Introduction to Sequential Monte Carlo Methods

Importance Sampling for Nonlinear Non-Gaussian Dynamic Models

Prof. Nicholas Zabaras
Center for Informatics and Computational Science

https://cics.nd.edu/

University of Notre Dame Notre Dame, Indiana, USA

Email: <u>nzabaras@gmail.com</u>
URL: <u>https://www.zabaras.com/</u>

November 6, 2018

Contents

- □ References and SMC Resources
- INTRODUCING THE STATE SPACE MODEL: Discrete time Markov Models, Tracking Problem, Speech Enhancement, the Dynamics of an Asset, The state space model with observations, target distribution and point estimates, particle motion in random field
- BAYESIAN INFERENCE IN STATE SPACE MODELS: Bayesian recursion for the state-space model, Forward Filtering, Forward-Backward Filter
- ONLINE BAYESIAN PARAMETER ESTIMATION: Online parameter estimation, MLE, EM, Need for numerical approach to HMM
- ☐ IMPORTANCE SAMPLING: Review of IS, Monte Carlo for the State Space Example, IS for the State Space Model, Optimal Importance Distribution, Effective Sample Size, Sequential IS

- ☐ C.P. Robert & G. Casella, Monte Carlo Statistical Methods, Chapter 11
- ☐ J.S. Liu, Monte Carlo Strategies in Scientific Computing, Chapter 3, Springer-Verlag, New York.
- □ A. Doucet, N. De Freitas & N. Gordon (eds), <u>Sequential Monte Carlo in Practice</u>, Springer-Verlag: 2001
- A. Doucet, N. De Freitas, N.J. Gordon, An introduction to Sequential Monte Carlo, in SMC in Practice, 2001
- □ D. Wilkison, Stochastic Modelling for Systems Biology, Second Edition, 2006
- ☐ E. Ionides, Inference for Nonlinear Dynamical Systems, PNAS, 2006
- ☐ J.S. Liu and R. Chen, <u>Sequential Monte Carlo methods for dynamic systems</u>, JASA, 1998
- A. Doucet, Sequential Monte Carlo Methods, Short Course at SAMSI
- A. Doucet, Sequential Monte Carlo Methods & Particle Filters Resources
- ☐ Pierre Del Moral, Feynman-Kac models and interacting particle systems (SMC resources)
- A. Doucet, Sequential Monte Carlo Methods, Video Lectures, 2007
- N. de Freitas and A. Doucet, <u>Sequential MC Methods</u>, N. de Freitas and A. Doucet, Video Lectures, 2010

- ☐ M.K. Pitt and N. Shephard, <u>Filtering via Simulation: Auxiliary Particle Filter</u>, JASA, 1999
- A. Doucet, S.J. Godsill and C. Andrieu, <u>On Sequential Monte Carlo sampling methods for Bayesian filtering</u>, Stat. Comp., 2000
- J. Carpenter, P. Clifford and P. Fearnhead, <u>An Improved Particle Filter for Non-linear Problems</u>, IEE 1999.
- □ A. Kong, J.S. Liu & W.H. Wong, <u>Sequential Imputations and Bayesian Missing Data Problems</u>, JASA, 1994
- O. Cappe, E. Moulines & T. Ryden, Inference in Hidden Markov Models, Springer-Verlag, 2005
- W Gilks and C. Berzuini, <u>Following a moving target: MC inference for dynamic Bayesian Models</u>, JRSS B, 2001
- ☐ G. Poyadjis, A. Doucet and S.S. Singh, <u>Maximum Likelihood Parameter Estimation using Particle Methods</u>, Joint Statistical Meeting, 2005
- N Gordon, D J Salmond, AFM Smith, <u>Novel Approach to nonlinear non Gaussian Bayesian state estimation</u>, IEE, 1993
- Particle Filters, S. Godsill, 2009 (Video Lectures)
- □ R. Chen and J.S. Liu, <u>Predictive Updating Methods with Application to Bayesian Classification</u>, JRSS B, 1996

- □ C. Andrieu and A. Doucet, <u>Particle Filtering for Partially Observed Gaussian State-Space Models</u>, JRSS B, 2002
- □ R Chen and J Liu, Mixture Kalman Filters, JRSSB, 2000
- □ A Doucet, S J Godsill, C Andrieu, On SMC sampling methods for Bayesian Filtering, Stat. Comp. 2000
- N. Kantas, A.D., S.S. Singh and J.M. Maciejowski, <u>An overview of sequential Monte Carlo methods for parameter estimation in general state-space models</u>, in Proceedings IFAC System Identification (SySid) Meeting, 2009
- □ C. Andrieu, A.Doucet & R. Holenstein, Particle Markov chain Monte Carlo methods, JRSS B, 2010
- □ C. Andrieu, N. De Freitas and A. Doucet, <u>Sequential MCMC for Bayesian Model Selection</u>, Proc. IEEE Workshop HOS, 1999
- P. Fearnhead, MCMC, sufficient statistics and particle filters, JCGS, 2002
- ☐ G. Storvik, Particle filters for state-space models with the presence of unknown static parameters, IEEE Trans. Signal Processing, 2002

- □ C. Andrieu, A. Doucet and V.B. Tadic, <u>Online EM for parameter estimation in nonlinear-non Gaussian state-space models</u>, Proc. IEEE CDC, 2005
- ☐ G. Poyadjis, A. Doucet and S.S. Singh, Particle Approximations of the Score and Observed Information Matrix in State-Space Models with Application to Parameter Estimation, Biometrika, 2011
- □ C. Caron, R. Gottardo and A. Doucet, <u>On-line Changepoint Detection and Parameter Estimation for Genome Wide Transcript Analysis</u>, Technical report 2008
- R. Martinez-Cantin, J. Castellanos and N. de Freitas. <u>Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM</u>. International Conference on Robotics and Automation
- □ C. Andrieu, A.D. & R. Holenstein, <u>Particle Markov chain Monte Carlo methods (with discussion)</u>, JRSS B, 2010
- □ A Doucet, <u>Sequential Monte Carlo Methods and Particle Filters</u>, List of Papers, Codes, and Viedo lectures on SMC and particle filters
- ☐ Pierre Del Moral, Feynman-Kac models and interacting particle systems

- P. Del Moral, A. Doucet and A. Jasra, Sequential Monte Carlo samplers, JRSSB, 2006
- □ P. Del Moral, A. Doucet and A. Jasra, <u>Sequential Monte Carlo for Bayesian Computation</u>, Bayesian Statistics, 2006
- □ P. Del Moral, A. Doucet & S.S. Singh, <u>Forward Smoothing using Sequential Monte Carlo, technical report</u>, Cambridge University, 2009
- ☐ P. Del Moral, Feynman-Kac Formulae, Springer-Verlag, 2004
- □ Sequential MC Methods, M. Davy, 2007
- □ A Doucet, A Johansen, Particle Filtering and Smoothing: Fifteen years later, in Handbook of Nonlinear Filtering (edts D Crisan and B. Rozovsky), Oxford Univ. Press, 2011
- A. Johansen and A. Doucet, A Note on Auxiliary Particle Filters, Stat. Proba. Letters, 2008.
- A. Doucet et al., Efficient Block Sampling Strategies for Sequential Monte Carlo, (with M. Briers & S. Senecal), JCGS, 2006.
- □ C. Caron, R. Gottardo and A. Doucet, On-line Changepoint Detection and Parameter Estimation for Genome Wide Transcript Analysis, Stat Comput. 2011.

Introduction

- Sequential Monte Carlo (SMC) methods are used to approximate any sequence of probability distributions.
- They are used often in physics
 - Compute eigenvalues of positive operators
 - Compute free energies
 - Solve differential or integral equations
 - Simulate polymer chains
 - > Etc.
- □ Hidden Markov Models (HMM) are used in these notes and most tutorials for introducing SMC but SMC is clearly a method for a much bigger class of problems.
- In HMM, SMC methods are often known as Particle Filtering or Smoothing Methods.

Introducing the State Space Model

Discrete-Time Markov Model

- ☐ Consider a discrete-time Markov process : $\{X_n\}$, $n \ge 1$
- □ It is defined by an initial density $X_1 \sim \mu(.)$ and a transition density:

$$X_n \mid (X_{n-1} = x) \sim f(\cdot \mid x)$$

☐ We then can write (prior distribution of the states):

$$p(\mathbf{x}_{1:n}) \equiv p(x_1, \dots, x_n) = \mu(x_1) \prod_{k=2}^n f(x_k \mid x_{k-1})$$

Tracking Example

 \square Consider tracking a target in the XY plane (location/speed in x-y):

$$X_{k} = (X_{k,1}, V_{k,1}, X_{k,2}, V_{k,2})^{T}$$

■ We consider the constant velocity model:

$$\boldsymbol{X}_{k} = \boldsymbol{A}\boldsymbol{X}_{k-1} + \boldsymbol{W}_{k}, \boldsymbol{W}_{k} \sim \mathcal{N}(0, \boldsymbol{\Sigma})$$

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{A}_{CV} & 0 \\ 0 & \boldsymbol{A}_{CV} \end{pmatrix}, \, \boldsymbol{A}_{CV} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix}$$

$$\Sigma = \sigma^2 \begin{pmatrix} \Sigma_{CV} & 0 \\ 0 & \Sigma_{CV} \end{pmatrix}, \Sigma_{CV} = \begin{pmatrix} T^3 / & T^2 / \\ 1 / 3 & 1 / 2 \\ T^2 / 2 & T \end{pmatrix}$$

☐ The transition density for this model is then:

$$f(x_k \mid x_{k-1}) = \mathcal{N}(x_k; Ax_{k-1}, \Sigma)$$

Speech Enhancement

■ We model speech signals as an autoregressive (AR) process, i.e.

$$S_{k} = \sum_{i=1}^{d} \alpha_{i} S_{k-i} + V_{k}, V_{k} \sim \mathcal{N}(0, \sigma_{s}^{2})$$

■ We can write this in a matrix form as follows:

$$\boldsymbol{A} = \begin{pmatrix} \boldsymbol{\alpha}_1 & \boldsymbol{\alpha}_2 & \dots & \boldsymbol{\alpha}_d \\ 1 & & & \\ & \dots & & \\ 1 & & & \\ & 1 & & \end{pmatrix}, \boldsymbol{B} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

The transition density is now:

$$f_{U}(u_{k} | u_{k-1}) = \mathcal{N}((u_{k})_{1}; (Au_{k-1})_{1}, \sigma_{s}^{2}) \delta_{(u_{k-1})_{1:d-1}}((u_{k})_{2:d})$$

Speech Enhancement

We can also consider the AR coefficients to be time dependent:

$$\alpha_k = \alpha_{k-1} + W_k, W_k \sim \mathcal{N}(0, \sigma_{\alpha}^2 I_d), \text{ where }:$$

$$\alpha_k = (\alpha_{k,1}, ..., \alpha_{k,d})^T$$

Thus for non-stationary speech signals, we can write:

$$f_{\alpha}(\alpha_{k} \mid \alpha_{k-1}) = \mathcal{N}(\alpha_{k}; \alpha_{k-1}, \sigma_{\alpha}^{2} \boldsymbol{I}_{d})$$

☐ The process $X_k = (a_k, Uk)$ is a Markov with transition density

$$f(x_{k} | x_{k-1}) = \mathcal{N}(\alpha_{k}; \alpha_{k-1}, \sigma_{\alpha}^{2} I_{d}) \mathcal{N}((u_{k})_{1}; (A_{k} u_{k-1})_{1}, \sigma_{s}^{2}) \delta_{(u_{k-1})_{1:d-1}}((u_{k})_{2:d})$$

with

$$(A_k u_{k-1})_1 = (\alpha_{k,1}, ..., \alpha_{k,d})^T \begin{pmatrix} S_{k-1} \\ \vdots \\ S_{k-1-d} \end{pmatrix}$$

Econometrics

☐ The Heston model (1993) describes the dynamics of an asset price S_t with the following model for $X_t = \log(St)$

$$dX_t = \mu dt + dW_t + dZ_t$$

where Z_t is a jump process, and dW_t Brownian motion.

■ We approximate this (time integration) by a discrete-time Markov process

$$X_{t+\delta} = X_t + \delta\mu + W_{t+\delta,t} + Z_{t+\delta,t}$$

- ☐ The same model is used for biochemical networks, disease and population dynamics, etc.
- D. Wilkison, Stochastic Modelling for Systems Biology, Second Edition, 2006
- E. Ionides, <u>Inference for Nonlinear Dynamical Systems</u>, <u>PNAS</u>, <u>2006</u>

The State Space Model

- Let us discuss in some detail a very popular dynamic system, the *state space model*, now including observations
- □ A state space model is an extension of a Markov Chain which is able to capture the sequential relations among hidden variables.
- It is a dynamic system including two major parts

The State Space Model

- The two parts can be expressed by equations
 - \triangleright state equation: $\{X_n\}$, $n \ge 1$ is a latent/hidden Markov process with

$$X_1 \sim \mu(.) \ and \ X_n \mid (X_{n-1} = x_{n-1}) \sim f(\cdot \mid x_{n-1})$$

▶ observation equation: $\{Y_n\}$, $n \ge 1$ is an observation process with the observations being conditionally independent given $\{X_n\}$, $n \ge 1$

$$Y_n \mid (X_n = x_n) \sim g(\cdot \mid x_n)$$

The observations $\{y_n\}$ are conditionally independent given the Markov states $\{x_n\}$, e.g. $g(y_i|x_i)$ and $g(y_j|x_j)$ are independent. Thus the likelihood is

$$p(y_1,\dots,y_n \mid x_1,\dots,x_n) = \prod_{i=1}^n g(y_i \mid x_i)$$

 \square Our aim is to recover $\{X_n\}$, $n \ge 1$ given $\{Y_n\}$, $n \ge 1$.

The State Space Model: Examples

A Linear Gaussian State Space Model

$$X_1 \sim \mathcal{N}(m_1, \Sigma_1)$$
 and $X_n = AX_{n-1} + BV_n$
 $Y_n = CX_n + DW_n$, where
$$V_n \sim \mathcal{N}(0, \Sigma_v) \text{ and } W_n \sim \mathcal{N}(0, \Sigma_w)$$

☐ A Stochastic Volatility Model

$$X_{1} \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{1-\alpha^{2}}\right) \text{ and } X_{n} = \alpha X_{n-1} + V_{n}$$

$$Y_{n} = \beta \exp\left(X_{n}/2\right) W_{n}, \text{ where}$$

$$|\alpha| < 1, V_{n} \sim \mathcal{N}(0, \sigma^{2}) \text{ and } W_{n} \sim \mathcal{N}(0, 1)$$

$$x_{n} \sim \mathcal{N}\left(\alpha x_{n-1}, \sigma^{2}\right) \quad g\left(y_{n} \mid x_{n}\right) = \mathcal{N}\left(y_{n}; 0, \beta^{2} \exp\left(x_{n}\right)\right)$$

Tracking Example

The simplest linear model is of the form:

$$Y_k = CX_k + E_k, E_k \sim \mathcal{N}(0, \Sigma_e) \Rightarrow$$

$$g(y_k \mid x_k) = \mathcal{N}(y_k; CX_k, \Sigma_e)$$

The non-linear version (Bearings-only-tracking) is more popular:

$$Y_k = \tan^{-1} \frac{X_{k,2}}{X_{k,1}} + E_k, E_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^2) \Longrightarrow$$

$$g(y_k \mid x_k) = \mathcal{N}\left(y_k; \tan^{-1}\frac{x_{k,2}}{x_{k,1}}, \sigma^2\right)$$

■ Note that the mean of the Gaussian is a highly non-linear function of the state.

The State Space Model

- At time n, we have a total of n observations and the target distribution to be estimated is $p(x_{1:n} | y_{1:n})$
- ☐ The target distribution is "time-varying". The posterior distribution should be updated after new observations are added. Thus we need to estimate a sequence of distributions according to the time sequence

Likelihood:
$$p(y_1, \dots, y_n \mid x_1, \dots, x_n) = \prod_{i=1}^n g(y_i \mid x_i)$$

Prior:
$$p(\mathbf{x}_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k | x_{k-1})$$

Bayesian Inference in State Space Models

Bayesian Inference in State-Space Models

- In Bayesian estimation, the target distribution (posterior) for such state-space model is $p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n})$
- The state equation for the Markov process defines a prior as

$$p(\mathbf{x}_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1})$$

The observation equation defines the likelihood as

$$p(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) = \prod_{k=1}^{n} g(\mathbf{y}_{k} \mid \mathbf{x}_{k})$$

☐ The posterior distribution is known up to a normalizing constant

$$p(\mathbf{x}_{1:n} \mid \mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})}{p(\mathbf{y}_{1:n})} \propto p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \underbrace{p(\mathbf{x}_{1:n})}_{\text{Prior}} \underbrace{p(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n})}_{\text{Likelihood}} = \mu(\mathbf{x}_{1}) \prod_{k=2}^{n} f(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}) \prod_{k=1}^{n} g(\mathbf{y}_{k} \mid \mathbf{x}_{k}) \text{ and }$$

$$p(\mathbf{y}_{1:n}) = \int ... \int p(\mathbf{x}_{1:n}) p(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) d\mathbf{x}_{1:n}$$

Bayesian Inference in State-Space Models

In this lecture, our target distribution is as follows:

$$\pi_{n}(\mathbf{x}_{1:n}) = \frac{\gamma_{n}(\mathbf{x}_{1:n})}{Z_{n}} = p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}), \gamma_{n}(\mathbf{x}_{1:n}) = p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}), Z_{n} = p(\mathbf{y}_{1:n})$$

The posterior and marginal likelihood do not admit close forms unless $\{X_n\}$ and $\{Y_n\}$ follow linear Gaussian equations or when $\{X_n\}$ takes values in a finite state space.

Bayesian Inference in State-Space Models

From the posterior distribution, one can compute useful point estimates

$$arg \max p(\boldsymbol{x}_{1:n} | \boldsymbol{y}_{1:n})$$

■ One can also compute the MAP estimate for components

$$\arg\max\,p\big(x_k\mid\boldsymbol{y}_{1:n}\big)$$

$$p(x_{k} | \mathbf{y}_{1:n}) = \int ... \int p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}) d\mathbf{x}_{1:k-1} d\mathbf{x}_{k+1:n}$$

□ The posterior mean (minimum mean square estimate) can also be estimated as:

$$\mathbb{E}\left[X_{k} \mid \mathbf{y}_{1:n}\right] = \int x_{k} p\left(x_{k} \mid \mathbf{y}_{1:n}\right) dx_{k}$$

Consider a Markovian particle $\{X_n\}, n \ge 1$ evolving in a random medium as follows:

$$X_1 \sim \mu(.) \text{ and } X_{n+1} | (X_n = x) \sim f(\cdot | x)$$

- At time n, the probability for the particle to be killed is given as $1 g(X_n)$, where $0 \le g(x) \le 1$ for any $x \in E$.
- Let T be the time at the which the particle is killed. We want to compute the probability Pr(T > n).

- Starting from t = 1, given the current state x_1 , the probability for the particle to survive is given as $g(x_1)$.
- Thus, the joint probability {particle at state x_1 , particle survive} is

$$\mu(x_1)g(x_1)$$

By integration on x_1 , the probability that a particle survives at time t=1 is

$$\int \mu(x_1)g(x_1)dx_1$$

- At t = 2, given the state x_1 , the current state x_2 is determined by the transition probability $f(x_2 | x_1)$
- The probability for such a particle to survive at time t = 2 is also determined by current state x_2 , i.e. the probability is $g(x_2)$
- \Box If the particle survives at time t=2, it means
 - 1. at time 1, the particle survives with probability $g(x_1)$
 - 2. state x_1 determines the current state x_2 with probability $f(x_2|x_1)$
 - 3. the probability to survive at time t = 2 is $g(x_2)$

The joint probability for the three events is

$$\mu(x_1) f(x_2 | x_1) g(x_1) g(x_2)$$

 $\mu(x_1) f(x_2 | x_1)$ determines the random states $g(x_1) g(x_2)$ determines the probability to survive at each time

This can be considered as a typical Hidden Markov Model

Markov Chain (state equation)

$$x_k \sim f\left(x_k \mid x_{k-1}\right)$$

Survive (observation equation)

$$y_k \sim g(x_k)$$

 \square The probability density for the particle to survive at time t=n is

$$\mu(x_1) \prod_{k=2}^n f(x_k \mid x_{k-1}) \cdot \prod_{k=1}^n g(x_k)$$

 $lue{}$ By integration over the state variables x_k , we obtain the probability for the particle to survive at time t=n

$$\Pr(T > n) = \mathbb{E}_{\mu} \left[\Pr{obability \ of \ not \ being \ killed \ given \ X_{1:n}} \right] =$$

$$= \int \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(x_k) d\mathbf{x}_{1:n}$$

$$\Pr(T > n) = \mathbb{E}_{\mu} \left[\Pr{obability \ of \ not \ being \ killed \ given \ X_{1:n}} \right] =$$

$$= \int \mu(x_1) \prod_{k=2}^{n} f(x_k \mid x_{k-1}) \prod_{k=1}^{n} g(x_k) dx_{1:n}$$

To place this calculation in our SMC framework, we define the following:

$$\gamma_n\left(\mathbf{x}_{1:n}\right) = \mu\left(x_1\right) \prod_{k=2}^n f\left(x_k \mid x_{k-1}\right) \cdot \prod_{k=1}^n g\left(x_k\right)$$

Then the integration needed to compute the required probability is just the normalization constant of $\gamma_n(x_{1:n})$, i.e.

$$Z_{n} = \int \mu(x_{1}) \prod_{k=2}^{n} f(x_{k} \mid x_{k-1}) \prod_{k=1}^{n} g(x_{k}) dx_{1:n}$$

$$\pi_{n}(x_{1:n}) = \frac{\gamma_{n}(x_{1:n})}{Z_{n}} and$$

$$Z_{n} = \Pr(T > n)$$

Bayesian Recursion Fomulas for the State Space Model

Bayesian Recursion for the State Space Model

- Let us return to our <u>state space model</u> where the objective is to compute $p(x_{1:n} | y_{1:n})$. We want to calculate this sequentially.
- We can write the following recursion equation:

$$p(\mathbf{x}_{1:n} \mid \mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})/p(\mathbf{y}_{1:n-1})}{p(\mathbf{x}_{1:n-1}, \mathbf{y}_{1:n-1})/p(\mathbf{y}_{1:n-1})} p(\mathbf{x}_{1:n-1} \mid \mathbf{y}_{1:n-1}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})}{p(\mathbf{x}_{1:n-1}, \mathbf{y}_{1:n-1})} \frac{p(\mathbf{y}_{1:n-1})}{p(\mathbf{y}_{1:n-1})} p(\mathbf{x}_{1:n-1} \mid \mathbf{y}_{1:n-1})$$
Predictive: $p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n-1})$

$$= g(y_{n} | x_{n}) f(x_{n} | x_{n-1}) \frac{1}{p(y_{n} | y_{1:n-1})} p(x_{1:n-1} / y_{1:n-1}) = \frac{g(y_{n} | x_{n}) f(x_{n} | x_{n-1}) p(x_{1:n-1} / y_{1:n-1})}{p(y_{n} | y_{1:n-1})}$$
The prediction of x_{n} given x_{n} is:

where the prediction of y_n given $y_{1:n-1}$ is:

$$p(y_{n} | \mathbf{y}_{1:n-1}) = \int p(y_{n}, x_{n} / \mathbf{y}_{1:n-1}) dx_{n} = \int g(y_{n} | x_{n}) p(x_{n} / \mathbf{y}_{1:n-1}) dx_{n}$$

$$= \int g(y_{n} | x_{n}) p(x_{n}, x_{n-1} / \mathbf{y}_{1:n-1}) d\mathbf{x}_{n-1:n} = \int g(y_{n} | x_{n}) f(x_{n} | x_{n-1}) p(x_{n-1} / \mathbf{y}_{1:n-1}) d\mathbf{x}_{n-1:n}$$

We can write our update equation above in two recursive steps:

Step I - Prediction:
$$p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1}) = f(\mathbf{x}_n | \mathbf{x}_{n-1}) p(\mathbf{x}_{1:n-1} / \mathbf{y}_{1:n-1})$$

Step II - Update: $p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}) = \frac{g(\mathbf{y}_n | \mathbf{x}_n) p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1})}{p(\mathbf{y}_n | \mathbf{y}_{1:n-1})} \propto g(\mathbf{y}_n | \mathbf{x}_n) p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1})$

Prediction-Updating for the Marginal

A two-step prediction/update for the marginal (filtering distributions) $p(x_n | y_{1:n})$ can also be easily derived.

Step I - Prediction:
$$p(x_{n}/y_{1:n-1}) = \int p(x_{n-1:n}/y_{1:n-1}) dx_{n-1}$$

$$= \int p(x_{n}/x_{n-1}, y_{1:n-1}) p(x_{n-1}/y_{1:n-1}) dx_{n-1}$$

$$= \int f(x_{n}/x_{n-1}) p(x_{n-1}/y_{1:n-1}) dx_{n-1}$$
Step II - Update: $p(x_{n}/y_{1:n}) = p(x_{n}/y_{n}, y_{1:n-1}) = \frac{g(y_{n}|x_{n}) p(x_{n}/y_{1:n-1})}{p(y_{n}|y_{1:n-1})}$

where:

$$p(y_n | \mathbf{y}_{1:n-1}) = \int g(y_n | x_n) f(x_n | x_{n-1}) p(x_{n-1} / \mathbf{y}_{1:n-1}) d\mathbf{x}_{n-1:n}$$

- □ This recursion leads to the Kalman filter and the standard HMM filter for linear Gaussian models. In the context of SMC these are not directly useful results.
- Our key emphasis remains in the calculation of $p(\mathbf{x}_{1:n} \mid \mathbf{y}_{1:n})$ even if our interests are in computing $\{p(\mathbf{x}_n \mid \mathbf{y}_{1:n})\}$

Recursive Calculation of the Marginal $p(y_{1:n})$

☐ To compute the normalizing factor $p(y_{1:n})$, one can use recursive calculation avoiding high dimensional integration.

$$p(\mathbf{y}_{1:n}) = p(y_1) \prod_{k=2}^{n} p(y_k \mid \mathbf{y}_{1:k-1})$$

 \square To compute $p(y_k | y_{1:k-1})$, we use the recursion derived earlier:

$$p(y_{k} | \mathbf{y}_{1:k-1}) = \int p(y_{k}, x_{k} / \mathbf{y}_{1:k-1}) dx_{k} = \int g(y_{k} | x_{k}) p(x_{k} / \mathbf{y}_{1:k-1}) dx_{k}$$

$$= \int g(y_{k} | x_{k}) p(x_{k}, x_{k-1} / \mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1:k} = \int g(y_{n} | x_{n}) f(x_{k} | x_{k-1}) p(x_{k-1} / \mathbf{y}_{1:k-1}) d\mathbf{x}_{k-1:k}$$

 \square We can now see that the calculation of $p(y_{1:n})$ is a product of lower dimensional integrals.

Forward Filtering Backward Smoothing

One can also estimate the marginal smoothing distribution $p(x_k | y_{1:n}), k = 1,...,n$ (an offline estimate once all measurements $y_{1:n}$ are collected)

I - Forward pass: Compute and store $p(x_k | y_{1:k}), p(x_{k+1} | y_{1:k}), k = 1, 2, ..., n$ (use the update and prediction recursions derived earlier)

$$II - Backward pass (k = n - 1, n - 2, ..., 1) : p(x_k / y_{1:n}) = \int \frac{f(x_{k+1} | x_k) p(x_k / y_{1:k})}{p(x_{k+1} | y_{1:k})} p(x_{k+1} / y_{1:n}) dx_{k+1}$$

☐ Indeed, one can show:

$$p(x_{k} / \mathbf{y}_{1:n}) = \int p(x_{k}, x_{k+1} / \mathbf{y}_{1:n}) dx_{k+1} = \int p(x_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:n}) p(x_{k+1} / \mathbf{y}_{1:n}) dx_{k+1}$$

$$= \int p(x_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k}) p(x_{k+1} / \mathbf{y}_{1:n}) dx_{k+1} = \int \frac{f(x_{k+1} | x_{k}) p(x_{k} / \mathbf{y}_{1:k})}{p(x_{k+1} | \mathbf{y}_{1:k})} p(x_{k+1} / \mathbf{y}_{1:n}) dx_{k+1}$$

Here we used (see Appendix next) $p(x_k \mid x_{k+1}, y_{1:n}) = p(x_k \mid x_{k+1}, y_{1:k})$

Appendix

Here we prove the Eq. used in the earlier slide:

$$p(x_k \mid x_{k+1}, y_{1:n}) = p(x_k \mid x_{k+1}, y_{1:k})$$

Note that:

$$p(x_{k} | x_{k+1}, \mathbf{y}_{1:n}) = \frac{p(x_{k}, x_{k+1}, \mathbf{y}_{1:n})}{p(x_{k+1}, \mathbf{y}_{1:n})} = \frac{\int p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) d\mathbf{x}_{1:k} d\mathbf{x}_{k+2:n}}{\int p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) d\mathbf{x}_{1:k} d\mathbf{x}_{k+2:n}}$$

$$= \frac{\int p(x_{1}) \prod_{i=1}^{n-1} f(x_{i+1} | x_{i}) g(y_{i} | x_{i}) g(y_{n} | x_{n}) d\mathbf{x}_{1:k-1} d\mathbf{x}_{k+2:n}}{\int p(x_{1}) \prod_{i=1}^{n-1} f(x_{i+1} | x_{i}) g(y_{i} | x_{i}) g(y_{n} | x_{n}) d\mathbf{x}_{1:k-1} \int \prod_{i=k+1}^{n-1} f(x_{i+1} | x_{i}) g(y_{n} | x_{n}) d\mathbf{x}_{k+2:n}}$$

$$= \frac{\int p(x_{1}) \prod_{i=1}^{k} f(x_{i+1} | x_{i}) g(y_{i} | x_{i}) d\mathbf{x}_{1:k-1} \int \prod_{i=k+1}^{n-1} f(x_{i+1} | x_{i}) g(y_{n} | x_{n}) d\mathbf{x}_{k+2:n}}{\int p(x_{1}) \prod_{i=1}^{k} f(x_{i+1} | x_{i}) g(y_{i} | x_{i}) d\mathbf{x}_{1:k} \int \prod_{i=k+1}^{n-1} f(x_{i+1} | x_{i}) g(y_{n} | x_{n}) d\mathbf{x}_{k+2:n}}$$

$$= \frac{p(x_{k}, x_{k+1}, \mathbf{y}_{1:k})}{p(x_{k+1}, \mathbf{y}_{1:k})} = p(x_{k} | x_{k+1}, \mathbf{y}_{1:k})$$

Forward-Backward (Two-Filter) Smoother

□ One can also estimate the marginal smoothing distribution as follows (see proof on the following slide):

$$p(x_k \mid \mathbf{y}_{1:n}), k = 1, ..., n$$

Step I - Backward information filter:
$$p(\mathbf{y}_{k+1:n} \mid x_k) = \int p(\mathbf{y}_{k+1:n}, x_{k+1} \mid x_k) dx_{k+1}$$

$$= \int p(\mathbf{y}_{k+1:n} \mid x_{k+1}, x_k) f(x_{k+1} \mid x_k) dx_{k+1}$$

$$= \int p(\mathbf{y}_{k+2:n} \mid x_{k+1}) g(\mathbf{y}_{k+1} \mid x_{k+1}) f(x_{k+1} \mid x_k) dx_{k+1}$$
Step II - Update: $p(x_k \mid \mathbf{y}_{1:n}) = \frac{p(x_k \mid \mathbf{y}_{1:k}) p(\mathbf{y}_{k+1:n} \mid x_k)}{p(\mathbf{y}_{k+1:n} \mid \mathbf{y}_{1:k})}$

- □ Note that we can have: $\int p(y_{k+1:n}|x_k)dx_k = \infty$. This can lead to wrong algorithms.
- ☐ This is known as the forward-backward smoother.

Proof of the Two-Filter Smoother

Note that: $p(y_{k+1:n} | x_k, y_{1:k}) = p(y_{k+1:n} | x_k)$. We can look at each term separately:

Separately:
$$p(\mathbf{y}_{k+1:n} \mid x_{k}, \mathbf{y}_{1:k}) = \frac{p(\mathbf{y}_{1:n}, x_{k})}{p(x_{k}, \mathbf{y}_{1:k})} = \frac{\int p(x_{1}) g(y_{n} \mid x_{n}) \prod_{i=1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{1:k-1} d\mathbf{x}_{1:k-1}}{\int p(x_{1}) g(y_{k} \mid x_{k}) \prod_{i=1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{1:k-1}}$$

$$= \frac{\int p(x_{1}) g(y_{k} \mid x_{k}) \prod_{i=1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{1:k-1} \int f(x_{k+1} \mid x_{k}) g(y_{n} \mid x_{n}) \prod_{i=k+1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{1:k-1}}{\int p(x_{1}) g(y_{k} \mid x_{k}) \prod_{i=1}^{k-1} f(x_{i+1} \mid x_{k}) g(y_{n} \mid x_{n}) \prod_{i=k+1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{1:k-1}}$$

$$= \int f(x_{k+1} \mid x_{k}) g(y_{n} \mid x_{n}) \prod_{i=k+1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{k+1:n}}$$

$$p(\mathbf{y}_{k+1:n} \mid x_{k}) = \frac{p(\mathbf{y}_{k+1:n}, x_{k})}{p(x_{k})} = \frac{\int p(x_{k}) f(x_{k+1} \mid x_{k}) g(y_{n} \mid x_{n}) \prod_{i=k+1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{k+1:n}}{p(x_{k})}$$

$$= \int f(x_{k+1} \mid x_{k}) g(y_{n} \mid x_{n}) \prod_{i=k+1}^{n-1} f(x_{i+1} \mid x_{i}) g(y_{i} \mid x_{i}) d\mathbf{x}_{k+1:n}}$$

The update rule is then:

$$p(x_{k} | \mathbf{y}_{1:n}) = p(x_{k} | \mathbf{y}_{1:k}, \mathbf{y}_{k+1:n}) = \frac{p(x_{k}, \mathbf{y}_{k+1:n} | \mathbf{y}_{1:k})}{p(\mathbf{y}_{k+1:n} | \mathbf{y}_{1:k})}$$

$$= \frac{p(\mathbf{y}_{k+1:n} | x_{k}, \mathbf{y}_{1:k}) p(x_{k} | \mathbf{y}_{1:k})}{p(\mathbf{y}_{k+1:n} | \mathbf{y}_{1:k})} = \frac{p(\mathbf{y}_{k+1:n} | x_{k}) p(x_{k} | \mathbf{y}_{1:k})}{p(\mathbf{y}_{k+1:n} | \mathbf{y}_{1:k})}$$

Bayesian Recursion for the State Space Model

lacktriangle Let us return back to our main objective: computing $p(x_{1:n} | y_{1:n})$

Step I - Prediction:
$$p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1}) = f(\mathbf{x}_n | \mathbf{x}_{n-1}) p(\mathbf{x}_{1:n-1} / \mathbf{y}_{1:n-1})$$

Step II - Update: $p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}) = \frac{g(\mathbf{y}_n | \mathbf{x}_n) p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1})}{p(\mathbf{y}_n | \mathbf{y}_{1:n-1})} \propto g(\mathbf{y}_n | \mathbf{x}_n) p(\mathbf{x}_{1:n} / \mathbf{y}_{1:n-1})$

■ We will apply sequential Monte Carlo methods to approximate the target distribution.

Online Bayesian Parameter Estimation

Online Bayesian Parameter Estimation

Assume that our state model is defined with some unknown static parameter θ with some prior $p(\theta)$:

$$X_1 \sim \mu(.) \ and \ X_n \mid (X_{n-1} = x_{n-1}) \sim f_\theta(x_n \mid x_{n-1})$$

$$Y_n \mid (X_n = x_n) \sim g_\theta(y_n \mid x_n)$$

 \square Given data $y_{1:n}$, inference now is based on:

$$p(\theta, \mathbf{x}_{1:n} | \mathbf{y}_{1:n}) = p(\theta | \mathbf{y}_{1:n}) p_{\theta}(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}),$$
where
$$p(\theta | \mathbf{y}_{1:n}) \propto p_{\theta}(\mathbf{y}_{1:n}) p(\theta)$$

 \square We can use standard SMC but on the extended space $Z_n = (Xn, \theta_n)$.

$$f\left(z_{n} \mid z_{n-1}\right) = \delta_{\theta_{n-1}}\left(\theta_{n}\right) f_{\theta}\left(x_{n} \mid x_{n-1}\right), g\left(y_{n} \mid z_{n}\right) = g_{\theta}\left(y_{n} \mid x_{n}\right)$$

 $lue{}$ Note that θ is a static parameter –does not involve with n.

Maximum Likelihood Parameter Estimation

■ Standard approaches for parameter estimation consists of computing the Maximum Likelihood (ML) estimate

$$\theta_{ML} = \arg\max\log p_{\theta}(\mathbf{y}_{1:n})$$

- The likelihood function can be multimodal and there is no guarantee to find its global optimum.
- Standard (stochastic) gradient algorithms can be used (e.g. based on Fisher's identity) to find a local minimum:

$$\nabla \log p_{\theta}(\mathbf{y}_{1:n}) = \int \nabla \log p_{\theta}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) p_{\theta}(\mathbf{x}_{1:n} / \mathbf{y}_{1:n}) d\mathbf{x}_{1:n}$$

- These algorithms can work decently but it can be difficult to scale the components of the gradients.
- lacktriangled Note that these algorithms involve computing $p_{ heta}ig(m{x}_{1:n}\,/\,m{y}_{1:n}ig)$ which is one of our main SMC algorithmic results.

Expectation/Maximization for HMM

One can also use the EM algorithm

$$\begin{split} \theta^{(i)} &= Q(\theta^{(i)}, \theta) \\ Q(\theta^{(i)}, \theta) &= \int \log p_{\theta}(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) p_{\theta^{(i-1)}}(\mathbf{x}_{1:n} / \mathbf{y}_{1:n}) d\mathbf{x}_{1:n} \\ &= \int \log (\mu(x_{1}) g(y_{1} | x_{1})) p_{\theta^{(i-1)}}(x_{1} / \mathbf{y}_{1:n}) dx_{1} \\ &+ \sum_{k=2}^{n} \int \log (f(x_{k} | x_{k-1}) g(y_{k} | x_{k})) p_{\theta^{(i-1)}}(\mathbf{x}_{k-1:k} / \mathbf{y}_{1:n}) d\mathbf{x}_{k-1:k} \end{split}$$

Above we used:

$$p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \mu(x_1) \prod_{k=2}^{n} f(x_k | x_{k-1}) \prod_{k=1}^{n} g(y_k | x_k)$$

Implementation of the EM algorithm requires computing expectations with respect to the smoothing distributions $P_{\theta^{(i-1)}}(x_{k-1:k}/y_{1:n})$

Closed Form Inference in HMM

- We have closed-form solutions for finite state-space HMM as all integrals are becoming finite sums
- Linear Gaussian models; all the posterior distributions are Gaussian;
 (Kalman filter).
- □ In most cases of interest, it is not possible to compute the solution in closed-form and we need numerical approximations.
- This is the case for all non-linear non-Gaussian models.
- □ SMC methods for such problems are in some sense asymptotically consistent.

Closed Form Inference in HMM

- ☐ Gaussian approximations: Extended Kalman filter, Unscented Kalman filter.
- Gaussian sum approximations.
- Projection filters (similar to Variational methods in machine learning).
- Simple discretization of the state-space.
- Analytical methods work in simple cases but are not reliable and it is difficult to diagnose when they fail.
- Standard discretization of the space is expensive and difficult to implement in high-dimensional scenarios.
- We need numerical approximations.

Importance Sampling and its Application to Nonlinear Non-Gaussian Dynamic Models

Our goal is to compute an expectation value of the form :

$$\mathbb{E}_{\pi}\left[f(\mathbf{x})\right] = \int_{A} f(\mathbf{x}) \pi(\mathbf{x}) d\mathbf{x}$$

where $\pi(x)$ is a probability distribution (posterior inference in Bayesian models, Bayesian model validation, etc.)

- We assume that $\pi(x) = \frac{\gamma(x)}{Z}$ where $Z = \int \gamma(x) dx$ is unknown and γ is known pointwise.
- The basic idea in Monte Carlo methods is to sample N i.i.d. random numbers $X^{(i)} \sim \pi(.)$ and build an empirical measure

$$\widehat{\pi}(\mathbf{x})d\mathbf{x} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{X}^{(i)}} d\mathbf{x}$$

Using this:

$$\mathbb{E}_{\widehat{\pi}}[f(\mathbf{x})] = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{X}^{(i)}) , \text{ where } \mathbf{X}^{(i)} \stackrel{i.i.d.}{\sim} \pi(.)$$

J.S. Liu, Monte Carlo Strategies in Scientific Computing, Chapter 3, Springer-Verlag, New York.

Monte Carlo Methods

 \square Using the approximation of π :

$$\mathbb{E}_{\widehat{\pi}}[f(\mathbf{x})] = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{X}^{(i)}) \text{ , where } \mathbf{X}^{(i)} \stackrel{i.i.d.}{\sim} \pi(.)$$

$$\blacksquare \text{ The following hold:}$$

$$\mathbb{E}[\mathbb{E}_{\widehat{\pi}}(f)] = \mathbb{E}_{\pi}(f), V[\mathbb{E}_{\widehat{\pi}}(f)] = \frac{1}{N} \mathbb{E}_{\pi}\left(\left(f - \mathbb{E}_{\pi}(f)\right)^{2}\right), \sqrt{N}\left(\mathbb{E}_{\widehat{\pi}}(f) - \mathbb{E}_{\pi}\left(f\right)\right) \sim \mathcal{N}\left(0, \mathbb{E}_{\pi}\left(\left(f - \mathbb{E}_{\pi}(f)\right)^{2}\right)\right)$$

Similarly, marginalization is also simple:

$$\hat{\pi}(x_p)dx_p = \int \hat{\pi}(x_1, x_2, \dots, x_n)dx_{1:p-1} dx_{p+1:n} = \frac{1}{N} \sum_{i=1}^{\infty} \delta_{X_p^{(i)}} dx_p$$

- In MC, the samples automatically concentrate in regions of high probability mass regardless of the dimension of the space.
- However, it is not always easy or effective to sample from the original probability distribution $\pi(x)$. A more effective strategy is to focus on the regions of "importance" in $\pi(x)$ so as to save computational resources.

J.S. Liu, Monte Carlo Strategies in Scientific Computing, Chapter 3, Springer-Verlag, New York.

 \square We assume that $\pi(x)$ is only known up to a normalizing constant:

$$\pi(x) = \frac{\gamma(x)}{Z}$$

 \square For any distribution q(x) such that $\pi(x) > 0 \Rightarrow q(x) > 0$, we can write:

$$\pi(x) = \frac{w(x)q(x)}{\underbrace{\int w(x)q(x)dx}_{Z}} = \frac{w(x)q(x)}{Z}, \text{ where } w(x) = \frac{\gamma(x)}{q(x)}$$

- ☐ The proposal distribution q(x) is known as "importance density" or "trial density". w(x) is called the importance weight.
- The importance density can be chosen arbitrarily as any proposal easy to sample from:

$$X^{(i)} \stackrel{i.i.d.}{\sim} q(x) \Rightarrow \widehat{q}(x) dx = \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} (dx)$$

Substitution of $\hat{q}(x)dx = \frac{1}{N}\sum_{i=1}^{N} \delta_{X^{(i)}}(dx)$ in the importance sampling identity gives:

$$\hat{\pi}(\mathbf{x})d\mathbf{x} = \frac{w(\mathbf{x})\hat{q}(\mathbf{x})}{\int w(\mathbf{x})\hat{q}(\mathbf{x})d\mathbf{x}}d\mathbf{x} = \frac{\frac{1}{N}\sum_{i=1}^{N}w(\mathbf{X}^{(i)})\delta_{\mathbf{X}^{(i)}}(d\mathbf{x})}{\frac{1}{N}\sum_{i=1}^{N}w(\mathbf{X}^{(i)})} = \sum_{i=1}^{N}W^{(i)}\delta_{\mathbf{X}^{(i)}}(d\mathbf{x}),$$

$$where \ W^{(i)} \propto w(\mathbf{X}^{(i)}) \ and \ \sum_{i=1}^{N}W^{(i)} = 1$$

Similarly, we can approximate the normalization factor of our target distribution as follows:

$$\hat{Z} = \int \frac{\gamma(x)}{q(x)} \hat{q}(x) dx = \int w(x) \hat{q}(x) dx = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)}) = \frac{1}{N} \sum_{i=1}^{N} \frac{\gamma(X^{(i)})}{q(X^{(i)})}$$

$$\hat{\pi}(\mathbf{x})d\mathbf{x} = \sum_{i=1}^{N} W^{(i)} \, \delta_{\mathbf{X}^{(i)}}(d\mathbf{x}), \text{ where } W^{(i)} \propto w(\mathbf{X}^{(i)}) \text{ and } \sum_{i=1}^{N} W^{(i)} = 1$$

The distribution $\pi(x)$ is now approximated by a weighted sum of delta masses, where the weights compensate for the discrepancy between $\pi(x)$ and q(x).

 \square Similarly calculation of $\mathbb{E}_{\pi}[f(x)]$ using importance sampling gives:

$$\mathbb{E}_{\widehat{\pi}}[f(\mathbf{x})] = \int_{A} f(\mathbf{x}) \widehat{\pi}(\mathbf{x}) d\mathbf{x} = \sum_{i=1}^{N} f(\mathbf{X}^{(i)}) W^{(i)}$$

 \Box The statistics of this estimate are given for N >> 1 as follows:

$$\mathbb{E}\big[\mathbb{E}_{\widehat{\pi}}[f(\mathbf{x})]\big] = \mathbb{E}_{\pi}[f(\mathbf{x})] - \frac{1}{N_{\pi}} \mathbb{E}[W(\mathbf{X})(f(\mathbf{X}) - \mathbb{E}_{\pi}[f(\mathbf{x})])]$$

$$V\big[\mathbb{E}_{\widehat{\pi}}[f(\mathbf{x})]\big] = \frac{1}{N_{\pi}} \mathbb{E}[W(\mathbf{X})(f(\mathbf{X}) - \mathbb{E}_{\pi}[f(\mathbf{x})])^{2}]$$

where as you recall we have some negligible bias:

$$\frac{1}{N_{\pi}}\mathbb{E}[W(\boldsymbol{X})(f(\boldsymbol{X}) - \mathbb{E}_{\pi}[f(\boldsymbol{x})])]$$

Statistics of the Normalization Constant

We can similarly compute the statistics of the normalization constant:

$$\hat{Z} = \int \frac{\gamma(x)}{q(x)} \hat{q}(x) dx = \frac{1}{N} \sum_{i=1}^{N} \frac{\gamma(X^{(i)})}{q(X^{(i)})} = \frac{1}{N} \sum_{i=1}^{N} w(X^{(i)})$$

They are given as:

$$\mathbb{E}[\hat{Z}] = Z, \text{ and}$$

$$V[\hat{Z}] = \frac{1}{N} \mathbb{E}_q \left[\left(\frac{\gamma(x)}{q(x)} - Z \right)^2 \right]$$

- \square We select q(x) as close as possible to $\pi(x)$.
- ☐ The variance of the weights is bounded iff

$$\int \frac{\gamma^2(x)}{q(x)} dx < \infty$$

In practice, it is sufficient to ensure that the weights are bounded:

$$w(x) = \frac{\gamma(x)}{q(x)} < \infty$$

□ This is equivalent to saying that q(x) should have heavier tails than $\pi(x)$.

Monte Carlo for the State Space Model

We are interested to estimate the high-dimensional density

$$p(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})}{p(\mathbf{y}_{1:n})} \propto p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})$$

- \Box For now let us start with a fixed n.
- A Monte Carlo approximation (empirical measure) of our target distribution is of the form:

$$\hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n}), where \mathbf{X}_{1:n}^{(i)} \sim p(\mathbf{x}_{1:n}|\mathbf{y}_{1:n})$$

For any function $\varphi(x_{1:n}): \mathcal{X}^n \to \mathbb{R}$, we can use a Monte Carlo approximation of its expectation as:

$$\mathbb{E}_{\hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n})}(\varphi) = \int_{\mathcal{X}^{n}} \varphi(\mathbf{x}_{1:n}) \, \hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) d\mathbf{x}_{1:n}$$

$$= \int_{\mathcal{Y}^{n}} \varphi(\mathbf{x}_{1:n}) \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:n}^{(i)}}(\mathbf{x}_{1:n}) d\mathbf{x}_{1:n} = \frac{1}{N} \sum_{i=1}^{N} \varphi\left(X_{1:n}^{(i)}\right)$$

Monte Carlo for the State Space Model

- This earlier estimate is asymptotically consistent (converges towards $\mathbb{E}_{p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}(\varphi)$).
- The estimate is unbiased and its variance gives the following convergence properties:

$$Var_{X_{1:n}^{(i)}} \left[\mathbb{E}_{\hat{p}_{N}(x_{1:n}|y_{1:n})}(\varphi) \right] = \frac{1}{N} Var_{p(x_{1:n}|y_{1:n})}(\varphi)$$

$$\sqrt{N} \left(\mathbb{E}_{\hat{p}_{N}(x_{1:n}|y_{1:n})}(\varphi) - \mathbb{E}_{p(x_{1:n}|y_{1:n})}(\varphi) \right) \xrightarrow{d} \mathcal{N} \left(0, Var_{p(x_{1:n}|y_{1:n})}(\varphi) \right)$$

The rate of convergence is independent of n. This does not imply that Monte Carlo bits the curse of dimensionality since it is possible that $Var_{p(x_1,.../y_{1...})}(\varphi)$ increases (with time) n.

Monte Carlo for the State Space Model

☐ The Monte Carlo approximation can easily be used to compute any marginal distribution, e.g. $p(x_k/y_{1:n})$

$$\hat{p}_N(x_k|\mathbf{y}_{1:n}) = \int_{\gamma_{n-1}} \hat{p}_N(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) d\mathbf{x}_{1:k-1} d\mathbf{x}_{k+1:n}$$

$$= \int_{x_{n-1}}^{1} \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{1:n}^{(i)}}(x_{1:n}) dx_{1:k-1} dx_{k+1:n}$$

$$=\frac{1}{N}\sum_{i=1}^{N}\delta_{X_{k}^{(i)}}\left(x_{k}\right)$$

Note that the marginal likelihood $p(y_{1:n})$ cannot be estimated as easily using $X_{1:n}^{(i)} \sim p(x_{1:n}/y_{1:n})$

Difficulties with Standard Monte Carlo Sampling

☐ It is difficult to sample from our target high-dimensional distribution:

$$\boldsymbol{X}_{1:n}^{(i)} \sim p(\boldsymbol{x}_{1:n} / \boldsymbol{y}_{1:n})$$

- MCMC methods are not useful in this context.
- As n increases, we would like to be able to sample from $p(x_{1:n}/y_{1:n})$ with an algorithm that keeps the computational cost fixed at each time step n.

Importance Sampling for our State Space Model

- Rather than sampling directly from our target distribution $p(x_{1:n}/y_{1:n})$, we should sample from an importance distribution $q(x_{1:n}/y_{1:n})$
- Note that in the notation here for q, $y_{1:n}$ is used as a parameter not to indicate any posterior distribution.
- The importance distribution needs to satisfy the following properties:
 - ightharpoonup The support of $q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$ includes the support of $p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$ i.e.

$$p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) > 0 \Longrightarrow q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) > 0$$

- ightharpoonup It is easy to sample from $q(x_{1:n}/y_{1:n})$
- We use the following identity:

$$p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n},\mathbf{y}_{1:n})}{\int p(\mathbf{x}_{1:n},\mathbf{y}_{1:n}) d\mathbf{x}_{1:n}} = \frac{\left[p(\mathbf{x}_{1:n},\mathbf{y}_{1:n})/q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})\right] q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}{\int \left[p(\mathbf{x}_{1:n},\mathbf{y}_{1:n})/q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})\right] q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) d\mathbf{x}_{1:n}}$$

$$= \frac{w(\mathbf{x}_{1:n},\mathbf{y}_{1:n}) q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}{\int w(\mathbf{x}_{1:n},\mathbf{y}_{1:n}) q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) d\mathbf{x}_{1:n}}$$

Importance Sampling for our State Space Model

Let us draw N samples from our importance distribution:

$$X_{1:n}^{(i)} \sim q(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}), \ \hat{q}_N(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^N \delta_{X_{1:n}^{(i)}}(\mathbf{x}_{1:n})$$

☐ Then using the identity in the earlier slide, we obtain the following approximation of our target distribution:

$$\hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) = \frac{w(\mathbf{x}_{1:n},\mathbf{y}_{1:n})\hat{q}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n})}{\int w(\mathbf{x}_{1:n},\mathbf{y}_{1:n})\hat{q}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n})d\mathbf{x}_{1:n}}$$

$$= \frac{w(\mathbf{x}_{1:n},\mathbf{y}_{1:n})\frac{1}{N}\sum_{i=1}^{N}\delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n})}{\int w(\mathbf{x}_{1:n},\mathbf{y}_{1:n})\frac{1}{N}\sum_{i=1}^{N}\delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n})d\mathbf{x}_{1:n}}$$

$$= \sum_{i=1}^{N}W_{n}^{(i)}\delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n}), W_{n}^{(i)} = \frac{w\left(\mathbf{X}_{1:n}^{(i)},\mathbf{y}_{1:n}\right)}{\sum_{i=1}^{N}w\left(\mathbf{X}_{1:n}^{(i)},\mathbf{y}_{1:n}\right)}$$

$$\square \text{ Note that: } \hat{p}_{N}(\mathbf{y}_{1:n}) = \int w(\mathbf{x}_{1:n},\mathbf{y}_{1:n})\frac{1}{N}\sum_{i=1}^{N}\delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n})d\mathbf{x}_{1:n} = \frac{1}{N}\sum_{i=1}^{N}w\left(\mathbf{X}_{1:n}^{(i)},\mathbf{y}_{1:n}\right)$$

Normalized Weights in Importance Sampling

We defined earlier the unnormalized weights as follows:

Unnormalized weights:
$$w(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})}{q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})} = p(\mathbf{y}_{1:n}) \frac{p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}{q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}$$

Discrepancy between target distribution and importance distribution

The normalized weights were also introduced as:

Normalized weights:
$$W_n^{(i)} = \frac{w(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n})}{\sum_{i=1}^{N} w(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n})}$$

Optimal Importance Sampling Distribution

 \mathbf{Q} $\hat{p}_N(\mathbf{y}_{1:n})$ is an unbiased estimate of $P(\mathbf{y}_{1:n})$ with variance:

$$\frac{1}{N} \left[\int w^2 \left(\mathbf{x}_{1:n}, \mathbf{y}_{1:n} \right) q \left(\mathbf{x}_{1:n} / \mathbf{y}_{1:n} \right) d\mathbf{x}_{1:n} - 1 \right]$$

You can bring this variance to zero with the selection

$$q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) = p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$$

Of course this is what we wanted to avoid (we want to sample from an easier distribution).

 \square However, this results points to the fact that the choice of q needs to be as close as possible to the target distribution.

Importance Sampling Estimates

We are interested in an importance sampling approximation of

$$\mathbb{E}_{p(x_{1:n}/y_{1:n})}(\varphi).$$

$$\mathbb{E}_{\hat{p}_{N}(x_{1:n}|y_{1:n})}(\varphi) = \sum_{i=1}^{N} W_{n}^{(i)} \varphi\left(X_{1:n}^{(i)}\right)$$

□ This is a biased estimate for a finite N and we have shown in our earlier lecture on Importance Sampling that:

$$\lim_{N\to\infty} N\left[\mathbb{E}_{p_N(x_{1:n}|y_{1:n})}(\varphi) - \mathbb{E}_{p(x_{1:n}|y_{1:n})}(\varphi)\right] = -\int \frac{p^2(x_{1:n}|y_{1:n})}{q(x_{1:n}|y_{1:n})} \left(\varphi(x_{1:n}) - \mathbb{E}_{p(x_{1:n}|y_{1:n})}(\varphi)\right) dx_{1:n}$$

$$\sqrt{N}\left(\mathbb{E}_{p_N(\boldsymbol{x}_{1:n}|\boldsymbol{y}_{1:n})}(\varphi) - \mathbb{E}_{p(\boldsymbol{x}_{1:n}|\boldsymbol{y}_{1:n})}(\varphi)\right) \stackrel{d}{\to} \mathcal{N}\left(0, \int \frac{p^2(\boldsymbol{x}_{1:n}|\boldsymbol{y}_{1:n})}{q(\boldsymbol{x}_{1:n}|\boldsymbol{y}_{1:n})} \left(\varphi(\boldsymbol{x}_{1:n}) - \mathbb{E}_{p(\boldsymbol{x}_{1:n}|\boldsymbol{y}_{1:n})}(\varphi)\right)^2 d\boldsymbol{x}_{1:n}\right)$$

☐ The asymptotic bias is of the order 1/N (negligible) and the MSE error is:

$$MSE = bias^{2} + \underbrace{variance}_{o(N^{-2})}$$

Selection of Importance Sampling Distribution

As discussed before, the importance sampling distribution should be selected so that the weights are bounded or equivalently $q(x_{1:n}/y_{1:n})$ has heavier tails than $p(x_{1:n}/y_{1:n})$

$$w(\boldsymbol{x}_{1:n}, \boldsymbol{y}_{1:n}) \leq C \ \forall \boldsymbol{x}_{1:n} \in \boldsymbol{\mathcal{X}}^n$$

- ☐ To minimize the asymptotic bias, we aim for $q(x_{1:n}/y_{1:n})$ that is as close as possible to $p(x_{1:n}/y_{1:n})$
- Note that the selection of the importance sampling needs to be not only such that it covers the support of the target but also needs to be a clever one for the particular problem of interest.
- □ For numerical examples and MatLab implementations please see an earlier lecture on importance sampling.

Effective Sample Size

In our importance sampling approximation from the target $p(x_{1:n}/y_{1:n})$ using the importance distribution $q(x_{1:n}/y_{1:n})$ (for a fixed n), we would like ideally to have

$$q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n}) = p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$$

- In this case, all the unnormalized importance weights will be equal and their variance equal to zero.
- To access the quality of the importance sampling approximation, note that for flat functions,

$$\frac{Variance\ of\ IS\ estimate}{Variance\ of\ Standard\ MC\ estimate} \approx 1 + Var_{q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})} W\left(\mathbf{X}_{1:n}\,/\,\mathbf{y}_{1:n}\right)$$

This is often interpreted as the effective sample size (N weighted samples from $q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$ are approximately equivalent to M unweighted samples from $p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$)

$$M = \frac{N}{1 + Var_{q(\boldsymbol{x}_{1:n}/\boldsymbol{y}_{1:n})} W(\boldsymbol{X}_{1:n} / \boldsymbol{y}_{1:n})} \leq N$$

Effective Sample Size

 \square We often approximate the effective sample size M as follows:

$$ESS = \left(\sum_{i=1}^{N} W_n^{(i)2}\right)^{-1}$$

since

$$Var_{q(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})}W(\mathbf{X}_{1:n}^{(i)}/\mathbf{y}_{1:n}) \approx N \sum_{i=1}^{N} W^{2}(\mathbf{X}_{1:n}^{(i)}/\mathbf{y}_{1:n}) - 1$$

We clearly can see that

$$1 \le ESS = \left(\sum_{i=1}^{N} w_n^{(i)2}\right)^{-1} \le N$$

- We can thus have
 - ESS = 1 (one of the weights equal to 1, all other zero, very inefficient) to
 - ESS = N (all weights equal to 1/N, excellent sampling).

- Let us return to our state space model and consider a sequential Monte Carlo approximation of $p(x_{1:n}/y_{1:n}) \propto p(x_{1:n},y_{1:n})$
- The distributions $\{\pi_n = p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})\}$ are known up to a normalizing constant: $\pi_n(\mathbf{x}_{1:n}) = \frac{\gamma_n(\mathbf{x}_{1:n})}{Z_n} = \frac{p(\mathbf{x}_{1:n},\mathbf{y}_{1:n})}{Z_n}$
- $lue{}$ We want to estimate the expectations of functions $f_n: \mathcal{X}^n \to \mathbb{R}$

$$\mathbb{E}_{\pi_n}(\varphi_n) = \int \varphi_n(\mathbf{x}_{1:n}) \pi_n(\mathbf{x}_{1:n}) d\mathbf{x}_{1:n}$$

and/or the normalizing constants Z_n .

One can use MCMC to sample from $\{\pi_n\}$, n=1,2... This calculation will be slow and cannot compute

$$\{Z_n\}, n=1,2...$$

- We want to do these calculations sequentially starting with π_1 and Z_1 at step (time 1), then proceeding to π_2 and Z_2 , etc.
- Sequential Monte Carlo (SMC) provides the means to do so as an alternative algorithm to MCMC.

The key idea is that if π_{n-1} does not differ a lots from π_n , we should be able to reuse our estimate of π_{n-1} to approximate π_n .

We want to design a sequential importance sampling method to approximate

$$\{\pi_n\}_{n\geq 1}$$
 and $\{Z_n\}_{n\geq 1}$

Assume that `at time 1', we have approximations $\hat{\pi}_1(x_1) = \hat{p}_N(x_1, y_1)$, \hat{Z}_1 using an importance density $q_1(x_1 | y_1)$.

$$\hat{p}_{N}(x_{1}, y_{1}) dx_{1} = \sum_{i=1}^{N} W_{1}^{(i)} \delta_{X_{1}^{(i)}}(dx_{1}), where \ W_{1}^{(i)} = \frac{w_{1}\left(X_{1}^{(i)}, y_{1}\right)}{\sum_{j=1}^{N} w_{1}\left(X_{1}^{(j)}, y_{1}\right)}$$

$$\hat{Z}_{1} = \frac{1}{N} \sum_{i=1}^{N} w_{1}\left(X_{1}^{(i)}, y_{1}\right) with$$

$$w_{1}(x_{1}, y_{1}) = \frac{\gamma_{1}(x_{1})}{q_{1}(x_{1}|y_{1})} = \frac{p(x_{1}, y_{1})}{q_{2}(x_{1}|y_{2})}$$

- At `time 2', we want to approximate $\hat{\pi}_2(\mathbf{x}_{1:2}) = \hat{p}_N(\mathbf{x}_{1:2}, \mathbf{y}_{1:2})$, \hat{Z}_2 using an importance density $q_2(\mathbf{x}_{1:2} \mid \mathbf{y}_{1:2})$.
- We want to reuse the samples $X_1^{(i)}$ and $q_1(x_1|y_1)$ in building the importance sampling approximation for $\pi_2(x_{1:2}), Z_2$.
- Let us select $q_2(\mathbf{x}_{1:2} | \mathbf{y}_{1:2}) = q_1(x_1 | y_1) q_2(x_2 | \mathbf{y}_{1:2}, x_1)$
- ☐ To obtain $X_{1:2}^{(i)} \sim q_2(x_{1:2} | y_{1:2})$ we need to sample as follows:

$$X_2^{(i)} \mid X_1^{(i)} \sim q_2(x_2 \mid \boldsymbol{y}_{1:2}, X_1^{(i)})$$

The importance sampling weight for this step is then:

$$w_{2}(\mathbf{x}_{1:2}, \mathbf{y}_{1:2}) = \frac{\gamma_{2}(\mathbf{x}_{1:2})}{q_{2}(\mathbf{x}_{1:2} | \mathbf{y}_{1:2})} = \frac{p(\mathbf{x}_{1:2}, \mathbf{y}_{1:2})}{q_{1}(x_{1} | y_{1})q_{2}(x_{2} | \mathbf{y}_{1:2}, x_{1})} = \frac{p(\mathbf{x}_{1}, y_{1})}{q_{1}(x_{1} | y_{1})} \frac{p(\mathbf{x}_{1:2}, \mathbf{y}_{1:2})}{p(x_{1}, y_{1})q_{2}(x_{2} | \mathbf{y}_{1:2}, x_{1})} = \underbrace{w_{1}(x_{1}, y_{1})}_{\text{Weight from step 1}} \underbrace{\frac{p(\mathbf{x}_{1:2}, \mathbf{y}_{1:2})}{p(x_{1}, y_{1})q_{2}(x_{2} | \mathbf{y}_{1:2}, x_{1})}}_{\text{Incremental weight}}$$

The normalized weights for step 2 are then given as:

$$W_{2}^{(i)} \propto w_{2}\left(\boldsymbol{x}_{1:2}, \boldsymbol{y}_{1:2}\right) = \underbrace{w_{1}\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)}_{\substack{\textit{Weight from} \\ \textit{step 1}}} \underbrace{\frac{p\left(\boldsymbol{x}_{1:2}, \boldsymbol{y}_{1:2}\right)}{p\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}\right)q_{2}\left(\boldsymbol{x}_{2} \mid \boldsymbol{y}_{1:2}, \boldsymbol{x}_{1}\right)}_{\substack{\textit{Incremental weight}}}$$

 \square Generalizing to step n, we can write:

$$q_{n}(\mathbf{x}_{1:n} | \mathbf{y}_{1:n}) = q_{n-1}(\mathbf{x}_{1:n-1} | \mathbf{y}_{1:n-1}) q_{n}(\mathbf{x}_{n} / \mathbf{y}_{1:n}, \mathbf{x}_{1:n-1})$$

$$= q_{1}(\mathbf{x}_{1} | \mathbf{y}_{1}) \prod_{k=2}^{n} q_{k}(\mathbf{x}_{k} | \mathbf{y}_{1:k}, \mathbf{x}_{1:k-1})$$

Thus if

$$\boldsymbol{X}_{1:n-1}^{(i)} \sim q_{n-1} \left(\boldsymbol{x}_{1:n-1} \mid \boldsymbol{y}_{1:n-1} \right)$$

we sample X_n from

$$X_n^{(i)} / X_{1:n-1}^{(i)} \sim q_n \left(x_n \mid \boldsymbol{y}_{1:n}, X_{1:n-1}^{(i)} \right)$$

 \square The weights for step n are then given as:

$$\begin{split} w_{n}(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n}) &= \frac{p(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n})}{q_{n}(\boldsymbol{X}_{1:n}^{(i)}/\boldsymbol{y}_{1:n})} = \underbrace{\frac{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1})}{q_{n-1}(\boldsymbol{X}_{1:n-1}^{(i)}|\boldsymbol{y}_{1:n-1})} \underbrace{\frac{p(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n})}{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1})q_{n}(\boldsymbol{X}_{n}^{(i)}/\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n})} \\ &= w_{n-1}(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1}) \underbrace{\frac{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1})}{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n})}} \underbrace{\frac{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1})q_{n}(\boldsymbol{X}_{n}^{(i)}/\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n})}{p(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1})q_{n}(\boldsymbol{X}_{n}^{(i)}/\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n})} \end{split}$$

Similarly the normalized weights are as follows:

$$W_n^{(i)} \equiv W_n(X_{1:n}^{(i)}, y_{1:n}) \propto W_n(X_{1:n}^{(i)}, y_{1:n})$$

For our state space model, the above update formula takes the form:

$$W_{n}(\boldsymbol{X}_{1:n}^{(i)}, \boldsymbol{y}_{1:n}) = W_{n-1}(\boldsymbol{X}_{1:n-1}^{(i)}, \boldsymbol{y}_{1:n-1}) \frac{f(X_{n}^{(i)} / X_{n-1}^{(i)})g(y_{n} / X_{n}^{(i)})}{q_{n}(X_{n}^{(i)} / \boldsymbol{y}_{1:n}, \boldsymbol{X}_{1:n-1}^{(i)})}$$

☐ In general, we may need to store all the paths $\{X_{1:n}^{(i)}\}$ even if our interest is to only compute $\pi_n(x_n) = p(x_n/y_{1:n})$

Need for a Sequential Sampling Approach

☐ From practical perspective, we use proposal distributions of the form:

$$q_n(x_n/y_{1:n}, x_{1:n-1}) = q_n(x_n/y_n, x_{n-1})$$

- The idea here is that given x_{n-1} , $y_{1:n-1}$ and $x_{1:n-2}$ don't bring any new information about X_n .
- Our sequential importance sampling update now looks as follows:

$$\underbrace{q_{n}\left(\boldsymbol{x}_{1:n}/\boldsymbol{y}_{1:n}\right)}_{Importance\ Samping\ at\ n} = \underbrace{q_{n-1}\left(\boldsymbol{x}_{1:n-1}/\boldsymbol{y}_{1:n-1}\right)}_{Distribution\ of\ the\ paths\ \boldsymbol{X}_{1:n-1}^{(i)}} \underbrace{q_{n}\left(\boldsymbol{x}_{n}/\boldsymbol{y}_{n},\boldsymbol{x}_{n-1}\right)}_{Conditional\ Distribution\ of\ \boldsymbol{X}_{n}^{(i)}} \\
= q\left(\boldsymbol{x}_{1}\right)\prod_{k=2}^{n}q_{k}\left(\boldsymbol{x}_{k}/\boldsymbol{y}_{k},\boldsymbol{x}_{k-1}\right)$$

Thus we assume that at n-1 we have sampled $X_{1:n-1}^{(i)} \sim q_{n-1}(x_{1:n-1}/y_{1:n-1})$ and to obtain $X_{1:n}^{(i)} \sim q(x_{1:n}/y_{1:n})$, we need to sample $X_n^{(i)} \sim q_n(x_n/y_n, X_{n-1}^{(i)})$ and then set

$$m{X}_{1:n}^{(i)} = egin{pmatrix} m{X}_{1:n-1}^{(i)} &, & m{X}_{n}^{(i)} \ ext{Pr eviously Sampled Paths} & \textit{Sampled Single Component at time n} \end{pmatrix}$$

- We now need to show that we can recursively compute estimates of our target distribution $p(\mathbf{x}_{1:n}/\mathbf{y}_{1:n})$ as well as of $p(\mathbf{y}_{1:n})$
- From our earlier Importance Sampling approximations:

$$\hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) = \sum_{i=1}^{N} W_{n}^{(i)} \delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n}), W_{n}^{(i)} = \frac{w\left(\mathbf{X}_{1:n}^{(i)}, \mathbf{y}_{1:n}\right)}{\sum_{i=1}^{N} w\left(\mathbf{X}_{1:n}^{(i)}, \mathbf{y}_{1:n}\right)}$$

$$\hat{p}_{N}(\mathbf{y}_{1:n}) = \frac{1}{N} \sum_{i=1}^{N} w\left(\mathbf{X}_{1:n}^{(i)}, \mathbf{y}_{1:n}\right)$$

■ We can show the following recursions for calculations of these weights:

$$w(\mathbf{x}_{1:n}, \mathbf{y}_{1:n}) = \frac{p(\mathbf{x}_{1:n}, \mathbf{y}_{1:n})}{q(\mathbf{x}_{1:n} / \mathbf{y}_{1:n})} = \underbrace{\frac{p(\mathbf{x}_{1:n-1}, \mathbf{y}_{1:n-1})}{q(\mathbf{x}_{1:n-1} / \mathbf{y}_{1:n-1})}}_{w(\mathbf{x}_{1:n-1}, \mathbf{y}_{1:n-1})} \underbrace{\frac{f(\mathbf{x}_{n} / \mathbf{x}_{n-1})g(\mathbf{y}_{n} / \mathbf{x}_{n})}{q(\mathbf{x}_{n} / \mathbf{y}_{n}, \mathbf{x}_{n-1})}}_{Incremental Weight}$$

This suggests the following sequential Importance Sampling Algorithm.

At step n = 1:

■ Sample $X_1^{(i)} \sim q(x_1 | y_1), i = 1,...,N$ and then approximate:

$$\hat{p}_N(x_1|y_1) = \sum_{i=1}^N W_1^{(i)} \delta_{X_1^{(i)}}(x_1), \ W_1^{(i)} \left(X_1^{(i)}, y_1\right) \propto \frac{\mu\left(X_1^{(i)}\right) g\left(y_1, X_1^{(i)}\right)}{q\left(X_1^{(i)}|y_1\right)}$$

At step $n \ge 2$:

■ Sample $X_n^{(i)} \sim q(x_n / y_{n,} X_{n-1}^{(i)}), n = 1,...,N$, and compute:

$$\hat{p}_{N}(\mathbf{x}_{1:n}|\mathbf{y}_{1:n}) = \sum_{i=1}^{N} W_{n}^{(i)} \delta_{\mathbf{X}_{1:n}^{(i)}}(\mathbf{x}_{1:n}),$$

$$W_{n}^{(i)} \propto w\left(\mathbf{X}_{1:n}^{(i)}, \mathbf{y}_{1:n}\right) = w\left(\mathbf{X}_{1:n-1}^{(i)}, \mathbf{y}_{1:n-1}\right) \frac{f\left(X_{n}^{(i)}|X_{n-1}^{(i)}\right) g\left(y_{n}|X_{n}^{(i)}\right)}{q\left(X_{n}^{(i)}|y_{n}, X_{n-1}^{(i)}\right)}$$

 \square The algorithm has computational complexity $\mathcal{O}(N)$ independent of n.

- $lue{}$ Note that the complexity of the algorithm does not increase with n.
- ☐ The algorithm is fully parallelizable.
- Also note that if our interest is on computing the marginal posterior,

 $\hat{p}_N(x_n|y_{1:n})$ (posterior filtered density), then we only need to store $X_{n-1:n}^{(i)}$ rather than all the $X_{1:n}^{(i)}$ paths

$$\hat{p}_{N}(x_{n}|\mathbf{y}_{1:n}) = \sum_{i=1}^{N} W_{n}^{(i)} \delta_{X_{n}^{(i)}}(x_{n}),$$

$$W_{n}^{(i)} \propto w\left(\mathbf{X}_{1:n}^{(i)}, \mathbf{y}_{1:n}\right) = w\left(\mathbf{X}_{1:n-1}^{(i)}, \mathbf{y}_{1:n-1}\right) \frac{f\left(X_{n}^{(i)}|X_{n-1}^{(i)}\right) g\left(y_{n}|X_{n}^{(i)}\right)}{q\left(X_{n}^{(i)}|y_{n}, X_{n-1}^{(i)}\right)}$$

- \square One can show that this approaches the true posterior as $N \to \infty$.
 - Crisan, D., P. D. Moral, and T. Lyons (1999). <u>Discrete filtering using branching and interacting particle systems</u>. *Markov Processes and Related Fields 5*(3), 293–318.