

Air University Mid Examination: Spring 2025

Subjective (To be solved on Answer Books only)

Subject: Cryptography

Class: F-23 Section(s): A,B

Course Code: CY 212

Time Allowed: 2 Hrs

Max Marks: 50

FM's Name: Jameel Arif

FM's Signature:

INSTRUCTIONS

- Understanding the Question is Part of the Exam
- · Attempt responses on the answer book only.
- Nothing is to be written on the question paper.
- Rough work or writing on question paper will be considered as use of unfair means.

· Calculators are allowed.

Q1.

Marks (13) CLO-3

Question: AES Key Expansion

Task:

- (1) Draw a flowchart representing the AES Key Expansion Algorithm for generating round keys.
- (2) Perform step-by-step calculations to generate the first-round key from the given AES-128 initial key.
- (3) Present the flowchart and calculations in parallel, clearly mapping each step in the algorithm to its corresponding calculation.

nected Answer Format.

- Left Side: Flowchart representing AES Key Expansion steps.
- Right Side: Corresponding hexadecimal calculations for each step.

Initial Key: 00010203 03020102 0201020B 0B0203B1

Table 5.2 AES S-Boxes

		y															
		0	1	2	3	4	5	6	7	К	9	Α	В	(,	D	1	1.
x	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	FO	AD	D4	A2	AF	9C.	A4	72	(1)
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	FI	71	DS	31	15
	3	04	7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	132	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	B3	29	E.3	21	84
	5	53	DI	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	40.	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	4.5	F9	02	71/	50	3C	91:	AS
	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	102
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	310	64	5D	19	7.3
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	51:	OB	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	6.5	7A	AL	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	11	4B	BD	88	84
	D	70	3E	B5	66	48	03	F6	0E	61	3.5	57	B9	86	CI	ID	91:
	E	El	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	101
	F	8C	Al	89	0D	BF	E6	42	68	41	99	21)	01:	B0	54	BB	10

(a) S-box

Rcon Constants (Base 16)										
Round	Constant(Rcon)	Round	Constant(Rcon)							
1	01 00 00 00	6	20 00 00 00							
2	02 00 00 00	7	40 00 00 00							
3	04 00 00 00	8	80 00 00 00							
4	08 00 00 00	9	1B 00 00 00							
5	10 00 00 00	10	36 00 00 00							

Q2.

Marks (12) CLO-1

Question: Entropy in Information Theory

- (1) Provide the formal definition of entropy in Information Theory, including the mathematical formula.
- (2) Explain, in simple terms, what entropy represents in the context of information and uncertainty.
- (3) Calculate the Entropy of the biased coin such that:

Head(H): probability = p(H) = 0.35

Tail(T): probability = p(H) = 0.65

Using a step-by-step calculation to find entropy and interpret the result.

Q3.

Question: Create a Comprehensive Flowchart of the DES Encryption Algorithm and Key Scheduling Process

You are required to create a detailed and well-labeled flowchart illustrating the Data Encryption Standard (DES) encryption algorithm along with its key scheduling algorithm. Your flowchart should clearly depict the transformation of the 64-bit plaintext and the 64-bit key through the various stages of DES encryption. Each step should be properly labeled with the corresponding bit size and process name to provide a complete visual representation of the algorithm.

Q4.

Marks (13) CLO-2

Question: RSA Encryption - Complex Scenario with a Simple Answer

A company wants to implement RSA encryption for securely exchanging messages between two employees: Alice and Bob. The company provides the following RSA parameters:

- Parameters: p=3, q=11, $\phi(n)=20$, e=3, n=33, d=7
- Alice wants to send Bob the encrypted message M using RSA.

```
If (last_digit_of_your_roll_number_is > 5)
    {M=4;}
else
   {M=3;}
```

• Bob needs to decrypt the received ciphertext C to retrieve the original message M.

Tasks:

- 1. Encryption: Compute the ciphertext C.
- 2. Decryption: Compute the original message M.
- 3. Answer Format: Write the final values of C and M, with clear intermediate steps. (please do rough work on a separate sheet)