TD 8 : Fonctions arithmétiques

Julien BESTARD Paul Dufour Quentin Robert

${\bf Contents}$

1	Exercice 1	3
2	Exercice 2 (addition)	5
	2.1 Table de verité	5
	2.2 Tableau de Karnaugh	5
	$2.2.1 R_i \dots \dots \dots \dots \dots \dots \dots \dots \dots $	5
	$2.2.2$ $S_i^{"}$	5
	2.3 Circuit	6
3	Exercice 3 (soustraction)	7
	3.1 Table de verité	7
	3.2. Tableau de Karnaugh	7
	$3.2.1 R_i \ldots \overset{\circ}{\ldots} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	7
	$3.2.1 R_i \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7
	3.3. Circuit	8

Exercice 1 1

n	D	С	В	A	E'	D'	C'	В'	A'
0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	0
2	0	0	1	0	0	0	1	0	0
3	0	0	1	1	0	0	1	1	0
4	0	1	0	0	0	1	0	0	0
5	0	1	0	1	1	0	0	0	0
6	0	1	1	0	1	0	0	1	0
7	0	1	1	1	1	0	1	0	0
8	1	0	0	0	1	0	1	1	0
9	1	0	0	1	1	1	0	0	0

Dizaine de N'

Unité de N'

Solutions évidente:

 $M^\prime = G^\prime = F^\prime = O$ car la plus grande dizaine est égale à 1 (= 0010)₂

Pour E':

DC BA	00	01	11	10
00				
01		1	1	1
11	Φ	Φ	Φ	Φ
10	1	1	Φ	Φ

E' = D + CA + CB $\Phi =$ Vu comme '1'

Pour D':

DC BA	00	01	11	10
00				
01	1			
11	Φ	Φ	Φ	Φ
10		1	Φ	Φ

 $D' = BA + C\overline{B} \overline{A}$ $\Phi = \text{Vu comme '1'}$

Pour C':

DC BA	00	01	11	10
00			1	1
01			1	
11	Φ	Φ	Φ	Φ
10	1		Φ	Φ

 $C' = BA + \overline{C}B + D\overline{A}$ $\Phi = \text{Vu comme '1'}$

Pour B':

DC BA	0 0	0 1	11	1 0
00		1	1	
01				1
11	Φ	Φ	Φ	Φ
10	1		Φ	Φ

$$B' = B\overline{A} + \overline{B} \ \overline{C}A + CB\overline{A}$$
 $\Phi = (\text{Vu comme '1'})$

2 Exercice 2 (addition)

2.1 Table de verité

A_i	B_i	R_{i-1}	S_i	R_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2.2 Tableau de Karnaugh

2.2.1 R_i

$R_{i-1} \xrightarrow{A_i B_i}$	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$R_i = B_i R_{i-1} + A_i R_{i-1} + A_i B_i$$

2.2.2 S_i

$R_{i-1} \xrightarrow{A_i B_i}$	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$S_i = \overline{A_i} \ \overline{B_i} \ R_{i-1} + \overline{A_i} \ B_i \overline{R_{i-1}} + A_i B_i R_{i-1} + A_i \overline{B_i} \ \overline{R_{i-1}}$$

$$S_i = R_{i-1} \left(\overline{A_i} \ \overline{B_i} + A_i B_i \right) + \overline{R_{i-1}} \left(\overline{A_i} B_i + A_i \overline{B_i} \right)$$

$$S_i = R_{i-1} \left(\overline{A_i \oplus B_i} \right) + \overline{R_{i-1}} \left(A_i \oplus B_i \right)$$

$$S_i = R_{i-1} \bigoplus A_i \bigoplus B_i$$

2.3 Circuit

3 Exercice 3 (soustraction)

3.1 Table de verité

A_i	B_i	R_{i-1}	D_i	R_i
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

3.2 Tableau de Karnaugh

3.2.1 R_i

$R_{i-1} \xrightarrow{A_i B_i}$	00	01	11	0
0	0	1	1	1
1	0	0	1	0

$$R_i = \overline{R_{i-1}}B_i + \overline{R_{i-1}}A_i + A_iB_i$$

3.2.2 D_i

D_i A_iB_i	00	01	11	10
0	0	1	0	1
1	1	0	1	0

$$D_i = \overline{A_i} \ \overline{B_i} \ R_{i-1} + \overline{A_i} \ B_i \overline{R_{i-1}} + A_i B_i R_{i-1} + A_i \overline{B_i} \ \overline{R_{i-1}}$$

$$S_{i} = R_{i-1} \left(\overline{A_{i}} \ \overline{B_{i}} + A_{i} B_{i} \right) + \overline{R_{i-1}} \left(\overline{A_{i}} B_{i} + A_{i} \overline{B_{i}} \right)$$

$$S_i = R_{i-1} \left(\overline{A_i \oplus B_i} \right) + \overline{R_{i-1}} \left(A_i \oplus B_i \right)$$

$$S_i = R_{i-1} \oplus A_i \oplus B_i$$

3.3 Circuit

 R_0