Homework 9

Eco 4306 Economic and Business Forecasting Spring 2018

Due: Tuesday, May 3, before the class

Problem 1

(a) Left panel below shows the monthly price for US Regular Conventional Gas, $\log p_t^{GAS}$, and the monthly price for West Texas Intermediate Crude Oil, $\log p_t^{OIL}$, during the 1995M1:2018M3 period. The right panel shows these two prices after log transformation.

- (b) The log price of US regular conventional gas $\log p_t^{GAS}$ is I(1) time series:
 - we can not reject the H_0 of a unit root in $\log p_t^{GAS}$ based on the ADF test, its p-value is 0.4658

Null Hypothesis: LPGAS has a unit root Exogenous: Constant

Lag Length: 2 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-1.758725	0.4006
Test critical values:	1% level	-3.453823	
	5% level	-2.871768	
	10% level	-2.572293	

^{*}MacKinnon (1996) one-sided p-values.

• we reject the H_0 of a unit root in $\Delta \log p_t^{GAS}$ based on the ADF test, its p-value is 0.0000

Null Hypothesis: D(LPGAS) has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fu Test critical values:	ller test statistic 1% level 5% level 10% level	-11.68652 -3.453823 -2.871768 -2.572293	0.0000

^{*}MacKinnon (1996) one-sided p-values.

The log price of West Texas Intermediate crude oil $\log p_t^{GAS}$ is I(1) time series:

• we can not reject the H_0 of a unit root in $\log p_t^{OIL}$ based on the ADF test, its p-value is 0.4658

Null Hypothesis: LPOIL has a unit root

Exogenous: Constant

Lag Length: 1 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-1.743861 -3.453823 -2.871768 -2.572293	0.4080

^{*}MacKinnon (1996) one-sided p-values

• we reject the H_0 of a unit root in $\Delta \log p_t^{OIL}$ based on the ADF test, its p-value is 0.0000

Null Hypothesis: D(LPOIL) has a unit root

Exogenous: Constant

Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level	-12.74296 -3.453823	0.0000
	5% level 10% level	-2.871768 -2.572293	

^{*}MacKinnon (1996) one-sided p-values.

(c) The Schwarz information criteria suggests that 2 lags should be used in the bivariate VAR

VAR Lag Order Selection Criteria Endogenous variables: LOG(PGAS) LOG(POIL)
Exogenous variables: C

Date: 05/09/18 Time: 10:26 Sample: 1995M01 2010M12 Included observations: 180

Lag	LogL	LR	FPE	AIC	SC	HQ
0	80.21911	NA	0.001437	-0.869101	-0.833624	-0.854717
1	491.2298	808.3210	1.56e-05	-5.391442	-5.285010	-5.348289
2	522.5107	60.82393	1.15e-05	-5.694563	-5.517177*	-5.622641
3	530.9892	16.29754	1.10e-05	-5.744324	-5.495983	-5.643633
4	533.6751	5.103232	1.11e-05	-5.729723	-5.410427	-5.600262
5	541.8506	15.35175	1.06e-05	-5.776117	-5.385867	-5.617888
6	551.3225	17.57577*	1.00e-05*	-5.836917*	-5.375712	-5.649918*
7	553.2462	3.526704	1.02e-05	-5.813847	-5.281687	-5.598079
8	558.1322	8.849175	1.01e-05	-5.823692	-5.220578	-5.579155
9	561.6891	6.362841	1.02e-05	-5.818768	-5.144699	-5.545462
10	563.9113	3.925859	1.04e-05	-5.799014	-5.053991	-5.496940
11	566.9883	5.367639	1.05e-05	-5.788759	-4.972781	-5.457915
12	568.5506	2.690559	1.08e-05	-5.761673	-4.874740	-5.402060

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

- (d) In time series plots in (a), $\log p_t^{GAS}$ and $\log p_t^{OIL}$ show only very small upward tendency, and the gap between the two series does not appear to be getting larger over time. Thus Case 2 cointegration test is probably the most suitable, but Case 3 may be also considered as robustness check. Te results of the tests are shown below.
- (e) Johansen's trace and maximum eigenvalue cointegration tests for $(\log p_t^{GAS}, \log p_t^{OIL})$, using the sample 1995M1:2010M12, with 2 lags, and Case 2 specification imply that the two series are cointegrated: in both tests we reject H_0 of no cointegration (p- values 0.0006 and 0.0001) and we can not reject the H_0 of one cointegrating relationship (p-values 0.7183 in both tests).

Date: 05/09/18 Time: 10:26
Sample (adjusted): 1995M04 2010M12
Included observations: 189 after adjustments
Trend assumption: No deterministic trend (restricted constant)
Series: LOG(PGAS) LOG(POIL)
Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.162415	35.82357	20.26184	0.0002
At most 1	0.012235	2.326637	9.164546	0.7122

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.162415	33.49693	15.89210	0.0000
At most 1	0.012235	2.326637	9.164546	0.7122

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

Similar results are obtained with Case 3 specification:

Date: 05/09/18 Time: 10:26 Sample (adjusted): 1995M04 2010M12 Included observations: 189 after adjustments Trend assumption: Linear deterministic trend Series: LOG(PGAS) LOG(POIL) Lags interval (in first differences): 1 to 2

Unrestricted Cointegration Rank Test (Trace)

Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**
None *	0.162360	34.90013	15.49471	0.0000
At most 1	0.007462	1.415603	3.841466	0.2341

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.162360	33.48453	14.26460	0.0000
At most 1	0.007462	1.415603	3.841466	0.2341

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

(f) Below are the results of the estimation of the bivariate VEC for the 1995M1:2010M12 sample. The left panel shows the results for Case 2 specification of cointegration. The estimated model is

$$\Delta \log p_{t}^{GAS} = -0.327 z_{t-1} + 0.352 \Delta \log p_{t-1}^{GAS} - 0.127 \Delta \log p_{t-2}^{GAS} + 0.103 \Delta \log p_{t-1}^{OIL} + 0.011 \Delta \log p_{t-2}^{OIL} + \varepsilon_{1,t}$$

$$\Delta \log p_{t}^{OIL} = -0.108 z_{t-1} - 0.115 \Delta \log p_{t-1}^{GAS} - 0.032 \Delta \log p_{t-2}^{GAS} + 0.201 \Delta \log p_{t-1}^{OIL} + 0.081 \Delta \log p_{t-2}^{OIL} + \varepsilon_{2,t}$$

where $z_{t-1} = \log p_{t-1}^{GAS} - 0.597 \log p_{t-1}^{OIL} + 1.587$ is the error terms measuring the deviation in period t-1 from the long run equilibrium.

The panel on the right shows the results for Case 3 specification of cointegration, which are very similar.

Vector Error Correction Estimates
Date: 05/09/18 Time: 10:26
Sample (adjusted): 1995M04 2010M12
Included observations: 189 after adjustments
Standard errors in () & t-statistics in [1]

Cointegrating Eq:	CointEq1	
LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.631247 (0.01394) [-45.2872]	
С	1.738756 (0.05040) [34.4992]	

c	1.738756 (0.05040) [34.4992]	
Error Correction:	D(LOG(PGAS))	D(LOG(POIL))
CointEq1	-0.334163 (0.07765) [-4.30353]	-0.029007 (0.12377) [-0.23435]
D(LOG(PGAS(-1)))	0.353684 (0.09534) [3.70974]	-0.138917 (0.15197) [-0.91409]
D(LOG(PGAS(-2)))	-0.143176 (0.09105) [-1.57241]	-0.057373 (0.14514) [-0.39529]
D(LOG(POIL(-1)))	0.135581 (0.06819) [1.98830]	0.275317 (0.10870) [2.53293]
D(LOG(POIL(-2)))	0.017021 (0.06806) [0.25011]	0.170246 (0.10848) [1.56934]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.366524 0.352753 0.510838 0.052691 26.61526 290.6416 -3.022663 -2.936902 0.005422 0.065493	0.069829 0.049607 1.297996 0.083990 3.453247 202.5181 -2.090139 -2.004378 0.008309 0.086154
Determinant resid covaria Determinant resid covaria Log likelihood Akaike information criterio Schwarz criterion	ance	9.40E-06 8.91E-06 562.5500 -5.815344 -5.592367

Vector Error Correction Estimates
Date: 05/09/18 Time: 10:26
Sample (adjusted): 1995M04 2010M12
Included observations: 189 after adjustments
Standard errors in () & t-statistics in []

Cointegrating Eq:

CointEa1

LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.631302	
2000, 0.2(.)/	(0.01398)	
	[-45.1679]	
С	1.740782	
Error Correction:	D(LOG(PGAS))	D(LOG(POIL
CointEq1	-0.333087	-0.026541
	(0.07779)	(0.12384)
	[-4.28204]	[-0.21432]
D(LOG(PGAS(-1)))	0.354237	-0.137657
	(0.09549)	(0.15203)
	[3.70952]	[-0.90547]
D(LOG(PGAS(-2)))	-0.145054	-0.061666
	(0.09124)	(0.14526)
	[-1.58977]	[-0.42452]
D(LOG(POIL(-1)))	0.133350	0.270216
	(0.06838)	(0.10887)
	[1.95001]	[2.48203]
D(LOG(POIL(-2)))	0.015578	0.166954
	(0.06820)	(0.10858)
	[0.22842]	[1.53766]
С	0.003128	0.005834
	(0.00387)	(0.00616)
	[0.80887]	[0.94757]
R-squared	0.367973	0.074293
Adj. R-squared	0.350705	0.049000
Sum sq. resids	0.509669	1.291766
S.E. equation	0.052774	0.084017
F-statistic	21.30896	2.937339
Log likelihood	290.8581	202.9727
Akaike AIC Schwarz SC	-3.014371 -2.911458	-2.084368 -1.981455
Mean dependent	-2.911458 0.005422	0.008309
S.D. dependent	0.005422	0.008309
O.D. dependent	0.003483	0.000104
Determinant resid covari		9.46E-06
Determinant resid covar	iance	8.86E-06
Log likelihood		563.0055
Akaike information criteri Schwarz criterion	ion	-5.809582
		-5.569453

(g) The adjustment parameters are $\gamma_1 = -0.327$ and $\gamma_2 = -0.108$ under Case 2, and $\gamma_1 = -0.326$ and $\gamma_2 = -0.106$ under Case 3. For error correction mechanism to move the system back to the long run equilibrium, whenever there is a disruption and $z_{t-1} \neq 0$ the adjustment parameters need to satisfy $\gamma_1 \leq 0$, $\gamma_2 \geq 0$ and they can not be both equal zero at the same time. In the estimated VEC γ_1 is consistent with the error correction mechanism since it's negative, γ is not consistent with the error

- correction mechanism because it's negative. But for both cases only γ_1 is statistically significant, γ_2 is not. It thus makes sense to restrict the model and impose $\gamma_2 = 0$.
- (h) Below are the results of the estimation of the bivariate VEC with $\gamma_2 = 0$ restriction. The imposed restriction is not rejected by the test, the p-value is 0.4105. The left panel again shows the results for Case 2 specification of cointegration, in which case the model is

$$\begin{split} \Delta \log p_{t}^{GAS} &= -0.282 z_{t-1} + 0.351 \Delta \log p_{t-1}^{GAS} - 0.129 \Delta \log p_{t-2}^{GAS} + 0.104 \Delta \log p_{t-1}^{OIL} + 0.012 \Delta \log p_{t-p}^{OII} + \varepsilon_{1,t} \\ \Delta \log p_{t}^{OIL} &= -0.118 \Delta \log p_{t-1}^{GAS} - 0.036 \Delta \log p_{t-2}^{GAS} + 0.204 \Delta \log p_{t-1}^{OIL} + 0.084 \Delta \log p_{t-2}^{OIL} + \varepsilon_{2,t} \end{split}$$

For comparison, the panel on the right shows the results for Case 3 specification of cointegration.

Vector Error Correction Estimates
Date: 05/09/18 Time: 10:26
Sample (adjusted): 1995M04 2010M12
Included observations: 189 after adjustments
Standard errors in () & t-statistics in []

 $\begin{array}{lll} \text{Cointegration Restrictions:} \\ & \text{B}(1,1)=1, \text{A}(2,1)=0 \\ \text{Convergence achieved after 2 iterations.} \\ \text{Restrictions identify all cointegrating vectors} \\ \text{LR test for binding restrictions (rank = 1);} \\ \text{Chi-square(1)} & 0.052801 \\ \text{Probability} & 0.818259 \\ \end{array}$

Cointegrating Eq:	CointEq1	
LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.631895 (0.01395) [-45.3004]	
С	1.741377 (0.05044) [34.5258]	

	[34.0200]	
Error Correction:	D(LOG(PGAS))	D(LOG(POIL))
CointEq1	-0.321047 (0.05379) [-5.96885]	0.000000 (0.00000) [NA]
D(LOG(PGAS(-1)))	0.353400 (0.09536) [3.70577]	-0.139621 (0.15198) [-0.91869]
D(LOG(PGAS(-2)))	-0.143665 (0.09107) [-1.57747]	-0.058384 (0.14514) [-0.40226]
D(LOG(POIL(-1)))	0.135874 (0.06821) [1.99205]	0.276022 (0.10870) [2.53929]
D(LOG(POIL(-2)))	0.017225 (0.06808) [0.25302]	0.170820 (0.10849) [1.57450]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.366211 0.352433 0.511091 0.052704 26.57932 290.5948 -3.022168 -2.936407 0.005422 0.065493	0.069794 0.049572 1.298044 0.083992 3.451421 202.5146 -2.090102 -2.004341 0.008309 0.086154
Determinant resid covaria Determinant resid covaria Log likelihood Akaike information criteria Schwarz criterion	ance	9.40E-06 8.91E-06 562.5236 -5.815065 -5.592087

Vector Error Correction Estimates Date: 05/09/18 Time: 10:26 Sample (adjusted): 1995M04 2010M12 Included observations: 189 after adjustments Standard errors in () & t-statistics in []

Cointegration Restrictions:
B(1,1)=1, A(2,1)=0
Convergence achieved after 2 iterations.
Restrictions identify all cointegrating vectors
LR test for binding restrictions (rank = 1):
Chi-square(1)
0.045593
Probability
0.830918

Cointegrating Eq:	CointEq1	
LOG(PGAS(-1))	1.000000	
LOG(POIL(-1))	-0.631895 (0.01399) [-45.1771]	
С	1.742901	

Error Correction:	D(LOG(PGAS))	D(LOG(POIL))
CointEq1	-0.321047	0.000000
	(0.05394)	(0.00000)
	[-5.95201]	[NA]
D(LOG(PGAS(-1)))	0.354114	-0.138046
	(0.09551)	(0.15204)
	[3.70757]	[-0.90798]
D(LOG(PGAS(-2)))	-0.145407	-0.062234
2(200). 0/10(2)//	(0.09124)	(0.14524)
	[-1.59362]	[-0.42848]
D(LOG(POIL(-1)))	0.133420	0.270600
D(LOG(FOIL(-1)))	(0.06840)	(0.10889)
	[1.95046]	[2.48515]
	[[2::100:10]
D(LOG(POIL(-2)))	0.015616	0.167266
	(0.06822)	(0.10859)
	[0.22891]	[1.54033]
С	0.003130	0.005834
	(0.00387)	(0.00616)
	[0.80916]	[0.94745]
R-squared	0.367799	0.074275
Adj. R-squared	0.350526	0.048982
Sum sq. resids	0.509810	1.291791
S.E. equation	0.052781	0.084018
F-statistic	21.29302	2.936584
Log likelihood	290.8320	202.9709
Akaike AIC	-3.014096	-2.084349
Schwarz SC	-2.911183	-1.981436
Mean dependent	0.005422	0.008309
S.D. dependent	0.065493	0.086154
Determinant resid covari	ance (dof adj.)	9.46E-06
Determinant resid covari	ance	8.86E-06 562.9827
Log likelihood	Log likelihood	
Akaike information criteri	on	-5.809341
Schwarz criterion		-5.569212

- (i) We restricted the model and imposed $\gamma_2 = 0$ since it was not statistically significant. The interpretation of this restriction is that the price of oil does not adjust, when there is a deviation from the long run equilibrium only price of gas adjusts. So for example if $z_{t-1} > 0$ which means that in t-1 price of gas is above the level implied by the long run equilibrium, in the next period it will fall to partially correct the gap z_{t-1} , while no adjustment in price of oil takes place.
- (j) The RMSE for the sequence of one step ahead forecasts of the gas price, p_t^{GAS} in 2011M1:2018M3 using the VEC model is 0.1472.

Forecast Evaluation
Date: 05/09/18 Time: 10:26
Sample: 2011M01 2018M04
Included observations: 88

Variable	Inc. obs.	RMSE	MAE	MAPE	Theil
PGAS	88	0.147257	0.117970	4.404665	0.025068
POIL	87	5.288259	4.118257	6.001430	0.033627

RMSE: Root Mean Square Error MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error Theil: Theil inequality coefficient (k) The correlogram for $\Delta \log p_t^{GAS}$ shows slow decay in ACF and significant lags 1,2,5,12 in PACF.

Date: 05/09/18 Time: 10:26 Sample: 1995M01 2010M12 Included observations: 191

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.402	0.402	31.313	0.000
i ₫ i	 	2	-0.082	-0.290	32.623	0.000
₁ ₫ •	<u> </u> -	3	-0.084	0.098	33.993	0.000
- I ()	' [] '	4	-0.032	-0.071	34.200	0.000
■ '	 	5	-0.178	-0.200	40.503	0.000
= '	'E '	6	-0.228		50.862	0.000
■ '	' □ '	7	-0.146		55.148	0.000
□ !	□ '	8	-0.140		59.120	0.000
' Q '	' '	9	-0.076	0.009	60.286	0.000
' 	' 	10	0.151	0.143	64.959	0.000
' <u> </u>	 	11	0.256	0.064	78.414	0.000
1 1 1	ļ 	12	0.015	-0.174	78.461	0.000
' Q '	' '	13	-0.079	0.015	79.765	0.000
' ji '	'Di	14	0.078	0.067	81.033	0.000
1 1 1	ļ إ	15		-0.141	81.061	0.000
' Q '	' -	16	-0.079	0.086	82.374	0.000
' ₫ '	' [] '	17	-0.090	-0.070	84.104	0.000
' ! '	ļ <u>'</u> ¶'	18		-0.101	86.244	0.000
· i ii ·	' '	19	-0.107	0.009	88.678	0.000
'₫'	q '	20	-0.095	-0.129	90.633	0.000
1 1	'Q '	21	-0.024		90.761	0.000
<u>-</u>	' '	22	0.020	0.002	90.848	0.000
1 1	' [['	23	-0.010		90.870	0.000
' []'	ļ ' P i	24	0.098	0.103	92.995	0.000
' 🖳	' P'	25	0.251	0.109	106.97	0.000
' 🟴	<u> </u>	26		-0.001	112.83	0.000
' <u>¶</u> '	9 '	27	-0.065		113.78	0.000
<u>"</u>	' '	28	-0.113		116.68	0.000
' @ '	ļ ' ū '	29	-0.109		119.39	0.000
· I I ·	' '	30	-0.083	0.002	120.96	0.000
.	' '	31	-0.106	-0.030	123.54	0.000
'₫'	' '	32	-0.097		125.72	0.000
·•[·	' ['	33	-0.048		126.26	0.000
- - -	ļ ' ļ '	34	0.030	0.031	126.47	0.000
' <u> </u>	' '	35	0.168	0.041	133.10	0.000
· 🗀	 	36	0.256	0.054	148.63	0.000

Based on this the following AR model can be used to model the change in the price of gas:

$$\Delta \log p_{t}^{GAS} = \phi_{0} + \phi_{1} \Delta \log p_{t-1}^{GAS} + \phi_{2} \Delta \log p_{t-2}^{GAS} + \phi_{5} \Delta \log p_{t-5}^{GAS} + \phi_{11} \Delta \log p_{t-11}^{GAS} + \phi_{12} \Delta \log p_{t-12}^{GAS} + \varepsilon_{t} \log p_{t-1}^{GAS} + \varepsilon_{t} \log p_{t-1}^{GAS} + \phi_{12} \Delta \log p_{t-12}^{GAS} + \varepsilon_{t} \log$$

Dependent Variable: D(LOG(PGAS)) Method: ARMA Maximum Likelihood (BFGS)

Date: 05/09/18 Time: 10:26 Sample: 1995M02 2010M12 Included observations: 191

Convergence achieved after 9 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	0.005168	0.004891 1.056728		0.2920
AR(1)	0.515869	0.046975	10.98181	0.0000
AR(2)	-0.260243	0.064205	-4.053294	0.0001
AR(5)	-0.162440	0.065819	-2.467980	0.0145
AR(11)	0.185744	0.066249	2.803728	0.0056
AR(12)	-0.171857	0.058384	-2.943572	0.0037
SIGMASQ	0.002926	0.000250	11.71342	0.0000
R-squared	0.307133	Mean dependent var		0.005331
Adjusted R-squared	0.284539	S.D. depend	0.065155	
S.E. of regression	0.055112	Akaike info criterion		-2.916979
Sum squared resid	0.558861	Schwarz criterion		-2.797786
Log likelihood	285.5715	Hannan-Quinn criter.		-2.868701
F-statistic	13.59385	Durbin-Watson stat		1.961542
Prob(F-statistic)	0.000000			
Inverted AR Roots	.75+.18i	.7518i	.7156i	.71+.56i
	.3281i	.32+.81i	14+.90i	1490i
	5566i	55+.66i	84+.23i	8423i

All coefficients of the estimated AR model are statistically significant, the residuals of the model don't show any remaining time dependence and appear to be white noise.

Date: 05/09/18 Time: 10:26 Sample: 1995M01 2010M12 Included observations: 191 Q-statistic probabilities adjusted for 5 ARMA terms

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.018	0.018	0.0648	
1 🛊 1		2	-0.038	-0.038	0.3453	
ı İ ı	[[-	3	-0.021	-0.020	0.4357	
ı أ إ ،	j , j j,	4	0.053	0.052	0.9872	
ı j ı		5	0.014	0.011	1.0271	
i ₫ i	m[-	6	-0.101	-0.098	3.0483	0.081
ı ₫ ı	inj.	7	-0.076	-0.070	4.2051	0.122
₫ +	(-	8	-0.128	-0.137	7.5266	0.057
ι (ι	<u> </u>	9	-0.060	-0.071	8.2571	0.083
ال ار ا	 	10	0.049	0.048	8.7425	0.120
i j i i		11	0.034	0.035	8.9850	0.174
1 1		12	0.025	0.033	9.1087	0.245
ι (ι		13	-0.051	-0.053	9.6494	0.291
· 🗀	·	14	0.145	0.118	14.035	0.121
□ '	 	15	-0.110	-0.161	16.555	0.085
r (h		16	-0.013	-0.024	16.589	0.121
1 1		17	-0.005	-0.010	16.594	0.166
₫ +	(·	18	-0.115	-0.126	19.431	0.110
⊢ [19	-0.049	-0.029	19.954	0.132
1 ()		20	-0.039	-0.016	20.278	0.162
⊢ (III	21	-0.041	-0.074	20.647	0.192
1 1		22	0.006	0.018	20.655	0.242
- -		23	-0.018	-0.036	20.723	0.294
٠ ١ ٠		24	0.061	0.009	21.546	0.307
· [m		25	0.122	0.113	24.860	0.207
' []•	' -	26	0.094	0.057	26.814	0.177
□ '	('	27	-0.112	-0.133	29.641	0.127
	' [['	28	-0.019	-0.055	29.726	0.157
. ₫.	<u> [</u>]	29	-0.051	-0.061	30.320	0.174
- 1)1	'[['	30		-0.026	30.346	0.212
ι ₫ ι	'[['	31	-0.052		30.973	0.229
ι α ι		32	-0.054	0.022	31.659	0.245
- (()	'(()	33		-0.040	32.008	0.274
1 1	' '	34	-0.007		32.018	0.319
· þi	ļ 	35	0.064	0.035	32.996	0.323
· III	<u> </u>	36	0.171	0.101	39.988	0.129

(l) The RMSE for the sequence of one step ahead forecasts of the gas price, p_t^{GAS} in 2011M1:2018M3 using the AR model is 0.1414.

Forecast: PGAS_F_AR12 Actual: PGAS Forecast sample: 2011M01 2018M04 Included observations: 88 Root Mean Squared Error 0.141486 Mean Absolute Error 0.113511 Mean Abs. Percent Error 4.193013 Theil Inequality Coefficient 0.023674 Bias Proportion 0.012684 Variance Proportion 0.000360 Covariance Proportion 0.986955 Theil U2 Coefficient 0.972591 Symmetric MAPE 4.169495

- (m) The RMSE of the forecast for p_t^{GAS} from (j) based on the VEC model is 0.1472, and the RMSE of the forecast for p_t^{GAS} from (l) based on the AR model is 0.1414. The two models thus appear to produce similarly precise forecasts.
- (n) The test for equal predictive ability is performed by running a regression

$$\Delta L_{t+i,1} = \beta_0 + u_{t+j}$$
 with $j = 0, 1, 2, \dots, T - t - 1$

where $\Delta L_{t,1} = L(e_{t,1}^{(AR)}) - L(e_{t,1}^{(2)}) = (e_{t,1}^{(VEC)})^2 - (e_{t,1}^{(2)})^2$ are the differences in the squared one step ahead forecast errors. The results for this regression are below

Dependent Variable: DLOSS_AR12 Method: Least Squares Date: 05/09/18 Time: 10:26 Sample: 2011M01 2018M04 Included observations: 88

Variable	Coefficient	Std. Error t-Statistic		Prob.
С	-0.001666	0.002705 -0.615889		0.5396
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000000 0.000000 0.025378 0.056032 198.9367 1.859767	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	-0.001666 0.025378 -4.498561 -4.470409 -4.487219

Since $\hat{\beta}_0$ is not statistically significant we do not reject the hypothesis of equal predictive power. The mean squared forecast error from the AR model is not statistically significantly larger or smaller than the mean squared forecast error from the VEC model.

(o) There does not appear to be a statistically significant difference in the precision of forecasts from the AR(12) and the VEC(2) models.