Лабораторная работа № 2

Определение ускорения тела при равноускоренном движении.

Цель: вычислить ускорение шарика, скатывающегося по наклонному желобу.

Оборудование: секундомер, демонстрационная линейка, штатив, шарик, желоб, металлический цилиндр.

Порядок выполнения работы.

1. Укрепите жёлоб с помощью штатива в наклонном положении под наименьшим углом к горизонту (h_{min)}, на

- 2. Пустите шарик с верхнего конца жёлоба. С помощью секундомера измерьте время скатывания шарика до момента его столкновения с цилиндром. Длина пути шарика по жёлобу S должна быть постоянной
- 3. Повторите опыт ещё три раза.
- 4. Увеличивая h каждый раз на 0,03 м, проведите эксперименты ещё для трёх высот.
- 5. Вычислите среднее время движения шарика t_{cp} для каждой высоты.
- 6. Вычислите ускорение a для каждой высоты.
- 7. Постройте график зависимости ускорения a от изменения высоты h.
- 8. Сделайте оценку погрешностей Результаты измерений и вычислений занесите в таблицу.

h, м	t ₁ , c	t ₂ , c	t ₃ , c	t ₄ , c	t _{cp} , c	Ѕ, м	$a, \frac{M}{c^2}$
h min							
h _{min} +0,03							
h min +0,06							
h min +0,09							