Gabarito - Exercício LEDs Série e Paralelo

Parte 1 - LEDs em Série

Observação esperada:

- Ambos os LEDs acendem com brilho reduzido.
- A tensão da bateria (9 V) é dividida entre os dois LEDs, portanto cada
 LED recebe uma tensão menor.
- A corrente é a mesma passando pelos dois LEDs, já que o circuito é em série.

Parte 2 - LEDs em Paralelo

Observação esperada:

- Ambos os LEDs acendem com brilho intenso.
- Cada LED recebe a tensão total da bateria (≈ 9 V).
- A corrente total é maior, pois cada LED possui seu próprio caminho de corrente.

Comparando os resultados

Tipo de Ligação Brilho dos LEDs Corrente Total Tensão em cada LED

Série	Fraco	Menor	Dividida (≈ 4,5 V por LED)
Paralelo	Forte	Maior	Igual à bateria (≈ 9 V)

Atividade Extra - Testando Diferentes Resistores

Valor do Resistor	Observação esperada	Explicação
100 Ω	LED muito brilhante, risco de queimar	Corrente muito alta

Valor do Resistor	Observação esperada	Explicação
220 Ω	Brilho padrão, seguro	Corrente adequada (~20 mA)
330 Ω	Brilho levemente reduzido	Corrente menor (~15 mA)
470 Ω	Brilho médio-baixo	Corrente baixa (~10 mA)
1 kΩ	LED fraco	Corrente muito baixa (~5 mA)
10 kΩ	LED quase apagado	Corrente mínima (~0,9 mA)

Questões para reflexão

1. O que muda na tensão e na corrente quando os LEDs estão em série ou paralelo?

Em série, a **tensão se divide** entre os LEDs e a **corrente é a mesma**. Em paralelo, a **tensão é igual** em todos os LEDs e a **corrente total é a soma** das correntes individuais.

2. Por que o brilho diminui ao aumentar o valor do resistor?

Porque o resistor **limita a corrente elétrica**. Menor corrente → menor brilho.

3. É possível ligar mais de dois LEDs em série com uma bateria de 9 V?

Só até o limite em que a **soma das quedas de tensão dos LEDs seja menor que 9 V**.

Exemplo: 3 LEDs vermelhos (\sim 2 V cada) = 6 V total \rightarrow possível; 4 LEDs = 8 V \rightarrow acendem fracos; 5 LEDs = 10 V \rightarrow não acendem.

- Em qual tipo de ligação a bateria descarrega mais rapidamente?
 No paralelo, porque a corrente total é maior.
- 5. O que aconteceria se dois LEDs diferentes (de cores distintas) fossem ligados em série?

O LED com **menor tensão de limiar (ex.: vermelho)** acende antes; o outro **pode não acender** ou acender mais fraco, pois a tensão pode não ser suficiente para ambos igualmente.

Conclusão para o relatório

- A ligação em paralelo é mais eficiente e mais segura, pois cada LED recebe tensão adequada e pode ter seu brilho controlado pelo resistor individual.
- A ligação **em série** é útil quando se deseja **reduzir corrente** e **economizar energia**, mas o brilho fica menor e desigual.
- A escolha depende da aplicação prática e do consumo desejado.