Machine Learning Study Week 1

Introduction

Introduction

Welcome

Machine Learning

Machine Learning

- Grew out of work in AI
- New capability for computers

Examples:

- Database mining
 - Large datasets from growth of automation/web.
 - E.g., Web click data, medical records, biology, engineering
- Applications can't program by hand.
 - E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision.
- Self-customizing programs
 - E.g., Amazon, Netflix product recommendations
- Understanding human learning (brain, real AI).

Machine Learning

Introduction

Supervised Learning

Housing price prediction.

Regression: Predict continuous valued output (price)

Breast cancer (malignant, benign)

Machine Learning

Introduction

Unsupervised Learning

Organize computing clusters

Clustering

Social network analysis

Market segmentation

Astronomical data analysis

Cocktail party problem

Machine Learning

Model and Cost Function

Linear regression with one variable

Model representation

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Classification: Discrete-valued outpos

Training set of housing prices (Portland, OR)

Size in feet² (x)

1534

852

178

$$\rightarrow$$
 x's = "input" variable / features

How do we represent h?

$$h_{e}(x) = \Theta_{0} + \Theta_{1} \times$$
Shorthard: $h(x)$

$$h(x) = \Theta_{0} + \Theta_{1} \times$$

$$+\Theta_{1} \times$$

Linear regression with one variable. Univariate linear regression.

Machine Learning

Model and Cost Function

Linear regression with one variable

Cost function

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460 7
1416	232 m= 47
1534	315
852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

Training Set

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460 7
1416	232 m= 47
1534	315
852	178

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

How to choose θ_i 's?

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

training examples (x,y)Squared error faction

Machine Learning

Model and Cost Function

Linear regression with one variable

Cost function intuition I

Simplified

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$ θ_0, θ_1

$$h_{\theta}(x) = \underbrace{\theta_1 x}_{\circ = 0}$$

$$\frac{\theta_1}{}$$

$$\underset{\theta_1}{\text{minimize}} J(\theta_1) \qquad \bigcirc_{i} \times^{(i)}$$

(for fixed
$$\theta_1$$
, this is a function of x)

$$\frac{h_{\theta}(x)}{2}$$

$$\frac{h_$$

 $J(\theta_1)$

 $h_{\theta}(x)$

Andrew N

Machine Learning

Model and Cost Function

Linear regression with one variable

Cost function intuition II

 $h_{\theta}(x) = \theta_0 + \theta_1 x$ Hypothesis:

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0,$$

iction:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\mininize J(\theta_0,\theta_1)$$
 θ_0,θ_1 Cost Function을 최소화 하는 $theta 0$, theta 1을 찾는다.

(function of the parameters $heta_0, heta_1$)

 $J(\theta_0,\theta_1)$

 $h_{\theta}(x)$

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

Parameter Learning

Machine Learning

Linear regression with one variable

Gradient descent

Have some function
$$J(\theta_0, \theta_1)$$
 $\mathcal{I}(\Theta_0, \Theta_1, \Theta_2, \dots, \Theta_n)$

Want
$$\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$$
 $\min_{\Theta_0,\dots,\Theta_n} J(\Theta_0,\dots,\Theta_n)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0, \Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Gradient descent algorithm

Assignmen

repeat until convergence {
$$\theta_{i} := \theta_{i} - \alpha \frac{\partial}{\partial a} J(\theta_{0}, \theta_{1})$$

(for
$$j = 0$$
 and $j = 1$)

Simultaneously update

learning rate

temp0 :=
$$\theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

temp1 := $\theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial x} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{temp0}$$

$$\rightarrow \text{temp0} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 := \text{tempo}$$

$$\Rightarrow \theta_0 := \text{temp0}$$

$$\Rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 := \text{temp1}$$

$$\theta_1 := \text{temp1}$$

Parameter Learning

Machine Learning

Linear regression with one variable

Gradient descent intuition

Gradient descent algorithm

Andrew N

$$\theta_1 := \theta_1 - \bigcirc \frac{\partial}{\partial \theta_1} J(\theta_1)$$

If α is too small, gradient descent can be slow.

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

Gradient descent can converge to a local minimum, even with the learning rate α fixed.

$$\theta_1 := \theta_1 - \alpha \frac{d}{d\theta_1} J(\theta_1)$$
 As we approach a local minimum, gradient descent will automatically take smaller steps. So, no need to decrease α over time. So that's the gradient descent algorithm and you can use it to try to minimize

Parameter Learning

Machine Learning

Linear regression with one variable

Gradient descent for linear regression

Gradient descent algorithm

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$
(for $j = 1$ and $j = 0$)

Linear Regression Model

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_\theta(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_{j}} \underline{J(\theta_{0}, \theta_{1})} = \frac{\partial}{\partial \theta_{j}} \cdot \frac{\partial}{\partial \theta_$$

$$\Theta_{\circ} j = 0 : \frac{\partial}{\partial \theta_{0}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \underbrace{\sum_{i=1}^{m} \left(h_{\bullet}(x^{(i)}) - y^{(i)} \right)}_{\text{fin}} \\
\Theta_{i} j = 1 : \frac{\partial}{\partial \theta_{1}} J(\theta_{0}, \theta_{1}) = \frac{1}{m} \underbrace{\sum_{i=1}^{m} \left(h_{\bullet}(x^{(i)}) - y^{(i)} \right)}_{\text{fin}} \underbrace{\chi^{(i)}}_{\text{fin}} \right)$$

Gradient descent algorithm

repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

update θ_0 and θ_1 simultaneously

 $J(heta_0, heta_1)$ (function of the parameters $heta_0, heta_1$)

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

우리가 다루는 'Batch' 외에 서브셋만 다루는 등의 다른 Gradient Descent 알고리즘이 존재한다.

Machine Learning

Linear Algebra review (optional)

Matrices and vectors skipping...