Convex Sets, Functions, and Problems

Nick Henderson, AJ Friend (Stanford University) Kevin Carlberg (Meta)

August 8, 2022

Convex optimization

Theory, methods, and software for problems exihibiting the characteristics below

- Convexity:
 - convex : local solutions are global
 - non-convex: local solutions are not global
- Optimization-variable type:
 - continuous: gradients facilitate computing the solution
 - discrete: cannot compute gradients, NP-hard
- Constraints:
 - unconstrained : simpler algorithms
 - constrained: more complex algorithms; must consider feasibility
- Number of optimization variables:
 - low-dimensional: can solve even without gradients
 - high-dimensional: requires gradients to be solvable in practice

Set Notation

Set Notation 3

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Set Notation 4

Set Notation

- ightharpoonup
 igh
- $ightharpoonup x \in C$: the point x is an element of set C
- $ightharpoonup C \subseteq \mathbf{R}^n$: C is a **subset** of \mathbf{R}^n , *i.e.*, elements of C are n-vectors
- ightharpoonup can describe set elements explicitly: $1 \in \{3, \text{"cat"}, 1\}$
- set builder notation

$$C = \{x \mid P(x)\}$$

gives the points for which property P(x) is true

- ▶ $\mathbf{R}_{+}^{n} = \{x \mid x_i \geq 0 \text{ for all } i\}$: n-vectors with all nonnegative elements
- set intersection

$$C = \bigcap_{i=1}^{N} C_i$$

is the set of points which are simultaneously present in each C_i

Convexity

Outline

Set Notation

Convexity

Why Convexity

Convex Sets

Convex Functions

Convex Optimization Problems

Convex Sets

 $ightharpoonup C \subseteq \mathbf{R}^n$ is **convex** if

$$tx + (1-t)y \in C$$

for any $x, y \in C$ and $0 \le t \le 1$

► that is, a set is convex if the line connecting **any** two points in the set is entirely inside the set

Convex Set

Nonconvex Set

Convex Functions

 $ightharpoonup f: \mathbf{R}^n o \mathbf{R}$ is **convex** if $\mathbf{dom}(f)$ (the domain of f) is a convex set, and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

for any $x, y \in \mathbf{dom}(f)$ and $0 \le t \le 1$

- ▶ that is, convex functions are "bowl-shaped"; the line connecting any two points on the graph of the function stays above the graph
- ightharpoonup f is concave if -f is convex

Convex Function

Nonconvex Function

Convex Optimization Problem

the optimization problem

```
minimize f(x) subject to x \in C
```

is **convex** if $f: \mathbf{R}^n \to \mathbf{R}$ is convex and $C \subseteq \mathbf{R}^n$ is convex

▶ any concave optimization problem

$$\begin{array}{ll} \text{maximize} & g(x) \\ \text{subject to} & x \in C \end{array}$$

for ${\bf concave}\ g$ and ${\bf convex}\ C$ can be rewritten as a ${\bf convex}$ problem by minimizing -g instead

Why Convexity?

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Minimizers

▶ all local minimizers are global minimizers

Algorithms

- intuitive algorithms work: "just go down" leads you to the global minimum
- can't get stuck close to local minimizers
- good software to solve convex optimization problems
- writing down a convex optimization problem is as good as having the (computational) solution

Expressiveness

- Convexity is a modeling constraint. Most problems are not convex
- ▶ However, convex optimization is **very** expressive, with many applications:
 - machine learning
 - engineering design
 - finance
 - signal processing
- Convex modeling tools like CVXPY (Python) make it easier to describe convex problems

Nonconvex Extensions

- even though most problems are not convex, convex optimization can still be useful
- approximate nonconvex problem with a convex model
- sequential convex programming (SCP) uses convex optimization as a subroutine in a nonconvex solver:
 - locally approximate the problem as convex
 - solve local model
 - step to new point
 - re-approximate and repeat

Convex Sets

Outline

Set Notation

Convexity

Why Convexity

Convex Sets

Convex Functions

Convex Optimization Problems

Examples

- ▶ empty set: ∅
- **>** set containing a single point: $\{x_0\}$ for $x_0 \in \mathbf{R}^n$
- $ightharpoonup \mathbf{R}^n$
- **p** positive orthant: $\mathbf{R}_{+}^{n} = \{x \mid x_{i} \geq 0, \ \forall i\}$

Hyperplanes and Halfspaces

• hyperplane $C = \{x \mid a^T x = b\}$

 $\blacktriangleright \ \, \mathsf{halfspace} \,\, C = \{x \,|\, a^T x \geq b\}$

Norm Balls

- ightharpoonup a norm $\|\cdot\|: \mathbf{R}^n \to \mathbf{R}$ is any function such that
 - $\|x\| \geq 0$, and $\|x\| = 0$ if and only if x = 0
 - ▶ ||tx|| = |t|||x|| for $t \in \mathbb{R}$
 - $||x + y|| \le ||x|| + ||y||$
- $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$
- $\|x\|_1 = \sum_{i=1}^n |x_i|$
- $\|x\|_{\infty} = \max_{i} |x_{i}|$
- ▶ unit norm ball, $\{x \mid ||x|| \le 1\}$, is convex for any norm

Norm Ball Proof

- ▶ let $C = \{x \mid ||x|| \le 1\}$
- ▶ to check convexity, assume $x, y \in C$, and $0 \le t \le 1$
- ► then,

$$||tx + (1 - t)y|| \le ||tx|| + ||(1 - t)y||$$

$$= t||x|| + (1 - t)||y||$$

$$\le t + (1 - t)$$

$$= 1$$

- ▶ so $tx + (1 t)y \in C$, showing convexity
- this proof is typical for showing convexity

Intersection of Convex Sets

- the intersection of any number of convex sets is convex
- **example**: polyhedron is the intersection of halfspaces

rewrite $\bigcap_{i=1}^m \{x \mid a_i^T x \leq b_i\}$ as $\{x \mid Ax \leq b\}$, where

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_m^T \end{bmatrix}, \ b = \begin{bmatrix} b_1^T \\ \vdots \\ b_m^T \end{bmatrix}$$

▶ $Ax \le b$ is componentwise or vector inequality

More Examples

- ightharpoonup solutions to a system of linear equations Ax=b forms a convex set (intersection of hyperplanes)
- \blacktriangleright probability simplex, $C=\{x\,|\,x\geq 0,1^Tx=1\}$ is convex (intersection of positive orthant and hyperplane)

CVXPY for Convex Intersection

- see set_examples.ipynb
- use CVXPY to solve the convex set intersection problem

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & x \in C_1 \cup \dots \cup C_m \\ \end{array}$$

- set intersection given by list of constraints
- **example**: find a point in the intersection of two lines

$$2x + y = 4$$
$$-x + 5y = 0$$

CVXPY code

```
from cvxpy import *
x = Variable()
v = Variable()
obj = Minimize(0)
constr = [2*x + y == 4,
           -x + 5*y == 0
Problem(obj, constr).solve()
print x.value, y.value
 results in x \approx 1.8, y \approx .36
```

Diet Problem

- a classic problem in optimization is to meet the nutritional requirements of an army via various foods (with different nutritional benefits and prices) under cost constraints
- one soldier requires 1, 2.1, and 1.7 units of meat, vegetables, and grain, respectively, per day (r = (1, 2.1, 1.7))
- lacktriangle one unit of hamburgers has nutritional value h=(.8,.4,.5) and costs \$1
- ightharpoonup one unit of cheerios has nutritional value c=(0,.3,2.0) and costs \$0.25
- prices p = (1, 0.25)
- you have a budget of \$130 to buy hamburgers and cheerios for one day
- can you meet the dietary needs of 50 soldiers?

Diet Problem

write as optimization problem

minimize
$$0$$
 subject to
$$p^Tx \leq 130$$

$$x_1h + x_2c \geq 50r$$

$$x \geq 0$$

with x giving units of hamburgers and cheerios

ightharpoonup or, with A = [h, c],

$$\begin{array}{ll} \text{minimize} & 0 \\ \text{subject to} & p^Tx \leq 130 \\ & Ax \geq 50r \\ & x \geq 0 \end{array}$$

Diet Problem: CVXPY Code

```
x = Variable(2)
obj = Minimize(0)
constr = [x.T*p \le 130,
           h*x[0] + c*x[1] >= 50*r,
           x >= 0
prob = Problem(obj, constr)
prob.solve(solver='SCS')
print x.value

ightharpoonup non-unique solution x \approx (62.83, 266.57)
```

Diet problem

reformulate the problem to find the cheapest diet:

```
minimize p^T x
subject to x_1 h + x_2 c \ge 50 r
x \ge 0
```

▶ with CVXPY, we feed the troops for \$129.17:

Convex Functions

Convex Functions 35

Outline

Set Notation

Convexity

Why Convexity

Convex Sets

Convex Functions

Convex Optimization Problems

Convex Functions 36

First-order condition

- ▶ for **differentiable** $f : \mathbb{R}^n \to \mathbb{R}$, the **gradient** ∇f exists at each point in $\mathbf{dom}(f)$
- ightharpoonup f is convex if and only if $\mathbf{dom}(f)$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all $x, y \in \mathbf{dom}(f)$

ightharpoonup that is, the first-order Taylor approximation is a **global underestimator** of f

Second-order condition

- for twice differentiable $f: \mathbf{R}^n \to \mathbf{R}$, the Hessian $\nabla^2 f$, or second derivative matrix, exists at each point in $\mathbf{dom}(f)$
- ▶ f is convex if and only if for all $x \in \mathbf{dom}(f)$,

$$\nabla^2 f(x) \succeq 0$$

- that is, the Hessian matrix must be positive semidefinite
- ▶ if n = 1, simplifies to $f''(x) \ge 0$
- ▶ first- and second-order conditions generalize to non-differentiable convex functions

Positive semidefinite matrices

- ▶ a matrix $A \in \mathbf{R}^{n \times n}$ is **positive semidefinite** $(A \succeq 0)$ if
 - ightharpoonup A is symmetric: $A = A^T$
 - $ightharpoonup x^T A x \ge 0$ for all $x \in \mathbf{R}^n$
- $ightharpoonup A \succeq 0$ if and only if all **eigenvalues** of A are nonnegative
- lacktriangle intuition: graph of $f(x) = x^T A x$ looks like a bowl

Examples in ${\bf R}$

f(x)	f''(x)	
\overline{x}	0	
x^2	1	
e^{ax}	a^2e^{ax}	
$1/x \ (x > 0)$	$\frac{a}{2/x^3}$	
$-\log(x) \ (x > 0)$	$1/x^2$	

Quadratic functions

▶ for $A \in \mathbf{R}^{n \times n}$, $A \succeq 0$, $b \in \mathbf{R}^n$, $c \in \mathbf{R}$, the quadratic function

$$f(x) = x^T A x + b^T x + c$$

is convex, since $\nabla^2 f(x) = A \succeq 0$

▶ in particular, the least squares objective

$$||Ax - b||_2^2 = x^T A^T A x - 2(Ab)^T x + b^T b$$

is convex since $A^T A \succeq 0$

Epigraph

▶ the **epigraph** of a function is given by the set

$$epi(f) = \{(x, t) | f(x) \le t\}$$

ightharpoonup if f is convex, then epi(f) is convex

the sublevel sets of a convex function

$$\{x \mid f(x) \le c\}$$

are convex for any fixed $c \in \mathbf{R}$

Ellipsoid

any ellipsoid

$$C = \{x \mid (x - x_c)^T P(x - x_c) \le 1\}$$

with $P\succeq 0$ is convex because it is the sublevel set of a convex quadratic function

More convex and concave functions

- ▶ any norm is convex: $\|\cdot\|_1$, $\|\cdot\|_2$, $\|\cdot\|_\infty$
- $ightharpoonup \max(x_1,\ldots,x_n)$ is convex
- $ightharpoonup \min(x_1,\ldots,x_n)$ is concave
- ightharpoonup absolute value |x| is convex
- $ightharpoonup x^a$ is **convex** for x>0 if $a\geq 1$ or $a\geq 0$
- $ightharpoonup x^a$ is **concave** for x>0 if $0 \le a \le 1$
- lots more; for reference:
 - CVX Users' Guide, http://web.cvxr.com/cvx/doc/funcref.html
 - CVXPY Tutorial, http://www.cvxpy.org/en/latest/tutorial/functions/index.html
 - Convex Optimization by Boyd and Vandenberghe

Positive weighted sums

if f_1, \ldots, f_n are convex and w_1, \ldots, w_n are all positive (or nonnegative) real numbers, then

$$w_1 f_1(x) + \dots + w_n f_n(x)$$

is also convex

- ightharpoonup 7x + 2/x is convex
- $ightharpoonup x^2 \log(x)$ is convex
- $ightharpoonup -e^{-x}+x^{0.3}$ is concave

Composition with affine function

▶ if $f: \mathbf{R}^n \to \mathbf{R}$ is convex, $A \in \mathbf{R}^{n \times m}$, and $b \in \mathbf{R}^n$, then

$$g(x) = f(Ax + b)$$

is convex with $g: \mathbf{R}^m \to \mathbf{R}$

▶ mind the domain: $\mathbf{dom}(g) = \{x \mid Ax + b \in \mathbf{dom}(f)\}$

Function composition

- ightharpoonup let $f,g: \mathbf{R} \to \mathbf{R}$, and h(x) = f(g(x))
- \blacktriangleright if f is **increasing** (or nondecreasing) on its domain:
 - ightharpoonup h is convex if f and g are convex
 - ightharpoonup h is concave if f and g are concave
- ightharpoonup if f is **decreasing** (or nonincreasing) on its domain:
 - \blacktriangleright h is convex if f is convex and g is concave
 - h is concave if f is concave and g is convex
- mnemonic:
 - "-" (decreasing) swaps "sign" (convex, concave)
 - "+" (increasing) keeps "sign" the same (convex, convex)

Function composition examples

- mind the domain and range of the functions
- $ightharpoonup rac{1}{\log(x)}$ is convex (for x > 1)
 - ightharpoonup 1/x is convex, decreasing (for x > 0)
 - ▶ $\log(x)$ is concave (for x > 1)
- ▶ $\sqrt{1-x^2}$ is concave (for $|x| \le 1$)
 - $ightharpoonup \sqrt{x}$ is concave, increasing (for x > 0)
 - $ightharpoonup 1-x^2$ is concave

- disciplined convex programming (DCP) defines this set of conventions that ensures a constructed optimization problem is convex
- ▶ DCP decomposes any expression into subexpressions that require keeping track of:
 - curvature of functions (constant, affine, convex, concave, unknown)
 - ▶ sign information of coefficients (positive, negative, unknown)
 - 'infix' operations used to combine functions (+,-,*,/)
- dcp.stanford.edu website for constructing complex convex expressions to learn composition rules

- ▶ see lasso.ipynb
- recall that the **least squares** problem

minimize
$$||Ax - b||_2^2$$

is convex

- ▶ adding an $||x||_1$ term to the objective has an interesting effect: it "encourages" the solution x to be **sparse**
- ▶ the problem

minimize
$$||Ax - b||_2^2 + \rho ||x||_1$$

is called the LASSO and is central to the field of compressed sensing

- $ightharpoonup A \in \mathbf{R}^{30 \times 100}$, with $A_{ij} \sim \mathcal{N}(0,1)$
- ightharpoonup observe $b=Ax+\varepsilon$, where ε is noise
- more unknowns than observations!
- ightharpoonup however, x is known to be sparse
- ightharpoonup true x:

least squares recovery given by

```
x = Variable(n)
obj = sum_squares(A*x - b)
Problem(Minimize(obj)).solve()
```


LASSO recovery given by

```
x = Variable(n)
obj = sum_squares(A*x - b) + rho*norm(x,1)
Problem(Minimize(obj)).solve()
```


Convex Optimization Problems

Outline

Set Notation

Convexity

Why Convexity?

Convex Sets

Convex Functions

Convex Optimization Problems

Convex optimization problems

- combines convex objective functions with convex constraint sets
- constraints describe acceptable, or feasible, points
- objective gives desirability of feasible points

```
 \begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C_1 \\ & \vdots \\ & x \in C_n \end{array}
```

Constraints

- ▶ in CVXPY and other modeling languages, convex constraints are often given in epigraph or sublevel set form
 - ▶ $f(x) \le t$ or $f(x) \le 1$ for convex f
 - ▶ $f(x) \ge t$ for concave f

- ▶ loosely, we'll say that two optimization problems are **equivalent** if the solution from one is easily obtained from the solution to the other
- **epigraph** transformations:

minimize
$$f(x) + g(x)$$

equivalent to

minimize
$$t + g(x)$$

subject to $f(x) \le t$

slack variables:

minimize
$$f(x)$$
 subject to $Ax \leq b$

equivalent to

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & Ax+t=b \\ & t \geq 0 \end{array}$$

dummy variables:

minimize
$$f(Ax + b)$$

equivalent to

$$\begin{array}{ll} \text{minimize} & f(t) \\ \end{array}$$

$$\text{subject to} \quad Ax + b = t$$

function transformations:

minimize
$$||Ax - b||_2^2$$

equivalent to

minimize
$$||Ax - b||_2$$

since the square-root function is monotone