

Transformações. Mudança de variável.

Objetivos:

- transformações no plano e no espaço; mudança de variáveis;
- transformação inversa; jacobiano da inversa;
- teorema da função inversa.

Definição: Sejam $f_1, f_2, \ldots, f_n : D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, n funções reais de n variáveis reais. Uma transformação é uma função vetorial de n variáveis do tipo

$$f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$$

ponto $X=(x_1,x_2,\ldots,x_n)\in D\longmapsto \text{ vetor } f(X)=(f_1(X),f_2(X),\ldots,f_n(X))\in\mathbb{R}^n$ As funções reais f_1,f_2,\ldots,f_n são ditas de funções coordenadas.

A transformação f é diferenciável (e portanto contínua) no ponto $X_0 \in D$ se e somente se cada função coordenada f_1, f_2, \ldots, f_n é diferenciável em X_0 .

A transformação f é de classe C^k , $k \ge 1$, no aberto $A \subset D$ se e somente se cada função coordenada f_1, f_2, \ldots, f_n é de classe C^k em A.

As transformações são chamadas também de mudanças de variável. Pois elas transformam as variáveis x_1, x_2, \ldots, x_n nas novas variáveis

$$\begin{cases} u_1 = f_1(x_1, x_2, \dots, x_n) \\ u_2 = f_2(x_1, x_2, \dots, x_n) \\ & \cdots \\ u_n = f_n(x_1, x_2, \dots, x_n) \end{cases}$$

A <u>transformação inversa</u> de f, caso existir, é a função vetorial $g: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ tal que $f \circ g = g \circ f = id$. Ela é denotada por f^{-1} , donde $f^{-1}(u_1, u_2, \dots, u_n) = (x_1, x_2, \dots, x_n)$.

Observação: Nem toda transformação admite inversa. Por exemplo, $f(x,y)=(x^2,y)$. Observe que f(2,1)=f(-2,1)=(4,1) pelo que a inversa não estaria bem definida em (4,1).

Transformações lineares: São do tipo f(X) = AX. Por exemplo:

Seja $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, dada por f(x,y) = (x+y,x-y). As funções coordenadas são $f_1(x,y) = x+y$ e $f_2(x,y) = x-y$.

Podemos representar essa função por

$$f\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-y \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ x \end{bmatrix}}_{Y} = AX$$

Transformações afins: São do tipo f(X) = AX + B, composição de uma transformação linear e de uma translação de vetor \vec{B} . Por exemplo:

Seja $g:\mathbb{R}^3\longrightarrow\mathbb{R}^3$, dada por g(x,y,z)=(x+y+z+1,-x+y+2z-3,x+2y+2). As funções coordenadas são $g_1(x,y,z)=x+y+z+1,g_2(x,y,z)=-x+y+2z-3$ e $g_3(x,y,z)=x+2y+2.$

Podemos representar essa função por

$$g \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+y+z+1 \\ -x+y+2z-3 \\ x+2y+2 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{X} + \underbrace{\begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}}_{B} = AX + B$$

Transformações não afins: São transformações que não podem ser expressas da forma AX + B, para alguma matriz quadrada A e vetor B. Por exemplo:

Seja $h: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, dada por h(x,y) = (x+y,xy). As funções coordenadas são $h_1(x,y) = x+y$ e $h_2(x,y) = xy$.

Os exemplos mais conhecidos de mudança de variável não afim são as mudanças a coordenadas polares, cilíndricas ou esféricas:

(I) Mudança de variáveis a coordenadas polares: Um ponto $P=(x,y)\in\mathbb{R}^2$, descrito em coordenadas cartesianas, pode ser descrito em outro sistema de coordenadas. Por exemplo, o sistema de coordenadas polares (r,θ) , onde r é o comprimento do vetor \overrightarrow{OP} e θ é o ângulo em radianos, tomado no sentido anti-horário, entre \overrightarrow{OP} e o eixo x positivo.

Figure 1: Coordenadas polares

Temos a função vetorial

$$\begin{split} \varphi_p: D \subset \mathbb{R}^2 &\longrightarrow \mathbb{R}^2, \quad D = [0, +\infty[\times[0, 2\pi] \\ (r, \theta) &\longmapsto (x, y) = (r\cos\theta, r\sin\theta) \end{split}$$

Ela também pode ser apresentada como

$$\varphi_p: \left\{ \begin{array}{ll} x = r\cos\theta \\ y = r\sin\theta \end{array} \right., \quad \text{onde} \quad r \geq 0 \quad \text{e} \quad \theta \in [0,2\pi].$$

A mudança de coordenadas de polares a cartesianas é φ_p^{-1} é apresentada como

$$\varphi_p^{-1}: \left\{ \begin{array}{l} r = \sqrt{x^2 + y^2} \\ \theta = \arctan\left(\frac{y}{x}\right) \end{array} \right., \quad x \neq 0, \quad y \in \mathbb{R}.$$

(II) Mudança de variáveis a coordenadas cilíndricas: A posição do ponto $P=(x,y,z)\in\mathbb{R}^3$ também pode ser determinado pelas suas condenadas cilíndricas (r,θ,z) . A relação entre as coordenadas cartesianas (x,y,z) e as coordenadas cilíndricas (r,θ,z) é dada pela função

$$\varphi_c: D \subset \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \quad D = [0, +\infty[\times[0, 2\pi[\times\mathbb{R} + (r, \theta) \longmapsto (x, y, z)])] = (r\cos\theta, r\sin\theta, z)$$

Figure 2: TROCAR: Coordenadas cilíndricas

Ela também pode ser apresentada como

$$\varphi_c: \left\{ \begin{array}{l} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{array} \right. , \quad \text{onde} \quad r \geq 0, \quad \theta \in [0,2\pi] \quad \text{e} \quad z \in \mathbb{R}.$$

A mudança de coordenadas de cilíndricas a cartesianas é φ_c^{-1} é apresentada como

$$\varphi_c^{-1}: \left\{ \begin{array}{l} r = \sqrt{x^2 + y^2} \\ \theta = \arctan\left(\frac{y}{x}\right) \ , \quad x \neq 0, \quad y,z \in \mathbb{R}. \\ z = z \end{array} \right.$$

(III) Mudança de variáveis a <u>coordenadas esféricas</u>: A posição de um ponto P=(x,y,z) também fica determinada pelos números ρ,ϕ,θ , onde ρ é o comprimento do vetor $\overrightarrow{OP},\ \phi$ é o ângulo (em radianos) entre o eixo z positivo e o vetor \overrightarrow{OP} e θ é o ângulo, tomado no sentido anti-horário, entre o eixo x positivo e o vetor projeção de \overrightarrow{O} no plano xy.

Figure 3: Coordenadas esféricas

A relação entre as coordenadas (x, y, z) e (ρ, ϕ, θ) é dada pela função

$$\varphi_c: D \subset \mathbb{R}^3 \longrightarrow \mathbb{R}^3, D = [0, +\infty[\times[0, \pi] \times [0, 2\pi[$$

$$(\rho, \phi, \theta) \longmapsto (x, y, z) = (\rho \operatorname{sen} \phi \cos \theta, \rho \operatorname{sen} \phi \operatorname{sen} \theta, \rho \cos \phi)$$

Ela também pode ser apresentada como

$$\varphi_e: \left\{ \begin{array}{l} x = \rho \mathop{\rm sen}\nolimits \phi \mathop{\rm cos}\nolimits \theta \\ y = \rho \mathop{\rm sen}\nolimits \phi \mathop{\rm sen}\nolimits \theta \end{array} \right., \quad \text{onde} \quad r \geq 0, \quad \phi \in [0,\pi] \quad \text{e} \quad \theta \in [0,2\pi].$$

$$z = \rho \mathop{\rm cos}\nolimits \phi$$

A mudança de coordenadas de esféricas a cartesianas é φ_c^{-1} é apresentada como

$$\varphi_e^{-1}: \left\{ \begin{array}{l} r = \sqrt{x^2 + y^2 + z^2} \\ \theta = \arctan(\frac{y}{x}) \\ \phi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) \end{array} \right., \quad x \neq 0, \quad (x,y,z) \neq (0,0,0)$$

Definição: Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$ uma transformação diferenciável de coordenadas f_1,f_2,\ldots,f_n . Se existirem todas as derivadas parciais das funções coordenadas, a derivada de f no ponto $X_0\in D$ é definida como a matriz quadrada:

$$f'(X_0) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(X_0) & \frac{\partial f_1}{\partial x_2}(X_0) & \cdots & \frac{\partial f_1}{\partial x_n}(X_0) \\ \frac{\partial f_2}{\partial x_1}(X_0) & \frac{\partial f_2}{\partial x_2}(X_0) & \cdots & \frac{\partial f_2}{\partial x_n}(X_0) \\ \frac{\partial f_n}{\partial x_1}(X_0) & \frac{\partial f_n}{\partial x_2}(X_0) & \cdots & \frac{\partial f_n}{\partial x_n}(X_0) \end{bmatrix}$$

Dita derivada é chamada de matriz jacobiana de f no ponto X_0 . As vezes também é denotada por $Df(X_0)$ ou por $\frac{\partial (f_1,\ldots,f_n)}{\partial (x_1,\ldots,x_n)}$.

Observação: A matriz jacobiana de uma transformação $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$ é uma matriz quadrada $n\times n$, e, assim tem determinante. Dito determinante é chamado de jacobiano de f:

$$Jf(X_0) = detf'(X_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}(X_0) & \frac{\partial f_1}{\partial x_2}(X_0) & \cdots & \frac{\partial f_1}{\partial x_n}(X_0) \\ \frac{\partial f_2}{\partial x_1}(X_0) & \frac{\partial f_2}{\partial x_2}(X_0) & \cdots & \frac{\partial f_2}{\partial x_n}(X_0) \\ \frac{\partial f_n}{\partial x_1}(X_0) & \frac{\partial f_n}{\partial x_2}(X_0) & \cdots & \frac{\partial f_n}{\partial x_n}(X_0) \end{vmatrix}$$

Regra da Cadeia: Sejam $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$, D aberto, e $g:E\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$, E aberto, duas transformações tais que $f(D)\subset E$. Se f é diferenciável em X_0 e g é diferenciável em $f(X_0)$, então a composta $g\circ f$ é diferenciável em X_0 e

$$(g \circ f)'(X_0) = g'(f(X_0)) \cdot f'(X_0),$$

onde $g'\left(f\left(x_0\right)\right)$ é a matriz jacobiana de g em $f(X_0)$ e $f'\left(x_0\right)$ é a matriz jacobiana de f em X_0 .

Teorema da Função Inversa: Seja $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^n$, D aberto, uma transformação de classe C^1 . Se $f'(X_0)$ é uma matriz inversível (i.e. $Jf(X_0)\neq 0$), então existe um aberto U contendo X_0 , tal que $f:U\longrightarrow V=f(U)$ é inversível com inversa $f^{-1}:V\longrightarrow U$ de classe C^1 e

$$(f^{-1})'(Y_0) = (f'(X_0))^{-1},$$

onde $Y_0 = f(X_0)$.

Observação:

(I) Nas condições do teorema da regra da cadeia, o jacobiano da composta é o produto dos jacobianos:

$$J(g \circ f)(X_0) = Jg(f(X_0)) \cdot Jf(X_0)$$

(II) Nas condições do teorema da função inversa, o jacobiano da transformação inversa é o recíproco do jacobiano da transformação:

$$Jf^{-1}(Y_0) = det(f'(X_0))^{-1} = \frac{1}{Jf(X_0)},$$

onde $Y_0 = f(X_0)$.

Exemplos

1. Calcule a imagem do quadrado de vértices (1,1), (5,1), (5,5) e (1,5) pela transformação $f(x,y)=(4x,\frac{1}{2}y)$.

Solução

A fronteira do quadrado Q é: $r_1(t)=(1,t)$, $r_5(t)=(5,t)$, $s_1(t)=(t,1)$, $s_5(t)=(t,5)$, para todo $t\in[0,5]$.

A imagem da fronteira pela transformação são os segmentos: $f(1,t)=(4,\frac{1}{2}t)$, $f(5,t)=(20,\frac{1}{2}t)$, $f(t,1)=(4t,\frac{1}{2})$ e $f(t,5)=(4t,\frac{5}{2})$, respectivamente.

Consideremos, para cada 1 < c < 5, os segmentos verticais $r_c(t) = (c,t)$, com $1 \le t \le 5$, no interior do quadrado Q. A imagem desses segmentos são: $f(c,t) = (4c, \frac{1}{2}t)$. Ainda segmentos verticais no interior de f(Q).

Consideremos, para cada 1 < c < 5, os segmentos horizontais $s_c(t) = (t,c)$, com $1 \le t \le 5$, no interior do quadrado Q. A imagem desses segmentos são: $f(t,c) = (4t,\frac{c}{2})$. Ainda segmentos horizontais no interior de f(Q).

Figure 4: Imagem de um retângulo por uma transformação linear

Portanto a imagem do quadrado Q é o retângulo de vértices (4,1/2), (20,1/2), (20,5/2) e (5/2,4).

2. Calcule a imagem do retângulo de vértices (-1,1), (2,1), (2,2) e (-1,2) pela transformação $f(x,y)=(y\cos x,y\sin x)$.

Solução

A fronteira do retângulo R é: $r_1(t)=(t,0)$, $r_5(t)=(5,t)$, $s_1(t)=(t,1)$, $s_5(t)=(t,5)$, para todo $t\in[-1,2]$.

A imagem da fronteira pela transformação são os segmentos: $f(1,t)=(4,\frac{1}{2}t)$, $f(5,t)=(20,\frac{1}{2}t)$, $f(t,1)=(4t,\frac{1}{2})$ e $f(t,5)=(4t,\frac{5}{2})$, respectivamente.

Consideremos, para cada $0 \le c \le 1$, os segmentos horizontais $r_c(t) = (t,c)$, com $-1 \le t \le 2$. Observe que os segmentos r_0 e r_1 pertencem à fronteira do retângulo. A imagem desses segmentos são: $m(t,c) = (c \cos t, c \sin t)$, arco de circunferência de centro (0,0) e raio c.

Consideremos, para cada $-1 \le c \le 2$, os segmentos verticais $s_c(t) = (c,t)$, com $0 \le t \le 1$. Observe que os segmentos s_{-1} e s_2 pertencem à fronteira do retângulo. A imagem desses segmentos são: $m(c,t) = (t\cos c, t \sec c)$, segmentos de reta que passa pela origem e tem vetor diretor ($\cos c, \sec c$).

Figure 5: A imagem de um retângulo por uma transformação não linear

Portanto a imagem do retângulo R é a seção do anel de raios o retângulo circular de vértices (4,1/2), (20,1/2), (20,5/2) e (5/2,4).

- 3. Calcule o jacobiano das seguintes transformações:
 - (i) f(x,y) = (x+y, x-y);
 - (ii) q(x, y, z) = (x + y + z + 1, -x + y + 2z 3, x + 2y + 2);
 - (iii) h(x, y) = (x y, xy).

Solução

(i) Temos
$$f(x,y)=(x+y,x-y)=(f_1(x,y),f_2(x,y))$$
, donde $\frac{\partial f_1}{\partial x}=1$, $\frac{\partial f_2}{\partial y}=1$, $\frac{\partial f_2}{\partial x}=1$, Então,

$$Jf(x,y) = \begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2, \forall (x,y) \in \mathbb{R}^2$$

(ii) Temos
$$g(x,y,z)=(x+y+z+1,-x+y+2z-3,x+2y+2)=(g_1(x,y,z),g_2(x,y,z),g_3(x,y,z)),$$
 donde $\frac{\partial g_1}{\partial x}=1,$ $\frac{\partial g_2}{\partial y}=1,$ $\frac{\partial g_2}{\partial z}=2,$ $\frac{\partial g_3}{\partial x}=1,$ $\frac{\partial g_3}{\partial y}=2,$ $\frac{\partial g_3}{\partial z}=0.$ Então,

$$Jg(x,y) = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 1 & 2 & 0 \end{vmatrix} = 0 \cdot 1 \cdot 1 + (-1) \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 1 - 1 \cdot 1 \cdot 1$$

$$-(-1) \cdot 1 \cdot 0 - 2 \cdot 2 \cdot 1 = 0 - 2 + 2 - 1 - 0 - 4 = -5, \forall (x, y) \in \mathbb{R}^3$$

(iii) Temos
$$h(x,y)=(x-y,xy)=(h_1(x,y),h_2(x,y))$$
, donde $\frac{\partial h_1}{\partial x}=1$, $\frac{\partial h_2}{\partial y}=1$, $\frac{\partial h_2}{\partial x}=y$, $\frac{\partial h_2}{\partial y}=x$. Então,

$$Jh(x,y) = \begin{vmatrix} 1 & 1 \\ y & x \end{vmatrix} = x - y, \forall (x,y) \in \mathbb{R}^2$$

4. Considere a translação f(x,y)=(ax+by+h,cx+dy+k), para algum vetor $(h,k)\in\mathbb{R}^2$ e coeficientes $a,b,c,d\in\mathbb{R}$. Calcule o determinante jacobiano de f.

Solução

Seja
$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Então, $f(x,y)=A\begin{bmatrix} x \\ y \end{bmatrix}+\begin{bmatrix} h \\ k \end{bmatrix}$.

Temos $f(x,y)=(ax+by+h,cx+dy+k)=(f_1(x,y),f_2(x,y))$, donde $\frac{\partial f_1}{\partial x}=a$, $\frac{\partial f_1}{\partial y}=b$, $\frac{\partial f_2}{\partial x}=c$, $\frac{\partial f_2}{\partial y}=d$. Então,

$$Jf(x,y) = \begin{vmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = det(A), \forall (x,y) \in \mathbb{R}^2$$

5. Determine o jacobiano da mudança de coordenadas polares a cartesianas no ponto (r,θ) .

Solução

Temos $\varphi_p(r,\theta)=(x(r,\theta),y(r,\theta))$, onde $x(r,\theta)=r\cos\theta$, $y(r,\theta)=r\sin\theta$. Logo,

$$\frac{\partial x}{\partial r} = \cos \theta, \quad \frac{\partial x}{\partial \theta} = -r \sin \theta, \quad \frac{\partial y}{\partial r} = \sin \theta, \quad \frac{\partial y}{\partial \theta} = r \cos \theta.$$

Então

$$J\varphi_p(r,\theta) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r \cos^2\theta + r\sin^2\theta = r \underbrace{(\cos^2\theta + \sin^2\theta)}_{-1} = r$$

Observe que o jacobiano da transformação depende unicamente do raio.

6. Determine o jacobiano da mudança de coordenadas cartesianas a polares em (x, y).

Solução

Temos $T(x,y)=(r(x,y),\theta(x,y))$, onde $r(x,y)=\sqrt{x^2+y^2}$, $\theta(x,y)=\arctan\left(\frac{y}{x}\right)$. Logo,

$$\frac{\partial r}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial r}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}},$$

$$\frac{\partial \theta}{\partial x} = \frac{-y/x^2}{1 + \left(\frac{y}{x}\right)^2} = \frac{-y}{x^2 + y^2}, \quad \frac{\partial \theta}{\partial y} = \frac{1/x}{1 + \left(\frac{y}{x}\right)^2} = \frac{x}{x^2 + y^2}.$$

Então

$$JT(x,y) = \begin{vmatrix} \frac{\partial r}{\partial x} & \frac{\partial r}{\partial y} \\ \frac{\partial \theta}{\partial x} & \frac{\partial \theta}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{x}{\sqrt{x^2 + y^2}} & \frac{y}{\sqrt{x^2 + y^2}} \\ \frac{-y}{x^2 + y^2} & \frac{x}{x^2 + y^2} \end{vmatrix} =$$
$$= \frac{x^2}{(x^2 + y^2)\sqrt{x^2 + y^2}} + \frac{y^2}{(x^2 + y^2)\sqrt{x^2 + y^2}} = \frac{1}{\sqrt{x^2 + y^2}}$$

Observação: Observe que $T=\varphi_p^{-1}$ e $J\varphi_p(r,\theta)=r$. Portanto, se r>0 podemos aplicar o teorema da função inversa para calcular JT(x,y). Com efeito,

$$JT(x,y) = \frac{1}{J\varphi_p(r(x,y),\theta(x,y))} = \frac{1}{r(x,y)} = \frac{1}{\sqrt{x^2 + y^2}}$$

- 7. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ definida por $f(x,y,z) = (x\cos y, x\sin y, z^2)$
 - (a) Prove que f é diferenciável.
 - (b) Calcule $f'(1, \frac{\pi}{4}, 1)$
 - (c) Calcule o jacobiano de f

Solução

- (a) Temos $f(x,y,z)=(f_1(x,y,z),f_2(x,y,z),f_3(x,y,z))$ com $f_1(x,y,z)=x\cos y,\ f_2(x,y,z)=x\sin y,\ f_3(x,y,z)=z^2.$ Como $\frac{\partial f_1}{\partial x}=\cos y,\ \frac{\partial f_1}{\partial y}=-x\sin y,\ \frac{\partial f_1}{\partial z}=0,\ \frac{\partial f_2}{\partial x}=\sin y,\ \frac{\partial f_2}{\partial y}=x\cos y,$ $\frac{\partial f_3}{\partial z}=0,\ \frac{\partial f_3}{\partial z}=0$ e $\frac{\partial f_3}{\partial z}=2z$ são funções continuas em \mathbb{R}^3 , então f é diferenciável em \mathbb{R}^3 .
- (b) Temos

$$\begin{split} f'(x,y,z) &= \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} & \frac{\partial f_1}{\partial z} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} & \frac{\partial f_2}{\partial z} \\ \frac{\partial f_3}{\partial x} & \frac{\partial f_3}{\partial y} & \frac{\partial f_3}{\partial z} \end{pmatrix} = \begin{pmatrix} \cos y & -x \sin y & 0 \\ \sin y & x \cos y & 0 \\ 0 & 0 & 2z \end{pmatrix} \Rightarrow \\ \Rightarrow f'\left(1,\frac{\pi}{4},1\right) &= \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 2 \end{pmatrix} \end{split}$$

(c) Temos
$$J=\left| egin{array}{cccc} \cos y & -x \sin y & 0 \\ \sin y & x \cos y & 0 \\ 0 & 0 & 2z \end{array} \right| =2z\left(x \cos^2 y + x \sin^2 y\right) =2xz$$

8. Sejam
$$f\left(\begin{array}{c} u \\ v \end{array}\right) = \left(\begin{array}{c} u^2 + 2uv + 3v \\ u - v \end{array}\right), g\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x^2 - y^2 \\ 2xy \end{array}\right).$$

Calcule o jacobiano da função composta $g \circ f$ em (9).

9. Seja $f\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x^2 - 2xy^2 \\ x + y \end{array}\right), (x,y) \in \mathbb{R}^2.$ Mostre que f tem uma inversa em um aberto contendo $x_0 = \left(\begin{array}{c} 1 \\ -1 \end{array}\right)$ e calcule $\left[f^{-1}\right]'(y_0), \ Y_0 = f\left(x_0\right),$

Solução

Temos que $f\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x^2 - 2xy^2 \\ x + y \end{array}\right) = \left(\begin{array}{c} f_1(x,y) \\ f_2(x,y) \end{array}\right)$ é de classe em \mathbb{R}^2 pois as derivadas para as de f_1 e f_2 são funções contínuas em \mathbb{R}^2 . Tem também que

$$f'\left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y}\\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{array}\right) = \left(\begin{array}{cc} 2x - 2y^2 & -4xy\\ 1 & 1 \end{array}\right)$$

donde.

$$f'(x_0) = f'\begin{pmatrix} 1\\ -1 \end{pmatrix} = \begin{pmatrix} 0 & 4\\ 1 & 1 \end{pmatrix}.$$

Como $Jf\left(x_{0}\right)=\det f'\left(x_{0}\right)=\left|\begin{array}{cc} 0 & 4\\ 1 & 1 \end{array}\right|=0-4=-4\neq0$, então pelo teorema da função inversa, existe um conjunto aberto v contendo X_{0} , tal que $f_{|v|}\left(f\right)$ restrita a v) tem uma função inversa f^{-1} , de classe C^{1} , e além disso,

$$(f^{-1})'(f(x_0)) = [f'(x_0)]^{-1}$$

onde
$$f(x_0) = f\begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = y_0 e (f'(x_0))^{-1} = \begin{pmatrix} 0 & 4 \\ 1 & 1 \end{pmatrix}^{-1} = \frac{1}{-4} \begin{pmatrix} 1 & -1 \\ -4 & 0 \end{pmatrix}^t = -\frac{1}{4} \begin{pmatrix} 1 & -4 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & 1 \\ \frac{1}{4} & 0 \end{pmatrix}$$
. Logo,

$$(f^{-1})'\begin{pmatrix} -1\\0\end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & 1\\\frac{1}{4} & 0\end{pmatrix}.$$

Exercícios

- 1. Calcule a imagem do retângulo de vértices (-1,1), (2,1), (2,2) e (-1,2) pelas seguintes transformações:
 - (i) Homotetia: f(x, y) = (4x, 4y);
 - (ii) Rotação: g(x, y) = (-x, y);
 - (iii) Reflexão: h(x,y) = (x,-y);
- 2. Seja $f:\mathbb{R}^2 \to \mathbb{R}^2$ a função definida por $f(x,y)=(x^2-y^2,2xy).$
 - (i) Mostre que a função f transforma o círculo de centro na origem e raio r no círculo de centro na origem e raio r^2 .

- (ii) Determine e esboce a imagem por f do retângulo de vértices (-2,0), (2,0), (2,2) e (-2,2).
- 3. Determine o jacobiano de φ_c e de sua inversa.
- 4. Determine o jacobiano de φ_e e de sua inversa.
- 5. Determine o determinante jacobiano de $f\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} x^2 + 2xy + 3y \\ x y \end{array}\right) \operatorname{em}\left(\begin{array}{c} x_0 \\ y_0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 2 \end{array}\right).$
- 6. Prove que o jacobiano de uma transformação afim T(X)=AX+B é JT(X)=det(A), para todo $X\in\mathbb{R}^n$.

Respostas

- 1. (i)
 - (ii)
 - (iii)
- 2. (i)
 - (ii)
- 3. $J\varphi_c = r$, $J\varphi_c^{-1} = \frac{1}{\sqrt{x^2 + y^2}}$
- 4. $J\varphi_e=
 ho^2\sin\phi$, $J\varphi_e^{-1}=rac{\pm 1}{\sqrt{x^2+y^2+z^2}\sqrt{x^2+y^2}}$
- 5. -7
- 6. sem resposta

