Travaux Dirigés n°3

EXERCICE 1 Algorithme du gradient à pas constant

On veut résoudre le système Ax=b, $x \in \Re^n$ (avec A symétrique, définie, positive) par une méthode de gradient à pas constant. Soit \bar{x} la solution de ce système. On propose l'algorithme suivant:

$$\begin{cases} x_0, \ r_0 = b - Ax_0 \\ x_{k+1} = x_k + \alpha r_k \\ où \ r_k = b - Ax_k \end{cases}, \ \alpha \text{ est un réel constant.}$$
 a. Soit $e_k = x_k - \bar{x}$ (pour $k \ge 0$); montrer que $e_k = (I - \alpha A)^k e_0$ (pour $k \ge 0$).

- b. Soient $0 \le \lambda_n \le \lambda_{n-1} \le \dots \lambda_2 \le \lambda_1$ les valeurs propres de A. montrer que l'algorithme converge si et seulement si $0 < \alpha < \frac{2}{\lambda_1}$.
- c. Montrer que le meilleur choix de α est $\alpha_{opt} = \frac{2}{\lambda_1 + \lambda_2}$

EXERCICE 2

Soit $J(v) = \frac{1}{2} \langle Av, v \rangle - \langle b, v \rangle$ avec A matrice symétrique définie positive N×N de spectre $0 < \lambda_1 \le \lambda_2 \le ... \lambda_{N-1} \le \lambda_N$ et b vecteur de \Re^n . Notons w le point minimum de J.

a. Montrer que l'algorithme de gradient à pas fixe

$$u_{n+1} = u_n - \mu J'(u_n)$$

converge pour $0 < \mu < 2/\lambda_N$.

b. Donner la valeur de μ qui assure la vitesse maximale de convergence et montrer que pour cette valeur $\lim_{n\to\infty} ||u_n - w||^{1/n} \le (\lambda_N - \lambda_1)/(\lambda_N + \lambda_1).$

EXERCICE 3 Algorithme du gradient conjugué

On note (x, y) le produit scalaire euclidien de Rⁿ, ^txy sous forme matricielle, u_i le vecteur propre associé à une valeur propre λ_i et W_k le sous-espace engendré par les k vecteurs propres $(u_i)_{i=1,...k}$. A est une matrice symétrique, définie positive dont les valeurs propres λ_i sont rangées par ordre décroissant. On appelle quotient de Rayleigh de la matrice A l'application de $R^n - \{0\}$ vers R définie par :

$$R_A(x) = \frac{(Ax, x)}{(x, x)}$$

Montrer que:

a.
$$\lambda_k = R_A(u_k)$$
.

b.
$$\lambda_k = \min_{x \in W} R_A(x)$$
.

a.
$$\lambda_k = R_A(u_k)$$
.
b. $\lambda_k = \min_{x \in W_k} R_A(x)$.
c. $\lambda_k = \max_{x \in W_k^{\perp}} R_A(x)$.

d. Pour $x \neq 0$ et λ un scalaire quelconque, on définit $\eta = Ax - \lambda x$. Montrer que

$$\max_{i \in \{1,..,n\}} |\lambda - \lambda_i| \le \frac{\|\eta\|_2}{\|x\|_2}$$