Diszkrét matematika 1.

Nagy Gábor

nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék

2014. ősz

2014-15 őszi félév

Gyakorlat:

- 1. ZH tervezett időpontja: október 21.,
- 2. ZH tervezett időpontja: december 9.

Fontos információk az alábbi linken találhatók:

http://compalg.inf.elte.hu/~merai/Edu/DM1/index-dm1-gy.html

Ennek szerepét idővel átveszi:

http://compalg.inf.elte.hu/~burcsi

http://compalg.inf.elte.hu/~nagy

Előadás:

Fontos információk az alábbi linken találhatók:

 $http://compalg.inf.elte.hu/{\sim}\ merai/Edu/DM1/index-dm1-ea.html$

Harmadfokú egyenlet megoldása

Keressük meg az $ax^3 + bx^2 + cx + d = 0$ egyenlet megoldásait $(a \neq 0)!$

Végigosztva *a*-val kapjuk az $x^3 + b'x^2 + c'x + d' = 0$ egyszerűbb egyenletet.

Emlékeztető: másodfokú egyenlet megoldása: $x^2 + px + q = 0$.

Az $x=y-\frac{p}{2}$ helyettesítéssel eltűnik az x-es tag: $y^2+q'=0$. Innen átrendezéssel és gyökvonással megkapjuk a lehetséges megoldásokat y-ra, ahonnan kiszámolhatóak az x_1 , x_2 megoldások.

Hasonló helyettesítéssel a harmadfokú egyenlet $y^3 + py + q = 0$ alakra hozható.

Keressük meg az $y^3 + py + q = 0$ egyenlet megoldásait! Ötlet: keressük a megoldásokat y = u + v alakban! Most $(u + v)^3 = u^3 + 3u^2v + 3uv^2 + v^3$.

A harmadfokú egyenlet:

$$(u+v)^3$$
 $-3uv(u+v)$ $-(u^3+v^3) = 0$
 y^3 $+py$ $+q$ $= 0$

Célunk olyan u, v találása, melyekre $-3uv = p, -(u^3 + v^3) = q$.

Ekkor u + v megoldás lesz!

u,v megtalálása: $u^3v^3=(-\frac{p}{3})^3$, $u^3+v^3=-q$, u^3 , v^3 gyökei lesznek a $z^2+qz+(\frac{-p}{3})^3=0$ másodfokú egyenletnek. A gyökökből u,v köbgyökvonással kijön:

$$y = \sqrt[3]{-\frac{p}{2} + \sqrt{\left(\frac{-q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{p}{2} - \sqrt{\left(\frac{-q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$$

Keressük meg az $x^3 - 21x + 20 = 0$ egyenlet megoldásait! (Most x = y, és rögtön látszik, hogy az x = 1 gyök lesz.) p = -21, q = 20 helyettesítéssel az

$$x = \sqrt[3]{-\frac{p}{2} + \sqrt{\left(\frac{-q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}} + \sqrt[3]{-\frac{p}{2} - \sqrt{\left(\frac{-q}{2}\right)^2 + \left(\frac{p}{3}\right)^3}}$$

képletbe azt kapjuk, hogy

$$x = \sqrt[3]{-10 + \sqrt{-243}} + \sqrt[3]{-10 - \sqrt{-243}}$$

A négyzetgyök alatt negatív! Meg lehet-e menteni a megoldóképletet?

$$\begin{array}{l} x=\sqrt[3]{-10+\sqrt{-243}}+\sqrt[3]{-10-\sqrt{-243}}\\ \text{Formálisan számolva, a }(\sqrt{-3})^2=-3 \text{ feltétellel:}\\ -10+\sqrt{-243}=-10+9\sqrt{-3}=\\ 2^3+3\cdot 2^2\cdot \sqrt{-3}+3\cdot 2(\sqrt{-3})^2+(\sqrt{-3})^3=(2+\sqrt{-3})^3. \end{array}$$
 Hasonlóan $-10-\sqrt{-243}=(2-\sqrt{-3})^3.$

Ezzel a megoldás: $x = (2 + \sqrt{-3}) + (2 - \sqrt{-3}) = 4$.

Felmerülő kérdések

- Számolhatunk-e $\sqrt{-3}$ -mal formálisan?
- Miért épp így kell számolni a $-10 + \sqrt{-243}$ értékét?
- Hova tűnt az x = 1 megoldás?
- Mi a harmadik gyöke az egyenletnek?

Számfogalom bővítése

Természetes számok: $\mathbb{N} = \{0, 1, 2, \dots\}$

Nincs olyan $x \in \mathbb{N}$ természetes szám, melyre x + 2 = 1!

N halmazon a kivonás nem értelmezett!

Egész számok: $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$

A kivonás elvégezhető: x = -1.

Nincs olyan $x \in \mathbb{Z}$ egész szám, melyre $x \cdot 2 = 1!$

Z halmazon az osztás nem értelmezett!

Racionális számok: $\mathbb{Q} = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$

Az osztás elvégezhető: $x = \frac{1}{2}$.

Nincs olyan $x \in \mathbb{Q}$ racionális szám, melyre $x^2 = 2!$

Q halmazon a négyzetgyökvonás nem (mindig) elvégezhető!

Valós számok: ℝ.

Nincs olyan $x \in \mathbb{R}$ valós szám, melyre $x^2 = -1!$

U.i.: Ha $x \ge 0$, akkor $x^2 \ge 0$. Ha x < 0, akkor $x^2 = (-x)^2 > 0$.

1a x < 0, akkor $x^2 = (-x)^2 > 0$.

Számfogalom bővítése

Komplex számok körében az $x^2 = -1$ egyenlet megoldható!

Komplex számok alkalmazása:

- egyenletek megoldása;
- geometria;
- fizika (áramlástan, kvantummechanika, relativitáselmélet);
- grafika, kvantumszámítógépek.

Komplex számok bevezetése

Legyen i az $x^2 = -1$ egyenlet megoldása.

A szokásos számolási szabályok szerint számoljunk az i szimbólummal formálisan, $i^2=-1$ helyettesítéssel:

$$(1+i)^2 = 1+2i+i^2 = 1+2i+(-1) = 2i.$$

Általában

$$(a+bi)(c+di) = ac-bd+i(ad+bc).$$

A komplex számok definíciója

Definíció

Az a+bi alakú kifejezéseket, ahol $a,b\in\mathbb{R}$, komplex számoknak (\mathbb{C}) hívjuk.

összeadás:
$$(a + bi) + (c + di) = a + c + i(b + d)$$
.

Szorzás:
$$(a + bi)(c + di) = ac - bd + i(ad + bc)$$
.

A
$$z = a + bi \in \mathbb{C}$$
 komplex szám, valós része: $Re(z) = a$.

A
$$z = a + bi \in \mathbb{C}$$
 komplex szám képzetes része: $Im(z) = b$.

Figyelem! $Im(z) \neq bi$

Az a + i0 alakú komplex számok a valós számok.

A 0 + ib alakú komplex számok a tisztán képzetes számok.

Az a + bi és a c + di komplex számok egyenlőek: a + bi = c + di, ha

$$a = c$$
 és $b = d$.

A komplex számok definíciója

Megjegyzés

A komplex számok alternatív definíciója:

$$(a,b)\in\mathbb{R} imes\mathbb{R}$$
 párok halmaza, ahol az

összeadás koordinátánként:
$$(a, b) + (c, d) = (a + c, d + b)$$
; szorzás $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$.

A két definíció ekvivalens: $i \leftrightarrow (0,1)$.

Az a + bi formátum kényelmesebb számoláshoz.

Az (a, b) formátum kényelmesebb ábrázoláshoz (grafikusan, számítógépen).

További formális számokra nincs szükség:

Tétel(Algebra alaptétele, NB)

Minden $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ kifejezés esetén, ahol $a_0, \ldots, a_n \in \mathbb{C}$, $a_n \neq 0$, akkor létezik olyan $z \in \mathbb{C}$ komplex szám, hogy $a_0 + a_1z + a_2z^2 + \cdots + a_nz^n = 0$.

Definíció

Egy x szám ellentettje az az \hat{x} szám, melyre $x + \hat{x} = 0$.

Egy $r \in \mathbb{R}$ szám ellentettje: -r.

Állítás (HF)

Egy $z = a + bi \in \mathbb{C}$ szám ellentettje a -z = -a - bi komplex szám.

Definíció

Egy $z = a + bi \in \mathbb{C}$ komplex szám abszolút értéke:

$$|z| = |a + bi| = \sqrt{a^2 + b^2}.$$

Valós számok esetében ez a hagyományos abszolút érték:

$$|a|=\sqrt{a^2}.$$

Állítás(HF)

$$|z| = |a + bi| \ge 0$$
, $|z| = |a + bi| = 0 \Leftrightarrow z = a + bi = 0$.

Definíció

Egy x szám reciproka az az \hat{x} szám, melyre $x \cdot \hat{x} = 1$.

Egy $r \in \mathbb{R}$ nemnulla szám reciproka: $\frac{1}{r}$.

Mi lesz $\frac{1}{1+i}$?

Ötlet: gyöktelenítés, kunjugálttal való bővítés:

$$\frac{1}{1+\sqrt{2}} = \frac{1}{1+\sqrt{2}} \cdot \frac{1-\sqrt{2}}{1-\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1^2-(\sqrt{2})^2}$$
$$= \frac{1-\sqrt{2}}{1-2} = -1 + \sqrt{2}.$$

Hasonlóan:

$$\frac{1}{1+i} = \frac{1}{1+i} \frac{1-i}{1-i} = \frac{1-i}{(1+i)(1-i)} =$$

$$= \frac{1-i}{1^2-i^2} = \frac{1-i}{1-(-1)} = \frac{1-i}{2} = \frac{1}{2} - \frac{1}{2}i.$$

Definíció

Egy z = a + bi komplex szám konjugáltja a $\overline{z} = \overline{a + bi} = a - bi$ szám.

Állítás(HF)

Egy z nemnulla komplex szám reciproka $\frac{1}{z} = \frac{\overline{z}}{z \cdot \overline{z}}$

A definíció értelmes, hiszen a nevezőben:

$$z \cdot \overline{z} = (a + bi)(a - bi) = a^2 - (bi)^2 = a^2 + b^2 = |z|^2$$
.

Nullosztómentesség: $z \cdot w = 0 \rightarrow z = 0$ vagy w = 0.

Két komplex szám hányadosa:

$$\frac{z}{w} = z \cdot \frac{1}{w}$$
.

Tétel (HF)

- $z \neq 0$ esetén $z^{-1} = \frac{\overline{z}}{|z|^2}$;
- **3** |0| = 0 és $z \neq 0$ esetén |z| > 0;

- $|z + w| \le |z| + |w|$ (háromszög egyenlőtlenség).

Tétel(HF)

:

 $\bullet |z \cdot w| = |z| \cdot |w|;$

Bizonyítás

$$|z \cdot w|^2 = z \cdot w \cdot \overline{z \cdot w} = z \cdot w \cdot \overline{z} \cdot \overline{w} = z \cdot \overline{z} \cdot w \cdot \overline{w} = |z|^2 \cdot |w|^2 = (|z| \cdot |w|)^2.$$

Komplex számok ábrázolása

A komplex számok a komplex számsíkon:

Ha
$$z = a + bi \in \mathbb{C}$$
, akkor $Re(z) = a$, $I\underline{m}(z) = b$.

A
$$(Re(z), Im(z))$$
 vektor hossza: $r = \sqrt{a^2 + b^2} = \sqrt{|z|^2}$.

A
$$z$$
 nemnulla szám argumentuma $\phi = arg(z) \in [0, 2\pi)$

A koordináták trigonometrikus függvényekkel kifejezve:

$$Re(z) = a = r \cdot \cos \varphi, Im(z) = b = r \cdot \sin \varphi.$$

Komplex számok trigonometrikus alakja

Definíció

 $z \in \mathbb{C}$ nemnulla szám trigonometrikus alakja a $z = r(\cos \varphi + i \sin \varphi)$, ahol r > 0 a szám abszolút értéke.

Figyelem! A 0-nak nem használjuk a trigonometrikus alakját.

A trigonometrikus alak nem egyértelmű:

$$r(\cos \varphi + i \sin \varphi) = r(\cos(\varphi + 2\pi) + i \sin(\varphi + 2\pi)).$$

Definíció

Egy $z \in \mathbb{C}$ nemnulla argumentuma: az a $\varphi = arg(z) \in [0, 2\pi)$, melyre $z = |z|(\cos \varphi + i \sin \varphi)$.

- z = a + bi algebrai alak;
- $z = r(\cos \varphi + i \sin \varphi)$ trigonometrikus alak.

Itt
$$a = r \cos \varphi$$
, $b = r \sin \varphi$.

Számolás trigonometrikus alakkal

Legyen $z, w \in \mathbb{C}$ nemnulla komplex számok:

$$z = |z|(\cos \varphi + i \sin \varphi), \quad w = |w|(\cos \psi + i \sin \psi).$$

A szorzatuk:

$$zw = |z|(\cos \varphi + i \sin \varphi) \cdot |w|(\cos \psi + i \sin \psi) =$$

$$= |z||w|(\cos \varphi \cos \psi - \sin \varphi \sin \psi + i(\cos \varphi \sin \psi + \sin \varphi \cos \psi)) =$$
addíciós képletek: $\cos(\varphi + \psi) = \cos \varphi \cos \psi - \sin \varphi \sin \psi$

$$\sin(\varphi + \psi) = \cos \varphi \sin \psi + \sin \varphi \cos \psi$$

$$= |z||w|(\cos(\varphi + \psi) + i \sin(\varphi + \psi)).$$

A szorzat abszolút értéke: |zw| = |z||w|.

A szorzat argumentuma:

- ha $0 \le arg(z) + arg(w) < 2\pi$, akkor arg(zw) = arg(z) + arg(w);
- ha $2\pi \le arg(z) + arg(w) < 4\pi$, akkor $arg(zw) = arg(z) + arg(w) 2\pi$.

A sin, cos függvények 2π szerint periodikusak, az argumentum meghatározásánál redukálni kell az argumentumok összegét.

Moivre-azonosságok

Tétel HF

```
Legyen z, w \in \mathbb{C} nemnulla komplex számok: z = |z|(\cos \varphi + i \sin \varphi), \ w = |w|(\cos \psi + i \sin \psi), és legyen n \in \mathbb{N}. Ekkor zw = |z||w|(\cos(\varphi + \psi) + i(\sin(\varphi + \psi)); \frac{z}{w} = \frac{|z|}{|w|}(\cos(\varphi - \psi) + i \sin(\varphi - \psi)); z^n = |z|^n(\cos n\varphi + i \sin n\varphi).
```

A szögek összeadódnak, kivonódnak, szorzódnak. Az argumentumot ezek után redukcióval kapjuk!

Geometriai jelentés

Egy $z \in \mathbb{C}$ komplex szám a komplex számsíkon mint nyújtva forgatás hat. |z|-kel nyújt, arg(z) szöggel forgat.

Komplex számok gyökei

Példa

Számoljuk ki a $\left(\frac{1+i}{\sqrt{2}}\right)^8$ -t:

$$\left(\frac{1+i}{\sqrt{2}}\right)^8 = \left(\frac{1}{\sqrt{2}} + i\frac{1}{\sqrt{2}}\right)^8 = \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)^8 =$$

$$= \cos\left(8 \cdot \frac{\pi}{4}\right) + i\sin\left(8 \cdot \frac{\pi}{4}\right) = \cos 2\pi + i\sin 2\pi = 1.$$

További komplex számok, melyeknek a 8-adik hatványa 1:

- 1;
- −1;
- $i: i^8 = (i^2)^4 = (-1)^4 = 1;$
- \bullet -i;
- $\frac{1+i}{\sqrt{2}}$; $-\frac{1+i}{\sqrt{2}}$;
- sốt: $\pm i \cdot \frac{1+i}{\sqrt{2}} : \left(i \cdot \frac{1+i}{\sqrt{2}}\right)^8 = i^8 \cdot \left(\frac{1+i}{\sqrt{2}}\right)^8 = 1 \cdot 1 = 1.$

A $z = |z|(\cos \varphi + i \sin \varphi)$ és $w = |w|(\cos \psi + i \sin \psi)$ számok egyenlőek:

$$|z|(\cos\varphi + i\sin\varphi) = |w|(\cos\psi + i\sin\psi),$$

ha

- \bullet |z| = |w|
- $\varphi = \psi + k \cdot 2\pi$ valamely $k \in \mathbb{Z}$ szám esetén.

n-edik gyökvonás: Legyen $z^n = w$: $z^n = |z|^n(\cos n\varphi + i\sin n\varphi) = |w|(\cos \psi + i\sin \psi).$

Ekkor

- $\bullet |z|^n = |w| \to |z| = \sqrt[n]{|w|}$
- $n\phi = \psi + k \cdot 2\pi$ valamely $k \in \mathbb{Z}$ esetén

$$ightarrow \phi = rac{\psi}{n} + k \cdot rac{2\pi}{n}$$
 valamely $k \in \mathbb{Z}$ esetén

ha $k \in \{0, 1, \dots, n-1\}$, akkor ezek mind különböző komplex számot adnak.

Tétel

Legyen $z = |z|(\cos \varphi + i \sin \varphi)$, $n \in \mathbb{N}$. Ekkor a z n-edik gyökei $w^n = z$:

$$w = \sqrt[n]{|z|} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right)$$

$$k = 0, 1, \ldots, n - 1.$$

$$w = \sqrt[n]{|z|} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right) : k = 0, 1, \dots, n-1.$$

Példa

Számítsuk ki a $\sqrt[6]{\frac{1-i}{\sqrt{3}+i}}$ értékét!

$$1 - i = \sqrt{2} \left(\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2} \right) = \sqrt{2} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$
$$\sqrt{3} + i = 2 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) = 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right)$$

Mivel
$$\frac{7\pi}{4} - \frac{\pi}{6} = \frac{19\pi}{12}$$

$$\begin{array}{l} \sqrt[6]{\frac{1-i}{\sqrt{3}+i}} = \sqrt[6]{\frac{1}{\sqrt{2}}\left(\cos\frac{19\pi}{12} + i\sin\frac{19\pi}{12}\right)} = \\ = \frac{1}{\frac{12\sqrt{2}}}\left(\cos\frac{19\pi + 2k\pi}{72} + i\sin\frac{19\pi + 2k\pi}{72}\right) : k = 0, 1, \dots, 5. \end{array}$$

Komplex egységgyökök

Definíció

Az $\varepsilon^n=1$ feltételnek eleget tevő komplex számok az n-edik egységgyökök:

$$\varepsilon_k = \varepsilon_k^{(n)} = \left(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}\right) : k = 0, 1, \dots, n-1.$$

Nyolcadik komplex egységgyökök

Pozitív valós számok négyzetgyöke: legyen r > 0 valós.

Ekkor az $x^2 = r$ megoldása: $\pm \sqrt{r}$.

Tétel

Legyen $z \in \mathbb{C}$ nem-nulla komplex szám. $n \in \mathbb{N}$ és $w \in \mathbb{C}$ olyan, hogy $w^n = z$. Ekkor az n-edik gyökök: $w\varepsilon_k : k = 0, 1, \dots n - 1$.

Bizonyítás

A $w\varepsilon_k$ számok mind n-edik gyökök: $(w\varepsilon_k)^n = w^n\varepsilon_k^n = w^n = z$. Ez n különböző szám, így az összes gyököt megkaptuk.

Rend

Bizonyos komplex számok hatványai periodikusan ismétlődnek:

- 1, 1, 1 · · ·
- \bullet -1, 1, -1, 1...
- $i, -1, -i, 1, i, -1, \dots$
- $\frac{1+i}{\sqrt{2}}$, i, $\frac{-1+i}{\sqrt{2}}$, -1, $\frac{-1-i}{\sqrt{2}}$, -i, $\frac{1-i}{\sqrt{2}}$, 1, $\frac{1+i}{\sqrt{2}}$, i...

Általában:

 $\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ -nek n darab különböző hatványa van.

Definíció

Egy z komplex szám különböző (egész kitevős) hatványainak számát a z rendjének nevezzük és o(z)-vel jelöljük.

Példa

- 1 rendje 1
- 2 rendje ∞ : 2, 4, 8, 16, . . .
- -1 rendje 2: 1, -1
- *i* rendje 4: 1, i, -1, -i

Rend

Tétel

Egy z komplex számnak vagy bármely két egész kitevős hatványa különböző (ilyenkor a rendje végtelen), vagy pedig a hatványok a rend szerint periodikusan ismétlődnek. A rend a legkisebb olyan pozitív d szám, melyre $z^d=1$.

Továbbá $z^k = z^l \Leftrightarrow o(z)|k-l$. Speciálisan $z^k = 1 \Leftrightarrow o(z)|k$

Bizonyítás

Tegyük fel, hogy z rendje véges. Ekkor léteznek olyan k, l különböző egészek, melyekre $z^k=z^l$. Legyen k>l. Ekkor $z^{k-l}=1$.

Legyen d legkisebb olyan pozitív szám, melyre $z^d=1$. Ha $z^n=1$, akkor osszuk el maradékosan n-et d-vel: $n=q\cdot d+r$, ahol $0\leq r< d$. Tehát $1=z^n=z^{q\cdot d+r}=(z^d)^qz^r=1^qz^r=z^r$. A d minimalitása miatt r=0 azaz d|n. Visszafelé is igaz: $d|n\Rightarrow z^n=1$. Beláttuk: $d|n\Leftrightarrow z^n=1$.

Primitív gyökök

Az n-edik egységgyökök rendje nem feltétlenül n: 4-edik egységgyökök: 1, i, -1, -i.

- 1 rendje 1;
- −1 rendje 2;
- *i* rendje 4.

Definíció

Az *n*-ed rendű *n*-edik egységgyökök a primitív n-edik egységgyökök.

A tétel következményei:

Következmény(HF)

- Egy primitív n-edik egységgyök hatványai pontosan az n-edik egységgyökök.
- Egy primitív n-edik egységgyök pontosan akkor k-adik egységgyök, ha n|k.

Primitív egységgyökök

Példa

- Primitív 1. egységgyök: 1;
- Primitív 2. egységgyök: −1;
- Primitív 3. egységgyökök: $\frac{-1\pm i\sqrt{3}}{2}$;
- Primitív 4. egységgyökök: $\pm i$;
- Primitív 5. egységgyökök: ... (HF)
- Primitív 6. egységgyökök: $\frac{1\pm i\sqrt{3}}{2}$;

Állítás(HF)

Egy $\cos\left(\frac{2k\pi}{n}\right) + i\sin\left(\frac{2k\pi}{n}\right)$ *n*-edik egységgyök pontosan akkor primitív *n*-edik egységgyök, ha (n,k)=1.

