Assignment 8

Prabhath Chellingi - CS20BTECH11038

Download all python codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment 8/Codes

and latex-tikz codes from

https://github.com/PRABHATH-cs20-11038/ AI1103/tree/main/Assignment 8

1 Problem

(CSIR - UGC - NET EXAM(June - 2013), Q.60)Consider the quadratic equation $x^2 + 2Ux + V = 0$ where U and V are chosen independently and randomly from $\{1, 2, 3\}$ with equal probabilities. Then probability that the equation has both roots real

1)
$$\frac{2}{3}$$

2) $\frac{1}{2}$ 3) $\frac{7}{9}$ 4) $\frac{1}{3}$

2 Solution

Let $U \in \{1.2, 3\}$ and $V \in \{1, 2, 3\}$

TABLE 4 Probability of selecting values for U

k	1	2	3
$\Pr\left(U=k\right)$	1/3	1/3	1/3

TABLE 4 Probability of selecting values for V

k	1	2	3
$\Pr(V=k)$	1/3	1/3	1/3

For $x^2 + 2Ux + V = 0$ to have real roots,

$$b^2 - 4ac \ge 0 \tag{2.0.1}$$

$$(2U)^2 - 4(1)(V) \ge 0$$
 (2.0.2)

$$U^2 \ge V \tag{2.0.3}$$

$$\Pr(U^2 \ge V) = 1 - \Pr(U^2 < V)$$
 (2.0.4)

The possible pairs (U, V) for $Pr(U^2 < V)$,

TABLE 4 Table for $Pr(U^2 < V)$

(U, V) for $U^2 < V$	Probability
(1,2)	Pr(U = 1)Pr(V = 2)=1/9
(1,3)	$Pr(U = 1) Pr(V = 3) = \frac{1}{9}$
Total	$\Pr\left(U^2 < V\right) = \frac{2}{9}$

$$\Pr(U^2 \ge V) = 1 - \frac{2}{9}$$
 (2.0.5)

$$\Pr\left(U^2 \ge V\right) = \frac{7}{9} \tag{2.0.6}$$

Hence, Option 3 is correct.

Probability -

actual: 0.7778 simulated:0.7769