Discussion 7 Machine Learning Theory VC dimension

田鹏超

tianpch@shanghaitech.edu.cn

Effective number of hypotheses

- H[5] the set of splittings of dataset 5 using concepts from H.
- H[m] max number of ways to split m points using concepts in H

$$H[m] = \max_{|S|=m} |H[S]| \qquad H[m] \le 2^{m}$$

$$\forall S \le X$$

Definition: H shatters \underline{S} if $|H[S]| = 2^{|S|} = 2^m$

Shattering, VC-dimension

Definition: H shatters 5 if $|H[S]| = 2^{|S|} = 2^{m}$

A set of points S is shattered by H is there are hypotheses in H that split S in all of the $2^{|S|}$ possible ways, all possible ways of classifying points in S are achievable using concepts in H.

Definition: VC-dimension (Vapnik-Chervonenkis dimension)

|S| = m

The VC-dimension of a hypothesis space H is the <u>cardinality</u> of the <u>largest</u> set 5 that can be shattered by H.

If arbitrarily large finite sets can be shattered by H, then $VCdim(H) = \infty$

Now we look at another example, where the hypothesis labels the point inside the rectangle decided by the two points (x_1, y_1) , (x_2, y_2) positive, and otherwise negative. The case for two points:

For three points:

The case for four points is a little different; it is not possible to produce all the dichotomies for certain situations, one of them is presented below:

However, this configuration can be shattered!

Therefore, the VC dimension is at least 4

But not this one:

The VC dimension of rectangles is the cardinality of the maximum set of points that can be shattered by a rectangle

The VC dimension of rectangles is 4 because there exists a set of 4 points that can be shattered by a rectangle and any set of 5 points cannot be shattered by a rectangle

VC dimension: linear separator

Can
$$h_{\theta}(\mathbf{x}) = \text{sign}(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$
 shatter these points?

•
$$d_{vc} = 2?$$
, $d_{vc} \le 2?$, $d_{vc} \ge 2?$

VC dimension: linear separator

VC dimension

However, things are a little different with the case of 4 points. For the case of 4 points, there are $2^4 - 2 = 14$ kinds of labeling. As the usual 2^m number of labelings, this time there are two labeling that is not achievable by linear classifiers. Below presents one of them:

• In \mathbb{R}^2 , linear separater has $d_{vc}=3$

VC dimension

In general, linear classifier (perceptron) in d dimensions with a constant term

$$d_{vc} = d + 1$$

For
$$d=2$$
, $d_{\rm VC}=3$

In general,
$$d_{\text{VC}} = d + 1$$

We will prove two directions:

$$d_{\rm VC} \leq d+1$$

$$d_{\rm VC} \ge d+1$$

数据是在d维空间里的,但是分离平面的参数要加上常数项,一共 是d+1个参数。sign $(w_0 \cdot 1 + w_1 x_1 + \ldots + w_d x_d)$

Here is one direction

A set of N = d + 1 points in \mathbb{R}^d shattered by the perceptron:

$$\mathbf{x} = [1, x_1, x_2, \dots, x_d]^T$$

$$X = \begin{bmatrix} -\mathbf{x}_{1}^{\mathsf{T}} - \\ -\mathbf{x}_{2}^{\mathsf{T}} - \\ -\mathbf{x}_{3}^{\mathsf{T}} - \\ \vdots \\ -\mathbf{x}_{d+1}^{\mathsf{T}} - \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & 0 \\ \vdots & & \ddots & & 0 \\ 1 & 0 & \dots & 0 & 1 \end{bmatrix} \right\} d + 1$$

X is invertible

Can we shatter this data set?

For any
$$\mathbf{y}=\begin{bmatrix}y_1\\y_2\\\vdots\\y_{d+1}\end{bmatrix}=\begin{bmatrix}\pm1\\\pm1\\\vdots\\\pm1\end{bmatrix}$$
, can we find a vector \mathbf{w} satisfying

$$sign(X_{\mathbf{w}}) = \mathbf{y}$$

Easy! Just make

$$X_{\mathbf{w}} = \mathbf{y}$$

which means
$$\mathbf{w} = X^{-1}\mathbf{y}$$

我们对于一个特定的包含d+1个数据点的数据集,可以产生所有的 2^d 个dichotomies。这意味着我们可以"粉碎"某个d+1样本容量的数据集。所以"断点"肯定不是 d+1。

We can shatter these d+1 points

This implies what?

[a]
$$d_{VC} = d + 1$$

[b]
$$d_{\text{VC}} \ge d + 1$$

[c]
$$d_{\text{VC}} \leq d+1$$

[d] No conclusion

Now, to show that $d_{vc} \leq d+1$

We need to show that:

- [a] There are d+1 points we cannot shatter
- **[b]** There are d+2 points we cannot shatter
- [c] We cannot shatter any set of d+1 points
- [d] We cannot shatter any set of d+2 points \checkmark

Prove for "ANY"!!!

Here is the other direction

Take any
$$d + 2$$
 points in \mathbb{R}^d !!

$$X_{\bar{v}} = \bar{L} | X_1, X_2, \dots, X_d$$
 \uparrow

For any
$$d+2$$
 points in \mathbb{R}^d : $x_1, x_2, \dots, x_{d+1}, x_{d+2}$

More points than dimensions \Longrightarrow we must have

$$\mathbf{x}_j = \sum_{i \neq j} a_i \mathbf{x}_i$$

where not all the a_i s are zeros

Our purpose is then to design a dichotomy that any linear separator cannot generate on $x_1, x_2, \dots, x_{d+1}, x_{d+2}!!$

$$\underline{x_j} = \sum_{i \neq j} a_i x_i$$

Consider the following dichotomy:

$$y_i = \text{sign}(\underline{a_i})$$
 for x_i 's with non-zero a_i
 $y_j = -1$ for x_j

- No perceptron can implement such dichotomy!
- The dichotomy we construct (j = 1)

$$x_{j} \quad x_{1} = \underbrace{a_{2}x_{2} + \ldots + 0}_{} \cdot x_{d+1} + \underbrace{a_{d+2}x_{d+2}}_{}$$

$$\downarrow \qquad \qquad \downarrow$$

$$y_{j} \quad -1 \quad \text{sign}(a_{2}) \quad \text{whatever} \quad \text{sign}(a_{d+2})$$

• Show for any $w \in \mathbb{R}^{d+1}$, this dichotomy cannot appear!

• The dichotomy we construct (j = 1)

- $y_{i} = Sign(\omega^{T}x_{i})$
- Show for any $\mathbf{w} \in \mathbb{R}^{d+1}$, this dichotomy cannot appear!
- Notice that $y_i = \text{sign}(w^T x_i)$

$$x_{j} = \sum_{i \neq j} a_{i} x_{i} \implies w^{T} x_{j} = \sum_{i \neq j} a_{i} w^{T} x_{i}$$

• Since $\operatorname{sign}(\mathbf{w}^T \mathbf{x}_i) = y_i = \operatorname{sign}(a_i)$, then $a_i \mathbf{w}^T \mathbf{x}_i > 0$

- This forces $\mathbf{w}^T \mathbf{x}_j = \sum_{i \neq i} a_i \mathbf{w}^T \mathbf{x}_i > 0$
- Therefore, $y_i = \text{sign}(\mathbf{w}^T \mathbf{x}_i) = +1$, contradiction!!!

这项的sign就是 y_i ,假设我们可以选w使得这项的sign和 y_i 匹配。则由于我们在设定dichotomy的时候,把 y_i 选的和 a_i 的sign选的一样!!到处矛盾!

Putting it together...

We proved
$$d_{vc} \le d + 1$$
 and $d_{vc} \ge d + 1$

$$d_{vc} = d + 1$$