目次

第1章	Brown 運動	2
1.1	定義と構成	2
1.2	Laplace 作用素	2
第2章	確率積分	3
第3章	確率微分方程式	4
3.1	概観	
	3.1.1 最適輸送理論	4
	3.1.2 移流方程式	4
	3.1.3 Brown 運動が定める確率ベクトル場	5
	3.1.4 確率微分方程式	5
第4章	無限次元確率微分方程式	7
参考文献		8

第1章

Brown 運動

記法 1.0.1. 正整数 $k, n \ge 1$ について,

- (1) $C^k_{\mathsf{b}}(\mathbb{R}^n)$ で, C^k -級で,任意の k 階以下の偏導関数は有界である関数の空間とする.
- (2) $C_0^k(\mathbb{R}^n):=C_c(\mathbb{R}^n)\cap C_b^k(\mathbb{R}^n)$ とする.
- (3) $C_p^\infty(\mathbb{R}^n)$ は滑らかな関数で,任意の偏導関数は高々多項式の速度で増加する関数の空間とする.
- (4) $C_b^\infty(\mathbb{R}^n):=C_p^\infty(\mathbb{R}^n)\cap\bigcap C_b^k(\mathbb{R}^n)$ とする .
- (5) $C_0^\infty(\mathbb{R}^n):=C^\infty(\mathbb{R}^n)\cap \overset{k\in\mathbb{N}}{C_c}(\mathbb{R}^n)$ とする .

1.1 定義と構成

構成のアイデアは複数ある.

- (1) [0,1] 上に構成してから, Kolmogorov の拡張定理で ℝ 上に延長する.
- (2) \mathbb{R}^n 上の正規分布を拡張する.
- (3) 酔歩をスケーリングする.

定義 1.1.1 (skelton / Cameron-Martin subspace).

$$H:=\left\{w(t)=\int_0^t h(x)dx\in C_{(0)}([0,1])\;\middle|\; h\in L^2([0,1],dx)\right\}$$

と定めると,これは内積 $(f_1,f_2):=\int_0^1 h_1h_2dx$ について Hilbert 空間となる.これを W_0 の骨格,または Cameron-Martin 部分空間という.

1.2 Laplace 作用素

 $P_t[f(x)]=E[f(x+B_t)]$ をおくことにより, $\{P_t\}_{t\in\mathbb{R}_+}$ は $C_0(\mathbb{R})$ 上で Hille-吉田の意味での強連続半群となり,その生成作用素 $\lim_{t\to 0}rac{P_t-I}{t}=rac{
abla}{2}$ が Laplace 作用素である.I は恒等作用素とした.

第2章

確率積分

確率論ははじめから偏微分方程式論と密接に関係していたことを思うと,確率論自体が測度論で基礎付けられることは自然であった.さらに,確率積分なる概念も自然に定義できるはずである.

Brown 運動 B_t は微分可能ではないし,有界変動にもならないので,Stieltjes 積分としては定義できる道はない.連鎖律は伊藤の公式と呼び,微分は出来ないから積分の言葉で定式化される.余分な右辺第3項が特徴である.

第3章

確率微分方程式

元々 Markov 過程論から純粋に数学的に生じた問題意識の解決のために確率微分方程式が開発された。しかし、確率論的な現象は自然界にありふれている。常微分方程式の定める流れに沿って輸送された物理量は、移流方程式と呼ばれる1階の偏微分方程式を満たす。Brown 運動に沿って輸送された物理量(熱など)は、熱伝導方程式・拡散方程式と呼ばれる2階の偏微分方程式を満たす。この対応関係は確率微分方程式を導入することでさらに一般化され、2階の放物型・楕円形の偏微分方程式の解を確率的に表示することが出来るようになる。こうして、確率微分方程式は、ポテンシャル論・偏微分方程式論や微分幾何学との架け橋になる。

Brown 運動は,空間的に一様な確率場での積分曲線だと思えば,さらに一般に空間的な一様性の仮定を取った場合が確率 微分方程式であり,これは Brown 運動の変形として得られるというのが伊藤清のアイデアである.

3.1 概観

3.1.1 最適輸送理論

定義 3.1.1.

3.1.2 移流方程式

Brown 運動は、位置を忘れて粒子の視点から見た、確率ベクトル場から受ける「流れ」だと理解できる.したがってその背景には確率ベクトル場がある.

定義 3.1.2 (advection, 時間的に一様なベクトル場による輸送方程式).

- (1) 物理量のスカラー場や物質がベクトル場によって輸送されること・経時変化することを,移流という.
- (2) 定ベクトル $b=(b^1,b^2)\in\mathbb{R}^2$ が定める空間一様な移流に関する初期値問題 u=u(t,x) は,

$$\frac{\partial u}{\partial t} + b \cdot \nabla u = 0, \quad (t > 0, x = (x^1, x^2) \in \mathbb{R}^2),$$

$$u(0, x) = f(x) \in C^1(\mathbb{R}^2).$$

と表される.このとき, $X_t(x):=x-bt$ は,時刻 t に x に居る粒子が,時刻 0 にどこにいたかを表す.よって,初期状態として与えられた物理量 $f:\mathbb{R}^2\to\mathbb{R}$ を用いて,時刻 t に位置 $x\in\mathbb{R}^2$ で観測される物理量は $f(X_t(x))$ で表される.これは大数の法則に物理的な意味論を与える??.

議論 3.1.3 (変数係数の移流問題). ベクトル場 $b=b(t,x):\mathbb{R}\times\mathbb{R}^2\to\mathbb{R}^2$ に対して,方程式

$$\frac{\partial u}{\partial t} + b(t, x) \cdot \nabla u = 0 \quad (t > 0, x \in \mathbb{R}^2)$$

を考える. $y\in\mathbb{R}^2$ から出発した粒子の位置を表す変数 $Y_t\in\mathbb{R}^2$ を固定して , そこでの時間変化を表す常微分方程式に関する初期値

問題 $\dot{Y}_t = b(t, Y_t)$ $(t \in \mathbb{R}_+)$; $Y_0 = y \in \mathbb{R}^2$ を考える. すると,解u(t, x) は次を満たす必要がある:

$$\frac{\partial}{\partial u} (u(t, Y_t(y))) = \frac{\partial u}{\partial t} (t, Y_t(y)) + \dot{Y}_t(y) \cdot \nabla u(t, Y_t(y))$$
$$= \left(\frac{\partial u}{\partial t} + b \cdot \nabla u \right) (t, Y_t(y)) = 0.$$

よって, $u(t,Y_t(y))=u(0,Y_0(y))=f(y)$ なる第一積分が見つかったことになる.

こうして元の偏微分方程式は, $y\in\mathbb{R}^2$ に居た粒子が受けることになる流れ Y_t に沿った輸送を記述する方程式であったと理解できる.または,ベクトル場による移流方程式とは,ある移流 Y_t の第一積分が満たすべき方程式とも見れる \dot{z}^{t}

注 3.1.4 (2 つの関連). いま, $Y_t:\mathbb{R}^2\times\mathbb{R}_+\to\mathbb{R}^2$ は,各 $y\in\mathbb{R}^2$ に対して,これが受けることになる力の時系列 $Y_t(y)$ を与えている.これが可逆であるとする: $X_t:=Y_t^{-1}:\mathbb{R}^2\to\mathbb{R}^2$.すると,出発点 y が t 時刻にいる位置 x について, $y=X_t(x)$ と辿る確率過程になる.これは解について $u(t,x)=f(X_t(x))$ なる表示を与える.

ベクトル場が時間に依存しないとき, Y_t は可逆であり,逆 X_t は常微分方程式 $\dot{X}_t = -b(X_t)$, $X_0 = x$ を満たす.定数係数の場合は,これを解いたものと見れるから,たしかに一般化となっている.

3.1.3 Brown 運動が定める確率ベクトル場

移流方程式は,時間変化するベクトル場 $\mathbb{R}_+ \to \mathrm{Map}(\mathbb{R}^2,\mathbb{R}^2)$ による物理量の輸送を考えた.もし,ベクトル場が確率的であったら?前節の例はひとつの見本道に過ぎないとしたら?すなわち,前節ではスタート地点 $y \in \mathbb{R}^2$ を根源事象とみて,時間変化するベクトル場を確率過程と見たが,ここに新たにランダム性の発生源を加えるのである.

3.1.4 確率微分方程式

例 3.1.5 (空間的に一様な場合)。 $b\in\mathbb{R}^2$, $\alpha=(\alpha_k^i)_{i,k\in[2]}$ が定める確率過程 $X_t(x):=x-\alpha B_t-bt$ $(t\in\mathbb{R}_+,x\in\mathbb{R}^2)$ を考える X_t は,定数係数ベクトル場による輸送と,Brown 運動とを合成した運動に他ならない.実際,仮に B_t が t について微分可能であるならば, $\dot{X}_t=-\alpha\dot{B}_t-b$ となるから,時間発展するベクトル場 $-\alpha\dot{B}_t-b$ による移流であると考えられる. α が Brown 運動の強さと歪みの情報を含んでいる.ただし,Brown 運動の時刻 t における $y\in\mathbb{R}^2$ に関する分布は

$$P[B_t \in dy] = p(t, y)dy := \frac{1}{2\pi t} e^{-|y|^2/2t} dy$$

と表せる.

すると, X_t による輸送の平均値を

$$u(t,x) := E[f(X_t(x))]$$

とおけば,これは

$$q(t,x,z) := \frac{1}{2\pi t |\det \alpha|} \exp\left(-\frac{|\alpha^{-1}(z-x+bt)|^2}{2t}\right)$$

とおくことで

$$u(t,x) = \int_{\mathbb{R}^2} f(x - al - bt)p(t,y)$$
$$= \int_{\mathbb{R}^2} f(z)q(t,x,z)dz.$$

と整理出来る.これは熱伝導方程式と呼ばれる放物型方程式の一般解であり,q(t,x,z)が一般解と呼ばれるものである:

$$\frac{\partial u}{\partial t} = \frac{1}{2} \sum_{i,j=1}^{2} a^{ij} \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}} - b \cdot \nabla u, \quad (t > 0, x \in \mathbb{R}^{2}).$$

^{†1} これが Kolmogorov が発見したものだった?

例 $\mathbf{3.1.6}$ (変数係数の場合). α, b が共に $x \in \mathbb{R}^2$ に依存する場合,任意の t>0 について,常微分方程式

$$\dot{X}_t = \alpha(X_t)\dot{B}_t + b(X_t) \quad (X_0 = x \in \mathbb{R}^2)$$

を考えたい、しかし B_t は微分可能でないから,積分形で代わりに表現することを考える.すなわち, $\dot{B}_s ds = \frac{dB_s}{ds} ds = dB_s$ とし,この右辺を定義することを考える.

$$X_t = x + \int_0^t t\alpha(X_s)dB_s + \int_0^t b(X_s)ds.$$

すると次の問題は,右辺第2項がStieltjesの意味での積分として定義することは出来なN. B_t は有界変動でなNので,線積分の発想はお門違Nである.これは確率論的な考察で乗り越えることが出来る.

この確率微分方程式の解 X_t を求めれば,平均値u(t,x)は放物型偏微分方程式

$$\frac{\partial u}{\partial t} = \frac{1}{2} \sum_{i,j=1}^{2} \alpha^{ij}(x) \frac{\partial^{2} u}{\partial x^{i} \partial x^{j}} + b(x) \cdot \nabla u \quad (t > 0, x \in \mathbb{R}^{2}, \alpha(x) := \alpha(x)^{t} \alpha(x))$$

を満たすことになる.これはいわば,確率過程 X_t から得られる平均処置効果のような統計量の 1 つが,偏微分方程式で記述される物理法則を満たすということに過ぎない. X_t は非常に豊かな情報を湛えていて,偏微分方程式はその 1 断面に過ぎないと言えるだろう.

第4章

無限次元確率微分方程式

確率微分方程式はランダムなゆらぎを持つ常微分方程式であるから,同様にランダムなゆらぎを持つ偏微分方程式に当たる概念も自然に現れるはずである.

参考文献