ПРЯМАЯ НА ПЛОСКОСТИ

Рассмотрим основные уравнения, которыми можно задать в декартовой прямоугольной системе координат простейшую из линий на плоскости – прямую.

1. Параметрические уравнения прямой

Пусть на плоскости заданы фиксированная точка $M_0(x_0,y_0)$ и ненулевой вектор $\vec{m}(m_1,m_2)$. Тогда будет существовать единственная прямая m, проходящая через точку M_0 параллельно вектору $\vec{m}: \exists !\, m |\ M_0 \in m,\ \vec{m} \mid\mid m$. Получим параметрические уравнения этой прямой.

Выберем на прямой m текущую точку M(x, y). Тогда $M(x, y) \in m \iff \overline{M_0 M} = t \vec{m}$ (здесь t — произвольный параметр, — $\infty < t < \infty$). Перейдём в последнем равенстве к координатам:

$$x - x_0 = tm_1,$$

$$y - y_0 = tm_2$$

и получим параметрические уравнения прямой m:

$$x = x_0 + tm_1,$$

 $y = y_0 + tm_2.$ (1)

Вектор $\vec{m}(m_1, m_2)$, параллельный прямой, называется *направляющим вектором* этой прямой.

2. Каноническое уравнение прямой

Пусть $\vec{m}(m_1, m_2)$ — направляющий вектор прямой m и $m_1 \neq 0, m_2 \neq 0$. Тогда из уравнений (1) следует:

$$t = \frac{x - x_0}{m_1}, \quad t = \frac{y - y_0}{m_2}.$$

Приравняв правые части равенств, получаем каноническое уравнение прямой на плоскости:

$$\frac{x - x_0}{m_1} = \frac{y - y_0}{m_2} \,. \tag{2}$$

3. Уравнение прямой, проходящей через две заданные точки

Как известно, через две точки можно провести прямую, и только одну. Пусть на плоскости заданы две точки $M_1(x_1, y_1)$ и $M_2(x_2, y_2)$. Найдём уравнение прямой M_1M_2 . Для этого выберем на этой прямой текущую точку M(x, y).

Рассмотрим векторы $\overline{M_1M_2} = (x_2 - x_1, \ y_2 - y_1)$ и $\overline{M_1M} = (x - x_1, \ y - y_1)$. Очевидно, что $\overline{M_1M} \parallel \overline{M_1M_2}$, и координаты векторов пропорциональны:

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} \,. \tag{3}$$

Таким образом, мы получили уравнение прямой, проходящей через две точки $\,M_{_1}\,$ и $\,M_{_2}\,$.

4. Уравнение прямой в отрезках

Пусть прямая m пересекает оси координат и отсекает на оси Ox отрезок длины a, на оси Oy отрезок длины b.

Можем определить без труда координаты точек пересечения прямой с осями координат: A(a,0), B(0,b). Зная координаты двух точек, воспользуемся уравнением (3):

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}$$
, то есть $\frac{x-a}{-a} = \frac{y}{b}$ и $-\frac{x}{a} + 1 = \frac{y}{b}$.

Откуда и получаем уравнение прямой в отрезках:

$$\frac{x}{a} + \frac{y}{b} = 1. \tag{4}$$

5. Уравнение прямой с угловым коэффициентом

Рассмотрим прямую m с направляющим вектором $\vec{m} \big(m_1, \, m_2 \big)$. Пусть $m \not \mid O y$, тогда $m_1 \neq 0$. Величина $k = \frac{m_2}{m_1}$ называется *угловым коэффициентом* прямой m.

Свойства углового коэффициента к:

- 1. Значение коэффициента k не зависит от выбора направляющего вектора прямой m.
- 2. Если m || Ox, то k = 0.
- 3. Если $\phi = \angle \left(\vec{i}\;,\;\vec{m}\right)$, то $k = \frac{m_2}{m_1} = \operatorname{tg} \phi$ (геометрический смысл углового коэффициента):

Получим уравнение прямой с угловым коэффициентом. Пусть $M_0(x_0, y_0) \in m$. Тогда, зная координаты направляющего вектора \vec{m} , можем выписать каноническое уравнение прямой m:

$$\frac{x-x_0}{m_1} = \frac{y-y_0}{m_2} .$$

Откуда

$$\frac{m_2}{m_1}(x-x_0) = y - y_0,$$

$$y - y_0 = k(x-x_0) \text{ и } y = kx + (y_0 - kx_0).$$

Обозначив константу $y_0 - kx_0 = b$, получим известное уравнение прямой с угловым коэффициентом:

$$y = kx + b. (5)$$

6. Уравнение прямой, заданной точкой и нормальным вектором

Зададим на плоскости точку $M_0(x_0,y_0)$ и ненулевой вектор $\vec{n}(n_1,n_2)$. Тогда, как известно, на плоскости существует единственная прямая m, проходящая через точку M_0 перпендикулярно вектору \vec{n} : $\exists ! m | M_0 \in m, \vec{n} \perp m$.

Найдём уравнение прямой m. Выберем текущую точку $M\left(x,\,y\right)\in m$ и рассмотрим векторы $\overline{M_0M}=\left(x-x_0,\,y-y_0\right)$ и $\vec{n}\left(n_1,\,n_2\right)$. Очевидно, что $\vec{n}\perp\overline{M_0M}\Rightarrow\vec{n}\cdot\overline{M_0M}=0$. Записывая последнее равенство в координатах, получим уравнение прямой, заданной точкой и нормальным вектором:

$$n_1(x-x_0) + n_2(y-y_0) = 0.$$
 (6)

Вектор $\vec{n}(n_1, n_2)$, перпендикулярный прямой, называется *нормальным вектором* этой прямой.

7. Общее уравнение прямой

Получим общее уравнение прямой, зная точку на ней и координаты направляющего и нормального векторов.

a)
$$M_0(x_0, y_0) \in m, \ \vec{m}(m_1, m_2) || m$$

Запишем каноническое уравнение прямой m:

$$\frac{x-x_0}{m_1}=\frac{y-y_0}{m_2}.$$

Отсюда получаем $m_2(x-x_0)-m_1(y-y_0)=0$ и $m_2x+\left(-m_1\right)y+\left(m_1y_0-m_2x_0\right)=0$. Введём обозначения $m_1y_0-m_2x_0=c, \ m_2=b, \ -m_1=a$ и получим уравнение прямой m в виде: ax+by+c=0.

Это уравнение называется общим уравнением прямой, и вектор $\vec{m}(-b, a)$ будет являться направляющим для этой прямой.

6)
$$M_0(x_0, y_0) \in m, \ \vec{n}(n_1, n_2) \perp m$$

Запишем уравнение прямой, заданной точкой и нормальным вектором:

$$n_1(x-x_0)+n_2(y-y_0)=0$$
.

После несложных преобразований имеем

$$n_1x + n_2y + (-n_1x_0 - n_2y_0) = 0$$
.

Вводя обозначения $-n_1x_0-n_2y_0=c, n_2=b, n_1=a$, получаем ax+by+c=0

где вектор $\vec{n}(a, b)$ является нормальным вектором прямой.

Таким образом, общее уравнение прямой т имеет вид

$$m: ax + by + c = 0$$
 (7)
 $\vec{n}(a, b) \perp m, \vec{m}(-b, a) || m.$

Угол между прямыми

Пусть прямые l_1 и l_2 заданы уравнениями с угловыми коэффициентами:

$$l_1: y = k_1 x + b_1, l_2: y = k_2 x + b_2.$$

Найдём угол ϕ между прямыми l_1 и l_2 .

Пусть $\alpha_1 = \angle (l_1, Ox), \ \alpha_2 = \angle (l_2, Ox).$ Тогда $\alpha_2 = \varphi + \alpha_1$ (по теореме о внешнем угле треугольн), и $\varphi = \alpha_2 - \alpha_1$.

Если
$$\phi \neq \frac{\pi}{2}$$
, то $tg \phi = tg(\alpha_2 - \alpha_2) = \frac{tg \alpha_2 - tg \alpha_1}{1 + tg \alpha_1 tg \alpha_2}$.

Но по свойству углового коэффициента прямой tg $\alpha_1 = k_1$, tg $\alpha_2 = k_2$. Поэтому

$$tg\,\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}\,,$$

откуда можно найти величину угла ф между

заданными прямыми.

Если требуется вычислить острый угол между прямыми, не учитывая, какая из прямых является первой, какая – второй, то

$$tg \, \varphi = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|. \tag{*}$$

Если $l_1 \parallel l_2$, то $\phi = 0$ и $\operatorname{tg} \phi = 0$. Тогда из формулы (*) следует, что $k_2 - k_1 = 0$ и $k_2 = k_1$. Таким образом, получаем *условие параллельности прямых*: равенство их угловых коэффициентов.

Если $l_1 \perp l_2$, то $\varphi = \frac{\pi}{2}$ и $\operatorname{ctg} \varphi = 0$. Тогда из формулы (*) следует, что $\frac{1 + k_1 k_2}{k_2 - k_1} = 0$ и $1 + k_1 k_2 = 0$. И получаем, таким образом, *условие перпендикулярности прямых*: $k_1 k_2 = -1$.

Расстояние от точки до прямой

Пусть заданы точка $M_0\left(x_0,\,y_0
ight)$ и прямая $l\colon ax+by+c=0$. Найдём расстояние от точки M_0 до прямой $l\colon \rho\big(M_0,\,l\big)$. Пусть $\rho\big(M_0,\,l\big)=d$.

Выберем на прямой l точку $M_1 \left(x_1, \, y_1 \right)$ и проведём нормальный вектор $\vec{n} \left(a, \, b \right)$ к прямой l . Как видно по рисунку, длина отрезка d равна модулю проекции вектора $\overrightarrow{M_1 M_0} = \left(x_0 - x_1, \, y_0 - y_1 \right)$ на вектор \vec{n} . Таким образом:

$$d = \left| \prod_{\vec{n}} \overline{M_1 M_0} \right| = \left| \left| \overline{M_1 M} \right| \cos \left(\overline{M_1 M_0} - \vec{n} \right) \right| =$$

$$= \left| \left| \overline{M_1 M} \right| \frac{\overline{M_1 M} \cdot \vec{n}}{\left| \overline{M_1 M} \right| \left| \vec{n} \right|} \right| = \frac{\left| \overline{M_1 M} \cdot \vec{n} \right|}{\left| \vec{n} \right|} =$$

$$= \frac{\left| a(x_0 - x_1) + b(y_0 - y_1) \right|}{\sqrt{a^2 + b^2}} = \frac{\left| ax_0 + by_0 + \left(-ax_1 - by_1 \right) \right|}{\sqrt{a^2 + b^2}}.$$

Так как точка $M_1(x_1, y_1) \in l$, то $ax_1 + by_1 + c = 0$ — верное равенство и $c = -ax_1 - by_1$ — также

верное равенство. Поэтому
$$d=\dfrac{\left|ax_{0}+by_{0}+\overbrace{\left(-ax_{1}-by_{1}\right)}^{\xi}\right|}{\sqrt{a^{2}+b^{2}}}$$
 и
$$\rho\big(M_{0},\,l\big)=\dfrac{\left|ax_{0}+by_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}.$$