

Understanding Human Movement

Advanced inertial sensors data processing for recognizing human activities and characterizing movements

Joana Silva

Fraunhofer Portugal

Fraunhofer – Gesellschaft

- Innovation Research
- Information and Communication Technology
- Life Sciences
- Light & Surfaces
- Microelectronics
- Production
- Defense and Security
- Materials and Components

72 Institutes

> 80 Research Units

~ **25,000** Employees

> € 2.3 billion R&D Budget

(€ 2 billion contract research)

Fraunhofer Portugal

Fraunhofer – Gesellschaft

Fraunhofer Portugal

Institutional Background

ASSOCIAÇÃO FRAUNHOFER PORTUGAL RESEARCH

2008 | Non-Profit Research Institution of Public Common Interest

Fraunhofer AICOS

Purpose and Scientific Areas

Fraunhofer AICOS

Purpose and Scientific Areas

ASSISTIVE
INFORMATION AND
COMMUNICATION
SOLUTIONS

Relying on data and treating it intelligently to unveil hidden patterns and support decisions

Fraunhofer AICOS

Understanding Human Movement

MOTION

Advanced inertial sensors data processing for recognizing human activities and characterizing movements

Machine Learning for Time Series

Fraunhofer AICOS background work

Human Motion since 2009

MOVER

ACTIVITY MONITORING

(Silva et al., 2014; Aguiar et al., 2014; Carneiro et al., 2015; Figueira et al. 2016; Pereira et al. 2018)

2009

(Aguiar et al., 2014; Vermeulen et al., 2015; Silva et al., 2018)

FALL DETECTION

(Guimarães et al., 2014, Silva et al, 2016)

FALL RISK ASSESSMENT

2019

Algorithm	Accuracy
Step detection	96.6%
Distance estimation	88.8%
Physical activity classification	99.5%
Fall detection	97.0%

Contextualization

- Tracking of daily activities pervasively
- Perceive and self-reflect about daily physical activities
- Reducing the risk of health problems
- Smartphone or wearable based solutions:
 - Inertial sensors
 - Pervasive solution
 - Automatic tracking
 - Visualization interface

Daily Activities

- Dataset
 - Number of classes: 7
 - Walking, Running, Tilting, Standing, Sitting, Lying, Not Using
 - Size: 117 hours of human activity data
 - Type: 3D accelerometer
 - Wearable on chest, pocket, belt, and wrist
- Decision Tree classifier
 - Number of features: 8
 - Low computational statistical features

Daily Activities

Results

Validation: 10-folds cross validation

■ Train: 70%

Test: 30%

Accuracy: 93.4%

Activity	Hours of data	Recall (%)	Precision (%)
Walk	16	90.8	96.2
Run	9	95.4	86.0
Tilt	8	91.1	53.6
Stand + Still	32	91.4	99.4
Not using	13	93.6	88.6

B. Aguiar, J. Silva, T. Rocha, S. Carneiro and I. Sousa, "Monitoring physical activity and energy expenditure with smartphones," IEEE-EMBS BHI, Valencia, 2014, pp. 664-667.

S. Carneiro et al., "Accelerometer-based methods for energy expenditure using the smartphone," in MeMeA, 2015, pp. 151-156.

Physical Activities Intensity

- Dataset
 - Number of classes: 4
 - Sedentary, Light, Moderate and Vigorous
 - Size: 41 hours
 - Type: 3D accelerometer
 - Badge on the neck (loosen), clipped to the uniform on the chest, inside the trousers pocket and clipped to the trousers pocket
- Decision Tree classifier
 - Number of features: 12
 - Foward Feature Selection

Activity	Activity Level
Laying on bed	Sedentary
Sitting (not moving)	Sedentary
Standing (not moving)	Sedentary
Organizing material on shelves	Light
Cleaning table	Light
Cleaning small object (smartphone)	Light
Typing on a computer	Light
Walking (free) on different directions	Moderate
Pushing person on wheelchair	Moderate
Walking on treadmill (4.5 km/h)	Moderate
Descending stairs	Moderate
Mopping floor	Moderate
Running on treadmill (6.5-8 km/h)	Vigorous
Climbing stairs (fast pace)	Vigorous

Pereira, A., Nunes, F., & AlCOS, F. P. (2018). Physical Activity Intensity Monitoring of Hospital Workers using a Wearable Sensor. Proc. of PervasiveHealth, 18.

Physical Activities Intensity

Results

Feature Selection: 2

Validation: leave one out user cross validation

■ Train: 15 subjects

Test: 5 subjects

Accuracy: 83.2 ± 6.8 %

	Sedentary	Light	Moderate	Vigorous	Sensibility (%)
Sedentary	978	69	0	0	93,41
Light	346	602	17	0	62,38
Moderate	0	159	831	3	83,69
Vigorous	0	0	4	552	99,28
Specificity (%)	86,24	91,22	99,18	99,90	

Pereira, A., Nunes, F., & AICOS, F. P. (2018). Physical Activity Intensity Monitoring of Hospital Workers using a Wearable Sensor. Proc. of PervasiveHealth, 18.

Anomaly Detection

Contextualization

- An anomaly is an unexpected phenomena which differs significantly from the majority of data
- Anomalies are often associated with unwanted events.
- Unbalanced problem
- Applications examples range from medical and public health to industrial environments:
 - Fall detection
 - Production line on idle
 - Musculosketical disorders prevention

Anomaly Detection

Wrist Fall detection

- Training dataset
 - Number of classes: 2
 - Fall: 1235 samples
 - Non Fall: 1574 samples
- Validation set: 18 hours
 - 108 falls
- Type: 3D Accelerometer
 - Wearable on the wrist
- Decision Tree
 - Number of features: 15
 - Low computational statistical features

Accelerometer magnitude of a fall event, with the wearable in the wrist.

Anomaly Detection

Wrist Fall detection

- Training results
 - Features selected: 4
 - Test with 30% of data
 - Sensitivity: 86.4%
 - Specificity: 98.7%
- Validation results
 - 1 FP during 18h
 - Sensitivity: 84.3%

Validation Results

Sensitivity	84.3 %
Precision	98.9 %
F1-Score	91.0 %
Detected falls	91 / 108
False alarms	1 / 18h
False alarms per hour	0.06
False alarms per day (16.5 hours of usage)	0.92

Machine Learning for Time Series

TSFEL: Time Series Feature Extraction Library

TSFEL: Time Series Feature Extraction Library

 Assists researchers on initial exploratory data analysis tasks without significant programming effort

Google Colab and Google Sheets provide high-level abstraction.

TSFEL: Time Series Feature Extraction Library

- Intuitive, fast deployment and reproducible
 Interactive UI for feature selection and customization
- Computational complexity evaluation
 Know the computational effort before extracting features
- Comprehensive documentation
 Each feature extraction method has a detailed explanation
- Unit TestedUnit tests are provided for each feature
- Easily extended
 Adding new features is easily achieved using a JSON format

SmartCompanion App

Demonstration

Award-winning Applications

Smart Companion includes applications that have won the recognition from <u>Google</u>, <u>Vodafone</u>, <u>World Summit</u> <u>Award Mobile</u> and <u>Zon</u>.

Vodafone Foundation Smart Accessibility Awards 2011

Visit the website

http://smartcompanion.projects.fraunhofer.pt/

References

White paper: Machine Learning @ Fraunhofer Portugal AICOS, May 2017

Joana Silva, Carina Figueira, Marília Barandas, João Gonçalves, João Costa, Luís Rosado, Maria Vasconcelos, Filipe Soares and Hugo Gamboa

PORTO – Headquarters

Address: Rua Alfredo Allen 455/461

4200-135 Porto | Portugal

Phone: **+351 220 430 300**

LISBOA – Branch Office

Address: Avenida Prof. Gama Pinto 2

1649-003 Lisbon | Portugal

Website: www.fraunhofer.pt | E-mail: info@fraunhofer.pt | Facebook: facebook.com/fraunhoferportugal | LinkedIn: Fraunhofer Portugal

