Stage 3 - Set 6 Answers: Empirical formulas

1.

$$n(CO_{2}) = \frac{0.531}{44.01}$$

$$= 1.21 \times 10^{-2} \text{ mol}$$

$$= n(CO_{3}^{2-})$$

$$m(CO_{3}^{2-}) = 60.01 \times (1.21 \times 10^{-2})$$

$$= 0.724 \text{ g}$$

$$n(H_{2}O) = \frac{0.219}{18.016}$$

$$= 1.21 \times 10^{-2} \text{ mol}$$

$$= n(OH^{-})$$

$$m(OH^{-}) = (1.21 \times 10^{-2}) \times 17.008$$

$$= 0.2067 \text{ g}$$

$$m(Cu) = 2.088 - (0.724 + 0.2067)$$

$$= 1.157 \text{ g}$$

$$n(Cu) = \frac{1.157}{63.55}$$

$$= 1.82 \times 10^{-2} \text{ mol}$$

	Cu	CO ₃	ОН
n	1.82 x 10 ⁻²	1.21 x 10 ⁻²	1.21 x 10 ⁻²
Ratio	1.82x10 ⁻²	1.21x10 ⁻²	1.21x10 ⁻²
	1.21×10^{-2}	1.21×10^{-2}	1.21×10^{-2}
	1.5	1	1
x 2	3	2	2

E.F. = $Cu_3(CO_3)_2(OH)_2$

2	`
٠,	a)
<i>L</i> -	41

	С	Н
m in 100 g	85.7	14.3
n	85.7	14.3
	12.01	1.008
	= 7.14	= 14.18
Ratio	7.14	14.18
	7.14	7.14
	= 1	= 2

$$E.F. = CH_2$$

b)
$$n = \frac{1.18 \times 105}{298 \times 8.315}$$
$$= 5.00 \times 10^{-2} \text{ mol}$$

$$M = \frac{2.80}{5.00 \times 10^{-2}}$$
$$= 56.00 \text{ g mol}^{-1}$$

$$MF = \frac{56.00}{14.00}$$
$$= 4$$

$$MF = C_4H_8$$

$$H_3C$$
 C
 C
 C
 C
 C
 C

d)

$$\% Pb = \frac{2.93}{3.41} x100$$
$$= 85.9 \%$$

$$n(AgCl) = \frac{1.16}{107.9 + 35.45}$$
$$= 8.09 \times 10^{-3} \text{ mol}$$
$$= n(Cl^{-})$$

$$M(C\ell) = (8.09 \text{ x } 10\text{-}3) \text{ x } 35.45$$

= 0.287 g

$$\%CI = \frac{0.287}{2.93} x100$$
$$= 9.79 \%$$

$$\%$$
O = 100 – (85.9 + 9.79)
= 4.31 %

	Pb	$C\ell$	0
M in 100 g	85.9	9.79	4.31
N	85.9	9.79	4.31
	207.2	35.45	16.00
	= 0.415 mol	= 0.276 mol	= 0.269
ratio	0.415	0.276	1
	0.269	0.269	
	= 1.5	≈1	

 $EF = Pb_3C\ell_2O_2$

4. a)

$$n(CO_2) = \frac{6.60}{44.01}$$

$$= 0.150 \text{ mol}$$

$$= n(C)$$

$$m(C) = 0.150 \times 12.01$$

$$= 1.80 \text{ g}$$

$$m(O) = 3.45 - (1.80 + 0.453)$$

$$= 1.197 \text{ g}$$

$$n(O) = \frac{1.197}{16.0}$$

$$= 0.0750 \text{ mol}$$

$$n(H2O) = \frac{4.05}{18.016}$$

$$= 0.224 \text{ mol}$$

$$n(H) = 2x0.224$$

$$= 0.450 \text{ mol}$$

$$m(H) = 0.450 \text{ x } 1.008$$

$$= 0.453 \text{ g}$$

 $E.F. = C_2H_6O$

b)

$$n = \frac{0.950 \times 98}{373 \times 8.315}$$

$$= 3.00 \times 10^{-2} \text{ mol}$$

$$M = \frac{1.38}{3.00 \times 10^{-2}}$$

$$= 46.0 \text{ g mol}^{-1}$$

$$MF = C_2H_6O$$

c) CH₃CH₂OH

$$n(CoCO_3) = \frac{0.849}{58.93 + 12.01 + 48.00}$$

$$= 7.14 \times 10^{-3} \text{ mol}$$

$$M(Co) = (7.14 \times 10 - 3) \times 58.93$$

$$= 0.421 \text{ g}$$

$$\%Co = \frac{0.421}{1.22} \times 100$$

$$= 34.5 \%$$

$$n(C) = \frac{3.43}{44.01}$$

$$= 7.79 \times 10^{-3} \text{ mol}$$

$$M(C) = (7.79 \times 10 - 3)) \times 12.01$$

$$= 0.936 \text{ g}$$

$$\%C = \frac{0.936}{3.33} \times 100$$

$$= 28.1 \%$$

$$\%O = 100 - (34.5 + 28.1)$$

= 37.4 %

	Со	С	О
M in 100 g	34.5	28.1	37.4
N	34.5 58.93	28.1	37.4
	58.93	12.01	16.00
	= 0.585 mol	2.34 mol	$= 2.34 \mathrm{mol}$
Ratio	1	2.34	2.34
		0.585	0.585
		= 4	= 4

 $EF = CoC_4O_4$

b) EFM =
$$58.93 + (4 \text{ x } 12.01) + (4 \text{ x } 16.00)$$

= 170.93
Ratio = $\frac{341.9}{120.93}$
= 2
MF = 2 x EF
= $Co_2C_8O_8$

6. a)

	С	Н	N
n	2.64	1.62	0.236x105
	44.01	$\frac{1.02}{18.016}$ x 2	${298 \times 8.315} \times 2$
	$= 6.00 \times 10^{-2} \text{ mol}$	= 0.1798 mol	$= 2.00 \times 10^{-2} \text{ mol}$
ratio	6.00×10^{-2}	0.1798	1
	$\frac{1}{2.00 \times 10^{-2}}$	2.00×10^{-2}	
	= 3	= 9	

$$EF = C_3H_9N$$

b)
$$n = \frac{0.254 \times 95.5}{(19 + 273) \times 8.315}$$
$$= 9.99 \times 10^{-3} \text{ mol}$$
$$M = \frac{0.5896}{9.99 \times 10^{-3}}$$
$$= 59.0 \text{ g}$$
$$EFM = (3 \times 12.01) + (9 \times 1.008) + 14.01$$
$$= 59.1 \text{ g}$$
$$EFM = MFM$$
$$MF = C_3H_9N$$

7. a)

	С	Cℓ	Н
	$\frac{1.189}{44.01}$ x12.01	$\frac{1.292}{143.35}$ x35.45	0.662- (0.3245+0.3195)
	44.01	143.35	=0.0180 g
	=0.3245g	=0.3195g	
n	0.3245	0.3195	0.0180
	12.01	35.45	1.008
	$= 0.0271 \mathrm{mol}$	$= 9.01 \times 10^{-3} \text{ mol}$	= 0.0179 mol
Ratio	0.0271	1	0.0179
	9.01×10^{-3}		9.01×10^{-3}
	= 3		= 2

$$EF = C_3H_2C\ell$$

b) EFM =
$$(3 \times 12.01) + (2 \times 1.008) + 35.45$$

= 73.5
Ratio = $\frac{147}{73.5}$
= 2
MF = $2 \times EF$
= $C_6H_4C\ell_2$

8.

	C	Н	N
	$\frac{1.76}{1.76}$ x12.01	$\frac{0.420}{18.016}$ x2x1.008	$\frac{0.0295 \times 101.3}{\times 2 \times 14.0} \times 2 \times 14.0$
	44.01	18.016	$\frac{1}{(15+273)}$ x8.315
	=0.480g	=0.0470g	=0.0350g
%	$\frac{0.480}{0.620}$ x100	$\frac{0.0470}{0.620}$ x100	0.0350
(m in 100 g)	0.620 X100	0.620	0.232
	= 77.4%	= 7.58%	=15.1%
N	77.29	7.52	15.1
	12.01	1.008	14.01
	= 6.44	= 7.52	= 1.08
ratio	$\frac{6.44}{1.08}$	7.52	1
	1.08	1.08	
	= 6	= 7	

$$EF = C_6H_7N$$

b)
$$n = \frac{1.00 \times 101.3}{(100 + 273) \times 8.315}$$

$$= 3.27 \times 10^{-2} \text{ mol}$$

$$M = \frac{3.04}{3.27 \times 10^{-2}}$$

$$= 93.1 \text{ g mol}^{-1}$$

$$EFM = (6 \times 12.01) + (7 \times 1.008) + 14.01$$

$$= 93$$

$$MF = EF$$

$$= C_6 H_7 N$$

$$\%H_2O = \frac{5.43 - 4.88}{5.43} \times 100$$
$$= 10.4\%$$

$$m(Ni) = \frac{0.578}{58.69 + 32.06} \times 58.69$$
$$= 0.374 \text{ g}$$
$$\%Ni = \frac{0.374}{\frac{2,00}{4.88} \times 5.43} \times 100$$
$$= 16.8\%$$

$$\%C_2O_4 = \frac{1.62}{\frac{2.88}{4.88} \times 5.43} \times 100$$
$$= 50.5\%$$

$$%K = 100 - (10.4 + 16.8 + 50.5)$$

= 22.3 %

	K	Ni	C_2O_4	H ₂ O
%	22.3	16.8	50.5	10.4
(m in 100g)				
n	22.3	16.8	50.5	10.4
	39.1	58.69	88.02	18.016
	= 0.570mol	= 0.286mol	0.574mol	0.577mol
ratio	0.570	1	0.574	0.577
	0.286		0.286	0.286
	= 2		= 2	= 2

 $EF = K_2Ni(C_2O_4)_2.2.H_2O$

$$n(BaSO_4) = \frac{0.4671}{137.3 + 32.06 + 64.00}$$
$$= 2.00 \times 10^{-3} \text{ mol}$$
$$= n(S)$$

$$m(S) = (2.00 \times 10^{-3}) \times 32.06$$

= 6.42 x 10⁻² g

$$n(OH-) = 0.250 \times 0.024$$

= 6.00 x 10⁻³ mol

$$\begin{split} n(HC\ell) &= n(NaOH)\text{-}2n(H_2SO_4) \\ n(C\ell^{\text{-}}) &= n(OH^{\text{-}})\text{-}2n(S) \\ &= 6.00 \text{ x } 10^{\text{-}3} - 4.00 \text{ x } 10^{\text{-}3} \\ &= 2.00 \text{ x } 10^{\text{-}3} \text{ mol} \\ m(C\ell^{\text{-}}) &= 35.45 \text{ x } (2.00 \text{ x } 10^{\text{-}3}) \\ &= 0.0709 \text{ g} \end{split}$$

	S	Cℓ	0
%	6.42×10^{-2}	$\frac{0.0709}{100}$ x100	100 –(23.7+26.2)
(m in 100 g)	$\frac{6.42 \times 10^{-2}}{0.2702} \times 100$	$\frac{0.0703}{0.2702}$ x100	=50.1 %
	= 23.7%	= 26.2%	
n	23.7	_26.2	50.1
	32.06	35.45	16.00
	= 0.739 mol	= 0.739 mol	= 3.13 mol
ratio	1	1	3.13
			$\overline{0.739}$
			= 4.25
x4	4	4	17

 $EF = S_4 C \ell_4 O_{17}$