IIMK Professional Certificate in Data Science and AI for Managers

Assignment 9.1: Supervised Learning and Classification Models

Student Information:

- Name: Lalit Nayyar
- Email: lalitnayyar@gmail.com
- Course: Professional Certificate in Data Science and Artificial Intelligence for Managers
- Institution: Indian Institute of Management Kozhikode (IIMK)

Assignment Overview

This project implements supervised learning techniques to predict income levels using the Adult Income Dataset. The assignment focuses on understanding classification models, their performance metrics, and data preprocessing techniques.

Dataset Description

The Adult Income Dataset, also known as the Census Income dataset, contains demographic and employment-related features to predict whether an individual's annual income exceeds \$50,000. This real-world dataset presents various data preprocessing and modeling challenges that are common in practical machine learning applications.

```
In [1]: # Import necessary libraries
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import LabelEncoder
        from sklearn.model_selection import train_test_split
        # Set random seed for reproducibility
        np.random.seed(42)
        # Configure visualization settings
        plt.style.use('default') # Use default matplotlib style
        sns.set theme() # Set seaborn theme
        %matplotlib inline
```

1. Data Preprocessing 🔄

1.a. Loading the Dataset

We begin by loading the Adult Income dataset. This dataset contains various demographic and employment-related features such as age, education, occupation, and other socioeconomic factors that might influence an individual's income level.

The dataset features include:

- Numerical attributes: age, fnlwgt, education-num, capital-gain, capital-loss, hours-perweek
- Categorical attributes: workclass, education, marital-status, occupation, relationship, race, sex, native-country

Dataset Shape: (32561, 15)

First few rows of the dataset:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	rac
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in- family	Whit
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	Whit
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in- family	Whit
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Blac
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Blac

1.b. Exploratory Data Analysis (EDA)

Let's perform a comprehensive analysis of our dataset to understand:

- Data types of each feature
- Missing values
- Basic statistics of numerical columns
- Distribution of categorical variables

```
In [3]: # Display basic information about the dataset
    print("Dataset Info:")
    df.info()

    print("\nMissing Values:")
    print(df.isnull().sum())

    print("\nNumerical Columns Statistics:")
    print(df.describe())
```

Dataset Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	age	32561 non-null	int64
1	workclass	32561 non-null	object
2	fnlwgt	32561 non-null	int64
3	education	32561 non-null	object
4	education-num	32561 non-null	int64
5	marital-status	32561 non-null	object
6	occupation	32561 non-null	object
7	relationship	32561 non-null	object
8	race	32561 non-null	object
9	sex	32561 non-null	object
10	capital-gain	32561 non-null	int64
11	capital-loss	32561 non-null	int64
12	hours-per-week	32561 non-null	int64
13	native-country	32561 non-null	object
14	income	32561 non-null	object

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

Missing Values:

age 0 0 workclass fnlwgt education 0 education-num 0 marital-status occupation relationship race 0 sex 0 capital-gain 0 capital-loss hours-per-week native-country 0 0 income dtype: int64

Numerical Columns Statistics:

	age	fnlwgt	education-num	capital-gain	capital-loss	\
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	

hours-per-week count 32561.000000 mean 40.437456

```
12.347429
       std
                   1.000000
       min
       25%
                  40.000000
       50%
                  40.000000
       75%
                  45.000000
       max
                  99.000000
In [4]: # Analyze categorical variables
        categorical_columns = df.select_dtypes(include=['object']).columns
        for col in categorical_columns:
            print(f"\nUnique values in {col}:")
            print(df[col].value_counts(normalize=True).head())
```

Unique values in workclass:

workclass

Private 0.697030
Self-emp-not-inc 0.078038
Local-gov 0.064279
? 0.056386
State-gov 0.039864
Name: proportion, dtype: float64

Unique values in education:

education

HS-grad 0.322502 Some-college 0.223918 Bachelors 0.164461 Masters 0.052916 Assoc-voc 0.042443

Name: proportion, dtype: float64

Unique values in marital-status:

marital-status

Married-civ-spouse 0.459937
Never-married 0.328092
Divorced 0.136452
Separated 0.031479
Widowed 0.030497
Name: proportion, dtype: float64

Unique values in occupation:

occupation

Prof-specialty 0.127146
Craft-repair 0.125887
Exec-managerial 0.124873
Adm-clerical 0.115783
Sales 0.112097

Name: proportion, dtype: float64

Unique values in relationship:

relationship

Husband 0.405178
Not-in-family 0.255060
Own-child 0.155646
Unmarried 0.105832
Wife 0.048156

Name: proportion, dtype: float64

Unique values in race:

race

White 0.854274
Black 0.095943
Asian-Pac-Islander 0.031909
Amer-Indian-Eskimo 0.009551
Other 0.008323
Name: proportion, dtype: float64

Unique values in sex:

sex

```
Male
         0.669205
Female
         0.330795
Name: proportion, dtype: float64
Unique values in native-country:
native-country
United-States
               0.895857
Mexico
               0.019748
              0.017905
Philippines
              0.006081
               0.004207
Germany
Name: proportion, dtype: float64
Unique values in income:
income
        0.75919
<=50K
>50K
        0.24081
Name: proportion, dtype: float64
```

1.c. Handling Missing and Erroneous Data

In this dataset, missing values are denoted by '?' rather than standard NULL or NaN values. We need to:

- 1. Identify these non-standard missing values
- 2. Replace them with appropriate values
- 3. Document our approach and rationale

```
In [5]: # Replace '?' with NaN to properly handle missing values
df = df.replace('?', np.nan)

# Display missing value count after replacement
print("Missing values after replacement:")
print(df.isnull().sum())

# Handle missing values using mode imputation
for column in df.columns:
    if df[column].isnull().any():
        # Using the recommended approach to avoid the warning
        df.loc[:, column] = df[column].fillna(df[column].mode()[0])

print("\nVerifying no missing values remain:")
print(df.isnull().sum().sum())
```

```
Missing values after replacement:
workclass 1836
fnlwgt
education
                  0
education-num
marital-status
            1843
occupation
relationship
race
sex
capital-gain
capital-loss
hours-per-week
native-country 583
income
dtype: int64
Verifying no missing values remain:
```

2. Data Encoding 🔢

2.a. Converting Categorical Variables

We'll use Label Encoding for ordinal categorical variables and One-Hot Encoding for nominal categorical variables to preserve their interpretability.

Rationale for encoding choices:

- Label Encoding: Used for ordinal variables like 'education' where there's a natural order
- One-Hot Encoding: Used for nominal variables like 'workclass' where there's no inherent order

```
In [6]: # Identify categorical columns for encoding
    ordinal_columns = ['education']
    nominal_columns = ['workclass', 'marital-status', 'occupation', 'relationship', 'ra

# Label Encoding for ordinal variables
    label_encoders = {}
    for column in ordinal_columns:
        label_encoders[column] = LabelEncoder()
        df[column] = label_encoders[column].fit_transform(df[column])

# One-Hot Encoding for nominal variables
    df = pd.get_dummies(df, columns=nominal_columns, prefix=nominal_columns)

print("Dataset shape after encoding:", df.shape)
    print("\nFirst few columns:")
    df.head()
```

Dataset shape after encoding: (32561, 91)

First few columns:

Out[6]:

•		age	fnlwgt	education	education- num	capital- gain	capital- loss	hours- per- week	income	workclass_Federage
	0	39	77516	9	13	2174	0	40	<=50K	Fa
	1	50	83311	9	13	0	0	13	<=50K	Fa
	2	38	215646	11	9	0	0	40	<=50K	Fa
	3	53	234721	1	7	0	0	40	<=50K	Fa
	4	28	338409	9	13	0	0	40	<=50K	Fa

5 rows × 91 columns

3. Feature Selection and Engineering <a>¬

3.a. Correlation Analysis

We'll analyze feature relationships and importance through correlation analysis, focusing on:

- 1. Correlation between numerical features
- 2. Identifying potential multicollinearity
- 3. Feature importance relative to our target variable (income)

```
In [7]: # Calculate correlation matrix for numerical features
    numerical_columns = df.select_dtypes(include=['int64', 'float64']).columns
    correlation_matrix = df[numerical_columns].corr()

# Create correlation heatmap
    plt.figure(figsize=(12, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', center=0)
    plt.title('Correlation Heatmap of Numerical Features')
    plt.tight_layout()
    plt.show()
```


3.b. Feature Engineering

Based on our analysis and domain knowledge, we'll create new features that might enhance model performance:

- 1. Age groups (binning age into meaningful categories)
- 2. Income-related ratios
- 3. Work-life balance indicators

```
Final dataset shape: (32561, 101)
        New features:
        ['capital_utilization', 'age_group_Young', 'age_group_Early-Career', 'age_group_Mid-
        Career', 'age_group_Late-Career', 'age_group_Pre-Retirement', 'age_group_Retiremen
        t', 'work_intensity_High', 'work_intensity_Normal', 'work_intensity_Part-time']
In [9]: # Import our feature engineering module
         from feature_engineering import (
            create_age_groups,
             create_income_ratios,
             create_work_life_indicators,
             plot feature distributions
         # Apply feature engineering transformations
         print("Creating new features...")
         df = create_age_groups(df)
         df = create income ratios(df)
         df = create_work_life_indicators(df)
        Creating new features...
In [10]: # Display information about new features
         print("\nNew features added:")
         print("Age Groups:", df['age_group'].unique())
         print("\nWork-Life Balance Indicators:")
         for col in ['standard_work_week', 'overwork', 'part_time']:
             count = df[col].sum()
             percentage = (count / len(df)) * 100
             print(f"- {col}: {count:,} instances ({percentage:.1f}%)")
        New features added:
        Age Groups: ['36-45', '46-55', '26-35', '18-25', '56-65', '65+']
        Categories (6, object): ['18-25' < '26-35' < '36-45' < '46-55' < '56-65' < '65+']
        Work-Life Balance Indicators:
        - standard work week: 15,217 instances (46.7%)
        - overwork: 7,139 instances (21.9%)
        - part time: 5,583 instances (17.1%)
In [11]: # Visualize the distributions
         plt.figure(figsize=(15, 10))
         fig = plot_feature_distributions(df)
         plt.show()
        <Figure size 1500x1000 with 0 Axes>
```



```
In [12]: # Brief analysis of engineered features
    print("\nFeature Analysis:")
    print("1. Age Distribution:")
    age_income = pd.crosstab(df['age_group'], df['income'], normalize='index') * 100
    print(age_income.round(2))

print("\n2. Work Pattern Analysis:")
    work_income = pd.DataFrame({
        'Standard Work Week': df[df['standard_work_week'] == 1]['income'].value_counts(
        'Overwork': df[df['overwork'] == 1]['income'].value_counts(normalize=True),
        'Part Time': df[df['part_time'] == 1]['income'].value_counts(normalize=True)
}) * 100
print(work_income.round(2))
```

Feature Analysis:

1. Age Distribution:

income	<=50K	>50K	
age_group			
18-25	98.90	1.10	
26-35	83.17	16.83	
36-45	66.84	33.16	
46-55	59.88	40.12	
56-65	67.65	32.35	
65+	79.34	20.66	

2. Work Pattern Analysis:

	Standard	Work Week	Overwork	Part Time
income				
<=50K		78.66	58.24	93.07
>50K		21.34	41.76	6.93

In [13]:	<pre># Save engineered features print("\nSaving dataset with new features") df.to_csv('data/adult_with_features.csv', index=False) print("Features saved successfully!")</pre>				
	aving dataset with new features eatures saved successfully!				
In []:					
In []:					
In []:					