Quinn Mayo

Undergraduate Student University of Massachusetts Amherst Amherst, MA, 01002, USA. qmayo@umass.edu — +1-850-687-8584 quinnmayo.com

RESEARCH INTERESTS

My primary research interest is Computational Complexity Theory, particularly Concrete Complexity which encompasses the analysis of Boolean Circuits, Branching Programs, and other combinatorial models of computation. I am interested generally in parallel computation and the structural relation between low-level circuit complexity classes which will be the subject of my BSc Honors Thesis. In the future, I also plan to do research on algebraic methods in complexity (Arithmetic Circuits, Polynomial Methods in Circuit Complexity).

EDUCATION

University of Massachusetts Amherst, Amherst, MA

BSc (Honors, with Thesis) in Computer Science, Mathematics Concentration(s): Theory of Computation, Pure Mathematics

ncentration(s): Theory of Computation, Pure Mathematics Cumulative GPA: 3.9/4.0

RESEARCH EXPERIENCE

BSc Honors Thesis

Amherst, MA

Honors Student

Spring 2024 — Present

Advisors: David A. M. Barrington, Eric Allender

• Studying the relationship between NC¹ and TC⁰ and the complexity of Boolean formula evaluation.

• Preliminary reading on circuit uniformity, complete problems for NC¹, TC⁰ over Spring, Summer 2024.

Polymath Jr. REU
Research Participant

June 2024 — August 2024

Advisor: Alexandra Seceleanu

• Studied the construction of Macaulay rings and posets in a group of 4 students.

- Gave counter-examples to several conjectures on the tensor product of Macaulay rings, and developed new conjectures.
- Results to be written in a paper later in the Fall.

CICS Undergraduate Research Volunteers

Research Participant

Advisor: Kyle Doney (PhD student)

- Studied linearly separable Boolean functions and relevant algorithms.
- Wrote code to generate linearly separable Boolean formulas.
- Presented poster at CICS poster session.

SELECTED COURSES

COMPSCI 501 — Formal Language Theory

An introductory graduate course in computability theory and complexity theory.

COMPSCI 466 — Cryptography

An introductory undergraduate course in cryptography, with an emphasis on provable security.

MATH 411, 412 — Abstract Algebra I, II

The undergraduate algebra sequence covering group theory, ring and field theory, and an introduction to Galois theory.

MATH 545 — Advanced Linear Algebra

A second course in undergraduate linear algebra with an abstract-algebraic approach.

SCHOLARSHIPS, AWARDS & HONORS

Dean's Merit Scholarship

Fall 2022 — Present

Amherst, MA

December 2023 — February 2024

Graduation: Spring 2025

Quinn Mayo May 2024

Class of 1934 Scholarship

2023

A merit-based scholarship awarded to undergraduates yearly.

Dean's List 2022 - Present