Teorema de la base (Steinitz)

Lema 1 (Teorema del conjunto generador) - Sean u_1, u_2, \dots, u_p vectores de un espacio vectorial V. Si u_1 depende linealmente del conjunto $\{u_2, \dots, u_p\}$, entonces $\langle u_1, u_2, \dots, u_p \rangle = \langle u_2, \dots, u_p \rangle$.

DEMOSTRACIÓN:

Es obvio que $\langle u_2, \cdots, u_p \rangle \subseteq \langle u_1, u_2, \cdots, u_p \rangle$. Veamos la inclusión contraria.

Si $u \in \langle u_1, u_2, \dots, u_p \rangle$, existen $\alpha_1, \dots, \alpha_p$ tales que $u = \alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_p u_p$ y como u_1 depende linealmente de los demás, existirán β_2, \dots, β_p tales que $u_1 = \beta_2 u_2 + \dots + \beta_p u_p$. Sustituyendo esta expresión en la anterior, obtenemos:

$$u = \alpha_1 (\overbrace{\beta_2 u_2 + \dots + \beta_p u_p}^{u_1}) + \alpha_2 u_2 + \dots + \alpha_p u_p = (\alpha_1 \beta_2 + \alpha_2) u_2 + \dots + (\alpha_1 \beta_p + \alpha_p) u_p$$

En otras palabras, $u \in \langle u_2, \dots, u_p \rangle$ lo cual implica que $\langle u_1, u_2, \dots, u_p \rangle \subseteq \langle u_2, \dots, u_p \rangle$

Lema 2 - Si el conjunto $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$ es una base de V y el conjunto $A = \{v_1, v_2, \dots, v_m\}$ es linealmente independiente, entonces $m \leq n$.

DEMOSTRACIÓN:

Supongamos que m > n. Tendríamos entonces $A = \{v_1, v_2, \dots, v_n, v_{n+1}, \dots, v_m\}$

– Puesto que \mathcal{B} es una base y $v_1 \neq \vec{0}$, existen $\alpha_1, \alpha_2, \dots, \alpha_n$ no todos nulos, tales que

$$v_1 = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n$$

Podemos suponer (reordenando si fuera necesario) que $\alpha_1 \neq 0$ y despejando e_1 en la ecuación anterior,

$$e_1 = \left(\frac{1}{\alpha_1}\right)v_1 + \left(\frac{-\alpha_2}{\alpha_1}\right)e_2 + \cdots + \left(\frac{-\alpha_n}{\alpha_1}\right)e_n$$

lo cual, combinado con el lema 1, implica que

$$V = \langle e_1, e_2, \cdots, e_n \rangle = \langle v_1, e_1, e_2, \cdots, e_n \rangle = \langle v_1, e_2, \cdots, e_n \rangle$$

– Puesto que $V = \langle v_1, e_2, \cdots, e_n \rangle$ y $v_2 \neq \vec{\mathbf{0}}$, existen $\beta_1, \beta_2, \cdots, \beta_n$ no todos nulos, tales que

$$v_2 = \beta_1 v_1 + \beta_2 e_2 + \cdots + \beta_n e_n$$

Si fuese $\beta_2 = \cdots = \beta_n = 0$, entonces el conjunto $\{v_1, v_2\}$ sería linealmente dependiente. Podemos pues suponer (reordenando si fuera necesario) que $\beta_2 \neq 0$. Despejando e_2 en la ecuación anterior,

$$e_2 = \left(\frac{-\beta_1}{\beta_2}\right)v_1 + \left(\frac{1}{\beta_2}\right)v_2 + \dots + \left(\frac{-\beta_n}{\beta_2}\right)e_n$$

lo cual, combinado con el lema 1, implica que:

$$V = \langle v_1, e_2, \cdots, e_n \rangle = \langle v_2, v_1, e_2, \cdots, e_n \rangle = \langle v_1, v_2, \cdots, e_n \rangle$$

Continuando el proceso, obtenemos que $V=\langle v_1,\,v_2,\,\cdots,v_n\rangle$. Pero esto es absurdo pues implica que los vectores $v_{n+1},\,\cdots,v_m$ dependen linealmente del conjunto $\{v_1,\,v_2,\,\cdots,v_n\}$ lo cual, contradice el hecho de que $A=\{v_1,\,v_2,\,\cdots,v_n,\,v_{n+1},\cdots,v_m\}$ es linealmente independiente. Así pues, $m\leqslant n$.

Teorema de la base (Steinitz) - En un espacio vectorial de dimensión finita, todas las bases tienen el mismo número de elementos.

DEMOSTRACIÓN:

La demostración se deja al cuidado del lector.