Definizione

chiuse, connesse, orientabili

Un *rivestimento ramificato* fra due superfici $\widetilde{\Sigma}$ e Σ è una funzione continua

$$f : \widetilde{\Sigma} \longrightarrow \Sigma$$

che localmente si comporta come

$$\mathbb{C} \longrightarrow \mathbb{C}$$
$$\xi \longmapsto \xi^k.$$

Definizione

chiuse, connesse, orientabili

Un rivestimento ramificato fra due superfici $\widetilde{\Sigma}$ e Σ è una funzione continua

$$f:\widetilde{\Sigma}\longrightarrow \Sigma$$

che localmente si comporta come

$$\mathbb{C} \longrightarrow \mathbb{C}$$
$$\xi \longmapsto \xi^k.$$

• Il grado locale $k = k(\widetilde{x})$ dipende da $\widetilde{x} \in \widetilde{\Sigma}$, ed è uguale a 1 per quasi tutti i punti.

Definizione

chiuse, connesse, orientabili

Un rivestimento ramificato fra due superfici $\widetilde{\Sigma}$ e Σ è una funzione continua

$$f:\widetilde{\Sigma}\longrightarrow \Sigma$$

che localmente si comporta come

$$\mathbb{C} \longrightarrow \mathbb{C}$$
$$\xi \longmapsto \xi^k.$$

- Il grado locale $k = k(\widetilde{x})$ dipende da $\widetilde{x} \in \widetilde{\Sigma}$, ed è uguale a 1 per quasi tutti i punti.
- Un punto $x \in \Sigma$ è di ramificazione se $k(\widetilde{x}) > 1$ per un qualche $\widetilde{x} \in f^{-1}(x)$.

Grado del rivestimento

Posto

•
$$\Sigma^{\bullet} = \Sigma \setminus \{\text{punti di ramificazione}\},$$

la restrizione $f^{ullet}\colon \widetilde{\Sigma}^{ullet} o \Sigma^{ullet}$ è un rivestimento di grado $d \geq 1$. $\qquad \qquad$ grado di f

Grado del rivestimento

Posto

$$\Sigma^{\bullet} = \Sigma \setminus \{\text{punti di ramificazione}\},$$

la restrizione $f^{\bullet} \colon \widetilde{\Sigma}^{\bullet} \to \Sigma^{\bullet}$ è un rivestimento di grado d > 1.

Per ogni $x \in \Sigma$ vale

$$k(\widetilde{x}_1) + \ldots + k(\widetilde{x}_r) = d$$

 $k(\widetilde{x}_1) + \ldots + k(\widetilde{x}_r) = d,$ dove $\{\widetilde{x}_1, \ldots, \widetilde{x}_r\} = f^{-1}(x).$

Grado del rivestimento

Posto

$$\Sigma^{\bullet} = \Sigma \setminus \{\text{punti di ramificazione}\},$$

la restrizione $f^{\bullet}: \widetilde{\Sigma}^{\bullet} \to \Sigma^{\bullet}$ è un rivestimento di grado d > 1.

Per ogni $x \in \Sigma$ vale

$$k(\widetilde{x}_1) + \ldots + k(\widetilde{x}_r) = d$$

$$k(\widetilde{x}_1)+\ldots+k(\widetilde{x}_r)=d,$$
 dove $\{\widetilde{x}_1,\ldots,\widetilde{x}_r\}=f^{-1}(x).$

• Possiamo associare a x la partizione di d

$$\pi(x) = [k(\widetilde{x}_1), \ldots, k(\widetilde{x}_r)].$$

Dati di ramificazione

Le proprietà combinatorie di $f\colon \widetilde{\Sigma} \to \Sigma$ sono contenute nel $dato\ di$ ramificazione

$$\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi(x_1), \dots, \pi(x_n)),$$

dove x_1, \ldots, x_n sono i punti di ramificazione.

Le proprietà combinatorie di $f: \widetilde{\Sigma} \to \Sigma$ sono contenute nel dato di ramificazione

$$\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi(x_1), \dots, \pi(x_n)),$$

dove x_1, \ldots, x_n sono i punti di ramificazione.

Formula di Riemann-Hurwitz

Se $\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ è un dato di ramificazione, allora $d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \dots - \ell(\pi_n). \tag{R}$

$$d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \ldots - \ell(\pi_n). \tag{RH}$$

Le proprietà combinatorie di $f:\widetilde{\Sigma} \to \Sigma$ sono contenute nel dato di ramificazione

$$\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi(x_1), \dots, \pi(x_n)),$$

dove x_1, \ldots, x_n sono i punti di ramificazione.

Formula di Riemann-Hurwitz

Se $\mathcal{D}(f)=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ è un dato di ramificazione, allora $d\cdot\chi(\Sigma)-\chi(\widetilde{\Sigma})=d\cdot n-\ell(\pi_1)-\ldots-\ell(\pi_n). \tag{R}$

$$d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \ldots - \ell(\pi_n).$$
 (RH)

• Una tupla $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ che soddisfa la formula di Riemann-Hurwitz si dice dato compatibile.

Le proprietà combinatorie di $f:\widetilde{\Sigma} \to \Sigma$ sono contenute nel dato di ramificazione

$$\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi(x_1), \dots, \pi(x_n)),$$

dove x_1, \ldots, x_n sono i punti di ramificazione.

Formula di Riemann-Hurwitz

Se $\mathcal{D}(f) = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ è un dato di ramificazione, allora $d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \dots - \ell(\pi_n). \tag{R}$

$$d \cdot \chi(\Sigma) - \chi(\widetilde{\Sigma}) = d \cdot n - \ell(\pi_1) - \ldots - \ell(\pi_n).$$
 (RH)

- Una tupla $\mathcal{D} = (\widetilde{\Sigma}, \Sigma; d; \pi_1, \dots, \pi_n)$ che soddisfa la formula di Riemann-Hurwitz si dice dato compatibile.
- Per comodità, richiediamo anche che $n \ge 3$ e $\pi_i \ne [1, \dots, 1]$.

Problema di esistenza di Hurwitz

• Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=\left(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n\right)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.
 Ad esempio, il dato D = (S,S; 4; [2,2], [2,2], [1,3]) soddisfa

ma è eccezionale.

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.

Ad esempio, il dato
$$\mathcal{D} = (\mathbb{S}, \mathbb{S}; 4; [2, 2], [2, 2], [1, 3])$$
 soddisfa

ma è eccezionale.

Problema di esistenza di Hurwitz

Quali dati compatibili sono realizzabili?

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.
 Ad esempio, il dato D = (S,S; 4; [2,2], [2,2], [1,3]) soddisfa

ma è eccezionale.

Approcci generali: monodromia e dessins d'enfant.

Problema di esistenza di Hurwitz

- Un dato compatibile $\mathcal{D}=(\widetilde{\Sigma},\Sigma;d;\pi_1,\ldots,\pi_n)$ si dice *realizzabile* se è il dato di ramificazione di un qualche rivestimento ramificato $f:\widetilde{\Sigma}\to\Sigma$, *eccezionale* altrimenti.
- La formula di Riemann-Hurwitz è condizione necessaria, ma non sufficiente per la realizzabilità.

Ad esempio, il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ soddisfa

ma è eccezionale.

- Approcci generali: monodromia e dessins d'enfant.
- Soluzione completa nel caso $\ell(\pi_n) = 2$.

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\scriptscriptstyle\bullet} = \Sigma_g \smallsetminus \{x_1, \dots, x_n\},$$

il gruppo fondamentale $\pi_1(\Sigma_g^{ullet},x_0)$ ammette la presentazione

cammino chiuso intorno a
$$x_1$$

$$\langle a_1, \dots, a_n, b_1, \dots, b_g, c_1, \dots, c_g \mid$$

$$[b_1, c_1] \cdots [b_g, c_g] \cdot a_1 \cdots a_n \rangle.$$

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\scriptscriptstyle\bullet} = \Sigma_g \smallsetminus \{x_1, \dots, x_n\},$$

il gruppo fondamentale $\pi_1(\Sigma_g^{ullet},x_0)$ ammette la presentazione

cammino chiuso intorno a
$$x_1$$
 $\langle a_1,\ldots,a_n,b_1,\ldots,b_g,c_1,\ldots,c_g \mid [b_1,c_1]\cdots [b_g,c_g]\cdot a_1\cdots a_n \rangle.$

• Se $f: \widetilde{\Sigma} \to \Sigma_g$ è un rivestimento ramificato, $\pi_1(\Sigma_g^{\bullet}, x_0)$ agisce sulla fibra $f^{-1}(x_0)$ (monodromia del rivestimento $f^*: \widetilde{\Sigma}^{\bullet} \to \Sigma_g^{\bullet}$).

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\scriptscriptstyle\bullet} = \Sigma_g \smallsetminus \{x_1, \dots, x_n\},$$

il gruppo fondamentale $\pi_1(\Sigma_g^{ullet},x_0)$ ammette la presentazione

cammino chiuso intorno a
$$x_1$$
 $\langle a_1, \dots, a_n, b_1, \dots, b_g, c_1, \dots, c_g \mid [b_1, c_1] \cdots [b_g, c_g] \cdot a_1 \cdots a_n \rangle.$

- Se $f: \widetilde{\Sigma} \to \Sigma_g$ è un rivestimento ramificato, $\pi_1(\Sigma_g^{\bullet}, x_0)$ agisce sulla fibra $f^{-1}(x_0)$ (monodromia del rivestimento $f^*: \widetilde{\Sigma}^{\bullet} \to \Sigma_g^{\bullet}$).
- Questa azione induce un morfismo di gruppi

$$\mathfrak{m} \colon \pi_1(\Sigma_g^{\scriptscriptstyle\bullet}, x_0) \longrightarrow \mathfrak{S}(f^{-1}(x_0))^{\mathsf{op}} \cong \mathfrak{S}_d.$$

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\scriptscriptstyle\bullet} = \Sigma_g \smallsetminus \{x_1, \dots, x_n\},$$

il gruppo fondamentale $\pi_1(\Sigma_g^{ullet},x_0)$ ammette la presentazione

cammino chiuso intorno a
$$x_1$$
 $\langle a_1, \ldots, a_n, b_1, \ldots, b_g, c_1, \ldots, c_g \mid [b_1, c_1] \cdots [b_g, c_g] \cdot a_1 \cdots a_n \rangle.$

- Se $f: \widetilde{\Sigma} \to \Sigma_g$ è un rivestimento ramificato, $\pi_1(\Sigma_g^{\bullet}, x_0)$ agisce sulla fibra $f^{-1}(x_0)$ (monodromia del rivestimento $f^*: \widetilde{\Sigma}^{\bullet} \to \Sigma_g^{\bullet}$).
- Questa azione induce un morfismo di gruppi

$$\mathfrak{m} \colon \pi_1(\Sigma_g^{\bullet}, x_0) \longrightarrow \mathfrak{S}(f^{-1}(x_0))^{\operatorname{op}} \cong \mathfrak{S}_d.$$

• Le lunghezze dei cicli di $\mathfrak{m}(a_i)$ corrispondono agli elementi di $\pi(x_i)$.

Gruppo fondamentale e monodromia del rivestimento

Sia Σ_g la somma connessa di $g \geq 0$ tori. Se

$$\Sigma_g^{\scriptscriptstyle\bullet} = \Sigma_g \smallsetminus \{x_1, \dots, x_n\},$$

il gruppo fondamentale $\pi_1(\Sigma_g^{ullet},x_0)$ ammette la presentazione

cammino chiuso intorno a
$$x_1$$
 $\langle a_1,\ldots,a_n,b_1,\ldots,b_g,c_1,\ldots,c_g \mid [b_1,c_1]\cdots [b_g,c_g]\cdot a_1\cdots a_n \rangle.$

- Se $f: \widetilde{\Sigma} \to \Sigma_g$ è un rivestimento ramificato, $\pi_1(\Sigma_g^{\bullet}, x_0)$ agisce sulla fibra $f^{-1}(x_0)$ (monodromia del rivestimento $f^*: \widetilde{\Sigma}^{\bullet} \to \Sigma_g^{\bullet}$).
- Questa azione induce un morfismo di gruppi

scriviamo

$$\mathfrak{m}\colon \pi_1(\Sigma_g^{\scriptscriptstyle\bullet},x_0)\longrightarrow \mathfrak{S}(f^{-1}(x_0))^{\mathsf{op}}\cong \mathfrak{S}_d. \ ^{[\mathfrak{m}(\mathfrak{s}_i)]\,=\,\pi(x_i)}$$

• Le lunghezze dei cicli di $\mathfrak{m}(a_i)$ corrispondono agli elementi di $\pi(x_i)$.

Criterio di realizzabilità

Criterio di realizzabilità

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

• $[\alpha_i] = \pi_i$ per ogni $1 \le i \le n$;

Criterio di realizzabilità

- $$\begin{split} & \textbf{ (} \quad [\alpha_i] = \pi_i \text{ per ogni } 1 \leq i \leq n; \\ & \textbf{ (} \quad [\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1; \end{split}$$

Criterio di realizzabilità

- $[\alpha_i] = \pi_i$ per ogni $1 \le i \le n$;
- $(\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$
- $(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g)$ agisca transitivamente su $\{1,\ldots,d\}$.

Criterio di realizzabilità

- $(\beta_1, \gamma_1) \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

- $(\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che:

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

- $[\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$

Esempio. Il dato $\mathcal{D} = (\mathbb{S}, \mathbb{S}; 4; [2, 2], [2, 2], [1, 3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1, \alpha_2, \alpha_3 \in \mathfrak{S}_4$ tali che:

 $[\alpha_1] = [\alpha_2] = [2, 2] e [\alpha_3] = [1, 3];$

Criterio di realizzabilità

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

- $[\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che: $\alpha_1=(\bullet,\bullet)(\bullet,\bullet)$

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

- $[\alpha_i] = \pi_i$ per ogni $1 \le i \le n$;
- $(\beta_1, \gamma_1] \cdots [\beta_g, \gamma_g] \cdot \alpha_1 \cdots \alpha_n = 1;$

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che: $\alpha_1=(\bullet,\bullet)(\bullet,\bullet)$

- **1** $[\alpha_1] = [\alpha_2] = [2, 2] \text{ e } [\alpha_3] = [1, 3];$ $\alpha_2 = (\bullet, \bullet)(\bullet, \bullet)$ $\alpha_3 = (\bullet, \bullet, \bullet)$

Criterio di realizzabilità

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

- $[\alpha_i] = \pi_i$ per ogni $1 \le i \le n$;

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che: $\alpha_1=(\bullet,\bullet)(\bullet,\bullet)$

- ii $\alpha_1\alpha_2\alpha_3=1$.

Ma le permutazioni di tipo [2,2] generano un sottogruppo di ordine 4, che non contiene α_3 .

Criterio di realizzabilità

Un dato $\mathcal{D}=(\widetilde{\Sigma},\Sigma_g;d;\pi_1,\ldots,\pi_n)$ è realizzabile se e solo se esistono permutazioni $\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_g,\gamma_1,\ldots,\gamma_g\in\mathfrak{S}_d$ tali che:

Esempio. Il dato $\mathcal{D}=(\mathbb{S},\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbero $\alpha_1,\alpha_2,\alpha_3\in\mathfrak{S}_4$ tali che: $\alpha_1=(\bullet,\bullet)(\bullet,\bullet)$

- $\alpha_1 \alpha_2 \alpha_3 = 1. \longrightarrow \alpha_3 = \alpha_2^{-1} \alpha_1^{-1}$

Ma le permutazioni di tipo [2,2] generano un sottogruppo di ordine 4, che non contiene α_3 .

Conseguenze

Ogni dato compatibile $(\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ con $g \geq 1$ è realizzabile.

Conseguenze

Ogni dato compatibile $(\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ con $g \geq 1$ è realizzabile.

D'ora in poi considereremo solo dati della forma

$$(\widetilde{\Sigma}, \mathbb{S}; d; \pi_1, \ldots, \pi_n).$$

Conseguenze

Ogni dato compatibile $(\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ con $g \geq 1$ è realizzabile.

D'ora in poi considereremo solo dati della forma

$$(\widetilde{\Sigma}, \mathbb{X}; d; \pi_1, \ldots, \pi_n).$$

Conseguenze

Ogni dato compatibile $(\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ con $g \geq 1$ è realizzabile.

D'ora in poi considereremo solo dati della forma

$$(\widetilde{\Sigma}, \mathbb{X}; d; \pi_1, \ldots, \pi_n).$$

Ogni dato compatibile $(\widetilde{\Sigma};d;\pi_1,\ldots,\pi_{n-1},[d])$ è realizzabile.

Ogni dato compatibile $(\widetilde{\Sigma}, \Sigma_g; d; \pi_1, \dots, \pi_n)$ con $g \ge 1$ è realizzabile.

D'ora in poi considereremo solo dati della forma $(\widetilde{\Sigma}, \mathbb{X}; d; \pi_1, \ldots, \pi_n).$

Ogni dato compatibile $(\widetilde{\Sigma}; d; \pi_1, \dots, \pi_{n-1}, [d])$ è realizzabile.

Ogni dato compatibile $(\widetilde{\Sigma}; d; \pi_1, \dots, \pi_{n-1}, [1, d-1])$ è realizzabile, eccezion fatta per:

- 1 (S; 2k; [2,...,2], [2,...,2], [1, 2k-1]) con $k \ge 2$; 2 (Σ_{n-3} ; 4; [2,2],..., [2,2], [1,3]).

Costruzione

Sia $f \colon \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x,y,z \in \mathbb{S}$.

Costruzione

Sia $f \colon \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x,y,z \in \mathbb{S}$.

lacktriangle Tracciamo un arco e fra x e y.

Costruzione

Sia $f : \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x, y, z \in \mathbb{S}$.

- lacktriangle Tracciamo un arco e fra x e y.
- $\Gamma = f^{-1}(e)$ è un grafo su $\widetilde{\Sigma}$.

Costruzione

Sia $f : \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x, y, z \in \mathbb{S}$.

- lacktriangle Tracciamo un arco e fra x e y.
- $\Gamma = f^{-1}(e)$ è un grafo su $\widetilde{\Sigma}$.
- Se coloriamo $f^{-1}(x)$ di nero e $f^{-1}(y)$ di bianco, Γ è bipartito.

Costruzione

Sia $f \colon \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x,y,z \in \mathbb{S}$.

- lacktriangle Tracciamo un arco e fra x e y.
- $\Gamma = f^{-1}(e)$ è un grafo su $\widetilde{\Sigma}$.
- Se coloriamo $f^{-1}(x)$ di nero e $f^{-1}(y)$ di bianco, Γ è bipartito.
- lacktriangle II grado di $\widetilde{x_i} \in f^{-1}(x)$ è $k(\widetilde{x_i})$.

Costruzione

Sia $f: \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x, y, z \in \mathbb{S}$.

- lacktriangle Tracciamo un arco e fra x e y.
- $\Gamma = f^{-1}(e)$ è un grafo su $\widetilde{\Sigma}$.
- Se coloriamo $f^{-1}(x)$ di nero e $f^{-1}(y)$ di bianco, Γ è bipartito.
- \bullet II grado di $\widetilde{x_i} \in f^{-1}(x)$ è $k(\widetilde{x_i})$.
- Ogni componente connessa \widetilde{D}_i di $\widetilde{\Sigma} \setminus \Gamma$ contiene esattamente un punto $\widetilde{z}_i \in f^{-1}(z)$. regione complementare

Costruzione

Sia $f : \widetilde{\Sigma} \to \mathbb{S}$ un rivestimento ramificato con punti di ramificazione $x, y, z \in \mathbb{S}$.

- lacktriangle Tracciamo un arco e fra x e y.
- $\Gamma = f^{-1}(e)$ è un grafo su $\widetilde{\Sigma}$.
- Se coloriamo $f^{-1}(x)$ di nero e $f^{-1}(y)$ di bianco, Γ è bipartito.
- \bullet II grado di $\widetilde{x_i} \in f^{-1}(x)$ è $k(\widetilde{x_i})$.
- Ogni componente connessa \widetilde{D}_i di $\widetilde{\Sigma} \setminus \Gamma$ contiene esattamente un punto $\widetilde{z}_i \in f^{-1}(z)$. regione complementare
- \widetilde{D}_i è un disco, e ci sono $2k(\widetilde{z}_i)$ archi lungo il suo perimetro.

contati con molteplicità

Criterio di realizzabilità

Un *dessin d'enfant* su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma \subseteq \widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Criterio di realizzabilità

Un dessin d'enfant su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma\subseteq\widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Un dato $\mathcal{D}=(\widetilde{\Sigma};d;\pi_1,\pi_2,\pi_3)$ è realizzabile se e solo se esiste un dessin d'enfant $\Gamma\subseteq\widetilde{\Sigma}$ tale che:

Criterio di realizzabilità

Un dessin d'enfant su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma\subseteq\widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Un dato $\mathcal{D}=\left(\widetilde{\Sigma};d;\pi_{1},\pi_{2},\pi_{3}\right)$ è realizzabile se e solo se esiste un dessin d'enfant $\Gamma\subseteq\widetilde{\Sigma}$ tale che:

 $\mathbf{1}$ $\pi_1 \longleftrightarrow$ gradi dei vertici neri;

Criterio di realizzabilità

Un dessin d'enfant su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma\subseteq\widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Un dato $\mathcal{D}=\left(\widetilde{\Sigma};d;\pi_{1},\pi_{2},\pi_{3}\right)$ è realizzabile se e solo se esiste un dessin d'enfant $\Gamma\subseteq\widetilde{\Sigma}$ tale che:

- \bullet \bullet gradi dei vertici neri;
- \blacksquare $\pi_2 \longleftrightarrow$ gradi dei vertici bianchi;

Criterio di realizzabilità

Un dessin d'enfant su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma \subseteq \widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Un dato $\mathcal{D}=\left(\widetilde{\Sigma};d;\pi_{1},\pi_{2},\pi_{3}\right)$ è realizzabile se e solo se esiste un dessin d'enfant $\Gamma\subseteq\widetilde{\Sigma}$ tale che:

- \bullet \bullet gradi dei vertici neri;
- $\pi_2 \leftrightarrow \text{gradi dei vertici bianchi};$
- \blacksquare π_3 \longleftrightarrow semiperimetri dei dischi complementari.

Criterio di realizzabilità

Un dessin d'enfant su $\widetilde{\Sigma}$ è un grafo bipartito $\Gamma \subseteq \widetilde{\Sigma}$ le cui regioni complementari sono dischi.

Un dato $\mathcal{D}=\left(\widetilde{\Sigma};d;\pi_{1},\pi_{2},\pi_{3}\right)$ è realizzabile se e solo se esiste un dessin d'enfant $\Gamma\subseteq\widetilde{\Sigma}$ tale che:

- $\bullet \quad \pi_1 \iff \mathsf{gradi} \mathsf{dei} \mathsf{vertici} \mathsf{neri};$
- $\pi_2 \longleftrightarrow \text{gradi dei vertici bianchi};$

Un esempio di dato eccezionale

Esempio. Il dato $\mathcal{D}=(\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbe un dessin d'enfant $\Gamma\subseteq\mathbb{S}$ tale che:

- 1 i due vertici neri abbiano gradi [2, 2];
- i due vertici bianchi abbiano gradi [2, 2];
- \blacksquare i due dischi complementari abbiano semiperimetri [1,3].

Un esempio di dato eccezionale

Esempio. Il dato $\mathcal{D}=(\mathbb{S};4;[2,2],[2,2],[1,3])$ è eccezionale. Se non lo fosse, esisterebbe un dessin d'enfant $\Gamma\subseteq\mathbb{S}$ tale che:

- \bullet i due vertici neri abbiano gradi [2, 2];
- n i due vertici bianchi abbiano gradi [2, 2];
- lacktriangledown i due dischi complementari abbiano semiperimetri [1,3].

Tuttavia esiste un unico dessin d'enfant su \mathbb{S} che soddisfa le condizioni \mathbf{e} e \mathbf{n} , e i suoi dischi complementari hanno semiperimetri [2,2].

Obiettivo

Roadmap

$$(\Sigma_g; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

 $^{^{1}}$ Hao Zheng. Realizability of branched coverings of S^{2} . Topology Appl. 153.12 (2006), 2124–2134.

²Fedor Pakovich. *Solution of the Hurwitz problem for Laurent polynomials.* J. Knot Theory Ramifications 18.2 (2009), 271–302.

Roadmap

Classificazione completa dei dati eccezionali della forma

$$(\Sigma_g; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

• Approccio computazionale¹ per trattare i casi con *d* piccolo.

 $^{^{1}}$ Hao Zheng. Realizability of branched coverings of S^{2} . Topology Appl. 153.12 (2006), 2124–2134.

²Fedor Pakovich. *Solution of the Hurwitz problem for Laurent polynomials.* J. Knot Theory Ramifications 18.2 (2009), 271–302.

Roadmap

$$(\Sigma_g; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

- lacktriangle Approccio computazionale per trattare i casi con d piccolo.
- Strategia basata sulla monodromia per ridurre il numero di partizioni a n = 3.

 $^{^{1}}$ Hao Zheng. Realizability of branched coverings of S^{2} . Topology Appl. 153.12 (2006), 2124–2134.

²Fedor Pakovich. *Solution of the Hurwitz problem for Laurent polynomials.* J. Knot Theory Ramifications 18.2 (2009), 271–302.

Roadmap

$$(\Sigma_g; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

- lacktriangle Approccio computazionale per trattare i casi con d piccolo.
- Strategia basata sulla monodromia per ridurre il numero di partizioni a n = 3.
- Strategia basata sui dessins d'enfant per ridurre il genere a g=0.

 $^{^{1}}$ Hao Zheng. Realizability of branched coverings of S^{2} . Topology Appl. 153.12 (2006), 2124–2134.

²Fedor Pakovich. *Solution of the Hurwitz problem for Laurent polynomials.* J. Knot Theory Ramifications 18.2 (2009), 271–302.

Roadmap

$$(\Sigma_g; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

- \bullet Approccio computazionale per trattare i casi con d piccolo.
- Strategia basata sulla monodromia per ridurre il numero di partizioni a n = 3.
- Strategia basata sui dessins d'enfant per ridurre il genere a g=0.
- Risultati già noti² classificano i dati eccezionali della forma

$$(S; d; \pi_1, \ldots, \pi_{n-1}, [s, d-s]).$$

 $^{^{1}}$ Hao Zheng. Realizability of branched coverings of S^{2} . Topology Appl. 153.12 (2006), 2124–2134.

²Fedor Pakovich. *Solution of the Hurwitz problem for Laurent polynomials.* J. Knot Theory Ramifications 18.2 (2009), 271–302.

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

 \mathcal{D}' è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

•
$$\mathcal{D} = (\Sigma_g; d; \pi_1, \pi_2, [s, d - s]).$$

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

Siamo interessati a mosse $\mathcal{D} \leadsto \overline{\mathcal{D}'}$ in cui g' < g.

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

$$\mathcal{D} = (\Sigma_g; d; \pi_1, \pi_2, [s, d-s]).$$

$$(\Sigma_{g'}; d'; \pi'_1, \pi'_2, [s', d'-s'])$$

$$\text{Siamo interessati a mosse } \mathcal{D} \sim \mathcal{D}' \text{ in cui } g' < g.$$

Schema dimostrativo

Per dimostrare che $\mathcal{D} \sim \sim \mathcal{D}'$:

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

$$\mathcal{D} = (\Sigma_g; d; \pi_1, \pi_2, [s, d-s]).$$

$$(\Sigma_{g'}; d'; \pi'_1, \pi'_2, [s', d'-s'])$$

$$\text{Siamo interessati a mosse } \mathcal{D} \sim \mathcal{D}' \text{ in cui } g' < g.$$

Schema dimostrativo

Per dimostrare che $\mathcal{D} \leadsto \mathcal{D}'$:

1 consideriamo un dessin d'enfant $\Gamma' \subseteq \Sigma_{g'}$ che realizza \mathcal{D}' ;

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

•
$$\mathcal{D} = (\Sigma_g; d; \pi_1, \pi_2, [s, d - s]).$$
 $(\Sigma_{g'}; d'; \pi'_1, \pi'_2, [s', d' - s'])$

Siamo interessati a mosse $\mathcal{D} \leadsto \mathcal{D}'$ in cui g' < g.

Schema dimostrativo

Per dimostrare che $\mathcal{D} \leadsto \mathcal{D}'$:

- **1** consideriamo un dessin d'enfant $\Gamma' \subseteq \Sigma_{g'}$ che realizza \mathcal{D}' ;
- 2 apportiamo alcune modifiche a Γ' per ottenere un nuovo dessin d'enfant $\Gamma \subseteq \Sigma_g$;

Mosse combinatorie

Una mossa combinatoria è un'implicazione del tipo

$$\mathcal{D}'$$
 è realizzabile $\implies \mathcal{D}$ è realizzabile,

dove \mathcal{D} e \mathcal{D}' sono dati compatibili. Si indica con $\mathcal{D} \leadsto \mathcal{D}'$.

$$\mathcal{D} = (\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d-s]).$$

$$(\Sigma_{g'}; d'; \pi'_{1}, \pi'_{2}, [s', d'-s'])$$

• Siamo interessati a mosse $\mathcal{D} \leadsto \overline{\mathcal{D}'}$ in cui g' < g.

Schema dimostrativo

Per dimostrare che $\mathcal{D} \leadsto \mathcal{D}'$:

- $oldsymbol{1}$ consideriamo un dessin d'enfant $\Gamma'\subseteq \Sigma_{g'}$ che realizza \mathcal{D}' ;
- 2 apportiamo alcune modifiche a Γ' per ottenere un nuovo dessin d'enfant $\Gamma \subseteq \Sigma_g$;
- 3 verifichiamo che Γ realizza \mathcal{D} .

Un esempio di mossa combinatoria

Sia $\mathcal{D}=(\Sigma_g;d;\pi_1,\pi_2,[s,d-s])$ un dato compatibile con $g\geq 1$. Supponiamo che:

- $3 \le s \le d 3$; $[x, y] \subseteq \pi_1 \text{ con } x \ge 3, y \ge 3$;
- **•** [2,2] ⊆ π_2 .

Un esempio di mossa combinatoria

Sia $\mathcal{D}=\left(\Sigma_g;d;\pi_1,\pi_2,[s,d-s]\right)$ un dato compatibile con $g\geq 1$. Supponiamo che:

• $3\leq s\leq d-3;$ • $[x,y]\subseteq\pi_1$ con $x\geq 3,\ y\geq 3;$ • $[2,2]\subseteq\pi_2$.
Consideriamo il dato compatibile

$$\mathcal{D}' = (\Sigma_{g-1}; d-4; \pi'_1, \pi'_2, [s-2, d-s-2]),$$

 $\mathcal{D}' = (\Sigma_{g-1}; d-4; \pi_1', \pi_2', [s-2, d-s-2]),$ dove $\pi_1' = \pi_1 \smallsetminus [x, y] \cup [x-2, y-2]$ e $\pi_2' = \pi_2 \smallsetminus [2, 2]$. Allora $\mathcal{D} \leadsto \mathcal{D}'$.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Un esempio di mossa combinatoria

$$(\Sigma_g; d; \pi_1, \pi_2, [s, d - s]) \leadsto (\Sigma_{g-1}; d - 4; \pi'_1, \pi'_2, [s - 2, d - s - 2])$$

$$\pi'_1 = \pi_1 \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_2 = \pi_2 \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

Un esempio di mossa combinatoria

$$(\Sigma_g; d; \pi_1, \pi_2, [s, d - s]) \leadsto (\Sigma_{g-1}; d - 4; \pi'_1, \pi'_2, [s - 2, d - s - 2])$$
$$\pi'_1 = \pi_1 \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_2 = \pi_2 \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

Caso 1: il vertice nero di grado x-2 giace sul bordo di D_1 , quello di grado y-2 sul bordo di D_2 .

1 Attacchiamo un tubo a Σ_{g-1} con un estremo in D_1 e l'altro in D_2 .

Un esempio di mossa combinatoria

$$(\Sigma_g; d; \pi_1, \pi_2, [s, d - s]) \sim (\Sigma_{g-1}; d - 4; \pi'_1, \pi'_2, [s - 2, d - s - 2])$$

 $\pi'_1 = \pi_1 \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_2 = \pi_2 \setminus [2, 2]$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- **1** Attacchiamo un tubo a Σ_{g-1} con un estremo in D_1 e l'altro in D_2 .
- 2 Aggiungiamo vertici e archi.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d-s]) \leftrightsquigarrow (\Sigma_{g-1}; d-4; \pi'_{1}, \pi'_{2}, [s-2, d-s-2])$$
$$\pi'_{1} = \pi_{1} \smallsetminus [x, y] \cup [x-2, y-2], \qquad \pi'_{2} = \pi_{2} \smallsetminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- **1** Attacchiamo un tubo a Σ_{g-1} con un estremo in D_1 e l'altro in D_2 .
- 2 Aggiungiamo vertici e archi.
- 3 Tracciamo gli archi rossi.

Un esempio di mossa combinatoria

$$(\Sigma_g; d; \pi_1, \pi_2, [s, d - s]) \sim \sim (\Sigma_{g-1}; d - 4; \pi'_1, \pi'_2, [s - 2, d - s - 2])$$

 $\pi'_1 = \pi_1 \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_2 = \pi_2 \setminus [2, 2]$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- **1** Attacchiamo un tubo a Σ_{g-1} con un estremo in D_1 e l'altro in D_2 .
- 2 Aggiungiamo vertici e archi.
- 3 Tracciamo gli archi rossi.
- 4 Collassiamo gli archi rossi.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

Caso 2: i vertici neri di gradi x - 2 e y - 2 giacciono entrambi sul bordo di D_1 . Sia e un arco che giace sui bordi di entrambi i dischi.

Aggiungiamo vertici su e.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- 1 Aggiungiamo vertici su e.
- 2 Attacchiamo un tubo a Σ_{g-1} con entrambi gli estremi in in D_1 .

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$

$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- 1 Aggiungiamo vertici su e.
- 2 Attacchiamo un tubo a Σ_{g-1} con entrambi gli estremi in in D_1 .
- 3 Tracciamo gli archi rossi.

Un esempio di mossa combinatoria

$$(\Sigma_{g}; d; \pi_{1}, \pi_{2}, [s, d - s]) \rightsquigarrow (\Sigma_{g-1}; d - 4; \pi'_{1}, \pi'_{2}, [s - 2, d - s - 2])$$
$$\pi'_{1} = \pi_{1} \setminus [x, y] \cup [x - 2, y - 2], \qquad \pi'_{2} = \pi_{2} \setminus [2, 2]$$

Sia $\Gamma' \subseteq \Sigma_{g-1}$ un dessin d'enfant che realizza \mathcal{D}' . Denotiamo con D_1 il disco complementare di semiperimetro s-2, con D_2 l'altro.

- 1 Aggiungiamo vertici su e.
- 2 Attacchiamo un tubo a Σ_{g-1} con entrambi gli estremi in in D_1 .
- 3 Tracciamo gli archi rossi.
- 4 Collassiamo gli archi rossi.

