Week2

Resistive Circuits

CSE 231

Series Connection

Two Elements Connected at a Single Node

$$v_s = i_s (R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7)$$

Resistors in series have the same current

$$v_s$$
 R_{eq}
 R_{eq}

$$v_s = i_s R_{eq}$$

$$R_{eq} = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7$$

Resistors in Series

Can be used to simplify circuits

Same as

$$R = \rho \cdot \frac{L}{A}$$

Parallel Connections

Elements connected at a single node pair

2 nodes in this circuit

All Resistors
In Parallel

All the resistors have the same voltage, v_s , across them Currents are different

$$R_1$$
 is not "||" R_3
 R_1 || $(R_2 + R_3) = R_{eq}$
 R_2 and R_3 are in series

Equivalent Resistance of Resistors in Parallel

Special Case: 2 Resistors in Parallel

$$\frac{1}{R_{ea}} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$$

$$\therefore R_{eq} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Copyright © 2008 Pearson Prentice Hall, Inc.

$R_1(\Omega)$	$R_2(\Omega)$	$R_{eq}\left(\Omega ight)$
1000	1000	$500 = 0.5R_1 = 0.5R_2$
1000	500	333.333
10,000	100	99.01 (approx. 100)
10^6	100	99.99 (approx. 100)

$$R_{eq} < R_1$$
 and $R_{eq} < R_2$

 \approx Smallest

Drill Exercise: Find Voltage v

Side Note

$$i_B = i_C + i_D$$
 KCL
 $i'_B = i_C + i_D$ KCL
 $i'_B = i_B$

Note: I = 5(A)

Find R_{eq}

$$10\Omega + 6\Omega = 16(\Omega)$$
 Add series resistors

$$16\Omega \| 64\Omega = \frac{16 \times 64}{16 + 64} = 12.8(\Omega)$$

Simplify Resistors

Drill Exercise (Contd.)

$$12.8\Omega + 7.2\Omega = 20(\Omega)$$
 Add series resistors

$$20 \parallel 30 = \frac{20 \times 30}{20 + 30} = 12(\Omega)$$
Simplify Parallel Resistors

Drill Exercise (Contd.)

$$v = IR \implies a) \ v = 5A(12\Omega) = 60(V)$$

$$p = Iv \implies b$$
 $p_{del} = (5A)(60V) = 300(W)$ $p > 0$

Same Problem: What is the Power delivered to the 10Ω Resistor?

In General

When solving problems at this point,

Ask how I can use:

- Ohms Law
- KVL
- KCL
- $-R_{eq}$
- Knowledge of Current and Voltage
 - Current same in series
 - Voltage same in parallel

Equivalent Resistance Examples

What is R_{eq} at A and B

$$R_{eq} = 1 \| (2+3+4) = \frac{1 \cdot (2+3+4)}{1+(2+3+4)} = \frac{9}{10} (\Omega)$$

Example
$$V_s = I_s R_{AB} \equiv I_s R_{eq}$$

Note: Depending on where you take R_{eq} ,

You will have to do a different calculation

Example: Find R_{eq}

Series
$$\begin{cases} 75+15+10=100 \\ Parallel & 100 | |100=50 \\ Series & 50+10=60 \\ Parallel & 60 | |30 = \frac{60(30)}{60+30} = \frac{1800}{90} = 20 \end{cases}$$

$$14+6=20$$
 | Series
 $20||20=10$ | Parallel
 $10+40=50$ | Series
 $50||50=25$ | Parallel
 $25+75=100$ | Series
 $100||100=\underline{50}$ | Parallel

Example: Find R_{eq}

Notes on short circuits

- All current flows through "wire"
- R is "Shorted Out"

- Short wall socket
- Short power supply

Mathematical Viewpoint

Assume the wire is a perfect conductor

$$R_{eq} = R \| R' = \frac{R \cdot R'}{R + R'} \Rightarrow R_{eq} = \frac{R(0)}{R + 0} = 0$$

$$R_{eq} = \frac{R(0)}{R+0} = 0$$

Example: Find R_{eq}

$$R_{eq} = (4+12) || 144$$

 $R_{eq} = 14.4(\Omega)$

Voltage Division

Voltage is "proportionally" distributed among resistors in a circuit.

Voltage Division (Contd.)

$$rac{i}{R_1} \geqslant v_1$$
 v_1 is a fraction $\left(\frac{R_1}{R_1 + R_2} \equiv \frac{R_1}{R_{Total}}\right)$ of v_s

Special Case

$$R_1 = R_2; v_1 = v_2 = \frac{1}{2}v_s$$

Example: Use Voltage Division to Find v_2

$$v_{s} = 10V$$
 Given $R_{1} = 3\Omega$; $R_{2} = 4\Omega$; $R_{3} = 3\Omega$

$$v_2 = v_s \left(\frac{1}{R_1 + R_2 + R_3} \right)$$
 across R_2

$$= 10 \left(\frac{4}{3 + 4 + 3} \right) = 10 \left(\frac{4}{10} \right) = 4(V)$$

$$v_1 = v_s \left(\frac{R_1}{R_1 + R_2 + R_3} \right) = 10 \left(\frac{3}{10} \right) = 3(V)$$
 Voltage across R_1

$$v_3 = v_s \left(\frac{R_3}{R_1 + R_2 + R_3} \right) = 10 \left(\frac{3}{10} \right) = 3(V)$$
 Voltage across R_3

Example: Find v_0

$$\begin{aligned} v_{\rm s} &= 100V \\ R_1 &= 5K\Omega; \, R_2 = 50K\Omega \\ R_3 &= 10K\Omega \; ; \, R_4 = 15K\Omega \end{aligned}$$
 Given

$$v_0 = v_s \frac{R_{eq}}{R_1 + R_{eq}}$$
 Voltage Division

Find R_{eq}

$$R_{eq} = R_2 || (R_3 + R_4) = 50 K || (10 K + 15 K)$$

$$= \frac{50 K (25 K)}{50 K + 25 K} = 16.67 (K\Omega)$$

$$v_0 = 100[16.67/(5+16.67)]$$

 $v_0 = 100(0.769) = 76.9 (V)$

A Side Note

Load: Anything that draws power from a circuit.

Example: $(R_3 + R_4)$ is the "Load"

No-Load means that we disconnect the circuit at (a) and (b)

$$v_{0 \text{ (no load)}} = v_s \frac{R_2}{R_1 + R_2} = 100 \left(\frac{50K}{5K + 50K} \right) = 90.91 \text{(V)}$$
 Disconnect the load

"No-Load" value of v_0 is without $(\mathbf{R}_3 + \mathbf{R}_4)$

Example: Find i_4 ; Given $i_0 = 4(A)$

- Current directions can be arbitrary
- However, these are logical

Solution: Two inner loops have too many unknowns – Try outer loop

$$180 = 25i_0 + 8i_4$$
 KVL

$$i_4 = 180 - 25i_0 = 180 - 25(4)$$
 Solve for i_4 8
$$i_4 = 10 \text{ (A)}$$
 (Contd..)

Same Example: Find i₃ and i₁

$$i_4 = 10(A)$$
 From the previous slide

KCL @ node (2)

$$i_0 + i_3 = i_4$$
 $i_3 = i_4 - i_0 = 10 - 4$
Solve for i_3
 $i_3 = 6$ (A)

KVL for "Bottom-Right" loop has only 1 unknown: Clockwise from node (1)

$$10i_{3} + 8i_{4} - 70i_{1} = 0$$

$$i_{1} = 10i_{3} + 8i_{4} = 10(6) + 8(10)$$

$$70$$

$$70$$

$$i_{1} = 2 (A)$$
KVL

Solve for i_{1}

Current Division

Current is "proportionally" distributed through resistors in a circuit

Use $\frac{1}{1}$ and $\frac{2}{1}$ to eliminate v_s

$$i_{1} = \frac{v_{s}}{R_{1}} = i_{s} \frac{R_{2}}{R_{1} + R_{2}}$$

$$i_{2} = \frac{v_{s}}{R_{2}} = i_{s} \frac{R_{1}}{R_{1} + R_{2}}$$

 \star Current Division $\overline{\star}$

Ohm's Law:

 i_2 R_2 1 $v_s = i_1 R_1 = i_2 R_2 = i_s (R_1 || R_2)$

$$v_{s} = i_{s} \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

Book uses i_s Works either way

- "Fraction" is **OPPOSITE** to that of Voltage Division.
- Current "seeks" the path of <u>least</u> Resistance; i.e., more current flows through the smaller *R*.
- If $R_1 = R_2$; then, $i_1 = i_2 = 0.5 i_s$
- As R_1 becomes $> R_2$; more current flows through R_2
- i_1 is a fraction, $\left(\frac{R_2}{R_1 + R_2} \equiv \frac{R_2}{R_{Total}}\right)$, of i_s .

Example

- \rightarrow i_2 flows through R_2
- $i' = (i_1 + i_3)$ flows through $(R_1 || R_3)$

Example: Find i_6 using current division

Example: Find i_6 using current division (Contd.)

Flows through 1.6 Ω resistor and into node C

*i*₂ Flows into node C

$$i_6 = i_2 \left(\frac{4}{4+6}\right) = 8\left(\frac{4}{10}\right)$$
Use Current Division to find i_6

$$i_6 = 3.2 \text{ (A)}$$

METERS To measure Current and Voltage

(A) in series

Want \approx 0 Internal Resistance; otherwise, i_s is reduced.

Loads the circuit.

w in parallel

Want $\approx \infty$ Internal Resistance; otherwise, v_2 is reduced.

Loads the circuit.

d'Arsonval Meter

Movable coil in the field of a Permanent Magnet *i* in coil

→ Torque which moves a dial

Rating of 50 mV and 1 mA.

1 mA in coil ⇒ 50 mV across coil ⇒ Full deflection

Limits of d'Arsonval meters can measure

 R_A Limits Current Through Movement.

<Current Divider>

 R_v Limits Voltage Across Movement.

<Voltage Divider>

Resistor Determines Full-Scale Reading

Example: Find the correct value for R_A

Movement Specification

Ammeter Specification

Rating

50 (mV) and 1 (mA). Full-Scale Reading: 10 (mA).

Can measure up to 10 mA

Meter

What value of R_A will produce this result?

$$10 (mA) = i_A + 1 (mA)$$

 $i_A = 10 (mA) - 1(mA) = 9 (mA)$

KCL @ Full Scale

 $R_{A} = 5.556 (\Omega)$

$$V_{R_A} = 50 \ (mV) = i_A R_A$$
 Ohm's Law $R_A = 50 \ (mV)/9 \ (mA)$

(Contd..)

Example: Find the correct value for R_A

b) Full-Scale Reading

1A for Ammeter

$$i_{A} = 1(A) - 1(mA) = 1 - 0.001 = 0.999(A)$$
 KCL
$$R_{A} = V_{R_{A}} / i_{A} = 50 (mV)/999 (mA)$$
 Ohm's Law
$$R_{A} = 50.05 (m\Omega)$$

(Contd..)

Example: Find the Equivalent Resistance of the meter

c) R_m is Equivalent Resistance at Ammeter Terminals <10 (mA) Meter>

Effective resistance of movement $\equiv R_{mov} = 50 (mV) / 1(mA) = 50(\Omega)$

$$R_{m} = R_{A} \parallel R_{mov} = \frac{R_{A}R_{mov}}{R_{A} + R_{mov}} = \frac{5.556(50)}{5.556 + 50} \Rightarrow \begin{pmatrix} R_{A} = 5.56(\Omega) \\ R_{mov} = 50(\Omega) \end{pmatrix}$$

$$R_m = 5 (\Omega)$$

d) 1A Meter

$$\begin{pmatrix} R_A = 50.05(m\Omega) \\ R_{mov} = 50(\Omega) \end{pmatrix}$$

$$R_m = \frac{50.05 \times 10^{-3} (50)}{50.05 \times 10^{-3} + 50}$$

$$R_m = 0.05 (\Omega)$$

Voltmeter Example: d'Arsonval Movement: 50 (mV) @ 1(mA)Find R_V for Full-scale Reading of 100(V)

WHEATSTONE BRIDGE

Used to Measure Resistance

detector; d'Arsonval
 movement
 R_x ≡ Unknown Resistance

To find R_x :

Adjust R_3 until $i_g = 0$ Bridge is "Balanced" When $i_g = 0$, a and b are "effectively" the same node, or $V_{a-b} = 0$

WHEATSTONE BRIDGE: (Contd.) Find R_x when $i_a = 0$

(1)
$$i_1 = i_3$$
; $i_2 = i_x$ $i_g = 0$

(1)
$$i_1 = i_3$$
; $i_2 = i_x$ $\} i_g = 0$
(2) $i_3 R_3 = i_x R_x$; $i_1 R_1 = i_2 R_2$ $\} V_{ab} = 0$

(3)
$$\frac{i_3 R_3}{i_x R_x} = \frac{i_1 R_1}{i_2 R_2} = 1$$
 From (2)

From (1)
$$\left\{ \begin{pmatrix} i_3 = i_1 \\ i_x = i_2 \end{pmatrix} \longrightarrow R_x = \frac{R_2}{R_1} R_3 \right\}$$
 Solve (3) for R_x

DELTA-WYE EQUIVALENT CIRCUITS [$\Delta - Y$]:

	In the Δ Circuit	Compared to Y Circuit
[1]	$R_{ab} = R_c (R_a + R_b)$	$R_{ab} = R_1 + R_2$ $\{R_3 \text{ is floating}\}$
[2]	$R_{bc} = R_a (R_b + R_c)$	$R_{bc} = R_2 + R_3$ $\{R_1 \text{ is floating}\}$
[3]	$R_{ca} = R_b (R_c + R_a)$	$R_{ca} = R_1 + R_3$ $\{R_2 \text{ is floating}\}$

Voltages and Currents are the same at each node in both Δ and Y connections

Derivation of Y: resistors in terms of Δ -resistors

1. Solve for R_1

$$R_{1} = R_{c} \parallel (R_{a} + R_{b}) - R_{2}$$
 Using [1] Using [2]
$$R_{1} = R_{c} \parallel (R_{a} + R_{b}) - \left[R_{a} \parallel (R_{b} + R_{c}) - R_{3}\right]$$
 Using [2]
$$R_{1} = R_{c} \parallel (R_{a} + R_{b}) - R_{a} \parallel (R_{b} + R_{c}) + \left[R_{b} \parallel (R_{c} + R_{a}) - R_{1}\right]$$
 Solve for
$$R_{1} = R_{c} \parallel (R_{a} + R_{b}) - R_{a} \parallel (R_{b} + R_{c}) + \left[R_{b} \parallel (R_{c} + R_{a}) - R_{1}\right]$$

$$2R_{1} = \frac{R_{c}(R_{a} + R_{b})}{(R_{a} + R_{b} + R_{c})} - \frac{R_{a}(R_{b} + R_{c})}{(R_{a} + R_{b} + R_{c})} + \frac{R_{b}(R_{c} + R_{a})}{(R_{a} + R_{b} + R_{c})}$$

$$2R_{1} = \frac{R_{a}R_{c} + R_{b}R_{c} - R_{a}R_{b} - R_{a}R_{c} + R_{b}R_{c} + R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}}$$
 Simplify

Derivation of Y: resistors in terms of \Delta-resistors (Contd.)

2. Solve for R_2 **:** Using [1]

$$R_{2} = \frac{R_{c}(R_{a} + R_{b})}{R_{a} + R_{b} + R_{c}} - \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{R_{a}R_{c}}{R_{a} + R_{b} + R_{c}}$$

Using R_1 from previous slide

3. Solve for R_3 : Using [3]

$$R_{3} = \frac{R_{b}(R_{c} + R_{a})}{R_{a} + R_{b} + R_{c}} - \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$

Balanced Loads [3-\Phi Power Applications]

Loads are balanced when:

$$\Delta: R_a = R_b = R_c \equiv R_\Delta$$

$$Y: R_1 = R_2 = R_3 \equiv R_Y$$

$$\mathbf{Y}: \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3 \equiv \mathbf{R}_{\mathbf{Y}}$$

$$\Delta$$
-Y:

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c} = \frac{R_\Delta^2}{3R_\Delta} = \frac{R_\Delta}{3}$$

$$\therefore R_1 = R_2 = R_3 = \frac{1}{3}R_{\Delta}$$

$$(1)$$

$$R_1 = R_Y = \frac{1}{3}R_{\Delta}$$
For "balanced loads"

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}} = \frac{3R_{Y}^{2}}{R_{Y}} = 3R_{Y}$$

$$\therefore R_{a} = R_{b} = R_{c} = 3R_{Y}$$

$$\therefore R_{a} = R_{b} = R_{c} = 3R_{Y}$$

$$(2)$$

$$R_{\Delta} = 3R_{Y}$$

$$R_{a} = R_{\Delta} = 3R_{Y}$$

Similarly this can

be derived

$$R_1 = R_Y = \frac{1}{3} R_{\Delta}$$

$$R_{\Delta} = 3R_{Y}$$

$$R_a = R_{\Lambda} = 3R_{V}$$

Example: Find *i*₀

Use Δ-Y transformation to solve the circuit

$$R_1 = \frac{R_b R_c}{R_a + R_b + R_c} = \frac{20(30)}{20 + 50 + 30}$$

(Contd..)

Example: Find i_0 (Contd.)

$$R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}} = \frac{20(30)}{100} = 6(\Omega)$$

$$R_2 = \frac{R_c R_a}{R_a + R_b + R_c} = \frac{30(50)}{100} = 15(\Omega)$$

$$R_3 = \frac{R_a R_b}{R_a + R_b + R_c} = \frac{50(20)}{100} = 10(\Omega)$$

$$\begin{bmatrix} i_1 = i_{46} \\ i_2 = i_9 \end{bmatrix}$$
 Must be true for Δ -Y Transformation to be valid

$$R_{eq} = 2.2 + 6 + \frac{(R_3 + 46)(R_2 + 9)}{(R_3 + 46) + (R_2 + 9)} = 25(\Omega)$$
 Simplify Resistive Circuit

$$i_s = \frac{500V}{R_{eq}} = \frac{500}{25} = 20 \text{ (A)}$$

(Contd..)

Example: Find i_0 (Contd.)

$$i_s = 20(A)$$

$$R_1 = 6(\Omega)$$

$$R_2 = 15(\Omega)$$

Find all the Currents

$$i_{1} = i_{s} \left[\frac{(R_{2} + 9)}{(R_{2} + 9) + (46 + R_{3})} \right] = 20 \left[\frac{24}{80} \right] = 6 \text{ (A)}$$

$$i_{s} = i_{1} + i_{2} \left[\frac{\text{KCL}}{\text{KCL}} \right]$$

$$i_{2} = i_{s} - i_{1} = 20 - 6 \left[\frac{24}{80} \right]$$
Solve for i_{2}

$$i_{2} = 14 \text{ (A)}$$

Find *i*₁ with Current Division

Example: Find i_0 (Contd.)

Go back to the original circuit (KVL from c-b through lower delta)

$$(i_{46}.46) - (i_{9}.9) - i_{0}.50 = 0$$

$$\begin{cases} i_{0} = \frac{1}{50} [6(46) - 14(9)] \\ i_{0} = 3(A) \end{cases}$$

$$i_{0} = i_{0} = 14(A)$$

$$\begin{cases} i_{0} = i_{0} = 14(A) \\ i_{0} = 14(A) \end{cases}$$

$$\begin{cases} i_{0} = i_{0} = 14(A) \\ i_{0} = 14(A) \\ i_{0} = 14(A) \end{cases}$$

Special Note on Power

Power: 1. Absorbed, Dissipated, Delivered to, extracts

2. Developed, Produced, Delivered by

- **Resistors:** Always "absorb" power. They <u>can't</u> "deliver" power.
- Blue Circuit: One Energy Source, v_s , (power supply). v_s "delivers" power to circuit because i_s goes through a "rise" in voltage.
- Blue and red Circuit: If I_s overwhelms v_s , then i_s may reverse. v_s "absorbs" power, i_s goes through a "drop" in voltage.
- Blue, Red, and Black Circuit: $20i_{\phi}$ is a source. it delivers or absorbs depending on polarity of i'

