Санкт-Петербургский национальный исследовательский университет информационных технологий механикии оптики

Группа <u>Р32081</u> К раб	К работе допущен			
Студент <u> Пиндюрин К.А и Васильченко Р.А</u>	Работа выполнена			
Преподаватель Ярошенко В.В	Отчет принят			

Рабочий протокол и отчет лабораторной работе №3.06

Изучение электрических свойств сегнетоэлектриков

Цель работы:

- Определить значения электрического смещения насыщения D_s , остаточной поляризации P_r , коэрцитивной силы E_c для предельной петли гистерезиса сегнетоэлектрика.
- Рассчитать диэлектрические потери за цикл переполяризации сегнетоэлектрика.
- Получить зависимость смещения D и диэлектрической проницаемости от напряженности электрического поля E.
- Определить значение начальной и максимальной диэлектрической проницаемости.

Задачи, решаемые при выполнении работы:

- Подключение и настройка установки
- Определение значений параметров D_s и E_s , D_r , E_c по шкале на экране (предельная петля гистерезиса)
- Фиксирование координат правой вершины предельной петли гистерезиса при последовательном уменьшении напряжения U
- Расчёт значений коэрцитивного поля E_c , электрической индукции в состоянии насыщения D_s и остаточной поляризации P_r .
- Оценка погрешности результатов

Объект исследования:

Сегнетоэлектрический конденсатор (вариконд)

Метод экспериментального исследования:

Анализ петли гистерезиса с помощью прибора «ИСХ1» (Измеритель Статистических Характеристик)

Рабочие формулы и исходные данные:

$$\operatorname{tg} \delta = \frac{1}{\pi} \frac{\oint DdE}{D_s E_s}$$

$$\vec{D} = \vec{P} + \varepsilon_0 \vec{E}$$

- тангенс угла диэлектрических потерь в сегнетоэлектриках

- связь между D и E

$$D=\sigma=rac{q}{S}=rac{C_2U_{C_2}}{S}=rac{C_1}{S}\cdot U_{C_1}$$
 - модуль вектора электрической индукции D

$$E=rac{U_{C_2}}{d}=rac{U}{d}=rac{R_1+R_2}{R_1}\cdotrac{U_{R_1}}{d}$$
 - напряженность электрического поля в сегнетоэлектрик

Измерительные приборы:

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора	
1	ИСХ1 (генератор)	Электронный	[0,2; 17] B		
2	ИСХ1 (экран)	Электронный	[115x85]	1 мм	

Схема установки:

Рисунок 1. Общий вид лабораторной установки

Рисунок 2. Внешний вид стенда С3-РМ02

Рисунок 3. Экран дисплея «ИСХ1»

Задание 1:

 $R_1 = 47 \text{ kOm} \pm 10\%$

 $R_2 = 470 \text{ kOm} \pm 10\%$

 $C_1 = 1 \text{ MK}\Phi \pm 10\%$

 $C_2 = 0.01 \text{ MK}\Phi \pm 10\%$

 $S = 500 \text{ MM}^2$

d = 0.05MM

Задание 2:

Таблица 1: Зависимость диэлектрической проницаемости сегнетоэлектрика от напряженности электрического поля

Физические величины									
Nº	u, B	Кх, В/дел	Ку, В/дел	Х, дел	<i>Y</i> , дел	<i>Е</i> , В/м	<i>D</i> , Кл/м2	ε, Ф/м	q, нКл
1	17	5	5	27	33	340000	0.2290	76090	168.3168
2	16	5	5	25	31	320000	0.1939	68481	158.4158

3	15	5	5	23	29	300000	0.1773	66769	148.5149
4	14	5	5	22	26	280000	0.1797	72510	138.6139
5	13	5	5	21	23	260000	0.1418	61633	128.7129
6	12	5	5	19	21	240000	0.1247	58698	118.8119
7	11	5	5	18	18	220000	0.1000	51361	108.9109
8	10	5	5	17	15	200000	0.0727	41089	99.0099
9	9	5	5	14	13	180000	0.0600	37665	89.1089
10	6	2	2	24	10	120000	0.0349	32871	59.4059
11	4	1	1	32	9	80000	0.0182	25681	39.6040
12	2	0.5	0.5	33	6	40000	0.0082	23195	19.8020
13	1	0.2	0.1	32	8	20000	0.0035	19566	9.9010
14	0.6	0.2	0.1	24	6	12000	0.0015	13696	5.9406
15	0.4	0.1	0.05	32	7	8000	0.0017	23968	3.9604
16	0.2	0.05	0.02	30	8	4000	0.0006	16631	1.9802

Обработка результатов измерений:

$$E = U/d = 17 / (0.05 * 10^{-3}) = 340 * 10^{3} \text{ B/m}$$

$$D = \epsilon \epsilon_0 E = 0.2289 \text{ Kл/м^2}$$

$$q = (C_{_1} * C_{_2}) * U/(C_{_1} + C_{_2}) = 168.317$$
 нКл

$$\varepsilon = 1 + \chi_e$$

$$P = \chi_e \varepsilon_0 E = (\varepsilon - 1)\varepsilon_0 E = 76089 * 8.85 * 10^{-12} * 34 * 10^4 = 0,228951801 \,\mathrm{B/m}$$

 $\varepsilon_{\text{нач}} = 21342 \, \Phi/\text{м}$ (из графика)

 $\varepsilon_{\text{макс}}$ = 76090 Ф/м (из графика) (Е для него = 340000 В/м)

Расчет погрешностей измерений (для прямых и косвенных измерений):

 $\Delta E = 34027$

E(относительная погрешность) = 10% ΔD =0,032

D(относительная погрешность) = 14%

Рисунок 1. График зависимости модуля вектора электрического смещения от напряжённости поля

Рисунок 2. График зависимости диэлектрической проницаемости от напряжённости поля

Окончательные результаты:

 E_c = 340000 ± 34027B/M

 $D_s = 0.229 \pm 0.032 \text{ B/m}$

 $P_r = 0.005 \text{ B/M}$ Hay = 21342 Φ/M

макс = 76090 Ф/м (из графика) (Е для него = 340000 В/м)

Выводы и анализ результатов работы:

В данной лабораторной работе мы изучили свойства сегнетоэлектриков, на примере сегнетоэлектрический конденсатор (вариконд). Мы нашли значения Dr и Ec, которые характеризуют значения остаточной поляризации и коэрцитивное поле. Мы нашли зависимость вектора электрического смещения (D) от напряженности поля (E). Получили нелинейную зависимость. Мы нашли значение насыщения (Es) и поляризации (Ds) для предельной петли гистерезиса.