- **Q3.** Consider a matrix A of size $m \times n$. Define $P = A^T A$ and $Q = AA^T$. (Note: all matrices, vectors and scalars involved in this question are real-valued).
- (a) Prove that for any vector y with appropriate number of elements, we have $y^T P y \ge 0$. Similarly show that $z^T Q z 0$ for a vector z with appropriate number of elements. Why are the eigenvalues of P and Q non-negative?.

Ans. We have $y^T P y = y^T A^T A y$ and want to prove that it is ≥ 0 . We define Ay = X and consequently $X^T = (Ay)^T = y^T A^T$. The size of X will be $m \times n$. $n \times 1 = m \times 1$ or $X = [x_1 \ x_2 \ x_3 \ ... \ x_m]^T$. Hence, $y^T A^T A y = X^T X$. As X is a 1D vector, $X^T X = \sum_{i=1}^{i=m} x_i^2$ which is ≥ 0 . Similarly, $z^T Q z = z^T A A^T z$ and we take $X = A^T z$ with size $n \times 1$. Hence, $z^T A A^T z = X^T X = \sum_{i=1}^{i=n} x_i^2$ which is also ≥ 0 . Now, if λ is the eigenvalue of P, we have $Pu = \lambda u \implies A^T A u = \lambda u$. Pre-multiplying with u^T , we get $u^T A^T A u = u^T \lambda u \implies (Au)^T A u = \lambda u^T u$ or $||Au||^2 = \lambda ||u||^2$. As both LHS and RHS are non-negative, λ must also be non-negative to satisfy the equation. Similarly for Q, we have $AA^T v = \mu v$. Pre-multiplying with v^t , we get $||A^T v||^2 = \mu ||v||^2$ and hence μ must also be non-negative. therefore, the eigenvalues of P and Q are non-negative.

(b) If u is an eigenvector of P with eigenvalue λ , show that Au is an eigenvector of Q with eigenvalue λ . If v is an eigenvector of P with eigenvalue μ . What will be the number of elements in u and v?

Ans. If u is an eigenvector of P with eigenvalue λ , we have by definition $Pu = \lambda u \implies A^T A u = \lambda u$. Now, if Au were the eigenvector of Q, we would have $Q(Au) = \lambda' Au \implies AA^T Au = \lambda' Au$. But we know $A^T Au = \lambda u$, hence $AA^T Au = A\lambda u = \lambda Au$. Hence Au is an eigenvector of Q with eigenvalue $\lambda' = \lambda$. Similarly, if $A^T v$ is an eigenvector of P with P with P as the eigenvector of P with eigenvalue P but P

(c) If v_i is an eigenvector of Q and we define $u_i = \frac{A^T v_i}{||A^T v_i||_2}$. Then prove that there will exist some real, non-negative γ_i such that $Au_i = \gamma_i v_i$.

Ans. We want to prove that $Au_i = \gamma_i v_i$ for $u_i = \frac{A^T v_i}{||A^T v_i||_2}$. Substituting, we have $\frac{AA^T v_i}{||A^T v_i||_2} = \gamma_i v_i$. But, $AA^T = Q$ and hence $\frac{AA^T v_i}{||A^T v_i||_2} = \gamma_i v_i \implies \frac{Q v_i}{||A^T v_i||_2} = \gamma_i v_i$. Also, it is mentioned that v_i is the eigenvector of Q, that is $Qv_i = \lambda v_i$. Now replacing this, we have satisfied the condition as $\frac{Q v_i}{||A^T v_i||_2} = \gamma_i v_i \implies (\frac{\lambda}{||A^T v_i||_2}) v_i = \gamma v_i$ and $\gamma = \frac{\lambda}{||A^T v_i||_2}$.

(d) It can be shown that $u_i^T u_j = 0$ for $i \neq j$ and likewise $v_i^T v_j = 0$ for $i \neq j$ for correspondingly distinct eigenvalues. Now, define $U = [v_1 | v_2 | v_3 | \dots | v_m]$ and $V = [u_1 | u_2 | u_3 | \dots | u_m]$. Now show that $A = U \Gamma V^T$ where Γ is a diagonal matrix containing the non-negative values $\gamma_1, \gamma_2, \dots, \gamma_m$.

Ans. We have $U\Gamma V^T \implies ([v_1|v_2|v_3| \ ::: \ |v_m]\Gamma)V^T \implies [\gamma_1v_1|\gamma_2v_2|\gamma_3v_3| \ ::: \ |\gamma_mv_m]([u_1|u_2|u_3| \ ::: \ |u_m])^T = [\gamma_1v_1|\gamma_2v_2|\gamma_3v_3| \ ::: \ |\gamma_mv_m]([\frac{A^Tv_1}{||A^Tv_2||_2}|\frac{A^Tv_2}{||A^Tv_2||_2}|\frac{A^Tv_3}{||A^Tv_3||_2}| \ ::: \ |\frac{A^Tv_m}{||A^Tv_m||_2}])^T$, where the last step follows from Q3 definition of

 $u_{i}. \text{ Then, we have } \begin{bmatrix} \gamma_{1}v_{1} & \gamma_{2}v_{2} & \gamma_{3}v_{3} & \dots & \gamma_{m}v_{m} \end{bmatrix} \begin{bmatrix} \frac{(v_{1})^{T}A}{||A^{T}v_{1}||_{2}} \\ \frac{(v_{2})^{T}A}{||A^{T}v_{2}||_{2}} \\ \frac{(v_{3})^{T}A}{||A^{T}v_{3}||_{2}} \end{bmatrix} = (\sum_{i=1}^{i=m} \frac{\gamma_{i}||v_{i}||_{2}}{||A^{T}v_{i}||_{2}})A, \text{ where the last term has norm in it }$

has the orthogonal v_i yield zero. Now, if the γ_i are chosen properly to make the sum as unity, we will have $U\Gamma V^T = A$.