アルゴリズム論1

第11回: 帰納的に可算な集合と決定問題

関川 浩

2016/06/29

第 11 回の目標

- 帰納的に可算な集合, 述語について考える
 ⇒ (原始) 帰納的な集合, 述語と同様, 重要な族
- 述語が成立するか否かを判定するアルゴリズムが 存在するか否かを問う決定問題について考察

- 帰納的に可算な集合と述語
 - 帰納的に可算な集合
 - 帰納的に可算な述語
 - 例
- ② 決定問題
 - 述語に関する決定問題
 - 集合に関する決定問題
 - 非可解な決定問題の例
- ③ いくつかの基本的な定理
 - 対角線論法
 - 部分帰納的関数の Gödel 数
 - Post の対応問題と応用

- 帰納的に可算な集合と述語
- 2 決定問題
- ③ いくつかの基本的な定理

帰納的に可算な集合

定義 1 (帰納的に可算な集合)

- 集合 $S \subset \mathbb{N}$ が帰納的に可算
 - $\iff S = \emptyset$ あるいは, $f(\mathbb{N}) = \{f(0), f(1), \ldots\} = S$ となる帰納的関数 f が存在

関数 f は S を枚挙するという

• 集合 $S \subset \mathbb{N}^n$ が帰納的に可算

$$\iff \{x \mid ((x)_0,(x)_1,\ldots,(x)_{n-1}) \in S\} \subseteq \mathbb{N}$$
 が帰納的に可算

$$(x)_i$$
 は $x = 0$, 1 のとき 0, $x \ge 2$ のとき x の素因数分解 における $i+1$ 番目の素数の巾

$$\{x \mid ((x)_0, (x)_1, \dots, (x)_{n-1}) \in S\}$$

$$= \{2^{x_0}3^{x_1} \dots p_{n-1}^{x_{n-1}} \mid (x_0, x_1, \dots, x_{n-1}) \in S\}$$

以下, № の部分集合だけを考える

定理 1 (1/2)

定理 1

帰納的集合は帰納的に可算

証明 (1/2)

 $S \subseteq \mathbb{N}$: 空ではない帰納的集合 (空の場合は明らか)

• S が有限集合のとき $S = \{a_0, \dots, a_n\}$ として

$$f(i) = \begin{cases} a_i, & 0 \le i \le n \text{ obs} \\ a_0, & i > n \text{ obs} \end{cases}$$

と定義すると, f は帰納的かつ $f(\mathbb{N}) = S$

 $\Longrightarrow S$ は帰納的に可算

定理 1 (2/2)

証明 (2/2)

 \bullet S が無限集合のとき S の特徴関数を C_S として

$$f(0) = \mu y(C_s(y) = 0)$$

$$f(x') = \mu y(C_s(y) = 0 \land f(x) < y)$$

と定義すると, C_S は帰納的だから f は帰納的 $f(\mathbb{N}) = S$ だから, S は帰納的に可算

定理 2 (1/3)

定理 2

集合 $S \subset \mathbb{N}$ は帰納的

 \iff S と S の補集合 $\overline{S} = \mathbb{N} \setminus S$ はともに帰納的に可算

"←"が成り立つことは直観的には:

S と \overline{S} の要素を枚挙する二つの TM を同時に動かす

 \implies 任意の $x \in \mathbb{N}$ は有限時間内にいずれかの枚挙に登場

 $\implies x \in S$ か否かを判定するアルゴリズムが存在

 $\Longrightarrow S$ は帰納的

定理 2 (2/3)

証明 (1/2)

- ullet S が帰納的であれば \overline{S} も帰納的 \Longrightarrow 定理 1 より, S と \overline{S} はともに帰納的に可算
- \bullet 逆に, S と \overline{S} がともに帰納的に可算とする
 - $S = \emptyset$ あるいは $\overline{S} = \emptyset$ のとき, 明らかに S は帰納的
 - $S \neq \emptyset$ かつ $\overline{S} \neq \emptyset$ のとき

f: S を枚挙する関数

g: \overline{S} を枚挙する関数

 \Longrightarrow 述語 $(f(y) = x \lor g(y) = x)$ は帰納的かつ正則

⇒ 関数 $h(x) = \mu y(f(y) = x \vee g(y) = x)$ は帰納的

定理 2 (3/3)

証明 (1/2)

すると

$$x \in S \iff f(h(x)) = x$$

かつ, 述語 f(h(x)) = x は帰納的

よって, S の特徴関数は

$$C_S(x) = \begin{cases} 0, & f(h(x)) = x \text{ のとき} \\ 1, & そうではないとき \end{cases}$$

と表されるので帰納的

 $\Longrightarrow S$ は帰納的

定理 3 (1/2)

定理 3

Sは帰納的に可算

⇒ 適当な帰納的述語 P(x,y) に対して $S = \{x \mid (\exists y)P(x,y)\}$

証明 (1/2)

S: 帰納的に可算とする

• $S = \emptyset$ のとき

$$P(x,y) \longleftrightarrow x + y + 1 < x + y$$

とすると P(x,y) は帰納的、かつ、 $\{x \mid (\exists y)P(x,y)\} = \emptyset = S$

 \bullet $S \neq \emptyset$ のとき, S を枚挙する帰納的関数 f に対して

$$P(x,y) \longleftrightarrow f(y) = x$$

とすれば P(x,y) は帰納的, かつ, $\{x \mid (\exists y)P(x,y)\} = S$

定理 3 (2/2)

証明 (2/2)

ある帰納的述語 P(x,y) に対し $S = \{x \mid (\exists y)P(x,y)\}$ とする

- S = ∅ の場合は成立 (空集合は帰納的に可算)
- S≠∅の場合

$$f(y) \stackrel{\text{def}}{=} \begin{cases} (y)_0, & P((y)_0, (y)_1) \text{ obs} \\ x_0, & \text{fordsolves} \end{cases}$$

ただし, x_0 は S の一つの要素

すると, f は帰納的, かつ

$$a\in S$$
 ⇔ ある b に対して $P(a,b)$ が成立
$$\iff y=2^a3^b \text{ とすれば } P((y)_0,(y)_1) \text{ が成立} \\ \iff f(y)=(y)_0=a$$

よって, f は S を枚挙する関数であり, S は帰納的に可算 \blacksquare

帰納的に可算な述語 (1/2)

定理 3 より, 述語が帰納的に可算であることを以下のように 定義するのは自然

定義 2 (帰納的に可算な述語)

述語 $P(x_1,\ldots,x_n)$ は、帰納的述語 $Q(x_1,\ldots,x_n,y)$ が存在して

$$P(x_1,\ldots,x_n)\longleftrightarrow (\exists y)Q(x_1,\ldots,x_n,y)$$

であるとき, 帰納的に可算であるという

帰納的に可算な述語 (2/2)

定理 4

集合 S が帰納的に可算

$$\iff$$
 ある k が存在して, $S = \{x \mid (\exists y)T_1(k, x, y)\}$

証明

定理 3 と枚挙定理 (前回) による

系 1

集合 S が帰納的に可算

 \Leftrightarrow ある原始帰納的述語 P(x,y) が存在して $S = \{x \mid (\exists y) P(x,y)\}$

定理 4 から、定理 3 の証明後半で使った、S を枚挙するための 関数は原始帰納的

⇒ 空ではない帰納的に可算な集合は、原始帰納的関数によって 枚挙できる

帰納的に可算ではない集合

定理 5

 $S = \{x \mid (\forall y) \neg T_1(x, x, y)\}$ は帰納的に可算ではない

証明

S が帰納的に可算であると仮定

定理 4 より, ある数
$$k$$
 に対して $S = \{x \mid (\exists y)T_1(k, x, y)\}$
 $\Longrightarrow (\forall y) \neg T_1(x, x, y) \longleftrightarrow (\exists y)T_1(k, x, y)$

$$\neg(\exists y)T_1(k,k,y) \longleftrightarrow (\forall y)\neg T_1(k,k,y)$$
$$\longleftrightarrow (\exists y)T_1(k,k,y)$$

となり矛盾

帰納的に可算だが帰納的ではない集合

定理 6

帰納的に可算であるが、帰納的ではない集合が存在する

証明

 $S = \{x \mid (\exists y)T_1(x, x, y)\}$ は帰納的に可算

S が帰納的と仮定すると, 定理 2 より S の補集合

$$\{x \mid \neg(\exists y)T_1(x, x, y)\} = \{x \mid (\forall y)\neg T_1(x, x, y)\}\$$

は帰納的に可算となり、定理5に反する

定理 5,6 の述語版

系 2

- (1) 述語 $(\forall y) \neg T_1(x, x, y)$ は帰納的に可算ではない
- (2) 述語 $(\exists y)T_1(x,x,y)$ は帰納的に可算だが、帰納的ではない

証明

定理 5,6 のいい換え

注意

(2) より、以下の関数 $\varphi(x)$ は計算可能ではないことが分かる

$$\varphi(x) = \begin{cases} 0, & (\exists y) T_1(x, x, y) \text{ obs} \\ 1, & \text{forkand} \end{cases}$$

- 帰納的に可算な集合と述語
- 2 決定問題
- ③ いくつかの基本的な定理

述語に関する決定問題

• 自然数上の述語 $P(x_1,\ldots,x_n)$ が与えられているとき,

決定問題

任意の $(x_1,\ldots,x_n)\in\mathbb{N}^n$ に対して $P(x_1,\ldots,x_n)$ が成立するか否かを決定するアルゴリズムを作れ

という問題を述語 $P(x_1,...,x_n)$ に関する決定問題という アルゴリズムが作れれば、Church の提唱により P は帰納的

- そこで, 述語 $P(x_1,...,x_n)$ に関する決定問題は
 - P が帰納的であるとき<mark>帰納的に可解</mark>である
 - P が帰納的ではないとき帰納的に非可解である

という

集合に関する決定問題

• 集合 $S \subset \mathbb{N}^n$ に関する決定問題は以下で定義

任意の
$$(x_1,\ldots,x_n)\in\mathbb{N}^n$$
 に対して $(x_1,\ldots,x_n)\in S$ であるか否かを決定するアルゴリズムを作れ

 \bullet S の特徴関数 C_S を考えれば

$$(x_1,\ldots,x_n)\in S\Longleftrightarrow C_S(x_1,\ldots,x_n)=0$$

であり, 述語 P に対して

$$P(x_1,\ldots,x_n)$$
 が成立
 $\iff (x_1,\ldots,x_n) \in \{(x_1,\ldots,x_n) \mid P(x_1,\ldots,x_n)\}$

なので,集合,述語に関する決定問題は本質的に同じ

非可解な決定問題の例

集合や述語は、自然数の世界以外でも考えられる

Gödel 数化により自然数の世界に移すことができるが、 元の世界で考えるときには

- 決定のためのアルゴリズムが作れるとき, 決定可能または 可解である
- アルゴリズムが存在しないとき, 決定不能または非可解である

という

非可解な決定問題の例として, TM の停止問題を取り上げる

停止問題 |

定理 7

以下の決定問題 (停止問題 1) は非可解

任意に与えられた TM $M=(K,\Sigma,Q,q_0,q_h)$ に対し、 様相 $\overline{x}q_0B$ に始まり、様相 wq_hB ($w\in\Sigma^*$) に終る、 M による計算が存在するか否かを決定するアルゴリズム を作れ

証明

この決定問題は、対象を Gödel 数化すると、述語 $(\exists y)T_1(z,x,y)$ に関する決定問題となる

停止問題 ||

定理 8

以下の問題 (停止問題 Ⅱ) を非可解にする TM が存在

TM $M=(K,\Sigma,Q,q_0,q_h)$ を固定する このとき, 任意の自然数 x に対し, 様相 $\overline{x}q_0B$ に始まり, 様相 wq_hB ($w\in\Sigma^*$) に終る, M による計算が存在するか 否かを決定するアルゴリズムを作れ

証明

M: 述語 $T_1(x,x,y)$ の特徴関数 $C_{T_1}(x,x,y)$ を計算する TM

 M_0 : M を用いて作った, 関数 $\mu y(C_{T_1}(x,x,y)=0)$ を部分的に計算する TM (第 8 回の系 3)

 M_0 に対する停止問題は、述語 $(\exists y)T_1(x,x,y)$ に関する決定問題と等価になるので、非可解

停止問題 I, II の解釈

- 停止問題 I の非可解性 プログラムとそれが使うデータを任意に与えたとき, 計算機がいつかは停止するか否かを決定するプログラムは 書けない
- 停止問題 || の非可解性 以下の性質を持つプログラム P が存在する

入力データを任意に与えたとき, *P* が停止するか否かを 決定するプログラムは書けない

いずれも Turing による 1936 年の結果 (電子計算機が登場する前)

- 帰納的に可算な集合と述語
- 2 決定問題
- ③ いくつかの基本的な定理

対角線論法 (1/4)

 $\lceil Tm(x) \longleftrightarrow x$ は TM の Gödel 数である」は原始帰納的

 \Longrightarrow TM の全体を M_0 , M_1 , ..., M_n , ... と枚挙するような TM が存在

$$\varphi(m) \stackrel{\text{def}}{=} \begin{cases} 1, & M_m \text{ が入力 } m \text{ に対して停止するとき} \\ 0, & そうではないとき \end{cases}$$

定理 9

関数 $\varphi(m)$ は計算可能ではない

対角線論法 (2/4)

証明 (1/2)

arphi(m) が計算可能と仮定し, arphi(m) を計算する TM を M とする M を使って

$$\Phi(m) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} 1, & \varphi(m) = 0 \text{ のとき} \\ \text{無定義}, & \varphi(m) = 1 \text{ のとき} \end{array} \right.$$

を部分的に計算する TM M' を以下のように作ることができる

- $\varphi(m) = 0$ ならば、出力 0 を 1 に書き換えて停止
- $\varphi(m) = 1$ ならば、テープ上の $11 (= \overline{1})$ 間の 往復を永久に繰り返す

$$\begin{array}{c|c}
Ml^2\langle B\rangle & \text{no} \\
\text{yes} & \\
r^2 1r
\end{array}$$

対角線論法 (3/4)

証明 (2/2)

この M' も枚挙の中に出現するよって, ある k が存在して, $M' = M_k$

$$\Phi(k) = 1 \iff \varphi(k) = 0$$
 $\iff M_k$ は入力 k に対して停止しない
 $\iff M'$ は入力 k に対して停止しない
 $\iff \Phi(k)$ は無定義

これは矛盾

対角線論法 (4/4)

系 3

以下の関数 $\varphi(x,y)$ は計算可能ではない

$$\varphi(m,n) = \begin{cases} 1, & M_m \text{ が入力 } n \text{ に対して停止するとき} \\ 0, & そうではないとき \end{cases}$$

証明

 $\varphi(m,n)$ が計算可能と仮定すると, $\varphi(m,m)=\varphi(m)$ より $\varphi(m)$ も計算可能となり, 定理 9 に矛盾

注意

- 定理 9 と系 3 は, TM の停止性の非可解性を主張した 定理 7,8 のいい換え
- 対角線論法の名前は Cantor の対角線論法に由来 定理 9 の証明中の Φ の定義にその本質が現れている

部分帰納的関数の Gödel 数

 $\varphi(x_1,\ldots,x_n)$: 部分帰納的関数

Kleene の標準形定理により,以下を満たす k が存在

$$\varphi(x_1,\ldots,x_n)\cong U(\mu yT_n(k,x_1,\ldots,x_n,y))$$

この k を φ の Gödel 数とよぶこともある (本来は φ を部分的に計算する TM の Gödel 数)

- φ の Gödel 数は無数に存在(φ を部分的に計算する TM が無数にあるため)
- Gödel 数が k である n 変数の部分帰納的関数を $\varphi_k^{(n)}$ と書くことにする n を明示する必要がないときには単に φ_k と書く

部分帰納的関数の全域化 (1/2)

任意の部分帰納的関数 f(x) に対して, 全域的な帰納的関数 g(x) が存在して

$$g(x) = \begin{cases} f(x), & f(x)$$
が定義されているとき $0, & f(x)$ が定義されていないとき

なら都合がよい (g(x) を計算する TM は必ず停止するので) しかし、このような全域化は一般には不可能

部分帰納的関数の全域化 (2/2)

定理 10

帰納的関数に全域化できないような部分帰納的関数が存在

証明

 $f(x) = \varphi_x(x) + 1$ は部分帰納的 この関数の全域化は

$$g(x) = \begin{cases} \varphi_x(x) + 1, & \varphi_x(x) \text{ が定義されているとき} \\ 0, & \varphi_x(x) \text{ が定義されていないとき} \end{cases}$$

g(x) が帰納的であるとすると, $g = \varphi_k$ となる k が存在して

$$g(k) = \varphi_k(k) + 1 = g(k) + 1$$

となり矛盾 ($\varphi_k(k)$ は定義されていることに注意)

Post の対応問題 (1/3)

- Σ : 二個以上の記号を含むアルファベット $\alpha = x_1, x_2, \ldots, x_k; \beta = y_1, y_2, \ldots, y_k (x_i, y_i \in \Sigma^* \setminus \{\varepsilon\})$
- α, β に対して

$$x_{i_1}x_{i_2}\dots x_{i_n} = y_{i_1}y_{i_2}\dots y_{i_n} \qquad (n \ge 1, \ 1 \le i_j \le k)$$

となる添字の列 i_1, \ldots, i_n が存在するとき、 $P(\alpha, \beta)$ は 解を持つといい、 i_1, \ldots, i_n または $x_{i_1}x_{i_2}\ldots x_{i_n}$ を $P(\alpha, \beta)$ の解という

Post の対応問題

任意に与えた α , β に対し, $P(\alpha,\beta)$ が解を持つか否かを決定せよ

Post の対応問題 (2/3)

例

$$\Sigma = \{a, b\} \ \texttt{L}$$
 \texttt{T}

• $\alpha = x_1, x_2, x_3; \beta = y_1, y_2, y_3$ を表 1 で与える

$$x_1 x_2 x_1 x_3 = abbababba = y_1 y_2 y_1 y_3$$

$$\Longrightarrow P(\alpha,\beta)$$
 は解 1, 2, 1, 3 を持つ

• $\alpha = x_1, x_2, x_3; \beta = y_1, y_2, y_3$ を表 2 で与える この場合, $P(\alpha, \beta)$ は解を持たない

$$\bar{x}$$
 \bar{x}
 \bar{x}

Post の対応問題 (3/3)

定理 11 (Post (1946 年))

Post の対応問題は非可解

証明は略

定理 11 を用いると、 cfg に関する多くの決定問題の非可解性を証明できる

cfg に関する決定問題の例

定理 12

任意に与えられた二つの cfg G_1 , G_2 に対して, $L(G_1) \cap L(G_2) = \emptyset$ であるか否かを決定する問題は非可解

略証

 $|\Sigma| \geq 2$ として, c を Σ に含まれない記号とする 任意の $\alpha = x_1, \ldots, x_k; \beta = y_1, \ldots, y_k \ (x_i, y_i \in \Sigma^* \setminus \{\varepsilon\})$ に対し $L(G_1) = \{x_{i_1}x_{i_2}\ldots x_{i_n}cy_{i_n}^{\mathrm{R}}\ldots y_{i_2}^{\mathrm{R}}y_{i_1}^{\mathrm{R}}\}$

となる $cfg G_1$ を作ることができる. 同様に

$$L(G_2) = \{wcw^{\mathbf{R}} \mid w \in \Sigma^* \setminus \{\varepsilon\}\}\$$

となる cfg G_2 を作ることもできる. ところが

$$L(G_1) \cap L(G_2) = \{wcw^{\mathbf{R}} \mid w \text{ は } P(\alpha, \beta) \text{ の解 } \}$$

だから,この問題は非可解