

NEO-D9S-00A

Correction data receiver Automotive grade

Data sheet

Abstract

Technical data sheet describing the u-blox D9 automotive-grade correction data receiver. The module provides global and easy access to satellite L-band GNSS corrections.

Document information

Title	NEO-D9S-00A		
Subtitle	Correction data receiver		
Document type	Data sheet		
Document number	UBX-21008859		
Revision and date	R06	07-Feb-2024	
Disclosure restriction	C1-Public		

Product status	Corresponding content status	
Functional Sample	Draft	For functional testing. Revised and supplementary data will be published later.
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	FW version	IN/PCN reference	Product status
NEO-D9S	NEO-D9S-00A-00	PMP 1.04	UBX-22039049 UBX-23000084	End of life
NEO-D9S	NEO-D9S-00A-01	PMP 1.06	UBX-22039058 UBX-22039049 UBX-23000084	Mass production

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, or modification of this document or any part thereof is only permitted with the express written permission of u-blox. Disclosure to third parties is permitted for clearly public documents only.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © 2024, u-blox AG.

Contents

1 Functional description	4
1.1 Overview	4
1.2 Performance	4
1.3 Supported GNSS augmentation systems	
1.3.1 Satellite L-band	
1.4 Supported protocols	
2 System description	6
2.1 Block diagram	6
3 Pin definition	7
3.1 Pin assignment	
4 Electrical specification	9
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	
5 Communications interfaces	11
5.1 UART	
5.2 SPI	11
5.3 I2C	12
5.4 USB	
5.5 Default interface settings	14
6 Mechanical specification	15
7 Reliability tests and approvals	17
7.1 Approvals	
8 Labeling and ordering information	18
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	
Related documents	19
Revision history	20

1 Functional description

1.1 Overview

NEO-D9S-00A is a satellite data receiver for L-band correction broadcast. The receiver be configured for use with a variety of correction services. It decodes the satellite transmission and outputs a correction stream, enabling a high precision GNSS receiver to reach accuracy down to centimeter level.

1.2 Performance

Parameter		Specification		
Receiver type		NEO-D9S correction data receiver		
L-band satellite		Specification		
Time to first frame ¹		< 10 s at 2400 bps		
Sensitivity acquisition ²		-133 dBm for BER <10e-5 at 2400 bit/s		
Specification compliance		L-band SESTB28A		
Boot time		<1 s		
Center frequency configuration steps		1 Hz		
Center frequency search window		0 to 65 kHz		
User data rates		600, 1200, 2400, 4800 bps		
Service identifier		Configurable		
De-scrambler		Configurable		
De-scrambling initialization vector		Configurable		
Pre-scrambler		Enable/disable		
Number of concurrent reception channels		1		
UniqueWord		Configurable		
Frequency range		1525 MHz to 1559 MHz		
Communication interface		UART/USB/I2C/SPI		
Communication speed		Up to 921600 baud UART, USB 2.0		
Software backup mode		Available		
Dynar Vehicle dynamics		+/- 2g acceleration for all data rates (600 bit/s, 1200 bit/s, 2400 bit/s, 4800 bit/s)		
-	Velocity	Up to and including 300 km/h		

Table 1: NEO-D9S-00A performance

1.3 Supported GNSS augmentation systems

1.3.1 Satellite L-band

The satellite L-band communication system allows GNSS correction service providers to broadcast a variety of services on specific channels, satellites and beams. Consult your service provider on the region their service covers and the specific frequency used. The NEO-D9S-00A must be configured

¹ With respect to an L-band signal using a 20-25 dB external LNA

 $^{^2}$ Success rate of acquiring an L-band signal > 95% using a 20-25 dB external LNA

according to the specific service as initial identification and decoding of the service provider stream is required.

1.4 Supported protocols

The NEO-D9S-00A supports the following protocols:

Protocol	Туре
UBX	Input/output, binary, u-blox proprietary

Table 2: Supported protocols

For specification of the protocols, see the Interface description [2].

2 System description

2.1 Block diagram

Figure 1: NEO-D9S-00A block diagram

An active antenna is mandatory with the NEO-D9S-00A.

3 Pin definition

3.1 Pin assignment

The pin assignment of the NEO-D9S-00A module is shown in Figure 2. The defined configuration of the PIOs is listed in Table 3.

Figure 2: NEO-D9S-00A pin assignment

Pin no.	Name	1/0	Description	
1	SAFEBOOT_N	Ţ	SAFEBOOT_N (used for FW updates and reconfiguration, leave open)	
2	D_SEL	I	UART 1 / SPI select. (open or high = UART 1)	
3	TXD2	0	UART 2 TXD	
4	RXD2	I	UART 2 RXD	
5	USB_DM	I/O	USB data (DM)	
6	USB_DP	I/O	USB data (DP)	
7	V_USB	I	USB supply	
8	RESET_N	I	RESET (active low)	
9	VCC_RF	0	External LNA power	
10	GND	I	Ground	
11	RF_IN	I	Active antenna L-band signal input	
12	GND	I	Ground	
13	GND	I	Ground	
14	ANT_OFF	0	External LNA disable - default active high	
15	ANT_DETECT	I	Active antenna detect - default active high	

Pin no.	Name	1/0	Description
16	ANT_SHORT_N	0	Active antenna short detect - default active low
17	EXTINT	I	External interrupt pin
18	SDA/SPICS_N	I/O	I2C data if D_SEL = VCC (or open); SPI chip select if D_SEL = GND
19	SCL/SPISLK	I/O	I2C clock if D_SEL = VCC (or open); SPI clock if D_SEL = GND
20	TXD/SPI SDO	0	UART1 output if D_SEL = VCC (or open); SPI SDO if D_SEL = GND
21	RXD/SPI SDI	I	UART1 input if D_SEL = VCC (or open); SPI SDI if D_SEL = GND
22	V_BCKP	I	Connect to VCC or leave it open
23	VCC	I	Supply voltage
24	GND	ı	Ground

Table 3: NEO-D9S-00A pin assignment

For detailed information on the pin functions and characteristics see the Integration manual [1].

4 Electrical specification

4.1 Absolute maximum ratings

CAUTION. Risk of device damage. Exceeding the absolute maximum ratings may affect the lifetime and reliability of the device or permanently damage it. Do not exceed the absolute maximum ratings.

This product is not protected against overvoltage or reversed voltages. Use appropriate protection to avoid device damage from voltage spikes exceeding the specified boundaries.

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Voltage ramp on VCC ³			20	8000	μs/V
Input pin voltage	Vin		-0.5	VCC + 0.5	V
VCC_RF output current	ICC_RF			300	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DM, USB_DP		-0.5	V_USB + 0.5 V	
Input power at RF_IN	Prfin	source impedance = 50 Ω, continuous wave		10	dBm
Storage temperature	Tstg		-40	+105	°C

Table 4: Absolute maximum ratings

4.2 Operating conditions

Extreme operating temperatures can significantly impact the specified values. If an application operates near the min or max temperature limits, ensure the specified values are not exceeded.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
SW backup current	I_SWBCKP		1.4		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	
Digital IO pin low level output voltage	Vol			0.4	V	Iol = 2 mA
Digital IO pin high level output voltage	Voh	VCC - 0.4			V	loh = 2 mA
DC current through any digital I/O pin (except supplies)	lpin			5	mA	
VCC_RF voltage	VCC_RF		VCC - 0.1		V	
VCC_RF output current	ICC_RF			50	mA	
Receiver chain noise figure ⁴	NFtot		11		dB	
Recommended LNA gain into module	LNA_gain		20		dB	
Operating temperature	Topr	-40	+25	+105	°C	

Table 5: Operating conditions

³ Exceeding the ramp speed may permanently damage the device

⁴ Only valid for the L-band band

4.3 Indicative power requirements

Table 6 provides examples of typical current requirements when using a cold start command. The given values are total system supply current for a possible application including RF and baseband sections.

All values in Table 6 have been measured at 25 °C ambient temperature.

The actual power requirements vary depending on the FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	L - band Unit SESTB28A
I _{PEAK}	Peak current	Acquisition & tracking	130 mA
I _{AVERAGE}	Average current	Acquisition & tracking	55 mA

Table 6: Currents to calculate the indicative power requirements

5 Communications interfaces

The NEO-D9S-00A has several communications interfaces⁵, including UART, SPI, I2C and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART

The UART interfaces support configurable baud rates. See the Integration manual [1].

Hardware flow control is not supported.

UART1 is the primary host communications interface.

Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	9600	921600	bit/s
Δ_{Tx}	Tx baud rate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baud rate tolerance	-2.5%	+2.5%	-

Table 7: NEO-D9S-00A UART specifications

5.2 SPI

The SPI interface is disabled by default. The SPI interface shares pins with UART and I2C and can be selected by setting D_SEL = 0. The SPI interface can be operated in peripheral mode only. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

The SPI timing parameters for peripheral operation are defined in Figure 3. Default SPI configuration is CPOL = 0 and CPHA = 0.

Figure 3: NEO-D9S-00A SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

 $^{^{5\,\,}}$ The signal names and related terms have been replaced with new terminology in this document.

Symbol	Parameter	Min	Max	Unit
1	CS deassertion hold time	23	-	ns
2	Chip select time (CS to SCK)	20	-	ns
3	SCK rise/fall time	-	7	ns
4	SCK high time	24	-	ns
5	SCK low time	24	-	ns
6	Chip deselect time (SCK falling to CS)	30	-	ns
7	Chip deselect time (CS to SCK)	30	-	ns
9	CS high time	32	-	ns
10	SDI transition time	-	7	ns
11	SDI setup time	16	-	ns
12	SDI hold time	24	-	ns

Table 8: SPI peripheral input timing parameters 1 - 12

Symbol	Parameter	Min	Max	Unit
A	SDO data valid time (CS)	12	40	ns
В	SDO data valid time (SCK), weak driver mode	15	40	ns
С	SDO data hold time	100	140	ns
D	SDO rise/fall time, weak driver mode	0	5	ns
E	SDO data disable lag time	15	35	ns

Table 9: SPI peripheral timing parameters A - E, 2 pF load capacitance

Symbol	Parameter	Min	Max	Unit
Α	SDO data valid time (CS)	16	55	ns
В	SDO data valid time (SCK), weak driver mode	20	55	ns
С	SDO data hold time	100	150	ns
D	SDO rise/fall time, weak driver mode	3	20	ns
E	SDO data disable lag time	15	35	ns

Table 10: SPI peripheral timing parameters A - E, 20 pF load capacitance

Symbol	Parameter	Min	Max	Unit
A	SDO data valid time (CS)	26	85	ns
В	SDO data valid time (SCK), weak driver mode	30	85	ns
С	SDO data hold time	110	160	ns
D	SDO rise/fall time, weak driver mode	13	45	ns
E	SDO data disable lag time	15	35	ns

Table 11: SPI peripheral timing parameters A - E, 60 pF load capacitance

5.3 I2C

An I2C interface is available for communication with an external host CPU in I2C Fast-mode. Backwards compatibility with Standard-mode I2C bus operation is not supported. The interface can be operated only in peripheral mode with a maximum bit rate of 400 kbit/s. The interface can make use of clock stretching by holding the SCL line LOW to pause a transaction. In this case, the bit transfer rate is reduced. The maximum clock stretching time is 20 ms.

Figure 4: NEO-D9S-00A I2C peripheral specification

		I2C Fast-mod	е	
Symbol	Parameter	Min	Max	Unit
f _{SCL}	SCL clock frequency	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition	0.6	-	μs
t _{LOW}	Low period of the SCL clock	1.3	-	μs
t _{HIGH}	High period of the SCL clock	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	0.6	-	μs
t _{HD;DAT}	Data hold time	0 6	_7	μs
t _{SU;DAT}	Data setup time	100 8		ns
t _r	Rise time of both SDA and SCL signals	-	300 (for C = 400pF)	ns
t _f	Fall time of both SDA and SCL signals	-	300 (for C = 400pF)	ns
t _{su;sto}	Setup time for STOP condition	0.6	-	μs
t _{BUF}	Bus-free time between a STOP and START condition	1.3	-	μs
t _{VD;DAT}	Data valid time	-	0.9 7	μs
t _{VD;ACK}	Data valid acknowledge time	-	0.9 7	μs
V _{nL}	Noise margin at the low level	0.1 V_IO	-	V
V _{nH}	Noise margin at the high level	0.2 V_IO	-	V

Table 12: NEO-D9S-00A I2C peripheral timings and specifications

⁶ External device must provide a hold time of at least one transition time (max 300 ns) for the SDA signal (with respect to the min Vih of the SCL signal) to bridge the undefined region of the falling edge of SCL.

⁷ The maximum t_{HD;DAT} must be less than the maximum t_{VD;DAT} or t_{VD;ACK} with a maximum of 0.9 µs by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.

 $^{^{8}\,}$ When the I2C peripheral is stretching the clock, the $t_{SU;DAT}$ of the first bit of the next byte is 62.5 ns.

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

5.4 USB

The USB 2.0 FS (full speed, 12 Mbit/s) interface can be used for host communication. Due to the hardware implementation, it may not be possible to certify the USB interface. The V_USB pin supplies the USB interface.

5.5 Default interface settings

Interface	Settings	
UART 9600 baud, 8 bits, no parity bit, 1 stop bit.		
	Output protocol: UBX.	
	Input protocols without need of additional configuration: UBX.	
USB	Output messages activated as in UART. Input protocols available as in UART.	
12C	Output messages activated as in UART. Input protocols available as in UART.	
SPI	Output messages activated as in UART. Input protocols available as in UART.	

Table 13: Default interface settings

The boot message is still output using \$GNTXT messages. The messages are output when the NEO-D9S-00A is powered up.

Refer to the applicable interface description [2] for information about further settings.

6 Mechanical specification

Figure 5: NEO-D9S-00A mechanical drawing

Symbol	Min (mm)	Typical (mm)	Max (mm)	
А	15.9	16.0	16.1	
В	12.1	12.2	12.3	
С	2.2	2.4	2.6	
D	0.9	1.0	1.1	
E	1.0	1.1	1.2	
F	2.9	3.0	3.1	
G	0.9	1.0	1.1	
Н	-	0.82	-	
К	0.7	0.8	0.9	
М	0.8	0.9	1.0	
N	0.4	0.5	0.6	
P*	0.0	-	0.5	The de-paneling residual tabs may be on either side (not both).
Weight		1.6 g		

Table 14: NEO-D9S-00A mechanical dimensions

- The mechanical picture of the de-paneling residual tabs (P*) is an approximate representation, shape and position may vary.
- Component keep-out area must consider that the de-paneling residual tabs can be on either side (not both).

7 Reliability tests and approvals

NEO-D9S-00A modules are based on AEC-Q100 qualified GNSS chips.

Tests for product family qualifications comply with AEC-Q104 "Failure Mechanism Based Stress Test Qualification For Multichip Modules (MCM) In Automotive Applications", and appropriate standards.

7.1 Approvals

NEO-D9S-00A complies with the essential requirements and other relevant provisions of the Radio Equipment Directive (RED) 2014/53/EU.

NEO-D9S-00A complies with the Directive 2011/65/EU (EU RoHS 2) and its amendment Directive (EU) 2015/863 (EU RoHS 3).

The Declaration of Conformity (DoC) is available on the u-blox website.

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about moisture sensitivity level (MSL), product handling and soldering see the Integration manual [1].

8.1 Product labeling

The labeling of the NEO-D9S-00A modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three product code formats are used in the NEO-D9S-00A labels. The **Product name** used in documentation such as this data sheet identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions.

Table 15 below details these three formats.

Format	Structure	Product code
Product name	PPP-TGV	NEO-D9S
Ordering code	PPP-TGV-NNQ	NEO-D9S-00A
Type number	PPP-TGV-NNQ-XX	NEO-D9S-00A-00

Table 15: Product code formats

The parts of the product code are explained in Table 16.

Code	Meaning	Example
PPP	Product family	NEO
TG	Platform	D9 = u-blox D9
V	Variant	S = L-band corrections
NNQ	Option / Quality grade	NN: Option [0099]
		Q: Grade, A = Automotive, B = Professional
XX	Product detail	Describes hardware and firmware versions

Table 16: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark	
NEO-D9S-00A	NEO-D9S correction data receiver	u-blox D9 automotive grade correction data receiver for L-band broadcast	

Table 17: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/product-resources.

Related documents

- [1] NEO-D9S Integration manual UBX-19026111
- [2] PMP 1.06 Interface description UBX-22038891
- [3] PMP 1.04 Interface description UBX-21040023

For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://www.u-blox.com.

Revision history

Revision	Date	Status / comments
R01	21-Oct-2021	Advance information
R02	24-Jan-2022	Early production information
		UART2 interface general update. Voltage ramp on VCC value added in Absolute maximum ratings table. V_BCKP general update
R03	08-Aug-2022	Production information
R04	05-Jan-2023	Updated NEO-D9S-00A-01 version. Overall text improvement
		Updated the section Mechanical specification
R05	29-Mar-2023	Updated I2C and SPI timing specifications in section Communications interfaces
		Updated VCC_RF output current in table Absolute maximum ratings
R06	07-Feb-2024	End of life for NEO-D9S-00A-00 with PMP 1.04 FW
		Mass production for NEO-D9S-00A-01 with PMP 1.06 FW
		Editorial changes throughout the document

Contact

u-blox AG

Address: Zürcherstrasse 68

8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.