Appendix A: Expert Q&A on Physical Systems Solving Differential Equations Inherently

Question 1:

Please provide me a list of physical systems that solves differential equations inherently. I.E. the physical properties solve it, no traditional computing required.

Answer:

The following physical systems inherently solve differential equations through their natural behavior, without the use of traditional digital computing:

1. Mechanical Systems (Springs, Masses, Dampers)

• **Type:** Second-order ODEs

• Example Equation:

$$m * x'' + c * x' + k * x = F(t)$$

2. Electrical Circuits (RLC Circuits)

• Type: Linear/nonlinear ODEs

• Example Equation:

$$L * q'' + R * q' + (1/C) * q = V(t)$$

3. Thermal Systems

• Type: Heat diffusion PDEs

• Example Equation: $\partial u/\partial t = \alpha \partial^2 u/\partial x^2$

4. Fluid Dynamics Systems

• Type: Navier-Stokes equations

• Example Equation:

$$\rho(\partial u/\partial t + u \cdot \nabla u) = -\nabla p + \mu \nabla^2 u$$

5. Soap Films / Minimal Surfaces

- Type: Laplace's equation / minimal surface PDEs
- Example Equation:

 $\nabla^2 u = 0$

6. Analog Computers (Op-Amps, Capacitors, etc.)

- **Type:** Configurable ODEs/PDEs
- **Example:** Analog computing circuits can be built to simulate dynamical systems.

7. Wave Propagation (Strings, Membranes)

- **Type:** Wave equation
- Example Equation:

 $\partial^2 u / \partial t^2 = c^2 \partial^2 u / \partial x^2$

8. Quantum Systems

- **Type:** Schrödinger equation (PDEs)
- Example Equation:

iħ ∂ψ/∂t = Hψ

9. Optical Systems (Lenses, Mirrors, Interferometers)

- Type: Helmholtz, paraxial wave equations
- Example Equation:

 $\nabla^2 E + k^2 E = 0$

10. Elastic Materials

- **Type:** Elasticity PDEs
- Example Equation:

 $\mu \nabla^2 u + (\lambda + \mu) \nabla (\nabla \cdot u) = \rho \partial^2 u / \partial t^2$

Question 2:

Please provide well sourced papers on how we are using these to create dynamic computing systems for each.

Answer:

Below are references to authoritative papers detailing the use of physical systems in computing contexts:

1. Mechanical Systems

Mass-Spring-Damper Array as a Mechanical Medium for Computation (University of Bristol)

2. Electrical Circuits

Modeling the Behavior of RLC Circuits Using FPAA

3. Thermal Systems

<u>Dynamic Models of Thermal Systems Using an Energy-Based Modeling</u> Framework

4. Fluid Dynamics

Finding flows of a Navier-Stokes fluid through quantum computing

5. Soap Films

Soap Films: Statics and Dynamics

6. Analog Computers

Using analog computers in today's largest computational challenges

7. Wave Propagation

Wave computing with passive memristive networks

8. Quantum Systems

Analog classical simulation of closed quantum systems

9. Optical Systems

Optical Realization of Wave-Based Analog Computing with Metamaterials

10. Elastic Materials

The Solution of Elastic Stability Problems With the Electric Analog Computer