Asymptotic Analysis Proof

Kelin Luo

1 Problem in Lecture Note 3

1.1
$$2^{n/3+\sqrt{n}+100} = \Omega(2^{n/3})$$

Proof. Proof by Ω Definition.

There exists a constant $c_1 = 1$ and $n_0 = 10$, for any number $n \ge n_0$, we have $2^{n/3+\sqrt{n}+100} \ge 2^{n/3}$, thus $2^{n/3+\sqrt{n}+100}$ is in $\Omega(2^{n/3})$.

1.2 $2^{n/3+\sqrt{n}+100} \notin O(2^{n/3})$

Proof. Proof by Contradiction.

Assume $2^{n/3+\sqrt{n}+100} \in O(2^{n/3})$. By definition, we know that there exists a constant $c_1 > 0$ and $n_0 > 0$, for any number $n \ge n_0$, we have $2^{n/3+\sqrt{n}+100} \le c_1 * 2^{n/3}$.

However, for any constant $c_1 > 0$ and $n_0 > 0$, there exists a number $n' > \max\{\log_2^2 c_1, n_0\}, 2^{n'/3} + \sqrt{n'} + 100 > 2^{n'/3} * 2^{\log_2 c_1} * 2^{100} > c_1 * 2^{n'/3} \text{ holds, which derives a contradiction. Thus } 2^{n/3} + \sqrt{n} + 100 \text{ is not in } O(2^{n/3}).$

1.3
$$2^{n/3+\sqrt{n}+100} \notin \Theta(2^{n/3})$$

Proof. Since $2^{n/3+\sqrt{n}+100} \notin O(2^{n/3})$, we know that $2^{n/3+\sqrt{n}+100} \notin \Theta(2^{n/3})$. \square

2 Mote examples

Example 1: $f(n) = \log_2 n, \ g(n) = \log_8 n$

Proof Approach (by definition):

There exists a constant $c_1 = 4$ and $n_0 = 8$, for any number $n \ge n_0$, we have $f(n) = \log_2 n < 4 \log_8 n = c_1 * g(n)$, thus f(n) is in O(g(n)).

There exists a constant $c_1 = 1$ and $n_0 = 8$, for any number $n \ge n_0$, we have $f(n) = \log_2 n > \log_8 n = c_1 * g(n)$, thus f(n) is in $\Omega(g(n))$.

Since f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, f(n) is in $\Theta(g(n))$.

Exercise: Please try prove that $\log_a n = \Theta(\log_b n)$ for any constant a,b>0.

Example 2: $f(n) = n^2$, g(n) = 1 if n is odd and $g(n) = n^3$ if n is even. Proof Approach (by definition): We prove the "not in" relationship by contradiction.

For any constant $c_1 > 0$ and $n_0 > 0$, there exists an odd number $n > \max\{\sqrt{c_1}, n_0\}, f(n) = n^2 > c_1 = c_1 * g(n)$ holds, thus f(n) is not in O(g(n)).

For any constant $c_2 > 0$ and $n_0 > 0$, there exists an even number $n > \max\{1/c_2, n_0\}$, $f(n) = n^2 < c_2 * g(n)$ holds, thus f(n) is not in $\Omega(g(n))$. Since f(n) is not in O(g(n)), f(n) is not in $\Theta(g(n))$.

Example 3: f(n) = 2n, g(n) = n if n is odd and $g(n) = n^2$ if n is even. Proof Approach (by definition):

There exists a constant $c_1 = 3$ and $n_0 = 1$, for any number $n \ge n_0$, we have $f(n) \le c_1 * g(n)$, thus f(n) is in O(g(n)).

For any constant $c_2 > 0$ and $n_0 > 0$, there exists even number $n > \max\{2/c_2, n_0\} > n_0$, we have $f(n) < c_2 * g(n)$, thus f(n) is not in $\Omega(g(n))$. Since f(n) is not in $\Omega(g(n))$, f(n) is not in $\Theta(g(n))$.

Hints for the homework: Firstly try to simplify both f(n) and g(n), and then analyse the asymptotic relationships.