

Rechnernetze

4. Layer 1-3 am Beispiel Ethernet

ISO-Referenzmodell (Verteilte) Anwendungen • OSI-Modell = 7. Application Layer Reference Model for Open 6. Presentation Layer Systems Interconnection 5. Session Layer Referenzmodell! 4. Transport Layer Realisierung Netzwerkorientierung • Ebene 1-3: Hardware 3. Network Layer (Firmware) 2. Link Layer • Netzwerk-Controller 1. Physical Layer • Ebene 4-7: Software Kommunikationsnetzwerk

name	description	
IEEE 802.1	Bridging (networking) and Network Management	
IEEE 802.2	Logical link control	
IEEE 802.3	Ethernet	
IEEE 802.4	Token bus	
IEEE 802.5	Defines the MAC layer for a Token Ring	
IEEE 802.6	Metropolitan Area Networks	
IEEE 802.7	Broadband LAN using Coaxial Cable	
IEEE 802.8	Fiber Optic TAG	
IEEE 802.9	Integrated Services LAN	
IEEE 802.10	Interoperable LAN Security	
IEEE 802.11 a/b/g/n	Wireless LAN & Mesh (Wi-Fi certification)	
IEEE 802.12	demand priority	
IEEE 802.13		
IEEE 802.14	Cable modems	
IEEE 802.15	Wireless PAN	
IEEE 802.15.1	Bluetooth certification	
IEEE 802.15.4	ZigBee certification	
IEEE 802.16	Broadband Wireless Access (WiMAX certification)	
IEEE 802.16e	(Mobile) Broadband Wireless Access	
IEEE 802.16.1	Local Multipoint Distribution Service	
IEEE 802.17	Resilient packet ring	
IEEE 802.18	Radio Regulatory TAG	
IEEE 802.19	Coexistence TAG	
IEEE 802.20	Mobile Broadband Wireless Access	
IEEE 802.21	Media Independent Handoff	
IEEE 802.22	Wireless Regional Area Network	
IEEE 802.23	Broadband ISDN system	

IEEE 802

- LMSC = LAN/MAN Standards Committee (Project 802)
 - 802 zufällig nächste freie Zahl
 - oder erstes Treffen (Februar 1980)
- Link-Layer (LLC)
- Medium-Access (MAC)
 - Untere Network Layer

Ziele

- Einfach zu erweiterndes Kommunikationssystem
 - Mehrere Gebäude
- Kostengünstige Lösung
 - Passives System
 - Alle Kontrolle in den kommunizierenden Endgeräten
 - Einfache Erweiterbarkeit der Topologie
- "Reliability through Simplicity"
 - Keine redundante Verbindungen
 - Kein Store-And-Forward Netz

9

Varianten

Benennung	Übertragunsrate	Charakteristika
10BASE5	10 MBit/s	Original; Thick Ethernet
10BASE2	10 MBit/s	Thin Ethernet
10BASE-T	10 MBit/s	Twisted-Pair-Kabel (TP)
100BASE-TX	100 MBit/s	
100BASE-FX	100 MBit/s	Lichtwellenleiter
1000BASE-T	1 GBit/s	Häufigste Fassung (verwendet TP)
1000BASE-**	1 GBit/s	Diverse Lösungen mittels Glasfaser
10GBASE-**	10 GBit/s	Primär Lösungen auf Basis Glasfaser
10GBASE-T	10 GBit/s	Oder doch auch mit Kupferkabel?

Rechnernetze

4.1 Thick Ethernet

OUI Beispiele

00-1B-60 001B60	(hex) (base 16)	NAVIGON AG NAVIGON AG Berliner Platz 11 Weerzburg Bavaria 97080 GERMANY	
00-1B-61 001B61	(hex) (base 16)	Digital Acoustics, LLC Digital Acoustics, LLC 37 Sherwood Terrace Lake Bluff IL 6044 OWITED GRADS	
00-1B-62 001B62	(hex) (base 16)	JHT Optoelectronics Co.,Ltd. JHT Optoelectronics Co.,Ltd. Hetian industrial Park Trd,Houjie Town, Donguan, Dongguan Guangdong \$23945 CHINA	
00-1B-63 001B63	(hex) (base 16)	Apple Computer Inc. Apple Computer Inc. 1 Infinite Lofo Cupertino California 95014 UNITED STATES	
00-1B-64 001B64	(hex) (base 16)	IsaacLandKorea Co., Ltd, IsaacLandKorea Co., Ltd, Rm 608, Hangang-Byundai-Byel Bldg. 2-36, Hangangno 2-ga, Yongsan-gu, Seoul 140-871 KOREA, REPUBLIC OF	
00-1B-65 001B65	(hex) (base 16)	China Gridcom Co., Ltd China Gridcom Co., Ltd 21/F, Huaneng Building, No. 2068 Shennan Main Road Shenshen Guangdong 0086 CHINA	
00-1B-66 001B66	(hex) (base 16)	Sennheiser electronic GmbH & Co. KG Sennheiser electronic GmbH & Co. KG	
			23

23

Länge/Typ

- Unterschiedliche Bedeutung je nach Herkunft
 - Typ = ursprüngliches DIX-Format (Ethernet_II)

Тур	Dezimal	Protokoll
0-05dc	0-1500	Länge
0600	1536	XEROX IDP
0800	2048	IP
0805	2053	X.25
0806	2054	ARP
8035	32821	RARP
809b	32923	AppleTalk
8137	33079	Novell

0x0800 Internet Protocol, Version 4 (IPv4) 0x0806 Address Resolution Protocol (ARP) Weitere EtherTypes Wake-on-LAN Reverse Address Resolution Protocol (RARP) VLAN-tagged frame (IEEE 802.1Q) Novell IPX (alt) 0x8137 0x8138 0x86DD Internet Protocol, Version 6 (IPv6) MAC Control 0x0808 CobraNet 0x8819 MPLS unicast 0x8847 MPLS multicast 0x8848 0x8863 PPPoE Discovery Stage PPPoE Session Stage EAP over LAN (IEEE 802.1X) 0x889A HyperSCSI (SCSI over Ethernet) 0x98&2 ATA over Ethernet 0x88&4 EtherCAT Protocol Provider Bridging (IEEE 802.1ad) AVB Transport Protocol (AVBTP) SERCOS-III HomePlug 0::8825 MAC security (IEEE 802.1AE) Precision Time Protocol (IEEE 1588) 0x88f7 Fibre Channel over Ethernet 0x8906 FCoE Initialization Protocol 0x0914 0x9100 Q-in-Q Veritas Low Latency Transport (LLT) d 0×CAFE

Rechnernetze

Ethernet Frames in Wireshark

```
def sendPacket(sock,host,port,l):
     "Send a packet of given length l with content 01020304..ff0001..""
   bs = bytearray(1)
   for i in range(l):
      bs[i] = i % 255
                                          Modifiziertes netcat (UDP, Python)
   sock.sendto(bs,(host,port))
def findMaximumPacketSize(sock,host,port):
     ""Determine the maximum packet size to be send"""
   low = 1024
   high = maxBufferSize
   while high-low > 1:
       m = (low + high) // 2
       try:
           sendPacket(sock,host,port,m)
       except OSError:
          high = m
   return low
def sendPackets(host,port):
   with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as c_sock:
       msize = findMaximumPacketSize(c sock,host,port)
       print("maximum packet size is {0}".format(msize))
       me = math.floor(math.log2(msize))+1
       sizes = [2 ** i for i in range(me)]
       sizes.append(msize)
       for l in sizes:
              sendPacket(c_sock,host,port,l)
              sendPacket(c_sock,host,port,l+1)
           except OSError:
                                                                                                                                27
               continue
```

```
29 0.008498 10.42.2.2 10.42.1.103
                                                         43 52855 → 4242 Len=1
30 0.008498 10.42.2.2 10.42.1.103
                                      UDP
                                                         44 52855 + 4242 Len=2
31 0.008504 10.42.2.2 10.42.1.103
                                                         44 52855 + 4242 Len=2
                                                                                                 in Wireshark
32 0.008528 10.42.2.2 10.42.1.103
                                      UDP
                                                         45 52855 → 4242 Len=3
33 0.008544 10.42.2.2 10.42.1.103
                                      UDP
                                                         46 52855 → 4242 Len=4
34 0.008655 10.42.2.2 10.42.1.103
                                                         47 52855 → 4242 Len=5
35 0.008656 10.42.2.2 10.42.1.103
                                      UDP
                                                         50 52855 → 4242 Len=8
                                                         51 52855 → 4242 Len=9
36 0.008656 10.42.2.2 10.42.1.103
                                      UDP
                                                         58 52855 → 4242 Len=16
37 0.008656 10.42.2.2 10.42.1.103
38 0.008656 10.42.2.2 10.42.1.103
                                      UDP
                                                         59 52855 → 4242 Len=17
39 0.008656 10.42.2.2 10.42.1.103
                                                         74 52855 → 4242 Len=32
                                      UDP
                                                         75 52855 → 4242 Len=33
40 0.008656 10.42.2.2 10.42.1.103
41 0.008656 10.42.2.2 10.42.1.103
42 0.008669 10.42.2.2 10.42.1.103
                                                        106 52855 → 4242 Len=64
107 52855 → 4242 Len=65
                                      LIDP
                                      UDP
43 0.008673 10.42.2.2 10.42.1.103
44 0.008731 10.42.2.2 10.42.1.103
                                     UDP
                                                        171 52855 → 4242 Len=129
                                                        298 52855 → 4242 Len=256
45 0.008731 10.42.2.2 10.42.1.103
                                      UDP
46 0.008731 10.42.2.2 10.42.1.103
                                                        299 52855 - 4242 Len=257
47 0.008812 10.42.2.2 10.42.1.103
48 0.008813 10.42.2.2 10.42.1.103
                                      UDP
                                                        554 52855 → 4242 Len=512
                                                        555 52855 → 4242 Len=513
                                      UDF
49 0.008913 10.42.2.2 10.42.1.103
                                                       1066 52855 → 4242 Len=1024
                                                       1067 52855 → 4242 Len=1025
50 0.008983 10.42.2.2 10.42.1.103
                                      UDP
51 0.009202 10.42.2.2 10.42.1.103
                                                       1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=a103) [Reassembled in #52]
                                      IPv4
52 0.009203 10.42.2.2 10.42.1.103
                                                        610 52855 - 4242 Len=2048
                                                       1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=a91b) [Reassembled in #54] 611 52855 \rightarrow 4242 Len=2049
53 0.009309 10.42.2.2 10.42.1.103
                                      IPv4
54 0.009309 10.42.2.2 10.42.1.103
                                     UDP
                                                        1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=4aff) [Reassembled in #57]
55 0.009746 10.42.2.2 10.42.1.103
                                                       1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=4aff) [Reassembled in #57]
56 0.009747 10.42.2.2 10.42.1.103
                                      IPv4
57 0.009747 10.42.2.2 10.42.1.103
                                      UDP
                                                       1178 52855 → 4242 Len=4096
58 0.009951 10.42.2.2 10.42.1.103
                                                        1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=62f4) [Reassembled in #60]
                                                       1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=62f4) [Reassembled in #60]
59 0.009952 10.42.2.2 10.42.1.103
                                      IPv4
60 0.009953 10.42.2.2 10.42.1.103
                                     UDP
                                                       1179 52855 → 4242 Len=4097
61 0.010475 10.42.2.2 10.42.1.103
                                                        1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=27e1) [Reassembled in #66]
62 0.010476 10.42.2.2 10.42.1.103
                                                       1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=27e1) [Reassembled in, #66]
```


Reaktion auf Kollisionen

- Kritisches Kollisionsfenster
- Zeitpunkt der Wiederholung?
 - Warum nicht konstante Zeit warten?
- "Truncated Binary Exponential Backoff"
 - Zufallszeit in Intervall I warten
 - Intervall I wächst exponentiell mit jeder Wiederholung
 - Obere Schranke bei Wiederholungen

Repeater und Hubs

- Repeater
 - OSI-Layer 1
 - Bereit Signal lediglich auf
- Hub
 - Ein Segment versteckt sich in einem Gehäuse
 - Mehrere Anschlüsse
- Keine Trennung von Kollisionsdomainen

Thin Ethernet

Modern Ethernet (Switched)

Fast Ethernet

- 100 MBit/s
- 1 GBit/s und mehr
 - Halbduplex : CSMA/CD
 - Vollduplex : Sterntopologie, keine Kollisionen mehr
- Hauptproblem
 - Hohe Datenrate bei möglichst geringer Frequenzerhöhung
 - 1 GBit/s über Twisted Pair braucht "nur" 250 MHz

Kodierung 100 MBit/s

- 4B/5B Kodierung
 - Aus 4 Datenbits werden 5 übertragene Bits
 - Implizite Taktung
- NRZI-Kodierung
 - 1 : Pegelwechsel innerhalb der Bitperiode
 - 0 : Kein Pegelwechsel
 - Geringere Frequenz als bei Manchester notwendig

60

1 GBit/s

- CSMA/CD nicht mehr umsetzbar
 - · Kollisionsdomäne bestimmt Segmentlänge
 - Unverändert ergeben sich maximal 20 Meter
- Minimale Paketlänge erhöhen
 - Von 64 Byte auf 512 Byte

Kodierung

- Ziel: Frequenz so wenig wie möglich erhöhen
- 8B/10B Kodierung (Glasfaser)
 - Codegruppe hat mindestens 4 und nicht mehr als 7 Pegelwechsel
 - Gleichspannungsfreiheit über 2 Codegruppen
- Kodierung (Twisted Pair)
 - Nutzung von 4 seriellen Aderpaaren
 - Vollduplex durch Echo-Cancellation
 - 4D-PAM5 / 8B1Q4 Kodierung
 - Aus 8 Bits werden 4 fünfwertige Symbole
 - 5 Spannungswerte -1 V, -0.5 V, 0 V, +0.5 V, 1 V
 - Trellis-Kodierung
 - Scrambling ~ Spread Spectrum

6

Switches

Ethernet-Switching

- Kreuzverschaltung von n Ports
 - Crossbar-Switch
- Port =
 - Einzelne Station (1 Adresse)
 - Segment
- Nominalleistung zwischen jeweils 2 Ports Pi und Pj
- Weitergabe von Frames
 - Store-and-Foreward
 - Cut-Through

Literatur

- R.M. Metcalfe, D.R. Boggs, Ethernet: Distributed Packet Switching for Local Computer Networks, CACM, Vol. 19, No. 7, pp. 395-403, Juli 1976
- J. Rech, Ethernet, 2. Auflage, Heise Verlag, 2008
- C.E. Spurgeon, Ethernet The Definitive Guide, O'Reilly, 2000