Foundations of Nonparametric Bayesian Methods

Peter Orbanz

Overview: Today

- 1. Basic measure theory
- 2. Bayesian estimation
- 3. Construction of stochastic processes

Introduction: Parametric vs Nonparametric

Parametric model

A parameterized family of distributions, such that the number of parameters does not depend on sample size.

Nonparametric model

A parameterized model, but the number of parameters may grow with sample size.

Remarks:

- Number of parameters ≈ model complexity
- Complexity constant wrt sample size → nice convergence
- Typically: Nonparametric model → ∞-dim parameter space

Motivation: Measure Theory

Bayesian Nonparametrics

Probability models on infinite-dimensional spaces.

Problem: Density modeling

- ► Many ∞-dim distributions: No useful density.
- ▶ Some ∞-dim Bayesian models: No Bayes equation.

Measure-theoretic probability

- Most general available formalism for probability
- Measures good for proofs, densities good for modeling
- ▶ ∞-dim case: Have to work with measures

Measure Theory

Measure: Intuition

Roughly: Measure = Integral as a function of its region

$$\mu(A) = \int_A dx$$
 or $\mu(A) = \int_A p(x) dx$

Interpretation

 $\mu(A)$ is mass of A, eg:

- ▶ Geometric case: Volume of *A*, or physical mass of a body.
- ► Probability case: Probability mass of event "random variable *X* takes value in *A*"

Integration: Abstract properties

Integrals: Decomposition properties

Write $\mu(A)$ for integral $\int_A dx$.

- $\mu(\emptyset) = 0$ (integral over empty set is zero)
- ▶ Pairwise disjoint sets *A_n*:

$$\mu(A_1 \cup A_2) = \mu(A_1) + \mu(A_2)$$
 and $\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$

▶ If *B* ⊂ *A*:

$$\mu(B) \le \mu(A)$$
 and $\mu(A \setminus B) = \mu(A) - \mu(B)$

Henri Lebesgue's Approach

Call any set function an integral (a measure) if it decomposes like an integral.

σ -algebras (1)

Motivation

- ▶ Defining measure: Often difficult/impossible on $\mathcal{P}(\Omega)$
- ▶ Idea: Restrict μ to subset \mathcal{A} ("measurable sets") of $\mathcal{P}(\Omega)$
- Measurable sets = sets over which we can integrate

Intuition: σ -algebra

- Always assume we can integrate over Ω
- ▶ If integrals on $A_1, A_2,...$ given: Write $A = \sigma(\{A_1, A_2,...\})$ for system of all sets with deducable integrals.
- ▶ Compeleted set system A is called σ -algebra.

σ -algebras (2)

Def: σ -algebra

A system of sets $A \subset \mathcal{P}(\Omega)$ is called a σ -algebra if:

- 1. $\emptyset, \Omega \in \mathcal{A}$
- 2. If $A \in \mathcal{A}$, then $CA \in \mathcal{A}$
- 3. If $A_n \in \mathcal{A}$ (for $n \in \mathbb{N}$), then $\bigcup_{n=0}^{\infty} A_n \in \mathcal{A}$

Constructing σ -algebras

Most important method:

- Start with: T = all open sets in Ω.
- ▶ σ -algebra: $\mathcal{B}(\Omega) := \sigma(\mathcal{T})$ Read: $\sigma(\mathcal{T})$ = smallest σ -algebra that includes \mathcal{T}
- ▶ $\mathcal{B}(\Omega)$ is called the *Borel* σ -algebra of Ω
- Contains all open and closed sets

Measures

Def: Measure

Given σ -algebra \mathcal{A} , a *measure* is a function $\mu : \mathcal{A} \to \mathbb{R}_+$ with:

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ if $A_n \in A$ pairwise disjoint.

 μ is *probability measure* if additionally

3. $\mu(\Omega) = 1$

Note: (1) and (2) imply all integral decomposition properties.

Most important measures

- ▶ Lebesgue measure: "Flat" measure on \mathbb{R}^d (d-volume).
- ▶ Counting measure: |A| if A finite set, $+\infty$ otherwise.

Densities

Intuition

Density = function that transforms measure μ_1 into measure μ_2 by pointwise reweighting (on Ω)

Derivative Notation

$$d\mu_2(x) = f(x)d\mu_1(x)$$
 or $\frac{d\mu_2}{d\mu_1}(x) = f(x)$

Motivation: f = a function that is integrated to obtain μ_2 \rightarrow "derivative" of μ_2

Immediate Question:

Is there always a density for μ_1, μ_2 given?

Radon-Nikodym Theorem

Absolute Continuity

"Reweighting" by density

$$\mu_2(A) = \int_A d\mu_2(x) = \int_A f(x) d\mu_1(x)$$

cannot work if $\mu_1(A) = 0$ and $\mu_2(A) \neq 0$.

▶ If that never happens for any $A \in A$, then μ_2 is called "absolutely continuous wrt μ_1 ", in symbols: $\mu_2 \ll \mu_1$

Theorem (Radon-Nikodym)

Let μ_1, μ_2 be two finite measures on \mathcal{A} . Then μ_2 has a density w.r.t. μ_1 if and only if $\mu_2 \ll \mu_1$.

Probability: Formal Framework

- \triangleright ω : atomic random event, "state of the universe"
- X: Random variable (mapping Λ → Ω)
- X(ω): observed random value
- ightharpoonup P: probability measure (distribution of ω)
- ▶ For set $A \in \mathcal{B}(\Omega)$: Probability of " $X(\omega) \in A$ " = $\mathbb{P}(X^{-1}(A))$

Probability: Definitions

Def: Measurable mapping

Let \mathcal{A}, \mathcal{B} be σ -algebras in Λ, Ω . A mapping $X : \Lambda \to \Omega$ is called *measurable* if $X^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$.

Interpretation: "F measurable" means that expression " $\mathbb{P}(X^{-1}(B))$ " makes sense.

Def: Random variables

A random variable X is a measurable mapping from an abstract probability space $(\Lambda, \mathcal{A}, \mathbb{P})$ into an observation space $(\Omega, \mathcal{B}(\Omega))$.

Image Measure

The measure \mathbb{P} is not known explicitly. We work with the distribution μ_X of random variable X defined as the *image measure*:

$$\mu_{\mathsf{X}} := \mathsf{X}(\mathbb{P})$$
 i.e. $\mu_{\mathsf{X}}(\mathsf{A}) := \mathbb{P}(\mathsf{X}^{-1}(\mathsf{A}))$

Conditioning

Note

Defining conditional measures requires some effort.

Direct approach

Conditional probability of $X(\omega) \in A$ given that $X(\omega) \in B$:

$$\mu(A|B) := \frac{\mu(A \cap B)}{\mu(B)}$$

 \rightarrow no use if $\mu(B) = 0$ (think of Bayesian model on \mathbb{R}^d)

For now:

- ▶ We will just write $\mu(X|Y)$ for the conditional probability of X given Y and forget about details.
- If X, Y have a joint density, μ(X|Y) has a conditional density p(x|y).

Parametric Model

Parametric model

Let $X: (\Lambda, \mathcal{A}) \to (\Omega_X, \mathcal{B}_X)$ and $\Theta: (\Lambda, \mathcal{A}) \to (\Omega_\theta, \mathcal{B}_\theta)$ be two random variables, and $\mu_X = X(\mathbb{P})$. Then the conditional distribution $\mu_X(X|\Theta)$ is called a *parametric family* of models (parameterized by $\theta \in \Omega_\theta$).

Bayesian model

If X observed and Θ unobserved, we call:

- $\mu_{\Theta} := \Theta(\mathbb{P})$ the *prior measure*
- ▶ $\mu_{\Theta}(\Theta|X)$ the posterior measure
- The overall model is called a Bayesian model.

Note: Not defined by a Bayes equation!

Bayes' Theorem

Problem:

Given the prior and the data, how can we determine the posterior? (Without exhaustive knowledge of \mathbb{P} , \mathcal{A} etc)

Bayes Theorem

If the sampling model $\mu_X(X|\Theta)$ has density $p_{X|\theta}$, then:

$$\frac{d\mu_{\Theta|X}}{d\mu_{\Theta}}(\theta|X) = \frac{p_{X|\theta}}{\int p_{X|\theta}d\mu_{\theta}(\theta)}$$

for all x with $\int p_{X|\theta} d\mu_{\theta}(\theta) \notin \{0, \infty\}$.

Undominated Models

Dominated family:

Family of measures μ_t that all have density w.r.t. same ν .

In Bayes' theorem:

- " $p_{X|\theta}$ density of $\mu_{X|\Theta}$ " requires family $\mu_{X|\Theta}$ dominated.
- ▶ ∞-dim case: Often posterior ≪ prior not satisfied → Bayesian model, but no Bayes equation.

Note:

"No Bayes equation" \neq "intractable posterior"

Bayesian Nonparametrics

Nonparametric Bayesian model

A Bayesian model with:

- 1. $dim(\Omega_{\theta}) = dim(\Omega_{x}) = +\infty$.
- 2. Model can be evaluated on partial observations.

Partial observation

Random quantity with d dimensions, only m < d are observed.

Example: GP regression

GP draw is function *f*, but only finite number of values of *f* known.

Stochastic Process Models

Intuition

Stochastic process = ∞ -dim probability distribution

Typical GP definition

"A Gaussian process is a probability distribution on an infinite collection of random variables X_t such that the marginal distribution for each finite subset (t_1, \ldots, t_n) of indices is Gaussian."

→ Existence? Uniqueness?

Stochastic Process Construction (1)

Stochastic process measure $\mu^{\rm E}$: Distribution of RV

$$X^{E}:(\Lambda,\mathcal{A})
ightarrow (\Omega^{E},\mathcal{B}^{E})$$

- ► E: infinite index set (indexes entries of random vector)
- $ightharpoonup \Omega_0$: "one-dimensional" sample space
- $ightharpoonup \Omega^{\mathsf{E}} := \prod_{i \in F} \Omega_0$
- ▶ Interpretation: μ^{E} -draws = mappings $x : E \to \Omega_0$

Projector

 P_{II} := projection mapping $\Omega^{J} \to \Omega^{I}$ (for $I \subset J \subset E$)

Marginals

Marginal of μ^{J} on $\Omega^{\mathsf{I}} \subset \Omega^{\mathsf{J}}$:

$$\underbrace{(P_{II}\mu^{J})(A)}_{\text{On }\Omega^{J}} := \underbrace{\mu^{J}(P_{II}^{-1}A)}_{\text{On }\Omega^{J}}$$

marginals = projections of measures

Stochastic Process Construction (2)

Def: Projective family

Family $\{\mu^i | I \subset E \text{ finite}\}$ such that for all finite I, J with $I \subset J$:

$$P_{\scriptscriptstyle \rm JI}\mu^{\scriptscriptstyle \sf J}=\mu^{\scriptscriptstyle \sf I}$$

Note: If $\mu^{\rm E}$ given, the finite-dim marginals $\mu^{\rm I}:={\rm P}_{\rm EI}\mu^{\rm E}$ are a projective family.

Kolmogorov's Extension Theorem

If a family $\{\mu^{\rm I}|I\subset E \text{ finite}\}$ of finite-dimensional measures is projective, there exists a unique measure $\mu^{\rm E}$ on $\Omega^{\rm E}$ with $\mu^{\rm I}$ as its marginals.

Jargon: μ^{E} is called the *projective limit* of the μ^{I} .

Example: GP construction

Choice of components

- ▶ $\Omega_0 := \mathbb{R}$ and index set $E = \mathbb{R}$
- ▶ P_{II} : Euclidean projector from $\mathbb{R}^{|J|}$ to $\mathbb{R}^{|J|}$.
- ▶ Marginal family: μ are |I|-dimensional Gaussians

Ensure marginals projective

- ▶ Start with mean function m(.) and covariance k(.,.).
- ▶ Note: $E = \mathbb{R}$, finite $I = \{t_1, \dots, t_{|I|}\} \subset \mathbb{R}$
- ▶ μ ^I = Gaussian, mean $(m(t_1), ..., m(t_{|I|}))$ and $\Sigma_{ij} = k(t_i, t_j)$

Apply Extension Theorem

GP measure $\mu^{\rm E}$ exists and is unique.

Note: μ^{E} has mean m and covariance function k, but that is *not* an immediate consequence of theorem!

The Problem with Kolmogorov

Problem

If dimension E is uncountable, the projective limit measure $\mu^{\rm E}$ is basically useless.

Explanation

- ▶ Domain of μ^{E} : \mathcal{B}^{E} (generated by product topology)
- Sets in B^E: "axes-parallel" in all but countably many dimensions
- ▶ E uncountable $\rightarrow \mathcal{B}^{E}$ too coarse for meaningful modeling

A Note of Caution:

Problem is often neglected in literature.

Example: Original paper on the DP (Ferguson, 1973).

Uncountable Dimensions

Intuition:

Objects of interest *effectively* have countably many degrees of freedom.

Examples

- ► Continuous functions: Completely defined by values on dense subset (e.g. $\mathbb Q$ in $\mathbb R$)
- Probability measures: Completely defined by values on countable system of sets.

Strategies

- 1. Modify theorem to directly define measure on "interesting" space (eg space of continuous functions).
- 2. Use Kolmogorov theorem, than restrict $\mu^{\rm E}$ to interesting subspace.

Summary: Stochastic Process Construction

Kolmogorov

- Measure μ^E on product space Ω^E and "cylinder" σ-algebra ^E
- Conditions to check: Projective family
- ► Many interesting sets: Not product spaces product space → pointwise properties
- ▶ E uncountable: \mathcal{B}^{E} too coarse

Second Step

- If E countable: Done.
- ▶ If E uncountable: Measure μ^{E} has to be restricted to subspace to be useful.

Second step for uncountable *E* can be difficult.