1.9 Price Elasticity - Practice Problems (Answers)

Ryan Safner

ECON 306 - Spring 2020

The demand for monthly cell phone plans is given by:

$$q_D = 50 - 0.5p$$

1. Write the *inverse* demand function.

Solution:

$$q_D = 50 - 0.5p$$

$$q_D + 0.5p = 50$$

$$0.5p = 50 - q_D$$

$$p = 100 - 2q_D$$

The choke price is \$100 and the slope is -2.

2. Calculate the price elasticity of demand when the price is \$10. Is this relatively elastic or inelastic?

Solution:

First we need to find q_D at \$10.

$$q_D = 50 - 0.5(10)$$

$$q_D = 50 - 5$$

$$q_D = 45$$

Now we have the three ingredients to calculate elasticity at \$10:

$$\epsilon_D = \frac{1}{slope} \times \frac{p}{q_D}$$

$$\epsilon_D = \frac{1}{-2} \times \frac{10}{45}$$

$$\epsilon_D = -0.5 \times 0.22$$

$$\epsilon_D = -0.11$$

The demand is relatively inelastic, as $|\epsilon_D| < 1$

3. Calculate the price elasticity of demand when the price is \$70. Is this relatively elastic or inelastic?

Solution: First we need to find q_D at \$70.

$$q_D = 50 - 0.5(70)$$

 $q_D = 50 - 35$
 $q_D = 15$

We already have the slope (since the demand is a straight line), so now we can simply plug into the elasticity formula:

$$\epsilon_D = \frac{1}{slope} \times \frac{p}{q_D}$$

$$\epsilon_D = \frac{1}{-2} \times \frac{70}{15}$$

$$\epsilon_D = -0.5 \times 4.67$$

$$\epsilon_D \approx -2.33$$

The demand is relatively elastic, as $|\epsilon_D| > 1$

4. At what price is demand unit elastic $(\epsilon = -1)$?

Solution:

$$\epsilon_D = \frac{1}{slope} \times \frac{p}{q_D}$$
 Formula for elasticity
$$-1 = -0.5 \times \frac{p}{q_D}$$
 Set ϵ_D equal to -1
$$-1 = -0.5 \times \frac{p}{(50 - 0.5p)}$$
 Plug in demand function for q_D
$$-1(50 - 0.5p) = -0.5p$$
 Multiply by term in parentheses
$$0.5p - 50 = -0.5p$$
 Distribute the -1 Add $0.5p$
$$p = \$50$$
 Divide by -50

5. Calculate the total revenue at \$10.

Solution: The total revenue is:

$$R = pq$$

$$R = (\$10)(45)$$

$$R = \$450$$

6. Calculate the total revenue at \$70.

Solution: The total revenue is:

$$R = pq$$

 $R = (\$70)(15)$
 $R = \$1,050$

7. Calculate the total revenue at the price you found for question 4.

Solution: That price was p = \$50. At this price, we need to find the quantity demanded. We can use the demand function:

$$q_D = 50 - 0.5p$$

 $q_D = 50 - 0.5(50)$
 $q_D = 50 - 25$
 $q_D = 25$

Now that we have price and quantity, revenue is:

$$R = pq$$

 $R = (\$50)(25)$
 $R = \$1,250$

This is where revenue is maximized.

