Mathematical and Logical Foundations of Computer Science

Lecture 13 - Predicate Logic (Natural Deduction Proofs – Continued)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- ► Symbolic logic
- Propositional logic
- ► Predicate logic

Today

- Natural Deduction proofs for Predicate Logic
- side conditions

Further reading:

► Chapter 8 of

http://leanprover.github.io/logic_and_proof/

Recap: Syntax

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The scope of a quantifier extends as far right as possible. E.g., $P \wedge \forall x. p(x) \vee q(x)$ is read as $P \wedge \forall x. (p(x) \vee q(x))$

Recap: Substitution

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

These conditions can always be met by silently renaming bound variables before substituting.

Recap: $\forall \& \exists$ elimination and introduction rules

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

$$\frac{\forall x.P}{P[x \backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{P[x \backslash t]}{\exists x. P} \quad [\exists I]$$

Condition: fv(t) must not clash with bv(P)

$$\frac{P[x \setminus y]}{P[x \setminus y]} \quad 1$$

$$\vdots$$

$$\frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

Inference Rule for "for all elimination"

$$\frac{\forall x.P}{P[x\backslash t]} \quad [\forall E]$$

Condition: fv(t) must not clash with bv(P)

Example: consider the formula $\forall x. \exists y. y > x$

- True over domain of natural numbers
- P is $\exists y.y > x$
- ▶ Let *t* be *y*
- ▶ This condition guarantees that we can do the substitution
- Substituting x with y without renaming bound variables would give the wrong answer
- ▶ Therefore, we first rename bound variables that clash with fv(t), i.e., with y: $\exists z.z > x$
- ▶ Then, we substitute: $\exists z.z > y$

Inference Rule for "for all elimination"

More precisely: Assume that from $\forall x. \exists y. y > x$, we want to derive a number greater than y.

We would use the following rule:

$$\frac{\forall x. \exists y. y > x}{(\exists y. y > x)[x \backslash y]} \quad [\forall E]$$

However, without renaming the bound y, $P[x \setminus y]$ is undefined

Therefore, we rename the bound variable just before performing the substitution:

$$\frac{\forall x. \exists y. y > x}{\exists z. z > y} \quad [\forall E]$$

$$\frac{P[x \backslash y]}{\forall x. P} \quad [\forall I]$$

We conclude P is true for all x if we have proved P for a "general/representative/typical" variable

Condition: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$

What could go wrong without this condition?

- ▶ Otherwise, given the assumption x > 2, we could derive $\forall x.x > 2$, which is clearly wrong.
- ▶ We could also derive $\forall x. \forall y. x > 0 \rightarrow y > 0$, which is also clearly wrong.

More precisely: without this condition we would be able to derive

$$\frac{\overline{x>2}^{1}}{\forall x.x>2} \xrightarrow{-[\forall I]} \frac{1}{x>2 \to \forall x.x>2} 1 \ [\to I]$$

WARNING \triangle Note that this is **not** a **correct use** of the $[\forall I]$ rule because x is free in x > 2, which is not-yet-discharged when the $[\forall I]$ rule is applied

However, it is okay for the variable to appear in an assumption that is discharged **above** the $[\forall I]$ rule:

$$\frac{\overline{x>2}^{1}}{x>2 \to x>2} \stackrel{1}{\underset{\forall x.x>2 \to x>2}{\longrightarrow}} [\forall I]$$

How can we make checking this condition more tractable?

Going backward, we must ensure such variables

- ▶ are not free in the hypotheses we have introduced and discharged at the time [∀I] is used,
- ▶ are not free in the universally quantified formula.

We record those hypotheses in a **context** as follows:

$$\frac{y>2}{\forall x.x>2} \quad [\forall I]$$
$$\frac{x>2}{x>2\rightarrow \forall x.x>2} \quad 1 \ [\rightarrow I]$$

Context:

▶ 1: x > 2

We cannot pick x as it occurs in our **context** We must pick a "fresh" variable not free in the **context** or in $\forall x.x>2$ We cannot finish this proof now

Prove $\forall x.x > 2 \rightarrow x > 2$ backward using contexts

Here is a proof:

$$\frac{\overline{x>2}^{1}}{x>2 \to x>2} \xrightarrow{1} [\to I]$$

$$\overline{\forall x.x>2 \to x>2} \quad [\forall I]$$

Context:

• 1:
$$x > 2$$

We can pick any variable we want as the context is empty and our conclusion does not have any free variables

What could happen if we could pick a variable free in the conclusion?

If we could pick a variable free in the conclusion, we could derive:

$$\frac{\overline{x>0}^{-1}}{x>0\rightarrow x>0} \stackrel{1}{\xrightarrow{[\forall I]}} \frac{}{\forall y.x>0\rightarrow y>0} \frac{}{\forall x.\forall y.x>0\rightarrow y>0}$$

WARNING \triangle Note that this is **not** a **correct use** of the $[\forall I]$ rule because x is free the conclusion $\forall y.x > 0 \rightarrow y > 0$

The rule's condition forces us to pick a different variable:

$$\frac{\overline{y>0}}{x>0 \to y>0} \stackrel{1}{\xrightarrow{[\forall I]}} \frac{}{\forall y.x>0 \to y>0} \stackrel{[\forall I]}{\xrightarrow{[\forall X.\forall y.x>0 \to y>0}}$$

We cannot finish this proof now

Inference Rule for "exists introduction"

$$\frac{P[x\backslash t]}{\exists x.P} \quad [\exists I]$$

We conclude P is true for some x if we have proved predicate P for an element of the domain

Condition: fv(t) must not clash with bv(P)

Example: Consider the predicate $P = (\forall y.y = x)$

- Without the substitution conditions $P[x \mid y]$ would be true
- ▶ We could then deduce $\exists x. \forall y. y = x$, i.e., numbers are all equal to each other obviously incorrect!
- ▶ The substitution conditions prevents such captures
- ▶ [∃I]'s condition guarantees that the substitution conditions hold

Inference Rule for "exists introduction"

As for "for all elimination", we rename the bound variable just before performing the substitution.

For example if we know that y is the smallest number:

$$\frac{\forall z. y \leqslant z}{\exists x. \forall y. x \leqslant y} \quad [\exists I]$$

$$\frac{\overline{P[x\backslash y]}}{\vdots}$$

$$\frac{\exists x.P}{Q} \quad 1 \quad [\exists E]$$

From the fact that P is true for some x we know that it holds about some element of the domain, but we do not know which

Condition: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

This rule is similar to OR-elimination!

What could go wrong without this condition?

Assume for the sake of this example that $x \leqslant y$ is defined as $\neg y < x$ Without the condition we could prove:

$$\frac{\exists x. \forall y. x \leqslant y}{\exists x. \forall y. x \leqslant y} \stackrel{2}{=} \frac{0 < z}{1} \frac{\forall y. z \leqslant y}{z \leqslant 0} \stackrel{[\forall E]}{[\neg E]}$$

$$\frac{\bot}{\neg \exists x. \forall y. x \leqslant y} \stackrel{2}{=} \stackrel{[\neg I]}{[\neg I]}$$

$$\frac{1}{0 < z \rightarrow \neg \exists x. \forall y. x \leqslant y} \stackrel{1}{=} \stackrel{[\rightarrow I]}{[\rightarrow I]}$$

WARNING \triangle Note that this is **not** a **correct use** of the [$\exists E$] rule because z is free in 0 < z, which is not-yet-discharged when the [$\exists E$] rule is applied

Similarly, without the condition we could prove:

$$\frac{1}{0 < z} \stackrel{\exists x. \forall y. x \leqslant y}{=} 2 \stackrel{\exists y. z \leqslant y}{=} 3 \xrightarrow{[\forall E]}$$

$$\frac{1}{z \leqslant 0} \stackrel{[\neg E]}{=}$$

$$\frac{1}{\neg \exists x. \forall y. x \leqslant y} \stackrel{2}{=} \stackrel{[\neg I]}{=}$$

$$0 < z \rightarrow \neg \exists x. \forall y. x \leqslant y} \stackrel{1}{=} \stackrel{[\rightarrow I]}{=}$$

WARNING \triangle Note that this is **not** a **correct use** of the [$\exists E$] rule because z is free in $z \le 0$, the conclusion of the instance of the [$\exists E$] rule

We use contexts to make checking this condition more tractable For example:

$$\frac{\exists x. \forall y. x \leqslant y}{\exists x. \forall y. x \leqslant y} \stackrel{2}{\xrightarrow{0 < z}} \stackrel{1}{\xrightarrow{1}} \stackrel{z \leqslant 0}{\xrightarrow{1}} \stackrel{[\neg E]}{\xrightarrow{1}} \frac{\bot}{\neg \exists x. \forall y. x \leqslant y} \stackrel{2}{\xrightarrow{1}} \stackrel{[\neg I]}{\xrightarrow{1}} \frac{\bot}{0 < z \rightarrow \neg \exists x. \forall y. x \leqslant y} \stackrel{1}{\xrightarrow{1}} \stackrel{[\rightarrow I]}{\xrightarrow{1}}$$

Context:

- ▶ 1: 0 < z
- ightharpoonup 2: $\exists x. \forall y. x \leqslant y$
- 3: $\forall y.w \leqslant y$

We cannot pick z anymore as it occurs free in the context We must pick a fresh variable w not free in the context (1 and 2), the conclusion \bot , or $\exists x. \forall y. x \leqslant y$

We cannot conclude our proof anymore

What could happen if we could pick a variable free in the ∃ formula?

Let us assume for the sake of this example that we can use the following rule

$$\frac{t < t}{|}$$
 [IRREFL]

If we could pick a variable free in the \exists formula, we could derive:

$$\frac{\exists x. \exists y. x < y}{\exists x. \exists y. x < y} \stackrel{1}{\xrightarrow{\exists y. x < y}} \stackrel{2}{\xrightarrow{\bot}} \frac{\overline{x < x}}{\bot} \stackrel{3 \text{[IRREFL]}}{\xrightarrow{\exists z}}$$

$$\frac{\bot}{\neg \exists x. \exists y. x < y} \stackrel{1}{\xrightarrow{1}} [\neg I]$$

WARNING \triangle Note that this is **not** a **correct** use of the $[\exists E]$ rule because x is free in $\exists y.x < y$

Another Natural Deduction proof with contexts

Prove that $(\forall x.p(x)) \rightarrow (\forall y.q(y)) \rightarrow \forall z.p(z) \land q(z)$ Here is a proof:

$$\frac{\frac{\overline{\forall x.p(x)}}{p(z)} \stackrel{1}{[\forall E]} \frac{\overline{\forall y.q(y)}}{q(z)} \stackrel{2}{[\forall E]}}{\frac{p(z) \land q(z)}{\forall z.p(z) \land q(z)} \stackrel{[\forall I]}{[\forall I]}} \\ \frac{\frac{p(z) \land q(z)}{\forall z.p(z) \land q(z)} \stackrel{[\forall I]}{}}{(\forall y.q(y)) \rightarrow \forall z.p(z) \land q(z)} \stackrel{2}{} \stackrel{1}{[\rightarrow I]}$$

Context:

- ightharpoonup 1: $\forall x.p(x)$
- \triangleright 2: $\forall y.q(y)$
- z does not occur free in the context or in the conclusion

Formal verification

Predicate Logic is more expressive and more convenient than Propositional Logic

- to do Mathematics
- to do program verification, i.e., to formally/mathematically verify that a program satisfies some formal/mathematical specification

Simple example: let the domain be \mathbb{N} and the signature be:

- predicates: \geqslant of arity 2
- functions: max of arity 2; and $0, 1, 2, \ldots$ of arity 0

Let us define the following function:

$$\max 3(t_1, t_2, t_3)$$
 stands for $\max(t_1, \max(t_2, t_3))$

A specification for max might be:

$$\forall x. \forall y. \max(x, y) \geqslant x \land \max(x, y) \geqslant y$$

Formal verification

While a specification for max3 might be:

$$\forall x. \forall y. \forall z. \max 3(x, y, z) \geqslant x \land \max 3(x, y, z) \geqslant y \land \max 3(x, y, z) \geqslant z$$

Prove that max3 satisfies this specification using Natural Deduction

We skipped some parts of the proof. For the missing part, we also need to assume that \geqslant is transitive.

Conclusion

What did we cover today?

- Natural Deduction proofs for Predicate Logic
- side conditions

Further reading:

Chapter 8 of

http://leanprover.github.io/logic_and_proof/