Projeto e Análise de Algoritmos

Prof. Dr. Ednaldo B. Pizzolato

RELAÇÃO ESPAÇO X TEMPO E PROGRAMAÇÃO DINÂMICA

Agenda

- Parte A Relação Espaço x Tempo
 - Introdução
 - Algoritmo de ordenação
 - String matching
 - Algoritmo de Horspool
 - Algoritmo de Boyer-Moore (intro)
 - Hashing (intro)
 - B-Trees (intro)
- Parte B Programação Dinâmica

INTRODUÇÃO

- O principal conceito envolvido com esta técnica é a avaliação do que é mais crucial para o desenvolvimento do algoritmo: espaço ou tempo.
- Considere, por exemplo, uma situação em que calcular o resultado de uma função para diversos pontos é importante, mas ao mesmo tempo consome muito tempo. Se o tempo é importante, basta alocar mais espaço e armazenar os valores pré-calculados em uma tabela.

- Isso, na verdade, já foi muito empregado no passado com a elaboração de livros com valores pré-calculados de determinadas funções matemáticas.
- O conceito geral da técnica envolve préprocessamento/otimização de uma entrada de dados e armazenamento de informações extras (como resultado do processamento) de forma a obter uma aceleração na resolução do problema. Anany Levitin chama isso de <u>melhoramento de</u> <u>entrada de dados</u>.

- Dois tipos de algoritmos são estudados envolvendo este conceito:
 - Ordenação por contagem
 - Algoritmos de busca de palavras em textos

- Dois tipos de algoritmos são estudados envolvendo este conceito:
 - Ordenação por contagem
 - Algoritmo de Horspool (string matching)
 - Algoritmo de Boyer-Moore (string matching)

- Outro tipo de abordagem é o simples uso de espaço extra para facilitar o acesso rápido ou mais flexível aos dados. Anany Levitin chama isso de <u>pré-estruturação</u>.
- Esta estruturação (mais voltada para o acesso aos dados) pode ser notada em soluções envolvendo hashings e indexação com árvores B.

- Há ainda uma terceira forma de se utilizar a técnica de espaço por tempo associada a <u>programação</u> dinâmica.
- Como abordado no capítulo 8 do livro "Introduction to the Design and Analysis of Algorithms – 3rd edition", a programação dinâmica está associada a soluções de subproblemas que se inter-relacionam (overlap). A ideia é armazenar os resultados dos subproblemas em uma tabela e, a partir dela, obter a solução do problema geral.

ORDENAÇÃO POR CONTAGEM

Uma forma bem simples de se ordenar um vetor é contar quantos elementos são menores que um determinado valor sendo avaliado. Se, por exemplo, detectar-se que existem 10 elementos menores que ele, então ele será o 11º elemento do vetor. Basta, depois, copiar o elemento em um outro vetor, na posição correta (11 começar do 1 ou 10 se começar do 0). algoritmo é chamado Comparison-CountingSort.

ComparisonCountingSort(A[0n-1])	Α	Cont
para i ← 0 até n-1 faça	10	0
cont[i] ← 0	22	0
para i ← 0 até n-2 faça	31	0
para j ← i+1 até n-1 faça	4	0
se A[i] < A[j] então	16	0
cont[j] ← cont[j] + 1		
senão	9	0
cont[i] ← cont[i] + 1	27	0
para i ← 0 até n-1 faça	19	0
$S[cont[i]] \leftarrow A[i]$	15	0
retorna S		

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	0
cont[i] ← 0	j →	22	0
para i ← 0 até n-2 faça	-	31	0
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então cont[j] ← cont[j] + 1		16	0
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

```
ComparisonCountingSort(A[0..n-1])
                                                                                      Cont
  para i ← 0 até n-1 faça
                                                                       10
                                                                                        0
                                                            i \rightarrow
     cont[i] \leftarrow 0
                                                            j \rightarrow
                                                                       22
  para i ← 0 até n-2 faça
                                                                       31
                                                                                        0
     para j ← i+1 até n-1 faça
                                                                        4
        se A[i] < A[j] então
                                                                        16
                                                                                        0
          cont[j] \leftarrow cont[j] + 1
                                                                        9
        senão
                                                                       27
                                                                                        0
          cont[i] \leftarrow cont[i] + 1
  para i ← 0 até n-1 faça
                                                                       19
     S[cont[i]] \leftarrow A[i]
                                                                        15
                                                                                        0
   retorna S
```

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	0
cont[i] ← 0		22	1
para i ← 0 até n-2 faça	j→	31	0
para j ← i+1 até n-1 faça	-	4	0
se A[i] < A[j] então		16	0
cont[j] ← cont[j] + 1		9	
senão		_	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	0
cont[i] ← 0		22	1
para i ← 0 até n-2 faça	i→	31	1
para j ← i+1 até n-1 faça	,	4	0
se A[i] < A[j] então		16	
cont[j] ← cont[j] + 1			0
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	0
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça se A[i] < A[i] então	j →	4	0
cont[j] ← cont[j] + 1		16	0
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	1
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça se A[i] < A[j] então	j→	4	0
cont[j] ← cont[j] + 1		16	0
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	1
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça se A[i] < A[j] então		4	0
cont[j] ← cont[j] + 1	j →	16	0
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	1
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça se A[i] < A[j] então		4	0
cont[j] ← cont[j] + 1	j →	16	1
senão		9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	1
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1	: `		
senão	j →	9	0
cont[i] ← cont[i] + 1		27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1	i→	9	0
senão) /	27	0
cont[i] ← cont[i] + 1			
para i ← 0 até n-1 faça		19	0
S[cont[i]] ← A[i]		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1			
senão		9	0
cont[i] ← cont[i] + 1	j →	27	0
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então cont[j] ← cont[j] + 1		16	1
senão		9	0
cont[i] ← cont[i] + 1	j→	27	1
para i ← 0 até n-1 faça		19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1			
senão		9	0
cont[i] ← cont[i] + 1		27	1
para i ← 0 até n-1 faça	j →	19	0
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1			
senão		9	0
cont[i] ← cont[i] + 1		27	1
para i ← 0 até n-1 faça	j →	19	1
$S[cont[i]] \leftarrow A[i]$		15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i→	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então cont[j] ← cont[j] + 1		16	1
senão		9	0
cont[i] ← cont[i] + 1		27	1
para i ← 0 até n-1 faça		19	1
$S[cont[i]] \leftarrow A[i]$	j →	15	0
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont
para i ← 0 até n-1 faça	i →	10	2
cont[i] ← 0		22	1
para i ← 0 até n-2 faça		31	1
para j ← i+1 até n-1 faça		4	0
se A[i] < A[j] então		16	1
cont[j] ← cont[j] + 1		9	0
senão		9	U
cont[i] ← cont[i] + 1		27	1
para i ← 0 até n-1 faça		19	1
$S[cont[i]] \leftarrow A[i]$	j →	15	1
retorna S			

ComparisonCountingSort(A[0n-1])		Α	Cont	
para i ← 0 até n-1 faça	i→	10	2	
cont[i] ← 0		22	1	
para i ← 0 até n-2 faça		31	1	
para j ← i+1 até n-1 faça		4	0	
se A[i] < A[j] então			-	
cont[j] ← cont[j] + 1		16	1	
senão		9	0	
cont[i] ← cont[i] + 1		27	1	
para i ← 0 até n-1 faça		19	1	
$S[cont[i]] \leftarrow A[i]$	j →	15	1	
retorna S				

O que deu para descobrir até o momento?

```
ComparisonCountingSort(A[0..n-1])
                                              Eficiência?
  para i ← 0 até n-1 faça
    contador[i] ← 0
  para i ← 0 até n-2 faça
    para j ← i+1 até n-1 faça
      se A[i] < A[i] então
         contador[j] ← contador[j] + 1
      senão
         contador[i] ← contador[i] + 1
  para i ← 0 até n-1 faça
    S[contador[i]] \leftarrow A[i]
  retorna S
```

```
ComparisonCountingSort(A[0..n-1])
  para i ← 0 até n-1 faça
    contador[i] \leftarrow 0
  para i ← 0 até n-2 faça
    para j ← i+1 até n-1 faça
       se A[i] < A[i] então
         contador[j] ← contador[j] + 1
       senão
         contador[i] ← contador[i] + 1
  para i ← 0 até n-1 faça
    S[contador[i]] \leftarrow A[i]
  retorna S
```

Eficiência?

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1]$$
$$= \sum_{i=0}^{n-2} (n-1+i) = \frac{n(n-1)}{2}$$

- Em resumo, o algoritmo faz o mesmo número de comparações que o algoritmo de seleção (SelectionSort) e, além disso, usa espaço extra.
- Por outro lado, o algoritmo faz as atribuições de forma cirúrgica.
- Uma variação deste algoritmo é o Distribution Counting (ver animação no ambiente virtual).

OTIMIZAÇÃO DE ENTRADA DE DADOS

Otimização de entrada de dados

Para ilustrar a utilidade da otimização (ou melhoramento) da entrada de dados, será utilizado o problema de <u>string matching</u>, ou seja, encontrar uma sequência (padrão) de m caracteres em um texto de n caracteres.

Considerando o algoritmo de força bruta que compara os caracteres da sequência buscada com os do texto um a um, teríamos, no pior caso, um algoritmo pertencente à classe O(n.m). No caso médio, com textos em linguagem natural, espera-se que o algoritmo pertença à classe O(n+m).

Otimização de entrada de dados

Só para ilustrar, vamos considerar o exemplo de busca por um padrão em uma sequência genética.

Uma sequência de DNA ou sequência genética é uma série de letras representando a <u>estrutura</u> <u>primária</u> de uma <u>molécula</u> ou cadeia de <u>DNA</u>, real ou hipotética, com a capacidade de carregar informações.

As letras possíveis são A, C, G e T, representando os quatro <u>nucleotídeos</u> (subunidades) de uma cadeia de DNA – as bases <u>adenina</u>, <u>citosina</u>, <u>guanina</u> e <u>timina</u>.

CGTAAACGGGTATTG

Deseja-se buscar a sequência G T A T

CGTAAACGGGTATTG

CGTAAACGGGTATTG

G T A T

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

CGTAAACGGGTATTG

G T A T

CGTAAACGGGTATTG

G T A T

Diversos algoritmos mais eficientes que os de força bruta foram descobertos para resolver tal problema. A maioria utiliza a técnica de melhoramento da entrada de dados:

- Pre-processar o padrão para se obter uma informação rele-vante;
- 2. Armazenar a informação em uma tabela;
- 3. Utilizar tal informação durante a busca pelo padrão em um texto.

Esta é a ideia de alguns algoritmos como os conhecidos: Horspool, Boyer-Moore e Knuth-Morris-Pratt (KMP)

Algoritmo de Horspool

Considere a busca do padrão BARBER em um texto:

$$s_0, \dots \quad c \quad \dots \quad s_{n-1}$$
BARBER

Começando com o último R do padrão e movendo da direita para a esquerda, são comparados pares de caracteres do padrão e do texto.

Se todos os caracteres do padrão combinarem, uma cadeia foi encontrada.

- Se ocorrer uma combinação mal sucedida, deve-se deslocar o padrão o máximo possível sem correr o risco de perder uma cadeia coincidente.
- A questão é identificar o máximo possível de tal forma que o risco de perder uma cadeia não exista.
- O algoritmo de Horspool determina o tamanho do deslocamento olhando para o caractere c do texto que foi alinhado com o último caractere padrão.

- Caso 1: Se não há c no padrão, pode-se deslocar o padrão pelo seu comprimento total.
- Caso 2: Caso existam ocorrências do caractere c no padrão, mas não é o último, o deslocamento deve alinhar a ocorrência mais a direita do padrão com o c do texto.
- Caso 3: Se acontecer de c ser o último caractere no padrão e não existirem outros c's dentre os m-1 outros caracteres, o deslocamento deve ser similar ao caso 1.
- Caso 4: Pode acontecer de c ser o último caractere no padrão e também existirem outros c's dentre os m-1 outros caracteres. Neste caso, o deslocamento deve ser similar ao caso 2.

- Estes exemplos demonstram que são possíveis deslocamentos maiores que 1 posição (como os feitos pelo algoritmo de força bruta).
- Entretanto, se o algoritmo tiver que verificar todos os caracteres do padrão a cada deslocamento, ele perderá sua eficiência.
- É aí que entra a ideia de melhoramento da entrada de dados para evitar comparações repetitivas desnecessárias.

- Pode-se pre-calcular tamanhos de deslocamentos e armazena-los em uma tabela.
- A tabela será indexada por todos os caracteres possíveis que possam ser encontrados em um texto, incluindo pontuação, espaço e outros símbolos especiais.
- A tabela será preenchida com tamanho de deslocamentos.

Para cada caractere c podemos calcular o valor do deslocamento pela fórmula:

Se c não estiver dentre os m-1 primeiros caracteres do padrão, então

t(c) = comprimento m do padrão

Caso contrário

t(c) = distância do c mais a direita dentre os m-1 caracteres do padrão e seu último caractere

Por exemplo, para o padrão BARBER, todas as entradas da tabela serão iguais a 6, exceto as entradas correspondentes a A, B, E e R que serão 4, 2, 1 e 3 respectivamente.

Algoritmo ShiftTable(
$$P[0..m-1]$$
)

for $i \leftarrow 0$ até $TAM-1$ faça

tabela[i] $\leftarrow m$

for $j \leftarrow 0$ até $m-2$ faça

tabela[$P[j$]] $\leftarrow m-1-j$

Retorna tabela

Onde TAM indica o número máximo de caracteres do alfabeto em questão.

Letra	Desloca
А	4
В	2
С	6
D	6
Е	1
F	6
G	6
Н	6
1	6
***	6
R	3
	6

BARBER

- Passo 1: Para um dado padrão de comprimento m e o alfabeto usado tanto no padrão como no texto, construir a tabela de deslocamentos;
- Passo 2: Alinhar o padrão como começo do texto;
- Passo 3: Repetir até encontrar uma substring coincidente ou o padrão atingir o último caractere do texto.

Passo 3 (continuação):

- Começando pelo último caractere do padrão, comparar os caracteres correspondentes no padrão e no texto até que todos os m caracteres coincidam ou até que ocorra uma combinação mal sucedida;
- No caso de combinação mal sucedida, ler a entrada t(c) da coluna c da tabela de deslocamentos, onde c é o caractere do texto sendo alinhado com o último caractere do padrão;
- Deslocar o padrão t(c) caracteres a direita.

```
HorspoolMatching(P[0..m-1], T[0..n-1])
  ShiftTable(P[0..m-1]) // cria a tabela de deslocamentos
  i \leftarrow m-1
               // POSIÇÃO DO ÚLTIMO CARACTERE DO PADRÃO
  enquanto i ≤ n -1 faça // ENQUANTO NÃO SE ATINGIR FIM DO TEXTO
                              // NÚMERO DE CARACTERES IDÊNTICOS
     k \leftarrow 0
     enquanto k \le m - 1 E P[m-1-k] = T[i-k] faça
          k \leftarrow k + 1
     se k = m então retorna i - m + 1 // ACHOU !!!
     senão i ← i + Tabela[T[i]] // AQUI OCORRE O DESLOCAMENTO
 retorna -1
```

letra	Α	В	C	D	Е		R		Z	-	
Shift	4	2	6	6	1	6	3	6	6	6	6


```
i \leftarrow m-1 // NOSSO CASO I \leftarrow 5

k \leftarrow 0 // NÚMERO DE CARACTERES IDÊNTICOS

enquanto k \le m-1 E P[m-1-k] = T[i-k] faça

k \leftarrow k+1

se k = m então retorna i-m+1

senão i \leftarrow i + Tabela[T[i]]
```

letra	A	В	С	D	Е		R		Z	-	
Shift	4	2	6	6	1	6	3	6	6	6	6


```
i \leftarrow m-1 // NOSSO CASO I \leftarrow 5

k \leftarrow 0 // NÚMERO DE CARACTERES IDÊNTICOS

enquanto k \le m-1 E P[m-1-k] = T[i-k] faça

k \leftarrow k+1

se k = m então retorna i-m+1

senão i \leftarrow i + Tabela[T[i]]
```

letra	A	В	С	D	Е		R		Z	-	
Shift	4	2	6	6	1	6	3	6	6	6	6


```
i \leftarrow m-1 // NOSSO CASO I \leftarrow 5

k \leftarrow 0 // NÚMERO DE CARACTERES IDÊNTICOS

enquanto k \le m-1 E P[m-1-k] = T[i-k] faça

k \leftarrow k+1

se k = m então retorna i - m+1

senão i \leftarrow i + Tabela[T[i]]
```

letra	Α	В	С	D	Е		R		Z	-	
Shift	4	2	6	6	1	6	3	6	6	6	6


```
i \leftarrow m-1 // NOSSO CASO I \leftarrow 5

k \leftarrow 0 // NÚMERO DE CARACTERES IDÊNTICOS

enquanto k \le m-1 E P[m-1-k] = T[i-k] faça

k \leftarrow k+1

se k = m então retorna i - m+1

senão i \leftarrow i + Tabela[T[i]]
```

Algoritmo de Horspool - exemplo

Buscar a palavra BARBER em um texto:

letra	A	В	C	D	Е		R		Z	-	
Shift	4	2	6	6	1	6	3	6	6	6	6

Algoritmo de Horspool

- A eficiência no pior caso é O(n.m)
- Para textos aleatórios, a eficiência é Θ(n)
- Na média, o algoritmo é mais rápido que o de força bruta.

Otimização de entrada de dados

Algoritmo Boyer-Moore

Se a comparação do caractere mais a direita do padrão com o caractere correspondente c no texto falhar, o algoritmo faz a mesma coisa que o algoritmo Horspool, ou seja, desloca o padrão a direita pelo número de caracteres pre-calculados (armazenados na tabela).

Se houver um número k (k > 0 e k < m) de comparações bem sucedidas, aí é que aparece a diferença entre os algoritmos.

Otimização de entrada de dados

- Nesta situação, o algoritmo B-M determina o tamanho do deslocamento considerando duas quantidades:
 - Deslocamento pelo símbolo incorreto (bad-symbol shift);
 - Deslocamento pelo bom sufixo (good-suffix shift)

PRE-ESTRUTURAÇÃO

- A técnica Hashing baseia-se na ideia de distribuir chaves entre um arranjo unidimensional H[0... M-1] chamado de tabela hash.
- A distribuição é feita calculando-se para cada uma das chaves o valor de alguma função prédefinida h, chamada de função hash.
- Esta função atribui um inteiro entre 0 e m-1, chamado de endereço hash para uma chave.

Por exemplo, se as chaves forem inteiros não negativos, uma função hash pode ser da forma:

$$h(K) = K \mod m$$

Se as chaves forem letras do alfabeto, podemos inicialmente atribuir a uma letra sua posição no alfabeto indicado por ord(K) e aplicar a mesma função hash.

- Alguém pode perguntar como teríamos que proceder se as chaves fossem cadeias de caracteres (strings).
- Para strings de tamanho s, poder-se-ia utilizar, por exemplo, a fórmula a seguir:

$$\left(\sum_{i=0}^{s-1} ord(c_i)\right) \bmod m$$

- Uma função Hash deve satisfazer dois requisitos:
 - Deve distribuir as chaves entre as células da tabela de uma maneira tão justa quanto possível;
 - Uma função hash deve ser fácil de calcular

Se escolhermos uma tabela hash de tamanho m (m menor que o número de chaves – n), existirão colisões.

- Como colisões podem ocorrer, é necessário que existam mecanismos que resolvam tal problema.
- Em hashing temos o open hashing e o closed hashing.

Árvores B

- A ideia de utilizar espaço extra para facilitar rápido acesso a uma determinada informação é particularmente importante quando se trata de uma quantidade muito grande de dados.
- Os índices fornecem informações sobre a localização dos registros segundo uma chave de acesso.
- Claro que podem existir várias chaves de acesso e, portanto, vários índices.

Árvores B

 Uma das formas de se organizar um índice é através de árvores B.

Árvores B

- Uma árvore B de ordem m ≥ 2 deve satisfazer as seguintes propriedades estruturais:
 - A raiz ou é uma folha ou tem entre 2 e m filhos;
 - Cada nó, exceto a raiz e as folhas tem entre teto(m/2) e m filhos (e, portanto, entre teto(m/2)-1 e m-1 chaves);
 - A árvore é perfeitamente balanceada, ou seja, suas folhas estão todas no mesmo nível.

RESUMO

Resumo

- O uso de espaço extra para "ganhar tempo" ou de tempo extra para "economizar espaço" é um conceito amplamente conhecido e estudado por cientistas teóricos e práticos.
- O mais comum é o uso de espaço extra para "ganhar tempo" de execução/processamento.
- Dentro das variedades da técnica, a de otimização de entrada é a que objetiva préprocessar os dados de entrada de forma a acelerar o algoritmo posteriormente.

Resumo

- Os algoritmos de Horspool e de Boyer-Moore são exemplos de melhoramento da entrada de dados com o objetivo de obter melhor desempenho (tempo) do algoritmo.
- Pré-estruturação é outra variação da técnica que explora a troca de espaço por tempo que explora o conceito de uso de memória extra para melhoria do desempenho (tempo). Hashing e árvores B+ são 2 importantes exemplos.

Resumo

- Por fim duas considerações importantes:
 - Nem sempre é necessário "sacrificar" memória para se obter melhor desempenho. Vários algoritmos podem ser desenvolvidos com uso eficiente de memória e ao mesmo tempo conseguem apresentar desempenhos elevados;
 - A técnica desconsidera o uso de técnicas de compressão de dados. Seria possível combinar técnicas – em algumas situações – para se obter algoritmos eficientes tanto do ponto de vista de espaço como de tempo.

THE END