Examination Year May - June 2013 Applied Mathematics - I

सिद्ध करों कि: Q.1

10

Prove that:

$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = (1+abc) \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

समीकरण $\sec \theta - 1 = (\sqrt{2} - 1)$ को हल कीजिए। Q.2

10

Solve the equationsec $\theta - 1 = (\sqrt{2} - 1)$

सिद्ध करों कि :

Prove that:

$$\frac{1+\cos\theta+\sin\theta}{1+\cos\theta-\sin\theta}=\frac{1+\sin\theta}{\cos\theta}$$

- वृत्त $2x^2 + 2y^2 + 10x 6y 1 = 0$ के केन्द्र के निर्देशांक एवं त्रिज्या ज्ञात कीजिए।10 Q.3 Find the centre and radius of the circle $2x^2 + 2y^2 + 10x - 6y - 1 = 0$.
- बिन्दुओं (1,1),(2,-1)व (3,2)से होकर जाने वाले वृत्त का समीकरण ज्ञात करो। 10 Q.4 Find the equation of circle passing through the point (1,1),(2,-1) and (3, 2).

 $\lim_{h\to 0} \frac{\sin 2x}{\tan 3x}$ का मान ज्ञात करो। Q.5

Evaluate $\lim_{h\to 0} \frac{\sin 2x}{\tan 3x}$

 $y = \sin 2x$ का अवकल गुणांक प्रथम सिद्धांत से ज्ञात कीजिए। Q.6 If $y = \sin 2x$ find the differential coefficient of y with respect to x by first principle.

ABCDएक सामान्तर चतुर्भुज दिया हुआ है। G उसके विकर्णों का कटान बिन्दु है। यदि Q.7 Oकोई अन्य बिन्दु दिया हुआ है तो सिद्ध कीजिए $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = 4\overline{OG}$. 10 ABCDis a parallelogram&G is the point of intersection of the diagonals. If

O is any point show that $\overline{OA} + \overline{OB} + \overline{OC} + \overline{OD} = 4\overline{OG}$.

त्रिभुज ABC में भुजाBC का मध्य बिंदु Dहै। तो सदिश विधि से सिद्ध करो कि: (AB) +Q.8

 $(\overrightarrow{AC}) = 2\overrightarrow{AD}.$

10

In a triangle ABC, if D is the midpoint of BC then prove by vector method: $(\overrightarrow{AB}) + (\overrightarrow{AC}) = 2\overrightarrow{AD}$.

निम्नलिखित श्रेणी का समांतर माध्य ज्ञात करो। Q.9

10

Find the arithmetic mean for the following series.

x	0 - 5	5 – 10	10 - 15	15 - 20	20 - 25	25 - 30	30 - 35
y	6	12	16	22	37	18	4

Q.10 Find the standard deviation for the series.

निम्नलिखित श्रेणी से मानक विचलन ज्ञात करों।

x %Age upto that year(उम्र वर्षो तक)

y %No. of deaths.(मृत्यु की संख्या)

X	10	20	30	40	50	60	70	80
у	14	38	52	72	100	108	115	155

Scanned by CamScanner

Examination Year Dec - Jan 2013 Applied Mathematics – I

10

सिद्ध कीजिए कि Q.1

 $\begin{vmatrix} a-b-2c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^3$ Prove that:

 $\frac{x^4}{x^3+1}$ को आंशिक भिन्नों में व्यक्त कीजिए। 10

Find the Partial fraction of $\frac{x^4}{x^3+1}$.

सिद्ध कीजिए कि : $\frac{\sec 8A - 1}{\sec 4A - 1} = \frac{\tan 8A}{\tan 2A}$ 10 Q.2 Prove that $\frac{\sec 8A-1}{\sec 4A-1} = \frac{\tan 8A}{\tan 2A}$ OR

सिद्ध कीजिए कि : $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$

Prove that : $\cos 20^{\circ} \cdot \cos 40^{\circ} \cdot \cos 60^{\circ} \cdot \cos 80^{\circ} = \frac{1}{16}$

बिन्दु (-4,3) और (5,-2) को मिलाने वाले रेखाखंड को समत्रिभाग करने वाले बिन्दुओं ह निर्देशांक ज्ञात कीजिए।

The line joining the points (-4,3) and (5,-2) is trisected equally. Find the co-ordinates of the points of trisection.

सरल रेखाओं $x \sec \theta - y \csc \theta = a$ और $x \cos \theta - y \sin \theta = a \cos 2\theta$ पर मूल बिन्द डाले गए लंबों की लंबाइयाँ क्रमशः Pऔर P'हों, तो सिद्ध कीजिए किः $4 P^2 + P'^2 = a^2$ If P and P' are the perpendicular distance from origin on straight line $x \sec \theta - y \csc \theta = a$ and $x \cos \theta - y \sin \theta = a \cos 2\theta$ respectively. Prove that $4 P^2 + P'^2 = a^2$

उस वृत्त का समीकरण ज्ञात कीजिए जो बिन्दुओं (4,1), (6,5)से जाता है और जिसका के Q.4 सरल रेखा 4x + y = 16पर स्थित है। 10

Find the equation of circle which passes through the point (4,1), (6,5) and has its centre on the line 4x + y = 16.

दीर्घवृत्त $25x^2 + 16y^2 = 400$ की उत्केन्द्रता, नाभियाँ, नाभिलंब, शीर्ष और नियता समीकरण ज्ञात कीजिए।

Find the eccentricity, focus, locus rectum, vertices and directrix of ellipse $25x^2 + 16y^2 = 400$

सिद्ध कीजिए कि: $\lim_{x\to 0} = \frac{1-\cos 4x}{x^2} = 8$ Q.5 Show that: $\lim_{x \to 0} = \frac{1 - \cos 4x}{x^2} = 8$

यदि $f(x) = \log_e \frac{1-x}{1-x}$ हों, तो सिद्ध कीजिए कि $f(x) = \log_e \frac{1-x}{1-x}$ OR If $f(x) = \log_e \frac{1-x}{1-x}$ then prove that: $f(x) = \log_e \frac{1-x}{1-x}$

Q.6 प्रथम सिद्धांत से sin x का अवकलन कीजिए।

Differentiate sin x by first principle.

10

OR

log log sin xका अवकलन कीजिए। Differentiate log log sin x

10

Q.7 यदिABCएक त्रिभुज है तथा BC का मध्य बिन्दु D है, तो सदिश विधि से सिद्ध कीजिए कि In a ΔABC, 'D' is mid point of BC, then show by vector method. 10

$$\overrightarrow{AB^2} + \overrightarrow{AC^2} = 2(\overrightarrow{AD^2} + \overrightarrow{BD^2})$$

OR

यदि $\overrightarrow{a}=2\widehat{\imath}-\widehat{\jmath}+\widehat{k}, \ \overrightarrow{b}=\widehat{\imath}+3\widehat{\jmath}-2\widehat{k}, \ \overrightarrow{c}=2\widehat{\imath}+\widehat{\jmath}-3\widehat{k}$ और $\overrightarrow{d}=3\widehat{\imath}+2\widehat{\jmath}+5\widehat{k}$ हो, तो अदिश x,y,zका मान ज्ञात करो जबिक $\overrightarrow{d}=x\overrightarrow{a}+y\overrightarrow{b}+z\overrightarrow{c}$

If $\vec{a} = 2\hat{i} - \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} - 2\hat{k}$, $\vec{c} = 2\hat{i} + \hat{j} - 3\hat{k}$ and $\vec{d} = 3\hat{i} + 2\hat{j} + 5\hat{k}$ Fin scalars x, y, z so that $\vec{d} = x\vec{a} + y\vec{b} + z\vec{c}$

Q.8 यदि $\vec{a} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$ और $\vec{b} = 2\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ हो, तो दिखाइए कि इन दोनों सदिशों पर लंबवत् सदिश का मान $\frac{\hat{\imath} - \hat{\jmath} - \hat{k}}{\sqrt{3}}$ होगा।

If $\vec{a} = 3\hat{\imath} + \hat{\jmath} + 2\hat{k}$ and $\vec{b} = 2\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$ show that the vector perpendicular to both these vectors is $\frac{\hat{\imath} - \hat{\jmath} - \hat{k}}{\sqrt{3}}$.

OR

त्रिकोणिमति के साइन नियम को सदिश विधि से सिद्ध कीजिए।

10

Prove by vector method the following sin rule.

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

Q.9 निम्नलिखित आवृत्ति वितरण के लिए माध्यिका ज्ञात कीजिए।

10

Find the median for the following data:

rina are me		141000000000000000000000000000000000000			
C.I.	0 - 10	10 - 20	20 - 30	30 - 40	40 – 50
F:	6	13	28	42	17

OR

निम्न समंकों का बहुलक ज्ञात कीजिए

10

Calculate the mode of following distribution:

Calculate	110 1110				22 25	25 - 30	30 - 35
size:	0 - 5	5 – 10	10 – 15	15 - 20	20 – 25	25 – 30	30 - 33
			10	4	10	9	2
frequency	1		10	<u> </u>			10

Q.10 निम्न समंकों का चतुर्थक विचलन ज्ञात कीजिए

Calculate the Quartile Deviation of following data:

Calculate the Quantity	r
C. I.	
0 – 10	3
The state of the s	9
10 – 20	12
20 – 30	Λ-
	20
30 – 40	8
40 – 50	6
50 - 60	6
60 – 70	6
70 - 80	Ü

3

th:

3

ne: .t:

D-

nd

76

Examination Year May – June 2014 Applied Mathematics – I

Q.1 सिद्ध करों कि:

10

Prove that:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

OR

यदि α , β समीकरण $ax^2 + bx + c = 0$ के मूल हों, तो $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ का मान ज्ञात कीजिए।

If α and β are the roots of the equation $ax^2 + bx + c = 0$, then find the α^2 β^2

value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.

Q.2 यदि $\tan \theta = \frac{b}{a}$ हो, तो सिद्ध कीजिए कि : $a\cos 2\theta + b\sin 2\theta = a$ If $\tan \theta = \frac{b}{a}$ then prove that : $a\cos 2\theta + b\sin 2\theta = a$

OR

समीकरण को हल कीजिए:

10

Solve the equation:

 $\sin\theta + \cos\theta = \sqrt{2}\cos\alpha$

Q.3 यदिPQ = QR तब x का मान ज्ञात कीजिए जबिक P,Q और R के निर्देशांक क्रमश (6,-2)(1,3) और (x,8) है।

Find the value of x, when PQ = QR where the co-ordinates of P, Q and I are (6,-2)(1,3) and (x,8) respectively.

OR

सरल रेखाओं x + 2y + 3 = 0और 4x - 6y + 7 = 0के बीच का कोण ज्ञात कीजिए। **10** Find angle between the straight lines x + 2y + 3 = 0 and 4x - 6y + 7 = 0.

Q.4 उस वृत्त का समीकरण ज्ञात कीजिए जिसका केन्द्र (4,3)तथा जो रेखा 5x - 12y = 10 को स्पर्श करता है।

Find the equation of the circle whose centre is (4,3) and which touches the lines 5x - 12y = 10.

OR

दीर्घवृत्त $9x^2 + 16y^2 = 144$ की उत्केन्द्रता, नाभियाँ नाभिलंब, शीर्ष और नियताओं के समीकरण ज्ञात कीजिए।

Find the eccentricity, focus, lacus rectum, vertices, and directrix of the ellipse $9x^2 + 16y^2 = 144$.

Q.5 $\lim_{P\to 0} \frac{\sqrt{4+P} - \sqrt{4+P}}{P}$ का मान ज्ञात कीजिए।

10

Find the value of : $\lim_{P\to 0} \frac{\sqrt{4+P} - \sqrt{4+P}}{P}$

OR

सिद्ध कीजिए: $\lim_{x\to 0} \frac{1-\cos 4x}{x^2} \mathbf{10}$

Prove that: $\lim_{x\to 0} \frac{1-\cos 4x}{x^2}$

$$\mathbf{Q.6} \qquad \mathbf{\overline{u}} = \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}} \mathbf{\overline{n}} \mathbf{\overline{d}} \frac{dy}{dx} \mathbf{\overline{s}} \mathbf{\overline{n}} \mathbf{\overline{n}} \mathbf{\overline{d}} \mathbf{\overline{y}} \mathbf{\overline{n}} \mathbf{$$

10

If $y = \frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}$ then find $\frac{dy}{dx}$.

OR

यदि $y = (\sin x)^{\cos x}$ तो $\frac{dy}{dx}$ ज्ञात कीजिए।

If $y = (\sin x)^{\cos x}$, then find $\frac{dy}{dx}$.

Q.7 ABCDएक चतुर्भुज है। इसके विकर्ण AC तथा BD है। सिद्ध कीजिए कि $\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$

ABCDis a quadrilateral whose diagonals are AC and BD, then prove that: $\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$

OR

ABCDEFएक समषटभुज है, किन्तु A पर बल \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} और \overrightarrow{AF} क्रिया करते हैं। सिद्ध कीजिए कि उनका परिणामी 3 \overrightarrow{AD} है।

ABCDEFis a regular hexagon, the forces acting on A are \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AE} and \overrightarrow{AF} then prove that the resultant of these forces are $\overrightarrow{3AD}$.

Q.8 दो बल $\overrightarrow{P} = 3i + 2j + 5k$ तथा $\overrightarrow{Q} = 2i + j + 3k$ एक कण पर कार्य करते है, तो किया गया कार्य ज्ञात कीजिए जबिक कण बिन्दु A जिसका स्थिति सिदश 2i - j - 3k है से बिन्दु B तक जिसका स्थिति सिदश 4i - 3j + 7k है, विस्थापित हो जाता है।

Two forces $\overrightarrow{P} = 3i + 2j + 5k$ and $\overrightarrow{Q} = 2i + j + 3k$ are acting on a particle. Find the work done when the particle is displaced from the point A whose position vector is 2i - 6j - 3k to the point B whose position vector are 4i - 3j + 7k.

OR

उस इकाई सदिश को ज्ञात कीजिए जो सदिश 2i-2j+k एवं 3i+4j-5k पर लंबवत् 10

Find the unit vector, perpendicular to the vectors 2i - 2j + k and 3i + 4j - 5k.

Q.9 निम्नलिखित समको का लघु विधि द्वारा समांतर माध्य ज्ञात कीजिए। 10

Calculate the arithmetic mean of the following data by the short-cut method.

method.		00	40 40	50 - 59	60 - 69
x	20 - 29	30 - 39	40 - 49	30 - 37	2
	10	8	6	4	. 2
у	10	O.B.			

निम्नलिखित समंको से बहुलक ज्ञात कीजिए

Calculate the mode of the following data:

Calcula	te the m	ode of u	le lonow	IIIg date	1 40	12	14	15
Y	8	9	10	11	12	13	17	6
	-	6	8	7	9	8	9	0
у	J.	. 0		CAL- Co	llouring d	ata:		10

Q.10 Calculate the quartile deviation of the following data:

निम्नलिखित समको का चतुर्थक विचलन ज्ञात कीजिए।

Class	0-10	10 - 20	20 - 30	30 - 40	40 - 50	50 60	60 - 70
Freq.	4	8	11	15	12	6	3

Examination Year Jan 2015 Applied Mathematics - I

1. (a) सिद्ध कीजिए कि :

Prove that:

$$\begin{vmatrix} a-b-c & 2a & 2a \\ 2b & b-c-a & 2b \\ 2c & 2c & c-a-b \end{vmatrix} = (a+b+c)^{3}$$

सिद्ध कीजिए कि :

prove that:

$$\begin{vmatrix} y+z & x & y \\ z+x & z & x \\ x+y & y & z \end{vmatrix} = (x+y+z)(x-z)^2$$

2. यदि α और β समीकरण $2x^2-5x-3=0$ के मूल हैं, तो मान ज्ञात कीजिए :

(i)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(ii)
$$\alpha^2 + \beta^2$$

If α and β are the roots of the equation $2x^2 - 5x - 3 = 0$, then find the vales:

(i)
$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$$

(ii)
$$\alpha^2 + \beta^2$$

Unit-2

(इकाई-2)

2. सिद्ध कीजिए कि :

Prove that:

Sin 8 A= 8 cos A cos 2 A cos 4A sin A

(ii)
$$\frac{1+\sin A - \cos A}{1+\sin A + \cos A} = \tan \frac{A}{2}$$

अथवा

Or

4.निम्न समीकरण के व्यापक हल ज्ञात कीजिए :

Find the general solution of equation:

(i)
$$\sin^2\theta + 2\cos\theta + \frac{1}{4} = 0$$

(ii)
$$\cos \theta - \sqrt{3} \sin \theta = 1$$

Unit-3

(इकाई-3)

5. (a) बिन्दुओं (-7,4) और (8,9) को 2:3 में विभाजित करने वाले बिन्दु के निर्देषांक 🗊

find the co-ordinates of a point which divides a line joining the point (-7,4) and (8,9) in a ratio 2:3.

(b) उस सरल रेखा का समीकरण ज्ञात कीजिए जो बिन्दु (2,2) से होकर गुजरती है और रेड

Find the equation of the line which passes through (2,2) and parallel to the line 3x - 4y = 7

6. (a)केन्द्र एवं त्रिज्या ज्ञात कीजिए यदि वृत्त :

Find centre and radius of the circle:

$$2x^2 + 2y^2 + 10x - 6y - 1 = 0$$

(b) उस वृत का समीकरण ज्ञात कीजिए जिसका केन्द्र(4,3) है और सरल 5x - 12y = 10. रेखा को स्पर्श करता है।

Find the equation of the circle whose centre is (4,3) and touches the line 5x - 12y = 10.

Unit-4

7. परवलय $x^2+4x+4y+16=0$ की नामि , नियता, अक्ष एवं ष्वीर्ष ज्ञात कीजिए। Find out focus, directrix , axis and vertex of a parabola $x^2+4x+4y+16=0$.

अथवा

Or

8.उस दीर्घवृत्त का समीकरण ज्ञात कीजिए जिसकी नामि (-1,-1) नियता x-y+3=0तथा उत्केन्द्रता $\frac{1}{2}$ है।

Find the equation of the ellipse whose focus is (-1,-1), directrix x-y+3=0 and eccentricity $\frac{1}{2}$.

Unit -5

9. प्रथम सिद्धान्त विधि से cos x का अवकल गुणांक ज्ञात कीजिए। Find the differential coefficient of the following cos x by first principle.

अथवा

Or

10. निम्नलिखित का अवकल गुणांक ज्ञात कीजिए :

Find the differential coefficient of the following:

- (i) $x^2 \sin x$
- (ii) $\frac{x \cos x}{\log x}$

Unit-6

11.अवकल गुणांक ज्ञात कीजिए :

Find the differential coefficient:

$$y = (\sin x)^{(\sin x)(\sin x)\dots \infty}$$

अथवा

Or

12.यदि $x^y + y^x = c$ है, तो $\frac{dy}{dx}$ ज्ञात कीजिए।

If $x^y + y^x = c$ then find $\frac{dy}{dx}$.

Unit-7

13. यदि एक ABCD चतुर्मुज है तथा AC और BD विकर्ण है, तो सिद्ध कीजिए कि

$$\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$$

If ABCD is a quadrilateral and AC and BD are diagonal, then prove that:

$$\overrightarrow{AB} + \overrightarrow{DC} = \overrightarrow{AC} + \overrightarrow{DB}$$

अथव

Or

14.बिन्दुऑA,B,C,D के स्थिति सदिष कमष 2i + 3j + 5k, i + 2j + 3k, -5i + 4j - 2k तथा i + 10j + 10kहै। सिद्ध कीजिए कि और समान्तर है।

2i + 3j + 5k, i + 2j + 3k, -5i + 4j - 2k and i + 10j + 10k are the position vectors of the points A,B,C and D, then prove that AB and CD are parallel.

Unit-8

15.दिखाइए कि सदिष 3i + j + 2kऔर 2i - 2j + 4k पर लम्ब मात्रक सदिष का मान $\frac{i-j-k}{\sqrt{3}}$ और उनके बीच के कोण की ज्या है।

Prove that $\frac{i-j-k}{\sqrt{3}}$ is unit perpendicular vector and $\frac{2}{\sqrt{7}}$ is angle between the vectors 3i + j + 2k and 2i - 2j + 4k.

अथवा

Or

16.यदि $\vec{a} = 3i + 2j + 2k$ तथा $\vec{b} = 2i + 4j + 3k$ है, तो गुणनफल $\vec{a} \times \vec{b}$ तथा $\vec{b} \times \vec{a}$ ज्ञात कीजिए।

If $\vec{a} = 3i + 2j + 2k$ and $\vec{b} = 2i + 4j + 3k$, then find $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$.

Unit-9

17. निम्नलिखित सारणी से माध्यिका ज्ञात कीजिए : Find the medians for the following table :

प्राप्तांक (x)	आवृत्ति(f)
Marks(x)	Frequency(f)
30-35	7
25-30	11
20-25	15
15-20	4
10-15	9
5-10	6
0-5	5

18. बहुलक ज्ञात कीजिए Find mode:

मध्यमान Mid Value	आवृत्ति Frequency
15	5
25	8
35	12
45	16
55	28
65	15
75	3
85	2

Unit-10

19. निम्नलिखित समकों के प्रमाप विचलन ज्ञात कीजिए: Find the standard deviation for below data : Alpha Academy Publication

51

1st Year Unsolved

Ī	आकार Size	आवृत्तिfrequency	
ł	0	5	
	2	8	
1	4	15	
1	6	21	
	8	23	
	10	13	
	12	3	
	14	0	
	16	1	
	(本) 6		

