Úvod do Petriho sítí

Petriho sítě

Motivace:

- modely diskrétních systémů
- modely paralelních systémů
- modely distribuovaných systémů

❖ Využití:

návrh \times syntéza \times analýza \times verifikace

Historie:

C. A. Petri: Kommunikation mit automaten, 1962

Aplikace:

- hardware paralelní architektury
- software distribuované systémy, informační systémy, komunikační protokoly
- telekomunikace, strojírenství, administrativa

1. Základní koncepty Petriho sítí

Modelování událostí:

V Petriho síti:

V konečném automatu:

Složky Petriho sítě – statická reprezentace systému:

- místa (places)
- přechody (transitions)
- hrany (arcs)

Složky Petriho sítě – reprezentace dynamiky (změn) systému:

značky (tokens)

Před provedením přechodu t:

Po provedení přechodu t:

Modelování podmíněnosti:

precondition: $A \wedge B$

postcondition: $(A \land \neg B \land C) \lor (\neg A \land B \land D)$

Modelování vzájemné výlučnosti:

 t_1 a t_2 jsou vzájemně vyloučeny (konfliktní přechody)

Modelování paralelnosti (simultánnosti):

 t_1 a t_2 jsou simultánní (nezávislé přechody)

Modelování požadavků na zdroje:

Interpretace míst a přechodů:

- lacktriangle M počet volných paměťových bloků
- P procesor je volný
- O operace probíhá
- t_B počátek operace
- t_E konec operace

Poznámka: Problém vyrovnávacích pamětí (bufferů), front

B: buffer, z zpracování položky

Nemůže dojít k přetečení B (bufferu, fronty)?

❖ Příklad 1: producent-konzument

Příklad 2: model úseku paralelního programu

2. Základní matematické definice

- **Definice 1.** Trojici N = (P, T, F) nazýváme sítí (net), jestliže:
 - 1. P a T jsou disjunktní konečné množiny
 - 2. $F \subseteq (P \times T) \cup (T \times P)$ je binární relace
 - P nazýváme množinou míst (places)
 - T nazýváme množinou přechodů (transitions)
 - F nazýváme tokovou relací (flow relation)
- ❖ Grafem sítě nazveme grafovou reprezentaci relace F.
- \clubsuit Graf sítě je bipartitní orientovaný graf s množinou uzlů $P \cup T$ vrcholů.

Definice 2. Nechť N = (P, T, F) je síť.

- 1. Pro všechny prvky $x \in (P \cup T)$
 - $x = \{y \mid yFx\}$ se nazývá vstupní množinou (preset) prvku x
 - $x^{\bullet} = \{y \mid xFy\}$ se nazývá výstupní množinou (postset) prvku x

Podobně pro množinu prvků: Nechť $X\subseteq (P\cup T)$, pak

$${}^{ullet} X = \bigcup_{x \in X} {}^{ullet} x \quad \mathbf{a} \quad X^{ullet} = \bigcup_{x \in X} x^{ullet}$$

Zřejmě platí:
$$\forall x,y \in (P \cup T) \colon x \in {}^{\bullet}\!\! y \iff y \in x^{\bullet}$$

- 2. Uspořádaná dvojice $< p, t > \in P \times T$ se nazývá vlastní cyklus (self-loop), jestliže $pFt \wedge tFp$. Neobsahuje-li síť vlastní cyklus, pak se nazývá čistou sítí (pure net).
- 3. Prvek $x \in (P \cup T)$ se nazývá izolovaný, jestliže $x \cup x = \emptyset$.

Definice 3. Nechť N = (P, T, F) je síť. N se nazývá jednoduchou sítí (simple net),

jestliže

$$\forall x, y \in (P \cup T) : ({}^{\bullet}x = {}^{\bullet}y \land x^{\bullet} = y^{\bullet}) \Rightarrow x = y$$

Příklad nejednoduché sítě:

Definice 4. Nechť $N_1=(P_1,T_1,F_1)$ a $N_2=(P_2,T_2,F_2)$ jsou sítě. Existuje-li bijekce

 $\beta:(P_1\cup T_1)\leftrightarrow (P_2\cup T_2)$ taková, že

- 1. $x \in P_1 \Leftrightarrow \beta(x) \in P_2$
- **2.** $(x,y) \in F_1 \Leftrightarrow (\beta(x),\beta(y)) \in F_2$

pak N_1 a N_2 nazýváme izomorfní.

3. P/T Petriho sítě

Definice 5: Šestici $N = (P, T, F, W, K, M_0)$ nazýváme *P/T Petriho sítí*

(Place/Transition Petri Net), jestliže:

- 1. (P, T, F) je konečná síť
- 2. $W: F \to \mathbb{N} \setminus \{0\}$ je ohodnocení hran grafu určující kladnou *váhu* každé hrany sítě
- 3. $K: P \to \mathbb{N} \cup \{\omega\}$ je zobrazení určující *kapacitu* každého místa
- 4. $M_0: P \to \mathbb{N} \cup \{\omega\}$ je *počáteční značení* míst Petriho sítě takové, že $\forall p \in P: M_0(p) \leq K(p)$

Poznámka:

- \mathbb{N} je množina $\mathbb{N} = \{0, 1, 2, ...\}$
- ω značí *supremum* množiny $\mathbb N$ s vlastnostmi:
 - 1. $\forall n \in \mathbb{N} : n < \omega$
 - 2. $\forall m \in \mathbb{N} \cup \{\omega\} : m + \omega = \omega + m = \omega m = \omega$
- Petriho sítí budeme dále rozumět P/T Petriho síť

❖ Definice 6: (Evoluční pravidla Petriho sítí)

Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť.

- 1. Zobrazení $M:P\to\mathbb{N}\cup\{\omega\}$ se nazývá *značení* (marking) Petriho sítě N, jestliže $\forall p\in P:M(p)\leq K(p)$
- 2. Nechť M je značení Petriho sítě N. Přechod $t \in T$ je proveditelný (enabled) při značení M (stručněji M-proveditelný), jestliže

$$\forall p \in {}^{\bullet}t : M(p) \ge W(p, t)$$

 $\forall p \in t^{\bullet} : M(p) \le K(p) - W(t, p)$

Definice 6. (pokračování)

3. Je-li $t \in T$ M-proveditelný, pak jeho *provedením* získáme *následné značení* M' ke značení M, které je definováno takto:

$$\forall p \in P \colon M'(p) = \begin{cases} M(p) - W(p,t) & \text{je-li } p \in {}^{\bullet}t \backslash t^{\bullet} \\ M(p) + W(t,p) & \text{je-li } p \in t^{\bullet} \backslash {}^{\bullet}t \\ M(p) - W(p,t) + W(t,p) & \text{je-li } p \in {}^{\bullet}t \cap t^{\bullet} \\ M(p) & \text{jinak} \end{cases}$$

Provedení přechodu t (transition firing) ze značení M do značení M' zapisujeme symbolicky:

$$M[t\rangle M'$$

Definice 6. (pokračování)

- 4. Označme $|M\rangle$ nejmenší množinu různých značení Petriho sítě N, pro kterou platí:
 - (a) $M \in [M\rangle$
 - (b) Je-li $M_1 \in [M]$ a pro nějaké $t \in T$ platí $M_1[t]M_2$, pak $M_2 \in [M]$.

Množina [M] se nazývá *množinou dosažitelných značení* (reachability set) *ze značení* M.

Množina $[M_0]$ se nazývá *množinou dosažitelných značení sítě* N.

Příklad 3: Uvažujme následující Petriho síť:

$$[M_0\rangle = \{M_0, M_1, M_2, M_3\}$$
, kde

$$M_0 = (1, 0, 0, 1)$$

$$M_1 = (0, 1, 1, 0)$$

$$M_2 = (1, 0, 1, 0)$$

$$M_3 = (0, 1, 0, 1)$$

4. Stavový prostor a přechodová funkce Petriho sítě

 \clubsuit Množina $[M_0]$ reprezentuje *stavový prostor Petriho sítě*. Mohou nastat dva případy:

$$[M_0
angle \ \ \,$$
 je konečná množina je spočetná nekonečná množina

Definice 7. Nechť $N=(P,T,F,W,K,M_0)$ je Petriho síť a $[M_0\rangle$ její množina

dosažitelných značení. *Přechodovou funkcí Petriho sítě* N nazveme funkci δ :

$$\delta \colon [M_0\rangle \times T \to [M_0\rangle$$
, pro kterou $\forall t \in T \colon \ \forall M, M' \in [M_0\rangle \colon \ \delta(M,t) = M' \stackrel{def.}{\Longleftrightarrow} M[t\rangle M'$

 \bullet Přechodová funkce δ může být zobecněna na posloupnost přechodů:

$$\delta: [M_0\rangle \times T^* \to [M_0\rangle$$
 takto:

$$\begin{array}{l} \delta(M,t\tau)=\delta(\delta(M,t),\tau),\,\tau\in T^*\\ \delta(M,\varepsilon)=M\text{, kde }\varepsilon\text{ je prázdný symbol} \end{array}$$

- ullet Řetězec $au \in T^+$ nazveme *výpočetní posloupností* Petriho sítě, je-li $\delta(M_0, au)$ definována (+ případné další podmínky).
- ❖ Jazyk Petriho sítě = množina výpočetních posloupností Petriho sítě.

* Příklad 4: Uvažme Petriho síť z příkladu 1 a její množinu dosažitelných značení:

$$[M_0
angle=\{M_0,M_1,M_2,M_3\}$$
, kde $M_0=(1,0,0,1)$ $M_1=(0,1,1,0)$ $M_2=(1,0,1,0)$ $M_3=(0,1,0,1)$

Odpovídající přechodová funkce specifikovaná grafem vypadá takto:

Množina výpočetních posloupností dané Petriho sítě pak může být charakterizována regulárním výrazem:

$$(t_2(t_3t_1+t_1t_3))^*$$

Každý neprázdný prefix řetězce specifikovaného tímto výrazem tvoří výpočetní posloupnost.

5. Analýza P/T Petriho sítí

- Základní problémy analýzy
 - bezpečnost (safeness)
 - omezenost (boundness)
 - konzervativnost (conservation)
 - živost (liveness)
- **Definice 8**: Místo $p \in P$ Petriho sítě $N = (P, T, F, W, K, M_0)$ s počátečním značení

 M_0 je *bezpečné* (safe), jestliže pro všechna značení $M \in [M_0]$ je $M(p) \le 1$. Petriho síť je *bezpečná*, je-li každé její místo bezpečné.

Příklad 5:

síť, která není bezpečná

odpovídající bezpečná síť

Neobsahuje-li graf Petriho sítě násobné hrany, může být transformován na bezpečnou síť následujícím postupem.

Postup:

- 1. K místu p, které má bý bezpečné přidej komplementární místo p'.
- 2. Modifikuj incidující přechody podle algoritmu komplementace sítě.

Definice 9: Místo $p \in P$ Petriho sítě $N = (P, T, F, W, K, M_0)$ se nazývá k-bezpečné,

jestliže pro všechna značení $M \in [M_0]$ je $M(p) \le k$. Je-li místo p' k-bezpečné pro nějaké k, nazývá se *omezené* (bounded). Petriho síť, jejíž všechna místa jsou omezená se nazývá *omezená Petriho síť*.

Omezenost sítě ⇒ konečný stavový prostor sítě ⇒ ekvivalenci sítě s konečnými automaty

Definice 10: Petriho síť $N = (P, T, F, W, K, M_0)$ je *striktně konzervativní*, jestliže platí:

$$\forall M \in [M_0\rangle : \sum_{p \in P} M(p) = \sum_{p \in P} M_0(p)$$

Konzervativnost vzhledem k váhovému vektoru $\underline{w} = (w_1, \dots, w_n), w_i \geq 0$

$$\forall M \in [M_0\rangle : \sum_{i=1}^n w_i . M(p_i) = \sum_{i=1}^n w_i . M_0(p_i)$$

Definice 11: Nechť $N = (P, T, F, W, K, M_0)$ je Petriho síť a $t \in T$.

- 1. t se nazývá $\check{zivý}$ $\check{prechod}$, jestliže pro každé značení $M \in [M_0]$ existuje značení $M' \in [M]$ takové, že t je proveditelný při značení M'.
- 2. Síť N se nazývá $\check{z}ivou$, je-li každý její přechod živý.

Aplikace: živost x deadlock

Příklad 6:

Proveditelné posloupnosti přechodů:

 $t_1t_2t_3t_4t_5t_6...$ $t_4t_5t_6t_1t_2t_3...$

Uvažujme však posloupnost přechodů, která začíná $t_1t_4\dots$

- **Definice 12**: Značení M Petriho sítě $N = (P, T, F, W, K, M_0)$ je *živé*, jestliže
 - pro všechna $t \in T$ existuje $M' \in [M]$ takové, že přechod t je proveditelný při značení M'.
- **Věta 1**: Petriho síť je *živá*, právě když všechna značení z $|M_0\rangle$ jsou živá.
- Definice 13: (Problém dosažitelnosti Reachability problem)
 - Je dána Petriho síť N s počátečním značením M_0 a značení M. Je $M \in [M_0)$?
- Definice 14: (Problém pokrytí Coverability problem)
 - Je dána Petriho síť N s počátečním značením M_0 a značení M. Existuje $M' \in [M_0]$ takové, že $M' \geq M$?

Další problémy analýzy:

- posloupnosti přechodů (firing sequences)
- ekvivalence sítí
- inkluse sítí

Techniky analýzy Petriho sítí:

Strom dosažitelných značení (The Reachability Tree):

Strom dosažitelných značení je konečnou reprezentací množiny dosažitelných značení $[M_0\rangle$. Strom dosažitelných značení je kořenový orientovaný strom, jehož kořenem je počáteční značení M_0 a vrcholy tvoří vektory z $(\mathbb{N} \cup \{\omega\})^n, n = |P|$. Kde ω značí supremum množiny \mathbb{N} s vlastnostmi:

- 1. $\forall n \in \mathbb{N} : n < \omega$
- 2. $\forall m \in \mathbb{N} \cup \{\omega\} : m + \omega = \omega + m = \omega m = \omega$

Invarianty P/T Petriho sítí:

6. Barvené Petriho sítě

- Kurt Jensen, Aarhus Uviversity, Dánsko, 1981.
- Monografie: K. Jensen: Coloured Petri Nets. Monographs in Theoretical Computer Science, Springer-Verlag, 1992-1997. Tří díly: základní koncepty, analýza a průmyslové případové studie.
- Řada úvodních článků, příkladů, ... dostupná na http://www.daimi.au.dk/CPnets/.
- Existují i alternativní koncepty CPN, všechny ale více méně v podobném duchu.
 Někdy se též hovoří o tzv. High-Level Petri Nets.
- * CPN jsou motivovány snahou odstranit některé nevýhody klasických (P/T) Petriho sítí:
 - Petriho sítě, poskytující primitiva pro popis synchronizace paralelních procesů, jsou rozšířeny o explicitní popis datových typů a datových manipulací.

- ❖ Nástroje: Design/CPN, CPN Tools (oba Aarhus University), dále např. ExSpect, ... (viz http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html).
- CPN byly aplikovány v řadě průmyslových případových studií:
 - komunikační protokoly a sítě,
 - software (části SW Nokia, bankovní transakce, distribuované algoritmy, ...),
 - hardware,
 - řídící systémy,
 - vojenské systémy,
 - •
- ❖ Podobně jako u P/T Petriho sítí existují různá rozšíření CPN o fyzický čas.
- ❖ CPN jsou základem pro další rozšíření: hierarchické CPN či různé objektově-orientované Petriho sítě (PNtalk, Renew, ...).

Petriho sítě s individuálními značkami

❖ Individual Token Nets with Constant Arrow Labels:

Další jednoduchý příklad – změna ročních období:

❖ Individual Token Nets with <u>Variable</u> Arrow Labels:

Neformální zavedení CPN

- Uvažujme příklad popisu systému přidělování prostředků (zdrojů). Systém je tvořen:
 - 2 třídami procesů procesy p, resp. q,
 - 3 typy zdrojů R, S, T,
 - stavy procesů Bp, Cp, ..., Ep, Aq, Bq, ..., Eq,
 - počátečním stavem.

Vlastní činnost systému lze popsat P/T Petriho sítí takto:

- ❖ V CPN můžeme "sloučit" popis chování podobných procesů p a q. Budeme registrovat, který průchod "alokačním cyklem" daný proces provádí.
- Model ve tvaru CPN zahrnuje dvě složky:
 - 1. grafickou část graf Petriho sítě a
 - 2. popisy inskripci.
- Inskripce, vyjádřená inskripčním jazykem, obsahuje:
 - deklaraci množin barev (coloured sets), tj. datových typů,
 - specifikaci množin barev míst,
 - popis hran,
 - strážní podmínky přechodů,
 - počáteční značení,
 - (jména míst a přechodů).
- Náš systém sdílení zdrojů pak můžeme modelovat např. tak, jak je ukázáno na následujícím slajdu...

- Každý hranový výraz se vyhodnotí na multimnožinu značek:
 - konstruktor multimnožiny: n_1 ' $c_1 + n_2$ ' $c_2 + ... n_m$ ' c_m ,
 - $n_1, n_2, ..., n_m$ jsou konstanty, proměnné nebo funkce, které se vyhodnotí na kladná přirozená čísla,
 - $c_1, c_2, ..., c_m$ jsou konstanty, proměnné nebo funkce, které se vyhodnotí na barvy,
 - příklady:
 - if x=C then 3'D else 4'E+5'F
 - -2'(x+y)+3'1
 - varianta jednoduchého popisu změn ročních období:

❖ Po zavedení jiného systému barev a hranových výrazů můžeme náš systém sdílení zdrojů modelovat např. také tak, jak je ukázáno na následujícím slajdu...

A konečně po zavedení ještě jiného systému barev a hranových výrazů můžeme náš systém sdílení zdrojů modelovat také takto:

```
color U = with p | q;
color S = with a | b | c | d | e;
color I = int:
color P = product U *S * I;
color R = with r | s | t;
fun Succ(y) = case y of a \Rightarrow b \mid b \Rightarrow c \mid c \Rightarrow d \mid d \Rightarrow e \mid e \Rightarrow a;
fun Next(x,y,i) = (x, if (x,y) = (p,e) then b else Succ(y), if y=e then i+1 else i);
fun Reserve(x,y) = case (x,y) of (p,b)=>2's | (p,c)=>1't | (p,d)=>1't
                                  |(q,a)=>1^r+1^s|(q,b)=>1^s|(q,d)=>1^t|=>empty;
fun Release(x,y) = case (x,y) of (p,e)=>2's+2't | (q,c)=>1'r | (q,e)=>2's+1't | =>empty;
var x: U:
vary: S;
vari: I:
                                                              (x,y,i)
                                 Reserve(x,v
                                                Move to
                                                                     State ) 2'(p.b.0)+3'(q.a.0)
            1'r + 3's + 2't ( Res
                                              Next State
                                 Release(x.v
                                                           Next(x,y,i
```

❖ Výše uvedený příklad demonstruje mj. skutečnost, že při použití CPN máme volbu, které rysy systému popsat Petriho sítí a které výpočtem v použitém inskripčním jazyce.