©Jan Schmidt 2012
 Katedra číslicového návrhu
 Fakulta informačních technologií
 České vysoké učení technické v Praze

· Zimní semestr 2012/13

MI-PAA

5. Komunikační a obvodová složitost

- Obvodová složitost, třídy NC⁰, AC⁰, TC⁰, NC¹
- Komunikační složitost
- Kolmogororova složitost, algoritmická náhodnost

Obvod pro 3-SAT, 2 klausule

$$(x_1'+x_2'+x_3)(x_1+x_2+x_3')$$

$(x_1'+x_2'+x_3)(x_1+x_2+x_3')$

Kontrola certifikátu

o splněna

Kontrola literálu

Vlastnosti kontrolního obvodu

- Formule 3-SAT
 - nechť má *n* klauzulí $\Rightarrow 3n$ literálů
 - pak má O(n) proměnných
- Obvod
 - má 3*n* multiplexorů o *O(n)* vstupech
 - má 3*n* multiplexorů o 2 vstupech
 - má *n* členů OR o 3 vstupech
 - má 1 člen AND o n vstupech
 - má 4 logické úrovně konstantní (?) hloubka
 - algoritmicky sestrojitelný v polynomiálním čase

polynomiální velikost

Obvod na řešení 3-SAT, 2 klauzule

Vlastnosti

- Exponenciální velikost
- Konstantní (?) hloubka
- Algoritmicky sestrojitelný ale v exponenciálním čase
- Polynomiální velikost, konstrukce v polynomiálním čase $\Rightarrow P = NP$
- Polynomiální velikost $\Rightarrow \Pi_2 = \Sigma_2$ (kolaps polynomiální hierarchie, Karp-Liptonova věta)

Booleův obvod

- Booleova funkce $f:\{0,1\}^n \rightarrow \{0,1\}^m$
- Orientovaný acyklický graf
 - Každý uzel se vstupním stupněm 0 je ohodnocen vstupní proměnnou x_i, i=1..n
 - Každý uzel s výstupním stupněm 0 je ohodnocen výstupní proměnnou y_i, i=1..m
 - Každý ostatní (vnitřní) uzel je ohodnocen hradlem ω_i ze zvolené báze Ω komutativních Booleových funkcí
- · Počet vnitřních uzlů je složitost obvodu
- · Délka nejdelší cesty grafem je hloubka obvodu
- Graf je stromem → Booleova formule

Báze

- Pro nekomutativní funkce bychom museli očíslovat vstupní hrany každého uzlu
- Báze je úplná, jestliže je možno s ní realizovat každou Booleovu funkci
- Některé úplné báze:

Vstupní a výstupní větvení

- Vstupní stupeň vnitřního uzlu nazveme vstupní větvení (počet vstupů, fan-in)
- Výstupní stupeň vnitřního uzlu nazveme výstupní větvení (fan-out)
- Booleův obvod jako výpočetní model je robustní vůči omezení výstupního větvení
- · Simulace vstupního větvení: logaritmická hloubka

Uniformní modely

- Turingův stroj řeší instance problému libovolné velikosti – uniformní výpočetní model
- Pro každou velikost instance potřebujeme jiný obvod:
 - povolíme zásobu předkonstruovaných obvodů → neuniformní model, výhoda proti Turingovu stroji
 - požadujeme, aby pro každou velikost instance bylo možno obvod efektivně vygenerovat Turingovým strojem → uniformní model

P/poly polynomiál ní složitost	{∧, ∨, ¬}	{∧, ∨, ¬, MOD <i>m</i> }	{∧, ∨, ¬, MOD <i>m</i> ∀ <i>m</i> }	prahová funkce
konstantní hloubka, vstupní větvení 2	NC ⁰			
konstantní hloubka	AC ⁰	AC ⁰ (m)	ACC ⁰	TC ⁰
logaritmická hloubka, vstupní větvení 2	NC ¹			

 $ACC^0 \subseteq TC^0 \subseteq NC^1$

AC⁰

- AC: Alternating Circuits negace jen na vstupech, dále střídající se AND, OR → normální formy (DNF, CNF)
- AC⁰ umí:
 - celočíselné sčítání
 - všechno, co lze popsat predikátovou logikou
 1. řádu
- AC⁰ neumí:
 - celočíselné násobení ⇒ těžší než sčítání
 - paritu ⇒ parita nemůže mít DNF, CNF polynomiální velikosti

Jeden z praktických důsledků

- Všechny Booleovy funkce nejvýše 2 vstupů:
 - Konstanty 0, 1
 - Opakovač a invertor
 - Funkce, které dostaneme z AND inverzí na vstupech nebo výstupu
 - Funkce, které dostaneme z XOR inverzí na vstupech nebo výstupu
- NPN třídy ekvivalence
- A když návrhový systém "neumí" všechny třídy stejně? → výsledek větší, než má být

TC⁰

- Prahová funkce: dává 1 od určitého počtu jedniček na vstupu výše – např. majorita
- TC⁰ umí:
 - celočíselné násobení
 - modelovat neuronové sítě atd.

NC¹

- · NC¹ umí:
 - vyhodnotit Booleovu formuli
 - rozpoznat regulární podmnožinu
- Existence problémů, které mají obvody v NC¹ ale nikoliv v TC⁰, není jistá

Hloubka funkce

- Nechť
 - f: {0,1}ⁿ → {0,1} nad bází { \land , \lor ,¬} se vstupním větvením 2.
 - B_0 ⊂ {0,1}ⁿ jsou všechny vektory, pro které f nabývá hodnoty 0
 - $B_1 \subset \{0,1\}^n$ jsou všechny vektory, pro které f nabývá hodnoty 1
- · Dva vzdálení, ale kooperující hráči A, B
 - A má vektor $a \in B_0$, B má vektor $b \in B_1$
 - mají najít pozici prvého bitu, ve kterém se jejich vektory liší
- · Počet bitů, které si musí vyměnit, se rovná hloubce f.

Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require superlogarithmic depth. *SIAM Journal of Computing*, 3(2):255-265, May 1990.

Důsledek

- Symetrické funkce: pravdivostní hodnota závisí jen na počtu vstupů v 1
- · Symetrické funkce mají logaritmickou hloubku
- Důkaz: komunikační protokol

Brodal & Husfeldt: Symmetric Functions have Logarithmic Depth. Výzkumná zpráva BRICS RS961, Department of Computer Science University of Aarhus. 1996

Komunikační složitost

- Rozdělit vstupy na dvě stejné množiny (bez ohledu na výstupy) tak, aby počet bitů předávané informace pro provedení výpočtu byl minimální
- · Počet bitů je (obousměrná) komunikační složitost

Složitost objektu

Kolmogorovova složitost

- Složitost popisu objektu vzhledem k jazyku (popisným prostředkům)
- Nechť
 - w je vstup Turingova stroje M, který vygeneruje objekt (řetěz) s
 - m je reprezentace M řetězem (program pro univerzální Turingův stroj)
- · Pak zřetězení w.m je popisem s
- Délka nejkratšího takového zřetězení je Kolmogorovova složitost s

Vlastnosti

- Stanovení Kolmogorovovy složitosti je obecně nerozhodnutelný problém (je Turing-ekvivalentní s problémem zastavení Turingova stroje)
- Kolmogorovova složitost vzhledem ke dvěma různým strojům M se liší nejvýše o aditivní konstantu (velikost interpretu pro vzájemnou emulaci)
- Kolmogorovova složitost řetězu nemůže tedy být "o mnoho" větší než jeho délka

Kolomogorovova (algoritmická) náhodnost

- Náhodný řetězec je ten, který je sám sobě nejkratším popisem (vzhledem k nějakému univerzálnímu Turingovu stroji)
- Pro každé n existuje alespoň jeden takový řetězec
- Mohou se lišit podle zvoleného univerzálního Turingova stroje

