Topic: Parallel, perpendicular, or neither

Question: Each pair of points in the table below are points that lie on the given line. Which two lines are perpendicular to each other?

Line	Point 1	Point 2
Line AB	(-2,2)	(1,8)
Line CD	(3,6)	(5,2)
Line EF	(3,0)	(7,-2)

Answer choices:

- A \overrightarrow{AB} and \overrightarrow{CD}
- B \overrightarrow{CD} and \overrightarrow{EF}
- C \overrightarrow{AB} and \overrightarrow{EF}
- D None are perpendicular

Solution: C

Use the slope formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

for each line.

$$\overrightarrow{AB}$$
: $m = \frac{8-2}{1-(-2)} = 2$

$$\overrightarrow{CD}$$
: $m = \frac{2-6}{5-3} = -2$

$$\overrightarrow{EF}$$
: $m = \frac{-2 - 0}{7 - 3} = -\frac{1}{2}$

 \overrightarrow{AB} and \overrightarrow{EF} have slopes that are negative reciprocals of each other, so they're perpendicular.

Topic: Parallel, perpendicular, or neither

Question: Each pair of points in the table below are points that lie on the given line. Which lines are parallel to each other?

Line	Point 1	Point 2
Line AB	(0,3)	(6,7)
Line CD	(5,4)	(8,6)
Line EF	(1,-2)	(7,2)

Answer choices:

- A \overrightarrow{AB} and \overrightarrow{CD}
- B \overrightarrow{CD} and \overrightarrow{EF}
- C \overrightarrow{AB} and \overrightarrow{EF}
- D All three are parallel

Solution: D

Use the slope formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

for each line.

$$\overrightarrow{AB}$$
: $m = \frac{7-3}{6-0} = \frac{2}{3}$

$$\overrightarrow{CD}$$
: $m = \frac{6-4}{8-5} = \frac{2}{3}$

$$\overrightarrow{EF}$$
: $m = \frac{2 - (-2)}{7 - 1} = \frac{2}{3}$

All three lines have the same slope, so all three are parallel unless two of them (or all three) are actually one and the same line.

Topic: Parallel, perpendicular, or neither

Question: Which statement is true?

Point	Coordinates
А	(-7,2)
В	(2,5)
С	(4,-1)
D	(-5,-4)

Answer choices:

- A Lines \overrightarrow{AB} and \overrightarrow{CD} are parallel, and lines \overrightarrow{AB} and \overrightarrow{BC} are perpendicular.
- B Lines \overrightarrow{AB} and \overrightarrow{CD} are parallel, and lines \overrightarrow{AC} and \overrightarrow{BD} are parallel.
- C Lines \overrightarrow{AC} and \overrightarrow{CD} are perpendicular, and lines \overrightarrow{BC} and \overrightarrow{BD} are perpendicular.
- D Lines \overrightarrow{BC} and \overrightarrow{BD} are perpendicular, and lines \overrightarrow{AD} and \overrightarrow{AB} are perpendicular.

Solution: A

Use the slope formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

to get the slopes of the lines \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{AC} , \overrightarrow{BD} , and \overrightarrow{AD} .

$$\overrightarrow{AB}$$
: $m = \frac{5-2}{2-(-7)} = \frac{1}{3}$

$$\overrightarrow{BC}$$
: $m = \frac{-1-5}{4-2} = -3$

$$\overrightarrow{CD}$$
: $m = \frac{-4 - (-1)}{-5 - 4} = \frac{1}{3}$

$$\overrightarrow{AC}$$
: $m = \frac{-1-2}{4-(-7)} = \frac{-3}{11}$

$$\overrightarrow{BD}$$
: $m = \frac{-4-5}{-5-2} = \frac{9}{7}$

$$\overleftrightarrow{AD}$$
: $m = \frac{-4-2}{-5-(-7)} = -3$

Lines \overrightarrow{AB} and \overrightarrow{CD} have the same slope, so they're parallel, unless they're one and the same line.

Lines \overrightarrow{AB} and \overrightarrow{BC} have slopes that are negative reciprocals of each other, so they're perpendicular. Combining these two results, we see that answer choice A is correct.

Let's check the other three answer choices.

Answer choice B can't be correct, because lines \overrightarrow{AC} and \overrightarrow{BD} have different slopes, so they can't be parallel.

Answer choice C can't be correct, because the slopes of the lines \overrightarrow{AC} and \overrightarrow{CD} aren't negative reciprocals of each other, so they can't be perpendicular.

Answer choice D can't be correct, because the slopes of lines \overrightarrow{BC} and \overrightarrow{BD} aren't negative reciprocals of each other, so they can't be perpendicular.

