From Cellular Automata to the Lattice Boltzmann Method

Theresa Pollinger, Marcial Gaißert Ferienakademie Sarntal 2017 September 6, 2017 Outline

The Lattice Boltzmann Method

Collide Step

Collide Step

One collide step for a D2Q9-stencil

Collide Step

One collide step for a D2Q9-stencil

Stream Step

One stream step for a D2Q9-stencil

Stream Step

Particle distribution function f_i : discrete in space and time, continuous in probability values

One stream step for a D2Q9-stencil

...is what we get when we apply both steps:

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

With collision operator $\Omega_i(\mathbf{x},t)$, e.g.:

• BGK:
$$\Omega(t) = \frac{1}{\tau}(f_i^{\text{eq}} - f_i) = \omega(f_i^{\text{eq}} - f_i)$$

TRT:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

...is what we get when we apply both steps:

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

With collision operator $\Omega_i(\mathbf{x},t)$, e.g.:

- BGK: $\Omega(f) = \frac{1}{\tau}(f_i^{eq} f_i) = \omega(f_i^{eq} f_i)$
- TRT:

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

...is what we get when we apply both steps:

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

With collision operator $\Omega_i(\mathbf{x},t)$, e.g.:

- BGK: $\Omega(f) = \frac{1}{\tau}(f_i^{eq} f_i) = \omega(f_i^{eq} f_i)$
- TRT:

and the equilibrium particle distribution function $f_i^{eq} =$

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

...is what we get when we apply both steps:

$$f_i(\mathbf{x} + \mathbf{c}_i \Delta t, t + \Delta t) = f_i(\mathbf{x}, t) + \Omega_i(\mathbf{x}, t)$$

With collision operator $\Omega_i(\mathbf{x},t)$, e.g.:

- BGK: $\Omega(f) = \frac{1}{\sigma}(f_i^{eq} f_i) = \omega(f_i^{eq} f_i)$
- TRT:

and the equilibrium particle distribution function $f_i^{eq} =$

Cf. Boltzmann Equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

Moments - the Interesting Outputs in LBM

Density and velocity are given locally

$$\rho(\mathbf{x},t) = \sum_{i} f_{i}(\mathbf{x},t)$$

$$\rho \mathbf{u}(\mathbf{x},t) = \sum_{i} \mathbf{c}_{i} f_{i}(\mathbf{x},t)$$

Nondimensionalization – setting the step size

= Normalization in the three physical dimensions time, space, mass

$$\Delta x^* = 1 = C_x \cdot \Delta x$$
$$\Delta t^* = 1 = C_t \cdot \Delta t$$
$$\Delta \rho^* = 1 = C_\rho \cdot \Delta \rho$$

Nondimensionalization – setting the step size

= Normalization in the three physical dimensions time, space, mass

Usual choice:

$$\Delta x^* = 1 = C_x \cdot \Delta x$$
$$\Delta t^* = 1 = C_t \cdot \Delta t$$
$$\Delta \rho^* = 1 = C_\rho \cdot \Delta \rho$$

Nondimensionalization – setting the step size

= Normalization in the three physical dimensions time, space, mass

Usual choice:

$$\Delta x^* = 1 = C_x \cdot \Delta x$$
$$\Delta t^* = 1 = C_t \cdot \Delta t$$
$$\Delta \rho^* = 1 = C_\rho \cdot \Delta \rho$$

The kinematic velocity in lattice units is directly linked to ω/τ :

Thanks for listening.

Any questions?

References