COMPUTER SCIENCE TRIPOS Part II – 2015 – Paper 9

4 Denotational Semantics (MPF)

- (a) (i) Define the contextual-equivalence relation $\Gamma \vdash M \cong_{\text{ctx}} M' : \tau$ for pairs of PCF terms M, M', PCF types τ , and PCF type environments Γ . [3 marks]
 - (ii) For PCF terms M and N with respective typings $\Gamma \vdash M : \tau \to \alpha$ and $\Gamma \vdash N : \alpha \to \sigma$, let $N \circ M$ be the PCF term $\operatorname{fn} x : \tau . N(Mx)$, where $x \not\in \operatorname{dom}(\Gamma)$, with typing $\Gamma \vdash N \circ M : \tau \to \sigma$.

State whether or not if $\Gamma \vdash M \cong_{\text{ctx}} M' : \tau \to \alpha$ and $\Gamma \vdash N \cong_{\text{ctx}} N' : \alpha \to \sigma$ then $\Gamma \vdash N \circ M \cong_{\text{ctx}} N' \circ M' : \tau \to \sigma$. Justify your answer. [5 marks]

(b) By considering the countable chain of functions $(P_n)_{n\in\mathbb{N}}$ in the function domain $(\mathbb{N}_{\perp}\to\mathbb{B}_{\perp})$ given by

$$P_n(k) \stackrel{\text{def}}{=} \begin{cases} false & \text{if } k \in \mathbb{N} \text{ and } k < n \\ \bot & \text{otherwise} \end{cases}$$
 $(k \in \mathbb{N}_{\perp})$

or otherwise, show that the function ε from $(\mathbb{N}_{\perp} \to \mathbb{B}_{\perp})$ to \mathbb{B}_{\perp} given by

$$\varepsilon(P) \stackrel{\text{def}}{=} \begin{cases} true & \text{if } \exists n \in \mathbb{N}. \ P(n) = true \\ false & \text{if } \forall n \in \mathbb{N}. \ P(n) = false \\ \bot & \text{otherwise} \end{cases} \qquad (P \in (\mathbb{N}_{\perp} \to \mathbb{B}_{\perp}))$$

is not continuous. Argue as to whether or not ε is definable by a closed term of type $(nat \to bool) \to bool$ in both PCF and PCF+por. [5 marks]

(c) Let M be the PCF+por term

fn
$$f: (nat \rightarrow bool) \rightarrow bool.$$

fn $P: nat \rightarrow bool.$
por $\left(P\mathbf{0}, f\left(\mathbf{fn} \ n: nat. \ P\left(\mathbf{succ}(n)\right)\right)\right)$

Give an explicit description of $\llbracket \mathbf{fix}(M) \rrbracket \in ((\mathbb{N}_{\perp} \to \mathbb{B}_{\perp}) \to \mathbb{B}_{\perp}).$ [7 marks]