Sprawozdanie z zadania numerycznego 1

1. Instrukcja uruchomienia

- Aby stworzyć wykres dla h z zakresu float należy użyć make wykres_f (powstaje plik wykres_f.svg)
- Aby stworzyć wykres dla h z zakresu double należy użyć make wykres_d
 (powstaje plik wykres_d.svg)
- Aby wypisać wartości błędów dla zakresu float należy użyć make blad f
- Aby wypisać wartości błędów dla zakresu double należy użyć make blad_d

2. Cel ćwiczenia

Analiza błędu wartości pochodnej wyliczonej numerycznie w stosunku do pochodnej liczonej wzorem

3. Opis ćwiczenia

- 1) Wyznaczenie kilkuset wartości zmiennej niezależnej h
- 2) Obliczenie wartości pochodnej numerycznej dla wyliczonych h i podanego punktu
- 3) Obliczenie błędu między poszczególnymi wynikami pochodnej numerycznej, a wynikiem dokładnym
- 4) Wypisanie wartości lub stworzenie wykresu

Powyższe czynności wykonują się dla systemu float i double oraz dwóch wzorów na pochodne numeryczne

4. Wstęp teoretyczny

Zacznijmy od wyjaśnienia czym jest pochodna funkcji w punkcie. Takim terminem nazywamy granicę:

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

gdzie przez h oznaczamy przyrost zmiennej niezależnej.

Niestety komputery nie są w stanie policzyć takiej granicy. Spowodowane jest to poprzez inny system zapisu liczb oraz określoną precyzję. W systemie binarnym, używanym przez komputery, liczby które mają skończone rozwinięcie w systemie dziesiętnym, mogą okazać się nieskończonymi. Komputery najczęściej bazują na systemie 32 i 64 bitowym, odpowiednio float i double, które to ograniczają wielkość

i precyzję zapisu liczb. Dla typu float błędy zaokrągleń są rzędu 10^{-7} , a dla double 10^{-16} .

Dlatego komputery nie liczą dokładnie wartości pochodnych a tylko ich przybliżoną wartość. Można takie wartości uzyskać poprzez użycie wzorów na pochodne numeryczne. Wyróżniamy 3 główne wzory różnicowe na numeryczne przybliżanie pochodnych. W zadaniu będziemy używać dwóch: wzoru na różnicę w przód i różnicę centralną.

Wzór na różnicę w przód:

$$D_h f(x) \approx \frac{f(x+h) - f(x)}{h}$$

Wzór na różnicę centralną:

$$D_h f(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Gdy wiemy już jakie wzory pomagają wyliczyć wartości pochodnych funkcji w punkcie musimy w jakiś sposób zweryfikować ich skuteczność. Aby tego dokonać obliczamy wielkość błędu powstałego między przybliżoną pochodną a dokładną. Wzory na błąd pozwala nam wyliczyć rozwinięcie Taylora.

$$|D_h f(x) - f'(x)|$$

Gdzie $D_h f(x)$ jest przybliżoną wartością pochodnej funkcji obliczonej w sposób numeryczny ,a f'(x) jest dokładnym wynikiem pochodnej w punkcie x.

5. Wyniki

Wartości błędu pochodnej numerycznej dla typu zmiennoprzecinkowego float			
h	Błąd wzoru w przód	Błąd wzoru centralnego	
0.000001	0.3005262	0.0025030	
0.000002	0.0089981	0.0089981	
0.000004	0.0156348	0.0156348	
0.000007	0.0224161	0.0173260	
0.000015	0.0293452	0.0090411	
0.000029	0.0156787	0.0053054	
0.000056	0.0012622	0.0040375	
0.0000110	0.0023151	0.0003925	
0.0000215	0.0005063	0.0008771	
0.0000422	0.0013041	0.0005973	
0.0000825	0.0005518	0.0001907	
0.0001616	0.0003635	0.000054	
0.0003162	0.0002150	0.0000265	
0.0006190	0.0003046	0.0000324	
0.0012115	0.0006021	0.0000117	
0.0023714	0.0011490	0.000054	

0.0046416	0.0022212	0.000004
0.0090852	0.0043408	0.000024
0.0177828	0.0084794	0.0000158
0.0348070	0.0165655	0.0000597
0.0681292	0.0323022	0.0002288
0.1333521	0.0627290	0.0008751
0.2610157	0.1206285	0.0033442
0.5108970	0.2260880	0.0126891
1.0000000	0.3923174	0.0468486

1. Wykres przedstawiający błąd pochodnych numerycznych dla typu float

Wartości błędu pochodnej numerycznej dla typu zmiennoprzecinkowego double				
h	Błąd wzoru w przód	Błąd wzoru centralnego		
0.0000000000000001	0.2955202066613395	0.2595913056512387		
0.000000000000005	0.0563299068688833	0.0632652430273449		
0.000000000000022	0.0378602669653433	0.0120942729957437		
0.000000000000100	0.0068622202587988	0.0013111051356731		
0.000000000000464	0.0013161379166183	0.0001201864176560		
0.000000000002154	0.0002419157697267	0.0000157441699694		
0.000000000010000	0.0000898598085854	0.0000343486573541		
0.000000000046416	0.0000005912677598	0.0000005912677598		
0.000000000215443	0.0000002845735876	0.0000002845735876		
0.000000001000000	0.000000682564092	0.000000682564092		
0.000000004641589	0.0000001128871602	0.000000067079897		

0.000000021544347	0.0000000246183400	0.000000011476539
0.000000100000000	0.000000016430278	0.000000016430278
0.000000464158883	0.000000210594077	0.000000004677194
0.0000002154434690	0.000001026656701	0.000000001406458
0.0000010000000000	0.0000004775956384	0.000000000223068
0.0000046415888336	0.0000022171373071	0.000000000012982
0.0000215443469003	0.0000102910240864	0.000000000246988
0.0001000000000000	0.0000477663318986	0.000000004924862
0.0004641588833613	0.0002217033437167	0.000000106113016
0.0021544346900319	0.0010288760244860	0.0000002286138466
0.0100000000000000	0.0047717173279203	0.0000049253121494
0.0464158883361277	0.0220613138844548	0.0001061017340325
0.2154434690031878	0.1002322231122860	0.0022808390204210
1.0000000000000000	0.3923174538396790	0.0468485273313890

2. Wykres przedstawiający błąd pochodnych numerycznych dla typu double

6. Wnioski

Wartości błędu dla różnych h nie są takie same. Dobranie odpowiedniego h pozwala nam na dokładniejsze wyliczenie pochodnej. Gdy wybierzemy zbyt małe h powstaną nam duże błędy wynikające z zaokrąglania przy odejmowaniu. Natomiast podczas

wybrania zbyt dużego h otrzymujemy błędy związane z obcinaniem nieskończonego rozwinięcia Taylora.

Z wyników przedstawionych na wykresach możemy odczytać że mniejszy błąd otrzymujemy używając typu zmiennoprzecinkowego double i wzoru na pochodną centralną.