Model Reduction for VLSI Physical Verification

N.P. (Nick) van der Meijs

Delft University of Technology, The Netherlands

nick@cas.et.tudelft.nl
http://cas.et.tudelft.nl/space

Delft University of Technology

Agenda

- 1. Micro-Electronics Background
 - Problem definition
- 2. General Model Order Reduction Issues
- 3. Interconnect Resistance and Capacitance
 - Gaussian Elimination Based Techniques
- 4. 3D BEM Capacitance Extraction
 - Matrix Extension Based Techniques
- 5. Inductance Extraction
- 6. Conclusion

1

Micro-Electronics Background

Intel 4004 Micro Processor

- **1971**
- **10** μ details
- **2300** components
- 64 kHz speed

Intel Pentium IV

- **2001**
- **0.18** μ details
- 42 million components
- 2 Ghz speed
- +/- 2 km interconnect

Chip Interconnect

IC Technology—Comparison

Chip: 4 cm²

Netherlands: 40,000 km² (approximately)

Scale: 2 cm / 200 km = 1:10,000,000

A chip compares to Netherlands full of roads:

1.8 meters wide

1.8 meters apart

6 layers

Generic Chip Design Flow

State Space Formulation

$$V_{in} = \begin{bmatrix} R_1 & R_2 \\ + V_{out} & V_{1} & V_{2} \\ V_{in} & V_{in} & V_{in} \end{bmatrix}$$

$$I_1 = C_1 \frac{dV_{C_1}}{dt} = \frac{1}{R_1} [V_{in} - V_{C_1}] + \frac{1}{R_2} [V_{C_2} - V_{C_1}]$$
 $I_2 = ...$

$$\begin{bmatrix} \frac{d}{dt} V_{C_1} \\ \frac{d}{dt} V_{C_2} \end{bmatrix} = \begin{bmatrix} -\left(\frac{1}{R_1C_1} + \frac{1}{R_2C_1}\right) & \frac{1}{R_2C_1} \\ \frac{1}{R_2C_2} & -\frac{1}{R_2C_2} \end{bmatrix} \begin{bmatrix} V_{C_1} \\ V_{C_2} \end{bmatrix} + \begin{bmatrix} \frac{1}{R_1C_1} \\ 0 \end{bmatrix} V_{in}$$

$$out = \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} V_{C_1} \\ V_{C_2} \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix} V_{in}$$

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

- Modeling: determination of R,C network, or equivalently, ABCD
- Simulation: applying u(t)
- But: usually other formulation (MNA)
- Would include (non-linear) models for active devices

General Model Order Reduction Issues

James Clerk Maxwell (1831 - 1879) Gustav Kirchhoff (1824 - 1887)

Consistent Modeling, Distributed Effects

- Chip Timing dominated by interconnect R, C
- R and C distributed along interconnect ⇒ Telegraphers eqs.
- Chip designers prefer Kirchhoff over Maxwell: PDE ⇒ ODE
- Need initial, fine-granularity RC mesh

- Huge data sets
- Impossible to analyze directly

Need model order reduction

Model Order Reduction

- Approximate huge system matrix by small one
- Frequency domain approach (usually)
- Using e.g. Krylov subspace techniques
- Active area of R&D
- Issues: stability, passivity, accuracy, CPU time
- Special simulator needed (or issue of realizability)
- Doesn't solve dataset problem

Need early model reduction

Model Order Reduction Phases

A Priori

- Before computation of the model
- Compute only part of the model
- Consistency of result
- Can reduce computational effort and/or model complexity

On the fly

- While computing the model
- Merge computational procedures
- Reduced model complexity at certain computational cost

A Posteriori

- After model has been computed
- Important domain of R&D
- Greatest opportunities for model reduction
- Sometimes large computational cost

2D FEM Resistance Extraction

Fundamental Approach

Based on Scanline Algorithm

- Operations take place in a narrow band sliding over layout from left to right
- Layout data read in A.L.A.P.
- Circuit data written out A.S.A.P.
- Sublinear memory complexity
- Near-linear time complexity

Interconnect Resistances

- FEM to determine resistances
- Solution only necessary at 'boundary nodes'
- Model reduction via Gaussian elimination of internal nodes (matrix based)
- **■** FE Mesh ⇔ resistance network
- Gaussian elimination ⇔ stardelta transformation: network based
- Node can be eliminated when all its neighbors are known

Gaussian Elimination for RC Networks

$$C_{i} := C_{i} + C_{x} \frac{G_{xi}}{\sum_{n \in X} G_{xn}} \qquad G_{ij} := G_{ij} + \frac{G_{xi}G_{xj}}{\sum_{n \in X} G_{xn}}$$

- Gaussian Elimination = Star-delta transformation
- Elmore delay (first moment of impulse response) is preserved
- Also for coupling capacitances
- On-the-fly elimination

Moment-Preserving Node Elimination

$$Y_{ij}(s) = M_{ij}^{(0)} + M_{ij}^{(1)}s + M_{ij}^{(2)}s^2 + ... = Y_{ij}(s) + \frac{Y_{ik}(s)Y_{jk}(s)}{\sum_{l=1,l\neq k}^{N}Y_{kl}(s)}$$

- M_{ij}⁽⁰⁾ represents 1/resistance, and M_{ij}⁽¹⁾ capacitance between nodes i and j.
- using Gaussian elimination each $M_{ij}^{(q)}$ can be calculated exactly, recursively using $M_{ii}^{(q-1)}$.
- fully contains Elmore-delay preserving elimination.
- can e.g. be used for moment-matching (Padé).

Frequency Dependent Model Reduction Selective Node Elimination (SNE)

- Star-delta transformation preserves first moment
- Error arises in second moment
- Combine 2nd moment with operating frequency ⇒ error weight
- Selective Internal Node Elimination, (SNE) procedure:
 - 1. Eliminate least critical node;
 - 2. Update weights of old neighbors;
 - 3. Repeat 1 & 2 until min weight exceeds threshold
- Reduced model is accurate up to specified frequency f_s
- No issues of passivity, stability, realizability
- Usually network small enough for simulation

Freq. Dependent Model Reduction (2)

Selective Node Elimination (SNE)

$$\delta_{ij} = \frac{\omega_{s}^{2} |\mathbf{M}_{ij}^{(2)}|}{\sqrt{\left(\left|\mathbf{M}_{ij}^{(0)}\right|^{2} + \omega_{s}^{2} |\mathbf{M}_{ij}^{(1)}|^{2}\right)}}, \quad \omega_{s} = 2\pi \mathbf{f}_{s}$$

$$\delta_k = \|(\delta_{ij}|i, j \in N_k)\|, \quad N_k = \{n | \text{connected to node } k\}$$

- 1. Calculate Node Error Weights δ_k of initial network, Error Weights are frequency dependent.
- 2. Eliminate node k having the lowest weight.
- 3. Update error weight of all nodes previously connected to k.
- Repeat step 2 and 3 until all remaining errors exceed a specified tolerance.

SNE Example: Snake RC

Initial 3D extraction ⇒ Iumped RC mesh 109 nodes 164 resistors 720 capacitors

SNE circuit results for Snake RC

Exact		SNE		AWE
Poles	100 MHz	200 MHz	500 MHz	N=3
8.8 10 ⁰⁸	7.6 10 ⁰⁸	8.4 10 ⁰⁸	8.7 10 ⁰⁸	8.8 10 ⁰⁸
9.9 10 ⁰⁹		8.4 10 ⁰⁹	8.9 10 ⁰⁹	1.0 10 ¹⁰
2.4 10 ¹⁰			2.1 10 ¹⁰	2.1 10 ¹⁰

SNE simulation results for Snake RC

Example (3)

Difference in magnitude and phase between the exact and the extracted circuit as a function of f_s , at that frequency.

Delayed Frontal Solution

- Elimination of 1 node O(d²)
- Minimize # of fill-ins by optimizing elimination order
- Minimum-degree order traditionally effective heuristic
- 'Natural' Scanline order not optimal
- Use priority queue (small buffer) to select nodes in minimumdegree order

Articulation Nodes

Articulation Nodes reduce number of fill-ins

Improved FEM Performance

Delayed Frontal Solution and Articulation Nodes enable FEM resistance extraction for large circuits

SNE Performance

SNE Calculations at relatively small cost

3D BEM Capacitance Extraction

Boundary Element Method

- Green's function $G(\vec{X}_j; \vec{X}_i)$ potential at \vec{X}_j , due to point-charge at \vec{X}_i
- Stratified medium (with ground)
- Only 2D boundary discretization
- N panels, m conductors
- $G_{ij} = \frac{1}{A_j} \int_{\Gamma_j} G(\vec{x}_j; \vec{x}_i) d\Gamma_j$ full but small matrix
- F∈ {0,1}^{Nxm} relates elements to conductors: C = F^T G⁻¹ F
- Solving above is usually performance bottleneck

Windowing Technique

- Capacitive Coupling only over a limited distance
- Only compute Capacitances for features at distance ≤ w
- Moving window attached to scanline
- May not simply put elements of G to zero

⇒ Schur Algorithm

Maximum Entropy Approximation (Schur)

- **Capacitance matrix:** $C = F^T G^{-1} F$
- Need to invert G, but avoid $O(N^3)$ time complexity.

- Partially specified G ⇒ reduced order C
- linear in number of panels
 N
- quadratic in width of band
- b quadratic in interaction window size
- complexity O(Nw⁴)

Schur Modeling Properties

- Good approximation of exact inverse on controllable band around main diagonal
 - entries out of band are 0
 - no direct coupling between distant features
- Neglected coupling detail is accounted for in total capacitance
- Enables linear time complexity with constant memory usage
- A-priori model reduction
- Illustrated on next slide for test structure with 2x5 parallel lines

Schur Inversion

w	tiı	me	mem	Capacitances (aF)					
_ (μ)	(s	ec)	(Mb)	C_{1g}	C_{12}	C_{13}	C_{14}	C_{16}	C_{1s}
11	14	4.5	14.74	451.6	596.4	42.3	18.1	147.5	1814.5
5	5 8	33.2	4.14	461.1	594.8	41.2	17.4	146.7	1818.7
4	1 4	17.8	2.10	474.6	593.9	41.0	21.6	146.3	1822.0
3	3 2	26.8	0.78	497.6	592.4	48.1		145.8	1828.1
2	2 1	2.5	0.32	552.3	608.6			144.7	1845.6

3D Capacitance – SRAM Example

3D-Model constructed from layout and technology data by the Space layout to circuit extractor.

Statistics (HP 9000/871) – 0.5µm technology

influence window:	3.0	(µm)
number of BE's	835	
number of matrices	3	
number of green's functions	287,093	
largest matrix dimension	625	
largest number entries/row	318	
total cpu-time	1:07	(min:sec)
total memory	8.96	(Mbyte)

3D Capacitances — Window Influences

Cpu time ([hours:min:sec]), memory usage ([MBytes]) — on an HP 9000/871 — and number of capacitances as a function of window size ([μ]).

	SRAM (6 transistors)			SRAM 5x5 (150 transistors)		
window	cpu time	memory	#C	cpu time	memory	#C
2	9	3.9	32	4:59	7.2	684
4	1:14	23.3	35	1:18:56	36.5	1046
6	1:45	38.7	36	5:46:08	60.0	1198

5

Interconnect Inductance

- Inductance more important
 - dl/dT noise
 - Crosstalk
 - Reflections
- Multi-million transistor chips as Microwave Circuits
- Microwave design approach (controlled current loops) infeasible
- Microwave modeling techniques inadequate
 - Based on identification of current loops
- Identification of current loops is difficult
 - Include parasitic R and C
 - Current distributes over many possible loops
 - Change with frequency

Partial Element Equivalent Circuits

- PEEC [Ruehli]
 - Break loops into loop segments
 - Partial Inductance between each pair of segments
 - Effectively model all possible current loops
- PEEC delivers full comprehensive circuit model
 - Simple algebraic model reduction (w/o R and C)
 - Model reduction (AWE, PVL, ...)
 - Circuit simulation
 - Large, dense matrix
- Reduce computation time

Virtual Screening Method to obtain a Sparse Partial Inductance Matrix

Virtual Screening Method

- Cut away same flux area for each pair of segments
- No sparsification: exact results
- (Strong) sparsification: improved accuracy

Results

Conclusion

- Physical verification of Integrated Circuits
- From geometry (chip layout) to reduced order model (netlist)
- Devices, interconnect (R, C), substrate
- Model Order Reduction as soon as possible
- Consistency of models remains a challenge
- Being used in practice

cas.et.tudelft.nl/space