I will describe waveform $\phi(t)$ and signal s(t) then I will ask a few questions.

- A. Periodic signal $\phi(t)$ with minimum change period t_t and period T
 - a, b, k are integers $a = \text{number of } t_t \text{ intervals that are } +\pi$ $b = \text{number of } t_t \text{ intervals that are O}$ k = a + b and $kt_t = T$

B. Sinusoidal signal s(t) with frequency fc

$$f_c \gg \frac{1}{t_t}$$
 and $\phi(t)$ represents phase of s(t)

- 1. Write a mathematical representation of s(t) either complex exponential or trigonometric representation.
- 2. Rough sketch s(t) showing important features
- 3. Is it possible to choose a and b such that there is no spectral component of s(t) at f_c in the frequency domain?
- 4. What is relationship between a and b for no spectral component of s(t) at f_c?
- 5. If $a \neq b$, what is the minimum possible spacing between spectral components of s(t)?
- 6. For $a \neq b$ in terms of a and b, what is the power of the spectral component at f_c compared to the total power in s(t)?
- 7. With a = b, i.e., no spectral component at f_c , how could you recover (estimate) f_c from s(t)?