Computing Veechgroups of origamis

1.0

26 February 2018

Pascal Kattler

Sergio Siccha

Andrea Thevis

Pascal Kattler

Email: kattler@math.uni-sb.de

Homepage: http://www.math.uni-sb.de/ag/weitze/

Address: AG Weitze-Schmithüsen FR 6.1 Mathematik Universität des Saarlandes D-66041 Saarbrücken

Sergio Siccha

Email: siccha@mathb.rwth-aachen.de

Homepage: https://www.mathb.rwth-aachen.de/Mitarbeiter/siccha.php

Address: Lehrstuhl B für Mathematik RWTH - Aachen

Pontdriesch 10-16 52062 Aachen Germany

Andrea Thevis

Email: thevis@math.uni-sb.de

Homepage: http://www.math.uni-sb.de/ag/weitze/

Address: AG Weitze-Schmithüsen FR 6.1 Mathematik Universität des Saarlandes D-66041 Saarbrücken

Contents

1	The Origami object	3
	1.1 The action on the Origami	3
	1.2 The Origami object	3
	Introduction 2.1 The Free Group	Ć
In	dex	-

Chapter 1

The Origami object

1.1 The action on the Origami

1.1.1 ActionOfSl

▷ ActionOfSl(word, Origami)

(function)

Returns: the Origami Object word.Origami

This lets act a word in the free group Group(S,T) ,representing an element of $Sl_2(\mathbb{Z})$ on an Origami and returns word.Origami.

1.1.2 ActionOfF2ViaCanonical

(function)

Returns: the Origami Object word.Origami

This lets act a word in the free group Group(S,T), representing an element of $Sl_2(\mathbb{Z})$, on an Origami and returns word. Origami. But in contrast to "ActionOfSI" the result is stored in the canonical representation.

1.1.3 RightActionOfF2ViaCanonical

▷ RightActionOfF2ViaCanonical(word, Origami)

(function)

Returns: the Origami Object Origami.word

This lets act a word in the free group Group(S,T) on an Origami from right and returns $Origami.word = word^-1.Origami$, where the left action is the common action of $Sl_2(\mathbb{Z})$ on 2 mannifolds. This action has the same Veechgroup and orbits as the left action. In contrast to "ActionOfSI" the result is stored in the canonical representation.

1.2 The Origami object

1.2.1 CanonicalOrigami

▷ CanonicalOrigami(Origami)

(function)

Returns: An Origami

This calculates a canonical representation of an origami, represented as record rec(d := *, x := *, y := *). Two origamis are equal if they are described by the same permutations in their canonical representation.

1.2.2 VerticalPerm (for IsOrigami)

▷ VerticalPerm(Origami)

(attribute)

Returns: a permutation

This returns the horizontal permutation σ_x of the Origami.

1.2.3 HorizontalPerm (for IsOrigami)

▷ HorizontalPerm(Origami)

(attribute)

Returns: a permutation

This returns the vertical permutation σ_y of the Origami.

1.2.4 DegreeOrigami (for IsOrigami)

▷ DegreeOrigami(Origami)

(attribute)

Returns: an integer

This returns the degree of an Origami.

1.2.5 Stratum (for IsOrigami)

▷ Stratum(Origami)

(attribute)

Returns: a list of integers

This calculates the stratum of an Origami. That is a list of the orders of the singularities.

1.2.6 VeechGroup (for IsOrigami)

▷ VeechGroup(Origami)

(attribute)

Returns: a ModularSubgroup object

This calculates the Veechgroup of an Origami. This is a subgroup of $Sl_2(\mathbb{Z})$ of finite degree. The group is stored as ModularSubgroup from the ModularSubgroup package. The Veechgroup is represented as the coset permutations σ_S and σ_T with respect to the generators S and T. This means if i is the integer associated to the right coset G (Cosets(O) [i] VeechGroup = H) then we have for the coset H, associated to $\sigma_S(i)$, that SG = H. Dito for σ_T .

1.2.7 Cosets (for IsOrigami)

▷ Cosets(Origami)

(attribute)

Returns: a list of words in the Free group, generated by S and T. This Calculates the right cosets of the Veechgroup of an Origami.

1.2.8 Equals

▷ Equals(Origami1, Origami2)

(function)

Returns: true or false

This tests wether Origami1 is equal to Origami2 up to numbering of the squares.

1.2.9 ExampleOrigami

▷ ExampleOrigami(d)

(function)

Returns: a random origami

This creates a random origami of degree d.

1.2.10 CalcVeechGroup

▷ CalcVeechGroup(Origami)

(function)

Returns: A list with tree entrys

This function is used to calculate some attributes. It calculates the Veechgroup of a given origami and . the veechgroup is stored as ModularGroup Object from the ModularGroup package. The cosets of the veechgroup is stored in a list of words in the generators S and T of the matrix group Sl_2(Z).

1.2.11 CalcStratum

▷ CalcStratum(Origami)

(function)

Returns: nothing

Calculates the stratum of an object and sets its attribute. The stratum is stored as list of integers.

1.2.12 ToRec

▷ ToRec(Origami)

(functio

Returns: record of the form rec(d := *, x := *, y := *) Describtion This calculates a record representation for an origami object.

Chapter 2

Introduction

This package provides calculations with Origamis. An Origami can be obtained in the following way from two permutations $\sigma_a, \sigma_b \in S_d$. We take d Squares Q_1, \ldots, Q_d and clue the lower side of Q_i to the upper side of $Q_{\sigma_y(i)}$ and the right side of Q_i to the left side of $Q_{\sigma_x(i)}$. So in this Package we identify an Origami with a pair of permutations, witch acts transitive on $\{1 \ldots d\}$ up to simultan conjugation. We store an Origami as Origami object. We are mainly interested in the Veechgroup of an Origami. It can be shown that the Veechgroup of an Origami is a subgroup of $Sl_2(\mathbb{Z})$ of finite index. So we fix two generators

$$S = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$$

and

$$T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

2.1 The Free Group

In this package we fix the Free Group F generated by S and T.

Index

```
ActionOfF2ViaCanonical, 3
ActionOfS1, 3
CalcStratum, 5
CalcVeechGroup, 5
{\tt CanonicalOrigami, 3}
Cosets
    for IsOrigami, 4
DegreeOrigami
    for IsOrigami, 4
Equals, 4
ExampleOrigami, 5
HorizontalPerm
    for IsOrigami, 4
{\tt RightActionOfF2ViaCanonical}, 3
{\tt Stratum}
    for IsOrigami, 4
ToRec, 5
VeechGroup
    for IsOrigami, 4
VerticalPerm
    for IsOrigami, 4
```