(19) 日本国特許庁 (J P) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-197819

(43)公開日 平成9年(1997)7月31日

(51) Int.Cl.8

識別記号 506

庁内整理番号:

FI

技術表示箇所

G 0 3 G 15/08 B65D 83/06

G 0 3 G 15/08 B65D 83/06

506B

審査請求 未請求 請求項の数1 OL (全 11 頁)

(21)出願番号

特願平9-1195

(22)出顧日

平成9年(1997)1月8日

(31)優先権主張番号 08/584024

(32)優先日

1996年1月11日

(33)優先権主張国

*国(US)

(71)出願人 590000798

ゼロックス コーポレイション

XEROX CORPORATION

アメリカ合衆国 ニューヨーク州 14644

ロチェスター ゼロックス スクエア

(番地なし)

(72)発明者 ロンダ エル スタウト

アメリカ合衆国 ニューヨーク州 14580

ウェブスター セージブルック ウェイ

1245

(74)代理人 弁理士 中村 稳 (外6名)

最終頁に続く

(54) [発明の名称] トナーカートリッジ用内側プラグ

(57)【要約】

【課題】 容器の搬送中及びトナー貯蔵中にトナーをシ ールする。

【解決手段】 本発明は、電子写真式印刷機の現像ユニ ットに使用される粒子の供給源を貯蔵する装置を提供す る。本発明の装置は、その開口端部と連通するチャンバ ーが形成された容器を有し、この容器のチャンバー内に 粒子が貯蔵される。本発明の装置は、更に、この容器の 開口端部に取り付けられ、チャンバーをシールする穴空 きシールを有する。容器は、この穴空きシールを取り外 すことなく現像ユニット内に取り付け可能である。内側 シールは、容器の開口端部に取り付けられ且つ穴空きシ ールの内側に配置されている。内側シールは、容器の開 口端部と密に適合する面を有している。内側シールは、 これを容器のチャッパー内に移動させることにより容器 の開口端部から取り外し可能である。

【特許請求の範囲】

電子写真式印刷機の現像ユニットに使用 【請求項1】 される粒子の供給源を貯蔵する装置であって:その開口 端部と連通するチャンバーが形成された容器であって、 この容器のチャンバー内に粒子が貯蔵される容器と;こ の容器の開口端部に取り付けられ上記チャンバーをシー ルする穴空きシールであって、上記容器がこの穴空きシ ールを取り外すことなく上記現像ユニット内に取り付け 可能な上記穴空きシールと;上記容器の開口端部に取り 付けられ且つ上記穴空きシールの内側に配置された内側 シールであって、内側シールが上記容器の開口端部と密 に適合する面を有し、内側シールを容器のチャッパー内 に移動させることにより内側シールを容器の開口端部か ら取り外し可能な上記内側シールと;とを有することを 特徴とする装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電子写真式印刷の ための現像装置に係わり、特に、トナー補給用のカート リッジに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】米国特 許第 5.455.662号明細書には、現像装置にトナーを補給 する現像剤補給装置及び現像装置に使用される現像剤容 器が開示されている。この現像剤容器であるトナーボト ルには、その一端に口部が設けられており、この口部の 直径は、中空筒状本体部の直径よりも小さく形成されて いる。口部を備えたボトルの端部には、肩部が形成さ れ、この肩部の内周面の一部が口部の端部に対して隆起 しトナーをすくい上げる隆起部が形成されている。米国 特許第 5,121,168号明細書には、感光体上に潜像を現像 する像形成装置が開示されている。潜像は現像装置によ り現像され、さらに、シート上に転写される。さらに、 感光体上に残ったトナーはクリーナにより除去される。 この像形成装置は、現像容器と一体となった使用済トナ 一貯蔵部を備え、この使用済トナー貯蔵部内に除去され た残りのトナーが集められる。

【0003】米国特許第5,057,872号明細書には、現像 剤供給装置が開示されている。この現像剤供給装置は、 ほぼ円筒状の現像剤容器を備え、この現像剤容器には、 その外周面上にらせん状の溝が設けられ、この溝により 容器が回転し現像剤を搬送する。この装置には、開口部 と調整装置により構成された供給要素が設けられてい る。米国特許第 4,965,639号明細書には、現像剤溜め内 にトナーを補給する回転可能なトナー供給用カートリッ ジを備えた複写機が開示されている。このカートリッジ は、トナーを補給するために水平軸に対して所定の角度 だけ傾けられている。トナー補給は重力によりアシスト され、このとき、水平面から下方に延びるカートリッジ の端部からのみのトナーの量が制御される。

【0004】米国特許第 4,878,603号明細書には、トナ が現像部に供給される場所から、トナー貯蔵領域へ、 トナーを供給するためのトナー供給装置が開示されてい る。この装置には、トナーを収容するカートリッジを着 脱自在に保持するホルダーが備えられている。このホル ダーは、カートリッジの着脱位置及び補給位置に設ける ことができる。カートリッジは、ほぼ水平に保持され、 さらに回転駆動され、これにより、トナー貯蔵領域に通 じるトナー搬送通路ヘトナーが排出される。カートリッ ジには第1結合部材が設けられ、一方、ホルダーにはこ の第1結合部材と対応する位置に第1結合部材を受け入 れる第2結合部材が設けられている。米国特許第 4,81 9,578号明細書には、画像保持体上に形成されたトナー 像がシートに転写された後、クリーニング装置により像 保持体から除去され残留したトナーを集めるトナー収集 装置が開示されている。このトナー収集装置には、残留 トナーを搬送するためのコンベヤ装置がその内部に設け られている。コンベヤ装置は、トナー収集装置の中央部 に配置された先端部を備えている。トナー収集装置の上 側面は、転写紙をガイドし且つ転写用でんきょく保持す る機能を有し、さらに、コンベヤ装置の先端部は、トナ ー補給用拡散プレード部材を備えている。

【0005】米国特許第 4,744,493号明細書には、トナ ーが現像部に供給される場所から、トナー貯蔵領域へ、 トナーを供給するためのトナー供給装置が開示されてい る。この装置には、トナーを収容するカートリッジを着 脱自在に保持するホルダーが備えられている。このホル ダーは、カートリッジの着脱位置及び補給位置に設ける。 ことができる。カートリッジは、ほぼ水平に保持され、 さらに回転駆動され、これにより、トナー貯蔵領域に通 じるトナー搬送通路へトナーが排出される。カートリッ ジには第1結合部材が設けられ、一方、ホルダーにはこ の第1結合部材と対応する位置に第1結合部材を受け入 れる第2結合部材が設けられている。このようにして、 トナー補給動作を行うために、第1結合部材が設けられ たカートリッジのみをホルダーにより適切に保持するこ とができる。

【0006】米国特許第 4,744,493号明細書には、その 一端部に補給用開口を備えた円筒状の現像剤貯蔵補給用 カートリッジが開示されている。このカートリッジは、 容器内で回転可能に支持された一体型現像剤搬送用混合 ・反架橋部材を備えている。この部材は、容器の断面と ほぼ同じ断面を持つ第1コイルばね要素を有し且つ容器 内で自由に回転可能である。この第1コイルばね要素 は、補給開口部及び第2コイルばね要素に向かってその 長さ方向に現像剤を搬送する方向に巻かれている。この 第2コイルばね要素は、第1コイルばね要素より実質的 に小さい断面を有し且つ第1コイルばね要素に取り付け られ同心的に配置されている。しかし、この第2コイル 50 ばね要素は、第2コイルばね要素の異なる方向に巻かれ

30

40

ている。米国特許第 4,641,945号明細書には、電子写真 式複写機の現像ユニットに筒状カートリッジに貯蔵され ているトナー現像剤を供給するためのトナー供給装置が 開示されている。このカートリッジは、複写機の現像ユニットの近傍の水平位置に固定され、使用スペースを小さくしている。このトナー供給装置は、小型の電子写真 式複写機に適用されることが望ましい。

【0007】米国特許第 4,611,830号明細書には、トナーが現像部に供給される場所から、トナー貯蔵領域へ、トナーを供給するためのトナー供給装置が開示されている。この装置には、トナーを収容するカートリッジを着脱自在に保持するホルダーが備えられている。このホルダーは、カートリッジの着脱位置及び補給位置に設けることができる。カートリッジは、ほぼ水平に保持され、さらに回転駆動され、これにより、トナー貯蔵領域に通じるトナー搬送通路へトナーが排出される。カートリッジには第1結合部材が設けられ、一方、ホルダーにはこの第1結合部材が設けられ、一方、ホルダーにはこの第1結合部材が設けられている。このようにして、トナー補給動作を行うために、第1結合部材が設けられたカートリッジのみをホルダーにより適切に保持することができる。

【0008】米国特許第5,495,323号明細書には、電子写真式印刷機の現像ユニットに使用される粒子の供給源を貯蔵する装置が開示されている。この装置は、開口端部を有する容器を備え、この容器は、開口端部と連通するチャンバを有する。粒子は、容器のチャンバ内に貯蔵される。この装置は、更に、容器の開口端部に取り付けられた孔空きシールを備え、このシールによりチャンバをシールしている。容器は、シールを取り外すことなく、現像ユニット内に取り付け可能である。

[0009]

【課題を解決するための手段】本発明は、電子写真式印刷機の現像ユニットに使用される粒子の供給源を貯蔵する装置を提供する。本発明の装置は、その開口端部と連通するチャンバーが形成された容器を有し、この容器のチャンバー内に粒子が貯蔵される。本発明の装置は、この容器の開口端部に取り付けられ、チャンバーをシールを取り外すことなく現像ユニット内に取り付けられ且つ穴空きシールの内側に配置されている。内側シールは、容器の開口端部と密に適合する面を有している。内側シールは、これを容器のチャッバー内に移動させることにより容器の開口端部から取り外し可能である。

[0010]

【発明の実施の形態】図2は、本発明に係わる現像装置を含む電子写真式印刷機を示す。この図2に示すように、印刷機は、導電性基板14上に感光性表面層12を持つベルトの形態の感光体10を備えている。このベル 50

ト10はローラ18,20,22により決定される経路に沿ってモータ24により駆動される。なお、動作方向は、矢印16で示すように、反時計回りである。ベルト10の一部が、最初に、荷電ステーションAを通過がる。この帯電ステーションAで、コロナ発生器26が、面12を比較的高くほぼ均一な電位に荷電する。高圧電源28が装置26に結合されている。感光体面12の荷電された部分は、次に露出ステーションBに進む。この露出ステーションBでは、原稿36が、ラスター入力スキャナー(RIS)29上に置かれる。RIS29により得られた情報は、画像処理装置(IPS)30に送られ、この画像処理装置30からの画像データがラスター出力スキャナー(ROS)34に送られる。なお、ユーザーインターフェイス(UI)32が、画像処理装置30に接続されている。

【0011】静電潜像が感光体面12に記録された後、 ベルト10は、現像ステーションCに進む。この現像ス テーションCでは、現像システム38が、感光体面に記 録された潜像を現像する。現像剤ハウジング44内のチ ャンバーが現像剤47の供給源を貯蔵する。静電潜像が 現像された後、ベルト10は、転写ステーションDに進 む。転写ステーションDでは、シート54がローラ52 とガイド56により送り出され、ベルト10畳の現像済 像と接触する。コロナ発生器58により、シートの背面 にイオンが噴出され、ベルト10からトナー像がシート に引き付けられる。転写後、シートは定着ステーション Eに進む。定着ステーションEには、加熱定着ローラ6 4とバックアップローラ66が設けられている。シート は、これらの加熱定着ローラ64とバックアップローラ 66の間を進み、トナー粉末像が定着ローラ64と接触 する。このようにしてトナー粉末像が、シートに永久的 に固定される。定着後、このシートは、滑送路70を通 り、キャッチトレイ72に進む。

【0012】シートがベルト10の感光体面12から分 離された後、感光体面12に付着した残余のトナー粒子 が、クリーニングステーションFで繊維ブラシ76によ り除去される。図1に示すように、符号90はマーキン グ粒子容器を表し、このマーキング粒子容器90は、こ の容器90内に設けられたチャンパ93内に補給用のマ ーキング粒子92を貯えている。このマーキング粒子9 2は、トナーとして知られている静電的な引付力を有す る粉末である。2成分現像剤の場合、現像剤47は、マ ーキング粒子92に加えてキャリヤ粒子(図示せず)を 含んでいる。米国特許第4,614,165 号明細書(この内容 は、参考として本明細書に含まれる) に示されているよ うな落下式現像(trickel development) を行う場合に は、トナー粒子と共に小量のキャリヤ粒子が、トナー容 器内に加えられ、これにより、損傷したキャリヤ粒子が 交換される。ここで、容器90は、トナー粒子92に加 えて小量のキャリヤ粒子(図示せず)を含むようにして

もよい。このマーキング粒子容器90ほぼ筒状であり、 この容器90の第1端部96には開口部94が形成され ている。

【0013】図3は、この容器90をより詳細に示した 図である。この図3に示すように、マーキング粒子容器 90には、好ましくは、開口部94と同様な開口端部1 00及びこの開口端部100の反対側に閉鎖端部102 が設けられている。マーキング粒子容器90には、好ま しくは、ほぼ筒状である第1の筒状部98からマーキン グ粒子92を移動させるために、筒状部98の内周面1 06上にスパイラル・リブ104が設けられている。こ のスパイラル・リブ104は、マーキング粒子容器90 の回転方向に対応して右左何れかの方向に形成されてい る。マーキング粒子容器90には、更に、リング形状部 110が設けられ、このリング形状部110は、筒状部 98の開口端部100から延びるように形成されてい る。リング形状部110には、好ましくは、リング形状 部110の内周面114から内側に延びる半径方向突出 部112が設けられている。

【0014】半径方向突出部112には、好ましくは、 容器90の中心線122に向かって内側に延びる搬送面 116が設けられている。この搬送面116は、容器9 0の回転方向に湾曲したもの(図示せず)であってもよ い。このようにして、半径方向突出部112は、搬送面 116に沿って複数のポケット部124を形成してい る。これらのポケット部124には、筒状部98の開口 端部100からマーキング粒子92が充填され、この充 填されたマーキング粒子92が容器90の内周面114 に沿って搬送される。半径方向突出部112は、1つで もよいが、等間隔に4つ設けるのが効果的である。図1 に示すように、マーキング粒子容器90には、更に、リ ング形状部110の第2の面130から内側に延びるプ レート126が設けられている。このプレート126に は、容器90の第1端部96と容器90の開口部94が 含まれる。プレート126には、好ましくは、プレート 126から内側に延びる内側ハブ132が設けられてい る。この内側ハブ132の肩部139の面138に対し て穴空きシール136が配置され、このシール136 は、内側ハブ132の内部に位置している。このシール 136により、マーキング粒子容器90の取り付け時、 トナー粒子の補給時、容器90の取り外し時において、 マーキング粒子92が容器内に保持される。この穴空き シール136については、後述する。また、容器90を 搬送する場合や貯蔵する場合には、穴空きシール136 に加えて、穴空きシール136と平行で且つ外側に離間 した2次シール140を内側ハブ132の内部に配置す ることにより、シール効果を増大させている。ここで、 内側ハブ132は、容器90と一体でもよく別体でもよ い。容器90には、容器90の第1端部から外側に延び る複数のランプ部(ramps) 2 1 6 が設けられている。こ 50 れらのランプ部216は、現像システム38との相互接続のために使用される。

【0015】マーキング粒子容器90は、現像システム 38内に取り付けられる。マーキング粒子容器90は、 その中心線122が水平となるように取り付けられるこ とが好ましい。マーキング粒子容器90は、複数のボト ル支持部180により支持されている。図1には、複数 のボトル支持部180が示されているが、1つの幅広の ボトル支持部で同様に支持するようにしてもよい。マー キング粒子容器90の外側面182は、複数のボトル支 持部180に接触し、それらの支持部180により支持 されている。現像システム38には、現像剤ハウジング 44が設けられており、この現像剤ハウジング44から ボトル支持部180が延びている。トナー溜めハウジン グ184が、現像剤ハウジング44の一端部186から 上方に延びている。供給機構190が、トナー溜めハウ ジング184を貫通して中心線192の方向に外側に延 びている。さらに、供給機構190は、マーキング粒子 容器90の開口部94を通って延びており、その中心線 192は容器90の中心線122と同一線上にある。供 給機構190は、チューブ144内に配置されたオーガ -194の形態であることが好ましい。このチューブ1 44には、その第1端部200近傍の上側部分に入口開 口部198が形成されている。さらに、このチューブ1 44には、その第2端部204近傍の底の部分に出口開 口部202が形成されている。現像システム38には、 さらに、容器駆動モータ210が設けられており、この 容器駆動モータ210は、現像システム38内のいずれ に設けてもよいが、トナー溜めハウジング184に固定 されていることが好ましい。

【0016】容器駆動モータ210は、オーガー194 と共にマーキング粒子容器90を回転させるためのもの である。しかしながら、オーガー194とマーキング粒 子容器90とは、別々のモータにより回転させるように してもよい。容器駆動モータ210をオーガー194と マーキング粒子容器90とに接続するために適当なキャ トレーンが使用される。例えば、モータ210は、それ から内側に延びるピニオンギヤ212を備えたものであ ってもよい。サンギヤ214がピニオンギヤ212と噛 み合いチューブ144の回りを摺動して回転する。ラン プ部216のピン172との噛み合わせを確実なものと しサンギヤ214により容器90を回転させるために、 現像システム38には、トナー溜めハウジング184と。 サンギヤ214の第2面226との間にチューブ144 の回りに摺動可能に係合したスプリング224が設けら れている。マーキング粒子容器90を供給機構190に 接続させるために、ピン172がサンギヤ214の面2 20上に配置され、このピン172は容器90のランプ 部216と協働するようにランプ部216の近傍に並べ て設けられている。

【0017】図4には、ランプ部216がより詳細に示されている。サンギヤ214をマーキング粒子容器90に相互接続するために如何なるタイプの駆動機構も使用可能であるが、図4には、容器90を簡単に設置するようにした構成が示されている。ランプ部216は、円弧状であることが好ましく、ストップ部の第1端部234上の面232を備えている。ランプ部216は、第1端部234から徐々に薄くなりランプ部216の第2端部238で容器90の第1端部96と融合している。ピン172を使用する場合、サンギヤ214は、ピン172 10が容器90のランプ部216の面232に接触するまで反時計回り240の方向に回転する。その後、容器90は、面232でサンギヤ214により駆動され、矢印240の方向に回転する。

【0018】再び図1に示すように、容器90を供給機 構190に対して軸方向に適切に配置するために、現像 ハウジング44上にストップ部242が配置されてお り、このストップ部242によりマーキング粒子容器9 0の閉鎖端部102を拘束することにより、マーキング 粒子容器90を固定が確実になるようにしている。一連 20 の複数のギヤからなるギヤ機構244により、駆動モー タ210がオーガー194に接続されていることが好ま しい。ギヤ機構244は、モータ210が矢印246の 方向に回転したとき、オーガー194が回転してマーキ ング粒子92が入口開口部198から出口開口部202 に移動するように構成されている。現像システム38に は、現像剤用オーガー250が設けられていることが好 ましく、この現像剤用オーガー250は、トナー溜めハ ウジング184の底部252から延びるように設けられ ている。このオーガー250は現像ハウジング44の長 30 さ方向に沿って外側に延びている。このオーガー250 は、導管254内に設けられている。導管254には、 1又はそれ以上の放出孔256が設けられており、この 放出孔256からマーキング粒子92が現像ハウジング 44内に侵入する。この現像剤用オーガー250は、駆 動モータ210により駆動するようにしてもよいが、別 の現像用オーガー・モータ260により駆動し、トナー 溜めハウジング184から現像ハウジング44への現像 剤92の流れを独立に制御するようにすることが好まし

【0019】図5には、マーキング粒子容器90のリング形状部110がより詳細に示されている。半径方向突出部112はリング形状部110の内周面114から内側に向かってその内側面262まで延びている。好ましくは、内側面262の位置は、容器90の中心線122の回りの直径264の大きさにより決定される。図5に示すように、突出部112は平らであるが、トナー粒子92をより多く捕獲するために、円弧状や曲げて形成するようにしてもよい。チューブ144の入口開口部198は、半径角度αにより決定される。ポケット部124

により搬送されるマーキング粒子92の量は、内周面114の直径269、突出部112の直径264及び半径角度 α により影響を受ける。半径角度 α により、チューブ144を通って搬送されるトナー粒子92の量が影響を受ける。この半径角度 α は、約82度であることが好ましい。これらの直径269、264及び半径角度 α は、ポケット部124により搬送され且つチューブ144を通るマーキング粒子92の量が適当となるように選択される。

【0020】図6には、トナー容器90が、オーガー・ チューブ144に挿入されようとするところが示されて いる。上述したように、トナー容器90には、内側ハブ 132が設けられており、この内側ハブ132はトナー 容器90と共にモールドされることが好ましい。内側ハ ブ132は、容器90の第1端部96から内側に中心位 置で延びている。内側ハブ132には、容器90の第1 端部96に隣接する大きなボア部272が形成されてい る。この大きなボア部272は、肩部139によりその 内部で境界が付けられている。小さなボア部274が、 **肩部139から内側に延びて形成されている。大きなボ** ア部272の直径はDf で表され、一方、小さなボア部 274の直径はDpで表されている。穴空きシール13 6が、大きなボア部272に嵌合されている。この穴空 きシール136の直径Drは、大きなボア部272の直 径Df とほぼ等しい。

【0021】穴空きシール136の内側には、2次シー ル140が設けられている。この2次シール140は、 着脱可能な内側プラグである。内側プラグ140は、本 体部276と、この本体部276の第1端部282に固 定されたリップ部280を備えている。内側プラグ14 0は、矢印284の外側の位置に仮想線で示されてお り、本体部276を有するプラグ140を押し出すこと により、容器90の小さなボア部274内に取り付けら れる。容器90は矢印286の方向に容器90を押し込 むことによりオーガー194内に取り付けられる。図7 に示すように、容器90はオーガー194内に取り付け られ、さらに、プラグ140は容器90内に閉じ込めら れている。穴空きシール136と2次シール140が、 現像システム38に取り付けられた容器90と共に示さ 40 れている。最初に、オーガー・チューブ144の端部2 00が穴空きシール136に突き刺される。次に、チュ ーブがシール136を貫通するとき、穴空きシール13 6は、オーガー・チューブ144に対して密に適合する 位置に保持され、これにより、容器90の取り付け中に トナー粒子92がこぼれるのを防止している。シール1 36の中心の余分な部分は、チューブ144に置き代わ る。チューブ144の端部200により、内側ハブ13 2から2次シール140が取り外され、この2次シール 140は容器90の内部に収納される。

【0022】図8には、内側ブラグ140がより詳細に

10

示されている。内側プラグ140の本体部276はテー パ状に形成されている。即ち、本体部276のリップ部 280に近い側の直径DLが、第2端部290側での直 径DS よりも大きく設定されている。また、リップ部2 80の直径D0 は、本体部276の直径DL よりも大き く設定されている。このリップ部280により、プラグ 140が内側プラグ140の取り付け中に小さなボア部 274から押し出されるのが防止される(図6参照)。 内側プラグ140は、これに適しており、耐久性があ り、市販されているものであればどのようなものでもよ い。例えば、Niagara Plastics Company, Erie. Pennsyl vaniaから市販されている Niagara plastic model #XP-46 の内側プラブでもよい。

【0023】穴空きシール136は、図9に、より詳細 に示されている。十字状の切込み270がシール136 に設けられ、これにより、オーガーチューブ144がシ ールを損傷することなくシール136内に侵入可能とな り、さらに、シール136がオーガーチューブ144と 良く適合する(図7参照)。このシール136は、刺し 込みが容易にでき、弾性が大である適当な材料であれば 20 どのようなものでもよい。なお、弾性フォーム・プラス チック例えばポリウレタン・フォームのような圧縮性材 料であることが好ましい。再び図1に示すように、トナ 一容器90には、容器90の孔302を覆う通気性カバ -300が設けられている。このカバー300を設ける ことにより、容器90のチャンバー93内に空気が侵入 できるので、トナー粒子92が容器90内から取り去ら れる際に、容器90のチャンバー93が真空とならない ようにすることができる。

【0024】簡単化のため、更に、容器90の製造中に 30 トナー容器90を充填するためのアクセスを容易とする ために、孔302は、容器90の閉鎖端102の中心部 に形成されていることが好ましい。この孔302により 中心部の開口部が形成され、製造中に容器90にトナー 92を充填することができる。このカバー300は、図 10に、より詳細に示されている。このカバー300 は、適当な形状に形成され且つ適当な材料から作られ る。例えば、カバー300は、中心開口部306を備え た本体部304を有するものであってもよい。本体部3 04は、適当な耐久性のある材料から作ることが可能で 40 あるが、簡単化及びリサイクルをし易くするために、本 体部304は、トナー容器90と類似した材料から作ら れる。例えば、トナー容器90と本体部304の両者 が、ポリエチレンから作られる。好ましくは、トナー容 器90は高密度ポリエチレンで作られ、本体部304は 低密度ポリエチレンで作られる。本体部304は孔30 2と嵌合し、これにより、孔302をシールしている。 例えば、本体部304に、孔302と嵌合するハブ部3 10を設けるようにしてもよい。

一材320は摩耗から保護されるべきであり、このフィ ルター材320のための領域を形成するために、本体部 304には、ハブ部310の直ぐ内側に凹所領域312 が形成されている。この凹所領域312により、フィル ターメディア320が保護される。カバー300を容器 90に取り付ける際に、本体部304を係止したりシー ル効果を上げるために、本体部304には、ハブ部31 0の端部316に肩部314を設けるようにしてもよ い。トナー92が開口部306から外に飛散することを 防止するため、カバー300には、開口部306と一致 するフィルター材であるシールド320が設けられてい る。このシールド320は、通気性であり、例えば、ポ リエステルのような通気性メディアから作られる。好ま しくは、このシールド320は、その外側にガラス繊維 を含んでいる。このシールドは、本体部304の内側面 322に設けられていることが好ましいが、本体部30 4の外側に設けるようにしてもよい。シールド320は 開口部306より大きくしてもよく、この場合には、内 側面322によりシールド320が開口部306から飛 び出すことが防止できる。開口部306は、単一の開口 部306でもよく、また、本体部304の中心部のまわ りに離間して形成された複数のより小さな開口部であっ てもよい。これらのより小さい離間した複数の開口部を 用いる場合には、より剛性の小さいシールド320を使 用することができる。

【0026】通気性シールドであるメディア320は、 適当な方法により本体部304に取り付け可能である。 例えば、通気性シールド320は、接着剤により接着さ れ、本体部304に溶接され、又は本体部304にステ ーキング(stake) される。本体部304は、適当な方法 により孔302に固定可能である。例えば、本体部30 4は、肩部314により一方向から固定され、本体部3 04のハブ部310に配置されたタブ部324により反 対方向から固定される。しかしながら、本体部304 は、接着剤や溶接等の他の適当な方法により容器90に 接続するようにしてもよい。本体部304は、適当な形 状の耐久性のある材料から作られるが、例えば、Niagar a Plastics Company, Erie, Pennsylvaniaから市販され ている Niagara cap model #417-2 がこの本体部304 として利用可能である。

【0027】図11には、本発明の他の実施形態が示さ れている。この図11に示すように、符号490はマー キング粒子容器を表し、このマーキング粒子容器490 は、この容器490内に設けられたチャンパ493内に 補給用のマーキング粒子92を貯えるために使用され る。このマーキング粒子92は、トナーとして知られて いる静電的な引付力を有する粉末である。このマーキン グ粒子容器490ほぼ筒状であり、この容器490の第 1端部496には開口部494が形成されている。マー 【0025】孔302を覆うために使用されるフィルタ 50 キング粒子容器490には、好ましくは、開口部494

と反対側に開口端部400を備えたほぼ筒状である筒状 部498及びこの筒状部498の開口端部400の近傍 にキャップ部402が設けられている。これらの筒状部 498とキャップ部402は、例えばポリプロピレンの ようなプラスチックから別々にモールドされて形成され る。筒状部498とキャップ部402は、例えば溶接や 接着剤のような適当な手段により、互いに固定される。 筒状部498には、好ましくは、筒状部498の内周面 414から内側に延びる半径方向突出部412が設けら れている。

【0028】半径方向突出部412には、好ましくは、 容器490の中心線422に向かって内側に延びる搬送 面416が設けられている。この搬送面416は、容器 490の回転420の方向に湾曲したもの(図示せず) であってもよい。このようにして、半径方向突出部41 2は、搬送面416に沿って複数のポケット部424を 形成している。これらのポケット部424には、マーキ ング粒子92が充填され、この充填されたマーキング粒 子92が容器490の内周面414に沿って搬送され る。半径方向突出部112は、1つでもよいが、等間隔 20 に4つ設けるのが効果的である。キャップ部402は、 筒状部498の第2の面426から延びている。キャッ プ部402には、容器490の第2開口部430と同様 に容器490の第2端部が設けられている。

【0029】筒状部498には、好ましくは、容器49 0の第1端部496から内側に延びる内側ハブ432が 設けられている。孔空きシール436は、図1に示す容 器90の孔空きシール136と同様である。孔空きシー ル436は、内側ハブ432の肩部439の面438に 対して配置され、さらに、内側ハブ432の内部に位置 30 している。このシール436により、マーキング粒子容 器490の取り付け時、トナー粒子の補給時、容器49 0の取り外し時において、マーキング粒子92が容器内 に保持される。また、容器490を搬送する場合や貯蔵 する場合には、穴空きシール436に加えて、穴空きシ ール436と平行で且つ外側に離間した図1の容器90 の2次シール140と同様な2次シール140を内側ハ ブ432の内部に配置することにより、シール効果を増 大させている。ここで、内側ハブ432は、容器490 と一体でもよく別体でもよい。

【0030】容器490には、容器490の第1端部4 96から外側に延びる複数のランプ部(ramps) 416が 設けられている。これらのランプ部416は、現像シス テム437との相互接続のために使用される。マーキン グ粒子容器490は、現像システム437内に取り付け られる。マーキング粒子容器490は、その中心線42 2が水平となるように取り付けられることが好ましい。 マーキング粒子容器490は、複数のボトル支持部48 0により支持されている。図11には、複数のボトル支 持部480が示されているが、1つの幅広のボトル支持 50 側シールが、内側シールを内側に押して容器内に捕獲す

部で同様に支持するようにしてもよい。マーキング粒子 容器490の外側面482は、複数のボトル支持部48 0に接触し、それらの支持部480により支持されてい

【0031】現像システム437には、現像剤ハウジン グ444が設けられており、この現像剤ハウジング44 4からボトル支持部480が延びている。この現像剤ハ ウジング444は、図1の現像システム38のハウジン グ44と同様である。トナー溜めハウジング484が、 現像剤ハウジング444の一端部486から上方に延び ている。供給機構491が、トナー溜めハウジング48 4を貫通して中心線492の方向に外側に延びている。 さらに、供給機構491は、マーキング粒子容器490 の開口部494を通って延びており、その中心線492 は容器490の中心線422と同一線上にある。供給機 構491は、チューブ443内に配置されたオーガー4 95の形態であることが好ましい。突出部412は、筒 状部498の内周面414から内側に向かってその内側 面462まで延びている。図示するように、突出部41 2は平らであるが、トナー粒子92をより多く捕獲する ために、円弧状や曲げて形成するようにしてもよい。ポ ケット部424が十分な量のトナー粒子を搬送するため に、突出部412は、チューブ443の小さな間隙部内 まで延びている。ポケット部424により搬送されるマ ーキング粒子92の量は、チューブ443の開口部の角 度以外にも、内周面414の直径469及び突出部41 2の直径464にも影響を受ける。また、チューブ44 3により搬送されるトナー粒子92の量は、チューブ4 43の角度に影響を受ける。

【0032】容器490の内周面414のまわりのポケ ット部424により実質的に全てノトナー粒子が持ち上 げられるように、突出部412は容器の長さ方向のほぼ 全部に渡って延びている。さらに、オーガー495によ り実質的に全てのトナー粒子が移動できるように、オー ガー495とオーガーチューブ443は、容器490の 長さ方向のほぼ全部に渡って延びている。穴空きシール 436と2次シール440が、現像システム438に取 り付けられた容器490と共に示されている。最初に、 オーガー・チューブ443の端部400が穴空きシール 436に突き刺される。次に、チューブがシール436 を貫通するとき、穴空きシール436は、オーガー・チ ューブ443に対して密に適合する位置に保持され、こ れにより、容器490の取り付け中にトナー粒子92が こぼれるのを防止している。シール436の中心の余分 な部分は、チューブ443に置き代わる。チューブ44 3のチップ部が2次シール440を内側ハブ432から 取り外し、2次シール440は容器490の内部に収納 される。

【0033】トナー容器が、内側シールを備え、この内

ることにより、開口部から着脱可能となっているため、 不注意により外れることが許されない容器の搬送中及び トナー貯蔵中にトナーをシールするために使用すること ができ、これにより、トナー容器は、低い外側圧力を受 けることになる。内側シールが、操作中はトナー容器内 に捕獲されるので、顧客は、汚れたシールを廃棄する必 要がない。外側の穴空きシールと共に着脱可能な内側シ ールを設けたので、容器の操作中のみならず貯蔵及び搬 送中にもトナー容器がシールされ、この結果、取り付け 及び取り外しの際、手が汚れることがない。

【図面の簡単な説明】

本発明による現像装置の第1の実施形態を示 【図1】 す正面図

【図2】 図1の現像装置を含む電子写真式印刷機を示 す構成図

【図3】 図1の現像装置に使用されるトナーカートリ ッジを示す拡大斜視図

【図4】 図1の4-4線に沿って見た現像装置の部分 正面図

【図5】 図1の5-5線に沿って見た現像装置の部分 20 正面図

現像装置内に取り付けられたトナーボトルを 【図6】 示す図1の現像装置の部分正面図

【図7】 現像装置内に取り付けられたトナーボトルを 示す図1の現像装置の部分正面図

【図8】 図1の現像装置のトナーボトルに差し込まれ る内側プラグを示す正面図

【図9】 図1の現像装置のトナーボトルをシールする ための穴空きシールを示す斜視図

【図10】 図1の現像装置のトナーボトルのための通 30 242 ストップ部 気孔付きキャップを示す断面図

【図11】 本発明による現像装置の第2の実施形態を 示す正面図

【符号の説明】

38, 437 現像システム

44,444 現像剤ハウジング

47 現像剤

90,490 マーキング粒子容器

92 マーキング粒子 (トナー粒子)

93, 493 チャンバ

94,494 開口部

96,496 第1端部

98,498 筒状部

100,400 開口端部

102 閉鎖端部

104 スパイラル・リブ

110 リング形状部

112,414 半径方向突出部

116,416 搬送面

10 124, 424 ポケット部

126 プレート

132,432 内側ハブ

139, 439 肩部

136,436 穴空きシール

140,440 2次シール(内側プラグ)

144, 443 チューブ

172 ピン

180,480 ボトル支持部

184 トナー溜めハウジング

190,491 供給機構

194, 495 オーガー

198 入口開口部

200 第1端部

204 第2端部

210 容器駆動モータ

212 ピニオンギヤ

214 サンギヤ

216,416 ランプ部

224 スプリング

244 ギヤ機構

250 現像剤用オーガー

254 導管

300 通気性カバー

302 孔

304 本体部

306 中心開口部

310 ハブ部

320 フィルター材 (シールド、メディア)

40 402 キャップ部

【図3】

【図10】

【図5】

[図11]

フロントページの続き

(72)発明者 ティモシー ジー ストルクゼウスキー アメリカ合衆国 ニューヨーク州 14609 ロチェスター カルヴァー ロード 1807 (72)発明者 ジーン エス セラファイン アメリカ合衆国 ニューヨーク州 14467 ヘンリエッタ パーサー ドライヴ 113