M 384: Assignment 7

Nathan Stouffer

Problem. If $|f_n(x) - f_n(y)| \le M|x - y|^{\alpha}$ for some fixed M and $\alpha > 0$ and all x, y in a compact interval, show that $\{f_n\}$ is uniformly equicontinuous.

Proof. A sequence is uniformly equicontinuous if for all 1/m there exists a 1/k such that |x-y|<1/k implies $|f_n(x)-f_n(y)|<1/m$ for every f_n in the sequence. If we are given 1/m, choose $1/k=(1/Mm)^{1/\alpha}$, then we have $|f_n(x)-f_n(y)|\leq M|x-y|^{\alpha}\leq M1/k^{\alpha}=M((1/Mm)^{1/\alpha})^{\alpha}=M/Mm=1/m$ for |x-y|<1/k as desired.

Problem. Give an example of a sequence that is uniformly equicontinuous but not uniformly bounded.

Proof. Consider the sequence $\{f_n(x)\}$ where we take $f_n(x) \equiv n$. Then $|f_n(x) - f_n(y)| = |n - n| = 0$ for all x, y yet there is no bound on the sequence.

Problem. Prove that the family of all polynomials of degree $\leq N$ with coefficients in [-1,1] is uniformly bounded and uniformly equicontinuous on any compact interval.

Proof. Let p(x) be a such a polynomial on a compact interval [a, b]. That is, $p(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_i x^i$ for $x \in [a, b]$ a compact interval, $c_i \in [-1, 1]$, and $0 \le i \le N$.

First we will bound all such polynomials. Choose $m = \max(|a|,|b|)$ then any $c_j x^j \le |c_j x^j| = |c_j||x^j| \le 1m^j = m^j$ and take $M = \sum_{i=0}^N m^i$. Then, term for term, we have $p(x) \le M$ for any of the polynomials in the family. Thus, the family is uniformly bounded.

Now we show that the family is uniformly equicontinuous. For any such p(x), consider $p'(x) = c_1 + 2c^2x + 3c_3x^2 + \cdots + Nc_Nx^{N-1}$. Then $p'(x) \leq M' = \sum_{i=0}^{N-1} N*m^i$ since $N*m^i$ is larger term for term. Thus by the MVT we have the following for some $z \in (x,y)$: $|p(x) - p(y)| \leq |p'(z)||x - y| \leq M'|x - y|$. Then for a given 1/m we can choose 1/n = 1/(Mm) to satisfy equicontinuity.

Problem. Give an example of a uniformly bounded and uniformly equicontinuous sequence of functions on the whole line that does not have any uniformly convergent subsequences.

Proof. Consider the function

$$f_n(x) = \begin{cases} 0 & x \le n - 1 \\ x - (n - 1) & n - 1 < x \le n \\ 1 & x > n \end{cases}$$

Any f_n is bounded by taking M=2 so the sequence is uniformly bounded. Also the sequence is uniformly continuous by taking 1/n=1/2m for a given 1/m (also the derivative is bounded above by 1). Now we show that the sequence has no uniformly converging subsequences. To have a converging subsequence, there must be a subsequence that satisfies the Cauchy criterion. We show that no pair of distinct elements even satisfies the Cauchy criterion, so there is no chance of a subsequence existing since every element of the sequence is distinct. Pick any k>j and consider $|f_k(j)-f_j(j)|=|0-1|=1$. Thus there is no uniformly converging subsequence of f_n .