

CSI 695: Scientific Databases

Fall Term 2017

Lecture 5: Introduction to Searching in Scientific databases

Lectures: Prof. Dr. Matthias Renz

Exercises: TBA

- Managing scientific data usually requires methods that go beyond the capabilities of standard database management systems.
- Scientific data often involves complex structured data not well supported by the table schema used in standard databases.
- Exact match queries as provided in standard dabase management systems often do not suffice for searching in scientific data, we need something different!!!

Example:

How would you store/manage molecules in a standard relational database ?

Think about it ...

Scientific data often consists of complex stuctured data including spatial, temporal, spatio-temporal, and multi-media data?

- Spatial data: 1D, 2D, 3D
- Temporal data: time series
- Spatio-temporal data:
 - objects moving in a given space
- Multi-media data:
 - audio sequences, video sequences

A motivating example

- □ Given an archive with 2,000,000 images (2D objects)
- Is a given image included in that archive?

- "included" does not necessarily mean "identical binary representation!
- Images may vary in
- Size (scaling, resolution)

- Perspective (reflection, ...)
- Coloring, shading
- Clipping, cutting
- Add-ons (border, annotation, ...)

Instead of searching for

```
exact matches (supported by standard databases (relational-, object-relational DBMS)
```

we need to search for

"similar" objects! → new concepts for managing data required (non-standard databases)

Searching:

- General problems when searching for similar objects
 - Informal level
 - Similarity depends on the application
 - Searching for images showing "sunset" => color is important
 - Searching for images showing "animals" => shape is important
 - Similarity depends on the user's notion
 - Formal level
 - How are the objects represented?
 - □ How can the similarity between objects be modeled?
 - Pragmatic level
 - Efficient algorithm for computing the similarity
 - □ Efficient algorithm for searching in a large disc-resident database

- Searching:
 - Here, we focus on the sub-problem
 - Efficiently searching for similar objects in a large database and to some extend on
 - Efficiently computing the similarity between objects
 - We assume a very common model of similarity: Feature-based similarity
- Feature-based similarity
 - How can we model the similarity between complex objects like images, 3D objects, video sequences, etc.?
 - Considerations
 - Efficiency: Model should allow efficient query processing => use of index structures should be possible
 - Generality: Avoid the necessity to develop algorithms and index structures for each application separately but develop a general way to model similarity
 - We have indexes for
 - Spatial data and multi-dimensional vectors
 - General metric data (objects with a metric distance function)

Feature-based similarity (cont.)

- Objects from real world are transformed into multi-dimensional feature vector points
 - 1. Identify a set (sequence) of (numerical) features from objects that best describe the objects
 - 2. Build a multidimensional point vector from the set (sequence) of features
 - 3. Manage the point vectors where each point vector has a link to the detailed object descriptions
 - 4. (Object) point vectors are efficiently organized (managed) using appropriate index structures

Outline

- Searching in Scientific Databases: Introduction
- Feature spaces and proximity measures
- Feature transformation for text data
- Algorithmic Paradigms for Similarity Query Processing

Feature space

- Intuitively: a domain with a distance function
- □ Formally: feature space **F** = (*Dom*, *dist*):
 - Dom is a set of attributes / features
 - dist: a numerical measure of the degree to which the two compared objects differ
 - □ $dist: Dom \times Dom \rightarrow R^{+}_{0}$
- □ For all x, y in Dom, $x\neq y$, dist is required to satisfy the following properties:
 - dist(x,y) > 0 (non-negativity)
 - dist(x,x) = 0 (reflexivity)

Metric space

- Formally: Metric space $M = \{Dom, dist\}$:
 - M is a feature space
 - i.e, dist(x,y) > 0 (non-negativity) and,
 - dist(x,x) = 0 (reflexivity)

 - □ $\forall x,y,z \in Dom : dist(x,z) \leq dist(x,y) + dist(y,z)$ (triangle inequality)

- Famous example: Euclidean vector space E=(Dom, dist)
 - (Dom, dist) is a metric space
 - $Dom = \mathbb{R}^d$

$dist(x, y) = \sqrt{\frac{1}{x^2}}$	$\sum_{i=1}^d (x_i - y_i)^2$

- Notation:
 - Euclidean vector space =: "Feature space"
 - Vectors (Objects in the Euclidean feature space) =: "Feature vectors"
 - □ The *d* dimensions of the vector space =: "Features"
- Standardization is necessary, if scales differ!
 - e.g., age (e.g., range [0-100] vs salary (e.g., range: 10000-100000))

We will come back to this in a few slides

Point coordinates

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance matrix

- Manhattan distance or City-block distance (L₁ norm)
 - $dist_1 = |p_1-q_1| + |p_2-q_2| + ... + |p_d-q_d|$
 - The sum of the absolute differences of the p,q coordinates
- Euclidean distance (L₂ norm)
 - $dist_2 = ((p_1-q_1)^2 + (p_2-q_2)^2 + ... + (p_d-q_d)^2)^{1/2}$
 - The length of the line segment connecting p and q
- Supremum distance (L_{max} norm or L_{∞} norm)
 - $dist_{\infty} = \max\{|p_1-q_1|, |p_2-q_2|, ..., |p_d-q_d|\}$
 - The max difference between any attributes of the objects.
- Minkowski Distance (Generalization of L_p-distance)
 - $dist_p = (|p_1-q_1|^p + |p_2-q_2|^p + ... + |p_d-q_d|^p)^{1/p}$

Example

point	X	y
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Point coordinates

L1	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
р4	6	4	2	0

L2	p1	p2	р3	p 4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

L∞	p1	p2	р3	p4
p1	0	2	3	5
p2	2	0	1	3
р3	3	1	0	2
p4	5	3	2	0

L1 distance matrix

L2 distance matrix

L_∞ distance matrix

Source:http://www.econ.upf.edu/~michael/stanford/maeb5.pdf

- Let *x,y* in [-1,1]
- For L1 norm
 - $|(x,y)|_1=1 => x+y=1$
 - □ If x=1, y=0
 - □ If x=0.8, y=0.2
 - **.**.
- For L2 norm
 - $(x^2+y^2)^{1/2}=1$
 - It is circle
- **...**

Unit Circle for different Lp-distances

Source:https://de.wikipedia.org/wiki/P-Norm

Normalization

- Attributes with large ranges outweigh ones with small ranges
 - e.g. income [10K-100K]; age [10-100]
- To balance the "contribution" of an attribute A in the resulting distance, the attributes are scaled to fall within a small, specified range.
- min-max normalization: to [new_min_A, new_max_A]

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A$$

- e.g. normalize age=30 in [0-1], when min=10,max=100. new_age=((30-10)/(100-10))*(1-0)+0=2/9
- z-score normalization also called zero-mean normalization
 - After zero-mean normalizing each feature will have a mean value of 0

$$v' = \frac{v - mean_A}{stand \ dev_A}$$
 e.g. normalize 70,000 iff μ =50,000, σ =15,000. new_value = (70,000-50,000)/15,000=1.33

Proximity between binary attributes 1/2

- A binary attribute has only two states: 0 (absence), 1 (presence)
- A contingency table for binary data

Instance i

1	0	sum
q	r	q+r
s	t	s+t
q + s	r+t	p
	1 q s	-

Instance i

q = the number of attributes where i was 1 and j was 1 t = the number of attributes where i was 0 and j was 0

s = the number of attributes where i was 0 and j was 1<math>r = the number of attributes where i was 1 and j was 0

- Simple matching coefficient
 (for symmetric binary variables)
- for asymmetric binary variables:
- Jaccard coefficient

(for asymmetric binary variables)

$$d(i, j) = \frac{r+s}{q+r+s+t}$$

$$d(i,j) = \frac{r+s}{q+r+s}$$

Proximity between binary attributes 2/2

Example:

Name	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	1	0	1	0	0	0
Mary	1	0	1	0	1	0
Jim	1	1	0	0	0	0

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

(from previous slide)

q = the number of attributes where i was 1 and j was 1 t = the number of attributes where i was 0 and j was 0

s = the number of attributes where i was 0 and j was 1 r = the number of attributes where i was 1 and j was 0

$$d(i,j) = \frac{r+s}{q+r+s}$$

Proximity between categorical attributes

- A nominal attribute has >2 states (generalization of a binary attribute)
 - e.g. color={red, blue, green}
- Method 1: Simple matching
 - m: # of matches, p: total # of variables

$$d(i,j) = \frac{p-m}{p}$$

Name	Hair color	Occupation
	Brown	Student
	Blond	Student
Jim	Brown	Architect

- Method 2: Map it to binary variables
 - create a new binary attribute for each of the M nominal states of the attribute

Name	Brown hair	Blond hair	IsStudent	IsArchitect
Jack	1	0	1	0
Mary	0	1	1	0
Jim	1	0	0	1

Selecting the right proximity measure

- The proximity function should fit the type of data
 - For dense continuous data, metric distance functions like Euclidean are often used.
 - For sparse data, typically measures that ignore 0-0 matches are employed
 - We care about characteristics that objects share, not about those that both lack
- Domain expertise is important, maybe there is already a state-of-the-art proximity function in a specific domain and we don't need to answer that question again.
- In general, choosing the right proximity measure can be a very time consuming task
- Other important aspects: How to combine proximities for heterogenous attributes (binary and numeric and nominal etc.)
 - e.g., using attribute weights

Outline

- Searching in Scientific Databases: Introduction
- Feature spaces and proximity measures
- Feature transformation for text data
- Algorithmic Paradigms for Similarity Query Processing

Feature transformations for text data 1/6

- Text represented as a set of terms ("Bag-Of-Words" model)
 - Terms:
 - Single words ("cluster", "analysis"..)
 - bigrams, trigrams, ...n-grams ("cluster analysis"..)
 - Transformation of a document d in a vector $r(d) = (h_1, ..., h_d)$, $h_i \ge 0$: the frequency of term t_i in d

Feature transformations for text data 2/6

- Challenges/Problems in Text Mining:
 - Common words ("e.g.", "the", "and", "for", "me")
 - 2. Words with the same root ("fish", "fisher", "fishing",...)
 - Very high-dimensional space (dimensionality d > 10.000)
 - 4. Not all terms are equally important
 - Most term frequencies $h_i = 0$ ("sparse feature space")
- More challenges due to language:
 - Different words have same meaning (synonyms)
 - "freedom" "liberty"
 - Words have more than one meanings
 - e.g. "java", "mouse"

Feature transformations for text data 3/6

- Problem 1: Common words ("e.g.", "the", "and", "for", "me")
 - Solution: ignore these terms (Stopwords)
 There are stopwords list for all languages in WWW.
- Problem 2: Words with the same root ("fish", "fisher", "fishing",...)
 - Solution: Stemming

Map the words to their root

- "fishing", "fished", "fish", and "fisher" to the root word, "fish".

For English, the Porter stemmer is widely used.

(Porters Stemming Algorithms: http://tartarus.org/~martin/PorterStemmer/index.html)

Stemming solutions exist for other languages also.

The root of the words is the output of stemming.

Feature transformations for text data 4/6

- Problem 3: Too many features/ terms
 - Solution: Select the most important features ("Feature Selection")
 - Example: average document frequency for a term
 - Very frequent items appear in almost all documents
 - Very rare terms appear in only a few documents

Ranking procedure:

- 1. Compute document frequency for all terms t_i :
- Sort terms w.r.t. $DF(t_i)$ and get $rank(t_i)$
- Sort terms by $score(t_i) = DF(t_i) \cdot rank(t_i)$ e.g. $score(t_{23}) = 0.82 \cdot 1 = 0.82$ $score(t_{17}) = 0.65 \cdot 2 = 1.3$
- Select the k terms with the largest $score(t_i)$

$$DF(t_i) = \frac{\#Docs\ containing\ t_i}{\#All\ documents}$$

Rank	Term	DF
1.	t_{23}	0.82
2.	t_{17}	0.65
3.	t_{14}	0.52
4.	•••	•••

Feature transformations for text data 5/6

- Problem 4: Not all terms are equally important
 - Idea: Very frequent terms are less informative than less frequent words. Define such a term weighting schema.
 - Solution: TF-IDF (Term Frequency · Inverse Document Frequency)
 Consider both the importance of the term in the document and in the whole collection of documents.

$$TF(t,d) = \frac{n(t,d)}{\sum_{w \in d} n(w,d)}$$
 The relative frequency of term t in d [n(t,d) = # t in d]

$$IDF(t) = \log(\frac{|DB|}{|\{d \mid d \in DB \land t \in d\}|})$$
 Inverse frequency of term t in all DB

$$TF \times IDF = TF(t, d)IDF(t)$$

Feature vector with TF IDF : $r(d) = (TF(t_1, d) \cdot IDF(t_1), ..., TF(t_n, d) \cdot IDF(t_n))$

Feature transformations for text data 6/6

- Problem 5: for most of the terms $h_i = 0$
 - Euclidean distance is not a good idea: it is influenced by vectors lengths
 - Idea: use more appropriate distance measures

Jaccard Coefficient: Ignore terms absent in both documents

$$d_{Jaccard}\left(d_{1},d_{2}\right)=1-\frac{|d_{1}\cap d_{2}|}{|d_{1}\cup d_{2}|}=\frac{|\{t|t\in d_{1}\wedge t\in d_{2}\}|}{|\{t|t\in d_{1}\vee t\in d_{2}\}|}$$

Cosine Coefficient: Consider term values (e.g. TFIDF values)

$$d_{\cos inus}(d_1, d_2) = 1 - \frac{\langle d_1, d_2 \rangle}{\|d_1\| \cdot \|d_2\|} = 1 - \frac{\sum_{i=0}^{n} (d_{1,i} \cdot d_{2,i})}{\sqrt{\sum_{i=0}^{n} d_{1,i}^2} \cdot \sqrt{\sum_{i=0}^{n} d_{2,i}^2}}$$