Si ABC est un triangle RECTANGLE en A alors:

le côté opposé à l'angle droit, c'est à dire [BC], est appelé l'hypoténuse de ce triangle.

* le côté [AB] est appelé côté adjacent à l'angle \hat{B} ou côté opposé à l'angle \hat{C} .

❖ le côté [AC] est appelé côté adjacent à l'angle \hat{C} ou côté opposé à l'angle \hat{B} .

Dans un triangle RECTANGLE:

- ① $0 \le \cos x \le 1$ et $0 \le \sin x \le 1$ pour tout angle aigu x.
- ② les deux angles aigus et complémentaires x et y vérifient : $\cos x = \sin y$ et $\sin x = \cos y$.
- ③ $\tan x = \frac{\sin x}{\cos x}$ pour tout angle aigu x.

Vocabulaire

Definitions

TRIGONOMÉTRIE DU TRIANGLE RECTANGLE

ikies

Utilité

Tableau

Si ABC est un triangle RECTANGLE en A alors :

$$sin \widehat{B} = \frac{c \hat{o} t \hat{e} \ oppos \hat{e} \ \hat{a} \ \hat{B}}{hypot \hat{e} nuse} = \frac{\overline{AC}}{\overline{BC}}$$

$$\cos \widehat{B} = \frac{c \hat{o} t \hat{e} \ adjacent \hat{a} \hat{B}}{hypot \hat{e} nuse} = \frac{\overline{AB}}{\overline{BC}}$$

$$\tan \widehat{B} = \frac{c\hat{o}t\acute{e} \ oppos\acute{e} \ \grave{a} \ \widehat{B}}{c\hat{o}t\acute{e} \ adjacent \ \grave{a} \ \widehat{B}} = \frac{\overline{AC}}{\overline{AB}}$$

ASTUCE: Pour retenir facilement ces formules.

pensez à: SOH CAH TOA!

Pour calculer dans un triangle rectangle:

la longueur d'un côté connaissant l'amplitude d'un angle aigu et la longueur d'un côté.

$$\tan 50^{\circ} = \frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AB}}{4}$$

$$\overline{AB} = 4 \cdot \tan 50^{\circ}$$

$$\overline{AB} \approx 4.8$$

* l'amplitude d'un angle aigu connaissant les longueurs de 2 côtés.

$$\sin \hat{C} = \frac{\overline{AB}}{\overline{BC}} = \frac{2}{5}$$

$$\hat{C} = \text{shift sin } (2:5)$$

$$\hat{C} = 23.6^{\circ}$$

Tableau des valeurs remarquables

X	0°	30°	45°	60°	90°
sin x	0	1	$\sqrt{2}$	$\sqrt{3}$	1
	$=\frac{\sqrt{0}}{2}$	$=\frac{\overline{2}}{\frac{\sqrt{1}}{2}}$	$=\frac{2}{\sqrt{2}}$	$=\frac{2}{\sqrt{3}}$	$=\frac{\sqrt{4}}{2}$
cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan x	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	n'existe pas