Multi-task Learning - Advantages and Implementations under Computation Budget

Ayan Acharya

SWIFT Summer Intern

August 24, 2012

Machine Learning Applications

- Fraud detection.
- Web search ranking (Google, Yahoo!, Bing search engines).
- Speech and object recognition.
- Stock market analysis.
- Recommender Systems (Amazon, NetFlix, eBay).
- DNA sequence classification.
- Robot locomotion.
- Disease prediction (Google Flu trends).

Supervised Machine Learning Algorithm

- types of ML algorithms: supervised, unsupervised, semi-supervised, reinforcement, transductive etc.
- notation: x : data point, y : response variable, w : parameters.

Multi-task Learning

Figure: Learning Tasks Separately

Figure: Learning Tasks Jointly

Recapulation of Linear System of Equations

- $\mathbf{y} = \beta \mathbf{x}, \ \mathbf{y} \in \mathbb{R}^M, \mathbf{x} \in \mathbb{R}^D, \boldsymbol{\beta} \in \mathbb{R}^{M \times D}.$
- M = D, completely determined system unique solution.
- M < D, over-determined system − no solution.
- *M* > *D*, under-determined system multiple solutions.

Problems with High-dimensional Data

Living area (feet ²)	#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
:	:	:

- D: data dimension, N: number of measurements.
- D >> N too few measurements compared to data complexity.
- Examples: medical diagonsis data, weather prediction data.
- Compressed sensing.

Solution?

- An engineer thinks that equations are an approximation to reality.
- A physicist thinks reality is an approximation to equations.
- A mathematician doesn't care.
- We use our favorite hammer approximations limit the degree of freedom of the parameters to be learnt.

Mathematical Formulation

- using ℓ_1 , ℓ_2 or ℓ_1/ℓ_q regularization.
- using graphical models.
- • •

Polynomial Curve Fitting

$$\bullet \ y = w_0 + \sum_{d=1}^D w_d x^d.$$

Polynomial Curve Fitting Continued ...

Table of the coefficients \mathbf{w}^* for polynomials of various order. Observe how the typical magnitude of the coefficients increases dramatically as the order of the polynomial increases.

	D = 0	D = 1	D = 6	D = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^*		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
w_3^*			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^*				1042400.18
w_8^*				-557682.99
w_9^*				125201.43

Regularized Linear Regression

- $(\mathbf{x}_n, \mathbf{y}_n)_{n=1}^N$ observed data and response value pair.
- A straw-man strategy $\min_{\mathbf{w}} \sum_{n=1}^{N} (\mathbf{y}_n \mathbf{w} \mathbf{x}_n)^2$.
- More advanced strategy $\min_{\mathbf{w}} \sum_{n=1}^{N} (\mathbf{y}_n \mathbf{w} \mathbf{x}_n)^2$ s.t. $||\mathbf{w}||_q \leq R$.
- ℓ_q norm: $||\mathbf{w}||_q = (\sum_{d=1}^D w_d^q)^{1/q}$.

Level Sets of Regularizers

Figure : $||\mathbf{w}||_{0.5} = 1$, $||\mathbf{w}||_1 = 1$, $||\mathbf{w}||_2 = 1$, $||\mathbf{w}||_4 = 1$.

Comparison of ℓ_2 and ℓ_1 Norm

- $\min_{\mathbf{w}} \sum_{n=1}^{\infty} (\mathbf{y}_n \mathbf{w} \mathbf{x}_n)^2$ s.t. $||\mathbf{w}||_q \leq R$.
- $\min_{\mathbf{w}} \sum_{n=1}^{N} (\mathbf{y}_n \mathbf{w} \mathbf{x}_n)^2 + \lambda ||\mathbf{w}||_q$.
- ullet ℓ_1 regularization provides sparser solution.

Bayesian Linear Regression

- Impose some prior belief on possible values of w.
- Maximize the likelihood of observations with normal distribution used as prior - regularized linear regression.
- Prior on model variables acts as regularizer.

Multi-task Linear Regression

- *K* different linear regression problems.
- $\min_{\mathbf{w}_k} \sum_{n=1}^N (y_{kn} \mathbf{w}_k \mathbf{x}_n)^2 + \lambda ||\mathbf{w}_k||_q \ \forall k.$
- Equivalent formulation: $\min_{\mathbf{w}} \sum_{k=1}^K \sum_{n=1}^N (\mathbf{y}_{kn} \mathbf{w}_k \mathbf{x}_n)^2 + \lambda \sum_{k=1}^K ||\mathbf{w}_k||_q$.
- $f(\mathbf{x}) = f_1(x_1) + f_2(x_2) + f_3(x_3) + \cdots$

features

tasks

Multi-task Linear Regression Continued ..

• Alternate Formulation:
$$\min_{\mathbf{w}} \sum_{k=1}^K \sum_{n=1}^N (y_{kn} - \mathbf{w}_k \mathbf{x}_n)^2 + \lambda \sum_{d=1}^D ||\mathbf{w}^{(d)}||_q$$
, $\mathbf{w}^{(d)} \in \mathbb{R}^K \ \forall d$.

- ℓ_1/ℓ_q norm Group LASSO.
- Sparsity on individual features.

Visualization of Group Sparsity

tasks

Real Time Car Detection and Tracking

AdaBoost Classifier

- convex combination of weak learners.
- weak learners are some classifiers with error rate less than 50% (for binary classification).
- strong theoretical understanding and convergence guarantees.
- learning involves only a set of closed-form updates.
- boosting trick $\mathbf{h}(\mathbf{x}_n) = (h_j(\mathbf{x}_n))_{i=1}^J$, $\mathbf{h}: \mathbb{R}^D \to \{-1, +1\}^J$ motivation similar to kernel trick

Detector

Tracker

- Corner detection based tracking,
- Computationally cheap.

An Adaptive MTL Framework

- Detect multiple types of vehicles (SUVs, cars, buses, trucks etc.), pedestrians, signals.
- Vary computation effort depending on:
 - the device
 - resources available at the prediction time
- Applications: Web Search Ranking, Real Time Object Detection.

Formulation of Adaptive MTL

- Build a predictor $H_{\beta(k)}(\mathbf{x}_n) = \langle \boldsymbol{\beta}^{(k)}, \mathbf{h}(\mathbf{x}_n) \rangle \ \forall k$.
- Optimization problem:

$$\min_{\beta} \sum_{n=1}^{N} \mathcal{L}(y_n, \max_{k} \{H_{\beta^{(k)}}(\mathbf{x}_n)\}) \text{ s.t. } c(\mathbf{q}, \beta) \leq T, \beta \geq \mathbf{0}.$$
 (1)

• The regularizer:

$$c(\mathbf{q}, \boldsymbol{\beta}) = r(\boldsymbol{\beta}) + \tau(\mathbf{q}, \boldsymbol{\beta}).$$
 (2)

- $\mathbf{q} = (q_d)_{d-1}^D$ computation cost for retrieving features.
- $r(\beta)$ is an ℓ_1/ℓ_q regularizer.
- $\tau(\mathbf{q}, \beta)$ computation cost associated with accessing the raw features from the observations.

Questions?