CLUSTER ANALYSIS

Introduction to Cluster Analysis

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis (or *clustering*, *data segmentation*, ...)
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)
- Typical applications
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

What is not Cluster Analysis?

- Supervised classification
 - Have class label information
- Simple segmentation
 - Dividing students into different registration groups alphabetically, by last name
- Results of a query
 - Groupings are a result of an external specification
- Graph partitioning
 - Some mutual relevance and synergy, but areas are not identical

Quality: What Is Good Clustering?

- A good clustering method will produce high quality clusters
 - high intra-class similarity: cohesive within clusters
 - low inter-class similarity: distinctive between clusters
- The quality of a clustering method depends on
 - the similarity measure used by the method
 - its implementation, and
 - Its ability to discover some or all of the hidden patterns

Considerations for Cluster Analysis

Partitioning criteria

- Single level vs. hierarchical partitioning (often, multi-level hierarchical partitioning is desirable)
- Separation of clusters
 - Exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more than one class)
- Similarity measure
 - Distance-based (e.g., Euclidean, road network, vector) vs. connectivity-based (e.g., density or contiguity)
- Clustering space
 - Full space (often when low dimensional) vs. sub spaces (often in high-dimensional clustering)

Requirements and Challenges

- Scalability:
 - Clustering all the data instead of only on samples
- Ability to deal with different types of attributes :
 - Numerical, binary, categorical, ordinal, linked, and mixture of these
- Constraint-based clustering :
 - User may give inputs on constraints
 - Use domain knowledge to determine input parameters
- Interpretability and usability
- Others
 - Discovery of clusters with arbitrary shape
 - Ability to deal with noisy data
 - Incremental clustering and insensitivity to input order
 - High dimensionality

Major Clustering Approaches

Partitioning approach:

- Construct various partitions and then evaluate them by some criterion,
 e.g., minimizing the sum of square errors
- Typical methods: k-means, k-medoids, CLARANS
- <u>Hierarchical approach</u>:
 - Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Typical methods: Diana, Agnes, BIRCH, CAMELEON
- Density-based approach:
 - Based on connectivity and density functions
 - Typical methods: DBSACN, OPTICS, DenClue
- Grid-based approach:
 - based on a multiple-level granularity structure
 - Typical methods: STING, WaveCluster, CLIQUE

Major Clustering Approaches (contd..)

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, SOM, COBWEB
- Frequent pattern-based:
 - Based on the analysis of frequent patterns
 - Typical methods: p-Cluster
- <u>User-guided or constraint-based:</u>
 - Clustering by considering user-specified or application-specific constraints
 - Typical methods: COD (obstacles), constrained clustering
- <u>Link-based clustering</u>:
 - Objects are often linked together in various ways
 - Massive links can be used to cluster objects: SimRank, LinkClus

Partitional Clustering

- A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset.

A Partitional Clustering

Partitioning Algorithms: Basic Concept

- **Partitioning method:** Partitioning a database D of n objects into a set of k clusters, such that the sum of squared distances is minimized (where c_i is the centroid or medoid of cluster C_i)
- Given *k*, find a partition of *k clusters* that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: *k-means* and *k-medoids* algorithms
 - **k-means**: Each cluster is represented by the center of the cluster
 - <u>k-medoids</u> or PAM (Partition around medoids): Each cluster is represented by one of the objects in the cluster

The K-Means Clustering Method

- Given *k*, the *k-means* algorithm is implemented in four steps:
 - Partition objects into k nonempty subsets
 - Compute seed points as the centroids of the clusters of the current partitioning (the centroid is the center, i.e., mean point, of the cluster)
 - Assign each object to the cluster with the nearest seed point
 - Go back to Step 2, stop when the assignment does not change

An Example of K-Means Clustering

Until no change

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.
 - x is a data point in cluster C_i and m_i is the representative point for cluster C_i
 - can show that m_i corresponds to the center (mean) of the cluster
 - Given two clusters, we can choose the one with the smallest error
 - One easy way to reduce SSE is to increase K, the number of clusters
 - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

Variations of the K-Means Method

- Most of the variants of the *k-means* which differ in
 - Selection of the initial *k* means
 - Dissimilarity calculations
 - Strategies to calculate cluster means

- Replacing means of clusters with <u>modes</u>
- Using new dissimilarity measures to deal with categorical objects
- Using a <u>frequency</u>-based method to update modes of clusters
- A mixture of categorical and numerical data: *k-prototype* method

Problem in K-Means Method

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data
- K-Medoids: Instead of taking the **mean** value of the object in a cluster as a reference point, **medoids** can be used, which is the **most centrally located** object in a cluster

PAM: A Typical K-Medoids Algorithm

The K-Medoid Clustering Method

- *K-Medoids* Clustering: Find *representative* objects (<u>medoids</u>) in clusters
 - *PAM* (Partitioning Around Medoids)
 - Starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - PAM works effectively for small data sets, but does not scale well for large data sets (due to the computational complexity)
- Efficiency improvement on PAM
 - *CLARA* : PAM on samples
 - *CLARANS* : Randomized re-sampling

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Types of Hierarchical Clustering

- Two main types of hierarchical clustering are:
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

- Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time.
 - Hierarchical clusterings may correspond to meaningful taxonomies

Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc.

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the proximity matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the proximity matrix
 - **6.** Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Input/ Initial setting

• Start with clusters of individual points and a distance/proximity matrix

Intermediate State

• After some merging steps, we have some clusters

	C1	C2	С3	C4	C5
C 1					
C2					
C 3					
C4					
C5					

Distance/Proximity Matrix

Intermediate State

• Merge the two closest clusters (C2 and C5) and update the distance

matrix.

Distance/Proximity

After Merging

• "How do we update the distance matrix?"

Inter-Cluster Similarity

	p1	p2	рЗ	p4	р5	<u> </u>
p1						
p2						
p2 p3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
 - Ward's Method uses squared error

AGNES (Agglomerative Nesting)

- Introduced by Kaufmann and Rousseeuw
- Implemented in statistical packages, e.g., Splus
- Use the **single-link** method and the dissimilarity matrix
- Merge nodes that have the least dissimilarity
- Go on in a non-descending fashion
- Eventually all nodes belong to the same cluster

DIANA (Divisive Analysis)

- Introduced by Kaufmann and Rousseeuw
- Implemented in statistical analysis packages, e.g., Splus
- Inverse order of AGNES
- Eventually each node forms a cluster on its own

Extensions to Hierarchical Clustering

- Major weakness of agglomerative clustering methods
 - Can never undo what was done previously
 - Do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects
- Integration of hierarchical & distance-based clustering
 - BIRCH (1996): uses CF-tree and incrementally adjusts the quality of sub-clusters
 - CHAMELEON (1999): hierarchical clustering using dynamic modeling

BIRCH (Balanced Iterative Reducing and Clustering Using Hierarchies)

- Incrementally construct a CF (Clustering Feature) tree, a hierarchical data structure for multiphase clustering
 - Phase 1: scan DB to build an initial in-memory CF tree (a multi-level compression of the data that tries to preserve the inherent clustering structure of the data)
 - Phase 2: use an arbitrary clustering algorithm to cluster the leaf nodes of the CF-tree
- *Scales linearly*: finds a good clustering with a single scan and improves the quality with a few additional scans
- Weakness: handles only numeric data, and sensitive to the order of the data record

The Birch Algorithm

Cluster Diameter

$$\sqrt{\frac{1}{n(n-1)}\sum_{j=1}^{n}(x_{j}-x_{j})^{2}}$$

- For each point in the input
 - Find closest leaf entry
 - Add point to leaf entry and update CF
 - If entry diameter > max_diameter, then split leaf, and possibly parents
- Algorithm is O(n)
- Concerns
 - Sensitive to insertion order of data points
 - Since we fix the size of leaf nodes, so clusters may not be so natural
 - Clusters tend to be spherical given the radius and diameter measures

CHAMELEON: Hierarchical Clustering Using Dynamic Modeling

- Measures the similarity based on a dynamic model
 - Two clusters are merged only if the *interconnectivity* and *closeness (proximity)* between two clusters are high *relative* to the internal interconnectivity of the clusters and closeness of items within the clusters
- Graph-based, and a two-phase algorithm
 - Use a graph-partitioning algorithm: cluster objects into a large number of relatively small sub-clusters
 - 2. Use an agglomerative hierarchical clustering algorithm: find the genuine clusters by repeatedly combining these subclusters