Topic: Functions and transformations

Question: The transformation T maps every vector in \mathbb{R}^2 to every vector in \mathbb{R}^3 . What are the domain, codomain, and range of T?

Answer choices:

- A The domain is \mathbb{R}^2 , the codomain is \mathbb{R}^2 , and the range is \mathbb{R}^2
- B The domain is \mathbb{R}^3 , the codomain is \mathbb{R}^3 , and the range is \mathbb{R}^3
- C The domain is \mathbb{R}^2 , the codomain is \mathbb{R}^3 , and the range is \mathbb{R}^3
- D The domain is \mathbb{R}^2 , the codomain is \mathbb{R}^3 , and the range is \mathbb{R}^2

Solution: C

The domain is the space T is mapping from, so the domain is \mathbb{R}^2 .

The codomain is the space T is mapping to, so the codomain is \mathbb{R}^3 .

The range is the specific set of vectors within the codomain that are being mapped to. Because every vector in \mathbb{R}^3 is being mapped to, the range is \mathbb{R}^3 .

Topic: Functions and transformations

Question: The transformation T maps every vector in \mathbb{R}^4 to the zero vector \overrightarrow{O} in \mathbb{R}^2 . What are the domain, codomain, and range of T?

Answer choices:

- A The domain is \mathbb{R}^4 , the codomain is \mathbb{R}^2 , and the range is $\overrightarrow{v} = (0,0)$
- B The domain is \mathbb{R}^2 , the codomain is \mathbb{R}^4 , and the range is $\overrightarrow{v} = (0,0)$
- C The domain is \mathbb{R}^4 , the codomain is $\overrightarrow{v} = (0,0)$, and the range is \mathbb{R}^2
- D The domain is \mathbb{R}^2 , the codomain is $\overrightarrow{v} = (0,0)$, and the range is \mathbb{R}^4

Solution: A

The domain is the space T is mapping from, so the domain is \mathbb{R}^4 .

The codomain is the space T is mapping to, so the codomain is \mathbb{R}^2 .

The range is the specific set of vectors within the codomain that are being mapped to, so the range is $\vec{v} = (0,0)$.

Topic: Functions and transformations

Question: The transformation T maps $\overrightarrow{a} = (1,2,-4)$ to $\overrightarrow{b} = (-3,0,4)$. What are the domain, codomain, and range of T?

Answer choices:

- A The domain is \mathbb{R}^3 , the codomain is $\overrightarrow{a} = (1,2,-4)$, and the range is \mathbb{R}^3
- B The domain is \mathbb{R}^3 , the codomain is \mathbb{R}^3 , and the range is $\overrightarrow{a} = (1,2,-4)$
- C The domain is \mathbb{R}^3 , the codomain is $\overrightarrow{b} = (-3,0,4)$, and the range is \mathbb{R}^3
- D The domain is \mathbb{R}^3 , the codomain is \mathbb{R}^3 , and the range is $\overrightarrow{b} = (-3,0,4)$

Solution: D

The domain is the space T is mapping from, so the domain is \mathbb{R}^3 .

The codomain is the space T is mapping to, so the codomain is \mathbb{R}^3 .

The range is the specific set of vectors within the codomain that are being mapped to, so the range is $\overrightarrow{b} = (-3,0,4)$.

