$h_U(\eta) = \sup_{u \in U} \eta^{\mathsf{T}} u. \tag{1.11}$ The domain, $K_U \subset \mathbb{R}^n$, on which the support function is defined is a

The support function of U, evaluated at $\eta \in \mathbb{R}^n$, is

unbounded from above on U. If U is bounded, $K_U = \mathbb{R}^n$. Suppose U is closed and convex. Then $U = \{u: \eta^T u \le h_U(\eta), \eta \in K_U\}$, the intersection of its supporting half spaces; moreover, $V \subset U$ if and only if

convex cone with vertex at the origin; specifically, for $\eta \notin K_U$, $\eta^T u$ is

$$h_V(\eta) \le h_U(\eta)$$
 for all $\eta \in K$. Testing the inclusion $V \subset U$ is much easier when U is the polyhedron,

 $U = \{u : s_i^T u \le r_i, \quad i = 1, \dots, N\}.$ Then $V \subset U$ if and only if $h_V(s_i) \le r_i, \quad i = 1, \dots, N$. For $\alpha \ge 0$,

$$u \in \mathbb{R}^n$$
, $\mu \in \mathbb{R}^m$, $G^T \mu \in K_U$, the following identities are easily confirmed: $h_U(\eta) = h_{coU}(\eta)$, $h_U(\alpha \eta) = \alpha h_U(\eta)$, $h_{\{u\} + U}(\eta) = \eta^T u + h_U(\eta)$, $h_{U+V}(\eta) = h_U(\eta) + h_V(\eta)$, $h_{GU}(\mu) = h_U(G^T \mu)$. Furthermore, if U is compact it

follows that coU = co(exU) and $h_U(\eta) = h_{exU}(\eta)$.

In what follows it is necessary to both characterize and numerically

evaluate support functions. In many situations this can be done using the preceding identities and simple observations such as:
$$U = \{u: T\}$$

the preceding identities and simple observations such as: $U = \{u: u^T P^{-1} u \le 1\}$, $P = P^T > 0$ implies $h_U(\eta) = \sqrt{\eta^T P \eta}$; $U = \{u: |u|_p \le 1\}$, $1 \le p \le \infty$ implies $h_U(\eta) = |\eta|_q$, $p^{-1} + q^{-1} = 1$; $U = co\{u: i = 1, ..., N\}$

 $1 \le p \le \infty$ implies $h_U(\eta) = |\eta|_q$, $p^{-1} + q^{-1} = 1$; $U = co\{u_i: i = 1, ..., N\}$ implies $h_U(\eta) = \max \eta^T u_i$, i = 1, ..., N; when U is the polyhedron (1.12) $h_U(\eta)$ is the solution of the linear program (LP), maximize $\eta^T u$

subject to $s_i^T u \le r_i$, i = 1, ..., N.