Theoretical Computer Science (M21276)

Part Essential from Mathematics (Review)

(before we start...)

Question 1. We are given the sets $A = \{3, 8, 7, 16, 10, 15\}$ and $B = \{1, 2, 8, 10, 15\}$.

• Is it true that $B \subset A$?

Answer: no

• Which elements belong to the set $A \cup B$?

Answer: $\{1, 2, 3, 7, 8, 10, 15, 16\}$

• Which elements belong to the set $A \cap B$?

Answer: $\{8, 10, 15\}$

• Which elements belong to the set $A \setminus B$?

Answer: $\{3, 7, 16\}$

• What is the meaning and the value of |A|?

Answer: the number of element in A, |A| = 6

ullet Find a subset of B which will be a subset of A as well.

Answer: any subset of the following set: $\{8, 10\}$

• How many different subsets can you create from the set $\{1, 2, 8\}$? And how many from the set B?

Answer: From the set $\{1,2,8\}$ we can create 8 subsets, from the set $B: 2^5 = 32$.

Question 2.

• Are the sets $\{1, 2, 3, 5\}$ and $\{5, 1, 3, 2\}$ different?

Answer: no, they are the same

• Are the set $\{2,4,6,\ldots\}$ and $\{2k-2,k\in\mathbb{N}\}$ different?

Answer: yes, -2 is not in the first set

Question 3. If $f(x) = 2x^2 + 3x + 1$, what is f(2)?

Answer: 15

Question 4. Write down the formula for 1 + 2 + 3 + 4 + ... + n.

Answer: n(n+1)/2

Question 5. Given T(n) = T(n-1) + n, and T(1) = 0, write down the value of (i) T(3), (ii) T(n).

Answer: (i) T(3) = 5, (ii) T(n) = n(n+1)/2 - 1

Question 6. What is 4!?

Answer: $4 \cdot 3 \cdot 2 \cdot 1 = 24$

Question 7. What is the value of: $\sum_{i=1}^{4} i^2$

Answer: 1+4+9+16=30

Question 8. What is the value of:

$$1+2+4+8+16+\cdots+2^{n-1}$$
?

Answer: $2^n - 1$

Question 9. What is the meaning of **logarithm**? What is the value (i) $\log_2 8$, (ii) $\log_2 32$, (iii) $\log_2 2^8$?

Answer: (i) 3, (ii) 5, (iii) 8

Question 10. What is the value (i) $\log_2 64 - \log_2 4$, (ii) $\log_2 32 + \log_2 4$?

Answer: (i) $\log_2 \frac{64}{4} = \log_2 16 = 4$, (ii) $\log_2 32 \cdot 4 = \log_2 128 = 7$

Question 11. Give a value for n, so that 2^{10} is very close to 10^n .

Answer: $2^{10} = 1024$ which is approx. equals to $1000 = 10^3$, so n = 3

Question 12. If $T(n) = Kn^2$, and $T(100) = 0.5 \times 10^{-3}$, what is the value of K?

Answer: $T(100) = K \cdot 100^2 = 0.5 \times 10^{-3}$, so $K = 0.5 \times 10^{-7}$

Question 13.[hard] If $T(n) = Kn \log_{10} n$, and $T(100) = 0.5 \times 10^{-3}$, what is the value of n when T(n) is close to 60?

Answer: $T(100) = K \cdot 100 \log_{10} 100 = 0.5 \times 10^{-3}$. So, $K = 0.5 \times 10^{-5}/2 = 0.25 \cdot 10^{-5}$. When $T(n) = 60 = 0.25 \times 10^{-5} \times n \log_{10} n$, $n \log n = 24 \times 10^6 = 4 \times 6 \times 10^6 \approx 3.6 \times 10^6 \times (\log_{10} 3.6 + 6)$. So, $n = 3.6 \times 10^6$.