

EVALUACIÓN MÓDULO I — SIMULACIÓN HÁPTICA TENDENCIAS EN ROBÓTICA I

LEER ANTES DE EMPEZAR:

- La entrega se realiza a través de la tarea habilitada en la web de la asignatura (https://ariadna.unileon.es).
- Deberás subir un **único fichero comprimido** (en formato .zip, .7z ó .tar.gz) que contenga todos los ficheros utilizados para la realización del examen (.x3d), así como los recursos proporcionados para la prueba (directorio assets).

DESCRIPCIÓN

Recrea la siguiente escena virtual, siguiendo las indicaciones de cada uno de los apartados descritos a continuación.

1. IMPORTACIÓN DE ESCENAS

Crea una nueva escena llamada *Main.x3d* e importa, manteniendo sus rutas relativas, los tres modelos incluidos en el fichero *recursos.zip*. Luego, aplica a cada modelo las siguientes transformaciones geométricas:

- Modelo 1 (assets/models/Blathers.x3d)
 - Escala: (0.1, 0.1, 0.1)
 - Posición: (-4, 0, 0)
 - Orientación: 45 grados respecto al eje Y
- Modelo 2 (assets/models/Gullivarrr.x3d)
 - Escala: (0.1, 0.1, 0.1)
 - Posición: (0, 0, 0)
 - · Orientación: por defecto
- Modelo 3 (assets/models/Pascal.x3d)
 - Escala: (0.1, 0.1, 0.1)
 - Posición: (4, 0, 0)
 - Orientación: 315 grados respecto al eje Y

DOCUMENTACIÓN X3D

- Nodo Inline
- Nodo Transform

2. CREACIÓN DE OBJETOS

Añade dos objetos con las siguientes características:

- Objeto 1
 - Transformaciones geométricas
 - Posición: (0, 0, 0)
 - o Escala: (4, 1, 2)
 - · Geometría
 - Tipo: Cilindro
 - \circ Dimensiones: 1.5 unidades (radio de las bases) \times 0.05 unidades (altura)

- · Apariencia
 - Material
 - Color propio del objeto: blanco
 - o Textura
 - Ruta: assets/textures/ac_grass.png
- Objeto 2
 - Transformaciones geométricas
 - o Posición: (0, 1, -4)
 - Geometría
 - o Tipo: Rectángulo
 - Dimensiones: 4 unidades (base) × 2 unidades (altura)
 - Apariencia
 - Material
 - Color propio de emisión: negro
 - Textura
 - Ruta: assets/textures/ac_logo.png

DOCUMENTACIÓN X3D

- Nodo Shape
- Nodos de geometría planar
- Nodos de geometría espacial
- Nodo Appearance
- Nodo Material
- Nodo ImageTexture

3. ILUMINACIÓN

Añade a la escena los siguientes tipos de luz junto con sus características (sin aplicar transformaciones geométricas):

- Luz de ambiente
 - Dirección: (0, -1, -1)
 - · Color: blanco

Luz focal 1

• Dirección: (-1, -1, 0)

Posición: (-4, 5, 0)

· Color: verde

■ Luz focal 2

• Dirección: (0, -1, 0)

• Posición: (0, 5, 0)

· Color: rojo

■ Luz focal 3

• Dirección: (1, -1, 0)

• Posición: (4, 5, 0)

· Color: azul

DOCUMENTACIÓN X3D

- Nodo DirectionalLight
- Nodo SpotLight

4. CÁMARA

Añade una cámara con las siguientes características y sin aplicar transformaciones geométricas:

■ Posición: (0, 5, 9)

Orientación: 330 grados con respecto al eje X

DOCUMENTACIÓN X3D

■ Nodo Viewpoint

5. ANIMACIÓN

Haz que el Objeto 2 (rectángulo) creado en el Apartado 2, se pueda mover de izquierda a derecha y de arriba hacia abajo entre las posiciones (-4, 0.5, -4) y (4, 0.5, -4); partiendo de su posición inicial. El movimiento debe producirse en un intervalo de 5 segundos de forma continua, aplicando la siguiente secuencia de *key frames*:

Key frame 1

- · Instante en el intervalo: 0
- Posición: (0, 1, -4)

Key frame 2

- Instante en el intervalo: 0.25
- Posición: (4, 0.5, -4)

Key frame 3

- Instante en el intervalo: 0.5
- Posición: (0, 1, -4)

Key frame 4

- Instante en el intervalo: 0.75
- Posición: (-4, 0.5, -4)

Key frame 5

- Instante en el intervalo: 1
- Posición: (0, 1, -4)

DOCUMENTACIÓN X3D

- Campos DEF/USE
- Nodo TimeSensor
- Nodo PositionInterpolator
- Mecanismo ROUTE

6. CONECTAR DISPOSITIVO HÁPTICO

Crea un nuevo fichero llamado *HapticSettings.x3d* que permita utilizar el dispositivo háptico conectado al PC del laboratorio. Para ello, define la escena asociada a dicho fichero con las siguientes características:

- Número de dispositivos hápticos a utilizar: 1
- Dispositivo háptico 1
 - Tipo: PhantomDevice
 - Dimensiones del espacio de trabajo virtual: (100 ancho \times 100 alto \times 50 profundo) unidades
 - Avatar:
 - o Geometría
 - ♦ Tipo: Cone
 - ♦ Dimensiones: 0.25 unidades (radio de la base) × 0.5 unidades (altura)
 - o Apariencia
 - Color propio: amarillo
 - Algoritmo de renderizado háptico: OpenHapticsRenderer

Luego, importa dichero fichero a la escena principal sobre la que has estado trabajando anteriormente.

DOCUMENTACIÓN H3D

- Nodo DeviceInfo
- Nodos H3DHapticsDevice
- Nodo H3DHapticsRendererNode

7. RETROALIMENTACIÓN DE FUERZAS

Asigna superficies hápticas a los siguientes objetos existentes en la escena:

- <u>Modelos 1</u> (assets/models/Blathers.x3d), <u>2</u> (assets/models/Gullivarrr.x3d) y <u>3</u> (assets/models/Pascal.x3d)
 - Tipo: FrictionalSurface
 - Rigidez: 0.5
 - · Amortiguamiento: 1

Coeficiente de fricción estática: 0

Coeficiente de fricción dinámica: 0

DOCUMENTACIÓN H3D

■ Nodo FrictionalSurface

8. TEXTURAS HÁPTICAS

El nodo DepthMapSurface permite aplicar una textura en blanco y negro o en escala de grises (mapa de profundidad) para definir la superficie háptica de un objeto.

NODO	САМРО	TIPO DE DATO	VALOR	DESCRIPCIÓN
DepthMapSurface	depthMap	SFNode	[X3DTexture2DNode]	Mapa de profundidad*
	stiffness	SFFloat	[0,1]	Rigidez
	damping	SFFloat	[0,1]	Amortiguamiento
	staticFriction	SFFloat	[0,1]	Fricción estática
	dynamicFriction	SFFloat	[0,1]	Fricción dinámica

^{*} Este campo debe indicarse utilizando el campo containerField del propio nodo; de forma análoga a como se define el campo *stylus* en un nodo H3DHapticsDevice. Esto se hace para distinguir la existencia de otras texturas referentes al aspecto visual del objeto.

Asignar una superficie háptica al siguiente objeto dentro de la escena:

Objeto 1 (cilindro)

• Tipo: DepthMapSurface

Mapa de profundidad: assets/textures/ac_grass_depthmap.png

· Rigidez: 1

Amortiguamiento: 0

· Coeficiente de fricción estática: 0

· Coeficiente de fricción dinámica: 0

DOCUMENTACIÓN H3D

■ Nodo DepthMapSurface