

Surveillance Video Processing using Compressive Sensing

Fei Yang¹ Hong Jiang² Dimitris Metaxas¹

² Bell Labs, Alcatel-Lucent

Video Surveillance

- Large number of cameras
- Continuous operation time
- Massive amount of data
- High bandwidth
- Human monitoring

Objectives

- Reduce data rate
- Reduce power consumption
- Automatic foreground detection

Conventional Camera

¹ Rutgers University

Our Approach

Mathematical Modeling

- Image decomposition
- Background X_1
- Foreground X_2
- Find X_1 , X_2 , s.t.

$$y = \Psi(X_1 + X_2)$$

Ill-posed problem

Prior Knowledge

- Background
- Stationary or changing slowly
- Low rank: $||X_1||_* = \sum |\sigma_i|$ be small
- Sparse in spectral domain
 - W_1X_1 be sparse (W_1 : wavelet)
- Foreground (moving objects)
- Small portion of the whole image
 - X_2 be sparse
- Sparse in temporal-spatial domain
- W_2X_2 be sparse (W_2 : wavelet)

Frame Decomposition

Minimize

$$E = \mu_1 ||X_1||_* + \mu_2 ||W_1 X_1||_1 + \mu_3 ||W_2 X_2||_1 + \mu_4 ||X_2||_1$$

High Latency Approach

Augmented Lagrangian Alternating Direction

Variable substitution

$$X_1 \to Z_1, \ W_1 X_1 \to Z_2, \ W_2 X_2 \to Z_3$$

Each variable can be optimized individually in a simple form

Low Latency Approach

- 1. Learning background model
- 2. Updating background model
- 3. Setting weights

Examples

