Awarepoint Corporation

T₃E

Report No. AWAR0013

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2011 Northwest EMC, Inc

22975 NW Evergreen Parkway Suite 400 Hillsboro, Oregon 97124

Certificate of Test

Last Date of Test: October 14, 2011 Awarepoint Corporation Model: T3E

Emissions						
Test Description	Specification	Test Method	Pass/Fail			
Occupied Bandwidth	FCC 15.247:2011	ANSI C63.10:2009	Pass			
Output Power	FCC 15.247:2011	ANSI C63.10:2009	Pass			
Band Edge Compliance	FCC 15.247:2011	ANSI C63.10:2009	Pass			
Power Spectral Density	FCC 15.247:2011	ANSI C63.10:2009	Pass			
Spurious Radiated Emissions	FCC 15.247:2011	ANSI C63.10:2009	Pass			

Modifications made to the product

See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 41 Tesla Ave. Irvine, CA 92618

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834B-1).

Approved By:

Don Facteau, IS Manager

NVLAP Lab Code: 200676-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision History

Revision 06/29/09

Revision Number	Description	Date	Page Number	
00	None			

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. NVLAP is administered by the National Institute of Standards and Technology (NIST), an agency of the U.S. Commerce Department. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

Accreditations and Authorizations

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-3265, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017).

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157, Brooklyn Park: US0175)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Awarepoint Corporation
Address:	600 W. Broadway Suite 250
City, State, Zip:	San Diego, CA 92101
Test Requested By:	John Taylor
Model:	T3E
First Date of Test:	October 7, 2011
Last Date of Test:	October 14, 2011
Receipt Date of Samples:	October 5, 2011
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):
Radio module that operates at 2.4 GHz ISM (802.15.4)

Testing Objective:	
To demonstrate compliance to FCC 15.247 requirements.	

Configurations

CONFIGURATION 1 AWAR0013

Software/Firmware Running during test	
Description	Version
Smart RF Studio 7	N/A

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
2.4 GHz ISM radio	Awarepoint Corporation	T3E	1700001500

Peripherals in test setup boundary						
Description	Manufacturer	Model/Part Number	Serial Number			
Host Laptop	Dell	Latitude D630	33583998997			
AC/DC Power Supply	Dell	DA90PS0-00	CN-0XD757-48661-619-0BJJ			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.2m	No	T3E	Host Laptop
DC Cable	Yes	2.0m	Yes	Host Laptop	AC/DC Power Supply
AC Cable	No	1.0m	No	AC/DC Power Supply	AC Mains
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

Revision 4/28/03

	Equipment modifications								
Item	Date	Test	Modification	Note	Disposition of EUT				
1	10/7/2011	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.				
2	10/9/2011	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.				
3	10/10/2011	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.				
4	10/14/2011	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.				
5	10/14/2011	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.				

Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Near Field Probe	EMCO	7405	IPI	NCR	0
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a near field probe between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate in a no hop mode.

NORTHWEST EMC		Occ	cupied Ba	ndwid	lth		
EUT:	T3E					Work Order:	AWAR0013
Serial Number:							10/07/11
Customer:	Awarepoint Corporation	1				Temperature:	24.32°C
Attendees:	None					Humidity:	40.25% RH
Project:						Barometric Pres.:	
	Mark Baytan		Power:	Battery		Job Site:	OC10
TEST SPECIFICATI	IONS			TEST METH	-		
FCC 15.247:2011				ANSI C63.1	0:2009		
COMMENTS							
None							
DEVIATIONS FROM	I TEST STANDARD						
None							
Configuration #	1	Signature	MIG	71-			
		Value		Limit	Result		
Low		1.612 MHz	·	≥ 500 kHz	Pass		
Mid		1.613 MHz		≥ 500 kHz	Pass		
High		1.608 MHz		≥ 500 kHz	Pass		

			Mid			
	1.5	D !!				
	Limit	Result				
1 61	3 MHz ≥ 500 kHz	Pass				

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

2405, 2440, 2475 MHz

CONFIGURATIONS INVESTIGATED

AWAR0013 - 1

AXIS OF EUT INVESTIGATED

X-Axis (EUT flat)

Y-Axis (EUT on side)

Z-Axis (EUT standing up)

FREQUENCY RANGE INVESTIGATED

Start Frequency	2400 MHz	Stop Frequency	2483.5 MHz
-----------------	----------	----------------	------------

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak output power was measured with the EUT set to low, medium, and high transmit frequencies. The radiated power was measured using a spectrum analyzer and horn antenna in a semi-anechoic chamber. The resolution bandwidth was set to 3 MHz and the video bandwidth was to set to 8 MHz. A peak detector was used. The EUT was transmitting at its maximum data rate. The level of fundamental emission was maximized by rotating the turntable and moving the measurement antenna from 1-4 meters in height.

The field strength measurement was converted to effective radiated power (EIRP) using the Friis transmission equation. A simplified version is found in ANSI C63.10:2009, Equation 5.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36dBm.

Band Edge Compliance

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a radiated measurement. The EUT was transmitting at the maximum data rate available.

The spectrum was scanned across each band edge from at least 10 MHz below the band edge to 10 MHz above the band edge.

NORTHWEST EMC		Band Edge Com	pliance		XMit 2010.01.14
EUT:	T3E			Work Order:	
Serial Number:	1700001500				10/14/11
Customer:	Awarepoint Corporation			Temperature:	24.32°C
Attendees:	None			Humidity:	
Project:				Barometric Pres.:	1012.2
	Johnny Candelas	Pow	er: Battery	Job Site:	OC10
TEST SPECIFICATI	IONS		TEST METHOD		
FCC 15.247:2011			ANSI C63.10:2009		
COMMENTS					
Z-Axis (Standing u	•				
DEVIATIONS FROM	M TEST STANDARD				
None					
Configuration #	1	Signature for N. lother			
	•				mit Results
Low 2405MHz	_				20dB Pass
High 2480MHz			-3	6.29dB >=2	20dB Pass

Band Edge Compliance

 Low 2405MHz

 Result: Pass
 Value: -35.77dB
 Limit: >=20dB

High 2480MHz

Result: Pass Value: -36.29dB Limit: >=20dB

Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The peak power spectral density was measured with the EUT set to low, medium, and high transmit frequencies. The radiated power spectral density was measured using a spectrum analyzer and horn antenna in a semi-anechoic chamber. The EUT was transmitting at its maximum data rate for each modulation type available. The level of fundamental emission was maximized by rotating the turntable and moving the measurement antenna from 1 – 4 meters in height. Per the procedure outlined in ANSI C63.10:2009, the spectrum analyzer was used as follows:

The emission peak(s) were located and zoom in on within the passband. The resolution bandwidth was set to 3 kHz, the video bandwidth was set to greater than or equal to the resolution bandwidth. The sweep speed was set equal to the span divided by 3 kHz (sweep = (SPAN/3 kHz)). For example, given a span of 1.5 MHz, the sweep should be $1.5 \times 106 \div 3 \times 103 = 500$ seconds. The following FCC procedure was used for modifying the power spectral density measurements:

"If the spectrum line spacing cannot be resolved on the available spectrum analyzer, the noise density function on most modern conventional spectrum analyzers will directly measure the noise power density normalized to a 1 Hz noise power bandwidth. Add 35 dB for correction to 3 kHz."

The field strength measurement of power spectral density was converted to effective radiated power spectral density (dBm/3kHz) (EIRP) using the Friis transmission equation. A simplified version is found in ANSI C63.10:2009, Equation 6.

NORTHWEST				• .			XMit 2010.01.14
EMC		Power Spec	tral D	ensity			
EUT:	T3E				Wo	rk Order: AWAR001	3
Serial Number:	1700001500					Date: 10/14/11	
Customer:	Awarepoint Corporation				Tem	perature: 24.32°C	
Attendees:	None					Humidity: 40%	
Project:					Baromet	ric Pres.: 1012.2	
	Johnny Candelas		Power:	Battery		Job Site: OC10	
TEST SPECIFICATI	IONS			TEST METHOD			
FCC 15.247:2011				ANSI C63.10:2009			
COMMENTS							
Z-Axis (Standing up	p)						
DEVIATIONS FROM	/I TEST STANDARD						
No Deviations							
o :: .: "	,	for d.	11				
Configuration #	1	Signature	the				
			•		Value	Limit	Results
Low Channel				-24.9 dE	3m/3kHz, EIRP	<= 8 dBm/3kHz	Pass
Mid Channel				-25.0 dE	3m/3kHz, EIRP	<= 8 dBm/3kHz	Pass
High Channel				-24.9 dE	3m/3kHz, EIRP	<= 8 dBm/3kHz	Pass

Power Spectral Density

Low Channel						
Result: Pass	Value: -24.9 dBm/3kHz, EIRP	Limit: <= 8 dBm/3kHz				

 Meter Reading (dBm/Hz)
 Meter Reading (dBm/3kHz)
 Factor (dB) (dBm/3kHz/meter)
 Field Strength PSD (dBm/3kHz) (dBm/3kHz) (EIRP)

 -105.57
 -70.57
 33.9
 -36.67
 -24.9

 Mid Channel

 Result:
 Pass
 Value:
 -25.0 dBm/3kHz, EIRP
 Limit:
 <= 8 dBm/3kHz</th>

Meter Reading	Meter Reading	Factor	Field Strength PSD	PSD EIRP
(dBm/Hz)	(dBm/3kHz)	(dB)	(dBm/3kHz/meter)	(dBm/3kHz) (EIRP)
-105.77	-70.77	34	-36.77	-25.0

Power Spectral Density

	High Channel			
Result: Pass	Value: -24.9 dBm/3kHz, EIRP	Limit:	<= 8 dBm/3kHz	

 Meter Reading (dBm/Hz)
 Meter Reading (dBm/3kHz)
 Factor (dB) (dBm/3kHz/meter)
 Field Strength PSD (dBm/3kHz) (dBm/3kHz) (EIRP)

 -105.85
 -70.85
 34.2
 -36.65
 -24.9

EMC

Spurious Radiated Emissions

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuous Transmit - Low, Mid, and High Channels (2.405GHz, 2.440GHz, 2.480GHz)

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

AWAR0013 - 1

FREQUENCY RANGE INVESTIGATED Start Frequency 30 MHz Stop Frequency 26000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AOI	4/29/2011	12 mo
Antenna, Horn	EMCO	3160-09	AHN	NCR	0 mo
OC floating Cable	N/A	18-26GHz RE Cables	OCK	4/29/2011	12 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AOF	11/17/2010	12 mo
Antenna, Horn	ETS	3160-08	AHT	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AOE	11/17/2010	12 mo
Antenna, Horn	ETS	3160-07	AHR	NCR	0 mo
OC 10 Cables	N/A	12-18GHz RE Cables	OCO	6/24/2011	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	6/24/2011	12 mo
OC10 Cables	N/A	10kHz-1GHz RE Cables	OCH	6/24/2011	12 mo
Antenna, Horn	EMCO	3115	AHB	3/8/2011	24 mo
Antenna, Biconilog	EMCO	3142	AXB	3/28/2011	12 mo
Pre-Amplifier	Miteq	AM-1064-9079	AOO	6/28/2011	12 mo
OC10 Cables	N/A	1-8GHz RE Cables	OCJ	6/10/2011	12 mo
Spectrum Analyzer	Agilent	E4446A	AAY	1/11/2011	12 mo

MEASUREMENT BANDWIDTHS								
	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				

Measurements were made using the IF bandwidths and detectors specified. No video filter was used, except in the case of the FCC Average Measurements above 1GHz. In that case, a peak detector with a 10Hz video bandwidth was used.

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

All radiated emissions were measured. The emissions that fell in the restricted bands of 15.205 were measured to the 15.209 limits and all other emissions were compared to the -20 dBc limit of 15.247(d).

Test Specifications FCC 15.247:2011

Test Method ANSI C63.10:2009

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
7216.633	39.1	16.5	1.2	76.0	3.0	0.0	Vert	PK	0.0	55.6	69.8	-14.2
7214.713	39.0	16.5	2.4	92.0	3.0	0.0	Horz	PK	0.0	55.5	69.8	-14.3
7216.320	26.4	16.5	1.2	76.0	3.0	0.0	Vert	AV	0.0	42.9	69.8	-26.9
7216.240	26.3	16.5	2.4	92.0	3.0	0.0	Horz	AV	0.0	42.8	69.8	-27.0

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
9921.828	52.5	-8.5	1.2	30.0	3.0	0.0	Horz	PK	0.0	44.0	69.8	-25.8	
9618.182	51.1	-8.4	1.2	99.0	3.0	0.0	Horz	PK	0.0	42.7	69.8	-27.1	
9921.954	50.8	-8.5	1.2	71.0	3.0	0.0	Vert	PK	0.0	42.3	69.8	-27.5	
9782.013	50.3	-8.4	1.2	78.0	3.0	0.0	Vert	PK	0.0	41.9	69.8	-27.9	
9782.038	50.1	-8.4	1.2	17.0	3.0	0.0	Horz	PK	0.0	41.7	69.8	-28.1	
9618.248	50.0	-8.4	1.2	103.0	3.0	0.0	Vert	PK	0.0	41.6	69.8	-28.2	
9921.894	41.4	-8.5	1.2	30.0	3.0	0.0	Horz	AV	0.0	32.9	69.8	-36.9	
9617.988	39.0	-8.4	1.2	99.0	3.0	0.0	Horz	AV	0.0	30.6	69.8	-39.2	
9921.954	39.0	-8.5	1.2	71.0	3.0	0.0	Vert	AV	0.0	30.5	69.8	-39.3	
9781.938	38.6	-8.4	1.2	17.0	3.0	0.0	Horz	AV	0.0	30.2	69.8	-39.6	
9781.919	38.0	-8.4	1.2	78.0	3.0	0.0	Vert	AV	0.0	29.6	69.8	-40.2	
9618.041	37.8	-8.4	1.2	103.0	3.0	0.0	Vert	AV	0.0	29.4	69.8	-40.4	

12027.330

52.3

-7.5

130.0

3.0

Vert

0.0

44.8

74.0

-29.2

