Compulsory exercise 1: Group 16

$TMA4268 \ Statistical \ Learning \ V2022$

Weicheng Hua, Emil Johannesen Haugstvedt, Torbjørn Baadsvik

$28~\mathrm{March},~2022$

Contents

roblem 1	1
a)	1
b)	1
c)	1
d)	1
Problem 2	1
a)	
b)	1
Problem 3	1
a	1
b	
a)	2
b)	2
Problem 4	2
a)	2
b)	2
c)	2
d)	2
Problem 5	2
a)	2
b)	2

Prob	Problem 6																	2																									
a))																																										2
b))																																										2
c))																																										2
d))																																										2

Problem 1

- a)
- b)
- **c**)
- d)

Problem 2

- a)
- b)

Problem 3

 \mathbf{a}

- (i) True. The proof for this is pretty long and complicated. You can see it in the link
- (ii) False. By increasing the number of cutpoints each step function will get more and more affected by the points within their range, and thus overfit.
- (iii) False. The penalty term is $\int int g''(t)^2 dt$.
- (iv) True. With high \$k\$ the number more neighbors are needed in order to classify a point, thus the variance will be low and the bias will increase.

b

Fit an additive model on 'boston.train' using the function 'gam()' from package 'gam' with the following conditions, and plot the resulting curves.

- response: 'medv'; predictors: 'rm', 'ptratio', 'lstat' (use these three predictors only).
- 'rm' is a linear function
- 'ptratio' is a smoothing spline with 'df=3'.
- 'lstat' is a polynomial of degree 2.

```
# Fit model
model \leftarrow gam(medv \sim rm + s(ptratio, k = 3) + poly(lstat, df = 2), data = boston.train)
# Plot model with training data
plot(model, boston.train)
a)
b)
Problem 4
a)
b)
c)
d)
Problem 5
a)
b)
Problem 6
a)
b)
c)
d)
```