

ARQUITECTURA AVANZADA DEL COMPUTADOR

Ingeniería en Computación. Código: 072-4663 Semestre I-2015 (Sección 01) Prof. Alfonso Alfonsi

Evaluación Parcial 1

Manejo interno del μC (ARM, AVR, PIC). Puertos de Entrada y Salida. Temporizadores e Interrupciones.

a) Esquema de entrada y salida digital

Entrada digital: programa básico para activar o desactivar algo. LED está conectado a un puerto de salida y parpadea cada segundo. Salida digital: Esta es la forma más simple de entrada con sólo dos estados posibles: On u Off. Este ejemplo lee un interruptor simple o pulsador conectado a u puerto de entrada. Cuando el interruptor está cerrado el pin de entrada leerá HIGH y activará un LED.

b) Esquema de salida PWM

La modulación de ancho de pulso (PWM) es una forma de obtener una salida analógica por la salida pulsante. Esto podría usarse para atenuar e iluminar un LED o posteriormente controlar un servomotor.

c) Esquema de entrada de potenciómetro

Usando un potenciómetro y una de los pines de conversión analógico-digital (ADC) es posible leer valores de 0 a 1024. El siguiente ejemplo usa un potenciómetro para controlar una frecuencia de parpadeo de un LED.

d) Interrupciones

Que es una interrupción?

A grandes rasgos, una interrupción es una señal que interrumpe la del actividad del procesador. Existen dos formas de activarlas interrupciones:

- · Evento interno -> Un cronómetro o señal software
- · Evento externo -> Un cambio de estado en un pin

e) Temporizador

Que es un Timer?

A grandes rasgos, es un contador interno que puede funcionar a la frecuencia que marca un reloj. Este reloj puede ser interno o externo.

Como funciona?

Funciona mediante un aumento del "counter register", según como se configure, su contaje será a una frecuencia mayor o menor, y una vez finalice el contaje (desbordamiento) para el que lo hemos configurado activará el bit flag (bandera), el cual nos indica que el timer ha acabado de contar y empezará de nuevo.

Debido a que el timer depende de una fuente reloj, tal y como hemos dicho al principio, la unidad más pequeña medible será el periodo:

$$T = \frac{1}{f} = \frac{1}{16MHz} = 62'5ns$$

Nota: En las secciones d y e use las funciones o librerías que el microcontrolador posee.

Formato trabajo escrito en pdf. Máximo 4 páginas. La configuración de la página es 2 cm márgenes arriba, abajo, derecha e izquierda. Los párrafos deben estar a simple espacio, separación entre párrafos 6 ptos. Tipo de letra Times New Roman 10 ptos. Plantilla a continuación:

EVALUACIÓN 1: TITULO
(Línea simple)
Apellidos, Nombres Apellidos, Nombres Apellidos, Nombres CI N° xxxxxxxx CI N° xxxxxxxx
(Línea simple)
Asignatura, sección
(2 líneas simples)

- 1. Introducción
- 2. Desarrollo (Experiencias, diagramas circuitales y códigos)
- 3. Discusión de Resultados
- 4. Conclusiones
- 5. Referencias (Normas APA)