

تعریف.

یک گروه مجموعهای است G با یک عملگر · بهگونهای که:

ا. G نسبت به این عملگر بسته است.

۲. این عملگر دارای خاصیت شرکت پذیری است.

۳. یک عنصر همانی وجود دارد.

۴. هر عنصر دارای معکوس است.

نتيجه.

عنصر همانی در هر گروه یکتا است.

بصره.

این نتیجه از تعریف گروهها حاصل میشود.

شال،

گروه (+,Z) را در نظر بگیرید، مجموعه اعداد صحیح تحت عمل جمع. عنصر همانی 0 است و هر عنصر $z\in Z$ دارای معکوس z – است.

تمرین ۰۱

ثابت کنید قضیه زیر در مورد گروهها.

قضيه.

هیچ گروهی نمیتواند به عنوان اجتماع دو زیرگروه خاص خود نوشته شود.

راه حل.

ما با استفاده از برهان خلف، اثبات را ارائه می دهیم.

برهان.

فرض کنید دو زیرگروه خاص از گروه G داریم، آنها را H_1 و H_2 بنامیم.

 $e\in H_1\cup H_2$ بنابراین $e\in H_1\cap H_2$ می دانیم که $H_1\cup H_2=G$ بنابراین

 $h_1 \in H_1 \setminus H_2$ بهگونهای که $h_1 \in G$ بگذارید

 $h_2 \in G$ مانند $H_1
eq H_2 \neq G \neq \emptyset$ وجود دارد. به همین ترتیب، عنصری مانند h_1 تنها در $H_1
eq H_2 \neq G \neq \emptyset$ وجود دارد. به همین ترتیب، عنصری مانند $h_1 \neq H_2 \neq G \neq \emptyset$

 $h_2\in H_2\setminus H_1$ وجود دارد که $h_2\in H_2\setminus H_1$ وجود دارد که $h_1\cup H_2
eq G$ باشد، آنگاه $h_2\in H_1$ که فرض را نقض می کند. بنابراین، $h_1h_2\in H_1$.