Due: Monday, February 24, 2003

1. In soldering wires to a sample such as that shown in Fig. 3-25, it is difficult to align the Hall probes A and B precisely. If B is displaced slightly down the length of the bar from A, an erroneous Hall voltage results. Show that the true Hall voltage V_H can be obtained from two measurements of V_{AB} , with the magnetic field first in the +Z direction and then in the -Z direction.

Solutions

When misaligned, the V_{AB} is composed of two parts, the Hall voltage (V_{H}) and an ohmic voltage drop V_{d} . i.e., $V_{AB} = V_{H} + V_{d}$

Suppose the first measurement with magnetic field in the +Z direction gives V_{AB1} : $V_{AB1} = V_{H1} + V_{d1}$ The second measurement with magnetic field in the -Z direction gives V_{AB2} : $V_{AB2} = V_{H2} + V_{d2}$

Then,
$$V_{H1} = -V_{H2} = V_H$$
, $V_{d1} = V_{d2}$
Therefore, $V_H = \frac{1}{2} (V_{AB1} - V_{AB2})$

2. Consider a silicon sample at 300 K. Assume that the hole concentration varies linearly with distance. At x=0, the hole concentration is p(0). At $x=10 \mu$ m, the hole concentration is $p(10 \mu m)=5x10^{14}/cm^3$. If the hole diffusion coefficient, assumed constant, is $D_p=14 \text{ cm}^2/\text{sec}$, determine the hole concentration at x=0 for the following two diffusion current densities: (a) the diffusion current density is found to be $J_p^{\text{diff}}=+0.19 \text{ A/cm}^2$ and (b) $J_p^{\text{diff}}=-0.19 \text{ A/cm}^2$.

Solution:

(a), From
$$J_p^{diff}(x) = -qD_p \frac{dp(x)}{dx}$$
, we have $\frac{dp(x)}{dx} = -\frac{J_p^{diff}(x)}{qD_p}$

$$\frac{dp(x)}{dx} = -\frac{0.19}{1.6 \times 10^{-19} \times 14} = -8.482 \times 10^{16} cm^{-4}$$

Because hole concentration varies linearly with distance, $p(x) = p(0) + x \frac{dp(x)}{dx}$, therefore,

$$p(0) = p(x) - x \frac{dp(x)}{dx}$$
, for $x = 10$ mm
 $p(0) = 5 \times 10^{14} cm^{-3} - 10^{-3} cm \times (-8.482 \times 10^{16} cm^{-4}) = 5.8482 \times 10^{14} cm^{-3}$

(b) Similarly,

$$\frac{dp(x)}{dx} = -\frac{-0.19}{1.6 \times 10^{-19} \times 14} = 8.482 \times 10^{16} cm^{-4}$$

$$p(0) = 5 \times 10^{14} cm^{-3} - 10^{-3} cm \times (8.482 \times 10^{16} cm^{-4}) = 4.1518 \times 10^{14} cm^{-3}$$

3. The donor profile of a silicon sample is shown below. Assume that the majority carrier mobility can be obtained from Fig. 3-23 (or the enlarged graph shown in HW V), and the sample is at thermal equilibrium at 300 K.

- (a) Determine the diffusion coefficients for majority carriers at points A, B and C, respectively.
- (b) Find the majority carrier diffusion current densities along the cross sections at points A, B and C, respectively. Indicate not only the magnitude but also the direction.
- (c) Find an expression for the built-in electric field $\mathbf{E}(x)$ at equilibrium over the range from $x=1\mu$ m to $x=3\mu$ m.
- (d) Sketch a band diagram such as in Fig. 4-15 over the range from $x = 1\mu$ m to $x = 3 \mu$ m and indicate the direction of E.

Solutions:

(a) Notice the y-axis was given in log scale, $N_d(x)$ from $x = 1 \mu$ m to $x = 3 \mu$ m can be written as:

$$N_d(x) = 10^{17} e^{-a(x-1)} cm^{-3}$$

$$N_d(3mn) = 3 \times 10^{16} cm^{-3}, \qquad a = 0.602mn^{-1}$$

From Einstein Equation, we have $D_n = \frac{KT}{a} \mathbf{m}_n$

Point A: x = 2, $N_d(x) = 5.48 \times 10^{16} \text{ cm}^{-3}$ (you can also read the y-axis directly), from graph in the back of the HW5, $\mathbf{m}_p = 820 \text{ cm}^2 / \text{Vs}$, $D_p = 21.2 \text{ cm}^2 / \text{s}$

Point B:
$$N_d(x) = 3 \times 10^{16} \text{ cm}^{-3}$$
, from Fig 3-23, $m_h = 900 \text{ cm}^2 / \text{Vs}$, $D_n = 23.31 \text{ cm}^2 / \text{s}$

The $N_d(x)$ over the range from $x=4\mu m$ to x=7 μm can be written as:

$$N_d(x) = 3 \times 10^{16} e^{\mathbf{a}(x-4)} cm^{-3}$$
, because $N_d(7 \, \mathbf{m} m) = 6 \times 10^{16} cm^{-3}$, $\mathbf{a} = 0.231 \, \mathbf{m} m^{-1}$

Point C:
$$x = 6$$
, $N_d(x) = 4.76 \times 10^{16} cm^{-3}$, from Fig 3-23, $m_h = 830 cm^2 / Vs$, $D_h = 21.5 cm^2 / s$

(b)
$$J_n = qD_n \frac{dn(x)}{dx}$$
, assuming quasi-neutrality, then $n(x) = N_d(x)$

Point A

$$J_n = qD_n \frac{d10^{17} e^{-\mathbf{a}(x-1)}}{dx} = -qD_n 10^{17} \mathbf{a} e^{-\mathbf{a}(x-1)} = -1.6 \times 10^{-19} \times 21.1 \times 10^{17} \times 0.602 \times 10^4 \times e^{-0.602 \times 1} = -1120 A/cm^2$$

The current goes to the left

Point B:
$$\frac{dn(x)}{dx} = 0$$
, $J_n = 0$

Point C:

$$J_n = qD_n \frac{d3 \times 10^{16} e^{a(x-4)}}{dx} = qD_n 3 \times 10^{16} a e^{a(x-4)} = 1.6 \times 10^{-19} \times 21.5 \times 3 \times 10^{16} \times 0.231 \times 10^4 \times e^{0.231 \times 2} = 378 A / cm^2$$

The current goes to the right

(c) From 4-23,
$$\mathbf{E} = -\frac{D_n}{\mathbf{m}_n} \frac{dn/dx}{n} = -\frac{kT}{q} \frac{d10^{17} e^{-\mathbf{a}(x-1)}/dx}{10^{17} e^{-\mathbf{a}(x-1)}} = \frac{kT}{q} \mathbf{a} = 0.0259 \times 0.602 \times 10^4 = 156V/cm$$

E_c _______ E