IET winter 2016 Semester-6 Digital Signal Processing

LAB 7-8

Objectives:

Understand different concepts of Z-transform

Prerequisites:

• Z-transform and its properties, Inverse z-transform, Concept of ROC

Explore Following Commands:

- syms
- ztrans
- zplan
- <u>iztrans</u>
- impz

Problems

- 1. Use MATLAB to obtain Symbolic Z-Transform of some basic signals.
 - a. X(n) = u(n)
 - b. X(n) = nu(n)
 - c. X(n) = (1+n) u(n)
 - d. $X(n) = cos(\omega 0n) u(n)$
 - e. $X(n) = \sin(\omega 0n) u(n)$
 - f. $X(n) = a^n \cos(\omega 0n) u(n)$
 - g. $X(n) = a^n \sin(\omega 0n) u(n)$
 - h. $X(n) = n a^n u(n)$;
 - i. $X(n) = -na^n u(-n-1)$;
 - j. $X(n) = n (-1)^n u(n)$
 - k. $X(n) = (n)^2 u(n)$

2. Use MATLAB to Plot poles and zeros of the Z-transform obtained for following signals.

a.
$$X(n) = \left(\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{3}\right)^n u(n)$$

b.
$$X(n) = \left(-\frac{1}{3}\right)^n u(n) - \left(\frac{1}{2}\right)^n u(-n-1)$$

c.
$$X(n) = \left(\frac{1}{2}\right)^n u(-n)$$

d.
$$X(n) = \{-1,0,-1,0,-1,0,-1,0,-1,...\}$$

3. Use MATLAB to obtain Symbolic Inverse Z-Transform of some basic signals.

a.
$$X(z) = \left(\frac{1+3z^{-1}}{1-3z^{-1}+2z^{-2}}\right)$$

b.
$$X(z) = \left(\frac{1+2z^{-1}}{1+z^{-2}}\right)$$

c.
$$X(z) = \left(\frac{1+2z^{-1}+z^{-2}}{1+4z^{-1}+4z^{-2}}\right)$$

- 4. I) Use MATLAB to obtain impulse response & step response of the systems specified below
 - II) Use MATLAB to obtain pole-zero plot of the systems specified in (a), (b), (c)

a.
$$Y(n) = 0.75 y(n-1) - 0.125 y(n-2) +x(n)$$

b.
$$Y(n) = y(n-1)+x(n)$$

c.
$$Y(n)=0.7 y(n-1) - 0.1 y(n-2) + 2 x(n) -x(n-2)$$