Tugas 2 - Performance Evaluation

IS184620 - Analitika Bisnis [A] Muhammad Fathurrahman 5026201139

1. Email Dataset

Dalam kurun waktu 2 minggu terakhir, diambil sampel sebanyak 20 *email* yang masuk ke dalam kotak surat. Di antara sampel yang diambil, ada yang tergolong sebagai *spam* dan bukan *spam*.

Email yang mencurigakan entah baik dari isinya maupun dari pengirimnya akan secara otomatis digolongkan sebagai *spam email* oleh sistem. Begitupun sebaliknya untuk *email* yang bukan *spam*.

2. Classification Table (Actual & Predicted)

Berdasarkan *email* yang masuk, dibuat tabel klasifikasi untuk mengkategorikan *email* yang sesuai dan tidak sesuai dengan kategori yang sudah digolongkan oleh sistem.

No	Actual	Predicted	
1	Spam	Not Spam	
2	Not Spam	Spam	
3	Not Spam	Not Spam	
4	Not Spam	Not Spam	
5	Not Spam	Spam	
6	Spam	Spam	
7	Spam	Spam	
8	Spam	Not Spam	
9	Not Spam	Spam	
10	Not Spam	Spam	

No	Actual	Predicted	
11	Spam	Spam	
12	Not Spam Not Spam		
13	Spam	Spam Not Spam	
14	Spam	Spam	
15	Not Spam	Not Spam Not Spam	
16	Not Spam Spam		
17	Not Spam Not Spam		
18	Not Spam Spam		
19	Spam Not Spam		
20	Spam Not Spam		

3. Confusion Classification (TP, TN, FP, FN)

Berdasarkan tabel klasifikasi, dapat dihitung berapa nilai dari TP, TN, FP, dan FN.

True Positive : Spam yang digolongkan spam
(Actual true, Predicted true)
True Negative : Not spam yang digolongkan not spam
(Actual false, Predicted false)
False Positive : Spam yang digolongkan spam
(Actual false, Predicted true)
(Actual false, Predicted true)
(Actual true, Predicted false)

Apabila penghitungan dilakukan menggunakan python akan seperti ini:

```
actual_email = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
predicted_email = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]
def confusion_matrix(actual, predicted):
    TP, TN, FP, FN = 0, 0, 0, 0
    for i in range(len(actual)):
        if actual[i] == 1 and predicted[i] == 1:
        elif actual[i] == 0 and predicted[i] == 0:
            TN += 1
        elif actual[i] == 0 and predicted[i] == 1:
            FP += 1
        elif actual[i] == 1 and predicted[i] == 0:
            FN += 1
    return TP, TN, FP, FN
TP, TN, FP, FN = confusion_matrix(actual_email, predicted_email)
print("TP: {}, TN: {}, FP: {}, FN: {}".format(TP, TN, FP, FN))
```

Output dari kode tersebut akan memberikan nilai berikut:

```
TP: 4, TN: 5, FP: 6, FN: 5
```

4. Confusion Matrix

		Predicted		
		True	False	
Actual	True	4	5	9
	False	6	5	11
		10	10	20

5. Performance Evaluation (Own Function)

Berdasarkan data pada *confusion matrix*, dapat dihitung berapa nilai dari *accuracy*, *precision*, *recall*, dan *f-measure* menggunakan *python* seperti ini:

```
def accuracy(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return (TP + TN) / (TP + TN + FP + FN)
print("Accuracy: {0:.3g}".format(accuracy(actual_email, predicted_email)))
def precision(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return TP / (TP + FP)
print("Precision: {0:.3g}".format(precision(actual_email, predicted_email)))
def recall(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return TP / (TP + FN)
print("Recall: {0:.3g}".format(recall(actual_email, predicted_email)))
def f_measure(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return 2 * (precision(actual, predicted)) * recall(actual, predicted)) /
(precision(actual, predicted) + recall(actual, predicted))
print("F-Measure: {0:.3g}".format(f_measure(actual_email, predicted_email)))
```

Output dari kode tersebut akan memberikan nilai berikut:

```
Accuracy: 0.45
Precision: 0.4
Recall: 0.444
F-Measure: 0.421
```

6. Performance Evaluation (Built-In Function)

Penghitungan nilai dari *accuracy*, *precision*, *recall*, dan *f-measure* dapat menjadi lebih ringkas dengan menggunakan *built-in function* dari *scikit-learn* (*classification_report*).

```
#!/usr/bin/python

from sklearn.metrics import classification_report

actual_email = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1]
predicted_email = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]

# Accuracy, Precision, Recall, dan F-Measure menggunakan scikit-learn
print(classification_report(actual_email, predicted_email))
```

Output dari kode tersebut akan memberikan nilai berikut:

```
precision
                           recall f1-score
                                               support
                   0.50
                             0.45
                                       0.48
                   0.40
                             0.44
                                       0.42
                                       0.45
    accuracy
                                       0.45
                   0.45
                             0.45
   macro avg
weighted avg
                   0.45
                             0.45
                                        0.45
```

7. Balanced or Imbalanced Dataset

Dataset email pada studi kasus ini termasuk dataset yang imbalanced, hal ini dikarenakan perbandingan varietas sampel, true dengan false, tidak sebanding (9:11).

Dataset yang imbalanced sangat mempengaruhi performa dari mesin, salah satunya pada nilai accuracy yang kecil (**0.45**) (Pradeep Kumar et al 2021).

8. Evaluation

Pada studi kasus ini, didapati bahwa nilai *precision* dari model ke-2 (*spam email* diasumsikan sebagai positif) memiliki nilai terendah yaitu **0.40**.

Hal ini dapat terjadi dikarenakan banyaknya jumlah *email* yang diklasifikasikan sebagai *False Positive* (*not spam email* digolongkan *spam*) diikuti dengan sedikitnya jumlah *email* yang diklasifikasikan sebagai *True Positive* (*spam email* digolongkan *spam*).

Source Code

```
from sklearn.metrics import classification_report
actual_email = [1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
predicted_email = [0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0]
def confusion_matrix(actual, predicted):
    TP, TN, FP, FN = 0, 0, 0
    for i in range(len(actual)):
        if actual[i] == 1 and predicted[i] == 1:
            TP += 1
        elif actual[i] == 0 and predicted[i] == 0:
            TN += 1
        elif actual[i] == 0 and predicted[i] == 1:
            FP +=
        elif actual[i] == 1 and predicted[i] == 0:
            FN += 1
    return TP, TN, FP, FN
TP, TN, FP, FN = confusion_matrix(actual_email, predicted_email)
print("TP: {}\nTN: {}\nFP: {}\nFN: {}\n".format(TP, TN, FP, FN))
def accuracy(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return (TP + TN) / (TP + TN + FP + FN)
print("Accuracy: {0:.3g}".format(accuracy(actual_email, predicted_email)))
def precision(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return TP / (TP + FP)
print("Precision: {0:.3q}".format(precision(actual_email, predicted_email)))
def recall(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return TP / (TP + FN)
print("Recall: {0:.3g}".format(recall(actual_email, predicted_email)))
def f_measure(actual, predicted):
    TP, TN, FP, FN = confusion_matrix(actual, predicted)
    return 2 * (precision(actual, predicted) * recall(actual, predicted)) /
(precision(actual, predicted) + recall(actual, predicted))
print("F-Measure: {0:.3g}\n".format(f_measure(actual_email, predicted_email)))
print(classification_report(actual_email, predicted_email))
```