Problem Set #4

Chris Rytting Kendra Robbins

Assignment: 8.1-8.12, 8.15,8.17,8.18

8.1

see jupyter notebook

8.2

see jupyter notebook

8.3

Let x_{GI} be the number of GI dolls produced in a week and x_J the number of Joey dolls produced in a week.

$$\begin{aligned} \max_{x_{GI},x_J} & 4x_{GI} + 3x_J \ s.t. : \\ & \frac{1}{4}x_{GI} + \frac{1}{6}x_J \leq 30 \\ & \frac{1}{30}x_{GI} + \frac{1}{30}x_J \leq 5 \\ & 0 \leq x_J \leq 200 \\ & x_{GI} \geq 0 \end{aligned}$$

8.4

Let $x_{i,j}$ denote the number units moving from i to j.

 $\min_{x_{A,B},x_{A,D},x_{B,C},x_{B,E},x_{B,D},x_{B,F},x_{C,F},x_{D,E},x_{E,F}}2x_{A,B}+5x_{A,D}+5x_{B,C}+7x_{B,E}+2x_{B,D}+9x_{B,F}+2x_{C,F}+4x_{D,E}+3x_{E,F}\ s.t.$:

$$\begin{aligned} x_{A,B} + x_{A,D} &= 10 \\ x_{B,C} + x_{B,E} + x_{B,D} + x_{B,F} - x_{A,B} &= 1 \\ x_{C,F} - x_{B,C} &= -2 \\ x_{D,E} - x_{A,D} - x_{B,D} &= -3 \\ x_{E,F} - x_{D,E} - x_{E,F} &= 4 \\ - x_{C,F} - x_{B,F} - x_{E,F} &= -10 \\ 0 &\leq x_{A,B} &\leq 6 \\ 0 &\leq x_{A,D} &\leq 6 \\ 0 &\leq x_{B,C} &\leq 6 \\ 0 &\leq x_{B,C} &\leq 6 \\ 0 &\leq x_{B,E} &\leq 6 \\ 0 &\leq x_{B,F} &\leq 6 \\ 0 &\leq x_{C,F} &\leq 6 \\ 0 &\leq x_{C,F} &\leq 6 \\ 0 &\leq x_{E,F} &\leq 6 \end{aligned}$$

(i)

maximize
$$3x_1+x_2 \ s.t.$$
:
$$x_1+3x_2+w_1=15$$

$$2x_1+3x_2+w_2=18$$

$$x_1-x_2+w_3=4$$

$$x_1,x_2,w_1,w_2,w_3\geq 0$$

ζ	=			$3x_1$	+	x_2
w_1	=	15	_	x_1	_	$3x_2$
w_2	=	18	_	$2x_1$	_	$3x_2$
w_3	=	4	_	x_1	+	x_2
ζ	=	12	+	$4x_2$	_	$3w_3$
$\overline{w_1}$	=	11	_	$4x_2$	+	w_3
w_2	=	10	_	$5x_2$	+	$2w_3$
x_1	=	4	+	x_2	_	w_3
ζ	=	20	_	$\frac{4}{5}w_2$	_	$\frac{7}{5}w_3$
$\overline{w_1}$	=	3	+	$\frac{4}{5}w_{2}$	_	$\frac{3}{5}w_{3}$
x_2	=	2	_	$\frac{1}{5}w_2$	+	$\frac{2}{5}w_{3}$
x_1	=	6	_	$\frac{1}{5}w_{2}$	_	$\frac{3}{5}w_{3}$

Optimizer: (6, 2) Optimum value: 20

(ii)

$$\begin{array}{ll} \text{maximize} & 4x + 6y \\ \text{subject to} & -x + 3x_2 + w_1 = 11 \\ & x + y + w_2 = 27 \\ & 2x + 5y + w_3 = 90 \\ & x, y, w_1, w_2, w_3 \geq 0 \end{array}$$

ζ	=			4x	+	6y
w_1	=	11	+	x	_	y
w_2	=	27	_	x	_	y
w_3	=	90	_	2x	_	5y
ζ	=	66	+	10 <i>x</i>	_	$6w_1$
\overline{y}	=	11	+	x	_	$\overline{w_1}$
w_2	=	16	_	2x	+	w_1
w_3	=	35	_	7x	+	$5w_1$
$=$ ζ	=	116	+	$\frac{8}{7}w_1$	_	$\frac{10}{7}w_3$
$\frac{\overline{\zeta}}{y}$	=	116 16	+	$\frac{8}{7}w_1$ $\frac{2}{7}w_1$	_	$\frac{\frac{10}{7}w_3}{\frac{1}{7}w_3}$
	= =		+		_ _ +	
\overline{y}	= = =	16	+ +	$\frac{2}{7}w_1$	_ _ + _	$\frac{1}{7}w_{3}$
y w_2	= = =	16 6	+ - + + -	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$
y w_2 x	= = =	16 6 5	+ - + + + +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$	- + -	$\frac{1}{7}w_3$ $\frac{2}{7}w_3$ $\frac{1}{7}w_3$
$ \begin{array}{c} y\\w_2\\x\\\hline \zeta \end{array} $	= = = = =	16 6 5 132	+ - + + - +	$\frac{2}{7}w_1$ $\frac{3}{7}w_1$ $\frac{5}{7}w_1$ $\frac{8}{3}w_2$	- + - - - +	

Optimizer: (15, 12) Optimum value: 132

8.6

$$\begin{array}{ll} \text{maximize} & 4b + 3j \\ \text{subject to} & 3b + 2j + w_1 = 360 \\ & b + j + w_2 = 150 \\ & j + w_3 = 200 \\ & b, j, w_1, w_2, w_3 \geq 0 \end{array}$$

$$\zeta = 4b + 3j
w_1 = 360 - 3b - 2j
w_2 = 150 - b - j
w_3 = 200 - j$$

$$\zeta = 450 + b - 3w_2
w_1 = 60 - b + w_2
j = 150 - b - w_2
w_3 = 50 + b + w_2
$$\zeta = 510 - w_1 - 2w_2
b = 60 - w_1 + w_2
j = 90 + w_1 - 2w_2
w_3 = 110 - w_1 + 2w_2$$$$

Optimal choice: 60 GI Barb soldiers, 90 Joey dolls Max profit: \$510

8.7

(i)

maximize
$$x_1 + 2x_2$$

subject to $-4x_1 - 2x_2 + x_3 = -8$
 $-2x_1 + 3x_2 + x_4 = 6$
 $x_1 + x_5 = 3$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

Auxiliary problem:

maximize
$$-x_0$$

subject to $-4x_1 - 2x_2 + x_3 - x_0 = -8$
 $-2x_1 + 3x_2 + x_4 - x_0 = 6$
 $x_1 + x_5 - x_0 = 3$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Optimal point: (3,4) Optimal value: 11

(ii)

$$\begin{array}{ll} \text{maximize} & 5x_1+2x_2\\ \text{subject to} & 5x_1+3x_2+x_3=15\\ & 3x_1+5x_2+x_4=15\\ & 4x_1-3x_2+x_5=-12\\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

Auxiliary problem:

maximize
$$-x_0$$

subject to $5x_1 + 3x_2 + x_3 - x_0 = 15$
 $3x_1 + 5x_2 + x_4 - x_0 = 15$
 $4x_1 - 3x_2 + x_5 - x_0 = -12$
 $x_0, x_1, x_2, x_3, x_4, x_5 \ge 0$

Coefficients of the objective function of the auxillary problem are negative, but the optimum is negative. Thus, the original problem has no feasible points.

$$\begin{array}{ll} \text{maximize} & -3x_1 + x_2 \\ \text{subject to} & x_2 + x_3 = 4 \\ & -2x_1 + 3x_2 + x_4 = 6 \\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Optimal point: (0,2)Optimal value: 2 8.8

$$\begin{array}{ll} \text{maximize} & -x-y-2z\\ \text{subject to} & -x+y \leq 2\\ & x-y \leq 3\\ & x-z \leq 4\\ & -x+z \leq 5\\ & x,y,z \geq 0 \end{array}$$

The unique feasible maximizer is (0,0,0).

8.9

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & -x+y \leq 1\\ & x-y \leq 1\\ & x-z \leq 1\\ & -x+z \leq 1\\ & x,y,z \geq 0 \end{array}$$

8.10

$$\label{eq:constraints} \begin{aligned} \text{maximize} & -x-y-z\\ \text{subject to} & x+y \leq -1\\ & x,y,z \geq 0 \end{aligned}$$

8.11

$$\begin{array}{ll} \text{maximize} & x+y+z\\ \text{subject to} & -x+y \leq 1\\ & x-y \leq 1\\ & x-z \leq 1\\ & -x+z \leq 1\\ & -x-y-z \leq -1\\ & x+y+z \leq 5\\ & x,y,z \geq 0 \end{array}$$

The auxillary problem is:

$$\begin{array}{ll} \text{maximize} & -x_0 \\ \text{subject to} & -x+y+x_0 \leq 1 \\ & x-y+x_0 \leq 1 \\ & x-z+x_0 \leq 1 \\ & -x+z+x_0 \leq 1 \\ & -x-y-z+x_0 \leq -1 \\ & x+y+z+x_0 \leq 5 \\ & x,y,z \geq 0 \end{array}$$

8.12

maximize
$$10x_1 - 57x_2 - 9x_3 - 24x_4$$

subject to $0.5x_1 - 1.5x_2 - 0.5x_3 + x_4 + x_5 = 0$
 $0.5x_1 - 5.5x_2 - 2.5x_3 + 9x_4 + x_6 = 0$
 $x_1 + x_7 = 0$
 $x_1, x_2, x_3, x_4, x_5, x_6, x_7 \ge 0$

8.15

Suppose that x is a primal feasible point and y is a dual feasible point. Then we have:

$$Ax \leq b$$

$$x \geq 0$$

$$A^{T}y \geq c$$

$$y \geq 0$$

So using these inequalities we have:

$$b^{T}y \ge (Ax)^{T}y = x^{T}A^{T}y \ge x^{T}c = (x^{T}c)^{T} = c^{T}x$$

8.17

Suppose we have this linear optimization problem:

 $\max c^T x$ subject to:

$$Ax \leq 0$$
$$x \geq 0$$

Then the dual of this problem is:

min $b^T y$ subject to:

$$A^T y \succeq c \\ y \succeq 0$$

The dual of the dual problem therefore is:

 $\max c^T x$ subject to:

$$(A^T)^T x \leq b$$
$$x \geq 0$$

which is equivalent to the original problem.

The dual is:

min
$$3y_1 + 5y_2 + 4y_3$$

subject to $2y_1 + y_2 + 2y_3 \ge 1$
 $y_1 + 3y_2 + 3y_3 \ge 1$
 $y_1, y_2, y_3 \ge 0$

Putting the dual into standard form, we get:

$$\max -3y_1 - 5y_2 - 4y_3$$
subject to
$$-2y_1 - y_2 - 2y_3 \le -1$$

$$-y_1 - 3y_2 - 3y_3 \le -1$$

$$y_1, y_2, y_3 \le 0$$

Solving the primal problem yields:

ζ	=			x_1	+	x_2
w_1	=	3	_	$2x_1$	_	x_2
x_2	=	5	_	x_1	_	$3x_2$
x_5	=	4	_	$2x_1$	_	$3x_2$
ζ	=	$\frac{3}{2}$	+	$\frac{1}{2}x_2$	_	$\frac{1}{2}w_1$
$\overline{x_1}$	=	$\frac{3}{2}$	_	$\frac{1}{2}x_2$	_	$\frac{1}{2}w_1$
w_2	=	$\frac{7}{2}$	_	$\frac{5}{2}x_2$	+	$\frac{1}{2}w_1$
w_3	=	1	_	$2x_2$	+	w_1
$-\zeta$	=	$\frac{7}{4}$	_	$\frac{1}{4}w_1$	_	$\frac{1}{4}w_1$
$\overline{x_1}$	=	$\frac{5}{4}$	_	$\frac{3}{4}w_1$	+	$\frac{1}{4}w_3$
w_2	=	$\frac{9}{4}$	_	$\frac{3}{4}w_1$	+	$\frac{5}{4}w_{3}$
x_2	=	$\frac{1}{2}$	+	$\frac{1}{2}w_1$	_	$\frac{1}{2}w_3$

The function achieves its optimum $\frac{7}{4}$ at the point $(\frac{5}{4},\frac{1}{2})$

To solve the dual we make an auxillary problem:

maximize
$$-y_0$$

subject to $-2y_1 - y_2 - 3y_3 - y_0 \le -1$
 $-y_1 - 3y_2 - 3y_3 - y_0 \le -1$
 $y_1, y_2, y_3, y_0 \le 0$

The optimum of $\frac{7}{4}$ is achieved at the point $(\frac{1}{4},0,\frac{1}{4})$.