- Is there a significant difference in the median value of houses bounded by the Charles river or not?
- Is there a difference in median values of houses of each proportion of owneroccupied units built before 1940?
- Can we conclude that there is no relationship between Nitric oxide concentrations and the proportion of non-retail business acres per town?
- What is the impact of an additional weighted distance to the five Boston employment centres on the median value of owner-occupied homes?

Data Dictionary

Field	Description
CRIM	per capita crime rate by town
ZN	proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS	proportion of non-retail business acres per town.
CHAS	Charles River dummy variable (1 if tract bounds river; 0 otherwise)
NOX	nitric oxides concentration (parts per 10 million)
RM	average number of rooms per dwelling
AGE	proportion of owner-occupied units built prior to 1940
DIS	weighted distances to five Boston employment centres
RAD	index of accessibility to radial highways
TAX	full-value property-tax rate per 10,000
PTRATIO	pupil-teacher ratio by town
LSTAT	lower status of the population
MEDV	Median value of owner-occupied homes in 1000s

Import Libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
   import statsmodels.api as sm
   import datetime
   import scipy.stats

%matplotlib inline
%autosave 60
   sns.set_style('dark')
   sns.set(font_scale=1.2)
```

```
import warnings
warnings.filterwarnings('ignore')

pd.set_option('display.max_columns',None)
pd.set_option('display.width', 1000)

np.random.seed(0)
np.set_printoptions(suppress=True)
```

Autosaving every 60 seconds

In [2]: df = pd.read_csv("boston_housing.csv")

In [3]: df

CRIM ZN INDUS CHAS NOX RM AGE **DIS RAD TAX PTRAT** Out[3]: 0 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 1! **1** 0.02731 0 0.469 6.421 78.9 4.9671 17 0.0 7.07 2 242 2 0.02729 7.07 0 0.469 7.185 61.1 4.9671 2 242 17 0.0 **3** 0.03237 0 0.458 6.998 45.8 6.0622 0.0 2.18 3 222 18 4 0.06905 0 0.458 7.147 54.2 6.0622 3 222 0.0 2.18 18 **501** 0.06263 11.93 0 0.573 6.593 69.1 2.4786 273 2: 0.0 1 **502** 0.04527 0 0.573 6.120 76.7 2.2875 2: 0.0 11.93 273 **503** 0.06076 11.93 0 0.573 6.976 91.0 2.1675 273 2: 0.0 1 2: **504** 0.10959 0.0 11.93 0 0.573 6.794 89.3 2.3889 1 273 **505** 0.04741 0.0 11.93 0 0.573 6.030 80.8 2.5050 1 273 2:

 $506 \text{ rows} \times 13 \text{ columns}$

Data Analysis

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 506 entries, 0 to 505 Data columns (total 13 columns): Column Non-Null Count Dtype ----------0 CRIM 506 non-null float64 506 non-null float64 1 ZN 2 INDUS 506 non-null float64 3 506 non-null int64 CHAS 4 NOX 506 non-null float64 5 RM506 non-null float64 6 AGE 506 non-null float64 7 506 non-null float64 DIS 8 RAD 506 non-null int64 9 506 non-null int64 TAX 10 PTRATIO 506 non-null float64 11 LSTAT 506 non-null float64 12 MEDV 506 non-null float64

dtypes: float64(10), int64(3)

memory usage: 51.5 KB

In [5]: df.describe()

RM	NOX	CHAS	INDUS	ZN	CRIM		out[5]:
506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	count	
6.284634	0.554695	0.069170	11.136779	11.363636	3.613524	mean	
0.702617	0.115878	0.253994	6.860353	23.322453	8.601545	std	
3.561000	0.385000	0.000000	0.460000	0.000000	0.006320	min	
5.885500	0.449000	0.000000	5.190000	0.000000	0.082045	25%	
6.208500	0.538000	0.000000	9.690000	0.000000	0.256510	50%	
6.623500	0.624000	0.000000	18.100000	12.500000	3.677082	75 %	
8.780000	0.871000	1.000000	27.740000	100.000000	88.976200	max	

```
In [6]: df.columns
```

Out[6]: Index(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TA X', 'PTRATIO', 'LSTAT', 'MEDV'], dtype='object')

Data Visualization

```
In [7]: df.hist(bins=50, figsize=(20,10))
        plt.suptitle('Feature Distribution', x=0.5, y=1.02, ha='center', fontsize='l
        plt.tight layout()
        plt.show()
```



```
In [8]: plt.figure(figsize=(20,20))
    plt.suptitle('Pairplots of features', x=0.5, y=1.02, ha='center', fontsize='
    sns.pairplot(df.sample(250))
    plt.show()
```

<Figure size 1440x1440 with 0 Axes>

Task 4

```
In [9]: plt.figure(figsize=(10,5))
    sns.boxplot(x=df.MEDV)
    plt.title("Boxplot for MEDV")
    plt.show()
```


Note: Outliers after third quartile.

```
In [10]: plt.figure(figsize=(10,5))
    sns.distplot(a=df.CHAS,bins=10, kde=False)
    plt.title("Histogram for Charles river")
    plt.show()
```



```
In [11]: df.loc[(df["AGE"] <= 35), 'age_group'] = '35 years and younger'
    df.loc[(df["AGE"] > 35) & (df["AGE"] < 70), 'age_group'] = 'between 35 and 70 y
    df.loc[(df["AGE"] >= 70), 'age_group'] = '70 years and older'
In [12]: df
```

Out[12]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRAT
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	1!
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18
	501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	2:
	502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	2:
	503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	2:
	504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	2:
	505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	2:

506 rows × 14 columns

```
In [13]: plt.figure(figsize=(10,5))
    sns.boxplot(x=df.MEDV, y=df.age_group, data=df)
    plt.title("Boxplot for the MEDV variable vs the AGE variable")
    plt.show()
```

Boxplot for the MEDV variable vs the AGE variable


```
In [14]: plt.figure(figsize=(10,5))
    sns.scatterplot(x=df.NOX, y=df.INDUS, data=df)
    plt.title("Relationship between NOX and INDUS")
    plt.show()
```



```
In [15]: plt.figure(figsize=(10,5))
    sns.distplot(a=df.PTRATIO,bins=10, kde=False)
    plt.title("Histogram for the pupil to teacher ratio variable")
    plt.show()
```


Note: Pupil to teacher ratio is highest at 20-21 range.

Task 5

In [16]: **df**

Out[16]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRAT
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	1!
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18
	501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	2:
	502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21
	503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	2.
	504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21
	505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	2:

506 rows × 14 columns

Is there a significant difference in median value of houses bounded by the Charles river or not? (T-test for independent samples)

Null Hypothesis(H_0): Both average MEDV are the same

Alternative $\operatorname{Hypothesis}(H_1)$: Both average MEDV are NOT the same

```
Out[18]: 0
                  24.0
          1
                  21.6
          2
                  34.7
          3
                  33.4
                  36.2
                  . . .
          501
                  22.4
          502
                  20.6
          503
                  23.9
          504
                 22.0
          505
                  11.9
          Name: MEDV, Length: 471, dtype: float64
In [19]: b = df[df["CHAS"] == 1]["MEDV"]
Out[19]: 142
                  13.4
          152
                  15.3
          154
                  17.0
          155
                  15.6
          160
                  27.0
          162
                  50.0
          163
                  50.0
          208
                 24.4
          209
                 20.0
          210
                  21.7
          211
                 19.3
          212
                  22.4
          216
                 23.3
          218
                 21.5
          219
                  23.0
          220
                 26.7
          221
                  21.7
          222
                 27.5
          234
                  29.0
          236
                  25.1
          269
                 20.7
          273
                  35.2
          274
                 32.4
          276
                 33.2
          277
                  33.1
          282
                 46.0
          283
                 50.0
          356
                 17.8
                  21.7
          357
          358
                  22.7
          363
                  16.8
          364
                  21.9
          369
                  50.0
          370
                  50.0
          372
                  50.0
          Name: MEDV, dtype: float64
In [20]: scipy.stats.ttest_ind(a,b,axis=0,equal_var=True)
```

Out[20]: Ttest indResult(statistic=-3.996437466090509, pvalue=7.390623170519905e-05)

Since p-value more than alpha value of 0.05, we failed to reject null hypothesis since there is NO statistical significance.

Is there a difference in Median values of houses (MEDV) for each proportion of owner occupied units built prior to 1940 (AGE)? (ANOVA)

```
In [21]: df["AGE"].value counts()
Out[21]: 100.0
                   43
          96.0
                    4
          98.2
                    4
          95.4
                    4
          97.9
                    4
                    . .
          47.6
                    1
          92.7
                    1
          13.9
                    1
          58.4
                    1
          40.1
                    1
          Name: AGE, Length: 356, dtype: int64
In [22]: df.loc[(df["AGE"] <= 35), 'age group'] = '35 years and younger'</pre>
         df.loc[(df["AGE"] > 35) \& (df["AGE"] < 70), 'age_group'] = 'between 35 and 70 y
         df.loc[(df["AGE"] >= 70), 'age group'] = '70 years and older'
In [23]: df
```

Out[23]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRAT
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	1!
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18
	501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	2:
	502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	2:
	503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	2:
	504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	2:
	505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	2:

506 rows × 14 columns

State the hypothesis

- + $H_0:\mu_1=\mu_2=\mu_3$ (the three population means are equal)
- ullet H_1 : At least one of the means differ

```
In [24]: low = df[df["age_group"] == '35 years and younger']["MEDV"]
    mid = df[df["age_group"] == 'between 35 and 70 years']["MEDV"]
    high = df[df["age_group"] == '70 years and older']["MEDV"]

In [25]: f_stats, p_value = scipy.stats.f_oneway(low,mid,high,axis=0)

In [26]: print("F-Statistic={0}, P-value={1}".format(f_stats,p_value))
```

F-Statistic=36.40764999196599, P-value=1.7105011022702984e-15

Since p-value more than alpha value of 0.05, we failed to reject null hypothesis since there is NO statistical significance.

Can we conclude that there is no relationship between Nitric oxide concentrations and proportion of non-retail business acres per town? (Pearson Correlation)

State the hypothesis

- H_0 : NOX is not correlated with INDUS
- H_1 : NOX is correlated with INDUS

```
In [27]: pearson,p_value = scipy.stats.pearsonr(df["NOX"],df["INDUS"])
In [28]: print("Pearson Coefficient value={0}, P-value={1}".format(pearson,p_value))
```

Pearson Coefficient value=0.7636514469209154, P-value=7.913361061236894e-98

Since the p-value (Sig. (2-tailed) < 0.05, we reject the Null hypothesis and conclude that there exists a relationship between Nitric Oxide and non-retail business acres per town.

What is the impact of an additional weighted distance to the five Boston employment centres on the median value of owner occupied homes? (Regression analysis)

State Hypothesis

Null Hypothesis: weighted distances to five Boston employment centres are not related to median value

Alternative Hypothesis: weighted distances to five Boston employment centres are related to median value

OLS Regression Results

Dep. Variable:	MEDV	R-squared:	0.062
Model:	OLS	Adj. R-squared:	0.061
Method:	Least Squares	F-statistic:	33.58
Date:	Tue, 03 Nov 2020	Prob (F-statistic):	1.21e-08
Time:	10:00:54	Log-Likelihood:	-1823.9
No. Observations:	506	AIC:	3652.
Df Residuals:	504	BIC:	3660.
Df Model:	1		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	18.3901	0.817	22.499	0.000	16.784	19.996
DIS	1.0916	0.188	5.795	0.000	0.722	1.462

Omnibus:	139.779	Durbin-Watson:	0.570
Prob(Omnibus):	0.000	Jarque-Bera (JB):	305.104
Skew:	1.466	Prob(JB):	5.59e-67
Kurtosis:	5.424	Cond. No.	9.32

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [34]: np.sqrt(0.062)

Out[34]: 0.24899799195977465

The square root of R-squared is 0.25: implies weak correlation

Correlation

In [35]: df.corr()

Out[35]:		CRIM	ZN	INDUS	CHAS	NOX	RM	4
	CRIM	1.000000	-0.200469	0.406583	-0.055892	0.420972	-0.219247	0.352
	ZN	-0.200469	1.000000	-0.533828	-0.042697	-0.516604	0.311991	-0.569
	INDUS	0.406583	-0.533828	1.000000	0.062938	0.763651	-0.391676	0.644
	CHAS	-0.055892	-0.042697	0.062938	1.000000	0.091203	0.091251	0.086
	NOX	0.420972	-0.516604	0.763651	0.091203	1.000000	-0.302188	0.731
	RM	-0.219247	0.311991	-0.391676	0.091251	-0.302188	1.000000	-0.240
	AGE	0.352734	-0.569537	0.644779	0.086518	0.731470	-0.240265	1.000
	DIS	-0.379670	0.664408	-0.708027	-0.099176	-0.769230	0.205246	-0.747
	RAD	0.625505	-0.311948	0.595129	-0.007368	0.611441	-0.209847	0.456
	TAX	0.582764	-0.314563	0.720760	-0.035587	0.668023	-0.292048	0.50€
	PTRATIO	0.289946	-0.391679	0.383248	-0.121515	0.188933	-0.355501	0.261
	LSTAT	0.455621	-0.412995	0.603800	-0.053929	0.590879	-0.613808	0.602
	MEDV	-0.388305	0.360445	-0.483725	0.175260	-0.427321	0.695360	-0.376

In [36]: plt.figure(figsize=(16,9))
 sns.heatmap(df.corr(),cmap="coolwarm",annot=True,fmt='.2f',linewidths=2, cba
 plt.show()

CRIM	1.00	-0.20	0.41	-0.06	0.42	-0.22	0.35	-0.38	0.63	0.58	0.29	0.46	-0.39
ZN	-0.20	1.00	-0.53	-0.04	-0.52	0.31	-0.57	0.66	-0.31	-0.31	-0.39	-0.41	0.36
INDUS	0.41	-0.53	1.00	0.06	0.76	-0.39	0.64	-0.71	0.60	0.72	0.38	0.60	-0.48
CHAS	-0.06	-0.04	0.06	1.00	0.09	0.09	0.09	-0.10	-0.01	-0.04	-0.12	-0.05	0.18
NOX	0.42	-0.52	0.76	0.09	1.00	-0.30	0.73	-0.77	0.61	0.67	0.19	0.59	-0.43
RM	-0.22	0.31	-0.39	0.09	-0.30	1.00	-0.24	0.21	-0.21	-0.29	-0.36	-0.61	0.70
AGE	0.35	-0.57	0.64	0.09	0.73	-0.24	1.00	-0.75	0.46	0.51	0.26	0.60	-0.38
DIS	-0.38	0.66	-0.71	-0.10	-0.77	0.21	-0.75	1.00	-0.49	-0.53	-0.23	-0.50	0.25
RAD	0.63	-0.31	0.60	-0.01	0.61	-0.21	0.46	-0.49	1.00	0.91	0.46	0.49	-0.38
TAX	0.58	-0.31	0.72	-0.04	0.67	-0.29	0.51	-0.53	0.91	1.00	0.46	0.54	-0.47
PTRATIO	0.29	-0.39	0.38	-0.12	0.19	-0.36	0.26	-0.23	0.46	0.46	1.00	0.37	-0.51
LSTAT	0.46	-0.41	0.60	-0.05	0.59	-0.61	0.60	-0.50	0.49	0.54	0.37	1.00	-0.74
MEDV	-0.39	0.36	-0.48	0.18	-0.43	0.70	-0.38	0.25	-0.38	-0.47	-0.51	-0.74	1.00
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	LSTAT	MEDV