TERCER TALLER

Presentado por:

VALENTINA PIEDRAHITA GIL

JHOJAN STIVEN SANCHEZ PALADINES

Presentado a:

Ing ELIAS BUITRAGO BOLIVAR

Universidad ECCI

Ingeniería en Sistemas

Seminario Big Data & Gerencia de datos

Bogotá

2024

Subimos los datos:

Validamos los histogramas y los boxplots:

Multivariate lineal regression:

```
Multivariate lineal regression

image: [25] # Define model and prediction
    ols = LinearRegression()
    model1 = ols.fit(X_train, y_train)
    y_pred1 = model1.predict(X_test)

image: [26] # accuracy check
    rmse = MSE(y_test, y_pred1, squared=False)
    mae = MAE(y_test, y_pred1)
    r2 = r2_score(y_test, y_pred1)
    print("RMSE: %.2f" % rmse)
    print("MAE: %.2f" % mae)
    print("R2: %.2f" % r2)

image: RMSE: 2987701.84
    MAE: 2236607.92
    R2: 0.43
```

Light GBM:

Random Forest Regressor:

```
Pandom Forest Regressor

image: [34] from sklearn.ensemble import RandomForestRegressor

image: [35] model3 = RandomForestRegressor()
    model3.fit(X_train, y_train)
    y_pred3 = model3.predict(X_test)

image: [36] # accuracy check
    rmse = MSE(y_test, y_pred3), squared=False)
    mae = MAE(y_test, y_pred3)
    r2 = r2_score(y_test, y_pred3)
    print("RMSE: %.2f" % rmse)
    print("MAE: %.2f" % mae)
    print("R2: %.2f" % r2)

image: RMSE: 3331312.23
    MAE: 2537112.90
    R2: 0.29
```

Xgboost regressor:

Eliminamos los datos que no nos sirven:

El registro que está en 0 y los 6 primeros registros que tienen kms menores a 20.000.

Los histogramas y los boxplots mejoraron con el cambio de los datos:

Boxplots for some variables

Volvemos a ejecutar los modelos:

Multivariate lineal regression:

```
Multivariate lineal regression

Multivariate lineal regression

[71] # Define model and prediction
    ols = LinearRegression()
    model1 = ols.fit(X_train, y_train)
    y_pred1 = model1.predict(X_test)

[72] # accuracy check
    rmse = MSE(y_test, y_pred1, squared=False)
    mae = MAE(y_test, y_pred1)
    r2 = r2_score(y_test, y_pred1)
    print("RMSE: %.2f" % rmse)
    print("MAE: %.2f" % mae)
    print("MAE: %.2f" % rae)
    print("R2: %.2f" % r2)

RMSE: 2524189.50
    MAE: 1956062.97
    R2: 0.55
```

Light GBM:

```
# accuracy check

rmse = MSE(y_test, y_pred2, squared=False)

mae = MAE(y_test, y_pred2)

r2 = r2_score(y_test, y_pred2)

print("RMSE: %.2f" % rmse)

print("MAE: %.2f" % mae)

print("R2: %.2f" % r2)

RMSE: 2637208.23

MAE: 2158436.91

R2: 0.50
```

Random Forest Regressor:

Xgboost regressor:

Vemos que todos los modelos mejoraron, ahora vamos a cambiar los parámetros de cada modelo, excepto del modelo "Multivariate lineal regression" ya que no tiene parámetros:

Light GBM:

```
# Hyperparameters
params = {
    'task': 'train',
    'boosting': 'gbdt',
    'objective': 'regression',
    'num_leaves': 50,
    'learning_rate': 0.01,
    'metric': {'l2','l1'},
    'header': 'true',
    'verbose': 0
}
```

Random Forest Regressor:

```
[81] model3 = RandomForestRegressor(n_estimators=500)
    model3.fit(X_train, y_train)
    y_pred3 = model3.predict(X_test)
```

Xgboost regressor:

Volvemos a ejecutar los modelos:

Light GBM:

```
# accuracy check
rmse = MSE(y_test, y_pred2, squared=False)
mae = MAE(y_test, y_pred2)
r2 = r2_score(y_test, y_pred2)
print("RMSE: %.2f" % rmse)
print("MAE: %.2f" % mae)
print("R2: %.2f" % r2)

RMSE: 2755588.01
MAE: 2203181.88
R2: 0.46
```

Random Forest Regressor:

```
[103] # accuracy check

rmse = MSE(y_test, y_pred3, squared=False)

mae = MAE(y_test, y_pred3)

r2 = r2_score(y_test, y_pred3)

print("RMSE: %.2f" % rmse)

print("MAE: %.2f" % mae)

print("R2: %.2f" % r2)

RMSE: 2787387.82

MAE: 2308623.52

R2: 0.45
```

Xgboost regressor:

Observamos que los modelos Light GBM y Random Forest Regressor bajaron su R2 y que el modelo Xgboost regressor mejoró, volvemos a realizar cambios en los parámetros:

Light GBM:

```
# Hyperparameters
params = {
    'task': 'train',
    'boosting': 'gbdt',
    'objective': 'regression',
    'num_leaves': 100,
    'learning_rate': 0.001,
    'metric': {'l2','l1'},
    'header': 'true',
    'verbose': 0
}
```

Random Forest Regressor:

```
[102] model3 = RandomForestRegressor(n_estimators=800)
  model3.fit(X_train, y_train)
  y_pred3 = model3.predict(X_test)
```

Xgboost regressor:

Ejecutamos los modelos:

Light GBM:

Random Forest Regressor:

Xgboost regressor:

```
# accuracy check
rmse = MSE(y_test, y_pred4, squared=False)
mae = MAE(y_test, y_pred4)
r2 = r2_score(y_test, y_pred4)
print("RMSE: %.2f" % rmse)
print("MAE: %.2f" % mae)
print("R2: %.2f" % r2)

RMSE: 2880819.01
MAE: 2287143.32
R2: 0.41
```

Los modelos Light GBM y Xgboost regressor no les favoreció el cambio de parámetros, pero el modelo Random Forest Regressor se mantuvo igual, volvemos a cambiar los parámetros y a editar los datos.

Light GBM:

```
# Hyperparameters
params = {
    'task': 'train',
    'boosting': 'gbdt',
    'objective': 'regression',
    'num_leaves': 20,
    'learning_rate': 0.001,
    'metric': {'12','11'},
    'header': 'true',
    'verbose': 0
}
```

Random Forest Regressor:

```
[140] model3 = RandomForestRegressor(n_estimators=200)
   model3.fit(X_train, y_train)
   y_pred3 = model3.predict(X_test)
```

Xgboost regressor:

Eliminamos los 3 registros con mayor precio y los dos registros con mayor km.

1400						
4	Α	В	С	D	E	F
1	car_model	price 💌	year_mod 🕶	kms 🚚	color 💌	fueltype 💌
2	Hchevrolet Sail Lt 2016	3800000	2016	413000	Amarillo	Gasolina
3	Chevrolet Sail 1.4Ls MecÃjnica	2670000	2017	305705	Gris	Gasolina
4	Chevrolet Chevy Chevytaxy Premium	3100000	2019	277000	Color not for	Gasolina
5	Chevrolet Sail 2017	5400000	2017	275000	Amarillo	Gasolina
6	Chevrolet Sail 1.4 Ls MecÃinica	6600000	2017	275000	Amarillo	Gasolina
7	Chevrolet Sail 1.4Lt	2800000	2019	247628	Gris	Gasolina
8	Chevrolet Sail 1.4l MecÃinica	4350000	2019	224690	Amarillo	Gasolina
9	Chevrolet Sail 1.4Ltz 5 p	2700000	2013	199000	Gris	Gasolina
10	Chevrolet Sail 1.4Ltz	3200000	2016	189000	Azul	Gasolina
11	Chevrolet Chevy Sail	6400000	2019	172000	Color not for	Gasolina
12	Chevrolet Sail 1.4Ltz	3000000	2015	169952	Gris	Gasolina
13	Chevrolet Sail 1.4Ls	2700000	2015	162000	Gris	Gasolina
14	Chevrolet Sail 1.4Ls	26990001	2015	160700	Color not for	Gasolina
15	Chevrolet Sail 1.4Ltz	2750000	2015	159558	Blanco	Gasolina
16	Chevrolet Sail 1.4Ls	3300000	2017	155000	Gris	Gasolina
17	Chevrolet Sail 1.4Ltz	2850000	2014	152400	Gris	Gasolina
18	Chevrolet Sail 1.4Ls	2700000	2014	152000	Color not for	Gasolina
19	Chevrolet Sail 1.4Lt 4p	2800000	2016	151160	Rojo	Gasolina
20	Chevrolet Sail 1.4Lt	2590000	2013	151100	Gris	Gasolina
21	Chauralat Cail 1 #1+2	2200000	2010	150000	Poio	Gacalina

Volvemos a ejecutar:

Multivariate lineal regression:

```
[194] # accuracy check
rmse = MSE(y_test, y_pred1, squared=False)
mae = MAE(y_test, y_pred1)
r2 = r2_score(y_test, y_pred1)
print("RMSE: %.2f" % rmse)
print("MAE: %.2f" % mae)
print("R2: %.2f" % r2)

RMSE: 3021041.23
MAE: 2324922.01
R2: 0.40
```

Light GBM:

```
[198] # accuracy check

rmse = MSE(y_test, y_pred2, squared=False)

mae = MAE(y_test, y_pred2)

r2 = r2_score(y_test, y_pred2)

print("RMSE: %.2f" % rmse)

print("MAE: %.2f" % mae)

print("R2: %.2f" % r2)

RMSE: 3792751.68

MAE: 3186999.18

R2: 0.06
```

Random Forest Regressor:

```
# accuracy check
rmse = MSE(y_test, y_pred3, squared=False)
mae = MAE(y_test, y_pred3)
r2 = r2_score(y_test, y_pred3)
print("RMSE: %.2f" % rmse)
print("MAE: %.2f" % mae)
print("R2: %.2f" % r2)

RMSE: 3203594.40
MAE: 2432105.42
R2: 0.33
```

Xgboost regressor:

```
# accuracy check

rmse = MSE(y_test, y_pred4, squared=False)

mae = MAE(y_test, y_pred4)

r2 = r2_score(y_test, y_pred4)

print("RMSE: %.2f" % rmse)

print("MAE: %.2f" % mae)

print("R2: %.2f" % r2)

RMSE: 3272782.34

MAE: 2694864.86

R2: 0.30
```

Los tres modelos presentaron cambios negativos.

Adjuntamos las tablas con los resultados de cada prueba:

RMSE	Prueba 1	Prueba 2	Prueba 3	Prueba 4	Prueba 5
Multivariate lineal regression	2.987.701,84	2.524.189,50	2.524.189,50	2.524.189,50	3.021.041,23
Light GBM	2.861.779,14	2.637.208,23	2.755.588,01	3.554.013,45	3.792.751,68
Random Forest Regressor	3.331.312,23	2.836.447,07	2.787.387,82	2.774.826,09	3.203.594,40
Xgboost regressor	3.952.103,39	3.353.858,87	2.825.072,10	2.880.819,01	3.272.782,34

R2	Prueba 1	Prueba 2	Prueba 3	Prueba 4	Prueba 5
Multivariate lineal regression	0,43	0,55	0,55	0,55	0,4
Light GBM	0,47	0,50	0,46	0,10	0,06
Random Forest Regressor	0,29	0,43	0,45	0,45	0,33
Xgboost regressor	0,00	0,20	0,43	0,41	0,3

Graficas:

Organizamos de menos a mayor los resultados y las gráficas son las siguientes:

CONCLUSIONES

- 1. El modelo Multivariate lineal regression aunque sea simple, fue el que mejor R2 tuvo, así que es confiable.
- 2. Los modelos Light y XGBoost fueron los que peor les fue en las pruebas, así que se necesita un mejor manejo en los parámetros o en la data para poder hacer que funcionen de manera óptima.

- 3. La limpieza de la data es fundamental, ya que cuando se limpió los datos por primera vez, mejoraron los modelos, pero cuando se modificaron por segunda vez, todos los modelos empeoraron su rendimiento.
- 4. Los parámetros dependen de la cantidad de datos que tengamos, así que se deben buscar los adecuados para poder tener mejor rendimiento.
- 5. El modelo Random Forest Regressor presentó mejora después de cambiar su parámetro n_estimators con un valor más bajo y luego de limpiar la data.