Supplementary Material of Handling Slice Permutations Variability in Tensor Recovery

Jingjing Zheng, ^{1,2} Xiaoqin Zhang, ^{2,*} Wenzhe Wang, ² Xianta Jiang ¹

Department of Computer Science, Memorial University of Newfoundland, Newfoundland and Labrador, Canada ² College of Computer Science and Artificial Intelligence, Wenzhou University, Zhejiang, China ijzheng233@gmail.com, zhangxiaoqinnan@gmail.com, woden3702@gmail.com, xiantaj@mun.ca

Property 7. (Zhang 2017) If $P \in \mathbb{R}^{n \times n}$ is a permutation matrix, then $P^TP = PP^T = I$.

Property 1. For $A \in \mathbb{R}^{n_1 \times n_2}$, then nuclear norm satisfy row (or column) permutations invariance, i.e. $\|PA\|_* = \|A\|_*$ for any permutation matrix $P \in \mathbb{R}^{n_1 \times n_1}$ (or $\|AP\|_* = \|A\|_*$ for any permutation matrix $P \in \mathbb{R}^{n_2 \times n_2}$).

Proof. $||PA||_* = ||A||_*$ by Property 7 and the unitary invariant norm property.

Similarly, we can get $||AP||_* = ||A||_*$ for any permutation matrix $P \in \mathbb{R}^{n_2 \times n_2}$.

Theorem 2. For $Y \in \mathbb{R}^{n_1 \times n_2}$, $\mathcal{D}_{\tau}(Y) = P^{-1}\mathcal{D}_{\tau}(PY)$ for any permutation matrix $P \in \mathbb{R}^{n_1 \times n_1}$ (and $\mathcal{D}_{\tau}(Y) = \mathcal{D}_{\tau}(YP)P^{-1}$ for any permutation matrix $P \in \mathbb{R}^{n_2 \times n_2}$), where $\mathcal{D}_{\tau}(Y) = \arg\min_X \frac{1}{2} \|Y - X\|_F^2 + \tau \|X\|_*$, and P^{-1} is an inverse operator of P.

Proof.

$$P^{-1}\mathcal{D}_{\tau}(PY) = P^{-1} \arg \min_{Z} \frac{1}{2} \|PY - Z\|_{F}^{2} + \tau \|Z\|_{*}$$

$$= \arg \min_{X} \frac{1}{2} \|PY - PX\|_{F}^{2} + \tau \|PX\|_{*}$$

$$= \arg \min_{X} \frac{1}{2} \|Y - X\|_{F}^{2} + \tau \|X\|_{*}, \qquad (1)$$

where the second equation holds by letting $X=P^{-1}Z$, and the third equation holds by the Property 7 and Property 1.

Similarly, we can get $\mathcal{D}_{\tau}(Y) = \mathcal{D}_{\tau}(YP)P^{-1}$ for any permutation matrix $P \in \mathbb{R}^{n_2 \times n_2}$.

Property 2. For $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then $\sum_{i=1}^3 \alpha_i \| (A \circ \mathcal{P}^{(k)})_{(i)} \|_* = \sum_{i=1}^3 \alpha_i \| \mathcal{A}_{(i)} \|_*$ for any slice permutations $\mathcal{P}^{(k)}$ i.e. (k=1,2,3), where $\mathcal{A}_{(i)}$ represents the mode-i unfolding matrix of A, $(A \circ \mathcal{P}^{(k)})(k=1,2,3)$ stands for the result by perform horizontal slice permutations, lateral slice permutations and frontal slice permutations on A, respectively.

Corresponding author

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Proof. For any slice permutations $\mathcal{P}^{(k)}(k=1,2,3)$, exist permutation marries P_i and Q_i makes $(\mathcal{A} \circ \mathcal{P}^{(k)})_{(i)} = P_i \mathcal{A}_{(i)} Q_i$ for i=1,2,3. Therefore, $\sum_{i=1}^3 \alpha_i \|(\mathcal{A} \circ \mathcal{P}^{(k)})_{(i)}\|_* = \sum_{i=1}^3 \alpha_i \|\mathcal{A}_{(i)} Q_i\|_* = \sum_{i=1}^3 \alpha_i \|\mathcal{A}_{(i)}\|_*$.

Theorem 3. $S_{\tau}(\mathcal{Y}) = S_{\tau}(\mathcal{Y} \circ \mathcal{P}^{(k)}) \circ (\mathcal{P}^{(k)})^{-1} (k = 1, 2, 3),$ where $S_{\tau}(\mathcal{Y}) = \arg\min_{\mathcal{X}} \frac{1}{2} ||\mathcal{Y} - \mathcal{X}||_F^2 + \tau \sum_{i=1}^3 \alpha_i ||\mathcal{X}_{(i)}||_*.$

Proof.

$$\mathcal{S}_{\tau}(\mathcal{Y} \circ \mathcal{P}^{(k)}) \circ (\mathcal{P}^{(k)})^{-1}$$

$$= (\arg \min_{\mathcal{Z}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}^{(k)} - \mathcal{Z}\|_F^2 + \tau \sum_{i=1}^3 \alpha_i \|\mathcal{Z}_{(i)}\|_*) \circ (\mathcal{P}^{(k)})^{-1}$$

$$= \arg \min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}^{(k)} - \mathcal{X} \circ \mathcal{P}^{(k)}\|_F^2 + \tau \sum_{i=1}^3 \alpha_i \|(\mathcal{X} \circ \mathcal{P}^{(k)})_{(i)}\|_*$$

$$= \arg \min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} - \mathcal{X}\|_F^2 + \tau \sum_{i=1}^3 \alpha_i \|\mathcal{X}_{(i)}\|_*, \qquad (2)$$

where the second equation holds by letting $\mathcal{X} = \mathcal{Z} \circ (\mathcal{P}^{(k)})^{-1}$, and the third equation holds by the property of $\mathcal{P}^{(k)}$ and Property 2.

Property 3. (Horizontal SPI of tensor nuclear norm) Tensor nuclear norm satisfy HSPI (Horizontal SPI), i.e. $\|A\|_* = \|A \circ \mathcal{P}^{(1)}\|_*$, for any horizontal slice permutations $\mathcal{P}^{(1)}$.

Proof. By the definition of $\mathrm{bcirc}(\mathcal{A})$, exist two permutation matrices P and Q such that $\mathrm{bcirc}(\mathcal{A}\circ\mathcal{P}^{(1)})=P\cdot\mathrm{bcirc}(\mathcal{A})\cdot Q$. Therefore, $\|\mathcal{A}\circ\mathcal{P}^{(1)}\|_*=\|\mathcal{A}\circ\mathcal{P}^{(1)}\|_{a,*}=\frac{1}{n_3}\|\mathrm{bcirc}(\mathcal{A}\circ\mathcal{P}^{(1)})\|_*=\frac{1}{n_3}\|P\cdot\mathrm{bcirc}(\mathcal{A})\cdot Q\|_*$. By Property 1, $\frac{1}{n_3}\|P\cdot\mathrm{bcirc}(\mathcal{A})\cdot Q\|_*=\|\mathcal{A}\|_{a,*}=\|\mathcal{A}\|_*$. Thus $\|\mathcal{A}\circ\mathcal{P}^{(1)}\|_*=\|\mathcal{A}\|_*$.

Property 4. (Lateral SPI of tensor nuclear norm) tensor nuclear norm satisfy LSPI (Lateral SPI), i.e. $\|A\|_* = \|A \circ \mathcal{P}^{(2)}\|_*$, for any lateral slices permutations $\mathcal{P}^{(2)}$.

Proof. Similar to the proof of Property 3. \Box

Property 5. For same circle $C^1 = \{i_1, i_2, ..., i_{n_3}, i_1\}$ and $\mathbf{C}^2 = \{i_k, i_{k+1}, ..., i_{n_3}, ..., i_{k-1}, i_k\},\$

$$\|\mathcal{A} \circ \mathcal{P}_{\mathbf{0r}^1}^{(3)}\|_* = \|\mathcal{A} \circ \mathcal{P}_{\mathbf{0r}^2}^{(3)}\|_*,$$

where $\mathbf{Or}^1 = \{i_1, i_2, ..., i_{n_3}\}$ is obtained by \mathbf{C}^1 , and $\mathbf{Or}^2 =$ $\{i_k, i_{k+1}, ..., i_{n_3}, ..., i_{k-1}\}$ is obtained by \mathbb{C}^2 .

Proof.

$$bcirc(\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)})$$

$$= \begin{pmatrix} \mathcal{A}_{:,:,i_{1}} & \mathcal{A}_{:,:,i_{n_{3}}} & \cdots & \mathcal{A}_{:,:,i_{3}} & \mathcal{A}_{:,:,i_{2}} \\ \mathcal{A}_{:,:,i_{2}} & \mathcal{A}_{:,:,i_{1}} & \cdots & \mathcal{A}_{:,:,i_{4}} & \mathcal{A}_{:,:,i_{3}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathcal{A}_{:,:,i_{n_{3}-1}} & \mathcal{A}_{:,:,i_{n_{3}-2}} & \cdots & \mathcal{A}_{:,:,i_{1}} & \mathcal{A}_{:,:,i_{n_{3}}} \\ \mathcal{A}_{:,:,i_{n_{3}}} & \mathcal{A}_{:,:,i_{n_{3}-1}} & \cdots & \mathcal{A}_{:,:,i_{2}} & \mathcal{A}_{:,:,i_{1}} \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \mathcal{A}_{:,:,i_{k}} & \mathcal{A}_{:,:,i_{k-1}} & \cdots & \mathcal{A}_{:,:,i_{k+2}} & \mathcal{A}_{:,:,i_{k+1}} \\ \mathcal{A}_{:,:,i_{k+1}} & \mathcal{A}_{:,:,i_{k}} & \cdots & \mathcal{A}_{:,:,i_{k+3}} & \mathcal{A}_{:,:,i_{k+2}} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \mathcal{A}_{:,:,i_{k-1}} & \mathcal{A}_{:,:,i_{k-3}} & \cdots & \mathcal{A}_{:,:,i_{k}} & \mathcal{A}_{:,:,i_{k-1}} \\ \mathcal{A}_{:,:,i_{k-1}} & \mathcal{A}_{:,:,i_{k-2}} & \cdots & \mathcal{A}_{:,:,i_{k+1}} & \mathcal{A}_{:,:,i_{k}} \end{pmatrix}$$

$$= bcirc(\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)}). \tag{3}$$

Therefore $\|\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^1}^{(3)}\|_* = \|\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^1}^{(3)}\|_{a,*} = \frac{1}{n_3}\|\mathrm{bcirc}(\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^1}^{(3)})\|_{a,*}$ $|\mathcal{P}_{\mathbf{Or}^{1}}^{(3)}||_{*} = \frac{1}{n_{3}} \|\operatorname{bcirc}(\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)})\|_{*} = \|\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)}\|_{a,*} = 0$ $\|\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)}\|_*$.

Theorem 4. For same circle $C^1 = \{i_1, i_2, ..., i_{n_3}, i_1\}$ and $C^2 = \{i_k, i_{k+1}, ..., i_{n_3}, ..., i_{k-1}, i_k\},\$

$$\mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)}) \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)^{-1}} = \mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)}) \circ \mathcal{P}_{\mathbf{Or}^{2}}^{(3)^{-1}}$$
(4) where $\mathcal{D}_{\tau}(\mathcal{A}) = \arg\min_{\mathcal{X}} \frac{1}{2} \|\mathcal{A} - \mathcal{X}\|_{F}^{2} + \tau \|\mathcal{X}\|_{*},$ $\mathbf{Or}^{1} = \{i_{1}, i_{2}, ..., i_{n_{3}}\}$ is obtained by \mathbf{C}^{1} , and $\mathbf{Or}^{2} = \{i_{k}, i_{k+1}, ..., i_{n_{3}}, ..., i_{k-1}\}$ is obtained by \mathbf{C}^{2} .

Proof.

$$(\arg\min_{\mathcal{Z}} \frac{1}{2} \| \mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)} - \mathcal{Z} \|_{F}^{2} + \tau \| \mathcal{Z} \|_{*}) \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)^{-1}}$$

$$= \arg\min_{\mathcal{X}} \frac{1}{2} \| \mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)} - \mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)} \|_{F}^{2} + \tau \| \mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)} \|_{*}$$

$$= \arg\min_{\mathcal{X}} \frac{1}{2} \| \mathcal{Y} - \mathcal{X} \|_{F}^{2} + \tau \| \mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^{1}}^{(3)} \|_{*},$$

where the first equation holds by letting $\mathcal{X} = \mathcal{Z} \circ (\mathcal{P}_{\mathbf{Or}^1}^{(3)})^{-1}$. By Property 5, $\|\mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^1}^{(3)}\|_* = \|\mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)}\|_*$. Therefore,

$$\arg\min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} - \mathcal{X}\|_F^2 + \tau \|\mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^1}^{(3)}\|_*$$

$$= \arg\min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} - \mathcal{X}\|_F^2 + \tau \|\mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)}\|_*$$

$$= \arg\min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)} - \mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)}\|_F^2 + \tau \|\mathcal{X} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)}\|_*$$

$$= (\arg\min_{\mathcal{Z}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)} - \mathcal{Z}\|_F^2 + \tau \|\mathcal{Z}\|_*) \circ \mathcal{P}_{\mathbf{Or}^2}^{(3)^{-1}},$$

where the third equation holds by letting $\mathcal{Z} = \mathcal{X} \circ (\mathcal{P}_{\mathbf{Or}^2}^{(3)})$. The conclusion holds.

Property 6. For $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, if $n_3 \leq 3$, then tensor nuclear norm satisfy frontal slice permutations invariance (FSPI), i.e. $\|A\|_* = \|A \circ \mathcal{P}_{or}^{(3)}\|_*$ for any frontal slice permutations $\mathcal{P}_{\mathbf{0r}}^{(3)}$.

Proof. For
$$n_3 = 2$$
, let $\mathcal{B}_{:,:,1} = \mathcal{A}_{:,:,2}$ and $\mathcal{B}_{:,:,2} = \mathcal{A}_{:,:,1}$. Thus $\mathrm{bcirc}(\mathcal{B}) = \begin{pmatrix} \mathcal{B}_{:,:,1} & \mathcal{B}_{:,:,2} \\ \mathcal{B}_{:,:,2} & \mathcal{B}_{:,:,1} \end{pmatrix} = \begin{pmatrix} \mathcal{A}_{:,:,2} & \mathcal{A}_{:,:,1} \\ \mathcal{A}_{:,:,1} & \mathcal{A}_{:,:,2} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathcal{A}_{:,:,1} & \mathcal{A}_{:,:,2} \\ \mathcal{A}_{:,:,2} & \mathcal{A}_{:,:,1} \end{pmatrix} = \mathrm{bcirc}(\mathcal{A}).$ Therefore, $\|\mathcal{A}\|_* = \|\mathcal{A}\|_{*,a} = \|\mathcal{B}\|_{*,a} = \|\mathcal{B}\|_*$. For $n_3 = 3$, there is only one circle. Therefore, $\|\mathcal{A}\|_* = \|\mathcal{A}\|_*$

 $\|\mathcal{A} \circ \mathcal{P}_{\mathbf{Or}}^{(3)}\|_*$ by Property 5.

Thus, the conclusion holds.

Theorem 5. For $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, if $n_3 \leq 3$, then

$$\mathcal{D}_{\tau}(\mathcal{Y}) = \mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}^{(k)}) \circ \mathcal{P}^{(k)^{-1}}$$
(5)

for k = 1, 2, 3.

Proof.

$$\mathcal{D}_{\tau}(\mathcal{Y} \circ \mathcal{P}^{(k)}) \circ (\mathcal{P}^{(k)})^{-1}$$

$$= (\arg \min_{\mathcal{Z}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}^{(k)} - \mathcal{Z}\|_F^2 + \tau \|\mathcal{Z}\|_*) \circ (\mathcal{P}^{(k)})^{-1}$$

$$= \arg \min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} \circ \mathcal{P}^{(k)} - \mathcal{X} \circ \mathcal{P}^{(k)}\|_F^2 + \tau \|\mathcal{X} \circ \mathcal{P}^{(k)}\|_*$$

$$= \arg \min_{\mathcal{X}} \frac{1}{2} \|\mathcal{Y} - \mathcal{X}\|_F^2 + \tau \|\mathcal{X}\|_*, \tag{6}$$

where the second equation holds by letting $\mathcal{X} = \mathcal{Z} \circ$ $(\mathcal{P}^{(k)})^{-1}$, and the third equation holds by the property of $\mathcal{P}^{(k)}$ and Property 3, 4 and 6.

References

Zhang, X.-D. 2017. Matrix analysis and applications. Cambridge University Press.