	Mathematica file 7
	Election E (e) Force displacement DATE: 1
add comp	arision of simualtion result to anytical and plot them
	Torce Calculation - z direction displ-
	This section deals with calculation of force acting on spheroid when kept inside the magnetic field in different configurations.
	This section deals with configuration of applied magnetic field where it is displaced only in z-direction.
\rightarrow	force acting on a spheroid kept inside a magnetic field can be evaluated using maxwell stress Tensor.
	Normal Vector Calculation -> (Spherical co-ordinates)
	This calculation is shown in detail in Section B(b) or Normal vector to surface of spheroid nb?
norma	$\frac{1}{n} = (R - Rs \cos(60))^3 \sin \theta, -4Rs \cos \theta \sin \theta (R - Rs \cos(20)), 0$
	1 1 10000 000 101 00
•	now, we convert this normal vector of from
	now, we convert this normal vector in from spherical co-ordinates to cartesian co-ordinates. This is achieved by multiplying it with transformation matrix.
	Sph To Care
	Me = / eino cos q cos o cos q - sin q
	Ms-sc = sino sino coso sino coso - De
	COOO - Sin O / Teacher's Signature

	n's - normal in cartesian coordinates PAGE NO.:
A	mc = Ms-c · m
nx	ne = (R-2Rs-3Rs cos (20)) (R-Rs cos (20)) cosquiro
Iny	nc = (R-2Rs-3Rs Con (20)) (R-Rs Con (20)) sin's sin \ 3
mz	në = coop (R+2Rs-3Rs coo (20)) (R-Rs coo (20)) sino
	Area element of Spheroid
Al series	dAi = ni ds — De where ni = unit normal vector in its direction
	ds = n dodg - differential area element for Be any surface.
	dAi = ni IInlI dodp = nidodp - @e IInlI
Ay Ay Az	$dA_{x} = n_{x}d\theta d\phi$ $dA_{y} = n_{y}d\theta d\phi$ $dA_{z} = n_{z}d\theta d\phi$ $dA_{z} = n_{z}d\theta d\phi$
	Hence, initially we used a normal vector rather than a unit Inormal vector.

PAGE NO.	:		
DATE:	1	1	

	Magnetic field at the surface of Spheroid -
	Bout (8,0,9) r= r(0) calculated in eq 42 d is used directly over here.
307	8 e (0 0) - 8 ··· (0 0) - (8) e
Bout Spl	word for the point (0, 0, 4) (5=0(0)
	Bout sury $(0,0) = Baut(0,0,0) _{v=v(0)} - 6e$ uroid Converting the magnetic field at the surface of spheroid in cartesian coordinates.
	Using the matrix defined in eq. 2e, it can be converted easily
	Bout, cout, sury (0,q) = Ms-c · Bout, sury (0,q) — (9)e
	Boutlart
	Now, we define
Bout 2	Bout, cart, surf, sq (0, 9) = (Bout, cart, surf (0, 9)) - (De
By Bz	$B_x = B_{out}$, care, surf $(0, \varphi)$. $B_y = B_{out}$, care, surf $(0, \varphi)$ \ $-(1)e$ $B_z = B_{out}$, care, surf $(0, \varphi)$

PAGE NO.:

$$f = \int \nabla \cdot \vec{T} \, dV \qquad \qquad \text{(2)} e$$

$$= \oint \vec{T} \cdot \vec{n} \, dS = \oint \vec{T} \cdot \vec{n} \, d\theta \, d\phi \qquad \qquad \text{(3)} e$$

$$Tij = \int_{P_0} \left(B_1 B_j - [Sij B^2] \right) + \int_{P_0} \left(E_1 E_j - [Sij E^2] \right) - \text{(Me}$$

$$Since, \text{ those ise no electric field}$$

$$Tij = \int_{P_0} \left(B_1 B_j - [Sij B^2] \right) - \left([Se] e$$

$$Txx = \int_{P_0} \left(B_2 - [3e] \right) = \int_{P_0} \left(B_1 B_2 - [3e] \right) - \left([Se] e$$

$$Txx = \int_{P_0} \left(B_2 B_2 - [3e] \right) = \int_{P_0} \left(B_1 B_2 - [3e] \right) - \left([Se] e$$

$$Txz = \int_{P_0} \left(B_1 B_2 - [3e] \right) - \left([Se] e$$

$$fx = \int_{P_0} T_{MX} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MZ} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MX} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 - ([3e] e$$

$$= \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0} T_{MY} \, dA_1 + \int_{P_0} T_{MY} \, dA_2 + \int_{P_0}$$

F = (fx, fy, fz) - 22e

fz = \$ Tzz nzdodq + \$ Tzy dodq ny + \$ Tzx dodq nx (fz) (fz) (fz) (fz)

THE STATE