

EXERCISE 1C

Question 1:

Irrational number: A number which cannot be expressed either as a terminating decimal or a repeating decimal is known as irrational number. Rather irrational numbers cannot be expressed in the fraction form, p/q, p and q are integers and $q \neq 0$

For example, 0.101001000100001 is neither a terminating nor a repeating decimal and so is an irrational number. Also, $\sqrt{2}$, $\sqrt{5}$, $\sqrt{3}$, $\sqrt{6}$, $\sqrt{7}$ etc are examples of irrational numbers.

Question 2:

(i) $\sqrt{4}$

We know that, if n is a perfect square, then \sqrt{n} is a rational number. Here, 4 is a perfect square and hence, $\sqrt{4} = 2$ is a rational number. So, $\sqrt{4}$ is a rational number.

(ii) √196

We know that, if n is a perfect square, then \sqrt{n} is a rational number. Here, 196 is a perfect square and hence $\sqrt{196}$ is a rational number. So, $\sqrt{196}$ is rational.

(iii) √21

We know that, if n is a not a perfect square, then \sqrt{n} is an irrational number.

Here, 21 is a not a perfect square number and hence, $\sqrt{21}$ is an irrational number.

So, $\sqrt{21}$ is irrational.

(iv) $\sqrt{43}$

We know that, if n is a not a perfect square, then \sqrt{n} is an irrational number.

Here, 43 is not a perfect square number and hence, $\sqrt{43}$ is an irrational number.

So, $\sqrt{43}$ is irrational.

$(v) 3+\sqrt{3}$

 $3+\sqrt{3}$, is the sum of a rational number 3 and $\sqrt{3}$ irrational number . Theorem: The sum of a rational number and an irrational number is an irrational number.

So by the above theorem, the sum, $3+\sqrt{3}$, is an irrational number.

(vi) $\sqrt{7-2}$

 $\sqrt{7-2} = \sqrt{7} + (-2)$ is the sum of a rational number and an irrational number.

Theorem: The sum of a rational number and an irrational number is an irrational number.

So by the above theorem, the sum, $\sqrt{7}$ + (-2), is an irrational number.

 $\sqrt{7-2}$ is irrational.

(vii)
$$\frac{2}{3}\sqrt{6}$$

$$\frac{2}{3}\sqrt{6} = \frac{2}{3} \times \sqrt{6}$$

is the product of a rational

number and an irrational number.

Theorem: The product of a non-zero rational number and an irrational number is an irrational number.

Thus, by the above theorem, $2/3 \times \sqrt{6}$ is an irrational number. So, $2/3 \times \sqrt{6}$ is an irrational number.

Every rational number can be expressed either in the terminating form or in the non-terminating, recurring decimal form. Therefore, solution is 0.6666

