EXERCÍCIOS - Complexidade de Tempo de Algoritmos

Teoria da Computação - 2025-2

Dupla:

Gustavo Aragão Guedes - 10376534

João Pedro de Souza Costa Ferreira - 10400720

Observação 1: Este exercício não deve ser manuscrito e nem conter imagens com detalhes manuscritos. **Observação 2**: Deve ser mantida a formatação do texto e os enunciados dos exercícios propostos.

1. Apresente, de forma direta e objetiva, a definição formal da notação assintótica Θ.

A notação Theta é usada para descrever a complexidade assintótica exata de uma função, fornecendo uma limitação inferior e superior para o comportamento de crescimento de uma função. Ela indica que o limite superior e o limite inferior são da mesma ordem de grandeza.

Visualização:

 $f(n) = \Theta(g(n))$ se existem constantes positivas c_1 , c_2 e n_0 tais que, para todo $n \ge n_0$,

$$c_1 g(n) \le f(n) \le c_2 g(n)$$
.

 $\Theta(g(n))$ significa que f(n) cresce assintoticamente no mesmo ritmo que g(n) (limite superior e inferior simultâneos).

2. A somatória dos números de 1 até n pode ser calculada através da fórmula

$$somat(n) = ((1+n)/2)*n$$

Escreva uma função (usando uma notação similar à linguagem C) que calcule a somatória de 1 até n usando esta fórmula e calcule a complexidade de pior caso da sua função obtida. Qual função é mais eficiente, a sua ou aquela anteriormente apresentada em aula? Justifique adequadamente.

Função:

```
Int somat(int n) {
  return (n * (n + 1)) / 2;
}
```

Complexidade (pior caso) = O(1). A execução realiza um número constante de operações aritméticas independentemente de n. Tempo constante.

Complexidade do algoritmo dado em sala de aula = O(n). Tempo linear.

A função mais eficiente é a nossa, pois o tempo de execução não depende do tamanho da entrada n, enquanto a função iterativa dada em aula cresce linearmente com n.

- 3. Escreva uma função para realizar busca sequencial em um vetor de números inteiros e calcule detalhadamente a complexidade da sua função nas seguintes situações:
 - melhor caso: quando o elemento buscado se encontra na primeira posição do vetor, e
 - pior caso: quando o elemento buscado não ocorre no vetor.

```
int busca_sequencial(int vet[], int n, int alvo) {
  for (int i = 0; i < n; i++) {
    if (vet[i] == alvo) return i; // encontrou
  }
  return -1; // não encontrou
}</pre>
```

Melhor caso

- Número de comparações = 1 (quando i = 0).
- Outras operações são constantes.
- Portanto o tempo é uma constante: $T(n) = c \Rightarrow \Theta(1)$.

Pior caso

- Número de comparações = n (testa todos os elementos).
- Mais algumas operações constantes (controle do loop, retorno).
- Portanto $T(n) = a \cdot n + b \Rightarrow \Theta(n)$.
- 4. Considerando uma função chamada outraF (n) de complexidade de tempo Θ(n¹), qual será a complexidade de tempo (do melhor e do por caso) do código abaixo? Calcule detalhadamente. (Note que a linha do for foi quebrada em 3, pois cada parte tem uma quantidade de execuções diferente das demais.)

Linha de código	Quantidade de execuções	Tempo de 1 execução	Tempo total	Justificativa
int i = 0;	1	O(1)	O(1)	Inicialização do loop ocorre apenas uma vez
i < 2*n	(2n+1) vezes	O(1)	O(n)	Teste de condição é feito a cada iteração + 1 vez no fim
i++	2n vezes	O(1)	O(n)	Executado a cada iteração do laço
if (arr[i] < k)	2n vezes	O(1)	O(n)	Comparação constante, feita em todas as iterações
outraF(n)	Depende do caso	$O(n^1) = O(n)$	Depende do caso	Executada somente se arr[i] < k for verdadeiro
Total	_	_	O(n)	_

Melhor caso:

- Nenhum elemento satisfaz arr[i] < k.
 - ⇒ outraF(n) nunca é executada.
 - o Tempo total = $\Theta(\mathbf{n})$ (das outras partes do laço).

Pior caso:

- Todos os elementos satisfazem arr[i] < k.
 - ⇒ outraF(n) é executada 2n vezes.
 - o Cada chamada custa $\Theta(n)$.
 - o Total = $2n \times \Theta(n) = \Theta(n^2)$.
- 5. Considerando uma função chamada **outraF**(n) de complexidade de tempo Θ(n²), qual será a complexidade de tempo (do melhor e do por caso) do código abaixo? Calcule detalhadamente.

Linha / trecho	Qtde de execuções	Tempo de 1 execução	Tempo total (estim.)	Justificativa
int i = 0;	1	O(1)	O(1)	Inicialização do laço, executa 1 vez
i < 100	101	O(1)	O(1)	Teste de condição feito 100 iterações + 1 teste final → constante
i++	100	O(1)	O(1)	Incremento executado a cada iteração → constante
outraF(n) (1a)	100	O(n²)	$100 \cdot \mathrm{O}(\mathrm{n}^2) = \mathrm{O}(\mathrm{n}^2)$	Chamada incondicional por iteração
outraF(n) (2 ^a)	100	O(n²)	$100 \cdot \mathrm{O}(\mathrm{n}^2) = \mathrm{O}(\mathrm{n}^2)$	Segunda chamada incondicional
outraF(n) (3 ^a)	100	O(n²)	$100 \cdot \mathrm{O}(\mathrm{n}^2) = \mathrm{O}(\mathrm{n}^2)$	Terceira chamada incondicional
Total	_	_	O(1) + O(1) + O(1) + $3 \cdot (100 \cdot O(n^2)) = O(n^2)$	

Como as chamadas a outraF(n) ocorrem **sempre** (são incondicionais dentro do laço de 100 iterações), **melhor caso = pior caso**:

- Melhor caso: O(n²)
- Pior caso: O(n²)