ECE 35,	Fall 2021		Your sequence number	
		Last name		
Quiz 2	/ 12	First + middle name(s)		
	, 12	PID		

Instructions:

- Read each problem completely and thoroughly before beginning
- All calculations need to be done on these sheets
- Write your answers in the answer boxes for each question. Make sure you list units!
- Answers without supporting calculations will receive zero credit
- (1) (a) (4 points) Find the current i_a . You can use any analysis method. (Hint: we recommend mesh analysis.)

(b) (2 points) We keep the circuit the same but move the ground to a new location as shown below. Find the mesh current i_1 and the node voltage V_1 .

The circuits are copied on the next page for your convenience.

(2) (a) (4 points) You are asked to find the Norton equivalent model of the circuit below on the left. You are not given the values of R_1 and k in this circuit. However, you are told that if you connect the circuit on the right to it (A' connected to A and B' connected to B), a voltage v_a of 12 V will appear across current source I_a (as indicated).

<u>Draw the Norton equivalent model</u> between A and B of the circuit on the left (i.e., without the circuit on the right attached to it). Make sure you label A and B in your model. (Hint: find the Norton equivalent current source I_N first.)

(b) (2 points) In the scenario above, we double the 6 A independent current source to **12 A** and change I_a to **1 A**. All other circuit elements remain the same. What is the new value of v_a when the two circuits are connected?

12	
v_a	

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{l}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

$$sin(\pi - \alpha) = sin(\alpha)$$
 $cos(\pi - \alpha) = -cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha): 0 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2} \quad 1$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): \quad 0 \quad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3} \qquad \infty$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$