1

0.1 Def: Tensor

Let M and N be two R-modules. Then exists an R-module denoted by $M\otimes_R N$ and a bilinear mapping

$$t: M \times N \to M \otimes_R N$$

having the following properties:

(1) For any R-module P and any bilinear mapping $s: M \times N \to P$. There exists a unique linear mapping $f_s: M \otimes_R N \to P$ such that $s = f_s \circ t$

$$M \times N \xrightarrow{s} P$$

$$\downarrow t \qquad f_s$$

$$M \otimes_R N$$

(2) If T, t' is another couple that satisfies (1) with $s \mapsto g_s$ then there exists a unique isomorphism

$$T \cong M \otimes_R N$$

Let \mathcal{F} be the free R-module generated by $M \times N$

$$\mathcal{F} = \{ \sum_{finite} a_{ij}(m_i, n_i) : a_{ij} \in R, m_i \in M, n_i \in N \}$$

let G be the R-submodule generated by the elements of the following shape $m, m' \in M$ $n, n' \in N$ $\mathbf{z} \in R$

$$(m + m', n) - (m, n) - (m', n)$$

 $(m, n + n') - (m, n) - (m, n')$
 $(zm, n) - z(m, n)$
 $(m, zn) - z(m, n)$

$$M \otimes_R N := \mathcal{F}/\mathcal{G}$$

0.2 Def

$$f_s(\mathcal{G} + (m,n)) := s(m,n)$$

Extend this mapping to linearity. This makes the diagram commutative. It's clearly the unique mapping

0.3 Def

The R-module $M \otimes_R N$ constructed above is called the tensor product of M and N. An element of $M \otimes_R N$ is called tensor. We denote

$$t(m,n) := m \otimes n$$

and any elements of this form is called pure tensor.

0.4 Remark

Pure tensors generate $M \otimes_R N$. In particular any tensor can be written as sum of pure tensors.

0.5 tensor product and duality

0.5.1 product

Let V_1, \dots, V_n be vector spaces as above. Then

$$(V_1^{\vee} \otimes \cdots \otimes V_n^{\vee}) \cong (V_1 \otimes \cdots \otimes V_n)^{\vee}$$

0.5.2 duality

Let V and W be vector spaces of finite dimension. Then

$$\mathscr{L}(V,W) \cong V^{\vee} \otimes W^{\vee}$$

0.6 Def

We went to define the tensor product of linear mappings. let M_1, M_2, N_1, N_2 be R-modules and let $f_i: M_i \to N_i$ be linear mappings. Then we define

$$f_1 \otimes f_2 : M_1 \otimes M_2 \to N_1 \otimes N_2$$

 $m_1 \otimes m_2 \mapsto f_1(m_1) \otimes f_2(m_2)$

This is a linear mapping

$$\begin{array}{c|c} M_1 \times M_2 \xrightarrow{f_1 \times f_2} N_1 \times N_2 \\ \downarrow & \downarrow \\ M_1 \otimes M_2 \xrightarrow{f_1 \otimes f_2} N_1 \otimes N_2 \end{array}$$

0.7 Extension of scalars

Let $\varphi: R \to S$ be a commutative unitary ring homomorphism. Let M be a R-module. Goal is to give to M also a structure of S-module "conveyed by φ " Note that S has a structure of R-module $s \in S, \mathbf{z} \in R$

$$\mathbf{r}s := \varphi(\mathbf{r})s$$

Now take thw tensor product $M \otimes_R S$. Now we give a structure of S-module to $M \otimes_R S$.

Take $s \in S$

$$s(\underbrace{m \otimes s'}_{\in M \otimes_R S}) := m \otimes ss'$$

note that ss' is a multi in S and we cannot product sm.

Notice we've a mapping

$$i: M \to M \otimes_R S$$

 $m \mapsto m \otimes s$

Be careful, in general the mapping i is NOT injective.

0.8 Prop

Let $K \subseteq L$ be a field extension and let V be a K-vector space. Moreover let's denote $V_L = V \otimes_K L$. If $\{e_i\}_{i=1}^n$ is a basis of V then $\{e_i \otimes 1\}_{i=1}^n$ is a L-basis of V_L . (V_L has the same dim of V)

0.9 Def

We denote

$$T_p^q := (V^{\vee})^{\otimes p} \otimes V^{\otimes q} \qquad p, q \in \mathbb{N}$$

$$= \underbrace{V^{\vee} \otimes \cdots \otimes V^{\vee}}_{p \text{ times}} \otimes \underbrace{V \otimes \cdots \otimes V}_{q \text{ times}}$$

An element of $T_p^q(V)$ is called a tensor of type (p,q) (or a mixed tensor which is p-covariant and q-contravariant)

Let's denote:

$$T(V) := \bigoplus_{q \in \mathbb{N}} T_0^q(V)$$

On T(V) we have following operation:

$$T_0^l(V) \times T_0^q(V) \to T_0^{l+q}(V)$$
$$((x_1 \otimes \dots \otimes x_l), (y_1 \otimes \dots \otimes y_q)) \mapsto x_1 \otimes \dots \otimes x_l \otimes y_1 \otimes \dots \otimes y_q$$

With this operation T(V) becomes a K-algebra. It called the tensor algebra associated to V

0.10 Def

The quotient algebra

$$\bigwedge(V) := T(V) / \left\{ \sum_{i(finite)} (y_1 \otimes \cdots \otimes y_{m_i}) \otimes (x_i \otimes x_i) \otimes (z_1 \otimes \cdots \otimes z_{n_i}) \right\}$$

is a K-algebra, which called the exterior algebra of V

$$\pi: T(V) \to \bigwedge(V)$$

 $x_1 \otimes \cdots \otimes x_n \mapsto x_1 \wedge \cdots \wedge x_n$

0.11 Notation

$$\bigwedge(V) = \bigoplus_{n \in \mathbb{N}} \bigwedge^n(V)$$

$$\bigwedge^n(V) := T_0^n(V)/(W \cap T_0^n(V))$$

this is called n-fold exterior product

0.12 Prop

FIx a vct space V. For any alternating multi-linear mapping

$$s: \underbrace{V \times \cdots \times V}_{n \text{ times}} \to W$$

when W is another vct space, there exists a unique linear mapping

$$g_s: \bigwedge^n(V) \to W$$

such that the following diagram commutes

0.13. PROP 5

0.13 Prop

Let V be a vct space of dimension n with a basis $\{e_1, \dots, e_n\}$. Then $\bigwedge^k(V)$ is a vct space with a basis given by

$$\mathcal{B} = \{ e_{i_1} \wedge \cdots \wedge e_{i_k} | 1 \le i_1 < \cdots < i_k \le n \}$$

In particular, $\bigwedge^k(V)$ has dimension $\binom{n}{k}$

0.14 Def

Let V be a vct space of dimension n, then

$$\det(V) = \bigwedge^{n}(V)$$

is called the determinant of V. It is a vct space of dimension $1 = \binom{n}{n}$ and a basis is given by

$$e_1 \wedge \cdots \wedge e_n$$

when $\{e_1, \dots, e_n\}$ is a basis of V.

0.15 Def

$$g_{\widetilde{f}} = \bigwedge^{k} f : \bigwedge^{k}(V) \longrightarrow \bigwedge^{k}(V)$$
$$v_{1} \wedge \dots \wedge v_{k} \mapsto f(v_{1}) \wedge \dots \wedge f(v_{n})$$

0.16 Def

Let $F:V\to V$ be a linear mapping. A subspace $V_0\subseteq V$ is said to be an invariant subspace of F is $F(V_0)\subseteq V_0$

0.17 Def

A linear mapping $f:V\to V$ (finite dim) is diagonalizable if the following equivalent conditions are satisfied

- 1 V decomposes as a direct sum of one-dimensional invariant subspace of f
- 2 There exists a basis of V, in which the matrix A_f is diagonal.

0.18 Def

V a vector space over K $dim(V) = n, f \in \mathcal{L}(V; V)$ let A_f be an associated matrix (in any basis) the mapping

$$P: K \to K$$
$$t \mapsto \det(tI_n - A_f)$$

This is a polynomial in K[t] (with degree n)

0.19 Def

Let
$$a_0 + a_1 t + \dots + a_n t^n = Q(t) \in K[t]$$
, then for $f \in \mathcal{L}(V; V)$ we define
$$Q(f) := a_0 i d_V + a_1 f + a_2 f^{\circ 2} + \dots + a_n f^{\circ n}$$

Remark From now on we write

$$f^{\circ k} = f^k$$

these are operations in $\mathcal{L}(V;V),+,\circ$ we say that Q annihilates f if Q(f)=0

0.20 Prop

Let $f \in \mathcal{L}(V; V)$. There exists a polynomial $Q \in K[t] \setminus \{0\}$ that annihilates f (i.e. Q(f) = 0)

Remark

The proof of this proposition also gives the degree of a polynomial that annihilates ($\leq n^2$)

0.21 Def

Let $m(t) \in K[t] \setminus \{0\}$ be a monic polynomial of minimal degree that annihilates $f \in \mathcal{L}(V; V)$. Then m(t) is called minimal polynomial of f And by propabove (0.20), m(t) exists.

0.22 Prop

If m(t) is minimal polynomial of f, then m(t) is unique.

0.23 Prop

Let $Q \in K[t] \setminus \{0\}$ be a polynomial that annihilates f. Then $m_f \mid Q$

0.24 Theorem: Cayley-Hamilton Theorem

The characteristic polynomial P_f annihilates f

0.25 Theorem

Let $f \in \mathcal{L}(V; V)$ when V is a vector space of dim n, over an algebraically closed field.

Then

- (1) f can be represented by a Jordan matrix
- (2) This above matrix is unique up to permutation of the Jordan blocks

0.26 Def

Let $f \in \mathcal{L}(V; V)$ and let $\lambda \in K$. A vector $w \in V \setminus \{0\}$ is called a root vector of f corresponding to λ , if there exists $\mathbf{z} \in \mathbb{N}$ s.t.

$$(f - \lambda i d_V)^{\mathfrak{r}}(w) = 0$$

Remark

Eigenvector are root vectors (corresponding to their eigenvalues) take z=1

Remark

Let $J_{\mathfrak{r}}(\lambda)$ be a Jordan block. Then any $\sigma \in V$ is a root vector of f corresponding to λ . In fact:

$$(J_{\mathbf{z}}(\lambda) - \lambda I_n)^m = 0$$
 if $m \ge \mathbf{z}$

0.27 Prop

Let K be an algebraically closed field. Let $\lambda_1, \dots, \lambda_k$ be all of distinct eigenvalues of $f(k \ge 1)$, then

$$V = \bigoplus_{i=1}^{k} V(\lambda_i)$$

0.28 Def

Let $f \in \mathcal{L}(V;V)$. Then f is said to be nilpotent if there exists $t \in \mathbb{N}$ that $f^t = 0$

0.29 Lemma

Let f be a nilpotent mapping, then $Ker(f) \neq \{0\}$

Proof

Let z be the minimal integer s.t. $f^z = 0$ then

$$f^{i-1}(V) \subseteq Ker(f)$$

but $f^{i-1}(V) \neq \{0\}$ because of the minimality of i

0.30 Theorem

Let $f \in \mathcal{L}(V; V)$ be a nilpotent mapping, then there exists a Jordan basis for f that gives a Jordan matrix made of blocks of the type $J_{\mathfrak{c}}(0)$

0.31 Theorem

Let K be an algebraically closed field. Let $f \in \mathcal{L}(V)$. Then f admits a Jordan basis (namely there exists a basis s.t. A_f is a Jordan matrix).

0.32 Def

Let λ be an eigenvalue of $f \in \mathcal{L}(V)$

$$E(\lambda) := \ker(f - \lambda Id)$$

This $E(\lambda)$ is called the eigenspace of λ

$$mult(\lambda)_{qeo} = dim(E(\lambda))$$

is called the geometric multiplicity of λ

Moreover

$$mult(\lambda)_{alg} = \max \{k \in \mathbb{N} | (t - \lambda)^k | P_f(t) \}$$

is called the algebraic multiplicity of λ

0.33 Prop

Let K be algebraically closed. Then $\forall \lambda$ eigenvalues of f

$$mult(\lambda)_{geo} \leq mult(\lambda)_{alg}$$

9

0.34 Corollary

Let K be an algebraically closed field. Let $f \in \mathcal{L}(V)$. f is diagonalizable iff

$$\forall \lambda_i \quad mult(\lambda_i)_{qeo} = mult(\lambda_i)_{alq}$$

0.35 Def

Two matrices $G, G' \in M_{n \times n}(K)$ are said conjugate if $\exists A \in \mathcal{Q}_{n \times n}(K)$ s.t. $G = G^{T}$

0.36 Def

Let $p \in \mathbb{R}^n$ be a fixed point

$$\mathbb{R}_p^n := \{p\} \times \mathbb{R}^n$$

 $(p,a) \in \mathbb{R}_p^n, a \in \mathbb{R}^n$

$$(p, a) + (p, b) = (p, a + b)$$

 $\alpha(p, a) = (p, \alpha a) \ \alpha \in \mathbb{R}$

With these operation \mathbb{R}_p^n is a vector space, which is called the tangent space of \mathbb{R}^n at p.

The dual space is

$$(\mathbb{R}_p^n)^{\vee} = \{p\} \times (\mathbb{R}_p^n)^{\vee}$$

A basis of \mathbb{R}_p^n is denoted by

$$(e_1\mid_p,\cdots,e_n\mid_p)$$

 $\bigsqcup_{p}\mathbb{R}_{p}^{n}$ is called the tangent bundle of \mathbb{R}^{n}

0.36.1 Notation

$$a \mid_p := (p, a)$$

0.37 Def

Let $p \in \mathbb{R}^n$ be a fixed point

$$\mathbb{R}_p^n := \{p\} \times \mathbb{R}^n$$

$$(p,a) \in \mathbb{R}_p^n, a \in \mathbb{R}^n$$

$$(p, a) + (p, b) = (p, a + b)$$

$$\alpha(p, a) = (p, \alpha a) \ \alpha \in \mathbb{R}$$

With these operation \mathbb{R}_p^n is a vector space, which is called the tangent space of \mathbb{R}^n at p.

The dual space is

$$(\mathbb{R}_p^n)^\vee = \{p\} \times (\mathbb{R}_p^n)^\vee$$

A basis of \mathbb{R}_p^n is denoted by

$$(e_1\mid_p,\cdots,e_n\mid_p)$$

 $\bigsqcup_{p} \mathbb{R}^{n}_{p}$ is called the tangent bundle of \mathbb{R}^{n}

We have a projection mapping:

$$\bigsqcup_{p} \mathbb{R}_{p}^{n} \stackrel{\pi}{\to} \mathbb{R}_{p}^{n}$$

$$(p, a) \mapsto p$$

and

$$\mathbb{R}^n \times \mathbb{R}^n \cong \bigsqcup_{p} \mathbb{R}_p^n$$
$$(p, a) \longleftrightarrow (p, a)$$

Take $\{e_1 \mid_p, \cdots, e_n \mid_p\}$ as a basis of \mathbb{R}_p^n . The dual basis is denoted by

$$\{dx_1 \mid_p, \dots, dx_n \mid_p\} = \{(e_1 \mid_p)^{\vee}, \dots, (e_n \mid_p)^{\vee}\} \in (\mathbb{R}_p^n)^{\vee}$$
$$dx_i \mid_p : \mathbb{R}_p^n \qquad \to \mathbb{R}$$
$$v = (\sum \alpha_i e_i \mid_p) \quad \mapsto \alpha_i$$
$$\frac{\partial x_i}{\partial x_j} = dx_i \mid_p (e_j \mid_p) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Recalled the wedge algebra:

$$\bigwedge (\mathbb{R}_p^n)^{\vee} := T(\mathbb{R}_p^n)^{\vee} / I = \bigoplus_{k \in \mathbb{N}} \bigwedge^k (\mathbb{R}_p^n)^{\vee}$$

Consider

$$\bigwedge^k(\mathbb{R}_p^n)^\vee$$

what's a basis of this vector space?

$$\left\{ dx_1 \mid_p \wedge \dots \wedge dx_k \mid_p \left| 1 \le i_1 < \dots < i_k \le n \right. \right\}$$

and

$$\dim(\bigwedge^{k}(\mathbb{R}_{p}^{n})^{\vee}) = \binom{n}{k}$$

Proved.

0.38 Do Carmo Differential forms

0.39 Def

An exterior k-form in \mathbb{R}^n is a mapping:

$$\omega : \mathbb{R}^n \longrightarrow \bigsqcup_{p} \bigwedge^{k} (\mathbb{R}^n_p)^{\vee}$$
$$p \longmapsto \omega(p)$$

that's a section of the projection π

$$(\pi \circ \omega = id_{\mathbb{R}}) = (\omega(p) \in \bigwedge^{k} (\mathbb{R}_{p}^{n})^{\vee})$$

$$\omega(p) = \sum_{1 \le i_1 < \dots < i_k \le n} a_{i_1, \dots, i_k}(p) dx_{i_1} \mid_p \wedge \dots \wedge dx_{i_k} \mid_p \in \bigwedge^k (\mathbb{R}_p^n)^{\vee}$$

Note that

$$\bigsqcup_{p} \bigwedge^{k} (\mathbb{R}_{p}^{n})^{\vee} \xrightarrow{\pi} \mathbb{R}^{n}$$

$$f|_{p} \qquad \mapsto p$$

$$\omega \leftrightarrow \{a_{i_{1}}, \cdots, a_{i_{k}}\}$$

if all a_{i_j} are of class $C^m(\mathbb{R})$ the ω is called a C^m -differential k-form. If $m=+\infty$ omega is called a smooth k-form.

0.40 Notation

$$\omega = \sum_{I} a_{I} dx_{I}$$

where $I = (i_1, \dots, i_k)$

0.41 Notation

When k=0 a 0-form of class C^m -differential 0-form is $f \in C^m(\mathbb{R}^n)$

$$C^m(\mathbb{R}^n) = \{ f : \mathbb{R}^n \to \mathbb{R} \text{ of class } C^m \}$$

0.42 Notation

$$\Omega^k_{(m)}(\mathbb{R}^n) := \{ \text{set of } C^m \text{-diff } k \text{-forms} \}$$

$$\Omega^0_{(m)}(\mathbb{R}^n) = C^m(\mathbb{R}^n)$$

m could be omitted if no confusion.

0.43 Def

Now we have

$$\Omega(\mathbb{R}^n) = \bigoplus_{k \in \mathbb{N}} \Omega^k(\mathbb{R}^n)$$

a \mathbb{R} -algebra with the \wedge -product And it's also a $\Omega^0(\mathbb{R}^n)$ module and $\Omega^0(\mathbb{R}^n)$ -algebra

0.44 Def: Pullback of forms

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a mapping of C^{ϵ} , then it induces a mapping

$$f^*: \Omega^k_{(\imath)}(\mathbb{R}^m) \to \Omega^k_{(\imath)}(\mathbb{R}^n)$$
$$\omega \mapsto f^*\omega$$

and

$$f^*(\omega)(p)(v_1,\cdots,v_k) = \omega(f(p))(df\mid_p (v_1),\cdots,df\mid_p (v_k))$$

recalling

$$df \mid_{p} : \mathbb{R}_{p}^{n} \to \mathbb{R}_{f(p)}^{m} \Rightarrow df \mid_{p} (v_{i}) \in \mathbb{R}_{f(p)}^{n}$$

0.45 Remark

$$f \in \Omega^0(\mathbb{R}^n), \omega \in \Omega^k(\mathbb{R}^n)$$

 $f \wedge \omega = f\omega$

0.46 Prop

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable mapping. Then

(1) for any two forms in \mathbb{R}^m

$$f^*(\omega \wedge \eta) = (f^*\omega) \wedge (f^*(\eta))$$

(2) for $g: \mathbb{R}^p \to \mathbb{R}^n$ differentiable

$$(f \circ g)^* \omega = g^*(f^* \omega)$$

0.47 Def: Path integral

Let γ and ω be as above.

$$\int_{\gamma} \omega := \sum_{i} \int_{t_{k}}^{t_{k+1}} \gamma_{j}^{*} \omega$$

this is the integral of ω along the parametric curve γ with

$$\gamma = t \mapsto (x_1(t), \cdots, x_n(t))$$

where $x_i(t) = \frac{\mathrm{d}x_i}{\mathrm{d}t}$

0.48 $\operatorname{Def}(\sigma\text{-finite})$

Let (X, Σ_X, μ) be a measure space. WE say that it's σ -finite if there exists a sequence $\{E_n\}_{n\in\mathbb{N}}$ of measurable sets. (namely $E_n\in\Sigma_X$) such that

$$X = \bigcup_{n \in \mathbb{N}} E_n$$
 and $\mu(E_n) < +\infty, \forall n \in \mathbb{N}$

0.49 Notation

Take sets $A \subseteq X \times Y$ For $x \in X$, we define

$$A_x := \{ u \in Y \mid (x, y) \in A \}$$

called a **vertical section** of A or x-fiber of A

For $y \in Y$ we define

$$A_y := \{ x \in X \mid (x, y) \in A \}$$

called a **horizontal section** of A, or y-fiber of A

0.50 Def

Let X be a set. then $\mathscr{D} \subseteq \wp(X)$ is a **Dynkin system** if

- $X \in \mathscr{D}$ and $\varnothing \in \mathscr{D}$
- $\forall D \in \mathscr{D} \quad X \setminus D \in \mathscr{D}$
- If $\{D_n\}_{n\in\mathbb{N}}$ is a sequence in \mathscr{D} of pairwise disjoint sets, then

$$\bigsqcup_{n\in\mathbb{N}} D_n \in \mathscr{D}$$

Remark

A σ -algebra is a Dynkin system

0.51 Def

Let $(\mathcal{G} \subseteq \wp(X))$ then $\delta(\mathcal{G}) \subseteq \wp(X)$ is called the Dynkin system generated by \mathcal{G} if

- $\mathcal{G} \subseteq \delta(\mathcal{G})$
- If \mathscr{D} is a Dynkin system containing \mathscr{G} , then $\delta(\mathscr{G}) \subseteq \mathscr{D}$

0.52 Prop

If $\mathcal D$ is a Dynkin system closed under the intersection, then it's a σ -algebra, namely

$$\forall (D, E) \in \mathcal{D}^2, D \cap E \in \mathcal{D} \Rightarrow \forall \{D_n\}_{n \in \mathbb{N}} \in \mathcal{D}^{\mathbb{N}} \quad \bigcup_{n \in \mathbb{N}} D_n \in \mathcal{D}$$

0.53 Prop

Let X be a set and let $\mathcal{G}\subseteq\wp(X).$ Assume that \mathcal{G} is closed under the finite intersection. Then

$$\delta(\mathcal{G}) \subseteq \sigma(\mathcal{G})$$

0.54 Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be σ -finite measure spaces. Then $\forall E \in \Sigma_X \otimes \Sigma_Y$, the functions

$$f_E : X \to \mathbb{R} \cup \{+\infty\}$$

$$x \mapsto \nu(E_x)$$

$$g_E : Y \to \mathbb{R} \cup \{+\infty\}$$

$$y \mapsto \mu(E_y)$$

are respectively Σ_X -measurable and Σ_Y -measurable

0.55 Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be σ -finite measure spaces. There exists a unique σ -finite measure $\mu \times \nu$ on $(X \times Y, \Sigma_X \otimes \Sigma_Y)$ such that

$$\mu \times \nu(S_1 \times S_2) = \mu(S_1)\nu(S_2) \quad \forall (S_1, S_2) \in \Sigma_X \times \Sigma_Y$$

and moreover, we have

$$(\mu \times \nu)(E) = \int_X f_E d\mu = \int_Y g_E d\nu$$

0.56 Def: Push-forward measure

Let (X, Σ_X, μ) be a measure space, and let (Y, Σ_Y) be a measurable space. If $f: X \to Y$ is a measurable function, then define:

$$f_{*\mu}(E) = \mu(f^{-1}(E)) \quad \forall E \in \Sigma^Y$$

This is a measure on Y, called the push forward of μ through f

0.57 Fubini-Tobelli Theorem

Let (X, Σ_X, μ) and (Y, Σ_Y, ν) be two σ -finite measure spaces. Let $(X \times Y, \Sigma_X \otimes \Sigma_Y, \mu \times \nu)$ be the product space. Let $f: X \times Y \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a measurable function. Then

$$\int_{X \times Y} |f| \, \mathrm{d}(\mu \times \nu) = \int_X (\int_Y |f(x, y)| \, \mathrm{d}\nu(y)) \mathrm{d}\mu(x)$$
$$= \int_X (\int_Y |f(x, y)| \, \mathrm{d}\nu(y)) \mathrm{d}\mu(x)$$

0.58 Notation

For any mapping $\gamma: [a,b] \to U$

- γ is called a closed curve if $\gamma(a) = \gamma(b)$ and γ is a curve
- γ is called a path if γ is of class C^0
- γ is called a loop if γ is a closed path

0.59 Def: Lebesgue number

Let (X, ρ) be a metric space and $\mathcal{U} = \{U_i\}$ be an open covering X

A **Lebesgue number** $\delta = \delta_{\mathcal{U}}$ (of the open covering \mathcal{U}) is a non-negative number that:

If $Z \subseteq X$ is a subset with $diam(Z) < \delta$, then $Z \subseteq U_j$ for some $U_j \in \mathcal{U}$

Remark

- $\delta' < \delta$ is also a Lebesgue number
- In principle, a Lebesgue number δ can be 0

0.60 Lemma

If X is compact, then for any open covering there exists a positive Lebesgue number.

0.61 Theorem(homotopy invariance of the integrals)

Ler ω be a closed form on an open set U. Let γ_0, γ_1 be homotopy paths in U, then

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega$$

0.62 Def: Free Homotopy

Let $\gamma_0, \gamma_1 : [a, b] \to U$ be two loops (namely $\gamma(a) = \gamma(b)$) A **free homotopy** between γ_0 and γ_1 is a continuous mapping:

$$\begin{split} H: & [a,b] \times [0,1] & \to U \\ & (s,t) & \mapsto & H(s,t) \end{split}$$

such that

•

$$H(\cdot,0) = \gamma_0 \quad H(\cdot,1) = \gamma_1$$

• For any fixed t_0

$$H(\cdot,t_0)$$

is a loop

0.63 Notation

A path $\gamma:[a,b]\to I$ is said simple if $\gamma\mid_{]a,b[}$ is injective (No self-cross this is)

0.64 Jordan Theorem

Let γ be a simple loop $\gamma:[a,b]\to U$, then $\mathbb{R}^2\setminus\gamma([a,b])$ consists exactly of two connected components. One of this is bounded (interior), the other one unbounded (exterior). Moreover $\gamma([a,b])$ is the boundary of two components.

0.65. DEF

0.65 Def

Let $c:[a,b]\to S^1$ be a closed curve. Let φ be the angular function of c. We define the winding number of c as:

$$n(c) = \frac{1}{2\pi}(\varphi(b) - \varphi(a))$$

Since c us a closed curve, $n(c) \in \mathbb{Z}$

0.66 Def

Let $\gamma:[a,b]\to\mathbb{R}^2\setminus\{p\}$ be a closed curve. $(\gamma_p+\rho(t)c(t)),$ when $c(t)\in S^1$

$$\gamma(t) = p + \rho(t)(\cos(\theta(t)) + \sin(\theta(t)))$$

Then we define the winding number of γ at p

$$n_p(\gamma) := n(c)$$

0.67 Prop

Let $\gamma = p + \rho(t)c(t)$ be a closed curve $\gamma: [a,b] \to \mathbb{R}^2 \setminus \{p\}$ then

$$n_p(\gamma) = \frac{1}{2\pi i} \int_C \omega_0$$

where

$$\omega_0 = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy$$

0.68 Prop

Let $\gamma_0,\gamma_1:[0,b]\to\mathbb{R}^2\setminus\{p\}$ be two closed curves. Then they're freely homotopic iff

$$n_p(\gamma_0) = n_p(\gamma_1)$$

0.69 Def

Let $F:U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ be a differential mapping. We say that $p\in U$ is a zero of F if F(p)=0. If then exists a neighborhood V of p such that V contains no zero of F other then p, then p is called isolated zero.

If p is a zero of F and $dF \mid_p$ is non singular at p, then we say that p is a simple zero.

0.70 Def

The index of F in D, is defined as

$$n(F,D) := \frac{1}{2\pi} \int_C \theta$$

See that $\theta = F^*\omega_0$, $\omega_0 = \frac{-y\mathrm{d}x + x\mathrm{d}y}{x^2 + y^2}$

$$n(F, D) = \frac{1}{2\pi} \int_C \theta$$

$$= \frac{1}{2\pi} \int_C F^* \omega_0$$

$$= \frac{1}{2\pi} \int_{F_0} \omega_0$$

$$= (\text{winding number of } F \circ C \text{ at the center of } FD)$$

0.71 Remark

$$n(F,D) = \frac{1}{2\pi} \int_C \theta = \frac{1}{2\pi} \int_{F \circ C} \omega_0$$

0.72 Prop

If $n(F, D) \neq 0$ then $\exists q \in D$ s.t. F(q) = 0

0.73 Def

A simple zero p of F is said **positive** if $det(d_pF) > 0$, otherwise is said **negative** ?(what's =0?)

0.74 Kronecker Index Theorem

Assume that $F;U\subseteq\mathbb{R}^2\to\mathbb{R}^2$ has only finite simple zeros in a disk $D\subseteq U$ and none of them in ∂D . Then

$$n(F, D) = P - N$$

where P is the number of positive simple zeros and N is the number of negative simple zeros.

0.75. DEF 19

0.75 Def

Let $\mathcal{P} = \{t = t_a, t_1, \dots, t_n = b\}, p_i = \gamma(t_i)$

$$l_{\mathcal{P}}(\gamma) = \sum_{i=0}^{n} \|p_{i+1} - p_i\|$$

The length of γ is

$$l(\gamma) := \sup_{p} \{l_p(\gamma)\}$$

If $l(\gamma) < +\infty$, then path γ is said rectifiable.

0.76 Prop

Let $\gamma: [a,b] \to \mathbb{R}^n$ be of class C^1 , then γ is rectifiable and

$$l(\gamma) = \int_a^b \|\gamma'(t)\| \, \mathrm{d}t$$

moreover $l(\gamma)$ doesn't depend on the parametrization of γ

0.77 Corollary(exercise)

If γ is a curve (piecewise C^1), then γ is rectifiable and the length is the sum of the length of it's C^1 pieces.

0.78 Def

A C^1 -curve is **regular** if $\gamma'(t) \neq 0$ for any $t \in [a,b]$ A piecewise C^1 -path (curve) is regular if all its pieces are regular

0.79 Def

$$N:=\frac{T}{\|T\|}$$

is **normal vector** of T

0.80 Def

Let $\gamma:[a,b]\to\mathbb{R}^n$ a C^1 curve; Let l be the length of γ (by theorem proved $l(\gamma)<+\infty$) Let's define the following function:

$$s(t) := \int_a^t \|\gamma'(t)\| \, \mathrm{d}u$$

s(t) is the length of $\gamma\mid_{[a,t]}$ THe function $\|\gamma'(u)\|$ is s continuous, hence

$$s'(t) = \|\gamma'(t)\|$$

Now assume that γ is C^1 and $\mathbf{regucar}(\gamma'(t) \neq 0, \forall t \in [a, b])$, then s'(t) > 0So $s: [a, b] \to [0, l]$ is a C^1 -differmorphism, the inverse is

$$t:[0,l]\to[a,b]$$

$$\frac{\mathrm{d}t}{\mathrm{d}s} = frac1 \|\gamma'(t)\|$$

We reparameterize γ with t and get

$$\tilde{\gamma}(s) = (\gamma \circ t)(s)$$

 $\tilde{\gamma}:[0,l]\to\mathbb{R}^n$ we say that $\tilde{\gamma}$ is the reparameterization of γ with respect to its curvilinear coordinate s(t)

0.81 Def

 $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ f is a $C^{(k)}$ -differ if

- f is of class $C^{(k)}$
- f is bijection, and the inverse is $C^{(k)}$

0.82 Def

In general

$$\gamma: [a,b] \to \mathbb{R}^n \leadsto \tilde{\gamma}: [0,l] \to \mathbb{R}^n$$

regular and C^1

$$\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} = \frac{\mathrm{d}\gamma}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s} = \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

$$\left\| \frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} \right\| = 1$$

$$T(t) := \frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s} = \frac{\gamma'(t)}{\|\gamma'(t)\|}$$

tangent: (vector) \rightarrow vector of norm 1

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \left\| T(t) \right\|^2 = \frac{\mathrm{d}}{\mathrm{d}t} \left\langle T(t), T(t) \right\rangle = 2 \left\langle T(t), T'(t) \right\rangle \Leftrightarrow T'(t) \perp T(t)$$

use the fact that in \mathbb{R}^n , $u, v : \mathbb{R} \to \mathbb{R}^n$ differentiable

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle u(t), v(t) \rangle = \left\langle \frac{\mathrm{d}u}{\mathrm{d}t}, v(t) \right\rangle + \left\langle u(t), \frac{\mathrm{d}v}{\mathrm{d}t} \right\rangle$$

then

$$\frac{\mathrm{d}^2 \tilde{\gamma}}{\mathrm{d}s^2} = \frac{\mathrm{d}}{\mathrm{d}s} (\frac{\mathrm{d}\tilde{\gamma}}{\mathrm{d}s})$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} (T(t))$$

$$= \frac{\mathrm{d}T}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}s}$$

$$= \frac{T'(t)}{\|\gamma'(t)\|}$$

 $N(t)=\frac{\mathrm{d}^2\tilde{\gamma}}{\mathrm{d}s^2}/\left\|\frac{\mathrm{d}^2\tilde{\gamma}}{\mathrm{d}s^2}\right\|$. If n=2 Along the curve we have a 'moving' canonical basis of

$$\mathbb{R}^{2}_{\gamma(t)} = \{T(t), N(t)\}$$

$$= \{\alpha T(t) + \beta N(t) \mid \alpha, \beta \in \mathbb{R}\}$$

 $\{T(t),N(t)\}$ is a orthonormal basis of $\mathbb{R}^2_{\gamma(t)}$

0.83 Def:isometry

$$(V,g) \xrightarrow{f} (W,g')$$

a morphism f of vector space with inner product is **isometry** if

$$g(x,y) = g'(f(x), f(y))$$

0.84 Def:isometric

 $V \stackrel{\cong}{\to} W$ up to isomorphism.

Then (V,g) and (W,g') are **isometric** if there are two isometry

$$f: (V,g) \rightarrow (W,g')$$

 $f': (W,g') \rightarrow (V,g)$

such that

$$f \circ f' = f' \circ f = Id$$

0.85 Def: Semilinear

If V and W are two complex vector sapce, then a **semilinear mapping** is a mapping $f:V\to W$ such that

•
$$f(v_1 + v_2) = f(v_1) + f(v_2)$$

•
$$f(\alpha v) = \alpha * f(v) = \overline{\alpha} f(v)$$

So a semilinear mapping is a linear mapping: $f: V \to W$

For sesquilinear forms, the theory is similar to the theory of bilinear forms.

$$g \rightsquigarrow G(\text{fix a basis}) \quad g(x, y) = xG\overline{y}$$

If you change basis, then the Gram matrix changes in the following way:

$$G \leadsto A^T G \overline{A}$$

If g is bilinear

$$g \leadsto \tilde{g}: V \to V^{\vee}$$

and

$$g \leadsto \tilde{g}: V \to \overline{V^\vee}$$

linear if g is sesquilinear $(\tilde{g}: V \to V^{\vee})$ is semilinear)

0.86 Def

A sesquilinear form $g: V \times \overline{V} \to K$ is **hermitian** if

$$g(x,y) = \overline{g(y,x)}$$

And note that inner product is any of symmetric symplectic or hermitian.

Chapter 1

Classification (up to isometry) of vector spaces of small dim

Let (V,g) be vector space over $K(=\mathbb{R},\mathbb{C})$ with inner product.

1.1 $\dim V = 1$ and g is symmetric

choose $v \in V \setminus \{0\}$ if g(v,v) = 0, then g is degenerated $\Rightarrow g = 0$ If g is non-degenerate) $\exists v$ s.t. $g(v,v) = a \neq 0$

$$\forall x \in K \quad g(xv, xv) = ax^2$$

Any v s.t. $g(v,v) = a \neq 0$ induce a set

$$C(v) := \{ax^2 : x \in K^*\}$$

this is an element in $K^*/\{x^2 \mid x \in K^*\}$

1.1.1 Prop

Let $(V_1, g_1), (V_2, g_2)$ be two vector spaces of dim 1 s.t. g_1 and g_2 are symmetric. Then (V_1, g_1) and (V_2, g_2) are isometric iff

$$\exists v_1 \in V_1, v_2 \in V_2 \text{ s.t. } C_{q_1}(v_1) = C_{q_2}(v_2)$$

1.1.2 Theorem

(V,g) has dim 1, g symmetric. Then (V,g) is isometric to one of the following

• $K = \mathbb{R}$

$$(\mathbb{R}, g(x, y) = xy) \quad (\mathbb{R}, g(x, y) = -xy) \quad (\mathbb{R}, g(x, y) = 0)$$

24CHAPTER 1. CLASSIFICATION (UP TO ISOMETRY) OF VECTOR SPACES OF SMALL DIM

 \bullet $K = \mathbb{C}$

$$(\mathbb{C}, g(x, y) = xy) \quad (\mathbb{C}, g(x, y) = 0)$$

1.2 $\dim V = 1$ g is hermitian

Again g degenerate $\Rightarrow g=0$ We use that same reason as above. $v\in V$: $g(v,v)=a\neq 0,\, \forall a\in\mathbb{C}^*$

$$g(av, av) = \|a\|^2 g(v, v)$$

So any element $v \in V \setminus \{0\}$ s.t. g(v,v) = a induces a coset in $\mathbb{C}^*/\mathbb{R}_{>0}$ Inside \mathbb{C}^* , $\mathbb{R}_{>0}$ is a (mult) subgroup

For any $z \in \mathbb{C}^*$ can be written uniquely as $z = re^{i\theta}$, hence

$$C^* \cong \mathbb{R}_{>0} \times S^1 \to S^1$$

 $z \mapsto (r, e^{i\theta}) \mapsto e^{i\theta}$

The kernel is $\mathbb{R}_{>0}$ and $S^1 \cong \mathbb{C}^*/\mathbb{R}_{>0}$.

But g is hermitian, so

$$g(v,v) \in \mathbb{R}$$

If follows that the coset

$$\{\|a\|^2 g(v,v) \mid a \in \mathbb{C}^*\} \in (\mathbb{C}^*/\mathbb{R}_{>0}) \cap (\mathbb{R}/\mathbb{R}_{>0}) \cong \{\pm 1\}$$

We repeat the proposition before with g hermitian and the following theorem

1.2.1 Theorem

(V,g) if dim 1, with g hermitian. Then (V,g) is isometry to one of the following

$$(\mathbb{C},g(x,y)=x\overline{y})\quad (\mathbb{C},g(x,y)=-x\overline{y})\quad (\mathbb{C},g(x,y)=0)$$

1.3 $\dim V = 1$ g symplectic

With dim 1 $\forall v_1, v_2 \in V$ can be write as $v_1 = ae, v_2 = be$ with $e \in K^*$

$$q(v_1, v_2) = ab \cdot q(v, v) = 0$$

1.3.1 Theorem

(V,g) of dim 1, g symplectic, then

$$(V,q) \cong (K,q=0)$$

25

1.4 $\dim V = 2 g$ symplectic

Assume that g is degenerated, then $\exists x \in V$ s.t. $g(x,y) = 0, \forall y \in V$ Extend x to a basis $\{x, x'\}$ of V

$$g(ax + a'x', bx + b'x') = ab \cdot g(x, x) + ab' \cdot g(x, x') - a'b \cdot g(x, x') + a'b' \cdot g(x', x') = 0$$

So when g degenerated g = 0

Take g non-degenerated $\exists v_1, v_2 \in V \text{ s.t. } g(v_1, v_2) = a \neq 0.$

For $g(a^{-1}v_1, v_2) = a^{-1}a = 1$, we may assume that a = 1

Let's show that v_1, v_2 are linearly independent. Assume by contraction: $v_1 = \lambda v_2$

$$1 = g(v_1, v_2) = g(\lambda v_2, v_2) = \lambda \cdot g(v_2, v_2) = 0$$

 $\Rightarrow \{v_1, v_2\}$ is a basis of V. Then

$$\alpha_1\beta_2 - \alpha_2\beta_1 = g(\alpha_1v_1 + \alpha_2v_2, \beta_1v_1 + \beta_2v_2) = (\alpha_1, \alpha_2) \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} \stackrel{(?)}{=} \begin{pmatrix} \overline{\beta_1} \\ \overline{\beta_2} \end{pmatrix}$$

1.4.1 Theorem

(V,g) is dim 2, g symplectic. Then (V,g) is isometric to one of the following

$$(K^2, g(x, y) = 0)$$
 $(K^2, g(x, y) = x_1y_2 - x_2y_1)$

 $26 CHAPTER\ 1.\ CLASSIFICATION\ (UP\ TO\ ISOMETRY)\ OF\ VECTOR\ SPACES\ OF\ SMALL\ DIM$

Chapter 2

Compliment

2.1 Def: non-degenerate

Let (V, g) be a inner product space. Let $V_0 \subseteq V$ be a subspace. We say that V_0 is non-degenerate if $g \mid_{V_0}$ is non-degenerate.

Moreover, V_0 is isotropic if $g|_{V_0} = 0$

Remark

Isotropic means degenerate

2.2 Def

Let (V,g) be a inner product space. Let $V_0\subseteq V$ be a subspace. The orthogonal complement of V_0 is define as

$$V_0^{\perp} := \{ v \in V \mid g(v, v_0) = 0, \forall v_0 \in V_0 \}$$

2.3 Prop

Let (V,g) be a inner product space. Let $V_0\subseteq V$ be a non-degenerate subspace. Then

$$V = V_0 \oplus V_0^{\perp}$$

2.4 Theorem

Let (V,g) be an finite dimensional inner product space. If both V_0 and V_0^{\perp} are non-degenerate, then $(V^{\perp})^{\perp}=V_0$

2.5 Theorem

Let (V,g) be an finite dimensional inner product space. Then There exists a decomposition

$$V = V_1 \oplus \cdots \oplus V_n$$

such that $\{V_i\}_{i=1}^n$ are pairwisely orthogonal and

- 1 They are 1-dim if g is symmetric or hermitian
- $2\,$ They are 1-dim but degenerated or 2-dim non-degenerate if g is symplectic.

Chapter 3

Signature

Now we discuss the uniqueness of such decomposition

3.1 Def

Let (V,g) be an inner product space with dim 1. Moreover, assume that g is symmetric or hermitian. We say that (V,g) is **positive** if (V,g) is isometry to either $(\mathbb{R}, g(x,y) = xy)$ or $(\mathbb{C}, g(x,y) = x\overline{y})$

We say that (V,g) is **negative** if (V,g) is isometry to either $(\mathbb{R}, g(x,y) = -xy)$ or $(\mathbb{C}, g(x,y) = -x\overline{y})$

3.2 Notation

By theorem 2.5, we can count the number of positive subspace of any inner product space.

- $r_0 := \dim \ker g$
- $r_+ :=$ the number of positive subspaces
- $r_{-} :=$ the number of negative subspaces

3.3 Def

Let (V, g) be an inner product space.

- 1 If g is real symmetric or, hermitian, then (r_0, r_+, r_-) is signature of V
- 2 If g is symplectic or complex symmetric, then $(\dim V, r_0)$ is the signature of V

3.4 Theorem

Let (V,g) and (V',g') be two inner product spaces, with g,g' that are either (both) symplectic or complex symmetric.

Then (V, g) and (V', g') are isometric iff

$$(n, r_0) = (n', r'_0)$$

3.5 Theorem

Let (V,g) and (V',g') be two inner product spaces, with g,g' that are either (both) hermitian or real symmetric.

Then (V, g) and (V', g') are isometric iff

$$(r_0, r_+, r_-) = (r'_0, r'_+, r'_-)$$

Chapter 4

Orthonormal

4.1 Def

Let (V, g) be an inner product space. The basis $\{v_1, \dots, v_n\}$ is said **orthogonal** if $g(v_i, v_j) = 0, \forall i \neq j$

Moreover, g is said **orthonormal** if $g(v_i, v_i) \in \{0, -1, 1\}, \forall i$

Remark

If g is hermitian or symmetric. We can always find an orthonormal basis from an orthogonal basis.

4.2 Def

Let V be a vector space over $K(charK \neq 2)$. A **quadratic form** on V is a mapping $a: V \to K$ such that

- $q(\alpha v) = \alpha^2 q(v) \forall \alpha \in K, v \in V$
- $f = (u, v) \mapsto q(u + v) q(u) q(v)$ is bilinear

Remark

Any symmetric bilinear form $h:V^2\to K$ is a quadratic form. Given a quadratic form $q:V\to K$, we can define a symmetric bilinear form

$$h_p(u,v) = \frac{1}{2} (q(u+v) - q(u) - q(v))$$

4.3 Gram-Schmidt algorithm

Let (V,g) be an inner product space with g symmetric or hermitian. Let $\{v_1',\cdots,v_n'\}$ be a basis of V such that $V_i=\langle v_1',\cdots,v_i'\rangle\ \forall i\in\{1,\cdots,n\}$ is non-degenerate.

Then there exists an orthogonal basis $\{v_1, \cdots, v_n\}$ such that $V_i = \langle v_1, \cdots, v_i \rangle$ $\forall i \in \{1, \cdots, n\}$ is non-degenerate.

Chapter 5

Euclidean and Unitary Spaces

5.1 Def:Euclidean vector space

A euclidean vector space is a finite dimensional inner product space over \mathbb{R} (E,g) with g symmetric and positive definite $(g(x,x)>0, \forall x\neq 0)$ We denote

$$\langle x, y \rangle := g(x, y)$$

Remark

Any non-zero subspace of $(E, \langle \cdot, \cdot \rangle)$ is non-degenerated:

The signature of E is of the type $(0, \mathbf{r}_+, \mathbf{r}_-)$ denoted by $(P, Q)(P = \mathbf{r}_+, Q = \mathbf{r}_-)$

An euclidean space is a normed vector space

$$||x|| = \sqrt{\langle x, x \rangle}$$

 (\langle,\rangle) positive defined required)

Any euclidean vector admits an orthonormal basis $\{v_1, \dots, v_n\}, \langle v_i, v_i \rangle = 1$ So orthonormal means

$$||v_1|| = 1$$

In a euclidean space we have a distance

$$d(x,y) = ||x - y||$$

5.2 Prop

A euclidean space (E, \langle , \rangle) of dim n is isometric to $(\mathbb{R}^n, \underbrace{\langle , \rangle}_{\text{usual scalar product}})$

5.3 Remark

Cauchy-Schwartz inequality

$$\langle x, y \rangle \le ||x|| \, ||y||$$

Triangle inequality

$$||x + y|| \le ||x|| + ||y||$$

5.4 Pythagoras's Theorem

If x_1, \dots, x_k are pairwise orthogonal, then

$$\left\| \sum_{i=1}^{k} x_i \right\|^2 = \sum_{i=1}^{k} \|x_i\|^2$$

5.5 Def:Angles

By Cauchy-Schwartz inequality:

$$-1 \le \frac{\langle x, y \rangle}{\|x\| \|y\|} \le 1$$

Then there exists a element $\phi \in [0, \pi]$ such that

$$\cos \phi = \frac{\langle x, y \rangle}{\|x\| \|y\|}$$

 ϕ is defined as the angle between x and yNotice that ϕ is not an oriented angle.

5.6 Notation

Let $U, V \subseteq E$ be two subspace, then

$$d(U, V) := \inf\{\|u - v\| \mid u \in U, v \in V\}$$

5.7 Def

 $V\subsetneq E$ a vector subspace, $x\in E\setminus\{0\}.$ Then $E=V\oplus V^\perp$ (proved) Then we write (uniquely)

$$x = x_0, +x'_0$$

where $x_0 \in V, x_0' \in V^{\perp}$.

Then x_0 is called the orthogonal projection of x on V, x_0' is called the orthogonal projection of x on V^{\perp}

5.8. PROP 35

5.8 Prop

Use the above notation:

$$d(x, V) = ||x_0'||$$

5.9 Prop

Use the previous notations. Assume that $m = \dim V$, $V \subseteq E$, $\{v_1, \dots, v_m\}$ $(m \le n = \dim E)$ is an orthonormal basis of V. Then

$$x_0 = \sum_{i=1}^{m} \langle x, v_i \rangle v_i$$

5.10 Relationship with calculus

 $(E,\langle,\rangle)=(\mathbb{R}^n,\langle,\rangle)$ on \mathbb{R}^n we have the notion of volumes

$$vol(B) := \lambda^n(B)$$

where B is a Borel set.

A n-dimensional parallelepiped is :

$$P_n = \{t_1 v_1 + \dots + t_n v_n \mid t_i \in [0, 1] \forall i\}$$

Consider a linear mapping

$$A_{P_n} = A : \mathbb{R}^n \to \mathbb{R}^n$$
$$x \mapsto Ax$$

where $A \in \mathcal{M}_{n \times n}(\mathbb{R})$, $A = (v_1 \mid \cdots \mid v_n)$

A is invertible iff $\{v_1, \dots, v_n\}$ is a basis. Let $\prod_n = [0, 1]^n$ then

$$A(\prod_n) = P_n$$

If A invertible

$$\begin{aligned} vol(P_n) &= \lambda^n(P_n) \\ &= \int_{A(\prod_n)} \chi_{P_n} \mathrm{d} \lambda^n \\ \mathrm{change\ of\ variables\ } &= \int_{A(\prod_n)} \left| \det A \right| \mathrm{d} \lambda^n \\ &= \left| \det A \right| \\ \mathrm{by\ the\ prop\ of\ } \det \ &= \sqrt{\det A^T A} \end{aligned}$$

5.11 Prop

$$vol(P_n) = \sqrt{\det G}$$

Unitary Space

6.1 Def

A complex inner vector space (H, h) where h is hermitian and positive define then it's called **unitary space**

As in the Euclidean space, we have orthonormal basis and define a norm, then a distance.

$$||x|| = \sqrt{h(x,x)}$$

6.2 Decomplexification

Let V be a complex vector space of dimension n. We resist the module structure $\mathbb{C} \times V \to V$ to $\mathbb{R} \times V \to V$

The \mathbb{R} -vector space denoted by $V_{\mathbb{R}}$ has the same vector of V. For any \mathbb{C} -linear mapping $f: V \to W$, the module induces a mapping

$$f_{\mathbb{R}} \to W_{\mathbb{W}}$$

6.3 Theorem

Let V be a complex vector of dim n

- Let V be a complex vector basis of V, then $\{v_1, \dots, v_n, iv_1, \dots, iv_n\}$ is a real basis of $V_{\mathbb{R}}$
- $f: V \to W$ is a linear mapping. Assume that it's metric representation with respect to the basis $\{v_1, \dots, v_n\}$ of V and $\{w_1, \dots, w_n\}$ of W is

$$A = B + iC$$

where $B,C\in\mathbb{R}$ Then the metric representation of $f_{\mathbb{R}}$ with respect to the basis $\{v_1,\cdots,v_n,iv_1,\cdots,iv_n\}$ and $\{w_1,\cdots,w_n,iw_1,\cdots,iw_n\}$ is

$$\begin{pmatrix} B & -C \\ C & B \end{pmatrix}$$

6.4 Corollary

Let $f:V \to V$ be a $\mathbb C$ -linear mapping. Then

$$\det f_{\mathbb{R}} = \det f \overline{\det f}$$

Complexification

7.1 Def: Complex structure

Let W be a real vector space of dim n Consider $J: W \to W$ a linear mapping such that $J^{\circ 2} = -Id$. Then J is called the **complex structure** of W. Then couple (W, J) is a vector space with a complex structure.

Example

$$J: V_{\mathbb{R}} \to V_{\mathbb{R}}$$

$$v \mapsto iv$$

$$iv \mapsto -v$$

7.2 Theorem

Let (W,J) be a real vector space with a complex structure. Then on W we introduces the following complex module:

$$(a+bi)w := aw + bJ(w)$$

We obtain a complex vector space W such that $(W)_{\mathbb{R}} = W$

7.3 Corollary

If (W, J) is a vector space with a complex structure, then dim W is even. Assume that if it's even, then it's possible to find a basis on W such that J is represented by

$$\begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$$

Consider a orthonormal basis on $H\{v_1, \dots, v_n\}$. $G_h: \mathbb{C}^n \to C^n$ is the Gram matrix of h with respect to $\{v_1, \dots, v_n\}$

$$G_h = B_i C$$

Now

$$G_{\mathbb{R}} = \begin{pmatrix} B & -C \\ C & B \end{pmatrix}$$

Then $G_{\mathbb{R}}$ defines an inner product and $(H_{\mathbb{R}}, \langle , \rangle)$ is Euclidean.

7.4 Notation

Now fix a inner product space. Then

$$h(x,y) = a(x,y) + ib(x,y)$$

when $a, b: V \times V \to \mathbb{R}$

7.5 Prop

In the above notation the following structure holds:

1 a(x,y) and b(x,y) are inner products on $V_{\mathbb{R}}$, with a symmetric and b skew-symmetric. In addition:

$$a(ix, iy) = a(x, y)$$
 $b(ix, iy) = b(x, y)$

In other word a,b are invariant by the multiplication by i Invariance w.r.t. the complex structure of $H_{\mathbb{R}}$

2 The following relations hold.

$$a(x,y) = b(ix,y)$$
 $b(x,y) = -a(ix,y)$

3 Any pair of *J*-invariant bilinear forms on $V_{\mathbb{R}}$ $a,b:V\times V\to\mathbb{R}$ that are symmetric and symplectic, respectively and s.t. (2) is satisfied. Define an hermitian inner product

$$h(x,y) := a(x,y) + ib(x,y)$$

Moreover h is positive define iff a is positive define.

7.6 Complex Cauchy-Schwartz inequality

(H,h) is a unitary space with finite dim. Then the inequality

$$|h(x,y)| \le ||x|| \, ||y||$$

holds iff x and y are propositional (x = ty)

41

7.7 Corollary:Complex triangle inequality

$$||x + y|| \le ||x|| + ||y||$$

7.8 Def:Angle for unitary space

For

$$0 \le \frac{|h(x,y)|}{\|x\| \cdot \|y\|}$$

 $\exists ! \phi \in [0, \frac{\pi}{2}]$

$$\cos \phi = \frac{|h(x,y)|}{\|x\| \cdot \|y\|}$$

The physical application is that ϕ can be considered as probability.

7.9 Prop

Let (V,g) be an inner product space with a non-degenerate inner product hermitian or real symm and $f:V\to V$ be a linear mapping. Then the following statements are equivalent:

- 0 f is isometry
- 1 $g(f(x), f(x)) = g(x, x) \ \forall x \in V$
- 2 Let $\{v_1, \dots, v_n\}$ be a basis for V and let G be a Gram matrix of g w.r.t. such basis. If A is the matrix of f w.r.t. $\{v_1, \dots, v_n\}$, then

$$A^TGA = G$$
 or $A^TG\overline{A} = G$

- $3\ f$ transforms orthonormal basis into orthonormal basis
- 4 If the signature of g is (p,q) ($\mathfrak{r}_0=0$), then the matrix of f w.r.t. any orthonormal basis $\{v_1,\cdots,v_p,v_{p+1},\cdots,v_{p+q}\}$ where

$$(v_i, v_i) = \begin{cases} 1 & \text{if } i \le p \\ -1 & \text{if } p < i \le p + q \end{cases}$$

satisfies the following property:

symm case

$$A^T \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix} A = \begin{pmatrix} I_p & 0 \\ 0 & I_q \end{pmatrix}$$

hermitian case

$$A^T \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix} \overline{A} = \begin{pmatrix} I_p & 0 \\ 0 & I_q \end{pmatrix}$$

Special operators

8.1 Def

 (E,\langle,\rangle) is a Euclidean space, then an isometry $f:E\to E$ is called an **orthogonal operator**

(H,h) a unitary space, then an isometry $f:H\to H$ is said a **unitary operator**

8.2 Corollary

Orthogonal and unitary operators have the following properties: w.r.t. an (all) orthonormal basis, they are represented by a matrix U

$$UU^T = I_n \text{ or } UU^{\dagger} = I_n$$

8.3 Def: orthogonal matrices

$$O(n) := \{ A \in GL_n(\mathbb{R}) \mid AA^T = I_n \}$$

8.4 Def: unitary matrices

$$U(n) := \{ A \in GL_n(\mathbb{C}) \mid AA^{\dagger} = I_n \}$$

Remark

By the corollary 8.2, we have

- O(n) is the set of orthogonal operators of $(\mathbb{R}^n, \langle , \rangle)$
- U(n) is the set of unitary operators of $(\mathbb{C}^n, \langle , \rangle)$

Remark

$$O(n)$$
 isometry $\subseteq GL_n(\mathbb{R}) \subseteq M_{n,n}(\mathbb{R})$ endomorphism

Take
$$T \in O(n), TT^T = I_n$$

$$(\det T)^2 = 1 \implies \det T = \pm 1$$

8.5 Notation

$$SL_n(\mathbb{R}) := \{ A \in GL_n(\mathbb{R}) \mid \det A = 1 \}$$

$$SO(n) := \{ A \in O_n \mid \det A = 1 \}$$

Classification of operators

$$U(1) = \{ a \in \mathbb{C} \mid a\overline{a} = 1 \} = \{ e^{i\phi} \mid \phi \in \mathbb{R} \}$$
$$O(1) = \{ 1, -1 \} = U(1) \cap \mathbb{R}$$

Let's study O(2) and classify all its elements

 $O(n)/SO(n) = \{\pm 1\}$ SO(n) is a normal subgroup of O(n) of index 2, namely

$$\#(O(n)/SO(n)) = 2$$

Take $T \in O(2)$, we have two cases: $\begin{cases} T \in SO(2) \\ T \in O(2) \setminus SO(2) \end{cases}$

9.0.1 $T \in SO(2)$

Assume
$$T = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, and $TT^T = Id_2$

$$\begin{cases} \det T = ad - bc = 1 \\ a^2 + b^2 = 1 \\ c^2 + d^2 = 1 \\ ac + bd = 0 \end{cases}$$

This implies $\exists \alpha$ unique op to add by $2k\pi$ s.t.

$$a = \cos \alpha$$
 $b = \sin \alpha$

We have shown that

$$SO(2) = \left\{ \left. \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \right| \alpha \in [0, 2\pi[\right\}$$

Note that T doesn't have eigenvalues for $\alpha \neq 0, \pi$

9.0.2
$$T \in O(2) \setminus SO(2)$$

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 is the reflection with respect to the line $y = 0$

$$TA \in SO(2)$$

since

$$\det(TA) = \det T \cdot \det A = 1$$

By the previous reasoning,

$$T = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ -\sin \alpha & -\cos \alpha \end{pmatrix}$$

The set $O(2) \setminus SO(2)$ represents reflections.

Consider the mapping

$$U(1) \stackrel{\cong}{\to} SO(2)$$
 $e^{i\phi} \mapsto \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix}$

$$O(2) \cong U(1) \cup (O(2) \setminus SO(2))$$

Remark

Reflections are diagonalizable with eigenvalues $\{\pm 1\}$ and the corresponding eigenvectors are orthogonal.

9.1 Theorem

- 1 Let (H,h) be a unitary space. A linear mapping $f:H\to H$ is unitary iff it's diagonalizable in an orthonormal basis and with eigenvalues in S^1
- Let (E, \langle, \rangle) be a Euclidean space. A linear mapping $f: E \to E$ is orthogonal iff in some orthonormal basis f is represented by matrix:

$$\begin{pmatrix} R(\phi_1) & & & & & \\ & \ddots & & & & \\ & & R(\phi_n) & & & \\ & & Id_1 & & \\ & & & \ddots & \\ & & & Id_m \end{pmatrix}$$

where

$$R(\phi_i) = \begin{pmatrix} \cos \phi_i & -\sin \phi_i \\ \sin \phi_i & \cos \phi_i \end{pmatrix} \quad \phi_i \in [0, 2\pi[$$

3 The eigenvectors of orthogonal/unitary operators corresponding to different eigenvalues are orthogonal.

Fourier Coefficient

Goal We have an infinite dim vector space (usually a space of function) we want to express the elements as combinations of "orthogonal" vectors. (w.r.t. some nice inner product)

10.1 Def: Orthogonal and Orthonormal System

V is a vector space over \mathbb{R} or \mathbb{C} , \langle , \rangle is an inner product which either symm or hermitian.. Moreover, \langle , \rangle is non-degenerate and positive define.

A set of vectors $\{l_k \mid k \in I\}$ (where I be the set of indexes) is said to be an orthogonal system if

$$\langle l_i, l_k \rangle$$
 iff $j \neq k$

Moreover $\{l_k\}$ is an orthonormal system if

$$\langle l_j, l_k \rangle = \delta_{jk}$$

10.2 Prop

Let $\{l_k\}$ be an orthogonal system, then $\{l_k\}$ is a set of non-zero linearly independent vectors.

10.3 Prop

The inner product \langle , \rangle is continuous (w.r.t. the Euclidean topology in the co-domain, and the product topology on the domain, where on V we put the topology induced by \langle , \rangle)

If $\{f_k\}$ is orthogonal system and $x \in V = \sum_{k=1}^{\infty} x_k l_k$, then $\forall y \in V$

$$\langle x, y \rangle = \sum_{k=1}^{\infty} \langle x_k, y \rangle$$

If $\{f_k\}$ is orthonormal system and $x = \sum_{k=1}^{\infty} x_k l_k$, $y = \sum_{k=1}^{\infty} y_k l_k$, then

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k \overline{y}_k$$

or

$$\langle x, y \rangle = \sum_{k=1}^{\infty} x_k y_k$$

10.4 Corollary: Pythagoras

1 If $\{v_k\}$ is an orthogonal system and $v = \sum_{k=1}^{\infty} v_k$, then

$$\left\|v\right\|^2 = \sum_{i} \left|v_i\right|^2$$

2 If $\{l_k\}$ is an orthonormal system and $x = \sum_{k=1}^{\infty} x_k l_k$, then

$$||x||^2 = \sum_{i} |x_i|^2$$

10.5 Def: Fourier coefficient

Let $\{l_k\}$ be an orthogonal system in V. Assume that $x = \sum_{k=1}^{\infty} x_k l_k$, then

$$x_k := \frac{\langle x, l_k \rangle}{\langle l_k, l_k \rangle}$$

is called a Fourier coefficient of x in $\{l_k\}$

Consider $x \in V$, then the Fourier series of x in $\{l_k\}$ is

$$x \sim \sum_{k=1}^{\infty} x_k l_k$$

We don't know whether it converges to x yet.

10.6 Main example

$$V = L^2(X, \mathbb{K}) / \sim$$

where $X \in \mathbb{K}^n$ a measurable subset (w.r.t. λ^n), $\mathbb{K} = \mathbb{R}$ or $= \mathbb{C}$

$$L^{2}(X, \mathbb{K}) := \{ f : X \to \mathbb{K} \mid \int_{X} |f|^{2} dx < +\infty \}$$

We define a equivalence relation on $L^2(X, \mathbb{K})$ by

$$f \sim g \text{ iff } \lambda^n \left(\left\{ x \in X \mid f(x) \neq g(x) \right\} \right) = 0$$

we identify two functions equal if they're equal on almost everywhere (only diff on set that measures zero) From now on, we write elements in V simply by representatives.

We define an inner product on V:

$$\langle , \rangle : V \times V \to \mathbb{K}$$

$$(f,g) \mapsto \int_X f\overline{g} d\lambda^n$$

(Well defined w.r.t. \sim ?) Check that is $\int_X f \overline{g} d\lambda^n$ well defined? Recall that

$$\left\| f(x)\overline{g(x)} \right\| = \left\| f(x) \right\| \left\| g(x) \right\|$$

Then inequality:

$$||f(x)|| ||g(x)|| \le \frac{1}{2} (||f(x)||^2 + ||g(x)||^2)$$

 $\Leftrightarrow 0 \le (||f(x)|| + ||g(x)||)^2$

We always have $||f(x)|| ||g(x)|| \le \frac{1}{2}(||f(x)||^2 + ||g(x)||^2)$ It follows that $\langle f, g \rangle$ is well-defined. It easy to show that \langle , \rangle is hermitian. The only non-trivial thing is:

$$0 = \langle f, f \rangle \Leftrightarrow f(x) = 0$$
 almost everywhere

This means that if we don't use \sim that we cannot say \langle , \rangle is positive defined. Consider the following Integral:

$$\int_{\pi}^{\pi} e^{imx} e^{-inx} dx = \begin{cases} 0 & \text{if } m \neq n \\ 2\pi & \text{if } m = n \end{cases}$$

So $\{x\mapsto e^{imx}\mid m\in\mathbb{Z}\}$ is an orthogonal system for $V=L^2([-\pi,\pi],\mathbb{C})/\sim$. To make it orthonormal, consider

$$\left\{ \left. \frac{1}{\sqrt{2\pi}} e^{imx} \right| n \in \mathbb{Z} \right\}$$

If you want to replace $[-\pi,\pi]$ by [-a,a], consider:

$$\left\{ \left. \frac{1}{\sqrt{2\pi}} e^{\frac{imx}{a}} \right| n \in \mathbb{Z} \right\}$$

This is an orthonormal system for $L^2([-a,a],\mathbb{C})/\sim$ In the real case, consider the following integrals:

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \begin{cases} 0 & \text{if } m \neq n \\ \pi & \text{if } m = n \neq 0 \\ 2\pi & \text{if } m = n = 0 \end{cases}$$

$$\int_{-\pi}^{\pi} \cos(nx) \sin(nx) dx = 0$$

$$\int_{-\pi}^{\pi} \sin(nx) \sin(mx) dx = \begin{cases} 0 & \text{if } m \neq n \text{ or } mn = 0\\ \pi & \text{if } m = n \neq 0 \end{cases}$$

If follows that $\{1,\cos(nx),\sin(mx)\mid (m,n)\in\mathbb{N}^2\}$ is an orthogonal system for $L^2([-\pi,\pi],\mathbb{R})$

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k(f) \sin(kx)$$

$$\begin{cases} a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) dx \\ b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx \end{cases}$$

For instance if f = Id then $a_k = 0, b_k = (-1)^{k+1} \frac{2}{k}$

Convergence

Always assume that the orthogonal system countable this chapter

11.1 Prop

Take $x \in V$ and let

$$\overline{x} = \sum_{k=1}^{\infty} \frac{\langle x, l_k \rangle}{\langle l_x, l_x \rangle} l_k$$

Then if we write $x = \overline{x} + h$ then h is orthogonal to \overline{x} and h is orthogonal to the topological closure of $\langle \{l_k\} \rangle$

Remark

By Pythagoras Theorem 10.4, since $x = \overline{x} + h$

$$||x||^2 = ||\overline{x}||^2 + ||h||^2 \ge ||\overline{x}||^2$$

If we write that inequality with respect to the Fourier coefficients, we get Bessel's inequality

Note that

$$||x||^2 = \sum_{k=1}^{\infty} \left| \frac{\langle x, l_m \rangle}{\langle l_k, l_k \rangle} \right| \langle l_k, l_k \rangle = \sum_{k=1}^{\infty} \frac{|\langle x, l_k \rangle|}{\langle l_k, l_k \rangle}$$

$$\sum_{k}^{\infty} \frac{\langle x, l_k \rangle}{\langle l_k, l_k \rangle} \le \|x\|^2 \quad \text{(Bessel's inequality)}$$

So far we have assumed that the Fourier series converges to prove Bessel's inequality. But we DON'T NEED this assumption

11.2 Theorem

Assume $\{l_k\}$ is orthonormal. Let $x_k=\langle x,l_k\rangle.$ If V is complete. then $\sum_k x_k l_k$ converges.

Remark

In the proof we assumed $\{l_k\}$ orthogonal. But this is not essential. We have studied the existence of the limit x. What about the relation between \overline{x} and x

11.3 Prop

Let $\{l_k\}$ be an orthogonal system. Take $x \in V$ and assume that

$$V \ni \overline{x} = \sum_{k=1}^{\infty} \frac{\langle x, l_k \rangle \langle l_x, l_x \rangle}{l}_k$$

Then for any $y = \sum_{k} d_k l_k \ (d_k \in \mathbb{F})$ it holds that:

$$||x - \overline{x}|| \le ||x - y||$$

The equality is true iff $\overline{x} = y$

11.4 Def

A family of vectors $\mathcal{F} = \{x_{\alpha} \mid \alpha \in A\}$ in a normed vector space V is **complete** in a subset $E \subseteq V$ if every vector $x \in E$ can be approximated with arbitrary accuracy by a **finite** linear combination of elements in \mathcal{F}

Another statement

Let $L = \{\mathcal{F}\}\$, then \mathcal{F} is complete in E if $E \subseteq \overline{L}$

11.5 Weierstrass Approximation Theorem

Let $f \in \mathcal{C}([a,b])$. For any $\epsilon > 0$, there exists a polynomial $p \in \mathbb{F}[x]$ such that for any $x \in [a,b]$, we have

$$|f(x) - p(x)| < \epsilon$$

In fact

$$||f - p|| = \sqrt{\int_a^b |f - p|^2 d\lambda} < \epsilon \sqrt{b - a}$$

11.6. PROP 53

11.6 Prop

Let V be a complete vector space over \mathbb{F} with inner product \langle,\rangle hermitian or real symm, and positive define and non-degenerate.

Moreover, $\{l_k\}$ is an orthogonal system at most countable. Then the following conditions are equivalent:

- 1 $\{l_k\}$ is complete in $E \subseteq V$
- 2 For any $x \in E$, we have $x = \sum_{k} \frac{|\langle x, l_k \rangle|}{\langle l_k, l_k \rangle} l_k$
- 3 Any vector $x \in E$ satisfies

$$||x||^2 = \sum_{k} \frac{|\langle x, l_k \rangle|^2}{\langle l_k, l_k \rangle}$$

11.7 Def: Hamal basis

A countable family of vectors $\{b_k\}$ is a **Hamal basis** of V if any $v \in V$ there exists a unique sequence $\{\alpha_k\}$ in \mathbb{K} with $\alpha_k = 0$ for all but finitely many k s.t.

$$v = \sum_{k} \alpha_k b_k$$

(In this def we don't need to use the topological properties of V)

11.8 Def: Schauder basis

A countable family of vectors $\{b_k\}$ is a **Schauder basis** for V if for any $v \in V$ there exists a unique sequence $\{\alpha_k\}$ such that

$$v = \sum_{k} a_k b_k$$
 (as convergent series)

A Hamal basis is a Schauder basis (? to prove an element in basis can't be represented by others). In particular, a Schauder basis is a complete family of vectors (in E = V)

In pervious, we've proved that if $\{l_k\}$ is an orthogonal complete system (in E = V) with V complete, then any $x \in V$ can be written as

$$x = \sum_{k} \alpha_k l_k$$

when α_k are the Fourier coefficients.

In general it's FALSE that a complete family $\{b_k\}$ is a Schauder $(x \in \overline{\langle \{b_k\}\rangle})$

11.9 Important Result

1

 $L^2([-\pi,\pi[,\mathbb{K})$ is complete as topological vector space.

2

 $\{1, \cos kx, \sin kx \mid k \in \mathbb{N}_{\geq 1}\}$ is a complete family.

11.10 Def

 $f: X \setminus \{x_0\} \to [0, +\infty[$ we say that f is **unbounded** at x_0 if $\forall U \ni x_0, \ M > 0$ $\exists x \in U \text{ s.t. } f(x) > M$

11.11 Def: extend by periodicity

Let $f: [-\pi, \pi[\to \mathbb{R} \text{ extend this func by periodicity.}$

$$\tilde{f} = f(x - 2k\pi) \quad k \in \mathbb{Z}$$

11.12 Theorem

 $L^p(X,\mu)$ is complete w.r.t the topology induced by $\|\cdot\|_p$

11.13 Def: Dirichlet kernel

$$D_n(x) := \sum_{k=-n}^n e^{iku} = \frac{\sin(n + \frac{u}{2})}{\sin\frac{u}{2}}$$

this is called **Dirichlet kernel**, which has the prop

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(u) du = \frac{1}{\pi} \int_{0}^{\pi} D_n(u) du = 1$$

Back to T_n putting u = x - t

$$T_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - u) D_n(u) du$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - u) \frac{\sin(n + \frac{u}{2})}{\sin\frac{u}{2}} du$$

Now use that D_n is an even function

$$T_n(x) = \frac{1}{2\pi} \int_0^{\pi} \left(f(x-u) + f(x+u) \right) D_n(u) du = \frac{1}{2\pi} \int_0^{\pi} \left(f(x-u) + f(x+u) \right) \frac{\sin(n + \frac{u}{2})}{\sin\frac{u}{2}} du$$

11.14 Riemann-Lebesgue's Lemma

Let $f:[a,b]\to\mathbb{R}$ be an integrable function. Then

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x)e^{i\lambda x} dx = 0$$

11.15 Corollary

$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \cos \lambda x dx = 0$$
$$\lim_{\lambda \to +\infty} \int_{a}^{b} f(x) \sin \lambda x dx = 0$$

11.16 Localization Principle

Let $f, g \in L^2([-\pi, \pi], \mathbb{K})$. If f, g coincide in a neighborhood of $x_0 \in]-\pi, \pi[$ (f=g), the Fourier series

$$f \sim \sum_{-\infty}^{+\infty} c_k(f) e^{i\lambda x}$$
 $g \sim \sum_{-\infty}^{+\infty} c_k(g) e^{i\lambda x}$

either both diverges or both converges. Moreover if they converges ar x_0 , then their limits are the same (NOT to be $f(x_0) = g(x_0)$)

11.17 Def: Dini's Condition

Let $U^0_x=[-\delta,x[\cup]x,\delta[$ and $f:U^0_x\to\mathbb{C}.$ We say that f satisfies **Dini's** Condition at x if

- $f(x_{-})$ and $f(x_{+})$ exists and finite
- $\exists > 0$ s.t.

$$\int_0^{\epsilon} \left| \frac{(f(x-t) - f(x_-)) + (f(x+t) - f(x_+))}{t} \right| dt < +\infty$$

11.18 Theorem: pointwise convergence of Fourier series

Let $f: \mathbb{R} \to \mathbb{C}$ be a periodic function of period 2π , such that f is integrable in $[-\pi, \pi]$. If f satisfies the Dini's condition at $x \in \mathbb{R}$, then its Fourier series converges at x and

$$\sum_{k=0}^{+\infty} c_k(f)e^{i\lambda x} = \frac{f(x_-) + f(x_+)}{2}$$

11.19 Lemma

$$\sum_{k=0}^{n} \sin(k + \frac{1}{2})t = \frac{\sin^2(\frac{n+1}{2})}{\sin\frac{t}{2}}$$
$$F_n(t) = \frac{\sin^2(\frac{n+1}{2})t}{(n+1)\sin^2(\frac{t}{2})}$$

What happens when $t = 2k\pi$? Use Tayor's expansion:

$$F_n(t) = \frac{\left(\frac{(n+1)}{2}t + o(t)\right)^2}{(n+1)\left(\frac{t}{2} + o(t)\right)^2} \quad t \to 0$$
$$F_n(t) = n+1$$

Sso we can extend F_n at all points $2l\pi$ by putting $F_n(2k\pi) = n+1$

11.20 Def: approximated identity(delta function)

A family of functions $\{K_n\}_{n\in\mathbb{N}}$ with $K_n:\mathbb{R}\to\mathbb{R}$ is called a **approximated** identify if

- $\frac{1}{2\pi} \int_{-\infty}^{\infty} K_n(t) dt = 1 \quad \forall n \ge 0$
- $K_n(t) \ge 0, \forall t \in \mathbb{R}, n \ge 0$
- For any $\delta > 0$

$$\lim_{n \to +\infty} \int_{|t| > \delta} K_n(t) dt = 0$$

11.21 Prop

Consider

$$\delta_n(x) = \begin{cases} \frac{1}{2\pi} F_n(x) & \text{if } |x| \le \pi \\ 0 & \text{otherwise} \end{cases}$$

Then $\{\delta_n\}$ is an approximated identify

11.22 Fejer Theorem

Let $f: \mathbb{R} \to \mathbb{C}$ continuous and with period of 2π and integrable in $[-\pi, \pi]$. Then $\sigma_{f,n}$ converges uniformly to f

11.23 Weierstrass approximation

Let $f: [-\pi, \pi] \to \mathbb{C}$ be a continuous functions s.t. $f(-\pi) = f(\pi)$. Then such function can be approximated uniformly by σ_n arbitrarily