Proof.

Question 3.2.3: 4. Let A be a set and x a number. Show that x is a limit-point of A if and only if there exists a sequence $x_1, x_2, ...$ of distinct points in A that converges to x.

- (⇒) Suppose x is a limit of A, so $\forall m \in N, \exists x_m \in A \neq x$, such that $|x_m x| < 1/m$. So we have sequence $\{x_m\}$, of which we can pick a subsequence with distinct elements. So $\forall k, \exists j \in \mathbb{Z}_{>0}$, such that $|x x_j| < |x x_k|$ so $x_j \neq x_k$. □
- (\Leftarrow) Suppose $\exists \{x_m\}$ of distinct points in A and $\{x_m\}$ converges to x. Then $\forall m \in \mathbb{Z}, \exists n \in \mathbb{Z}_{>0}$, such that $|x x_j| < 1/m, \forall j \geq n$. Now for distinct x_j , if $x_n = x$ then there $\exists j \geq n$, such that $x_j \neq x_n = x$. So $\forall m \in \mathbb{Z}, \exists x_j \neq x$, such that $|x x_j| < 1/m$. \Box

Question 3.2.3: 7. Give an example of a set A that is not closed but such that every point of A is a limit-point.

Answer. Take A = (1,2) Take $x \in A$, then $\forall n \in \mathbb{Z}_{>0}, \exists y \in (x-1/n,x)$. So $\forall n \in \mathbb{Z}_{>0} \exists y \neq x$, such that |x-y| < 1/n. A is therefore a closed set of which every point is a limit point.

Question 3.2.3: 13. Define the derived set of a set A as the set of limit-points of A. Prove that the derived set is always closed. Give an example of a closed set A that is not equal to its derived set. Give an example of a set A such that the derived set of A is not equal to the derived set of the derived set of A. (Note: Cantor was originally led to study set theory in order to understand better the notion of derived set and to answer questions similar to the above.)

Proof. Let A' be a derived set of A. To show that A' is open is equivalent to show that its complement $(A')^c$ is open. Take $x \in (A')^c$, then $\exists n$, such that 1/n > 0, such that $x \in (x-1/n,x+1/n)$ and this interval contains a finitely many points. Now suppose $y \in (x-1/2n,x+1/2n) \supset (x-1/n,x+1/n)$ so then (x-1/2n,x+1/2n) also contains finitely many points. Therefore y is not a limit $\Rightarrow y \notin A' \Rightarrow x \in (A')^c \Rightarrow (A')^c$ is open. \Box

Just take $A = \{0, 1, 1/2, ...1/n\}$, we immediately see that $A' = \{0\}$ so $A'' = \{\}$. $A \neq A' \neq A''$.

Question 3.3.1: 2. Show that the following finite intersection property for a set A is equivalent to compactness: if B is any collection of closed sets such that the intersection of any finite number of them contains a point of A, then the intersection of all of them contains a point of A. (Hint: consider the complements of the sets of B.)

Proof. Want to show A is compact \iff for every collection of closed sets of which a finite subset $B_1 \cap B_2 \cap ... B_N \cap A \neq \emptyset$. Then $A \cap (\bigcap_{i=1}^{\infty} B_i) \neq \emptyset$.

Andrzej Novak Homework 5

 \Rightarrow Assume to the contrary that $A \cap (\bigcap_{i=1}^{\infty} B_i) = \emptyset$, which implies

$$A \subset (\bigcap_{i=1}^{\infty} B_i)^c \equiv \bigcup_{i=1}^{\infty} B_i^c$$

Then the set of all B^c is an open cover of A, but since A is compact it must have a finite subcover, which is a contradiction.

 \Leftarrow Assume to the contrary that A is not compact (we have an open cover and no finite subcover). Then we have an open cover, which is a set of all B^c . But we have just established that:

$$A \subset (\bigcap_{i=1}^{\infty} B_i)^c \equiv \bigcup_{i=1}^{\infty} B_i^c$$

which means that $A \cap (\bigcap_{i=1}^{\infty} B_i) = \emptyset$, but this is in contradiction with the requirement that $A \cap (\bigcap_{i=1}^{\infty} B_i) \neq \emptyset$ and therefore we have the other contradiction.

Question 3.3.1: 4. If $A \subseteq B_1 \cup B_2$, where B_1 and B_2 are disjoint open sets and A is compact, show that $A \cap B_1$ is compact. Is the same true if B_1 and B_2 are not disjoint?

Proof. A is compact, so A is closed and bounded. Therefore $A \cap B_1$ is bounded. Suppose we have a sequence $\{x_j\} \subset A \cap B_1$ converging to the limit x. Since A is closed $x \in A \subset B_1 \cup B_2$. $\Rightarrow x \in B_1$ or $x \in B_2$. To have a contradiction take $x \in B_2$., which is open and therefore contains an open interval around x then B_2 contains infinitely many points of $\{x_j\}$, but $x_j \in B_1$ and $B_1 \cap B_2 = \{\}, x_j$ cannot be in B_2 , which is a contradiction. So $x \in B_1 \Rightarrow x \in A \cap B_1 \Rightarrow A \cap B_1$ is closed $\Rightarrow A \cap B_1$ is bounded $\Rightarrow A \cap B_1$ is compact. \square

In case $B_1 \cap B_2 \neq \{\}$ we can take $A \subset B_1 \cup B_2 = [1,2] \subset (0,2) \cup (1,3)$, but $A \cap B_1 [1,2)$ is not compact.

Question 3.3.1: 6. For two non-empty sets of numbers A and B, define A + B to be the set of all sums a + b where $a \in A$ and $b \in B$. Show that if A and B are compact, then A + B is compact. Give an example where A and B are closed but A + B is not.

Proof. Suppose A, B are compact. Then for some $N, A, B \subset [-N, N] \Rightarrow A + B \subset [-2N, 2N]$. So A+B is **bounded**. Now take $x_n \in A$ and $y_n \in B$ and define $z_n = x_n + y_n$. Since A, B are compact, x_n, y_n have convergent subsequences, with limits x, y. Since A, B are compact and therefore closed $x \in A, y \in B$. Therefore the subsequence of z_n converges to $z = x + y \in A + B$ and so z_n also converges to $z \in A + B$. So A + B is **closed** and therefore compact. \square

Take $A = \{(-1)^n\}$ and $\{B = (-1)^{n+1} + 1/n\}$, then $A + B = \{1/n\}$, which doesn't contain its limit and therefore is not closed.

Andrzej Novak Homework 5

Question 3.3.1: 8. If A is compact, show that $\sup A$ and $\inf A$ belong to A. Give an example of a non-compact set A such that both $\sup A$ and $\inf A$ belong to A.

Proof. If A is compact it is bounded and closed. As it is bounded it has to have a sup and inf and because it is closed, these have to be contained in A. \Box

To have an example of a non-compact set containing its sup and inf take $A = [1, 3] \setminus 2$. Here sup = 3, inf = 1, but A isn't closed.

Problem 1. Use the result of Exercise 2 in 3.3.1 to give an alternative proof of Theorem 3.3.3 (to be clear, your proof should not in any way depend on the proof given in the text).

Theorem 3.3.3. A nested sequence of non-empty compact sets has a non-empty intersection.

Proof. From 3.3.1:2 we know that A is compact \iff for every collection of closed sets of which a finite subset $B_1 \cap B_2 \cap ... B_N \cap A \neq \emptyset$. Then $A \cap (\bigcap_{i=1}^{\infty} B_i) \neq \emptyset$.

A nested sequence of non-empty compact sets like $[a_1,b_1] \subset [a_2,b_2] \subset ...[a_n,b_n]$ where $a_{n+1} > a_n$ and $b_{n+1} > b_n$ is always contained in some compact set A. By exercise 2 then if A is compact, then it follows directly that $A \cap (\bigcap_{i=1}^{\infty} B_i) \neq \emptyset$ and therefore the nested sequence has a non-empty intersection. \square