AIRFIELD CAPACITY FOR AIRLIFT OPERATIONS

JAMES P. STUCKER RUTH T. BERG

WITH

ANDRE A. GERNER, AMANDA GIARLA, WILLIAM L. SPENCER, LORY ARGHAVAN, ROY GATES

Prepared for the
UNITED STATES AIR FORCE
OFFICE OF THE SECRETARY OF DEFENSE

RAND

The Mobility Division of the Directorate of Forces, Headquarters, U.S. Air Force, and the Force Projection Directorate in the Office of the Secretary of Defense requested that RAND develop a method that improves on the traditional maximum (aircraft) on ground (MOG) measure of airfield capacity. Subsequently, the Force Projection Directorate requested that the method be refined and its automation improved. This report responds to those requests.

In the spring of 1994, the Office of the Secretary of Defense was coordinating the Airlift Requirements Study, in which a simulation model developed by the Air Force was to be used to analyze alternative fleets of passenger and cargo aircraft. However, certain model inputs had been criticized, especially in the earlier C-17 Cost and Effectiveness Analysis, for contributing to model-generated estimates of airlift capacity that were "too optimistic" and for "overestimating" the ability of the airlift system to move forces and supplies into overseas theaters of operation. The desire for more-realistic inputs describing airfield capacities led to the first RAND study.

That research, led by Ruth Berg, and a companion effort, led by Paul Killingsworth, constituted the study "Enhancing the Effectiveness of Mobility Forces," which produced an initial version of the Airfield Capacity Estimator (ACE). That version was distributed in the fall of 1995 to several organizations at the Office of the Secretary of Defense and the Air Mobility Command, and was subsequently used at RAND in support of the Strategic Airlift Force Mix Analysis and the C-17 Tactical Utility Study.

Follow-on work, led by James Stucker and sponsored by the Force Projection Directorate in the Office of the Secretary of Defense, investigated how differing levels and distributions of airfield resources, over a set of airfields, can affect airlift throughput. That research resulted in substantial improvements to the ACE model. This report documents the logic, implementation, and initial applications of this revised version of ACE. Naturally, the revised model owes much to the initial work. Software for the ACE model, described in this report, is available on the RAND homepage at http://www.rand.org/publications/MR/MR700/ACE/.

¹See P. Killingsworth and L. Melody, Should C-17s Be Used to Carry In-Theater Cargo During Major Deployments? Santa Monica, CA: RAND, DB-171-AF/OSD, 1997.

The initial work was carried out in the Force Structure and Modernization program within Project AIR FORCE and in the Forces and Resources Policy Center within the National Defense Research Institute (NDRI). The follow-on work was conducted within the Forces and Resources Policy Center. Project AIR FORCE is a federally funded research and development center (FFRDC) that performs studies and analyses under sponsorship of the United States Air Force; NDRI is an FFRDC sponsored by the Office of the Secretary of Defense, the Joint Staff, the unified commands, and the defense agencies.

This report should be of interest to deployment planners, and to air mobility resource programmers and managers.

CONTENTS

Preface	iii
Figures	vii
Tables	ix
Summary	xi
Acknowledgments	xxiii
Acronyms and Abbreviations	xxv
Chapter One INTRODUCTION	1
Background	1
Purpose	2
Airfield Capacity	2
Constructing the Model	2
Chapter Two	
METHODOLOGY	5
Previous Methods for Estimating Airfield Capacity	5
Problems with the Previous Approach	6
Our Approach	7
Formalizing the Methodology	8
Generalizing the Methodology	12
Improved Estimates of Airfield Capacity	13
Chapter Three	
SERVICING	15
The Full-Service Profile	15
The Quick-Turn Profile	19
Scheduling Operations to Minimize Ground Time	19
Estimating Service Times	21
Improved Estimates of Airfield Capacity	21

Chapter Four	
FUELING	23
Hydrant Systems	23
Truck Systems	24
Delays and Multiport Fueling	24
Improved Estimates of Airfield Capacity	25
Fuel, Pumping, and Resupply	27
Compositing Vehicles	28
Choosing the Best Fueling System	28
Chapter Five	
LOADING	29
Palletized Cargo	30
Passenger Operations	32
Nonpalletized Cargo	33
	33
Improved Estimates of Airfield Capacity	
Engine-Running Off-Loads	34
Compositing Vehicles	36
The Best Parking for Loading and/or Fueling	36
Chapter Six	
USING ACE	37
Specifying Airfield Parameters	39
Selecting the Mode and Specifying the Iterations	40
Setting Up the Missions	40
The Upper Menus	40
The Lower Menus	43
Combinations of Missions	45
"And" Missions	46
"Or" Missions	46
The Outputs	46
Chapter Seven	
CONCLUSIONS AND RECOMMENDATIONS	53
Appendix	
A. NOTATION	55
B. DETAILS OF THE APPROACH	59
C. SERVICING EQUATIONS.	65
D. FUELING EQUATIONS	75
E. LOADING EQUATIONS	83
F. TIPS FOR USING ACE	93
	10
Bibliography	13

FIGURES

S.1.	Airfield Layout for Illustrative Calculations	xv
2.1.	Airfield Layout for Illustrative Calculations	8
2.2.	Structure of the ACE Model	11
3.1.	The Sequencing of Aircraft-Servicing Operations	18
4.1.	Fueling Time Decreases As the Number of Trucks Increases	26
4.2.	Additional Ports Also Decrease Fueling Time	26
6.1.	Structure of ACE	38
6.2.	Initial Screen	38
6.3.	Parameter-Control Screen	39
6.4.	Worksheets Holding Parameters	41
6.5.	The Fuel-Parking-Area and Hydrant-Fueling Parameters Data	
	Screen	42
6.6.	The Monte Carlo Setup Screen	43
6.7.	The Mission Screen	44
6.8.	The Output Screen	47
6.9.	ROut Screen Associated with 25-Aircraft Monte Carlo Run	50
6.10.	lOut Screen Associated with 100-Iteration Monte Carlo Run	51
F.1.	Flow Diagrams	96
F.2.	Screen for Importing Airfield Files	98
F.3.	Screen for Saving Airfield Files	98
G.1.	Airfield-Parameter Control	102
G.2.	Parking-Area Parameters	103
G.3.	Servicing-Resource Parameters	104
G.4.	Fuel-Resource Parameters	105
G.4A.	Fuel-Resource Compositing Workspace	106
G.5.	Loading-Resource Parameters	107
G.5A.	Loading-Resource Compositing Workspace	108
G.6.	Other-Resource Parameters	109
G.7.	Global-Parameter Control	110
G.8.	Aircraft-Related Parameters	111
G.9.	Aircraft-Servicing-Task Times	112
G.10.	AGE-Use Times	117
G.11.	Fuel-Parameter Control	120
G.12.	Fuel Characteristics of Aircraft	121
G.13.	Characteristics of Fuel Vehicles	122
G.14.	Times for Fueling Tasks	123

viii Understanding Airfield Capacity for Airlift Operations

G.15.	Loading-Parameter Control	124
G.16.	Characteristics of Loading Vehicles	125
G.17.	Loading-Task Times	126
G.18.	Distribution of Servicing Times	131

TABLES

S.1.	Ground Times, by Aircraft Type and by Operations Needed:	
S.2.	Ramp B	XV
3.2.		NO.
S.3.	Operations Needed	XV
5.5.	C-17 Ground Times, by Fueling Type, by Location, and by Number of Trucks Available	xvii
C 1		
S.4.	C-17 Times and Capacities, by Number of 40k-Loaders	xviii
S.5.	C-17 Servicing Times, by Aircraft Assigned a Particular Mission	XX
S.6.	Aircraft Throughput and Capacity Remaining, by Iteration	XX
2.1.	Planning-Factor Ground Times	6
2.2.	Servicing Operations Determine Aircraft Ground Time	10
2.3.	Resources Modeled in ACE	12
2.4.	Fueling Significantly Affects C-17 Ground Times	13
2.5.	Off-Loading and On-Loading Significantly Affect C-17 Ground	
	Times	14
3.1.	Aircraft-Servicing Operations, by Service Profile and	
	Requirement	16
3.2.	Aircraft-Servicing Operations: Definitions	17
3.3.	Conventions Governing the Combinations of Aircraft-Servicing	
	Operations	20
3.4.	Profiles and Operations Affect Ground Time for C-17s	22
4.1.	Tasks Associated with Fueling Aircraft	24
4.2.	C-17 Ground Times, by Fueling Type, by Distance from	
	Fill Stand, and by Number of Trucks Available	27
4.3.	Ground Times, by Aircraft Type and Fueling Type	27
5.1.	Compatibility of Aircraft and Load Types	30
5.2.	Cargo Characteristics of Aircraft Pallets and Passengers with	
	Gear	31
5.3.	Pallet Capacity of Material-Handling Equipment	31
5.4.	Palletized Cargo-Associated Tasks Contributing to Resource-Use	
	Times and Aircraft Ground Times	32
5.5.	Passenger and NPC-Associated Tasks Contributing to Resource-	
	Use Times and Aircraft Ground Times	33
5.6.	C-17 Ground Time, by Off-Load and by Distance from	
	Terminals	34
		0.1

x Understanding Airfield Capacity for Airlift Operations

5.7.	C-5 Times and Capacities, by Number of k-Loaders Available, by	
	Hours the k-Loaders Are Available per Day, and by Distance from	
	Ramp to Pallet-Storage Area	35
C.1.	Aircraft-Servicing Operations and Notation	66
F.1.	The ACE Workbooks, Worksheets, and Modules	94

What is the capacity of an airfield—how many aircraft can it service in a day? The realistic answer must be, "It depends." It depends on the usability of different areas of the airfield for parking different types of aircraft, on the changing mix of cargoes the aircraft carry (and, hence, the times needed to on-load or off-load), on the distances from the previous airfield and to the next airfield (and, hence, the fuel needed), on whether transiting aircraft make quick stops or need extended ground time (e.g., for crew rest), on whether the airfield operates with peacetime levels of manning and equipment or is augmented with additional resources, and on many other factors. Moreover, as an airfield services more of one type of aircraft, the fewer aircraft of other types it can handle. Thus, an airfield's capacity is not a single number but a *set* of numbers.

RECENT MEASURES OF AIRFIELD CAPACITY

Over the past dozen years, the DoD's major mobility studies have shown slight but increasing emphasis on airfields. For example, the Revised Intertheater Mobility Study (RIMS) of the late 1980s considered sortie-per-day constraints at destination airfields, based on the numbers of parking spaces available and the time each aircraft spends on the ground being serviced and having its cargo off-loaded. Parking (or MOG, the maximum on ground) was expressed in C-130–equivalents for each airfield, and ground times were specified for narrow-body (C-141 and C-17) and for wide-body (C-5 and KC-10) aircraft, yielding separate capacities for wide-body aircraft and for narrow-body aircraft, for each airfield.

The Mobility Requirements Study (MRS) in the early 1990s used much the same procedure but considered enroute, recovery, and destination airfields. It expressed MOG in C-17–equivalents. Both RIMS and the MRS considered parking as the ultimate airfield constraint: Other ground resources could and would be augmented until they were not constraining, but parking was fixed, at least within the time frames considered in the studies.

Separate MOG and fuel constraints became of interest as the MRS Bottom-Up-Review Update in 1994, as well as the more recent Airlift Requirements Study and Strategic Airlift Force Mix Analysis, considered these constraints. These studies used the Air Mobility Command's Airlift Flow Model, a simulation of aircraft, aircrews, and airfields, to estimate airlift capabilities and needs, so the MOG was used directly in

the parking events rather than as a parameter in an analytic sorties-per-day calculation. These studies used different ground times for each aircraft type (six military aircraft and four commercial aircraft) and for each "type" of stopover (on-load, enroute, off-load without recovery airfield, and off-load with recovery airfield). Because each airfield was used for only one type of stopover, 10 capacities resulted (each the lesser of a MOG-based capacity or a fuel-based capacity) for each airfield.

OUR APPROACH

We formalize and generalize the approach implicit in the earlier studies. We define the basic relationship between airfield resources and the airfield's capacity as

$$C = \operatorname{Min} (R_i * A_i / S_i) \quad \text{over } i = 1, ..., n$$
(S.1)

where C stands for the capacity of the resources at a particular airfield expressed as the number of aircraft assigned a particular mission that can be serviced in one day. R_i represents the quantity of a particular resource i available at the airfield. A_i represents the hours per day that resource is available to support airlift operations. And S_i stands for the time required of the resource i in servicing one aircraft.

If parking is the only (or the only constraining) resource, capacity can be expressed as

$$C = \frac{\text{MOG * working hours}}{\text{standard ground times}}$$
 (S.2)

which was the relationship used in the RIMS and MRS studies.

Our approach goes much deeper. From our visits to over a dozen airfields and interviews with scores of service personnel and technicians, we have identified over 40 types of resources (the *i*'s in Eq. S.1) that contribute significantly to airfield capacity and that can, when in short supply, constrain that capacity. Even so, we do not attempt to model all airfield resources.² For the three most significant functional areas—aircraft servicing, fueling, and loading—we model both an aggregate resource—the package, or unit type codes (UTCs), of skills and equipment the Air Force regards as necessary to perform those functions—and we model the individual resources that experts have identified as being especially (or most visibly) associated with airfield capacity: ground-power units, fuel trucks, k-loaders, etc. For three other areas—airtraffic control, ground control, and aircrew servicing—we model only the aggregate resources. These procedures are now embodied in a personal-computer-based model called the Airfield Capacity Estimator (ACE).

²Nor do we force the user to obtain or make up data on all the resources that are modeled. Any resource for which the user has no information or no interest can be set to 9999 and the model will consider it to be in unlimited supply.

ACE is implemented as a Microsoft Excel application. Running on Macintosh- and IBM-compatible microcomputers, it estimates resource service times, aircraft ground times, resource capacities, and the overall capacity of airfields for servicing aircraft assigned up to six different mission types and two ground-servicing profiles.

ACE relates aggregate and specific resources to some 17 ground-servicing operations:

- block in
- post-flight, through-flight, and pre-flight inspections
- · general, nitrogen, and oxygen servicing
- repair
- passenger and cargo off-loading and on-loading
- pre-fueling, fuel transfer, and post-fueling
- de-icing
- block out.

We use average times (by aircraft type) for eight of these operations, assuming that their duration and resource demands vary little over missions and over airfields. The other nine are treated in one of two ways. For five of them—fueling (transfer) and passenger and cargo on-loading and off-loading—we calculate specific times for each mission at each airfield by accumulating times for particular tasks—e.g., driving a fuel truck to the aircraft, hooking up, loading one pallet onto a k-loader, or moving one pallet from the k-loader onto the aircraft. This allows us to identify and quantify aircraft delays when resources are limited or distances are long. That is, when fueling and loading are involved, aircraft ground time depends on the level of airfield resources, as well as on the type of aircraft, the type of stopover, and the particular ground operations specified for the stopover.

The times for the remaining four operations—nitrogen servicing, oxygen servicing, repair, and de-icing—do seem to vary widely for different aircraft types, by type of stopover (mission), and for individual aircraft landings. The model handles this variability in either of two ways, at the user's direction. First, the run can use expected-value calculations to estimate average resource-use times, aircraft ground times, and airfield capacities. This process does not yield the true "expected value" of capacity, because both the service-time equations and the capacity equations are nonlinear. However, in all the cases we have tested, it yields a close approximation to that value—and it is quick.

Alternatively, the user can specify that ACE conduct Monte Carlo experiments—drawing values (for each aircraft in each mission) for the four time-varying operations just discussed from empirically derived distributions of past times. The random draws for each set of missions can be iterated 10, 20, or even 500 times, producing representations of the output distributions for use times, aircraft ground times, and airfield capacity. This output reminds the planner that some exceptionally long and some exceptionally short repair times will occur at least

occasionally. Given valid data, the Monte Carlo method produces "better" estimates than the expected-value approximation, but it takes substantially longer. Details on both procedures can be found in Appendix C.³

Developed for purposes of research and demonstration, the current implementation of ACE does not represent a "production-ready" software package. As with other models developed at RAND for research purposes, sponsoring agencies or others may elect to further develop the ACE model, perhaps extending it to consider additional detail or additional airfield functions, to check users' input data more extensively for errors and inconsistencies, to be more convenient and easy to use (e.g., through access to standard data files and databases, etc.), to operate in tandem with models of airlift and tanker flows through multiple airfields, and so on.

The major limitations of the current implementation are that it uses (a) questionable and single-valued representations of resource availabilities for material-handling equipment—especially k-loaders and wide-body elevator loaders—and (b) limited and dated information on aircraft-repair frequencies and durations. Nevertheless, in evaluations and comparisons made to date, ACE's estimates of airfield capacities appear to be reasonable and consistent with experts' expectations. Since airfields seldom operate in peacetime at full capacity and since appropriate historical data are not available, we have not been able to compare ACE's estimates with airfields' actual throughputs. Efforts to validate and refine the model should continue.

FINDINGS AND RECOMMENDATIONS

Our estimates of aircraft ground times and airfield capacities, based on the currently available data documented in this report, suggest wide differences in times and capacities. Those differences are due to many factors, including the following:

- the type of aircraft, the type of stopover, and the number and sequencing of the ground operations
- the physical layout of the airfield—its size, the number of ramps, their locations and distances from the fuel source and from the passenger and cargo terminals and its hours of operation
- the types and quantities of ground resources available at the airfields and the reliability and maintainability of each resource—hence, its availability for use
- the types of fueling available, the quantity of fuel available, the quantity needed by each aircraft, the number of trucks available, and the distance the trucks must travel
- the types of cargo and the quantities to be off-loaded and/or on-loaded; the number of buses, k-loaders, and wide-body elevator loaders; and the distance they must travel.

³The initial version of ACE was implemented using the C programming language, the UNIX operating system, and minicomputers. It produced only expected-value estimates.

We summarize two sets of findings here. The first uses expected-value calculations to illustrate the range of aircraft ground times associated with enroute stopovers and with off-loads at aerial ports of debarkation. The second uses Monte Carlo analyses to illustrate the range of times and capacities associated with several types of missions. Both sets are based on the ground resources and operations at the hypothetical airfield sketched in Figure S.1.

Ground Times Vary by Aircraft Type and Required Operations

The first estimates are shown in Tables S.1 through S.3. Table S.1 contains ground times estimated for stopovers at enroute and destination airfields, where the aircraft undergoes "quick-turn" servicing and fueling and where cargo may be off-loaded.4 The estimates show the wide range of ground times and, hence, suggest the wide range in capacity that can be associated with any airfield.

Figure S.1—Airfield Layout for Illustrative Calculations

⁴Quick turns, usually performed at enroute and overseas airfields, represent one of our ground-servicing profiles. "Full-service" stops, usually performed at the home airfield, are longer.

Table S.1

Ground Times, by Aircraft Type and by Operations Needed: Ramp B (times in hours + minutes)

		Quick-Turn Service		
Aircraft	Fueling	Off-Loading	Both	Neither
C-130	1 + 41	0+46	1+41	0 + 46
C-141	2 + 50	1 + 42	2 + 50	1 + 42
C-5	4 + 24	2 + 22	4 + 24	2 + 22
C-17	2 + 52	1 + 30	2 + 52	1 + 30
KC-10	4 + 46	2 + 41	4 + 46	2 + 41
KC-135	5+11	3 + 05	5 + 11	3 + 05
747	4 + 00	2 + 36	4 + 33	1 + 55

SOURCE: Expected-value computations of ACE. Mission and output screens for "quick turn plus both" for all except KC-135 estimates shown as Figures 6.7 and 6.8.

NOTE: Estimates based on resource levels and availabilities shown in Figure S.1 and Appendix G; hydrant-fueling potential of 500 gallons per minute; and off-loading full load of pallets. For aircraft that can be serviced on several ramps, times shown are for best (lowest aircraft ground times) ramp.

Table S.2 contains the capacity estimates associated with those ground times and with the resources sketched in Figure S.1 and detailed in the appendices. These are "or" capacities: We estimate that this airfield can support 23 C-5 refueling missions per day, or 54 C-17 off-loading missions, or 14 747 fueling and off-loading missions, and so on. ACE can also estimate "and" capacities, in both expected-value and Monte Carlo computations, as we shall see in the discussion of Table S.6.

The estimates in Table S.2 represent the capacities of all the ramps and resources of the airfield, as opposed to the estimates in Table S.1, which represent aircraft ground times specific to ramp B. While ground-power units (associated with the S, or servicing function) usually constrain the airfield capacity, several times the aggregate loading resources (L) do the constraining, twice it is the aggregate fueling resources (F), and once it is ground control (G).

Table S.2

Airfield Capacity (in aircraft per day) and Limiting Resources,
by Aircraft Type and Operations Needed

		Quick-Turn Servic		
Aircraft	Fueling	Off-Loading	Both	Neither
C-130	42 F	72 L	42 F	80 G
C-141	37 S	62 S	37 S	62 S
C-5	23 S	27 L	23 S	44 S
C-17	36 S	54 L	36 S	70 S
KC-10	21 S	30 L	21 S	39 S
KC-135	21 S	39 S	21 S	39 S
747	26 S	14 L	14 L	55 S

SOURCE: Expected-value computations of ACE. These capacities were calculated in association with the ground-time estimates of Table S.1.

NOTE: Functional area representations include F for fueling, S for servicing (aircraft generation), L for loading, and G for ground control.

Ground Times Vary by Airfield Layout and Resources

Table S.3 contains estimates of the ground times associated with C-17 stopovers at an enroute airfield. These estimates are based on two types of fueling: (a) hydrant fueling, whereby the fuel is piped directly to selected aircraft-parking spaces, and then through a hydrant-service vehicle and into the aircraft; and (b) truck fueling, whereby fuel-tanker trucks transport fuel to dispersed aircraft from a common fuel source. Hydrant fueling is usually faster, because it requires only a single hookup and no waiting for trucks to return from refueling. But modern aircraft can receive fuel from two (or sometimes more) trucks simultaneously, so truck fueling can be faster at airfields with enough trucks.

We saw in Table S.1 that the time required for the basic block in, block out, inspection, and servicings associated with a quick turn of a C-17 is 1 hour and 30 minutes. Fueling lengthens ground times by the times required for hookups, unhookings, and administrative tasks, as well as the transfer of fuel. For hydrant fueling, only one hydrant-service vehicle (HSV) is used per aircraft being fueled, so the number of hydrant-service vehicles does not influence the servicing time. That is, the number of HSVs at the airfield determines the number of aircraft that can be fueled at one time or in a day, but it does not affect the time required for each fueling. At a sustained pumping rate of 500 gallons per minute, the transfer of 150,000 pounds of fuel from a hydrant nearly doubles the C-17's ground time, increasing it to 2 hours and 52 minutes.

The right-hand portion of the table shows the effects on aircraft ground time when hydrants are not available and fuel must be transported to the aircraft by trucks. These estimates indicate that, for this aircraft and this postulated airfield, aircraft ground time is, with one exception, slightly longer with truck fueling than with hydrant fueling, even when many trucks are available. Four trucks remove all truck-associated delays, even when the fill stand is over a mile away. With fewer trucks available, the aircraft ground time is longer, over 6 hours in the most extreme case shown.

Table S.3
C-17 Ground Times, by Fueling Type, by Location, and by Number of Trucks Available (times in hours + minutes)

Hydrant	Trucks	T	ruck Fuelin	g
Fueling	at the Airfield	Ramp A	Ramp B	Ramp C
2 + 52	1	6+15	5 + 04	4+16
2 + 52	2	4 + 05	3 + 35	3 + 14
2 + 52	3	3 + 59	3 + 29	3 + 08
2 + 52	4 or more	3 + 07	2 + 56	2 + 50

SOURCE: Expected-value computations of ACE.

NOTE: Hydrant-fueling estimates based on fuel transfer of 500 gallons per minute. All estimates assume 150,000 lb of fuel required per aircraft, quick-turn ground-servicing profiles, and no on-loading or off-loading of passengers or cargo. Each fuel truck is assumed to be available for work 20 hours per day and to be able to transfer 5,800 gallons of fuel per load.

The availability of material-handling equipment affects the times and capacities for on-loading and off-loading aircraft similarly, but often to a far greater extent. Information we received from the Air Force concerning the "up" time of k-loaders, wide-body elevator loaders (WBELs), and forklifts shocked us: Much of this equipment is apparently so old and so fragile that it spends far more time being worked on than working.

Table S.4 contains estimates of off-loading times and aircraft ground times for C-17 aircraft undergoing pallet off-loading (but no on-loading or fueling) during a quick-turn service. The table shows, for each quantity of 40k-loaders, estimates of the capacity, in aircraft per day, of the airfield, and the limiting resource. Estimates are shown for k-loader inventories from 1 to 27, using a baseline availability of 2.35 hours per day for each loader.

As we would expect with such a low availability rate, many vehicles must be added to the airfield inventory before the aircraft delays associated with waiting for k-loaders can be eliminated and the off-loading times level off (at 34 minutes for aircraft serviced on Ramp A and 33 minutes for aircraft serviced on Ramp B). However—and this would not be obvious without our modeling of ground operations—the aircraft ground time is completely unaffected by the k-loader delays, at least the delays associated with the layout of this particular airfield in Figure S.1: C-17 ground time is constant at 90 minutes per aircraft—the minimum time allowed under the quick-

Table S.4
C-17 Times (in minutes) and Capacities (in C-17s per day), by Number of 40k-Loaders

k-Loaders at the Airfield	Preferred Ramp(s)	k-Loader Time per Aircraft	Aircraft Time for Off-Loading	Aircraft Ground Time	Airfield Capacity	Limiting Resource
1	Α	43	49	90	3.3	k-loaders
5	Α	43	49	90	16.4	k-loaders
10	Α	43	49	90	32.8	k-loaders
14	Α	43	39	90	45.9	k-loaders
15	A, B	43 / 52	38 / 44	90 / 90	48.9	k-loaders
16	A, B	43 / 52	34 / 38	90 / 90	51.6	k-loaders
17	A, B	43 / 52	34 / 37	90 / 90	54.3	k-loaders
18	В	52	37	90	48.7	k-loaders
19	В	52	36	90	51.4	k-loaders
20	В	52	36	90	54.1	k-loaders
25	В	52	33	90	67.6	k-loaders
26	В	52	33	90	70.3	k-loaders
27	В	52	33	90	70.4	GPUs

SOURCE: Expected-value computations of ACE.

NOTE: All estimates assume a full load of 18 pallets is off-loaded during quick-turn ground servicing; no passenger operations, loading of cargo, or fueling occur. Each k-loader is assumed to be available for work 2.35 hours per day. In each run, 75 aircraft were requested.

turn protocols.⁵ This level of k-loader–caused delay does not affect the ground time of the C-17, because that aircraft is designed for easy and quick on-loading and off-loading. For many other types of aircraft, k-loader (and other types of delays) can directly affect aircraft ground times.

Uncertainties Accumulate to Affect Capacities

Table S.5 contains output from a Monte Carlo analysis of C-17 aircraft assigned a mission involving fueling and off-loading of cargo at the airfield described in Figure S.1. ACE draws values for each of the four probabilistic operations. As shown in the lower portion of the table, nitrogen servicing is assumed to be required in 10 percent of the stopovers, but for these 25 aircraft it "actually" occurred only three times, or 12 percent of the time. Similar deviations occur for oxygen servicing and repair. But the differences in the times when they do occur reveal more information about our inputs and our assumptions. Data we collected for nitrogen and oxygen servicing (and also for de-icing, which is not considered here) suggest that the servicing times are relatively constant, at 15 minutes and 45 minutes, respectively, for the C-17, if the aircraft needs those services. Consequently, those random draws are for the need for servicing. For repairs, on the other hand, we model both the occurrence and the duration as being probabilistic.

This Monte Carlo mode of analysis acknowledges that some aircraft require more servicing than others, even if they are on identical missions; hence, they consume more ground resources; and, hence, we must have the model set aside resources for each aircraft. In the expected-value mode, we associate aircraft with resources in the same way, but there we "know" that 10 percent of the C-17s will need nitrogen servicing, 15 percent will need oxygen servicing, and 10 percent will need repairs taking 60 minutes.

Table S.6 contains output from a Monte Carlo analysis of C-17 and C-5 aircraft needing fueling and cargo off-loading at the airfield. We asked for five aircraft of each type and specified that the C-17s had higher priority. For this analysis, we reduced the number and availability of ground-power units to show how such limited resources are reflected in capacity estimates, without making the run time unduly long. The entries in the table cover 100 iterations for the two-mission set.

The estimates show that aircraft servicing (and ground-power units in particular) is always the limiting resource, and that it always limits the number of C-5s that can be

⁵Table S.4 also illustrates several other points that we discuss in the text and appendices. The most important of these are (a) that resource-use times per aircraft (43 minutes for aircraft serviced on Ramp A and 52 minutes for aircraft serviced on Ramp B) are constant regardless of the number of resources at the airfield, but the aircraft time associated with the use of that resource (ranging from 49 minutes to 34 minutes for Ramp A and from 44 to 33 minutes for Ramp B) often is not; and (b) that ACE assumes that aircraft are serviced on the ramp having, first, the lowest aircraft ground time and, second, the greatest overall capacity. The latter rule results in some less-than-efficient servicing in the current version of ACE—in this example, for 18 and more k-loaders, the model assigns aircraft only to Ramp B, which then has the greatest overall capacity (because the parking constraint limits Ramp A), rather than first to Ramp A, which retains the shortest k-loader-use time, and then the overflow to Ramp B. We expect to correct this assignment for later releases of ACE.

Table S.5
C-17 Servicing Times (in minutes), by Aircraft Assigned a Particular Mission

	Times Drawn for Servicing					
Aircraft	Nitrogen	Oxygen			Ground Time	
1	0	0	0	0	161	
2	0	0	0	0	161	
3	0	0	0	0	161	
4	0	0	0	0	161	
5	0	0	0	0	161	
6	0	45	0	0	206	
7	0	0	0	0	161	
8	0	0	0	0	161	
9	0	0	0	0	161	
10	0	0	0	0	161	
11	0	0	8	0	161	
12	0	45	0	0	206	
13	0	0	8	0	161	
14	0	0	0	0	161	
15	0	45	0	0	206	
16	15	45	0	0 .	221	
17	15	45	0	0	221	
18	15	0	0	0	176	
19	0	0	96	0	185	
20	0	0	0	0	161	
21	0	0	0	0	161	
22	0	45	0	0	206	
23	0	45	0	0	206	
24	0	0	0	0	161	
25	0	0	8	0	161	
Average	1.80	12.60	4.80	0.00	176.77	
Std Dev	4.97	20.62	19.18	0.00	22.57	
Frequency						
Input:	0.10	0.15	0.10	0.00		
Output:	0.12	0.28	0.12	0.00		

SOURCE: Monte Carlo outputs of ACE.

NOTE: Estimates are based on each aircraft's requiring 150,000 pounds of jet fuel and the off-loading of 18 standard pallets, fueling via hydrants rated at 500 gallons per minute, and a quick-turn ground-servicing profile.

serviced, given the high-priority servicing of the C-17s. The entries in the lower portion of the table state that, given our assumptions, data, specifications, and values, the true expected value for the capacity of the airfield is 2.46 C-5s per day, given that 5 C-17s must also be serviced.⁶

⁶Running this same problem in expected-value mode produces an estimate of 5 C-17s and 2.80 C-5s in just under 2 minutes of run time on a 120-megahertz Power Macintosh, compared with the 141 minutes required by the 100 iterations of the Monte Carlo run. Microsoft Excel runs significantly faster, of course, on Microsoft Windows-based machines. The expected-value problem took less than 2 minutes, and the 100-iteration Monte Carlo problem, just over 70 minutes on a 133-megahertz Pentium. Times will differ on other computers.

Table S.6
Aircraft Throughput and Capacity Remaining, by Iteration

		aft, by sion	Ca	apacities Ren	naining Afte	r Final Missi	ion
Iteration	No. 1	No. 2	Parking	Servicing	Loading	Fueling	Other
1	5	2	26	0	24	46	9999
2	5	3	22	0	23	45	9999
3	5	3	25	0	23	45	9999
4	5	3	25	0	23	45	9999
5	5	2	26	0	24	46	9999
6	5	3	25	0	23	45	9999
7	5	2	26	0	24	46	9999
8	5	3	25	0	23	45	9999
9	5	3	25	0	23	45	9999
10	5	3	25	0	23	45	9999
11	5	3	25	0	23	45	9999
12	5	3	25	0	23	45	9999
13	5	3	23	0	24	46	9999
14	5	2	23	0	24	46	9999
15	5	2	26	0	24	46	9999
16	5	3	25	0	23	45	9999
17	5	2	26	0	24	46	9999
18	5	2	23	0	24	46	9999
19	5	2	23	0	24	46	9999
20	5	2	26	0	24	46	9999
•							•
•							•
•							•
91	5	2	20	0	24	46	9999
92	5	2	23	0	24	46	9999
93	5	2	22	0	24	46	9999
94	5	2	23	0	24	46	9999
95	5	3	22	0	23	45	9999
96	5	2	23	0	24	46	9999
97	5	2	26	0	24	46	9999
98	5	2	26	0	24	46	9999
99	5	3	25	0	23	45	9999
100	5	3	25	0	23	45	9999
Average	5.00	2.46	24.1	0.2	23.5	46.0	9999
Std Dev	0.00	0.49	1.69	0.19	0.40	0.48	0.00

SOURCE: Monte Carlo outputs of ACE.

NOTE: We requested 5 aircraft for each mission and set GPU inventory at 3, with the availability at 10 hrs per day for each. A "9999" indicates unlimited supply.

These estimates, along with other analyses documented in this report, illustrate several different findings. For example,

- Stopovers at destination (off-loading) airfields are much shorter than stopovers at on-loading points, because of the additional inspections, servicings, and repairs typically undertaken at the home or near-to-home airfield.
- For the C-17, the off-loading times for passengers, pallets, and small rolling stock are sufficiently short that they are covered (masked) by the times required for

routine inspection and servicing. Because of the masking, the number of buses available to transport passengers or the number of k-loaders available to transport pallets has almost no effect on the total ground time.

- On-loading times are not masked, because the aircraft typically are not loaded until the major inspections and servicings are completed; shortages of buses and k-loaders then cause small increases in ground times at on-loading points.
- People, pallets, and vehicles load easily and quickly; cargoes that are more difficult to handle can extend ground times by more than an hour.⁷

Recommendations

The variability in our estimates, along with the insights gained while conceiving and developing the model, led to our recommendations:

- First, because (a) so many factors potentially and commonly influence airfield capacity, (b) the influence of those resources on capacity is often decidedly nonlinear, and (c) ACE is now so easy and quick to use, we recommend that planners and others interested in airlift flow through airfields of various types and locations no longer use standard MOGs or standard ground times. Instead, they should estimate the specific aircraft ground time and airfield capacity for each stopover by carefully considering (a) the servicing, fueling, and loading operations needed for each type of mission stopping at each airfield and (b) the major ground resources available at each airfield.
- Second, we recommend that the mobility-modeling community now focus its research efforts on detailing realistic availability times for the commonly used pieces of material-handling equipment and on updating and validating its estimated distributions for aircraft repair times.

⁷The times required for physically moving these cargoes into and out of the aircraft are usually long enough to cover the driving times of the transporters, so no more than two transporters are usually required. We have not modeled those transporters in this implementation of ACE.

Many people provided invaluable assistance in educating us about airfield operations, and we are indebted to all of them. The list below represents the fraction of this group whose assistance was particularly valuable.

First, we would like to acknowledge the conscientious efforts of our hosts at the airfields we visited: Lt Gen Walter Kross (15AF/CC); Maj Gen Thomas Pilsch (21AF/CV); Brig Gen Michael Boots (436 AW/CC); Col Brian Arnold (65th Support Wing/CC); Col William Cummings (608 ALSC/CC); Col George Ducker (628 ALSS/CC); Col Roger Hansen (326 ALSC/CC); Col Richard Kearsley (Cairo West/CC); Col Ronald Love (436 AW/CV); Col Donald Siegel (362 ALSS/CC); Col William Welser III (436 AW/CC); Lt Col Janet Kunciw (438 OSS/CC); Lt Col Terrence McCarthy (627 ALSC/CC); Lt Col Craig Murra (627 ALSS/DO); Lt Col Daniel Schellinger (436 OG/CD); Maj Joseph Goodell (625 ALSS/DMCC); Maj Lowell Mooney (100 ARW/CC); and MSgt Thomas Szabo (608 ALSG).

Special thanks go to the men and women at Dover AFB, Delaware, who helped generously and continuously over the course of the earlier study.

Maj Tom Winslow (608 ALSG/AMCC) did much of the coordinating for an extensive overseas trip; Maj Jim Ferrar and Maj Steve Mulvey saw the value in our participation in a Base Support Planning Conference (Part II), and Maj Mulvey made the trans-Atlantic arrangements. Maj Larry Woodbury (Ret.), and Maj Steve Mulvey were helpful and informative escorts during the two trips. Maj Gen Phillip Ford (then AMC/XP) and Maj Gen James Hobson (then AMC/DO) were particularly helpful.

We consulted many AMC organizations during this study. Special thanks go to Mr. John Ledden (DXP) for promoting the study; to Col Craig Northrup (XPY) and Mr. David Merrill for coordinating staff visits; and to Col Walt Evans (DO), Col (Brig Gen Select) Arthur Lichte (CCE), Col Donald McAllister (TACC/LOC), Col Donna Mooney (IN), Col Scott Parker (XPDS), Col David Wang (AXO), and Dr. Robert Brunkhow (HO). Entire staffs from DOVT and DOXP were routinely quizzed during the earlier phase of this study, and Maj (Lt Col Select) Jim Ferrar (DOXP) and Maj Paul Smith (Ret.) (DOXP) were especially helpful. SMSgt (CMSgt Select) Darla Sanders (LGX), Mr. Bill Penton (LGSF), and Captain Brad Prechtel (DOZ) reviewed our midterm draft reports.

At the Pentagon, Mr. James Johnson and Lt Col Norman Weinberg were very helpful, both in obtaining data and in opening doors. Dr. Stephen Fought and Col Ray Baker from the U.S. Naval Warfare College were excellent brainstorming provocateurs.

In private industry, we gratefully acknowledge the help of Mr. Dave Patterson and Mr. Mike Rohrlick (McDonnell Douglas), Mr. John Burdette and Mr. Bob Holmes (Lockheed), and Mr. Gene Olson and Mr. Larry Frutiger (Boeing), all of whom helped us assemble aircraft-specific data.

Lt Col Greg Padula (1275 TES/DTD) was a most useful point of contact.

Dr. Sam L. Savage of Stanford University inspired the Monte Carlo procedures.

At RAND, Dan McCaffrey provided statistical help and Linda Daly helped us create and produce forms for gathering data. Patrice Roberts, Terri Perkins, and Carol Zaremba typed and corrected several drafts. Jim Bigelow and Chris Hanks reviewed the document and made useful suggestions.

As the leader of Project AlR FORCE's Force Structure Project, which oversaw this work, Fred Frostic was instrumental in initiating this research; Susan Hosek and, especially, Craig Moore provided leadership and facilitated the conduct of the studies. Our thanks also go to Paul Killingsworth, who led research that applied ACE to help evaluate the potential utility of C-17 aircraft in the tactical mobility role and who coled RAND's earlier "Enhancing Air Mobility Forces Study."

ACRONYMS AND ABBREVIATIONS

ACE Airfield Capacity Estimator

AFM Airlift Flow Module (same as MASS)

AGE Aerospace Ground Equipment

AGS Aircraft Generation Squadron

AMC Air Mobility Command

BI Block in

BO Block out

CINCPACINST Instruction [issued by] Commander in Chief of the Pacific

CONUS Continental United States

DFSC Defense Fuel Supply Center

DoD Department of Defense

FPA Fuel parking area

gpm Gallons per minute

HMMWVs Highly Mobile Multipurpose Wheeled Vehicles

HSV Hydrant-service vehicle

IAP International Airport

IOut Iteration output: shows each iteration (of up to 6 missions)

associated with a Monte Carlo analysis

LCOM Logistics Composite Model

MASS Mobility Analysis Support System (same as AFM)

MHE Material-handling equipment

MOG Maximum (aircraft) on ground

MRS Mobility Requirements Study

NPC Nonpalletized cargo

pax Passengers

xxvi Understanding Airfield Capacity for Airlift Operations

POL Petroleum, oil, and lubricants

RIMS Revised Intertheater Mobility Study

ROut Run output: shown for each aircraft associated with 1 mission

SPR Single-point (fueling) receptacle

TACC Tanker-Airlift Control Center

TALCEs Tanker-Airlift Control Elements

UTC Unit-type code

WBELs Wide-body elevator loaders

BACKGROUND

Strategic airlift is an important component of the United States' ability to carry out its national policy. During Operation Desert Shield, the Air Force coordinated intensive flows of airlift from the United States and Europe into Saudi Arabian airfields, many of which had seldom, if ever, been visited by U.S. military aircraft. The Air Mobility Command (AMC) coordinates deployment, resupply, and relief flights to countries in Africa, Eastern Europe, and elsewhere on the globe on very short notice. Airfields in many of those countries are restricted in both size and resources, and AMC often has to deploy personnel and equipment to enroute, destination, and tanker airfields before useful flight schedules can be accommodated.

In many ways, airfields are as important to the United States' ability to project power or provide relief as are strategic aircraft. Airfield resources are used to prepare aircraft, aircrews, passengers, and cargoes for movement and to receive and recover them at destinations. To estimate the amounts of personnel, equipment, and supplies they can move into, out of, or through regions of economic, military, or political interest, Department of Defense planners need information on the capacities of airfields.

Estimates of airfield capacity figure prominently in both long-term force-structure studies and near-term operational planning. DoD long-range planners look for effective and efficient ways of responding to future crises. Planners shape programs to deliver military forces quickly and efficiently to distant locations. Therefore, planners need to know how different airfields will perform as aerial ports of embarkation, as enroute servicing points, and as overseas ports of debarkation. Investing heavily in troops, equipment, and transport aircraft can provide little in the way of projected forces if airfields and airfield resources are not there to support their projection.

Similarly, contingency planners responding to near-term needs around the world must be able to estimate quickly the ability of both familiar and unfamiliar airfields to support deployments, supply flights, relief efforts, evacuations, and other types of operations. Planners need to know (a) how much traffic an airfield can handle, given the resources available there at the moment, and (b) how much those resources would need to be augmented in order to handle more traffic.

Airfield capacity estimates are thus important inputs into any deployment and mobility analysis. AMC and the Office of the Secretary of Defense have recently accepted the Airlift Flow Module (AFM, formerly called the Mobility Analysis Support System, or MASS) as the preferred model for analyzing the airborne portion of deployments. AFM simulates the movements of airlifters as they transport passengers and cargoes along prescribed routes.

However, past runs of AFM have been criticized for being too optimistic—estimating that more cargo would be moved or that cargoes would be moved faster than they actually could be. Critics have called for improvements to two inputs of the model: the aircraft utilization rates, which specify the average flying hours per aircraft per day; and the maximum (aircraft) on ground, or MOG, values used to calculate airfield capacity. In response, AMC began to revise aircraft-utilization data while RAND undertook to improve the procedures by which airfield capacity is estimated.

PURPOSE

This research set two tasks for itself. The first task was to define airfield capacity. Previous definitions meant different things to different people, and, without a common definition, discussions often led to confusion. The second task was to demonstrate a methodology for computing the capacity of an airfield in a consistent and reproducible manner that would more accurately reflect the capability of the airfield's resources to process aircraft. For this second task, we constructed a mathematical model called the Airfield Capacity Estimator, or ACE.

AIRFIELD CAPACITY

We define airfield capacity as "the maximum number of missions that can be routed through and supported by a particular airfield during a 24-hour day, given specified airfield resources." Missions are essentially aircraft types that have been further categorized according to the aircraft configuration (for the maximum amount of cargo, for the maximum number of passengers, and for a mixed load of cargo and passengers), the type of layover (either quick-turn or full-service stop), and the service requirements and concurrency rules that govern servicing operations. Airfield capacity, then, does not refer to a specific number. Rather, it refers to a range of capabilities representing different combinations of missions that can be accommodated in a day. This range will change whenever mission demands and/or airfield resources change.

CONSTRUCTING THE MODEL

We visited several dozen airfields across the world, first, to gain a sense of how airfield personnel actually compute capacity and, second, to identify key activities to include in our model. We found that servicing, fueling, loading, and parking operations are frequently blamed for delays or slowdowns. This is not to say that, at a given airfield on a given day, some other activity might not be constraining; rather, these four functional areas were cited most frequently. Similarly, when selecting the

resources to model, we relied on information gathered from airfield personnel, both in the United States and overseas.

We make no attempt to model all airfield resources. Rather, we take the resources that appear to be most important, the most expensive, or the most visible in crisis situations, and we demonstrate how to combine detailed modeling of those resources with aggregate measures of the many other skills, supplies, and equipment needed in running an airfield and servicing modern airlift aircraft.

HOW THIS DOCUMENT IS ORGANIZED

The next chapter introduces our approach to modeling airfield capacity and explains how it improves on the current approach. Chapters Three, Four, and Five summarize our handling of the functional areas we regard as key: servicing, fueling, and loading, respectively. Chapter Six describes how to use ACE. Chapter Seven contains our conclusions and recommendations for further research. A number of appendices provide details on the procedures and methods: Appendix A presents the notation we use. Appendix B provides details of the ACE approach. Appendices C, D, and E present the key servicing, fueling, and loading equations. Appendix F describes the structure of ACE and details its use. Appendix G documents the ACE parameters and describes how to access them. Readers interested in understanding airfield capacity and gaining an overview of ACE should read the Summary, and Chapters One through Five, and Seven. Those interested in using ACE should read the entire report. Chapter Six and Appendix F constitute the "users' guide."

METHODOLOGY

The ACE approach to estimating airfield capacity builds on the methods traditionally used in defense studies; it formalizes and generalizes those methods; and it attempts to alleviate the major deficiencies found in earlier implementations. We begin with a short critique of capacity estimates used in recent airlift studies.

PREVIOUS METHODS FOR ESTIMATING AIRFIELD CAPACITY

Defense analysts have been providing estimates of airfield capacity for years. In support of actual operations, as well as in support of studies using models such as AFM, analysts have typically assembled three pieces of information about each airfield in question:

- that the resources (facilities, equipment, and supplies) at the airfield will be able to service *x* aircraft at a time
- that those resources will be available to work y hours per day
- that the average ground-service time for a particular type of aircraft will be z hours.

Analysts use those pieces of information to calculate that the airfield can service "x times y divided by z" aircraft per day. For example, if the airfield can service three aircraft every 3 hours and 20 minutes, then, in a 20-hour day it can service (3 * 20/3.33 =) 18 aircraft.

Sometimes the capacity of a particular airfield is specified by single values for the three variables. This results in a single and unambiguous estimate of airfield capacity, as in "the airfield can support 10 aircraft per day." More often, however, several estimates of at least x and y are provided: one set for narrow-body aircraft and one set for wide-body aircraft; or, more recently, one set for each of several specific types of aircraft.²

¹See, for example, CINCPACINST 4600.0B, July 10, 1980.

²The value representing the number of aircraft that can be serviced, worked, or even simply parked at a particular airfield is often called the *maximum on ground*, or MOG, of the airfield. Usually the term "MOG" alone refers to parking; the term "working MOG" refers to servicing.

Even more recently, the capacity estimates have been broken down by type of air-field. In particular, ground-service-time estimates have differentiated between on-load, enroute, and off-load airfields. Table 2.1 shows the level of detail and the z values used in the Mobility Requirements Study–Bottom-Up Review Update (MRS BURU) of 1994 and 1995.

These standard times recognize that larger aircraft carry more cargo and passengers than smaller aircraft and thus take longer to on-load and off-load, that on-loading typically takes longer than off-loading, and that stopovers with no loading activities can be significantly shorter than stopovers with on-loading or off-loading.

Also, some analysts have begun to recognize the basic uncertainties and the multitude of problems associated with scheduling and servicing aircraft, and, as a final step in estimating airfield capacity, have reduced their estimates of capacity by 15 percent to allow for those uncertainties.

Even with this attention to airfield capacity, estimates of *airlift* capacity generated in 1993 and 1994, in association with analyses conducted by DoD and its contractors in support of C-17 acquisition decisions, were criticized as being overly optimistic, and the *airfield* capacity inputs were cited as one of the causes. Those criticisms led directly to this study.

Problems with the Previous Approach

Our initial investigations identified specific problems with the existing methods of estimating airfield capacity and with the manner in which those methods were used. We found

- a tendency to use optimistic service times
- a hesitancy to use detail—to consider the specific types and quantities of servicing resources that were or were not available for use at particular

Table 2.1
Planning-Factor Ground Times
(hrs + mins)

	Airfield Designations			
			Off-	Load
Aircraft	On-Load	Enroute	Without Recovery Base	With Recovery Base
C-130	1 + 30	1 + 30	1+30	1+30
C-141	2 + 15	2 + 15	2 + 15	1 + 15
C-5	3 + 45	3 + 15	3+15	2 + 00
C-17	2+15	2 + 15	2 + 15	1 + 15
KC-10	5 + 00	1 + 30	3 + 00	3 + 00
KC-135	4+00	1+30	3 + 00	3 + 00

SOURCE: MRS BURU, 1994 and 1995.

airfields—partly because such information was sometimes not available, but more fundamentally because accepted and proper methods for analyzing and then consolidating resource or functional-area capacities into an aggregate airfield capacity did not exist.³

- a similar hesitancy to deal with complexity—to recognize that many airfields
 have more than one servicing ramp, more than one type of fueling system, and,
 perhaps most important, that most airfields in a typical day service more than
 one type of aircraft. Again, procedures for estimating airfield capacity under
 these conditions did not exist.
- · a tendency to ignore major uncertainties.

These observations led us to conceive and then to construct a mathematical model called the Airfield Capacity Estimator.

OUR APPROACH

We improve on the traditional methods of estimating airfield capacity by first isolating and formalizing those methods and then generalizing them to include the many dimensions of capacity. In particular, our model recognizes

- up to 16 ground operations (sequenced into two ground-servicing profiles) to be performed on each aircraft
- more than 40 types of ground resources⁴
- up to 6 tasks in each operation for each resource
- up to 6 distinct areas for parking and servicing aircraft (each area may have a distinct hydrant-fueling system; all may be serviced by common fueling trucks and teams)
- up to 9 types of aircraft, with up to 6 of those intermingling operations in a typical day.

Figure 2.1, which is repeated in the Summary, depicts the layout for illustrative calculations throughout this report.

³One of the most troublesome aspects of the previous approach was the manner in which analysts computed airfield capacity in the few instances when they considered more than one resource. This is the one place where we have seen Air Force planners actually do something "wrong." When they had estimates of MOG for several aspects of airfield capacity, they would all too often simply select the lowest of the MOG values and use that in their capacity equation. We show in Appendix B that the only proper method is to compute the capacity of each functional area, resource, or aspect and then choose the lowest-valued of those capacities.

⁴The current implementation of ACE recognizes over 40 separate ground resources. See Table 2.3 below.

Figure 2.1—Airfield Layout for Illustrative Calculations

Formalizing the Methodology

Our model calculates how much time is required of each identified resource in servicing each aircraft assigned a particular type of mission. In our context, a *mission* or *mission type* specifies a particular type of aircraft and the specific ground operations—including the quantity of cargo to be on- or off-loaded and the quantity of fuel needed—that must be performed. A number of aircraft (per day) may be specified for each mission. In a single run, our model handles aircraft prioritized over as many as six missions. The model's outputs clearly identify the particular resource that limits the airfield's capacity for each given mission. If planners augment that resource, they will increase airfield capacity (until some other resource becomes the limiting factor); augmenting any other resource will not increase capacity.

For a single mission, we define the basic relationship between airfield resources and the airfield's capacity as

$$C = Min(R_i * A_i / S_i)$$
 over $i = 1,...,n$ (2.1)

where C stands for the overall capacity of the resources at a particular airfield. Capacity is expressed as the number of aircraft assigned the particular mission that can

be serviced in one day. R_i represents the quantity of a particular resource i available at the airfield, A_i represents the hours per day that resource i is available to support airlift operations, and S_i stands for the time required of the resource i in servicing one aircraft.⁵

Then, for each modeled resource, we estimate detailed service-time equations—equations such as

$$S_i = \sum_j T_{ij}$$
 over $i = 1,...,n$; and $j = 1,...,J$ (2.2)

that sum the times of individual tasks j performed with the resources i—and then use those service times in Eq. 2.1 to estimate airfield capacity for that mission.⁶

Generalizing the Methodology

Defense studies typically have used one or two resources in determining airfield capacity. Our approach goes much deeper. From visits to more than a dozen airfields and interviews with scores of service personnel and technicians, we have identified more than 40 types of resources (the i's in Eq. 2.1) that contribute significantly to airfield capacity, and that can, when in short supply, constrain that capacity. We estimate specific use times and then specific capacities for each resource.

Aircraft Ground Time. Because our focus is the *capacity* of airfields—their ability to support airlift operations—and because aircraft are seldom moved during their ground stays, we associate each aircraft that comes into the airfield with a particular parking spot (or ramp space) and designate the time the aircraft must remain in that space as the *aircraft ground time*. Although any of the ground resources can constrain airfield capacity, the parking resource remains the first among equals in any airfield analysis, because it cannot easily be augmented and because it is directly associated with the aircraft.

Hence, we reserve special notation for aircraft ground time, defining it as

$$S_{\rm p} = \sum_{k} G_k \quad \text{over } k = 1, ..., 16$$
 (2.3)

with the p subscript representing parking and the G_k representing the ground operations listed in Table 2.2.

⁵Roman letters identify *parameters*, which are specified outside the model and may retain a constant value over a number of runs. Italic letters identify *variables*, whose values are determined within the model during each run.

⁶As discussed below, some task times are fixed (parameters) and others are variables, which depend on mission and airfield specifications.

Table 2.2 Servicing Operations Determine Aircraft Ground Time

Full Service	Quick Turn	
Block in	Block in	
Post-flight inspection	Through-flight inspection	
General servicing	General servicing	
Nitrogen service	Nitrogen service	
Oxygen service	Oxygen service	
Repair	Repair	
Pre-fuel	Pre-fuel	
Transfer fuel	Transfer fuel	
Post-fuel	Post-fuel	
Off-/on-load passengers	Off-/on-load passengers	
Off-/on-load cargo	Off-/on-load cargo	
Pre-flight inspection	De-icing	
De-icing	Block out	
Block out		

As shown in the table, we model two ground-servicing profiles—a quick-turn profile and a full-service profile. The quick-turn profile assumes aircraft are to be serviced and launched as quickly as possible. Under the full-service profile, longer and more-detailed servicing is performed and the aircraft may be required to remain on the ground for some specified amount of time. (The user inputs a minimum ground time to reflect, for example, that the aircraft cannot leave until its crew has rested.) Unless the aircraft-servicing time computed by ACE—the time required for servicing, fueling, and loading the aircraft—exceeds the minimum ground time, the minimum ground time is the default mission ground time for the full-service profile.

Use Times of Other Resources. In general, we model *resources* and the *tasks* those resources perform in completing the operations discussed above on the aircraft at the airfield. We consider specific operations, such as fueling and off-loading of cargo, to be composed of a series of tasks. And we relate specific resources and times to those tasks before aggregating the tasks into operations. For example, fueling may involve filling a tanker truck with fuel, driving it to an aircraft, hooking the fueling attachments to the aircraft, transferring fuel, unhooking, driving back to the fill stand, refilling the truck, etc. Each of those tasks may depend upon several resources.

Figure 2.2 depicts the overall operation of ACE. We capture in considerable detail the functional operations of aircraft servicing, fueling, and loading. For fueling and loading, we consider specific operations, such as hydrant fueling and off-loading cargo to be composed of a series of tasks. And we relate specific resources and times to those tasks before aggregating the tasks into the operations. For each of these areas, we identify the most-constraining resource and its limiting value of capacity. We then compare those capacities with more-aggregate capacities computed for air-

⁷As discussed in Chapter Three, we model two variations of the quick-turn profile, one allowing fuel to be transferred into the aircraft at the same time as servicing and loading operations occur, and one requiring the suspension of those operations while fuel is transferred.

Figure 2.2—Structure of the ACE Model

traffic control, ground control, and aircrew services. Finally, we select the minimum capacity across all those functional areas to determine the airfield's capacity.

Table 2.3 lists the resources modeled in ACE.8 In this table, the aggregate resource for each functional area—usually identified as "[area] equipment & personnel"—represents the packages of personnel, equipment, and supplies necessary for performing all of the flight-line, back-shop, and administrative activities associated with the functional area. For servicing, fueling, and loading, we include particular types of equipment. In designing ACE, we anticipated that users typically would employ a mix of aggregate and detailed data. Therefore, we singled out the tasks and the asso-

⁸The k-loaders transport pallets from the aircraft to the aerial-port storage and transfer area. WBELs lift pallets from the k-loaders to the access doors of the commercial, low-wing, high-body aircraft; they are not needed for military aircraft. Stairs provide the only egress route for the crews of commercial aircraft and must be attached to the aircraft when personnel are aboard; they are not a requirement for military aircraft. De-icers serve all aircraft, but calivars are needed only in de-icing the (high) tails of C-5s. Forklifts position pallets on k-loaders and trucks or move them around the aerial ports.

Table 2.3 Resources Modeled in ACE

ltem	Item	
Servicing	Fueling	
Aerospace Ground Equipment	Hydrant systems	
Ground-power units	Pumps	
Gaseous-oxygen carts	Hydrants	
Liquid-nitrogen carts	Hydrant-service vehicles	
Liquid-nitrogen trucks	RL-12s	
Liquid-oxygen carts	Commercial HSVs	
Oil carts	Tanker trucks	
Service stands	R-9s	
Low-reach	R-11s	
Medium-reach	Fill stands	
High-reach	Fuel	
De-ice trucks	Bulk storage	
Calivars	Resupply	
Passenger stairs	Intrafield transfer	
C-130 service teams	Fueling equipment & personnel	
C-141 service teams		
C-5 service teams		
C-17 service teams	Loading	
KC-10 service teams	Material-handling equipment	
KC-135 service teams	Forklifts	
747 service teams	k-loaders	
Cxx service teams	25k-loaders	
Cyy service teams	40k-loaders	
Parking space	60k-loaders	
Servicing equipment & personnel	Wide-body elevator loaders Cochran	
Aircrew Support	Wilson	
Aircrew support equipment & personnel	TA-40 60k-loader proxy	
Air-Traffic Control	Loading equipment & personnel	
ATC equipment & personnel		
Ground Control		
Ground control equipment & personnel		

ciated skills and equipment that we believed were most likely to be important, and focused on them individually, while handling other jobs and other functional areas more broadly. We discuss resources further in Appendix C.

IMPROVED ESTIMATES OF AIRCRAFT GROUND TIME

By recognizing multiple airfield resources, operations, and tasks, we can build up aircraft ground time and servicing times according to the particular needs of each mission. This provides both improved and more specialized estimates of airfield capacity.

Specifically, the current specification of ACE and the values associated with its basic parameters indicate that the standard ground times shown in Table 2.1 have been overly simplistic. For example, the standard ground time for a C-17 at an enroute base, where it will be refueled but not on-loaded or off-loaded, was assumed to be 2 hours and 15 minutes in MRS BURU. Our estimates, presented in Table 2.4, show how the ground time of the aircraft increases as the quantity of fuel needed by the aircraft increases. One time does not work for all C-17s. And many aircraft—C-5s, KC-10s, and 747s in particular—hold and consume more fuel than the C-17 and, hence, may experience even more variability in fueling-related ground times.9

Similarly, our estimates in Table 2.5 of aerial port of debarkation (APOD) ground times with off-loads and on-loads and refueling—ranging from just under 3 hours to nearly 7 hours—suggest that Table 2.1's assumed time of 2 hours and 15 minutes for the C-17 underestimates the possible range of these aircraft ground times. 10

The times in these tables preview our discussions in the next three chapters. The basic quick-turn servicing of a C-17 takes 1 hour and 30 minutes. Fueling increases that ground time, because servicing and loading activities are usually suspended while fuel is transferred into the aircraft. Loading, however, is typically conducted concurrently with servicing. In Table 2.5, the first three loading times are, in fact, masked by the servicing times. However, the final three (longer) loading times do increase the aircraft ground time substantially. We explore this complicated sequencing of ground operations, some of which can be performed concurrently and a few of which cannot, in Chapter Three.

IMPROVED ESTIMATES OF AIRFIELD CAPACITY

We have seen that different types of missions and different types of ground-servicing profiles imply different ground times for different aircraft at different airfields. But what do these different ground times imply for the capacity of those airfields to service aircraft? Do the different ground times make any difference?

Table 2.4 Fueling Significantly Affects C-17 Ground Times

Fuel Needed (1,000 lb)	Fuel-Transfer Time (hrs + min)	Aircraft Ground Time (hrs + min)
0	0	1 + 30
50	0 + 42	2 + 22
100	0 + 57	2+37
150	1 + 09	2 + 52

SOURCE: Expected-value estimates of ACE.

NOTE: Assumes quick-turn servicing profile, and resources as specified in Appendix G. The aircraft ground time of 2 hr + 50 min reported in Table S.3 is based on use of R-11s only.

 $^{^9}$ We assume the transfer occurs at 500 gallons per minute, or $\,$ 50,000 lbs in 15 minutes. In Chapter Four, we examine how truck fueling influences aircraft ground times, and how having a limited number of trucks can influence the truck-fueling time.

 $^{^{10}}$ In Chapter Five we examine the ground times associated with on-loading and off-loading, and with shortages of material-handling equipment and loading crews.

Table 2.5
Off-Loading and On-Loading Significantly Affect C-17 Ground Times

Loading Operations	Loading Time (hrs + min)	Aircraft Ground Time (hrs + min)
Off-load 18 pallets	0 + 49	2 + 52
Off-load 18 pallets; on-load 18	1 + 00	2 + 52
Off-load 102 passengers	1 + 04	2 + 52
Off-load 102 passengers; on-load 102	1 + 53	3 + 36
Off-load oversized cargo	2 + 42	4 + 18
Off-load oversized; on-load oversized	5 + 12	6 + 48

SOURCE: Expected-value estimates provided by ACE.

NOTE: Estimates are based on quick-turn servicing of aircraft configured for maximum passenger or maximum cargo, and include transfer of 150,000 lb of fuel. Ground operations are conducted on Ramp B. Oversized cargo is represented by C-5 engines; being too large for the standard pallet, they require special handling, placement, and securing. We assume concurrency of loading and servicing, but fuel transfer must be isolated.

To answer these questions let us assume for the moment that the limiting resource at our airfield is parking, and that we are considering only one type of aircraft flying one type of mission. Then Eq. 2.1 says that the capacity of the airfield should be calculated as R, the parking places available, multiplied by A, the minutes per day they are available, divided by S, the time required of the parking places, which we assume here is equal to the ground time of the aircraft. Assume this airfield has 5 parking places available 24 hours per day.

Then, using the range of aircraft ground times in Table 2.5, we estimate that the airfield's capacity ranges from 17 aircraft per day for the longer stopovers to 41 aircraft per day for the shorter stopovers. This is a significant difference that planners and schedulers must keep in mind, and one that should not be obfuscated by the use of "standard" times for aircraft stopovers, regardless of the operations to be performed on the aircraft.

In cases where parking is not the constraining ground resource, the reductions in airfield capacity will depend on (and be inversely proportional to) the increases in use times for the constraining resources.

Because aircraft ground time is the heart of any estimate of airfield capacity, we model two ground-servicing profiles—a quick-turn profile and a full-service profile. Aircraft undergoing the quick-turn profile are serviced and launched as quickly as possible. Aircraft undergoing the full-service profile undergo longer and more-detailed servicing and may be required to remain on the ground for at least a certain specified length of time. Full-service stops usually occur at an aircraft's home base, or at least at a CONUS airfield.

Table 3.1 details the aircraft-servicing operations, and Table 3.2 defines those operations. Both ground-servicing profiles (full service and quick turn) include standard operations that are independent of the profile, as well as mission-related operations invoked by the user. Standard operations are of two types: those that occur for every flight, such as block in, servicing, and block out, and those that are probabilistic and occur for some but not all flights, such as the need for repair or for nitrogen or oxygen servicing. The quick-turn profile includes one through-flight inspection; the full-service profile has both pre- and post-flight inspections. These pre- and post-flight inspections probably involve more and longer repair actions, because aircrews are more inclined to submit write-ups for longer servicing stops, and repairers have more opportunity to address broken but not flight-critical items during extended servicing. Similarly, although the duration of the average oxygen service is generally independent of mission specification, the number of aircraft requiring this service typically increases for flights with extended ground time.

THE FULL-SERVICE PROFILE

The lower portion of Figure 3.1 illustrates the full-service profile.¹ It comprises 16 ground operations, several of which can be performed over two or three intervals. The five operations on the top line (block in, post-flight inspection, general servicing, pre-flight inspection, and block out) must be performed for every aircraft on every mission.²

¹These servicing profiles and many of the servicing-operation times were established for us by Capt André Gerner during his Air Force Fellowship at RAND.

²Unless, as is explained in Appendix F, the user wishes to create a customized mission profile.

Table 3.1

Aircraft-Servicing Operations, by Service Profile and Requirement

ull Service Quick Turn			
	nt, by Type of Aircraft, for Every of Every Mission		
Block in	Block in		
Post-flight inspection	Through-flight inspection		
General servicing	General servicing		
Pre-flight inspection	Block out		
Block out			
Required on Speci	fied Percentage of All Flights		
Repair	Repair		
Oxygen servicing	Oxygen servicing		
Nitrogen servicing	Nitrogen servicing		
Optional, Specified in Mi	ssion Setup, for All Mission Flights		
Minimum ground time			
	sion Setup, on Specified Percentage lission Flights		
De-icing	De-icing		
and a comment that the last the second of th	ole, Specified in Mission Setup, and ated Within ACE		
Fueling	Fueling		
Passenger off-loading	Passenger off-loading		
Passenger on-loading	Passenger on-loading		
Pallet off-loading	Pallet off-loading		
Pallet on-loading	Pallet on-loading		
Nonpalletized cargo off-loading	Nonpalletized cargo off-loading		
Nonpalletized cargo on-loading	Nonpalletized cargo on-loading		

The other operations may need to be performed only on some missions or only or some aircraft (regardless of their assigned mission). The fueling and the loading operations are *mission-level specifications*. If aircraft on a particular mission are specified to receive 175,000 pounds of fuel each or to off-load 150 passengers each, then every aircraft assigned that mission will receive 175,000 pounds of fuel and off-load 150 passengers.

By contrast, the nitrogen-service, oxygen-service, and repair operations are aircraft-level specifications: Normally, each type of aircraft is assigned a particular probability of needing and receiving each of these services on each ground-servicing profile, independent of the mission it is on. We handle this variability in two ways: (a) We use expected-value calculations to estimate average resource-use times, aircraft ground times, and airfield capacities. This process does not yield the true "expected value" of capacity, because both the service-time equations and the capacity equations are nonlinear; but, in all the cases we have tested, it yields a close approximation to that value, and it is relatively quick. (b) We conduct Monte Carlo experiments, drawing values (for each aircraft in each mission) for those operational times from empirically derived distributions of past times. The draws for each set of missions can be

Aircraft-Servicing Operations: Definitions

Operation	Definition
Block in	The period beginning when the aircraft is marshalled into parking and ending with engine shutdown.
Inspection	
Through-flight	Standard inspection given to aircraft on quick-turn layover. Performed shortly after engine shutdown.
Post-flight	Standard post-flight inspection given to aircraft on full-service lay- over. Performed shortly after engine shutdown but before the aircraft is secured.
Pre-flight	Standard pre-flight inspection given to aircraft on full-service layover. Performed before engine start.
Servicing	
General	All service actions performed by servicing personnel and not included in the following three operations.
Nitrogen	Servicing the aircraft with nitrogen; performed by servicing personnel.
Oxygen	Servicing the aircraft with oxygen; performed by servicing personnel.
De-icing	Removal of light snow and ice on the aircraft by servicing personne
Repair	Actions collectively representative of both preventative and restorative maintenance.
Fueling	
Pre-fuel	Actions required to prepare an aircraft for fueling.
Fuel transfer	Fuel-transfer period as determined by the fuel module.
Post-fuel	Actions required to secure the aircraft after fueling.
Loading	
Off-loading passengers	Servicing period associated with the physical transferring of passen gers and their luggage from the aircraft and into buses or other vehicles.
Off-loading cargo	The unloading of palletized and nonpalletized cargoes from the aircraft.
On-loading cargo	The loading of palletized and nonpalletized cargoes into the aircraft
On-loading passengers	The transfer of passengers and accompanying luggage from buses into the aircraft.
Block out	The period beginning with the initiation of engine start and ending when the aircraft is marshalled out of parking.

iterated 10, 100, or even more times, producing valid representations of the output distributions for use times, aircraft ground times, and airfield capacity. Given valid data, this method produces better estimates than the expected-value approximation, but it takes substantially longer. Details on both procedures can be found in Appendix C.

Mission-related optional operations: Pre Fuel Post On-load pax On-load cargo De-ice	Nitro Oxygen Nitrogen Repair Pre Fuel Post On-load pax Load On-load cargo	Standard operations:	ərat	tions:					
Nitro Oxygen Nitrogen Repair Pre Fuel Post On-load pax Load On-load cargo	Nitro Oxygen Nitrogen Repair Pre Fuel Post On-load pax Load On-load cargo	_	ā					B	
Pre Fuel Post On-load pax Load On-load cargo	Pre Fuel Post On-load pax On-load cargo								
Pre Fuel Post On-load pax De-ice On-load cargo	Pre Fuel Post On-load pax On-load cargo			Repair		Rep	Repair		
Pre Fuel Post De-ice On-load pax Cargo Condoad Cargo Con-load Cargo Cargo Con-load Cargo Cargo Con-load Cargo Con-load Cargo Cargo Con-load Cargo C	Pre Fuel Post On-load pax d cargo Load On-load cargo	Mission-relate	pe	optional operations:					Oper
d cargo	d cargo	0.000		Pre	Fuel	Post		De-ice	Time
Load	Load	edictari ci					On-load	pax	
		reside (2		Off-load cargo		Load	On-load car	06.	

Full Service

Q8			Time			
Pre-flight			De-ice	On-load pax		
Oxygen						
Nitrogen	Repair	[Post	On-load cargo	Minimum ground time	Total Aircraft Ground Time
			Fuel		Minimu	Tota
ieneral	Repair	operations:	Pre	Off-load cargo		
Standard operations: BI Post-flight General		Mission-related optional		Off-load pax		

NOTE: In both ground-servicing profiles, operations drawn on the same level must occur sequentially; operations depicted in the same column may be done concurrently.

Figure 3.1—The Sequencing of Aircraft-Servicing Operations

Finally, the de-icing operation is both a mission and an expected-value specification. Its need, as a percentage of the aircraft on the mission, is specified explicitly by the user for each mission.3

We do not require the repair operation to be accomplished in a single application: It can be broken up for fuel transfer or for oxygen servicing, to keep the total ground time from becoming unnecessarily long. But recall that the full-service profile allows the aircraft to be kept on the ground for a specified amount of time. The user inputs a minimum ground time to reflect, for instance, that the aircraft is not moving while its crew is resting. Unless the mission ground time computed by ACE exceeds this value, the minimum ground time is the default mission ground time for the fullservice profile.

THE QUICK-TURN PROFILE

Quick turns are less time-consuming than full-service stops; they are usually performed at enroute or off-loading airfields. We model two versions: one in which fuel transfer is isolated, as it always is in the full-service profile; and one in which ground time can be shortened even more by transferring fuel while certain other operations proceed.

As with full service, this profile allows any repairs that might be needed, general and nitrogen servicing, and the interruption of cargo off-loading and on-loading and repair for fuel transfer (when concurrency is not allowed) and for oxygen servicing (when it is needed). Our equations specifying the component times for these operations calculate the shortest-possible ground times.4

SCHEDULING OPERATIONS TO MINIMIZE GROUND TIME

The sequencing of aircraft ground operations depends on both resource and safetyrelated concerns. Table 3.3 details the conventions and protocols observed in structuring the profiles. Within that structure, however, we assume that schedulers attempt to minimize the ground time of the aircraft.

Because our goal is to estimate airfield capacity—i.e., the maximum number of aircraft that a particular airfield can support in a day, rather than some lower number that it can easily support—our procedures include two simple optimizations.

First, when ground-servicing operations are interrupted for fuel transfer or oxygen servicing, we assume that the schedulers suspend all ongoing activities efficiently and at the same time. And after the isolated operations are completed, we assume that the schedulers resume all still-needed activities promptly.

³De-icing is handled the same as nitrogen and oxygen servicing and repair when activated by the user. But for most examinations of most airfields, we expect it will not be activated.

⁴And, as noted above, if the user specifies that any of the operations are not to be performed for a specific mission, then the model sets the times for those operations to zero.

Table 3.3

Conventions Governing the Combinations of Aircraft-Servicing Operations

Convention Number	Description
1	Block in and block out are the first and last operations performed, respectively. No other operations take place at these times.
2	Due to the explosive potential of oxygen servicing and the haz- ardous environment surrounding de-icing, these operations occur in isolation from others, and from each other.
3	De-icing immediately precedes block out, since this operation is desired as close to takeoff as possible.
4	Pre-fuel precedes fuel transfer, which precedes post-fuel, with no other operations interposed. Owing to the inherent hazards of fue ing and those resulting from an aircraft settling on its struts, off-/on-loads may occur concurrently with fuel transfer only when con current servicing is invoked by mission specification.
5	Although repair can occur anytime between block in and block out it shall immediately follow block in by convention, because the majority of write-ups are normally identified by the aircrew prior to landing and are radioed ahead.
6	Through-flight or post-flight inspections immediately follow block in (concurrent with repair).
7	Off-loads always precede on-loads. Aerial-port off-/on-loads may occur concurrently with other servicing operations, except those operations previously identified as occurring in isolation (see Conventions 1 and 2), or fuel transfer, when concurrent servicing is no invoked by mission specification (see Convention 4).

• Second, when the airfield contains several areas where aircraft can be parked and serviced, we assume that the schedulers will assign aircraft to the *best* areas. That is, we assume that aircraft needing fuel will be parked at hydrants or near fill stands, that aircraft to be off-loaded will be parked near terminals, for example. The model accomplishes this optimal placement by looking at the ground time that would be associated with performing the specific operations required by each aircraft if it were parked in each different area, and then selecting the area associated with the shortest ground time. Finally, if it is necessary to service more aircraft flying that mission than can be accommodated in that (the best) parking area, then we assume that the next increment of aircraft is serviced in the area with the second-shortest servicing time, that the third increment is serviced in the area with the third-shortest servicing time, and so on.⁵

⁵These procedures are discussed further in Appendix B.

ESTIMATING SERVICE TIMES

Other than the aircraft ground time discussed in Chapter Two, times for aircraft-servicing resources are based on the times required for the tasks performed with those resources on mission aircraft. We accumulate the time each resource is needed for each ground operation in which the resource is used. Some resources—service stands, stairs—are used in several operations; others—oxygen carts, deicers—are used only once. But in each case, we estimate the total minutes that the resource is needed in servicing one mission aircraft.

Parking time—the service time of the parking or ramp resource—is, as was noted on page 9, usually the same duration as aircraft ground time. The exception is when we add an "open time" increment to the parking time in order to allow for inefficiencies associated with the airlift authorities' scheduling of aircraft into the airfield. Servicing times for ground-power units (GPUs) and aircraft-servicing crews are similarly easy to compute. A GPU powers the aircraft's electrical system for essentially the entire time it is parked at the ramp, and the servicing team is working at the aircraft for essentially that same time period. So one GPU and one servicing team are occupied with one mission aircraft for its total ground time.

The service times required of the other ground resources are computed individually. The capacity of each resource is computed by Eq. 2.1 by dividing the availability of the resource—the quantity available for use multiplied by the minutes it is available each day—by the computed service time per aircraft. The result is the total number of aircraft (associated with that particular mission) that can be serviced by each resource each day.

IMPROVED ESTIMATES OF AIRFIELD CAPACITY

We have seen that aircraft ground time depends significantly on the amount of fuel required and on the amount of cargo that must be handled. Table 3.4 shows that ground time also depends significantly on the ground-servicing profile.

Comparing the estimates shown in Table 3.4 for the several servicing profiles and types of operations for C-17s with the standard time of 2 hours and 15 minutes from Table 2.1 suggests, again, that the standard time is inadequate to capture the range of possible times. CONUS and home-base operations typically take 5 to 7 hours or longer. Enroute stops with fueling, and even off-loads with concurrent fueling, can take nearly 3 hours. And again, these differences in aircraft ground times reflect substantial differences in airfield capacities.

⁶Open time should perhaps be modeled probabilistically, as is repair time. However, the parameters of its distribution must depend on the context, structure, and performance of the entire airlift system. The effects of changes in that system may, in fact, outweigh the randomness associated with any fixed system. In either case, such modeling is beyond our current capabilities.

Table 3.4 Profiles and Operations Affect Ground Time for C-17s

	Ground-Servicing Time (hours + minutes)				
		Quick Turn			
Item	Full Service	Sequential	Concurren		
Servicing only	4+45	1+30	1 + 30		
Plus: 50k fuel	5 + 37	2 + 22	2 + 22		
Plus: 100k fuel	5 + 52	2 + 37	2 + 37		
Plus: 150k fuel	6 + 05	2 + 52	2+ 52		
Plus: 150k fuel; 18 pallets off, on	6 + 32	2 + 52	2 + 52		
Plus: 150k fuel; 102 pax off, on	6 + 56	3 + 36	3 + 21		
Plus: 150k fuel; large oversized off, on	8 + 42	6 + 48	6 + 06		

SOURCE: Expected-value estimates of ACE.

NOTE: Based on resources as specified in Appendix G. Sequential refers to the nonallowability, and Concurrent refers to the allowability, of loading and repair operations occurring while fuel is being transferred.

Thus far, the ground-servicing times we have estimated have not been affected by resource shortages: When fewer resources are available, fewer aircraft can be serviced, but the servicing time of those aircraft is not increased. In the next two chapters, we address resources whose reduced availability can and often does increase servicing time.

In Chapter Three we discussed ground operations that require a fixed amount of time. For example, the general servicing for a C-17 on a quick-turn stopover takes 20 minutes at any airfield. In this and the following chapter, we examine operations—fueling and loading—whose times depend on the type and quantity of resources available at the particular base under investigation. For these operations, an increase in the number of resources available for use at an airfield has a twofold effect on airfield capacity. First, increased resources directly increase the working capacity of that resource. Second, and sometimes nearly as important, increased resources may decrease the amount of time each aircraft must spend on the ground at that airfield.

ACE models two common fueling methods: hydrant systems and trucks. The major tasks involved in each type of operation are listed in Table 4.1. These tasks take time and resources, both of which we track. The first resource to be exhausted becomes the constraining factor for that particular fueling method.

HYDRANT SYSTEMS

Many types (and many variations on those types) of hydrant-fueling systems can be found around the world. Each, however, consists of some combination of fuel storage, a number of fuel hydrants located near aircraft-parking spots, and a number of pumps for moving fuel from the containers to the hydrants and subsequently into the aircraft. ACE considers two essential pieces of information about each hydrant system: the number of aircraft it can service (pump fuel into) at once, and the rate at which it can pump that fuel into those aircraft.¹

Hydrant-service vehicles (HSVs) interface between the hydrants and the aircraft. We model commercial as well as military HSVs, differentiating only by fuel-transfer rates:

¹The two most-prevalent types of hydrant systems for strategic airlifters are the type II, or Pritchard, system, and the type III system. A typical Pritchard system can service a maximum of three aircraft simultaneously, at a maximum transfer rate of 600 gallons per minute (gpm) per aircraft. The type III hydrant system is bigger and faster, typically capable of pumping 2,400 gpm into a hydrant loop, which then feeds a number of individual fueling points. However, whatever the size of the system, the pressure will typically not be lowered to less than 500 or 600 gpm. That is, a 2,400-gpm system will often service 4 aircraft simultaneously, pumping fuel into each at about 100 gpm, but will seldom attempt to service, say, 5 or more aircraft (at 480 gpm or less). Many aircraft have minimum pressure (as well as maximum pressure) cutoffs.

Table 4.1
Tasks Associated with Fueling Aircraft

Fueling from Hydrants	Fueling from Trucks
	Fill truck(s) with fuel
Fueling Aircraft No. 1	Fueling Aircraft No. 1
Drive HSV to aircraft	Drive truck(s) to aircraft
Set up for fueling	Position and set up first (pair of) truck(s)
Transfer fuel	Transfer fuel
Secure aircraft after fueling	Remove first (pair of) truck(s)
Fueling Aircraft No. 2	Drive first (pair of) truck(s) to fill stand
Drive HSV to aircraft	Fili first (pair of) truck(s)
Etc.	Position and set up second (pair of) truck(s)
	Transfer fuel
	Remove second (pair of) truck(s)
	Drive second (pair of) truck(s) to fill stand
	Fill second (pair of) truck(s)
	Position and set up third (pair of) truck(s)
	Etc.
	Fueling Aircraft No. 2
	Drive truck(s) to aircraft
	Etc.

military HSVs handle a fuel flow of up to 1,200 gpm (gallons per minute); commercial vehicles usually handle 750 gpm.

TRUCK SYSTEMS

When hydrants are being used, the fuel flow proceeds without interruption. Fuel trucks, however, involve much stopping and starting. Trucks have much smaller fuel capacities than does the storage tank servicing the hydrants. When one truck has transferred its load, it must move away from the aircraft to make room for the next full truck. If too few trucks are available, these brief interruptions can turn into long delays while the trucks cycle back to the fill-stand area to replenish their tanks. Obviously, the longer the drive from the aircraft to the fill stand, the longer the fueling time.

Delays and Multiport Fueling

We model delays caused by an insufficient number of fuel trucks. (The logic for evaluating delays is similar in loading operations, for which pallet-carrying vehicles and buses may be in short supply.)

If we have only one fuel truck and the aircraft requires more than one truckload of fuel, we will always have some delay in the fueling of the aircraft. With only one truck, the delay will be equal to the *cycle time of the truck*—the time it takes to drive the truck from the aircraft to the fill stand, refill it with fuel, and return it to the aircraft—multiplied by the number of times the truck must recycle. On the other hand, there will be no delay if sufficient trucks are available so that at least one truck can

recycle in the time it takes the other trucks to hook up to the aircraft, pump fuel into it, and then unhook.

Another noteworthy aspect of truck fueling is that multiple trucks can transfer fuel into some aircraft simultaneously. The maximum number of simultaneous hookups is theoretically dictated by the number of single-point receptacles (SPRs) on the aircraft, but standard practice at most airfields allows no more than two trucks to be pumping into one aircraft at a time.

Multiport fueling requires fueling the aircraft in simultaneous "waves." Because all machinery near the aircraft must have engines off while fuel is being transferred, one truck cannot be hooking up or unhooking while the other is transferring fuel. In counterpoint to this activity, trucks arrive back at the fill stands in waves.

The fueling time for an aircraft thus depends on the amount of fuel required by the aircraft, the number of SPRs usable at one time, the maximum receive rate of the aircraft, the pumping rate of the trucks, the cycle time, the hookup-pump-unhook time, the number of trucks at the airfield, the number of trucks the fill stand can refill at one time, and the minutes per day the trucks are assumed to be available. Figures 4.1 and 4.2 illustrate how our fueling-time estimates can vary with the number of trucks and ports in use.

Figure 4.1 shows the substantial differences in fueling time for different amounts of fuel and different numbers of available fuel trucks. With the parameter values used in this illustration, fueling one KC-10 with 350,000 pounds of fuel using only 1 truck takes about 8 hours. About 4 hours of that time is spent hooking the truck up to the aircraft, transferring fuel, and unhooking the truck. And the aircraft spends about 4 hours waiting as the truck drives to the fill stand, refills with fuel, and returns to the aircraft. Adding more trucks reduces the waiting time. The second truck reduces that time to zero when the aircraft needs only 50,000 pounds (or less than 2 truckloads) of fuel, and the sixth truck reduces it to zero for even the most-demanding case (when 7 truckloads are required). Two of the KC-10's fueling ports (or SPRs) are used in the computations for Figure 4.1. Figure 4.2 concludes the example by showing the extra time required when only one of those ports is used.

IMPROVED ESTIMATES OF AIRFIELD CAPACITY

Table 4.2 shows our estimated effects of distance and truck availability on C-17 servicing times. For hydrant fueling, aircraft are assumed to park directly at the hydrants, so distance plays no part in their servicing. And because only one HSV is required or allowed per aircraft, the number of HSVs available at the airfield does not affect the fueling time.

For truck fueling, however, both distance (to the fill stand) and truck availability affect the fueling time. But the effects can be (made) small at most airfields. If four or more fuel trucks are available, the recycle time of each pair of trucks is more than

Figure 4.1—Fueling Time Decreases As the Number of Trucks Increases

Figure 4.2—Additional Ports Also Decrease Fueling Time

and by Number of Trucks Available (hours + minutes)

Hydrant	Trucks at the	Tr	uck Fueling	g, by Miles f	rom Fill Sta	inds
Fueling	Airfield	0.25	0.50	1.00	2.00	3.00
2+52	1	4+13	4+34	5 + 16	6+40	8 + 04
2 + 52	2	3 + 13	3 + 22	5 + 40	5 + 16	5 + 52
2 + 52	3	3 + 07	3 + 16	3 + 34	4 + 10	4 + 46
2 + 52	4 or more	2 + 49	2 + 52	2 + 58	3 + 10	3 + 22

SOURCE: Expected-value computations of ACE.

NOTE: Hydrant-fueling estimates based on fuel transfer of 500 gallons per minute. All estimates assume 150,000 lb of fuel required per aircraft, quick-turn ground-servicing profiles, and no on-loading or off-loading of passengers or cargo.

covered by the on-aircraft time of the other pair, even with a round-trip distance of 3 miles. Fewer trucks (and, as we see in the next chapter, fewer pallet transporters and personnel buses) increase aircraft ground times, and increase them more than proportionately when driving distances are greater.

Fueling times, obviously, also differ greatly by type of aircraft. Table 4.3 shows the fuel capacity and the ground time associated with "filling it up" for the major airlift aircraft.

FUEL, PUMPING, AND RESUPPLY

We have discussed resources in terms of equipment and personnel; another vital resource for this operation is the fuel itself. Adding up the respective capacities of the hydrant-system pump houses and the fill stands does not begin to approximate the amount of fuel available at an airfield. Most fuel resides in bulk storage. In our capacity calculations, we consider the constraint on the number of aircraft that can be fueled in a day imposed by the total amount of fuel available at the airfield. And we

Table 4.3

Ground Times (in hrs + min), by Aircraft Type and Fueling Type

	Fuel	Aircraft Ground Time			Number of
Aircraft	Capacity (lb)	Fueling via Hydrants	Fueling via Trucks	Ports	Truckloads Required
C-130	62,000	1+41	2+09	1	2
C-141	150,000	2 + 50	3 + 02	2	4
C-5	332,000	4 + 24	4 + 36	2	9
C-17	182,000	2 + 52	2 + 56	2	5
KC-10	356,000	4 + 46	4 + 58	2	10
KC-135	203,000	5+11	5 + 51	1	6
747	370,000	4 + 00	4 + 12	2	10

SOURCE: Expected-value estimates of ACE.

NOTE: All fueling and servicing are conducted on Ramp B as shown in Figure 2.1. Aircraft ground times depend on times required for all servicing operations, not just fueling.

consider the constraints imposed by the external transport (resupply) and the internal (intra-airfield) transport of that fuel.

COMPOSITING VEHICLES

When we modeled fuel trucks, pallet transporters, WBELs, and passenger buses, we quickly learned that many varieties of each existed, each variety having differing capacities, speeds, and reliabilities. And we quickly learned that we could not expect to anticipate or prespecify the types that might be in inventory at any particular airfield. Hence, our approach is to specify the several most-prevalent types of military vehicles in each category, to specify one or two civilian types, if any, and then to allow the user to input information on any other types available at the particular airfield under investigation.

After the user has indicated how many of each vehicle category to consider, the model run begins by characterizing a customized, aggregate, composite vehicle that represents a weighted average of the various individual vehicles for each category. For example, if an airfield has one R-9 fuel truck that carries 4,600 gallons of fuel and one R-11 that carries 5,800 gallons, with the R-9 available on average 20 hours a day and the R-11 available on average 22 hours per day, we combine them into two composite trucks that carry an average of 5,229 gallons each and are available an average of 21 hours per day. Appendix B illustrates this derivation.

CHOOSING THE BEST FUELING SYSTEM

When an airfield has several parking areas for aircraft and/or several fueling systems available, we must consider how each affects the overall capacity of the airfield and the ground time of mission aircraft. We do this by having the user prioritize the missions under consideration. Then, for the first mission, if fueling is needed, the model estimates ground times for those aircraft parked in each of the areas and fueled by the systems available there. The model selects the area and system with the shortest ground time.

If that area and system of fueling cannot accommodate all of the aircraft on that mission, the model then selects the area and system with the next-shortest ground time. Each time a servicing area or a fueling system is selected for use by mission aircraft, that area or system is assigned to those aircraft and is no longer available for other aircraft or other missions. This process continues until either (a) all of the aircraft on the mission have been allocated space and resources for servicing or (b) the capacity of the airfield has been reached.

LOADING

Loading operations involve passengers, cargoes, and aircraft. For on-loading aircraft, the operations include receiving and inventorying the cargo, operating the marshalling yard, checking the user's load plan, corralling passengers, transporting passengers and cargoes to the aircraft, loading and securing them, and then moving all equipment back to the terminal area. Off-loading aircraft involves the same operations in nearly reverse order. For cargo and passenger operations, we model the flight-line and on-aircraft tasks, assuming that sufficient personnel and equipment will also be present to handle the "backroom" activities.

Three complications arose in the modeling process. The first is that numerous transport vehicles are usually required for on-loading or off-loading the aircraft. Most aircraft that are used for military airlift can hold more than one busload of passengers or more than one k-loader³ full of cargo. Several buses or other transporters need to be available in a timely manner or the aircraft will be kept waiting while the transporters cycle back to the aerial port. This means that we again need to account for delays.

A second complication is that cargo comes in many sizes and types. It seems, however, that with not much loss of realism we can limit our discussions to four types in addition to passengers: pallets, and small oversized, larger oversized, and outsized cargoes. Representative cargoes within these categories are 463L pallets (108×88 inches, loaded to a standard height of 96 inches), Highly Mobile Multipurpose Wheeled Vehicles (HMMWVs), C-5 engines, and helicopters, respectively. Neither the C-130 nor the C-141 can carry C-5 engines. The KC-135 and KC-10 aircraft can, in theory, carry small oversized cargo, but their narrow side doors make loading and unloading anything other than palletized cargo extremely difficult. Therefore, in

¹On-loading and off-loading refer, respectively, to moving cargo onto and off of aircraft or other transporters. We often use the term loading to refer to either or both activities.

²This assumption is perhaps most vulnerable for loading operations, because the receiving, inventorying and record-keeping, and packaging and palletizing operations can be quite important. Extended versions of ACE could model these activities as well.

³A *k-loader* is a large, self-propelled apparatus that can be raised and lowered hydraulically. It has rollers that enable rapid on-loading or off-loading of palletized cargo onto or from many types of aircraft and onto or from stationary loading docks.

practice, we dismiss that configuration.⁴ Cargo-configured 747s can be loaded with oversized equipment if they have nose doors, but far more prevalent is the side-door configuration. The current version of ACE models this more-prevalent configuration, which, like the KC-135 and KC-10, is prohibitively labor-intensive to load with anything other than pallets. Table 5.1 summarizes RAND's assessment of the compatibility of aircraft and load types.

A third complication is that many aircraft carry "mixed" loads—i.e., some passengers, some pallets, and some oversized or outsized cargo. ACE counts number of passengers and pallets explicitly but considers only gross loading and handling times for other types of cargo. It allows up to three configurations per aircraft: Option A represents maximum cargo with incidental passengers; Option C represents maximum passengers with incidental cargo; and Option B represents a feasible intermediate configuration. Once users of ACE have chosen a configuration, they can analyze operations involving up to the maximum number of passengers and up to the maximum number of pallets (or their equivalent in nonpalletized cargo) associated with that option.

During contingencies, the majority of airlift cargo consists of passengers, pallets, and smaller oversized equipment, but the mix is often quite variable. The majority of cargo transported early in a deployment is *unit equipment*—typically consisting of about half passengers and half cargo, with the cargo being 75 to 80 percent rolling stock and 20 to 25 percent pallets. The major cargo transported later in the crisis is *sustainment cargo*—typically containing few passengers and with a cargo mix of about 75 to 80 percent pallets and 20 to 25 percent rolling stock. Our implementation of ACE addresses palletized cargo in greatest detail. We discuss that first, then passengers, and then other, nonpalletized cargo (NPC).

PALLETIZED CARGO

When considering load types, we focused the greatest amount of detail on palletized cargo, because we were interested in seeing the benefits of the new 60k-loader. This

Table 5.1	
Compatibility of Aircraft and Lo	oad Types

Aircraft	Pallets	Small Oversized (HMMWVs)	Large Oversized (C-5 Engines)	Outsized (Helicopters)	Passengers (PAX)
C-130	Yes	Yes	No	No	Yes
C-141	Yes	Yes	No	No	Yes
C-17	Yes	Yes	Yes	Yes	Yes
C-5	Yes	Yes	Yes	Yes	Yes
KC-135	Yes	No	No	No	Yes
KC-10	Yes	No	No	No	Yes
747	Yes	No	No	No	Yes

⁴ Oversized cargo exceeds the dimensions of a 463L pallet but is less than 1090 inches long, 117 inches wide, and 96 inches high. Air-transported cargo larger than this is called *outsized*.

vehicle not only transports more pallets than its predecessors, but also extends higher, so that commercial aircraft can be reached without additional (and notoriously fragile) wide-body elevator loaders.

Table 5.2 lists the pallet and passenger capacities of the major transport aircraft. Table 5.3 shows the capacities of major types of material-handling equipment. Military airlifters are built low to the ground, so wheeled vehicles can be driven on and off, and other cargo can be loaded using forklifts or k-loaders.

Commercial aircraft or their derivatives (such as the KC-135 and KC-10) cannot be reached by a forklift or by any but the 60k-loader. The 10k forklift, the 25k-loader, and the 40k-loader can deliver the cargo to the aircraft, but then one of the so-called wide-body elevator loaders, or WBELs, is needed to elevate the cargo to the level of the access doors.5,6

Table 5.2 Cargo Characteristics of Aircraft Pallets and Passengers with Gear

		Configuration	
Aircraft	Maximum Pallets	Mixed	Maximum Passengers (Max-Pax)
C-130	6 / 0	4 / 23	0 / 91
C-141	13 / 0	12 / 9	0 / 160
C-5	36 / 73	36 / 73	0 /343
C-17	18 / 0	9 / 51	0 / 102
KC-10	26 / 0	23 / 14	16 / 73
KC-135	7 / 0	6 / 14	0 / 65
747	42 / 10	42 / 10	0 /400

SOURCE: Visits to Air Mobility Command and its airfields. NOTE: C-5 seldom operates in max-pax configuration.

Table 5.3 Pallet Capacity of Material-Handling Equipment

ltem	Pallets
Forklift	1
25k-loader	3
40k-loader	5
60k-loader	6
Wide-body elevator loaders (assorted)	2

SOURCE: Visits to Air Mobility Command and its airfields.

NOTE: Most buses are commercial, and sizes are not standardized.

⁵WBELs include front-loading Wilsons and Cochrans and the side-/underbelly-loading TA-40. Because the 60k-loader functions as both a ground-cargo transporter and a WBEL, we include it when calculating the composite (aggregate) quantity of each class of equipment at the airfield.

⁶C-5 aircraft require especially high stairs for crew and passenger access, as do commercial derivatives. We model stairs in our aircraft-servicing model.

The differences in capacity between the aircraft and the ground vehicles are significant. For example, a C-5's full load of 36 pallets will fill six 60k-loaders, twelve 25kloaders, or 36 forklifts. If we have sufficient vehicles waiting on the ramp when the aircraft parks, it can be loaded without delay. Or, as in the previous chapter, if some of the vehicles can drive to the cargo-storage area, have their pallets off-loaded, and then drive back to the aircraft before all the pallets have been removed from the aircraft, we can get along with fewer vehicles, still without incurring any delays. Calculating the relationship between the inventory of cargo-transporting vehicles at the airfield and the capacity of the airfield represents the main function of this portion of the ACE model.7

Table 5.4 lists the tasks that loading personnel must complete when off-loading and on-loading palletized cargo. The tasks are equivalent, but in somewhat different orders, for on-loading and off-loading. Times for some tasks differ, depending on the operation. For example, on-loading pallets onto a transporter at the terminal typically requires more transporter time than off-loading pallets there, because the on-loaded pallets must be secured before the transporter can move away.

PASSENGER OPERATIONS

We had not expected passenger buses to represent a potential constraint, believing that, if worse came to worst, passengers could always walk to or from the aircraft.

Table 5.4 Palletized Cargo-Associated Tasks Contributing to Resource-Use **Times and Aircraft Ground Times**

Off-Loading	On-Loading
Off-Loading Aircraft No. 1	On-Loading Aircraft No. 1
Position and set up WBEL	Position and set up WBEL
Drive transporter to aircraft	Drive transporter to aircraft
Transfer pallets from aircraft	Transfer pallets to aircraft
Drive transporter to terminal	Drive transporter to terminal
Unload pallets at terminal	Load pallets onto transporter
Drive transporter to aircraft	Drive transporter to aircraft
Repeat until aircraft is empty	Repeat until aircraft is fuli
Off-Loading Aircraft No. 2	On-Loading Aircraft No. 2
Deliver WBEL, etc., to aircraft	Deliver WBEL, etc., to aircraft
Etc.	Etc.

⁷On the other hand, some loading activities require little or no equipment and little time. A "combat offload" consists of slowing the military airlifter on the runway or, preferably, on an apron, opening the rear door and removing the tie-down from the cargo, and then speeding the aircraft and allowing the cargo to roll freely through the rear door. However, we handle combat off-load as a mission type in our aircraftservicing module, rather than as a use of loading resources.

Tactical operations involving airdrop require additional equipment and time. In these missions (which are not modeled in this version of ACE), all the aircraft in a formation depart and return at roughly the same time, demanding the same services. Furthermore, the loading operations take longer than usual when airdrop is involved, because the cargo (especially when packed in the container-delivery system) is difficult to handle and because paratroopers move more slowly because of their bulky gear.

Such a solution turned out to be unacceptable, however, because flight-line access is restricted. Even if it were not restricted, passengers walking across airfields with gear would inevitably slow down the operation. Passenger buses, therefore, are tracked. Table 5.5 lists the tasks we model for passengers and for nonpalletized cargo.

NONPALLETIZED CARGO

Our representation of NPC operations is even simpler. We assume that all nonpalletized cargo is wheeled, and that it can either be driven or pushed to and from the aircraft without additional equipment. Once at the aircraft, vehicles can be loaded in various ways: Driving is fastest (unless the user—who may be the only party with an appropriate operator's license-cannot be located), winching is safest, and using a k-loader with "toes" to transfer the vehicle may be considered a reasonable middle ground. We asked experts for estimates of on-loading and off-loading times of different nonpalletized cargo types, allowing them their choice of method. We use those times for full loads of NPC, and portions of those times for portions of loads. We do not model the preparation of NPC for airlift or its movement to the aircraft, but could add those activities in the future.

IMPROVED ESTIMATES OF AIRFIELD CAPACITY

We used different assumptions for the three *load configurations* introduced above. Estimates of aircraft ground time associated with Option A include time for cargo operations but assume that the (limited number of) passenger operations occur simul-

Table 5.5 Passenger and NPC-Associated Tasks Contributing to Resource-Use Times and Aircraft Ground Times

Passengers	Nonpalletized Cargo
Off-Loading	Off-Loading
Off-Loading Aircraft No. 1	Off-Loading Aircraft No. 1
Prepare aircraft	Prepare aircraft
Drive bus to aircraft	Unload cargo from aircraft
Off-load passengers into bus	Off-loading Aircraft No. 2
Deliver passengers to terminal	Etc.
Unload bus at terminal	
Repeat until aircraft is empty	
Off-Loading Aircraft No. 2	
Etc.	
On-Loading	On-Loading
On-Loading Aircraft No. 1	On-Loading Aircraft No. 1
(Prepare aircraft)	Prepare aircraft
Load pax on bus at terminal	Load cargo into aircraft
Deliver pax to aircraft	On-Loading Aircraft No. 2
Load pax into aircraft	Etc.
Return bus to terminal	
Repeat until aircraft is empty	
On-Loading Aircraft No. 2	
Etc.	

taneously and are completed within the cargo times. Estimates of aircraft ground time associated with Option C include time for passenger operations (and the handling of the passengers' personal gear) but assume that the (limited number of) cargo operations can be handled simultaneously and are completed within the passenger times. Estimates of aircraft ground time associated with Option B, which may involve a substantial amount of cargo and number of passengers, include times for sequential cargo and passenger operations.

For each mission to be analyzed, the user specifies the type of aircraft, its configuration, the split of space in the cargo bay between nonpalletized and palletized cargo, and the quantities of pallets, passengers, and nonpalletized cargo to be off-loaded and on-loaded at the airfield. We model three types of nonpalletized cargo, but we allow only one of these types to be handled per loading procedure (off-load/on-load) per mission.

Table 5.6 shows how our estimates of C-17 ground times for passenger, pallet, and NPC operations vary with distance and vehicle availability. We assume that NPC cargoes are driven or towed to the aircraft, and we do not model that transport. Hence, our estimates of ground time for aircraft on-loading or off-loading NPC do not depend on distance or vehicle availability. These estimates suggest that off-loading a full load of C-5 engines from a C-17 requires a ground time of just over 3 hours.

Off-loading passengers or pallets is faster. And recall that for these cargoes, we do model vehicles and vehicle availability. Our estimates of ground time for aircraft carrying personnel do differ by distance and by vehicle availability. But note that our estimates of ground time for C-17s carrying pallets do not differ by vehicle availability, because, even with delays associated with waiting for vehicles, the off-loading times are still masked by the times required for routine servicing.

Vehicle availability depends on the operating hours and the operating rules and procedures of the airfield, as well as on the reliability and maintainability of the vehicles. Table 5.7 shows how vehicle availability—in this case, the availability of k-loaders—affects off-loading times. Information we received from AMC concerning the "up"

Table 5.6
C-17 Ground Time (in hours + minutes), by Off-Load and by Distance (in miles) from Terminals

Vehicles at the		ger Operati rom Pax Te			erations, by largo Termin		NPC
Airfield	0.25	0.50	1.00	0.25	0.50	1.00	Ops
1	1 + 53	1 + 56	2 + 04	1 + 30	1 + 30	1 + 41	3 + 09
2	1 + 31	1 + 31	1 + 35	1 + 30	1 + 30	1 + 41	3 + 09
3	1 + 31	1 + 31	1 + 32	1 + 30	1 + 30	1 + 41	3 + 09
4 or more	1 + 31	1 + 31	1 + 32	1 + 30	1 + 30	1 + 41	3 + 09

SOURCE: Expected-value estimates of ACE.

NOTE: Missions require off-load of a complete load of either passengers (using buses), pallets (using 40k-loaders), or C-5 engines (using unspecified equipment). No on-loading or fueling occurs.

Table 5.7 C-5 Times (in minutes) and Capacities (in aircraft per day), by Number of k-Loaders Available, by Hours the k-Loaders Are Available per Day, and by Distance from Ramp to Pallet-Storage Area (0.25 or 1.00 mi)

Vehicles at		ader me		raft ig Time		craft d Time		field acity
the Airfield	0.25 mi	1.00 mi	0.25 mi	1.00 mi	0.25 mi	1.00 mi	0.25 mi	1.00 m
		Vehicle a	vailability	of 2.35 ho	urs per da	у		
1	96	144	113	158	151	180	1.5	1.0
5	96	144	113	158	151	180	7.3	4.9
10	96	144	113	158	151	180	14.7	9.8
15	96	144	83	110	142	150	22.0	14.7
20	96	144	71	92	142	142	29.4	19.6
25	96	144	64	79	142	142	36.7	24.5
30	96	144	64	74	142	142	43.9	29.4
35	96	144	64	69	142	142	43.9	34.3
40	96	144	64	67	142	142	43.9	39.2
45	96	144	64	67	142	142	43.9	43.9
50	96	144	64	67	142	142	43.9	43.9
		Vehicle a	availability	of 10 hou	ırs per day	7		
1	96	144	113	158	151	180	6.3	4.2
2	96	144	113	158	151	180	12.5	8.3
3	96	144	93	126	143	158	18.8	12.5
4	96	144	79	106	142	148	25.0	16.7
5	96	144	69	90	142	142	31.3	20.8
6	96	144	64	78	142	142	37.5	25.0
7	96	144	64	74	142	142	43.8	29.2
8	96	144	64	70	142	142	43.9	33.3
9	96	144	64	67	142	142	43.9	37.5
10	96	144	64	67	142	142	43.9	41.7
11	96	144	64	67	142	142	43.9	43.9
12	96	144	64	67	142	142	43.9	43.9

SOURCE: Expected-value computations of ACE.

NOTE: All estimates assume a full load of 36 pallets off-loaded during quick-turn ground servicing. No passenger operations, loading of cargo, or fueling is required. Each k-loader is assumed to be available as indicated. Other resources, except for distance to loading facilities, are as shown in Figure 2.1 and Appendix G. Ground-power units can support 43.9 C-5s per day.

time of k-loaders and WBELs shocked us. These pieces of equipment are apparently so old and so fragile that they spend more time being worked on than working. This table contains two sets of estimates: one for k-loaders with an average availability of 2.35 hours per day, the current airfield estimate, and one showing how ground times could be reduced and capacities increased if the k-loader availability could be increased to 10 hours per day.

The estimates shown in the top portion of the table indicate the large number of transporters needed to reduce the aircraft ground time to its minimum value—15 k-loaders when the distance from the aircraft-parking ramp to the pallet-storage area is 0.25 mile and 20 k-loaders when the distance is 1 mile. But even more important is the direct effect of the downtimes on loading and airfield capacity. Because it takes 144 minutes of k-loader time to off-load an aircraft parked on the 1-mile-distant ramp, if each k-loader is really available only 141 minutes per day, then the capacity of each k-loader is less than one aircraft per day.

The estimates in the bottom portion of Table 5.7 show what the benefits of improved availability could be. Because availability appears in the numerator of the right-hand side of Eq. 2.1, any increase in availability results in a proportional increase in resource capacity. If it also decreases delay time, the increase can be augmented by a second-level effect. But, as we have seen, the reductions in times can be masked by the times required for other ground operations, and the increase in the capacity of one resource can be negated by shortages of other resources.

Engine-Running Off-Loads

We can imagine some situations for which such a premium has been placed on short ground times that aircraft-servicing personnel are instructed to bypass all ground operations except those absolutely necessary for a short off-loading stopover: block in, cargo off-load, and block out. In such circumstances, every minute saved in off-loading will result in getting the aircraft back in the air 1 minute faster. In the following chapter and in Appendix F, we describe how easily ACE can be customized to estimate aircraft ground times and airfield capacities associated with engine-running off-loads and other abbreviated stopovers.

COMPOSITING VEHICLES

As with fuel trucks, we found it practical to identify and describe the several mostprevalent types of military and commercial pallet transporters, WBELs, and passenger buses, and then allow the user to input information on any other types available at the particular airfield under investigation.

THE BEST PARKING FOR LOADING AND/OR FUELING

As discussed in Chapter Four, when an airfield has several parking areas for aircraft and/or several fueling systems available, we consider how each affects the overall capacity of the airfield. The user prioritizes the missions under consideration and then, for the first mission, the model estimates ground times for the aircraft if they were parked in each of the areas and serviced there, and selects the area with the shortest ground time. If that area cannot accommodate all of the aircraft on that mission, the model then selects the area with the next-shortest ground time. This process continues until either all aircraft for all missions are serviced or the limit of some resource is reached.

Now that we have discussed factors constraining servicing, fueling, and loading operations, we turn to ACE as a whole.

Version 2 of ACE is written in Visual Basic for Applications (VBA) and runs on a PC or Macintosh with Microsoft Excel 5 or Excel 95 and a high-resolution monitor—hardware and software now available to most analysts. The model consists of four workbooks totaling about 2.7 megabytes of data, equations, instructions, and input and output screens.

Figure 6.1 shows the general structure of ACE. The model specifies aircraft-servicing, fueling, and loading operations in detail and air-traffic control, ground control, and aircrew support operations in aggregate. The model contains three types of parameters:

- global parameters, such as aircraft and vehicle capacities, which we assume remain constant over all missions and all airfields
- airfield parameters, such as the number of ramps, their capacity, availability, etc., which usually remain constant over a number of missions
- mission parameters, such as the quantity of fuel needed and the number of pallets to be on-loaded, which differ for each mission.

Software for the ACE model, described in this report, is available on the RAND homepage at http://www.rand.org/publications/MR/MR700/ACE/.

To use ACE.

- 1. Load the ACE.XLS workbook. This loads the other workbooks as well and presents the user with the "Welcome" screen. See Figure 6.2.
- 2. Accept or adjust the global parameters, such as vehicle capacities and speeds, fuel density, and the like.
- 3. Specify or confirm the airfield parameters, such as ramps, distances, resources, availability times, and the like. Import or export a complete airfield-parameter file.

Figure 6.1—Structure of ACE

Figure 6.2—Initial Screen

- 4. Select the mode of analysis, either expected-value calculations or Monte Carlo estimation. For the Monte Carlo estimation, specify the number of iterations for which the mission set is to be evaluated.
- 5. Specify one or more missions, including aircraft type, configuration, number of aircraft, intensity and frequency of ground operations, servicing profile, and the like. Then click on one of the "evaluate" buttons.
- 6. Observe the estimates displayed on the output screen. And, if desired, review the several data-setup, computation, and tracking screens.

In this chapter, we summarize steps 3, 4, and 5. Details on these steps and descriptions of steps 2 and 3 are presented in Appendices F and G.

SPECIFYING AIRFIELD PARAMETERS

The initial ACE screen allows the user to branch to the ACE_DATA.XLS workbook to specify or confirm parameters or to select a mode of operation and immediately begin to set up missions. Choosing the parameter option causes the Parameter-Control screen to appear. See Figure 6.3.

Figure 6.3—Parameter-Control Screen

Branching is accomplished by pressing what Excel calls "button objects" and what we refer to simply as buttons. Pressing the "Review or Adjust Existing Airfield Parameters" button will cause the Airfield-Parameter Control screen to appear. This screen allows the user to branch to the several types of airfield parameters. The structure of the lower-level branches and the types of parameters they access is shown in Figure 6.4.

Examination of the individual screens will reveal just what parameters are contained where. Figure 6.5 shows, as one example, the Parking and Hydrant-Fueling Parameters screen. On this, and on all other Airfield-Parameter screens, the user is expected to enter specific airfield information. The preexisting entries or the examples shown in this report provide guidelines on the format, units, and locations for the entries.

When the airfield parameters are entered and verified, the user branches back to the "Welcome" screen of the ACE.XLS workbook and indicates whether to set up for expected-value calculations or for Monte Carlo estimations.

SELECTING THE MODE AND SPECIFYING THE ITERATIONS

When the user specifies Monte Carlo estimations, the program displays the Monte Carlo screen shown in Figure 6.6. This summarizes the computations that will follow and queries the user for the number of iterations the model is to evaluate. Control is then passed to the Mission screen, which is where the user goes directly after selecting the expected-value alternative. This screen is shown in Figure 6.7.

SETTING UP THE MISSIONS

The planner works from top to bottom and from left to right in setting up missions. ACE allows up to six missions to be set up and evaluated at once.

The Upper Menus

Mission ID. In setting up a mission, the planner first has the option of entering a new identification symbol or name for the mission. This is the only data field on the Mission screen that accepts keyboard characters, and any characters are allowed.

The remainder of the mission parameters are specified via buttons and "dropdown" objects. When clicked, buttons initiate an assigned macro or subroutine. Dropdowns contain menus from which the user can select one item.2

¹A button object initiates the operation of an assigned macro or subroutine.

²The user selects an item from the list in the dropdown by clicking the down arrow on the right side of the dropdown. Clicking the arrow causes the list of items to appear below the dropdown. The user can then select one item from the list. After the selection is made, the list disappears and the dropdown displays the selected item.

Figure 6.4—Worksheets Holding Parameters

king and	d Hydrant	-Fueling	Paramete	ers	
FPA #1	FPA #2	FPA #3	FPA #4	FPA #5	FPA #6
A	В	С			
24	24	24	0	0	0
3	8	5	0	0	0
					0
					0
	8	5	0		0
0			0	0	0
3		5		0	0
0					0
					0
0	0	0	0	0	0
0	5	0	0	0	0
					0
0	24	0	0	0	0
9.000	4.500	1.500	0	0	0
					ő
8,000	1,000	5,000	0	0	0
	A 24 3 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A B 24 24 3 8 8 0 5 5 3 8 0 5 0 5 0 0 0 0 0 0 0 5 500 0 24	A B C 24 24 24 3 8 5 3 8 5 0 5 0 3 8 5 0 5 0 3 8 5 0 5 0 0 5 0	A B C O O O O O O O O O O O O O O O O O O	A B C O O O O O O O O O O O O O O O O O O

BAND MR700-6 5

Figure 6.5—The Fuel-Parking-Area (FPA) and Hydrant-Fueling Parameters Data Screen

Number of aircraft. The user then selects the number of aircraft to be assigned to this mission. The menu displays integers from 1 to 20, then in increments of 5 and (later) 25 up to 200.

Aircraft type. The user then selects the type of aircraft to be assigned to this mission. This menu displays the names of the seven types of aircraft recognized in ACE: C-130, C-141, C-5, C-17, KC-10, KC-135, and 747. Two additional types, Cxx and Cyy, are available for customization when nonstandard aircraft need to be evaluated.

Aircraft configuration. The user then selects the configuration for the above type of aircraft assigned to this mission. The menu displays our three standard configurations: maximum passengers, maximum cargo, and mixed.

<u>Profile foreground operations</u>. The user then selects the ground-servicing profile for the aircraft assigned to this mission. The menu displays our servicing profiles: full service and quick turn.

The user then pushes the "Setup" button, which instructs ACE to locate the parameters associated with the specified aircraft, configuration, and profile, and to copy those parameters into the ACE_COMP.XLS workbook and into the lower menus in the Mission screen.

Welceme

RAND MR700-6 6 Welcome to the **Monte Carlo Module** of the Airfield Capacity Estimator This module controls the estimation of resource use times, aircraft ground times. and airfield capacities by drawing values from distributions for nitrogen servicing, oxygen servicing, repair, and (when indicated by the user) de-icing times. Estimates for each mission in a mission set are estimated in sequence. Then, if the user desires, the estimation of the parameters for the entire mission set can be iterated, 1, 2, ..., up to 500 times. Select the number of iterations: 100

Figure 6.6—The Monte Carlo Setup Screen

The Lower Menus

September 15, 1997

RAND

The user then specifies the scope and intensity of the ground-servicing operations.

Quantity of fuel. The user first selects the quantity of fuel, in pounds, to be transferred into each aircraft assigned to the mission. The menu displays 7 to 10 evenly spaced choices appropriate to the size and fuel efficiency of the selected aircraft. For example, the choices for C-17s are 0, 25,000, 50,000, 75,000, 100,000, 125,000, 150,000, and 175,000.

Fuel transfer must be isolated. The user then allows or disallows loading and repair operations to take place during fuel transfer. Selection of the "yes" option requires other operations to be suspended while fuel is being transferred into the aircraft; selection of the "No" option allows loading and repair to be conducted simultaneously with the fuel transfer.

Passenger loading. The user then indicates the number of passengers to be offloaded and/or on-loaded. The menu displays 8 to 10 evenly spaced choices appro-

	Mission #1	Mission #2	Mission #3	Mission #3 Mission #4	Mission #5	Mission #6
A: Specify aircraft characteristics						
Mission identifier (user id)	X001	X002	X003	X004	X005	000X
Number of elecreft desired per day	•	0	•	0	0	0
Aircreft type	C130	C141	CS	C17 •	×C10 ▼	747
Aircreft configuration	Cargo	Cargo	Cargo	Cergo	Cergo	Cergo
Profile for ground operations	Quick Tum	Quick Turn	Ouick Turn	Quick Turn	Outck Turn	Quick Turn
Press before proceeding:	Set up M1	Set up M2	Set up M3	Set up M4	Set up M5	Set up M6
B: Specify mission cheracteristics						
Quantity of fuel required (lbs)	50,000	125,000	300,000	150,000	300,000	300,000
Fuel transfer must be isoleted	Yas	Yes	Yas	Yas	Yes	Yes
Pax to be off-loeded	0	0	•	0	0	0
Pax to be on-loeded	0	0	•	0	0	0
Pallets to be off-loeded	8	13	38	18	28	42
Pallets to be on-loaded	0	0	•	•	•	0
Type of nonnelletized carno	(none)) (accord	(none)	(none)	(nona)	(none)
Percent to be off-loeded	(n/a)	(n/a)	(n/e)	(n/e)	(n/e)	(n/e)
Percent to be on-loaded	(n/a)	(n/a)	(n/e)	(n/e)	(n/e)	(n/a)
De-Icing required (on % of flights)	(none)	(none)	(none)	(none)	(nona)	(none)
Minimum ground time required	(none)	(none)	(euou)	(none)	(nons)	(none)
Min time between block out & block in	(none)	(none)	(none)	(none)	(none)	(none)
Beturn to	Eval M1	Eval M2	Eval M3	Eval M4	Eval M5	Eval M6
Pa		Eval 1-2	Eval 1-3	Eval 1-4	Eval 1-5	Eval 1-6
To customize mission times & freqs,	No oN	No oN	No	No	No	No

Figure 6.7—The Mission Screen

priate to the aircraft and configuration selected above. For example, the choices for C-17s are 0, 15, 30, 45, 60, 75, 90, and 102.

Pallet loading. The user then indicates the number of pallets to be off-loaded and/or on-loaded. The menus display 6 to 10 evenly spaced choices appropriate to the aircraft and configuration selected above. For example, the choices for C-17s are 0, 3, 6, 9, 12, 15, and 18.

Nonpalletized cargo. The user then specifies whether oversized and outsized cargo will be off-loaded or on-loaded, and how much. The choices here are limited substantially by previous designations of aircraft type, aircraft configuration, and pallet quantities. Some aircraft—KC-10s, KC-135s, and 747s—can carry no nonpalletized cargo; others—C-130s and C-141s—can carry small oversized cargoes but no large oversized or outsized cargoes. And when the user specifies the loading of pallets as well as NPC, the off-loading or on-loading of a partial load of pallets diminishes the possible NPC loads proportionately.

De-icing. The user then specifies whether de-icing will be needed on any of the aircraft assigned to the mission and, if so, to what percentage of those aircraft. Choices are none, 25 percent, 50 percent, 75 percent, and all flights.

Minimum ground time. The user then specifies a minimum ground time, if desired. This can be entered for any type of mission, but becomes operational only for those missions with the full-service profile. Choices are hourly increments from 0 through 24, 36, and 48.

Open time. Finally, this is where the user specifies whether to set aside some open time between aircraft for the parking spots to allow for inefficiencies in aircraft arrivals. Choices are in 10-minute intervals, from zero to 1 hour.

Then the user can initiate the evaluation of the mission and the estimation of servicing times and resource capacities by pressing the Eval button, or can branch to the ACE COMP.XLS workbook to customize the times or frequencies of any of the ground operations, by pressing the bottom-most button for the mission.³

Combinations of Missions

The Mission screen allows up to six missions at a time to be specified and evaluated. But when more than one is to be specified and evaluated, the setup should proceed, as indicated above, from top to bottom for mission 1, then from top to bottom for mission 2, etc.

Note the two rows of evaluation buttons near the bottom of the screen. Each mission has a specific evaluation button, and below that is a button allowing the sequential evaluation of several missions. That is, the user can specify mission 1, evaluate it, and then specify mission 2 and evaluate it, and so on. Or the user can specify several

³Both of these options are discussed in Appendix F.

missions and then evaluate them all by pressing the lower Eval button under the highest-numbered mission to be evaluated.

"And" Missions

The Eval button for mission 1 initializes the airfield-resource availabilities before beginning to evaluate that mission. The final step in the evaluation of that (and every) mission is to set aside the resources needed to service the (number of) aircraft associated with that mission. So the airfield resources available to service aircraft associated with mission 2 are those available at the airfield less those used in servicing aircraft associated with mission 1, and likewise for missions 3, 4, 5, and 6.

By specifying positive integers for the quantity of aircraft associated with, say, missions 1 and 2, the user can make statements such as, "this airfield can service 20 associated with mission 1 and 20 with mission 2, and have some capacity left over."

"Or" Missions

The user can also estimate the capacity of the airfield resources to support independent missions, to answer the question: What is the total capacity of this airfield to support this mission or that mission, etc.? To do this, the user specifies the missions to be evaluated but specifies that zero aircraft be associated with each mission. As the model evaluates the several missions in turn, it considers all of the airfield resources as being available to service aircraft associated with each mission.⁴

The user can analyze combinations of "and" and "or" missions by specifying the "or" missions first, with zero aircraft, and then specifying the "and" missions, each with a nonzero number of aircraft.

THE OUTPUTS

Pressing an Eval button initiates a sequence of subroutines that move parameters, perform computations, and prepare and position outputs. When those procedures have done their work, ACE presents the user with the Output screen, illustrated in Figure 6.8.

This screen has columns for each of the six possible missions, and each column has three portions. The top portion summarizes the mission specifications. The middle portion presents the estimated aircraft ground time, as well as estimates for the times associated with loading (off-loading plus on-loading) and transferring fuel. Two types of estimates are provided: average and marginal. If all aircraft associated with

⁴However, in computing residual capacities, the model considers only the service times associated with the best parking ramp—the one with the lowest aircraft service time. These zero-aircraft estimates can be significantly high if (a) the airfield has more than one ramp, (b) the missions involve fueling or the loading of pallets, and (c) the ramps differ significantly in location or fueling rates. Only "and" missions, with some positive number of aircraft requested, can force the model to compute service times for additional ramps. See below and Appendix F.

DIM	ue Computations		Medium Si	Medium Sized Airfield	Execution time (minutes) = 3.22	nutes) = 3.22
	Mission 1	Mission 2	Mission 3	Mission 4	Mission 5	Mission 6
Mission specifications						
	X001	X002	XD03	X004	X005	900X
Ission	0	0	0	0	0	
Aircraft type Aircraft configuration	Cargo	Cargo	Cargo	Cargo	KC10 Cargo	747 Cargo
	Quick Turn	Quick Turn	Quick Turn	Quick Turn	Quick Turn	Quick Turn
	Sequential	Sequential	Sequential	Sequential	Sequential	Sequential
Fuel needed (lbs) 5	20,000	125,000	300,000	150,000	300,000	300,000
	0		38 0			
cargo	(none)	(none)	(none)	(none)	(none)	(none)
NPC percent off, on (n/a)	(n/a)	(n/a) (n/a)	(n/a) (n/a)	(n/a) (n/a)	(n/a) (n/a)	(n/a) (n/a)
Mission outputs						
Capacity used (aircraft per day) Average mission times (hours, minutes)	0	0	0	0	0	0
Loading & unloading 0 *	. 0	.0 .0			.0 ,0	
Fuel transfer 0 ·	. 0	.0 ,0	.0 .0	.0 .0	.0 .0	.0 .0
9	. 0	.0 .0			.0 .0	
hours, minutes)						
loading	23.		11 14.			2. 17.
Aircraft ground time	46 -	2. 50.	4' 24"	2' 52"	4 46	4. 33
Capacities remaining:						
	23	176	27	182	25	26
20	99	37	8	88	} ম	22
	72	72	27	54	30	14
Aircraw support	50	250	250	250	250	250
	240	240	240	240	240	240
	42	42	42	38	42	42
Ground control	80	88	80	80	80	88

Figure 6.8—The Output Screen

a mission can be serviced on the same ramp, the average and marginal estimates will be the same. But if two or more ramps are needed, and transport (fuel trucks, buses, or pallet transports) is required, the estimates of the marginal servicing times will probably be longer than the estimates of the average times. If zero aircraft quantity is associated with any mission, the average times recorded for that mission will be zero.

The bottom portion of each column presents the estimates of capacity for the airfield, by function. Estimates are presented for parking, servicing, loading, aircrew support, air-traffic control, fueling, and ground control. The lowest of these capacities represents the binding constraint and is "the capacity of the airfield." All of these capacities are labeled "capacities remaining," and that is what they represent. If a mission has zero aircraft associated with it, and if it is mission 1, the capacity estimates represent the total capacity of the airfield for supporting aircraft associated with that type of mission. If a mission has zero aircraft associated with it, but one or more missions with higher priority (that is, with a lower mission number) do have quantities of aircraft associated with them, then the estimates represent the capacity of the airfield resources remaining after those higher-priority missions have been supported.

If a mission has aircraft, then the capacities reported in the bottom portion of the column represent the capacities remaining after those aircraft, and all aircraft associated with higher-priority missions, have been supported. And these capacities are represented in terms of the aircraft and servicing specified for this particular mission. If another mission is then specified, it may be more difficult or less difficult to support than the mission in question, and the capacity of those remaining resources for the latter mission may be greater or lesser.⁵

All capacity estimates are expressed in aircraft per day (of the specified type and configuration, on the specified ground-servicing profile, and with the specified mission characteristics). The top portion of the output column for a mission includes the number of aircraft per day the user desires to assign to the mission. The middle portion of the output column shows the number of aircraft that the model estimates could be assigned to the mission. If no constraints have been reached, that number will be the same as the number in the top portion. If one or more constraints have become binding, the number will represent the capacity of the airfield to support that mission using all of its resources, less those set aside for higher-priority missions. The bottom portion of the column shows the remaining capacities, if any. When the capacity of the airfield is reached, one or more of the entries in the lower portion will be zero, and the program will not attempt to evaluate any remaining missions.

Finally, the upper-right corner of the Output screen shows the elapsed time, in minutes, of the last run, whether it evaluated one mission or six missions. Currently, most evaluations of small- to medium-sized missions, with up to 20 or so aircraft,

⁵That is, capacities do not sum over missions; only times, resources, and their use sum (and decrement) over aircraft and over missions.

take approximately half to three-quarters of a minute on a 120-megahertz Macintosh and about one-quarter of a minute on a 166-megahertz PC.

Other output screens provide additional information on mission results. And the spreadsheets themselves allow further investigation of interesting or anomalous results.

The Output screen shown in Figure 6.8 summarizes the products of the expected-value computations. It also summarizes the final iteration of a Monte Carlo run. Figures 6.9 and 6.10 show the screens developed to display and summarize the multiple runs associated with the Monte Carlo analysis.

Screen 6.9 shows the "ROut" (run output) screen associated with a one-iteration, 25-aircraft, Monte Carlo mission. It lists the servicing and repair-time draws for each aircraft, shows several run and capacity indicators, identifies the least ground time-associated parking ramp, and then shows summary statistics—the mean and standard deviation—for the draws and the resulting estimates of aircraft ground time.

Figure 6.10 shows a truncated version of the "IOut" (iteration output) screen associated with a 100-iteration run of two missions—one requesting five C-17s and the second requesting five C-5s. It shows the number of aircraft accepted and the average ground times for each iteration of the mission set, the capacities remaining after each iteration, and, at the bottom, summary statistics for the iterations.⁶

⁶Here, as elsewhere, the estimates of remaining capacities are based on the last-estimated servicing times. In this case, it is the final draw (for the last aircraft) of the second mission. Portions of the ROut and IOut reruns are included as Tables S.4 and S.5 in the Summary.

RAND MR700-6.9

2 6	·		Time (in minutes) Drawn For:) Drawn For:			Quantity	Capacity	Number
4 (0)	Aircraft Number	Nitrogen Servicing	Oxygen Servicing	Repair	De-icing	Aircraft Ground Time	of Aircraft Still Needed	of Best Area	of Best Area
0 ~	-	0	0	0	0	161	24	34	8
80	2	0	0	0	0	161	23	33	2
თ	က	0	0	0	0	161	22	33	2
10	4	0	0	0	0	161	21	32	2
-	2	0	0	0	0	161	20	32	2
12	9	0	45	0	0	206	19	29	2
13	7	0	0	0	0	161	18	30	2
14	80	0	0	0	0	161	17	30	2
15	თ	0	0	0	0	161	16	29	2
16	10	0	0	0	0	161	15	29	2
17	1	0	0	80	0	161	14	28	2
18	12	0	45	0	0	206	13	24	2
6	13	0	0	80	0	161	12	26	2
20	14	0	0	0	0	161	1	25	2
21	15	0	45	0	0	206	10	21	2
22	16	15	45	0	0	221	თ	19	2
23	17	15	45	0	0	221	80	18	2
24	18	15	0	0	0	176	7	21	2
25	19	0	0	96	0	185	9	19	2
26	20	0	0	0	0	161	വ	19	2
27	21	0	0	0	0	161	4	18	2
28	22	0	45	0	0	206	က	15	2
29	23	0	45	0	0	206	2	14	2
30	24	0	0	0	0	161	-	15	2
31	25	0	0	80	0	161	0	14	2
33									
34	Average	1.80	12.60	4.80	0	177			
35	St Dev	4.97	20.62	19.18	0.00	22.57			
37									

Figure 6.9—ROut Screen Associated with 25-Aircraft Monte Carlo Run

AC AC			Other	6666	6666	6666	6666	6666	5555	000	200	66	66	66	66	8	g 8	5555	66	66	8	g 6	200	66	66	8	66	20 00	3, 8	200	000	66	66	66	6666
YS.		ations	5	8	රි	ගී	8	000	33 8	000	n 0	8 8	8	8	66	ගි	8 8	n on	8	66	ගි ම	g 8	2 0	8	8	ගී	8	30 8	38 8	200	8 6	8	8	8	8
¥		sion Evalu	Fueling	46	45	45	45	94	54 45	2 4	4 4 5 4	45	45	45	94	46	9 1	4 4	46	46	46	45	4 4	45	46	46	46	46	0 1	40	46	46	45	45	46.0
7		Capacity Remaining After Mission Evaluations	Loading	24	23	23	23	24	2 2	100	200	23	233	23	24	24	54	3 4	24	24	24	23	24	23	24	24	24	24	470	24	24	24	23	23	23.5
>		y Remainir	Svcing	0	0	0	0	0	00	00	00	00	0	0	0	0	00	> C	0	0	0	00	00	0	0	0	0	0	0	00	00	0	0	0	0.5
×		Capaci	Parking	56	22	25	25	56	52	200	3 %	25.	25	25	23	23	56	0 %	23	23	56	55	3 %	22	26	20	23	22	23	76	36	26	25	25	24.1
×		ı	١																																
>	Airfield Estimates by Iteration Aircraft Ground Time, by Mission	Mission #6	Aircraft AAGT																																
	itera on	Missic	rcraft																																
E	by I	2	ZI V																																
0	ates le, by	Mission #5	¥																																
œ	itim;	Miss	rcraft																																
0	d Es	4	۵۱ ا																																
4	rfiel	Mission #4	¥																																
0	Ai Air	Miss	Aircraft AAGT																																
Z	verag																																		
×	and A	sion #	4																																
4	petde	Mission #3	Vircra																																
×	Airfield Estimates by Ite Number of Ancraft Accepted and Average Aircraft Ground Time, by Mission	Mission #2	AAGT	252	237	247	237	267	237	207	247	237	247	247	237	237	252	252	252	237	252	237	237	247	237	237	252	252	797	157	252	252	247	237	247.6
]	of Ari	Miss	rcraft	7	ო	ო	n	0	n c	4 0	2 6	o er.) ෆ	co	m	0	C) C	20	N	7	2	m c	40	l m	2	N	0	CV (N C	20	v 0	N	n	က	2.4
E O	Number	Mission #1	AAGT A	170	161	161	170	170	173	187	161	169	164	164	173	173	170	173	176	170	182	167	188	161	179	173	161	173	0/1	170	170	170	164	173	169.8
			Aircraft	S	S	n	2	ın ı	n u	o u	ח ער) LC	2	10	S	S	ທ	ח נח	S	2	ı,	ın u	n un	2	2	2	ın ı	ın ı	nı	n u	מו כ	2	S	ro.	5.0
0			Itaration	_	2	က	4	n o	0 1	- 0	00	000	-	12	13	14	12	17	8	19	50	23	3 6	24	25	91	92	200	4 1	0 9	26	86	66	100	Average

NOTE: A "9999" indicates that resource is unlimited.

Figure 6.10—IOut Screen Associated with 100-Iteration Monte Carlo Run

CONCLUSIONS AND RECOMMENDATIONS

Our research indicates that each airfield is unique:

- · Each has unique aircraft-parking areas
- · Each has unique fueling facilities
- In general, each has a unique set of airfield resources.

If increased operations are planned, many of those resources can be augmented; however, such resources as the ramps and hydrants remain basically fixed, at least in the short run. Airfields support a variety of distinct missions, each mission involving a particular number of aircraft of a particular type and configuration, and each mission requires a particular sequencing and intensity of ground-servicing operations. Therefore, each combination of airfield and mission results in a unique expression of airfield capacity. When several missions are requested, the capacity is even more complex, depending on the needs and priorities of each mission.

We evaluate airfield capacity by relating resources to ground-servicing tasks and operations, and then by estimating resource-servicing times and aircraft ground times, using several types of data. The current implementation uses single-valued representations of resource inventories and availabilities and of many task and operation times. Better data, representing more-current, empirically derived distributions of those availabilities and times, would, of course, provide better estimates.

Nevertheless, in evaluations and comparisons made to date, ACE's estimates of airfield capacities appear to be consistent with experts' expectations. Because airfields seldom operate at full capacity in peacetime and because appropriate historical data are not available, we have not been able to compare ACE's estimates with airfields' actual maximum throughputs.

Our estimates show wide differences in times and capacities for different types of missions, for different levels of operations, and for different sets of resources. The nature of airfield operations suggests that this range of capacities is probably to be expected, and statements concerning "average" capacity—over aircraft type, mission type, or airfield type—should be viewed with skepticism.

Finally, ground-servicing operations are often structured in complex, nonlinear ways. This nonlinearity can cause small differences in resources or mission specifi-

cations to make large differences in servicing times and capacities, or to have little or no effect.

These findings, along with the knowledge gained while conceptualizing and developing the model, and the subsequent perusal of hundreds of estimates produced for different types of aircraft, airfields, and stopovers, lead to our recommendations:

- We recommend, first, that planners and analysts discontinue the use of standard MOGs and standard ground times, because (a) so many factors potentially and commonly influence airfield capacity, (b) the influence of resources on capacity is often decidedly nonlinear, and (c) models like ACE are now so user-friendly and quick to run. Instead, planners and analysts should consider carefully (a) the servicing, fueling, and loading operations needed for each mission stopping at each airfield and (b) the major ground resources available at each airfield.
- Second, because airfield-capacity estimates are important in planning future forces and future operations, and in responding to current contingencies, we recommend that the mobility community undertake near-term data-collection efforts to derive and standardize empirical distributions of times for aircraft repair and for the availability (working time) of the major pieces of groundsupport and material-handling equipment.

Efforts to validate and refine the model should continue.

NOTATION

General	
A_i, A_i	Availability of resource i
$A_{i,j}$	Availability of the jth variety of the ith type of resource
C	Capacity of the airfield
C_i	Capacity of resource i
$R_{i,} R_{i}$	Quantity of resource i
$R_{i,j}$	Quantity of the jth variety of the ith type of resource
S_i	Service time of resource i
$X_{i,j}^{c}$	Capacity of the jth variety of the ith type of resource
$X_{i,j}^{\mathrm{r, in}}$	Transfer rate (in) of the jth variety of the ith type of resource
$X_{i,j}^{\mathrm{r,out}}$	Transfer rate (out) of the jth variety of the jth type of resource
$X_{i,j}^{s}$	Speed of the jth variety of the ith type of resource
α_k	Probability of operation k being needed
β_k	Dummy variable for needing operation k
Servicing	
a, b, and c	Subscripts representing the servicing intervals during which operations can be performed concurrently
a/c	Aircraft
AST	Aircraft-servicing time
AGT	Aircraft ground time
BI	Block-in time
BO	Block-out time
DI	De-icing time
$D_{\rm c}$	Off-load cargo time
D_{p}	Off-load personnel time

f, t	Superscripts, referring to the "full-service" and "quick-turn" ground-servicing profiles
F_1	Pre-fuel time
F_2	Transfer-fuel time
F_3	Post-fuel time
$G^{\mathfrak{l}}, G^{\mathfrak{t}}$	General-servicing time
GPU	Ground-power unit
$I_1^{ m f}$	Inspection, post-flight, time
I_2^{f}	Inspection, pre-flight, time
I^{t}	Inspection, through-flight, time
$M^{\rm f}$, $M^{\rm t}$	Maintenance, or repair, time
N^{f} , N^{t}	Nitrogen-servicing time
O^{f}, O^{t}	Oxygen-servicing time
OT	Open time
p	Subscript for passengers
P	Subscript for parking area
$T_{k,j,t}$	Time, where k represents the servicing resources, j indexes over the ground-servicing operations, and i indicates the type of aircraft assigned to the mission
U_{c}	On-load cargo time
U_{p}	On-load personnel time
Fueling	
FPA	Superscript for fuel parking area
$T_{\rm h,\ drive}^{\rm F}$	Time to drive the hydrant-service vehicle (HSV) to the aircraft
$T_{ m h,\ hookup}^{ m F}$	Time to set up the aircraft and HSV for fueling
$T_{ m h, transfer}^{ m F}$	Time to transfer fuel into the aircraft
T _{h, unhook}	Time to secure aircraft and HSV from fueling
T _{t, drive}	Time to drive fuel truck from fill stand to aircraft
$T_{\rm t,\ hookup}^{ m F}$	Time to position and hook up truck to aircraft
$T_{\mathrm{t, refill}}^{\mathrm{F}}$	Time to fill truck at fill stand
$T_{\rm t, \ secure}^{\rm F}$	Time to secure aircraft and truck from fueling
T _{t, transfer}	Time to transfer fuel from one truck to an aircraft
T _{t, unhook}	Time to unhook and move truck from aircraft

X _{h, transfer rate}	Effective transfer rate into aircraft for hydrant fueling
X ^F _{t, at once}	Number of trucks that can effectively pump fuel into the aircraft at the same time
$X_{\mathrm{t, avail}}^{\mathrm{F}}$	Estimate of trucks available for servicing each aircraft
$X_{\rm t,\ loads}^{\rm F}$	Number of truckloads of fuel required
X ^F _{t, transfer rate}	Effective transfer rate into aircraft for truck fueling
Loading	
T _{b, set up}	Time required for setting up aircraft before on-loading or off-loading of personnel
$T_{\rm c, a/c, d}^{\rm L}$	Time to off-load the transporter with pallets from the aircraft
T _{c, a/c, u}	Time to on-load pallets from the transporter to the aircraft
$T_{\rm c,\ n,\ set\ up}^{ m L}$	Time required for setting up aircraft before on-loading or off-loading of nonpalletized cargo
$T_{\rm c,\ p,\ set\ up}^{ m L}$	Time required for setting up aircraft before on-loading or off-loading of pallets
T _{c, term, d}	Time to off-load pallets from the transporter at the terminal
T _{c, term, u}	Time to on-load the transporter with pallets at the terminal
T _{set up}	Time required for setting up aircraft before any on-loading or off-loading may commence
$X_{\mathrm{c,\ loads,\ down}}^{\mathrm{L}}$	Number of transporter loads of cargo to be off-loaded
X _{c, loads, up}	Number of transporter loads of cargo to be on-loaded
WBEL	Subscript for wide-body elevator loader

NOTE: Athough the words used for loading in this report are *off-loading* and *on-loading*, we use terms D (for *downloading*) and U (for *uploading*), respectively, to avoid confusion of *on* and *off* with the O for *oxygen servicing*. Table C.1 contains terms for each of 17 operations.

DETAILS OF THE APPROACH

The basic relationship between airfield resources and the airfield's capacity is taken to be

$$C = \operatorname{Min} (R_i * A_i / S_i) \quad \text{over } i = 1, ..., n$$
(B.1)

where C stands for the capacity of the resources at the airfield to service aircraft (capacity is expressed as the number of aircraft of a particular type requiring a particular set of services that can be performed at the airfield in one day), R_l represents the quantity of a particular resource, A_l represents the hours per day that the resource is available, and S_l stands for the time required of that resource in servicing one aircraft. The user inputs information on the resources and their availability, and on the tasks that must be performed to support a particular mission. The model estimates the service times associated with those tasks and resources, and then estimates the number of aircraft the airfield and its resources can support in a day.

We estimate airfield capacity in three steps:

- First, we calculate the total service time available for each resource considered—
 i.e., the number of units of the resource present (e.g., the number of fuel trucks or
 k-loaders) times the average amount of time each unit is available per day.
- Second, we calculate the time needed from each resource to service each type of mission to be included in the day's throughput for the base. These times depend on the type of aircraft; the types and amounts of cargo to be handled, if any; the number of passengers to be on-loaded and off-loaded, if any; the amount of fuel to be loaded, if any; and the types of repair or other services (e.g., liquid oxygen or de-icing) to be provided, if any.
- Third (and repetitively), in proportion to the service time needed for a particular mission type, we decrease the total service time available from each resource. For example, if the airfield accommodates one type of C-141 mission that takes 3 hours of k-loader time, and if 10 such missions are to be included in the day's throughput, then 30 hours of k-loader time is subtracted from the total number of k-loader hours available that day. This step can be repeated at will, adding more missions until the available time of one or more of the airfield's resources is exhausted.

While this approach is quite simple in concept, it is somewhat more complex to accomplish in practice. For example, the service times calculated in the second step can depend on (a) where aircraft are parked (e.g., affecting the amount of k-loader time spent driving between aircraft and the aerial-port area); (b) the cargo on-loading/off-loading times affect the time that crew chiefs (aircraft-servicing specialists) spend at the aircraft; and (c) mission-specific requirements for sequential or concurrent accomplishment of some tasks (e.g., fueling and cargo on-loading/off-loading) affect aircraft ground times and, hence, consumption of available parking space.

The following examples illustrate the basic methods of handling such interrelationships.

MULTIPLE RESOURCES

Suppose we have only two types of resources, each of which performs one task on an aircraft, and suppose that one task must be completed before the other can be started. Then

$$C = \begin{cases} C_1 = R_1 & * A_1 / S_1 \\ C_2 = R_2 & * A_2 / S_2 \\ C_P = R_P & * A_P / (S_1 + S_2) \end{cases}$$
(B.2)

where the subscripts refer to the different resources. C_1 is the capacity of the first resource, expressed in the number of aircraft it can service per day, C_2 is the capacity of the second resource, and C_P expresses what we call the "parking capacity." Each aircraft serviced at the airfield uses resource 1 for S_1 minutes, it uses resource 2 for S_2 minutes, and it must remain on the ground, taking up space and time, for $S_1 + S_2$ minutes. This final term represents the heart of our modeling approach.

As a second example, suppose we need the same two resources working on the aircraft, but they can perform their tasks *concurrently*. Then

$$C = Min \begin{cases} C_1 = R_1 * A_1 / S_1 \\ C_2 = R_2 * A_2 / S_2 \\ C_P = R_P * A_P / Max(S_1, S_2) \end{cases}$$
(B.3)

Note that the longer of the two tasks represents the parking time, or ground time, rather than the sum of the two tasks, and that only the parking equation differs according to whether the tasks performed by the two types of resources can be performed concurrently or must be accomplished sequentially.

MULTIPLE USES

Now suppose we have only one type of resource, but that it must perform two distinct tasks on each aircraft. Consider the capacity of a single resource, such as a

ground-power unit (GPU) that supplies electrical current to operate both support equipment and some subsystems of the aircraft as it sits at the airfield. Suppose each aircraft requires two servicing operations, that each operation takes a set amount of time, and that each requires that a GPU be supporting the aircraft. If the operations are performed concurrently, then the time the GPU is needed is equal to the time of the longer operation:

$$C_{\text{GPU}} = R_{\text{GPU}} * A_{\text{GPU}} / \text{Max}(S_{\text{GPU},a}, S_{\text{GPU},b})$$
 (B.4)

But if the operations must be performed sequentially, the service time of the GPU is the sum of the two service times. That is,

$$C_{\text{GPU}} = R_{\text{GPU}} * A_{\text{GPU}} / (S_{\text{GPU,a}} + S_{\text{GPU,b}})$$
(B.5)

Appendix C details the operations, and the protocols for their sequencing, that we have incorporated into ACE.

MULTIPLE PARKING AREAS

Now consider some resource that cannot perform two services at once—such as manpower—and two parking areas. And assume that the manpower can be allocated among the work in either parking area, but that the parking or ramp space is specific to each area and cannot be moved. To determine the maximum capacity of the airfield for this case, we must allocate the manpower between the two parking areas in some optimal manner. To do so, we first estimate the aircraft ground time that would be required if the aircraft were serviced in each parking area. Call these estimates S_P^1 and S_P^2 .

We choose the parking area with the shortest S_P^i , call it \hat{S}_P , to utilize first. Then we compute the capacity of that area, looking at both the parking and the manpower resources:

$$\hat{C} = Min \begin{cases} \hat{C}_{m} = R_{m} & * A_{m} / \hat{S}_{m} \\ \hat{C}_{p} = \hat{R}_{p} & * \hat{A}_{p} / \hat{S}_{p} \end{cases}$$
(B.6)

If this capacity is limited by the manpower resource, then \hat{C} represents the capacity of the entire airfield. But if all of the manpower is not being used in that parking area, then we must calculate an adjusted, or marginal, capacity for the other area, given that the more-efficient area is already being used to capacity.

Assume for this example that area 1 has the higher capacity and that that capacity is limited by parking rather than by manpower. Then the amount of the manpower resource-time used in area 1 is $C_p^1 * S_m^1$, and we can express the combined capacity of areas 1 and 2 as

$$C = C_{P}^{1} + Min \begin{cases} C_{m}^{2} = \left[\left(R_{m} * A_{m} \right) - \left(C_{P}^{1} * S_{m}^{1} \right) \right] / S_{m}^{2} \\ C_{P}^{2} = R_{P}^{2} * A_{P}^{2} / S_{P}^{2} \end{cases}$$
(B.7)

MULTIPLE MISSIONS

The final example in this appendix illustrates how we deal with airfields servicing aircraft engaged in different missions. To keep it simple, we assume that the airfield contains only one type of resource and one parking area, and that the resource performs only one operation on each aircraft. Say the operation is fueling, and suppose that aircraft on one mission are flying farther or simply require more fuel than aircraft on the other mission. As a result, the service times will differ. We also ignore parking in this example. The subscripts now designate the mission types.

If the airfield were servicing only aircraft engaged in the first type of mission, we could express its capacity as

$$C_1 = R * A / S_1 \tag{B.8}$$

And if it were servicing only aircraft engaged in the second type of mission, we could express the capacity as

$$C_2 = R * A / S_2 \tag{B.9}$$

When the airfield services aircraft engaged in both types of missions we have the expanded equation set

$$C_1 = R * A_1 / S_1$$

 $C_2 = R * A_2 / S_2$ (B.10)
 $A = A_1 + A_2$

where A_1 and A_2 represent the portions of the resource's total availability A (the work time of the resource) devoted to each of the mission types. This problem involves apportioning that availability in order to calculate capacity.

Capacity now is not a unique quantity; it depends on the allocation of the availability A to mission 1 as opposed to mission $2.^1$ Our approach is to require deployment planners (the model's users) to sequentially allocate the availability to mission types. That is, first analyze mission type 1, solving the first equation (in Eq. B.10) for C_1 , the maximum number of aircraft engaged in mission type 1 that the airfield can service in one day. Then actually allocate a portion of the availability of the airfield resource against that mission type. That is, say "Let's assume we will send \overline{C}_1 of mission-type-1 aircraft (where $\overline{C}_1 \leq C_1$ and \overline{C}_1 is a positive integer) through the airfield on the day in question." That reduces the resource time available for the second

¹We have four unknowns in three equations.

mission to $R * A - \overline{C}_1 * S_1$. Then investigate how many aircraft engaged in mission type 2 the airfield can (still) handle. That is,

$$C_2 = \left[\left(\mathbb{R} * A \right) - \left(\overline{C}_1 * S_1 \right) \right] / S_2 \tag{B.11}$$

where $\overline{C}_1 * S_1$ represents the portion of the resource time, in minutes per day, allocated to aircraft engaged in mission type 1. If we consider n mission types, this procedure generalizes to

$$C_{n} = \left[\left(R * A \right) - \left(\overline{C}_{1} * S_{1} \right) - \dots - \left(\overline{C}_{n-1} * S_{n-1} \right) \right] / S_{n}$$
 (B.12)

EQUIPMENT COMPOSITING

When we modeled fuel trucks, pallet transporters, wide-body elevator loaders (WBELs), and passenger buses, we quickly learned that many varieties of each existed, each with differing capacities, speeds, and reliabilities. And we quickly learned that we could not expect to anticipate or prespecify the types that might be in inventory at any particular airfield. Hence, our approach is to specify the several mostprevalent types of military vehicles in each category, to specify one or two civilian types if such exist, and then to allow the user to input information on any other types available at the particular airfield under investigation.

After the user has specified the quantity of the predefined types and the specifications of the other types, the model run begins with computations that aggregate the available vehicles into a normalized quantity of a customized, aggregate, composite vehicle.

That is, if an airfield has one 25k-loader that carries 3 pallets and one 40k-loader that carries 5 pallets, with the 25k-loader available, on average, 20 hours per day and the 40k-loader available, on average, 10 hours per day, we combine them into two composite transporters that carry 3.67 pallets and that are available 15 hours per day.

Formally, we have

$$R_{\mathbf{i}} = \sum_{j} R_{\mathbf{i}, j} \tag{B.13}$$

for the quantity of the ith composite resource, where R_{i, j} represents the quantity of the jth variety of the ith type of resource. For the availability of the ith composite resource, we have

$$A_{i} = \sum_{j} (R_{i,j} * A_{i,j}) / R_{i}$$
 (B.14)

where $A_{i,j}$ represents the availability of the *j*th variety of the ith type of resource. We have

$$X_{i}^{s} = \sum_{j} \left(R_{i,j} * A_{i,j} * X_{i,j}^{s} \right) / \left(R_{i} * A_{i} \right)$$
(B.15)

for the speed of the ith composite resource, where $X_{i,j}^s$ represents the speed of the *j*th variety of the ith type of resource. For capacity of the ith resource, we have

$$X_{i}^{c} = \sum_{j} \left(R_{i,j} * A_{i,j} * X_{i,j}^{c} \right) / \left(R_{i} * A_{i} \right)$$
(B.16)

where $X_{i,j}^c$ represents the capacity of the *j*th variety of the ith type of resource. For the pumping (or transferring-out) rate of the ith composite resource, we have

$$X_{i}^{r, \text{ out}} = \sum_{j} \left(R_{i,j} * A_{i,j} * X_{i,j}^{r, \text{ out}} \right) / \left(R_{i} * A_{i} \right)$$
 (B.17)

where $X_{i,j}^{r, \text{ out}}$ represents the transfer rate out of the *j*th variety of the ith type of resource. And, for the receiving rate of the ith composite resource, we have

$$X_{i}^{r, \text{ in}} = \sum_{j} \left(R_{i, j} * A_{i, j} * X_{i, j}^{r, \text{ in}} \right) / \left(R_{i} * A_{i} \right)$$
(B.18)

where $X_{i,j}^{r, in}$ represents the transfer rate into the jth variety of the ith type of resource.

SERVICING EQUATIONS

ACE estimates airfield capacity based on the operations performed on an aircraft from the moment it is marshalled into parking until it is marshalled out. This appendix continues the definition of those operations, the resources required in performing them, and the logic governing the sequencing of the operations. The aircraft-servicing module aggregates the times required for all ground operations, including the times estimated in the fueling and loading modules, which we discuss in Appendices D and E, and identifies which resource constrains the airfield's overall capacity.

Table C.1 lists all the ground operations typically performed on cargo-carrying aircraft. The aircraft-servicing module determines airfield capacity by identifying the operations performed and the corresponding types and amounts of resources required by each aircraft. The occurrence, timing, duration, and concurrency of operations depend on the mission profile, the user's detailed specification of the mission, and on the seven conventions in Table 3.3. We model two mission profiles. The longer, or "full-service," stopover includes post- and pre-flight inspections, several types of servicing, some maintenance (repair) actions, and a minimum ground time to account for scheduling delays, aircrew-rest requirements, or other ground-delay considerations. The shorter, or "quick-turn," stopover entails only a single inspection and typically includes fewer and shorter servicing and repair actions.²

We can classify the ground operations into three not mutually exclusive sets. One set includes BI, F_1 , F_2 , F_3 , D_p , D_c , U_c , U_p , and BO, and depends on mission parameters—whether and how much fuel is required, whether and how much cargo and passengers are to be off-loaded, whether de-icing is required or not—but not on the mission profile—whether it is a full-service or a quick-turn stopover. That is, we assume it takes the same amount of time to taxi and park an aircraft, to fuel it, to

¹By setting specific operations' times to zero, we model austere airfields, where not all of the operations are performed.

²For example, although the duration of the average oxygen service is generally independent of mission specification, the number of aircraft requiring this service typically increases for flights with extended ground time. Likewise, aircrews seem less inclined to submit write-ups for short servicing stops, and repairers have greater opportunity to address broken but not flight-critical items during extended servicing. So one would expect the frequency and duration of repair to be greater for aircraft in the extended-service profile than for those in the through-flight profile.

Table C.1
Aircraft-Servicing Operations and Notation

Operation	Definition	Full Service	Quick Turn
Block in	For the parking resource, represents the period beginning with the initiation of marshalling the aircraft into parking and ending with engine shutdown. With respect to the personnel and Aerospace Ground Equipment (AGE) resources, adds the actions of preparing the parking spot for block in, as well as those of securing the aircraft after engine shutdown.	BI	BI
Inspections			
Post-flight	Standard through-flight inspection given to aircraft on brief layover. Performed shortly after engine shutdown.	I_1^{f}	
Pre-flight	Standard post-flight inspection given to aircraft on extended layover. Performed shortly after engine shutdown but before the aircraft is secured; first of two inspections rendered such aircraft.	I_2^{f}	
Through-flight	Standard pre-flight inspection for aircraft on extended layover. Performed shortly after unsecuring the aircraft but before engine start, and is the last of two inspections rendered such aircraft (see also post-flight).		It
Servicing General	Aggregates all remaining service actions unaccounted for	$G^{\mathbf{f}}$	Gt
General	by the other service (or inspection) operations.		
Nitrogen	Servicing the aircraft with nitrogen.	Nf Of	Nt Ot
Oxygen	Servicing the aircraft with oxygen.	O,	O.
Fueling Pre-fueling	Actions required to prepare an aircraft for refueling.	F_1	F_1
Fuel transfer	Active fuel-transfer period as determined by the fuel module (excluding the set-up and secure times of the petroleum, oil, and lubricants [POL] personnel).	F_2	F ₂
Post-fueling	Actions required to secure the aircraft after fueling.	F_3	F_3
Loading			
Off-load pax	Actions required to safely off-load passengers	$D_{\mathbf{p}}$	D_{p}
Off-load cargo	Actions required to off-load cargo	D_{c}	$D_{\rm c}$
On-load cargo	Actions required to on-load cargo	$U_{\rm c}$	$U_{\rm c}$
On-load pax	Actions required to safely on-load passengers	U_{p}	U_{p}
De-icing	Actions of typical de-icing service (i.e., comprehensive removal of light snow and ice). Includes the time personnel and AGE are dedicated to preparing for and securing from deicing the aircraft.	DI	DI
Repair	Actions collectively representative of both preventative and restorative maintenance.	M^{f}	Μ ^t
Block out	For the parking resource, represents the period beginning with the initiation of engine start and ending when the aircraft is marshalled out of parking. With respect to the personnel and AGE resources, adds the actions of preparing for engine start, as well as those of securing the parking spot after block out.	ВО	ВО

RANDMR700-T-C.1

NOTE: Although the words used for loading in this report are off-loading and on-loading, we use terms D (for downloading) and U (for uploading) to avoid confusion of on and off with the O for oxygen servicing.

unload its cargo, etc., whether the aircraft is in a quick-turn or slower-turn mode. A second set of operations (including the Is, the Gs, the Ns, the Os, and the Ms) does depend on the type of mission. We assume these operations take longer—because more tasks are accomplished—during full-service stops. A third set of operations (the Ns, the O, and the Ms) is not required on every mission. We assume these operations are needed only on a percentage of the stopovers, a percentage that can differ for the two mission profiles.

THE EXPECTED VALUE OF AIRCRAFT GROUND TIME

Our ground service includes four operations that are not needed on every aircraft associated with the mission. These are nitrogen servicing, oxygen servicing, repair, and de-icing. We assume they are needed only on a certain percentage (α_1 , α_2 , α_3 , and α_4 , respectively) of the aircraft, where α_1 , α_2 , and α_3 are global variables specific to each type of aircraft, and α_4 is a mission variable specified by the user.

Because the aircraft-ground-time-estimating equation, the other resource-use equations, and the capacity equations themselves are nonlinear, we must evaluate them carefully to ensure that they at least approximate the expected value of the combined operations. To do this, we use Eq. C.1 to normalize and evaluate the aircraft-groundtime equation. We use similarly structured equations, but without the minimum ground-time term, to evaluate the other resource-use times:

$$AGT = Max \begin{cases} \sum_{\beta_{1}=0}^{1} \sum_{\beta_{2}=0}^{1} \sum_{\beta_{3}=0}^{1} \sum_{\beta_{4}=0}^{1} \prod_{l=1}^{4} \left\{ \begin{bmatrix} 1-\beta_{l}+(2\beta_{l}-1)\alpha_{l} \\ *AST(\beta_{1},\beta_{2},\beta_{3},\beta_{4}) \end{bmatrix} \right\} \\ *Minimum Ground Time \end{cases}$$
 (C.1)

where the β_k are binary toggles having values of one or zero, corresponding to the occurrence and nonoccurrence of the four uncertain operations.³

EQUATIONS FOR THE MONTE CARLO ANALYSES

The equations for the Monte Carlo estimates are more straightforward, because here we draw random numbers for each probabilistic variable for each aircraft; so, combinations and convolutions such as Eq. C.1 are not necessary. The equation simplifies to

³Equation C.1 represents the summation of 16 different equations to account for the 2⁴ possible permutations as a result of the four probabilistic operations: oxygen service, nitrogen service, repair, and deicing.

$$AGT = Max \begin{cases} AST \\ Minimum Ground Time \end{cases}$$
 (C.1.1)

with similar equations for the other use times. More-sophisticated control of the iterations is necessary, and that will be discussed in Appendix F.

EQUATIONS FOR THE FULL-SERVICE PROFILE

Using the notation of Table C.1 and the conventions of Table 3.3, we express the ground-time equation for an aircraft undergoing a full-service mission profile as

$$AST^{f} = BI + Max \begin{cases} I_{1}^{f} + G^{f} + F_{1} \\ D_{p} + D_{c} \\ M_{a}^{f} \end{cases} + F_{2}$$

$$+ Max \begin{cases} F_{3} + \beta_{1}N^{f} \\ M_{b}^{f} \end{cases} + \beta_{2}O^{f}$$

$$+ Max \begin{cases} U_{c} + U_{p} \\ M_{c}^{f} \end{cases} + I_{2}^{f} + \beta_{4}DI + BO$$
(C.2)

Equation C.2 reflects the conventions of performing recovery, fuel transfer, oxygen service, de-icing, and launch in isolation, and the conventions that determine when the other operations are performed. Since this expression is for a longer stop, the full-service profile, we also specify that passengers be off-loaded before the cargo is off-loaded and that passengers be on-loaded after the cargo is on-loaded. And we specify that the pre-flight inspection will not begin until all other operations, except possibly for de-icing, have been completed.

We allow for repair to be conducted concurrently with all operations that have not been declared isolated. And we do not require that repair be completed before other operations can begin. We allow repair to continue, as necessary, along with other non-isolated operations.

We define the possible repair segments as

$$M_{a}^{f} = Min \begin{cases} Max \left\{ I_{1}^{f} + G^{f} + F_{1} \right\} \\ D_{p} + D_{c} \end{cases}$$

$$(C.2.1)$$

$$M_{b}^{f} = Min \begin{cases} F_{3} + \beta_{1} N^{f} \\ \beta_{3} M^{f} - M_{a}^{f} \end{cases}$$
 (C.2.2)

and

$$M_{\rm c}^{\rm f} = \beta_3 M^{\rm f} - M_{\rm a}^{\rm f} - M_{\rm b}^{\rm f}$$
 (C.2.3)

where the a, b, and c subscripts refer to the three working intervals that were illustrated in Figure 3.1. With these specifications, the repair does not unnecessarily extend the a or b block of common servicing time. The c block may be extended if repair turns out to be the long-duration item.

EQUATIONS FOR THE QUICK-TURN PROFILES

Quick turns are less time-consuming than full-service stops. They are usually performed at enroute or off-loading airfields. We have modeled two versions: one in which fuel transfer is isolated, as it always is in the full-service profile, and one in which ground time can be shortened even more by combining fuel transfer with the loading and repair operations.

In these quick turns, we allow not only those repairs that might be needed but also the general and nitrogen servicing and the cargo off-loading and on-loading to be interrupted for fuel transfer (when concurrency is not allowed) and for oxygen servicing (when it is needed). Our equations specifying the component times for these operations allow for shortest-possible ground times.

And, as noted above, if the user specifies that any of the operations are not to be performed for a specific mission, then the times for those operations become zero in the ground-time (and resource-use-time) calculations for those missions.

Quick-Turn with Fuel Transfer Isolated

For the quick turn with fueling isolated, the formulation is

$$AST^{t} = BI + Max \begin{cases} I_{1}^{t} + (G_{a}^{t} + N_{a}^{t}) + F_{1} \\ D_{p} \\ D_{ca} + U_{ca} \\ M_{a}^{t} \end{cases} + F_{2}$$

$$+ Max \begin{cases} F_{3} + (G_{b}^{t} + N_{b}^{t}) \\ D_{cb} + U_{cb} \\ M_{b}^{t} \end{cases} + \beta_{2}O^{t}$$

$$+ Max \begin{cases} (G_{c}^{t} + N_{c}^{t}) \\ U_{p} \\ D_{cc} + U_{cc} \\ M^{t} \end{cases} + \beta_{4}DI + BO$$

$$(G.3)$$

In this shorter stop, we require only one inspection and we allow the off-loading and the on-loading of passengers and cargo to take place simultaneously. We also allow the nitrogen servicing and the handling of cargo to be spread over the three segments of ground time.

We represent the component times of the general-servicing and nitrogen-servicing operations as

$$G_{a}^{t} + N_{a}^{t} = \text{Max} \begin{cases} Min \begin{cases} D_{p} - (I_{1}^{t} + F_{1}) \\ (G^{t} + \beta_{1}N^{t}) \end{cases} \end{cases}$$
 (C.3.1)

(C.3)

$$G_{\rm b}^{\rm t} + N_{\rm b}^{\rm t} = 0 \tag{C.3.2}$$

and

$$G_{c}^{t} + N_{c}^{t} = G^{t} + \beta_{1}N^{t} - \left(G_{a}^{t} + N_{a}^{t}\right) - \left(G_{b}^{t} + N_{b}^{t}\right)$$
 (C.3.3)

We represent the component times of the repair operation as

$$M_{\mathbf{a}}^{t} = \operatorname{Min} \begin{cases} \operatorname{Max} \left\{ I_{1}^{t} + \left(G_{\mathbf{a}}^{t} + N_{\mathbf{a}}^{t} \right) + F_{1} \\ D_{\mathbf{p}} \\ \beta_{3} M^{t} \right\} \end{cases}$$
 (C.3.4)

$$M_{\rm b}^{\rm t} = \operatorname{Min} \begin{cases} F_3 \\ \left(\beta_3 M^{\rm t} - M_{\rm a}^{\rm t}\right) \end{cases} \tag{C.3.5}$$

and

$$M_{c}^{t} = \beta_{3} M^{t} - M_{a}^{t} - M_{b}^{t}$$
 (C.3.6)

We represent the component times of the cargo-off-loading operations as

$$D_{\text{ca}} = \text{Min} \begin{cases} Max \begin{cases} I_1^t + \left(G_a^t + N_a^t\right) + F_1 \\ D_p \end{cases} \\ D_c \end{cases}$$
 (C.3.7)

$$D_{\rm cb} = \operatorname{Min} \begin{cases} F_3 \\ \left(D_{\rm c} - D_{\rm ca}\right) \end{cases} \tag{C.3.8}$$

and

$$D_{\rm cc} = D_{\rm c} - D_{\rm ca} - D_{\rm cb} \tag{C.3.9}$$

And we represent the component times of the cargo-on-loading operations as

$$U_{ca} = Min \begin{cases} Max \begin{cases} I_1^t + (G_a^t + N_a^t) + F_1 \\ D_p \end{cases} - D_{ca}$$

$$(C.3.10)$$

$$U_{cb} = Min \begin{cases} F_3 - D_{cb} \\ U_c - U_{ca} \end{cases}$$
 (C.3.11)

and

$$U_{\rm cc} = U_{\rm c} - U_{\rm ca} - U_{\rm cb} \tag{C.3.12}$$

Quick-Turn with Concurrent Fuel Transfer

This case is very similar to the isolated fuel-transfer case, but

$$AST_{c}^{t} = BI + Max \begin{cases} I_{1}^{t} + F_{1} + F_{2} + F_{3} + (G_{a}^{t} + N_{a}^{t}) \\ D_{p} \\ D_{ca} + U_{ca} \\ M_{a}^{t} \end{cases}$$

$$+ \beta_2 O^{t} + \text{Max} \begin{cases} G_c^{t} + N_c^{t} \\ U_p \\ D_{cc} + U_{cc} \\ M_c^{t} \end{cases} + \beta_4 DI + BO$$
 (C.4)

We represent the component times of the general-servicing and nitrogen-servicing operations as

$$G_{a}^{t} + N_{a}^{t} = \text{Max} \begin{cases} Min \begin{cases} D_{p} - (I_{1}^{t} + F_{1} + F_{2} + F_{3}) \\ G^{t} + \beta_{1}N^{t} \end{cases} \end{cases}$$
 (C.4.1)

$$G_{\rm b}^{\rm t} + N_{\rm b}^{\rm t} = 0 \tag{C.4.2}$$

and

$$G_{c}^{t} + N_{c}^{t} = (G^{t} + \beta_{1}N^{t}) - (G_{a}^{t} + N_{a}^{t}) - (G_{b}^{t} + N_{b}^{t})$$
 (C.4.3)

We represent the component times of the repair operation as

$$M_{a}^{t} = Min \begin{cases} Max \begin{cases} I_{1}^{t} + F_{1} + F_{2} + F_{3} + (G_{a}^{t} + N_{a}^{t}) \\ D_{p} \end{cases}$$

$$(C.4.4)$$

$$\beta_{3}M^{t}$$

$$M_{\rm b}^{\rm t} = 0 \tag{C.4.5}$$

and

$$M_{c}^{t} = \beta_{3}M^{t} - M_{a}^{t} - M_{b}^{t}$$
 (C.4.6)

We represent the component times of the cargo-off-loading operations as

$$D_{\text{ca}} = \text{Min} \begin{cases} Max \begin{cases} I_1^t + F_1 + F_2 + F_3 + (G_a^t + N_a^t) \\ D_p \end{cases} \\ D_c \end{cases}$$
 (C.4.7)

$$D_{\rm cb} = 0 \tag{C.4.8}$$

and

$$D_{cc} = D_c - D_{ca} - D_{cb} (C.4.9)$$

And we represent the component times of the cargo-on-loading operations as

$$U_{ca} = Min \begin{cases} Max \begin{cases} I_1^t + F_1 + F_2 + F_3 + (G_a^t + N_a^t) \\ D_p \end{cases} - D_{ca}$$

$$(C.4.10)$$

$$U_{\rm cb} = 0 \tag{C.4.11}$$

and

$$U_{cc} = U_c - U_{ca} - U_{cb} (C.4.12)$$

SERVICING RESOURCES AND THEIR CAPACITIES

The categories of resources considered include parking, servicing teams, and Aerospace Ground Equipment; a complete listing appears in Table 2.3. We calculate the time required of each resource in servicing one mission aircraft by applying standard factors for each ground operation:

$$S_k = \sum_{i=1}^{16} T_{k, j, i} \tag{C.5}$$

where k represents the servicing resource, j indexes over the ground-servicing operations, and i indicates the type of aircraft assigned to the mission.

FUELING EQUATIONS

The equations describing fueling operations and fueling-resource-use times can be divided into three blocks: those concerning hydrant fueling, those concerning truck fueling, and those concerning bulk fuel storage, resupply, and the aggregate fueling capacity of the airfield.

We first discuss each case as if there were only one parking ramp at the airfield, and as if that ramp had only one form of fueling. Then we generalize to many ramps and to dual forms of fueling.

HYDRANT-FUELING EQUATIONS

Hydrant fueling involves moving a hydrant-service vehicle (HSV) to the aircraft; attaching the HSV to the aircraft and the hydrant system, and performing several safety checks; transferring fuel through the hydrant and HSV and into the aircraft; and disconnecting and securing the HSV and hydrant.¹

Service Times of Hydrant-Fueling Resources

The equations for hydrant fueling are straightforward. We define the service time required of the HSVs for each aircraft being fueled $(S_{h,\,HSV}^F)$, the service time required of the hydrants $(S_{h,\,hydrants}^F)$, and the aircraft time required for fueling $(F_{2,\,h})$, as

$$S_{h, \text{ HSV}}^{F} = T_{h, \text{ drive}}^{F} + T_{h, \text{ hookup}}^{F} + T_{h, \text{ transfer}}^{F} + T_{h, \text{ unhook}}^{F}$$
(D.1)

$$S_{h, \text{ hydrants}}^{F} = T_{h, \text{ transfer}}^{F}$$
 (D.2)

$$F_{2, h} = T_{h, hookup}^{F} + T_{h, transfer}^{F} + T_{h, unhook}^{F}$$
 (D.3)

where the fuel-transfer time is

¹The setup of the aircraft for fueling and the securing of the aircraft after fueling are discussed in Chapter Three. Those times are separate from the times discussed in this appendix.

$$T_{h, transfer}^{F}$$
 = fuel required per aircraft $X_{h, transfer rate}^{F}$ (D.4)

and the fuel-transfer rate is limited by the lowest-performing element of the system:

$$X_{h, transfer \, rate}^{F} = Min \begin{cases} (hydrant \, pumping \, rate) \\ (HSV \, flow \, rate) \\ (aircraft \, receiving \, rate) \end{cases}$$
 (D.5)

Capacities of Hydrant-Fueling Resources

We can then express the capacities of the resources as

$$C_{h, HSVs}^{F} = R_{h, HSVs}^{F} * A_{h, HSVs}^{F} / S_{h, HSVs}^{F}$$
(D.6)

$$C_{h, \text{ hydrants}}^{F} = R_{h, \text{ hydrants}}^{F} * A_{h, \text{ hydrants}}^{F} / S_{h, \text{ hydrants}}^{F}$$
 (D.7)

And the fueling capacity of the airfield (assuming, for the moment, that this is the only ramp at the airfield and that truck fueling is not practicable) becomes

$$C_{h}^{F} = Min \begin{cases} C_{h, HSVs}^{F} \\ C_{h, hydrants}^{F} \end{cases}$$
 (D.8)

TRUCK-FUELING EQUATIONS

The equations for truck fueling are more complex, because, as noted in Chapter Four: "Fuel trucks... involve much stopping and starting. Trucks have much smaller fuel capacities than hydrants, and when one truck has transferred its load, it must move away from the aircraft to make room for the next full truck. If too few trucks are available, these brief interruptions can turn into long delays while the trucks cycle back to the fill-stand area to replenish their tanks." On the other hand, several trucks may transfer fuel into a single aircraft simultaneously.

Service Times of Truck-Fueling Resources

To describe the service times for truck fueling, we first define several intermediate variables. First, we define the number of trucks that can effectively simultaneously transfer fuel into the specific mission-type aircraft:²

²In this and several of the following equations, Int stands for the "take the integer portion of" function.

$$X_{t, \text{ at once}}^{F} = Min \begin{cases} \text{number of SPRs} \\ \text{Int} \left(\frac{\text{aircraft receive rate } -1}{\text{truck transfer rate}} \right) + 1 \end{cases}$$
 (D.9)

Then we define the effective rate at which those trucks can transfer fuel into that aircraft,

$$X_{t, \text{ transfer rate}}^{F} = \text{Min} \begin{cases} (X_{t, \text{ at once}}^{F} * \text{ truck transfer rate}) \\ (\text{aircraft receive rate}) \end{cases}$$
 (D.10)

And we define the number of truckloads of fuel that each aircraft will need,

$$X_{t, loads}^{F} = Int \left(\frac{fuel\ rqred\ per\ aircraft - 1}{capacity\ of\ truck} \right) + 1$$
 (D.11)

and the time it takes to transfer each (every) truckload of fuel,

$$T_{t, \text{ transfer}}^{F} = \frac{\text{capacity of truck}}{\text{truck transfer rate}}$$
 (D.12)

With these definitions, we can express the servicing time of the trucks and crews for each aircraft fueled as

$$S_{t, \text{ trucks}}^{F} = \begin{bmatrix} T_{t, \text{ drive}}^{F} + T_{t, \text{ hookup}}^{F} + T_{t, \text{ transfer}}^{F} \\ + T_{t, \text{ unhook}}^{F} + T_{t, \text{ drive}}^{F} + T_{t, \text{ refill}}^{F} \end{bmatrix} * X_{t, \text{ loads}}^{F} + T_{t, \text{ secure}}^{F}$$
(D.13)

Note that these service times are the same whether one truck and crew or several trucks and crews actually service each aircraft. Each truck used on each aircraft must be driven to the aircraft, hooked up, have its fuel transferred, be unhooked, and then be driven back to the fill stand and be refilled.

Finally, fill-stand capacity depends on the use time of each fill stand for each aircraft load of fuel. That is,

$$S_{\text{fill stands}}^{\text{F}} = \frac{X_{\text{t, loads}}^{\text{F}} * \text{capacity of truck}}{\text{Min} \begin{cases} \text{(fill-stand transfer rate)} \\ \text{(truck receive rate)} \end{cases}$$
(D.14)

Capacity of Truck-Fueling Resources

We express the capacity of the trucks as

$$C_{\text{trucks}}^{\text{F}} = R_{\text{trucks}}^{\text{F}} * A_{\text{trucks}}^{\text{F}} / S_{\text{trucks}}^{\text{F}}$$
 (D.15)

And we express the capacity of the fill stands as

$$C_{\text{fill stands}}^{\text{F}} = R_{\text{fill stands}}^{\text{F}} * A_{\text{fill stands}}^{\text{F}} / S_{\text{fill stands}}^{\text{F}}$$
 (D.16)

where $R_{\text{fill stands}}^{\text{F}}$ counts the number of outlets at each fill stand, as well as the total number of fill stands.

After those service times have been estimated, we can estimate the maximum number of aircraft that can be serviced in a day at a fuel-parking area with truck fueling only. Similar to the hydrant-fueling case, we express this number as

$$C_{t}^{F} = Min \begin{cases} C_{t, \text{ trucks}}^{F} \\ C_{t, \text{ fill stands}}^{F} \end{cases}$$
 (D.17)

Aircraft Time Needed for Fueling

Note that, although the truck-service time per aircraft does not depend on the number of trucks servicing each aircraft, the aircraft-related time usually does—and significantly. If not enough trucks are available, long delays can occur while the trucks cycle back to the fill-stand area to replenish their tanks.

If only one truck is available per aircraft, then the truck time and the aircraft time will be the same. But if more than one truck is available, one can be traveling while the other is transferring fuel, or both can be transferring fuel at the same time. Again, we need several intermediate variables.

First, our rough estimate of the number of trucks that will be available to work on each aircraft,

$$X_{t, \text{ avail}}^{F} = \text{Max} \begin{cases} \frac{\text{trucks at airfield} * \text{truck min per day}}{\text{parking min per day}} \\ 1 \end{cases}$$
 (D.18)

And, to save space below, we define the time each truck spends "at" the aircraft as

$$T_{\text{truck at a/c}}^{\text{F}} = T_{\text{t, hookup}}^{\text{F}} + T_{\text{t, transfer}}^{\text{F}} * T_{\text{t, unhook}}^{\text{F}}$$
 (D.19)

Then, we can express our general equation for the time each aircraft being refueled from trucks must spend in fueling—including waiting time as well as active time—as

(D.20)

$$F_{2, t} = T_{t, drive}^{F}$$

$$+ Int \left[\frac{X_{t, loads}^{F} + Min \left(X_{t, at once}^{F} \right) - 1}{X_{t, avail}^{F}} * T_{t, truck at a/c}^{F} \right]$$

$$Min \left(X_{t, avail}^{F} \right)$$

+
$$T_{\rm t, \ secure}^{\rm F}$$

$$\left\{ \begin{bmatrix} 2*T_{t,\,\,\mathrm{drive}}^{\mathrm{F}} \end{pmatrix} + \begin{bmatrix} \min \begin{Bmatrix} X_{t,\,\,\mathrm{at\,once}}^{\mathrm{F}} \end{Bmatrix} * T_{t,\,\,\mathrm{refill}}^{\mathrm{F}} \\ X_{t,\,\,\mathrm{av\,ail}}^{\mathrm{F}} \end{Bmatrix} * T_{t,\,\,\mathrm{refill}}^{\mathrm{F}} \right\}$$

$$+ \max \left\{ - \left\{ T_{t,\,\,\mathrm{truck\,at\,a/c}}^{\mathrm{F}} \left[\inf \left\{ \frac{X_{t,\,\,\mathrm{av\,ail}}^{\mathrm{F}} - 1}{X_{t,\,\,\mathrm{av\,ail}}^{\mathrm{F}}} \right\} \right] \right\}$$

$$* \operatorname{Int} \left(\frac{X_{t,\,\,\mathrm{loads}}^{\mathrm{F}} - 1}{X_{t,\,\,\,\mathrm{av\,ail}}^{\mathrm{F}}} \right) \right\}$$

AGGREGATE FUELING CAPACITY

We have described equations for estimating the fueling capacity of a ramp with hydrant fueling and for estimating the fueling capacity of a ramp with truck fueling. Now we must consider both together: That is, we must consider the case of a ramp with hydrant fueling (at least at some of its parking spots) that can be supplemented by truck fueling if (a) truck-fueling resources are available, and (b) parking space and time for mission aircraft are still available for use by the truck-fueling aircraft after the hydrants are operating at their maximum capacity.

Since the hydrant-fueling aircraft and the truck-fueling aircraft compete for the same parking resource here, we specify a management rule to allocate that resource in the most efficient manner: When both hydrant fueling and truck fueling are available in a ramp, we will use the system with the lowest aircraft-service time first. Then, if resources remain after the capacity of that type of fueling is reached (that is, if parking or bulk fuel is not the constraining resource), we will apply the remaining fuel resources to the other type of fueling.

For example, suppose an airfield has two ramps, that each ramp has some hydrantfueling capability, and that each may also support truck fueling. Suppose further that hydrant fueling is faster than truck fueling in both areas, and that hydrant fueling in area 1 is faster than hydrant fueling in area 2, and that truck fueling in area 2 is faster than truck fueling in area 1. That is,

$$F_{2, h}^{\text{FPA1}} < F_{2, t}^{\text{FPA1}}$$

$$F_{2, h}^{\text{FPA2}} < F_{2, t}^{\text{FPA2}}$$

$$F_{2, h}^{\text{FPA1}} < F_{2, h}^{\text{FPA2}}$$

$$F_{2, t}^{\text{FPA1}} > F_{2, t}^{\text{FPA2}}$$
(D.21)

Then, to estimate the capacity of the airfield, we must compare the capacities of all the resources. But each capacity must be computed carefully. We cite four distinct cases.

Case One. Fill stands service both ramps and their service time does not depend on which ramp a truck will be returning to. Hence, the capacity of the fill stands is

$$C_{t, \text{ fill stands}}^{F} = R_{t, \text{ fill stands}}^{F} * A_{t, \text{ fill stands}}^{F} / S_{t, \text{ fill stands}}^{F}$$
 (D.22)

Case Two. Hydrants are specific to ramps; they are not fungible over ramps. Hence, the hydrant capacity of the two ramps is

$$\begin{split} C_{\text{h, hydrants}}^{\text{F}} &= \left(R_{\text{h, hydrants}}^{\text{F, FPA1}} * A_{\text{h, hydrants}}^{\text{F, FPA1}} \middle/ S_{\text{h, hydrants}}^{\text{F, FPA1}} \right) \\ &+ \left(R_{\text{h, hydrants}}^{\text{F, FPA2}} * A_{\text{h, hydrants}}^{\text{F, FPA2}} \middle/ S_{\text{h, hydrants}}^{\text{F, FPA2}} \right) \end{split} \tag{D.23}$$

Case Three. Fuel trucks can be used in either ramp, but their productivity varies as the distance from the fill stands varies. HSVs can be used on either ramp, and their productivity varies according to the characteristics of the two hydrant systems. Hence, the capacity of trucks, which are more productive servicing aircraft parked on ramp 2, can be expressed as

$$C_{t, \text{ trucks}}^{F} = \left(R_{t, \text{ trucks}}^{F} * A_{t, \text{ trucks}}^{F, \text{ FPA2}} \middle/ S_{t, \text{ trucks}}^{F, \text{ FPA2}}\right) + \left[\left(R_{t, \text{ trucks}}^{F} * A_{t, \text{ trucks}}^{F}\right) - \left(C_{t, \text{ trucks}}^{F, \text{ FPA2}} * S_{t, \text{ trucks}}^{F, \text{ FPA2}}\right)\right] \middle/ S_{t, \text{ trucks}}^{F, \text{ FPA1}}$$
(D.24)

and the capacity of HSVs, which are more productive servicing aircraft parked on ramp 1, can be expressed as

$$C_{h, HSVs}^{F} = \left(R_{h, HSVs}^{F} * A_{h, HSVs}^{F, FPA1} / S_{h, HSVs}^{F, FPA1}\right) + \left[\left(R_{h, HSVs}^{F} * A_{h, HSVs}^{F}\right) - \left(C_{h, HSVs}^{F, FPA1} * S_{h, HSVs}^{F, FPA1}\right)\right] / S_{h, HSVs}^{F, FPA2}$$
(D.25)

These are direct implementations of Equation B.12.

Case Four. Parking is available in both ramps, and it is used for both hydrant and truck fueling. So we express its capacity as

$$C^{P} = \begin{cases} \left(R^{P, \text{ FPA1}} * A_{h}^{P, \text{ FPA1}} / S_{h}^{P, \text{ FPA1}} \right) \\ + \left[\left(R^{P, \text{ FPA1}} * A^{P, \text{ FPA1}} \right) - \left(C_{h}^{P, \text{ FPA1}} * S_{h}^{P, \text{ FPA1}} \right) \right] / S_{t}^{P, \text{ FPA1}} \end{cases}$$

$$+ \begin{cases} \left(R^{P, \text{ FPA2}} * A_{h}^{P, \text{ FPA2}} / S_{h}^{P, \text{ FPA2}} \right) \\ + \left[\left(R^{P, \text{ FPA2}} * A^{P, \text{ FPA2}} / S_{h}^{P, \text{ FPA2}} \right) - \left(C_{h}^{P, \text{ FPA2}} * S_{h}^{P, \text{ FPA2}} \right) \right] / S_{t}^{P, \text{ FPA2}} \end{cases}$$

$$(D.26)$$

Fuel Storage and Resupply

We need to add one more consideration before we turn away from fueling. Whether it is done by hydrant or truck, fueling requires a sustaining supply of fuel. So we need to include considerations of fuel storage and resupply. When using a hydrant system, we express the fuel-supply constraint on airfield capacity in aircraft per day,

$$C_{\text{bulk}}^{F} = \text{Min} \begin{cases} \frac{(\text{storage capacity} - \text{safety level})}{\text{resupply interval}} / (\text{fuel rqred per aircraft}) \\ \frac{(\text{D.27})}{(\text{resupply interval})} / (\text{fuel rqred per aircraft}) \end{cases}$$

$$\text{bulk pumping capacity per day} / (\text{fuel rqred per aircraft})$$

When the airfield contains several ramps, they share the fuel supply.

LOADING EQUATIONS

As noted in Chapter Five, we allow for up to three configurations of aircraft: Option A representing maximum cargo with incidental passengers; Option C representing maximum passengers with incidental cargo; and Option B representing a feasible intermediate configuration. Estimates of aircraft ground time associated with Option A include time for cargo operations, but assume that the (limited number of) passenger operations occur simultaneously and are completed within the cargo times. Estimates of aircraft ground time associated with Option C include time for passenger operations (including the handling of the passengers' personal gear), but assume that the (limited number of) cargo operations can be handled simultaneously and are completed within the passenger times. Estimates of aircraft ground time associated with Option B include times for sequential cargo and passenger operations.

For each mission to be analyzed, the user specifies the type of aircraft, its configuration, the split of space in the cargo bay between nonpalletized and palletized cargo, and the quantities of pallets, passengers, and nonpalletized cargo to be off-loaded and on-loaded at the airfield. We model three types of nonpalletized cargo, but allow only one of these types to be handled per off-load and on-load.

We discuss palletized cargoes first, then passengers, and then the nonpalletized cargoes.

PALLETIZED CARGO

As discussed in the main text, the handling of palletized cargo involves moving a pallet-transporting vehicle to the aircraft; transferring the pallets to or from the aircraft; returning the vehicle to the loading terminal; and then on-loading or off-loading the vehicle at the terminal.

When one transporter has transferred its load, it must move away from the aircraft to make room for the next transporter. If not enough transporters are available, these brief interruptions can turn into long delays while the transporters cycle back to the terminal. We assume that only one transporter may transfer pallets to or from an aircraft at once.

Service Times of Pallet-Handling Resources

To describe the service times for truck fueling, we first define several intermediate variables. First, we define the number of transporter loads that each aircraft will need for the off-load,

$$X_{c, loads, down}^{L} = Int \left(\frac{pallets to be off-loaded - 1}{capacity of transporter} \right) + 1$$
 (E.1)

and for the on-load,

$$X_{c, loads, up}^{L} = Int \left(\frac{pallets to be on-loaded - 1}{capacity of transporter} \right) + 1$$
 (E.2)

Then, we define the time it takes to transfer pallets from and to the transporter at the terminal for the off-load,

$$T_{c, \text{ term, d}}^{L} = \begin{pmatrix} \text{minutes to off-load 1 pallet at terminal} \\ * \text{ capacity of transporter} \end{pmatrix}$$
 (E.3)

and for the on-load,

$$T_{c, \text{ term, u}}^{L} = \begin{pmatrix} \text{minutes to on-load 1 pallet at terminal} \\ * \text{ capacity of transporter} \end{pmatrix}$$
 (E.4)

Finally, we define the time it takes to transfer pallets from and to the transporter at the aircraft,

$$T_{c, a/c, d}^{L} = \begin{pmatrix} \text{minutes to off-load 1 pallet from the a/c} \\ * \text{ capacity of transporter} \end{pmatrix}$$
 (E.5)

$$T_{c, a/c, u}^{L} = \begin{pmatrix} \text{minutes to on-load 1 pallet into the a/c} \\ * \text{ capacity of transporter} \end{pmatrix}$$
 (E.6)

With these definitions, we can express the servicing time of the transporters for each aircraft serviced as

$$S_{c, \text{ transporter, down}}^{L} = \begin{pmatrix} T_{c, \text{ drive}}^{L} + T_{c, \text{ term, down}}^{L} \\ + T_{c, \text{ drive}}^{L} + T_{c, \text{ a/c, down}}^{L} \end{pmatrix} * X_{c, \text{ loads, down}}^{L}$$
 (E.7)

for the off-load, and

$$S_{\text{c, transporter, up}}^{\text{L}} = \begin{pmatrix} T_{\text{c, drive}}^{\text{L}} + T_{\text{c, term, up}}^{\text{L}} \\ + T_{\text{c, drive}}^{\text{L}} + T_{\text{c, a/c, up}}^{\text{L}} \end{pmatrix} * X_{\text{c, loads, up}}^{\text{L}}$$
 (E.8)

for the on-load. This means that the total service time can be expressed as

$$S_{c, transporter}^{L} = S_{c, transporter, down}^{L} + S_{c, transporter, up}^{L}$$
 (E.9)

Note that these service times are the same whether one transporter or several transporters actually service each aircraft. Each transporter used on each aircraft must be driven to the aircraft, positioned, have its pallets transferred, be unpositioned, and then drive back to the terminal.

Aircraft Time Needed for Pallet Handling

Note that although the transporter-service time per aircraft does not depend on the number of transporters servicing each aircraft, the aircraft-related time usually does-and significantly. If not enough transporters are available, long delays can occur while the transporters cycle back to the terminal area.

If only one transporter is available per aircraft, then the transporter time and the aircraft time will be the same. But if more than one transporter is available, one of them can be traveling while the other is loading, or both can be loading at the same time. Again, we need several intermediate variables.

First, we make a rough estimate of the number of transporters that will be available to work on each aircraft:

$$X_{c, \text{ avail}}^{L} = \text{Max} \begin{cases} \frac{\text{transporters at airfield} * \text{transporter minutes per day}}{\text{parking minutes per day}} \\ \\ 1 \end{cases}$$
 (E.10)

And, to save space below, we define the cycle time for each transporter, the time it spends away from the aircraft, as

$$T_{c, \text{ cycle, down}}^{L} = T_{c, \text{ drive}}^{L} + T_{c, \text{ term, down}}^{L} * T_{c, \text{ drive}}^{L}$$
 (E.11)

for the off-load, and

$$T_{c, \text{ cycle, up}}^{L} = T_{c, \text{ drive}}^{L} + T_{c, \text{ term, up}}^{L} * T_{c, \text{ drive}}^{L}$$
 (E.12)

for the on-load.

Then, we can express the pallet-loading delays as

$$T_{\text{c, delay, down}}^{\text{L}} = \text{Max} \left\{ \begin{bmatrix} \left\{ T_{\text{c, cycle, down}}^{\text{L}} - \left[T_{\text{c, a/c, down}}^{\text{L}} * \left(X_{\text{c, avail}}^{\text{L}} - 1 \right) \right] \right\} \\ * \text{Int} \left(\frac{X_{\text{c, loads, down}}^{\text{L}} - 1}{X_{\text{c, avail}}^{\text{L}}} \right) \end{bmatrix} \right\}$$

$$(E.13)$$

for the off-load, and

$$T_{\text{c, delay, up}}^{\text{L}} = \text{Max} \left\{ \begin{bmatrix} \left\{ T_{\text{c, cycle, up}}^{\text{L}} - \left[T_{\text{c, a/c, up}}^{\text{L}} * \left(X_{\text{c, avail}}^{\text{L}} - 1 \right) \right] \right\} \\ * \text{Int} \left(\frac{X_{\text{c, loads, up}}^{\text{L}} - 1}{X_{\text{c, avail}}^{\text{L}}} \right) \end{bmatrix} \right\}$$

$$(E.14)$$

for the on-load.

Then, we can express the time each aircraft spends having pallets on-loaded or off-loaded—including waiting time as well as active time—as

$$D_{c, p} = \left(T_{c, a/c, down}^{L} * X_{c, loads, down}^{L}\right) + T_{c, delay, down}^{L}$$
(E.15)

for the off-load, and

$$U_{c, p} = (T_{c, a/c, up}^{L} * X_{c, loads, up}^{L}) + T_{c, delay, up}^{L}$$
 (E.16)

for the on-load.

Capacity of Pallet-Loading Resources

We express the capacity of the transporters as

$$C_{c, transporters}^{L} = \frac{R_{c, transporters}^{L} * A_{c, transporters}^{L}}{S_{c, transporters}^{L}}$$
(E.17)

Service time for the wide-body elevator loaders (WBELs) helping with the on- or off-loading of pallets, is equivalent to the total aircraft pallet service time. That is,

$$S_{c, WBELs}^{L} = D_{c, p} + U_{c, p}$$
 (E.18)

So the capacity of the WBELs is

$$C_{\text{WBELs}}^{L} = \frac{R_{\text{WBELs}}^{L} * A_{\text{WBELs}}^{L}}{S_{\text{c. WBELs}}^{L}}$$
(E.19)

PASSENGERS

To describe the service times for passenger on-loading and off-loading, we first define several intermediate variables. First, we define the number of busloads that each aircraft will need,

$$X_{\text{b, loads, down}}^{\text{L}} = \text{Int}\left(\frac{\text{pax to be off-loaded} - 1}{\text{capacity of airfield bus}}\right) + 1$$
 (E.20)

for the off-load, and

$$X_{b, loads, up}^{L} = Int \left(\frac{pax to be on-loaded - 1}{capacity of airfield bus} \right) + 1$$
 (E.21)

for the on-load.

Then we define the time it takes to transfer pallets from and to the transporter at the terminal,

$$T_{b, \text{ term, d}}^{L} = \begin{bmatrix} \text{minutes to off-load std bus at the terminal} \\ * \left(\frac{\text{capacity of airfield bus}}{\text{capacity of std bus}} \right) \end{bmatrix}$$
 (E.22)

for the off-load, and

$$T_{b, \text{ term, u}}^{L} = \begin{bmatrix} \text{minutes to on-load std bus at the terminal} \\ * \left(\frac{\text{capacity of airfield bus}}{\text{capacity of std bus}} \right) \end{bmatrix}$$
 (E.23)

for the on-load.

Finally, we define the time it takes to transfer pallets from and to the transporter at the aircraft,

$$T_{b, a/c, d}^{L} = \begin{bmatrix} \text{minutes to off-load std bus at the a/c} \\ * \left(\frac{\text{capacity of airfield bus}}{\text{capacity of std bus}} \right) \end{bmatrix}$$
 (E.24)

$$T_{b, a/c, u}^{L} = \begin{bmatrix} \text{minutes to on-load std bus at the a/c} \\ * \left(\frac{\text{capacity of airfield bus}}{\text{capacity of std bus}} \right) \end{bmatrix}$$
 (E.25)

With these definitions, we can express the servicing time of the transporters for each aircraft serviced as

$$S_{b, \text{ bus, down}}^{L} = \begin{pmatrix} T_{b, \text{ drive}}^{L} + T_{b, \text{ term, down}}^{L} \\ + T_{b, \text{ drive}}^{L} + T_{b, \text{ a/c, down}}^{L} \end{pmatrix} * X_{b, \text{ loads, down}}^{L}$$
 (E.26)

for the off-load, and

$$S_{b, \text{ bus, up}}^{L} = \begin{pmatrix} T_{b, \text{ drive}}^{L} + T_{b, \text{ term, up}}^{L} \\ + T_{b, \text{ drive}}^{L} + T_{b, \text{ a/c, up}}^{L} \end{pmatrix} * X_{b, \text{ loads, up}}^{L}$$
 (E.27)

for the on-load. This means that the total service time can be expressed as

$$S_{b, bus}^{L} = S_{b, bus, down}^{L} + S_{b, bus, up}^{L}$$
 (E.28)

Note that these service times are the same whether one bus or several buses actually service each aircraft. Each bus used on each aircraft must be driven to the aircraft, wait while its passengers transfer to the aircraft, and then be driven back to the terminal.

Aircraft Time Needed for Passenger Handling

Note that although the bus-service time per aircraft does not depend on the number of buses servicing each aircraft, the aircraft-related time usually does—and significantly. If not enough buses are available, long delays can occur while the buses cycle back to the terminal area.

If only one bus is available per aircraft, then the bus time and the aircraft time will be the same. But if more than one bus is available, then one of them can be traveling while the other is loading, or both can be loading or traveling at the same time. Again we need several intermediate variables.

First, we make a rough estimate of the number of transporters that will be available to work on each aircraft,

$$X_{b, \text{ avail}}^{L} = \text{Max} \begin{cases} \frac{\text{buses at airfield * bus min per day}}{\text{parking min per day}} \\ 1 \end{cases}$$
 (E.29)

And, to save space below, we define the cycle time for each transporter, the time it spends away from the aircraft, as

$$T_{b, \text{ cycle, down}}^{L} = T_{b, \text{ drive}}^{L} + T_{b, \text{ term, down}}^{L} * T_{b, \text{ drive}}^{L}$$
 (E.30)

for the off-load, and

$$T_{b, \text{ cycle, up}}^{L} = T_{b, \text{ drive}}^{L} + T_{b, \text{ term, up}}^{L} * T_{b, \text{ drive}}^{L}$$
 (E.31)

for the on-load.

Then, we can express the passenger-loading delays as

$$T_{\text{b, delay, down}}^{\text{L}} = \text{Max} \begin{cases} \left[\left\{ T_{\text{b, cycle, down}}^{\text{L}} - \left[T_{\text{b, a/c, down}}^{\text{L}} * \left(X_{\text{b, avail}}^{\text{L}} - 1 \right) \right] \right\} \right] \\ * \text{Int} \left(\frac{X_{\text{b, loads, down}}^{\text{L}} - 1}{X_{\text{b, avail}}^{\text{L}}} \right) \end{cases}$$

$$(E.32)$$

for the off-load, and

$$T_{b, delay, up}^{L} = Max \begin{cases} \left[\left\{ T_{b, cycle, up}^{L} - \left[T_{b, a/c, up}^{L} * \left(X_{b, avail}^{L} - 1 \right) \right] \right\} \right] \\ * Int \left(\frac{X_{b, loads, up}^{L} - 1}{X_{b, avail}^{L}} \right) \end{cases}$$
(E.33)

for the on-load.

Then, we can express the time each aircraft spends having passengers on-loaded or off-loaded—including waiting time as well as active time—as

$$S_{b, down}^{L} = \left(T_{b, a/c, down}^{L} * X_{b, loads, down}^{L}\right) + T_{b, delay, down}^{L} \tag{E.34}$$

for the off-load, and

$$S_{b, \text{ up}}^{L} = \left(T_{b, \text{ a/c, up}}^{L} * X_{b, \text{ loads, up}}^{L}\right) + T_{b, \text{ delay, up}}^{L} \tag{E.35}$$

for the on-load.

Capacity of Passenger-Handling Resources

After those service times have been estimated, we can estimate the maximum number of aircraft that can be serviced in a day at a fuel-parking area with truck fueling only. We express this as

$$C_{\text{buses}}^{L} = \frac{R_{\text{bus}} * A_{\text{bus}}^{L}}{S_{\text{b. bus}}^{L}}$$
 (E.36)

NONPALLETIZED CARGO

In this initial implementation of ACE, we do not model the preparation of non-palletized cargo (NPC) for airlift or its movement to the aircraft. We expect those activities may be added later.

For specifying the ground time associated with on-loading and/or off-loading NPC from aircraft, we define a set of equations for the second task listed in the right-hand column of Table 5.5. Loading times associated with the nonpalletized cargoes contribute to the aircraft's ground time.

We represent the time required to transfer a full load of nonpalletized cargo from the aircraft and ready it for ground movement as $T_{n,\ down,\ full}^L$. Similarly, we represent the time required to transfer a full load of nonpalletized cargo into the aircraft and get it secured as $T_{n,\ up,\ full}^L$.

Note that these times are associated with *full* loads of nonpalletized cargoes. We then represent the aircraft times associated with handling partial loads of nonpalletized cargo as

$$D_{c, n} = T_{n, down, full}^{L} * Percent to be off-loaded$$
 (E.37)

and

$$U_{c,n} = T_{n, up, full}^{L} * Percent to be on-loaded$$
 (E.38)

AGGREGATE LOADING RESOURCES

The service time for the aggregate loading resource is the sum of the pallet, passenger, and NPC times for off-loading and on-loading:

$$S_{\text{agg}}^{L} = D_{\text{c, p}} + U_{\text{c, p}} + D_{\text{p}} + U_{\text{p}} + D_{\text{c, n}} + U_{\text{c, n}}$$
 (E.39)

$$C_{\text{agg}}^{\text{L}} = R_{\text{agg}}^{\text{L}} * A_{\text{agg}}^{\text{L}} / S_{\text{agg}}^{\text{L}}$$
 (E.40)

AIRCRAFT LOADING TIMES

Now that we have described most of the components of aircraft loading times, we need only to aggregate them and to add some aircraft setup times where appropriate.

Most aircraft need some relatively short period of time to set up for off-loading and on-loading: Some need different times depending on what type of cargo is being offloaded or on-loaded, and some need to perform some basic operations before any loading activities can be undertaken. We allow for all these cases by specifying four setup times, any or all of which may be zero for a particular aircraft or mission.

We specify total aircraft times for loading, in sequence, as

$$D_{\rm p} = S_{\rm b,\ down}^{\rm L} + \begin{cases} T_{\rm b,\ set\ up}^{\rm L} + T_{\rm set\ up}^{\rm L} & \text{if} \quad S_{\rm b,\ down}^{\rm L} > 0 \\ 0 & \text{otherwise} \end{cases}$$
 (E.41)

$$D_{c} = D_{c, p} + \begin{cases} T_{c, p, \text{ set up}}^{L} & \text{if } D_{c, p} > 0 \\ 0 & \text{otherwise} \end{cases}$$

+
$$D_{c, n}$$
 +
$$\begin{cases} T_{c, n, \text{ set up}}^{L} & \text{if } D_{c, n} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$+\begin{cases} T_{\text{set up}}^{\text{L}} \text{ if } D_{\text{p}} = 0 \text{ and } \begin{cases} D_{\text{c, p}} > 0 \\ \text{or } \\ D_{\text{c, n}} > 0 \end{cases} \\ 0 \text{ otherwise} \end{cases}$$
 (E.42)

$$U_{\rm c} = U_{\rm c, p} + \begin{cases} T_{\rm c, p, set up}^{\rm L} & \text{if } D_{\rm c, p} = 0 \text{ and } U_{\rm c, p} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$+ U_{c, n} + \begin{cases} T_{c, n, \text{ set up}}^{L} & \text{if } D_{c, n} = 0 \text{ and } U_{c, n} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$U_{\rm p} = S_{\rm b, \, up}^{\rm L} + \begin{cases} T_{\rm p, \, set \, up}^{\rm L} & \text{if } D_{\rm p} = 0 \text{ and } U_{\rm p} > 0 \\ \\ 0 & \text{otherwise} \end{cases}$$

$$+\begin{cases} T_{\rm set\,up}^{\rm L} & \text{if } D_{\rm p}=0 \text{ and } D_{\rm c}=0 \text{ and } U_{\rm c}=0 \text{ and } S_{\rm b,\,up}^{\rm L}>0\\ \\ 0 & \text{otherwise} \end{cases} \tag{E.44}$$

TIPS FOR USING ACE

ACE is written in Visual Basic for Applications and runs on a PC or Macintosh with Excel 5 or Excel 95 and a high-resolution monitor. The ACE package consists of 7 Excel workbooks containing 52 worksheets and 16 code modules. The model itself, the part the user runs at one time, comprises 4 workbooks containing 34 worksheets and 13 code modules. The other workbooks contain templates and examples for recording and retaining data from and/or for specific airfields. Table F.1 lists the workbooks and the worksheets and coding modules they comprise. Double clicking on the ACE.XLS workbook icon will cause Excel 5 to activate and all four workbooks to load.

In this appendix, we expand on the information presented in Chapter Six to help the user understand what is going on in the model.

CHANGING PARAMETER VALUES

Figure 6.4 listed the screens (the formatted worksheets) holding the airfield and global parameters and indicated the path to reaching each set of parameters. Appendix G shows the parameter values currently associated with each screen. The user can change those parameter values by simply typing in a new value in place of the current value. Care must be exercised, however, to ensure that the new values are not saved with the worksheets, unless the user desires to make the changes permanent.

SETTING UP MISSIONS

We discussed the basic specification of mission parameters in Chapter Six. But knowing a little more about which dropdowns affect which other dropdowns will increase the user's confidence in specifying items and reduce the chance of unsuspected errors being introduced when mission specifications are altered.

Clicking on the Setup button for any mission initiates the location and consolidation of parameters for the aircraft type, configuration, and ground-servicing profile selected; it also initiates subroutines, setting up initial menus for the dropdowns located in the lower portion of the mission column. Clicking on some of those lower-portion dropdowns then alters some of the menus associated with other dropdowns. Specifically, activating the fuel-quantity dropdown alters the fuel-isolation menu,

Table F.1
The ACE Workbooks, Worksheets, and Modules

Workbooks	Worksheets	Modules
ACE	Welcome MCSetUp Logo	Code SetUps
	Mission	
ACE_CODE		Module 1a
		Module 2
		Module 3
		Module 4
		Module 5
		Module 6
		Module 7
		Module 8
		Module 9
ACE_COMP	Outputs	Module 1
	Comps	
	MData	
	PData	
	ROut	
	IOut	
	Custom	
	OpsTimes	
	Tracks	
ACE_DATA	ParameterControl	Code
_	Import	
	Export	
	AFControl	
	AFFPAs	
	AFAGRes	
	AFFuelRes	
	AFAPRes	
	AFOAFRes	
	GloControl	
	GACChar	
	GAGTimes	
	GAGE	
	GFuel Char	
	GACFuelChar	
	GVehFuelChar	
	GFuelTimes GA originary	
	GAerialPort CVobAPChar	
	GVehAPChar GAPTimes	
	Distributions	
Totals	34	13

 $^{^{\}rm a}{\rm Module~1}$ in the ACE_CODE worksheet lists all of the ACE subroutines and their locations.

and activating the pallets-off and pallets-on dropdowns alters the NPC-off and NPCon menus. Hence, if the user selects values for the fuel-quantity, pallets-off, palletson, or the NPC-type dropdowns and subsequently wishes to change any of those selections, (s)he should first reclick on the Setup button and then work vertically down through the dropdowns.

The best policy is always to reclick the Setup button after any error or change of mind in working the bottom portion of the column. Whenever changes are made to the top portion of a mission column, the Setup button must be reclicked and all of the dropdowns in the bottom portion must be activated.

EVALUATING MISSIONS

Procedures for evaluating missions under the two modes of analysis—expected value and Monte Carlo—are quite similar, but it may help to discuss them one at a time. However, we illustrate them in the same figure, so that comparisons and contrasts can be made.

Expected-Value Calculations

The left-hand portion of Figure F.1 illustrates the program flow for an expected-value calculation after the user clicks on one of the Eval buttons (recall Figure 6.7). Every time the user initiates an evaluation of mission 1, the subroutines clean up the output workspaces, initialize all of the airfield resources, evaluate the mission (for the number of aircraft specified), and then copy numerous values to the several output screens.

Because the spreadsheets evaluate all six parking areas and their hydrant- and truckbased fueling operations in parallel, it takes the program no longer to evaluate an airfield with six parking areas than to evaluate an airfield with a single parking area. What does take iterations and time is the successive evaluation of parking areas when the best area—the one with the shortest aircraft ground time for the specified mission—cannot handle the required number of aircraft. When that occurs, the program notes the best area and the number of aircraft it can handle and then iterates to identify the next-best area and how many aircraft that one can handle. When fueling is involved, a run can involve up to 12 iterations, because each ramp can support both hydrant- and truck-based fueling. When fueling is not involved, there should be no more than six iterations.1

Recall also that, for each of these iterations, there are, in fact, 16 separate subiterations of the worksheet, one for each element of Eq. C.1. The final sub-iteration—

¹The current iteration number is always displayed in cell I285 of the "comps" spreadsheet in the ACE COMP workbook. So at the end of a run, that cell will indicate the number of iterations that had been

Figure F.1—Flow Diagrams

the one whose values remain on the spreadsheets—is then the one including full values for the nitrogen servicing, oxygen servicing, repair, and de-icing.²

Monte Carlo Analysis

The right-hand side of Figure F.1 shows the flow for a Monte Carlo run. Here, the major iteration is over the "mission set," the several missions that will be analyzed together. The user specifies the set by selecting and pressing one Evaluate button

²This remains true even when some of those items are excluded from the mission by setting their alpha frequencies to zero (see Screen G.9). The equations are always evaluated with beta values of both ones and zeros (see Eq. C.1).

(just as for an expected-value run), but only after having specified the number of iterations of the mission set to be performed.

The program flow is then much the same as before. The EvaluateMissions subroutine controls the overall flow, calling the other routines as necessary and as many times as is necessary. We noted above that the program performs 16 separate subiterations of the worksheet to achieve one expected-value iteration. In Monte Carlo mode, it performs only one—the one using specific draws for each of the probabilistic variables. This means that in the expected-value mode, one mission with 25 aircraft will require 16 calculations of the spreadsheet if all those aircraft can be serviced, fueled, and loaded over the day in the "best" service area and best fueling manner; 32 calculations if those aircraft require two areas or types of fueling; etc. In the Monte Carlo mode, however, that analysis would always require 25 calculations, one for each aircraft, whether or not they use one or six parking areas and zero, one, or two types of fueling. If we iterate that evaluation 100 times, the Monte Carlo analysis will perform 2,500 calculations.

Missions requesting "zero" aircraft always require 16 calculations under the expected-value mode and one under the Monte Carlo mode. This calculation determines the best area and type of fueling and provides estimates of resource-use times, aircraft ground times, and, based on those servicing times, an estimate of the capacity of the entire airfield (that is, all areas and types of fueling).

FILES FOR SPECIFIC AIRFIELDS

In the early versions of ACE, we found it convenient to automatically attach and unattach files containing parameters for specific airfields, so we have added that capability to version 2.

The workbook ACE_DATA.XLS opens whenever ACE does and contains both global and airfield parameters. The subroutines and cells with the other ACE workbooks access only those workbooks for data. So, to run ACE with data from a specific airfield, we simply incorporate that information into an empty (stationary) workbook having worksheets identical to those in the airfield portion of ACE_DATA.XLS, and then read those into that workbook, overwriting the preexisting values.

Similarly, to save airfield information currently in ACE_DATA.XLS, we simply copy it to an empty workbook having worksheets identical to those in ACE DATA.XLS. Subroutines for these copies are stored in the code module of ACE_DATA.XLS and can be called from its first, ParameterControl, worksheet. See Figures 6.4, F.2, and F.3. As noted at the beginning of this appendix, several sample airfield files, as well as the empty (stationary) workbook, are included with the ACE files.

CUSTOMIZING MISSIONS

As noted in the text, the user can customize the times and/or frequencies of any ground-servicing operation in the model, and, with a little ingenuity, can handle many changes to the scheduling or sequencing of operations, as follows.

To insert new times for ground operations associated with a mission or a set of up to six missions, the user clicks the lowest button in a mission column on the Mission screen/spreadsheet. This brings the "custom" spreadsheets to the screen, and here the user can observe the operation times and frequencies gathered by ACE for the missions just set up and, if (s)he wishes, change any of those times or frequencies.

To analyze an engine-running off-load, for example, the user would simply set the operation times (or frequencies) for the operations to be suspended on that run—probably the through-flight inspection, general servicing, and the nitrogen and oxygen servicing—to zero. If desired, the repair time or frequency could also be set to zero, but that would be less realistic.

Note that these customizations can be made only after the missions have been completely set up on the Mission screen spreadsheet. And note that the customizations for each mission are erased as soon as the Setup button for that mission is reclicked or if the evaluation of the mission set is iterated. Iteration causes a new copy of data

BAND MR700-E 9

RAND MR700-F.3

	Importing	Airfield Data
Identify the de	sired airfield fil	
File Name:		Make sure that this input file resides in same folder or directory as other ACE file
	Import Data	Do NOt Import;

Figure F.2—Screen for Importing Airfield Files

Specify desired name for airfield file:

File Name:

(Make sure to create this file in same folder or directory as other ACE files)

Do NOt export; return to parameter control

Figure F.3—Screen for Saving Airfield Files

for mission 1 to be reincorporated into the ACE_COMP.XLS spreadsheet, erasing any customizations that may have been entered there. Thus, this type of customization does not work for iterated Monte Carlo runs; those require (at least temporary) changes in global parameters.

TROUBLESHOOTING

In addition to the Output screens, several other screen worksheets in the ACE_COMP workbook can be very helpful when any of the outputs seem questionable.

- The MData worksheet contains the specific data used in each evaluation.
- The Comps worksheet, as noted, is where most of the actual computations occur; hence, after the run, it contains values for the final iteration of the final evaluation of the run.
- The OpsTimes spreadsheet illustrates the sequenced operation-time values (based on Eqs. C.2, C.3, and C.4) for the final evaluation. Consulting this display, the user can see just which times, if any, are being masked by others (at least in the final iteration of the final evaluation).
- Finally, the Tracks spreadsheet contains a complete record of the resourceavailability times for every evaluation in the final mission of an expected-value run.

SCREENS AND DATA

This appendix presents screen-captures of worksheets in the ACE_DATA workbook. These worksheets contain all of the global and airfield parameters used in ACE calculations. The initial screen for this workbook was shown as Figure 6.3. We present the airfield parameters first, then the global parameters.

Figure G.1—Airfield-Parameter Control

	מואווט	пупап	Gullan 1	Parking and nyurant-ruening Parameters	n	
	FPA#1	FPA #2	FPA #3	FPA #4	FPA #5	FPA#6
Designation	4	8	O			
Parking service time (hrs/day)	24	24	24	0	0	0
Capacity						
C-130	8	80	2	0	0	0
C-141	က	80	2	0	0	0
C-5	0	2	0	0	0	0
C-17	က	80	2	0	0	0
KC-10	0	2	0	0	0	0
KC-135	က	80	2	0	0	0
747	0	2	0	0	0	0
Cxx	0	0	0	0	0	0
Cyy	0	0	0	0	0	0
Hydrant fueling						
Number of aircraft can fuel at once	0	2	0	0	0	0
Fueling rate per aircraft (gal/min)	0	200	0	0	0	0
Availability (hr/day)	0	24	0	0	0	0
Distance (ft) to fuel fill stands	000'6	4,500	1,500	0	0	0
Distance (ft) to cargo terminal/storage	200	2.000	8,000	0	0	0
Distance (ft) to pax terminal/holding	0000	1 000	000	c	c	•

Figure G.2—Parking-Area Parameters

RANDAR700-G.3

Figure G.3—Servicing-Resource Parameters

RANDAMP700-G.4

Figure G.4—Fuel-Resource Parameters

Airfield Fu	Airfield Fuel-Related Composite Variables		
Item	Dimension	Vaiue	
Composite HSV			
quantity of composite HSV	count	5	
availability of composite HSV	minutes per day	1,200	
flow rate of composite HSV	galions per minute	750	
Composite tanker truck			
quantity of composite truck	count	10	
availability of composite truck	minutes per day	1,200	
capacity of composite truck	gallons	5,200	
speed of composite truck	feet per minute	440	
transfer rate of composite truck	gailons per minute	550	
receive rate of composite truck	gailons per minute	009	

Figure G.4A—Fuel-Resource Compositing Workspace

Figure G.5—Loading-Resource Parameters

Value 1,200 25 115 2 220 3,080 20 141 20 N Airfield Loading-Related Composite Variables minutes per day minutes per day minutes per day feet per minute feet per minute feet per minute Dimension pallets persons pallets count count count availability of composite k-loader capacity of composite k-loader availability of composite WBEL quantity of composite k-loader speed of composite k-loader capacity of composite WBEL quantity of composite WBEL availability of composite bus speed of composite WBEL capacity of composite bus quantity of composite bus speed of composite bus k-Loaders Item WBELS Buses

Figure G.5A—Loading-Resource Compositing Workspace

	3 4 5	9	8 2	9 10 11
2				
ო	O	Other Airfield Resources	Sources	
4				
5				
9		Resource		
7				
۵		Quantity	Availability	Service Time
o		Measure*	(hrs/day)**	(min/ac)***
10				
=	Aircrew support	2	24	28.80
12				
13	Air-traffic control	5	24	30.00
14				
15	Ground control	10	24	180.00
16				
17				
2 9				
2 5	NOTES:			
2 2	. Usual measure is the "number of aircraft	* Usual measure is the "number of aircraft this package of resources can work at once." ** Henry measure is the "normal workday."	ources can work at once."	
22	"** Usual measure is the "a	*** Usual measure is the "average number of minutes required to work one aircraft, when operating on the	to work one aircraft, when ope	ating on the
23	usual number of aircraft."	aft."		
24				
3				
		Return to Airfield	field	
26		Parameter Control	ntrol	
27				

Figure G.6—Other-Resource Parameters

Figure G.7—Global-Parameter Control

Fuel characteristics C-130 C-141 C-5 C-17 KC-10 KC-135 747 Cxx Cyy Number of SPR ports Number of SPR ports 1 2 2 2 1 2 2 1 2 2 0 10 0 0 0 0 10 0 0 0 0 0 10 0 0 0 0 0 0 10 0 <t< th=""><th></th><th></th><th>Aircr</th><th>Aircraft Characteristics</th><th>teristics</th><th></th><th></th><th></th><th></th><th></th></t<>			Aircr	Aircraft Characteristics	teristics					
tics for max pax for mixed load for mixed load for mixed load for max pax for max pax for mixed load for mixed loa		C-130	C-141	C-5	C-17	KC-10	KC-135	747	Cxx	Cyy
f passengers 62,000 150,000 332,000 182,000 356,000 203,000 ax cargo 0 0 73 0 0 0 ax pax 91 160 343 102 73 65 ixed load 23 9 73 51 14 14 f pallets ax cargo 6 13 36 18 26 7 ax pax 0 0 0 0 16 0 ax pax 4 12 36 9 23 6	Fuel characteristics Number of SPR ports Maximum on-loading rate (gal/min)	1 400	2 8	2 850	2 850	2,200	370	2,000		
passengers 0 0 73 0 0 0 ax pax 91 160 343 102 73 65 ax pax 91 73 51 14 14 ived load 13 36 18 26 7 ax cargo 6 13 36 18 26 7 ax pax 0 0 0 16 0 ixed load 4 12 36 9 23 6	Capacity (pounds)	62,000	150,000	332,000	182,000	356,000	203,000	370,000		
0 0 73 0 0 0 91 160 343 102 73 65 23 9 73 51 14 14 6 13 36 18 26 7 0 0 0 0 16 0 4 12 36 9 23 6	Loading characteristics Maximum number of passengers									
91 160 343 102 73 65 23 9 73 51 14 14 6 13 36 18 26 7 0 0 0 0 16 0 4 12 36 9 23 6	Configured for max cargo	0	0	73	0	0	0	10		
23 9 73 51 14 14 6 13 36 18 26 7 0 0 0 0 16 0 4 12 36 9 23 6	Configured for max pax	91	160	343	102	73	65	400		
6 13 36 18 26 7 0 0 0 0 16 0 4 12 36 9 23 6	Configured for mixed load	23	6	73	51	14	14	10		
6 13 36 18 26 7 0 0 0 0 16 0 4 12 36 9 23 6	Maximum number of pallets									
0 0 0 0 16 0 4 12 36 9 23 6	Configured for max cargo	9	13	36	18	56	7	42		
4 12 36 9 23 6	Configured for max pax	0	0	0	0	16	0	0		
	Configured for mixed load	4	12	36	6	23	9	42		

Figure G.8—Aircraft-Related Parameters

Figure G.9—Aircraft-Servicing-Task Times

Screen G.9A—Aircraft-Servicing-Task Times, continued

Screen G.9B-Aircraft-Servicing-Task Times, continued

RAND MR700-G. 9C

Screen G.9C-Aircraft-Servicing-Task Times, continued

Screen G.9D-Aircraft-Servicing-Task Times, continued

				M	ntes	Redn	Minutes Required of Aerospace Ground Equipment per Aircraft Serviced	Aer	osba	5	round	Equi	DIE	nt pe	r Air	craft	Selv	Dago						
								Per	Per Operation	c								Dur	nmies	Repres	entina		Defaul	Default Totals
			General	la la				QUI	Quick Turn		i			Full Service	vice		ĺ	\ 8	riable-	Variable-Time Activities	Avities		(without	(without dummies)
hem	Block in	Pre-fuel	Transfer luel	Post-luel	90 - 90	Block out	Thu-flight inspection	General servicing	Nitrogen servicing	Oxygen servicing	Maintenance	Post-flight insp	Pre-flight insp	General servicing	Vitrogen servicing	Oxygen servicing	Maintenance	Fueling	gnibaol-ho xaq	Pax on-loading	Cargo off-loading	Cargo on-loading	Quick	Full
C-130																								
Ground-power units	2	2		20	9	80	30				99	30	8			'n	336	-	-	_	-	—	170	
Low-reach service stands											30					.,	36						30	
Medium-reach service stands								50			30	20		99		,,	36	-	-	-	-	-	20	
High-reach service stands																							0	
Olicarts																							0	
Gassous-proper carts																							0 0	
Liquid-oxygen carts										90						70							09	
Liquid-nitropen carts									5						40	,							15	
Liquid-nitrogen trucks																							0	
De-los trucks					99																		09	
Calivars																							0	0
												l					l	l						
C-141	,										;										,	,		
Ground-power units	က				90	e0	9				06	120	8				480	-	-	-	-	_	98	969
Medium-reach service stands							9	20			06	120	90	15			480	-	-	-	-	-	170	
High-reach service stands						(0	
Oil carts	_	_	Return to	In to		_																	0	
Gaseous-oxygen carts	_	Globa	II-Pa	lobal-Parameter	ter																		0	
Liquid-oxygen carts			Control	trol						90						90							8 8	
Liquid-nitrogen cards									9						8								8 9	
Countries and a second					8																		9	
College					8 6																		8 8	
Carre					3																		3	

		Ē		20 12	- India	ő	Aeros	Parce	Per Operation	5	Minutes Required of Aerospace Ground Equipment per Aircraft Serviced	men	2	Airci	מומ	e Zic	8						1	
		$\ $	3	General				ō	Quick Turn	E				Full Service	envice				Variable-Time Activities	FTIMe	Activitie	2 0	Cwith C	(without dummies)
Rem	Block in	leut-er9	Transler fuel	Post-fuel	De-Ice	Block out	Thru-filght inspection	General servicing	Mitrogen servicing	Oxygen servicing	Maintenance	Poet-liight insp	Pre-flight insp	General servicing	Mitrogen servicing	Oxygen servicing	Maintenance	Fueling	Pax off-loading	Pax on-loading	Cargo off-loading	Cargo on-loading	Quick	Full
C-17 Ground-power units Low-reach service stands	مدا	vo.		v			42			w	8 8	120	8			40	80	-	-	-	-	-	27 8	
Medium-reach service stands High-reach service stands Oil carts Gaseous-oxygen carts Liquid-oxygen carts		610 b	Retu al-P	Return to Global-Parameter Control	eter			8		54	8	8	8	8		45	8	-	-	-	-	-	00004	80004
Liquid-nitrogen carts Liquid-nitrogen trucks De-ice trucks Calivars)				8 8)			5						52								= 28	
KC-10 Grand-count infe	w/	۰			8		۶				96	8	\$				8	-	-	-	-	-	7	
Low-reach service stands Medium-reach service stands		· •			3		3				8	8					8	-	-	-	-	-		
High-reach service stands Oil carts Gaseous-oxygen carts	n							15						15									-	
Lquid-oxygen carts Lquid-oxygen carts Lquid-nitrogen carts Dquid-nitrogen frucks De-ice trucks Calivars					8				8	8					8	8							88080	88080
KC-135 Ground-power units	98	8			8		8				240	120	8				420	-	-	-	-	-	8	
Low-reach service stands Medium-reach service stands	8	8						:			8	15	5	,			8	-	-	-	-	-	~ & & ;	
Oli Garisi Gaseous-oxygen carts Liquid-oxygen carts Liquid-nitrogen earts Liquid-nitrogen trucks								<u>n</u>	8	8				<u>0</u>	8	8							60800	

								Per	Per Operation	-	Per Operation							2				6	Defends Totals	1
			General	eral				Ouic	Quick Tum				ī	Full Service	90		ı	Var	able-Ti	Variable-Time Activities	/thes	(with	(without dummies)	ies)
ltem	Block in	leut-er9	leut retanaîT	Post-fuel	De-tce	Block out	Thru-flight inspection	General servicing	Ultrogen servicing	Oxygen servicing	Maintenance	Qeni trigifi-teo9	Pre-flight insp	General servicing	Nitrogen servicing	Oxygen servicing	Maintenance	_ Fueling	Pax off-loading	Pax on-loading	Cargo off-loading	Quick		Full
747																								
Ground-power units Low-reach service stands Medium-reach service stands High-reach service stands High-reach service stands Grants Gasseous-oxygen carts Louid-oxygen carts Louid-oxygen carts Louid-oxygen carts Louid-oxygen carts Catudio-ritrogen reacts De-Ice trucks Cativars	NO.	NO.		5	9		99 06		20	₹ <u>.</u>	120	88		CV	8	5	210					8	263	250000000000000000000000000000000000000
Cxx Ground-power units Low-reach service stands Medium-reach service stands																							:	
High-reach service stands Oil carts Gaseous-oxygen carts Liquid-oxygen carts																								
Liquironirogen caris Liquid-nitrogen trucks De-ice trucks Calivars																								
Cyy Ground-power units																								
Low-reach service stands Medium-reach service stands High-reach service stands Oil carts Gassous-covoran carts																								
Lquid-oxygen carls Lquid-oxygen carls Lquid-nitrogen carls Lquid-nitrogen trucks De-ice trucks Calvare																								
Company																								

RANDMR700-G:108

Figure G.11—Fuel-Parameter Control

	Cyy			
	ÖX			
	747	2 2,000 370,000		
#	KC-135	370 203,000		
Aircraf	KC-10	2 2,200 356,000		
stics of	C-17	2 850 182,000		
Fuel Characteristics of Aircraft	C-5	2 850 332,000		
ıel Cha	C-141	2 900 150,000	6.70	
Ţ	C-130	1 400 62,000	oer gallon:	
		Fuel characteristics Number of SPR ports Maximum on-loading rate (gal/min) Capacity (pounds)	Fuel conversion factor, pounds p	

Figure G.12—Fuel Characteristics of Aircraft

Characteristics of Fuel Vehicles	R-12 Other 1 Other 3 Other 4 Other 5 Other 6 Other 7 gellons per minute 750	R-9 R-11 Other 2 Other 3 Other 5 Other 6 gallons per minute 550 550 600 600
Characte	gellons per minute	miles per hour gellons gallons per minute gellons per minute
	Hydrent service vehicles maximum flow rete	Tenker trucks effective speed useble capecity mex fuel trensfer (out) rete mex fuel receive (in) rete

Figure G.13—Characteristics of Fuel Vehicles

Screen G.14—Times for Fueling Tasks

Figure G.15-Loading-Parameter Control

ees Availability Usable capacity Effective speed

Buses Availability

Forklift 172

loader -y09

loader

minutes per day

Pallet transporters

Availability

40kloader 141

-	15	60k-loader	Proxy	,200	9	15						
9	15	09	TA-40		2	15						
5	5		Wilson		2	2.50						
8	15		Cochran	115	73	2.50	40-foot	Equivalent	1,200	4	20	
pallets	miles per hour			minutes per day	pallets	miles per hour			minutes per day	pallets	miles per hour	
Usable capacity	Effective speed		Wide-Body Elevator Loaders	Availability	Usable capacity	Effective speed		Trucks	Availability	Usable capacity	Effective speed	

Figure G.16—Characteristics of Loading Vehicles

Figure G.17—Loading-Task Times

RANDMR700-G.17A

Screen G.17A-Loading-TaskTimes, continued

RANDMR700-G.17B

Screen G.17B-Loading-TaskTimes, continued

Screen G.17C-Loading-TaskTimes, continued

Screen G.17D-Loading-TaskTimes, continued

C-130 C-141 C-5 C-17 KC-10 KC-135 747 Cxx Cyy Distribution of Oxygen Servicing Times Distribution of Servicing Times (hours)	 	Ouick Turn nes Freqs 0 0.00 60 0.25 30 0.25 30 0.25 20 0.25 20 0.50	Full Service Times Freq 60 0.05 60 0.75 80 0.26 30 0.26 30 0.27 30 0.27	Avice Freqs 0.05 0.05 0.10 0.25 0.25 0.70
ğ	==	-		60.05 0.05 0.06 0.10 0.25 0.25 0.70
jag				0.05 0.75 0.06 0.10 0.25 0.25 0.70
Jan				0.75 0.60 0.10 0.25 0.25 0.70
Dig				0.10
d d				0.25
ğ				0.25
J. J				
Dic				
	Check	Quick Turn	Full Service	vice
	Sum Times	es Freqs	Times	Freqs
051-5	0.0000	0.02	70	0.20
C-141			09	0.10
C-5			45	0.20
C-17			45	0.38
KC-10	0.0000	0.20	30	0.20
KC-135			30	0.20
747			15	0.25
CXX	0.0000			

Figure G.18—Distribution of Servicing Times

RANDMR700-G. 18A

Figure G.18A—Distribution of Servicing Times, continued

MOG VALUES

CEMOG.TXT A database from AMC/CEOX, listing various airfields and their MOG values, 1994.

Department of the Air Force, "Airfield Suitability Report," HQ AMC/XOVT, February 1993.

Department of the Air Force, "Summary of Airfield Restrictions," HQ AMC/DOVT, February 1992.

Defense Mapping Agency Combat Support Center, "Automated Air Facilities Information File (AAFIF)," December 1992.

Defense Mapping Agency Aerospace Center, *Flight Information Handbook*, DoD Flight Information Publication (Enroute), January 1993.

Metzler, M., "SORTS Designed Operational Capability (DOC) Statements for 437 APS, 615 APS, 628 AMSS," Action Office: HQ AMC/DOZX, June 24, 1994.

Norton, John, "MOG Calculations for Intratheater Analyses," SAF/XOFM, Memorandum for Record, May 19, 1995.

Reusche, Michael, "AMSS-Generation Designed Operational Capability (DOC) Statement Coordination—ACTION MEMORANDUM," HQ AMC/XOP, March 1994.

Waisanen, Anthony, "Station Working MOG Values," Memorandum, AMC/XPY, April 6, 1993.

CALCULATING MOG VALUES

436 ALCS, "Airfield Survey Program," Dover Air Force Base, June 1992.

436 MAW/DOXL, "C-5 Marshalling and Parking Guide," August 1986.

Headquarters, Military Airlift Command, *Airfield Use by MAC Aircraft*, Scott AFB, IL: Military Airlift Command, n.d.

Lambert, Gary V., "Maximum on Ground Questions," 628 AMSS/DO, Memorandum, September 23, 1994.

Nolan, "Background Paper: Strategic Multi-National Airlift Capability," TRO/66414/tno, April 11, 1991 (Incirlik AB, Turkey).

Wright, "Point Paper on Ramstein Mission Capability," January 16, 1994.

362 Airlift Control Squadron, 362 ALCS Handbook, Rhein Main Air Base, Germany, April 1, 1994.

AIRFIELD SURVEYS

Headquarters, Air Mobility Command, "Airfield Surveys," AMC Form 174, for Hannover, Germany; Doha Military Airhead, Salina Muni Airport, Incirlik, Turkey; Entebbe IAP, Uganda; Sarajevo IAP, Bosnia-Herzegovina; Torrejon de Ardoz AB, Spain; Ramstein AB, Germany; McGuire AFB, NJ; and RAF Mildenhall, UK.

Headquarters, Air Mobility Command, "Instructions and Checklist for Airlift Operations, AMC Form 174," April 1993.

Headquarters, United States Air Force, *Base Support Planning*, Washington D.C.: Air Force Instruction 10-404, November 16, 1994.

Merritt, Michael A., "TALCE End of Mission Report" (Operation Name: ABLE SENTRY, Location: Skopje, Macedonia), July 28, 1993.

Moron AB, Spain, Exercise Support Plan 95-27, 496th Air Base Squadron/LGX, Base Support Plan, Part 1: Moron Air Base, Spain, May 1995 (For official use only).

Torrejon Air Base, Spain, Base Support Plan, Part 1, Torrejon Air Base, Spain, April 1, 1995.

469th Air Base Squadron, Base Support Plan, Part 1: Rhein-Main Air Base, Germany, April 1, 1995 (For official use only).

OTHER SOURCES

Coffman, E. G., et al., *Computer and Job-Shop Scheduling Theory*, New York: Wiley, 1976.

Department of the Air Force, "Multiple Source Refueling," Change 24, Tech Order TO 00-25-172, p. 5-4.

Air Force Service Center, Fuels Specialist: Volume 2, Fuels Control Center, Mobile Fueling, Equipment, and Hydrant Fueling Systems, AFSC-63150 (63150 02 9103), ECI, Air University, n.d.

Johnson, Randall G., A SLAM Airfield Model for Airlift Operations, Wright-Patterson AFB, OH: Air Force Institute of Technology, 1984.

McDaniel, Greg, Global Reach Laydown Package Concept of Operations, white paper, May 1995.

McDonnell Douglas Corporation, *Transport Aircraft Unit*, *Flight Manual—Performance Data*, USAF Series C-17A Aircraft (Preliminary), TO 1C-17A-1-1, January 1993.

Rubinstein, Reuven V., Simulation and the Monte Carlo Method, New York: Wiley, 1981.

Yoder, Richard A., Manpower Utilization Problems of the Military Airlift Command Enroute Maintenance Manager: Some Solutions, Maxwell AFB, AL: Air Command and Staff College, Report Number 82-2770, 1982.

BRIEFINGS

Grabau, Mark, *Airfield Resources Model (ARM)*, Air Mobility Command, Command Analysis Group, November 1993.

McPeak, Merrill, "En Route Structure Study Briefing," June 1993.

POINT PAPERS

Defense Intelligence Agency, "Automated Intel Installation File (AIF)," 1993.

Merrill, Dave, "MOG" Action Office: HQ AMC/XPY, Point Paper, March 14, 1994.

Penton, Bill, Subject: Hydrant Fueling Systems, HQ AMC/LGSF.

Scott, Steve, "TACC Point Paper on MOG," HQ AMC TACC/DOOXY, March 22, 1994.

Smith, Paul, "MOG" Action Office: HQ AMC/XOXPE, Point Paper, March 23, 1994.

Smith, Ronny C., "Station Capability," Airlift, Winter 1985.

AMC/LGVT, Spreadsheet including vehicle out of commission (VOC) rates for 463L equipment, for the period of May–July 1995, provided by MSgt Rex Curry.

Subject: 626th Air Mobility Support Squadron Capabilities, Action Office: 626 AMSS/CC, May 4, 1995.

"436th Operations Group Process Action Team for C-5 Originating Homestation Launch Sequence of Events," MSgt Powell, Facilitator, Loadmaster.

626 Air Mobility Support Squadron, *AMC Contingency Operations at Rhein-Main AB*, Joint Paper, Rhein Main AFB, Germany, January 19, 1995.

628 Air Mobility Support Squadron, *Maintenance Discrepancy Listing*, POC: TSgt Carl L. Fischer, 628 Support Squadron, n.d.