NETWORK SCIENCE PROJECT

UNVEILING THE BITCOIN ALPHA TRUST NETWORK - A NETWORK SCIENCE APPROACH

DELIVERABLE 1

GROUP 33

VAIBHAV GUPTA - 2022553 RATNANGO GHOSH - 2022397

1. Introduction

This report provides a detailed analysis of the DistrustCascadeSimulation implementation, which models how distrust propagates through a Bitcoin trust network. The simulation is built on a signed-weighted network where users rate each other on a scale from -10 (complete distrust) to +10 (complete trust). The implementation explores important network dynamics including distrust propagation patterns, identification of influential nodes, critical thresholds for cascade behavior, and potential defense strategies.

2. Dataset Overview

The simulation uses the Bitcoin Alpha trust network dataset, structured as follows:

- Format: CSV with columns SOURCE, TARGET, RATING, TIME
- Nodes: Bitcoin Alpha platform users (identified by numerical IDs)
- Edges: Directed trust/distrust relationships between users
- Weights: Ratings normalized from [-10, 10] to [-1, 1]
- Network Type: Signed, directed, weighted graph

3. Core Implementation Details

3.1 Class Structure and Initialization

The DistrustCascadeSimulation class encapsulates the entire simulation framework with the following initialization process:

Key parameters:

- alpha: Global infection rate scalar (0-1) controlling how quickly distrust spreads
- csv_path: Path to the input dataset
- output_dir: Directory for saving visualization outputs

3.2 Data Loading and Preprocessing

The simulation loads data from the CSV file and constructs a directed graph:

```
def load_data(self, csv_path):
    df = pd.read_csv(csv_path, names=['SOURCE', 'TARGET', 'RATING', 'TIME'])
    df['SOURCE'] = df['SOURCE'].astype(str)
    df['TARGET'] = df['TARGET'].astype(str)
    self.G = nx.DiGraph()
    df['NORMALIZED_RATING'] = df['RATING'] / 10.0
    for _, row in df.iterrows():
        self.G.add_edge(row['SOURCE'], row['TARGET'], weight=row['NORMALIZED_RATING'])
    print(f''Graph constructed with {self.G.number_of_nodes()} nodes and
{self.G.number_of_edges()} edges'')
    self.calculate_fairness()
```

Notable preprocessing steps:

- 1. Node IDs are converted to strings for consistency
- 2. Ratings are normalized to the range [-1, 1] by dividing by 10
- A NetworkX directed graph (DiGraph) is constructed with trust ratings as edge weights
- 4. Fairness scores for each node are calculated after graph construction

3.3 Fairness Calculation

The code calculates a "fairness" score for each node, representing their reliability as a rater:

```
def calculate_fairness(self):
    for node in self.G.nodes():
        outgoing_edges = list(self.G.out_edges(node, data=True))
    if outgoing_edges:
        ratings = [edge[2]['weight'] for edge in outgoing_edges]
        std_dev = np.std(ratings) if len(ratings) > 1 else 0
        self.fairness[node] = max(0.1, min(1.0, 1.0 / (1.0 + std_dev)))
    else:
        self.fairness[node] = 0.5
```

This implements an inverse relationship between rating variability and trustworthiness:

- Nodes with consistent ratings (low standard deviation) receive higher fairness scores
- Nodes with highly variable ratings receive lower fairness scores
- Scores are bounded between 0.1 and 1.0
- Nodes with no outgoing ratings are assigned a neutral fairness of 0.5

4. Distrust Propagation Model

4.1 Conceptual Model

The simulation uses an SIR-inspired epidemic model where:

- **S**: Susceptible nodes (have not yet adopted distrust)
- I: Infected nodes (have adopted distrust and can spread it)
- There is no "Recovered" state in this implementation

4.2 Simulation Algorithm

The core simulation algorithm is implemented in the run_simulation method:

```
def run simulation(self, seed nodes, max iterations=100):
  seed nodes = set(str(node) for node in seed nodes if str(node) in self.G.nodes())
  infected = set(seed nodes)
  susceptible = set(self.G.nodes()) - infected
  infection history = {0: set(infected)}
  newly infected count = {0: len(seed nodes)}
  for iteration in tqdm(range(1, max_iterations + 1)):
     newly infected = set()
     for u in infected:
       for v in self.G.successors(u):
          if v not in infected and v not in newly infected:
             w uv = self.G[u][v]['weight']
             if w uv < 0:
               p infection = self.alpha self.fairness.get(u, 0.5) (-w uv)
               if random.random() < p infection:
                  newly infected.add(v)
     if not newly infected:
       print(f"Simulation converged after {iteration} iterations")
       break
     infected.update(newly infected)
     susceptible -= newly_infected
     infection history[iteration] = set(infected)
     newly infected count[iteration] = len(newly infected)
  return {
     'final infected': infected,
     'infection_size': len(infected),
```

```
'infection_rate': len(infected) / self.G.number_of_nodes(),
  'iterations': len(infection_history) - 1,
  'infection_history': infection_history,
  'newly_infected_count': newly_infected_count
}
```

Key steps in each iteration:

- 1. For each infected node, evaluate all its outgoing connections
- 2. Calculate infection probability for susceptible neighbors based on edge weight and fairness
- 3. Determine new infections probabilistically
- 4. Update infection sets and track history
- 5. Continue until no new infections occur or max iterations reached

5. Analysis Capabilities

5.1 Super-Spreader Identification

The simulation can identify the most influential nodes in spreading distrust:

```
def identify_super_spreaders(self, top_k=10, sample_size=None):
    nodes_to_test = list(self.G.nodes())
    if sample_size and sample_size < len(nodes_to_test):
        nodes_to_test = random.sample(nodes_to_test, sample_size)
    outbreak_sizes = {}
    for node in tqdm(nodes_to_test):
        results = self.run_simulation([node])
        outbreak_sizes[node] = results['infection_size']
    sorted_spreaders = sorted(outbreak_sizes.items(), key=lambda x: x[1], reverse=True)
    return {node: size for node, size in sorted_spreaders[:top_k]}</pre>
```

This method:

- 1. Samples a subset of nodes if the network is large
- 2. Runs individual simulations with each node as the sole seed
- 3. Measures the final outbreak size for each seed
- 4. Returns the top-k nodes by outbreak size

5.2 Critical Threshold Analysis

The simulation can determine the tipping point value of α where distrust begins to cascade significantly:

```
def find_critical_threshold(self, seed_nodes, alpha range=None, steps=10):
  if alpha_range is None:
     alpha range = (0.01, 0.5)
  alphas = np.linspace(alpha_range[0], alpha_range[1], steps)
  results = []
  original alpha = self.alpha
  for alpha in tqdm(alphas):
     self.alpha = alpha
     sim_results = self.run_simulation(seed_nodes)
     results.append({
        'alpha': alpha,
        'infection_rate': sim_results['infection_rate'],
        'infection size': sim results['infection size']
  self.alpha = original alpha
  return {
     'alphas': [r['alpha'] for r in results],
     'infection rates': [r['infection rate'] for r in results],
     'infection sizes': [r['infection size'] for r in results]
  }
```

This function:

- 1. Tests a range of alpha values (default: 0.01 to 0.5)
- 2. Runs simulations with the same seed nodes at each alpha level
- 3. Tracks infection rates for different alpha values
- 4. Allows identification of phase transition points where cascade behavior emerges

5.3 Defense Strategy Evaluation

The code can evaluate different network intervention strategies to limit distrust propagation:

```
def test_defense_strategies(self, seed_nodes, strategies, budget=50):
    results = {}
    baseline = self.run_simulation(seed_nodes)
    results['baseline'] = baseline['infection_rate']
```

```
for strategy in strategies:
    G copy = self.G.copy()
    if strategy == 'top fairness':
       sorted fairness = sorted(self.fairness.items(), key=lambda x: x[1], reverse=True)
       nodes to remove = [node for node, in sorted fairness[:min(budget,
len(sorted fairness))]]
       G_copy.remove_nodes_from(nodes_to_remove)
    elif strategy == 'negative weight':
       negative_edges = [(u, v, data['weight']) for u, v, data in G_copy.edges(data=True) if
data['weight'] < 0]
       sorted_edges = sorted(negative_edges, key=lambda x: x[2])
       edges_to_remove = [(u, v) for u, v, _ in sorted_edges[:min(budget, len(sorted_edges))]]
       G_copy.remove_edges_from(edges_to_remove)
    elif strategy == 'betweenness':
       betweenness = nx.betweenness_centrality(G_copy)
       sorted betweenness = sorted(betweenness.items(), key=lambda x: x[1], reverse=True)
       nodes_to_remove = [node for node, _ in sorted_betweenness[:min(budget,
len(sorted_betweenness))]]
       G_copy.remove_nodes_from(nodes_to_remove)
    original_G = self.G
    self.G = G copy
    sim_results = self.run_simulation(seed_nodes)
    results[strategy] = sim results['infection rate']
    self.G = original_G
  return results
```

Three defense strategies are implemented:

- 1. **Top Fairness**: Remove users with highest fairness scores
- 2. **Negative Weight**: Remove the most negative trust relationships
- 3. **Betweenness**: Remove users who bridge different communities in the network

Each strategy operates under a fixed "budget" (number of nodes/edges to remove) and evaluates how effective the intervention is at reducing distrust propagation.

6. Visualization Components

The code includes multiple visualization tools to analyze simulation results:

6.1 Simulation Results Visualization

```
def visualize simulation(self, results):
  plt.figure(figsize=(18, 12))
   Growth plot
  plt.subplot(2, 2, 1)
  infections = [len(inf) for inf in results['infection history'].values()]
  plt.plot(infections, linewidth=2.5, marker='o')
  plt.title('Distrust Infection Growth Over Time')
   New infections bar
  plt.subplot(2, 2, 2)
  new inf = list(results['newly infected count'].values())
  plt.bar(range(len(new_inf)), new_inf, alpha=0.7)
  plt.title('New Infections Per Iteration')
   Infection rate
  plt.subplot(2, 2, 3)
  rate = [len(inf)/self.G.number of nodes() for inf in results['infection history'].values()]
  plt.plot(rate, linewidth=2.5, marker='o')
  plt.axhline(0.5, linestyle='--', label='50% Threshold')
  plt.title('Infection Rate')
   Network sample
  plt.subplot(2, 2, 4)
  sub nodes = list(results['infection_history'][0]) + random.sample(
     [n for n in results['final infected'] if n not in results['infection history'][0]],
     min(100, len(results['final infected'])-len(results['infection history'][0]))
  subG = self.G.subgraph(sub nodes)
  pos = nx.spring_layout(subG, seed=42)
  nx.draw(subG, pos, node size=50, node color='red', with labels=False)
  plt.title('Sample of Infected Nodes')
```

This visualization displays:

- 1. Cumulative growth of distrust over time
- 2. New infections at each iteration
- 3. Infection rate as a percentage of the network
- 4. A network visualization of a sample of infected nodes

6.2 Network Structure Visualization

def visualize_network_structure(self, sample_size=1000):

Visualization code for network structure

Includes trust vs distrust, edge weight distribution, degree distribution, and fairness distribution

This visualization shows:

- 1. Trust (green edges) vs. distrust (red edges) relationships in the network
- 2. Distribution of edge weights showing the balance of trust/distrust
- 3. Node degree distribution (usually follows power law in social networks)
- 4. Distribution of fairness scores across nodes

6.3 Critical Threshold Visualization

def visualize critical threshold(self, threshold results):

Visualizes critical threshold analysis with infection rates at different alpha values

This plot identifies the critical α value where there's a significant jump in infection rates, indicating the phase transition point where distrust cascades become self-sustaining.

6.4 Defense Strategy Comparison Visualization

def visualize_defense_strategies(self, defense_results):

Creates bar charts comparing effectiveness of different defense strategies

This visualization compares the relative effectiveness of different intervention strategies, showing which approaches are most effective at limiting distrust propagation.

6.5 Super-Spreader Visualization

def visualize_super_spreaders(self, super_spreaders, sample_size=100):

Creates visualizations highlighting super-spreader nodes and their impact

This visualization shows:

- 1. Bar chart of the most influential nodes and their infection reach
- 2. Network visualization highlighting super-spreaders within their neighborhood context

7. Main Execution Flow

```
The script's __main__ block demonstrates a typical workflow:
if __name__ == "__main__":
  csv path = "/Users/navneetgupta/Downloads/NS/soc-sign-bitcoinalpha.csv"
  simulation = DistrustCascadeSimulation(csv path, alpha=0.1,
output_dir="/Users/navneetgupta/Downloads/NS")
   Visualize basic network structure
  simulation.visualize network structure()
   Select seed nodes with most negative incoming edges
  negative incoming = {node: sum(1 for u,v,d in simulation.G.in edges(node, data=True) if
d['weight']<0)
               for node in simulation.G.nodes()}
  seed nodes = [n for n, in sorted(negative incoming.items(), key=lambda x: x[1],
reverse=True)[:5]]
  print(f"Using seed nodes: {seed nodes}")
   Run main simulation
  results = simulation.run simulation(seed nodes)
  print(f"Final infection size: {results['infection size']} nodes")
  simulation.visualize simulation(results)
  Identify super-spreaders
  super_spreaders = simulation.identify_super_spreaders(top_k=5, sample_size=100)
  simulation.visualize_super_spreaders(super_spreaders)
  Analyze critical threshold
  threshold results = simulation.find critical threshold(seed nodes, steps=10)
  simulation.visualize critical threshold(threshold results)
   Test defense strategies
  defense results = simulation test defense strategies(
     seed_nodes, strategies=['top_fairness','negative_weight','betweenness'], budget=20)
  print("Defense results:", defense results)
  simulation.visualize_defense_strategies(defense_results)
```

This implementation:

- 1. Initializes the simulation with α =0.1
- 2. Visualizes the basic network structure

- 3. Selects the 5 nodes with the most negative incoming edges as seeds
- 4. Runs the main distrust cascade simulation
- 5. Identifies the top 5 super-spreaders from a sample of 100 nodes
- 6. Analyzes the critical threshold for distrust cascades
- 7. Tests three different defense strategies with a budget of 20 nodes/edges

8. Technical Implementation Details

8.1 Dependencies

• NetworkX: Graph construction and analysis

Pandas: Data loading and manipulation

• NumPy: Numerical operations

• Matplotlib/Seaborn: Visualization

• tqdm: Progress tracking

8.2 Computational Considerations

- The algorithm is $O(n \times e)$ in worst case (where n = nodes, e = edges)
- Sampling is used for super-spreader identification to manage computational load
- Random number generation determines infection spread (stochastic model)
- Visualizations use spring layout with fixed seed (42) for reproducibility

8.3 Code Efficiency Notes

- Network copies are created when testing defense strategies to preserve the original graph
- Fairness scores are pre-computed to avoid recalculation during simulation
- Tracking of newly infected nodes prevents redundant probability calculations

9. Theoretical Framework and Implications

9.1 Epidemic Model Foundation

The simulation builds on SIR (Susceptible-Infected-Recovered) epidemic models but adapts them to a trust context. Unlike typical epidemic models where infection probability is uniform, this model weights infection by:

- 1. The strength of negative relationships (edge weights)
- 2. The reliability of the source node (fairness score)
- 3. A global transmission rate (alpha parameter)

9.2 Network Dynamics

The implementation models several important network phenomena:

- Cascade Behavior: How local distrust can spread globally
- Critical Thresholds: Tipping points where distrust becomes self-sustaining
- Influence Propagation: Identification of nodes with outsized influence
- Intervention Efficacy: Evaluating strategies to limit negative propagation

9.3 Trust System Implications

The model offers insights into:

- How reputation systems might fail under distrust cascades
- Which intervention strategies best protect trust networks
- How user reliability metrics (fairness) impact system stability
- The importance of network structure in trust system resilience

10. Conclusions and Future Work

10.1 Key Insights

- Distrust propagation follows cascade dynamics with critical thresholds
- Super-spreaders have disproportionate influence in trust networks
- Network structure significantly affects how distrust spreads
- Multiple defense strategies can be evaluated quantitatively

10.2 Potential Extensions

- Incorporate temporal dynamics (using the TIME column from the dataset)
- Add recovery mechanisms to model trust rebuilding
- Test more sophisticated defense strategies
- Integrate with real-time monitoring systems for trust platforms
- Extend to multiplex networks modeling different types of relationships

10.3 Limitations

- Stochastic model produces different results on each run
- Limited by computational complexity for very large networks
- Simple infection model may not capture all nuances of real trust dynamics
- Assumes static network (edges don't change during simulation)

11. Output

11.1 "simulation_results.png"


```
Top-left:
infections = [len(inf) for inf in results['infection_history'].values()]
plt.plot(infections, ..., marker='o')
Top-right:
new_inf = list(results['newly_infected_count'].values())
plt.bar(range(len(new_inf)), new_inf, ...)
Bottom-left:
rate = [len(inf)/self.G.number_of_nodes() for inf in results['infection_history'].values()]
plt.plot(rate,...); plt.axhline(0.5,...)
Bottom-right:
sub_nodes = seed_nodes + random.sample(other infected, ...)
nx.draw(subG, pos,..., node_color='red')
```

Subplot	What Code Plots	Interpretation
TL: Infection Growth Over Time	Cumulative count of infected nodes per iteration (starts at ~5 seeds, ends ≈168)	Dynamics : Slow start (iter1–5), rapid spread (iter 6–15: \sim 20 \rightarrow 75), tapering off (iter25–34: \sim 132 \rightarrow 168). Converges by \sim iter35.
TR: New Infections Per Iteration	Count of new infections per iteration (peaks around iter 14 and 20)	Wave Structure : Multiple bursts, major spikes at iter 14–16 and 18–20. Post-iter 26, new infections <3—network near saturation.
BL: Fraction Infected	Infection rate (infected \div ~3,783 total nodes) per iteration, with 50% threshold line	Containment : Final rate ~4.5%—well below 50%. Infection cascade never crosses halfway mark of the network.
BR: Sample of Infected Nodes	Spring-layout subgraph of 100 infected nodes, shown as red dots	Topology : Infected nodes form clusters—not one giant component. Indicates how negative edges isolate local trust breakdowns.

Implication:

The distrust "epidemic" spreads, but saturates at only \sim 4–5% of nodes for α =0.1 and these seeds.

Multiple bursts suggest that certain negative-trust bridges ignite new local cascades. The network's structure (see plot 5) limits global takeover.

11.2. "Super_spreaders.png"

Left panel:

infection_percentages = [size/total_nodes100 for size in outbreak_sizes]
plt.bar(...); annotate with "x nodes (y%)"

Right panel:

successors+predecessors of top nodes \rightarrow subgraph \rightarrow draw

Panel	What Code Plots	Interpretation
Left: Top Super-Spreaders	Bars for 5 nodes that caused largest outbreaks when used as sole seed. Heights = % of network infected.	Numbers: E.g., Node "A" infected ~85 nodes (~2.2%), Node "B" ~50 nodes (1.3%). Highlights outsized impact of a few nodes via negative edges.
Right: Super-Spreader Context	Local network around top 5: red = spreader, gray = neighbors, arrows = distrust edge directions	Structure : Spreaders bridge regions via negative edges—removing them could break apart the distrust-driven contagion pathways.

Implication:

A tiny fraction of nodes drive most distrust propagation. These are your "critical nodes" for monitoring or intervention.

11.3 "Critical_threshold.png"


```python alphas = np.linspace(0.01,0.5,steps) rates = [run\_simulation(alpha).infection\_rate for  $\alpha$  in alphas] changes = diff(rates); crit\_idx = argmax(changes) plt.plot(alphas, rates, 'o-'); plt.axvline(alphas[crit\_idx],...)

| What Code Plots                                                                                                                           | Interpretation 🗇                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Final infection rate vs. $\alpha$ (10 points between 0.01 and 0.5), with a dashed line at $\alpha$ where the largest jump in rate occurs. | <b>Threshold</b> : At $\alpha \approx 0.01$ , infection rate is very low (~0.15%). A sharp jump occurs around $\alpha \approx 0.055$ (to ~3–6%), marking the <b>critical threshold</b> for cascade spread. |

### Implication:

Phase transition: below  $\alpha \approx 0.01$ , distrust fizzles; above  $\alpha \approx 0.055$ , it spreads more widely. Tuning  $\alpha$  (e.g. via platform trust-decay policies) can keep you below the cascade regime.

### 11.4 "Defense\\_strategies.png"



From `visualize\_defense\_strategies(...)`:

```
"python
baseline = run_simulation(seed_nodes).infection_rate
for each strategy in ['top_fairness','negative_weight','betweenness']:
 modify G (remove nodes/edges)
 rate = run_simulation(...).infection_rate
plt.bar(strategies U baseline, rates); annotate heights
```

| Strategy        | What Is Removed                        | Final Infection Rate |
|-----------------|----------------------------------------|----------------------|
| baseline        | none                                   | ~0.001 (0.1%)        |
| betweenness     | top 20 nodes by betweenness centrality | ~0.002 (0.2%)        |
| negative_weight | top 20 most-negative edges             | ~0.052 (5.2%)        |
| top_fairness    | top 20 nodes by fairness score         | ~0.060 (6.0%)        |

#### Interpretation:

Betweenness removal (disconnecting "bridges") actually keeps infection extremely low (≈0.2% vs baseline 0.1%).

Targeting negative edges or "fair" nodes (those consistent in ratings) is far less effective—rates jump to  $\sim$ 5–6%.

### Implication:

Best defense: remove or monitor high-betweenness nodes to block distrust corridors. Simply removing the "most-unfair" or "most-negative" parts can backfire, isolating clusters that then amplify distrust internally.

## 11.5 "network\\_structure.png"



```python

TL: spring_layout of subgraph; green edges = weight>0; red edges = weight<0

TR: histplot of all edge weights (20 bins, KDE)

BL: histplot of node degrees (y log scale)

BR: histplot of fairness scores (20 bins, KDE)

• • • •

| Subplot | What Code Plots | Interpretation |
|------------------------------------|---|---|
| TL: Trust vs Distrust | Nodes (light blue), green edges = trust,
red = distrust | Visual: Trust edges dominate locally. Negative edges are sparse but often bridge distinct clusters. |
| TR: Edge Weight
Distribution | Histogram + KDE of normalized weights (–1 to +1), red line at 0 | Stats: ~93.6% of edges have positive weight. Heavy peak above 0; small negative-weight tail. |
| BL: Degree Distribution | Node degree histogram; log-scale y-
axis | Heavy-tail : Most nodes have degree <50, a few exceed 600. Suggests a scale-free-like structure. |
| BR: Fairness Score
Distribution | Histogram + KDE of fairness scores f(u), range 0.1–1.0 | Skew : Most nodes are near fair ($f(u) \approx 1.0$); left-skewed tail down to 0.1. |

Implication:

Topology: scale-free character (hubs + many low-degree).

Edge sign: positive trust is pervasive; distrust is rare but strategically placed.

Fairness: most users are consistent raters; few are erratic (and those erratic ones can be influential in distrust spread).

11.6 Overall Synthesis

- 1. Structure (Plot 5) gives you a scale-free, trust-dominated network with rare but crucial negative links.
- 2. Cascade dynamics (Plot 1) show distrust spreading in bursts but never overwhelming the network at α =0.1.
- 3. Super-spreaders (Plot 2) are the handful of nodes that, if "infected," ignite the largest local cascades.
- 4. Critical α (Plot 3) identifies the tipping-point—below \~0.05 you remain safe; above it you risk large outbreaks.
- 5. Defenses (Plot 4) demonstrate that cutting high-betweenness nodes is the most effective way to impede distrust.

This combination of static structure and dynamic simulation gives you a full picture: where distrust lives, how it spreads, who drives it, when it explodes, and how you can stop it.