Sección 1.8 Aritmética y composición de funciones

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

Aritmética de funciones

Composición de funciones

Aritmética de funciones

Operaciones con funciones

Sean f y g dos funciones. Se pueden definir otras funciones a partir de ellas: $f+g,\ f-g,\ fg$ y $\frac{f}{g}$, como se indica a continuación:

$$\begin{split} (f+g)(x) &= f(x) + g(x) \\ (f-g)(x) &= f(x) - g(x) \\ (fg)(x) &= f(x) \cdot g(x) \\ \left(\frac{f}{g}\right)(x) &= \frac{f(x)}{g(x)}, \text{ si } g(x) \neq 0, \end{split}$$

donde $x \in Dom(f) \cap Dom(g)$.

El dominio de estas funciones consiste de todos los números x para los cuales ambas, f(x) y g(x), está definidas. O sea, los valores de x que están en el dominio de f y que también están en el dominio de g. En el caso de la función $\frac{f}{g}$ se exige además que $g(x) \neq 0$.

Función	Dominio
f+g	$Dom(f) \cap Dom(g)$
f-g	$Dom(f) \cap Dom(g)$
fg	$Dom(f) \cap Dom(g)$
$\frac{f}{g}$	$Dom(f) \cap Dom(g) - \{x \mid g(x) = 0\}$

Ejemplos

1. Sean
$$f(x) = \frac{1}{x-2}$$
 y $g(x) = \sqrt{1+2x}$.

(a) Halle
$$(f+g)(4)$$
, $(f-g)(4)$, $(fg)(4)$ y $\left(\frac{f}{g}\right)(4)$.

(b) Encuentre y simplifique las fórmulas para $f+g,\ f-g,\ fg$ y $\frac{f}{g}$, indicando sus dominios.

2. Use las gráficas de f(x)=x y $g(x)=\sqrt{x}$ para dibujar la gráfica de la diferencia de funciones f-g.

Composición de funciones

Una composición de funciones ocurre cuando dos funciones se combinan de forma tal que la salida de una función se usa como la entrada de la otra.

Composición de funciones

Sean f y g funciones. La función $f \circ g$ se define por:

$$(f \circ g)(x) = f(g(x)).$$

Observe que los valores de x que están en el dominio de $f\circ g$ son aquellos que están en el dominio de g y que además g(x) está en el dominio de f. Es decir,

$$Dom(f \circ g) = \{x \in Dom(g) \mid g(x) \in Dom(f)\}.$$

Diagrama de flechas para $f \circ g$

Ejemplo

Sea $f(x)=\sqrt{x}$ y $g(x)=x^2+1$, cuyos dominios son $[0,\infty)$ y $(-\infty,\infty)$, respectivamente. La función $f\circ g$ se puede visualizar como:

y, por definición, está dada por la fórmula:

$$(f \circ g)(x) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$$

con dominio $(-\infty, \infty)$.

Ejemplos

1. Sea $f(x) = x^2$ y g(x) = x + 1. Muestre que en general,

 $f \circ g \neq g \circ f$.

2. Sea $f(x) = 3x^2 + 1$. Halle $(f \circ f)(x)$.

3. Sea
$$f(x) = \sqrt{x}$$
 y $g(x) = x^2$.

(a) Halle la composición $f \circ g$ y su dominio.

(b) Halle la composición $g \circ f$ y su dominio.

4. Halle $f\circ g\circ h$ si f(x)=x-1, $g(x)=\sqrt{x}$ y h(x)=x+1.

5. Si $h(x) = (x-7)^2$, encuentre dos funciones f y g (diferentes de h) tal que $h = f \circ g$.

Observaciones

4 La composición de funciones, en general, no es conmutativa; es decir

$$f \circ g \neq g \circ f$$
.

② El dominio de la composición de funciones, no es el dominio de la función resultante de la operación.