

OptoElec & ONIP-1 / TD Systèmes et Signaux

SÉANCE 2 / SIGNAUX, IMAGES ET FFT

Un tutoriel sur la FFT est proposé sur la page suivante, section **FFT with Python**:

https://iogs-lense-training.github.io/python-for-science/

Exercice 1 / FFT sur des signaux 1D

- 1. Définir une fonction qui génère un signal sinusoïdal d'une amplitude donnée et d'une fréquence donnée. Le vecteur temps devra également être passé en argument.
- 2. Générer 2 signaux sinusoïdaux :
 - le premier $sine_a$ de fréquence 200 Hz et d'amplitude 1
 - le second $sine_b$ de fréquence 287 Hz et d'amplitude 2
- 3. Tracer ces deux signaux sur un même graphique.
 - On se propose d'étudier un signal $sine_c$ correspondant à la somme de ces deux signaux : $sine_c = sine_a + sine_b$
- 4. Tracer le signal $sine_c$ sur un graphique.
- 5. Calculer la FFT de ce signal et tracer cette réponse en fréquence sur un nouveau graphique, sans spécifier l'axe des fréquences. Que pouvez-vous conclure ?
- 6. Construire l'axe des fréquences à l'aide de la fonction numpy.fft.fftfreq.
- 7. Afficher la FFT du signal précédent en se basant cette fois-ci sur l'axe des fréquences générés à l'aide de numpy.fft.fftfreq.

Exercice 2 / FFT sur des images

On se propose d'étudier le script *image_filter.py* (associé à l'image TEST_IMAGE.PNG), disponible sur le site du LEnsE, rubrique Année / Première Année / Outils Numériques / TD Systèmes et Signaux.

- 1. Tester ce script.
- 2. Modifier la valeur du rayon (radius) associée à la fonction circular_mask.py et relancer le script.
- 3. Expliquer les différentes étapes et l'impact sur l'image finale.

Exercice 3 / FFT en 2D

Le script trame_generator.py, disponible sur le site du LEnsE, rubrique Année / Première Année / Outils Numériques / TD Systèmes et Signaux, contient une fonction permettant de générer des trames sinusoïdales en 2D.

- 1. A l'aide de cette fonction, générer une trame sinusoïdale de taille 400 pixels par 300 pixels avec un angle de 63° et un pas de 30 pixels.
- 2. Afficher l'image.
- 3. Tracer et afficher la FFT de cette image (attention au shift).
- 4. Tester pour des pas et des angles différents.