

Pattern Recognition Homework 4 Announcement

Lastest update: 2023.05.03 12:00

Homework 4

- Deadline: May. 17, Wed. at 23:59
 - Code assignment (50%)
 - Implement <u>Cross-Validation</u> and <u>Grid Search</u> for SVM training using only NumPy.
 - Questions (50%)
 - Write your answer in detail in the report.
- Question: <u>Link</u>
- Sample code: <u>Link</u>
- Dataset: <u>Link</u>

Support Vector Machines

 The Support Vector Classifier aims to identify the optimal hyperplane for separating distinct classes by maximizing the distance between the sample points and the hyperplane.

Support Vector Machines

 Since SVM involves complex mathematical operations, you are allowed to use the SVM implementation available in the sklearn library instead of implementing it from scratch.

Grid Search and K-Fold Cross-Validation

- There are many hyperparameters in SVM.
- For this homework, you need to perform grid search and cross-validation to find the best hyperparameters for SVM on the provided dataset.

Grid Search

- Suppose we want to find the optimal values of two hyperparameters for an RBF kernel SVM, namely C and gamma.
- There are numerous combinations that need to be considered!
- Interactive demo

Grid Search

 Grid search explores all possible hyperparameter combinations and selects the best set of hyperparameters based on the model's performance.

```
C = [0.1, 1, 10] #3 values
gamma = [0.01, 0.1, 1, 10] #4 values
# There are totally 12 combinations for tuning
```

C\gamma	0.01	0.1	1	10
0.1	[0.1, 0.01]	[0.1, 0.1]	[0.1, 1]	[0.1, 10]
1	[1, 0.01]	[1, 0.1]	[1, 1]	[1, 10]
10	[10, 0.01]	[10, 0.1]	[10, 1]	[10, 10]

Grid Search

K-Fold Cross-Validation

- We divide the dataset into K subsets.
 - One subset is used for validation.
 - The remaining K-1 subsets are combined to form the training set.
- This process is repeated K times, with each subset used once as the

validation data.

K-Fold Cross-Validation

Below is the workflow for k-fold cross-validation.


```
C = [0.1, 1, 10] #3 values gamma = [0.01, 0.1, 1, 10] #4 values
```

Grid Search and K-Fold Cross-Validation

- We can experiment with 12 (3 x 4) combinations of hyperparameters as defined on page 7.
- For each combination, we can apply K-fold cross-validation and calculate the average performance.
- Find the combination that yields the best performance.

Grid Search and K-Fold Cross-Validation

 Finally, train your model on the entire training set using the best hyperparameters, and evaluate the model's performance on the test set.

Questions (50%)

1. (10%) Implement K-fold data partitioning using numpy.

Questions (50%)

- (10%) Perform a grid search on the hyperparameters C and gamma to identify the optimal values using cross-validation implemented by NumPy.
- 3. (10%) Plot the results of your SVM's grid search.

Questions (50%)

 (20%) Train your SVM model using the best hyperparameters found in Q2 on the entire training dataset, then evaluate its performance on the test set.
 Print your testing accuracy.

```
# Do Not Modify Below

best_model = SVC(C=best_parameters[0], gamma=best_parameters[1], kernel='rbf')
best_model.fit(x_train, y_train)

y_pred = best_model.predict(x_test)

print("Accuracy score: ", accuracy_score(y_pred, y_test))

# If your accuracy here > 0.9 then you will get full credit (20 points).
```

Accuracy	Your scores	
acc > 0.9	20 points	
0.85 <= acc <= 0.9	10 points	
acc < 0.85	0 points	

Dataset

- Training set: 7000
- Testing set: 3000
- 300 features, 2 labels

Submission

- Compress your .ipynb and .pdf into a zip file and submit it on E3.
- Before submission:
 - Restart and run All
 - Save and submit the .ipynb (keep all cell outputs)
 - Get 0 points if you do not keep the cell outputs.
- STUDENT ID> HW4.zip
 - STUDENT ID> HW4.ipynb
- No csv file in HW4.

Report

- Please write your report in English.
- Please follow the HW1 report template.
- You must type the answer and also screenshot at the same time for the coding part.
- Answer each question as clearly as possible. You will get an extra penalty for only the brief answer.

Late policy

- We will deduct a late penalty of 20 points per additional late day.
- If you get 90 points but delay for two days, you get 90 (20 x 2) = 50 points!
- We only accept submissions that are up to 10 minutes late. Any submissions that are later than that will be considered late, regardless of the reason.

Reference

- K-fold Cross-Validation & Grid Search
- SVM hyperparameter tuning