Attention RNNs and Transformers

Attention RNN Introduction

Ref.1: Attention in a sentence

Ref.1: Typical Seq2Seq encoder decoder model

Ref.2: Attention RNN with additive attention

Attention RNN

Encoder and decoder

- Encoder: Bi-Directional RNN/LSTM
 - Input: Source sentence of length N; $X = \{x_1, x_2, \dots x_N\}$
 - Hidden state: $h = [h^{\Leftarrow}; h^{\Rightarrow}]$
- Decoder: RNN/LSTM
 - Output: Target sentence of length M; $Y = \{y_2, y_3, \dots, y_M\}$
 - Input: Context vector and target sentence [C; Y]; $Y' = \{y_1, y_2, \dots y_{M-1}\}$
 - Hidden state: $S = \{s_1, s_2, \dots, s_M\}$

Attention RNN

Algorithm for context computation

- 1. Given the previous decoder state s_{t-1} and encoder hidden state h
 - $score(s_{t-1}, h_i) = v_a^T tanh(W_a[s_{t-1}; h_i]) = e_{ti}$
 - $\bullet v_a$ and W_a are trainable weights
- 2. Compute the alignment α
- 3. Compute the context vector for time step t

$$c_t = \sum_{i=1}^N \alpha_{ti} h_i$$

Attention RNN Attention Matrix

Ref-3: Additive/Bahdanau attention computes an alignment between a source sentence and output word

Self attention

- Transformers built on top of the idea of self attention
 - How each word in a sentence related to each other
 - Self attention matrix is used for:
 - classification
 - autoregressive
 - translation tasks

Ref-4: Self attention matrix

Self attention

 Calculate how one input relate to the other

$$\bullet w'_{ij} = x_i^T x_j$$

•
$$w_{ij} = \frac{exp(w'_{ij})}{\sum_{i} w'_{ij}}$$
 Attention score

Finally calculate the output

$$y_i = \sum_j w_{ij} x_j$$

Transformers Self attention

Reference: https://www.youtube.com/watch?v=KmAISyVvE1Y

Properties

- Simple self attention has no parameters:
 - Only the input embeddings control the self attention
- The self weights (w_{ii}) are the strongest
- ullet A linear operation between X and Y
- Can look far back in the sequence:
 - More computations in RNNs when attending early steps
- A non-sequential model; No information about the sequence order
- Permutation Equivariant: Perm(SA(X)) = SA(Perm(X)); Perm: permutation, SA: Self attention

Self attention sentiment analysis

• Take the following sentence:

This restaurant was not too terrible

Score between not and terrible will contribute positive to the sentiment

Terrible

Reference: https://www.youtube.com/watch?v=KmAISyVvE1Y

Not

Modifications to self attention

- 1. Scaled self attention:
 - ullet When the input dimension is large; $x_i^T x_j$ will be large
 - So scale by dimension size k: $w'_{ij} = \frac{x_i^I x_j}{\sqrt{k}}$
- 2. Key (k) Query (q) and value (v) transformations:
 - The idea comes from information retrieval

Modifications to self attention

ullet Consider the following python dictionary d

$$d = \begin{cases} a : car \\ b : bicycle \\ c : airplane \end{cases}$$
; where a, b, c are the keys and 1,2,3 are the values

When we query the dictionary for a key c, we get a hard value; d['c'] = airplaneWe can write the probability of getting each value as:

$$d = \left\{ \begin{array}{l} a:0\\b:0\\c:1 \end{array} \right\}$$

Now if we multiply the probabilities by a value vector $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} car \\ bicycle \\ airplane \end{bmatrix}$ we get $\begin{bmatrix} 0 \\ 0 \\ airplane \end{bmatrix}$

Modifications to self attention

Taking the same idea of python dictionary (hard); we can retrieve a soft value in attention

$$Output = Softmax \left(\frac{QK^T}{\sqrt{k}}\right)V$$
; Where Q, K and V are the transformed embeddings

where the
$$Softmax\left(\frac{QK^T}{\sqrt{k}}\right)$$
 gives the probabilities

Since we are taking the softmax we get the soft values; e.g $\begin{vmatrix} \frac{1}{6}car \\ \frac{1}{6}bicycle \end{vmatrix}$

$$\frac{1}{6}car$$

$$\frac{1}{6}bicycle$$

$$\frac{2}{3}airplane$$

Modifications to self attention

● In order to do this transformations of the embeddings an MLP can be used:

$$\bullet k_i = W_k x_i + b_k$$

$$\bullet \ q_i = W_q x_i + b_q$$

$$\bullet \ v_i = W_v x_i + b_v$$

3. Multi-Headed attention:

● Idea: Different words has different relationships to each other

Inverts Moderate

• E.g: This restaurant was not too terrible

Modifications to self attention

 Multi-Headed attention model these relationships by splitting the embeddings to lower dimension

Reference: https://www.youtube.com/watch?v=KmAISyVvE1Y

Transformer block

- A transformer block is simply a stack of different layers with skip connections
- Layer normalisation:
 - Similar to batch normalisation; but performed on the input dimesion

Transformer block

- Layer normalisation:
 - $\bullet^{\mu^{b_t}} = \frac{1}{d} \sum_{i}^{d} x_i^{b_t}$; Mean over the input dimension

 - $\hat{x}^{b_t} = \frac{x^{b_t \mu^{b_t}}}{\sqrt{(\sigma^{b_t} + \epsilon)}} \; ; \; \text{Standardised inputs}$
 - $y^{b_t} = \gamma^T \hat{x}^{b_t} + \beta$; normalised layer outputs
 - \bullet γ and β are learnable parameters

Transformer examples

Transformer network for sequence classification

Transformer network for autoregressive task

Reference: https://www.youtube.com/watch?v=oUhGZMCTHtI

Issues

- Self attention can be non-causal
 - Has access to the information in the future
 - Problem for autoregressive tasks
- Solution: mask the forward connections

Reference: https://www.youtube.com/watch?v=oUhGZMCTHtI

Issues

- Self attention is non-sequential
 - This is not a real restaurant, its a filthy burger joint
 - This is not a filthy burger joint, its a real restaurant
 - Both the sentences will give the same outcome
- Solution-1: Positional embedding
 - ullet Word embeddings: $v_{the}, v_{man}, v_{pets}, v_{the}, v_{cat}, v_{again}$
 - Positional embeddings: $v_1, v_2, v_3, v_4, v_5, v_6$; Learnable vectors
 - Final embeddings: $(v_{the} + v_1), (v_{man} + v_2), (v_{pets} + v_3), (v_{the} + v_4), (v_{cat} + v_5), (v_{again} + v_6)$

Issues

- Solution-2: Positional encoding:
 - ullet Use a deterministic periodic function such as $\it sine$ and $\it cosine$ function to encode the positional information

Sine:
$$PE_{(pos,2i)} = sin\left(\frac{pos}{\frac{2i}{1000d_{model}}}\right)$$
, $PE_{(pos,2i+1)} = cos\left(\frac{pos}{\frac{2i}{1000d_{model}}}\right)$

pos: position, i: dimension and d_{model} : number of dimensions

- Non-learnable vectors
- Apply multiple functions to each dimension
- Suitable for long sequences

Transformers Sinusoid Position Encoding

Reference

- Ref-1: https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
- Ref-2: https://medium.datadriveninvestor.com/attention-in-rnns-321fbcd64f05
- Ref-3: https://labs.lilt.com/a-new-age-for-word-alignment-in-machine-translation
- Ref-4: https://royalsocietypublishing.org/doi/10.1098/rsos.191517
- Ref-5: https://www.inovex.de/de/blog/positional-encoding-everything-you-need-to-know/
- Ref-6: https://towardsdatascience.com/transformers-explained-visually-part-3-multi-head-attention-deep-dive-1c1ff1024853