Министерство науки и высшего образования Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №4 по дисциплине «Вычислительная математика».

Вариант №1.

Выполнена на синтетическом ассемблере стекового процессора. Только линейная аппроксимация.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3206. Преподаватель: Рыбаков Степан Дмитриевич.

Оглавление

Задание	3
Вычислительная реализация	4
Исходный код программы	5
Результаты работы программы	5
Вывод	7

Задание

Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Исходные данные:

1. Пользователь вводит таблично заданную функцию.

Программная реализация задачи:

- 1. Исходные данные вводятся в файл стандартного ввода
- 2. Сформировать и вывести таблицу значений функции, значений аппроксимации и ее отклонений, коэффициент корреляции и меру отклонения (только линейная аппроксимация).

Вычислительная реализация задачи:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратичные отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Подробные вычисления привести в отчете.

Вычислительная реализация

Функция: $y = \frac{12x}{x^4 + 1}$ на исследуемом интервале $x \in [0, 2]$ h = 0.2

Таблица значений:

Ι	0	1	2	3	4	5	6	7	8	9	10
X	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	2.396	4.680	6.374	6.810	6	4.685	3.470	2.542	1.879	1.412

Линейная аппроксимация:

N = 11

Вычисляем суммы:

SX = 11.0

SY = 40.248

SXX = 15.4

SXY = 38.377

Получаем СЛАУ:

$$\begin{cases} 15.4a + 11b = 38.377 \\ 11a + 11b = 40.248 \end{cases}$$

Решение: a = -0.4252; b = 4.0841

Квадратичная аппроксимация:

N = 11

Вычисляем суммы:

SX = 11.0

SXX = 15.4

SXXX = 24.2

SXXXX = 40.5328

SY = 40.248

SXY = 38.377

SXXY = 45.28876

Получаем СЛАУ:

$$\begin{cases} 11a + 11b + 15.4c = 40.248 \\ 11a + 15.4b + 24.2c = 38.377 \\ 15.4a + 24.2b + 40.5328c = 45.28876 \end{cases}$$

Решение: a = 0.8864; b = 10.234; c = -5.33

Таблица аппроксимации:

I	0	1	2	3	4	5	6	7	8	9	10
X	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Y	0	2.396	4.680	6.374	6.810	6	4.685	3.470	2.542	1.879	1.412
P1	4.0841	3.999	3.914	3.829	3.744	3.659	3.574	3.489	3.404	3.319	3.234
P2	0.886	2.72	4.127	5.108	5.662	5.79	5.492	4.767	3.616	2.038	0.034
E1	4.0841	1.603	-0.77	-2.55	-3.07	-2.34	-1.11	0.019	0.862	1.44	1.822
E2	0.886	0.324	-0.55	-1.26	-1.15	-0.21	0.807	1.297	1.074	0.159	-1.38

Мера отклонения для линейной аппроксимации: 48.5640 Мера отклонения для квадратичной аппроксимации: 9.563287

Принимаем квадратичное приближение.

График: https://www.desmos.com/calculator/msszqbo54z?lang=ru

Исходный код программы

GitHub: https://github.com/Zerumi-ITMO-Related/cmath4_290424_1

Результаты работы программы

```
Ввод:
11
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
2.396
4.680
6.374
6.810
6
4.685
3.470
2.542
1.879
1.412
Вывод:
cmath4 290424 1 by Zerumi
Linear approximation: y = -0.4252x + 4.0841
x | 0.0000 | 0.2000 | 0.4000 | 0.6000 | 0.8000 | 1.0000 | 1.2000 | 1.4000 |
1.6000 | 1.8000 | 2.0000 |
y | 0.0000 | 2.3960 | 4.6800 | 6.3740 | 6.8100 | 6.0000 | 4.6850 | 3.4700 |
2.5420 | 1.8790 | 1.4119 |
p | 4.0841 | 3.9990 | 3.9140 | 3.8290 | 3.7439 | 3.6589 | 3.5738 | 3.4888 |
3.4037 | 3.3187 | 3.2336 |
e | 4.0841 | 1.6030 | -0.7659 | -2.5449 | -3.0660 | -2.3410 | -1.1111 |
0.0188 | 0.8617 | 1.4397 | 1.8216 |
Error measurement: 48.5640
Correlation coefficient: 0.0161
Ввод:
8
1.2
2.9
4.1
5.5
6.7
7.8
9.2
```

```
10.3
7.4
9.5
11.1
12.9
14.6
17.3
18.2
20.7
Вывол:
cmath4 290424 1 by Zerumi
Linear approximation: y = 1.4543x + 5.2910
x | 1.2000 | 2.9000 | 4.1000 | 5.5000 | 6.7000 | 7.8000 | 9.2000 | 10.3000 |
y | 7.4000 | 9.5000 | 11.1000 | 12.9000 | 14.6000 | 17.3000 | 18.2000 |
20.7000
p | 7.0362 | 9.5086 | 11.2538 | 13.2898 | 15.0350 | 16.6348 | 18.6708 |
e | -0.3637 | 0.0086 | 0.1538 | 0.3898 | 0.4350 | -0.6651 | 0.4708 | -0.4293
Error measurement: 1.3458
Correlation coefficient: 0.9908
Ввол:
1.1
2.3
3.7
4.5
5.4
6.8
7.5
2.73
5.12
7.74
8.91
10.59
12.75
13.43
Вывод:
cmath4_290424_1 by Zerumi
Linear approximation: y = 1.6853x + 1.2167
x | 1.1000 | 2.3000 | 3.7000 | 4.5000 | 5.4000 | 6.8000 | 7.5000 |
y | 2.7300 | 5.1200 | 7.7400 | 8.9100 | 10.5900 | 12.7500 | 13.4300 |
p | 3.0707 | 5.0931 | 7.4527 | 8.8010 | 10.3178 | 12.6773 | 13.8571 |
e | 0.3407 | -0.0268 | -0.2872 | -0.1089 | -0.2721 | -0.0726 | 0.4271 |
Error measurement: 0.4730
```

Correlation coefficient: 0.9948

Вывод

Во время выполнения данной лабораторной работы я ознакомился с методом наименьших квадратов для нахождения коэффициентов аппроксимирующей функции по исходным табличным данным. Мною было написано приложение для синтетического стекового процессора, вычисляющее коэффициенты для линейной аппроксимации.