

Rain sensor

Solar power

Objectives

Wind direction sensor

Wind speed sensor

Reflections

Arduino box

Index

Prototype V1

Low power

WeatherStation

By Antonin, Bryan, Chantal and Job Temperature/ humidity sensor

Questions

Index

- 1. Objectives
- 2. Prototype V1
- 3. Prototype V2
- 4. Wind speed sensor
- 5. Wind direction sensor
- 6. Rain sensor
- 7. Temperature / humidity sensor
- 8. Solar power
- 9. Low power code
- 10. Arduino box
- 11. Reflection
- 12. Questions

Rain sensor

Solar power

Objectives

Wind direction sensor

Wind speed sensor

Reflections

Arduino box

Index

Prototype V1

® ® WEATHERCREW

Low power

WeatherStation

By Antonin, Bryan, Chantal and Job Temperature/ humidity sensor

Questions

Design

- Temperature sensor
- Rain sensor
- Wind speed/direction sensor

Add-ons

- Solar powered
- Light sensor
- PCB
- Snow depth sensor

Code

- Make the code use less energy
- Add new code for the new sensors
- Switch from LTE-M to NB-IoT

Design

- Temperature sensor
- Rain sensor
- Wind speed/direction sensor

Design

- Temperature sensor
- Rain sensor
- Wind speed/direction sensor

Add-ons

- Solar powered
- Light sensor
- PCB
- Snow depth sensor

Code

- Make the code use less energy
- Add new code for the new sensors
- Switch from LTE-M to NB-IoT

Add-ons

- Solar powered
- Light sensor
- PCB
- Snow depth sensor

Design

- Temperature sensor
- Rain sensor
- Wind speed/direction sensor

Add-ons

- Solar powered
- Light sensor
- PCB
- Snow depth sensor

Code

- Make the code use less energy
- Add new code for the new sensors
- Switch from LTE-M to NB-IoT

Code

Lasy deployment

- Add new code for the new sensors
- Switch from LTE-M to NB-IoT

Design

- Temperature sensor
- Rain sensor
- Wind speed/direction sensor

Add-ons

- Solar powered
- Light sensor
- PCB
- Snow depth sensor

Code

- Make the code use less energy
- Add new code for the new sensors
- Switch from LTE-M to NB-IoT

Rain sensor

Solar power

Objectives

Wind direction sensor

Wind speed sensor

Reflections

Arduino box

Index

Prototype V1

® ® WEATHERCREW

Low power

WeatherStation

By Antonin, Bryan, Chantal and Job Temperature/ humidity sensor

Questions

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Wind speed sensor

Wind speed sensor Exploded view

Wind speed sensor Bearing cap

Wind speed sensor How does it work?

Wind speed sensor Code

```
pinMode(WindSensorSpeedPin, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(WindSensorSpeedPin), isr_rotation, CHANGE);
// This is the function that the interrupt calls to increment the rotation count
void isr_rotation ()
    if ((millis() - ContactBounceTime) > 15 )
        Serial.println("add ratation");
        Rotations++;
        ContactBounceTime = millis();
WindSpeedMPH = Rotations * 0.0375;
WindSpeedKPH = WindSpeedMPH * 1.609344;
Rotations = 0; // Set Rotations count to 0 ready for calculations
```

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Wind direction sensor

Wind direction sensor

How does it work?

Wind direction sensor

Code

```
AnalogDirectionValue = analogRead(WindSensorDirectionPin);
DirectionDegreesWithoutOffset = map (AnalogDirectionValue, 0, 1023, 0, 360);
WindDirectionDegrees = DirectionDegreesWithoutOffset + WindDirectionOffset;
if (WindDirectionDegrees > 360)
   WindDirectionDegrees = WindDirectionDegrees - 360;
if (WindDirectionDegrees < 0)</pre>
   WindDirectionDegrees = WindDirectionDegrees + 360;
```

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Rain sensor

Rain sensor How does it work?

 $F2\times d2 > F1\times d1$

Rain sensor

```
pinMode(RainSensorPin, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(RainSensorPin), isr_bucket, CHANGE);
// This is the function that the interrupt calls to increment the bucket tips
void isr_bucket ()
    if ((millis() - ContactBounceBucketTime) > 1000 )
         Serial.println("add bucketAmount");
         Rain += bucketAmount;
         ContactBounceBucketTime = millis();
Rain = 0.0;
```

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Temperature/humidity sensor

Temperature/humidity sensor How does it work?

Temperature: -60 to 80 °C **Humidity:** 0 to 100%

Temperature/humidity sensor Code

```
#include <Adafruit_SHT31.h>
Adafruit_SHT31 sht35 = Adafruit_SHT31(); // initialize the library instance
if (! sht35.begin(0x44))
     Serial.println("Couldn't find SHT35");
     while(1);
 // Read the temperature and the humidity:
 float tempC = sht35.readTemperature();
 float humidity = sht35.readHumidity();
```

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Solar power

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Low power code

```
Serial.println("Go to sleep");
LowPower.deepSleep(interval);
Serial.println("Wake up");
```

Prototype V2

- Wind speed sensor
- Wind direction sensor
- Rain sensor
- Temperature/ humidity sensor
- Solar power
- Low power code
- Arduino box

Arduino box

Arduino box

Prototype V2 Demonstration

Poster

IoT weather station

What does the weather station Measure?

Temperature

Windspeed

Humidity

Wind direction

Rainfall

Solar powered

Project goal

Build a self-designed, low-cost, internet of things, low energy use, moveable weather station.

Who are we?

The weathercrew is a project team in an EPS project at Novia Yrkeshögskolan. We consist of Dutch and French students.

Curious about what the weather is? Check it out right now!

Rain sensor

Solar power

Objectives

Wind direction sensor

Wind speed sensor

Reflections

Arduino box

Index

Prototype V1

® ® WEATHERCREW

Low power

WeatherStation

By Antonin, Bryan, Chantal and Job Temperature/ humidity sensor

Questions

Prototype V2

Reflections

Prices

Component V1	Price	Component V2	Price
Rain sensor	€120	Rain sensor	€28
Anemometer	€185	Anemometer	€49
Temperature/ humidity sensor	€5,50	Temperature/ humidity sensor	€20,70
		Solar power	€25

Reflections

Difficulties

- Cheap products
 - Solar panel
 - Hall effect sensor
 - Delivery time
- Additive manufacturing (3D-printing)
 - Tolerances
 - Print time
 - Reserving

Reflections

Improvements

- Re-printing parts for better tolerance fitting
- Leaf protection rainfall sensor
- Low power improvement
- Add 'Omnia' snowdepth sensor
- Add self-made PCB
- Bigger wing on the wind vane

Rain sensor

Solar power

Objectives

Wind direction sensor

Wind speed sensor

Reflections

Arduino box

Index

Prototype V1

® ® WEATHERCREW

Low power

WeatherStation

By Antonin, Bryan, Chantal and Job Temperature/ humidity sensor

Questions

Prototype V2

Questions?

