Name: _						_
Due Date:	Friday,	May	15	(During	TA	Session)

Exercise 1 Given data (-1,0), (0,1), (1,3), construct the Power Series, Newton, and Lagrange interpolating polynomial of the data. Show that they are the same polynomial.

Exercise 2 (Programming) Consider the function $f(x) = \frac{1}{1+x^2}$ on the interval [-5, 5]. For n = 5, 10, 25, and 50. Plot f(x) and $p_n(x)$ in one figure, and $|e_n(x)| = |f(x) - p_n(x)|$ in another figure using

- (a) n+1 equally spaced nodes, and
- (b) n+1 Chebyshev nodes.

Explain your findings. Here, you may use any of the three interpolating polynomials mentioned in Exercise 1.

Exercise 3 Suppose we want to approximate the function $f(x) = \exp(-2x) + 2x^2 + x + 1$ on the interval [0, 1] using a piecewise linear polynomial $S_{1,n}$ that is constructed using the n+1 equidistantly spaced nodes $x_i = ih$, where $h = \frac{1}{n}$ and i = 0, ..., n.

- (a) Using the error bound we learned in class, determine the smallest value of n that guarantees that $|f(x) S_{1,n}(x)| \le 10^{-5}$, $\forall x \in [0,1]$.
- (b) (Programming) For the value of n determined in the first item, evaluate f and $S_{1,n}$ at 1000 equally spaced points between 0 and 1. Include a plot of f and $S_{1,n}$ that shows that the two curves are close to each other and report the maximum value of $|f(x) S_{1,n}(x)|$ at those points. Is this value less than 10^{-5} ?