# **Coupon and Offer Prediction**

Machine Learning for hungry customers

Artur Magalhães R. dos Santos

August 13, 2025

Data Science Technical Case

# **Data Analysis**

### **Available Data**

- 17,000 unique customers
- 10 unique offers
- 306K+ transaction events

# Offer Types

- BOGO (Buy One Get One)
- Discount
- Informational

#### Distribution Channels

• Email, Mobile, Social, Web

### **Key Insights**

- Ages concentrated between 40-80 years
- ~35% male gender, ~35% female, ~30% not informed
- Diversified tenure: new to extremely experienced



# **Processing**

### Feature Engineering

- Target: Offer completion within deadline
- Historical: Past spending & transactions
- Rolling: 30-day metrics
- Segmentation: 5 tenure groups
- · Channels: Distribution dummies

#### **Dataset**

- 86.432 observations
- 29 features
- Split at 80% (day 21)

### **Key Features**

- hist\_spent: Historical spending
- rolling\_spent\_30d: 30-day spending
- hist\_completion\_rate: Historical rate
- tenure\_segments: Customer segments
- offer\_type: Offer type
- discount\_value: Discount value

### **Pipeline**

- Categorical → 'missing'
- OneHot encoding
- No scaling needed

# Modeling

## Algorithm

- Random Forest
- Temporal split (training day 21)
- Complete sklearn pipeline

#### **Performance Metrics**

| Metric    | Class 0 | Class 1 |
|-----------|---------|---------|
| Precision | 0.85    | 0.76    |
| Recall    | 0.75    | 0.85    |
| F1-Score  | 0.80    | 0.81    |

ROC-AUC: 89% Accuracy: 80%

### **Most Important Features**

- ① Historical spending (hist\_spent)
- 30-day rolling spending
- Oiscount value
- 4 Tenure (months with us)
- 6 Historical conversion rate
- Offer type
- Distribution channels

# **Model Insights**

- Historical behavior is a strong predictor
- Discount offers > conversion
- Experienced customers more likely

# **Next Steps**

### **Model Improvements**

- Algorithms: LightGBM, Neural Networks
- Embeddings: Use textual embeddings from offer description
- Ensemble: Model combination
- Feature Selection: Extend feature set
- Hyperparameter Tuning: Random or Bayesian Search

### **Feature Engineering**

- Feature interactions
- Age-based features
- Temporal seasonality
- Behavior clustering

### Production

- Logging: Add logging and experiment tracking
- MLOps: Automated pipeline
- Monitoring: Data drift detection
- A/B Testing: Production validation

### **Additional Analyses**

- Class balance (training vs test) and improve splitting
- Outlier analysis (age = 118)
- Customer segmentation
- ROI by offer type

Next model target: 92%+
ROC-AUC