ESCOAMENTO E DETERMINAÇÃO DO COEFICIENTE DE ARRASTO

Alexandre Silva, 107957 Diogo Fernandes, 107364 Magner Gusse, 110180 Matilde Vinagreiro, 109021

OBJETOS UTILIZADOS

Objeto 1-Disco

Objeto 2- Asa

PROCEDIMENTO EXPERIMENTAL

Legenda:

- 1 Tubo de entrada
- 2 Esferas de vidro
- 3 Injector múltiplo
- 4 Válvula de controlo do fluxo de corante
- 5 Reservatório de corante
- 6 Tubo hipodérmico
- 7 Comporta
- 8 Canal
- 9 Parafuso
- 10 Comporta

DISCO - CAUDAL

Tabelas com os valores obtidos do caudal e respetivo desvio absoluto para o disco.

Escoamento	Volume (cm³)	Tempo (s)	Caudal (cm³/s)	Desvio absoluto
	600	24.39	24.60	0.24
	355	13.92	25.50	0.66
Laminar	470	17.12	27.45	2.61
	310	13.9	22.30	2.54
	520	21.34	24.37	0.48
		Média	24.8	1.3

Escoamento	Volume (cm³)	Tempo (s)	Caudal (cm³/s)	Desvio absoluto
	980	6.84	143.27	4.26
	1000	7.17	139.47	0.46
Turbulento	1000	7.53	132.80	6.21
	1000	6.90	144.93	5.91
	1000	7.43	134.59	4.42
		Média	139.0	4.3

ASA- CAUDAL

Tabelas com os valores obtidos do caudal e respetivo desvio absoluto para a asa.

Escoamento	Volume (cm³)	Tempo (s)	Caudal (cm³/s)	Desvio Absoluto
Laminar	500	8.73	57.27	0.15
	500	8.8	56.82	0.60
	500	8.87	56.37	1.05
	590	10.05	58.71	1.29
	570	9.84	57.93	0.51
		Média	57.42	0.72

	Escoamento	Volume (cm³)	Tempo (s)	Caudal (cm³/s)	Desvio Absoluto
	Turbulento	500	3.04	164.4736842	0.257703286
		500	3.03	165.0165017	0.285114153
		490	2.9	168.9655172	4.234129745
		500	3.11	160.7717042	3.959683317
		490	2.98	164.4295302	0.301857295
			Média	164.7	1.8

CÁLCULO DAS GRANDEZAS E ERROS ASSOCIADOS

Largura do canal- l_c ; Altura do escoamento- h_c

Área do canal (cm²):

$$A = h_c \times l_c$$

$$\Delta A = l_c \times \Delta h_c + \Delta l_c \times h_c$$

Velocidade (cm/s):

$$v = \frac{Q}{A}$$
$$\Delta v = \frac{\Delta Q}{A} + \frac{Q}{A^2} \Delta A$$

Número de Reynolds do objeto:

$$Re_{obj} = rac{
ho v h_{obj}}{\mu}$$

$$\Delta Re_{obj} = rac{
ho h_{obj}}{\mu} \Delta v + rac{v
ho}{\mu} \Delta h_{obj}$$

Diâmetro Hidráulico (cm):

$$D_{hid} = 4 \frac{A}{2h_c + l_c}$$

$$\Delta D_{hid} = 4 \left[\frac{1}{2h_c + l_c} \Delta A + \frac{2A}{(2h_c + l_c)^2} \Delta h_c + \frac{A}{(2h_c + l_c)^2} \Delta l_c \right]$$

Raio Hidráulico (cm):

$$R_{hid} = \frac{A}{2h_c + l_c}$$

$$\Delta R_{hid} = \left[\frac{1}{2h_c + l_c} \Delta A + \frac{2A}{(2h_c + l_c)^2} \Delta h_c + \frac{A}{(2h_c + l_c)^2} \Delta l_c \right]$$

Número de Reynolds do escoamento:

$$Re_{\rm esc} = \frac{\rho v D_h}{\mu}$$

$$\Delta Re_{\rm esc} = \frac{\rho D_h}{\mu} \Delta v + \frac{v \rho}{\mu} \Delta D_h$$

Força de arrasto (N):

$$F_a = A_p \rho \frac{v^2}{2} C_d \times 10^{-5}$$

$$\Delta F_a = \left(\rho \frac{v^2}{2} C_d \Delta A_p + \rho A_p v C_d \Delta v + A_p \rho \frac{v^2}{2} \Delta C_d\right) \times 10^{-5}$$

DADOS GERAIS

```
Temperatura da Água = 18,50 \pm 0,25 °C

Massa Volúmica = 0,9987 g/cm<sup>3</sup> [1]

Viscosidade Dinâmica= 1,04 \times 10-2 g. \mathbf{s}^{-1}. cm<sup>-1</sup> [1]

Largura do Canal = 1,50 \pm 0,05 cm
```

DISCO – REGIME LAMINAR

Caudal = $24.8 \pm 1.3 \text{ cm}^3/\text{s}$ Altura do Canal = $10,60 \pm 0,05$ cm Área do Canal = $15,90 \pm 0,61 \text{ cm}^2$ Velocidade média = $1,56 \pm 0,14$ cm/s $N.^{\circ}$ de Reynolds do objeto = 750 ± 75 Raio Hidráulico = $0,700 \pm 0,031$ cm Diâmetro Hidráulico = $2,80 \pm 0,13$ cm N° de Reynolds do escoamento = 420 ± 57 Coeficiente de Arrasto = $1,1 \pm 0,5$ [2] Área projetada = $7,00 \pm 0,32 \text{ cm}^2$ Força de Arrasto = $(9,4 \pm 6,4) \times 10^{-5} \text{ N}$

DISCO - REGIME LAMINAR

DISCO – REGIME TURBULENTO

Caudal = $139,0 \pm 4,3 \text{ cm}^3/\text{s}$

Altura do Canal = $11,85 \pm 0,05$ cm

Área do Canal = $17,78 \pm 0,67 \text{ cm}^2$

Velocidade média = 7.82 ± 0.53 cm/s

 $N.^{\circ}$ de Reynolds do objeto = $(3.76 \pm 0.29) \times 103$

Raio Hidráulico = $0,705 \pm 0,031$ cm

Diâmetro Hidráulico = 2,82 ± 0,12 cm

 N° de Reynolds do escoamento = $(2,12 \pm 0,24) \times 10^3$

Coeficiente de Arrasto = 0.85 ± 0.10 [2]

Área projetada = $7,00 \pm 0,32 \text{ cm}^2$

Força de Arrasto = $(1,82 \pm 0,54) \times 10^{-3} \text{ N}$

DISCO - REGIME TURBULENTO

ASA – REGIME LAMINAR

Caudal = $57,42 \pm 0,72 \text{ cm}^3/\text{s}$ Altura do Canal $= 10,90 \pm 0,05$ cm Área do Canal = $16,35 \pm 0,62 \text{ cm}^2$ Velocidade média = $3,51 \pm 0,18$ cm/s $N.^{\circ}$ de Reynolds do objeto = 708 ± 53 Raio Hidráulico = 0.702 ± 0.031 cm Diâmetro Hidráulico = $2,81 \pm 0,12$ cm N^{o} de Reynolds do escoamento = 947 ± 90 Coeficiente de Arrasto = 0.55 ± 0.10 [3] Área projetada = $2,94 \pm 0,18 \text{ cm}^2$

Força de Arrasto = $(10.0 \pm 3.4) \times 10^{-5} \text{ N}$

ASA - REGIME LAMINAR

ASA – REGIMENTO TURBULENTO

Caudal = $164.7 \pm 1.8 \text{ cm}^3/\text{s}$

Altura do Canal = $12,00 \pm 0,05$ cm

Área do Canal = $18,00 \pm 0,68 \text{ cm}^2$

Velocidade média = $9,15 \pm 0,44$ cm/s

 $N.^{\circ}$ de Reynolds do objeto = $(1.85 \pm 0.13) \times 10^3$

Raio Hidráulico = $0,706 \pm 0,031$ cm

Diâmetro Hidráulico = 2,82 ± 0,12 cm

 N° de Reynolds do escoamento = (2,48 ± 0,23) x 10^3

Coeficiente de Arrasto = 0.47 ± 0.10 [3]

Área projetada = $2,94 \pm 0,18 \text{ cm}^2$

Força de Arrasto = $(5.8 \pm 2.1) \times 10^{-4} \text{ N}$

ASA - REGIME TURBULENTO

APLICAÇÕES EM ENGENHARIA

Conclusões

REFERÊNCIAS

- [1] Incropera, F.P., DeWitt, D.P., Bergman, T.L., & Lavine, A.S. (2011). Fundamentals of Heat and Mass Transfer. John Wiley & Sons
- [2] Formulário da disciplina
- [3] Chegg Study. (n.d.). Using conditions chart, drag coefficient and drag force, you must mark a spot on the chart and use it to make calculations. https://www.chegg.com/homework-help/questions-and-answers/using-conditions-chart-drag-coefficient-drag-force-must-mark-spot-chart-use-make-calculati-q64565433 Acedido a 09/05/2023