Questa SystemVerilog Testbench

LAB 1: Getting Started with SV Testbench

Goal Write a simple testbench for a 2-port arbiter

Get familiar with:

o interfaces,

o clocking blocks,

o program blocks,

o driving,

o sampling

Location From the course Website, download the file lab1.tar.gz

gunzip lab1.tar.gz

tar -xvf lab1.tar

Design Arbiter

Relevant Files in lab1 directory:

hdl/arb.sv	Arbiter DUT
hdl/arb_if.sv	Arbiter interface
hdl/top.sv	Top level program
tests/test.sv	Testbench

Testbench Environment

Steps to hook up a DUT to a Testbench

- 1. Create DUT interface with modports and clocking blocks
- 2. Create testbench program
- 3. Create top module
- 4. Compile and run
- 1) Complete the interface definition including the clocking block hdl/arb_if.sv
 - → Signal descriptions of the arbiter are defined in arb.sv
 - → Use logic type for interface signals.
- 2) Complete the task reset_test in the file tests/test.sv
 Assert the reset signal (active high), make sure you are not making any requests for two cycles, and then check that the grant is all zeroes one cycle later.
- 3) Complete the task request_grant_test in tests/test.sv
 You should check that arbiter works correct for a single request on both channels, and for multiple requests. The arbiter implements a round-robin arbitration algorithm.
 Use in-line assertions as shown in test.sv

^{**} Search for "LAB" in the lab files to see where to add your code.