ECE 35, Fall 2021 Final – Section A	Your sequence number		
Grade	Last name		
/ 45	First + middle name(s)		
	PID		

Instructions:

- Do not look at the questions or start writing until it is announced you can do so.
- Make sure you write your PID on EACH page.
- Read each problem completely and thoroughly before beginning.
- Answers without supporting calculations will receive zero credit. If you are using intuition, write a short explanation.
- All calculations must be done on these pages. It should be clear which
 question they belong to. Use the front for your actual work and the back as
 scratch paper.
- Write clearly and make sure your answer is structured properly. We will not hunt for your work or answers.
- Write your final answers in the answer boxes. Make sure you list units.
- You must follow the Final Exam Procedures that were posted on Canvas. If you are unsure of anything, ask. As a reminder:
 - Your phone should be turned off and put inside your bag
 - Calculators are not allowed.
 - This is a closed book exam.
 - Follow the Academic Integrity standards.

(1) (4 points) Consider the circuit below.
What is the reading X of the voltmeter?

1 Ω	red 1Ω
6 A	
2 A	+ 1 2 V
2.0	J

- (2) (7 points) Consider the circuit below.
 - (a) Find the current i_b .
 - (b) Find the power P_1 received by the independent source.
 - (c) Find the power P_2 supplied by the dependent source.

(3) (7 points)

(a) Consider the circuit below. What is the Thevenin equivalent resistance between A and B?

 R_{TH}

(b) Consider the circuit below (which contains the circuit above). Draw the Norton equivalent model between A' and B' (make sure you label A' and B').

(4) (10 points) Consider the circuit below. For t < 2 s, the switch is in position 1 and you may assume the system has reached steady state. The switch moves from position 1 to position 2 at t = 2 s and remains in position 2.

Note: make sure you don't mix up i_a and i_b in the questions below.

- (a) Find the current $i_a(2^- s)$. (i.e., just before the switch moves). $i_a(2^- s)$
- (b) Find the current $i_b(2^+ s)$. (i.e., just after the switch moves). $i_b(2^+ s)$
- (c) Find the current $i_a(7 s)$. $i_a(7 s)$
- (d) Find the current $i_b(\infty)$. $i_b(\infty)$

- (5) (9 points) Consider the circuit below. For $t < \frac{\pi}{4}$ ms, the switch is closed and you may assume the system has reached steady state. The source i_S is an AC source with $\omega = 4000$ rad/s. Its phasor diagram is shown on the left. The switch opens at $t = \frac{\pi}{4}$ ms and remains open.
 - (a) Find the node voltage $v_a\left(\frac{\pi^-}{4} m \mathrm{s}\right)$. (i.e., just before the switch opens).

 $v_a\left(\frac{\pi^-}{4} m \mathrm{s}\right)$

(b) Find the node voltage $v_a(\pi ms)$.

 $v_a(\pi ms)$

Page **9** of **12**

- (6) (8 points) The circuit below is in steady state.
 - (a) Sketch the phasor of v_a (make sure the magnitude and phase are labeled).

(b) Find average power P_R received by the resistor.

P_R		
-------	--	--

(c) If the reactive power <u>received</u> by all capacitors and inductors combined is **21.6 VAR**, what is the complex power *S* <u>supplied</u> by the independent source?

$3 \cdot \sin\left(2t + \frac{\pi}{12}\right) A$)] 3 1 H
2 H 🛢	+ 3	§ 2 Ω =	0.5 F

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{l}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$sin(-\alpha) = -sin(\alpha)$$
 $cos(-\alpha) = cos(\alpha)$

$$sin(\pi - \alpha) = sin(\alpha)$$
 $cos(\pi - \alpha) = -cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha): 0 \quad \frac{1}{2} \quad \frac{\sqrt{2}}{2} \quad \frac{\sqrt{3}}{2} \quad 1$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): \quad 0 \quad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3} \qquad \infty$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$