

Definition. Vertex connectivity of G,

Definition. Vertex connectivity of G, denoted $\kappa(G)$,

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is the smallest number of vertices

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is the smallest number of vertices whose deletion disconnects the graph or

If G is,

1. A path,

If G is,

1. A path, then $\kappa(G) = 1$

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G) =$ the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G)=0$ if and only if it is disconnected or the graph with only one vertex

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G) =$ the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G) =$ the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of ver- **Definition.** Given a graph G, let G denote the cut vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

tices of G,

the smallest number of vertices whose deletion disconnects the graph or makes it the graph with one vertex and no edges.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of ver- **Definition.** Given a graph G, let G denote the cut vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

tices of G,

Let \mathcal{B} denote the set of blocks

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of ver- **Definition.** Given a graph G, let C denote the cut tices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

vertices of G,

Let \mathcal{B} denote the set of blocks

the smallest number of vertices whose deletion disconnects the graph or makes it the graph with one vertex and no edges.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of ver- **Definition.** Given a graph G, let C denote the cut tices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B\}$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, \}$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is n-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. Vertex connectivity of G, denoted $\kappa(G)$, is A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}\}$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$$

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

 $V(G') := \mathcal{B} \cup C$

 $E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$

Definition.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

 $V(G') := \mathcal{B} \cup C$

 $E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$

Definition. A graph G is n-partite

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

 $V(G') := \mathcal{B} \cup C$

 $E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$

Definition. A graph G is n-partite if V(G) can be partitioned into n classes

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

 $V(G') := \mathcal{B} \cup C$

 $E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$

Definition. A graph G is n-partite if V(G) can be partitioned into n classes so that each edge has ends in different classes.

If G is,

- 1. A path, then $\kappa(G) = 1$
- 2. A complete graph, then $\kappa(G)$ = the number of vertices - 1
- 3. A cycle, then $\kappa(G) = 2$

A graph has $\kappa(G) = 1$ if and only if G has a cut-vertex or it is a complete graph with two vertices.

Definition. A graph is *n*-connected if $\kappa(G) \geq n$.

A graph, G, has $\kappa(G) = 0$ if and only if it is disconnected or the graph with only one vertex

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

 $V(G') := \mathcal{B} \cup C$

 $E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$

A bipartite graph cannot contain a cycle of odd length. A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$$

A bipartite graph cannot contain a cycle of odd length. A graph is 2-connected if and only if it has no cut-vertices

Exercise.

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$$

Exercise. Prove the converse

Proof. Consider the spanning tree.

A bipartite graph cannot contain a cycle of odd length. A graph is 2-connected if and only if it has no cut-vertices

Definition. A block is a maximal subgraph with no cut-vertices.

Proposition. A cycle must lie completely inside a block

Proof. A vertex of a cycle cannot be a cut-vertex

Definition. Given a graph G, let C denote the cut vertices of G,

Let \mathcal{B} denote the set of blocks

A block graph of G is a graph G' so that

$$V(G') := \mathcal{B} \cup C$$

$$E(G') := \{v, B \mid v \in C, B \in \mathcal{B}, v \in B\}$$