

Heart Sound Segmentation: A Stationary Wavelet Transform Based Approach

Author: Nuno Marques

Advisors: Rute Almeida Miguel Coimbra

Classifying Heart Sounds PASCAL Challenge

The challenge had 2 tasks:

Segmentation and Classification and Anomaly Detection

This work describes what i did in the first task: Segmentation and Classification

44100 Hz 20 auscultations

Datasets

4000 Hz 80 auscultations

iStethoscope

- Non-controlled environment
- No expert!
- Who was auscultated ?

Digiscope

- Controlled environement
- Done by expert!
- Auscultation were performed on infants exclusively!

Heart Sounds

Normal Heart Sounds

Normal S1 and S2

Best with headphones.

We want to detect and distinguish these two peaks! (which are the heart sounds!)

How do you detect and distinguish heart sounds?

Heart Sound Segmentation

Cardiac Segmentation algorithms can be successfully divided in 4 phases:

Preprocessing

Preprocessing

Representation

Representation

Classification

Classification

Manual Annotation

Manual Annotation

Fourier Transform

Spectral Analysis

Pre-Processing

Just downsampled iStethoscope!

Representation

A good cardiac signal representation should have 2 characteristics g₁ e g₂

g₁. Accentuate the difference between S1/S2 and sistole/diastole

 $g_1 = |median(max(w_{S1,S2}(t))) - median(max(w_{Systole,Diastole}(t)))|$

Accentuate the difference between S1 and S2

 $g_2 = |median(max(w_{S1}(t))) - median(max(w_{S2}(t)))|$ 0.4 0.2 Amplitude -0.4 -0.6 -0.8 0

1000

Time(Sample)

1200

1400

1600

1800

2000

200

400

600

Representation

- Shannon Energy Envelope
- Shannon Entropy Envelope

Domínio do tempo

Shannon Energy Envelope

Shannon Energy/Entropy

Representations

- Continuous Wavelet Transform
- Discrete Wavelet Transform
- Stationary Wavelet Transform
- S-Transform
- Empirical Mode Decomposition
- Hilbert-Huang Transform

Time-Frequency Domain

Digiscope Results

Representation	Order	Scale	Coef	g_1	g_2
DWT	38	3	c_a	0,63	0,014
SWT	1	3	c_a	0,59	0,26
CWT	2	60(*)		0,57	0,22
S-T		380(*)		0,42	0,25
Original Signal				0,57	0,2875
Shannon Energy				0,70	0,18
Shannon Entropy				0,35	0,03
HHT				0,28	0,17
EMD				0,31	0,17
DWT	5	3	c_d	0,32	0,42
SWT	15	3	c_d	0,36	0,48
CWT	13	240(*)		0,40	0,50
S-T		500(*)		0,42	0,33

iStethoscope Results

Representation	Order	Scale	Coef	g_1	g_2
DWT	23	3	c_a	0,49	0,02
SWT	2	5	c_d	0,48	0,25
CWT	4	60(*)		0,49	0,29
S-T		500(*)		0,40	0,27
Original Signal				0,40	0,34
Shannon Energy				0,61	0,31
Shannon Entropy				$0,\!45$	0,09
ННТ				0,12	0,13
EMD				0,12	0,15
DWT	23	4	c_a	0,11	0,41
SWT	2	5	c_a	0,41	0,39
CWT	4	20(*)		0,31	0,41
S-T		380(*)		0,37	0,38

We can divide the Segmentation phase into 2 sub-phases:

- Peak Detection
- Boundary Detection

Peak Detection

Boundary Detection

Convolution

Idea!

Use a filter in the SWT that looks like the S1/S2 in order to determine their boundaries!

Stationary Wavelet Transform

Problem

Stationary Wavelet Transform

Problem

Solution

Lets use the Convolution's Associative Property!

$$x[n] \longrightarrow g_1[n] \longrightarrow \bullet \bullet \bullet \bullet g_9[n] \longrightarrow h_{10}[n]$$

$$x[n] \longrightarrow g_1[n] \longrightarrow \bullet \bullet \bullet \bullet g_9[n] \longrightarrow h_{10}[n]$$

Solution

Signal Transformation: Digiscope

Signal Transformation: iStethoscope

Shannon Energy

Wavelet Coefficients

Inflection Points

Segment Descriptors

Segment Descriptors

Dendrogram Second S1/S2 0.5 First S1/S2 Candidates 0.4 Candidates 0.3 0.2 0.1 First S1/S2 Candidates 0.5 -0.5 -1₀ 0.5 2.5 3.5 x 10⁴ First and Second S1/S2 Candidates 0.5 -0.5 -1₀ 0.5 1.5 3.5 2.5 x 10⁴

PASCAL Challenge Results

Approach	Total Error		
	Digiscope	iStethoscope	
Our Proposed Method	56732	706535	
Stanford	76444	1243640	
UCL	75569	3394378	
ISEP	72242	3905581	

Determining Boundaries

Determining Boundaries

- Variation between Segments
- Longest Increasing/Decreasing
 Sub-sequence

Variation Between Segments(a₁)

Longest Increasing/Decreasing Sub-sequence(a₂)

Baseline Method(a₃)

Results

Approach	Annotation Error			
	Digiscope	iStethoscope		
a_1	$29,1\pm14,3$	$37,1 \pm 13,4$		
a_2	$41,4\pm\ 10,8$	$67,1 \pm 15,2$		
a_3	$46,8 \pm 15,2$	$83,2 \pm 20,4$		

Média +- desvio padrão (ms)

Classification

Classification

Individual descriptor

Expanded Descriptor

Combination of descriptors: Individual

Combination of descriptors: Expanded

Results: Combination of Descriptors

Type of Feature	Approach	Accuracy	Sensitivity	Specificity	
Individual	CWT+ST	0.86	0.88	0.84	
Neighbourhood	SWT+DWT+ST	0.83	0.86	0.80	
	Digiscope				
Individual	CWT+DWT+HHT+ST+EMD	0.90	0.91	0.89	
Neighbourhood	CWT+DWT+ST	0.92	0.90	0.94	
Istethoscope					

Conclusion

Conclusion

- Spectral Analysis
- Evaluation of different types of Representations
- New peak detection algorithm
- 2 new boundary detection algorithms
- Article publication in Computing in Cardiology 2013

Thank you!