

Invasives Rust

Hermann Heinz Erich Krumrey

Lehrstuhl Programmierparadigmen, IPD Snelting

Struktur

- 1. TODO Remove this slide!
- 2. Motivation + Beispiel
- 3. Invasives Rechnen
- 4. SPARC
- 5. Rust
- 6. Octorust + LoC
- 7. Octolib + LoC
- 8. Leistungsevaluation
- 9. Zusammenfassung
- 10. Wichtigste 4 Folien

Motivation

Beispiel Paralleles Problem. Brauchst erst 4 Prozessoren I/O ? Dann Sequentiell - Netwerk - Bandbreite == Bottleneck Daten Holen Dann 8 weil's schneller gehen muss

Invasives Rechnen

Invasives Rechnen

Invasives Rechnen

SPARC LEON

Rust - Übersicht und Motivation

Rust - Ownership, Move, Borrow

Rust - SPARC

octorust

LoC

octolib - Rust Bindings

LoC

octolib - Rust Improvements

LoC

Evaluation - Laufzeit

Zusammenfassung und Fazit

Fragen?

4 Wichtigste Folien: invasive computing ownership structs etc octolib - improvements