

State-Delays in Chemical Engineering: A Control Framework for Distributed Parameter Systems

Behrad 'Brad' Moadeli

Department of Chemical and Materials Engineering, University of Alberta Edmonton, Alberta, Canada

September 5th, 2025

Distributed Parameter Systems in Chemical Engineering

- Chemical processes → PDEs → Distributed Parameter Systems (DPSs).
- A canonical example →
 Axial-Dispersion Tubular Reactors
 → 2nd order Parabolic PDEs.
- Common in practice → Recycle Streams → Alter system dynamics. (Khatibi et al., 2021)

Figure: Axial tubular reactor with recycle stream.

Governing equation, general form

$$\partial_t x(\zeta, t) = \\ D \, \partial_\zeta^2 x(\zeta, t) \quad \text{Dispersion} \\ -v \, \partial_\zeta x(\zeta, t) \quad \text{Convection} \\ -k \, x(\zeta, t) \quad \text{Reaction} \end{cases} \tag{1}$$

Early Lumping vs. Late Lumping

Figure: Conceptual comparison between early and late lumping control strategies. (Cassol, 2022)

Motivation: What's Missing?

Prior Work:

- Late lumping → well-developed for DPS control. (Curtain and Zwart, 2020; Christofides, 2012)
- Control of Parabolic PDEs → well-developed → e.g., Reactors w/o recycle. (Liu et al., 2014; Xu and Dubljevic, 2017)
- Reactors with recycle studied (Khatibi et al., 2021) → Instantaneous recycle

The Gap:

- Reality: Recycle takes time to travel.
- This travel time → State Delay.
- $\begin{tabular}{ll} & Unlike actuation/measurement delays \\ & \to Absent in ChemEng DPS \\ & literature. \\ \end{tabular}$
- No control framework to capture state delays in ChemEng DPS.

End Goal

To develop a **modeling and control framework** via **late-lumping** approach, for chemical engineering **DPSs with state delays**, by studying axial dispersion tubular reactors as a *general yet practically relevant* case.

Recycle-Induced State Delay: A Closer Look

Figure: Axial tubular reactor with recycle-induced state delay.

General Setup:

- 2nd order parabolic PDE.
- Danckwerts-type boundary conditions.

Governing PDE (Isothermal)

$$\partial_{t}c(\zeta,t) = D \,\partial_{\zeta}^{2}c(\zeta,t) - v \,\partial_{\zeta}c(\zeta,t) - k_{r}\,c(\zeta,t) \begin{cases} D \,\partial_{\zeta}c(0,t) - v \,c(0,t) = -v \left[R \,c(1,t-\tau) + (1-R) \,u(t)\right] \\ \partial_{\zeta}c(1,t) = 0 \\ y(t) = c(1,t) \end{cases}$$
(2)

Key Novelty: Delay as a Transport PDE

■ A transport PDE over $\zeta \in [0,1]$:

$$\frac{\partial x}{\partial t} - \frac{1}{\tau} \frac{\partial x}{\partial \zeta} = 0, \quad x(0, t) = u(t)$$

Describes propagation of input u(t) with delay:

$$x(1,t)=u(t-\tau)$$

- Delay emerges as residence time across domain.
- Foundation for modeling state delay as a PDE. (Krstić, 2009)

Figure: A step input propagates spatially and appears at the outlet with delay $\ensuremath{ au}$.

Coupled PDE System

Results in a time-invariant representation of the system, suitable for infinite-dimensional control theory.

Overall Trajectory

Table: Thesis trajectory across Chapters 2-4.

Thesis chapter	Model assumption	Temporal domain	Controller strategy	Estimation method	Publications
Chapter 2	Isothermal	Continuous- time	LQR (uncon- strained)	Luenberger observer (uncon- strained)	(Moadeli et al., 2025)
Chapter 3	Isothermal	Discrete- time	MPC (con- strained)	Luenberger observer (uncon- strained)	(Moadeli and Dubljevic, 2025b,c)
Chapter 4	Non- isothermal	Discrete- time	MPC (con- strained)	MHE (con- strained)	(Moadeli and Dubljevic, 2025a)

Chapter 2: Continuous-time Estimation and Optimal Control for the Isothermal System

Table: Thesis trajectory across Chapters 2-4.

Thesis chapter	Model assumption	Temporal domain	Controller strategy	Estimation method	Publications
Chapter 2	Isothermal	Continuous- time	LQR (uncon- strained)	Luenberger observer (uncon- strained)	(Moadeli et al., 2025)
Chapter 3	Isothermal	Discrete- time	MPC (con- strained)	Luenberger observer (uncon- strained)	(Moadeli and Dubljevic, 2025b,c)
Chapter 4	Non- isothermal	Discrete- time	MPC (con- strained)	MHE (con- strained)	(Moadeli and Dubljevic, 2025a)

Infinite-Dimensional State-Space Representation

System Dynamics

$$\dot{x}(\zeta,t) = Ax(\zeta,t) + Bu(t); \qquad y(t) = Cx(\zeta,t) \tag{3}$$

$$A := \begin{bmatrix} D\partial_{\zeta\zeta} - v\partial_{\zeta} - k_r & 0 \\ 0 & \frac{1}{\tau}\partial_{\zeta} \end{bmatrix}$$

$$x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in L^2[0,1] \times L^2[0,1]$$

$$\mathcal{D}(A) = \left\{ x(\zeta) = [x_1(\zeta), x_2(\zeta)]^T \in X : \\ x(\zeta), \partial_{\zeta} x(\zeta), \partial_{\zeta\zeta} x(\zeta) \quad \text{a.c.,} \\ D\partial_{\zeta} x_1(0) - vx_1(0) = -vRx_2(0), \\ \partial_{\zeta} x_1(1) = 0, x_1(1) = x_2(1) \right\}$$

$$B := \begin{bmatrix} \delta(\zeta) \\ 0 \end{bmatrix} \nu(1 - R) \tag{5}$$

$$C := egin{bmatrix} \int_0^1 \delta(\zeta-1)(\cdot) d\zeta & 0 \end{bmatrix}$$

$$D = 0$$

Eigenvalue Distribution: System is Unstable

- Spectrum of system generator $\sigma(A)$ determines open-loop stability.
- Characteristics equation $det(\lambda_i A) = 0$ is solved to obtain eigenvalues.
- Direct analytical solution is impractical—solved numerically.
- Result: eigenvalues with positive real parts → open-loop unstable.
- Parameters used to obtain the eigenvalue distribution are given in Table 7 in Appendix.

Figure: Eigenvalue distribution of system operator A

LQR: Operator Riccati Equation

- Cost: $J = \int_0^\infty \langle x, Qx \rangle + \langle u, Ru \rangle ds.$
- Solve operator Riccati for Π; truncate in biorthogonal basis to get matrix Riccati for $P = [p_{ii}]$.

$$u(t) = -\langle k_{\rm ric}(\zeta), x(\zeta, t) \rangle = -B^* \Pi x(\zeta, t),$$

$$k_{\rm ric}(\zeta) \equiv \sum_{i=1}^{N} \sum_{j=1}^{N} p_{i,j} \gamma_{ij} \overline{\psi_{ij}}(\zeta)$$

$$k_{\rm ric}(\zeta) \equiv \sum_{i=1}^{N} \sum_{i=1}^{N} p_{i,j} \gamma_i \overline{\psi_j}(\zeta)$$

Figure: $k_{\rm ric}(\zeta)$, N=3

Observer Design and Pole Placement

- lacksquare Output operator (point measurement): $C = \left[\int_0^1 \delta(\zeta 1)(\cdot) \, d\zeta, \, 0 \right].$
- Choose $L(\zeta)$ s.t. A-LC has desired eigenvalues (to the left of regulator poles).
- Error dynamics: $\dot{e} = (A LC)e$.

Figure: Observer gain profile and closed-loop eigenvalue placement.

Results: Stabilization Achieved (FDM validation)

- Both full-state LQR and observer-based output feedback stabilize the PDE system (finite-difference validation).
- Observer-based loop is slightly more sluggish but robust and stable.
- Delay sensitivity: maintains stability for moderate τ mismatch used in design.

Figure: Closed-loop $x_1(\zeta, t)$ (LQR)

Chapter 3: Discrete-time Estimation and Model Predictive Control for the Isothermal System

Table: Thesis trajectory across Chapters 2-4.

Thesis chapter	Model assumption	Temporal domain	Controller strategy	Estimation method	Publications
Chapter 2	Isothermal	Continuous- time	LQR (uncon- strained)	Luenberger observer (uncon- strained)	(Moadeli et al., 2025)
Chapter 3	Isothermal	Discrete- time	MPC (con- strained)	Luenberger observer (uncon- strained)	(Moadeli and Dubljevic, 2025b,c)
Chapter 4	Non- isothermal	Discrete- time	MPC (con- strained)	MHE (con- strained)	(Moadeli and Dubljevic, 2025a)

Cayley-Tustin Time-Discretization

Discrete-time System

$$\dot{x}(\zeta, k) = A_d x(\zeta, k-1) + B_d u(k)$$

$$y(k) = C_d x(\zeta, k-1) + D_d u(k)$$
 (6)

- Discretization is needed for digital controller implementation.
- Cayley-Tustin discretization preserves:
 - System's infinite-dimensional structure
 - Stability and controllability
 -

continuous- to discrete-time mapping

$$A_{d} = -I + 2\alpha R(\alpha, A),$$

$$B_{d} = \sqrt{2\alpha} R(\alpha, A)B,$$

$$C_{d} = \sqrt{2\alpha} CR(\alpha, A),$$

$$D_{d} = CR(\alpha, A)B$$
(7)

- $R(\alpha, A) := [\alpha I A]^{-1}$ is the **resolvent operator** of system generator A.
- $\alpha = \frac{2}{\Delta t}$, where Δt is the sampling time.

Resolvent Operator: Role and Procedure

- To follow the late-lumping approach, it is crucial to obtain a closed-form representation of the resolvent operator, which bridges the continuous- and discrete-time domains.
- This is done by interpreting the resolvent as a mapping from either initial conditions or inputs to the Laplace-transformed state.

Laplace Transform

$$\dot{x}(\zeta,t) = Ax(\zeta,t) + Bu(t) \xrightarrow{\mathcal{L}} sx(\zeta,s) - x(\zeta,0) = Ax(\zeta,s) + BU(s)$$

$$\begin{cases} u = 0 \to x = R(s,A)x(0) \\ x(0) = 0 \to x = R(s,A)BU(s) \end{cases}$$
(8)

To compute R(s, A):

- Apply Laplace transform to the PDE system.
- Reformulate as a spatial ODE in ζ , solve using $e^{P(s)\zeta}$.
- Enforce boundary conditions to determine $\tilde{X}(0, s)$.
- Combine terms to obtain closed-form R(s, A).

See slide 38 in Appendix for full derivation

Continuous-Time Luenberger Observer Design

- State measurements in DPSs are infeasible: states are distributed over space. A Luenberger observer reconstructs full state using output y(t).
- Observer dynamics:

$$\dot{\hat{x}}(\zeta, t) = A\hat{x}(\zeta, t) + Bu(t)
+ L_c [y(t) - \hat{y}(t)],$$

$$\hat{y}(t) = C\hat{x}(\zeta, t)$$
(9)

■ Estimation error: $e(\zeta, t) = x(\zeta, t) - \hat{x}(\zeta, t)$, evolves as $\dot{e}(\zeta, t) = (A - L_c C)e(\zeta, t) = A_o e(\zeta, t)$. ■ Gain $L_c = f(\zeta, l_{\text{obs}})$ is tuned to place A_o eigenvalues in left half-plane.

Figure: The effect of various observer gains $L_c = f(\zeta, I_{obs})$ on the eigenvalues of state reconstruction error dynamics λ_a .

Discrete-Time Observer via Cayley-Tustin

Cayley-Tustin time discretization yields a DT observer in the form:

$$\hat{x}(\zeta, k) = A_d \hat{x}(\zeta, k - 1) + B_d u(k) + L_d[y(k) - \hat{y}(k)]
\hat{y}(k) = C_{d,o} \hat{x}(\zeta, k - 1) + D_{d,o} u(k) + M_{d,o} y(k)$$
(10)

with the following continuous- to discrete-time mapping:

$$C_{d,o}(\cdot) = \sqrt{2\alpha} \left[I + C(\alpha I - A)L_c \right]^{-1} CR(\alpha, A)(\cdot)$$

$$D_{d,o} = \left[I + C(\alpha I - A)L_c \right]^{-1} CR(\alpha, A)B$$

$$M_{d,o} = \left[I + CR(\alpha, A)L_c \right]^{-1} CR(\alpha, A)L_c$$

$$L_d = \sqrt{2\alpha}R(\alpha, A)L_c$$
(11)

 Resulting DT error dynamics are stable if CT observer is stable (Xu and Dubljevic, 2016).

Key Point

No spatial discretization: Observer is constructed using the same resolvent operator.

MPC Architecture: Output-Feedback Loop

- Observer reconstructs $\hat{x}(k)$, passed to MPC at each time step.
- MPC uses predicted future states and solves constrained QP over a finite horizon.
- lacktriangledown Only the first control input is applied ightarrow receding horizon.

Figure: Block diagram representation of the observer-based MPC.

MPC Formulation with Terminal Projection

■ Finite-horizon MPC:

$$\min_{U} \sum_{l=0}^{N-1} \langle \hat{x}(\zeta, k+l|k), Q\hat{x}(\zeta, k+l|k) \rangle + \langle u(k+l+1|k), Fu(k+l+1|k) \rangle + \langle \hat{x}(\zeta, k+N|k), P\hat{x}(\zeta, k+N|k) \rangle$$

s.t.
$$\hat{x}(\zeta, k+l|k) = A_d\hat{x}(\zeta, k+l-1|k) + B_du(k+l|k)$$
$$u^{min} \le u(k+l|k) \le u^{max}$$
$$\langle \hat{x}(\zeta, k+N|k), \phi_u(\zeta) \rangle = 0$$
(12)

 P is the terminal cost operator obtained as the solution to the discrete-time Lyapunov equation:

$$P(\cdot) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} -\frac{\langle \phi_m, Q\psi_n \rangle}{\lambda_m + \overline{\lambda_n}} \langle (\cdot), \psi_n \rangle \phi_m$$
(13)

- The constrained QP is **convex** only if *P* is **positive definite**.
- P is positive definite only if the terminal state $\hat{x}(\zeta, k + N|k)$ is in a stable subspace.
- A terminal constraint is introduced as an equality constraint by setting the projection of the terminal state onto the unstable subspace of the system equal to zero.

Results: Stabilization under Observer-based MPC

- Initial condition: $x_1(\zeta, 0) = \sin^2(\pi\zeta), x_2(\zeta, 0) = 0$
- Sampling time $\Delta t = 20 \text{ s}$
- Horizon length N = 9
- Input bounds: $0 \le u(t) \le 0.15$

Figure: Control input and reactor output under MPC.

Observer-based MPC State Response

Figure: Stabilized concentration profile under observer-MPC.

Chapter 4: Non-isothermal System—Moving Horizon Estimation and Model Predictive Control

Table: Thesis trajectory across Chapters 2-4.

Thesis chapter	Model assumption	Temporal domain	Controller strategy	Estimation method	Publications
Chapter 2	Isothermal	Continuous- time	LQR (uncon- strained)	Luenberger observer (uncon- strained)	(Moadeli et al., 2025)
Chapter 3	Isothermal	Discrete- time	MPC (con- strained)	Luenberger observer (uncon- strained)	(Moadeli and Dubljevic, 2025b,c)
Chapter 4	Non- isothermal	Discrete- time	MPC (con- strained)	MHE (con- strained)	(Moadeli and Dubljevic, 2025a)

Non-isothermal System Model

Figure: Non-isothermal system schematic.

States: $x = [m_1(\zeta, t), m_2(\zeta, t), m_3(\zeta, t), m_4(\zeta, t)]^{\top}$ (reactor concentration/temperature and their recycle-line counterparts).

Input: wall/jacket temperature $u(t) = T_w(t)$. **Output:** $y(t) = m_2(1, t)$ (outlet temperature).

$$\begin{split} \partial_t m_1 &= \frac{1}{Pe_m} \partial_{\zeta\zeta} m_1 - \partial_{\zeta} m_1 + k_a (1-m_1) \, e^{\frac{\eta m_2}{1+m_2}}, \\ \partial_t m_2 &= \frac{1}{Pe_T} \partial_{\zeta\zeta} m_2 - \partial_{\zeta} m_2 + \alpha k_a (1-m_1) \, e^{\frac{\eta m_2}{1+m_2}} + \sigma (T_w(t)-m_2), \\ \partial_t m_3 &= \frac{1}{\tau} \partial_{\zeta} m_3, \qquad \partial_t m_4 &= \frac{1}{\tau} \partial_{\zeta} m_4, \end{split}$$

with recycle boundary coupling and Danckwerts boundary conditions.

Linearized, Dimensionless Representation of the Non-linear System around Steady States

System Dynamics

$$\dot{x}(\zeta,t) = Ax(\zeta,t) + Bu(t); \qquad y(t) = Cx(\zeta,t) \tag{14}$$

- Dimensionless Model
- Steady-State Analysis
- Deviation Variables
- Linearization

$$\mathfrak{B}(\cdot) = \begin{bmatrix} 0 \\ \sigma \\ 0 \\ 0 \end{bmatrix} (\cdot) \tag{15}$$

$$\mathfrak{C}(\cdot) = \begin{bmatrix} 0 & \int_0^1 \delta(\zeta - 1)(\cdot)_2 \, d\zeta & 0 & 0 \end{bmatrix} \quad (16)$$

Linearized, Dimensionless Representation of the Non-linear System around Steady States

$$A(\cdot) = \begin{bmatrix} \frac{1}{Pe_{m}} \partial_{\zeta\zeta} - \partial_{\zeta} + R_{1} & R_{2} & 0 & 0\\ \alpha R_{1} & \frac{1}{Pe_{T}} \partial_{\zeta\zeta} - \partial_{\zeta} + \alpha R_{2} - \sigma & 0 & 0\\ 0 & 0 & \frac{1}{\tau} \partial_{\zeta} & 0\\ 0 & 0 & 0 & \frac{1}{\tau} \partial_{\zeta} \end{bmatrix} \begin{bmatrix} (\cdot)_{1}\\ (\cdot)_{2}\\ (\cdot)_{3}\\ (\cdot)_{4} \end{bmatrix},$$
(17)

$$\mathcal{D}(A) := \left\{ x = (x_1, x_2, x_3, x_4)^{\top} \in X : x_1, x_2 \in H^2(0, 1), \ x_3, x_4 \in H^1(0, 1); \right.$$

$$\left. \begin{array}{l} \partial_{\zeta} x_1(1) = 0; & \partial_{\zeta} x_1(0) = Pe_m \big[x_1(0) - r_r x_3(0) \big]; \\ \partial_{\zeta} x_2(1) = 0; & \partial_{\zeta} x_2(0) = Pe_T \big[x_2(0) - r_r x_4(0) \big]; \end{array} \right.$$

$$\left. \begin{array}{l} (18) \\ x_1(1) = x_3(1); & x_2(1) = x_4(1) \right\}.$$

Eigenvalue Distribution: Unstable and Stable Cases

Same as previous chapters, the eigenvalue distribution of the system operator A is analyzed to determine stability, and is obtained by solving the characteristic equation $det(\lambda_i - A) = 0$. Parameters used to obtain the eigenvalue distributions are given in Table 8 in Appendix.

Figure: Eigenvalue distribution in the complex plane for Case I (Unstable) and Case II (Stable).

Moving Horizon Estimation (MHE)

- In distributed parameter systems, full state measurement is not feasible ⇒ need an estimator.
- MHE: finite-horizon, optimization-based state estimator using most recent N_{MHE} outputs and inputs.
- Model (after Cayley–Tustin discretization of the PDE system):

$$\begin{cases} \hat{x}_{k+1} = \mathfrak{A}_d \hat{x}_k + \mathfrak{B}_d u_k + \mathfrak{N}_d w_k, \\ y_k = \mathfrak{C}_d \hat{x}_k + \mathfrak{D}_d u_k + v_k, \end{cases}$$

where w_k , v_k are process and measurement noise.

- At each step, solve a constrained QP to find the most plausible state and disturbance trajectory consistent with data.
- Naturally handles constraints, disturbances, and produces an estimated state $\hat{x}_{k|k}$ for feedback.
- Discretization in time is Cayley—Tustin (same as in previous chapters); MPC formulation is also the same as before.

MHE-MPC Integration

Table: Proposed MHE-MPC algorithm: Initialization window

0). Assume plant dynamics $\{w_k, v_k\}_{k=0}^{k_{\rm end}}$ and initial condition x_0 are known. Let $N=N_{MHE}$.

Initialization window (T < N):

- 1). Assign desired values to the input sequence $\{u_k\}_{k=0}^{N-1}$.
- 2). Run the plant model: $\left\{ \begin{array}{ll} x_{k+1} &= \mathfrak{A}_d x_k + \mathfrak{B}_d u_k + \mathfrak{N}_d w_k \\ y_k &= \mathfrak{C}_d x_k + \mathfrak{D}_d u_k + v_k \end{array} \right\}_{k=0}^{N-1} \text{ to obtain}$ $\left\{ y_k \right\}_{k=0}^{N-1}.$
- 3). Provide an initial guess for $\hat{x}_{0|N-1}$.

MHE-MPC Integration

Table: Proposed MHE-MPC algorithm: Control-Estimation window

Control-Estimation window ($T \ge N$):

- 4). Collect $\{u_k, y_k\}_{k=T-N}^{T-1}$ and prior estimate $\hat{x}_{T-N|T-1}$. Solve $\min_{\omega_T} J_{\text{MHE}}$ to obtain $\omega_T = \left[\hat{x}_{T-N|T} \middle| \{\hat{w}_k|_T\}_{k=T-N}^{T-1}\right]$
- 5). Simulate the model: $\left\{ \hat{x}_{k+1\mid T} = \mathfrak{A}_d \hat{x}_{k\mid T} + \mathfrak{B}_d u_k + \mathfrak{N}_d \hat{w}_{k\mid T} \right\}_{k=0}^{N-1} \text{ to compute } \hat{x}_{T-N+1\mid T} \text{ and } \hat{x}_{T\mid T}.$
- 6). Use $\hat{x}_{T|T}$ to solve min_U J_{MPC} and obtain u_T .
- 7). Apply u_T to the plant: $\begin{cases} x_{T+1} &= \mathfrak{A}_d x_T + \mathfrak{B}_d u_T + \mathfrak{N}_d w_T \\ y_T &= \mathfrak{C}_d x_T + \mathfrak{D}_d u_T + v_T \end{cases}$ to obtain y_T .
- 8). Update $T \leftarrow T + 1$ and repeat steps 4-8.

Results: Stabilization under MHE-MPC

Figure: Case II: output & estimated output over time

Figure: Case II: stabilization under MHE-MPC

Conclusion — Objectives Achieved

- Revealed state delay in chemical engineering DPS
- Utilized a general yet physically meaningful testbed to develop a framework that addresses state delays in chemical engineering DPS via transport PDEs.
- Across studies, controllers stabilized otherwise unstable reactor conditions and met key performance criteria, confirming viability of late lumping for delay-affected DPSs.
- Net takeaway: a structure-preserving model + delay-aware estimation/control bring modern methods to practical DPSs with internal delays.

Future Work — Where This Goes Next

- Robustness & uncertainty: incorporate model/parametric uncertainty, unmodeled dynamics, time-variation; develop robust/adaptive controllers and observers.
- Richer objectives: extend beyond stabilization to setpoint tracking and disturbance rejection within the MPC/regulator designs.
- Comprehensive delays: integrate input and output delays alongside state delay using the same transport-PDE framework for more realistic plant-wide behavior.

Thank you!

I'm glad to take your questions.

References

- Cassol, G. O. (2022). From Continuous Modelling to Discrete Constrained Optimal Control of Distributed Parameter Systems. Phd thesis, University of Alberta, Edmonton, AB, Canada.
- Christofides, P. D. (2012). *Nonlinear and robust control of PDE systems*. Systems & Control: Foundations & Applications. Springer, New York, NY.
- Curtain, R. and Zwart, H. (2020). *Introduction to infinite-dimensional systems theory:* a state-space approach, volume 71, chapter 3.2: 'Riesz-spectral operators', pages 79–108. Springer Nature.
- Khatibi, S., Cassol, G. O., and Dubljevic, S. (2021). Model predictive control of a non-isothermal axial dispersion tubular reactor with recycle. *Computers & Chemical Engineering*, 145:107159.
- Krstić, M. (2009). *Delay compensation for nonlinear, adaptive, and PDE systems*, chapter 1.8: 'DDE or Transport PDE Representation', page 9. Systems & control. Birkhäuser.
- Liu, L., Huang, B., and Dubljevic, S. (2014). Model predictive control of axial dispersion chemical reactor. *Journal of Process Control*, 24(11):1671–1690.
- Moadeli, B., Cassol, G. O., and Dubljevic, S. (2025). Optimal control of axial dispersion tubular reactors with recycle: Addressing state-delay through transport PDEs. The Canadian Journal of Chemical Engineering, 103(8):3751–3766.

References (cont.)

- Moadeli, B. and Dubljevic, S. (2025a). Advanced control of non-isothermal axial dispersion tubular reactors with recycle-induced state delay. *The Canadian Journal of Chemical Engineering*. Under review.
- Moadeli, B. and Dubljevic, S. (2025b). Model predictive control of axial dispersion tubular reactors with recycle: Addressing state-delay through transport pdes. In 2025 American Control Conference (ACC), pages 2323–2328.
- Moadeli, B. and Dubljevic, S. (2025c). Observer-based MPC design of an axial dispersion tubular reactor: Addressing recycle delays through transport PDEs. In 2025 European Control Conference (ECC), Thessaloniki, Greece. In Press.
- Xu, Q. and Dubljevic, S. (2017). Linear model predictive control for transport-reaction processes. AIChE Journal, 63(7):2644–2659.
- Xu, X. and Dubljevic, S. (2016). The state feedback servo-regulator for countercurrent heat-exchanger system modelled by system of hyperbolic pdes. *European Journal of Control*, 29:51–61.

Appendix A-1: Parameters Used in Isothermal Simulations

Table: Physical Parameters for the Isothermal System

Parameter	Symbol	Value	Unit
Diffusivity	D	2×10^{-5}	m^2/s
Velocity	v	0.01	m/s
Reaction Constant	k _r	-1.5	s^{-1}
Recycle Residence Time	au	80	s
Recycle Ratio	R	0.3	_

Appendix A-2: Parameters Used in Non-isothermal Simulations

Table: Parameters Used in the Steady-State Analysis for Case I (Unstable) and Case II (Stable) of the Non-isothermal System

Parameter	Case I	Case II
Farameter	(Unstable)	(Stable)
Pe_{m}	4	4
$\mathrm{Pe}_{\mathcal{T}}$	6	6
$T_{ m w}^{ m ss}$	-0.37	-0.37
$ au_{ m Feed}$	600 K	600 K
$\mathcal{C}_{A, ext{Feed}}$	1.0 M	1.0 M
k _a	0.6	0.6
r _r	0.3	0.3
α	0.8	0.8
η	14.0	6.0
σ	0.9	0.9
au	0.5	0.5
R_1	-1.38	-0.45
R_2	6.48	1.95

Appendix B: Resolvent Derivation (1/3)

Step 1: Apply Laplace transform and reformulate in space

$$\dot{x}(\zeta,t) = Ax(\zeta,t) + Bu(t) \xrightarrow{\mathcal{L}}$$

$$sx(\zeta,s) - x(\zeta,0) = Ax(\zeta,s) + BU(s)$$
(19)

Step 2: Convert PDE to spatial ODE in ζ

$$\partial_{\zeta} \underbrace{\begin{bmatrix} X_1 \\ \partial_{\zeta} X_1 \\ X_2 \end{bmatrix}}_{\tilde{X}} = \underbrace{\begin{bmatrix} 0 & 1 & 0 \\ \frac{s-k}{D} & \frac{v}{D} & 0 \\ 0 & 0 & s\tau \end{bmatrix}}_{P(s)} \tilde{X} + \underbrace{\begin{bmatrix} 0 \\ -\frac{x_1(\zeta,0)}{D} + v(1-R)\delta(\zeta)U(s) \\ -\tau x_2(\zeta,0) \end{bmatrix}}_{Z(\zeta,s)} \tag{20}$$

Solution (variation of constants):

$$\tilde{X}(\zeta,s) = e^{P(s)\zeta}\tilde{X}(0,s) + \int_0^\zeta e^{P(s)(\zeta-\eta)}Z(\eta,s)\,d\eta \tag{21}$$

Appendix B: Resolvent Derivation (2/3)

Step 3: Solve for $\tilde{X}(0,s)$ using nonhomogeneous boundary conditions

$$\underbrace{\begin{bmatrix}
-v & D & Rv \\
T_{11}(1,s) & T_{12}(1,s) & -T_{33}(1,s) \\
T_{21}(1,s) & T_{22}(1,s) & 0
\end{bmatrix}}_{M^{-1}(s)} \tilde{X}(0,s) = \int_{0}^{1} \begin{bmatrix}
0 \\
F_{33}(1,\eta)Z_{3} - F_{12}(1,\eta)Z_{2} \\
-F_{22}(1,\eta)Z_{2}
\end{bmatrix} d\eta$$
(22)

This gives $\tilde{X}(0,s)$, which is then substituted back into the general solution to form the resolvent operator.

Appendix B: Resolvent Derivation (3/3)

Final expressions for R(s, A)Zero-state (initial condition = 0):

$$R_1B = -v(1-R) \left[\sum_{j=1}^2 T_{1j}(\zeta) (M_{j2}T_{12}(1) + M_{j3}T_{22}(1)) - T_{12}(\zeta) \right]$$

$$R_2B = -v(1-R)T_{33}(\zeta) (M_{32}T_{12}(1) + M_{33}T_{22}(1))$$

Zero-input (input = 0):

$$R_{11} = \sum_{j=1}^{2} \frac{T_{1j}(\zeta)}{D} \int_{0}^{1} \left[M_{j2} F_{12}(1, \eta) + M_{j3} F_{22}(1, \eta) \right] (\cdot)_{1} d\eta - \frac{1}{D} \int_{0}^{\zeta} F_{12}(\zeta, \eta) (\cdot)_{1} d\eta$$

$$R_{12} = -\tau \sum_{j=1}^{2} T_{1j}(\zeta) \int_{0}^{1} M_{j2} F_{33}(1, \eta) (\cdot)_{2} d\eta$$

$$R_{21} = \frac{T_{33}(\zeta)}{D} \int_{0}^{1} \left[M_{32} F_{12}(1, \eta) + M_{33} F_{22}(1, \eta) \right] (\cdot)_{1} d\eta$$

$$R_{22} = -\tau T_{33}(\zeta) \int_{0}^{1} M_{32} F_{33}(1, \eta) (\cdot)_{2} d\eta - \tau \int_{0}^{\zeta} F_{33}(\zeta, \eta) (\cdot)_{2} d\eta$$