_
NIR
\supseteq
B
Ri 9
Б
ge I
<u>_</u>
Ö
nac
nter
$\overline{\Box}$
dac
: rSi
Ĭ.
U

Asignatura	Datos del alumno	Fecha
Investigación en Inteligencia Artificial	Apellidos: Damián Estebanez	2-6-2019
	Nombre: Federico	

Trabajo: Diseño de Máquinas de Turing

Empleando la herramienta JFLAP, deberás proporcionar la Máquina de Turing que reconoce todas las palabras del siguiente lenguaje:

$$L \text{=} \{0^n 1^{n+1} \ 0^{n+2} \, | \ n \text{\ge} 1\}$$

Solución - Máquina De Turing

Asignatura	Datos del alumno	Fecha
Investigación en Inteligencia Artificial	Apellidos: Damián Estebanez	2-6-2019
	Nombre: Federico	

El autómata iría leyendo de izquierda a derecha y cambiando cada primer 0, primer 1 y primer 0 detrás del 1, por un carácter diferente. En nuestro caso X, Y, Z.

A continuación, volvería hacia atrás para repetir el proceso con el segundo número de cada grupo. Cuando el último 1 de la secuencia ha sido modificado, concluimos por cambiar el último 0 por una Z y llegar al estado final.