Fractal

Hill (2nd Edition): 9.1 to 9.3, 9.6

Extra Resource:

- 1. https://fractalfoundation.org/fractivities/FractalPacks-EducatorsGuide.pdf
- 2. https://math.bu.edu/DYSYS/chaos-game/node6.html

Introduction to Fractal

- Self Similarity
 - They appear the same at every scale, no matter how much enlarged.

Introduction to Fractal

- Infinite length within a finite region
- Different fractals
 - Koch Curve
 - Koch Snowflake
 - Dragon Curve
 - Hilbert Curve
- Implemented using recursive functions

Introduction to Fractal

• Application:

- Simulating Clouds, ferns, coastlines, mountains, veins, nerves, parotid gland ducts, etc. all possess these features
- Fractal geometry is useful for all sorts of things from biology to physics, to cosmology, to even the stock market
- Fractal math is involved in JPG, MP3, MPG and other digital compression

Koch Curve

- k_0 (0-th generation)
- k_1 (1st generation)
- k₂ (2nd generation)
- k₃ (3rd generation)
- k₄ (4th generation)

Koch Curve

- Initial line: k_o
 - horizontal line having unit length
- 1st generation: k₁
 - divide k_o in three equal parts
 - replace the middle section with triangular bump each side having length 1/3
- 2nd generation: k₂
 - repeat the process for each of the four line segments

Drawing Koch Curve

• k₂ consists of four k₁'s

- To draw k₂
 - Draw a smaller version of k₁
 - Turn left 60°, and again draw a smaller version of k₁
 - Turn right 120°, and again draw a smaller version of k₁
 - Turn left 60°, and again draw a smaller version of k₁

Recursive!

Drawing Koch Curve

• n-th generation consists of four versions of (n-1)-th generation

To draw k_n :

if n = 0: Draw a straight line

else:

Draw k_{n-1}

Turn left 60°

Draw k_{n-1}

Turn right 120°

Draw k_{n-1}

Turn left 60°

Draw k_{n-1}

Length =
$$(4/3)^2$$

Length of Koch Curve

- Length of curve for k_n is $(4/3)^n$ How?
 - Length of $k_0 = 1$
 - Length of $k_1 = 4 \times 1/3 = 4/3$
 - Length of $k_2 = 4 (4 \times (1/3)/3) = 4^2(1/3)^2$
 - Length of $k_3 = 4^3(1/3)^3$

- Length of $k_i = 4^i(1/3)^i = (4/3)^i$ if i tends to infinity, length tends to infinity Length = 1

Length = (4/3)

 $Length = (4/3)^2$

Length of Koch Curve

- A line of length L is koched
 - k_o has length L instead of unit length

Length of Koch Curve

• A line of length L is koched

Length of k_n = $L (4/3)^n$

Koch Snowflake

• Starts with three koch curves joined together

Perimeter of Koch Snowflake

• Perimeter of koch snowflake curve of i^{th} generation S_i is three times the length of a simple koch curve

Perimeter $= 3 \times 1$

Perimeter= $3 \times (4/3)$

Perimeter= $3 \times (4/3)^2$

Perimeter of Koch Snowflake

• Perimeter of koch snowflake curve of i^{th} generation S_i is three times the length of a simple koch curve:

Perimeter of $S_i = 3$ x length of $k_i = 3 (4/3)^i$

• As i increases, perimeter increases, boundary becomes rougher

But the area remains bounded!

Number of Sides of Koch Snowflake

• How many sides at generation n?

$$-n_0 = 3$$

$$-n_1 = 4 \times n_0 (=12)$$

$$- n_2 = 4 \times n_1 = 4 \times 4 \times n_0 = 4^2 n_0$$

$$- n_3 = 4^3 n_0$$

• • •

. . .

$$-n_n = 4^n n_0 = 3 \times 4^n$$

Size of the Sides of Koch Snowflake

- Size of sides at iteration n?
- $S_n = 1/3^n$ (formula from koch curve) or $L/3^n$
- Perimeter of Koch Snowflake at iteration n:

$$S_n \times n_n = (1/3^n) \times (3 \times 4^n)$$

or $(L/3^n) \times (3 \times 4^n)$
 $= 3L(4/3)^n$

- Area of $S_0 = a_0$
- Area of $S_1 = a_0 + 3(a_0/9)$ = $a_0 + a_0/3$ = $a_0(1+1/3)$

• How do we get area of S_n ?

In each iteration a new bump/triangle is added at each

side of previous iteration

- For S₁,
 - # of new triangles
 - = # of sides in S_0
 - $= n_0 = 3$
- For S₂,
 - # of new triangles
 - = # of sides in S_1 ,
 - $= n_1 = 3 \times 4$

- For S_n ,
 - # of new triangles
 - = # of sides in S_{n-1} ,
 - $= n_{n-1} = 3 \times 4^{n-1}$
 - New area included = n_{n-1} x size of new bump/triangle

• How do we get the size of each of the new bumps/triangles at n-th generation? S_2

- Area of each small bump in S_1 = $a_0 / 9$
- Area of each small bump in S_2 = $a_0 / 9^2$
- Area of each small bump in S_3 = $a_0 / 9^3$
 - • •
- Area of each small bump in S_n = $a_0 / 9^n$

- For S_n ,
 - # of new triangles
 - = # of sides in S_{n-1} ,
 - $= n_{n-1} = 3 \times 4^{n-1}$
 - New area included
 - $= n_{n-1} x \text{ size of new bump/triangle}$
 - $= n_{n-1} \times S_n$
 - $= (3 \times 4^{n-1}) (a_0 / 9^n)$
 - $= a_0 (3/4) (4/9)^n$

- Total area of $S_1 = a_1$ = Total area of S_0 + New area for S_1 = $a_0 + a_0(3/4) (4/9)^1$
- Total area of $S_2 = a_2$ = Total area of S_1 + New area for S_2 = $a_1 + a_0(3/4) (4/9)^2$ = $a_0 + a_0(3/4) (4/9)^1 + a_0(3/4) (4/9)^2$

. . .

• Total area of $S_n = a_n$ = $a_{n-1} + a_0(3/4) (4/9)^n$ = $a_0 + a_0(3/4) ((4/9)^1 + (4/9)^2 + ... + (4/9)^n)$ = $a_0/5 (8 - 3(4/9)^n)$

Dragon Curve

• Starting from a base segment, replace each segment by 2 segments with a right angle and with a rotation of 45° alternatively to the right and to the left.

Dragon Curve

- Length
 - Gen 0: L; Gen 1: 2 x (L/ $\sqrt{2}$) = $\sqrt{2}$ L; Gen 2: 2 x (2 x (L/ $\sqrt{2}$)/ $\sqrt{2}$)

$$= L (2 \times 2 / 2) = 2 L;$$

Gen. 0 —

... Gen n: $(\sqrt{2})^n$ L

Gen. 1

Gen. 3

Gen. 2

Gen. 4

Hilbert Curve

Hilbert proved that, as the order tends to infinity, the infinitely thin, continuous line of the curve passes *through every point of the unit square*.

- Fractals have infinite length but occupied in finite region
- Lets apply this concept for simple line, square, and cube.
- A straight line having unit length is divided into N equal segments, then length of each side is r = 1/N
- A square having unit length sides, divided into N equal squares, then side of each small squares is $r = 1/(N)^{1/2}$

• Similarly, a cube having unit length sides if divided into N equal cubes, then each side will have length $r = 1/(N)^{1/3}$

- $r = 1/N^{1/D}$
- $N^{1/D} = 1/r$
- $\log N^{1/D} = \log (1/r)$
- $(1/D) \log N = \log (1/r)$
- $D = \log N / \log (1/r)$

Koch Curve:

 k_0 to $k_1 \rightarrow$ the base segment is divided into N = 4 equal segments each having length r = 1/3

So dimension is D = $\log N / \log (1/r) = \log 4 / \log (3) = 1.26$

Quadratic Koch Curve:

 Q_0 to $Q_1 \rightarrow$ the base segment is divided into N = 8 equal segments each having length r = 1/4

So dimension is D

$$= \log N / \log (1/r)$$

$$= \log 8 / \log (4) = 1.5$$

1

Dragon Curve:

 d_0 to $d_1 \rightarrow$ the base segment is divided into N = 2 equal segments each having length $\mathbf{r} = 1/2^{1/2}$

So dimension is D = $\log N / \log (1/r) = \log 2 / \log (2^{1/2})$ = 2 \rightarrow dimension of square!

So what we have learned?

- Koch curve has dimension 1.26
- Quadratic koch curve has dimension 1.5
- Dragon curve has dimension 2

Peano Curves

- Fractal curves that have dimension 2 are called **Peano** curves
 - Dragon curve
 - Gosper curve
 - Hilbert curve

String Production Rule to Draw Fractals

- The pseudocode can be converted to a set of String Production Rules (L-System)
- Koch Curve

$$F \rightarrow F - F + + F - F$$

F = go forward

- = turn left through angle A degrees [A = 60]
- + = turn right through angle A degrees [A = 60]

String Production Rule to Draw Fractals

• Koch Curve:
$$F \rightarrow F - F + F - F$$

$$F \rightarrow F - F + F - F$$

$$= \frac{60}{60}$$

This gives us first generation

•
$$k_1 = F - F + F - F$$

Replacing each F with same rules gives k₂

•
$$k_2 = (F - F + + F - F) - (F - F + + F - F) + (F - F + + F - F) - (F - F + + F - F)$$

Applying repeatedly gives latter generations

String Production Rule to Draw Fractals

This technique is called Iterated Function System (IFS)

 A string is repeatedly fed back into the same function to produce the next higher order object

Allowing Branching

- String production rule with special symbol for saving current state and restore to saved state
- Current State
 - Current position, CP
 - Current direction, CD
- Saving current state: [
- Restore the last saved state:]
- Implementation: Using Stack
 - Save state: Push
 - Restore last saved state: Pop

Allowing Branching

• Example: Fractal Tree

•
$$F \rightarrow \text{"FF} - [-F + F + F] + [+F - F - F]$$
"

- Atom: F
- Angle A: 22°

Replace each **F** by the same rule

Saved State, Current State =

 P_1, D_1

 \emptyset , P_1

 P_2, D_2

 \emptyset , P_2

Thank you ©