99. 定积分的近似计算

1. 问题的提出

计算定积分的方法:

- (1) 求原函数;
- (2) 利用牛顿一莱布尼茨公式得结果.

问题:

- (1) 被积函数的原函数不能用初等函数表示;
- (2) 被积函数难于用公式表示,而是用图形或表格给出的;
- (3) 被积函数虽然能用公式表示,但计算其原函数很困难.

解决办法:建立定积分的近似计算方法.

思路:

 $\int_{a}^{b} f(x)dx (f(x) \ge 0)$ 在数值上表示曲边梯形的面积,只要近似地算出相应的曲边梯形的面积,就得到所给定积分的近似值.

常用方法:矩形法、梯形法、抛物线法.

2. 矩形法

用分点 $a = x_0, x_1, \dots, x_n = b$ 将区间[a,b]n 等分,取小区间左端点的函数值 y_i $(i = 0,1, \dots, n)$ 作为 窄矩形的高,如图

则有

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} y_{i-1} \Delta x$$

$$= \frac{b-a}{n} \sum_{i=1}^{n} y_{i-1}$$
 (1)

取右端点的函数值 $y_i(i=1,2,\cdots,n)$ 作为窄矩形的高,如图

则有

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} y_{i} \Delta x$$

$$=\frac{b-a}{n}\sum_{i=1}^{n}y_{i} \qquad (2)$$

(1)、(2) 称为矩形法公式.

3. 梯形法

梯形法就是在每个小 区间上,以窄梯形的 面积近似代替窄曲边 梯形的面积,如图

$$\int_{a}^{b} f(x)dx \approx \frac{1}{2}(y_{0} + y_{1})\Delta x + \frac{1}{2}(y_{1} + y_{2})\Delta x$$

$$+\cdots+\frac{1}{2}(y_{n-1}+y_n)\Delta x$$

$$= \frac{b-a}{n} \left[\frac{1}{2} (y_0 + y_n) + y_1 + y_2 + \dots + y_{n-1} \right]$$
 (3)

•	例1. 用矩形法和梯形法计算积分 $\int_0^1 e^{-x^2} dx$									
•	的近似值.									
•	解 把区间十等分,设分点为 x_i , $(i = 0,1,,10)$									
•	相应的函数值为 $y_i = e^{-x_i^2} (i = 0, 1, \dots, 10)$, 列表									
•	如下:									
•	i	0	1	2	3	4	5			
J	x_i	0	0.1	0.2	0.3	0.4	0.5			
	y_i	1.00000	0.99005	0.96079	0.91393	0.85214	0.77880			
•										
•						上页 下	"页"			

i	6	7	8	9	10		
\boldsymbol{x}_i	0.6	0.7	0.8	0.9	1		
y_i	0.69768	0.61263	0.52729	0.44486	0.36788		

利用矩形法公式(1),得

$$\int_0^1 e^{-x^2} dx \approx \left(y_0 + y_1 + \dots + y_9 \right) \cdot \frac{1 - 0}{10} = 0.77782.$$

利用矩形法公式(2),得

$$\int_0^1 e^{-x^2} dx \approx \left(y_1 + y_2 + \dots + y_{10} \right) \cdot \frac{1 - 0}{10} = 0.71461.$$

上页

利用梯形法公式(3),得
$$\int_0^1 e^{-x^2} dx \approx \frac{1-0}{10} \left[\frac{1}{2} (y_0 + y_{10}) + y_1 + y_2 \dots + y_9 \right]$$
 这就是前面两个矩形法所得近似值的算术平均值,
$$\therefore \int_0^1 e^{-x^2} dx \approx \frac{1}{2} (0.77782 + 0.71461) = 0.74621.$$

这就是前面两个矩形法所得近似值的算术平均值,

$$\therefore \int_0^1 e^{-x^2} dx \approx \frac{1}{2} (0.77782 + 0.71461) = 0.74621.$$

4. 抛物线法

抛物线法是将曲线分为许多小段,用对称轴平 行于 y 轴的二次抛物线上的一段弧来近似代替 原来的曲线弧,从而得到定积分的近似值.

用分点 $a = x_0, x_1, \dots, x_n = b$

把区间分成 n(偶数)等分,

这些分点对应曲线上的点

为
$$M_i(x_i, y_i), y_i = f(x_i).$$

$$(i=0,1,2,\cdots n)$$

上页

下页

因为经过三个不同的点可以唯一确定一抛物线,

故可将这些曲线上的点 M_i 互相衔接的分成 $\frac{n}{2}$ 组,

 $\{M_0, M_1, M_2\}, \{M_2, M_3, M_4\}, \dots, \{M_{n-2}, M_{n-1}, M_n\}.$

在每组 $\{M_{2k-2}, M_{2k-1}, M_{2k}\}$ $\left(k=1,2,\dots,\frac{n}{2}\right)$ 所对

应的子区间 $[x_{2k-2},x_{2k}]$ 上,用经过点 M_{2k-2},M_{2k-1} ,

 M_{2k} 的二次抛物线 $y = px^2 + qx + r$ 近似代替曲 线弧 y = f(x).

计算在[-h,h]上过三点 $M'_0(-h,y_0),M'_1(0,y_1),$ $M'_{2}(h, y_{2})$,的抛物线 $y = px^{2} + qx + r$ 为曲边的

$$\begin{cases} y_0 = ph^2 - qh + r \\ y_1 = r \end{cases},$$
$$y_2 = ph^2 + qh + r$$

由此得 $2ph^2 = y_0 - 2y_1 + y_2$.

于是所求面积为

$$A = \int_{-h}^{h} \left(px^2 + qx + r \right) dx$$

$$= \frac{2}{3}ph^3 + 2rh = \frac{1}{3}h(2ph^2 + 6r)$$

$$=\frac{1}{3}h(y_0+4y_1+y_2),$$

显然,曲边梯形的面积只与 M'_0,M'_1,M'_2 的级坐标 y_0,y_1,y_2 及底边所在的区间长度 2h 有关.

由此可知 $\frac{n}{2}$ 组曲边梯形的面积为

$$A_1 = \frac{1}{3}h(y_0 + 4y_1 + y_2), \quad A_2 = \frac{1}{3}h(y_2 + 4y_3 + y_4),$$
.....

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{3n} \left[(y_{0} + y_{n}) + 2(y_{2} + y_{4} + \dots + y_{n-2}) + 4(y_{1} + y_{3} + \dots + y_{n-1}) \right].$$

例2. 对如图所示的图形测量所得的数据如下表所示,用抛物线法计算该图形的面积A.

站号	-1	0	1		2	3		4		5	6
高y	0	2.305	4.865	6.	974	8.5	568	9.55	9	10.01	110.183
站号	7	8	9)	1	0	1	11		12	13
高y	10.200	10.20	0 10.200		10.200		10.200		10.200		10.200
站号	14	15	1	6	1	7	1	18	1	19	20
高y	10.400	9.410	8.0	15	6.0	83	3.9	909	1.	814	0

两站之间的距离(站距)为147.18÷20=7.359. 而-1站到0站之间的距离为5米.

解 从-1站到0站这一段的面积用 A_1 表示. 它可以用曲线同坐标轴的交点的连线与坐标 轴构成的三角形的面积来近似表示,即

$$A_1 \approx \frac{1}{2} \times 5 \times 2.305 = 5.763$$
 (平方米).

根据抛物线公式(4),得

$$A_2 \approx \left[\left(y_0 + y_{20} \right) + 4 \left(y_1 + y_3 + y_5 + \dots + y_{19} \right) \right]$$

$$+2(y_2+y_4+\cdots+y_{18})$$
] $\frac{\Delta x}{3}=1194.839$ (平方米).

$$\therefore A = A_1 + A_2 \approx 5.768 + 1194.839 = 1200.602 (平方米).$$

5. 小结

求定积分近似值的方法:

矩形法、梯形法、抛物线法

注意: 对于以上三种方法当 n 取得越大时近似程度就越好.

练习题

- 1.某河床的横断面如教材图5-12所示,为了计算最大排洪量,需要计算它的断面积. 试根据图示的测量数据(单位为米)用梯形法计算其断面积.
- 2.用三种积分近似计算法计算

$$s=\int_0^{\frac{\pi}{2}}\sqrt{1-\frac{1}{2}\sin^2t}dt\,,$$

(取 n = 6,被积函数值取四位小数).

练习题答案

- 1. 145.6(平方米).
- 2. (1).1.3890;
 - (2).1.3506;
 - (3).1.3506.

