Planetary Gearhead GP 26 A Ø26 mm, 0.75-4.5 Nm

Technical Data					
Planetary Gearhead		straigl	nt teeth		
Output shaft	stainless	steel, ha	rdened		
Bearing at output	preloade	ed ball be	earings		
Radial play, 5 mm from flang	e	max.	0.1 mm		
Axial play at axial load	< 6 N		0 mm		
	> 6 N	max.	0.4 mm		
Max. axial load (dynamic)			120 N		
Max. force for press fits			120 N		
Direction of rotation, drive to		=			
Max. continuous input speed	8000 rpm				
Recommended temperature	range	-30	+100°C		
Extended range as option		-40	+100°C		
Number of stages	1	2	3		
Max. radial load, 12 mm					
from flange	70 N	110 N	140 N		

M 1:2

	Stock program Standard program		Part Nu	mbers									
			406757	406762	406764	406767	406128	406769	406770	406771	406092		
Gearhead Data													
1	Reduction		5.2:1	19:1	27:1	35:1	71:1	100:1	139:1	181:1	236:1		
2	Absolute reduction		57/11	3591/187	3249/121	1539/44	226233/3179	204687/2057	185193/1331	87723/484	41553/176		
3	Max. motor shaft diameter	mm	3	3	3	3	3	3	3	3	3		
4	Number of stages		1	2	2	2	3	3	3	3	3		
5	Max. continuous torque		0.75	2.25	2.25	2.25	4.5	4.5	4.5	4.5	4.5		
6	Max. intermittent torque at gear output	Nm	1.1	3.2	3.2	3.2	6.2	6.2	6.2	6.2	6.2		
7	Max. efficiency %		90	80	80	80	70	70	70	70	70		
8	Veight g		53	77	77	77	93	93	93	93	93		
9	Average backlash no load	0	0.5	0.7	0.7	0.7	0.8	0.8	0.8	0.8	0.8		
10	Mass inertia	gcm ²	0.96	0.54	0.54	0.54	0.31	0.31	0.31	0.31	0.31		
11	Gearhead length L1	mm	23.4	32.9	32.9	32.9	39.5	39.5	39.5	39.5	39.5		
13	Max. transmittable power (continuous)	W	60	35	35	35	20	20	20	20	20		
14	Max. transmittable power (intermittent)	W	90	50	50	50	30	30	30	30	30		

Motor	Page	+ Sensor/Brake	Page	Overall ler	nath [mm]	= Motor lengt	h + gearhead	l length + (ser	sor/brake) +	assembly na	rts	
RE 25	125/127		i age	78.0	87.5	87.5	87.5	94.1	94.1	94.1	94.1	94.1
RE 25	125/127		419	89.0	98.5	98.5	98.5	105.1	105.1	105.1	105.1	105.1
RE 25	125/127		426	92.1	101.6	101.6	101.6	108.2	108.2	108.2	108.2	108.2
RE 25		HED_ 5540	429/431	98.8	108.3	108.3	108.3	114.9	114.9	114.9	114.9	114.9
RE 25	125/127		438	100.3	100.3	100.3	100.3	116.4	116.4	116.4	116.4	116.4
RE 25, 20 W	126	DC122	430	66.5	76.0	76.0	76.0	82.6	82.6	82.6	82.6	82.6
,		MD	440									
RE 25, 20 W	126	MR	419	77.5	87.0	87.0	87.0	93.6	93.6	93.6	93.6	93.6
RE 25, 20 W	126	HED_ 5540	430	87.3	96.8	96.8	96.8	103.4	103.4	103.4	103.4	103.4
RE 25, 20 W	126	DCT 22	438	88.8	98.3	98.3	98.3	104.9	104.9	104.9	104.9	104.9
RE 25, 20 W	126	AB 28	480	100.6	110.1	110.1	110.1	116.7	116.7	116.7	116.7	116.7
RE 25, 20 W	126	HED_5540/AB 28	430/480	117.8	127.3	127.3	127.3	133.9	133.9	133.9	133.9	133.9
RE 25, 20 W	127	AB 28	480	112.1	121.6	121.6	121.6	128.2	128.2	128.2	128.2	128.2
RE 25, 20 W	127	HED_ 5540/AB 28	431/480	129.3	138.8	138.8	138.8	145.4	145.4	145.4	145.4	145.4
-max 26	151-158			68.2	77.7	77.7	77.7	84.3	84.3	84.3	84.3	84.3
-max 26		MEnc 13	408	75.3	84.8	84.8	84.8	91.4	91.4	91.4	91.4	91.4
-max 26	151-158	MR	419	77.0	86.5	86.5	86.5	93.1	93.1	93.1	93.1	93.1
-max 26	151-158	Enc 22	426	82.6	92.1	92.1	92.1	98.7	98.7	98.7	98.7	98.7
-max 26	151-158	HED 5540	430/432	86.6	96.1	96.1	96.1	102.7	102.7	102.7	102.7	102.7