પ્રશ્ન 1(અ) [3 ગુણ]

નેગેટિવ ફિડબેક શું છે? નેગેટિવ ફિડબેકના ફાયદા અને ગેરફાયદાની સૂચિ બનાવો.

જવાબ:

નેગેટિવ ફિડબેક એટલે આઉટપુટ સિગ્નલનો એક ભાગ 180° ફેઝ શિફ્ટ સાથે ઇનપુટમાં પાછો મોકલવો જેથી ઇનપુટ સિગ્નલમાં ઘટાડો થાય.

ફાયદા	ગેરફાયદા
સ્થિરતામાં વધારો	ગેઇનમાં ઘટાડો
ડિસ્ટોર્શનમાં ઘટાડો	જટિલ સર્કિટ ડિઝાઇન
બેન્ડવિડ્થમાં વધારો	વધુ ઘટકોની જરૂર
નોઈઝમાં ઘટાડો	વધુ પાવર વપરાશ

મેમરી ટ્રીક: "SIRS" - Stability Improved, Reduced distortion, Sensitivity decreased

પ્રશ્ન 1(બ) [4 ગુણ]

એમ્પલિફાયરના ફ્રિક્વન્સી રિસ્પોન્સ અને ડિસ્ટોર્શન ઉપર નેગેટિવ ફિડબેકની અસર સમજાવો.

જવાબ:

નેગેટિવ ફિડબેક એમ્પલિફાયરમાં ફ્રિક્વન્સી રિસ્પોન્સ સુધારે છે અને ડિસ્ટોર્શન ઘટાડે છે.

આકૃતિ:

અસર	ફિડબેક વગર	નેગેટિવ ફિડબેક સાથે
ફ્રિક્વન્સી રિસ્પોન્સ	સાંકડી બેન્ડવિડ્થ	વધુ પહોળી બેન્ડવિડ્થ
ડિસ્ટોર્શન	વધુ હાર્મોનિક્સ	ઓછા હાર્મોનિક્સ

મેમરી ટ્રીક: "WIDE" - With negative feedback, Improved response, Distortion reduced, Extended bandwidth

પ્રશ્ન 1(ક) [7 ગુણ]

નેગેટિવ ફિડબેક વોલ્ટેજ એમ્પલિફાયરના ઓવરઓલ ગેઇન માટે સમીકરણ તારવો.

જવાબ:

નેગેટિવ ફિડબેક વોલ્ટેજ એમ્પલિફાયરના ઓવરઓલ ગેઇન માટેનું સમીકરણ નીચે મુજબ તારવી શકાય:

આકૃતિ:

• **ઇનપુટ સમીકરણ**: V' = Vi - βVo

• આઉટપુટ સમીકરણ: Vo = AV'

• **ผ่าำ ช่ารด**: Vo = A(Vi - βVo)

• **Vo มเล้ Gร**ัสสา: Vo = AVi - AβVo

• ફેરવીને: Vo(1 + Aβ) = AVi

• અંતિમ સમીકરણ: Vo/Vi = A/(1 + Aβ) = Af

મેમરી ટ્રીક: "LOOP" - Look at Original Open-loop gain and Proceed with feedback

પ્રશ્ન 1(ક) OR [7 ગુણ]

વોલ્ટેજ શંટ એમ્પ્લીફાયર અને વર્તમાન શ્રેણીના એમ્પ્લીફાયરની તુલના કરો.

જવાબ:

પેરામીટર	વોલ્ટેજ શંટ એમ્પ્લીફાયર	વર્તમાન શ્રેણી એમ્પ્લીફાયર
ઇનપુટ	વોલ્ટેજ	વર્તમાન
આઉટપુટ	વર્તમાન	વોલ્ટેજ
ફિડબેક નેટવર્ક જોડાણ	ઇનપુટ પર સમાંતર	ઇનપુટ પર શ્રેણીમાં
ઇનપુટ ઇમ્પિડન્સ	ยะเรา	વધારો
આઉટપુટ ઇમ્પિડન્સ	વધારો	ઘટાડો
ગેઇન	વર્તમાન ગેઇનમાં ઘટાડો	વોલ્ટેજ ગેઇનમાં ઘટાડો
એપ્લિકેશન	વર્તમાન એમ્પલિફિકેશન	વોલ્ટેજ એમ્પલિફિકેશન

મેમરી ટ્રીક: "VICS" - Voltage shunt In, Current out; Series has opposite

પ્રશ્ન 2(અ) [3 ગુણ]

ઓસિલેશન માટે Barkhausen's criteriaની ચર્ચા કરો.

જવાબ:

Barkhausen's criteria અનુસાર સતત ઓસિલેશન માટે, નીચેની શરતો પૂરી થવી જોઈએ:

ક્રાઇટેરિયા	જરૂરિયાત
લૂપ ગેઇન	Aβ = 1 (મેગ્નિટ્યુડ 1 જેટલી)
ફેઝ શિફ્ટ	લૂપમાં કુલ ફેઝ શિફ્ટ = 0° અથવા 360°

આકૃતિ:

મેમરી ટ્રીક: "LOOP" - Loop gain One, Oscillation needs Phase shift zero

પ્રશ્ન 2(બ) [4 ગુણ]

હાર્ટલી ઓસીલેટર અને કોલપીટ્સ ઓસીલેટરનો સર્કિટ ડાયાગ્રામ દોરો.

જવાબ:

હાર્ટલી ઓસીલેટર:

કોલપીટ્સ ઓસીલેટર:

મેમરી ટ્રીક: "HaLs CoCs" - Hartley has inductors in series, Colpitts has Capacitors in series

પ્રશ્ન 2(ક) [7 ગુણ]

UJT ને રિલેક્સેશન ઓસિલેટર તરીકે સમજાવો

જવાલ

UJT (Unijunction Transistor) કૅપેસિટરને વારંવાર ચાર્જ અને ડિસ્ચાર્જ કરીને રિલેક્સેશન ઓસિલેટર તરીકે કામ કરે છે.

आङ्गति:

ફેઝ	વર્ણન
યાર્જિંગ	કેપેસિટર R દ્વારા ચાર્જ થાય છે જ્યાં સુધી વોલ્ટેજ VP (પીક વોલ્ટેજ) સુધી ન પહોંચે
ફાયરિંગ	જ્યારે એમિટર વોલ્ટેજ VP પર પહોંચે ત્યારે UJT ચાલુ થાય છે
ડિસ્થાર્જ	કેપેસિટર UJT દ્વારા ઝડપથી ડિસ્ચાર્જ થાય છે
રીસેટ	વોલ્ટેજ વેલી વોલ્ટેજ કરતાં નીચે જાય છે, UJT બંધ થાય છે, ચક્ર ફરીથી શરૂ થાય છે

- ઇન્ટ્રિન્સિક સ્ટેન્ડઓફ રેશિયો: η = RB1/(RB1+RB2)
- **પીક વોલ્ટેજ**: VP = η×VBB + VD
- ફિક્યન્સી: f = 1/[R×C×ln(1/(1-η))]

भेभरी ट्रीड: "CFDR" - Charge, Fire, Discharge, Repeat

પ્રશ્ન 2(અ) OR [3 ગુણ]

ઓસિલેટરનું વર્ગીકરણ કરો.

જવાબ:

વર્ગીકરણ	увіз
ફિડબેક આધારિત	RC, LC, ક્રિસ્ટલ
વેવફોર્મ આધારિત	સાઇન્યુસોઇડલ, નોન-સાઇન્યુસોઇડલ
ફ્રિક્વન્સી આદ્યારિત	ઓડિયો, રેડિયો, VHF, UHF
સર્કિટ આધારિત	હાર્ટલી, કોલપીટ્સ, વિએન-બ્રિજ, RC-ફેઝ શિફ્ટ

આકૃતિ:

ਮੇਮਣੀ ਟ੍ਰੀਡ: "SRLC" - Sine waves from RC, LC, and Crystal oscillators

પ્રશ્ન 2(બ) OR [4 ગુણ]

UJT નું બાંધકામ તેના પ્રતીક (સિમ્બોલ) સાથે સમજાવો.

જવાબ:

UJT (Unijunction Transistor) માં હલકા ડોપ્ડ N-પ્રકારના સિલિકોન બાર હોય છે જેમાં બંને છેડે ઇલેક્ટ્રિકલ કનેક્શન (બેઝિસ) અને P-પ્રકારના એમિટર જંક્શન હોય છે.

ยรร	વર્ણન
બેઝ 1 (B1)	N-પ્રકારના બારના એક છેડા સાથે જોડાયેલ
બેઝ 2 (B2)	N-પ્રકારના બારના બીજા છેડા સાથે જોડાયેલ
એમિટર (E)	N-પ્રકારના બારમાં ડિફ્યુઝ થયેલ P-પ્રકારના ક્ષેત્ર સાથે જોડાયેલ
RB1	એમિટર અને B1 વચ્ચેનો રેઝિસ્ટન્સ
RB2	એમિટર અને B2 વચ્ચેનો રેઝિસ્ટન્સ

ਮੇਮਰੀ ਟ੍ਰੀs: "BEB" - Bases at Ends, Emitter in Between

પ્રશ્ન 2(ક) OR [7 ગુણ]

વેન બ્રિજ ઓસિલેટર સર્કિટનું કાર્ય સમજાવો.તેની એપ્લિકેશનની યાદી બનાવો.

જવાબ

વેન બ્રિજ ઓસિલેટર પોઝિટિવ ફિડબેક માટે RC નેટવર્ક અને એમ્પ્લિટ્યુડ સ્ટેબિલિટી માટે નેગેટિવ ફિડબેક વાપરીને સાઇન વેવ્સ ઉત્પન્ન કરે છે.

ยะร	รเข้
R1, C1 (શ્રેણીમાં)	પોઝિટિવ ફિડબેક, ફેઝ લીડ
R2, C2 (સમાંતર)	પોઝિટિવ ફિડબેક, ફેઝ લેગ
R3, R4	નેગેટિવ ફિડબેક, એમ્પ્લિટ્યુડ નિયંત્રણ
ઓપ-એમ્પ	એક્ટિવ એમ્પ્લિફાયર એલિમેન્ટ

એપ્લિકેશન્સ:

- ઓડિયો સિગ્નલ જનરેટર્સ
- ફંક્શન જનરેટર્સ
- મ્યુઝિકલ ઇન્સ્ટ્રુમેન્ટ ટ્યુનિંગ
- ટેસ્ટ ઇક્વિપમેન્ટ

• ફિલ્ટર સર્કિટ્સ

મેમરી ટ્રીક: "APPS" - Audio Production, Pure Sine waves, Stable frequency

પ્રશ્ન 3(અ) [3 ગુણ]

વોલ્ટેજ અને પાવર એમ્પ્લીફાયર વચ્ચે તફાવત કરો.

જવાબ:

પેરામીટર	વોલ્ટેજ એમ્પ્લિફાયર	પાવર એમ્પ્લિફાયર
મુખ્ય કાર્ય	વોલ્ટેજ લેવલ વધારે છે	પાવર લેવલ વદ્યારે છે
આઉટપુટ	ઓછી વર્તમાન ક્ષમતા	ઉચ્ચ વર્તમાન ક્ષમતા
કાર્યક્ષમતા	મહત્વપૂર્ણ નથી	અત્યંત મહત્વપૂર્ણ
હીટ ડિસિપેશન	ઓછું	ઉચ્ચ, હીટ સિંક જરૂરી
બાયસિંગ	સામાન્ય રીતે ક્લાસ A	ક્લાસ A, B, AB, અથવા C
એપ્લિકેશન્સ	પ્રી-એમ્પ્લિફિકેશન સ્ટેજ	સ્પીકર્સ, મોટર્સ ડ્રાઇવિંગ

મેમરી ટ્રીક: "VICE" - Voltage amplifiers Increase voltage, Current not important, Efficiency not critical

પ્રશ્ન 3(બ) [4 ગુણ]

વર્ગ B પુશ પુલ એમ્પ્લીફાયરની કાર્યક્ષમતા માટે સમીકરણ મેળવો.

જવાબ:

વર્ગ B પુશ-પુલ એમ્પ્લિફાયરની કાર્યક્ષમતા (η) નીચે મુજબ મેળવવામાં આવે છે:

-VCC

- AC પાવર આઉટપુટ: P_0 = Vrms × Irms = $(Vm/\sqrt{2}) \times (Im/\sqrt{2}) = Vm \times Im/2$
- DC viae ઇનપુટ: PDC = VCC × IDC = VCC × (2×lm/π)
- รเข้ผหสเ: η = P₀/PDC = (Vm×Im/2)/(VCC×2×Im/π) = (Vm×π)/(4×VCC)
- મહત્તમ સ્વિંગ માટે: Vm = VCC, તેથી η = π/4 = 78.5%

મેમરੀ **ટ્રੀક:** "POP" - Push-pull Output Power = π/4 or 78.5%

પ્રશ્ન 3(ક) [7 ગુણ]

વેવફોર્મ અને તેની કાર્યક્ષમતા સાથે વર્ગ-બી પુશ પુલ એમ્પ્લીફાયરનું કાર્ય સમજાવો.

જવાબ:

વર્ગ B પુશ-પુલ એમ્પ્લિફાયર ઇનપુટ વેવફોર્મના વિપરીત અર્ધચક્રોને એમ્પ્લિફાય કરવા માટે બે ટ્રાન્ઝિસ્ટર્સનો ઉપયોગ કરે છે.

આકૃતિ:

ફેઝ	વર્ણન
પોઝિટિવ અર્ધચક્ર	ઉપરનો ટ્રાન્ઝિસ્ટર (T1) કન્ડક્ટ કરે છે, T2 બંધ હોય છે
નેગેટિવ અર્ધચક્ર	નીચેનો ટ્રાન્ઝિસ્ટર (T2) કન્ડક્ટ કરે છે, T1 બંધ હોય છે
ક્રોસઓવર	બંને ટ્રાન્ઝિસ્ટર્સ કટઓફ નજીક હોય છે, જેનાથી ડિસ્ટોર્શન થાય છે

મુખ્ય મુદ્દાઓ:

- **કાર્યક્ષમતા**: આશરે 78.5% (π/4)
- કન્ડક્શન એંગલ: દરેક ટ્રાન્ઝિસ્ટર માટે 180°
- **ક્રોસઓવર ડિસ્ટોર્શન**: શૂન્ય ક્રોસિંગ નજીક બંને ટ્રાન્ઝિસ્ટર્સ બંધ હોવાને કારણે
- ફાયદા: ઉચ્ચ કાર્યક્ષમતા, ઓછી ગરમી, ઉચ્ચ પાવર માટે યોગ્ય

મેમરી ટ્રીક: "HOPE" - Half cycle Operation, Push-pull, Efficiency high

પ્રશ્ન 3(અ) OR [3 ગુણ]

પાવર એમ્પ્લીફાયરનું વર્ગીકરણ સમજાવો.

જવાબ:

qวi	કન્ડક્શન એંગલ	કાર્યક્ષમતા	ડિસ્ટોર્શન
də <u>į</u> V	360°	25-30%	ઓછું
ฝ่าเ B	180°	78.5%	મધ્યમ
વર્ગ AB	180°-360°	50-78.5%	ઓછું-મધ્યમ
વર્ગ C	<180°	>78.5%	ઉચ્ચ

આકૃતિ:

મેમરી ટ્રીક: "ABCE" - As Biasing Changes, Efficiency increases

પ્રશ્ન 3(બ) OR [4 ગુણ]

વર્ગ A પાવર એમ્પ્લીફાયરની કાર્યક્ષમતા માટે સમીકરણ મેળવો.

જવાબ:

વર્ગ A પાવર એમ્પ્લિફાયરની કાર્યક્ષમતા નીચે મુજબ મેળવવામાં આવે છે:

આકૃતિ:

• भक्तम AC पावर आઉटपुर: P_0 = $(Vrms)^2/RL$ = $(VCC/2\sqrt{2})^2/RL$ = $VCC^2/8RL$

- DC นเศะ ยานุร: PDC = VCC × IDC = VCC × (VCC/2RL) = VCC²/2RL
- รเข็ญผนส์: η = P₀/PDC = (VCC²/8RL)/(VCC²/2RL) = 1/4 = 25%

મેમરી ટ્રીક: "ONE" - Output Never Exceeds 25% efficiency in Class A

પ્રશ્ન 3(ક) OR [7 ગુણ]

વેવફોર્મ અને તેની કાર્યક્ષમતા સાથે વર્ગ-A ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લીફાયરનું કાર્ય સમજાવો.

જવાબ:

વર્ગ A ટ્રાન્સફોર્મર કપલ્ડ એમ્પ્લિફાયર આઉટપુટ કપલિંગ માટે ટ્રાન્સફોર્મરનો ઉપયોગ કરીને સંપૂર્ણ ઇનપુટ સાયકલ (360°) માટે કન્ડક્ટ કરે છે.

आङ्गति:

ยรร	รเช้
ટ્રાન્સફોર્મર	ઇમ્પિડન્સ મેચિંગ, DC દૂર કરે, આઇસોલેશન આપે
ટ્રાન્ઝિસ્ટર	સંપૂર્ણ 360° સાયકલ માટે કન્ડક્ટ કરે
કેપેસિટર	AC કપલિંગ
VCC	DC પાવર સપ્લાય

વેવફોર્મ લક્ષણો:

- ઇનપુટ અને આઉટપુટ વેવફોર્મ્સ ફેઝમાં હોય છે
- ક્રોસઓવર ડિસ્ટોર્શન નથી

- સંપૂર્ણ સાયકલ એમ્પ્લિફિકેશન
- ઓછી કાર્યક્ષમતા (25%)
- ઓછું ડિસ્ટોર્શન

મેમરી ટ્રીક: "FACT" - Full cycle Amplification in Class-a with Transformer

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો (i) CMRR (ii) સ્લ્યુ રેટ

જવાબ:

પેરામીટર	વ્યાખ્યા	પ્રમાણભૂત મૂલ્ય
CMRR	કોમન મોડ રિજેક્શન રેશિયો, ડિફરેન્શિયલ ગેઇનનો કોમન મોડ ગેઇન સાથેનો ગુણોત્તર	90 dB (IC 741)
સ્લ્યુ રેટ	આઉટપુટ વોલ્ટેજના પરિવર્તનનો સમય એકમ દીઠ મહત્તમ દર	0.5 V/µs (IC 741)

CMRR: CMRR = 20 log₁₀(Ad/Acm) જ્યાં Ad એ ડિફરેન્શિયલ ગેઇન અને Acm એ કોમન મોડ ગેઇન છે

स्ट्यु रेट: SR = dVout/dt (V/µs)

મેમરી ટ્રીક: "CRiSp" - CMRR Rejects common signals, Slew Rate limits speed

પ્રશ્ન 4(બ) [4 ગુણ]

સ્ક્રેય સાથે ઓપરેશનલ એમ્પ્લીફાયરના ઇન્વર્ટિંગ એમ્પ્લીફાયર સમજાવો.

જવાબ:

ઇન્વર્ટિંગ એમ્પ્લિફાયર નેગેટિવ ફિડબેકનો ઉપયોગ કરીને 180° ફેઝ શિફ્ટ સાથે ગેઇન પ્રદાન કરે છે.

ยะร	รเข้
Ri	ઇનપુટ રેઝિસ્ટર
Rf	ફિડબેક રેઝિસ્ટર
ઓપ-એમ્પ	ઉચ્ચ ગેઇન સાથે સિગ્નલને એમ્પ્લિફાય કરે

મુખ્ય સમીકરણો:

• ગેઇન: A = -Rf/Ri

• **ઇનપુટ ઇમ્પિડન્સ**: Z = Ri

• બેન્ડવિડ્થ: ઓપ-એમ્પ અને ગેઇન પર આધારિત

મેમરી ટ્રીક: "IRON" - Inverting, Resistance ratio gives gain, Output Negative phase

પ્રશ્ન 4(ક) [7 ગુણ]

Op-amp ને સમિંગ એમ્પ્લીફાયર તરીકે સમજાવો.

જવાબ:

સમિંગ એમ્પ્લિફાયર ભારિત યોગદાન સાથે બહુવિદ્ય ઇનપુટ સિગ્નલોને ઉમેરે છે.

આકૃતિ:

સર્કિટ:

પેરામીટર	મૂલ્ચ
આઉટપુટ વોલ્ટેજ	Vout = -(Rf/R1)V1 - (Rf/R2)V2 - (Rf/R3)V3
દરેક ઇનપુટ માટે ગેઇન	-Rf/Rn જ્યાં Rn ઇનપુટ રેઝિસ્ટર છે
સમાન ભારિત સમિંગ	બધા ઇનપુટ રેઝિસ્ટર્સ સમાન: R1 = R2 = R3 = Rf

એપ્લિકેશન્સ:

- ઓડિયો મિક્સર્સ
- સિગ્નલ પ્રોસેસિંગ
- એનેલોગ કમ્પ્યુટર્સ
- ભારિત સરેરાશ

મેમરી ટ્રીક: "SARI" - Summing Amplifier Requires Inverting configuration

પ્રશ્ન 4(અ) OR [3 ગુણ]

ઓપરેશનલ એમ્પ્લિફાયરના મૂળભૂત બ્લોક ડાયાગ્રામનું સ્કેય કરો.

જવાબ:

સ્ટેજ	รเช้
ઇનપુટ ડિફરેન્શિયલ સ્ટેજ	ઉચ્ચ ઇનપુટ ઇમ્પિડન્સ, કોમન મોડ સિગ્નલોને રિજેક્ટ કરે
ઇન્ટરમીડિયેટ સ્ટેજ	ઉચ્ચ ગેઇન, ફ્રિક્વન્સી કમ્પેનસેશન
લેવલ શિફ્ટર	આઉટપુટ સ્ટેજ માટે DC લેવલ શિફ્ટ કરે
આઉટપુટ સ્ટેજ	ઓછી આઉટપુટ ઇમ્પિડન્સ, વર્તમાન એમ્પ્લિફિકેશન
બાયસ સર્કિટ	યોગ્ય ઓપરેટિંગ પોઇન્ટ્સ પ્રદાન કરે

મેમરી ટ્રીક: "DILO" - Differential Input, Level shifting, Output amplification

પ્રશ્ન 4(બ) OR [4 ગુણ]

ઓપરેશનલ એમ્પ્લીફાયરના નોન ઇન્વર્ટીંગ એમ્પ્લીફાયરને સ્કેચ સાથે સમજાવો.

જવાબ:

નોન-ઇન્વર્ટિંગ એમ્પ્લિફાયર નેગેટિવ ફિડબેકનો ઉપયોગ કરીને ફેઝ ઇન્વર્ઝન વગર ગેઇન પ્રદાન કરે છે.

પેરામીટર	મૂલ્ય
ગેઇન	A = 1 + Rf/Ri
ઇનપુટ ઇમ્પિડન્સ	અત્યંત ઉચ્ચ (ઓપ-એમ્પ પર આદ્યારિત)
ફેઝ	ઇનપુટ સાથે ફેઝમાં
સામાન્ય એપ્લિકેશન	વોલ્ટેજ ફોલોવર (જ્યારે Rf=0, Ri=∞)

મેમરી ટ્રીક: "NIPS" - Non-inverting, Input and output In Phase, Same polarity

પ્રશ્ન 4(ક) OR [7 ગુણ]

Op-amp ને ઇન્ટિગ્રેટર તરીકે સમજાવો.

જવાબ:

ઓપ-એમ્પ ઇન્ટિગ્રેટર ઇનપુટના સમય ઇન્ટિગ્રલના પ્રમાણમાં આઉટપુટ ઉત્પન્ન કરે છે.

આકૃતિ:

પેરામીટર	सूत्र
આઉટપુટ વોલ્ટેજ	Vout = -(1/RC)∫Vin dt
ટ્રાન્સફર ફંક્શન	Vout/Vin = -1/(sRC) in Laplace domain
ગેઇન	ફ્રિક્વન્સી સાથે 20dB/decade ઘટે છે
ફેઝ શિફ્ટ	-90° (આદર્શ રીતે)

એપ્લિકેશન્સ:

- એનેલોગ કમ્પ્યુટર્સ
- વેવફોર્મ જનરેટર્સ
- PID કન્ટ્રોલર્સ

- એક્ટિવ ફિલ્ટર્સ
- સિગ્નલ પ્રોસેસિંગ

મેમરી ટ્રીક: "TIME" - Takes Input and Makes time-dependent Effect

પ્રશ્ન 5(અ) [3 ગુણ]

IC 555 નો પિન ડાયાગ્રામ દોરો.

જવાબ:

આકૃતિ:

પિન નંબર	નામ	รเช้
1	GND	ગ્રાઉન્ડ
2	TRIGGER	ટાઇમિંગ સાયકલ શરૂ કરે
3	OUTPUT	ટાઇમર આઉટપુટ
4	RESET	ટાઇમર રીસેટ કરે
5	CONTROL	ટાઇમિંગમાં ફેરફાર કરે
6	THRESHOLD	ટાઇમિંગ સાયકલ સમાપ્ત કરે
7	DISCHARGE	ટાઇમિંગ કેપેસિટર ડિસ્ચાર્જ કરે
8	VCC	પોઝિટિવ સપ્લાય

મેમરી ટ્રીક: "GTOR-CTD" - Ground, Trigger, Output, Reset, Control, Threshold, Discharge

પ્રશ્ન 5(બ) [4 ગુણ]

ટાઈમર IC 555ના એસ્ટેબલ મલ્ટિવાઈબ્રેટર સમજાવો.

જવાબ:

IC 555 નો ઉપયોગ કરતો એસ્ટેબલ મલ્ટિવાઈબ્રેટર કોઈપણ બાહ્ય ટ્રિગર વગર સતત સ્કવેર વેવ આઉટપુટ ઉત્પન્ન કરે છે.

પેરામીટર	સૂત્ર
યાર્જિંગ સમય	$t_1 = 0.693(R_1 + R_2)C$
ડિસ્થાર્જિંગ સમય	$t_2 = 0.693(R_2)C$
ફ્રિક્વન્સી	$f = 1.44/((R_1 + 2R_2)C)$
ડ્યુટી સાયકલ	$D = (R_1 + R_2)/(R_1 + 2R_2)$

ਮੇਮરੀ ਟ੍ਰੀਡ: "FREE" - FREquency Established by External RC network

પ્રશ્ન 5(ક) [7 ગુણ]

Complementary symmetry પુશ પુલ એમ્પ્લીફાયર્સનું કાર્ય સમજાવો.

જવાબ:

Complementary symmetry પુશ-પુલ એમ્પ્લિફાયર વેવફોર્મના બંને અર્ધભાગોને એમ્પ્લિફાય કરવા માટે કોમ્પ્લિમેન્ટરી ટ્રાન્ઝિસ્ટર્સ (NPN અને PNP) નો ઉપયોગ કરે છે.

ટ્રાન્ઝિસ્ટર	કન્ડક્શન	વર્તમાન પ્રવાહ
Q1 (NPN)	પોઝિટિવ અર્ધ-સાયકલ	સોર્સથી લોડ તરફ
Q2 (PNP)	નેગેટિવ અર્ધ-સાયકલ	લોડથી સિંક તરફ

મુખ્ય લક્ષણો:

- સેન્ટર-ટેપ્ડ ટ્રાન્સફોર્મર નથી: ટ્રાન્સફોર્મર-કપલ્ડ પુશ-પુલ કરતાં સરળ ડિઝાઇન
- **ક્રોસઓવર ડિસ્ટોર્શન**: ઓછું કરવા માટે બાયસિંગની જરૂર પડે છે
- **કાર્યક્ષમતા**: આશરે 78.5% (વર્ગ B ઓપરેશન)
- થર્મલ રનઅવે: યોગ્ય રીતે ડિઝાઇન ન થયેલ હોય તો જોખમ
- એપ્લિકેશન્સ: ઓડિયો પાવર એમ્પ્લિફાયર્સ, ઓપ-એમ્પ્સના આઉટપુટ સ્ટેજ

મેમરી ટ્રીક: "COPS" - Complementary Opposing Pair of transistors for Symmetrical operation

પ્રશ્ન 5(અ) OR [3 ગુણ]

સિક્વન્શિયલ ટાઈમરનો આકૃતિ દોરો.

જવાબ:

મેમરી ટ્રીક: "SET" - Sequential Events Triggered one after another

પ્રશ્ન 5(બ) OR [4 ગુણ]

ટાઈમર IC 555 ના બાયસ્ટેબલ મલ્ટિવાઈબ્રેટર સમજાવો.

જવાબ:

IC 555નો ઉપયોગ કરતો બાયસ્ટેબલ મલ્ટિવાઈબ્રેટરમાં બે સ્થિર અવસ્થાઓ હોય છે અને માત્ર ટ્રિગર થાય ત્યારે જ અવસ્થા બદલે છે.

आहृति:

ટર્મિનલ	รเช้	ઓપરેશન
Pin 2 (TRIGGER)	SET ઇનપુટ	જ્યારે 1/3 VCC થી નીચે ખેંચાય, આઉટપુટ HIGH થાય
Pin 4 (RESET)	RESET ઇનપુટ	જ્યારે LOW ખેંચાય, આઉટપુટ LOW થાય
Pin 3	આઉટપુટ	ટ્રિગર ન થાય ત્યાં સુધી છેલ્લી અવસ્થામાં રહે

મેમરી ટ્રીક: "FLIP" - Firmly Latched In Position until triggered

પ્રશ્ન 5(ક) OR [7 ગુણ]

વિવિદ્ય પ્રકારના પાવર એમ્પ્લીફાયરની સરખામણી કરો.

જવાબ:

પેરામીટર	વર્ગ A	ี่ qวi ื B	นา์ AB	વર્ગ C
કન્ડક્શન એંગલ	360°	180°	180°-360°	<180°
કાર્યક્ષમતા	25-30%	78.5%	50-78.5%	>78.5%
ડિસ્ટોર્શન	અત્યંત ઓછું	મધ્યમ	ઓછું	ઉચ્ચ
બાયસિંગ	કટઓફથી ઉપર	કટઓફ પર	કટઓફથી થોડું ઉપર	કટઓફથી નીચે
સર્કિટ જટિલતા	ઓછી	મધ્યમ	મધ્યમ	ઓછી
હીટ ડિસિપેશન	ઉચ્ચ	મધ્યમ	મધ્યમ	ઓછું
એપ્લિકેશન્સ	હાઈ ફિડેલિટી ઓડિયો	ઓડિયો પાવર એમ્પ્સ	ઓડિયો પાવર એમ્પ્સ	RF ટ્રાન્સમિટર્સ

आङ्गति:

મેમરી ટ્રીક: "ABCE" - As Biasing Condition changes, Efficiency increases