Instalación y mantenimiento de servicios de Internet

SOLUCIONES EJERCICIOS DE DIRECCIONAMIENTO IP

Explotación de Sistemas Informáticos 2007/2008

Soluciones de ejercicios de direccionamiento IP Ciclo Formativo de Grado Medio: Explotación de Sistemas Informáticos. Profesor: Alejandro Meroño Hernández

Convierte las siguientes direcciones a binario e indica si se trata de direcciones de tipo A, B o C.

10.0.3.2	00001010.00000000.00000011.00000010 Clase A
128.45.7.1	10000000.00101101.00000111.00000001 Clase B
192.200.5.4	11000000.11001000.00000101.00000100 Clase C
151.23.32.50	10010111.00010111.00100000.00110010 Clase B
47.50.3.2	00101111.00110010.00000011.00000010 Clase A
• 100.90.80.70	00000100.01011010.01010000.01000110 Clase A
124.45.6.1	01111100.00101101.00000110.00000001 Clase A

EJERCICIO 2

Dada la dirección de red 192.168.30.0, indica qué máscara de subred deberías escoger para tener 4 subredes. Rellena a continuación la siguiente tabla.

Número de subred	Dirección de subred	Primer ordenador	Último ordenador

SOLUCIÓN

En una red de clase C la máscara por defecto es 255.255.255.0.

Las 4 subredes por tanto serán:

110000000.10101000.00011110.**00** 0000000 = 192.168.30.0 110000000.10101000.00011110.**01** 0000000 = 192.168.30.64

110000000.10101000.00011110.**10** 000000 = 192.168.30.128 110000000.10101000.00011110.**11** 000000 = 192.168.30.192

En cada una de las subredes hay dos direcciones que no podemos utilizar (la primera dirección que corresponde a la subred, y la última dirección que es la de difusión de la subred). La tabla queda por tanto de la siguiente manera.

	Número de subred	Dirección de subred	Primer ordenador	Último ordenador
1		192.168.30.0	192.168.30.1	192.168.30.62
2		192.168.30.64	192.168.30.65	192.168.30.126
3		192.168.30.128	192.168.30.129	192.168.30.190
4		192.168.30.192	192.168.30.193	192.168.30.254

EJERCICIO 3

Dada la dirección de red 192.168.55.0, indica qué máscara de subred deberías escoger para tener 8 subredes. Rellena a continuación la siguiente tabla.

Número de subred	Dirección de subred	Primer ordenador	Último ordenador

SOLUCIÓN

En las redes de clase C la máscara por defecto es 255.255.255.0.

De los 8 hits posibles que tenemos para tomar prestados de

De los 8 bits posibles que tenemos para tomar prestados de la máscara, tenemos que tomar 3 para crear 8 subredes (con 3 bits hay 8 posibles combinaciones). Así pues la máscara es

11111111.11111111.11111111.**111** 00000 = 255.255.255.224.

Las 8 subredes por tanto serán:

```
\begin{array}{l} 11000000.10101000.001101011.000\ 00000 = 192.168.55.0\\ 11000000.10101000.001101011.001\ 00000 = 192.168.55.32\\ 11000000.10101000.001101011.010\ 00000 = 192.168.55.64\\ 11000000.10101000.001101011.011\ 00000 = 192.168.55.96\\ 11000000.10101000.001101011.100\ 00000 = 192.168.55.128\\ 11000000.10101000.001101011.101\ 00000 = 192.168.55.160\\ 11000000.10101000.001101011.110\ 00000 = 192.168.55.192\\ 11000000.10101000.001101011.111\ 00000 = 192.168.55.224\\ \end{array}
```

En cada una de las subredes hay dos direcciones que no podemos utilizar (la primera dirección que corresponde a la subred, y la última dirección que es la de difusión de la subred).

La tabla queda por tanto de la siguiente manera.

Número de subred	Dirección de subred	Primer ordenador	Último ordenador
1	192.168.55.0	192.168.55.1	192.168.55.30
2	192.168.55.32	192.168.55.33	192.168.55.62
3	192.168.55.64	192.168.55.65	192.168.55.94
4	192.168.55.96	192.168.55.97	192.168.55.126
5	192.168.55.128	192.168.55.129	192.168.55.158
6	192.168.55.160	192.168.55.161	192.168.55.190
7	192.168.55.192	192.168.55.193	192.168.55.222
8	192.168.55.224	192.168.55.224	192.168.55.254

EJERCICIO 4

Dada la dirección de clase B 150.40.0.0, indica qué máscara de subred deberías escoger para tener 4 subredes. Rellena a continuación la siguiente tabla.

Número de subred	Dirección de subred	Primer ordenador	Último ordenador

Número de subred	Dirección de subred	Primer ordenador	Último ordenador

La máscara de red por defecto, en las redes de clase B, es 255.255.0.0. Por tanto podemos tomar 16 bits de la máscara para crear subredes (con 2 bits prestados de la máscara tenemos 4 combinaciones posibles). Así pues la máscara es: 11111111.11111111.11 000000.00000000 = 255.255.192.0

Las redes por tanto son las siguientes:

```
10010110.00101000.00 000000.00000000 = 150.40.0.0 10010110.00101000.01 000000.00000000 = 150.40.64.0 10010110.00101000.10 000000.00000000 = 150.40.128.0 10010110.00101000.11 000000.00000000 = 150.40.192.0
```

Las direcciones del primer ordenador en cada una de las subredes son:

```
10010110.00101000.00 000000.0000001 = 150.40.0.1 10010110.00101000.01 000000.0000001 = 150.40.64.1 10010110.00101000.10 000000.0000001 = 150.40.128.1 10010110.00101000.11 000000.0000001 = 150.40.192.1
```

La última dirección de cada una de las subredes será la dirección de difusión de cada subred, poniendo a 0 el último bit del último octeto (la dirección de difusión no podemos utilizarla para asignarla a un ordenador). Las direcciones de difusión son:

```
10010110.00101000.00 111111.1111111 = 150.40.63.255 10010110.00101000.01 111111.1111111 = 150.40.127.255 10010110.00101000.10 111111.1111111 = 150.40.191.255 10010110.00101000.11 111111.1111111 = 150.40.255.255
```

	Número de subred	Dirección de subred	Primer ordenador	Último ordenador
1		150.40.0.0	150.40.0.1	150.40.63.254
2		150.40.64.0	150.40.64.1	150.40.127.254
3		150.40.128.0	150.40.128.1	150.40.191.254
4		150.40.192.0	150.40.192.1	150.40.255.254

Soluciones ejercicios de direccionamiento IP. Pág. 5

¿Cuál es el intervalo decimal y binario del primer octeto para todas las direcciones IP clase "B" posibles? Las direcciones de clase B emplean 16 bits para identificar a una red y 16 bits (los últimos) para identificar un ordenador dentro de la red. En las direcciones de clase B los dos primeros bits son 10, por tanto:

10 000000 = 128 10 1111111 = 191

El intervalo decimal es 128-191

¿Qué octeto u octetos representan la parte que corresponde a la red de una dirección IP clase "C"? Los 3 primeros octetos

¿Qué octeto u octetos representan la parte que corresponde al host de una dirección IP clase "A"? Los 3 últimos octetos.

EJERCICIO 6

Completa la siguiente tabla:

Dirección IP del host	Dirección clase	Dirección de red	Dirección de host	Dirección broadcast de red	Máscara de subred por defecto
2161455137	С	216.14.55.0	216.14.55.137	216.14.55.255	255.255.255.0
1231115	A	123.0.0.0	123.1.1.15	123.255.255.255	255.0.0.0
150127221244	В	150.127.0.0	150.127.221.244	150.127.255.255	255.255.0.0
19412535199	С	194.125.35.0	194.125.35.199	194.125.35.255	255.255.255.0
17512239244	В	175.12.0.0	175.12.239.244	175.12.255.255	255.255.0.0

Dada una dirección IP 142.226.0.15

- a. ¿Cuál es el equivalente binario del segundo octeto? 11100010
- b. ¿Cuál es la Clase de la dirección? Clase B
- c. ¿Cuál es la dirección de red de esta dirección IP? 142.226.0.0
- d. ¿Es ésta una dirección de host válida (S/N) ? Sí
- e. ¿Por qué? o ¿Por qué no? Porque no es una dirección de red ni de difusión ni privada.
- f. ¿Cuál es la cantidad máxima de hosts que se pueden tener con una dirección de red

clase C? 254 (28-2)

- g. ¿Cuántas redes de clase B puede haber? 216
- h. ¿Cuántos hosts puede tener cada red de clase B? 216-2
- i. ¿Cuántos octetos hay en una dirección IP? 4 ¿Cuántos bits puede haber por

octeto? 8

EJERCICIO 7

Completa la siguiente tabla.

Determinar, para las siguientes direcciones de host IP, cuáles son las direcciones que son válidas para redes comerciales. Válida significa que se puede asignar a una estación de trabajo, servidor, impresora, interfaz de router, etc.

Dirección IP	¿Válida?	¿Por qué?
1,501E+11		Es una dirección de difusión de una red de clase B
17510025518	Sí	No es una dirección de red ni de difusión
1952342530	No	Es una dirección de red de clase C
1000023	Sí	No es una dirección de red ni de difusión
1,88258E+11		Esta sería una red de clase B pero no es válida ya que el segundo octeto es mayor que 255
1273425189		Esta sería una red clase A pero no es válida porque 127 no se puede utilizar en el primer octeto dado que está reservado para verificación de diagnóstico
22415621773		Esta es una red de clase D y está reservada.

EJERCICIO 8

Completa la siguiente tabla

IP	Máscara	Subred	Broadcast
192.168.1.130	255.255.255.128	192.168.1.128	192.168.1.255
10.1.1.3	255.255.0.0	10.1.0.0	10.1.255.255
10.1.1.8	255.255.0.0	10.1.0.0	10.1.255.255
220.1.1.23	255.0.0.0	220.0.0.0	220.255.255.255
172.168.8.48	255.255.248.0	172.16.8.0	172.16.15.255

IP	Máscara	Subred	Broadcast
172.16.8.48	255.255.255.224	172.16.8.32	172.16.8.63

Asignar direcciones IP válidas a las interfaces de red (interfaz de red = tarjeta de red) que les falte para conseguir que exista comunicación entre los host A, B, C, D, E y F. La máscara en todos los casos será 255.255.224.0. Justifica la respuesta.

Para justificar la respuesta lo que debemos hacer es sacar la dirección de red, la dirección de broadcast y entonces podremos decir que direcciones ip podremos poner a cada equipo pues sabremos que son cualesquiera que estén entre la de red y la de broadcast.

En primer lugar obtenemos la dirección de red. La dirección de red es 172.33.32.0. Para calcularla hay que hacer la operación AND de 172.33.43.5 y 255.255.224.0.

Una vez que se sabe que la dirección de red es 172.33.32.0 podemos asignar las siguientes direcciones a los ordenadores.

B = 172.33.32.1

C = 172.33.32.2

D = 172.33.32.3

E = 172.33.32.4

F = 172.33.32.5

La dirección de subred es 172.33.32.0

La dirección de difusión es : 172.33.63.255 (10101100.00100001.001 1111.11111, hay 16 bits que identifican a la red por ser de clase B y se toman prestados 3 bits más para la máscara de subred. El resto de bits hay que ponerlos a 1 para obtener la dirección de difusión).

EJERCICIO 10

Su empresa tiene una dirección de red de Clase C de 200.10.57.0. Desea subdividir la red física en 3 subredes.

- a) Indica una máscara que permita dividir la red de clase C (al menos) en tres subredes. **255.255.255.192**
- b) ¿Cuántos hosts (ordenadores) puede haber por subred? Si se cogen 2 bits

para la máscara de red quedan 6 bits para asignar direcciones a los ordenadores. Por tanto se podrían tener 26-2 ordenadores en cada subred. c) ¿Cuál es la dirección de red y la dirección de broadcast de cada una de las 3 subredes creadas?

Dirección de red	Dirección de broadcast
200.10.57.0	200.10.57.63
200.10.57.64	200.10.57.127
200.10.57.128	200.10.57.191

EJERCICIO 11

Se desea subdividir la dirección de red de clase C de 200.10.57.0 en 4 subredes.

Responde a las siguientes preguntas.

- 1. ¿Cuál es el equivalente en números binarios de la dirección de red de clase C 200.10.57.0 de este ejercicio? 11001000.00001010.00111001.00000000
- 2. ¿Cuál(es) es (son) el (los) octeto(s) que representa(n) la porción de red y cuál(es) es (son) el (los) octeto(s) que representa(n) la porción de host de esta dirección de red de clase C? Los octetos que representan a la red son los 3 primeros. El octeto que representa al host es el último
- 3. ¿Cuántos bits se deben pedir prestados a la porción de host de la dirección de red para poder suministrar 8 subredes? Se deben pedir prestados 3 bits para tener 8 subredes.
- **4.** ¿Cuál será la máscara de subred (utilizando la notación decimal) basándose en la cantidad de bits que se pidieron prestados en el paso 3? **255.255.255.224**
- 5. ¿Cuál es el equivalente en números binarios de la máscara de subred a la que se hace referencia anteriormente? 11111111.11111111.111100000

EJERCICIO 12

Teniendo en cuenta la dirección IP del ejercicio anterior (200.10.57.0) completa la siguiente tabla para cada una de las posibles subredes que se pueden crear pidiendo prestados 3 bits para subredes al cuarto octeto (octeto de host). Identifica la dirección de red, la máscara de subred, el intervalo de direcciones IP de host posibles para cada subred, la dirección de broadcast para cada subred.

Subred	Dirección de subred	Primer ordenador	Último ordenador
1	200.10.57.0	200.10.57.1	200.10.57.30
2	200.10.57.32	200.10.57.33	200.10.57.62
3	200.10.57.64	200.10.57.65	200.10.57.94
4	200.10.57.96	200.10.57.97	200.10.57.126
5	200.10.57.128	200.10.57.129	200.10.57.158
6	200.10.57.160	200.10.57.161	200.10.57.190
7	200.10.57.192	200.10.57.193	200.10.57.222
8	200.10.57.224	200.10.57.225	200.10.57.254

Completa la siguiente tabla

IP	Máscara	Subred	Broadcast	Número hosts
192.168.1.130	255.255.255.128	192.168.1.128	192.168.1.255	128-2
200.1.17.15	255.255.255.0	200.1.17.0	200.1.17.255	254
133.32.4.61	255.255.255.224	133.32.4.32	133.32.4.63	32-2
132.4.60.99	255.255.0.0	132.4.0.0	132.4.255.255	216-2
222.43.15.41	255.255.255.0	222.43.15.0	222.43.15.255	28-2
192.168.0.1	255.255.255.192	192.168.0.0	192.168.0.63	32-2

EJERCICIO 14

a. Si tenemos una red 147.84.32.0 con máscara de red 255.255.255.252, indica la dirección de broadcast, la de red y la de los posibles nodos de la red.

Dirección de red: 147.84.32.0 Broadcast: 147.84.32.3

Posibles nodos de la red: 147.84.32.1, 147.84.32.2

- b. La red 192.168.0.0, ¿de qué clase es? Clase C
- c. Escribe el rango de direcciones IP que pertenecen a la subred definida por la dirección IP 140.220.15.245 con máscara 255.255.240.

Primero hay que calcular la subred a la que pertenece la IP

140.220.15.245 = 10001100.11011100.00001111.11110101

and

255.255.255.240 = 11111111.1111111.11111111.11110000

140.220.15.240 = 10001100.11011100.00001111.11110000

La subred a la que pertenece la IP 140.220.15.245 es 140.220.15.240

El primer ordenador de la subred es 140.220.15.241

La dirección de difusión de la subred es 10001100.11011100.00001111.1111 1111 = 140.220.15.255

Por tanto, la dirección del último ordenador de la subred es 140.220.15.254

d. Una red de clase B en Internet tiene una máscara de subred igual a 255.255.240.0. ¿Cuál es el máximo de nodos por subred?

Al ser el tercer octecto de la subred 240, quiere decir que se toman prestados 4 bits de la máscara. Hay por tanto 8+4=12 bits que identifican un ordenador dentro de la red. Por tanto el número máximo de ordenadores dentro de cada subred será 2¹²-2.

EJERCICIO 15

Calcular la dirección de red y la dirección de broadcast (difusión) de las máquinas con las siguientes direcciones IP y máscaras de subred (si no se especifica, se utiliza la máscara por defecto).

18.255.255.255	
b) 18.120.16.255/255.255.0.0 D. red: 18.120.0.0 Broadcast:	
18.120.255.255 c) 155.4.220.39 D. red: 155.4.0.0 Broadcast:	
155.4.255.255 d) 194.209.14.33 D. red: 194.209.14.0 Broadcast:	
, 194.209.14.255	
190.33.109.255	
f) 190.33.109.133 /25 D. red: 190.33.109.128 Broadcast: 190.33.109.255	
g) 192.168.20.25 /28 D. red: 192.168.20.16 Broadcast:	

192.168.20.31 h) 192.168.20.25 /26 192.168.20.63

D. red: 192.168.20.0

Broadcast:

EJERCICIO 16

- a. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase A? 2²⁴-2
- b. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase B? 2¹⁶-2
- c. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase C? 28-2
- d. En una red de clase C con máscara 255.255.255.128, ¿cuántos ordenadores se pueden tener en cada subred? Como se toma prestado un bit de la máscara quedarían 7 bits para identificar un ordenador dentro de cada subred. Con 7 bits hay 2⁷ combinaciones posibles. Luego se podrían tener 2⁷-2 ordenadores en cada subred.
- e. En una red de clase C con máscara 255.255.255.192, ¿cuántos ordenadores se pueden tener en cada subred? Como se toman prestados dos bits de la máscara quedarían 6 bits para identificar un ordenador dentro de cada subred. Con 6 bits hay 26 combinaciones posibles. Luego se podrían tener 26-2 ordenadores en cada subred.

EJERCICIO 17

Su empresa tiene una dirección de red de Clase B de 150.10.0.0. Desea subdividir la red física en 3 subredes.

a) Indica una máscara que permita dividir la red de clase B (al menos) en tres subredes.

255.255.192.0

- b) ¿Cuántos hosts (ordenadores) puede haber por subred? 214-2
- c) ¿Cuál es la dirección de red y la dirección de broadcast de cada una de las 3 subredes creadas?

Dirección de red	Dirección broadcast
150.10.0.0	150.10.63.255
150.10.64.0	150.10.127.255
150.10.128.0	150.10.191.255

Dada la dirección de clase B 150.32.0.0, indica qué máscara de subred deberías escoger para tener 4 subredes. Rellena a continuación la siguiente tabla.

Número de subred	Dirección de subred	Primer ordenador	Último ordenador

SOLUCIÓN

Para tener 4 subredes deberíamos tomar prestados 2 bits de la máscara. La máscara sería por tanto 255.255.192.0

	Número de subred	Dirección de subred	Primer ordenador	Último ordenador
1		150.32.0.0	150.32.0.1	150.32.63.254
2		150.32.64.0	150.32.64.1	150.32.127.254
3		150.32.128.0	150.32.128.1	150.32.191.254
4		150.32.192.0	150.32.192.1	150.32.255.254

EJERCICIO 19

Completa la siguiente tabla

IP	Máscara	Subred	Broadcast	Número hosts
192.168.1.130	255.255.255.128	192.168.1.128	192.168.1.255	128-2
190.50.27.1	255.255.255.0	190.50.27.0	200.1.17.255	28-2
123.40.50.145	255.255.255.224	123.40.50.128	123.40.50.159	32-2
150.40.50.25	255.255.0.0	150.40.0.0	150.40.255.255	2 ¹⁶ -2
222.43.15.41	255.255.255.0	222.43.15.0	222.43.15.255	256-2
192.168.0.1	255.255.255.192	192.168.0.0	192.168.0.63	32-2

 Si tenemos una red 150.84.32.0 con máscara de red 255.255.255.224, indica la dirección de broadcast, la de red y la de los posibles nodos de la red.

Dirección de red: 150.84.32.0

Dirección de broadcast: 150.84.32.31 Primer ordenador de la red: 150.84.32.1 Último ordenador de la red: 150.84.32.30

- La red 192.168.0.0, ¿de qué clase es? Clase C
- Escribe el rango de direcciones IP que pertenecen a la subred definida por la dirección IP 150.84.32.245 con máscara 255.255.255.240.

La subred es 150.84.32.240. El primer ordenador de la red es 150.84.32.241 El último ordenador de la red es 150.84.32.254

 Una red de clase B en Internet tiene una máscara de subred igual a 255.255.240.0. ¿Cuál es el máximo de nodos por subred? 2¹²-2