ok of Abstract Alge	bra (2nd E	dition)
Chapter AB, Problem 15E	Bookmark	Show all steps: ON
Р	roblem	
Prove that the following are true for any integer $a \cdot \text{lcm}(b, c) = \text{lcm}(ab, ac)$.	ers a, b, and c:	
Step-by	-step solution	
Ste	p 1 of 3	
Objective:-		
The objective is to prove $a \cdot lcm(b,c) = lcm(a)$	ab,ac).	
Comment		
Ste	p 2 of 3	
Proof:-		
Let us suppose $\gcd(b,c)=t$.		
Let us consider the theorem.		
Theorem:- Any two nonzero integers r and s is Moreover, t is equal to a "Linear combination"	• • •	reatest common divisor t ,
t = kr + ls for some integer k and l		
According to this definition:-		
t = mb + nc for some integer m and n	(1)	
Let us multiply by a both sides.		
ta = mba + nca for some integer m and	! n	

ta = mab + nac for some integer m and n

Thus, according to the definition ta is greatest common divisor of ab and ac.

$\gcd(ab,ac) = at \qquad \dots (2)$	
-------------------------------------	--

Comment

Step 3 of 3

Let us consider the theorem.

Theorem:-If p and q are two integers with greatest common divisor $\gcd(p,q)$ and least common multiple lcm(p,q), then

$$p \times q = \gcd(p,q) \times lcm(p,q)$$

According to this theorem:-

$$b \times c = \gcd(b,c) \times lcm(b,c)$$

$$b \times c = t \times lcm(b,c)$$
(3)

And,

$$ab \times ac = at \times lcm(ab, ac)$$
(4)

Let us divide the equation (3) by (4)

$$\frac{b \times c}{ab \times ac} = \frac{t \times lcm(b,c)}{at \times lcm(ab,ac)}$$

$$\frac{(b \times c)}{a^2(b \times c)} = \frac{f \times lcm(b,c)}{af \times lcm(ab,ac)}$$

$$\frac{1}{a \times a} = \frac{lcm(b,c)}{af \times lcm(ab,ac)}$$

$$\frac{1}{a} = \frac{lcm(b,c)}{lcm(ab,ac)}$$

$$lcm(ab,ac) = a \cdot lcm(b,c)$$

Proved

Comment

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center

COMPANY

Site Map

LEGAL & POLICIES Advertising Choices Cookie Notice **General Policies** Intellectual Property Rights Terms of Use Global Privacy Policy Honor Code Honor Shield

CHEGG PRODUCTS AND SERVICES Cheap Textbooks Chegg Coupon Chegg Play Chegg Study Help College Textbooks eTextbooks Flashcards Learn Chegg Math Solver

Mobile Apps
Sell Textbooks
Solutions Manual
Study 101
Textbook Rental
Used Textbooks
Digital Access Codes
Chegg Money

CHEGG NETWORK CUSTOMER SERVICE EasyBib **Customer Service** Internships.com Give Us Feedback Thinkful Help with eTextbooks Help to use EasyBib Plus Manage Chegg Study Subscription **Return Your Books**

Textbook Return

Policy