

[2020 혁신성장 청년인재 집중양성 사업] 프로젝트 기반 데이터 과학자 양성과정

빅데이터 분석

- 2주차 -

#R #프로그래밍 #데이터전처리

A table of Contents

- 7 R 설치 및 실행
- 2 데이터 입출력
- 3 데이터 타입
- ◢ R 프로그래밍
- 5 데이터 전처리 I
- **S**ummary

R 설치

- 홈페이지(<u>https://www.r-project.org/)</u>에 접속해서 "CRAN"메뉴로 이동
- Korea CRAN 서버를 이용하여 다운로드

R설치

- OS에 맞는 버전 다운로드
- Base를 이용하여 설치

R 설치

- 설치파일 실행
- 한국어 선택 > 다음 클릭 > 다음 클릭 > 경로 선택 후 다음 클릭 > 다음 클릭 > 다음 클릭 > 설치 완료

- 설치파일 실행
- 한국어 선택 > 다음 클릭 > 다음 클릭 > 경로 선택 후 다음 클릭 > 다음 클릭 > 다음 클릭 > 설치 완료

R Studio 설치

R Studio 설치 과정

- R Studio 홈페이지 (<u>https://www.rstudio.com/)</u>에 접속
- Download R Studio를 클릭하여 다운로드 페이지로 이동

R Studio 설치 과정

• Install버전에서 OS 선택 후, 다운로드

R Studio 설치 과정

- R Studio 설치 파일을 시작
- 다음 클릭 > 경로 선택 후, 다음 클릭

R Studio 설치

R Studio 화면 설명

• R Studio는 크게 Script, Console, Environment/History, File/Plot/Packages/Help/Viewer로 나뉨

- 1) R Script 창에서 작성한 Script를 실행하려면 Ctrl + R / Ctrl + Enter / Run을 클릭
- 2) Console 창은 Interactive 하게 R 프로그램을 짜고 실행하기 / R Script 창 혹은 Console 창에서 작성한 프로그램의 실행(계산) 결과 보기 / 패키지 설치, 에러/오류 메시지 등의 로그 보기
- 3) Environment탭에는 데이터셋이 확인 가능 / History탭에는 R Script 의 이력 확인 가능
- 4) Files/Plot/Packages/Help/Viewer
- Files: 탐색기 기능
- Plot: 그래프 확인
- Packages: Package 설치 확인
- Help: 도움말 검색 기능
- Viewer : 웹으로 출력했을 때 확인 가능

R 기본 활용

R 기본 활용

- R에서 변수명은 특정한 규칙을 따름
- 리눅스의 명령어와 유사
 - R의 변수명은 알파벳, 숫자, _(언더스코어), .(마침표)로 구성되며, -(하이픈)은 사용할 수 없다.
 - 이름의 첫 글자로 숫자와 '_'은 사용할 수 없음
 - 대문자와 소문자는 서로 구분
 - 변수값은 <-, =을 사용함
 - 대부분 <-을 사용하여 변숫값 할당함
 - ;(세미콜론)은 명령문과 명령문을 구분 짓는 역할
 - ls(): 생성된 변수의 리스트 출력
 - rm(): 생성된 변수를 삭제
 - rm(list=ls()) : 모든 변수 삭제

R 기본 활용

R 패키지

- R에는 다양한 사용자들이 구축해 높은 방대한 양의 패키지가 존재
- 인터넷인 연결되어 있는 환경에서는 아래와 같은 명령어로 다운로드가 가능함

> library(randomForest)

randomForest 4.6-7

Type rfNews() to see new features/changes/bug fixes.

R 기본 활용

R 도움말

• 활용하고자 하는 함수에 대한 도움말을 얻고자 할 때 help나 ? 명령어를 사용

```
> ?print
print package:base R Documentation

Print Values

Description:
    'print' prints its argument and returns it _invisibly_ (via
    'invisible(x)'). It is a generic function which means that new
    printing methods can be easily added for new 'class'es.

Usage:

print(x, ...)

## S3 method for class 'factor'
print(x, quote = FALSE, max.levels = NULL,
    width = getOption("width"), ...)
```


데이터 입출력

데이터 입출력

- CSV 파일을 데이터 프레임으로 읽으려면 read.csv()
- 데이터 프레임을 CSV파일로 저장하려면 write.csv()
 - ls();rm(list=ls())
 - data(iris)
 - head(iris) # 3개 레코드를 확인하려면?
 - write.csv(iris,file="newiris.csv",row.names=FALSE)
 - newiris<-read.csv("newiris.csv")
 - head(newiris)
 - newiris2<-read.table("newiris.csv",sep=",",header=T)
 - save(newiris2, file="newiris2.RData")
 - load("newiris2.RData")

벡터

벡터의 정의

• 벡터는 한 개 이상의 원소로 구성된 자료구조로서 R의 자료 객체 중에서 가장 기본이 되는 자료 객체를 의미

속성	설명	
length	자료의 개수	
mode	자료의 형태	
dim	각 차원 벡터의 크기	
dimnames	각 차원 리스트의 이름	

행렬

행렬의 정의

- 행렬은 동일한 형태로 구성된 2차원의 데이터 구조
- 행의 차원과 열의 차원을 갖고 있으며 벡터와 마찬가지로 하나의 행렬은 수치형, 문자형, 논리형 중 한 가지 형태의 원소만 갖는 점에 유의

속성	설명	
length	자료의 개수	
mode	자료의 형태	
dim	행과 열의 개수	
dimnames	행과 열의 이름	

배 열

배열의 정의

- 배열(Array)은 행렬을 2차원 이상으로 확장시킨 객체를 의미
- 2차원 구조로 이루어진 행렬도 일종의 배열이라고 할 수 있으며 일반 적으로는 3차원 이상의 데이터 객체를 배열이라고 함

속성	설명	
length	자료의 개수	
mode	자료의 형태	
dim	각 차원 벡터의 크기	
dimnames	각 차원 리스트의 이름	

리스트

리스트의 정의

- 서로 다른 형태(mode)의 데이터로 구성된 객체를 의미
- 행렬과 배열 등이 동일한 형태의 원소로 이루어진 객체인 반면 리스트를 구성하는 성분(component)은 서로 다른 형태의 원소를 가질 수 있고, 길이도 다를 수도 있음

속성	설명	
length	자료의 개수	
mode	자료의 형태	
names	각 구성요소의 이름	

데이터 프레임

데이터 프레임의 정의

 행렬은 차원으로 표시되며 같은 형태의 객체를 가지는 반면, 데이터 프레임은 각 열들이 서로 다른 형태의 객체를 가질 수 있음

- 데이터 프레임은 형태(mode)가 일반화된 행렬(matrix)
- 데이터 프레임이라는 하나의 객체에 여러 종류의 자료가 들어갈 수 있음
- 데이터 프레임의 각 열은 각각 변수와 대응
- 분석이나 모형 설정에 적합한 자료 객체

연산자

연산자

- R은 반복문, 조건문 등을 이용하여 다양한 프로그래밍이 가능한 언어
- 산술, 비교, 논리 연산자

연산자와 함수	의미
+, -, *, /	사칙 연산
n %% m	n을 m으로 나눈 나머지
n %/% m	n을 m으로 나눈 몫
n^m	n의 m승
exp(n)	e의 n승
log(x, base=exp(1))	logbase(x). 만약 base가 지정되지 않으면 loge(x)를 계산
log2(x), log10(x)	각각 log2(x), log10(x)를 계산
sin(x), cos(x), tan(x)	삼각 함수

기본 함수

기본 함수

• R base에 기본으로 탑재되어 있는 함수 목록

함수	예
• pi	 pi [1] 3.141593 options(digits=20) pi [1] 3.141592653589793

함수	예
• sin(x): sin 함수	> sin(10) [1] -0.54
• cos(x): cosine 함수	> cos(10) [1] -0.84
• tan(x): tangent 함수	> tan(10) [1] 0.65
• asin(x) : arcsin 함수	> asin(1) [1] 1.6
• acos(x): arc cosine 함수	> acos(0) [1] 1.6
• atan(x):arc tangent 함수	> atan(0.6) [1] 0.54

함수	예	
• log(x) : 자연로그 함수	예1) > log(2) [1] 0.7	예2) > x<-3 > y<-4 > log(x+y) [1] 1.9
• log10(x): 상용 로그 함수	예1) > log10(10) [1] 1	예2) > x<-3 > y<-14 > log(x+y) [1] 1.2
• exp(x): 지수 로그 함수	> exp(10) [1] 22026	
• sqrt(x) : 루트함수	> sqrt(8) [1] 2.8	

기본 함수

기본 함수

• R base에 기본으로 탑재되어 있는 함수 목록

함수	예
• min(x) :벡터에서 최소값	> x<-c(1,2,-3,4) > min(x) [1] -3
• max(x): 벡터에서 최대값	> x<-c(1,2,-3,4) > max(x) [1] 4
• min(x1, x2,) : 전체 벡터 원소 중에서 최소값	> x1<-c(1,2,-3,4) > x2<-c(2,4,-6,7) > min(x1,x2) [1] -6
• range(x): 벡터의 범위 -> c(min(x), max(x))	<pre>> x<-c(1,2,-3,4) > range(x) [1] -3 4 > c(min(x), man(x)) [1] -3 4</pre>

함수	예
• pmin(x1,x2) : 두 벡터의 상응하는 원소들 중 작은 값	> x1<-c(1,2,-3,4) > x2<-c(2,4,-6,7) > pmin(x1,x2) [1] 1 2 -6 4
• pmax(x1,x2) : 두 벡터의 상응하는 원소들 중 큰 값	> x1<-c(1,2,-3,4) > x2<-c(2,4,-6,7) > pmin(x1,x2) [1] 2 4 -3 7

기본 함수

기본 함수

• R base에 기본으로 탑재되어 있는 함수 목록

함수	예	함수	예
• mean(x1): 평균	> x1<-c(1,2,3,4,5,6) > mean(x1) [1] 3.5		> x1<-c(1,2,3,4,5,6,7,8,9,10) > quantile(x1, 0.5)
• sd(x1): 표준 편차	> x1<-c(1,2,3,4,5,6) > sd(x1) [1] 1.9		[1] 50% [1] 5.5
• var(x1): 분산	> x1<-c(1,3,6,9,12,3,2) > var(x1) [1] 16	• cor(x,y) : 상관 계수	> x<-c(1,2,3,4,5,6,7,8,9,10) > y<-c(10,9,8,7,6,5,4,3,2,5)
• median(x1): 중앙값(중위수)	> x1<-c(1,3,6,9,12,3,2) > median(x1) [1] 3		> cor(x,y) [1] -0.91

조건문

- 조건문이라는 것은 특정한 조건을 만족했을 경우에만 프로그램 코드를 수행하는 제어 구문을 의미
- 조건문에는 항상 논리 연산이 수반되며 조건문의 구체적인 표현 식은 조건의 개수, 조건문의 위치, 조건에 따른 명령수행 방식 등 에 따라 구분

문법	의미
if (cond) { cond가 참일 때 실행할 든 } else { cond가 거짓일 때 실행할 }	조건 cond가 참, 거짓인 경우에 따라 {} 블록을 실행한다. 필요한 경우 else 블록을 지정할 수 있다.

반복문

반복문

- 조건문이라는 것은 특정한 조건을 만족했을 경우에만 프로그램 코드를 수행하는 제어 구문을 의미
- 조건문에는 항상 논리 연산이 수반되며 조건문의 구체적인 표현 식은 조건의 개수, 조건문의 위치, 조건에 따른 명령수행 방식 등 에 따라 구분

문법	의미
for (i in data) { i를 사용한 문장 }	data에 들어 있는 각각의 값을 변수 i에 할당하면서 각각에 대해 블록 안의 문장을 수행한다.
while (cond) { 조건이 참일 때 수행할 문? }	조건 cond가 참일 때 블록 안의 문장을 수행한다.
repeat { 반복해서 수행할 문장 }	블록 안의 문장을 반복해서 수행한다. repeat은 다른 언어의 do-while에 해당한다.

함수

함수 정의

- 함수(function)란 특정한 작업을 독립적으로 수행하는 프로그램 코드의 집합체
- R의 내장 함수에 사용자가 원하는 특정한 기능이 구현되어 있지 않다면 사용자 스스로 직접 함수를 생성하여 원하는 기능을 수행할 수 있음

```
function_name <- function(인자, 인자, ...) {
합수 본문
return(반환 값) # 반환 값이 없다면 생략
}
```


데이터 전처리

데이터 분리 / 병합 / 정렬

- 주어진 데이터를 조건에 따라 분리 : split(), subset(),
- 주어진 데이터를 조건에 따라 병합 : merge()
- 주어진 데이터를 직접 정렬해주는 함수 : sort()
- 데이터를 정렬했을 때의 순서를 반환: order()

함수	특징
split()	주어진 조건에 따라 데이터를 분리한다.
subset()	주어진 조건을 만족하는 데이터를 선택한다.
merge()	데이터를 공통된 값에 기준해 병합한다.

