Глава II МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

§ 5. Физические основы молекулярно-кинетической теории и термодинамики

В условиях задач этого раздела температура задается в градусах Цельсия. При проведении числовых расчетов необходимо перевести температуру в градусы Кельвина, исходя из того, что 0° С = 273° К. Кроме того, необходимо также представить все остальные величины в единицах системы СИ. Так, например, $1\pi = 10^{-3} \text{ m}^3$; $1\text{m}^3 = 10^6 \text{ cm}^3 = 10^9 \text{ мm}^3$. Если в задаче приведена графическая зависимость нескольких величин от какой-либо одной и при этом все кривые изображены на одном графике, то по оси y задаются условные единицы. При решении задач используются данные таблиц 3,6 и таблиц 9—11 из приложения.

5.1. Какую температуру T имеет масса m=2 г азота, занимающего объем $V=820\,\mathrm{cm}^3$ при давлении $p=0.2\,\mathrm{M}\Pi\mathrm{a}$?

Решение:

Температуру азота можно определить из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда температура азота $T = \frac{pV\mu}{mR}$. Молярная масса азота $\mu = 0.028\,\mathrm{kr/моль}$. Подставляя числовые данные, получим $T = \frac{0.2\cdot 10^6\cdot 820\cdot 10^{-6}\cdot 0.028}{2\cdot 10^{-3}\cdot 8.31} = 280\,\mathrm{K}$ или $T = 7^{\circ}\,\mathrm{C}$.

5.2. Какой объем V занимает масса $m=10\,\mathrm{r}$ кислорода при давлении $p=100\,\mathrm{k}$ Па и температуре $t=20^{\circ}\,\mathrm{C}$?

Выразим объем кислорода из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $V = \frac{mRT}{\mu p}$. Молярная масса кислорода $\mu = 0.032$ кг/моль. Подставляя числовые данные, получим $V = \frac{10^{-2} \cdot 8.31 \cdot 293}{0.032 \cdot 10^5} = 7.6 \cdot 10^{-3}$ м³.

5.3. Баллон объемом V = 12 л наполнен азотом при давлении p = 8,1 МПа и температуре $t = 17^{\circ}$ С. Какая масса m азота нахолится в баллоне?

Решение:

Массу азота можно выразить из уравнения Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $m = \frac{pV\mu}{RT}$. Молярная масса азота $\mu = 0.028$ кг/моль. m = 1.13 кг.

5.4. Давление воздуха внутри плотно закупоренной бутылки при температуре $t_1 = 7^{\circ}$ С было $p_1 = 100$ кПа. При нагревании бутылки пробка вылетела. До какой температуры t_2 нагрели бутылку, если известно, что пробка вылетела при давлении воздуха в бутылке p = 130 кПа?

Решение:

По закону Шарля $\frac{p_1}{p_2} = \frac{T_1}{T_2}$, отсюда $T_2 = \frac{p_2 T_1}{p_1}$; $T_1 = 280$ K, $p_1 = 10^5$ Па; $T_2 = 364$ K.

5.5. Каким должен быть наименьшей объем V баллона, вмещающего массу m = 6.4 кг кислорода, если его стенки при температуре t = 20° С выдерживают давлёние p = 15.7 МПа?

Согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $V = \frac{mRT}{\mu p}$. Молярная масса кислорода $\mu = 0.032$ кг/моль, T = 293 К. Тогда V = 31 л.

5.6. В баллоне находилась масса $m_1 = 10$ кг газа при давлении $p_1 = 10$ МПа. Какую массу Δm газа взяли из баллона, если давление стало равным $p_2 = 2,5$ МПа? Температуру газа считать постоянной.

Решение:

Согласно уравнению Менделеева — Клапейрона для первого состояния $\frac{p_1V_1}{T}=\frac{m_1}{\mu}R$ — (1), для второго состояния $\frac{p_2V_2}{T}=\frac{m_2}{\mu}R$ — (2). Разделив (1) на (2), получим $\frac{p_1V_1}{p_2V_2}=\frac{m_1}{m_2}$. Поскольку объем баллона не изменяется, то $\frac{p_1}{p_2}=\frac{m_1}{m_2}$ или $\frac{p_1}{p_2}=\frac{m_1}{m_1+\Delta m}$; $\frac{\Delta m}{m_1}=\frac{p_1-p_2}{p_1}$, откуда $\Delta m=\frac{m_1(p_1-p_2)}{p_1}$; $\Delta m=7.5$ кг.

5.7. Найти массу m сернистого газа (SO₂), занимающего объем $V = 25\,\pi$ при температуре $t = 27^{\circ}\,\mathrm{C}$ и давлении $p = 100\,\mathrm{k\Pi a}$.

Решение:

Согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $m = \frac{pV\mu}{RT}$; $T = 300 \,\mathrm{K}$; $V = 25 \cdot 10^{-3} \,\mathrm{m}^3$. Мо-

лярную массу данного вещества можно определить по формуле $\mu = M_r k$ — (1), где M_r — относительная молекулярная масса вещества; $k = 10^{-3} \, \text{кг/моль}.$ Относительную молекулярную массу найдем соотношения $M_r = \sum n_i A_{r,i}$, — (2), где n_i — число атомов і-го химического элемента, входящих в молекулу данного вещества; $A_{r,r}$ — относительная атомная масса і-го химического элемента. В нашем случае для сернистого газа формула (2) примет вид $M_r = n_s A_{r,s} + n_o A_{r,o}$, где $n_s = 1$ (число атомов серы в молекуле сернистого газа); $n_a = 2$ (число атомов кислорода в той же формуле); $A_{r,s}$ и $A_{r,o}$ относительные атомные массы серы и кислорода. По таблице Д. И. Менделеева найдем $A_{r,s} = 32$, $A_{r,a} = 16$. После подстановки в формулу (3) значений n_s , n_o , $A_{r,s}$ и получим $M_{**} = 1.32 + 2.16 = 64$. Подставив значение относительной молекулярной массы, а также в формулу (1), найдем молярную массу значение к сернистого газа: $\mu = 64 \cdot 10^{-3}$ кг/моль. Тогда m = 65 г.

5.8. Найти массу m воздуха, заполняющего аудиторию высотой h=5 м и площадью пола $S=200\,\mathrm{m}^2$. Давление воздуха $p=100\,\mathrm{k}\Pi a$, температура помещения $t=17^\circ\,\mathrm{C}$. Молярная масса воздуха $\mu=0,029\,\mathrm{kr/моль}$.

Решение:

Согласно уравнению Менделеева — Клапейрона pV= = $\frac{m}{\mu}RT$, откуда $m=\frac{pV\mu}{RT}$. Объем комнаты V=hS. Тогда масса воздуха $m=\frac{phS\mu}{RT}$; $T=290\,\mathrm{K};\ m=1,2\,\mathrm{T}.$

5.9. Во сколько раз плотность воздуха ρ_1 , заполняющего помещение зимой ($t_1 = 7^{\circ}$ C), больше его плотности ρ_2 летом ($t_2 = 37^{\circ}$ C)? Давление газа считать постоянным.

Решение:

Согласно уравнению Менделеева — Клапейрона для первого состояния $\frac{pV_1}{T_1} = \frac{m}{\mu}R$ — (1), для второго состояния $\frac{pV_2}{T_2} = \frac{m}{\mu}R$ — (2). Разделив (1) на (2), при p = const имеем $\frac{T_1}{T_2} = \frac{V_1}{V_2} = \frac{m / \rho_1}{m / \rho_2} = \frac{\rho_2}{\rho_1}$, откуда $\frac{\rho_1}{\rho_2} = \frac{T_2}{T_1}$, где $T_1 = 280$ K; $T_2 = 310$ K. Тогда $\rho_1 / \rho_2 = 1.1$.

5.10. Начертить изотермы массы m = 0.5 г водорода для температур: a) $t_1 = 0$ ° C; б) $t_2 = 100$ ° C.

Решение:

а) Из уравнения Менделеева — Клапейрона найдем $pV = \frac{m}{\mu}RT_1$; pV = 567 Дж. Зависимость давления p от объема V выражается соотношением p = 567/V.

6) Из уравнения Менделеева — Клапейрона найдем $pV = \frac{m}{\mu}RT_2$; pV = 775 Дж. Зависимость давления p от объема V выражается соотношением $p = \frac{775}{V}$.

5.11. Начертить изотермы массы m = 15.5 г кислорода для температур: а) $t_1 = 39^{\circ}$ C; б) $t_2 = 180^{\circ}$ C.

Решение:

- а) Из уравнения Менделеева Клапейрона найдем $pV = (m/\mu)RT_1$; pV = 1255 Дж. Зависимость давления p от объема V выражается соотношением p = 1255/V.
- б) Из уравнения Менделеева Клапейрона найдем $pV = (m/\mu)RT_2$; pV = 1823 Дж. Зависимость давления p от объема V выражается соотношением p = 1823/V.
- **5.12.** Какое количество v газа находится в баллоне объемом $V = 10 \text{ м}^3$ при давлении p = 96 кПа и температуре $t = 17^{\circ} \text{ C}$?

Число молей газа определяется следующим соотношением $\nu = \frac{m}{\mu}$. Тогда уравнение Менделеева — Клапейрона мож-

но записать в виде
$$pV = \frac{m}{\mu}RT = \nu RT$$
, откуда $\nu = \frac{pV}{RT}$.
Здесь $T = 290$ К. $\nu = 0.4$ кмоль.

5.13. Массу m=5 г азота, находящегося в закрытом сосуде объемом V=4 л при температуре $t_1=20^{\circ}$ С, нагревают до температуры $t_2=40^{\circ}$ С. Найти давление p_1 и p_2 газа до и после нагревания.

Решение:

Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$. По условию m=const, тогда для первого состояния $p_1V_1=\frac{m}{\mu}RT_1$, для второго состояния $p_2V_2=\frac{m}{\mu}RT_2$, откуда $p_1=\frac{mRT_1}{\mu V}$; $p_2=\frac{mRT_2}{\mu V}$. Подставляя числовые данные, получим $p_1=108$ кПа; $p_2=116$ кПа.

5.14. Посередине откачанного и запаянного с обеих концов капилляра, расположенного горизонтально, находится столбик ртути длиной $l=20\,\mathrm{cm}$. Если капилляр поставить вертикально, то столбик ртути переместится на $\Delta l=10\,\mathrm{cm}$. До какого давления p_0 был откачан капилляр? Длина капилляра $L=1\,\mathrm{m}$.

Решение:

Объем воздуха с каждой стороны от столбика ртути при горизонтальном положении капилляра: $V_0 = Sh$, где 200

S — площадь поперечного капилляра, сечения $h = \frac{L - l}{2} = 0,4 \text{ м}$. Давление в этом положении равно p_0 . При вертикальном капилляра положении воздуха верхней части $V_1 = S(h + \Delta l)$, давление равно p_1 . Т. к. T = const, то по закону Бойля — Мариотта $V_0 p_0 = V_1 p_1$ или $hp_0 = p_1 (h + \Delta l)$ — (1). Давление p_2 в нижней части капилляра складывается из давления воздуха p_1 давления столбика ртути р. Тогда для нижней части капилляра $hp_0 = (p_1 + p)(h - \Delta l)$ — (2). Решая совместно уравнения (1) и (2), найдем $p_0 = \frac{p(h - \Delta l)(h + \Delta l)}{2h\Delta l}$. В

5.15. Общеизвестен шуточный вопрос: «Что тяжелее: тонна свинца или тонна пробки?» На сколько истинный вес пробки, которая в воздухе весит 9,8кH, больше истинного веса свинца, который в воздухе весит также 9,8кH? Температура воздуха $t = 17^{\circ}$ С, давление p = 100 кПа.

условиях данной задачи $p = 200 \,\mathrm{mm}$ рт. ст. = 26,6 кПа.

Решение:

Отсюда $p_0 = 50 \text{ к}\Pi a$.

На тела, находящиеся в воздухе, действует выталкивающая сила Архимеда $F_A = \rho g V$, где ρ — плотность воздуха, V — объем тела. Т.е. тело теряет в весе столько, сколько весит воздух в объеме данного тела. Объем свинца $V_1 = m / \rho_1$. Воздух в данном объеме весит $m_1 g$. Согласно

уравнению Менделеева — Клапейрона $pV_1=\frac{m_1}{\mu}RT$, откуда $m_1=\frac{\mu pV_1}{RT}$. Тогда $m_1g=\frac{\mu pgV_1}{RT}=\frac{\mu pmg}{\rho_1RT}$. Объем пробки $V_2=\frac{m}{\rho_2}$. Вес воздуха в данном объеме $m_2g=\frac{\mu pmg}{\rho_2RT}$. Истинный вес свинца $P_1=g(m+m_1)$, истинный вес пробки $P_2=g(m+m_2)$. Тогда $\Delta P=g(m_2-m_1)=\frac{\mu pmg}{RT}\left(\frac{1}{\rho_2}-\frac{1}{\rho_1}\right);$ $\Delta P=58.6$ H.

5.16. Каков должен быть вес p оболочки детского воздушного шарика, наполненного водородом, чтобы результирующая подъемная сила шарика F=0, т.е. чтобы шарик находился во взвешенном состоянии? Воздух и водород находится при нормальных условиях. Давление внутри шарика равно внешнему давлению. Радиус шарика $r=12.5\,\mathrm{cm}$.

Решение:

Результирующая подъемная сила $F=m_1g-(m_2g+P)$, где m_1 — масса воздуха в объеме шарика, m_2 — масса водорода в объеме шарика. Так как F=0, то $P=g(m_1-m_2)$. Из уравнения Менделеева — Клапейрона найдем $m=\frac{\mu p V}{RT}$. Тогда $P=g\frac{PV}{RT}(\mu_1-\mu_2)=\frac{4\pi r^3pg}{3RT}(\mu_1-\mu_2)$; P=96 мН.

5.17. При температуре $t = 50^{\circ}$ С давление насыщенного водяного пара p = 12.3 кПа. Найти плотность ρ водяного пара.

Плотность вещества определяется соотношением $\rho = \frac{m}{V}$. Согласно уравнению Менделеева — Клапейрона $pV = \frac{m}{\mu}RT$, откуда $m = \frac{pV\mu}{RT}$. Тогда плотность водяного пара $\rho = \frac{p\mu}{RT}$; $\rho = 0.083 \, \mathrm{kr/m}^3$.

5.18. Найти плотность ρ водорода при температуре $t = 10^{\circ}$ С и давлении p = 97.3 кПа.

Решение:

 $T=288\,\mathrm{K}.$ Плотность вещества определяется соотношением $\rho=\frac{m}{V}.$ Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$, откуда $m=\frac{pV\mu}{RT}$. Тогда плотность водорода $\rho=\frac{p\mu}{RT}$; $\rho=0.081\,\mathrm{kr/m}^3.$

5.19. Некоторый газ при температуре $t = 10^{\circ}$ С и давлении p = 200 кПа имеет плотность $\rho = 0.34$ кг/м³. Найти молярную массу μ газа.

Решение:

 $T=283~{
m K}.$ Согласно уравнению Менделеева — Клапейрона $pV=rac{m}{\mu}RT$, откуда $\mu=rac{mRT}{pV}$. Но $rac{m}{V}=
ho$, отсюда $\mu=rac{
ho RT}{p}$; $\mu=0{,}004~{
m kr/}{
m MOJ}$ ь.

5.20. Сосуд откачан до давления $p = 1.33 \cdot 10^{-9}$ Па; температура воздуха $t = 15^{\circ}$ С. Найти плотность ρ воздуха в сосуде.

Решение:

 $T=288\,\mathrm{K}.$ Плотность вещества определяется соотношением $\rho=\frac{m}{V}$. Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$, откуда $m=\frac{p\nu\,\mu}{RT}$. Тогда плотность воздуха $\rho=\frac{p\mu}{RT}$; $\rho=1.6\cdot 10^{-14}\,\mathrm{kr/m}^3$.

5.21. Масса m=12 г газа занимает объем V=4 л при температуре $t_1=7^{\circ}$ С. После нагревания газа при постоянном давлении его плотность стала равной $\rho=0.6$ кг/м³. До какой температуры t_2 нагрели газ?

Решение:

Запишем уравнение состояния газа до и после нагревания $pV_1=\frac{m}{\mu}RT_1$ — (1); $pV_2=\frac{m}{\mu}RT_2$ — (2). Поскольку $V_2=\frac{m}{\rho_2}$, то (2) можно переписать: $\frac{p}{\rho_2}=\frac{RT_2}{\mu}$, откуда $T_2=\frac{p\mu}{\rho_2R}$ — (3). Давление p найдем из (1): $p=\frac{mRT_1}{\mu V_1}$. Подставив данное выражение в (3), получим $T_2=\frac{mT_1}{V_1\rho_2}$; $T_2=1400$ К.

5.22. Масса m = 10 г кислорода находится при давлении p = 304 кПа и температуре $t_1 = 10^{\circ}$ С. После расширения вследствие нагревания при постоянном давлении кислород занял объ-

ем $V_2 = 10$ л. Найти объем V_1 газа до расширения, температуру t_2 газа после расширения, плотности ρ_1 и ρ_2 газа до и после расширения.

Решение:

Согласно уравнению Менделеева — Клапейрона уравнение состояния газа до нагревания $p_1V_1=\frac{m}{\mu}RT_1$; после нагревания $p_2V_2=\frac{m}{\mu}RT_2$. По условию $p_1=p_2=p$, отсюда $V_1=\frac{mRT_1}{\mu p}$, $V_1=2.4\cdot 10^{-3}\,\mathrm{m}^3$; $\rho_1=\frac{\mu p}{RT_1}$, $\rho_1=4.14\,\mathrm{kr/m}^3$; $T_2=\frac{\mu p V_2}{mR}$, $T_2=1170\,\mathrm{K}$; $\rho_2=\frac{\mu p}{RT_2}$, $\rho_1=1\,\mathrm{kr/m}^3$.

5.23. В запаянном сосуде находится вода, занимающая объем, равный половине объема сосуда. Найти давление p и плотность ρ водяного пара при температуре $t = 400^{\circ}$ С, зная, что при этой температуре вся вода обращается в пар.

Решение:

В начальном состоянии плотность воды $\rho_1 = m/V_1$. После нагревания $\rho_2 = \frac{m}{V_2}$. По условию $V_2 = 2V_1$, тогда $\rho_2 = \frac{1}{2}\rho_1$; $\rho_2 = 500$ кг/м³. Запишем уравнение состояния водяного пара при T = 673 К: $p_2V_2 = \frac{m}{\mu}RT$ или $2p_2V_1 = \frac{m}{\mu}RT$. Поскольку $V_1 = \frac{m}{Q_1}$, то $p_2 = \frac{\rho_1RT}{2\mu}$; $p_2 = 155$ МПа.

5.24. Построить график зависимости плотности ρ кислорода: **a)** от давления p при температуре T = const = 390 К в интервале

 $0 \le p \le 400$ кПа через каждые 50 кПа; б) от температуры T при p = const = 400 кПа в интервале $200 \le T \le 300$ К через каждые 20К.

Решение:

Воспользуемся формулой, полученной в задаче 5.17: $\rho = \frac{p\mu}{pT}$. Молярная масса кислорода $\mu = 0.032$ кг/моль.

а) При
$$T = const = 390 \text{ K}$$
: $\rho \approx 10^{-5} \cdot p$;

Γ	р, кПа	0	50	100	150	200	250	300	350	400
	ρ , кг/м 3	0	0.5	1	1,5	2	2,5	3	3,5	4

б) При p = const = 400 кПа: $\rho = 1540 / T$.

<i>T</i> , K	200	220	240	260	280	300
ρ, κΓ/m³	7,70	7.00	6,42	5,92	5,50	5,13

5.25. В закрытом сосуде объемом $V = 1 \,\mathrm{m}^3$ находится масса $m_1 = 1,6 \,\mathrm{kr}$ кислорода и масса $m_2 = 0,9 \,\mathrm{kr}$ воды. Найти давление p в сосуде при температуре $t = 500^{\circ} \,\mathrm{C}$, зная, что при этой температуре вся вода превращается в пар.

Решение:

По закону Дальтона $p=p_1+p_2$, где, согласно уравнению Менделеева — Клапейрона, $p_1=\frac{m_1RT}{\mu_1V}$ — парциальное давление кислорода $\mu_1=0.032\,\mathrm{kr/моль},\ p_2=\frac{m_2RT}{\mu_2V}$ парциальное давление водяного пара $\mu_2=0.018\,\mathrm{kr/моль}.$ Отсюда $p=\frac{RT}{V}\left(\frac{m_1}{\mu_2}+\frac{m_2}{\mu_2}\right);\ p=640\,\mathrm{kHa}.$

5.26. В сосуде 1 объем $V_1 = 3$ л находится газ под давлением $p_1 = 0.2$ МПа. В сосуде 2 объем $V_2 = 4$ л находится тот же газ под давлением $p_2 = 0.1$ МПа. Температуры газа в обоих сосудах одинаковы. Под каким давлением p будет находиться газ, если соединить сосуды 1 и 2 трубкой?

Решение:

По закону Дальтона $p=p_1'+p_2'$, где p_1' и p_2' — парциальные давления газа после соединения сосудов. По закону Бойля — Мариотта $p_1'(V_1+V_2)=p_1V_1;$ $p_2'(V_1+V_2)=p_2V_2$ отсюда $p_1'=\frac{p_1V_1}{V_1+V_2};$ $p_2'=\frac{p_2V_2}{V_1+V_2};$ $p=\frac{p_1V_1+p_2V_2}{V_1+V_2}$. Подставляя числовые данные, получим: p=140 кПа.

5.27. В сосуде объемом V=2 л находится масса $m_1=6$ г углекислого газа (CO₂) и масса m_2 закиси азота (N₂O) при температуре $t=127^{\circ}$ С. Найти давление p смеси в сосуде.

По закону Дальтона $P=P_1+P_2$, где, согласно уравнению Менделесва — Клапейрона, $P_1=\frac{m_1RT}{\mu_1V}$ — парциальное давление углекислого газа ($\mu_1=0.044\,\mathrm{kr/моль}$), $P_2=\frac{m_2RT}{\mu_2V}$ — парциальное давление закиси азота ($\mu_2=0.044\,\mathrm{kr/моль}$). Отсюда $P=\frac{RT}{V}\left(\frac{m_1}{\mu_1}+\frac{m_2}{\mu_2}\right)$; $P=415\,\mathrm{kHa}$.

5.28. В сосуде находится масса $m_1 = 14$ г азота и масса $m_2 = 9$ г водорода при температуре $t = 10^{\circ}$ С и давлении p = 1 МПа. Найти молярную массу μ смеси и объем V сосуда.

Решение:

Моля ная масса смеси ι есть отношение массы смеси m к количеству вещества смеси ν , т.е. $\mu=\frac{m}{\nu}$ — (1). Масса смеси равна сумме масс компонентов смеси $m=m_1+m_2$. Количество вещества смеси равно сумме количеств вещества компонентов. Подставив в формулу (1) выражения m и ν , получим $\mu=\frac{m_1+m_2}{m_1/\mu_1+m_2/\mu_2}$ — (2). Далее, применив способ использованный в задаче 5.7, найдем молярные массы μ_1 азота и μ_2 водорода: $\mu_1=28\cdot 10^{-3}$ кг/моль, $\mu_2=2\cdot 10^{-3}$ кг/моль. Подставим значение величин в (2) и произведем вычисления: $\mu=\frac{14\cdot 10^{-3}+9\cdot 10^{-3}}{28\cdot 10^{-3}}=4,6\cdot 10^{-3}$ кг/моль. Запишем уравне-

ние состояния смеси газов:
$$pV = \frac{m_1 + m_2}{\mu} RT$$
. Отсюда найдем $V = \frac{m_1 + m_2}{\mu} RT$; $V = 11,7$ л.

5.29. Закрытый сосуд объемом V = 2 л наполнен воздухом при нормальных условиях. В сосуд вводится диэтиловый эфир $(C_2H_5OC_2H_5)$. После того как весь эфир испарился, давление в сосуде стало равным p = 0.14 МПа. Какая масса m эфира была введена в сосуд?

Решение:

Согласно уравнению Менделеева — Клапейрона, в начальный момент, когда сосуд был заполнен воздухом, $p_{\rm I}V = \frac{m_{\rm B}}{\mu_{\rm B}}RT \;. \; \mbox{Когда в сосуд ввели диэтиловый эфир,}$ $pV = \left(\frac{m_{\rm B}}{\mu_{\rm B}} + \frac{m}{\mu}\right)RT = \frac{m_{\rm B}}{\mu_{\rm B}}RT + \frac{m}{\mu}RT = p_{\rm I}V + \frac{m}{\mu}RT \;, \;\; \mbox{откуда}$ $\frac{m}{\mu}RT = pV - p_{\rm I}V = (p-p_{\rm I})V \;; \;\; m = \frac{(p-p_{\rm I})\cdot V\mu}{RT} \;. \;\; \mbox{Молярная}$ масса диэтилового эфира $\left({\rm C_2H_5OC_2H_5}\right) \; - \;\; \mu = 74 \times 10^{-3} \, \mbox{кг/моль (см. задачу 5.7), соответственно } m = 2,5 \, \mbox{г}.$

5.30. В сосуде объемом $V=0.5\,\pi$ находится масса $m=1\,\mathrm{r}$ парообразного йода $\left(\mathrm{I_2}\right)$. При температуре $t=1000^\circ$ С давление в сосуде $p_\mathrm{c}=93.3\,\mathrm{k\Pi a}$. Найти степень диссоциации α молекул йода на атомы. Молярная масса молекул йода $\mu=0.254\,\mathrm{kr/моль}$.

Решение:

Степенью диссоциации α называют отношение числа молекул, распавшихся на атомы, к общему числу молекул

газа, т.е. степень диссоциации показывает, какая часть молекул распалась на атомы. В результате диссоциации мы имеем $v_1 = \frac{2\alpha m}{\mu}$ атомарного йода и $v_2 = \frac{(1-\alpha) \cdot m}{\mu}$ молекулярного йода. Их парциальные давления: $p_1 = \frac{2\alpha mRT}{\mu V}$ — (1); $p_2 = \frac{(1-\alpha) \cdot mRT}{\mu V}$ — (2). По закону Дальтона $p_c = p_1 + p_2$. Подставляя (1) и (2), получим $p_c = \frac{mRT}{\mu V}(1+\alpha)$, откуда $\alpha = \frac{\mu p_c V}{mRT} - 1$; $\alpha = 0.12$.

5.31. В сосуде находится углекислый газ. При некоторой температуре степень диссоциации молекул углекислого газа на кислород и окись углерода $\alpha = 0.25$. Во сколько раз давление в сосуде при этих условиях будет больше того давления, которое имело бы место, если бы молекулы углекислого газа не были диссоциированы?

Решение:

Решение аналогично задаче 5.30: $\frac{p_c}{p} = 1 + \alpha$; $\alpha = 0.25$; $\frac{p_c}{p} = 1.25$.

5.32. В воздухе содержится 23,6% кислорода и 76,4% азота (по массе) при давлении $p=100\,\mathrm{kTa}$ и температуре $t=13\,^\circ\mathrm{C}$. Найти плотность ρ воздуха и парциальные давления p_1 и p_2 кислорода и азота.

Решение:

Рассмотрим некоторую массу m воздуха, занимающую объем V. Данный объем будет содержать массу 0.236m

кислорода и 0,764m азота. Согласно уравнению Менделеева — Клапейрона $pV=\frac{m}{\mu}RT$, где μ — молярная масса воздуха. Разделив на V, получим $p=\frac{\rho}{\mu}RT$, откуда плотность воздуха $\rho=\frac{\mu p}{RT}$; $\rho=1,2$ кг/м 3 . Парциальное давление кислорода $p_1=\frac{0,236m}{\mu_1 V}RT=\frac{0,236\rho}{\mu_1}RT$; $p_1=21$ кПа. Парциальное давление азота $p_2=\frac{0,764m}{\mu_2 V}\times RT=\frac{0,764\rho}{\mu_2}RT$; $p_2=79$ кПа.

5.33. В сосуде находится масса $m_1 = 10$ г углекислого газа и масса $m_2 = 15$ г азота. Найти плотность ρ смеси при температуре $t = 27^{\circ}$ С и давлении p = 150 кПа.

Решение:

По закону Дальтона давление смеси газов $p=p_1+p_2$ — (1), где p_1 и p_2 парциальные давления углекислого газа и азота. Согласно уравнению Менделеева — Клапейрона $p_1V=\frac{m_1}{\mu_1}RT$ — (2); $p_2V=\frac{m_2}{\mu_2}RT$ — (3). Складывая (2) и (3), с учетом (1), получим: $pV=\left(\frac{m_1}{\mu_1}+\frac{m_2}{\mu_2}\right)\times RT$ — (4). Плотность смеси $\rho=\frac{m_1+m_2}{V}$. Объем сосуда

$$V$$
 выразим из (4): $V = \left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right) \frac{RT}{p}$, тогда $\rho = \frac{p}{RT} \times \frac{\left(m_1 + m_2\right)}{\left(m_1 / \mu_1 + m_2 / \mu_2\right)}$; $\rho = 1.98$ кг/м³.

5.34. Найти массу m_0 атома: а) водорода; б) гелия.

Решение:

Масса молекулы равна отношению молярной массы к числу Авогадро: $m=\frac{\mu}{N_{\rm A}}$. Поскольку молекула водорода состоит из двух атомов, то масса одного атома $m_0=\frac{\mu}{2N_{\rm A}}$. а) Масса атома водорода $m_0=1,67\cdot 10^{-27}$ кг. б) Масса атома гелия $m_0=6,65\cdot 10^{-27}$ кг.

5.35. Молекула азота, летящая со скоростью v = 600 м/c, упруго ударяется о стенку сосуда по нормали к ней. Найти импульс силы $F\Delta t$, полученный стенкой сосуда за время удара.

Решение:

Запишем второй закон Ньютона в виде $F = m \frac{\Delta v}{\Delta t}$, отсюда $F\Delta t = m\Delta v$ — (1). Поскольку удар был упругий и происходил по нормали к стенке, то скорость молекулы после удара равна по модулю скорости до удара и противоположна по направлению. Тогда $\Delta v = v - (-v) = 2v$ — (2).

Масса молекулы $m = \frac{\mu}{N_A}$ — (3), где μ — молярная масса

азота, N_A — число Авогадро. Подставив (2) и (3) в (1), получим $F\Delta t = \frac{2\mu v}{N_A}$; $F\Delta t = 5.6 \cdot 10^{-23}\,\mathrm{H\cdot c}$.

5.36. Молекула аргона, летящая со скоростью $v = 500 \,\mathrm{m/c}$, упруго ударяется о стенку сосуда. Направление скорости молекулы и нормаль к стенке сосуда составляют угол $\alpha = 60^{\circ}$. Найти импульс силы $F\Delta t$, полученный стенкой сосуда за время удара.

Решение:

По второму закону Ньютона $F\Delta t = m\Delta v$. Считая положительным направление нормали, внешней к стенке, получим: $\Delta v = v_2 \cos \alpha - \left(-v_1 \cos \alpha\right) = v_2 \cos \alpha + v_1 \cos \alpha$. Таким образом, $F\Delta t = 2mv\cos \alpha$. Масса молекулы аргона $m = \frac{\mu}{N_A}$. Тогда $F\Delta t = \frac{2\mu v}{N_A}\cos \alpha$; $F\Delta t = 3,3\cdot 10^{-23}\,\mathrm{H\cdot c}$.

5.37. Молекула азота летит со скоростью v = 430 м/с. Найти импульс mv этой молекулы.

Решение:

Импульс молекулы $\vec{p}=m\vec{v}$, где масса молекулы азота $m=\frac{\mu}{N_{\rm A}}$. Отсюда $p=\frac{\mu v}{N_{\rm A}}$; $p=mv=2\cdot 10^{-23}\,{\rm kr\cdot m/c}.$

5.38. Какое число молекул n содержит единица массы водяного пара?

Решение:

Число молекул, содержащееся в некоторой массе вещества, можно найти из соотношения: $n = v \cdot N_A$, где v —

количество молей в данной массе вещества; $N_{\rm A}=6.02\cdot 10^{23}\,{\rm моль}^{-1}$ — число Авогадро. $\nu=\frac{m}{\mu}$. Тогда, при m=1, для водяного пара $n=\frac{N_{\rm A}}{\mu}$; $n=3.3\cdot 10^{25}$.

5.39. В сосуде объемом $V=4\,\pi$ находится масса $m=1\,\mathrm{r}$ водорода. Какое число молекул n содержит единица объема сосуда?

Решение:

Число молекул водорода N, содержащееся во всем сосуде, можно найти из соотношения: $N=\frac{m}{\mu}N_{\rm A}$. Тогда число молекул в единице объема n=N/V или $n=\frac{mN_{\rm A}}{\mu V}$; $n=7.5\cdot 10^{25}\,{\rm M}^{-3}$.

5.40. Какое число молекул N находится в комнате объемом $V = 80 \,\mathrm{m}^3$ при температуре $t = 17^\circ \,\mathrm{C}$ и давлении $p = 100 \,\mathrm{k}\Pi a$?

Решение:

Число молекул N, находящихся в комнате, можно найти из соотношения: $N=\frac{m}{\mu}N_{\Lambda}$. Согласно уравнению Менделева — Клапейрона $pV=\frac{m}{\mu}RT$, откуда $\frac{m}{\mu}=\frac{pV}{RT}$. Тогда $N=\frac{pVN_{\Lambda}}{RT}$; $N=2\cdot 10^{27}$.