

THE EISENHOWER LIBRARY

3 1151 02564 2327

MORAVIA
SPEC. COLL.

34441

Library

Johns Hopkins
of the
Hopkins University

JAH THESIS
Parks,
R. M.
1892
C. 1

On The Action
of Methyl Alcohol
on
Para-Diazo-Ortho-Toluene
Sulphonic Acid.

Dissertation

Presented for the Degree

Doctor of Philosophy

at the
Johns Hopkins University

by
R. M. Parks, Jr.
1892

5-4 4141

Contents

Introduction	1.
Preparation of para-tolualic chloro-silicic acid.	1.
Preparation of decolorizing agent.	1.
Decolorization of benzene	14.
Decolorization of benzene by carbon bisulphide under pressure	17.
Decolorization in water by carbon bisulphide	26.
Decolorization diminished pressure	27.
Para-Methyl-para-toluol-silicic acid	33.
Sodium salt of same	35.
Calcium salt of same	36.
Magnesium salt of same	37.
Boric salt of same	39.
Sodium salt of same	40.
Potassium salt of same	41.

para-methoxy ortho-toluenesul-	
phenoxychloride	4%
para-methoxy ortho-toluenesul-	
phenoxy-imide	44.
Combination of the methoxy for acetyl with phenylacetil with the symmetric sulfone-acid of Dimpfright and Weffler	
para-methoxy benzoyl sulfone	47.
para-methoxy benzoyl sulfone	40.
Acid potassium salt of same	65.
para-methoxy ortho-substituted acid.	7%
Acid potassium salt of same	67.
Acid potassium salt of same	70.
butenyl (methyl) substituted	74.
Combination of para-methoxy ortho-	
sulfobutyl acetil with sulfo-	
acetic acid.	75.
Combination of phenylacetil	75.
Acetoacetic acid	77

~~Percent of methionine by weight, soluble
inile volatile fatty acids~~ 71.
Beta - hydroxyglutaric acid 70.
Succinic acid 73.

Acknowledgment.

The work described in this paper was carried on under historical botany of the Robbins University at the suggestion and under the scientific supervision of Professor Powers. I desire to record here my expression of gratitude for the instruction and advice received from him during my course at this university. I owe much also to the instruction received from Professor Morse in quantitative analysis and Professor Williams in mineralogy and geology.

Introduction.

The investigation, of which one account is given here, was undertaken for the purpose of studying the decomposition of para-diazotetra-toluene sulphonic acid in methyl alcohol. A description of some transformations of the product of the reaction follows.

The decomposition of diazo compounds in different alcohols has been studied, as is known, in a large number of cases, since the first discovery of these compounds by Grignard in 1860. His results first reacted by Grignard led him to make the general statement that diazoic compounds are decomposed by boiling alcohol the vapour

5

is eliminated and hydrogen takes its place, this so called triox or hydroxygen reaction suggested a convenient method for the replacement of the nitro group by hydroxyl.

This method however was not found to be applicable in all cases. Many experiments, notably among the first Nirobiansky, in attempting the replacement of the nitro or nitile group with hydroxyl, by converting into the corresponding compound decomposing it with ordinary reagents and thus forming compounds resulted instead of hydroxyl. The conditions which are favorable to the hydroxygen or hydroxy reaction have been studied recently

appeared. These investigations have led to interesting suggestions as to the influence of the position and presence of certain groups in the benzene nucleus, viz. the influence of the dilution of the reagent and pressure on the course of the reaction. The alcohol used generally in these experiments has been ethyl alcohol. Differences were found when some reagents were found to become prosed by different alcohols, as methyl, ethyl and propyl alcohols. It was also observed that because of the reaction between methyl alcohol and water was not very numerous.

It was also observed that amidine or amido-tri-methylbenzene was

4

dearolized and decomposed with methyl, ethyl, and amyl alcohol were the corresponding ethers of the aromatic phenol. We also obtained diisopropyl $C_6H_5COCH_3$ from benzene and isopropyl alcohol. It was mentioned in the product of the benzene, C_6H_5COOH , reacts with methyl alcohol. The nitro and para quaternary methoxy products, the ortho one being vicinal, according to the following equations.

Cruséau of this laboratory, in the same year 1861 had observed the formation of anisic acid according to equation II.

Two decompositions of anisic compound with methylalcohol with variation of pressure have been made, both in this laboratory. Metcalf⁷ studied the decomposition of para-anisic or meta-aluminum substituted acid with methyl, ethyl and propyl alcohol. He draws two conclusions which have an important bearing on the course of the reaction; Increase of pressure and the simpler the alcohol, the greater the yield of alkene product.

Blecker⁷ found that the time

composed of one sulfonated and
water-soluble acetate were only the
hydrogen-bonded at least three
times that of the pure ester. In some
when mixed together in equimolar
tobe only the melting product was
formed.

The work of Helfand, Martin, Cahn
and that of Kelen, László, and Imre Róna
and Hirschfelder are the closest relatives
to the investigation described in
this paper.

Now, take incense-burning thallic
compounds of the type shown
below and the acetate formed
ordinarily by burning the incense
and you get the smelting form
sufficient acid, or no acid at all,
edit. methyl cresols and phenol.

Hayduck and Hünfster found no difference between the diazo-compound obtained from the para-methoxy-ortho-toluenesulfonic acid and methylsulfuric acid obtained in the para-methoxy-ortho-toluene with oxalic acid, this acid is apparently identical with the acid obtained in this investigation. A comparison of the formulas of the amidosulfuric acid from which Hayduck's compounds were obtained are given here. The last one is the one used in this investigation.

Hayduck

Metcalf

Hünfster

1.

Preparation of para-toluidine
-o-sulphuric acid.

The starting point of the present investigation was para-nitro-
toluene. This combined together
with fuming sulphuric acid were
used by Kuhns and Deissel
for the purpose of preparing para-
nitro-ortho-toluene-sulphuric acid.
According to their directions one part
of the para-toluene was treated
with four parts of fuming sul-
phuric acid. The flask containing
the mixture was lowered into water
which was then heated to boiling
temperature of water for four
to five hours. After cooling the
darker viscous liquid was poured
into twelve parts of cold water.

If an aqueous solution had not been
boiled before by the sulphuric acid,
this is filtered off, and after drying
may be used again for the same ex-
periment. If a sufficient amount to-
gether with excess of sulphuric
acid was then neutralized by
chalk, filtered through a cloth fil-
ter from the gypsum, which should
be repeatedly washed with hot wa-
ter, the filtrate containing the
calcium salt of the sulphonic
acid was again filtered. This time
through filter, the calcium pre-
cipitated by potassium car-
bonate. The solution of the calcium
was separated from the calcium
carbonate by filtration and con-
tinued to crystallization.

Potassium salt was obtained by passing a mixture of steam over a molten salt. This potassium salt was used for the reduction of the nitro group by tin and copper boride in caustic, according to the method described by Monk et al. and Reddish.

Five parts of the potassium salt, six parts of granulated tin, thirty parts of commercial mordanting acid, were gently heated until the reaction began, when the heat was turned off. The reaction proceeded vigorously, constantly throwing hot sulphuric acid off the reduction, which was over five minutes. According to the scale, salt of stannous boride and the mordant acid separated.

Yankee Henry Four. 9.399.

lattice mass. This was collected in a formless greenish grey by solution, dissolution in water and treated with a solution of sodium carbonate to precipitate the zinc and made the soluble sodium salt of zincumic acid.
The following day the filtrate the zincumic acid was precipitated from its sodium salt by 10% potassium iodide. After dissolving in boiling water, heating until a uniform clear solution the acid was obtained in almost colorless rhomboidal crystals.
A hard white ester between sulfuric acid is almost insoluble in cold water, difficultly so in hot water, insoluble in strong alcohol.

in the evolution of the drug or compound.
All the various methods described
in the literature for isolating
amidocarboxylic acids that if suspended
in a glass tube and treated with dilute
ice water was used hence, adding
nitrous fumes through this emulsion.
However this does not affect the isomer
ic compound ethyl tetrahydro, para
sulphonic acid, but more the specific
directions given by Lonsdale and
de Rode¹ have recorded most authoritative
ways. The first of these, living, living
wide, with suspended ice over and
over half part of water were shaken
together cool with ice water and
a rapid current of nitrous fumes
produced by ammonium fluoride
and nitric acid (ib. p. 2, p. 35) and

passed through it about fifteen
minutes the reaction is over. The
slag or compound was then washed
with well cooled acid oil, filtered
quickly with aid of the pump, and
washed with oil, after which
from the filter the slag or compound
was spread upon burning paper.
There the color of silver is no longer
detectable the slag is ready for
further use. In this manner as
much as 120% of the amido acid were
charred in fifteen minutes giving
a yield of 40% by weight
of the acid used. This slag com-
bined is colorless when first made
but soon becomes brownish. At ordinary
air temperature it is stable for
months if kept in vacuum.

for absolute alcohol, decomposes at 130° C. insoluble in chloroform, ether, soluble in water yielding boiling water form cresol and sulphuric acid.

Decomposition of the dicyclic compound with methyl alcohol.

It has already been stated in the introduction that dicyclic compounds in decomposing with alcohol, sometimes follow the first stage in which, sometimes the second stage reaction occurs both, I. e., if I had studied the reaction of this same dicyclic compound with ethyl alcohol under various conditions of pressure and heat found that both the hydrocarbon and oxygen containing compounds

were formed.

The isomeric ethylbenzenes, hence
the meta toluenesulfonic acid
have been studied by the author, with
methyl, ethyl and propyl alcohols.
Both the hydrogencation and dehydrogenation
reactions resulted under pressure,
in bulk with neither isomer,
either the α -para toluenesulfonic
acid, obtained under the decomposi-
tion decomposing at ordinary pres-
sure with methyl and ethyl alcohols.
A dehydrogenation reaction at ordinary
pressure was made and it
was found that the latter compound
decomposed with the methyl alcohol.
On evaporating the methyl alcohol
a dark heavy liquid having an
acid reaction remained.

acid was converted into the Borium salt by treatment with bare titanium carbonyle, and of adding the water solution, there would be isolated in tubular crystals together with a white powder. This result would indicate the formation of two products, namely the hydrogen and metallocy. This would be similar to the conduct of this latter with ethyl alcohol. This fact caused the first series of experiments to be made at ordinary pressure. These experiments were however according to the method pursued so successfully by Dusmill.

His method was to decompose the compound of the acid by collecting alcohol, in which the alcohol

neutralizing the resulting acids with barium carbonate and separating the nitrogen and chlorine products by repeated extraction with 5% percent boiling alcohol, for this may be calculated from the total barium salts, the specific weight of the barium chloride by alcohol, and if the residue, it was possible to calculate the percentages of the products formed. The extraction was based on the difference in solubility of the barium and chlorine salts in boiling alcohol. The chlorine compound being but slightly soluble.

In the first series therefore three experiments were made under like conditions i.e. at ordinary pressure

with absolute methyl alcohol. To indicate the progress of heating, compound was boiled with 200°C of absolute methyl alcohol in an Erlenmeyer flask connected with an inverted condenser. The composition of the liquid was observed when the boiling of the alcohol commenced, also indicated by the change of color of the liquid which was at first color of fresh cherry red, at the end of the decomposition reddish brown. The reaction was complete in about one hour and fifteen minutes. By this time all solid material had disappeared and formed an alcohol-soluble brownish-yellow product. The evolution of gas, carbon dioxide was then connected with another flask

chloroester and the chlorine distilled from the product of the decomposition. From the preliminary experiment the acid residue was converted into the barium salt by means of pure barium carbonate. The water solution of the barium salt was evaporated to dryness and dried in the air bath at 100°.

Experiment I	10 ^g	diso	gave	13.54 ^g	{
" II "	" "	" "	"	13.49	
" III "	" "	" "	"	13.51	

Barium salt.

The three portions were again dissolved in water and evaporated to crystallisation. There first appeared a nearly white, not well crystallised salt, and then well crystallised yellowish-

combining redaction from tables
it was stated above these were
taken to be two different salts
of barium. Attempts to separate
them for analysis. The method
by alcohol is described by Sie-
gel. I did not prove satisfactory
in order to get material for inter-
mediate analysis the well crystal-
lized portion was separated me-
chanically from the white powder.
The tubular crystals were first
analyzed. The determination
of the water of crystallization
brought to light some inter-
esting facts. The salt begins
to lose water at 60° , at from
 110° to 150° the weight is constant
The loss in weight corresponds

closely to the loss of two molecules of water from the compound. On further heating to 165° the third and last molecule of water of crystallisation was driven off and higher heating did not produce any further loss, the analysis for water of crystallisation and barium gave the following results.

I 0.0530 gram of salt lost at 165°
 0.0230 gram of water and gave
 0.0910 gram of barium sulphate

II 0.0316 gram of salt lost at 165°

0.0216 gram of water and gave

0.0937 gram of barium sulphate.

Calculated for $(C_6H_3-\overset{CH_3}{S}O_3)Ba\overset{CH_3}{O}3H_2O$

	Found	Calculated
H_2O	7.11	7.09
Ba	23.13	23.02

Estimations of barium were now made with both the two crystallised portions and also of the mixture of the well-crystallised and non-crystallised which could not be separated mechanically. In the case of the white powder or non-crystallised portion it was not possible to determine whether if crystallisation the results did not agree with each other. The analyses were made from the white powder and the mixture after volatilising at 165° and gave the following results.

I. 0% 060 gram of the powder gave 0.0792 gram of barium sulphate.
II. 0% 377 gram of the mixed gave

0.1043 gram of barium sulphate.
III 0.2086 gram of the mixture gave
0.0896 gram of barium sulphate.
IV. 0.2541 gram of the mixture gave
0.1091 grams of barium sulphate.
If the hydroxyl radical had
taken place at all one would
expect to find the barium salt
of o-*ta*-toluene-sulphonie acid.
The comparison of the four figures
of barium in the above four analysis
with the percentage of barium
in barium o-*ta*-toluene sulphonate
and in barium para-methoxy-ortho-
toluene sulphonate, would give
a strong indication as to the course
of the reaction. The calculated
percentage are for the sulphonate
salts.

Ground

I	II	III	IV
25.44	25.58	25.26	25.26

In these analyses there is no evidence that the hydrolysis reaction had taken place. If it had occurred at all it was in such small quantity as to escape detection by analysis. Further in collecting the gas given off during the decomposition no satisfactory evidence could be obtained of the presence of formaldehyde, i.e. the gas was nitrogen only. The different forms of

had been analysed for barium with the results studied above were changed into the sodium salt. This sodium salt treated with balsal for us benzoquinone. The acid obtained thus formed was tricarboxylic acid the amide formation of strong carbon ammonia. There resulted only one amide melting at 150°. In fact all the derivatives and transformations subsequently made lend additional evidence that there was only one product formed. This product at ordinary pressure is formed with 17% ortho-toluene sulphuric acid.

Experiment at increased pressure.
In order to study the influence
of pressure on the course of the re-
action one experiment was made
at an increased pressure of 2,000 mm.
and one experiment at a diminished
pressure.

The experiment at increased
pressure was conducted in the
apparatus used and described
by Schner and others. This appa-
ratus consists of a strong one
and one-half liter balloon flask
covered with a close net-work
of copper wire (about one-quarter
inch mesh). This flask was fitted
with a two-hole stopper (rubber)
which was bound down during
the experiment. It too weighed

was fitted a bent glass tube connected with an open ended U-tube mercury manometer graduated in millimetres. Into the other hole through the stopper was fitted a copper tube, at the top of which was a conical valve provided with a lever on which it was hung a leaden weight. By adjusting this weight any desired pressure could be obtained.

Four grams of the diazo compound were decomposed with absolute methyl alcohol in the pressure flask at 200^{mm} pressure. The same phenomena were observed as at ordinary pressure only the decomposition reacted in about forty-five minutes. The barom-

Salt made from the acid
dissolved, appeared like salt formed
from the product of decomposition
at ordinary pressure. Crystallizes
more readily if the barium salt
is dry heated at 165° without
being ^{too} hot to separate any portion.
The results were as follows.

I 0.1870 gram of substance gave
0.0809 gram of barium sulphate.

II 0.2153 gram of substance gave
0.0928 gram of barium sulphate.

Calculated for Found
 $\left(\text{C}_6\text{H}_5-\overset{\text{CH}_3}{\underset{\text{O}}{\text{C}}} \text{H}_3 \right)_2 \text{Ba}$

	I	II
--	---	----

$$\text{Ba} = 25.44 \quad 25.44. \quad 25.36.$$

The only product of the reaction
is therefore a salt nothing between
acid and base.

Experiment at diminished pressure.
The experiment was also conducted
at one-half atmospheric pressure.
The apparatus consisted of passing
one liter balloon flask fitted with
a three hole rubber stopper, so one
hole was about $\frac{1}{4}$ in. dia. but a con-
nected with a vacuum ^u, through
the second ran a thermometer. The
tube of an upright condenser pas-
sed through the third hole into
the upper end of the condenser and
fastened by means of a one hole
rubber stopper the short arm of
a three bend glass tube, the long
arm of which terminated a few
millimeters below a two hole
rubber stopper in a filtering
flask. A test tube was placed

obliged within the flask the
open end being immediately be-
low around the end of the long
arm if the tube connected with
the condenser. This tube served to
collect the methyl alcohol should
any distil over during the experi-
ment. Through the second hole of
the stopper in the filtering flask
passed a bent glass tube one
end terminating in the bottom
of the flask the other end connected
with a Bunsen suction burn.

By this means if water should
be drawn into the flask from the
burn it would not interfere
with the experiment and read-
mitting air into the apparatus, the
tube terminating in the other

would conduct the water off completely. The pressure inside of the apparatus was regulated by connecting a rubber tube to the side tube of the filtering flask and closing the rubber tube with a Mohr pinchcock. The pressure could then be regulated by hand. By carefully watching the vacuum gauge or the thermometer the pressure could be kept constant for any length of time without varying more than 2°m if pressure or 2° of temperature.

The diast compound and absolute methyl alcohol were introduced into the flask, the pump turned on and at one-half atmosphere the flask would

in a water bath. The decomposition proceeded much slower than in previous experiments. The methyl alcohol boiled at 49° 51° , pressure near 370^{mm} . One gram of silver ^{compound} required six and one-half hours for complete decomposition. The methyl alcohol was distilled from the product of decomposition, barium carbonate added, and the barium salt evaporated to dryness dehydrated and analyzed for barium with the following results.
I 0'1538 gram of substance gave 0'0668 gram of barium sulphate.
II 0'1933 gram of substance gave 0'0735 gram of barium sulphate.

Calculated for	Found
I	II
$\text{Ba} = 25.44$	25.55 25.41
$(\text{C}_6\text{H}_3-\overset{\text{CH}_3}{\underset{\text{OCH}_3}{\text{S}\text{O}_3}}\text{)}\text{Ba}$	

As in the cases with ordinary and increased pressure only one product could be obtained and this was the methoxy compound. Variation of the pressure does not change the course of the reaction.

Para-methoxy-ortho-toluene-sulphonic acid.

In all subsequent experiments larger amounts of the diazo compounds were decomposed with methyl alcohol. One hundred grams of the diazo compound were decomposed with one

color if methyl alcohol, the product after distilling the methyl alcohol is a dark brown liquid easily soluble in alcohol and water. Made in large quantities it shows signs of crystallization after standing twenty-four hours. Set aside for several weeks it solidifies but not in well defined crystals. Boiling with animal charcoal does not entirely remove the color, after many attempts a small quantity of the acid was obtained in well defined rhomboidal plates of a yellowish brown color. Decomposes without melting. The acid purified as far as possible with animal charcoal or the acid colored from

The well crystallized barium salt was used for melting salts.

Melt of para-methoxy-ortho-toluene sulphonic acid.

Because of this salt have dried from water, the salt crystallizes from concentrated water solution in large monoclinic tabular crystals with three molecules of water.

Only the well crystallized is formed from the hot solution of thirty four parts of the salt in one hundred parts of water. If the concentration is more than this the salt is deposited from the hot solution.

the form of a white boulder which
was found here without any record of
any glaciation. Since the crystalline
begin to lose water at 60° also
by shrinking in the air at ordinary
temperature, it appears that
water boiling water at a cer-
tain concentration has all lost
some of its water if crystallization
is probably two molecules.

The salt is easily soluble in wa-
ter, difficultly soluble in alcohol.

Prepared from the decinone of the
fusocid which finely powdered
calcite exceedingly soluble in cold
less so in alcohol. It occurs with

it forms a colorless columnar efflorescent
brownish red crystal crystals.
Analysis or calculation gives the
following results.

I. 0.2175 g. gram of the salt lost 17.1%
0.0383 g. gram of water and gave
0.0736 g. gram of calcium sulphate.
II. 0.2404 g. gram of the substance lost
0.0335 g. gram of water and gave
0.0617 g. gram of calcium sulphate.
Calculated for $\text{Ca}(\text{C}_6\text{H}_5-\text{SO}_3)_2 \cdot 2\text{H}_2\text{O}$

	I	II
H_2O	14.01	13.90
Ca	7.78	7.58

Magnesium salt $(\text{C}_6\text{H}_5-\text{SO}_3)_2\text{Mg} \cdot 5\text{H}_2\text{O}$

Prepared by neutralization

fructose with formic acid
carbonate, very soluble in water
and alcohol, it once cooler it will
crystallise in radial tufts of
short slender prisms, formed
entirely in volatile plates.

Analytical for $\text{C}_6\text{H}_{12}\text{O}_6\text{MgCO}_3$
the following results.

I. 10.3175 g. weight loss on ignition 19.1¹

0.0545 g. weight of water added 0.0002

0.0767 g. weight of magnesium carbonate.

II. 0.2174 g. weight of substance lost

0.0376 g. weight of undissolved

0.0495 g. weight of magnesium carbonate.

Calculated for $\text{C}_6\text{H}_{12}\text{O}_6\text{MgCO}_3$

	I	II
H_2O	17.44.	17.07.
Mg	4.65.	4.81.

Prepared by neutralizing zinc
chloride with zinc acetate and
easily soluble in alcohol and water
and crystallizes in short pointed prisms,
dissolves forming water the fol-
lowing results.

I 0.2441 gram of salt lost at 115°
0.0466 gram of undissolved
0.0344 gram of zinc oxide.

II 0.2791 gram of substance lost
0.1541 gram of undissolved salt
0.03674 gram of zinc oxide.

Calculated for 0.1 gram

	I	II
H ₂ O	11.77	11.71
Zn	11.34	11.09

Prepared by slow precipitation
of the metal from the aqueous salt
with a solution of sodium carbonate.
It becomes soluble in water and alcohol.
When it is heated it melts before the
solution in cooling solidifies into
compact mass of almost colorless
leaflets. Analyses gave the following:
I. 0.2144 gram of salt lost at 161°
0.0304 gram of water and gave
0.1114 gram of sodium sulphate.

II. 0.2763 gram of substance lost
0.0303 gram of water and gave
0.0614 gram of sodium sulphate.

Calculated for $\text{C}_6\text{H}_5-\overset{\text{C}_6\text{H}_5}{\text{Sb}_3}\text{Na}$

	I	II
Hg	10.75	10.69
Ni	9.11	9.25

Obtained by a cold precipitation
 of the metal from the barium salt
 by a solution of potassium carbo-
 nate. Very soluble in water and
 alcohol. From the hot concentrated
 solution there is let aside a mass
 of almost colorless fine branching
 needles. Analysis gave the fol-
 lowing results.

I. 0.2247 gram of the salt lost
 0.0160 gram of water and gave
 0.0771 gram of potassium carbonate.
 II. 0.2319 gram of substance

0'0163 gram of benzene-methoxy
0'0477 gram of barbituric acid.
Calculated for Sodium
 $C_6H_5\overset{CH_3}{S}O_3K H_2O$

OC_2H_5	I	II
H_2O 6'77	6'77	7'74
K 15'11	15'07	15'04.

Chloride of benz-methoxy, titro
volume barbituric acid.

The sodium salt was either
by neutralising the free acid or
with sodium carbonate or by
precipitating the metal from
the barium salt with a solution
of sodium carbonate, was dried
at 100°. The dried salt was

Mixed with a slight excess of nitro
benzene as benzonitrile it distilled.
The reaction was slow for a few minutes
proceeded with violence and
evolution of considerable heat.

Most of the black tars as organonitride
was blown off by the heat of the
reaction, the last portion of the
organonitride held back in the bottom
chloride could not be entirely remov-
ed even when heated to 140° .

Upon cooling the acid chloride was
poured into a large amount of
cold water and washed.

The ester is a waxy oil yellow-
ish white in color, very soluble in
ether, from which it was not ob-
tained crystalline but again became
wax after evaporation of the ether.

After melting, or the solution will
blow, while, $\text{C}_6\text{H}_5\text{S}(\text{O}_2\text{NH}_2)\text{CH}_3$

Produced by treatment of the zinc iodide with strong aqueous ammonia. The reaction being violent, the excess ammonia soon became
boiled vigorously, and after shaking
for a short time the amide
suddenly solidified into a very
white mass. After evapora-
ting off the excess of ammonia
the water bath undecolorizing
with sulfuric acid, the amide
was filtered, washed with cold
water. The amide is very soluble
in alcohol, in which it is easily
solved and colorless with no
natural color. It is then

from the hot concentrated acetic acid solution as white plates. The amide is sufficiently soluble in cold and hot water. Upon boiling water it crystallizes in yellow needles if rapidly cooled, if slowly instead partially prisms with a vitreous center. Soluble in ammonia and in the alkaline carbonates from which it is precipitated on addition of acids. These are soluble without 151° . Mention has been made already that only one amide is formed from the product of the decomposition of the ester of ortho-methyl acetophenone.

Analysis for sulphur and nitrogen gave the following results

I 0.3471 g. of the sample gave
1.4144 g. of barium sulphate.

II 0.3177 g. of the sample gave
0.3721 g. of barium sulphate.

III and IV determinations for
nitrogen after Kjeldahl.

Calculated for

	C ₆ H ₃ —S—NH ₂ —OCH ₃	Found
S.	I	II
5.	15.94.	16.01. 16.09.
	III	IV
N.	6.98.	6.79. 6.90

Comparison with the only methyl
toluenesulphonic acid of Siegfried
and Steffter¹

Differ in value studying benzene
² & toluene with this sulphonic
acid had a second time this sulphonic
acid with the corresponding sul-
phuric acid, we found that the
acid amido or the toluenesulpho-
nic acid and decomposing this
compound in the volatile methylid-
ene, he obtained a more volatile
organic volatile acid called ex-
methyl-toluene-sulphonic acid (and
got a steep formulae $\text{C}_6\text{H}_5-\text{SO}_3^{\text{H}}-\text{OCH}_3$)

This acid is sufficiently similar
with the product obtained under
the investigation which however

either followed or preceded by a
decomposed yellowish colour.
At the latter stage it is yellow,
its vitriocal and black streaks
and molten parts are particularly
well described by the
yellowish base, covered with
faint streaks of various tints.
It was thought advisable to re-
heat it in a furnace, so the fire
was again kindled. The heat
was soon sufficient to melt the
metals and mix them with
sulphuric acid. The
violet of Heliotrope was
lost by heating, but the
blue flowers became more
crystallized from their white
heated and decomposed mass.

Substitution becomes very complete
immediately after the amide
with chlorine has been added,
according to the equation.

After concentration of the liquid
and removal of the separated
sugar, the difficultly soluble
free thiosubzonic acid is pre-
cipitated by acetone.

This reaction was performed
at room temperature and is descri-
bed in a red yellowish brown.
The colour of the thiosubzonic acid
is effected by boiling with 10%
trichloroacetic acid or by means
of sodium methylate.

adviseable latter. Therefore dilution of most of the solution so that the sulphuric acid were removed by about 600 g. of sodium amalgam made by bringing together 60 g. of mercury and 20 g. of granulated metallic sodium. But this solution the mixture of the Hg & soap is changed to so. but one suboxide, dilution of acetic acid precipitated the sulphuric acid $C_6H_5\frac{CH_3}{SO_2H}^{(1)}$.
 $NH_2(4)$

Recrystallized from hot water the acid was obtained in colorless hard prisms.

The diastereoisomer of the sulphuric acid was made by Heffter by fusing with

internally covered by soluble material
in which the finely divided sulphuric acid was suspended. The
latter concentrated forms yellow
yellowish brown masses which are soon
converted into a viscous lateral
mass decomposing it at ordinary
temperatures with separation of
a brown resinous substance in oil
color and ether. This last con-
tinues until the decomposition
considerably exceeds ordinary
temperature and continues by
removing ordinary pressure
sure. No hydrolysis was observed.
A clear alcoholic solution
water was added and after fil-
tering from the precipitated
resin, evaporated and recrys-

obtained and passed into the
various salt of zinc chlorothe
toluenesulfonic acid. ^{C₁₁H₁₂} 10.11
^{C₁₁H₁₁} 10.15

~~Friedrich and Hoffer made in
the work of research on the basis of
of the same conditions the following sub-
stic acid. This was a process I
could not decompose well
ethyl alcohol with carbonic
gas at 300 mm when the
same substance did not decompose.
The difference in the amount of the
two days compounds with
alcohol and water exceed five
hundred. Hoffer to make the
statement that the two days
compounds were not identical
although they obtained by~~

from para toluidine substituted
with identical substituents. Thus, for
example, the para-toluidine obtained
by decomposing the nitro-
para-toluidine at increased pressure
was substituted mainly in the ortho
position, whereas the toluidine
substituted obtained by them
was identical with that of Sim-
bolit and Hoffler. The latter thinks
thus on not the same, because the
substituents, respectively, Simbolit
and Hoffler give the melting-point
at 136° , whereas 143° to 144° . The
substituted has been obtained in
considerable quantity and in a
very pure condition by Döller.

Yours sincerely & truly
Hans Döller

and afterwards by Swett and
Foster in the melting point at
 143° 144° which is undoubtedly
correct.

There are also differences which
exist in the descriptions given by
Gmelin and Raffler for pure
nitrous or the benzene sulfonic
acid, its barium potassium
salts and the description given
in his thesis. They describe the
acid as non crystallizing giving
a barium salt which decomposes
by evaporation of its water solution
and becomes strong
odor of creosol, and without con-
stant composition. The fuming
viscous yellowish oil, melting
at 55° .

In this work the acid was obtained in well defined crystals the barium salt well crystallized and of constant composition and without color if resolved on boiling the water solution of the salt.

The descriptions of the barium and amide agree closely.

In making the barium salt by titration with toluene sulphuric acid according to the method of Langrisch and Seffler the colourless products were found to correspond with their description. The salt of the sulphuric acid was suspended in absolute methyl alcohol, well cooled and nitric fumes passed through it. The salt ^{completely} dissolved and just short twice its own weight then recrystallized.

filtered and washed a few times
with ~~absolute~~ ^{90%} alcohol. The last
washings placed in a flask were
~~mixed~~ ^{90%} alcohol; heating was
continued at ordinary temperature
and by warming till the water bath
was over its highest time. Water
was added, the precipitated mass
filtered off, and the filtrate evap-
orated in the water bath. Benzoic
carbonate was then added, the
barium salt filtered from the
~~aggregates~~ ^{barium carbonate} and
dried ^{over} calcium cyanide, after
being heated in salt; was dis-
solved in absolute alcohol by
boiling. After cooling addition
of ether precipitated the salt as
a yellowish powder as shown

it by Höffler, so far the work
of Hippel was repeated.

Efforts were now made to obtain
the salt in crystallized form, by evap-
orating from water. The experience
obtained by working with large
quantities of the barium salt of the
methylene acid, had indicated the best
method to pursue, now if it were
possible to obtain from water
solution crystals of the barium
salt obtained by the method of
Guinier and Höffler, like the
crystals of the barium salt of the
methylene sulfonic acid
obtained by the decomposition
of the clear or para-imido-ortho
toluenesulfonic acid in methyl
alcohol strong water could

resulted of furnished of the solubility of the two products. When
the barium salt was the only product isolated by this process,
it was dissolved in water and
boiled with animal charcoal.
After filtering, the solution of the
salt was left until it had
its crystallization. According to the
concentrated solution therefore ob-
tained a white powder then well
defined crystals like the barium
salt described at the beginning
of this paper. The yield of barium
salt was very small, twelve grams
of the seed being acid giving but
little more than a gram of the
barium salt if the mallow acid
is off used.

of the sulphuric acid gave a volume
equal to the free barium salt of
the electrolyzed solution the yield of
the methoxy salt was still smaller.

100 cc. of water were measured
and the following results,
I 0.2588 gram of the salt lost.

0.2332 gram of water remaining
0.1036 gram of barium sulphate.

II 0.25734 gram of salt & when
dehydrated at 165° 0.1202 gram
of barium sulphate.

Calculated for Ba₃H₂O
 $\left(\text{C}_6\text{H}_5-\overset{\text{CH}_3}{\underset{\text{O}}{\text{C}_6\text{H}_5}} \right) \text{Ba}_3\text{H}_2\text{O}$

I

H₂O 9.11. 8.96

Ba₂H₃.13. 23.55

Calculated for dehydrated salt

Ba₂H₅.44. 25.77 25.79

The difference was never examined down to the crystallizing power of the acid. But it must be said that only when working with large quantities of the acid is it possible to detect any signs of crystallization in its liquid state. But Hoffer worked only with very small quantity of the acid; it is not surprising that it was not obtained crystallized. The conclusion seems to be justified that the two natural acids are identical. Whether the large compounds from which the acids are derived are identical or not is a question to which no answer is not attempted at this time.

A comparison of the two methods starting from the same sulfurous acid and meeting again in the

6

Methionylic acid is given below,

To obtain the methionylic acid a very short study of the two transformations by the two methods would soon convince one which is the better one to follow. The method described in this paper gives large and very satisfactory yields at every stage from the nitration to the methionylic acid.

Action of ammonia on ortho-toluenesulphonamide.

Carried out by oxidising
ortho-toluene-sulphonamide with
potassium permanganate obtained
the first member of a class of bodies
of which was given the name of "sulphamide". Since this
discovery, other members of this
class have become known. The
directions given in the first article
for the preparation of benzene-
sulphamide or "succinamide" were
followed. 10 grams of para-methoxy-
ortho-toluene-sulphonamide
4 grams of potassium permanganate
and water free of heat were
placed in a covered vessel.

Yield 1.456

liter flask stood in water and
heated for some hours at the boiling
temperature of water. The color of the
benzene solution disappeared in
about three hours. The solution was
then filtered from the insoluble
manganese compound and
concentrated to a small volume.
Addition of hydrochloric acid pro-
duced a white precipitate of fine
needles. After filtering and wash-
ing the precipitate in cold water
it was dissolved in boiling cold
alcohol. The compound is easily
soluble in hot alcohol, difficultly
in cold. May extract it on one
side it thus easily separated as
it is quite soluble in cold alcohol.
From alcohol the yellow bar-

greenish white crystalline
fragile long blade like crystals.
It is sufficiently soluble in boiling
water, according to my slender
means, four to six centimeters in
length appear. The crystals melt
at 257° .

Analyses for sulphur and nitrogen
show this compound to be para
nitroxy benzoic sulphonate. The
following results of analysis

- I. 0'1654 gram of the substance gave
0'1706 gram of barium sulphate
II 0'1733 g. of substance gave
0'2025 gram of barium sulphate
III and IV determinations for
nitrogen after Kjeldahl
(burning wood gasation)

Calculated for

S 15.04

N 6.59

Found

15.00—15.18

6.44—6.74

Sodium salt of methionyl bar-
yric sulfonide ($\text{C}_6\text{H}_3-\overset{\text{CO}^-}{\underset{\text{OCH}_3}{\text{S}\text{O}_2\text{Na}^+}}\text{Ba}(\text{OH})_2\text{O}$)

Two grams of methionyl baryric
sulfonide were dissolved in
boiling water and pure barium
carbonate added. After boiling
sometime the excess of barium
carbonate was filtered off and
the filtrate evaporated to a small
volume. The salt is easily solu-
ble in water from which it

crystallizes in long colorless and
also concentrically arranged.

The air dried salt was washed
with absolute alcohol, recrystallized
from water and analyzed for
water of crystallization and bar-
ium with the following result.

I 0.2437 gram of the salt lost

0.0215 gram of water and gave

0.0980 gram of barium sulphate.

II 0.1160 gram of substance lost

0.0166 gram of water and gave

0.0701 gram of barium sulphate.

Calculated for $\text{C}_6\text{H}_5\text{CO}_2\text{NBBa}_3\text{H}_2\text{O}$

I

II

H_2O 8.78. 8.82 - 8.92.

$\text{Ba}_2\text{H}_2\text{N}_2\text{O}_2\text{C}_6\text{H}_5\text{CO}_2$ 19 - 22.17

The filtrate from mellopp,
barroic sulphuric bar. evaporated
almost to dryness potassium
chloride first crystallises there-
long beautiful prisms almost
colorless, which proved to be
the acid potassium salt of para-
mellopp or the sulpho barroic acid.
This salt can be obtained from
these mother liquors either by
fractional crystallisation before
it from potassium chloride or
evaporation to dryness and ex-
tracting with alcohol. The salt is
much more soluble in alcohol

From potassium chlorate, and
may thus be obtained by a
hydrolysis of the salt gave the
following results.

I 0.2628 gram of the salt lost 0.05
0.0166 gram of water and gave
0.0771 gram of potassium sulphate
II 0.2224 gram of substance dehydrat-
ed at 125° gave 0.0714 gram
of potassium sulphate.

Calculated for Found

H ₂ 0.6.7.5	6.3%
K 13.58	13.43

Calculated for dehydrated salt.

	Found
K = 14.44	14.44

The acid potassium salt was made out by oxidizing the potassium salt of para-methoxy or the ferrocene-sulfonic acid. 10 g. of this salt were dissolved in one liter of water, 15 g. of potassium bromate added, and boiled in boiling water. The color of the ferrocene oxide disappeared in about two hours. After removing the insoluble manganese compounds evaporating to a small volume, strong hydrochloric acid threw down the acid potassium methoxy sulfobenzoate as short needles. These needles recrystallized from water and decolorized gave the following results.
10% of guncotton

0'0174 gram of water soluble
 0'0842 gram of potassium sulphate
 II 0'2763 gram of the dehydrated
 salt gave 0'0849 gram of pot-
 assium sulphate.

Calculated for Found

	I	II
H ₂ O	6.25	6.29
K	13.57	13.66

Dehydrated K 14.44 14.99

Prepared from the free malic acid, a water solution of the acid was divided into two equal parts, one part neutralised with barium carbonate

To this neutral barium salt the second part of the acid was added to produce the acid salt. Both the neutral and acid salts are extremely soluble in water and can not be obtained in crystals. I add hydrochloric acid. The acid barium salt is slightly soluble, from which it crystallizes in fine white needles, giving the following result.

0'2212 gram of the substance lost 0'0234 gram of water at 180° and gave 0'0761 gram of barium sulphate.

Calculated for	Found
$(C_6H_3-\overset{CO_2H}{S}O_3)Ba \cdot 4H_2O$	
$(C_6H_3-\overset{CO_2H}{S}O_3)Ba \cdot 4H_2O$	1
H ₂ O 10'7%	10'3-8
Ba 20'44	20'24

This acid was first prepared from the acid potassium salt by heating with NaCl until the chloride was formed, then decomposing the acid chloride in boiling water, evaporating, drying, and recrystallizing from water. A second method is to pass from the methyl benzene sulphide to the acid. This is accomplished by adding the methyl, benzene sulphide in large quantity to the acid, one part of the concentrated acid to eight parts of water. In the case of the ammonium salt of the acid ammonium salt of the acid

suspending acid is formed.
This acid combines with a salt when
treated with twice its weight of
phosphorus pentachloride gives the
chloride, then this chloride is boil-
ed with water and hydrochloric acid
is given off and the acid is formed.
It crystallizes from water so white
it is quite soluble this acid appears
as long interlacing needles, turns
purple and colorless. It melts
without decomposing at 104°
on cooling it quickly solidifies
and again becomes melted at the
same point, this may be repeated
without change of the melting
point.

chloride of benzyl methyl for the
 sulphobenzoyl chloride $C_6H_5SO_2Cl$
 OC_6H_5

The chloride prepared as above
 described for the preparation
 of the methylsulphobenzoyl chloride
 was white solid, It does not
 dissolve easily in ether from which
 it crystallizes in small hard
 crystals transparent and colorless.
 The crystals powdered and boiled
 with aqueous ammonia give the meth
 ylsulphobenzoyl chloride melting at
 71°.

Preparation of benzene rings
with sulphuric acid with
the sulphuric acid of Terao et al.
Anilic acid $\text{C}_6\text{H}_4-\overset{\text{COOH}}{\underset{\text{OCH}_3}{\text{S}(\text{O})_2\text{H}}}$ according
to theory should give two sulphonic
acids, one in which the sulphuric
acid group would be in the ortho
position to carbonyl the other
in the meta position.

By derivation the acid described
in this paper should be the one
expressed by formula I.

It was thought advisable to repeat the experiments of Terao et al.
follows; 3 grams of crystallized
anilic acid were sulfonated

flask were covered with fuming sulphuric acid and heated in a water bath for two hours. After cooling the contents of the flask were poured into cold water. This solution of sulphuric acid and the excess of sulphuric acid was neutralized with an excess of lead carbonate. The lead sulphate was filtered off and repeatedly washed with hot water. The lead salt as described by Iowa was found to crystallize from hot water in beautiful transparent crystals. This lead salt was transformed into the sodium salt by precipitation of the metal with a solution of sodium carbonate. A portion of this salt was

in a silver crucible with potassium bichromate. The fused mass was dissolved in water and acidified with hydrochloric acid. Sulfur liquid was given off. The solution was extracted with ether. After evaporating the ether there appeared needles of protocatonic acid. A portion of the crystals was dissolved in water and this solution gave the characteristic color reaction with ferric chloride namely dark green. Addition of a very little sodium carbonate changed the green color blue passing rapidly into red. The melting point of the needles from ether was found to be 194° .
The melting point of protocatonic

acid is variously given by different observers. Malicet who first made this experiment with sulfamic acid, gave 199° as the melting point. Barth and Schmitt²⁴ gave the melting point of pure bromo-technic acid as 194° (uncorr.). The melting point here found as is apparent agrees with that given by Barth and Schmitt.

In the same manner two grams of melting bromic sulfimide were fused with one gram of potassium bromide, the fused mass dissolved in water neutralized and extracted with ether. The crystals obtained after evaporation of the ether, dissolved in water gave

a purple coloration with ferric chloride. The temperature of the fusion with potassium hydroxide was not determined unless ~~unless~~ by infusing 1,2,4, 8 disulphobenzoic acid with potassium hydroxide and observed that at temperatures above 250° only resorcin is formed, below 250° 1,2,4 dioxy benzoic acid together usually with a small quantity of resorcin. It was thought that the purple color resulted from the blue color given by resorcin and the dark-red color of 1,2,4 dioxybenzoic acid. This conclusion proved correct. To the solution giving the purple coloration sodium carbonate was added, ethylamine

11 Amherstburg Jan 195

extracted with ether, which
gave the characteristic blue colour
when treated with ferric chloride and
melted at 104° - 107° .

The solution from which the
resorcinol had been removed
was acidified and extracted
with ether. After evaporation of
the ether, fine white needles were
left behind. A solution of these
needles gave a dark red coloration
with ferric chloride characteristic
of 1,3,4-tricyclic organic acid.

This acid is best described in
chemical literature as resor-
cylic acid. The melting point
from ether melted at 212° to 213° .
This melting point agrees well with
that ascribed to resorcylic

acid by Pistorzycki and Post-
mekoff. Two writers in their ac-
count of the formation of 3 resorci-
lic acid from resorcin by heating
with potassium bicarbonate state
that on heating rapidly the cul-
tious acid melts at 213° . This
statement is confirmed. Other
writers give a different figure
Blomstrand 194° Goldberg 194°
Benedikt and Hazewinkel 147°
Seeliger and Brauner 194° 200°
Vilimann and Perrissine 204° 206°
The products of the fusion of
methylene benzoyl sulphuric with
potassium hydroxide therefore
are resorcin and 3, resorcylic acid
while sulphamic acid gives
phthalocetonic acid.

// Benckle 18-1985

by a process by formic acid (p. 75)
The active blue shade of sulphuric
acid would be para-methoxy,
methyl sulphobenzoic acid.

Summary.

I. When para-sulfioxy-toluene sulfonic acid is decomposed with absolute methyl alcohol at ordinary, increased, or diminished pressure only the methoxy product is formed namely, para-methoxy, ortho-toluene-sulfonic acid.

If this result does not conform to the rules deduced from the study of the decomposition of diazo compounds with ethyl alcohol but does confirm the suggestion that the simpler electropositive group is introduced more easily than the more complex ones.

III. The product of the reaction is identical with the ortho-methyl tol uene sulfonic acid obtained

I. Sulphuric acid is formed by the
combustion of the zinc compound
from para-anisole or the toluene
sulphonic acid with methyl alcohol.
IV When para-methoxyaniline toluene
sulphonate is oxidized with
potassium permanganate para-
methoxy ~~sulphobenzoic~~ sulphonic acid
is formed. From this can be ob-
tained para-methoxy or the sulphonato
benzoic acid.

V. Para-methoxy or the sulphuric
acid is isomeric with sulpho-
anisic acid and by fusion with
potassium hydroxide, resorcin
and β -naphthoic acid are formed.

Note.

I The temperatures given in this dissertation will all be corrected.

If the atomic weights used in the calculations of this work was follows.

Ba	136.4	S	31.47
Ca	39.91	O	15.96
Mg	23.94	H	1.
Zn	65.1	N	14.01
Na	23.	C	11.97
K	39.03		

Biographical Sketch.

The author of this dissertation, Albert Miller Banks Jr., was born at Bedford Indiana July 25, 1851. He obtained his college education at the University of Frankford Ind. In 1875 he entered Indiana University and graduated in 1879 with the degree of Bachelor of Arts. Six years were spent in teaching four of which was as teacher with natural sciences in college side institutions. Advanced courses of study were pursued by annual Howard University, D. C. and the University of Munich Germany, 1883. These years were a valuable & fruitful at the Johns Hopkins University while pursuing the principal subjects of mineralogy and geology, also a subordinate

