Ve203 Discrete Mathematics

Runze Cai

University of Michigan - Shanghai Jiao Tong University Joint Institute

Spring 2023

Part IV

Basic Number Theory and Basic Group Theory

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Divisibility

Definition

Let $n, d \in \mathbb{Z}$ with $d \neq 0$, we say that d divides n, denoted by $d \mid n$, if n = dk, for some $k \in \mathbb{Z}$, i.e.,

$$d \mid n \Leftrightarrow (\exists k \in \mathbb{Z})(n = dk)$$

By convention, $0 \mid n$ only if n = 0.

TFAE

▶ d divides n.

- ightharpoonup n is divisible by d.
- \triangleright *n* is a multiple of *d*.

- ightharpoonup d is a divisor of n.
- ▶ *d* is a factor of *n*.

Non-divisibility

If d does not divide n, we write $d \nmid n$. In other words, $d \nmid n \Leftrightarrow n/d \notin \mathbb{Z}$

Examples

▶ $n \mid 0$ for all $n \in \mathbb{Z}$.

- ▶ $1 \mid n$ for all $n \in \mathbb{Z}$.
- ▶ If $d \in \mathbb{Z}$, then $d \mid 1 \Rightarrow d = \pm 1$.
- ▶ If $d \in \mathbb{N}$ and $d \mid 2022$, then d = ?.

Prime Numbers

Definition

A natural number $p \in \mathbb{N}$ is a prime number (or simply, a prime) if $p \geq 2$ and if p is divisible only by itself and 1.

Remark

A natural number $p \in \mathbb{N}$ is a prime number if it has exactly two distinct factors. The set of all primes is sometimes denoted by \mathbb{P} .

Remark

1 is NOT a prime.

For convenience, e.g.,

- Unique factorization property.
- Largest power of *p* dividing *n*.
- ► Riemann Zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1 p^{-s}}$.

Famous Prime Numbers

Mersenne Primes

Mersenne Prime is a prime of the form $2^n - 1$.

- ▶ $2^2 1 = 3 \in \mathbb{P}$
- ▶ $2^3 1 = 7 \in \mathbb{P}$
- ▶ $2^5 1 = 31 \in \mathbb{P}$
- ▶ $2^7 1 = 127 \in \mathbb{P}$
- ▶ Necessary condition: $2^n 1 \in \mathbb{P} \Rightarrow n \in \mathbb{P}$.
 - $ightharpoonup 2^{11} 1 = 2047 = 23 \times 89.$
- ► Not all primes are Mersenne.
 - ▶ $5 \in \mathbb{P}$ but is not Mersenne.

Famous Prime Numbers

Fermat Numbers

$$F_n = 2^{2^n} + 1.$$

$$F_0 = 2^{2^0} + 1 = 3 \in \mathbb{P}.$$

$$F_1 = 2^{2^1} + 1 = 5 \in \mathbb{P}.$$

$$ightharpoonup F_2 = 2^{2^2} + 1 = 17 \in \mathbb{P}.$$

$$F_3 = 2^{2^3} + 1 = 257 \in \mathbb{P}.$$

$$F_4 = 2^{2^4} + 1 = 65537 \in \mathbb{P}.$$

$$F_5 = 2^{2^5} + 1 = 4274967297 = 641 \times 6700417$$
. (Euler, 1732)

The only known Fermat primes are F_0, F_1, F_2, F_3, F_4 .

Famous Conjectures

Goldbach Conjecture (18th century), "1+1"

Can every even number greater than 4 be written as the sum of 2 primes?

- ightharpoonup 4 = 2 + 2
- ightharpoonup 6 = 3 + 3
- 8 = 3 + 5
- ightharpoonup 10 = 5 + 5
- ightharpoonup 20 = 7 + 13
- ightharpoonup 200 = 7 + 193
- ightharpoonup 2040 = 1019 + 1021

Jing-run Chen, 1966, "1+2"

All sufficiently large even numbers are the sum of a prime and the product of at most two primes

$$2n = p_1 + p_2$$
 or $2n = p_1 + p_2 p_3$

Famous Conjectures

Twin Prime Conjecture

Twin primes are a pair of primes which differ by 2:

Are there infinitely many such pairs?

Yitang Zhang: Bounded gaps between primes, 2014

It is proved that

$$\liminf_{n\to\infty}(p_{n+1}-p_n)<7\times10^7,$$

where p_n is the n-th prime.

Infinitude of Primes

Theorem

There are infinitely many primes.

Proof of Euclid.

For any finite set $\{p_1, \ldots, p_r\} \subset \mathbb{P}$, consider the number $n = p_1 p_2 \cdots p_r + 1$. Note that $p_i \nmid n$ for all $i = 1, \ldots, r$, then

- either n is a prime,
- ightharpoonup or n has a divisor $p \notin \{p_1, \ldots, p_r\}$.

Either way a new prime is generated from the finite set, hence $\{p_1, \ldots, p_r\}$ cannot be the whole collection of all primes.

Example

- ▶ $\{2,3,7\} \subset \mathbb{P}, \ 2 \cdot 3 \cdot 7 + 1 = 43 \in \mathbb{P};$
- $ightharpoonup 2 \cdot 3 \cdot 7 \cdot 43 + 1 = 1807 = 13 \times 139.$

Euclid's Proof of the Infinity of the Number of Primes

Note that the proof does not state that $n = p_1 p_2 \cdots p_r + 1$ must be a prime. However, it is interesting to note that it often seems to be the case:

- \triangleright 2 + 1 = 3,
- \triangleright 2 · 3 + 1 = 7,
- \triangleright 2 · 3 · 5 + 1 = 31,
- \triangleright 2 · 3 · 5 · 7 + 1 = 211,
- \triangleright 2 · 3 · 5 · 7 · 11 + 1 = 2311,
- \triangleright 2 · 3 · 5 · 7 · 11 · 13 + 1 = 59 · 509, etc.

It is not known whether there are infinitely many r for which n is prime.

Infinitely Many Twin Primes?

- ▶ Euclid number: $E_n = p_1 \cdots p_n + 1$
- Euclid number of the second kind (also called Kummer number): $E_n = p_1 \cdots p_n 1$.

Variant of Euclid's Theorem

Lemma

Given $p \in \mathbb{P}$, $n \in \mathbb{N}$, if $p \mid n^2 + 1$, then p = 2 or p is of the form 4m + 1. e.g.,

We'll prove this later.

Example

There are infinitely many primes of the form 4m+1, $m \in \mathbb{N}$. To start with, 5 is such a prime. Given $\{p_1, p_2, \ldots, p_m\} \subset \mathbb{P}$, take $n = 4(p_1 \cdots p_m)^2 + 1$. Either n is a new prime, which is of the form 4m+1, or

- ▶ there is a new prime $p_{m+1} \mid n$,
- ▶ since $p_{m+1} \in \mathbb{P}$, and $p_{m+1} \mid n$, but $p_{m+1} \neq 2$, thus p_{m+1} is of the form 4m+1.

Dirichlet's Theorem

Theorem

There are infinitely many primes of the form an + b, for $n \in \mathbb{N}$, and a, b coprime. cf., Stein, Fourier Analysis.

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Greatest Common Divisor

Definition

Let $a, b \in \mathbb{Z}$, not both zero. The greatest common divisor of a and b, denoted by gcd(a, b) or simply (a, b), is the positive integer d satisfying:

▶ d is a common divisor of a and b, i.e.,

$$d \mid a$$
 and $d \mid b$

▶ If c also divides a and b, then $c \mid d$. In other words,

$$\forall c \in \mathbb{N}$$
, if $c \mid a$ and $c \mid b$, then $c \mid d$.

Example

- ightharpoonup gcd(72, 63) = 9
- $ightharpoonup \gcd(10^{12},6^{18}) = \gcd(2^{12} \cdot 5^{12},2^{18} \cdot 3^{18}) = 2^{12}$
- $ightharpoonup \gcd(5,0) = 5$
- $ightharpoonup \gcd(0,0) = 0$

Calculate gcd(m, n), Algorithm 1

Algorithm 1 (assuming $m \leq n$)

```
Input: m, n \in \mathbb{N} \setminus \{0\}, m \le n
Output: Greatest common divisor of m and n

1 Function \gcd(m, n):
2 | d \leftarrow m;
3 | while d \nmid m and d \nmid n do
4 | d \leftarrow d - 1
5 | end
6 | return d
7 end
```

Advantage

- Simple
- ▶ Terminates in finite steps (try d = 1)
- Yields the correct answer (which exists)

Disadvantage

Slow

Calculate $gcd(m, n), m, n \in \mathbb{N} \setminus \{0\}$

Algorithm 2 (Factorization)

Factor *m* and *n* as

$$m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$
$$n = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$$

with $p_1, \ldots, p_k \in \mathbb{P}$, and $\alpha_i, \ldots, \alpha_k, \beta_1, \ldots, \beta_k \in \mathbb{N}$. Then

$$\gcd(m,n)=p_1^{\min\{\alpha_1,\beta_1\}}p_2^{\min\{\alpha_2,\beta_2\}}\cdots p_k^{\min\{\alpha_k,\beta_k\}}$$

Disadvantage

Factorization is hard (until the foreseeable future).

Calculate $gcd(m, n), m, n \in \mathbb{N} \setminus \{0\}$

Algorithm 3 (Euclidean algorithm, assuming $m \le n$)

```
Input: m, n \in \mathbb{N} \setminus \{0\}, m \le n
Output: Greatest common divisor of m and n

1 Function \gcd(m, n):
2 | if n \mod m = 0 then
3 | return m
4 | else
5 | return \gcd(n \mod m, m)
6 | end
7 end
```

FACTS: For $m, n \in \mathbb{N} \setminus \{0\}$

▶ If $m \mid n$, then

$$gcd(n, m) = m$$
.

▶ If n = qm + r with $q \ge 0$ and $0 \le r < m$, then

$$\gcd(n, m) = \gcd(m, r).$$

Proof of Facts

FACT 1

For $m, n \in \mathbb{N} \setminus \{0\}$, if $m \mid n$, then gcd(n, m) = m.

Proof.

- ightharpoonup gcd $(n, m) \mid m$.
- $ightharpoonup m \mid m \text{ and } m \mid n, \text{ then } m \mid \gcd(n, m).$

Hence gcd(n, m) = m.

Proof of Facts

FACT 2

For $m, n \in \mathbb{N} \setminus \{0\}$, if n = qm + r with $q \ge 0$ and $0 \le r < m$, then $\gcd(n, m) = \gcd(m, r)$

Proof.

Let $d = \gcd(n, m)$, and $e = \gcd(m, r)$. We show that d = e.

 \blacktriangleright We show that $d \mid e$. Indeed, since

$$d = \gcd(n, m)$$

$$\Rightarrow d \mid n \text{ and } d \mid m$$

$$\Rightarrow d \mid (n - qm)$$

$$\Rightarrow d \mid r$$

Since $d \mid m$ and $d \mid r$, it follows that $d \mid \gcd(m, r)$, i.e., $d \mid e$.

Proof of Facts

Proof (Cont.)

 \blacktriangleright We next show $e \mid d$. Indeed, since

$$e = \gcd(m, r)$$

$$\Rightarrow e \mid m \text{ and } e \mid r$$

$$\Rightarrow e \mid (qm + r)$$

$$\Rightarrow e \mid n$$

Since $e \mid n$ and $e \mid m$, it follows that $e \mid \gcd(n, m)$, i.e., $e \mid d$.

Division Algorithm

Theorem ((Long) Division Algorithm)

Given $m, n \in \mathbb{N} \setminus \{0\}$, there exist unique integers q and r with $q \ge 0$ and $0 \le r < m$ so that n = qm + r.

Proof.

Existence by induction on n. Let

$$S = \{ n \in \mathbb{N} \mid (\forall m > 0)(\exists q, r \text{ with } q \ge 0 \text{ and } 0 \le r < m)(n = qm + r) \}$$

- ▶ $1 \in S$. $(1 = 1 \cdot 1 + 0 \text{ for } m = 1, \text{ and } 1 = 0m + 1 \text{ for } m > 1)$
- ▶ Let $k \in S$. Then for any m > 0, there exist q, r such that k = qm + r. Now
 - k+1 = qm + (r+1), if r+1 < m;
 - k+1=(q+1)m+0, if r+1=m.

Thus $k + 1 \in S$.

Division Algorithm

Proof (Cont.)

Uniqueness.

Suppose
$$n = q_1 m + r_1 = q_2 m + r_2$$
, then $r_1 - r_2 = (q_2 - q_1)m$, thus if $q_1 \neq q_2$, then $m \mid (r_1 - r_2)$.

But
$$|r_1 - r_2| < m$$
, hence $r_1 - r_2 = 0$.

But then
$$q_1 = q_2$$
, contradiction.

Remark

Note that $(q_1 - q_2)m + (r_1 - r_2) = 0$ implies $q_1 - q_2 = 0$ and $r_1 - r_2 = 0$, which is basically applying the long division algorithm to 0.

Euclidean Algorithm

Given positive integers n and m, we can repeat the division algorithm to obtain a series of equations

$$n = mq_1 + r_1, \quad 0 < r_1 < m$$

$$m = r_1q_2 + r_2, \quad 0 < r_2 < r_1$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2$$

$$\vdots$$

$$r_{j-2} = r_{j-1}q_j + r_j, \quad 0 < r_j < r_{j-1}$$

$$r_{j-1} = r_jq_{j+1}$$

Then $gcd(n, m) = r_j$.

Remark: By induction and the two facts, the Euclidean algorithm terminates within finite number of steps and produce the correct answer.

Example

$$n = 42823$$
 and $m = 6409$

$$42823 = 6409 \times 6 + 4369$$
 (42823, 6409)
 $6409 = 4369 \times 1 + 2040$ = (6409, 4369)
 $4369 = 2040 \times 2 + 289$ = (4369, 2040)
 $2040 = 289 \times 7 + 17$ = (2040, 289)
 $289 = 17 \times 17 + 0$ = (289, 17) = 17

Remark

The Euclidean algorithm provides a solution to the Diophantine equation

$$mx + ny = \gcd(m, n)$$

by back-tracking.

Example (Cont.)

Consider the Diophantine equation $42823x + 6409y = 17 = \gcd(42823, 6409)$.

Euclidean Algorithm

$$42823 = 6409 \times 6 + 4369$$

$$6409 = 4369 \times 1 + 2040$$

$$4369 = 2040 \times 2 + 289$$

$$2040 = 289 \times 7 + 17$$

$$289 = 17 \times 17 + 0$$

Back-Tracking

$$17 = 2040 - 289 \times 7$$

$$= 2040 - (4369 - 2040 \times 2) \times 7$$

$$= 2040 \times 15 - 4369 \times 7$$

$$= (6409 - 4369) \times 15 - 4369 \times 7$$

$$= 6409 \times 15 - 4369 \times 22$$

$$= 6409 \times 15 - (42823 - 6409 \times 6) \times 22$$

$$= 6409 \times (15 + 6 \times 22) - 42823 \times 22$$

$$= 6409 \times 147 - 42823 \times 22$$

Let's take x = -22 and y = 147.

Example (Cont.)

$$\frac{42823}{6409} = 6 + \frac{6369}{6409} = 6 + \frac{1}{1 + \frac{2040}{4369}} = 6 + \frac{1}{1 + \frac{1}{2 + \frac{289}{2040}}}$$

$$= 6 + \frac{1}{1 + \frac{1}{2 + \frac{1}{7 + \frac{17}{289}}}} = 6 + \frac{1}{1 + \frac{1}{2 + \frac{1}{17}}}$$

Example (Cont.)

$$6 + \frac{1}{1 + \frac{1}{2 + \frac{1}{17}}} = 6 + \frac{1}{1 + \frac{1}{2 + \frac{1}{7}}} = 6 + \frac{1}{1 + \frac{7}{15}} = 6 + \frac{15}{22} = \frac{147}{22}$$

Now

$$\frac{42823}{6409} = \frac{2519}{377} \lessgtr \frac{147}{22}?$$

Of course

$$377 \times 147 - 2519 \times 22 = 1$$

i.e.,

$$6409 \times 147 - 42823 \times 22 = 17$$

Calculate $gcd(m, n), m, n \in \mathbb{N} \setminus \{0\}$

Algorithm 4 (Binary Euclidean/GCD Algorithm)

```
Input: m, n \in \mathbb{N} \setminus \{0\}
Output: Greatest common divisor of m and n

1 Function \gcd(m, n):

2 | if n = m then return m;

3 | else if 2 \mid m and 2 \mid n then return 2\gcd(m/2, n/2);

4 | else if 2 \mid m then return \gcd(m/2, n);

5 | else if 2 \mid n then return \gcd(m, n/2);

6 | else if m > n then return \gcd(m - n, n);

7 | else return \gcd(m, n - m);

8 end
```

FACTS:

- ▶ If $2 \mid m$ and $2 \mid n$, then gcd(m, n) = 2gcd(m/2, n/2).
- ▶ If $2 \mid m$ and $2 \nmid n$, then gcd(m, n) = gcd(m/2, n)

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Groups

Definition

A group is a pair (G, \cdot) , where G is a set, and $\cdot : G \times G \to G$, $(g, h) \mapsto g \cdot h = gh$, is a law of composition (aka group law) that has the following properties:

- ▶ The law of composition is associative: (ab)c = a(bc) for all $a, b, c \in G$.
- ▶ *G* contains an identity element 1, such that 1a = a1 = a for all $a \in G$.
- ▶ Every element $a \in G$ has an inverse, an element b such that ab = ba = 1.

An abelian group is a group whose law of composition is commutative.

Example

- ightharpoonup $(\mathbb{Z},+)$
- $ightharpoonup (\mathbb{R}\setminus\{0\},\cdot)$
- ▶ The set of $n \times n$ invertible matrices $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$.

Elementary Properties of Groups

Theorem

Given a group G, $a, b, c \in G$, then

- there exists a unique identity element.
- ightharpoonup ba = ca \Rightarrow b = c and ab = ac \Rightarrow b = c.
- ▶ For all $a \in G$, there exists a unique element $b \in G$ such that ab = ba = 1.
- $(ab)^{-1} = b^{-1}a^{-1}$.

Subgroup

Definition

A subset H of a group G is a subgroup if it has the following properties:

- ▶ Closure: If $a, b \in H$, then $ab \in H$.
- ▶ Identity: $1 \in H$.
- ▶ Inverses: If $a \in H$, then $a^{-1} \in H$.

Subgroups of the Additive Group $(\mathbb{Z}, +)$

A subset S of $(\mathbb{Z}, +)$ is a subgroup if

- ▶ Closure: If $a, b \in S$, then $a + b \in S$.
- ▶ Identity: $0 \in S$.
- ▶ Inverses: If $a \in S$, then $-a \in S$.

For $a \in \mathbb{Z}$, a subgroup of $(\mathbb{Z}, +)$ is given by

$$a\mathbb{Z} = \{ n \in \mathbb{Z} \mid n = ka \text{ for some } k \in \mathbb{Z} \}$$

Subgroup of $(\mathbb{Z}, +)$

Subgroups of the Additive Group $(\mathbb{Z},+)$

A subset S of $(\mathbb{Z},+)$ is a subgroup if

- ▶ Closure: $a, b \in S \rightarrow a + b \in S$.
- ▶ Identity: $0 \in S$.
- ▶ Inverses: $a \in S \rightarrow -a \in S$.

For $a \in \mathbb{Z}$, a subgroup of $(\mathbb{Z}, +)$ is given by integers divisible by a as,

$$a\mathbb{Z} = \{ n \in \mathbb{Z} \mid n = ka \text{ for some } k \in \mathbb{Z} \}$$

Remark

We write $H \leq G$ if H is a subgroup of G, and H < G if $H \leq G$ but $H \neq G$.

Example

- ▶ a = 0 yields the trivial group $(\{0\}, +)$.
- ▶ a = 1 yields the whole of $(\mathbb{Z}, +)$.

Subgroup of $(\mathbb{Z}, +)$

Theorem

Let S be a subgroup of the additive group $(\mathbb{Z}, +)$, then

- either S is the trivial subgroup $(\{0\}, +)$,
- \triangleright or it has the form $a\mathbb{Z}$, where a is the smallest positive integer in S.

Proof.

Let S be a subgroup of $(\mathbb{Z},+)$, then $0 \in S$. If $S = \{0\}$, then we are done. Otherwise, $\exists n \in \mathbb{Z} \cap S - \{0\}$, then $\pm n \in S$ by subgroup property of S, hence either n or -n is a positive integer.

Next we show $S = a\mathbb{Z}$, where a is the smallest positive integer of S (Note that a exists by WOP).

▶ $a\mathbb{Z} \subset S$. Let $z \in a\mathbb{Z}$, then z = ka for some $k \in \mathbb{Z}$. Suppose z > 0, since $a \in S$, then $ka \in S$ for $k \in \mathbb{N}$ by induction and closure. Also $-ka \in S$ by the inverse property. Similar goes for z < 0. If $z = 0 \in a\mathbb{Z}$, then also $z = 0 \in S$.

Subgroup of $(\mathbb{Z}, +)$

Proof (Cont.)

▶ $a\mathbb{Z} \supset S$. Take $n \in S$, then n = qa + r for some $q \in \mathbb{Z}$ and $0 \le r < a$. Now since $qa \in a\mathbb{Z} \subset S$, and $n \in S$, then $r = n - qa \in S$. But a is the smallest positive integer in S, hence r = 0. Therefore n = qa for some $q \in \mathbb{Z}$, thus $n \in a\mathbb{Z}$.

Therefore $a\mathbb{Z} = S$.

Definition

Given $a, b \in \mathbb{Z}$, then the subgroup S generated by a and b, denoted by

$$S = a\mathbb{Z} + b\mathbb{Z} = \{n \in \mathbb{Z} \mid n = ra + sb \text{ for some integers } r, s\}$$

It is also the smallest subgroup that contains both a and b.

Remark

Since $S \subset \mathbb{Z}$ is a subgroup, then $S = d\mathbb{Z}$ for some $d \in \mathbb{Z}$.

Subgroup of $(\mathbb{Z}, +)$

Theorem

Let $a, b \in \mathbb{Z}$, not both zero, and let d be the positive integer that generates the subgroup $S = a\mathbb{Z} + b\mathbb{Z}$, i.e., $d\mathbb{Z} = a\mathbb{Z} + b\mathbb{Z}$. Then

- 1. d | a and d | b.
- 2. For $e \in \mathbb{Z}$, if $e \mid a$ and $e \mid b$, then $e \mid d$.
- 3. There are integers r and s such that d = ra + sb.

Note that $d = \gcd(a, b)$.

Proof.

- 1. $a \in d\mathbb{Z}$ and $b \in d\mathbb{Z}$.
- 3. $d \in a\mathbb{Z} + b\mathbb{Z}$.
- 2. Let d = ra + sb, then $e \mid a$ and $e \mid b$ implies $e \mid (ra + sb)$, therefore $e \mid d$.

Subgroup of $(\mathbb{Z}, +)$

Corollary (Bézout Identity)

Given $a, b \in \mathbb{Z}$ such that gcd(a, b) = 1, i.e., a and b relatively prime or coprime iff there exist $r, s \in \mathbb{Z}$ such that ra + sb = 1.

Remark

The proof is just by letting d=1. In this case $a\mathbb{Z}+b\mathbb{Z}=\mathbb{Z}$.

Vernier Caliper

Subgroup of $(\mathbb{Z}, +)$

Corollary

Let p be prime, and $a, b \in \mathbb{Z}$. If $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof.

Suppose $p \nmid a$, then gcd(a, p) = 1. Therefore $\exists r, s \in \mathbb{Z}$ such that ra + sp = 1. Hence rab + spb = b. Note that $p \mid rab$ and $p \mid spb$, thus $p \mid b$.

Remark

By induction, given $p \in \mathbb{P}$, and $a_1, \ldots, a_n \in \mathbb{Z}$, if $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some factor a_i of the product.

Corollary

If $c \mid ab$ and gcd(b, c) = 1, then $c \mid a$.

Theorem

Every positive integer can be written uniquely (up to order) as a product of primes (with possibly only one factor).

Remark

Convention: 1 is the product of empty set of primes

Proof.

- Existence: If n > 1, then either n is prime, or can be factored into, say $n = p \cdot (n/p)$ for some prime p, continue by induction.
- ▶ Uniqueness: Suppose $n = p_1 \cdots p_r = q_1 \cdots q_s$, with p_i, q_i primes. Then $p_1 \mid (q_1 \cdots q_s)$, thus $p_1 = q_i$ for some i. Cancel p_1 and q_i and continue by induction.

Other versions of Fundamental Theorem of Arithmetic

- ▶ Integers. (allow negative primes and -1).
- Polynomials over a field. (Factor into irreducible polynomials)

Examples of Non-uniqueness

Positive integers of the form 4n + 1. Consider 1, 5, 9, 13, 17, 21, $25(=5^2)$, 29, 33, 37, 41, $45(=5 \cdot 9)$, 49, ...

$$21 \cdot 21 = 9 \cdot 49.$$

► Consider numbers of the form $m + n\sqrt{-5}$, $m, n \in \mathbb{Z}$, then

$$2 \times 3 = (1 + \sqrt{-5})(1 - \sqrt{-5})$$

Riemann Zeta Function

Euler discovered that (equivalent to fundamental theorem of arithmetic)

$$\zeta(s) = \frac{1}{1^s} + \frac{1}{2^s} + \frac{1}{3^s} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

$$= \frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \dots$$

$$= \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$

Let s=1, then by divergence of the harmonic series, there are infinitely many primes.

Theorem (Dirichlet)

If $u, v \in \mathbb{Z}$ are chosen at random, the probability that gcd(u, v) = 1 is $\zeta(2)^{-1} = 6/\pi^2 \approx 0.60793$.

Example

To illustrate
$$\sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \in \mathbb{P}} \frac{1}{1 - p^{-s}}$$
, consider
$$\frac{1}{1 - 2^{-s}} \cdot \frac{1}{1 - 3^{-s}} \cdot \frac{1}{1 - 5^{-s}} \cdot \frac{1}{1 - 7^{-s}} \cdots$$

$$= (1 + 2^{-s} + (2^{-s})^2 + (2^{-s})^3 + \cdots)$$

$$(1 + 3^{-s} + (3^{-s})^2 + (3^{-s})^3 + \cdots)$$

$$(1 + 5^{-s} + (5^{-s})^2 + (5^{-s})^3 + \cdots)$$

$$(\cdots)$$

Note that, for example,

$$(2^{-s})^3 \cdot (3^{-s}) \cdot (5^{-s})^2 = \frac{1}{(2^3 \cdot 3 \cdot 5^2)^s} = \frac{1}{600^s}$$

Also by Euler, $p \in \mathbb{P}$,

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{p} \approx \log \log p$$
 "\approx 3"

n	log log n				
10^{3}	1.9				
10^{6}	2.6				
10^{9}	3.0				
10^{12}	3.3				
10^{15}	3.5				

Least Common Multiple

Theorem

Let $a, b \in \mathbb{Z} \setminus \{0\}$, and let m = lcm(a, b) be their least common multiple — the positive integer that generates the subgroup $S = a\mathbb{Z} \cap b\mathbb{Z}$, i.e., $m\mathbb{Z} = a\mathbb{Z} \cap b\mathbb{Z}$. Then

- ► a | m and b | m.
- ▶ $a, b \mid n$ for some $n \in \mathbb{Z}$, then $m \mid n$.

Proof.

Note that $a\mathbb{Z} \cap b\mathbb{Z}$ is a nontrivial subgroup of $(\mathbb{Z}, +)$.

Remark

Again by induction, if n is any common multiple of $a_1, \ldots, a_n \in \mathbb{Z}$, then $lcm(a_1, \ldots, a_n) \mid n$.

Greatest Common Divisor and Least Common Multiple

Corollary

Given $a, b \in \mathbb{N} \setminus \{0\}$, let $d = \gcd(a, b)$ and $m = \operatorname{lcm}(a, b)$, then ab = dm.

Proof.

- ▶ Since $b/d \in \mathbb{Z}$, then $ab/d \in a\mathbb{Z}$, and similarly $ab/d \in b\mathbb{Z}$. Therefore $ab/d \in a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$, thus $ab \in md\mathbb{Z}$, i.e., $md \mid ab$.
- ▶ Since $m/b \in \mathbb{Z}$, and $a \mid m$, then

$$a \mid b \cdot \frac{m}{b} \Leftrightarrow \frac{a}{d} \mid \frac{m}{b} \Leftrightarrow ab \mid dm$$

Therefore ab = dm.

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Definition

A group is *cyclic* if it can be *generated by* a single element.

Example

In multiplication notation, The cyclic subgroup $H \leq G$ generated by $x \in G$ is the set of all elements that are powers of x,

$$H := \{\dots, x^{-3}, x^{-2}, x^{-1}, 1 = x^{0}, x = x^{1}, x^{2}, x^{3}, \dots\}$$
$$= \{x^{m} \mid m \in \mathbb{Z}\}$$

This is the *smallest subgroup* of G containing x, (often) denoted by $\langle x \rangle$. If there exists a smallest $m \in \mathbb{N} - \{0\}$ such that $x^m = 1$, we say m is the *order* of x, denoted by m = |x|. Similarly, the *order* of a group G, denoted |G|, is given by the number of elements of G.

Remark

The powers x^n may represent distinct elements, or not. For example, given $-1 \in \mathbb{R}^{\times}$, then $\{(-1)^m \mid m \in \mathbb{Z}\} = \{\pm 1\}$.

Theorem

Let $\langle x \rangle$ be the cyclic subgroup of a group G generated by an element x, and let $S := \{k \in \mathbb{Z} \mid x^k = 1\}$, then

- 1. The set S is a subgroup of the additive group $(\mathbb{Z}, +)$.
- 2. For $r, s \in \mathbb{Z}$, $x^r = x^s$ iff $x^{r-s} = 1$, i.e., $r s \in S$.
- 3. Suppose $S \neq \{0\}$, then $S = n\mathbb{Z}$ for some $n \in \mathbb{N} \setminus \{0\}$. The powers 1, x, x^2 , ..., x^{n-1} are distinct elements of the subgroup $\langle x \rangle$, and $|\langle x \rangle| = n$, i.e., the order of $\langle x \rangle$ is n.

Proof.

- 1. We check the properties of *S*
 - Let $k, \ell \in S$, then $x^k = x^\ell = 1$, hence $x^{k+\ell} = x^k x^\ell = 1$, therefore $k + \ell \in S$.
 - ▶ $x^0 = 1$, hence $0 \in S$.
 - ▶ If $k \in S$, i.e., $x^k = 1$, then $x^{-k} = (x^k)^{-1} = 1$, hence $-k \in S$.

Proof (Cont.)

- 2. By straightforward calculation (cancellation law).
- 3. If $S \neq \{0\}$, then since S is a subgroup of $(\mathbb{Z}, +)$, then $S = n\mathbb{Z}$ for some smallest positive integer $n \in S$. For any $k \in \mathbb{Z}$, k = qn + r for some $q \in \mathbb{Z}$ and $0 \le r < n$. Thus $x^k = x^{qn+r} = x^{nq}x^r = x^r$. Note that $1, x, x^2, \ldots, x^{n-1}$ are distinct since n is the smallest power such that $x^n = 1$.

Remark

- ▶ If $|x| = \infty$, then $x^r = x^s$ iff r = s (since $r s \in \{0\}$).
- ▶ If $|x| < \infty$, say, $|x| = n \in \mathbb{N}$, then $x^r = x^s$ iff $n \mid r s$, i.e., $r \equiv s \pmod{n}$ (since $r s \in n\mathbb{Z}$).
- $|x| = |\langle x \rangle|.$
- ▶ If |x| = n and $x^k = 1$, then $n \mid k$.

Examples

- ightharpoonup $(\mathbb{Z},+)$
- $ightharpoonup \langle r \mid r^n = 1 \rangle$, where r represents counterclockwise rotation of $2\pi/n$.
- $\blacktriangleright \{e^{2\pi i k/n} \mid k \in \mathbb{Z}\} = \langle e^{2\pi i/n} \rangle, \ n \in \mathbb{N} \setminus \{0\}.$
- ▶ $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\equiv$, where $a \equiv b$ if $n \mid a b$, i.e., $a b \in n\mathbb{Z}$, for given $n \in \mathbb{N} \setminus \{0\}$.

Nonexamples

- ▶ The Klein four group $V = \{ \begin{bmatrix} \pm 1 \\ \pm 1 \end{bmatrix} \}$.
- ▶ The quaternion group $H = \{\pm 1, \pm i, \pm j, \pm k\}$, where

$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{i} = \begin{bmatrix} i \\ -i \end{bmatrix}, \quad \mathbf{j} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{k} = \begin{bmatrix} i \\ -i \end{bmatrix}$$

$$(\mathbb{Z}/8\mathbb{Z},+)=(\{[0],[1],[2],[3],[4],[5],[6],[7]\},+)$$

Theorem

Let $n, k \in \mathbb{N} \setminus \{0\}$. Given group G and $x \in G$ with $|x| = n \in \mathbb{N} \setminus \{0\}$, then $\langle x^k \rangle = \langle x^{\gcd(n,k)} \rangle$ and $|x^k| = n/\gcd(n,k)$.

Proof.

Note that since |x| = n, we have

$$\langle x^k \rangle = \{ (x^k)^t \mid t \in \mathbb{Z} \} = \{ x^{kt+ns} \mid t, s \in \mathbb{Z} \}$$
$$= \{ x^d \mid d \in k\mathbb{Z} + n\mathbb{Z} \} = \{ x^d \mid d \in \gcd(n, k)\mathbb{Z} \}$$
$$= \{ (x^{\gcd(n,k)})^r \mid r \in \mathbb{Z} \} = \langle x^{\gcd(n,k)} \rangle$$

Let $t := |x^k|$, then $t = |x^k| = |\langle x^k \rangle| = |\langle x^{\gcd(n,k)} \rangle| = |x^{\gcd(n,k)}|$. Thus

$$\qquad (x^{\gcd(n,k)})^{n/\gcd(n,k)} = x^n = 1 \Rightarrow t \mid \frac{n}{\gcd(n,k)}.$$

Remark

- ▶ Let $|\langle x \rangle| < \infty$, then $y \in \langle x \rangle \Rightarrow |y|$ divides $|\langle x \rangle|$.
- Let $|x| = n \in \mathbb{N} \setminus \{0\}$, then

$$\langle x^i \rangle = \langle x^j \rangle \Leftrightarrow |x^i| = |x^j| \Leftrightarrow \gcd(n, i) = \gcd(n, j)$$

In particular,

$$\langle x \rangle = \langle x^j \rangle \Leftrightarrow |x| = |x^j| \Leftrightarrow \gcd(n, j) = 1$$

For example,

$$\langle k \rangle = \mathbb{Z}/n\mathbb{Z} \Leftrightarrow \gcd(n,k) = 1$$

Theorem (Fundamental Theorem of Cyclic Groups)

- Every subgroup of a cyclic group is cyclic.
- ▶ If $|\langle x \rangle| = n \in \mathbb{N} \setminus \{0\}$, then the order of any subgroup of $\langle x \rangle$ divides n.
- ► For each $k \mid n$ with k > 0, the group $\langle x \rangle$ has exactly one subgroup of order k, i.e., $\langle x^{n/k} \rangle$.

Proof.

- Suppose $G = \langle x \rangle$ is cyclic, i.e., $G = \{x^t \mid t \in \mathbb{Z}\}$. If $H \leq G$, then $H = \{x^t \mid t \in S \leq \mathbb{Z}\}$, where $S = m\mathbb{Z}$, $m \in \mathbb{N}$. (Verify this!) Hence $H = \{x^t \mid t \in m\mathbb{Z}, m \in \mathbb{N}\} = \{(x^m)^t \mid t \in \mathbb{Z}\} = \langle x^m \rangle$, which is cyclic.
- ▶ Consider $H \leq \langle x \rangle$, then $H = \langle x^m \rangle$ for some $m \in \mathbb{N} \setminus \{0\}$. Now $|\langle x^m \rangle| = |x^m| = n/\gcd(n, m)$, which divides n.
- ▶ For existence, note that $|\langle x^{n/k} \rangle| = n/(n/k) = k$. For uniqueness, if $|\langle x^m \rangle| = k = n/\gcd(n,m)$, then $\langle x^m \rangle = \langle x^{\gcd(n,m)} \rangle = \langle x^{n/k} \rangle$.

Applications of Cyclic Groups

Euler's Totient Function

The *Euler's Totient Function*, or the *Euler phi function*, denoted $\varphi(n)$ or $\phi(n)$ counts the number of positive integers less than n and relatively prime to n, i.e.

$$\varphi(n) = |\{k \in \mathbb{N} \mid \gcd(k, n) = 1, 1 \le k \le n\}|$$

In particular, given $p \in \mathbb{P}$,

- $ightharpoonup \varphi(p^k) = p^k p^{k-1}$ for $k \in \mathbb{N} \setminus \{0\}$. Since the numbers

$$1 \cdot p, 2 \cdot p, 3 \cdot p, \ldots, p^{k-1} \cdot p$$

are NOT relatively prime to p.

Applications of Cyclic Groups

Lemma

Given a cyclic group C with order |C| = n, if d > 0 and $d \mid n$, then the number of elements of order d in C is given by $\varphi(d)$.

Proof.

Since the group has exactly one subgroup of order d, which is also cyclic. Denote this subgroup by $C_d = \langle x \rangle$ for some $x \in C$ with $x^d = 1$. Now, since $\langle x^k \rangle = \langle x \rangle$ iff $|x^k| = |x| = d$ iff $\gcd(d, k) = 1$, hence the number of elements of order d is given by $\varphi(d)$.

Remark

Note that $\varphi(d)$ is independent of n in the lemma above.

Divisor Sum (Gauss)

Given $n \in \mathbb{N} \setminus \{0\}$, then

$$\sum_{d|n}\varphi(d)=n$$

where the sum is over all positive divisor d of n.

Applications of Cyclic Groups

Proof 1 (Counting generators).

Consider the cyclic group of order n, denoted by C_n . Since C_n can be partitioned into disjoint sets each containing generators of order d with $d \mid n$, each block of size $\varphi(d)$, therefore the equality follows.

Proof 2.

Consider the set of n fractions $\{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$, and put each fraction in lowest terms of the form $\frac{c}{d}$ where d is a positive divisor of n, and $\gcd(c,d)=1$. For each denominator d there are $\varphi(d)$ relatively prime numerators. The total number of fractions is given by $\sum_{d|n} \varphi(d)$. For example, consider n=20, then we have

$$\frac{1}{20}, \frac{2}{20}, \frac{3}{20}, \frac{4}{20}, \frac{5}{20}, \frac{6}{20}, \frac{7}{20}, \frac{8}{20}, \frac{9}{20}, \frac{10}{20}, \frac{11}{20}, \frac{12}{20}, \frac{13}{20}, \frac{14}{20}, \frac{15}{20}, \frac{16}{20}, \frac{17}{20}, \frac{18}{20}, \frac{19}{20}, \frac{20}{20}$$

which can be put into lowest terms as

$$\frac{1}{20}, \frac{1}{10}, \frac{3}{20}, \frac{1}{5}, \frac{1}{4}, \frac{3}{10}, \frac{7}{20}, \frac{2}{5}, \frac{9}{20}, \frac{1}{2}, \frac{11}{20}, \frac{3}{5}, \frac{13}{20}, \frac{7}{10}, \frac{3}{4}, \frac{4}{5}, \frac{17}{20}, \frac{9}{10}, \frac{19}{20}, \frac{1}{1}$$

Euler's Totient Function

A function $f: \mathbb{N} \setminus \{0\} \to \mathbb{N} \setminus \{0\}$ is *multiplicative* if f(1) = 1 and $f(m_1m_2) = f(m_1)f(m_2)$ for $gcd(m_1, m_2) = 1$.

Theorem

The Euler's Totient Function φ is multiplicative.

This is a consequence of the following more general fact.

Theorem

If f is any function such that the sum

$$g(m) = \sum_{d|m} f(d)$$

is multiplicative, the f is itself multiplicative. (The converse is also true. cf., Graham, Knuth, & Patashnik, Concrete Mathematics, 2ed)

Proof.

Induction on m.

base case (m = 1): True because f(1) = g(1) = 1.

Euler's Totient Function

Proof (Cont.)

inductive case (m > 1): assume the inductive hypothesis that $f(m_1m_2) = f(m_1)f(m_2)$ if $gcd(m_1, m_2) = 1$ and $m_1m_2 < m$. Now if $m = m_1m_2$ and $gcd(m_1, m_2) = 1$, then

$$g(m_1m_2) = \sum_{d|m_1m_2} f(d) = \sum_{d_1|m_1} \sum_{d_2|m_2} f(d_1d_2)$$

where $gcd(d_1, d_2) = 1$ since all divisors of m_1 are relatively prime to divisors of m_2 . By induction hypothesis, $f(d_1d_2) = f(d_1)f(d_2)$ except possibly when $d_1 = m_1$ and $d_2 = m_2$. Thus

$$g(m_1m_2) = \sum_{d_1|m_1} f(d_1) \sum_{d_2|m_2} f(d_2) - f(m_1)f(m_2) + f(m_1m_2)$$

But we also have $g(m_1m_2)=g(m_1)g(m_2)$, hence $f(m_1m_2)=f(m_1)f(m_2)$. \square

Symmetric Group

Symmetric Group S_n

Given $n \in \mathbb{N} \setminus \{0\}$, we have the following *symmetric group of degree* n,

$$S_n = \{ \text{All permutations on } n \text{ letters/numbers} \}$$

= $\text{Sym}\{1, 2, 3, \dots, n \}$
= $\{ f : [n] \rightarrow [n] \mid f \text{ bijective} \}$

Note that it is a finite group of *order* n!, i.e., $|S_n| = n!$.

Examples

- ► $S_1 = \{e\}.$
- ► $S_2 = \{e, \tau\}$, where $e, \tau : [2] \rightarrow [2]$, with

$$e(1) = 1, \quad e(2) = 2$$

 $\tau(1) = 2, \quad \tau(2) = 1$

$$\begin{array}{c|cccc} \circ & e & \tau \\ \hline e & e & \tau \\ \tau & \tau & e \end{array}$$

Observe that $\tau \circ \tau = e$, i.e., $\tau = \tau^{-1}$.

Symmetric Group

Use cycle notation, such that

$$e = 1 = (1)(2)(3) = () = (\frac{1}{1} \frac{2}{2} \frac{3}{3})$$

 $r = (123) = (\frac{1}{2} \frac{2}{3} \frac{3}{1})$
 $r^2 = (132) = (\frac{1}{3} \frac{2}{1} \frac{3}{2})$

Abbreviate
$$i_3 \circ r$$
 as $i_3 r$, then $i_3 r = i_1$.

$$i_3r(1) = i_3(r(1)) = i_3(2) = 1$$

 $i_3r(2) = i_3(r(2)) = i_3(3) = 3$
 $i_3r(3) = i_3(r(3)) = i_3(1) = 2$

$$i_1 = (23) = (23)(1) = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

 $i_2 = (13) = (13)(2) = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
 $i_3 = (12) = (12)(3) = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$

Symmetric Group

We have the following multiplication table

0	e	r^2	r	i_1	<i>i</i> ₂	i ₃
e	e	r^2	r	i_1	i_2	i ₃
r	r	e	r^2	i ₃	i_1	i_2
r^2	r^2	r	e	i_2	iз	i_1
i_1	i_1	i ₃	i_2	e	r	r^2
<i>i</i> ₂	i ₂	i_1	iз	r^2	e	r
i ₃	i ₃	r ² e r i ₃ i ₁ i ₂	i_1	r	r^2	e

Corollary

The group S_n is nonabelian for $n \geq 3$.

Proof.

Consider the subgroup $S_3 \leq S_n$.

Facts About General Permutations

Cycle Notation

- Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
- ▶ If the pair of cycles $\alpha = (a_1 a_2 \cdots a_m)$ and $\beta = (b_1 b_2 \cdots b_n)$ have no entries in common, i.e., α and β are *disjoint*, then $\alpha\beta = \beta\alpha$. (Such α is called a *cycle of length* m or an m-cycle.)
- ► The order of a permutation of a finite set written in disjoint cycle form is the **least common multiple** of the lengths of the cycles.

$$|(132)(45)| = 6$$

$$|(1432)(56)| = 4$$

$$|(123)(456)(78)| = 6$$

$$|(123)(145)| = |(14523)| = 5$$

Facts About General Permutations

Cycles and Transpositions

A permutation of the form (ab) where $a \neq b$ is called a *transposition*.

- ▶ Every permutation in S_n , n > 1, is a product of transpositions.
- ▶ If $e = \beta_1 \beta_2 \cdots \beta_r$, where β_i 's are transpositions, then r is even.

Even and Odd Permutations

A permutation that can be expressed as a product of an even/odd number of transpositions is called an *even/odd* permutation. (Note that this parity is well-defined.) For each permutation σ , define

$$sgn(\sigma) = \begin{cases} +1, & \text{if } \sigma \text{ is an even permutation.} \\ -1, & \text{if } \sigma \text{ is an odd permutation.} \end{cases}$$

- ▶ The set of even permutations in S_n forms a subgroup of S_n , denoted A_n , is called the *alternating group of degree* n.
- $|A_n| = n!/2 \text{ for } n > 1.$

The Determinant

Definition (Leibniz Formula)

Given a matrix $A \in M_n(\mathbb{C})$, the **determinant** function is given by

$$\det: M_n(\mathbb{C}) o \mathbb{C}$$
 $(a_{ij}) \mapsto \det(a_{ij}) \coloneqq \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}$

where S_n is the set of all permutations of the set $\{1, \ldots, n\} \subset \mathbb{N}$, and $sgn(\sigma)$ the sign of the permutation σ .

The Determinant

An equivalent definition of the determinant is as follows.

Definition

The determinant det : $M_n(\mathbb{C}) \cong \underbrace{\mathbb{C}^n \times \cdots \times \mathbb{C}^n}_{n \text{ times}} \to \mathbb{C}$ is the *unique* function satisfiying,

(i) **alternating**, for all $v \in \mathbb{C}^n$, $det(v_1, \dots, v, \dots, v, \dots, v_n) = 0$, or equivalently **skew-symmetric**, i.e.,

$$\begin{aligned} \det(v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_{j-1}, v_j, v_{j+1}, \dots, v_n) \\ &= -\det(v_1, \dots, v_{i-1}, v_j, v_{i+1}, \dots, v_{j-1}, v_i, v_{j+1}, \dots, v_n) \end{aligned}$$

(ii) *multilinear*, i.e., for all $\lambda, \mu \in \mathbb{C}$, $v_i, u \in \mathbb{C}^n$, $i = 1, \dots, n$, $\det(v_1, \dots, v_{i-1}, \lambda v_i + \mu u, v_{i+1}, \dots, v_n)$ $= \lambda \det(v_1, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_n)$ $+ \mu \det(v_1, \dots, v_{i-1}, u, v_{i+1}, \dots, v_n)$

(iii) *unitary*, i.e., det $I_n = 1$.

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Homomorphism

Definition

Given groups G, G', a homomorphism is a map $f: G \to G'$ such that for all $x,y \in G$,

$$f(xy) = f(x)f(y)$$

Examples

- ▶ Trivial homomorphism $f: G \to G'$, $x \mapsto 1_{G'} \in G'$.
- ▶ Inclusion map $\iota: H \hookrightarrow G$, $x \mapsto x$, when H is a subgroup of G.
- ▶ The determinant function det : $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$.
- ▶ The sign homomorphism sgn : $S_n \rightarrow \{\pm 1\}$.
- ▶ The exponential map exp : $(\mathbb{R}, +) \to \mathbb{R}^{\times}$, $x \mapsto e^{x}$.
- ▶ The absolute value map $|\cdot|: \mathbb{C}^{\times} \to \mathbb{R}^{\times}$.
- ▶ $f: \mathbb{Z} \to S_2$, even number $\mapsto e$, odd number $\mapsto \tau$.

Homomorphism

 $\begin{aligned} &\mathsf{Example}\\ &\mathsf{sgn} = \mathsf{det} \circ \varphi. \end{aligned}$

$$S_{3} \xrightarrow{\varphi} GL_{3}(\mathbb{R}) \xrightarrow{\det} \mathbb{R}^{\times} = GL_{1}(\mathbb{R})$$

$$1 \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto +1$$

$$(123) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto +1$$

$$(132) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto +1$$

$$(12) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto -1$$

$$(23) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto -1$$

$$(31) \mapsto \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \mapsto -1$$

Homomorphism

Theorem

Let $f: G \rightarrow G'$ be a group homomorphism, then

- ▶ If $a_1, \ldots, a_k \in G$, then $f(a_1 \cdots a_k) = f(a_1) \cdots f(a_k)$.
- $ightharpoonup f(1_G) = 1_{G'}.$
- ▶ $f(a^{-1}) = f(a)^{-1}$ for $a \in G$.

Proof.

- ► Induction.
- $ightharpoonup f(1_G) \cdot f(1_G) = f(1_G \cdot 1_G) = f(1_G)$, thus $f(1_G) = 1_{G'}$ by cancellation.
- $f(a^{-1})f(a) = f(a^{-1}a) = f(1_G) = 1_{G'}.$

Image and Kernel of Homomorphisms

A group homomorphism determines two important *subgroups*: its image and its kernel.

Definition

The *image* of a homomorphism $f: G \to G'$, often denoted by im f, or f(G), is simply the image of G under f as a set-valued map:

$$\operatorname{im} f := \{x \in G' \mid x = f(a) \text{ for some } a \in G\}$$

The *kernel* of f, denoted by ker f, is the set of elements of G that are mapped to the identity in G':

$$\ker f := \{ a \in G \mid f(a) = 1_{G'} \}.$$

Examples

- ▶ The determinant function det : $GL_n(\mathbb{R}) \to \mathbb{R}^{\times}$. ker det = $SL_n(\mathbb{R})$.
- ▶ The sign homomorphism sgn : $S_n \to \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$. ker sgn = A_n .

Four Fundamental Subspaces (Strang Diagram)

Definition

Given a group G, if $H \leq G$ is a subgroup and $a \in G$, the notation aH will stand for the set of all products ah with $h \in H$,

$$aH = \{g \in G \mid g = ah \text{ for some } h \in H\}$$

This set is called a *left coset* of H in G

Example

- $ightharpoonup 1H = \{1, (12)\} = H.$
- $(12)H = \{(12), (12)(12)\} = \{(12), 1\} = H.$
- $(23)H = \{(23), (23)(12)\} = \{(23), (132)\} = (132)H.$
- $(31)H = \{(31), (31)(12)\} = \{(31), (123)\} = (123)H.$
- $(123)H = \{(123), (123)(12)\} = \{(123), (31)\} = (31)H.$
- $(132)H = \{(132), (132)(12)\} = \{(132), (23)\} = (23)H.$

Hence the left coset of $\langle (12) \rangle$ in S_3 is $\{H, (23)H, (31)H\}$.

Homomorphisms

Theorem

Let $f: G \to G'$ be a group homomorphism, and let $a, b \in G$. Let $K = \ker f$. TFAE,

(i)
$$f(a) = f(b)$$
 (ii) $a^{-1}b \in K$ (iii) $b \in aK$ (iv) $aK = bK$

Proof.

▶ (i) \Leftrightarrow (ii). Note that f(a) = f(b) iff

$$f(a^{-1}b) = f(a^{-1})f(b) = f(a)^{-1}f(b) = 1_{G'}$$

iff $a^{-1}b \in \ker f = K$.

- (ii) ⇔ (iii). By definition of left coset.
- ightharpoonup (iii) \Leftrightarrow (iv). Check the cosets of K in G are equivalence classes. (on this later)

Homomorphisms

Corollary

A homomorphism $f: G \to G'$ is injective iff $\ker f = \{1_G\}$.

Proof.

- ▶ (\Leftarrow). Suppose ker $f = \{1_G\}$, then by previous theorem $f(a) = f(b) \Rightarrow a^{-1}b \in \ker f \Rightarrow a^{-1}b = 1_G$, i.e., a = b.
- ▶ (⇒). Since $\ker f \leq G$, it is always true that $1_G \in \ker f$, i.e., $\{1_G\} \subset \ker f$. It is sufficient to show that $\ker f \subset \{1_G\}$, i.e., the only element in $\ker f$ is 1_G . Indeed, Suppose that $a, b \in \ker f$, then $f(a) = f(b) = 1_{G'}$, hence a = b by injectivity. Therefore $\ker f = \{1_G\}$.

Isomorphisms

Definition

Given groups G and G', an **isomorphism** $f: G \to G'$ is a bijective group homomorphism, i.e., a bijection such that f(ab) = f(a)f(b) for all $a, b \in G$.

Examples

- ightharpoonup exp : $(\mathbb{R},+) \to (\mathbb{R}_{>0},\times)$, $x\mapsto e^x$.
- ▶ $f: S_n \to n \times n$ permutation matrices.
- $f: G \to f(G) = \operatorname{im} f$ is an isomorphism if f is injective.

Check if $f: G \rightarrow G'$ is an isomorphism

Verify $\ker f = \{1_G\}$ and $\operatorname{im} f = G'$.

Isomorphisms

Theorem

If $f: G \to G'$ is an isomorphism, its inverse map $f^{-1}: G' \to G$ is also an isomorphism.

Proof.

Since the inverse of a bijection is also a bijection, we only need to verify that f^{-1} is a homomorphism, that is,

$$f^{-1}(xy) = f^{-1}(x)f^{-1}(y)$$
 for all $x, y \in G'$

Indeed. Note that f is bijective, then for $x, y \in G'$,

$$f(f^{-1}(xy)) = (f \circ f^{-1})(xy) = xy = (f \circ f^{-1})(x)(f \circ f^{-1})(y)$$
$$= f(f^{-1}(x))f(f^{-1}(y)) = f(f^{-1}(x) \cdot f^{-1}(y))$$

Again, since f is bijective and we are done.

Given a subgroup H of G, then the cosets of H are equivalence classes. Denote $a \equiv b$ if $b \in aH$. Indeed,

- ▶ Reflexivity. $a = a \cdot 1$ and $1 \in H$, so $a \in aH$, hence $a \equiv a$.
- ▶ Symmetry. Suppose $a \equiv b$, then $b \in aH$ hence b = ah for some $h \in H$. Hence $a = bh^{-1}$, but $h^{-1} \in H$. Therefore $a \in bH$, i.e., $b \equiv a$.
- ▶ Transitivity. Suppose $a \equiv b$ and $b \equiv c$, then b = ah and c = bh' for some $h, h' \in H$. Therefore c = ahh'. Note that $hh' \in H$ (since H is a subgroup), hence $c \in aH$, i.e., $a \equiv c$.

Corollary

The left cosets of a subgroup H of a group G partition the group.

Remark

The subgroup H is a particular *left* coset since $H = 1 \cdot H$.

Example

Let $S_3 = \{e, r, r^2, i_1, i_2, i_3\}.$

- $ightharpoonup H = \{e, r, r^2\} = rH = r^2H$
- \blacktriangleright $i_1H = \{i_1, i_2, i_3\} = i_2H = i_3H$

Note that $S_3 = \{H, i_1H\}$.

Example

Let $S_3 = \{e, r, r^2, i_1, i_2, i_3\}.$

- \vdash $H = \{e, i_1\} = i_1H$
- $ightharpoonup rH = \{r, i_3\} = i_3H$
- $ightharpoonup r^2H = \{r^2, i_2\} = i_2H$

Note that $S_3 = \{H, rH, r^2H\}$.

Example

Let $S_3 = \{e, r, r^2, i_1, i_2, i_3\}.$

- \vdash $H = \{e, i_3\} = i_3H$
- $ightharpoonup rH = \{r, i_2\} = i_2H$
- $ightharpoonup r^2H = \{r^2, i_1\} = i_1H$

Note that $S_3 = \{H, rH, r^2H\}$.

Definition

The number of *left cosets* of a subgroup is called the *index* of H in G. The index is denoted by [G:H] (which could be infinite if $|G| = \infty$).

Example

1	(12)
(132)	(23)
(123)	(13)

$$[S_3:\langle (12)\rangle]=3.$$

$$[S_3:\langle (123)\rangle]=2.$$

Lemma

All left cosets aH of a subgroup H of a group G have the same order.

Proof.

The map $h \mapsto ah$ induces a bijective map

$$H \mapsto aH$$
 $a^{-1}(aH) \leftarrow aH$

Counting Formula

Note that the cosets all have the same order, and since they *partition* the group, then we have the *Counting Formula*

$$|G| = |H| \cdot [G : H]$$

(order of G) = (order of H) \cdot $\begin{pmatrix} \text{number of left} \\ \text{cosets of } H \end{pmatrix}$

Theorem (Lagrange's Theorem)

Let H be a subgroup of a finite group G. The order of H divides the order of G.

Proof.

By applying the counting formula.

Corollary

The order of an element of a finite group divides the order of the group.

Proof.

Let $h \in G$, then $H := \langle h \rangle \leq G$, and recall

$$H = \langle h \rangle = \{1, h, h^2, \dots, h^{m-2}, h^{m-1}\}$$

where |H| = m = order of h.

Corollary

Given a group G, with |G|=p prime. Let $g\in G$, $g\neq 1$, then $G=\langle g\rangle$ which is cyclic.

Proof.

Let $g \in G$ and $g \neq 1$, note that the order of g divides |G| = p, which is prime, hence the order of g is p. Therefore $|\langle g \rangle| = p$. Note that $\langle g \rangle \subset G$, with $|\langle g \rangle| = |G| = p$, hence $G = \langle g \rangle$, which is cyclic.

Remark

- ▶ Let G be a finite group, then $g^{|G|} = 1_G$ for all $g \in G$.
- Let G be a finite group of prime order, the only subgroups of G are the trivial group $\{1_G\}$ and the group G itself.
- ► This classifies groups of prime order *p*. They form *one* isomorphism class, the class of the cyclic groups of order *p*.

Example

Given group G of order 6, then

- ▶ *G* contains an element of order 3. Indeed, if *G* has an element of order 6, then it is cyclic, so contains an element of order 3. If *G* does not have elements of order 3 or 6, then all non-identity elements of *G* have order 2. In this case, for all $x, y \in G$ we have $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$, hence *G* is abelian. Then for $x, y \in G$ with $x \neq y$, $\{1, a, b, ab\}$ form a subgroup of *G* of order 4, but this contradicts Lagrange's theorem. Therefore *G* must contain an element of order 3.
- ▶ G contains an element of order 2. Indeed, if it did not, then all non-identity elements would have order 3. But elements of order 3 come in pairs (e.g., x and x⁻¹), but there are are odd number of non-identity elements (i.e., 5), which is a contradiction. hence there must be an element of order 2.

Corollary

Let G, G' be finite groups, and $f:G\to G'$ a homomorphism. Then

- 1. $|G| = |\ker f| \cdot |\operatorname{im} f|$,
- 2. $|\ker f|$ divides |G|,
- 3. |im f| divides both |G| and |G'|.

Proof.

1. Note that $\ker f$ is a subgroup, then $\tilde{f}:G/\ker f\to \operatorname{im} f$ is a set-theoretic bijection between cosets of $\ker f$ and elements of $\operatorname{im} f$. Thus we have the counting formula

$$[G: \ker f] = |\operatorname{im} f|$$

- 2. Follows from counting formula.
- 3. Follows from counting formula and Lagrange's theorem (Note that im $f \leq G'$).

Compare the previous theorem with the following result in linear algebra.

Remark (Rank-Nullity Theorem)

Given $T:V\to W$ a linear map, then

Right Cosets

Definition

The right cosets of a subgroup $H \leq G$ are the sets

$$Ha := \{ha \mid h \in H\}$$

Example

Consider $\langle (12) \rangle \leq S_3$.

1	(12)
(132)	(23)
(13)	(123)

Left cosets of $\langle (12) \rangle$.

Right cosets of $\langle (12) \rangle$.

Group Transversals

Definition

Given a group G, and subgroup $H \leq G$. A subset $S \subset G$ is a left/right transversal for H in G if every left/right coset of H contains exactly one element of S.

Theorem

Common transversal always exists for subgroups of finite groups.

e.g., $\{1,(123),(132)\}$ is a common transversal for $\langle (12)\rangle \leq S_3$.

Group Transversals

Proof.

Suppose $G = \bigcup_{k=1}^n x_k H = \bigcup_{k=1}^n Hy_k$. We define the partial order on $P = \{x_1 H, \dots, x_n H\} \cup \{Hy_1, \dots, Hy_n\}$ where x < y if $x \in \{x_1 H, \dots, x_n H\}$, $y \in \{Hy_1, \dots, Hy_n\}$, and $x \cap y \neq \emptyset$. We know that the width of the poset is at least n (e.g., $\{x_1 H, \dots, x_n H\}$ is an antichain.) Suppose there exsits a subset $Q \subset P$ containing n+1 pairwise disjoint sets, then the size of their union exceedes the size of G, which is impossible. The rest follows from Dilworth theorem.

Normal Subgroup

Definition

Given group G, and $a, g \in G$, the element $gag^{-1} \in G$ is called the *conjugate* of a by g.

Definition

A subgroup N of G is a **normal subgroup**, denoted by $N \subseteq G$, if for all $a \in N$ and $g \in G$, $gag^{-1} \in N$.

Theorem

Given groups G, G', and $f: G \to G'$ a homomorphism, then $\ker f \subseteq G$.

Proof.

Let $a \in \ker f$ and $g \in G$, then

$$f(gag^{-1}) = f(g)f(a)f(g^{-1}) = f(g) \cdot 1_{G'} \cdot f(g)^{-1} = 1_{G'}$$

Normal Subgroup

Examples

- $ightharpoonup SL_n(\mathbb{R}) rianglelefteq GL_n(\mathbb{R}).$
- $ightharpoonup A_n riangleleft S_n$.
- Every subgroup of an abelian group is normal.
- ▶ The *center* of a group G, denoted by Z, is the set of elements that commute with every element of G:

$$Z := \{z \in G \mid zx = xz \text{ for all } x \in G\}$$

The center is always a normal subgroup. $(zx = xz \Leftrightarrow x = zxz^{-1})$

Normal Subgroup

Theorem

Let $H \leq G$, TFAE

- 1. $H \subseteq G$, i.e., $ghg^{-1} \in H$ for all $h \in H, g \in G$.
- 2. $gHg^{-1} = H$ for all $g \in G$.
- 3. gH = Hg for all $g \in G$.
- 4. Every left coset of H is a right coset.
- 5. $H = \ker f$ for some homomorphism $f : G \to X$.
- 6. The quotient group G/H exists.

Definition

A group is *simple* if its only normal subgroup are the identity subgroup and the group itself.

Classification of Finite Simple Groups

The Periodic Table Of Finite Simple Groups

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Definition

Given $a, b \in \mathbb{Z}$, a and b are said to be **congruent modulo** n, i.e.,

$$a \equiv b \pmod{n}$$

if $n \mid b - a$, i.e., b = a + nk for some $k \in \mathbb{Z}$.

Remark

This is an equivalence relation. The equivalence classes are called *congruence classes*.

- ▶ $a \equiv a \pmod{n}$ for all $a \in \mathbb{Z}$.
- ▶ If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.
- ▶ If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Congruence Classes

Let $H = n\mathbb{Z} \leq \mathbb{Z}$, then the cosets of H, i.e., the congruence classes, are given by

$$[a]_n = \overline{a} = a + H = a + n\mathbb{Z} = \{a + kn \mid k \in \mathbb{Z}\}\$$

The integers $0, 1, \dots, n-1$ are representatives for the n congruence classes.

Notation

ivotation		
	Multiplicative	Additive
Operation	ab or a · b	a+b
Identity	e or 1	0
Inverse	a^{-1}	-a
Exponents	$a^n = aa \cdots a (n \text{ factors})$	$na = a + a + \cdots + a (n \text{ summands})$
	$a^{-n}=a^{-1}\cdots a^{-1}$	$(-n)a = -a - a - \cdots - a$
	$a^m a^n = a^{m+n}$	$(\mathit{ma}) + (\mathit{na}) = (\mathit{m} + \mathit{n})\mathit{a}$
	$(a^m)^n = a^{mn}$	n(ma) = (mn)a
Cosets	аH	a + H

In an attempt to prove Fermat's Last Theorem,

Theorem (Schur, 1916)

Let $n \in \mathbb{N} \setminus \{0\}$, then for all sufficiently large primes p, there are $x, y, z \in \{1, \dots, p-1\}$ such that $x^n + y^n \equiv z^n \pmod{p}$.

Less Dramatic Examples

Given $x, y, z \in \mathbb{Z}$, then

- $x^2 + y^2 \equiv 0, 1, 2 \pmod{4}$.
- $x^2 + y^2 + z^2 \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}.$
- $x^3 + y^3 + z^3 \equiv 0, \pm 1, \pm 2, \pm 3 \pmod{9}$.

Theorem

There are n congruence classes modulo n, namely, $\overline{0}, \overline{1}, \dots, \overline{n-1}$. The index of the subgroup $n\mathbb{Z}$ in \mathbb{Z} is $[\mathbb{Z} : n\mathbb{Z}] = n$.

Proof.

Consider the function $f: \mathbb{Z} \to \{0, 1, \dots, n-1\}$, $x \mapsto x \mod n$. Note that f induces a bijection $\tilde{f}: \mathbb{Z}/n\mathbb{Z} \to \{0, \dots, n-1\}$.

Remark

- ▶ The set of congruence classes modulo n may be denoted by $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/\mathbb{Z}n$, \mathbb{Z}_n , or $\mathbb{Z}/(n)$.
- ▶ It is the same to say $\overline{a} = \overline{b}$, a = b in $\mathbb{Z}/n\mathbb{Z}$, or $a \equiv b \pmod{n}$.

We can do "arithmetic" in $\mathbb{Z}/n\mathbb{Z}$, e.g.,

$$\overline{a} + \overline{b} = \overline{a+b}$$
$$\overline{a} \cdot \overline{b} = \overline{a \cdot b}$$

which are well-defined.

Lemma

If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$, then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

Proof.

Assume that $a \equiv a' \pmod n$ and $b \equiv b' \pmod n$, then a' = a + rn and b' = b + sn for some $r, s \in \mathbb{Z}$. Then

- a' + b' = a + b + (r + s)n, hence $a + b \equiv a' + b' \pmod{n}$.
- a'b' = (a+rs)(b+sn) = ab + (as+rb+rns)n, hence $ab \equiv a'b' \pmod{n}$.

$(\mathbb{Z}/n\mathbb{Z},+)$ is a group

ightharpoonup Addition is associative. (inherited from \mathbb{Z})

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b + c} = \overline{a} + (\overline{b} + \overline{c})$$

- ▶ Identity: 0.
- ▶ Inverses: $-\overline{a} = \overline{n-a} = \overline{-a}$.

i.e., the set of cosets of $n\mathbb{Z} \subset \mathbb{Z}$ form a (quotient) group.

Inheritance from Z

The associative, commutative, and distributive laws hold for addition and multiplication of congruence classes. e.g.,

$$\overline{a}(\overline{b} + \overline{c}) = \overline{a}(\overline{b + c}) = \overline{a(b + c)}$$
$$= \overline{ab + ac}$$
$$= \overline{ab} + \overline{ac} = \overline{ab} + \overline{ac}$$

Multiplicative Group of Integers Modulo *n*

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \exists \overline{c} \in \mathbb{Z}/n\mathbb{Z} \text{ s.t. } \overline{a} \cdot \overline{c} = \overline{1}\}$$

- ▶ Closure: product of inverses are inverse of product.
- ightharpoonup Associtivity: inherited from \mathbb{Z} .
- ▶ Identity: $\overline{1}$.
- Inverses by construction.

Theorem

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \overline{a} \in \mathbb{Z}/n\mathbb{Z} \mid \gcd(a, n) = 1 \}$$

Proof.

- ► (LHS ⊃ RHS). If gcd(a, n) = 1, then $\exists r, s \in \mathbb{Z}$ such that ar + ns = 1, i.e., $ar 1 \in n\mathbb{Z}$, or $\overline{a} \cdot \overline{r} = \overline{1}$, so $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
- ▶ (LHS \subset RHS). Consider $\overline{a} \cdot \overline{c} = \overline{1}$, then ac 1 = nb for some $b \in \mathbb{Z}$. Hence $1 = ac + nb \in a\mathbb{Z} + n\mathbb{Z} = \gcd(a, n)\mathbb{Z}$.

Finding Inverses

For example, we want to solve $7x \equiv 1 \pmod{31}$.

Method I

By Euclidean algorithm, we can find integers x=9, y=-2 such that 7x+31y=1, i.e.

$$7\times 9 + 31\times (-2) = 1$$

hence $7 \cdot 9 \equiv 1 \pmod{31}$, i.e., $x \equiv 7^{-1} \equiv 9 \pmod{31}$.

Method II (Gauss), for prime modulus

By division algorithm (keep remainder with smallest absoute value),

$$31 = 7 \times 4 + 3$$
 \Rightarrow $7 \times 4 \equiv -3 \pmod{31}$
 $31 = 3 \times 10 + 1$ \Rightarrow $3 \times 10 \equiv -1 \pmod{31}$

Hence $7 \cdot 4 \cdot 3 \cdot 10 \equiv 3 \cdot 1$, so $7^{-1} \equiv 4 \cdot 10 \equiv 9 \pmod{31}$.

Fermat's (Little) Theorem

Theorem (Fermat-I)

Given
$$a \in \mathbb{Z}$$
 and $p \in \mathbb{P}$, such that $(a, p) = 1$, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Theorem (Fermat-II)

Given $a \in \mathbb{Z}$ and $p \in \mathbb{P}$, then

$$a^p \equiv a \pmod{p}$$

Remark

- ► (Fermat-I \Rightarrow Fermat-II). Clear by multiplying a on both sides.
- Fermat-II \Rightarrow Fermat-I). Clear by multiplying a^{-1} on both sides. a^{-1} (mod p) exsits because (a, p) = 1.

Fermat's (Little) Theorem

Proof of Fermat-II (Euler).

Induction on $a \in \mathbb{N}$.

base case. (a = 0). True.

inductive case. $(a \ge 0)$. Assume the IH that $a^p \equiv a \pmod{p}$ for some $a \in \mathbb{N}$, we want to show that $(a+1)^p \equiv a+1 \pmod{p}$ also holds. Note that

$$(a+1)^p = a^p + \binom{p}{1}a^{p-1} + \binom{p}{2}a^{p-2} + \dots + \binom{p}{p-1}a + 1$$

Now it is sufficient to show that $p\mid\binom{p}{k}$ for $p\in\mathbb{P}$, $1\leq k\leq p-1$. Indeed, since

$$p! = \binom{p}{k} \cdot (p-k)!k!$$

Now note that $p \mid p!$ but $p \nmid [(p-k)!k!]$, we have $p \mid {p \choose k}$.

Euler's Theorem

Theorem (Euler)

For $m \in \mathbb{N} \setminus \{0\}$ and $a \in \mathbb{Z}$ such that gcd(a, m) = 1,

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

where $\varphi(m)$ is the number of invertible integers modulo m.

Proof.

Note that $|(\mathbb{Z}/m\mathbb{Z})^{\times}| = \varphi(m)$, which is divisible by the order of $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ by Lagrange's theorem. (In fact, $a^{|G|} = 1_G \ \forall a \in G$.)

Remark

Given $p \in \mathbb{P}$,

- Fermat's theorem becomes Euler's theorem since $\varphi(p) = p 1$.
- $ightharpoonup \mathbb{Z}/p\mathbb{Z}$ is cyclic due to Lagrange's theorem.
- \blacktriangleright $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is also cyclic, but NOT due to Lagrange's theorem.

Fermat's Theorem

Theorem

Given $p \in \mathbb{P}$, if $p \mid n^2 + 1$, then p = 2 or $p \equiv 1 \pmod{4}$.

					5			
$\frac{n^2+1}{p}$	2	5	10	17	26	37	50	65
p	2	5	2,5	17	2, 13	37	2, 5	5,13

Proof.

If p is odd, then $p \mid n^2 + 1 \Leftrightarrow n^2 \equiv -1 \pmod{p}$, hence the order of n is not 1 or 2. (Note that $1 \not\equiv -1 \pmod{p}$ since p is odd.) But since $n^4 \equiv 1 \pmod{p}$, we know that the order of n divides 4, hence the order of n is exactly 4. Also note that $\gcd(n,p)=1$, hence by Fermat's theorem, we have $n^{p-1} \equiv 1 \pmod{p}$, so the order of n divides p-1, that is, $1 \mid p-1$, i.e., $p \equiv 1 \pmod{4}$.

Euler's Theorem

Example

For
$$\varphi(8) = 4$$
, by Euler's theorem

$$a^4 \equiv 1 \pmod{8}$$
, for all $a \in \mathbb{Z}$ s.t. $gcd(a, 8) = 1$

Note that gcd(a, 8) = 1 leads to a = 1, 3, 5, 7. In fact,

$$a^2 \equiv 1 \pmod{8}$$

Remark

The qudratic equation $x^2 \equiv 1 \pmod{8}$ has more than two roots.

Fermat Primes

When is $2^n + 1$ prime? (n > 0)

- ▶ If n > 1, odd, then NO. (since $3 | (2^n + 1)$)
- ▶ If n = ab, b odd, also NO. (since $(2^a + 1) | (2^n + 1)$)

Therefore $n = 2^m$, $m \in \mathbb{N}$.

Fermat Primes

$$F_n = 2^{2^n} + 1.$$

- $F_0 = 2^{2^0} + 1 = 3 \in \mathbb{P}.$
- $F_1 = 2^{2^1} + 1 = 5 \in \mathbb{P}.$
- $F_2 = 2^{2^2} + 1 = 17 \in \mathbb{P}.$
- $F_3 = 2^{2^3} + 1 = 257 \in \mathbb{P}.$
- $F_4 = 2^{2^4} + 1 = 65537 \in \mathbb{P}.$
- $F_5 = 2^{2^5} + 1 = 4274967297 = 641 \times 6700417$. (Euler, 1732)

FACT

If m is odd, then $(-1)^m + 1 = 0$, thus $x^m + 1$ is divisible by x + 1. By long division, we have

$$x^{m}+1=(x+1)(x^{m-1}-x^{m-2}+\cdots+1)$$

Testing Fermat Primes

Check
$$F_4=2^{2^4}+1=65537$$
 is prime Suppose $p\mid 65537,\ p\leq \sqrt{65537},\ \text{that is,}\ p\mid 2^{16}+1,\ \text{hence}$
$$2^{16}\equiv -1\ (\text{mod }p)$$

$$2^{32}\equiv 1\ (\text{mod }p)$$

Hence the order of 2 divides 32 but not 16, that is, the order of 2 is 32. On the other hand, by Fermat's theorem, we have $2^{p-1} \equiv 1 \pmod{p}$, thus

$$p \equiv 1 \pmod{32}$$

Note that $p \le \sqrt{65537}$, possible p's are listed as follows

Among which we only need to check 97 and 193.

Primality Testing of General Numbers

Fermat Primality Test

Given $n \in \mathbb{N}$, calculate $2^n \pmod{n}$,

- ▶ If $2^n \not\equiv 2 \pmod{n}$, then *n* is COMPOSITE.
- ▶ If $2^n \equiv 2 \pmod{n}$, then *n* is PROBABLY prime. (Try other numbers next.)

Such test is called *probabilistic test*.

Task: Calculate $2^n \pmod{n}$

n is usually large, e.g., $n \sim 10^{100}$

- ▶ 2ⁿ is rediculously large.
- Takes spatial and temporal resources to calculate.
- ▶ Mod *n* after each multiplication of 2 is still slow.

Fast Modular Exponentiation

Calculate $a^b \mod m$

1. Write b in binary, i.e.,

$$b=(b_{k-1}\cdots b_0)_2=\sum_{j=0}^{k-1}b_j2^j=b_{k-1}2^{k-1}+\cdots+b_1\cdot 2+b_0,$$

with $b_0, ..., b_{k-1} \in \{0, 1\}$, then

$$a^b = \prod_{j=0}^{k-1} a^{b_j 2^j} = a^{b_{k-1} 2^{k-1}} \times a^{b_{k-1} 2^{k-1}} \times \cdots \times a^{b_1 \cdot 2} \times a^{b_0}$$

- 2. Calculate $a^{2^j} \mod m$ for $j = 0, \ldots, k-1$, by noting that $a^{2^{j+1}} = (a^{2^j})^2$
- 3. Multiply the terms for which $b_k = 1$.

Such square and multiply method is also known as repeated squaring.

Fast Modular Exponentiation

Example: Test if 35 is prime.

Note that
$$35 = (100011)_2 = 2^5 + 2^1 + 2^0$$
, then

$$2^{35} = 2^{32} \times 2^2 \times 2^1$$

Next calculate

- $ightharpoonup 2^1 \equiv 2 \pmod{35}$.
- $ightharpoonup 2^2 \equiv 2^2 \equiv 4 \pmod{35}$.
- $ightharpoonup 2^4 \equiv 4^2 \equiv 16 \pmod{35}$
- $ightharpoonup 2^8 \equiv 16^2 \equiv 256 \equiv 11 \pmod{35}$
- $ightharpoonup 2^{16} \equiv 11^2 \equiv 121 \equiv 16 \pmod{35}$
- $ightharpoonup 2^{32} \equiv 16^2 \equiv 11 \pmod{35}$.

Now $2^{35}\equiv 2^{32}\times 2^2\times 2^1\equiv 11\times 4\times 2\equiv 18\not\equiv 2$ (mod 35).

Hence 35 is NOT prime.

Fast Modular Exponentiation and Egyptian/Ethiopian/Russian Multiplication

Example: 2³⁵ (mod 35)

HALVING	SQUARING
35	2 (mod 35)
17	4 (mod 35)
8	16 (mod 35)
4	$256 \equiv 11 \pmod{35}$
2	$121 \equiv 16 \pmod{35}$
1	$256 \equiv 11 \text{ (mod } 35\text{)}$

$$2^{35} \equiv 2 \cdot 4 \cdot 11 \pmod{35}$$
.

Example: 35×27

HALVING	DOUBLING
35	27
17	54
8	108
4	216
2	432
1	864

$$35 \times 27 = 27 + 54 + 864 = 945.$$

Carmichael Numbers

Fermat Primality Test

Given $n \in \mathbb{N}$, calculate $a^n \pmod{n}$, $a < n \pmod{n}$ (in general for many a)

- ▶ If $a^n \not\equiv a \pmod{n}$, then n is COMPOSITE. Such a is called a *Fermat witness*.
- ▶ If $a^n \equiv a \pmod{n}$, then
 - *n* is prime.
 - n is composite, such a is called a Fermat Liar.

Definition

A Carmichael number is a composite number n for which

$$a^n \equiv a \pmod{n}$$
 for all $a \in \mathbb{Z}$.

Remark

Carmichael numbers have **NO** Fermat witnesses.

Carmichael Numbers

The first few Carmichael numbers are 561, 1105, 1729, 2465, 2821, 6601, 8911,...

Example

Let $n=561=3\times11\times17$, note that by Fermat's Theorem, for a coprime to 561,

▶
$$a^{3-1} \equiv 1 \pmod{3}$$
 ▶ $a^{11-1} \equiv 1 \pmod{11}$ ▶ $a^{17-1} \equiv 1 \pmod{17}$

Now note that lcm(3-1,11-1,17-1)=80 which divides 560=561-1. Therefore for a coprime to 561,

$$a^{561-1} \equiv 1 \pmod{3,11,17}$$

$$a^{561} \equiv a \pmod{561}$$
 for all $a \in \mathbb{Z}$

Carmichael Numbers

For 100-digit numbers, less than 1 in 1030 are Carmichael numbers. For 200-digit numbers, the chances are even less.

Remark

- ▶ If we randomly choose a 200-digit number n, and test \approx 100 different values of a without getting a Fermat witness, then we can be almost certain that n is prime.
- ► There are infinitely many Carmichael numbers.
- ▶ There are infinitely many Carmichael numbers of the form km + a, where gcd(a, m) = 1.

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

Sunzi asks:

There are certain things whose number is unknown. When divided by 3, the remainder is 2; when divided by 5, the remainder is 3; and when divided by 7, the remainder is 2. What will be the number of things?

今有物,不知其數,三三數之,剩二,五五數之,剩三, 七七數之,剩二,問物幾何?

In Language of Congruences

Find x such that

$$x \equiv 2 \pmod{3},$$

 $x \equiv 3 \pmod{5},$
 $x \equiv 2 \pmod{7}.$

Solution Algorithm

三人同行七十希, 五树梅花廿一支, 七子团圆正半月, 除百零五便得知。

Solution in modern mathematical language

$$x \equiv 2 \times 70 + 3 \times 21 + 2 \times 15 = 233 \equiv 23 \pmod{105}$$

Remark

- ▶ $70 \equiv 1 \pmod{3}$, $70 \equiv 0 \pmod{5}$, $70 \equiv 0 \pmod{7}$;
- ▶ $21 \equiv 0 \pmod{3}$, $21 \equiv 1 \pmod{5}$, $21 \equiv 0 \pmod{7}$;
- ▶ $15 \equiv 0 \pmod{3}$, $15 \equiv 0 \pmod{5}$, $15 \equiv 1 \pmod{7}$;
- ▶ $105 \equiv 0 \pmod{3}$, $105 \equiv 0 \pmod{5}$, $105 \equiv 0 \pmod{7}$.

General Form

Given $x \equiv a_i \pmod{m_i}$, i = 1, ..., r, $a_1, ..., a_r \in \mathbb{Z}$, and $m_1, ..., m_r$ are pairwise relatively prime. The unique solution is given by

$$x = a_1y_1 + a_2y_2 + \cdots + a_ry_r \pmod{m}$$

where $m=m_1\cdots m_r$ and $y_i=\delta_{ij}\pmod{m_j}$, e.g., $y_i=(m/m_i)^{\varphi(m_i)}$.

Lagrange interpolation

Given a set of k+1 data points $(x_0, y_0), (x_1, y_1), \ldots, (x_k, y_k)$, with distinct x_j 's. The *interpolation polynomial in the Lagrange form* is a linear combination $L = y_0 \ell_0 + \cdots + y_k \ell_k$, with ℓ_i satisfying $\ell_i(x_j) = \delta_{ij}$, e.g.,

$$\ell_j(x) := \prod_{\substack{0 \le m \le k \\ m \ne i}} \frac{x - x_m}{x_j - x_m} = \frac{(x - x_0)}{(x_j - x_0)} \cdots \frac{(x - x_{j-1})}{(x_j - x_{j-1})} \frac{(x - x_{j+1})}{(x_j - x_{j+1})} \cdots \frac{(x - x_k)}{(x_j - x_k)}$$

Lagrange interpolation in CRT form

For distinct $x_1, x_2, \dots, x_k \in \mathbb{R}$ and $y_1, y_2, \dots, y_k \in \mathbb{R}$, the system of polynomial congruences

$$P(x) \equiv y_1 \pmod{x - x_1}$$

$$P(x) \equiv y_2 \pmod{x - x_2}$$

$$\vdots$$

$$P(x) \equiv y_k \pmod{x - x_k}$$

has a unique solution $\pmod{(x-x_1)(x-x_2)\cdots(x-x_k)}$. In particular, it has a unique solution of degree k-1.

Matrix Inverse

Given an $n \times n$ invertible matrix A, its inverse A^{-1} can be found by solving

$$Ax_1 = e_1, \qquad Ax_2 = e_2, \qquad \dots, \qquad Ax_n = e_n$$

where

$$e_k = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^{\top}$$

Now the general solution to Ax = b can be solved by first recognizing that $b = \sum_{k=1}^{n} b_k e_k$, then

$$x = A^{-1}b = A^{-1}\left(\sum_{k=1}^{n} b_k e_k\right) = \sum_{k=1}^{n} b_k A^{-1} e_k = \sum_{k=1}^{n} b_k x_k$$

Remark

Recall the procedure of finding matrix inverse by Gauss-Jordan elimination: $[A|I_n] \rightsquigarrow [I_n|B]$, then $B = A^{-1}$.

Green's Function

Given a differential equation Lu = f with boundary condition Bu = 0 over certain domain D, we first solve the following equation

$$Lg(x;\xi) = \delta(x-\xi), \qquad Bg(x;\xi) = 0$$

where the solution $g(x; \xi)$ is known as the *Green's function*. Now the solution to original equation is given by

$$u(x) = \int_D g(x;\xi) f(\xi) d\xi$$

If the differential operator L is time-invariant, then the solution is given by a convolution

$$u(x) = \int_D g(x - \xi) f(\xi) d\xi = (g * f)(x)$$

where g(x) = g(x; 0) and $Lg(x) = \delta(x)$.

Find the smallest $x \in \mathbb{N}$ (or all $x \in \mathbb{Z}$) such that

```
x \equiv a_1 \pmod{m_1}

x \equiv a_2 \pmod{m_2}

\vdots

x \equiv a_r \pmod{m_r}
```

Remark

- No constraints on the remainders a_1, \ldots, a_r .
- The moduli m_1, \ldots, m_r are pairwise relatively prime. (This is NOT equivalent to $gcd(m_1, \ldots, m_r) = 1$.)

Product Group

Definition

Given groups G and G', the product group $(G \times G', \cdot_{\times})$ is the set $G \times G'$ equipped with the group law

$$egin{aligned} \cdot_{ imes} : (G imes G') imes (G imes G')
ightarrow G imes G' \ ((g,g'),(h,h')) \mapsto (g,g') \cdot_{ imes} (h,h') = (gh,g'h') \end{aligned}$$

Remark

- ▶ The identity element of $(G \times G', \cdot_{\times})$ is given by $(1_G, 1_{G'})$.
- ► The inverse of (g, g') is (g^{-1}, g'^{-1}) .
- ightharpoonup Associativity is inherited from G and G'.

Chinese Remainder Theorem

Let $m, n \in \mathbb{N} \setminus \{0\}$ and gcd(m, n) = 1, then $C_{mn} \cong C_m \times C_n$. (C_n is the cyclic group of order n.) Note that $C_4 \ncong C_2 \times C_2$.

Chinese Remainder Theorem

Theorem

$$\mathbb{Z}/mn\mathbb{Z} \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
 if $gcd(m, n) = 1$.

or

Proof.

Consider the mapping

$$f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
$$[x]_{mn} \mapsto ([x]_m, [x]_n)$$
$$x \mod mn \mapsto (x \mod m, x \mod n)$$

which is obviously a homomorphisms. We show that it is bijective.

- ▶ Injectivity. We need to show $f(x) = (0,0) \Rightarrow x \equiv 0 \pmod{mn}$. Indeed, since if $m, n \mid x$, and gcd(m, n) = 1, then $mn \mid x$.
- Surjectivity. By dimension count (basically pigeonhole).

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
0	1	2	3	4	0	1	2	3	4	0	1	2	3	4

Chinese Remainder Theorem (General Form)

Theorem

 $\mathbb{Z}/m_1 \cdots m_r \mathbb{Z} \cong \mathbb{Z}/m_1 \mathbb{Z} \times \mathbb{Z}/m_2 \mathbb{Z} \times \cdots \times \mathbb{Z}/m_r \mathbb{Z}$ if $gcd(m_i, m_j) = 1$ for $i \neq j$. (Induction on r.)

Lemma (Base case for induction)

Given the system $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$ with gcd(m, n) = 1, the solution can be found as follows,

- 1. Find u and v such that mu + nv = 1.
- 2. Then $t = bmu + anv \mod mn$ is a solution.

Example

Consider $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 2 \pmod{7}$. We can apply the Euclidean algorithm (or by guessing),

- ▶ Then consider the first two, we have $x \equiv 8 \pmod{15}$.
- ▶ Combine with the third one, we have $x \equiv 23 \pmod{105}$.

Chinese Remainder Theorem (General Form)

Example (Cont.)

We first solve $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, that is,

$$x = 2 + 3y = 3 + 5z \Rightarrow 3y - 5z = 1 \Rightarrow (y, z) = (7, 4)$$

thus $x = 2 + 3 \cdot 7 = 23 \equiv 8 \pmod{15} = 3 \times 5$.

Next we solve $x \equiv 8 \pmod{15}$, $x \equiv 2 \pmod{7}$, that is,

$$x = 8 + 15s = 2 + 7t \Rightarrow 7t - 15s = 6$$

 $\Rightarrow (t, s) = (6 \cdot 13, 6 \cdot 6) = (78, 36)$

thus $x = 8 + 15 \cdot 36 \equiv 23 \pmod{105} = 15 \times 7$).

Solution of a System in an Elementary Fashion

Example

We solve the congruency

$$17x \equiv 9 \pmod{276}$$
.

Instead of solving it directly, we note that $276 = 3 \cdot 4 \cdot 23$, so the congruency is equivalent to the system

$$17x \equiv 9 \pmod{3}$$
, $17x \equiv 9 \pmod{4}$, $17x \equiv 9 \pmod{23}$. $x \equiv 0 \pmod{3}$, $x \equiv 1 \pmod{4}$, $17x \equiv 9 \pmod{23}$.

The first congruence gives x = 3k, $k \in \mathbb{Z}$. Plugging into the second one,

$$3k \equiv 1 \pmod{4}$$

The modular inverse of a = 3 is $a^{-1} = 3$, so we obtain $k \equiv 3 \pmod{4}$.

Solution of a System in an Elementary Fashion

Example (Cont.)

We then have

$$x = 3 \cdot (3+4j) = 9+12j,$$
 $j \in \mathbb{Z}.$

Inserting into the last congruence,

$$17 \cdot (9+12j) \equiv 9 \pmod{23}$$

or

$$204j \equiv -144 \pmod{23}$$
.

Hence, j = 2 + 23t, $t \in \mathbb{Z}$ and hence

$$x = 33 + 276t$$

or simply $x \equiv 33 \pmod{276}$.

Euler's Phi Function

Theorem

$$(\mathbb{Z}/mn\mathbb{Z})^{\times} \cong (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times} \text{ if } \gcd(m,n) = 1.$$

Proof.

Recall the isomorphism

$$f: \mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$
$$[x]_{mn} \mapsto ([x]_m, [x]_n)$$

Similarly consider

$$f^{\times}: (\mathbb{Z}/mn\mathbb{Z})^{\times} \to (\mathbb{Z}/m\mathbb{Z})^{\times} \times (\mathbb{Z}/n\mathbb{Z})^{\times}$$
$$[x]_{mn} \mapsto ([x]_m, [x]_n)$$

Obviously (or is it?) f^{\times} is a homomorphism, with the group law being multiplication. We show that it is a bijection.

▶ Injectivity. Note that dom $f^{\times} \subset \text{dom } f$, thus f^{\times} is injective since f is.

Euler's Phi Function

Proof (Cont.)

Surjectivity. Given $[a]_m \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ and $[b]_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$, by Chinese remainder theorem, we know that $\exists [c]_{mn} \in \mathbb{Z}/mn\mathbb{Z}$ such that $f([c]_{mn}) = ([a]_m, [b]_n)$. We show that $[c]_{mn} \in (\mathbb{Z}/mn\mathbb{Z})^{\times}$. Since $[a]_m \in (\mathbb{Z}/m\mathbb{Z})^{\times}$, $\exists [a']_m \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ such that $[a]_m [a']_m = [1]_m$. Similarly, $\exists [b']_n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ such that $[b]_n [b']_n = [1]_n$. Again by Chinese remainder theorem, $\exists [c']_{mn} \in \mathbb{Z}/mn\mathbb{Z}$ such that $f([c']_{mn}) = ([a']_m, [b']_n)$. Now note that

$$f([c]_{mn}[c']_{mn}) = f([c]_{mn})f([c']_{mn})$$

= $([a]_m[a']_m, [b]_n[b']_n) = ([1]_m, [1]_n)$

thus $[c]_{mn}[c']_{mn}=[1]_{mn}$ since f is injective. Therefore $[c]_{mn}\in (\mathbb{Z}/mn\mathbb{Z})^{\times}$.

Euler's Phi Function

Corollary

$$\varphi(mn) = \varphi(m)\varphi(n)$$
 if $gcd(m, n) = 1$.

Corollary

By fundamental theorem of arithmetic, if $n = p_1^{k_1} p_2^{k_2} p_3^{k_3} \cdots$, then

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{k_1}\mathbb{Z} \times \mathbb{Z}/p_2^{k_2}\mathbb{Z} \times \mathbb{Z}/p_3^{k_3}\mathbb{Z} \times \cdots$$

and

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{k_1}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_2^{k_2}\mathbb{Z})^{\times} \times (\mathbb{Z}/p_3^{k_3}\mathbb{Z})^{\times} \times \cdots$$

Theorem (Gauss)

The group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic if and only if n is 1, 2, 4, p^k , or $2p^k$, where p is an odd prime and k > 0.

Table of Contents

- 1. Prime Numbers
- 2. Euclidean Algorithm
- 3. Additive Group of Integers
- 4. Cyclic Groups and Symmetric Groups
- 5. Homomorphism and Cosets
- 6. Modular Arithmetic
- 7. Chinese Remainder Theorem
- 8. Public Key Cryptography

RSA (Rivest-Shamir-Adleman) Cryptography

Goal

Transfer information from A (Alice) to B (Bob).

Trapdoor Function

Want to find a (bijective) trapdoor function $f: S \rightarrow S$, S a HUGE set, such that

- Easy to compute.
- HARD to invert.
- Unless one has the secret key.

Example (Discrete Logarithm)

Having the inverse of $e \mod \varphi(n)$, the Euler's totient function of n, is the trapdoor: $f(x) = x^e \pmod{n}$.

If the factorization is known, $\varphi(n)$ can be computed, hence $e^{-1} \mod \varphi(n)$ can be computed. Its hardness follows from RSA assumption.

RSA Example

- 1. (Alice) Choose 2 (large) distinct primes, e.g., p = 17, q = 19.
- 2. (Alice) Let $n = pq = 17 \times 19 = 323$.
- 3. (Alice) Let $A = \varphi(n) = (p-1)(q-1) = 16 \times 18 = 288$. (Keep private!)
- 4. (Alice) Pick⁶ $E < \varphi(n)$ such that $\gcd(E, \varphi(n)) = 1$, say, E = 95. Publish public key (n, E) = (323, 95), with (public) encryption function e (for Bob)

$$y = e(x) = x^{E} \pmod{n}$$
, e.g., $y = e(x) = x^{95} \pmod{323}$

5. (Alice) Compute private key, $D = E^{-1} \pmod{A}$. Then the decryption function d is given by

$$d(y) = y^{D} = x^{ED} \equiv x \pmod{n},$$
 e.g., $d(y) = y^{191} \pmod{323}$

^{6.} usually choose E = 65537

RSA Example

Example

Suppose Alice want to decrypt the message $y \equiv 307 \pmod{323}$, which can be done by calculating $x \equiv y^D \pmod{323}$, where $D = 191 \pmod{323}$. Now that $323 = 17 \times 19$, and $\gcd(17,19) = 1$ we can apply Chinese remainder theorem.

- $x \equiv 307^{191} \pmod{17} \equiv 1^{191} \pmod{17} \equiv 1 \pmod{17}$.
- $ilde{X} \equiv 307^{191} \pmod{19} \equiv 3^{191} \pmod{19} \equiv 3^{11} \pmod{19} \equiv 10 \pmod{19}$. The second to last equality follows by noting that $3^{18} \equiv 1 \pmod{19}$ (Fermat's theorem) and that $191 \mod 18 = 11$.
- ► Solve the system of congruence

$$x \equiv 1 \pmod{17}$$
$$x \equiv 10 \pmod{19}$$

and get $x \equiv 86 \pmod{323}$.

RSA Correctness

Theorem

Given distinct primes p, q, let n = pq and $ed \equiv 1 \pmod{(p-1)(q-1)}$. Then if x < n with gcd(x, n) = 1, then $x^{ed} \equiv x \pmod{n}$.

Proof.

Since gcd(x, n) = 1, we have $x^{(p-1)(q-1)} \equiv 1 \pmod{n}$. Therefore ed = 1 + k(p-1)(q-1) for some $k \in \mathbb{Z}$, then

$$x^{ed} = x^{1+k(p-1)(q-1)}$$

$$= x \cdot x^{k(p-1)(q-1)}$$

$$= x \cdot (x^{(p-1)(q-1)})^k$$

$$\equiv x \pmod{n}$$

RSA Correctness

Theorem (Stronger, cf., Gallier, p. 316)

For any two distinct prime numbers p and q, if e and d are any two positive integers such that

- 1. 1 < e, d < (p-1)(q-1),
- 2. $ed \equiv 1 \pmod{(p-1)(q-1)}$,

then for every $x \in \mathbb{Z}$ we have

$$x^{ed} \equiv x \pmod{pq}$$

Remark

The proof does NOT rely on Euler's theorem (no coprimeness condition).