МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра систем сбора и обработки данных

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине: Компьютерные технологии моделирования и анализа данных на тему: Экспериментальное исследование предельных распределений статистик непараметрических критериев согласия. Часть 1.

Вариант №2

Факультет: ФПМИ

Группа: ПММ-21

Выполнил: Сухих А.С., Черненко Д.А.

Проверил: д.т.н., профессор Лемешко Борис Юрьевич

Дата выполнения: 08.12.22

Отметка о защите:

Цель работы: Исследование распределений статистик непараметрических критериев согласия при проверке простых и различных сложных гипотез. В первой части исследуются распределения статистик критериев согласия Колмогорова, Смирнова, ω^2 Крамера-Мизеса-Смирнова и Ω^2 Андерсона– Дарлинга.

Ход работы:

1. Смоделировать распределение статистики S для заданного критерия согласия при простой гипотезе H_0 . Сравнить полученное эмпирическое распределение предельным распределением \mathbf{c} классической статистики.

Колмогоров:

n = 50	n = 100	n = 1000
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)
= 0.006433097934900212	= 0.2625263117932166	= 0.7094836420769316
ОТВЕРГАЕТСЯ	ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Ф Критерий Колмогорова №16600 G(\$1H0) НО Лог(0.0000,1.0000) n=50 ОМР ГСЧ=100

Критерий Колмогорова №16600 G(\$!H0) НО Лог(0.0000,1.0000) n=100 ОМР ГСЧ=100

[♠] Критерий Колмогорова N=16600 G(SIH0) H0 Лог(0.0000,1.0000) n=1000 ОМР ГСЧ=100

Смирнов:

n = 50	n = 100	n = 1000
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)
= 0.1149030644691371	= 0.4053445270498439	= 0.8287675049284802
НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Крамер-Мизес-Смирнов:

n = 50	n = 100	n = 1000
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)
= 0.01879968988182557	= 0.2316364700061102	= 0.560153762517235
ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ

Критерий Смирнова №16600 G(SiH0) НО Лог(0.0000,1.0000) n=50 ОМР ГСЧ=100
 Критерий Смирнова №16600 G(SiH0) НО Лог(0.0000,1.0000) n=100 ОМР ГСЧ=100
 Критерий Смирнова №16600 G(SiH0) НО Лог(0.0000,1.0000) n=1000 ОМР ГСЧ=100

- Критерий Крамера-Мизеса-Смирнова № 16600 G(SIH0) НО Лог(0.0000,1.0000) n=50 ОМР ГСЧ=100
 Критерий Крамера-Мизеса-Смирнова № 16600 G(SIH0) НО Лог(0.0000,1.0000) n=100 ОМР ГСЧ=100
- ◆ Критерий Крамера—Мизеса—Смирнова №16600 G(SiH0) НО Лог(0.0000,1.0000) n=1000 ОМР ГСЧ=100

Андерсон-Дарлинг:

n = 50	n = 100	n = 1000	
P = 1 - G(S H0)	P = 1 - G(S H0)	P = 1 - G(S H0)	
= 0.2466149878141375	= 0.3370570681615366	= 0.3768096827904253	
НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	НЕ ОТВЕРГАЕТСЯ	

2. Смоделировать распределение статистики S для этого же критерия согласия при сложной гипотезе H_0 . Попытаться идентифицировать полученное эмпирическое распределение, используя систему статистического анализа ISW.

Колмогоров:

n = 50	n = 100	n = 1000	
Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона	Хи-Квадрат Пирсона	
Рав	(критерий согласия):	(критерий согласия):	
(0.2874, 0.8780)	Гамма	Гамма	
	(6.8339,0.0462,0.2645)	(7.4822,0.0456,0.2410)	
Колмогоров:	Колмогоров:	Колмогоров:	
Рав(0.0682,1.4759)	Равн (0.2662,0.9572)	Логарифмическое	
		(ln) N(-0.5626,0.2069)	

Смирнов:

n = 50	n = 100	n = 1000	
Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:	
Би-II	Бе-II	S1-Джонсон	
(6.6541,8.4869,1.1414,0.173	(5.8981,6.8076,0.9667,0.218	(0.2672,2.0058,1.0982,0.104	
0)	8)	7)	
	Смирнов:	Смирнов:	
Смирнов:	a1	Мин(0.0000,1.0000)	
a1			

Крамер-Мизес-Смирнов:

n = 50	n = 100	n = 1000
Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:
Гамма	Гамма	Рав
(2.4632,0.0161,0.0085)	(2.4288,0.0160,0.0093)	(0.0068, 0.2415)
К-М-С: Рав	К-М-С: Рав	К-М-С: Рав
(0.0085, 0.2419)	(0.0093, 0.2668)	(0.0068, 0.2415)

Андерсон-Дарлинг:

n = 50	n = 100	n = 1000	
Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:	Хи-Квадрат Пирсона:	
Логарифмический	Логарифмический	Логарифмический	
(ln) N(-1.1509,0.4314)	(ln) N(-1.1436,0.4282)	(ln) N(-1.1393,0.4331)	
Анд-Дар:	Анд-Дар: Рав	АндДарл: Рав	
Рав(0.0682,1.4759)	(0.0766,1.6648)	(0.0637,1.4969)	

Получилась достаточно интересная ситуация: помимо распределения, основанного на критерии согласия Колмогорова с n = 1000, ни одно другое эмпирическое распределение не удалось наилучшим образом аппроксимировать с наиболее подходящими распределениями, в предельных случаях.

Можно предположить, что для случаев с n = 50, 100 этого не удалось достичь ввиду небольшого объёма выборки, из-за чего не удалось получить предельные распределения.

3. Смоделировать распределения статистики S исследуемого критерия согласия при проверке простой и сложной гипотез H_0 при справедливой гипотезе H_1 . Для того чтобы распределение,

соответствующее гипотезе H_1 было наиболее близким к распределению, соответствующему гипотезе H_0 , следует подобрать параметры распределения, соответствующего гипотезе H_1 , из условия минимизации расстояния до распределения, соответствующего основной гипотезе.

4. Построить оперативные характеристики критерия для простой и сложных гипотез как функции вида $(1-\beta)(\alpha)$. Сравнить мощность непараметрических критериев с мощностью критериев χ^2 Пирсона и Рао-Робсона-Никулина (оперативные характеристики критериев χ^2 Пирсона и Рао-Робсона-Никулина взять из отчетов по лабораторным работам № 3-4).

Для Пирсона $AO\Gamma$, k = 10:

	Простая гипотеза			Сложная гипотеза		
α	n = 50 $n = 100$ $n = 1000$ $n = 50$ $n = 100$ $n = 1000$					
0.15	0.199639	0.248614	0.902229	0,153373	0,207892	0,896024
0.1	0.139699	0.17994	0.857169	0,101988	0,141566	0,845361
0.05	0.073253	0.101386	0.772831	0,0512048	0,0759036	0,743133
0.025	0.0372892	0.0570482	0.685241	0,0246988	0,0392169	0,63241
0.01	0.0155422	0.025	0.560964	0,0109036	0,0157831	0,476928

Для Никулина $AO\Gamma$, k = 10:

	Про	стая гипоте	Сло	Сложная гипотеза		
α	$1-\beta$					
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000
0.15	0.199699	0.248494	0.902169	0.148373	0.190361	0.87512
0.1	0.139639	0.17988	0.857048	0.0968675	0.128494	0.818072
0.05	0.0733133	0.101265	0.772711	0.0453012	0.0672892	0.707952
0.025	0.0372289	0.056988	0.68506	0.0213855	0.0328916	0.585
0.01	0.0155422	0.0249398	0.560663	0.00777108	0.0121687	0.439157

Для Колмогорова:

	Про	стая гипоте	3 a	Сложная гипотеза			
α		$1-\beta$					
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000	
0.15	0.19012	0.221386	0.666145	0.191747	0.236265	0.828253	
0.1	0.129819	0.150361	0.554337	0.133373	0.164398	0.753614	
0.05	0.0712048	0.0819277	0.373072	0.0687349	0.0930723	0.609217	
0.025	0.0418675	0.0461446	0.238193	0.0348795	0.0516265	0.476506	
0.01	0.0196386	0.0224096	0.124518	0.0145181	0.0242169	0.311205	

Для Смирнова:

	Про	стая гипоте	3a	Сложная гипотеза			
α		$1-\beta$					
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000	
0.15	0.177349	0.203855	0.541084	0.181807	0.235964	0.784277	
0.1	0.124398	0.146145	0.434819	0.123976	0.169337	0.700422	
0.05	0.0661446	0.0792771	0.298253	0.0681928	0.0904819	0.556024	
0.025	0.035241	0.0416265	0.199217	0.0363855	0.0495181	0.426867	
0.01	0.0187952	0.0198795	0.107048	0.015	0.0211446	0.267831	

Для Крамера-Мизеса-Смирнова:

	Простая гипотеза			Сложная гипотеза				
α	$1-\beta$							
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000		
0.15	0.18012	0.203614	0.682289	0.197349	0.254337	0.918976		
0.1	0.125482	0.136566	0.533795	0.133614	0.184819	0.872711		
0.05	0.0671084	0.0746988	0.329337	0.0693373	0.103795	0.77753		
0.025	0.0378916	0.0399398	0.183253	0.035	0.0613855	0.660904		
0.01	0.018494	0.0161446	0.0728313	0.016506	0.0254217	0.516867		

Для Андерсона-Дарлинга:

	Простая гипотеза			Сложная гипотеза					
α	$1-\beta$								
	n = 50	n = 100	n = 1000	n = 50	n = 100	n = 1000			
0.15	0.187952	0.21512	0.749157	0.178795	0.240482	0.954458			
0.1	0.132289	0.14759	0.626024	0.11988	0.17259	0.92247			
0.05	0.0683735	0.0820482	0.427711	0.0624699	0.0975301	0.846446			
0.025	0.0390361	0.0425301	0.271627	0.0316265	0.0521084	0.75241			
0.01	0.0186145	0.0174096	0.129699	0.0121084	0.0212651	0.614398			

Вывод:

При простой гипотезе с n=100,1000 непараметрические критерии согласия работают лучше параметрических, что касается ситуации с простыми гипотезами с n=50, можно сказать, что параметрические и непараметрические критерии согласия работают примерно одинаково.

При сложных гипотезах с n=50,100 однозначно лучше себя показывают параметрические критерии согласия. При рассмотрении объёма выборки n=1000 выяснилось, что параметрические критерии лучше себя показывают лишь в сравнении с Крамером-Мизесом-Смирновым и

Андерсоном-Дарлингом, но проигрывают в эффективности критериям Колмогорова и Смирнова.

При сравнении непараметрических критериев между собой выяснилось, что в случае рассмотрения сложных гипотез при n=1000 однозначным лидером по эффективности оказался критерий Смирнова. В отношении n=50,100 все непараметрические критерии ведут себя плюс-минус одинаково.

В ситуации с простыми гипотезами лидером по эффективности при $n=1000\,$ всё также остаётся критерий Смирнова, но при $n=50,100\,$ непараметрические критерии вновь ведут себя примерно одинаково.