ISÉN - CIR2 1^{er} mars 2010

DS de maths n° 4

Diagonalisation

Consignes

- La durée de l'épreuve est 2h.
- L'énoncé comporte 3 problèmes totalisant 16 sous-questions sur 2 pages.
- L'usage de la calculatrice est interdit.
- Rédigez clairement vos solutions en explicitant votre raisonnement et mentionnant les résultats utilisés.
- Bon courage!

1 – Une suite "non diagonalisable"

Considérons la suite (a_n) satisfaisant une récurrence linéaire d'ordre 2 et dont les premiers termes sont

$$0, 1, 4, 12, 32, 80, \dots$$

a) Déterminer les constantes α et β pour lesquelles on a

$$a_{n+2} = \alpha a_{n+1} + \beta a_n, \qquad n \geqslant 0.$$

b) Soit $A = \begin{pmatrix} \alpha & \beta \\ 1 & 0 \end{pmatrix}$. Obtenir une formule générale pour A^n et en déduire une formule générale pour a_n .

[Indication: il pourrait être utile de calculer la forme normale de Jordan de <math>A]

c) Montrer que $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ existe, et déterminer sa valeur.

2 – Matrices semblables

Soit **F** un corps et $A, B \in \mathcal{M}_n(\mathbf{F})$ deux matrices semblables, i.e. $A \sim B$.

- a) Rappeler ce que cela signifie, et démontrer que la similitude est une relation d'équivalence sur $\mathcal{M}_n(\mathbf{F})$.
- b) Montrer que $A^T \sim B^T$ (A^T désigne la transposée de A).
- c) Si A est inversible, montrer que B l'est également et que $A^{-1} \sim B^{-1}$.
- d) Démontrer que $A^k \sim B^k$ pour tout $k \ge 0$.
- e) Plus généralement, montrer que $f(A) \sim f(B)$ pour tout polynôme $f \in \mathbf{F}[x]$.
- f) Montrer : si $v \in \mathbf{F}^n$ est un vecteur propre pour A associé à la valeur propre λ et $f \in \mathbf{F}[x]$, alors v est un vecteur propre pour f(A) associé à la valeur propre $f(\lambda)$.
- g) En conclure que si A est diagonalisable, alors toutes les matrices de la forme f(A) pour $f \in \mathbf{F}[x]$ sont simultanément diagonalisables : il existe $P \in \mathrm{GL}_n(\mathbf{F})$ telle que

$$\forall_{f \in \mathbf{F}[x]} \quad P^{-1}f(A)P \text{ est diagonale.}$$

3 – Endomorphismes qui commutent

On dit que deux endomorphismes $\varphi, \psi \in \mathcal{L}(V)$ d'un **F**-espace vectoriel V de dimension finie sont simultanément diagonalisables s'il existe une base \mathcal{B} telle que les matrices $[\varphi]_{\mathcal{B}}$ et $[\psi]_{\mathcal{B}}$ soient toutes deux diagonales. Nous allons dans ce problème caractériser les paires d'endomorphismes simultanément diagonalisables.

- a) Si φ et ψ sont simultanément diagonalisables, montrer que $\varphi \circ \psi = \psi \circ \varphi$ (on dit que φ et ψ commutent). [Indication: calculer les matrices représentant $\varphi \circ \psi$ et $\psi \circ \varphi$ dans une base appropriée . . .]
- b) Soit $\varphi \in \mathcal{L}(V)$ et W un sous-espace stable sous l'action de φ , c'est-à-dire tel que $\varphi(W) \subseteq W$. Montrer que si φ est diagonalisable, alors sa restriction $\varphi|_W$ à W l'est également.

 $[Indication: comparer les polynômes minimaux de <math>\varphi$ et de $\varphi|_W]$

- c) Soient $\varphi, \psi \in \mathcal{L}(V)$ deux endomorphismes qui commutent. Montrer que tout espace propre pour φ est stable sous l'action de ψ .
- d) Conclure : deux endomorphismes sont simultanément diagonalisables \iff ils sont tous deux diagonalisables et commutent.
- e) Montrer que les matrices à coefficients rationnels

$$A = \begin{pmatrix} 2 & 1 \\ -2 & -1 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 9 & -4 \\ 20 & -9 \end{pmatrix}$$

sont toutes deux diagonalisables, mais pas simultanément.

f) Considérons maintenant les deux matrices

$$A = \begin{pmatrix} 3 & -2 & -2 \\ -2 & 3 & 2 \\ 6 & -6 & -5 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} -2 & 2 & 2 \\ 0 & 2 & 0 \\ -4 & 2 & 4 \end{pmatrix}.$$

Vérifier que AB = BA, et déterminer une base de \mathbb{Q}^3 pour laquelle elles sont toutes deux diagonales.