Chapter 19: 弱收敛和特征函数

Latest Update: 2025年1月1日

Exercise #19. 1. 令 $\{X_n\}_{n\geq 1}$ 服从 $N(\mu_n, \sigma_n^2)$ 的随机变量. 假设 $\mu_n \to \mu$ 和 $\sigma_n^2 \to \sigma^2 \geq 0$, 当 $n \to \infty$. 证明: $X_n \xrightarrow{D} X$, 其中 $X \sim N(\mu, \sigma^2)$.

证明. X_n 的特征函数为 $\varphi_{X_n}(u) = \exp\left(iu\mu_n - \frac{u^2\sigma_n^2}{2}\right)$. X 的特征函数为 $\varphi_X(u) = \exp\left(iu\mu - \frac{u^2\sigma^2}{2}\right)$. 根据 Lévy 连续性定理,由于我们有 $\varphi_{X_n} \to \varphi_X$,当 $n \to \infty$. 且 φ_X 在 u = 0 处连续,所以, $X_n \xrightarrow{D} X$.

Exercise #19. 2. 令 $\{X_n\}_{n\geq 1}$ 服从 $N(\mu_n, \sigma_n^2)$ 的随机变量. 设 $X_n \xrightarrow{D} X$ 对某些随机变量 X. 证明: 以下极限存在: $\mu_n \to \mu$ 和 $\sigma_n^2 \to \sigma^2 \geq 0$, 当 $n \to \infty$. 以及 $X \sim N(\mu, \sigma^2)$.

注. 记 φ_{X_n} 和 φ_X 是 X_n 和 X 的特征函数. 于是, $\varphi_{X_n} = \exp\left(iu\mu_u - \frac{u^2\sigma_n^2}{2}\right)$, 使用 $L\acute{e}vy$ 连续性定理, 我们有 $\varphi_{X_n} \to \varphi_X$, $\varphi_X(u) = \exp\left(iu\mu - \frac{u^2\sigma^2}{2}\right)$, 对于某些 μ 和 $\sigma^2 \geq 0$.

证明. 由于 $X_n \xrightarrow{D} X$, 采用注记中的记号, 设 X 的特征函数为 $\varphi_X(u)$. 根据正极限定理, 特征函数 φ_{X_n} 逐点收敛到 φ_X .

$$e^{i\mu_n u}e^{-\frac{u^2\sigma_n^2}{2}} \to \varphi_X(u), \quad \forall u \in \mathbb{R}.$$

两边取模,得到 $e^{-\frac{u^2\sigma_n^2}{2}}$ 收敛,下证 σ_n^2 收敛. 若不然,则仅可能 $\sigma_n^2 \to \infty (n \to \infty)$. 在这种情况下, $|\varphi_X(u)| = 0 (u \neq 0)$,但是 $|\varphi_X(0)| = 1$,这与 $\varphi(u)$ 的连续性矛盾. 因此存在 $\sigma^2 \geq 0$,使得 $\sigma_n^2 \to \sigma^2 < \infty$.

接下来, 由于对于任意固定的 u, $e^{iu\mu_n}$ 收敛, 下证 μ_n 收敛. 记

$$f(u) := \frac{1}{|\varphi(u)|} \varphi(u), \quad u \in \mathbb{R}^1.$$

根据控制收敛定理,

$$\lim_{n \to \infty} \int_{u_1}^{u_2} e^{iu\mu_n} du = \int_{u_1}^{u_2} f(u) du, \quad \forall u_1 < u_2.$$

由于 $|f(u)| \equiv 1, \forall u \in \mathbb{R}^1$, 则存在 a < b 使得 $\int_a^b f(u)du \neq 0$. 则对充分大的 n, 有 $\int_a^b e^{iu\mu_n}du \neq 0$, 此时,

$$\mu_n = i \frac{e^{ia\mu_n} - e^{ib\mu_n}}{\int_a^b e^{iu\mu_n} du}, \quad n 充分大,$$

两边关于 n 取极限, 得到 $\mu_n \to \mu$, 其中 $\mu = i \frac{f(a) - f(b)}{\int_a^b f(u) du}$. 于是, $\varphi_{X_n} = \exp\left(iu\mu_u - \frac{u^2\sigma_n^2}{2}\right)$, 我们有 $\varphi_{X_n} \to \varphi_X$, $\varphi_X(u) = \exp\left(iu\mu - \frac{u^2\sigma^2}{2}\right)$, 对于某些 μ 和 $\sigma^2 \geq 0$. 这表明 $X \sim N(\mu, \sigma^2)$

Exercise #19. 3. 设 $\{X_n\}_{n\geq 1}, \{Y_n\}_{n>1}$ 是一列随机变量,它们定义在相同的概率空间上. 假 设 $X_n \xrightarrow{D} X$ 和 $Y_n \xrightarrow{D} Y$. 假设 X_n 和 Y_n 独立 (对任意的 n), X 和 Y 独立. 证明: $X_n + Y_n \xrightarrow{D} Y_n$

证明. 设 X_n 的特征函数为 φ_{X_n} , Y_n 的特征函数为 φ_{Y_n} . X 的特征函数为 φ_X , Y 的特征函数为 φ_Y . 根据 Lévy 连续性定理 (正极限定理), 由于我们有 $\varphi_{X_n} \to \varphi_X$ 和 $\varphi_{Y_n} \to \varphi_Y$, 当 $n \to \infty$.

根据 X_n 和 Y_n 的独立性, 我们有 $\varphi_{X_n+Y_n}=\varphi_{X_n}\varphi_{Y_n}$. 根据 X 和 Y 的独立性, 我们有 $\varphi_{X+Y}=$ $\varphi_X \varphi_Y$. 根据逐点收敛性, 我们有 $\varphi_{X_n} \varphi_{Y_n} = \varphi_{X_n + Y_n} \to \varphi_{X+Y} = \varphi_X \varphi_Y$, 当 $n \to \infty$. 且 φ_{X+Y} 在 u=0 处连续, 根据 Lévy 连续性定理 (逆极限定理), 我们有 $X_n+Y_n \xrightarrow{D} X+Y.$