DSC5211C QUANTITATIVE RISK MANAGEMENT SESSION 2

Fernando Oliveira

bizfmdo@nus.edu.sg

Introduction to Smoothing Forecasting Methods

Objectives

- Introduction to Forecasting methods
- Qualitative vs. Quantitative Forecasting
- Smoothing forecasting methods:
 - Simple Exponential Smoothing
 - Holt Exponential Smoothing
 - Holt-Winters Exponential Smoothing
 - Qualitative Forecasting Methods

Main Forecasting Approaches

• Qualitative Forecasting: these are methods based on the opinion of experts in a given subject.

• Quantitative Forecasting: these are methods that are based on data and statistics for forecasting.

Quantitative Forecasting – Time Series

- What are we looking in a Time Series in order to forecast?
 - Trend this represents a pattern of behaviour that is a function of time.
 - Seasonality this represents a pattern of variation around the trend. Typically these lead to repetitions of patterns with the duration of one year.
 - Cycle this represents a pattern of repetitions with a length of more than one year.

Measures of Variability

- Measures of Variability allow us to evaluate how well a forecasting model is able to approximate real data.
- Mean Absolute Percentage Error (MAPE) measures the accuracy of the fitted time series values. It expresses it as a percentage:

$$MAPE = \frac{\sum_{i=1}^{n} \left| \frac{x_i - \overline{x_i}}{x_i} \right|}{n} \times 100$$

 x_i - this is the actual value

 x_i - this is the estimated value

n – the number of observations

• Mean Absolute Deviation (MAD) measures the accuracy of the fitted time series values. It expresses it in the same units as the data:

$$MAD = \frac{\sum_{i=1}^{n} \left| x_i - \overline{x_i} \right|}{n}$$

• Mean Squared Deviation (MSD) is similar to the MAD but it is more sensitive to large forecasting errors.

$$MSD = \frac{\sum_{i=1}^{n} \left| x_i - \overline{x_i} \right|^2}{n}$$

Smoothing Forecasting Methods

• Assuming there is no trend or seasonality, we can use the most recent smoothed value m_t as forecast

$$f_{t+1}=m_t$$

• Simple moving average of recent points

e.g.
$$m_t = 1/3 Y_t + 1/3 Y_{t-1} + 1/3 Y_{t-2}$$

• Weighted moving average

e.g.
$$m_t = 1/2 Y_t + 1/3 Y_{t-1} + 1/6 Y_{t-2}$$

• Exponentially weighted moving average

e.g.
$$m_t = 1/2 Y_t + 1/4 Y_{t-1} + 1/8 Y_{t-2} + \dots$$

Moving Average: 3 weeks

Week	Unit Sales	m _t	Forecast
		1111	Torecast
01-Jan-99	26,520		
08-Jan-99	14,660	•	
15-Jan-99	18,240	19806.7	
22-Jan-99	11,850	14916.7	19806.7
29-Jan-99	18,000	16030.0	14916.7
05-Feb-99	16,740	15530.0	16030.0
12-Feb-99	23,170	19303.3	15530.0
30-Jul-99	57,570	47130.0	42560.0
06-Aug-99	40,730	47343.3	47130.0
13-Aug-99	68,190	55496.7	47343.3
20-Aug-99	47,570	52163.3	55496.7
27-Aug-99	58,110	57956.7	52163.3
03-Sep-99	64,780	56820.0	57956.7
10-Sep-99	65,080	62656.7	56820.0
17-Sep-99	67,750	65870.0	62656.7
24-Sep-99	66,650	66493.3	65870.0
01-Oct-99			66493.3
08-Oct-99			66493.3
15-Oct-99			66493.3

Moving Average: Length 3

Moving Average: Length 6

Simple Exponential Smoothing

• More generally:

$$m_t = \alpha Y_t + \alpha (1-\alpha) Y_{t-1} + \alpha (1-\alpha)^2 Y_{t-2} + \dots$$

= $\alpha Y_t + (1-\alpha) m_{t-1}$

• Since we assume no trend or seasonality:

$$f_{t+1} = f_{t+2} = \ldots = f_{t+k} = m_t$$

- $m_1 = Y_1$
- $0 \le \alpha \le 1$

Week	Unit Sales	m_t	Forecast
01-Jan-99	26,520	26520.0	
08-Jan-99	14,660	25334.0	26520.0
15-Jan-99	18,240	24624.6	25334.0
22-Jan-99	11,850	23347.1	24624.6
29-Jan-99	18,000	22812.4	23347.1
05-Feb-99	16,740	22205.2	22812.4
30-Apr-99	28,690	22114.9	21384.3
07-May-99	22,670	22170.4	22114.9
14-May-99	30,330	22986.4	22170.4
21-May-99	28,970	23584.7	22986.4
28-May-99	42,150	25441.2	23584.7
04-Jun-99	26,440	25541.1	25441.2
11-Jun-99	34,230	26410.0	25541.1
18-Jun-99	33,980	27167.0	26410.0
25-Jun-99	43,980	28848.3	27167.0
02-Jul-99	31,550	29118.5	28848.3
09-Jul-99	43,860	30592.6	29118.5
16-Jul-99	40,090	31542.4	30592.6
23-Jul-99	43,730	32761.1	31542.4
30-Jul-99	57,570	35242.0	32761.1
06-Aug-99	40,730	35790.8	35242.0
13-Aug-99	68,190	39030.7	35790.8
20-Aug-99	47,570	39884.7	39030.7
27-Aug-99	58,110	41707.2	39884.7
03-Sep-99	64,780	44014.5	41707.2
10-Sep-99	65,080	46121.0	44014.5
17-Sep-99	67,750	48283.9	46121.0
24-Sep-99	66,650	50120.5	48283.9
01-Oct-99			50120.5
08-Oct-99			50120.5
15-Oct-99			50120.5
22-Oct-99			50120.5
29-Oct-99			50120.5
05-Nov-99			50120.5

FSO

Simple Exponential Smoothing: Alpha 0.1

Week	Unit Sales	m_{t}	Forecast
01-Jan-99	26,520	26520.0	
08-Jan-99	14,660	19404.0	26520.0
15-Jan-99	18,240	18705.6	19404.0
22-Jan-99	11,850	14592.2	18705.6
29-Jan-99	18,000	16636.9	14592.2
05-Feb-99	16,740	16698.8	
30-Apr-99	28,690	25683.2	
07-May-99	22,670	23875.3	
14-May-99	30,330	27748.1	23875.3
21-May-99	28,970	28481.2	27748.1
28-May-99	42,150	36682.5	28481.2
04-Jun-99	26,440	30537.0	36682.5
11-Jun-99	34,230	32752.8	
18-Jun-99	33,980	33489.1	32752.8
25-Jun-99	43,980	39783.6	33489.1
02-Jul-99	31,550	34843.5	39783.6
09-Jul-99	43,860	40253.4	34843.5
16-Jul-99	40,090	40155.4	
23-Jul-99	43,730	42300.1	40155.4
30-Jul-99	57,570	51462.1	42300.1
06-Aug-99	40,730	45022.8	51462.1
13-Aug-99	68,190	58923.1	45022.8
20-Aug-99	47,570	52111.3	
27-Aug-99	58,110	55710.5	52111.3
03-Sep-99	64,780	61152.2	55710.5
10-Sep-99	65,080	63508.9	61152.2
17-Sep-99	67,750	66053.6	
24-Sep-99	66,650	66411.4	
01-Oct-99			66411.4
08-Oct-99			66411.4
15-Oct-99			66411.4
22-Oct-99			66411.4
29-Oct-99			66411.4
05-Nov-99			66411.4
12-Nov-99			66411.4
19-Nov-99			66411.4

FSO 14

Simple Exponential Smoothing: Alpha 0.6

Choice of α

$$m_t = \alpha Y_t + (1-\alpha) m_{t-1}$$

 $m_t = \alpha Y_t + \alpha (1-\alpha) Y_{t-1} + \alpha (1-\alpha)^2 Y_{t-2} + \dots$

$$f_{t+1} = m_t$$

Choice of α

- $0 \le \alpha \le 1$ Usually 0.1 to 0.3
- Low α
 - Low weight to latest observation
 - Much smoothing
 - Slow response to structural change
 - Best for rapidly fluctuating, noisy series
- High α
 - Low weight to old observations
 - Little smoothing
 - Quick response to structural change
 - Best for slight random fluctuations

Choice of α

• Software allows α to be optimised as in regression:

$$\min \sum_{i=1}^{n} e_i^2$$

Simple Exponential Smoothing: Trending Series

• Simple exponential smoothing is not an appropriate forecasting technique for series with trend.

- Used on trending series
- Local linear trend assumed so forecasts given by:

$$f_{t+k} = (\text{Level})_t + k \times (\text{Growth})_t$$

• Holt's method takes into account both level and growth:

Level:
$$m_t = \alpha Y_t + (1 - \alpha)(m_{t-1} + r_{t-1})$$

Growth:
$$r_t = \gamma (m_t - m_{t-1}) + (1 - \gamma) r_{t-1}$$

Forecast:
$$f_{t+1} = m_t + r_t$$

k-period ahead forecast:
$$f_{t+k} = m_t + k \times r_t$$

• Smoothing parameters: $0 \le \alpha \le 1$ $0 \le \gamma \le 1$

- Slope evolves steadily: try high γ
- Slope changes erratically: try low γ
- Level evolves steadily: try high α
- Level changes erratically: try low α

• It is not easy to subjectively select the parameters so, instead, we can optimise.

• Optimal Parameters

- For series with trend and seasonality
- A straight line models the linear trend in monthly Tux rentals (\$) but fails to model the seasonality

FSO

• Holt-Winters method accounts for level, growth and **multiplicative** seasonality:

Level:
$$m_t = \alpha Y_t / S_{t-12} + (1 - \alpha)(m_{t-1} + r_{t-1})$$

Growth:
$$r_{t} = \gamma (m_{t} - m_{t-1}) + (1 - \gamma) r_{t-1}$$

Seasonality:
$$S_t = \delta(Y_t/m_t) + (1-\delta)S_{t-12}$$

Forecast:
$$f_{t+1} = (m_t + r_t) S_{t-11}$$

k-period ahead forecast:
$$f_{t+k} = (m_t + k \times r_t) S_{t+k-12}$$

• Smoothing parameters between 0 & 1

Typically:

$$\alpha = \gamma = \delta = 0.2$$

If smoothly changing seasonality, could use high δ

• Holt-Winters method accounts for level, growth and additive seasonality:

Level:
$$m_t = \alpha (Y_t - S_{t-12}) + (1 - \alpha)(m_{t-1} + r_{t-1})$$

Growth:
$$r_t = \gamma (m_t - m_{t-1}) + (1 - \gamma) r_{t-1}$$

Seasonality:
$$S_t = \delta(Y_t - m_t) + (1 - \delta)S_{t-12}$$

Forecast:
$$f_{t+1} = m_t + r_t + S_{t-11}$$

k-period ahead forecast:
$$f_{t+k} = m_t + k \times r_t + S_{t-k+12}$$

FSO

Exponential Smoothing – Advantages and Disadvantages

- Advantages
 - robustness
 - simplicity
 - minimal information storage
 - few observations required
 - low cost and can be made fully automatic
 - useful when a large number of forecasts are required e.g. inventory control
- Disadvantages
 - not reliable beyond short-term
 - methods attempting to model data generating process are more suitable if resources are available

Summary

- We have discussed the difference between qualitative and quantitative forecasting methods.
- We have looked at several measures of variability.
- We have analysed several smoothing forecasting methods.

"As soon as you find the pattern, you break it. Otherwise it gets boring."

John Lennon

Reading List

S. Makridakis, S.C. Wheelwright and R.J. Hyndman, 3rd Ed. Chapter 1, Chapter 2.1-2.2, Chapter 3.2

P.E. Gaynor and R.C. Kirkpatrick,

Chapter 1

J.E. Hanke, D.W. Wichern and A.G. Reitsch,

Chapter 1, Chapter 2