PREDICTING ONLINE NEWS POPULARITY

- Jin, Muwen
- Li, Qiuying
- Wang, Nanjun

- Yan, Kai
- Yin, Jingwen
- Zhu, Yuxin

Content

- Data & Features
- Exploratory Data Analysis
- **■** Features Selection
- Machine Learning Models Comparison

Aspects	Features	
Words	Number of words in the titleNumber of words in the articleAverage words length	 Rate of non-stop words Rate of unique words Rate of unique non-stop words
Links	Number of linksNumber of Mashable article links	 Minimum, average and maximum number of shares of Mashable links
Digital Media	Number of imagesNumber of videos	
Publication Time	Day of the weekPublished on a weekend	
Key Words	Number of key wordsWorst keywordAverage keyword	Best keywordsArticle category
NLP	 Closeness to top 5 LDA topics Title subjectivity Article text subjectivity score and its absolute difference to 0.5 Title sentiment polarity Rate of positive and negative words 	 Rate of positive and negative words Neg. words rate among non-neutral words Polarity of positive words (min./avg./max.) Polarity of negative words (min./avg./max.) Article text polarity score and its absolute difference to 0.5
Response	Number of article shares	

EDA continues

2. Data Transformation: Transform heavily skewed response variable Y using log transformation.

Exploratory Data Analysis

Data Distribution: Plot the histograms to check distributions.

EDA continues

3. Check interesting variables.

EDA continues

- 4. Other Modifications:
- a. 19th, 21st, 23rd, 25th variables contain negative values that cannot be explained by information available, so they will be removed.
- b. Outliers in variable "n_unique_tokens", "n_non_stop_words", and "n_non_stop_unique_tokens", may due to typing error as they are the ratios and should have a value between 0 and 1. We remove those observations.
- c. The number of total variables left is 49.

Features Selection

■ Remove redundant variables

 We consider pair-wise correlations among predictor variables (cutoff > 0.5)

Correlation

Features Selection

Rank variables by importance

 We use Pearson's correlation as the indicator to measure the linear relationship between continuous variables and the response variable. Then rank them from the highest correlated to the lowest correlated.

Importance rank

Selected Variables

Aspects	Features
Keywords	 kw_avg_avg: Avg. keyword (avg. shares) kw_max_avg: Avg. keyword (max. shares) kw_avg_max: Best keyword (avg. shares) num_keywords: Number of keywords in the metadata data_channel_is_lifestyle: Is data channel 'Lifestyle'? data_channel_is_entertainment: Is data channel 'Entertainment'? data_channel_is_bus: Is data channel 'Business'? data_channel_is_socmed: Is data channel 'Social Media'?
Links	 self_reference_avg_sharess: Avg. shares of referenced articles in Mashable self_reference_min_shares: Min. shares of referenced articles in Mashable self_reference_max_shares: Max. shares of referenced articles in Mashable num_hrefs: Number of links num_self_hrefs: Number of links to other articles published by Mashable
NLP	 global_subjectivity: Text subjectivity avg_positive_polarity: Avg. polarity of positive words abs_title_sentiment_polarity: Absolute polarity level title_subjectivity: Title subjectivity
Digital Media	 num_videos: Number of videos abs_title_sentiment_polarity: Absolute polarity level title_sentiment_polarity: Title polarity

Machine Learning Models Comparison

- Linear Regression
- Support Vector Machine
- Regression Tree
- Random Forest
- Gradient Boosting

Linear Regression

MSE = 0.7841

```
Residuals:
   Min
            10 Median
                                   Max
-8.0883 -0.5541 -0.1601 0.4073 5.6924
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
                               1.521e+00 1.505e-01 10.109 < 2e-16 ***
log_kw_avg_avg
                                8.571e-01 3.364e-02 25.482 < 2e-16 ***
                               -1.456e-01 2.296e-02 -6.343 2.29e-10 ***
log_kw_max_ava
sart_self_reference_ava_sharess 1.760e-03 6.231e-04 2.825 0.004734 **
                               1.010e-03 3.230e-04 3.126 0.001775 **
sart_self_reference_min_shares
sart_self_reference_max_shares
                              -4.517e-04 3.545e-04 -1.274 0.202580
alobal_subjectivity
                                5.527e-01 6.902e-02 8.007 1.22e-15 ***
sart_num_hrefs
                                3.801e-02 4.339e-03 8.759 < 2e-16 ***
avg_positive_polarity
                               -8.964e-02 7.006e-02 -1.279 0.200738
log_kw_max_min
                               -9.312e-03 6.565e-03 -1.418 0.156109
num_keywords
                               1.800e-02 3.311e-03 5.435 5.53e-08 ***
                               -7.069e-07 5.847e-08 -12.090 < 2e-16 ***
kw_ava_max
abs_title_sentiment_polarity
                               1.572e-02 3.587e-02 0.438 0.661133
                                2.448e-02 5.739e-03 4.265 2.01e-05 ***
sart_num_videos
title_subjectivity
                                3.48Ze-02 2.355e-02 1.478 0.139289
sart_num_self_hrefs
                               -4.080e-03 7.043e-03 -0.579 0.562419
                               7.983e-02 2.197e-02 3.634 0.000279 ***
title_sentiment_polarity
data_channel_is_lifestyle1
                               -2.853e-02 2.402e-02 -1.188 0.234880
data_channel_is_entertainment1
                              -2.197e-01 1.486e-02 -14.780 < Ze-16 ***
data_channel_is_bus1
                                4.306e-02 1.576e-02 2.733 0.006285 **
data_channel_is_socmed1
                                2.108e-01 2.348e-02 8.980 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.8694 on 27184 degrees of freedom
Multiple R-squared: 0.1111,
                              Adjusted R-squared: 0.1104
F-statistic: 169.9 on 20 and 27184 DF, p-value: < 2.2e-16
```

Support Vector Machine

- The value of **epsilon** defines a margin of tolerance where no penalty is given to errors.
- **Cost** is a parameter allows one to trade off training error vs. model complexity.
- Sigma determines the width of Gaussian distribution.

Kernel	Parameters	Expression
Linear	$\epsilon = 0.1,$ $Cost = 1$	$K(u,v)=u^Tv$
Gaussian	$\epsilon = 0.1$ $Cost = 0.5$, $\sigma = 0.04$	$K(u,v) = \exp(\frac{- u-v ^2}{2\sigma^2})$

Support Vector Machine

Algorithms	MSE	Training Time
SVM Linear	0.82	550s
SVM Gaussian	0.79	255s

Regression Tree-rpart (recursive partitioning)

A rpart model with a continuous response (an anova model).

Each node shows

- the predicted value
- the percentage of observations in the node.

rpart - CP(complexity parameters)

```
> summary(c_fit)
Call:
rpart(formula = log(shares) ~ ., data = cat, method = "anova",
    control = rpart.control(minsplit = 10, minbucket = 4, cp = 0.002))
 n = 31715
           CP nsplit rel error xerror
                                                xstd
  0.052938572
                    0 1.0000000 1.0000200 0.01183431
  0.011582417
                   1 0.9470614 0.9495463 0.01126572
  0.011169415
                   2 0.9354790 0.9392656 0.01113900
  0.006287195
                   3 0.9243096 0.9283532 0.01101877
  0.004176868
                   4 0.9180224 0.9224415 0.01096581
  0.003725943
                   5 0.9138455 0.9189170 0.01092625
  0.003407788
                    6 0.9101196 0.9167224 0.01095825
                    7 0.9067118 0.9140441 0.01093393
 0.003091044
9 0.002376130
                    8 0.9036208 0.9099215 0.01088119
10 0.002374690
                   9 0.9012446 0.9093941 0.01089503
11 0.002123137
                   10 0.8988699 0.9092912 0.01089433
12 0.002000000
                   11 0.8967468 0.9060781 0.01087814
```

- 1. cp is the amount by which splitting that node improved the relative error.
- 2. The relative error is (1 R2), similar to linear regression.
- 3. The xerror is related to the PRESS statistic.

Regression Tree- rpart

1. The first split and second appears to improve the fit the most.

2. The figure on the right shows the tree should be pruned to include only 1 or 2 splits

rpart- prediction accuracy

MSE = 0.8108

This plot shows the residuals of predicted shares v.s. the predicted shares based on the nodes/leaves.

Why we need a random Forest?

"Given its performance, random forest and variable selection using random forest should probably become part of the standard tool-box of methods for the analysis of microarray data."

----- Ramón Díaz-Uriarte

(2010)

RandomForest

Improve on rpart with respect to:

- Accuracy: Random Forests test error = 0.7569 smaller than rpart, which is 0.8108
- Stability: If we change the data a little, random forest is relatively stable because it is a combination of many trees.

Gradient Boosting

- Machine learning technique for regression and classification problems
- In the form of an ensemble of weak prediction models, typically decision trees
- Optimization of an arbitrary differentiable loss function

n. trees	interaction.depth	shrinkage	n.minobsinnode
150	3	0.1	10

Comparison

Algorithms	MSE	Training Time (Without Cross Validation)
Linear Regression	0.7841	<1min
Support Vector Machine (Linear)	0.8200	10min
Support Vector Machine (Gaussian)	07856	4min
Random Forest	0.7569	3min
Regression Tree	0.8108	<1min
Gradient Boosting	0.7582	3min