Feuille 1 – Développements limités, équivalents

<u>Développements limités</u>			
$e^{x} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!} + \underset{x \to 0}{o}(x^{n})$		$\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n+1} \frac{x^n}{n} + \underset{x \to 0}{o}(x^n)$	
$(1+x)^{\alpha} = 1 + \alpha x + \dots + \alpha(\alpha-1) \dots \frac{\left(\alpha - (n-1)\right)}{n!} x^n + \underset{x \to 0}{o}(x^n), \alpha \in \mathbb{R}$			
$\cos x = 1 - \frac{x^2}{2} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \underset{x \to 0}{o} (x^{2n})$		$\sin x = x - \frac{x^3}{6} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \underset{x \to 0}{o}(x^{2n+1})$	
$ \cosh x = 1 + \frac{x^2}{2} + \dots + \frac{x^{2n}}{(2n)!} + \underset{x \to 0}{o}(x^{2n}) $		$\sinh x = x + \frac{x^3}{6} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \mathop{o}_{x \to 0}(x^{2n+1})$	
$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \underset{x \to 0}{o}(x^n)$		$\frac{1}{1+x} = 1 - x + x^2 + \dots + (-1)^n x^n + \underset{x \to 0}{o}(x^n)$	
$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \underset{x \to 0}{o}(x^3)$		$\arctan x = x - \frac{x^3}{3} + \dots + \frac{(-1)^n}{2n+1} x^{2n+1} + \underset{x \to 0}{o} (x^{2n+1})$	
<u>Équivalents usuels</u>			
$e^x - 1 \underset{x \to 0}{\sim} x$	$\ln(1+x) \underset{x\to 0}{\sim} x$	$\sin(x) \underset{x\to 0}{\sim} x$	$\tan(x) \underset{x \to 0}{\sim} x$

Exercice 1: Soit $f: \mathbb{R}^* \to \mathbb{R}$ une fonction telle que pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{e^{x}-1}{x}$

- 1) À l'aide d'un équivalent, trouver $\lim_{x \to 0} f(x)$. Valider votre réponse avec la règle de L'Hôpital.
- 2) Trouver un équivalent de f en 0.

Exercice 2 : Soit
$$g: x \in \mathbb{R}_+ \mapsto \left(\frac{\ln(x+1)}{\ln x}\right)^x$$

Calculer $l=\lim_{n\to +\infty}g(x)$, et trouver un équivalent en $+\infty$ de g(x)-l.

Attention : On ne peut pas, en règle générale, composer les équivalents ! $\ln(e^x-1)$ n'est pas équivalent en 0 à $\ln x$