Homework 3

Your full names go here

Problem 1 (Golan 124). Let F be a field and let (K, \bullet) be an associative unital F-algebra. If A and B are subsets of K, we let $A \bullet B$ be the set of all elements of K of the form $a \bullet b$, with $a \in A$ and $b \in B$ (in particular, $\emptyset \bullet B = A \bullet \emptyset = \emptyset$). We know that the set V of all subsets of K is a vector space over GF(2). Is (V, \bullet) a GF(2)-algebra? If so, is it associative? Is it unital?

Solution. (type your solution here)

Problem 2 (Golan 132). Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that f(-a) = -f(a) for all $a \in F$. Is L a subspace of F[X]?

Solution. (type your solution here)

Problem 3 (Golan 133). Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that $\deg(f)$ is even. Is L a subspace of F[X]?

Solution. (type your solution here)

Problem 4 (Golan 142). For a field F, compare the subsets $F[X^2]$ and $F[X^2+1]$ of F[X].

Solution. (type your solution here)

Problem 5 (Golan 154). Let F be a field and let $K = F^{\mathbb{N}}$. Define operations + and \bullet on K by setting $f + g : i \mapsto f(i) + g(i)$ and $f \bullet g : i \mapsto \sum_{j+k=i} f(j)g(k)$. Show that K is a an associative and commutative unital F-algebra. Is it entire?

Solution. (type your solution here)

Problem 6 (Golan 157). A trigonometric polynomial in $\mathbb{R}^{\mathbb{R}}$ is a function of the form $t \mapsto a_0 + \sum_{h=1}^k [a_h \cos(ht) + b_h \sin(ht)]$, where $a_0, \dots, a_k, b_1, \dots, b_k \in \mathbb{R}$. Show that the subset of $\mathbb{R}^{\mathbb{R}}$ consisting of all trigonometric polynomials is an entire \mathbb{R} -algebra.

Solution. (type your solution here)

Problem 7 (Golan 163). Let $F = \mathbb{Q}$. Is the subset

$$\left\{ \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix} \right\}$$

of F^3 linearly independent? What happens if F = GF(5)?

Solution. (type your solution here)

Problem 8 (Golan 177). Show that the subset

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$$

is a linearly independent subset of $GF(p)^3$ if and only if $p \neq 3$.

Solution. (type your solution here)

Clarification/amplification of Props 5.12 and 5.13. Let V be a vector space, and let $\{W_{\omega} : \omega \in \Omega\}$ be a collection of subspaces of V. Recall that $\sum_{\omega \in \Omega} W_{\omega}$ denotes the subspace of all (finite) linear combinations of vectors in $\{W_{\omega} : \omega \in \Omega\}$, which is equivalent to the subspace of vectors w of the form $w = \sum_{\lambda \in \Lambda} w_{\lambda}$, where $w_{\lambda} \in W_{\lambda}$ and Λ is a finite subset of Ω .

We call the set $\{W_{\omega} : \omega \in \Omega\}$ independent if and only if it satisfies the following condition: If Λ is a finite subset of Ω , if $w_{\lambda} \in W_{\lambda}$ for each $\lambda \in \Lambda$, and if $\sum_{\lambda \in \Lambda} w_{\lambda} = 0_V$, then $w_{\lambda} = 0_V$ for all $\lambda \in \Lambda$.

Problem 9. Let

$$W_1 = \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} : a \in \mathbb{R} \right\}, \ W_2 = \left\{ \begin{bmatrix} b \\ b \end{bmatrix} : b \in \mathbb{R} \right\}, \ W_3 = \left\{ \begin{bmatrix} 0 \\ c \end{bmatrix} : a \in \mathbb{R} \right\}.$$

- 1. Would our textbook author describe $\{W_1, W_2, W_3\}$ as "pairwise disjoint?" (explain)
- 2. Describe the space $W_1 + W_2 + W_3$.
- 3. Describe the space $W_i + W_j$ for each pair $i \neq j$ in $\{1, 2, 3\}$.
- 4. Is the set $\{W_1, W_2, W_3\}$ independent?

Solution. (type your solution here)

Problem 10. Below is an alleged theorem that attempts to combine Propositions 5.12 and 5.13 of the textbook. Prove it, or disprove it by providing a counterexample.

Proposition. Suppose $\{W_{\omega} : \omega \in \Omega\}$ is a collection of subspaces of a vector space, and suppose, for each $\omega \in \Omega$, the set B_{ω} is a basis for W_{ω} . Then the following are equivalent:

- 1. The set $\{W_{\omega} : \omega \in \Omega\}$ is independent.
- 2. Every $w \in \sum_{\omega \in \Omega} W_{\omega}$ can be written as $w = \sum_{\lambda \in \Lambda} w_{\lambda}$ in exactly one way.
- 3. For every $\lambda \in \Omega$, $W_{\lambda} \cap \sum_{\omega \neq \lambda} W_{\omega} = \{0_V\}$.
- 4. The set $B = \bigcup_{\omega \in \Omega} B_{\omega}$ is a basis for $\sum_{\omega \in \Omega} W_{\omega}$.

(type your proof or counterexample here)

Final remark. We use $\bigoplus_{\omega \in \Omega} W_{\omega}$ to denote $\sum_{\omega \in \Omega} W_{\omega}$ only when the set $\{W_{\omega} : \omega \in \Omega\}$ is independent. When I mentioned this in class, instead of only when, I used the phrase when and only when. This is incorrect since the expression $\sum_{\omega \in \Omega} W_{\omega}$ does not necessarily imply that the set $\{W_{\omega} : \omega \in \Omega\}$ is dependent.