Master of Advanced Studies in Medical Physics

Our goal /1

Today

the I test: th

Recap /1

assimo Borelli P5.2 Statistics for M

the T test: the basics

Our goal /2

In vivo dosimetry and shielding disk alignment verification by EBT3 GAFCHROMIC film in breast IOERT treatment

Mara Severgnini, ^{1a} Mario de Denaro, ¹ Marina Bortul, ² Cristiana Vidali, ³

Task 1. Results for the 37 patients treated in this study. In the first six patients, the dimensions of GAFCHROMIC film were smaller from the disk's and it is not possible to estimate the area of the radiation field that escapes outside the shield, the data is not available (i.a.s.).

Massimo Borelli

P5.2 Statistics for Medicine

the T test: the basic

the T test: the basics

the I test

Recap /2

3	Probability in medicine	15
3.1	Brief recalls on random variables	19
3.2	Commonly used random variables	20
3.2.1	The Normal Distribution	20
3.2.2	The Lognormal Distribution	23
3.2.3	The Binomial Distribution	2
3.2.4	The Poisson Distribution	28
3.3	Evaluating odds and risks: Bayes theorem	26
3.3.1	Bayes theorem	21
3.3.2	The Bayes factor	2
3.4	Sample and population: approaching inference	30
3.5	Mismatching variability with reliability	32
3.6	Exercises	35

Massimo Borell

P5.2 Statistics for Medicine

the T test: the ba

Today

the univariate inferential analysis

bayesian

Massimo Borel

P5.2 Statistics for Medicin

the T test: the basic

Figure: William Sealy Gossett

Not Kiln-Dried	Kiln-Dried	Difference
1903	2009	+106
1935	1915	-20
1910	2011	+101
2496	2463	-33
2108	2180	+72
1961	1925	-36
2060	2122	+62
1444	1482	+38
1612	1542	-70
1316	1443	+127
1511	1535	+24

difference Valid 11 Mean 33.727 Std. Deviation 66.171 19.951 Std. Error of Mean

Detecting a signal from noise

$$t = \frac{m - \mu}{s / \sqrt{n}}$$

Gosset discoveries /2

$$t = \frac{m - \mu}{s / \sqrt{n}}$$

- (independency) in a random sample from a gaussian distribution $N(\mu, \sigma)$, estimating the sample mean m do not convey any information in estimating the sample standard deviation s, and vice versa.
- (a novel random variable) the random variable $t = \frac{m-\mu}{s/\sqrt{n}}$ possesses an explicit density function, which is not a gaussian, but can be numerically computed.

VOLUME VI

MARCH, 1908

No. 1

BIOMETRIKA.

THE PROBABLE ERROR OF A MEAN.

BY STUDENT.

normal distribution does not work!

the T test: the basics

JASP: Scaled Shifted Student's t

Massimo Borelli P5.2 Statistics for Medi

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р	
difference	1.690	10	0.122	

the T test: the basics

Table: Bayesian One Sample T-Test

	BF ₁₀	error %
difference	0.885	0.004

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

the T test: the basics

	t	df	р	
difference	1.690	10	0.122	

$$BF_{10} = \frac{P(D|M_1)}{P(D|M_0)} = 0.885$$

However, these are merely a simplified heuristic for inter-factor really is a continuous metric of evidence.

eting Bayes factors, but that the Baye

A 2-sided Bayesian one-sample t-test comparing the sample population difference (m = 33.7) to the null mean (μ = 0) returns a p-value = .122, not significant according an α level of 0.10. The BF_{01} of 0.885 suggests anecdotal evidence in favour of the alternative hypothesis: therefore the observed data are 1.13 times more likely to have occurred under the null than under the alternative hypothesis.

The conventional significance level of 5%

The freedom to choose the significance level

significance level and sample size impact on the test power

statistical or clinical significance?

Absence of evidence, or evidence of absence?

JASP: Classical One Sample T-Test

Table: One Sample T-Test

	t	df	р
difference	1.690	10	0.122

Prior and Posterior

Massimo Borelli

Master of Advanced Studies in Medical Physics

	manners scennesgi semies com			1999	0.5	
L12	Statistics for medicine	1	12	lesson	w	
L13	Introduction to Monte Carlo simulation	1	12	lab	w	Т

Differences between two groups

the roma dataset

Variable	Level	Counts	Total	Proportion
Histology	benign	171	210	0.814
	malignant	39	210	0.186

- can we exploit logHE4 to predict Histology?
- can we exploit logCA125 to predict Histology?
- can we exploit logCA19-9 to predict Histology?
- can we exploit logCEA to predict Histology?

Differences between two groups

Massimo Borelli

Statistics for Medicine