Introduction to Computational Modeling of Lexical and Grammatical Knowledge Acquisition using Machine Learning Techniques

December 2004

Damir Ćavar

Indiana University

Agenda

- General Comments
- Probability Theory
- N-Gram Models
 - Frequency, Entropy
- Minimum Description Length Principle
- Vector Space Modeling
- Clustering Algorithms
- Simple Experiments

Lexical Induction

- Model acquisition of lexical properties
 - If syntactic properties are, or can be described as lexical properties, this also implies modeling of syntactic properties.
 - Cue-based model, where cues are extrinsic and intrinsic properties.
 - Goal: categorization in morpho-syntactic, as well as in semantic or conceptual types.

Lexical Induction

Why?

- The lexicon is the key to language properties.
- Resolve the paradox: The lexicon is dynamic, language properties are static.
- Solve some aspects of the Bootstrappingparadox in language acquisition.
- Provide some insights and algorithms for lexical acquisition that might have practical relevance for existing computational linguistic problems.

Modeling Language Acquisition

- The phenomenon refers to:
 - Mapping of non-discrete acoustic events on symbolic representations or activation patterns in a neural net.
 - Segmentation of the symbolic representation, or non-discrete event.
 - Grouping of segments for immediate typing.
 - Grouping of segments for higher level typing.
 - Discovery of relational dependencies for rule induction.

Lexical Induction

Instruments

- Word-, and morphological segmentation
- Frequency-based methods
- Minimum Description Length Principle
- Vector Space Modeling
- Clustering Analysis
- Classification

Introduction

- Jaynes, E.T. (2003) Probabilty Theory.
 The Logic of Science. Cambridge
 University Press.
- MacKay, D.J.C. (2003) Informtion Theory, Inference, and Learning Algorithms.
 Cambridge University Press.

- Plausibility:
 - policeman, night, burglary alarm, jewelry shop, man with mask and bag full of jewels
- Logic deduction based on events vs.
 Plausibility
- Majority of everyday decisions:
 - Based on incomplete information for deductive reasoning

Plausibility:

- although we are familiar with plausible conclusions
- formation of plausible conclusions is a subtle process
- There is no formal model of this process that is satisfying to everybody working in this domain

- Contrast between deductive and plausible reasoning:
 - Syllogisms:
 - If A is true, then B is true

A is true therefore, B is true

- inverse:
 - If A is true, then B is true

B is false therefore, A is false

- Deductive reasoning along the lines of these syllogisms would be desirable.
- In most situations we do not have the right kind of information for this reasoning:
 - Fallback: weaker syllogisms:
 - If A is true, then B is true

B is true

therefore, A becomes more plausible

- "Weak" syllogism:
 - The evidence of B being true does not prove that A is true, however
 - verification of one of its consequences does give us more confidence in A.
- Weather-example
- Observing B does not give us logical certainty that A, but it may induce us to change behavior, plans, as if we believed it does.

- Another weak syllogism:
 - If A is true, then B is true

A is false

therefore, B becomes less plausible

- There is no prove that B is false, but one plausible reason for its being true is eliminated, thus
- we feel less confident about B.
- Scientific reasoning consists usually of the two weak syllogisms.

- Another weak syllogism, the policeman reasoning:
 - If A is true, then B becomes more plausible

B is true

therefore, A becomes more plausible

- The argument of the policeman is weak.
- Nevertheless, it has a very strong convincing power, almost the power of deductive reasoning.

Cognitive perspective:

- The brain decides whether something is more or less plausible.
- It evaluates the degree of plausibility in some way.
- It makes use of old information.
- It makes use of the specific new data of the problem.

Reasoning:

- We depend on prior information to help us evaluating the degree of plausibility in a new problem.
- This is an unconscious process, quite complicated.
 (we call it common sense)

Probability theory is nothing but common sense reduced to calculation.

Laplace, 1819

- Prerequisite: Boolean Algebra
- Representation of degree of plausibility by real numbers.
- Qualitative correspondence with common sense.
- Consistency.

 The chance of a particular outcome occurring is determined by the ratio of the number of favorable outcomes to the total number of outcomes.

$$P(A) = \frac{\text{number of favorable outcomes}}{\text{total number of possible outcomes}}$$

Approach: frequency based

- Examples:
 - well-shuffled deck of cards:
 - number of cards 52
 - What is the probability of drawing an ace?

- Deck of cards:
 - 4 aces
 - 52 number of cards

P(randomly drawing an ace) =
$$\frac{4}{52}$$
 = 0.077

- Probability expressed as decimal range between 0 and 1
 - -0 = no chance
 - -1 = certainty

- Uniform Distribution:
 - Every outcome has equal likelihood.
- Disjoint outcomes:
 - Outcomes may not occur at the same time.
 (mutually exclusive outcomes)
 - The outcome of drawing just one card can not be an ace and a 9.

Relative Frequency Theory

 If an experiment is repeated an extremely large number of times and a particular outcome occurs a percentage of the time, then the particular percentage is close to the probability of that outcome.

- Simultaneously tossing coins:
 - a penny
 - a nickel
 - a dime
- Mutually exclusive events:
 - Head or tail, not both.
- What is the probability of three heads?

Total outcomes:

outcome	penny	nickel	dime
1	Н	Н	Н
2	Н	Н	Т
3	Н	Т	Н
4	Н	Т	Т
5	Т	Н	Н
6	Т	Н	Т
7	Т	Т	Н
8	Т	Т	Т

- Total outcomes: 8
- Favorable outcomes: 1

$$P(3H) = \frac{1}{8} = 0.125$$

 What is the probability of at least two coins landing head?

- Total outcomes: 8
- Favorable outcomes: 4

$$P(\min 2H) = \frac{4}{8} = 0.5$$

 What is the probability of exactly one coin landing head?

- Total outcomes: 8
- Favorable outcomes: 3

$$P(1H) = \frac{3}{8} = 0.375$$

- Independent Events
 - Outcomes that are not affected by other outcomes.
- Dependent Events
 - Outcomes that are affected by other outcomes.
- Dependent Events: Example
 - Randomly drawing an ace from one deck of cards.
 - Randomly drawing another ace from the same deck of cards without returning the first.

Dependent Events

- 1st draw:
 - -P(A) = 4/52 = 0.0769
- 2nd draw:
 - Possibility 1: 1st card is not an ace
 - Total number of outcomes: 51
 - Favorable outcomes: 4
 - P(A) = 4/51 = 0.0784
 - Possibility 2: 1st card is an ace
 - Total number of outcomes: 51
 - Favorable outcomes: 3
 - P(A) = 3/51 = 0.0588

Independent Events

- 1st draw:
 - -P(A) = 4/52 = 0.0769
 - Return card to deck.
- 2nd draw:
 - Possibility 1: 1st card is not an ace
 - Total number of outcomes: 52
 - Favorable outcomes: 4
 - P(A) = 4/52 = 0.0769
 - Possibility 2: 1st card is an ace
 - Total number of outcomes: 52
 - Favorable outcomes: 4
 - P(A) = 4/52 = 0.0769

Joint Occurrences

- Tossing three coins as a sequence of events:
 - 1st penny
 - 2nd nickel
 - 3rd dime
- Probabilities for Head:
 - penny: ½, nickel: ½, dime: ½
- Multiplication rule:
 - The probability of two or more independent events all occurring is the product of their probabilities.

Joint Occurrences

- Multiplication of probabilities for head:
 - penny: ½, nickel: ½, dime: ½
 - $-0.5 \times 0.5 \times 0.5 = 0.125$
 - Compare with classical approach!
- Notation:

$$P(AB) = P(A) \times P(B)$$

Joint Occurrences

 Drawing two aces from one deck of cards without returning the first:

$$P(AB) = \frac{4}{52} \times \frac{3}{51} = \frac{12}{2652} = 0.0045$$

 Drawing two aces from one deck of cards returning the first:

$$P(AB) = \frac{4}{52} \times \frac{4}{52} = \frac{16}{2704} = 0.0059$$

Mutually Exclusive Events

- Tossing one coin once:
 - What is the probability of at least one outcome head or one outcome tail?

Mutually Exclusive Events

- Tossing one coin once:
 - The probability of at least one outcome head or one outcome tail is: 1
- Reason:
 - -P(Head)=0.5
 - P(Tail) = 0.5
 - $P(Head \ or \ Tail) = 0.5 + 0.5 = 1$
- What is the probability of drawing a king or an ace?

Mutually Exclusive Events

- The probability of drawing a king or an ace:
 - king: 4/52
 - ace: 4/52
 - $-P(king\ or\ ace) = 4/52 + 4/52 = 8/52 = 0.154$
- Addition rule
 - Only with mutually exclusive outcomes the probability of one outcome or another outcome is the sum of the probabilities of single outcomes.

Non-Mutually Exclusive Events

- What is the probability of the outcome of at least one head with one coin tossed twice?
 - head1: 1/2
 - head2: 1/2
 - -P(min1H) = 1/2 + 1/2 = 1
- No!
- No addition rule with non-mutually exclusive events!

Non-Mutually Exclusive Events

- The probability of the outcome of at least one head with one coin tossed twice:
 - Notation: At least one favorable outcome in two events

$$P(A+B) = P(A) + P(B) - P(AB)$$

- Read as: probability of A plus the probability of B, minus the joint probability of an occurrence of A and B.
- Why?

Non-Mutually Exclusive Events

Total outcomes:

outcome	C	oin
1	Н	Н
2	Н	Т
3	Т	Н
4	Т	Т

- Favorable outcomes: 3
- Addition rule: adds two favorable outcomes from the first toss, and two favorable outcomes from the second toss!

Data:

Students	Younger than 25	25 or older	sum
Male	20	40	60
Female	5	35	40
sum	25	75	100

 What is the probability that a student selected at random will be male?

 The probability that a student selected at random will be male:

$$- P(\text{male}) = 40/100 = 0.4$$

 What is the probability that a person younger than 25 selected at random will be male?

- The probability that a person younger than 25 selected at random will be male:
 - A = being male
 - B = being younger than 25
 - A is conditional upon B
 - 5 of 25 are male and younger than 25

$$P(A|B) = \frac{AB}{B} = \frac{P(AB)}{P(B)}$$

Note: Reverse set via P(B|A)!

- The probability that a person younger than 25 selected at random will be male:
 - -A = being male
 - -B = being younger than 25
 - A is conditional upon B
 - 20 of 25 are male and younger than 25

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- Conditional probability = posterior probability
 - -P(a|b), given a and b as any propositions
 - "the probability of a, given that b occurred"
 - "the probability of a, given that all we know is b"

Definition:

Conditional probabilities in terms of unconditional probabilities.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

- whenever P(b) > 0

- Definition as the Product Rule:
 - Conditional probabilities in terms of unconditional probabilities.

$$P(A \cap B) = P(A|B)P(B)$$

- or . . .

- Definition as the Product Rule:
 - Conditional probabilities in terms of unconditional probabilities.

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

- Why?

Product Rule:

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

- For A and B to be true, we need B to be true, and we also need A to be true given B.
- Commutativity of conjunction!
- Set intersection is symmetric: $A \cap B = B \cap A$

Equating the two right-hand sides of the product rule:

$$P(B|A)P(A) = P(A|B)P(B)$$

$$\frac{P(B|A)P(A)}{P(A)} = \frac{P(A|B)P(B)}{P(A)}$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Bayes' theorem, Bayes' law, Bayes' rule
 - Underlies modern Al systems for probabilistic inference.
 - What is it good for?

Properties:

 Requires three terms (1 conditional & 2 unconditional probabilities) to calculate one conditional probability.

• Use:

- When we have good probability estimates for these three numbers we can compute the fourth.

• Example:

- 2% of a population has a disease
- A disease test says that 3.2% of the population has this disease.
- Chance for testing a person with this disease positive is 75%.
- What is the probability that a person who is tested positive really has the disease?

• Example:

- -D+/D- is the event of having/not having the disease
- -T + /T is the event of a positive/negative test
- -P(D+) = 0.02
- -P(T+) = 0.032
- -P(T+|D+)=0.75
- What is P(D + |T+) ?

	D+	D-	total
T+			0.032
T-			0.968
total	0.02	0.98	1.000

	D+	D-	total
T+			0.032
T-			0.968
total	0.02	0.98	1.000

$$P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)}$$

	D+	D-	total
T+			0.032
T-			0.968
total	0.02	0.98	1.000

$$P(D+|T+) = \frac{P(T+|D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$

	D+	D-	total
T+	0.015		0.032
T-			0.968
total	0.02	0.98	1.000

$$P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$

	D+	D-	total
T+	0.015	0.017	0.032
T-			0.968
total	0.02	0.98	1.000

$$P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$

	D+	D-	total
T+	0.015	0.017	0.032
T-	0.005		0.968
total	0.02	0.98	1.000

$$P(D + | T+) = \frac{P(T + | D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$

	D+	D-	total
T+	0.015	0.017	0.032
T-	0.005	0.963	0.968
total	0.02	0.98	1.000

$$P(D+|T+) = \frac{P(T+|D+)P(D+)}{P(T+)} = \frac{0.75 \times 0.02}{0.032} = 0.46875$$

Probability Distributions

- Pictorial Display of the probability P(x) for any value of x.
- Two tossed coins:

outcome	Coins		Num heads
1	Н	Н	2
2	Н	Т	1
3	Т	Н	1
4	Т	Т	0

Probability Distributions

- Pictorial Display of the probability P(x) for any value of x.
- Two tossed coins:

$oldsymbol{x}$	P(x)
0	1/4
1	1/2
2	1/4

Probability Distributions

 Use of probability to describe events includes the notion of uncertainty. This can be described with a probability distribution:

· fair coin:

\boldsymbol{x}	P(head)	$P(\mathit{tail})$
0	1/2	1/2

· biased coin:

x	P(head)	P(tail)
0	3/4	1/4

Gaussian Normal Distribution

- The probability distributions will differ, some coins are more biased than others.
 - We are more uncertain about the outcome of the fair coin than of the biased.
 - How to quantify this notion of uncertainty?
 - Is there a mathematical method to calculate the uncertainty given a probability distribution?
 - Function:
 - Parameter: a probability distribution for a random variable X
 - e.g. with N possible values X can have,
 - $X = \{ P(n_1), P(n_2), ... P(n_N) \}$

- Properties of the uncertainty function, *H*:
 - It returns real values.
 - It should be maximized for the uniform distribution,
 i.e. this is equivalent to complete uncertainty.
 - Everything is equal likely to occur.
 - It is continuous, i.e. for arbitrary small changes in the probabilities we expect arbitrary small changes in the real value returned.
 - It does not depend on the order or grouping of events, just on the distribution as such.

Maximization requirement:

$$H(P(n_1), P(n_2), P(n_3), ..., P(n_N))$$
 is max when : $\forall n : P(n) = \frac{1}{N}$

Independence of Partitioning or Grouping:

$$X = \{P(a) = .5, P(b) = .2, P(c) = .3\}$$

Outcome of b or c occurs 50% of the time:

$$X = \{P(a) = .5, P(Y) = .5\}$$

 $Y = \{P(b) = .4, P(c) = .6\}$

Entropy (average information content):

$$H[X] = k \sum_{x \in X} P(x) \log P(x)$$

 $-log_2$ for bits, -1 for positive values, 0 log 0 = 0:

$$H[X] = -\sum_{x \in X} P(x) \log_2 P(x)$$

$$H[X] = \sum_{x \in X} P(x) \log_2 \frac{1}{P(x)}$$

N-gram Models

- List all possible symbol combinations of length n for a given corpus,
 - symbols: phones, phonemes, characters, morphemes, words (tokens or types), sentences, paragraphs etc.
- together with their frequencies (absolute + number of all elements/tokens; relative)

Frequency Profiles

- Unigram
- Bi-gram
 - Tables/graphics taken from MacKay (2003)

			•	
i	a_i	p_{i}		
1	a	0.0575	a	
2	b	0.0128	b	
3	С	0.0263	С	
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	p	0.0192	p	
17	q	0.0008	q	
18	r	0.0508	r	
19	s	0.0567	s	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	
23	W	0.0119	W	
24	х	0.0073	х	
25	У	0.0164	У	
26	z	0.0007	z	
27	_	0.1928	_	

© 2004 by Damir Ćavar, Indiana University

N-gram Scripts

- Wort n-grams
 - frequency.py
 - frequency2.py
 - frequencyNFW.py
 - ngram.py
 - ngramchar.py
 - unigramchar.py

N-gram Model LID

- Language identification via distributional similarity of n-grams
 - Train language model:
 - extract 3-grams of characters from text for each language, together with the relative frequency of each 3-gram
 - Identify language:
 - extract 3-grams of characters from text
 - compare the standard deviation for each 3-gram with each language model
 - minimum standard deviation identifies the corresponding language

Information Theory

Mutual Information

$$I(X;Y) = P(XY)\log_2 \frac{P(XY)}{P(X)P(Y)}$$

- How many bits can we spare by storing <xy> together, rather than each separate?
- How much do we expect y given x?

Information Theory

Relative Entropy

$$D(y||x) = p(y)lg\frac{p(y)}{p(y|x)}$$

- Distance between two distributions:
 - Independent: P(y)
 - Conditional: P(y|x)
- How many bits more would we need to represent <xy> when we store them together, or when we store them as separate units?