Physique nucléaire

$$m_0 = \frac{M}{N_A}$$
 m_0 : masse d'un atome en kg M : masse molaire en kg/mol N_A : nombre d'Avogadro $M = \frac{m \cdot N_A}{M}$ nombre d'atomes dans un échantillon de masse m

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}Y +_{-1}^{0}e + \overline{v}_{e}$$
 radioactivité β

$$_{Z}^{A}X \rightarrow_{Z^{-1}}^{A}Y +_{+1}^{0}\overset{-}{e} + \upsilon_{e}$$
 radioactivité β^{+}

$$_{Z}^{A}X^{*} \rightarrow _{Z}^{A}X + \gamma$$
 radioactivité γ

$$N = N \cdot e^{-\lambda \cdot t}$$
 loi de la décro

$$N=N_{_{0}}\cdot e^{-\lambda\cdot t}$$
 loi de la décroissance radioactive

$$= N_{0} \cdot e^{-\ln 2 \frac{t}{T_{1/2}}}$$

$$T_{\text{1/2}} \quad \text{: demi-vie ou p\'eriode radioactive en s}$$

$$A = -\frac{dN}{dt}$$
 activit\'e en Bq
$$= \lambda \cdot N$$

$$=A_{0}\cdot e^{-\lambda\cdot t}$$

$$E_{l}=\Delta m\cdot c^{2}$$
 énergie de liaison en J

$$\Delta m$$
 :défaut de masse en kg

$${\mathcal C}$$
 : vitesse de la lumière en m/s