# 大数据管理系统与大规模数据分析 - June 10'rd, 2018

Computation Concepts https://github.com/rh01

#### MapReduce/Hadoop

## MapReduce 编程模型

#### MapReduce 的数据模型

- <key, value>
  - 数据由一条一条的记录组成
  - 记录之间是无序的
  - 每一条记录有一个 key, 和一个 value
  - key: 可以不唯一
  - key 与 value 的具体类型和内部结构由程序员决定,系统基本上把它们看作黑匣
- MapReduce
  - $-\operatorname{Map}(ik, iv) \longrightarrow \{< mk, mv > \}$
  - $\text{Reduce}(mk, \{mv\}) \longrightarrow \{\langle ok, ov \rangle\}$
- Map 函数
  - 输入是一个 key-value 记录: <ik, iv>
    - \* 我们用'i'代表 input
  - 输出是 0 ~多个 key-value 记录: <mk, mv>
    - \* 我们用'm'代表 intermediate
  - 注意: mk 与 ik 很可能完全不同
- Shuffle (由系统完成)
  - Shuffle = group by mk
  - 对于所有的 map 函数的输出, 进行 group by
  - 将相同 mk 的所有 mv 都一起提供给 Reduce
- Reduce 函数
  - 输入是一个 mk 和与之对应的所有 mv
  - 输出是 0 多个 key-value 记录: <ok, ov>
    - \* 我们用'o'代表 output
  - 注意: ok 与 mk 可能不同

#### MapReduce vs. SQL

| MapReduce                           | SQL Select           |
|-------------------------------------|----------------------|
| Map                                 | Selection/projection |
| Shuffle                             | Group by             |
| Reduce                              | Aggregation, Having  |
| 选择的功能更加丰富                           | 功能由数据类型和 SQL 语言标准定义  |
| 程序实现的, 类似最简单的 SQL select, 但不支持 join | 有 UDF, 但支持得不好        |

表 1: MapReduce vs. SQL Select

# MapReduce/Hadoop 系统架构













TaskTracker: 执行Map Task 或Reduce Task

图 1: MapReduce/Hadoop 系统架构.

# MR 运行流程图





图 2: MR 运行.

#### MR: Fault Tolerance (容错)

- HeartBeat(心跳) 消息
  - 定期发送, 向 JobTracker 汇报进度
- JobTracker 可以及时发现不响应的机器或速度非常慢的机器
  - 这些异常机器被称作 Stragglers
- 一旦发现 Straggler
  - JobTracker 就将它需要做的工作分配给另一个 worker
- Straggler 是 Mapper,将所对应的 splits 分配给其它的 Mapper
  - 输入数据是分布式文件, 所以不需要特殊处理
  - 通知所有的 Reducer 这些 splits 的新对应 Mapper
  - Shuffle 时从新对应的 Mapper 传输数据
- Stragger 是 Reducer, 在另一个 TaskTracker 执行这个 Reducer
  - 这个 Reducer 需要重新从 Mappers 传输数据
  - 注意: 因为 Mapper 的输出是在本地文件中的, 所以可以多次传输

#### Microsoft Dryad

- Dryad 是对 MapReduce 模型的一种扩展
  - 组成单元不仅是 Map 和 Reduce, 可以是多种节点
  - 节点之间形成一个有向无环图 DAG(Directed Acyclic Graph), 以表达所需要的计算
  - 节点之间的数据传输模式更加多样
    - \* 可以是类似 Map/Reduce 中的 shuffle
    - \* 也可以是直接 1:1、1: 多、多:1 传输
  - 比 MapReduce 更加灵活,但也更复杂
    - \* 需要程序员规定计算的 DAG

#### 同步图计算系统

## MapReduce + SQL 系统

#### Hive



图 3: Hive.

- 数据存储在 HDFS 上
- Table: 一个单独的 hdfs 目录
- Table 可以进一步划分为 Partition
- Partition 可以进一步划分为 Bucket
- Partition: 每个 Partition 是 Table 目录下的子目录

- Bucket: 每个 Bucket 是 Partition 目录下的子目录
- Hive QL
  - 类似 SQL
  - 部分 SQL 和扩展
  - 采用 MapReduce 执行
- SerDe
  - 序列化/反序列化
- MetaStore
  - 存储表的定义信息等
  - 默认在本地 \${HIVE\_HOME}/metastore\_db 中
  - 也可以配置存储在数据库 RDBMS 系统中
- Hive CLI
  - 命令行客户端,可以执行各种 HiveQL 命令

#### Hive 数据模型

- 关系型表 + 扩展
- 关系型表
  - 无序的记录
  - 每个记录可以包含多个列
  - 每个列可以是原子数据类型
    - \* 例如: integer types, float, string, date, boolean

#### Example

```
CREATE TABLE status_updates(
    userid int,
    status string
)
PARTITIONED BY (ds string, hr int)
STORED AS SEQUENCEFILE;
```

注意: ds 是 partition key, hr 是 bucket key, 它们都不包括在 table schema 中

#### Hive 数据模型

- 关系型表 + 扩展
- 扩展 1
  - 列可以是更加复杂的数据类型
  - ARRAY<data-type>

- \* 例如: a ARRAY<int>: a[0], a[1], …
- MAP<primitive-type, any-type>
  - \* 例如: m MAP<STRING, STRING>: m[ 'key1' ],…
- STRUCT<col\_name: data\_type, ···>
  - \* 例如: s STRUCT c: INT, d: INT: s.c, s.d
- 扩展 2
  - 可以直接读取已有的外部数据
  - 程序员提供一个 SerDe 的实现
  - 只有在使用时,才转化读入

#### Insert

```
Insert into table status_updates values (123, 'active'), (456,' inactive'), (789,' active');
Insert into table status_updates
select 语句
Insert overwrite table status_updates
select 语句
# Insert into是文件append
# Insert overwrite是删除然后新创建文件
```

# Partition 使用举例

```
INSERT OVERWRITE TABLE
status_updates PARTITION(ds='2009-01-01', hr=12)
SELECT * FROM t;
```

# 表达 MapReduce

```
FROM (
MAP doctext USING 'python wc_mapper.py' AS (word, cnt)
FROM docs
CLUSTER BY word
) a
REDUCE word, cnt USING 'python wc_reduce.py';
```

#### Example Query (Filter)

```
SELECT * FROM status_updates
WHERE status LIKE 'michael jackson'
```

## Example Query (Aggregation)

```
SELECT COUNT(1)
FROM status_updates
WHERE ds = '2009-08-01'
```

## Join 实现

- Multi-way join 优化
  - (a.key = b.key) and (b.key = c.key)
  - 同时传输多个表
- Map-side join
  - 没有 reducer
  - 其中一个表 R 很小
  - 那么每个 Map task 都读整个的 R, 与 S 的一部分 join
  - Mapper 在这里只是运行并行程序的容器, Map 函数会完成一整个 simple hash join

## 内存计算

# 关系型内存数据库

- Main memory database system
- Memory-resident database system
- 上述两个名词有区别
  - Memory-resident: 可能是在 buffer pool 中
  - MMDB: 可能彻底不用 buffer pool, 改变了系统内部设计

#### Sorting

- 使用 quick sort 而不是 replacement selection
  - 顺序访问 vs. 随机访问
  - 当快排缩小到 cache size 以下时, 就没有 cache miss

#### 其它关键技术

- Vectorization
  - 每个 Operator 不是一次调用 next() 仅返回一条记录
  - 而是返回一组记录,提高代码利用率,形成紧凑循环
- 处理器加速
  - SIMD

- GPU
- Multi-core
- 压缩
  - 简单的压缩
    - \* 例如,根据一个列的取值范围为 [0,2 k-1],采用 K bit 表示
  - 字典压缩
    - \* 把数据映射为整数

#### MonetDB



图 4: MonetDB.

# 内存 key-value 系统

- Memcached
  - 用户: Facebook, twitter, flickr, youtube, …
  - 单机的内存的 key-value store
  - 数据在内存中以 hash table 的形式存储
  - 支持最基础的 <key, value> 数据模型
  - 通常被用于前端的 cache
  - 可以使用多个 memcached+sharding 建立一个分布式系统
- Redis: 与 memcached 相比
  - 提供更加丰富的类型
  - key 可以包含 hashes, lists, sets 和 sorted sets
  - 支持副本和集群

#### Memcached



图 5: Memcached.

- 实现自定义的协议,支持 GET/PUT 等请求和响应-Communication & Protocol
  - 文本方式的协议
  - 二进制协议
- 采用多个链表管理内存-Slab based Memory Management
  - 每个链表中的内存块大小相同
  - 第 k 个链表的内存块大小是 2 k Base 字节
  - 只分配和释放整个内存块
- Hash Table
  - Key-Value 采用一个全局的 Hash Table 进行索引
  - 多线程并发互斥访问
- Key Value Storage
  - 每个 Key-Value 存储在一个内存块中
    - \* Hash link: chained hash table
    - \* LRU link: 相同大小的已分配内存块在一个 LRU 链表上
  - 内存不够时,可以丢弃 LRU 项

#### 内存 MapReduce

#### Spark: 面向大数据分析的内存系统

- 可以从 HDFS 读数据,但是运算中数据放在内存中,不使用 Hadoop,而是新实现了分布式的处理
- 目标是低延迟的分析操作
- MapReduce 的问题
  - 通过 HDFS 进行作业间数据共享,代价太高
- Spark 的思路

- 内存容量越来越大
- 把数据放入多台机器的内存
- 避免 HDFS 开销
- Spark 的基础数据结构: RDD
  - Resilient Distributed Data sets
    - \* 一个数据集
    - \* 只读,整个数据集创建后不能修改
    - \* 通常进行整个数据集的运算
  - 优点
    - \* 并发控制被简化了
    - \* 可以记录 lineage (数据集上的运算序列),可以重新计算
      - · 并不需要把 RDD 存储在 stable storage 上

#### RDD vs. Distributed Shared Memory

| Aspect                     | dRDDs                                  | Distr. Shared Mem.                 |
|----------------------------|----------------------------------------|------------------------------------|
| Writes                     | dCoarse-grained                        | Fine-grained                       |
| Consistency                | dTrivial (immutable)                   | Up to app / runtime                |
| Fault recovery             | dFine-grained and lowoverhead using    | Requires checkpoints and program   |
|                            | lineage                                | rollback                           |
| Straggler mitigation       | dPossible using backup tasks           | Difficult                          |
| Work placement             | dAutomatic based on data locality      | Up to app (runtimes aim for trans- |
|                            |                                        | parency)                           |
| Behavior if not enough RAM | dSimilar to existing data flow systems | Poor performance (swapping?)       |

表 2: Comparison of RDDs with distributed shared memor

#### 两类 RDD 运算

- Transformation
  - 输入是 RDD(数据集)
  - 输出也是 RDD(数据集)
  - $RDD \Longrightarrow RDD$
- Action
  - 输入是 RDD(数据集)
  - 输出是某种计算结果 (例如,一个数值或者一列数值)
    - \* 注意: RDD 可能非常大,但是计算结果总是比较小的
  - RDD ⇒ 计算结果

#### Transformation

```
map(f:T\Rightarrow U): RDD[T] \Rightarrow RDD[U]
                             filter(f: T \Rightarrow Bool) : RDD[T] \Rightarrow RDD[T]
                       flatMap(f: T \Rightarrow Seq[U]) : RDD[T] \Rightarrow RDD[U]
                        sample(fraction : Float) : RDD[T] \Rightarrow RDD[T] (Deterministic sampling)
                                   groupByKey() : RDD[(K, V)] \Rightarrow RDD[(K, Seq[V])]
                  reduceByKey(f:(V,V) \Rightarrow V): RDD[(K, V)] \Rightarrow RDD[(K, V)]
Trans.
                                           union(): (RDD[T], RDD[T]) \Rightarrow RDD[T]
                                             join(): (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (V, W))]
                                         cogroup(): (RDD[(K, V)], RDD[(K, W)]) \Rightarrow RDD[(K, (Seq[V], Seq[W]))]
                                   crossProduct() : (RDD[T], RDD[U]) \Rightarrow RDD[(T, U)]
                        mapValues(f: V \Rightarrow W): RDD[(K, V)] \Rightarrow RDD[(K, W)] (Preserves partitioning)
                        sort(c:Comparator[K]): RDD[(K, V)] \Rightarrow RDD[(K, V)]
                partitionBy(p:Partitioner[K]): RDD[(K, V)] \Rightarrow RDD[(K, V)]
                                       count(): RDD[T] \Rightarrow Long
                                      collect() : RDD[T] \Rightarrow Seq[T]
Action
                      reduce(f:(T,T)\Rightarrow T): RDD[T]\Rightarrow T
                                lookup(k:K): RDD[(K, V)] \Rightarrow Seq[V] (On hash/range partitioned RDDs)
                          save(path: String): Outputs RDD to a storage system, e.g., HDFS
```

表 3: Transformations and actions available on RDDs in Spark. Seq[T] denotes a sequence of elements of type T.

#### 系统实现



图 6: Spark 的系统结构

# 运算过程

- 每个应用程序
  - 一个自己的 SparkContext,多个 Executor
  - SparkContext 从外部的某种资源管理系统获取资源
    - \* 例如: standalone, hadoop YARN, apache Mesos
  - 每个 executor 运行在一个不同的 worker node 上
  - SparkContext 协调多个 worker 运行
- 应用程序
  - 有一个 driver 主程序, 创建 SparkContext, 发出各种 RDD 操作要求
- Executor: 执行并行的运算,存储数据
- 多个应用程序
  - 各自有自己的 SparkContext
    - \* 互相隔离,但是也无法共享数据
  - 必须通过外部的文件系统进行数据共享

#### Spark 运算的运行

- Transformation
  - Lazy execution
  - 仅记录,不运算
- Action
  - 当遇到 Action 时,需要返回结果,才真正执行已经记录的前面的运算

- 容错/内存缓冲替换: 当内存缓冲的 RDD 丢失时
  - 可以重新执行记录的运算,重新计算这个 RDD

# Cloudera Impala



图 7: Impala 的系统结构

• Impalad: 并行运算

• Statestore: 监控 impalad 的状态

• Catalogd: SQL 的表格的 schema 的增删改操作