Program Linier

Masalah Optimisasi

DUALITAS

Dual adalah masalah Program Linear (PL) pembantu yang didefinisikan secara langsung dari model PL asli (Primal) nya.

Bentuk Dual dapat disusun dari bentuk Primal asal masalah PL disusun dalam bentuk standar

Bentuk standar umum dari Primal

$$Max/Min z = \sum_{j=1}^{n} c_j x_j$$

Terhadap kendala

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i = 1, ..., m$$

 $x_i \ge 0, \qquad j = 1, ..., n$

Untuk menyususn dual koefisien pada primal disusun seperti tabel berikut

Var primal	X_1	x ₂	x _j	x _n		
Ruas kanan kendala dual	C ₁	c ₂	c _j	C _n		
Koefisien ruas kiri kendala Dual	a ₁₁ a ₂₁ : a _{m1}	a ₁₂ a ₂₂ : a _{m2}	•	a _{nj} a _{2n} ∶ a _{mn}	b ₁ b ₂ : b _m	y ₁ y ₂ ∶ y _m
		Batasan	dual ke – j	_	Tujuan Dual	To Var dual

Jadi dual diperoleh dari primal dengan cara

- Untuk tiap kendala primal terdapat satu variabel dual
- Untuk tiap variabel primal terdapat satu kendala dual
- Koefisien fs obyektif primal menjadi ruas kanan kendala dual
- Ruas kanan kendala primal menjadi koefisien fs obyektif dual
- Koefisien kendala var primal membentuk koefisien-koefisien pada ruas kiri kendala dual

Untuk jenis optimasi (maks/min), tipe kendala $(\leq, \geq, =)$ dan tanda var dual sbb

Primal Standar	Dual				
Fungsi obyektif	Fs Obyektif	Tipe kendala	Var		
Maksimisasi	Minimisasi	≥	tak tbt		
Minimisasi	Maksimisasi	≤	tak tbt		

Contoh

Bentuk Primal:

Maksimumkan:
$$z = 5x_1 + 12x_2 + 4x_3$$

Terhadap: $x_1 + 2x_2 + x_3 \le 10$
 $2x_1 - x_2 + 3x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

Bentuk standar :

Maksimumkan :
$$z = 5x_1 + 12x_2 + 4x_3 + 0s_1$$
-M R_1
Terhadap : $x_1 + 2x_2 + x_3 + s_1 = 10$
 $2x_1 - x_2 + 3x_3 + R_1 = 8$
 $x_1, x_2, x_3, s_1, R_1 \ge 0$

Tabel Koefisien bentuk standar primal

X ₁	x ₂	X ₃	s_{1}	R ₁	
5	12	4	0	-M	
1	2	1	1	0	10 🔷 y ₁
2	-1	3	0	1	$10 \leftarrow y_1 \\ 8 \leftarrow y_2$

Bentuk Dual

Minimumkan:
$$w = 10y_1 + 8y_2$$

Terhadap: $y_1 + 2y_2 \ge 5$
 $2y_1 - y_2 \ge 12$
 $y_1 + 3y_2 \ge 4$
 $y_1 \ge 0$
 $y_2 \ge -M$
 $y_1, y_2, tak dibatasi$
didominasi oleh $y_1 \ge 0$

Hub. Primal-Dual

- Solusi optimal dari salah satu masalah (P/D) dapat diperoleh dari tabel simpleks optimal masalah lainnya (D/P)
- Kompleksitas perhitungan pada masalah PL sebagian besar dipengaruhi oleh jumlah kendala (daripada jml variabel)
- Jika jumlah kendala Dual < jml kendala Primal maka PL diselesaikan lewat Dual (atau sebaliknya)

MENENTUKAN NILAI VARIABEL/SOLUSI OPTIMAL DUAL DARI SOLUSI PRIMAL

Ada Sifat :

Nilai optimal fs obyektif Primal = nilai optimal fs obyektif Dual

Z_{maks/min} = **W**_{min/maks}

 Optimal Dual dpt diperoleh dr optimal Primal dg rumus (*) sbb :

Koefisien z optimal dr vb iterasi awal Primal = ruas kiri – ruas kanan kendala dual yg terkait dg vb iterasi awal Primal

Contoh:

 Berikut ini diberikan contoh menentukan nilai var dual dan nilai optimal dual dari solusi primalnya

Perhatikan masalah primal berikut.

Maksimumkan :
$$z = 5x_1 + 12x_2 + 4x_3$$

Terhadap : $x_1 + 2x_2 + x_3 \le 10$
 $2x_1 - x_2 + 3x_3 = 8$
 $x_1, x_2, x_3 \ge 0$

 Jika masalah Primal di atas diselesaikan menggunakan tabel simpleks, maka diperoleh tabel iterasi optimal sbb:

Basis	X ₁	X ₂	X ₃	S ₁	R	Solusi
Z	0	0	3/5	29/5	-2/5+M	274/5
X_2	0	1	-1/5	2/5	-1/5	12/5
X ₂ X ₁	1	0	7/5	1/5	2/5	26/5

 Tabel koefisien pada bentuk Primal standar (menggunakan metode M) adalah sbb:

Bentuk standar

Maksimumkan :
$$z = 5x_1 + 12x_2 + 4x_3 - M + 0 s_1$$

Terhadap:
$$x_1 + 2x_2 + x_3 + s_1 = 10$$

 $2x_1 - x_2 + 3x_3 + R = 8$
 $x_1, x_2, x_3 \ge 0$

X ₁	X ₂	X ₃	S ₁	R	Solusi
5	12	4	0	-M	
1	2	1	1	0	10 🛑 y ₁
2	-1	3	0	1	10

• Diperoleh hubungan antara var primal dan kendala dual yang terkait, sbb:

Variabel Primal	Kendala dual yang terkait
x ₁	$y_1 + 2y_2 \ge 5$ $2y_1 - y_2 \ge 12$
X ₂ X ₃	$ 2y_1 - y_2 \ge 12$ $ y_1 + 3y_2 \ge 4$
s_1	$y_1 \ge 0$
R	$y_2 \ge -M$

Variabel Primal	Kendala dual yang terkait
X ₁	$y_1 + 2y_2 \ge 5$
x ₂	$y_1 + 2y_2 \ge 5$ $2y_1 - y_2 \ge 12$
X ₃	$y_1 + 3y_2 \ge 4$
s_1	$y_1 \ge 0$
R	$y_2 \ge -M$

• Memperhatikan rumus (*) diperoleh :

Variabel basis iterasi awal Primal	S ₁	R	
Koefisien persamaan z optimal	29/5	-2/5 + M	
Ruas kiri – ruas kanan kendala yang terkait dg vb iterasi awal Primal	y ₁ – 0	y ₂ – (-M)	

Variabel basis iterasi awal Primal	S ₁	R	
Koefisien persamaan z optimal	29/5	-2/5 + M	
Ruas kiri – ruas kanan kendala yang terkait dg vb iterasi awal Primal	y ₁ – 0	y ₂ – (-M)	

 Menggunakan rumus (*) diperoleh nilai optimum untuk variabel dual dan fungsi obyektif dual sbb:

•
$$y_1 - 0 = 29/5$$
 $y_1 = 29/5$

•
$$y_2 - (-M) = -2/5 + M$$
 $y_2 = -2/5$

•
$$W_{min} = 10 y_1 + 8 y_2 = 274/5$$

Terlihat
$$w_{min} = z_{maks}$$

Diketahui masalah Program Linear berikut:

Maksimumkan :
$$z = 2x_1 + x_2$$

terhadap kendala :
$$3x_1 + x_2 \le 6$$

$$2x_1 + x_2 = 5$$

$$x_1, x_2 \ge 0.$$

Buatlah bentuk dualnya

Tentukan penyelesaian dual dari tabel optimal primal

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$

Basic	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	Solution
z	0	0	0	-98.6	-100	2	3.4
$\overline{x_1}$	1.	0	0	.4	0	2	.4
x_2	0	1	0	.2	0	.6	1.8
x_3	0	0	1	1	-1	I	1.0

Diketahui masalah Program Linear berikut:

$$z_{min} = 2x_1 + 3x_2 + 5x_3$$

terhadap kendala : $x_1 + x_2 + x_3 = 7$
 $2x_1 + x_2 + 3x_3 \ge 10$
 $x_1, x_2, x_3 \ge 0$.

Buatlah bentuk dualnya Tentukan penyelesaian dual dari tabel optimal primal