# 2014-2015 学年第一学期《理论力学》课内考试卷 A

## 卷

授课班号 6111819 年级专业 机自、材料 13 级 学号\_\_\_\_\_\_姓名\_\_\_\_\_

考试时间: 95 分钟

|    |    | 二  |    |    | <del>当</del> 人 | 审核 |
|----|----|----|----|----|----------------|----|
| 题号 |    | 1  | 2  | 3  | 总分             | 甲恆 |
| 题分 | 45 | 20 | 20 | 15 |                |    |
| 得分 |    |    |    |    |                |    |

一、基本概念及运算题(共45分)

注:请在空白处写出必要的计算步骤,必要时画出力学简图

1、(本题 6 分) 平面中两个力 $F_1 = 100 \text{ N}$ ,  $F_2 = 200 \text{ N}$ , 其作用点和方向在图 1 中已标出。试求  $F_1$  和  $F_2$  所构成的力

| 系向点 $A$ 简化的结果。 |                 |     |
|----------------|-----------------|-----|
| 主矢 $F' =$      | . 主矩 <i>M</i> = | ≣ . |

| R      | , ,, A          |       |
|--------|-----------------|-------|
| 若力系向平面 | f中的任意一点 $P$ 简化, |       |
| 则主矢    | (不变/改变),主矩      | (不变/改 |
| 变)。    |                 |       |



图 1

2、(本题 6 分) 如图 2 所示的边长为 a 的正方体右侧面对角 线方向作用有一力F,则

$$F$$
对 $z$ 轴的矩  $M_z(F)=$ 



3、(本题 6 分) 如图 3 所示半径为 r = 0.5 m 均质圆盘在半径 为 R=1m 的圆弧轨道中作**纯滚动**,若某一瞬时其角速度为

 $\omega = 2 \text{ rad/s}$ ,角加速度为 $\alpha = 2 \text{ rad/s}^2$ ,

则圆盘圆心 C 的法向加速度  $a_C^n =$ \_\_\_\_\_\_,



图 3

| 切向加速度は | $a_C^{\rm t} =$ | , |
|--------|-----------------|---|
|        |                 |   |

#### 并在图中标出切向加速度和法向加速度的方向。

4、(本题 8 分) 如图 4 所示机构,OA 杆的角速度为  $\omega_{OA} = 1 \, \text{rad/s}$ , $\alpha = 30^{\circ}$ , $h = 1 \, \text{m}$ 。若以连接在 BC 杆上的滑块 B 为动点,动参考系固连在杆 OA 上,(1) 在图上画出合成运动计算 所需的速度关系图;(2) 计算 BC 的速度



#### 加速度的方向。

5、(本题 8 分)如图 5 所示运动机构中, 曲柄均质,OA = r,其质量为  $m_1$ ;连杆 AB 均质,质量为  $2m_1$ ,滑块 B 的质量为  $m_2$ 。曲柄 OA 以恒定角速度  $\omega$  绕 O 轴转动, 在运动到图示的位置(OA 垂直于 OB)时,

滑块 *B* 的速度为\_\_\_\_\_\_; 连杆 *AB* 的角速度为\_\_\_\_\_\_; 系统总动量为\_\_\_\_\_\_; 系统总动能为\_\_\_\_\_;



图 5

6、(本题 7 分)如图 6 所示,两个质量分别为  $m_1$ ,  $m_2$  的重物  $M_1$ , $M_2$  分别系于绳子的两端,两绳分别绕在半径为  $r_1,r_2$  并固结 在一起的两个鼓轮上,设鼓轮对 O 轴的转动惯量为  $J_o$ , 若  $M_2$  此时具有向上的速度 v,则此时(1) $M_2$  对 O 轴的动量矩为 ,(2)此时鼓轮的角加速度为

•



7、(本题 4 分)如图 7 所示,电梯及其载重总质量为  $1000 {
m kg}$ ,电梯以  $2.5 {
m m/s}^2$  的加速度上升时,若以  $F_{
m I}$  表示惯性力,

### (1) 在图中标出电梯惯性力的方向:

河海大学常州校区考试试卷 第 2 页 (共 5 页



#### (2) 以电梯及其载重为对象,写出形式上的平衡方程:

(3) 计算钢丝绳所受拉力为  $F_T$ =\_\_\_\_。 (重力加速度取  $10 \text{ m/s}^2$ )

#### 二、计算题(共55分)

| 题分 | 20 |
|----|----|
| 得分 |    |

1、刚架由 AC 和 BC 两部分组成,所受荷载以及尺寸如图 所示。

已知 F = 40 kN,  $M = 20 \text{ kN} \cdot \text{m}$ , q = 10 kN/m。求  $A \cap B$  处约束力。



| 题分 | 20 |
|----|----|
| 得分 |    |

2、如图 9 所示,杆 AB 沿光滑的墙面和地面滑下,某瞬时杆与地面夹角  $\varphi$ =30°,杆端 B 点向右速度  $v_B$  = 1m/s,加速度  $a_B$  = 2m/s²,已知杆长  $l_{AB}$  = 1m。(1)画出平面运动杆件 AB 的瞬心位置,求出杆角速

度; (2)以B为基点画出A的加速度分析图,写出加速度合成关系; (3)求此瞬时 杆 AB 的角加速度。



图 9

| 题分 | 15 |
|----|----|
| 得分 |    |

3、如图 10 所示,均质杆 OA 质量为 15kg,可绕着垂直于纸面的光 滑水平轴 O 转动,杆的 A 端连接有刚度系数 k=0.5 N/mm 的弹

簧。杆 OA 初始时刻为垂直位置,且具有角速度  $\omega_0 = 2 \text{ rad/s}$ ,此时弹簧被拉长了 100 mm。求杆件顺时针转过  $90^\circ$ 后,在图示得虚线位置时:(1) 杆 OA 的角速度;(2) 杆 OA 的角加速度;(3) 杆 OA 质心的加速度;(4) 铰支座 O 处的反力。

