Lines in hyperbolic geometry

Here we examine "lines" in hyperbolic geometry.

Hyperbolic coordinates, a shortest path from the North Pole

We next will figure out what is the shortest path you can take between two points in **HG**. Again we will do our calculation using only (x, y, z)-coordinates (since, as we have seen we don't have $(\hat{x}, \hat{y}, \hat{z})$ -coordinates). The (x, y, z)-coordinates for **SG**, namely

$$x(\sigma, \tau) = R \cdot \sin \sigma \cdot \cos \tau$$
$$y(\sigma, \tau) = R \cdot \sin \sigma \cdot \sin \tau$$
$$z(\sigma, \tau) = \cos \sigma$$

won't work this time because they involve R which has gone off to infinity. Fortunately there are hyperbolic coordinates

$$\left(\cosh \sigma = \frac{e^{\sigma} + e^{-\sigma}}{2}, \sinh \sigma = \frac{e^{\sigma} - e^{-\sigma}}{2}\right)$$

that parametrize the 'unit' hyperbola just like $(\cos \sigma, \sin \sigma)$ parametrize the unit circle. So we define

$$x(\sigma, \tau) = |K|^{-1/2} \cdot \sinh \sigma \cdot \cos \tau$$
$$y(\sigma, \tau) = |K|^{-1/2} \cdot \sinh \sigma \cdot \sin \tau$$
$$z(\sigma, \tau) = \cosh \sigma$$

Exercise 1 Show that these hyperbolic coordinates do actually parametrize the K-geometry, that is, that

$$K\left(x\left(\sigma,\tau\right)^{2}+y\left(\sigma,\tau\right)^{2}\right)+z\left(\sigma,\tau\right)^{2}\equiv1$$

for all (σ, τ) .

Again notice that you can write a path on the R-sphere by giving a path $(\sigma(t), \tau(t))$ in the (σ, τ) -plane. In fact, you can use σ as the parameter t and just write

 $(\sigma, \tau(\sigma))$

Learning outcomes: Author(s):

where τ is a function of σ . To write a path that starts at the North Pole, just write

$$(\sigma, \tau(\sigma)), 0 \le \sigma \le \varepsilon$$

and demand that

$$\tau\left(0\right)=0.$$

If you want the path to end on the plane y = 0, demand additionally that

$$\tau(\varepsilon) = 0.$$

But if we are going to describe paths on **HG** by paths in the (σ, τ) -plane we are going to need to figure out the K-dot product in (σ, τ) -coordinates so that we can compute the lengths of paths in these coordinates.

Exercise 2

(a) Compute the 2×3 matrix D_{hyp} such that

$$\left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) = \left(\frac{d\sigma}{dt}, \frac{d\tau}{dt}\right) \cdot D_{hyp}$$

when a path in K-geometry is given by a path in the (σ, τ) -plane.

Hint: By the Chain Rule from several variable calculus

$$D_{hyp} = \begin{pmatrix} \frac{dx}{d\sigma} & \frac{dy}{d\sigma} & \frac{dz}{d\sigma} \\ \frac{dx}{d\tau} & \frac{dy}{d\tau} & \frac{dz}{d\tau} \end{pmatrix}.$$

(b) Use a) to compute the K-dot product in (σ, τ) -coordinates, namely compute the matrix P_{hyp} in the equation

$$\begin{split} \left(\frac{d\sigma_1}{dt},\frac{d\tau_1}{dt}\right) \bullet_{hyp} \left(\frac{d\sigma_2}{dt},\frac{d\tau_2}{dt}\right) &= \left(\frac{dx_1}{dt},\frac{dy_1}{dt},\frac{dz_1}{dt}\right) \bullet_K \left(\frac{dx_2}{dt},\frac{dy_2}{dt},\frac{dz_2}{dt}\right) \\ &= \left(\frac{dx_1}{dt},\frac{dy_1}{dt},\frac{dz_1}{dt}\right) \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & K^{-1} \end{pmatrix} \cdot \left(\frac{dx_2}{dt},\frac{dy_2}{dt},\frac{dz_2}{dt}\right)^t \\ &= \left(\frac{d\sigma_1}{dt},\frac{d\tau_1}{dt}\right) \cdot D_{hyp} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & K^{-1} \end{pmatrix} \cdot D_{hyp}^t \cdot \left(\frac{d\sigma_1}{dt},\frac{d\tau_1}{dt}\right)^t \\ &= \left(\frac{d\sigma_1}{dt},\frac{d\tau_1}{dt}\right) \cdot P_{hyp} \cdot \left(\frac{d\sigma_1}{dt},\frac{d\tau_1}{dt}\right)^t \,. \end{split}$$

Exercise 3 Show that the length L of any path in our K-geometry is given by

$$(\sigma, \tau(\sigma)), 0 \le \sigma \le \varepsilon$$

with

$$\tau\left(0\right)=0.$$

and

$$\tau(\varepsilon) = 0$$

is given by the formula

$$L = |K|^{-1/2} \int_0^{\varepsilon} \sqrt{\left(1, \frac{d\tau}{d\sigma}\right) \cdot \left(\begin{array}{cc} 1 & 0 \\ 0 & \sinh^2 \sigma \end{array}\right) \cdot \left(1, \frac{d\tau}{d\sigma}\right)^t} d\sigma.$$

This last formula for L lets us figure out the shortest path from

$$N = (\sinh 0 \cdot \cos 0, R \cdot \sinh 0 \cdot \sin 0, \cosh 0)$$

to

$$\left(\left|K\right|^{-1/2}\cdot\sinh\varepsilon,0,\cosh\varepsilon\right)=\left(\left|K\right|^{-1/2}\cdot\sinh\varepsilon\cdot\cos0,\left|K\right|^{-1/2}\cdot\sinh0\cdot\sin0,\cosh\varepsilon\right).$$

Since

$$L = |K|^{-1/2} \cdot \int_0^{\varepsilon} \sqrt{1 + \sinh^2 \sigma \cdot \left(\frac{d\tau}{d\sigma}\right)^2} d\sigma$$

and $\sinh^2 \sigma$ is is positive for almost all $\sigma \in [0, \varepsilon]$, L is minimal only when $\frac{d\tau}{d\sigma}$ is identically 0. But this means that $\tau(\sigma)$ is a constant function. Since $\tau(0) = 0$, this means that $\tau(\sigma)$ is identically 0. So we have the shown the following result.

Theorem 1. The shortest path in K-geometry from the North Pole to a point $(x, y, z) = (|K|^{-1/2} \cdot \sinh \varepsilon, 0, \cosh \varepsilon)$ is the path lying in the plane y = 0. The K-length of that shortest path is

$$|K|^{-1/2} \cdot \varepsilon$$
.

Shortest path between any two points

Theorem 2. Given any two points $X_1 = (x_1, y_1, z_1)$ and $X_2 = (x_2, y_2, z_2)$ in K-geometry, the shortest path between the two points is the path cut out by the two equations

$$K(x^2 + y^2) + z^2 = 1$$

and the plane

$$\begin{vmatrix}
 x & y & z \\
 x_1 & y_1 & z_1 \\
 x_2 & y_2 & z_2
\end{vmatrix} = 0,$$
(1)

that is, the plane containing (0,0,0) and X_1 and X_2 .

Proof Let $V_1 = (a_1, b_1, c_1)$ be the tangent vector at X_1 of K-length 1 that is tangent to the path cut out by the plane given by equation (??). Then $(x, y, z) = (a_1, b_1, c_1)$ also satisfies equation (??) and so the equation for that plane can also be written

$$\begin{vmatrix} x & y & z \\ x_1 & y_1 & z_1 \\ a_1 & b_1 & c_1 \end{vmatrix} = 0.$$
 (2)

By a previous exercise, there is a K-rigid motion M that takes X_1 to the North Pole N and V_1 to (1,0,0). So M takes the plane $(\ref{eq:space})$ to the plane given by the equation

$$\left| \left(\begin{array}{ccc} x & y & z \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{array} \right) \right| = 0,$$

namely the plane.

$$y = 0$$
.

So $X_2 \cdot M$ must also line in this plane since X_2 lies in the plane $(\ref{eq:condition})$. So

$$X_2 \cdot M = \left(|K|^{-1/2} \cdot \sinh \varepsilon, 0, \cosh \varepsilon \right)$$

for some ε since all points in K-geometry with y=0 can be written as $\left(|K|^{-1/2}\cdot\sinh\varepsilon,0,\cosh\varepsilon\right)$ for some ε . Since M is a K-rigid motion it must take the shortest path from X_1 to X_2 to the shortest path from $X_1\cdot M=N$ to $X_2\cdot M=\left(|K|^{-1/2}\cdot\sinh\varepsilon,0,\cosh\varepsilon\right)$. But we already know that the shortest path from $X_1\cdot M$ to $X_2\cdot M$ is the one cut out by the plane y=0. But that path comes from the path cut out by the plane given by equation $(\ref{eq:total_sigma})$, or, what is the same thing, the plane given by the equation $(\ref{eq:total_sigma})$. This path is called the $\ref{eq:total_sigma}$ the plane $\ref{eq:total_sigma}$ and $\ref{eq:total_sigma}$.

Definition 1. A line in HG will be a curve that extends infinitely in each direction and has the property that, given any two points X_1 and X_2 on the path, the shortest path between X_1 and X_2 lies along that curve. Lines in HG are the intersections of the K-geometry with planes through (0,0,0). The length of the shortest path between two points in K-geometry will be called the K-distance.