Задача 1. Новые Архимеды.

Молодой, но талантливый физик Федор (далее Федя), после просмотра программы «Что? Где? Когда?» решил сочинить собственный вопрос-задачу с черным ящиком – как,

не заглядывая внутрь, определить что там находится. Идея пришла сразунужен «гидравлический черный ящик». Возьмем большую бочку, наполовину заполненную водой, и закроем ее крышкой с маленьким отверстием. Через отверстие пропустим прочную нить, к которой снизу прикрепим некоторой тело. Сверху с помощью чувствительного динамометра будем измерять силу натяжения нити, постепенно опуская и поднимая ее. Измеряя тем самым зависимость силы натяжения T(x) от координаты верхнего конца нити. Для ее измерения прикрепим к крышке

бочки вертикальную линейку. Причем можно провести два измерения — при опускании и при подъеме тела! Можно ли по измеренной зависимости T(x) восстановить форму тела? Подумавши, Федя решил, что эта задача не имеет однозначного решения. Поэтому ввел дополнительное условие — тело должно быть осесимметричным! Уж в этом случае задача должна иметь решение при условии, что ось тела все время

остается вертикальной.

Тем более, что форма осесиметричного тела определяется одной функцией — зависимостью радиуса от высоты над низом тела r(z).

Решено – сделано! Федор приступает к апробации своей идеи. Соединяет два сплошных металлических цилиндра, прикрепляет сверху прочную бечевку и ... решает провести сначала теоретические расчеты. Измеряет размеры:

 $R_1=10.0\,\mathrm{cm}$, $R_2=5.0\,\mathrm{cm}$, $h_1=15\,\mathrm{cm}$, $h_2=10\,\mathrm{cm}$, Измеряет массу $m=20\,\kappa z$. Далее рассчитывает (естественно полагая, что $g=10\frac{\mathrm{M}}{\mathrm{c}^2}$, а плотность воды равна $\rho=1.0\cdot 10^3\,\frac{\mathrm{Kr}}{\mathrm{M}^3}$) и строит график зависимости силы натяжения веревки от координаты верхней точки веревки.

Вопрос 1.

Постройте график зависимости силы натяжения веревки от координаты верхней точки веревки. Считайте, что сила натяжения стала изменяться после того, как веревка опустилась до $x_0 = 5.0 \, cm$.

Проведя эксперимент, Федя убедился, экспериментальные данные в пределах погрешности совпали с результатами расчетов. «Может провести эксперимент, поднимая груз со дна?» - подумал Федя и тут же отбросил эту идею – ничего нового не получится!

Далее Федор решил усложнить задачу — больно уж простой получилась зависимость. Во втором эксперименте Федя использовал сплошной конус высотой $h=17\,\mathrm{cm}$ с углом полураствора $\alpha=20\,^\circ$, измеренная масса конуса равна $m=7,5\,\kappa z$.

Вопрос 2.

Постройте график зависимости силы натяжения нити T(x) от координаты x для этого эксперимента.

И этот эксперимент подтвердил проведенные расчеты. Вдохновленный успехом, Федор решил разработать общую теорию решения обратной задачи – как по измеренной зависимости T(x) восстановить форму тела r(z)? Оказалось,

Вопрос 3.

что задача имеет решение в общем виде!

Допустим, что вам известен точный вид зависимости силы натяжения веревки T(x). Выразите в общем виде функцию, описывающую форму тела r(z).

Придя в восторг от полученных достижений, Федя решил продемонстрировать свое открытие другу Васе. Он подробно объяснил суть дела и предложил Васе самостоятельно, в тайне, изготовить любое осесимметричное тело (только такое, чтобы оно тонуло в воде), привязать его к веревке, опустить в бочку, просунув конец веревки через отверстие в крышке. Хитрый Вася согласился и всего через пять минут закончил все подготовительные работы, и предложил Феде провести свой эксперимент.

После тщательных измерений Федя построил график зависимости силы натяжения веревки от ее координаты. «Тоже мне друг называется!» - подумал Федя взглянув на график. И решил провести измерения при подъеме того же тела. Через несколько минут и второй график был готов!

Полученные графики показаны на рисунке.

«Эврика!» - воскликнул Федя и рассказал Васе, какое тело он изготовил и поместил в прибор.

Вопрос 4. Определите Форму тела, которое сделал Вася, найдите его размеры.