Algorithm 1 RECURSIVEPG($PG G = (V, V_0, V_1, E, \Omega)$)

```
1: m \leftarrow \min\{\Omega(v) \mid v \in V\}
 2: h \leftarrow \max\{\Omega(v) \mid v \in V\}
 3: if h = m or V = \emptyset then
             if h is even or V = \emptyset then
 4:
                   return (V,\emptyset)
 5:
 6:
             else
                   return (\emptyset, V)
 7:
             end if
 8:
 9: end if
10: \alpha \leftarrow 0 if h is even and 1 otherwise
11: U \leftarrow \{v \in V \mid \Omega(v) = h\}
12: A \leftarrow \alpha - Attr(G, U)
13: (W_0', W_1') \leftarrow \text{RecursivePG}(G \backslash A)
14: if W'_{\alpha} = \emptyset then
15: W_{\alpha} \leftarrow A \cup W'_{\alpha}
             W_{\overline{\alpha}} \leftarrow \emptyset
16:
17: else
             B \leftarrow \overline{\alpha} - Attr(G, W'_{\overline{\alpha}})
18:
             (W_0'', W_1'') \leftarrow \text{RecursivePG}(G \backslash B)
19:
             W_{\alpha} \leftarrow W_{\alpha}^{"} 
W_{\overline{\alpha}} \leftarrow W_{\overline{\alpha}}^{"} \cup B
20:
21:
22: end if
23: return (W_0, W_1)
```

Conjecture 0.1. For any RECURSIVEPG(G') that is invoked during RECURSIVEPG(G) it holds that any vertex $v \in W'_{\overline{\alpha}}$ is won by player $\overline{\alpha}$ in game G.

