Module 2: Bond Analytics

Roadmap...

- We want to examine the relationship between risk and reward in the bond market.
 - The reward will be the yield when we purchase.
 - The risk is that price will change with yields change.
- Before we look at this relationship, we need to learn the terminology.
- We will also look at how yields have changed in the past.

Terminology

- Yield: percent per year (units)
- Basis Point (b.p.): equal to 0.01%
- Price: percent of Par (units)
 - Par: Price = 100
 - Premium: Price > 100
 - Discount: Price < 100
- Duration: <u>years</u> (units)
 - Just because the units are years, don't think of this as a measure of time think of it as a measure of risk.

Basis Points

- Q: Why do we talk about basis points, rather than percentage points?
- A: A change of 1% in interest rates is a huge change.
- For One-Year Rates (Data from 10/25/2011)
 - Average absolute daily change: 4.87 b.p. per day
 - Greatest 1-day increase (since 2001): 52 b.p. (Sep. 2001)
 - Greatest 1-day decrease (since 2001): -50 b.p (Sep. 2001)
 - Standard Deviation (since 2001): 4.95 b.p
 - # days \geq 50 b.p. shift: 60 out of 12,186 (0.48%)
 - # days \geq 25 b.p. shift: 285 out of 12,186 (2.30%)

Pricing

- We use <u>present value formulas</u> to find the value of a bond.
- We can then find the value as a percent of face value.
- This value is then split into <u>Price</u> and <u>Accrued</u> Interest.

Pricing

- Yield to Price
 - ∘ *y* Annual Yield
 - \circ $C_k k^{th}$ Cash Flow
 - t_k Time in years to Cash Flow
 - PV Price (<u>including accrued interest</u>)

$$PV = \sum_{k=1}^{n} \frac{C_k}{\left(1 + \frac{y}{2}\right)^{2t_k}}$$

Pricing

- Most bonds pay the same coupon twice per year until maturity and then repay the principal at maturity.
- This means that cash flows are (Coupon/2) every six months with 100% of the principal added at maturity.
- We could price coupons using the <u>Annuity</u> formula and then add in the PV of the principal payment.

Example: Ten Year Auction

- Issued on 8/15/2011
- Matures on 8/15/2021
- Coupon Rate = 2.125%
- Yield at Issue = 2.140%
- Price at Issue = 99.865607
- Yield on 8/29/2011 = 2.280%

Finding the Price of Ten Year

Start Date	8/15/2011	
Settlement	8/30/2011	
Days to Settle	15	
Next Coupon	2/15/2012	
Days in Period	184	
Coupon	2.125%	
Yield	2.280%	
Present Value	98.71216%	
Accrued Interest	0.08662%	
Price	98.62555%	

Al is calculated by multiplying half the coupon by the number of days to settlement, then dividing by the number of days in the period

Date	Periods	Cash Flow	PV
2/15/2012	0.9185	1.063%	1.05150%
8/15/2012	1.9185	1.063%	1.03964%
2/15/2013	2.9185	1.063%	1.02792%
8/15/2013	3.9185	1.063%	1.01634%
2/15/2014	4.9185	1.063%	1.00488%
8/15/2014	5.9185	1.063%	0.99356%
2/15/2015	6.9185	1.063%	0.98236%
8/15/2015	7.9185	1.063%	0.97128%
2/15/2016	8.9185	1.063%	0.96034%
8/15/2016	9.9185	1.063%	0.94951%
2/15/2017	10.9185	1.063%	0.93881%
8/15/2017	11.9185	1.063%	0.92823%
2/15/2018	12.9185	1.063%	0.91777%
8/15/2018	13.9185	1.063%	0.90742%
2/15/2019	14.9185	1.063%	0.89719%
8/15/2019	15.9185	1.063%	0.88708%
2/15/2020	16.9185	1.063%	0.87708%
8/15/2020	17.9185	1.063%	0.86720%
2/15/2021	18.9185	1.063%	0.85742%
8/15/2021	19.9185	101.063%	80.63663%

Finding the Price of Ten Year

- We calculate the price on the settlement date of 08/30/2011. The delivery date is 08/29/2011 -- one day before the settlement of 08/30/2011. For example, we consider the coupon date of 02/15/2012
 - The number of days from the settlement to the next coupon date is 184-15=169. Thus the number of period = 169/184 = 0.9185.
 - The cash flow at coupon date (except the maturity) = 2.125%/2 = 1.0625% (at maturity it will be 1+1.0625% = 1.01625%).
 - The present value of cash flow $= 1.0625\%/(1+2.280\%/2)^{0.9185} = 1.051495\%$ (here we use the yield of 2.28% on the delivery date).
 - Accrued interest (AI) = 15/184*1.0625 = 0.086617%.
 - Present value of bond = sum (all PV of cash flows) = 98.71216%.
 - Price = present value of bond accrued interest = 98.71216% 0.086617% = 98.6155%

- When yield increases, bond value goes down.
- When yield decreases, bond value goes up.
- Why?
 - Let's look at one economic reason and two mathematical reasons.

• Economic Rational:

- Suppose that you bought a bond at going rate (coupon rate = yield).
- If Yields go down, you will not be willing to sell this for the price you paid, since the coupon rate is now above the going rate. You would demand a premium since they would get higher interest payments.
- If Yields go up, you will not be able to sell this for the price you paid, since the coupon rate is now below the going rate. Buyers would demand a discount.
- The same reasoning works for premiums and discounts.

- Mathematical Rational #1:
 - Each term of the pricing function looks like:

$$\frac{C_k}{\left(1+\frac{y}{2}\right)^{2t_k}}$$

• Increasing the yield increases the denominator value, so every term decreases in value.

- Mathematical Rational #2:
 - Each term of the pricing function looks like:

$$\frac{C_k}{\left(1+\frac{y}{2}\right)^{2t_k}}$$

 Note that the first derivative of each of these terms is negative – so the Pricing Function is decreasing

$$\frac{d}{dy} \left(\frac{C_k}{\left(1 + \frac{y}{2}\right)^{2t_k}} \right) = -\frac{t_k \cdot C_k}{\left(1 + \frac{y}{2}\right)^{2t_k + 1}}$$

Bond Dynamics

- What happens to price when yields change?
 - We saw that prices move in the opposite direction.
- Is there a good measure of how much price changes when yield changes?
- How can we compare the price risk of one bond against another?

Macaulay Duration

- Macaulay Duration of a zero coupon bond is the time to maturity.
- Macaulay Duration of a bond is the time-tocash-flow weighted by the PV of the flow

$$D_{mac} = \frac{1}{P} \cdot \sum_{k=1}^{n} t_k \cdot PV(C_k)$$

- Modified Duration
 - Percent change in price for a small change in yield

$$D_{\text{mod}} = \frac{1}{\left(1 + \frac{y}{2}\right)} D_{\text{mac}}$$

$$D_{\text{mod}} = \frac{1}{P \cdot \left(1 + \frac{y}{2}\right)} \cdot \sum_{k=1}^{n} t_k \cdot PV(C_k)$$

• Note: Technically, yield should be divided by the number of compounding periods per year. In US, the standard convention is two periods per year.

- Modified Duration is a measure of risk:
 - What economists call "Price Elasticity".
 - It is also equal to the derivative of the price-yield function divided by the price

If P(y) is the price for a given yield, then

$$D_{\text{mod}} = -\frac{\left(\frac{\partial P(y)}{\partial y}\right)}{P(y)}$$

• Hence it is the proportional percent change in price for a small change in yield.

Macaulay vs. Modified

- Why are both definitions around?
 - History Macaulay came first.
 - Modified is more useful.
- Is it useful to think of Duration as a weighted time until cash is received?
 - No!
- Is it useful to think of Duration as a measurement of risk?
 - Yes!

Duration in Years

- Q: Why is the units measure in years?
- A: Think of duration as the negative of change in price over change in yield. Price is in percent, and yield is in percent per year so we get:

$$\frac{\%}{\left(\frac{\%}{Years}\right)} = \frac{\%}{1} \times \frac{Years}{\%} = Years$$

Estimating Price Sensitivity

• Since Modified Duration estimates percent change in price, we have

$$\frac{\Delta P}{P} \approx -D_{\text{mod}} \cdot \Delta y$$

• or

$$\Delta P \approx -D_{\text{mod}} \cdot P \cdot \Delta y$$

Example

• Suppose we have a bond with a value of 95, a yield of 5% and a modified duration of 6 years. If the yield increases by 7 b.p. (basis points), how much does value change?

$$\Delta P \approx -6*95*0.07\% = -0.399$$

Historical View

- Macaulay Duration (1938)
 - PV of cash flow weighted by time.
- Modified Duration
 - Sensitivity to yield changes for bonds with <u>fixed</u> cash flows.
- Effective Duration
 - Sensitivity to cash flows.
 - Sometimes called 'Option-Adjusted Duration' (for bonds with embedded option).
 - Equal to Modified when cash flows are fixed.

Duration

- What happens to Modified Duration if we change:
 - Maturity
 - Duration increases if maturity increases (longer duration), WHY?
 - Coupon
 - Duration decreases if coupon increases (shorter duration), WHY?
 - Yield
 - Duration decreases as Yield Increases, WHY?
- Note effects similar for modified duration in "normal" range.

Using Duration

- How good is the approximation using Modified Duration?
 - Is the value we get only close for small yield changes or does it work for big yield changes, too?
 - It is dependent on Yield?

Using Duration

Using Duration

- Using duration to approximate new values gives us values along the tangent line to the price-yield curve.
- We see that for very small changes in yield, the approximation is good.
- For large values, the approximation moves away from the true value.
- For larger yields, the tangent line is more flat, and gives a better approximation.

Convexity

- When yield changes are large, the change predicted by duration is inaccurate.
- Duration ignores the fact that the Price-Yield curve is curved.
- Convexity can be thought of as a measure of how much Duration changes when yields change.
- The graph on the next slide shows the effect of convexity.
- We leave the calculation of convexity and the application to bond pricing for future discussion.

- Since modified duration is a measure of risk, and investors don't like risk does this mean we ought to prefer investing in short duration securities? In other words is there a "right" duration for our investment?
- It depends on our objectives and on investment horizon, e.g., if we need money in one month, we could:
 - Invest for one month in a 30-day T-Bill
 - Invest in a 10-year zero coupon bond and sell it after one month.
- What risks do we have with these investments?

- Consider another example if we need money in ten years, we could:
 - Invest for one month in a 30-day T-Bill, then take the proceeds and invest for another 30 days and so on.
 - Invest in a ten year zero coupon bond.
 - What risks do we have with these investments?

- In the first example
 - We face no risks for our one month investment.
 - With our ten year investment, we face the risk that the price could change.
- In the second investment:
 - We face no risk in our ten year investment.
 - With the one month investment, we face the risk that rates could go down and we have to reinvest at a lower rate.

- With bond market investments we have to balance the price risk with the reinvestment risk.
- Matching the duration of the investment to the holding period minimizes these risks.

Examples

- For a 30-year 5% coupon bond:
 - Find the price with a yield of 4.5%.
 - Find the price with a yield of 4.4%.
 - Find the Duration.
 - Using the duration what is the estimated price difference (between the first two questions)?
 - How close is this to the actual difference? How is it biased?
 - Find the yield if the price is 102.50.
- We can do this in Excel.

Duration

- Let's Revisit a Question from earlier:
 - What happens to Modified Duration if we change:
 - Maturity?
 - Coupon?
 - Yield?
 - Let's create an Excel File to get answers

What Did We Learn?

- Yield measures the reward of a bond.
- The duration measures risk, giving us a close approximation of how much price changes for a small yield change.
- Due to convexity, the approximation is better when yield changes are smaller
 - We can use convexity to get a better approximation for large changes.

Bond Valuation Problems

- Find the price and modified duration of a Zero Coupon Bond that matures in 12.75 years that has a yield of 5%
 - Note that there are two compounding periods per year.
 - Find the price to five decimal places
 - Find Modified Duration to three decimal places.

- Since there are two compounding periods per year, there are 25.5 periods (2*Time) until it matures.
- Use the PV formula for a single cash flow to find the price.
- There is one cash flow of 100% of the face value

$$P = \frac{100}{\left(1 + \frac{y}{2}\right)^{2.t}} = \frac{100}{\left(1 + \frac{0.05}{2}\right)^{25.5}} = \frac{100}{\left(1.025\right)^{25.5}} = 53.27720$$

- Here is the general formula for Modified Duration.
- Note that for Zero Coupon Bonds:
 - There is only one term.
 - The PV of the single cash flow is equal to P so the problem simplifies

$$D_{\text{mod}} = \frac{\sum_{k=1}^{n} t_k \cdot PV(C_k)}{P \cdot \left(1 + \frac{y}{2}\right)}$$

 The modified duration of a Zero Coupon Bond is simply the time to maturity divided by the one period return

$$D_{Mod} = \frac{t}{\left(1 + \frac{y}{2}\right)} = \frac{12.75}{1.025} = 12.439$$

- Find the price of a 27 year bond with a coupon of 4% and a yield of 4.2%
 - Note that there are two compounding periods per year.
 - Find the price to five decimal places.
 - Hint: Use the annuity formula to find the value of the coupons.

• Step 1: find the value of the coupons using the annuity formula.

$$r = \frac{y}{2} = 0.021$$

$$C = \frac{Coupon}{2} = 2$$

$$n = 2 \cdot time = 54$$

$$PV = \frac{C}{r} - \frac{C}{r \cdot (1+r)^n}$$

$$PV = \frac{2}{0.021} - \frac{2}{0.021 \cdot (1.021)^{54}}$$

$$PV = 95.23910 - 31.00421 = 64.23389$$

• Step 2: find the present value of the principal

$$PV = \frac{100}{\left(1 + \frac{y}{2}\right)^n} = \frac{100}{1.021^{54}} = 32.55442$$

• Step 3: add the value of the principal to the value of the coupons to get

- A bond fund manager has a portfolio worth \$165,000,000.
- It has a modified duration of 4.3 years and a yield of 5.52%
 - Assume two compounding periods per year.
- If the portfolio yield increases by four basis points, estimate the change in the value of the portfolio.

• Use the following formula:

$$\Delta P \approx -D_{Mod} \cdot P \cdot \Delta y$$
 $D_{Mod} = 4.3$
 $P = 165,000,000$
 $\Delta y = 0.0004$
 $\Delta P \approx -4.3 \cdot 165MM * 0.0004 = -283,800 < 0, WHY?$

• Use the following Zero Coupon Bond information to find the price of a two-year 6% Treasury Bond.

Maturity	Yield	Price
0.50	2.00%	99.00990
1.00	2.20%	97.83577
1.50	2.40%	96.48470
2.00	2.50%	95.15243

- Step 1: Find the cash flows for the bond
- Step 2: Multiply the cash flows by the Zero Coupon Bond prices to get the PV for each flow
- Step 3: Add the PVs to get the value of the bond.

Maturity	Yield	Price	Cash Flow	PV
0.50	2.00%	99.00990	3.00	2.97030
1.00	2.20%	97.83577	3.00	2.93507
1.50	2.40%	96.48470	3.00	2.89454
2.00	2.50%	95.15243	103.00	98.00700
				106.80691

- Find the cash flows, price and modified duration of a One Year Treasury bond.
- Assume that it has a coupon rate of 3% per year and a yield of 3.2%.
- Assume that there are two compounding periods per year.

- The interest payment is 1.5% every six months.
- The final payment includes a 1.5% interest payment plus 100% of the principal (101.5%).
- The PV is found by calculating the PV of each of the two cash flows and adding them up.
- We also have an intermediate step of multiplying the time to each cash flow by its PV.

• Find the cash flows, price and modified duration of a one Year Treasury bond. Assume that it has a coupon rate of 3% per year, a yield of 3.2% and that there are two compounding periods per year.

$$egin{aligned} P &= \sum_{k=1}^{N} PV(C_k) = \sum_{k=1}^{N} rac{C_k}{\left(1 + rac{\mathcal{Y}}{2}
ight)^{2 \cdot t_k}} \ D_{\mathrm{mod}} &= rac{1}{P \cdot \left(1 + rac{\mathcal{Y}}{2}
ight)} \cdot \sum_{k=1}^{N} PV(C_k) \cdot t_k \end{aligned}$$

• Find cash flows, price and modified duration of a one Year Treasury bond. Assume that it has coupon rate = 3% per year, yield = 3.2% and that there are two compounding periods per year.

# Periods	Time	CF	PV	PV*Time
1	0.5	1.50	1.47638	0.73819
2	1.0	101.50	98.32832	98.32832
		Sum	99.80470	99.06651

D(Mod) 0.977 Price 99.80470

Price Yield Relationship

Price-Yield

- We have discussed how it is easy to find a price if you know the yield.
- But it is harder to find the yield if you know the price.
- To find the yield of a bond, we just guess at it. We see how far off we are, then refine the guess.
- We stop when we are close enough.

Binary Search

- The na we approach is to start off with two guesses – one that is too high and one that is too low
- As the next guess, choose the midpoint.
- Determine if the true price is between the new guess and the old high guess or the old low guess.
- Based on the answer, find a new midpoint

Maturity	30
Coupon	5.000%
Yield	4.500%
r	2.250%
Price	102.50000

Count	Yield 1	Price 1	Yield 2	Price 2	New Guess	Guess Price	Difference	High/Low
1	0.100%	244.78	10.000%	52.68	5.050%	99.23167	3.26833	1
2	0.100%	244.78	5.050%	99.23	2.575%	150.46450	47.96450	0
3	2.575%	150.46	5.050%	99.23	3.813%	121.11584	18.61584	0
4	3.813%	121.12	5.050%	99.23	4.431%	109.38864	6.88864	0
5	4.431%	109.39	5.050%	99.23	4.741%	104.12964	1.62964	0
6	4.741%	104.13	5.050%	99.23	4.895%	101.63735	0.86265	1
7	4.741%	104.13	4.895%	101.64	4.818%	102.87244	0.37244	0
8	4.818%	102.87	4.895%	101.64	4.857%	102.25216	0.24784	1
9	4.818%	102.87	4.857%	102.25	4.837%	102.56162	0.06162	0
10	4.837%	102.56	4.857%	102.25	4.847%	102.40672	0.09328	1
11	4.837%	102.56	4.847%	102.41	4.842%	102.48412	0.01588	1
12	4.837%	102.56	4.842%	102.48	4.840%	102.52286	0.02286	0
13	4.840%	102.52	4.842%	102.48	4.841%	102.50349	0.00349	0
14	4.841%	102.50	4.842%	102.48	4.842%	102.49381	0.00619	1
15	4.841%	102.50	4.842%	102.49	4.841%	102.49865	0.00135	1
16	4.841%	102.50	4.841%	102.50	4.841%	102.50107	0.00107	0
17	4.841%	102.50	4.841%	102.50	4.841%	102.49986	0.00014	1
18	4.841%	102.50	4.841%	102.50	4.841%	102.50046	0.00046	0
19	4.841%	102.50	4.841%	102.50	4.841%	102.50016	0.00016	0
20	4.841%	102.50	4.841%	102.50	4.841%	102.50001	0.00001	0
21	4.841%	102.50	4.841%	102.50	4.841%	102.49993	0.00007	1
22	4.841%	102.50	4.841%	102.50	4.841%	102.49997	0.00003	1
23	4.841%	102.50	4.841%	102.50	4.841%	102.49999	0.00001	1
24	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00000	1
25	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00000	0
26	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00000	0

Secant Method

- 24 steps can be computer intensive when doing calculations for thousands of bonds.
- A better method is the Secant Method
 - This method uses interpolation to get the next guess
 - It is the method used by major Wall Street firms.

$$y_g = y_l + (y_h - y_l) \left(\frac{P - P_h}{P_l - P_h} \right)$$

Maturity	30
Coupon	5.000%
Yield	4.500%
r	2.250%
Price	102.50000

Count	Yield 1	Price 1	Yield 2	Price 2	New Guess	Guess Price	Difference
1	0.100%	244.78	10.000%	52.68	7.432%	70.93844	31.56
2	10.000%	52.68	7.432%	70.94	2.995%	139.50922	37.01
3	7.432%	70.94	2.995%	139.51	5.390%	94.23359	8.27
4	7.432%	70.94	5.390%	94.23	4.665%	105.37962	2.88
5	5.390%	94.23	4.665%	105.38	4.852%	102.32120	0.18
6	4.665%	105.38	4.852%	102.32	4.841%	102.49641	0.00
7	4.852%	102.32	4.841%	102.50	4.841%	102.50000	0.00
8	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00
9	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00
10	4.841%	102.50	4.841%	102.50	4.841%	102.50000	0.00

Finding Yields in Excel

- In Excel, we can use Solver to find the yield
- Set up a spread sheet that finds the price of a bond given a guessed yield. Calculate the difference from the actual price.

Guess at Yield

From D17

Maturity	30
Coupon	5.000%
Yield	4.500%
r	2.250%
Calc Price	108.18724
Price	102.50000

Difference (5.68724)

Using Annuity Formula

C/r	111.11111
C/[r*(1+r)^n]	29.23873
PV(Interest)	81.87238
PV(Princ)	26.31486

Using Annuity Formula

PV(Bond)	108.18724
----------	-----------

