7.8 # 17
$$\int_{1}^{+\infty} \int_{1}^{+\infty} dx$$

If $p=1$: $\lim_{t \to +\infty} \int_{1}^{+\infty} dx = \lim_{t \to +\infty} |n|x|$

$$= \lim_{t \to +\infty} \left[|n|t| - |n|1| \right] = +\infty \quad \text{Oiverges}$$

If $p \neq 1$: $\lim_{t \to +\infty} \int_{1-\rho}^{+\infty} dx = \lim_{t \to +\infty} \int_{1}^{+\infty} x^{-\rho} dx$

$$= \lim_{t \to +\infty} \frac{x^{1-\rho}}{1-\rho} \Big|_{1}^{+} = \lim_{t \to +\infty} \frac{1}{1-\rho} \left[\int_{1-\rho}^{1-\rho} - 1 \right]$$

If $1-\rho > 0$ (or $\rho < 1$) $\lim_{t \to +\infty} \int_{1-\rho}^{1-\rho} = 0$ and integral diverges

If $1-\rho > 0$ (or $\rho > 1$) $\lim_{t \to +\infty} \int_{1-\rho}^{1-\rho} = 0$ and integral converges

So $\int_{1}^{\infty} dx$ diverges if 1 and converges 1 for 1 .