Mécanique quantique – L3

Pierre-François Cohadon - Tristan Villain - Qinhan Wang

Etats quantiques d'atomes de césium piégés

On s'intéresse dans tout le problème à un oscillateur harmonique 1D, avec un hamiltonien \hat{H} :

$$\hat{H} = \frac{m\omega_0^2}{2}\hat{z}^2 + \frac{1}{2m}\hat{p}^2. \tag{1}$$

 \hat{z} et \hat{p} sont les opérateurs de position et d'impulsion à une dimension, m la masse de l'oscillateur et ω_0 sa pulsation de résonance.

Préambule

- 1. Quelles sont les échelles typiques de longueur z_0 et d'impulsion p_0 de l'oscillateur?
- 2. Montrer que les fonctions d'ondes des états stationnaires ont la même forme en représentation position et impulsion si on les écrit en fonction de coordonnées réduites z/z_0 et p/p_0 .

On donne les expressions des niveaux d'énergie et des fonctions d'ondes associées aux deux premiers niveaux d'énergie :

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega_0 \text{ avec } n \in \mathbb{N}$$
 (2)

$$\varphi_0(z) = \left(\frac{m\omega_0}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega_0}{2\hbar}z^2} \tag{3}$$

$$\varphi_1(z) = \left(\frac{4}{\pi} \left(\frac{m\omega_0}{\pi\hbar}\right)^3\right)^{1/4} z e^{-\frac{m\omega_0}{2\hbar}z^2} \tag{4}$$

1 Présentation du piège harmonique

On admet qu'un faisceau laser convenablement désaccordé par rapport à une transition atomique crée pour le mouvement externe des atomes **une énergie potentielle proportionnelle à l'intensité locale du faisceau**. Dans les expériences discutées par la suite, on croise deux faisceaux laser ($\lambda \simeq 1 \,\mu$ m, polarisations rectilignes, perpendiculaires au plan de la page) qui font chacun un angle $\theta = 53^{\circ}$ avec le plan horizontal. La figure 1 présente la géométrie des expériences et le potentiel effectif pour les atomes de césium utilisés.

Dans toute la suite, on ne s'intéresse qu'au mouvement des atomes selon l'axe (Oz).

- 3. Pourquoi le potentiel oscille-t-il avec z? Quelle est sa période spatiale a?
- 4. D'où vient l'enveloppe observée pour le potentiel? Quelle est sa taille caractéristique?
- 5. Quelle est l'origine de la composante affine représentée sur la figure 1?

FIGURE 1 – Géométrie des expériences (a) et énergie potentielle (donnée en échelle de température) vue par les atomes de césium (b). Pour des raisons de clarté, **les oscillations représentées ne sont pas à l'échelle**. La période spatiale a est en fait de l'ordre du micron. Figure tirée de [1].

On néglige dans la suite les effets discutés dans les 2 questions précédentes pour prendre une énergie potentielle de la forme :

$$U = \frac{U_0}{2} \left[1 + \cos\left(2\pi \frac{z}{a}\right) \right],\tag{5}$$

avec U_0 de l'ordre de 2.8×10^{-27} J.

- 6. À quelle température correspond U_0/k_B ?
- 7. Dans quelle mesure peut-on assimiler les différents puits à des puits harmoniques?
- 8. Calculer alors la pulsation ω_z des puits harmoniques, la masse des atomes de césium étant de 133 ua (1 ua = 1,66 × 10⁻²⁷ kg).
- 9. Calculer également la dispersion en position Δz_0 et en impulsion Δp_0 de l'état fondamental $|n=0\rangle$, puis des autres états $|n\rangle$. Évaluer la première correction à l'énergie potentielle classique et vérifier que pour les états faiblement excités $(n \leq 10)$, les puits peuvent être considérés comme harmoniques.
- 10. A quelle température les atomes doivent-ils être pour peupler uniquement l'état fondamental?

Pour les expériences décrites dans la suite, on charge l'ensemble des puits avec des atomes issus d'un piège magnéto-optique. Le nuage d'atomes a initialement une taille d'environ 56 μ m et une température de 13 μ K. On le refroidit encore de façon à placer les atomes majoritairement dans l'état $|n=0\rangle$ du puits où ils sont piégés. A partir de l'état $|0\rangle$, on peut éventuellement les préparer dans d'autres états $|n\rangle$, et même dans des combinaisons linéaires d'états $|n\rangle$.

2 Visualisation des fonctions d'onde en impulsion

On se propose ici de mesurer directement la **distribution en impulsion** d'un état $|n\rangle$ grâce à un système d'imagerie par absorption, qui permet d'obtenir la **distribution de position** de l'ensemble des atomes.

11. Pourquoi n'est-il pas intéressant d'imager directement la distribution en position des atomes, en présence des faisceaux laser?

Technique du temps de vol

On utilise une technique de temps de vol. A t=0, on coupe le piège brusquement. On admettra que cela ne modifie pas l'état quantique des atomes, qui sont toujours, immédiatement après la coupure des faisceaux, dans l'état $|n\rangle$. Au bout d'un temps τ , on utilise une technique d'imagerie, qui donne accès à la distribution de position des atomes au temps τ .

- 12. Quel est l'hamiltonien qui régit le mouvement des atomes après la coupure du piège?
- 13. Expliquer comment on peut alors remonter à la distribution des impulsions dans l'état $|n\rangle$ initial. Quelle contrainte τ doit-il vérifier pour interpréter simplement les résultats? Faire une application numérique. On suppose pour l'instant que tous les atomes sont dans un puits près du centre des faisceaux.

Mesure des états propres

On prépare les atomes dans l'état fondamental $|0\rangle$ de leur puits. On réalise un temps de vol avec $\tau_{\text{vol}} = 6$ ms. La figure 2 présente l'image 2D obtenue sur la caméra CCD (courbe a) et le résultat d'une intégration de cette image selon la direction x (courbe c).

- 14. Utiliser le résultat expérimental de la figure 2 pour évaluer la largeur en impulsion de l'état fondamental et comparer le résultat obtenu à sa valeur théorique.
- 15. Montrer que la prise en compte de la taille initiale du nuage (qu'on pourra représenter par une distribution initiale des atomes gaussienne, de largeur 56 μ m) permet d'améliorer encore l'accord entre la valeur expérimentale et celle attendue.

On prépare maintenant les atomes dans l'état $|n=1\rangle$. Le temps de vol est réalisé maintenant avec $\tau_{\text{vol}} = 10$ ms. Les courbes (b) et (d) de la figure 2 présentent là-encore le résultat observé sur la caméra CCD et son intégration selon x.

16. Expliquer la structure observée, notamment la présence de deux maximas à $\pm 200 \, \mu \text{m}$.

FIGURE 2 – Distribution de densité des états $|0\rangle$ et $|1\rangle$ après temps de vol. Figure tirée de [1].

3 Réalisation d'une superposition cohérente de deux états

On utilise le même système que dans les parties précédentes mais, l'intensité laser ayant été modifiée, on a maintenant (et pour toutes les questions restantes) $\omega_z = 2\pi \times 85 \text{ kHz}$. On prépare initialement les atomes dans l'état :

$$|\psi(t=0)\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle). \tag{6}$$

- 17. Quelle est l'évolution attendue de la fonction d'onde au cours du temps? On pourra raisonner sur une fonction d'onde en position.
- 18. Montrer que les oscillations observée sur la figure 3 reproduisent l'évolution attendue et vérifier qu'elles ont la période attendue.
- 19. Pourquoi la fonction d'onde se déforme-t-elle?

FIGURE 3 – Evolution temporelle de la distribution de vitesses à partir de l'état superposition cohérente. Figure tirée de [2].

4 Réalisation d'un état comprimé

On réalise maintenant la séquence suivante, les atomes étant intialement dans l'état $|0\rangle$ de chaque puits :

- On coupe le piège pendant un temps $\tau_1 = 8 \mu s$, avant de le rétablir
- On laisse s'écouler un temps τ_2 variable
- On mesure la distribution en impulsion des atomes

On admet là-encore que la coupure (ou le rétablissement) des faisceaux de piégeage ne modifie pas l'état des atomes.

- 20. En admettant que l'évolution du système dans l'espace des phases $\{z/z_0, p/p_0\}$ est similaire à celle d'une fonction de distribution classique, représenter l'état $|n=0\rangle$ et l'état obtenu après le temps τ_1 .
- 21. Pourquoi parle-t-on d'état comprimé? Expliquer notamment l'évolution de la courbe avec τ_2 et la valeur maximale de compression $\simeq 4$ observée pour $\tau_2 \simeq 1 \,\mu s$.
- 22. Expliquer le résultat expérimental présenté sur la figure, notamment la courbe théorique tiretée.
- 23. On obtient pour certains temps τ_2 une valeur de Δp (notée $p_{\rm rms}$) inférieure à celle p_0 de l'état fondamental. Cela viole-t-il l'inégalité de Heisenberg?
- 24. Expliquer comment la dispersion des fréquences ω_z entre les différents pièges peut modifier le résultat (voir la courbe pleine).

FIGURE 4 – Evolution de la largeur en impulsion mesurée avec τ_2 . Ronds : points expérimentaux. Courbes tiretée et pleine : modèles théoriques. Figure tirée de [2].

Quelques idées de choses à faire en python :

- 1. Récupérer les figures 2(a) et 2(c), en tirer un tableau à 2D, et obtenir les courbes expérimentales 2(b) et 2(d).
- 2. Faire un ajustement de la courbe 2(c) par une gaussienne.
- 3. Faire le produit de convolution de la fonction φ_1 donnée par l'éq. (4) par une gaussienne de 56 μ m, pour essayer de reproduire la courbe 2(d).
- 4. Tracer l'évolution temporelle de l'état superposition cohérente (à partir de son expression théorique ou en résolvant l'équation de Schrödinger dépendante du temps).
- 5. Reproduire la courbe pleine de la figure 4 en utilisant une dispersion des fréquences d'oscillation $\Delta \omega_z/\omega_z \simeq 10\%$.

Bibliographie:

- [1] I. Bouchoule, H. Perrin, A. Kuhn, M. Morinaga et C. Salomon, Neutral atoms prepared in Fock states of a one-dimensional harmonic potential, Phys. Rev. A **59**, R8 (1999).
- [2] M. Morinaga, I. Bouchoule, J.-C. Karam et C. Salomon, Manipulation of motional quantum states of atoms, Phys. Rev. Letters 83, 4037 (1999).