Srikanth Muthuvel Ganthimathi

Binghamton, NY | (607) 338 8724 | smuthuvelgan@binghamton.edu | LinkedIn

EDUCATION

Binghamton University, State University of New York, Thomas J. Watson College of Engineering and Applied Science

Master of Science in Electrical and Computer Engineering, Specialization in VLSI

Expected May 2026

Cumulative GPA: 3.60/4.00

Relevant Coursework: CMOS VLSI Circuits & Architecture, System on a chip (SoC), RFIC (Integrated circuits), Digital Systems Design II, Computer Design/Architecture, and Hardware-Based Security.

SASTRA Deemed to be University, Thanjavur, India

Bachelor of Technology in Electronics and Communication Engineering

Aug. 2020 - June 2024

Cumulative GPA: 3.05/4.00

Relevant Coursework: Device Physics, Digital Systems Design, Digital VLSI Design, IoT Devices, Embedded Systems, Nano Electronic Devices, Microwave Engineering, Linear Integrated Circuits.

TECHNICAL SKILLS

Hardware Description Languages: Verilog, SystemVerilog

EDA Tools: Cadence Virtuoso, Synopsys Sentaurus TCAD, Xilinx Vivado, Questa, Electric Open EDA, MATLAB, LTSpice

Programming Languages: Embedded C, C++, Python

Hardware Platforms: PYNQ Z2, ATmega328 Microcontroller Other Tools: Visual Studio Code, Vitis HLS, Simulink, AutoCAD

PROFESSIONAL EXPERIENCE

Graduate Research Assistant | SUNY, Binghamton

Aug. 2024 - Present

- Designed and optimized a 6T SRAM cell and a 2×2 1T1C DRAM array in LTSpice, improving memory efficiency and stability.
- Developed and tested peripheral circuits, including bitlines, multiplexers (MUX), demultiplexers (DEMUX), 4:1 decoders, sense amplifiers, and wordline drivers, ensuring seamless read/write operations.
- Implemented TSMC 180nm technology, optimizing power, performance, and area (PPA) for high-speed memory applications.

PROJECT EXPERIENCE

Optimized 16-bit Accumulator for Real-time Data Processing | Cadence Virtuoso

(Aug. 2024 – Dec. 2024)

- Designed a 16-bit accumulator using D flip-flops and a multi-bit adder, achieving a 50% efficiency boost in continuous summation.
- Implemented a 1-bit circuit with 2 XOR, 1 OR, 2 AND, 1 NAND, and 5 inverters, passing Design Rule Check (DRC), Layout Versus Schematic (LVS), and Electrical Rule Check (ERC) for ASIC compliance.

TFET-Based Biosensor for High-Sensitivity Biomolecule Detection | Synopsys Sentaurus TCAD (Jan. 2024 – May 2024)

- Developed a QESV-DM-TFET biosensor with dielectric modulation, enhancing biomolecule detection sensitivity.
- Achieved a 1e9 on/off current ratio, improving threshold voltage sensitivity and reducing subthreshold swing for
 efficient detection.

High-Speed 32-bit Floating Point Unit (FPU) Design | System Verilog, IEEE 754

(Aug. 2024 – Dec. 2024)

- Designed an IEEE 754-compliant FPU for addition, subtraction, multiplication, and division, optimizing numerical precision.
- Achieved 100% accuracy in binary input handling and 95% error detection in simulation testing.

Optimized Cache Memory for High-Performance Computing | Verilog, Xilinx Vivado

(Aug. 2024 – Dec. 2024)

- Developed a direct-mapped cache with 16 cache lines, 32-bit addressing, and 4-word block size, reducing cache latency.
- Implemented optimized tag-matching algorithms, boosting data processing speed by 30% in simulation tests.