1

Assignment 13

Shaik Zeeshan Ali AI20MTECH11001

This document is about the linear operators which have all the vectors as eigen vectors.

Download all python codes from

https://github.com/Zeeshan-IITH/IITH-EE5609/new/master/codes

and latex-tikz codes from

https://github.com/Zeeshan-IITH/IITH-EE5609

1 PROBLEM

Let **A** be an $n \times n$ matrix over \mathbb{C} such that every non-zero vector \mathbb{C}^n is an eigen vector of **A**. Then

- 1) All eigen values of **A** are equal.
- 2) All eigen values of **A** are distinct.
- 3) $\mathbf{A} = \lambda \mathbf{I}$ for some $\lambda \in \mathbb{C}$, where \mathbf{I} is the $n \times n$ identity matrix.
- 4) If χ_A and m_A denote the characteristic polynomial and the minimal polynomial respectively, then $\chi_A = m_A$

2 CONSTRUCTION

Given	Every non-zero vector \mathbb{C}^n is an eigen vector of \mathbf{A} , where \mathbf{A} is an $n \times n$ matrix over \mathbb{C} .
Determining	Since every vector is an eigen vector, the standard basis vectors are also eigen vectors
A	$\implies \mathbf{A}\mathbf{e_i} = \lambda_i \mathbf{e_i} \implies \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix} \mathbf{e_i} = \lambda_i \mathbf{e_i} \implies a_i = \lambda_i \mathbf{e_i} \text{ where } \lambda_i \in \mathbb{C}$
	therefore $\mathbf{A} = \begin{pmatrix} \lambda_1 \mathbf{e_1} & \lambda_2 \mathbf{e_2} & \dots & \lambda_n \mathbf{e_n} \end{pmatrix}$
	Any vector b can be represented in the standard basis as
	$\mathbf{b} = b_1 \mathbf{e_1} + b_2 \mathbf{e_2} + + b_n \mathbf{e_n}$ where $b_i \in \mathbb{C}$
	As every non-zero vector in \mathbb{C}^n is an eigen vector
	$\mathbf{Ab} = \lambda \mathbf{b} \implies \mathbf{A} (b_1 \mathbf{e_1} + b_2 \mathbf{e_2} + \dots + b_n \mathbf{e_n}) = \lambda (b_1 \mathbf{e_1} + b_2 \mathbf{e_2} + \dots + b_n \mathbf{e_n})$
	$\implies b_1 \lambda_1 \mathbf{e_1} + b_2 \lambda_2 \mathbf{e_2} + \dots + b_n \lambda_n \mathbf{e_n} = \lambda \left(b_1 \mathbf{e_1} + b_2 \mathbf{e_2} + \dots + b_n \mathbf{e_n} \right)$
	$\implies b_1 (\lambda_1 - \lambda) \mathbf{e_1} + b_2 (\lambda_2 - \lambda) \mathbf{e_2} + \dots + b_n (\lambda_n - \lambda) \mathbf{e_n} = 0$
	since basis are linearly independent we get $\lambda_1 = \lambda_2 = = \lambda_n = \lambda$
	Therefore the matrix A is
	$\mathbf{A} = \begin{pmatrix} \lambda_1 \mathbf{e_1} & \lambda_2 \mathbf{e_2} & . & . & \lambda_n \mathbf{e_n} \end{pmatrix} = \lambda \begin{pmatrix} \mathbf{e_1} & \mathbf{e_2} & . & . & \mathbf{e_n} \end{pmatrix} = \lambda \mathbf{I}_n \text{ where } \lambda \in \mathbb{C}$

3 Answers

option 1	Since $\mathbf{A} = \lambda \mathbf{I}_n$, all the eigen values are equal to λ . Therefore option 1 is correct as the
	matrix A is a scalar matrix.
option 2	since the matrix A is a scalar matrix, all the eigen values are equal. So this option
	is incorrect.
option 3	This option is correct. As proved in the construction the matrix $\mathbf{A} = \lambda \mathbf{I}$ for some $\lambda \in \mathbb{C}$
option 4	Since $\mathbf{A} = \lambda \mathbf{I}$ where $\lambda \in \mathbb{C}$, the characteristic polynomial and the minimal polynomial are
	$\chi_{\mathbf{A}} = (x - \lambda)^n$ and $m_{\mathbf{A}} = (x - \lambda) \implies \chi_{\mathbf{A}} = m_{\mathbf{A}}^n$. Therefore this option is incorrect

TABLE 1: Answer

4 Examples

Scalar matrix	Consider a 3×3 scalar matrix $\mathbf{A} = (2 + 3i)\mathbf{I}$, for which the eigen values are
	(2+3i), (2+3i), (2+3i)
	The eigen vectors will be the nullspace of $\mathbf{A} - \lambda \mathbf{I}$
	$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 2+3i & 0 & 0 \\ 0 & 2+3i & 0 \\ 0 & 0 & 2+3i \end{pmatrix} - (2+3i) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
	The nullspace consists of the entire vector space so every vector is an eigen vector
	The characteristic polynomial and the minimal polynomial are $\chi_A = (x - (2 + 3i))^3$
	and $m_{\mathbf{A}} = (x - (2 + 3i)) \implies \chi_{\mathbf{A}} = m_{\mathbf{A}}^3$
	Therefore options 1 and 3 are correct.
Diagonal matrix	Consider the matrix \mathbf{A} as $\mathbf{A} = \begin{pmatrix} 2+3i & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3i \end{pmatrix}$ The eigen values are $\lambda_1 = 2+3i$, $\lambda - 2 = 2$, $\lambda_3 = 3i$
	$\left[\begin{array}{ccc} 0 & 0 & 3i \end{array}\right]$

The eigen vector with respect to $\lambda_1 = 2 + 3i$ will be the nullspace of $\mathbf{A} - \lambda_1 \mathbf{I}$

$$\mathbf{A} - \lambda_1 \mathbf{I} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -3i & 0 \\ 0 & 0 & -2 \end{pmatrix}, \text{ so the eigen vector will be } \mathbf{e_1} = x_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ where } x_1 \in \mathbb{C}$$

The eigen vector with respect to $\lambda_2 = 2$ will be the nullspace of $\mathbf{A} - \lambda_2 \mathbf{I}$

$$\mathbf{A} - \lambda_2 \mathbf{I} = \begin{pmatrix} 3i & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3i - 2 \end{pmatrix}, \text{ so the eigen vector will be } \mathbf{e_2} = x_2 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ where } x_2 \in \mathbb{C}$$

The eigen vector with respect to $\lambda_3 = 3i$ will be the nullspace of $\mathbf{A} - \lambda_3 \mathbf{I}$

$$\mathbf{A} - \lambda_3 \mathbf{I} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 - 3i & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ so the eigen vector will be } \mathbf{e_3} = x_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ where } x_3 \in \mathbb{C}$$

Consider the vector
$$\mathbf{y} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \mathbf{e_1} + \mathbf{e_2} + \mathbf{e_3}$$
 where $x_1 = x_2 = x_3 = 1$

$$\mathbf{A}\mathbf{y} = \mathbf{A}\mathbf{e}_1 + \mathbf{A}\mathbf{e}_2 + \mathbf{A}\mathbf{e}_3 = (2+3i)\mathbf{e}_1 + 2\mathbf{e}_2 + 3i\mathbf{e}_3 = \begin{pmatrix} 2+3i \\ 2 \\ 3i \end{pmatrix}$$

As $\mathbf{A}\mathbf{y}$ can not be written as $c\mathbf{y}$ where $c \in \mathbb{C}$, \mathbf{y} is not an eigen vector which is a contradiction.

TABLE 2: Examples