M. Tech Intelligent Automation and Robotics, 1st Year 2nd Semester, 2018

EMBEDDED SYSTEMS AND TECHNOLOGIES

Time: 3 Hours.

Full Marks: 100

Answer any four questions.

- (a) Design an ASIC for a Fibonacci sequence generator to count 1st N numbers in the sequence. Draw the state diagram, data flow path and necessary pin configuration of the designed ASIC.
 - 12
 - (b) Design a comparator to supplement the design in part (a) for i ≤ N 1 realization.
 (c) Write the comparison between RISC and CISC architecture.
- 2. (a) Explain the essence of a hierarchical state machine with reference to an elevator control logic design as an example.
 - (b) Design a pulse divider ASIC, that produces a pulse x after receiving four pulses at terminal 'a'. 10
 - (c) For the lattice automaton, given in Fig. 1(a), determine the lattice belief to recognize the string: 'ab'. Use the lattice shown in Fig. 1(b) for your computation.

Fig. 1(a)

Fig. 1(b)

- 3. (a) Draw the schematic architecture of an ARM processor and state its fundamental features. Explain how the instruction STR r_0 , $[r_1]$ is executed by the ARM processor.
 - (b) What is hardware/software partitioning problem? What is task graph? What are task splitting and task merging?
 - (c) Presume that given a table showing time required for execution on different software and hardware units of task T₁ to T₆. Also presume that given a task graph for the same tasks. How will you solve the hardware/software partitioning problem?
- 4. (a) Construct a VHDL model for the state machine shown in the following figure.

10

8

5

(b) Design a hypothetical two address line PROM to store the following four bit data.

Adress		Data			
A ₁	Ao	d ₃	d ₂	d ₁	do
0	0	0	0	1	1
0	1	1	0	0	1
1	0	1	1	1	1
1	1	1	0	1	0

(c) Write a short note on CPLD.

5

10

5. (a) Design an all MOS PAL for the following switching functions.

0

$$Y_1 = AB'C + A'B$$

and $Y_2 = A'BC + AC$.

(b) Realize a half-adder on the Quick logic p-ASIC architecture. Justify your realization.

10

(c) Design an all MOS PLD for the following logic function:

7

$$y_1 = AB'C + A'B y_1$$

- (a) Draw a block diagram of a dot-matrix printer. Explain how the printer CPU functions in controlling data transfer from the data buffer to the print-head.
 - (b) Show an interface between the user's microcomputer with a dot-matrix printer for data transfer.

10 6

(c) Draw a flowchart to transfer data to a dot-matrix printer from the user's buffer area.

 $12.5 \times 2 = 25$

- 7. Write short notes on any two:
 - (a) Comparison between PROM, PLA and PAL.
 - (b) Concurrency handling in VHDL using NAND-XOR system.
 - (c) Stochastic vs. Fuzzy automaton.
 - (d) Ant Colony Optimization Principle.