FH Technikum Wien

Mobile Robotics + Service & Object-Oriented Algorithms in Robotics
Semester Project

Robotics Maze Escape

Alejo Flores Lucey (ID: if24x390) Mauro Leandro Baez (ID: se24m502)

01 Introduction

Basic information about the project.

02 Localization

First step of the solution. Situate the robot in the world.

03 Global Planning

Find a path from the robot position to the goal.

04 Local Planning

Get the velocity required by the robot to move through the path.

05 Demonstration

Let's see everything in action.

Implementation Details

- Modular Python Codebase: The project is organized into modules, each handling a specific aspect of the robot's behavior.
- Custom publishers: We publish messages to topics such as /maze_escape/global_plan and /maze_escape/goal_pose to better visualization in RViz.
- **Visualization**: The Plotter class, that follows the Builder design pattern, provides real-time visualization of the robot, map, and planned paths using Matplotlib.
- Documentation: The source documentation is auto-generated using Docstrings with the Google syntax, using the Python package pdoc.

Basic Flowchart

UML Diagram (1)

UML Diagram (3)

Localization

First, we get the map information. Then, using the laser scanner of the Turtlebot3, we use k-Nearest-Neighbours to predict the robot position in the world.

03

Global Planning

We implemented both uninformed and informed search algorithms. BFS, DFS, A* with Euclidean Distance, A* with Manhattan Distance & Dijkstra.

04

Local Planning

Using forward simulation, with variable look-ahead steps. We then send the velocity commands to the robot using topics.

Robot Movement

05

Demonstration

Let's see how all of this works in RViz

How to run?

```
robotics-maze-escape
roslaunch robotics-maze-escape launch_simulation.launch \
   enable_plotting:=<true | false> \
   goal:=<1 | 2> \
   global_planner_algorithm:=<bfs | dfs | astar | dijkstra> \
   global_planner_heuristic:=<manhattan | euclidean>
```

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**