概要

HET-BT2541 低功耗蓝牙模块,采用 TI 的 CC2541 作为主芯片,其内置高效低功耗的 8051 内核处理器。CC2541 可独立运行蓝牙 4.0 协议栈和应用 profile。HET-BT2541 有 256KB FLASH 和 8KB RAM,并且有丰富的外设接口来满足不同的应用。

HET-BT2541 是一个开放的平台,用户可以在蓝牙协议栈基础上实现自己的应用。我们同时支持一个最典型应用固件: UART 透传。用户可借此固件,以最短的开发周期整合现有方案或产品,以最快的速度占领市场。

- 健康医疗
- 智能家居
- 运动计量
- 汽车电子
- 休闲玩具
- 仪器仪表
- 物流跟踪

Firmware	Function
HET DTU	Predefine firmware: UART/BLE conversion
Cc2541 firmware Development kit	Cc2541 source codes with GAT ,GATT and GAP.

目 录

1.	简介	3
2.	产品特性	
3.	接口定义	
	3.1 引脚分布图	4
	3.2 管脚分布说明	4
4.	电气参数	5
	4.1 绝对最大额度参数	5
	4.2 推荐工作条件	6
	4.3 电气特性	6
	4.4 一般特性	7
	4.5 射频接收部分	7
5.	天线	7
	5.1 内置天线 (PCB 微带天线) 连接	8
	5. 2 外置天线连接	8
	5.3 最大限度地减少无线电干扰	8
6.	产品结构尺寸	9
7.	HET UART 透传固件功能操作说明	10
	7.1 透传模式和命令模式	10
	7.2 两种模式的切换	
	7.3 休眠与唤醒	11
8.	模组二次过炉炉温曲线	11

深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第3页/总12页	版本: V1.2

简介 1.

HET-BT2541 低功耗蓝牙模块, 采用 TI 的 CC2541 作为核心处理器, 内置 256KB FLASH 和 8KB RAM, 并且有丰富的外设接口来满足不同的应用。模块遵从蓝牙 4.0 协议。运行在 2.4 GHz ISM band, GFSK 调制方式(高斯频移键控), 40 频道 2 MHz 的通道间隙, 3 个固定的 广播通道,37 个自适应自动跳频数据通道,2 MHz 间隙能更好地防止相邻频道的干扰。宽 输出功率调节(-23 dBm~0dBm), -93 dBm 高增益接收灵敏度。

此模块的设计目的是迅速连接电子产品和智能移动设备,可广泛应用于有此需求的各 种电子设备,如仪器仪表,物流跟踪,健康医疗,智能家居,运动计量,汽车电子,休闲 玩具等。用户可借此模块,以最短的开发周期整合现有方案或产品,以最快的速度占领市 场。

2. 产品特性

- ■电源: 3.3V
- ■功耗

>	发射模式	17.9mA	工作模式
>	接收模式	18.2mA	工作模式
>	Power mode 1	270uA	4us 唤醒
>	Power mode 2	1uA	睡眠时钟打开
>	Power mode 3	0.5uA	外部中断唤醒

- ■8051 内核
- ■外设:
 - 23 x GPIOs
 - ➤ 2 x UARTs
 - > 12bit ADC

HoT	深圳和而泰智能控制股份有限公司	文件/表格编号:	RD-0917101-001	密级:
	HET-BT2541 规格书	页码:	第4页/总12页	版本: V1.2

- ➤ 1 x I2C
- ▶ debug 接口
- ■发射功率 -23 ~0db
- ■接收灵敏度 -94dBm
- ■工作频率 2400~2483.5MHz
- ■工作环境温度 -20~70℃
- ■传输距离 >15m

3. 接口定义

3.1 引脚分布图

3.2 管脚分布说明

PIN NAME	PIN	PIN TYPE	DESCRIPTION
ANT	1	External	
		antenna	
GND	2	Ground	Connect to GND
P2.2/DD	3	Digital I/O	Port 2.1 / debug data
P2.1/DC	4	Digital I/O	Port 2.2 / debug clock
GND	5	Ground	Connect to GND
P1.7	6	Digital I/O	Port 1.7
P1.6	7	Digital I/O	Port 1.6
SCL_UP	8	I2C clock or	Can be used as I2C clock pin or digital I/O.
		digital I/O	Leave floating if not used. If grounded
			disable pull up
SDA_UN	9	I2C clock or	Can be used as I2C clock pin or digital I/O.
		digital I/O	Leave floating if not used. If grounded
			disable pull up

HoT	深圳和而泰智能控制股份有限公司	文件/表格编号:	RD-0917101-001	密级:
	HET-BT2541 规格书	页码:	第 5 页 /总 12 页	版本: V1.2

GND	10	Ground	Connect to GND	
V_USB	11	Unused pins	Not connected	
P1.5/UART1_	12	Digital I/O	Port 1.5	
TX		3 -		
P1.4/UART1_	13	Digital I/O	Port 1.4	
RX				
P1.3	14	Digital I/O	Port 1.3	
P1.2	15	Digital I/O	Port 1.2	
P1.1	16	Digital I/O	Port 1.1 – 20-mA drive capability	
GND	17	Ground	Connect to GND	
VCC	18	3V3	power-supply connection	
P1.0	19	Digital I/O	Port 1.0 – 20-mA drive capability	
P0.7	20	Digital I/O	Port 0.7	
P0.6	21	Digital I/O	Port 0.6	
P0.5	22	Digital I/O	Port 0.5	
P0.4	23	Digital I/O	Port 0.4	
P0.3/UARTO_	24	Digital I/O	Port 0.3	
TX				
GND	25	Ground	Connect to GND	
P0.2/UARTO_	26	Digital I/O	Port 0.2	
RX				
P0.1	27	Digital I/O	Port 0.1	
P0.0	28	Digital I/O	Port 0.0	
RESET	29	Digital input	Reset, active low	

4. 电气参数

4.1 绝对最大额度参数

压力超越在"绝对最大评估值"数据的将对该设备造成永久不可恢复性损坏。 以下仅限于压力评估,对于超越操作部分段规格所标明的功能性操作将不适用以下 数据。在绝对最大评估值状况下长期使用将会对设备性能可靠度产生影响。

H₀T 深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第6页/总12页	版本: V1.2

		MIN	MAX	UNIT
Supply voltage	All supply pins must have the same voltage	-0.3	3.9	٧
Voltage on any digital pin		-0.3	VDD + 0.3 ≤ 3.9	٧
Input RF level			10	dBm
Storage temperature range		-40	125	°C
ESD ⁽²⁾	All pins, excluding pins 25 and 26, according to human-body model, JEDEC STD 22, method A114		2	kV
	All pins, according to human-body model, JEDEC STD 22, method A114		1	kV
	According to charged-device model, JEDEC STD 22, method C101		500	٧

注意: 防静电敏感装置。为了防止永久性损坏,应在处理设备时使用注意事项。

4.2 推荐工作条件

	MIN	NOM MAX	UNIT
Operating ambient temperature range, T _A	-40	85	°C
Operating supply voltage	2	3.6	V

4.3 电气特性

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
		RX mode, standard mode, no peripherals active, low MCU activity		17.9			
		RX mode, high-gain mode, no peripherals active, low MCU activity		20.2		A	
I _{core}		TX mode, –20 dBm output power, no peripherals active, low MCU activity		16.8		mA	
		TX mode, 0 dBm output power, no peripherals active, low MCU activity		18.2			
	Core current consumption	Power mode 1. Digital regulator on; 16-MHz RCOSC and 32-MHz crystal oscillator off, 32.768-kHz XOSC, POR, BOD and sleep timer active; RAM and register retention		270			
		Power mode 2. Digital regulator off, 16-MHz RCOSC and 32-MHz crystal oscillator off, 32.768-kHz XOSC, POR, and sleep timer active; RAM and register retention		1		μА	
		Power mode 3. Digital regulator off; no clocks; POR active; RAM and register retention		0.5			
		Low MCU activity: 32-MHz XOSC running. No radio or peripherals. Limited flash access, no RAM access.		6.7		mA	
		Timer 1. Timer running, 32-MHz XOSC used		90			
		Timer 2. Timer running, 32-MHz XOSC used		90			
١,	Peripheral current consumption	Timer 3. Timer running, 32-MHz XOSC used		60		μA	
peri	(Adds to core current I _{core} for each peripheral unit activated)	Timer 4. Timer running, 32-MHz XOSC used		70			
		Sleep timer, including 32.753-kHz RCOSC		0.6		<u> </u>	
		ADC, when converting		1.2		mA	

H₀T 深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第7页/总12页	版本: V1.2

4.4 一般特性

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
WAKE-UP AND TIMING	•	•		•	
Power mode 1 → Active	Digital regulator on, 16-MHz RCOSC and 32-MHz crystal oscillator off. Start-up of 16-MHz RCOSC		4		μs
Power mode 2 or 3 → Active	Digital regulator off, 16-MHz RCOSC and 32-MHz crystal oscillator off. Start-up of regulator and 16-MHz RCOSC	120			μs
Active → TX or RX	Crystal ESR = 16 Ω . Initially running on 16-MHz RCOSC, with 32-MHz XOSC OFF	500			μs
	With 32-MHz XOSC initially on		180		μs
DV/TV i	Proprietary auto mode	130			110
RX/TX turnaround	BLE mode	150			μs
RADIO PART					
RF frequency range	Programmable in 1-MHz steps	2379		2496	MHz
Data rate and modulation format	2 Mbps, GFSK, 500-kHz deviation 2 Mbps, GFSK, 320-kHz deviation 1 Mbps, GFSK, 250-kHz deviation 1 Mbps, GFSK, 160-kHz deviation 500 kbps, MSK 250 kbps, GFSK, 160-kHz deviation 250 kbps, MSK				

4.5 射频接收部分

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
Output names	Delivered to a single-ended 50-Ω load through a balun using maximum recommended output power setting		0		dD.ss			
Output power	Delivered to a single-ended 50-Ω load through a balun using minimum recommended output power setting		-23		dBm			
Programmable output power range	Delivered to a single-ended 50-Ω load through a balun using minimum recommended output power setting		23		dB			
	f < 1 GHz		-52		dBm			
Spurious emission conducted	f > 1 GHz		-48		dBm			
measurement	Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440 Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan)							
Optimum load impedance	Differential impedance as seen from the RF port (RF_P and RF_N) toward the antenna		70 +j30		Ω			

5. 天线

本模块对天线的设计考虑到产品应用的多样性, 预留了外部天线和模块自带天线供用户选 择。

深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第8页/总12页	版本: V1.2

5.1 内置天线 (PCB 微带天线) 连接

使用该模块的产品,外部结构和环境良好(如结构上没有大量金属物,天线的空间充足),使用内置天线即可满足设计要求。内置天线连接方法如下: C15 使用 10pF, C16 开路。

5.2 外置天线连接

使用该模块的产品,外部结构和环境复杂(如结构上大量金属物,天线的空间狭窄),建议使用外置天线。外置天线连接方法如下: C16 使用 10pF, C15 开路。

5.3 最大限度地减少无线电干扰

当使用模块自带PCB印刷天线时,确保天线部分突出于主板至少15mm 并且不能有任何金属外壳. 如果限于结构设计,无法满足上述条件,请使用外部天线. 使用内置天线(PCB微带天线)的要求:良好的天线,要求有无限大而薄的平面地。在产品的主板上,PCB有空间的情况下,推荐在模块的下方铺地,铺地面积:长+宽>31mm。(注意:天线区域不能铺地,依然要保持该有的净空区)。如下图所示:

HeT

深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第9页/总12页	版本: V1.2

6. 产品结构尺寸

HoT	深圳和而泰智能控制股份有限公司	文件/表格编号:	RD-0917101-001	密级:
	HET-BT2541 规格书	页码:	第 10 页 /总 12 页	版本: V1.2

图 6-1 尺寸图

7. HET UART透传固件功能操作说明

7.1 透传模式和命令模式

模块可以工作在透传模式和命令模式。模块启动后会自动进行广播,已打开特定APP的手机会对其进行扫描和对接,成功之后便可以通过BLE协议对其进行监控。透传模式:在该模式下,用户无需关注复杂的蓝牙协议应用,就可以在短时间内完成BLE产品的开发。用户MCU可以通过模块的通用串口和移动设备进行双向通讯,用户数据的具体含义由上层应用程序自行定义。移动设备可以通过APP对模块进行写操作,写入的数据将通过串口发送给用户的CPU。模块收到来自用户CPU串口的数据包后,将自动转发给移动设备。此模式下的开发,用户必须负责主MCU的代码设计,以及智能移动设备端APP代码设计。

命令模式:在该模式下,用户可以通过特定的串口 AT 指令,对模块的某些通讯参数进行管理控制。

具体详见《H&T BLE Modules Programming Guide》

HeT	深圳和而泰智能控制股份有限公司	文件/表格编号:	RD-0917101-001	密级:
	HET-BT2541 规格书	页码:	第 11 页 /总 12 页	版本: V1.2

注: 该固件使用 UART1 (P1.5 为 UART1_TX, P1.4 为 UART1_RX)

7.2 两种模式的切换

模块工作在命令模式时,要保证P1_2为低电平,当P1_2被置为高电平时,模块工作在透传模式。

7.3 休眠与唤醒

MCU在向模块发送串口数据前需先拉低P1.7引脚来唤醒模块,蓝牙模块被成功唤醒后会通过拉低P0.0引脚来告诉MCU串口已经准备好,可以发送数据。MCU在数据发送期间,P1.7必须始终保持为低电平,数据发送完成后需要再拉高P1.7引脚,使其再次进入睡眠,降低功耗。

模块一旦接收到另一端设备的BLE数据后,在转发给MCU之前将自动拉低P0.2引脚以通知MCU接收数据。数据发送期间P0.2引脚保持为低电平。待全部串口数据发送完毕后,P0.2引脚将被拉高。

8. 模组二次过炉炉温曲线

Setpoints (聂氏)									
温区	1	2	3	4	5	6	7	8	9	10
上温区	140	160	180	190	210	235	265	270	245	140
下温区	140	160	180	190	210	235	265	270	245	
Conveyor S	peed (公分/分): 85	.00						

HeT

深圳和而泰智能控制股份有限公司 HET-BT2541 规格书

文件/表格编号:	RD-0917101-001	密级:
页码:	第 12 页 /总 12 页	版本: V1.2

杪

PWI= 83%	最高上	升斜率	最高下	降斜率	预热 40	至130C	恒温时间1	130至220C	回流时(间 /220C	最高	温度	总共 时	间 /230C
7200	2.24	24%	-1.54	73%	44.07	-67%	74.52	-68%	56.60	-48%	240.17	2%	37.26	56%
6913	2.19	19%	-1.47	76%	39.73	-83%	74.84	-67%	57.76	-43%	241.01	10%	39.39	68%
7301	2.16	16%	-1.66	67%	40.39	-80%	75.61	-65%	55.55	-53%	242.89	29%	40.06	72%
6922	1.99	-1%	-1.52	74%	43.27	-70%	74.98	-67%	54.50	-58%	238.11	-19%	38.42	62%
6113	2.20	20%	-1.59	71%	41.33	-77%	76.19	-64%	54.68	-57%	239.99	-0%	39.84	71%
温差	0.25		0.19		4.34		1.67		3.27		4.78		2.79	

制程界限:

64 1 ML & Th	日居田田	日本田四	36 12.	
统计数名称	最低界限	最高界限	单位	
最高温度上升斜率 (目标=2.0)	1.0	3.0	度/秒	
(计算斜率的时间距离=30秒)				
最高温度下降斜率	-5.0	-1.0	度/秒	
(计算斜率的时间距离=30秒)				
预热时间 40-130摄氏度	35	90	秒	
恒温时间 130-220摄 氏度	60	150	秒	
回流以上时间 - 220摄氏度	45	90	秒	
最高温度	230	250	度 摄氏	
在230摄氏度以上时间	10	45	秒	