Tarefa 4 – MN II – 2017.1

Nome: Thiago de Sousa Garcia — 374204

Toru	ela 4. Métodos Numéricos II - 2017. II. p de Sousa garcia - 374204.
1)	$J(\alpha, \beta) = \begin{bmatrix} dx & dx \\ d\alpha & d\beta \end{bmatrix}$ $\begin{bmatrix} dx & dx \\ d\alpha & d\beta \end{bmatrix}$
dx ax	$= \frac{1}{8} \frac{dy}{d\beta} = \frac{\cos(\frac{\pi x}{4}) - \operatorname{Den}(\frac{\pi x}{4})}{2}$
48	= 0. Av.
Cox	de d
	$=\frac{dx}{dx}\cdot\frac{dx}{dx}$ $=\frac{dx}{dx}\cdot\frac{dx}{dx}$ $=\frac{dx}{dx}\cdot\frac{dx}{dx}$ $=\frac{dx}{dx}\cdot\frac{dx}{dx}$
1	$V = \int_{-1}^{2} \int_{-1}^{2} \rho(\chi(\alpha, \beta), \gamma(\alpha, \beta)) \cdot \left(\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right)$ $= \int_{-1}^{2} \int_{-1}^{2} \rho(\chi(\alpha, \beta), \gamma(\alpha, \beta)) \cdot \left(\frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right) \cdot \left(\frac{1}{8}, \frac{1}{8}\right)$ $= \int_{-1}^{2} \int_{-1}^{2} \rho(\chi(\alpha, \beta), \gamma(\alpha, \beta)) \cdot \left(\frac{1}{8}, \frac{1}{8}\right) \cdot \left(\frac{1}{8}, \frac{1}{8}\right)$

