Chapter 1:

Integer representations in computer systems (Review)

Topics:

Unsigned representations
Signed representations
Signed binary and hexadecimal arithmetic

Reading: Patterson and Hennessy 2.4, 3.2

Internal Representation of Integers

Unsigned integers (non-negative) signed integers
Fixed number of digits

Decimal number system

* base (or radix) = 10

* digits: 0, 1, 2, ..., 9

Example:

210 $(739)_{10}$

$$= 7 \times 10^2 + 3 \times 10^1 + 9 \times 10^0$$

Rules:

1) number digit positions 0,1,2..., right to left

2) multiply by radix to (digit position) power

Binary number system

- * base 2
- * digits: 0, 1
- * binary digit: bit

Example:

Convert this binary number to decimal:

$$= 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$

$$= 8 + 0 + 2 + 1$$

$$= 11$$

Useful information: powers of 2 are...

$$2^4 = 16, 2^5 = 32, 2^6 = 64, 2^7 = 128$$

 $2^8 = 256, 2^9 = 512, 2^{10} = 1024$

Table 1: All possible unsigned 4-bit binary numbers

binary	decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

Example: 8-bit unsigned binary number

76543210 $(10010101)_2$

Convert to decimal:

$$= 27 + 24 + 22 + 20$$

$$= 128 + 16 + 4 + 1$$

$$= 149$$

Computer hardware is based on digital logic circuits; data is represented using binary system.

Convert decimal numbers to binary numbers

Method 1 (slow but intuitive):

break up into sum of powers of 2

Example:

 $(249)_{10}$

$$= 128 + 64 + 32 + 16 + 8 + 1$$

$$= 2^{7} + 2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{0}$$

$$= (1111 \ 1001)_{2}$$

Convert decimal numbers to binary numbers

Method 2 (shortcut):

- 1) divide by 2
- 2) write down remainder
- 3) repeat until quotient = 0
- 4) combine remainders in reverse order (bottom to top)

Example:

 $(249)_{10}$

$$249 = (1111 \ 1001)_2$$

Hexadecimal (hex) number system

* base 16 * digits: 0, 1, 2, ..., 9, A, B, C, D, E, F 10,11,12,13,14,15

(shorthand for binary)

Example: (0x means base 16)

Convert 3-digit hex int to decimal:

Convert unsigned decimal int to hex

Method 1: break into sums of powers of 16

305

$$= 1 \times 256 + 3 \times 16 + 1$$

$$= 1 \times 16^{2} + 3 \times 16^{1} + 1 \times 16^{0}$$

$$= 0 \times 131$$

Method 2: divide repeatedly by 16

305

$$305 = 0x131$$

Convert hexadecimal numbers to binary numbers

one hexadecimal digit = 4 bits start at least significant (rightmost) digit

Example:

0x5B3

$$5 = 0101$$
, $B = 1011$, $3 = 0011$

$$0x5B3 = (0101\ 1011\ 0011)_2$$

Convert binary ints to hex (reverse):

group bits into groups of 4 start at right most bit

Octal number system

* base 8

* digits: 0, 1, 2, ..., 7

Convert octal to decimal:

1)number digit positions 0,1,2... right to left

2) multiply each digit by radix to (digit position) power

Convert octal to binary:

each octal digit = 3 bits

octal: 745

binary: 111100101

Unsigned integer addition

Binary:

Hexadecimal:

Unsigned integer subtraction

Binary:

Systems for representing signed integers:

- 1. sign-magnitude (SM)
- 2. one's complement (OC) (*skip*)
- 3. two's complement (TC)

Binary Sign-magnitude

Rules:

- 1) most significant (leftmost) bit is sign bit non-negative if sign bit = 0, negative if sign bit = 1
- 2) non-negative numbers same as unsigned
- 3) rest of bits represents magnitude of integer

Convert 8-bit binary SM to decimal:

$$654\ 3210$$
 $0010\ 0101 = +\ 010\ 0101 = 32 + 4 + 1 = 37$
Convert binary SM to decimal:
$$1110\ 0101 = -\ 0110\ 0101$$

$$= -\ (64 + 32 + 4 + 1)$$

$$= -\ 101$$

Convert decimal to 8-bit binary SM:

$$X = -13 = ??$$

$$-X = 13 = 9000 \ 1101$$

 $X = 1000 \ 1101$

Dirty zero problem in SM:

$$(0000)_2 = 0$$

 $(1000)_2 = -0 = 0$

Two different representations for zero Not suitable for fast hardware implementations

One's Complement (OC):

Rules:

- 1) most significant (leftmost) bit is sign bit non-negative if sign bit = 0, negative if sign bit = 1
- 2) non-negative numbers same as unsigned
- 3) to negate a OC binary int:

flip/complement each bit

Convert 8-bit OC binary to decimal:

$$(1100\ 0101)_2 = -(0011\ 1010)_2$$

= -(32+16+8+2) = -58

Convert decimal to 8-bit OC binary:

$$-58 = ??$$
Let X = -58
$$-X = 58 = (0011 \ 1010)_2$$
X = (1100 0101)₂

Dirty zero problem in OC:

$$(0000)_2 = 0$$

 $(1111)_2 = -0 = 0$

Two's complement

Rules:

- 1) most significant (leftmost) bit is sign bit non-negative if sign bit = 0, negative if sign bit = 1
- 2) non-negative numbers same as unsigned
- 3) to negate a two's complement binary number,
- i. complement (or flip) each bit
- ii. add 1 (discard carry out)

Example:

Convert 8-bit TC binary int to decimal:

$$= 32 + 4 + 2 = 38$$

Example:

Negate TC binary int:

 $(00100110)_2$

$$7654\ 3210$$

 $X = (0010\ 0110)_2 = 32 + 4 + 2 = 38$

$$-X = (1101\ 1001)_2 + 1 = (1101\ 1010)_2$$

Example:

Convert -29 to 8-bit TC binary:

Let
$$X = -29$$

 $-X = 29 = 0001 \ 1101$
 $X = 1110 \ 0010 + 1 = 1110 \ 0011$

Shortcut for negating binary TC int:

- 1) look for rightmost bit == 1
- 2) complement each bit to the left
- 3) (all other bits stay the same)

Example:

$$X = (1011 \ \underline{1}000)_2$$
 [rightmost 1 is underlined]
- $X = (01001000)_2$

Another way to convert TC binary int to decimal:

* for n-bit ints, digit position n-1 is $-2^{(n-1)}$

Examples:

$$7654\ 3210$$

 $X = (1110\ 0011)_2$
 $= -128 + 64 + 32 + 2 + 1 = -29$

No dirty zeros in TC:

$$(0000)_2 = 0$$

Try to construct negative zero:

$$-(0000)_2 = (1111)_2 + 1 = 10000$$

Discard carryout: $-0 = (0000)_2$!

Sign-extension in TC:

(writing the same integer, but with more bits)

4-bit to 8-bit:
$$(0101)_2 = (\underline{0000 \ 0101})_2$$

4-bit to 8-bit: $(1101)_2 = (\underline{1111 \ 1101})_2$

Extend (or duplicate) the sign bit.

Comparison of four integer systems (4 bits):

	Unsigned	SM	<u>OC</u>	TC
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	О	-1

Range of binary integer representations:

Unsigned:

4-bit: 0 to
$$15 = 0$$
 to $(2^4 - 1)$

N-bit: 0 to $(2^N - 1)$

SM:

4-bit: -7 to
$$7 = -(2^3 - 1)$$
 to $(2^3 - 1)$

N-bit:
$$-(2^{N-1} - 1)$$
 to $(2^{N-1} - 1)$

TC:

4-bit: -8 to
$$7 = (-2^3)$$
 to $(2^3 - 1)$

N-bit:
$$(-2^{N-1})$$
 to $(2^{N-1} - 1)$

Range of integer data types:

short (usually 16 bits)

$$(-2^{16-1})$$
 to $(2^{16-1} - 1)$, or -32768 to 32767

int (usually 32 bits)

$$(-2^{32-1})$$
 to $(2^{32-1} - 1)$, or $-2,147,483,648$ to $2,147,483,647$

long (usually 64 bits)

$$(-2^{64-1})$$
 to $(2^{64-1}-1)$

Two's complement arithmetic

similar to unsigned

- 1) treat sign bit as numeric bit
- 2) if carry out is produced, discard it
- 3) check for overflow

Examples:

discard carryout: ans = 1011 0111

$$\begin{array}{c}
0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \\
+ \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
\hline
1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\
\end{array}$$

sum of two non-negative numbers cannot give negative result! *Overflow* occurred.

sum of two negative integers cannot give non-negative result! *Overflow* occurred.

Definition of overflow:

Overflow is an error condition in which the result of a computation does not fit into the available number of bits.

In TC arithmetic:

- 1) if we add 2 positive integers and get a negative result, or
- 2) if we add 2 negative integers and get a positive result,

we have overflow.

Consider Java code:

```
int sum = 0, i;
for (i=0; i<10; i++) {
   sum = sum + 1000000000;
   System.out.println(sum);
}</pre>
```

Compile and run; program output:

```
1000000000
2000000000
-1294967296
-294967296 [etc etc]
```

Two's complement subtraction

$$X - Y = X + (-Y)$$

Example:

$$X = 1001 \ 0010$$

$$Y = 0101 11111$$

$$-Y = 1010\ 0001$$

$$X - Y = 1001\ 0010 + 1010\ 0001$$

= 1\ 00110011

Discard carryout; result = 0011 0011

overflow occurred

[Note: for subtraction, check X + (-Y), using the overflow check for addition!]

Two's complement hexadecimal

Rules:

- 1) most significant (leftmost) digit is sign digit non-negative if sign digit = negative if sign digit =
- 2) non-negative integers same as unsigned
- 3) to negate a two's complement hex int,
- i. subtract each digit from f
- ii. add 1 (discard carry out)

Examples:

Convert 2-digit TC hex int to decimal

$$X = 0xab$$
- $X = 0xff - 0xab + 1 = 0x55$
= $5 \times 16 + 5 = 85$
 $X = -85$

Convert decimal int to 2-digit TC hex:

$$X = -73$$

TC hex addition/subtraction:

$$0x5678 + 0x432b$$

0x5678 0x432b 0x99a3, overflow

0xdcba + 0xe2f3

0xdcba

<u>0xe2f3</u>

0x1bfad

discard carryout; result = 0xbfad

0x1cba - 0xbd0d

= 0x1cba + - (0xbd0d)

= 0x1cba + 0xffff - 0xbd0d + 1

= 0x1cba + 0x42f3

0x1cba 0x42f3 0x5fad

(CSc 256 Lab manual: http://unixlab.sfsu.edu/~whsu/csc256/LABS/)

Lab exercises for Chapter 1:

Lab 1.1: Binary and hexadecimal exercises

Lab 1.2: Setting up spim / xspim (ready soon!)

CSc 256 Lab 1.1: Practice Exercise #1 on arithmetic

This file can be found at

http://unixlab.sfsu.edu/~whsu/csc256/LABS/DOCS/ex1.txt

For problems 1-9, solutions can be found in

http://unixlab.sfsu.edu/~whsu/csc256/LABS/DOCS/ex1soln.txt

1) Consider the 16-bit binary integer $X = 1001\ 0000\ 0000\ 0011$.

Convert X to decimal if X is

- a. unsigned b. in sign-magnitude notation
- c. in one's complement notation d. in two's complement notation

For problems 2-6, assume all integers are in binary and in two's complement notation. Remember to indicate overflow if necessary.

- $2)\ 0110\ 1010 + 1001\ 1110 = ?$
- $3)\ 1001\ 11111 + 1001\ 0001 = ?$
- 4) 1000 1111 0001 0000 = ?
- 5) 0001 0010 0010 1111 = ?
- 6) 1111 1010 1110 1110 = ?

For problems 7-9, assume all integers are in hexadecimal and two's complement notation. Remember to indicate overflow if necessary.

- 7) 0x2AF6 + 0x7017 = ?
- 8) 0x345E + 0xFFAB = ?
- 9) 0x966A 0x6996 = ?