We Claim:

1. A compound of the formula (I)

$$(R^{10})_a$$
 $(L^1)_m$
 $(L^1)_m$
 (I)
 $(R^{10})_a$
 (I)
 $(L^2)_n$
 $(L^2)_n$

wherein

5

10

15

a is an integer selected from 0 to 2;

 R^{10} is selected from the group consisting of C_{1-6} alkyl, aryl, C_3 - C_8 cycloalkyl, aralkyl, heteroaryl, heteroaryl- C_{1-6} alkyl, heterocycloalkyl and heterocycloalky- C_{1-6} alkyl; wherein the aryl, cycloalkyl, aralkyl, heteroaryl or heterocycloalkyl group may be optionally substituted with one to four substituents independently selected from halogen, hydroxy, C_{1-6} alkyl, halogenated C_{1-6} alkyl, C_{1-6} alkoxy, halogenated C_{1-6} alkoxy, nitro, cyano, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-6} alkylsulfonyl, C_{1-6} alkoxysulfonyl or halogenated C_{1-6} alkylsulfonyl;

X is selected from the group consisting of CH, C(C₁-C₆alkyl) and N; m is an integer selected from 0 and 1;

 L^1 is selected from the group consisting of $C_1\text{-}C_6$ alkyl;

Y¹ is selected from the group consisting of C(O) and C(S);

R¹ and R² are each independently selected from the group consisting of hydrogen, C₁-C₆alkyl, aryl, aralkyl, C₃-C₈cycloalkyl, C₃-C₈cycloalkyl-C₁₋₆alkyl, heteroaryl, heteroaryl-C₁₋₆alkyl, heterocycloalkyl and heterocycloalkyl-C₁₋₆alkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one or more substituents independently selected

10

15

20

25

The first than their than the

from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, heteroaryl or heterocycloalkyl;

alternatively, R¹ and R² may be taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl;

Y² is selected from the group consisting of CH₂, C(O), C(S) and SO₂;

 R^3 is selected from the group consisting of aryl, aralkyl, C_3 - C_8 cycloalkyl, heteroaryl, heterocycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl and heterocycloalkyl- C_{1-6} alkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one of more substituents independently selected from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino or $-(L^2)_n$ - R^4 ;

n is an integer selected from 0 and 1;

 L^2 is selected from the group consisting of C_1 - C_8 alkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, C(O), C(S), SO_2 and $(A)_{0-1}$ -Q- $(B)_{0-1}$;

where A and B are each independently selected from C_1 - C_6 alkyl, C_2 - C_6 alkenyl and C_2 - C_6 alkynyl;

where Q is selected from the group consisting of NR⁵, O and S; where R⁵ is selected from the group consisting of hydrogen, C₁-C₆alkyl, aryl, aralkyl, C₃₋₈cycloalkyl, heteroaryl, heterocycloalkyl, C(O)-C₁-C₆alkyl, C(O)-aryl, C(O)-aralkyl, C(O)-heteroaryl, C(O)-heterocycloalkyl, SO₂-C₁-C₆alkyl, SO₂-aryl, SO₂-aralkyl, SO₂-heteroaryl, SO₂-heterocycloalkyl and -CHR⁶R⁷;

wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one or more substituents independently selected from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

where R⁶ and R⁷ are each independently selected from the group consisting of hydrogen, C₁₋₆alkyl, aryl, aralkyl, C₃₋₈cycloalkyl, heteroaryl,

10

15

20

25

30

of the fact that with it there must be

The transmit of the state of th

ļ4

heterocycloalkyl, C(O)-C₁₋₆alkyl, C(O)aryl, C(O)-C₃₋₈cycloalkyl, C(O)-heteroaryl and C(O)-heterocycloalkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁-C₆alkyl, C₁-C₆ alkoxy, halogenatedC₁-C₆alkyl, halogenatedC₁-C₆alkoxy, nitro, cyano, amino, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino;

R⁴ is selected from the group consisting of aryl, aralkyl, C₃-C₈cycloalkyl, heteroaryl and heterocycloalkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁-C₆alkyl, C₁-C₆ alkoxy, halogenatedC₁-C₆alkyl, halogenatedC₁-C₆alkoxy, nitro, cyano, amino, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino;

provided that when a is 0; X is CH; m is 1; L1 is CH2; R3 is phenyl; n is 0; and R⁴ is phenyl, wherein the phenyl group may be optionally substituted with one substituent selected from halogen, hydroxy, C₁-C₆alkyl, C₁-C₆ alkoxy, halogenatedC₁-C₆alkyl, halogenatedC₁-C₆alkoxy, nitro, cyano, amino, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino, and wherein the R⁴ group is bonded to the R³ group in the para position;

then R1 and R2 are each independently selected from the group consisting of hydrogen, C2-C6alkyl, aryl, aralkyl, C3-C8cycloalkyl, C3-C₈cycloalkyl-C₁₋₆alkyl, heteroaryl, heteroaryl-C₁₋₆alkyl, heterocycloalkyl and heterocycloalkyl-C₁₋₆alkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one or more substituents independently selected from halogen, hydroxy, C₁-C₆alkyl, C₁-C₆alkoxy, halogenatedC₁-C₆alkyl, halogenatedC₁-C₆alkoxy, nitro, cyano,\amino, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, heteroaryl or heterocycloalkyl;

alternatively, R¹ and R² may be taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl;

10

15

20

25

30

of the first that the state of the same that the state of the state of

provided further that when a is 0; X is N; m is 1; L^1 is CH_2 ; Y^2 is C(O) or C(S); n is 1; L^2 is O; R^4 is phenyl, wherein the phenyl may be optionally substituted with one or more substituents independently selected from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino; and R^1 and R^2 are each independently selected from the group consisting of hydrogen and C_1 -6alkyl;

provided further that when a is 0; X is \mathbb{N} ; m is 1; L¹ is CH₂; Y² is C(O) or C(S); n is 0; R¹ and R² are taken together with the nitrogen to which they are bound to form pyrrolidinyl; and R⁴ is pyridyl;

then R^3 is selected from the group consisting of aryl, aralkyl, C_3 - C_8 cycloalkyl, heteroaryl, heterocycloalkyl other than thiazolidinyl; C_{3-8} cycloalkyl- C_{1-6} alkyl and heterocycloalkyl- C_{1-6} alkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one of more substituents independently selected from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino or $-(L^2)_n$ - R^4 ;

provided further that when R^1 and R^2 are each independently selected from the group consisting of hydrogen and C_{1-6} alkyl, or R^1 and R^2 are taken together with the nitrogen atom to which they are bound to form morpholinyl or pyrrolidinyl; a is 0; X is N; m is 1; L^1 is CH_2 ; Y^2 is C(O) or C(S); n is 0; and R^4 is phenyl, wherein the phenyl is optionally substituted with one or more

10

att. The grap for at the control time of grap was and the control time for the control time f

substituents independently selected from C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy or nitro;

then R^3 is selected from the group consisting of aryl, aralkyl, heteroaryl, heterocycloalkyl, C_{3-8} cycloalkyl- C_{1-6} alkyl and heterocycloalkyl- C_{1-6} alkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one substituent selected from halogen, hydroxy, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halogenated C_1 - C_6 alkyl, halogenated C_1 - C_6 alkoxy, nitro, cyano, amino, C_1 - C_4 alkylamino or di(C_1 - C_4 alkyl)amino;

and pharmaceutically acceptable salts thereof.

2. A compound as in Claim 1 of the formula

wherein

15 a is 0 to 1;

R¹⁰ is selected from the group consisting of C₁-C₄alkyl and aralkyl; X is selected from the group consisting of CH, C(methyl) and N; m is an integer selected from 0 or 1;

L¹ is selected from the group consisting of C₁-C₄ alkyl;

20 Y^1 is C(O);

R¹ and R² are each independently selected from the group consisting of hydrogen, C₁₋₄alkyl, aryl, aralkyl, C₃₋₈cycloalkyl-C₁-C₄alkyl, heteroaryl and heterocycloalkyl; wherein the aryl, aralkyl or heteroaryl may be optionally

10

15

20

25

substituted with one to two substituents independently selected from halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, trifluoromethoxy, C_1 - C_4 alkyl)amino or heterocycloalkyl;

alternatively, R¹ and R² may be taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl;Y² is C(O);

 R^3 is selected from the group consisting of aryl and heteroaryl; wherein the aryl or heteroaryl may be optionally substituted with one to two substituents independently selected from C_1 - C_4 alkyl, trifluoromethyl or $-(L^2)_n$ - R^4 ;

n is an integer selected from 0 or 1;

 L^2 is selected from the group consisting of C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl and $(A)_{0-1}$ -Q- $(B)_{0-1}$:

where A and B are each independently selected from C₁-C₄alkyl; where Q is selected from the group consisting of NR⁵, O and S; where R⁵ is selected from the group consisting of hydrogen, C₁-C₄alkyl, C(O)-C₁-C₆alkyl, C(O)-aryl, C(O)-aralkyl, C(O)-heteroaryl, C(O)-heterocycloalkyl and –CHR⁶R⁷; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one to two substituents independently selected from halogen, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl, trifluoromethoxy, nitro, cyano, amino, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino;

where R⁶ and R⁷ are each independently selected from the group consisting of hydrogen, C₁₋₄alkyl, aryl, aralkyl, C₃₋₈cycloalkyl, heteroaryl, heterocycloalkyl, C(O)-C₁₋₆alkyl, C(O)aryl, C(O)-C₃₋₈cycloalkyl, C(O)-heteroaryl and C(O)-heterocycloalkyl; wherein the aryl, aralkyl, cycloalkyl, heteroaryl or heterocycloalkyl may be optionally substituted with one to two substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl, trifluoromethoxy, nitro, cyano, amino, C₁-C₄alkylamino or di(C₁-C₄alkyl)amino;

R⁴ is selected from the group consisting of aryl, heteroaryl and heterocycloalkyl; wherein the aryl group may be optionally substituted with one

to two substituents independently selected from halogen, hydroxy, C_1 - C_4 alkyl, C_{1-4} alkoxy, trifluoromethyl or amino;

provided that when a is 0; X is CH; m is 1; L¹ is CH₂; R³ is phenyl; n is 0; and R⁴ is phenyl, wherein the phenyl group may be optionally substituted with one substituent selected from halogen, hydroxy, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl or amino, and wherein the R⁴ group is bonded to the R³ group in the para position;

then R^1 and R^2 are each independently selected from the group consisting of hydrogen, C_{2-4} alkyl, aryl, aralkyl, C_{3-8} cycloalkyl- C_1 - C_4 alkyl, heteroaryl and heterocycloalkyl; wherein the aryl, aralkyl or heteroaryl may be optionally substituted with one to two substituents independently selected from halogen, hydroxy, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, trifluoromethyl, trifluoromethoxy, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino or heterocycloalkyl;

alternatively, R¹ and R² may be taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl;

provided further that when a is 0; X is N; m is 1; L¹ is CH₂; Y² is C(O); n is 1; L² is O; R⁴ is phenyl, wherein the phenyl may be optionally substituted with one to two substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, C₁-C₄ alkoxy, trifluoromethyl or amino; and R¹ and R² are each independently selected from the group consisting of hydrogen and C₁₋₄alkyl;

then R^3 is selected from the group consisting of aryl and heteroaryl other than thienopyridinyl; wherein the aryl or heteroaryl may be optionally substituted with one to two substituents independently selected from C_1 - C_4 alkyl, trifluoromethyl or $-(L^2)_n$ - R^4 ;

provided further that when R¹ and R² are each independently selected from the group consisting of hydrogen and C₁-₄alkyl, or R¹ and R² are taken together with the nitrogen atom to which they are bound to form morpholinyl or

25

20

15

10

15

20

30

pyrrolidinyl; a is 0; X is N; m is 1; L^1 is CH_2 ; Y^2 is C(O); n is 0; and R^4 is phenyl, wherein the phenyl is optionally substituted with one or two substituents independently selected from C_1 - C_4 alkyl, C_1 - C_4 alkoxy or trifluoromethyl;

then R³ is selected from the group consisting of aryl and heteroaryl; wherein the aryl or heteroaryl may be optionally substituted with one substituent selected from C₁-C₄alkyl or trifluoromethyl;

and pharmaceutically acceptable salts thereof.

A compound as in Claim 2 wherein
 X is selected from the group consisting of CH and N;
 m is 1;

R¹ is selected from the group consisting of hydrogen and C₁₋₄alkyl; R² is selected from the group consisting of C₁₋₄alkyl, aryl, aralkyl, C₃₋₈cycloalkyl-C₁₋₄alkyl and heteroaryl; wherein the aryl or aralkyl may be optionally substituted with one to two substituents independently selected from halogen, hydroxy, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl, trifluoromethoxy, di(C₁-C₄alkyl)amino or heterocycloalkyl;

alternatively, R¹ and R² may be taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl and morpholinyl;

R³ is selected from the group consisting of aryl and heteroaryl; wherein the aryl or heteroaryl may be optionally substituted with a substituent selected from C₁-C₄alkyl or trifluoromethyl;

L² is selected from the group consisting of C₁-C₄alkyl, C₂-C₆alkenyl, C₂-C₆alkynyl, NH-C₁₋₄alkyl, C₁₋₄alkyl-N(C₁₋₄alkyl)-C₁₋₄alkyl and C₁₋₄alkyl-N(C(O)C₁₋₄alkyl)-C₁₋₄alkyl;

provided that when a is 0; X is CH; L¹ is CH₂; R³ is phenyl; n is 0; and R⁴ is phenyl, wherein the phenyl group may be optionally substituted with one substituent selected from halogen, hydroxy, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl or amino, and wherein the R⁴ group is bonded to the R³ group in the para position;

10

15

20

25

30

then R¹ is selected from the group consisting of hydrogen and C₂₋₄alkyl; R^2 is selected from the group consisting of C_{2-4} alkyl, aryl, aralkyl, C_{3-1} ecycloalkyl-C₁₋₄alkyl and heteroaryl; wherein the aryl or aralkyl may be optionally substituted with one to two substituents independently selected from halogèn, hydroxy, C₁-C₄alkyl, C₁-C₄alkoxy, trifluoromethyl, trifluoromethoxy, di(C₁-C₄alkyl)amino or heterocycloalkyl;

alternatively, R¹ and R² are taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl and morpholinyl;

and pharmaceutically acceptable salts thereof.

A compound as in Claim 3 wherein 4.

R¹⁰ is selected from the group consisting of methyl and benzyl;

L¹ is selected from the group consisting of CH₂ and CH₂CH₂:

R² is selected from the group consisting of -CH₂-(3trifluoromethylphenyl), -CH₂-cyclohexyl, -CN₂-(3,5-dimethoxyphenyl), -CH₂-(4trifluoromethylphenyl), -CH₂-(3,5-ditrifluoromethylphenyl), 3trifluoromethoxyphenyl, -CH₂-(4-dimethylaminophenyl), phenyl, benzyl, 2fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 4hydroxyphenyl, 4-dimethylamino-phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 4pyridyl-methyl, 4-morpholinyl-phenyl, 4-piperidinyl-phenyl, methyl, isopropyl, 4methoxyphenyl, 4-trifluoromethylphenyl, 2-pyrimidinyl, 4-pyrimidinyl,5quinolinyl, 6-quinolinyl, and 8-quinolinyl;

alternatively, R1 and R2 are taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidinyl, piperidinyl and morpholinyl;

R³ is selected from the group consisting of phenyl, methylphenyl, trifluoromethylphenyl, 4-oxazolyl and 3-(2-trifluoromethyl-furyl);

L² is selected from the group consisting of 2-

118

of the first the first that the first the firs The first three first that the

10

15

20

25

, 2-CH₂CH₂, 3-CH₂-CH₂, 4-CH₂-CH₂, NH-CH₂, CH₂-N(CH₃)-CH₂, CH₂-N(CH₃)-CH₂CH₂, CH₂-N(C(O)CH₃)-CH₂ and CH₂-N(C(O)CH₃)-CH₂CH₂;

R⁴ is selected from the group consisting of phenyl, 1-naphthyl, 2-pyridyl, 3-byridyl, 4-pyridyl, 3-hydroxyphenyl, 2-methylphenyl, 3-aminophenyl, 4methoxyphenyl, 4-chlorophenyl, 2-thienyl, 3-thienyl, 3,5-di(trifluoromethyl)phenyl,\1-imidazolyl, 2-benzimidazolyl, 1-pyrrolidinyl, 2-furyl and 2tetrahydrofuryl;

provided that when a is 0; X is CH; L1 is CH2; R3 is phenyl; n is 0; and R4 is phenyl, 4-chlorophenyl, 3-hydroxyphenyl, 2-methylphenyl, 4-methoxyphenyl or 3-aminophenyl and wherein the R⁴ group is bonded to the R³ group in the para position;

then R¹ is selected from the group consisting of hydrogen and C₂₋₄alkyl; R² is selected from the group consisting of -CH₂-(3-

trifluoromethylphenyl), -CH₂-cyclohexyl, -CH₂-(3,5-dimethoxyphenyl), -CH₂-(4trifluoromethylphenyl), -CH₂-(3,5-ditrifluoromethylphenyl), 3trifluoromethoxyphenyl, -CH₂-(4-dimethylaminophenyl), phenyl, benzyl, 2fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 4hydroxyphenyl, 4-dimethylamino-phenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 4pyridyl-methyl, 4-morpholinyl-phenyl, 4-piperidinyl-phenyl, isopropyl, 4methoxyphenyl, 4-trifluoromethylphenyl, 2-pyrimidinyl, 4-pyrimidinyl,5quinolinyl, 6-quinolinyl, and 8-quinolinyl;

alternatively, R¹ and R² are taken together with the nitrogen atom to which they are bound to form a five to six membered monocyclic ring structure selected from the group consisting of pyrrolidiny, piperidinyl and morpholinyl; and pharmaceutically acceptable salts thereof.

A compound as in Claim 4 of the formula

5.

200) C.M.

The army are some part of the land that the army arms.

The first trans that

1

5

10

15

$$\begin{array}{c|c}
O \\
N \\
R^2 \\
H
\end{array}$$

$$O \\
R^3 \\
-(L^2)_n \\
-R^4$$

wherein

R² is selected from the group consisting of –CH₂-(3-trifluoromethylphenyl), -CH₂-cyclohexyl, -CH₂-(3,5-dimethoxyphenyl), -CH₂-(4-trifluoromethylphenyl), -CH₂-(3,5-ditrifluoromethylphenyl), -CH₂-(4-dimethylaminophenyl), phenyl, 2-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 3-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-hydroxyphenyl, 4-methoxyphenyl, benzyl, 3-pyridyl, 4-pyridyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-quinolinyl, 6-quinolinyl, 8-quinolinyl, 4-(dimethylamino)-phenyl, 4-morpholinyl-phenyl, 4-pyridyl-methyl, and 4-piperidinyl-phenyl;

 L^2 is selected from the group consisting of 2-

4- ______ , 5- _____ , 2-

, 4- 2-/-

3- , 2-CH₂CH₂, 3-CH₂-CH₂, 4-CH₂-CH₂, NH-CH₂, 4-(CH₂-N(CH₃)-CH₂), 4-(CH₂-N(CH₃)-CH₂), 4-(CH₂-N(C(O)CH₃)-CH₂) and 4-(CH₂-N(C(O)CH₃)-CH₂);

R⁴ is selected from the group consisting of phenyl, 3-phenyl; 5-phenyl, 4-chlorophenyl, 3-hydroxyphenyl, 3-(2-methylphenyl), 3-(3-aminophenyl), 2-pyridyl, 3-pyridyl, 3-(3-pyridyl), 4-pyridyl, 3-(3-thienyl), 3,5-

di(trifluoromethyl)phenyl, 1-pyrrolidinyl, 2-furyl, 1-naphthyl, 2-thienyl, 1-imidazolyl, 2-benzimidazolyl and 2-tetrahydrofuryl; and pharmaceutically acceptable salts thereof.

6. A compound as in Claim-4 of the formula

15

R¹ is selected from the group consisting of hydrogen and methyl;

R² is selected from the group consisting of isopropyl, phenyl, 2-

fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 3-pyridyl, 1-5 pyrrolidinyl, 4-dimethylamino-phenyl and 4-morpholinyl-phenyl;

alternatively R¹ and R² are taken together with the nitrogen atom to which they are bound to form a five to six membered ring structure selected from the group consisting of 1-pyrròlidinyl, 1-piperidinyl and 1-morpholinyl;

R³ is selected from the group consisting of phenyl and 3-(2trifluoromethyl-furyl);

n is an integer from 0 to 1;

 L^2 is selected from the group consisting of 2- $\frac{1}{2}$, 3-

R4 is selected from the group consisting of phenyl, 4-methoxyphenyl, 4chlorophenyl, 2-pyridyl, 3-pyridyl, 4-pyridyl and 3,5-di(thifluoromethyl)phenyl; and pharmaceutically acceptable salts thereof.

A compound as in Claim 4 selected from the group consisting of 20 7. N-phenyl-1-[3-(2-pyridinylethynyl)benzoyl]-4-piperidineacetamide; N-(2,4-difluorophenyl)-1-[3-(2-pyridinylethynyl)benzoyl]-4piperidineacetamide;

10

N-phenyl-4-[2-[(E)-2-(2-pyridinyl)ethenyl]benzoyl]-1-p\perazineacetamide;

N-phenyl-4-[3-(2-pyridinylethynyl)benzoyl]-1-piperazineacetamide;

N-(4-hydroxyphenyl)-1-[3-(2-pyridinylethynyl)benzoyl]-4-

5 piperidineacetamide;

and pharmaceutically acceptable salts thereof.

8. A compound as in Claim 4 of the formula

X is selected from the group consisting of CH and N;

R² is selected from the group consisting of phenyl, 4-hydroxyphenyl, 2-fluorophenyl, 4-fluorophenyl, and 2,4-difluorophenyl;

 L^2 is selected from the group consisting of 3- - , 4- / , 2-

15 CH₂) and 3-NH-CH₂;

R⁴ is selected from the group consisting of 2-pyridyl, 4-pyridyl, 4-pyrrolidinyl, 2-furyl, 1-naphthyl and 3,5-di(trifluoromethyl)phenyl;

and pharmaceutically acceptable salts thereof.

20 9. A compound as in Claim 8 wherein X is CH; R² is phenyl; L² is 3
; R⁴ is 2-pyridyl and pharmaceutically acceptable salts thereof.

- 10. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of Claim 1.
- 11. A pharmaceutical composition made by mixing a compound of Claim 1
 5 and a pharmaceutically acceptable carrier.
 - 12. A process for making a pharmaceutical composition comprising mixing a compound of Claim 1 and a pharmaceutically acceptable carrier.
- 10 13. A method of treating a nervous system disorder in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the compound of Claim 1.
- 14. The method of Claim 10, wherein the nervous system disorder is
 15 selected from the group consisting of depression, dementia, schizophrenia, bipolar disorders, anxiety, emesis, acute pain, neuropathic pain, itching, migraine and movement disorders.
- 15. A method of treating nervous system a disorder in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the composition of Claim 10.
- 16. A method of treating a nervous system disorder selected from the group consisting of depression and anxiety in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the compound of Claim 1.
- 17. A method of treating a nervous system disorder selected from the group consisting of depression and anxiety in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the pharmaceutical composition of Claim 10.

Sub Espanding 18. A method of treating a nervous system disorder selected from the group consisting of depression and anxiety in a subject in need thereof comprising administering to the subject a therapeutically effective amount of the compound of Claim 9.