Contrôle Intermédiaire

Durée 2 heures Tout document interdit

Exercice I. (8 Pts)

Soit A l'automate d'états finis suivant où $X=\{a, b, c\}$:

- 1. Donner la grammaire régulière droite du complément de L(A).
- 2. Donner la grammaire régulière gauche du complément de L(A).
- 3. Donner la grammaire régulière droite du miroir de L(A).

Donner toutes les étapes

Exercice II. (1-1-2,5 points)

1. Donner la grammaire d'un des deux langages suivants :

$$L_1 = \{a^{2i} w b^j \text{ avec } w \in \{c,d\}^* \text{ et } |w| \equiv 1[3]\}$$

 $L_2 = \{a^n b^p / n \equiv p \mod 3\}$ (1 point)

- 2. Donner la grammaire du langage $L_3 = \{a^i c^k b^j \ k \geq i + j \}$
- 3. Donner la grammaire d'un des deux langages suivants $L_4=L_1 \cap L_3$ $L_{5=} \{ww' \text{ avec } w' \text{ facteur gauche de } w, w \in \{a,b\}^*\}$

Exercice III. (2 -2,5)

Donner les automates les plus adéquats reconnaissants les langages suivants :

1.
$$L_1 = \{(01)^i a^n (10)^j (01)^j b^n (10)^i i, j \ge 0 \text{ et } n > 0\}$$

2. $L_2 = \{(01)^i (10)^j (01)^j (10)^i, i, j \ge 0 \}$

Exercice V. (3 Pts)

Monter que la classe des langages rationnels est fermée par rapport à l'homomorphisme (si L est un langage rationnel alors L'= $h(L) = \{ h(w) \mid w \in L \}$ est également rationnel. Par exemple pour E=a*b* avec h(a)=0 et h(b)=11, on a E'=h(E)=0*(11)*.

Pour la démonstration, utiliser la définition récursive des expressions régulières