

深度学习-图像处理篇

bilibili: 霹雳吧啦Wz

作者: 神秘的wz

VGG在2014年由牛津大学著名研究组VGG (Visual Geometry Group) 提出,斩获该年ImageNet竞赛中 Localization Task (定位任务) 第一名 和 Classification Task (分类任务) 第二名。

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan* & Andrew Zisserman⁺
Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk

ConvNet Configuration									
A	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
	iı	nput (224×2	24 RGB image	e)					
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
		max							
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
maxpool									
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
		max	pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
				with r	conv3-512				
			pool =						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
N 111					conv3-512				
		max	pool						
		FC-	4096						
		FC-	4096						
FC-1000									
		soft-	max						

网络中的亮点:

➤ 通过堆叠多个3x3的卷积核来替代大尺度卷积核 (减少所需参数)

论文中提到,可以通过**堆叠两个3x3的卷**积核替代5x5的卷积核,堆叠三个3x3的卷积核替代7x7的卷积核。

拥有相同的感受野

在卷积神经网络中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作**感受野**(receptive field)。通俗的解释是,输出feature map上的一个单元对应输入层上的区域大小。

Size:2x2

Stride:2

Conv1

Size:3x3

Stride:2

$$F(i) = (F(i+1) - 1) \times Stride + Ksize$$

F(i)为第i层感受野,

Stride为第i层的步距,

Ksize为卷积核或池化核尺寸

Feature map: F = 1

Pool1: $F = (1 - 1) \times 2 + 2 = 2$

Conv1: $F = (2 - 1) \times 2 + 3 = 5$

感受野计算公式:

$$F(i) = (F(i+1) - 1) \times Stride + Ksize$$

F(i)为第i层感受野,

Stride为第i层的步距,

Ksize为卷积核或采样核尺寸

Feature map: F = 1

Conv3x3(3): $F = (1 - 1) \times 1 + 3 = 3$

Conv3x3(2): $F = (3 - 1) \times 1 + 3 = 5$

Conv3x3(1): $F = (5 - 1) \times 1 + 3 = 7$

论文中提到,可以通过**堆叠两个3x3的卷积核替代5x5的卷积核**,**堆叠三个3x3的卷积核替代7x7的卷积核**。

使用7x7卷积核所需参数,与堆叠三个3x3卷积核所需参数(假设输入输出channel为C)

$$7 \times 7 \times C \times C = 49C^2$$

$$3 \times 3 \times C \times C + 3 \times 3 \times C \times C + 3 \times 3 \times C \times C = 27C^2$$

bilibili: 霹雳吧啦Wz

- ➤ conv的stride为1, padding为1
- ➤ maxpool的size为2,stride为2

			ConvNet Co	onfiguration			1		
A	A	A-LRN	В	C	D	Е			
11 w	eight	11 weight	13 weight	16 weight	16 weight	19 weight	1		
lay	ers	layers	layers	layers	layers	layers			
input (224 × 224 RGB image)									
conv	3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64			
		LRN	conv3-64	conv3-64	conv3-64	conv3-64	П		
maxpool									
conv3	3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128			
			conv3-128	conv3-128	conv3-128	conv3-128	П		
maxpool									
conv	3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256			
conv3	3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	П		
				conv1-256	conv3-256	conv3-256	П		
		22				conv3-256	П		
			max	pool					
conv3	3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3	3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	П		
				conv1-512	conv3-512	conv3-512	П		
		0				conv3-512	П		
maxpool							П		
conv3	3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
conv3	3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512			
				conv1-512	conv3-512	conv3-512			
						conv3-512			
				pool					
				4096					
				4096					
FC-1000									
			soft-	-max					

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003

3.bilibili 霹雳吧啦Wz

https://www.bilibili.com/video/av79436317

尽可能每周更新

感谢各位的观看!