and paraudheris (,) Given an arithmetic expression with operators

- 1) Build the agriculant expression in postfix four.
 2) Evaluate the expression given in postfix form.

current simbol			st
			1 1 1
5		5	
		5	1 1 1
6		51 6,+	
· · · · · · · · · · · · · · · · · · ·		5,6,+	*
		5,6,+,4	*,(.
· · · · · · · · · · · ·		516, 4, 4	· · · *; (,-
· · · · · · · · · · · · · · · · · · ·	· · ·	5,6,7,4,1	*, (, -
		5,6,4,4,7	

2 * (4+3)-4+6/2 *3

243+*4-62/3*+

Function transform (exprassion)

init (stack)
init (g) / build the postfix four

in expression execute:

if is Operaud (e) then

push (g, e) obse if e == '(then

push (stie)

else if e == 1) then

pop (st) != '(') do
pop (st)

lend_ while

70p (st)

while (! is supery (st) and top (st)!= (and priority (top(st)) > priority (e))

push (q, pop (st))

Jush (st, e)

end_if

lend for

While (! iscupty (st))

push (g, pop(st))

end_while

transfour - 9

end_function

اسند POP

iscupty

is Operator

periority (e1) } periority (e2)

A vector with a distinct integers compute the some of a longest somewho from there

(h) based on getting the maximum from an array $\Theta(k+n)$

-partial sort O(u+u)

V3) Max heap

add all alements luto an initially empty heap

O(n logn)

Trunove K-times from the lug

O(k logn)

O(u + k logn)

V4) Min - heap

95 81 40 90 G0 100

init $(h, <_{\leq})$ MAX $O(\log u)$ remove $(h) \Rightarrow e$ $O(\log u)$ add (h, e)

95 81 40 90 GO 100
40
81
95 81 95 90
10(n * log b)