Chapitre

Fonctions

3. Précisions sur les applications réciproques

π

Théorème 1.1: Proposition

Soit $f:E \to F$ une application. S'il existe $g:F \to E$ une application telle que : $g \circ f = Id_E$ et $f \circ g = Id_F$. Alors f est bijective et g est la réciproque de f.

π Preuve 1.1 :

Je suppose $: f: E \to F.$ Soit $g: F \to E$ avec $g \circ f = Id_E$ et $f \circ g = Id_F$

• Montrons que f est bijective.

Soir $y \in F, E?x \in E$, tel que y = f(x), est unique?

 $y = f(x) \Rightarrow g(y) = g(f(x)) = x$, car $g \circ f = Id_E$.

Si g=f(x), alors x=g(y). y a au plus un antécédant et f est injective.

De plus, f(x)=f(g(y))=y car $f\circ g=Id_F$. Donc x=g(y) est bien un antécédant de y par f et c'est le seul.

Conslusion : f est bijective de $E \rightarrow F$

• Montrons $g = f^{-1}$.

f bijective et $F \to E$ et $y \longmapsto x$.

 $f^{-1}(x) = x \iff y = f(x) \text{ et } x \in E.$

Vérifions que $\forall y \in F, f^{-1}(y) = g(y)$.

 $f^{-1}(y) = x \iff f(x) = y \iff g \circ f(x) = g(y) \Rightarrow x = g(y).$ Donc $g(y) = f^{-1}(y) \forall y \in F$.

Donc l'implication est démontrée.

Théorème 1.2: Proposition

Soit $f: E \to F$ et $g: F \Rightarrow G$ deux applications bijectives. $g \circ f$: $E \to F \to G$ et $x \longmapsto f(x) \longmapsto g(f(x))$ Alors $g \circ f$ est bijective.

Théorème 1.3 : Proposition

Soit $f: E \to F$ bijective et notons $f^{-1}: F \Rightarrow E$ sa réciproque. Alors f^{-1} est bijective de réciproque f.

Preuve 1.2:

Si f est bijective, alors $f \circ f^{-1} = Id_F$ et $f^{-1} \circ f = Id_E$. D'après la proposition précédante, f^{-1} est bijective

Théorème 1.4: Proposition

Soit $f: I \to R$, si f est strictement monotone sur I, alors f est injective de I sur R.

π Preuve 1.3

Pour une fonction strictement décroissante.

 $\forall x, x', x' > xf(x) > f(x')$ et donc $f(x) \neq f(x') \forall x, x', x' < f(x')$ x, f(x) < f(x') et donc $f(x) \neq f(x')$

Donc, on a bien $\forall x \neq x' \Rightarrow f(x) \neq f(x')$

On dit que f est continue sur l'intervalle I si elle est continue en tout x de I.

3. Continuité et opérations

On prend 2 fonctions f et g continues sur I. Alors f + g, fg sont continues sur I et $\frac{f}{g}$ est continue en tout point de I tel que $g(x) \neq 0$.

π

Théorème 2.1 : Continuité des composées

Soient $f: I \to J$ une fonction continue surI, à valeurs dans $I \in \mathbb{R}$ et $g: I \to J \in \mathbb{R}$. Alors $g \circ f$ est continue surI.

Î

Preuve 2.1

Soit $x_0 \in I$

 $\operatorname{Soit} \epsilon > 0 \ \exists ?\alpha > 0, \operatorname{tel} \operatorname{que} |x - x_0| < \alpha \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon.$

Soit $\varepsilon>0$ donné. On cherche α tel que $y_0=f(x_0)$. Notons alors y=f(x). g est continue en x_0 , donc $\exists \eta>0$, $|y-y_0|<\eta\Rightarrow |g(y)-g(y_0)|<\varepsilon$.

Or, f est continue en x_0 , donc $\exists \alpha > 0, |x - x_0| \Rightarrow |f(x) - f(x_0) < \eta \Rightarrow |g(f(x)) - g(f(x_0))| < \varepsilon \text{ car } |y - y_0| < \eta \Rightarrow |g(y) - g(y_0)| < \varepsilon$

Donc $g \circ f$ est bien continue en x_0 .

3.2 Théorème des valeurs intermédiaires

π

Théorème 2.2: TVI

Soit $f:I\to\mathbb{R}$ une fonction et $(a\leq b)\in I.$ On suppose f continue sur [a,b].

Alors $\forall y_0 \in [f(a), f(b)], \exists x_0 \in [a, b], y_0 = f(x_0).$

Théorème 2.3 : Variante du TVI

Il est équivalent à :

si f est continue sur [a,b] et $f(a) \times f(b) \leq 0$, alors $\exists c \in [a,b], f(c) = 0$

Preuve 2.2: Par dichotomie

Supposons par exemple que $f(a) \leq 0 \leq f(b)$, de sorte que $0 \in [f(a), f(b)]$ (l'autre cas s'y ramène en considérant f). On construit par récurrence deux suites (a_n) et (b_n) de la façon suivante.

On part de $a_0:=a$, $b_0:=b$, et supposant construits a_n et b_n tels que $f(a_n)\leq 0\leq f(b_n)$, on considère la valeur de f en $(a_n+b_n)/2$, milieu du segment $[a_n,b_n]$.

On construit alors a_{n+1} et b_{n+1} ainsi :

- si $f(\frac{a_n+b_n}{2})<0$, on pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n.$
- · Sinon, c'est à dire si $f(\frac{a_n+b_n}{2})\geq 0$, on pose $a_{n+1}=a_n$ et $b_{n+1}=\frac{a_n+b_n}{2}$.

On voit ainsi que:

- 1. $a_n \le a_{n+1} \le b_{n+1} \le b_n$
- 2. $0 \le b_n a_n = \frac{b-a}{2^n}$ (On divise par 2 à chaque fois la longueur initiale b-a
- 3. $f(a_n) \le 0 \le f(b_n)$

En particulier, $\lim_{\infty} |b_n - a_n| = 0$ et les 2 suites sont adjacentes.

Elles convergent donc vers une unique limite c. On a $c \in [a,b]$ car $a_n \in [a,b]$ et comme f est continue, on a : $\lim_{\infty} f(a_n) = f(c) = f(b_n)$.

Les doubles inégalités 2 et 3 impliquent que c=0.

3.2. Théorème de Heine

Théorème 2.4: Théorème de Heine

L'image continue d'un intervalle fermé et borné est un intervalle fermé et borné.

Soient $a < b \in \mathbb{R}$ et $f:[a,b] \to \mathbb{R}$, f continue sur [a,b], alors $\exists m \in \mathbb{R}, M \in \mathbb{R}, m \leq M$ tels que f([a,b] = [m,M] en particulier $\exists x_0 \in [a,b], f(x_0) = m$ et $\exists x_1 \in [a,b], f(x_1) = M$

Preuve 2.3

On montre d'abord que la fonction est bornée, puis qu'elle atteint ses bornes.

Montrons que la fonction est bornée. Soit $f:[a;b] \to \mathbb{R}$, avec a < b. On suppose la fonction f non majorée (hypothèse de la démonstration par l'absurde). Dans ce cas, $\forall M, \exists t \in [a,b], t \geq M$.

En posant $M=n\in\mathbb{N}$, on a $t_n\in[a,b], f(t_n)\geq n=M$. La suite obtenue est bornée, on peut en extraire une suite convergente (t_{n_k}) de limite α .

Nous avons donc $f(t_{n_k}) \geq n_k, \forall k \in \mathbb{N}$.

f est continue, donc la suite $(f(t_{n_k})) \to f(\alpha)$.

Or, d'après $f(t_{n_k}) \geq n_k$, la suite devrait tendre vers $+\infty$. Il y a contradiction, donc f est majorée. On applique ce qui précède pour montrer que f est minorée.

Montrons qu'elle atteint ses bornes.

Notons maintenant α sa borne inférieure et supposons qu'elle n'est pas atteinte pas f. Posons alors la fonction $g:[a,b]\to \mathbb{R}, g(t)=\frac{1}{f(t)-\alpha}.$ g est bien continue sur [a,b] par composition.

Soit M>0 donné. Par définition de la borne inférieure, nous savons qu'il existe $t\in [a,b]$ tel que $\alpha\leq f(t)<\alpha+\frac{1}{M}$, et donc que g(t)>M. M étant arbitraire, g n'est pas majorée. Or, cela contredit la première partie de la démonstration.

3.2. Réciproque d'une application continue strictement monotone

3.2. Dérivées

On donne un intervalle $I,J\in\mathbb{R}$ et $f:I\to J$. On suppose f dérivable sur I et que f est bijective de $I\to J$. On note $f^{-1}:J\to I$ la réciproque. Elle est dérivable en $y_0\in J\iff f'(f^{-1}(y_0))\neq 0$

On a alors : $(f^{-1})'_{y_0} = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{f'(x_0)}$ avec $x_0 = f^{-1}(y_0)$.

π Preuve 2.4

On pose $f^{-1}(y_0)=x_0$ Si f^{-1} est dérivable en x.

On a
$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0}$$
.

On pose alors y=f(x) et $x_0=f^{-1}(y_0)$. Donc $y\to y_0\iff x\to x_0$ car les fonctions sont continues.

Donc
$$\lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$$
 Si $f'(x_0) \neq 0$.

3. Théorème des accroissements finis et de Rolle

a < b

3.3. Théorème des accroissements finis

π Théorème 3.1 :

Soit $f:[a,b] \to \mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[. Alors $\exists c \in]a,b[,rac{f(b)-f(a)}{b-a}=f'(c)$

π Preuve 3.1

On suppose f continue sur [a, b] et dérivable sur [a, b].

On considère une fonction auxilliaire $\varphi(t)=(t-a)(f(b)-f(a))-(b-a)(f(t)-f(a)).$

 φ est continue sur [a,b] et dérivable sur [a,b] car f l'est.

$$\varphi(b) = 0 = \varphi(a)$$

D'après le Théorème de Rolle, il existe $c \in]a,b[,\varphi'(c)=0.$

Or, $\varphi'(t) = f(b) - f(a) - (b-a)f'(t)$, donc $\varphi'(c) = 0 \iff f'(c) = \frac{f(b) - f(a)}{b - a}$.

3.3. Théorème de Rolle

Théorème 3.2 : Théorème de Rolle

Soit $f:[a,b]\to\mathbb{R}$. Si f est continue sur [a,b] et dérivable sur]a,b[et f(a)=f(b). Alors $\exists c\in]a,b[,f'(c)=0$

π Preuve 3.2

f étant continue sur [a,b], elle est bornée et atteint sa borne inférieure α et sa borne supérieure β . Prenons donc c et d dans [a,b]tels que $f(c) = \alpha$ et $f(d) = \alpha$.

Si $\alpha=\beta$, alors la fonction est en fait constante, et donc en tous les points $c \in]a,b[$, la dérivée s'annule.

Sinon, on a $\alpha \neq \beta$, et donc l'un des deux est différent de f(a) =f(b). Disons par exemple que $f(c) = \alpha < f(a) = f(b)$. Donc $c \neq a$ et $c \neq b$, soit $c \in]a, b[$ et f'(c) = 0.

En effet,
$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^-} \frac{f(x) - m}{x - x_0} \le 0.$$

$$\text{Mais } f'(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0^+} \frac{f(x) - m}{x - x_0} \ge 0.$$

Donc $f'(x_0) \ge 0$ et ≤ 0 , donc $f'(x_0) = 0$.