FA 1.8 - 1 Masse - OA - BIFIE

1. Die Masse eines Drehzylinders in Abhängigkeit von seinen Abmessungen r und h und seiner Dichte ρ kann durch die Funktion M mit $M(r,h,\rho)=\pi\cdot r^2\cdot h\cdot \rho$ FA 1.8 beschrieben werden.

Ein aus Fichtenholz geschnitzter Drehzylinder hat den Durchmesser $d=8\,cm$ und die Höhe $h=6\,dm$. Die Dichte von Fichtenholz beträgt ca. $0.5\,g/cm^3$.

Gib die Masse des in der Angabe beschriebenen Drehzylinders in Kilogramm an!

 $M(4,60,0,5) \approx 1507,96$

Die Masse des Drehzylinders beträgt ca. $1,5\,kg$.

Toleranzintervall: [1,5; 1,51].

FA 1.8 - 2 Drehkegel - LT - BIFIE

2. Das Volumen eines Drehkegels kann durch eine Funktion V in Abhängigkeit vom Radius r und von der Höhe h folgendermaßen angegeben werden: FA 1.8 $V(r,h) = \frac{1}{3} \cdot r^2 \cdot \pi h.$

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

Das Volumen V(r,h) bleibt unverändert, wenn der Radius r _____ wird und die Höhe h _____ wird.

1	
verdoppelt	
halbiert	\boxtimes
vervierfacht	

2	
verdoppelt	
halbiert	
vervierfacht	\boxtimes

FA 1.8 - 3 Formel als Funktion interpretieren - LT - Matura 2014/15 - Kompensationsprüfung

3. Ge	eben ist folgende Formel:		/1
	1	FA 1.	8

$$F = \frac{5 \cdot a^2 \cdot b}{3} \text{ mit } F, a, b \in \mathbb{R}$$

Ergänze die Textlücken im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!

F in Abhängigkeit von	(1) beschre	ibt eine(2)
-----------------------	-------------	-------------

1	
a bei konstantem b	
b bei konstantem a	
b mit a = 3	

2	
quadratische Funktion	\boxtimes
konstante Funktion	
Funktion dritten Grades	