

Data - Questions

Thursday 24th November, 2016

1 Introduction

2 Questions About the Data

3 Linear Regression

4 Conclusion

Order of the Day

- what type of questions can be asked (and answered) regarding the data
 - a primer for next topics in statistical inference
- introduction to two important and basic machine learning tasks

Israellëch challenge

1 Introduction

2 Questions About the Data

3 Linear Regression

4 Conclusion

Questions About the Data

	name	$\begin{array}{c} \text{filming time} \\ (years) \end{array}$	$\begin{array}{c} \text{budget} \\ (10^6\$) \end{array}$	$\begin{array}{c} \text{profit} \\ (10^6\$) \end{array}$	genre
	Avatar	1.5	350	650	action
	Titanic	0.8	300	500	drama
	Die Hard	0.5	-	350	-
V	Looper	0.6	-	400	-
	Fight Club	0.4	-	700	-
	Inception	0.7	250	400	action
	÷:	÷.	÷	÷	:

what can we ask about it?

discussion

Questions About the Data

- how was it generated?
- was it generated the same way as another data set D'?
- ▶ is it surprising?
- ▶ are data elements A and B dependent on each other?
- which category do the points in V belong to?
- ▶ what are the missing values for data element *A*?

Categories and Missing Values

The last two questions:

- which category do the points in V belong to?
- ightharpoonup what are the missing values for data element A? are closely related

Categories and Missing Values

The last two questions:

- which category do the points in V belong to?
 - estimate a missing categorical value
 - example: genre
 - task: classification

- ▶ what are the missing values for data element A?
 - estimate a missing | numerical | value
 - example: budget
 - task: regression

Israellëch challenge

1 Introduction

2 Questions About the Data

3 Linear Regression

4 Conclusion

Linear Regression

Data

X^1	X^2	• • •	X^p	Y
1	200		-0.05	5
1.01	400	• • •	-0.06	7
		÷		:
1.1	460		-0.1	-
1.5	430		-0.08	-

Task

- lacksquare assume $\forall i=1,\ldots,n:Y_ipprox \sum_{j=1}^p eta^j X_i^j$
- \triangleright estimate β^1, \ldots, β^p

Linear Regression

Task

- ightharpoonup assume $\forall i=1,\ldots,n:Y_i pprox \sum_{j=1}^p \beta^j X_i^j$
- estimate β^1, \ldots, β^p

Naming

notation	name	
X^1, \dots, X^p	independent/explanatory variables	
Y	target/dependent/explained	
$\epsilon_i = Y_i - \sum_{j=1}^p \beta^j X_i^j$	residuals	
eta^1,\ldots,eta^p	coefficients	

Example: Trend Line

$$\forall i = 1, \dots, n : Y_i \approx \sum_{j=1}^p \beta^j X_i^j$$

system of linear equations

$$\begin{pmatrix} \beta^1 \cdot X_1^1 + \beta^2 \cdot X_1^2 + \dots + \beta^p \cdot X_1^p \\ \vdots \\ \beta^1 \cdot X_n^1 + \beta^2 \cdot X_n^2 + \dots + \beta^p \cdot X_n^p \end{pmatrix} \approx \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

$$\begin{pmatrix} \beta^1 \cdot X_1^1 & \beta^2 \cdot X_1^2 & \dots & \beta^p \cdot X_1^p \\ \vdots & & & & \\ \beta^1 \cdot X_n^1 & \beta^2 \cdot X_n^2 & \dots & \beta^p \cdot X_n^p \end{pmatrix} \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \approx \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

$$\begin{pmatrix} X_1^1 & X_1^2 & \dots & X_1^p \\ \vdots & & & \\ X_n^1 & X_n^2 & \dots & X_n^p \end{pmatrix} \cdot \begin{pmatrix} \beta^1 \\ \vdots \\ \beta^p \end{pmatrix} \approx \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}$$

in short:

$$X \cdot \beta \approx Y$$

Estimating the Coefficients

Let's solve:

$$X \cdot \beta = Y$$

problem:

Χ	Υ
2	6
3	9
10	30
1	3.001

Estimating the Coefficients

Israellëch challenge

Idea

solving

$$X \cdot \beta = Y$$

is equivalent to demanding

$$X \cdot \beta - Y = 0$$

instead we can minimize

$$\arg\min_{\alpha} |X \cdot \beta - Y|$$

problem - non differentiable

Least Squares

Let's solve:

$$\underset{\beta}{\operatorname{arg\,min}} \|X \cdot \beta - Y\|^2$$

- differentiable
- convex (unique minimizer)

solution:

$$\beta = (X^T \cdot X)^{-1} \cdot X^T \cdot Y$$

Israel<mark>lëch</mark> challenge

So we can solve:

$$Y \approx \beta^1 \cdot 3X^1$$

$$Y \approx \beta^1 \cdot 3X^1 + \beta^2 \cdot 5X^2$$

But what about?

$$Y \approx \beta^1 \cdot 3X^1 - \beta^2 \cdot 2(X^1)^2$$

$$Y \approx \beta^1 \cdot 3X^1 + \beta^0 \cdot 1$$

$$Y \approx \beta^1 \cdot 3\sin\left(X^1\right) + \beta^2 \cdot 5\cos\left(X^2\right)$$

We can simply transform:

X^1	X^2
2	6
3	9
:	:

$3X^1$	$-2(X^1)^2$
2	-8
3	-18
:	:

Israel<mark>lëch</mark> challenge

We can simply transform:

X^1	X^2
2	6
3	9
:	:

$3X^1$	1
2	1
3	$\mid 1 \mid$
:	

We can simply transform:

$X^{\scriptscriptstyle 1}$	X^2	
2	6	
3	9	
:	:	

$3\sin\left(X^{1}\right)$	$5\cos\left(X^1\right)^2$
2.73	0.42
-4.80	4.56
:	:

- the linearity is in the regression coefficients
- strictly speaking
 - polynomial regression
 - ...
- in practice same solution

Israellëch challenge

what can't we solve?

- $Y \approx \sin\left(\beta^1 \cdot X^1\right)$
- $Y \approx \beta \left(X^1 \right) \cdot X^1$
- **...**

Intercept

9V1 1

Λ	Λ		$\partial \Lambda$	1
2	6		2	1
3	9	\longrightarrow	3	1
:	:		:	:
•	•		•	

 $\mathbf{v}_1 \mathbf{v}_2$

in this case the result of our regression would be coefficients β^0, β^1 that satisfy

$$\beta^1 \cdot 3X^1 + \beta^0 \cdot 1 \approx Y$$

 eta^0 the coefficient for the constant term is named the intercept

- X^1, \ldots, X^p linearly independent
- more samples than variables (overdetermined)
- ▶ low measurement error X^1, \ldots, X^p
- fixed variance homoscedasticity
- $ightharpoonup \epsilon_1, \ldots, \epsilon_n$ statistically independent

Another Direction

- ▶ least squares cool trick
- what about some statistics?

Residuals (1D)

$$\forall i = 1, \dots, n : \epsilon_i = Y_i - X_i \cdot \beta$$

- $ightharpoonup \epsilon_1, \ldots, \epsilon_n$ are independent
- we assume $E[\epsilon_i] = 0$ (always)

explain

- ▶ let's assume that $\forall i = 1, ..., n : \epsilon_i \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$
- $Y_i = X_i \cdot \beta + \epsilon_i$

Another Direction

Residuals (1D)

$$\forall i = 1, \dots, n : \epsilon_i = Y_i - X_i \cdot \beta$$

- $ightharpoonup \epsilon_1, \ldots, \epsilon_n$ are independent
- we assume $E[\epsilon_i] = 0$ (always)

explain

- ▶ let's assume that $\forall i = 1, ..., n : \epsilon_i \sim \mathcal{N}\left(0, \sigma_{\epsilon}^2\right)$
- $(Y_i \mid X_i, \beta) \sim \mathcal{N}\left(X_i \cdot \beta, \sigma_{\epsilon}^2\right)$ independently

notation, what now?

Israellëch challenge

$$P(Y \mid X, \beta) = \prod_{i=1}^{n} P(Y_i \mid X_i, \beta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} e^{-\frac{(Y_i - X_i \cdot \beta)^2}{2\sigma_{\epsilon}^2}}$$

$$= \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^2}} e^{-\frac{1}{2\sigma_{\epsilon}^2} \sum_{i=1}^{n} (Y_i - X_i \cdot \beta)^2}$$

Maximum Likelihood Estimation

Israellëch challenge

$$\beta_{mle} = \arg\max_{\beta} P(Y \mid X, \beta)$$

$$= \arg\max_{\beta} \frac{1}{\sqrt{2\pi\sigma_{\epsilon}^{2}}} e^{-\frac{1}{2\sigma_{\epsilon}^{2}} \sum_{i=1}^{n} (Y_{i} - X_{i} \cdot \beta)^{2}}$$

$$= \arg\max_{\beta} -\frac{1}{2\sigma_{\epsilon}^{2}} \sum_{i=1}^{n} (Y_{i} - X_{i} \cdot \beta)^{2}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (Y_{i} - X_{i} \cdot \beta)^{2}$$

Maximum Likelihood Estimation

$$\beta_{mle} = \underset{\beta}{\operatorname{arg\,min}} \|Y - X \cdot \beta\|^2$$

how do we measure success?

▶ Mean Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i^{true} - Y_i)^2$$

▶ Coefficient of Determination r^2

$$r^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - X_{i} \cdot \beta)^{2}}{\sum_{i=1}^{n} (Y_{i} - \mathbb{E}[Y_{i}])^{2}}$$

Israellëch challenge

1 Introduction

2 Questions About the Data

3 Linear Regression

4 Conclusion

Questions About the Data

- how was it generated?
- was it generated the same way as another data set D'? - Statistical tests
- is it surprising? hypothesis testing
- ▶ are data elements A and B dependent on each other? - Statisical tests
- which category do the points in V belong to? Data Science
- what are the missing values for data element A? -Linear Regression