Institut für Regelungstechnik

TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG

Prof. Dr.-Ing. W. Schumacher

Prof. Dr.-Ing. T. Form

Prof. em. Dr.-Ing. W. Leonhard

Hans-Sommer-Str. 66 38106 Braunschweig Tel. (0531) 391-3836

Klausuraufgaben			Grundlagen der Elektrotechnik				27.08.2007
	Name: MatrNr.:						
1:	2:	3:	4:	5:	6:	7:	8:
Summe:				Note:			

Alle Lösungen sollen **nachvollziehbar** bzw. **begründet** sein.

Für jede Aufgabe ein neues Blatt verwenden.

Keine Rückseiten beschreiben.

Keine roten Stifte verwenden.

1 Kondensatornetzwerk

Vor dem Anschluss der Spannungsquelle U_0 an das Netzwerk sind alle Kondensatoren ladungsfrei und alle Schalter geöffnet. Der Schalter S_1 wird geschlossen und wieder geöffnet, wenn der Spannungsabfall am R_1 5 V beträgt.

Gegeben: $R_1 = 100 \Omega$, $U_0 = 200 V$.

a) Berechnen Sie allgemein und zahlenmäßig die Spannung U_1 , die Gesamtladung Q_{Ges1} und den Gesamtenergieinhalt W_1 im Netzwerk, wenn $C = 3\mu F$ gilt.

Nun wird der Schalter S₂ geschlossen. Die Schalter S₁ und S₃ bleiben geöffnet und das Abklingen des Einschwingvorganges abgewartet.

- b) Berechnen Sie die Spannungen U₁, U₂, U₃ und den Energieinhalt W₂ im Netzwerk. Der Widerstand R₂ ist zu vernachlässigen.
- c) Die Energiedifferenz $\Delta W = W_1 W_2$ ist allgemein zu bestimmen und kurz zu erläutern.

Der Schalter S2 wird geöffnet und S3 wird geschlossen.

- d) Geben Sie eine allgemeine Gleichung für den zeitlichen Verlauf des Stromes $i_{R3}(t)$ durch den Widerstand R_3 .
- e) Berechnen Sie den Strom $i_{R3}(t)$ für die Zeit t=0,1ms, t=5ms und $t\to\infty$. Dabei gilt $R_3=1k\Omega$. Skizzieren Sie den Verlauf maßstäblich.

2 Kondensator

Auf der mittleren Platte des dargestellten Plattenkondensators ist ein Kunststoffschieber ($\epsilon_{r1}=4$) aufgebracht. Die äußeren Platten sind mit Papier ($\epsilon_{r2}=2$) beklebt. Alle Platten haben die Fläche b·h. Die Anordnung befindet sich im Medium Luft, Randeffekte sind zu vernachlässigen.

Gegeben: d = 1mm, h = 3cm, b = 2cm, $\epsilon_0 = 8.854 \cdot 10^{-12} As/Vm$.

- a) Für die gegebene Anordnung (linke Skizze) ist ein elektrisches Ersatzschaltbild zu zeichnen.
- b) In welcher Schieberstellung x_0 ist die Kapazität des Plattenkondensators maximal? Berechnen Sie diese Kapazität C_{max} .
- c) Berechnen Sie die Gesamtladung Q der Kondensatoranordnung, wenn die Anordnung mit der Gleichspannungsquelle $U_Q = 500 \, \text{V}$ gespeist wird.

Der Schieber befindet sich in der Stellung x = h/3. (rechte Skizze)

- d) Zeichnen Sie ein elektrisches Ersatzschaltbild für diese Anordnung.
- e) Berechnen Sie allgemein die Kapazität in Abhängigkeit der Schieberstellung C = f(x).
- f) Zeichnen Sie C = f(x) für x = 0...h.

3 Gleichstromnetzwerk

Das Netzwerk wird bezüglich der gezeichneten Klemmen in vier Teilen betrachtet.

Gegeben: $I = \frac{3U}{R}$

- a) Stellen Sie jeden Teil des Netzwerkes mit seiner Ersatzschaltung dar. Geben Sie alle Ersatzgrößen an. (Hinweis: Verwenden Sie Ersatzspannungsquellen mit Innenwiderstand und beachten Sie die Brückenwiderstandsverhältnisse.)
- b) Zeichnen Sie das vollständige Ersatzschaltbild bestehend aus den vier Ersatzteilnetzwerken und tragen Sie die Spannungs- und Stromrichtungen ein.
- c) Berechnen Sie allgemein die Leerlaufspannung U_{LS} über dem geöffneten Schalter S.

Der Schalter S wird geschlossen. Das Netzwerk ist bei Leistungsanpassung durch R_L belastet.

- d) Geben Sie R_L in Abhängigkeit von R an.
- e) Berechnen Sie die im Lastwiderstand R_L umgesetzte Leistung P_{RL}.

4 Gleichstromnetzwerk

Die gegebenen Netzwerke 1 und 2 können an den Klemmen A und B verbunden werden.

Gegeben:
$$R_1 = 20\Omega$$
, $R_2 = 30\Omega$, $U_0 = 20V$, $I = 0.2A$

a) Berechnen Sie für das Netzwerk 1 allgemein die Spannung U_{mn} zwischen den Knoten m und n, bei offenen Klemmen A-B.

Die Netzwerke 1 und 2 sind an den Klemmen A und B zusammengeschlossen.

- b) Berechnen Sie U₂ zahlenmäßig.
- c) Berechnen Sie allgemein die Spannung U₅. (Hinweis: Verwenden Sie das Maschenstromverfahren.)
- d) Bezüglich der Klemmen X, Y in Netzwerk 2 ist das Gesamtnetzwerk in eine Ersatzspannungsquelle mit der Leerlaufspannung U_{Lxy} und dem Innenwiderstand R_i umzuwandeln. Berechnen Sie allgemein U_{Lxy} und R_{i} .

5 Induktion Punkte: 14

Die Wechselspannungsquelle U(t) speist eine ebene, rechteckige Leiterschleife mit den Abmessungen a, b über einen Vorwiderstand R_V . Im Ersatzschaltbild repräsentiert R den Schleifenwiderstand, wobei der Schleifenleiter eine spezifische Leitfähigkeit κ und die Querschnittsfläche A besitzt. Parallel zu den langen Seiten der Leiterschleife liegt im Abstand c ein Starkstromleiter, der vom Strom $I_3(t)$ durchflossen wird.

Gegeben: U(t) =
$$500 \cdot \sin(\omega t) V$$
, R_V = $2500 R$, A = $3,44 \cdot 10^{-6} m^2$, a = $6 m$, b = $4 m$, $\kappa = 58 \cdot 10^6 S/m$, I₃ = $10 A$, $\mu_0 = 1,257 \cdot 10^{-6} H/m$

- a) Berechnen Sie den Widerstand R des Schleifenleiters.
- b) Berechnen Sie die Ströme I_1 und I_2 . Kennzeichnen Sie die Stromrichtungen.
- c) Berechnen Sie den notwendigen Abstand c zum Starkstromleiter, so dass die auf den Punkt P_2 wirkende magnetische Kraft $F_3 \le 5 \cdot 10^{-5} N$ ist.
- d) Kennzeichnen Sie die Richtung des Stromes I_3 , so dass sich das Leiterpaar (I_3, I_2) abstößt. Berechnen Sie allgemein die resultierende magnetische Kraft F_M die in Folge dieser Ströme auf den Punkt P_1 wirkt.

Im Folgenden wird der Abstand des Starkstromleiters vergrößert, so dass c >> b gilt. Das Magnetfeld im Bereich der Leiterschleife kann durch $B(t) = B_0 \cdot (1 + \cos \omega t)$ angenähert werden.

e) Berechnen Sie allgemein die in der Schleife induzierte Spannung U_i unter Zuhilfenahme obiger Annäherung für das Magnetfeld. Kennzeichnen Sie die Richtung von U_i und B(t).

6 Magnetischer Kreis

Die gegebene Anordnung mit drei Schenkeln ist aus Walzstahl aufgebaut. Auf dem linken Schenkel ist eine Spule mit Durchflutung Θ_1 montiert. Zunächst ist die Wicklung auf Schenkel 3 nicht beströmt, d.h. $\Theta_3 = 0$ A. Die Querschnittsfläche ist überall quadratisch mit der Kantenlänge h. Die Streuung kann vernachlässigt werden.

Gegeben: h = 10 mm, $\ell_1 = \ell_3 = 240 mm$, $\ell_2 = 80 mm$ (Die Magnetisierungskurven sind auf dem nächsten Blatt gegeben.)

Der magnetische Fluss im mittleren Schenkel beträgt $\Phi_2 = 0.1 \text{mWb}$.

- a) Berechnen Sie die magnetischen Flüsse Φ_1 und Φ_3 , die in den Schenkeln 1 und 3 wirken.
- b) Berechnen Sie die dazu notwendige Durchflutung Θ_1 in der Wicklung des Schenkels 1.
- c) Berechnen Sie die magnetischen Widerstände R_m bezüglich der mittleren Linien ℓ_i in allen drei Teilen des magnetischen Kreises.

Nun wird die Wicklung auf dem Schenkel 3 beströmt, wobei eine Durchflutung $\Theta_3 = 150A$ aufgebracht wird (gestrichelt gezeigt).

- d) Skizzieren Sie das vollständige Ersatzschaltbild des magnetischen Kreises und tragen Sie alle magnetischen Größen mit ihren Bezugsrichtungen ein.
- e) Berechnen Sie die notwendige Durchflutung $\Theta_1^{"}$ auf Schenkel 1, damit im mittleren Schenkel wieder $\Phi_2 = 0.10 \, mWb$ herrscht.

Magnetisierungskurven von magnetisch weichen Werkstoffen

7 Komplexe Wechselstromrechnung

Das dargestellte Wechselspannungsnetzwerk wird von der Netzspannung \underline{U}_0 mit der Kreisfrequenz ω gespeist.

Gegeben:
$$\underline{U}_0 = 100 \, V e^{j0}$$
, $\omega = 2 \cdot 10^3 s^{-1}$, $R_1 = 100 \Omega$, $R_2 = 50 \Omega$, $L_1 = 400 \, mH$, $L_2 = 100 \, mH$, $C = 1 \mu F$

- a) Berechnen Sie allgemein und zahlenmäßig für die gegebenen Werte die Ströme \underline{I}_1 , \underline{I}_2 , und \underline{I}_0 nach Betrag und Phase.
- b) Berechnen Sie alle im Netzwerk angegebenen Spannungen nach Betrag und Phase.
- c) Das vollständige Zeigerdiagramm mit allen Strömen und Spannungen ist zu entwickeln (Maßstab: $10 V \triangleq 1 cm$, $50 mA \triangleq 1 cm$).
- d) Die vom Netzwerk aufgenommene Wirkleistung P_0 , Blindleistung Q_0 , sowie die Scheinleistung S_0 sind zu berechnen.

Der Leistungsfaktor des Netzwerkes soll mittels eines parallel zu den Eingangsklemmen geschalteten Bauelementes auf cos ϕ = 0,9 angehoben werden.

- e) Zeichnen Sie diesen Betriebsfall in das Zeigerdiagramm ein und entnehmen Sie die zur Berechnung des Bauelementes erforderlichen Werte.
- f) Geben Sie die Größe und Art des Bauelementes sowie den neuen Gesamtstrom $\underline{\mathbf{I}_0}^{"}$ an.

8 Ortskurven Punkte: 12

Ein Parallelschwingkreis mit Vorwiderstand R_1 wird von einer Spannung \underline{U}_1 mit konstanter Amplitude und Frequenz ω gespeist.

Gegeben: $\underline{U}_1 = 100 V e^{j0}$, $R_1 = 50 \Omega$, $R_2 = 500 \Omega$, L = 10 mH, $C = 1 \mu F$.

- a) Berechnen Sie die Resonanzfrequenz ω_0 und die Kreisgüte Q des Schwingkreises, wenn keine Spannungsquelle angeschlossen ist *(offene Klemmen)*.
- b) Berechnen Sie allgemein die Admittanz \underline{Y} an den Klemmen M N in der Form A + jB, wenn keine Spannungsquelle angeschlossen ist *(offene Klemmen)*.
- c) Die Ortskurve von $|\underline{Y}|$ ist zu zeichnen. Die Punkte für $\omega=0$, $\omega=\omega_0$, $\omega\to\infty$ sind zu berechnen und auf der Ortskurve zu markieren. Kennzeichnen Sie den kapazitiven und induktiven Bereich.
- d) Geben Sie den allgemeinen komplexen Ausdruck für das Spannungsverhältnis $\frac{\underline{U}_2}{\underline{U}_1}$ in Abhängigkeit von der Kreisfrequenz ω an.
- e) Skizzieren Sie den Verlauf von $\left| \frac{\underline{U}_2}{\underline{U}_1} \right| = f(\omega)$.