Performance of an Attentionbased Model on Atomic Systems

Praharsh Suryadevara

How do atoms configure themselves?

This is consequential and hard

Drug design

New photovoltaic materials

Evaluating $E(C_1)$ is $\mathcal{O}(d^{n_e})$ exactly and $\mathcal{O}(n_e^3)$ approximately

Task

Given positions of atoms C predict $\vec{F}(C)$ and E(C)

Equivariance: Rotational symmetry

training with symmetry

In 3d 500x the cost

https://e3nn.org/

$$ec{F}(R(C)) = R(ec{F}(C))$$

Equivariance: Rotational symmetry

Every Layer preserves rotational information

Decompose atom-atom interactions into Type-L vectors

Equiformer: Equivariant Graph Attention Transformer for 3D

Equiformer = Transformer + Equivariance

Equiformer: Equivariant Graph Attention Transformer for 3D

Attention Is All You Need

Equivariant graph attention

Attention Is All You Need

Equiformer: Equivariant Graph Attention Transformer for 3D

Erratum: Equivariant graph attention

Results: Aspirin MD17

MAE on Test Set

Best!

Force MAE matches exactly, energy matches upto $\approx 0.1~\text{meV}$

1500 epochs

- Attention models with equivariance gives SOTA on atomic force and energy predictions
- 2. Ablation studies show equivariance and non-linear message passing improve performance!

Erratum: Results: Aspirin MD17

MAE on Test Set

Force MAE matches exactly, energy matches upto $\approx 0.1~\text{meV}$

1500 epochs

- Attention models with equivariance gives SOTA on atomic force and energy predictions
- 2. Ablation studies show MLP attention and non-linear message passing improve performance!

Best!

Backup

Results: Aspirin

Model	Energy MAE	Force MAE	Energy MAE (original)	Force MAE (original)	Parameter s
Non-linear message passing + MLP	5.4	7.2	5.3	7.2	3.5 million
Linear message passing + MLP	5.4	8.2	_	_	2.9 million
Dot product attention	5.8	9.2	-	_	3.3 million

1500 epochs: ~1.5 days per run

Ablation studies show MLP and non-linear message passing make a difference!

Results: Other

MD17

- Training for ~950 epochs done for full model on Ethanol, Malonaldehyde, Naphthalene, Salicyclic_acid
- 2. Hit GPU hour limits

Naphthalene

MD22

- 1. Training attempted on DNA base pairs and Ac-Ala3-NHMe
- 2. Hit Memory limits

DNA base pair (AT-AT)

Acknowledgements

Nitish Joshi

NYU HPC