Menace passive:

L'intrus ne s'interfère pas dans le trafic ou autre et se contente d'observer pour une éventuelle attaque active

Menace active:

L'intrus tente de modifier ou supprimer des informations relatives au réseau ou au système ou ajouter des logiciels malveillants

Confidentialité:

Seuls les utilisateurs autorisés ont accès aux données

Intégrité:

Une information est intègre si on est capable de prouver avec certitude qu'elle n'a pas été modifiée

Disponibilité:

Quand un système d'information fonctionne correctement lors d'un haussement de trafic ou lors des pannes

Authenticité:

Lorsqu'on peut déduire l'origine de l'information d'une manière sûre

Autorisation:

Spécifier et vérifier les droits d'accès

Principes fondamentaux:

- Moindres privilèges
- Ne pas faire reposer la sécurité sur un seul mécanisme de protection
- Goulet d'étranglement : l'entrée et sortie des informations concentrées en un point
- On interdit toutes activité first, puis nous autorisons petit à petit

Sniffing:

Capture une image du trafic dans le réseau

Sniffing:

L'écoute du réseau en capturant des images du trafic

Hijacking (vol d'une session):

Quand l'utilisateur se connecte, le pirate prend le control de sa session Spoofing :

Cas 1 : attaquant et victime ne sont pas sous le même réseau

- 1. Utilisant l'@IP de la machine 3 de confiance, l'attaquant envoie une requête à la cible
- 2. La cible renvoi un paquet avec un ACK (exp = 100) à la machine 3
- 3. Puisque l'attaquant et la machine 3 sont sous le même réseau, il utilise le sniffer pour connaître l'ACK reçu et envoyer un nouveau paquet avec ACK=101 pour devenir digne de confiance

Cas 2 : sous le même réseau

Même scénario sauf que tout cela se trouvera dans le même sous réseau

Cas 3: Spoofing aveugle

L'attaquant n'est ni dans le sous réseau de la machine 3 ni dans celui de la cible => Ouverture de quelques connexions légitimes avec la cible

Dénis de service :

Empêche le service de fonctionner correctement

Flooding:

Bombardement de données sur un serveur ou une machine

Attaque par réflexion:

Envoie de la requête à grand nombre de machines, chacune allant répondre à la victime

<u>Distribué (DDOS) :</u>

Attaque d'une cible avec plusieurs machines simultanément

Virus:

Se lie à un fichier hôte

Vers:

S'auto-reproduit et se déplace à travers un réseau

Cheval de Troie:

Joue le rôle d'un logiciel normal pour enfin voler les données ou nuire

Backdoors:

Logiciel qui permet à l'attaquant de prendre le contrôle de la machine cible à distance

Spywares:

Logiciel espion qui récole des données

Adwares:

Présente des pubs sans espionner

RoolKits:

Ensemble de d'outils qui cachent le logiciel malveillant

CryptoVirus:

Le code malveillant est chiffré sur une clé aléatoire et différente pour chaque copie de ce code

Fonctionnement de l'anti-virus :

- 1. Scanning de la signature du virus
- 2. Analyse du comportement de possible virus

<u>Cryptographie:</u>

L'étude permettant de protéger l'information en termes de confidentialité, authenticité et intégrité

Décryptage :

Retrouver le texte chiffré sans avoir recours à la clé de déchiffrement

Algorithmes les plus répondus :

- DES
- AES
- 3DES

Clé secrète asymétrique :

- Une paire de clé
- Clé publique (distribuée pour tout le monde)
- Clé privée (une seule entité la possède)
- Exp: RSA

La fonction de hashage:

Ne prend pas une clé cryptographique en paramètre

Comment assurer les objectifs principaux de la sécurité :

- 1. Confidentialité : Chiffrement du message
- 2. Intégrité : Voir si le message n'a pas subi de modification durant la communication
- 3. Authenticité:
 - a. Au niveau des communicant : Par des défis (envoi d'un message attendant la bonne réponse)
 - b. Au niveau du code MAC : Le bloc authentificateur se base sur le message et la clé secrète

Le pare-feu :

Filtrage:

• Allow: Autoriser le paquet

• Deny: Bloquer le paquet

• Drop: Le rejeter sans avertissement et informations

Critère de filtrage:

@IP_s, @IP_d, Protocole, Port, Drapeau (SYN, ACK, ...)

Génération du journal:

Journalisation

NAT:

Source	Port	Dest	Port	Source	Port	Dest	Port
10.0.0.1	3001	128.8.6.3	80	172.1.3.2	3001	128.8.6.3	80
10.0.0.1	3001	128.8.6.3	80	172.1.3.2	1102	128.8.6.3	80

Transformation de l'@IP_s en une seule avec changement du port, faisant croire qu'il s'agit de la même machine qui envoie

Détection d'intrusion:

Principe de fonctionnement :

1. Informer l'utilisateur

2. Reconfigurer le pare-feu

Méthodes de détection :

Se base sur une base de données de signatures d'attaques connues ou le comportement du trafic et compare

Proxy:

- Traite la sécurité au niveau de la couche application
- Un utilisateur ne se connecte plus à un serveur directement mais à travers un proxy

Fonctionnement:

- 1. Connexion de l'ordi au proxy
- 2. Le proxy se connecte au serveur (Internet)
- 3. Vous demandez des pages au serveur
- 4. Analyse de la requête (filtrage) du proxy pour voir si elle est autorisée ou non
- 5. Recherche de la page sur le serveur
- 6. Analyse de la page et renvoi vers l'utilisateur

Avantages:

- Utilisation de l'@ du proxy pour naviguer
- Filtrage

Inconvénients:

- L'administrateur du proxy a à sa disposition toutes vos informations et peut tout enregistrer
- Peut-être plus lent

DMZ:

Il est utilisé quand un niveau de sécurité intermédiaire est requis

Celui-ci n'est ni connecté à un réseau interne, ni directement à Internet (Mise en place de pare-feu requise)

Mise en place des proxys pour une meilleure sécurité

Pour éviter que l'un des proxys n'espionne l'autre, le réseau local qui relie les proxys doit être un Switch

