PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2003-206481

(43) Date of publication of application: 22.07.2003

•----

(51)Int.CI. C09K 11/59 C09C 1/00 C09C 1/28

C09C 3/06 C09K 11/08 C09K 11/64 C09K 11/79 C09K 11/80 H01L 33/00

.....

(21)Application number: 2002-277736

(22)Date of filing:

24.09.2002

(71)Applicant:

PATENT TREUHAND GES ELEKTR GLUEHLAMP MBH

(72)Inventor:

ELLENS ANDRIES

FRIES TORSTEN

FIEDLER TIM

HUBER GUENTHER DIPL ING

••••

(30)Priority

Priority number: 2001 10147040

Priority date:

25.09.2001

Priority country: DE

(54) ILLUMINATION UNIT HAVING AT LEAST ONE LED AS LIGHT SOURCE

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an illumination unit capable of exhibiting a high level of constancy even at fluctuating operating temperatures and emitting white light and having especially high color reproducibility and high efficiency.

SOLUTION: This illumination unit has the following features. Conversion take place with the aid of at least one kind of phosphor which is derived from a cation M and silicon nitride or a derivative of a nitride and emits light with a peak emission wavelength at 430-670 nm. The cation M is partially replaced by a dopant D, namely Eu2+ or Ce3+. In this case, at least one kind of divalent metals Ba, Ca, Sr and/or at least one kind of the trivalent metals Lu, La, Gd and Y are used as the cation M. The phosphor is derived from the following kinds. Nitrides of the structures MSi3N5, M2Si4N7, M4Si6N11 and M9Si11N23, oxynitrides of the structure M16Si15O6N32 and sialons of the structures MSiAl2O3 N2, M13Si18Al12O18N36, MSi5Al5ON9 and M3Si5AlON10. The illumination unit is provided with at least one LED as a light source.

BEST AVAILABLE COF

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-206481 (P2003-206481A)

(43)公開日 平成15年7月22日(2003.7.22)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
C 0 9 K 11/59	CQH	C 0 9 K 11/59	CQH 4H001
C 0 9 C 1/00		C 0 9 C 1/00	4 J O 3 7
1/28		1/28	5 F 0 4 1
3/06		3/06	
C09K 11/08		C09K 11/08	J
	審查請求	未請求 請求項の数27	OL (全 10 頁) 最終 頁に続く
(21)出願番号	特願2002-277736(P2002-277736)	(71)出顧人 3900094	172
		パテン	トートロイハントーゲゼルシヤフト
(22)出顧日	平成14年9月24日(2002.9.24)	フユー	ール エレクトリツシエ グリユー
		ラムペ	ン ミツト ペシユレンクテル ハ
(31)優先権主張番号	10147040. 1	フツン	7
(32)優先日	平成13年9月25日(2001.9.25)	ドイツi	連邦共和国 ミユンヘン ヘラブル
(33)優先権主張国	ドイツ (DE)	ンネル	ストラーセ 1
		(72)発明者 アンド	Jース エレンス
		オランタ	ダ国 デン ハーグ マリオッテス
		トラー	h 77
		(74)代理人 1000618	s15
		' '''	矢野 敏雄 (外4名)
			最終頁に続く

(54) 【発明の名称】 光源として少なくとも1つのLEDを備えた照明ユニット

(57)【要約】

【課題】 運転温度が変化する場合でも高い不変性を示し、白色に発光しかつ特に高い色再現及び高い効率を有する照明ユニットを提供するとと

【解決手段】 変換は少なくとも1種の蛍光体を用いて 行われ、この蛍光体はカチオンM及び窒化ケイ素又はニ トリドの誘導体から誘導され、この蛍光体は430~6 70 n m でのピーク発光の波長で発光し、その際、カチ オンは部分的にドーパントD、つまりEu² + 又はCe ³ + により置き換えられており、この場合にカチオンM として二価の金属Ba、Ca、Srの少なくとも1種及 び/又は三価の金属Lu、La、Gd、Yの少なくとも 1種が使用され、この蛍光体は次の種類:構造MSi。 N₅、M₂ Si₄ N₇、M₄ Si₆ N₁, 及びM₈ Si ıı N₂ s のニトリド、構造Mı a S i ı s O a N s 2 のオキシニトリド、構造MSiAl2OsN2、Ml3 $Si_{18}Al_{12}O_{18}N_{88}$, $MSi_{5}Al_{2}ON_{8}$ 及びM。Si。AION」。のサイアロンから由来す る、光源として少なくとも1つのLEDを備えた照明ユ ニット。

【特許請求の範囲】

【請求項1】 光源として少なくとも1つのLEDを備 えた照明ユニットであって、このLEDは300~57 Onmの範囲内で一次放射を発し、この放射はLEDの 一次放射にさらされる蛍光体によって部分的に又は完全 により長波長の放射に変換され、前記の蛍光体の構造は ニトリド又はその誘導体に基づく形式のものにおいて、 前記の変換は少なくとも1種の蛍光体を用いて行われ、 との蛍光体はカチオンM及び窒化ケイ素又はニトリドの 誘導体から誘導され、との蛍光体は430~670nm 10 り、との一次発光された放射は請求項1から10までの でのピーク発光の波長で発光し、その際、カチオンは部 分的にドーパントD、つまりEu² + 又はCe³ + によ り置き換えられており、この場合にカチオンMとして二 価の金属Ba、Ca、Srの少なくとも1種及び/又は 三価の金属Lu、La、Gd、Yの少なくとも1種が使 用され、この蛍光体は次の種類:構造MSi。N。、M 2 Si4 N7、M4 Sie N11及びMa Si11N 2 s のニトリド、構造M1 e S i 1 5 O e N s 2 のオキ シニトリド、構造MSiAl₂O₃N₂、M₁ ₃Si 1 8 A l 1 2 O 1 8 N 3 8 、M S i 5 A l 2 O N 8 及び 20 Ms Sis Aloni。のサイアロンから由来すること を特徴とする、光源として少なくとも1つのLEDを備 えた照明ユニット。

【請求項2】 ドーパントの割合がカチオンの0.5~ 15mol%である、請求項1記載の照明ユニット。

【請求項3】 Ce^{3 +} でドーピングする場合に、付加 的ドーパント、つまりPr³+及び/又はTb³+を使 用し、この割合はCe³+の割合の高くても30mol %である、請求項1記載の照明ユニット。

【請求項4】 Eu² + でドーピングする場合に、付加 30 ト。 的ドーパント、つまりMn² + を使用し、この割合はE u² + の割合の高くても4倍である、請求項1記載の照 明ユニット。

【請求項5】 蛍光体中のそれぞれのEu² + イオンは 少なくとも2つ又はそれ以上のニトリドーリガンドによ り配位されている、請求項1記載の照明ユニット。

【請求項6】 特に白色に発光する照明ユニットを実現 するために、複数のニトリド含有蛍光体を一緒に、特に 複数のニトリド含有蛍光体だけを使用する、請求項1記 載の照明ユニット。

【請求項7】 本発明による蛍光体はシリコーン樹脂内 に分散されているか又はLED上に直接塗布されてい る、請求項1記載の照明ユニット。

【請求項8】 LEDはニトリドベースの半導体デバイ スである、請求項1記載の照明ユニット。

【請求項9】 白色光を発生させるために一次発光され た放射が360~420nmの波長領域にあり、この一 次発光された放射は、変換のために青(430~470 nm)、緑(495~540nm)及び赤(特に540 ~620nm) に最大発光を示す少なくとも3種の蛍光 50 てもよく;M"はLa単独であるか又はGd及び/又は

体にさらされる、請求項6記載の照明ユニット。

【請求項10】 白色光を発生させるために一次発光さ れた放射が420~480 n mの波長領域にあり、この 一次発光された放射は、変換のために緑(495~54 0 n m) 及び赤 (特に 5 4 0 ~ 6 2 0 n m) に最大発光 を示す少なくとも2種の蛍光体にさらされる、請求項6 記載の照明ユニット。

【請求項11】 有色光を発生させるために一次発光さ れた放射が300~570nmのUV-波長領域内にあ いずれか1項記載の1種の蛍光体にさらされる、請求項 1記載の照明ユニット。

【請求項12】 ニトリド含有蛍光体がM'M'Si. N₁: D (前記式中、M' はSr 又はBa それぞれ単独 であるか又は組み合わされている(特にM'は20mo 1%までCaに置き換えられている); M"はLu単独 であるか又はGd及び/又はLaと組み合わせされてい る)である、請求項1記載の照明ユニット。

【請求項13】 ニトリド含有蛍光体がM'M'Sie N₁ : D (前記式中、M' はBax Sr₃ - x であ り、その際、1.3≦x≦1.7、特に僅かにCaが添 加されている; M"はLu単独であるか又はGd及び/ 又はLa及び/又はYと組み合わされている) である、 請求項1記載の照明ユニット。

【請求項14】 ニトリド含有蛍光体がM′2 M″., S i 1 1 N 2 3 : D (前記式中、M' はBa単独であるか 又はSrと(50m01%まで)組み合わされている; M"はLa単独であるか又はGd及び/又はLuと組み 合わされている)である、請求項1記載の照明ユニッ

【請求項15】 ニトリド含有蛍光体がM″Si 。N₅: D(前記式中、M"はLa単独であるか又はG d及び/又はLuと組み合わされている、及びDはCe である)である、請求項1記載の照明ユニット。

【請求項16】 ニトリド含有蛍光体がM″」。Si 16 O N N 2 : Ce (前記式中、M" はLa単独であ るか又はGd及び/又はLuと組み合わされている)で ある、請求項1記載の照明ユニット。

【請求項17】 ニトリド含有蛍光体がM′SiAl2 O₃ N₂: D (前記式中、M' はSr単独であるか又は Ba及び/又はCaと組み合わされている:特にBaの 割合はこの場合、50mol%までであってもよく、C aの割合は20mo1%までであってもよい)である、 請求項1記載の照明ユニット。

【請求項18】 ニトリド含有蛍光体がM′。M″」。 Si, a Al, 2 O, a N, a: D (前記式中、M'は Sr単独であるか又はBa及び/又はCaと組み合わさ れている:特にBaの割合はこの場合50mo1%まで であってもよく、Caの割合は20mol%までであっ

Luと組み合わされている)である、請求項1記載の照 明ユニット。

3

【請求項19】 ニトリド含有蛍光体がM″Si。Al 2 ON。: Ce³ + (前記式中、M" はLa単独である か又はGd及び/又はLuと組み合わされている)であ る、請求項1記載の照明ユニット。

【請求項20】 ニトリド含有蛍光体がM″。SisA 1ON, c:Ce³⁺ (前記式中、M″はLa単独であ るか又はGd及び/又はLuと組み合わされている)で ある、請求項1記載の照明ユニット。

【請求項21】 照明ユニットが発光変換-LEDであ り、この場合、蛍光体はチップと直接又は間接的に接触 している、請求項1記載の照明ユニット。

【請求項22】 ニトリド含有蛍光体はタイプM'の二 価のカチオンを単独で又は大部分で含有し、アクチベー ターD² ⁺ でドープされており、前記のカチオンと隣接 するリガンドとの間の間隔は表 1 からの条件の少なくと も1つに従っている、請求項1記載の照明ユニット。

【請求項23】 照明ユニットがLEDのフィールド (アレイ)である、請求項1記載の照明ユニット。

【請求項24】 蛍光体の少なくとも1種がLEDフィ ールドの前に取り付けられた光学装置上に設けられてい る、請求項12記載の照明ユニット。

【請求項25】 構造がニトリド又はその誘導体に基づ く昼光蛍光を示す顔料、特に蛍光体において、この組成 がカチオンM及び窒化ケイ素又はニトリドの誘導体から 誘導されており、その際、前記のカチオンはドーパント D、つまりEu²⁺ 又はCe³⁺ により部分的に置き換 えられており、その際、カチオンMとしては二価の金属 Ba、Ca、Srの少なくとも1つ及び/又は三価の金 30 属Lu、La、Gd、Yの少なくとも1つが使用され、 その際、この蛍光体は次の種類:構造MSi。N。、M 2 Si4 N7、M4 Sie N11及びMe Si11N 2 s のニトリド、構造M_{1 e} S i_{1 5} O_e N_{3 2} のオキ シニトリド、構造MSiAl2OsN2、M1sSi 18 Alı 2 Oı 8 Ns 6、MS i 5 Al 2 ON 8 及び M₃ Si₅ AlON₁ 。のサイアロンの一つに由来する 昼光蛍光を示す顔料、特に蛍光体。

【請求項26】 請求項2から5までのいずれか1項記 載の特徴を有する、請求項25記載の顔料。

【請求項27】 請求項12から20までのいずれか1 項記載の特徴を有する、請求項25記載の顔料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は光源として請求項1 の上位概念に記載された少なくとも1つのLEDを備え た照明ユニットに関する。特に、UV又は青色に一次発 光するLEDをベースとする可視光又は白色光を発光す るLEDである。

[0002]

【従来の技術】例えば白色光を放射する照明ユニット は、現在では主に約460nmで青色に発光するGa (In) N-LEDと、黄色に発光するYAG: Ce ³ + 蛍光体との組み合わせによって実現されている(U S 5998925及びEP 862794)。この場 合、良好な色再現のためにWO-A 01/08453 に記載されたような2種の異なる黄色-蛍光体が使用さ れる。この場合、双方の蛍光体は、その構造が類似して いる場合であっても、しばしば異なる温度特性を示すと 10 とが問題である。公知の例は、黄色に発光するС e - ド ープされたYーガーネット(YAG:Ce)及びそれと 比べてより長波長で発光する(Y.Gd)ーガーネット である。これは、運転温度が異なる場合に色座標の変動 及び色再現の変化を引き起とす。

【0003】刊行物("On new rare-earth doped M-Si-Al-O-N materials" van Krevel著,TU Eindhoven 2000, ISBN 90-386-2711-4, 第11章) からは、ニトリド又はオ キシニトリドの構造を有するか、又はその組成の省略形 でサイアロン (α-サイアロン) として表される蛍光体 20 材料の多数の種類は公知である。 Eu、Tb又はCeを 用いたドーピングにより、365nm又は254nmに よる励起の際に、広い光学的スペクトル領域内での発光 を達成する。

[0004]

【特許文献1】US 5998925

【特許文献2】EP 862794

【特許文献 3】 ₩O-A 0 1 / 0 8 4 5 3

【非特許文献 1 】 van Kreve 1 著, "On new rare-earth d oped M-Si-Al-O-N materials" TU Eindhoven 2000, ISB N 90-386-2711-4, 第11章

[0005]

【発明が解決しようとする課題】本発明の課題は、運転 温度が変化する場合でも高い不変性を特徴とする、光源 として請求項1の上位概念に記載の照明ユニットを提供 することである。もう一つの課題は、白色に発光しかつ 特に高い色再現及び高い効率を有する照明ユニットを提 供することである。

[0006]

【課題を解決するための手段】前記課題は、請求項1の 40 特徴部により解決される。特に有利な実施態様は、引用 形式請求項に記載されている。

【0007】本発明の場合に、LED用の蛍光体とし て、複数のニトリドベースの蛍光体種類からなる蛍光体 が使用される。

【0008】これらは特定の種類のニトリド及びその誘 導体のオキシニトリド及びサイアロンである。カチオン M及び窒化ケイ素又はニトリドの誘導体から誘導される 蛍光体は、430~670nmのピーク発光の波長で放 射し、その際、このカチオンはドーパントD、つまりE 50 u^{2 +} 又はCe^{3 +} により部分的に置き換えられてお

5

り、カチオンとしてMは二価の金属Ba、Ca、Srの少なくとも1種及び/又は三価の金属Lu、La、Gd、Yの少なくとも1種が使用され、その際、蛍光体は次の種類から由来する:構造MSi。N。、M2Si。N7、M4Si。N1」及びM。SillN2。のニトリド、構造MSiAl2O。N2、M1。SilaAl2O。N2、M1。SilaAl2O。及びM。SisAlON1。のサイアロン。

【0009】次の特別な蛍光体が特に有利である:

1. M' M" Si 4 N7 : D

その際、M' はS r Y はB a それぞれ単独であるかY は 組み合わされており、特にM' は部分的に(2 0 m o 1 %まで)C a により置き換えられており;M' は二価のイオンである。

[0010] M"はLu単独であるか又はGd及び/又はLaと組み合わされている; M"は三価のイオンである。

【0011】具体的例はSrLuSi4N7:Eu²⁺である。

【0012】2. $M'M''SioN_{11}:D$ その際、 $M'はBaxSrs_x$ であり、有利にx=1.5;M'は二価である;その際、<math>M''はLu単独であるか又は<math>Gd及び/又はLa及び/又はYと組み合わされている;M''は三価である。

【00.13】特定の部分まで Ba^2 + 及び Sr^2 + の量はなお変えるととができ(xの値は $1.3\sim1.7$ の間で変動する)、かつ部分的に(全体量M の20mol%まで). Ca^2 + により置き換えられる。

【0014】具体的例はBaLuSie N,, : Euで 30 ある。 ある。

【0015】3. M″ $sSisN_{11}$: D その際、M″ はLa単独であるか又は<math>Gd及び/又はY及び/又はLuと組み合わされている;M″ は三価のイオンである。

【0016】Dは有利にCe³⁺である。

【0017】具体的例はLa。Si。N_{i1}:Ceである。

【0018】4. M'₂ M"₇ Si₁ N₂ 3:D その際、M' はBa単独であるか又はSrと(50mo 40 1%まで)組み合わされている、M" はLa単独である か又はGd及び/又はLuと組み合わされている。

【0019】具体的例はBa₂ La₇ Si₁₁ N₂₃ : Euである。

[0020]5. M"SisNs:D

M"はLa単独であるか又はGd及び/又はLuと組み合わされている。

【0021】その際、DはCeである。

【0022】具体的例はLaSi, Ns: Ceである。

【0023】さらに、これは特定の種類のオキシニトリ 50 を行うことができ、発光効率を最適化することができ

ド、つまりタイプM"」。 $Si_{1.5}O_{0.N}$ 。2:Dの種類である。これらは、三価のカチオンM"として、金属La、Gd、Lu又はYの少なくとも1種を使用する。このカチオンはドーパントD、つまり Eu^{2} ヤ又は Ce^{3} により部分的に置き換えられている。次の特別な蛍光体が特に有利である:

6. M"₁ ₈ S ₁ ₁ ₅ O₆ N₃ ₂ : C e その際、M" はL a 単独であるか又はG d 及び/又はL u と組み合わされている; 具体的例はL a ₁ ₆ S ₁ ₁ ₅ 10 O₆ N₃ ₂ : C e である。

【0024】さらに、これは特定の種類のサイアロン、つまりタイプMS i A I O N: D の種類である。これらは、二価又は三価のカチオンM" として、金属 B a、 S r、 C a、 L a、 G d、 L u 又は Y の少なくとも 1 種を使用する。このカチオンは F ーパント D、つまり E u 2 * 又は C e 3 * により部分的に置き換えられている。次の特別な蛍光体が特に有利である:

7. M' SiAl₂ O₃ N₂: D

その際、M' はS r 単独であるか又はB a 及び/又はC 20 a^2 + と組み合わされている;B a の割合はC の 場合に S 0 m o 1 %までであり、C a の割合はC 0 m o 1 %までである。

【0025】具体的例はSrSiAl₂ 〇。N₂ :Eu である。

[0026]8. M's M'to Silta Alizo O

その際、M'はSr単独であるか又はBa及び/又はCaと組み合わされている;Baの割合はこの場合に50mol%までであり、Caの割合は20mol%までである。

【0027】M"はLa単独であるか又はGd及び/又はLuと組み合わされている;有利に、M′はSr² * であり、もしくはM″はLa³ * である;具体的例はSr₃ La₁。Si₁。Al₁2O₁。N₅。:Euである

【0028】9. M″SisAl2ON。: Ce³ + M″はLa単独であるか又はGd及び/又はLuと組み合わされている; 具体的例はLaAl2SisON。: Ceである。

0 [0029] 10. M", Si₅ AlON₁₀: Ce

M'' はL a 単独であるか又はG d 及び/又はL u と組み合わされている;有利にM'' はL a 3 $^{+}$ である。

【0030】具体的例はLa、Sis AlON:。: Ceである。

【0031】カチオンMの一部を置き換えるドーパントの割合(つまりEu – 割合もしくはCe – 割合)は、M – カチオンの $0.5\sim15%$ 、有利に $1\sim10%$ であるのが好ましく、それにより、発光波長の特に正確な選択を行うことができ、発光効率を最適化することができ

る。ドーパント含有量が増加すると、一般にピーク発光 がより長波長にシフトすることになる。意外にも、カチ オンMの濃度を変化させることでもピーク発光の波長が シフトすることが明らかになった。M-カチオンが比較 的低い濃度の場合、M-カチオンの5~10%に前記ド ーパントの割合を選択することによりドーパントによる 良好な吸光を得ることができる。

【0032】この新規の光学活性材料は、昼光発光を示 す顔料、特に蛍光体として分類することができる。従っ て、この材料は、顔料として又は光変換系として、たと 10 【0038】D² * についての有利な格子位置は、M' えばディスプレー、ランプ又はLEDの使用のため、又 はその両方の目的のために適していると考えられる。

【0033】Eu活性化されたサイアロンの他の有望な 代表物は α -サイアロンであり、これは式 $M_{\rm e, 2}$ S i 12-p-。Al。Nı s-。: Eu² + に従い、前記式 中、MはCa単独であるか又は金属Sr又はMgの少な くとも1種と組み合わされており、qは0~2.5であ り、pはO.5~3であり、以後これをGO-サイアロ ンと表す。

【0034】この新規の光学活性材料は、有利にM2+ $= E u^{2} + 又はM^{3} + = C e^{3} + でドープされている$ (か又はそれを含有する)。Ce-ドーピングの場合に は、さらに、僅かな補助ドーピング(Ceの30mol %まで)をPr³ + 又はTb³ + で行うことができる。 Euを用いたドーピングの場合、補助ドーピング(Eu の4倍まで)をMn2 + で行うことができる。この組み 合わせの場合には最初のドーパントから補助ドーパント へのエネルギーの移動が可能である。

【0035】300~570nmの間の一次放射を示す 放射源用の変換材として適用する関係で、特にEu-ド 30 ーパントを有する光学活性材料が有利である。

【0036】との新規の光学活性材料は全て著しく強靭 であり、熱的及び化学的にも安定である、それというの もこの基本骨格が正四面体をベースとし、Si-(O. N) 又はA1-(O, N) タイプであるためである。こ の場合、Si-(O, N)-又はAl-(O, N)-正 四面体の概念は、一方でSiNa、SiONa、SiO 。N。又はSiO。Nのグループの一つを意味し、他方 でAIN4、AION3、AIO2 N2 又はAIO3 N つ又はそれ以上のニトリド(N。-)リガンドを有する Si-及び/又はAl-正四面体を有する材料が有利で ある。一般に、光学活性イオンD(二価であるか又は三 価であるかとは無関係に)による吸光が、正四面体内で のN-含有量の増加と共に長波長にシフトすることが確 認された。

【0037】孤立位置(Alleinstellung)での二価のア

クチベーターD2+、有利にEu2+の吸光は、正四面 体内でニトリド割合に依存して、原則としてUVからオ レンジー赤(約590nmまで)へシフトすることがで きる。孤立位置での三価のアクチベーターD³+、有利 にCe³ + の吸光は、正四面体内でニトリド割合に依存 して、原則としてUVから背-緑(約495nmまで) ヘシフトすることができる。最大吸光値の状態に影響を 及ぼす他のファクターは、配位及びアクチベーターが存 在する特別な格子位置である。

=Sr²⁺ 及びCa²⁺ であるが、Ba²⁺ も適してい る。この二価のカチオンに関して6~9の配位数が有利 である。配位数が減少すればそれだけ、吸光はより長波 長になる。配位数は想定された体積(betrachteten Vol. umen) に依存する、つまり体積をより大きく選択すれば それだけ配位はより高くなる。たとえばSrSiAl2 $O_3 N_2$ 中でイオンS r^2 t はアニオンN³ -及びO² -の形態のリガンドにより配位される。詳細には、Sr 2 + に対して2.04~2.95 Aの間隔を有する6個 20 のリガンド、さらになお3.04点の間隔を有する2つ の付加的リガンド、最後になお3.18人の間隔を有す る1つのリガンドが存在する。従って、想定された体積 に依存して配位数は6か8か又は9になる。

【0039】次の表1において配位されたイオンの有利 な最大間隔が示されており、その際、それぞれ配位にお いて考慮される隣り合う全てのイオンの間隔の平均値が 採用されている。これは、もっぱら二価のカチオンM´ の場合又は少なくとも大部分(80%より多い割合)の 二価のカチオンM′の場合に通用する。たとえば表1か ら次のことが読みとれる: E u² + イオンは、たとえば 格子中のBa² + 位置で、最大で3.015点の平均間 隔を有する7個のリガンドを有するか、又は最大で3. 02点の平均間隔を有する8個のリガンドを有する。と の顔料の所望の良好な特性を達成するために、その都 度、との条件の一つが、特に最小の配位数についての条 件が満たされるのが好ましい。イオンBa² + 及びSr ² † は、一般にその周りに常に少なくとも6個のリガン ドが集まる程度に大きい。より小さなCa²⁺ は部分的 にすでに5個のリガンドである。この3種のカチオン のグループの一つを意味する。基本骨格が少なくとも2 40 M'の混合化合物の場合には優勢に存在するカチオンの 条件が通用する。

> 【0040】表1:リガンドの数に依存して二価のイオ ン及びリガンドの間の平均化された有利な最大間隔 (Å)

[0041]

【表1】

M' イオン	リガンド数								
W 432	5	6	7	8	9				
Ba2+		2.95	3.015	3.02	3.03				
Sr2+		2.8	2.9	3.015	3,02				
Ca2+	2.62	2.65	2.7						

【0042】D2 + = Eu2 + であり、この場合に光学 活性材料は300~570 nmの波長を有する光を部分 的に又は完全に可視光に変換するような光学的適用のた めに、有利なイオンはSr² + 及びCa² + である。配 位領域に関して有利に守られる条件は、Sr²+にとっ て、配位数6又は7についての条件である。Ca²+に とって、この配位領域に関して有利に守られる条件は配 位数5又は6の条件である。

【0043】表1の条件の少なくとも一つに相当する化 合物は、300~570nmの最大値を有する高い吸収 20 を示し、変換が有効に行われる。

【0044】 これは特に種類7 (M'SiAl2OsN*

*2:D)の化合物及びドイツ国特許出願(DE-Az) 第10133352. 8号明細書によるα-サイアロン である。

【0045】表2には若干の例が挙げられている。

【0046】表2:第1~第7の隣り合うリガンドの間 隔A1~A7(Å)並びにこの間隔から計算された、異 なる化合物についてのCaイオンもしくはSrイオンに 対する、第1の5~7のリガンドの間隔の平均値Mw5 \sim Mw7

[0047] 【表2】

化合物	A1	A2	A3	A4	A5	A6	A7	Mw5	Mw6	Mw7
Ca _{0.68} Si ₁₀ Al ₂ N _{15 3} O _{0.7} : Eu2+	1	2,602	2.602	2,631	2.694	2,695	2,695	2,626	2,638	2,646
SiSiAl2O3N2:Eu2+	2,504	2,666	2,731	2,763	2,874	2,947	3.042	2,708	2,748	2.790
Ca _{1.5} Al ₃ Si ₉ N ₁₅ :Eu2+	2,60	2.60	2,60	2.62	2,69	2.69	2,69	2.62	2,63	2.84

5 - 1 E 1 1 - 15 .

【0048】とのような化合物は熱的及び化学的に安定 である。この光学活性材料を(たとえばLEDの注入樹 脂中に)分散さなければならないような適用の場合、と の材料のもう一つの利点は、この材料が耐衝撃性であ り、ミル内での粉砕プロセスの際にほとんど又は全く損 傷されないことである。粉砕プロセスによるこの粒子の この種の損傷は、他の蛍光体の場合でも効率を低減す る。

【0049】この材料デサインは、青~深赤までの広い 40 範囲内で特別な発光を示すSi/Al-N-ベースの特 定の蛍光体を製造することができる。

【0050】とのニトリドベースの系の特別な利点は、 たとえば白色LEDの実現のために、物理的に似た特性 を有する複数のSi/Al-N-ベースの蛍光体を一緒 に使用することも可能となる。同じような考察が、極め て頻繁に同様にニトリドベースとする一次光源に関して も通用する、それというのも、この場合一般にInN、 GaN及びAINをベースとする半導体デバイスである ためである。本発明によるSi/Al-N-ベースの蛍 50 【0053】LEDのUV線を用いた励起により有色の

光体は、この場合、特に良好に直接塗布される。

【0051】LED-ベースの照明ユニットとの関係に おいてこの蛍光体の特別な利点は、特に少なくとも1つ の他の蛍光体と組み合わせた場合に、その高い効率、そ の優れた温度安定性(運転温度の変化に対する不感受 性) 及び発光の意外に高い消去温度並びにそれにより達 成可能な高い色再現である。

【0052】この種の蛍光体のもう一つの利点は、出発 材料 (特にSi, N,)がすでに微細に分散した形で存 在することである。従って、蛍光体の粉砕は頻繁に必要 ない。それに対して、固体合成法により製造された慣用 の蛍光体、例えばYAG:Ceは、注型用樹脂中で分散 を維持しかつ底部に沈殿しないようにするために粉砕し なければならない。この粉砕工程は頻繁に効率を損なっ てしまう。従って、これらの蛍光体はもはや粉砕する必 要はなく、それにより作業工程を節約しかつ効率を失う ことはない。蛍光体粉末の一般的な平均粒度は、0.5 $\sim 5 \mu \text{m} \text{ cm}$

光源を発生させる他に、特にこれらの蛍光体を用いて白 色光が生じることは有利である。これは、一次光源とし てUV発光LEDの場合に少なくとも3種の蛍光体を使 用して達成され、一次光源として青色発光LEDの場合 には少なくとも2種の蛍光体を使用して達成される。

11

【0054】良好な色再現を示す白色光は、UV-LE D (たとえば300~470nmで一次発光)を2種~ 3種の蛍光体と組み合わせることにより達成され、前記 の蛍光体の中で少なくとも1つは本発明によるニトリド 含有蛍光体である。

【0055】ニトリド含有蛍光体の著しい利点は、熱い 酸、アルカリに対する優れた安定性並びに熱的及び機械 的安定性である。

[0056]

【実施例】次に、本発明を複数の実施例を用いて詳細に 説明する。

【0057】InGaN-チップを一緒に備えた白色し EDでの使用のために、例えば米国特許第599892 5号明細書に記載されたと同様の構造を使用する。この 種の白色光のための光源の構造を図1 a に例示的に示し 20 た。この光源は、第1及び第2の電気接続部2、3を備 えた、ピーク発光波長400mmを有するInGaNタ イプの半導体デバイス (チップ1)であり、これは光透 過性基体容器8中で凹設部9の範囲内に埋め込まれてい る。接続部3の一方は、ボンディングワイヤ14を介し てチップ1と接続されている。この凹設部は壁部7を有 し、この壁部7はチップ1の青色一次放射線用のリフレ クタとして用いられる。この凹設部9は注入材料5で充 填されており、との注入材料5は主成分としてシリコー ン注入樹脂(又はエポキシ注入樹脂)(80~90質量 30 %)及び蛍光体顔料6(15質量%未満)を含有する。 他のわずかな成分は、特にメチルエーテル又はエアロジ ル (Aerosil) である。この蛍光体顔料は、赤及び緑に 発光する2種(又はそれ以上)のニトリド含有顔料から なる混合物である。

【0058】図1bにおいて、半導体デバイス10の一 実施態様が示されており、この場合、白色光への変換は 変換層16を用いて行われ、この層は米国特許第581 3752号明細書に記載されたと同様に個々のチップ上 に直接塗布されている。基板11上に接触層12、鏡1 3、LED14、フィルタ15並びに一次放射により励 起可能で、長波長の可視放射へ変換するための蛍光体層 16が設けられている。この構造単位はプラスチックレ ンズ17によって取り囲まれている。2つのオーム抵抗 の内で上方のコンタクト18だけが示されている。

【0059】図2では、照明ユニットとしての平板型照 明20部分図を示す。この照明ユニットは、長方体の外 部ケーシング22を接着した共通の支持体21からな る。その上側は共通のカバー23が設けられている。と の長方体のケーシングは空所を有し、その空所内に個々 50 白色LEDの発光スペクトルを示す。適当な混合の際に

の半導体-構成デバイス24が取り付けられている。と れは360nmのピーク発光を示すUV発光ダイオード である。白色光への変換は変換層25を用いて行われ、 この変換層は全てのUV放射が当たる面に設けられてい る。これには、ケーシングの壁部の内部にある表面、カ バー及び底部が挙げられる。変換層25は3種の蛍光体 からなり、この蛍光体は、本発明による蛍光体を利用し て赤色、緑色及び背色のスペクトル領域で発光する。

【0060】本発明による蛍光体は表3にまとめられて 10 いる。これは多様な配位数のサイアロン及びニトリドで

【0061】図4は、詳細に記載されている多様なニト リド含有蛍光体の典型的な蛍光領域(nm)を示す。と れらの蛍光体は青から赤までの広いスペクトルをカバー する。

【0062】図3及び4は波長の関数として多様なニト リド含有蛍光体の発光特性及び反射特性を示す。

【0063】詳細には、図3aは390nmによる励起 の際のサイアロンSrSiAl₂O₃N₂:Ce

³ + (4%) (つまりカチオンSrに関するCeの割合 4mol%) (試験番号TF23A/01) の発光スペ クトルを示す。この最大値は青色で466mmであり、 平均波長は493nmである。反射率(図3b)は40 Onmで約R400=60%であり、370nmで約R 370 = 37% である。

【0064】サイアロンTF23A/01の合成を次に 例示的に詳細に説明する。

1.

【0065】蛍光体粉末を高温-固体反応により製造す る。このために、高純度の出発材料SrCOs、AIN 及びSi₃N₄をモル比1:2:1で混合した。Si₃ N_4 の粒度は $d_{50} = 1.6 \mu m$ 、 $d_{10} = 0.4 \mu m$ 及びd。 $_{0}$ = 3.9 μ m である。少量の CeO_{2} を、ド ーピングの目的で添加し、この場合、相応するモル量の SrCO。を添加した。

【0066】個々の成分を良好に混合させた後、この粉 末を約1400°Cで約15h還元性の雰囲気(N2/H 2) 中で加熱し、かつ反応させて上記の化合物にした。 【0067】図4は400nmによる励起の際のサイア ロンSrSiAl₂O₃N₂:Eu²⁺(4%)(試験 番号TF31A/01)の発光スペクトルを示す。この 最大値は緑色で534nmであり、平均波長は553n mである。量子効率QEは43%である。反射率(図4 b) は400nmで約R400=31%であり、370 nmで約R370=22%である。

【0068】図5は、図3及び4からの青及び緑色に発 光するサイアロン並びに公知の赤色発光α-サイアロン Sr₂ Si₅ N₈: Eu (WO 01/39574参照)を使用し た、図1aの実施例による360nmのピーク発光を示 すInGaN-チップを用いた一次励起をベースとする 13

14

白色点にすぐ近くのx=0.331、y=0.330の *ために、ニトリドベースのサイアロンが特に適している 色座標を示す。

ととを示す。

【0069】これは、発光変換LEDに、この場合、他 の温度安定性蛍光体と一緒の蛍光体-混合物に使用する* [0070] 【表3】

化合物	QE	R360	R400	Max. Em.	x	y
SrSiAl2O3N2:Ce3+	29	30	60	466	0,182	0,232
SrSIAI2O3N2:Eu2+	51	25	42	497	0.304	0,432
La3Si5N11:Ce3+	30	13	39	451	0,157	0,145
,						

[0071]

※20※【表4】

钳光体	ドット (カチオン のmol%)	発光領域	
SrSiAl ₂ O ₃ N ₂ : Eu ² *	2 ~ 10	495 ~ 515 nm	
CaSiW ₂ O ₃ N ₂ : Eu ²⁺	2 ~ 6	550 ~ 570 nm	
SrSIAI2O3N2: Ce3+	2 ~ 6	455 ~ 480 nm	
SrSiAl ₂ O ₃ N ₂ : Eu ²⁺	1 ~ 5	490 ~ 510 nm	
CaSi6AlON9:Eu ^t *	3∼6	570 ~ 595 nm	
La ₃ Si ₆ N ₁₇ :Ce3+	2~5	435 ~ 452 nm	
Sr ₂ Si ₄ AlON ₇ :Eu ^{2*}	2 ~ 4	625 ~ 640 nm	

【図面の簡単な説明】

【図1】白色光のための光源(LED)として注入樹脂 あり(図1a)及び注入樹脂なし(図1b)で用いられ る半導体デバイスを示す

【図2】本発明による蛍光体を備えた照明ユニットを示

【図3】本発明による多様なニトリド含有蛍光体の発光 スペクトル及び反射スペクトルを示す

【図4】本発明による多様なニトリド含有蛍光体の発光 スペクトル及び反射スペクトルを示す

【図5】本発明によるニトリド含有蛍光体を備えたLE 40 Dの発光スペクトルを示す

【符号の説明】

1 半導体デバイス、 2,3 電気接続部、 5 注 入材料、 6 蛍光体、 8 基体容器、 9 凹設 部、 14 ボンディングワイヤ、 17 壁部

フロントページの続き

			•			
(51) Int .C7 .7		識別記号	THIS ENDIN	FΙ		テーマコード(参考)
C 0 9 K	11/64	CQD-		C 0 9 K	11/64	CQD
	11/79				11/79	
	11/80	• •	Section 1		11/80	
H 0 1 L	33/00	٠.		H01L	33/00	С

(72)発明者 トルステン フリース ドイツ連邦共和国 シュタットベルゲン ゲーテシュトラーセ 6(72)発明者 ティム フィードラー

ドイツ連邦共和国 ライネ リストループ ヴェーク 13 (72)発明者 ギュンター フーバー

ドイツ連邦共和国 シュローベンハウゼン ライフアイゼンシュトラーセ 1

Fターム(参考) 4H001 CA07 XA07 XA08 XA13 XA14 XA20 XA38 XA39 XA56 XA57 XA64 XA71 YA25 YA58 YA59

YA63 YA65

4J037 AA17 AA24 CA03 EE02 FF03 5F041 AA11 AA12 AA43 AA44 CA40

DA36 DA43 DA77 EE25

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
MAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.