Probabilistic Reasoning

course notes 2018

© L.C. van der Gaag, S. Renooij

UU – ICS Master Programmes: Computing Science Artificial Intelligence

Probabilistic reasoning with Bayesian networks

Lecturers: Silja Renooij & Linda van der Gaag

e-mail: {s.renooij, l.c.vandergaag}@uu.nl

Prerequisites: probability theory & graph theory

Literature: syllabus & slides & studymanual

Form: lectures & exercises (formative self assessment)

(tip: discuss exercises on Blackboard forum)

Grading: practical assignments & written exam

Additional see course website:

info: http://www.cs.uu.nl/docs/vakken/prob/

Chapter 1:

Introduction

Reasoning under uncertainty

In numerous application areas of knowledge-based decision-support systems we have

- uncertainty concerning the general domain knowledge;
- problem-specific information that is often uncertain, incomplete and even contradictory.

A decision-support system should be capable of dealing with these types of knowledge.

Application of probability theory

Consider a discrete joint probability distribution \Pr on a set of random variables $V = \{V_1, \dots, V_n\}$. In general we have that:

- the representation of \Pr requires exponential space consider e.g. n=2 binary-valued variables, or n=40; what if they have 5 values each? (and how do you get the numbers?)
- calculating the (conditional) probability of a value of a variable by conditioning and marginalisation requires exponential time

```
consider e.g. computing \Pr(V_1 = \mathsf{true}) from \Pr(V), or \Pr(V_1 = \mathsf{true} \mid V_2 = \mathsf{true})
```

This cannot be improved without additional knowledge about the probability distribution.

Diagnosis problem: pioneering in the 1960s

Let $H = \{h_1, \dots, h_n\}, n \ge 1$, be a set of hypotheses, and let $E = \{e_1, \dots, e_m\}, m \ge 1$, be a set of relevant findings (evidence).

Determine the 'best' diagnosis given findings $e \subseteq E$.

The approach: Compute for each $h \subseteq H$ the probability

$$\Pr(\boldsymbol{h} \mid \boldsymbol{e}) = \frac{\Pr(\boldsymbol{e} \mid \boldsymbol{h}) \Pr(\boldsymbol{h})}{\Pr(\boldsymbol{e})}$$

<u>Drawback</u>: An exponential number of probabilities need to be computed; storage is also exponential.

Pioneering in the 1960s

Determine the diagnosis given findings $e \subseteq E$.

The approach: Assume $h_i \in H$ mutually exclusive, and collectively exhaustive: $\bigcup_{i=1}^n \{h_i\} = \Omega$.

Then, compute for each $h_i \in \mathbf{H}$:

$$\Pr(h_i \mid \boldsymbol{e}) = \frac{\Pr(\boldsymbol{e} \mid h_i) \Pr(h_i)}{\Pr(\boldsymbol{e})} = \frac{\Pr(\boldsymbol{e} \mid h_i) \Pr(h_i)}{\sum_{k=1}^n \Pr(\boldsymbol{e} \mid h_k) \Pr(h_k)}$$

<u>Drawback</u>: We compute only n-1 probabilities, but computation still requires an exponential number of probabilities.

Pioneering in the 1960s

Determine the diagnosis given findings $\mathbf{e} = \{e_p, \dots, e_q\},\ 1 \leq p, q \leq m.$

The approach: Assume in addition that all findings e_1, \ldots, e_m are conditionally independent given h_i , $i = 1, \ldots, n$. Then:

$$\Pr(h_i \mid \mathbf{e}) = \frac{\Pr(e_p, \dots, e_q \mid h_i) \Pr(h_i)}{\sum_{k=1}^n \Pr(e_p, \dots, e_q \mid h_k) \Pr(h_k)}$$
$$= \frac{\Pr(e_p \mid h_i) \cdot \dots \cdot \Pr(e_q \mid h_i) \Pr(h_i)}{\sum_{k=1}^n \Pr(e_p \mid h_k) \cdot \dots \cdot \Pr(e_q \mid h_k) \Pr(h_k)}$$

Benefit: Only $m \cdot n$ conditional probabilities and n-1 prior probabilities are required for the computation.

GLADYS

GLADYS (GLASGOW DYSPEPSIA SYSTEM) is a system for diagnosing dyspepsia.

The global structure of the system:

D.J. Spiegelhalter, R.P. Knill-Jones (1984). Statistical and knowledge-based approaches to clinical decision-support systems with an application in gastroenterology, Journal of the Royal Statistical Society (Series A), vol. 147, pp. 35-77.

Symptoms and diseases

Context: patients with an Ulcer. Question: which type?

		duodenal ulcer	gastric ulcer
		(n=248)	(n = 43)
Sex:	male	169	17
	female	79	26
Age:	< 26	43	1
	26 - 40	82	5
	41 - 55	87	19
	> 55	36	18
Daily pain:	yes	21	11
	no	214	27
Effect food	worsens	44	11
on pain:	no effect	82	9
	relieves	104	17
probability		0.85	0.15

The idea

Let \Pr be a joint distribution on the diagnosis search space including hypothesis h and observed findings e.

The prior odds for h, and posterior odds for h given e, are defined by

$$O(h) = \frac{\Pr(h)}{1 - \Pr(h)} = \frac{\Pr(h)}{\Pr(\neg h)}, \text{ and } O(h \mid \boldsymbol{e}) = \frac{\Pr(h \mid \boldsymbol{e})}{\Pr(\neg h \mid \boldsymbol{e})}$$

Assume that all findings $e_i \in e$ are conditionally independent given h, then

$$O(h \mid \boldsymbol{e}) = \frac{\Pr(\boldsymbol{e} \mid h) \cdot \Pr(h)}{\Pr(\boldsymbol{e} \mid \neg h) \cdot \Pr(\neg h)} = \prod_{i} \frac{\Pr(e_i \mid h)}{\Pr(e_i \mid \neg h)} \cdot O(h)$$

Now consider the following transformation: $10 \cdot \ln O(h \mid e) \dots$

The idea (cntd)

Applying the transformation $10 \cdot \ln$ to

$$O(h \mid e) = \prod_{i} \lambda_i \cdot O(h), \text{ where } \lambda_i = \frac{\Pr(e_i \mid h)}{\Pr(e_i \mid \neg h)}$$

results in a score s:

$$s = 10 \cdot \ln O(h \mid e) = 10 \cdot \ln O(h) + \sum_{i} 10 \cdot \ln \lambda_{i} = w_{0} + \sum_{i} w_{i}$$

where w_i is a weight for finding e_i .

The probability $Pr(h \mid e)$ is now computed from

$$\Pr(h \mid e) = \frac{O(h \mid e)}{1 + O(h \mid e)} = \frac{e^{\frac{s}{10}}}{1 + e^{\frac{s}{10}}} = \frac{1}{1 + e^{-\frac{s}{10}}}$$

A scoring system

-	h: duodenal ulcer (du)	¬h: gastric ulcer (gu)	
	(n=248)	(n = 43)	
male (m)	169	17	
female (f)	79	26	

Calculation of probabilities, likelihood ratios and weights:

$$\begin{split} \Pr(\textbf{m} \mid \textbf{du}) &= \frac{169}{248} \sim 0.68, \ \Pr(\textbf{m} \mid \textbf{gu}) \sim 0.40 \ \Rightarrow \\ \lambda_{\textbf{m}} &= \frac{\Pr(\textbf{m} \mid \textbf{du})}{\Pr(\textbf{m} \mid \textbf{gu})} = \frac{0.68}{0.40} \sim 1.7 \implies \textbf{w}_{\textbf{m}} = 10 \cdot \ln \lambda_{\textbf{m}} \sim 5 \end{split}$$

$$\begin{split} \Pr(\mathsf{f}\mid\mathsf{du}) &= \frac{79}{248} \sim 0.32, \ \Pr(\mathsf{f}\mid\mathsf{gu}) \sim 0.60 \ \Rightarrow \\ \lambda_\mathsf{f} &= \frac{\Pr(\mathsf{f}\mid\mathsf{du})}{\Pr(\mathsf{f}\mid\mathsf{gu})} = \frac{0.32}{0.60} \sim 0.53 \ \Longrightarrow \ \mathsf{w}_\mathsf{f} = 10 \cdot \ln \lambda_\mathsf{f} \sim -6 \end{split}$$

Symptoms and their weights

		duodenal ulcer	gastric ulcer	weight
		(n=248)	(n = 43)	
Sex:	male	169	17	5
	female	79	26	-6
Age:	< 26	43	1	18
	26 - 40	82	5	10
	41 - 55	87	19	-2
	> 55	36	18	-10
Daily pain:	yes	21	11	-12
	no	214	27	3
Effect food	worsens	44	11	-4
on pain:	no effect	82	9	4
	relieves	104	17	0
prior	<u> </u>	0.85	0.15	17

An example diagnosis

A 30 year old woman reports to the clinic. She has pain in the abdominal area, but not on a daily basis; the pain worsens as soon as she eats.

Calculation of the score:

•	the initial score:	+17
•	the patient is female:	- 6
•	her age is 30:	+10
•	she is in pain, but not every day:	+ 3
•	food intake worsens the pain:	- 4
	•	+20

Given that the patient has one of the two diseases, duodenal ulcer and gastric ulcer, she has with probability

$$(1 + e^{-\frac{20}{10}})^{-1} \approx 1.14^{-1} \approx 0.88$$

a duodenal ulcer and a gastric ulcer with probability 0.12.

Reviewing 'Idiot's Bayes'

The naive Bayes approach is

- · mathematically correct, and
- computationally easy.

However

- underlying assumptions usually unacceptable;
- and, at the time, for larger applications
 - # of hypotheses often large \rightarrow undoable to compute each $\Pr(h_i \mid e)$;
 - often not enough information for reliable probability assessments.

History: diagnosis in the 1970s

The most likely hypothesis given observed findings is determined as follows:

- prune the search space using heuristic rules;
- approximate the missing probabilities required, for example with:

$$Pr(e_i \wedge e_j) = min\{Pr(e_i), Pr(e_j)\};$$

select the hypothesis with the highest probability.

Reviewing the quasi-probabilistic models

The quasi-probabilistic models are

- computationally easy, and
- easy to use,

even for larger applications.

However, these models are

- · mathematically incorrect, and
- even as an approximation model not convincing.

The rehabilitation of probability theory in the 1980s

Judea Pearl introduces Bayesian belief networks as representational device

- + algorithms for inferring (computing) 'beliefs' from those represented
- first for trees and polytrees (singly connected graphs)
- then for multiply-connected graphs
- for the latter, the algorithm by Steffen Lauritzen & David Spiegelhalter was the first to find wide-spread use.

Also see "Inference in Bayesian Networks: a Historical Perspective", by Adnan Darwiche

The Bayesian network framework

A Bayesian network is a very compact representation of a joint probability distribution Pr. Such a network comprises

- qualitative knowledge of Pr: a graphical representation of the independences between the variables involved;
- quantitative knowledge of \Pr : conditional probability distributions that describe \Pr 'locally' per group of variables.

Associated with a Bayesian network are algorithms for computing probabilities and for processing evidence.

An example: Classical Swine Fever (CSF)

The classical swine fever network is a decision-support system for the early detection of classical swine fever (varkenspest).

- early detection of CSF is important, but hard;
- the network has been developed in cooperation with 2 veterinarians of the Central Veterinary Institute of Wageningen UR;
- part of european EPIZONE project;
- veterinarians all over the country collected data with PDAs

The Classical swine fever network: initial graphical structure

The Classical swine fever network: probability tables

 $Pr(Appetite \mid BodyTemp \land Malaise)$

Classical swine fever: prior probabilities

Faeces

Prim. Other Infection

Reproduction phase

Respiratory problems

Classical swine fever: diagnostic reasoning

Classical swine fever: prognostic reasoning

A Bayesian network: necessary ingredients

Definition:

A Bayesian network is a pair $\mathcal{B} = (G, \Gamma)$ such that

- G is an acyclic directed graph with nodes representing a set of random variables V;
- $\Gamma = \{\gamma_{V_i} \mid V_i \in V\}$ is a set of assessment functions.

Property:

$$\Pr(\mathbf{V}) = \prod_{V_i \in \mathbf{V}} \gamma_{V_i}(V_i \mid \boldsymbol{\rho}(V_i))$$

defines a *joint probability distribution* \Pr on V such that G is a directed I-map for the independence relation I_{\Pr} of \Pr .

About this course ...

The following subjects will be addressed in this course:

- the syntactics and semantics of a Bayesian network;
- algorithms for reasoning with a Bayesian network;
- methods for constructing a Bayesian network for a domain of application;
- methods for evaluating a Bayesian network's performance and behaviour;
- algorithms for controlling reasoning;

Overview of subjects

