

(HOS 6932) – Survey of Breeding Tools and Methods An introduction to Quantitative Genetics

Felipe Ferrão

Research Assistant Scientist Iferrao@ufl.edu **¥**Ifelipeferrao

January, 2023

•00

Main objectives

- This module address the practical implementation of genomic selection .
- What you can expect:
 - ▶ Understand general principles;
 - ▶ Keep mathematics to a minimum and focus instead on the intuition:
 - ▶ Fit a RR-BLUP predictive model

- What I expect from you:

•00

Main objectives

- This module address the practical implementation of genomic selection .
- What you can expect:
 - ▶ Understand general principles;
 - ▶ Keep mathematics to a minimum and focus instead on the intuition:
 - ▶ Fit a RR-BLUP predictive model

- What I expect from you:
 - ▶ Basic knowledge of statistics, genetics and breeding;
 - ▷ Some familiarity with R;

General Structure

- Genomic Selection can be presented under different perspectives
- Multiple courses at UF
- Quantitative Genetics: population genetics, resemble between relatives, pedigree analysis (BLUP), GBLUP

Biometric Regression

• Statistical Learning: normal distribution, regression (linear model), regularization

Introduction

000

Let's grab some coffee and discuss methods and techniques used in plant breeding!!

https://lfelipe-ferrao.github.io/teaching/

Definition

Quantitative genetics provides means for estimating the genetic architecture and predicting the evolutionary potential of complex traits.

Biometric Regression

- What is genetic architecture?
- Why we have complex and simple traits?
- How to study a complex trait?

Background

Introduction

- All traits measured by Mendel are very simplistic.
- Phenotypes were assumed to be completely determined by the genotype
- Discrete classes, with variation corresponding to single locus with two alleles

© 2005-2011 The University of Walkato | www.biotechlearn.org.nz

Question

Introduction

- How many traits in your crop do you know that follow this discrete pattern?
- Is this type of genetic architecture a general rule or an exception?

Qualitative Traits

- Mendelian trait
- Fall into discrete categories
- One or few genes
- Example: Mendel's garden peas, color, insect and disease resistance

Quantitative Genetics

Biometric Regression

- Continues phenotype
- Greatly influenced by environment
- Join action of multiple genes (or QTL) - Infinitesimal Model
- Example: yield, height and weight

- Phenotype is a function of genotype and the environment
- Continuous traits usually follows a normal distribution, that can be fully described

Qualitative Traits

- Mendelian trait
- Fall into discrete categories
- One or few genes
- Example: Mendel's garden peas, color, insect and disease resistance

Quantitative Genetics

Biometric Regression

- Continues phenotype
- Greatly influenced by environment
- Join action of multiple genes (or QTL) - Infinitesimal Model
- Example: yield, height and weight

Nature of quantitative traits has two important aspects

- Phenotype is a function of genotype and the environment
- Continuous traits usually follows a normal distribution, that can be fully described with only two parameters: mean and variance.

The environmental factor

- Ex: phenotypic distribution determined by two independent Mendelian loci.
- Environment can "increase" or "decrease" the phenotypic expression
- Even if there is only a single genotype, the phenotype expressed will change depending on the environmental conditions

Normal Distribution

Infinitesimal Model

Fisher in 1918 showed that a large number of Mendelian factors (genes) influencing a trait would cause a nearly continuous distribution of trait values. Therefore, mendelian genetics can lead to an approximately normal distribution

 For a trait controlled by many genes and influenced by the environment, the measured character for any trait on an individual is called **phenotypic value**

Biometric Regression

• Formally, we can divide the phenotypic value

$$P = G + E$$

- Include all non-genetic effects (systematic and non-systematic)
- In plant breeding: G × E is also important

- The particular set of genes in a given individuals
- Can be decomposed in additional terms

$$V_p = V_G + V_E$$

$$V_p = V_A + V_D + V_I + V_I$$

- For a trait controlled by many genes and influenced by the environment, the measured character for any trait on an individual is called **phenotypic value**
- Formally, we can divide the phenotypic value

$$P = G + E$$

Environment (E)

- Include all non-genetic effects (systematic and non-systematic)
- In plant breeding: $G \times E$ is also important

Genotype (G)

- The particular set of genes in a given individuals
- Can be decomposed in additional terms

$$V_p = V_G + V_E$$

$$V_D = V_A + V_D + V_I + V_E$$

Gene action

Additive

- * Cumulative phenotypic effects of alleles
- * Phenotypic effect of each allele can be added

Dominance

- st Depends on the combination of alleles within a locus
- * Very important in hybrids * Different levels

Complete Dominance

Epistasis

- * Combination of genotypes at two or more loci * can be thought of as the "leftover" part of genotypic variance
- * Different levels: ** add-by-add
 - ** add-by-dom
- ** dom-by-dom

Gene action

Additive

- * Cumulative phenotypic effects of alleles
- * Phenotypic effect of each allele can be added

Dominance

- * Depends on the combination of alleles within a locus
- * Very important in hybrids

Epistasis

- * Combination of genotypes at two or more loci * can be thought of as the "leftoyer" part of genotypic variance
- * Different levels:
- ** add-by-add ** add-by-dom
- ** dom-by-dom

Why are these concepts important?

• Differences between quantitative and qualitative traits

Biometric Regression

- Environment has an important impact on the phenotype expression
- Our unity of study is a population, with a normal distribution and mean and variance

Connecting the dots

• Differences between quantitative and qualitative traits

Biometric Regression

- Environment has an important impact on the phenotype expression
- Our unity of study is a population, with a normal distribution and mean and variance

What are we missing?

We need to define the means to study a complex trait

CAN WE PREDICT A STUDENT'S WEIGHT y FROM HIS OR HER HEIGHT z?

Regression analysis

FITS A STRAIGHT LINE TO THIS MESSY SCATTERPLOT. Z IS CALLED THE INDEPENDENT OR PREDICTOR VARIABLE, AND 4 IS THE DEPENDENT OR RESPONSE VARIABLE. THE REGRESSION OR PREDICTION LINE HAS THE FORM

y = a+bx

Biometric Regression

•000000000000000

Regression

Background

• Depending on the causal connections between two variables, their true relationship may be linear and can be described using a linear regression

Biometric Regression

- Examples

 - ▶ How fertilization (x) is associated to yield (y) in corn?
 - ▶ How the phenotypic value (x) is associated to the gene content (y)?

We can write such questions using a model

$$Y_i = \beta_0 + \beta_1 X_i + e$$

Biometric Regression

- The terms β_0 and β_1 are the intercept and slope of the model, respectively.
- Intercept is the point at which the line crosses the y axis at x = 0.
- The slope expresses the relationship between y and x.

- β_0 and β_1 are two parameters estimated from the data
- Ordinary Least Squares (OLS) to estimate β_0 and β_1

We can write such questions using a model

$$Y_i = \beta_0 + \beta_1 X_i + e$$

- The terms β_0 and β_1 are the intercept and slope of the model, respectively.
- Intercept is the point at which the line crosses the y axis at x = 0.
- The slope expresses the relationship between y and x.

Estimation

- β_0 and β_1 are two parameters estimated from the data
- ullet Ordinary Least Squares (OLS) to estimate $\hat{eta_0}$ and $\hat{eta_1}$

Geometric Representation

Simple Linear Regression

Independent Variable (X)

Biometric Regression

Regression

Geometric Representation

Simple Linear Regression

Independent Variable (X)

Simple Linear Regression

Biometric Regression

Regression

OLS in action

- Straight lines can be drawn in multiple ways different slopes and intercepts.
- What is the best fit? Minimizes the error between the original and predicted values

Biometric Regression

Least-Squares Linear Regression

We seek estimators for the intercept and slope that minimize the residual

Biometric Regression

0000000000000000

- First, we need to define the errors
- Differentiate with respect to β_0 and β_1 and set the results equal to zero

$$y_i = \beta_0 + \beta_1 x_i + e$$

$$\hat{e}' \hat{e} = y_i - \hat{y}$$

$$\hat{e} = \sum \hat{e_i}^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial \hat{e}' \hat{e}}{\partial \hat{\beta}_0} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial \hat{e}' \hat{e}}{\partial \hat{\beta}_1} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

• Slope:
$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

• Intercept: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

Least-Squares Linear Regression

- We seek estimators for the intercept and slope that minimize the residual
- First, we need to define the errors
- Differentiate with respect to β_0 and β_1 and set the results equal to zero

$$y_i = \beta_0 + \beta_1 x_i + e$$

$$\hat{e}' \hat{e} = y_i - \hat{y}$$

$$\hat{e} = \sum \hat{e_i}^2 = \sum (y_i - \hat{y}_i)^2 = \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

$$\frac{\partial \hat{e}' \hat{e}}{\partial \hat{\beta}_0} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0$$

$$\frac{\partial \hat{e}' \hat{e}}{\partial \hat{\beta}_1} = -2 \sum (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0$$

Simple Linear Regression Estimators

• Slope:
$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

• Intercept: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

d=5, p=0.5, q=0.5

Biometric Regression

•
$$\hat{eta}_1=rac{\sum(x_i-ar{x})(y_i-ar{y})}{\sum(x_i-ar{x})^2}=lpha$$
 (average effect of allelic substitution)

•
$$\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x} = -2plpha$$
 (breeding value for aa)

d=5, p=0.5, q=0.5

- $\hat{eta}_1=rac{\sum(x_i-ar{x})(y_i-ar{y})}{\sum(x_i-ar{x})^2}=lpha$ (average effect of allelic substitution)
- ullet $\hat{eta}_0 = ar{y} \hat{eta}_1 ar{x} = -2 p lpha$ (breeding value for aa)

d=5, p=0.5, q=0.5

Partition the Genetic Variance

- SSTotal = SSRegression + SSdeviation
- $SSTotal = \sum f_i y_i^2 = p^2 (y_1)^2 + 2pq(y_2)^2 + q^2(y_3) = \sigma_g^2$
- $SSReg = \hat{\beta}_1 \sum f_i x_i y_i = 2pq\alpha^2 = \sigma_a^2$
- $SSDe = \sum f_i \hat{e}_i^2 = (2pqd)^2 = \sigma_d^2$

d=5, p=0.5, q=0.5

Partition the Genetic Variance

- SSTotal = SSRegression + SSdeviation
- $SSTotal = \sum f_i y_i^2 = p^2(y_1)^2 + 2pq(y_2)^2 + q^2(y_3) = \sigma_g^2$
- $SSReg = \hat{\beta}_1 \sum f_i x_i y_i = 2pq\alpha^2 = \sigma_a^2$
- $SSDe = \sum f_i \hat{e}_i^2 = (2pqd)^2 = \sigma_d^2$

Including Molecular Markers

- 10 markers (allele dosage) and a single QTL (red)
- 20 individuals measured for a given phenotypic trait (ex: yield)

Biometric Regression

00000000000000000

• Regression Model: $y \sim f(marker)$ and testing $H_0: \beta_1 = 0$

Regression

Including Molecular Markers

- 10 markers (allele dosage) and a single QTL (red)
- 20 individuals measured for a given phenotypic trait (ex: yield)
- Regression Model: $y \sim f(marker)$ and testing $H_0: \beta_1 = 0$

Biometric Regression

- 10 markers (allele dosage) and a single QTL (red)
- 20 individuals measured for a given phenotypic trait (ex: yield)
- Regression Model: $y \sim f(marker)$ and testing $H_0: \beta_1 = 0$

Regression

Introduction

- 10 markers (allele dosage) and a single QTL (red)
- 20 individuals measured for a given phenotypic trait (ex: yield)
- Regression Model: $y \sim f(marker)$ and testing $H_0: \beta_1 = 0$

- 10 markers (allele dosage) and a single QTL (red)
- 20 individuals measured for a given phenotypic trait (ex: yield)
- Regression Model: $y \sim f(marker)$ and testing $H_0: \beta_1 = 0$

Genome-wide association of volatiles reveals candidate loci for blueberry flavor

Ferrão et al., 2020. New Phytologist doi: 10.1111/nph.16459

Regression

Including Molecular Markers

- Single Marker Regression
- Version of the Biometric Model: we can compute genetic parameters
- Theoretical basis for GWAS models and QTL mapping
- Precursor of genomic selection methods
- Problems:

Biometric Regression

- Single Marker Regression
- Version of the Biometric Model: we can compute genetic parameters
- Theoretical basis for GWAS models and QTL mapping
- Precursor of genomic selection methods
- Problems:
 - ▶ Testing millions of markers, one at a time, inflate type I error
 - ▶ Lack of power: small effect can rarely be detected
 - ▶ Beavis (or winner's curse) effect: noises will occur in analysis with many markers, and this biases the estimates, making it look much larger than real

Summary

Introduction

- Differences between qualitative and quantitative traits
- How to compute means and variance using genetic information
- Key concepts: additive, dominance, epistasis, additive variance, dominance variance and average effect of allelic substitution
- First marker-assisted selection model !!

- Why use one marker at a time in the regression analyses?
- What happens if we use all markers simultaneously?

Summary

- Differences between qualitative and quantitative traits
- How to compute means and variance using genetic information
- Key concepts: additive, dominance, epistasis, additive variance, dominance variance and average effect of allelic substitution
- First marker-assisted selection model !!

Next class

- Why use one marker at a time in the regression analyses?
- What happens if we use all markers simultaneously?

Final Considerations

Hands-on 1

Introduction

https://lfelipe-ferrao.github.io/teaching/

References

References

- Hamilton, 2009. Population Genetics. Book - Basic knowledge
- Bernardo, 2010. Breeding for Quantitative Traits in Plants Book - Intermediate knowledge, more focuses in breeding
- Lynch and Walsh, 1998. Genetics and Analysis of Quantitative Traits Book - Complete book, modern approach, advanced knowledge

Biometric Regression

- Falconer and Mackay, 1996. Introduction to Quantitative Genetics Book - Main reference in the field, advanced knowledge
- Cruz, 2005. Princípios de Genética Quantitativa. Book - Portuguese version