Evaluation Metrics

Classification

- Confusion Matrix
- Accuracy
- Precision and Recall
- F-score
- AUC-ROC
- Log Loss
- Gini Coefficient

Regression

MAE

(mean abs. error)

MSE

(mean sq. error)

RMSE

(Root mean sq.error)

RMSLE

(Root mean sq.error

log error)

R² and Adjusted
R²

Classification metrics

In a context of a binary classification, here are the main metrics that are important to track in order to assess the performance of the model, $\frac{1}{2}$

Confusion matrix: The confusion matrix is used to have a more complete picture when assessing the performance of a model. It is defined as follows:

Main metrics: The following metrics are commonly used to assess the performance of classification models:

Metric	Formula	Interpretation
Accuracy	$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$	Overall performance of model
Precision	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}}$	How accurate the positive predictions are
Recall Sensitivity	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Coverage of actual positive sample
Specificity	$\frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}}$	Coverage of actual negative sample
F1 score	$\frac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$	Hybrid metric useful for unbalanced classes

ROC: The receiver operating curve, also noted ROC, is the plot of TPR versus FPR by varying the threshold. These metrics are are summed up in the table below:

Metric	Formula	Equivalent
True Positive Rate TPR	$\frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$	Recall, sensitivity
False Positive Rate FPR	$\frac{\mathrm{FP}}{\mathrm{TN} + \mathrm{FP}}$	1-specificity

AUC: The area under the receiving operating curve, also noted AUC or AUROC, is the area below the ROC as shown in the following figure:

Regression model evaluation metrics

The MSE, MAE, RMSE, and R-Squared metrics are mainly used to evaluate the prediction error rates and model performance in regression analysis.

- MAE (Mean absolute error) represents the difference between the original and predicted values extracted by averaged the absolute difference over the data set.
- MSE (Mean Squared Error) represents the difference between the original and predicted values extracted by squared the average difference over the data set.
- RMSE (Root Mean Squared Error) is the error rate by the square root of MSE.
- **R-squared** (Coefficient of determination) represents the coefficient of how well the values fit compared to the original values. The value from 0 to 1 interpreted as percentages. The higher the value is, the better the model is.

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}|$$

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2$$

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

$$R^2 = 1 - \frac{\sum (y_i - \hat{y})^2}{\sum (y_i - \bar{y})^2}$$

Where

 \hat{y} - predicted value of y \bar{y} - mean value of y