Support Vector Machines

Boston University CS 506 - Lance Galletti

We want our samples to lie beyond the street. That is:

$$\vec{w} \cdot \vec{x}_{+} + b \ge 1$$
$$\vec{w} \cdot \vec{x}_{-} + b \le -1$$

Note: for an unknown **u**, we can have

$$-1 < \vec{w} \cdot \vec{u} + b < 1$$

Let's introduce a variable

$$y_i = \begin{cases} +1 & \text{if } x_i \text{ is a } + \text{sample} \\ \\ -1 & \text{if } x_i \text{ is a } - \text{sample} \end{cases}$$

Note: this is effectively the class label of x_i

If we multiply our sample decision rules by this new variable:

$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$$

Meaning, for x_i on the decision boundary, we want:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

We know that
$${
m WIDTH}=(ec x_+-ec x_-)\cdot rac{ec w}{\|ec w\|}$$
 for $ec x_-$ and $ec x_+$ points on the boundary

And, since they are on the boundary, we know that

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Hence, **WIDTH**
$$=\frac{2}{\|\vec{w}\|}$$

(as an exercise, try to show this)

Goal is to maximize the width

$$\max(\frac{2}{\|\vec{w}\|}) = \min(\|\vec{w}\|)$$
$$= \min(\frac{1}{2} \|\vec{w}\|^2)$$

Subject to:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Can use Lagrange multipliers to form a single expression to find the extremum of

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i \left[y_i(\vec{x}_i \cdot \vec{w} + b) - 1 \right]$$

where α_i is 0 for x_i not on the boundary.

Now we can take derivatives to find the extremum of L.

$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} = 0$$

$$\implies \vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i}$$

Means w is a linear sum of vectors in our sample/training set!

$$\frac{\partial L}{\partial b} = -\sum_{i} \alpha_{i} y_{i} = 0$$

$$\implies \sum_{i} \alpha_{i} y_{i} = 0$$

Let's plug these values back into L to see what happens to L at its extremum

$$L = \frac{1}{2} \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) - \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) - \sum_{i} \alpha_{i} y_{i} b + \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right)$$

Simplifying, we get:

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right)$$
$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\vec{x}_{i} \cdot \vec{x}_{j} \right)$$

Option 1: Soft Margins

Can allow for some points in the dataset to be misclassified.

Option 2: Change perspective

But how to find Φ?

Turns out we don't need to find or define a transformation Φ!

Looking back at L, since it depends only on the dot product of our input, we only need to define the dot product in our transformed space.

i.e. we only need to define

$$K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

Called a Kernel function. This is often referred to as the "kernel trick".

Kernel Function (intuition)

- The inner product of a space describes how close / similar points are
- Kernel Functions allow for specifying the closeness / similarity of points in a hypothetical transformed space
- The hope is that with that new notion of closeness, points in the dataset are linearly separable.

Example Kernel Functions

Polynomial Kernel

$$K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i \cdot \vec{x}_j + 1)^n$$

Radial Basis Function Kernel

$$K(\vec{x}_i, \vec{x}_j) = e^{\frac{\|\vec{x}_i - \vec{x}_j\|}{\sigma}}$$

Demo