

Karimás csőkötés tervezése

Gépelemek mechatronikai mérnököknek 1. Házi feladat

KINDLIK DÁNIEL
AHU27Z

Tartalomjegyzék

1.	Előtervek		
	1.1. Karima szabvány választása	3	
	1.2. Vakkarima szabvány választása	4	
	1.3. Konstrukció előterve	4	
2.	Vakkarima minimális vastagságának számítása, megfelelő lemezvastagság választása	4	
3.	Megfelelő lapos tömítés választása, minimális tömítési erő számítása	5	
4.	Csavarra jutó terhelés számítása	5	
5.	Csavar előfeszítésének és szükséges meghúzási nyomaték számítása	5	
6.	Csavar anyagának kiválasztása, benne ébredő egyenfeszültség kiválasztása	5	
7.	Konstrukció összeállítási rajza	5	

Bevezetés

A feladat a megadott adatokkal egy csővéget vakkarimával lezáró csavarkötés tervezése és az elemek szilárdságilag ellenőrzése.

1. Előtervek

1.1. Karima szabvány választása

A megadott adatok alapján ($p_{\ddot{u}}=35 [{\rm bar}]~D_N=32 [{\rm mm}])$ DIN EN 1092-1 PN40 szabványt lett kiválasztva.

1.1. ábra. Karima előterve

Név	Jelölés	Érték
Karima külső átmérője	D	140 mm
Karima magassága	h	$42~\mathrm{mm}$
Falvastagság	s	$2.6~\mathrm{mm}$
Kiugrás mérete	f	$2~\mathrm{mm}$
Kúp feletti rész magassága	c	$6~\mathrm{mm}$
Lekerekítések nagysága	r	$6~\mathrm{mm}$
Cső csatlakozás külső mérete	d_1	$43.5~\mathrm{mm}$
Csavar lyukkör átmérője	d_2	18 mm
Kúp alsó átmérője	d_3	$56~\mathrm{mm}$
Tömítő felület külső átmérője	d_4	78 mm
Csavarok száma	N	4 db
Csavarok mérete	M	M16
Csavarok közép átmérője	K	100 mm
Csavarok alapja és tömítési sík távolsága	b	18 mm

1.2. Vakkarima szabvány választása

A megadott adatok alapján ($p_{\ddot{u}}=35[{\rm bar}]~D_N=32[{\rm mm}])$ DIN EN 1092-1 PN40 szabványt lett kiválasztva.

1.2. ábra. Vakkarima előterve

Név	Jelölés	Érték
Vakkarima külső átmérője	D	140 mm
Vakkarima magassága	b	18 mm
Kiugrás mérete	f	$2~\mathrm{mm}$
Csavar lyukkör átmérője	d_2	18 mm
Tömítő felület külső átmérője	d_4	78 mm
Csavarok száma	N	4 db
Csavarok mérete	M	M16
Csavarok közép átmérője	K	100 mm

1.3. Konstrukció előterve

X

2. Vakkarima minimális vastagságának számítása, megfelelő lemezvastagság választása

A vakkarima minimális vastagságának kiszámításához használhatjuk az alábbi egyenletet:

$$b_{\min} = \sqrt{\frac{3 \cdot p_{ii}}{\sigma_{\text{hajl}}} \cdot \left(1 - \frac{2 \cdot d_t}{3 \cdot k}\right)} \cdot \frac{d_t}{2} \tag{1}$$

Név	Jelölés	Érték
Tömítés külső átmérője	$p_{ m \ddot{u}}$	78 mm
Tömítés belső átmérője	$\sigma_{ m hajl}$	32 mm
Tömítés vastagsága	k	$3~\mathrm{mm}$
Tömítés vastagsága	d_t	$3~\mathrm{mm}$

3. Megfelelő lapos tömítés választása, minimális tömítési erő számítása

A megadott adatok alapján ($p_{\ddot{u}}=35[{\rm bar}]~D_N=32[{\rm mm}]$) DIN EN 1092-1 DN32 SBR tömítés lett választva, ami 40 bar nyomásig használható, így PN40-es karimákhoz jó.

3.1. ábra. Tömítés előterve

Név	Jelölés	Érték
Tömítés külső átmérője	D	78 mm
Tömítés belső átmérője	D_i	$32~\mathrm{mm}$
Tömítés vastagsága	b	$3~\mathrm{mm}$

- 4. Csavarra jutó terhelés számítása
- 5. Csavar előfeszítésének és szükséges meghúzási nyomaték számítása
- 6. Csavar anyagának kiválasztása, benne ébredő egyenfeszültség kiválasztása
- 7. Konstrukció összeállítási rajza