Course Code	18ECS201T	Cou Nar		CONTROL	SYSTEMS	Course Category	Professional Core	3	T 0	P 0	3
Pre-requisi Courses		18MAE	102T Co-requisi Courses	•	18ECC104T	Progressive Courses	Nil				
Course Offer	ring Department		Electronics and Communication	ngineering	Data Book / Codes/Standards		Nil				

Course Learning Rationale (CLR): The purpose of learning this course is to:		earnii	ng	Program Learning Outcomes (PLO)														
CLR-1: Learn about mathematical modeling techniques of mechanical and electrical systems	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14 1	15
CLR-2: Impart knowledge about the transient and steady state error and analysis										,							ent	당
CLR-3: Identify and analyze stability of a system in time domain using root locus technique	=	_					arch			l iii							e e	Research
CLR-4: Know about different frequency domain analytical techniques	(Bloom)	(%)	t (%)	ge		i i	Se			ina		Work		ළ		_	nag C	Š
CLR-5: Acquire the knowledge of a controller for specific applications	<u> </u>	Proficiency	Attainment	wed	, n	Development	. Re	age		Sustainability		۸ ۱		Finance	Б	ssional		න ග
CLR-6: Impart knowledge on controller tuning methods			aj.	Ş.	lysis	velo	esign,	Usage	Culture	oX		Team	e e	∞ E	i i	essi	ject	Analyze
	Thinking	P _P	d Att	ring	Analysis	& De		T00	S Cu	nent		o×	icati	Mgt.	ong Learning		P. Sel	
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	Level of	Expected	Expected	Engineering Knowledge	Problem	Design &	Analysis,	Modem	Society	Environment &	Ethics	Individual	Communication	Project N	Life Lon	PSO-1: Achieve	PSO – 2 Technia	PSO - 3
CLO-1: Determine Transfer function of a system by mathematical modeling, block diagram reduction and signal flow graphs	1,2	80	80	Н	Н	Н	Ĥ	-	-	-	-	-	-	-	Н	Н	- F	Н
CLO-2: Identify the standard test inputs, time domain specifications and calculate steady state error		85	80	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	- I	Н
CLO-3: Plot a root locus curve and analyze the system stability using Routh array		90	85	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	- F	Н
CLO-4: Analyze the frequency domain specifications from bode and polar plots		90	85	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	- F	Н
CLO-5: Design a closed loop control system for specific application			80	Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	H F	Н
CLO-6: Identification of controller parameters and tuning	1,2,3	85	85															

	ıration hour)	9	9	9	9	9
	SLO-1	Open and closed loop control system	Standard test signals and their expression	Poles and zeros of a system	Frequency domain analysis	Controllers-Significance and Need
S-1	SLO-2	Feedback and Feed forward control systems	Type number and order of a system	Pole zero plot and concept of s plane	Frequency domain specifications	Stability of closed loop systems
S-2	SLO-1	Transfer function of a system and basis of Laplace transforms	Transfer function of First order system for Step and ramp signal	Proper, Strictly Proper and Improper systems	Frequency domain plots, minimum and non minimum phase systems	SISO and MIMO control systems
0-2	SLO-2	Need for mathematical modeling	Transfer function of First order system Impulse and parabolic signal	Characteristic equation	Correlation between time and frequency domain	Types of controllers-ON-OFF,P,I,D
S-3	SLO-1	Representation of mechanical translational systems using differential equation and	presentation of mechanical translational system location analysis		Bode plot approach and stability analysis	Composite Controller-PI,PD and PID
	SLO-2	datarmination of transfer function	Identification of damping factor and classification based on it	Need for Stability analysis and available techniques	Rules for sketching bode plot	Controller parameters and tuning methods
S-4		Representation of mechanical rotational systems	Step response of critically damped second order system	Necessary and sufficient Condition for stability	- Bode plot of typical systems	Design Specification, controller
0-4	SLO-2	and determination of transfer function	Step response of under damped second order system	Significance of Routh Hurwitz Technique	Bode plot of typical systems	configurations- ON-OFF controller
S-5	31 U-1	Conversions of Mechanical system to Electrical system	Step response of over damped second order system	Computation of Routh array	Dada plat of husiaal avatama	Design Specification, controller
3-3	SLO-2	f-V and f-I electrical analogies	Step response of undamped second order system	Routh array of stable systems	Bode plot of typical systems	configurations-PID controller

S-6	SLO-1	Block diagram reduction rules and methodology	Time domain specifications and their significance	Routh array of Unstable systems	Polar plot and significance	Design of speed control system for DC		
	SLO-2		Numerical solution	Routh array of Unstable systems	Nyquist stability criterion	THOLOI		
S-7	SLO-1	Evaluation of transfer function using block diagram	Transient and steady state error analysis	Root locus technique	Sketching of polar plot on polar graphs	Design of control system for Twin Rotor Multi input Multi output System(TRMS) with one degree of freedom		
3-1	SLO-2	reduction	Static and dynamic Error coefficients	Rules for sketching root locus				
S-8	SLO-1	Signal flow graphs and evaluation of transfer	Static error constants and evaluation of	Root locus plot of typical systems	Polar plot of typical systems	Case study 1		
3-0	SLO-2	function	steady state error	Noot locus plot of typical systems	Folal plot of typical systems	Case study I		
S-9	SLO-1	Block diagram to signal flow conversion	Dynamic error constants and evaluation of	Root locus plot of typical systems	Polar plat of typical systems	Case study 2		
3-9	SLO-2	DIOUN UIAYI AITI TU SIYITAI IIUW CUTIVEI SIOTI	steady state error	noot locus plot of typical systems	Polar plot of typical systems	Case suuy 2		

Learning Resources	3. Gopal.M, "Control System Principles and Design", 2nd Edition, TMH, 2002 4. Sivanandam and Deepa, "Control system Engineering using MATLAB", 2nd edition, Vikas publishers, 2007

Learning Assessment									
	Bloom's		Final Examination (50% weightage)						
	Level of Thinking	CLA – 1 (10%)	CLA – 2 (15%)	CLA – 3 (15%)	CLA – 4 (10%)				
Level 1	Remember Understand	40%	30%	30%	30%	30%			
Level 2	Apply Analyze	40%	40%	40%	40%	40%			
Level 3	Evaluate Create	20%	30%	30%	30%	30%			
	Total	100 %	100 %	100 %	100 %	100 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers									
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts							
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	Dr. T. Deepa, SRMIST							
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan.v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	Mrs. R. Bakhya Lakshmi, SRMIST							