentacja pliku DrzewoAVLTest.hh

```
#include "DrzewoAVL.hh"
#include "ITestable.hh"
```

Komponenty

class DrzewoAVLTest< typ >

Testowalne Drzewo AVL.

5.4 Dokumentacja pliku DrzewoBinarne.hh

```
#include "IDrzew.hh"
```

Komponenty

class DrzewoBinarne
 typ >
 DrzewoBinarne.

5.5 Dokumentacja pliku DrzewoBinarneTest.hh

```
#include "DrzewoBinarne.hh"
#include "Pliki.hh"
```

Komponenty

- class DrzewoBinarneTest< typ >

Drzewo binarne testowalne.

5.6 Dokumentacja pliku IDrzew.hh

```
#include "Wezel.hh"
```

Komponenty

class IDrzew < typ >
 Definicja IDrzew.

5.7 Dokumentacja pliku IObserwator.hh

Komponenty

class IObserwator
 Klasa IObserwator.

5.8 Dokumentacja pliku lObserwowany.hh

```
#include "IObserwator.hh"
```

Komponenty

class IObserwowany

Interfejs obserwowanego.

Definicje

• #define IOBSERWOWANY_HH

5.8.1 Dokumentacja definicji

5.8.1.1 #define IOBSERWOWANY_HH

Definicja w linii 2 pliku lObserwowany.hh.

5.9 Dokumentacja pliku ITestable.hh

Definicja klasy ITestable.

```
#include <iostream>
```

Komponenty

· class ITestable

Modeluje interfejs programu.

5.9.1 Opis szczegółowy

Plik zawiera definicję abstrakcyjnej klasy ITestable, która tworzy interfejs dla programów implementowanych podczas zajęć laboratoryjnych z PAMSI.

Definicja w pliku ITestable.hh.

5.10 Dokumentacja pliku main.cpp

Moduł główny programu.

```
#include "../inc/Statystyka.hh"
#include "../inc/Benchmark.hh"
#include "../inc/Pliki.hh"
#include "../inc/DrzewoBinarneTest.hh"
#include "../inc/DrzewoAVLTest.hh"
```

Funkcje

• int main (int argc, char *argv[])

Zmienne

const int ILOSC_POWTORZEN = 50
 Ilośc powtórzeń danej próby.

```
    const int ILOSC_PROB = 11
        llość prób.

    const std::string NAZWA_PLIKU_Z_DANYMI = "dane.dat"
```

5.10.1 Opis szczegółowy

Program wkonuje serię 50 pomiarów czasu wykonania metody start dla różncyh wielkości problemu obliczeniowego. OBSŁUGA PROGRAMU: Aby wywołać program należy w lini poleceń wywołać jego nazę np: "./a.out"

Definicja w pliku main.cpp.

```
5.10.2 Dokumentacja funkcji
```

5.10.2.1 int main (int argc, char * argv[])

Definicja w linii 37 pliku main.cpp.

5.10.3 Dokumentacja zmiennych

5.10.3.1 const int ILOSC_POWTORZEN = 50

llośc powtórzeń danej próby

Definicja w linii 25 pliku main.cpp.

5.10.3.2 const int ILOSC_PROB = 11

Ilość prób = ilość rozmiarów prób

Definicja w linii 33 pliku main.cpp.

5.10.3.3 const std::string NAZWA_PLIKU_Z_DANYMI = "dane.dat"

Definicja w linii 35 pliku main.cpp.

5.11 Dokumentacja pliku Pliki.cpp

```
Definicje funkcji obslugi plikow.
```

```
#include "../inc/Pliki.hh"
```

Funkcje

void OtworzPlikIn (const char *nazwaPliku, std::fstream &plik)

Otwiera plik do odczytu.

void OtworzPlikOut (const char *nazwaPliku, std::fstream &plik)

Otwiera plik do zapisu czysząc jego zawartość

void LosujIntRandDoPliku (const unsigned int n, const unsigned int zakres)

Zapisuje n losowych liczb(int) do pliku.

• void LosujIntRosnacoDoPliku (const unsigned int n, const unsigned int zakres)

Zapisuje n losowych liczb(int) do pliku.

5.11.1 Opis szczegółowy

Plik zawiera definicje funkcji zwiazanych z obsluga plikow.

Definicja w pliku Pliki.cpp.

5.11.2 Dokumentacja funkcji

5.11.2.1 void LosujIntRandDoPliku (const unsigned int *n*, const unsigned int *zakres*)

Losuje n liczb z zakresu od 1 do podonago przez użytwkonika następnie zapisuje wylosowane dane do pliku o nazwe "dane.dat"

Parametry

in	n	- ilość liczb do zapisania
in	zakres	- górny zakres wartości liczb

Definicja w linii 27 pliku Pliki.cpp.

5.11.2.2 void LosujIntRosnacoDoPliku (const unsigned int *n*, const unsigned int *zakres*)

Losuje n liczb z zakresu od 1 do podonago przez użytwkonika następnie zapisuje wylosowane dane do pliku o nazwe "dane.dat"

Parametry

in	n	- ilość liczb do zapisania
in	zakres	- górny zakres wartości liczb

Definicja w linii 44 pliku Pliki.cpp.

5.11.2.3 void OtworzPlikln (const char * nazwaPliku, std::fstream & plik)

Otwiera plik i sprawdza czy otwarcie sie powiodlo jezeli nie to koczy program

Parametry

in	nazwaPliku	- nazwa pliku ktory chcemy otworzyc
in	plik	- strumien powiazany z plikiem

Definicja w linii 11 pliku Pliki.cpp.

5.11.2.4 void OtworzPlikOut (const char * nazwaPliku, std::fstream & plik)

Otwiera plik i sprawdza czy otwarcie sie powiodlo jezeli nie to koczy program

Parametry

in	nazwaPliku	- nazwa pliku ktory chcemy otworzyc
in	plik	- strumien powiazany z plikiem

Definicja w linii 19 pliku Pliki.cpp.

5.12 Dokumentacja pliku Pliki.hh

Funkcje obslugi plikow.

```
#include <iostream>
#include <fstream>
#include <cstdlib>
```

Funkcje

void OtworzPlikIn (const char *nazwaPliku, std::fstream &plik)

Otwiera plik do odczytu.

void OtworzPlikOut (const char *nazwaPliku, std::fstream &plik)

Otwiera plik do zapisu czysząc jego zawartość

void LosujIntRandDoPliku (const unsigned int n, const unsigned int zakres)

Zapisuje n losowych liczb(int) do pliku.

void LosujIntRosnacoDoPliku (const unsigned int n, const unsigned int zakres)

Zapisuje n losowych liczb(int) do pliku.

5.12.1 Opis szczegółowy

Plik zawiera deklaracje funkcji zwiazanych z obsuga plikow

Definicja w pliku Pliki.hh.

5.12.2 Dokumentacja funkcji

5.12.2.1 void LosujIntRandDoPliku (const unsigned int n, const unsigned int zakres)

Losuje n liczb z zakresu od 1 do podonago przez użytwkonika następnie zapisuje wylosowane dane do pliku o nazwe "dane.dat"

Parametry

in	n	- ilość liczb do zapisania
in	zakres	- górny zakres wartości liczb

Definicja w linii 27 pliku Pliki.cpp.

5.12.2.2 void LosujIntRosnacoDoPliku (const unsigned int n, const unsigned int zakres)

Losuje n liczb z zakresu od 1 do podonago przez użytwkonika następnie zapisuje wylosowane dane do pliku o nazwe "dane.dat"

Parametry

in	n	- ilość liczb do zapisania
in	zakres	- górny zakres wartości liczb

Definicja w linii 44 pliku Pliki.cpp.

5.12.2.3 void OtworzPlikln (const char * nazwaPliku, std::fstream & plik)

Otwiera plik i sprawdza czy otwarcie sie powiodlo jezeli nie to koczy program

Parametry

in	nazwaPliku	- nazwa pliku ktory chcemy otworzyc
in	plik	- strumien powiazany z plikiem

Definicja w linii 11 pliku Pliki.cpp.

5.12.2.4 void OtworzPlikOut (const char * nazwaPliku, std::fstream & plik)

Otwiera plik i sprawdza czy otwarcie sie powiodlo jezeli nie to koczy program

Parametry

in	nazwaPliku	- nazwa pliku ktory chcemy otworzyc
in	plik	- strumien powiazany z plikiem

Definicja w linii 19 pliku Pliki.cpp.

5.13 Dokumentacja pliku Statystyka.cpp

Zawiera definicję metod klasy Statystyka.

```
#include "../inc/Statystyka.hh"
```

5.13.1 Opis szczegółowy

Plik zawiera definicję metod klasy Statystyka.

Definicja w pliku Statystyka.cpp.

5.14 Dokumentacja pliku Statystyka.hh

Zawiera definicję klasy Statystyka.

```
#include <iostream>
#include "IObserwator.hh"
#include "Stoper.hh"
#include <fstream>
#include <cstdlib>
#include <string>
```

Komponenty

class Statystyka

Modeluje pojęcie statystyki.

5.14.1 Opis szczegółowy

Zawiera definicję klasy Statystyka

Definicja w pliku Statystyka.hh.

5.15 Dokumentacja pliku Stoper.cpp

```
#include "../inc/Stoper.hh"
```

5.16 Dokumentacja pliku Stoper.hh

```
#include <iostream>
#include <ctime>
```

Komponenty

class Stoper
 Klasa Stoper.

5.17 Dokumentacja pliku Wezel.hh

```
#include <iostream>
```

Komponenty

struct Wezel < typ >
 Klasa węzeł

5.18 Dokumentacja pliku WezelAVL.hh

Komponenty

struct WezelAVL< typ >
 Węzeł drzewa AVL.

Skorowidz

\sim DrzewoAVL	DrzewoAVL, 7
DrzewoAVL, 7	FindMin, 7
\sim DrzewoBinarne	FindSuccessor, 7
DrzewoBinarne, 12	Insert, 8
~Statystyka	Korzen, 9
Statystyka, 21	LL, 8
~Wezel	LR, 8
Wezel, 25	LiczbaWezlow, 9
110201, 20	RL, 8
Aktualizuj	RR, 8
IObserwator, 17	
Statystyka, 21	Remove, 8
Statystyka, 21	Search, 9
Benchmark	DrzewoAVL< typ >, 6
	DrzewoAVL.hh, 27
Benchmark, 4	DrzewoAVLTest
DodajObserwatora, 4	Start, 10
lleDanych, 5	WczytajDane, 10
IlePowtorzen, 5	Zwolnij, 10
lleProb, 5	DrzewoAVLTest< typ >, 9
ListaObserwatorow, 5	DrzewoAVLTest.hh, 27
PowiadomObserwatorow, 4	DrzewoBinarne
Test, 5	\sim DrzewoBinarne, 12
UsunObserwatora, 5	Czysc, 12
Benchmark< typ >, 3	CzyscDrzewo, 12
Benchmark.hh, 27	DrzewoBinarne, 12
	DrzewoBinarne, 12
Czas	FindMin, 12
Statystyka, 21	FindSuccessor, 12
CzasKoncowy	Insert, 13
Stoper, 24	Korzen, 13
CzasPoczatkowy	LiczbaWezlow, 13
Stoper, 24	Remove, 13
CzyLiczy	Search, 13
Stoper, 24	
CzyOdmierza	DrzewoBinarne< typ >, 10
Stoper, 23	DrzewoBinarne.hh, 28
Czysc	DrzewoBinarneTest
DrzewoAVL, 7	Start, 14
	WczytajDane, 14
DrzewoBinarne, 12	Zwolnij, 15
CzyscDrzewo	DrzewoBinarneTest $<$ typ $>$, 13
DrzewoAVL, 7	DrzewoBinarneTest.hh, 28
DrzewoBinarne, 12	
DeiDerrier	FindMin
DajPomiar	DrzewoAVL, 7
Stoper, 23	DrzewoBinarne, 12
Dana	FindSuccessor
Wezel, 25	DrzewoAVL, 7
WezelAVL, 26	DrzewoBinarne, 12
DodajObserwatora	
Benchmark, 4	IDrzew
IObserwowany, 18	Insert, 15
DrzewoAVL	Remove, 17
∼DrzewoAVL, 7	IDrzew< typ >, 15
Czysc, 7	IDrzew.hh, 28
CzyscDrzewo, 7	ILOSC_POWTORZEN
DrzewoAVL, 7	main.cpp, 30
	* *

36 SKOROWIDZ

HOOO PROP	and a final
ILOSC_PROB	main
main.cpp, 30 IOBSERWOWANY HH	main.cpp, 30
IObserwowany.hh, 29	main.cpp, 29 ILOSC_POWTORZEN, 30
-	ILOSC_POWTORZEN, 30
IObserwator, 17 Aktualizuj, 17	main. 30
IObserwator.hh, 28	MojStoper
IObserwowany, 18	Statystyka, 22
DodajObserwatora, 18	Glatystyna, 22
PowiadomObserwatorow, 18	OtworzPlikIn
UsunObserwatora, 18	Pliki.cpp, 31
IObserwowany.hh, 28	Pliki.hh, 32
IOBSERWOWANY_HH, 29	OtworzPlikOut
ITestable, 19	Pliki.cpp, 31
Start, 19	Pliki.hh, 32
WczytajDane, 19	
Zwolnii, 20	Pliki.cpp, 30
ITestable.hh, 29	LosujIntRandDoPliku, 31
lleDanych	LosujIntRosnacoDoPliku, 31
Benchmark, 5	OtworzPlikIn, 31
IlePowtorzen	OtworzPlikOut, 31
Benchmark, 5	Pliki.hh, 31
lleProb	LosujIntRandDoPliku, 32
Benchmark, 5	LosujIntRosnacoDoPliku, 32
Statystyka, 22	OtworzPlikIn, 32
IloscPowtorzen	OtworzPlikOut, 32
Statystyka, 22	PowiadomObserwatorow
Insert	Benchmark, 4
DrzewoAVL, 8	IObserwowany, 18
DrzewoBinarne, 13	Prawy
IDrzew, 15	Wezel, 25
	WezelAVL, 26
Korzen	Proba
DrzewoAVL, 9	Statystyka, 22
DrzewoBinarne, 13	RL
	DrzewoAVL, 8
LL	RR
DrzewoAVL, 8	DrzewoAVL, 8
LR	Remove
DrzewoAVL, 8	DrzewoAVL, 8
Lewy	DrzewoBinarne, 13
Wezel, 25	IDrzew, 17
WezelAVL, 26	Reset
LiczbaWezlow	Stoper, 24
DrzewoAVL, 9	Rodzic
DrzewoBinarne, 13	Wezel, 25
LicznikPowtorzen	WezelAVL, 26
Statystyka, 22	
LicznikProb	Search
Statystyka, 22	DrzewoAVL, 9
ListaObserwatorow	DrzewoBinarne, 13
Benchmark, 5	Start
LosujIntRandDoPliku	DrzewoAVLTest, 10
Pliki.cpp, 31	DrzewoBinarneTest, 14
Pliki.hh, 32	ITestable, 19
LosujIntRosnacoDoPliku	Stoper, 24
Pliki.cpp, 31 Pliki.hh, 32	Statystyka, 20 ~Statystyka, 21
i iiriiiii, UZ	· · · · · · · · · · · · · · · · · · ·

Aktualizuj, 21	WezelAVL.hh, 34
Czas, 21	WspRownowagi
lleProb, 22	WezelAVL, 27
IloscPowtorzen, 22	
LicznikPowtorzen, 22	ZapiszStaty
LicznikProb, 22	Statystyka, 21
MojStoper, 22	Zwolnij
Proba, 22	DrzewoAVLTest, 10
Statystyka, 21	DrzewoBinarneTest, 15
SumaCzasuProby, 22	ITestable, 20
ZapiszStaty, 21	
Statystyka.cpp, 33	
Statystyka.hh, 33	
Stop	
Stoper, 24	
Stoper, 22	
CzasKoncowy, 24	
CzasPoczatkowy, 24	
CzyLiczy, 24	
CzyOdmierza, 23	
DajPomiar, 23	
Reset, 24	
Start, 24	
Stop, 24	
Stoper, 23	
Stoper.cpp, 33	
Stoper.hh, 33	
SumaCzasuProby	
Statystyka, 22	
Test	
Benchmark, 5	
UsunObserwatora	
Benchmark, 5	
IObserwowany, 18	
WczytajDane	
DrzewoAVLTest, 10	
DrzewoBinarneTest, 14	
ITestable, 19	
Wezel	
∼Wezel, 25	
Dana, 25	
Lewy, 25	
Prawy, 25	
Rodzic, 25	
Wezel, 25	
Wezel< typ >, 24	
Wezel.hh, 34	
WezelAVL	
Dana, 26	
Lewy, 26	
Prawy, 26	
Rodzic, 26	
WezelAVL, 26	
WezelAVL, 26	
WspRownowagi, 27	
WezelAVL< typ >, 26	