Corso di Laurea in Ingegneria Informatica

Basi di Dati

a.a. 2023-2024

Docenti: <u>Nicola Tonellotto</u>

Francesco Pistolesi

Principali Obiettivi del Corso

- Imparare a portare a termine un buon progetto di base di dati, sia concettuale che logico
- Imparare ad analizzare un progetto, sia concettuale che logico, per verificarne la consistenza
- Imparare ad impostare interrogazioni (queries) per una base di dati relazionale; conoscere il modo in cui il sistema di gestione della base di dati (database management systems, DBMS) esegue una interrogazione in modo efficiente

Bibliografia

- Libro di testo:
 - Atzeni, Ceri, Fraternali, Paraboschi, Torlone. Basi di Dati.
 - Quinta Edizione. McGraw-Hill Italia, 2018.
 - Sesta Edizione. McGraw-Hill Italia, 2023.

Comunicazioni coi Docenti

- Email: nicola.tonellotto@unipi.it
- Ricevimento su appuntamento (online o in presenza)

- Email: francesco.pistolesi@unipi.it
- Ricevimento iscrivendosi sulla pagina

http://www.iet.unipi.it/f.pistolesi

Nota

 Queste diapositive e le successive sono state rielaborate da N. Tonellotto e G. Vaglini a partire dalle diapositive del libro di testo.

Introduzione

Che cos'è l'informatica?

- Scienza del trattamento razionale, specialmente per mezzo di macchine automatiche, dell'informazione, considerata come supporto alla conoscenza umana e alla comunicazione (Académie Française)
- Due anime:
 - metodologica
 - tecnologica

Sistema Informativo

- Il sistema organizzativo è costituito da risorse e regole per lo svolgimento coordinato di attività (processi) per perseguire gli scopi propri di un'organizzazione (azienda o ente).
 - le risorse possono essere persone, denaro, materiali, informazioni.
- Il sistema informativo è la componente del sistema organizzativo che acquisisce, elabora, conserva, produce le informazioni di interesse (cioè utili al perseguimento degli scopi); inoltre esegue/gestisce i processi informativi (cioè i processi che coinvolgono informazioni)

Gestione delle Informazioni

- Raccolta, acquisizione
- Archiviazione, conservazione
- Elaborazione, trasformazione, produzione
- Distribuzione, comunicazione, scambio

Sistema Informativo e Automazione

- Il concetto di sistema informativo è indipendente da qualsiasi automatizzazione:
 - esistono organizzazioni la cui ragion d'essere è la gestione di informazioni (p. es. servizi anagrafici e banche) e che operano da secoli senza impiegare automatizzazioni.
- La parte del sistema informativo che gestisce informazioni con tecnologia informatica è il sistema informativo automatizzato (o sistema informatico)

Sistema Informatico

Gestione delle Informazioni

- Nelle attività umane, le informazioni vengono gestite in forme diverse:
 - idee informali
 - linguaggio naturale (scritto o parlato, formale o colloquiale, in varie lingue)
 - disegni, grafici, schemi
 - numeri e codici
- Su vari supporti
 - mente umana, carta, dispositivi elettronici

Informazioni e Dati

(definizioni dal Vocabolario della lingua italiana 1987)

- **informazione**: notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere.
- dato: ciò che è immediatamente presente alla conoscenza, prima di ogni elaborazione; (in informatica) elementi di informazione costituiti da simboli che debbono essere elaborati

8 – 17

$$(8-13)$$

$$(8-13)$$
 $8-14$

$$(8-13)$$

• che cosa significano questi numeri?

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!
- ma la differenza?

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!
- ma la differenza?

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!
- ma la differenza?

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!
- ma la differenza?

- che cosa significano questi numeri?
- cartelli stradali, in Finlandia; sono orari!
- ma la differenza?
- senza "interpretazione" il dato serve a ben poco!

Gestione delle Informazioni

- I dati sono spesso il risultato di forme di organizzazione e codifica delle informazioni
- Ad esempio, nei servizi anagrafici e nel riferimento a persone
 - descrizioni discorsive
 - nome e cognome
 - estremi anagrafici
 - codice fiscale

Perché i dati?

- La rappresentazione precisa di forme più ricche di informazione e conoscenza è difficile
- I dati costituiscono spesso una risorsa strategica, perché più stabili nel tempo di altre componenti (processi, tecnologie, ruoli umani):
 - ad esempio, i dati delle banche o delle anagrafi

Basi di Dati

- Il cuore di un sistema informativo automatizzato è la base di dati (database), cioè un insieme organizzato di dati utilizzati per rappresentare le informazioni di interesse
- Accezione generica, metodologica
 - insieme organizzato di dati utilizzati per il supporto allo svolgimento delle attività di un ente (azienda, ufficio, persona)
- Accezione specifica, metodologica e tecnologica
 - insieme di dati gestito da un DBMS

Basi di Dati

- Il cuore di un sistema informativo automatizzato è la base di dati (database), cioè un insieme organizzato di dati utilizzati per rappresentare le informazioni di interesse
- Le Basi di Dati
 - hanno dimensioni (molto) maggiori della memoria centrale dei sistemi di calcolo utilizzati
 - hanno un tempo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano (persistenza dei dati)

Sistema di Gestione di Basi di Dati

- Il Sistema di Gestione di Basi di Dati (*database management system*, DBMS) gestisce collezioni di dati:
 - grandi
 - persistenti
 - condivise
- garantendo:
 - privacy
 - affidabilità
 - efficienza
 - efficacia

Grandi

- Dimensioni (molto) maggiori della memoria centrale dei sistemi di calcolo utilizzati
- Il limite deve essere solo quello fisico dei dispositivi
- Esempi di dimensioni molto grandi
 - 500 Gigabyte (dati transazionali)
 - 10 Terabyte (dati decisionali)
 - 500 Terabyte (dati scientifici)
 - 2.25 miliardi di pagine Web

Persistenti

 Hanno un tempo di vita indipendente dalle singole esecuzioni dei programmi che le utilizzano

Condivise

- Ogni organizzazione (specie se grande) è divisa in settori o comunque svolge diverse attività
- Ciascun settore/attività ha un (sotto)sistema informativo (non necessariamente disgiunto)

Esempio

Corso di Studi in Ingegneria Informatica

ORARIO DELLE LEZIONI PER L'ANNO ACCADEMICO 1999-2000

INSEGNAMENTO	Docente	Aula	Orario
Analisi matematica I	Luigi Neri	N1	8:00-9:30
Basi di dati	Piero Rossi	N2	9:45-11:15
Chimica	Nicola Mori	N1	9:45-11:30
Fisica I	Mario Bruni	N1	11:45-13:00
Fisica II	Mario Bruni	N3	9:45-11:15
Sistemi informativi	Piero Rossi	N3	8:00-9:30

Corso di Studi in Ingegneria Informatica

Orario di ricevimento dei docenti

DOCENTE	INSEGNAMENTI	ORARIO
Mario BRUNI	Fisica I Fisica II	Martedi' 10-12
Luigi NERI	Analisi matematica I	Lunedi' 12-13
Piero ROSSI	Basi di dati Sistemi informativi	Giovedi' 11-13
Nicola MORI	Chimica	Martedi' 16-18

Problemi

- Ridondanza:
 - informazioni ripetute
- Rischio di **incoerenza**:
 - le versioni possono non coincidere

Archivi e Basi di Dati

Archivi e Basi di Dati

Gestione orario lezioni

Gestione orario lezioni

Gestione ricevimento

Gestione ricevimento

Le Basi di Dati sono Condivise

- Una base di dati è una risorsa integrata, condivisa fra applicazioni
- Conseguenze
 - Attività diverse su dati condivisi:
 - meccanismi di autorizzazione
 - Accessi di più utenti ai dati condivisi:
 - controllo della concorrenza

I DBMS garantiscono ... privacy

- Si possono definire meccanismi di autorizzazione
 - ullet l'utente A è autorizzato a leggere tutti i dati e a modificare X
 - ullet l'utente B è autorizzato a leggere i dati X e a modificare Y

I DBMS garantiscono ... affidabilità

- Affidabilità (per le basi di dati):
 - resistenza a malfunzionamenti hardware e software
- Una base di dati è una risorsa pregiata e quindi deve essere conservata a lungo termine
- Tecnica fondamentale:
 - gestione delle transazioni

Transazione

 Insieme di operazioni da considerare indivisibile ("atomico"), corretto anche in presenza di concorrenza e con effetti definitivi

Le transazioni sono ... atomiche

- Una sequenza di operazioni correlate:
 - trasferimento di fondi da un conto A ad un conto B: o si fanno il prelevamento da A e il versamento su B o nessuno dei due
- Deve essere eseguita per intero o per niente:
 - ullet o si fanno il prelevamento da A e il versamento su B o nessuno dei due

Le transazioni sono ... concorrenti

- L'effetto di transazioni concorrenti deve essere coerente
 - se due assegni emessi sullo stesso conto corrente vengono incassati contemporaneamente
 - ... si deve evitare di trascurarne uno!
 - se due agenzie richiedono lo stesso posto (libero) su un treno
 - ... si deve evitare di assegnarlo due volte!

I risultati delle transazioni sono permanenti

 La conclusione positiva di una transazione corrisponde ad un impegno (commit) a mantenere traccia del risultato in modo definitivo, anche in presenza di guasti e di esecuzione concorrente

I DBMS debbono essere ... efficienti

- Cercano di utilizzare al meglio le risorse di spazio di memoria (principale e secondaria) e tempo (di esecuzione e di risposta)
- I DBMS, con tante funzioni, rischiano l'inefficienza e per questo ci sono grandi investimenti e competizione
- L'efficienza è anche il risultato della qualità delle applicazioni

I DBMS debbono essere ... efficaci

- Cercano di rendere produttive le attività dei loro utilizzatori, offrendo funzionalità articolate, potenti e flessibili
- Il sistema informatico deve essere adeguatamente dimensionato e la base di dati ben progettata (e realizzata)

DBMS vs File System

- La gestione di insiemi di dati grandi e persistenti è possibile anche attraverso sistemi più semplici — gli ordinari *file system* dei sistemi operativi
- I *file system* prevedono forme rudimentali di condivisione: 'tutto o niente'
- I DBMS estendono le funzionalità dei file system, fornendo più servizi ed in maniera integrata

Descrizione dei Dati

- Nei programmi tradizionali che accedono a file, ogni programma contiene una descrizione della struttura del file stesso, con i conseguenti rischi di incoerenza fra le descrizioni (ripetute in ciascun programma) e i file stessi
- Nei DBMS, esiste una porzione della base di dati che contiene una descrizione centralizzata dei dati, che può essere utilizzata dai vari programmi

Descrizione dei Dati nei DBMS

- I programmi fanno riferimento ai dati, ma la loro struttura in memoria deve poter essere modificata senza dover modificare i programmi
- Viene introdotto il concetto di
 - modello dei dati: insieme di costrutti utilizzati per organizzare i dati di interesse e descriverne la dinamica
 - il modello dei dati fornisce ai programmi applicativi una vista astratta dei dati

Schema e Istanza

- In ogni base di dati esistono:
 - lo schema, sostanzialmente invariante nel tempo, che ne descrive la struttura
 - es.: le intestazioni delle tabelle (cfr. slide successiva)
 - l'istanza, i valori attuali, che possono cambiare anche molto rapidamente
 - es.: le "righe" di ciascuna tabella (cfr. slide successiva)

Insegnamento	Docente	Aula	Ora
Analisi Matem. I	Luigi Neri	N1	8:00
Basi di Dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi Inform.	Piero Rossi	N3	8:00

Insegnamento Docente Aula Ora

Lo schema della base di dati

Insegnamento	Docente	Aula	Ora
--------------	---------	------	-----

Lo schema della base di dati

Insegnamento	Docente	Aula	Ora
Analisi Matem. I	Luigi Neri	N1	8:00
Basi di Dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi Inform.	Piero Rossi	N3	8:00

Lo schema della base di dati

Insegnamento	Docente	Aula	Ora
Analisi Matem. I	Luigi Neri	N1	8:00
Basi di Dati	Piero Rossi	N2	9:45
Chimica	Nicola Mori	N1	9:45
Fisica I	Mario Bruni	N1	11:45
Fisica II	Mario Bruni	N3	9:45
Sistemi Inform.	Piero Rossi	N3	8:00

L'istanza della base di dati

Modelli dei Dati

Modelli Logici

- Adottati nei DBMS esistenti per l'organizzazione dei dati
 - utilizzati dai programmi
 - indipendenti dalle strutture fisiche
- Esempi: relazionale, reticolare, gerarchico, a oggetti, basato su XML

Modelli Concettuali

- Permettono di rappresentare i dati in modo indipendente da ogni sistema
 - cercano di descrivere i concetti del mondo reale
 - sono utilizzati nelle fasi preliminari di progettazione
- Il più diffuso è il modello *Entity-Relationship* (ER)

Architettura Semplificata di un DBMS

Architettura Semplificata di un DBMS

Schema logico:

- descrizione della base di dati nel modello logico
 - ad esempio, la struttura della tabella
- Schema interno (o fisico):
 - rappresentazione dello schema logico per mezzo di strutture memorizzazione (file)
 - ad esempio, record con puntatori, ordinati in un certo modo
- Il livello logico è **indipendente** da quello fisico:
 - una tabella è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica (che può anche cambiare nel tempo)
 - In questo corso vedremo solo il livello logico e non quello fisico

Linguaggi per Basi di Dati

- La disponibilità di vari linguaggi e interfacce per la definizione di schemi e per la lettura/modifica di istanze contribuisce all'efficacia del DBMS
 - Linguaggi testuali interattivi (SQL)
 - Comandi (SQL) immersi in un linguaggio ospite (Java, C++, ...)
 - Con interfacce amichevoli (senza linguaggio testuale come Access)
- Una distinzione terminologica
 - data definition language (DDL) per la definizione di schemi (logici, fisici)
 - data manipulation language (DML) per l'interrogazione e l'aggiornamento di (istanze di) basi di dati

Architettura a tre livelli per DBMS

Architettura a tre livelli per DBMS

Schema logico:

 descrizione dell'intera base di dati nel modello logico "principale" del DBMS

Schema interno (o fisico):

 rappresentazione dello schema logico per mezzo di strutture fisiche di memorizzazione

Schema esterno:

 descrizione di parte della base di dati in un modello logico ("viste" parziali, derivate, anche in modelli diversi)

Indipendenza dei Dati

 L'accesso ai dati avviene solo tramite il livello esterno (che può coincidere con il livello logico)

• Indipendenza fisica:

- il livello logico e quello esterno sono indipendenti da quello fisico
 - una tabella è utilizzata nello stesso modo qualunque sia la sua realizzazione fisica
 - la realizzazione fisica può cambiare senza che debbano essere modificati i programmi

• Indipendenza logica:

- il livello esterno è indipendente da quello logico
- aggiunte o modifiche alle viste non richiedono modifiche al livello logico
- modifiche allo schema logico che lascino inalterato lo schema esterno sono trasparenti

Personaggi

- Progettisti e realizzatori di DBMS
- Progettisti della base di dati e amministratori della base di dati
- Progettisti e programmatori di applicazioni
- Utenti:
 - utenti finali: eseguono applicazioni predefinite (transazioni)
 - **utenti casuali**: eseguono operazioni non previste a priori, usando linguaggi interattivi

Vantaggi dei DBMS

- Dati come risorsa comune, base di dati come modello della realtà
- Gestione centralizzata con possibilità di standardizzazione ed "economia di scala"
- Disponibilità di servizi integrati
- Riduzione di ridondanze e inconsistenze
- Indipendenza dei dati
 - favorisce lo sviluppo e la manutenzione delle applicazioni

Svantaggi dei DBMS

- Costo dei prodotti e della transizione verso di essi
- Non scorporabilità delle funzionalità (con riduzione di efficienza)