Premier degré

Exercice 1

$$\begin{aligned}
 & \cdot & -\frac{12}{7}x + \frac{4}{21} = 0 \\
 & \iff -\frac{12}{7}x = -\frac{4}{21} \\
 & \iff -\frac{7}{12} \times \left(-\frac{12}{7}\right)x = -\frac{7}{12} \times \left(-\frac{4}{21}\right) \\
 & \iff x = \frac{7 \times 4}{12 \times 21} \\
 & \iff x = \frac{1}{9} \\
 & S = \left\{\frac{1}{9}\right\} \\
 & \cdot & \sqrt{2}x - 1 = 0 \\
 & \iff \sqrt{2}x = 1 \\
 & \iff x = \frac{1}{\sqrt{2}} \\
 & \iff x = \frac{\sqrt{2}}{2} \\
 & S = \left\{\frac{\sqrt{2}}{2}\right\} \end{aligned}$$

2.
$$ax + b = 0$$

$$\iff ax = -b$$

$$\iff \frac{ax}{a} = \frac{-b}{a}$$

$$\iff x = -\frac{b}{a}$$

$$S = \left\{-\frac{b}{a}\right\}$$

Exercice 2

PARTIE A

1.
$$A(1; 6)$$
; $B(6; 4)$
2. $m = \frac{y_B - y_A}{x_B - x_A}$
 $= \frac{4 - 6}{6 - 1}$
 $= -\frac{2}{5}$

- 3. On peut lire $p \approx 6, 5$.
- 4. La droite (AB) a pour équation réduite $y=-\frac{2}{5}x+p$ avec p un réel à déterminer. Le point A appartient à la droite (AB) donc ses coordonnées vérifient l'équation précédente.

$$y_A = -\frac{2}{5}x_A + p$$

$$\iff 6 = -\frac{2}{5} \times 1 + p$$

$$\iff 6 + \frac{2}{5} = p$$

$$\iff \frac{30}{5} + \frac{2}{5} = p$$

$$\iff p = \frac{32}{5}$$

La droite (AB) a donc pour équation réduite $y = -\frac{2}{5}x + \frac{32}{5}$.

Partie B On considère les 2 fonctions affines f et g définies sur R par : $f(x) = \frac{1}{3}x - 2$ et g(x) = -3x + 6.

1.
$$f(0) = \frac{1}{3} \times 0 - 2$$

= -2

2.
$$f(x) = 0$$

$$\iff \frac{1}{3}x - 2 = 0$$

$$\iff \frac{1}{3}x = 2$$

$$\iff 3 \times \frac{1}{3}x = 3 \times 2$$

$$\iff x = 6$$

$$\mathcal{S} = \{6\}$$

- 3. f est une fonction affine, \mathcal{C}_f est donc une droite.
- 4. \mathcal{C}_f est représentée en orange dans le repère.

5.
$$g(0) = -3 \times 0 + 6$$

$$= 6$$

$$g(x) = 0$$

$$\iff -3x + 6 = 0$$

$$\iff -3x = -6$$

$$\iff \frac{-3x}{-3}x = \frac{-6}{-3}$$

$$\iff x = 2$$

$$S = \{2\}$$

 \mathcal{C}_g est représentée en rouge dans le repère.

	x	$-\infty$		6		$+\infty$
6.	signe de $f(x)$		_	0	+	

x	$-\infty$		2		$+\infty$
signe de $g(x)$		+	0	_	

Fonctions affines

Exercice 3

1. $f_1: x \mapsto -2x+1$

 f_1 est affine de taux d'accroissement -2 et d'ordonnée à l'origine 1.

2. $f_2: x \mapsto (2+x)(2x-1)$

$$f_2(x) = 2 \times 2x - 2 \times 1 + x \times 2x - x \times 1$$

= $4x - 2 + 2x^2 - x$
= $2x^2 + 3x - 2$

 f_2 n'est pas une fonction affine.

3. $f_3: x \mapsto \frac{2x}{3}$ $f_3(x) = \frac{2}{3}x + 0$

 f_3 est affine de taux d'accroissement $\frac{2}{3}$ et d'ordonnée à l'origine 0.

4. $f_4: x \mapsto \frac{1-2x}{3}$ $f_4(x) = -\frac{2}{3}x + \frac{1}{3}$

$$f_4(x) = -\frac{2}{3}x + \frac{1}{3}$$

 f_4 est affine de taux d'accroissement $-\frac{2}{3}$ et d'ordonnée à l'origine $\frac{1}{3}$.

5. $f_5: x \mapsto \frac{2}{3x}$ f_5 n'est pas une fonction affine.

6. $f_6: x \mapsto x - (2x+1)$

$$f_6(x)x - 2x - 1$$
$$= -x - 1$$

 f_6 est affine de taux d'accroissement -1 et d'ordonnée à l'origine -1.

Exercice 4

1. f_1 est affine.

$$f_1(x) = \frac{3}{4}x - 3$$

2. Cette droite ne représente pas une fonction.

3. f_3 est affine (elle est même linéaire).

$$f_3(x) = -x$$

4. f_4 est affine (elle est même constante).

$$f_4(x) = -2$$

Exercice 5

- **1.** $f: x \mapsto 2x + 1$
- **2.** $g: x \mapsto -3x + 4$
- 3. $h: x \mapsto -2$
- **4.** $k: x \mapsto -x 3$

Exercice 6

- 1. $f: x \mapsto 3x 7$
 - 3>0 donc f est strictement croissante sur ${\bf R}.$
- 2. $g: x \mapsto \frac{1}{2}x + 9$ $\frac{1}{2} > 0 \ \text{donc} \ g \ \text{est strictement croissante sur R}.$
- 3. $h: x \mapsto -5x 2$
 - -5 < 0 donc h est strictement décroissante sur ${\bf R}$.

Exercice 7 Vrai ou faux

- 1. L'ordonnée à l'origine de f est 3 donc f(0)=3. f est croissante sur $\mathbf R$ donc $f(2)\geqslant f(0)$. On ne peut pas avoir f(2)=1. L'affirmation est FAUSSE.
- 2. L'ordonnée à l'origine de g est 1 donc g(0)=1. g est décroissante sur $\mathbf R$ donc $g(2)\leqslant g(0)$. Il est possible de trouver une telle fonction g telle que g(2)=0. L'affirmation est VRAIE.
- 3. h est croissante sur R donc $h(7) \geqslant h(5)$. Il est possible de trouver une fonction h croissante telle que h(5) = 12 et h(7) = 15. L'affirmation est VRAIE.

5

Exercice 8

Donner le tableau de signes de chacune des fonctions de l'exercice 5.

1. $f: x \mapsto 2x + 1$

x	$-\infty$		$-\frac{1}{2}$		$+\infty$
signe de $f(x)$		_	0	+	

3. $h: x \mapsto -2$

x	$-\infty$	$+\infty$
signe de $h(x)$	-	+

2.
$$g: x \mapsto -3x + 4$$

x	$-\infty$		$\frac{4}{3}$	$+\infty$
signe de $g(x)$		+	0	_

4.
$$k: x \mapsto -x - 3$$

x	$-\infty$		-3		$+\infty$
signe de $f(x)$		+	0	_	

Équations et inéquations

Exercice 9

1. Soit
$$x \in \mathbb{R} \setminus \{-1\}$$
.
$$\frac{2x-1}{x+1} + 2 = \frac{2x-1}{x+1} + \frac{2(x+1)}{x+1}$$
$$= \frac{2x-1}{x+1} + \frac{2x+2}{x+1}$$
$$= \frac{4x+1}{x+1}$$

$$\textbf{2. Soit } x \in \mathbf{R} \setminus \{-1\}. \quad \frac{2x-1}{x+1} + 2 \geqslant 0 \quad \iff \quad \frac{4x+1}{x+1} \geqslant 0$$

x	$-\infty$		-1		$-\frac{1}{4}$		$+\infty$
signe de $4x + 1$		_		_	0	+	
signe de $x + 1$		_	0	+		+	
signe de $\frac{4x+1}{x+1}$		+		_	0	+	

D'après le tableau de signes,
$$\mathcal{S}=\left]-\infty\;;\;-1\right[\cup\left[-\frac{1}{4}\;;\;+\infty\right[$$

Exercice 10

1. a.
$$2x^2 + 3x = x(2x+3)$$

b.
$$3(x-1) + (x-1)(x+2) = (x-1)(3+(x+2))$$

= $(x-1)(x+5)$

2. a.
$$2x^2 + 3x < 0 \iff x(2x+3) < 0$$

x	$-\infty$		$-\frac{3}{2}$		0		$+\infty$
signe de x		_		_	0	+	
signe de $2x + 3$		_	0	+		+	
signe de $x(2x+3)$		+	0	_	0	+	

D'après le tableau de signes,
$$\mathcal{S}=\left]-\frac{3}{2}\;;\;0\right[.$$
 b. $3(x-1)+(x-1)(x+2)>0\iff (x-1)(x+5)>0$

b.
$$3(x-1)+(x-1)(x+2)>0$$
 \iff $(x-1)(x+5)>0$

x	$-\infty$		-5		1		$+\infty$
signe de $x-1$		_		_	0	+	
signe de $x+5$		_	0	+		+	
signe de $(x-1)(x+5)$		+	0	_	0	+	

D'après le tableau de signes, $S =]-\infty$; $-5[\cup]1$; $+\infty[$.

Exercice 11

Soit x la longueur, en mètres, de ce carré.

On a:
$$(x+2)^2 = x^2 + 20$$
.

Résolvons cette équation :
$$(x+2)^2=x^2+20$$
 \iff $x^2+4x+4=x^2+20$ \iff $4x=16$

$$\iff x = 4$$

Ce carré a donc une longueur de 4 m et une aire de $4^2 = 16 \text{ m}^2$.

Exercice 12

On appelle n le nombre d'années après lequel l'âge du père sera égal à la somme des âges de ses enfants.

On a
$$41 + n = (6 + n) + (9 + n) + (12 + n)$$
.

Résolvons cette équation :
$$41+n=(6+n)+(9+n)+(12+n)$$
 \iff $41+n=3n+27$ \iff $-2n=-14$ \iff $n=7$

Dans 7 ans, l'âge du père sera égal à la somme des âges de ses enfants.

Exercice 13

1. Soit
$$x \in \mathbf{R} \setminus \{0; 1\}$$
.
$$\frac{1}{x} + \frac{3}{x-1} = \frac{1(x-1)}{x(x-1)} + \frac{3x}{x(x-1)}$$
$$= \frac{x-1}{x(x-1)} + \frac{3x}{x(x-1)}$$
$$= \frac{4x-1}{x(x-1)}$$

$$\textbf{2. Soit } x \in \mathbf{R} \setminus \{0\ ; 1\}\,. \qquad \frac{1}{x} + \frac{3}{x-1} \geqslant 0 \iff \frac{4x-1}{x(x-1)} \geqslant 0$$

x	$-\infty$		0		$\frac{1}{4}$		1		$+\infty$
signe de $4x - 1$		_		_	0	+		+	
signe de x		_	0	+		+		+	
signe de $x-1$		_		_		_	0	+	
signe de $\frac{4x-1}{x(x-1)}$		_		+	0	_		+	

D'après le tableau de signes,
$$\mathcal{S}=\left[0\;;\;rac{1}{4}
ight]\cup\left]1\;;\;+\infty\right[$$

Exercice 14

Python

```
a=float(input("a="))
b=float(input("b="))
c=-b/a
if a>0:
   print("Les solutions de l'inéquation ax+b>0 sont les réels x >",c)
else:
   print("Les solutions de l'inéquation ax+b>0 sont les réels x <",c)</pre>
```

Exercice 15

x	$-\infty$		1		2		3		4		$+\infty$
signe de $(x-1)(x-3)$		+	0	_		_	0	+		+	
signe de $(x-2)(x-4)$		+		+	0	_		_	0	+	
signe de $\frac{(x-1)(x-3)}{(x-2)(x-4)}$		+	0	_		+	0	_		+	

D'après le tableau de signes, les solutions de l'inéquation de $\mathcal{S}=[1\ ;\ 2[\ \cup\ [3\ ;\ 4[.$

$$\frac{(x-1)(x-3)}{(x-2)(x-4)} \leqslant 0 \text{ sont tous les nombres}$$

Un problème du second degré

Exercice 16

L'unité est le centimètre.

Le triangle ABC est isocèle en C, avec AB=12 et AC=10.

I est le milieu de [AB] et M un point de [AI] distinct de A et de I.

On note x la distance AM.

N est le point de [IB] tel que NB=AM.

P et Q sont les points des segments [BC] et [AC] tels que MNPQ soit un rectangle.

On note f la fonction qui à x associe f(x), l'aire du rectangle MNPQ.

- 1. Quel est l'ensemble de définition (noté \mathcal{D}_f) de f?
- **2.** Montrer que pour tout $x \in \mathcal{D}_f$ on a MN = 12 2x.
- 3. a. En utilisant le théorème de Pythagore, montrer que CI=8.
 - **b.** En utilisant le théorème de Thalès, montrer que pour tout $x \in \mathcal{D}_f$, $MQ = \frac{4}{3}x$.
 - **c.** En déduire que pour tout $x \in \mathcal{D}_f$ on a

$$f(x) = \frac{4}{3}x(12 - 2x)$$

- 4. Tracer la courbe représentative de f avec la calculatrice et conjecturer les variations de f (conjecturer, c'est émettre une hypothèse sans chercher à la prouver).
- 5. Développer et réduire l'expression algébrique de f(x).
- **6.** Calculer f(3).
- 7. Montrer que pour tout $x \in \mathcal{D}_f$ on a

$$f(x) = -\frac{8}{3}(x-3)^2 + f(3)$$

- 8. ${\bf \hat{x}}$ En déduire le tableau de variation de f sur ${\cal D}_f$.
- 9. \triangle Quelles sont les dimensions du rectangle d'aire maximale?