Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Домашнее работа №2

Дисциплина <u>Логика и т</u>	еория алгоритмов
Тема Булевые функции	
тема Булевые функции	
Вариант 20	-

Задача 1

Условие:

Для булевой функции f:

X	f(X)
0000	0
0001	0
0010	0
0011	0
0100	0
0101	1
0110	1
0111	1
1000	1
1001	1
1010	1
1011	1
1100	1
1101	1
1110	1
1111	0

- а) найти сокращенную ДНФ;
- б) найти ядро функции;
- в) получить все тупиковые ДНФ и указать, какие из них являются минимальными;
- г) на картах Карно указать ядро и покрытия, соответствующие минимальным ДНФ.

Решение:

1) Карта Карно для сокращенной ДНФ:

		X_3/X_4			
		00	01	11	10
	00	0	0	0	0
X_1/X_2	01	0	1	(1)	1
X_1/X_2	11		1	0	1
	10	1	1	1	1

$$K_1 = x_1 \overline{x}_2$$

$$K_2 = x_1 \overline{x}_4$$

$$K_3 = x_1 \overline{x}_3$$

$$K_4 = \overline{x}_1 x_2 x_3$$

$$K_5 = x_2 x_3 \overline{x}_4$$

$$K_6 = \overline{x}_1 x_2 x_4$$

$$K_7 = x_2 \overline{x}_3 x_4$$

Сокращенная ДНФ:

$$K_1 \vee K_2 \vee K_3 \vee K_4 \vee K_5 \vee K_6 \vee K_7 = x_1\overline{x}_2 \vee x_1\overline{x}_4 \vee x_1\overline{x}_3 \vee \overline{x}_1x_2x_3 \vee x_2x_3\overline{x}_4 \vee \overline{x}_1x_2x_4 \vee x_2\overline{x}_3x_4$$

- 2) Ядровая импликанта $K_1=x_1\overline{x}_2$, так как элементарная конъюнкция $x_1\overline{x}_2x_3x_4$ покрыта только этой импликантой.
- 3) Получение тупиковых и минимальных ДНФ:

$$(K_2 \vee K_3)(K_2 \vee K_5)(K_3 \vee K_7)(K_6 \vee K_7)(K_4 \vee K_6)(K_4 \vee K_5) = (K_2 \vee K_3K_5)(K_3K_6 \vee K_7)(K_4 \vee K_5K_6) = K_2K_3K_4K_6 \vee K_2K_3K_5K_6 \vee K_2K_4K_7 \vee K_2K_5K_6K_7 \vee K_3K_4K_5K_6 \vee K_3K_4K_5K_7 \vee K_3K_4K_5K_6 = K_2K_3K_4K_6 \vee K_2K_4K_7 \vee K_2K_5K_6K_7 \vee K_3K_5K_6 \vee K_3K_4K_5K_7$$

Присоеденив ядровую импликанту К1 к каждому члену, получим 5 тупиковых ДНФ:

- 1. $K_1K_2K_3K_4K_6 = x_1\overline{x}_2 \lor x_1\overline{x}_4 \lor x_1\overline{x}_3 \lor \overline{x}_1x_2x_3 \lor \overline{x}_1x_2x_4$
- 2. $K_1K_2K_4K_7 = x_1\overline{x}_2 \lor x_1\overline{x}_4 \lor \overline{x}_1x_2x_3 \lor x_2\overline{x}_3x_4$
- 3. $K_1K_2K_5K_6K_7 = x_1\overline{x}_2 \lor x_1\overline{x}_4 \lor x_2x_3\overline{x}_4 \lor \overline{x}_1x_2x_4 \lor x_2\overline{x}_3x_4$
- 4. $K_1K_3K_5K_6 = x_1\overline{x}_2 \vee x_1\overline{x}_3 \vee x_2x_3\overline{x}_4 \vee \overline{x}_1x_2x_4$
- 5. $K_1K_3K_4K_5K_7 = x_1\overline{x}_2 \lor x_1\overline{x}_3 \lor \overline{x}_1x_2x_3 \lor x_2x_3\overline{x}_4 \lor x_2\overline{x}_3x_4$

Минимальными являются 2 и 4 ДНФ

4) Карта Карно для минимальной ДНФ $K_1K_2K_4K_7=x_1\overline{x}_2\vee x_1\overline{x}_4\vee \overline{x}_1x_2x_3\vee x_2\overline{x}_3x_4$ X_3/X_4

Ядро К1 - выделено красным цветом

Карта Карно для минимальной ДНФ $K_1K_3K_5K_6=x_1\overline{x}_2\vee x_1\overline{x}_3\vee x_2x_3\overline{x}_4\vee \overline{x}_1x_2x_4$ X_3/X_4

Ядро К1 - выделено красным цветом

Задача 2

Условие:

Дана функция f

$$\overline{x}_1(x_1\downarrow \overline{x}_2)(x_1\oplus \overline{x}_3) \Rightarrow (x_2\sim x_3)$$

И функция w

$$w = (0, 0, 0, 0, 1, 1, 1, 1)$$

Необходимо:

- а) Вычислить таблицу значений функции f.
- б) Найти минимальные ДНФ функций f и w.
- в) Выяснить полноту системы f, w. Если система не полна, дополнить систему функцией g до полной системы.

Указание. Запрещается дополнять систему константами, отрицанием и базовыми функциями двух переменных $(\oplus, \lor, \land, |, \downarrow,$ и т.д.) Не допускается дополнение функцией, образующей с f или w полную подсистему, кроме случаев, когда иное невозможно.

г) Из функциональных элементов, реализующих функции полной системы f, w или f, w, g, построить функциональные элементы, реализующие базовые функции $(\vee, \wedge, \neg, 0, 1)$

Решение:

1) Составим таблицу значений функции f:

x_1	x_2	x_3	$x_1 \downarrow \overline{x}_2$	$x_1 \oplus \overline{x}_3$	$\overline{x}_1(x_1\downarrow \overline{x}_2)(x_1\oplus \overline{x}_3)$	$x_2 \sim x_3$	f
0	0	0	0	1	0	1	1
0	0	1	0	0	0	0	1
0	1	0	1	1	1	0	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	1	1
1	0	1	0	1	0	0	1
1	1	0	0	0	0	0	1
1	1	1	0	1	0	1	1

2) Карта Карно для фунции f:

Минимальная ДНФ:

$$f = x_1 \vee \overline{x}_2 \vee x_3$$

Карта Карно для функции w:

$$\begin{array}{c|ccccc}
 & X_3 \\
 & 0 & 1 \\
 & 00 & 0 & 0 \\
 & 01 & 0 & 0 \\
 & X_1/X_2 & & & \\
 & 11 & 1 & 1 \\
 & 10 & 1 & 1 \\
\end{array}$$

Минимальная ДНФ:

$$w = x_1$$

3) Проверка на полноту системы {f, w}:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$	$w(x_1, x_2, x_3)$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	0
0	1	1	1	0
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

1. Сохранение 0

$$f(0,0,0) = 1 \Rightarrow f \notin T_0$$

 $w(0,0,0) = 0 \Rightarrow w \in T_0$

2. Сохранение 1

$$f(1,1,1) = 1 \Rightarrow f \in T_1$$

 $w(1,1,1) = 1 \Rightarrow w \in T_1$

3. Самодвойственность

$$\begin{array}{l} f(0,0,0)=f(1,1,1)=1\Rightarrow f\notin S\\ \forall (a_1,a_2,a_3)\in E_2^3\Rightarrow w(\overline{a}_1,\overline{a}_2,\overline{a}_3)=\overline{w(a_1,a_2,a_3)}\Rightarrow w\in S \end{array}$$

4. Монотонность

$$\begin{array}{l} f(0,0,1)=1>f(0,1,0)=0\Rightarrow f\notin M\\ \forall\widetilde{\alpha}=(\alpha_1,...,\alpha_3),\widetilde{\beta}=(\beta_1,...,\beta_3),$$
где набор $\widetilde{\alpha}$ предшествует набору $\widetilde{\beta}\Rightarrow w(a_1,a_2,a_3)\leq w(\beta_1,\beta_2,\beta_3)\Rightarrow w\in M \end{array}$

5. Линейность функций

Общий вид полинома Жегалкина для функции трёх переменных:

$$f(x_1, x_2, x_3) = C_0 \oplus C_1 x_1 \oplus C_2 x_2 \oplus C_3 x_3 \oplus C_{12} x_1 x_2 \oplus C_{23} x_2 x_3 \oplus C_{13} x_1 x_3 \oplus C_{123} x_1 x_2 x_3$$

С помощью последовательных действий вычислим значенния коэффициентов C_i в полиноме Жегалкина для f:

$$\begin{cases} C_0 = 1 : f(0,0,0) = 1 \\ C_3 = 0 : f(0,0,1) = C_3 \oplus C_0 = 0 \oplus 1 = 1 \\ C_2 = 1 : f(0,1,0) = C_2 \oplus C_0 = 1 \oplus 1 = 0 \\ C_1 = 0 : f(1,0,0) = C_1 \oplus C_0 = 0 \oplus 1 = 1 \\ C_{23} = 1 : f(0,1,1) = C_{23} \oplus C_3 \oplus C_2 \oplus C_0 = 1 \oplus 0 = 1 \\ C_{13} = 0 : f(1,0,1) = C_{13} \oplus C_1 \oplus C_3 \oplus C_0 = 0 \oplus 1 = 1 \\ C_{12} = 1 : f(1,1,0) = C_{12} \oplus C_2 \oplus C_1 \oplus C_0 = 1 \oplus 0 = 1 \\ C_{123} = 1 : f(1,1,1) = C_{123} \oplus C_{23} \oplus C_{12} \oplus C_{13} \oplus C_3 \oplus C_2 \oplus C_1 \oplus C_0 = 1 \oplus 0 = 1 \end{cases}$$

Полином Жегалкина функции f:

$$f(x_1, x_2, x_3) = 1 \oplus x_2 \oplus x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_2 x_3$$

Так как полином функции f содержит конъюнкции, то $f \notin L$

Так как функция w является функцией от одной переменной \Rightarrow w \in L

Критериальная таблица

	T_0	T_1	S	M	L
f	_	+	_	_	_
W	+	+	+	+	+

Система {f, w} не является функционально полным классом. Обе функции сохраняют константу 1. Дополняем систему функцией, которая не сохраняет 1, например:

$$g = (1, 0, 1, 0, 0, 1, 1, 0)$$

1. Сохранение 0

$$g(0,0,0) = 1 \Rightarrow g \notin T_0$$

2. Сохранение 1

$$g(1,1,1)=0 \Rightarrow g \notin T_1$$

3. Самодвойственность

$$g(0,1,0) = f(1,0,1) = 1 \Rightarrow g \notin S$$

4. Монотонность

$$g(0,0,0) = 1 > g(0,0,1) = 0 \Rightarrow g \notin M$$

5. Линейность функций

Найдём коэффициенты полинома Жегалкина для функции g:

$$\begin{cases} C_0 = 1 : g(0, 0, 0) = 1 \\ C_3 = 1 : g(0, 0, 1) = C_3 \oplus C_0 = 1 \oplus 1 = 0 \\ C_2 = 0 : g(0, 1, 0) = C_2 \oplus C_0 = 0 \oplus 1 = 1 \\ C_1 = 1 : g(1, 0, 0) = C_1 \oplus C_0 = 1 \oplus 1 = 0 \\ C_{23} = 0 : g(0, 1, 1) = C_{23} \oplus C_3 \oplus C_2 \oplus C_0 = 0 \oplus 0 = 0 \\ C_{13} = 0 : g(1, 0, 1) = C_{13} \oplus C_1 \oplus C_3 \oplus C_0 = 0 \oplus 1 = 1 \\ C_{12} = 1 : g(1, 1, 0) = C_{12} \oplus C_2 \oplus C_1 \oplus C_0 = 1 \oplus 0 = 1 \\ C_{123} = 0 : g(1, 1, 1) = C_{123} \oplus C_{23} \oplus C_{12} \oplus C_{13} \oplus C_3 \oplus C_2 \oplus C_1 \oplus C_0 = 0 \oplus 0 = 0 \end{cases}$$

Полином Жегалкина функции g:

$$g(x_1, x_2, x_3) = 1 \oplus x_1 \oplus x_3 \oplus x_1 x_2$$

Функция g не является линейной $\Rightarrow g \notin L$

Критериальная таблица

	T_0	T_1	S	M	L
f		+	_	_	_
W	+	+	+	+	+
g	_	_	ı		1

Система $\{f, w, g\}$ является функционально полным классом.

- 4) Выражаем константы 0 и 1, отрицание, дизъюнкцию, конъюнкцию:
- 1. Отрицание:

$$q(0,0,0) = 1 \text{ M } q(1,1,1) = 0 \Rightarrow q(x,x,x) = \overline{x}$$

2. Константа 1:

$$f(0,0,0) = f(1,1,1) = 1 \Rightarrow f(x,x,x) = 1$$

3. Константа 0:

Для построения константы 0 инвертируем константу 1:

$$\overline{f(x,x,x)} = g(f(x,x,x), f(x,x,x), f(x,x,x)) = 0$$

4. Дизъюнкция

Построим дизъюнкцию на основе функции $f = x_1 \vee \overline{x_2} \vee x_3$. Зафиксируем значение $x_2 = 1$. Получим дизъюнкцию:

Заменим
$$x_1 \leftrightarrow x$$
 и $x_3 \leftrightarrow y$:
 $\lor(x,y) = f(x,1,y) = x \lor \overline{1} \lor y = x \lor y$

5. Конъюнкция

Для построения конъюнкции применим закон де Моргана $\overline{xy} = \overline{x} \vee \overline{y}$, и навесим отрицание на обе части полученной дизъюнкции:

$$\overline{f(x_1, 1, x_3)} = \overline{x \vee y}$$

$$\overline{f(x_1, 1, x_3)} = \overline{x_1} \wedge \overline{x_3}$$

Заменим
$$\overline{x}_1 \leftrightarrow x$$
 и $\overline{x}_3 \leftrightarrow y$: $\wedge(x,y) = \overline{f}(\overline{x},1,\overline{y}) = x \wedge y$

Подставим функции одной переменной: $\overline{f}(g(x,x,x),f(x,x,x),g(y,y,y))=x\wedge y$

Произведя еще одну подстановку, получим:

$$g(f(g(x, x, x), f(x, x, x), g(y, y, y)), f(g(x, x, x), f(x, x, x), g(y, y, y)), f(g(x, x, x), f(x, x, x), g(y, y, y))) = x \wedge y$$