录 录

()	概述 •••••••	(1)
(二)	外形尺寸图	(1)
(三)	模块主要硬件构成说明 ******((2)
(四)	模块的外部接口 ••••••((3)
(五)	指令说明	(3)
(六)	读写操作时序 ••••••	(5)
(七)	应用举例	(6)

一. 概述

FM12864I 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及 128 ×64 全点阵液晶显示器组成。可完成图形显示,也可以显示 8×4 个(16×16 点阵)汉字。

主要技术参数和性能:

- 1. 电源: VDD: +5V; 模块内自带-10V 负压,用于 LCD 的驱动电压。
- 2. 显示内容: 128(列)×64(行)点
- 3. 全屏幕点阵
- 4. 七种指令
- 5. 与 CPU 接口采用 8 位数据总线并行输入输出和 8 条控制线
- 6. 占空比 1/64
- 7. 工作温度: -10℃∽+50℃, 存储温度: -20℃∽+70℃

二. 外形尺寸图

1. 外形尺寸图

2. 外形尺寸

表 1

ITEM	NOMINAL DIMEN	UNIT
模块体积	$54 \times 50 \times 6.5$	mm
视域	43.5×29	mm
行列点阵数	128×64	dots
点距离	0.28×0.35	mm
点大小	0.32×0.39	mm

三. 模块主要硬件构成说明

(结构框图)

IC3 为行驱动器。IC1, IC2 为列驱动器。IC1, IC2, IC3 含有以下主要功能器件。了解如下器件有利于对 LCD 模块之编程。

1. 指令寄存器(IR)

IR 是用于寄存指令码,与数据寄存器数据相对应。当 D/I=0 时,在 E 信号下降沿的作用下,指令码写入 IR。

2. 数据寄存器(DR)

DR 是用于寄存数据的,与指令寄存器寄存指令相对应。当 D/I=1 时,在下降沿作用下,图形显示数据写入 DR,或在 E 信号高电平作用下由 DR 读到 DB7∽DB0数据总线。DR 和 DDRAM 之间的数据传输是模块内部自动执行的。

3. 忙标志: BF

BF 标志提供内部工作情况。BF=1 表示模块在内部操作,此时模块不接受外部指令和数据。BF=0 时,模块为准备状态,随时可接受外部指令和数据。

利用 STATUS READ 指令,可以将 BF 读到 DB7 总线,从检验模块之工作状态。

4. 显示控制触发器 DFF

此触发器是用于模块屏幕显示开和关的控制。DFF=1 为开显示(DISPLAY OFF), DDRAM 的内容就显示在屏幕上, DFF=0 为关显示(DISPLAY OFF)。

DDF 的状态是指令 DISPLAY ON/OFF 和 RST 信号控制的。

5. XY 地址计数器

XY 地址计数器是一个 9 位计数器。高 3 位是 X 地址计数器,低 6 位为 Y 地址计数器,XY 地址计数器实际上是作为 DDRAM 的地址指针,X 地址计数器为 DDRAM 的页指针,Y 地址计数器为 DDRAM 的 Y 地址指针。

X 地址计数器是没有记数功能的,只能用指令设置。

Y 地址计数器具有循环记数功能,各显示数据写入后,Y 地址自动加 1,Y 地址指针从 0 到 63。

6. 显示数据 RAM (DDRAM)

DDRAM 是存储图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。DDRAM 与地址和显示位置的关系见 DDRAM 地址表(见第 6 页)。

7. Z 地址计数器

Z 地址计数器是一个 6 位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据,RST 复位后 Z 地址计数器为 0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始 行就由此指令控制,即 DDRAM 的数据从哪一行开始显示在屏幕的第一行。此模块的 DDRAM 共 64 行,屏幕可以循环滚动显示 64 行。

四. 模块的外部接口

外部接口信号如下表 2 所示:

表 2

管脚号	管脚名称	LEVER	管脚功能描述
1	VSS	0	电源地
2	VDD	+5. 0V	电源电压
3	V0	_	液晶显示器驱动电压
4	D/I	H/L	D/I= "H",表示 DB7∽DB0 为显示数据
_			D/I= "L",表示 DB7∽DB0 为显示指令数据
5	R/W	H/L	R/W= "H", E= "H" 数据被读到 DB7∽DB0
			R/W= "L", E= "H→L"数据被写到 IR 或 DR
6	Е	H/L	R/W= "L", E 信号下降沿锁存 DB7 ∽ DB0
			R/W="H", E="H" DDRAM 数据读到 DB7∽DB0
7	DB0	H/L	数据线
8	DB1	H/L	数据线
9	DB2	H/L	数据线
10	DB3	H/L	数据线
11	DB4	H/L	数据线
12	DB5	H/L	数据线
13	DB6	H/L	数据线
14	DB7	H/L	数据线
15	CS1	H/L	H:选择芯片(右半屏)信号
16	CS2	H/L	H:选择芯片(左半屏)信号
17	RET	H/L	复位信号, 低电平复位
18	VOUT	-10V	LCD 驱动负电压
19	LED+	1	LED 背光板电源
20	LED-	1	LED 背光板电源

五. 指令说明

指令表

表 3

指			指	Ì	4	>	稏	3			功能
令	R/W	D/I	D7	D6	D5	D4	D3	D2	D1	D0	
显示 ON/OFF	0	0	0	0	1	1	1	1	1	1/0	控制显示器的开关, 不影响 DDRAM 中数据 和内部状态

显示起 始行	0	0	1	1			显示。 (0 ••			指定显示屏从 DDRAM 中哪一行开始显示数 据	
设置 X 地址	0	0	1	0	1 1 1 X: 0 · · · 7					设置 DDRAM 中的页 地址(X 地址)	
设置Y地 址	0	0	0	1		Y地	址()	0 •••	设置地址(Y地址)		
读状态	1	0	B U S Y	0	ON/ OFF	R S T	0	0	0	0	读取状态 RST 1:复位 0:正常 ON/OFF 1:显示开 0:显示 关 BUSY 0:READY 1:IN OPERATION
写显示 数据	0	1				显示		将数据线上的数据 DB7∽DB0写入 DDRAM			
读显示 数据	1	1				显示	数据				将 DDRAM 上的数据读 入数据线 DB7∽DB0

1. 显示开关控制(DISPLAY ON/OFF)

 代码
 R/W
 D/I
 DB7
 DB6
 DB5
 DB4
 DB3
 DB2
 DB1
 DB0

 形式
 0
 0
 0
 0
 1
 1
 1
 1
 1
 D

D=1:开显示(DISPLAY ON)意即显示器可以进行各种显示操作

D=1: 关显示(DISPLAY OFF) 意即不能对显示器可以进行各种显示操作

2. 设置显示起始行

代码 R/W DB7 DB6 DB5 DB4 DB2 DB0 D/IDB3 DB1 形式 1 1 Α5 A4 A3 A2 Α1 A0

前面在 Z 地址计数器一节已经描述了显示起始行是由 Z 地址计数器控制的。 $A5 \sim A0$ 的 6 位地址自动送入 Z 地址计数器,起始行的地址可以是 $0 \sim 63$ 的任意一行。

例如:

选择 $A5 \sim A0$ 是 62,则起始行与 DDRAM 行的对应关系如下:

DDRAM 行: 62 63 0 1 2 3 •••••• 28 29

屏幕显示行: 1 2 3 4 5 6 ********* 31 32

3. 设置页地址

 代码
 R/W
 D/I
 DB7
 DB6
 DB5
 DB4
 DB3
 DB2
 DB1
 DB0

 形式
 0
 0
 1
 0
 1
 1
 1
 A2
 A1
 A0

所谓页地址就是 DDRAM 的行地址, 8 行为一页, 模块共 64 行即 8 页, A2 \backsim A0 表示 $0\backsim$ 7 页。读写数据对地址没有影响,页地址由本指令或 RST 信号改变复位后页地址为 0。页地址与 DDRAM 的对应关系见 DDRAM 地址表。

4. 设置 Y 地址 (SET Y ADDRESS)

代码 DB7 DB4 DB3 DB2 DB1 DB0 R/W D/IDB6 DB5 形式 A3 A2 A0 Α5 A4

此指令的作用是将 $A5 \sim A0$ 送入 Y 地址计数器, 作为 DDRAM 的 Y 地址指针。在对 DDRAM 进行读写操作后,Y 地址指针自动加 1,指向下一个 DDRAM 单元。

DDRAM 地址表:

表 4

		CS	1=1			CS2=1					
Y=	0	1	•••	62	63	0	1	•••	62	63	行号
	DB0	DB0	DB0	DBO	DBO	DB0	DBO	DBO	DB0	DBO	0
	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓	\downarrow
X=0	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	7
	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	8
↓	\downarrow	\downarrow	↓	\downarrow							
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	55
X=7	DB0	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DB0	56
	\downarrow	\downarrow	↓	↓	↓	↓	↓	↓	↓	↓	\downarrow
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	63

5. 读状态(STATUS READ)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	1	BUSY	0	ON/	RET	0	0	0	0	
					0FF						

当 R/W=1 D/I=0 时,在 E 信号为"H"的作用下,状态分别输出到数据总线 (DB7 \backsim DB0)的相应位。

BF: 前面已叙述过(见 BF 标志位一节)。

ON/OFF: 表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接受任何指令和数据。

6. 写显示数据(WRITE DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	1	D7	D6	D5	D4	D3	D2	D1	D0

 $D7 \sim D0$ 为显示数据, 此指令把 $D7 \sim D0$ 写入相应的 DDRAM 单元, Y 地指针自动加 1。

7. 读显示数据 (READ DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	1	1	D7	D6	D5	D4	D3	D2	D1	D0	

此指令把 DDRAM 的内容 D7 \backsim D0 读到数据总线 DB7 \backsim DB0, Y 地址指针自动加 1。

六. 读写操作时序

1. 写操作时序

图 3

2. 读操作时序

3. 读写时序参数表

表 5

名 称	符号	最小值	典型值	最大值	单位
E周期时间	Tcyc	1000			ns
E高电平宽度	Pweh	450			ns
E低电平宽度	Pwel	450			ns
E上升时间	Tr			25	ns
E下降时间	Tf			25	ns
地址建立时间	Tas	140			ns
地址保持时间	Tah	10			ns
数据建立时间	Tdsw	200			ns
数据延迟时间	Tddr			320	ns
写数据保持时间	Tdhw	10			ns
读数据保持时间	Tdhw	20			ns

七. 应用举例

FM12864I 与单片机 8031 的一种接口如图 5. 所示:

图 5


```
利用图 5 举例介绍编程实例
       ORG 0000H
       LJMP INITM
       ORG 0100H
INITM: MOV SP, #67H
                                        ; SET STACK ADDRESS
       MOV DPTR, #3800H
                                        ; SELECT CHIP1 AND CHIP2
       MOV A, #3EH
                                         ; OFF DISPLAY
       LCALL OUTI
       LCALL MS40
       LCALL MS40
       LCALL MS40
       MOV A, #3FH
                                         ; ON DISPLAY
       LCALL OUTI
       LCALL MS40
       LCALL MS40
       LCALL MS40
: 显示 "*" 号
       MOV R3, #04H
                                           ; PAGE NUMBER (2*4=8PAGES)
       MOV A, #OB8H
                                           ; PAGEO
DISP1: PUSH ACC
       LCALL CHIN1
       POP ACC
       INC A
       INC A
       DJNZ R3, DISP1
       LCALL MS40
       LCALL MS40
       LCALL MS40
       LCALL MS40
       LCALL MS40
; 显示竖条
       MOV R3, #04H
       MOV A, #0B8H
DISP2: PUSH ACC
       LCALL CHIN2
       POP ACC
       INC A
       INC A
       DJNZ R3, DISP2
       LCALL MS40
       LCALL MS40
```

LCALL MS40

LCALL MS40 LCALL MS40

;显示横条

MOV R3, #04H

MOV A, #OB8H

DISP3: PUSH ACC

LCALL CHIN3

POP ACC

INC A

INC A

DJNZ R3, DISP3

LCALL MS40

LCALL MS40

LCALL MS40

LCALL MS40

LCALL MS40

;显示汉字"潮丰液晶"

MOV R3, #04H

MOV A, #OB8H

DISP4: PUSH ACC

LCALL CHIN4

POP ACC

INC A

INC A

DJNZ R3, DISP4

LCALL MS40

LCALL MS40

LCALL MS40

LCALL MS40

LCALL MS40

LJMP INITM

CHIN1: PUSH ACC

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #32

LOAD1: MOV A, #55H

LCALL OUTD

MOV A, #OAAH

LCALL OUTD

DJNZ R2, LOAD1

; PUT A (PAGE NUMBER) INTO STACK

; SET Y ADDRESS

POP ACC

INC A

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #32

LOAD12: MOV A, #55H

LCALL OUTD

MOV A, #OAAH

LCALL OUTD

DJNZ R2, LOAD12

RET

CHIN2: PUSH ACC

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #32

LOAD2: MOV A, #00H

LCALL OUTD

MOV A, #OFFH

LCALL OUTD

DJNZ R2, LOAD2

POP ACC

INC A

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #32

LOAD21: MOV A, #00H

LCALL OUTD

MOV A, #OFFH

LCALL OUTD

DJNZ R2, LOAD21

RET

CHIN3: PUSH ACC

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #64

LOAD3: MOV A, #55H

LCALL OUTD

DJNZ R2, LOAD3

; PUT A (PAGE NUMBER) INTO STACK

; SET Y ADDRESS

; PUT A (PAGE NUMBER) INTO STACK

; SET Y ADDRESS

POP ACC

INC A

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #64

LOAD31: MOV A, #55H

LCALL OUTD

DJNZ R2, LOAD31

RET

CHIN4: PUSH ACC

LCALL OUTI

MOV A, #40H

LCALL OUTI

MOV R2, #64

MOV R1, #00H

MOV DPTR, #CHINESE

LOAD4: MOV A, R1

MOVC A, @A+DPTR

LCALL OUTD

INC DPTR

DJNZ R2, LOAD4

POP ACC

INC A

LCALL OUTI

MOV R2, #64

LOAD41: MOV A, R1

MOVC A, @A+DPTR

LCALL OUTD

INC DPTR

DJNE R2, LOAD41

RET

MS40: MOV R7, #0E8H

MS2: MOV R6, #0FFH

MS1: DJNZ R6, MS1

DJNZ R7, MS2

RET

; OUT INSTRCTION FOR CHIP1 AND CHIP2

OTUI: PUSH DPH

PUSH DPL

MOV DPTR, #3800H

MOVX @A+DPTR, A

POP DPL

POP DPH

RET

OUTD: PUSH DPH

PUSH DPL

MOV DPTR, #7800H

MOVX @DPTR, A

POP DPL

POP DPH

RET

CHINNESE:; (PAGEO)

- DB 00H, 10H, 21H, 0C6H, 30H, 0F4H, 54H, 5FH, 54H, 0F4H, 00H, 0FEH, 22H, 22H, 0FEH, 00
- DB 00H, 00H, 00H, 48H, 48H, 48H, 48H, 0FFH, 48H, 48H, 48H, 68H, 4CH, 08H, 00
- DB 10H, 61H, 06H, E0H, 18H, 84H, E4H, 1CH, 84H, 65H, BEH, 24H, 0A4H, 64H, 04H, 00,
- DB 00H, 00H, 00H, 00H, 7EH, 2AH, 2AH, 2AH, 2AH, 2AH, 2AH, 7EH, 00H, 00H, 00H, 00
- (PAGE1)
- DB 00, 04H, 0FEH, 01H, 08H, 09H, 09H, 0FEH, 09H, 49H, 20H, 1FH, 41H, 81H, 7FH, 00
- DB 00, 04H, 04H, 04H, 04H, 04H, 04H, 05FH, 04H, 04H, 04H, 04H, 06H, 04H
- DB 04H, 04H, 0FFH, 00H, 00H, 00H, FFH, 41H, 21H, 12H, 0CH, 1BH, 61H, 0COH, 40H, 00
- DB 00H, 7FH, 25H, 25H, 25H, 25H, 7FH, 00H, 00H, 7FH, 25H, 25H, 25H, 7FH, 00H