课题一 温度控制器的设计

实验目的

本课程是集成运算放大器电路的综合应用 (加法器、放大器、比较器)

温度控制器原理框图

二、设计指导

 V_{o1} 为真拟温度传感器输出

 V_{01} =10mV×K(度)

例: 50°C时, Vo1=10mV×K=10mV× (273+50) =3.23V

 Vo_2 =-[Vo1-(273K×10mV)] = -[Vo1-2.73] ----电路为反相加法器 可确定R1、R2、Rf1值; VR=-2.73V

Vo_1 为模拟温度传感器输出

 $Vo_2 = -[Vo_1 - 2.73]$ ----电路为反相加法器可用叠加原理进行测试:

- • $Vo_1 = 0$: $Vo_2 = 2.73$ V
- •Vo₁=3.22V(等效49 °C): Vo₂=0.49V---精度0.01V/ °C

Vo₃=- 10Vo₃ = 10Vo₁-27.3 ---精度0.1V/°C

$V_{\rm ol}$ 为模拟温度传感 器输出

比较器设计指标:

$$Vo1=1$$
μA / K × R × K数
= R × 10⁻⁶ / K × K数
如R=10KΩ,
则Vo1=10mV / K × K数。

温度-电压变换电路

0°C(即273 K)时, Vo2=0V

1. K ~℃变换器

比较器

总电路图

VthH=5.05V, VthL=4.85V, Rf3=109k

修正阈值电压后的电路图

VthH=5.1V, VthL=4.9V, Rf3=57.5k

三、测试表(50°C控制点测量,精度±1°C

K	°C	Vo ₁	$V_{ m R}$	Vo ₂	Vo ₃	Vo ₄	V _{REF}	V _{thH}	V _{thL}
322	49	3.22	-2.73	-0.49	4.9	Н	5		
323	50	3.23	-2.73	-0.5	5		5		
324	51	3.24	-2.73	-0.51	5.1	L	5		

比较器的静态测试: Vo4=H→VthH

 $Vo4=L\rightarrow VthL$