Machine Learning project

Testing SDSS classification technique

Data and goal

- Data: catalogue of ~5000 galaxies and ~2000 stars
- ~2000 galaxies are misclassified stars

Data and goal

Method used by SDSS:

- (psfMag cmodelMag) > 0.145—> Galaxy
- < 0.145 —> Star

(+ little additional checks, most likely)

Data and goal

Idea:

Can we define a better classification method than this one, using different features?

Features:

- SDSS method features (PSF mag and model mag)
- Additional features (colours, radius)

Machine learning

- Supervised learning, classification
- Decision Tree
- Random Forest
- SVM
- Boosting classification

Preprocessing data

- Make all the features comparable: zero mean and standard deviation of 1
- Split the data: 80% training sample, 20% test sample (for cross-validation)

- First step, consider only correctly classified objects
- Features: only SDSS criterion

0.9

0.8

0.6

0.5

0.4

0.3

0.2

0.1

Adding misclassified objects

Data:

+ 2000 stars that SDSS criterion fails at classifying

Adding misclassified objects

Testing new features

Features:

optical colours + radius

Most important feature:

radius

Mixing features

Features:

SDSS criterion + colours + radius

Most important feature: SDSS criterion

Conclusion

- Slightly better with additional features
- Not enough to justify the use a much more complicated model (size of SDSS catalogue)