Decision Trees: Evaluation

Mauro Sozio*

*slides adapted from the course: Introduction to data mining, Steinbach, Kumar

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than running time, scalability, etc.
- Confusion Matrix:

	PREDICTED Class		
ACTUAL Class		Class=Yes	Class=No
	Class=Yes	TP	FN
	Class=No	FP	TN

TP (true positive)
FN (false negative)
FP (false positive)
TN (true negative)

Metrics for Performance Evaluation...

	PREDICTED Class		
		Class=Yes	Class=No
ACTUAL Class	Class=Yes	TP	FN
	Class=No	FP	TN

Most widely-used metric:

$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-Class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be Class 0, accuracy is 9990/10000 = 99.9 %
 - Misleading: model does not detect any Class 1 example

Cost Matrix and Weighted Accuracy

C(i|j): Cost of misclassifying Class j record as Class i

	PREDICTED Class		
ACTUAL Class	C(i j)	Class=Yes	Class=No
	Class=Yes	C(Yes Yes)	C(No Yes)
	Class=No	C(Yes No)	C(No No)

Weighted Acc. =
$$\frac{\text{TP x C(Yes|YES)} + \text{TN x C(No|No)}}{\text{TP x C(Yes|YES)} + \text{TN x C(No|No)}}$$

 $TP \times C(Yes|YES) + FN \times C(No|Yes) + FP \times C(Yes|No) + TN \times C(No|No)$

Cost of Classification

Cost Matrix	PREDICTED Class		
ACTUAL Class	C(i j)	+	-
	+	-1	100
	-	1	0

Cost Matrix Penalizing FN

$$Cost = TP x c(TP) + TN x$$

$$c(TN) + FP x c(FP) + FN x$$

$$c(FN)$$

Model M ₁	PREDICTED Class		
ACTUAL Class		+	-
	+	150	40
	•	60	250

Model M ₂	PREDICTED Class		
ACTUAL Class		+	•
	+	205	65
	-	30	200

Accuracy = 400 / 500= 80% Cost = 3910 Accuracy = 405 /500 =81% Cost = 6325

Precision, Recall, F-measure

Precision (p) =
$$\frac{TP}{TP + FP}$$
Recall (r) =
$$\frac{TP}{TP + FN}$$

Easy to get only high precision: 'Yes' only for instances we are "sure" about (e.g. easy to classify "robot" if 1000 pages/sec. retrieved) => low recall

Trivial to get only high recall: classify all instances as 'Yes' => low precision

Precision, Recall, F-measure

F-measure is the harmonic mean of p and r, which penalizes very small recall or very small precision

F-measure (F) =
$$\frac{2rp}{r+p}$$
 (Harmonic Mean of p and r)

E.g.: Harmonic Mean (1,2,4) = 1/(1/3(1+1/2+/1/4)) = 12/7 (reciprocal of the arithmetic mean of the reciprocals)

It can be shown $min(x1,...,xn) \le H(x1,...,xn) \le n * min(x1,...,xn)$ => min is very small then harmonic mean is very small.

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Methods of Estimation

- Holdout
 - Reserve random 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout (compute the average)
- Cross validation
 - Partition data into k disjoint subsets of the same size
 - k-fold: train on k-1 sets, test on the remaining one.
 Repeat k times, each subset being used exactly once for testing. Compute the average of the results.
 - Leave-one-out: k=n, (n-1 sets training test, rest test set)
- Bootstrap
 - Sampling with replacement