${ m MAT~01375-Matemática~Discreta~B} \hspace{0.5cm} 2009/2$

Lista de Exercícios 8

- 1. Usando o diagrama de Hasse abaixo determine, caso exista:
 - a) seus elementos maximais,
 - b) seus elementos minimais,
 - c) seu maior elemento,
 - d) seu menor elemento,
 - e) cotas superiores para $\{a, b, c\}$,
 - f) $\sup\{a, b, c\}$,
 - g) cotas inferiores para $\{f,g,h\},$
 - h) $\inf\{f, g, h\},\$
 - i) cotas superiores para $\{k, l\}$,
 - $j) \sup\{k, l\},$
 - k) cotas inferiores para $\{k, l\}$,
 - l) $\inf\{k,l\}$.

2. Determine conjuntos parcialmente ordenados que sejam descritos pelo diagrama de Hasse abaixo.

3. Determine quais dos conjuntos parcialmente ordenados abaixo, descritos pelo diagrama de Hasse, são reticulados.

- 4. Em cada item abaixo, determine se a afirmação é verdadeira ou falsa, assinalando ${\bf V}$ ou ${\bf F}$, respectivamente. Justifique suas respostas.
 - () É possível um conjunto PO ter um elemento que é, simultaneamente minimal e maximal, mas que não é nem máximo nem mínimo.
 - () Se um conjunto PO tem exatamente um elemento minimal, então ele deve ser o mínimo
 - () Se (S, \preceq) é um conjunto PO, finito e não vazio, então existe um elemento minimal m e um elemento maximal M em S, para os quais vale que $m \preceq M$.
- 5. Questão 1 (1,0 ponto): Complete o diagrama de Hasse para a relação de divisibilidade no conjunto $\{1,2,3,4,5,10,15,20,30,45,60\}$, iniciando com os pontos dados abaixo.

6. • Questão 1 (1,0 ponto): Complete o diagrama de Hasse para a relação de divisibilidade no conjunto {1, 2, 3, 4, 5, 10, 15, 20, 30, 45, 60}, iniciando com os

- 7. Questão 2 (1,0 ponto): Exiba 2 diagramas de Hasse diferentes obtidos transformando o diagrama de Hasse da Questão 1 em reticulado: um inserindo elementos e outro eliminando elementos.
- 8. Questão 4(1,5 pontos): Faça o diagrama de Hasse para a relação de divisibilidade (|) no conjunto dos divisores de 60 iniciando com os pontos dados acima. Depois, exiba 1 diagrama de Hasse (diferente) que ainda seja um reticulado, inserindo 3 elementos no diagrama de Hasse obtido anteriormente.
- 9. Questão 2 (1,5 pontos): Podemos ordenar o conjunto das disciplinas obrigatórias do curso de culinária Computacional pelos seus pré-requisitos. Dizemos que $A \leq B$ se e só se A = B ou se a disciplina A é um pré-requisito para a disciplina B. Vamos considerar C o conjunto das disciplinas matemáticas desse curso dadas na tabela abaixo. Faça o diagrama de Hasse para C usando a ordem parcial descrita.

Disciplina	Pré-requisitos
MAT 101	Nenhum
MAT 201	MAT 101
MAT 250	MAT 101
MAT 251	MAT 250
MAT 340	MAT 201
MAT 341	MAT 340
MAT 450	MAT 201, MAT 250
MAT 500	MAT 450, MAT 251

- 10. Questão 3 (2,0 pontos): Considere o conjunto \mathcal{C} da questão anterior e seu diagrama de Hasse.
 - a) Determine todos os elementos máximos e mínimos de C.
 - b) O diagrama de Hasse é um reticulado?
 - c) Determine uma ordem total compatível com a ordem dada.