

Verb Detection Group B

Siyi Dai

Motivation

- Known:
 - Objects + Positions
 - Noun (object interacting with hands)
- Goal:
 - Detect Action/Verb
- Requirement:
 - **Accuracy** of verb detection
 - **Runtime speed** for real-time detection

Motivation

Classic Image Classification:

256x256x3 or even more!

Hand Landmarks Classification:

only 21 points per hand!

- Lu, Dengsheng, and Qihao Weng. "A survey of image classification methods and techniques for improving classification performance."
- Zhang, Fan, et al. "Mediapipe hands: On-device real-time hand tracking."

Tasks

Dataset Preparation

- Data Recording and Extraction
- **Dataset Generation**

LSTM Model

- Data Pre-process
- Data Loader
- Model Building
- **Model Training**

Results Testing

Verb Pipeline

Dataset Preparation

- Data Recording and Extraction
 - Data **Recording**
 - 8 rosbags, 4 subjects, **Ego** perspective
 - Duration: 3-4mins
 - 5 rosbags, 3 subjects → training
 - 3 rosbags, 3 subjects → testing
 - Data Extraction
 - Republish compressed images
 - Image saver
 - save in *.jpg

Dataset Preparation

Dataset Generation

- Label the images from each bags into 12 classes
 - □ "close": 0,
 - "decorate": 1,
 - □ "flip": 2,
 - "move_object": 3,
 - □ "open": 4,
 - □ "pick_up": 5,
 - "pour": 6,
 - "put_down": 7,
 - □ "screw": 8,
 - □ "shovel": 9,
 - □ "squeeze": 10,
 - "other": 11

Consistency in Criteria → Label all of the images: **37805** images

Dataset Preparation

Dataset Generation Tool

Folder Structure for each recording/rosbag

```
Level 0: Recording name
sy0
                    Level 1: Verb name
   close
                    Level 2: Recording Sequence
  ____ sy0_0
    images 🗆 Level 3: Image
      — close_sy0_0.csv
```

- Generate hand landmarks with **Mediapipe**
 - Detecte 21 points per hand
 - landmark_pb2.NormalizedLandmarkList
 - Output as DataFrame
 - Save in .json/.csv

Data Pre-process

- Drawbacks of Mediapipe: no detection, no output
- **High** requirement in recordings! \rightarrow we re-recorded for 3 times.

Figure 18: The "Perfectly Wrong" Example (speed x 0.5)

- Proper move speed
- Steady perspective
- Show complete hand
- No other subjects
- (show complete objects)

- **Data Pre-process**
 - Drawbacks of mediapipe: no detection, no output
 - Complete features:
 - zero-padding when there's only one hand
 - Continuous input:
 - **zero-padding** when there's no detection at all
 - The number of features: 126 = 21 points x (x, y, z) x (left, right)

Figure 19: The No Detection Examples

Data Loader

- Temporal sequence → LSTM
 - Proper time steps and a stride for sliding window

Figure 20: Sliding window demo

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory."

Runtime =

Preprocess time + Predict time

Data Loader Parameters Tuning

(Stride,	de, Macro Avg Number of Classes		Runtime (s) ↓		
Time_steps)	Accuracy ↑	f1-score ↑	Accuracy >= 0.85 ↑	Mean ↓	Std ↓
(10, 100)	0.85	0.68	2/12	7.531	0.025
(5, 50)	0.78	0.60	1/12	3.981	0.014
(5, 20)	0.74	0.47	1/12	1.830	0.013
(1, 20)	0.98	0.93	11/12	1.837	0.020
(1, 10)	0.98	0.94	12/12	0.785	0.009
(1, 5)	0.97	0.89	8/12	0.524	0.006

Table 1: Stride and Timesteps Combination Comparison under 2 layers of LSTM with 128 units and 64 units. Execution time is calculated by 100 iterations with Google Colab GPU accelerator

Model Building

Model	A = 2.14 = 2.4	Macro Avg	Number of Classes	Inference Time (ms)↓	
Model	Accuracy ↑	f1-score ↑	Accuracy >= 0.85 ↑	Mean ↓	Std ↓
1 x LSTM, 64	0.96	0.88	8/12	4.837	0.752
1 x LSTM, 128	0.97	0.91	11/12	4.180	0.341
Encoder with 2 x LSTM, 128, 64	0.98	0.94	12/12	4.922	0.489
Autoencoder with 2 x LSTM, 128, 64 2 x LSTM, 64, 128	0.97	0.90	9/12	6.323	0.552

Table 2: Model Comparison with stride = 1 and timesteps = 10, Inference time is calculated by 1000 iterations with Google Colab GPU accelerator

Model Building

Model: "LSTM_128"

Layer (type)	Output Shape	Param #
O_LSTM (LSTM)	(None, 10, 128)	130560
1_Dropout (Dropout)	(None, 10, 128)	0
2_Flatten (Flatten)	(None, 1280)	0
3_Dense (Dense)	(None, 128)	163968
4_Dense (Dense)	(None, 12)	1548

Total params: 296,076

Trainable params: 296,076 Non-trainable params: 0

Table 3: Model Summary

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory."

LSTM Model - Classification Report

	precision	recall	f1-score	support	
close	0.91	0.87	0.89	60	
decorate	0.96	0.95	0.96	288	
flip	0.87	0.89	0.88	80	
move_object	0.96	0.84	0.90	76	Umation soll : 0
open	0.82	0.97	0.89	80	"patience": 8,
pick_up	0.94	0.94	0.94	431	"validation_split": 0.3,
pour	0.98	0.95	0.96	165	"epochs": 100,
put_down	0.89	0.85	0.87	209	"batch simo": 22
screw	0.96	0.95	0.95	333	"batch_size": 32,
shovel	0.87	0.77	0.81	209	
squeeze	0.91	0.96	0.93	171	
other	0.99	0.99	0.99	5423	
accuracy			0.97	7525	
macro avg	0.92	0.91	0.91	7525	
weighted avg	0.97	0.97	0.97	7525	

Table 4: Classification Report

Results Testing - Verb pipeline

- **Data Pre-process**
 - Zero-paddings → Content-fillings
 - 6000 frames \rightarrow small batch
 - What if the timestamp gap is not in the middle, but in the beginning or the end?
 - What if in this batch, there is no detection at all?
 - What if ...?
 - The number of features: 126 = 21 points x (x, y, z) x (left, right)
 - Data Window: $2D \rightarrow 3D$
 - **Timestamp** Check
- Visualization for Hand Landmarks
 - Debug and visualizer
- Model **Load** and **Predict**

Results Testing - Verb pipeline

- **Runtime Optimization**
 - Load model while predict → integrated pipeline 2788.24ms
 - Load model before predict → much faster
 - predict \rightarrow 37.22ms
 - predict on batch \rightarrow 4.18 ms
 - Load labels before predict
- **Runtime = Preprocess time + Predict time**
 - \rightarrow mean = **804.66ms**, std = 8.31ms
 - calculated by 500 iterations with Google Colab GPU accelerator
 - **Original: 2788.24ms** → **Final: 804.66ms**
- Runtime reduction: $71\% \downarrow$

Results Testing - Verb pipeline

Original Image Flow

Image Batch = 10

Mediapipe Process

0 0 x,0 0 y,0 0 z,0 1 x,0 1 y,0 1 z,0 2 x,0 2 y,0 2 0.7134225368499756,0.5003337860107422,1.726602505414 0.712389349937439,0.49606287479400635,1.024372409119 0.7128814458847046,0.5019252896308899,2.348308356658 0.3508577048778534,0.575818657875061,3.2451970355396 0.7106701135635376,0.5093257427215576,3.208752445971 0.7099168300628662,0.5119991302490234,3.026243575732 0.7075582146644592,0.5113846063613892,3.204249026113 0.7047097682952881,0.5115142464637756,3.009581348578 0.7087118625640869, 0.5082047581672668, 2.643965615334

The current action is: close

Fill in Content

Model Predict

Verb Detection

Figure 20: Verb Pipeline Workflow