Analysis 3. Februar 2010

Phasendiagramme

Michael Kopp

Anhand der Differentialgleichung

$$x'' + ax' + bx = 0 \tag{1}$$

mit konstanten a und b sollen hier ein paar Phasendiagramme gezeichnet (und verstanden) werden. Dazu bringt man die Matrix durch die Substitutionen

$$x \mapsto x_1 \text{ und } x' \mapsto x_2$$
 (2)

auf Matrixform, indem man $\vec{x} = (x_1, x_2)^T$ setzt:

$$\vec{x'} = \mathbf{A} \cdot \vec{x} \text{ mit } \mathbf{A} = \begin{pmatrix} 0 & 1 \\ -b & -a \end{pmatrix} .$$
 (3)

Um diese DGL zu lösen, bestimmt man die Nullstellen des Characteristischen Polynoms¹ $\chi(\lambda) = \det(\mathbf{A} - \lambda \mathbf{E})$; es ergibt sich mit der Mitternachtsformel:

$$\lambda = \frac{-a \pm \sqrt{a^2 - 4b^2}}{2} \,. \tag{4}$$

Wir haben also drei Große Fälle zu unterscheiden: Die Diskriminante² ist positiv, verschwindet oder ist negativ. Für jeden dieser Fälle gibt es noch weitere "Unterfälle".

Wichtig für uns ist noch eine allgemeine Lösung der DGL (3): Hat man Eigenvektoren \vec{v}_1 und \vec{v}_2 zu den **zwei Eigenwerte**n λ_1 und λ_2 gefunden, so ist die Lösung:

$$\vec{x} = \vec{x}(t) = A \cdot \exp(\lambda_2 \cdot t) \cdot \vec{v}_2 + B \cdot \exp(\lambda_2 \cdot t) \cdot \vec{v}_2 , \qquad (5)$$

wobei A und B konstanten sind, die durch die Anfangsbedingungen gewählt werden müssen. Diese Konstanten A und B sind dann die einzigen Größen der Lösung, die wir bei den einzelnen Kurven variieren dürfen.

Haben wir jedoch nur einen Eigenwert λ , dann müssen wir neben dem Eigenvektor noch einen Hauptvektor \vec{w} suchen; dieser muss aus Kern($\mathbf{A} - \lambda \mathbf{E}$)² kommen und muss linear unabhängig zu Kern($\mathbf{A} - \lambda \mathbf{E}$) sein.

 $^{^{1}\}mathbf{E}$ ist die Einheitsmatrix

 $^{^2 \}mathrm{der}$ Wurzelterm bei λ

Anschließend (wenn man \vec{w} fest gewählt hat) erhält man aus \vec{w} einen Eigenvektor \vec{v} , indem man $(\mathbf{A} - \lambda \mathbf{E}) \cdot \vec{w} = \vec{v}$ rechnet. Die Lösung erhält man dann als

$$\vec{x} = \vec{x}(t) = A \cdot \exp(\lambda \cdot t) \cdot \vec{v} + B \cdot \exp(\lambda \cdot t) \cdot (\vec{w} + t \cdot \vec{v}) . \tag{6}$$

Wenn man nun **zwei** komplexe **Eigenwerte** erhält, so wird stets gelten, dass³ $\bar{\lambda}_1 = \lambda_2$. Entsprechend auch für die beiden Eigenvektoren $\overline{\vec{v}_1} = \vec{v}_2$. Eine Lösung erhält man hier mit $\phi(t) = \Gamma \cdot \exp(\lambda_1 \cdot t) \cdot \vec{v}_1$, wobei Γ eine komplexe Konstante ist. Die Lösungen für das System sind nun Real- und Imaginärteil von ϕ linearkombiniert:

$$\vec{x} = \vec{x}(t) = A \cdot \Re \phi + B \cdot \Im \phi . \tag{7}$$

Wir wollen nun die einzelnen Fälle untersuchen.

1. Positive Diskriminante $(a^2 > 4b)$; wir erhalten stets zwei reelle Eigenwerte⁴;

(a)
$$b > 0$$
: $\lambda_1 \neq \lambda_2$
Beispiel $(b = 2, a = -5)$: $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$; Eigenwerte: $-\frac{\sqrt{17}-5}{2}, \frac{\sqrt{17}+5}{2}$, Eigenvektoren: $[1, -\frac{\sqrt{17}-5}{2}], [1, \frac{\sqrt{17}+5}{2}]$ – die Lösung hat dann die Gestalt

$$A \cdot \exp\left(-\frac{\sqrt{17} - 5}{2} \cdot t\right) \cdot [1, -\frac{\sqrt{17} - 5}{2}] + B \cdot \exp\left(\frac{\sqrt{17} + 5}{2} \cdot t\right) \cdot [1, \frac{\sqrt{17} + 5}{2}]$$

 $^{^3\}bar{\xi}$ bezeichnet komplexe Konjugation von ξ

⁴Damit erhalten wir auch stets zwei Eigenvektoren!

Hier sieht man:⁵ Die Lösungskurven schmiegen sich für negative t an die Gerade mit $A=1,\,B=0$ an; dies ist die Kurve für den ersten Eigenvektor. Das ist einfach zu erklären; schließlich ist das Argument exp bei diesem Vektor negativ – für negative t ist dieser exp also sehr groß. Das Argument des anderen exp ist dagegen positiv; für (stark) negative t verschwindet dieser exp also. Für negative t ist der Anteil des zweiten Eigenvektors an der Lösung nur klein – die Lösung schmiegt sich an den anderen Vektor. Für große t sieht man nun genau das gegensätzliche Verhalten: Die Kurve wird parallel zum zweiten Eigenvektor.

(b)
$$b=0$$
: $\lambda_1=0$, $\lambda_2<0$
Beispiel $(a=1)$: $\mathbf{A}=\begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, Eigenwerte; 0 und 1, Eigenvektoren: $[1,0]$ und $[1,1]$. Die Lösung ist dann:

$$A\cdot [1,0] + B\cdot \exp(t)\cdot [1,1]$$

 $^{^5\}mathrm{Die}$ Bezeichnungen der Diagramme: In der Legende sind in den Klammern zuerst A, dann Bangegeben

Hier ist die "Kurve" für A = 1 nur ein Punkt: (1,0). Der Verlauf sonst ist recht langweilig: Der Faktor A versetzt die jeweiligen Kurven lediglich in x-Richtung...

(c)
$$b < 0, a \neq 0$$
: $\lambda_1 > 0, \lambda_2 < 0$

Beispiel
$$(b=-2, a=4)$$
: $\mathbf{A}=\begin{pmatrix} 0 & 1 \\ 2 & -4 \end{pmatrix}$, Eigenwerte: $-\sqrt{6}-2$ und $\sqrt{6}-2$, Eigenvektoren: $[1,-\sqrt{6}-2],[1,\sqrt{6}-2]$. Die Lösung ist dann:

$$A \cdot \exp((-\sqrt{6}-2)\cdot t)\cdot [1, -\sqrt{6}-2] + B \cdot \exp((\sqrt{6}-2)\cdot t)\cdot [1, \sqrt{6}-2]$$
.

Hier sieht man erstmals die Eigenvektoren in einem anderen Winkel. Interessant ist hier, dass die Lösungskurven von außen (also aus der Richtung des Vektors von $A=1,\,B=0$ herkommen (also aus Richtung des ersten Eigenvektors) und für größere t sich an den zweiten Eigenvektor anschmiegen. Dies ist wieder der Verlauf, den wir erwarten, wenn wir eine analoge Diskussion über die Vorzeichen des Arguments der exp führen wie oben.

(d)
$$b < 0$$
, $a = 0$: $\lambda_{1,2} = \pm \sqrt{|b|}$
Beispiel $(b = -2)$: $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$; Eigenwerte (wie erwartet): $-\sqrt{2}$
und $\sqrt{2}$; Eigenvektoren $[1, -\sqrt{2}]$ und $[1, \sqrt{2}]$. Die Lösung ist:
$$A \cdot \exp(-\sqrt{2} \cdot t) \cdot [1, -\sqrt{2}] + B \cdot \exp(\sqrt{2} \cdot t) \cdot [1, \sqrt{2}] .$$

Dieses Bild haben wir erwartet ...

- 2. Verschwindende Diskriminante $(a^2 = 4b)$; es folgt sofort, da $a^2 \ge 0$, dass auch $b \ge 0$ ist. In Gl (4) sieht man sofort: Wir finden stets nur zwei gleiche Eigenwerte (beide sind reell).
 - (a) a = b = 0: $\lambda_1 = \lambda_2 = 0$. "Beispiel": $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$; Eigenwerte beide 0 (s.o.), Nur ein Eigenvektor: [1,0]. Es ist $(\mathbf{A} - \lambda \mathbf{E}) = \mathbf{A}$ und ebenso $(\mathbf{A} - \lambda \mathbf{E})^2 = \mathbf{A}^2 = \mathbf{0}$. Der Kern von $(\mathbf{A} - \lambda \mathbf{E})^2$ ist also \mathbb{R}^2 . Wir müssen jedoch als Hauptvektor einen Vektor l.u. zu Kern $(\mathbf{A} - \lambda \mathbf{E}) = \langle (1,0)^T \rangle$ finden – also am einfachsten $(0,1)^T = [0,1]$. Wenden wir dies auf $(\mathbf{A} - \lambda \mathbf{E})$ an, erhalten wir [1,0], also den gewünschten Eigenvektor. Die Lösung ist (vgl (6) mit $\exp(0) = 1$):

$$A \cdot [1,0] + B \cdot ([0,1] + t \cdot [1,0])$$
.

Hier ist die Linie für A=1 und B=0 wieder nur ein Punkt (1,0). Sonst ist das Schaubild erwartungsgemäß wenig interessant: Variationen in A verschieben die Linien lediglich in x-Richtung und Variationen in B strecken die Linien weiter in y-Richtung.

(b)
$$a = 2\sqrt{b}$$
: $\lambda_1, \lambda_2 < 0$

Beispiel (b = 9, a = 6): $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -9 & -6 \end{pmatrix}$; Eigenwert: -3. Bestimme Hauptvektor: $(\mathbf{A} - \lambda \mathbf{E}) = \begin{pmatrix} 3 & 1 \\ -9 & -3 \end{pmatrix}$, $(\mathbf{A} - \lambda \mathbf{E})^2 = \mathbf{0}$, also ist Kern $(\mathbf{A} - \lambda \mathbf{E}) = \mathbb{R}^2$. Der Eigenvektor von \mathbf{A} ist [1, -3], ein Vektor der dazu l.u. ist, ist bspw. [1, 0]. Daraus ergibt sich der für uns interessante Eigenvektor $(\mathbf{A} - \lambda \mathbf{E}) \cdot (1, 0)^T = [3, -9]$. Wie gewünscht (bzw. zu erwarten) ist er proportional zu dem gefundenen. Wir haben also als Lösung:

$$A \cdot \exp(-3 \cdot t) \cdot [3, -9] + B \cdot \exp(-3 \cdot t) \cdot ([1, 0] + t \cdot [3, -9])$$
.

Auch diese Lösungen können wir gut verstehen: Die eleganten Schleifen nach rechts unten kommen von dem " $t \cdot [3, -9]$ "-Term: Dieser lenkt die Kurve nach rechts unten ab. Da er aber nur linear ist, ist er der e-Funktion gnadenlos unterlegen, die für stark positive t als "Einhüllende" verschwindet und dabei die Lösungskurve zum Ursprung zieht. Für stark negative Terme "berwiegt der exp·t-Anteil der Lösung: der Vektor $t \cdot [3, -9]$ zeigt nach links oben und wir durch den exp-Teil noch weiter verstärkt – der Vektor [3, -9] zeigt eigentlich nach rechts unten, wird aber von ersterem überwogen, weil hier eine große Zahl (stark negativ) (t) mit dem großen exp multipliziert wird.

Hier ist einmal ein "Zeitverlauf" dargestellt; von links nach rechts wächst t von -1.5 bist 1.5:

(c)
$$a = -2\sqrt{b}$$
: $\lambda_1, \lambda_2 > 0$

Beispiel
$$(b = 9, a = -6)$$
: $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -9 & 6 \end{pmatrix}$; Eigenwert: 3. Bestim-

me Hauptvektor: $(\mathbf{A} - \lambda \mathbf{E}) = \begin{pmatrix} -3 & 1 \\ -9 & 3 \end{pmatrix}$, $(\mathbf{A} - \lambda \mathbf{E})^2 = \mathbf{0}$, also ist Kern $(\mathbf{A} - \lambda \mathbf{E}) = \mathbb{R}^2$. Der Eigenvektor von \mathbf{A} ist [1,3], ein Vektor der dazu l.u. ist, ist bspw. [1,0]. Daraus ergibt sich der für uns interessante Eigenvektor $(\mathbf{A} - \lambda \mathbf{E}) \cdot (1,0)^T = [-3,-9]$. Wie gewünscht (bzw. zu erwarten) ist er proportional zu dem gefundenen. Wir haben also als Lösung:

$$A \cdot \exp(3 \cdot t) \cdot [-3, -9] + B \cdot \exp(3 \cdot t) \cdot ([1, 0] + t \cdot [-3, -9])$$
.

Für negaitve t drängen die exp-Terme die Lösungskurve wieder zum Ursprung, sonst sieht man für stark positive t, wie der Vektor [-3, -9] nach links unten hin klar überwiegt.

3. Negative Diskriminante $(a^2 < 4b)$; es ergeben sich zwei Eigenwerte in \mathbb{C} , welche zueinander komplex konjugiert sind⁶. (Es ist außerdem wieder $b \geq 0$, weil $a^2 \geq 0$ ist.)

(a)
$$a > 0$$
: $\Re \lambda < 0$

⁶Das kommt daher, dass der Imaginärteil der Eigenwerte einzig von dem Wurzelterm aus Gl. (4) stammt – und dieser ist nun mal mit "±" versehen, was genau die komplexe Konjugation ausmacht.

Beispiel (a=2, b=5): $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -5 & -2 \end{pmatrix}$; Eigenwerte: $-1 \pm \mathrm{i}\ 2$ (wie erwartet komplex konjugiert); Eigenvektoren: $[1, -1 \pm \mathrm{i}\ 2]$. Nach den Überlegungen bei (7) ist mit

$$\phi = \Gamma \cdot \exp((-1 + i \ 2) \cdot t) \cdot [1, -1 + i \ 2]$$

die Lösung:

$$A \cdot \exp(-t) \cdot [\cos(2t), -\cos(2t) - 2\sin(2t)] + B \cdot \exp(-t) \cdot [\sin(2t), -\sin(2t) + 2\cos(2t)].$$

Die Spiralform ergibt sich hier aus dem Vektorteil – auch wenn man den exp-Teil weglassen würde, würden sich trotzdem Spiralen bilden...

(b)
$$a=0$$
: $\Re\lambda=0$, $\Im\lambda=\pm\sqrt{b}$.
Beispiel $(b=4)$: $\mathbf{A}=\begin{pmatrix}0&1\\-4&0\end{pmatrix}$; Eigenwerte (wie erwartet): ± 2 i, Eigenvektoren $[1,\pm 2$ i]. Mit $\phi=\Gamma\cdot\exp(2$ i $\cdot t$) \cdot $[1,2$ i] ist die Lösung:

$$A \cdot [\cos(2t), -2\sin(2t)] + B \cdot [\sin(2t), 2\cos(2t)]$$
.

Diesen Verlauf konnte man sich wieder denken, weil der Vektor einen Kreis parametrisiert, bis auf die "2" im y-Teil – dadurch wird der Kreis verdellt. A und B gehen gleichermaßen in den Radius der Ellipse ein, weswegen die Formen auch symmetrisch unter Vertauschung von A und B sind.

Bemerkung: Dies ist das Phasendiagramm eines $harmonischen\ Oszillators!$

(c)
$$a < 0, b \neq 0$$
: ⁷ $\Re \lambda > 0$.

Beispiel
$$(a=-2,\ b=3)$$
: $\mathbf{A}=\begin{pmatrix} 0 & 1 \\ -3 & 2 \end{pmatrix}$; Eigenwerte: $1\pm\mathrm{i}\ \sqrt{2},$

Eigenvektoren: [1, 1 ± i $\sqrt{2}$]. Mit $\phi = \Gamma \cdot \exp((1+i\sqrt{2}) \cdot t) \cdot [1, 1+i\sqrt{2}]$ folgt als Lösung:

$$A \cdot \exp(t) \cdot [\cos(2\,t), \cos(2\,t) - 2\sin(2\,t)] + B \cdot \exp(t) \cdot [\sin(2\,t), \sin(2\,t) + 2\cos(2\,t)] \ .$$

 $^{^7\}mathrm{Den}$ Fall $a<0,\,b=0$ müssen wir nicht untersuchen, weil aus a<0 folgt, dass $a^2>0$ und damit b>0.

Für stark negative t sieht man hier wieder, wie die exp-Terme die Lösungen zum Ursprung drücken, sonst sieht man eigentlich nur die Analogie vorvorigen Fall.

Die hier betrachteten Diagramme kann man sich als **Phasenraumtrajektorien** physikalischer Systeme vorstellen: Nach der Substitution in (2) kann man x_1 als eindimensionalen Ort des Teilchens und x_2 als Geschwindigkeit des Teilchens Interpretieren. Der Paramter t gibt dann die Zeitentwicklung an. Wenn die Kurven sich dem Ursprung nähren, so kann man dies also interpretieren, als würde das System bei x = 0 zur Ruhe (x' = 0) kommen.