Internal Amplification Ge(GeIA)

Theory of predicting the necessary gain

*Chih-Hsiang Yeh, Tze-Tzing Henry Wong

The reminder of the previous results

 At the first place, the ionization rates of electron and hole were predicted by some of the formulae:

Three steps

Know our predicted gain for signal Under the certain T and E

Type of the detector?
Temperature?
Electric field?

Gain

Raw/Observable

Various thresholds (Given the dark matter energy) - All can be predicted.

Confirm the circumstance

	G	S(GS)	B(GB)	Threshold
(1)USD	1	1(1)	1(1)	3
(2)China-THU	100	1(100)	100(10000)	3

(SIG) > (3 * sigma of BKG)

$$(S * G) > 3 * \sqrt{(B * G)}$$

$$S > \frac{3*\sqrt{(B*G)}}{G}$$

Purpose of this study

- *The important issue:
- Can we predict "the necessary gain" by the signal we expect?
- Next step:
- Find out the right BKG and find out the right threshold plots.
- → Then, we can apply it on our detector
- > Even design the different type of the detector compared with other people.