Graphic Lasso: Miscellaneous

Jiaxin Hu

February 6, 2021

1 Weakest assumption for the TBM clustering accuracy

Consider the model

$$\mathbb{E}[\mathcal{Y}] = f(\Theta),$$

where $\Theta = \mathcal{C} \times M_1 \times_2 \cdots \times_K M_K$. Define the misclassification rate on the k-th mode as

$$MCR(\hat{\mathbf{M}}_k, \mathbf{M}_k) = \max_{r \in [R_k], a \neq a' \in [R_k]} \min\{D_{ar}^{(k)}, D_{a'r}^{(k)}, \}$$

where $D^{(k)} \in \mathbb{R}^{R_k \times R_k}$ is the confusion matrix on the k-th, Taislf Delta d_k is the confusion matrix on the k-th, Taislf Delta d_k in the properties:

1. linear in Y

Theorem 1.1. Consider the optimization problem

- 2. convex in Theta
- 3. derivative with respect to Y is Theta.

$$\max_{\Theta} \mathcal{L}_{\mathcal{Y}}(\Theta) = \frac{\langle \mathcal{Y}, \Theta \rangle - \sum_{\substack{(i_1, \dots, i_K) \\ \text{function with no explicit form? What properties}}} g(\Theta_{i_1, \dots, i_K}). \tag{1}$$

The weakest sufficient conditions for maximizer to (1) satisfies the following upper bound with high matrix probability

$$\mathbb{P}(MCR(\hat{\boldsymbol{M}}_k, \boldsymbol{M}_k) \ge \epsilon) \le 2^{1+\sum_k d_k} \exp\left(-\frac{C\epsilon^2 \tau^{3K-2} \delta^2 \prod_k d_k}{\sigma^2 a^2 \|\mathcal{C}\|_{\max}^2}\right),$$

are

- 1. The function g is convex.
- 2. The minimal gap between blocks is strictly larger than 0, i.e., $\delta = \min_k \delta^{(k)} > 0$, where

$$\delta^{(k)} = \min_{r_k \neq r'_k} \max_{r_1, \dots, r_{k-1}, r_{k+1}, \dots, r_K} (f(c_{r_1, \dots, r_k, \dots, r_K}) - f(c_{r_1, \dots, r'_k, \dots, r_K}))^2.$$

- 3. The function $h(x) = xf^{-1}(x) g(f^{-1}(x))$ is convex, $\sup_{x \in \mathcal{S}} |h'(x)| \leq p(\mathcal{C})$, where $p(\mathcal{C})$ is a term related to \mathcal{C} , and $\sup_{x \in \mathcal{S}} h''(x)$ is lower bounded by a positive constant a, where \mathcal{S} is the convex hull of the entries of $f(\mathcal{C})$.
- 4. The observation satisfies the assumptions for Hoeffding's inequality, i.e., each entry of \mathcal{Y} is bounded in [a,b] or sub-Gaussian with parameter σ .

If f and g related? If not, then the results implies robustness of estimation to misspecified models. That means, we are free to select g for our own convenience and also obtain accurate estimation. Does it intuitively make sense?

Proof. With condition 1, we are able to find the unique maximizer of $C = [c_{r_1,...,r_K}]$ with given membership $\{M_k\}$, which is

$$\hat{\mathcal{C}} = (g')^{-1} (\mathcal{Y} \times_1 \mathbf{D}_1 \times_2 \cdots \times_K \mathbf{D}_K).$$

Then, we construct the unique functions

$$F(\boldsymbol{M}_k) = \mathcal{L}_{\mathcal{Y}}(\hat{\mathcal{C}}, \boldsymbol{M}_k) \sum_{r_1, \dots, r_K} \prod_k p_{r_k}^{(k)} h(f(\hat{c}_{r_1, \dots, r_K})),$$

and the population version of $F(M_k)$

$$G(\mathbf{M}_k) = \sum_{r_1,...,r_K} \prod_k p_{r_k}^{(k)} h(\mathbb{E}\left[f(\hat{c}_{r_1,...,r_K})\right]),$$

where $h(x) = xf^{-1}(x) - g(f^{-1}(x))$.

With condition 3, the gap between sample- and population-version of the objective function are upper bounded by a term related to the residual tensor $\mathcal{Y} - \mathbb{E}[\mathcal{Y}]$. That is

$$|F(\mathbf{M}_{k}) - G(\mathbf{M}_{k})| \leq \sum_{r_{1},\dots,r_{K}} \prod_{k} p_{r_{k}}^{(k)} |h(f(\hat{c}_{r_{1},\dots,r_{K}})) - h(\mathbb{E}[f(\hat{c}_{r_{1},\dots,r_{K}})])|$$

$$\leq \sup_{x \in \mathcal{S}} |h'(x)| \|f(\hat{c}_{r_{1},\dots,r_{K}}) - \mathbb{E}[f(\hat{c}_{r_{1},\dots,r_{K}})]\|_{\max},$$

$$\leq p(\mathcal{C}) \|f(\hat{c}_{r_{1},\dots,r_{K}}) - \mathbb{E}[f(\hat{c}_{r_{1},\dots,r_{K}})]\|_{\max},$$

where the second inequality follows by the fact that h is convex and thus h is local Lipschitz with $L = \sup_{x \in \mathcal{S}} |h'(x)|$, and the third inequality follows the condition 3.

With condition 2,3, we satisfy the assumptions of Lemma 1, then for any $\epsilon > 0$, the misclassification $MCR(\hat{M}_k, M_k) \ge \epsilon$ for some $k \in [K]$ implies

$$G(\hat{\mathbf{M}}_k) - G(\mathbf{M}_k) \le -\frac{\epsilon}{4a} \tau^{K-1} \delta.$$

With the optimality of \hat{M}_k , we have $F(\hat{M}_k) \geq F(M_k)$. Then, the probability for the misclassification rate changes to the probability for the residual. That is

$$\mathbb{P}(MCR(\hat{\boldsymbol{M}}_{k}, \boldsymbol{M}_{k}) \geq \epsilon) \leq \mathbb{P}\left(\sup_{\{\boldsymbol{M}_{k}\}} \|f(\hat{c}_{r_{1},\dots,r_{K}}) - \mathbb{E}[f(\hat{c}_{r_{1},\dots,r_{K}})]\|_{\max} \geq \frac{\epsilon}{8ap(\mathcal{C})} \tau^{K-1} \delta\right) \\
\leq \mathbb{P}\left(\sup_{I_{r_{1},\dots,r_{K}}} \frac{\sum_{(i_{1},\dots,i_{K}) \in I_{r_{1},\dots,r_{K}}} \mathcal{Y}_{i_{1},\dots,i_{K}} - \mathbb{E}[\mathcal{Y}_{i_{1},\dots,i_{K}}]}{|I_{r_{1},\dots,r_{K}}|} \geq \frac{\epsilon}{8ap(\mathcal{C})} \tau^{K-1} \delta\right) \\
\leq 2^{1+\sum d_{k}} \exp\left(-\frac{\epsilon^{2} \tau^{2K-2} \delta^{2} L}{C\sigma^{2} ap(\mathcal{C})^{2}}\right),$$

where $I_{r_1,...,r_K} = \{(i_1,...,i_K) | \mathbf{M}_{k,i_kr_k} = 1, k \in [K]\}$ is the collection of the indices of the elements belong to the cluster $(r_1,...,r_K)$, the last inequality follows by the Hoeffding's inequality with condition 4, and $L = \min |I_{r_1,...,r_K}| \geq \tau^K \prod_k d_k$.

2 Mixed membership clustering

2.1 Vector verison

Table 1 summaries the mixed membership models in Ji Zhu's paper of matrix and vector versions.

-	Matrix version	Vector version
		<u> </u>
Observation	The (symmetric) adjacency matrix $A =$	The mean vector $A = [A_i] \in \{0,1\}^n$.
	$ [A_{ij}] \in \{0,1\}^{n \times n}$. The entry $A_{ij} = 1$	
	implies there exists a correlation between	
	node i and j, otherwise $A_{ij} = 0$.	
Distribution	Assume	Assume
	$A_{ij} \sim Ber(p_{ij}),$	$A_i \sim Ber(p_i),$
	independently.	independently.
Model	Let $W = \mathbb{E}[A] \in \mathbb{R}^{n \times n}$. Consider the	Let $W = \mathbb{E}[A] \in \mathbb{R}^n$. Consider the model
	model	
	$W = \alpha_n \Theta Z B Z^T \Theta,$	$W = \alpha_n \Theta Z B,$
	where $\alpha_n \to 0$, $\Theta = diag(\theta_1,, \theta_n)$, $Z \in \mathbb{R}^{n \times K}$ is the mixed membership matrix, and $B \in \mathbb{R}^{K \times K}$ represents the probabilities between pure nodes.	where $\alpha_n \to 0$, $\Theta = diag(\theta_1,, \theta_n)$, $Z \in \mathbb{R}^{n \times K}$ is the mixed membership matrix, and $B \in \mathbb{R}^K$ represents the probabilities of pure nodes.
Identifiability	 Under following conditions, the parameters (α_n, Θ, Z, B) are identifiable. B full rank and strictly positive definite, with B_{kk} = 1, k ∈ [K]. All Z_{ik} ≥ 0, Z_i = 1, i ∈ [n], and for each k ∈ [k] there exists an i such that Z_{ik} = 1. The degree parameters θ_i ≥ 0 and ¹/_n ∑ⁿ_{i=1} θ_i = 1. 	 (Conjecture) Under following conditions, the parameters (α_n, Θ, Z, B) are identifiable. good! 1. min_{i≠j} B_i - B_j > 0, with 0 < B_k ≤ 1, k ∈ [K]. 2. All Z_{ik} ≥ 0, ∑_{k=1}^K Z_{ik} = 1, and for each k ∈ [K] there exists an i such that Z_{ik} = 1. 3. The degree parameters θ_i ≥ 0 and ½ ∑_{i=1}ⁿ θ_i = 1.

Table 1: Matrix and vector version of mixed membership model.

2.2 Connection to precision matrix model

Table 2 indicates a possible model for the precision matrix clustering based on the vector version of Zhu's model.

	Precision matrix	
Observation	Vectorized sample covariance matrix	
	$A = \begin{bmatrix} A_i \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} vec(S_1) \\ \vdots \\ vec(S_n) \end{bmatrix} \in \mathbb{R}^{n \times p^2},$	
	where S_i is the sample covariance matrix for <i>i</i> -th category.	
Distribution	Assume $X_{ij} \sim \mathcal{N}_p(0, \Sigma_i)$, $i \in [n], j \in [m]$, independently. We have	
	where does X enter in the model? $\mathbb{E}[A] = W = \begin{bmatrix} vec(\Sigma_1) \\ \vdots \\ vec(\Sigma_n) \end{bmatrix}.$	
Model	Consider the model $W = \alpha_n \Theta Z B,$ where $\alpha_n \to 0$, $\Theta = diag(\theta_1,, \theta_n)$, $Z \in \mathbb{R}^{n \times K}$ is the mixed membership matrix, and $B \in \mathbb{R}^{K \times p^2}$ vectorized parameter matrix for pure categories, i.e., $B = \begin{bmatrix} vec(\Omega_1^{-1}) \\ \vdots \\ vec(\Omega_K^{-1}) \end{bmatrix}.$	
Identifiability	(Conjecture) Under the following conditions, the parameter set $(\alpha_n, \Theta, Z, \{\Omega_k\})$ are identifiable.	
	1. $rank(B) = K$.	
	 2. All Z_{ik} ≥ 0, ∑_{k=1}^K Z_{ik} = 1, and for each k ∈ [K] there exists an i such that Z_{ik} = 1. 3. The degree parameters θ_i ≥ 0 and ¹∑ⁿ θ_i = 1. 	
	3. The degree parameters $\theta_i \geq 0$ and $\frac{1}{n} \sum_{i=1}^n \theta_i = 1$.	

Table 2: Possible precision matrix model with mixed membership.