# 36.7 Difração por Duas Fendas

1. Interferência de fenda dupla de Young  $(a \ll \lambda)$  [Capítulo 35]



#### Máximos de interferência

$$d \operatorname{sen} \theta_m = m\lambda, m = 0, \pm 1, \pm 2, \pm 3, \dots$$

Mínimos de interferência

$$d \operatorname{sen} \theta_m = \left(m + \frac{1}{2}\right) \lambda, m = 0, \pm 1, \pm 2, \pm 3, \dots$$

2. Difração por uma fenda  $(a \ge \lambda)$ 



#### Mínimos de difração

$$a \operatorname{sen} \theta_m = m\lambda, m = \pm 1, \pm 2, \pm 3, \dots$$

3. Difração por duas fendas  $(a \ge \lambda)$ 

#### Máximos de interferência

$$d \operatorname{sen} \theta_m = m_i \lambda, m_i = 0, \pm 1, \pm 2, \pm 3, \dots$$

Mínimos de interferência

$$d \operatorname{sen} \theta_m = \left(m_i + \frac{1}{2}\right) \lambda, m_i = 0, \pm 1, \pm 2, \pm 3, \dots$$

Mínimos de difração

$$a \operatorname{sen} \theta_m = m_d \lambda, m_d = \pm 1, \pm 2, \pm 3, \dots$$

.. Interferência de fenda dupla de Young 
$$(a \ll \lambda)$$
 [Capítulo 35]



$$I(\theta) = I_m \cos^2\left(\frac{\pi d}{\lambda} \sin\theta\right)$$

$$d = 1,944 \times 10^{-5} m$$
  
 $\lambda = 4,05 \times 10^{-7} m$ 



2. Difração por uma fenda 
$$(a \ge \lambda)$$



$$I(\theta) = I_m \left( \frac{\sin\left(\frac{\pi a}{\lambda} \sin \theta\right)}{\frac{\pi a}{\lambda} \sin \theta} \right)^2$$
$$a = 4.05 \times 10^{-6} m$$

$$\lambda = 4,05 \times 10^{-7} m$$



Intensidade relativa

3. Difração por duas fendas 
$$(a \ge \lambda)$$



$$I(\theta) = I_m \cos^2(\beta) \left(\frac{\sin \alpha}{\alpha}\right)^2$$

$$\beta = \frac{\pi d}{\lambda} \sin \theta, \ \alpha = \frac{\pi a}{\lambda} \sin \theta$$

$$d = 1,944 \times 10^{-5} m$$

$$a = 4,05 \times 10^{-6} m$$

$$\lambda = 4.05 \times 10^{-7} m$$



Levando em conta o efeito da difração, a intensidade da figura de interferência de duas fendas é dada por

fator de difração

$$I(\theta) = I_m \cos^2(\beta) \left(\frac{\sin \alpha}{\alpha}\right)^2. \quad (36.19)$$

onde

$$\beta = \frac{\pi d}{\lambda} \operatorname{sen} \theta . (36.20)$$

$$\alpha = \frac{\pi a}{\lambda} \operatorname{sen} \theta . \quad (36.21)$$





$$I(\theta) = I_m \cos^2(\beta) \left(\frac{\sin \alpha}{\alpha}\right)^2$$

$$\beta = \frac{\pi d}{\lambda} \operatorname{sen} \theta$$

$$\alpha = \frac{\pi a}{\lambda} \operatorname{sen} \theta$$

• Se 
$$a \rightarrow 0$$

• Se 
$$a \to 0$$
 
$$\alpha \to 0$$
 
$$\frac{\sin \alpha}{\alpha} \to 1$$
 
$$I(\theta) = I_m \cos^2(\beta)$$

$$I(\theta) = I_m \cos^2(\beta)$$









• Se 
$$d \to 0$$
  $\beta \to 0$   $\cos \beta \to 1$   $I(\theta) = I_m \left(\frac{\sin \alpha}{\alpha}\right)^2$ 



Se 
$$d \to 0$$



## 36.8 Redes de Difração

Uma rede de difração é um arranjo semelhante ao do experimento de fenda dupla de Young, exceto pelo fato de que o número de fendas, também chamadas de ranhuras, pode chegar a milhares por milímetro.



Rede de difração simplificada, com apenas 5 fendas (ou 5 ranhuras).



(a) A curva de interferência produzida por uma rede de difração com muitas ranhuras é constituída por picos estreitos, que aqui rotulamos pelos números de ordem, m. (b) As franjas claras correspondentes, observadas na tela  $\mathcal{C}$ , são chamadas de linhas e também foram rotuladas pelos números de ordem, m.

Para determinar as posições das linhas na tela de observação, supomos que a tela está suficientemente afastada da rede para que os raios que chegam a um ponto P da tela sejam aproximadamente paralelos ao deixarem a rede de difração.



• Se uma rede de difração com largura total igual a w possui N ranhuras (ou fendas), espaçamento de rede (d) é dado por

$$l=\frac{\nu}{\lambda}$$

### Largura das Linhas

A capacidade de uma rede de difração resolver (separar) linhas de diferentes comprimentos de onda depende da largura das linhas.

A **meia largura** da linha central é definida como o ângulo  $\Delta heta_{ml}$  entre o centro da linha ( $\theta_0 = 0^\circ$ ) e o primeiro mínimo de intensidade.



É possível demonstrar que a equação para a meia largura da linha central é dada por

$$\Delta\theta_{ml} = \frac{\lambda}{Nd}.$$
 (36.27)

A meia largura das outras linhas pode ser escrita como

$$\Delta\theta_{ml} = \frac{\lambda}{Nd\cos\theta_m}.$$
 (36.28)



correspondente à linha de ordem *m* 

# O Espectroscópio de Rede de Difração

As redes de difração são usadas para determinar os comprimentos de onda emitidos por fontes luminosas de todos os tipos, desde lâmpadas até estrelas.

A figura ao lado mostra um **espectroscópio** simples baseado em um rede de difração. A luz da fonte S é focalizada pela lente  $L_1$  em uma fenda  $S_1$  colocada no plano focal da lente  $L_2$ . A luz que emerge do tubo C (que é chamado de *colimador*) é uma onda plana que incide perpendicularmente na rede G, onde é difratada, produzindo uma figura de difração simétrica em relação ao eixo do colimador.

Podemos observar a linha de difração que apareceria em uma tela em um dado ângulo  $\theta$  orientando o telescópio T da figura ao lado para o mesmo ângulo.

De acordo com o que vimos no slide 6, a posição angular  $\theta_m$  de cada **linha** (ou **máximo**) de difração para uma determinada ordem  $m(\neq 0)$  depende do comprimento de onda  $\lambda$ , satisfazendo à seguinte equação:

$$d \operatorname{sen} \theta_m = m\lambda, m = 0, \pm 1, \pm 2, \pm 3, \dots$$





Figura 36-24 Linhas de emissão de ordem zero, um, dois e quatro do hidrogênio na faixa da luz visível. Observe que as linhas são mais afastadas para grandes ângulos. (São também mais largas e menos intensas, embora isso não seja mostrado na figura.)



**Figura 36-25** Linhas de emissão do cádmio na faixa da luz visível, observadas através de um espectroscópio. (Department of Physics, Imperial College/Science Photo Library/Photo Researchers)

### 36.9 Redes de Difração: Dispersão e Resolução

### Dispersão

Uma rede de difração espalha as linhas difração associadas aos diferentes comprimentos de onda. Esse espalhamento, conhecido com **dispersão**, é definido através da equação

$$D = \frac{\Delta \theta}{\Delta \lambda}, \qquad (36.29)$$

onde  $\Delta\theta$  é a separação angular entre duas linhas cujos comprimentos de onda diferem de  $\Delta\lambda$ .

É possível demonstrar que a **dispersão** de uma rede de difração para um ângulo  $heta_m$  é dada por

$$D = \frac{m}{d\cos\theta_m}.$$
 (36.30)

## Resolução

Para resolver (distinguir) linhas cujos comprimentos de onda são muito próximos, é preciso que as linhas sejam suficientemente estreitas. Em outras palavras, a rede de difração deve ter uma alta **resolução**, R, definida através da equação

$$R = \frac{\lambda_{m\acute{e}d}}{\Lambda\lambda}, \qquad (36.31)$$

onde  $\lambda_{m \in d}$  é a média dos comprimentos de onda de duas linhas que mal podem ser distinguidas e  $\Delta \lambda$  é a diferença entre os comprimentos de onda das duas linhas.

É possível demonstrar que a resolução de uma rede de difração com N ranhuras é dada por

$$R = Nm.$$
 (36.32)

# Comparação entre Dispersão e Resolução







$$D = \frac{\Delta \theta}{\Delta \lambda} = \frac{m}{d \cos \theta_m}$$

Rede  $A: D = 23,2 \,^{\circ}/\mu m$ Rede  $B: D = 23,2 \,^{\circ}/\mu m$ Rede  $C: D = 46,3 \,^{\circ}/\mu m$ 

intensidade 
$$C \cap \mathbb{R}$$
 Rede  $C \cap \mathbb{R}$ 

$$R = \frac{\lambda_{m \in d}}{\Delta \lambda} = Nm$$

Rede A: R = 10000Rede B: R = 20000Rede C: R = 10000

#### Tabela 36-1

**Parâmetros de Três Redes de Difração** (Dados para  $\lambda = 589 \ nm \ e \ m = 1$ )

| Rede | N      | d (nm) | $\theta$ | $D\left(^{\circ}/\mu\mathrm{m} ight)$ | R      |
|------|--------|--------|----------|---------------------------------------|--------|
| A    | 10 000 | 2540   | 13,4°    | 23,2                                  | 10 000 |
| B    | 20 000 | 2540   | 13,4°    | 23,2                                  | 20 000 |
| C    | 10 000 | 1360   | 25,5°    | 46,3                                  | 10 000 |

Exercícios sugeridos das Seções 36.7, 36.8 e 36.9: 35, 37, 38, 39, 40, 41, 43, 44, 46, 47, 48, 49, 50, 51, 53, 56, 57, 58, 60, 61, 63, 64, 81, 87.

**Exemplo 36.6)** Uma rede de difração tem  $N=1,26\times 10^4$  ranhuras uniformemente espaçadas em uma largura w=25,4~mm. A rede é iluminada perpendicularmente pela luz amarela de uma lâmpada de vapor de sódio. Essa luz contém duas linhas muito próximas (conhecidas como dubleto de sódio) com comprimentos de onda  $\lambda_1=589,00~nm~e~\lambda_2=589,59~nm$ .

- (a) Qual é o ângulo correspondente ao máximo de 1ª ordem para o comprimento de onda de 589,00 nm? [Ou seja,  $\theta_1 =$ ?]. E  $\theta_1 =$ ? Dica:  $d = \frac{w}{N}$  e  $d \sin \theta_m = m\lambda$ .
- **(b)** Usando a dispersão da rede, calcule a separação angular das duas linhas de 1ª ordem. [Ou seja,  $\Delta\theta$  =?]. Dica:  $\Delta\theta = \theta_1 \theta_1$  ou  $D = \frac{m}{d\cos\theta_m} = \frac{\Delta\theta}{\Delta\lambda}$ .
- (c) Qual é o menor número de ranhuras que uma rede pode ter sem que e torne impossível distinguir as linhas de 1º ordem do dubleto de sódio?[Ou seja,  $N|_{min}=$ ?] Dica:  $R=\frac{\lambda_{m\acute{e}d}}{\Delta\lambda}=Nm$ .

