Nilesh Survavanshi

Email: nilsuryavanshi46@gmail.com Mobile: +1 9455274828 Address: Austin, Texas, 78736 Portfolio: int-nilesh.github.io/Hello LinkedIn: linkedin.com/in/nilesh-suryavanshi

Summary: Seeking Internship/Full-Time opportunity in silicon verification, validation, and Design for Testability(DFT).

EDUCATION

The University of Texas at Dallas, TX, USA

Graduating May 2025

Master of Science, Computer Engineering

GPA 3.741/4

Coursework: VLSI Design, Computer Architecture, Machine Learning, Testing and Testable Design (DFT), Advance Digital Logic, Design and Analysis of Reconfigurable System, Microprocessor and Embedded Systems, Functional Verification.

University Of Mumbai, India

August 2013 - May 2017

Bachelor of Engineering, Instrumentation

CGPA 8.55/10

TECHNICAL SKILLS AND CERTIFICATION

Programming Languages: Verilog, SystemVerilog, Python, C, C++

Protocol/Methodologies: AXI, AHB, APB, UVM, Assertion Based Verification, Pytorch, Scikit-learn, Static Timing Analysis (STA), Clock Domain Crossing (CDC), Git, Jira, Linux.

Tools: Synopsys (DesignVision, VCS, PrimeTime, HSPICE, WaveView, TetraMAX), Cadence (Virtuoso, Innovus), QuestaSim, Xilinx (Vivado), Intel (Quartus Prime), MATLAB.

Cadence Certifications: Basic Static Timing Analysis (01/2024 - Present), RTL-to-GDSII Flow (3/2024 - Present)

ACADEMIC PROJECTS

UVM-Based Verification of RISC-V Pipeline Stages (SystemVerilog, UVM)

Summer 2024

- Developed a **UVM-based testbench** to verify the functionality of RISC-V processor pipeline stages.
- Implemented checks for data hazards, forwarding mechanisms, and branch prediction accuracy.
- Created **UVM sequences and assertions** to simulate diverse instruction flows and corner cases, ensuring robust verification.
- Utilized SystemVerilog and UVM methodology to automate tests, perform coverage analysis, and identify functional errors in pipeline stages.

Artificial Neural Networks to Recognize Handwritten Numbers (FPGA, Verilog, Python, C)

Fall 2024

- Wrote C code functioning as high-level system managing user input, accessing MNSIT database, passing neurons to ANN.
- Developed the code for trained model of ANN including the hidden layers and synthesized it to map the design on FPGA.
- Achieved goal of designing a complete HW/SW system, where ANN mapped on the FPGA acted as a Hardware Accelerator.

Performance Analysis of Cache Configuration and Branch Predictors (gem5, Python))

- Assessed effects of cache parameters like associativity, size, block size to determine efficient configuration for minimal CPI.
- Evaluated the effects of parameters like predictor size and branch target buffer on accuracy for multiple **branch predictors**.

Finding Shortest Timing Paths in ISCAS'85 Benchmark Combinational Circuits (C++)

- Developed C++ Script for parsing netlist and extracting critical design parameters like input/output gates, fan-in/fan-out.
- Created the weighted directional graph from input to output with corresponding fan-outs as path delay.
- Implemented Dijkstra's algorithm to find the shortest path between input and output of given circuit with respect to fan-out Fault Analysis on Digital Circuits (DFT, Tetramax) Spring 2024
- Performed Scan insertion using **Design Compiler** and **ATPG** using TetraMax.
- Implemented gate-level circuit to detect **stuck-at-faults** and assess fault coverage.

Standard Cell Library Design (62nm CMOS Technology, Verilog)

Fall 2024

- Created the Schematic and Layout of 13 Standard Cells including D-Flip-Flop in cadence Virtuoso, Performed DRC/LVS/PEX and simulated gates using SPICE to verify functionality.
- Generated liberty files using Synopsys PrimeLib and Place and Route using Cadence INNOVUS
- Performed Static Timing Analysis (STA) using Primetime to obtain the optimal clock for the design.

PROFESSIONAL EXPERIENCE

CE Lab Assistant, University of Texas at Dallas, Richardson, Texas

December 2023 - Present

- Working with a professor to implement HLS designs on FPGAs and explore hardware utilization for optimized solutions.
- Managed circuit board printing machine LPKF S64, Used EasyEDA tools to design the single and double-layer circuits, and updated given circuits according to machine requirements.

Firmware Engineer, Bosch, Bangalore, India

September 2022 – August 2023

- · Led complete Firmware design of cooperative regenerative braking function and incorporate functional safety.
- Integrated, tested and maintained firmware of CRBS ECU to ensure software functionality and performance.
- Created **Python test modules** and scripts to optimize hardware testing processes.

System Engineer, Tata Consultancy Services Limited, Mumbai, India

January 2019 - September 2022

- Led a team of 6 engineers to develop AUTOSAR compliant MATLAB Models using Simulink, Integrated MATLAB models and performed unit testing, functional testing, and static code analysis using Polyspace.
- Onsite coordinator for PFSM ECU, handling everything from model design to deployment and in-betweens.
- Established communication between MATLAB and Blender using Python for 3D model visualization.