Exercices supplémentaires du 09/10/2018 Spectre des matrices L2 Biologie-Chimie - UE M257 - Groupe BC1

Raphaël Tinarrage - Benjamin Tron - Frédéric Menous raphael.tinarrage@u-psud.com http://pages.saclay.inria.fr/raphael.tinarrage/

Exercice 1

Définition - Vecteur propre et valeur propre

Soit A une matrice carrée, v un vecteur non-nul, et λ un nombre réel. Si $Av = \lambda v$, on dit que v est un vecteur propre de A, associé à la valeur propre λ .

Exemple - Vecteur propre et valeur propre

Soit
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$
, $v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, et $\lambda = 2$.

On a:
$$Av = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \times 2 + 2 \times (-1) \\ 2 \times 2 + 6 \times (-1) \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
.

D'autre part,
$$\lambda v = 2 \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \times 2 \\ 2 \times (-1) \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
.

En conclusion, $Av = \lambda v$, et donc v est un vecteur propre de A associé à la valeur propre λ .

Choisis une matrice A dans la première liste, un vecteur v dans la deuxième liste, et dis-moi si v est un vecteur propre de A, et pour quelle valeur propre. (Il faut le faire pour tous les couples A et v possibles.)

Première liste:

$$\bullet \ A_1 = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$

$$\bullet \ A_2 = \begin{bmatrix} 7 & 4 \\ 4 & 13 \end{bmatrix}$$

$$\bullet \ A_3 = \begin{bmatrix} 3 & 0 \\ 2 & 6 \end{bmatrix}$$

Deuxième liste:

•
$$v_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

•
$$v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

•
$$v_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Exercice 2

Méthode - Recherche de vecteurs propres

Soit A une matrice, et λ un nombre réel. On recherche un vecteur propre de A associé à la valeur propre λ .

- ① On pose le vecteur (inconnu) $v = \begin{bmatrix} x \\ y \end{bmatrix}$, et on calcule Av
- (2) On écrit la relation $Av = \lambda v$ sous forme de système, et on le résout.

Conclusion : si le système a une solution non-nulle v, alors v est vecteur propre de A associé à la valeur propre λ . Si la seule solution du système est le vecteur nul, alors λ n'est pas valeur propre de A.

Exemple 1 - Recherche de vecteurs propres

Soit $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$, et $\lambda = 7$. On recherche un vecteur propre de A associé à la valeur propre λ .

- ① Soit $v = \begin{bmatrix} x \\ y \end{bmatrix}$. On a $Av = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix}$.
- ② On veut résoudre $Av = \lambda v$, c'est à dire $\begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix} = \begin{bmatrix} 7x \\ 7y \end{bmatrix}$. Le système à résoudre est $\begin{cases} 3x + 2y = 7x \\ 2x + 6y = 7y \end{cases}$. Autrement dit, $\begin{cases} 2y = 4x \\ 2x = y \end{cases}$. Il suffit donc d'avoir y = 2x. Un solution de ce système est $\begin{cases} x = 1 \\ y = 2 \end{cases}$.

Conclusion : le vecteur $v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ est vecteur propre de A associé à la valeur propre λ .

2

Exemple 2 - Recherche de vecteurs propres

Soit $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$, et $\lambda = 6$. On recherche un vecteur propre de A associé à la valeur propre λ .

① Soit
$$v = \begin{bmatrix} x \\ y \end{bmatrix}$$
. On a $Av = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix}$.

② On veut résoudre $Av = \lambda v$, c'est à dire $\begin{bmatrix} 3x + 2y \\ 2x + 6y \end{bmatrix} = \begin{bmatrix} 6x \\ 6y \end{bmatrix}$. Le système à résoudre est $\begin{cases} 3x + 2y = 6x \\ 2x + 6y = 6y \end{cases}$. Autrement dit, $\begin{cases} 2y = 3x \\ 2x = 0 \end{cases}$. On obtient donc $\begin{cases} x = 0 \\ y = 0 \end{cases}$. La seule solution du système est nulle.

Conclusion : $\lambda = 6$ n'est pas valeur propre de A.

- Est-ce que $\lambda=5$ est valeur propre de $\begin{bmatrix} 6 & 2 \\ 2 & 9 \end{bmatrix}$? Si oui, quels sont les vecteurs propres associés ? Et $\lambda=4$?
- Est-ce que $\lambda = 5$ est valeur propre de $\begin{bmatrix} 5 & -1 & 1 \\ 0 & 4 & 1 \\ 0 & 0 & 5 \end{bmatrix}$? Si oui, quels sont les vecteurs propres associés? Et $\lambda = 4$?

Exercice 3

Méthode - Recherche des valeurs propres par le polynôme caractéristique Soit A une matrice. On recherche les valeurs propres λ de A.

- ① Soit la matrice $\lambda I = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix}$. On calcule le déterminant de $A \lambda I$. C'est un polynôme en λ , que l'on appelle le polynôme caractéristique de A.
- (2) On cherche les racines du polynôme caractéristique.

Conclusion : les valeurs propres de A sont les racines du polynôme caractéristique.

3

Exemple - Recherche de valeurs propres

Soit $A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$. On cherche ses valeurs propres.

- ② On calcule que les racines de $\lambda^2 9\lambda + 14$ sont $\lambda = 2$ et $\lambda = 7$.

Conclusion : les valeurs propres de A sont 2 et 7.

Calcule les valeurs propres des matrices suivantes.

$$\bullet \ A_1 = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$$

$$\bullet \ A_3 = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\bullet \ A_2 = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$$

$$\bullet \ A_4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Exercice 4

Pour toutes les matrices suivantes, trouve ses valeurs propres, et calcule les vecteurs propres associés.

$$\bullet \ A_1 = \begin{bmatrix} 3 & -1 \\ 6 & -2 \end{bmatrix}$$

$$\bullet \ A_4 = \begin{bmatrix} 0 & 4 & -2 \\ 0 & 1 & 0 \\ 0 & 3 & -2 \end{bmatrix}$$

$$\bullet \ A_2 = \begin{bmatrix} 8 & -2 \\ 15 & -3 \end{bmatrix}$$

$$\bullet \ A_5 = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

$$\bullet \ A_3 = \begin{bmatrix} 18 & -2 \\ 9 & 9 \end{bmatrix}$$

Exercice 5

Définition - Diagonalisation d'une matrice

Soit A une matrice carrée. Diagonaliser A, c'est trouver une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$. La matrice P est appelée matrice de passage.

Exemple - Diagonalisation d'une matrice

Soit
$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$
.

Définissons
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, et $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. On calcule que $P^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

D'autre part, on a aussi que :

$$PDP^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = A$$

En conclusion, $PDP^{-1} = A$. On a donc diagonalisé A.

Méthode - Diagonalisation d'une matrice à valeurs propres distinctes Soit A une matrice. On cherche à la diagonaliser.

- (1) On calcule les valeurs propres λ_1, λ_2 de A.
- (2) On cherche des vecteurs propres v_1, v_2 respectivement associés à λ_1, λ_2 .
- (3) On pose $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, et $P = \begin{bmatrix} v_1 & v_2 \\ \vdots & \vdots \end{bmatrix}$ (on met les vecteurs en colonne).

Conclusion : la matrice A se diagonalise en D par la matrice de passage P. Autrement dit, $A = PDP^{-1}$.

Exemple - Diagonalisation d'une matrice à valeurs propres distinctes

Soit $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$. On applique la méthode de diagonalisation précédente.

① Le polynôme caractéristique de A est $(\lambda - 2)(\lambda - 3)$. Les valeurs propres de A sont donc 2 et 3.

5

② En résolvant un système, on trouve qu'un vecteur propre associé à 2 est $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, et un vecteur propre associé à 3 est $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(3) On pose
$$D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, et $P = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Conclusion : la matrice A se diagonalise en D par la matrice de passage P.

Diagonaliser les matrices suivantes :

$$\bullet \ A_1 = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} 6 & 2 \\ 2 & 6 \end{bmatrix} \qquad \bullet A_{3} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 5 & 2 \end{bmatrix}$$

$$\bullet \ A_2 = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$$

$$\bullet \ A_4 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Exercice 6

Diagonaliser ce qui suit :

$$\bullet \ A_1 = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$$

$$\bullet \ A_3 = \begin{bmatrix} 2 & 1 \\ 5 & -2 \end{bmatrix}$$

$$\bullet \ A_2 = \begin{bmatrix} 2 & 14 \\ 1 & 7 \end{bmatrix}$$

$$\bullet \ A_4 = \begin{bmatrix} 0 & 1 \\ 5 & 0 \end{bmatrix}$$