# Лабораторная работа 1.2.1 Определение скорости полета пули при помощи баллистического маятника

## Калинин Даниил, Б01-110

12 декабря 2021 г.

**Цель работы:** определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

**В работе используются:** духовое ружье на штативе, осветлитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их вовешивания, а также баллистические маятники.

#### Теоритическая справка:

В первой части работы используется баллистический маятник, совершающий поступательное движение. Чертеж установки изображен на рисунке 1.



Рис. 1. Схема установки первой части работы.

Пусть масса маятника равна M, масса пули — m, скорость пули перед ударом — u, а скорость цилиндра установки после неупругого соударения: V. тогда по закону сохранения импульса имеем:

$$mu = (M+m)V \tag{1}$$

Учитывая, что масса маятника много больше массы пули, получаем:

$$u = \frac{M}{m}V\tag{2}$$

По закону сохранения энергии, после попадания в него пули, маятник поднимется на высоту h, которая связана со скоростью цилиндра следующим образом:

$$V^2 = 2gh (3)$$

Обозначим угол отклонения маятника за  $\varphi$ , длину нитей маятника за L, тогда:

$$h = L(1 - \cos \varphi) = 2L \sin^2 \frac{\varphi}{2},$$
 где  $\varphi \approx \frac{\Delta x}{L}$  (4)

Используя вышеперечисленные формулы, получаем

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x \tag{5}$$

Во второй части лабораторной работы используется крутильный баллистический маятник. Чертеж установки второй части работы приведен на рисунке 2



Рис. 2. Схема установки первой части работы.

Для определения скорости пули в этом случае, воспользуемся законом сохранения момента импульса в виде

$$mur = I\Omega \tag{6}$$

1

Здесь r — расстояние от линии пролета до оси вращения маятника, I — момент инерции маятника,  $\Omega$  — угловая скорость вращения маятника.

Запишем закон сохранения энергии:

$$k\frac{\varphi^2}{2} = I\frac{\Omega^2}{2} \tag{7}$$

Где k — модуль кручения проволоки, а  $\varphi$  — максимальный угол поворота маятника. Из вышеперечисленных формул получаем

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{8}$$

Из рисунка 2 следует, что

$$\varphi \approx \frac{x}{2d} \tag{9}$$

Где d – расстояние от шкалы, до оси вращения маятника.

Произведение kI можно определить, измерив периоды колебаний маятника с грузами M и без них. Тогда периоды таких колебаний равны, соотвественно:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \quad T_2 = 2\pi \sqrt{\frac{I - 2MR^2}{k}}$$
 (10)

Из этого получаем:

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_1^2 - T_2^2} \tag{11}$$

Где R – расстояние от центров масс грузов M до проволоки.

#### Ход работы:

1. Запишем погрешности измерительных приборов в таблицу 1.

| Прибор                    | Погрешность                            |
|---------------------------|----------------------------------------|
| Линейка                   | $\sigma = 0.5$ mm.                     |
| Весы                      | $\sigma = 5 \cdot 10^{-4} \text{ rp.}$ |
| Шкала на первой установке | $\sigma = 0.125 \; \text{mm}.$         |
| Шкала на второй установке | $\sigma = 0.5$ mm.                     |

Таблица 1. Погрешности

2. Измерим массы пулек, результаты занесем в таблицу 2

| Номер пули      | 1     | 2     | 3     | 4   | 5    | 6   | 7   | 8     |
|-----------------|-------|-------|-------|-----|------|-----|-----|-------|
| Масса пули, гр. | 0.509 | 0.512 | 0.511 | 0.5 | 0.51 | 0.5 | 0.5 | 0.501 |

Таблица 2. Результаты измерения масс пулек

- 3. Измерим длину нитей, на которых подвешен маятник. Получим  $L=220\pm0.05~{\rm cm}$ .
- 4. Измерим массу маятника. Получим  $M=2925\pm 5$  гр.
- 5. Произведем серию экспериментов по выстрелу из духового ружья. Запишем отклонение маятника, а также расчитанную по формуле 5 скорость для каждой пули в таблицу 3
  - 6. Усредняя полученные значения скорости:  $\bar{u} = 138.3 \pm 4 \text{ м/c}$ .

| Номер пули Отклонение маятника, мм. |       | Расчитанная скорость пули, м/с. |  |  |
|-------------------------------------|-------|---------------------------------|--|--|
| 1                                   | 11.25 | $136.5 \pm 4$                   |  |  |
| 2                                   | 11.5  | $138.7 \pm 4$                   |  |  |
| 3 11.5                              |       | $139.0 \pm 4$                   |  |  |
| 4                                   | 11.0  | $135.9 \pm 4$                   |  |  |
| 5                                   | 11.25 | $136.2 \pm 4$                   |  |  |
| 6                                   | 11.0  | $135.8 \pm 4$                   |  |  |
| 7                                   | 11.0  | $135.8 \pm 4$                   |  |  |
| 8                                   | 11.0  | $135.6 \pm 4$                   |  |  |

Таблица 3. Результаты измерения отклонений маятника и значения скоростей пуль

| С грузами, $10 \cdot T_1$ , с  |     |     |     |     |     |
|--------------------------------|-----|-----|-----|-----|-----|
| Без грузов, $10 \cdot T_2$ , с | 180 | 179 | 178 | 180 | 182 |

Таблица 4. Результаты измерения периода колебаний маятника

- 7. Перейдем ко второй установке. Измерим ее параметры, пользуясь обозначениями из теоретической части работы. Получим r=21 см., d=57 см., R=33 см.
- 8. Теперь измерим периоды колебаний маятника без грузов и с ними. Результаты занесем в таблицу 4.
  - 9. Пользуясь формулой 11, расчитаем величину  $\sqrt{kI}$

$$\sqrt{kI} = (97 \pm 2) \cdot 10^{-2} \frac{\kappa e \cdot M^2}{c}$$

10. Измерим и запишем в таблицу 5 массы второго набора пуль.

| Номер пули      | 1     | 2    | 3    | 4     | 5     | 6     | 7     | 8     |
|-----------------|-------|------|------|-------|-------|-------|-------|-------|
| Масса пули, гр. | 0.502 | 0.51 | 0.51 | 0.511 | 0.504 | 0.513 | 0.503 | 0.508 |

Таблица 5. Результаты измерения масс пулек

11. Проведем серию экспериментов со второй установкой. Измерим отклонения маятника, а также по форумлам 9 и 8 расчитаем величины  $\varphi$  и u. Результаты занесем в таблицу 6

| Номер пули | Отклонение маятника, см. | Угол поворота маятника, рад. | Расчитанная скорость п |  |  |
|------------|--------------------------|------------------------------|------------------------|--|--|
| 1          | 17.5                     | 0.15                         | $141.25 \pm 2$         |  |  |
| 2          | 18.0                     | 0.16                         | $143.00 \pm 2$         |  |  |
| 3          | 18.0                     | 0.16                         | $143.00 \pm 2$         |  |  |
| 4          | 18.0                     | 0.16                         | $142.72 \pm 2$         |  |  |
| 5          | 17.5                     | 0.15                         | $140.69 \pm 2$         |  |  |
| 6          | 18.0                     | 0.16                         | $142.17 \pm 2$         |  |  |
| 7          | 17.4                     | 0.15                         | $140.16 \pm 2$         |  |  |
| 8          | 17.5                     | 0.15                         | $139.58 \pm 2$         |  |  |

Таблица 6. Результаты измерения отклонений маятника и значения скоростей пуль

12. Усредняя значения скоростей, получим:  $\bar{u} = 141.5 \pm 2 \text{ м/c}$ .

### Заключение:

В работе были получены значения скорости пуль, выпущенных из духового ружья двумя способами: при помощи поступательного и крутильного баллистических маятников. Результаты:  $\bar{u}=138.3\pm4$  м/с. и  $\bar{u_2}=141.5\pm2$  м/с. совпали с точностью до погрешности.