Raw Sequence Listing Error Summary

	•	
	ROR DETECTED	SUGGESTED CORRECTION SERIAL NUMBER: 09/451, 7396
AT	TN: NEW RULES CASI	ES: PLEASE DISREGARD ENGLISH "ALPHA" HEADERS, WHICH WERE INSERTED BY PTO SOFTWARE
1,	Wrapped Nucleic Wrapped Aminos	S The number/text at the end of each tine "huranned" down
2_	Invalid Line Leng	th The rules require that a line not exceed 72 characters in length. This includes white spaces.
3_	Misaligned Amino Numbering	
4_	Non-ASCII	The submitted file was not saved in ASCII(DOS) text, as required by the Sequence Rules. Please ensure your subsequent submission is saved in ASCII text.
5_	Variable Length	Sequence(s)contain n's or Xaa's representing more than one residue. Per Sequence Rules, each n or Xaa can only represent a single residue. Please present the maximum number of each residue having variable length and indicate in the <220>-<223> section that some may be missing.
6_	PatentIn 2.0 "bug"	A "bug" in PatentIn version 2.0 has caused the <220>-<223> section to be missing from amino acid sequences(s) Normally, PatentIn would automatically generate this section from the previously coded nucleic acid sequence. Please manually copy the relevant <220>-<223> section to the subsequent amino acid sequence. This applies to the mandatory <220>-<223> sections for Artificial or Unknown sequences.
7	Skipped Sequences (OLD RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence: (2) INFORMATION FOR SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) (i) SEQUENCE CHARACTERISTICS: (Do not insert any subheadings under this heading) (xi) SEQUENCE DESCRIPTION:SEQ ID NO:X: (insert SEQ ID NO where "X" is shown) This sequence is intentionally skipped
		Please also adjust the "(ii) NUMBER OF SEQUENCES:" response to include the skipped sequences.
8	Skipped Sequences (NEW RULES)	Sequence(s) missing. If intentional, please insert the following lines for each skipped sequence. <210> sequence id number <400> sequence id number 000
9 <u>×</u>	Use of n's or Xaa's (NEW RULES)	Use of n's and/or Xaa's have been detected in the Sequence Listing. Per 1.823 of Sequence Rules, use of <220>-<223> is MANDATORY if n's or Xaa's are present. In <220> to <223> section, please explain location of n or Xaa, and which residue n or Xaa represents.
10	Invalid <213> Response	Per 1.823 of Sequence Rules, the only valid <213> responses are: Unknown, Artificial Sequence, or scientific name (Genus/species). <220>-<223> section is required when <213> response is Unknown or is Artificial Sequence
11		Sequence(s) missing the <220> "Feature" and associated numeric identifiers and responses. Use of <220> to <223> is MANDATORY if <213> "Organism" response is "Artificial Sequence" or "Unknown." Please explain source of genetic material in <220> to <223> section. (See "Federal Register," 06/01/1998, Vol. 63, No. 104, pp. 29631-32) (Sec. 1.823 of Sequence Rules)
12	PatentIn 2.0 "bug"	Please do not use "Copy to Disk" function of PatentIn version 2.0. This causes a corrupted file, resulting in missing mandatory numeric identifiers and responses (as indicated on raw sequence listing). Instead, please use "File Manager" or any other manual means to copy file to floppy disk.
13		'n" can only represent a single nucleotide; "Xaa" can only represent a single amino acid

Dir Radents

<110> Jager, Dirk Scanlan, Matthew Scanlan, Matthew Gure, Ali Jager, Elke Knuth, Alexander Old, Lloyd Chen, Yao-tseng

<120> Isolated Nucleic Acid Molecules Encoding Cancer Associated Antigens, the Antigens per se, and Uses Thereof

<130> LUD 5615

<140> 09/451,739

<141> 1999-11-30

<160> 19

<210> 1

<211> 1533

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 235

<223> unknown

<400> 1

ggttttccac gttggacaag tgcggctcgg cggccagcgg agcgcccc ttcccgctgc ccgctccgct cctcttct acccagccca gtgggcgagt gggcagcggc ggccgcggcg 120 ctgggccctc tcccgccggt gtgtgcgcgc tcgtacgcgc ggcccccggc gccagccccg 180 ccgcctgaga gggggcctgc gccgccggcc ggggcgtgcg cccgggagcc accgncaccg 240 cggcccgcgc cctcaggcgc tggggtcccc gcggacccgg aggcggcgga cgggctcggc agatgtagee geegggeega ageaggagee ggeggggggg egeegggaga gegagggett tgcattttgc agtgctattt tttgaggggg gcggagggtg gaggaagtcg gaaagccgcg ccgagtcgcc ggggacctcc ggggtgaacc atgttgagtc ctgccaacgg ggagcagctc cacctggtga actatgtgga ggactacctg gactccatcg agtccctgcc tttcgacttg cagagaaatg totogotgat gogggagato gaogogaaat accaagagat cotgaaggag ctagacgagt gctacgagcg cttcagtcgc gagacagacg gggcgcagaa gcggcggatg ctgcactgtg tgcagcgcgc gctgatccgc agccaggagc tgggcgacga gaagatccag 720 780 atcgtgagcc agatggtgga gctggtggag aaccgcacgc ggcaggtgga cagccacgtg gagetgtteg aggegeagea ggagetggge gacacagegg geaacagegg caaggetgge gcggacaggc ccaaaggcga ggcggcagcg caggctgaca agcccaacag caagcgctca cggcggcagc gcaacaacga gaaccgtgag aacgcgtcca gcaaccacga ccacgacgac 960 ggcgcctcgg gcacacccaa ggagaagaag gccaagacct ccaagaagaa gaagcgctcc 1020

RECEIVED

SEP 2 6 2003

TECH CENTER 1600/2900

25325642.1 -1-

aaggccaagg	cggagcgaga	ggcgtcccct	geegaeetee	ccatcgaccc	caacgaaccc	1080
acgtactgtc	tgtgcaacca	ggtctcctat	ggggagatga	tcggctgcga	caacgacgag	1140
tgccccatcg	agtggttcca	cttctcgtgc	gtggggctca	atcataaacc	caagggcaag	1200
tggtactgtc	ccaagtgccg	gggggagaac	gagaagacca	tggacaaagc	cctggagaaa	1260
tccaaaaaag	agagggctta	caacaggtag	tttgtggaca	ggcgcctggt	gtgaggagga	1320
caaaataaac	cgtgtattta	ttacattgct	gcctttgttg	aggtgcaagg	agtgtaaaat	1380
gtatatttt	aaagaatgtt	agaaaaggaa	ccattccttt	catagggatg	gcagtgattc	1440
tgtttgcctt	ttgttttcat	tggtacacgt	gtaacaagaa	agtggtctgt	ggatcagcat	1500
tttagaaact	acaaatatag	gtttgattca	aca			1533
<210> 2 <211> 1143 <212> DNA <213> Homo <400> 2						
gagtaacccg	ataatatgcc	gttgtccggc	acggcgacga	gaattcccag	atatagcagt	60
agcagtgatc	ccgggcctgt	ggctcggggc	cggggctgca	gttcggaccg	cctcccgcga	120
cccgcggggg	ctcggagaca	gtttcaggcc	gcatctttgc	tgacccgagg	gtggggccgc	180
gcgtggccgt	ggaaacagat	cctgaaggag	ctagacgagt	gctacgagcg	cttcagtcgc	240
gagacagacg	gggcgcagaa	gcggcggatg	ctgcactgtg	tgcagcgcgc	gctgatccgc	300
agccaggagc	tgggcgacga	gaagatccag	atcgtgagcc	agatggtgga	gctggtggag	360
aaccgcacgc	ggcaggtgga	cagccacgtg	gagctgttcg	aggcgcagca	ggagctgggc	420
gacacagtgg	gcaacagcgg	caaggttggc	gcggacaggc	ccaatggcga	tgcggtagcg	480
cagtctgaca	agcccaacag	caagcgctca	cggcggcagc	gcaacaacga	gaaccgtgag	540
aacgcgtcca	gcaaccacga	ccacgacgac	ggcgcctcgg	gcacacccaa	ggagaagaag	600
gccaagacct	ccaagaagaa	gaagcgctcc	aaggccaagg	cggagcgaga	ggcgtcccct	660
gccgacctcc	ccatcgaccc	caacgaaccc	acgtactgtc	tgtgcaacca	ggtctcctat	720
ggggagatga	teggetgega	caacgacgag	tgccccatcg	agtggttcca	cttctcgtgc	780
gtggggctca	atcataaacc	caagggcaag	tggtactgtc	ccaagtgccg	gggggagaac	840
gagaagacca	tggacaaagc	cctggagaaa	tccaaaaaag	agagggctta	caacaggtag	900
tttgtggaca	ggcgcctggt	gtgaggagga	caaaataaac	cgtgtattta	ttacattgct	960
gcctttgttg	aggtgcaagg	agtgtaaaat	gtatatttt	aaagaatgtt	agaaaaggaa	1020
ccattccttt	catagggatg	gcagtgattc	tgtttgcctt	ttgttttcat	tggtacacgt	1080
gtaacaagaa	agtggtctgt	ggatcagcat	tttagaaact	acaaatatag	gtttgattca	1140
aca						1143

RECEIVED

SEP 2 6 2003

TECH CENTER 1600/2900

25325642.1 -2-

<210> 3 <211> 742 <212> DNA <213> Homo <220>	sapiens					
<400> 3 cgccgtccac	accccagcgg	ccctgacgct	gtcccctccg	cgaccctcgc	ctctggaaaa	60
agtgacaggc	aaggccacgc	ccccgcgagg	gccggcctcg	agcccgcagc	ccccagggcc	120
tgggacgaga	tcctgaagga	gctagacgag	tgctacgagc	gcttcagtcg	cgagacagac	180
ggggcgcaga	agcggcggat	gctgcactgt	gtgcagcgcg	cgctgatccg	cagccaggag	240
ctgggcgacg	agaagatcca	gatcgtgagc	cagatggtgg	agctggtgga	gaaccgcacg	300
cggcaggtgg	acagccacgt	ggagctgttc	gaggcgcagc	aggagctggg	cgacacagcg	360
ggcaacagcg	gcaaggctgg	cgcggacagg	cccaaaggcg	aggcggcagc	gcaggctgac	420
aagcccaaca	gcaagcgctc	acggcggcag	cgcaacaacg	agaaccgtga	gaacgcgtcc	480
agcaaccacg	accacgacga	cggcgcctcg	ggcacaccca	aggagaagaa	ggccaagacc	540
tccaagaaga	agaagcgctc	caaggccaag	gcggagcgag	aggcgtcccc	tgccgacctc	600
cccatcgacc	ccaacgaacc	cacgtactgt	ctgtgcaacc	aggtctccta	tggggagatg	660
atcggctgcg	acaacgacga	gtgccccatc	gagtggttcc	acttctcgtg	cgtggggctc	720
aatcataaac	ccaagggcaa	gt				742
<210> 4 <211> 857 <212> DNA <213> Homo <400> 4	sapiens					
	cggtgtccat	ggcacagggc	gggaagagat	aaggcctagg	gaaggcgccc	60
ctcgggccta	tccacctctt	ctggggctcg	gcactaggaa	gcagcttccc	tctcaggccc	120
ctttgtctcc	aagccgttcc	aaactgagta	ccgggagacg	acacaaaggg	agggcggtga	180
cggatggcgc	aggcgcggga	gccgcctagg	ctgctgggag	tggtggtccg	gccgcggaat	240
ggagatcctg	aaggagctag	acgagtgcta	cgagcgcttc	agtcgcgaga	cagacggggc	300
gcagaagcgg	cggatgctgc	actgtgtgca	gcgcgcgctg	atccgcagcc	aggagctggg	360
cgacgagaag	atccagatcg	tgagccagat	ggtggagctg	gtggagaacc	gcacgcggca	420
ggtggacagc	cacgtggagc	tgttcgaggc	gcagcaggag	ctgggcgaca	cagcgggcaa	480
cagcggcaag	gctggcgcgg	acaggcccaa	aggcgaggcg	gcagcgcagg	ctgacaagcc	540
caacagcaag	cgctcacggc	ggcagcgcaa	caacgagaac	cgtgagaacg	cgtccagcaa	600
ccacgaccac			200022000		2020010022	000
-	gacgacggcg	cctcgggcac	acccaaggag	aagaaggcca	agacciccaa	660

25325642.1 -3-

taaacccaag ggcaagt															
<211 <212 <213	<210> 5 <211> 279 <212> PRT <213> Homo sapiens <400> 5 Met Leu Ser Pro Ala Asn Gly Glu Gln Leu His Leu Val Asn Tyr Val														
Met 1	Leu	Ser	Pro	Ala 5	Asn	Gly	Glu	Gln	Leu 10	His	Leu	Val	Asn	Туг 15	Val
Glu	Asp	Tyr	Leu 20	Asp	Ser	Ile	Glu	Ser 25	Leu	Pro	Phe	Asp	Leu 30	Gln	Arg
Asn	Val	Ser 35	Leu	Met	Arg	Glu	Ile 40	Asp	Ala	Lys	Tyr	Gln 45	Glu	Ile	Leu
Lys	Glu 50	Leu	Asp	Glu	Cys	Tyr 55	Glu	Arg	Phe	Ser	Arg 60	Glu	Thr	Asp	Gly
Ala 65	Gln	Lys	Arg	Arg	Met 70	Leu	His	Cys	Val	Gln 75	Arg	Ala	Leu	Ile	Arg 80
Ser	Gln	Glu	Leu	Gly 85	Asp	Glu	Lys	Ile	Gln 90	Ile	Val	Ser	Gln	Met 95	Val
Glu	Leu	Val	Glu 100	Asn	Arg	Thr	Arg	Gln 105	Val	Asp	Ser	His	Val 110	Glu	Leu
Phe	Glu	Ala 115	Gln	Gln	Glu	Leu	Gly 120	Asp	Thr	Val	Gly	Asn 125	Ser	Gly	Lys
Val	Gly 130	Ala	Asp	Arg	Pro	Asn 135	Gly	Asp	Ala	Val	Ala 140	Gln	Ser	Asp	Lys
Pro 145	Asn	Ser	Lys	Arg	Ser 150	Arg	Arg	Gln	Arg	Asn 155	Asn	Glu	Asn	Arg	Glu 160
Asn	Ala	Ser	Ser	Asn 165	His	Asp	His	Asp	Asp 170	Gly	Ala	Ser	Gly	Thr 175	Pro
Lys	Glu	Lys	Lys 180	Ala	Lys	Thr	Ser	Lys 185	Lys	Lys	Lys	Arg	Ser 190	Lys	Ala
Lys	Ala	Glu 195	Arg	Glu	Ala	Ser	Pro 200	Ala	Asp	Leu	Pro	Ile 205	Asp	Pro	Asn
Glu	Pro 210	Thr	Tyr	Суѕ	Leu	Cys 215	Asn	Gln	Val	Ser	Tyr 220	Gly	Glu	Met	Ile
Gly 225	Cys	Asp	Asn	Asp	Glu 230	Cys	Pro	Ile	Glu	Trp 235	Phe	His	Phe	Ser	Cys 240
Val	Gly	Leu	Asn	His 245	Lys	Pro	Lys	Gly	Lys 250	Trp	Tyr	Cys	Pro	Lys 255	Cys
Arg	Gly	Glu	Asn 260	Glu	Lys	Thr	Met	Asp 265	Lys	Ala	Leu	Glu	Lys 270	Ser	Lys

cgaccccaac gaacccacgt actgtctgtg caaccaggtc tcctatgggg agatgatcgg 780

ctgcgacaac gacgagtgcc ccatcgagtg gttccacttc tcgtgcgtgg ggctcaatca 840

857

-4-25325642.1

Lys Glu Arg Ala Tyr Asn Arg 275

<210> 6 <211> 210 <212> PRT

<213> Homo sapiens

<220>

<400> 6

Met Leu His Cys Val Gln Arg Ala Leu Ile Arg Ser Gln Glu Leu Gly 1 5 10 15

Asp Glu Lys Ile Gln Ile Val Ser Gln Met Val Glu Leu Val Glu Asn $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30 \hspace{1.5cm}$

Arg Thr Arg Gln Val Asp Ser His Val Glu Leu Phe Glu Ala Gln Gln 35 40 45

Glu Leu Gly Asp Thr Val Gly Asn Ser Gly Lys Val Gly Ala Asp Arg 50 55 60

Pro Asn Gly Asp Ala Val Ala Gln Ser Asp Lys Pro Asn Ser Lys Arg 65 70 75 80

Ser Arg Arg Gln Arg Asn Asn Glu Asn Arg Glu Asn Ala Ser Ser Asn 85 90 95

His Asp His Asp Asp Gly Ala Ser Gly Thr Pro Lys Glu Lys Lys Ala 100 105 110

Lys Thr Ser Lys Lys Lys Lys Arg Ser Lys Ala Lys Ala Glu Arg Glu 115 120 125

Ala Ser Pro Ala Asp Leu Pro Ile Asp Pro Asn Glu Pro Thr Tyr Cys 130 135 140

Leu Cys Asn Gln Val Ser Tyr Gly Glu Met Ile Gly Cys Asp Asn Asp 145 150 155 160

Glu Cys Pro Ile Glu Trp Phe His Phe Ser Cys Val Gly Leu Asn His 165 170 175

Lys Pro Lys Gly Lys Trp Tyr Cys Pro Lys Cys Arg Gly Glu Asn Glu 180 185 190

Lys Thr Met Asp Lys Ala Leu Glu Lys Ser Lys Lys Glu Arg Ala Tyr 195 200 205

Asn Arg 210

<210> 7

<211> 235

<212> PRT

<213> Homo sapiens

<400> 7

Met Glu Ile Leu Lys Glu Leu Asp Glu Cys Tyr Glu Arg Phe Ser Arg 1 5 10 15

Glu Thr Asp Gly Ala Gln Lys Arg Arg Met Leu His Cys Val Gln Arg 20 25 30

25325642.1 -5-

Ala Leu Ile Arg Ser Gln Glu Leu Gly Asp Glu Lys Ile Gln Ile Val Ser Gln Met Val Glu Leu Val Glu Asn Arg Thr Arg Gln Val Asp Ser 55 His Val Glu Leu Phe Glu Ala Gln Gln Glu Leu Gly Asp Thr Val Gly Asn Ser Gly Lys Val Gly Ala Asp Arg Pro Asn Gly Asp Ala Val Ala Gln Ser Asp Lys Pro Asn Ser Lys Arg Ser Arg Arg Gln Arg Asn Asn Glu Asn Arg Glu Asn Ala Ser Ser Asn His Asp His Asp Asp Gly Ala 120 Ser Gly Thr Pro Lys Glu Lys Lys Ala Lys Thr Ser Lys Lys Lys 130 135 Arg Ser Lys Ala Lys Ala Glu Arg Glu Ala Ser Pro Ala Asp Leu Pro Ile Asp Pro Asn Glu Pro Thr Tyr Cys Leu Cys Asn Gln Val Ser Tyr 165 170 Gly Glu Met Ile Gly Cys Asp Asn Asp Glu Cys Pro Ile Glu Trp Phe His Phe Ser Cys Val Gly Leu Asn His Lys Pro Lys Gly Lys Trp Tyr 200 Cys Pro Lys Cys Arg Gly Glu Asn Glu Lys Thr Met Asp Lys Ala Leu Glu Lys Ser Lys Lys Glu Arg Ala Tyr Asn Arg 230 <210> 8 <211> 772 <212> DNA <213> Homo sapiens <221> CDS <222> 689,714 <400> 8 aaagcgttct cggcggcagc gcaacaacta gaaccgtgag aacgcgtcca gcaaccgcga 60 cccacgacga cgtcacctcg ggcacgccca aggagaagaa agcccagacc tctaagaaga agcagggete catggecaag gegtagegge aggegteece egeagacete eccategace ccaqcqaqcc ctcctactgg gagatgatcc gctgcgacaa cgaatgcccc atcgagtggt tccgcttctc gtgtgtgagt ctcaaccata aaccaaagcg caagtggtac tgttccagat 300 gccggggaaa gaacgatggg caaagccctt gagaagtcca gaaaaaaaac agggcttata acaqqtaqtt tqqqqacatq cqtctaataq tqaqqaqaac aaaataaqcc aqtqtqttga ttacattgcc acctttgctg aggtgcagga agtgtaaaat gtatatttt aaagaatgtt

25325642.1 -6-

```
gttagaggcc gggcgcggtg gctcacgcct gtaatcccaq cactttqqqa qqccqaqqcq 540
gtcggatcac gaggtcagga gatcgagacc atcctggcta acacggtgaa accccgtctc 600
tactaaaaaat tcaaaaaaaa aattagctgg gcgtggtggc gggcgcctgt agtcccagct 660
attcgggagg ctgaggcagg agaatggcnt gaacctggga ggtggagctt gcantgagcc 720
aaggtcgcgc cactgcactc cagcctgggc gacagagcga gactccatct ta
                                                                    772
<210> 9
<211> 32
<212> DNA
<213> Homo sapiens
<400> 9
cacacaggat ccatgttgag tcctgccaac gg
<210> 10
<211> 23
<212> DNA
<213> Homo sapiens
<400> 10
cgtggtcgtg gttgctggac gcg
                            23
<210> 11
<211> 21
<212> DNA
<213> Homo sapiens
<400> 11
cccagcggcc ctgacgctgt c
<210> 12
<211> 23
<212> DNA
<213> Homo sapiens
<400> 12
cgtggtcgtg gttgctggac gcg
                            23
<210> 13
<211> 23
<212> DNA
<213> Homo sapiens
<400> 13
                            23
ggaagagata aggcctaggg aag
<210> 14
<211> 23
<212> DNA
<213> Homo sapiens
<400> 14
cgtggtcgtg gttgctggac gcg
<210> 15
<211> 2030
<212> DNA
```

25325642.1 -7-

<213> Homo sapiens <221> CDS <222> 1628, 1752, 1758, 1769, 1789, 1873, 1908, 1915, 1933, 1970, 1976,2022 ctcgtgccgt taaagatggt cttctgaagg ctaactgcgg aatgaaagtt tctattccaa 60 ctaaagcctt agaattgatg gacatgcaaa ctttcaaagc agagcctccc gagaagccat 120 ctgccttcga gcctgccatt gaaatgcaaa agtctgttcc aaataaagcc ttggaattga 180 agaatgaaca aacattgaga gcagatgaga tactcccatc agaatccaaa caaaaggact 240 atgaagaaag ttcttgggat tctgagagtc tctgtgagac tgtttcacag aaggatgtgt 300 gtttacccaa ggctacacat caaaaagaaa tagataaaat aaatggaaaa ttagaagagt 360 ctcctgataa tgatqqtttt ctqaaqqctc cctgcagaat gaaagtttct attccaacta 420 aagccttaga attgatggac atgcaaactt tcaaagcaga gcctcccgag aagccatctg 480 ccttcgagcc tgccattgaa atgcaaaagt ctgttccaaa taaagccttg gaattgaaga 540 atgaacaaac attgagagca gatcagatgt tcccttcaga atcaaaacaa aagaaggttg 600 aagaaaattc ttgggattct gagagtctcc gtgagactgt ttcacagaag gatgtgtgtg 660 tacccaaggc tacacatcaa aaagaaatgg ataaaataag tggaaaatta gaagattcaa 720 ctagcctatc aaaaatcttg gatacagttc attcttgtga aagagcaagg gaacttcaaa 780 aagatcactg tgaacaacgt acaggaaaaa tggaacaaat gaaaaagaag ttttgtgtac 840 tgaaaaagaa actgtcagaa gcaaaagaaa taaaatcaca gttagagaac caaaaagtta 900 gaaatgccga tatattaaat gaaaaaatta gggaagaatt aggaagaatc gaagagcagc 1020 ataggaaaga gttagaagtg aaacaacaac ttgaacaggc tctcagaata caagatatag 1080 aattgaagag tgtagaaagt aatttgaatc aggtttctca cactcatgaa aatgaaaatt 1140 atctcttaca tgaaaattgc atgttgaaaa aggaaattgc catgctaaaa ctggaaatag 1200 ccacactgaa acaccaatac caggaaaagg aaaataaata ctttgaggac attaagattt 1260 taaaagaaaa gaatgctgaa cttcagatga ccctaaaaact gaaagaggaa tcattaacta 1320 aaagggcatc tcaatatagt gggcagctta aagttctgat agctgagaac acaatgctca 1380 cttctaaatt gaaggaaaaa caagacaaag aaatactaga ggcagaaatt gaatcacacc 1440 atcctagact ggcttctgct gtacaagacc atgatcaaat tgtgacatca agaaaaagtc 1500 aagaacctgc tttccacatt gcaggagatg cttgtttgca aagaaaaatg aatgttgatg 1560 tgagtagtac cgatatataa caatgaggtg ctccatcaac cactttctga agctcaaagg 1620 aaatccanaa gcctaaaaat taatctcaat tatgcaggag atgctctaag agaaaataca 1680 ttggtttcag gaacatgcac aaagagacca acgtgaaaca cagtgtcaaa tgaaggaagc 1740 tgaacacatg tntcaaancg aacaagatna tgtgaacaaa cacactganc agcaggagtc 1800

25325642.1 -8-

tctagatcag aaattattc aactacaaag caaaaatatg tggcttcaac agcaattagt 1860 tcatgcacat aangaaagct gacaacaaaa gcaagataac aattgatntt cattntcttg 1920 agaggaaaat gcncatcatc ttctaaaaga gaaaaatgag gagatatttn attacnataa 1980 ccatttaaaa aacccgtata tttcaatatg gaaaaaaaaa anaaaaaaaa 2030

<210> 16 <211> 512 <212> PRT <213> Homo sapiens <400> 16 Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met Gln 1.0 Thr Phe Lys Ala Glu Pro Pro Glu Lys Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val Pro Asn Lys Ala Leu Glu Leu Lys Asn 4.0 Glu Gln Thr Leu Arg Ala Asp Glu Ile Leu Pro Ser Glu Ser Lys Gln Lys Asp Tyr Glu Glu Ser Ser Trp Asp Ser Glu Ser Leu Cys Glu Thr 70 Val Ser Gln Lys Asp Val Cys Leu Pro Lys Ala Thr His Gln Lys Glu 90 Ile Asp Lys Ile Asn Gly Lys Leu Glu Glu Ser Pro Asp Asn Asp Gly Phe Leu Lys Ala Pro Cys Arg Met Lys Val Ser Ile Pro Thr Lys Ala Leu Glu Leu Met Asp Met Gln Thr Phe Lys Ala Glu Pro Pro Glu Lys 130 135 140 Pro Ser Ala Phe Glu Pro Ala Ile Glu Met Gln Lys Ser Val Pro Asn 155 Lys Ala Leu Glu Leu Lys Asn Glu Gln Thr Leu Arg Ala Asp Gln Met Phe Pro Ser Glu Ser Lys Gln Lys Lys Val Glu Glu Asn Ser Trp Asp 185 Ser Glu Ser Leu Arg Glu Thr Val Ser Gln Lys Asp Val Cys Val Pro 200 Lys Ala Thr His Gln Lys Glu Met Asp Lys Ile Ser Gly Lys Leu Glu 215 Asp Ser Thr Ser Leu Ser Lys Ile Leu Asp Thr Val His Ser Cys Glu Arg Ala Arg Glu Leu Gln Lys Asp His Cys Glu Gln Arg Thr Gly Lys 250 Met Glu Gln Met Lys Lys Lys Phe Cys Val Leu Lys Lys Lys Leu Ser

25325642.1 -9-

260 265 270

Glu Ala Lys Glu Ile Lys Ser Gln Leu Glu Asn Gln Lys Val Lys Trp 280 Glu Gln Glu Leu Cys Ser Val Arg Leu Thr Leu Asn Gln Glu Glu 295 Lys Arg Arg Asn Ala Asp Ile Leu Asn Glu Lys Ile Arg Glu Glu Leu Gly Arg Ile Glu Glu Gln His Arg Lys Glu Leu Glu Val Lys Gln Gln Leu Glu Gln Ala Leu Arg Ile Gln Asp Ile Glu Leu Lys Ser Val Glu 345 Ser Asn Leu Asn Gln Val Ser His Thr His Glu Asn Glu Asn Tyr Leu 360 Leu His Glu Asn Cys Met Leu Lys Lys Glu Ile Ala Met Leu Lys Leu 375 Glu Ile Ala Thr Leu Lys His Gln Tyr Gln Glu Lys Glu Asn Lys Tyr 390 Phe Glu Asp Ile Lys Ile Leu Lys Glu Lys Asn Ala Glu Leu Gln Met 410 Thr Leu Lys Leu Lys Glu Glu Ser Leu Thr Lys Arg Ala Ser Gln Tyr 425 420 Ser Gly Gln Leu Lys Val Leu Ile Ala Glu Asn Thr Met Leu Thr Ser Lys Leu Lys Glu Lys Gln Asp Lys Glu Ile Leu Glu Ala Glu Ile Glu Ser His His Pro Arg Leu Ala Ser Ala Val Gln Asp His Asp Gln Ile 475 Val Thr Ser Arg Lys Ser Gln Glu Pro Ala Phe His Ile Ala Gly Asp 490 485 Ala Cys Leu Gln Arg Lys Met Asn Val Asp Val Ser Ser Thr Asp Ile 505 <210> 17 <211> 33 <212> DNA <213> Homo sapiens <400> 17 cacacaggat ccatgcaggc cccgcacaag gag

<210> 18
<211> 34
<212> DNA
<213> Homo sapiens
<400> 18
cacacaaagc ttctaggatt tggcacagcc agag

25325642.1 -10-

<211 <212	0> 19 L> 29 2> PF 3> Ho	94 RT	sapie	ens											
)> 19 Pro		Cys	Thr 5	Ala	Thr	Arg	Ile	Pro 10	Arg	Tyr	Ser	Ser	Ser 15	Ser
Asp	Pro	Gly	Pro 20	Val	Ala	Arg	Gly	Arg 25	Gly	Cys	Ser	Ser	Asp 30	Arg	Leu
Pro	Arg	Pro 35	Ala	Gly	Pro	Ala	Arg 40	Arg	Gln	Phe	Gln	Ala 45	Ala	Ser	Leu
Leu	Thr 50	Arg	Gly	Trp	Gly	Arg 55	Ala	Trp	Pro	Trp	Lys 60	Gln	Ile	Leu	Lys
Glu 65	Leu	Asp	Glu	Суѕ	Tyr 70	Glu	Arg	Phe	Ser	Arg 75	Glu	Thr	Asp	Gly	Ala 80
Gln	Lys	Arg	Arg	Met 85	Leu	His	Cys	Val	Gln 90	Arg	Ala	Leu	Ile	Arg 95	Ser
Gln	Glu	Leu	Gly 100	Asp	Glu	Lys	Ile	Gln 105	Ile	Val	Ser	Gln	Met 110	Val	Glu
Leu	Val	Glu 115	Asn	Arg	Thr	Arg	Gln 120	Val	Asp	Ser	His	Val 125	Glu	Leu	Phe
Glu	Ala 130	Gln	Gln	Glu	Leu	Gly 135	Asp	Thr	Val	Gly	Asn 140	Ser	Gly	Lys	Val
Gly 145	Ala	Asp	Arg	Pro	Asn 150	Gly	Asp	Ala	Val	Ala 155	Gln	Ser	Asp	Lys	Pro 160
Asn	Ser	Lys	Arg	Ser 165	Arg	Arg	Gln	Arg	Asn 170	Asn	Glu	Asn	Arg	Glu 175	Asr
Ala	Ser	Ser	Asn 180	His	Asp	His	Asp	Asp 185	Gly	Ala	Ser	Gly	Thr 190	Pro	Lys
Glu	Lys	Lys 195	Ala	Lys	Thr	Ser	Lys 200	Lys	Lys	Lys	Arg	Ser 205	Lys	Ala	Lys
Ala	Glu 210	Arg	Glu	Ala	Ser	Pro 215	Ala	Asp	Leu	Pro	Ile 220	Asp	Pro	Asn	Glu
Pro 225	Thr	Tyr	Cys	Leu	Cys 230	Asn	Gln	Val	Ser	Tyr 235	Gly	Glu	Met	Ile	Gl ₃ 240
Cys	Asp	Asn	Asp	Glu 245	Cys	Pro	Ile	Glu	Trp 250	Phe	His	Phe	Ser	Cys 255	Val
Gly	Leu	Asn	His 260	Lys	Pro	Lys	Gly	Lys 265	Trp	Tyr	Суѕ	Pro	Lys 270	Суѕ	Arg
Gly	Glu	Asn 275	Glu	Lys	Thr	Met	Asp 280	Lys	Ala	Leu	Glu	Lys 285	Ser	Lys	Lys
Glu	Arg		Tyr 90	Asn	Arg	2	294								

25325642.1 -11-