SISTEMI OPERATIVI e LABORATORIO DI SISTEMI OPERATIVI (A.A. 12-13) – 11 SETTEMBRE 2013

IMPORTANTE:

- Fare il login sui sistemi in modalità Linux usando il proprio username e password, attivare syncexam.sh e passare in modalità testuale.
- 2) I file prodotti devono essere collocati in un **sottodirettorio** (che deve essere nella directory studente_XXX) che deve essere creato e avere nome **ESAME11Set13_1_01.** FARE ATTENZIONE AL NOME DEL DIRETTORIO, in particolare alle maiuscole e ai trattini indicati. Verrà penalizzata l'assenza del direttorio con il nome indicato e/o l'assenza dei file nel direttorio specificato, al momento della copia automatica del direttorio e dei file. **ALLA SCADENZA DEL TEMPO A DISPOSIZIONE VERRÀ INFATTI ATTIVATA UNA PROCEDURA AUTOMATICA DI COPIA, PER OGNI STUDENTE DEL TURNO, DEI FILE CONTENUTI NEL DIRETTORIO SPECIFICATO.**
- 3) Il tempo a disposizione per la prova è di **75 MINUTI** per lo svolgimento della sola parte C e di **120 MINUTI** per lo svolgimento di tutto il compito.
- 4) Non è ammesso **nessun tipo di scambio di informazioni** né verbale né elettronico, pena la invalidazione della verifica.
- 5) L'assenza di commenti significativi verrà penalizzata.
- 6) AL TERMINE DELLA PROVA È INDISPENSABILE CONSEGNARE IL TESTO DEL COMPITO (ANCHE IN CASO CHE UNO STUDENTE SI RITIRI): IN CASO CONTRARIO, NON POTRÀ ESSERE EFFETTUATA LA CORREZIONE DEL COMPITO MANCANDO IL TESTO DI RIFERIMENTO.

Esercizio

Si realizzi un programma concorrente per UNIX che deve avere una parte in Bourne Shell e una parte in C.

La <u>parte in Shell</u> deve prevedere **due** parametri: il primo deve essere il nome assoluto di un direttorio che identifica una gerarchia (**G**) all'interno del file system e il secondo deve essere considerato un numero intero strettamente positivo (**K**). Il programma deve cercare nella gerarchia **G** specificata tutti i direttori che contengono almeno **un** file la cui lunghezza in byte sia esattamente uguale a **K**: si riporti il nome assoluto di tali direttori sullo standard output. <u>Al termine dell'intera esplorazione ricorsiva di G</u>, si deve verificare che il numero globale di file trovati sia <u>pari</u> e, solo in tale caso, si deve invocare la parte in C passando come parametri i nomi assoluti dei file trovati **F0**, **F1**, ... **FN-1** (**con N** appunto **pari**).

La <u>parte in C</u> accetta un numero variabile pari N di parametri maggiore o uguale a 2 (*da controllare che N sia pari e sia* ≥ 2) che rappresentano i nomi assoluti di file F0, F1, ... FN-1 (*tutti con uguale lunghezza*, *che non deve essere controllata*). Il processo padre deve generare N/2 processi figli (P0 ... PN/2-1) e ognuno dei processi figli deve generare un processo nipote (PP0 ... PPN/2-1): i processi figli Pj sono associati ai file Fj mentre i processi nipoti PPj ai file Fj+N/2 (con j che, in entrambi i casi, varia da 0 a N/2). Ogni processo figlio Pj deve, prima di creare il proprio nipote, creare un file FOut il cui nome deve risultare dalla concatenazione della stringa "*merge*" e della stringa corrispondente a j (numero d'ordine di creazione del processo figlio). Una volta creato il processo nipote, ogni figlio e ogni nipote eseguono concorrentemente; in particolare, ognuno dei due 'tipi' di processi deve leggere, dal suo file associato, un carattere alla volta e quindi lo deve scrivere sul file FOut: la scrittura deve avvenire in modo strettamente alternato, iniziando dal figlio Pj. In altre parole, il figlio Pj legge il primo carattere dal file Fj e lo scrive sul file FOut e quindi deve comunicare l'avvenuta scrittura sul file al nipote PPj, quindi il processo PPj che ha concorrentemente letto il primo carattere dal file Fj+N/2 lo può scrivere sul file FOut e può comunicare al figlio l'avvenuta scrittura; tale schema di comunicazione/sincronizzazione¹ deve continuare per tutti i caratteri dei due file associati.

Al termine, ogni processo nipote **PPj** deve ritornare al figlio il valore dell'ultimo carattere scritto nel file **FOut** e, a sua volta, il processo figlio lo deve ritornare al padre. Il padre, dopo che i figli sono terminati, deve stampare, su standard output, i PID di ogni figlio con il corrispondente valore ritornato.

¹ Se si vuole per la sincronizzazione si possono usare i segnali.