E-B Toolbox Classes

1. Domain Class

Class representing the domains in the computational model. Stores the Medium object.

Property	Description
Index	Domain Index
Dim	2 (2D Domain), (3D Domain)
Medium	Medium Object
Elements	Vector of Element Indices in Domain
Vertices	Vector of Vertex Indices in Domain
ExternalBoundaries	Vector of Boundary Indices on the exterior of the Domain
InternalBoundaries	Vector of Boundary Indices on the interior of the Domain
IsEmpty	(true/false) ~ Domain's elements not considered in the
	assembly process.

2. Boundary

Class representing the geometric boundaries of the computational domain, as well as the corresponding boundary conditions.

Property	Description
Index	Domain Index
Dim	❖ 1-Line Boundary
	2 - Surface Boundary
Axis	❖ +\-1 - x Axis normal to the Boundary
	❖ 1.5 - x Axis normal to the Boundary, Boundary
	Internal
	♦ +\-2 - y Axis normal to the Boundary
	• - y Axis normal to the Boundary, Boundary Internal
	❖ +\-3 - z Axis normal to the Boundary
	❖ 3.5 - z Axis normal to the Boundary, Boundary
	Internal
	❖ 4 - not a plane boundary
Position	❖ x Coordinate if Boundary.Axis == +\-1,1.5
	❖ y Coordinate if Boundary.Axis ==+\- 2,2.5
	❖ z Coordinate if Boundary.Axis == +\-3,3.5

Lines	Discrete Geometry Edges (indices) attached to Boundary	
T	(applicable for Surface Boundaries)	
Faces	Discrete Geometry Faces (indices) attached to Boundary (applicable for Line Boundaries)	
Exterior	true\false - Boundary is on the exterior of the computational domain.	
Vertices	Vector of Vertex Indices on Boundary	
Edges	Vector of Edge Indices on Boundary	
Facets	Vector of Facet Indices on Boundary	
Type	 * "PEC" - Perfect Electric Conductor * "PMC" - Perfect Magnetic Conductor * "DIR" - Dirichlet Boundary Condition (Excitation) * "POR" - Port Boundary Condition (Excitation) * "GRA" - Graphene * "IBC" - Impedance Boundary Condition * "PBC" - Periodic Boundary Condition * "ABB" - Absorbing Boundary Condition with propagation constant (β) as parameter * "ABZ" - Absorbing Boundary Condition with wave impedance (Z) as parameter (Port without Excitation) * "CON" - Continuity * "ABC" - Absorbing Boundary Condition 	
Param	 * "ABB" - propagation constant b * "ABZ" - wave impedance Z * "GRA" - graphene conductivity * "IBC" - conductivity * "POR" - wave impedance\propagation constant * "PBC" - periodic Boundary Pair 	
Dispersive	true\false (dispersive Boundary Parameter)	
Master	true\false (PBC Boundary)	
Tensor	true\false (Applicable for ABZ and Port boundaries - wave impedance is tensorial)	
Id	 Vertex,Edge,Facet Id \$ 0\1 (Uknown Degree of freedom, Known Degree of freedom) \$ 2 (PEC Id for EH 2D Formulations) \$ 3 (PMC Id for EH 2D Formulations) 	

ExcitationIndex	If Boundary Port\Dirichlet index to the TModel.Excitations vector.
PortParamType	 O Param == beta 1 Param == Wave Impedance scalar 2 Param == Wave Impedance Tensor
PortType	0- 2D Modal Excitation1- Plane Wave Excitation
PlaneWave	[Ex Amplitude; Ey Amplitude; Ez Amplitude]

3. Medium

Class representing the electromagnetic media in the computational domain.

Property	Description
Type	* "Iso" – Isotropic Medium
	"Anis" – Anisotropic Medium
	❖ "Bian" – Bianisotropic Medium
IsDispersive	true\false
Frange	❖ IsDispersive == false - null
	❖ IsDispersive == true - Frequency Range vector in Hz.
Epsilon	Relative Dielectric Permittivity ε_r
	❖ (IsDispersive == false && Type == "Iso") - scalar
	❖ (IsDispersive == false && (Type =="Anis"
	Type = = "Bian") - (3x3) matrix
	❖ (IsDispersive == true && Type =="Iso")
	(numel(FRange)x1) vector
	❖ (IsDispersive == true && (Type =="Anis"
	Type=="Bian") - ((numel(FRange)x1) cell with 3x3
	matrix entries.
Mu	Relative Magnetic Permeability μ _r
	❖ (IsDispersive == false && Type == "Iso") - scalar
	❖ (IsDispersive == false && (Type =="Anis"
	Type = = "Bian") - (3x3) matrix
	❖ (IsDispersive == true && Type =="Iso")
	(numel(FRange)x1) vector
	❖ (IsDispersive == true && (Type =="Anis"
	Type=="Bian") - ((numel(FRange)x1) cell with 3x3
	matrix entries.

Ksi	 Magneto Electric Coupling parameter ξ ❖ (IsDispersive == false && Type=="Bian") - (3x3) matrix ❖ (IsDispersive == true && Type=="Bian") - ((numel(FRange)x1) cell with 3x3 matrix entries.
Zita	Magneto Electric Coupling parameter ζ (IsDispersive == false && Type=="Bian") – (3x3) matrix (IsDispersive == true && Type=="Bian") – ((numel(FRange)x1) cell with 3x3 matrix entries.
Tag	(Optional) Material Name
WaveImpedance	Medium Wave Impedance (IsDispersive == false && Type == "Iso") - scalar (IsDispersive == false && (Type =="Anis" Type=="Bian") - (3x3) matrix (IsDispersive == true && Type =="Iso") (numel(FRange)x1) vector (IsDispersive == true && (Type =="Anis" Type=="Bian") - ((numel(FRange)x1) cell with 3x3 matrix entries.

4. Element

Class representing the tetrahedral Finite Elements.

Properties	Description
Index	Index of element
SubDomain	Index of Domain containing the element
Vertices	(4x1) Vector of element vertex indices
Edges	(6x1) Vector of element edge indices
Facets	(4x1) Vector of element facet indices
EdgeSigns	(6x1) Vector of element edge signs
FacetSigns	(4x1) Vector of element facet signs
Barycenter	Barycentric Point Coordinates
Volume	Element Volume
As	Barycentric Coordinate Coefficients
Bs	Barycentric Coordinate Coefficients
Cs	Barycentric Coordinate Coefficients
Ds	Barycentric Coordinate Coefficients

5. Class Vertex

Class representing the tetrahedral mesh vertices (nodes).

Property	Description
Index	Index of Vertex
InDomain	Index of Vertex Domain
X,Y,Z	Vertex Coordinates
InElement	Vector of vertex Element Indices
OnBoundary	Boundary Index - if Vertex on Bounary
	0 - Vertex not on Boundary
OnLine	Line Boundary Index - if Vertex on Line Boundary
	0 - Vertex not on Line Boundary
OnExterior	(true/false) Vertex on exterior boundary
Index2D	Index of Vertex in 2D Problem
InFacet	Vector of Vertex Facet Indices (2D Problem)
IndexE	Index of Electric Field degree of freedom in 2D Problem
IndexH	Index of Magnetic Field Degree of freedom in 2D Problem

6. Class Edge

Class for the representation of tetrahedral and triangular mesh edges.

Property	Description	
Index	Index of Edge	
UknownIndex	Index of degree of freedom (Electric Field Degree of freedom)	
KnownIndex	Index of Known Numbering (Dirichlet Excitation)	
Vertices	(2x1) Vector of Edge Vector Indices	
InElement	Vector of edge Element Indices	
OnBoundary	Boundary Index - if edge on Bounary	
	0 - edge not on Boundary	
OnLine	Line Boundary Index - if edge on Line Boundary	
	0 - edge not on Line Boundary	
Id	if on Boundary ~ inherits Boundary Id	
	else 0	
PPair	Index of Periodic Pair edge (PCB Boundaries)	
Length	Edge Length	
Index2D	Index of Electric Field Degree of freedom in 2D Problem	
IndexH	Index of Magnetic Field Degree of freedom in 2D Problem	
Index2D	Index of Edge in 2D Problem	
InFacet	Vector of Edge's Facet 2D Indices	

Vertices2D	(2 x 1) vector of Edge's Vertices in	2D

7. Class Facet

Class for the representation of tetrahedral and triangular mesh facets.

Property	Description
Index	Index of Facet
UknownIndex	Index of Degree of freedom (Electric Field Degree of freedom)
KnownIndex	Index of Known Numbering (Dirichlet Excitation)
Vertices	(3x1) Vector of facet Vector Indices
InElement	Vector of facet Element Indices
OnBoundary	Boundary Index - if facet on Boundary 0 - facet not on Boundary
Id	if on Boundary ~ inherits Boundary Id else 0
PPair	Index of Periodic Pair facet (PCB Boundaries)
Surface	Facet's Surface
Barycenter	Barycentric coordinates of the facet
Vertices2D	(3x1) vector of Facet's 2D Vertex Indices
Medium2D	Medium of the facet
Edges	(3x1) vector of Indices of Facet Edges
EdgeSigns	(3x1) vector of Facet's edge signs

8. Class MultiFrequency

Class representing model's frequency or frequency range.

Property	Description
Start	Frequency Range Start
Stop	Frequency Range Stop
Increment	Frequency Range Increment (Step)
Unit	"Hz","kHz","MHz","GHz","THz"
Frequency	Vector Frequency Range (Hz)
UFrequency	Vector Frequency Range (Unit)
Omega	Angular Frequency
NF	Number of Frequencies in the Frequency Range

9. Class FEMAssembly

Class containing the assembled FEM matrices.

Property	Description
Type	* "Excitation"
	$[Matrix_A] \begin{bmatrix} \mathbf{E} \\ \mathbf{B} \end{bmatrix} = [Matrix_B] \begin{bmatrix} \mathbf{E}_{Exc} \\ \mathbf{B}_{Exc} \end{bmatrix}$
	* "EigenMode"
	$[Matrix_A] \begin{bmatrix} \mathbf{E} \\ \mathbf{B} \end{bmatrix} - \lambda [Matrix_B] \begin{bmatrix} \mathbf{E} \\ \mathbf{B} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Dimension	❖ "3D"
	❖ "2D"
NF	If Frequency Range operation
	Number of Frequencies Else 1
Matrix_A	Primary Finite Element Matrix
_	Single Frequency Operation - Spare
	❖ Frequency Range Operation
	cell(NF,1) with sparse matrix entries.
Matrix_B	Secondary Finite Element Matrix
	Single Frequency Operation - Spare
	❖ Frequency Range Operation cell(NF, 1) entries.
Bian	Bianisotropic media in the computational domain true\ false.
Dispersive	Single Frequency\frequency range operation
_	False\true
PropagationAxis	• " _X "
	* "y" * "z"
FM, AM, TE, TB	Volume Matrices (Matrix A)
TS, TG, TBC	Surface Matrices (Matrix A)

AW, FW	Volume Matrices (Matrix B) (Eigen Mode Formulation)
P, TA, TC	Volume Matrices (Matrix A) Bianisotropic Media
TPV	Surface Matrix (Matrix B) (Excitation Formulation)
K	Volume Matrices (Matrix B) Bianisotropic Media (Eigen Mode Formulation)
E_Scaling	Scaling option for Electric Field Degrees of Freedom. • 0 – None • 1 – Edge Length • 2 - Custom
B_Scaling	Scaling option for Magnetic Field Degrees of Freedom. • 0 – None • 1 – Face Surface • 2 - Custom
NE, NB, N	Number of Electric DoFs, Number of Magnetic DoFs, Number of Total DoFs.
KNE, KNB, KN	Number of Electric Knowns, Number of Magnetic Field Knowns, Total Number of Knowns (Excitation Formulation – Dirichlet)
EigenValue	 "k" – propagation constant eigenvalue "n" – effective refractive index eigenvalue (Eigen Mode Formulation- type of Eigenvalue)
IsDir	Dirichlet Boundary Exists (Excitation Module) True/false
IsPort	Port Boundary Exists (Excitation Module) True/false

10. Class Excitation

Class containing the field distributions and information of Excitation boundaries (*Port Boundary Condition* and *Dirichlet Boundary Condition*).

Property	Description
Type	"POR" – Excitation object for Port Boundary
	"DIR" – Excitation object for Dirichlet Boundary.
Edges	Vector of Edge object indices in the Excitation Boundary
Facets	Vector of Facet object indices in the Excitation Boundary
Vertices	Vector of Vertex object indices in the Excitation Boundary
MF	MultiFrequency object
BoundaryIndices	Vector of Boundary object indices (Surfaces), forming the
	Excitation Boundary
LineBoundaryIndices	Vector of Boundary object indices (lines), forming the
	excitation Boundary (2D Domain)
Assembly	FEMAssembly object (2D Domain Assembly)
Vector	Excitation Vector (2D Indices)
KVector	Excitation Vector (Dirichlet Boundary Condition) (2D Indices)

11. Class Solution

Class containing the solution of the FEM algebraic problem.

Property	Description
Type	❖ "EigenMode"
	"Excitation"
EigenVectors	Single Frequency Operation: (Nv x Nu) matrix Nv number of Eigen values, Nu Number of Degrees of Freedom
	❖ Frequency Range Operation: Number of Frequencies x 1 cell
EigenValues	1. Single Frequency Operation: (Nv x 1) vector of Nv number of Eigen values
	2. Frequency Range Operation: Number of Frequencies x 1 cell
EigenValueType	3. "k" – propagation constant4. "n" – effective refractive index
KnownExcitation	Excitation Vector (3D Indices)

	 Single Frequency – Vector NK x 1, NK number of Knowns Frequency Range Operation – Matrix NK x NF, NK number of Knowns, NF number of frequencies.
UknownExcitation	 Excitation Vector (<i>Dirichlet Boundary Condition</i>) (3D Indices) Single Frequency – Vector N x 1, N number of DoFs Frequency Range Operation – Matrix N x NF, N number of DoFs, NF number of frequencies.
ExcitationVector	 b vector of the Excitation formulation algebraic problem in form [Matrix_A]x = b. ❖ Single Frequency – Vector N x 1, N number of DoFs ❖ Frequency Range Operation – Matrix N x NF, N number of DoFs, NF number of frequencies.
SolutionVector	 x vector of the Excitation formulation algebraic problem in form [Matrix_A]x = b. Single Frequency – Vector N x 1, N number of DoFs Frequency Range Operation – Matrix N x NF, N number of DoFs, NF number of frequencies.

12. ToolboxModel

Class containing all the model information.

Property	Description
model	Mathworks MATLAB PDEModel object
Domains	Vector of Domain objects
Boundaries	Vector of Boundary (Surface) objects
LineBoundaries	Vector of Boundary (Line) objects
Vertices	Vector of Vertex Objects
Elements	Vector of Element Objects
Edges	Vector of Edge Objects
Facets	Vector of Facet Objects
Media	Vector of Medium Objects (Redundant)
Assembled	FEMAssembly Object
Frequency	MultiFrequency Object
Solution	Solution object
Boundary_Excitations	Vector of Excitation Objects

E-B Toolbox Classes

Cond	Toolbox Model state:
	❖ 0-
	1- Geometry imported
	2- Finite Element Structures initialized
	3 Frequency input done
	❖ 4 Domain input done
	❖ 5 Boundary input done
	❖ 6 Assembly done
	❖ 7 Solution done