Лабораторная работа. Термический анализ двухкомпонентных систем

Алекснадров Максим, Кузнецов Роман, Тналиев Тимур Б04-202

1 марта 2024

1 Цель работы

Экспериментальное исследование двухкомпонентной системы с применением метода дифференциальное сканирующей калориметрии (ДСК).

2 Оборудование и материалы

- 1. Кристаллические соли $NaNO_3$ и KNO_3 И навески их смесей.
- 2. Алюминиевые тигли с крышками
- 3. Шпатели, аналитические весы
- 4. ДСК термоанализатор

3 Введение

3.1 Диаграммы плавкости (Т-х диаграммы)

Для исследования фазовых равновесий «твердое-жидкость» в двухкомпонентной системе обычно используют Т—х диаграмму (диаграмму плавкости). Вид диаграммы плавкости будет определяться рядом факторов, среди которых наличие аллотропных модификаций, возможность образования химических соединений, способность компонентов взаимно растворяться:

1. Системы компонентов обладающих неограниченной растворимостью как в твердой, так и в жидкой фазе характеризуются наиболее простыми по виду диаграммами плавкости (рис. 1).

Рис. 1: Диаграммы плавкости двухкомпонентных систем с неограниченной

Диаграммы плавкости таких систем по виду аналогичны Т—х диаграммам «жидкость-пар» или «с азеотропом».

2. Двухкомпонентные системы, в которых компоненты неограниченно растворимы в жидкой фазе, но не смешиваются в твёрдой фазе. Такие диаграммы характерны для большинства двухкомпонентных систем органических соединений, поскольку даже изомеры органических соединений редко образуют смешанные кристаллы.

Рис. 2: Мольная доля изомера

На рис. 2 приведены три диаграммы плавкости двухкомпонентных смесей: мета-, ортои пара-изомеров хлорнитробензола. Их отличительной особенностью является наличие характерного излома на кривой ликвидуса (точка E на рис. 2).

3.2 Уравнение Шредера

Допустим, что в двухкомпонентной двухфазной системе вещества 1 и 2 не образуют между собой твёрдого раствора, то полностью смешиваются в жидкой фазе (расплаве). Рассмотрим равновесие между одним из этих веществ, находящимся в твёрдой фазе и в расплаве, где его активность равна a_i . Из условия равновесия $\mu(fluid) = \mu(solid)$ следует

$$\mu_i^{\ o}(fluid) + RT \ln a_i^{\ fluid} = \mu_i^{\ o}(solid) \tag{1}$$

Выражая отсюда активность и дифференцируя обе части равенства, приходим с уравнению Шредера

$$\left(\frac{\partial lna_{i}^{fluid}}{\partial T}\right)_{P} = \frac{\Delta H_{i}^{o}}{RT^{2}},\tag{2}$$

которое для идеальных растворов выглядит как

$$\left(\frac{\partial lnx_i^{fluid}}{\partial T}\right)_P = \frac{\Delta H_i^o}{RT^2},$$
(3)

Здесь ΔH_i^o - стандартная энтальпия плавления i-го компонента. Если принять, что ΔH_i^o не зависит от температуры, то после интегрирования получим уравнение Шредера в интегральной форме:

$$lnx_i^{fluid} = -\frac{\Delta H_i^o}{R} \left(\frac{1}{T} - \frac{1}{T_i^o} \right),\tag{4}$$

где T_i^o - температура плавления чистого і-го компонента. Положение точки эвтектики (температуру T и состав хэвт) нетрудно вычислить из уравнения Шредера. Линии ликвидуса и солидуса делят диаграмму плавкости на ряд областей: I - жидкий расплав; II - жидкий расплав и кристаллы компонента A; III - жидкий расплав и кристаллы компонента B; IV - механическая смесь двух чистых кристаллических компонентов A и B. Часто встречаются системы, компоненты которых частично растворимы в твёрдом состоянии и из расплавов кристаллизуются не чистые компоненты, а твёрдые растворы. При этом равнение Шредера имеет вид

$$ln\frac{x_i^{fluid}}{x_i^{solid}} = -\frac{\Delta H_i^o}{R} \left(\frac{1}{T} - \frac{1}{T_i^o}\right),\tag{5}$$

Пример одной из таких диаграмм плавкости приведён на рис. 3 в упрощенной форме. Области II, III и V, где система является двухфазной, затемнены.

Схема установки :

Рис. 6. a) — схема измерительной ячейки в ДСК, б) изменение теплового потока в ходе исследуемого процесса

Рис. 3: Диаграмма плавкости двухкомпонентной смеси $NaNO_3$ и KNO_3

4 Методика

- 1. Измерение T охлаждаемой или нагреваемой смеси
- 2. При изменении фазы появляются изломы
- 3. Пологие линии говорят о кристализации расвтора, выделяется теплота
- 4. Начало ликвидус, конец солидус.

5 Тепловой поток

$$-\Delta Q = \frac{\Delta T}{R},\tag{6}$$

где ΔT разность температур между исследуемым образцом и эталоном, R - тепловое сопротивление диска в ячейке. ДСК - метод, при котором измеряется разность тепловых потоков к исследуемому образцу и к инертному эталону.

6 Ход работы

- 1. Взвесим навеску на аналитических весах.
 - \bullet m $_{pot}=52(mg)$ масса тигеля
 - $m_{full} = m_{pot} + m_{mix} = 70.2(mg)$ масса полная
 - $m_{mix} = 18.2(mg)$ масса смеси
- 2. Поместим тигель с образцом и эталон.
- 3. Проводим эксперимент по нагреву образца от комнатной температуры до 350 °C и охлаждаем до 200 °C. Затем повторяем программу.

Были получены следующие результаты:

Рис. 8. Экспериментальная диаграмма плавкости для системы $NaNO_3 - KNO_3$ из базы данных FTsalt — FACT salt dstabase.

Компоненты системы ограничено растворимы в твердом состоянии и имеются области сосущ - ия твердых растворов KNO_3 в $NaNO_3$ и $NaNO_3$ в KNO_3 .

Сначала наблюдаем 1-ый пик - полиморфный переход $KNO_3~(T\approx 122.19^{\circ}\mathrm{C});$ затем: (фазовый переход твердое - жидкое)

В: $T_B = 222.42$ °С - начало плавления эвтектики;

 $C: T_C = 220.80$ °С - начало кристаллизации при охлаждении;

Следующий пик получился не совсем корректным (скорее всего не дождались окончания кристаллизации) - начало кристаллизации должно было было совпасть с началом плавления.

D: Начало плавления $T_D = 223.44$ °C;

Е: Начало кристаллизации $T_E = 219.87$ °C;

Видим, что $T_{crystallization}$ отличается от $T_{melting}$. Это может быть связано с недостаточно медленным нагревом/охлаждением.

Также были посчитаны тепловые эффекты (интегралы):

 $\Delta_{crystallization_1} H = 101.0 J/g;$

 $\Delta_{crystallization_2} H = 106.1 J/g;$

 $\Delta_{melting_1}$ H = -143.9 J/g;

 $\Delta_{melting_2}$ H = -99.79 J/g.

Возьмем для расчетов $\Delta_{melting_2} H$ (Ближе $\Delta_{crystallization_1}$).

По графику определим содержание солей (По Th 222 °C); совершается переход Calcite + ht(Na, k) $NO_3 < ->$ ht(Na,k) NO_3 .

Итого:

$$w_{mol} (NaNO_3) = 0.5 = 50 \%$$

$$w_{mol} (KNO_3) = 0.5 = 50 \%$$

Вещество	$T_{melting}$, °C	$\Delta_{melting}$ H, kJ/mol
$NaNO_3$	308	15.09
KNO_3	335	9.80

Таблица 1: Табличные значения

Счет:

$$\ln x = -\frac{\Delta_{melt} H_i^{\,o}}{R} \left(\frac{1}{T} - \frac{1}{T_i^{\,o}}\right) \tag{7}$$

где $T_i{}^o = T_{melt};$ T - температура фазового равновесия

 $NaNO_3$:

$$\ln 0.5 = -\frac{\Delta H_i^{\,o}}{8.31} \left(\frac{1}{273 + 223} - \frac{1}{273 + 308} \right) = 19526(J/mol) \tag{8}$$

 KNO_3 :

$$\ln 0.5 = -\frac{\Delta H_i^{\circ}}{8.31} \left(\frac{1}{273 + 223} - \frac{1}{273 + 335} \right) = 15509(J/mol) \tag{9}$$

Сравнение энтальпий:

Энтальпия плавления для смеси: -191.6 Дж/г (Из верхних формул), из графика: -121.81 Дж/г.

7 Вывод

В ходе лабораторной работы были получены кривые охлаждения и нагревания $\Delta Q(t)$, T(t) с помощью ДСК. По начальным температурам кристаллизации и плавления были определены фазы, в которых вещества находятся в равновесии, а также процентное соотношение веществе в смеси.

$$T_{melting} = 222.93 \text{ °C}; T_{crystallization} = 220.34 \text{ °C}.$$

И по уравнению Шредера найдены удельные энтальпии плавления отдельных веществ, но результат не совпал с табличным .(Для $NaNO_3$: 19.5 кДж/моль; KNO_3 : 15.5 кДж/моль)

Табличные значения стандартной энтальпии образования $NaNO_3$ и KNO_3 соотвественно равны 15.09 кДж/моль и 9.8 кДж/моль.

Также по графику определены тепловые эффекты (энтальпии плавления смеси) $\Delta_{mlt}H^o(KNO_3+NaNO_3)=-99.79~\rm{Дж/r}$, но получили: -191.6 $\rm{Дж/r}$.

Это связано с тем, что не выполняется свойство аддитивнности энтальпий (Так как вещества взаимодействут друг с другом). Также неточно были посчитаны мольные доли веществ.