Universidade Federal do Rio Grande do Norte - UFRN

Centro de Tecnologia - CT

Departamento de Engenharia Elétrica - DEE

Professor: Marcio Dilermano Bezerra Gomes

Acionamentos Eletrônicos de Potência

Exercício de simulação

1) em um controlador de motor CC, a tensão V_d é de 450V. Para os polos a e b determine $\overline{v_{com}}$, $\overline{v_{aN}}$, $\overline{v_{bN}}$, d_a e d_b se as tensões de saída solicitadas são de:

A)
$$\overline{v_o} = 250V$$

B)
$$\overline{v_0} = -250V$$

- 2) No controle do motor CC do exercício 1, a saída é $\bar{\iota_o}=12A$. Pede-se calcular a potência fornecida pelo barramento CC e mostrar que ela é igual à potência entregue ao motor (desprezando as perdas no conversor), $\bar{v_o}=250V$.
- 3) O controlador do motor CC do exercício anterior, opera nas seguintes condições: $V_d=450V$, $e_a=236V(cc)$, $\overline{v_o}=4A$, $f_s=20kHz$. Assumir que a resistência série associada com o motor CC seja de 0.5Ω . Calcular a indutância série L_a necessária para o ripple de pico a pico da corrente da saída seja de 1.0A. Assumir que $\widehat{V_{tri}}=1V$. Pede-se ainda, desenhar as formas de onda e simular no PSIM v_o , $\overline{v_o}$, i_o e i_d , seguida simular o circuito nas condições mencionadas.

Instruções:

- Os cálculos de todos os exercícios deverão ser entregues juntamente com os resultados de simulação e o arquivo da Simulação do PSIM.
- Os cálculos, juntamente com as formas de onda de simulação e teóricas devem ser entreguem em um relatório.
- O trabalho pode ser realizado em duplas.