HW7
Physics I
17.5/20
Romero Mooser

1) h = hight,
$$\theta$$
 = latitud, \vec{w} Eath's rot

$$\omega = \frac{2\pi}{24h} = \frac{2\pi}{24.5600s} \implies \omega = 7.27 \times 10^{-5} \frac{1}{s}$$

to the west.

Thus the total time is $t_{tot} = 2 - \frac{2R}{g}$

 $h = \frac{1}{2} qt^2 \implies t = \sqrt{\frac{2h}{g}}$

then s = v · t = 7.27 x 10-5 \frac{1}{5} · 6.371 x 10 m · cos 0 · 2 \frac{100}{5} =

=
$$7.27 \times 10^{-5} \div 6.371 \times 10^{6} \text{m} \cdot \text{cos}\theta$$

Then the velocity
$$V = \omega r = \omega \cdot R \cos \theta$$

= $7.27 \times 10^{-5} \cdot \frac{1}{3} \cdot 6$

3.5/4

2)	FJOOLT	ating 1	ceberg							
	Find	fraction	of vo	wme o	f iceberg	belai	sea l	inel.		
	het	m; density	and	Vi	be its	mass	and (owne.		
	Hass	density	ol ice	<i> </i>	M/v =	9: = Q	917 9 (cm	,3	/	
		6	7			J. –	0 • J • · · ·			
	1.4	M 5.	. n.	ما	\ la. \	- مام	d	οθla	dis-land	
	hei	νω Β	e inc	Veww	L BUBU	ωαrer , 3	- voume	of ware	r displaced	,
iłs	mass : Y	mw = 9 ~	, νω	with	9w = 1	g/cm ³	(water)			
			_							
	Thin	The u	seight c	ef the	- icebe	g	5 g%	un by		
			W,	= mi·	8	, g = 9	. 81 m	/		
								•		
	And	boyant	fora	equals	weight of	displace	ed water	, thus		
			W.	, = M.	, · g					
					0					
	o. d a	re it fl	Dooks	1.) = W; Mg = M g. = \					
	auca sty	ue 11 7	cours	ι .	, , w,					
					M 2 8 = M	· 8				
				ν.	u 9u = \	1: 9:				
				=>	Vw =	ું / વૃ	ه ۷۰			
			V)						
		=	7	. (fr	action of	? The ice	berg under	water);	a given by The iceberg	
				9:18-	s = Q.	j17 →	≈, 91 %	of	The iceberg	ં
				· waw.	water.		\checkmark		•	,
									1	/
3.	Wake	and oil							·	1
	· Density									
	29	7 51								
		<u> </u>	7							
	Oil —	1 5.4 I								
	a) b							
			<u>ر</u>							

$$\frac{1}{4} = \frac{9}{9} \text{ al} , \quad \text{Then} \quad \text{Par Any } \frac{9}{9} = \frac{9}{9} \text{ al. Any } \frac{9}{9} = \frac{272 \text{ and } 9800}{247200} = \frac{688}{9} \text{ m}^{\frac{1}{2}}$$

$$\frac{1}{4} = \frac{4}{10} = \frac{4000}{1000} \frac{1}{24} = \frac{4000}{1000} \frac{1}{24} = \frac{1000}{1000} \frac{1}{$$

5. When shooting out of touch

during
$$g$$
, Area A , Anglet A , palson mean m

A case of part.

Lind a

(from pulm) ' pg A ' $\frac{1}{2}$ pv_a^{i} ' pv_a^{i} ' pv_a^{i} '

Perfect

 $S = \frac{1}{2}gt^2$, then $d = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\frac{2d}{3}}$

when a

I horizontal

 $S = v_a \cdot t - \sqrt{\frac{1}{p}(p_{non}, pgA)} \cdot \sqrt{\frac{2g}{3}}$

I have $a = \sqrt{\frac{1}{2}gt^2} \cdot \frac{1}{2} \cdot \frac{$

$$\frac{2\left(P_{100}-P_{0p}\right)}{P_{air}} + V_{100}^{2} = V_{0p}^{2}$$
Further $P = \frac{\pm}{A} \implies T = \Delta P \cdot A$

$$(P_{law} - P_{up}) = \Delta P = \frac{ma}{\Lambda} - 16'350 P_a$$

$$V_{u_1} = \sqrt{\frac{2 \cdot \Delta P}{P_{aic}}} + \sqrt{2} daw = \sqrt{\frac{2 \cdot 16 \cdot 350}{1.253 \frac{E_{x_1}}{m_3}}} + (55 \frac{m}{3})^2$$

$$= 185.2 \frac{m}{5}$$

7.

density 9, L>h
$$V = \frac{4\pi}{3} \left(R_1^2 + R_1 R_1 + R_2^2 \right)$$

$$F_{L} + F_{mg} = F_{a} \implies m \cdot g = q_{L} \nabla q + \dots$$