Instituto Tecnológico de Aeronáutica - ITA Inteligência Artificial para Robótica Móvel - CT-213 Aluno: Rafael Mello Celente

Relatório do Laboratório 10 - Programação Dinâmica

1. Breve Explicação em Alto Nível da Implementação

A implementação foi realizada baseada na execução de 3 funções principais: policy_evaluation, value_iteration e policy_iteration.

1.1. Avaliação de Política

A função *policy_evaluation* tinha por objetivo avaliar a função valor v_{π} para determinada política π . Para isso, deve-se resolver a equação de Bellman, encontrando a tabela que mapeia a política a cada um dos estados e a cada uma das ações.

Utilizando programação dinâmica, pode-se resolver a equação iterativamente. A partir de um chute inicial, um valor v_{k+1} é encontrado para a iteração k+1 a partir do valor de v_k . Com $k\to\infty$, a função tende a convergir para $v_k=v_\pi$.

Definindo uma condição de parada de número de iterações máximo ou de uma diferença máxima entre funções valor consecutivas ϵ , podemos definir um suficientemente próximo para v_{π} . O pseudocódigo implementado, retirado do livro do Sutton, é demonstrado abaixo.

```
    Initialization
        V(s) ∈ ℝ and π(s) ∈ A(s) arbitrarily for all s ∈ S; V(terminal) = 0
    Policy Evaluation
        Loop:
        Δ ← 0
        Loop for each s ∈ S:
        v ← V(s)
        V(s) ← ∑<sub>s',r</sub> p(s', r | s, π(s))[r + γV(s')]
        Δ ← max(Δ, |v - V(s)|)
        until Δ < θ (a small positive number determining the accuracy of estimation)</li>
```

1.2. Iteração de Valor

A iteração de valor, diferentemente da iteração de política, permite que a melhoria da política ocorra juntamente com a avaliação da mesma, em uma passagem só. O algoritmo funciona por tornar a equação a função de otimalidade de Bellman em uma regra de atualização, pegando o valor máximo do estado para cada uma das ações. O pseudocódigo implementado, retirado do livro do Sutton, é demonstrado abaixo.

1.3. Iteração de Política

A iteração de política é um algoritmo para a identificação da política ótima a partir de uma sequência de melhorias monotônicas. A partir de uma política π pode-se encontrar sua função valor v_{π} , e essa função pode ser então utilizada para encontrar uma política melhor π' . Isso é garantido pois como uma MDP tem um número finito de políticas determinísticas, esse processo deve convergir para uma política ótima em um número finito de iterações.

O algoritmo funciona em duas etapas: avaliação e melhoria. Na etapa de avaliação, a função valor v_k é identificada a partir de uma política π com método de avaliação de política definido em 1.1. A partir dessa função, a próxima melhor política π ' é retirada a partir de uma política gulosa. Essa política π é então usada para encontrar outra função de valor v_{k+1} , repetindo o ciclo. O ciclo é interrompido com uma condição de iterações máximas ou até que $\max |v_k - v_{k+1}| < \epsilon$. O pseudocódigo implementado, retirado do livro do Sutton, é demonstrado abaixo.

```
1. Initialization
    V(s) \in \mathbb{R} and \pi(s) \in \mathcal{A}(s) arbitrarily for all s \in S; V(terminal) \doteq 0
2. Policy Evaluation
    Loop:
         \Delta \leftarrow 0
         Loop for each s \in S:
              v \leftarrow V(s)
              V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) [r + \gamma V(s')]
              \Delta \leftarrow \max(\Delta, |v - V(s)|)
    until \Delta < \theta (a small positive number determining the accuracy of estimation)
3. Policy Improvement
    policy-stable \leftarrow true
    For each s \in S:
         old\text{-}action \leftarrow \pi(s)
         \pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
         If old\text{-}action \neq \pi(s), then policy\text{-}stable \leftarrow false
    If policy-stable, then stop and return V \approx v_* and \pi \approx \pi_*; else go to 2
```

2. Tabelas Comprovando Funcionamento do Código

2.1. Caso
$$p_c = 1, 0 \text{ e } \gamma = 1, 0$$

2.1.1. Avaliação de Política

```
Evaluating random policy, except for the goal state, where policy always executes stop:
Value function:
   -384.09,
             -382.73,
                       -381.19,
                                            -339.93,
                                                      -339.93]
   -380.45,
             -377.91,
                       -374.65,
   -374.34,
             -368.82,
                       -359.85,
                                  -344.88,
                                            -324.92,
                                                       -324.93]
             -358.18,
                       -346.03,
                                            -289.95,
                                                      -309.94]
             -344.12,
                       -315.05,
                                  -250.02,
                                            -229.99,
   -359.12,
             -354.12,
                                  -200.01,
                                            -145.00,
                                                          0.00]
Policy:
                                                      SURDL
  SURDL
             SURDL
                       SURDL
                                            SURDL
             SURDL
   SURDL
                       SURDL
                                            SURDL
                                                      SURDL
                                  SURDL
             SURDI
  SURDI
                       SURDL
                                            SURDI
                                                      SURDI
             SURDL
                       SURDL
                                            SURDL
                                                      SURDL
  SURDL
             SURDL
                                  SURDL
                       SURDL
                                            SURDL
  SURDL
             SURDL
                                  SURDL
                                            SURDL
```

2.1.2. Iteração de Valor

Value iteration:												
Value function:												
[[-10.00,		-9.00,		-8.00,		* ,		-6.00,		-7.00]	
[-9.00,		-8.00,		-7.00,		* ,		-5.00,		-6.00]	
[-8.00,		-7.00,		-6.00,		-5.00,		-4.00,		-5.00]	
[-7.00),	-6.00,		-5.00,		* ,		-3.00,		-4.00]	
[* ,		-5.00,		-4.00,		-3.00,		-2.00,		*]
[[-7.00,		-6.00,		* ,		-2.00,		-1.00,		0.00]	
Policy:												
[RD	,	RD	,	D	,	*	,	D	,	DL]
[RD	,	RD	,	D	,	*	,	D	,	DL]
[RD	,	RD	,	RD	,	R	,	D	,	DL]
[R	,	RD	,	D	,	*	,	D	,	L]
[*	,	R	,	R	,	RD	,	D	,	*]
[R	,	U	,	*	,	R	,	R	,	SURD]

2.1.3. Iteração de Política

```
Policy iteration:
Value function:
   -10.00,
               -9.00,
                          -8.00,
                                                          -7.00]
                                               -6.00,
     -9.00,
               -8.00,
                          -7.00,
                                               -5.00,
                                                          -6.00]
     -8.00,
               -7.00,
                          -6.00,
                                     -5.00,
                                               -4.00,
                                                          -5.00]
     -7.00,
               -6.00,
                          -5.00,
                                               -3.00,
                                                          -4.00]
               -5.00,
                          -4.00,
                                     -3.00,
                                               -2.00,
     -7.00,
               -6.00,
                                     -2.00,
                                               -1.00,
                                                           0.00]
Policy:
               RD
                          D
     RD
                                               D
                                                          DL
     RD
                          D
                                                          DL
               RD
                                               D
     RD
               RD
                          RD
                                     R
                                               D
                                                          DL
     R
               RD
                          D
                                               D
                                                          L
                                     RD
                                                          *
     *
               R
                          R
                                               D
     R
               U
                                     R
                                                         SURD
```

2.2. Caso $p_c = 0.8 \text{ e } \gamma = 0.98$

2.2.1. Avaliação de Política

```
Evaluating random policy, except for the goal state, where policy always executes stop:
Value function:
             -47.11,
                       -47.01,
   -47.19,
                                           -45.13,
                                                     -45.15]
   -46.97,
             -46.81,
                       -46.60,
                                           -44.58,
                                                    -44.651
                                 -44.79,
                       -45.62,
   -46.58,
             -46.21.
                                           -43.40.
                                                    -43.631
                                          -39.87,
   -46.20,
             -45.41,
                       -44.42.
                                                    -42.17]
                                 -35.28,
             -44.31.
                       -41.64,
                                           -32.96,
   -45.73,
             -45.28,
                                           -21.88,
                                                      0.00
                                 -29.68,
Policy:
            SURDL ,
  SURDL ,
                      SURDL ,
                                          SURDL
                                                    SURDL
            SURDL ,
  SURDL ,
                      SURDL
                                                    SURDL
                                          SURDI
            SURDL ,
                      SURDL
                                SURDL ,
                                                    SURDL
  SURDL
                                          SURDL
            SURDL
                                                    SURDL
                      SURDL
                                          SURDL
  SURDL
                      SURDL ,
            SURDL
                                SURDL
                                          SURDL
                                                     S
  SURDL
            SURDL
                                SURDL
                                       , SURDL
```

2.2.2. Iteração de Valor

Value iteration:												
Val	Value function:											
[-11.65,			-10.78,		-9.86,		* ,		-7.79,		-8.53]	
[-10.72,		-9.78,		-8.78,		* ,		-6.67,		-7.52]	
[-9.72,		-8.70,		-7.59,		-6.61,		-5.44,		-6.42]	
[-8.70,		-7.58,		-6.43,		* ,		-4.09,		-5.30]	
[* ,		-6.43,		-5.17,		-3.87,		-2.76,		*]	
[[-8.63,		-7.58,		* ,		-2.69,		-1.40,		0.00]	
Pol	icy:											
[D	,	D	,	D	,	*	,	D	,	D]
[D	,	D	,	D	,	*	,	D	,	D]
[RD	,	D	,	D	,	R	,	D	,	D]
[R	,	RD	,	D	,	*	,	D	,	L]
[*	,	R	,	R	,	D	,	D	,	*]
[R	,	U	,	*	,	R	,	R	,	S]

2.2.3. Iteração de Política

	icy i ue fu											
[-11.65,		-10.78,		-9.86,		* ,		-7.79,		-8.53]	
[-10.72,		-9.78,		-8.78,		* ,		-6.67,		-7.52]	
[-9.72,		-8.70,		-7.59,		-6.61,		-5.44,		-6.42]	
[-8.70,		-7.	58,	-6.	43,	* ,		-4.09,		-5.30]	
[* ,		-6.43,		-5.17,		-3.87,		-2.76,		*]	
[[-8.63,		-7.58,		* ,		-2.69,		-1.40,		0.00]	
Pol	.icy:											
[D	,	D	,	D	,	*	,	D	,	D]
[D	,	D	,	D	,	*	,	D	,	D]
[R	,	D	,	D	,	R	,	D	,	D]
[R	,	D	,	D	,	*	,	D	,	L]
[*	,	R	,	R	,	D	,	D	,	*]
[R	,	U	,	*	,	R	,	R	,	S]

3. Discussão dos Resultados

A partir dos resultados encontrados podemos perceber características interessantes sobre cada um dos testes realizados. Para o teste em que $p_{_{\it c}}=1$ e $\gamma=1$ percebemos que a função valor foi maximizada em comparação com a função valor com política aleatória. Percebe-se que essa política limita as ações possíveis, encontrando caminhos ótimos a serem percorridos. Percebe-se também que o método de iteração de valor obteve a mesma função de valor final ao método de iteração de política, resultado já esperado.

Já para o teste em que $p_c=0,8$ e $\gamma=0,98$, percebe-se uma restrição maior da política com relação às ações possíveis para cada um dos estados. Isso se dá pelo fato de que os parâmetros p_c e γ induzem a iteração da função valor à resultados que favorecem recompensas mais imediatas, fazendo com que menos caminhos possíveis possam ser percorridos.