Álgebra Linear I

Professora Kelly Karina

Diagonalização de operadores

Dado um operador linear $T: V \to V$ a cada base de V corresponde uma matriz $[T]_B$ que representa T na base B.

Qual base utilizar de forma que a matriz de T nessa base seja a mais simples representante de T?

Propriedade:

Autovetores associados a autovalores distintos de um operador $T:V \to V$ são linearmente independentes.

Corolário:

Se $T:V\to V$ é linear, dimV=n e T possui n autovalores distintos, o conjunto $\{v_1,v_2,\ldots,v_n\}$, formado pelos autovetores correspondentes, é uma base de V.

Exemplo:

Seja $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (-3x - 5y, 2y). A matriz canônica de T é:

$$A = \left[\begin{array}{cc} -3 & -5 \\ 0 & 2 \end{array} \right]$$

A equação característica de T é:

$$det(A - \lambda I) = \begin{vmatrix} -3 - \lambda & -5 \\ 0 & 2 - \lambda \end{vmatrix} = 0$$

ou $(-3\lambda)(2-\lambda)=0$ que é $\lambda^2+\lambda-6=0$. Portanto os aultovalores de T são: $\lambda_1=2$ e $\lambda_2=-3$. Como $\lambda_1\neq\lambda_2$, os autovetores correspondentes formam uma base do \mathbb{R}^2 .

Calculando os autovetores por meio do sistema homogêneo

$$\begin{bmatrix} -3 - \lambda & -5 \\ 0 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

obtemos:

- para $\lambda_1 = 2$ os vetores $v_1 = (x, -x)$;
- para $\lambda_2 = -3$ os vetores $v_2 = (-x, 0)$;

Logo o conjunto $\{(1,-1),(-1,0)\}$ é uma base do \mathbb{R}^2 .

Observação:

Denominemos a base $\{(1,-1),(-1,0)\}$ por P, ou seja

$$P = \{(1, -1), (-1, 0)\}$$

Como T(1,-1) = 2(1,-1) = 2(1,-1) + 0(-1,0) T(-1,0) = -3(-1,0) = 0(1,-1) - 3(-1,0)

concluímos que a matriz

$$[T]_P = \left[\begin{array}{cc} 2 & 0 \\ 0 & -3 \end{array} \right]$$

representa o operador T na base de autovetores e é uma matriz diagonal cujos elementos da diagonal são λ_1 e λ_2 .

Observação:

Se A a matriz canônica do operador T, ou seja [T] = A, e D a matriz do operador T numa base de autovetores P, então $D = M^{-1}AM$, onde M é a matriz mudança de base de P para A. Como M = P (onde aqui estamos representando por P a matriz cujas colunas são os autovetores de T) então:

$$D = P^{-1}AP$$

A matriz quadrada A é diagonalizável se existe uma matriz inversível P tal que $P^{-1}AP$ é diagonal. Dizemos nesse caso que P diagonaliza A.De forma equivalente:

Dizemos que um operador linear $T:V\to V$ é diagonalizável se existe uma base de V formada por autovetores de T.

Exemplo:

Determine uma matriz P que diagonaliza a matriz

$$A = \left[\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{array} \right]$$

e calcule $P^{-1}AP$.

Solução:

Na aula passada calculamos oa autovalores e autovetores de T e encontramos $\lambda_1=2$ e $v_1=(1,0,-1)$, $\lambda_2=3$ e $v_2=(1,1,1)$ e $\lambda_3=6$ e $v_3=(1,-2,1)$.

Como λ_1, λ_2 e λ_3 são distintos, o conjunto $P = \{v_1, v_2, v_3\}$ forma base do \mathbb{R}^3 e portanto a matriz

$$P = \left[\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{array} \right]$$

diagonaliza A.

De fato,

$$P^{-1}AP = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ -1 & 1 & 1 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{6} & -\frac{1}{3} & \frac{1}{6} \end{bmatrix} \begin{bmatrix} 2 & 3 & 6 \\ 0 & 3 & -12 \\ -2 & 3 & 6 \end{bmatrix}$$

$$P^{-1}AP = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} = D$$

Exercício

Seja T um operador linear do \mathbb{R}^2 dado por

$$T(x,y) = (4x + 5y, 2x + y)$$

Encontre uma base do \mathbb{R}^2 em relação à qual a matriz de \mathcal{T} é diagonal.