QUANTIFIER ELIMINATION IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

Abstract. We simplify \cite{T} proof of quantifier elimination in Shelah-Spencer graphs.

1. Introduction

Laskowski's paper [?] provides a combinatorial proof of quantifier elimination in Shelah-Spencer graphs. Here we provide a simplification of the proof using only maximal chains and avoiding technical lemmas of sections 3 and 4.

2. Preliminaries

We will use notation of [?], in particular things like K_{α} , $\delta(\mathcal{A}/\mathcal{B})$, $X_m(\mathcal{A})$, S_{α} , maximal embedding, etc.

3. Proof

Definition 3.1. Fix $\mathcal{B} \in K_{\alpha}$, Φ, Γ finite subsets of K_{α} , and $m \in \omega$ such that for each $\mathcal{C} \in \Phi$ or $\mathcal{C} \in \Gamma$ we have $\mathcal{B} \subseteq \mathcal{C}$ and $|C \setminus B| < m$. Define $Z(\mathcal{B}, \Phi, \Gamma, m)$ to be all $\mathcal{B}^* \in X_m(\mathcal{B})$ such that

(1) For every $C \in \Phi$ there are no \mathcal{H} with $|H \setminus B^*| < m$ satisfying

(2) For every $\mathcal{D} \in \Gamma$ there is some \mathcal{G} with $|G \backslash B^*| < m$ satisfying

Definition 3.2. Let $\mathcal{M} \models S_{\alpha}$, $\mathcal{B} \in \mathbf{K}_{\alpha}$, embedding $f : \mathcal{B} \to \mathcal{M}$, Φ finite subset of \mathbf{K}_{α}

- (1) Say that f omits Φ if there are no $\mathcal{C} \in \Phi$ and $g \colon \mathcal{C} \to \mathcal{M}$ extending f.
- (2) Say that f admits Φ if for every $\mathcal{C} \in \Phi$ there is $g: \mathcal{C} \to \mathcal{M}$ extending f.

Lemma 3.3. Let $\mathcal{B} \in \mathbf{K}_{\alpha}$, Φ, Γ finite subsets of \mathbf{K}_{α} , and $m \in \omega$ such that for each $\mathcal{C} \in \Phi$ or $\mathcal{C} \in \Gamma$ we have $\mathcal{B} \subseteq \mathcal{C}$ and $|\mathcal{C} \setminus \mathcal{B}| < m$. The following are equivalent:

- (1) f omits Φ and admits Γ
- (2) There exists $\mathcal{B}^* \in Z(\mathcal{B}, \Phi, \Gamma, m)$ maximally embeddable into \mathcal{M} over f.

References

- [1] Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fund. Math., 100:101-107, 1978.
- [2] Aharoni, Ron and Berger, Eli (2009). "Menger's Theorem for infinite graphs". Inventiones Mathematicae 176: 162
- [3] P. Simon, On dp-minimal ordered structures, J. Symbolic Logic 76 (2011), no. 2, 448460.E-mail address: bobkov@math.ucla.edu