Notebook

January 7, 2019

Contents

1	Jupy	ter Notebooks (with STATA?!)
	1.1	What are Jupyter Notebooks?
	1.2	Under the Hood
	1.3	Extensions
	1.4	Installing Extensions
	1.5	Markdown
	1.6	Showing Math
	1.7	The Stata Kernel
	1.8	Running Code
	1.9	Stata Kernel Magics
	1.10	%browse, %head, %tail
	1.11	%html and %latex
	1.12	%help
		Exporting
	1.14	Using ipypublish to Get Publication Ready PDFs
	1.15	Port-forwarding and setting up Jupyter to work on a server
		Setting up jupyter on a server
		Advanced Techniques
		The Next Frontier 7

1 Jupyter Notebooks (with STATA?!)

1.1 What are Jupyter Notebooks?

- A way to do literate programming
- Provide code and writing/analysis, on a language agnostic platform
 - Meaning that it is not restricted to just one language
 - Currently there are so-called kernels for many languages
 - Including Stata, Python, R, C, Golang, C++, Fortran and more coming!
- Uses the power of Markdown/Latex Math and Code to tell a story and provide an efficient workflow
- Convert into several different formats including Latex, HTML, Presentations etc...
- The Jupyter engine is also available in other text editors such as Atom and VS Code.
- And now available in STATA!

1.2 Under the Hood

- Jupyter Notebooks are written in python and are themselves a JSON document
- Which makes them suited for working on in a browser

1.3 Extensions

- Jupyter can be made to be a full featured IDE (Integrated Development Environment)
- Which really means you can get all kinds of nifty things
 - Autocompletion
 - Multi-cursor support
 - Scratchpad
 - Highlighting a selected word
 - Translation
 - Spellcheck

1.4 Installing Extensions

• In order to do this, we need to go to our conda console and type:

conda install -c conda-forge jupyter_contrib_nbextensions

And restart Jupyter

1.5 Markdown

• Using the same idea as in markstat that Oscar showed you before.

1.6 Showing Math

• It is possible to show math

-
$$y_{it} = \alpha + \beta \cdot X$$

1.7 The Stata Kernel

- This is a relatively new kernel that is implemented by Kyle Barron, Mauricio Cáceres, and other contributors
 - It provides the ability to run code and show graphics, which was previously unavailable for Stata in Jupyter.
- Ironically, even though we are using Stata in these presentations, there are other, free, open-source languages that are just as good (if not more powerful) for which dynamic documents have existed for over a decade.
- As a small nudge towards getting you to try something like R or Python, here's an addendum that Kyle Barron wrote on this State_kernel page:

As an ardent open-source advocate and someone who actively dislikes using Stata, it somewhat pains me that my work creates value for a proprietary, closed-source program. I hope that this program improves research in a utilitarian way, and shows to new users the scope of the open-source tools that have existed for upwards of a decade.

1.8 Running Code

• In this case we will be using the Stata kernel, so we will have Stata running in the background.

(1978 Automob	oile	e Data)					
	•	SS	df	MS	Numl	per of obs	; =
+			F(2 7	71)	_	1/1 7/1	
		186321280					=
0.0000	•						
		448744116	71	6320339.6	7 R-sc	quared	=
0.2934			A 4 4 D		0	0725	
+Total		635065396					=
nnica	1	Coef.	C+d Enn	_	D > l + l	[OE% C	lanf
Intervall			Sta. Eff.	L	P>	[95% (,0111.
+							
weight		1.746559	.6413538	2.72	0.008	.4677	36
3.025382		10 51000	00 45004	0 57	0 507	004 004	0.5
mpg 122.278	I	-49.51222	86.15604	-0.57	0.567	-221.30	25
	1	1946.069	3597.05	0.54	0.590	-5226.2	45
9118.382							
(+2 -+ 1)							
(est3 stored))						
Source	1	SS	df	MS	Numl	per of obs	=
74							
+			F(3, 7	70)	=	23.29	

Model 0.0000	I	317252881	3	105750960	Prob	> F =	
Residual 0.4996		317812515	70	4540178.78	R-sq	uared =	
+			Adi R	-squared	= 0.	4781	
Total	1	635065396	73	8699525.97	Root	MSE =	_
Interval]				t	P> t	[95% Conf.	
_		3.464706		5.49	0.000	2.206717	
4.722695		0.4 0.500	- 444				
mpg 169.883	ı	21.8536	74.22114	0.29	0.769	-126.1758	
foreign 5037.212	I	3673.06	683.9783	5.37	0.000	2308.909	
_cons		-5853.696				-12588.88	
881.4934							-
(est4 stored))						

1.9 Stata Kernel Magics

- Many Jupyter kernels have something called magics
 - A way to make certain actions easy without having to write too much code
 - Stata has some magics that make things a little easier

1.10 %browse, %head, %tail

• This has the ability to choose varlist, the number of observations and with if statements as well

1.11 %html and %latex

• This allows the rendering of table during export into html or latex, as well as rendering in the notebook (with HTML only)

Table 1.1: A table

	(1)	(2)	(3)	(4)
	price	price	price	price
weight	1.747**	3.465***	1.747**	3.465***
	(2.72)	(5.49)	(2.72)	(5.49)
mpg	-49.51	21.85	-49.51	21.85
	(-0.57)	(0.29)	(-0.57)	(0.29)
foreign		3673.1***		3673.1***
		(5.37)		(5.37)
_cons	1946.1	-5853.7	1946.1	-5853.7
	(0.54)	(-1.73)	(0.54)	(-1.73)
N	74	74	74	74
t statistics in parentheses				
* <i>p</i> < 0.05, ** <i>p</i> < 0.01, *** <i>p</i> < 0.001				

1.12 %help

• You can use this to get a help file

Table 1.2: A regression table or something

	(1)		
	price		
mpg	-49.51		
	(-0.57)		
weight	1.747**		
	(2.72)		
_cons	1946.1		
	(0.54)		
N	74		
t statistics in parentheses			
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$			

Figure 1.1: A scatter plot

1.13 Exporting

1.14 Using ipypublish to Get Publication Ready PDFs

- ipypublish is a utility developed for Jupyter Notebooks to make nice looking documents
- To get this working, we need to use pip
 - In the conda console, type pip install ipypublish
 - Hopefully it'll work
- Doing this requires playing with the JSON code of a cell itself (called the metadata).
- This allows a subsequent PDF output to be processed through latex, without any code cells and with figure and table environments.

1.15 Port-forwarding and setting up Jupyter to work on a server

- Many people might have servers in their universities/organizations that are more powerful than a laptop.
- Jupyter allows the ability to run a notebook locally (on your laptop screen), but using the power of the server.
 - This requires jupyter being installed on the server
 - This isn't a difficult thing to do for a sysadmin, so it's worth finding out whether that's possible

1.16 Setting up jupyter on a server

• The first thing you need to do is log on to the server and start a jupyter instance:

jupyter notebook --no-browser --port=8888

- This tells the server to start an instance of jupyter, without a browser (we won't need it, nor can a server open up a browser window), in port 8888 (this will be important later)
- For Mac users, you can use ssh to finish the process. Just type: ssh username@host -L 8888:localhost:8888
- Which will forward your computer 8888 port, to the server's 8888 port.
- For Windows, ssh also exists, but you will need to enable it.
 - head to Settings > Apps and click "Manage optional features" under Apps & features.
 - Click Add a Feature, and find OpenSSH
- Then use the same command as for Macs: ssh username@host -L 8888:localhost:8888
- Then go to your browser:
 - localhost: 8888 and you should be taken to a Jupyter page and prompted for a token.
 - You can find this token in the window where you started Jupyter on the server
 - * Copy and paste this token into the prompt, and VOILA!
- Now you have Jupyter running on your computer's browser window, but with the power of the server!

1.17 Advanced Techniques

- Jinja Templates
 - Allows the control of how a notebook is exported using the Jinja templating language
- Downloading new kernals (R, Python)
 - All the above applies (with even more features with Python)

1.18 The Next Frontier

- Although Jupyter Notebooks are very popular and much science has been done with them (including an economics textbook: more here)
- the next generation Jupyter is Jupyter Lab, while allows extensions to be made better, and for the environment to be even better for data analysis.