Parallel ASHA for Hyperparameter Tuning

Group 9 - The Rain in Spain

Speaker 1: Matthew Frost Speaker 2: Molly Farrant Speaker 3: Abhinav Behal

Project Overview

Parallel Machine Learning

- Resurgence of Machine Learning research since interest died in the 70's
- Performance is a big issue
- Common applications of parallelisation
 - Within an algorithm
 - Training process
 - Cross evaluation
- A difficult problem is the generation of the best model quickly hyperparameter tuning

Artificial Intelligence

- Artificial intelligence is computer simulation of human intelligence
 - Rules, knowledge based systems, expert systems
- Machine learning is the ability for machines to learn without being explicitly programmed
- Deep learning is ML using neural networks

Deep Learning

- An incredibly powerful machine learning technique
- Involves the application of Artificial Neural Networks
- Can approximate any nonlinear function
- Often for image recognition, speech recognition

Machine Learning

The ability of machines to learn without being specifically programmed.

- Unsupervised
- Reinforcement
- Supervised
 - Regression
 - Classification

ML - Reinforcement Learning

- The learner receives rewards and punishments for its actions
- Algorithm must determine the ideal behaviour within the specified context to maximise its rewards / minimise its punishments

ML - Unsupervised Learning

- No definite output
- Training data is **unlabelled**
- Aims to find structures or patterns in the data

ML - Supervised Learning

- Dataset with training examples
- Each example has an associated label which identifies it
- Regression
 - Used to determine the mathematical relationship between two or more variables and the level of dependency between them
- Classification
 - Used to classify data into predefined categories
 - o Binary classification only two categories

Ensembles

- Weak learner: individual rules that are not powerful enough to classify data
- **Strong learner**: combining the predictions of weak learners using average, weighted average or majority voting system
- Can be used for regression or classification algorithms

Bagging

- Parallel approach
- Each model is exposed to a different subset of the training data
- Individual models are built separately
- Models combined via averaging or majority voting

Boosting

- Sequential approach
- Each model is exposed to the entire training dataset
- Each new model is influenced by the performance of those built previously

- Trains models sequentially
- Each new model gradually minimises the loss function
- Loss function is a measure of how well a given model fits the relevant training data

dmlc XGBoost

- An implementation of gradient boosting
- Designed for speed and performance
 - Parallelization
 - Distributed Computing
 - Cache Optimization
- Currently achieving the best performance on a range of difficult machine learning tasks

Hyperparameter Tuning

Hyperparameter - A parameter whose value is set before the learning process starts

- Most machine learning algorithms typically require a dozen or more hyperparameters, e.g. for XGBoost:
 - Maximum tree depth
 - Sample type
 - Rate drop
 - 0 ...
- These parameters influence the overall performance of algorithm
- Due to the shear number of possible configurations, you need a way to pick the best

Grid Search

(a) Standard Grid Search

- Exhaustive search of a subset of the hyperparameter space
- Guided by a performance metric
- Can be parallelised trivially
- Implemented in all popular machine learning packages
- Number of possible configurations grows immensely with more hyperparameters, hence the search must be quite coarse in order to have an acceptable runtime

Random Search

- Simpler than Grid Search, can also be parallelised trivally
- Starts off with a random hyperparameter configuration
- Proceeds by choosing a new random configuration around the current one
- Picks the best of the two (using similar metrics to Grid Search) and repeats
- Terminates upon reaching a pre-defined number of iterations or performance metric value
- Also implemented in all popular machine learning packages

Evolutionary Approaches

- Utilise evolutionary algorithms to search the hyperparameter space
- Basic approach:
 - Start off with a population of randomly selected configurations
 - Evaluate each configuration using a fitness function
 - Rank each configuration according to their fitness values
 - Use crossover and mutation functions to generate a new population
 - Repeat until a certain performance metric is reached, or when no improvements are being made
- Some open source libraries exist for evolutionary hyperparameter tuning, and have parallelisation built-in

- More complex than the previous techniques, but still relatively simple:
 - N different parameter configurations randomly generated and allocated a number of epochs (time to run/iterations)
 - Select the top 1/K % of the configurations, and give them each K times more epochs (promoted to next "rung")
 - Repeat until only one configuration is left
- The synchronous nature of SHA makes any parallelisation attempts ineffective and in some cases can increase the total execution time

Asynchronous SHA (ASHA)

- Leverages asynchronous subroutines to effectively parallelise SHA
- Promotes configurations to the next rung whenever possible
 - Unlike SHA which waits for all configurations in the current rung to finish
- The best performing configurations are promoted to the next rung once the number of configurations in that rung is a multiple of K
- Utilises workers that evaluate available configurations in parallel
- Configurations are assigned to workers as they become available

Our Approach

- Distributed serverless parallelization
- ASHA is used on central machine, evaluation is in parallel
- Each serverless instance is given a single model to evaluate
- ASHA maximises parallelization no blocking to wait entire bottom rung to finish

Implementation

- XGBoost
- AWS Lambda for serverless training and evaluating individual models
- Python, Pandas, numpy, etc.

Dataset - The Rain in Australia

- Binary classification
- Will it rain tomorrow?
- 24 columns x 142k rows
- Weather data from throughout current day (pressure, temperature)
- Predict next day

Evaluation of Performance

- Metrics
 - Error rate on test partition of data set
 - Confusion Matrix
 - Accuracy, Recall, Precision
 - Time taken to produce final model

- Benchmark against
 - Grid Search
 - Random Search
 - Serial SHA
 - Default XGBoost tuning

Evaluation of Performance

Precision	=	True Positive Actual Results	or	True Positive
				True Positive + False Positive
Recall	=	<u>True Positive</u> Predicted Results	or	True Positive True Positive + False Negative
Accuracy	=	True Positive + True Negative Total		

Q&A