高等数学

aima 范

目录

1	高等数学预备知识	3
	1.1 数列	3
	1.2 三角函数	3
	1.3 因式分解公式	4
	1.4 常用不等式(重要)	4
2	数列极限	4
3	函数极限与连续性	4
	3.1 泰勒公式	4
	3.2 间断点	5
4	一元函数微分学的概念与计算	5
	4.1 定义	5
	4.2 反函数的导数	5
5	一元函数微分学的几何应用	5
	5.1 渐近线	6
6	中值定理	6
	6.1 涉及函数的中值定理	6
	6.2 设计导数的中值定理	6
7	零点问题和积分不等式	6
8	一元函数积分学的概念和计算	6
	8.1 概念	6
	8.2 基本公式表	7
	8.3 解决定积分计算(不定积分)的方法	7
	8.4 一些做题中遇到的经典积分	8
9	一元积分学的几何应用	8

10	多元函数微分学	8
	10.1 基本概念	8
	10.2 多元函数微分法则	8
	10.3 多元函数的极值与最值	9
11	二重积分	9
12	常微分方程	9
	12.1 一阶微分方程求解	9
	12.2 二阶微分方程求解	9
13	无穷级数(数学一,三)	10
	13.1 常数项级数	10
	13.2 幂级数	10
14	数学一,数学二专题内容	10
	14.1 一元函数微分学应用	10
	14.2 一元函数积分学应用	11
	14.3 微分方程的物理应用	11
	14.4 欧拉方程	11
	14.5 傅里叶级数	11
15	多元函数积分学的基础知识(数学一)	11
	15.1 空间平面与直线	11
	15.2 空间曲线与曲面	
	15.3 多元函数微分学的几何应用	12
	15.4 场论初步	12
16	三重积分、曲线曲面积分(数学一)	12
	16.1 三重积分	12
	16.2 第一型曲线积分的概念、性质与对称性	13
	16.3 第一型曲面积分的概念、性质和对称性	
	16.4 重积分和第一型线面积分的应用	
	16.5 第二型曲线积分	14
	16.6 第二型曲面积分	14
	16.7 空间第二型曲线积分	14
	16.8 辨别下列各种积分	15

1 高等数学预备知识

- 1. $\arcsin x + \arccos x =$
- 2. $\arctan x + \operatorname{arccot} x =$
- 3. 单调 ⇒ 有反函数

1.1 数列

- 1. 对于取整函数来说,可以取到(左/右)
- 2. 等差数列前 n 项和
- 3. 等比数列前 n 项和
- 4. $\sum_{k=1}^{n} \frac{1}{k(k+1)} =$

1.2 三角函数

- 1. $1 + \tan^2 \alpha =$
- 2. $1 + \cot^2 \alpha =$
- 3. $\sin(\frac{\pi}{2} \pm \alpha) =$
- 4. $\cos(\frac{\pi}{2} \pm \alpha) =$
- 5. $\sin(\pi \pm \alpha) =$
- 6. $\cos(\pi \pm \alpha) =$
- 7. $\sin 2\alpha =$
- 8. $\cos 2\alpha =$
- 9. $\sin^2 \frac{\alpha}{2} =$
- 10. $\cos^2 \frac{\alpha}{2} =$
- 11. $\sin(\alpha \pm \beta) =$
- 12. $tan(\alpha \pm \beta) =$
- 13. $\tan(\frac{\pi}{4} \alpha) =$

1.3 因式分解公式

- 1. $(a+b)^3 =$
- 2. $(a-b)^3 =$
- 3. $a^3 b^3 =$
- 4. $a^3 + b^3 =$
- 5. $(a+b)^n =$

1.4 常用不等式(重要)

- $1. | \int_a^b f(x) \, dx | \le$
- 2. (重要) $\sqrt{ab} \le$
- 3. $e^x \ge x + 1$
- $4. \ x 1 \ge \ln x$
- 5. ($xi = 3) \frac{1}{1+x} < ln(1 + \frac{1}{x}) < \frac{1}{x}$ (x > 0)

2 数列极限

- 1. $\lim_{n \to \infty} a_n = 0 \Leftrightarrow \lim_{n \to \infty} |a_n| = 0$
- 2. 见到递推公式,一般要用

3 函数极限与连续性

1. 对于 1^{∞} 来说, $\lim u^v = e^{\lim v(u-1)}$

3.1 泰勒公式

- 1. $\sin x =$
- $2. \cos x =$
- 3. $\arcsin x =$
- 4. $\tan x =$
- 5. $\arctan x =$
- 6. $\frac{1}{1-x} =$
- 7. $\frac{1}{1+x} =$
- 8. ln(1+x) =

- 9. $e^x =$
- 10. $(1+x)^{\alpha} =$
- 1. $x \sin x \sim$
- 2. $\arcsin x x \sim$
- 3. $\tan x x \sim$
- 4. $x \arctan x \sim$

3.2 间断点

- 1. 第一类间断点有
- 2. 第二类间断点有

4 一元函数微分学的概念与计算

1.
$$\frac{d^2y}{dx^2} =$$

4.1 定义

- 1. $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(\Delta x)}{\Delta x} = f'(x_0)$
- 2. $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = f'(x_0)$
- 3. 左右导数相同,这一点才有导数
- 4. △y 描述 () 的增量
- 5. dy 描述 () 的增量
- 6. df(x) = f'(x) dx

4.2 反函数的导数

- 1. $\varphi'(y) =$
- 2. $\varphi''(y) =$

5 一元函数微分学的几何应用

1. 内部的最值点是极值点

6 中值定理 6

5.1 渐近线

- 1. 水平渐近线的求法
- 2. 斜渐近线的 k 和 b

6 中值定理

6.1 涉及函数的中值定理

- 1. 平均值定理
- 2. 积分中值定理
- 3. 零点定理

6.2 设计导数的中值定理

- 1. 费马定理(证明)
- 2. 罗尔定理
 - (a) 遇到 f(x)f'(x)
 - (b) 遇到 $[f'(x)]^2$
 - (c) 遇到 $f'(x) + f(x)\varphi'(x)$
- 3. 拉格朗日中值定理
- 4. 柯西中值定理
- 5. 泰勒公式中拉格朗日余项

7 零点问题和积分不等式

1. 实系数奇次方程至少有一个实根

8 一元函数积分学的概念和计算

8.1 概念

- 1. 定积分的精准定义
- 2. 积分中值定理

8.2 基本公式表

- 1. $\int a^x dx =$
- 2. $\int \tan x \, dx =$
- 3. $\int \cot x \, dx =$
- 4. $\int \sec x \, dx =$
- 5. $\int \csc x \, dx =$
- 6. $\int \sec^2 x \, dx =$
- 7. $\int \csc^2 x \, dx =$
- 8. $\int \sec x \tan x \, dx =$
- 9. $\int \csc x \cot x \, dx =$
- 10. $\int \frac{1}{1+x^2} dx =$
- 11. $\int \frac{1}{a^2 + x^2} dx =$
- 12. $\int \frac{1}{\sqrt{1-x^2}} dx =$
- 13. $\int \frac{1}{\sqrt{a^2-x^2}} dx =$
- 14. $\int \frac{1}{\sqrt{a^2+x^2}} dx =$
- 15. $\int \frac{1}{\sqrt{x^2 a^2}} dx =$
- 16. $\int \frac{1}{x^2 a^2} dx =$
- 17. $\int \sqrt{a^2 x^2} \, dx =$
- $18. \int \sqrt{1+x^2} \, dx =$
- $19. \int \sin^2 x \, dx =$
- $20. \int \cos^2 x \, dx =$
- $21. \int \tan^2 x \, dx =$
- 22. $\int \cot^2 x \, dx =$

8.3 解决定积分计算(不定积分)的方法

- 1. 凑微分法
- 2. 换元法
- 3. 分部积分法
- 4. $\Re \int \frac{4x^2 6x 1}{(x+1)(2x-1)^2} dx$

- 5. 区间再现法 $\int_b^a f(x) dx =$
- 6. 华莱士公式

$$\int_{0}^{\frac{\pi}{2}} \sin^{9} dx = \int_{0}^{\frac{\pi}{2}} \cos^{10} dx = \int_{0}^{\pi} \sin^{n} dx = \int_{0}^{2\pi} \sin^{n} dx = \int_{0}^{2\pi}$$

8.4 一些做题中遇到的经典积分

1. $e^{\arctan \tan x} =$

9 一元积分学的几何应用

写出下列公式

- 1. 曲线 $y=y_1(x)$ 与 $y=y_2(x)$ 及 x=a,x=b 围成的曲面图形的面积
- 2. 曲线 $r = r_1(\theta)$ 与 $r = r_2(\theta)$ 及 $\theta = \alpha, \theta = \beta$ 围成的曲面图形的面积
- 3. 曲线 $y = y_1(x)$ 及 x = a, x = b 围成的曲面梯形绕 x 轴旋转一周的图形的体积
- 4. 曲线 $y = y_1(x)$ 及 x = a, x = b 围成的曲面梯形绕 y 轴旋转一周的图形的体积
- 5. 函数 y(x) 在 [a,b] 上的平均值为

10 多元函数微分学

10.1 基本概念

- 1. dz =
- 2. 判断函数 z = f(x,y) 是否可微的步骤
- 3. 判断函数 z = f(x,y) 在某个特殊点 (x_0, y_0) 是否连续的步骤

10.2 多元函数微分法则

1. 链式求导法则

11 二重积分 9

2. 公式法

$$\frac{\delta z}{\delta x} = \tag{1}$$

$$\frac{\delta z}{\delta y} = \tag{2}$$

10.3 多元函数的极值与最值

- 1. 二元函数无条件如何取极值, 判别的公式与条件是什么
- 2. 有条件约束的情况下的多元函数如何取极值

11 二重积分

求解二重积分要考虑的几点

- 1. 普通对称性
- 2. 轮换对称性
- 3. 直角坐标系 xy 转换
- 4. 直接坐标系和极坐标系对换(极坐标系的标志)

12 常微分方程

12.1 一阶微分方程求解

- 1. 变量可分离
- 2. 化作变量可分离
 - (a) 形如 $\frac{dy}{dx} = f(ax + by + c)$
 - (b) 形如 $\frac{dy}{dx} = \phi(\frac{y}{x})$
- 3. 一阶线性微分方程(他的通解)
- 4. 伯努利方程, 形如 $y' + p(x)y = q(x)y^n$

12.2 二阶微分方程求解

- 1. y'' = f(x, y') 型
- 2. y'' = f(y, y') 型
- 3. 齐次方程的通解(三个情况)
- 4. 非齐次线性方程的特解 y'' + py' + qy = f(x)
 - (a) $f(x) = P_n e^{\alpha x}$
 - (b) $f(x) = e^{\alpha x} [P_m(x) \cos \beta x + P_n(x) \sin \beta x]$

13 无穷级数(数学一,三)

13.1 常数项级数

- 1. 改变级数任意有限项,不会改变级数的敛散性
- 2. 正项级数敛散性的判别方法
- 3. 交错级数敛散性的判别方法
- 4. 任意项级数敛散性的判别
- 5. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 的敛散性
- 6. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ 的敛散性

13.2 幂级数

- 1. 判断幂级数敛散性的步骤
- 2. 重要展开式

$$\frac{1}{1+x} = \tag{3}$$

$$\frac{1}{1-x} = \tag{4}$$

$$\sin x = \tag{5}$$

$$\cos x = \tag{6}$$

$$e^x = \tag{7}$$

$$ln(1+x) =$$
(8)

$$(1+x)^{\alpha} = \tag{9}$$

(10)

- 3. 先导后积的公式
- 4. 先积后导的公式

14 数学一,数学二专题内容

14.1 一元函数微分学应用

- 1. 相关变化率
- 2. y = y(x) 在其上点 (x, y(x)) 的曲率公式 k =
- 3. 曲率半径的公式为 R =

14.2 一元函数积分学应用

- 1. 从一个水壶中抽水做的功W=
- 2. 垂直浸没在水中的平板 ABCD 一侧受到的水压力为 P=
- 3. 某一个形状的形心坐标计算公式

$$\bar{x} =$$
 (11)

$$\bar{y} =$$
 (12)

- 4. 曲线在 直角坐标系/参数方程/极坐标系 下的弧长公式 s=
- 5. 曲线在 直角坐标系/参数方程 下绕 x 轴旋转一周所得到的旋转曲面的表面积是 S=

14.3 微分方程的物理应用

1. 加速度 a = 三个公式

14.4 欧拉方程

- 1. 对于 $x^2 \frac{d^2y}{dx^2} + px \frac{dy}{dx} + qy = f(x)$ 经过欧拉方程方程化之后的式子为
- 2. 如何进行换元的

14.5 傅里叶级数

- 1. 傅里叶展开公式
- 2. 傅里叶公式中 $a_n = b_n = a_0 = a_0$
- 3. f(x) 与 S(x) 的关系
- 4. 正弦级数与余弦级数

15 多元函数积分学的基础知识(数学一)

15.1 空间平面与直线

- 1. 对于一个平面来说,他的点法式方程为
- 2. 对于一个直线来说,他的点向式方程为
- 3. 点 $P_0 = (x_0, y_0, z_0)$ 到平面 Ax + By + Cz + D = 0 的距离 d =

15.2 空间曲线与曲面

- 1. 曲线 Γ : $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 在各个坐标轴(以 xOy 轴为例)的投影曲线为
- 2. 将曲线 $\Gamma: \left\{ egin{array}{ll} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{array} \right.$ 绕着一条定直线(常常是坐标轴,也有可能是特殊直线)旋转一周形成的曲面的方程为,他的求解步骤是什么

15.3 多元函数微分学的几何应用

- 1. 现有空间曲线 Γ 由参数方程 $\left\{ \begin{array}{l} x=\varphi(t) \\ y=\psi(t) \end{array} \right.$ 要求 $z=\omega(t)$
 - (a) 曲线 Γ 在 $P_0(x_0, y_0, z_0)$ 处的切向量为
 - (b) 曲线 Γ 在 $P_0(x_0, y_0, z_0)$ 处的切线方程为
 - (c) 曲线 Γ 在 $P_0(x_0, y_0, z_0)$ 处的法平面为
- 2. 假设曲面 Σ 由 F(x, y, z) = 0 给出, $P_0(x_0, y_0, z_0)$ 为 Σ 上的点,问 Σ 在 P_0 上的法向量为,切平面 方程为
- 3. 假设曲面 Σ 由 z=f(x,y) 给出, $P_0(x_0,y_0,z_0)$ 为 Σ 上的点,问 Σ 在 P_0 上的法向量为,切平面方程为

15.4 场论初步

- 1. u = u(x, y, z) 在点 P_0 处沿方向 \vec{l} 的方向导数为
- 2. u = u(x, y, z) 在点 P_0 处的梯度为
- 3. 设 A(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)) 求他的散度和旋度为

16 三重积分、曲线曲面积分(数学一)

16.1 三重积分

- 1. 普通对称性和轮换对称性
- 2. 三重积分计算的几种方法
 - (a) 先一后二法: 适用于什么
 - (b) 先二后一法: 适用于什么
 - (c) 柱面坐标系(定积分 + 极坐标下的二重积分)
 - (d) 球面坐标系,有下面两个要注意

i.
$$\begin{cases} x = \\ y = \\ z = \end{cases}$$
 ii.
$$\iiint\limits_{\Omega} f(x,y,z) \, dx dy dz = \end{cases}$$

$$3. \iint_{\Omega} x \, dv =$$

16.2 第一型曲线积分的概念、性质与对称性

- 1. 普通对称性和轮换对称性
- 2. 第一型曲线积分的计算
 - (a) 平面曲线 L 为 y = y(x) 求 $\int_L f(x,y) ds =$

(b) 平面曲线
$$L$$
 为
$$\left\{ \begin{array}{ll} x=x(t) & \\ y=y(t) \end{array} \right.$$
 求 $\int_L f(x,y)\,ds=$

- (c) 平面曲线 L 为 $r = r(\theta)$ 求 $\int_L f(x, y) ds =$
- 3. $\int_{\Gamma} x \, ds =$

16.3 第一型曲面积分的概念、性质和对称性

- 1. 普通对称性和轮换对称性
- 2. 第一型曲面积分的计算

(a) 曲面方程
$$z=z(x,y),$$
 求 $\iint\limits_{\Sigma}f(x,y,z)dS=$

(b) 曲面方程
$$F(x,y,z)=0$$
, 求 $\iint\limits_{\Sigma}f(x,y,z)dS=$

3.
$$\iint_{\Sigma} x \, dS =$$

16.4 重积分和第一型线面积分的应用

- 1. 对于光滑曲面薄片 \sum ,若 \sum 由单值函数 z=z(x,y) 给出, D_{xy} 为其在 xOy 的投影,那么 \sum 的面积是 A=
- 2. 对于空间物体,体密度为 $\rho(x,y,z)$, ω 是物体所占空间区域,其重心为

$$\bar{x} =$$
 (13)

$$\bar{y} = \tag{14}$$

$$\bar{z} =$$
 (15)

3. 对于空间物体,体密度为 $\rho(x,y,z)$, ω 是物体所占空间区域,计算物体对于 x 轴,y 轴,z 轴和原 点 O 的转动惯量 I_x,I_y,I_z,I_O 分别是

$$I_x = \tag{16}$$

$$I_y = \tag{17}$$

$$I_z = \tag{18}$$

$$I_O = \tag{19}$$

16.5 第二型曲线积分

平面第二型曲线的计算

- 1. 平面有向曲线 L 由参数方程 $\left\{ \begin{array}{l} x=x(t) \\ y=y(t) \end{array} \right.$ 决定,那么 $\int_L P(x,y)\,dx + Q(x,y)\,dy =$
- 2. 格林公式满足的三个条件
- 3. $\oint_L P(x,y) dx + Q(x,y) dy =$
- 4. 当格林公式不满足条件时可以采用补线法和挖去法来满足条件

16.6 第二型曲面积分

1. 高斯公式
$$\iint\limits_{\Sigma} P\,dydz + Q\,dzdx + R\,dxdy =$$

16.7 空间第二型曲线积分

1. 斯托克斯公式 $\oint_l = P dx + Q dy + R dz =$

辨别下列各种积分 16.8

$$\iint_{\Sigma} f(x, y, z) dS = \tag{20}$$

$$\iint\limits_{D} f(x,y) \, d\sigma = \tag{21}$$

$$\int f(x) \, dx = \tag{22}$$

$$\oint_{L} P(x,y) dx + Q(x,y) dy = \tag{23}$$

$$\oint_{l} P \, dx + Q \, dy + R \, dz = \tag{24}$$

$$\iiint_{\Omega} f(x, y, z) dv = \tag{25}$$

$$\int_{I} f(x,y) \, ds = \tag{26}$$

$$\int_{L} f(x,y) ds =$$

$$\iint_{\Sigma} f(x,y,z) dS =$$
(26)