INSTALLATION RESTORATION PROGRAM

PRELIMINARY ASSESSMENT/ SITE INSPECTION REPORT

VOLUME II APPENDICES A-G

157th AIR CONTROL GROUP JEFFERSON BARRACKS AIR NATIONAL GUARD MISSOURI AIR NATIONAL GUARD ST. LOUIS, MISSOURI MARCH 1997

19970317 040

Prepared For

DTIC QUALITY INSPECTED 5

ANGRC/CEVR ANDREWS AFB, MARYLAND

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTA	Form Approved OMB No. 0704-0188	
1. AGENCY USE ONLY (Leave blank)	3. REPORT TYPE AND DATES COVERED Final	
4. TITLE AND SUBTITLE Final Preliminary Assessment/Site In Air Control Group, Jefferson Barracks A (ANGS), St. Louis, Missouri. AUTHOR(S) Russell Cason, CPG	5. FUNDING NUMBERS	
7. PERFORMING ORGANIZATION NAME(S) AND ADD Operational Technologies, Corp., 4100 Antonio, TX 78229-4253	8. PERFORMING ORGANIZATION REPORT NUMBER	
9. sponsoring/monitoring agency name(s) an Air National Guard Readiness Center/C 3500 Fetchet Ave., Andrews AFB, MD.	10. SPONSORING/ MONITORING AGENCY REPORT NUMBER 18-A-27-1-2	
11. SUPPLEMENTARY NOTES		
12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution	12b. DISTRIBUTION CODE	

13. ABSTRACT (Maximum 200 words)

This PA/SI Report presents information on potentially contaminated areas identified in the PA process as Areas of Concern (AOC's) at the 157th Air Control Group (ACG), Jefferson Barracks ANGS, St. Louis, MO. The Air National Guard Readiness Center/Installation Restoration Branch (ANGRC/CEVR) authorized OpTech to prepare the PA/SI Report. Work on the PA began in November 1993. Information obtained through interviews, review of station records, and field observations resulted in the identification of four potentially contaminated disposal and/or spill areas (AOC's). The four AOC's identified include the Disposal Area (AOC-A), Storage Area (AOC-B), Drainage Ditch (AOC-C), and Waste Oil Dump (AOC-D). These AOC's were investigated, using screening and confirmation activities, to determine if contamination exists that justifies further investigation as an IRP site. Considering the results of the PA/SI conducted, no additional IRP activities are warranted at AOC-A, AOC-C, and AOC-D. At AOC-B additional investigation is recommended because the vertical and areal extent of TPH contamination is in excess of MDNR cleanup guidelines. In addition, the PA/SI Report recommended a risk-based evaluation to determine action levels for PAH impacted surface soils at AOC-B.

The MDNR concurred with the recommendations of this report.

14. SUBJECT TERMS			15. NUMBER OF PAGES 250
IRP, Final Preliminary Ass	16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT None

Standard Form 298 (Rev. 2-89)

INSTALLATION RESTORATION PROGRAM

PRELIMINARY ASSESSMENT/ SITE INSPECTION REPORT

VOLUME II APPENDICES A-G

157th AIR CONTROL GROUP JEFFERSON BARRACKS AIR NATIONAL GUARD MISSOURI AIR NATIONAL GUARD ST. LOUIS, MISSOURI

MARCH 1997

Prepared For

ANGRC/CEVR ANDREWS AFB, MARYLAND

Prepared By

Operational Technologies Corporation
4100 N.W. Loop 410, Suite 230
San Antonio, Texas 78229-4253
(210) 731-0000 DTIC QUALITY INSPECTED 3

APPENDIX A

MAGNETOMETER/GROUND PENETRATING RADAR RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

A. Geophysical Screening Results

A geophysical survey, using GPR and magnetometer investigation techniques as described in Subsection 5.2.2.1, was conducted on 5 and 6 December 1994.

A.1 Ground-Penetrating Radar Survey Results

The GPR data obtained on 13 vertical and 7 horizontal traverses of AOC A did not reveal any subsurface structures which would interfere with the soil vapor survey and soil boring activities. Several minor anomalies were detected, as shown in Figure A.1. In the west central portion of the AOC, a shallow disturbed area was evident roughly where the former concrete pad was indicated on previous maps of the AOC. A filled trench area was identified in the southwestern portion of the AOC, and a couple of narrow trench structures of very short length (no pipe identified within) were identified in the central and northeastern portions of the AOC.

The GPR data obtained on 7 vertical and 7 horizontal traverses of AOC D did not reveal any subsurface structures which would interfere with the soil vapor survey and the soil boring activities. The only anomaly detected was an area on vertical traverse 5 and horizontal traverses 1 and 2 (see Figure A.2) which may have been a former trench or excavation. The extent of this trench area was better defined by completing two additional vertical and one additional horizontal traverses in the immediate vicinity (see Figure 5.2). No solid structures still in place were evident in the GPR signal at these locations.

A.2 Magnetometer Survey Results

The magnetometer data obtained at AOC A is shown as total magnetic field contours and magnetic gradient contours in Figures A.3 and A.4, respectively. The data show no significant magnetic disturbances in the area which are attributable to subsurface anomalies. There is significant disturbance of the field apparent at the west end of the AOC, which is due to the Building 42 structure.

The magnetometer data obtained at AOC D is shown as total magnetic field contours and magnetic gradient contours in Figures A.5 and A.6, respectively. The data is greatly influenced by cultural effects, namely the chain-link fence and covered hazardous materials storage pad directly adjacent to the survey area's south and east sides, respectively. Aside from these cultural effects, a very minor magnetic anomaly (see Figure A.6) is shown in the immediate area of the trench detected by the GPR survey.

THIS PAGE INTENTIONALLY LEFT BLANK

GROUND-PENETRATING RADAR SURVEY LOG

DATE: 12/6/94	OPERATORS: MLA, DG
STATION: Tefferson Bayack	
AOC/SITE: $\frac{\omega}{AOC} = A$	
GRID DESCRIPTION Shape: Pectangle 30	3' wide by 60' long.
Orientation: Longwise	is E-W
Spacing: 5'	·
GPR Traverse Lines: Vertical: Compass Direction: Length: Direction Run: South to North	Horizontal: Compass Direction: E-W Length: 50 to 60' Direction Run: Vest to East
Suspected Target: olse in	ground.
Site Ground Cover: was	of nowel dort road
Site Soil Type:	sitt leane
Physical Obstructions or Interferences	
	ent omterno sted can go
around OK	
EQUIPMENT System: SIR 3 Radar Frequency: 300 Power Source: Van	Pulse Width (P):3
OPERATING PARAMETERS Two-Way Slowness (S ₂): Range (R = S ₂ ·D·1.4): 1b)	and Target Depth (D): 15'
Cycles/Scan (CS = R/P): 56 Filters: High Pass (< 1/2 CS): 26	Low Pass (> CS): 100
TEST LINES Gain:	
Surface: 6 Center:	. 3.2 Deep: 3.5
Lines/Inch: 100	3.2 Deep: 3.5 Scans/Sec: [6
COMMENTS: 110 chra travara	
·	

GROUND-PENETRATING RADAR SURVEY LOG

DATE:	12/6/94	OPERATORS: MLA, DG
STATION:	Jefferson Benacks	
AOC/SITE:	AOC-K	

TRAVERSE LINE RECORD

TRAVERSE LEVE RECORD								
	Horizontal → W → E							
Line Number	Start Location	Finish Location	Comment					
O	5 0	45	V					
2	0	50	N.					
4	0	55	V					
6	0	60	V					
8	0	60	V					
10	0	60	/					
12	0	60	V					
	·		•					
	±							
•	Ī							
			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					

GROUND-PENETRATING RADAR SURVEY LOG

DATE:	12/6/94	OPERATORS: MLA, DG
STATION:	Joll Banach	
AOC/SITE:	11 AOC-A	

TRAVERSE LINE RECORD

		LEVE RECORD		
	Ver	tical - Kooth	FORTH S-N	
Line Number	Start Location	Finish Location	Comment	-
Ö	30	30	· V	
2	0	30	1 distant	
4	0	30		
6	0	30	V	
8	0	30	V	
16	0	30		
12	O	30	V	
14	0	30	✓	
16	٥	30	V	
18	0	30	V	
20	5	3 0	sightly to west	e wood post
22	10	30	~	
24	15	30		
	=			÷
			·	
	_			
			<u> </u>	

AOC-A

Hairontal	Travelae	ϕ

2					y y						_
									_ = _		7
				1.3			100			Ì	
: 吳 選 22				ALC: LA		4. 7.	3		THE SEE SEME-		
											建上
Norman Marie Ma Marie Ma Marie Marie Marie Marie Marie Marie Marie Marie Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma				1		303 **					
÷₹ *				1 2 2 5	1 2					-	
	2 2 2 3							Ī			3 .5
							2		-	ہے ا	
					4.6.1.1.1.				A	7	7 4
A STATE OF THE PARTY OF THE PAR						- 100				In .	
										1	-7
"	-				E. 13.	建				1	
-					- 2117				, ,	1	
	THE WE SEE	79 mg m			4				-		
										0	
				4 2 2		李 🕸		į	e e		貓
	1									į	
	1							ļ.			
											3
		72.00		是社社			13	7		\ \J ∰	
								•			
								. ·	•		
							-		991 ME 986	**************************************	
								Ť		0.3	
										3	
							. 7	÷ • •		-300	
								C 10-55 Total	THE LAND MARK		
				3137						1 4J \$	
						100 327				CO 3	
									- · · · · ·	3	31 T
								· . · .		- 4	
		. "					赶		1		
		38 M 45 M						- 34	## ## ##E	BM . 70 %	
			**							S 3	
				. 111					.		
								1	i i		
					11:3 12:2	**		7	ş.		
1 - 1 - 1	-	** ** **					-		ee	-	
								5.2 4		28	
								_		!	*
								-2 1		<u></u>	
.7.22-									•	- 26	
Lei	4 7 2							*	•	į	4
, 1300 400 6401	-	The second secon						2 - 1894 - 1 994 -	नके असे अभी	#40	
									j. j	6	
		2005									
						3		-2	1 G		3
· · · · · · · · · · · · · · · · · · ·				***		- 3		· · · · · · · · · · · · · · · · · · ·	: -1	3	
								; 1999 See	No. 96 MG		
						34 4		Sep See		1.3	37.5
							2	į.	Management of the control of the con	V)	28
	-	70 m						9 873 - 1 12 -	WH 425 ME	-	
									Service Conference of the Conf	3	
~ <u>.</u>	· 227	27 j	Marie and Marie							* **	
1											

a headanne a		-			·		~			_			
	- 47.							計画			. حصد عدد مسد: د		
						3			到級				· 🚂
4										W . 1881 . 1881	97 m m	992	
											*	6	
70.00											4, 7		
						4.1			76	· . [4	
											, ,		
				11.					322		-		
												-	
7									1			I U	
. برام در از										: !!		3	
	-											4	63
	-		Contract of the second		1 32						i i i i i i i i i i i i i i i i i i i	4	
* 3				建美洲							÷ j	36	
ع ميوب							4-3- 3-7-7		4	ar 200- 160	PAGE STATE SERVICE	788	
				***							-		**
			1									3	
-											, F		3
# 🕮 Z			38 29 28 .	10 m					建 :		<u> </u>		
	•	1		1 2 2		1							
÷ .	- [1								<u>.</u> : <u>+</u>		जि 🕏	
	I	ļ										3	
		-				PARTY N	27 M2	**				3	
E							2:11.			+			
7							3. SEE			* * 366 · 368	* * *	- 3	
						2.11						i c	
						31.7.1							
						11-11				,			
						13		建 主				7	
¥1. 96 ≥ 7.8										. AC 25	· 22 22 25.	AS 35	
												5) T	
3 ⁴ .							*				. : :	4)	
13											. :	. a	
٠							71733	322 3			•		
. .			en an en			1			外震	* 1			
	7												
- 🐷	. j	ِ اُسِلِيْنِهِ اِنْ اِنْ اِنْ اِنْ اِنْ اِنْ اِنْ اِن								. j - j		1	
						*1743						,	鋫
		-						1	3	=			
	7											-	2
	300 7300	**	7 • •	-		***				9 - 2004 - 29 8		ter ## #	
-	- 1								42			<i>₩</i>	
	j			4						, ,		U	
.	}	į.										360	* 4
-	İ	M**	-		1			3	. 1			1	整
-			يتحريب والثر				127				,	. 44	
	24 24 :									÷ ‡	-	3	1
			er yez and ge	-						*** ***	# *	20 40	
			- Th						, Fig.			5.	<i>5</i>
_			ara. Tanan	1									
8	i	7 4 12 4 14 14 1			72 2						_		Ţ
	-								****	[45	***
	3					1			122			7.3	
_	4.2	3	- الريد - يا									N.	
	. [.					2.12.13						7 4 .3	9
	2 2	_ =			- 3	EXEC				•	- 3]	
•			7							ļ		-	5
72 2			-								-	-	
:-						32.5				•		টা	
- A	-											2	
***									- 3	्राच्या सम्बद्धाः इ	- -	च्या व्या स्टि	I
									- F	į			## # # # # # # # # # # # # # # # # # #
					in whitelifting	Andreas of the safe of the safe	A CONTRACTOR OF THE PROPERTY O	-	F1 %	4 · · · · · · · · · · · · · · · · · · ·			5 3

	Horizontal	Traverse 4			
				0	-
Silve			· .		
					-
			THE PART WITH BANK SHIPL M		
				20	
				, v	• <u>•</u> • <u>•</u> •
				U	
				0	
				25	
				012	
				5.0	
		发热		50	
				52	•
					.
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

+	orizental Traverse	6	
			C
			0
			0
			7
			22
			8
			55
			10
			2.2
			(1)
			all the second
			255
			8
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			500

Markental Travalle 8	
, n	
N	
ō E	
	1000010000
0	
	i ijāki kir ir i
N. C.	
of the second se	·
	19 - 28 - 38 - 38 - 38 - 38 - 38 - 38 - 38
U I	
	Park P
70	
O	
S. C.	
No.	
Ö	1

	- • •	
How is what	Travello	10

_			model was	TAYEURE	10	a. Ann 10 Chair e ann an Ann an Ann an		
							- 20	<i>7</i>
								*
								4
-							. 4	
							sa mas la	TO THE

								3
-								
	***							ō 🕽
•							_	
_								
							į	
							-	
								J.

	1 30 00 00 00 00 00						-	7
			1				- 4	20
								4
								3
								₩ 3 3
_								
								菱
							*	<u> </u>
						- m 1 Hi Au	A 40 HO	
							1	8
							- 1	- 3
							- 3 7	- 1
<u></u>	: 44 56 58 58 58 58			190			S 52 S 5	
						3: 1		35
								2
e paga ang ang ang ang ang ang ang ang ang								
1000 0000000000000000000000000000000000							2 2	
		H 100 100 100 100 100 100 100 100 100 10						
								0
								1
								4
•								33
			**************************************		起源等		53 An 30 T	24
								7
	-				建建 4			4
								2
								N N
-								0
								3
							* 3	
T						3	-	
							- m -	- (方 - 3
*							-	22
							ì	
-						1		
_							ক্র কর কর	
						連季	-	8
	AND THE PARTY OF T					3		ى

Horzontal Travence 12	1
	300 300
	G
	PM 144 90 00
	ហ្វ
	0
	20
	8
	An 200 200
	N N
	7770
	A Company
	I S
	VI
	es est es es e
	20
	·
	25
	7 1 36-7 km 20 €
	S

in the state of t

n engi in jaman Kadagadasabatas

R=168 ns, HPF=20 LPF=100

 		•			
	ELECTIVE PROPERTY.				رید دی جست چ
				-	بيت
			7 A 100 A	20 AT MA.	
					. C)
			4.		
					4
				. .	
					THE THE THE
					ייט 🖷
				-	
				2	
					[]
		三			G
					4
				j	
				25 34 35	张
				-	√
		# # 1		}	
				•	7
				:	4
				20 26 26.	
					2
			3		7
					2
				5 4	10 m
					7, 4
				- T	3
					7.5
- 22					Z
) # # # *		A 2 2
					3
				3	3

											_ :	A
3	- 23								- I	- '	į	کنت.
										•	. [
_ 35					1110			. SEE	g , wage: 25=3		-	
									1	معم. معد		~ 3
									÷		-} '	
	- 322							3	· · · · · · · · · · · · · · · · · · ·	÷ .	- 1	35
	多. 电通							-	.f. 1 €			35
		-							. e	$\mathbf{s}^{\prime} = \mathbf{s}^{\prime}$	1	3
	-:-					1						
- 100 P								3				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	1									:		11, -
	1		-				李			•		
	- ₂ }.					7	意 耳	333			~ .	
	- 25		7		54715		34 4 4 1	3	- ‡		- 1	
										₹.	-,1	;
					7 - T			235		. 22 52	24	
			The second second									
	-17				E #175				. 1	. -		0)
•								385	· •			
					2 3 3 3 E			333		٠ . ١	<u>.</u> 4	3
		at.				73						3
					3-3-1-1			海葵	. · · · · · · · · · · · · · · · · · · ·	-,		3
2 3 3 2 E	200									908 942 -	= 1	2 HE 7
2						***				_ =	-1	~ ~ *
					3 12 13							え
								四套 🤔	. : · · . 🚹	• [- 1	
										- =	- 1	٤
			دو ما م گلیست استواریک	عد سيدهر التي ده			4 2					
						J. 124						# # *
								F 🖺 📑	[75
7								28.名证	- ·		- 1	├
								- 2 -	• • •		1	<u> </u>
ئىيىت.		2		22 32	27 天上					:		,
-	===:		1						- i i	÷		
				原学 部							_ ; }	
¥ 44		== X '€	*		1372				6 NJ 24			
			: } - ≟?					7			- 1	が
. * "						- 2 3 3 3 4				-		V' 3
				-					• •		- 1	-77
*******	- 1		7		电流型				- 1		į	
2 P4	- 40			4.2					a 🛌 🖦	24 22	. 🗪 s	pa 366 j
-	والمصيد							22	· i			N 3
												8
								1				
-55												
-							300 S				i	
-	2		Karring Transfer				7		ŧ		:	

\	Vertical Tr	aveise 14		,
				9
				2
				15 32
				0
				3
				ン つ く つ
				25
				30
				•

		Vorte	e t	raverse	16			e	
59k 3R							49 13 3	= == [5	0
-									V.
							A Company of the Comp		3 \ O
							Selfation via annual an		21
									72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-									
}. 	SS : 339 : 339	Se 20 3					25 25 3		8

Vertical T	raveuse 18	
		0
		V)
		ō
		ū
		٥٦
		D.
		ر ن

	Vertical	1 raverse	20					
				7				
						T	_	17
						i:	- 1	
P 100 (20)					4	- 	- AR - 49	
								5
							-	
								🥞
						Ī .		5.
								3
			PE :				, , ,	
			712					
						29 54 20	228 38	
						ţ .	ļ	ಕ
						1 111		
			His .	罪差			-	
352								کر ا
				300 3				VI 🚅
3.				亚 王				
-				4.3		-	. ==[-	
								ري 1
1				# #			-	
490						501	1 74 7	
ļ				建量				
				marketing of the			•	

Vertical Traverse 22

Versical Traverse 24

20 25 30

THIS PAGE INTENTIONALLY LEFT BLANK

MAGNETOMETER SURVEY LOG

DATE: 12 6 34 STATION: Jevan Banach	OPERATORS:	MLA, DG		
AOC/SITE: AOC-A				
GRID DESCRIPTION Shape: Rectangular Orientation: Languis e & Spacing: 2.5	30' wide	by 60' lang		
Sampling Lines: Vertical: North-South (line to line Compass Orientation: N-S	Horizontal: <u>E</u>	East - West (see	ple)	
Site Ground Cover: 9440, 1 (Suspected Target: Small	iond runs the	ough		
Typical Mag Field Value: Surface Interferences on Sampling Line railsock junk	s: Building on slope of	e vest end	auss	
EQUIPMENT System: Geometrico	G-856			
Vertical Sensor Separation:	30	inc	ches	
SURVEY SETUP All Ferrous Metal Off Operators:	Yea			
Test Signal Values:	54,700	gg	auss	
Duplicate Repeatability:Signal Strength:	6.4	g	auss	
oigha offength	7.0			
Line Number Code: 2 f 2 nd Grid Origin Location: 0, 0 Julian Date: 340		2XX Start 20	od 00	217
Data Acquired: Unidirectional: No. Points/Line: 25	Alternating:			
Total Points: 325	(13×25)			

MAGNETOMETER SURVEY LOG

DATE:	12694	OPERATORS: MLA	+ DG
STATION:	Jell Banoube		
AOC/SITE:	- AOC-A		
STAR	T 1375	CAUSH	1535

DATA ACQUISITION RECORD

50

DATA REQUISITION RECORD								
Line Number	Line Code	Start Point	Finish Point	Ghost Points				
0	200	0	24	@21,22,23,24				
l	2013	O	24	(21,22,23,24				
2	202	0	24	@ 22,23,24				
2 3 4	203	0	24	@23,24				
4	204	0	24					
5	205	0	24	_				
6	206	0	24	•				
7	267	0	24	_				
8	208	0	24					
9	209	0	24	_				
10	210	0	24	_				
[[211	0	24	_				
12_	212	O	24					
	=							
	7							
			•					
		·						

DATA TRANSFER:

COMPUTER FILE NAME: Jake-Light

MENETOMETER DATA FOR AOC A AT JEFFERSON BARRACKS ANGS

FILE:

JBAOC_A.WQ1 12/06/94

LINE	DATE	CLOCK	STAT#	x	Y	TOP	воттом	GRAD
200	340	132629	0	0	0	54218.7	53284	-373.88
200	340	132712	2	2.5	0	54091.8	53422.6	-267.68
9 200	340	132731	4	5	0	54181.7	53795.8	-154.359
200	340	132758	6	7.5	0	54346.6	54121.7	-89.961
200	340	132817	8	10	0	54496.5	54372	-49.8
200	340	132838	10	12.5	0	54602.5	54525.7	-30.72
200	340	132858	12	15	0	54696.1	54653.9	-16.88
200	340	132921	14	17.5	0	54749.6	54723.8	-10.32
200	340	132942	16	20	0	54802.7	54761.9	-16.319
200	340	133004	18	22.5	0	54855.5	54815.3	-16.08
200	340	133021	20	25	0	54902.7	54884.9	-7.119
200	340	133046	22	27.5	0	54940.2	54945.6	2.161
200	340	133108	24	30	0	54950.6	54956	2.159
200	340	133126	26	32.5	0	54929.1	54915	-5.641
200	340	133147	28	35	0	54910.4	54883.5	-10.761
200	340	133207	30	37.5	0	54883.9	54841.4	-17
200	340	133234	32	40	0	54868.5	54806.7	-24.72
200	340	133302	34	42.5	0	54870.6	54795.9	-29.88
200	340	133323	36	45	0	54903.9	54855.9	-19.2
200	340	133347	38	47.5	0	54964.1	55023.5	23.759
200	340	133418	40	50	0	55047.9	55164	46.439
200	340	133521	42	52.5	0	55042.9	55157.7	45.919
200	340	133531	44	55	0	55046.1	55162	46.359
200	340	133541	46	57.5	0	55045.5	55159.9	45.761
200	340	133552	48	60	0	55044.1	55163	47.559
201	340	133658	50	0	2.5	53280	51843.9	-574.439
201	340	133716	52	2.5	2.5	53468.7	52506.1	-385.039
201	340	133736	54	5	2.5	53558.6	53263.2	-118.161
201	340	133755	56	7.5	2.5	54014	53793.9	-88.039
201	340	133813	58	10	2.5	54303.3	54189.8	-45.4
201	340	133832	60	12.5	2.5	54505.5	54444.8	-24.28
201	340	133849	62	15	2.5	54630.7	54600.5	-12.08
201	340	133905	64	17.5	2.5	54699.3	54678.3	-8.4
201	340	133921	66	20	2.5	54768.9	54728.3	-16.241
201	340	133939	68	22.5	2.5	54815.4	54771.4	-17.6
201	340	133956	70	25	2.5	54860	54829.5	-12.2
201	340	134013	72	27.5	2.5	54891.6	54872.3	-7.72
201	340	134032	74	30	2.5	54903.6	54886.9	-6.68
A STATE OF THE STA	340	134051	76 70	32.5	2.5	54898.1	54872.5	-10.241
201	340	134107	78	35	2.5	54881.5	54846.7	-13.92
201 201	340 340	134135	80	37.5	2.5	54866	54815.4	-20.239
201	340	134153	82	40 40 F	2.5	54853.8	54776.1	-31.08
201	340	134235 134305	84	42.5	2.5	54860.8	54766	-37.92
201	340	134336	86	45 47.5	2.5	54902.4	54847.4	-22
201	340		88	47.5	2.5	54971.7	55046.3	29.841
201	340	134412	90	50 50.5	2.5	55054.9	55174.2	47.719
201	340	134442	92 94	52.5	2.5	55057.2	55182.5	50.12
201 201	340 340	134452	94 06	55 57 5	2.5	55056 FF0F0 0	55181.4	50.161
201	340 340	134502	96 08	57.5	2.5	55056.2	55177.9	48.681
201		134513	98 100	60	2.5	55055.8	55175.7	47.959
	340 340	134638	100	0	5	52087.3	52041.5	-18,32
202 202	340 340	134655	102	2.5	5	52179.7	50913.9	-506.319
202	340	134712	104	5	5	53003.4	52494.6	-203.52

202	340	134734	106	7.5	* **	5	53706.2	53470.1	-94.439
202	340	134751	108	10		5	54094.5	53997.5	-38.8
202	340	134841	110	12.5		5	54339.3	54278.8	-24.2
202	340	134900	112	15		5	54523.6	54491.9	-12.68
202	340	134928	114	17.5		5	54632	54606.7	-10.12
202	340	134948	116	20		5	54711.6	54675.7	-14.361
202	340	135005	118	22.5		5	54767. 7	54733.7	-13.6
202	340	135021	120	25		5	54822.9	54810.1	-5.12
202	340	135037	122	27.5		5	54864.7	54867.3	1.041
202	340	135054	124	30		5	54881.3	54881.2	-0.041
202	340	135111	126	32.5		5	54880	54866	-5.6
202	340	135130	128	35		5	54862.7	54830.7	-12.8
202	340	135147	130	37.5		5	54844.7	54794.5	-20.08
202	340	135205	132	40		5	54831	54751.7	-31.72
202	340	135227	134	42.5		5	54837.2	54735.5	-40.68
202	340	135253	136	45		5	54878.4	54811.2	-26.881
202	340	135317	138	47.5		5	54926.5	54938.8	4.92
	340	135317	140	50		5	54980.3	55046.4	26.441
202	340 340	135342	142	52.5		5	55000.6	55037.8	14.88
202				52.5 55		5	54998	55029.9	12.761
202	340	135439	144	57.5		5	54998.3	55029.9 55030.2	12.751
202	340	135448	146						12.739
202	340	135458	148	60		5	54997.3	55029.3	
203	340	135616	150	0		7.5	52119.6	52157.3	15.08
203	340	135635	152	2.5		7.5	52162.6	52066.8	-38.32
203	340	135656	154	5		7.5	52184.6	51949	-94.241
203	340	135717	156	7.5		7.5 	53255.6	53063.5	-76.841
203	340	135752	158	10		7.5	53869.1	53753.6	-46.2
203	340	135813	160	12.5		7.5	54240.5	54193	-19
203	340	135832	162	15		7.5	54436.8	54399.5	-14.92
203	340	135851	164	17.5		7.5	54582.7	54546.1	-14.639
203	340	135908	166	20		7.5	54662.2	54631.6	-12.239
203	340	135928	168	22.5		7.5	54746.2	54724	-8.88
203	340	135948	170	25	•	7.5	54802.7	54805.5	1.12
203	340	140008	172	27.5	•	7.5	54846.2	54874.7	11.4
203	340	140028	174	30	•	7.5	54865.5	54891.9	10.561
203	340	140046	176	32.5	•	7.5	54864	54868.1	1.641
203	340	140105	178	35	•	7.5	54847.8	54825.8	-8.8
203	340	140127	180	37.5	•	7.5	54828.6	54780.3	-19.32
203	340	140146	182	40	•	7.5	54820.6	54755	-26.241
203	340	140202	184	42.5	•	7.5	54830.9	54750.1	-32.32
203	340	140225	186	45		7.5	54872.8	54814.9	-23.159
203	340	140249	188	47.5		7.5	54904.9	54883.5	-8.561
203	340	140313	190	50		7.5	54949.5	54955.8	2.52
203	340	140336	192	52.5		7.5	54969.8	54970.9	0.441
203	340	140418	194	55		7.5	54972.5	54957.4	-6.039
203	340	140445	196	57.5		7.5	54972.5	54956.9	-6.239
203	340	140455	198	60		7.5	54973.3	54957	-6.52
204	340	140605	200	0		10	51961.9	52186	89.639
204	340	140624	202	2.5		10	23354	51978.1	11449.64
204	340	140714	204	5		10	51856.5	51591.3	-106.08
204	340	140736	206	7.5		10	53080.3	52921.9	-63.359
204	340	140754	208	10		10	53698.1	53624.8	-29.32
	340	140754	210	12.5		10	54117.1	54081.7	-14.161
204							54360.1	54335.5	-9.841
204	340	140829	212	15		10	54545.8	54555.5	-9.641 -12.559
204	340	140848	214	17.5		10			
204	340	140920	216	20		10	54642.1	54615.1	-10.8
204	340	140937	218	22.5		10	54710.9	54695.8	-6.041 0.561
204	340	140953	220	25		10	54763.4	54762	-0.561
204	340	141009	222	27.5		10	54823	54844.3	8.52

204	340	141027	224	30	10	54848.4	54883.8	14.159
204	340	141046	226	32.5	10	54849.4	54878.2	11.519
204	340	141107	228	35	10	54836.5	54828.4	-3.239
204	340	141128	230	37.5	10	54820.5	54775.3	-18.08
204	340	141144	232	40	10	54814.2	54753.8	-24.159
204	340	141207	234	42.5	10	54829	54767.9	-24.439
204	340	141226	236	45	10	54856.4	54811.9	-17.8
204	340	141250	238	47.5	10	54902.5	54887.4	-6.039
204	340	141312	240	50	10	54937.3	54938.1	0.32
204	340	141336	242	52.5	10	54961.2	54975.3	5.641
204	340	141407	244	55	10	54968.5	54972.4	1.561
204	340	141427	246	57.5	10	54961.2	54945.8	-6.159
204	340	141459	248	60	10	54949.4	54905.9	-17.4
205	340	141835	250	0	12.5	52178.9	52084.1	-37.92
205	340	141857	252	2.5	12.5	26023.9	52183.8	10463.96
205	340	141925	254	5	12.5	52128.2	52019.6	-43.439
205	340	141946	256	7.5	12.5	52869.1	52826.9	-16.88
205	340	142006	258	10	12.5	53596.4	53552.7	-17.481
205	340	142024	260	12.5	12.5	54008.2	53988.5	-7.88
205	340	142042	262	15	12.5	54256.8	54243.1	-5.48
205	340	142106	264	17.5	12.5	54479.6	54461.5	-7.241
205	340	142125	266	20	12.5	54600.5	54586.8	-5.48
205	340	142141	268	22.5	12.5	54677.7	54658.9	-7.519
205	340	142222	270	25	12.5	54735.5	54709.2	-10.52
205	340	142241	272	27.5	12.5	54772.8	54752.6	-8.08
205	340	142304	274	30	12.5	54806.7	54823.6	6.761
205	340	142334	276	32.5	12.5	54818.3	54846.9	11.441
205	340	142354	278	35	12.5	54809	54801.1	-3.159
205	340	142420	280	37.5	12.5	54798.4	54744.4	-21.6
205	340	142438	282	40	12.5	54796.1	54730.8	-26.12
205	340	142508	284	42.5	12.5	54810.6	54748.4	-24.88
205	340	142527	286	45	12.5	54842.5	54805.4	-14.839
205	340	142544	288	47.5	12.5	54890.1	54887.1	-1.2
205	340	142607	290	50	12.5	54928.1	54955.9	11.12
205	340	142632	292	52.5	12.5	54958.7	55014.9	22.481
205	340	142658	294	55	12.5	54969.7	55016.1	18.561
205	340	142717	296	57.5	12.5	54956.4	54964.6	3.28
205	340	142747	298	60	12.5	54942.7	54919.9	-9.119
206	340	143344	300	0	15	52076.2	51978.2	-39.2
206	340	143407	302	2.5	15	52188	52139.3	-19.48
206	340	143432	304	5	15	51428.9	51892.6	185.48
206	340	143452	306	7.5	15	52927.9	53023.5	38.239
206	340	143513	308	10	15	53620.4	53630.2	3.919
206	340	143535	310	12.5	15	53977.5	53973	-1.8
206	340	143556	312	15	15	54244.9	54235.8	-3.641
206	340	143616	314	17.5	15	54463.9	54467.8	1.559
206	340	143633	316	20	15	54598.1	54594	-1.641
206	340	143657	318	22.5	15	54663.5	54645.7	-7.12
206	340	143722	320	25	15	54703.3	54665.7	-15.041
206	340	143744	322 324	27.5 30	15 15	54739 54771 2	54683.7	-22.12
206	340	143803	324 326	30 33.5	15 •=	54771.3	54738.4	-13.159 10.161
206	340 340	143834	326 328	32.5	15 15	54782.6	54757.2	-10.161
206	340	143856	328	35	15	54784.6	54748.4	-14.48
206	340	143916	330	37.5	15	54785.8	54732.7	-21.241
206	340	143939	332	40 40.5	15	54793.4	54732.3	-24.441
206	340	144002	334	42.5	15	54809	54751.6	-22.959
206	340 340	144024	336	45 47.5	15	54837 54881 6	54800.9 54880.5	-14.439
206	340 340	144044	338	47.5 50	15	54881.6	54880.5	-0.441
206	340	144103	340	50	15	54916.2	54953.9	15.081

206	340	144126	342	52.5	15	54955.1	55045.1	36
206	340	144150	344	55	15	54968.6	55050.2	32.639
206	340	144211	346	57.5	15	54956.3	54986.2	11.959
206	340	144246	348	60	15	54941.1	54927.2	-5.561
207	340	144422	350	0	17.5	43349.2	52062.9	3485.481
207	340	144440	352	2.5	17.5	52100.8	52210.2	43.759
207	340	144457	354	5	17.5	52122.5	52518.8	158.52
207	340	144514	356 250	7.5	17.5	53032.7	53217.6	73.961
207	340	144533	358	10	17.5	53688.1	53734.3	18.48
207	340	144551	360	12.5	17.5	54053.2	54058.6	2.161
207 207	340 340	144613	362 364	15 17.5	17.5	54297	54294 54509.9	-1.2 7.481
207	340	144630 144645	366	17.5 20	17.5 17.5	54491.2		7. 4 61 5.68
207	340	144701	368	20 22.5	17.5	54600.6 54661.8	54614.8 54652.7	-3.641
207	340	144717	370	22.5 25	17.5	54695.3	54657.2	-5.041
207	340	144733	370 372	25 27.5	17.5	54717.6	54653.7	-15.241
207	340	144750	372	30	17.5	54741.4	54666.7	-29.881
207	340	144807	376	32.5	17.5	54760.2	54696.9	-25.319
207	340	144830	378	35	17.5	54767	54709.9	-22.839
207	340	144850	380	37.5	17.5 17.5	54776.3	54709.9 54727.1	-19.68
207	340	144909	382	40	17.5	54778.9	54727.1	-19.681
207	340	144928	384	42.5	17.5	54801.1	54751.8	-19.001
207	340	144945	386	45	17.5	54832.5	54797.4	-14.039
207	340	145004	388	47.5	17.5	54863.5	54852.2	-4.52
207	340	145024	390	50	17.5	54885.7	54902.2	6.6
207	340	145044	392	52.5	17.5	54918.6	54983.8	26.08
207	340	145105	394	55	17.5	54940.8	55001.6	24.32
207	340	145122	396	57.5	17.5	54938.9	54948.8	3.959
207	340	145139	398	60	17.5	54937.5	54928	-3.8
208	340	145238	400	0	20	52232.3	52045.9	-74.559
208	340	145254	402	2.5	20	51514	52362	339.2
208	340	145313	404	5	20	52677.4	53022.1	137.88
208	340	145331	406	7.5	20	53207.9	53397.5	75.839
208	340	145347	408	10	20	53776.7	53846.4	27.881
208	340	145406	410	12.5	20	54076.3	54105.6	11.72
208	340	145423	412	15	20	54331.5	54353.8	8.92
208	340	145440	414	17.5	20	54511	54546	14
208	340	145457	416	20	20	54617.7	54647.3	11.841
208	340	145514	418	22.5	20	54680.2	54679.6	-0.239
208	340	145532	420	25	20	54704.4	54681.2	-9.281
208	340	145546	422	27.5	20	54722.4	54673.4	-19.6
208	340	145603	424	30	20	54737.1	54673.3	-25.52
208	340	145621	426	32.5	20	54750.7	54690.1	-24.239
208	340	145638	428	35	20	54765.4	54715.4	-20
208	340	145655	430	37.5	20	54783.1	54743.5	-15.841
208	340	145713	432	40	20	54792.5	54755.5	-14.8
208	340	145731	434	42.5	20	54802.9	54763.9	-15.6
208	340	145749	436	45	20	54815.1	54770.6	-17.8
208	340	145810	438	47.5	20	54830.3	54783	-18.92
208	340	145828	440	50	20	54842.8	54790.4	-20.959
208	340	145847	442	52.5	20	54868.9	54826.4	-17
208	340	145906	444	55	20	54892.6	54855.1	-15
208	340	145923	446	57.5	20	54921.5	54903	-7.4
208	340	145939	448	60	20	54943.9	54952.1	3.28
209	340	150045	450	0	22.5	51229.5	52039.6	324.041
209	340	150103	452	2.5	22.5	52329.9	52791.3	184.559
209	340	150121	454 456	5	22.5	52969.5	53242.5	109.2
209	340	150138	456 450	7.5	22.5	53555.9	53663.8	43.159
209	340	150156	458	10	22.5	53948.5	54003.6	22.041

209 340 150215 209 340 150234 209 340 150251 209 340 150307 209 340 150325 209 340 150343 209 340 150400	460 462 464 466 468	12.5 15 17.5 20	22.5 22.5 22.5 22.5	54203.9 54392.7 54539	54230.2 54420.4 54579.8	10.519 11.081	
209 340 150251 209 340 150307 209 340 150325 209 340 150343	464 466	17.5	22.5				
209 340 150307 209 340 150325 209 340 150343	466			54539	54579.8	40.00	
209 340 150325 209 340 150343		20	22.5			16.32	
209 340 150343	468			54649	54685.3	14.52	
		22.5	22.5	54699.7	54711.8	4.841	
209 340 150400	470	25	22.5	54722.8	54711.2	-4.641	
	472	27.5	22.5	54740.7	54705.8	-13.959	
209 340 150417	474	30	22.5	54750.4	54708.4	-16.8	
209 340 150437	476	32.5	22.5	54764.7	54724	-16.28	
209 340 150458		35	22.5	54778.5	54744.6	-13.559	
209 340 150516		37.5	22.5	54792.7	54763.9	-11.519	
209 340 150533		40	22.5	54803.6	54775.4	-11.28	
209 340 150550		42.5	22.5	54808.1	54777.6	-12.2	
209 340 150609	486	45	22.5	54806.1	54757.8	-19.32	
209 340 150627	488	47.5	22.5	54807.8	54738.6	-27.68	
209 340 150648		50	22.5	54799.3	54658.6	-56.28	
209 340 150707		52.5	22.5	54805.6	54613	-77.041	
209 340 150725	494	55	22.5	54856.1	54745	-44.441	
209 340 150744		57.5	22.5	54916	54897.9	- 7.239	
209 340 150801	498	60	22.5	54954.6	54999.2	17.839	
210 340 150904		0	25	51973.7	52278.2	121.8	
210 340 150924		2.5	25	52902.9	53131.5	91.439	
210 340 150941		5	25	53368.1	53505	54.759	
210 340 151000		7.5	25	53836.3	53892.7	22.559	
210 340 151017		10	25	54116.1	54137.3	8.48	
210 340 151034		12.5	25	54307.7	54325.1	6.961	
210 340 151050		15	25	54478.3	54506.2	11.159	
210 340 151108		17.5	25	54597.1	54641.2	17.639	
210 340 151126		20	25	54679.6	54718.7	15.639	
210 340 151142		22.5	25	54725	54740.4	6.161	
210 340 151200		25	25	54743.5	54742.9	-0.239	
210 340 151216		27.5	25	54759.1	54737.3	-8.72	
210 340 151232		30	25	54771.2	54743.3	-11.159	
210 340 151248		32.5	25 05	54783.9	54758.6	-10.12 -8.881	
210 340 151304		35	25	54795.9 54806.9	54773.7	-0.001 -7.92	
210 340 151322		37.5	25 25		54787.1	-7.92 -8.4	
210 340 151340		40 40 F	25	54812.1	54791.1	-9.881	
210 340 151359		42.5	25 25	54814.4 54810.7	54789.7 54774.9	-9.861 -14.319	
210 340 151416		45 47.5	25 25		54714.9 54716.9	-31.359	
210 340 151435		47.5		54795.3 54786.5	54655.5	-51.55 9 -52.4	
210 340 151453		50 53.5	25 25	54793.2	54613.8	-71.759	
210 340 151511		52.5 55	25 25	54852	54756.8	-38.08	
210 340 151528		57.5	25 25	54926.2	54942	6.32	
210 340 151545 210 340 151603		60	25 25	54970.7	55051.5	32.32	
		0	25 27.5	54970.7 52866.5	53086.6	88.041	
		2.5	27.5	53287	53420.5	53.4	
211 340 151833 211 340 151856		2.5 5	27.5 27.5	53675.3	53742.6	26.92	
211 340 151656		7.5	27.5	53961.6	53999	14.959	
211 340 151912		7.5 10	27.5 27.5	54214	54224	14.939	
211 340 151952		12.5	27.5	54377.7	54389.4	4.681	
		15	27.5	54497.8	54525.4	11.041	
	. 502		27.5	54634.5	54675.9	16.561	
211 340 152023	564	1/5		0 7007.0	J.575.3		
211 340 152023 211 340 152042		17.5 20		54702 4	54744 2	16 710	
211 340 152023 211 340 152042 211 340 152100	566	20	27.5	54702.4 54739.7	54744.2 54760	16.719 8 12	
211 340 152023 211 340 152042 211 340 152100 211 340 152113	566 568	20 22.5	27.5 27.5	54739.7	54760	8.12	
211 340 152023 211 340 152042 211 340 152100 211 340 152111 211 340 152133	566 568 570	20 22.5 25	27.5 27.5 27.5	54739.7 54757.1	54760 54758.5	8.12 0.559	
211 340 152023 211 340 152042 211 340 152100 211 340 152111 211 340 152133 211 340 152151	566 568 570 7 572	20 22.5 25 27.5	27.5 27.5 27.5 27.5	54739.7 54757.1 54770.8	54760 54758.5 54756.5	8.12 0.559 -5.72	
211 340 152023 211 340 152042 211 340 152100 211 340 152111 211 340 152133	566 568 570 7 572 3 574	20 22.5 25	27.5 27.5 27.5	54739.7 54757.1	54760 54758.5	8.12 0.559	

211	340	152250	578	35	27.5	54806.9	54792.1	-5.92
211	340	152309	580	37.5	27.5	54815.9	54801.6	-5.72
211	340	152329	582	40	27.5	54821.3	54806.7	-5.841
211	340	152347	584	42.5	27.5	54823.9	54806.7	-6.881
211	340	152408	586	45	27.5	54819.7	54794.9	-9.919
211	340	152432	588	47.5	27.5	54810.6	54763.2	-18.961
211	340	152452	590	50	27.5	54805.1	54721.3	-33.52
211	340	152513	592	52.5	27.5	54825.3	54741.8	-33.4
211	340	152535	594	55	27.5	54871.6	54828.3	-17.32
211	340	152559	596	57.5	27.5	54922	54942.8	8.32
211	340	152627	598	60	27.5	54974.7	55055.3	32.241
212	340	152733	600	0	30	53345.3	53480.6	54.12
212	340	152755	602	2.5	30	53636.8	53674.4	15.041
212	340	152816	604	5	30	53919.3	53913.7	-2.241
212	340	152836	606	7.5	30	54102.4	54084.9	-7
212	340	152858	608	10	30	54307.6	54280.5	-10.841
212	340	152919	610	12.5	30	54431.1	54425.3	-2.32
212	340	152938	612	15	30	54569.1	54588.5	7.759
212	340	152959	614	17.5	30	54658.7	54703.2	17.8
212	340	153016	616	20	30	54718.7	54760.3	16.641
212	340	153034	618	22.5	30	54750	54772.9	9.161
212	340	153056	620	25	30	54768.9	54770.6	0.68
212	340	153117	622	27.5	30	54779.8	54768.4	-4.559
212	340	153136	624	30	30	54790.2	54776.1	-5.639
212	340	153157	626	32.5	30	54803.4	54790.4	-5.2
212	340	153227	628	35	30	54815	54802.7	-4.92
212	340	153244	630	37.5	30	54823.3	54812.7	-4.241
212	340	153301	632	40	30	54831.5	54821	-4.2
212	340	153318	634	42.5	30	54834.3	54823.1	-4.48
212	340	153336	636	45	30	54834.2	54819.6	-5.839
212	340	153355	638	47.5	30	54833	54810.9	-8.839
212	340	153413	640	50	30	54841	54808.6	-12.959
212	340	153435	642	52.5	30	54854.5	54822.3	-12.88
212	340	153452	644	55	30	54894.5	54887.6	-2.759
212	340	153511	646	57.5	30	54929.4	54954.3	9.959
212	340	153532	648	60	30	54969.2	55024.2	22

GROUND-PENETRATING RADAR SURVEY LOG

DATE: 12/6/94	OPERATORS: MLA, RC, DG
STATION: Jefferon Kaunch	
AOC/SITE: ACC - D	
GRID DESCRIPTION Shape: Squale Orientation: N-5 Spacing: 5 Swt	·
GPR Traverse Lines: : Vertical: Compass Direction: NS Length: 30' Direction Run: Seath 10 North	Horizontal: Compass Direction: E-W Length: 30' Direction Run: East to West
Suspected Target: Smell pipe	e in ground
Site Ground Cover:	rais
Site Ground Cover: gravel + g Site Soil Type: Silt Ioan	1
Physical Obstructions or Interferences:	Leney @ Fouth
	J
EQUIPMENT System: SIR Radar Frequency: 300 MHZ Power Source: Van	Pulse Width (P): 23
OPERATING PARAMETERS Two-Way Slowness (S ₂): 8	Target Depth (D): 15
Range (R = $S_2 \cdot D \cdot 1.4$): 168 Cycles/Scan (CS = R/P): 56 Filters: High Pass (< 1/2 CS): 20	Low Pass (> CS): 100
TEST LINES	
Gain:	
Surface: 4.5 Center:	· 3.5 Deep: 3.5
Lines/Inch: 100	3.5 Deep: 3.5 Scans/Sec: /6
COMMENTS: Made numerous as	directments on min +
paper position to get good	Sidnal + no darlast -
Signal	

GROUND-PENETRATING RADAR SURVEY LOG

DATE:	12 /6/94	OPERATORS: MLA, DG	
STATION:	Jell Buracles	oreitanous.	
AOC/SITE:	N AOC-D		

TRAVERSE LINE RECORD

		TRAVERSE	LIVE RECORD	•	
MAG line # 0 2 4		Hori	zontal — East	to West	
line#	Line Number	Start Location	Finish Location	Comment	
0	0	0	30	2 deposits, ad	net Page
2	1	0	30	7	1.7-
4	2	0 .	30	V	
8	3	0	30	V .	
8	4	0	30		
10	5	0	30	1 direport	
12	6	0	30	V	
3	1.5	0	15	1	
		=			
	·				
		·			
			· · · · · · · · · · · · · · · · · · ·		
1					

GROUND-PENETRATING RADAR SURVEY LOG

DATE:	12/6/94	OPERATORS: MLA. DG
STATION:	Jell Baraces	orzaciiono. Varta i Da
AOC/SITE:	11 AOC - D	

TRAVERSE LINE RECORD

-		TRAVERSE I	LINE RECORD	•	
		Ver	tical Sout	h to North	
IAG LINE	Line Number	Start Location	Finish Location	Comment	
	0	, O	36	small dropout,	aains
1 /.	l	0	30		Downer
• 9	2	٥	30	Smell hopart	L/
6	3	0	30		oraini
-	Problem	w (too m	neh hopart -	- Ax paper loca	ron
6	Redo 3	0	30	V	
8	4	0	30	~	
10	5	0	30		
12	6	0	30	Some de	opouts,
4				Some de decreur	gair
	5.5 4.5	<u>O</u>	15	-	•
- 4	4,5	0	15		
		=			
		-			
				·	

ADC-D 12/6/94

300 MH= R=168

HPF-28

LPF-100 Verrical

Horizontal Traverse 0

vertical I

Vortical Traverse 2

Vertical Traverse 3

> 10 17 20 2S			
20 25			
			20 20 20 Egg 20 1
			N
			ļ
			_] .
7 20 25			
20 25			6
20 25			į
20 25			544 ES 444
20 25			10
20 25			
			4
			an se wa 20
No. of the second secon			
No. of the second secon		3	
			** 35 70 30
8			25
8			P4
			0

Vertical Traverse 4

	3. AMERICAN AND AND AND AND AND AND AND AND AND A
	M
	8
	М
	02
	**

Vertical Herizontal Traverse 4.5

	Vortical	Travelse	5		
					0
					, 7
					10
					22
					8

					8
1	· -		•	•	

Vertical	Traverse 5.5	
		O
		5
		CALAP!

· 7

Vertical Traverse

.	e e e e e e e e e e e e e e e e e e e			<u></u>		4.
		Hælzonta	el Traver	. Ø	AOC-D	12/6
						O
					Tab. 400 200 400 200	- 5
						** ***
						- J
10. 10. 10. 10. 10.						7.
	Real Table Same See Same				***	ME MA
					100 AND 100 AN	δ 38 38

Horz	ental Traverso	1	
	· · · · · · · · · · · · · · · · · · ·		
			O.
			\$
			5
			√
			20
			× ×
			0
	了了 就是 是一种的人的一种的		

Haizontal Traveyse 1.5

								·		· ·		2000 1000	7
		1			Sales Comments					- Sent C		* G	
					5 Tab		**** ****	, i and se	•	n 786 9	- 46	34 W	_
				•		Ī.	-	¢				3	
					- 2								A PA
		17			*	386 333	493 - 6	75 M	-		4 🛥	# / #	150
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$	4					6	Jest Sakk
			7 T		1, 1,20		1						AS A.
					*		53 29	. 348 314 1	550	4 99 3	8	,	
- 1					1 1 1	•					,		
			***		**	42) 59 3	- 245 - 24				4 24		57M
)	·		-1	•	3.5	•	;	•	1				

Horizontal	Travese 2	
		V
		0
		5
		20
		8

Harizontal Traverso 3

							45	- ,	2 CAT	,							
		- 23									- 7		- T				
				74						- 2	-	- 	-	禁 漢	2 201 1	# .55T ()	
										2	, Jaj	X.S			Ì	•	462
÷ -;				-					·				ĺ		1		
-		-					X		271			·· 1959 - 2001					
- -													_ [ヹ	1
	13.7					S E					- 3				1		7
	1																
-			建 整						-			E		2000 SM		PM 256	
_	1 3							3-						_		7	基
		20														•	-
ē								深					1		}		3
										1		-					
- 2												**************************************		- 1985 - 1985 1985 br>1985 - 1985 1985 - 1985 1985 1985 - 1985 1985 - 1985 1985 1985 1985 1985 1985 1985 1985	- -		. 3
	1			"								5 10				S	/\
.=					3-34				7		7 . 2	· ÷	ļ		ĺ		Ž
	1										- 43						
- 453	ee 200	- 100° -	750	***				10		-			-	100 9	* **	× 7.	≨ "د
	ĺ	•											ļ		İ	6	3
	į			****				} ~					1		į		e ith
	}	•	and the same	~~.					3 4 7							<u> </u>	
	-	95 -							7					; 	~ -	<u> </u>	₹ "د
	7					. 🥦 -		13								į	7
	Ì]			į				:
			!					过			3		_ 1				
3538		, 20m and									£ 1			-	-		W
	į			•									Ì		į	(Ø.
314	700 5	. 300 500	(S) 340	200 25	R # 3		3	-						96 9	3 55	48 24	- 1
	į				2			7									
	ſ	1	i		= * \$. 3		a	3 44 50	15%		62 P	ţ		i		:

Haizontal

Haizontal	Travel 5	<u> </u>		1
			-	: 3
			O	
			S.	* TABLE
			0 =	1
				新 神経でで 一角
			N	
			20	₽
				•
				1747
				Secondary.

Horizontal 6

Moudontal	6	4	
		2 AZ	
			2
			ō
			5
			B
			8
			· B
	1		

MAGNETOMETER SURVEY LOG

DATE: 12 6 94 STATION: Jufferson Barrachs AOC/SITE: AOC - D	OPERATORS: MLA, DG
GRID DESCRIPTION Shape: Square Orientation: N-S Spacing: 2.5 feet	
Sampling Lines	Horizontal: <u>East-West (like to line</u>)
Site Ground Cover: Grace Grace Suspected Target: Sma Typical Mag Field Value: Surface Interferences on Sampling Line pad with Chain line force South Side: Chain line	ell pipe un ground
EQUIPMENT System: Geometries G-85	56
	30 inches
SURVEY SETUP All Ferrous Metal Off Operators:	YES
	54700 gauss
Duplicate Repeatability:	~ 1-2 very good gauss
Signal Strength:	6.5
	··· O to 12 come is IXX (1 fa 1st tox
Data Acquired: Unidirectional:	Alternating:
No. Points/Line: 13	

MAGNETOMETER SURVEY LOG

DATE:	12 6 94	OPERATORS:	MLA, DG
STATION:_	AGG Jeff Banagh		
AOC/SITE:	AOC-D 10		

Start 0830 End 0945
DATA ACQUISITION RECORD

ine Number	Line Code	SCQUISITION R Start Point	Finish Point	Ghost Points
600 0	100	0	12	_
1	101	0	12	
2	१०२	0	12	_
3	103	O	12	نت
4	104	0	12	_
5	105	0	12	_
6	106	O	12	-
7	107	0	12	_
8	108	0	12	-
9	109	\mathcal{O}	12	-
10	110	0	12	
ll	111	0	12	_
12	112	G	12	
	6 =			
			·	

DATA TRANSFER:

COMPUTER FILE NAME: Jeff b_d. 2nt

GNETOMETER DATA FOR AOC D AT JEFFERSON BARRACKS ANGS

FILE: JBAC

JBAOC_D.WQ1 12/06/94

LINE	DATE	CLOCK	STAT#	x	Y	TOP	воттом	GRAD
100	340	82909	0	^ 0	<u>'</u>	54123.5	53937.9	-74.239
100	340	82959	2					
100	340	83020	4	0	2.5 5	54243.2	54106.9	-54.519
100	340	83044	6	0	7.5	54348.5	54256.3	-36.88
100		83104				54431.4	54363.5	-27.161
	340		8	0	10	54521.2	54469.9	-20.519
100	340	83122	10	0	12.5	54587.1	54555.4	-12.68
100	340	83143	12	0	15	54650.6	54642.2	-3.361
100	340	83204	14	0	17.5	54689.1	54695.7	2.639
100	340	83224	16	0	20	54716.7	54731.7	6
100	340	83243	18	0	22.5	54725.6	54736	4.159
100	340	83309	20	0	25	54720.5	54716	-1.8
100	340	83327	22	. 0	27.5	54717.1	54698.3	-7.52
100	340	83345	24	0	30	54712.5	54684.6	-11.159
101	340	83438	26	2.5	0	53923.1	53564.1	-143.6
101	340	83457	28	2.5	2.5	54071.6	53866.5	-82.041
101	340	83515	30	2.5	5	54265.6	54129.3	-54.52
101	340	83536	32	2.5	7.5	54390.9	54306.5	-33.761
101	340	83557	34	2.5	10	54488.7	54434.1	-21.839
101	340	83616	36	2.5	12.5	54569	54536	-13.2
= 101	340	83642	38	2.5	15	54632.6	54617.2	-6.161
101	340	83700	40	2.5	17.5	54678.5	54676.3	-0.88
101	340	83743	42	2.5	20	54701.6	54702.6	0.4
101	340	83801	44	2.5	22.5	54707.4	54699.7	-3.081
101	340	83820	46	2.5	25	54705.5	54686.2	-7.72
101	340	83837	48	2.5	27.5	54700.8	54668	-13.12
101	340	83853	50	2.5	30	54701.9	54666.2	-14.281
102	340	83952	52	5	0	53602.8	52259.9	-537.159
102	340	84023	54	5	2.5	53852.4	53413.2	-175.681
102	340	84044	56	5	5	54114.5	53907.9	-82.639
102	340	84102	58	5	7.5	54319.3	54204.7	-4 5.841
102	340	84130	60	5	10	54445.8	54381.3	-25.8
102	340	84155	62	5	12.5	54550.4	54515.6	-13.92
102	340	84236	64	5	15	54612.4	54592.4	-8
102	340	84303	66	5	17.5	54661.8	54653.8	-3.2
102	340	84324	68	5	20	54681.4	54672.7	-3.481
102	340	84343	70	5	22.5	54689.4	54669.8	-7.841
102	340	84401	72	5	25	54687	54652.5	-13.8
102	340	84418	74	5	27.5	54682.9	54634.1	-19.52
102	340	84437	76	5	30	54683.7	54634	-19.88
103	340	84700	78	7.5	0	54170.6	52167.3	-801.32
103	340	84724	80	7.5	2.5	53830.6	52642.1	-475.4
103	340	84754	82	7.5	5	53988.5	53590.7	-159.12
103	340	84819	84	7.5	7.5	54232.2	54082.9	-59.719
103	340	84841	86	7.5	10	54393.4	54301.8	-36.641
103	340	84905	88	7.5	12.5	54501.8	54459	-17.12
103	340	84922	90	7.5	15	54583.7	54570.1	-5.439
103	340	84940	92	7.5	17.5	54637	54630.3	-2.68
103	340	85002	94	7.5	20	54657.9	54645.8	-4.841
103	340	85058	96	7.5	22.5	54664.8	54641.8	-9.2
103	340	85113	98	7.5	25	54663.9	54625.4	-15.4
103	340	85131	100	7.5	27.5	54661.6	54607.7	-21.561
103	340	85148	102	7.5	30	54666.4	54607.3	-23.641
104	340	85254	104	10	0	56496.1	52175.9	-1728.08
104	340	85312	106	10	2.5	54104.7	51921.5	-873.28
								

104	340	85333	108	10	5	54025.2	53400.7	-249.8	
104	340	85350	110	10	7.5	54200.8	53968.8	-92.8	
104	340	85407	112	10	10	54357.9	54227.8	-52.041	•
104	340	85425	114	10	12.5	54481	54426.4	-21.839	
104	340	85441	116	10	15	54558.3	54542.7	-6.241	
104	340	85501	118	10	17.5	54610.8	54603.3	_	
104	340	85525	120	10	20	54634	54617.5	-6.6	
104	340	85543	122	10	22.5	54644.3	54619.7	-9.841	
			124		25 25	54646.9	54613.2	-13.481	
104	340	85618		10			54597.9	-13.401	
104	340	85645	126	10	27.5	54647.9			
104	340	85718	128	10	30	54650	54593.5	-22.6	
105	340	85823	130	12.5	0	55819.1	52007.1	-1524.8	
105	340	85842	132	12.5	2.5	54393.3	52580.3	-725.2	
105	340	85901	134	12.5	5	54112.3	53555.6	-222.68	
105	340	85928	136	12.5	7.5	54203.1	53896	-122.841	
105	340	85946	138	12.5	10	54334.1	54179	-62.041	
105	340	90002	140	12.5	12.5	54438	54355.8	-32.88	
105	340	90023	142	12.5	15	54522.9	54486.6	-14.52	
105	340	90043	144	12.5	17.5	54572.8	54548.5	-9.72	
105	340	90101	146	12.5	20	54602.6	54574.6	-11.2	
105	340	90118	148	12.5	22.5	54616.9	54585.9	-12.4	
						54624.8	54589	-14.32	
105	340	90139	150	12.5	25				
105	340	90156	152	12.5	27.5	54630.4	54585	-18.161	
105	340	90214	154	12.5	30	54635.7	54581.9	-21.519	
106	340	90337	156	15	0	55253.4	52625.1	-1051.32	
106	340	90358	158	15	2.5	54608.1	53123.7	-593.761	
106	340	90420	160	15	5	54154.3	53611.9	-216.959	
106	340	90445	162	15	7.5	54222.2	53891.2	-132.4	
106	340	90504	164	15	10	54321.3	54159.1	-64.88	
106	340	90522	166	15	12.5	54438.9	54362.8	-30.441	
106	340	90545	168	15	15	54503.8	54462.8	-16.4	
106	340	90603	170	15	17.5	54549.2	54510.1	-15.639	
106	340	90622	172	15	20	54569.2	54526.7	-17	
106	340	90723	174	15	22.5	54593.9	54550	-17.561	
106	340	90747	176	15	25	54605.9	54562.1	-17.52	
	340	90805	178	15	27.5	54614.7	54568	-18.68	
106					30	54621.7	54569.8	-20.759	
106	340	90822	180	15 47.5					
107	340	90911	182	17.5	0	55164	54402.1	-304.759	
107	340	90932	184	17.5	2.5	54223.3	53325.7	-359.041	
107	340	90949	186	17.5	5	54206.5	53633.6	-229.159	
107	340	91009	188	17.5	7.5	54224.6	53877.7	-138.761	
107	340	91032	190	17.5	10	54311.3	54121.8	-75.8	
107	340	91051	192	17.5	12.5	54409.3	54307.6	-40.68	
107	340	91120	194	17.5	15	54468.6	54404.1	-25.8	
107	340	91152	196	17.5	17.5	54502.2	54441.9	-24.119	
107	340	91208	198	17.5	20	54525.9	54461.7	-25.681	
107	340	91226	200	17.5	22.5	54560.3	54499.6	-24.28	
107	340	91242	202	17.5	25	54576.7	54521.7	-22	
107	340	91258	204	17.5	27.5	54590.5	54536.8	-21.48	
107	340	91316	206	17.5	30	54602.8	54545.6	-22.88	
				20	0	55283.4	54002.1	-512.52	
108	340	91428	208						
108	340	91452	210	20	2.5	54476.5	53433.2	-417.32	
108	340	91527	212	20	5	54203.4	53603.2	-240.081	
108	340	91546	214	20	7.5	54203.4	53823.1	-152.12	
108	340	91603	216	20	10	54281.4	54032.7	-99.481	
108	340	91623	218	20	12.5	54359	54195.2	-65.52	
		04044	000	00	45	EAAAEO	E400E 0	40	
108	340	91641	220	20	15	54415.2	54295.2	-48	

		-						
108	340	91722	224	20	20	54480.2	54387.1	-37.239
108	340	91739	226	20	22.5	54503.6	54418.7	-33.961
108	340	91755	228	20	25	54541.3	54470.6	-28.28
108	340	91815	230	20	27.5	54566.1	54502.6	-25.4
108	340	91833	232	20	30	54587.6	54525.9	-24.68
109	340	91930	234	22.5	0	55352.9	54367.8	-394.041
109	340	91956	236	22.5	2.5	54357.4	53422.6	-373.92
109	340	92029	238	22.5	5	54141.4	53660	-192.561
109	340	92048	240	22.5	7.5	54167.3	53624.5	-217.12
109	340	92109	242	22.5	10	54249.1	53855.2	-157.561
109	340	92128	244	22.5	12.5	54325.2	54015.4	-123.919
109	340	92145	246	22.5	15	54346.9	54063.1	-113.52
109	340	92202	248	22.5	17.5	54372.4	54177.2	-78.081
109	340	92223	250	22.5	20	54411.3	54259.5	-60.72
109	340	92240	252	22.5	22.5	54452.5	54331.4	-48.439
109	340	92258	254	22.5	25	54500.4	54412.2	-35.281
109	340	92321	256	22.5	27.5	54535.5	54464.4	-28.439
109	340	92344	258	22.5	30	54578.1	54520.2	-23.161
110	340	92459	260	25	0	54930	53547.9	-552.839
110	340	92521	262	25	2.5	54289.8	53204.5	-434.12
110	340	92539	264	25	5	54056.3	53366.9	-275.759
110	340	92557	266	25	7.5	54182.1	53713.3	-187.52
110	340	92629	268	25	10	54346.3	53791.5	-221.92
110 110	340 340	92649	270	25	12.5	54393.6	53825.6	-227.2
	340	92708	272	25 25	15	54345.4	53847.8	-199.041
110 110	340	92727 92758	274 276	25 25	17.5 20	54299.2	53928.4	-148.319
110	340	92814	278 278	25 25	20 22.5	54324.2 54400.5	54081.3	-97.159
110	340	92835	280	25 25	22.5 25	54400.5 54456.3	54234.8	-66.28 -44.2
110	340	92851	282	25 25	27.5	54513.2	54345.8 54435.8	-30.959
110	340	92908	284	25	30	54573.8	54523.5	-20.12
111	340	93007	286	27.5	0	54572.6	52792.8	-20.12 -711.92
111	340	93027	288	27.5	2.5	54190.8	52930.4	-504.159
111	340	93046	290	27.5	5	54290.3	53148.6	-456.68
111	340	93112	292	27.5	7.5	54522.5	52475	-819
111	340	93146	294	27.5	10	54769.4	53783.9	-394.2
111	340	93210	296	27.5	12.5	54901.1	53848.9	-420.88
111	340	93250	298	27.5	15	54589.3	53583.7	-402.241
111	340	93309	300	27.5	17.5	54327.6	53524.6	-321.2
111	340	93331	302	27.5	20	54252.8	53831	-168.72
111	340	93351	304	27.5	22.5	54304.2	54039.8	-105.759
111	340	93412	306	27.5	25	54400.8	54256.4	-57.759
111	340	93429	308	27.5	27.5	54478.8	54384.9	-37.559
111	340	93450	310	27.5	30	54563.1	54514.4	-19.48
112	340	93653	312	30	0	54896.1	52033.8	-1144.92
112	340	93721	314	30	2.5	54620.7	52858.5	-704.88
112	340	93743	316	30	5	52211.8	53461.9	500.041
112	340	93812	318	30	7.5	52077.2	53941.8	745.841
112	340	93843	320	30	10	55401.6	54292.1	-443.8
112	340	93908	322	30	12.5	46464.7	54533.4	3227.481
112	340	93941	324	30	15	52070.1	53428.9	543.52
112	340	94009	326	30	17.5	54636.8	53131.4	-602.159
112	340	94036	328	30	20	54277	53435.3	-336.68
112	340	94054	330	30	22.5	54198.9	53818.6	-152.12
112	340	94112	332	30	25	54344.4	54160.3	-73.641
112	340	94132	334	30	27.5	54451.1	54346.4	-41.88
112	340	94154	336	30	30	54545.2	54492.4	-21.119

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

SOIL GAS SURVEY RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

OPERATIONAL TECHNOLOGIES CORP.

LOCATION: ANGS - ST. LOUIS, MO.

PROJECT# 1315105

DHL Project #941206T2

BTEX BY EPA MODIFIED 8020 AND TPH BY MODIFIED 8015 ANALYSIS OF SOIL VAPOR

SAMPLE NUMBER	DATE ANALYZED	TPH (ppmV)*	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYLBENZ (ug/L)	XYLENES (ug/L)
SGS-1	12/07/94	ם	ND	<i>א</i> D	ND	ND
SGS-2	12/07/94	ND	ND	ND	ND	ND
SGS-3	12/07/94	ND	ND	ND	ND	ND
SGS-4	12/07/94	ND	ND	ND	ND	ND
SGS-5	12/07/94	ND	ND	ND	ND	ND
SGS-6	12/07/94	17	ND	ND	ND	ND
SGS-7	12/07/94	ND	ND	ND	ND	ND
SGS-8	12/07/94	ND	ND	ND	ND	ND
SGS-9	12/07/94	ND	ND	ND	ND	ND
DETECTION LIM	IT	10	1	1	1	1

ND INDICATES NOT DETECTED AT LISTED DETECTION LIMITS

* INDICATES CONCETRATION EXPRESSED AS HEXANE

ANALYSES PERFORMED ON-SITE IN DHL'S TNRCC CERTIFIED MOBILE LAB

ANALYSES PERFORMED BY: Scott Schroeder Son Scare

DATA REVIEWED BY: Allan Cobb

LOCATION: ANGS - ST. LOUIS, MO.

PROJECT# 1315105

DHL Project #941206T2

BTEX BY EPA MODIFIED 8020 AND TPH BY MODIFIED 8015 ANALYSIS OF SOIL VAPOR

SAMPLE NUMBER	DATE ANALYZED	TPH (ppmV)*	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYLBENZ (ug/L)	XYLENES (ug/L)
SGS-24	12/06/94	ND	אD	ND	חת מא	ND
SGS-25	12/06/94	ND	ND	ND	ND	ND
SGS-26	12/06/94	33	ND	ND	ND	ND
SGS-27	12/06/94	ND	ND	ND	ND	ND
SGS-28	12/06/94	ND	ND	ND	ND	ND
SGS-29	12/06/94	ND	ND	ND	ND	ND
SGS-30	12/06/94	ND	ND	ND	ND	ND
SGS-31	12/06/94	ND	ND	ND	ND	ND
SGS-32	12/06/94	ND	ND	ND	ND	ND
SGS-33	12/06/94	2202	ND	ND	ND	ND
SGS-34	12/06/94	37	ND	ND	ND	ND
SGS-35	12/06/94	ND	ND	ND	ND	ND
SGS-36	12/06/94	244	ND	ND	ND	ND
SGS-37	12/06/94	ND	ND	ND	ND	ND
SGS-38	12/06/94	13	ND	ND	ND	ND
SGS-39	12/06/94	ND	ND	ND	ND	ND
SGS-40	12/06/94	ND	ND	ND	ND	ND
SGS-41	12/06/94	ND	ND	ND	ND	ND
DETECTION LIMI	T	10	1	1 	1	1

ND INDICATES NOT DETECTED AT LISTED DETECTION LIMITS

* INDICATES CONCETRATION EXPRESSED AS HEXANE

ANALYSES PERFORMED ON-SITE IN DHL'S TNRCC CERTIFIED MOBILE LAB

ANALYSES PERFORMED BY: Scott Schroeder Schroeder

DATA REVIEWED BY: Allan Cobb

OPERATIONAL TECHNOLOGIES CORP.

LOCATION: ANGS - ST. LOUIS, MO.

PROJECT# 1315105

DHL Project #941206T2

BTEX BY EPA MODIFIED 8020 AND TPH BY MODIFIED 8015 ANALYSIS OF SOIL VAPOR

SAMPLE	DATE	TPH	BENZENE	TOLUENE	ETHYLBENZ	XYLENES
NUMBER	ANALYZED	(ppmV)*	(ug/L)	(ug/L)	(ug/L)	(ug/L)
SGS-10	12/06/94	ND	ND	ND	ND	ND
SGS-11	12/06/94	ND	ND	ND	ND	ND
SGS-12	12/06/94	1371	ND	8.7	4.0	22.5
SGS-13	12/06/94	ND	ND	ND	ND	ND
SGS-14	12/06/94	ND	ND	ND	ND	ND
SGS-15	12/06/94	ND	ND	ND	ND	ND
SGS-16	12/06/94	ND	ND	ND	ND	ND
SGS-17	12/06/94	<i>33</i>	ND	ND	ND	ND
SGS-18	12/06/94	13	ND	ND	ND	ND
SGS-19	12/06/94	ND	ND	ND	ND	ND
SGS-20	12/06/94	ND	ND	ND	ND	ND
SGS-21	12/06/94	ND	ND	ND	ND	ND
SGS-22	12/06/94	ND	ND	ND	ND	ND
SGS-23	12/06/94	ND	ND	ND	ND	ND
DETECTION LIM	IT	10	1	1	1	1

ND INDICATES NOT DETECTED AT LISTED DETECTION LIMITS

* INDICATES CONCETRATION EXPRESSED AS HEXANE

ANALYSES PERFORMED BY: Scott Schroeder

ANALYSES PERFORMED ON-SITE IN DHL'S TNRCC CERTIFIED MOBILE LAB

DATA REVIEWED BY: Allan Cobb May Coll

OPERATIONAL TECHNOLOGIES CORP.

LOCATION: ANGS - ST. LOUIS, MO.

PROJECT# 1315105

DHL Project #941206T2

QUALITY CONTROL CHECK FOR TPH AND BTEX - % ACCURACY

SAMPLE NUMBER	DATE ANALYZED	TPH (ppmV)*	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYLBENZ (ug/L)	XYLENES (ug/L)
PROBE BLANK	12/06/94	ND	ND	D.	ND	ND
QCC	12/06/94	99	98	97	97	97
QCC	12/06/94	98	90	90	90	90
occ	12/06/94	99	88	87	86	93
PROBE BLANK	12/07/94	ND	ND	ND	ND	ND
QCC	12/07/94	104	102	104	105	106
QCC	12/07/94	98	93	92	<i>92</i>	91

ND INDICATES NOT DETECTED AT LISTED DETECTION LIMITS

* INDICATES CONCETRATION EXPRESSED AS HEXANE

ANALYSES PERFORMED ON-SITE IN DHL'S TNRCC CERTIFIED MOBILE LAB

ANALYSES PERFORMED BY: Scott Schroeder

DATA REVIEWED BY: Allan Cobb Man Coff

10805 Metric Boulevard • Austin, TX 78758 Phone (512) 835-9299 • Fax (512) 835-9297

CHAIN-OF-CUSTODY

CLIENT OF EKATIES NAT TECHNOLO GIES	المحادث	4		1000 GIE	M	- 1	— DATE: 12/9/94	PAGE	Jo-	
DHESS: 1/00 /	ĺ	100 T	70 5	1001 410 SUATE 230	- 1	MAMBORO / 1826	DHL PHOJECI #:	74/206 72		ļ
PHONE: 210 - 731-000	31-00	an		FAX:	10-	210-731-000 8	LOCATION: ANG-S	ST. COULS, MO.		- 1
CLIENT PROJECT #: J31らいら	31570	6	PRO	PROJECT MANAGER:	ER:	EARL FACUSA	COLLECTOR:	Wordsmy		
Sample I.D.	Depth Time		Sample Type (Container Type	SISTIMAN	(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	SQ1	FIELD NOTES	Total Number of Containers	Laboratory Note Number
PROBE BLANK	30	325	次 2	0830645 200c G46551804 X	Ž				_	
565-1	s' aby	75			×	×			-	
56-5-2	5,	යහ			×	×			_	
56-5-3		280			×	×				
565-4	5, 0800	3			X	X				
36.5-5		25		-	×	×			1	
3-5-5		9			X	×			-	
6-5-0		1,5			×	×			_	
565-8	51 020	22			×	×			_	
5-		\$2,60	_	_>	×	×				
		-								
RELINQUISHED BY: (Signature)		DATE/TIME		RECEIVED BY: (Signature)	(Signatu	re) DATE/TIME	SAMPLE RECEIPT	LABORATORY NOTES:		
On White	46/1/21		0938	1	Service Contraction	12/18/058	TOTAL NUMBER OF SAMPLES			
ED B		DATE/TIME			(Signatu	<u>a</u>	CHAIN OF CUSTODY SEALS Y/N/NA			
							SEALS INTACT? Y/N/NA			
	SAMPLE	: DISPC	SAL I	SAMPLE DISPOSAL INSTRUCTIONS	S		RECEIVED GOOD COND./COLD			
THO D	□ DHL DISPOSAL @ \$4.00 each	@ \$4.00	each	□ Return	0	□ Pickup	NOTES:			
										l

CHAIN-OF-CUSTODY

10805 Metric Boulevard • Austin, TX 78758 Phone (512) 835-9299 • Fax (512) 835-9297

CLIENT: OFFIATIONAL	記 4		SHA	ICHNOLDIGIES	2000	D)	<u> </u>	DATE: 12/6/57	7 P	PAGE (
ADDRESS: 4100	N.W.		400 P	3/Ins' 01h	75 230	30 Sm Amoralia		DHL PROJECT #: 79/26	141206 72			
PHONE: 20-731-000	21-0	000		FAX:	210 - ;	210-731-6008		LOCATION: ANGS	S. COUTS	Mo.		
CLIENT PROJECT #: 13/5-105	13/5.	105	PR	PROJECT MANAGER:	W	EARL PARKER		Don	WINSTAN	-		
Sample I.D.	Depth	Time	Sample Type	Container Type	6 (1) \ (2) \ (3)	8/100 to	000000	S(2) S(2)		FIELD NOTES	Total Number of Containers	Laboratory Note Number
565-24	Ì	3635	24.5	GAS 200c CHRS/104X)	
565-25	4	0550	-		×	×					_	
56-5-26	8	1005			K	×					_	
565-27	'n	0,001			*	×					_	
SG-5-28	Ì	Shal			×	*					-	
56-29	7	1055			×	×					_	
505 -30	۶,	1105		-	×	×					-	
PROBE BLANK	1	6539			×	×					-	
545-31	Ŋ	0211			メ	×						
568-21	12	123			×	×					_	
565-22	Ś	1255			×	×						
30-5-25	5,	1295	_		×	ス					_	
565-20	محرر	(322)			×	×						
865-11	5.	136			X	又						
455-14	يح	1340			X	丈					-	
56.5 -13	Š	1350			,X	×					_	
265 - 17	12	1335			メ	X						
31 - 5-28	7	1355	~	~	ر ک	<u></u>					_	
RELINQUISHED BY: (Signature)	ture)	DATE/TIME	ME	RECEIVED BY: (Signature)	(Signature,) DATE/TIME		SAMPLE RECEIPT	LABORATORY NOTES:	VOTES:		
Then hat	7 15	12/6/94	1630	Lay Sur	200	12/4/84 1630	TOTAL N	TOTAL NUMBER OF SAMPLES				
RELINQUISHED BY: (Signature)	ture)	DATE/TIME	ME	RECEIVED BY: (Signatur	(Signature)	`	CHAINC	CHAIN OF CUSTODY SEALS Y/N/NA	· · · · · · · · · · · · · · · · · · ·			
							SEALS II	SEALS INTACT? Y/N/NA				
	SAN	APLE DIS	SPOSAL	SAMPLE DISPOSAL INSTRUCTIONS	S S		RECEIVE	RECEIVED GOOD COND./COLD				
IO LI	1L DISPC	□ DHL DISPOSAL @ \$4.00 each	4.00 each	□ Retura	□ Pic	Pickup	NOTES:					

10805 Metric Boulevard • Austin, TX 78758 Phone (512) 835-9299 • Fax (512) 835-9297

CHAIN-OF-CUSTODY

d				Laboratory Note Number																_	_							
Л Р				Total Number shers	_	-		-	_	-	-	_	1		~	_	-	-										
8				FIELD NOTES																		'n						
PAGE		30.		FIELD																		LABOHATOHY NOTES:						
			•																			AIOHY						ŀ
		3	ZZIV																			LABOH						
	DHL PROJECT #: 94/120677	LOCATION: 177065 - ST. LOUES	DON WINSTEN																									
	412	7	S	Costi de la costida de la costida de la costi de la costi de la costi de la costida de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costi de la costida de la costida de la costi de la costi de la costi de la costitucia de la costitucia de la costitucia de la costitucia del la costitucia de la costitucia de la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la costitucia del la c																	7		-	NA A				
24	#	7	2	0000 0000 0000 0000 0000 0000 0000 0000 0000																		CEIPT	SEZ	TS Y/N/		согр		
7/6/	JECT 4	اح ا	اننہ	K AND NOW																		SAMPLE RECEIPT	F SAMF	DY SEA	N/NA	COND.		
DATE: 12/6/57	L PRO	CATIOI	COLLECTOR:	18/6/																		SAMI	TOTAL NUMBER OF SAMPLES	CHAIN OF CUSTODY SEALS Y/N/NA	SEALS INTACT? Y/N/NA	RECEIVED GOOD COND./COLD		
Δ.	품 	2	8	4 6 18																			AL NUN	IN OF	TS INT	EIVED	ES:	
				000000000000000000000000000000000000000										• • • • • • • • • • • • • • • • • • • •									- 1	- 1	SEA	REC	NOTES:	-
	5226	_	7	0100100 407																		M	1/2	ME				
	78	-731-0008	EARL PACKED	Seg Sig Haj																		DATE/TIME	10	DATE/TIME				
CORP	B. Z.	131-	, 18H	CONTRACTOR OF THE PROPERTY OF	メ	X	×	×	X	¥	X	×	×	~	٦	ゞ	×	×	×			(e)	12	1			□ Pickup	
ð	Actual	7- 7	## 	THING	X	×	*	X	X	メ	X	又	X	X	×	×	×	×	B		_	Signature)	72	Signatur		(0	0 0	
3	£	FAX: 20	PROJECT MANAGER:	Туре	Dec GASS SKOW																	RECEIVED BY: (Sign	19	ED BY		SAMPLE DISPOSAL INSTRUCTIONS	turn	
-0 GE	6730	. Y	ECT M	Container Type	S. S. S.														-			RECEIVE	NA NA	RECEIVE		STRUC	□ Return	
Arre	240		PROJ		ટૂં ય																	_	ν	_		SAL IN	ach	
(EC	410			Sample Type	15 PO	\ \	<u>ل</u>	૦		e	\ \	1	9	2	2	1	7		2 4			TIME	1630	DATE/TIME		SPOSIC	\$4.00 6	
ft	Too	9	10%	Time	1/26	1415	1425	1430	T 0	6251	1535	757	1600	1540	1555	1605	3	6/0	11.20			DATE/TIME	16/9%	DATE,		APLE I	SAL @	
TONI	<u>×</u>	000	1315	Depth	Ŋ	১	5	51	5,5	کر	5	رم	ìs	31	21	کر	41	کا	か			ure)	121			SAN	DHL DISPOSAL @ \$4.00 each	
44.7	00	731.	T# TC																			: (Signat	met	: (Signat			Ha 🗆	
の容	7	-01%	ROJE	Sample I.D.	0	2	h	ۍ.		2	-33	12	36	9	1	28	-39	240	14-	į		HED BY	3	HED BY				
CLIENT: UPERATION AL TECHTOLOGICES	ADDRESS: 4/60 N, W. LOP 410, SUCKEZED STANFAMILIA, TO. 78219	PHONE: 20-731-000	CLIENT PROJECT #: 1315105	Samp	565-10	56-5-12	51-5-5	81 - 5-25	56-5-16	55-32		١.	1	56-5-	١.	555-	8.55	ا ا	14-5-41			RELINQUISHED BY: (Signature)	4	RELINQUISHED BY: (Signature)				
김	AD	Ŧ	C		12	SG	ঙ	3	17	B	25%	\ \frac{1}{2}	SS	56	×	(V)	B	Ŋ	V			RE	بح	띪				

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

SOIL BORING LOGS

THIS PAGE INTENTIONALLY LEFT BLANK

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING Z-001PZ

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/08/94

Sampling Method:

Split-Spoon

Depth Drilled:

20.0 ft. BLS

Depth To Water:

15.0 ft. BLS

Date Measured:

12/09/94

Surface Elevation:

471.67 ft.

Drilli	ing Me	thod:	H	ollow St	em Auger				
] <u>:</u>	=	iry.	S	ບ		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID ppm	ATHA ppm	uscs	
-	2 1 1	80	X		Dark brown and brown sandy clay loam with gravel fragments, slightly moist.	0.0	-	GW	
5 -	2 3 4	100	X		Brown to dark brown, slightly mottled very fine sandy silt, cohesive, slightly moist.	0.0	-	ML	
10	2 2 2 2	100	X		Brown silt, little very fine sand, cohesive, very slightly plastic, moist.	0.0	-	ML	
15 —	2 3 4	100	X		Brown, silt and clayey silt, small rounded gravel, wet on outside, slightly moist inside, may have penetrated a small water interval perched atop a silt clay layer.	0.0	-	ML	
25 —	13 2 1	80	X		Boring Terminated at 20.0 ft. Bedrock Confirmed by HSA Refusal. Piezometer Not Constructed.	0.0	-		
30									

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING Z-002PZ

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/07/94

Sampling Method:

J.

Split-Spoon 29.5 ft. BLS

Depth Drilled:
Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

447.67 ft.

Drilli	ng Me	thod:	H	lollow St	em Auger				·
·	_	ry		۵)		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	uscs	
De	B	% F	Š	g		ppm	ppm		
	-		X	000	Gravel road base material.	-	-	GW	
	-								
_	2 3	50	X		Light to dark brown silt and silt loam with small gravel, slightly cohesive, slightly moist.	0.0	_	GM	
- - -	5 4 3 6	40	X		Brown sandy silt, very fine sand and silt, cohesive and slightly moist.	0.0	-	ML	
10 - - -	- 2 2 6	80	X		Brown sand and silty sand, slightly cohesive, slightly moist.	0.0	-	ML	
15 		100	X		Brown silt and sandy silt, very fine sand, moist, cohesive, little clay.	0.0	-	ML	
20 -	₂	100	X		Light brown silt and very fine sand, slightly cohesive, very moist.	0.0	-	ML	
25 – –	1 2	100	X		Brown silt and fine sand with caliche and limestone fragments at bottom, wet.	0.0	_	GM	
	1 1 4	10	X			0.0	-	GM	
30 - - -	19				Boring Terminated at 29.5 ft. Bedrock Confirmed by HSA Refusal. Piezometer Not Constructed.				

PTECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING Z-003PZ

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/08/94

Sampling Method:

Split-Spoon

Depth Drilled:

16.2 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Flevation

Not Obtained

Date Dr Drilling			12/08/94 Hollow Si	tem Auger	Surface Elevation: No	t Obtain	ed		
	Þ	,				FI	ELD SC	REENI	1G
Depth (ft.)	Diows/0	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	USCS	
-	6	-	9,9,0			ppm	ppm		
	3 80 3 5	,		Brown silt and very fine sand with gravel (road base) to 3.0	, cohesive, slightly moist of the BLS.	0.0	-	GM	
5 — 3	3			Brown sandy silt, very fine sa moist, very slightly plastic, lit	and, cohesive, slightly ttle clay.	0.0	-	ML	
10 - 2	2	0 \		Brown sandy silt, very fine sa slightly moist.	and silt, cohesive,	0.0	-	ML	
15 — 2 - 1 - 20 —	2 60			Brown sandy silt and clayey s bedrock (limestone) at 16.2 ft Boring Terminated Bedrock Confirmed by HSA Piezometer Not Confirmed.	at 16.2 ft. BLS.	0.0	-	ML	

$\overline{\mathbf{E}}$ **OPERATIONAL TECHNOLOGIES** CORPORATION

LOG OF BORING A-001BH

Project No.:

1315-105

Logged By: Drilling Co.:

Driller:

Hart Environmental

Date Drilled:

Max Tinnin 12/14/94

Earl Parker

Depth Drilled:

California Split-Spoon

Sampling Method:

23.0 ft. BLS

Depth To Water:

20.0 ft. BLS

Date Measured:

12/14/94

Surface Elevation:

457.0 FT.

Drilli	ng Me	thod:	H	ollow St	em Auger	 			
.	=	ıry	S	ن		FI	ELD SC	REENING	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID ppm	ATHA ppm	uscs	
	-		M	0.0000000000000000000000000000000000000	Brown to black silt, gravel fill, mostly gravel and cement blocks, hard, dry.	-	-	GW	
5 - - - - -	3 - 3	100			Brown to dark brown sandy silt, cohesive and slightly moist.	0.0	0.0	ML	
10 - - - -	3 3 4	100			Brown to dark brown, slightly mottled sandy silt, cohesive, slightly moist.	0.0	0.0	ML	
15 — — — —		100	X		Brown silt and sandy silt, little clay, slightly cohesive, slightly plastic, moist.	0.0	0.0	ML	
20 - -	2 2 4	100			Brown sandy silt, very fine sand, silt and little clay, slightly plastic, cohesive and wet.	0.0	0.0	ML	
25 — — — —					Boring Terminated at 23.0 ft. Bedrock Confirmed by HSA Refusal.	-			

TECH

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING A-002BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/14/94

Sampling Method:

California Split-Spoon

Depth Drilled:

21.5 ft. BLS

Depth To Water:

19.0 ft. BLS

Date Measured:

12/14/94

Surface Elevation:

456.8 FT.

Drilling Method: Hollow Stem Auger

Drilli	ng Me	thod:	Н	ollow St	em Auger					
£.	F_	ery	S	၁			FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	USCS	
Dep	Blo	% R	Sa				ppm	ppm		
	2 3 3	70			Dark brown, hard, gravelly sdry.	sandy silt fill, cohesive,	0.0	0.0	GW	
5 —	₂ 4 6	100			Brown, silty sand and silt, coplastic, very slightly moist.	hesive, very slightly	0.0	0.0	ML	
10 - - - -	- 3 4 3	100	X		Brown silt and very fine sand silt, slightly cohesive, slightly	ly silt, light brown to tan y moist.	0.0	0.0	ML	
15 - - - -	2 2 2 3	100	X		Brown silt and very fine sand cohesive, moist.	ly silt, some clay, plastic,	0.0	0.0	ML-CL	
20 —	3 4 11	100			Brown sandy silt and clay, vowet. Boring Termina Bedrock Not Encountered.		0.0	0.0	ML-CL	
25 — — — —										

PTECH OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING A-003BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled: Drilling Method: Hollow Stem Auger

12/14/94

Sampling Method:

California Split-Spoon

Depth Drilled:

16.5 ft. BLS

Depth To Water:

16.0 ft. BLS

Date Measured:

12/14/94

Surface Elevation:

456.5 FT.

Dilling Mic	catou.	- A	LUIIUW SI	iem Auger			
ft.)		es s	၂	. :	FI	ELD SC	REENING
Depth (ft.) Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID ppm	ATHA ppm	USCS
 				Brown to reddish-brown to black gravel silt and sand fill material, hard, dry.	-	-	GW
5 3 4	80			Brown to black silt and sandy silt with gravel fill, hard, dry.	0.0	0.0	ML
10 3 5 5	100			Brown sandy silt and very fine sand, slightly plastic, slightly cohesive, slightly moist.	0.0	0.0	ML
20	100			Brown sandy silt and clay, very cohesive, very plastic and wet. Boring Terminated at 16.5 ft. Bedrock Not Encountered.	0.0	0.0	ML-CL

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING B-001BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/13/94

Sampling Method:

California Split-Spoon

Depth Drilled:

31.5 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

453.7 FT.

Date I Drillir				2/13/94 [ollow St	tem Auger	Surface Elevation: 453.7 F1.			
							FI	ELD SC	REENING
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID ppm	АТНА ppm	USCS
5 -	5 4 4 4 6 7	30 70	X		Dark brown fill material, grabrown sandy silt, very fine samoist.	velly, loose, dry, some	0.0	- 13.9	GW GW
10 -	7 22 23	70			Brown fine sandy silt with so cohesive, slightly moist.	me clay, slightly plastic,	0.0	0.0	ML
15 -	- 2 2 4	100	X		Brown very fine sandy silt wiplastic, cohesive and slightly	ith little clay, slightly moist.	0.3	0.0	ML
25 -	- 4 - 15 8 2 3 2	100	X		Brown very fine sandy silt wis slightly plastic, moist.	ith little clay, cohesive,	0.7	0.0	ML ML
30	7 14 -	80			Brown, very fine sandy silt very cohesive, moist, bottom with limestone fragments. Boring Termina Bedrock Confirmed by HSA	caliche, moist, tan with ted at 31.5 ft.	0.0	0.0	ML-CL

$\mathbf{E} \mathbf{C} \mathbf{H}$ OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING B-002BH

Project No.:

1315-105

Earl Parker

Logged By: **Drilling Co.:**

Hart Environmental

Driller:

Max Tinnin

Date Drilled: Drilling Method. Hollow Stem Auger

12/13/94

Sampling Method:

California Split-Spoon

Depth Drilled:

30.5 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

454.6 FT.

Drilli	Drilling Method: Hollow Stem Auger								
t.)	.	ery	ß	່ ູ		FI	ELD SC	REENING	ř
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	uscs	
Dep	Blo	% R				ppm	ppm		
_	2 2 4	100			Brown sand and gravel (fill) rock fragments, hard, dry.	0.0	0.0	GW	
5 - 		100			Brown, sandy silt, mostly very fine sand and silt, cohesive, slightly moist.	0.0	0.0	ML	
10 -	2 3 4	100	X		Brown sandy silt, cohesive, moist.	0.0	0.0	ML	
15 - - -	3 3 4	100	X		Brown sandy silt, fine sand, silty sand, wet, slightly cohesive.	0.0	0.0	ML	`
20 -	3 3 4	100	X		Brown sandy silt, very little clay, slightly plastic, slightly cohesive, slightly moist.	0.0	0.0	ML	
25 - - -	3 3 4	100	X		Brown, fine sandy silt with some clay, plastic, cohesive, moist.	0.0	0.0	ML-CL	į
30 - 	7 17 -	100			Brown sandy silt with some clay, limestone fragments, very cohesive, plastic, wet. Boring Terminated at 30.5 ft. Bedrock Confirmed by HSA Refusal.	0.0	0.0	ML-CL	

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING B-003BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/13/94

Sampling Method:

California Split-Spoon

FIELD SCREENING

Depth Drilled:

30.0 ft. BLS

Depth To Water:

28.3 ft. BLS

Date Measured:

12/13/94

Surface Elevation:

455.2 FT.

L	Drilli	ing Me	ethod:	H	lollow St	tem Auger
	pth (ft.)	lows/6"	Recovery	amples	raphic	DESCRIPTION OF MATERIALS

=	35	co l	ပ	ပ္				
Blows/6	% Recove	Sample	Graphi	DESCRIPTION OF MATERIALS	PID ppm	ATHA ppm	USCS	
8 7 8	100			Dark brown gravel and silt fill, cohesive, dry, hard (fill material).	0.0	0.0	GW	
3 5 4	80			Brown sandy silt, hard black silt and gravel (fill), dry.	0.0	0.0	GW	
3 4 3	100	X		Brown sandy silt with little clay, slightly plastic, cohesive, wet interval, mostly moist.	0.0	0.0	ML	
4 4 5	100	X		Brown to tan silt and clayey silt, mottled gray silty clay, very plastic, cohesive and moist.	0.0	0.0	ML-CL	
3 4 4	100			Light brown to tan silt, and clayey silt, slightly mottled, very plastic. cohesive, and very moist.	0.0	0.0	ML-CL	
3 3 3	100			Light brown to tan silt and silty clay, very slightly mottled, very plastic, saturated.	0.0	0.0	ML-CL	
				Boring Terminated at 30.0 ft. Bedrock Not Encountered.				
	7 8 3 5 4 4 3 4 4 5	8 100 7 8 8 3 80 5 4 100 4 3 100 4 5 100 4 4 100 4 5 100 4 4 100	8 100 7 8 8 80 3 80 5 4 100 4 3 100 4 4 5 100 4 4 100 4 4 100 4 4 100 4 3 100	8 100	Brown sandy silt, hard black silt and gravel (fill), dry. Brown sandy silt with little clay, slightly plastic, cohesive, wet interval, mostly moist. Brown to tan silt and clayey silt, mottled gray silty clay, very plastic, cohesive and moist. Light brown to tan silt, and clayey silt, slightly mottled, very plastic. cohesive, and very moist. Light brown to tan silt and silty clay, very slightly mottled, very plastic, saturated. Boring Terminated at 30.0 ft.	Brown sandy silt, hard black silt and gravel (fill), dry. Brown sandy silt with little clay, slightly plastic, cohesive, wet interval, mostly moist. Brown to tan silt and clayey silt, mottled gray silty clay, very plastic, cohesive, and very moist. Light brown to tan silt and silty clay, very slightly mottled, very plastic, saturated. Boring Terminated at 30.0 ft.	Brown sandy silt, hard black silt and gravel (fill), dry. Brown sandy silt with little clay, slightly plastic, cohesive, wet interval, mostly moist. Brown to tan silt and clayey silt, slightly mottled, very plastic, cohesive, and very moist. Light brown to tan silt and silty clay, very slightly mottled, very plastic, saturated. Boring Terminated at 30.0 ft.	Brown sandy silt, hard black silt and gravel (fill), dry. Brown sandy silt with little clay, slightly plastic, cohesive, wet interval, mostly moist. Brown to tan silt and clayey silt, mottled gray silty clay, very plastic, cohesive, and very moist. Light brown to tan silt, and clayey silt, slightly mottled, very plastic, cohesive, and very moist. Light brown to tan silt and silty clay, very slightly mottled, very plastic, saturated. Boring Terminated at 30.0 ft.

O P T E C H

OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING B-004BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin 12/14/94

Date Drilled:
Drilling Method

Drilling Method: Hollow Stem Auger

Sampling Method:

California Split-Spoon

Depth Drilled:

31.5 ft. BLS

Depth To Water:

28.0 ft. BLS

Date Measured:

12/14/94

Surface Elevation:

455.6 FT.

Drilli	ng Me	thod:	H	ollow St	em Auger	T	- 		
:	7.6	ery	Si	ည		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	uscs	
Dep	Bic	% R	Sa			ppm	ppm		
	3 4 4	70			Brown to dark brown, silt and gravel fill material, hard, dry.	0.0	0.0	GW	
5 - - - - -	7 6 6	100	X		Brown to dark brown silty sand, gravel, hard, dry, cohesive.	2.0	0.0	ML	
10 -	3 3 3	100			Brown, very fine sandy silt, slightly cohesive, slightly moist.	2.7	0.0	ML	
15 - - - - -	3 3 4	100	X		Brown to dark brown and black, mottled, sandy silt with some clay, very cohesive, slightly moist.	0.3	0.0	ML-CL	
20 -	3 2 2	100			Light brown to tan silt and sandy silt, moist, cohesive, very slightly plastic, moist.	0.0	0.0	ML-CL	
25 —					Brown sandy silt and clay, plastic, cohesive, and wet.	0.0	0.0	ML-CL	
30 —	2 2 2	100	X		Brown sandy silt, very plastic, very cohesive, very wet, water line shows water at 28.0 ft. BLS, clay. Boring Terminated at 31.5 ft. Bedrock Not Encountered.	0.0	0.0	ML-CL	

PTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING C-001BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/12/94

Sampling Method:

California Split-Spoon

Depth Drilled:

5.0 ft. BLS

Depth To Water: Date Measured:

NA NA

Surface Elevation:

470.2 FT.

Drill	Drilling Method: Hollow Stem Auger									
t.)	211	ery	S	c			FI	ELD SC	REENIN	1G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS		PID	АТНА	uscs	
De	BI	1 %	Š	9			ppm	ppm		
_	2 3 5	80			Brown to dark brown sandy large rock fragments.	and gravelly silt (fill) with	0.0	-	GM	
	-		X		Could not obtain a sample du		_	-		
5 —					Boring Termin Bedrock or Boulders Encoun	ated at 5.0 ft. tered.				
_										
	:									
10 —	_									
_										
15 —	_									
					•					
_										

OPTECH OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING C-002BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/12/94

Drilling Method: Hollow Stem Auger

Sampling Method:

California Split-Spoon

Depth Drilled:

13.5 ft. BLS

Depth To Water:

NA

Date Measured: **Surface Elevation:** NA

470.3 FT.

					tem Auger	FIELD SCREENING				
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	USCS		
ğ	_ æ	%	S	9		ppm	ppm			
_	2 2 4	100			Brown silt and very fine sand, slightly cohesive, slightly moist.	2.3	0.0	ML		
5 - 5 - -	2 3 5	100			Brown sandy silt, very fine sand, silt with little clay, slightly moist, cohesive.	0.5	5.0	ML		
10 	3 7 7 4 5 8	60	X		Brown sandy silt and clayey silt, slightly plastic, cohesive, slightly moist.	0.7	17.2 9.2	ML ML		
 15 -	_				Boring Terminated at 13.5 ft. Bedrock Confirmed by HSA Refusal.					

OPTECH OPERATIONAL TECHNOLOGIES CORPORATION

LOG OF BORING C-003BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/12/94

Sampling Method:

California Split-Spoon

Depth Drilled:

7.5 ft. BLS

Depth To Water: **Date Measured:**

NA NA

Surface Elevation:

470.4 FT.

Drilling Method: Hollow Stem Auger										
							FII	ELD SC	REENIN	V G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION O	F MATERIALS	PID	АТНА	uscs	
De	B	%	S	9			ppm	ppm		
- -	2 3 5	100			Red to brown sandy silt, very little clay, slightly plastic, co	y fine sand and silt with hesive, moist.	1.3	15.0	ML	
5 —	2 3 5	100			Brown sandy silt with some of moist becoming more clay ri	ch.	0.8	23.7	ML-CL	
10 -					Boring Termina Bedrock Confirmed by HSA	ted at 7.5 FT. Refusal.				
15										
20	_									
25 -										

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING C-004BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/12/94

Sampling Method:

California Split-Spoon

Depth Drilled:

6.5 ft. BLS

Depth To Water:

NA

Date Measured:

NA

Surface Elevation:

471.1 FT.

Drilli	Drilling Method: Hollow Stem Auger									
·	=	ry	,,	e.\			FI	ELD SC	REENIN	ī G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID	АТНА	USCS	
Dep	Blo	% R	Saı				ppm	ppm		
_	5 7 6	80			Brown sandy silt, very fine s slightly plastic, slightly mois	and, little clay, cohesive,	1.5	6.8	ML	
5 —	7 50 -	60			Light brown, sandy and silty weathered limestone, moist, Boring Termin Bedrock Confirmed by HSA		1.8	183.0	ML	
10 —										
_							·			
_										
15 — —										·

T E C **OPERATIONAL TECHNOLOGIES**

CORPORATION

LOG OF BORING C-005BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/12/94

Drilling Method: Hollow Stem Auger

Sampling Method:

California Split-Spoon

Depth Drilled:

8.0 ft. BLS

Depth To Water: Date Measured:

NA NA

Surface Elevation:

470.9 FT.

Drilli	ing Me	ethod:	H	lollow St	tem Auger				
ft.)	9	ery	Se	္ပ		FIELD SCREENING		īG	
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	USCS	
De	B	%	S	Ü		ppm	ppm	-	
_	3 6 7	100			Brown sandy silt and clayey silt, loose, plastic, moist.	1.0	0.0	ML	
5 —	- ⁴ ₇ ₈	80			Brown sandy silt, very fine silt, silt with some clay, slightly plastic, cohesive, moist.	1.3	0.0	ML-CL	
_	-				Drilling through fractured, weathered, limestone bedrock. Boring Terminated at 8.0 ft. Bedrock Confirmed by HSA Refusal.	-			
10 -	_								
15 -									

$\mathbf{E} \ \mathbf{C} \ \mathbf{H}$ OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING D-001BH

Project No.:

1315-105

Sampling Method:

California Split-Spoon

Logged By:

Earl Parker

Depth Drilled:

26.8 ft. BLS

Drilling Co.:

Hart Environmental

Depth To Water:

NA

Driller:

Max Tinnin

Date Measured:

NA

Date Drilled:

12/09/94

Surface Elevation:

487.3 FT.

Drilling Method:	Hollow	Stem	Auger
-------------------------	--------	------	-------

Drilli	ing Me	thod:	H	ollow St	em Auger	ү			
(;	=	ıry	5	ر د		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION OF MATERIALS	PID	АТНА	USCS	
Dep	Blo	% R	Sa	J		ppm	ppm		
_	-		7		Gravel road base material.	-	_	GW	
	-								
-			$/ \setminus$	8,8,8 0 0					
5 —	- 3	10	\bigvee	2000	Gravel and sand (fill material), road base.	0.0	-	GW	
	9				Rock and gravel, brick fragments (fill).	_	-	GW	
	-		\bigvee	000					
- 10 - -			/						
- 10	2 3	100			Brown silt and very fine sand, mostly sandy silt, slightly cohesive, slightly moist.	0.0	-	ML	
_	5								
15 —	2 2	100			Brown silt and sand, very fine sandy silt, slightly cohesive and slightly moist.	0.0	-	ML	
 -	4				Conceive and slightly moist.				
_									
20 —	2	100		, , ,	Brown and dark brown sandy silt and silt, some very	0.0	_	ML	
-	4 6		X		fine sand, slightly plastic, cohesive and moist.				
25 –									
23 - -	3 6	100			Brown silt and clayey silt, plastic, cohesive, moist, limestone fragments (bottom).	0.0	-	ML	
_	20				Boring Terminated at 26.8 ft. Bedrock Confirmed by HSA Refusal.				
_									
<u> </u>		L						!	

OPTECH

OPERATIONAL TECHNOLOGIES C O R P O R A T I O N

LOG OF BORING D-002BH

Project No.:

1315-105

Logged By:

Earl Parker

Drilling Co.:

Hart Environmental

Driller:

Max Tinnin

Date Drilled:

12/09/94

Sampling Method:

California Split-Spoon

Depth Drilled:

22.8 ft. BLS

Depth To Water:

NA

Date Measured:

NA 400 1 ET

Surface Elevation:

488.1 FT.

	ing Me			Collow St	em Auger	Daring Tolling				
					14		FI	ELD SC	REENIN	G
Depth (ft.)	Blows/6"	% Recovery	Samples	Graphic	DESCRIPTION C	F MATERIALS	PID ppm	ATHA ppm	USCS	
	-				at 2.0 ft. BLS (PID).	fill material), slight odor	2.3	-	GW	
5 - - -	-				staining on gravel, becoming	soft at 8.5 ft. BLS.	1.5	-	GW	
10 -	4 7 17	100			Brown silt and fine sand, sar slightly moist, very slight od		9.0	_	ML	
15 -	2 3 5	100			Brown sandy silt with little c moist (steam), no odor.	lay, very slightly plastic,	6.7	-	ML ML	
25 -	4 7 17	70			Brown silt and clayey silt, confragments, cohesive, moist, Boring Termina Bedrock Confirmed by HSA	no odor. ated at 22.8 ft.	4.3	-	GM	

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

FIELD GC SCREENING RESULTS

THIS PAGE INTENTIONALLY LEFT BLANK

Field GC Data Summary 157th ACG, Jefferson Barracks ANGS, St. Louis, Missouri

					on fanta	CE) Et. Eduis, Missoull	urr		
					Concentration (ppb)	tion (ppb)			
	Sample						7	Additional Analytes	tes
Location	Interval	Benzene	Toluene	Ethylbenzene	m-,p-xylene	o-xylene	DCE	TCE	PCE
1 ppm STD	N/A	1,000	1,000	1,000	2,000	1,000	1,000	1.000	1 000
10 ppm STD	N/A	10,000	10,000	10,000	20,000	10,000	10.000	10 000	10.000
100 ppb STD	N/A	100	100	100	200	100	100	100	10,000
Air Blank	N/A	ND	ND	ND	ND	QN	S S	2	81 61
	1' BLS	ND	ND	ND	ND	ND	QN	S S	
PZ-1	15' BLS	44	ND	ND	ND	ND	QX	E S	
	20' BLS	ND	ND	QN	ND	QN	QN	2 2	di di
	1' BLS	ND	ND	ND	N	QN	Q.	2	G S
PZ-2	10' BLS	71	98	ND	ND	QN	ΩN	QN	S S
	25' BLS	ND	ND	ND	N QN	QN	QN	QN	S S
p7.3	1' BLS	ND	QN	ND	ND	ND	ND	QN	S S
1	10' BLS	QN	ND	ND	ND	ND	ND	QN	E S
	15' BLS	ND	ND	ND	QN	ND	QN	40	
	1' BLS	ND	ND	Q.	QN	ND	QN		
	3.5' BLS	ND	ND	QN	QN	QN	GN		5 5
A-001BH	10' BLS	2	QN	9	QN QN	QN			S S
	20' BLS	ND	QN	QN	₽ Q	QN		G N	5 5
	5' BLS	QN	QN	Q.	QN	E S	C V		Q !
	10' BLS	3	QN	Q Q	Ę	E C	G. C.	ON E	QN !
A-002BH	15' BLS	ND	ND	QN	L _X	2	G Z	ON E	QN
	20'BLS	QN	E S	Ç			UN	UN	QN
			7.1	QVI	UN	ND	Q.	Q.	N ON

Field GC Data Summary (Continued)
157th ACG, Jefferson Barracks ANGS, St. Louis, Missouri

					Concentration (ppb)	(qdd) uo			
							Ad	Additional Analytes	es es
Location	Sample Interval	Benzene	Toluene	Ethylbenzene	m-,p-xylene	o-xylene	DCE	TCE	PCE
	4' BLS	ND	ND	ND	ND	ND	ND	ND	ND
A-003BH	10' BLS	ND	ND	ND	ND	ND	ND	ND	ND
	15' BLS	QN	ND	ND	ND	ND	ND	ND	ND
	2, BLS	3	ND	ND	ND	ND	ND	2	101
	10' BLS	3	ND	ND	ND	ND	ND	2	8
	15' BLS	3	QN	ND	ND	ND	ND	2	4
	20' BLS	3	ND	ND	ND	ND	ND	2	2
B-001BH	24' BLS	3	ND	ND	ND	ND	ND	1	QN
	26' BLS	4	ND	ND	ND	ND	ND	ND	ND
	30' BLS	3	ND	ND	ND	ND	ND	1	ND
	0.5' BLS	3	ND	ND.	ND	ND	ND	2	ND
	5' BLS	3	ND	ND	ND	ND	ND	2	ND
	10' BLS	4	ND	ND	ND	ND	ND	2	24
В-002ВН	15' BLS	4	ND	ND	ND	ND	ND	2	8
	20' BLS	4	ND	ND	ND	ND	ND	2	ND
	25' BLS	4	ND	ND	ND	ND	ND	ND	ND
	30, BLS	5	ND	ND	ND	ND	ND	2	ND
	I' BLS	3	ND	ND	ND	ND	ND	1	ND
	5' BLS	3	ND	ND	ND	ND	ND	-	ND
110000 a	10' BLS	4	ND	ND	ND	ND	ND	2	ND
nacoo-a	15' BLS		ND	ND	ND	ND	ND	ND	ND

Field GC Data Summary (Continued)
157th ACG, Jefferson Barracks ANGS, St. Louis, Missouri

					Concentration (ppb)	(qdd) uoi			
	Samule						A	Additional Analytes	ıtes
Location	Interval	Benzene	Toluene	Ethylbenzene	m-,p-xylene	o-xylene	DCE	TCE	PCE
B-003RH	20' BLS	31	ND	ND	QN	ND	ND	QN	QN
(Continued)	25' BLS	3	ND	QN	QN	QN	ND	ND	QN
	0.5' BLS	8	4	9	ND	ND	ND	4	4
	5' BLS	9		ND	ND	ND	ND	2	ND
	10' BLS	5	23	38	25	QN	QN	47	13
B-004BH	15'BLS	14	ND	ND	ND	ND	QN	2	QN
	20' BLS	ND	ND	ND	ND	ND	QN	QN ON	ND
	25' BLS	14	ND	ND	ND	ND	QN	QN	QN
C-001BH	1' BLS	ND	ND	ND	ND	ND	ND	QN	QN
	0.5' BLS	4	1	ND	ND	ND	QN	3	107
	5' BLS	2	QN	ND	ND	ND	ND	26	549
C-002BH	10' BLS	22	ND	ND	ND	ND	ND	38	325
	11.5' BLS	2	ND	ND	ND	ND	QN	43	326
C-003BH	0.5' BLS	ND	ND	10	ND	ND	ND	ND	ND
TIGCOO-O	5' BLS	5	ND	ND	ND	ND	ND	QN	ND
C-004RH	0.5' BLS	4	1	ND	ND	ND	ND	2	ND
Contain	5' BLS	S	ND	ND	ND	ND	QN ON	2	ND
C-005BH	0.5' BLS	4	1	ND	ND	ND	QN	2	ND
TIGO S	5' BLS	4	ND	ND	ND	ND	ND	2	QN
D-001BH	15' BLS	ND	2	6	15	ND	ND	ND	ND
	18.5' BLS	ND	ND	ND	ND	ND	ND	ND	QN :

157th ACG, Jefferson Barracks ANGS, St. Louis, Missouri Field GC Data Summary (Concluded)

					Concentration (ppb)	(qdd) uo			
							PΥ	Additional Analytes	SS
Location	Sample Interval	Benzene	Toluene	Ethylbenzene	m-,p-xylene	o-xylene	DCE	TCE	PCE
D-001BH (Continued)	25' BLS	ND	ND	ND	ND	ND	ND		ND
	10' BLS	ND	ND	ND	ND	ND	ND	ND	2
D-002BH	20' BLS	ND	ND	ND	ND	ND	ND	ND	ND
	21' BLS	ND	1	ND	ND	ND	ND	7	ND
	12-7-94	2	99	ND	106	ND	ND	ND	ND
Drummed Decon	12-9-94	3	5	ND	83	ND	ND	ND	ND
Water	12-12-94	ND	243	ND	43	ND	ND	ND	ND

ppb - parts per billion.

'BLS - feet Below Land Surface.

ppb STD - parts per billion Standard.

ppm STD - parts per million Standard.

N/A - Not Applicable.

ND - Not Detected. BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes.

DCE - Dichloroethylene. TCE - Trichloroethylene. PCE - Tetrachloroethylene.

SITE: JEFFER SON BARRACKS
GAIN: 1000
CARRIER GAS FLOW: 13 m1/min.

INJECTION VOLUME: 100 u/s
GC OVEN TEMP: 40°C
ANALYSIS TIME: 500

							Conce	ntrations (pp	o)			n e na an Heriotopia
Analysis: No.	Boring	Sample Interval (ft. BLS)	Sample Mass	7		Ethyl-	m,p-		Total	1110000	itional An	
110.	100	Do	(grams)	Benzene E ////	Toluene	benzene	Xylene	o-Xylene	BTEX	DCE	 	PCE
2	100	PPB		ceedes	-	Peaks		1/	n sen	٠	Nato	displa
3	100	PPB	5AM	E NO	TE AS		2		600	sec 5	Gar	$i_1 = 100$ $i_2 = 100$ $i_3 = 100$
4	/	PPM	570	ALL	PARA	METER		ETT		170		7, 30, 3
5	100	PPB	570	100	100	300)	0				
6	100	PPB	570	1000	1000	(300	0)	1000		1000	1000	1000
7	10	PPM	570	10000	10000	(30000	30000	10 000	No Integration	10000	10000	10000
8	AIR	BLANK		ND	W Þ	ND	ND	NΔ		ND	ND	ND
9	10	PPM	570	10000	10000	`	200 j	10000		10000	16 000	10000
10	AIR	BLANK		NOD	NOD	(ALDO	ND	MDO		NOD	Ato	ND
11	PZ-2	251	10	\mathcal{N}	NO	NA	ND	MD		ND	ND	NA
12	PZ-2	10'	10	131.5	15.8	AL NO	W/O	NA NA		ND	ND	NA
13	PZ-2	/'	10	ND	N)	ΝĐ	ND	ND		$N \Omega$	N/J	ND
14	PZ-2	/′	10	ND	ND	ND	Nβ	NO	531	ND	ND	ND
15	1 PP.	11 5 74		73.2	605	(72	0)	ND		826	688	611
16	AIR	BL.ANK		ND	NB	NP	ND	NΔ		ND	ND	$\mathcal{N}\mathcal{D}$
77	P2-2	10'	10	N'D	ND	ND	Nυ	ND		$\mathcal{N}\mathcal{V}$	ND	NU
18	FZ -3	1.0'	10	ND	ND	NA	N	ND		ND	ND	NΔ
19	PZ-3	151	10	ND	ND	ND	ND	NJ		Nη	39.5	$N\Omega$
20	P2-1	15	10	44-3	ND	\sim \sim \sim	ND	NJ		ND	ND	ND

						Ana	ılytes			
Calibrat	ion Information	Benzen e	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	DCE	TOE	PCE	
5 0	Retention Time	53	108.2	2/3	213	N/A	24	69.7	148	
Ю ррь	Response	59.78	71.34	311.9	311.9	N/A	59.78	6	44.46	
	Retention Time	51.8	108.6	216.4	216.4	275.2	23.8	68.6	149	
ppm	Response	1.00	1.00	1.00	1.00	1.00	1.000	1.00	1.00	
10	Retention Time	53.2	109.3	217.2	217.2	272.5	24-6	68.8	149	
10 ppm	Response	6.89	7.10	22.5	225	2.11	7.67	6.44	7.77	

SITE: JEFFERSON BARRACKS
GAIN: 1000

CARRIER GAS FLOW: 12 m 1/min

INJECTION VOLUME: 100 µ/s
GC OVEN TEMP: 40 °C
ANALYSIS TIME: 500 secs

						in illin 1965 illi Ali illin salah ada	Сопс	entrations (pp	b)			Maringrys Maringrys
Analysis No.	Boring	Sample Interval	Sample Mass			Ethyl-		Commission of the	Total	. Friday	litional An	5 Le 2
/		(ft. BLS)	(grams)	Benzene	Toluene	benzene	Xylene	o-Xylene	BTEX	DCE	TCE	POE
<u> </u>		PPB 5	1	100	100	100	200	100		100	100	100
2	10	PM S	TU	1000	1000	1000	2000	1000		1000	1000	2000
3	10 P	en 57	0	10000	10000	10000	20000	20000		10000		10000
4	AIR	BLANK		18.3	ND	ND	ND	ND		32.3	10.2	ND
5	AIR	BLANIC		.034	ND	ND	ND	ND		.050	NO	ND
6	P2-1	1.0	10	0.11	0.63	ND	ND	NΔ		NA	0.40	ND
7	PZ-1	スロ	10	ND	0.41	ND	ND	ND		/√ Δ		
8	D-1	25	10	ND	NO	NO	ND	NO		0.18	1.20	ND
9	D-2	20	10	ND	0.69	ND	ND	ND		ND	<u> </u>	
10	D-001	18.5	10	ND	NO	ND	ND	ND		ND	0.33 ND	ND
11	100	PPB	STA	84.6	57.4	50.4	100	22./		67.3	69.1	ND 45.0
12	AIR	BLAN	VK	NO	2.3/	0.97	ND	NP		ND	ND	ND
/3	D-1	151	10	0.15	2.41	8.74	15.1	ND		ND	0.39	NS
14	D-2	10'	10	0.19	0.48	ND	ND	ND			0.65	2.08
15	C-1	1'	10	ND	ND	ND	ND	ND		ND		ND
16	D-2	21'	10	ND	1.23	ND	ND	NA			7.33	ND
17	D-2	150	10	ND	ND	ND	ND	ND				3.21
										, , ,	J. 09	

R= reintegrated

						An	alytes			
Calibra	tion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	DCE	7CE	PCE	
100 ppb	Retention Time	55.9	112.4	223	238.6	281.3	26.4	70.6	153.8	
100 pp0	Response	184.5	157.9	68.9	73.5	67.3	248	242.8	163.9	
1 ppm	Retention Time	54.6	1(1-3	223.2	238.8	281.6	24.8	70.8	157:8	
. pp.ii	Response	1.361ppm	1.049 ppm	1.329ppm	2.649994	1.024 ppm				
10 ppm	Retention Time	55.7	112.5	22 <i>3</i>	238.4	281.0		71.4	153.6	
10 ppin	Response	8.459рри	12.43ррт	12.53ppm	24.1ppm	7.765 ppm	6.55 PPM	8.377ppm	8.623ррм	

SITE: <u>JEFFERSON BARRACKS</u> GAIN:______1000

GAIN: 1000 CARRIER GAS FLOW: 12 m//mii INJECTION VOLUME: 100 µ/9
GC OVEN TEMP: 40°C
ANALYSIS TIME: 500 secs

						i my raking o ramandis	Conce	ntrations (pp	b)			e de la companya de l
Analysis		Sample Interval	Sample: Mass:			Ethyl-	т,р-		Total	Ado	litional An	alytes
No.	Boring	(ft. BLS)	(grams)	Benzene	Toluene	benzene	Xylene	o-Xylene	BTEX	DOE	TCE	POE
/	100	PPB	570	100	100	100	200	100		100	100	100
2	/	PPM	570	1000	1000	1000	2000	10000		1000	1000	1008
3	10	PPM	570	10000	10000	10000	20000	10000		10000	10000	10000
4	AIR	BLAN	15	1.33	NO	NO	NO	NO		NA	NO	NO
5	C-2	0.5'	10	3.92	1,32	ND	ND	NA		ND	2.50	105
6	C-2	10'	10	2213	0.54	ND	ND	ND		ND	37.5	325
7	C-2	51	10	1.83	0.39	NO	NS	NB		ND	26.1	549
8	C-2	11.5	10	1.69	0.34	NO	ND	ND		ND	43.4	326
9	C-3	0.5	10	0.65	ND	9.58	ND	ND		ND	NA	ND
10	100	PPB	570	70.2	57.9	46.0	77.6	39.3		64.8	55.2	35-7
71	C-3	5.0	10	4.717	0.41	ND	NP	ND		ND	ND	ND
12	AIR	BLANK		1.14	ND	NO	ND	ND		ND	ND	NP
-/3	C-3	5.0	10	4.03	0.46	ND	ND	NO		ND	1.43	MA
14	C-4	0.5	10	4.27	1.02	ND	ND	ND		ND	1.79	NA
15	C-4	5-1	10	4.15	0.68	ND	ND	NΔ		ND	ND	ND
-16	C-5	0.5'	10	4.34	1.42	ND	Nδ	ND		NA	1.56	ND
17	C-5	5.0	10	4.04	0-69	ND	ND	ND		ND	2.16	ND
18	1 PP	M 5	70	1000	1000	1000	2000	1000		1000		1000

Calibrat	tion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	DCE	TCE	PCE	
00 ppb	Retention Time	52.2	102.6	210.6	224.6		23.9	64.2	142.8	
о рро	Response	100	100	100	200	100	100	100	100	PPB's
-1 220	Retention Time	53	103.6	209	226.8	269	24.5	65.7	144	1103
ppm	Response	987.1	700.2	1.055	2./20	3.299	619.6	621.9	988.6	PPB's
10 ppm	Retention Time	53.6	104	2/2.6	226.4	269.3	25.1	66	144	7 - 7 - 3
to ppin	Response	8.972	15.05	12.71	23.8	5.972		10-39	9.807	PPME

SITE: JEFFERSON BARRACKS

GAIN: /000 CARRIER GAS FLOW: /2 ml/min INJECTION VOLUME: 100 µ/s
GC OVEN TEMP: 40°C

ANALYSIS TIME: 500 Secs

							Conce	entrations (pp	b)		ep strad	
Analysis:		Sample Interval	Sample Mass		Demonstration of the Control of the	Ethyl-			Total	e e dega	litional An	alytes
No.	Boring	(ft. BLS)	(grams)	Benzene	Toluene	benzene	Xylene		BTEX	DCE	TCE	PCE
/	100	PPB	570	100	100	100	200	100		100	100	100
2	1.	PPM	STD	1000	1000	1000	2000	1000		1000	1000	1065
3	10	PPM	STD	10000	10000	10400	20100	10000		10100	10000	10000
4	AIR	BLAN	VT	17.1	20.2	14.7	27.9	14.8		45.8		19.1
_ 5_	AIR	BLAN	K	3.14	ND	ND	ND	ND		ND	1.23	2.39
6	B-1	3.5	10.	10.6	5.48	15.5	25.9	21.2		ND		21.6
7	B-1	2.0	10	3.120	NP	ND	ND	ND		ND	1.67	101
8	B-1	10	10	3.16	0.80	ND	NO	NO		NA	1.56	
9	B-1	15'	10	2.86	0.37	ND	ND	ND		ND	1.63	
10	B-1	20'	10	2.96	0.68	ND	NA	ND		ND	1.57	1.88
11	100	PPB	570	100	100	100	200	100		100	100	100
12	AIR	BLANK	F	0.85	ND	ND	ND	ND		ND	ND	ND
13	B-1	a4	10	2.97	0.48	ND	NO	NA		NB	1.40	ND
14	B-1	26	10	3.49	0.70	ND	ND	ND			0.74	ND
15	B-1	30	10	3.42	0.55	ND	ND	ND		ND	1.43	ND
16	B-2	0.5	10	3.32	0.62	NP	ND	ND		ND	1.78	ND
17	B-2	5	10	3.17	0.48	ND	ND	ND		ND		NP
18	100	PPB	STD	100	100	100	200	100		100	100	100
19		BLANK		1.875	ND	ND	ND	NO		ND	ND	ND
20	B-2	10	10	3.689	0.91	NO	ND	ND		ND		24.4

						Ana	alytes			
Calibrat	ion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	DCE	TCE	PCE	
100 ppb	Retention Time	52.1	102.4	210.2	2252	267.4	23.2	63.6	143	
100 ppb	Response	145	113.2	61.40	58.89	25.92	138-3	168.9	66.23	······································
1 ppm	Retention Time	52.7	107.2	211.2	226	264.8	24.2	65.4	143.4	·
· ppin	Response	1.804	1.733	2.013	3.538	3.136	1.727	1.736	2.067	
10 222	Retention Time	53.8	104.4	2/3.2	227.4	269.6	25	65.6	143.7	
10 ppm	Response	7.166				6.539	7.971	5.878	17.01	** ***

SITE: JEFFERSON BARRACKS GAIN:__ 1000

INJECTION VOLUME: 100 u/s GC OVEN TEMP: 40°C

CARRIER GAS FLOW: 12 mi/min

ANALYSIS TIME: 500 secs

Analysis:		Sample Interval	Sample Mass				Concer	ntrations (ppl)	Way	itional An	alytes
No.	Boring	(ft. BLS)	(grams)	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	Total BTEX	DCE	1. 1. Car. See	PCE
21	B-2	15'	10	3.73	0.67	NO	ND	NA		ND	2.14	
22	8-2	20'	10	3.74	0.64	ND	NO	ND		ND	2.29	
23	B-2	25'	10	3.43	ND	ND	ND	NO		ND	0.91	
24	B-3	1.0	10	3.43	ND	ND	ND	ND		ND	1.36	ND
25	100	PPB	570	97.3	99.0	88.3	170.	92.8		103	100	94
26	AIR	BLAN	K	1.18	ND	NA	NA	ND		NB	NO	ND
27	B-3	5'	10	3.45	ND	ND	ND	ND		ND	1.13	ND
28	B-3	10'	10	3.79	0.46	ND	ND	ND		ND	2.08	
29	B-3	15'	10	1.22	NΩ	ND	ND	ND		ND	ND	ND
30	B-3	20'	10	30.7	ND	ND	ND	ND		ND	0.70	ND
31	B-3	251	10	2.57	ND	ND	ND	ND		ND	ND	ND
32	100 A	PB S	アカ	100	100	100	200	100		100	100	100
33	AIR	BLA	VK	1.25	ND	ND	NO	ND		ND	ND	ND
34	B-2	20'	10	4.737	0.79	ND	ND	ND		ND	2.09	ND
			·									
	l											

R = reintegrated

						An	alytes		
Calibrat	ion:Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene			
	Retention Time								2000000 est
100 ppb	Response								
	Retention Time								
I ppm	Response							· · · · · · · · · · · · · · · · · · ·	
	Retention Time								
10 ppm	Response								

OPERATOR: MARK D. HENSON

DATE: Dec 13 1994

SITE: JEFFERSON BARRACIES INJECT GAIN: 1000 GC OV CARRIER GAS FLOW: 12 m1/min ANALY

INJECTION VOLUME: 100 µ/s
GC OVEN TEMP: 40°C
ANALYSIS TIME: 500

Kilometrer Historia (18)				···	er er av av Su	Сопсе	ntrations (ppl))			
	Sample Interval	Sample Mass	No. (Nection	er vær, i s	Ethyl-	m,p-		Total			1
				-			 	BTEX		1	
• •				 							ND
											ND
			/							<u> </u>	ND
	-										ND
										NB	ND
100	PPB	STD	87.0	85			87		87	91	56
AIR	BLAN	iK	0.70	ND	ND	ND	ND		ND	ND	ND
A-2	20'	10	0.74	ND	ND	ND	ND		ND	ND	ND
A-3	4.0	10	0.72	ND	ND	ND	ND		ND	ND	ND
DECO	BH20	10 m/s	0.64	ND	ND	ND	ND		ND	NA	ND
A-3	10'		į.	ND	ND	NO	NN			ND	ND
4-3	15'	10	0.70	ND	ND	ND	ND		ND	CN	ND
100	PPB	STU	100	100	100	200	100		100	100	100
AIR	BLAN	νK	0.797	411	MA	41	ND		ND	ND	ND
DECO	12-9- WATE	R #32	*2.94 10m/s	4.82	ND	83-4	ND		ND	ND	ND
- I	12-12- WATER	7426	* 0.79 10m/s	243	ND	43.0	ND		ND.	NP	NO
	12-7-6	# 29	*1.73 icm/s	66.0	ND	106	ND		ND	ND	ND
		İ				-					
	Boring A-1 A-2 A-2 100 A1R A-2 DECON A-3 100 A1R DECON	Sample Interval Boring (R. BLS) A-1 10 A-1 1.0 A-2 5 A-2 10 A-2 15 100 PPB A-3 15 100 PPB A-1R BLAN A-3 15 100 PPB A-1R BLAN DECON H20 A-3 15 100 PPB A-1R BLAN DECON WATER	Sample Nass Boring (ft. BLS) (grams) A-1 10 10 10 A-2 5 10 10 A-2 15 10 10 A-2 15 10 10 A-3 4.0 10 A-3 4.0 10 A-3 15 10 100 A-3 A-	Sample Interval Mass Benzene A-1	Sample Interval (R. BLS) (grams) Benzene Toluene A-1 10 10 0.80 ND A-2 5 10 0.44 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND A-2 15 10 0.80 ND DECON H20 10 0.74 ND A-3 4.0 10 0.74 ND A-3 10 10 0.72 ND DECON H20 10 0.64 ND A-3 15 10 0.64 ND A-3 15 10 0.64 ND A-3 15 10 0.70 ND IOO PPB 5TD 100 100 AIR BLANK 0.797 ND DECON WATER #32 10m/s 4.82 PECON WATER #32 10m/s 243	Sample Interval (ft. BLS) (grams) Benzene Tolluene benzene A-1 10' 10 236 0.55 6.0 A-1 1.0' 10 0.80 ND ND A-2 5' 10 0.44 ND ND A-2 15' 10 0.80 ND ND A-2 15' 10 0.80 ND ND 100 PPB STD 87.0 85 92 A1R BLANK 0.70 ND ND A-3 4.0 10 0.74 ND ND DECONBH20 10mls 0.64 ND ND A-3 15' 10 0.70 100 100 A1R BLANK 0.797 ND ND DECON WATER #32 10mls 243 ND PE(ON WATER #32 10mls 243 ND	Sample Interval Mass: Boring (R: BLS) (grams) Benzene Toluene benzene Xylene A-1 10' 10 236 0.55 6.0 ND A-1 1.0' 10 0.80 ND ND ND A-2 5' 10 0.44 ND ND ND A-2 15' 10 0.80 ND ND ND 100 PPB STD 87.0 85 92 187 A1R BLANK 0.70 ND ND ND A-3 4.0 10 0.74 ND ND ND DECON H20 100 0.64 ND ND ND A-3 15' 10 0.64 ND ND ND A-3 15' 10 0.64 ND ND ND 100 PPB STD 100 100 200 A1R BLANK 0.797 ND ND ND DECON WATER #32 10m/s 4.82 ND 83.4 PELON WATER #32 10m/s 4.82 ND 83.4	Sample Interval Mass (grams) Benzene Toluene benzene Xylene o-Xylene A-1 10' 10 236 0.55 6.0 ND ND A-1 1.0' 10 0.80 ND ND ND ND A-2 5' 10 0.444 ND ND ND ND ND A-2 15' 10 0.80 ND ND ND ND 100 PPB STD 870 ND ND ND ND A-3 10' 10 0.74 ND ND ND ND A-3 10' 10 0.74 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND 100 PPB STD 100 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECONHOO 100 100 200 100 A1R BLANK 0.797 ND ND ND ND DECON WATER #22 10m/s 4.82 ND 83.4 ND PECON WATER #22 10m/s 243 ND 4/3.0 ND	Sample Interval Sample Mass (Rt. BLS) (grams) Benzene Toluene benzene Xylene o-Xylene BTEX A-1 10' 10 236 0.55 6.0 ND ND A-1 1.0' 10 0.80 ND ND ND ND A-2 5' 10 0.44 ND ND ND ND A-2 10' 10 2.55 ND ND ND ND A-2 15' 10 0.80 ND ND ND ND A-2 15' 10 0.80 ND ND ND ND A-2 15' 10 0.80 ND ND ND ND A-2 15' 10 0.80 ND ND ND ND A-2 15' 10 0.70 ND ND ND ND A-2 20' 10 0.74 ND ND ND ND ND A-3 4.0 10 0.72 ND ND ND ND DECON B+20 10 0.64 ND ND ND ND A-3 15' 10 0.64 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND A-3 15' 10 0.70 ND ND ND ND ND A-3 15' 10 0.70 ND ND ND ND ND A-3 15' 10 0.70 ND ND ND ND ND A-3 15' 10 0.70 ND ND ND ND ND BECON WATER #32 70m/s 4.82 ND 83.4 ND PECON WATER #32 70m/s 243 ND 43.0 ND	Sample Interval Mass Benzene Toluene benzene Xylene o-Xylene BTEX Dee	Sample Interval Mass Mass Interval Mass
	Calibration Information		Analytes								
---------	-------------------------	--	----------	--------	----------------	----------	--	--	--	--	--
			Toluene	Ethyl-	m,p- Xylene	o-Xylene					
	Retention Time										
100 ppb	Response										
	Retention Time										
1 ppm	Response										
	Retention Time										
10 ppm	Response										

OPERATOR: 11 4RK HENSON

DATE: 12-14-94

SITE: JEFFÉRSON BARRACKS
GAIN: 1000

GAIN: 1000 CARRIER GAS FLOW: 12 mi/min INJECTION VOLUME: 100 11/8
GC OVEN TEMP: 40° C
ANALYSIS TIME: 500

		- BUSES - 6799	Commence of the control of the contr				Сопсе	ntrations (pp	b)			
Analysis No.	Boring	Sample Interval (ft. BLS)	Sample Mass (grams)	Benzene	Toluene	Ethyl-	m,p-		Total	Add	itional An	10.0
/	100	PPB	970	100	100	100	Xylene 200	o-Xylene	BTEX	100		
2	1 8	PM	STD	1000	1000	1000	2000	1000		1000	100	1000
3	10	PPM	STD	10000	10000	10000	20000			10000	-	10000
4	AIR	BLANK		7.44	13.64	138	270	31.2		0.29	6.01	14.7
5	AIR	BLA	IK	2.01	ND	NO	ND	NO		14.4	ND	2.0
6	AIR	BLAI	VK_	2.11	ND	NO	NA	Nδ		ND	ND	2.11
7	B-4	0.5	10	7.75	4.10	6.06	ND	ND		ND	3.91	4.31
8	B-4	5'	10	5.94	1.09	NB	ND	ND		Nη	2,11	ND
9	B-4	10'	10	4.78	23.6	37.6	24.9	ND		0.48	47.0	12.7
10	8-4	15'	10	13.6	0.85	ND	No	Nδ		Ni	1.63	ND
11	13-4	25	10	13.7	0.94	NA	NO	ND		ND	W.	ND
12	100	PPB	570	142	135	132	244	250		154	138	119
/3	B-4	20	10	0.71	ND	NB	No	ND		ND	NS	ND
14		BLANK		0.62	ND	ND	ND	ND		ND	NO	NO
15	B-4	20'	10	0.69	ND	ND	ND	ND		ND	ND	ND
16	A-1	20'	10	0.61	ND	ND	ND	ND			NA	ND
17	A-1	3.5		0.65	ND	ND	ND	ND			NY	N/D
18	A-1	15-1	10	1.62	ND	ND	ND	ND		ND	ND	ND
20		PB ST		74.0	73.4	52.2	97.3	48.1		89.9	70.9	62.6
	7/R	BLANK		2.461	NO	NA	ND	NO		ND	NIZ	4٧

R = reintegrated

	1 - 1CIN	100, rais	ea .	387038.54.175.41		Mercean Arts		okstoskos romanom	***************************************				
			Analytes										
Calibrat	ion Information	Benzene	Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene	DCE	TCE	PCE				
00 ppb	Retention Time	51.3	101-7	187.4	209.4	,VD	23.1	64.4	142 2	W-12 X 2000-			
oo ppo	Response	68.88	42.07	9.903	21.97	ND	71.52	97.82	58.45				
220	Retention Time	53-2	104.4	2134	213.4	NJAZZ	024.5	66.1	145				
. ppm	Response	3.736	4.480	783.5	9.470	ND(70	3.355	2.640	4.682				
0 ppm	Retention Time	54.2	104.9	214-2	2286	27/2	25.Z	66.4	144.8				
	Response	7.068	10.60	12.42	25.52	6. 733	6-537	5. 932	6.655				

OPERATOR: MARK D. HENSON

DATE: 12-14-94

R

SITE: JEFFERSON BARRACKS	INJECTION VOLUME: 100 u/s
GAIN: 1000 ,	GC OVEN TEMP: 40°C
CARRIER GAS FLOW: t/ m//min	ANALYSIS TIME: 600 secs

						ti dagi turbiya iyo A tasahira di ga	Conce	ntrations (ppb)	od o ten gota. Goto dese	en en en en Ser e la Serre	o postal para l con laborata l
Analysis:		Sample Interval	Sample			EAL.		o-Xylene		Add	itional An	lytes
No.	Boring	(ft. BLS)	(grams)	Benzene	Toluene	benzene	Xylene	o-Xylene	BTEX			0.W.
100	PF	BT	E5T	:5 TM	NDAK	D	Tucr	eased	run	tim	e to	600.
)												
					,							
												: 12.

			Analytes										
Calibrat	Calibration Information		Toluene	Ethyl- benzene	m,p- Xylene	o-Xylene							
	Retention Time				0.50	٠.							
100 ppb	Response												
	Retention Time												
1 ppm	Response												
	Retention Time												
10 ppm	Response												

OPERATOR:		• •
OI ERATOR.	DATE:	
	D. 1.1. L.	

	P 	1	2	3 .(>	<	4 10	5 mV)		Time Printed: Sample Time:	Dec 11,9		::00 ::52
		$\overline{}$	_				1		Me	thod		
35	5	f	. 2 .						Slope Up	0.500	mV/	'Sec
	- /							ĺ	Slope Down	1.500	mV/	'Sec
						_			Min Area	0.000	m√S	
	/3	5							Min Height	0.000	m∨	
71									Analysis Delay		sec	:
	4	•		•	•	•	•		Window Percent		%	
									Det Flow	12		min
	5			•		•			B/F Flow	12		min
10	1								Aux Flow	0	m1/	
	\$	•		•	•	•	•		Oven Temp	40	C	
	1								Amb Temp	30	c	
			•	•		•		<u>{</u>	Max Gain	1000	Ü	
14	2							İ	Analysis Time	500.0	sec	
		•	•	•	•	•	•			Report	<u> </u>	
								Pk	Compound Name	Area/C	'ana	R.T
1			•	•		•		1	Unknown	82.01		13.
17	8							2	Unknown	443.2		
		•	•	٠	•	٠	•	3	benzene			20.
1								4	tce	0.105		53.
1			•	•		•		5	Unknown	0.399		69.
21	4							ე ნ		4.892		84.
	•			•				0	toluene	0.629	ppb	109.
1			•	•		•						
25	o						!					
	•			•	•	•						
							1					
			•	•		•						
28	5											
	•			•	•	•						
				•		•						
34:	1											
	•		• •	•	•	•	.					
						•						
3\$	7 .											
			Ť		-	•	.					
			•	•		•	į					
							!					
39:	2 .								No	tes	······································	
							-	J	efferson Barrac	ks, Miss	ouri	
									ark Henson			
İ												
428	3.		· · · · ·					р	z-1			
									.0' bls			

Φ	4		8	12	16	ś	20		Time Printed: D	ec 9.94	17:47
							uV)			ec 9,94	
									Met	hod	
3\$									Slope Up	24.00	mV/Sec
									Slope Down	72.00	mV/Sec
		•			1 2				Min Area	1.000	mVSec
7					2				Min Height	1.000	m∨
71	•	•	•	•	•	•	•		Analysis Delay Window Percent	0.0 10.0	sec %
									Det Flow	13	ml/min
		•		•		٠			B/F Flow	13	ml/min
107									Aux Flow	0	ml/min
	•	•	•	•	•	•	•		Oven Temp	40	C
									Amb Temp	32	С
									Max Gain	1000	
142									Analysis Time		sec
										Report	144
		•						1	Compound Name	Area/C	
178								2	Unknown benzene	38.15 44.25	
	•	•	•	•	•		•	1	Denzene	44.20	ppb 49.9
		•		•		•					
214		,									
_											
ſ											
250							•				
		•		•		•					
285											
	•	•	•		•	•	•				
321											
		٠		•							
5 5 7								ļ			
Ī	•	•	•	•	•	•	•				
		•		•		•					
									Not		

Mark Henson Jefferson Barracks, Missouri

p*z-*1 15' bls

Analysis #13	103	S+ GC	Func	tion Analysis Report
0 8	12	16	20	Time Printed: Dec 9,94 16:17
		1000		Sample Time: Dec 9,94 16:08
				Method
35	·			Slope Up 109.0 mV/Sec
				Slope Down 327.0 mV/Sec
				Min Area 1.000 mVSec
				Min Height 1.000 mV
71				Analysis Delay 0.0 sec
				Window Percent 10.0 %
	•			Det Flow 13 ml/min
107				8/F Flow 13 ml/min
		•		Aux Flow 0 ml/min
				Oven Temp 40 C Amb Temp 32 C
	•	•		Amb Temp 32 C Max Gain 1000
142				Analysis Time 500.0 sec
			•	Peak Report
				PK Compound Name Area/Conc R.T.
	•	•		The same of the sa
178				
=	•		•	
	·	·		
214				
250				
	•	•		
285				
200				
=	•	•		
321				
	•		•	
	•	•		
357				
	-		,	
392				Notes
				Mark Henson
				Jefferson Barracks, Missouri
100				
428				pz-2
				1' bls
	٠			
141				

pz-210' bls

ΙΦ		4	8		12	16	Ś	20	Time Drintade De-
								uV)	Time Printed: Dec 9,94 15:56 Sample Time: Dec 9,94 15:48
		-	•				-	1	
35			. 2					-	01
	•				•	•	•	•	
			-						,
			•		•		•		min Area 1.000 mVSec Min Height 1.000 mV
71									Analysis Delay 0.0 sec
l			•		•	•	•	•	Window Percent 10.0 %
									Det Flow 13 ml/min
									B/F Flow 13 ml/min
107									Aux Flow O ml/min
-							•	•	Oven Temp 40 C
									Amb Temp 33 C
									Max Gain 1000
142									Analysis Time 500.0 sec
					·			•	Peak Report
		•							PK Compound Name Area/Conc R.
. 1_									1 Unknown 19.76 mVS 14
178									2 Unknown 12.36 mVS 23
214			ě						
		•						ļ	
250								ļ	
		•		•		•		,	
85								ļ	
	•	•			•			.	
		•		٠		•		ĺ	
21									
1	•	•	•	•	•	•		.	
								4	
		•		•		•			
\$7									
	•	•	•	•	٠	•			
		•		•		•			
∮2								-	Notes
	•	•	•	•	•	٠			Mark Henson
									Jefferson Barracks, Missouri
L				•		•			
28			â						pz-2
!									

Analysis	#17	105+	GC	Function	Analysis	Report
111100 2 7 0 2 0	11 -4-7	J. O. O.	au	1 GHC LIGHT	miliary sala	IZEDOI L

Analys	Sis	#17	105+	GC	Func	tion Analysis Report
=	1	2	3	4	5	Time Printed: Dec 9,94 17:13
			.(×	10	mV)	Sample Time: Dec 9,94 17:05
=		_	1	•	•	Method
35 =						Slope Up 54.00 mV/Sec
		•		•	•	Slope Down 162.0 mV/Sec
] = =						Min Area 1.000 mVSec
F			·	•		Min Height 1.000 mV
715						Analysis Delay 0.0 sec
3			•		•	Window Percent 10.0 %
.€						Det Flow 13 ml/min
1 3 .						B/F Flow 13 ml/min
10=						Aux Flow O ml/min
3		. ,	• •	•	•	Oven Temp 40 C
						Amb Temp 32 C
2						Max Gain 1000
14						Analysis Time 500.0 sec
Mary Mary Mary Mary Company Co				•	•	Peak Report
\$						Pk Compound Name Area/Conc R.T.
=						1 Unknown 50.99 mVS 14.1
175	,					
=						
=						
=						
21-	,					
宝						
3						
25						
28毫						
Y						
\$						
7.5						
				•		
=		•	•			
X.						
				•	•	
3	•	•	•	•		
7.0=						Nakaa
					•	Notes
						Mark Henson
3			•			Jefferson Barracks, Missouri
125-						
*=						pz-3
						1.0° bls
			•		!	
146 <u>4</u>						

	An	aly	sis	#18		105+	GC	Func	tion Analysis Report
	0		1	. 2		3 (×	4 10	5 mV)	Time Printed: Dec 9,94 17:24 Sample Time: Dec 9,94 17:15 Method
	3		•	•		٠			Slope Up 13.00 mV/Sec Slope Down 39.00 mV/Sec Min Area 1.000 mVSec Min Height 1.000 mV
	71000	•	•	•					Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 13 ml/min
	10	7						•	8/F Flow 13 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C
	14	2							Max Gain 1000 Analysis Time 500.0 sec Peak Report
	17	8							Pk Compound Name Area/Conc R.T. 1 Unknown 45.71 mVS 14.4
	21	4					•		
	25	0			•				
	**************************************	•				•		•	
	28	5 .				٠			
	323	1 .	,						
***************************************	35	7 .							
***************************************	3 9 ;	2 .				·			Notes Mark Henson Jefferson Barracks, Missouri
	428	3 .							pz-3 10 ° bls
	۱,	^							

Anal	ysi	s#	22	10)S+	GC	Func	tion Analysis Report
Φ	2		4	6		8	10	Time Printed: Dec 14,94 14:34
				į (×	(10	mV)	Sample Time: Dec 14,94 14:26
			1	•		·		Method
3\$ /				2				Slope Up 0.500 mV/Sec
/	•	•	•	•	•	•	•	Slope Down 1.500 mV/Sec
								Min Area 0.000 mVSec
8		•		•		•		Min Height 0.000 mV
71								Analysis Delay 0.0 sec
	•	•	•	•	•	•	•	Window Percent 10.0 %
								Det Flow 12 ml/min
		•		•		•		B/F Flow 12 ml/min
107								Aux Flow O ml/min
14,	•	•	•	•	•	•	•	Oven Temp 40 C
								Amb Temp 32 C
		٠		•		•		Max Gain 1000
1 40								i .
142							•	Analysis Time 500.0 sec
								Peak Report
						•		Pk Compound Name Area/Conc R.T.
								1 Unknown 46.90 mVS 14.4
178								2 Unknown 299.0 mVS 20.8
								3 benzene 0.792 ppb 51.1
214								
								1
250								
285								
	•	•	·	·	•	•	·	
		•		•		•		
321								
	•	•	•	•	•	•	•	
		•				•		
3\$7								
ľ	•	٠	•	•	•	•	,	
		•		•		•		
392								Notes
	•	•	•	•		•	•	Jeffersn Barracks
								Mark Henson
				•		•		Halls Hellout
428								A-1
448		•	•	•	•	•	•	1.0' bls
								T.O DIS
		٠		•		٠		
<u> </u>								

Analysis	#17 1	.os+ G(C Func	ion Analysis Report					
1	2 3		5 (mv (Time Printed: Dec 14,94 12:54 Sample Time: Dec 14,94 12:46					
35			.2 .	Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec					
71 3				Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 %					
107				Det Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C					
142				Amb Temp 31 C Max Gain 1000 Analysis Time 500.0 sec					
178				Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 38.58 mVS 14.2 2 Unknown 212.3 mVS 20.2					
			•	3 benzene 0.648 ppb 52.8					
214									
250									
285									
321									
357									
392				Notes Jeffersn Barracks					
428				Mark Henson A-1 3.5' bls					

Anal	ysis	#21	108	+ GC	Func	tion Analysis Report
<u>e</u>	4	8	12 .(×	16 10	20 mV)	Time Printed: Dec 14,94 13:59 Sample Time: Dec 14,94 13:50
35/					2 .	Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec
71	٠					Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min
107						B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 31 C
142						Max Gain 1000 Analysis Time 500.0 sec Peak Report
178						PK Compound Name Area/Conc R.T. 1 Unknown 45.85 mVS 14.0 2 Unknown 640.4 mVS 20.4 3 benzene 2.359 ppb 50.8 4 toluene 0.545 ppb 104.8
214					٠	5 ethylbenzene 5.967 ppb 217.0
250					•	
285						
321						
357	٠					
392		. ,			·	Notes Jeffersn Barracks Mark Henson
428						100 ppb std A-l 10' bis
1010						

Ana	lysis	s #16	108+	GC	Func	tion Analysis Report
Ф	1	2	3	4	5	Time Printed: Dec 14,94 12:34
			(×		mV)	Sample Time: Dec 14,94 12:26
		· -1		;		Method
35 /					2	Slope Up 0.500 mV/Sec
$\perp \mid \cdot \mid /$	•	•		•		
1 1/						· ·
	z	•	•	•		
71	J					Min Height 0.000 mV
1/4/						Analysis Delay 0.0 sec
						Window Percent 10.0 %
		•				Det Flow 12 ml/min
						B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
						Oven Temp 40 C
		•				Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
	•		• •	•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
1		•	•	•		1 Unknown 27.03 mVS 14.4
178						
	•	•		•		1
						3 benzene 0.605 ppb 51.0
		•	•	•		
214						
250						
			, ,	•	•	
		•	•	•		
285						
	•	•		٠		
		•	•	•		
321						
177						
3\$7						·
392						Notes
	•			•	•	Jeffersn Barracks
						Mark Henson
			•	٠		
428						A-1
				•	•	A-1
						20' bls
		•				
					:	
464						

Anal	lysis	#23	108	+ GC	Func	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 14,94 14:55
)- -		•	.(×	100	mV)	Sample Time: Dec 14,94 14:38
- -	_1					Method
35/			. 2			Slope Up 0.500 mV/Sec
ij						Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
3						Min Height 0.000 mV
71						Analysis Delay 0.0 sec
j						Window Percent 10.0 %
						Det Flow 12 ml/min
İ						B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
						Oven Temp 40 C
						Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
						Peak Report
		•	•			Pk Compound Name Area/Conc R.T.
						1 Unknown 57.41 mVS 14.1
178						2 Unknown 781.1 mVS 20.5
						3 benzene 0.444 ppb 50.9
214	•					
			•			
250	•					
		•	•	•		
285						
	•				•	
		•	•	•		
321						
	•				•	
		•	•	•		
3\$7						
	•		•		•	
		•	•	•		
392						Notes
	•				•	Jeffersn Barracks
						Mark Henson
i		•	•	•		
428						A-2
	•		•		•	5' bls
-						
1		-	•	•		

An	aly	/sis	; #:	24	1	.05+	GC	Func	ti	ion Analysis Report
0	1	2	.	4	6 . (×	8 10	10 mV)		Time Printed: Dec 14,94 15:06 Sample Time: Dec 14,94 14:57
35	1				 _,		-	.2		Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec
71	3					•				Min Height 0.000 mV Analysis Delay 0.0 sec
										Det Flow 12 ml/min B/F Flow 12 ml/min
10	7	•						٠		Aux Flow 0 m1/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000
14	2	•						٠	P	Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T.
17	8								1 2 3 4	2 Unknown 435.2 mVS 20.8 3 benzene 2.547 ppb 50.9
 21	4									
25	0			٠	•					
 28.	5		•			٠		٠		
 32	1				•		,	٠	Till a that is a degree of the bank is a deal of the content of the first of the fi	
 35	7				•		•			
392	2									Notes Jeffersn Barracks Mark Henson
 428	3									A-2 10' bls

Ana	lysis	#25	105	+ GC	Func	tion Analysis Report
Ф	1	2	3	4	5	Time Printed: Dec 14,94 15:19
			(×	10	mV)	Sample Time: Dec 14,94 15:10
			. `	i	•	Method
35					2	Slope Up 0.500 mV/Sec
	/ ·	•		٠	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
	3	•	•	•		Min Height 0.000 mV
71	9					Analysis Delay 0.0 sec
1'4/	•				•	Window Percent 10.0 %
						Det Flow 12 ml/min
.		•	•	•		B/F Flow 12 ml/min
1 007						Aux Flow 0 ml/min
107	•			•	•	i
1 1						·
1 1				•		
						Max Gain 1000
142			• • • •			Analysis Time 500.0 sec
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 46.11 mVS 14.4
178						2 Unknown 206.2 mVS 20.6
						3 benzene 0.799 ppb 51.3
214						
	•			·	·	
			·	-		
2\$0						
	•			•	•	
		•	•	•		
285						
	•			•	•	
		•	•	•		
321						
	•	•			•	
			•			
357						
	•				•	
		•	•			
1-1-						Notes
392				•		Jeffersn Barracks
						i i
						Mark Henson
428						A-2
						15' bls
1444						

	ysis t		105+	-		
φ	1	2	3	4	5	Time Printed: Dec 14,94 15:58
			,(×	10	m∀)	Sample Time: Dec 14,94 15:50
	_ 			1		Method
3\$	[.2	Slope Up 0.500 mV/Sec
	•					Slope Down 1.500 mV/Sec
4 (Min Area 0.000 mVSec
3	5					Min Height 0.000 mV
71						Analysis Delay 0.0 sec
1 /						Window Percent 10.0 %
-	•					Det Flow 12 ml/min
\[B/F Flow 12 ml/min
10/7						Aux Flow 0 ml/min
-						Oven Temp 40 C
.]						Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 55.48 mVS 14.2
178						2 Unknown 288.3 mVS 20.5
İ						3 benzene 0.735 ppb 51.2
214						
				•	•	
2\$0						
	•	,	•	•	•	
Ì						
285						
!	•	•		•	•	
ļ						
	-		•	•		
521						
	•	•		•	•	
	•		÷	_		
			•			
3\$7						
		•		•	•	
	ē			-		
	•		-	•		
392						Notes
		•		•	•	Jeffersn Barracks
						Mark Henson
	•		•	•		
128						A-2
		•	•	•	•	20' bls
	•		•	•		
164						

Anal	ysis	#29	1	05+	GC .	Func	tior	n Analysis Repo	rt		
0	1	2	3		4	5		Time Printed: (Dec 14.94	16:1	1
		_	. (10				Dec 14,94		l l
		. 1	· `		;	,			thod		
35 /					2			Slope Up	0.500	mV/Se	c
111	•	•	•	•	•	•		Slope Down	1.500	mV/Se	- 1
1 1/								Min Area	0.000	mVSec	!
1 1 3	·	•	•		•			Min Height	0.000	m∨	
71								Analysis Delay		sec	
1. 1/	•		•	•	•	•		Window Percent	10.0	%	
								Det Flow	12	ml/mi	n
•		•	•		•			B/F Flow	12	m1/mi	
107								Aux Flow	0	ml/mi	ł .
	•		•	•	•	•		Oven Temp	40	C	``
								Amb Temp	32	C	
		•	•					Max Gain	1000	_	
142							İ	Analysis Time	500.0	sec	
1-7-	•		•	•	•	•	-		Report		
							Pk	Compound Name	Area/C	one	R.T.
		•	•		•		1	Unknown	40.27		14.0
178							2	Unknown	194.1		20.2
1-10	•		•	•	•	•	3	benzene	0.721		50.9
								Delizerie	0.721	PPD	
		•	•		•						-
214											
	•			•	•	٠					į
)				ļ
		•	•		•		-				
250											İ
	•		•	•	•	•					
)
		•	٠		•						ļ
285											
	•		•		٠						į
		•	•		•						ŀ
321											į
T	•		•		•	•					-
		•	•		•						
357											
	•	•	•	•	•	•					
		•	•		•						
392								No	otes		
	•	•	•	•	•	•	,	leffersn Barracl	< S		
							i	iark Henson			
		•	•		•						
428							p	1 -3			
	٠	•	٠	•	•	•	ı	l' bls			
		•	•		•		1		_		İ

ger Serie

10° bls

Analysis #32	10S+ GC Func	tion Analysis Report
Φ 4 8	12 16 20	Time Printed: Dec 14,94 16:47
	(x 1000 uV)	Sample Time: Dec 14,94 16:38
	1	Method
35 / 2		Slope Up 0.500 mV/Sec
		Slope Down 1.500 mV/Sec
		Min Area 0.000 mVSec
1 1 1	•	Min Height 0.000 mV
71 /		Analysis Delay 0.0 sec
'-		Window Percent 10.0 %
		Det Flow 12 ml/min
	•	B/F Flow 12 ml/min
107		Aux Flow 0 ml/min
1		Oven Temp 40 C
		Amb Temp 32 C
	•	Max Gain 1000
		i I
142		·
		Peak Report
		Pk Compound Name Area/Conc R.T.
		1 Unknown 33.76 mVS 13.8
178		2 Unknown 136.8 mVS 20.5
.		3 benzene 0.703 ppb 51.8
214		
250		
285		
321		
3\$7		
	,	
392.		Notes
		Jeffersn Barracks
		Mark Henson
	·	
428		A-3
		15' bls
	•	

<u>؛</u> ــــ	ana	lysi:	s #7	7	10	S+	GC	Fun	ct	ion	Analysis	s Repo	ort		
		1		2	3 .(x		4	5 mV)	1		Time Prin Sample Ti		Dec 13,94		
					. \^ -		1 1	111 7			agmbre in		Dec 13,94 ethod	1 09:3	56
3	3\$						_	2			Slope Up	me	0.500	mV/Se	
		•	•	•	•		•	•			Slope Dow	٧n	1.500	mV/Se	
											Min Area	•••	0.000	mVSec	i
ļ		3			·		•				Min Heigh	nt	0.000	mV	
7	74										Analysis			sec	
	4	4				•	•	•			Window Pe			%	
	.]										Det Flow		12	ml/mi	.n
										:	B/F Flow		12	ml/mi	.n
1	.d7						٠.			1	Aux Flow		0	m1/mi	.n
	-										Oven Temp	•	40	С	İ
	1		•				٠				Amb Temp		31	С	
1,	42										Max Gain		1000		ļ
1	75	~~~	•	•	•			•	-		Analysis		500.0	sec	
	1	سر 5								m L (7 mm m m		Report		
	1	~	•		•		•		1		Compound Jnknown	Name	Area/C		R.T.
1	18								- 1		Jnknown Jnknown		42.80		13.9
		•	•	•	•	•	•	•	1		penzene		195.4		20.0
									ı		tce		3.120 1.672		52.7
	1		•		•		•		- 1		oce		100.8		65.7 46.0
2	14												100.0	bbb T	40.0
		•	•	•	•	•	•	•							
	-								į						-
					•		•								
2	\$0		•												
							•	•							***************************************
															Į
	1_														
12	\$5														
					•										1
7	21								-						
10.	44	•			•				***************************************						
															an angular in a
			•		•		•		i						10.00
3	57														-
	ľ		•		•		•		Ì				٠		

			•		•		•								
39	2								-			No	otes		
		•	•	•			•	•		Ja	fferson s		otes Oks, Misso	nuni	
											rk Hensor		-na, 111550	zar I	
			•		•		•			. ,		•			
42	8									8-	1				1
		•	•	•	. ,		•	٠	-		bls				
									-						-
					•		•								· ·
46	4														-
•					·			<u> </u>							

0	2	4	6	8	10	Time Printed: Dec 13,94 10:21
Ĭ	<u> </u>		. (×		mV)	Sample Time: Dec 13,94 10:13
_Z	·	-	. (^	<u></u>	, ,,,	Method
35/	ىن <i>ە</i> ى يم		2			Slope Up 0.500 mV/Sec
	•	•	•			Slope Down 1.500 mV/Sec
\}						Min Area 0.000 mVSec
13		•	•	•		Min Height 0.000 mV
71	4					Analysis Delay 0.0 sec
	• •		•		•	Window Percent 10.0 %
						Det Flow 12 ml/min
Î		•	•	•		B/F Flow 12 ml/min
197						Aux Flow O ml/min
5	•	•	•	· · ·	•	Oven Temp 40 C
						Amb Temp 31 C
1		•	•	•		Max Gain 1000
142						Analysis Time 500.0 sec
6	•		•		•	Peak Report
		·				Pk Compound Name Area/Conc R.T.
						1 Unknown 39.29 mVS 13.8
178						2 Unknown 224.3 mVS 19.9
	·		·	, ,	•	3 benzene 3.156 ppb 52.4
		•	•			4 tce 1.570 ppb 65.4
						5 toluene 0.799 ppb 103.4
214						6 pce 7.723 ppb 145.2
250				. ,		
		•	•			
285						
1						
1		•	,	,		
321						
041 			•		•	
						! ! !
			•			
3\$7						
7	•		٠		•	
-						
		•	•			
392						Notes
		•	•	•	•	Jefferson Barracks, Missouri
						Mark Henson
		•	•			
428						B-1
	•	•	٠		•	10' bls
		•	•			
464						

Anal	ysis	#9	105+	GC	Func	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 13,94 10:31
		=	(×	10	mV)	Sample Time: Dec 13,94 10:23
	-		,	·	1	Method
35 /	7 2	?				Slope Up 0.500 mV/Sec
	·		•	•	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
/3	;					Min Height 0.000 mV
71	4					Analysis Delay 0.0 sec
					·	Window Percent 10.0 %
		•		•		Det Flow 12 ml/min
						B/F Flow 12 ml/min
107				٠.		Aux Flow 0 ml/min
5				-	•	Oven Temp 40 C
	,	•				Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
6						Peak Report
	•	·				Pk Compound Name Area/Conc R.T.
						1 Unknown 60.77 mVS 13.7
178						2 Unknown 214.2 mVS 20.3
						3 benzene 2.862 ppb 52.8
						4 tce 1.633 ppb 65.4
						5 toluene 0.765 ppb 103.8
214						6 pce 4.468 ppb 145.0
250				•	•	
	•		•			
285		• .		•		
	•		•	٠		
321						
1747				•	•	
			•			
357						
" "		•			•	
	•		•	•		
392						Notes
1 -		•	•		•	Notes Jefferson Barracks, Missouri
						Mark Henson
			•	•		THAT IS THE HOUTE
428						B-1
T		•	•	•	•	15° bls
						10 N10
	•		•	•		
464						
,						

20' bls

4	ana	llysi:	s #.	13	10	os+	GC	Func	tion Analysis Report
	9	2	•	4	6 . ()	<	10 8	10 mV)	Time Printed: Dec 13,94 11:25 Sample Time: Dec 13,94 11:16
***************************************	N N				1 2		•		Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec Min Height 0.000 mV
	4	•		•					Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min
1	d7 5	•		٠				· .	B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C
1	42		•					•	Max Gain 1000 Analysis Time 500.0 sec Peak Report
1	78			•	· ·			·	Pk Compound Name Area/Conc R.T. 1 Unknown 51.79 mVS 13.7 2 Unknown 288.3 mVS 20.2 3 benzene 2.970 ppb 52.1 4 tce 1.395 ppb 66.0
2	14					٠			5 toluene 0.479 ppb 104.2
2	50						•	.	
2:	35			,		•			
32	21								
35	57								
39	2				,				Notes Jefferson Barracks, Missouri Mark Henson
42	28								b-1 24 bls

Anal	lysis	#14	105	+ GC	Funct	tion Analysis Report
Φ	4	8	12	16	20	Time Printed: Dec 13,94 11:55
		-	, (×		mV)	Sample Time: Dec 13,94 11:46
			. `	•	•	Method
35/	 					Slope Up 0.500 mV/Sec
1 1/	•		•	3	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
4			·			Min Height 0.000 mV
71	5					Analysis Delay 0.0 sec
	•	•	•		·	Window Percent 10.0 %
						Det Flow 12 ml/min
						B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
6						Oven Temp 40 C
		•				Amb Temp 32 C
						Max Gain 1000
142			•			Analysis Time 500.0 sec
						Peak Report Pk Compound Name Area/Conc R.T.
		•		•		Pk Compound Name Area/Conc R.T. 1 Unknown 5.771 mVS 13.9
178						2 Unknown 13.34 mVS 15.4
110	•		•			3 Unknown 461.5 mVS 20.3
						4 benzene 3.490 ppb 52.4
		•	•	•		5 tce 0.736 ppb 65.4
214						6 toluene 0.696 ppb 104.5
	•	•	•		•	
		•	•	•		
250						
	•	•	•		•	
285						
		•				
701						
321					•	
		•		•		
357						
	•	•	•		٠	
		•	•	•		
392						Notes
	•		•		•	Jefferson Barracks, Missouri
						Mark Henson
		•		•		
428						b-1
	•		•		•	26' bls
			•			

Anal	lysis #	‡15	105+	GC	Func	ion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 13,94 12:05
		_	.(×	10	mV)	Sample Time: Dec 13,94 11:56
			-	·	1	Method
3\$	\int_{-2}^{2}					Slope Up 0.500 mV/Sec
		•		•	. 3	Slope Down 1.500 mV/Sec
111						Min Area 0.000 mVSec
1/2	1					Min Height 0.000 mV
71						Analysis Delay 0.0 sec
5	5			·		Window Percent 10.0 %
						Det Flow 12 ml/min
						B/F Flow 12 ml/min
107						Aux Flow O ml/min
6						Oven Temp 40 C
.!						Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 53.65 mVS 14.0
178					•	2 Unknown 0.569 mVS 15.6
{						3 Unknown 290.8 mVS 20.1
						4 benzene 3.415 ppb 52.9
						5 tce 1.432 ppb 66.0
214						6 toluene 0.547 ppb 104.0
	•		•			
250						
					İ	
			•			
1000						
285		•			•	
	•		•			
321						
		•			,	
	•		•	•		
357						
T			•			
	•		•	•		
392						Notes
	•	•		•	,	Jefferson Barracks, Missouri
						Mark Henson
	•		•	•		
428						b-1
		•	•	٠		30' bls
	•		•	•		
464					İ	
					!	

	Analysis	#16	105+	GC	Function	Analysis	Report
--	----------	-----	------	----	----------	----------	--------

, , , , , ,	ysis	470	100,	ac	Munc	tion Analysis Report
1 0	2	4	6	8	10	Time Printed: Dec 13,94 14:20
			. (×		mV)	Sample Time: Dec 13,94 14:11
1 -		•	i	•	,	Method
35/		. 2				Slope Up 0.500 mV/Sec
/ /	•			•	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
В	•	•	•	•		Min Height 0.000 mV
71						Analysis Delay 0.0 sec
4			•	•	•	Window Percent 10.0 %
						Det Flow 12 ml/min
	•	•	•	•		B/F Flow 12 ml/min
107						Aux Flow O ml/min
5			•	•	•	Oven Temp 40 C
						Amb Temp 32 C
		•	•	•		Max Gain 1000
142						Analysis Time 500.0 sec
				•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
			•	•		1 Unknown 61.19 mVS 13.8
178						2 Unknown 271.5 mVS 20.1
		•		•	•	3 benzene 3.319 ppb 52.6
6						4 tce 1.781 ppb 66.2
	•		•	•		5 toluene 0.620 ppb 104.8
214						6 Unknown 1.146 mVS 190.0
		•	•	•	*	
					1	
1 1	•		•	•		
250					1	
	• •		•	•	٠	
2\$5						
		•		•	•	
	•			•		
321						
	• •	•		•	•	
	•		•	•	;	
3\$7						
		•		•	•	
	•		•	•		
392						Notes
	•	•	•	•	•	Jefferson Barracks, Missouri
						Mark Henson
	•	· •	•	•		
428						B-X2
		•	•	•	•	0.5' bls
	·		•	•		
464						

_	Ar	nal	ysis	#17		108	+ GC	Func	tion Analysis Report
	q)	1	2		3	4	5	Time Printed: Dec 13,94 14:31
	ļ					(x	10	m∨)	Sample Time: Dec 13,94 14:23
	ļ	ć				•	1		Method
l	35	5 /	_					2	Slope Up 0.500 mV/Sec
		\int	•	•	•		•	•	Slope Down 1.500 mV/Sec
.									Min Area 0.000 mVSec
	ļ	∄3					•		Min Height 0.000 mV
	71	d p							Analysis Delay 0.0 sec
		4	•	•			•	•	Window Percent 10.0 %
									Det Flow 12 ml/min
									B/F Flow 12 ml/min
	10	7							Aux Flow 0 ml/min
		5			•		·	•	Oven Temp 40 C
									Amb Temp 32 C
	j								Max Gain 1000
	14	2			. ,				Analysis Time 500.0 sec
	}								Peak Report
	į			•					Pk Compound Name Area/Conc R.T.
									1 Unknown 42.98 mVS 14.1
	17	8							2 Unknown 222.8 mVS 20.2
İ									3 benzene 3.166 ppb 53.2
1	į								4 tce 1.531 ppb 66.2
									5 toluene 0.484 ppb 104.6
	21	4							
	_	^							
	2\$	0							
	Ì								
							•		
1,	\downarrow	~							
1	28	5							
				•			•		
	32	1							
1	4	Т.						•	
İ							•		
,	35	~~							
	7	/	•						
-									
.	39	2							No. bear
`	7	مشد						•	Notes
-									Jefferson Barracks, Missouri
									Mark Henson
	12	Q							S-1.2
1	1	သ	•		•		•	•	8-1-2 5' bls
1	l								2 012
				•	•		•		
	16	ai.							
i °	r (p	-17							

Analysis #1	.9 10S+	GC Func	tion Analysis Report
0 1	2 3 .(×	4 5 10 mV)	Time Printed: Dec 13,94 15:06 Sample Time: Dec 13,94 14:58
35 71 4 107 5	· · · · · · · · · · · · · · · · · · ·	1 2	Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C
142			Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report
178	· · · · ·		Pk Compound Name Area/Conc R.T. 1 Unknown 53.93 mVS 14.0 2 Unknown 268.6 mVS 20.3 3 benzene 3.689 ppb 53.0 4 tce 2.219 ppb 66.1
214			5 toluene 0.911 ppb 105.0 6 pce 24.35 ppb 147.4
250		· ·	
285			
321			
357			
392			Notes Jefferson Barracks, Missouri Mark Henson
428			B-2 10' bls
464			

1 2 3 4 5	Anal	lysis	#21	105+	GC	Func	tion	Analysis Repor	t	
Sample Time: Dec 13,94 15:23 Method	Ф	1	2	3	4	5		Time Printed: D	ec 13 94	15-32
1										
Slope Up		\subseteq		. `	•				-	13.20
Slope Down 1.500 mV/Sec Min Area 0.000 mVsec Min Area 0.000 mVsec Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % 2 ml/min B/F Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min 0 ven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 43.12 mVs 14.0 2 Unknown 193.4 mVs 20.6 3 benzene 3.734 ppb 53.1 4 toe 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.3 377 372 Notes Jefferson Barracks, Missouri Mark Henson 428 B-2 15° bls B-2 15° bls	35 /	/ ₂								mV/Sec
Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 48.12 mVS 14.0 2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 toe 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pcs 8.199 ppb 146.3 250		•	•		•	•		•		
Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report RK Compound Name Area/Conc R.T. 1 Unknown 48.12 mVS 14.0 2 Unknown 193.4 mVS 20.6 5 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 230 235 392 Notes Jefferson Barracks, Missouri Mark Henson 428 8-2 15' bls				•						
Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 193.4 mVS 14.0 2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250		5	•	•	•			•		
4	1 1 1						ļ			
Det Flow 12 ml/min 8/F Flow 12 ml/min 107 Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Flow Compound Name Area/Conc R.T. 1 Unknown 48.12 mVS 14.0 178 2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 toe 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 235 321 357 Notes Jefferson Barracks, Missouri Mark Henson 428 8-2 15° bls	14		•		•	,				
B/F Flow										
Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Peak Report I Unknown 48.12 mVS 14.0 Unknown 193.4 mVS 20.6 Senzene 3.734 ppb 53.1 4 toe 2.141 ppb 66.5 S toluene 0.667 ppb 104.5 S toluene 0.667 ppb 146.8 250 285 321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls			•	•	•					
Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 48.12 mvS 14.0 2 Unknown 193.4 mvS 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15° bls	107						ľ			
Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 48.12 mvs 14.0 2 Unknown 193.4 mvs 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	[2	•	•	•	• •	•				
Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 48.12 mVS 14.0 2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 5 pce 8.199 ppb 146.8 230 2350 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls										
Analysis Time 500.0 sec Peak Report			•	•	•			•		C
Peak Report	142									600
Pk Compound Name Area/Conc R.T. Unknown		•	•	•	•	•				360
1 Unknown 48.12 mVS 14.0 2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 255 321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	6						Pk			nno PT
2 Unknown 193.4 mVS 20.6 3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 285 321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls			•		•		į.			
3 benzene 3.734 ppb 53.1 4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 285 321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	178						1			
4 tce 2.141 ppb 66.5 5 toluene 0.667 ppb 104.5 6 pca 8.199 ppb 146.8 250 285 321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls		•		•	•	•	į.			
5 toluene 0.667 ppb 104.5 6 pce 8.199 ppb 146.8 250 285 321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls							1			
214			•	•	•		1			
250 285 321 392 Notes Jefferson Barracks, Missouri Mark Henson 428 B-2 15' bls	214						1			
321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls		•		•	٠	•		pce	orraa t	OPD 146.8
321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls										ļ
321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls			•	•	•					
321 392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	250						ļ			
321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls		•		•	•	•				
321 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls										
3357 Notes Jefferson Barracks, Missouri Mark Henson B-2 15' bls				•	•		İ			į
392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	285									
392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls			•	•	•	•				
392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls										j
392 Notes Jefferson Barracks, Missouri Mark Henson 8-2 15' bls				•	•					3
Notes Jefferson Barracks, Missouri Mark Henson B-2 15' bls	321									
Notes Jefferson Barracks, Missouri Mark Henson B-2 15' bls			•	•	•					
Notes Jefferson Barracks, Missouri Mark Henson B-2 15' bls										
Notes Jefferson Barracks, Missouri Mark Henson B-2 15' bls				•	•					1,1,1
Jefferson Barracks, Missouri Mark Henson 8-2 15' bls	3\$7									***************************************
Jefferson Barracks, Missouri Mark Henson 8-2 15' bls			•		•					
Jefferson Barracks, Missouri Mark Henson 8-2 15' bls										111111111111111111111111111111111111111
Jefferson Barracks, Missouri Mark Henson 8-2 15' bls				•	•					
Jefferson Barracks, Missouri Mark Henson B-2 15' bls	392							Not	es	
			•	• •	•	•	J			ouri
8-2 15' bls									,	
15' bls		,		•	•					ļ
	428	•					8	-2		
464			•		•	•	1.	5' bls		
464										
444										
	464					!				

•						
Analys	sis	#22	105+	GC F	unc	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 13,94 15:43
	=		.(×	10 n	n∀)	Sample Time: Dec 13,94 15:35
/-				1		Method
35 / .	2 .					Slope Up 0.500 mV/Sec
						Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
						Min Height 0.000 mV
71						Analysis Delay 0.0 sec
4						Window Percent 10.0 %
.	•					Det Flow 12 ml/min B/F Flow 12 ml/min
1,47						8/F Flow 12 ml/min Aux Flow 0 ml/min
107	•	•			•	Oven Temp 40 C
						Amb Temp 32 C
	•		•	•		Max Gain 1000
142						Analysis Time 500.0 sec
-7-					•	Peak Report
						Pk Compound Name Area/Conc R.T.
	•		•	•		1 Unknown 239.8 mVS 13.8
178						2 Unknown 6.695 mVS 20.5
1 .	•	•		•	•	3 benzene 3.741 ppb 53.2
						4 tce 2.289 ppb 66.2
	•		•	•		5 toluene 0.640 ppb 105.3
214		÷				9 -
		•		•	•	
	•		•	•		
2\$0						
	,	•	•	•	•	
	•		•	•		
285	_					e en
	·	-				
321						
3\$7		•				
-						
						N-6h-a-
392		•	• . •		•	Notes
						Jefferson Barracks, Missouri
-		•	•			Mark Henson
						B-2
428		•		. •	•	20° bls
						20 DIS
	•		•	•		
464						· · ·
1444						

ſ	Ar	nal	ysi	s #	34	1	.05+	GC	Fund	nction Analysis Report
	(P	2		4	é	,	8	10	Time Printed: Dec 13,94 18:18
						. (×	10	mV)	Sample Time: Dec 13,94 18:09
					•					Method
	35		.2			3				Slope Up 0.500 mV/Sec
		1				ప				Slope Down 1.500 mV/Sec
		14		٠						Min Area 0.000 mVSec
	71									Min Height 0.000 mV
		5	•	•	•	٠		•	•	Analysis Delay 0.0 sec Window Percent 10.0 %
Ì										
	Ī			•		•		•		D /
	10	7								B/F Flow 12 ml/min Aux Flow 0 ml/min
ļ		6	,	•	•	•	•		•	Oven Temp 40 C
	-									Amb Temp 31 C
										Max Gain 1000
-	14	2								Analysis Time 500.0 sec
										Peak Report
İ										Pk Compound Name Area/Conc R.T.
	17:	Ω.								1 Unknown 16.02 mVS 14.6
	۱ ا	O.		•	•	•				2 Unknown 18.23 mVS 16.8
										3 Unknown 208.5 mVS 20.8 4 benzene 4 737 pph 53 9
				•		•		•		1 ppb 33.8
2	21.	4								1.000 ppb 00.7
-			•	•	•	•	•	•	•	
										/ Unknown 4.823 mVS 404.0
						•		•		
2	:\$0)								
	İ							·	•	
		_								
12	35	• .								
				٠						
3	1	_								
		•		•	•	•	•			
				•		•		•		
3	\$7									
				•	•	•	•	•	.	

3	92						٠.		. [Notes
	-									Jefferson Barracks, Mïssouri
	7					•				Mark Henson
a	 28									
-		•	•	,	•	•	•		.	8-2
İ										30° bls
			•						ļ	

Ana	alys	is	#23	10)S+ (GC	Func	tion Analysis Report
Φ		4	8	12	1.	- 6	20	Time Printed: Dec 13,94 16:08
							uV)	Sample Time: Dec 13,94 16:00
-		<u></u>		-	1	•		Method
35	/				2			Slope Up 0.500 mV/Sec
	- [•	•	•	•	Slope Down 1.500 mV/Sec
							•	Min Area 0.000 mVSec
1	ीउ		•	٠.		•		Min Height 0.000 mV
71	<i>\(\)</i>							Analysis Delay 0.0 sec
	14			•	•	•	•	Window Percent 10.0 %
	Í							Det Flow 12 ml/min
			•	•		•		B/F Flow 12 ml/min
10	7							Aux Flow 0 ml/min
				•	•	•	•	Oven Temp 40 C
								Amb Temp 32 C
			•	•		•		Max Gain 1000
14	2							Analysis Time 500.0 sec
	•			•	٠	•	•	Peak Report
				_		_		Pk Compound Name Area/Conc R.T.
17			-	•		•		1 Unknown 29.74 mVS 13.9
178	3							2 Unknown 139.6 mVS 20.6
	•			•	•	•	•	3 benzene 3.431 ppb 53.0
								4 tce 0.914 ppb 66.1
21	4							
	•			·	•	•	•	
250								
				·				
285	5.	,						
32.	L .							
3\$	7 .				•			
392	2.							Notes
								Jefferson Barracks, Missouri
								Mark Henson
428	₃ .							B-2
	•		-					25' bls
				,				
46	4							

Mark Henson

too ppb_standard

B-3

5'BLS

Ana	lysi	is#	28	10:	s+ GC	Func	tion Analysis Report
		1	8	12 (×	16 1000	20 uV)	Time Printed: Dec 13,94 17:14 Sample Time: Dec 13,94 17:05
35			2.	•		•	Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
71	3	•					Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 %
107	5					٠.	Det Flow 12 ml/min 8/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C
142							Amb Temp 31 C Max Gain 1000 Analysis Time 500.0 sec Peak Report
178						·	Pk Compound NameArea/ConcR.T.1 Unknown35.44 mVS14.12 Unknown156.3 mVS20.63 benzene3.792 ppb53.5
214			•			·	4 tce 2.075 ppb 66.5 5 toluene 0.459 ppb 105.6
250	· .						Topic - 1000 - 1
285							
321							
3\$7			,				
392	· .						Notes Jefferson Barracks, Missouri Mark Henson
428	3 .			•			B-3 10' bls
464	1	•		•	•		

	Ana	aly	sis	#:	29		108	3+ 1	GC	Fur	nc	tio	n Analysis Report
	Ф		2		4		6	;	ទ	10)		Time Printed: Dec 13,94 17:24
	-			==			(×	10	οó	uV))		Sample Time: Dec 13,94 17:15
	_\	<u> </u>			_	_		-	1				Method
	35	\bigvee	ŧ		•	2	•	•		•			Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
													Slope Down 1.500 mV/Sec Min Area 0.000 mVSec
	•	Ŋ;	3	•		•	•		•				Min Height 0.000 mV
	71	\$.											Analysis Delay 0.0 sec
													Window Percent 10.0 %
													Det Flow 12 ml/min
	107	Į											B/F Flow 12 ml/min Aux Flow 0 ml/min
	±07			•	•			•	٠	٠.			Aux Flow 0 ml/min Oven Temp 40 C
													Amb Temp 31 C
				•		•			•				Max Gain 1000
	142	· .											Analysis Time 500.0 sec
												_,	Peak Report
	.			•								!	Compound Name Area/Conc R.T. Unknown 14.45 mVS 14.4
	178	:										1 2	Unknown 14.45 mVS 14.4 Unknown 21.77 mVS 20.8
		•		•	•			•	•			3	benzene 1.220 ppb 52.9
				_								_	
	214												
	-					•			•				
	250												
		•		•	•	•		•	•	•			
1													
	005												
	285	•				•		•	-				

	.			•		•			•				
	321												
1					-	•				•			
1						٠							
	357												
1					•								
1													
				•					•				
***************************************	372												Notes
													efferson Barracks, Missouri
												ή.	lark Henson
	423											Œ	3-3
	دامه	•		•	•	,				•			.5° bls
						-							
!	46A												

Analysis #31	10S+ GC Func	tion Analysis Report
Φ 4 8	12 16 20	Time Printed: Dec 13,94 17:44
	(x 1000 uV)	Sample Time: Dec 13,94 17:36
	1	Method
35 / 2		Slope Up 0.500 mV/Sec
		Slope Down 1.500 mV/Sec
\ \ \		Min Area 0.000 mVSec
· Ŋ3 ·	,	Min Height 0.000 mV
71		Analysis Delay 0.0 sec
1 - 1		Window Percent 10.0 %
		Det Flow 12 ml/min
•	•	B/F Flow 12 ml/min
107		Aux Flow 0 ml/min
		Oven Temp 40 C
		Amb Temp 31 C
	•	Max Gain 1000
142		Analysis Time 500.0 sec
	• • • •	Peak Report
		Pk Compound Name Area/Conc R.T.
· ·	•	1 Unknown 23.79 mVS 14.1
178		2 Unknown 46.28 mVS 20.8
		3 benzene 2.572 ppb 53.6
		Delizerie 2.372 ppb 33.0
·	•	
214		
·		
250		
285		
321		
	•	
347		
	•	
392		Notes
[]		Jefferson Barracks, Missouri
		Mark Henson
	•	nativ nenson
428		8-3
740		25' bls
		45 915
		!

Ana	lysis	s #7	105+	GC	Func	tion Analysis Report
Φ	1	2	3	4	5	Time Printed: Dec 14,94 10:45
			(×	10	mV)	Sample Time: Dec 14,94 10:37
					1	Method
35	<i>[</i>				2.	Slope Up 0.500 mV/Sec
	•					Slope Down 1.500 mV/Sec
1 1 (Min Area 0.000 mVSec
	3					Min Height 0.000 mV
71		. ,				Analysis Delay 0.0 sec
	4					Window Percent 10.0 %
. [Det Flow 12 ml/min
						B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
15						Oven Temp 40 C
.						Amb Temp 32 C
						Max Gain 1000
142		,				Analysis Time 500.0 sec
				-	-	Peak Report
6						Pk Compound Name Area/Conc R.T.
						1 Unknown 51.98 mVS 14.0
178						2 Unknown 247.8 mVS 20.2
						3 benzene 7.752 ppb 53.0
						4 tce 3.909 ppb 65.7
						5 toluene 4.054 ppb 104.8
214			,			6 pce 4.308 ppb 146.2
7						7 ethylbenzene 6.061 ppb 214.0
					ı	
					į	
250						
					ļ	
		•				
					Ì	
285	•					
321					.	
			•			
357	•					

			·		ļ	
					1	
392						Notes
					İ	Jeffersn Barracks
			,			Mark Henson
428						B-4
						0.5° bls
464						

Ana	lysis	#9	•		108	+ GC	Func	tio	n Analysis Repor	~t		
φ	1		2		3	4	5		Time Printed: 0	Dec 14,9	4 11	:07
				•	(×	10	m∀)			Dec 14,94		:58
-		•					1		Met	thod		
3\$	F.	2							Slope Up	0.500	mV/	Sec :
	3				·	·	·		Slope Down	1.500	mV/	Sec
									Min Area	0.000	mVS	ec
9	4								Min Height	0.000	mΥ	
7.1	١.							İ	Analysis Delay	0.0	sec	
	5								Window Percent	10.0	%	
- .									Det Flow	12	m1/	min
								İ	B/F Flow	12	m1/	min
197									Aux Flow	0	•	min
1 15									Oven Temp	40	C	
.									Amb Temp	32	C	
									Max Gain	1000		
142	•							<u> </u>	Analysis Time	500.0	sec	
										Report		
7								1	Compound Name	Area/0		R.T.
								1	Unknown	66.38		13.9
178								2	Unknown	175.1		20.5
								3	dce	0.486		24.0
				•		•		4	benzene	4.783		53.2
								5	tce	47.04		66.2
214	•							6	toluene	22.64		104.8
8								7	pce	12.72		146.4
19		•		•				8	ethylbenzene	37.64		215.8
250								7	m,p-xylene	24.99	ppp	230.8
1-1	•	•		•	•	•						
							1					
		•		•		•						
285												
	•	•	•	•	•		•					
]]												
		•		•		•						
321												
	•	•	•	•	•	•	•					
3\$7												
							•					
392	,						,			tes		
								į	Jeffersn Barrack	(S		
								ì	iark Henson			
428	•							_	3-4			
								-	lo' bls			
				٠								
: 1												

Jeffersn Barracks Mark Henson

8-4 15' bls

Analy	ysis	#13	108	+ GC	Func	tion Analysis Report
	4	8	12 _(×	16 10	20 mV)	Time Printed: Dec 14,94 11:58 Sample Time: Dec 14,94 11:50 Method
35/	<u></u>		.2			Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
3		•				Min Area 0.000 mVSec Min Height 0.000 mV
71						Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min
107			٠	•		B/F Flow 12 ml/min Aux Flow 0 ml/min
	•				·	Oven Temp 40 C Amb Temp 32 C
142						Max Gain 1000 Analysis Time 500.0 sec
						Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 48.48 mVS 14.2
178						2 Unknown 439.8 mVS 20.6 3 benzene 0.710 ppb 53.2
214	,					
250						
	•				•	
285						
321				. ,		
			•			
3\$7			•		•	
392		•		•		Notes
	•				•	Jeffersn Barracks Mark Henson
428					. •	8-4 20° bls

Ana.	lysis	#11	105+	GC F	unc	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 14,94 11:29
			. (×	10 m		Sample Time: Dec 14,94 11:20
				_	1	Method
35	<i>[</i> -			.2	•	Slope Up 0.500 mV/Sec
	ŧ.					Slope Down 1.500 mV/Sec
	1			•		Min Area 0.000 mVSec
	l ^{j3}					Min Height 0.000 mV
71						Analysis Delay 0.0 sec
						Window Percent 10.0 %
			•			Det Flow 12 ml/min
						B/F Flow 12 ml/min
197						Aux Flow O ml/min
1		•				Oven Temp 40 C
1.						Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
	•			•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
			·			1 Unknown 64.45 mVS 14.0
178						2 Unknown 373.1 mVS 20.3
	•			•	•	3 benzene 13.68 ppb 53.0
						4 toluene 0.938 ppb 103.8
		•	•	•		
214						
			•	•	•	
] }						
	•	•	•	•		
250						
			•	•	•	
	•	•	•	•		
285						
				•	•	
	,		è	•		
321						
			•	•	•	
				•		
357						
				•		
	,			•		
392						hla b a a
372				•		Notes
						Jeffersn Barracks
						Mark Henson
					:	
428				,		8-4
						25' bls
				,	i	

Anal	lysi	s #	5	10:	S+ GC	Func	tion Analysis Report
	4		8	12 .(×	16 10	20 mV)	Time Printed: Dec 11,94 23:39 Sample Time: Dec 11,94 23:29
	' 					,	Method
35/					. ?		Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
7 1		•		٠	•		Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec
4	•	•	•			٠	Window Percent 10.0 % Det Flow 12 ml/min
107							B/F Flow 12 ml/min Aux Flow 0 ml/min
5		•					Oven Temp 40 C Amb Temp 32 C Max Gain 1000
142							Max Gain 1000 Analysis Time 500.0 sec Peak Report
							Pk Compound Name Area/Conc R.T. 1 Unknown 54.91 mVS 13.9
178			•				2 Unknown 604.8 mVS 20.4 3 benzene 3.917 ppb 53.0
7				•	•		4 tce 2.502 ppb 65.8 5 toluene 1.226 ppb 104.5
214	٠		•				6 pce 106.6 ppb 145.8 7 Unknown 2.621 mVS 190.8
250						٠.	
285	,						
321							
357						٠	
				•	·		
392				·		٠	Notes Jefferson Barracks, Missouri Mark Henson
428						•	C-2 0.5' bls
					•		

Analysis #7	10S+ GC Func	tion Analysis Report
Φ 1 2	3 4 5 (x 10 mV)	Time Printed: Dec 12,94 00:00 Sample Time: Dec 11,94 23:52
	· (X Tô ma)	Method
35	2	Slope Up 0.500 mV/Sec
1 /3		Slope Down 1.500 mV/Sec
		Min Area 0.000 mVSec
4	•	Min Height 0.000 mV
7 1 5		Analysis Delay 0.0 sec
5		Window Percent 10.0 %
		Det Flow 12 ml/min
		B/F Flow 12 ml/min
107		Aux Flow O ml/min
6		Oven Temp 40 C
		Amb Temp 32 C
142		Max Gain 1000
I Character in the second	· · · · · ·	Analysis Time 500.0 sec Peak Report
	 7	Pk Compound Name Area/Conc R.T.
		1 Unknown 31.93 mVS 14.0
178		2 Unknown 158.7 mVS 20.4
		3 Unknown 1.074 mVS 36.4
		4 benzene 1.834 ppb 52.4
]8		5 tce 26.12 ppb 66.0
214		6 toluene 0.388 ppb 104.5
		7 pce 549.4 ppb 146.0
		8 Unknown 2.721 mVS 190.6
250		
	•	
285		
400		
,		
321		
3\$7		
392		Notes
		Jefferson Barracks, Míssouri
		Mark Henson
400		0.0
428	•	C-2 5' bls
		2 012
	•	
464		
4 1 T 1		:

۴	na]	lysis	#6	108	+ GC	Func	tion Analysis Report
	Φ	1	2	3	4	5	Time Printed: Dec 11,94 23:49
				. (×	10	m∀)	Sample Time: Dec 11,94 23:41
					_ `	1	Method
3	:\$	7-2	**				Slope Up 0.500 mV/Sec
-		<u> </u>		•		3	Slope Down 1.500 mV/Sec
		4					Min Area 0.000 mVSec
		5	•	•	•		Min Height 0.000 mV
7	 						Analysis Delay 0.0 sec
	1	. 6	•	•	•	•	Window Percent 10.0 %
							Det Flow 12 ml/min
				·	·		B/F Flow 12 ml/min
1	d7						Aux Flow 0 ml/min
	7	•		•	•	•	Oven Temp 40 C
							Amb Temp 32 C
			•	·	•		Max Gain 1000
1	42						Analysis Time 500.0 sec
				8	•	•	Peak Report
İ	سمر [_				Pk Compound Name Area/Conc R.T.
	\mathbb{V}		•	•	•		1 Unknown 27.28 mVS 13.9
1	18						2 Unknown 35.21 mVS 15.6
		•	•		•	•	3 Unknown 160.4 mVS 20.0
			_				4 Unknown 64.69 mVS 36.4
	9			,	•		5 benzene 22.34 ppb 52.4
2	14						6 tce 37.46 ppb 66.0
		•			•	•	7 toluene 0.584 ppb 104.5
							8 pce 324.6 ppb 144.6
					·		9 Unknown 2.648 mVS 190.6
2	\$0						
		·			•	,	
2	\$5						
į	1					į	
					•		
							,
3.	71						
						į	
				•		ļ	
3	\$7						
3	9 2						Notes
							Jefferson Barracks, Missouri
							Mark Henson
4:	28					.]	C-2
							10' bls
				•			
140	54					1	

Anal	ysis	#8	108+	GC	Func	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 12,94 00:12
			(×	10	mV)	Sample Time: Dec 12,94 00:04
- 5		1				Method
357	2					Slope Up 0.500 mV/Sec
		3				Slope Down 1.500 mV/Sec
4				•		Min Area 0.000 mVSec
W	5					Min Height 0.000 mV
17 -	 _	<u>.</u> .				Analysis Delay 0.0 sec
1 1/		7				Window Percent 10.0 %
						Det Flow 12 ml/min
		,				B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
8						Oven Temp 40 C
				•		Amb Temp 32 C
						Max Gain 1000
142_						Analysis Time 500.0 sec
			y			Peak Report
/ ~		•				Pk Compound Name Area/Conc R.T.
11/0						1 Unknown 15.08 mVS 14.2 2 Unknown 18.75 mVS 15.8
178	•				•	2 Unknown 18.75 mVS 15.8 3 Unknown 70.57 mVS 20.5
10						4 Unknown 0.454 mVS 29.7
~ ~			•	٠		5 Unknown 68.36 mVS 36.5
214						6 benzene 1.687 ppb 52.7
	•				•	7 tce 43.36 ppb 66.0
						8 toluene 0.337 ppb 103.8
		•	•			9 pce 325.8 ppb 144.4
250						10 Unknown 3.089 mVS 189.6
	•			•	• '	
		•	•	•		
285						
	,			•		
		•	•	•		
321						
	•	•		•	•	
				•		
357				-		
		·	. ,	•	•	
392	,				•	Notes
						Jefferson Barracks, Missourî
						Mark Henson
428						C-2
						11.5' bls

			#F-A-A-		J. 40		cion Analysis Report
Φ		4	8	12	16	20	Time Printed: Dec 12,94 02:19
				. (×	10	mV)	Sample Time: Dec 12,94 02:08
	- -1	·		, `	•	•	Method
35/	/~~ <u> </u>			2			Slope Up 0.500 mV/Sec
1 1/	•	•	•	•		•	Slope Down 1.500 mV/Sec
							Min Area 0.000 mVSec
]-	3	•		•	•		Min Height 0.000 mV
71	_						1
1	•			•		•	
							1
		•		•	•		Det Flow 12 ml/min
1,1-	7						B/F Flow 12 ml/min
197	•						Aux Flow 0 ml/min
'	4						Oven Temp 40 C
				•			Amb Temp 32 C
	_						Max Gain 1000
142	2 .						Analysis Time 500.0 sec
							Peak Report
							Pk Compound Name Area/Conc R.T.
							1 Unknown 26.20 mVS 14.0
178	3 .						2 Unknown 420.2 mVS 20.6
							3 benzene 4.717 ppb 51.4
				•			4 toluene 0.413 ppb 104.5
5	5						5 Unknown 4.331 mVS 192.4
214	4						
	•	•	•	•		•	
		•		•	•		
250)						
	•	•	•	•		•	
				-			
		•		٠	•		
285	ŏ						
	•	•	•			•	
		•		•			
321							
		•	•	•		•	
		•		•	•		
77.47	7						
357							
392	₹ .					•	Notes
							Jefferson Barracks, Missouri
							Mark Henson
428	3 .		,		,		C-3
	-	•	•		•	-	5' bls
		,					
					-		

3	\$7			•		•			
3	92	•						•	Notes
					•				Jefferson Barracks, Missouri Mark Henson
4	28								C-4
		•	•	•	•	•	٠	•	C-4 0.5° bls
1	1		•		•		•		

Anal	lysis	#15	105+	GC Func	tion Analysis Report
φ	1	2	3	4 5	Time Printed: Dec 12,94 03:37
		=	į (×	10 mV)	Sample Time: Dec 12,94 03:28
				1	Method
35	<i>[</i>			.2 .	Slope Up 0.500 mV/Sec
					Slope Down 1.500 mV/Sec
					Min Area 0.000 mVSec
F	5				Min Height 0.000 mV
71					Analysis Delay 0.0 sec
4	}				Window Percent 10.0 %
			•	•	Det Flow 12 ml/min
					B/F Flow 12 ml/min
107					Aux Flow O ml/min
5					Oven Temp 40 C
-		•	•		Amb Temp 32 C Max Gain 1000
142					
	•			• •	Analysis Time 500.0 sec Peak Report
					Pk Compound Name Area/Conc R.T.
		•	•	•	1 Unknown 58.83 mVS 13.8
178					2 Unknown 272.1 mVS 20.1
	•	•			3 benzene 4.154 ppb 52.8
					4 tce 2.251 ppb 65.8
]		•	•	•	5 toluene 0.681 ppb 104.4
214					
		•			
250					
		•		•	
200					
285	•				
		•		•	
321					
	•				
		•	•		
3\$7					
	•	•		•	
		•	•	•	
392					Notes
	·		,		Jefferson Barracks, Missouri
		,			Mark Henson
428					C-4
					5' bls
			•		
444					

Analysis	#16	105+	GC	Eunction	Analysis	Report
military	11 JL W		QQ.	1 dilocatori	military	Kepoi L

Analysis #16	10S+ GC Func	tion Analysis Report
Φ 2 4	6 8 10	Time Printed: Dec 12,94 04:09
	(x 10 mV)	Sample Time: Dec 12,94 04:00
	1	Method
35	2	Slope Up 0.500 mV/Sec
		Slope Down 1.500 mV/Sec
		· I
	•	
3		Min Height 0.000 mV
71		Analysis Delay 0.0 sec
 		Window Percent 10.0 %
	•	Det Flow 12 ml/min
		B/F Flow 12 ml/min
107		Aux Flow 0 ml/min
5		Oven Temp 40 C
		Amb Temp 32 C
	,	Max Gain 1000
142		Analysis Time 500.0 sec
		Peak Report
		Pk Compound Name Area/Conc R.T.
•	•	1 Unknown 71.39 mVS 13.8
178		2 Unknown 431.7 mVS 20.5
		3 benzene 4.343 ppb 52.8
		4 tce 4.343 ppb 32.8 4 tce 1.562 ppb 66.2
	•	1
6		1
214		6 Unknown 1.442 mVS 191.0
250		
	•	
285		
	. ,	
·	·	
321		
	•	
357		
392		Notes
		Jefferson Barracks, Missouri
		Mark Henson
428		C-5
		0.5' bls
464		
1.786.71		:

φ	2		4	6	>	8	10		Time Printed: D	ec 12,94	04:21
<u> </u>	3			. (×	10	mV)		Sample Time: D		
		-		1	-				Met	hod	
3\$/				2.					Slope Up	0.500	mV/Sec
									Slope Down	1.500	mV/Sec
									Min Area	0.000	m∀Sec
B									Min Height	0.000	m∨
71									Analysis Delay		sec
14									Window Percent	10.0	8
1									Det Flow	12	ml/min
.]_									B/F Flow	12	ml/min
107									Aux Flow	0	ml/min
5									Oven Temp	40	C
-		•							Amb Temp	33	С
142									Max Gain	1000	
-7~	٠.	٠	•		•		•		Analysis Time	500.0	sec
								Dν	Compound Name	Report Area/C	onc R.T
		٠		•		•		1	Unknown	55.14 i	
178								2	Unknown	265.9	
	•	•	•	•	•	٠	•	3	benzene	4.041	
								4	tce	2.158	•
		•		•		•		5	toluene	0.693	
214										~	· · · · · · · · · · · · · · · · · · ·
	•	,	•	•	•	•	•				
				•		•					
250	,										
					•	•	•				
2\$5											
_ .											
321											
									•		
357											
7/	•										
		•				•					
392									\$ I	tes	
	•		•					-			าเครื
								I	lefferson Barraci lark Henson	ns, MISS(านเา
		•		•		•		*	iai k nelisun		
428								~	:-5		
1	•	•			•	•		-	s 3' bls		
ļ									, NI2		
		•		•		•					
464								! }			

Ana	lysis	#13	105+	GC Fun	ction Analysis Report
0	1	2	3	4 5	Time Printed: Dec 11,94 05:19
			, (×	10 mV)	1
-				1	Method
35				2	Slope Up 0.500 mV/Sec
,	√ 3	•		• •	Slope Down 1.500 mV/Sec
$ \cdot $	[Min Area 0.000 mVSec
1 1 /	4	•	•	•	Min Height 0.000 mV
71					Analysis Delay 0.0 sec
	5				Window Percent 10.0 %
. [Det Flow 12 ml/min
	6		-	•	B/F Flow 12 ml/min
107					. Aux Flow O ml/min
	·	•	•	•	Oven Temp 40 C
7					Amb Temp 31 C
					Max Gain 1000
142					Analysis Time 500.0 sec
	•		. '	. ,	Peak Report
					Pk Compound Name Area/Conc R.T.
					1 Unknown 51.58 mVS 14.0
178					2 Unknown 328.9 mVS 20.4
					3 Unknown 0.327 mVS 30.4
				i	4 benzene 0.153 ppb 53.4
8					5 tce 0.389 ppb 69.7
214					6 Unknown 4.631 mVS 85.0
					7 toluene 2.408 ppb 110.6
9					8 Unknown 2.788 mVS 196.6
					9 ethylbenzene 8.736 ppb 220.6
250	.10				10 m,p-xylene 15.14 ppb 238.0
			•	•	
285					1
					1 1 1
			•	•	
321					
174					
			•	•	
357					
	•				
		•	•	•	
392					Notes
	•				Jefferson Barracks, Missouri
	•				Mark Henson
			•	•	
428					D-1
	•		•		15' bls
		•	•	•	

φ	1		2	3		4	5	Time Printed: Dec 11,94 04:23
				. (×	10	mV)	Sample Time: Dec 11,94 04:15
1	سي			·		·	1	Method
35	1. 3	2						Slope Up 0.500 mV/Sec
	3	•	•	•	•	•	•	Slope Down 1.500 mV/Sec
	4							Min Area 0.000 mVSec
- 1/								Min Height 0.000 mV
71								Analysis Delay 0.0 sec
/5		·	·	·	•	·	•	Window Percent 10.0 %
								Det Flow 12 ml/min
6								B/F Flow 12 ml/min
104								Aux Flow O ml/min
]	·	•		·	•	•	•	Oven Temp 40 C
.]								Amb Temp 31 C
								Max Gain 1000
142			•					Analysis Time 500.0 sec
ĺ								Peak Report
								Pk Compound Name Area/Conc R.T.
į								1 Unknown 319.0 mVS 14.0
L78								2 Unknown 4.634 mVS 20.5
								3 dce 0.180 ppb 24.0
								4 Unknown 0.884 mVS 36.4
7								5 tce 1.196 ppb 69.7
214								6 Unknown 4.319 mVS 85.0
								7 Unknown 1.988 mVS 197.4
2\$0								
ļ								
285			•					
				•				
5 2 1								
į								
557		•					•	
				•		٠		
592								VI.a. to
76		•	•			•		Notes
								Jefferson Barracks, Missourî
								Mark Henson
128								© 1
140				•		•		0-1 25' bls
								45 DIS
		•						
1								

Anal	lysis	#9	105+	GC	Func	tion Analysis Report
Ф	1	2	3	4	5	Time Printed: Dec 11,94 04:34
			.(×	10	mV)	Sample Time: Dec 11,94 04:25
			•	1		Method
35					2	Slope Up 0.500 mV/Sec
	/	•		•	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
11/	•		•	•		Min Height 0.000 mV
71						Analysis Delay 0.0 sec
1 1/3	· ·	•	•	•	•	Window Percent 10.0 %
						Det Flow 12 ml/min
	1		•	•		B/F Flow 12 ml/min
107						Aux Flow 0 ml/min
		•		•	•	Oven Temp 40 C
5						Amb Temp 31 C
'	•		•	•		Max Gain 1000
142						Analysis Time 500.0 sec
		•	•	•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
	•		•	•		1 Unknown 62.84 mVS 13.9
178						2 Unknown 322.3 mVS 20.2
		•		•	•	3 tce 0.333 ppb 69.6
						4 Unknown 4.692 mVS 84.6
6						5 toluene 0.688 ppb 110.6
214						6 Unknown 2.041 mVS 196.8
		•		•	•	,
-						
250						
		·			·	
285						
			,			
321					•	
1						
3\$7						
			•			-
3∳2						Notes
						Jefferson Barracks, Missouri
						Mark Henson
428						D-2
						20' bls
			•			
464						
: 404						I

Ana	llys	is	#14		10	3+	GC	Func	tion Analysis Report
Φ	2	2	4		6		3	10	Time Printed: Dec 11,94 05:29
					(x			mV)	Sample Time: Dec 11,94 05:21
-					1		•		Method
35	Proposition of the same			2					Slope Up 0.500 mV/Sec
	f :	•	•		•	•	٠	•	Slope Down 1.500 mV/Sec
	1								Min Area 0.000 mVSec
	3	•			•		•		Min Height 0.000 mV
71									Analysis Delay 0.0 sec
	4	•	•		•	•	•	•	Window Percent 10.0 %
									Det Flow 12 ml/min
	5	•			•		•		B/F Flow 12 ml/min
107									Aux Flow 0 ml/min
1 11	•	•			•	•	•	•	Oven Temp 40 C
1 6									Amb Temp 31 C
	•	•			•		•		Max Gain 1000
142	•								Analysis Time 500.0 sec
	•	•			•	•	•	•	Peak Report
									Pk Compound Name Area/Conc R.T.
					•		•		1 Unknown 98.24 mVS 13.8
170	i								İ
178	٠.	•						•	∮
									, ,
							٠		4 tce 0.650 ppb 69.7
									5 Unknown 5.013 mVS 84.6
214									6 toluene 0.479 ppb 110.4
		•							7 pce 2.079 ppb 151.6
250									
		•							
285								•	
321									
357					,				
392									Notes
									Jefferson Barracks, Missouri
									Mark Henson
		-							
428		_							D-2
	•	•	•		-	•	•	•	10' bls
		•							
464									

Anal	ysis	#16	105+	GC	Func	tion Analysis Report
Φ	1	2	3	4	5	Time Printed: Dec 11,94 05:50
	_	_	, (×		mV)	Sample Time: Dec 11,94 05:41
					1	Method
35	· AND AND AND AND AND AND AND AND AND AND				2	Slope Up 0.500 mV/Sec
	7. 2. 3			•	. –	Slope Down 1.500 mV/Sec
/	4					Min Area 0.000 mVSec
/	-1	•	•	•		Min Height 0.000 mV
71						Analysis Delay 0.0 sec
117	<u>,</u>				•	Window Percent 10.0 %
	J					i i
6		•	•	•		•
107)					
1-41	•				•	Aux Flow 0 ml/min
						Oven Temp 40 C
'		٠	•			Amb Temp 31 C
142						Max Gain 1000
142			, ,	•	•	Analysis Time 500.0 sec
						Peak Report Pk Compound Name Area/Conc R.T.
1 1		٠	•			·
1170						1 Unknown 62.37 mVS 14.0
178						2 Unknown 341.4 mVS 20.1
						3 dce 0.521 ppb 26.4
		•				4 Unknown 3.957 mVS 36.6
8						5 tce 7.331 ppb 70.1
214						6 Unknown 4.279 mVS 84.8
						7 toluene 1.229 ppb 110.9
		•	•			8 Unknown 1.775 mVS 197.2
250					.]	
			٠,		ļ	
2\$5						
		•	•			
321	•					
3\$7						
392						Notes
						Jefferson Barracks, Missouri
						Mark Henson
				•		
428						D-2
	•	•		٠	•	21° bls
			•			
			·	-		
464					:	
				_		

- Tila	TASTS	π/	1034	uС	- unc	tion Analysis Report
Φ	1	2	3	4	5	Time Printed: Dec 14,94 17:41
		-	(×		mV)	Sample Time: Dec 14,94 17:32
-		1	· `	•	,	Method
3\$					2	Slope Up 0.500 mV/Sec
1) /	1		•	•	- .	Slope Down 1.500 mV/Sec
{						Min Area 0.000 mVSec
	3	•	•	•		Min Height 0.000 mV
71	_					Analysis Delay 0.0 sec
1.7/	•			•	•	Window Percent 10.0 %
						Det Flow 12 ml/min
		•	•	•		8/F Flow 12 ml/min
100						Aux Flow 0 ml/min
	>	•		•	•	Oven Temp 40 C
	~ **					Amb Temp 32 C
			•	•		1
110						i i
142						Analysis Time 500.0 sec
						Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 38.51 mVS 14.1
178					•	2 Unknown 229.7 mVS 20.1
						3 benzene 1.713 ppb 51.3
						4 toluene 66.05 ppb 105.7
						5 m,p-xylene 106.3 ppb 233.6
214						
1 1						
5					İ	
250						
	,					
285						
321						
						·
357						
392						Notes
	·	•		•		Jeffersn Barracks
İ						Mark Henson
						Decon water #29
		•		•		10 7 0 8

12-7-94

A	na]	lysis	#35	5	105	S+ G	iC	Func	tion Analysis Report
		1		<u>-</u>	3 .(×	1		5 mV)	Time Printed: Dec 14,94 17:20 Sample Time: Dec 14,94 17:12 Method
3	1							. 2	Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
7.1	3	5			•		•		Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec
		٠		•		•		•	Window Percent 10.0 % Det Flow 12 ml/min
10	-								B/F Flow 12 ml/min
1	14	•	•	•	•			•	Aux Flow 0 ml/min Oven Temp 40 C
									Amb Temp 32 C
							•		Max Gain 1000
14	2								Analysis Time 500.0 sec
									Peak Report
			•		•		•		PK Compound Name Area/Conc R.T. 1 Unknown 30.74 mVS 14.0
17	8								2 Unknown 219.9 mVS 20.0
					•	•	•	•	3 benzene 2.942 ppb 51.0
					•				4 toluene 4.819 ppb 105.6
21	4								5 m,p-xylene 83.43 ppb 233.4
	•	•	•	ı	•	•	•		
1 3	5							ļ	
25	O					•			
			•		•		•		
28	5								
			•						
32	1								
		•					•		
					•				
35	7								
	•								
	0								
39	2	•							Notes
									Jeffersn Barracks Mark Henson
			•				•		1100 15 110110011
42	8								air blank 106
									PEGN H20 #26
									12-9-94
46	4							ļ	
	•								

Analysis #	36 10S+ G	C Func	tion Analysis Report
Φ 2	4 6 8	10	Time Printed: Dec 14,94 17:30
		(Vm 0.	Sample Time: Dec 14,94 17:22
			Method
35/		2 .	Slope Up 0.500 mV/Sec
		· .	Slope Down 1.500 mV/Sec
			Min Area 0.000 mVSec
, z	•	•	Min Height 0.000 mV
71			Analysis Delay 0.0 sec
		•	Window Percent 10.0 %
			Det Flow 12 ml/min
	•	•	B/F Flow 12 ml/min
107			Aux Flow 0 ml/min
		•	Oven Temp 40 C
	,		Amb Temp 32 C
	•	•	Max Gain 1000
142			Analysis Time 500.0 sec
1-7-			Peak Report
			Pk Compound Name Area/Conc R.T.
· ·		•	1 Unknown 36.43 mVS 14.1
178			2 Unknown 239.7 mVS 20.5
1-10			i !
			1
	•	•	1
214			5 m,p-xylene 42.84 ppb 234.0
	•		
	•		
5			
250		•	\
,		•	
285			
483	•		
	•	•	
321			
1041			
		•	
3\$7			
139/			
	•		
700			Stateon
392			Notes
			Jeffersn Barracks
	•	•	Mark Henson
1400			0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
428			Decon water #26
			12-12-94
	•	•	

Anal	ysis	#5	105+	GC	Func	tion Analysis Report
φ	1	2	3	4	5	Time Printed: Dec 9,94 14:47
		_	. (×	10	mV)	Sample Time: Dec 9,94 14:32
		1	•			Method
35					2	Slope Up 14.00 mV/Sec
	·			•	·	Slope Down 42.00 mV/Sec
						Min Area 5.000 mVSec
					3	Min Height 1.000 mV
71-						Analysis Delay 0.0 sec
المسمي		4				Window Percent 10.0 %
						Det Flow 13 ml/min
						B/F Flow 13 ml/min
107	, •					Aux Flow O ml/min
		5				Oven Temp 40 C
•		•				Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
	,					Peak Report
	6		•			PK Compound Name Area/Conc R.T.
178						1 Unknown 15.42 mVS 14.0 2 dce 100.0 ppb 24.0
1-10	•		•			2 dce 100.0 ppb 24.0 3 benzene 100.0 ppb 53.0
						4 tce 100.0 ppb 53.0
			•	•		5 toluene 100.0 ppb 108.2
214						6 pce 100.0 ppb 148.6
	· 7		•	•	•	7 ethylbnz,m,p-xyl 300.0 ppb 213.0
						, and the state of the state of
į		•		•		
250						
	•		• •	•	•	
						!
285						
1						
321						
			•	•		
357						
	•			•	•	
}						
		•	•	•		
392						Notes
	•		•	٠	•	Mark Henson
						Jefferson Barracks, Missouri
		•	•	•		,
428						100 ppb standard
	•	• •		•	•	
		-	•			

Œ	2	4	6	8	10	Time Printed: Dec 9,94 13:05
			(×	1	O mV)	Sample Time: Dec 9,94 12:57
E	_	Ĺ				Method
55 2			2			Slope Up 67.50 mV/Sec
差	•		•	•	•	Slope Down 202.5 mV/Sec
						Min Area 0.000 mVSec
-		≐	. 3		•	Min Height 0.000 mV
/ \						Analysis Delay 0.0 sec
	•	4	•	•	•	Window Percent 10.0 %
Ě						Det Flow 13 ml/min
2						B/F Flow 13 ml/min
.∮ <u>}</u> _	- .					Aux Flow O ml/min
<u>}</u>	5					Oven femp 40 C
<u> </u>						Amb Temp 28 C
						Max Gain 1000
.4						Analysis Time 500.0 sec
The manufacture of the second						Peak Report Pk Compound Name Area/Conc R.T.
Ş		•			•	1 Unknown 43.33 mVS 14.6
.f8						2 Unknown 54.01 mVS 23.9 3 Unknown 80.24 mVS 51.7
3	•	•	•	•	•	
						4 Unknown
)) 1 53						J 0110011 00:07 11170 1200:0
~ _	•		•	•		
=						
Ź						# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						*
`# # #						
		•	•			
85				,		
						PROPERTY AND A STATE OF THE STA
						41
(4 L						*
1						
157	•			٠		
		•			•	1
142						Notes
•						Mark Henson Jefferson Barracks, Missouri
ļ		•	•		•	1 JOHNOLOUN DALLACINO, HIJOOUNII
148						100 ppb standard
1	•		•			To
(•			
164						
74	•					The state of the s
					•	
φο						!

Analysi	s #1	10S+ GC	Func	tion Analysis Report
2	. 4	6 8	10 mV)	Time Printed: Dec 9,94 12:32 Sample Time: Dec 9,94 12:24
3.5				Method Slope Up 164.5 mV/Sec
₹				Slope Down 493.5 mV/Sec
			2	Min Area 0.000 mVSec
7	7	3	<i>i.</i>	Min Height 0.000 mV Analysis Delay 0.0 sec
			•	Analysis Delay 0.0 sec Window Percent 10.0 %
3				Det Flow 13 ml/min
	•	•		8/F Flow 13 ml/min
10/				Aux Flow 0 ml/min
4			•	Oven Temp 40 C
				Amb Temp 24 C
				Max Gain 1000
				Analysis Time 500.0 sec
10 Judinhy Judinharia, Judi				PK Compound Name Area/Conc R.T.
₹	•			1 Unknown 90.18 mVS 24.2
1 / 查				2 Unknown 161.8 mVS 51.2 3 Unknown 107.2 mVS 63.6
<u> </u>				3 Unknown 107.2 mVS 63.6
	•			
21/4				
<u> </u>				
-	•	•		· · · · · · · · · · · · · · · · · · ·
25 -5				
				Transfer .
		•		
	,			F. C
32 £				
=				
				and the second s
35				
MM. 35 MM/MM/MM/MM/MM/MM/MM/MM/MM/MM/MM/MM/MM/				
39				S.I V
	•	•	.	Notes Mark Henson
				Jefferson Barracks, Missouri
423		·		
			.	100 ppb standard
\$				
		•	3	
404				
<u> </u>			ļ	
1 2		•		
50연.				
			<u>.</u>	

	alys									tion Analysis Report
q		1		2		3	4		5	Time Printed: Dec 9,94 16:44
1 3						.(×		O mV		Sample Time: Dec 9,94 16:32
	4		•			. (^	ж.О	Ċ III A	,	Method
-						=-	4)
35	. ممر						. 1			Slope Up 65.00 mV/Sec
}										Slope Down 195.0 mV/Sec
	·									Min Area 1.000 mVSec
	مسمم				2					Min Height 1.000 mV
71	¥									Analysis Delay 0.0 sec
	نسسر ا		3	•		•	•	•	•	Window Percent 10.0 %
}	Ş									Det Flow 13 ml/min
5	} }		•			•		•		B/F Flow 13 ml/min
10) !7									Aux Flow 0 ml/min
1-3	فسسن	_	•	•		•	•	•	•	Oven Temp 40 C
	للمستميم	_ _1								Amb Temp 32 C
1 4	,	₩	•			•		•		Max Gain 1000
1, 1										Ì
14	'							•		Analysis Time 500.0 sec
	TAW									Peak Report
] .[5							•		Pk Compound Name Area/Conc R.T.
1										1 dce 1.000 ppm 24.5
17	8									2 benzene 1.000 ppm 53.6
3										3 tce 999.9 ppb 69.6
3										4 toluene 999.9 ppb 110.4
	i									5 pce 999.9 ppb 149.6
21	4									6 ethylbnz,m,p-xyl 3.000 ppm 222.4
1	1)		•	•		•	•	•	•	
	16									
	ļ		•			•		•		
25	Ś									
	} .		•	•		•	•		•	
Ş										
4.			•			•		•		
20	E.									
28	Ρ.		•	•			•	•		
1	7 1									
3								•		
1										
33	1 .		•							
1,1										
1										
35	7									
2	•		•	,						
5										
}	• I		•			•		•		
38	2									Notes
3			•	•		•	•	•	•	Mark Henson
}	- !									Jefferson Barracks, Missouri
1	! !		•			•				der recommend interest
ئى ا	o									1 nom etd
42	්ට්									1 ppm std
1 5										
-	•									
1										

10 ppm std

Anal	ysis	s #	8	10	S+ GC	Func	ction Analysis Report
	4 		8	12	16	20 uV)	Time Printed: Dec 9,94 15:23 Sample Time: Dec 9,94 15:14
35						1 .	Method Slope Up 13.50 mV/Sec
•	•	•	•	•		•	
		•		•	•		Min Area 1.000 mVSec Min Height 1.000 mV
71							Analysis Delay 0.0 sec
	•	•	•	•		•	Window Percent 10.0 %
							Det Flow 13 ml/min
		·		•			B/F Flow 13 ml/min
107							Aux Flow 0 ml/min
	•	•	•	•		٠	Oven Temp 40 C
							Amb Temp 33 C
				•	•		Max Gain 1000
142		,					Analysis Time 500.0 sec
	-	•	•	•		•	Peak Report
							Pk Compound Name Area/Conc R.T.
							1 Unknown 16.69 mVS 15.5
178							
				•			
214			•				
250							
		•					
285							
1493		•					
		•		•	•		
321							
T	•	•			• .	٠	
		•		•	•		
3\$7							
	•	•	•		•	•	
		•		•	•		
392							Notes
	•	•	•		•		Mark Henson
							Jefferson Barracks, Missouri
		•		•	•	į	The second secon
428							air blank
	•	•	•		•	.	
					-		
				•	•		

Anaı	lysis	#TO	105+ 60	Func	tion Analysis Report
•	4	8	12 16 (× 1000	20 uV)	Time Printed: Dec 9,94 15:46 Sample Time: Dec 9,94 15:37
		•	·	1	Method
33					Slope Up 14.50 mV/Sec
	•	•	• • •	•	Slope Down 43.50 mV/Sec
5					Min Area 1.000 mVSec
2-		•			Min Height 1.000 mV
7					Analysis Delay 0.0 sec
2	•			•	Window Percent 10.0 %
					Det Flow 13 ml/min
		•			B/F Flow 13 ml/min
107					Aux Flow 0 ml/min
	•	•		•	Oven Temp 40 C
}					Amb Temp 33 C
		•	•		Max Gain 1000
142					Analysis Time 500.0 sec
177	•			•	Peak Report
					Pk Compound Name Area/Conc R.T.
		•			1 Unknown 50.14 mVS 14.0
173					1 OMMHOWN 30.14 m/0 14.0
17/2	•			•	
-					
		•	•		
214					
~+~	•			•	
>					
		•			
250					
250	•				
		•			
205					
285	•			•	
321					
1247	•				
					1
357	٠			•	
		•			
7					Notes
392					!
					Mark Henson
					Jefferson Barracks, Missouri
428				•	air blank
1 i					1

φ	4	8	12	16	20	Time Printed: Dec 9,94 16:54
_			_ (×	1000	uV)	Sample Time: Dec 9,94 16:46
ř			•	1		Method
3 5						Slope Up 17.50 mV/Sec
	•	•	•		•	Slope Down 52.50 mV/Sec
7						Min Area 1.000 mVSec
		•	•	•		Min Height 1.000 mV
71						Analysis Delay 0.0 sec
	•		•		•	Window Percent 10.0 %
						Det Flow 13 ml/min
ſ		•	•	•		B/F Flow 13 ml/min
47						Aux Flow O ml/min
	•		•		•	Oven Temp 40 C
						Amb Temp 32 C
ř		•	•	•		Max Gain 1000
.42						Analysis Time 500.0 sec
ļ	•		•	•	•	Peak Report
						Pk Compound Name Area/Conc R.T.
L	•	•	•	•		1 Unknown 5.392 mVS 15.0
78						3.392 mv3 15.0
	•	. ,	•	•	•	
}						
	•	•	•	•		
14						
					•	
Ļ						
1						
\$0					•	
<u> </u>						
85						
Ĺ			•			
Ž 1			•	,		
Ē						
-						
\$7						
	•	•	•		•	
	•		•	•	:	
92						Notes
1		•	•	•	•	Mark Henson
Ì						Jefferson Barracks, Missouri
	•		•	٠		
28						1 ppm std
T		•	•		•	1
					٠	AIR BLANK
			•	•		
1						!

An	alys	sis	#16	103	S+ GC	Func	tion Analysis Report
φ		4	8	12	16	20	Time Printed: Dec 9,94 17:02
	> -			, (×	1000	uV)	Sample Time: Dec 9,94 16:46
	· 7				1		Method
35		,					Slope Up 17.50 mV/Sec
يا ا	3						Slope Down 52.50 mV/Sec
				•			Min Area 1.000 mVSec
71							Min Height 1.000 mV
	•	•	•	•		•	Analysis Delay 0.0 sec
							Window Percent 10.0 % Det Flow 13 ml/min
				•	•		
10	7						B/F Flow 13 ml/min Aux Flow 0 ml/min
	•	•	•	•	•	•	Oven Temp 40 C
							Amb Temp 32 C
				,	•		Max Gain 1000
14:	2 .						Analysis Time 500.0 sec
}				,	•	•	Peak Report
							PK Compound Name Area/Conc R.T.
	_						1 Unknown 5.392 mVS 15.0
178	3 .	•					
		•		•			
214	1						
	• .		•			•	
		•		•	•	İ	
250)						
	•	•	•		•		
					·		
2\$5							
					•		
		•					
7/1							
321					٠	.	West and the second sec
[To appear on the second of the
				•	•		
357							
		•	•		•	.	
		_					
		•		•	•		
392						ŀ	Notes
	•	•	•		•	.	Mark Henson
					•	ļ	Jefferson Barracks, Missouri
428			•			.	air blank
						ĺ	

i

۴	na	lysi	s ‡	‡1 <u>1</u>	•	105+	GC	Fund	tion Analysis Report
ĺ	9	2		4		6	8	10	Time Printed: Dec 11,94 04:54
		— - 1	•			(×	10	m∨)	Sample Time: Dec 11,94 04:46
3	ئى ئىرى:								Method
	\prod		•	•	•	3	•	•	Slope Up 0.500 mV/Sec
İ	14					~			Slope Down 1.500 mV/Sec Min Area 0.000 mVSec
			<u> </u>	-	5		•		
7	K								Analysis
			ے و		•	•	•	•	
ļ									Charles and
ĺ	7				•		•		B/F Flow 12 ml/min 12 ml/min
1	4 7								Aux Flow 0 ml/min
l		>		·	•	•	•	•	Oven Temp 40 C
		8							Amb Temp 31 C
									Max Gain 1000
1.	42							·	Analysis Time 500.0 sec
	Mark Market								Peak Report
į	وعمم	,							Pk Compound Name Area/Conc R.T.
, ,									1 Unknown 41.87 mVS 14.7
1	78								2 Unknown 21.24 mVS 21.2
									3 dce 67.34 ppb 24.9
					•		•		4 Unknown 0.023 mVS 39.0
2:	1								5 benzene 84.62 ppb 54.4
		•	•		,	•		•	6 tce 69.11 ppb 69.4
	λo								0.07/ 11/0 84.1
			•		٠		•		8 toluene 57.43 ppb 111.4
23	10	11							44" 33 bbb T22"O
	Í	•	•	•	•		•		, ,
			•		•		•		12 o-xylene 22.11 ppb 280.8
28	5))
	12			·	·	•	•		
								ļ	
32	1							.	
7	y							ļ	
35	/								
			•				•		Į.
39	2							-	
	~-	•	•					.	Notes
									Jefferson Barracks, Missouri
					•		•		Mark Henson
42	8								100 pph standard
		•	•	•	•	•	•	.	100 ppb standard
									·
ł		•			•		•	j	į

Analysis #4 10				S+ GC	Func	tion	n Analysis Repor	~t		
φ	2	4	6	8	10		Time Printed: (Dec 11,94	1 03:	:38
-			. (×	1000	u∀)		Sample Time: [Dec 11,94	1 03	:29
	·····	<u></u>		1			Met	thod		
35-		-	2				Slope Up	0.500	mV/S	3ec
	/	3					Slope Down	1.500	mV/S	3ec
-	{						Min Area	0.000	mVSe	ec
	4						Min Height	0.000	mΥ	
71	- √.						Analysis Delay	0.0	sec	
	/5						Window Percent	10.0	8	
-	- ′¬						Det Flow	12	m1/n	nīn
	/6						B/F Flow	12	m1/n	nin
107	7.						Aux Flow	0	m1/n	nin
1 1							Oven Temp	40	С	
$\parallel \parallel$							Amb Temp	29	С	
							Max Gain	1000		
142	:						Analysis Time	500.0	sec	
							Peak	Report		-
						PK	Compound Name	Area/C	onc	R.T.
						1	Unknown	22.15	m∀S	14.6
178						2	Unknown	16.30	m∀S	20.9
	·		•	,	•	3	dce	32.34	ppb	24.2
						4	benzene	18.32	ppb	53.9
						5	tce	10.17	ppb	70.0
214						6	Unknown	50.80	m∀S	85.0
	•	•	•		•					
250										
			·		·	ļ				
285										
	·		·		•					
			,							
321										
	•		•		•					
3\$7										
	•	•	•		•					
		•	•	•						
392							No	tes		
	•		•		•		efferson Barrac		souri	
						1	iark Henson			
	,	•	•	•						
428						۾	iir blank			
	•		•		•		in a memoral (III)			
		•		•		1				

Ana	alysi:	s #12	10	S+ GC	Func	tion Analysis Report
φ	4	8	12	16	20	Time Printed: Dec 11,94 05:09
-				1000	uV)	Sample Time: Dec 11,94 05:00
7			1			Method
35\	(f		.2			Slope Up 0.500 m\/Sec
	$\backslash f$					Slope Down 1.500 mV/Sec
	Y	•				Min Area 0.000 mVSec
77.1	1					Min Height 0.000 mV
71	ļ .					Analysis Delay 0.0 sec
	l					Window Percent 10.0 % Det Flow 12 ml/min
] 3	•	•	•		
10	1					B/F Flow 12 ml/min Aux Flow 0 ml/min
		•	•		•	Oven Temp 40 C
	4					Amb Temp 31 C
		•	•	•		Max Gain 1000
142	2					Analysis Time 500.0 sec
	•		•		•	Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 23.03 mVS 14.2
178	3 .					2 Unknown 65.01 mVS 20.7
						3 Unknown 5.563 mVS 85.3
1			•	•		4 toluene 2.313 ppb 111.3
5						5 Unknown 2.312 mVS 198.4
214						6 ethylbenzene 0.968 ppb 221.8
6						
	•	•	•	•		
250)					
	•		•	•	•	
		•	•	•		
285						
321						
		•	•			
357						
	•	•	•	•	•	
		•	•	•		
392						Notes
	•		•	•	•	Jefferson Barracks, Missouri
						Mark Henson
				,		
428						air blank

Analysis #4 10S+ GC Function Analysis Report								
φ	2	4	6	8	10	Time Printed: Dec 11,94 23:27		
│ ├ _─			(×	10	m∨)	Sample Time: Dec 11,94 23:18		
-						Method		
35/				.2	2	Slope Up 0.500 mV/Sec		
/		•		•	•	Slope Down 1.500 mV/Sec		
						Min Area 0.000 mVSec		
3	•		• ,			Min Height 0.000 mV		
71						Analysis Delay 0.0 sec		
		•	,	•	•	Window Percent 10.0 %		
						Det Flow 12 ml/min		
	•			•		B/F Flow 12 ml/min		
107						Aux Flow 0 ml/min		
	•	•		•	•	Oven Temp 40 C		
						Amb Temp 32 C		
	•		•	•		Max Gain 1000		
142						Analysis Time 500.0 sec		
		•	•	•	•	Peak Report		
						Pk Compound Name Area/Conc R.T.		
	•		•	•		1 Unknown 29.07 mVS 14.1		
178						2 Unknown 326.4 mVS 20.3		
-1		•		•	•	3 benzene		
4						4 Unknown 1.630 mVS 189.8		
	•			•		- CHANOWH 1.000 1175 107.0		
214								
		•						
İ	·		•	•				
250								
250					•	·		
	•		•	٠				
285								
203		•		٠				
70.								
321								
			•	•				
3\$7								
			•					
392						Notes		
						Jefferson Barracks, Missouri		
	•		•			Mark Henson		
428						air blank		
	•							
İ								

Analysis #10 10S+ GC Function Analysis Report										
(P	2		4	6		8	10	Time Printed: Dec 12,94 02:06	
					_(:	×	10	m∨)	Sample Time: Dec 12,94 01:54	
					1		•		Method	
35	7			.2 .3					Slope Up 0.500 mV/Sec	
		•	•	3	•	•	•	•	Slope Down 1.500 mV/Sec	
									Min Area 0.000 mVSec	
	7		,-	4					Min Height 0.000 mV	
71	Ľ <u>-</u> -	> -							Analysis Delay 0.0 sec	
		5	·	•	·	•	•	•	Window Percent 10.0 %	
									Det Flow 12 ml/min	
									B/F Flow 12 ml/min	
14	λŢ								Aux Flow 0 ml/min	
	6	·	•	•	•	•	•	•	Oven Temp 40 C	
									Amb Temp 32 C	
					•		•		Max Gain 1000	
14	2								Analysis Time 500.0 sec	
	\	•	•	•	•	•	•	•	Peak Report	
	7								Pk Compound Name Area/Conc R.T.	
					·		·		1 Unknown 62.18 mVS 14.0	
17	8								2 Unknown 47.35 mVS 20.4	
	1	•	•	•	•	•	•	•	3 dce 100.0 ppb 23.8	
									4 benzene 99.99 ppb 52.5	
			•		•		•		5 tce 100.0 ppb 66.5	
21	4								6 toluene 100.0 ppb 105.4	
	ន	•	•	•	•	•	•	•	7 pce 100.0 ppb 146.0	
									8 ethylbenzene 100.0 ppb 216.8	
į	9				•		•		9 m,p-xylene 200.0 ppb 232.6	
23	0								10 o-xylene 100.0 ppb 275.7	
,		•	•	•	•	•		•		
ļ										
Ì			•		•		•			
28	5	10								
1		•	•	•	•	•	•	•		
			•		•		•			
3:2	21									
		•	•	•	•		•	•		
Ì										
			•		•		•			
3\$	57									
		•	•	•	•	•	•	•		
			•		•					
3\$	2								Notes	
		•	•	٠	٠	•	•		Jefferson Barracks, Missouri	
Ì									Mark Henson	
			•		•		•		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
47	8								100 ppb std	

The state of the s	Analysis	#10	105+	GC	Function	Analysis	Report
--	----------	-----	------	----	----------	----------	--------

	ysis	11.20	1001		1 unc	tion Analysis Report
Φ	2	4	6	8	10	Time Printed: Dec 12,94 02:02
			. (×		mV)	Sample Time: Dec 12,94 01:54
		•	1	ΤÝ	7	Method
تميل س	=		٠			i
357		. <u>.</u> 2 . 3				Slope Up 0.500 mV/Sec
		3				Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
7		4				Min Height 0.000 mV
714	3 -					Analysis Delay 0.0 sec
	 5	•	•	•	•	Window Percent 10.0 %
						Det Flow 12 ml/min
	•	•	•	٠		B/F Flow 12 ml/min
107						1
1 1).						·
16	•					Oven Temp 40 C
						Amb Temp 32 C
						Max Gain 1000
142						Analysis Time 500.0 sec
}		•		•	•	Peak Report
7						Pk Compound Name Area/Conc R.T.
	•		•	•		1 Unknown 62.18 mVS 14.0
178						2 Unknown 47.35 mVS 20.4
1-1				•	•	
						, · · · · · · · · · · · · · · · · · · ·
	•		•			4 benzene 70.22 ppb 52.5
						5 tce 55.21 ppb 66.5
214						6 toluene 57.94 ppb 105.4
8						7 pce 35.65 ppb 146.0
1						8 ethylbenzene 46.01 ppb 216.8
9				•		9 m,p-xylene 77.56 ppb 232.6
230						10 o-xylene 39.34 ppb 275.7
		•		•	•	
	•		•			
200	1.0				•	
285	.10					
			•			
321						
		,		•	•	
	•		•	•		
357						
100/					•	•
			•			
372					_	Notes
		•		•	•	Jefferson Barracks, Missouri
						Mark Henson
	٠		•	•		
1400						100 nnh atd
428		•				100 ppb std
464						

Analysis #19	10S+ GC Funct	ion Analysis Report		
0 2 4	6 8 10 (× 100 mV)	Time Printed: De Sample Time: De	ec 12,94	04:53 04:41
3 2 3	,	Meth Slope Up Slope Down	0.500 1.500	mV/Sec mV/Sec
5	. 4	Min Area Min Height	0.000	mVSec mV
77	, , .	Analysis Delay Window Percent Det Flow	0.0 10.0 12	sec % ml/min
147	•	B/F Flow Aux Flow	12	ml/min ml/min
1/7		Oven Temp	40	С

178

9

214

250 250

2\$5 12

321

3\$7

392

428

Amb Temp

Max Gain

	Analysis	Time	500.0	sec	
		Peak	Report		
Pk	Compound	Name	Area/0	Conc	R.T.
1	Unknown		21.76	mVS	13.8
2	Unknown		37.59	mVS	15.6
3	Unknown		34.10	mVS	20.5
4	dce		999.9	ppb	24.4
5	benzene		999.9	ppb	53.4
6	tce		1.000	ppm	66.4
7	toluene		999.9	ppb	105.2
8	pce		1,000	ppm	146.8
9	Unknown		0.740	mVS	189.8
10	ethylbena	zene	1.000	ppm	216.6
11	m,p-xyler	ne	1.999	ppm	231.4
12	o-xylene		999.9	ppb	275.2

Notes

Jefferson Barracks, Missouri

Mark Henson

1 ppm std

33

1000

С

An	alysis	s #1	105+	GC	Func	tion Analysis Report
φ	2	4	6	8	10	Time Printed: Dec 13,94 07:54
			.(×	10	mV)	Sample Time: Dec 13,94 07:40
-	-	1	. `	•	•	Method
35	$\sqrt{2}$					Slope Up 0.500 mV/Sec
	<i>₹</i>		 3	•	•	Slope Down 1.500 mV/Sec
		Ì	~			Min Area 0.000 mVSec
			4	•		4
71	{	- 5	'			· · · · · · · · · · · · · · · · · · ·
' †						Analysis Delay 0.0 sec
						Window Percent 10.0 %
		•	•	•		Det Flow 12 ml/min
						B/F Flow 12 ml/min
19	-					Aux Flow 0 ml/min
	<i>f</i> 5					Oven Temp 40 C
						Amb Temp 28 C
						Max Gain 1000
14	ζ.					Analysis Time 500.0 sec
	Ħ	•	•	•	-	Peak Report
						Pk Compound Name Area/Conc R.T.
						1 Unknown 52.95 mVS 14.0
17	8					2 Unknown 25.76 mVS 20.2
	•	• •	•	•	•	3 dce 100.0 ppb 23.2
	8					4 benzene 100.0 ppb 52.1
		·	•	·		5 tce 100.0 ppb 63.6
21	対					6 toluene 100.0 ppb 102.4
	9			•	•	7 pce 100.0 ppb 143.0
	10					8 Unknown 1.615 mVS 186.2
/	ł	•	•	•		9 ethylbenzene 100.0 ppb 210.2
25	0					10 m,p-xylene 200.0 ppb 225.2
	•	•		•	•	11 o-xylene 100.0 ppb 267.4
					!	
	11	•	•	•		
28						
	.					
					1	
		•		•	į	
-	1					
32	٠.					
<u> </u>	P					
35	<i>f</i>					
		•				
39:	2 .					Notes
						Jefferson Barracks, Missouri
						Mark Henson
428	3					100 ppb standard
			•			
İ						

Analy	ysis	#11	105+	GC	Funct	cion Analysis Report
Φ	1	2	3	4	5	Time Printed: Dec 13,94 11:04
		-	.(×		m∨)	Sample Time: Dec 13,94 10:53
		• 		— ; — →		Method
35	_=				2	Slope Up 0.500 mV/Sec
/	•				 3	Slope Down 1.500 mV/Sec
11/					ŭ	Min Area 0.000 mVSec
			<u> </u>	<u> </u>	4	Min Height 0.000 mV
171-	·		5		•••T	Analysis Delay 0.0 sec
17			. ~ .	•	•	Window Percent 10.0 %
1 1/						Det Flow 12 ml/min
		•		•		B/F Flow 12 ml/min
107-						Aux Flow O ml/min
J. J.	⊃ૂ			•	•	Oven Temp 40 C
	•					Amb Temp 32 C
1			•	•		Max Gain 1000
142						Analysis Time 500.0 sec
7	•			•	•	Peak Report
1 1/						Pk Compound Name Area/Conc R.T.
				•		1 Unknown 51.47 mVS 13.6
178						2 Unknown 81.96 mVS 20.2
1-10					•	3 dce 99.99 ppb 23.9
						4 benzene 100.0 ppb 52.8
1 1			•	•		5 tce 100.0 ppb 64.9
214						6 toluene 100.0 ppb 104.4
)8	٠				•	7 pce 100.0 ppb 142.5
$ H^{o}$						8 ethylbenzene 99.99 ppb 214.8
		•	•	٠		9 m,p-xylene 200.0 ppb 229.6
250					!	10 o-xylene 100.0 ppb 273.3
	•			٠		10 0 Xy10110 10010 pps 1/310
{						
.,			•	•		
285	10				!	
				•		
					•	
			•	•		
321						
				•	•	
			•			
357						
				•	•	
		•	•			
392						Notes
111	•			•	•	Jefferson Barracks, Missouri
						Mark Henson
			•	٠		
428						 1
	•		•		•	202 515 100 PPB STD
		•	•	•		
1 1						1

A	nalysi	s #18	108+	GC	Func	ction Analysis Report
	2	. 4	6 . (×	8	10 mV)	Time Printed: Dec 13,94 14:50 Sample Time: Dec 13,94 14:42
3		3 	.2 .			Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec
				•	·	Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min
14	6.				٠	Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000
17	8					Peak Report Pk Compound Name Area/Conc R.T. Unknown 31.42 mVS 14.1 Unknown 78.03 mVS 20.1 dce 79.65 ppb 23.6
21	4	·				4 benzene 86.67 ppb 53.2 5 tce 79.14 ppb 65.7 6 toluene 85.66 ppb 105.2 7 pce 69.89 ppb 147.0 8 ethylbenzene 81.96 ppb 213.2 9 m,p-xylene 157.4 ppb 232.0
2 28	•	·			**************************************	10 o-xylene 80.02 ppb 276.2
32	1 .		·			
35	7				es mai ring mining kan spenja serapa ang pang pangang manganan da pangang mangang mangang mangang mangang mang	
392	٠					Notes Jefferson Barracks, Missouri Mark Henson
428	3		·			100 ppb std

Ana.	lysis	#32	1.	<u> </u>	GC	Func	tion Analysis Report
0	1	2	3		4	5	Time Printed: Dec 13,94 17:57
			_ (:	×	10	mV)	Sample Time: Dec 13,94 17:46
	<u> </u>	i.	•		•		Method
357							Slope Up 0.500 mV/Sec
/	•		•	•	•	3	Slope Down 1.500 mV/Sec
							Min Area 0.000 mVSec
		<u> </u>			4		Min Height 0.000 mV
17/4		3					Analysis Delay 0.0 sec
~		5	•	•	•	•	Window Percent 10.0 %
		_					Det Flow 12 ml/min
			·				B/F Flow 12 ml/min
102	_						Aux Flow O ml/min
سر ا	ي محتم		•	•	•	•	Oven Temp 40 C
							Amb Temp 31 C
			-				Max Gain 1000
142							Analysis Time 500.0 sec
	•		•	•	•	•	Peak Report
/7							Pk Compound Name Area/Conc R.T.
			•		•		1 Unknown 27.27 mVS 14.3
178							2 Unknown 12.62 mVS 21.0
	•		•	•	•	•	3 dce 99.99 ppb 24.2
							4 benzene 100.0 ppb 52.8
8							5 tce 100.0 ppb 66.9
214							6 toluene 100.0 ppb 105.8
	,		•	•	·	•	7 pce 100.0 ppb 147.6
jp		•	,				8 Unknown 0.534 mVS 192.6
1 120	0						9 ethylbenzene 99.99 ppb 217.6
250							10 m,p-xylene 199.9 ppb 233.6
							11 o-xylene 99.99 ppb 276.8
		•					
285	11						
		•					
371							
		•					
357	•					•	
							31a de a
392					•		Notes
							Jefferson Barracks, Missouri Mark Henson
					•		nark menson
428							100 pph std
1448	•				•	•	100 ppb std
		•	•		•		

,	Ar	nal	ysi	s #	ŧ32		105+	GC	Func	ction Analysis Report	
	9		1		2		3 (×	4	5 mV)	Time Printed: Dec 13,94 17:54	
	3:		<u>?</u>				•	•	3	1.200 mA\260	
	71			<u></u> -		·	-	4		Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec	
					5	•				Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min	
	10		6			•				Aux Flow 0 ml/min Oven Temp 40 C	
	14	2					,			Amb Temp 31 C Max Gain 1000 Analysis Time 500.0 sec	
		<u></u>								Peak Report	
		′		•				٠		PK Compound Name Area/Conc R.T	-
	L #	8								1 Unknown 27.27 mVS 14.	- 1
	-]	~	•	•			•			2 Unknown 12.62 mVS 21.	- 1
										3 dce 70.16 ppb 24.	i i
		8		•		•				4 benzene 82.90 ppb 52. 5 tce 79.54 ppb 66	- 1
1	2∫.									77.04 ppb 00.	1
	1		•	•	•	•	•	•	٠	6 toluene 86.66 ppb 105.	
		9								TOWN, PDD TWY.	
		10		•		•		٠		8 Unknown 0.534 mVS 192. 9 ethylbenzene 74 17 pph 217	•
12	24									The state of the s	1
			•		•	•	•			10 m,p-xylene 129.3 ppb 233 11 o-xylene 71.78 ppb 276	
(4	35	5	.11								
				•					 		
3)	71	L				•					
7	-	r						٠			
3	57	•	•	•	٠						
3	92	,	•			٠			-		
~	***************************************	` ,								Notes Jefferson Barracks, Missouri Mark Henson	
4	28					•			-	100 ppb std	
	1		,								

Time Printed: Dec 13,94 11:14 Sample Time: Dec 13,94 11:16 Method Slope Up	Ana	lysis	#12	105+	GC Func	tion Analysis Report
Sample Time: Dec 13,94 11:06 Method	Φ	1	2	3	4 5	Time Printed: Dec 13,94 11:14
Method Slope Up				(x 10	000 uV)	
Slope Down 1.500 mV/Sec Min Area 0.000 mVSec Min Height 0.000 mV Nin Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % 12 ml/min B/F flow 12 ml/min B/F flow 12 ml/min Aux Flow 0 ml/min 0.000 mV Temp 40 C Amb Temp 32 C Max Gain 1.000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 2250 285 357 35			, 1	·	•	
Slope Down 1.500 mV/Sec Min Area 0.000 mVSec Min Height 0.000 mV	35	$\overline{}$			2	Slope Up 0.500 mV/Sec
Min Area		1		•	•	· ·
Min Height 0.000 mV Analysis Delay 0.0 sec Window Percent 10.0 % Det flow 12 ml/min B/F flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report R Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 285 321 Notes Jefferson Barracks, Missouri Mark Henson air blanks						·
Analysis Delay 0.0 sec Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min B/F Flow 0 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	'	∇_3	•	•	•	1
Window Percent 10.0 % Det Flow 12 ml/min B/F Flow 12 ml/min B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 357 357 357 357 357 367	71					
Det Flow 12 ml/min 8/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 250 255 255 257 25		f^{*}				1
B/F Flow		1				<u> </u>
Aux Flow 0 ml/min Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report PK Compound Name Area/Conc R.T. 1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 285 371 397 Notes Jefferson Barracks, Missouri Mark Henson air blanks	1 ' 1		•	•	•	
Oven Temp 40 C Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 6.784 mvS 14.8 2 Unknown 8.762 mvS 20.2 3 benzene 0.847 ppb 52.4 214 250 Notes Jefferson Barracks, Missouri Mark Henson air blanks	107	•				•
Amb Temp 32 C Max Gain 1000 Analysis Time 500.0 sec Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 6.784 m/3 14.8 2 Unknown 8.762 m/3 20.2 3 benzene 0.847 ppb 52.4 214 250 285 321 357 Notes Jefferson Sarracks, Missouri Mark Henson air blanks	1 /				•	·
Max Gain						· ·
Analysis Time 500.0 sec		•	•	•	•	•
Peak Report Pk Compound Name Area/Conc R.T. 1 Unknown 6.784 mVs 14.8 2 Unknown 8.762 mVs 20.2 3 benzene 0.847 ppb 52.4 214 250 285 321 357 Notes Jefferson Barracks, Missouri Mark Henson air blanks	142					
Pk Compound Name Area/Conc R.T. Unknown 6.784 mVS 14.8 Unknown 8.762 mVS 20.2 benzene 0.847 ppb 52.4 214 230 285 397 Notes Jefferson Barracks, Missouri Mark Henson air blanks						
1 Unknown 6.784 mVS 14.8 2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 357 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks						
2 Unknown 8.762 mVS 20.2 3 benzene 0.847 ppb 52.4 214 250 285 321 392 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks		•	•	•	•	
214 250 285 321 392 Notes Jefferson Barracks, Missouri Mark Henson air blanks	178					ł.
250 255 321 357 392 Notes Jefferson Barracks, Missouri Mark Henson air blanks						
285 321 357 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	1 1					0.047 ppb 32.4
285 321 357 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	•		•	•	•	
285 321 357 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	214					
285 321 Notes Jefferson Barracks, Missouri Mark Henson air blanks	-44					
285 321 Notes Jefferson Barracks, Missouri Mark Henson air blanks						
285 321 Notes Jefferson Barracks, Missouri Mark Henson air blanks			•	•		
285 321 Notes Jefferson Barracks, Missouri Mark Henson air blanks	240					
392 Notes Jefferson Barracks, Missouri Mark Henson air blanks	1230		•			
392 Notes Jefferson Barracks, Missouri Mark Henson air blanks						
392 Notes Jefferson Barracks, Missouri Mark Henson air blanks				•	•	
392 Notes Jefferson Barracks, Missouri Mark Henson air blanks	200					
392 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	1233					
392 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks						
392 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks				•	•	
392 Notes Jefferson Barracks, Missouri Mark Henson 428 air blanks	1 - 1					
Notes Jefferson Barracks, Missouri Mark Henson air blanks	371					
Notes Jefferson Barracks, Missouri Mark Henson air blanks						
Notes Jefferson Barracks, Missouri Mark Henson air blanks						
Notes Jefferson Barracks, Missouri Mark Henson air blanks						
Jefferson Barracks, Missouri Mark Henson air blanks	357					
Jefferson Barracks, Missouri Mark Henson air blanks						
Jefferson Barracks, Missouri Mark Henson air blanks		•				
Jefferson Barracks, Missouri Mark Henson air blanks						
428 air blanks	392					<u> </u>
428 air blanks						Jefferson Barracks, Missouri
					•	Mark Henson
444	428					air blanks
464				•	•	
444						
444						
	464					

P	:	6	4	3		2	10		20	ction Analysis Report
				-					uV)	Time Printed: Dec 13,94 15:18 Sample Time: Dec 13,94 15:09
		-<	-		1			- ~	~,,	
35	1	1	2							Method Slope Up 0.500 mv/Sec
	\	•		•	٠		•	•	•	
	\bigvee									
,	B		•		•			•		
71	Ì									0.000
	f -	•	•	•	•		•	•	•	11-
	-									
	İ		•		•			•		
10	7									
		•	•	٠	•		•	•	•	
			•		•			•		
142	2									
		•	•	•	•	•		•	•	
										Peak Report Pk Compound Name Area/Conc R.T.
1			•		٠			•		
178	}									10 Lut.
		•	•	•	•				•	1
İ										3 benzene 1.875 ppb 52.2
1			•		•			•		
214										
7		•	•	•	•					
			٠		٠					
250									I	
7			•					•		
			٠]	
285									Ī	
. O.J									.	
									ļ	
									İ	
_ _										
321										
\$\$7						,				
					•	•	•		.	
							,			
192									-	Notes
	•		•	•	•	•	•			Jefferson Barracks, Missouri
									1	Mark Henson
			•		•		•			······································
28										
	•		•	•	•	•	٠			air blank
										MII DIGHA
1			•		•		•			
84									1	

Ana	llysis	#26	108	6+ GC	Func	tion Analysis Report
	4	8	12	16 1000	20	Time Printed: Dec 13,94 16:51 Sample Time: Dec 13,94 16:42
35	J. 2					Method Slope Up 0.500 mV/Sec Slope Down 1.500 mV/Sec
71	B		•	٠		Min Area 0.000 mVSec Min Height 0.000 mV Analysis Delay 0.0 sec
		•				Window Percent 10.0 % Det Flow 12 ml/min
107						B/F Flow 12 ml/min Aux Flow 0 ml/min Oven Temp 40 C
142				٠		Amb Temp 31 C Max Gain 1000
		•	•		٠	Analysis Time 500.0 sec Peak Report
178			•		,	Pk Compound Name Area/Conc R.T. 1 Unknown 65.76 mVS 14.2 2 Unknown 1.883 mVS 20.9
						3 benzene 1.118 ppb 51.4
214						
250						
285						
321					# 1 mm mm mm mm mm mm mm mm mm mm mm mm m	
		•				
357						
392						Notes Toffcoon Panarks Vis
428					***************************************	Jefferson Barracks, Missouri Mark Henson
740						AIR BLANK

Ana	lysi	s #	33	10	s+	GC	Funct	tion Analysis Report
Ф	2		4	 ნ		8	10	Time Printed: Dec 13,94 18:07
				(×	: 10	00	uV)	Sample Time: Dec 13,94 17:59
	<		-	, (1	- :	,	Method
35		2						Slope Up 0.500 mV/Sec
	Y		•	٠	٠	•		Slope Down 1.500 mV/Sec
								Min Area 0.000 mVSec
	Ŋ3	•		•		٠		Min Height 0.000 mV
	13							Analysis Delay 0.0 sec
71	1.					•		Window Percent 10.0 %
	1			•				
								B/F Flow 12 ml/min
107	٠	٠						Aux Flow O ml/min
								Oven Temp 40 C
.				•				Amb Temp 31 C
								Max Gain 1000
142								Analysis Time 500.0 sec
]	-	•						Peak Report
1.1								Pk Compound Name Area/Conc R.T.
								1 Unknown 14.58 mVS 14.6
178								2 Unknown 14.89 mVS 21.2
	•	•	•	•	•	•	•	3 benzene 1.254 ppb 53.2
		•		•		·		
214								
	•	•	•	•		•	•	
		•		•		•		
250	:							
	•	•	•	•	•	•	٠	
				•		•)
lade								
285	,			•	•			
						•		
321				,				
357								
	•		•	•		•		
		•		•		•		
392	2							Notes
	•	•	•	•	•	٠	•	Jefferson Barracks, Missouri
								Mark Henson
		٠		•		•		
428	`							air blank
1740		•	•		•			
		•		٠		•		
464	า							
1404	†							

Anal	ysis	#19	105+	GC	Func	tion Analysis Report
φ	2	4	હ	3	10	Time Printed: Dec 14,94 13:31
	_		ͺ(×	10	mV)	Sample Time: Dec 14,94 13:23
1 	-1-			•		Method
3\$ /			. 2			. Slope Up 0.500 mV/Sec
	•	· · · 3	•	•	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
		<u> </u>	•	•		Min Height 0.000 mV
17 H_		,				Analysis Delay 0.0 sec
17		· -	•	•	•	Window Percent 10.0 %
		~				Det Flow 12 ml/min
[•	•	•		B/F Flow 12 ml/min
107						· ·
	•	•		•	•	•
110						Oven Temp 40 C
		•	•	•		Amb Temp 31 C
						Max Gain 1000
142					•	Analysis Time 500.0 sec
)_						Peak Report
7						Pk Compound Name Area/Conc R.T.
						1 Unknown 43.49 mVS 14.1
178			,			2 Unknown 116.2 mVS 20.5
						3 dce 89.96 ppb 24.3
						4 benzene 73.99 ppb 52.4
						5 tce 70.87 ppb 65.8
214						6 toluene 73.36 ppb 105.6
						7 pce 62.57 ppb 147.6
8						8 ethylbenzene 52.20 ppb 217.6
9						9 m,p-xylene 97.30 ppb 233.2
250						10 o-xylene 48.08 ppb 275.7
	•	• •		•	•	
285	10					
	•		•	•	•	
		•	•	•		
321						
	•		•	•	•	
		•	•	•		
357						
		,	•	•	•	
		•	4	•		
392						Notes
1~1~			•	•	•	Jeffersn Barracks
						Mark Henson
		•	•	•		Halk helisuli
1400						100 nnh n#d
428						100 ppb std
1464						

Anal	ysis	#19	105+	GC	Func	tion Analysis Report
Ф	2	4	6	8	10	Time Printed: Dec 14,94 13:34
	_		(×	10	mV)	Sample Time: Dec 14,94 13:23
<u> </u>			-			Method
35-/			. 2			Slope Up 0.500 mV/Sec
	•	· · · 3		•	•	Slope Down 1.500 mV/Sec
						Min Area 0.000 mVSec
		 4				Min Height 0.000 mV
714-						Analysis Delay 0.0 sec
	•	5	, .	·	·	Window Percent 10.0 %
						Det Flow 12 ml/min
						B/F Flow 12 ml/min
100						Aux Flow 0 ml/min
100	•		•	•	•	Oven Temp 40 C
			_			Amb Temp 31 C
			-	•		Max Gain 1000
142						Analysis Time 500.0 sec
1	•		•	, •	•	Peak Report
/7						Pk Compound Name Area/Conc R.T.
1		•	•	•		1 Unknown 43.49 mVS 14.1
178						2 Unknown 116.2 mVS 20.5
	•			•	•	3 dce 100.0 ppb 24.3
						4 benzene 99.99 ppb 52.4
		•	•	•		5 tce 99.99 ppb 65.8
214						6 toluene 100.0 ppb 105.6
	•	•		•	•	7 pce 99.99 ppb 147.6
8						8 ethylbenzene 100.0 ppb 217.6
8 9		•	•	•		9 m,p-xylene 199.9 ppb 233.2
250						10 o-xylene 100.0 ppb 275.7
	•		•	•	•	
		•	•	•		
285	10					
	•			•		
		•	•	•		
321						
	•			•		
		•				
357						
T'	•	•		•	٠	
		•	•	•		
392						Notes
	٠	•		•	•	Jeffersn Barracks
						Mark Henson
				•		11001111111011100111
428						100 ppb std
440					•	100 pps 363
		•	•			
464						
404						!

Ana	alysis	#12	105+	GC	Func	tion Analysis Report
φ	2	4	6	8	10	Time Printed: Dec 14,94 11:40
		'	(×		mV)	Sample Time: Dec 14,94 11:31
		. 1	. (^	πŸ	111 Y J	Method
	<u> </u>	1_				·
35	£ _:^					Slope Up 0.500 mV/Sec
	3					Slope Down 1.500 mV/Sec
-(4			Min Area 0.000 mVSec
11,			- 5			Min Height 0.000 mV
7.	<u></u>	=				Analysis Delay 0.0 sec
1 1/	and the same	6		·		Window Percent 10.0 %
						Det Flow 12 ml/min
		•	•	·		B/F Flow 12 ml/min
100	<u></u>					Aux Flow 0 ml/min
	$\geq_{j'}$			•	•	Oven Temp 40 C
{	•					Amb Temp 32 C
			•	•		Max Gain 1000
						į
142	<u>د</u> ،					Analysis Time 500.0 sec
	>					Peak Report
1 /	໌ 8					Pk Compound Name Area/Conc R.T.
						1 Unknown 22.88 mVS 14.5
178	3 .				•	2 Unknown 50.14 mVS 16.0
						3 Unknown 30.66 mVS 21.0
						4 dce 154.0 ppb 24.7
			•	·		5 benzene 142.1 ppb 53.6
214	1					6 tce 138.1 ppb 66.6
}	,			•	•	7 toluene 134.6 ppb 105.2
						8 pce 119.4 ppb 146.6
	LO	•	•	٠		9 ethylbenzene 132.7 ppb 216.0
-1 17						10 m,p-xylene 244.0 ppb 231.6
2 \$ C					•	
						11 o-xylene 24.16 ppb 273.8
		•	•	•		T .
285	5 11					
			•			
321	L .					
	•	•	•	•	•	
		ė.				
			•	•		
357	7					
			•	•	•	
		•	,	•		
392	>					Notes
1716	• .					Jeffersn Barracks
						Mark Henson
428	3.					100 ppb std

Analysis #1	10S+ GC Func	tion Analysis Report
0 1 2	3 4 5 (× 10 mV)	Time Printed: Dec 14,94 08:06 Sample Time: Dec 14,94 07:57
1 R ₁ .	(x = ±0 mx)	Sample Time: Dec 14,94 07:57 Method
35 2		Slope Up 0.500 mV/Sec
		Slope Down 1.500 mV/Sec
4		Min Area 0.000 mVSec
	·	Min Height 0.000 mV
716		Analysis Delay 0.0 sec
		Window Percent 10.0 %
		Det Flow 12 ml/min
		B/F Flow 12 ml/min
193		Aux Flow O ml/min
7		Oven Temp 40 C
		Amb Temp 28 C
		Max Gain 1000
142		Analysis Time 500.0 sec
8		Peak Report
		Pk Compound Name Area/Conc R.T.
1 70		1 Unknown 14.88 mVS 13.6
178		2 Unknown 8.281 mVS 19.5
9		3 Unknown 71.52 mVS 23.1
		4 Unknown 0.050 mVS 37.1 5 Unknown 68.88 mVS 51.3
214		
10		
		7 Unknown 42.07 mVS 101.7 8 Unknown 58.45 mVS 142.2
•	•	9 Unknown 9.903 mVS 187.4
250	• ·	10 Unknown 21.97 mVS 209.4
	• • • •	
285		
371		
357		
131'		
		Notes
		Jeffersn Barracks
		Mark Henson
428		100 ppb std
		h 1
		·

Analysis #1	10S+ GC Func	tion Analysis Report
Φ 1 2	3 4 5	Time Printed: Dec 14,94 08:10
	(x 10 mV)	Sample Time: Dec 14,94 07:57
21	· ·	Method
35 2		Slope Up 0.500 mV/Sec
	3	Slope Down 1.500 mV/Sec
4		Min Area 0.000 mVSec
\	5	Min Height 0.000 mV
7 6		Analysis Delay 0.0 sec
		Window Percent 10.0 %
		Det Flow 12 ml/min
		B/F Flow 12 ml/min
103		Aux Flow 0 ml/min
7		Oven Temp 40 C
		Amb Temp 28 C
	·	Max Gain 1000
142		Analysis Time 500.0 sec
> 8		Peak Report
1 /		Pk Compound Name Area/Conc R.T.
	•	1 Unknown 14.88 mVS 13.6
178		2 Unknown 8.281 mVS 19.5
		3 dce 100.0 ppb 23.1
9		4 Unknown 0.050 mVS 37.1
'	•	5 benzene 100.0 ppb 51.3
214		6 tce 100.0 ppb 64.4
10		7 toluene 100.0 ppb 101.7
		8 pce 100.0 ppb 142.2
	•	9 ethylbenzene 100.0 ppb 187.4
250		10 m,p-xylene 200.0 ppb 209.4
·	•	
285		
321		
,	•	
357		
392		Notes
		Jeffersn Barracks
		Mark Henson
•	•	
428		100 ppb std
	•	
464		
and a		<u> </u>

Anal	ysis	#33	105+	GC	Funct	tion Analysis Report
Φ	1	2	3	4	5	Time Printed: Dec 14,94 16:57
			(×	10	m∨)	Sample Time: Dec 14,94 16:48
		_	•	1		Method
35	$\frac{7}{2}$,				31ope Up 0.500 mV/Sec
	<u>.</u> . 3			•	•	Slope Down 1.500 mV/Sec
/	_				4	Min Area 0.000 mVSec
			<u> </u>	5	·	Min Height 0.000 mV
71-4				•		Analysis Delay 0.0 sec
11/			 6	•	•	Window Percent 10.0 %
1 1/			•			Det Flow 12 ml/min
		•				B/F Flow 12 ml/min
100						Aux Flow 0 ml/min
1 4 4	> '~			•	•	Oven Temp 40 C
1/	,					Amb Temp 32 C
		•	•			Max Gain 1000
						Analysis Time 500.0 sec
142	•				•	Peak Report
)						·
/ 8	3		•			
178					•	
						3 Unknown 24.10 mVS 20.9
			•			4 dce 84.87 ppb 24.0
						5 benzene 92.88 ppb 52.8
214						6 tce 86.14 ppb 66.9
)						7 toluene 80.35 ppb 106.0
d]			·			8 pce 45.89 ppb 148.0
<u> </u> 上 c)					9 ethylbenzene 68.35 ppb 218.2
250						10 m,p-xylene 125.0 ppb 232.2
						11 o-xylene 54.52 ppb 277.0
			•			
1						
285	11					
	•					
				•		
321						
	,	. ,	•		,	
3\$7						
	•			•	•	
				·		
392						Notes
	•		•	•	•	Jeffersn Barracks
						Mark Henson
		•	•	•		
428						100 ppb std
1	•	•		•	•	
		•	•			
464						
्राच्या भ						·

Ana	lysi	s #	14	10:	S+ GC	Func	tion Analysis Report
φ	2		4	6	8	10	Time Printed: Dec 14,94 12:09
-					1000	uV)	Sample Time: Dec 14,94 12:00
125	7		~	1			Method
35	y.,		.2				Slope Up 0.500 mV/Sec
					•		Slope Down 1.500 mV/Sec
	D _z	•					Min Area 0.000 mVSec
71	7						Min Height 0.000 mV Analysis Delay 0.0 sec
'	/ · ·	•	•	•		•	Analysis Delay 0.0 sec Window Percent 10.0 %
	1						Det Flow 12 ml/min
		•		•	•		B/F Flow 12 ml/min
107							Aux Flow O ml/min
1 /	•	•	•	•	• ` •	•	Oven Temp 40 C
							Amb Temp 32 C
							Max Gain 1000
142						•	Analysis Time 500.0 sec
							Peak Report
.							Pk Compound Name Area/Conc R.T.
							1 Unknown 11.04 mVS 14.5
178							2 Unknown 9.958 mVS 20.3
							3 benzene 0.616 ppb 53.3
				•	•		
214							
1214		•	•	•			
		•			•		
250							
		•	•	•	•	•	
285						,	
321							
341				٠			
		•		•	•		
357							
	•	•	•	•	•	•	
		•			•		
392							Notes
	•		•		•	•	Jeffersn Barracks
				•			Mark Henson
428							air blank
				•	•		
464							
ाभव्यस							

Analy:	sis	‡20	108	+ GC	Func	tion Analysis Report
<u></u>	2	4	6	ន	10	Time Printed: Dec 14,94 13:45
	*	-1	.(×		uV)	Sample Time: Dec 14,94 13:36
	 -		. (^	200	~ v)	Method
35	~	7	1			Slope Up 0.500 mV/Sec
.	•	- · f	1		•	Slope Op 0.350 my/Sec 1.500 mV/Sec
		J.				Min Area 0.000 mVSec
	•	\leftarrow		2 .		Min Height 0.000 mV
71		1	المر			Analysis Delay 0.0 sec
'	. •	>	parameter .		•	Window Percent 10.0 %
						Det Flow 12 ml/min
.	•	كور	•			B/F Flow 12 ml/min
107		Į.				Aux Flow 0 ml/min
1-0,	•	100	•		•	Oven Temp 40 C
41	,	ŧ.				Amb Temp 31 C
	1		•	•		Max Gain 1000
142	ſ					Analysis Time 500.0 sec
1-4-2	$-f_{-}$	•	•		•	Peak Report
	}					Pk Compound Name Area/Conc R.T.
			•	•		1 Unknown 2.516 mVS 21.0
178	1					2 benzene 2.461 ppb 53.3
1.0	. .	•	•		•	
1	\$					
•) .		٠	•		
214	[
	·	•	•		•	
	The state of the s					
				٠		
250	}					
~~~		•	٠		•	
			•	•		
285						
		•	•		•	
				•		
321						
1		•	,		•	
	•			•		
357					,	
		•	•	. ,	•	
	, ·					
392		_				Notes
		•	•		•	Jeffersn Barracks
						Mark Henson
428				, .		1 <del>00 ppb std</del>
	,	•		•	•	AIR SAMPLE
	) [ .					
464						

Ana	lysis	#34	105	+ GC	Func	tion Analysis Report
g-	- 4	8	12	16	20	Time Printed: Dec 14,94 17:10
-	<del></del>		.(×	100	uV)	Sample Time: Dec 14,94 17:01
•	· <del></del>		<b>=</b>			Method
35	,		. 2			Slope Up 0.500 mV/Sec
ļ						Slope Down 1.500 mV/Sec
		.4				Min Area 0.000 mVSec
		× 3				Min Height 0.000 mV
71		. /	•			Analysis Delay 0.0 sec
	1	/				Window Percent 10.0 %
						Det Flow 12 ml/min
107						B/F Flow 12 ml/min
107	· /		•			Aux Flow 0 ml/min Oven Temp 40 C
	/					Amb Temp 32 C
	<b>}</b>	•		•		Max Gain 1000
142	1					Analysis Time 500.0 sec
	· •		٠		•	Peak Report
	1			•		Pk Compound Name Area/Conc R.T.
		•	•	•		1 Unknown 4.964 mVS 16.2
178	•					2 Unknown 3.673 mVS 20.6
			i		•	3 benzene 0.797 ppb 53.5
				,		
	1					
214	<b>]</b>					
	}					
			•			
ara						
250			•			
			,	•		
285						
		•	•		•	
	•		•	•		
321						
		-		•	•	
357						
			•			
392						Notes
1072		•	•		•	Hotes Jeffersh Barracks
						Mark Henson
			•	•		
428						air blank
İ		•	•		•	
			•	•		
464	<b>(</b>					

## APPENDIX E

FIELD NOTES/LAND SURVEY PLATS

THIS PAGE INTENTIONALLY LEFT BLANK

H YOU KNOW I WINTER

Feb-Ex 367-8278

SI Cevi Me

# Sus-68 3025 South Hauly 8 pm # 600

## ARL E HARKER

Suite 230 78229 4100 NW Loop 410 SAN ANTONIO TX

EXT (210) 731-0000

JEFFERSON BARRACKS ANGS Missouri St. Louis,

Trong.

では、それのことも

TE WITERATURE

pents quantz quifenti (1,5) entifissi y i f

fliped outsites

Connect of the

WE TONIA

grante grant

confirmation. miles nullimeters

"Rite in the floor" Aunta कर्त् क्षेत्रमात् मध्य of सम्बद्धावर्ष

150 E



VEHICLE PARKING AREA 157th ACG Jefferson Barracks ANGS St. Jours, Missouri AOC D PROPOSED SAMPLING PLAN -- GRAVEL FOAD AOC. • €5 4,5 FIGURE 5.7 TENT DIRECT OPERATIONAL TECHNOLOGIES 531 AREA OF CONCERN FOIL VIPOR POINT SEDIMENT SANFIE SURFACE WATER SAMPLE ANGS PROPERTY 8 SOIL BORING BUILDING SCALE IN FEET LEGEND AOC C PAVED PARKING AREA (57th ACC, Jefferson Barracks ANGS) - PVC LINE -- CONCESTE RAMP AOC C PROPOSED SAMPLING PLAN VEHICLE PARKING AREA DRAINAGE DITCH Ģ. PARKING PARKING GRAVEL ROAD FIGURE 5.5 R SEE

O P T E ( H) ABEA OF THOERN SAIL TAFFE POINT ANGS PROPERTY SOIL BORING (ECEND BUILDING

preduction and off

(posoday) 2-20H



## 11/30/94 WEDWESDAY

Premobilization Moeting Conference Room, Optoch SAn Antonio, Tx 1400 HRS

Destry Governmay - Field Toch Stew Wilson - Cosposale 11ts Matt Alexander - Geophysical Sugar Sile MANAGOR Mark Heuson - Field GC Russell Cason - 550 In attendance: Earl Pribe

And discussed plans to load on Finday to travel to St. Covis.
Then discussed field schedule And discussed Aspects of each I dentified what was still require Concluded with discussion of Health And Salahy issues. Show Began meeting discussing final issues of supply And equipment. days Activities as flaund.

Other. Chark in And conform weekly 0730 Arm at JESTERSON CAMBES. Drue up At Bldg 290, station CE Addes to see the state pro to set for 0900. We will walk the DAY 1 the in-bricking.

Enspect AOC A And B. WAlked me. to AOC D And C but it was locked up And we didn't home enough time to walk mound before the in brie hing.

Indirecting wy station personnel.
Present: EALL PARKE Deshy Grunnay MATE Alexander Mark Husm Ruse CAson 0060

Art Schuermann -MSGT. Malcolm Jones MAS Keith Parrish -MAS Tow Wamble -

inhoductions, Then boret the

Wilson ended with Safety Brefing.

year Work 17/5/44 1015 Inspecting AUC-C and AOC-O. AOC-C is
44 the bottom of the hill And is flue
with no problem with dvill rig Access

defines AOC-C. Will have to call back to Ross Mury to better identify whyere the hole for AOC-D is. Go back Cannot readily identify hole that to Field GC Roum.

organize equipment in field 60 room-TSGT Sch. goes back to office. We Matt calls and talke to Michelle Bouman And gets good idea of All complete unloading van And when the hole is.

organize equipment and set up retrieve FAX and inspect AOC-C MA And RC go to CE office to asain. WH and DG continue to field 60 mm.

MA And RC rebon from CE office.

Induduas Russ CASON who discusses completing phyging permit. Glossa will have that for us. tenith and Shalfy plan and procedures. plons, inquires on desired locations for Inspection Derived Washed downs, Discusse digging permits. Station is Decem ANDAS, field 6C MEN.

Meeting ends After All questions An Answord. 7567 Schuermann And come walk down to Bldg 44 to See our 6C Room.

west with Ron Anneth, OMS shope chief to See ADC-C And D. to unload equipment. TSGT Sch. And EP. 40 to Blody ST to Wiest with Gene Lysnight At Bldy 46 ms see 6C room. Looks fine, HAVE DG And MH begin

station. Earl briefs on AOC's, proposed

state support we need from the

station on Project Scape, Itimenany,

0460

000)





Survey ANA AS layed out by Math. Decide not to lay out soil gas or Complete setting up 18th AUC- C. Man up to AOC-D And observe Goophysial survey is completed tomorrow morning. Move out to find crow at ADC-A. boving lossins until geophy sunt 1615

will test magnetimeter but not At Go to meet crew at 40c-0 ut the gale at 1645. We donou to since we can spend all the time 90 to AOC-O to test equipment Go to see it 75GT Schemenmann AOC-O since the shop will lock is still in to touch boss with We need.

well but it is beginning out GPR and magnetameter. Things MAH, Rus, And Mark Are testing up and clear the site, going well but it is get colder and dark. 1645.

1650 Load up And everyone departs the site. Drive has by sik. Dasa back to Hotel

Check Messages. Terry Hart called. He is the presidual of the Drilling Return to hotel. CAll Optoch to Contractor.

temorrow and we Arrange to walk the siles tomorrow to see what Enl calls him and he talks About comming out to the site tomorrow to begin to stockpile equipment. Oriller will be out vehicles way need to be moved.

Don Winston And Scott Schnedor Arrive At the Hobel. They must from DHL and mus contracted to talk about the plan and give hi directions to the site. All seems conduct the Soil GAS Survey. mady to begin formarrow.

7 2 END COILY ACTIVITIES 1 K/3/h

day, very little loverze Rom the worthwest, Hi: Thdy will be mid 40:5. Supervise And 185134 In decontamentain Russ Casen gives daily sabely braching.
Dirustas sike history sand pokukial
CCutaininguts, sike hazands, amorganing WEATHER: Overenst And cool. Slight possibility of doingle throughout the MAH, Russ, And Doshy will cenduct the geophysical survey beginning At toc-0, then toc-A. Mark will oncedures And puseunhou plan. ! the Scil GAS Smay. Missuss the day's Non. Dedry Greenwry MAR Henson.

Sac Etale 12/6/941

(92)

ACC-O to begin surey. Mark Henson 0800 MAH And crew prepare to move to propries down equipment for soil

9AS Sumey. ANORC to filt to phones affect for daily coordination. Min Worth concerning 2 moonile And

End walks the Acc-c and O sile OHL Armor at the station. All w) DIAL people. Rucs gives SAGA 9. to AUC-D to give saliky bucking to OHL personnel. burhay.

MAH Abexaeles

0815 SAFEHy Brefins
Oun Winston 3 OHC
Scott Schweder 3

Russ gives safety briefing. Parioles all applicable site history, potential contaminants, emingency procedures, site hazards, And evacuation plan. Observes all OSHA certificates to insum they me up to Las egals

0830 OHL moves mobile 1Ab to behind bldg 41 whom it will opened for

duration of project. WATK AUC-A And & with Don

Scott propone. He will go to ADC-C to begin when roady, Winston. He goes back to help

Mark Housen will supeniur/Assist

w/ Soil gAs summy.

Enl goos to CE He and obtains the digging permit and whility plans from Glossa and 756T Schwennenn on Area for dullers Gloria and gets approved from to stackpile equipment. 0060

CAll Lee Peny At ANGRE to give daily staks. Everything is on schoole so far. He was not in, left A voice wassage And will call him lake.

CAll John Mornis At Optech for daily status. He was also not in And left a voice wossage.

0940 Arrive At ACC-C/O Arrow. Everything is going well. Geophysical survey crew is ounple hay MAG Swary. Soil GAS Survey has begun At AOC-C. Geophysical surry MAG surry 13 complet, propring to do GAR. Soil Surey has pulled three upper samples At

setup. As we were walking into the LaB the drillors doise up to stackpile opugment. Lab. Showing Mark Honson rusbib lab Taking fist three soil unper samples to Mark Houson stays with LAB.

Meet drillers. HArt Environmental Drilling. - drille TERAY HART - Insulat MAX

equipment. TAIL about dulling plans and They have actored with supplies to stacketh. Store them where they need to set up all con men and me to stocket - helper Mila

Ed. Eld. 1 12/6/44

they he propering to conduct the searcy. While And Don And proceeding well at AOC-C with soil upportences. Searcy, weather is holding out GPR surrey has All checked but mid so fac. No vain.

0///

SGS people proposes to brook for limith. Hove completed 8 samples At All.C. Mark and Rue go to buch. Mat. ashy Ad EAN romain behind to couplet 6PR Al AULD.

tew GRR traces Arrass known has Complete GPR At ADC. D. Run A to compasson.

Samples from AUC-C and have Now-MAY data on a computer. Russ And Check with OHL. HAM Analyzed 8 Mark Hensen reham with Lunches. Go to Field GC now to download Defect on All samples so far.

Pon Winshn (OHC) rehins to collect Final 3 samples from Acc-C.

perturn geophysical survey At that location. OHC complete At ADC-C, MOVING Matt, Russ, And Destry go to AOC-A to & Acc-B. 1315

slight petroleum oder was sexual At SGS #12. Geophysical sonvey continues EAN and Mark finish marking SES They Are About half complete at the MAG Sunny. OHL prepares to move to perform SSS At AOC. D. OHL completes SGS nt AOC-A, A lications At AOC-D.

2005/dul

1450 OHL Moves to AOC-O for SGS. Go occar to LAB to see how samples Are going.
Says there was some BIEX is SGS 12 but it wasn't finished being anabord.

1510 Con, End And Mark go to Acc-O to begin to obtain samples. 1535 Encl departs AOC.D to go back to geophysical survey at AOC.A.
Mark well stay with You at the SG-S survey.

Soil GAS Surey going well. Arman At AOC-A when geophysical surrey is going fire. They me about 3/4 through with the Magnetometer surrey. Will stay here and assist.

1620 Complete Magnetometer suvey. Mark acrives in the seas. DHL is finished obsaming soil gas from AOC-D. Obtained 31 of 41 samples. DHL will proved date one All analysis are

completed. They will do final 10 565 points At AOC-A tomorrow.

Propose to begin GPR survey. All
Optech personal of AOC-A.

1705 Complete GPR survey of AOC-A.

Sething dark and very foggy. Mattiss compiling data, All else are beginning to back equipment. DHC

is continuing to analyze samples and conducting quality checks.

- All boxes me packed and on me reactly to depart site. OHL will provide summary sheet at the hole one it is complete.

DEPART STATION.

Augus At Hotel Finished for the day

2/6/14 Zac Elah

12/2/44 B

The All mount over to the Z-002PZ Doillers completed deconning Are we

(172-2) location. Begin to sat up tha sample prop such and decon most.

to provide final report. Completed last 9 SES points at AOC-A location. Un which from OHL Armer At the Mass SOIC GAS SURVEY COMPLETED OHL is finished and Departs Jefrenson Barracks AUGS.

Begin to drill At PZ-2 location. whon return. Go to phone loe Poing At ANGRE /COM.

At 3:15 (f:15 in Wahungton) to report Surey and proposed drilling At Presenter losation. The situation may occur where beduet is encountered discussed and I will call back before groundunder. This situation is TAlk to loo from on Soil Car on goundwater situation

Bonny LOG in the Field notebook binder. Begin to duil 1 At 12.2. Will record All clash on Soil

was encountered. Will brook for lunch And check for water After dilling. refusal and SPT blows. No water Completed drilling At P2-2 location. Bedock was encountered at 28.0 limestone. Confirmed by HSA feet BLS. Bednack is A micrife

break down choon and sample Imp Russ goes to get lunch for Orstry and Mark Henson. End and Asstry pres. Onllers deput the site for lond. 0,21

1315 Orillèrs return from lunch. Pay ma still taking a brak. 1330 Russ returns with lunch. Desty md Russ take a boreak to pat lunch.

55)

Lunch is over, Dillers pull the dull rods from the HSA's. Earl and Orsty get the World (evel indicate And See it thou is water in the hole.
Thore was No water. It was dy to the bottom, to break down to Orillers begin to break down to

13%

Call Mark Escubar at Optich to accellerate choliumy af caps and wints needed for sail sampling.

(all lab to Accelorate sample E.t. cheliumy.

EArl and Destry go to Z-001PZ location to set up decon and stangle prop station. Rusul will busy duillers down and they An faished elemning the Augers.

Russell And drillers Arrive At PZ-1

1475 Begin to drill at 17-1. Poshing spoon to collect suther sample. Will record all theld date on the Bonny log form in the Field notebook budge.

430 "Encounter obstruction at 2.0" BLS. Try
to drill through it but it approved
to be a concrete material and we
closicled to move off the location
and try again. Moved 10 feet to
the worth and began to drill again.

docon myers. End med Doshy dopped

12-2 lanhon.

15 Dilling going well on next location will incord All data on Borny Log Form in Field notebook binder.

1550 Completed drilling P2-1. Encountered budget at 20 feet BLS. This well had a perchad water table own the bidock.

Although water was oncentered of 15' Although water was oncentered of 15' Seturnted but was much more clay saturnted but was much more clay rich than the P2-2 location. Beginning to get dark so the duillers will

1

1217194

Secure the site now and will complete
the well temocraw. Will have to call
lee fory and discuss the hydrologic situation and see how he wants to proceed.

Exel is departing location to yo to bly At & serve the goophysust equipment for 17EO-Ex shippment.

in Antiespahm of possible well construction 194 17-1 location Secuse the elecan Bldg 44 Blowing Securing 12-1 location for the evening. Differs 90 to down Russ and Destry And dillers Amos set ANA AND steam clean PUC For one well man for the night.

Drillers drive by and report they har Secur. Separt for the night. 1640

FED-EX Arrives And picks up geophysical such equipment.

1705

Secure for the night and prepare to depart the rite.

OpTech departs for the night.

PZ drilling. Discuss options to discuss with ANGRC. Told him t would talk to be lee from tomorous unorming to discuss CAll John Morris from hotel And him bonefing on status of

End of Daily Achustra

skakgy.

if water is encountered to construct A well at the new 102-3 location, another will will be drilled (102-2) in an Area east of Bldy 531 to trangulate. It no water is encountered pt 102-3. Will call Again to confirm no wells will be constructed at the facility.

Move out to Inform everyous at the plan. Drillers will move to 12.3 (outshin Atter they do con.
Desling And Russ Mave to 12.3 (but than And set up do con And sample prop to thes.

0410

Everyone is ready. Propose to doill at now 12-3 lecation.

0/0

Bayin to drill at new P2-3 location.
Recording +11 data on Field log from in field notebook binden

020/

10 Complete drilling At P2-3 lurahon.

Enrountered bedrock at 15' BLS. No water was encountered in the hole. Soil was not wet, will wait to see if water infiltrates. Doshy and Russ brank down decon and sample prop table.

12/8/21

Dillers will pull Augers from the hole And will begin to growt the two dry piezometer locations. Will not growt the PZ-1 location until we confirm we lee Porny we will not install piezometers.

225 CAll Lee Perry And Inform him of dry well At P2-3. He confirms to grant prezometers. We agree to begin

Soil sampling tomorrow.

Orillers and instructed to decon All their Augess and grout the P2-1 location. Russ will stay with drillers to observe/Assist. Asship and Mark Houson will elecon brass sleeves and end caps for towarans.

1430 Deconning brisa sleeves and end end enps



72/9/94 PELDAY
0700 Amivo At Starbon. Go to Lacon
Box. Dillers Armord. Propring rig
box dally operation.
Go to bldy 44 to proprie for

CALL Lee formy 84 ANGAC. Biscuss Soil boring placement based on Sail 945 surveys. Finalize boring berny been AOC-C. Decid to move Own boring from AOC-C Decid to move Own boring from AOC-B to AOC-D to test ness ANA OF High THY on Soil Loring locations, AND AOC-B has some boring locations and AOC-B has some four Soil boring locations.

0220

SAfety Meehing Puss Ewl Optech Deshy Optech

Mika } HART Euvinormental
Mika } HART Euvinormental
Oiscuss the daily plan to sample at

AOC-C mnd D. Review political confaminants, emergency procedures, Euricahors, hazards.
Weather: Cloudy And cold today. Breezy, wind out of west at Smpt. Hi: [ow 40%.

Priprie to move out to Aoc. 0 location.
Drilkis will load up and move when ready.
Optoch goes to Bildy 44 and load up
for field Arrea.

Mark Hancon and Deshy load up staff to seel up decent made and sample perp Area. Russ Eastern dups me off Al Acc. O to set up and gook to call sohn Morass concerning H&S Essue.

Everyone Arrivas At AOC-13 and set up over AOC - D-001BH location. Setting up SAMPLE prop And decen station. Dillass the Chicking Subs to Rit or California Style splitspown Sample. They are having trouble getting a fit.

0930 All eset up. Still waiting to ensure sub for sampler will work, B

return to Aoc. O and set up over D-002Bit

field data on the Borny Log Form in the Begin to doill of D-oazBH. Will recond All

D-002BH. Tokn dopth

MAK reading on PID was 10.5 your

ACC-0. Osillers break down rig and Dilling complete At 0.002 BH And At

Oillers Grank For Lunch. Ocshy Poss And Emil brank down decon/sample prop

location on Monday. location on Monday. 2 20 Edd. 1410 Dillers return from lunch and bogin to decoment at ADC-0 com to 40C-C to set 4 over C-001 BH. The ditch is prethy stoop at this losation and boung will be losated on the side of the ditch. C-001 BH. Oilling date and field date will be recorded on the Boing (eg Form in the Field nubbook An obstructor was encountered At 5.0' BLS At this location. The Augers could not drill though it. Oillers finish deconny Augers And Optech persons go to AOC.C to begin to set up stomple prop And Cleron Anna At C-001 BU. 1520 Oullers begin to doill At Acc-c

Move off this location. Will move 4.0 foot south Alony the distriction. do not think we my doop enough to encounter beforek. We will have to It is too lake in the day to continue. Will good this hile And duill Again At the new C-001 BH

Will obtain additional internals at adjacent Dillers more off C-001 BH And return to decon map to clear Augus for the day, Grail the 5.0' C-611 BH losabon we bentonial chips. D-illin, At C-001 BH Int 1 0.5 - 2.0 865 P10: 0.0 PPM

SAMPLES Collected. Dosty And Russell 90 to Earl brooks down sAmple prop / decon AMA And propares chain-of-custady form for Collect 3 Sediment samples At the ADC-C JOCAHON

It may be a longe lock. We

Case Fal B	(Will go to the Stahon on Sunday to Insure All drums the secure And Marked And check growthy of Plezonaters and berings. Noticed it took Almost I have to decon 6 sycis to a borny lathon because of the	Sandy 51H mod clay waskingl. Inis may Affect the scholde.		Walt Cost of Stall (105 h)
Za28/why 149/44	Complete Chain-of-custody faim And finish pickup of Sample prop/decon Aros. Collect Sediment Samples. Cool SEO - 0.0 PPM C-001 SEO - 0.0 PPM C-003 SEO - 7.3 PPM	Go to Blody 94 and propose samples for FEO-EX deliving. Seal Chain-of Custady, seal ice clast and sign Custady seals.	FED-EX delivery Armor At 5:4. Complete Air-Bill. Mark Henson 5hipps back first field GC. Dethy chocke dume At the AOCs. Posts observes decoming of buillers.	arillers depart site to the day. Optech secures Bly 40 nom Fr. The night. Russ repurts Methanil incident to Optech cleparts Station. Optech cleparts Station.
(4)	029)	54.91	<i>es</i> ₁ /	1715

21)	110/94	HY 6	SATURDAY	SUNDAY / TAY / PP/11/51
				1300 Arniv 181 Station to Chack site And Close Up in Dreparation for
	No Work	RELATED	AcTIWITIES	weeks drilling. Mark stry to Analyze soil
				collected on Friday on the Field GC
				orl, Russell, and Orstry go to
				secured, labeled, worked. B
				will wood Additional gout due to settling.
				Go back to Bldy 44 And clean equipment
	:			and inventory equipment.
	:			of Doshy de,
				Mark Henson remains to Analyze
				3
P6/01/21		*	(Bio his)	1011/94 5,00 hz
V	7	* * * * * * * * * * * * * * * * * * * *		in Can you

65)

show Leo fam the AOC. A and AOC. B locations. Walk those and while differs prepare to move back to the C-OOZ BH location. 1825 WAIle over to the decon man to

Cand seems soft. My hove some 0840 Amm At the C-007 BH herahm. Jobsems.

Informal 2 struple And CALL it A holo.

Could not obbin Internal 2 sample from

Encountered some obstact At 5:0 As. Will drill third hole to 35" to obsorr

lAge ack under surface. Once moved drilling down to 5.0' 1815

Begin to doill At C-OUBH Agrain.

1200 Begin to chill at C-003 BH. Will record all date on field Bering Leag Forms in the Keld whose to Cooy BH. Drilled to 7.5 Bls
whose bedrack (?) was enaughed by
HSA roksal. Dalled to cention it was
roksal. Oaks obtained and samples Volable samples wood to be collected Asap. Int 1 0.5-2.0' BLS In-1.3 APM Dan Oakley provides quick briefing. Health and Safety Check records from Complete drilling At (-003 BA. Will Scorening sample should be collected Asap. . Beller define exclusion zone to include Orllers move to Decon AND to clean Augers And will take lunch. Int 3 - NoT Collected. Int 2 5.0-6.5' 815 Adily & ANGAL Collected Mrs: Sample prop table. Molelook bindor 4 m 2 2 m2 12/11/41 Appeal the nomaning C-AOC burings 12 00 E/2000 Ruts in the ditch mea. Go to misc Armst to wive some cohistor so we con 2.3 PPM decon man to clean my And Agers. O.5 PM from firmer ground Unillers move to segral into bothom of hole after dulling. Arillers have touble gething out of the conformed by ASA rehisal No water Being leg Farm in the Field nokebook C.002 BH location Date obtained sul encountered during duthing but water Complete drilling And sompling sot Propose to chill st the C-002BH location. Dillers over the hok. Rednerk encountered of 13.5' BLS and Will record All information of the Int 2 5.0-6.5' BLS Int 3 115-130'815 Ins 1 0.5-2.0' 615 samples collected Arre: 0440

Unilling st C-000 HY.	1435 Complete drilling At C-0046H. Collected two standles, TD: 6.5 Conformed by HSA reps at my SPT Counts. Samples Are 85	15 [17]  Lat 1 0.5-7.6' 1865 1.5  Lat 2 5.0-6.5' 1865 1.8  Unilles MWIND to decon thin to	1445 Unillers decoursing syers. Proposed 1455 Unillers set up over C-005BH.	(by forms in Field Notebook Binder. 1530 Complete drilling mod 53mpling at C-005BH.	Confirmed by HSA And SPT reporal  Int 1 0.5-7.0 BLS001m  Int 2 4.5-6.0 BLS 1,300m	
· Shuld not use plastic bettle for OI	. ASTM Type IL water. We brown Type I Imusclobely good boles, change with he sout At the day.	1255 Conclude HARLARA Brioling. Departing 5:40 for Lunch. East will NAMAIN on 5:th to monital site.	1330 Russ mad Destar Cohen from lunch. Ext. goes to Bleg of to CAII for FED-EX prek-up and to CAII Surveyors FEO-EX pick-up ALANGUS. No ow At surveyors office.	Dallers return from abbaining coment And lunch. Move over 004-814 at ACC.C.	Begin to doill of C-001 014. Will begin to record Bonny lay date in Field Witebook Binder.	
· Collect	4,	Concl for L Site.	3 8 E.	430	2 8 E	سوندمند ها

A series of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co

45/21/21 11/m/ 1/ho Drillers begin to goal bosings drilled today med will top off bosings growed friday. Then they will move over to decon man and close suyces. Russ will obsom doilers. Deshy broaks down samp's prop Ad Enl propries chain-of-cushing For clean station.

Dilles growing AUC-C borings.
Finish chair st. cushdy forms. Leofony And Dan Oakley more to bldy 14 to bostone field GC speinhers.

Samples

Morth Housen Arnews At MOC wy Dan Onthey to pick up last 6C samples to Anolyze,

1615

Complete pricking who we sompleting the decon inatorial. Diellers completing the growthing , f ABC-C benings. Deport 57th to 90 to Blely 44 w/ Stanples to write for FED-EX shippment. Diellers

go to decon men to clem sugar.

Onllers doport the site After doconning Orgers, dumming dean water and Securing equipment for the night. Mark finished Anniquing Samples we fixed GC. Russell And Encl obtain ATHA from soil from AUC-C borings.

15 FEO-EX Arrives to obtain soil samples (Make shippment of samples

1720 Secure Building And Optiech, HAzumart. ANGRC depart Station.

12/17/94 See 5/ah

10.5%

Safety Meeting Max HAMT

Russell Ansking Max HAMT

Doshy Speel Mike Max HAMT

Discuss daily Achouses and polential

sile hazads. Rousew ensigency mad

concerns. Clease cold another

WEATHER, Cold, PC to Mostly Clerk. No Breeze. Tomp: 78: 14: payelled Arand do: Cless. Breezy out of the work.

00 Continue to Set up At AOC-B. Will begin At B-001 3H.

BERIN dvilling At B-001BA. Will record
All field dAM on Boring Log Form

Cul Exah B 12/13/94

(60)

In Gold nokebook binder.

1740 Complete drilling And sampling At B-00184.

Setwork was privantened At 31.0° BLS.

Int 1 3.5-5,0° BLS 0.0

Int 2 10.0-11.5° BLS 0.0

Int 3 30.0-31.5° BLS 0.0

Int 3 30.0-31.5° BLS 0.0

Made Escabor to discuss questions from NET. May not be providing enough soil to conduct MS/MSO malysis. Will pravide two slowers for MS/MSO.

Mall Henson finds supply of Michael to supply of Michael to supply must our dwindling supply. Lee found will take Mark to abtain more Methanol.

Un Oakley prepares to dopal Was us final comments except with the Min-sleeved samples we am through the widdle of the being internal.

Quishins what happens if screening.

Onllers mount to decon men to decon Pages. Mount to B-003BH lastion.

record All Field data on Boring Log forms in the Field Watebook Binder. Moving over B-003BH lecahon. Will

Complete 3-003 BH. Collected SAMPles And MD

DO PPM

Int 1 10-2,5'BIS OOPPM Int 2 5.8'. 6.5'BIS 0.0 PPM Int 3, 25,0'-26.5' &S 0.0 PPM

SAhvahd conditions Accommend At 25.0 Bls. Internal 3 sample was collected from this worker interface now As specified in the

End goes to Bldg 44 to propher samples for FED-EX shippmant. Deshy begins to

break down the decontsample prop tres.

Russ observes dilliers As they begin to gout the bovings. Lee form departs site.

FED-Ex Accives And picks up Samples.



0815 Begin to doill At B.OOYBH. Will compile who on Boung lay form in field notebook bindors.

this interms me will not down to Encountered works in B-001BH Will collect a sample (Informel 3) At bed mock. 0830

Int 1 - 0.5.7.0.865 as PPM Complete Boring B-004 BH. Samples collected from:

000

Int 3 . 75.0.26.5' BLS 0.0 PPM Water warmed at 28.0' BLS. D.J Int 2 - 10.0-11.5' BLS 2.7 APM

And Errl preprie to move somple prop. Orilloss Mounty to Decon Arra. Ocely not chall be bodwell.

Oilless Complete steam cleaning Augers. cloest to Bldg. Morny to AOC. A location. Will begin At A-001BH location

12/11/21

ORGIN to Drill At A-001 BH location. Will record field data on Louing Log Form in Field notebook binder.

O.O PPM 0.0 PPM WAter detected in bottom interval of SAmple and Bedivolk was encountered At 23.0' BLS. Int 3 sample chained Complete A-001BH boring. Samples thin bedrack. was not wassind in from 20.0-21,5' BCS. WALL drained Int 1 - 3.5.5.0' BU Int 3 - 20.0-21.5' BLS 10.0-11.5 . 615 collected as: Int 2 boring.

205 Orilles shifting for Lunch. MAX begins to decon Augers. Russ and Destry on Mark brask B. Unch. (see Rong of Sik. Will take A 150. lone h

.235 Rehm from lunch. 60 to office to talk to MAK Escobar About LAB.

200 El adulto	1445 Dillors mounny to decon lead Auger. How enough clean Augers to doill last boring. Go to GC room to call FEO-EX to	1500 Moving to Boing A-003BH location. Usill mambain field data on Boing log	1540 Comoloked Sampling At A-003 BH	16cahor. Sampling 14th-14thm 15 AS follows: The 1 - 4.0-5.5'BCS GO PPM Tat 2 - 10.0-11.5'BCS GO PPM	Gaundwater was encountered at 16.0' BLS. Therefore, the Interval 3	SAmple was selected from the 12.0-16.5 BLS intend. Ledwill was not enrumbled at this boung location.	1545 Onllers pull of borny And propries. to grave All borny locations.
20 E/2/24	Everything going will with the (AB samples. Inform lab this will be the last sampling day.	Repur to the drill site (AOC-A).  Disllore continue to decon sugers.  Will drill At A-002 BH next.	Complete deconning Angors. Maring	Boque to drill At A-OURBH. 42111 MAINTAIN Field dATA ON Field Bosing Log Form in field nothbook binder.	Complete clrilling At A-0074 Strupler collected As follows: Int 1 - 1.0-2.5'BLS	Int 3 - 5.0-6.5' BLS 0.0 fPM Int 3 - 70.0-21.5' BLS 0.0 fPM WAber encombend in the bookole As	19.0' 13LS. Internet & SAMPle obtained from 20.0-21.5' BLS. Bodrack was not encounted in this boring.
		<b>6</b> 521	1320	1337	1435		

		Destry branks down docum And SAMPLE prop AMA. Russ WATChes	sout profit standard overnight, and 5 extra reclebet we sample jass
		1	to NEI.
2	0291	EALL prepares soil samples, clipin . of - cushedy forms for FED-EX	el.d
		Thippment. Lee Heiny doponts site.	the Boring Loy Forms.
3	) 5291	Ovillers graving bornings from the day.	1740 Destry And Russ deport the site. Sport and Mark Henson remain
	115 [	ı u	Analysis.
	<b>V</b> &	lean-up at the	ī
		Mork Henson with packing aguipment.	Recon for the night. Apont Bldg 41 for the night.
	720 (	Drillors deport site for the day. FED-EX ready, Mark Housen continus	3
		CZ	
	735 1	FEO.EX Annes to pick up Soil samples. Shipped proving	
	· · · · · · · · · · · · · · · · · · ·	overnight. Additional shippwouts include to HARCO, MX-251 LEC	
			12/14/4 Sas Efants 12/14/4

1000 EARL Sends Destry and Mark for restate AOC-Cand D.

EARL gets with Oriller And goes S Mark and Oesty return. Earl and Desty prepare to depart Station. Russ and Mark will stay behind to insure differs finish everyone. Van State should be expected (Mid-Feb.) Lee Pery discusses some items with MAS WAMble. Round table And Plo Findings, Field GC And Plo Findings. Discussed the Investigation throwed waste downs (Total of 46 downs) Stand on concrete pad Adjacent to blood 41. NA Acronalis, 41 Soil GAS Painls, 14 Boring Cocahons. Analytical goals And objection What was dong. 12/13/4m lisussions on related issues. of Investigation. EAN discussed

of drillers work. Agna on All

over all hours, samples collected, footages drilled and all Aspects

EAST AND DESTY depart Jefferson Brimeles End and Destry go to Acc. C to clack on the re-staked lication.

1/5/14 Cas Eldh

Depart hotel for drive back to San Antonio.

decon Anna Whore drillors And finished topping grave in All

holes And Am cleaning off

equipment.

Enil, Desty, and Mark go to

Meeting ends.

17.04g



NEWTH RUSSELL R. (ASON
OPERATIONAL TECHNOLOGICS CORP
AUTHOR N.W. Loup W. Suite 230
SAN Antonio, Texas 78229
(210) 731-0000 Ext. 187

DEFENSON BARRACKS ANGS

ST. LOUIS MO DEC 1994

SSO LOG BOOK

A construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the cons

CONTENTS	REFERENCE	OPJECH (REW ORS, TE Egal Praker PM/SI (E.P.) Russ Cason SSO (R.C.) Destay Greenway Tech (D.E.) Mark Henson GC OPER (M.H.) Mark Henson GC OPER (M.H.) Mark Henson GC OPER (M.H.)	Haspital I Ambulance 9-911  Base Reparting 3-8650  Fide Wilson OPTECH HSM (800) 672-8072  Hospital General # ER (314) 525-1900  Base FAX (314) 525-1900  John Mace's OPECH PM-ANG
	PAGE	CPTEC EPal Pr Russ Cr Destay G Mark L Mark L	Hospital I A Base Ree Fide Asl Steve Wilsor Hospital Ge Base FAX John Morris

THURS. NOV. 30, 19.

1490 AHENO PRE-MOBS MEETING.W.

PRICIPAL TEAM OFTEH, DISCUSSED

OBJECTIVES, TEAMANY, J. HEALH OF

SAPETY ISSUES

R.L.

1444 End PRE-MOB MEETING

NOV. 30, 19.

445 LAYOUT METS GPR GRID @ ACCED Fourthment. Discuss Hos issue ABNUT GPR/11 615 Heavise @ AOC#A, pack. to Run M67 530 FinisH GPR + MGT Gaio AT Acc#A WIFHT. Descion to Return To HOCA Sample Loc. 0,0 +0 25,13 CARTESIAN GRID. insufficient time Remained 13e Fore C. L.D. O,O to 13,13 CARTESIAN GRID. 430 Finish GRID of QPA/QC SAMPIE Points. Swavey. Made Determination that 600 Moss to AOC#D To Run mer 1111 Any asserve lowed gates for the MAGNITOMETER SAMPLE GRIDGE C-12R 645 Ric Down MGT. PPTEM OFFEITE 1345 ARENCE MOCT +0 Enxout Return to GC Room to Rit UP MGT TO TOST MOT. -Toning Test. Hotel Ceity Preceist MISGT. Malam Lacs, 1565 ATT-Strang

BSO In BRICK WI MAJ. 10m WamBle, MAS

BIS FOOT TOUR (OPTECH ONLY) OF 190CS.

010 Mediue AT 1805e- CHECK in W/ BASE

Security, & W/ Bill Johns in 18106 #240.

600 BREAUFAST MEETING WI ENCLY

DESTRY GREENWAY, MAT Alexander, Russ

CASON. Discuss Dec. 5 wind Sutomile.

745 DEBARK FOR BASE.

MSGT. MALLOM Jones. Gave Hos Bec. Too.

noting But Schuerman molog

HAS issues, etc. For site inciones

Discuss introded more surrante d

940 Eno In-Baierian, Take WAlking Tour

WI ART Schreamann+0 BIDG. 44 For GC

Set UP. Toux AOC C DD, Discuss Rit Decon.

30 Unload Edvignent FRom UAn into GC

Room. ORGANIZE EQUIPT. IN FC Room

ISO DISCUSS CYACT LOC. OF AOC WI MICHAIRE

15 OFTECH BREAKS FOR WACK

20 MAHY Russ Reinvestignted AOC#D

Bowman AT OSTECH HQ.

MATH P.C. BELVES & PROPEL TO LOAD GERJAYSICAI FRUIPT. -

0735 CALIBRATE EI PID (SERT 48962-282) 0745 OFTECH LABS MEET. (D.G. M.H., E.P., B.C., (SEE BACK YAGE) IS MANDS SZE VEHICLIAR BIAFFIL 0616 LOAD UP VEHICLES & ASSEMBLE PERSONAL, 0613 WEATHER LA. RAIN & DRIZZIE , TEMP, in mie to Hi 30's , mas VisiBility, No to 0645 Brenkfast (OPTECH) @ INE Brinkles ". All Hazaros & All iTems on Hors CHECKLIST To isoButylene Standano or 100ppm 150d M.H.) Discus: + OPE + mensurer + SUP @ BOCTS BAA, 6 PRO MGT 0740 E.P. Line out WORK Plan FUR tHE DAY HAZING & increstion doncars "Wolfor W10 Cacu - Don Winston & Scott STRATHOUSES Butylane (60T#412503-48), 100% RETREST. 0755 m.B to Acc D (020, 0.6. , d.R.c.) 0813 Baking AT GOCD (OPTELL & DHI Gave Hos Baiel To DAL Peaconnel (4) R.C. 0635 DEBAKK FOR Mc DONALOS! Discussing Standard List And Tresway Dec. 6, 1994 0730 Againe AT BASE @ AOC * D & A. -U. L+. wind.

OO BEGIN GPR SURVEY (D.G. TECH Pulling in GC Room, Discuss GPR DATAWIMA 0829 Begin MGT Survey " M.A. Operatie, 240 R.C. J.M.N. BACK FROM luncy, meer Concorns @ 1700 # 17 + Be compard symme Emphasizint Incident accounting. DAL Dital BACA - BOOR FOOTING + WASKNOWT Slep, M. A. G-PR OPERATOR R.C. 550) SO R.C. & M.H. BREAK FOR LINCH, OGYS END MGT DATA COLLECTION, RIG CREW Sirners dads Bases Acknowl. 305 MIOB TO BOCTH MET & GIPR (M.H., R.C., D.L.) Discuss SAUTRY E.P. Assumes SSO Function Fore Geo 537 END MET SORVEY (325 print) 030 Calismarian Runs on G-PR. SYS RIG DOWN MGT EQUIPT. 255 Wastyer: No CHANGE. Down MCT, RIGUP GPR. 315 Fest Runs on MGT. Lespay Dec. 6, 1994 325 Berin MGT Survey For versicular Trithities D.G. , Pole Holber PHYSICAL SURVEY.

- 1 - 2 - S

OGYO DEBARK FOR BASE. Low 30s to upper 20s. 0730 OF TECH ON BASE 0630 OLIL DOWN GPJR & PACK MET GEAR. RIGUP GPR (ISC., M.B., D.E.). Fourent CACKEDIA UM. Tuesony Dec. 6/1994 OFF BASE. Ageine At Hotel

735

1115

650

1121

MEETING. Discuss workpin Fun DAY-Emperior wentings 13 msit PPE, es EYE & FAR PROTECTION AND INCIDENT REPOR Temy in Low 405 PAlline Durine And 6738 CALLIBARTE EI PID (SERTYB962-2 Pon Winston OF DHL. Re To 100 ppm isownylene standard (LoT MoB to HARDERS 1-OA BARBAKING 0813 Hold Sarety meeting w/ Ortach DAY to mid 30s, Wind follow west AT Dec. 7, 1994 24-30 MPH, Humipity 82 %. No KAIN DRIZZIE BY AFTERDOON, Wind CHILLIN 0747 CHEK LEL CALIBARTION, FURTION & 4 HED GO OVER STANDARD HOS 1:5T MT PRESENT - CHANCE OF L+ 120in J TEST Algum levels, (A) @ FACTONY TO 38849) 100% RETEST - NO DRIFT. 45% Pantane. CHECK ALMAN FOR 0600 Mokning weather Forcust % LEL to 10%, Oz to 19.5% Finish SUP & BEGIN DRUG PZ#1 WED Him About Sakery Hasses. Also Baier

1047 ADE HUS BRICF WI OPTECH (R.C. D.G., E.P.) - NIR, Decon = NIR SAMPLE TRAITED NIA PPE. VIST DAL SUP SITE FOR HAS INSPECTION-DRUG RIG Lines up on P2-2 Loc. Test Right / 1010 SET UP Excusion Zone & CRZ AT PZ-2 La. & HED Personal MAX & mike) Tany HAMT 0845 Review utility Line Denwinds AT All Give Has BRICKINGTO ONSITE (HEDOWNOR). BRIEF EARY ON SITE HOS 1100 TAKE BKGD PID READING AT UPWIND All HED Personnel working SAIDELY W/ 1904. Bone HOIR = NIR , DOWN WIND = NIR 0915 HAS VIST TO DRIVERS DEWN MARA -Scott S. OF 124L. No Entine in CAU! 0950 MB DRIFE DOIPT. PZ-2 LOC. zu. Versuem Pump look Test - PASSED. 0930 CLIBEK OUT DROBER PUMP & TWOES & 0833 END SAKETY MECTIVILY GO FO AOC'S TO BE ORILLED WI E. Promore. All in compliance, w/ Hos plan. PAL TRAILER AND Wed Dec. 7, 1994

WED. DEC. 7, 1994

(119 RET. 10 'SAMPLE AVER PID = NIR

(c. Hines PID = NIR BOPID = NIR

(140 RET 15' SAMPLE AVER PID = NIR

(140 RET 25' SAMPLE AVER PID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR BOPID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hines PID = NIR

(c. Hin

205 T.D. @ 32,5 GLOCA DENTH-30.
WAST ON HOR + MAKE WATER. WL. @
1207 = NIR.

1210 R.C. J.M.H. To luncy E.P. AS 550. Bich ws paint STKS & Film. 1305 RETURN FOUND - LABIE DAVMS # 1 2 AS SOIL & LOG ON BRUM LVG. 1310 NO WATER INDICATED IN PZ-Z. POOY & PRESMET MOD RIGHT LOG.

Z-001PZ.
1320 E.P. 20.6. MOB To Luc. Z-00\$PZ,
12.C. Remains To Eugenise DRIL. CREW.
1340 DRIG Moves of F. Loc to Decon

PIO = 1.5 ppm, BO PID = NIR. (3 Smild)

1115 RET, S'SAMPIL. ANORDENTR BO

8 IN = NIR. CHIONS PIO= NIB

1107 Boin Orla Buren OID = NIR, Cottines

Bur Con 12-7-94 B

<u>@</u>

12-7-94

ORUM OVER OPEN HOLE & MARKINI BARKINIS TISPE DRLF AUFER Decon STATION FOR BUIK STORME To 2-001P2 Loc. Hold SARETY BRIEF HED. COHINES PINT NIA 130 PID = NIK. OUT More Ric To LOC. 2/8' Amay or RETRY LIAR. Collect Survice Somple (Bo= NIR) & Atlangt Pieces of Africant Concaste in DRIG Cotting. 1350 Move Decon water Vam (SSS Dacon) to To DRILL HUROWH, ALTER PIO = NIR. Small Rig of to DAG - noting SOT. Herette OF Finish Rib + Busar Decon - MOB Rib SiDE OF SSS WET BUT Shingle Relatively 1500 RET. 10'SAMPIR AUGER PID=NIR, DRY TO MUIST. BKGD PIDG AVER = NIR 1520 Ret 20' Sample Aurer 1920 = NIR 1340(Cont.) LEAD BLEER & SETUP GROUTING (5' SAMUR). BKGD PID= NIR FOR All QUACS. 1510 RET. 15' SAMPR ALLOR PIP = NIR Cuttines Pip = NIR BO PID= NIR Equipment. Temporarily move Full soil 1450 DRUG NEW LOC. AUDER PID = NIK C. Hing PIO = NIK. BO PIO = NIR 1435 Bain DRIF. Hit OBSTRUTION & 22 Mamy Gunno of Presence onside. Web. Dec. 7, 1994

WEO DEC. 7,1994

520 CONT. S. CHIINOS PID= NIR, BOPID

- NITA. Three WL READING: C

1528 = 19.18 Below & GROWNERLE!

540 TAKE WL = 19.03 BITOC & CHUM.

541 DRIFT, R.E. Below Topos ALVER (BTOM)

541 DRIFT, RED BEDDOOR REFUSERCE & 25. R.C.

20 BLS. LEL=0% Oz = 20.5%

20 BLS. LEL=0% Oz = 20.5%

551 PID HOLE PID= NITH. DRE

1600 WL= 17,10' BTOA, Hole PID= NISE 1603 Ric Down FOR DisayT & Secure DRIC SiTE. DRIC CREW to DECONNOTICESIN SERVEN 1630 OFF 2-001P2 LOC. RETURN to Avera DECON PAP to SUPPRING DECON OF WELL CASING & SCARED. DECON PID=NIX 1645 STOW INSTRUMENTS FOR DEAT IN

1700 OPTECH & HED OFF PAST.

No Jour than Entries

June 12-794 (1)

12-7-94

1: 0600 WEATHER Cloudy, NORBIN, Temp 36, wind 13 MpH From SE, wind 41/11 in Low 30s, 81% Humioity. L+ Rain Busiale Later Toway. THUR. DEC. 8, 1994

0630 Meet Downstains WI OFTELM CREW TO

MOS TO BREAKINST.

100 ppm isoButylene STANDARD (10+#38849) 100% 0740 CALIBRATE FI PID (See#48412-282) to 0730 Bakine @ BASE .-

0750 CHECK CALLYMATION OF LEL , CHECK Reproducibility on Retest, No Daift.

LEL Alban (10%) & Oz (19.5%).

0755 Give MANK HENSON SOFETY MERTIN

my forjection mesors & insession/ Desmal ON STANDARD LIST. EMPHASIZING CARE

PASSIMBLE. GC PID = NIR.

OBOO HAS MEETING WI OFFICH (E.P., R.C., DA. AND HED CREW (MAX + MINE) DISCUSS STAMP.

Topics EmpHASIZING COLD WEATHER CIFFECTS, NO

0815 MUS TO P2-1 LOC FOR WL MEASUREMENT ingestion Fire work money at typiene.

PID @ WELLHEN = NIR. BART BKAD PID AT SITE UPLIND=NIR, DOWNWOO = NIR.

WL = 10.21 BTOA HOLE PID END = NIR. 6820 Return to GCK. on J- PAGE DIRLY CONITT.

46-8-21 mas

(2)

THUR DEC 8, 1994

0820 WO Client FOR DECISION

0825 RECALIBORATE LEL to 25% HEXING

(Lot*39506) 100% Detest. 02 = 20,5%. 0900 R.C. J.D.E. To P2-166. n.riFy

Builtons of Flan - Remove ALLERS, LEAVE

82-1 open paroine Descion.

0920 SET UP EXCLUSION & CRZ 2011 2-003332

OGUS TAKE BKED PILDS UPWIND = NIR Downwing From Rife = NIIIS AT Decon

STATION = NIR Songle TASK = NIK.

Routes & HAZMOS SUMAS TRAPFIC & TRIPPIA 1010 HOLD BOC SAFETY MOETING ON ESCAPE

1015 BEGIN DRLF 2-003172. RET. 1.5' over excipment. Nind Fram N.E.

SANYIE ALLER PID = NIK, CHINES PID

020 Collect 5' SAMPLE ALGER PTD= NIR - NIR, BO PID = NIR. -

CHINS PID= NIR B. PID= NIR

CUHIONS PID= NICK BO PID= NICK, SlichT 030 Collect 10' Sample Auser PID= VIR

Appendent Payme-Like obod AT Borawle Reported Act. By Dailler & Confirmed

& Oz meter = NIA. Smell persisted BY DRINER. NO PIN NEMOTINE, LEL

12-8-94

THUR DEC. 8, 1994

1030 Anto Dec. 8, 1994

1031 Affire Brown I min. Continue DRILL.

1038 RET IS Sample Accord BY DE = NIR

Cottinus PID= NIR. Upwind BY LD= NIR

Cottinus PID= NIR BO PID= NIR

1045 WL INEASUREMENT: No WORRE Encourance

T.D. = 16.20 BLS. Rit on Standary

UN TIL E.P. TRUKS TO ANGER POWN DECON

DO WL = NIR. BREBK DOWN DECON

DS SANDLINE STOTIONS. Rit Down DREF FEWIT.

1125 MOIS RIC to DECONTORED & RIC

1135 Graut 2-003P2 to Surface w/ Trennix Pipe. Approx 22-3 BAKS PORTIAND TO 2 Dave of water. 24 165 of Ge/ All mixed w/ Jetting 501.

1145 Mass To Loc PZ-1 to GROUT. HOLE DID=NIR [215 Finish Growting PZ-1. Decon Avers.] 1245 Moss Rift To PZ-2 Lac. Prefrage To Thermine Great PZ-2 to Survince. Boreware PID = NIR 1330 Finish GROUT FOUIPT - PREPARE TO MOSS To Decon Arres.

1340 Mis to Alveer Decon Acen - Decon Augers. Has Caution Recognin Sulasu Paste. 1430 Finish Averer Decon.

Class Les 12-8-24

THUR. DEC. 8, 1994

1435 DRILLERS OFF POST TO BUY

へ下でのでん

440 MAKE Run To Buy misc. Supplies

SIS RETURN FROM SUPPLY RUN - Decon

Soir Sampling Equipt, HED. OFF POST

615 Mos OPTECH To ADCS CAP For

MEASURE MANTS. Inspect CravEsca P2-2

Some PRILIES OF Grant on Grass- Will 1911au

to Dry freen Mennee.

1645 OPTACH OFF POST.

1700 G-AS WO CARA - Buy BAGFICS 1750 M.H. Nutifies me of priential Exposure of D.G. to method white Deconsine Suit Sampline earlist.
755 Visit D.G. - Symptins HARS/+.

NAUSER, No FLERO POHE. D.G. Proving to lie 20mm leur Bussille, Will Minitur Pavenese in Baut lar.

1920 Visit D.C. — Symptoms ABATED
According to D.C. Looks & Jieols better
(Actional Min tempt ils Symptoms
Action To Dotieny Me on E.P. d
will MUBTS HASBITAL FOR CHECK OUT.
170 FLATMENTAINES

The Con 12-8-94 (3)

FRIDAY DEC. 9, 1994,

0535 WEATHER: L+ RAIN, TENNY LOWYOS,

U. LT. 13 REEZE 100 % Humicity. Wind WILL UP 30;

0600 DEBANK to HARDERS FOR MORANING

0700 OFTECH ON POST, HIED (MAX + Mile) ON POST. HOLD HOS BRIEGE ON STO. LIST.

meeting.

0705 CALIBARTE EI PID to locypus IsaButhane (Lot #38849) 100% Republicaity on Retest, No DRIFT.

0710 CAI LEL - CHECK to 25% HEXAME.
(L.T # 39506) 100% REPRODUCIBITYON RELIECT.
0740 MASS AOCD BKEPFIDE All GUADS = NIX
0830 AMAS WENSON ATMS SITE SITETY

export at this time.

Discussed with Distry to use proper lift technique when the forms when the force of the force of the force of the force of the force of the force of the force of the force of beat straight.

0845 f.C. BACKON SITE AS SSO RET. 10'
SAMPLE BULEA PED=NIR, CHINUS
PED=NIR, BOPED=NER
0950 RET. 15'SAMIPLE AUCLAPID=NIR.
CHINUS PID=NIR, BOPED=NIR.

FR. DAY DEC. 9, 1994

1005 Jet 20' Sangle Burea PIO=NIK Cuttines DIO = NIK BOPID = NIK 1015 RET 25' SAMPLE AUGUR PIO = NIR CHines PID = NIK BOPID = NIR 1020 DRICHO CONFIAM BEDROCK AUGUR PID = NIK CHINES PIO = NIR BODID=NIK 1030 POOH WI AUGURS CRANOUTHOLE HOLE

H 10 Mols Riv to Loc D-002 134. Decon

ALLERS AT ALLER DECENSTATION.

120 CHEKIN WI JAM MORRIS FOR SAFETY

UppATE.

145 DRINGUS BACK @ AOC GIVE PRE-SIND

145 DRINGEFOR B. TENTIM FOR EMOUNTERIN

19 Berin DRIL D-002134 BUFRATO= NIR
BKGO @ All QUADANTS = NIR

1150 ELHINGS PID= 2.5 ppm NIR in Bready The Space (BS) LEL=NIR 62=20.5% 1200 LIITGAANETO SUNJACE DOUNTO 8½ 1203 RET TOZING. 9' SANDLE BUGER PIW= 0.6 PPM CHINGS PID= 1.2 ppm

UPWIND PID= NIR OBUNUMPPED=NIR (B) 12-9-94 (D)

BS PID=NIK, BOPID= 9 ppm

(9)

Len-lan 12-9-94

Cuttions PIRO = 3. Ippm , BS PIDE Ippm 1212 Ret. 15' Smangle Aubrea PID=1,8 ppm BOPIU = 10.5 CAUTIIN DRIG CARW to 1445 BECOLLIGHATE PID, LOND FRESH BAHERIES 1245 RET 22'SAMPR BUGARDINEZ,61,8111 1310 OFTER RIFTAM DECOND SOMMITTESTING increase in wins cuill. Buy, overcost. KEEP "HEAD" OUT OF BARAGI BUE TO 1210 WEATHER DROPIN TEMP TO LOW 30'S 1230 RET 20' SAMPLE HUMEN 17111 = 0.5 Cutting PIU=3.5 BS PINE NIK Acced PID = 1.3 BS 12 IN - NIK Applies Come of weaponed comme, IN LEL, RECHECK LEL CALIBRATION, 1250 Poor WI AVERUS BS PID= NIAK Cuttines PIN =3.7 BS PIN = 0.6 1440 OPTECH BOXK From Loncol DRUMIC URPORE IN CUHINUS. C 1340 OPEWI OFF BOC FACTURES. Deillers OFF FOR LUNCH. Caibay Dec. 9, 1994 130 PIO= 9.2 years PIN= 6.7ppm

FALTOR & COLLECT SURFACE SECTIONAL SUSMITMES NIR, CHIMS PID=NIK BOPID=NIR 1515cm) And Harmos of uneven wongin-sun Faxe 1525 RET. SURPRICE TO 2' SORMORE HURCA PIPE 545 premme to move Rio. X E.P (Sm) 60# Collect SURFACE Scoment Sanye FIRIDAY DEC. 9, 1994 Decipes to chart Hole Ouc to Bitime CUHINES PIOS NIR BOPIDS - NOT TAKEN OUR TO BUGER RESENSAL. MOVE 613 Collect C-002SED, FOR SAME PARKTES C-OOISED (2) Ans) Analytes: Vocs, SUOCS, TPH, > METALS D. G. J.R.C. C-00/BH LOC. To Z SOLHH Alon 620 Collect C-003 SED AS PEROTHERS OURA BK+D OF NIR @ BII GUADS & FOR Decoy/SAMUIC EXAM, BREB 532 RET 5 SAMPLE AUGER PIO = NIR AS (-00/SED (2)025) PID= 2.0 PPM DITCH. DPC- HOLE PID - NIR. DRIllers To DECON HUDERS COLLECTING. PID = NIE.

1720 Secure Equipt. Room. 12-9-94 (9)

June Can 12-9-94

Baielie SiTe on Suspected Contrampour

1515 Dailleas on Loc MOC#C. Give Hos

645 VISIT DECOMBREA & SECURE DRUMS.

bID = 2.3 pom -

OSYO WEATHER: MIDZOS to low 30s, V. LT. Breeze, Wind Chill in Up Tears, MO	ante Es	308	to Low Meson Give MH (GC PTECH & LIEV)	Discuss Standard 1157 Emporasizionesta Concesta dinoso Tex spots, we orinostalla describedo 0740 BKED PIDS Journes NICK, AT Breezes = NICK DEWN + STANDE MER	0755 RET 5' SAMPLE OF C-00/BH, ALLANDER DID=NIR ("Hines PID = NIR) 130 PID=N/A: NO RECOVER ANTONIA	
Sunday Dec. 11, 1994 1230 Desmak FOR JACK-in-the-Box Pontumy 1245 Braine @ Jacks" 1315 Braine @ Jacks"	FOR FASTENIAL + HISTONO TISPE.  13 40 Clean G. Room, Clean & CAI, BANTE.  PIO, OAKANIZE EQUIPMENT.	Remains To Plan GC Sample. 1457 ARRIVE @ Wotel.	2.3	The found of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the		(29)

BREEZE, Wind CHIII in Up TREAS 10 CHAMLE 0812 RCT. 3-5' Smyte, Howen 1200 - FIRE CHING PID = MIR BO PINT //H ; AND Sty Alland -5 Stringle succession Att 17.71 12. C. 12-13-194 07 55 Gra 3-CORDOM. Move BUK-CIL & Collect Cuttinus PID= Ingporn. ABANDON LOC. 0830 ORIG RIG TO VECONITARA +U THINK ALTO BriGGC-LCe Peacy or Man Orkly No Recovery - 1-100-c Ris 2 2 thy 0540 Wegger Mio 205 to 60w 305, 3 to 5 Instand Aware 13+17 nout. HEAM. LELE 0% Oz = 21% Monory Dec. 12, 1994 L'Arimon OFRAIT.

0845 OPTECH, SIREWARD & GINLIK TO GEODOM FOR TOUR TO GEODOM FOR TOUR TO GEODOM FOR TOUR TOUR TOUR TOUR HELD ABLOOM TOUR HELD MACK.

NIRO BORCHOTO, 20,2 CHUINIS, NIK.
Downwind.
0930 JET. SURFACE CHUINE HOORITIETUTE.

3920 Riburon Luc C-002 BH Brown FINT:

0450 JEI. SURFACE CHAMPLE HUNKITIDETUL BCPID = 2,3 over BKOWOF Lyrin. 0945 JEI S'Sming Hunch PID = NIDZ

Man Dr. 12, 1994

6945 CLUT. CUHINES PED = 1,3 pm, BC PID = 2/1812-V. 10 01 Ret 10'5pmpie ("Hines 1720 = NESE, 12 12 1510 = NEDE, 130 PED = 2/1.5 man,

72 1,2 to 1,5 your Delist in 12.10 1016 DRIC To 11.5' - PSSH STEWN. AWAR 15TD-NIES CHIMES PIDONIN BO PIDES C/ 1.518612, OLAIRMONLEL WETE PLUE LINE.

OSC DRG TO 151 Ret. STENDIE R.C. 12701.

Rib To loc. C-002124, K.C. 12-12-54 034 DRITHERS THE COST HOVENS.

1636 DRINGE BOTH IN LELLOZ

1) 5 Kin Soil sonvies To Golden For

1720 U.S.T Dan press For Hots CHOCK-

145 BACK & LOC (-003 BM. 72212 SIMPLE

1150 BKED PIO: Dewn TABLE, SMIPLE PARS. - NIR. INSTRUMENT REPOSITO 0.0 PPM-CARLIER DRIFT LICE to TRUP CHIMP

by con

1158 DRIG- 20, C-0031874.

1200 Ret. Suaime Sample, Auren PID; NIR

(441) CHAMS PID: 2,1977 180 PID: NIK

(1205- Ret 5' SAMPLE 1340 PID: NIK

(41,105 PID: 2.5 ppm, B0 PID: 0.6

1225 RET 10' SAMPLE 13400 PID: N/A:

(1250 Discuss Site soutside US)

(250 Discuss Site soutside US)

1300 Break For Luny E.P. Remains & SITE.
11, G., R.C., J.M. M. OFFSITE, ANGREG + MAZLANDE

1332 OPTECH BACK ON POST. PRIZE E.F.

1335 WEATHER: USPER 303 To 10-405 PTY (1000).

1335 WEATHER: USPER 303 To 10-405 PTY (1000).

SE, BKED PID O DECONSOND: NIK, UPLINO: NTK
1355 RECALIGATE PID to 100 poin 150 BUTYPHE
(Lot 267952-011393) 100% ARTES, N. DECVIT.

1400 (0) RETSURFACE SOMIPHE, BOLCA VILLE NIK,

1-105 RET 5' SAMIPHE DUCA VILLE NIK,

1-115 POOL WI PIUC, AUGER VID: NIK,

CHINGS PIN = NITR BO PINE NITE 1. COM PARTURY - PAILED. POON W/ AUCERS, STANDING 510 Ausen Binding 2 8,5 , 12.35, 1018 1421 move Rit to but C-005 Bol Kic. 12-184 447 BEUTH DRUG- C-OUSTBH ALLER PINITR ingo A Solution FRACTURE. Shop DRIHIM- A Pound SSS. Awen PED=NIR, Cottinus 530 Attempt to Ket Simple From SITION Upwind PILL AITH , BUNGERTOF NIR Munday, Dre 12, 1994 PIN= IPPM, BOPIN= N/A. 542 Finsh GRENTING C-003 BM To Suite 2 1515 STANDING ALGER PID= 2,1 ppm. 445 Riv up on Loc Ctt C-co 1533 PREP. FU GROUT 6-005/1321. 559 Fin, 31 600-7 (-003 13H) 546 JREP TO GIZENT C-004 1341 554, Paep Gast 6-003 13H 552 Fins 645 Time c-0= 1 BM 605 PREP 61155 6-602 134 Decon JSANPRABEA - NIR. Brock Decon AREA. Averex PIU= 1.2 ppm

2 Mes 12-14 (23)

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

12-17-24

1710 PID SAMPLES WIE.P. REWAGIN DATA. 1645 Visit to 18106 44 Riv Samples 122 1615 BREAK Bun Decon J-Somple 1630 Visit Awar Dawnsite, Stow Top orFe-Reston C-colled. TABLES, Secure Davins. 1609 Finish 62517111 C-02213-1-PYE /ReFuse in Davin mon. Dec 12, 1994 OPTELY OFF POST SHippinu. 1725

0540 WEATHER 26 , WIND CHILLIN TRENS,

Tes. Dec 13, 1974

25% F. Miken, D. Enesman, R. (45011) (HED: MAXJ OGSO OPTECHON POST (EP. R.C., M. + P.G.) 0700 CAI PID# 48912-282 To louppun isusur-0810 TAKE BKED PID! Decen = NIFK, Sminte 62 0720 Give, M. H. (G.C OF) HAS 13RIET - (MC PATCHES. No RAIN FORCAST, WARMING ylone ( LLT = 262452-011343) 100'x RETEST, 6) 40 bive 1-145 Baier & Hou A COFFUM! THEIR - MIR , UPWIND - MIL , TREAMS LT. WIND, FRUST JICE OF GROIDS IN HEXANE (6.734501) 02=20.9 %. Ful of Margles & Investing incomming. 0710 CAL LELLO2 METER #1217+0 0723 CHECKIN W/ DDIO CRED & BUNCOS Derson March, Calen worming of Facilities Olso Racy Flast wither Onsite 0800 Lee yeary -1 Allorec 011705Ti Mike) (1-1132 wass D. CHKely. 0605 DEBACK to Jimpeos'into 410's LATER TORY. 0615 maire e Honores 0645 DeBook For 825T. No DRII-T.

world Con 12-13-74

FUE DENIA REWS - WILLUSE CHUTIS INHES HIMIDINI AULER YID - NIR, TERRY HART OFFSITE interval, CHINGS PINE NIR BOPINIMIK , ogec Beein water Loc Brown BH Commons KED Reconsist Trip & close countre is timesauss. 1003 PUSH Span TO 2 26' MUSH MINE NIER, 0329 Ret, Suatace Sample 180 PID= NIK 0935 Ret 20' SAMPLE BULLERING MILK CLHING PINSTAN 130 PILLS = O. 7 8PM COHING PIDE NIR BOPIDE NIN 6955 PET. 25' Sample Buenpin NIN 110855 DRIVE DI, CHIMS PIU = O. Growny 0912 RET 15'SAMME HUVER FINE MIK 1016 Daillers ACHAR HILL ICE IS ON Some of COHMUS DIONING BONTONING Took (Aution DRIVe CREW & SITE KILLER MIST ( Hims PENT NIR , B. PIN = MIR. Osisy Ret. Marsitianal simple From Scaling @ Rit Inc. = NIK, Downwar yzo - NIR 0810(Cost) HAZMAT STOUGLE MEAT = NIJOR 1 0900 RET 10' SAMPLE BULL PIDE NITH COHING PID: WIR BO PID: NIK = 2. Sppm Aura PID=NIA.

Thes Der 13, 1994

O 31 Ret. 30' Signific Abber 120 = NIDE

O 40 Hit Return = NIS, But 70 = NIDE

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

O 55 Dewn Awbers ;

D 65 Dewn Awbers ;

D 65 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dewn Awbers ;

D 70 Dew

1220 R.C. & D. G. BRICK FILLINGS PAD

1240 BEGINDRIG B-002 BH. CHINES PAD

= NIIR, GILECT SWIFTERS SAMPLE.

BO PID = NIIK

LHINS FIN = NIIK, BO FIN = NIK

CHINS | FIN = NIIK, BO PIN = OLG FEM

(CHINS PIN = NIIR, BO PIN = OLG FEM

(CHINS PIN = NIIR, BO PIN = OLG FEM

(CHINS PIN = NIIR, BO PIN = NIX

362 Ket 20' Shingle Aveck Plus NIK Cortinus Plus = NIK Bo Plus = NJAZ 1330 Web-Haz Cowles, PTY(buy U. UT 5-SE Breeze.

Just 600 12-13 24 (29)

Jan 12-13-94

1030 DRIII Rus Slips Not To Ice - Use Inorte

1343 AWGAC REP LES BARY BACK ON POST WI NIA COHINGS PID = WIGZ BO PINT WIRE 1412 POOH WI AUGERS, Buren PINZ NIC. 1515 RET 5'SAMPL, BULLAR PILOT NIA DXIIIENS loose Daill-Xon Youndwie -60 1500 Bearin DRIF Lac. C-003 134 Cutting 1530 Ret 10 Sample, Awar WINT NIR, Cuttinus PED = NIR ) BUPED = NIA 1405 Ret 29' SAMPLE BUGGE DIED - WIK 1340 RET 25' SAMINE OFWER OFFO = NIR 1505 RET Surface Smoothe, Huran PINZ Bo 8217= 152 Cutions YIV - NIK, BO /IN- NIX CUHILLOS PIDO AIR 130 PID : NILV 1350 Fish Pash presume Rot, wi 25' 1540 Ret 15 Stample Awar 871) = 1/26 Sample, B. 120 = 1118 -CHINS PINZO BO PINZO NIZOL Weather Temp Days To bu 305 HNGRC OFF YEST Tuesday Dec, 13, 1994 M.H. J- Methons! CCHINS PIN-NIR, FISHING FOR TOOL 1420 Decon Huers, PID= N. SOL 1546

810 OFTECH OFF POST ( R.C. D.C., E.P.) 623 preprine To Gozout C-02/134, Courtly 520 Take WL = 228,0' BLS., Buen CUHINGS PINS NITH, BU PINS NITH 550 Ret 20' SAMYONE AUGENPTIN = NIK 13 Ret. 24 Sample Aven PID = NIR 559 RET 25' SAMINE ALLEN PIENT NIK Symple not collected My Deepon turn 24" 715 Finish GALTIAL C-OOLISM, CLEAN UP CHINES PADENTE BO PANE AITE CHINGS PINS NAR BO PINS WIN Tras Dec 13,1994 Die to prosine it vyster in Auracs 735 Site of the Kom CAMON 634 Finish Garane C-OUBBH. 1659 Finish Gawain C-002 BH. 730 HED. OFF POST. PIU- NIR. SIT WRT 555, -J. (-00313H . WORK BOCH,

pp-81-21 Jan 12-13-94

M.H. dama, no to dun last of 6-C

830 maire @ Motel antains

smysles.

7-13-44

CHINE PIN-NIE BOPIU - NIR @ Bonzemure =NIR, Decom & Simmy Pe Trable = PIN = NIENZ BRED PIN COMMONDENERS 0645 OPTECH (R.C., D.G., E.P., J. P.N. H.) ON POST, 0655 CAL PID # 48962-282 to 100 your Teens, FracAst to women into UPMAR 30'S 085 RET SLAFAR STAMPLE BO PIN = 1.8 plan OSYS WEBSHER! PTIY Chury, 25°F, 51+ COHINUS PIN = KIER BUTIN ZOPIN 25% HEXAME (101734506) 02= 20.9% Wind From S-SE Wind CHILL in Opport 0857 Ket 10 Smirle Huccirron 1158 0700 CHECK LEL/OZ (A). 100% RETEST TO 0832 Beein DRIV- Lee, C-004 134, Cathird 715 Set or Dean d. Simple me185, Obell Ret 5' Sampre stores NEW AIR 0830 Finish Decon, HOLD HOS BARIET 0600 OPTECH MOBITS FIREDERS" FOR ON REWICE, P., R.C., D.G. M.H. JA HED 160130 Tylene (60 T# 267952-011393), COHINES PIED = NABO PID = NICL NIR, + Downward NIR. HED Down Huners. West Dec. 14, 1994 BREAKFAST MEETING. (max om, Ke),

UPWIND, NITR, Burnac, NIR, Decen & Sonlite 0950 Inspect promos Burnes 1-02 6200 12+1, 6-2 2 2', D-1 22 2', D-2 2 2', Kemsses Farm PZ Loc. + 190C's C + D., PZ-1 HAS FAHIBALK UF SELMA BALL @ BOCB - DAILIEUS 5711 DECOM, 0920 RET 20' Sample Aueristo= NIN CHINGS PED = NIJOR BO PID= C.Z 0930 Ret 25' Smyste Aut + 120= ALTR NILK, 130 PID = MIK 059 RET, 10' SAMPLE HUGA PIPINIA FAII BBOK & DAVONS . - All Dams WED, 123C. 14, 1994 15' Simple, Brien 12 ID Bo PIN= 1.0 050 BEGIN DRIF A-DOIRM BKUD PID= Cettins PEW: NITA BO PILL : 0.3 CATION CREWY OFTELM ITESOUT CHECK 045 Line of Ric on Loc 13-001 134 245 WL in Barran = 21.0' 1325 09) 0 Refuel Rif w/ Diesell -PIN= NINZ; Dourning NIFR. SI R.C.IV-IT. SZ JRET. Susking EspayE BO PID = NUR QUINTUS BENIND 12:1-CUHING PIDENIA 0906 Re7

OUTOR Upwing, MIN @ Decond Sampre TIAD) & 1332 RET 2' Sample, CHING FINER OID = NIRG Boneme, NIR Downwoo BSD RET 10' SAMPLE BULER 1200 = HITA Aven acron @ 23.5' No Smyt 1230 D.C. + D.G. BACK From Luney. ORillers WATER IN B. Hum IF HOTE. DESTATY CONTINUE PLD-NIR, BO PID= NIR CUHINGS PID = NIIS BOPID= NIOR CUHIONS PID=NIR, BO PID= LITA 1145 Pout in owears. But 120 = Nie 1112 Ret 15' Sample Bused PID = NITH 1125 RET. 20' Sample Awar PID= NIR 1330 Ric up on LOC 19-002 BH, BK-1 CUHINUS PID= NIR BO PID= NIR CHINGS PININIK BO PIO = N/H-WL Standing in Aureus = 20,1' Bls 1140 RET 25'Sample Busen PIDE NIR 1130 ULL STANDING in BURRES = 20.1' 815 Collected, We Div not inviente 1155 R.C. + D.G. OFF-POST FOR lunger. 1337 Ret 5' SAMPLE, BURCA PIU-Web. Dec. 14,1994 BOPID- NIR @ Decon.

121 = NITR , 130 1220 = NIK -08 RCT 10' Smindle, power 1:0= NID) No I'D - NIR 420 Poor W/ Duners, Awar MIN-NIR. 401 Rey 15' SAMPLE BOUNDING MINE 410 ReTZO' SAMINE BUCER MINE NIER 35 Decon leas 134 eus, Discuss meanin Amer Piter NAC WED Dec. 14,1994 CHINES PIDS: NICH BIPINS NITOR 447 L'ne 0,000 Loc 19-003 13-1, or Becin DRIF South South South CUHING PIECE NIN BO PIOS NIN SISTETY SINED When DECONOROUS WI CHING PIO=NIR BO PIN= 537 Parsare GROUT. CUHINES PIDE NITHE 6 Ket 15 Shinile 30 POOH WI AUGESS Jouen Springer. 55\$ 15 uet.

545 Crown BII Buildows in 1906'S Both
To Sureme wil Transmire Dipe.

16 40 HER. OFTE 1237. (18. C. J. D. C.) OFTE 1285 T.

Lass- Cos 12-14-94

12-14-94

6700 HOLD Hars Pare 1= WI OFTECH - Emydrast 1100 DAlleas Finish Clam Ur LIED OFF 2005 0645 OPRIL (R.C. F.P.D.G. , 2 M.H.) ON Past of Successions one to BC Months new 0715 Supervise Duillers Tout OFF Well's 1500 CARLY FILLY BONK TO SAN PATRAIS 2 306Al als HAT EVER HAWH ONLY CLEIN UP IS JUS TODAY +HAT PROPOR SHUCETY GOIFK (1) at Drum court of SG-T. SHENMIN-LEAVE KEUN OIT DRUM LIDEN LIST 0835 FINSATOPATION. PAS GROUNDHOL 12-15-94 SIT CHAIRE OF AND LATER TORNY OSYS WEATHER! PITY CLOUNY 40 13coin 517e 1039 OPTECN (I.P. 2)26.) OFFBST Maine & Sm Mitario. Obos Deamn For HARDERS Hole in DRAMAGE DitCH. +21000 Day Dec 15, 1944 Bein Brea Barn. 1015 Finish Buen Becom, 1130 OFFELH OIZF POST. Oteckor WI at Clean Use. 1-4 BS181,24-Clemus Gass7. 0880 21:15 0089

14.5 5.10 4 30,420 64 0.914 64 0.914 65 1,006 66 1,006 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 66 1,003 67 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68 1,003 68	contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contraction contra
14 30,450 4 30,450 os 1006 meters 0.000 fractors 0.000 term 3.000 term 3.000 term 1.000 term 2.000 meters 0.450 meters 2.000 ons 2.000 ons 0.450 ons 0.450 ons 0.450 ons 0.450 ons 0.450 ons 0.450	Construction Construction Construction In the character Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter Recharter
1	conflictures conflictures conflictures conflictures conflictures conflictures conflictures conflictures conflictures
de 0.914 Inster 0.030 Percent 0.334 Percent 0.334 Percent 0.621 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 Inde 0.453 In	ESECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRETATION OF THE SECTOR INTERPRE
neters 0.030 bracters 0.333 ters 1.030 sectors 0.621 sectors 0.621 sectors 2.0379 nrds 0.0453 nr 0.0453 nr 0.0453 nr 0.0453 nr 0.0453 nr 0.0453 nr 0.0453 nr 0.0453 nr 0.0453	Muniches indexination foot foot synda micro greens felyper in sunders general
Intelesc	Richboth Book Yourda Indos Bregerins Richboth Bregerins Bregerins Bregerins Bregerins Bregerins Bregerins
meters 0.39.3 may 3.79.0 may 3.79.0 may 3.79.0 may 3.79.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70.0 may 3.70	iader Pot yorda nuios nuios gretia a kepters a curens contros
1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090   1090	Post porto nucos protos generas especias especias
lets 1.593 subfers 0.621 crs 0.453 crs 0.453 crs 0.453 crs 0.453 crs 0.453 crs 0.453 crs 0.453 crs 0.454 crs 0.454	pulas pulas pulas propos Respectivo acurens
snebers 0.621  less 29.379  inds 0.450  ons 2.204  grens 2.204  deurec 79.50  in 9.431  in 9.431	hilas gretia Amportis aurona Genedis
Cess 20.350 inds 0.453 ons 0.453 greins 2.204 et euron 7.39,53 ins 0.453	greens Reuporns Guigns Geneds
inds 0.450 ons 2.015 grents 2.204 deurer 79.510 e 0.451 es 0.345	k typer ne aureon politički
ms 0.035 grans 2.204 funct: 79.53 re 0.036	andra andra gotti ds
genera 2,2504 4 turno, 73,53 19 0,345 19 0,345	courts
deuros 73 553 re 0 453 res 0.246	
3 6346 6346 8	
0.473 4. 0.346	en Midees
0.346	500
	5.0%
	<u>ال</u> واد د
melitation C. P. c.	March canas 11
	Specifical Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of
	00 to 300
STATE SANIES	
CV V (V V V V V V V V V V V V V V V V V	•

Wednesday November 30, 1994 Eurlher entries DATE CONTENTS REFERENCE PAGE

16:45 Horday December 5, 1994 B 16:50 Depart site propare to leave 17:05 Arrive back at hotel	Luther entries Dear
Ob:30 Break Fast meeting 08:00 Leave motel 08:15 Arrive at base	

		CHECKELL AND ADDRESS OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	
1984 TH 1	or so single of so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so single or so	27 20 20 20 20 20 20 20 20 20 20 20 20 20	to mad
mber 1, reak tos and soints fo	to bring to bas	2007 2007 12 tata	Port E
December 1 bre 565 points	the trop with the pare	ons up a post of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constructions of constr	2-100 ×
osday motels a sit	A Yet of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	setting setting on setting on setting on setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setting setti	pletely e to lin of  Rue
Wedn Arrivo Stake	Later to trace.	Same of the series	of of the
06.30 07.30	0883 0836 0836 0876 0836	2 20 20	330
1994 ast ave give	vex.	at to Glaster and the and the and the arigains	
wher b, break f.	ser, Pregress at all poleted	Setumed data and for magnitudes my leteons	16/ CALL
ē 4 3	20 40 2	7.00	
Dec Jest	taso to the the	of tet of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the stat	10 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2 / 1/2
upsday Dec motel eat e at site ty meeting	Russ Casol Matt with retometer ca of GPR	completed. Returns to down load data a for AOC-A for ma GPR. Manage to meter at ne to meter at ne to meter completi calibration run R complete. Regin	ave site at motel  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Every Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita  " Evita
Tuesday December Leave motel, eat brea Arrive at site Satety meeting with	08:00 Safety meeting over Pre help Matt with Geo Sui 08:30 Began magnetometer at 10:00 Set up GPR completed 10:30 Began calibration runs	To a series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of the series of t	17:20 Leave site 17:30 Arrive at Mote 20. 20.

decon decon at 2.003PZ

Begin decon at 2.003PZ

Decon complete at 2.003PZ

Leave site to got sampling

Leave site to got sampling

Leave site to fell pick-up lunch, Top of augr. room for Earl brieting forel at 2.001PZ. Segin setting up decon for cleaning sleeves and end caps.
Began decon for sleeves
Decon complete, Break down Leave motel, est breakfast.
Arrive at base
Observed calibration of PID. Thursday : December 8, 1994 tooth Knowy n drilling a few teet away.

de con 2-001PZ, Begin Jecember 7, 1994 hit obstruction oreaking down decon station, guip propare to loave site Cui her Arriveal

st of of and	arillers gin setting BH BH H H 1)	interval I interval I ected podel
ber 9, 1994 eat breakfast ite. Prepare iss sleeves an	1,119 will arm 0C-D. Begin 1, D.001BH 1, D.001BH 1, D.002BH 1, D.002BH 1, D.002BH 1, D.002BH	AOC. C. Began decon, C. 00/BH into to C. 00/BH into sample collect sample collect sample collect
eave motel, care up br.	Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive at Arrive	Arrivedat Setting up Begin decon (-001 SED (-003 SED Recalibrat
200 Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property of the Property o	22 262 63	55 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
1994 Sos		
scenber 8, 1991 o and measure stakes, e fuel vehiclos.	oxtries Dy	
	<b>4</b> /	MATERIAL STREET AND AND ADDRESS OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSO
Thursday Decisions of Signal Marrine at mot	My further E.	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

.

Arrive at decon grea, Check to make sure all drums are sealed.

Check all other AOC's and piezometer locations.

Straighten Sunday December 11, 1994 17:30 Friday December 10, 1994
17:30 Fools PID readings of VOA
17:50 Leave site motel
18:00 Arrive at motel

onday December 12, 1994
repped Earl and the samples of room. decon water into main ety brieting COOIBH internal
con camplete (COOIBH internal
gin decon COOIBH internal
gin decon COOIBH decon station at ADL Drillers return
Begin decon (-0048H
Decon complete (-0048H
Begin decon (-0058H) Monday December 12, 1994 decon station and load van. Desty Drenay écon complete (

Leave motel

Arrive at site

Set up decon between AC-A
and AOC-B.
Safety briefing with drillers

Segin, decon B-004BH

Persured boring locations AOC-A

Regin decon A-001BH

Begin decon A-001BH

Stelun from lunch

Return from lunch

Return from lunch Begin decon A.002BH
Decon complete A.003BH
Begin decon A.003BH
Decon complete Take 3
Samples From decon dyums. Wednesday December 14,1994 Break down decon and load No Further LPave site Bety Dung Begin decon B.002 BH
Decon complete B.003 BH
Begin decon B-003 BH
Decon complete B-003 BH. Break
down decon station and load van.
PID VOA vials with 10ml DI Hso Leave motel
Arrive at site. Get ice
Set up decon between ANC. A and
AOC. B.
Satety brieting with drillers
and Dan with Marrop
Satety brieting concluded.
Begin decon
Decon complete B.001BH
Exercise the fine of the B.001BH Tuesday December 13, 1994 From Junch / winter 67:35 50,90

16, 1994 in S.A.			
Friday December 16, 1994  Arrive at apartment in S.A.	No fuither entries	3	wh wary
brieting,	or San Antonia	84/	
Thursday December 15 Leave motel Arrive at site, Satety Clean out 6 ( room a	Re-stake all points and Cos. Leave site Arrivo at motel, paccheck out. Leave motel, head futther 3 & hours from	Link of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	the Buenz
, , ,	(10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40 K) (10.40		9.82

sal factor has a per-deplement musting at Optics. By myself sold sold was flash the Early Russ, and Street in etherance (As Mark E.). I thouse the Mark E.). I thouse discussed included supplies through a discussed included supplies through a plannet activity of the true day. Geophyshad sunvey activity as the sure others be completed on Maday True day. The other white the activity as the sure others will be completed or there. We discussed without the sure of the sunvey discussed the sunvey and the sunverse will be sevend in field GC & PID and will be sund in field GC & PID and will be sunvey be stell as sunvey and provide flux contains will provide flux Casan will provide flux Casan with Casan fulls of ILSS Une.

(

Mace

Sold and Arrive & Jeannach and all in method 290. They are all in method 50 we are are as the are and that a doc A meet is had well and the could not get it will also found on yet to share but could not get to share well and in which parting. Back & cell from Lambax) and My. According and Sharm Lambax) and My. To out to that in BLDG 55 withing permits - Could though our school of the Arnest in BLDG 55 withing.

Whilst cleaners to digning permits - abundy pox in by 550 withing.

Person for respective of any Incolutes we have Sharman.

Incolutes we have Sharman.

Incoluted becon - de a voudinacle

I'm your Lambut asked for certifications

Side 51 - can use relaption but

8145 55 - go to be who e c'v b

Emistical mething 0930

Finistical mething 0930

Finistical mething 0930

Looking 1000

CE 17th and 38650.

Finistical mething 0930

Looking 55 - go to be who e c'v b

Finistical mething 0930

Looking 55 - go to be who e c'v b

Finistical mething 0930

Looking 400 C b is Map 18 hot b

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Junk to see youth

Looking Looking to should be

Looking to the see the the Should be

Looking to the first it.

}

I also called the hotel to had alived - the rephysical ingerment had anived - the rephysical ingerment had anived - the repet to AOC-D.

Still did not see Pipe - twill inter the GPR + DAGG.

1300 Go to hotel to pick in Story Make in Story Make in Story Make in Story Make in Story Make in Story Make in Story Make in Story and out good of So x 30' intervent the mat rate of South expensive force.

1436 the Specing Sign of AOC D.

1436 the Specing Sign of AOC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

1436 thirstory good GO ROC D.

a 13 pt × 18 pt MAG gid

(169 pxs).

(450 Set up SPR guid @ 8472

@ AOC A. The Southwar comes
of guid will go of into dischtwark as hit then won't

- In West hulf gid do GPR

- Keep MAG spacing to 2,5'

Yhusughout gaid.

- Keep MAG spacing e 2,5'

Yhusughout gaid.

- Keep MAG spacing e 2,5'

yhusughout gaid.

- Keep loop loog!!)

Spacing (2PR to all @ 5'

Spacing (2PR to all @ 5'

Spacing (2PR to all @ 5'

Spacing (2PR to all @ 5'

Husughout data @ disch --buyont 50' on boisontal

the By!! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

the By! Noon. Then went

(e)

7

Back to ADC-A (2 1610 has)
will do finat test madangs of
MAG. It did not be be done
funs will have to be done
found moderned sneaph in OK
and moderned sneaph in OK
and moderned sneaph is of
The moderned decay or doon to
50K up hy 8 422,
The moderned decay or doon to
12/5/941 .... & hopel

12/6/94/ 0730 Res. Arrive.

(07410 September of equipment of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September of the September

Mat 12/2/1

Had some trouble wo styrul drepout on vertical traverse of 1,3 - + decreased gain but it dight fix problem. Then I fix ed paper on platter t it seemed to work ok

Some pieblem again on HO ......

I adjusted gain + gapen postston

opain --- it all appear to be a

fine tuning of Worth of those

1150 done with GDR at ACC-D 1215 looked & dost and can Exerce muse trace at can intermediate spacing. The is one area of highly distrubunt, obtate but no clear identity 1230 Back to B414 and atte dosta into compute (MAGLOC 12.45 Atte Sunale. (MAGLOC 13.45 Atte Sunale. (MAGLOC 13.25 Stayed MAG @ ACC-A.

Leave Land (2) 1258 ho. now.
Start GPR 1415
Finish (2) 1700 hus,
Presk of 1300 hus,
Cask of 1300 hus,
Cask of 1300 hus,

6

1 at 1 2 6/96

12/7/94 Arrive on site @ 0730.

Purt aux data your sureez...

Jord had roudle because no retpine your transmissed had no value aux serial port for Hoox or work concepty. Aso, punter or data.

0830 - dene peinting for suefex data.

Soundy sill, colossing, slightly moist. Brown sill, little way fine sand, colorsins, vary slightly drawn, sift and eleveysill. Small isoucial gimes. With on the outside, Styletty must inside. May have brush clark brown silt And clay. Plastic Colusius. Grant to Garage Sightly moist. 3:44 3:58 Park brown Ani brown sandy cley loam s. And Knaywants. Slightly moist. COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR 19, 18' 865 -19, 03 365 -(12/8/4y) 10.21' RUS wh oblamed Ş 15, 855 Auger Reheal - Sector & in Kine 46/15/21 DESCRIPTION ₹2 HSA PAGE DRILLING METHOD: V SAMPLING METHOD: DATE MEASURED: DEPTH TO WATER: DEPTH DRILLED: TOC ELEVATION: NOTES: Wake encountered of 15, " BLS internal civer clay layer. Moist Enternate comoin fossils of Caliche internal At 21' 865. 12.0 2010 2 01-24 17.0 2,0 20,7 2 Trap40 22 1 DEPTH FROM 0.0 15.C Ö, 5,0 20 WEATHER: Coul, Cloudy, Bow 24 Beogcok ASTM Soll Classi-Reation Codes Z 7 Z W U J ∑ PATE DRILLED. 12/8/914 CMG - 45 BORING/WELL NO.: SURFACE ELEVATION: ⊋ <u>:</u> 3 FIELD SCREENING ļ ) ١ 3 ) ATIIA (ppin) 1 0,0 S PID (mgd) O O S 0 LAB SAMPLE INTERVAL } ţ ļ Ì PROJECT NAME: JEFFEGSON BACONELY AIXS REC 00 9 3 1 DRILLING CO. HALL ENUMBENMON LA 7 7 PROJECT LOCATION: St. Lais Me San Antonio, Texas 78229-4253 4100 N.W. Loop 410, Suite 230 BLOW ņ ہا Ś OPTECH Tinnin SAVI PARLY PROJECT NO.: 1315-105 ۲ ņ 9 2 3 DRILLER: MAX , II.O 10,0 - 12.0 5,0 . 7,0 SAMPLE DEPTH 0.5 - 0.5 20.0 - 22.0 20,00 LOGGER: J. S.

ì

Silt missmal must with limster Knymuts mid blocks. but no sparant who Table. maist. 17 / XC. 0 bown sand and silly sand, slightly colusing, Lyht to clink bown 3:1t and silt loom w swall githal sightly cobusing slightly maj 7. 5 COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGRÉE OF MOISTURE, ODOR bymut silt and study silt. Very tres smel. None Emountered Graun simply silk, very fing sand and silly colosius and slightly moist Light Brown Sill And wary fine south. Slightly consing very moist. brown sitting for some us callete refusal At Limsthy Suitace Ė 12/23 SAMPLING METHOD: SALE SPAON Aid VIV DESCRIPTION rost boose undered HSA 29.5 PAGE DRILLING METHOD: DEPTH TO WATER: evideme DATE MEASURED: DEPTH DRILLED: TOC ELEVATION: Stork. Wet Swall of And encounted. No backock surper. Bedock conformed by 145A And SPT rehissly 1345 经 73.5 17.0 <u>ي</u> ئ 12.0 11. - 40.3 \$,0 62 TO 12 DEPTH 51200-242 27.5 FROM ં જ 17,0 is S <u>ુ</u> 7 C 25 WEATHER: PC to MC, Cold And Breezy where beclovek was B€02cc K ASTM Soil Class <u>პ</u>ტ Reation Codes Y む S S S ≥ Z ĭ ž Σ DATE DRILLED: 12/7/94 Sand SURFACE ELEVATION: FIELD SCREENING BORING/WELL NO.: CME 1 7 ļ j M 565 ATIIA (ppm) ļ ļ Į ļ RIG. 000 O S o S Onlled to 0.0 نن ە ە Ó LAB SAMPLE INTERVAL 1 ļ } ļ 1 ١ 1 NOTES: PROJECT NAME: JEFFERSON BARRACKS ANGS % SEC 8 40 00/ Ŝ <u>8</u> B 2 DRILLING CO.: 1-Art Environmental 9 د 4100 N.W. Loop 410, Suite 230 7 San Antonio, Texas 78229-4253 10 PROJECT LOCATION: The St. LOLIA BLOW 4 رم OPTECH G **6**Ω 4 Enri Parker DRILLER: WAK TINNIN PROJECT NO.: 315-105 رے 4 ļ 5 7 27.5-29.5 15,0 - 17,0 20 - 22.0 35 - 50 10,0 - 12,0 0'1 : 0'0 5.0-6.5 SAMPLE DEPTH 15-27 27.5 LOGGER:__

Brown Sandy Sill. Over fine sand, colosive, slightly moist (1804 slightly plash), 1. His cla, Sandy Sill. Drown fine said and mestly sill. colosius, slightly moist. Grown of the mad world fine sind, cohesing, slightly most with grown (venil fine) to 3.0' 625. COMPOSITION, STRUCTURE, CONSISTENCY, COLOR,
DEGREE OF MOISTURE, ODOR Cobosing Sandy 5, 14 and Elnyey 5, 11. Most. 智 HSA RESAL Buttock continued by HSA robusal Š DESCRIPTION 15.A Nove **4**2 PAGE ₹ 2 fog SAMPLING METHOD: DATE MEASURED: DRILLING METIIOD: DEPTH TO WATER: TOC ELEVATION: A+ 16.2 Brdnete 16,2 0,0 12.0 HORINGAWELLING: PZ-3 2-030 E 3.5 l DEPTH FROM No water encourted. 15,0 **၁** ဗ WEATHER: Cold, Cloudy TEMP: 35" 13 İ Bedrock ASTM Soll Classi-fication Codes <u>∑</u> ر چ ر چ ٤ DATE DRILLED: 12/8/94 SURFACE ELEVATION: ાટ કુસ FIELD SCREENING J  $^{\sim}$ 1 ATIIA (ppm) ١ J ı TO= 16.2' BLS PID (ppm) **ာ** o O 0,0 ļ LAB SAMPLE INTERVAL 1 1 ) 1 1 PROJECT NAME: JEFFELSON BACACUS ANGS NOTES: % REC <u>8</u> 3 2 3 1 DRILLING CO.: 1 Fort Environmental 7 10 ١ San Antonio, Texas 78229-4253 ~ 4100 N.W. Loop 410, Suite 230 BLOW S ~  $\bar{\mathcal{X}}$ OPTECH PROJECT LOCATION: St. Cours DRILLER: MAX TIMPIN PROJECT NO.: 1315 - 105 LUGGER: E'AN PACKER €/3 7 3 4 ŧ 15.0 - 17.0 10.0 - 17.0 5.0 - 7.0 SAMPLE DEPTH 1.5 - 35 16.2

PROJECT NAME. JEFFE 2503		Raciale	L AUKS	63								
PROJECT LOCATION: St. ( and M.D.	¥ .	c	i	51	•	A. M. A.	;	Λ.	8:1			
PROJECT NO.: 13/5-165		,		ı	<b>m</b> .	ORING/WE	LL NO.: T. M. C.	3 1	חט		ı	ä
LOGGER: EAN PARKE				ı	× =	WEATHER: Colch. Clesy	Jejer J	2 2	F 35°	3	i	DEPTH DRILLED: 25,C · 8LS
co. Hart	Envolvental	=		ł I	: <u> </u>	DATE DRILLED:	ED:	12/14/94	1 1		1	DATE MEASURED: 12/14/94
DRILLER: MAX TIMMIN				1	SI	SURFACE ELEVATION:	EVATION					
												PAGE OF
						FIELD SCI	SCREENING			DE	DEPTH	DESCRIPTION
SAMPLE DEPTH	BLOW		REC L	LAB SAMPLE INTERVAL	PID PID (ppm)	ATHA (tippin)			ASTM Soll Classi- fication Codes	FROM	10	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DECIREE OF MONETTIEF ONLY
0.0-35	1	,	,	1	1	1			J. M.S.	1	1	Account to Black soll, 3, must till. Mestly gi Anel
3,5-5,0 3	m	2	8	Int 1	010	0.0			ر	3.5	5.0	Brun UF Smby Sill. Colosico med slightly
10,0 - 11,5 3	W	7	8	Int 2	0,0	0,0			MC	0'01	11.5	Ener to class bound slightly welled of smay
15,0 - 16,5 2	W	N	100	1	0,0	0,0			M	i .	16,5	1.
200-21.5 2	2	4 //	8	Int 3	0,0	0.0			۵L	0'02	21.5	Sandy Sill. UF 3
250 265			+									
23,0' -	,	i	1	}	١				Bedrack	1	1	Codest concentral and continued by 15%
						4						
												•
OPTECH			VOTES	NOTES: WAKE	/ave		the u	when	Myens	4/ 3C	20' 615	build e
4100 N.W. Loop 410, Suite 230 San Antonio Texas 78220 4253	uite 2:	<u> </u>	WE WE	异	hed of	20° E	8C5 ex es	BLS immedials	المالم لم	123'	, beth	bettom sof balle, while dalling the 25'BES S med on himsed by HSA retisal. A
701 (2010) 107 (07)	71-67	——	Subsequent		1 116	4	l l	melicsked	ed water		dimmed	down into the bestuck

Brown smay silt med silt wil some clay silt. Chay 2/1/16 , very celesia, wet. Brun Sill And UFSANDY SIH. Lif Brun to Kon Silt. Slybilly celestra Sightly ancist. Brown, self sond my soll, celesier, very slightly COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR NOTES: while encountered at 19.0° &CS. 1971/2/21 11 sitt, very clip, net mad sahine sahined but very clip, net mad plashe, Internal 3 somple detained from 20.0-21.5° &CS internal. 16.5 Green silt And utsendy silt some clay Day Grown, had, gime ly sindy sill fill 12/14/44 Q. 2/14/5 X X DESCRIPTION PAGE very celesion wet SAMPLING METHOD: DRILLING METHOD: DEPTH TO WATER: DATE MEASURED: DEPTH DRILLED: TOC ELEVATION: 20,0 21,5 <u>و</u>، ک 512 TO DEPTH 15.0 FROM 10.0 0.7 5.0 WEATHER: Cixy Schny Tong: 38" MC-CL MLCL ASTM Soil Classi-fication Codes 3 Z Z 3 BORING/WELL NO.: A - COZ BH DATE DRILLED: 12/14/94 RIG. CME-45 SURFACE ELEVATION: FIELD SCREENING ATIIA (ppm) 0.0 0,0 0,0 0.0 0,0 0,0 Ö Ö,O 00 0,0 LAB SAMPLE INTERVAL In/ 2 Intz Int 1 PROJECT NAME: JEFFELLSON BALLACK PRINGS SEC REC 00/ 2 ၁၀ 3 30/ DRILLING CO., HART ENVIOUND AL PROJECT LOCATION: St. Co.NS MO 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253 BLOW 'n 4 7 5 7 OPTECH PROJECT NO.: 1315-105 DRILLER: MAX TIMMIN LOGGER: ZAN Parku 2  $\infty$ 3 2 2 20,0 - 21,5 15,0 - 16.5 SAMPLE DEPTH 10.0 - 11.5 5.0-6.5 10-2,5

PROJECT NAME; JEffesson Brynch's ANGS  PROJECT LOCATION; St. Co.is (Missons) HSA  PROJECT LOCATION; St. Co.is (Missons) HSA  RIG: CME - 45  LOGGER: St.   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Party   Part	NV. * LAB SANITLE PID ATHA Codes FROM TO COMPOSITI	4 80 Int 1 0,0 0,0 ML 40 5,5 5 100 Int 2 0,0 0,0 ML 10,0 11,5	3 3 100 Int3 0.0 0.0 ML-(L 15.0 16.5 And with the clay can through trains			NOTES: Grandwaler encountered at 16' BLS. Tohilly saturated unaterial. Crast 1e230 internal sample abhined from 150-16.7' Along' grandwaler internal.
(M.) Se						230
16 Course Branch		<del>  </del>	$\sim$			<b>H</b> Suite 8229-4
15-105 15-105 15-105 17-105 17-105 17-1010		2000	2		\-	EC. 410,
PROJECT NAME: Jeffersca B PROJECT LOCATION: St. Couis PROJECT NO.: 1315-105 LOCGER: E.M. PARL DRILLING CO.: 14ACH EMUNICA DRILLING CO.: 14ACH EMUNICA	SAMPLE BETTIL 0,0 - 4.0	4,0-5,5	15,0 - 16,5			OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253

Gran, UF Smdy sit we some clay, Placks cobsin, Moist. Bother we calice, invist, the wellowshire Kapment Dark bounn fill makind, G. wolly, lair, dry, Same 33 25.5 Soun UF Souly SIFF wy little clay, Cohosing, Siskilly Brown OF Sandy S. It wy little clay. Singathy plants charging that slightly might, Bun the souly sill at sens clay. Stoutly aloshe French VE Sout G.M. Little cloy, Cox story, Shally None Encontered Wark Graum, lowery Sandy, gravelly fill makerial (A), Split - Soan COMPOSITION, STRUCTURE, CONSISTENCY, COLOR,
DEGREE OF MOISTURE, ODOR Thin ealich BEDROCK ENCOUNDEND by SPT+ HSA Find in Q. 4 31.5' 615 える DESCRIPTION 115.4 PAGE Above ladrock. Unsetons Franconts of Micrit wi Fassile 315' BLS by SPT MU HSA NKral. SAMPLING METHOD: DRILLING METHOD: DEPTH TO WATER: DATE MEASURED: DEPTH DRILLED: TOC ELEVATION: Dyth Given. No odois pricontexal. 27.5 11.5 15.5 5.5 5,0 31.0 DEPTH ŀ 21/2 FROM 80,0 200 15.0 2,0 10.0 1 12, WEATHER: Cold, Cless Tomp 30" ML-CL ASTM Soll Classi-fication Codes Refrict M M L RORING/WELL NO. 6"COL 3H 3 ر <u>≽</u> J S **₩** DATE DRILLED: 12/13/44 いりょういし paramend at } SURFACE ELEVATION: Sur Kra. FIELD SCREENING ) ATIIA (ppm) 13.9 0,0 9,0 0'0 0,0 0,0 Ì budnuk PID (ppm) 0.0 6,3 S o o 0,7 ١ 0,0 O,O Roback 70× LAB SAMPLE INTERVAL is bow Ini 2 Int 3 Int ١ 1 ١ Ì wes thornd NOTES: Strangle % REC 2 PRILLING CO.: HART { NURBING ENTRY છે 30 Ç 3 3  $\mathcal{E}$ PROJECT NAME: JEFFER SON BARRA ORS ţ 23 ァ 00 San Antonio, Texas 78229-4253 4 ١ 4100 N.W. Loop 410, Suite 230 BLOW S e 27 4 PROJECT LOCATION: St. ( USIS 4 M ı 14 OPTECH PROJECT NO.: 1315-165 DRILLER: MAX TINNIN LOGGER: EAN DANG 5 7 > 1 2 4 15.0-16.5 24-25,5 10:0 - 11.5 26.0. 27,5 300 - 31.5 SAMPLE 2,0 - 3,5 3,5 - 5,0 31.5

PROJECT NAME: JEFFE250'N	£250,	1)	BAnncks	Į.	AUGS								DRILLING METHOD: 145 A
PROJECT LOCATION: St. LOJS	Col				<u> </u>	80	RING/WEL	L NO:	BORING/WELL NO.: B -COZ BH	2.8H		1	
PROJECT NO. (315-105	105				1	Ŗ	RIG	C ME	CME-4S				DEPTH DRILLED: 005 MS
LOGGER: EAV P	74				ı	ik	WEATHER:	Cold	25 T	100	Temp: 35	ر ا	DEPTH TO WATER: NOT CHEOUN PORT
DRILLING CO.: HART	•	200	8 normanna	-	1	Va	DATE DRILLED;		15/13/21	ナじ/		1	DATE MEASURED: DIA
DRILLER: MAX TIWNIN	NN	5			ļ	SC	SURFACE ELEVATIONE	EVATIONE					TOC ELEVATION: JU/A
													PAGE OF
	v.						FIELD SCREENING	EENING			DEFTH	E	DESCRIPTION
4 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 16 de 1		30			a dinays ay i	7.200 1.200				ASTM Soll Classi-			ATMENSITION STREET CONSISTENCY COLOR
DEPTH		COUNTS		REC	INTERVAL	(bbin)	(mpm)			Codes	FROM	2	DEGREE OF MOISTURE, ODOR
0'2 - 5'0	2	2	-ر.	201	Int 1	0:0	0'0			Gω	0,5	2'0	Gaun sirul and givel (Kill) reck Kingworth, hard, clay,
5.0 - 6.3	7	૭	S	180	Int 2	0.0	0'0	-		ML	2.6	6.5	Brann smaly selt, mostly Vissand much selts cobssing
10:0 - 11.5	2	W	7	8	١	0,0	0,0			mc	10.0	11.5	Gramm smaly sitt, consolictated, cotorius, moist.
15.0 - 76.5	3	3	, <b>&gt;</b>	\$	١	0.0	0,0			ML	15.6	16.5	Grown sandy sitt, fine sand, silty stard, wet, slightly charico.
20,0-21.5	M	W	7	<i>10</i> c		0,0	0.0			MC	50.0	21,5	Bran sawy sith very little clay, way slightly plash's slightly plash's
75.0 - 76.5	3	3	7	001	ļ	0,0	0'0			ML-CL	25.c	26.5	fin sil
29.0-305	7	17	1	120	Int3	0'0	0,0		,	ML-CL	14,0	30.1	Graun soundy Silt w/ Sour clay. Cimothers Fragmonts, Usey coloring plants. Wet.
30,51.	1	ı	l	1	ì	1	1			Bechach		,	timestan admit encounted - SPT + HSA.
	1			1							ĺ		
							T						
OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	410, S 18 78.	H 34 37 37 37 37 37 37 37 37 37 37 37 37 37		NOTE Hile FL	NOTES: Bedrich note was cost the bottom of	٠, ٠,	suke ne ho	4 At SAt	ed At 30.5' BL. f SAKMAN AND fo.	2		lenhwel esol IV	Carbanal by HSA mod SPT rebsel. Bothm of level merrornent indicated no water At

. .

-

.

sith, clay. Very slighth ct grun to Tan silt and clayey silt. Slightly boun to ton 5ilt and clayer sitt. Method, siey sith, elay. Very Dish, ectoring that most. Havi, Dark Bran 5 Mal And Silt fill, cobasina, clay. Brain standy soft we sens clay, Slightly plashes, chasing wet internal, muthy moist, 18.4 Must. Bann shuly silt. I land black silt And gravel 26.5.H SAMPLING METHOD: (A) - SOLF SOCKA COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR NOTES: Drilled down to 30' BLS And observed water in the take. Water town the Mandenment. Interval 25,0-26.7 was satisfied and selected as the Int 3 sample above the static water level. 28,3' BUS Ģ mettled. Very plastic, consine and 30,0' 845 12/13/94 DESCRIPTION **₹** DRILLING METHOD: 145 A PAGE DEPTH TO WATER: DATE MEASURED. DEPTH DRILLED: TOC ELEVATION: ct. Sown to Tim - Wahr Table 26.0 ML-CL 15.0 16.5 ML-CL | 200 | 215 ار ق 16,0 11.5 7:2 FROM WEATHER CLAM, Cold TEMP . 32" 5,0 ML-CL 25 1/2 Cm/6 ASTM Soil Classic Reation Codes کے کے 3 BORING/WELL NO. 6-603 BH PATE DRILLED: 12/13/54 CME-4S SURFACE ELEVATION: FIELD SCREENING ATIIA (ppm) O O 0,0 0,0 0 0'0 00 PID (ppm) Ö Ö, C 0;0 ئ. د 0.0 ن ت LAB SAMPLE INTERVAL Tut 3 In12 1147 PROJECTIONES. TEFFELDEN BALLICE AINS ļ ļ 1 DRILLING CO.: HART ENVIRONMENTAL ટ્ 100 8 Ş প্ত 3.5 BLOW No 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253 <u>.</u> S 5 Ś N 7 SAL Pala-5 OPTECH Ļ Ì フ PROJECT LOCATION: SI, LUNIS DRILLER: MAX TIMMIN PROJECT NO.: (315 - (U) **⊙** 3  $\sim$ 5 3 3 10.01-11.5 20:0 - 25:0 28,3' 815 25.0 - 26.5 15.0-16.5 5,0'-6.5 SAMPLE DEPTH 1.0 - 2,5 LOGGER:_

		TOC ELEVATION: HAGE OF	DESCRIPTION	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR,	Deryn to Park Brown, had 51 th med grown fill	Been to chak been silly stand and some clay.	Brown, very Kin soudy 51th, Slightly coission, Slightly			۶ ,	Brown Strictly 5:11. Very plas	20000				Water equivalend in the 25-30 BLS internal med to so have about much the 30 BLS internal med for Internal.
			DEPTH	Ę	8 L	6.5	レニ	16,5	7	26,5	31.5					where
	. 82		q	NOR	0,5	5,0	(o' c)	15,0			1					١ . ١
	BORING/WELL NO. B-OCY BH RIG. CME - 45 WEATHER. COCI, Clear, Temp: 28 * DATE DRILLED: 12/14/94 SURFACE ELEVATION:			ASTM Soil Classi- feation Codes	3 3 3	ML	₩ }	ML-CL	M-CL	ML-CL	ML-CL					Water tera hole for I
	BORING/WELL NO. B-OCY BH RIG. CME - 45 WEATHER. COO! Clear, Te DATE DRILLED. 12/14/94															Balvark.
	BORING/WELL NO.: RIG: CME- WEATHER: COOL DATE DRILLED: DATE SUBFACE ELEVATION:		FIELD SCREENING													1 7 13
	BORINGAVELL NO. RIG. CM E WEATHER: CGC DATE DRILLED: SUBFACE ELEVATI		FIELD SC	ATIIA (ppm)	ő	00	0,0	0,0	0,0	0,0	0.0					dnt1 k 18 1° 865 Internol
				ag (in	0,0	2,0	7.2	6,3	0,0	0'0	0'0					+
s)nt)				LAB SAMPLE INTERVAL	Int 1	-	Int 2	ļ	}	Int 3	1					NOTES: Ad no WOASLIND At 75.0-26.5' BLS
Barrack				% REC	70	00	00	8	100	202/	100					NOTES: PA WOASLRd 75.0-26.5
11 i	i			nlow Counts	ァ		<u>m</u>	ァ	3	2	2	$\frac{1}{1}$	·	1		
JEFFERSON	St. Covs 15-105 Perter RT Envir			i i	23	-	δ 3	3	3 2	3 2	2 2	+		\ 	+	CH ), Suite 78229-
PROJECT NAME: JEFF	PROJECT LOCATION: St. CONS MO PROJECT NO.: 1315-105 LOGGER: EALI PART DRILLING CO.: HART ENVIRONMENTA DRILLER: MAX TIMM			SAMPLE DEPTH	0.5 - 2.0	5,0 - 6,5	10,0 - 11.5	15.0-16.5	20,0-25,0	25,0-26.5	30.0 - 31.5					OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253

-	PROJECT NAME. JE	Jeffersin	36.7	8	Barracks									β(ζ  -)
	PROJECT LOCATION:	54.6	. Couls	1	و		ă	ORING/WI	ELL NO.:	BORING/WELL NO. C -CCI BH	1 BH			(ভ্ৰ
	PROJECT NO. 1315 - 165	31 -	10				æ	RIG: (	(ME - 45	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				DEPTH DRILLED: 5,0' BLS TO
	LOGGER: EAN CALLURE DRILLING CO.: HANT ENVIRONMENTA	3+	21012	×1 86	- 5		s à	WEATHER: ('o') DATE DRILLED:	(viti) LED:	WEATHER: ('old, Cloudy		1843: 28		DATE MEASURED: 10/1
	DRULLER WAX T	1.11	_				પ્ર	RFACE E	SURFACE ELEVATIONE	ä				
														PAGE OF
				4 13 14				FIFLD SC	FIELD SCREENING			<u> </u>	DEPTH	DESCRIPTION
	SAMPLE DEPTH		COUNT	BLOW	REC	LAB SAMPLE INTERVAL	(mda)	ATHA (fppm)			ASTM Soll Classi- fication Codes	FROM	1 00	
	0'0 - 2'0	7	3	ادر	35	Intl	0,0				<b>∑</b>	0.5	2,0	Econ to what Brown string and gravelly sittle
又	2.0 - 5.0	<b>∽</b>	8	١	1	1	1				)	1	1	Chetwethen, Camel pawhah. Will move.
Y	5,0-6,5	1	)	,	,	,	1		,		١	1	3	Chshuihun procompare in second hete of siture
	1													civeth, Will clothin Int ? simple hour
														3.6 5,0 665.
	3,5 - 5,0	ţ	1	1		+35-	3				1	,	,	Could not othern a symple due to rack At
			-											5,6' Bls.
<del></del>			$\perp$	$\perp$										
				<u> </u>										
											\		+	
`	•					Ì		$\setminus \mid$						
		$\parallel$	$\perp$	1									1	
<u> </u>	OPTECH	E C	H		NO.	NOTES: ( . oc) 8H	11	la.shon	no.	Not ,	how Hot Accossable to	4 h	77 33	dall ng. Mired to the slope of the
	4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	410, 3 as 78	Suite 229-4	230 1253	3	7 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		>	; . <del></del> : ,	nkinal	internal of nock	الم الم	z V	WAS encernhant At Sici BLS whore HSA
لـــــ					کاره ع	Met	PEWENZE.	1 Ke	.					

PROJECT NAME: JEFFE 186.1 Bit 23 cks AMS  PROJECT LOCATION: St. Leas Mc  FROJECT NO.: 1315-165  LOGGER: STAP PAPKIR  DRILLER: MAX TIMMA  DRILLER: MAX TIMMA	FFE 186.1 St. Laus 5-105 7-105 77 CAMAR TIMMA	or Ac	2 3 32 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3048	4ws	B	BORING/WELL NO:  RIG: CME  WEATHER: CDM    DATE DRILLED: 12  SURFACE ELEVATION:	LL NO.: ("- ("ME - 45' ("M. PC., ED: 12//2	BORING/WELL NO. (" - CCT C RIG: ("ME - 45 WEATHER: ("Id., Pt., Temp DATE DRILLED: 12/12/94	BORING/WELL NO: (" - OCT 8H  RIG: ("ME - 45  WEATHER: ("id, Pt. 7fm, 30"  DATE DRILLED: 12/12/44  SURFACE ELEVATION:		1 1 1 1	DRILLING METHOD: 1-15A  SAMPLING METHOD: (41-51) + 5027  DEPTH DRILLED: 13.5 6LS  DEPTH TO WATER: No. J. A  TOC ELEVATION: NIA  PAGE OF
SAMPLE DÉFTII		BLOW COUNTS		REC	LÁB SANPLE INTERVAL	PID (tpm)	FIELD SCREENING ATHA (ppin)	REENING		ASTM Soil Classi- Itation Codes	DEVIII FROM	7711	DESCRIPTION  COMPOSITION, STRUCTURE, CONSISTENCY, COLOR,  DEGREE OF MOISTURE, ODOR
0.5 - 2.0	2		T i	100	Int 1	2,3	Qo	A PROPERTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A PARTY AND A P		J.	0.5	2.0	3 -1
5.0 -6.5	2 n	2 2	ا د	32 33	Int 2	6.7	5.0			7 8	0.0	15.3	Chown sandy silt, can thun some, Silt wo little clay silt wo little blown sandy silt. W Sind w 5-27 clay And silt will all silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will silt will sil
11,5 - 13,0	h	ν,	8	Œ	In13	45	4.2			PA C	11.5	13.0	511 And clayery 51th. 51,541/2
13.5	١	1	١	ı	1		)	, ,		Bedrock	J	,	Sobrate by HSA Pakisal.
-													
				1								,	
					,								
OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	C. S. 10, S. 782	H uite 2. 29-42.	30	NOTES:	is silan	hie r	makeinl benod ch	/ /c	chro duit	unes cla	r-neh	At Clik	NOTES: Susuina makinal brimus unea clay-nel At 10.0° BCS. When colosina and plashi. We wake precombined clumy drilling Ne oder cleketed. 70 = 13.5° 13.6

PROJECT NAME: JEFFERSON BARRALTS ANG PROJECT LOCATION: St. Cais MO PROJECT NO.: 1315-165 LOGGER: Earl Parky DRILLING CO.: Hast Environmental DRILLING CO.: Hast Environmental	S MG		<u>ል</u> ልፈና 	8 X X C S	RIG. C.M WEATHER: C.S DATE DRILLED: SURFACE ELEVAT	RIGE CAGE 81-1 WEATHER: CAGE SAMM, STAGE DATE DRILLED: 12/12/94 SURFACE ELEVATION:	C-664 2: -45		Temp: 35.º	, so, , , ,	DRILLING METHOD: (1) S.A. SAMPLING METHOD: (2) Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid - Solid -
SANITLE DEFTH	BLOW	% REC	i AB SAMPLE C INTERVAL	PID (mpq)	FIELD SCI ATHA (upin)	ELD SCREENING THA THA Popul		ASTM Soil Classi- Peation Codes	DEPTH PEPTH FROM	10	RIPTIO RE, COI
6.5-2,0 5	7 2	3	[n+1	1,5	817			ML	6.5	2'2	2-3
5.6.6,5	ટુ	· 6c	Int 2	81	/83.c			MC	5,0	5.5	lyt Lown, Saling And selly sand, their sand med weather
رة، ي <u> </u>	i	1	١	١				Balvock	ı	,	Sectock encourtered of G.S. HS. 1150 sheal.
	1	$\dashv$									
								\			
						Y					
		1									
	T										
OPTECH 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	CH 3, Suite 23/		NOTES: Beduck encernleised at 6.5' Bls. Weatherd Sample. Sandy weathered makenal. Smul and sill. No 124 HSA refusal And SPT counts.	ck en andy w e heal	encerntered worthstard in	ed At I maken SPT	# 6. sunt. 5 T com	6.5' Bls. Wentbod Some south of the control of the control of the country of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the	werth.	1	Beduck 14 for tree in Inhant 2 works encourtered, Brock Cletonmod

NOTES: Bellock encountered of God Bls. Billed into weathered Ladwork For 2.0%.
Then Alkingted a split spora strongle but it would not prockate. SPT retisal. Burn souly sill. UFS, sill, wisoms cloy, slightly Execute south and elegen soil. Using consolictated, 1 Szoon. Dilling though Knichned, weathered Le. Butrack. Exercise by HSA robusal mad 5.27 bolows. COMPOSITION, STRUCTURE, CONSISTENCY, COLOR,
DEGREE OF MOISTURE, ODOR SAMPLING METHOD:  $(Al. S_{pl})$ R.O. 1365 £/,7 Nove NIA DESCRIPTION HSH PAGE DRILLING METIIOD: DEPTH TO WATER: DATE MEASURED: DEPTH DRILLED: TOC ELEVATION: 2.0 6.0 DEPTH WEATHER: Col, Brown, Clein Town 35" FROM , , ML-CL 4.5 ASTM Sull Classi-Reation Codes Betweek NORINGAYELL NO. C-005 8 H M DATE DRILLED: 12/12/94 SURFACE ELEVATION: FIELD SCREENING ATIIA (ppm) Õ 90 PID (ppm) 2"/ .3 ŧ 2117 1111 ١ PROJECT NAME: JE HELSON BALLACTE ANGS REC % ગ 80 ı LAN Environmental PROJECT LOCATION: St., Causs MO 4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253 BLOW ં PROJECT NO.: 1315-105 MAX TINNIN ١ EArl Partic OPTECH 3 ì SAMPLE 0,5-2,0 6.0 - 7.5 DRILLING CO.:_ 4.5 - 6.0' DRILLER: <u>က</u> က LOGGER

Jef Ion: St	FERSE 105		Berral ks	B	) No.6 S	<u> </u>	BORING/WELL NO.;	C WE - 45	0-0c	D-001 BH		1 1	DRILLING METHOD: [454 SAMPLING METHOD: CALIFORMA 5,31,14 5pco a DEPTH DRILLED: 26,8 ' BC3
LOGGER: EACH DRILLING CO.: HACH	$\sim$ 1 $^{\circ}$	Vion	Prkor Ennommenta		!	= a	WEATHER: Colo DATE DRILLED:	Cold, C	Cloudy, 51mh	WEATHER: Cold, Cloudy, Slightly Bise 24 Temp: 42 DATE DRILLED: 12/9/94	Temp:	°2	DEPTH TO WATER: No. こしら DATE MEASURED: 人/A
DRILLER: MAX	Tinnin	ž			ı	35	URFACE EI	SURFACE ELEVATION:				I	TOC ELEVATION: N/A
													. PAGE OF
							FIELD SC	LD SCREENING			DEPTH	ш	DESCRIPTION
SAMPLE DEPTH	# ŏ	SINACO BLOW		% REC	LAB SAMPLE INTERVAL	PID (ppm)	ATIIA (ppm)			ASTM Soil Classi- fication Codes	FROM	TO	COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, ODOR
٥'٥ - ٦'٥	i	1	J	,	1	ı	ı			MĐ	l	_	Giguel rand base material.
7.0 - 6.5	8	3	0-	9	ļ	0,0	ţ			ĢΜ	5,0	و,5	Gravel And SAND (Hillimaterial). Read BASE
6.5-10.0	1	,	,	,		1	1.			ტო	•	ı	Mus ack, gimel, book Knyments (Fill), Hon silt.
5'11 - 0'01	2	~	'n	00	Int 1	0,0	١			MC	10.0	11.5	Biown, s. It and van fine sand, mostly sandy silt. Slightly consigne, slightly moist.
15,0 - 16.5	2	2	7	3	Int 2	0'0	3			MC	15.0	16.5	Brown silt and stad, very fine saidy silt.
20,0 - 21,5	2	7	و	8	1	0'0	ì			MC	20,02	21.5	1.18 Amba 19. 1.14.14.
25.0 - 26.5	m	3	02	တ္	Int 3	0'0	١			Μc	23,0	5.92	Brown silt and clayer silt. plastic, coloson, moist.
26.8	į	,	1	,	1	ı	,			Bodrock	,	1	Bedack confirmed by HSA n Espl.
		1	$\dagger$										
					Ì								
	1	1	1										
OPTE	CH			NOTE	NOTES: GONA		realbar	te .	Surfige	ncl	dewn I i I		BCS, Fill Makeial,
4100 N.W. Loop 410, Suite 230 San Antonio, Texas 78229-4253	10, Su 7822	iite 2 29-42		Soil w.	â	homogeness Bedack Fra	Fray	frayments	Welganiming in Int	~	olishiri Sample	<u>a</u>	And bectrock confirmed with
			$-\parallel$	HSA	TREMSA!	AF lar	2	S. Ampling.	خ				

Kery Re Kery Spen Brown 311 And Fire SAND. SANDY 5:11. Stightly education, slightly moist. Very stight order. Diesun silt ma eley sill. Uny converse, very slyddy Brown silt and cloyey silt. Caleta and Investory Gravel and clark brann soil (Fill makind), Slight abor at 210. 845, (1710) Brown Smily sitt wi little cloy, very slightly plastic, tobosius, wieist. (little Stam), Ale real eder. Gravel and sand fill. Mosty grave! Sown black Staining on grawel Beswammy seft of 8.5'865. did not exceed 9,2 at 21,5' sample was 4,3 at bottom of spoon. Oxdonck was exceentered Not Encourtered gravel contained black staining. Oder, Pip madings COMPOSITION, STRUCTURE, CONSISTENCY, COLOR, DEGREE OF MOISTURE, OLOR Centimus by ò R/3 オズ starte, worst (skam) No oder. DESCRIPTION H5.4 PAGE DRILLING METHOD SAMPLING METIJOD: Bedreik encombrast. DEPTH TO WATER: DATE MEASURED: TOC ELEVATIONS DEPTH DRILLED: <u>رة</u> 1 10,5 51/2 23.0 2 510 DEPTH WEATHER: Cold, Cloudy, broszy Temp. 41" 20,02 FROM 15.0 ź 21.5 o.c ASTM Soll Classi-0-002 BH Bedrock fication Codes 36 3 S ٤ Z **≥** Some 12/9/94 Confirmed by SPT refusal C ME -45 9.0' 865. SURFACE ELEVATION: BORING/WELL NO.: FIELD SCREENING DATE DRILLED: ATIIA (ppm) ſ ı j ı RIG ) e (Med 10,5 6.7 4,3 9.6 Ē 7.5 ì N At 27.8' BLS. NOTES: GLAVE LAB SAMPLE INTERVAL Int 3 Inti ) 1 PROJECT NAME: JEFFERSON BACFACKS AIXS % REC <u>လ</u> 3 8 2 ) ١ DRILLING CO.: HACH ENVIRONMENTAL PROJECT LOCATION: St. Couis MO ίV ١ 7 San Antonio, Texas 78229-4253 j 4100 N.W. Loop 410, Suite 230 BLOW OPTECH ) } ١ ŗ 4 Encl Parker DRILLER: MAX TINNIN PROJECT NO.: 1315-105 7 ) , ļ 7 ~ 20.0 - 21.5 21.5 - 230 15.0 - 16.5 SAMPLE DEPTH 9.0 - 10.5 0.0 - 5,0 5.0-9.0 22.8 LOGGER

THIS PAGE INTENTIONALLY LEFT BLANK

### DAILY FIELD REPORT

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12/05/95	<u>{</u>	Page _ of _
TO:	Lee Perry, ANGRC/CEVR Pro	oject Manager
FROM:	Earl Parker, OpTech Site Mar	_
Site Telephone Num	bers : Jefferson Barracks ANGS - (314	1) 263-8650 MAI Koith Downigh
OpTech Field Team		Site Manager
	Russell Cason	SITE SAFETY MONITOR
		GEOPHYSHAL SURVEY OPERATOR
	DESTRY GREENWAY / MARK HENSON	
Work Completed:_	Arrivel At Station, Conducte	d inbriefing with Station
^	ng with MAJ WAMBLE - Env. Coordinator	
	Station Environmental Coordinator, MSGT	
	out All locations for Soil Gas	
	geophysical Survey grid.	
2000	Leaburging 2010th Aus.	
- Achieva	ed All DAY 1 objectives -	
Deviations from the	e Work Plan: NoNE	
		444
Site Visitors:		
None		
10113		

## DAILY FIELD REPORT

### Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 06	94						Page _	of
то :	Lee P	erry, AN	GRC/C	EVR :	Projec	t Mana	ger	
FROM:	Earl ]	Parker, C	pTech	Site M	<b>I</b> anage	er		
Site Telephone	Numbers : J	efferson Ba	rracks Al	NGS - (	314) 26	3-8650, I	MAJ Keitl	ı Parrish.
OpTech Field To		Earl E. Par	ker II			Site Man	ager	
		Ruscell (	ASON		_	Sile Sn.	City Monil	bor
		Matt Ale-	randor			Geophysic	al Survey	Operator
		Dostry Green	AWAY / MAG	- k Hensu	<u>n_</u>	Field To	chnicians	
Work Complet								
Assessment of	data i	n dicates	no sub	sui Au	obstu	etions r	et the	AOCs,
MAH Alexander	will Anal	re data	tunight	And	Provide	report	tomorrow.	Completed
31 of 41								
Attached n	inp. To	morrow, u	ue will	finis	n Soi	GAS SU	rvey And	drill
first piezo								
No C	roblems en	countered	, And	on s	chedu	le —		
Deviations fro	m the Worl	c Plan:	NONE					
		. :						
Site Visitors:								

### DAILY FIELD REPORT

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 07/	94	Page   of
TO:	Lee Perry, ANGRC/CEVR	Project Manager
FROM:	Earl Parker, OpTech Site M	3
Sita Talanhana N	in house I Course B. I ANGG A	
OpTech Field Tea	umbers : Jefferson Barracks ANGS - (	
Option Field Tea	am: Earl E. Parker II  Russ Cason	Site Manager
		Sile Sofety Monitor
	Destry Greenway  Mark Herson	
		Field GC operator
Work Completed	d: Completed Soil VApor Sure, At	AOC-D. No BTEX delected.
Trace of TPH	At only one location Drilled	At Z-002PZ to bedrock ronfirms
1	and drill cutings. No water ev	
	a me confirmation) And encountered	
	wock encountered At Z-002 PZ A	
	bedrack encountered At 20.0'	
	abilized). Will call in morning t	· · · · · · · · · · · · · · · · · · ·
	the Work Plan: None	
		•
-		
	·	
Site Visitors:		
NONE		
N ONE		

### DAILY FIELD REPORT

### Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 1 08 194		Page <u>/</u> of <u>/</u>
TO: Le	e Perry, ANGRC/CEVR P	roject Manager
FROM: Ea	rl Parker, OpTech Site Ma	anager
Site Telephone Number	s : Jefferson Barracks ANGS - (3	14) 263-8650, MAJ Keith Parrish.
	Earl E. Parker II	Site Manager
•	Russ Cason	Site Safety Officer
	Destry Greenway	1
•• • •	Mark Horson	Field GC Operator
Work Completed:	infirmed no water was present	at P2-2 location. After 1
night it was still d	ry. Water level from PZ-1 in	dicated Approx 10 feet of water
over the bedrock. Af	for discussion w/ ANGRC, ma	wed PZ-3 location to east
of Bldg 75. Drille	d and encountered bedrock as	15' BLS. No water encountered.
Since groundwater wa	is found in only 1 PZ lo	cation, no piezometers were
installed. Grouted A	III 3 piezometer locations.	repained to begin soil borings
	in soil borings from AOC-	
Deviations from the V	Work Plan: Work plan mod	dified due to lack of A
continuous Aquifer A	of the Station. Since groun	dwater was not encountered about
the bedrick At	2 PZ locations and with 1	ANGRE concurrence, no piezometers
were installed. A	Il piezometer locations were	grouted.
Site Visitors:		
None		

### DAILY FIELD REPORT

### Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 09 / 94	Page of
TO: Lee Perry, ANGRC/CEVR Project Manag	er
FROM: Earl Parker, OpTech Site Manager	
Site Telephone Numbers: Jefferson Barracks ANGS - (314) 263-8650, M  OpTech Field Team: Earl E. Parker II Site Management	
	5
	Alety Monitor
	oncian Operator
Work Completed: Completed boring Activities At Acc-O. O	rilled And collected
AOC-D, D-001BH and D-007BH. At D-001BH. Int 1 (10	).0-11.5'BLS); In+ 2
(15.0-16.5' BLS); Int 3 (25.0.26.5' BLS); TD = 26.8'BLS. No PID MAdings	. D-002BH,
Int 1 (9.0-10.5'BLS); Int 2 (15.0-16.5'BLS); Int 3 (21.5-230'BLS) MAX A	
Obtained C-001 BH Int 1 (0.5-2.0'BLS) No PID MAding. Encounted of	between (rocks) of
5.0'BLS, Could not continue. will continue here at AOC-C on M.	lenday. Obtained
three surface sediment samples At AOC-C.	•
Deviations from the Work Plan: None - Two drilling locations At	
on Thursday	
Site Visitors:	
NONE	

### OPERATIONAL TECHNOLOGIES CORPORATION

### MODIFICATION TO WORK PLAN FOR FIELD WORK

#### at the

### Jefferson Barracks Air National Guard Station DAHA90-93-D-0005/0011

Originator/Date: Earl E. Parker II, Site Manager,	(Date): 12/9/94
Work Plan Topic: Installation of Piezon	neters At the Jeflosson Barracks
ANGS.	
Suggested Modification for Field Work: _ Reco	motors will not be installed at the
Station due to the lack of a continue	us water table above the bedrock.
3 Prezometers were installed and on	ly one (PZ-1) contained a
water table. Following consultation	_
the installation of piezomilers was	
Charled.	
Reason for Modification: No continuous	Aguifor exists Above the
Bedrock surface. Water was not en	
in two of three wells.	
•	
ANGRC/CEVR Project Manager Approval :	
I	ee Perry, ANGRC Project Manager

### OPERATIONAL TECHNOLOGIES CORPORATION

### MODIFICATION TO WORK PLAN FOR FIELD WORK

at the

### Jefferson Barracks Air National Guard Station DAHA90-93-D-0005/0011

Originator/Date: Earl E. Parker II, Site Manag	ger, (Date): 12/9/94
Work Plan Topic: Number of Born	A AOC-B and AOC-O.
Suggested Modification for Field Work:	·
AOC-D should be incorred from 1	
detected during to soil gas survey.	
not show widespriad BTEX or TPH	
of the five horings proposed for t	
Therefore two borness will be insta	11.d At AOC-O and 4 boings wil
he installed at LOC-B as shown or	
progress report.	
Reason for Modification: TPH defected therefored by the one borns	At AOC-D could not be effectively
chancenzed by the one borns	planned for that location
,	,
ANGRC/CEVR Project Manager Approval:	
	Lee Perry ANGRC Project Manager

### DAILY FIELD REPORT

### Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 12 / 94	<u> </u>		Page _ l of _ l
TO:	Lee Perry, ANGRC/C	EVR Project Manag	er
FROM:	Earl Parker, OpTech	Site Manager	
Sita Talanhana Numi	bers : Jefferson Barracks AN	NGS (314) 263 8650 M	A I Kaith Darrich
OpTech Field Team		Site Mana	
opicentica ream	^ •		SARLY Monitor
	Destry Grunway		
	Mark Henson		Operator
Work Completed:	Drilled And collected	•	•
follows: C-001	BH [[n+1]; C-002BH,	C-0038H, C-004BH,	And C-005 BH
[Int   q Int 2]	]. No sulace water sa	mpler collected due	to lack of
water in dite			
-			
Deviations from the	e Work Plan: Due to	very shallow depth	to Bodrock At
this AOC-C	only one interval sai	mple was collected	A+ C-001 BH
And no Interv	Al 3 samples were	collected At C-00	2 BH to C.005 BH.
No surface was	ber is prosont in the	ditch There fore	no surface water
samples were	collected.		
Site Visitors:			
LEE PERRY - ANG	RC/CEVR	Dan Oakley - HAZ	WRAP

### OPERATIONAL TECHNOLOGIES CORPORATION

### DEVIATION FROM WORK PLAN DURING FIELD WORK

#### at the

### Jefferson Barracks Air National Guard Station DAHA90-93-D-0005/0011

Originator/Date: Earl E. Parker II, Site Manager, (Date): 12/12/94
Work Plan Topic: Soil samples At ACC.
Deviation in Field Work: Three soil samples were not collected Com
All boring location as specified in the work plan. Actual sampling internals collected were as follows:
C-001BH [Int 1] only (Bodrock at 3.5'BLS)
C-002BH [Int 1] And [Int 2) And [Int 3] C-003 BH [Int 1] And [Int 2] (Beclock at 7.5'Bls)
C-004 BH [Int 1] And [Int 2] (Bedruck At 6,5'BLS)
C-0056H [Int 1] And [Int 2] (Bedrock At G.O'BLS)
Reason for Deviation: The shallow dopth to bedrock at the AOC-C
locations did not Allow for enough depth to be drilled for
An intermediate sample. Interval I samples were collected at the land
Svi hace and interval 2 sampler were collected above the bedrock
Sur lace,
ANGRC/CEVR Project Manager Approval :  Lee Perry, ANGRC Project Manager

### OPERATIONAL TECHNOLOGIES CORPORATION

### DEVIATION FROM WORK PLAN DURING FIELD WORK

#### at the

### Jefferson Barracks Air National Guard Station DAHA90-93-D-0005/0011

Originator/Date: Earl E. Parker II, Site Manag	er, (	Date): 12	112/94	· · · · · · · · · · · · · · · · · · ·
Work Plan Topic: Decontamination Wal	er used	during the	Je florson	Barracks
ANGS PA/SI.				
Deviation in Field Work: The work play	· calls	for the u	ce of ASTA	n Tupe II
reagent water to be used during a	lecontam	nation of	samplin	y pavipment
The water being used meets	ASTM re	gunoments	for A T	ype I
reagent water.				
	•			
				· · ·
				•
Reason for Deviation : ACTM Tum 7	uala h	ic hoen we	nd 40 t/o	DAST
Reason for Deviation: ASTM Type I work	alma 1	will reflect	the con	nect
type it water being used.	p (17113 C	0111 1 (1.120)	/~ (0)	, , ,
19 pt 1+ WAR, Dring Usea.				
				·
				400 Mar
ANGRC/CEVR Project Manager Approval :				
		ry, ANGRC	Project Man	ager

### DAILY FIELD REPORT

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 13 / 94		Page <u> </u> of <u> </u>
TO:	ee Perry, ANGRC/CE	VR Project Manager
FROM: E	arl Parker, OpTech S	ite Manager
Site Telephone Number	rs : Jefferson Barracks AN	GS - (314) 263-8650, MAJ Keith Parrish
0 5 1 5 11 5	Earl E. Parker II	Site Manager
·	Russ Cason	Health & Safety Monitor
	Desty Grunway	Field Technician
	Mark Henson	Field 60 Operator
Work Completed:	orilled And collect	ed soil camples from
AOC-B. Collec	led All three I	nternal samples from B-001BH
B-002 BH, And	1 B-003 BH. HAN	e one more boring At this
	will begin on it	
201	our active Ove 11	10411011000
-		
•		
Deviations from the V	Vork Plan: None	
Site Visitors:	****	
LEE PERRY - A	NERC/CEUR	Dan Oakely - HAZWRAP

### DAILY FIELD REPORT

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 14 /	194	Page of
TO:	Lee Perry, ANGRC/CEVR P	roject Manager
FROM:	Earl Parker, OpTech Site Ma	anager
Site Telephone I	Numbers : Jefferson Barracks ANGS - (3:	14) 263-8650, MAJ Keith Parrish.
OpTech Field Te		Site Manager
•		Health & SARLy Monito-
		Field Technician
		Field GC Operator
Work Complete	ed: Drilled And collected	Soil Sampler from AOC-B
	Collected All three soil samp	
A-001BH, A	-002 BH, And A-003 BH. Conc	ludes All Soil SAMpling At
	BARRACKS No precipitation	
	o water samples (suchau)	
	d at this PAISI. All th	,
were colle	ched.	· .
	n the Work Plan: No Sui Ale w	ister Samples will be
collected h	on ACC-C since there was	never And waker to
Collect.		
Site Visitors:		
LEE PER	RY - AWGRE / CEUR	

### OPERATIONAL TECHNOLOGIES CORPORATION

#### DEVIATION FROM WORK PLAN DURING FIELD WORK

#### at the

### Jefferson Barracks Air National Guard Station DAHA90-93-D-0005/0011

Originator/Date: Earl E. Parker II, Site Manager, (Date): 12/14/94
Work Plan Topic: Surface Water Samples At AOC-C
Deviation in Field Work: No water samples (surface) will be collected from AUC-C.
•
Reason for Deviation: No procipitation occured during the duration of the PAISI field investigation and there was never any standing or flowing water in the ditch to be sampled.
ANGRC/CEVR Project Manager Approval :
Lee Perry, ANGRC Project Manager

# **OpTech**

# DAILY FIELD REPORT

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI DAHA90-93-D-0005/0011

Date 12 / 15 / 9	<u>4</u>	Page of
TO:	Lee Perry, ANGRC/CEVR	Project Manager
FROM:	Earl Parker, OpTech Site	Manager
Site Telephone Nun	nbers : Jefferson Barracks ANGS -	(314) 263-8650, MAJ Keith Parrish.
OpTech Field Team		Site Manager
	Russ Cason	H&S Moniter
	Desty Greenway	Field Technician Field 60 operator
	Mark Henson	Field 60 Operator
Work Completed:	Demobilization And	Clean-up Activities At
All AOCs.	Moved All Investigation	derives conste to contral
		Co were clean and transformed
As much As	practical to pro-investige	glive conditions. Conducted
outbriefing u	with Station Resonnel.	Departed the sike And
begin return	trip to SAN Antonio	
Deviations from t	he Work Plan: NoN€	
Site Visitors:		
LEE PERRY -	- ANCRI / CEUR	

# INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Non-Potable Water / Soil Cuttings)	Date Collected	% Full
#15	Soil - B-001BH	12-13-94	100%
# 16	Soil - B-002BH	12-13-94	
#17	Soil - B-00ZBH	12-13-94	
# 18	Soil - 13-003 BH	12-13-94	
#19	Soil - 13-003BH	12-13-94	
#20	Soil - 13-004 BH	12-14-94	100%
#21	Soil - 13-004BH	12-14-94	60%
#22	PPE/Refuse	12-6-94	100%
#23	Soil - A-001BH	12-14-94	100%
#24	Soil - A-OOIBH AND A-OOZBH	12-14-94	100%
# 25	Soil - A-0021341	12-14-94	80%
#26	Decon WATER	12-12-94	100%
#27	Decon WATER	12-12-94	100%
#28	Decon WATER	12-12-94	100%

Location of Drums: Concrete PAD ADJACENT TO BIDG # 41

Date Moved to Final Location: 12-15-94 Inspected by: R. Cason

# INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Non-Potable Water / Soil Cuttings)	Date Collected	% Full
<u># 29</u>	Decon WATER	12-7-94	100 %
# 30	Decon WATER	12-12-94	100 %
#3(	Decon Water	12-7-94	100 %
#32	Decon Water	12-9-94	100%
# 33	Decon Water	12-8-94	100 %
#34	Decon Water	12-9-94	100%
#35	Decon Water	12-8-94	100%
#36	Decon WATER	12-14-94	100 %
#37	pecon water	12-14-94	100%
#38	Decon WATER	12-13-94	100%
#39	Decon WATER	12-13-94	100 %
#40	Decon WATER	12-13-94	100%
#41	Decon WATER	12-14-94	
#42	Soil - A-003 BH	12-14-94	

Location of Drums: Concrete STORAGE PAD ADJACENT to BIDG#41

Date Moved to Final Location: 12.15-94 Inspected by: O. Cassun

# INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Non-Potable Water / Soil Cuttings)	Date Collected	% Full
#43	Decon Water	12-15-94	100%
#44	Decon WATER	12-15-94	100%
# 45	Decon WATER	12-15-94	100%
<b>#</b> 46	Decon WATER & Shoppe From Decon STA.	12-15-94	100%
		,	

Location of Drums: Concare	SAD ADJA	ent to BIDG#41
Date Moved to Final Location:	12-15-94	Inspected by: R. Cason

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI FIELD WORK DAHA90-93-D-0005/0011 OpTech # 1315-105

# Calibration Log Photoionization Detector

	Equipment	Calibration	Cal Gas	
Date/Time	Serial Number	Standard	Lot Number	Calibrated by:
	EI PID	100 ppm		
12-6-94/0735	#48962-282	150BUTypne	4112503-48	R.c,
12.6.	EI PID	100 mgg		<b>~</b> -
12-7-94/0738	# 48962-282	jsobutylene	4112503-48	R.C.
	LEL/Oz	45%	,	
12-7-94/0747	# 1267	Pentane	NIA	FATORY
	EI PID	juo prm		
12-8-44/0740	#48962-282	iso Burylene	412503-48	R.C.
12-8-94/0750	LEZ/02 # 1267	25% Hexane	39506	R.C.
	ET PID	100 PPM		
12-9-94/0705	448962-282	isur-ylene	38849	R.C.
12-4-94/0710	LEL/02 #1267	250% Hexane	39506	12.c.
12-9-94/1445	ET PTU	100 prom	38849	R.C.
	EI PID	100 ppm	38849	R.C.
12-12-94/0645	#48962-282 LEL/OZ	15013Utylene 25% Hexane		R.C.
12-12-94/0652	#1267		39506	~,C,
12-12-94/1355	FI PID # 48962-242	100 ppm Isobotylene	#267952-011393	R.C.
	GI PIO	100 PPm		
12-12-94/1715	# 48962-282	Iso Butylene	# 267952-011393	R.C.
/	EI PIO	100 ppm		17.
12-13-94/0700	# 48962-282	Isubutylese	# 267952-01/293	IZ.c.
	LEL/O2	25%	# 76	120
12-13-94/0710	1267	Herane	# 39506	R.C.
	EI PID	100 ppm	井2/79-2-0424-	P1
12-14-94/0655	# 48962-282	Iso Butlyene	#267952-011393	R.C

# Jefferson Barracks AIR NATIONAL GUARD STATION PA/SI FIELD WORK DAHA90-93-D-0005/0011 OpTech # 1315-105

# Calibration Log Photoionization Detector

Date/Time	Equipment Serial Number	Calibration Standard	Cal Gas Lot Number	Calibrated by:
12-14-94/0700	LEV/02 #1267	25% Hexane	39506	R.C.
		-		
				***

## INVESTIGATION DERIVED WASTE LOG

Drum	Contents (Non-Potable Water / Soil Cuttings)	Date Collected	% Full
#1	Soil-Z-002PZ	12-7-94	100
#2	Soil - Z-002PZ	12-7-94	60
#3	Soil - Z-001PZ	12-7-94	50
#4	Soil - Z-001PZ	12-7-94	100
#5	Soil - Z-003PZ	jz-8-94	100
#6	Soil - D-00/BH	12-9-94	100
<b>#</b> フ	Soil - D-00/BH	12-9-94	50
#8	Soil - D-002BH	12-9-94	90
#9	Soil - C-00)BH	12-9-94	50
#10	Soil - C-001BH	12-12-94	100
#11	Soil C-002 B4	12-12-94	100
#12	Soil C-003 BH	12-12-94	80
#13	Soil-C-00413H AND C-00513H	12-12-94	100
#14	Soil - B-00113H	12-13-94	100

Location of Drums: Consulte STERRALE PAD ADJACENT TO BIDG#41

Date Moved to Final Location: 12-15-94 Inspected by: R. Cason

# SAFETY PLAN COMPLIANCE AGREEMENT FOR JEFFERSON BARRACKS PAIST Decemise 1994

I have received a copy of the Health and Safety Plan for the Project. I have reviewed the plan, understand it, and agree to comply with all of its provisions. I understand that I could be prohibited from working on the project for violating any of the health and safety requirements specified in the plan.

-		
Russell Cason Name	Signature Signature	/2-5-94 Date
MARK D. HENSON  Name	Mark D. Human	12-5-94
Most Alexander	Signature  Mat Marken	Date 12-5-94
Name  Destry Greenway	Signature  Dest Greeny	Date
Destry Greenway Name  EARL E PARKE	Signature	12-5-94 Date
Name Name	Signature Signature	12-5-94 Date
<u></u> <u> </u>	Don Winston Signature	12-6-94 Date
Scor SCHROEDER Name	Signature Surn	<u>12 - 6 - 99</u> Date
MAX TINNIN Name	May June	<u>/2~7~94</u> Date
Mike Um FLeet Name	mike Unylect	12-7-94
rame	Signature	Date

# SAFETY PLAN COMPLIANCE AGREEMENT

I have received a copy of the Health and Safety Plan for the Project. I have reviewed the plan,

understand it, and agree to comprohibited from working on the paper specified in the plan.	ply with all of its provisions.	I understand that I could be health and safety requirements
Name Les E. Bray	Signature Signature	12/12/94 Date
Diwite 13 Othles	Signature Signature	12/12/54 Date
Name	Signature	Date

# LYMAN

SURVEYORS and ENGINEERS

12015 Mendoza Ave.

ST. LOUIS

(314) 355-4716

MO. 63138

# JEFFERSON BARRACKS AIR NATIONAL GUARD STATION SAINT LOUIS, MISSOURI REPORT OF HORIZONTAL COORDINATES AND ALTITUDES JANUARY 1995

	COOL	RDINATES	<u>ALTITUDES</u>
AOC "A"	BH2.	N 114 - E 109 N 100 - E 116 N 114 - E 129	457.0 456.8 456.5
AOC "B"	BH2. BH3.	N 192 - E 204 N 176 - E 190 N 181 - E 171 N 169 - E 157	453.7 454.6 455.2 455.6
AOC "C"	BH2. BH3. BH4.	N 116 - E 329 N 208 - E 395 N 219 - E 462 N 224 - E 567 N 224 - E 606	470.2 470.3 470.4 471.1 470.9
AOC "D"		N 391 - E 394 N 404 - E 391	487.3 488.1
PIEZOMETER	PZ2.	(REFER TO PLAT) (REFER TO PLAT) (ELIMINATED AS PER EAF	471.67 447.67 RL PARKER, OPTECH)
SEDIMENT SAMPLE		N 116 - E 325 N 219 - E 462 N 224 - E 606	N/A N/A N/A RANDA





SURVEYORS and ENGINEERS

12015 Mendoza Ave.

ST. LOUIS

(314) 355-4716

MO. 63138

# JEFFERSON BARRACKS AIR NATIONAL GUARD STATION SAINT LOUIS, MISSOURI REPORT OF HORIZONTAL COORDINATES OF SOIL GAS SURVEY POINTS JANUARY 1995

		HORIZO	ONTAL COORDINATES
AOC "A"	SOIL GAS SURVEY POINT	#1 #2 #3 #4 #5 #6	N 127 - E 103 N 127 - E 118 N 127 - E 131 N 111 - E 103 N 111 - E 118 N 112 - E 131
		#7 #8 #9	N 97 - E 103 N 97 - E 118 N 97 - E 131
AOC "B"	SOIL GAS SURVEY POINT	#10 #11 #12 #13 #14 #15 #16 #17 #18	N 196 - E 173 N 196 - E 204 N 185 - E 173 N 175 - E 190 N 185 - E 204 N 173 - E 150 N 177 - E 173 N 177 - E 204 N 165 - E 151 N 165 - E 173
AOC "C"	SOIL GAS SURVEY POINT	#20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31	N 165 - E 204  N 116 - E 325 N 205 - E 360 N 208 - E 395 N 213 - E 424 N 219 - E 462 N 220 - E 495 N 222 - E 532 N 224 - E 567 N 224 - E 606 N 228 - E 639 N 232 - E 677
AOC "D"	SOIL GAS SURVEY POINT	#32 #33 #34 #35 #36 #37 #38 #40 #41	N 406 - E 379 N 405 - E 391 N 404 - E 399 N 390 - E 379 N 391 - E 390 N 390 - E 399 N 374 - E 379 N 374 - E 390 N 374 - E 399 N 362 - E 390





THIS PAGE INTENTIONALLY LEFT BLANK

# **APPENDIX F**

HAZARD RANKING SYSTEM (HRS) "DATA REQUIREMENTS FOR FEDERAL FACILITY DOCKET SITES" PACKAGE

THIS PAGE INTENTIONALLY LEFT BLANK

# PA/SI DATA REQUIREMENTS FOR FEDERAL FACILITY DOCKET SITES Jefferson Barracks ANGS, St. Louis, Missouri

1. Supply copies of all sampling data, on-site and off-site, including location map, detection limits (see definitions below), raw data sheets, QA/QC documents, date(s) sampled, analytical method(s) used, well or boring logs, and sampling technique(s).

Sampling data, detection limits and sampling techniques can be found in Section 5.0. The location map can be found in Section 2.0. Raw data sheets, QA/QC documents, dates sampled, and analytical methods can be found in Appendix G. Well or boring logs can be found in Appendix C.

2. Locate and identify on a map all known or suspected sources (see definition below). Supply all information about source(s) such as: dates of operation, use, or spillage; amounts of material deposited, stored, or spilled; dimensions of source(s); known or suspected hazardous substances (see definition below), etc.

Dates of operation, use, or amounts of material deposited, stored, or spilled; dimensions of source(s); suspected hazardous substances can be found in Section 4.0 of the PA/SI Report.

3. Provide a description of all aquifers beneath the site, including description of overlying materials, depth first encountered, thickness, and composition.

The above information can be found in Section 3.0 of the PA/SI Report.

4. For each source, choose one description from Table 1 that describes the groundwater contaminant. Provide complete documentation (i.e., engineering diagrams, photographs [originals]) as to why the source meets that description and not any other in the Table.

The best description for this site is:

All sources: no evidence of hazardous substance migration from source area and a liner. Additionally, none of the following present: (1) maintained engineered cover, (2) functioning and maintained run-on control system and runoff management system, or

- (3) functioning leachate collection and removal system immediately above liner.
- 5. Provide the location of all drinking water wells in all aquifers beneath the site within a 4-mile radius from the site (property boundary) by HRS distance ring and locate the wells within a one-mile radius on a 7.5 minute topographic map. Provide information on depth of well(s), screening interval(s), depth of aquifer(s) encountered, population served for multiple wells (i.e., municipal system), provide the number of wells, location of all wells (regardless of 4-mile limit), average annual pumpage of each well (regardless of 4-mile limit), and total population served by the system. Include information on all standby wells.

There are no active public wells within a 4-mile radius of the site. (Source: St. Louis Department of Natural Resources)

6. Provide information and location (on 7.5 minute topographic map) of wells within 4 miles that are used to irrigate five or more acres of commercial food or forage crops, or watering of commercial livestock, or ingredient in commercial food preparation, or supply for aquaculture, or supply for a major or designated water recreation area, excluding drinking water use.

There are no active wells within a 4-mile radius used to irrigate five or more acres of commercial food or forage crops, or watering of commercial livestock, or ingredient in commercial food preparation, or supply for aquaculture, or supply for a major or designated water recreation area. (Source: St. Louis Department of Natural Resources)

7. Provide the average number of persons per residence for county (or counties) that site is located in per the U. S. Census Bureau.

The average number of persons per residence for the St. Louis County is 2.53 per household. (Source: University of Missouri – Urban Information Center)

8. Identify and locate all surface water bodies within two miles of the site marking off the drainage routes (shown on 7.5 minute topographic map) from each source to applicable surface water bodies. Provide the average annual cubic feet per second flow for each surface water body within 15 miles downriver or radius from the point of probable entry into surface water. For lakes, provide information on inflow and outflow.

Figure G shows the surface bodies of water within a 2-mile radius and the drainage route from the station. Surface water located within two miles of the site is the Mississippi River, Hill Lake, Mattese Creek, Palmer Creek, Gravois Creek and River des Peres Drainage. The Meramec River enters the Mississippi within 15 miles downriver from Jefferson Barracks. The drainage directly into the Mississippi from the west is chiefly through the various branches of the River des Peres. The USGS St. Louis field office reported the annual mean flow velocity for the Mississippi River at St. Louis is 252,000 cubic feet per second. Information on the inflow and outflow of Hill Lake was not available.

9. For each source, choose one description from Table 2 that describes the surface water containment. Provide complete documentation (i.e., engineering diagrams, photographs [originals]) as to why the source meets that description and not any other in the Table.

The best description from Table 2 for this site is: no evidence of hazardous substance migration from source area and no maintained engineered cover or run-on control or runoff management system.

10. Provide the number of acres in each drainage basin.

The number of acres in the Mississippi River drainage basin is: 446,080,000 acres. (Source: USGS – Water Resources Division)

11. From Table 3, choose the predominant soil group (surface soil) which comprises the largest total area within each drainage area.

The best soil description for this site is: Moderately fine-textured soils with low infiltration rates (for example: silty loams).

12. Provide the two-year, 24-hour rainfall.

The two year, 24-hour rainfall is 3.5 inches. (Source: PA/SI Report)

13. From Table 4, choose the floodplain category of each source (supply Federal Emergency Management Agency floodplain map) and determine if each source meets the criteria from Table 5 (engineer's certification).



This site is not within the 100 year floodplain (Source: City of St. Louis – Planning & Zoning Department).

14. Provide the location of all drinking water intakes within 15 downstream miles (rivers) or 15-mile radius (lakes, bays, etc.). Provide information on population served. For multiple intakes (i.e., municipal system), provide information on the number of intakes, location of all intakes (regardless of 15-mile limit), and total population served by system. Include information on all standby intakes.

There are two drinking water intakes within a 15-mile radius of the site. Both originate from the Meramac River, and serve an estimated 100,000 people of the south St. Louis County. (Source: St. Louis County Water Company)

15. Provide information and location of intakes within 15 miles downriver (radius in lake or bay) that are used to irrigate five or more acres of commercial food or forage crops, or watering of commercial livestock, or ingredient in commercial food preparation, or supply for aquaculture, or supply for a major or designated water recreation area, excluding drinking water use.

This information was not available for public disclosure. (Source: St. Louis County Water Company)

16. Provide any surface water body 15 miles downriver (radius in lakes or bay) used for drinking water.

The Mississippi River is a surface water body used for drinking purposes. (Source: St. Louis County Water Company)

17. Provide the average human food chain production (pounds per year) for each surface water body 15 miles downriver or 15-mile radius in lake.

This information has not yet been made available.

18. Within a 4-mile radius from the site and 15 miles downriver, or radius in lake, identify all sensitive environments that exist. Provide original documentation (USF&W, Natural Heritage Database, State agencies, NOAA, etc.). Note that there could be multiple sensitive environments within a sensitive environment.

A list of Federally listed threatened, endangered and candidate species can be found in Section 3.6. (Source: U. S. Department of the Interior, Fish & Wildlife Service)

19. What is the linear frontage of all wetlands 15 miles downriver or 15-mile radius in lake?

There are approximately 32 miles of linear frontage 15 miles downriver from the site. (Source: U. S. Department of the Interior Fish and Wildlife Wetlands Map)

20. Provide the location and number of persons residing, working, attending school, or day care within 200 feet. This includes both the Air and Army Guard.

The population of Jefferson Barracks ANGS during the week is about 150 people. On one weekend each month, the Unit Training Assembly convenes with approximately 500-700 personnel.

21. Identify all terrestrial sensitive environments that exist on-site. Provide original documentation (USF&W, Natural Heritage Database, State agencies, NOAA, etc.) and locate each on a 7.5 minute topographic map. Note that there could be multiple sensitive environments within a sensitive environment.

There are no sensitive environments existing on site. (Source: U. S. Department of the Interior Fish & Wildlife Service)

22. For each source, choose one description from Table 8 that describes the accessibility to a human population. Provide complete documentation (i.e., engineering diagrams, photographs [originals]) as to why the source meets that description and not any other in the Table.

The best description from Table 8 for site is:

Surrounded by maintained fence and natural barriers. Physically inaccessible to public, with no evidence of public recreation use.

- 23. Provide the total number of people in following distance rings from source(s)?
  - 0 1/4 mile = 178 persons
  - 1/4 1/2 mile = 871 persons

- 1/2 1 mile = 4,996 persons
- 1 2 miles = 22,918 persons
- 2 3 miles = 33,870 persons
- 3 4 miles = 49,275 persons

Use 1990 Census data and/or actual house counts. Document how calculated.

Source: 1990 Census (block group level population aggregates)
Prepared by: GAWKIEST Information Technologies, Inc.

24. For each source, choose one description from Table 9 that describes the gaseous containment. Provide complete documentation (i.e., engineering diagrams, photographs [originals]), as to why the source meets that description and not any other in the Table. From Table 10, choose the appropriate description of each source type. For each source, choose one description from Table 11 that describes the particulate containment. Provide complete documentation (i.e., engineering diagrams, photographs [originals]) as to why the source meets that description and not any other in the Table.

Table 9: Does not apply.

25. Provide the location and area (in acres) of all wetlands within 4 miles of the site.

There are approximately 1088 acres of wetlands within a 4-mile radius from the site. (Source: U. S. Department of the Interior Fish and Wildlife Wetlands Map)

26. Contact EPA Regional Office immediately if any radionuclides are present or suspected at the site and supply all radiological information known to date.

According to information supplied by TSGT Art Schuermann, there are no radionuclides suspected at the site or radiological dumping known to date at the site.

- 27. For all of the above information, use primary data source and supply two copies or specify where copies may be obtained.
- 28. Provide any removals or remedial actions taken place at site.

Previous removals or remedial activities can be found in Subsection 1.2 of the PA/SI Report.

29. If information relevant to a question already has been provided to the EPA, your answer may precisely cite the previous submittal by title, date, page, and paragraph number rather than resubmitting the information.

### **DEFINITIONS**

**Detection Limit (DL)** 

Lowest amount that can be distinguished from the normal random "noise" of an analytical instrument or method. For this submission, the detection limit used is the method detection limit (MDL), or, for real-time instruments, the detection limit of the instrument as used in the field.

**Hazardous Substance** 

CERCLA hazardous substances, pollutants, and contaminants as defined in CERCLA Sections 101(14) and 101(33).

Method Detection Limit (MDL) Lowest concentration of an analyte that a method can detect reliably in either a sample or blank.

Sample Quantitation Limit (SQL) Quantity of a substance that can reasonably be quantified given the methods of analysis and sample characteristics that may affect quantification (for example, dilution, concentration).

Site: Area(s) where a hazardous substance has been deposited, stored, disposed, or placed, or has otherwise come to be located. Such areas may include multiple sources and may include areas between sources.

Source: Any area where a hazardous substance has been deposited, stored, disposed, or placed, plus those soils that have become contaminated from migration of a hazardous substance. Sources do not include those volumes of air, groundwater, surface water, or surface water sediments that have become contaminated by migration, except: in the case of either a groundwater plume with no identified source, or contaminated surface water sediments with no identified source, the plume may be considered a source.

THIS PAGE INTENTIONALLY LEFT BLANK

#### Table 1

All Sources (Except Surface Impoundments, Land Treatment, Containers, and Tanks)

Evidence of hazardous substance migration from source area (i.e., source area includes source and any associated containment structures).

No liner.

No evidence of hazardous substance migration from source area, a liner, and:

- (a) None of the following present: (1) maintained engineered cover, (2) functioning and maintained run-on control system and runoff management system, or (3) functioning leachate collection and removal system immediately above liner.
- (b) Any one of the three items in (a) present.
- (c) Any two of the items in (a) present.
- (d) All three items in (a) present plus a functioning groundwater monitoring system.
- (e) All items in (d) present plus no bulk or non-containerized liquids nor materials containing free liquids deposited in source area.

No evidence of hazardous substance migration from source area, double liner with functioning leachate collection and removal system above and between liners, functioning groundwater monitoring system, and:

- (f) Only one of the following deficiencies present in containment: (1) bulk or noncontainerized liquids or materials containing free liquids deposited in source area, or (2) no or nonfunctioning or nonmaintained run-on control system and runoff management system, or (3) no or nonmaintained engineered cover.
- (g) None of the deficiencies in (f) present.

Source area inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate is generated, liquid or materials containing free liquids not deposited in source area, and functioning and maintained run-on control present.

#### Surface Impoundment

Evidence of hazardous substance migration from surface impoundment.

No liner.

Free liquids present with either no diking, unsound diking, or diking that is not regularly inspected and maintained. No evidence of hazardous substance migration from surface impoundment, free liquids present, sound diking that is regularly inspected and maintained, adequate freeboard, <u>and:</u>

- (a) Liner.
- (b) Liner with functioning leachate collection and removal system below liner, and functioning groundwater monitoring system.
- (c) Double liner with functioning leachate collection and removal system between liners, and functioning groundwater monitoring system.

No evidence of hazardous substance migration from surface impoundment and all free liquids eliminated at closure (either by removal of liquids or solidification of remaining wastes and waste residues).

#### Land Treatment

Evidence of hazardous substance migration from land treatment zone.

No functioning, maintained, run-on control and runoff management system.

No evidence of hazardous substance migration from land treatment zone and:

- (a) Functioning and maintained run-on control and runoff management system.
- (b) Functioning and maintained run-on control and runoff management system, and vegetative cover established over entire land treatment area.
- (c) Land treatment area maintained in compliance with 40 CFR 264.280.

#### Containers

All containers buried.

Evidence of hazardous substance migration from container area (i.e., container area includes containers and any associated containment structures).

No liner (or no essentially impervious base) under container area.

No diking (or no similar structure) surrounding container area.

Diking surrounding container area unsound or not regularly inspected and maintained.

No evidence of hazardous substance migration from container area, container area surrounded by sound diking that is regularly inspected and maintained, <u>and:</u>

- (a) Liner (or essentially impervious base) under container area.
- (b) Essentially impervious base under container area with liquids collection and removal system.
- (c) Containment system includes essentially impervious base, liquids collection system, sufficient contain 10 percent of volume of all containers, and functioning and maintained run-on control; plus functioning groundwater monitoring system, and spilled or leaked hazardous substances and accumulated precipitation removed in timely manner to prevent overflow of collection system, at least weekly inspection of containers, hazardous substances in leaking or deteriorating containers transferred to containers in good condition, and containers sealed except when waste is added or removed.
- (d) Free liquids present containment system has sufficient capacity to hold total volume of all containers and to provide adequate freeboard, single liner under container area with functioning leachate collection and removal system below liner, and functioning groundwater monitoring system.
- (e) Same as (d) except: double liner under container area with functioning leachate collection and removal system between liners.

Containers inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate would be generated from any unsealed or ruptured containers, liquids or materials containing free liquids not deposited in any container, and functioning and maintained runoff control present.

No evidence of hazardous substance migration from container area, containers leaking, and all free liquids eliminated at closure (either by removal of liquid or solidification of remaining wastes and waste residues).

Belowground tank.

Evidence of hazardous substance migration from tank area (i.e., tank area includes tank, ancillary equipment such as piping, and any associated containment structures).

Tank and ancillary equipment not provided with secondary containment, (e.g., liner under tank area, vault system, double wall).

No diking (or no similar structure) surrounding tank and ancillary equipment

Diking surrounding tank and ancillary equipment unsound or not regularly inspected and maintained.

No evidence of hazardous substance migration from tank area, tank and ancillary equipment surrounded by sound diking that is regularly inspected and maintained, and:

- (a) Tank and ancillary equipment provided with secondary containment.
- (b) Tank and ancillary equipment provided with secondary containment with leak detection and collection system.
- (c) Tank and ancillary equipment provided with secondary containment system that detects and collects spilled or leaked hazardous substances and accumulated precipitation and has sufficient capacity to contain 110 percent of volume of largest tank within containment area, spilled or leaked hazardous substances and accumulated precipitation removed in timely manner, at least weekly inspection of tank and secondary containment system, all leaking or unfit-for-use tank systems promptly responded to, and functioning groundwater monitoring system.
- (d) Containment system has sufficient capacity to hold volume of all tanks within tank containment area and to provide adequate freeboard, single liner under that containment area with functioning leachate collection and removal system below liner, and functioning groundwater monitoring system.
- (e) Same as (d) except double liner under tank containment area with functioning leachate collection and removal system between liners.

Tank is aboveground, and inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate would be generated from any material released from tank, liquids or materials containing free liquids not deposited in any tank, and functioning and maintained run-on control present.

#### Table 2

All Sources (Except Surface Impoundments, Land Treatment, Containers, and Tanks)

Evidence of hazardous substance migration from source area (i.e., source area includes source and any associated containment structures).

No evidence of hazardous substance migration from source areas and:

- (a) Neither of the following present: (1) maintained engineered cover, or (2) functioning and maintained run-on control system and runoff management system.
- (b) Any one of the two items in (a) present.
- (c) Any two of the following present: (1) maintained engineered cover, or (2) functioning and maintained run-on control system and runoff management system, or (3) liner with functioning leachate collection and removal system immediately above liner.
- (d) All items in (c) present.

(e) All items in (c) present, plus no bulk or non-containerized liquids nor materials containing free liquids deposited in source area.

No evidence of hazardous substance migration from source area, double liner with functioning leachate collection and removal system above and between liners, and:

- (f) Only one of the following deficiencies present in containment: (1) bulk or noncontainerized liquids or materials containing free liquids deposited in source area, or (2) no or nonfunctioning or nonmaintained run-on control system and runoff management system, or (3) no or nonmaintained engineered cover.
- (g) None of the deficiencies in (f) present.

Source area inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate is generated, liquids or materials containing free liquids not deposited in source area, and functioning and maintained run-on control present.

#### Surface Impoundment

Evidence of hazardous substance migration from surface impoundment.

Free liquids present with either no diking, unsound diking, or diking that is not regularly inspected and maintained. No evidence of hazardous substance migration from surface impoundment, free liquids present, sound diking that is regularly inspected and maintained, adequate freeboard, and:

- (a) No liner.
- (b) Liner.
- (c) Liner with functioning leachate collection and removal system below liner.
- (d) Double liner with functioning leachate collection and removal system between liners.

No evidence of hazardous substance migration from surface impoundment and all free liquids eliminated at closure (either by removal of liquids or solidification of remaining wastes and waste residues).

#### Land Treatment

Evidence of hazardous substance migration from land treatment zone.

No functioning and maintained run-on control and runoff management system.

No evidence of hazardous substance migration from land treatment zone and:

- (a) Functioning and maintained and maintained run-on control and runoff management system.
- (b) Functioning and maintained run-on control and runoff management system, and vegetative cover established over entire land treatment area.
- (c) Land treatment area maintained in compliance with 40 CFR 264.280.

#### Containers

All containers buried.

Evidence of hazardous substance migration from container area (i.e., container area includes containers and any associated containment structures).

No diking (or no similar structure) surrounding container area.

Diking surrounding container area unsound or not regularly inspected and maintained.

No evidence of hazardous substance migration from container area and container area surrounded by sound diking that is regularly inspected and maintained.

No evidence of hazardous substance migration from container area, container area surrounded by sound diking that is regularly inspected and maintained, <u>and:</u>

- (a) Essentially impervious base under container area with liquids collection and removal system.
- (b) Containment system includes essentially impervious base, liquids collection system, sufficient capacity to contain 10 percent of volume of all containers, and functioning and maintained run-on control; and spilled or leaked hazardous substances and accumulated precipitation removed in timely manner to prevent overflow of collection system, at least weekly inspection of containers, hazardous substances in leaking or deteriorating containers transferred to containers in good condition, and containers sealed except when waste is added or removed.
- (c) Free liquids present containment system has sufficient capacity to hold total volume of all containers and to provide adequate freeboard, and single liner under container area with functioning leachate collection and removal system below liner.
- (d) Same as (c) except: double liner under container area with functioning leachate collection and removal system between liners. Containers inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate would be generated from any unsealed or ruptured containers, liquids or materials containing free liquids not deposited in any container, and functioning and maintained run-on control present.

No evidence of hazardous substance migration from container area, containers leaking, and all free liquids eliminated at closure (either by removal of liquids or solidification of remaining wastes and waste residues).

#### Tank

Belowground tank.

Evidence of hazardous substance migration from tank area (i.e., tank area includes tank, ancillary equipment such as piping, and any associated containment structures).

No diking (or no similar structure) surrounding tank and ancillary equipment.

Diking surrounding tank and ancillary equipment unsound or not regularly inspected and maintained.

No evidence of hazardous substance migration from tank area and tank and ancillary equipment surrounded by sound diking that is regularly inspected and maintained.

No evidence of hazardous substance migration from tank area, tank and ancillary equipment surrounded by sound diking that is regularly inspected and maintained, <u>and:</u>

- (a) Tank and ancillary equipment provided with secondary containment (e.g., liner under tank area, vault system, double wall) with leak detection and collection system.
- (b) Tank and ancillary equipment provided with secondary containment system that detects and collects spiked or leaked hazardous substances and accumulated precipitation and has sufficient capacity to contain 110 percent of volume of largest tank within containment area, spilled or leaked hazardous substances and accumulated precipitation removed in a timely manner, at least weekly inspection of tank and secondary containment system, and all leaking or unfit-for-use tank systems promptly responded to.

- (c) Containment system has sufficient capacity to hold total volume of all tanks within the tank containment area and to provide adequate freeboard, and single liner under tank containment area with functioning leachate collection and removal system below liner.
- (d) Same as (c) except double liner under tank containment area with functioning leachate collection and removal system between liners.

Tank is aboveground, and inside or under maintained intact structure that provides protection from precipitation so that neither runoff nor leachate would be generated from any material released from tank, liquids or materials containing free liquids not deposited in any tank, and functioning and maintained run-on control present.

## <u>Table 3</u> Surface Soil Description

Coarse-textured soils with high infiltration rates (for example, sands, loamy sands).

Medium-textured soils with moderate infiltration rates (for example, sandy loams, loams).

Moderately fine-textured soils with low infiltration rates (for example, silty loams, silts, sandy clay loams).

Fine-textured soils with very low infiltration rates (for example, clays, sandy clays, silty clay loams, clay loams, silty clays); or impermeable surfaces (for example, pavement).

## <u>Table 4</u> Floodplain Categories

Source floods annually.

Source in 10-year floodplain.

Source in 500-year floodplain.

None of the above.

# Table 5 Flood Containment

Documentation that containment at the source is designed, constructed, operated, and maintained to prevent a washout of hazardous substances by the flood being evaluated (see floodplain category).

## <u>Table 6</u> Sensitive Environments

Critical habitat^a for Federal designated endangered or threatened species.

Marine Sanctuary.

National Park.

Designated Federal Wilderness Area.

Areas identified under Coastal Zone Management Actb.

Sensitive areas identified under National Estuary Program^c or Near Coastal Waters Program^d.

Critical areas identified under the Clean Lakes Programe.

National Monument^f.

National Seashore Recreational Area.

National Lakeshore Recreational Area.

Habitat known to be used by Federal designated or proposed endangered or threatened species.

National Preserve.

National or State Wildlife Refuge.

Unit of Coastal Barrier Resources System.

Coastal Barrier (undeveloped).

Federal land designated for protection of natural ecosystems.

Administratively Proposed Federal Wilderness Area.

Spawning areas critical^g for the maintenance of fish/shellfish species within river, lake, or coastal tidal waters.

Migratory pathways and feeding areas critical for maintenance of anadromous fish species within river reaches or areas in lakes or coastal tidal waters in which the fish spend extended periods of time.

Terrestrial areas utilized for breeding by large or dense aggregations of animalsh.

National river reach designated as Recreational.

Habitat known to be used by State designated endangered or threatened species.

Habitat known to be used by species under review as to its Federal endangered or threatened status.

Coastal Barrier (partially developed).

Federal designated Scenic or Wild River.

State land designated for wildlife or game management.

State designated Scenic or Wild River.

State designated Natural Areas.

Particular areas, relatively small in size, important to maintenance of unique biotic communities.

State designated areas for projection or maintenance of aquatic lifeⁱ.

## <u>Table 7</u> Terrestrial Sensitive Environments

Terrestrial critical habitat^a for Federal designated endangered or threatened species.

National Park.

Designated Federal Wilderness Area.

^aCritical habitat as defined in 50 CFR 424.02.

bAreas identified in State Coastal Zone Management plans as requiring protection because of ecological value.

^cNational Estuary Program study areas (Subareas within subareas) identified in Comprehensive Conservation and Management Plans as requiring protection because they support critical life stages of key estuarine species (Section 320 of Clean Water Act, as amended).

^dNear Coastal Waters as defined in Sections 104(b)(3), 304(1), 319, and 320 of Clean Water Act, as amended.

[&]quot;Clean Lakes Program critical areas (subareas within lakes, or in some cases entire small lakes) identified by State Clean Lake Plans as critical habitats (Section 314 of Clean Water Act, as amended).

^fUse only for air migration pathway.

^gLimit to areas described as being used for intense or concentrated spawning by a given species.

^hFor the air migration pathway, limit to terrestrial vertebrate species. For the surface water migration pathway, limit to terrestrial vertebrate species aquatic or semiaquatic foraging habits.

ⁱAreas designated under Section 305(a) of Clean Water Act, as amended.

National Monument.

Terrestrial habitat known to be used by Federal designated or proposed threatened or endangered species.

National Preserve (terrestrial).

National or State Terrestrial Wildlife Refuge.

Federal land designated for protection of natural ecosystems.

Administratively proposed Federal Wilderness Area.

Terrestrial areas utilized for breeding by large or dense aggregations of animals^b.

Terrestrial habitat known to be used by State designated endangered or threatened species.

Terrestrial habitat known to be used by species under review as to its Federal designated endangered or threatened status.

State lands designated for wildlife or game management.

State designated Natural Areas.

Particular area, relatively small in size, important to maintenance of unique biotic communities.

# Table 8 Area of Observed Contamination

Designated recreational area.

Regularly used for public recreation (for example, fishing, hiking, softball).

Accessible and unique recreational area (for example, vacant lots in urban area).

Moderately accessible (may have some access improvements - for example, gravel road), with some public recreation use.

Slightly accessible (for example, extremely rural area with no road improvement), with some public recreation use. Accessible, with no public recreation use.

Surrounded by maintained fence or combination of maintained fence and natural barriers.

Physically inaccessible to public, with no evidence of public recreation use.

# <u>Table 9</u> Gas Containment Description

All situations except those specifically listed below.

Evidence of biogas release.

Active fire within source.

Gas collection/treatment system functioning, regularly inspected, maintained, and completely covering source.

Source substantially surrounded by engineering windbreak and no other containment specifically described in this table applies.

Source covered with essentially impermeable, regularly inspected, maintained cover.

Uncontaminated soil cover >3 feet:

Source substantially vegetated with little exposed soil.

Source lightly vegetated with much exposed soil.

Source substantially devoid of vegetation.

^aCritical habitat as defined in 50 CFR 42.

^bLimit to vertebrate species.

Uncontaminated soil cover  $\geq 1$  foot and  $\leq 3$  feet:

Source heavily vegetated with essentially no exposed soil.

Cover soil resistant to gas migration^a.

Cover soil type not resistant to gas migration^a or unknown.

Source substantially vegetated with little exposed soil and cover soil type resistant to gas migration.

Other.

Uncontaminated soil cover <1 foot:

Source heavily vegetated with essentially no exposed soil and cover soil type resistant to gas migration.

Other

Totally or partially enclosed within structurally intact building and no other containment specifically described in this table applies.

Source consists solely of intact, sealed containers:

Totally protected from weather by regularly inspected, maintained cover.

Other.

## Table 10

Source Type

Active fire area.

Burn pit.

Containers or tanks (buried/belowground):

Evidence of biogas release.

No evidence of biogas release.

Containers or tanks, not elsewhere specified.

Contaminated soil (excluding land treatment).

Landfarm/land treatment.

Landfill:

Evidence of biogas release.

No evidence of biogas release.

Pile:

Tailings pile.

Scrap metal or junk pile.

Trash pile.

Chemical waste pile.

Other waste piles.

Surface impoundments (buried/backfilled):

Evidence of biogas release.

No evidence of biogas release.

Surface impoundment (not buried/backfilled):

Dry.

Other.

Other types of sources, not elsewhere specified.

^{*}Consider moist fine-grained and saturated coarse-grained soils resistant to gas migration; consider all other soils nonresistant.

#### Table 11

#### Particulate Containment Description

All situations except those specifically listed below.

Source contains only particulate hazardous substances totally covered by liquids.

Source substantially surrounded by engineered windbreak and no other containment specifically described in this table applies.

Source covered with essentially impermeable, regularly inspected, maintained cover.

Uncontaminated soil cover >3 feet:

Source substantially vegetated with little or no exposed soil.

Source lightly vegetated with much exposed soil.

Source substantially devoid of vegetation.

Uncontaminated soil cover  $\geq 1$  foot and  $\leq 3$  feet:

Source heavily vegetated with essentially no exposed soil:

Cover soil type resistant to gas migration^a.

Cover soil type not resistant to gas migration^a.

Source substantially vegetated with little exposed soil and cover soil type resistant to gas migration. Other.

Uncontaminated soil cover <1 foot:

Source heavily vegetated with essentially no exposed soil and cover soil type resistant to gas migration^a. Other.

Totally or partially enclosed within structurally intact building and no other containment specifically described in this table applies.

Source consists solely of containers:

All containers contain only liquids.

All containers intact, sealed, and totally protected from weather by regularly inspected, maintained cover.

All containers intact and sealed.

Other.

^{*}Consider moist fine-grained and saturated coarse-grained soils resistant to gas migration; consider all other soils nonresistant.

# APPENDIX G

ANALYTICAL REPORTS/CHAIN OF CUSTODY

THIS PAGE INTENTIONALLY LEFT BLANK

# TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT NYTEST ENVIRONMENT inc.

Project No.: 9421444

Log in No.: 22714, 22718

P.O. No.: Pending

Date: 01/23/95

SDG: JEFF1

SUMMARY DATA REPORT
PACKAGE FOR

Operational Technologies Corp.

4100 N. West Loop 410, Suite 230

San Antonio, TX 78229

ATTN:

**Barl Parker** 

REF: Jefferson Barracks ANGS, Proj. #1315-105

LABORATORY NUMBER

SAMPLE

TYPE OF SAMPLE

IDENTIFICATION

SEE NEXT PAGE

WE CERTIFY THAT THIS REPORT IS A TRUE REPORT OF RESULTS OBTAINED FROM O TESTS OF THIS MATERIAL.

NYS La ID. #10195 NJ Cer . #73469 ep RESPECTFULLY SUBMITTED,
NYTEST ENVIRONMENTAL INC.

REMO/GEGANTE

EXEC. VICE PRESIDENT

### NYTEST ENVIRONMENTAL Inc.

LABORATORY		SAMPLE	TYPE OF
NUMBER		IDENTIFICATION	SAMPLE
2271801 2271802 2271803 2271804 2271805 2271806 2271807 2271808 2271809 2271810 2271811	3	C-2-1B C-2-2B C-2-3B C-3-1B C-3-2B C-4-1B C-4-2B C-5-2B C-5-1B C-5-1BMS C-5-1BMSD	Soil Soil Soil Soil Soil Soil Soil Soil

### NYTEST ENVIRONMENTAL Inc.

LABORATORY	SAMPLE	TYPE OF
NUMBER	IDENTIFICATION	SAMPLE
2271401 2271402 2271403 2271404 2271405 2271406 2271407 2271408 2271409 2271409	D-1-1B D-1-2B D-1-3B D-2-1B D-2-2B D-2-3B C-1-1B C-1SED C-2SED C-3SED	Soil Soil Soil Soil Soil Soil Soil Soil

THIS PAGE INTENTIONALLY LEFT BLANK

# TOTAL ANALYTICAL SERVICES FOR A SAFE ENVIRONMENT NYTEST ENVIRONMENT inc.

Project No.: 9421444

Log in No.: 22731

P.O. No.: Pending

Date : 01/19/95

SDG No.: JEFF2

ANALYTICAL DATA REPORT
PACKAGE FOR

Operational Technologies Corp.

4100 N. West Loop 410, Suite 230

San Antonio, TX 78229

ATTN:

Earl Parker

REF: Jefferson Barracks Angs, Proj. \$1315-105

LABORATORY

NUMBER

SAMPLE

IDENTIFICATION

TYPE OF

SAMPLE

SEE NEXT PAGE

WE CERTIFY THAT THIS REPORT IS A  $\dot{\ell}$  TRUE REPORT OF RESULTS OBTAINED  $\dot{\ell}$  FROM OUR TESTS OF THIS MATERIAL.

NYS Lab ID. #10195 NJ Cert. #73469 mar 1/2 Char

EXEC. VICE PRESIDENT

RESPECTFULLY SUBMITTED,

### NYTEST ENVIRONMENTAL Inc.

LABORATORY NUMBER	SAMPLE IDENTIFICATION	TYPE OF SAMPLE
2273101	B-1-1B	Soil
2273102 -	B-1-2B	Soil
2273103	B-1-3B	Soil
2273104	B-2-1B	Soil
2273105	B-2-2B	Soil
2273106	B-2-2BMS	Soil
2273107	B-2-2BMSD	Soil
2273108	B-2-3B	Soil
2273109	B-3-1B	Soil
2273110	B-3-2B	Soil
2273111	B-3-3B	Soil

Project No.: 9421444

Log in No.: 22745

P.O. No.: Pending

Date : 01/20/95

SDG : JEFF3

ANALYTICAL DATA REPORT PACKAGE FOR

Operational Technologies Corp.

4100 N. West Loop 410, Suite 230

San Antonio, TX 78229

ATTN:

Earl Parker

REF: Jefferson Barracks ANGS, Proj. #1315-105

LABORATORY

NUMBER

SAMPLE

IDENTIFICATION

TYPE OF

SAMPLE

SEE NEXT PAGE

WE CERTIFY THAT THIS REPORT IS A TRUE REPORT OF RESULTS OBTAINED FROM OUR TESTS OF THIS MATERIAL.

RESPECTFULLY SUBMITTED, NYTEST ENVIRONMENTAL INC.

REMO GIGANTE

EXEC. VICE PRESIDENT

NYS Lab ID. #10195 NJ Cert. #73469

Report on sample(s) furnished by client applies to sample(s). Report on sample(s) obtained by us applies only to lot sampled. Information contained herein is not to be used for reproduction except by special permission. Sample(s) will be retained for thirty days maximum after date of report unless specifically requested otherwise by client. In the event that there are portions or parts of sample(s) remaining after Nytest has completed the required tests, Nytest shall have the option of returning such sample(s) to the client at the client's expense.

### NYTEST ENVIRONMENTAL Inc.

LABORATORY NUMBER	SAMPLE IDENTIFICATION	TYPE OF SAMPLE
2274501 2274502 2274503 2274504 2274505 2274506 2274507 2274508 2274509 2274510 2274511 2274512 2274513 2274513	B-4-1B B-4-2B B-4-3B A-1-1B A-1-2B A-1-2BMS A-1-2BMSD A-1-3B A-2-1B A-2-1B A-2-3B A-3-1B A-3-3B	Soil Soil Soil Soil Soil Soil Soil Soil

### NARRATIVE DISCUSSION VOLATILES - 22714, 22718

SDG: Jeff 1

### **INTRODUCTION**

This marrative covers the analysis of 13 samples in accordance with protocols based on SW-846 Method 8240.

### HOLDING TIMES

The analytical holding time for this analysis was met.

#### **CALIBRATIONS**

All required minimum RRFs and maximum % RSD initial calibration requirements have been met in accordance with the Method.

All required minimum RRFs and maximum % D continuing calibration requirements have been met in accordance with the Method.

### METHOD BLANKS

The method blank associated with these samples met all method requirements.

### MATRIX SPIKES

Sample C-5-1B was utilized in the MS/MSD series.

All spike recoveries and RPD values fell within advisory QC limits.

### **SURROGATES**

All surrogate recoveries met QC criteria.

### INTERNAL STANDARDS

All area responses and retention times fell within acceptable ranges.

### SAMPLE COMMENTS

No analytical problems were encountered.

c:\nar.dis\dq

### NARRATIVE DISCUSSION SEMIVOLATILES - 22714, 22718

### SDG NO. JEFF1

INTRODUCTION

This narrative covers the analysis of nineteen (19) samples in accordance with the protocols based on SW846 Method 8270.

HOLDING TIMES

The extraction and analytical holding times for this analysis were met with the exception of C-3SED which is being reextracted outside of holding time.

CALIBRATIONS

All required minimum; RRFs and maximum % RSD initial calibration requirements have been met in accordance with the Method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the Method.

METHOD BLANKS

The method blank associated with these samples did not contain any target compounds.

SURROGATES

Surrogate recoveries (except for samples diluted 4-fold [4x] and more) were within QC limits with the exception of sample C-3SED, which showed high recoveries. This sample will be reextracted. The results of analysis will follow this report.

### MATRIX SPIKES

Sample C-5-1B was utilized in the soil, low level MS/MSD series.

Three (3) out of twenty two (22) spike recoveries and six (6) out of eleven (11) RPD values were above advisory QC limits.

### INTERNAL STANDARDS

All area responses and retention times fell within an acceptable range.

SAMPLE COMMENTS No analytical problems were encountered.

Samples C-1SED and C-2SED required dilutions for analysis due to sample matrices.

As previously mentioned sample C-3SED required reextraction due to surregate recoveries which fell outside QC limits. Reextraction was performed outside of the allowable holding time. The results of analysis of this reextract will follow this report.

No further analytical problems were encountered.

### NARRATIVE DISCUSSION GC FUEL - 22714 & 22718

### Surrogates

All recoveries met QC criteria.

3

### Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Sample C-5-1B was utilized for MS/MSD analysis.

### Method Blanks

No target compounds were detected in FBLK23.

### Calibrations

The initial and continuing calibrations passed QC criteria.

### <u>Samples</u>

All samples were analyzed as per a modified SW-846 Method 8015. Sample C-1-1B exhibited multiple peaks near the C20 range and was quantitated against £20 from the DRO mix standard. No further analytical problems were encountered.

c:\wp51\cns\ac

### NARRATIVE DISCUSSION GC GAS - 22714 & 22718

#### Surrogates

All recoveries met QC criteria.

2

### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Sample C-5-1B was utilized for the MS/MSD.

### Method Blanks

No target compounds were detected in VBLK03, VBLK05 or VBLK07.

### <u>Calibrations</u>

The initial and continuing calibrations passed QC criteria.

### <u>Samples</u>

All samples were analyzed as per a modified SW-846 Method 8015. No analytical problems were encountered.

c:\wp51\cns\ac

## nytest environmental...

I certify that this data package has been reviewed for the quality control and quality assurance measures for all analyzed methodologies.

Remo/Gigante

Exec/ Vice President

AQUEOUS METHODOLOGIES:	REF 1	REF 2	REF 3	REF 5
BNA, Pesticides/PCB's Extraction		3510/3520		
AA/ICP Sample Preparation	200.7	2020, 0020		
Furnace Sample Preparation	200.0			
Mercury Sample Preparation	245.1	¥		
Hexavalent Chromium Sample Preparation	218.5			
Clean-Up		3610/3620/3630/	, .	
-		3640/3660		
Organochlorine Pesticide and PCB's		3040/3000		
by Gas Chromatography			608	505
Herbicides by Gas Chromatography			362	515.1
Purgeable Organics by GC/MS			624	524.2
Base/Neutral, Acids by GC/MS			625	525
2,3,7,8-TCDD by GC/MS			613/625	
BTEX			602	502.2
EDB/DBCP by Microextraction			-	504.1
<b>v</b> .				
NON-AQUEOUS METHODOLOGIES:				
BNA, Pesticides/PCB's Extraction		3550		
AA/ICP Sample Preparation		3050		
Furnace Sample Preparation		3020/3030/3050		
Mercury Sample Preparation		7471		
Clean-Up		3610/3620/3630/		
		3640/3660		
GC, Gas Chromatography/Mass Spectrometry	· <b>:</b>			
Purgeable Organics		8240/8021		
Base/Neutral and Acid Extractables		8270		
Organophosphorus Pesticides		8140		
Organochlorine Pesticide and PCB's				
by Gas Chromatography		8080		
BTEX		8020		
Halogenated Purgeable Organics		8010		
•		<del></del>		

		REFERENCE 1	REFERENCE 2
Aluminum		200.7	6010
Antimony		200.7	6010
Barium		200.7	6010
Beryllium		200.7	6010
Cadmium	.3	200.7	6010
Calcium		200.7	6010
Chromium		200.7	6010
Cobalt :		200.7	6010
Copper		200.7	6010
Iron		200.7	6010
Lead		200.7	
Magnesium		200.7	6010
Manganese		200.7	6010
Molybdenum		200.7	6010
Nickel		200.7	6010
Potassium		200.7	6010
Silver		200.7	6010
Sodium			6010
rin .		200.7	6010
Citanium		200.7	6010
/anadium		200.7	6010
linc		200.7 200.7	6010 601 <u></u> 0
URNACE AA:			
ntimony		204.1	7041
rsenic		206.2	7060
ead	<b>4</b> =	239.2	7421
elenium		270.2	7740
hallium		279.2	7841
in	· 7	282.2	
anadium	•	286.2	7911
ercury		245.1	7470/7471
CAP:		1	
<del></del>			
riority Pollutants		200.7	6010/7060/
AL Metals		200 7	7470/7740
		200.7	6010/7060/
CRA Metals			7470/7740
		200.7	6010/7060/
			7470/7740
			0002

ADDITIONAL INORGA	NIC PARAMETERS:	REFERENCE 1	REFERENCE 2
Biochemical Oxyge	n Demand	405.1	
Bromide		320.1	
Color		110.2	
Conductance		120.1	
Conductance		120.1	9050
Odor		140.1	3030
pН		150.1	
pН		130.1	9045/9040/9041
TDS	•	160.1	3043/3040/3041
TSS		160.1	
TS		160.3	
Hardness :		130.1	
Temperature		170.1	
Turbidity		180.1	
Acidity		305.1	
Alkalinity			
Ammonia		310.1	
Chloride		350.2/350.3	
Chloride		325.3	0252
Residual Chlorine		330 2	9252
COD		330.2	
Cyanide (Total & )	Amonahla	410.3/410.4	0010/0013
Oil & Grease	Hillettable)	335.3/335.1	9010/9012
Oil & Grease		413.1/413.2	0070/0071
Fluoride		340.2	9070/9071
TKN		351.2	
NO2/NO3			0200
D.O		353.2	9200
	rbons (Reference 4)	360.2	0066
Phenol	thons (Reference 4)	418.1	9066
Phosphorus		420.2 365.1	
Settleable Solids		160.5	
Silica	•		
Sulfate	<u>=</u>	370.1	0030
Sulfide		375.2/375.4	9038
Surfactants	•	376.1	9030
TOC	7	425.1	0060
TOX		415.1	9060
102			9020
MISCELLANEOUS ANAI	LYSIS:		
Extraction Procedu			1310
Ignitability	lowrered		1010
Corrosivity			1110
Reactivity			Chapter 8.3
Paint Filter Liqui	id Test		9095
Toxicity Character			7073
Procedure (TCLE			/ D T T A \
Cation Exchange Ca	•	·	(REF 4) 9080
outen Exchange Ca	rhacich or soriz		3000

REFERENCE 6

Makal dalid	
Total Coliform	909A
Fecal Coliform	9096
Fecal Streptococcus Coliform -	9108
Standard Plate Count	907
Hexavalent Chromium	312B
Carbonaceous BOD	507

### REFERENCES:

- (1) USEPA-600/4-79-020, Methods for Chemical Analysis of Water and Waste
- (2) USEPA SW 846, Test Methods for Evaluating Solid Waste, Third Edition
- (3) Federal Register 40 CFR Part 136, Vol.49, No.209 Test Parameters for the Analysis of Pollutants
- (4) Federal Register Vol.51, No.216 Friday, 11/7/86, pp.40643-40652
- (5) Method for the Determination of Organic Compounds in Drinking Water, EPA 500/4-88/039, Dec. 1988
- (6) Standard Method for Examination of Water and Wastewater, 15 Edition 1980  $\blacksquare$

### NARRATIVE DISCUSSION VOLATILES - 22731

### SDG NO. JEFF2

### INTRODUCTION

This narrative covers the analysis of nine (9) samples in accordance with protocols based on SW-846 Method 8240.

### HOLDING TIMES

The analytical holding time for this analysis was met.

### CALIBRATIONS

All required minimum RRFs and maximum % RSD initial calibration requirements have been met in accordance with the method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the method.

### METHOD BLANKS

The method blanks associated with these samples met all method requirements.

#### SURROGATES

All surrogate recoveries met QC criteria.

### MATRIX SPIKES

Sample B-2-2B was utilized in the MS/MSD series. All spike recoveries and RPD values fell within the advisory QC limits.

### INTERNAL STANDARDS

All area responses and retention times fell within an acceptable range.

### SAMPLE COMMENTS

No analytical problems were encountered.

### NARRATIVE DISCUSSION SEMIVOLATILES - 22731

### SDG NO. JEFF2

#### INTRODUCTION

This narrative covers the analysis of nine (9) samples in accordance with protocols based on SW-846 Method 8270.

### HOLDING TIMES

The extraction and analytical holding times for this analysis were met.

#### **CALIBRATIONS**

All required minimum RRFs and maximum %RSD initial calibration requirements have been met in accordance with the method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the method.

#### METHOD BLANKS

No target analytes were detected in method blank SBLK14.

#### SURROGATES

All samples met surrogate QC criteria.

ŧ

#### MATRIX SPIKES

Sample B-2-2B was utilized in the MS/MSD series. All spike recoveries and RPD values fell within QC limits.

### INTERNAL STANDARDS

All area responses and retention times fell within an acceptable range.

### SAMPLE COMMENTS

Due to the viscous nature of the sample extracts, B-1-1B, B-3-1B and B-3-2B were analyzed at dilutions.

No other analytical problems were encountered.

### NARRATIVE DISCUSSION GC GAS - 22731

### Surrogates

All recoveries met QC criteria.

### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Sample B-2-2B was utilized for the MS/MSD.

### Method Blanks

No target compounds were detected in VBLK50 or VBLK53.

### <u>Calibrations</u>

The initial and continuing calibrations passed QC criteria.

### Samples

All samples were analyzed as per a modified SW-846 Method 8015. Sample B-1-1B exhibited peaks which did not match that of Gasoline and were quantitated "as Gasoline". No further analytical problems were encountered.

c:\wp51\cns\ac

### NARRATIVE DISCUSSION GC FUEL - 22731

### Surrogates

Naphthalene was not detected in sample B-2-1B. The sample was reextracted outside holding time and the recovery met QC criteria. All other recoveries met QC criteria.

### Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Sample B-2-2B was utilized for MS/MSD analysis.

### Method Blanks

No target compounds were detected in FBLK19 or FBLK24.

### Calibrations

The initial and continuing calibrations passed QC criteria.

### Samples

All samples were analyzed as per a modified SW-346 Method 8015. Due to weathering and alkane degradation sample B-1-1B did not exhibit the exact peak pattern of #2 Fuel Oil, but was quantified as #2 Fuel Oil. This sample also had waste oil present and was quantitated using the peak height. Samples B-3-1B and B-3-2B contained late eluting hydrocarbon peaks which were quantitated as C20. No further analytical problems were encountered.

## nytest environmental...

I certify that this data package has been reviewed for the quality control and quality assurance measures for all analyzed methodologies.

Remo Gagante

Exec. Vice President

AQUEOUS METHODOLOGIES:	REF 1	REF 2	REF 3	REF 5
BNA, Pesticides/PCB's Extraction		3510/3520		
AA/ICP Sample Preparation	200.7	0010,0020		
Furnace Sample Preparation	200.0			
Mercury Sample Preparation	245.1			
Hexavalent Chromium Sample Preparation	218.5			
Clean-Up		3610/3620/3630/		
		3640/3660		
Organochlorine Pesticide and PCB's		•		
by Gas Chromatography			608	505
Herbicides by Gas Chromatography			362	515.1
Purgeable Organics by GC/MS			624	524.2
Ease/Neutral, Acids by GC/MS			625	525
2,3,7,8-TCDD by GC/MS			613/625	
BTEX			602	502.2
EDB/DBCP by Microextraction				504.1
NON-AQUEOUS METHODOLOGIES:  BNA, Pesticides/PCB's Extraction AA/ICP Sample Preparation Furnace Sample Preparation Mercury Sample Preparation Clean-Up		3550 3050 3020/3030/3050 7471 3610/3620/3630/ 3640/3660		
GC, Gas Chromatography/Mass Spectrometry	<b>':</b>			
Purgeable Organics		8240/8021		
Base/Neutral and Acid Extractables		8270		
Organophosphorus Pesticides		8140		
Organochlorine Pesticide and PCB's				
by Gas Chromatography		8080		
BTEX		8020		
Halogenated Purgeable Organics		8010		

INDUCTIVELY COUPLED PLASMA (ICP):	REFERENCE 1	REFERENCE
		•
Aluminum	200.7	6010
Antimony	200.7	6010
Barium	200.7	6010
Beryllium	200.7	6010
Cadmidm	200.7	6010
Calcium	200.7	6010
Chromium	200.7	6010
Cobalt	200.7	6010
Copper	200.7	6010
Iron	200.7	6010
Lead	200.7	6010
Magnesium	200.7	6010
Manganese	200.7	6010
Molybdenum	200.7	6010
Nickel	200.7	6010
Potassium	200.7	6010
Silver	200.7	
Sodium	200.7	6010
Tin .	200.7	6010
Titanium	200.7	6010
Vanadium	200.7	6010
Zinc	200.7	6010 6010
FURNACE AA:		
Antimony	204.1	7041
Arsenic	204.1	7041
Lead	239.2	7060
Selenium		7421
Challium	270.2	7740
in ,	279.2	7841
/anadium	282.2	
dercury	286.2 245.1	7911 7470/7471
CAP:		, -
riority Pollutants	200.7	6010/7060/
'AL Metals		7470/7740
un uergiz	200.7	6010/7060/
CDN Materia		7470/7740
CRA Metals	200.7	6010/7060/
		7470/7740

00015

ADDITIONAL INORGANIC PARAMETERS:	REFERENCE 1	REFERENCE 2
Biochemical Oxygen Demand	405.1	
Bromide	320.1	
Color	110.2	
Conductance	120.1	
Conductance		9050
Odor	140.1	
pH	150.1	
pH _		9045/9040/9041
TDS	160.1	,
TSS	160.2	
TS	160.3	
Hardness :	130.1	
Temperature	170.1	
	180.1	
Turbidity	305.1	
Acidity	310.1	
Alkalinity	350.2/350.3	
Ammonia	350.2/350.3	
Chloride	343.3	9252
Chloride	330.2	, <u></u>
Residual Chlorine	410.3/410.4	
COD	335.3/335.1	9010/9012
Cyanide (Total & Amenable)		3010/3012
Oil & Grease	413.1/413.2	9070/9071
Oil & Grease	340.2	3070/3071
Fluoride	. 340.2	
TKN	351.2	9200
NO2/NO3	353.2	9200
D.O	360.2	9066
Petroleum Hydrocarbons (Reference 4)	418.1	9000
Phenol	420.2	
Phosphorus	365.1	
Settleable Solids -	160.5	
Silica	370.1	0020
Sulfate	375.2/375.4	9038
Sulfide .	376.1	9030
Surfactants !	425.1	0000
TOC	415.1	9060
TOX		9020
MISCELLANEOUS ANALYSIS:		
Extraction Procedure Toxicity		1310
Ignitability		1010
Corrosivity		1110
Reactivity		Chapter 8.3
Paint Filter Liquid Test		9095
Toxicity Characteristic Leaching		
Procedure (TCLP)		(REF 4)
		9080
Cation Exchange Capacity of Soils		
		0.0010

REFERENCE 6

Total Coliform	909A
Fecal Coliform	9096
Fecal Streptococcus Coliform	910B
Standard Plate Count	907
Hexavalent Chromium	312B
Carbonaceous BOD	507

#### REFERENCES:

- (1) USEPA-600/4-79-020, Methods for Chemical Analysis of Water and Waste
- (2) USEPA SW 846, Test Methods for Evaluating Solid Waste, Third Edition
- (3) Federal Register 40 CFR Part 136, Vol.49, No.209 Test Parameters for the Analysis of Pollutants
- (4) Federal Register Vol.51, No.216 Friday, 11/7/86, pp.40643-40652
- (5) Method for the Determination of Organic Compounds in Drinking Water, EPA 500/4-88/039, Dec. 1988
- (6) Standard Method for Examination of Water and Wastewater, 15 Edition 1980

### NARRATIVE DISCUSSION VOLATILES - 22745

_____

#### INTRODUCTION

This narrative covers the analysis of three (3) samples in accordance with the protocols based on SW846 Method 8240.

### HOLDING TIMES

The analytical holding time for this analysis was met.

### CALIBRATIONS

All required minimum RRFs and maximum % RSD initial calibration requirements have been met in accordance with the Method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the Method.

### METHOD BLANK

The method blank associated with these sample met all method requirements.

### SURROGATES

All surrogate recoveries met QC criteria.

#### MATRIX SPIKES

Matrix Spikes were not designated to be performed on any of the samples covered by this report.

Batched QC is being supplied. Please note that non site specific QC may demonstrate differing matrix affects than the samples contained in this login. The applicable form 3 is, therefore, being supplied.

#### INTERNAL STANDARDS

All Internal Standard area responses and retention times fell within an acceptable ranges.

### SAMPLE COMMENTS

No analytical problems were encountered.

### NARRATIVE DISCUSSION SEMIVOLATILES - 22745

### SDG NO. JEFF3

### INTRODUCTION

This narrative covers the analysis of twelve (12) samples in accordance with protocols based on SW-846 Method 8270.

### HOLDING TIMES

The extraction and analytical holding times for this analysis were met.

### CALIBRATIONS

All required minimum RRFs and maximum %RSD initial calibration requirements have been met in accordance with the method.

All required minimum RRFs and maximum %D continuing calibration requirements have been met in accordance with the method.

### METHOD BLANKS

No target analytes were detected in method blank SBLK39.

#### SURROGATES

All samples met surrogate QC criteria.

### MATRIX SPIKES

sample A-1-2B was utilized in an MS/MSD series. Six (6) of twenty two (22) spike recoveries and five (5) of eleven (11) RPD values fell above advisory QC limits.

### INTERNAL STANDARDS

All area responses and retention times fell within an acceptable range.

### SAMPLE COMMENTS

No analytical problems were encountered.

### NARRATIVE DISCUSSION GC GAS - 22745

### Surrogates

All recoveries met QC criteria.

### Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Sample A-1-2B was utilized for the MS/MSD.

### Method Blanks

No target compounds were detected in VBLK51 or VBLK52.

### Calibrations

The initial and continuing calibrations passed QC criteria.

### Samples

All samples were analyzed as per a modified SW-846 Method 8015. No further analytical problems were encountered.

c:\wp51\cns\ac

### NARRATIVE DISCUSSION GC FUEL - 22745

### Surrogates

The recovery of Naphthalene was below the advisory QC limits in samples A-1-1B and A-2-2B. Both samples were reextracted outside holding time and the recoveries met QC criteria. All other recoveries met QC criteria.

### Matrix Spike / Matrix Spike Duplicate (MS/MSD)

Sample A-1-2B was utilized for MS/MSD analysis.

### Method Blanks

No target compounds were detected in FBLK20 or FBLK24.

### <u>Calibrations</u>

The initial and continuing calibrations passed QC criteria.

### Samples

All samples were analyzed as per a modified SW-846 Method 8015. Sample B-4-1B exhibited a peak pattern which did not match that of #2 Fuel Oil. The sample is being quantitated "as #2 Fuel Oil". No further analytical problems were encountered.

c:\wp51\cns\ac

# nytest environmental...

I certify that this data package has been reviewed for the quality control and quality assurance measures for all analyzed methodologies.

Remo Gigante

Exec. Vice President

AQUEOUS METHODOLOGIES:	REF 1	REF 2	REF 3	REF 5
BNA, Pesticides/PCB's Extraction		2510/2522		
AA/ICP Sample Preparation	200.7	3510/3520		
Furnace Sample Preparation	200.7			
Mercury Sample Preparation	245.1			
Hexavalent Chromium Sample Preparation	245.1			
Clean-Up	210.5	2610/2600/2600		
		3610/3620/3630/		
Organochlorine Pesticide and PCB's		3640/3660		
by Gas Chromatography				
Herbicides by Gas Chromatography			608	505
Purgeable Organics by GC/MS			362	515.
Base/Neutral, wids by GC/MS			624	524.3
2,3,7,8-TCDD by GC/MS			625	525
BTEX			613/625	
EDB/DBCP by Microextraction			602	502.2
' MICTOEXCIACTION				504.1
NON-AQUEOUS METHODOLOGIES:  BNA, Pesticides/PCB's Extraction		3550		
AA/ICP Sample Preparation		3050		
Turnace Sample Preparation				
Furnace Sample Preparation		3020/3030/3050		
Mercury Sample Preparation		7471		
Mercury Sample Preparation		7471 3610/3620/3630/		
Mercury Sample Preparation		7471		
Gercury Sample Preparation  Clean-Up  GC, Gas Chromatography/Mass Spectrometr	ry:	7471 3610/3620/3630/		
Mercury Sample Preparation Clean-Up GC, Gas Chromatography/Mass Spectrometr	·y:	7471 3610/3620/3630/ 3640/3660		·
Mercury Sample Preparation Llean-Up C, Gas Chromatography/Mass Spectrometr urgeable Organics	·y:	7471 3610/3620/3630/ 3640/3660 8240/8021		
Mercury Sample Preparation Llean-Up  C, Gas Chromatography/Mass Spectrometr  urgeable Organics  ase/Neutral and Acid Extractables	ry:	7471 3610/3620/3630/ 3640/3660 8240/8021 8270		·
Mercury Sample Preparation Llean-Up  C, Gas Chromatography/Mass Spectrometr  urgeable Organics ase/Neutral and Acid Extractables rganophosphorus Pesticides	·y:	7471 3610/3620/3630/ 3640/3660 8240/8021		
Preparation Plean-Up  C, Gas Chromatography/Mass Spectrometr  urgeable Organics  ase/Neutral and Acid Extractables  rganophosphorus Pesticides  rganochlorine Pesticide and PCB's	·y:	7471 3610/3620/3630/ 3640/3660  8240/8021 8270 8140		
Mercury Sample Preparation Llean-Up	·y:	7471 3610/3620/3630/ 3640/3660  8240/8021 8270 8140 8080		
ercury Sample Preparation lean-Up  C, Gas Chromatography/Mass Spectrometr  urgeable Organics ase/Neutral and Acid Extractables rganophosphorus Pesticides rganochlorine Pesticide and PCB's by Gas Chromatography	·y:	7471 3610/3620/3630/ 3640/3660  8240/8021 8270 8140		

INDUCTIVELY COUPLED PLASMA (ICP):	REFERENCE 1	REFERENCE
Aluminum		-
Antimony	200.7	6010
Barium	200.7	6010
Beryllium	200.7	6010
Cadmium	200.7	6010
Calcium	200.7	6010
Chromium	200.7	6010
Cobalt :	200.7	6010
Copper	200.7	6010
Iron	200.7	6010
Lead	200.7	6010
dagnesium	200.7	6010
Manganese	200.7	6010
folybdenum	200.7	6010
lickel	200.7	6010
Potassium	200.7	6010
Silver	200.7	6010
Sodium	200.7	6010
'in	200.7	6010
itanium	200.7	6010
/anadium	200.7	6010
inc	200.7	6010
	200.7	6010
URNACE AA:		
ntimony	•	
rsenic	204.1	7041
ead	206.2	7060
elenium	239.2	7421
hallium	270.2	7740
in	279.2	7841
anadium	282.2	
ercury	286.2	7911
	245.1	7470/7471
CAP:		
<del></del>		
riority Pollutants	200.7	6010/7060/
AL Metals		7470/7740
Necals	200.7	6010/7060/
CRA Metals		7470/7740
oww werqis	200.7	6010/7060/
•		7470/7740

### METHODOLOGY SUMMARY

Biochemical Oxygen Demand 405.1	ENCE 2
brochemical oxygen bemand 405.1	
Bromide 320.1	
Color 110.2	
Conductance 120.1	
	50
Odor 140.1	
pH 150.1	
P*	9040/9041
TDS 160.1	,
TSS 160.2	
TS 160.3	
Hardness : 130.1	
Temperature 170.1	
Turbidity 180.1	
Acidity 305.1	
Alkalinity 310.1	
Ammonia 350.2/350.3	
Chloride 325.3	
Chloride 92	52
Residual Chlorine 330.2	
COD 410.3/410.4	
	/9012
Oil & Grease 413.1/413.2	,
all a a	/9071
Fluoride 340.2	,
TKN 351.2	
NO2/NO3 353.2 92	00
D.O 360.2	
Petroleum Hydrocarbons (Reference 4) 418.1 90	66
Phenol 420.2	
Phosphorus 365.1	
Settleable Solids 160.5	
Silica 370.1	
Sulfate 375.2/375.4 90	38
Sulfide 376.1 90	30
Surfactants 425.1	
TOC 415.1 90	60
TOX 90	20
MISCELLANEOUS ANALYSIS:	
Extraction Procedure Toxicity 13	10
Tanitahilita	10
	.10
Corrosivity 11	
Corrosivity 11 Reactivity Chapt	
Corrosivity Reactivity Chapt Paint Filter Liquid Test	er 8.3 195
Corrosivity Reactivity Chapt Paint Filter Liquid Test Toxicity Characteristic Leaching	95
Corrosivity Reactivity Chapt Paint Filter Liquid Test Toxicity Characteristic Leaching Procedure (TCLP)  (RE	

#### METHODOLOGY SUMMARY

	REFERENCE 6
	-
Total Coliform	909A
Fecal Coliform	9096
Fecal Streptococcus Coliform	910B
Standard Plate Count	907
Hexavalent Chromium	312B
Carbonaceous BOD	507

#### METHODOLOGY SUMMARY

#### REFERENCES:

- (1) USEPA-600/4-79-020, Methods for Chemical Analysis of Water and Waste
- (2) USEPA SW 846, Test Methods for Evaluating Solid Waste, Third Edition
- (3) Federal Register 40 CFR Part 136, Vol.49, No.209 Test Parameters for the Analysis of Pollutants
- (4) Federal Register Vol.51, No.216 Friday, 11/7/86, pp.40643-40652
- (5) Method for the Determination of organic Compounds in Drinking Water, EPA 500/4-88/039, Dec. 1988
- (6) Standard Method for Examination of Water and Wastewater, 15 Edition 1980

# nytest environmental...

### Method Qualifiers for Organic Non-CLP Methodologies

Q Qualifier - Specified entries and their meanings as follows:

- U Indicates compound was analyzed for but was not detected. The sample quantitation limit is corrected for dilutions and for the moisture content for soil samples? If a sample extract can not be concentrated to the protocol specific volume, this fact is also accounted for in reporting the sample quantitation limit. The number is the minimum detected limits for the sample.
- J Indicates an estimated volume. The flag is used either when estimating concentration for tentatively identified compounds where a 1:1 response is assumed, or when the mass spectral data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on a mass spectral library search. It is applied to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the N code is not used.
- B This flag is used when the analyte is found in the analyte is found in the associated blank as well as the sample. It indicates possible/probable blank contamination and warns the data user to take appropriate action. This flag is used for a TIC as well as for a positively identified target compound.
- E This flag identifies compounds whose concentrations exceeded the calibration range of the GC/MS instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- A This flag indicates that a TIC is a suspected aldol condensation product.

#### Method Qualifiers for Inorganics

FORM I-IN includes fields for three types of results qualifiers. These qualifiers must be completed as follows:

- * C (Concentration) qualifier Enter "B" if the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but greater than or equal to the Instrument Detection Limit (IDL). If the analyte was analyzed for but not detected, a "U" must be entered.
- * Q Qualifier -- Specified entries and their meanings are as follows:
  - E The reported value is estimated because of the presence of interference.
  - M Duplicate precision not met (CV > 20%).
  - N Spiked sample recovery not within control limits.
  - S The reported value was determined by Method of Standard Addition (MSA).
  - W Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
  - * Duplicate analysis not within control limits.
  - + Correlation Coefficient for MSA is less than 0.995.

Entering "S", "W" or "+" is mutually exclusive.

- * M (Method) qualifier enter:
  - "P" for ICP
  - "A" for Flame AA
  - "F" for Furnace AA
  - "CV" for Cold Vapor AA
  - "AV" for Automated Cold Vapor AA
  - "AS" for Semi-Automated Spectrophotometric
  - "C" for Manual Spectrophotometric
  - "T" for Titrimetric
  - "NR" if the analyte is not required to be analyzed.

GC/MS Data

Volatile Data
•
- 7

C-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271407

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P2342.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 16 Data Analyzed: 12/17/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

74-87-3	Chloromethane	12	ט
	Bromomethane	12	Ū
	Vinyl Chloride	12	ט
	Chloroethane	12	Ü
	Methylene Chloride	4	J
67-64-1		ا و	Ĵ
	Carbon Disulfide	12	Ū
	1,1-Dichloroethene	12	Ü
	1,1-Dichloroethane	12	<u></u> ט
	1,2-Dichloroethene (total)	12	Ü
	Chloroform	12	Ū
	1,2-Dichloroethane	12	Ü
	2-Butanone	12	ϋ
	1,1,1-Trichloroethane	12	Ū
	Carbon Tetrachloride	12	<u>ט</u>
	Bromodichloromethane	12	Ū
	1,2-Dichloropropane	12	Ū
	cis-1,3-Dic'loropropene	12	Ū
	Trichloroethene	12	Ū
	Dibromochloromethane	12	Ū
	1,1,2-Trichloroethane	12	Ū
71-43-2	Benzene	12	Ū
	trans-1,3-Dichloropropene	12	Ū
75-25-2		12	Ū
	4-Methyl-2-Pentanone	12	Ū
	2-Hexanone	12	Ŭ
	Tetrachloroethene	12	Ū
	1,1,2,2-Tetrachloroethane	12	Ū
108-88-3		12	บ็
	Chlorobenzene	12	บ
	Ethylbenzene	12	บี
100-42-5		12	บ็
	Xylene (total)	12	υ
	Vinyl Acetate	12	l ŭ
T00-00-4	VIIIYI ACCCACC		
		I	'

Lab Name: NYTEST ENV INC Contract: 9421444

C-1SED

Conclude: 712111

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271408

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P2360.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 33 Data Analyzed: 12/19/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG		Q
74-87-3	Chloromethane				15	U
74-83-9	Bromomethane -				15	ט
75-01-4	Vinvl Chloride				15	Ü
75-00-3	Chloroethane				15	Ü
75-09-2	Methylene Chlo	ride			11	JВ
67-64-1	Acetone				6	J
75-15-0	Carbon Disulfi	de			15	Ŭ
75-35-4	1,1-Dichloroet	hene			15	ן ט
75-34-3	1,1-Dichloroet	hane			15	Ü
540-59-0	1.2-Dichloroet	hene (total)			15	Ū
67-66-3	Chloroform				15	ϋ
107-06-2	1.2-Dichloroet	hane			15	Ü
78-93-3	2-Butanone				15	Ū
71-55-6	1,1,1-Trichlor	oethane			15	Ū
56-23-5	Carbon Tetrach	loride			15	Ū
75-27-4	Bromodichlorom	ethane			15	Ū
78-87-5	1,2-Dichloropr	opane			15	Ü
10061-01-5	cis-1.3-Dichlo	ropropene			15	<u>ט</u>
79-01-6	Trichloroethen	<u> </u>			15	<u>ี</u> บ
124-48-1	Dibromochlorom	ethane	<del></del>		15	Ū
79-00-5	1.1.2-Trichlore	pethane			15	Ü
71-43-2	Berzene		<del></del>		15	Ū
10061-02-6	trans-1,3-Dich	loropropene	—- [		15	Ū
/5-25-2	Bromotorm				15	Ū
108-10-1	4-Methyl-2-Pen	anone			15	וֹט
591-78-6	2-Hexanone				15	ט
127-18-4	Tetrachloroeth	ene			15	וט
79-34-5	1,1,2,2-Tetracl	nloroethane			15	וט
108-88-3	Toluene				15	וט
108-90-7	Chlorobenzene				15	ן ט
100-41-4	Ethylbenzene				15	<u> </u>
100-42-5	Styrene				15	Ū
1330-20-7	Xylene (total)				15	U
108-05-4	Vinyl Acetate_				15	Ū
						<del></del> '

Lab Name: NYTEST ENV INC Contract: 9421444

C-2SED

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

SEC NO.: UEFF.

Matrix: (soil/water) SOIL Lab Sample ID: 2271409

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P2344.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 27 Data Analyzed: 12/17/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

74-87-3		COMPOUND	lg/L or	ug/kg)	UG/KG		Q
74-83-9	74-87-3	Chloromethane				14	
75-01-4	74-83-9	Bromomethane					
75-09-2	75-01-4	Vinvl Chloride					
75-09-2	75-00-3	·Chloroethane					
67-64-1	75-09-2	Methylene Chloride					
75-15-0	67-64-1	Acetone					
75-35-4	75-15-0	Carbon Disulfide					
14   U   540-59-01, 2-Dichloroethane   14   U   14   U   14   C7-66-3Chloroform   14   U   U   17-06-21, 2-Dichloroethane   14   U   U   18-90-7	75-35-4	1,1-Dichloroethene					
540-59-01, 2-Dichloroethene (total)       14       U         67-66-3	75-34-3	1,1-Dichloroethane					
67-66-3       Chloroform       14       U         107-06-2       1,2-Dichloroethane       14       U         78-93-3       14       U         71-55-6       1,1-Trichloroethane       14       U         56-23-5       Carbon Tetrachloride       14       U         75-27-4       Bromodichloromethane       14       U         78-87-5       1,2-Dichloropropane       14       U         10061-01-5       1,2-Dichloropropane       14       U         79-01-6      Trichloroethene       14       U         79-01-6      Trichloroethene       14       U         79-01-6      Trichloroethane       14       U         79-01-6      Trichloroethane       14       U         79-01-6      Trichloroethane       14       U         79-00-5      Trichloroethane       14       U         70-1-48-1      Benzene       14       U         10061-02-6	540-59-0	1,2-Dichloroethene	(total)				
107-06-21,2-Dichloroethane       14       U         78-93-32-Butanone       14       U         71-55-61,1,1-Trichloroethane       14       U         56-23-5Carbon Tetrachloride       14       U         75-27-4Bromodichloromethane       14       U         78-87-51,2-Dichloropropane       14       U         10061-01-5cis-1,3-Dichloropropene       14       U         79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-1	67-66-3 <b>-</b>	Chloroform	(00000,				
78-93-32-Butanone       14       U         71-55-61,1,1-Trichloroethane       14       U         56-23-5Carbon Tetrachloride       14       U         75-27-4Bromodichloromethane       14       U         78-87-51,2-Dichloropropane       14       U         10061-01-5cis-1,3-Dichloropropene       14       U         79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5	107-06-2	1,2-Dichloroethane				,	
71-55-61,1,1-Trichloroethane 56-23-5Carbon Tetrachloride 75-27-4Bromodichloromethane 78-87-51,2-Dichloropropane 14 U 10061-01-5	78-93-3 <i>-</i>	·2-Butanone		—			
56-23-5	71-55-6	1,1,1-Trichloroetha	ane				
75-27-4Bromodichloromethane       14       U         78-87-51,2-Dichloropropane       14       U         10061-01-5cis-1,3-Dichloropropene       14       U         79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         130-20-7Xylene       (total)       14	56-23-5	·Carbon Tetrachlorio	de				
78-87-51, 2-Dichloropropane       14       U         10061-01-5cis-1, 3-Dichloropropene       14       U         79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51, 1, 2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1, 3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7	75-27-4	Bromodichloromethan	ne .				
10061-01-5cis-1,3-Dichloropropene       14       U         79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	78-87-5	1,2-Dichloropropane	3				
79-01-6Trichloroethene       14       U         124-48-1Dibromochloromethane       14       U         79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       U	10061-01-5	cis-1.3-Dichloropro	pene	<del></del>			
124-48-1	79-01-6	Trichloroethene					
79-00-51,1,2-Trichloroethane       14       U         71-43-2Benzene       14       U         10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	124-48-1	Dibromochloromethan	ne	<del></del>			
71-43-2	79-00-5	1,1,2-Trichloroetha	ane				
10061-02-6trans-1,3-Dichloropropene       14       U         75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         1330-20-7Xylene       (total)       14       U	71-43-2	Benzene		<del></del>			
75-25-2Bromoform       14       U         108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         1330-20-7Xylene       14       U	10061-02-6	trans-1,3-Dichloror	propene				
108-10-14-Methyl-2-Pentanone       14       U         591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         1330-20-7Xylene       14       U	75-25-2	Bromoform					
591-78-62-Hexanone       14       U         127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	108-10-1	4-Methyl-2-Pentanor	ne				
127-18-4Tetrachloroethene       14       U         79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	591-78-6	2-Hexanone					
79-34-51,1,2,2-Tetrachloroethane       14       U         108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	127-18-4	Tetrachloroethene					
108-88-3Toluene       14       U         108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	79-34-5	1,1,2,2-Tetrachloro	ethane				
108-90-7Chlorobenzene       14       U         100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene       (total)       14       U	108-88-3	Toluene	_	<del></del>			
100-41-4Ethylbenzene       14       U         100-42-5Styrene       14       U         1330-20-7Xylene (total)       14       U	108-90-7	Chlorobenzene					
100-42-5Styrene 14 U 1330-20-7Xylene (total) 14 U	100-41-4	Ethvlbenzene					
1330-20-7Xylene (total) 14 U	100-42-5	Styrene					
100 00 4	1330-20-7	Xvlene (total)					
	108-05-4	Vinyl Acetate				- 1	
		4					

C-3SED

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271410

Sample wt/vol: 5.0 (g/mL) G Lab File ID: P2345.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 24

Data Analyzed: 12/17/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

Lab Name: NYTEST ENV INC Contract: 9421444 C-2-1B

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271801

Sample wt/vol:

5.0 (g/mL) G

Lab File ID:

N0650.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 21

Data Analyzed: 12/19/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

0

		(49/11 01	<u>ug/1(g/</u>	00710		Q
74-87-3	Chloromethane				13	,,,
74-83-9	Bromomethane				13	ָ ט
75-01-4	Vinvl Chloride				13	<u> </u>
75-00-3	Chloroethare —	· · · · · · · · · · · · · · · · · · ·	<del></del> -		13	บ
75-09-2	Methylene Chlori	de			14	• В
67-64-1	Acetone		<del></del>		13	บ็
75-15-0	Carbon Disulfide				13	ŭ
75-35-4	1.1-Dichloroethe	ne			13	บ
/5-34-3	·1,1-Dichloroetha	ne			13	บ
540-59-0	1.2-Dichloroethe	ne (total)			13	บ
67-66-3	Chloroform		-		13	ט
107-06-2	1,2-Dichloroetha	ne			13	ט
78-93-3	2-Butanone				13	ט
71-55-6	1.1.1-Trichlorge	thane	<del></del> -		13	ט
56-23-5	Carbon Tetrachlo	ride	<del></del>		13	ט
75-27-4	Bromodichloromet	hane			13	ט
78-87-5	1.2-Dichloroprop	ane			13	ט
T000T-0T-2	cis-1.3-Dic'-loro	propene			13	ט
/9-01-6	Trichloroethene				13	ט
124-48-1	Dibromochloromet	hane			13	ט
79-00-5	1.1.2-Trichlorce	thane			13	ט
71-43-2	Benzene				13	ט
10061-02-6	trans-1.3-Dichlo	ropropene			13	ט
75-25-2	Bromoform				13	บ
108-10-1	4-Methyl-2-Penta	none			13	U
591-78-6	2-Hexanone				13	U
127-18-4	Tetrachloroethen	e			13	ט
79-34-5	1.1.2.2-Tetrachle	proethane	<del></del>		13	บ
108-88-3	Toluene				13	U U
108-90-7	Chlorobenzene				13	Ü
100-41-4	Ethylbenzene				13	ับ
100-42-5	Styrene				13	
1330-20-7	Xvlene (total)		<del></del>		13	U
108-05-4	Vinyl Acetate					U
- <del>-</del>					13	U
· · · · · · · · · · · · · · · · · · ·						

C-2-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271802

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: N0651.D

Level: (low/med)

LOW

Date Received: 12/13/94

% Moisture: not dec. 20

Data Analyzed: 12/19/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	Ü
75-01-4	Vinyl Chloride	12	บ
75-00-3	Chloroethane	12	บ
75-09-2	Methylene Chloride	11	JB
67-64-1	Acetone	12	บ
75-15-0	Carbon Disulfide	12	Ŭ
75-35-4	1,1-Dichloroethene	12	บ
75-34-3	1,1-Dichloroethane	12	บ
540-59-0	1,2-Dichloroethene (total)	12	Ū
67-66-3	Chloroform	12	บ
107-06-2	1,2-Dichloroethane	12	บ
78-93-3	2-Butanone	12	บ
71-55-6	1,1,1-Trichloroethane	12	บ
56-23-5	Carbon Tetrachloride	12	U
75-27-4	Bromodichloromethane	12	บ
78-87-5	1,2-Dichloropropane	12	บ
10061-01-5	cis-1,3-Dichloropropene	12	U U
79-01-6	Trichloroethene	12	บ
124-48-1	Dibromochloromethane	12	U U
79-00-5	1,1,2-Trichloroethane	12	ប
71-43-2	Benzene	12	Ü
10061-02-6	trans-1,3-Dichloropropene	12	บ
75-25-2	Bromoform	12	ט
	4-Methyl-2-Pentanone	12	ל
591-78-6	2-¥exanone	12	ש
127-18-4	Tetrachloroethene	2.	J
	1,1,2,2-Tetrachloroethane	12	ט
108-88-3		12	ט
	Chlorobenzene	12	ט
100-30-7-44-	Ethylbenzene	12	ט
100-41-4	Styrono	12	ប
	Xylene (total)	12	U
109-05-4-	Vinyl Acetate	12	ָ זז
100-03-4	villy1 Acecace	12	U
		. I	

C-2-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271803

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0652.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 20 Data Analyzed: 12/19/94

Column: (pack/cap) CAP Dilution Factor: 1.0

	3	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q

74-87-3Chloromethane	12 12 12 12	ָ ָ ע
74-83-9Bromomethane	12 12	
	12	11
75-01-4Vinyl Chloride		ָ ֖֓
75-00-3Chloroethane	121	Ū
75-09-2Methylene Chloride	12	JB
67-64-1Acetone	12	Ū
75-15-0Carbon Disulfide	12	บั
75-35-41,1-Dichloroethene	12	Ŭ
75-34-31,1-Dichloroethane	12	Ū
540-59-01,2-Dichloroethene (total)	12	Ū
67-66-3Chloroform —	12	Ū
107-06-21,2-Dichloroethane	12	Ū
78-93-32-Butanone	12	Ŭ
71-55-61,1,1-Trichloroethane	12	Ū
56-23-5Carbon Tetrachloride	12	Ū
75-27-4Bromodichloromethane	12	Ū
78-87-51,2-Dichloropropane	12	Ū
10061-01-5cis-1,3-Dichloropropene	12	Ū
79-01-6Trichloroethene	12	U
124-48-1Dibromochloromethane	12	U
79-00-51,1,2-Trichloroethane	12	U
71-43-2Benzene	12	U
10061-02-6trans-1,3-Dichloropropene	12	U
75-25-2Bromoform	12	U
108-10-14-Methyl-2-Pentanone	12	U
591-78-62-Hexanone	12	U
127-18-4Tetrachloroethene	12	U
79-34-51,1,2,2-Tetrachloroethane	12	U
108-88-3Toluene	12	U
108-90-7Chlorobenzene	12	U
100-41-4Ethylbenzene	12	U
100-42-5Styrene	12	U
1330-20-7Xylene (total)	12	U
108-05-4Vinyl Acetate	12	U
	.	

Lab Name: NYTEST ENV INC Contract: 9421444 C-3-1B

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271804

Sample wt/vol: 5.0 (g/mL) GLab File ID: N0653.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 18 Data Analyzed: 12/19/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG		Q
74-87-3	Chloromethane				12	U
75-01-4	Vinyl Chloride				12	ָט
75-00-3	Chloroethane				12	IJ
75-09-2	Methylene Chlor	do			12	ת
67-64-1	meenyiene chior.				32	В
75-15-0	Carbon Disulfide		<del></del>		12	Ū
75-35-4	1,1-Dichloroeth	= <u> </u>	<del></del>		12	Ü
75-34-3	1,1-Dichloroeth	=116			12	Ū
540-59-0	1,2-Dichloroeth	ane (total)			12	Ū
67-66-3	Chloroform	ene (LOCAI)			12	U
107-06-2	1,2-Dichloroeth	220			12	ū
78-93-3	·2-Butanone	me			12	ַ
71-55-6	1,1,1-Trichloro	thono			12	Ū
56-23-5	Carbon Tetrachlo	eriane			12	ַ
75-27-4	Bromodichloromet	pride			12	ַ
78-87-5	1,2-Dichloroprop	-iiaiie			12	Ū
10061-01-5	cis-1,3-Dichloro	pane			12	Ū
79-01-6	Trichloroethene	pprobere			12	Ū
124-48-1	Dibromochloromet	hana			12	Ŭ
79-00-5	1,1,2-Trichloroe	thane			12	Ŭ
71-43-2	Remond	criane			12	ָּט
10061-02-6	trans-1,3-Dichlo	· · · · · · · · · · · · · · · · · · ·			12	Ū
75-25-2	Bromoform	probrobene_			12	Ū
108-10-1	4-Methyl-2-Penta	2222			12	Ŭ
591-78-6	2-Methy1-2-Fenta 2-Mexanone	arone			12	U
127-18-4	Tetrachloroether		<b></b>		12	ָּט
79-34-5	1,1,2,2-Tetrach	oxoothore			12	Ū
108-88-3	Toluono	oroecuane_			12	U
108-90-7	Chlorobenzene		—		12	ַ
100-30-7	Ethylbenzene		<del></del>		12	ַ
100-41-4	Styropo				12	ַ
1330-20-7	Xylene (total)				12	Ŭ
1 108-05-4	Vinyl Acetate				12	ע
100-05-4	vinyi Acetate				12	U

C-3-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271805

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: N0690.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 20

Data Analyzed: 12/21/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (uq/L or uq/Kq) UG/KG

	(lg)	, II OI	ug/kg)	UG/KG		Q
74-87-3	Chloromethane				12	U
74-83-9	Bromomethane				12	บ
75-01-4	Vinyl Chloride				12	Ū
75-00-3	Chloroethane		<del></del>		12	ប
75-09-2	Methylene Chloride				19	В
67-64-1	Acetone				12	Ū
75-15-0	Carbon Disulfide		<del></del>		12	ט
75-35-4	1,1-Dichloroethene				12	ט
75-34-3	1,1-Dichloroethane	<del></del>			12	ט
540-59-0	1,2-Dichloroethene (t	otal	<del></del> 1		12	ט
67-66-3	Chloroform	.ocar	′—		12	מ
107-06-2	1,2-Dichloroethane				12	
78-93-3	2-Butanone				12	U U
71-55-6	1,1,1-Trichloroethane					
56-23-5	Carbon Tetrachloride				12	U
75-27-4	Bromodichloromethane		<del></del>		12	Ū
78-87-5	1,2-Dichloropropane		I		12	U
10061-01-5	cis-1,3-Dickloroprope	220	<del></del>		12 12	U
79-01-6	Trichloroethene	e—				U
124-48-1	Dibromochloromethane				12 12	Ŭ
79-00-5	1,1,2-Trichloroethane		<del></del>		12	U U
71-43-2	Benzene		<del></del> .		12	ט
10061-02-6	trans-1,3-Dichloropro	none			12	· •
75-25-2	Bromoform	Perie_	<del></del>		12	บ บ
108-10-1	4-Methyl-2-Pentanone				12	
591-78-6	2-Hexanone				12	U
127-18-4	Tetrachloroethene				12	U
79-34-5	1,1,2,2-Tetrachloroet	hane	<del></del>   ·			Ū
108-88-3	Toluene	'marie	——		12	Ū
108-90-7	Chlorobenzene				12	Ŭ
100-41-4	Ethylbenzene				12	U
100-42-5	Styrene				12	Ŭ
1330-20-7	Xylene (total)				12	U
108-05-4	Vinyl Acetate				12	Ū
700 00 4	villy Acetate				12	ָ ע
			I			

C-4-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271806

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0687.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 11 Data Analyzed: 12/21/94

Column: (pack/cap) CAP Dilution Factor: 1.0

	1	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q

CAS NO.	COMPOUND	(ug/L or ug	g/Kg) UG/K	3	Q
74 07 2	Chloromethane			11	U
	Bromomethane	.,	-	11	וט
	Vinyl Chloride		-	11	ال
	Chloroethane	Ma	-	11	บ
	Methylene Chlorid	0	-	9	JВ
67-64-1		·e	-	46.	В
	Carbon Disulfide		-	11	<u>ט</u>
	1,1-Dichloroethen		-	11	<u>ט</u>
	1,1-Dichloroethan		-	11	Ü
540-59-0	1,2-Dichloroethen	e (total)		11	Ü
67-66-3	Chloroform	e (cocar)_	_	11	Ü
	1,2-Dichloroethan		<del>-</del> :	11	Ü
	2-Butanone			7	J
	1,1,1-Trichloroet	hane	-	11	Ü
	Carbon Tetrachlor		-	īī	<u>ט</u>
	Bromodichlorometh		-	11	Ü
	1,2-Dichloropropa		-	11	บั
	cis-1,3-Dichlorop		-	11	Ū
	Trichloroethene		-	11	Ū
	Dibromochlorometh	ane	-	11	Ū
	1,1,2-Trichloroet		-	11	U
71-43-2			<b>-</b>	11	Ū
10061-02-6	træns-1,3-Dichlor	opropene		11	Ū
	Bromoform		-	11	Ū
	4-Methyl-2-Pentar	ione		2	J
	2-Hexanone			11	ן ט
	Tetrachloroethene	<u>}</u>	-	11	U
	1,1,2,2-Tetrachlo		_	11	ט
108-88-3			-	11	ן ט
	Chlorobenzene	***	-	11	U
	Ethylbenzene			11	ן ט
100-42-5			_	11	U
	Xylene (total)		_	11	ַ
	Vinyl Acetate		_	11	U
	±				
I			<del></del>		•

Lab Name: NYTEST ENV INC

Contract: 9421444

C-4-2B

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271807

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: N0688.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 12

Data Analyzed: 12/21/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

0

	. 3, = -0	~9/ 1\9/ 	OG/ RG	Q
74-87-3Ch	loromethane		1:	, ,,,
1 74-83-9pr	comomothere	<del></del>		1 -
/5-01-4Vi	nul Chlorido	<del></del>	1:	
/ /J=UU-3('h	Orgethano		1:	, -
/5-09-2ma	thylene Chlorido		1:	
0/-04-T	etone			6 JB
75-15-0Ca	rbon Digulfido		10	-
/5-35-41	1-Dichloroothone		1:	-   •
/ <del>                                   </del>	1-Dichloroethano		1:	_
D4U-D9-U	2-Dichloroothono (total)		13	_
67-66-3Chi	loroform		13	- [
107-06-21,2	2-Dichlorootkana		11	-   •
78-93-32-1	Rutanono		1.1	- 1
71-55-61	1,1-Trichloroethane		11	ן ע
56-23-5Cai	rhor materials in		13	ען וו
75-27-4Bro	rbon letrachioride		11	ט וו
78-87-51,2	Oniodichioromethane		11	וט וו
10061-01-5-	z-bichioropropane		11	ַ
79-01-6Tri	s-1,3-Dichloropropene		11	ַ ט
124-48-1	contoroethene		11	ן די
124-48-1Dik	promochioromethane		11	اں ا
73-00-3,]	1,2-Trichloroethane		11	
71-43-2Ber	izene		11	- 1
10061-02-6tra	ans-1,3-Dichloropropene		11	1 7 1
/3~43-4~Bro	omotorm		11	
108-10-14-M	Methyl-2-Pentanone		11	- 1
コンエー /ひーちーーーーーー・フーだ	evanono		11	1
14/-18-4	rachloroetheno		11	1
/9-34-51.1	2 2-Tetrachloroothone		11	- 1
T00_00_2======:!.!	liene		11	1 - 1
108-90-7Chl	orohenzene	<del></del> [		1 - 1
100-41-4	vlhenzene		11	; -,
100-42-5stv	rene		11	1 - 1
1330-20-7Xv1	ene (total)		11	- 1
108-05-4Vin	vl Acetate		11	1 - 1
			11	U
				.

Lab Name: NYTEST ENV INC Contract: 9421444

C-5-2B

Matrix: (soil/water) SOIL

Lab Sample ID: 2271808

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0689.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 28

Data Analyzed: 12/21/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		ug/kg) UG/kG	Q
74-87-3	Chloromethane	14	77
1 74-83-9	Bromomethano	14	_
75-01-4	Vinvl Chloride	—  14	1 -
1 /5-00-3	Chloroethane		_
75-09-2	Methylene Chloride	14	
1 0/-b4-1	Acetone	55	
1 75-15-0	Carbon Digulfido	14	
/5-35-4	1.1-Dichloroethere	14	
/3-34-3	l.l-Dichloroethane		_
340-59-0	1.2-Dichloroethere (total)	14	_
1 0/-66-3	Chloroform -	14	1 -
107-06-2	1,2-Dichloroethane	14	_
78-93-3	2-Butanone	14	1
71-55-6	1,1,1-Trichloroethane	14	1 -
56-23-5	Carbon Tetrachloride	14	_
75-27-4	Bromodichloromethane	14	_
78-87-5	1,2-Dichloropropane	14	
10061-01-5	cis-1,3-Dichloropropene	14	1
79-01-6	Trichloroethene	14	_
124-48-1	Dibromochloromethane	14	-
79-00-5	1 1 2 mai ala la la la la la la la la la la la la	_   14	U
71-43-2	1,1,2-Trichloroethane	14	ן ט
10061-02-6	Beazene	14	ן ט
75-25-2	trans-1,3-Dichloropropene	14	ן ט
109_10_1	Bromotorm	_ 14	U
501-70 6	4-Methyl-2-Pentanone	14	ן ט
107 10 4	2-Jexanone	14	ן די
70 24 5	Tetrachloroethene		ן ט
100 00 0	1,1,2,2-Tetrachloroethane	14	
	'l'olijene	14	
100-90-/	Chlorobenzene	14	
100-41-4	Ethylbenzene	14	ال
100-42-5	Styrene	14	1
1330-20-7	Xylene (total)	14	ָ װ
108-05-4	Vinyl Acetate	14	Ū
		_	
		1	l

EPA SAMPLE NO.

C-5-1B

Lab Name: NYTEST ENV INC Contract: 9421444

COMPOUND

108-90-7-----Chlorobenzene

100-41-4-----Ethylbenzene

100-42-5-----Styrene 1330-20-7------Xylene (total) 108-05-4------Vinyl Acetate

CAS NO.

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271809

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0691.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 20 Data Analyzed: 12/21/94

Column: (pack/cap) CAP Dilution Factor: 1.0

74-87-3	Chloromethane	12	U
	Bromomethane	12	U
	Vinyl Chloride	12	U
	Chloroethane	12	U
	Methylene Chloride	51	В
67-64-1		12	U
	Carbon Disulfide	12	Ū
	1,1-Dichloroethene	12	บ
	1,1-Dichloroethane	12	Ū
	1,2-Dichloroethene (total)	12	U
	Chloroform	12	U
	1,2-Dichloroethane	12	υ
	2-Butanone	12	U
	1,1,1-Trichloroethane	12	U
	Carbon Tetrachloride	12	υ
	Bromodichloromethane	12	τ
	1,2-Dichloropropane	12	τ
	cis-1,3-Dichloropropene	12	Ţ
	Trichloroethene	12	U
124-48-1	Dibromochloromethane	12	τ
	1,1,2-Trichloroethane	12	τ
71-43-2		12	τ
	trans-1,3-Dichloropropene	12	τ
75-25-2	· · · · · · · · · · · · · · · · · · ·	12	τ
108-10-1	4-Methyl-2-Pentanone	12	τ
	2-Hexanone	12	τ
	Tetrachloroethene	12	ι
	1,1,2,2-Tetrachloroethane	12	J
108-88-3		12	τ

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

U

U

U

U

12

12

12

12

EPA SAMPLE NO.

B-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2273101

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0694.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 9 Data Analyzed: 12/21/94

Column: (pack/cap) CAP Dilution Factor: 1.0

	:	CONCENTRATION		
CAS NO.	COMPOUND	(ug/L or ug/K	(g) UG/KG	Q
	Chloromethane		11	Ū
	Bromomethane_		11	U
	Vinyl Chloride	9	11	U
	Chloroethane_		11	[ע
	Methylene Chlc	oride	38	В
67-64-1			11	ע
	Carbon Disulf:		11	ט
75-35-4	1,1-Dichloroet	hene	11	ט
75-34-3	1,1-Dichloroet	thane	11	ט
540-59-0	1,2-Dichloroet	thene (total)	11	ע
67-66-3	Chloroform		11	ש
107-06-2	1,2-Dichloroe	thane	11	U
78-93-3	2-Butanone		11	U
71-55-6	1,1,1-Trichlo	roethane	11	ע
	Carbon Tetrac		11	ן די
	Bromodichloro		11	ע
78-87-5	1,2-Dichlorop	ropane	11	U
10061-01-5	cis-1,3-Dichl	oropropene	11	U
	Trichloroethe		11	ט
124-48-1	Dibromochloro	methane	11	ע
79-00-5	1,1,2-Trichlo	roethane	11	ע
71-43-2	Benzene		11	ע
10061-02-6	trans-1,3-Dic	hloropropene	11	U
75-25-2	Bromoform		11	U
108-10-1	4-Methyl- <del>2-Pe</del>	ntanone	11	ן די
591-78-6	2-Hexanone		11	U
127-18-4	Tetrachloroet	hene	11	ן די
	1,1,2,2-Tetra		11	U
108-88-3			11	U
	Chlorobenzene		11	U
	Ethylbenzene		11	U
100-42-5			11	U
	Xylene (total		11	U
	Vinyl Acetate		11	U
100 03 1	V1.17 1 1.000 000			

B-1-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273102

Sample wt/vol: 5.0 (g/mL) G

Lab File ID: N0695.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 24

Data Analyzed: 12/21/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		1197 007110	×
74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 67-66-3 107-06-2 78-93-3 71-55-6 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 124-48-1 75-25-2 10061-02-6 75-25-2 108-10-1	Carbon Disulfide1,1-Dichloroethene1,2-Dichloroethene (total)Chloroform1,2-Dichloroethane2-Butanone1,1,1-TrichloroethaneCarbon TetrachlorideBromodichloromethane1,2-Dichloropropanetis-1,3-DichloropropeneTrichloroetheneDibromochloromethane1,1,2-Trichloroethane1,1,2-TrichloroethaneBenzenetrans-1,3-DichloropropeneBromoform4-Methyl-2-Pentanone	13 13 13 13 13 13 13 13 13 13 13 13 13 1	מממממממממממממממממ
78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 10061-02-6 75-25-2 108-10-1 127-18-4 108-88-3 108-90-7 100-41-4	1,2-Dichloropropanecis-1,3-DichloropropeneTrichloroetheneDibromochloromethane1,1,2-TrichloroethaneBenzenetrans-1,3-DichloropropeneBromoform4-Methyl-2-Pentanone2-HexanoneTetrachloroethene1,1,2,2-TetrachloroethaneTolueneChlorobenzeneEthylbenzene	13 13 13 13 13 13 13 13	ממממממ
100-42-5	Styrene Xylene (total) Vinyl Acetate	13 13 13	υ υ υ

# VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-1-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2273103

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0696.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 24 Data Analyzed: 12/21/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO.	COMPOUND	CONCENTRATION (ug/L or ug/K		Q .
75-00-3 75-09-2 75-09-2 75-15-0 75-35-4 75-34-3 75-34-3 67-66-3 107-06-2 78-93-3 75-27-4 78-87-5 1061-01-5 79-01-6 79-01-6 79-01-6 79-01-6 124-48-1 1061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 108-88-3 108-88-3 108-90-7 100-41-4 100-42-5 1330-20-7	BromomethaneVinyl ChlorideChloroethaneMethylene ChloriAcetoneCarbon Disulfide1,1-Dichloroetha1,2-Dichloroetha1,2-Dichloroetha2-Butanone1,1,1-TrichloroeCarbon Tetrachloroetha2-Bichloroprom1,2-Dichloroprom1,2-Dichloroprom1,2-Dichloroprom1,2-Dichloroprom1,2-TrichloroethaneDibromochloromet1,1,2-TrichloroethaneDibromochloromet1,1,2-TrichloroethaneBenzenetrans-1,3-Dichlorom4-Methyl-2-Penta2-HexanoneTetrachloroethaneTetrachloroethaneTolueneChlorobenzeneEthylbenzene	ine ine ine ine ine (total) ine ine ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane ithane	13 13 13 13 13 13 13 13 13 13 13 13 13 1	

B-2-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273104

Sample wt/vol:

5.0 (q/mL) G

Lab File ID: N0697.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 19

Data Analyzed: 12/21/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOLIND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG		Q
74-87-3 74-83-9 75-01-4 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 67-66-3 107-06-2 78-93-3 75-27-4 78-87-5 79-01-6 124-48-1 79-00-5 124-48-1 79-00-5 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 124-48-1 79-01-6 10061-02-6 75-25-2 108-88-3 108-88-3 108-90-7 100-41-4	Carbon Disulfide1,1-Dichloroethe1,2-Dichloroethe1,2-DichloroetheChloroform1,2-Dichloroetha2-Butanone1,1,1-TrichloroeCarbon TetrachloBromodichloromet1,2-Dichloropropcis-1,3-DichloroTrichloroetheneDibromochloromet1,1,2-TrichloroeBenzenetrans-1,3-DichloBromoform4-Methyl-2-Penta2-HexanoneTétrachloroethen1,1,2,2-TetrachlTolueneChlorobenzeneEthylbenzene	ne ne ne ne ne thane ride hane proprene hane thane		UG/KG	12 12 12 12 12 12 12 12 12 12 12 12 12 1	ם מטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט
108-90-7 100-41-4 100-42-5 1330-20-7	Chlorcbenzene				12	U

#### 1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

COMPOUND

100-41-4-----Ethylbenzene

1330-20-7-----Xylene (total)

108-05-4------Vinyl Acetate____

100-42-5-----Styrene

CAS NO.

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273105

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0698.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 26 Data Analyzed: 12/21/94

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO.	COMPOSIND	ug/II OI (	19/119/04/114		×
74-87-3	Chloromethane			14	U
	Bromomethane			14	Ū
	Vinyl Chloride		-	14	<u>ט</u>
	Chloroethane			14	<u>ט</u>
	Methylene Chloride	······		55	В
67-64-1				14	บี
	Carbon Disulfide		<del></del>	14	اَن
	1,1-Dichloroethene		<del></del>	14	Ü
	1,1-Dichloroethane			14	Ŭ
	1,2-Dichloroethene			14	Ū
67-66-3		(00041)_		14	וט
	1,2-Dichloroethane		-	14	Ū
78-93-3				14	וֹט
	1,1,1-Trichloroeth	ane		14	Ü
	Carbon Tetrachlori			14	บ
	Bromodichlorometha			14	Ü
	1,2-Dichloropropan			14	Ū
	cis-1,3-Dichloropr		<del></del>	14	Ū
	Trichloroethene	opene		14	<u></u> ט
	Dibromochlorometha	ne		14	Ü
	1,1,2-Trichloroeth			14	ן ט
71-43-2		.arrc		14	וֹט
	trans-1,3-Dichloro	nronene		14	Ū
75-25-2		properio	<del></del>	14	וֹט
	810110101111 4-Methyl-2-Pentano	ne		14	וֹט
591-78-6		116		14	Ü
591-78-6	Z-nexamone Tétrachloroethene			14	<u>ט</u>
		oe in and	<del></del>	14	ָ ט
	1,1,2,2-Tetrachlor	Oethane_		14	บ
108-88-3				14	ט
108-90-/	Chlorobenzene			14	7.7

U

U

U

U

14

14

14

14

B-2-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273108

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: N0701.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 30

Data Analyzed: 12/22/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

	(45, 2 C1 Q9		×
74-87-3	Chloromethane	14	Ŭ
74-83-9	Bromomethane	14	Ŭ
75-01-4	Vinyl Chloride	14	Ū
75-00-3	Chloroethane	14	Ū
75-09-2	Methylene Chloride	58	В
67-64-1	Acetone	5	JB
75-15-0	Carbon Disulfide	14	U
75-35-4	1,1-Dichloroethene	14	U
75-34-3	1,1-Dichloroethane	14	ט
540-59-0	1,2-Dichloroethene (total)	14	Ü
67-66-3	Chloroform	14	ט
107-06-2	1,2-Dichloroethane	14	U
78-93-3	2-Butanone	14	Ŭ
71-55-6	1,1,1-Trichloroethane	14	Ū
56-23-5	Carbon Tetrachloride	14	Ü
75-27-4	Bromodichloromethane	14	U
78-87-5	1,2-Dichloropropane	14	ט
10061-01-5	cis-1,3-Dichloropropene	14	Ü
79-01-6	Trichloroethene	14	Ü
124-48-1	Dibromochloromethane	14	Ü
79-00-5	1,1,2-Trichloroethane	14	ָ ב
71-43-2	Benzene	14	Ţ
10061-02-6	trans-1,3-Dichloropropene_	14	ָ ֖֖֖֖֖֖֓
75-25-2	Bromoform	14	Ü
108-10-1	4-Methyl-2-Pentanone	14	Ü
591-78-6	2-Hexanone	14	Ü
127-18-4	Tetrachloroethene	14	ָ ב
79-34-5	1,1,2,2-Tetrachloroethane	14	ָ ֖֖֖֖֓֞
108-88-3	Toluene	• 1	
108-90-7	Chlorobenzene	14	Ţ
100-41-4	Ethylbenzene	. 14	Ţ
100-42-5	Styrana	. 14	Ţ
1330-20-7	Xylene (total)	14	Ţ
108-05-4	·Vinyl Acetate	14	Ţ
	ATITAT WESCACE	. 14	U
		.	

B-3-1B

Contract: 9421444 Lab Name: NYTEST ENV INC

SDG No.: JEFF2 Lab Code: NYTEST Case No.: 22731 SAS No.:

Lab Sample ID: 2273109 Matrix: (soil/water) SOIL

Lab File ID: N0702.D 5.0 (g/mL) GSample wt/vol:

Date Received: 12/14/94 Level: (low/med) LOW

Data Analyzed: 12/22/94 % Moisture: not dec. 15

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q COMPOUND CAS NO.

CAS NO.	COMPOUND (ug/L or ug,	/kg) UG/kG	,	2
74-87-3 74-83-9 75-01-4 75-09-2 67-64-1 75-35-4 75-34-3 67-66-3 107-06-2 78-93-3 75-27-4 78-87-5 10061-01-5 79-01-6 124-48-1 79-00-5 124-48-1 10061-02-6 75-25-2 108-10-1 591-78-6 127-18-4 108-88-3 108-90-7 100-41-4 100-42-5 1330-20-7	Carbon Disulfide1,1-Dichloroethene1,2-Dichloroethene (total)Chloroform1,2-Dichloroethane2-Butanone1,1,1-TrichloroethaneCarbon TetrachlorideBromodichloromethane1,2-Dichloropropanet,2-Dichloropropanet,2-Dichloropropanet,2-Dichloropropanet,2-Dichloropropanecis-1,3-DichloropropeneTrichloroetheneDibromochloromethane		12 12 12 12 12 12 12 12 12 12 12 12 12 1	
	-			

00041

B-3-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273110

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0729.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 15 Data Analyzed: 12/23/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

			Q
74-87-3	Chloromethane	12	ָּט
74-83-9	Bromomethane	12	บั
75-01-4	Vinyl Chloride	12	Ŭ
75-00-3	Chloroethane	12	Ū
75-09-2	Methylene Chloride	3	JB
67-64-1	Acetone	12	Ū
75-15-0	Carbon Disulfide	12	Ū
75-35-4	1,1-Dichloroethene	12	Ū
75-34-3	1,1-Dichloroethane	12	Ū
540-59-0	1,2-Dichloroethene (total)	12	Ū
67-66-3	Chloroform	12	บ
107-06-2	1,2-Dichloroethane	12	Ū
78-93-3	2-Butanone	12	Ū
71-55-6	1,1,1-Trichloroethane	12	Ū
56-23-5	Carbon Tetrachloride	12	Ū
75-27-4	Bromodichloromethane	12	Ū
78-87-5	1,2-Dichloropropane	12	U
10061-01-5	cis-1.3-Dichloropropene	12	Ū
79-01-6	Trichloroethene	12	Ū
124-48-1	Dibromochloromethane	12	U
79-00-5	1,1,2-Trichloroethane	12	U
71-43-2	Benzene	12	Ū
10061-02-6	trans-1,3-Dichloropropene	12	U
75-25-2	Bromoform	12	Ū
108-10-1	4-Methyl-2-Pentanone	12	U
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	U
108-88-3	Toluene	12	U
108-90-7	Chlorobenzene	12	U
	Ethylbenzene	12	
100-42-5	Styrene	12	
1330-20-7	Xylene (total)	12	Ū
1 108-05-4	Vinyl Acetate	12	Ū

EPA SAMPLE NO.

B-3-3B

Contract: 9421444 Lab Name: NYTEST ENV INC

Lab Sample ID: 2273111

Matrix: (soil/water) SOIL Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0730.D

Date Received: 12/14/94 Level: (low/med) LOW

Data Analyzed: 12/23/94 % Moisture: not dec. 21

Dilution Factor: 1.0 Column: (pack/cap) CAP

CONCENTRATION UNITS:

VBLKN31

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: VBLKN31

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0686.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 Data Analyzed: 12/21/94

Column: (pack/cap) CAP Dilution Factor: 1.0

	:	CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) UG/KG	Q

## VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

VBLKN33

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: VBLKN33

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0728.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 Data Analyzed: 12/23/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG	Q
74-87-3	10   10   10   10   10   10   10   10	ממטמטמטמטמטמטטטטטטטטטטטטטטטטטטטטטטטטטטט

Lab Name: NYTEST ENV INC

Contract: 9421444

B-4-1B

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274501

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: N0731.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 17

Data Analyzed: 12/23/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	(ug/II 01 ug	/kg/ og/kg	Q.
74-87-3	Chloromethane	12	ָּט
74-83-9	Bromomethane	12	Ü
75-01-4	Vinyl Chloride	12	וט
75-00-3	Chloroethane	12	Ü
75-09-2	Methylene Chloride	4	JВ
67-64-1	Acetone	12	ש
75-15-0	Carbon Disulfide	12	וט
75-35-4	1,1-Dichloroethene	12	Ü
75-34-3	1,1-Dichloroethane	12	Ü
540-59-0	1,2-Dichloroethene (total)	12	ŭ
67-66-3	Chloroform	12	Ü
107-06-2	1,2-Dichloroethane	12	ָ ט
78-93-3	2-Butanone	12	Ü
71-55-6	1,1,1-Trichloroethane	12	ี ป
56-23-5	Carbon Tetrachloride	12	Ü
75-27-4	Bromodichloromethane	12	ָ ט
78-87-5	1,2-Dichloropropane	12	Ū
10061-01-5	cis-1,3-Dichloropropene	12	บ็
79-01-6	Trichloroethene	12	บี
124-48-1	Dibromochloromethane	12	וט
79-00-5	1,1,2-Trichloroethane	12	וט
71-43-2	Benzene	12	וט
10061-02-6	trans-1,3-Dichloropropene	12	וט
75-25-2	Bromoform	12	Ü
108-10-1	4-Methyl-2-Pentanone	12	Ū
591-78-6	2-Hexanone	12	Ü
127-18-4	Tetrachloroethene	12	Ŭ
79-34-5	1,1,2,2-Tetrachloroethane	12	<u>ט</u>
108-88-3	Toluene	12	Ū
108-90-7	Chlorobenzene	12	ับ
100-41-4	Ethylbenzene	12	Ŭ
100-42-5	Styrene	12	บ
1330-20-7	Xylene (total)	12	Ü
108-05-4	Vinyl Acetate	12	บ
	<u></u>	-	- J
·		. 1	

B-4-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274502

Sample wt/vol: 5.0 (g/mL) G Lab File ID: N0734.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 26 Data Analyzed: 12/23/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (ug/L or ug/	/Kg) UG/KG	Q 
74-87-3	Chloromethane	14	ט
	Bromomethane	14	ן ט
	Vinyl Chloride	14	[ט
	Chloroethane	14	υļ
75-09-2	Methylene Chloride	5	JB
67-64-1	Acetone	14	U
75-15-0	Carbon Disulfide	14	ע
75-35-4	1,1-Dichloroethene	14	ע
75-34-3	1,1-Dichloroethane	14	ען
540-59-0	1,2-Dichloroethene (total)	14	U
67-66-3	Chloroform	14	ע
1.07-06-2	1,2-Dichloroethane	14	ַ ע
78-93-3		14	ַ
71-55-6	1,1,1-Trichloroethane	14	U
56-23-5	Carbon Tetrachloride	14	U
75-27-4	Bromodichloromethane	14	U
78-87-5	1,2-Dichloropropane	14	U
10061-01-5	cis-1,3-Dichloropropene	14	U
79-01-6	Trichloroethene	14	U
124-48-1	Dibromochloromethane	14	Ū
79-00-5	1,1,2-Trichloroethane	14	U
71-43-2	Benzene	14	U
10061-02-6	trans-1,3-Dichloropropene	14	Ū
75-25-2	Bromoform	14	U
108-10-1	4-Methyl-2-Pentanone	14	U
591-78-6	2-Hexanone	14	
127-18-4	Tetrachloroethene	14	U
79-34-5	1,1,2,2-Tetrachloroethane	14	U
108-88-3	Toluene	14	
	Chlorobenzene	14	
100-41-4	Ethylbenzene	14	
100-42-5		14	1
	Xylene (total)	14	(
	Vinyl Acetate	_ 14	ַ ע
			.

# 1A

VOLATILE ORGANICS ANALYSIS DATA SHEET

B-4-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274503

Sample wt/vol:

5.0 (g/mL) G

Lab File ID: N0733.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 20

Data Analyzed: 12/23/94

Column: (pack/cap) CAP

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

CAD INC.	· · · · · · · · · · · · · · · · · · ·		
74-87-3	Chloromethane	12	U
	Bromomethane	12	ט
	Vinyl Chloride	12	וט
	Chloroethane	12	Ū
	Methylene Chloride	4	JB
67-64-1		12	<u>ט</u>
	Carbon Disulfide	12	Ŭ
		12	Ū
75-35-4	1,1-Dichloroethene	12	Ü
75-34-3	1,1-Dichloroethane (total)	12	Ü
	1,2-Dichloroethene (total)	12	Ü
	Chloroform	12	וט
107-06-2	1,2-Dichloroethane	12	Ü
	2-Butanone	12	اق
71-55-6	1,1,1-Trichloroethane		וט
	Carbon Tetrachloride	12	ט
	Bromodichloromethane	12	
	1,2-Dichloropropane	12	ט
10061-01-5	cis-1,3-Dichloropropene	12	Ü
	Trichloroethene	12	Ū
124-48-1	Dibromochloromethane	12	U
	1,1,2-Trichloroethane	12	<u>ט</u>
71-43-2	Benzene	12	ט
10061-02-6	trans-1,3-Dichloropropene	12	<u>ע</u>
75-25-2	Bromoform	12	U
108-10-1	4-Methyl-2-Pentanone	12	U
591-78-6	2-Hexanone	12	U
127-18-4	Tétrachloroethene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	
	Toluene	12	
	Chlorobenzene	12	1
	Ethylbenzene	12	
	Styrene	12	
	Xylene (total)	12	
	Vinyl Acetate	12	U
100 03 4 ==	. 111, 1 1100000		
			.

VBLKN33

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: VBLKN33

Sample wt/vol: 5.0 (q/mL) G Lab File ID: N0728.D

Level: (low/med) LOW Date Received: 00/00/00

% Moisture: not dec. 0 Data Analyzed: 12/23/94

Column: (pack/cap) CAP Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. (ug/L or ug/Kg) UG/KG COMPOUND 74-87-3-----Chloromethane 10 U 74-83-9-----Bromomethane 10 U U 75-01-4-----Vinyl Chloride 10 U 75-00-3-----Chloroethane 10 75-09-2-----Methylene Chloride J 2 10 U 67-64-1-----Acetone 75-15-0-----Carbon Disulfide U 10 10 U 75-35-4----1,1-Dichloroethene U 75-34-3-----1,1-Dichloroethane 10 U 540-59-0-----1,2-Dichloroethene (total) 10 U 67-66-3-----Chloroform 10 U 107-06-2----1,2-Dichloroethane 10 U 78-93-3----2-Butanone 10 71-55-6-----1,1,1-Trichloroethane 10 U 10 U 56-23-5-----Carbon Tetrachloride U 10 75-27-4-----Bromodichloromethane U 10 78-87-5----1,2-Dichloropropane Ū 10061-01-5----cis-1,3-Dichloropropene 10 U 79-01-6-----Trichloroethene 10 U 124-48-1-----Dibromochloromethane 10 U 79-00-5-----1,1,2-Trichloroethane 10 U 71-43-2----Benzene 10 U 10061-02-6----trans-1,3-Dichloropropene 10 U 75-25-2-----Bromoform 10 U 108-10-1-----4-Methyl-2-Pentanone 10 U 591-78-6----2-Hexanone 10 U 127-18-4-----Tetrachloroethene 10 IJ 79-34-5----1,1,2,2-Tetrachloroethane 10 10 U 108-88-3-----Toluene 10 U 108-90-7-----Chlorobenzene 10 U 100-41-4-----Ethylbenzene U 100-42-5-----Styrene 10 1330-20-7-----Xylene (total) 10 U 10 108-05-4-----Vinvl Acetate



THIS PAGE INTENTIONALLY LEFT BLANK

EPA SAMPLE NO.

C-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271407

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2341.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 16 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2Phenol	400	ט
111-44-4bis(2-Chloroethyl)Ether	400	וט
95-57-82-Chlorophenol	400	ט
541-73-11,3-Dichlorobenzene	400	ט
106-46-71,4-Dichlorobenzene	400	<u>י</u>
95-50-11,2-Dichlorobenzene	400	ט
95-48-72-Methylphenol	400	Ū
108-60-12,2'-oxybis(1-Chloropropane)	400	Ū
106-44-54-Methylphenol	400	Ü
621-64-7N-Nitroso-di-n-propylamine	400	บ
67-72-1Hexachloroethane	400	IJ
98-95-3Nitrobenzene	400	Ü
78-59-1Isophorone	400	ָ ָּ
88-75-52-Nitrophenol	400	Ŭ
105-67-92,4-Dimethylphenol	400	Ŭ
120-83-22,4-Dichlorophencl	400	Ū
120-82-11,2,4-Trichlorobenzene	400	บั
91-20-3Naphthalene	400	บั
106-47-84-Chloroaniline	400	Ū
87-68-3Hexachlorobutadiene	400	บั
111-91-1bis (2-Chloroethoxy) methane	400	บั
59-50-74-Chloro-3-Methylphenol	400	Ū
91-57-62-Methylnaphthalene	400	Ū
77-47-4Hexachlorccyclopentadiene	400	Ü
88-06-22,4,6-Trichlorophenol	400	บั
95-95-42,4,5-Trichlorophenol	2000	บ
91-58-72-Chloronaphthalene	400	Ū
88-74-42-Nitroaniline	2000	Ū
131-11-3Dimethylphthalate	400	Ŭ
208-96-8Acenaphthylene	400	U U
606-20-22,6-Dinitrotoluene	400	υ
99-09-23-Nitroaniline	2000	l ü
83-32-9Acenaphthene	400	l ti
03 32 3Acettaprictiente	1	
		I

Q

C-1-1B

SDG No.: JEFF1

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

Matrice (goil/enter) COTI

Matrix: (soil/water) SOIL Lab Sample ID: 2271407

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2341.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 16 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-5----2,4-Dinitrophenol 2000 U 100-02-7----4-Nitrophenol 2000 U 132-64-9-----Dibenzofuran 400 U 121-14-2----2,4-Dinitrotoluene 400 U 84-66-2-----Diethylphthalate 400 U U 7005-72-3----4-Chlorophenyl-phenylether 400 86-73-7----Fluorene U 400 100-01-6-----4-Nitroaniline 2000 U 534-52-1----4,6-Dinitro-2-methylphenol U 2000 U 86-30-6----N-Nitrosodiphenylamine (1) 400 101-55-3----4-Bromophenyl-phenylether___ 400 U U 118-74-1-----Hexachlorobenzene 400 U 87-86-5----Pentachlorophenol 2000 85-01-8-----Phenanthrene 110 J 120-12-7-----Anthracene 400 U 86-74-8-----Carbazole 400 U 84-74-2----Di-n-butylphthalate 400 U J 230 206-44-0----Fluoranthene 200 J 129-00-0-----Pyrene 85-68-7-----Butylbenzylphthalate 400 U U 790 91-94-1----3,3'-Dichlorobenzidine J 56-55-3-----Benzo(a) anthracene 110 J 218-01-9-----Chrysene 130 J 117-81-7-----bis(2-Ethylhexyl)phthalate 50 117-84-0-----Di-n-octylphthalate 400 U 68 J 205-99-2----Benzo(b) fluoranthene 46 J 207-08-9-----Benzo(k) fluoranthene 47 J 50-32-8-----Benzo (a) pyrene 193-39-5----Indeno(1,2,3-cd)pyrene_ U 400 Ū 53-70-3-----Dibenz(a,h)anthracene____ 400 400 Ū 191-24-2-----Benzo(q,h,i)perylene

C-1SED

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271408

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2342.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 33 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

•			
108-95-2	Dhenol	2500	U
	bis(2-Chloroethy')Ether	2500	Ü
	2-Chlorophenol	2500	บ
75-5/-0	1,3-Dichlorobenzene	2500	Ū
		2500	บ
	1,4-Dichlorobenzene	2500	Ü
	1,2-Dichlorobenzene	2500	Ü
	2-Methylphenol		
	2,2'-oxybis(1-Chloropropane)	2500	U
106-44-5	4-Methylphenol	2500	U
621-64-7	N-Nitroso-di-n-propylamine_	2500	U
	Hexachloroethane	2500	U
	Nitrobenzene	2500	U
	Isophorone	2500	ָּ <u>ט</u>
	2-Nitrophenol	2500	U
	2,4-Dimethylphenol	2500	Ŭ
	2,4-Dichlorophencl	2500	U
	1,2,4-Trichlorobenzene	2500	Ŭ
	Naphthalene	2500	U
106-47-8	4-Chloroaniline	2500	U
	Hexachlorobutadiene	2500	U
111-91-1	bis(2-Chloroethoxy)methane	2500	U
59-50-7	4-Chloro-3-Methylphenol	2500	U
91-57-6	2-Methylnaphthalene	2500	U
77-47-4	Hexachlorocyclopentadiene	2500	U
88-06-2	2,4,6-Trichlorophenol	2500	Ū
	2,4,5-Trichlorophenol	12000	Ū
	2-Chloronaphthalene	2500	U
	2-Nitroaniline	12000	U
	Dimethylphthalate	2500	U
	Acenaphthylene	2500	U
	2,6-Dinitrotoluene	2500	U
	3-Nitroaniline	12000	U
	Aceraphthene	2500	ט
	.1001.001.01.0		
1			l

EPA SAMPLE NO.

C-1SED

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271408

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2342.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 33 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 5.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

1	***************************************	
51-28-52,4-Dinitrophenol	12000	U
100-02-74-Nitrophenol	12000	Ü
132-64-9Dibenzofuran	2500	Ü
121-14-22,4-Dinitrotoluene	2500	<b>ט</b>
84-66-2Diethylphthalate	2500	Ü
7005-72-34-Chlorophenyl-phenylether	2500	Ü
86-73-7Fluorene	2500	Ŭ
100-01-64-Nitroaniline	12000	Ū
534-52-14,6-Dinitro-2-methylphenol	12000	Ū
86-30-6Nitrosodiphenylamine (1)	2500	Ū
101-55-34-Bromophenyl-phenylether	2500	Ŭ
118-74-1Hexachlorobenzene	2500	Ŭ
87-86-5Pentachlorophenol	12000	Ü
85-01-8Phenanthrene	2500	U
120-12-7Anthracene	2500	Ū
86-74-8Carbazole	2500	Ū
84-74-2Di-n-butylphthalate	2500	บั
206-44-0Fluoranthene	380	Ĵ
129-00-0Pyrene	380	J
85-68-7Butylbenzylphthalate	2500	Ū
91-94-13,3°-Dichlorobenzidine	5000	บ
56-55-3Benzo(a) anthracene	2500	บ
218-01-9Chrysene	390	J
117-81-7bis (2-Ethylhexyl) phthalate	600	J
117-84-0Di-n-octylphthalate	2500	U
205-99-2Benzo(b) fluoranthene	300	J
207-08-9Benzo(k) fluoranthene	260	J
50-32-8Benzo (a) pyrene	2500	U
193-39-5Indeno(1,2,3-cd)pyrene	2500	U
53-70-3Dibenz(a,h)anthracene	2500	U
191-24-2Benzo(g,h,i)perylene	2500	U
	1	

C-2-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271801

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2346.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 21 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (dg/L Of dg/)	kg) od/kg	<u> </u>
108-95-2	Phenol	420	ָּט
	bis(2-Chloroethyl)Ether	420	U
	2-Chlorophenol	420	U
	1,3-Dichlorobenzene	420	ับ
106-46-7	1,4-Dichlorobenzene	420	U
95-50-1	1,2-Dichlorobenzene	420	U
	2-Methylphenol	420	U
108-60-1	2,2'-oxybis(1-Chloropropane)	420	U
106-44-5	4-Methylphenol	420	U
621-64-7	N-Nitroso-di-n-propylamine	420	U
67-72-1	Hexachloroethane	420	Ŭ
	Nitrobenzene	420	Ū
	Isophorone	420	Ŭ
	2-Nitrophenol	420	U
	2,4-Dimethylphenol	420	U
	2,4-Dichloropherol	420	U
	1,2,4-Trichlorobenzene	420	Ū
	Naphthalene	420	U
106-47-8	4-Chloroaniline	420	Ū
7.7	HeRachlorobutadiene	420	U
	bis(2-Chloroethoxy) methane	420	U
	4-Chloro-3-Methylphenol	420	Ū
	2-Methylnaphthalene	420	U
	Hexachlorocyclopentadiene	420	U
	2,4,6-Trichiorophenol	420	U
	2,4,5-Trichlorophenol	2100	U
	2-Chloronaphthalene	420	U
	2-Nitroaniline	2100	U
	Dimethylphthalate	420	Ū
	Acenaphthylene	420	U
	2,6-Dinitrotoluene	420	U
	3-Nitroaniline	2100	U
		420	Ü
	Acenaphthene		

C-2-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271801

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2346.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 21 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG 51-28-5----2,4-Dinitrophenol 2100 U 100-02-7----4-Nitrophenol 2100 U 420 132-64-9------Dibenzofuran U 420 121-14-2----2,4-Dinitrotoluene U 84-66-2-----Diethylphthalate 420 U 420 7005-72-3----4-Chlorophenyl-phenylether 420 U 86-73-7-----Fluorene U 100-01-6-----4-Nitroaniline 2100 U 2100 534-52-1----4,6-Dinitro-2-methylphenol 86-30-6-----Nitrosodiphenylamine_(1)__ 420 Ũ 420 U 101-55-3----4-Bromophenyl-phenylether 420 U 118-74-1-----Hexachlorobenzene U 87-86-5-----Pentachlorophenol 2100 85-01-8-----Phenanthrene 420 U U 420 120-12-7-----Anthracene U 420 86-74-8-----Carbazole 420 U 84-74-2-----Di-n-butylphthalate 420 U 206-44-0-----Fluoranthene U 420 129-00-0-----Pyrene U 420 85-68-7-----Butylbenzylphthalate_ U 91-94-1----3,3'-Dichlorobenzidine 840 U 420 56-55-3-----Benzo (a) anthracene 420 U 218-01-9-----Chrysene 120 J 117-81-7-----bis (2-Ethylhexyl) phthalate U 420 117-84-0-----Di-n-octylphthalate U 205-99-2----Benzo (b) fluoranthene 420 U 420 207-08-9-----Benzo(k) fluoranthene U 420 50-32-8-----Benzo(a)pyrene U 193-39-5-----Indeno (1, 2, 3-cd) pyrene 420 420 U 53-70-3-----Dibenz(a,h)anthracene 420 U 191-24-2----Benzo(g,h,i)perylene

C-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271802

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2347.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 20 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	420	U
111-44-4bis(2-Chloroethyl)Ether	420	Ü
95-57-82-Chlorophenol	420	บ
541-73-11,3-Dichlorobenzene	420	ט
106-46-71,4-Dichlorobenzene	420	ָ ָ ע
95-50-11,2-Dichlorobenzene		
95-48-72-Methylphenol	420	ָ ט
109 60 1 2 2/ o-thi-/1 (hl	420	
108-60-12,2'-oxybis(1-Chloropropane)	420	Ū
106-44-54-Methylphenol	420	Ŭ
621-64-7N-Nitrosc-di-n-propylamine	420	U
67-72-1Hexachloroethane	420	U
98-95-3Nitrobenzene	420	U
78-59-1Isophorone	420	U
88-75-52-Nitrophenol	420	U
105-67-92,4-Dimethylphenol	420	U
120-83-22,4-Dichloropherol	420	U
120-82-11,2,4-Trichlorobenzene	420	U
91-20-3Naphthalene	420	U
106-47-84-Chlorcaniline	420	Ū
87-68-3Hexachlorobutadiene	420	U
111-91-1bis(2-Chloroethoxy) methane	420	U
59-50-74-Chloro-3-Methylphenol	420	Ū
91-57-62-Methylnaphthalene	420	U
77-47-4Hekachlorocyclopentadiene	420	U
88-06-22,4,6-Trichlorophenol	420	Ū
95-95-42.4,5-Trichlorophenol	2100	Ū
91-58-72-Chloronaphthalene	420	บ
88-74-42-Nitroaniline	2100	Ū
131-11-3Dimethylphthalate	420	Ū
208-96-8Acenaphthylene	420	บ
606-20-22,6-Dinitrotoluene	420	. U
99-09-23-Nitroaniline	2100	IJ
83-32-9Acenaphthene	420	U
oo oo oo oo oo oo oo oo oo oo oo oo oo	420	

C-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271802

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2347.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 20 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-5----2,4-Dinitrophenol 2100 U 100-02-7----4-Nitrophenol 2100 U 132-64-9-----Dibenzofuran 420 U 121-14-2----2,4-Dinitrotoluene 420 U 84-66-2-----Diethylohthalate 420 U 7005-72-3----4-Chlorophenyl-phenylether 420 U 86-73-7-----Fluorene 420 U 100-01-6-----4-Nitroaniline U 2100 534-52-1----4,6-Dinitro-2-methylphenol 2100 U 86-30-6----N-Nitrosodiphenylamine (1) 420 U 101-55-3-----4-Bromophenyl-phenylether 420 U 118-74-1-----Hexachlorobenzene 420 U 87-86-5-----Pentachlorophenol 2100 U U 85-01-8-----Phenanthrene 420 120-12-7-----Anthracene 420 U 86-74-8-----Carbazole 420 U 84-74-2----Di-n-butylphthalate 420 U 206-44-0----Fluoranthene 420 U 129-00-0-----Pyrene 420 U 85-68-7-----Butylberzylphthalate 420 U 91-94-1----3, 3, -Dichlorobenzidine 830 U 56-55-3-----Benzo(a)anthracene 420 U 218-01-9-----Chrysene 420 U 117-81-7-----bi (2-Ethylhexyl) phthalate 56 J 117-84-0-----Di-n-octylphthalate 420 U 205-99-2----Benzo(b) fluoranthene 420 U 207-08-9-----Benzo(k) fluoranthene 420 U 50-32-8-----Benzo (a) pyrene 420 U 193-39-5-----Indeno(1,2,3-cd)pyrene U 420 53-70-3-----Dibenz (a, h) anthracene U 420 191-24-2----Benzo(g,h,i)perylene 420 U

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

C-2-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271803

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2348.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 26 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	450	U
111-44-4bis(2-Chloroethvl)Ether	450	Ü
95-57-82-Chlorophenol	450	U
541-73-11,3-Dichlorobenzene	450	Ü
106-46-71,4-Dichlorobenzene	450	וט
95-50-11,2-Dichlorobenzene	450 450	ŭ
95-48-72-Methylphenol	450	ט
108-60-12,2'-oxybis(1-Chloropropane)	450	ש
106-44-54-Methylphenol		ט
COL CA 7	450	
621-64-7N-Nitroso-di-n-propylamine	450	ָּט
67-72-1Hexachloroethane	450	ָּט
	450	ָּט
78-59-1Isophorone	450	U
88-75-52-Nitrophenol	450	ū
105-67-92,4-Dimethylphenol	450	ַע
120-83-22,4-Dichlorophenol	450	ַ
120-82-11,2,4-Trichlorobenzene	450	ַ
91-20-3Naphthalene	450	Ū
106-47-84-Chloroaniline	450	U
87-68-3Hexachlorobutadiene	450	Ū
111-91-1bis(2-Chloroethoxy)methane	450	ט
59-50-74-Chloro-3-Methylphenol	450	U
91-57-62-Methylnaphthalene	450	Ŭ
77-47-4Hexachlorocyclopentadiene	450	Ū
88-06-22,4,6-Trichlorophenol	450	Ŭ
95-95-42,4,5-Trichlorophenol	2200	Ū
91-58-72-Chloronaphthalene	450	Ū
88-74-42-Nitroaniline	2200	Ū
131-11-3Dimethylphthalate	450	U
208-96-8Acenaphthylene	450	U
606-20-22,6-Dinitrotoluene	450	U
99-09-23-Nitroaniline	2200	Ū
83-32-9Acenaphthene	450	Ū

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC

Contract: 9421444

C-2-3B

Lab Code: NYTEST

Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271803

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

R2348.D

Level:

(low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 26 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

Q

1		~
51-28-52,4-Dinitrophenol	2200	ט
100-02-74-Nitrophenol	2200	l ü
132-64-9Dibenzofuran	450	ט
121-14-22,4-Dinitrotoluene	450	U
84-66-2Diethylphthalate		ט ט
7005-72-34-Chlorophenyl-phenylether	450	4
86-73-7Fluorene	450	ָד
100-01-64-Nitroaniline	450	U
534-52-14,6-Dinitro-2-methylphenol	2200	ū
86-30-6 N. Nitrogodinhows Joseph (1)	2200	Ū
86-30-6N-Nitrosodiphenylamine (1)	450	U
101-55-34-Bromophenyl-phenylether	450	Ū
118-74-1Hexachlorobenzene	450	U
87-86-5Pentachlorophenol	2200	U
85-01-8Phenanthrene	450	U
120-12-7Anthracene	450	U
86-74-8Carbazole	450	U
84-74-2Di-n-butylphthalate	450	U
206-44-0Fluoranthene	450	Ū
129-00-0Pyrene	450	U
85-68-7Butylbenzylphthalate	450	Ū
91-94-13,37-Dichlorobenzidine	900	U
56-55-3Benzo(a) anthracene	450	Ū
218-01-9Chrysene	450	U
117-81-7bis(2-Ethylhexyl)phthalate	450	ט ו
117-84-0Di-n-octylphthalate	450	ט
205-99-2Benzo(b) fluoranthene	450	Ū
207-08-9Benzo(k) fluoranthene	450	ע
50-32-8	450	บั
193-39-5Indeno(1,2,3-cd) pyrene	450	Ŭ
53-70-3Dibenz (a, h) anthracene	450	Ū
191-24-2Benzo(g,h,i)perylene	450	IJ
(5),, -, -, -, -, -, -, -, -, -, -, -, -,	!	
	;	

^{(1) -} Cannot be separated from Diphenylamine

C-2SED

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271409

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2367.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 27 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 2.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND (dg/11 of dg)	, 113, 00, 110	×.
108-95-2	Phenol	910	U
111-44-4	bis(2-Chloroethyl)Ether	910	U
95-57-8	2-Chlorophenol	910	U
	1,3-Dichlorobenzene	910	ַ ד
	1,4-Dichlorobenzene	910	ע
95-50-1	1,2-Dichlorobenzene	910	U
	2-Methylphenol	910	ע
	2,2'-oxybis(1-Chloropropane)	910	υl
	4-Methylphenol	910	υl
621-64-7	N-Nitroso-di-n-propylamine	910	ן ט
	Hexachloroethane	910	U
98-95-3	Nitrobenzene	910	ט
78-59-1	Isophorone	910	U
88-75-5	2-Nitrophenol	910	U
105-67-9	2,4-Dimethylphenol	910	Ŭ
120-83-2	2,4-Dichlorophenol	910	U
120-82-1	1,2,4-Trichlorobenzene	910	U
91-20-3	Naphthalene	910	U
106-47-8	4-Chloroaniline	910	U
87-68-3	Hexachlorobutadiene	910	Ū
111-91-1	bis(2-Chloroethoxy) methane_	910	U
59-50-7	4-Chloro-3-Methylphenol	910	U
91-57-6	2-Methylnaphthalene	910	U
77-47-4	Hexachlorocyclopentadiene	910	U
88-06-2	2,4,6-Trichlorophenol	910	U
95-95-4	2,4,5-Trichlorophenol	4600	U
91-58-7	2-Chlorcnaphthalene	910	U
88-74-4	2-Nitroaniline	4600	U
131-11-3	Dimethylphthalate	910	U
208-96-8	Acenaphthylene	910	
	2,6-Dinitrotoluene	910	U
	3-Nitroaniline	4600	Ū
	Acenaphthene	910	U

C-2SED

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST

Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271409

Sample wt/vol: 30 0 (g/mL) G

Lab File ID: R2367.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 27 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 2.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/KG	Q
51-28-5	2,4-Dinitrophenol	4600	Ū
100-02-7	4-Nitrophenol	4600	U
	Dibenzofuran	910	ַ ע
121-14-2	2,4-Dinitrotoluene	910	U
84-66-2	Diethylphthalate	91:0	U
	4-Chlorophenyl-phenylether	910	Ū
	Fluorene	910	U
100-01-6	4-Nitroaniline	4600	U
534-52-1	4,6-Dinitro-2-methylphenol	4600	บ
86-30-6	N-Nitrosodiphenylamine (1)	910	บ
101-55-3	4-Bromophenyl-phenylether	910	U
	Hexachlorobenzene	910	U
87-86-5	Pentachlorophenol	4600	U
85-01-8	Phenanthrene	910	ប
	Anthracene	910	Ū
	Carbazole	910	U
84-74-2	Di-n-butylphthalate	910	Ū
206-44-0	Fluoranthene	150	J
129-00-0	Pyrene	140	J
85-68-7	Butylbenzylphthalate 3,3 ⁷ -Dichlorobenzidine	910	Ŭ
91-94-1	3,3 ⁷ -Dichlorobenzidine.	1800	U
56-55-3	Benzo(a) anthracene	910	U
218-01-9	Chrysene	110	J
117-81-7	bis(2-Ethylhexyl)phthalate	910	Ū
117-84-0	Di-n-octylphthalate	910	U
205-99-2	Benzo(b) fluoranthene	910	U
207-08-9	Benzo(k) fluoranthene	910	U
50-32-8	Benzo(a)pyrene	910	U
193-39-5	Irideno (1, 2, 3-cd) pyrene	910	U
53-70-3	Dibenz (a, h) anthracene	910	U
	Benzo(g,h,i)perylene	910	U
	<del>-</del>		

C-3-1B

Contract: 9421444 Lab Name: NYTEST ENV INC

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271804

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2349.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 18 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

108-95-2Phenol	410	U
111-44-4bis(2-Chloroethyl)Ether	410	Ū
95-57-82-Chlorophenol	410	Ŭ
541-73-11,3-Dichlorobenzene	410	Ü
106-46-71,4-Dichlorobenzene	410	Ū
95-50-11,2-Dichlorobenzene	410	Ü
95-48-72-Methylphenol	410	Ŭ
108-60-12,2'-oxybis(1-Chloropropane)	410	Ŭ
106-44-54-Methylphenol	410	Ü
621-64-7N-Nitroso-di-n-propylamine	410	Ū
67-72-1Hexachloroethane	410	Ū
98-95-3Nitrobenzene	410	Ū
78-59-1Isophorone	410	Ū
88-75-52-Nitrophenol	410	Ū
105-67-92,4-Dimethylphenol	410	Ū
120-83-22,4-Dichlorophenol	410	บ
120-82-11,2,4-Trichlorobenzene	410	บ
91-20-3Naphthalene	410	Ü
106-47-84-Chloroaniline	410	Ü
87-68-3Hexachlorobutadiene	410	U
111-91-1bis (2-Chloroethoxy) methane	.410	บ
59-50-74-Chloro-3-Methylphenol	410	Ü
91-57-62-Methylnaphthalene	1	Ü
77-47-4Hexachlorocyclopentadiene	410	U
20 06 2 2 4 6 Triablement	410	_
88-06-22,4,6-Trichlorophenol	410	Ū
95-95-42.4,5-Trichlorophenol	2000	IJ
91-58-72-Chloronaphthalene	410	U
88-74-42-Nitroaniline	2000	Ū
131-11-3Dimethylphthalate	410	U
208-96-8Acenaphthylene	410	U
606-20-22,6-Dinitrotoluene	410	U
99-09-23-Nitroaniline	2000	U
83-32-9Acenaphthene	410	U

EPA SAMPLE NO.

C-3-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271804

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2349.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 18 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (ag/ ii or ag	/ 1tg/ 00/ 1to	~
51-28-5	2,4-Dinitrophenol	2000	U
	4-Nitrophenol	2000	ט
	Dibenzofuran	410	Ū
	2,4-Dinitrotoluene	410	וט
	Diethylphthalate	410	ט
	4-Chlorophenyl-phenylether	410	ט
	Fluorene	410	ט
	4-Nitroaniline	2000	ט
	4,6-Dinitro-2-methylphenol	2000	ט
	N-Nitroscdiphenylamine (1)	410	ט
	4-Bromophenyl-phenylether	410	ַ
	Hexachlorobenzene	410	ט
	Pentachlorophenol	2000	ן ט
	Phenanthrene	410	ן ט
	Anthracene	410	U
	Carbazole	410	U
84-74-2	Di-n-butylphthalate	410	U
	Fluoranthene	410	U
129-00-0		410	U
	Bu <del>s</del> ylbenzylphthalate	410	U
91-94-1	3,3, -Dichlorobenzidine	810	Ū
	Benzo(a) anthracene	410	IJ
	Chrysene	410	Ū
117-81-7	biş (2-Ethylhexyl)phthalate	410	
117-84-0	Di-n-octylphthalate	410	ប
	Benzo(b) fluoranthene	410	U
	Benzo(k)fluoranthene	410	Ū
	Benzo(a)pyrene	410	U
	Indeno (1, 2, 3-cd) pyrene	410	U
	Dibenz (a,h) anthracene	410	U
	Benzo(q,h,i)perylene	410	Ū
	<u> </u>	-	

C-3-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271805

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2368.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 20 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N  $\stackrel{?}{=}$  pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

		T	
108-95-2	Phenol	420	U
111-44-4	bis(2-Chloroethvl)Ether	420	Ū
95-57-8	2-Chlorophenol	420	Ū
541-73-1	1,3-Dichlorobenzene	420	Ū
106-46-7	1,4-Dichlorobenzene	420	Ü
95-50-1	1,2-Dichlorobenzene	420	Ū
95-48-7	2-Methylphenol	420	. Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	420	Ŭ
106-44-5	4-Methylphenol	420	Ū
621-64-7	N-Nitroso-di-n-propylamine	420	Ū
67-72-1	Hexachloroethane	420	Ū
98-95-3	Nitrobenzene	420	Ū
78-59-1	Isophorone	420	Ū
88-75-5	2-Nitrophenol	420	Ŭ
105-67-9	2,4-Dimethylphenol	420	Ū
120-83-2	2,4-Dichlorophenol	420	Ū
120-82-1	1,2,4-Trichlorobenzene	420	Ū
91-20-3	Naphthalene	420	Ū
106-47-8	4-Chloroaniline	420	Ū
87-68-3	Hexachlorobutadiene	420	Ū
111-91-1	bis(2-Chlorcethoxy) methane	420	Ū
59-50-7	4-Chloro-3-Methylphenol	420	Ū
91-57-6	2-Methylnaphthalene	420	Ū
77-47-4	Hexachlorocyclopentadiene	420	Ū
88-06-2	2,4,6-Trichlorophenol	420	U
95-95-4	2,4,5-'Frichlorophenol	2100	U
91-58-7	2-Chloronaphthalene	420	U
88-74-4	2-Nitroaniline	2100	U
131-11-3	Dimethylphthalate	420	Ū
208-96-8	Acenaphthylene	420	Ū
606-20-2	2,6-Dinitrotoluene	420	U
99-09-2	3-Nitroaniline	2100	Ü
83-32-9	Acenaphthene	420	U
		;	

EPA SAMPLE NO.

C-3-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271805

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2368.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 20 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/KG	Q
51-28-5	2,4-Dinitrophenol	2100	U
	4-Nitrophenol	2100	ש
	Dibenzofuran	420	ש
	2,4-Dinitrotoluene	420	ַ
84-66-2	Diethylphthalate	420	U
	4-Chlorophenyl-phenylether	420	U
	Fluorene	420	U
	4-Nitroaniline	2100	U
	4,6-Dinitro-2-methylphenol	2100	U
	N-Nitrosodiphenylamine (1)	420	U
	4-Bromophenyl-phenylether	420	U
	Hexachlorobenzene	420	Ū
	Pentachlorophenol	2100	U
	Phenanthrene	420	U
	Anthracene	420	U
	Carbazole	420	U
	Di-n-butylphthalate	420	U
206-44-0	Fluoranthene	420	Ū
129-00-0		420	U
	Butylbenzylphthalate	420	U
91-94-1	3,3'-Dichlorobenzidine	830	U
	Benzo(a) anthracene	420	U
	Chrysene	420	U
	bis(2-Ethylhexyl)phthalate	420	U
	Di-n-octylphthalate	420	Ū
	Benzo (b) fluoranthene	420	Ū
	Benzo(k) fluoranthene	420	. Ω
	Benzo (a) pyrene	420	Ū
	Indeno (1, 2, 3 - cd) pyrene	420	Ū
53-70-3	Dibenz (a, h) anthracene	420	Ū
	Benzo(g,h,i) perylene	420	Ū
	20,120 (3,11,1) por 1 10110	•	
l		.	·

C-3SED

Contract: 9421444 Lab Name: NYTEST ENV INC

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271410

Sample wt/vol: 30.0 (g/mL) GLab File ID: R2344.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 24 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

Q

	( · · · · · · · · · · · · · · · · · · ·		~
108-95-2	Phenol	440	U
	bis(2-Chloroethyl)Ether	440	บ
95-57-8	2-Chlorophenol	440	บั
541-73-1	1,3-Dichlorobenzene	440	Ū
106-46-7	1,4-Dichlorobenzene	440	Ū
95-50-1	1,2-Dichlorobenzene	440	Ū
95-48-7	2-Methylphenol	440	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	440	Ū
106-44-5	4-Methylphenol	440	Ū
621-64-7	N-Nitroso-di-n-propylamine	440	U
67-72-1	Hexachloroethane	440	U
98-95-3	Nitrobenzene	440	Ū.
78-59-1	Isophorone	440	U
88-75-5	2-Nitrophenol	440	U
105-67-9	2,4-Dimethylphenol	440	U
120-83-2	2.4-Dichlorophenol	440	U
120-82-1	1,2,4-Trichlorobenzene	440	U
91-20-3	Naphthalene	440	Ü
106-47-8	4-Chloroaniline	440	U
87-68-3	Hexachlorobutadiene	440	U
111-91-1	bis (2-Chlcroethoxy) methane	440	U
59-50-7	4-Chloro-3-Methylphenol	440	U
91-57-6	2-Methylnaphthalene	440	Ū
77-47-4	Hexachlorocyclopentadiene	440	Ŭ
88-06-2	2,4,6-Trichlorophenol	440	U
95-95-4	2,4,5-Trichlorophenol	2200	U
91-58-7	2-Chloronaphthalene	440	U
	2-Nitroaniline	2200	U
131-11-3	Dimethylphthalate	440	U
208-96-8	Acenaphthylene	440	Ū
606-20-2	2,6-Dinitrotoluene	440	U
99-09-2	3-Nitroaniline	2200	U
83-32-9	Acenaphthene	440	U

C-3SED

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271410

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2344.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 24 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

	(45, 2 52 45,	1.9, 00,1.0	
51-28-5	2,4-Dinitrophenol	2200	U
	4-Nitrophenol	2200	U
132-64-9	Dibenzofuran	440	U
121-14-2	2,4-Dinitrotoluene	440	U
84-66-2	Diethylphthalate	440	U
	4-Chlorophenyl-phenylether	440	U
86-73-7		440	ប
	4-Nitroaniline	2200	U
534-52-1	4,6-Dinitro-2-methylphenol	2200	Ū
	N-Nitrosodiphenylamine (1)	440	U
	4-Bromophenyl-phenylether	440	U
	Hexachlorobenzene	440	Ū
	Pentachlorophenol	2200	U
	Phenanthrene	440	U
	Anthracene	440	U
86-74-8	Carbazole	440	Ū
84-74-2	Di-n-butylphthalate	440	U
	Fluoranthene	120	J
129-00-0		120	J
	Butylbenzylphthalate	440	U
91-94-1	3,3'-Dichlorobenzidine	880	ט
	Benzo (a) anthracene	100	J
218-01-9		150	J
117-81-7	bis (2-Ethylhexyl) phthalate	440	U
117-84-0	Di-n-octylphthalate	440	U
205-99-2	Benzo (b) fluoranthene	110	J
	Benzo(k) fluoranthene	64	J
	Benzo(a) pyrene	65	¦ J
	Indeno (1, 2, 3-cd) pyrene	440	l t
53-70-3	Dibenz(a,h)anthracene	440	t
	Benzo(q,h,i)perylene	440	τ
		. 1	· ———

Lab Name: NYTEST ENV INC

Contract: 9421444

C-4-1B

Matrix: (soil/water) SOIL

Lab Sample ID: 2271806

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2369.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 11 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

		<u> </u>	
108-95-2	Phenol	370	
111-44-4	bis(2-Chloroethvl)Ether	370	
JJ-J/-8	2-Chlorophenol	370	
541-/3-1	1 3-Dichlorobonsons	370	
エリケーチャー / ーー~--	1 4-Dichlorohongono	370 370	
プンニンひーエーーーーー	re-1 2-Dichlorchongone	370	_
20-40-/	2-Methylphenol	370	
T08-60-T	2 2'-0xxhic/1 (hloron)	370	
エロローチチュコーーーーー	4-Merhy; phenol	370	1 -
0 <i>4</i> 1-64-7	N-Nitrogo di n promi	370	1 -
0/-/2-1	Hexachloroethano	1	1
98-95-3	Nitrobenzono	370	1 -
78-59-1	Isophorore	370 370	
88-75-5	2-Nitrophonol	370	Ü
105-67-9	2 4-Dino-halmbon-1	370	U
エムリーロン・スーー~---	2 4-Dichlorophonol	370	ָטַ
TZU-8Z-T	1.2.4-Trichlorobonzono	370	U
J1-20-3	Naphthalene	370	Ū
106-47-8	4-Chlorospiling	370	Ū
87-68-3	Hewachlorchutadione	370 370	Ū
	his (2-Chloroethoras) mothers	370	U U
	4-('n 0'0'.'2-Mothy:?nhone?	370	ט
フエーコ / ーb ーーーーーー	2-Methylpaphthalone	370	ט ט
//-4/-4	Hetach orogical opentadia	370 370	U
00-00-2	==2.4 6=Tr:chlorophonol	370	Ü
JJ-JJ-4+	2.4 b-Trich oronhonol	1900	Ū
フユーコロー / ーーーーーー	2-Chloronaphthalono	370	
88-/4-4	2-Nitroariline	1900	U
131-11-3	Dimethylphthalate		U
208-96-8	Acenaphthylano	370	U
606-20-2	2.6-Dinitrotolueno	370	U
99-09 <b>-</b> 2	3-Nitroariline	370	U
83-32-9	Acenaphthene	1900	U
		370	ן ט
	T		ſ

EPA SAMPLE NO.

C-4-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271806

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2369.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 11 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

		CONCENTRATION (	NITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg)	UG/KG	Q
51-28-5	2,4-Dinitroph	enol	1900	ַ
100-02-7	4-Nitrophenol		1.900	U
132-64-9	Dibenzofuran		370	U
121-14-2	$2,4$ -Dinitrot $\overline{\circ}$	luene	370	U
84-66-2	<b>-</b> Diethylphthal	ate	370	U
7005-72-3	4-Chloropheny	l-phenylether	370	U
86-73-7	Fluorene		370	U
	4-Nitroamilin		1900	U
534-52-1	4,6-Dinitro-2	-methylphenol	1900	ן דו
86-30-6	N-Nitroscdiph	enylamine_(1)	370	ן ט
101-55-3	4-Bromophenyl	-phenylether	370	ט
118-74-1	Hexachloroben	zene	370	U
87-86-5	Pentachloroph	enol	1900	U
	Phenanthrene		370	บ
120-12-7	Anthracene		370	U
	Carbazole		370	U
84-74-2	Di-n-butylpht	halate	370	U
206-44-0	Fluoranthene_		370	U
129-00-0		İ	370	U
85-68-7	Buaylbenzylph	nthalate	370	Ü
91-94-1	3,3'-Dichloro	benzidine	750	U
56-55-3	Benzo(a)anthi	racene	370	U
218-01-9	Chrysene		370	U
	bi \$ (2-Ethylhe		53	J
	Di-n-octylpht		370	U
	Benzo(b) fluor		370	Ū
	Benzo(k) fluo:		370	Ū
	Benzo(a)pyrer		370	Ū
	Indeno(1,2,3-		370	ū
	Dinenz (a, h) ar		370	Ū
191-24-2	Benzo(g,h,i)	perylene	370	U

EPA SAMPLE NO.

C-4-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Conclude: 542144

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271807

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2370.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 12 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2Phenol   380		COMEOUND (u	g/H Or ug	/ NG/	03/10	Q
111-44-4       bis (2-Chloropethyl) Ether       380       U         95-57-8       2-Chlorophenol       380       U         541-73-1       3-Dichlorobenzene       380       U         106-46-7       1,4-Dichlorobenzene       380       U         95-50-1       1,2-Dichlorobenzene       380       U         95-48-7       2-Methylphenol       380       U         108-60-1       2,2'-oxybis (1-Chloropropane)       380       U         106-44-5       -4-Methylphenol       380       U         621-64-7       -N-Mitroso-di-n-propylamine       380       U         67-72-1       -Hexachloroethane       380       U         98-95-3       -Nitrobenzene       380       U         78-59-1       -Isophorone       380       U         88-75-5       -2-Nitrobenzene       380       U         105-67-9       -2,4-Dimethylphenol       380       U         120-83-2       -2,4-Dimethylphenol       380       U         120-83-2       -2,4-Dimethylphenol       380       U         190-87-2       -4-Dimethylphenol       380       U         190-87-68-3       -Hexachlorobutadlene       380       U <td>108-95-2</td> <td>Phenol</td> <td></td> <td></td> <td>380</td> <td>TT</td>	108-95-2	Phenol			380	TT
95-57-82-Chlorophenol 380 U 541-73-11,3-Dichlorobenzene 380 U 106-46-71,4-Dichlorobenzene 380 U 95-50-11,2-Dichlorobenzene 380 U 95-48-72-Methylphenol 380 U 108-60-12,2'-oxybis(1-Chloropropane) 380 U 106-44-54-Methylphenol 380 U 621-64-7N-Mitroso-di-n-propylamine 380 U 67-72-1Hexachloroethane 380 U 98-95-3Nitrobenzene 380 U 98-95-3Nitrobenzene 380 U 105-67-92,4-Dimethylphenol 380 U 105-67-92,4-Dimethylphenol 380 U 120-83-22,4-Dichlorophenol 380 U 120-82-11,2,4-Trichlorobenzene 380 U 120-82-11,2,4-Trichlorobenzene 380 U 110-91-1			ther	• [		
541-73-11,3-Dichlorobenzene       380       U         106-46-71,4-Dichlorobenzene       380       U         95-50-11,2-Dichlorobenzene       380       U         95-48-72-Methylphenol       380       U         108-60-12,2'-oxybis(1-Chloropropane)       380       U         106-44-54-Methylphenol       380       U         621-64-7N-Nitroso-di-n-propylamine       380       U         67-72-1	95-57-8	2-Chlorophenol		·		
106-46-71, 4-Dichlorobenzene   380   U   95-50-11, 2-Dichlorobenzene   380   U   95-48-72-Methylphenol   380   U   108-60-12, 2'-oxybis(1-Chloropropane)   380   U   106-44-54-Methylphenol   380   U   106-44-54-Methylphenol   380   U   621-64-7N-Nitroso-di-n-propylamine   380   U   621-64-7	541-73-1	1,3-Dichlorobenzene				
95-48-7	106-46-7	1,4-Dichlorobenzene		·		
95-48-72-Methylphenol 380 U 108-60-12,2'-oxybis(1-Chloropropane) 380 U 106-44-54-Methylphenol 380 U 621-64-7N-Nitroso-di-n-propylamine 380 U 67-72-1Hexachloroethane 380 U 98-95-3Nitrobenzene 380 U 78-59-1Isophorone 380 U 105-67-92,4-Dimethylphenol 380 U 120-83-22,4-Dichlorophenol 380 U 120-82-11,2,4-Trichlorobenzene 380 U 91-20-3Naphthalene 380 U 91-20-3Naphthalene 380 U 111-91-1bis(2-Chloroethoxy)methane 380 U 111-91-1bis(2-Chloroethoxy)methane 380 U 91-57-62-Methylphenol 380 U 91-57-62-Methylnaphthalene 380 U 88-06-22,4,6-Trichlorophenol 380 U 95-95-42,4,5-Trichlorophenol 380 U 91-58-72-Chloronaphthalene 380 U 91-58-72-Chloronaphthalene 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-72-Nitroaniline 380 U 91-58-7	95-50-1	1,2-Dichlorobenzene	<del></del>	·		
108-60-12,2'-oxybis(1-Chloropropane)       380       U         106-44-54-Methylphenol       380       U         621-64-7N-Mitroso-di-n-propylamine       380       U         67-72-1Hexachloroethane       380       U         98-95-3Nitrobenzene       380       U         78-59-1Isophorone       380       U         88-75-52-Nitrophenol       380       U         105-67-92,4-Dimethylphenol       380       U         120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       380       U         91-20-3Naphthalene       380       U         106-47-8Naphthalene       380       U         11-91-1	95-48-7	2-Methvlphenol		•		
106-44-54-Methylphenol       380       U         621-64-7N-Nitroso-di-n-propylamine       380       U         67-72-1Hexachloroethane       380       U         98-95-3Nitrobenzene       380       U         78-59-1Isophorone       380       U         88-75-52-Nitrophenol       380       U         105-67-92,4-Dimethylphenol       380       U         120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       380       U         91-20-3Naphthalene       380       U         106-47-8Naphthalene       380       U         87-68-3Naphthalene       380       U         111-91-1	108-60-1	$2,2'$ -oxybis(1- $\overline{\text{Chlor}}$	opropane)	•		
621-64-7N-Nitroso-di-n-propylamine       380       U         67-72-1	106-44-5	4-Methylphenol	,	1		
67-72-1	621-64-7	N-Nitroso-di-n-prop	vlamine	• [		
98-95-3Nitrobenzene       380       U         78-59-1Isophorone       380       U         88-75-52-Nitrophenol       380       U         105-67-92,4-Dimethylphenol       380       U         120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       380       U         91-20-3Naphthalene       380       U         106-47-8	67-72-1	Hexachloroethane	<u> </u>	١		
78-59-1	98-95-3	Nitrobenzene		1		
88-75-52-Nitrophenol       380       U         105-67-92,4-Dimethylphenol       380       U         120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       360       U         91-20-3Naphthalene       380       U         106-47-84-Chloroaniline       380       U         87-68-3Hexachlorobutadiene       380       U         111-91-1bis(2-Chloroethoxy)methane       380       U         59-50-74-Chloro-3-Methylphenol       380       U         91-57-62-Methylnaphthalene       380       U         77-47-4	78-59-1	Isophorone		•		
105-67-92,4-Dimethylphenol       380       U         120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       360       U         91-20-3Naphthalene       380       U         106-47-8	88-75-5	2-Nitrophenol		·		
120-83-22,4-Dichlorophenol       380       U         120-82-11,2,4-Trichlorobenzene       380       U         91-20-3Naphthalene       380       U         106-47-8Naphthalene       380       U         87-68-3Hexachlorobutadiene       380       U         111-91-1	105-67-9	2,4-Dimethylphenol		1		_
120-82-11, 2, 4-Trichlorobenzene       380       U         91-20-3Naphthalene       380       U         106-47-84-Chloroaniline       380       U         87-68-3Hemachlorobutadiene       380       U         111-91-1bis (2-Chloroethoxy) methane       380       U         59-50-74-Chloro-3-Methylphenol       380       U         91-57-62-Methylnaphthalene       380       U         77-47-4	120-83-2	·2,4-Dichlorophenol		•		
91-20-3Naphthalene       380       U         106-47-84-Chloroaniline       380       U         87-68-3	120-82-1	1,2,4-Trichlorobenz	ene	1		
106-47-84-Chloroaniline       380       U         87-68-3Hexachlorobutadiene       380       U         111-91-1bis(2-Chloroethoxy)methane       380       U         59-50-74-Chloro-3-Methylphenol       380       U         91-57-62-Methylnaphthalene       380       U         77-47-4Hexachlorocyclopentadiene       380       U         88-06-22,4,6-Trichlorophenol       380       U         95-95-42,4,5-Trichlorophenol       1900       U         91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-23-Nitroaniline       1900       U	91-20-3	Naphthalene		1		
87-68-3	106-47-8	4-Chloroaniline		1		
111-91-1bis(2-Chloroethoxy) methane       380       U         59-50-74-Chloro-3-Methylphenol       380       U         91-57-62-Methylnaphthalene       380       U         77-47-4Herachlorocyclopentadiene       380       U         88-06-22,4,6-Trichlorophenol       380       U         95-95-42,4,5-Trichlorophenol       1900       U         91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22,6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	87-68-3	He <b>x</b> achlorobutad <del>iene</del>		1	380	
59-50-74-Chloro-3-Methylphenol       380       U         91-57-62-Methylnaphthalene       380       U         77-47-4	111-91-1	bis (2-Chloroethoxy)	methane	.	380	U
91-57-62-Methylnaphthalene       380       U         77-47-4Heachlorocyclopentadiene       380       U         88-06-22,4,6-Trichlorophenol       380       U         95-95-42,4,5-Trichlorophenol       1900       U         91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22,6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	59-50-7	4-Chloro-3-Methylph	enol	-	380	
77-47-4	91-57-6	2-Methylnaphthalene		-		U
88-06-22,4,6-Tricnlorophenol       380       U         95-95-42,4,5-Trichlorophenol       1900       U         91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22,6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	77-47-4	He <b>?</b> achlorocyclopent	adiene	1		
95-95-42,4,5-Trichlorophenol       1900       U         91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22,6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	88-06-2	2,4,6-Tricnlorophen	ol	1		
91-58-72-Chloronaphthalene       380       U         88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22, 6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	95-95-4	2,4,5-Trichlorophen	ol	-	1900	ט
88-74-42-Nitroaniline       1900       U         131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22,6-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	91-58-7	2-Chloronaphthalene		1	380	
131-11-3Dimethylphthalate       380       U         208-96-8Acenaphthylene       380       U         606-20-22, &-Dinitrotoluene       380       U         99-09-23-Nitroaniline       1900       U	88-74-4	2-Nitroaniline		-	1900	
208-96-8	131-11-3	Dimethylphthalate		-		
606-20-22, &-Dinitrotoluene 380 U 99-09-23-Nitroaniline 1900 U	208-96-8	Acenaphthylene		-		
99-09-23-Nitroaniline 1900 U			<del></del>	-		
	99-09-2	3-Nitroaniline		- ]		1
				-		Ū
				[]		

EPA SAMPLE NO.

C-4-2B

Contract: 9421444 Lab Name: NYTEST ENV INC

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Lab Sample ID: 2271807 Matrix: (soil/water) SOIL

Lab File ID: 30.0 (g/mL) G Sample wt/vol:

Date Received: 12/13/94 Level: (low/med) LOW

Date Extracted:12/14/94 % Moisture: not dec. 12 dec.

Date Analyzed: 01/06/95 Extraction: (SepF/Cont/Sonc) SONC

Dilution Factor: 1.0 GPC Cleanup: (Y/N) N = pH: 7.0

CONCENTRATION UNITS: Q (ug/L or ug/Kg) UG/KG CAS NO. COMPOUND 1900 U 51-28-5-----2,4-Dinitrophenol 1900 U 100-02-7----4-Nitrophenol 380 U 132-64-9-----Dibenzofuran U 380 121-14-2----2.4-Dinitrotoluene U 380 84-66-2-----Diethylphthalate U 7005-72-3----4-Chlorophenyl-phenylether 380 U 380 86-73-7-----Fluorene U 100-01-6----4-Nitroaniline 1900 U 1900 534-52-1----4,6-Dinitro-2-methylphenol Ũ 86-30-6----Nitrosodiphenylamine (1) 380 U 380 101-55-3----4-Bromophenyl-phenylether U 380 118-74-1-----Hexachlorobenzene U 1900 87-86-5-----Pentachlorophenol U 380 85-01-8-----Phenanthrene U 380 120-12-7-----Anthracene U 380 86-74-8-----Carbazole U 84-74-2-----Di-n-butylphthalate 380 U 380 206-44-0-----Fluoranthene Ū 129-00-0-----Pyrene 380 U 85-68-7-----Buxylbenzylphthalate 380 U 91-94-1----3,3'-Dichlorobenzidine_ 760 U 380 56-55-3-----Benzo(a)anthracene_ 380 U 218-01-9-----Chrysene 117-81-7-----bia (2-Ethylhexyl) phthalate 380 U U 380 117-84-0-----Di-n-octylphthalate 380 U 205-99-2----Benzo(b) fluoranthene 380 U 207-08-9-----Benzo(k) fluoranthene 380 U 50-32-8-----Benzo(a)pyrene U 380 193-39-5-----Indeno(1,2,3-cd)pyrene 380 Ũ 53-70-3-----Dibenz(a,h)anthracene U 380 191-24-2----Benzo(g,h,i)pervlene___

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC

Contract: 9421444

C-5-1B

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271809

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2372.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 20 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

108-95-2	Phenol	420	Ţ
111-44-4	bis(2-Chloroethyl)Ether	420	ָ ט
95-57-8	2-Chloropherol	420	ט
541-73-1	1.3-Dichlorobenzene	420	Ü
106-46-7	1.4-Dichlorobenzene	420	ָ '
95-50-1	1.2-Dichlorobenzene	420	ט ט
95-48-7	2-Methylphenol	420	บ
108-60-1	2.2'-oxybis(1-Chloropropago)	420	ט
106-44-5	4-Methylphenol	420	Ü
621-64-7	N-Nitroso-di-n-propylamine	420	Ū
67-72-1	Hexachloroethane	420	U
98-95-3	Nitrobenzene	420	U
78-59-1	Isophorone	420	U
88-75-5	2-Nitrophenol	420	บ
105-67-9	2.4-Dimethylphenol	420	ט
120-83-2	2,4-Dichlorophenol	420	Ŭ
120-82-1	1.2.4-Trichlorocenzene	420	ט
91-20-3	Naphthalene	420	Ü
106-47-8	4-Chloroaniline	420	U
87-68-3	Hexachlorobutadiene	420	Ŭ
111-91-1	bis(2-Chloroethoxy) methane	420	U
59-50-7	4-Chloro-3-Methylphenol	420	ט
91-57-6	2-Methylnaphthalene	420	Ŭ
77-47-4	Hexachlorocyclopentadiene	420	U
88-06-2	2.4.6-Trichloropherol	420	Ū
95-95-4	2,4.5-Trichlorophenol	2100	Ū
91-58-7	2-Chloronaphthalene	420	Ŭ
88-74-4	2-Nitroaniline	2100	Ŭ
131-11-3	Dimethylphthalate		
208-96-8	Acenaphthylene	420	Ŭ
606-20-2	2,6-Dinitrotoluene	420	Ŭ
99-09-2	3-Nitroaniline	420	Ŭ
83-32-9	Acenaphthene	2100	U
		420	U

C-5-1B

Lab Name: NYTEST ENV INC Contract. 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271809

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2372.D

Level: (low/med) LOW Date Received: 12/13/94

% Moisture: not dec. 20 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

100-02-74-Nitrophenol   2100   132-64-9Dibenzofuran   420   121-14-22,4-Dinitrotoluene   420   121-14-22,4-Dinitrotoluene   420   1284-66-2Diethylphthalate   420   17005-72-34-Chlorophenyl-phenylether   420   1700-72-34-Chlorophenyl-phenylether   420   1700-72-34-Chlorophenyl-phenylether   420   1700-72-34-Promophenylamine   100   1700-72-34-Promophenylamine   100   1700-72-34-Promophenylamine   101-55-34-Promophenyl-phenylether   420   1700-72-3	CAS NO.	COMPOUND (dg/L of dg,	/kg/ og/kg	Q
100-02-74-Nitrophenol   2100   132-64-9Dibenzofuran   420   121-14-22,4-Dinitrotoluene   420   121-14-22,4-Dinitrotoluene   420   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120   120	51-28-5	2 4-Dinitrophenol	2100	U
132-64-9Dibenzofuran   420   121-14-22,4-Dinitrotoluene   420   120-14-22,4-Dinitrotoluene   420   120-14-2				וט
121-14-22,4-Dinitrotoluene   420   184-66-2Diethylphthalate   420   1705-72-34-Chlorophenyl-phenylether   420   186-73-7Fluorene   420   1900-01-64-Nitroaniline   2100   1934-52-14,6-Dinitro-2-methylphenol   2100   1934-52-14,6-Dinitro-2-methylphenol   2100   1934-52-14,6-Dinitro-2-methylphenol   2100   1934-52-14,6-Dinitro-2-methylphenol   2100   1935-34-Bromophenyl-phenylether   420   1935-34-Bromophenyl-phenylether   420   1935-3			1	Ü
84-66-2			1	Ū
Tourish	84-66-2	Diethvinhthalate	1	Ü
86-73-7	7005-72-3	4-Chlorophenyl-phenylether	1	<u>ט</u>
100-01-64-Nitroaniline       2100         534-52-14,6-Dinitro-2-methylphenol       2100         86-30-6N-Nitrosodiphenylamine_(1)       420         101-55-34-Promophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7	86-73-7	Fluorene		<u>ט</u>
534-52-14,6-Dinitro-2-methylphenol   86-30-6N-Nitrosodiphenylamine (1)   420   101-55-34-Bromophenyl-phenylether   420   118-74-1Hexachlorophenol   2100   87-86-5Pentachlorophenol   2100   85-01-8Phenanthrene   420   120-12-7Anthracene   420   120-12-7Anthracene   420   120-12-7Anthracene   420   120-12-7			1	Ü
86-30-6N-Nitrosodiphenylamine (1)       420         101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0			1	Ū
101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0			1	Ū
118-74-1			1	Ū
87-86-5				Ū
85-01-8Phenanthrene       420       I         120-12-7Anthracene       420       I         86-74-8Carbazole       420       I         84-74-2Di-n-butylphthalate       420       I         206-44-0Fluoranthene       420       I         129-00-0Fyrene       420       I         85-68-7				บั
120-12-7				Ū
86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0Pyrene       420         85-68-7Butylbenzylphthalate       420         91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo(a) anthracene       420         218-01-9Chrysene       420         117-81-7bis(2-Ethylhexyl) phthalate       420         117-84-0				Ŭ
84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0Fyrene       420         85-68-7Butylbenzylphthalate       420         91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo(a) anthracene       420         218-01-9				Ü
206-44-0Fluoranthene       420         129-00-0				Ū
129-00-0	206-44-0	Fluoranthene	:	Ü
85-68-7				Ü
91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo(a) anthracene       420         218-01-9Chrysene       420         117-81-7bis(2-Ethylhexyl) phthalate       420         117-84-0Di-n-octylphthalate       420         205-99-2Benzo(b) fluoranthene       420         207-08-9Benzo(k) fluoranthene       420         50-32-8Benzo(a) pyrene       420         193-39-5Indenc(1,2,3-cd) pyrene       420         53-70-3Dibenz(a,h) anthracene       420				Ü
56-55-3				บ็
218-01-9Chrysene       420         117-81-7bis(2-Ethylhexyl)phthalate       420         117-84-0Di-n-octylphthalate       420         205-99-2Benzo(b)fluoranthene       420         207-08-9Benzo(k)fluoranthene       420         50-32-8Benzo(a)pyrene       420         193-39-5Indenc(1,2,3-cd)pyrene       420         53-70-3Dibenz(a,h)anthracene       420	56-55-3	Herzo(a) anthracene	. 1	<u>ט</u>
117-81-7bis(2-Ethylhexyl) phthalate       420         117-84-0	218-01-9	Chargens		Ū
117-84-0Di-n-octylphthalate       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indenc (1,2,3-cd) pyrene       420         53-70-3Dibenz (a,h) anthracene       420	117-81-7	hia/2-Fthulhevul)nhthalate	. [	Ū
205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indenc (1,2,3-cd) pyrene       420         53-70-3Dibenz (a,h) anthracene       420	117-81-7	Di-n-octylphthalate	. 1	Ū
207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indenc (1,2,3-cd) pyrene       420         53-70-3Dibenz (a,h) anthracene       420	205-99-2	Bergo(h) fluoranthene		บ็
50-32-8Benzo(a) pyrene 420 193-39-5Indenc(1,2,3-cd) pyrene 420 53-70-3Dibenz(a.h) anthracene 420				U
193-39-5Indenc(1,2,3-cd)pyrene 420 53-70-3Dibenz(a.h)anthracene 420				บ็
53-70-3Dibenz(a.h)anthracene 420	103_20_5	Indepo(1 2 3-cd) number	. 1	U
00 .0 0	1 53-33-3	Dibonz(a, b) anthraceno	. i	ע
151-24-2beitzo(g,ti,t) peryrette			, i	U
	131-24-2	beiizo(g,:i,:) perytelle	.  420	

C-5-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271808

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2371.D

Level: (low/med) LOW

Date Received: 12/13/94

% Moisture: not dec. 28 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

0

	(49/11 01 49	/kg/ dd/kd	Q
108-95-2	Pipenol	460	U
	bis(2-Chloroethyl)Ether	460	บี
95-57-8	2-Chlorophenol	460	บ
541-73-1	1,3-Dichlorobenzene	460	Ü
106-46-7	1.4-Dichiorobenzene	460	ט
95-50-1	1,2-Dichlorobenzene	460	ט
95-48-7	2-Methylphenol	460	<u>ט</u>
108-60-1	2,2'-oxybis(1-Chloropropane)	460	ט
106-44-5	4-Methylphenol	460	ט
621-64-7	N-Nitroso-di-n-propylamine	460	ָ ָ ט
67-72-1	Hexachloroethane	460	ָ ָ ע
98-95-3	Nitrobenzene	460	<u>ט</u>
78-59-1	Iscphorone	460	Ū
88-75-5	2-Nitrophenol	460	Ü
105-67-9	2,4-Dimethylphenol	460	ָ ט
120-83-2	2,4-Dichlorophenol	460	Ü
120-82-1	1,2,4-Trichlorobenzene	460	Ü
91-20-3	Naphthalene	460	บี
106-47-8	4-Chloroaniline	460	Ū
87-68-3	Hexachlorobutadiene	460	Ū
111-91-1	bis(2-Chloroethoxy) methane	460	Ū
59-50-7	4-Chloro-3-Methylphenol	460	Ū
91-57-6	2-Methylnaphthalene	460	. ប
77-47-4	Hexachlorocyclopentadiene	460	Ū
88-06-2	2,4,6-Trichlorophenol	460	บ็
95-95-4	2,4,5-Trichlorophenol	2300	Ŭ
91-58-7	2-Chloronaphthaiene	460	Ū
88-74-4	2-Nitroaniline	2300	Ū
131-11-3	Dimethylphthalate	460	Ū
208-96-8	Acenaphthylene	460	บ
606-20-2	2,6-Dinitrotoluene	460	บ็
99-09-2	3-Nitroaniline	2300	บ็
83-32-9	Acenaphthene	460	บ

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9421444

C-5-2B

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271808

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2371.D

% Moisture: not dec. 28 dec.

Level: (low/med) LOW

Date Received: 12/13/94

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		1197 007110	Q
51-28-5	2,4-Dinitrophenol_	2300	U
100-02-7	4-Nitrophenol	2300	ָ ָ ט
132-64-9	Dibenzofuran	460	Ü
121-14-2	2,4-Dinitrotoluene	460	Ü
84-66-2	Diethylphthalate	460	Ü
7005-72-3	4-Chlorophenyl-phenylether	460	บ
86-73-7	Fluorene	460	<u>ט</u>
100-01-6	4-Nitroaniline	2300	Ū
534-52-1	4,6-Dinitro-2-methylphenol	2300	Ŭ
86-30-6	N-Nitrosodiphenylamine (1)	460	Ū
101-55-3	4-Bromophenvl-phenvlether	460	Ŭ
118-74-1	Hexachlorobenzene	460	Ŭ
87-86-5	Pentachlorophenol	2300	ט
85-01-8	Phenanthrene	460	Ū
120-12-7	Anthracene	460	Ū
86-74-8	Carbazole	460	Ū
84-74-2	Di-n-butylphthalate	460	Ū
206-44-0	Fluoranthene	460	וט
129-00-0		460	U
85-68-7	Bubylbenzylphthalate	460	U
91-94-1	3,3 ⁷ ,-Dichlorobenzidine	920	ט
56-55-3	Benzo(a)anthracene	460	Ū
218-01-9	Chrysene	460	U
117-81-7	biş(2-Ethylhexyl)phthalate	460	ָּט
117-84-0	Di-n-octylphthalate	460	ט
205-99-2	Benzo(b) fluoranthene	460	ש
207-08-9	Benzo(k) fluoranthene	460	U
50-32-8	Benzo(a)pyrene	460	ע
193-39-5	Indeno(1,2,3-cd)pyrene	460	ַ
53-70-3	Dibenz(a,h)anthracene	460	U
191-24-2	Benzo(g,h,i)perylene	460	U

Lab Name: NYTEST ENV INC

Contract: 9421444

D-1-1B

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271401

Sample wt/vol: 30.0 (g/mL) G Lab File ID:

R2314.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 19 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/04/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

	<u> </u>	
108-95-2Phenol	410	ט
111-44-4bis(2-Chloroethyl)Ether	410	l ü
1 95-5/-82-Chlorophenol	410	Ü
541-/3-11.3-Dichlorohenzene	410	Ü
106-46-71.4-Dichlorohenzene	410	Ü
95-50-11.2-Dichlorohenzene	410	l ü
1 95-48-72-Methylphenol	410	υ
108-60-12.2'-oxybis(:-Chloropropens)	410	ט ו
1 100-44-54-Methviphenol	410	ט ט
621-64-7N-Nitrosc-di-n-propylam ne	410	U
6/-/2-1Hexachloroethane	410	U
1 98-95-3Nitropenzene	410	ט
78-59-1Isophorone	410	Ü
88-75-52-Nitrophenol	410	U
105-67-92.4-Dimerbylphenol	410	ם
1 120-83-22.4-Dichlorophenol	410	U
1 140-82-11.2.4-Trichloropenzene	410	ָּט
91-20-3Naphthalene	410	ָ ט
106-47-84-Chloroaniline	410	U U
87-68-3Hexachlorobutadiene		- 1
111-91-1bis(2-Chloroethoxy)methane	410	Ŭ
59-50-74-Chloro-3-Methylphenol	410	Ŭ
91-57-62-Methylnaphthalene	410	ַ
77-47-4Hexachlorocyclopentadiene	410	Ū
88-06-22.4,6-Trichlorophenol	410	Ū
95-95-42,4,5-Trichlorophenol	410	Ū
91-58-72-Chloronaphthalene	2000	Ū
88-74-42-Nitroaniline	410	Ū
131-11-3Dimethylphthalate	2000	U
208-96-8Acenaphthylene	410	<u></u> ע
606-20-22,6-Dinitrotoluene	410	Ū
99-09-23-Nitrosniline	410	U
83-32-9Acenaphthene	2000	U
os sa sere enaphonene	410	U

D-1-1B

Contract: 9421444 Lab Name: NYTEST ENV INC

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Lab Sample ID: 2271401 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2314.D

Date Received: 12/10/94 Level: (low/med) LOW

% Moisture: not dec. 19 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SCNC Date Analyzed: 01/04/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

Crib 110.	3,	J	
51-28-5	2,4-Dinitrophenol	2000	ט
	-4-Nitrophenol	2000	ט
132-64-9		410	U
	2,4-Dinitrotoluene	410	U
	Diethylphthalate	410	ן ט
7005-72-3	4-Chlorophenyl-phenylether	410	ט
86-73-7		410	U
	4-Nitroaniline	2000	ן ט
534-52-1	4,6-Dinitro-2-methylphenol	2000	ַ
254-22-1	N-Nitrosodiphenylamine_(1)	410	ָט
101-55-3	4-Bromophenyl-phenylether	410	ן ט
119-74-7	Hexachlorobenzene	410	ן ט
	Pentachlorophenol	2000	ן ט
85-01-8		410	U
120-12-7		410	ט
86-74-8		410	ש
00-74-0	Di-n-butylphthalate	410	U
206-44-0	Fluoranthene	410	U
129-00-0		410	U
	Butylbenzylphthalate	410	t .
01 04 1	3,3'-Dichlorobenzidine	820	1
91-94-1	Benzo(a) anthracene	410	1
218-01-9		410	U
210-01-3	bia(2-Ethylhexyl)phthalate	410	ט
117-01-7	Di-n-octylphthalate	410	<b>L</b>
117-84-0	Benzo(b) fluoranthene	410	
	Benzo(k) fluoranthene	410	1
	Benzo(a) pyrene	410	1
100 20 5	Indeno(1,2,3-cd)pyrene	410	
193-39-5	Dibong (2, b) anthracene	410	1
53-70-3	Dibenz (a, h) anthracene	410	
191-24-2	Berzo(g,h,i)perylene		
		<u> </u>	. 1

D-1-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST

Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271402

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2315.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 22 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/04/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2Fhenol	430	Ū
111-44-4bis(2-Chloroethyl)Ether	430	ט
95-57-82-Chlorophenol	430	Ū
541-73-11,3-Dichlorobenzene	430	Ū
106-46-71,4-Dichlorobenzene	430	Ū
95-50-11,2-Dichlorobenzene	430	ע
95-48-72-Methylphenol	430	<u></u>
108-60-12,2'-oxybis(1-Chloropropane)	430	Ū
106-44-54-Methylphenol	430	Ü
621-64-7N-Nitroso-di-n-propylamine	430	Ü
67-72-1Hexachloroethane	430	บ
98-95-3Nitrobenzene	430	Ü
78-59-1Isophorone	430	Ü
88-75-52-Nitrophenol	430	Ŭ
105-67-92,4-Dimethylphenol	430	Ü
120-83-22,4-Dichlorophenol	430	Ü
120-82-11,2,4-Trichlorobenzene	430	Ü
91-20-3Naphthalene	430	Ū
106-47-84-Chloroaniline	430	Ū
87-68-3Hemachlorobutadiene	430	Ū
111-91-1bis (2-Chloroethoxy) methane	430	Ū
59-50-74-Chloro-3-Methylphenol	430	Ū
91-57-62-Methylnaphthalene	430	Ū
77-47-4Hexachlorocyclopentadiene	430	Ū
88-06-22,4,6-Trichlorophenol	430	Ü
95-95-42,4,5-Trichlorophenol	2100	Ü
91-58-72-Chloronaphthalene	430	Ü
88-74-42-Nitroaniline	2100	Ŭ
131-11-3Dimethylphuhalate	430	Ü
208-96-8Acenaphthylene	430	บ
606-20-22,6-Dinitrotoluene	430	Ü
99-09-23-Nitroaniline	2100	U
83-32-9Acenaphthene	430	TI
	130	

D-1-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271402

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2315.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 22 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/04/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	2100	U
100-02-74-Nitrophenol	2100	<u>ַ</u> ע
132-64-9Dibenzofuran	430	υl
	430	<u>י</u>
121-14-22,4-Dinitrotoluene	430	Ŭ
84-66-2Diethylphthalate	430	ט
7005-72-34-Chlorophenyl-phenylether	430	Ü
86-73-7Fluorene		1
100-01-64-Nitroaniline	2100	ָ <u>ַ</u> ע
534-52-14,6-Dinitro-2-methylphenol	2100	U
86-30-6N-Nitrosodiphenylamine_(1)	430	U
101-55-34-Bromophenyl-phenylether	430	U
118-74-1Hexachlorobenzene	430	Ŭ
87-86-5Pentachlorophenol	2100	U
85-01-8Phenanthrene	430	U
120-12-7Anthracene	430	U
86-74-8Carbazole	430	U
84-74-2Di-n-butylphthalate	430	U
206-44-0Fluoranthene	430	Ū
129-00-0Pyrene	430	Ū
85-68-7Butylbenzylphthalate	430	Ū
91-94-13,3'-Dichlorobenzidine	850	Ū
56-55-3Benzo(a) anthracene	430	U
218-01-9Chrysene	430	U
117-81-7bia (2-Ethylhexyl)phthalate	58	J
117-84-0Di-n-octvlphthalate	430	Ū
205-99-2Benzo(b) fluoranthene	430	Ū
	430	U U
207-08-9Benzo(k) fluoranthene	430	ט ט
50-32-8Benzo (a) pyrene	i 430	ט ט
193-39-5Indeno(1,2,3-cd)pyrene		บ
53-70-3Dibenz(a,h)anthracene	430	l ti
191-24-2Benzo(g,h,i)perylene	430	1
•		

D-1-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271403

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2337.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 32 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2----Phenol 490 111-44-4-----bis(2-Chloroethvl)Ether 490 U 95-57-8----2-Chlorophenol_ 490 U 541-73-1----1,3-Dichlorobenzene U 490 106-46-7----1,4-Dichlorobenzene 490 U 95-50-1-----1,2-Dichlorobenzene_ 490 U 95-48-7----2-Methylphenol U 490 108-60-1----2,2'-oxybis(1-Chlcropropane) 490 U 106-44-5----4-Methylphenol 490 U 621-64-7----N-Nitroso-di-n-propylamine___ 490 U 67-72-1-----Hexachloroethane 490 U 98-95-3-----Nitrobenzene 490 U 78-59-1-----Isophorone 490 U 88-75-5----2-Nitrophenol 490 U 105-67-9-----2,4-Dimethylphenol Ū 490 120-83-2----2,4-Dichlorophenol 490 U 120-82-1----1, 2, 4-Trichlorone nzene 490 U 91-20-3-----Naphthalene 490 U 106-47-8----4-Chloroaniline 490 U 87-68-3-----Hetachlorobutadiene_ 490 U 111-91-1-----bis(2-Chloroethoxy) methane 490 . Ū 59-50-7-----4-Chloro-3-Methylphenol 490 U 91-57-6----2-Methylnaphthalene 490 U 77-47-4-----Hexachlorocyclopentadiene 490 U 88-06-2----2,4,6-Trichlorophenol_ 490 Ũ 95-95-4-----2,4,5-Trichlorophenol 2400 U 91-58-7----2-Chloronaphthalene____ 490 U 88-74-4----2-Nitroaniline 2400 U 131-11-3-----Dimethylphthalate 490 Ū 208-96-8-----Acenaphthylene 490 U 606-20-2----2,5-Dinitrotoluene U 490 99-09-2----3-Nitroaniline_____ U 2400 83-32-9-----Acenaphthene 490 U

D-1-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271403

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2337.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 32 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N PH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

2400 U 51-28-5-----2,4-Dinitrophenol U 100-02-7----4-Nitrophenol 2400 U 490 132-64-9-----Dibenzofuran U 490 121-14-2----2,4-Dinitrotoluene U 490 84-66-2----Diethylphthalate 490 U 7005-72-3----4-Chlorophenyl-phenylether 490 U 86-73-7-----Fluorene 2400 U 100-01-6----4-Nitroaniline U 2400 534-52-1----4,6-Dinitro-2-methylphenol U 86-30-6----N-Nitrosodiphenylamine (1)490 490 U 101-55-3----4-Bromophenyl-phenylether U 118-74-1-----Hexachlorobenzene 490 2400 U 87-86-5----Pentachlorophenol 490 U 85-01-8-----Phenanthrene U 120-12-7-----Anthracene 490 490 U 86-74-8-----Carbazole 84-74-2-----Di-m-butylphthalate 490 U 490 U 206-44-0-----Fluoranthene 490 U 129-00-0-----Pyrene U 85-68-7-----Butylbenzylphthalate 490 U 91-94-1----3,3, -Dichlorobenzidine 980 490 U 56-55-3-----Berizo (a) anthracene 490 U 218-01-9-----Chrysene 53 J 117-81-7-----bi**\$**(2-Ethylhexyl)phthalate__ 490 U 117-84-0-----Di-n-octylphthalate 490 U 205-99-2----Benzo (b) fluoranthene 490 U 207-08-9-----Benzo(k) fluoranthene 490 U 50-32-8-----Benzo(a) pyrene 490 U 193-39-5----Indeno(1,2,3-cd)pyrene Ū 490 53-70-3-----Dibenz(a,h)anthracene 490 U 191-24-2----Benzo(g,h,i)perylene

(1) - Cannot be separated from Diphenylamine

EPA SAMPLE NO.

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

D-2-1B

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271404

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2338.D

Level: (low/med) LOW Date Received. 12/10/94

% Moisture: not dec.

22 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0

108-95-2----Phenol

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.

COMPOUND

430 111-44-4----bis(2-Chloroethyl)Ether 430 430 541-73-1----1,3-Dichlorobenzene 430 106-46-7----1,4-Dichlorobenzene_ 430

95-50-1----1,2-Dichlorobenzene

88-75-5----2-Nitrophenol 105-67-9----2, 4-Dimethylphenol

95-57-8----2-Chlorophenol

95-48-7----2-Methylphenol

120-83-2----2,4-Dichlorophenol 120-82-1----1,2,4-Trichlorobenzene 91-20-3-----Naphthalene

106-47-8-----4-Chloroaniline 87-68-3-----Hexachlorobutadiene 111-91-1----bis(2-Chloroethoxy) methane

59-50-7-----4-Chloro-3-Methylphenol 91-57-6----2-Methylnaphthalene 77-47-4-----Hexachlorocyclopentadiene 88-06-2----2,4,6-Trichlorophenol

95-95-4-----2,4,5-Trichlorophenol 91-58-7----2-Chloronaphthalene 88-74-4----2-Nitroaniline 131-11-3-----Dimethylonthalate

606-20-2-----2,6-Dinitrotoluene 99-09-2----3-Nitroaniline 83-32-9-----Acenaphthene

208-96-8-----Acenaphthylene

Q

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Ū

U

U

U

U

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

430

<del>1</del>30

2100

2100

2100

SW846 METHOD 8270A

EPA SAMPLE NO.

D-2-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271404

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2338.D

Level: (lcw/med) LOW Date Received: 12/10/94

% Moisture: not dec. 22 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (U	g/L or 1	ug/kg)	UG/KG	Q
51-28-5	2,4-Dinitrophenol			2100	U
100-02-7	4-Nitrophenol			2100	Ü
132-64-9	Dibenzofuran		<del></del>	430	Ū
121-14-2	2.4-Dinitrotoluene		<del></del>	430	Ū
84-66-2	Diethylphthalate		<b></b>	430	Ū
7005-72-3	4-Chlorophenyl-pheny	vlether	<b>-</b>	430	Ū
86-73-7	Fluorene	•		430	Ū
100-01-6	4-Nitroaniline	. <del></del>	_	2100	Ū
534-52-1	4,6-Dinitro-2-methy	lphenol	<u>-</u>	2100	Ŭ.
86-30-6	N-Nitrosodiphenvlam	ine (1)		430	U
101-55-3	4-Bromophenvl-phenv	lether		430	Ū.
118-74-1	Hexachlorobenzene			430	Ū
87-86-5	Pentachlorophenol			2100	Ū
85-01-8	Phenanthrene		!	430	Ū
120-12-7	Anthracene			430	Ū
86-74-8	Carbazole			430	Ū
84-74-2	Di-n-butylphthalace	<del></del>		430	Ū
206-44-0	Fluoranthene		<del></del>	430	Ū
129-00-0	Pyrene			430	Ū
85-68-7	Butylbenzylphthalate	e		430	Ū
91-94-1	3,3'-Dichlorobenzid	ine		850	Ū
56-55-3	Benzo(a)anthracene		_	430	Ū
218-01-9	Chrysene		<b>-</b>	430	Ū
117-81-7	bis/2-Ethylhexyl)ph	thalate		430	บ
117-84-0	Di-n-octvlphthalate	•	—	430	Ū
205-99-2	Benzo(b) fluoranthen	 e	_	430	Ū
207-08-9	Benzo(k) fluoranthen	e	-	430	Ū
50-32-8	Benzo (a) pyrene		_	430	บั
193-39-5	Indeno (1, 2, 3-cd) pyr	ene		430	Ū
53-70-3	Dibenz (a, h) anthrace	ne ——	<b>-</b> !	430	บั
191-24-2	Benzo(g,h,i)perylen	e		430	Ū

EPA SAMPLE NO.

D-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271405

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2339.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 21 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.		ig/L or ug/Kg)		Q
108-95-2			420	υ
111-44-4	bis(2-Chloroethyl)E	ther	420	U
95-57-8	2-Chlorophenol		420	Ū
541-73-1	1,3-Dichlorobenzene		420	Ū
106-46-7	1,4-Dichlorobenzene		420	Ū
95-50-1	1,2-Dichlorobenzene	-	420	U
	2-Methylphenol		420	U
108-60-1	2,2'-oxybis(1-Chlor	opropane)	420	U
106-44-5	4-Methylphenol	<u></u>	420	U
621-64-7	N-Nitroso-di-n-prop	ylamine	420	U
67-72-1	Hexachloroethane		420	U
98-95-3	Nitrobenzene		420	U
78-59-1	Isophorone		420	U
	2-Nitrophenol		420	U
105-67-9	2,4-Dimethylphenol		420	U
120-83-2	2,4-Dichlorophenol		420	U
120-82-1	1,2,4-Trichloropenz	ene	420	Ū
91-20-3	Naphthalene		420	Ū
106-47-8	4-Chloroaniline		420	Ū
87-68-3	Hexachlorobutadiene		420	Ū
111-91-1	bis(2-Chloroethoxy)	methane	420	Ū
59-50-7	4-Chloro-3-Methylph	enol —	420	. U
91-57-6	2-Methylnaphthalene		420	Ū
77-47-4	Hekachlorocyclopent	adiene	420	Ū
	2,4,6-Trichlorophen		420	Ū
95-95-4	2,4,5-Trichlorophen	ıol	2100	Ū
91-58-7	2-Chloronaphthalene		420	Ū
88-74-4	2-Nitroaniline		2100	Ū
	Dimethylphthalate		420	Ŭ
208-96-8	Acenaphthylene		420	Ŭ
606-20-2	2,6-Dinitrotoluene		420	Ū
	·3-Nitroaniline		2100	Ü
	Acenaphthene		420	Ū
1			120	

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

D-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2271405

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2339.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 21 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. CCMPOUND (ug/L or ug/Kg) UG/KG Q

	(15, 11, 15, 15, 15, 15, 15, 15, 15, 15,		
51-28-5	2,4-Dinitrophenol	2100	บ
	4-Nitrophenol	2100	Ū
	Dibenzofuran	420	U
	2,4-Dinitrotoluene	420	U
	Diethylphthalate	420	U
	4-Chlorophenyl-phenylether_	420	ע
86-73-7		420	U
	4-Nitroaniline	2100	U
534-52-1	4,6-Dinitro-2-methylphenol_	2100	U
	N-Nitrosodiphenylamine (1)	420	U
	4-Bromophenyl-phenylether	420	U
	Hexachlorobenzene	420	U
87-86-5	Pentachlorophenol	2100	U
	Phenanthrene	420	U
120-12-7	Anthracene	420	U
86-74-8	Carnazole	420	U
84-74-2	Di-n-butylphthalate	420	U
206-44-0	Fluoranthene	420	U
129-00-0	Pyrene	420	U
85-68-7	Butylbenzylphthalate	420	U
91-94-1	3,3 ⁷ -Dichlorobenzidine	840	1
56-55-3	Benzc(a) anthracene	420	
218-01-9	Chryserie	420	
117-81-7	biş(2-Ethylhexyl)phthalate	170	1
117-84-0	Di-n-octylphthalate	420	
205-99-2	Benzo(b)fluoranthene	420	1
207-08-9	Benzo(k)fluoranthene	420	
	Benzo(a)pyrene	420	
	Indeno (1., 2, 3-cd) pyrene	420	
53-70-3	Dibenz(a,h)anthracene	420	E .
191-24-2	Benzo(g,h,i)perylene	420	U

D-2-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.:

SDG No.: JEFF1

Matrix: (soil/water) SOIL

Lab Sample ID: 2271406

Sample wt/vol:

30.0 (g/mī) G

Lab File ID: R2340.D

Level: (low/med) LOW

Date Received: 12/10/94

% Moisture: not dec. 32 dec.

Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

108-95-2	Phenol	490	U
111-44-4	bis(2-Chloroethyl)Ether	490	ָ ט
95-57-8	2-Chlorophenol	490	ט
541-73-1	1.3-Dichlorobenzene	490	Ü
106-46-7	1.4-Dicklorobenzene	490	บ
95-50-1	1.2-Dichlorobenzene	490	Ü
95-48-7	2-Methylphenol	490	Ü
108-60-1	2.2'-oxybis(1-Chloropropere)	490	บ
106-44-5	4-Methylphenol	490	Ü
621-64-7	N-Nitroso-di-n-propylamine	490	Ŭ
67-72-1	Hexachloroethane	490	Ū
98-95-3	Nitrobenzene	490	Ŭ
78-59-1	Isophorone	490	ט
88-75-5	2-Nitrophenol	490	บ
105-67-9	2.4-Dimethylphenol	490	ט
120-83-2	2.4-Dichloropherol	490	บ
120-82-1	1.2.4-Trichlorobenzene	490	Ü
91-20-3	Naphthalene	490	Ü
106-47-8	4-Chloroaniline	490	Ü
87-68-3	Hexachlorobutadiene	490	Ū
111-91-1	his72-Chloroethova/mathana	490	Ū
59-50-7	4-Chloro-3-Methylphenol	490	Ŭ
91-57-6	2-Methylnaphthalene	490	Ŭ
///-4//-4	Hexachlorocyclopentadiene	490	Ŭ
88-06-2	2.4.6-Trichlorophencl	490	Ŭ
95-95-4	2.4.5-Trichlorophenoi	2400	Ŭ
91-58-/	2-Chioronaphthalene	490	Ŭ
88-74-4	2-Nitroaniline	2400	Ŭ
131-11-3	Dimethylphthalate	490	Ŭ
208-96-8	Acenaphthylene	490	Ŭ
606-20-2	2.6-Dinitrotoluene	490	U
99-09-2	3-Nitroaniline	2430	ij

D-2-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22714 SAS No.: SDG No.: JEFF1

Matrix: (soil/water) SOIL Lab Sample ID: 2271406

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2340.D

Level: (low/med) LOW Date Received: 12/10/94

% Moisture: not dec. 32 dec. Date Extracted:12/14/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/05/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

	CAS NO.	COMPOUND	ig/ii or ug/iig/		
-		2 4 Dimitrophonol		2400	U
1	51-28-5	-2,4-Dinitrophenol_		2400	וט
1	100-02-7	-4-Nitrophenoi		490	Ü
ŀ	132-64-9	-Dibenzoiuran		490	Ŭ
	121-14-2	-2,4-Dinitrotoluene		490	Ū
	84-66-2	-Diethylphthalate		490	Ŭ
l	7005-72-3	-4-Chlorophenyl-pher	iliteruer —	490	Ü
ł	86-73-7	-Fluorene		2400	Ü
	100-01-6	-4-Nitroaniline		2400	Ü
	534-52-1	-4,6-Dinitro-2-methy	ripnenoi	li li	ש
	86-30-6	-N-Nitrosodiphenylar	mine_(1)	490	1
1	101-55-3	-4-Bromophenyl-pheny	ylether	490	Ü
l		-Hexachlorobenzene_		490	Ū
	87-86-5	Pentachlorophenol		2400	U
	85-01-8			490	U
1	120-12-7	Anthracene		490	U
1	86-74-8			490	U
١	84-74-2	Di-n-butylphthalat	e	490	U
١	206-44-0	Fluoranthene		490	U
	129-00-0			490	U
	05-69-7	Busylbenzylphthala	te	490	Ū
1	01 04 1	3,3"-Dichlorobenzi	dine	980	Ū
	51-54-1	Benzo(a)anthracene		490	U
	218-01-9			490	ប
1	218-01-9	bi\$(2-Ethylhexyl)p	hrhalate	87	l J
١	117-81-7	Di-n-octylphthalat		490	l u
۱	11/-84-0	Benzo(b) fluoranthe	ne -	490	ט ו
	205-99-2	Benzo (b) -Iuoranche	ne	490	U
		Benzo(k) fluoranthe		490	li .
	50-32-8	Benzo(a)pyrene	75320	490	l ŭ
	193-39-5	Indeno (1, 2, 3-cd) ry	reite	490	1
-	53-70-3	Dibenz(a,h)anthrac	erre	490	1 -
	191-24-2	Benzo(g,h,i)peryle	ene	490	1
-					1

EPA SAMPLE NO.

B-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273101

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2519.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 9 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N - pH: 7.0 Dilution Factor: 10.0

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG O

CAS NO.	COMPOUND (ug/L OF ug/	kg) UG/kG	Q
108-95-2	Phenol	3700	U
	bis(2-Chloroethy1)Ether	3700	וֹט
	2-Chlorophenol	3700	Ū
541-73-1	1,3-Dichlorobenzene	3700	Ū
106-46-7	1,4-Dichlorobenzene	3700	Ū
	1,2-Dichlorobenzene	3700	บ
	2-Methylphenol	3700	Ū
	2,2'-oxybis(1-Chloropropane)	3700	Ū
106-44-5	4-Methylphenol	3700	<u></u> ט
	N-Nitroso-di-n-propylamine	3700	Ū
	Hexachloroethane	3700	ט
98-95-3	Nitrobenzene	3700	U
	Isophorone	3700	υ
	2-Nitrophenol	3700	Ū
	2,4-Dimethylphenol	3700	ប
	2,4-Dichloropherol	3700	U
	1,2,4-Trichlorobenzene	3700	U
91-20-3	Naphthalene	3700	U
	4-Chloroaniline	3700	U
87-68-3	Hexachlorobutadiene	3700	U
111-91-1	bis(2-Chloroethoxy)methane	3700	U
59-50-7	4-Chloro-3-Methylphenol	3700	U
	2-Methylnaphthalene	3700	U
77-47-4	Hexachlorocyclopentadiene	3700	Ū
88-06-2	2,4,6-Trichlorophenol	3700	U
95-95-4	2,4,5-Trichlorophenol	18000	U
91-58-7	2-Chloronaphthalene	3700	U
	2-Nitroaniline	18000	Ŭ
131-11-3	Dimethylphthalate	3700	U
	Acenaphthylene	3700	U
	2,6-Dinitrotoluene	3700	บ
	3-Nitroaniline	18000	U
	Acenaphthene	3700	U

B-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2273101

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2519.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 9 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 10.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	18000	U
100-02-74-Nitrophenol	18000	Ü
132-64-9Dibenzofuran	3700	Ü
121-14-22,4-Dinitrotoluene	3700	Ū
84-66-2Diethylphthalate	3700	Ū
7005 72 3 4 Chlorenhory phonylothon	3700	บ
7005-72-34-Chlorophenyl-phenylether	3700	U
86-73-7Fluorene	1	_
100-01-64-Nitroaniline	18000	U
534-52-14,6-Dinitro-2-methylphenol	18000	Ŭ
86-30-6N-Nitrosodiphenylamine_(1)	3700	U
101-55-34-Bromophenyl-phenylether	3700	U
118-74-1Hexachlorobenzene	3700	U
87-86-5Pentachlorophenol	18000	Ū
85-01-8Phenanthrene	3700	U
120-12-7Anthracene	3700	U
86-74-8Carbazole	3700	U
84-74-2Di-n-butylphthalate	3700	U
206-44-0Fluoranthene	3700	U
129-00-0Pyrene	3700	Ū
85-68-7Butylbenzylphthalate	3700	U
91-94-13,3'-Dichlorobenzidine	7300	Ü
56-55-3Benzo(a) anthracene	3700	Ū
218-01-9Chrysene	3700	Ū
117-81-7bis(2-Ethylhexyl)phthalate_	3700	Ü
117-84-0Di-n-octylphthalate	3700	Ū
	3700	Ū
205-99-2Benzo(b) fluoranthene	3700	บ
207-08-9Benzo(k) fluoranthene	3700	ט
50-32-8Benzo (a) pyrene		1
193-39-5Indeno(1,2,3-cd)pyrene	3700	U
53-70-3Dibenz(a,h)anthracene	3700	Ū
191-24-2Benzo(g,h,i)perylene	3700	U

B-1-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273102

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2520.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 24 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N - pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or ug/kg	) UG/KG	Q
108-95-2	Dhenol		440	U
	bis(2-Chloroeth/I)	Ether	440	. ט
95-57-8	2-Chlorophenol		440	ָּט
541-73-1	1,3-Dichlorobenzer	<u></u>	440	ש
	1,4-Dichlorobenzer		440	บ
95-50-1	1,2-Dichlorobenzer	ne	440	Ü
95-48-7	2-Methylphenol		440	บั
108-60-1	2,2'-oxybis(1-Chlo	propropane)	440	<u>ט</u>
106-44-5	4-Methylphenol		440	Ū
621-64-7	N-Nitroso-di-n-pro	opylamine	440	Ū
67-72-1	Hexachloroethane		440	Ū
98-95-3	Nitrobenzene		440	ט
78-59-1	Isophorone		440	U
88-75-5	2-Nitrophenol		440	U
105-67-9	2,4-Dimethylpheno	L	440	U
120-83-2	2,4-Dichlorophenol	1	440	U
120-82-1	1,2,4-Trichlorober	nzene	440	U
91-20-3	Naphthalene		440	Ū,
106-47-8	4-Chloroaniline		440	U
87-68-3	Hexachlorobutadier	ne	440	Ŭ
111-91-1	bis(2-Chloroethox	y)methane	440	U
59-50-7	4-Chloro-3-Methyl	ohenol	440	U
91-57-6	2-Methylnaphthale	ne	440	U
77-47-4	Hexachlorocyclope:	ntadiene	440	Ü
88-06-2	2,4,6-Trichlorophe	enol	440	U
95-95-4	2,4,5-Trichlorophe	enol	2200	Ŭ
91-58-7	2-Chloronaphthaler	ne	440	U
88-74-4	2-Nitroaniline		2200	U
131-11-3	Dimethylphthalate		440	U
208-96-8	·Acenaphthylene		440	Ŭ
	2,6-Dinitrotoluene	e	440	Ū
	3-Nitroaniline		2200	U
83-32-9	Acenaphthene		440	U

B-1-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Matrix: (soil/water) SOIL Lab Sample ID: 2273102

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2520.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 24 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N - pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (uq/L or uq/Kq) UG/KG

51-28-52,4-Dinitrophenol	2200	ט
100-02-74-Nitrophenol	2200	Ū
132-64-9Dibenzofuran	440	Ū
121-14-22,4-Dinitrotoluene	440	U
84-66-2Diethylphthalate	440	Ū
7005-72-34-Chlorophenyl-phenylether	440	ט
86-73-7Fluorene	440	U
100-01-64-Nitroaniline	2200	וט
534-52-14,6-Dinitro-2-methylphenol	2200	ש
86-30-6N-Nitrosodiphenylamine_(1)	440	U
101-55-34-Bromophenyl-phenylether	440	U
118-74-1Hexachlorobenzene	440	ט
87-86-5Pentachlorophenol	2200	U
85-01-8Phenanthrene	440	U
120-12-7Anthracene	440	U
86-74-8Carbazole	440	Ū
84-74-2Di-n-butylphthalate	440	Ū
206-44-0Fluoranthene	440	U
129-00-0Pyrene	440	U
85-68-7Butylbenzylphthalate	440	U
91-94-13,3'-Dichlorobenzidine	880	U
56-55-3Benzo (a) anthracene	440	Ū
218-01-9Chrysene	440	U
117-81-7bis(2-Ethylhexyl)phthalate	66	J
117-84-0Di-n-octylphthalate	440	Ū
205-99-2Benzo(b) fluoranthene	440	U
207-08-9Benzo(k) fluoranthene	440	U
50-32-8Benzo (a) pyrene	440	U
193-39-5Indeno (1, 2, 3-cd) pyrene	440	ָ ד
53-70-3Dibenz(a,h)anthracene	440	U
191-24-2Benzo(g,h,i)perylene	. 440	U

#### 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-1-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

CAS NO.

Lab Sample ID: 2273103

COMPOUND

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2521.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 24 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or u	g/ kg/	OG/ NG	Q
108-95-2	-Phenol			440	U
111-44-4	-bis(2-Chloroethy)	)Ether	-	440	U
95-57-8	-2-Chlorophenol	· · · · · · · · · · · · · · · · · · ·	-	440	ש
541-73-1	-1,3-Dichlorobenze	ne	_	440	וט
106-46-7	-1,4-Dichlorobenze	ne	_	440	U
95-50-1	-1,2-Dichlorobenze	ene		440	ט
95-48-7	-2-Methylphenol		_	440	ַ
108-60-1	-2,2'-oxybis(1- $\overline{\mathrm{Chl}}$	oropropane	)	440	ש
106-44-5	-4-Methylphenol			440	ַ ט
621-64-7	-N-Nitroso-di-n-pr	opylamine		440	U
67-72-1	-Hexachloroethane_			440	U
98-95-3	-Nitrobenzene		<u> </u>	440	Ū
78-59-1	-Isophorone			440	Ū
88-75-5	-2-Nitrophenol			440	ָּט
105-67-9	-2,4-Dimethylpheno	1	_	440	ט
120-83-2	-2,4-Dichlorophend	01		440	U
120-82-1	-1,2,4-Trichlorobe	nzene		440	ָד
91-20-3	-Naphthalene			440	U
106-47-8	-4-Chloroaniline_			440	Ū
87-68-3	-Hexachlorobutadie	ne	_	440	Ū
111-91-1	-bis(2-Chloroethox	y) methane		440	Ū
59-50-7	-4-Chloro-3-Methyl	.phenol		440	U
91-57-6	-2-Methylnaphthaĺe	ne		440	U
77-47-4	-Hexachlorocyclope	ntadiene_		440	ַ ע
88-06-2	$-2,\overline{4},6$ -Trichloroph	enol		440	U
95-95-4	-2,4,5-Trichloroph	enol		. 2200	U
91-58-7	-2-Chloronaphthale	ene		440	U
88-74-4				2200	U
131-11-3	-Dimethylphthalate			440	U
208-96-8			_	440	บ
	-2,6-Dinitrotoluer	ıe		440	U
99-09-2				2200	U
83-32-9	-Acenaphthene			440	U
			_		

## SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-1-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273103

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: Q2521.D

Level:

(low/med) LOW

Date Received: 12/14/94

% Moisture: not dec.

Date Extracted:12/18/94

24 Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N

pH: 7.0

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	2200	U
100-02-74-Nitrophenol	2200	Ū
132-64-9Dibenzofuran	440	Ū
121-14-22,4-Dinitrotoluene	440	Ū
84-66-2Diethylphthalate	440	Ū
7005-72-34-Chlorophenyl-phenylether	440	Ū
86-73-7Fluorene	440	Ü
100-01-64-Nitroaniline	2200	Ū
534-52-14,6-Dinitro-2-methylphenol	2200	Ū
86-30-6N-Nitrosodiphenylamine (1)	440	U
101-55-34-Bromophenyl-phenylether	440	U
118-74-1Hexachlorobenzene	440	U
87-86-5Pentachlorophenol	2200	Ū
85-01-8Phenanthrene	440	U
120-12-7Anthracene	440	U
86-74-8Carbazole	440	U
84-74-2Di-n-butylphthalate	440	U
206-44-0Fluoranthene	440	U
129-00-0Pyrene	440	U
85-68-7Butylbenzylphthalate	440	U
91-94-13,3'-Dichlorobenzidine	880	U
56-55-3Benzo (a) anthracene	440	Ū
218-01-9Chrysene	440	Ū
117-81-7bis(2-Ethylhexyl)phthalate	150	J
117-84-0Di-n-octylphthalate	440	Ū
205-99-2Benzo(b) fluoranthene	440	U
207-08-9Benzo(k) fluoranthene	440	U
50-32-8Benzo(a)pyrene	440	ָ ע
193-39-5Indeno(1,2,3-cd)pyrene	440	U
53-70-3Dibenz(a,h)anthracene	440	U
191-24-2Benzo(g,h,i)perylene	440	ប

B-2-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273104

Sample wt/vol:

Lab Code: NYTEST

30.0 (q/mL) G

Lab File ID: 02522.D

Level:

(low/med) LOW

Date Received: 12/14/94

% Moisture: not dec.

19 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

Q U 108-95-2-----Phenol 410 111-44-4----bis(2-Chloroethy1)Ether 410 U 410 U 95-57-8----2-Chlorophenol 410 U 541-73-1----1,3-Dichlorobenzene 410 U 106-46-7----1,4-Dichlorobenzene U 95-50-1-----1,2-Dichlorobenzene 410 U 410 95-48-7----2-Methylphenol Ū 108-60-1----2,2'-oxybis(1-Chloropropane) 410 U 106-44-5----4-Methylphenol 410 U 621-64-7----N-Nitroso-di-n-propylamine 410 U 410 67-72-1-----Hexachloroethane U 98-95-3----Nitrobenzene 410 U 78-59-1-----Isophorone 410 U 410 88-75-5----2-Nitrophenol U 105-67-9-----2,4-Dimethylphenol 410 U 410 120-83-2----2,4-Dichlorophenol U 410 120-82-1----1,2,4-Trichlorobenzene U 91-20-3-----Naphthalene 410 U 106-47-8-----4-Chloroaniline 410 Ū 410 87-68-3-----Hemachlorobutadiene 111-91-1-----bis(2-Chloroethoxy) methane 410 U U 59-50-7----4-Chloro-3-Methylphenol 410 410 U 91-57-6----2-Methylnaphthalene U 410 77-47-4-----Herachlorocyclopentadiene U 88-06-2----2, 4, 6-Trichlorophenol__ 410 U 2000 95-95-4-----2,4,5-Trichlorophenol_ U 410 91-58-7----2-Chloronaphthalene 2000 U 88-74-4----2-Nitroaniline U 131-11-3-----Dimethylphthalate 410 U 208-96-8-----Acenaphthylene 410 Ü 606-20-2----2,6-Dinitrotoluene 410 U 99-09-2----3-Nitroaniline 2000 83-32-9-----Acenaphthene 410 U

B-2-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273104

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

Q2522.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec.

19

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N

<u>...</u>

pH: 7.0

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	2000	ט
100-02-74-Nitrophenol	2000	Ū
132-64-9Dibenzofuran	410	Ū
121-14-22,4-Dinitrotoluene	410	Ü
84-66-2Diethylphthalate	410	Ŭ
7005-72-34-Chlorophenyl-phenylether	410	Ü
86-73-7Fluorene	410	Ü
100-01-64-Nitroaniline	2000	บ
534-52-14,6-Dinitro-2-methylphenol	2000	บั
86-30-6N-Nitrosodiphenylamine (1)	410	บี
101-55-34-Bromophenyl-phenylether	410	ָ ע
118-74-1Hexachlorobenzene	410	ט
87-86-5Pentachlorophenol	2000	ט
85-01-8Phenanthrene	410	וט
120-12-7Anthracene	410	Ü
86-74-8Carbazole	410	Ü
	80	J
84-74-2Di-n-butylphthalate 206-44-0Fluoranthene	410	וט
	410	ש
129-00-0Pyrene		1
85-68-7Butylbenzylphthalate	410	ָּט
91-94-13,3'-Dichlorobenzidine	820	U
56-55-3Benzo (a) anthracene	410	U
218-01-9Chrysene	410	Ū
117-81-7bis (2-Ethylhexyl) phthalate	120	J
117-84-0Di-n-octylphthalate	410	Ū
205-99-2Benzo (b) fluoranthene	410	Ū
207-08-9Benzo(k) fluoranthene	410	Ŭ
50-32-8Benzo (a) pyrene	410	Ū
193-39-5Indeno(1,2,3-cd)pyrene	410	Ū.
53-70-3Dibenz(a,h)anthracene	410	Ŭ
191-24-2Benzo(g,h,i)perylene	410	U
·		

Lab Name: NYTEST ENV INC Contract: 9421444 B-2-2B

Lab Sample ID: 2273105

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) GLab File ID: Q2523.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 26 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N 7 pH: 7.0 Dilution Factor: 1.0

> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) IIG/KG

	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
108-95-2	Phenol			450	7.7
111-44-4	bis(2-Chloroethy	() Ether		450 450	1
30-5/-8	2-Chlorophenol			450 450	
541-73-1	1 3-Dichlorobenz	ene		450 450	-
106-46-7	1.4-Dichlorobenz	ene		450 450	1
30-00-1	1.2-Dichlorobenz	ene		450 450	
95-48-7	2-Methvlphenol		<del></del>	450 450	
108-60-1	2.2'-oxybis(1- <del>C</del> b	loropropar	ie)	450	_
1 100-44-5	4-Methvlphenol		1	450 450	ט
621-64-7	N-Nitroso-di-n-n	ropylamine	<u> </u>	450 450	
6/-/2-1	Hexachloroethane		_	450	ט
98-95-3	Nitrobenzene			450	<u>"</u>
78-59-1	Isophorone			450	
88-75-5	2-Nitrophenol		-	450	ן ט
105-67-9	2.4-Dimethylphen	ol		450	ט ט
120-83-2	2.4-Dichloropher	c.1		450	ט ט
120-82-1	1.2.4-Trichlorob	enzene	_	450	ال
91-20-3	Naphthalene	-		450	Ü
106-47-8	4-Chloroaniline			450	ן ט
87-68-3	Hexachlorobutadi	ene		450	ال ا
111-91-1	bis(2-Chloroetho	xy) methane		450	U
コターコレー/	4-Chloro-3-Methy	Inhonol		450	Ū
! 31-5/-6	2-Methvlnanhthal	ana		450	<u>"</u>
//-4/-4	·He≆cachlorocyclon	antadiono		450	<u>.</u>
08-06-2	2.4.6-Trichlorop	henol		450	ן ט
75-75-4	2.4.5-Trichloropl	nenol		2200	ן די
91-58-7	2-Chloronaphthale	ene		450	U .
88-/4-4	2-Nitroaniline		<del></del>	2200	U
131-11-3	Dimethylphthalate	9		450	U
208-96-8	Acenaphthylene			450	<u></u> ט
006-20-2	2,6-Dinitrotolue	ne		450	ַ ט
33-03-2	3-Nitroaniline			2200	U
03-32-9	Acenaphthene			450	Ū

EPA SAMPLE NO.

B-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273105

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2523.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 26 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N 7 pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
E1 20 E	2,4-Dinitrophen			2200	U
	4-Nitrophenol	J±	<del></del>	2200	Ŭ
	Dibenzofuran			450	Ŭ
	2,4-Dinitrotolu	ene		450	<u>ט</u>
	Diethylphthalat			450	Ū
	4-Chlorophenyl-		<del>-</del>	450	Ū
	Fluorene			450	Ū
	4-Nitroaniline			2200	U
	4,6-Dinitro-2-m	ethylpheno	Ī	2200	ש
86-30-6	N-Nitrosodiphen	ylamine (1	) [—]	450	U
	4-Bromophenyl-p			450	U
	Hexachlorobenze			450	U
	Pentachlorophen			2200	U
	Phenanthrene			450	U
	Anthracene			450	Ū
8-5-74-8	Carbazole			450	U
84-74-2	Di-n-butylphtha	late		450	· U
	Fluoranthene			450	U
129-00-0	Pyrene			450	U
85-68-7	Batylbenzylphth	alate		450	Ū
	3,3 ⁷ -Dichlorobe			900	U
	Benzo (a) anthrac			450	U
218-01-9	Chrysene			450	
117-81-7	bis (2-Ethylhexy	1)phthalat	e	290	
117-84-0	Di-n-octylphtha	late		450	
	Benzo(b)fluoran			450	
207-08-9	Benzo(k) fluoran	thene		450	
50-32-8	Benzo (a) pyrene_			450	
	Indeno (1,2,3-cd			450	U
	Dibenz (a,h) anth			450	:
191-24-2	Benzo(g,h,i)per	ylene		450	U
					·

Lab Name: NYTEST ENV INC Contract: 9421444

B-2-3B

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273108

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2526.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 30 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N 7 pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	ug/kg) UG/kG	×
108-95-2Phenol	480	7.7
111-44-4bis(2-Chloroethy,1) Ether	480	ט
95-57-82-Chlorophenol	480	ט
541-73-11.3-Dichlorobenzene	480	Ū
106-46-71.4-Dichlorobenzene	- 480 480	ŭ
95-50-11.2-Dichlorobenzene	480	
95-48-72-Methylphenol		ū
1 108-60-12.2'-oxybis(1-Chloropropage	480	ŭ
106-44-54-Methylphenol		Ū
621-64-7N-Nitroso-di-n-propylamine	_ 480	Ū
67-72-1Hexachloroethane	480	Ū
98-95-3Nitrobenzene	480	ש
78-59-1Isophorone	480	Ū
88-75-52-Nitrophenol	480	Ū
105-67-92,4-Dimethylphenol	480	U
120-83-22,4-Dichlorophenol	480	Ŭ
120-82-11,2,4-Trichlorobenzene	480	U
91-20-3Naphthalene	480	U
106-47-84-Chloroaniline	_ 480	Ū
87-68-3Hewachlorobutadiene	480	Ū
111-91-1bis (2-Chloroethoxy) methane	_ 480	Ū
59-50-74-Chloro-3-Methylphenol	480	Ū
91-57-62-Methylnaphthalene	480	IJ
77-47-4- Heinylnaphthalene	480	Ū
77-47-4Herachlorocyclopentadiene	480	Ū
88-06-22,4,6-Trichlorophenol	480	U
95-95-42,4,5-Trichlorophenol	2400	U
91-58-72-Chloronaphthalene	480	Ü
88-74-42-Nitroaniline	2400	U
131-11-3Dimethylphthalate	480	U
208-96-8Acenaphthylene	480	U
606-20-22,6-Dinitrotoluene	480	U
99-09-23-Nitroaniline	2400	Ū
83-32-9Acenaphthene	480	Ū
	_	

B-2-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273108

Sample wt/vol:

Lab Code: NYTEST

30.0 (g/mL) G

Lab File ID: Q2526.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 30 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N 7 pH: 7.0 Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		/kg) UG/kG	Q
51-28-5	2,4-Dinitrophenol	2400	U
100-02-7	4-Nitrophenol	2400	ט ו
132-64-9	Dibenzofuran	480	
121-14-2	2.4-Dinitrotoluene	480	_
84-66-2	Diethylphthalate	480	ט
1 7005-72-3	4-Chlorophenvl-phenvlether	480	ט
1 86-73-7	Fluorene	480	ט
100-01-6	4-Nitroaniline	2400	ט
534-52-1	4,6-Dinitro-2-methylphenol	2400	ט
86-30-6	N-Nitrosodiphenvlamine (1)	480	บ
101-55-3	4-Bromophenyl-phenylether	480	U U
1 118-74-1	Hexachlorobenzene	480	Ü
87-86-5	Pentachlorophenol	2400	บ
85-01-8	Phenanthrene	480	U
120-12-7	Anthracene	480	Ŭ
86-74-8	Carbazole	480	Ü
84-74-2	Di-n-butylphthalare	480	Ü
206-44-0	Fluoranthene	480	บ
129-00-0	Pyrene	480	บ
85-68-7	Bueylbenzylphthalate	480	Ü
91-94-1	3,3'-Dichlorobenzidine	950	บ
56-55-3	Benzo(a) anthracene	480	Ū
218-01-9	Chrysene	480	Ü
117-81-7	bis(2-Ethylhexyl)phthalate	180	J
1 11/-84-0	Di-n-octvlphthalate	480	U
205-99-2	Benzo(b)fluoranthene	480	บ
207-08-9	Benzo(k)fluoranthene	480	Ü
50-32-8	Benzo (a) pyrene	480	ָ ע
193-39-5	Indeno(1,2,3-cd)pyrene_	480	Ü
53-70-3	Dibenz (a, h) anthracene	480	U.
191-24-2	Benzo(g,h,i)perylene	480	บ
		400	U
I <del></del>			

00091

B-3-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273109

30.0 (g/mL) G Lab File ID: Q2703.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 15 dec.

Sample wt/vol:

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/13/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 2.0

CONCENTRATION UNITS: CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

1		COMPOUND	(ug/L or ug/	(Kg) U	G/KG	Q
	108-95-2	Phenol		_	780	U
-	111-44-4	bis(2-Chloroethy)	)Ether		780	Ü
١	95-57-8	2-Chlorophenol			780	<u>.</u> ט
	541-73-1	-1.3-Dichlorobenze	ene		780	ט
	106-46-7	1,4-Dichlorobenze	ne		780	<u>"</u>
-	95-50-L	-1.2-Dichlorobenze	ene		780	บ็
	95-48-7	-2-Methvlphenol			780	บ็
1	108-60-1	$-2.2'$ -oxybis(1- $\overline{\text{Ch}}$ )	oropropane)		780	υ
1	106-44-5	-4-Methvlphenol	ł		780	บี
1	621-64-7	-N-Nitroso-di-n-rr	copylamine		780	บี
1	6/-/2-1	-Hexachloroethane			780	Ü
ı	98-95-3	-Nitrobenzene			780	บี
1	78-59-1	-Isophorone			780	<u>ט</u>
	88-75-5	-2-Nitrophenol			780	Ü
1	105-67-9	-2.4-Dimethylpheno	ol		780	Ü
1	120-83-2	-2.4-Dichloropheno	1		780	Ŭ
	120-82-1	-1.2.4-Trichlorobe	nzene		780	Ŭ
1	91-20-3	-Naphthalene			780	Ū
l	106-47-8	-4-Chloroaniline			780	ี บั
1	87-68-3	-Hexachlorobutadie	ne		780	Ŭ
	111-91-1	-bis(2-Chloroethox	v) methane		780	Ŭ
1	59-50-7	-4-Chloro-3-Methyl	phenol —		780	Ŭ
	91-57-6	-2-Methylnaphthale	ne		780	บ
ļ	77-47-4	-Hexachlorocyclope	ntadiene		780	Ū
	88-06-2	-2,4,6-Trichloroph	enol		780	Ū
	95-95-4	-2.4.5-Trichloroph	enol		3900	Ū
	91-58-7	-2-Chloronaphthale	ne		780	บั
	88-74-4	-2-Nitroaniline			3900	Ū
	131-11-3	-Dimethylphthalate			780	Ū
	208-96-8	-Acenaphthylene			780	บั
	606-20-2	-2.6-Dinitrotoluen	e		780	Ū
	99-09-2	-3-Nitroaniline			3900	Ū
	83-32-9	-Acenaphthene			780	Ū
١.						

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-3-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273109

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2703.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 15 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/13/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 2.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG (

CAS NO.	COMPOUND (ug/L Of ug	/ kg/ 0d/ kd	Q
51_28_5	2,4-Dinitrophenol	3900	U
	4-Nitrophenol	3900	ן ט
	Dibenzofuran	780	ŭ
	2,4-Dinitrotoluene	780	บั
	Diethylphthalate	780	Ū
7005 72 2	4-Chlorophenyl-phenylether	780	บ
86-73-7		780	ש
	4-Nitroaniline	3900	Ü
		3900	บ
534-52-1	4,6-Dinitro-2-methylphenol	780	บี
86-30-6	N-Nitrosodiphenylamine (1)	. 1	· •
101-55-3	4-Bromophenyl-phenylether	780	U
	Hexachlorobenzene	780	Ū
	Pentachlorophenol	3900	ת
	Phenanthrene	620	J.
	Anthracene	110	J
	Carbazole	780	Ū
	Di-n-butylphthalate	780	U
	Fluoranthene	900	
129-00-0	Pyrene	790	
85-68-7	Busylbenzylphthalate	780	Ū
	3,3'-Dichlorobenzidine	1600	U
56-55-3	Benzo (a) anthracene	350	J
218-01-9		400	J
117-81-7	bis (2-Ethylhexyl)phthalate	780	U
117-84-0	Di-n-octylphthalate	780	U
	Benzo (b) fluoranthene	250	J
	Benzo(k) fluoranthene	190	J
	Benzo (a) pyrene	220	
	Indeno (1, 2, 3-cd) pyrene	130	J
	Dibenz (a, h) anthracene	780	Ū
	Benzo(g,h,i)perylene	140	Ĵ
101-24-2	DC1120 (g, 11, 1, per y rene	-	
l		.	· ———

Contract: 9421444

Lab Name: NYTEST ENV INC Lab Code: NYTEST Case No.: 22731 SAS No.: B-3-2B

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273110

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: Q2528.D

Level: (low/med) LOW

Date Received: 12/14/94

% Moisture: not dec. 15 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 2.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

	,,,,,, 1.0	Q
108-95-2Phenol		
111-44-4	780	_
95-57-82-Chlorophenol	780	-
541-/3-11 3-Dichlorohongono	780	1 -
106-46-71,4-Dichlorobenzene	780	_
95-50-11,2-Dichlorobenzene	780	
95-48-72-Methylphenol	.  780	
108-60-1	780	
108-60-12,2'-oxybis(1-Chloropropane) 106-44-54-Methylphenol	780	
621-64-7 N. N. Harris 1	780	
621-64-7N-Nitroso-di-n-propylamine 67-72-1Hexachloroethane	780	U
98-95-3Nitrobenzene	780	U
78.50 1	780	U
78-59-1Isophorone	780	U
88-75-52-Nitrophenol	780	U
105-67-92,4-Dimethylphenol	780	ן ט
120-83-22,4-Dichlorophenol	780	Ū
14U-82-1	780	Ū
91-20-3Naphthalene	780	Ū
106-47-84-Chloroaniline	780	Ū
87-68-3Hexachlorobutadiene	780	Ū
111-91-1bis(2-Chloroethoxy) methane	780	ן ט
39-30-/4-Chloro-3-Methylphenol	780	ال
91-5/-62-Methylnaphthalene	780	l ül
//-4/-4Herachlorocyclopentadiono	780	U
00-05-42.4.6-Trichlorophenol	780	l u
90-95-42.4.5-Trichlorophenol	3900	U U
91-58-/2-Chloropaphthalene	į.	- 1
88-74-42-Nitroaniline	780	ū
131-11-3Dimethylphthalate	3900	Ü
208-96-8Acenaphthylene	780	Ū
606-20-22,6-Dinitrotoluene	780	ַ
99-09-23-Nitroaniline	780	Ū
83-32-9Acenaphthene	3900	Ū
Acenaphenene	780	U

Q

B-3-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273110

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2528.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 15 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N 7 pH: 7.0 Dilution Factor: 2.0

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

3900 51-28-5----2,4-Dinitrophenol U 100-02-7----4-Nitrophenol 3900 U 132-64-9-----Dibenzofuran 780 U 121-14-2----2,4-Dinitrotoluene 780 U 780 U 84-66-2-----Diethylphthalate 780 7005-72-3----4-Chlorophenyl-phenylether U 780 U 86-73-7-----Fluorene 3900 U 100-01-6-----4-Nitroaniline 534-52-1----4,6-Dinitro-2-methylphenol 3900 U U 86-30-6----N-Nitrosodiphenylamine (1) 780 101-55-3----4-Bromophenyl-phenylether 780 U 118-74-1-----Hexachlorobenzene 780 U 87-86-5-----Pentachlorophenol 3900 U 85-01-8-----Phenanthrene 500 J 120-12-7-----Anthracene 84 J 86-74-8-----Carbazole 780 U 84-74-2-----Di-n-butylphthalate 780 U J 206-44-0----Fluoranthene 480 J 129-00-0-----Pyrene 410 85-68-7-----Butylbenzylphthalate 780 U 91-94-1----3,3'-Dichlorobenzidine 1600 U J 56-55-3-----Benzo(a) anthracene 160 J 170 218-01-9-----Chrysene 117-81-7-----bia(2-Ethylhexyl)phthalate_ 260 J 117-84-0-----Di-n-octylphthalate 780 U J 205-99-2----Benzo (b) fluoranthene 110 780 U 207-08-9-----Benzo(k) fluoranthene J 98 50-32-8-----Benzo (a) pyrene U 193-39-5-----Indeno(1,2,3-cd)pyrene_ 780 U 53-70-3-----Dibenz(a,h)anthracene 780 780 191-24-2-----Benzo(g,h,i)perylene

Lab Name: NYTEST ENV INC Contract: 9421444 B-3-3B

Lab Code: NYTEST Case No.: 22731 SAS No.: SDG No.: JEFF2

Matrix: (soil/water) SOIL Lab Sample ID: 2273111

Sample wt/vol: 30.0 (g/mL) G Lab File ID: Q2529.D

Level: (low/med) LOW Date Received: 12/14/94

% Moisture: not dec. 21 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0 Dilution Factor: 1.0

> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

1	COMPOIND (UG/L) OF UG	J/NG) UG/NG	Q
108-95-2	Phenol	420	U
111-44-4	bis(2-Chloroethyl)Ether	420	Ü
95-57-8	2-Chlorophenol	420	Ü
541-73-1	1,3-Dichlorobenzene	420	<u>ט</u>
106-46-7	1,4-Dichlorobenzene	420	וֹט
95-50-1	1,2-Dichlorobenzene	420	<u></u> <u></u>
95-48-7	2-Methylphenol	420	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	420	U
106-44-5	4-Methylphenol	420	ט
621-64-7	N-Nitroso-di-n-propylamine	420	U
67-72-1	Hexachloroethane	420	ַ ד
98-95-3	Nitrobenzene	420	ט
78-59-1	Isophorone	420	ש
88-75-5	2-Nitrophenol	420	U
105-67-9	2,4-Dimethylphenol	420	יט
120-83-2	2,4-Dichlorophenol	420	ַ ד
120-82-1	1,2,4-Trichlorobenzene	420	U
91-20-3	Naphthalene	420	U
106-47-8	4-Chloroaniline	420	ַ ט
87-68-3	-Hexachlorobutadiene_	420	U
111-91-1	bis(2-Chloroethoxy)methane	420	[ט
59-50-7	4-Chloro-3-Methylphenol	420	U
91-57-6	2-Methylnaphthalene	420	U
77-47-4	Hexachlorocyclopentadiene	420	ַ ט
88-06-2	2,4,6-Trichlorophenol	420	ן ט
95-95-4	-2,4,5-Trichlorophenol	2100	ן ט
91-58-7	-2-Chloronaphthalene	420	U
88-74-4	2-Nitroaniline	2100	U
131-11-3	-Dimethylphthalate	420	U
208-96-8	Acenaphthylene	420	Ū
606-20-2	2,6-Dinitrotoluene	420	U
99-09-2	-3-Nitroaniline	2100	U
83-32-9	Acenaphthene	420	U

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-3-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22731 SAS No.:

SDG No.: JEFF2

Matrix: (soil/water) SOIL

Lab Sample ID: 2273111

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: Q2529.D

Date Received: 12/14/94

Level: (low/med) LOW

% Moisture: not dec. 21 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N = pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

-	·	
51-28-52,4-Dinitrophenol	2100	บ
100-02-74-Nitrophenol	2100	Ü
132-64-9Dibenzofuran	420	Ū
121-14-22,4-Dinitrotoluene	420	Ū
84-66-2Diethylphthalate	420	Ū
7005-72-34-Chlorophenyl-phenylether	420	Ŭ
86-73-7Fluorene	420	Ŭ
100-01-64-Nitroaniline	2100	Ŭ
534-52-14,6-Dinitro-2-methylphenol	2100	Ü
86-30-6N-Nitrosodiphenylamine (1)	420	Ū
101-55-34-Bromophenyl-phenylether	420	Ŭ
118-74-1Hexachlorobenzene	420	บี
87-86-5Pentachlorophenol	2100	Ū
85-01-8Phenanthrene	420	Ū
120-12-7Anthracene	420	Ū
86-74-8Carbazole	420	Ū
84-74-2Di-n-butylphthalate	420	Ū
206-44-0Fluoranthene	420	Ū
129-00-0Pyrene	420	Ū
85-68-7Butylbenzylphthalate	420	U
91-94-13,3'-Dichlorobenzidine	840	ט
56-55-3Benzo (a) anthracene	420	U
218-01-9Chrysene	420	U
117-81-7bis (2-Ethylhexyl) phthalate	150	J
117-84-0Di-n-octylphthalate	420	U
205-99-2Benzo(b)fluoranthene	420	U
207-08-9Benzo(k) fluoranthene	420	U
50-32-8Benzo (a) pyrene	420	บ
193-39-5Indeno (1, 2, 3-cd) pyrene	420	ט
53-70-3Dibenz(a,h)anthracene	420	ן ד
191-24-2Benzo(q,h,i)perylene	420	U
	•	
	• •	

Lab Name: NYTEST ENV INC

Contract: 9421444

B-4-1B

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274501

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2378.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 17 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		~
108-95-2Phenol	400	
111-44-4bis(2-Chloroethyl)Ether	400	U
1 33-3/-82-Chlorophenol	400	, -
541-/3-11 3-Dichlorohenzone	400	, -
1 106-46-71 4-Dichlorobenzono	400	U
1 35-50-11.2-Dichlorobenzeno	400	U
1 35-48-72-Methylphenol	400	U
108-60-12.2'-oxybig(1-Chloropyonana)	400	Ū
106-44-54-Methylphenol	400	ט י
621-64-7N-Nitroso-di-n-propylamine	400	ט
67-72-1Hexachloroethane	400	ט
98-95-3Nitrobenzene	400	U
78-59-1Isophorone	400	U
88-75-52-Nitrophenol	400	U
105-67-92,4-Dimethylphenol	400	U
120-83-22,4-Dichlorophenol	400	U
120-82-11,2,4-Trichlorobenzene	400	ט
91-20-3Naphthalene	400	ט
106-47-84-Chloroaniline	100	J
97.69 3	400	ט
87-68-3Hexachlorobutadiene	400	ט
111-91-1bis(2-Chloroethoxy) methane	400	Ū
33-30-/4-Ch!OrO-3-Methylphenol	400	Ü
91-57-62-Methylnaphthalene	120	J
77-47-4Hexachlorocyclopentadiene	400	Ŭ
00-00-42.4.6-Trichlorophenol	400	Ŭ
70-70-4	2000	Ŭ
J1-58-/2-Chloronaphthalene	400	Ü
88-74-42-Nitroaniline	2000	Ū
131-11-3Dimethylphthalate	400	Ū
408-96-8Acenaphthylene	400	ט
606-20-22.6-Dinitrotoluene	400	ט
99-09-23-Nitroaniline	2000	וט
83-32-9Acenaphthene	320	ן נ
• •	320	ا ا

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

B-4-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

17

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Sample wt/vol:

30.0 (g/mL) G

Lab Sample ID: 2274501

R2378.D

Level:

Lab File ID:

(low/med) LOW

Date Received: 12/15/94

% Moisture: not dec.

dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

	3, 4.5, 4.4, 110	×
51-28-52,4-Dinitrophenol	2000	U
100-02-74-Nitrophenol	2000	1
132-64-9Dibenzofuran	<b>-</b>	_
121-14-22,4-Dinitrotoluene	_ 210	_
84-66-2Diethylphthalate	_ 400	ט
7005-72-34-Chlorophenyl-phenylether	_ 400	Ŭ
86-73-7Fluorene	400	ט
100-01-64-Nitroaniline	_ 230	J
534-52-14,6-Dinitro-2-methylphenol	_ 2000	Ū
86-30-6Nitrosodiphenylamine (1)	_ 2000	U
101-55-34-Bromophenyl-phenylether	400	ט
118-74-1Hexachlorobenzene	400	ע
87-86-5Pentachlorophenol	_ 400	ט
85-01-8Phenanthrene	_ 2000	U
120-12-7Anthracene	_ 2500	<u> </u>
86-74-8Carbazole	470	
84-74-2- Di - but-1-bil 1	_  110	J
84-74-2Di-n-butylphthalate	400	Ū
206-44-0Fluoranthene	_ 2400	
129-00-0Pyrene	_ 2400	
85-68-7Butylbenzylphthalate	400	Ū
91-94-13,3'-Dichlorobenzidine	800	U
56-55-3Benzo(a)anthracene	910	
218-01-9Chrysene	990	
117-81-7bis(2-Ethylhexyl)phthalate	700	
117-84-0Di-n-octvlphthalate	400	Ū
205-99-2Benzo(b) fluoranthene	400	J
207-08-9Benzo(k) fluoranthene	420	
50-32-8Benzo (a) pyrene	530	·
193-39-5Indeno(1,2,3-cd)pyrene	250	J
53-70-3Dibenz(a,h)anthracene	400	Ü
191-24-2Benzo(g,h,i)perylene	260	J
	-  200	J

Lab Name: NYTEST ENV INC Contract: 9421444

B-4-2B

Matrix: (soil/water) SOIL

Lab Sample ID: 2274502

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2379.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 26 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND

CONCENTRATION UNITS: 

		*
108-95-2Phenol		
111-44-4hig(2-Chlorophhal) 711	450	1
1 73 3/ 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	450	
1 241-/3-11 3-Dighloroho	. 450	
1 100-40-/ 1 4-Dichlersher	.  450	1
1 33-30-1	. 450	U
95-48-72-Methylphenol	. 450	ן ט
108-60-12,2'-oxybis(1-Chloropropane)	450	U
106-44-54-Methylphenol_	450	ט
621-64-7 N. Nitharan 1:	450	ו די
621-64-7N-Nitroso-di-n-propylamine 67-72-1Hexachloroethane	450	ן די
98-95-3Nitrobenzene	450	ן ט
78-59-1	450	ט
78-59-1Isophorone	450	<u></u> <u></u>
88-75-52-Nitrophenol	450	ان
105-67-92,4-Dimethylphenol	450	Ü
1 440-03-4 4-Dichlorophone	450	<u>ט</u>
140-84-1	450	ט
1 J1-4U-3Naphthalono	450	וט
1 106-4/-8	450	Ü
8/-68-3Hevachloroby+adio	450	
1 +11-71-1hig(2-Chloroothor-1	450	Ū
JJ=JU=/========4=('n oxo 7 Moth:-1-1-1:	450	U
1 21-2/-0		Ū
1 //-4/-4HOVach [oxograf on	450	Ū
1 00-00-4	450	Ū
1 33-33-4	450	Ū
21-30-/2-('h Oronanhthalona	2200	U
1 00-/4-42-Nitroppiling	450	U
131-11-3Dimethylphthalata	2200	U
208-96-8Acenaphthylene	450	U
000-20-2 6-Dinitrotolyona	450	U
33-U3-43-Nitrospiling	450	U
83-32-9Acenaphthene	2200	Ū
	450	ַ ט
	'	1

B-4-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274502

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2379.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec.

26 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

		<del></del> ,
51-28-52,4-Dinitrophenol	2200	ט
100-02-74-Nitrophenol	2200	<u>ט</u>
132-64-9Dibenzofuran	450	Ü
121-14-22,4-Dinitrotoluene	450	<u>ט</u>
84-66-2Diethylphthalate	450	اق
7005-72-34-Chlorophenyl-phenylether	450	اق
86-73-7Fluorene	450	ŭ
100-01-64-Nitroaniline	2200	ט ט
534-52-14,6-Dinitro-2-methylphenol	2200	Ü
86-30-6N-Nitrosodiphenylamine (1)	450	ŭ
101-55-34-Bromophenyl-phenylether	450	ט
118-74-1Hexachlorobenzene	450 450	ָ ט
87-86-5Pentachlorophenol	2200	ซ
85-01-8Pencachiorophenoi	450	ט
120-12-7Anthracene	450	ט
86-74-8Carbazole		
	450	Ū
84-74-2Di-n-butylphthalate	450	U
206-44-0Fluoranthene	450	ָּט
129-00-0Pyrene	450	ָּט
85-68-7Butylbenzylphthalate	450	U
91-94-13,3'-Dichlorobenzidine	900	IJ
56-55-3Benzo(a) anthracene	450	ט
218-01-9Chrysene	450	ת
117-81-7bis(2-Ethylhexyl)phthalate	180	J
117-84-0Di-n-octylphthalate	450	U
205-99-2Benzo (b) fluoranthene	450	บ
207-08-9Benzo(k)fluoranthene	450	ט
50-32-8Benzo (a) pyrene	450	U
193-39-5Indeno(1,2,3-cd)pyrene	450	U
53-70-3Dibenz(a,h)anthracene	450	U
191-24-2Benzo(g,h,i)perylene	450	U
		l

00051

B-4-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274503

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

R2380.D

Level: (low/med)

Date Received: 12/15/94

20

% Moisture: not dec.

dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

LOW

Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

4			
108-95-2		420	U
111-44-4	bis(2-Chloroethyl)Ether	420	บ
95-57-8	2-Chlorophenol	420	Ŭ
541-73-1	1,3-Dichlorobenzene	420	Ū
106-46-7	1,4-Dichlorobenzene	420	. Ü
95-50-1	1,2-Dichlorobenzene	420	Ū
95-48-7	2-Methylphenol	420	Ü
108-60-1	2,2'-oxybis(1-Chloropropane)	420	Ŭ
106-44-5	4-Methylphenol	420	Ŭ
621-64-7	N-Nitroso-di-n-propylamine	420	Ü
67-72-1	Hexachloroethane	420	Ū
98-95-3	Nitrobenzene	420	Ü
78-59-1	Isophorone	420	Ū
88-75-5	2-Nitrophenol	420	U U
105-67-9	2,4-Dimethylphenol	420	บ
120-83-2	2,4-Dichlorophenol	420	บ
120-82-1	1,2,4-Trichlorobenzene	420	บ
91-20-3	Naphthalene	420	Ŭ
106-47-8	4-Chloroaniline	420	บ
87-68-3	Hexachlorobutadiene	420	Ŭ
111-91-1	bis(2-Chloroethoxy) methane	420	Ŭ
59-50-7	4-Chloro-3-Methylphenol	420	U
91-57-6	2-Methylnaphthalene		U
77-47-4	Hexachlorocyclopentadiene	420	Ŭ
88-06-2	2,4,6-Trichlorophenol	420	_
95-95-4	2,4,5-Trichlorophenol	420	U
91-59-7	2,4,5-111Chiorophenoi	2100	Ū
99-74-4	2-Nitroaniline	420	U
	Dimethylphthalate	2100	U
708-86-8	Acenaphthylene	420	Ü
606-20-2	Acenaphenytene	420	ט
99-09-2	2,6-Dinitrotoluene	420	ָט
99-09-4	3-NICTOANILINE	2100	ט
03-32-3	Acenaphthene	420	Ū

B-4-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274503

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2380.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 20 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q 
51-28-5	2,4-Dinitrophe	enol		2100	U
100-02-7	4-Nitrophenol			2100	ט
132-64-9	Dibenzofuran			420	U
121-14-2	2,4-Dinitroto	luene		420	U
84-66-2	Diethylphthala	ate		420	U
7005-72-3	4-Chloropheny	L-phenylether	-	420	U
	Fluorene		—	420	ט
100-01-6	4-Nitroaniline	2		2100	ע
534-52-1	4,6-Dinitro-2	-methylphenol		2100	ַ
86-30-6	N-Nitrosodiphe	enylamine (1)	_	420	ט
101-55-3	4-Bromophenyl	-phenylether		420	U
118-74-1	Hexachloroben:	zene		420	ַד
87-86-5	Pentachlorophe	enol		2100	U
85-01-8	Phenanthrene			420	U
120-12-7	Anthracene			420	U
86-74-8	Carbazole			420	U
84-74-2	Di-n-butylpht	nalate		420	U
206-44-0	Fluoranthene			420	U
129-00-0	Pyrene			420	U
	Butylbenzylph			420	Ü
	3,3'-Dichloro			830	Ū
56-55-3	Benzo (a) anthr	acene		420	U
	Chrysene			420	U
117-81-7	bis(2-Ethylhe	xyl)phthalate	:	200	J
	Di-n-octylpht			420	U
205-99-2	Benzo(b)fluor	anthene		420	U
207-08-9	Benzo(k) fluor	anthene		420	U
	Benzo(a)pyren			420	U
193-39-5	Indeno (1, 2, 3-	cd) pyrene_		420	U
	Dibenz(a,h)an			420	U
191-24-2	Benzo(g,h,i)p	erylene		420	U
			1		l

00055

A-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274504

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2381.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 20 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol       420         111-44-4bis(2-Chloroethyl)Ether       420         95-57-82-Chlorophenol       420         541-73-11,3-Dichlorobenzene       420         106-46-71,4-Dichlorobenzene       420         95-50-11,2-Dichlorobenzene       420         95-48-72-Methylphenol       420         108-60-12,2'-oxybis(1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7Nnitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1
95-57-82-Chlorophenol       420         541-73-11,3-Dichlorobenzene       420         106-46-71,4-Dichlorobenzene       420         95-50-11,2-Dichlorobenzene       420         95-48-72-Methylphenol       420         108-60-12,2'-oxybis (1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7Nnitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-1Naphthalene       420         106-47-8
95-57-82-Chlorophenol       420         541-73-11,3-Dichlorobenzene       420         106-46-71,4-Dichlorobenzene       420         95-50-11,2-Dichlorobenzene       420         95-48-72-Methylphenol       420         108-60-12,2'-oxybis (1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7Nnitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-1Naphthalene       420         106-47-8
541-73-11,3-Dichlorobenzene       420         106-46-71,4-Dichlorobenzene       420         95-50-11,2-Dichlorobenzene       420         95-48-72-Methylphenol       420         108-60-12,2'-oxybis(1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7Nnitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-8Hexachlorobutadiene       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
95-50-11, 2-Dichlorobenzene       420         95-48-72-Methylphenol       420         108-60-12, 2'-oxybis (1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-8Hexachlorobutadiene       420         87-68-3Hexachlorobutadiene       420         111-91-1bis (2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
95-48-72-Methylphenol       420         108-60-12,2'-oxybis(1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7N-Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
95-48-72-Methylphenol       420         108-60-12,2'-oxybis(1-Chloropropane)       420         106-44-54-Methylphenol       420         621-64-7N-Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
106-44-54-Methylphenol       420         621-64-7Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
106-44-54-Methylphenol       420         621-64-7Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
621-64-7Nitroso-di-n-propylamine       420         67-72-1Hexachloroethane       420         98-95-3Nitrobenzene       420         78-59-1Isophorone       420         88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy) methane       420         59-50-74-Chloro-3-Methylphenol       420
67-72-1
78-59-1
88-75-52-Nitrophenol       420         105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
105-67-92,4-Dimethylphenol       420         120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
120-83-22,4-Dichlorophenol       420         120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
120-82-11,2,4-Trichlorobenzene       420         91-20-3Naphthalene       420         106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
106-47-84-Chloroaniline       420         87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
87-68-3Hexachlorobutadiene       420         111-91-1bis(2-Chloroethoxy)methane       420         59-50-74-Chloro-3-Methylphenol       420
111-91-1bis(2-Chloroethoxy)methane 420 59-50-74-Chloro-3-Methylphenol 420
59-50-74-Chloro-3-Methylphenol 420
59-50-74-Chloro-3-Methylphenol 420 91-57-62-Methylnaphthalene 420
91-57-6 420
77-47-4Hexachlorocyclopentadiene 420
88-06-22,4,6-Trichlorophenol420
95-95-42,4,5-Trichlorophenol2100
91-58-72-Chloronaphthalene 420
88-74-42-Nitroaniline 2100
131-11-3Dimethylphthalate 420
208-96-8Acenaphthylene 420
606-20-22,6-Dinitrotoluene 420
99-09-23-Nitroaniline 2100
83-32-9Acenaphthene 420

A-1-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274504

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2381.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 20 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/06/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	2100	U
100-02-74-Nitrophenol	2100	Ū
132-64-9Dibenzofuran	420	Ū
121-14-22,4-Dinitrotoluene	420	U
84-66-2Diethylphthalate	420	ט
7005-72-34-Chlorophenyl-phenyleth		ט
86-73-7Fluorene	420	ט
100-01-64-Nitroaniline	2100	ש
534-52-14,6-Dinitro-2-methylphen	<u>ol</u> 2100	U
86-30-6N-Nitrosodiphenylamine (	1) 420	ָט
101-55-34-Bromophenyl-phenylethe	r — 420	บ
118-74-1Hexachlorobenzene	420	U
87-86-5Pentachlorophenol	2100	<b>ט</b>
85-01-8Phenanthrene	420	U
120-12-7Anthracene	420	U
86-74-8Carbazole	420	U
84-74-2Di-n-butylphthalate	58	J
206-44-0Fluoranthene	420	U
129-00-0Pyrene	420	U
85-68-7Butylbenzylphthalate	420	U
91-94-13,3'-Dichlorobenzidine	830	U
56-55-3Benzo(a) anthracene	420	U
218-01-9Chrysene	420	U
117-81-7bis(2-Ethylhexyl)phthala	te130	J
117-84-0Di-n-octylphthalate	420	U
205-99-2Benzo (b) fluoranthene	420	U
207-08-9Benzo(k) fluoranthene	420	U
50-32-8Benzo(a)pyrene	420	U
193-39-5Indeno (1, 2, 3-cd) pyrene	420	U
53-70-3Dibenz(a,h)anthracene	420	Ū
191-24-2Benzo(g,h,i)perylene	420	U

A-1-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274505

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2386.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 20 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2Phenol	420	
111-44-4bis(2-Chloroethyl)Ether	420	Ü
95-57-82-Chlorophenol	420	U
541-73-11,3-Dichlorobenzene	420	ប
106-46-71,4-Dichlorobenzene	420	Ü
95-50-11,2-Dichlorobenzene	420	Ŭ
95-48-72-Methylphenol	420	Ŭ
108-60-12,2'-oxybis(1-Chloropropage)	420	Ŭ
106-44-54-Methylphenol	420	Ü
621-64-7Nitroso-di-n-propylamine	420	. Ü
67-72-1Hexachloroethane	420	Ŭ
98-95-3Nitrobenzene	420	Ü
78-59-1Isophorone	420	Ü
88-75-52-Nitrophenol	420	Ŭ
105-67-92,4-Dimethylphenol	420	Ŭ
120-83-22,4-Dichlorophenol	420	Ŭ
120-82-11,2,4-Trichlorobenzene	420	Ŭ
91-20-3Naphthalene	420	Ŭ
106-47-84-Chloroaniline	420	Ü
87-68-3Hexachlorobutadiene	420	Ŭ
111-91-1bis(2-Chloroethoxy)methane	420	บั
59-50-74-Chloro-3-Methylphenol	420	บั
91-57-62-Methylnaphthalene	420	บ
77-47-4Hexachlorocyclopentadiene	420	Ŭ
88-06-22,4,6-Trichlorophenol	420	Ū
95-95-42,4,5-Trichlorophenol	2100	บั
91-58-72-Chloronaphthalene	420	Ū
88-74-42-Nitroaniline	2100	ע
131-11-3Dimethylphthalate	420	Ū
208-96-8Acenaphthylene	420	โ บั
606-20-22,6-Dinitrotoluene	420	Ū
99-09-23-Nitroaniline	2100	Ü
83-32-9Acenaphthene	420	U.
	120	
	l	l

A-1-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274505

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2386.D

Level: (low/med)

LOW

Date Received: 12/15/94

% Moisture: not dec.

CAS NO.

20 dec.

COMPOUND

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

51-28-5----2,4-Dinitrophenol 2100 U 100-02-7----4-Nitrophenol U 2100 132-64-9-----Dibenzofuran U 420 121-14-2----2,4-Dinitrotoluene U 420 84-66-2-----Diethylphthalate U 420 7005-72-3----4-Chlorophenyl-phenylether 420 U 86-73-7-----Fluorene U 420 100-01-6-----4-Nitroaniline U 2100 534-52-1----4,6-Dinitro-2-methylphenol U 2100 86-30-6----N-Nitrosodiphenylamine (1) U 420 101-55-3----4-Bromophenyl-phenylether U 420 118-74-1-----Hexachlorobenzene U 420 87-86-5-----Pentachlorophenol_ 2100 U 85-01-8-----Phenanthrene 420 U 120-12-7-----Anthracene U 420 U 86-74-8-----Carbazole 420 U 84-74-2-----Di-n-butylphthalate 420 U 206-44-0-----Fluoranthene 420 U 129-00-0-----Pyrene 420 U 85-68-7-----Butylbenzylphthalate 420 U 91-94-1-----3,3'-Dichlorobenzidine 830 U 56-55-3-----Benzo (a) anthracene 420 218-01-9-----Chrysene U 420 117-81-7-----bis(2-Ethylhexyl)phthalate 66 J 117-84-0-----Di-n-octylphthalate 420 U 205-99-2-----Benzo(b) fl::oranthene 420 U 207-08-9-----Benzo(k) fluoranthene_ 420 U 50-32-8-----Benzo (a) pyrene 420 U 193-39-5----Indeno (1, 2, 3-cd) pyrene 420 U 53-70-3-----Dibenz(a,h)anthracene 420 U 420 U 191-24-2-----Benzo(g,h,i)perylene

EPA SAMPLE NO.

A-1-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274508

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2389.D

22

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N

pH: 7.0

dec.

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND (ug	/L or ug/k	.g) UG/KG	Q
108-95-2			430	U
111-44-4	bis(2-Chloroethyl)Et	her	430	וט
95-57-8	2-Chlorophenol	-	430	וט
541-73-1	1,3-Dichlorobenzene		430	וט
106-46-7	1,4-Dichlorobenzene		430	Ū
95-50-1	1,2-Dichlorobenzene		430	Ū
95-48-7	2-Methylphenol		430	ט
108-60-1	2,2'-oxybis(1-Chloro	propane)	430	ט
106-44-5	4-Methylphenol		430	Ū
621-64-7	N-Nitroso-di-n-propy	lamine	430	ט
67-72-1	Hexachloroethane		430	U
98-95-3	Nitrobenzene		430	Ū
78-59-1	Isophorone		430	บ
88-75-5	2-Nitrophenol		430	Ū
105-67-9	2,4-Dimethylphenol		430	וט
120-83-2	2,4-Dichlorophenol		430	Ū
120-82-1	1,2,4-Trichlorobenze	ne	430	<u></u> ט
91-20-3	Naphthalene		430	U
	4-Chloroaniline		430	υ
	Hexachlorobutadiene		430	ט
111-91-1	$$ bis(2-Chloroethoxy) $\overline{\pi}$	ethane	430	Ū
59-50-7	4-Chloro-3-Methylphe	nol —	430	IJ
91-57-6	2-Methylnaphthalene_		430	Ū
77-47-4	Hexachlorocyclopenta	diene	430	IJ
88-06-2	2,4,6-Trichloropheno	$_{ m ol}$	430	Ū
95-95-4	2,4,5-Trichloropheno	1	2100	ט
91-58-7	2-Chloronaphthalene		430	U
88-74-4	2-Nitroaniline -		2100	Ū
131-11-3	Dimethylphthalate		430	Ū
208-96-8	Acenaphthylene		430	ט
606-20-2	2,6-Dinitrotoluene_		430	ט ו
99-09-2	3-Nitroaniline		2100	U
83-32-9	Acenaphthene		430	U
	-			1

EPA SAMPLE NO.

A-1-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274508

Sample wt/vol: 30.0 (g/mL) G

Lab File ID: R2389.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 22

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.	COMPOUND (ug/L or ug	/Kg) UG/KG	Q
51-28-5	2,4-Dinitrophenol	2100	U
	4-Nitrophenol	2100	U
132-64-9	Dibenzofuran	430	U
	2,4-Dinitrotoluene	430	U
	Diethylphthalate	430	U
	4-Chlorophenyl-phenylether	430	ט
	Fluorene	430	ַ
100-01-6	4-Nitroaniline	2100	U
534-52-1	4,6-Dinitro-2-methylphenol	2100	U
	N-Nitrosodiphenylamine (1)	430	U
101-55-3	4-Bromophenyl-phenylether	430	Ū
118-74-1	Hexachlorobenzene	430	ַד
87-86-5	Pentachlorophenol	2100	ַ
85-01-8	Phenanthrene	430	ש
	Anthracene	430	Ū
86-74-8	Carbazole	430	ַ
84-74-2	Di-n-butylphthalate	430	U
206-44-0	Fluoranthene	430	Ŭ
129-00-0		430	U
85-68-7	Butylbenzylphthalate	430	U
	3,3'-Dichlorobenzidine	850	U
	Benzo (a) anthracene	430	U
	Chrysene	430	U
	bis(2-Ethylhexyl)phthalate	[] 68	J
	Di-n-octylphthalate	430	U
	Benzo(b)fluoranthene	430	U
	Benzo(k)fluoranthene	430	U
	Benzo (a) pyrene	430	บ
	Indeno (1,2,3-cd) pyrene	430	U
	Dibenz (a,h) anthracene	430	U
191-24-2	Benzo(g,h,i)perylene	430	ט
1		.	l

00067

A-2-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274509

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2390.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 17 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2----Phenol 400 U 111-44-4-----bis(2-Chloroethyl)Ether 400 U 95-57-8----2-Chlorophenol 400 U 541-73-1----1,3-Dichlorobenzene U 400 106-46-7----1,4-Dichlorobenzene U 400 95-50-1----1,2-Dichlorobenzene 400 U 95-48-7----2-Methylphenol U 400 108-60-1----2,2'-oxybis(1-Chloropropane) U 400 106-44-5----4-Methylphenol U 400 621-64-7----N-Nitroso-di-n-propylamine U 400 67-72-1-----Hexachloroethane 400 U 98-95-3-----Nitrobenzene 400 U 78-59-1-----Isophorone U 400 88-75-5----2-Nitrophenol 400 U 105-67-9----2,4-Dimethylphenol 400 U 120-83-2----2,4-Dichlorophenol U 400 120-82-1----1,2,4-Trichlorobenzene 400 U 91-20-3-----Naphthalene 400 U 106-47-8----4-Chloroaniline U 400 87-68-3-----Hexachlorobutadiene U 400 111-91-1----bis (2-Chloroethoxy) methane U 400 59-50-7-----4-Chloro-3-Methylphenol U 400 91-57-6----2-Methylnaphthalene 400 U 77-47-4-----Hexachlorocyclopentadiene Ū 400 88-06-2----2,4,6-Trichlorophenol U 400 95-95-4-----2,4,5-Trichlorophenol U 2000 91-58-7----2-Chloronaphthalene U 400 88-74-4----2-Nitroaniline U 2000 131-11-3-----Dimethylphthalate_ U 400 208-96-8-----Acenaphthylene U 400 606-20-2----2,6-Dinitrotoluene U 400 99-09-2----3-Nitroaniline U 2000 83-32-9-----Acenaphthene 400 U

A-2-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Lab Sample ID: 2274509 Matrix: (soil/water) SOIL

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2390.D

Date Received: 12/15/94 Level: (low/med) LOW

% Moisture: not dec. 17 dec. Date Extracted:12/18/94

Date Analyzed: 01/07/95 Extraction: (SepF/Cont/Sonc) SONC

Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0

> CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG COMPOUND

CAS NO.

51-28-5	2,4-Dinitrophenol	2000	U
100-02-7	4-Nitrophenol	2000	[
132-64-9	Dibenzofuran	400	ַ
	2,4-Dinitrotoluene	400	U
84-66-2	Diethylphthalate	400	U
7005-72-3	4-Chlorophenyl-phenylether_	400	U
86-73-7	Fluorene	400	U
100-01-6	4-Nitroaniline	2000	ַ "ט
534-52-1	4,6-Dinitro-2-methylphenol_	2000	ַ
86-30-6	N-Nitrosodiphenylamine_(1)	400	U
101-55-3	4-Bromophenyl-phenylether	400	ע
118-74-1	Hexachlorobenzene	400	ע
	Pentachlorophenol	2000	ע
	Phenanthrene	56	J
	Anthracene	400	U
	Carbazole	400	ע
84-74-2	Di-n-butylphthalate	400	ַ ט
	Fluoranthene	77	J
129-00-0	Pyrene	70	J
85-68-7	Butylbenzylphthalate	400	ט
91-94-1	3,3'-Dichlorobenzidine	800	Ū
56-55-3	Benzo(a) anthracene	400	U
218-01-9	Chrysene	42	J
117-81-7	bis(2-Ethylhex/1)phthalate	720	
117-84-0	Di-n-octylphthalate	400	Ū
	Benzo(b)fluoranthene	400	
	Benzo(k)fluoranthene	400	U
50-32-8	Benzo(a)pyrene	400	1
193-39-5	Indeno(1,2,3-cd)pyrene	400	t .
53-70-3	Dibenz(a,h)anthracene	400	L
191-24-2	Benzo(g,h,i)perylene	400	ט
			.1

Lab Name: NYTEST ENV INC

A-2-2B

Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274510

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2391.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 21 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

		rg) ug/kg	Q.
108-95-2	Phenol	420	Ū
111-44-4	bis(2-Chloroethyl)Ether	420	Ü
95-57-8	2-Chlorophenol	420	Ü
541-73-1	1,3-Dichlorobenzene	420	Ü
106-46-7	1.4-Dichlorobenzene	420	וט
95-50-1	1,2-Dichlorobenzene	420	Ū
95-48-7	2-Methylphenol	420	Ū
108-60-1	2,2'-oxybis(1-Chloropropage)	420	บ
106-44-5	4-Methylphenol	420	וט
621-64-7	N-Nitroso-di-n-propylamine	420	ָ ע
67-72-1	Hexachloroethane	420	<u></u> <u></u>
98-95-3	Nitrobenzene	420	Ū
78-59-1	Isophorone	420	ש
88-75-5	2-Nitrophenol	420	ט
105-67-9	2,4-Dimethylphenol	420	ט
120-83-2	2,4-Dichlorophenol	420	Ū
120-82-1	1,2,4-Trichlorobenzene	420	U
91-20-3	Naphthalene	420	U
106-47-8	4-Chloroaniline	420	ט
87-68-3	Hexachlorobutadiene	420	U
111-91-1	bis(2-Chloroethoxy) methane	420	U
59-50-7	4-Chloro-3-Methylphenol	420	U
91-57-6	2-Methylnaphthalene	420	ש
77-47-4	Hexachlorocyclopentadiene	420	ט
88-06-2	2,4,6-Trichlorophenol	420	ַ ט
95-95-4	2,4,5-Trichlorophenol	2100	U
91-58-7	2-Chloronaphthalene	420	ט
88-74-4	2-Nitroaniline	2100	ט
131-11-3	Dimethylphthalate	420	ប
208-96-8	Acenaphthylene	420	Ū
606-20-2	2,6-Dinitrotoluene	420	υ
99-09-2	3-Nitroaniline	2100	U
83-32-9	Acenaphthene	420	Ū

A-2-2B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274510

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2391.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 21 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

CED NO.	(43, 4 4 43,		
51-28-5	2,4-Dinitrophenol	2100	ט
	4-Nitrophenol	2100	Ū
	Dibenzofuran	420	ש
	2,4-Dinitrotoluene	420	ט
84-66-2	Diethylphthalate	420	ָ ע
	4-Chlorophenyl-phenylether_	420	U
86-73-7	Fluorene	420	ָ ע
100-01-6	4-Nitroaniline	2100	U
534-52-1	4,6-Dinitro-2-methylphenol	2100	ָ ט
86-30-6	N-Nitrosodiphenylamine (1)	420	U
101-55-3	4-Bromophenyl-phenylether	420	ן ט
118-74-1	Hexachlorobenzene	420	ן ע
87-86-5	Pentachlorophenol	2100	
85-01-8	Phenanthrene	420	U
120-12-7	Anthracene	420	U
	Carbazole	420	
84-74-2	Di-n-butylphthalate	420	U
206-44-0	Fluoranthene	420	U
129-00-0	Pyrene	420	
85-68-7	Butylbenzylphthalate	420	
91-94-1	3,3'-Dichlorobenzidine	840	
56-55-3	Benzo (a) anthracene	420	I .
218-01-9	Chrysene	420	1
117-81-7	bis(2-Ethylhexyl)phthalate	420	1
117-84-0	Di-n-octylphthalate	420	
205-99-2	Benzo(b) fluoranthene	420	1
207-08-9	Benzo(k) fluoranthene	420	
	Benzo (a) pyrene	420	1
	Indeno(1,2,3-cd)pyrene	420	
	Dibenz(a,h)anthracene	420	1
191-24-2	Benzo(g,h,i)perylene	420	ט (ו
		_	_1

FORM I SV-2

EPA SAMPLE NO.

A-2-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274511

Sample wt/vol:

30.0 (g/mL) G

dec.

Lab File ID: R2392.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

20

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

1	, <del></del>	
108-95-2Phenol	420	U
111-44-4bis(2-Chloroethyl)Ether	420	Ū
95-57-82-Chlorophenol	420	Ü
541-73-11.3-Dichlorobenzene	420	Ü
106-46-71,4-Dichlorobenzene	420	U
95-50-11,2-Dichlorobenzene	420	ט
95-48-72-Methylphenol	420	Ü
108-60-12,2'-oxybis(1-Chloropropane)	420	U
106-44-54-Methylphenol	420	ע
621-64-7N-Nitroso-di-n-propylamine	420	<u>ט</u>
67-72-1Hexachloroethane	420	บ
98-95-3Nitrobenzene	420	Ü
78-59-1Isophorone	420	บ
88-75-52-Nitrophenol	420	U
105-67-92,4-Dimethylphenol	420	ט
120-83-22,4-Dichlorophenol	420	บ
120-82-11,2,4-Trichlorobenzene	420	Ü
91-20-3Naphthalene	420	บ
106-47-84-Chloroaniline	420	Ü
87-68-3Hexachlorobutadiene	420	Ü
111-91-1bis(2-Chloroethoxy) methane	420	U
59-50-74-Chloro-3-Methylphenol	420	บ
91-57-62-Methylnaphthalene	420	ט
77-47-4Hexachlorocyclopentadiene	420	Ü
88-06-22,4,6-Trichlorophenol	420	ט
95-95-42,4,5-Trichlorophenol	2100	ט
91-58-72-Chloronaphthalene	420	บ
88-74-42-Nitroaniline	2100	Ü
131-11-3Dimethylphthalate		_
208-96-8Acenaphthylene	420	บ บ
606-20-22,6-Dinitrotoluene	420	_
99-09-23-Nitroaniline	420	Ŭ
83-32-9Acenaphthene	2100	Ŭ
oo oz oAcenaphichene	420	ט
l		

EPA SAMPLE NO.

A-2-3B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745

SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274511

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2392.D

Level:

(low/med) LOW Date Received: 12/15/94

% Moisture: not dec.

dec. 20

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	2100	U
100-02-74-Nitrophenol	2100	U
132-64-9Dibenzofuran	420	ע ו
121-14-22,4-Dinitrotoluene	420	ן ט
84-66-2Diethylphthalate	420	ע ו
7005-72-34-Chlorophenyl-phenylether_	420	ַ
86-73-7Fluorene	420	ַ
100-01-64-Nitroaniline	2100	U
534-52-14,6-Dinitro-2-methylphenol_	2100	יט
86-30-6Nitrosodiphenylamine_(1)	420	ַ ד
101-55-34-Bromophenyl-phenylether	420	U
118-74-1Hexachlorobenzene	420	Ŭ
87-86-5Pentachlorophenol	2100	Ū
85-01-8Phenanthrene	420	Ū
120-12-7Anthracene	420	U
86-74-8Carbazole	420	Ū
84-74-2Di-n-butylphthalate	420	ן די
206-44-0Fluoranthene	420	U
129-00-0Pyrene	420	U
85-68-7Butylbenzylphthalate	420	U
91-94-13,3'-Dichlorobenzidine	830	U
56-55-3Benzo(a) anthracene	420	U
218-01-9Chrysene	420	
117-81-7bis(2-Ethylhexyl)phthalate	370	
117-84-0Di-n-octylphthalate	420	
205-99-2Benzo(b) fluoranthene	420	
207-08-9Benzo(k) fluoranthene	420	
50-32-8Benzo(a)pyrene	420	
193-39-5Indeno (1, 2, 3-cd) pyrene	420	4
53-70-3Dibenz (a, h) anthracene	420	1
191-24-2Benzo(q,h,i)perylene	420	ט

A-3-1B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274512

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2393.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 16 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		*
108-95-2Phenol	400	. U
111-44-4bis(2-Chloroethyl)Ether	- 400 400	Ū
95-57-82-Chlorophenol	400	บ
541-73-11,3-Dichlorobenzene	400	<u>ט</u>
106-46-71,4-Dichlorobenzene	400	Ü
95-50-11,2-Dichlorobenzene	- 400 400 A	บ
95-48-72-Methylphenol	- 400 400 A	บ
108-60-12,2'-oxybis(1-Chloropropane	400	ט
106-44-54-Methylphenol	400	บ
621-64-7N-Nitroso-di-n-propylamine	- 400	บ
67-72-1Hexachloroethane	400	ט
98-95-3Nitrobenzene	400	บ
78-59-1Isophorone	I	
88-75-52-Nitrophenol	400	Ŭ
105-67-92,4-Dimethylphenol	400	U
120-83-22,4-Dichlorophenol	400	IJ
120-82-11,2,4-Trichlorobenzene	_ 400	Ŭ
91-20-3Naphthalene	_ 400	Ŭ
106-47-84-Chloroaniline	400	Ū
87-68-3Hexachlorobutadiene	_ 400	U
111 01 1 hig/2 Chlorophany	_ 400	U
111-91-1bis(2-Chloroethoxy) methane	400	Ŭ
59-50-74-Chloro-3-Methylphenol	400	Ū
91-57-62-Methylnaphthalene	_ 400	Ŭ
77-47-4Hexachlorocyclopentadiene	400	U
88-06-22,4,6-Trichlorophenol	_ 400	Ü
95-95-42,4,5-Trichlorophenol	2000	U
91-58-72-Chloronaphthalene	400	U
88-74-42-Nitroaniline	2000	U
131-11-3Dimethylphthalate	400	U
208-96-8Acenaphthylene	400	U
606-20-22,6-Dinitrotoluene	400	U
99-09-23-Nitroaniline	2000	U
83-32-9Acenaphthene	400	U

A-3-1B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL Lab Sample ID: 2274512

Sample wt/vol: 30.0 (g/mL) G Lab File ID: R2393.D

Level: (low/med) LOW Date Received: 12/15/94

% Moisture: not dec. 16 dec. Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		······································
51-28-52,4-Dinitrophenol	2000	U
100-02-74-Nitrophenol	2000	Ū
132-64-9Dibenzofuran	400	Ū
121-14-22,4-Dinitrotoluene	400	Ū
84-66-2Diethylphthalate	400	<u>ט</u>
7005-72-34-Chlorophenyl-phenylether	400	וֹט
86-73-7Fluorene	400	Ū
100-01-64-Nitroaniline	2000	Ū
534-52-14,6-Dinitro-2-methylphenol	2000	Ū
86-30-6N-Nitrosodiphenylamine (1)	400	וט
101-55-34-Bromophenyl-phenylether	400	ט
118-74-1Hexachlorobenzene	400	Ū
87-86-5Pentachlorophenol	2000	ַ
85-01-8Phenanthrene	78	J
120-12-7Anthracene	400	IJ
86-74-8Carbazole	400	U
84-74-2Di-n-butylphthalate	400	Ū
206-44-0Fluoranthene	130	J
129-00-0Pyrene	130	J
85-68-7Butylbenzylphthalate	400	Ū
91-94-13,3'-Dichlorobenzidine	790	Ŭ
56-55-3Benzo (a) anthracene	68	J
218-01-9Chrysene	80	J
117-81-7bis(2-Ethylhexyl)phthalate	58	J
117-84-0Di-n-octylphthalate	400	Ū
205-99-2Benzo(b) fluoranthene	53	J
207-08-9Benzo(k) fluoranthene	400	ט
50-32-8Benzo(a) pyrene	44	J
193-39-5Indeno (1,2,3-cd) pyrene	400	U
53-70-3Dibenz(a,h)anthracene	400	U
191-24-2Benzo(g,h,i)perylene	400	U
		l

Case No.: 22745 SAS No.:

A-3-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274513

Sample wt/vol:

Lab Code: NYTEST

30.0 (g/mL) G

Lab File ID: R2394.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec. 20

dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0 Dilution Factor: 1.0

CONCENTRATION UNITS: CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG

_		
108-95-2Phenol	420	U
111-44-4bis(2-Chloroethyl)Ether	420	Ü
95-57-82-Chlorophenol	420	Ü
541-73-11,3-Dichlorobenzene	420	U
106-46-71,4-Dichlorobenzene	420	ש
95-50-11,2-Dichlorobenzene	420	ט
95-48-72-Methylphenol	420	Ü
108-60-12,2'-oxybis(1-Chloropropane)	420	ש
106-44-54-Methylphenol	420	ש
621-64-7N-Nitroso-di-n-propylamine	420	ט
67-72-1Hexachloroethane	420	ט
98-95-3Nitrobenzene	420	ט
78-59-1Isophorone	420	ט
88-75-52-Nitrophenol	420	ט
105-67-92,4-Dimethylphenol	420	ט
120-83-22,4-Dichlorophenol	420	ש
120-83-22,4-Dichiorophenoi 120-82-11,2,4-Trichlorobenzene	420	ָ ט
91-20-3Naphthalene	420	U
106-47-84-Chloroaniline	420	บ
87-68-3Hexachlorobutadiene		U
111-91-1bis (2-Chloroethoxy) methane	420	
59-50-74-Chloro-3-Methylphenol	420	U
91-57-62-Methylnaphthalene	420	Ŭ
77-47-4Hexachlorocyclopentadiene	420	U
20 06 2 2 4 6 Trickle are here!	420	U
88-06-22,4,6-Trichlorophenol	420	Ū
95-95-42,4,5-Trichlorophenol	2100	บ
91-58-72-Chloronaphthalene	420	ת
88-74-42-Nitroaniline	2100	U
131-11-3Dimethylphthalate	420	U
208-96-8Acenaphthylene	420	Ū
606-20-22,6-Dinitrotoluene	420	ū
99-09-23-Nitroaniline	2100	U
83-32-9Acenaphthene	420	ע
	l	

### SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

A-3-2B

Lab Name: NYTEST ENV INC

Contract: 9421444

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274513

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2394.D

Level: (low/med) LOW

Date Received: 12/15/94

% Moisture: not dec.

20 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N

pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

100-02-74-Nitrophenol   2100   132-64-9Dibenzofuran   420   121-14-22,4-Dinitrotoluene   420   121-14-22,4-Dinitrotoluene   420   17005-72-34-Chlorophenyl-phenylether   420   17005-72-34-Chlorophenyl-phenylether   420   17005-72-34-Chlorophenyl-phenylether   420   1700-01-64-Nitroaniline   2100   1700-01-64-Nitrosodiphenylamine   100   1700-01-6N-Nitrosodiphenylamine   100   1700-01-6N-Nitrosodiphenylamine   100   1700-01-6		(45, 2 01 45	, ng, 00, no	×
100-02-74-Nitrophenol       2100         132-64-9Dibenzofuran       420         121-14-22,4-Dinitrotoluene       420         84-66-2Diethylphthalate       420         7005-72-34-Chlorophenyl-phenylether       420         86-73-7Fluorene       420         100-01-64-Nitroaniline       2100         534-52-14,6-Dinitro-2-methylphenol       2100         86-30-6N-Nitrosodiphenylamine (1)       420         101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8	51-28-5	2,4-Dinitrophenol	2100	U
132-64-9				ט
121-14-22, 4-Dinitrotoluene       420         84-66-2Diethylphthalate       420         7005-72-34-Chlorophenyl-phenylether       420         86-73-7Fluorene       420         100-01-64-Nitroaniline       2100         534-52-14,6-Dinitro-2-methylphenol       2100         86-30-6N-Nitrosodiphenylamine       (1)         101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8				<u>ט</u>
84-66-2	121-14-2	2,4-Dinitrotoluene	420	ט
7005-72-34-Chlorophenyl-phenylether   86-73-7Fluorene   420   100-01-6Fluorene   420   100-01-64-Nitroaniline   2100   100-01-64-Nitrosodiphenylamine (1)   420   101-55-34-Bromophenyl-phenylether   420   118-74-1			420	ט
86-73-7	7005-72-3	4-Chlorophenyl-phenylether	420	ש
534-52-14,6-Dinitro-2-methylphenol       2100         86-30-6N-Nitrosodiphenylamine (1)       420         101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0	86-73-7	Fluorene	420	Ū
86-30-6N-Nitrosodiphenylamine (1)       420         101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8	100-01-6	4-Nitroaniline	2100	U
101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0	534-52-1	4,6-Dinitro-2-methylphenol	2100	U
101-55-34-Bromophenyl-phenylether       420         118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0	86-30-6	N-Nitrosodiphenylamine (1)	420	ט
118-74-1Hexachlorobenzene       420         87-86-5Pentachlorophenol       2100         85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0Pyrene       420         85-68-7Butylbenzylphthalate       420         91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo(a) anthracene       420         218-01-9Chrysene       420         117-81-7bis(2-Ethylhexyl)phthalate       70         117-84-0Benzo(b) fluoranthene       420         207-08-9Benzo(k) fluoranthene       420         207-08-9Benzo(k) fluoranthene       420         193-39-5	101-55-3	4-Bromophenyl-phenylether	420	ט
85-01-8Phenanthrene       420         120-12-7Anthracene       420         86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0Pyrene       420         85-68-7Butylbenzylphthalate       420         91-94-13,3'-Dichlorobenzidine       830         56-55-3	118-74-1	Hexachlorobenzene	420	ט
120-12-7	87-86-5	Pentachlorophenol	2100	ַ ט
86-74-8Carbazole       420         84-74-2Di-n-butylphthalate       420         206-44-0Fluoranthene       420         129-00-0Pyrene       420         85-68-7Butylbenzylphthalate       420         91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo (a) anthracene       420         218-01-9Chrysene       420         117-81-7bis (2-Ethylhexyl)phthalate       70         117-84-0Di-n-octylphthalate       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5			420	ט
84-74-2	120-12-7	Anthracene	420	[ ט
206-44-0Fluoranthene       420         129-00-0Pyrene       420         85-68-7			420	ש
129-00-0	84-74-2	Di-n-butylphthalate	420	U
85-68-7			420	Ū
91-94-13,3'-Dichlorobenzidine       830         56-55-3Benzo(a) anthracene       420         218-01-9Chrysene       420         117-81-7bis(2-Ethylhexyl) phthalate       70         117-84-0Benzo(b) fluoranthene       420         205-99-2Benzo(b) fluoranthene       420         207-08-9Benzo(k) fluoranthene       420         50-32-8Benzo(a) pyrene       420         193-39-5Indeno(1,2,3-cd) pyrene       420				ש
56-55-3Benzo (a) anthracene       420         218-01-9Chrysene       420         117-81-7bis (2-Ethylhexyl) phthalate       70         117-84-0Benzo (b) fluoranthene       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indeno (1, 2, 3-cd) pyrene       420	85-68-7	Butylbenzylphthalate	420	Ū
218-01-9Chrysene       420         117-81-7bis (2-Ethylhexyl) phthalate       70         117-84-0Di-n-octylphthalate       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indeno (1, 2, 3-cd) pyrene       420			830	Ū
117-81-7bis (2-Ethylhexyl) phthalate       70         117-84-0bi-n-octylphthalate       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indeno (1, 2, 3-cd) pyrene       420			_ 1	ָ "ט
117-84-0Di-n-octylphthalate       420         205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indeno (1, 2, 3-cd) pyrene       420			420	U
205-99-2Benzo (b) fluoranthene       420         207-08-9Benzo (k) fluoranthene       420         50-32-8Benzo (a) pyrene       420         193-39-5Indeno (1, 2, 3-cd) pyrene       420	117-81-7	bis(2-Ethylhexyl)phthalate	-	J
207-08-9Benzo(k) fluoranthene 420 50-32-8Benzo(a) pyrene 420 193-39-5Indeno(1,2,3-cd) pyrene 420	117-84-0	Di-n-octylphthalate		ָּט
50-32-8Benzo(a)pyrene 420 193-39-5Indeno(1,2,3-cd)pyrene 420			_ <b>F</b>	ט
193-39-5Indeno (1, 2, 3-cd) pyrene 420			_	Ŭ
			- 3	1
53-70-3Dihenz(a h)anthracene 420	193-39-5	Indeno (1, 2, 3-cd) pyrene		
	53-70-3	Dibenz (a,h) anthracene	420	ן ע
191-24-2Benzo(g,h,i)perylene 420	191-24-2	Benzo(g,h,i)perylene	_  420	U
			.	

00087

Lab Name: NYTEST ENV INC

Contract: 9421444

A-3-3B

Lab Code: NYTEST

Case No.: 22745 SAS No.:

SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274514

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

R2395.D

Level:

(low/med)

LOW

Date Received: 12/15/94

% Moisture: not dec. 20 dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

Date Analyzed: 01/07/95

GPC Cleanup: (Y/N) N pH: 7.0

Dilution Factor: 1.0

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

3.	, 4.5, 66, 1.6	×
108-95-2Phenol	420	7.7
111-44-4bis(2-Chloroethyl) Ether	420	Ŭ
95-57-82-Chlorophenol	1	U
541-73-11.3-Dichlorobenzene	420	U
106-46-71.4-Dichlorobenzene	420	Ŭ
95-50-11.2-Dichlorohenzene	420	ָט
95-48-72-Methylphenol	420	ט
108-60-12.2'-oxybis(1-Chloropropage)	420	U
106-44-54-Methylphenol	420	Ū
621-64-7N-Nitroso-di-n-propylamine	420	Ū
67-72-1Hexachloroethane	420	Ū
98-95-3Nitrobenzene	420	ַ
78-59-1Isophorone	420	Ū
88-75-52-Nitrophenol	420	<u>ה</u>
105-67-92,4-Dimethylphenol	420	Ū
120-83-22,4-Dichlorophenol	420	Ū
120-82-11,2,4-Trichlorobenzene	420	Ū
91-20-3Naphthalene	420	ַ
106-47-84-Chloroaniline	420	ָט
87-68-3Hexachlorobutadiene	420	Ū
111-91-1bis (2-Chloroethoxy) methane	420	Ŭ
59-50-74-Chloro-3-Methylphenol	420	U
91-57-62-Methylnaphthalene	420	U
77-47-4Hexachlorocyclopentadiene	420	Ū
88-06-22,4,6-Trichlorophenol	420	U
95-95-42,4,5-Trichlorophenol	420	. U
91-58-72-Chloronaphthalene	2100	U
88-74-42-Nitroaniline	420	U
131-11-3Dimethylphthalate	2100	ַ
208-96-8Acenaphthylene	420	U
606-20-22,6-Dinitrotoluene	420	U
99-09-23-Nitroaniline	420	U
83-32-9Acenaphthene	2100	U
os sz sAcenaphinene	. 420	U

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

A-3-3B

Lab Name: NYTEST ENV INC Contract: 9421444

Lab Code: NYTEST Case No.: 22745 SAS No.: SDG No.: JEFF3

Matrix: (soil/water) SOIL

Lab Sample ID: 2274514

Sample wt/vol:

30.0 (g/mL) G

Lab File ID: R2395.D

Level: (low/med)

LOW

Date Received: 12/15/94

% Moisture: not dec.

Date Extracted:12/18/94

Extraction: (SepF/Cont/Sonc) SONC

20

Date Analyzed: 01/07/95

GPC Cleanup:

(Y/N) N

pH: 7.0

dec.

Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/KG

		- -	
51-28-5	2,4-Dinitrophenol	2100	U
	4-Nitrophenol	2100	Ū
	Dibenzofuran	420	Ū
	2,4-Dinitrotoluene	420	Ū
	Diethylphthalate	420	Ū
	4-Chlorophenyl-phenylether	420	Ū
	Fluorene	420	Ū
	4-Nitroaniline	2100	Ū
534-52-1	4,6-Dinitro-2-methylphenol	2100	Ū
	N-Nitrosodiphenylamine (1)	420	U
101-55-3	4-Bromophenyl-phenylether	420	U
	Hexachlorobenzene	420	Ū
87-86-5	Pentachlorophenol	2100	บ
85-01-8	Phenanthrene	420	U
	Anthracene	420	U
	Carbazole	420	Ū
84-74-2	Di-n-butylphthalate	420	Ū
	Fluoranthene	420	IJ
129-00-0		420	Ū
	Butylbenzylphthalate	420	U
	3,3'-Dichlorobenzidine	830	บ
56-55-3	Benzo (a) anthracene	420	ט
	Chrysene	420	U
	bis(2-Ethylhexyl)phthalate	160	J
117-84-0	Di-n-octylphthalate	420	U
205-99-2	Benzo (b) fluoranthene	420	U
	Benzo(k) fluoranthene	420	ט
	Benzo (a) pyrene	420	υ
193-39-5	Indeno (1, 2, 3-cd) pyrene	420	ט
53-70-3	Dibenz (a, h) anthracene	420	υ
191-24-2	Benzo(g,h,i)perylene	420	U
		·	

GC FUEL DATA

00204

THIS PAGE INTENTIONALLY LEFT BLANK

Login No.: 22714 & 22718

We find as follows:

Results in ppm, mg/kg	(Dry wt.):			Matrix	: SOIL	
Parameter(s)	•	Sample	Identif	ication		
Sample ID	D-1-1B	D-1-2B	D-1-3B	D-2-1B	D-2-2B	
Lab ID				2271404		
Date Extracted				12/15/94		
Date Analyzed	12/23/94	12/23/94	12/23/94	12/23/94	12/23/94	
% Moisture	19	22	32	22	21	
Dilution factor	1	1	1	1	1	
#2 Fuel Oil	12	U 13	U 15	U 13	U 13 U	
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	ND	
#6 Fuel Oil	12	U 13	U 15	U 13	U 13 U	
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	ND	
Lubricating Oil	12	Ŭ 13	U 15	Ŭ 13	U 13 U	
TPH (as Lubricating Oil	_	ND	ND	ИD	ND	
Kerosene	· 12	U 13	Ŭ 15	U 13	U 13 U	
TPH (as Kerosene)	ND	ND	ND	ND	ND	
TPH (as C20)	ND	, ND	ND	ND	ND	

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22714 & 22718

We find as follows:

Results in ppm, mg/kg	(Dry wt.	):				Matri	. <b>x</b> :	: SOIL		
Parameter(s)	- -		Sample		Identif	ication				
Sample ID	D-2-3	R	C-1-1B		C-1SED	C-2SE	'ח	C-3SI	מי	
Lab ID	22714				2271408					
Date Extracted	12/15/				12/15/94					
Date Analyzed	12/23/				12/13/94					
% Moisture	14/23/	32	12/24/94		33		27	14/44/	24	
Dilution factor		1	1		1		1		1	
Dilucion lactor		1	1		Τ.		Т		1	
#2 Fuel Oil		15	U 12	υ	15	U	14	U	13	U
TPH (as #2 Fuel Oil)		ND	ND		ND		ND		ND	
#6 Fuel Oil		15	U 12	U	15	σ	14	U	13	U
TPH (as #6 Fuel Oil)		ND	ND		ND		ND		ND	
Lubricating Oil	•	15	U 12	U	100		14	ŭ	13	U
TPH (as Lubricating Oil	_	ND	ND		ND		ND	i	ND	
Kerosene	7	15	Ŭ 12	U	15	U	14	ŭ	13	U
TPH (as Kerosene)		ND	ND		ND		ND		ND	
TPH (as C20)		ND	8.7		ND		ND	•	ND	

ND = Not Detected

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22714 & 22718

We	find	as	fol	lows	
----	------	----	-----	------	--

Results in ppm, mg/kg (I	ory wt.):			Matrix	: SOIL	
Parameter(s)	. •	Sample	Identif:	ication		
Sample ID Lab ID Date Extracted Date Analyzed % Moisture Dilution factor		2271802 12/15/94 12/23/94 20	C-2-3B 2271803 12/15/94 12/23/94 26 1	2271804 12/15/94 12/23/94	2271805 12/15/94 12/24/94	
#2 Fuel Oil	13	Ŭ 13	U 14	U 12	Ŭ 13 Ŭ	J
TPH (as #2 Fuel Oil)	ND	ИD	ND	ND	ND	
#6 Fuel Oil	13	U 13	U 14	U 12	U 13 U	J
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	ND	
Lubricating Oil	13	Ŭ 13	U 14	U 12	U 13 U	J
TPH (as Lubricating Oil)	_ ND	ND	ND	ND	ND	
Kerosene	· 13	U 13	Ŭ · 14	U 12	U 13 U	J
TPH (as Kerosene)	ДИ	ND	ND	ND	ND	
TPH (as C20)	ND	ND	ND	ND	ND	

ND = Not Detected

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22714 & 22718

We find as follows:

Results in ppm, mg/kg (1	Ory wt.):			Matrix :	: SOIL
Parameter(s)	•	Sample	Identifi	ication	
Sample ID	C-4-1B	C-4-2B	C-5-2B	C-5-1B	
<del>-</del>			2271808		
Date Extracted			12/15/94		
Date Analyzed	12/24/94	12/24/94	12/24/94	12/24/94	
% Moisture	11	12	28	20	
Dilution factor	1	1	1	1	
#2 Fuel Oil	11	U 11	U 14	U 13	U
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	
#6 Fuel Oil	11	U 11	U 14	U 13	υ
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	
Lubricating Oil	11	U 11	U 14	U 13	ט
TPH (as Lubricating Oil	) = ND	ND	ND	ND	
Kerosene	. 11	ττ 11	U 14	U 13	U
	7				-
TPH (as Kerosene)	ND	ND	ND	ND	
TPH (as C20)	ND	ND	ND	ND	

ND = Not Detected

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22714 & 22718

We	find	as	foll	Lows:

Results in ppm, mg/kg (Dry wt.):			Matrix	: SOIL
Parameter(s)	Sample	Identif:	ication	,
Sample ID		C-5-1BMSI	FBLK23	
Lab ID	2271810	2271811	GSB1215B	
Date Extracted		12/15/94		
Date Analyzed	12/24/94	12/24/94	12/23/94	
% Moisture	20	20	NA	
Dilution factor	1	1	1	
#2 Fuel Oil	77	86	10	Ŭ
TPH (as #2 Fuel Oil)	ND	ND	ND	
#6 Fuel Oil	13	U 13	U 10	U
TPH (as #6 Fuel Oil)	ND	ND	ИD	
Lubricating Oil	13	U 13	U 10	U
TPH (as Lubricating Oil)	ND	ND	ND	
Kerosene .	13	U 13	Ŭ 10	U
TPH (as Kerosene)	ND	ND	ND	

ND = Not Detected

TPH (as C20)

ND

ND .

ND

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22731

We find as follows:

Results in ppm, mg/kg (Dry wt.): Matrix : SOIL

Parameter(s)	•	Sample	Identif	ication		
Sample ID Lab ID		B-1-2B 2273102	B-1-3B 2273103			
Date Extracted Date Analyzed	12/16/94	12/16/94	12/16/94	12/16/94	01/05/95	
% Moisture	12/24/94	12/22/94	12/22/94 24			
Dilution factor	1	1	1	1	1	,
#2 Fuel Oil	440	13	U 100	12	U 12	U
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	ND	)
#6 Fuel Oil	11	U 13	U 13	U 12	U 12	U
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	- ND	)
Lubricating Oil	<b>4</b> 11	U 13	U 13	U 12	Ŭ 12	ָּט
TPH (as Lubricating Oil	39	ND	ND	ND	NE	)
Kerosene	÷ 11	Ŭ 13	U 13	U 12	Ŭ 12	י ט
TPH (as Kerosene)	ND	ND	ND	ND	NE	
TPH (as C20)	ND	ND	ND	ND	NE	)

ND = Not Detected

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22731

ND

4.1

3.3

Matrix : SOIL

We find as follows:

Results in ppm, mg/kg (Dry wt.):

22 . 3.53	,,					
Parameter(s)		Sample	Identif:	ication		
Sample ID	B-2-2B	B-2-3B	B-3-1B	B-3-2B	B-3-3B	
Lab ID	2273105	2273108	2273109	2273110	2273111	
Date Extracted	12/16/94	12/16/94	12/16/94	12/16/94	12/16/94	
Date Analyzed	12/22/94	12/22/94	12/23/94	12/23/94	12/23/94	
% Moisture	26					
Dilution factor	1	1	1	1	1	
#2 Fuel Oil	14	U 14	U 12	U 12	U 13	υ
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	ND	
-						
#6 Fuel Oil	14	U 14	U 12	U 12	U 13	U
						•
TPH (as #6 Fuel Oil)	- ND	ND	ND	ND	ND	
,						
Lubricating Oil	_ 14	U 14	U 12	U 12	U 13	U
-	•					-
TPH (as Lubricating Oil	L) ND	ND	ND	ND	ND	ļ
					5.0	
Kerosene	÷ 14	U 14	U 12	U 12	U 13	U
	<b>→</b>					_

ND = Not Detected

TPH (as Kerosene)

TPH (as C20)

ND

ND

ND

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22731

We find as follows:

Results in ppm, mg/kg (Dry wt.):			Matrix	: SOIL	
Parameter(s)	Sample	Identif	ication		ı
Sample ID Lab ID Date Extracted Date Analyzed % Moisture Dilution factor		2273107 12/16/94 12/22/94	D FBLK19 GSB1216A 12/16/94 12/21/94 NA 1	GSB0105 01/05/9 01/06/9 N	A 5
#2 Fuel Oil	130	130	10	U 1	.0 ע
TPH (as #2 Fuel Oil)	ND	ND	ND	N	D
#6 Fuel Oil	14	U 14	U 10	U 1	.ο υ
TPH (as #6 Fuel Oil)	ND	ND	ND	N	D
Lubricating Oil	14	U 14	U 10	U , 1	υ 0.
TPH (as Lubricating Oil)	ND	ND	ND	N	ID
Kerosene .	14	U 14	Ü 10	Ŭ 1	.o u
TPH (as Kerosene)	ND	ND	ND	Ŋ	ID
TPH (as C20)	ND .	ND	ND	r	ID

ND = Not Detected

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.:

22745

We find as follows:

Results in ppm, mg/kg (Dry wt.):	Matrix : SOIL
<u>.</u>	

Parameter(s)	-	Sample	Identif:			
Sample ID Lab ID Date Extracted Date Analyzed % Moisture Dilution factor			2274503 12/16/94	2274504 12/16/94	2274504 01/05/95 01/06/95	
#2 Fuel Oil	12	U 14	U 13	U 13	U 13	Ū
TPH (as #2 Fuel Oil)	80	ND	ND	ND	ND	
#6 Fuel Oil	12	U 14	U 13	U 13	Ŭ 13	U
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	ND	
Lubricating Oil	12	U 14	U 13	U 13	Ŭ 13	υ
TPH (as Lubricating Oil	) ND	ND	ND	ND	ND	
Kerosene	. 12	U 14	U 13	U 13	U 13	υ
TPH (as Kerosene)	ND	ND	ND	ND	ND	

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22745

Matrix : SOIL

ND

ND

ND

13 U

13 U

12 U

12 U

ND

ND

ND

ND

13 U

13 U

We find as follows:

Results in ppm, mg/kg (Dry wt.):

Parameter(s)	Sample		Identif:		
Sample ID Lab ID Date Extracted Date Analyzed % Moisture Dilution factor	2274505 12/16/94	2274508 12/16/94	A-2-1B 2274509 12/16/94 12/23/94 17	2274510 12/16/94	2274510 01/05/95
#2 Fuel Oil	13	Ŭ 13	U 12	U 13	ŭ 13 Ŭ
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	ND
#6 Fuel Oil	13	U 13	Ŭ 12	U 13	U 13 U

ND

ND

ND

13 U

13 U

ND

ND

ND

13 U

13 U

#### ND = Not Detected

TPH (as Kerosene)

TPH (as #6 Fuel Oil)

TPH (as Lubricating Oil)

Lubricating Oil

Kerosene

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22745

We find as follows:

Results in ppm, mg/kg (	Dry wt.):			Matrix	: SOIL
Parameter(s)	-	-	Identif:		
Date Extracted	2274511 12/16/94	12/23/94 16	2274513 12/16/94	2274514 12/16/94 12/22/94 20	
#2 Fuel Oil	13	Ŭ 12	Ŭ 13	Ŭ 13	U
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	
#6 Fuel Oil	13	U 12	Ŭ 13	Ŭ 13	σ
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	
Lubricating Oil	13	U 12	U 13	Ŭ 13	υ
TPH (as Lubricating Oil		ND	ND	ND	
Kerosene	•	U 12	U 13	U 13	υ
TPH (as Kerosene)	ND	ND	ND	ND	

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

Login No.: 22745

We find as follows:

Results in ppm, mg/kg (Dry wt.): Matrix : SOIL

-					
Parameter(s)	Sample	Identifi	cation		
Sample ID	A-1-2BMS	A-1-2BMSD	FBLK20	FBLK24	
Lab ID	2274506	2274507	GSB1216B	GSB0105A	
Date Extracted	12/16/94	12/16/94	12/16/94	01/05/95	
Date Analyzed	12/21/94	12/21/94	12/21/94	01/06/95	
% Moisture	20	20	NA	NA	
Dilution factor	1	1	1	1	
#2 Fuel Oil	78	77	10	U 10	U
TPH (as #2 Fuel Oil)	ND	ND	ND	ND	
#6 Fuel Oil	13	U 13	U 10	Ŭ 10	U
TPH (as #6 Fuel Oil)	ND	ND	ND	ND	
Lubricating Oil	13	U 13	U 10	U 10	U
TPH (as Lubricating Oil)	ND	ND	ND	ND	
Kerosene .	13	U 13	U 10	U 10	U
TPH (as Kerosene)	ND	ND	ND	ND	
(	110	ND.	110	110	

^{*} TPH (as...) = Total Petroleum hydrocarbons quantitated as a particular hydrocarbon, however, peak pattern does not match that of the hydrocarbon reference standards.

GC GAS DATA

THIS PAGE INTENTIONALLY LEFT BLANK

Sample Identification

Login No.: 22714 & 22718

We find as follows:

Parameter(s)

Results in ppm, mg/kg (Dry Wt.): Matrix : SOIL

				•			
Sample ID	D-1-1B	D-1-2B	D-1-3B	D-2-1B	D-2-2B		
Lab ID	2271401	2271402	2271403	2271404	2271405		
Date Received	12/10/94	12/10/94	12/10/94	12/10/94	12/10/94		
Date Analyzed	12/15/94	12/15/94	12/15/94	12/15/94	12/15/94		
% Moisture	19	22	32	22	21		
Dilution factor	1	1	1	1	1		

Gasoline	0.12 U	0.13 U	0.15 U	0.13 U	0.13 U
TPH (as Gasoline)	ND	ND	ND	ND	ND

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22714 & 22718

Matrix : SOIL

				_	
Ma	find	20	fol:	lowe.	

Results in ppm, mg/kg	(Dry Mr.):				
Parameter(s)		Sample	Identifi	cation	
Sample ID Lab ID Date Received Date Analyzed % Moisture Dilution factor	D-2-3B 2271406 12/10/94 12/16/94 32	C-1-18 2271407 12/10/94 12/15/94 16	C-1SED 2271408 12/10/94 12/15/94 33	C-2SED 2271409 12/10/94 12/15/94 27	C-3SED 2271410 12/10/94 12/15/94 24

Gasoline	0.15 U	0.12 U	0.15 U	0.14 U	0.13 U
TPH (as Gasoline)	ND	ND	ND	ND	ND

=

7

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22714 & 22718

Identification

1

We find as follows:

Parameter(s)

Dilution factor

Results in ppm, mg/kg (Dry Wt.):

Matrix : SOIL

1

		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-							
**********									
Sample ID	C-2-1B	C-2-2B	C-2-3B	C-3-1B	C-3-2B				
Lab ID	2271801	2271802	2271803	2271804	2271805				
Date Received	12/13/94	12/13/94		12/13/94	12/13/94				
Date Analyzed % Moisture			12/16/94	12/16/94	12/16/94				
P. Norscure	21	20	26	18	20				

1

Sample

Gasoline	0.13 U	0.13 U	0.14 U	0.12 U	0.13 U
TPH (as Gasoline)	ND	ND	ND	ND	ND

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22714 & 22718

We find as follows:

Results in ppm, mg/kg (Dry Wt.):

Matrix : SOIL

Parameter(s)		Sample	Identification		
Sample ID Lab ID Date Received Date Analyzed % Moisture Dilution factor	C-4-1B 2271806 12/13/94 12/16/94 11	C-4-2B 2271807 12/13/94 12/16/94 12	C-5-2B 2271808 12/13/94 12/16/94 28		
Gasoline	0.11	ប 0.11	U 0.14	U 0.13 U	

TPH (as Gasoline)

ND ND ND ND ND

**1.** =

7

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22714 & 22718

Matrix : SOIL

We find as follows:

Results in ppm, mg/kg (Dry Wt.):

Parameter(s) Sample Identification

Sample ID	C-5-1BMS	C-5-1BMSD	VBLK03	VBLK05	VBLK07
Lab ID	2271810	2271811	VBLK03	VBLK05	VBLK07
Date Received	12/13/94	12/13/94	NA	NA	NA
Date Analyzed	12/16/94	12/16/94	12/14/94	12/15/94	12/16/94
% Moisture	20	20	NA	NA	NA
Dilution factor	1	1	1	1	1

Gasoline	0.40	0.40	0.10 U	0.10 U	0.10 U
TPH (as Gasoline)	ND	ND	ND	ND	ND

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22731

0.12 U

ND

0.14 U

ND

We find as follows:

Results in ppm, mg/	kg (Dry Wt.):			Matrix :	SOIL
Parameter(s)	•	Sample	Identifi	cation	
	٠				
Sample ID	B-1-1B	B-1-2B	B-1-3B	B-2-1B	B-2-2B
Lab ID	2273101	2273102	2273103	2273104	2273105
Date Received	12/14/94	12/14/94	12/14/94	12/14/94	12/14/94
Date Analyzed	12/20/94	12/20/94	12/20/94	12/20/94	12/22/94
% Moisture	9	24	24	19	26
Dilution factor	1	1	1	1	1

0.89

0.11 U 0.13 U 0.13 U

ND

ND

ND = Not Detected

Gasoline

TPH (as Gasoline)

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22731

We find as follows:

Results in ppm, mg/kg (Dry Wt.): Matrix : SOIL

Parameter(s) Sample Identification

Sample IDB-2-3BB-3-1BB-3-2BB-3-3BLab ID2273108227310922731102273111Date Received12/14/9412/14/9412/14/9412/14/94Date Analyzed12/22/9412/20/9412/20/9412/20/94% Moisture30151521Dilution factor1111

Gasoline 0.14 U 0.12 U 0.12 U 0.13 U

TPH (as Gasoline) ND ND ND ND

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.:

22731

We find as follows:

Results in ppm, mg/kg (Dry Wt.):

Matrix : SOIL

medated in ppm, mg/kg	(Dry wc.):			Matrix :	SOII
Parameter(s)		Sample	Identif	ication	
Sample ID Lab ID	3-2-2BMS			VBLK53	
		2273107	VBLK50	VBLK53	
Date Received		12/14/94		NA	
Date Analyzed	12/22/94	12/22/94	12/20/94	12/22/94	
% Moisture	26	26	NA	NA	
Dilution factor	1	1	1	1	
Gasoline	0.48	0.46	0.10	U 0.10 t	J
TPH (as Gasoline)	NA	NA	ND	ND	

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22745

We find as follows:

Parameter(s)

Gasoline

Results in ppm, mg/kg (Dry Wt.):

Matrix : SOIL

Parameter(s)	Sample Identification				
Sample ID Lab ID	B-4-1B 2274501	B-4-2B 2274502	B-4-3B 2274503	A-1-1B 2274504	A-1-2B 2274505
Date Received Date Analyzed	12/15/94 12/21/94	12/15/94 12/21/94	12/15/94 12/21/94	12/15/94 12/21/94	12/15/94 12/21/94
% Moisture	17	26	20	20	20
Dilution factor	1	1	1	1	1

0.13 U 0.13 U 0.13 U TPH (as Gasoline) ND ND ND ND ND

0.14 U

0.12 U

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.: 22745

We find as follows:

Results in ppm, mg/kg (Dry Wt.): Matrix : SOIL

Parameter(s) Sample Identification

Gasoline 0.13 U 0.12 U 0.13 U 0.13 U 0.12 U

TPH (as Gasoline) ND ND ND ND ND

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

Login No.:

22745

We find as follows:

Results in ppm, mg/kg (Dry Wt.):

Matrix : SOIL

Parameter(s)	Sample	Identification	
Sample ID	A-3-2B	A-3-3B	
Lab ID	2274513	2274514	
Date Received	12/15/94	12/15/94	
Date Analyzed	12/22/94	12/22/94	
% Moisture	20	20	
Dilution factor	1	1	
Gasoline	0.13	U 0.13	υ
mpr: / a . 3 ! . )			
TPH (as Gasoline)	ND	ND	

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

# GC GAS REPORT OF ANALYSIS

Login No.: 22745

We find as follows:

Results in ppm, mg/kg (Dry Wt.):			Matrix :	SOIL
Parameter(s)	Sample	Identifi	cation	
Sample ID	A-1-2BMS	A-1-2BMS	VBLK51	VBLK52
Lab ID	2274506	2274507	VBLK51	VBLK52
Date Received	12/15/94	12/15/94	NA	NA
Date Analyzed	12/21/94	12/22/94	12/21/94	12/22/94
% Moisture	20	20	NA	NA
Dilution factor	1	1	1	1
Gasoline	0.51	0.42	0.10	U 0.10 U
TPH (as Gasoline)	ND	ND	ND	ND

### ND = Not Detected

^{*} TPH (as Gasoline) = Total Volatile hydrocarbons quantitated as gasoline, however, peak pattern does not match that of the Gasoline reference standard.

# METALS DATA

THIS PAGE INTENTIONALLY LEFT BLANK

ab Name: N	YTEST_ENV_INC.		Contract:	9421444		D-1-1B
ab Code: N	YTEST Log	in No.: 22	714_	QC Rep	port	No.22714_
evel (low/	<pre>l/water): SOIL high) : LOW ids : _81.</pre>	3	/L or mg/kg d	Date I	Recei	ID: 271401_ved: 12/10/94
	CAS No.	Analyte	Concentration	n C Q	м	_
not dete	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	(Concentra	Japor; AS: Anation) column = Sample value	9 B	P P P P P P P P P P P P P P P P P P P	

Lab Name: NYTE	כיי דאט דאר.		Contract: 94	21444	D-1-2B
ab Code: NYTE					No.22714_
an Code: NITE	31 10g.		· <del>- ·</del> _	-	
Matrix (soil/w Level (low/hig Percent Solids	h) : LOW			Lab Sampl Date Rece	e ID: 271402eived: 12/10/94
Co	ncentration	Units (ug,	/L or mg/kg dry	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q	M
	7440-36-0	Antimony	4.3	<del>                                    </del>	P_
		Arsenic	4.2		F_
		Beryllium	0.62		P_
	7440-43-9		0.23	<u></u>	P_ P_
	7440-47-3		13.0		!P
		Copper	49.4		P
	7439-92-1	Lead	17.0	-	P
		Mercury	0.13	u	CV
	7440-02-0		19.3	=	P_ F_
	7782-49-2	Selenium_	0.64		<del>F</del> _
	7440-22-4	Silver	0.56		P_
	7440-28-0		0.64		F_     P_
	7440-66-6	Zinc	87.4	EN*	P -
	<u> </u>			·i-i	1-1
				·   -	<del>  </del>
				1-1	1—1
				· -	·
				· -  <del></del>	·
		i		- -	·[]
		i <del></del>	·   ————	-	·
		<u> </u>		- -	-
		-		-	-
				- -	
		1-		- -	-
CODES :	l	_1 -			- 1 1
P: ICP; Note: A "U	ad in thic c	' (Concenti	ration) column	indicates me greater	spectrophotometric the analyte was than Instrument Not Required.
Comments: D-1-2B	,				

Lab Name: NYTE	ST_ENV_INC.		Contract: 9	421444	D-1-3B
Lab Code: NYTE	ST Log	in No.: 22	714_	QC Report	No.22714_
Matrix (soil/w Level (low/hig Percent Solids	h) : Low			Lab Sample Date Rece	⊇ ID: 271403 ived: 12/10/94
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q N	<u> </u>
Note: A "U" not detected	7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	(Concentra ample: "B"	'apor; AS: Aut	B F F F F F F F F F F F F F F F F F F F	ctrophotometric he analyte was

Lab Name: NYTEST_EN	m, the		Contract: 9	421444		D-2-1B
Lab Name: NYTEST_ER					一 ' ort	No.22714_
Matrix (soil/water) Level (low/high) Percent Solids :	): SOIL_ : LOW _78.5		'L or mg/kg dr	Lab Sar Date Ro	mple ecei	e ID: 271404 ived: 12/10/94
1	No.		Concentration			M
744 744 744 744 743 743 744 774 778 744 774 778 774 779 779 779 779 779 779 779 779 779	0-36-0 0-38-2 0-41-7 0-43-9 0-47-3 0-50-8 9-92-1 9-97-6 0-02-0 2-49-2 0-22-4 0-28-0 0-66-6	Arsenic_Beryllium Cadmium_Chromium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc  CV: Cold (Concentr	0.31 21.8 22.4 17.3 0.13 19.5 0.63 0.63 58.0  Vapor; AS: A	B	d Si	P

trix (soil, vel (low/h	<pre>FEST Log /water): SOIL igh) : LOW ds : _79.</pre>	<u>-</u>	_	La	ıb Samp	le I	.22714_ D: 271405_ d: 12/10/9
•	Concentration	Units (ug,	/L or mg/kg dry	y w	veight)	: MG	/KG
·	CAS No.	Analyte	Concentration	c	Q	м	·
	=	·   <del> </del>					
	7440-36-0	Antimony_	4.3	11		P_	
	7440-38-2	Arsenic	4.7	. — .	N*	F_	
	7440-41-7	Beryllium				P	
		Cadmium	0.45			P_	
		Chromium_	15.0			P_	
		Copper	28.8		N*	P_	
	•	Lead	10.9			P_	
		Mercury	0.13			CV	
		Nickel	17.9			P_	
	7782-49-2	Selenium_	0.53	ָּט ¦	N	F_	
	7440-22-4	Silver	0.57	ן ט ן	N	P_	
	7440-28-0	Thallium	0.53	ן ט		F_	
	7440-66-6	Zinc	60.5		EN*	$ P^- $	
	1			-		! -!	
				-	<del></del>	-	
				-			
				1-			
				[-			
				1-	***************************************	1-1	
				[-		!!	
				-		1-1	•
				-		11	
				ļ —		· [ ]	
				-			
				-			
DES :	l	1-4	l	I —	l	.	
P: ICP; Note: A " not detec	U <mark>" in the "C"</mark> ted in this s	(Concentrample; "B"	Vapor; AS: Au ation) column = Sample valu eporting limit	ind e q	dicates greater	the tha	analyte w n Instrume

Lab Name: NYTE	ST ENV INC.		Contract: 9	421444		D-2-3B
Lab Code: NYTE					— ' ort	No.22714_
Matrix (soil/w Level (low/hig Percent Solids	h) : LOW					ID: 271406 ved: 12/10/94
· Co.	ncentration	Units (ug	/L or mg/kg dr	y weigh	t):	MG/KG
	CAS No.	Analyte	Concentration	C Q	М	
Note: A "U" not detecte	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	Arsenic_Beryllium Cadmium_ Chromium_ Copper_ Lead_ Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc	0.31 55.8 30.3 23.7 0.15 47.6 0.62 0.62 90.1 Vapor; AS: Au	N* B N*  N*  V V V V V EN*  Itomated indicate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate greate great	F F F F F F F F F F F F F F F F F F F	ctrophotometric che analyte was chan Instrument

•	TEST Log (water): SOIL		714_		rt No.22714_ ple ID: 271407
el (low/hi	igh) : LOW	<del></del>			pre ID: 2/140/_ ceived: 12/10/9
	-				
C	Concentration	Units (ug,	/L or mg/kg dry	y weight	): MG/KG
	CAS No.	Analyte	Concentration	C Q	M
	7440-36-0	Antimony	8.6	-	_  <u>_</u>
	7440-38-2	Arsenic	5.5	-   -   <del>-   *</del>	- F-
	7440-41-7	Beryllium			-  -  -  P
•	7440-43-9		0.93		_ P_
	7440-47-3	_	15.7		_  P_
	7440-50-8	Copper	13.4	N*_	P
	7439-92-1	Lead	44.3	_ _	_
	7439-97-6 7440-02-0	Mercury_	0.12	η	CV
	7782-49-2	Nickel Selenium	22.5		- P-
	7440-22-4		0.54		-  F-
	7440-28-0		0.59 0.54		-   P   F
	7440-66-6	Zinc	84.1	EN*	-  r P
				- "-	-
				-	-
				-	
		İ		_	_ _
	İ	-			_
		İ <del></del>		i <b>-</b> i	_
				<b>-</b>	
		<u> </u>		-  <del></del>	-
DES :		1	l	l — İ ———	_ii
P: ICP;	F : GFAA;	CV: Cold v	Vanor: As Aud	-cmated	Spectrophotomet
ote: A "U	" in the "C"	(Concentra	ation) column :	indicate	e the analyte t
iot detect	ed in this s	ample: "B"	= Sample value	areate	r than Instrume
erection	Limit, but 1	ess than re	eporting limit	; "NR" =	Not Required.
ients:					
2-1-1B					

Lab Name: NYTE	ST_ENV_INC.		Contract: 9	421444	C-1SED
Lab Code: NYTE					No.22714_
Matrix (soil/w Level (low/hig Percent Solids	h) : LOW : _67.	3		Date Rece	e ID: 271408 ived: 12/10/94
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	c Q	м -
Note: A "U" not detecte	7440-38-2 7440-41-7 7440-43-9 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	7.5 49.7 46.6 281 0.15 16.0 0.62 0.73 0.62 471	TOMATE SPINGLE SPINGLES E Greater	P

Lab Name: NYTEST_ENV_INL Lab Code: NYTEST L					t No	0.22714_
Matrix (soil/water): SO Level (low/high) : LO Percent Solids : _7	<b>W</b>	ef Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Programme Pro	La Da	ab Samp ate Rec	le I eive	D: 271409 ed: 12/10/94
Concentrati	on Units (ug	/L or mg/kg dry	y w	veight)	: MG	G/KG
CAS No.	Analyte	Concentration	c	Q	м	
7440-36- 7440-41- 7440-43- 7440-47- 7440-50- 7439-92- 7439-97- 7440-02- 7782-49- 7440-22- 7440-28- 7440-66-  CODES: P: ICP; F: GFAA; Note: A "U" in the " not detected in this Detection Limit, but comments: C-2SED	Arsenic_7 Beryllium Cadmium_3 Chromium_8 Copper1 Lead Mercury_0 Nickel_2 Selenium_4 Silver Thallium_6 Zinc CV: Cold C" (Concentr_sample; "B"	1.6 17.8 20.1 127 0.14 19.0 0.67 0.57 0.67 90.6	toning	dicates greater	the tha	e analyte was an Instrument

Lab Code: NYTEST	Lab Name: NYTEST_ENV_INC				C-3SED
Concentration Units (ug/L or mg/kg dry weight): MG/KG	Lab Code: NYTEST Logi	in No.: 227	714_	QC Report	No.22714_
CAS No.	Level (low/high) : LOW -	_			
T440-36-0	Concentration	Units (ug,	/L or mg/kg dr	y weight):	MG/KG
CODES:  P: ICP; F: GFAA; CV: Cold Vapor; AS: Automated Spectrophotometric Note: A "U" in the "C" (Concentration) column indicates the analyte was not detected in this sample; "B" = Sample value greater than Instrument Detection Limit, but less than reporting limit; "NR" = Not Required.  COMEN:  Required.  CV   V   V   V   V   V   V   V   V   V	CAS No.	Analyte	Concentration	C Q	M
	7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6  ————————————————————————————————	Arsenic_Beryllium Cadmium_Cadmium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc_Cv: Cold (Concentrample; "B"	4.6 0.49 0.99 21.1 15.1 68.0 0.13 17.2 0.64 0.61 0.64 66.0  Vapor; AS: Au ation) column = Sample valu	U WN U N U EN*	CV P F F P F O C C C C C C C C C C C C C C C C C C

INORGANICS ANALYSIS DATA SHEET

ab Name: NYT	EST_ENV_INC.		Contract: 9	4214	144	ļ	C-2-1B
ab Code: NYT	EST Log	in No.: 22	714_	QC	Report	t No.2	2714_
evel (low/hiercent Solid	s:79.	4	/L or mg/kg dr	Dat	ce Rec	eived:	
·	CAS No.	<u> </u>	Concentration		Q	м	
	7440-36-0	Antimony	4.2	-		P	
	7440-38-2	Arsenic	6.3		N*	F-	
	7440-41-7	Beryllium			1"	P_	
	7440-43-9	Cadmium	0.22			P-	
		Chromium	29.3			P	
	7440-50-8	Copper	20.4		N*	P P	
		Lead	14.0			P_	
		Mercury	0.13	<u> </u> [[		CV	
		Nickel	22.2	, — , –		P_	
		Selenium_	0.58		WN	F_	
		Silver	0.55		N	P_	
	7440-28-0	Thallium_	0.58			F_	
	7440-66-6	Zinc	58.3	i – i –	_EN*	P_	
	<del></del>			i – i -		i—i	
				1-1-		j—i	
				- -		<u>  </u>	
			l <del></del>	- -			
				- -			
				- -			
		-		<u> - -</u>			
				- -	<del></del>		
			1	- -			
		1*	1	- -	·		
		1		- -			
ODES :				· i		. — .	
P: ICP; Note: A "U		CV: Cold '	Vapor; AS: Au ation) column	toma	ated S	pectro	photomet
not detect	ed in this s	ample; "B"	= Sample valu	e ai	reater	than	Instrume
Detection	Limit, but 1	ess than re	eporting limit	ן וו	NR" =	Not Re	guired.
mments:	,		<u>.</u>	•			7
C-2-1B							

Code: NYTES rix (soil/wa el (low/high cent Solids Con	cater): SOIL 1): LOW : _80.0 centration CAS No. 7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	Units (ug,	Concentration	La Da	ab Samp te Rec	le ID: eived: : MG/K	- 271802_ 12/13/94
el (low/high cent Solids	CAS No.  7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	Units (ug, Analyte Antimony Arsenic Beryllium	Concentration4.13.5	Da V W	te Rec	eived: : MG/K	12/13/94
Coi	CAS No.  7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	Analyte Antimony Arsenic Beryllium	Concentration4.13.5	c <del>u</del>		M P	G
	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3	Antimony_ Arsenic_ Beryllium	4.1 3.5	ច	Q	P	
	7440-38-2 7440-41-7 7440-43-9 7440-47-3	Arsenic Beryllium	3.5			$ \overline{P} $	
	7440-38-2 7440-41-7 7440-43-9 7440-47-3	Arsenic Beryllium	3.5			11	
	7440-41-7 7440-43-9 7440-47-3	Beryllium			N*	F_	
	7440-43-9 7440-47-3					P_	
	7440-47-3	- Camaram_	0.22			P	
		Chromium	11.9			P_	
	7440-50-8	Copper	19.8		N*	P_	
	ł .	Lead	13.0	1 — 1		P	
	1	Mercury	0.12			cv	
	I .	Nickel	17.1			P_	
		Selenium	0.56	ן ט	N	F_	
		Silver	0.54	ן ט ¦	N	P_	
	i .	Thallium	0.56			F_	
		Zinc	42.8		EN*	P	
				-			
				_		.	
						.	
		-		-		.	
		±		-		.	
						.	
				_		.	
		7		1_		. i i	
DES :	-		•				
P: ICP; Note: A "U" not detecte	d in this s	(Concentr ample; "B"	Vapor; AS: Au ation) column = Sample valu eporting limit	ind e d	dicates greater	the a	analyte w Instrume
C-2-2B							
					······································		

b Code: N trix (soi vel (low/	IYTEST Log .l/water): SOIL 'high) : LOW	in No.: 22	Contract: 94 714_	QC La	Repor	le II	.22714_ D: 271803_ d: 12/13/9
	ids: _73.	7					,, -
	Concentration	Units (ug,	/L or mg/kg dry	y w	reight)	: MG	/KG
				·		·	
	ONG No	33		اءا	_	1	
	CAS No.	Analyte	Concentration	ici	Q	M	
	7440-36-0	Antimony	5.2	ᆿ		P	
	7440-38-2	Arsenic	2.9			F	
		Beryllium	0.76		—"—	P-	
	7440-43-9	Cadmina	0.78			P	
		Chromium	23.5			P	
		Copper	15.1		N*	P_	
	7439-92-1	Lead	12.2			P-	
		Mercury_	0.14			C∇	
	7440-02-0		19.9			P	
	7782-49-2		5.8		N	F	
	7440-22-4		0.55		N	P-	
	7440-28-0		0.58		w	F-	
	7440-66-6	Zinc	64.1		EN*	_P	
		=====		-		-   -	
				1-1			
				-			
				-			
				-		·	
				<u> -</u>	<del></del>	·[[	
				-			
				<u> </u> -		·	
		-		-		-	
				-		-	
				ļ-ļ		-	
		7		-		-	
DES :	1	1 —	1	· I		- 1 1	
P: ICP;	F : GFAA;	CV: Cold '	Vapor; AS: Au	tor	nated S	pect	rophotomet
Note: A	"U" in the "C"	(Concentra	ation) column .	ind	licates	the	analyte v
not dete	cted in this s	ample; "B"	= Sample value	e d	reater	tha	n Instrume
Detection	on Limit, but 1	ess than r	eporting limit	, i	'NR" =	Not	Required.
ments:	•	_	- ,			-	•
C-2-3B							

# INORGANICS ANALYSIS DATA SHEET

·iv /enil		in No.: 22	714_	QC	C Repor	t No.22714_	
el (low/h:	/water): SOIL igh) : LOW ds : _81.	_				ele ID: 271804 eived: 12/13/	
C	Concentration	Units (ug	/L or mg/kg dr	7 W	veight)	: MG/KG	
		-				T	
	CAS No.	Analyte	Concentration	c	Q	M	
	7440-36-0	Antimony	4.0	أببزأ			
	7440-38-2	Arsenic	7.7			F_	
		Beryllium	0.68	-	—,,,	P_	
		Cadmium	0.21	اببرا		P_	
		Chromium	19.5	١٦١		P_	
	1	Copper	33.1	-	N*	P	
	1	Lead	17.7	-	—·" —	P	
	•	Mercury	0.12	ច្រ		ĊŪ	
		Nickel	23.3			P	
	7782-49-2	Selenium	0.61	<u></u>	WN	P_  F_	
		Silver	0.53		N	P_	
		Thallium	0.61			F	
	7440-66-6	Zinc	91.3		EN*	P_	
				-		·	
				-		·	
				-		·	
				-			
		[		-			
				-			
						· [ ]	
						·	
		•					
	 			_			
ES :		•					
: ICP;		CV: Cold '	Vapor; AS: Aut	ton	nated S	pectrophotome	etr.
ote: A "[	J" in the "C"	(Concentra	ation) column :	ind	licates	the analyte	wa
ot detect	ted in this sa	ample; "B"	= Sample value	e č	greater	than Instru	nen
etection	Limit, but le	ess than re	eporting limit	; "	'NR" =	Not Required	•
ents:							
-3-1B							

# INORGANICS ANALYSIS DATA SHEET

rix (soil/ vel (low/hi	water): SOIL gh) : LOW s : _80.	<del>-</del>	714_	La	b Samp	le ID:	- 271805 12/13/94
C	concentration	Units (ug,	/L or mg/kg dry	y w	eight)	: MG/K	(G
	CAS No.	Analyte	Concentration	С	Q	м	
	7440-36-0	Antimony_	4.4	טּ		_	
	7440-38-2	Arsenic	4.7		N*_	F	
	7440-41-7	4				P	
	7440-43-9		0.23			P P	
	7440-47-3		14.6			P_	
	7440-50-8		21.1		n*	P	
	7439-92-1	Lead	13.7	1 -		j P	
	7439-97-6 7440-02-0	·	0.12 17.4		<del></del>	CV	
	7782-49-2		0.57		WN	P _F	
	7440-22-4		0.57		— _N —	P_	
	7440-28-0		0.57		*'	F-	
	7440-66-6	Zinc	37.9		EN*	P-	
				-		~	
				[ ]			
		1		_		.	
	i <del></del>		-			.	
				1-1		-	
	i <del></del>			i-i		·	
	i	i —	İ	i-i		·	
		İ	İ	i-i		·i—i	
		Ì		1-1	<del></del>	-ii	
DDES :	I	·   ·		I İ		- I —— İ	
P: ICP;	F · CFAA·	CA. Cold	Vapor; AS: Au	t	ated 9	nectro	nhotomet
	I" in the "C"	(Concentr	ation) column	ind	icates	hecrt	analvte w
not detect	ed in this s	ample: "R"	= Sample valu	ביות ביות	reater	than	Tnetrime
Detection	Limit, but 1	ess than r	eporting limit	; "	NR" =	Not Re	equired.
ments:	,		-1	•		(	
C-3-2B							

nt Solid	igh) : LOW	8		Ju	ice nec		l: 12/13/
(	Concentration	Units (ug,	/L or mg/kg dr	y w	eight)	: MG/	'KG
	CAS No.	Analyte	Concentration	c	Q	M	
	7440-36-0	Antimony	4.2	ש		-   <del>-</del>	
		Arsenic	3.5			P	
	1	Beryllium				P_	
	•	Cadmium	0.22			!P !	
		Chromium	16.6			PP	
	7440-50-8	Copper	143		N*_	P	
	7439-92-1	Lead	14.5	-		_  P_	
		Mercury	0.11			_   CV	
		Nickel	18.0			P_	
		Selenium_	0.56		N	F_ P_	
	7440-22-4		11.0		N	_  P_	
	7440-28-0		0.56			_  F_	
	7440-66-6	Zinc	103		_EN*_	P_	
				_		-	
				_		-	
		 		i	<del></del>	-	
				i–i		-11	
				i – i		-11	
				i-i		-ii	
				i–i		-i <i>-</i> i	
				i–i		-i <i>-</i> i	
	i <del></del>			i-i		-ii	
				1-1		-11	
		ļ <del></del>		-	<del></del>	-	
5 :	1	1-7	l ————	1 <b>—</b> İ		_ i i	
ICP;	F : GFAA;	CV Cold v	Vapor; AS: Au	+ o=	nated 9	inect:	rophotome
			ation) column				
detect	ted in this s	ample: "B"	= Sample valu	e 0	reate	r that	n Instrum
cection	Limit hut 1	ess than r	eporting limit	- y	NR" =	Not 1	Required
nts:	wante, week	COO CHAIL I	oporting rimit	,		1,00	

b Name: NYTEST_ENV_INC.		Contract: 9	421444	C-4-2B
 b Code: NYTEST Log				t No.22714_
trix (soil/water): SOII vel (low/high) : LOW rcent Solids : _88.	4	/L or mg/kg dr	Date Rec	le ID: 271807eived: 12/13/94
CAS No.	<b>.</b>	Concentration	T	M .
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	Arsenic_Beryllium Cadmium_Chromium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	6.6 3.0 1.7 0.40 33.1 19.8 18.3 0.11 41.5 0.52 0.46 0.52 44.0	N*	P_ F_ P_ P_ P_ P_ P_ P_ P_ P_ P_ P_ P_ P_ P_
Note: A "U" in the "C" not detected in this something but the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the cont	" (Concentrasample; "B"	ation) column = Sample valu	indicates e greater	than Instrumen

# INORGANICS ANALYSIS DATA SHEET

o Name: NYT	EST_ENV_INC.		Contract: 9	421444	C-5-2B
Code: NYT	EST Log	in No.: 22	714_	rt No.22714_	
rel (low/hi	water): SOII gh) : LOW s : _72.	_			ple ID: 271808_ ceived: 12/13/94
· C	oncentration	Units (ug,	/L or mg/kg dr	y weight	): MG/KG
	CAS No.	Analyte	Concentration	C Q	м
	7440-36-0	Antimony	14.0	<u>                                     </u>	-  <del>-</del>
		Arsenic	6.6		P - P - P - P - CV
	7440-41-7	Beryllium	2.8		- -
	7440-43-9	Cadmium	2.1		
	7440-47-3		75.3		-  <del>^</del> -
	7440-50-8	Copper	26.4		-  <del>-</del> -
	7439-92-1	Lead	34.7		-  5-
	7439-97-6	Mercury	0.14		-  <u>-</u>
	7440-02-0	Nickel -	122		
	7782-49-2		0.62		P F
	7440-22-4		0.59		-  <del>p</del> -
	7440-28-0		0.62		-  P-  -  F-
		Zinc	141	EN*	-  P_
				-	-
				-	-
					-
					-
					_
				-	-  <del></del>
				-	-
					-
		*		<del>-  </del>	_
				-	
	 	l		-	-
	l				_ [ ]
ES :		-			— : <del></del> ;
P: ICP;	F : GFAA;	CV: Cold V	/apor; AS: Aut	tomated :	Spectrophotometr
Note: A "U'	' in the "C"	(Concentra	ation) column i	indicate:	s the analyte wa
ot detecte	ed in this s	ample; "B"	= Sample value	e greate:	r than Instrumen
vetection I	Limit, but l	ess than re	porting limit	; "NR" =	Not Required.
ments:					
C-5-2B				***	
			***************************************		

b Name: NY	TEST_ENV_INC.		Contract: 9	421	444	C-5-1B
o Code: NY	TEST Log	in No.: 227	714_	QC	Repor	t No.22714_
crix (soil vel (low/h ccent Soli	/water): SOIL igh) : LOW ds : _80.	<b>-</b> 5		La Da	ab Samp ate Rec	ole ID: 271809 eived: 12/13/
	Concentration	Units (ug/	L or mg/kg dr	у м	reight)	: MG/KG
	CAS No.	Änalyte	Concentration	С	Q	M
	7440-36-0	Antimony_	4.2			<del> </del>
	7440-38-2	Arsenic_	2.8		N*	F_
	7440-41-7 7440-43-9	Beryllium Cadmium	0.83 0.22			P_
	7440-43-9	Chromium_	19.0			P_  P_
	7440-50-8	Copper_	11.3			P_
	7439-92-1	Lead	14.8			P
	1	Mercury	0.12			cv
	7440-02-0	Nickel	19.2			P
	7782-49-2	Selenium_	0.59	ן ט	WN	F_
	7440-22-4	Silver	0.55		N	P_
		Thallium_	0.59	4 I		F_
	7440-66-6	Zinc	32.3	i-i	_EN*	- P_
		İ		· -	<del></del>	·j—j
	***************************************			-		-
				[-]	***************************************	-
				-		-
		1				
	-			. _		-
				. _		-
		*		·   —		-
				· i — i		-
				· -		-
DES :	1	1	l	. I — İ	l <del></del>	-11
P: ICP; Note: A " not detec	U" in the "C" ted in this s Limit, but l	(Concentrate) ample; "B"	Vapor; AS: Au ation) column = Sample valu eporting limit	ind e q	dicates greater	the analyte than Instrum

Lab Name: NVTFCT	ENV THO		<b>0</b>	_	••	B-1-1B
Lab Name: NYTEST				: 94	21444	
Lab Code: NYTEST	Log	in No.: 22	731_	ı	QC Repor	t No.22731_
Matrix (soil/wate Level (low/high) Percent Solids :	: LOW	<del></del>			Lab Samp Date Rec	ele ID: 273101 eived: 12/14/94
Conce	entration	Units (ug,	/L or mg/kg	dry	weight)	: MG/KG
CA	AS No.	Analyte	Concentrat	ion	Q	м
74 74 74 74 74 74 74 74 74 74 74 74 74 7	GFAA; the "C" n this sa	mple: "B"	apor; AS:	mn in	mated Springer	P P P P P P P P P P P P P P P P P P P

_	INORGANICS	ANALYSIS DATA	SHEET	SAMPLE NO.
Lab Name: NYTEST_ENV_INC.		Contract: 9	421444	B-1-2B
b Code: NYTEST Log	in No.: 22	731_	QC Report	No.22731_
Matrix (soil/water): SOIL vel (low/high) : LOW Percent Solids : _76.	_		Lab Sampl	e ID: 273102ived: 12/14/94
Concentration CAS No.		/L or mg/kg dr		MG/KG
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4	Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead_ Mercury_ Nickel_ Selenium_ Silver_	4.7 5.3 0.42 0.25 12.8 44.4 15.8 0.13 20.0 0.56 0.74	U	P   P   P   P   P   P   P   P   P   P
CODES: P: ICP; F: GFAA; Note: A "U" in the "C" not detected in this sa Detection Limit, but le	(Concentra ample: "B"	ition) column i = Sample value	comated Spendicates	P_
Comments: B-1-2B				- Nogali cu.

	EST Log					
		in No.: 22	731_	QC	Repor	t No.22731_
	water): SOIL gh) : LOW s : _76.	_				le ID: 273103_ eived: 12/14/9
Co	oncentration	Units (ug,	/L or mg/kg dr	y we	ight)	: MG/KG
	CAS No.	Analyte	Concentration	С	Q	м
	7440-36-0	Antimony	4.7	1 <del>,,</del>  -		
	7440-38-2		2.6		*	
		Beryllium				_   _
	7440-43-9		0.43	= -		P
	7440-47-3		39.6		*	P_
	7440-50-8		25.5		_ <u>n</u> *	P_
	7439-92-1	Lead	17.4			P
	7439-97-6		0.13			cv
	7440-02-0		38.9		*	P_
	7782-49-2		0.62	1 1		F_
	7440-22-4		0.75			P_
	7440-28-0		0.62			F_
	7440-66-6	Zinc	83.1		N*	P
				- -		^-
				- -		
	<del></del>			- -		<u>  </u>
				1-1-		
		,		1-1-		
				1-1-	······································	
				- -	<del></del>	
				1-1-		-
				- -		
		ļ <del></del>		- -		
				<u> - -</u>		
				- -		-
DES :	1	1	I	· — · —		1
P: ICP;	F : GFAA;	CV: Cold V	Japor; AS: Au	tomai	ted S	pectrophotomet:
Note: A "U"	' in the "C"	(Concentra	ation) column	indi	cates	the analyte wa
not detecte	ed in this s	ample; "B"	= Sample valu	e gre	eater	than Instrume
Detection I	imit, but 1	ess than re	eporting limit	; iNI	R" = 1	Not Required.
ments:	, –		<u>.</u> =			
3-1-3B						
					<del>,</del>	
	T 10 T 10 T 10 T 10 T 10 T 10 T 10 T 10					

# INORGANICS ANALYSIS DATA SHEET

	ST_ENV_INC.		Contract: 9	421444	B-2-1B
Code: NYTES					t No.22731_
Matrix (soil/wa Legel (low/high Percent Solids	h) : LOW T	<b></b>			le ID: 273104 eived: 12/14/94
Con	ncentration	Units (ug/	/L or mg/kg dr	y weight)	: MG/KG
	CAS No.	Analyte	Concentration	C Q	M
CODES :	7440-41-7 7440-43-9 7440-47-3 7440-50-8	Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel_ Selenium_ Silver	5.6 6.6 0.44 0.22 11.4 14.7 23.8 0.12 14.1 0.57 0.67 0.57 52.6		P
Note: A "U" not detected	in the "C" d in this sa	(Concentra ample; "B"	ation) column	indicates e greater	pectrophotometri the analyte was than Instrument Not Required.

# INORGANICS ANALYSIS DATA SHEET

Lab Name: NYTEST_ENV_INC.		Contract: 9	421444	B-2-2B
Lab Code: NYTEST Log	in No.: 22	731_	QC Report	No.22731_
Matrix (soil/water): SOIL Level (low/high) : LOW Percent Solids :74.  Concentration	5	/L or mg/kg dry	Date Rece	e ID: 273105 ived: 12/14/94 MG/KG
7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Antimony_Arsenic_Beryllium Cadmium_Chromium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	ation) column = Sample value	B	than Instrument

# INORGANICS ANALYSIS DATA SHEET

Lab Name: NYTEST_ENV_IN			421444	B-2-3B
b Code: NYTEST L	ogin No.: 22	731_	QC Report	No.22731_
Matrix (soil/water): SO Level (low/high) : LO Percent Solids : _6	w [—]		Lab Sample Date Rece	e ID: 273108 ived: 12/14/94
Concentrati	on Units (ug	/L or mg/kg dr	y weight):	MG/KG
CAS No.	Analyte	Concentration	C Q	1
not detected in this	Arsenic_ Beryllium Cadmium_ Chromium_ Chromium_ Copper_ Lead Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc_ CV: Cold Concentra sample; "B"	0.27 37.8 18.8 19.6 0.14 29.5 0.69 0.80 0.69 63.6  Vapor; AS: Autation) column is sample value	U	han Instrument
Detection Limit, but Comments: B-2-3B	ress flight to	eporting limit;	NK. = NC	Required.

# INORGANICS ANALYSIS DATA SHEET

Lab Name: NYTES	ST_ENV_INC.	-	Contract: 9	9421444	B-3-1B
Lab Code: NYTES	ST Log	in No.: 22	731_	QC Report	No.22731
Matrix (soil/wa Level (low/high Percent Solids	ater): SOIL n) : LOW : _85.	<u>-</u> 0	/L or mg/kg dr	Lab Sampl	e ID: 273109 ived: 12/14/94
	CAS No.	Analyte	Concentration	C Q I	<u> </u>
CODES: P: ICP; F Note: A "U"; not detected	7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6  : GFAA; in the "C" in this sa	mple: "B"	Tich) column i	- * II II II II II II II II II II II II I	ctrophotometric he analyte was han Instrument t Required.

INORGANICS ANALYSIS DATA SHEET

Code: NYTES:  trix (soil/watel (low/high) cent Solids	T Log: ter): SOIL ) : LOW	in No.: 227	Contract: 9	QC Report	No.22731_ e ID: 273110 ived: 12/14/94
	_	,	/L or mg/kg dr	y weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q	M
ODES: P: ICP; F Note: A "U" not detected	in this sa	CV: Cold (Concentrample; "B"	0.23	Tomated Spindicates e greater	P F P P P P P P P P P P P P P P P P P P

Lab Name: NYTE	ST_ENV_INC.		Contract: 9	421444	B-3-3B
Lab Code: NYTE	ST Log	in No.: 22	731_	QC Repor	t No.22731_
Matrix (soil/w Level (low/hig Percent Solids	h) : LOW	_			le ID: 273111 eived: 12/14/94
Co	ncentration	Units (ug,	/L or mg/kg dr	y weight)	: MG/KG
	CAS No.	Analyte	Concentration	C Q	м
Note: A "U" not detected	7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc_CV: Cold (Concentrample; "B"	ation) column		P

INORGANICS ANALYSIS DATA SHEET

Code: NYTEST Login No.: 22745  Crix (soil/water): SOIL  Yel (low/high) : LOW  Tocent Solids : _83.2   Concentration Units (ug/L  CAS No. Analyte Co  7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7740-66-6  Thallium Zinc	or mg/kg dry concentration  4.5 7.1 0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	La Da	b Samp te Rec	eive  MG  M  P  P  P  P  P  P  CV	0.22745_ (D: 274501 ed: 12/15/
Concentration Units (ug/L    CAS No.	0.12 2.5 2.6 2.6 2.2 48.4 0.12 22.2	Da	eight)  Q  N*N N*	MG MG P P P P P CV	ed: 12/15/
CAS No. Analyte Control Antimony Arsenic Beryllium Cadmium Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Silver Selenium Silver Thallium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chr	0.12 2.5 2.6 2.6 2.2 48.4 0.12 22.2	C   U   U   U   U   U   U   U   U   U	QN*	M P P P P CV	6/KG
CAS No. Analyte Control Antimony Arsenic Beryllium Cadmium Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Silver Selenium Silver Thallium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chr	0.12 2.5 2.6 2.6 2.2 48.4 0.12 22.2	C   U   U   U   U   U   U   U   U   U	QN*	M P P P P CV	s/KG
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 Thallium  Antimony Arsenic Beryllium Cadmium Copper Lead Mercury Nickel Selenium Silver Thallium	4.5 7.1 0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	<u></u>	N* N*	P P P CV	
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 Thallium  Antimony Arsenic Beryllium Cadmium Copper Lead Mercury Nickel Selenium Silver Thallium	4.5 7.1 0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	<u></u>	N* N*	P P P CV	
7440-38-2 Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chr	7.1 0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	-  -  -  -  -  -  -	N*	F P P P P CV	
7440-38-2 Arsenic Beryllium Cadmium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chromium Chr	7.1 0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	-  -  -  -  -  -  -	N*	F P P P P CV	
7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 Thallium	0.79 2.6 15.5 29.2 48.4 0.12 22.2 0.58	-  -  -  -  -  -	*	P P P P C V	
7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0  Chromium Copper Mercury Nickel Selenium Silver Thallium	2.6 15.5 29.2 48.4 0.12 22.2 0.58	  -  -  -  -  -  -  -	*	] cv	
7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0  Copper	15.5 29.2 48.4 0.12 22.2 0.58	_ _ _ _	*	] cv	
7439-92-1 Lead	48.4 0.12 22.2 0.58			] cv	
7439-97-6   Mercury	0.12 22.2 0.58		N*	] cv	
7440-02-0 Nickel	22.2 0.58				
7782-49-2 Selenium Silver Thallium	0.58			וסו	
7440-22-4   Silver				P_	
7440-28-0 Thallium_		U	N	]F ]	
·	0.60	ן ט		P	
7440-66-6 Zinc	0.58	ן ט		_   F_	
	710	_	_EN*_	P_	
		_ .		_	
		_ .		_	
		l_ .		_	
		_		-11	
		1-1		_	
		_		_	
		1-1		_	
		1-1		_	
		_		_	
		1-1		_	
		_	<del></del>	_	
		1_1		_	
DES:					_
P: ICP; F: GFAA; CV: Cold Var	por; AS: Au	com	ated S	Spect	rophotome
Note: A "U" in the "C" (Concentrati	lon) column :	ınd	licates	s the	analyte
not detected in this sample; "B" =	sample value	e g	reate	r tha	n Instrum
Detection Limit, but less than repo	orting limit	; "	'NR" =	Not	Required.
ments:					
B-4-1B					

INORGANICS ANALYSIS DATA SHEET

			Contract: 94		i
Code: N	YTEST Log	in No.: 22	745_	QC Repor	t No.22745_
el (low/	l/water): SOIL high) : LOW ids : _74.	_			le ID: 274502 eived: 12/15/94
•	Concentration	Units (ug,	/L or mg/kg dry	y weight)	: MG/KG
	CAS No.	: Analyte	Concentration	CQ	м
	7440-36-0	Antimony	4.5		P
		Arsenic	10.6		F_
		Beryllium	0.83		P_
	7440-43-9		0.78		P_
	7440-47-3		14.2	- - <u>N</u>	P_
	7440-50-8		21.3		P
	7439-92-1	Lead	13.3		P_
	7439-97-6		0.13	$ \overline{v} $	CV
	7440-02-0		26.6		
	7782-49-2		0.62		P_
	7440-22-4		0.59		[ <del>_</del> ]
	7440-28-0		0.62		F
	7440-66-6	Zinc	79.7	EN*	P
	7.110 00 0	21110		- - ^{LIT}	-
					<u>  </u>
		ļ <del></del>			
		ļ <del></del>		-	
				-	
					<b> </b>
				-	1—1
		3		-	<del>   </del>
		l ———		-	
				-	<b>  </b> '
•				-	1—1
DES :	l <del></del>	l			11
P: ICP;	F · CFAA·	CV Cold V	Janore Ace Aud	compted S	pectrophotometri
		(Concentra	vapor, as. au	indicates	the analyte was
not dete	cted in this s	"III · olame	. Importor (1010)	areates	than Instrument
Detection	n Limit, but 1	ess than r	eporting limit	. NDN =	Not Remised
ments:	wiming but I	COS Chan I	chorcina rimit	, MA -	noc kedattea.
B-4-2B					

Lab Name: NYTEST_E				9421444	B-4-3B
ab Code: NYTEST	Login	No.: 22	745_	QC Report	No.22745_
<pre>fatrix (soil/water evel (low/high) ercent Solids :</pre>	: LOW	nits (ug,	/L or mg/kg dr	Lab Sampl Date Rece	e ID: 274503 ived: 12/15/94
CAS	No.	: Analyte	Concentration	C Q	M
7446 7446 7446 7446 7439 7446 7446 7446 7446	0-38-2 And   0-41-7 Be   0-43-9 Ca   0-47-3 Ch   0-50-8 Ca   0-92-1 Le   0-92-0 Ni   0-02-0 Ni   0-22-4 Si   0-28-0 Th   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-6 Zi   0-66-	ilvernallium_inc	ition) column = Sample valu	U N N N N N N N N N N N N N N N N N N N	than Inctrument
•					

Code: NYT	EST Log	in No.: 227	745_	QC	Repor	t No	.22745_
rel (low/hi	water): SOIL gh) : LOW s: _79.						D: 274504 d: 12/15/94
c	oncentration	Units (ug/	/L or mg/kg dry	7 W	reight)	: MG	/KG
	CAS No.	Analyte	Concentration	С	Q	M	
	7440-36-0	Antimony	4.4	ן קו		P_	
	7440-38-2	Arsenic	10.7		N*	F_	
	7440-41-7	Beryllium				P	
	7440-43-9	Cadmium	0.23			P_	
	7440-47-3	Chromium	15.7		N	P_	
	7440-50-8	Copper	19.5		*	P_	
	7439-92-1	Lead	20.0			P_	
	7439-97-6	Mercury	0.13			CV	
	7440-02-0	Nickel	19.9		<del></del>	P_	
	7782-49-2	Selenium	0.57		N	F_	
	7440-22-4	Silver	0.58			P_	
	7440-28-0	Thallium	0.57			F_	
	7440-66-6	Zinc	56.4	4	EN*	P_	
						_	
				_		_	
				<b> </b> _		_	
				1_	 	-	
				-		-	
				-	i	_	
				-	<u> </u>	_	
			.	.   _	İ	_	
		₹ .		.	¦	-ii	
				. l _	-	_ii	
				. i _		_	
		<u> </u>		. l _	i	_ii	Ì
DDES :	•	•					
P: ICP;	F : GFAA;	CV: Cold	Vapor; AS: Au	to	mated	Speci	ropnotomet
Note: A "T	J" in the "C'	(Concentr	ration) column	ın	alcate	s the	e analyte W
not detect	ted in this s	amnle: "B"	' = Sample valu	ıe	greate	r tna	an instrume
Detection	Limit, but 1	less than r	eporting limit	;	"NK" =	NOT	kequirea.
nments:							
A-1-1B							

			•		1
ab Name: NYTI	EST_ENV_INC.		Contract: 9	421444	A-1-2B
ab Code: NYTE	EST Log	gin No.: 22	745_	OC Report	No 22745
atriv (mail (	- 1		****	Ze Kebol	. NO.22/45_
atrix (soil/w	vater): SOII	<b>-</b>	•	Lab Sampl	e ID: 274505_
evel (low/highercent Solids	in) : LOW	_		Date Rece	ived: 12/15/94
recut polities	_79.	5			12/13/34
Co	ncentration	Units (ua	/T am mm/2 1		
		onites (ug	/L or mg/kg dr	y weight):	MG/KG
		] =	Ţ	T T	<del>_</del> ,
	CAS No.	Analyte	Concentration		.,
		. <b>i</b> .		C Q	M
	7440-36-0	Antimony	4.3	ļ <del>,,</del>   -	P
	7440-38-2	Arsenic	4.7	1 1	F-
	7440-41-7	[ ]	0.62		P_
	7440-43-9		0.44	1-1-1	P_
	1	Chromium_	14.8		P-
		Copper	18.3	- -*	P_  P_  P_
	7439-92-1 7439-97-6	Lead	15.6	N*	P
	t _	Mercury_	0.13	U	₽
	I _	Nickel Selenium	19.8	—   — — —   °	P_
	7440-22-4	serenium_	0.59		F_
	7440-28-0	Thallium	0.57		-
	7440-66-6	Zinc	0.59		₹  '
		31.1.C	51.2	EN* I	P_
				-  -	
				-  -	_
				<b>-</b>   -	<b>⊸</b> i
				-  -	<b>-</b>
i				-  -	-1
İ				_	-
i				-  -	
					-
					_
DES :	i				
P: ICP; F	: GFAA.	CV. Cold II			
Note: אַ "ט"	in the "C"	(Concentra	apor; AS: Aut	omated Spe	ctrophotometri
not detected	l in thic ca	שבסוום בחורים	CIOIL) COLUMN 1	naicates t	ne analyte was
etection Li	mit, but le	ss than re	<pre>= Sample value porting limit;</pre>	greater t	han Instrument
ments:			porcing limit;	uk = No	T Required.
A-1-2B		_			

### INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

trix (soil/water): SOIL_vel (low/high) : LOW	ab Code: NYTE	ST_ENV_INC ST Log:					No.22745_
CAS No. Analyte Concentration C Q M  7440-36-0 Antimony 4.8 U P  7440-41-7 Beryllium 0.57 B P  7440-43-9 Cadmium 0.25 U P  7440-47-3 Chromium 15.3 N P  7440-50-8 Copper 21.9 N* P  7439-92-1 Lead 12.5 N* P  7439-97-6 Mercury 0.13 U CV  7440-02-0 Nickel 16.2  7782-49-2 Selenium 0.61 U F  7440-28-0 Thallium 0.61 U F  7440-28-0 Thallium 0.61 U F	evel (low/hig	h) : LOW	_				
T440-36-0	Co	ncentration	Units (ug/	/L or mg/kg dry	7 W	reight)	: MG/KG
7440-38-2       Arsenic       5.2       N*       F         7440-41-7       Beryllium       0.57       B       P         7440-43-9       Cadmium       0.25       U       N       P         7440-47-3       Chromium       15.3       N       P         7439-92-1       Lead       12.5       N*       P         7440-02-0       Nickel       16.2       N*       P         7782-49-2       Selenium       0.61       U       N       F         7440-22-4       Silver       0.63       U       P       F         7440-28-0       Thallium       0.61       U       F       F		CAS No.	Analyte	Concentration	С	Q	М
		7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0	Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	5.2 0.57 0.25 15.3 21.9 12.5 0.13 16.2 0.61 0.63 0.61	ם שו – שם שו		F_ P_ P_ P_ P_ CV P_ F_ F_
	not detect	ad in thic c	(Concentr	ation) column	in	dicates greater	pectrophotometr the analyte was than Instrumen Not Required.

### INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

	•		•		
Lab Name: NYTI	EST_ENV_INC.		Contract:	9421444	A-2-1B
Lab Code: NYTI	EST Log	gin No.: 22	745_	QC Report	No.22745_
Matrix (soil/w Level (low/hic Percent Solids	th) • TOW	_		Lab Sample Date Rece	e ID: 274509_ ived: 12/15/94
Co	oncentration	Units (ug	/L or mg/kg dr	ry weight):	MG/KG
	CAS No.	Analyte	Concentration	C Q N	1
	7440-36-0	Antimony	4.5	[ ] [ ]   =	5
	7440-38-2	Arsenic_	7.0	N* F	,-
	7440-41-7	Beryllium	0.47	BF	5-
	7440-43-9 7440-47-3	Cadmium_ Chromium	0.24	U F	)
,	7440-50-8	Copper Copper	12.2	<del>-     -   -   -   -   -   -   -  </del>	
<b>,</b>	7439-92-1	Lead	51.3 44.7	-	
	7439-97-6	Mercury	0.12		. <del>v</del>
	7440-02-0	Nickel	14.2		
ţ	7782-49-2	Selenium_	0.51		, <b>-</b>
	7440-22-4		0.60		
	7440-28-0 7440-66-6		0.51		
· }	7440 00-0	Zinc	146	EN* P	_
				i-ii-	
				-  -	<b>-</b>
,			· · · · · · · · · · · · · · · · · · ·	-  -	-
					-
	İ ————				<u> </u>
<b>)</b>		i ————		-  -	_
·				i-ii-	
				i-ii-	-
				-	<b>-</b>
				<u> -  -</u>	-
CODES :		•		· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·	<b>1</b>
P: ICP;	F : GFAA;	CV: Cold V	apor; AS: Au	tomated Spe	ctrophotometric
not detected	in the "C"				
	~ +11 -111-12 20	7 III CO 1 P : " P "	<pre>= Sample value porting limit</pre>	~ ~~~~ <del>_</del>	·
mments:		-55 chan re	borcing limit	; "NR" = No	t Required.
A-2-1B					
, -					

### INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

Lab Name: NYTE	ST_ENV_INC.		Contract: 9	421444	A-2-2B
Lab Code: NYTE	ST Log	in No.: 223	745_	QC Report	No.22745_
Matrix (soil/w Level (low/hig Percent Solids Co	h) : LOW	7	/L or mg/kg dry	Date Rece	e ID: 274510ived: 12/15/94  MG/KG
·	CAS No.	: Analyte			M
	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead_ Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc	4.5 5.9 0.45 0.24 14.7 13.4 12.6 0.13 19.8 0.61 0.59 0.61 44.8	N*	P   P   P   P   P   P   P   P   P   P
Note: A "U" not detected	d in this sa	(Concentra ample; "B"	ation) column i	indicates :	ectrophotometric the analyte was than Instrument ot Required.

INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

el (low/hi	water): SOIL gh) : LOW s : _79.	<del></del>			le ID: 274511 <u></u> eived: 12/15/9
c	oncentration	Units (ug	/L or mg/kg dr	y weight)	: MG/KG
	CAS No.	Analyte	Concentration	C Q	м
	7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-22-4 7440-28-0 7440-66-6	Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium	4.6 3.5 0.73 0.24 31.5 12.8 18.4 0.13 16.2 0.57 0.60 0.57 41.6	U	P
DES :		-			-     -     -     -
P: ICP; Note: A "U	J" in the "C' red in this :	" (Concentr sample: "B"	ation) column	indicate: le greate:	Spectrophotomes s the analyte was r than Instrum Not Required.

### INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

ab Name: NYT	EST_ENV_INC.		Contract: 94	121444	A-3-1B
ab Code: NYT	EST Log	in No.: 227	745_	QC Report	No.22745_
evel (low/hi ercent Solid	s: _84.:	3	/L or mg/kg dry	Date Rece	le ID: 274512 eived: 12/15/94
	CAS No.	: Analyte	Concentration	C Q	М
	<u> </u>				
		Antimony_	4.2		F_ P_
		Arsenic_	5.2	_ N*	<u>r</u> _
		Beryllium	0.26		<u>5</u> -i
	· ·	Cadmium	0.40		P
	L .	Chromium_	13.3	-_*	P_
	ľ	Copper	88.5		
		Mercury	0.12		P_ P_ CV
		Nickel	14.2		
	9	Selenium	0.50	$ \overline{u} $	P_ F_ P_ F
	t l	Silver	0.55		_p-
		Thallium	0.50		<del>-</del> -
	7440-66-6	Zinc	151	EN*	P P
				-	
					<del></del>
				!-!	
				-	
				-	
•					
		3			
				- -	 
CODES :		•			
not detect	" in the "C" ed in this s	(Concentr ample; "B"	ation) column	indicates e greater	pectrophotometri the analyte was than Instrument Not Required.
A-3-1B					
W-2-TD	· · · · · · · · · · · · · · · · · · ·	<del> </del>			

INORGANICS ANALYSIS DATA SHEET

SAMPLE NO.

ab Code: NYTEST	ab Name: NYTEST_ENV_INC.		Contract: 9	421444	A-3-2B
Date Received: 12/15/94	ab Code: NYTEST Log:	in No.: 22	745_	QC Report	No.22745_
7440-36-0 7440-38-2 7440-41-7 7440-43-9 7440-47-3 7440-50-8 7439-97-6 7440-02-0 7482-49-2 7440-22-4 7440-22-4 7440-28-0 7440-66-6  P: ICP; F: GFAA; Cv: Cold Vapor; AS: Automated Spectrophotomet;	evel (low/high) : LOW ercent Solids : _79.7	7	/L or mg/kg dr	Date Rece	ived: 12/15/94
7440-38-2   Arsenic	CAS No.	ž Analyte	Concentration	C Q	M
Note: A "U" in the "C" (Concentration) column indicates the analyte was not detected in this sample; "B" = Sample value greater than Instrument	7440-38-2 7440-41-7 7440-43-9 7440-50-8 7439-92-1 7439-97-6 7440-02-0 7782-49-2 7440-28-0 7440-66-6	Arsenic_Beryllium Cadmium_Chromium_Chromium_Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	5.5 0.49 0.25 12.6 25.3 10.6 0.13 16.8 0.62 0.63 0.62 109	B N* N N N N N N N N N N N N N N N N N N	F P P P P P P P P P P P P P P P P P P P

### INORGANICS ANALYSIS DATA SHEET SAMPLE NO.

Lab Name: NYTEST_ENV_INC.____ Contract: 9421444_

Lab Code: NYTEST Login No.: 22745_

A-3-3B

QC Report No.22745_

Percent Solids: _79.6	ng/kg dry		
•	mg/kg dry		
Concentration Units (ug/L or	-	weight)	: MG/KG
CAS No. Analyte Conce	ntration	c Q	м
7440-36-0 Antimony	4.4	<del></del>	P
7440-38-2 Arsenic	3.6	N*	F_
7440-41-7 Beryllium	0.34		P_
7440-43-9 Cadmium	0.23	<u> </u>	P_
7440-47-3 Chromium	9.8	N	<del>p</del>
7440-50-8 Copper	24.9	*	P
7439-92-1 Lead	12.5		P   P   P
7439-97-6 Mercury		<u> </u>	cv
7440-02-0 Nickel	13.6		
7782-49-2   Selenium	0.56	UN	P_ F_
7440-22-4 Silver	0.58		P_
7440-28-0 Thallium	0.56		F
7440-66-6 Zinc	37.1	EN*	P_
		_	.l <u></u> l
		_	.
	i .	_	.
	.	_	.
		_	.
		_	.
	.	-	·İ—İ
	i.	_	· <b>i</b> —-i
		- i	-
ODEG .	i.	_ i	. i i
CODES:	3.5. 3		
P: ICP; F: GFAA; CV: Cold Vapor;			
Note: A "U" in the "C" (Concentration)			
not detected in this sample; "B" = Sam Detection Limit, but less than reporti	pre value	greater	Not Possized
mments:	ng rimit;	14 IV	noc vedarrea.
A-3-3B			
			*

SAMPLE NO.

MATRIX	SPIKE	RECOVERY	בידבת	SHEET

ab Name: 1	NYTEST_EN	W_INC	Contract:	9421444	C-5-1BMSD
ab Code: 1	NYTEST	Login No.:	22714_	QC Repo	ort No. : 22714_
atrix (so	il/water)	: SOIL		Level	(low/med): LOW
Solids fo	or Sample	e: _80.5			. •
	Concentr	ration Units (ug/	L or mg/kg dry w	eight): MG/	/KG
Analyte	Control Limit %R	Spiked Sample Result (SSR)	Sample C Result (SR)	Spike C Added (S	SA) %R Q M
Copper Lead Mercury	75-125	58.7071	4.2147 2.8360 0.8296 0.2218 19.0084 11.3354 14.7638 0.1242 19.1859 0.5860 0.5546 0.5860 32.2671	- 4 6 6 6 7 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7	.30

NR : Analyte Not Required

DUPLICATES

SAMPLE NO.

C-5-1BMS

Lab Name: NYTEST_ENV_INC.____ Contract: 9421444_

Lab Code: NYTEST Login No.: 22714_

QC Report No.: 22714

Matrix (soil/water): SOIL_

Level (low/med): _LOW_

% Solids for Sample: _80.5

% Solids for Duplicate: __84.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Antimony_Arsenic_Beryllium Cadmium_Chromium Copper_Lead_Mercury_Nickel_Selenium_Silver_Thallium_Zinc	1.2_ 0.6_ 2.8_ 4.4_ 	19.0084 11.3354 14.7638 0.1242 19.1859 0.5860 0.5546		6.6410 1.5557 0.7629 0.2199 16.8944 29.7543 16.5031 0.1242 18.5687 0.5805 0.5497 0.5805 46.2079	_ - - - - - - - - - - - - - - - - - - -			P
		l	_					

NR : Analyte Not Requested

### ICP SERIAL DILUTION

SAMPLE NO.

Lab Name: NYTEST_ENV_INC._____ Contract: 9421444__

C-5-1BL

ab Code: NYTEST Login No.: 22714_

QC Report No.: 22714_

Matrix (soil/water): SOIL_

Level (low/med): LOW__

Concentration Units: ug/L

		-	Serial		*	7	
	Initial Sample	- 1	Dilution	ł	Differ-	-	
Analyte	Result (I)	c¦	Result (S)	c¦	ence	Q	M
<del></del>		_i	 	<del></del> ¦		1_	l
Antimony_	38.00	ן ט	190.00_	יטן	ll	1_	P_
Arsenic		_i		. _		l_	 
Beryllium	7.48_	_	10.00	ן ט	_100.0_	l_	P_
Cadmium		ਹ ¦	10.00	ן ט	l	l_	P_
Chromium_	171.38	_	182.00	. _	6.2_	1_	P_
Copper	102.20	_	101.05	B	1.1_	_	P_
Lead	133.11	_	176.75	. _	32.8	_	P_
Mercury	I I .	_		1 - 1		1	
Nickel	172.98	_	131.10	B	24.2	!	P
Selenium_		_		1_1	-	!-	_
Silver	5.00_	<u></u>	25.00_	<del>"</del>		-	P
Thallium_		_				-	-
Zinc	290.92	_  _	349.20		20.0	E	P_
<del></del>		-i		- -		_	<b> </b>
	.	-i		·i-i	i	i–	i —
	<del></del>	-i	Í	·i–i	ii	<b>i</b> -	i —
<del></del>		-i		·i-i		i_	i —
		-i	i <del></del>	·i–i	i ————————————————————————————————————	i	
l ——— [		-i	į <del></del>	·i–i	ii	i_	i —
		-i		·i–i	ii	i –	i
		-i		·i-i	i———	<b>i</b> –	i —
		-j		·i_i		i-	i
i	İi	-i	<u> </u>	.   _		<b> </b> _	<b> </b>
		_ i	i	1 1	}	l	!

SAMPLE NO.

MATRTY	SPIKE	RECOVERY	DATTA	SHEET
LIMITATA		TATION A TITLE		

Lab Name: NYTEST_ENV_INC._____ Contract: 9421444_____

Lab Code: NYTEST Log

Login No.: 22731_

QC Report No.: 22731_

Matrix (soil/water): SOIL___

Level (low/med): LOW_

% Solids for Sample: _74.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	r							1	
Analvte	Control Limit %R	Spiked Sample Result (SSR)	c	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Analyte  Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead_ Mercury_ Nickel_ Selenium_ Silver_	75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_ 75-125_	53.4803_ 13.5232_ 6.0313_ 5.7015_ 29.6222_ 44.7888_ 65.4612_ 0.7389_ 76.5523_ 1.1416_ 5.2950_		4.5542 7.3710 0.4674 0.2397 8.5726 39.6728 8.4348 0.1342 22.9614 0.5786 0.7191	ממו מו ו ו מאו ט	63.92 5.02 6.39 6.39 25.57 31.96 63.92 0.67 63.92 1.25 6.39	83.7 —122.6 —87.1 —89.2 —82.3 —16.0 —89.2 —110.3 —83.8 —91.3 —82.9	  -  -  -  -	E
Thallium_ Zinc	75-125_ 75-125_ 	5.0555_ 119.6024_	_ _ _ _	0.5786 100.5381 	0	6.27 63.92	80.6 29.8	N -	P_
			  -  -  -		-  -  -			  -  -  -	
			-  -  -  -		-  -  -				

Comments: B-2-2BMSD		 	

NR : Analyte Not Required

### DUPLICATES

SAMPLE NO.

B-2-2BMS Lab Name: NYTEST_ENV_INC.____ Contract: 9421444

La Code: NYTEST Login No.: 22731_

QC Report No. : 22731__

Matrix (soil/water): SOIL_

Level (low/med): LOW

% Solids for Sample: _74.5

% Solids for Duplicate: __74.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit	Sample (S)	С	Duplicate (D) (		RPD	Q	М
Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead_ Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc	4.8_	4.5542 7.3710 0.4674 0.2397 8.5726 39.6728 8.4348 0.1342 22.9614 0.5786 0.7191 0.5786 100.5381	ם ששו טור	5.0502   C	3	33.9_ 9.6_ 30.2_ 70.7_ 0.6_ 	***	P

Analyte Not Requested

### ICP SERIAL DILUTION

SAMPLE NO.

B-2-2BL

Lab Name: NYTEST_ENV_INC.____ Contract: 9421444

Lab Code: NYTEST

Login No.: 22731_

QC Report No.: 22731

Matrix (soil/water): SOIL_

Level (low/med): LOW_

Concentration Units: ug/L

Analyte	Initial Sample Result (I) C	Serial Dilution Result (S) C	% Differ- Q M
Antimony_ Arsenic	38.00U	190.00U	-  <del>-</del>
Beryllium Cadmium	3.90 B 2.00 U	5.00 U	_100.0_   P_P
Chromium_ Copper	71.53	67.95 326.15	5.0 P 1.5 P
Lead Mercury Nickel	70.38	150.00 Ū	100.0 P
Selenium_ Silver	$\begin{vmatrix}$	30.00	-100.0-  - F-     -  <del>-</del>
Thallium_ Zinc	838.89	887.80	5.8 P
	<u> </u>		

SAMPLE NO.

### MATRIX SPIKE RECOVERY DATA SHEET

							A-1-2BMSD
Lab	Name:	NYTEST_ENV_INC	·	· · ·	Contract:	9421444	
Lab	Code:	NYTEST	Login No.	: 22745		QC Rep	ort No. : 22745_

Matrix (soil/water): SOIL__ Level (low/med): LOW___

% Solids for Sample: _79.5

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control Limit %R	Spiked Šample Result (SSR) (	Sample Result (SR)	С	Spike Added (SA)	₹R	Q	M
Antimony_	75-125	51.1250	4.3062	Ū	59.33	86.2	-	${P}$
Arsenic	75-125	7.1240	4.6788		4.70	52.0	N	F
Beryllium	75-125	5.5441	0.6153	-	5.93	83.1		P_
Cadmium_	75-125	4.9377	0.4408	В	5.93	75.8	-	P_
Chromium_	75-125	30.1448	14.8122		23.73	64.6	N	P
Copper	75-125	45.3032	18.3455	-	29.67	90.9		P_
Lead	75-125_	56.7379	15.6213		59.33	69.3	N	P_
Mercury	75-125_	0.5597_	0.1258	บ	0.63	88.8	_	CV
Nickel	75-125_	66.2549	19.7983	_	59.33	78.3		P_
Selenium_	75-125_	0.7406_		ប	1.18	62.8	N	F_
Silver	75-125_	5.3008_ _	0.5666		5.93	89.4	-	P_
Thallium_	75-125_	4.5024	0.5878	ט	5.88	76.6	_	F_
Zinc	75-125_	95.4907_	51.2131	<u> </u> _	59.33	74.6	N	P_
			-	i –		İ	-	i i
			_	<b>i</b> – ⁱ		İ	<b> </b>	
j ———	·	<del></del>	-i	j –		İ	j –	i—
ļ <del></del>			-	<b> </b> -		İ ———	<b> </b> -	i—
<b> </b>	I ———		-	1-		i	<b> </b> -	<b> </b>
				1-			-	
	<del></del>		-	-			-	
		[ <del></del> [ -	-	-		l	-	-
	l	-	-	-	<del></del>	l	1-	-
		]		-		I ———	-	
			-	-			-	<u> </u>
·		l	_		I	1	I	1

Comments: A-1-2BN	MSD			

NR : Analyte Not Required

### DUPLICATES

SAMPLE NO.

Tab	Mama.	Wymnam man	!	A-1-2BMS
Lan	Name:	NYTEST_ENV_INC	Contract: 9421444	

Lab Code: NYTEST Login No.: 22745_

QC Report No. : 22745__

Matrix (soil/water): SOIL_

Level (low/med): _LoW__

.

% Solids for Sample: _79.5

% Solids for Duplicate: __77.6

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Т	<del></del>		·				
Analyte	Control Limit	: Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Antimony_ Arsenic_ Beryllium Cadmium_ Chromium_ Copper_ Lead Mercury_ Nickel_ Selenium_ Silver_ Thallium_ Zinc	1.2	4.3062 4.6788 0.6153 0.4408 14.8122 18.3455 15.6213 0.1258 19.7983 0.5878 0.5666 0.5878 51.2131	- B - U U U U U	4.7325 3.4619 0.4259 0.2491 13.9884 31.5972 10.1750 0.1258 17.0060 0.5566 0.6227 0.5566 83.7088	- U U U U			

NR : Analyte Not Requested

SAMPLE NO.

ICP SERIAL DILUTION

A-1-2BL Lab Name: NYTEST_ENV_INC._____ Contract: 9421444

ab Code: NYTEST Login No.: 22745_

QC Report No.: 22745

Matrix (soil/water): SOIL_

Level (low/med): LOW__

Concentration Units: ug/L

	Tribial Comple	Serial		8		
377740	Initial Sample	Dilution	_i	Differ-	i .	
Analyte	Result (I) C	Result (S)	C	ence	Q	M
Antimony_	38.00 U	100.00	i	İi	<b>i</b> —	P
Arsenic	i ⁰	190.00	ט	i <del></del> i	i – i	P_
Beryllium	5.43	10.00	<u></u>	1-100 0-1	i –	_
Cadmium	3.89 B	10.00	ן ט	_100.0_	<b>i</b> —	P_
Chromium	130.71	125.40	۷į	_100.0_	<b>i</b> —i	[ <u>P</u> _
Copper	161.89	193.30	-i	i4·1-i	<b>i</b> —i	P_
Lead	137.85	130.00	ਹ	19.4	<b>i</b>	P-
Mercury	-	i	٧į	_100.0_	<b> </b> -	P_
Nickel Nickel	174.71	145.85	B	1-36 E	<b>i</b> -i	<del>-</del>
Selenium	-	145.85	Þj	16.5_	<b>i</b> -i	i ^P —i
Silver	5.00 Ū	25.00	<u></u>	ii	<b>i</b> -i	<del>-</del>
Thallium		^{25.00}	٩į	ii	[-]	P-
Zinc	451.93	503.80	-1	11.5	E	$ \overline{P} $
		jos:80	-1		-	P-
			-1	<u>  </u>	1-	<u> </u>
		ļ <del></del>	-1		-	
			-1		1-	
			-1		1-	<b> -</b>
			-1		-	
			-1		-	
			-		-	
			_		-	
					1-	
	2		-		-	
I <del></del> I	I ————————————————————————————————————		-1	11	<b>!</b> —	<b> </b>

THIS PAGE INTENTIONALLY LEFT BLANK

	****					
		Breaking Field				
		uttle & Accepting		0-1	Clobs.	
Responsi	bility for	Sample		NAME: /	icins	_ mre:১০৯ 💸
Client:	$\bigcap_{\Omega}$	Tech	Date Broken		Situatusia kaaraa kiitti waxaa kii k	Military Time Seal Broken: 6934
-		3.001	DO Mal	7 ( 6.0 0		
Login #:		1731	PP Me Analytical Param	eter/Fraction	-643 1827	'e 18240 .
			, , , , , , , , , , , , , , , , , , , ,	.o.c.m. rabbona 🐭		
	PLE NO.		EXTRACT NO.	SAM	PLE NO.	ALIQUOT/EXTRACT NO.
2.27	31-1	01   B-1-1	15			
(1	<u> </u>		20			
(/			<del>,</del>			
εζ.		<del></del>	· · · · · · · · · · · · · · · · · · ·		. •	
C)		or B-2-2	-B			
. 4	. ~ 0	15-2 Z				
, 'r	0 بـ ٠				-	
4	, ر	og B.2-3	_			
۲,	^					•
(1			•			
٠,	J	11 6-3-31	3			
DATE	TIME	RELINQUISHE	) BY	RECIEVED 1	BY	PURPOSE OF CHANGE OF CUS
		PRINTED NAME	RIDES	PRINTED NAME /	V2,55	T8270
liday	500		34700			LC FUR
Sin	<u> </u>	SIGNATURE	_	SIGNATURE C	Vou	CCFOA
NHAY	द्धुवर्	PRINTED RAHED	er pes	PRINTED NAME	Carver	F8240
MM	63	SIGNATURE		SIGNATURE &	Carver 1	, ,
123/94	136	PRINTED NAME ( )	77	PRINTED NAME	1. LANI	
13/33/94		SIGNATURE ( Vo.		SIGNATURE M	· La	Storage
1/3/95		PRINTED NAME		PRINTED NAME	1. LANI	
ļ	İ	SIGNATURE	١ / ع	SIGNATURE 77	La .1	Storage
951	F17 -<	PRINTED NAME P		PRINTED NAME	-Truii/10	PMetal
1/3/	1/2,	SIGNATURE (	1 -	SIGNATURE C	Hosel	( ) ( )
75	17.17	PRINTED NAME I	:1 - i	2071 Marie 1	1221Pes	= DICALO
1/5/1	1500	SIGNATURE		SIGNATURE	2	1 7 7 00
		PRINTED ALLE		PRINTED NAME	/	
		SIGNATURE		SIGNATURE	,	
		PRINTED NAME	1	PRINTED NAME		00002
	1		1			
[		SIGNATURE		SIGHATURE		

Laboratory Person Breaking Field  Seal on Sample Shuttle & Accepting  Responsibility for Sample	NAME: What Fletche	mie S <b>C</b> O
	Date Broken 1 <u>ケル</u>	Military Time Seal Broken:
Login #: 22745	Pfmetals, GCFuel, ECFG, T. Analytical Parameter/Fraction:	8970

	<u></u>		
SAMPLE NO.	ALIQUOT/EXTRACT NO.	SAMPLE NO.	ALIQUOT/EXTRACT NO.
B-4-1B	1.22745-01	1 A-2-3B	22745-11
B-4-2B	02	1 A-3-18	12
B-4-3B	03	1 A-3-2B	1 .] 13
A-1-1B	04:	A-3-3B	W 14
A-1-2B	05		
A-1-2BMS	06		
A-1-26msD.	67		·
A-1-3B	08		
A-2-1B	11/09		
AZZB	10		

DATE	TIME	RELINQUISHED BY	RECIEVED BY	PURPOSE OF CHANGE OF CUST
12/16/14	go	PRINTED NAMES PICKIPES	PRINTED NAME C V055	ac fiel
15/101	0,	SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF THE SIGNATURE CONTROL OF	SIGNATURE CURS	
12/19/94	-25	PRINTED NAME ( PILLING	PRINTED NAME W Jawa at	(LL 6AS
15/1"	0305	SIGNATURE	SIGNATURE W AMOUNT	
1		PRINTED NAME M. LANI	PRINTED NAME I Can vend	
i	7:00	SIGNATURE 97. Zar	SIGNATURE / Con ver	UOF
(3/33/24	00/21	PRINTED NAME 1 1/2 54	PRINTED NAME M. LAN	Storage
(3/3)	`	SIGNATURE & VOIN	SIGNATURE MoLa	
Spips	mt.17	PRINTED NAME H. TOULING	PRINTED NAME	pf Metals
1/51,	1300	SIGNATURE Hol-	SIGNATURE /	
		PRINTED NAME	BEINLED MYNE	
		SIGNATURE	SIGNATURE	
		PRINTEDÁNÃŒ	PRINTED HAVE	
		SIGNATURE	SIGNATURE	
		PRINTED NAME	PRINTED NAME	00003
		SIGNATURE	SIGNATURE	

			•	
Laboratory Person Breal	cing Field	$\Lambda A$	of Marine	
Seal on Sample Shuttle &	& Accepting	Killerin.		C
Responsibility for Sampl	e NA	ME: [1 Free Ver	TTTLE: `_	2 Ce
Client:	Ch Date Broken	12/18/94	Military Time	Seal Broken:
Login #: みよう	N Agabetas Danson		<i>3</i> 270	5.00
Login a	i Alayuca Paramete	MHACHORE WALLEYS	72Y0	
SAMPLE NO.	AL JOHOT/EXTRACT NO	S L) ON E MO		

SAMPLE NO.	ALIQUOT/EXTRACT NO.	SAMPLE NO.	ALIQUOT/EXTRACT NO.
22714-61	·D-1-10		
11 _ 01	D4-ZB		•
(1 - 63	D-1-3B.		
4 - 04	D-2-1B		•
1 - 05	D-2-2B		
4 06	D-2-3B		
1 - 0)	C-1-1B		
ĸ · - 08	(-15ED		
" - 69	C.25ED		
', -10	C-3 SEP		

DATE	TIME	RELINQUISHED BY	RECIEVED BY	PURPOSE OF CHANGE OF CUST.
1,2/4	OND	PRINTED NAME R Frether	PRINTED HAME WJawdat	
18/17/		SIGNATURE R 7	SIGNATURE HOW day	GC 645
Mery	9. C.	PRINTED NUME PIPILITES	PRINTED NAME ( V049	18270
GIL.	0,0	SIGNATURE (CAL	SIGNATURE CVON	GC FUQ
Sulga	, c°	PRINTED NAME & PRINTED	PRINTED NAME 11- Trui, 1/3	
1/1/1/	16.	SIGNATURE	SIGNATURE BULL	meter)
2/23/4		PRINTED NAME W. Jandat	PRINTED NAMED - PRINTED	(TRAG
		SIGNATURE W HOWARD	SIGNATURE	) / ( / / 6
3 pt 95 ms	7 7	PRINTED NAME H- 1741113	PRINTED NAME.	JONA CO
3,	302	SIGNATURE HOLL	SIGNATURE	7 /0.
		PRINTED NAME	PRINTED NAME	
		SIGNATURE	SIGNATURE	
		PRINTED NAME	PRINTED NAME	
		SIGNATURE	SIGNATURE	
		PRINTED NAME	PRINTED NAME	99005
		SIGNATURE	SIGNATURE	0,500.0

. 🔽	The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		a undergraphic to a second
نسلل	aboratory Person Breaking Field eal on Sample Shuffle & Accepting	Matthewell of	
_~`		100 M	
134	221 on Sample Shuttle & Accepting		VA 2002 C
	esponsibility for Sample NAME: 1871 / GideS	4.7	Y TAKE TO SO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE S
TR.	esponsibility for Sample NAME: 1991 (Grade) -		
180	District Comple	11112:2	
	Participation of the American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American		
	Multi-	uy Time	Seal Broken
1.22	OPTECH Date Broken 12-1894	222	CONTROL OF WAR
-27	OPTECH Date Broken 121894	The state of	S. C. S. C.
			A STATE OF THE STATE OF
12		Special Comment	through the server second less is.
1.73	7a-10	15 11 11 11 11 15 15	
$\Pi$	ogin #: 227/8 Analytical Parameter/Fraction: Projects active	112	
	ogin #: A27/8 Analytical Parameter/Fraction: Revels, BChief	OCE	13.000

0.13.004.77.10	1	<del></del>	1. May some registering the second
SAMPLE NO.	ALIQUOT/EXTRACT NO.	SAMPLE NO.	ALIQUOT/EXTRACT NO.
C-2-16	2278-01	C-5-1BMSD	22718-11
C-2-2B	. = 02	·	
C-2-3B	, 03		
C-3-1B	04		
C-3-2B	1 05		
C-4-1B	06		
C-4-2B	07		
C-5-2B	1 08		
C-5-1B	1 09		
C-B-1BMS	10		

DATE	TIME	RELINQUISHED BY	RECIEVED BY	PURPOSE OF CHANGE OF CUST
برابهاهم	،لار،	PRINTED PIME 1 LIC 100	PRINTED NAME ( V255	be Fuel
		SIGNATURE	SIGNATURE ( VgW	T8170
12/1/94	DASO	PRINTED NAME HOLDS	PRINTED NAME SCANUEN	18240
101		SIGNATURE	SIGNATURE SCULVEN	,
1/6/21	16.00	PRINTED NAME VIPERIDES	PRINTED NAME .H-TYUII/0	and to
		SIGNATURE	SIGNATURE HOLL	moto?
1420/24	. 50	PRINTED NAME ( 1/055	PRINTED NAME ( , P, 12/2)	CORACO
		SIGNATURE C VON	SIGNATURE (	3701100
13/33/94	1400	PRINTED NAME SCULVEY	PRINTED NAME M. LANT	
		SIGNATURE SCULLY	SIGNATURE M. La	Storage
75 m	1305	PRINTED NAME HETYULING	PRINTED HANDE / LEC 1020	Spritte
101.	/3	SIGNATURE HOLE	SIGNATURE	
		PRINTED RANG	PRINTED NAME	
		SIGNATURE	SIGNATURE	
		PRINTED NAME	PRINTED NAME	00006
		SIGNATURE	SIGNATURE	·

## rest environn

FAX: (516) 625-1274 (516) 625-5500

page #: ___of Chain of Custody Record

39 16. Tyly 1987 Date Shipped: 12 12 1 11 Comments Port Washington N.Y. 11050 Nytest Environmental Inc. 60 Seaview Blvd Degrees Celcius Attn.: Sample Control ab Use Only NEI QT #: Air Bill #: Login #: Cooler #: C of C #: Carrier: SDG#: Sample Rec'd in Good Condition? : Sample Temperature: Bin #'s In / Out (For Lab Use Only) Custody Seals: Analysis Requested 10/1 | YI/21 Date / Time HUL × 700 OHZ8 MS 3816744455 No. of Containers 7 C FEU-EX 1-12 ms/mg In13 Received by Laboratory : 1345 B-002 BH IN12 1340 A - 002 BH 1 11 731-0008 1150 A-001 BH 1213 1):001 BIL Jul. Location Print Name: Sample 1-175 (1-002.8H Received by: Print Name: 17/11/10/ 18-10 BH 18-004 BH A COOL ALL 8-00-8H 1.001 BH (210) Deliverables 120 Time Time A116 1.000 1111 FAX 117. 5011 Time Sampled Date 1000 U10 5 6,14'6.11.15 12/1:1/11 Date Sænpled Antonio 721-0000 Parse 3 Σ = 17/11/00/// TEFFERM (Maximum of 6 Characters) Panteed Sample ID 1045 (2/0) Analytical Protocol Fras Project Manager Project Number (Lab Use Only) Project Name Client Name Relinquished by: Relinquished by: Sampled By Relinquished by: Address Print Name Print Name: P.O. #

1315-105 ¥ Contine (1111) 300 Special Instructions : Au Meze

Print Name:

Print Name

CLIENT RETAINS YELLOW COPY ONLY

INSPECTED BY: COMMENTS Date / Time



470	

### Chain of Custody Record

jo

page#:

Absent Comments Port Washington N.Y. 11050 Nytest Environmental Inc. Degrees Celcius Attn.: Sample Control 60 Seaview Blvd Date Shipped: Lab Use Only NEI QT #: Air Bill #: Login #: Cooler #: C of C #: Carrier: SDG#: Sample Rec'd in Good Condition? Sample Temperature: INSPECTED BY: COMMENTS: Bin #'s In / Out (For Lab Use Only) Custody Seals: Analysis Requested Date / Time Date / I'me Date / Time ~ No. of Containers  $\sim$ 2 Jul 2 Received by Laboratory A-003BH J.,11 Location Sample Received by: Received by: Print Name: Print Name: A-0038H -003BH Print Name: Deliverables. Date / Time Date / Time Date / Time FAX 1535 0251 Time Sumpled 1510 Date Sampled €Ū Ø න نم 3 Sample ID (Maximum of 6 Characters) 3 3 ı Analytical Protocol Project Manager Project Number Lab ID (Lab Use Only) Project Name Client Name Sampled By Relinquished by: Relinquished by: Relinquished by: Address Print Name: Print Name: Print Name: P.O. #

Special Instructions:_

CLIRNT RETIINS VETTOW COPY ONLY

nytest environmental. (516) 625-5500 FAX: (516) 625-1274

Chain of Custody Record

Client Name Address	OPTECH 11100 NW LOOP 410 SAN ANTWOND TX	410	Surte 78.729	Suite 270			Anal	ysis Re	Analysis Requested	Login #: Ship to: Nytest Environmental Inc. 60 Seaview Blvd
Project Manager	2000 / 131-0000 2010 / 3a - 105	Mack &	(012) (10)	131-9908	Containers		bom 2108 +	4.54		Port Washington N.Y. 11050 Attn.: Sample Control Date Shippxel: Carrier: Air Bill #:
Analytical Protocol 45.	5 Pen 50W)	Deli	Deliverables	Ac 126. Saus	<b>10.0</b>	242	197 ## ##		Solin/Out (For Lab Use Only)	C of C #: SDG #:
(Lab Use Only) (Ma	E 2 2	Time	_	Sample Location	J					NEI QT #:Comments
- O	S) S4	0440 14/c/ZJ	-	Ind		× ×	**	·		
0	2 63 69 7 - M	0270		i l			**; J.J.			
- ·	1 1	0021		0 -002 6H (M. 2)		* ×	*			
; رن ر	- 1 V	16.20	-	7 2				××		
	(a) (c)		7 7	C-001 SEDIMENT		× >	× × ×	××		
1/2	* **	Date		1 8	1485			Date / Time		Lab Use Only
	Protect II	7.00	5111	Print Name: FEO-EX		DELIVERY	7	3/11 /14c	******	Broken
		Date	/ Time					Date / Time	Sample Rec'd in Good Condition?	ion?: Y N Demises Chrim
				Print Name:						2000
		Date	/ Time	Received by Laboratory : Print Name:				Date / Time		

CLIENT RETAINS YELLOW COPY ONLY

July 1315-105

Contract wy Optern

Special Instructions: ///////



# Chain of Custody Record page #: ___of__

ted Login #:	Ship to:	Nytest Environmental Inc.	Port Washington N.Y. 11050	Attn.: Sample Control	Date Shipped: 124.13	Carrier: FEX	Air Bill #: 22(16-72) 1-2-3	Cooler #: 122	l		NEI QT #:	Comments			, ,		Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contro		70			11/100 STALES 0.21	Lab Use Only	Custody Seals: Intact Broken Absent	Sample Revi'd in Good Condition? : Y N	Sample Temperature: Degrees Celclus	INSPECTED BY:	
Analysis Requested			5		יסר ל				Tol	200000										0/3	<u> </u>	_	Time	/k37 Cu	Time Sall	ES.	Time	
lvsis	•			(09) W					d⊥ 9V	_ =			×	×			. >		k	_	×		Date /	2///2	Date /	1	Date /	
Ama				LZ					NS.	Bin#'s			×	×			×	× ×	×	×	×	•					-	
	-		0	ከረ	.8	(M)	<u>S</u>	7	Q/\ [^]	,			×	×			×		×	×	×			N				
			•	6L2	ai	e)	uo;	<b>C</b>	ło	.01	I		2	2	2	2	2	2	7	2	2	-		ርረ ከከ.				
	720	1 1		Sacher	210-731-0008	ANJ65					Sample	Location	C-002 Bil 1m 1:		) (	Î n	ام ام	- 1		1		-	Received by: FEO - FX	Print Name: # 2816.744.77	Received by:	Print Name:	Received by Laboratory:	
	#175	78779							Deliverables				2	ر ر ن			,	i				<u>၂</u>	Ē	K37	/ Time		/ Time	
	010	F 1		11/1220	- FAX	Page or Ks			Deliv	11	Tag.	-	0260	0955	0501	1205	1225	MeS	1.120	1505	1516	1505	1	2/12	Date		Date	
	1000 010	1, 1		7	$z\alpha z$		_ ا		3	Popler	Date		Julialia	=	+	م	=	:	•	-	;	14/21/21	;					
COTTECH	GIO ANT	· \		Erac Baker	210-731-000	TECECON			Ac Cas Con	1.1	a a	Characters)	- 2 - 1 8	2	- 2 - 3 &	- 3 - 1 8	- 3 - 2 6	1 7	- 4 - 2 8	, ,	- 5 - 2 &	0 Σ 10	E STATE	Drates 77				
Client Name	Address			Project Manager	Phone	Project Name	Project Number	, Od	Analytical Protocol	Sampled By	Lab ID	tran ese Omy)	()	; C	C	3	ر	O	<u>ت</u>	ن	3	ن ا	Relinquished by:	Print Name:	Relinquished by:	Print Name:	Relinquished by:	

C-003, C-004, and C-105 Not Collectal Special Instructions : Tennecual Andres

# TOVIEST ENVIRONMENTAL (516) 625-1274 Chain of Custody Recor

Chain of Custody Record	Analysis Requested Login #:	Nytest Environmental Inc. 60 Seaview Blvd Port Washington N.Y. 11050		Date Shipped:		Cooler #:		(For Lab Use Only) SDG #:	NEI QT #:Comments											Lab Use Only	Custody Seals: Intact Broken	Sample Ree'd in Good Condition?: Y N	Samplé Temperature: Degrees Celcius	INSPIRE LEIBBY.	COMMENTS	
Cust	sis Re	0109	W		57∀			In/Out (F		×	×	· *	· ×	<del>-</del>	(×	×	×	× >	┐,	Date / Ilme	مرري الوعد	Date / Time		Date / Time		
Chain of (	Analy	01	<b>61.8</b> 85.7 85.7	3 K	5 :	)C	\S \\	Bin#'s	J	2 x x x	2 X X X	2 × × ×	2 x x x	2 × × ×	2 X X X	2 × × ×	2 × × ×	$\frac{1}{2}$								
		8229	.Ac	0-731-0008					Sample Location	B-001 BH 1 NH 1	8-001 BH Int?	8-001 BH IN 3	8.002 BH Int 1	B-002 BH Int 2	P-007 PH 2nt 3	B-003 BH IN1	B-003BH 142	1 Int 3	6-002 6M Int 2 MS/MSD	FED-EX	. 17	Received by:	Print Name:	Received by Laboratory:	Print Name:	
FAX: (516) 625-1274		1	Alak Eacha	FAX .210 -	, kS		Deliverables		and poled										┦;	Date / Time	11.35	te / Time	•	Date / Time		
10	77 77	The choise was note.	Enal Parter / Alm	<u> </u>	TEFFERSON ROPPHIKS	1501-50161	As PER SOLU De	1= NOL PARKER	Sample ID Date Tine (Maximum of 6 Sampled Sampled Characters)	- 1 - 1 B 1413A1 USSO	- 1 - 2 8 " 0710	- 1 - 3 8 " 1050	- 2 - 1 8 " 1255	- 2 - 2 8 " 1305	- 2 - 3 8 4 1421	- 3 - 1 6 4 1520	- 3 - 2 8 " 1530	3 6	2051 MAZUM 5 1111 - 12 C	O. A. T.	Proken II gy			Dat		
	Client Name	Address	Project Manager	Phone	Project Name	P.O. #	Analytical Protocol	Sampled By	Lab ID (Lab Use Only)	В	B	8	9	8	B	8	22	<u> </u>	Delinouished har	Constitution by CF/	Print Name:	Relinquished by:	Print Name:	Relinquished by:	Print Name:	

CLIENT RETAINS YELLOW COPY ONLY

Special Instructions: (-) 110 1/26

THIS PAGE INTENTIONALLY LEFT BLANK