

For an infinitesimal fluid element $\Delta z \rightarrow 0 \Rightarrow p_n = p_x = p_z$

Pressure at a point is a scalar (direction-independent)

Blaise Pascal (1623-1662)

Pascal's 'Barrel-Buster' experiment (~1646)

Net *surface force* in *y*-direction

$$d\vec{F}_{sy} = \left(p - \frac{\partial p}{\partial y}\frac{dy}{2}\right)dxdz(\hat{j}) + \left(p + \frac{\partial p}{\partial y}\frac{dy}{2}\right)dxdz(-\hat{j}) = -\frac{\partial p}{\partial y}\hat{j}dV$$

Total surface force, considering all three directions:

$$d\vec{F}_{s} = -\left(\frac{\partial p}{\partial y}\hat{i} + \frac{\partial p}{\partial y}\hat{j} + \frac{\partial p}{\partial y}\hat{k}\right)dV = -\nabla pdV$$

Body force (weight) of the fluid element $d\vec{F}_B = \rho \vec{g} dV$

Total force on the fluid element

$$d\vec{F} = d\vec{F}_{\scriptscriptstyle S} + d\vec{F}_{\scriptscriptstyle B} = -\nabla p d V + \rho \vec{g} d V -$$

For a static fluid element $d\vec{F} = 0 \Rightarrow -\nabla p + \rho \vec{g} = 0$

Governing Equation of fluid statics $\nabla p = \rho \vec{g}$

Note: The above concept can be extended for rigid body motion as well, but we will skip that discussion here (interested students may see the texts)

Fluid Statics

Manometry

Principles of fluid statics used in pressure measurement

M. K. Das, mkdas@iitk.ac.in

Governing Equation of fluid statics: $\nabla p = \rho \vec{g}$

x-direction:
$$\frac{\partial p}{\partial x} = \rho g_x$$
 y-direction: $\frac{\partial p}{\partial y} = \rho g_y$ z-direction: $\frac{\partial p}{\partial z} = \rho g_z$

Sometimes we align one axis (let's say z) vertically upward (against gravity), such that $g_x = g_y = 0; g_z = -g$

$$\Rightarrow \frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 \Rightarrow p = p(z) \qquad \frac{\partial p}{\partial z} = -\rho g = -\gamma$$

Integrating $p(z=h) = p(z=0) - \gamma h$ for constant ρ

Above Eq. shows that measurement of length can help us to know the pressure difference; briefly, this is the **principle of manometry**

$p(z=h) = p(z=0) - \rho gh$

Barometer

$$p_{\rm vap} = p_{\rm atm} - \rho g h$$

$$p_{\rm vap} \ll p_{\rm atm} \Rightarrow p_{\rm atm} = \rho g h$$

Barometer is the primitive form of manometer, more involved designs are there

Instead of mercury vapor pressure (or vacuum), most gages use ambient pressure as base pressure

Absolute and gage pressures

Pressure gages usually show gage pressure

Simplest manometer (piezometer)

$$p_{\rm A,\,absolute} = p_{\rm atm} + \rho g h_{\rm l}$$

$$p_{A, \text{gage}} = \rho g h_1$$

Piezometer contains the same fluid as the container A, this could be a serious problem for practical applications

U-tube manometer

Analysis key: start from one end !!

$$p_{\rm A,\,absolute} + \gamma_{\rm l} h_{\rm l} - \gamma_{\rm 2} h_{\rm 2} = p_{\rm atm}$$

$$p_{A, \text{gage}} = \gamma_2 h_2 - \gamma_1 h_1$$

To obtain gage pressure directly, put atmospheric pressure to be zero

Several other manometer types will be discussed in tutorials/discussions