Development of Augmented Reality Navigation Application

SS017

Methodology

- Development of a **framework** for the implementation of Augmented Reality (AR) navigation application
- Development of the mobile application to demonstrate the proposed framework

Software

Main software for application Supported on both Android and iOS

AR visualisation

Google's ARCore SDK v1.12

SLAM functions supported

Custom-designed maps

mapbox

Mapbox SDK v2.1.1

Route generation

Unified Modelling Language (UML) Activity Diagram **Open Application** Enter Main Menu Select location from dropdown list Is destination near? No Enter AR View Enter Campus Map User starts moving User starts moving Plotting of suggested path Plotting of suggested path Is user following the path? Is user following the path? Yes **Yes**

Proposed Framework

No Has the user arrived Has the user arrived at the block? at the destination? Yes Yes Display text "You have arrived!" Display text "You have arrived at your desired block" End

User's marker moves along path

Final Prototype

Main Menu

Raycasting algorithm Determines the location of the user

- **GPS coordinates** of an area are plotted to form a polygon
- Check against **user's current GPS location**

Campus Map

Mapbox SDK Directions API User localisation and route generation

Use of GPS

Streamlines navigation

process while meeting

desired accuracy

Kalman Filter

Reduces noise due to fluctuations in GPS values

Augmented Reality View

User's marker moves along path

ARCore's SLAM Track user's movement with respect to known

starting location

ARCore's AR Camera Line rendering

smooth and **accurate** user experience

Results and Discussion

Analysis focuses on the qualitative response To gauge the **feasibility** of proposed framework and techniques

Section 2: Testing Phase Questions

System Usability Scale: Application scored 62.5 **Usability** Analysis

Functionalities Effective well-integrated for navigation

Potential in utilising **GPS** and SLAM to enhance user experience

Learnability

- Slightly **cumbersome** with some inconsistency
- Easy to use but some appear uncertain during initial AR navigation
- Some felt it was unnecessarily complicated

Occasional misalignment of guiding line due to

error accumulation

Visualisation of guiding line affected user's learning experience

Section 3: Post-Testing Phase Questions

Ease of navigation with application

Usefulness of application

Potential in effectively and efficiently guiding visitors and new staff

References

Overall functionality is good

Future Extension

- **Short-range communication** systems like MQTT for information transmission

Conclusion

- Proposed framework could be **easily adapted** to various campuses
- Application is **user-friendly** and **effective**

- . G. Gerstweiler, E. Vonach, and H. Kaufmann, "HyMoTrack: A Mobile AR Navigation System for
- Complex Indoor Environments," Sensors, vol. 16, no. 1, p. 17, 2015. 2. L. C. Huey, P. Sebastian, and M. Drieberg, "Augmented reality based indoor positioning navigation tool," 2011 IEEE Conference on Open Systems, 2011.
- 3. Lewis, James R., and Jeff Sauro. "The Factor Structure of the System Usability Scale." Human Centered Design Lecture Notes in Computer Science, 2009, pp. 94-103., doi:10.1007/978-3-642-02806-9 12.

G. Bresson, R. Aufrere, and R. Chapuis, "Improving SLAM with Drift Integration," 2015 IEEE 18th

- International Conference on Intelligent Transportation Systems, Aug. 2016.
- All icons were taken from flaticon.com Product icons from respective product sites All other images were self-created

Improved **visualisation** using arrows Improved algorithms for smoother implementation

- Integration of **audio** instructions
- Potential for actual implementation