Last update: February 4, 2024

Appointment Data Scientist,

May 2023 - present

Genome Design Science,

Bayer R&D

CONTACT Information ➤ katiana.kontolati@gmail.com

RESEARCH Interests Scientific machine learning, uncertainty quantification, modeling & simulation, digital twins, surrogate modeling, transfer learning, generative modeling, computational genomics, language modeling.

EDUCATION

Johns Hopkins University, Baltimore MD, USA

Aug. 2019 - April 2023

Doctor of Philosophy in Civil and Systems Engineering, G.P.A.: 3.90/4.0 Research areas: Physics-informed machine learning, uncertainty quantification

National Technical University of Athens, Athens, Greece

Sept. 2017 - July 2019

Master of Science in Applied Mechanics, G.P.A.: 9.40/10.0

Major: Non-linear Dynamics

University of Thessaly, Volos, Greece

Sept. 2012 - July 2017

Bachelor of Science in Civil Engineering, (5-year curriculum), G.P.A.: 8.90/10.0

Major: Structural Engineering, Numerical Analysis

EXPERIENCE

Bayer R&D, Crop Science Division, St. Louis, MO

May 2023 - present

Data Scientist, Genome Design Science

- Leading modeling strategies for the development of high-performing & disease-resilient crops.
- Developing AI tools to process high-resolution genetic data and inform gene editing decisions.
- Identifying opportunities to extend and improve existing pipelines for genome analysis & design.

General Electric (GE) Research, Niskayuna, NY

May 2022 - Aug. 2022

Research Engineer Intern, Probabilistic Design & Optimization

- Designed and developed a transfer learning framework to leverage multi-fidelity CFD simulation data of industrial gas turbines (IGT) for efficient aerodynamic assessment based on the airfoil shape design of turbine blades.
- Developed a time series analysis framework as part of a BWRX-300 small modular reactor Digital Twin to predict mechanical failure and optimize operation and proactive maintenance.
- Performed surrogate modeling on low-dimensional manifolds and improved predictive accuracy of hydrogen flame propagation in zero-emission hydrogen internal combustion engines (ICE).

$\textbf{Los Alamos National Laboratory}, \ Los \ Alamos, \ NM$

Jun. 2021 - Aug. 2021

Applied Machine Learning Research Fellow, CCS-3

- Developed a framework for constructing neural density estimators with normalizing flows on spectral latent spaces for regression and uncertainty quantification in very high-dimensional experimental spectral data.
- Applied proposed framework to laser-induced breakdown spectroscopy (LIBS) spectra generated by the Mars Curiosity rover to predict the elemental composition of Martian rocks and soil with associated uncertainties.
- Presented work at NeurIPS 2021 Workshop on Machine Learning and the Physical Sciences.

Johns Hopkins University, Baltimore, MD

Aug. 2019 - Apr. 2023

Shields Uncertainty Research Group

• Conducted methodological research on predictive modeling based on latent representations using data-driven and physic-informed approaches. Open-sourced all codes on GitHub.

- Implemented proposed techniques for a variety of applications including parameterizing macroscopic models from atomistic simulation data and learning operators of non-linear PDEs describing complex physico-chemical processes.
- Published 6 papers (5 first-author, 1 under review) in top peer-reviewed journals and presented in 6 International Conferences.
- Co-developer of **UQpy** (Uncertainty Quantification with python), a general purpose Python toolbox for modeling uncertainty in physical and mathematical systems. Contributed to the *Dimension Reduction* and *Surrogates* modules.

Aktor S.A., Athens, Greece

June. 2016 - Sept. 2016

Construction Management Intern

- Oversaw the entire planning and building process of the retrofitting of the Akron Ilion Krystal building and reported the quality of performance on site to all site construction managers.
- Developed CAD drawings, calculated final material quantities and costs and performed preliminary engineering reviews on the detailed construction and demolition plan drawings.
- Utilized structural and earthquake engineering software SAP2000, for preliminary numerical analysis of structural elements during the demolition process.

Honors & Awards	Mark O. Robbins Prize in High Performance Computing Advanced Research Computing at Hopkins, Johns Hopkins University Grant of \$3,000 for demonstrating outstanding achievement in HPC research [article]	July 2023
	Rising Stars in Computational and Data Sciences UT Austin, Sandia National Labs and Lawrence Livermore National Lab [article]	Feb. 2023
	Gerondelis Foundation Graduate Scholarship Grant of \$5,000 received for demonstrating outstanding academic performance [article]	Jan. 2023
	Society for Industrial and Applied Mathematics (SIAM) Travel Award Conference on Computational Science and Engineering, Amsterdam, The Netherlands	Jan. 2023
	National Science Foundation (NSF) Student Funding Society of Engineering Science (SES) 2022 Conference, Texas A&M University	Oct. 2022
	National Science Foundation (NSF) Fellowship MMLDT-CSET Conference, San Diego, California	Sept. 2021
	Teaching Assistant Award Department of Civil and Systems Engineering, Johns Hopkins University	May 2021
	Applied Machine Learning Summer Research Fellowship Los Alamos National Laboratory	Feb. 2021
	Joseph Meyerhoff Fellowship Whiting School of Engineering, Johns Hopkins University	Aug. 2019
	Graduate Research Fellowships Cornell University & ETH Zürich (declined)	Mar. 2019
	COST Travel Grant European Cooperation in Science & Technology, Action TU 1304	Apr. 2017
Invited Talks	Lawrence Livermore National Lab, Data Science Institute (DSI) Seminar [video]	May 2023
	UT Austin, Oden Institute for Computational Engineering and Sciences, Austin TX	Apr. 2023
	Halliburton, Computational Sciences and Engineering for Energy, Houston TX	Dec. 2022
	General Electric (GE) Research, Probabilistics Seminar, Niskayuna NY	Oct. 2021
	Brown University , CRUNCH Seminar, Division of Applied Math., Providence RI	Sept. 2021
	Dynamical Systems and Complexity, 26 th Summer School, Athens Greece	Jul. 2019

Publications

Journal Publications (* denotes equal contribution)

- Tsapetis, D., Shields, M.D., Giovanis, D.G., Olivier, A., Novak, L., Chakroborty, P., Sharma, H., Chauhan, M., Kontolati, K., Vandanapu, L. and Loukrezis, D., (2023). UQpy v4. 1: Uncertainty Quantification with Python. SoftwareX, Vol. 24, 101561. https://doi.org/10.1016/j.softx.2023.101561.
- Kontolati, K., Goswami, S., E. Karniadakis, G., D. Shields, M. (2023). Learning in latent spaces improves the predictive accuracy of deep neural operators. https://doi.org/10.48550/ arXiv.2304.07599 (under review).
- 3. Kontolati, K.*, Goswami, S.*, D. Shields, M., E. Karniadakis, G. (2023). On the influence of over-parameterization in manifold based surrogates and deep neural operators. *Journal of Computational Physics*, 112008. https://doi.org/10.1016/j.jcp.2023.112008.
- 4. Goswami, S.*, **Kontolati, K.***, D. Shields, M., E. Karniadakis, G. (2022). Deep transfer operator learning for partial differential equations under conditional shift. *Nature Machine Intelligence*, 1-10. https://doi.org/10.1038/s42256-022-00569-2.
- 5. **Kontolati, K.**, Loukrezis, D., Giovanis, D. G., Vandanapu, L., Shields, M. D. (2022). A survey of unsupervised learning methods for high-dimensional uncertainty quantification in black-box-type problems. *Journal of Computational Physics*, 111313. https://doi.org/10.1016/j.jcp.2022.111313.
- 6. R. M. dos Santos, K., Giovanis D., Loukrezis, D., Kontolati, K., D. Shields M. (2022). Grassmannian diffusion maps based surrogate modeling via geometric harmonics. *International Journal for Numerical Methods in Engineering*, 1-23. https://doi.org/10.1002/nme.6977.
- 7. Kontolati, K., Loukrezis, D., Giovanis, D., M. dos Santos, K., D. Shields, M. (2022). Manifold learning-based polynomial chaos expansions for high-dimensional surrogate models. *International Journal for Uncertainty Quantification*, 12(4): 39-64. https://doi.org/10.1615/Int. J.UncertaintyQuantification.2022039936.
- 8. Kontolati, K., Alix-Williams, D., Boffi, N. M., Falk, M. L., Rycroft, C. H., and Shields, M. D. (2021). Manifold learning for coarse-graining atomistic simulations: Application to amorphous solids. *Acta Materialia*, 215, 117008. https://doi.org/10.1016/j.actamat.2021.117008.
- Kontolati, K. and Siettos, C. (2019). Numerical analysis of mesenchymal stem cell mechanotransduction dynamics reveals homoclinic bifurcations. *International Journal of Non-Linear Mechanics*, 113, 146-157. https://doi.org/10.1016/j.ijnonlinmec.2019.04.001.

Conference Proceedings

- Charalampopoulos A., T., Cryan E., Kontolati, K., Pickering E.. (2024). Advancing AI Genotype-Phenotype Modeling for Crop Science, *Plant and Animal Genome Conference*, San Diego, California, USA, January 12-17.
- Kontolati, K., Goswami, S., E. Karniadakis, G., D. Shields, M. (2023). Transfer and multitask learning in physics-based applications with deep neural operators, SIAM Conference on Computational Science and Engineering, Amsterdam, The Netherlands, February 26-March 3.
- 3. Kontolati, K., Tsilifis, P., Ghosh, S., Andreoli, V., D. Shields, M., Wang, L. (2023). Multifidelity metamodeling in turbine blade airfoils via transfer learning on manifolds, *AIAA SciTech Forum*, National Harbor, Maryland, USA, January 23-27.
- 4. Kontolati, K., Goswami, S., E. Karniadakis, G., D. Shields, M. (2022). High-dimensional uncertainty quantification in overparameterized regimes, *Society of Engineering Science Annual Technical Meeting*, College Station, Texas, USA, October 16-19.
- 5. **Kontolati, K.**, Loukrezis, D., R. M. dos Santos, K., Giovanis, D., D. Shields, M. (2022). Manifold learning for forward and inverse UQ in high dimensions, *SIAM Conference on Uncertainty Quantification*, Atlanta, Georgia, USA, April 12-15.
- 6. **Kontolati, K.**, Klein, N., Panda, N., Oyen D. (2021). Neural density estimation and uncertainty quantification for laser-induced breakdown spectroscopy spectra, *NeurIPS 4th Workshop on Machine Learning and the Physical Sciences*. [paper], [poster].

- 7. Kontolati, K., Loukrezis, D., Giovanis, D., R. M. dos Santos, K., D. Shields M. (2021). Non-linear manifold-learning based dimensionality reduction for surrogate modeling and uncertainty quantification, *Mechanistic Machine Learning and Digital Twins for Computational Science*, Engineering & Technology, San Diego, California, USA, September 26-29.
- 8. **Kontolati, K.**, L. Falk M., H. Rycroft C., D. Shields M. (2021). Atomistic-informed calibration of partial differential equations for material applications via machine learning. *SIAM Conference on Mathematical Aspects of Material Science*, Bilbao, Spain, May 17-28.
- Kontolati, K., Alix-Williams D., L. Falk M., H. Rycroft C., D. Shields M. (2021). Stochastic multi-scale material modeling via manifold learning. 4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering, Athens, Greece, June 27-30.
- 10. **Kontolati K.**, Koukouselis, A, Panagouli, O. (2017). Numerical investigation of weak-axis I profile connections, 9th Hellenic National Conference on Steel Structures, Larissa, Thessaly, Greece, October 5-7.

Patents

Methods and Systems For Use in Trait Development in Agricultural Crops Oct. 2023 Inventors: Pickering E., Charalampopoulos A., Kontolati K., Freitas Moreira F., Hahm K., Shi Z., Arp J., Ocheya S., Adhikari P., Fonseca J., Taramino G., Liu J., Gillespie M. U.S. Patent (pending)

Teaching Experience

Gateway Computing: Python (EN.500.113)

Fall 2021

Course Assistant, Johns Hopkins University

Introduction to Research (EN.560.511)

Spring 2021

Teaching Assistant, Johns Hopkins University

TECHNICAL SKILLS Languages: Python, FORTRAN, SQL

 $\textbf{Software:} \ \ \text{PyTorch, Tensorflow, Mathematica, MSC Marc, AutoCAD 2D/3D}$

 ${\bf Operating \ Systems:} \ {\bf Microsoft \ Windows, \ Apple \ MacOS, \ Linux/Unix}$

Cloud computing: Amazon Web Services (AWS), SageMaker

Software Development: UQpy (Uncertainty Quantification with Python)

Service & Leadership

Reviewer for peer-reviewed journals and conferences:

2022 - present

- International Conference on Machine Learning (ICML)
- Conference on Neural Information Processing Systems (NeurIPS)
- International Journal of Computational Fluid Dynamics (IJCFD)
- Journal of Computational Physics (JCP)

Graduate Representative Organization (GRO), Advocacy Chair, JHU

2020 - 2021

Homewood Council of Inclusive Excellence (HCIE), GS2F member, JHU

2020 - 2021

ISAH Ambassador @ Hopkins Education and Administration Committee, JHU

2020

Homewood Graduate Board (HGB)

2020

Representative Ph.D. student of Whiting School of Engineering, JHU Machine Learning in Science & Engineering Conference 2020

2020

Volunteer, Columbia University

Personal Information Date of birth: November 4, 1994 Place of birth: Athens, Greece

Nationality: Greek

Languages

English (fluent), Greek (native)