VİTMO

Т.А. Малышева, А.В. Белозубов, Е.А. Болдырева, С.Д. Рыбаков, В.Н. Шматков

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ

Санкт-Петербург 2023

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО

Т.А. Малышева, А.В. Белозубов, Е.А. Болдырева, С.Д. Рыбаков, В.Н. Шматков

ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

РЕКОМЕНДОВАНО К ИСПОЛЬЗОВАНИЮ В УНИВЕРСИТЕТЕ ИТМО по направлению подготовки 09.03.01, 09.03.04 в качестве Учебно-методическое пособие для реализации основных профессиональных образовательных программ высшего образования бакалавриата

ИІТМО

Санкт-Петербург 2023 Малышева Т.А., Белозубов А.В., Болдырева Е.А., Рыбаков С.Д., Шматков В.Н., Лабораторный практикум по вычислительной математике — СПб: Университет ИТМО, 2023. — 53 с.

Рецензент(ы):

Поляков Владимир Иванович, кандидат технических наук, доцент, доцент (квалификационная категория "ординарный доцент") факультета программной инженерии и компьютерной техники, Университета ИТМО.

Учебно-методическое пособие содержит материалы для выполнения и защиты лабораторных работ по дисциплине «Вычислительная математика». Перечень лабораторных работ включает численные методы, наиболее часто используемые в практике инженерных и научно-технических расчётов, что позволит студенту в дальнейшем самостоятельно выбирать оптимальные пути для решения поставленных прикладных задач.

Лабораторный практикум позволит углубить навыки практического программирования и алгоритмического мышления студентов.

ИТМО

Университет ИТМО — ведущий вуз России в области информационных и фотонных технологий, один из немногих российских вузов, получивших в 2009 году статус национального исследовательского университета. С 2013 года Университет ИТМО — участник программы повышения конкурентоспособности российских университетов среди ведущих мировых научно-образовательных центров, известной как проект «5 в 100». Цель Университета ИТМО — становление исследовательского университета мирового уровня, предпринимательского по типу, ориентированного на интернационализацию всех направлений деятельности.

© Университет ИТМО, 2023 © Малышева Т.А., Белозубов А.В., Болдырева Е.А., Рыбаков С.Д., Шматков В.Н., 2023

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1. ЛАБОРАТОРНАЯ РАБОТА №1	
«РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ	
АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ»	6
1.1 Порядок выполнения работы	
1.2 Требования и содержание отчета	
1.3 Варианты задания	
1.4 Контрольные вопросы	
2. ЛАБОРАТОРНАЯ РАБОТА №2	9
«ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ]
И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ»	9
2.1 Порядок выполнения работы	9
2.1.1 Вычислительная реализация задачи	9
2.1.2 Программная реализация задачи:	11
2.2 Требования и содержание отчета	12
2.3 Варианты задания	14
2.4 Контрольные вопросы	17
3. ЛАБОРАТОРНАЯ РАБОТА №3 «ЧИСЛЕННОЕ	
ИНТЕГРИРОВАНИЕ»	18
3.1 Порядок выполнения работы	18
3.1.1 Вычислительная реализация задачи	18
3.1.2 Программная реализация задачи	19
3.2 Требования и содержание отчета	19
3.3 Варианты задания	
3.4 Контрольные вопросы	22
4. ЛАБОРАТОРНАЯ РАБОТА №4 «АППРОКСИМАЦИЯ	
ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ»	23
4.1 Порядок выполнения работы	23
4.1.1 Вычислительная реализация задачи	23
4.1.2 Программная реализация задачи	24
4.2 Требования и содержание отчета	
4.3 Варианты задания	
4.4 Контрольные вопросы	27
5. ЛАБОРАТОРНАЯ РАБОТА №5	
«ИНТЕРПОЛЯЦИЯ ФУНКЦИИ»	
5.1 Порядок выполнения работы	
5.1.1 Вычислительная реализация задачи	
5.1.2 Программная реализация задачи	28
5.2 Требования и содержание отчета	29

5.3	Варианты задания	31
5.4	Контрольные вопросы	33
6. ЛА	БОРАТОРНАЯ РАБОТА №6. «ЧИСЛЕННОЕ РЕІ	ПЕНИЕ
ОБЫ	КНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ	
YPAB	ВНЕНИЙ»	34
6.1	Порядок выполнения работы	34
	Требования и содержание отчета	
6.3	Варианты задания	36
	Контрольные вопросы	
7. PEI	ШЕНИЕ ТИПОВЫХ ЗАДАЧ ДЛЯ	
ТЕКУ	ЩЕГО ТЕСТИРОВАНИЯ	37
	ИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	

ВВЕДЕНИЕ

В учебно-методическом пособии рассматривается цикл лабораторных работ по дисциплине «Вычислительная математика», которые необходимо выполнить для успешного освоения курса.

Задачей изучения дисциплины «Вычислительная математика» является формирование у студента необходимых знаний:

- о вычислительной математике как о разделе высшей математики;
- об основах численных (приближенных) методах, применяемых для решения, как типовых математических задач, так и сложных научно-технических задач;
- о причинах возникновения погрешностей и их учете при оценке результата вычислений;

В результате лабораторных занятий студент должен уметь:

- выбрать численный метод, которым необходимо воспользоваться при решении конкретной задачи;
 - написать программное приложение, реализующее данный метод;
 - адекватно оценить полученные результаты.

Успешное выполнение лабораторных работ обеспечит полноту и глубину восприятия учебного материала курса «Вычислительная математика».

В учебно-методическом пособии представлены шесть лабораторных работ, в которых рассматриваются численные методы линейной алгебры, решения нелинейных уравнений и систем, приближения функций, дифференцирования и интегрирования функций. Все работы снабжены методическими указаниями к их выполнению.

Лабораторные работы включают в себя как вычислительную часть, так и программную реализацию задачи, что позволит углубить навыки практического программирования и алгоритмического мышления студентов. Для программной реализации численных методов студентам предлагается воспользоваться Python, Java, Си, Go, Kotlin и т.д., по своему желанию, например, для освоения нового языка программирования и расширения своих возможностей в профессиональной области.

В пособии также приведены контрольные вопросы по всем темам курса, знания которых позволят успешно выполнить и защитить лабораторные работы. В последнем разделе пособия подробно рассматривается решение типовых математических задач приближенными методами, которые используются в лабораторных работах. Понимание алгоритма решения задачи является залогом успешного прохождения рубежного тестирования.

1. ЛАБОРАТОРНАЯ РАБОТА №1. «РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ»

Цель работы: изучить прямые и итерационные методы решения систем линейных алгебраических уравнений, выполнить программную реализацию методов.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

1.1 Порядок выполнения работы

В программе реализуемый численный метод решения системы линейных алгебраических уравнений (СЛАУ) должен быть реализован в виде отдельного класса /метода/функции, в который исходные/выходные данные передаются в качестве параметров.

Задавать размерность матрицы ($n \le 20$) из файла или с клавиатуры — по выбору конечного пользователя.

Должна быть реализована возможность ввода коэффициентов матрицы, как с клавиатуры, так и из файла (по выбору конечного пользователя).

Сформировать не менее 3 файлов (тестов) с различным набором данных.

Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.

<u>Для прямых методов должно быть реализовано:</u>

- 1. Вывод треугольной матрицы (включая преобразованный вектор правых частей системы);
- 2. Вычисление определителя по треугольной матрице;
- 3. Вывод вектора неизвестных: $x_1, x_2, ..., x_n$;
- 4. Вывод вектора невязок: r_1 , r, ..., r_n ;
- 5. Используя библиотеки выбранного языка программирования найти решение системы линейных уравнений и значение детерминанта. Сравнить результаты;
- 6. Рассмотреть случаи, когда применить метод Гаусса невозможно.

<u>Для итерационных методов должно быть реализовано:</u>

1. Начальные приближения, точность, максимальное число итераций задаются с клавиатуры/файла;

- 2. Проверка достаточного условия сходимости метода. В случае если диагональное преобладание в исходной матрице отсутствует, делать перестановку строк до тех пор, пока преобладание не будет достигнуто. Выводить исходную и преобразованную матрицы;
- 3. Если достигнуть диагонального преобладания невозможно выводить соответствующее сообщение. При этом попытаться решить систему линейных уравнений, ограничив итерационный процесс заданным максимальным числом итераций;
- 4. Вывод вектора неизвестных: $x_1, x_2, ..., x_n$;
- 5. Вывод количества итераций, за которое было найдено решение;
- 6. Вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$.

1.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Описание используемого метода,
- Расчетные формулы метода,
- Листинг программы (по крайней мере, где реализован сам метод)
- Примеры и результаты работы программы (не менее трех),
- Выводы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных;

Шкала оценивания и критерии оценки

Минимальное	Максимальное	
количество	количество	Требования
баллов	баллов	
		выполнены все задания лабораторной ра-
8,1	9	боты, обучающийся четко и без ошибок
		ответил на все контрольные вопросы
		выполнены все задания лабораторной ра-
7,1	8	боты; обучающийся ответил на все кон-
		трольные вопросы с замечаниями
		выполнены все задания лабораторной ра-
6	7	боты с замечаниями; обучающийся отве-
0		тил на все контрольные вопросы с заме-
		чаниями
		обучающийся не выполнил или выпол-
		нил неправильно задания лабораторной
0	0	работы; обучающийся ответил на кон-
		трольные вопросы с ошибками или не
		ответил на контрольные вопросы

1.3 Варианты задания

Метод	№ варианта
Метод Гаусса	1, 3, 5, 8, 21, 24, 26, 28, 31, 39
Метод Гаусса с выбором глав- ного элемента по столбцам	11, 17, 19, 22, 25, 27, 30, 34, 40
Метод простых итераций	2, 4, 6, 7, 10, 13, 15, 23, 32, 36, 38
Метод Гаусса-Зейделя	9, 12, 14, 16, 18, 20, 29, 33, 35, 37

1.4 Контрольные вопросы

- 1. Что является решением системы линейных алгебраических уравнений?
- 2. Сформулируйте признак отсутствия корней системы линейных алгебраических уравнений.
 - 3. Перечислите достоинства и недостатки прямых методов решения СЛАУ?
- 4. Перечислите достоинства и недостатки итерационных методов решения СЛАУ?
 - 5. Как вычислить определитель, если решать СЛАУ методом Гаусса?

- 6. Какова идея метода Гаусса с выбором главного элемента по столбцам/строкам?
 - 7. Что такое сходимость итерационного метода?
- 8. Какое достаточное условие сходимости итерационных методов решения СЛАУ?
 - 9. Чем отличается метод простой итерации от метода Гаусса-Зейделя?
 - 10. Какова идея метода Гаусса-Зейделя?
- 11. В каких случаях применяется метод Гаусса с выбором главного элемента?
 - 12. Как определить погрешность решения СЛАУ методом Гаусса?
- 13. Назовите критерии окончания итерационного процесса метода простой итерации.
- 14. Если норма преобразованной матрицы будет больше 1, что это означает?
- 15. Если диагональный элемент равен нулю, можно ли использовать метод Гаусса?

2. ЛАБОРАТОРНАЯ РАБОТА №2. «ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ»

Цель работы: изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

№ варианта определяется как номер в списке группы согласно ИСУ.

Лабораторная работа состоит из двух частей: вычислительной и программной.

2.1 Порядок выполнения работы

2.1.1 Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена в виде таблиц и отображена только в отчете.

Задание:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 2.6);
- 2. График исследуемой функции отобразить в отчете;
- 3. Определить интервалы изоляции корней;

- 4. Уточнить корни заданного нелинейного уравнения с точностью $\varepsilon = 10^{-2}$;
- 5. Используемые методы для уточнения каждого из трех корней многочлена представлены в табл. 2.7;
- 6. Вычисления оформить в виде таблиц (табл. 2.1–2.5), в зависимости от заданного метода. Для всех значений в таблицах удержать 3 знака после запятой;
- 7. Для метода половинного деления заполнить таблицу 2.1;
- 8. Для метода хорд заполнить таблицу 2.2;
- 9. Для метода Ньютона заполнить таблицу 2.3;
- 10. Для метода секущих заполнить таблицу 2.4;
- 11. Для метода простой итерации заполнить таблицу 2.5.

Таблица 2.1. Уточнение корня уравнения методом половинного деления

			0010211111	, ,			
№ шага	а	b	х	f(a)	f(b)	f(x)	a-b
1							
2							
3							

Таблица 2.2. Уточнение корня уравнения

методом хорд

№ шага	а	b	x	f(a)	f(b)	f(x)	$ x_{k+1} - x_k $
1							
2							
3							
• • •							

Таблица 2.3. Уточнение корня уравнения методом Ньютона

No	x_k	$f(x, \cdot)$	$f'(x_k)$	χ	$ x_{k+1} - x_k $
шага	N R) (~k)) (*k)	~ k+1	1× k+1 × k1
1					_
2					
3					

Таблица 2.4. Уточнение корня уравнения метолом секуших

№ шага	x_{k-1}	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1} - x_k $
1					
2					
3					

Таблица 2.5. Уточнение корня уравнения методом простой итерации

		70111 11po	11	
№ шага	x_k	x_{k+1}	$f(x_{k+1})$	$ x_{k+1}-x_k $
1				
2				
3				
•••				

2.1.2 Программная реализация задачи:

<u>Для нелинейных уравнений должно быть реализовано:</u>

- 1. Все численные методы (см. табл. 2.8) должны быть реализованы в виде класса /метода/функции;
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3–5 функций, в том числе и трансцендентные), из тех, которые предлагает программа;
- 3. Предусмотреть ввод исходных данных (границы интервала, погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя:
- 4. Организовать вывод графика функции на исследуемом интервале (с запасом);
- 5. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные;
- 6. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом, простой итерации), выбор начального приближения x_0 (а или b) вычислять в программе;
- 7. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале. Если оно не выполняется, выводить

- соответствующее сообщение. При этом попытаться решить нелинейное уравнение, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 8. Для каждого метода учитывать все критерии выхода из итерационного цикла. Проверить, как изменятся результаты, если учитывать либо критерии по аргументу, либо критерии по функции;
- 9. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя;
- 10. Проанализировать полученные результаты, оценить точность решения задачи;
- 11. Программа должна быть протестирована на различных наборах данных, в том числе и некорректных.

Для систем нелинейных уравнений должно быть реализовано:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2–3 системы);
- 2. Организовать вывод графика функций.
- 3. Ввести начальные приближения с клавиатуры;
- 4. Для метода простой итерации проверить достаточное условие сходимости. Если оно не выполняется, выводить соответствующее сообщение. При этом попытаться решить систему нелинейных уравнений, ограничив итерационный процесс заданным в программе максимальным числом итераций;
- 5. Организовать вывод вектора неизвестных: x_1 , x_2 ;
- 6. Организовать вывод количества итераций, за которое было найдено решение;
- 7. Организовать вывод вектора погрешностей: $|x_i^{(k)} x_i^{(k-1)}|$;
- 8. Проверить правильность решения системы нелинейных уравнений.
- 9. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.

2.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Рабочие формулы используемых методов,
- График функции на исследуемом интервале (табл. 2.6),

- Заполненные таблицы вычислительной части лабораторной работы (в зависимости от варианта: табл. 2.1–2.5).
- Листинг программы (по крайней мере, коды используемых методов),
- Результаты выполнения программы при различных исходных данных (для нелинейного уравнения не менее трех, для системы не менее двух),
- Выводы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных.

Шкала оценивания и критерии оценки

Минимальное	Максимальное	Требования	
количество	количество		
баллов	баллов		
10,1	11	выполнены все задания лабораторной работы, обучающийся четко и без ошибок ответил на все контрольные вопросы	
8,1	10	выполнены все задания лабораторной работы; обучающийся ответил на все контрольные вопросы с замечаниями	
6	8	выполнены все задания лабораторной работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями	
0	0	обучающийся не выполнил или выполнил неправильно задания лабораторной работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы	

2.3 Варианты задания

Таблица 2.6. Вид нелинейного уравнения для вычислительной реализации задачи

No		No	
вари-	Функция	вари-	Функция
анта		анта	
1	$2,74x^3-1,93x^2-15,28x-3,72$	21	$1,8x^3-2,47x^2-5,53x+1,539$
2	$-1,38x^3-5,42x^2+2,57x+10,95$	22	$x^3 - 3,78x^2 + 1,25x + 3,49$
3	$x^3 + 2,84x^2 - 5,606x - 14,766$	23	$-x^3 + 5,67x^2 - 7,12x + 1,34$
4	$x^3 - 1,89x^2 - 2x + 1,76$	24	$x^3 - 2,92x^2 + 1,435x + 0,791$
5	$-2,7x^3-1,48x^2+19,23x+6,35$	25	$x^3 - 2,56x^2 - 1,325x + 4,395$
6	$2x^3 + 3,41x^2 - 23,74x + 2,95$	26	$1,62x^3-8,15x^2+4,39x+4,29$
7	$x^3 + 2,28x^2 - 1,934x - 3,907$	27	$2,335x^3+3,98x^2-4,52x-3,11$
8	$3x^3 + 1,7x^2 - 15,42x + 6,89$	28	$-1,85x^3-4,75x^2-2,53x+0,49$
9	$-1,8x^3-2,94x^2+10,37x+5,38$	29	$-1,78x^3-5,05x^2+3,64x+1,37$
10	$x^3 - 3$, $125x^2 - 3$, $5x + 2$, 458	30	$-2,75x^3-4,53x^2+17,87x-1,94$
11	$4,45x^3+7,81x^2-9,62x-8,17$	31	$-3,64x^3+2,12x^2+10,73x+1,49$
12	$x^3 - 4,5x^2 - 9,21x - 0,383$	32	$x^3 + 1,41x^2 - 5,472x - 7,38$
13	$x^3 + 4.81x^2 - 17.37x + 5.38$	33	$x^3 - 0.12x^2 - 1.475x + 0.192$
14	$2,3x^3+5,75x^2-7,41x-10,6$	34	$x^3 - 0.77x^2 - 1.251x + 0.43$
15	$-2,4x^3+1,27x^2+8,63x+2,31$	35	$x^3 - 0.78x^2 - 0.826x + 0.145$
16	$5,74x^3-2,95x^2-10,28x+4,23$	36	$1,7x^3 - 3,45x^2 - 5,31x + 1,123$
17	$-0.38x^3 - 3.42x^2 + 2.51x + 8.75$	37	$x^3 - 3,75x^2 + 2,25x + 3,51$
18	$x^3 + 2,64x^2 - 5,41x - 11,76$	38	$-x^3 + 5,32x^2 - 6,12x + 0,34$
19	$2x^3 - 1,89x^2 - 5x + 2,34$	39	$x^3 - 2,95x^2 + 1,52x + 0,91$
20	$-2,8x^3-3,48x^2+10,23x+9,35$	40	$0,5x^3-2,56x^2-1,35x+4,39$

Выбор метода для вычислительной реализации задачи

- 1. метод половинного деления,
- 2. метод хорд,
- 3. метод Ньютона,
- 4. метод секущих,
- 5. метод простой итерации.

Таблица 2.7. Методы для вычислительной реализации задачи

No	Крайний правый	Крайний	Центральный
варианта	корень	левый корень	корень
1	3	4	5
2	5	2	1
3	1	5	3
4	5	1	4
5	2	5	4
6	3	1	5
7	1	5	3
8	5	2	3
9	1	5	4
10	3	1	5
11	1	2	5
12	4	5	1
13	5	2	3
14	3	5	1
15	5	1	2
16	2	5	3
17	1	4	5
18	3	5	2
19	5	1	4
20	1	3	5
21	2	1	5
22	5	3	1
23	3	5	1
24	2	3	5
25	5	1	4
26	3	2	5
27	1	3	5
28	2	5	4
29	1	3	5

Продолжение таблицы 2.7. Методы для вычислительной реализации задачи

30	4	5	1
31	2	3	5
32	1	5	4
33	5	1	3
34	2	5	4
35	4	2	5
36	1	5	3
37	2	3	5
38	5	2	4
39	1	3	5
40	2	5	3

Выбор метода для программной реализации задачи

Решение нелинейных уравнений:

- 1. метод половинного деления,
- 2. метод хорд,
- 3. метод Ньютона,
- 4. метод секущих,
- 5. метод простой итерации.

Решение систем нелинейных уравнений:

- 6. метод Ньютона,
- 7. метод простой итерации.

Таблица 2.8. Методы, реализуемые в программе

$N_{\overline{0}}$	Методы	$N_{\underline{0}}$	Методы
варианта	в программе	варианта	в программе
1	1, 3, 5, 6	11	1, 4, 5, 6
2	2, 3, 5, 7	12	2, 3, 5, 7
3	1, 4, 5, 6	13	1, 3, 5, 6
4	1, 3, 5, 7	14	2, 4, 5, 7
5	1, 3, 5, 7	15	2, 3, 5, 6
6	2, 4, 5, 6	16	1, 4, 3, 7
7	1, 4, 5, 6	17	2, 4, 5, 6
8	1, 3, 5, 7	18	1, 3, 5, 6
9	2, 3, 5, 7	19	2, 3, 5, 7
10	2, 3, 5, 6	20	1, 4, 5, 7

Продолжение таблицы 2.8. Методы, реализуемые в программе

21	1, 4, 5, 7	31	2, 3, 5, 6
22	1, 3, 5, 6	32	1, 3, 5, 7
23	1, 4, 5, 6	33	1, 4, 5, 6
24	2, 4, 5, 7	34	2, 4, 5, 7
25	1, 4, 5, 6	35	2, 3, 5, 6
26	2, 3, 5, 6	36	1, 3, 5, 6
27	1, 4, 5, 7	37	1, 4, 5, 7
28	2, 3, 5, 6	38	2, 3, 5, 7
29	1, 4, 5, 6	39	1, 3, 5, 6
30	2, 4, 5, 7	40	2, 4, 5, 7

2.4 Контрольные вопросы

- 1. Понятие точного и приближенного решений нелинейного уравнения.
- 2. Основная идея метода половинного деления?
- 3. Может ли метод половинного деления найти точное значение корня уравнения?
 - 4. В чем суть метода Ньютона?
 - 5. Как выбирается начальное приближение для метода Ньютона?
 - 6. В чем заключается метод хорд?
- 7. Как выбирается начальное приближение для метода хорд с фиксированным концом интервала изоляции корня?
- 8. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?
- 9. Какой из методов является трехшаговым методом? Как «запустить» этот метод?
 - 10. В чем суть метода простой итерации?
 - 11. Каковы условия применяемости метода простой итерации?
- 12. Как правильно преобразовать исходное нелинейное уравнение y = f(x) к виду $x = \varphi(x)$?
- 13. Что дает выполнение условия сходимости метода простой итерации? Если оно не выполняется, можно ли получить решения задачи?
- 14. Каковы основные критерии окончания итерационного процесса для различных численных методов?
- 15. Как оценить необходимое количество итераций в методе половинного деления при заданной точности?
- 16. Опишите алгоритм решения системы нелинейных уравнений методом Ньютона?

- 17. Каковы преимущества и недостатки графического метода отделения решения для системы двух нелинейных уравнений?
- 18. В каких случаях можно применить метод простой итерации для решения системы нелинейных уравнений?
- 19. Когда можно считать итерационный процесс законченным при использовании метода простой итерации для решения системы нелинейных уравнений?
 - 20. Что такое сходимость и скорость сходимости численных методов?
 - 21. Дайте определение устойчивости итерационного метода?

3. ЛАБОРАТОРНАЯ РАБОТА №3. «ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ»

Цель работы: найти приближенное значение определенного интеграла с требуемой точностью различными численными методами.

Лабораторная работа состоит из двух частей: вычислительной и программной.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

3.1 Порядок выполнения работы

Обязательное задание (до 7,2 балла)

3.1.1 Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Вычислить интеграл, приведенный в таблице 3.1, точно;
- 2. Вычислить интеграл по формуле Ньютона Котеса при n=8;
- 3. Вычислить интеграл по формулам средних прямоугольников, трапеций и Симпсона при n=10;
- 4. Сравнить результаты с точным значением интеграла;
- 5. Определить относительную погрешность вычислений для каждого метола:
- 6. В отчете отразить последовательность вычислений.

3.1.2 Программная реализация задачи

- 1. Пользователь выбирает функцию, интеграл которой требуется вычислить (3–5 функций), из тех, которые предлагает программа.
- 2. Ввод исходных данных осуществляется с клавиатуры: пределы интегрирования, точность вычисления, начальное значение числа разбиения интервала интегрирования;
- 3. Реализовать в программе методы по выбору пользователя:
 - Метод прямоугольников (3 модификации: левые, правые, средние),
 - Метод трапеций,
 - Метод Симпсона.
- 4. Методы должны быть реализованы в виде класса/метода/ функции;
- 5. Вычисление значений функции оформить в виде метода/функции;
- 6. Для оценки погрешности и завершения вычислительного процесса использовать правило Рунге;
- 7. Предусмотреть вывод результатов: значение интеграла, число разбиения интервала интегрирования для достижения требуемой точности;
- 8. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.

Необязательное задание (до 1,8 балла)

- 1. Установить сходимость рассматриваемых несобственных интегралов 2 рода (2–3 функции). Если интеграл расходящийся, выводить сообщение: «Интеграл не существует»;
- 2. Если интеграл сходящийся, реализовать в программе вычисление несобственных интегралов 2 рода (заданными численными методами);
- 3. Рассмотреть случаи, когда подынтегральная функция терпит бесконечный разрыв: 1) в точке а, 2) в точке b, 3) на отрезке интегрирования.

3.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Рабочие формулы используемых методов,
- Вычисление интеграла различными методами с оценкой точности решения (подробно),
- Листинг программы (по крайней мере, коды используемых методов),
- Результаты выполнения программы при различных исходных данных (не менее трех),

• Выволы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных.

Шкала оценивания и критерии оценки

шкала оценивания и критерии оценки				
Минимальное количество баллов	Максимальное количество баллов	Требования		
8,1	9	выполнены все задания лабораторной работы, обучающийся четко и без ошибок ответил на все контрольные вопросы		
7,1	8	выполнены все задания лабораторной работы; обучающийся ответил на все контрольные вопросы с замечаниями		
6	7	выполнены все задания лабораторной работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями		
0	0	обучающийся не выполнил или выполнил неправильно задания лабораторной работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы		

3.3 Варианты задания

Таблица 3.1. Интеграл для вычислительной реализации задачи						
№ ва-	Интеграл	№ ва-	Интеграл			
рианта	- F	рианта	· P···			
1	$\int_{0}^{2} (-x^{3} - x^{2} - 2x + 1) dx$	21	$\int_{0}^{2} (2x^{3} - 5x^{2} - 3x + 21) dx$			
2	$\int_{-3}^{-1} (-3x^3 - 5x^2 + 4x - 2) dx$	22	$\int_{3}^{5} (2x^3 - 3x^2 + 4x - 22) dx$			
3	$\int_{0}^{2} (-4x^{3} - x^{2} + x + 3) dx$	23	$\int_{2}^{4} (-x^3 - 2x^2 + 3x + 23) dx$			
4	$\int_{-3}^{-1} (-2x^3 - 4x^2 + 8x - 4) dx$	24	$\int_{3}^{5} (x^3 - 2x^2 - 5x + 24) dx$			
5	$\int_{2}^{4} (-2x^3 - 3x^2 + x + 5) dx$	25	$\int_{0}^{2} (2x^3 - 4x^2 + 6x - 25) dx$			
6	$\int_{1}^{2} (3x^3 + 5x^2 + 3x - 6) dx$	26	$\int_{2}^{4} (3x^3 - 2x^2 + 7x + 26) dx$			
7	$\int_{0}^{2} (4x^{3} - 5x^{2} + 6x - 7) dx$	27	$\int_{3}^{5} (2x^3 - 3x^2 - 5x + 27) dx$			
8	$\int_{2}^{3} (3x^3 - 2x^2 - 7x - 8) dx$	28	$\int_{0}^{2} (x^3 - 3x^2 + 6x - 28) dx$			
9	$\int_{1}^{2} (2x^3 - 3x^2 + 5x - 9) dx$	29	$\int_{0}^{5} (x^3 - 10x^2 + 7x + 29) dx$			
10	$\int_{2}^{4} (x^3 - 3x^2 + 7x - 10) dx$	30	$\int_{3}^{4} (4x^3 - 2x^2 - 7x + 30) dx$			
11	$\int_{1}^{3} (2x^3 - 9x^2 - 7x + 11) dx$	31	$\int_{0}^{3} (3x^3 - 5x^2 + 3x - 31) dx$			
12	$\int_{1}^{2} (x^3 + 2x^2 - 3x - 12) dx$	32	$\int_{2}^{4} (-x^3 - 2x^2 + 3x + 32) dx$			

Продолжение таблицы 3.1. Интеграл для вычислительной реализации задачи

13	$\int_{1}^{3} (-2x^3 - 5x^2 + 7x - 13) dx$	33	$\int_{1}^{3} (2x^3 - 8x^2 - 5x + 33) dx$
14	$\int_{2}^{4} (2x^3 - 2x^2 + 7x - 14) dx$	34	$\int_{0}^{2} (5x^{3} - 4x^{2} + 11x - 34) dx$
15	$\int_{1}^{2} (5x^3 - 2x^2 + 3x - 15) dx$	35	$\int_{3}^{4} (-3x^3 - 2x^2 + 6x + 35) dx$
16	$\int_{2}^{4} (3x^3 - 4x^2 + 5x - 16) dx$	36	$\int_{0}^{1} (7x^3 - 2x^2 - 9x + 36) dx$
17	$\int_{1}^{2} (3x^3 - 4x^2 + 7x - 17) dx$	37	$\int_{0}^{2} (2x^3 - 5x^2 + 6x - 37) dx$
18	$\int_{2}^{4} (x^3 - 5x^2 + 3x - 16) dx$	38	$\int_{3}^{4} (x^3 - 5x^2 + 3x + 38) dx$
19	$\int_{2}^{4} (x^3 - 3x^2 + 6x - 19) dx$	39	$\int_{3}^{5} (-3x^3 - 2x^2 + 5x + 39) dx$
20	$\int_{2}^{4} (4x^3 - 3x^2 + 5x - 20) dx$	40	$\int_{-2}^{2} (2x^3 - 4x^2 + 6x - 40) dx$

3.4 Контрольные вопросы

- 1. В каких случаях применяется численное интегрирование?
- 2. На чем основано численное интегрирование?
- 3. Что такое квадратурные формулы?
- 4. Каким образом связана задача численного интегрирования и интерполяция?
 - 5. Как оценивается погрешность квадратурной формулы?
 - 6. Какие частные случаи формулы Ньютона-Котеса Вы знаете?
- 7. Как называется метод численного интегрирования, в котором подынтегральная функция заменяется полиномом нулевой степени?
- 8. В каком методе численного интегрирования подынтегральная функция заменяется квадратичным полиномом?
 - 9. Чем отличается метод трапеций от метода Симпсона?

- 10. В чем суть метода средних прямоугольников?
- 11. Что представляет собой формула для вычисления интеграла методом трапеции?
- 12. Как определить число разбиений интервала интегрирования, используя неравенство для оценки абсолютной погрешности для метода трапеций?
 - 13. Что такое правило Рунге?
- 14. Каким образом можно уменьшить погрешность решения при численном интегрировании?
 - 15. Когда удобнее пользоваться квадратурной формулой Гаусса?
 - 16. На чем основана идея метода Гаусса для численного интегрирования?
- 17. Опишите алгоритм приближенного решения несобственных интегралов 2 рода.

4. ЛАБОРАТОРНАЯ РАБОТА №4. «АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ»

Цель лабораторной работы: найти функцию, являющуюся наилучшим приближением заданной табличной функции по методу наименьших квадратов.

Лабораторная работа состоит из двух частей: вычислительной и программной.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

4.1 Порядок выполнения работы

4.1.1 Вычислительная реализация задачи

Вычислительная часть лабораторной работы должна быть представлена только в отчете.

Задание:

- 1. Сформировать таблицу табулирования заданной функции на указанном интервале (см. табл. 4.1)
- 2. Построить линейное и квадратичное приближения по 11 точкам заданного интервала;
- 3. Найти среднеквадратические отклонения для каждой аппроксимирующей функции. Ответы дать с тремя знаками после запятой;
- 4. Выбрать наилучшее приближение;
- 5. Построить графики заданной функции, а также полученные линейное и квадратичное приближения;
- 6. Привести в отчете подробные вычисления.

4.1.2 Программная реализация задачи

Для исследования использовать:

- линейную функцию,
- полиномиальную функцию 2-й степени,
- полиномиальную функцию 3-й степени,
- экспоненциальную функцию,
- логарифмическую функцию,
- степенную функцию.

Методика проведения исследования:

- 1. Вычислить меру отклонения: $S = \sum_{i=1}^{n} [\varphi(x_i) y_i]^2$ для всех исследуемых функций;
- 2. Уточнить значения коэффициентов эмпирических функций, решая для этого системы линейных уравнений;
- 3. Сформировать массивы предполагаемых эмпирических зависимостей $(\varphi(x_i), \varepsilon_i)$;
- 4. Определить среднеквадратичное отклонение для каждой аппроксимирующей функции. Выбрать наименьшее значение и, следовательно, наилучшее приближение;
- 5. Построить графики полученных эмпирических функций.

Задание:

- 1. Предусмотреть ввод исходных данных из файла/консоли (таблица y = f(x) должна содержать от 8 до 12 точек);
- 2. Реализовать метод наименьших квадратов, исследуя все указанные функции;
- 3. Предусмотреть вывод результатов в файл/консоль: коэффициенты аппроксимирующих функций, среднеквадратичное отклонение, массивы значений $x_i, y_i, \varphi(x_i), \varepsilon_i$;
- 4. Для линейной зависимости вычислить коэффициент корреляции Пирсона:
- 5. Программа должна отображать наилучшую аппроксимирующую функцию;
- 6. Организовать вывод графиков функций, графики должны полностью отображать весь исследуемый интервал (с запасом);
- 7. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных;

4.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Цель работы,
- Рабочие формулы метода,
- Вычислительная часть лабораторной работы,
- Листинг программы (по крайней мере, коды используемого метода),
- Графики аппроксимирующих функций,
- Результаты выполнения программы при различных исходных данных (не менее трех),
- Выводы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных.

Шкала оценивания и критерии оценки

Минимальное количество баллов	Максимальное количество баллов	Требования
8,1	9	выполнены все задания лабораторной работы, обучающийся четко и без ошибок ответил на все контрольные вопросы
7,1	8	выполнены все задания лабораторной работы; обучающийся ответил на все контрольные вопросы с замечаниями
6	7	выполнены все задания лабораторной работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями
0	0	обучающийся не выполнил или выполнил неправильно задания лабораторной работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы

4.3 Варианты задания

Таблица 4.1. Варианты задания для вычислительной реализации задачи

No	,	Исследуе-	№	птельной реали	Исследуе-
вари-	Функция	мый	вари-	Функция	мый
анта		интервал	анта		интервал
1	$y = \frac{12x}{x^4 + 1}$	$x \in [0, 2]$ $h = 0, 2$	21	$y = \frac{14x}{x^4 + 21}$	$x \in [-4,0]$ $h = 0,4$
2	$y = \frac{15x}{x^4 + 2}$	$x \in [0,4]$ $h = 0,4$	22	$y = \frac{5x}{x^4 + 22}$	$x \in [-2, 0]$ $h = 0, 2$
3	$y = \frac{4x}{x^4 + 3}$	$x \in [-2, 0]$ $h = 0, 2$	23	$y = \frac{16x}{x^4 + 23}$	$x \in [0,4]$ $h = 0,4$
4	$y = \frac{15x}{x^4 + 4}$	$x \in [-4, 0]$ $h = 0, 4$	24	$y = \frac{7x}{x^4 + 24}$	$x \in [-4,0]$ $h = 0,4$
5	$y = \frac{6x}{x^4 + 5}$	$x \in [0, 2]$ $h = 0, 2$	25	$y = \frac{28x}{x^4 + 25}$	$x \in [0,4]$ $h = 0,4$
6	$y = \frac{12x}{x^4 + 6}$	$x \in [0, 2]$ $h = 0, 2$	26	$y = \frac{7x}{x^4 + 26}$	$x \in [0,4]$ $h = 0,4$
7	$y = \frac{23x}{x^4 + 7}$	$x \in [-2, 0]$ $h = 0, 2$	27	$y = \frac{18x}{x^4 + 27}$	$x \in [0, 2]$ $h = 0, 2$
8	$y = \frac{3x}{x^4 + 8}$	$x \in [-2, 0]$ $h = 0, 2$	28	$y = \frac{21x}{x^4 + 28}$	$x \in [-4,0]$ $h = 0,4$
9	$y = \frac{4x}{x^4 + 9}$	$x \in [0, 2]$ $h = 0, 2$	29	$y = \frac{15x}{x^4 + 29}$	$x \in [0,4]$ $h = 0,4$
10	$y = \frac{18x}{x^4 + 10}$	$x \in [0,4]$ $h = 0,4$	30	$y = \frac{16x}{x^4 + 30}$	$x \in [-4,0]$ $h = 0,4$
11	$y = \frac{5x}{x^4 + 11}$	$x \in [-2, 0]$ $h = 0, 2$	31	$y = \frac{15x}{x^4 + 31}$	$x \in [-4,0]$ $h = 0,4$
12	$y = \frac{4x}{x^4 + 12}$	$x \in [-2,0]$ $h = 0,2$	32	$y = \frac{25x}{x^4 + 32}$	$x \in [0,4]$ $h = 0,4$
13	$y = \frac{31x}{x^4 + 13}$	$x \in [0,4]$ $h = 0,4$	33	$y = \frac{26x}{x^4 + 33}$	$x \in [-2,0]$ $h = 0,2$

Продолжение таблицы 4.1. Варианты задания для вычислительной реализации задачи

				1	
14	$y = \frac{25x}{x^4 + 14}$	$x \in [0,4]$ $h = 0,4$	34	$y = \frac{22x}{x^4 + 34}$	$x \in [-4,0]$ $h = 0,4$
15	$y = \frac{4x}{x^4 + 15}$	$x \in [-2, 0]$ $h = 0, 2$	35	$y = \frac{19x}{x^4 + 35}$	$x \in [0,4]$ $h = 0,4$
16	$y=\frac{17x}{x^4+16}$	$x \in [-4, 0]$ $h = 0, 4$	36	$y = \frac{47x}{x^4 + 36}$	$x \in [-2,2]$ $h = 0,4$
17	$y = \frac{2x}{x^4 + 17}$	$x \in [0, 2]$ $h = 0, 2$	37	$y = \frac{23x}{x^4 + 37}$	$x \in [-2, 0]$ $h = 0, 2$
18	$y = \frac{30x}{x^4 + 18}$	$x \in [0,4]$ $h = 0,4$	38	$y = \frac{14x}{x^4 + 38}$	$x \in [0,2]$ $h = 0,2$
19	$y=\frac{5x}{x^4+19}$	$x \in [0, 2]$ $h = 0, 2$	39	$y = \frac{20x}{x^4 + 39}$	$x \in [0,4]$ $h = 0,4$
20	$y=\frac{11x}{x^4+20}$	$x \in [0,4]$ $h = 0,4$	40	$y = \frac{5x}{x^4 + 40}$	$x \in [-2, 0]$ $h = 0, 2$

4.4 Контрольные вопросы

- 1. Чем вызвана необходимость аппроксимирования табличных функций?
- 2. Чем отличается аппроксимации от интерполяции?
- 3. В каких случаях применяется аппроксимация, в каких интерполяция?
- 4. Сформулируйте задачу аппроксимации.
- 5. Как выбирается вид аппроксимирующего уравнения?
- 6. Расскажите об этапах построения эмпирической формулы?
- 7. Объясните суть метода наименьших квадратов (МНК).
- 8. Что такое мера отклонения и как ее вычислить?
- 9. К решению какой задачи сводится МНК?
- 10. Сформулируйте задачу полиномиальной аппроксимации МНК.
- 11. Что такое линейная и квадратичная аппроксимации?
- 12. Приведите графическую интерпретацию линейной и квадратичной аппроксимаций?
 - 13. Что такое среднеквадратическое отклонение?
- 14. Как выполняется аппроксимация данных неполиномиальными функциями?
 - 15. Как оценить качество полученной аппроксимации?

- 16. Как выбирается наилучшая аппроксимирующая функция?
- 17. Корректно ли применять аппроксимирующие уравнения за пределами исследуемого диапазона?

5. ЛАБОРАТОРНАЯ РАБОТА №5. «ИНТЕРПОЛЯЦИЯ ФУНКЦИИ»

Цель лабораторной работы: решить задачу интерполяции, найти значения функции при заданных значениях аргумента, отличных от узловых точек.

Лабораторная работа состоит из двух частей: вычислительной и программной.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

5.1 Порядок выполнения работы

Обязательное задание (до 8,8 балла)

5.1.1 Вычислительная реализация задачи

- 1. Выбрать из табл. 5.1 заданную по варианту таблицу y = f(x) (таблица 1 таблица 5);
- 2. Построить таблицу конечных разностей для заданной таблицы. Таблицу отразить в отчете;
- 3. Вычислить значения функции для аргумента X_1 (см. табл. 5.1), используя первую или вторую интерполяционную формулу Ньютона. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 4. Вычислить значения функции для аргумента X_2 (см. табл. 5.1), используя первую или вторую интерполяционную формулу Гаусса. Обратить внимание какой конкретно формулой необходимо воспользоваться;
- 5. Подробные вычисления привести в отчете.

5.1.2 Программная реализация задачи

Для исследования использовать (в зависимости от варианта):

- многочлен Лагранжа,
- многочлен Ньютона с разделенными разностями,
- многочлен Ньютона с конечными разностями,
- многочлен Гаусса.

- 1. Все вычисления с использованием интерполяционных многочленов (см. табл. 5.2) должны быть реализованы в виде класса /метода/функции;
- 2. Исходные данные задаются тремя способами:
 - а) в виде набора данных (таблицы х, у) пользователь вводит значения с клавиатуры;
 - b) в виде сформированных в файле данных (подготовить не менее трех тестовых вариантов);
 - с) на основе выбранной функции, из тех, которые предлагает программа, например, $\sin x$. Пользователь выбирает уравнение, исследуемый интервал и количество точек на интервале (не менее двух функций).
- 3. Сформировать и вывести таблицу разделенных или конечных разностей (в зависимости от варианта);
- 4. Вычислить приближенное значение функции для заданного значения аргумента, введенного с клавиатуры, указанными методами (см. табл. 5.2). Сравнить полученные значения;
- 5. Построить графики заданной функции с отмеченными узлами интерполяции и интерполяционного многочлена Ньютона/Гаусса (разными цветами);
- 6. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 7. Проанализировать результаты работы программы.

Необязательное задание (до 2,2 балла)

- 1. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Стирлинга;
- 2. Реализовать в программе вычисление значения функции для заданного значения аргумента, введенного с клавиатуры, используя схемы Бесселя.

5.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Рабочие формулы используемых методов,
- Вычислительная часть лабораторной работы,
- Листинг программы (по крайней мере, коды используемых методов),
- Результаты выполнения программы при различных исходных данных (не менее трех),

- Графики исследуемой функции и интерполяционных многочленов, на графиках указать искомую точку,
- Выводы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных.

Шкала оценивания и критерии оценки

Минимальное	Максимальное	Требования
количество	количество	
баллов	баллов	
10,1	11	выполнены все задания лабораторной работы, обучающийся четко и без ошибок ответил на все контрольные вопросы
9,1	10	выполнены все задания лабораторной работы; обучающийся ответил на все контрольные вопросы с замечаниями
7	9	выполнены все задания лабораторной работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями
0	0	обучающийся не выполнил или выполнил неправильно задания лабораторной работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы

5.3 Варианты задания

Таблица 5.1. Варианты заданий для вычислительной реализации задачи

<u> Піца 5.1</u>	. Варнанты	эаданин дл	<u>No</u>	Common pea	лизации зад
	X	y	вариан-	X_1	X_2
		J	та	1	2
	0,25	1,2557	1	0,251	0,402
_	0,30	2,1764	6	0,512	0,372
ца	0,35	3,1218	11	0,255	0,405
Таблица	0,40	4,0482	16	0,534	0,384
[a6	0,45	5,9875	21	0,272	0,445
	0,50	6,9195	26	0,551	0,351
	0,55	7,8359	31	0,294	0,437
			№		
	X	у	вариан-	\mathbf{X}_1	X_2
			та		
	0,50	1,5320	2	0,502	0,645
2	0,55	2,5356	7	0,751	0,651
ца (0,60	3,5406	12	0,523	0,639
Таблица 2	0,65	4,5462	17	0,761	0,661
Габ	0,70	5,5504	22	0,545	0,627
	0,75	6,5559	27	0,783	0,683
	0,80	7,5594	32	0,557	0,641
			№		
	X	у	вариан-	\mathbf{X}_1	X_2
			та		
	1,10	0,2234	3	1,121	1,482
8	1,25	1,2438	8	1,852	1,652
ца .	1,40	2,2644	13	1,168	1,463
ЛП	1,55	3,2984	18	1,875	1,575
Таблица 3	1,70	4,3222	23	1,189	1,491
[_	1,85	5,3516	28	1,891	1,671
	2,00	6,3867	33	1,217	1,473

Продолжение таблицы 5.1. Варианты заданий для вычислительной реализации задачи

•			No		
	X	y	вариан-	\mathbf{X}_1	X_2
			та		
	1,05	0,1213	4	1,051	1,277
4	1,15	1,1316	9	1,562	1,362
ıja ,	1,25	2,1459	14	1,112	1,319
ШП	1,35	3,1565	19	1,573	1,375
Таблица 4	1,45	4,1571	24	1,146	1,289
	1,55	5,1819	29	1,614	1,414
	1,65	6,1969	34	1,154	1,328
			№		
	X	y	вариан-	\mathbf{X}_1	X_2
			та		
	2,10	3,7587	5	2,112	2,205
10	2,15	4,1861	10	2,355	2,254
1a 5	2,20	4,9218	15	2,114	2,216
ПП	2,25	5,3487	20	2,359	2,259
Габлица	2,30	5,9275	25	2,128	2,232
	2,35	6,4193	30	2,352	2,284
	2,40	7,0839	35	2,147	2,247

Методы для реализации в программе:

- 1 Многочлен Лагранжа,
- 2 Многочлен Ньютона с конечными разностями,
- 3 Многочлен Ньютона с разделенными разностями,
- 4 Многочлен Гаусса.

Таблица 5.2. Варианты заданий для программной реализации задачи

№ варианта	Метод	№ варианта	Метод
1	1, 2	19	1, 3
2	1, 3	20	1, 4
3	1, 2	21	1, 2
4	1, 2	22	1, 4

Продолжение таблицы 5.2.

еализации задачи
)

5	1, 4	23	1, 2
6	1, 2	24	1, 3
7	1, 3	25	1, 2
8	1, 4	26	1, 3
9	1, 2	27	1, 4
10	1, 3	28	1, 3
11	1, 2	29	1, 2
12	1, 2	30	1, 4
13	1, 4	31	1, 3
14	1, 3	32	1, 2
15	1, 2	33	1, 3
16	1, 4	34	1, 4
17	1, 3	35	1, 2
18	1, 2	36	1,4

5.4 Контрольные вопросы

- 1. Когда возникает необходимость в использовании интерполяционных методов?
 - 2. Чем отличается аппроксимация от интерполяции?
 - 3. В чём сущность задачи интерполирования?
 - 4. Поясните смысл терминов: интерполяция, экстраполяция.
- 5. Как найти приближенное значение функции при линейной интерполяции?
- 6. Как найти приближенное значение функции при квадратичной интерполяции?
 - 7. Как строится интерполяционный многочлен Лагранжа?
- 8. Дайте определение понятий разделенной разности нулевого и первого порядков.
- 9. Объясните принцип построения интерполяционного полинома Ньютона.
 - 10. Покажите графическую интерпретацию интерполяции.
- 11. В каких случаях используются конечные разности, в каких разделенные?
- 12. В каких случаях используют формулу Ньютона для интерполирования вперед и для интерполирования назад?
- 13. В каких случаях используют формулу Гаусса для интерполирования вперед и для интерполирования назад?
 - 14. В каких случаях используют формулу Стирлинга?

- 15. В каких случаях используют формулу Бесселя?
- 16. В чем разница между глобальной и локальной разновидностями интерполяции?
 - 17. В чем заключается интерполяция кубическими сплайнами.

6. ЛАБОРАТОРНАЯ РАБОТА №6. «ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ»

Цель лабораторной работы: решить задачу Коши для обыкновенных дифференциальных уравнений численными методами.

№ варианта задания лабораторной работы определяется как номер в списке группы согласно ИСУ.

6.1 Порядок выполнения работы

- 1. В программе численные методы решения обыкновенных дифференциальных уравнений (ОДУ) должен быть реализован в виде отдельного класса/метода/функции;
- 2. Пользователь выбирает ОДУ вида y' = f(x, y) (не менее трех уравнений), из тех, которые предлагает программа;
- 3. Предусмотреть ввод исходных данных с клавиатуры: начальные условия $y_0 = y(x_0)$, интервал дифференцирования $[x_0, x_n]$, шаг h, точность ε ;
- 4. Для исследования использовать одношаговые методы и многошаговые методы (см. табл.6.1);
- 5. Составить таблицу приближенных значений интеграла дифференциального уравнения, удовлетворяющего начальным условиям, для всех методов, реализуемых в программе;
- 6. Для оценки точности одношаговых методов использовать правило Рунге: $R = \frac{y^h y^{h/2}}{2^p 1} \le \varepsilon;$
- 7. Для оценки точности многошаговых методов использовать точное решение задачи: $\varepsilon = \max_{0 \le i \le n} |y_{i \text{точн}} y_i|;$
- 8. Построить графики точного решения и полученного приближенного решения (разными цветами);
- 9. Программа должна быть протестирована при различных наборах данных, в том числе и некорректных.
- 10. Проанализировать результаты работы программы.

6.2 Требования и содержание отчета

Отчет должен содержать следующие разделы:

- Титульный лист,
- Цель работы,
- Описание алгоритма решения задачи,
- Рабочие формулы используемых методов,
- Листинг программы (по крайней мере, коды используемых методов),
- Скриншоты результатов выполнения программы при различных исходных данных (не менее трех),
- Графики точного решения и полученного приближенного решения,
- Выволы.

Отчет по лабораторной работе представляется в печатном или электронном виде по выбору студента. Защита отчета проходит в форме доклада студента по выполненной работе и ответов на вопросы преподавателя.

Основаниями для снижения количества баллов в диапазоне от max до min являются:

- небрежное выполнение,
- неточное решение задачи,
- низкое качество программного кода.

Отчет не может быть принят и подлежит доработке в случае:

- отсутствия необходимых разделов,
- неполного выполнения задания по лабораторной работе,
- неправильной работы программы для некоторых исходных данных.

Шкала оценивания и критерии оценки

Минимальное количество баллов	Максимальное количество баллов	Требования
10,1	11	выполнены все задания лабораторной работы, обучающийся четко и без ошибок ответил на все контрольные вопросы
9,1	10	выполнены все задания лабораторной работы; обучающийся ответил на все контрольные вопросы с замечаниями
7	9	выполнены все задания лабораторной работы с замечаниями; обучающийся ответил на все контрольные вопросы с замечаниями

0 0	обучающийся не выполнил или выполнил неправильно задания лабораторной работы; обучающийся ответил на контрольные вопросы с ошибками или не ответил на контрольные вопросы
-----	---

6.3 Варианты задания

Одношаговые методы:

- 1. Метод Эйлера,
- 2. Усовершенствованный метод Эйлера,
- 3. Метод Рунге-Кутта 4-го порядка.

Многошаговые методы:

- 4. Адамса,
- 5. Милна.

Таблица 6.1. Варианты задания для программной реализации задачи

№ варианта	Метод	№ варианта	Метод	№ варианта	Метод
1	1, 3, 4	14	2, 3, 5	27	1, 3, 4
2	2, 3, 5	15	1, 3, 4	28	1, 3, 5
3	1, 3, 5	16	1, 3, 5	29	2, 3, 5
4	1, 2, 4	17	2, 4	30	1, 2, 4
5	2, 3, 4	18	3, 4	31	1, 3, 4
6	1, 3, 5	19	1, 4	32	1, 2, 5
7	1, 2, 4	20	2, 5	33	2, 3, 4
8	2, 3, 4	21	1, 3, 4	34	1, 3, 4
9	1, 2, 5	22	1, 2, 5	35	1, 3, 5
10	1, 3, 5	23	2, 3, 4	36	2, 3, 4
11	2, 3, 4	24	1, 3, 4	37	1, 3, 5
12	1, 3, 4	25	1, 3, 5	38	1, 2, 4
13	1, 2, 5	26	2, 2, 4	39	2, 3, 4

6.4 Контрольные вопросы

- 1. Сформулируйте задачу Коши для дифференциального уравнения 1 порядка.
 - 2. Что является решением для дифференциального уравнения 1 порядка?
 - 3. В чем заключается суть метода конечных разностей?
 - 4. Что такое разностная аппроксимация?
 - 5. Геометрический смысл задачи Коши?
 - 6. Что такое интегральная кривая?
- 7. Какое из условий теоремы существования и единственности решения задачи Коши для ОДУ является условием существования и какое условием единственности?
 - 8. Что должно быть задано для решения ОДУ приближенными методами?
 - 9. Какой порядок точности имеет метод Эйлера? Рунге-Кутта?
- 10. Перечислите основные одношаговые методы для численного решения ОДУ?
- 11. Перечислите основные многошаговые методы для численного решения ОДУ?
 - 12. В чем заключается суть методов прогноза и коррекции?
- 13. Когда в методах прогноза и коррекции можно переходить на следующий этап вычислений?
 - 14. Что такое правило Рунге и как оно используется в данной задаче?
 - 15. Чтобы «запустить» метод Адамса, что необходимо вычислить?

7. РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ ДЛЯ ТЕКУЩЕГО ТЕСТИРОВАНИЯ

<u>Задача №1</u>. Решить систему линейных уравнений методом простой итерации с точностью $\varepsilon = 10^{-2}$:

$$A = \begin{pmatrix} 5.5 & 1.6 & 1.7 \\ 2.4 & -2.0 & -4.5 \\ 0.8 & 3.4 & 0.9 \end{pmatrix} \quad B = \begin{pmatrix} 1.0 \\ -1.5 \\ 3.0 \end{pmatrix}$$

Решение:

Проверим достаточное условие сходимости итерационного процесса к решению системы при любом начальном векторе $x_i^{(0)}$ — условие преобладания диагональных элементов или доминирование диагонали:

$$|a_{ii}| \ge \sum_{i \ne i} |a_{ij}|, i = 1, 2, ..., n$$

$$5.5 > 1.6 + 1.7$$
; $|-2.0| < 2.4 + |-4.5|$; $0.9 < 0.8 + 3.4$

Переставим местами второе и третье уравнение системы, тем самым добьёмся доминирование диагонали:

$$A = \begin{pmatrix} 5.5 & 1.6 & 1.7 \\ 0.8 & 3.4 & 0.9 \\ 2.4 & -2.0 & -4.5 \end{pmatrix} \quad B = \begin{pmatrix} 1.0 \\ 3.0 \\ -1.5 \end{pmatrix}$$

Выразим из первого уравнения x_1 , из второго x_2 , из третьего x_3 :

$$\begin{cases} x_1 = -0.29x_2 - 0.31x_3 + 0.18 \\ x_2 = -0.24x_1 - 0.26x_3 + 0.88 \\ x_3 = 0.53x_1 - 0.44x_2 + 0.33 \end{cases}$$

В качестве начального приближения выберем, например, нулевой вектор:

$$x_i^0 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Выполним расчеты по формуле: $x^{k+1} = Cx^k + d$, где

$$c_{ij} = \begin{cases} 0, & \text{при } i = j \\ -\frac{a_{ij}}{a_{ii}}, & \text{при } i \neq j \end{cases}$$
 $d_i = \frac{b_i}{a_{ii}}$ $i = 1, 2, ..., n$

или:

$$\begin{aligned} x_1^{k+1} &= -0.29 x_2^k - 0.31 x_3^k + 0.18 \\ x_2^{k+1} &= -0.24 x_1^k - 0.26 x_3^k + 0.88 \\ x_3^{k+1} &= 0.53 x_1^k - 0.44 x_2^k + 0.33 \end{aligned}$$

Для первого приближения получаем:

$$x_1^1 = -0.29 \cdot 0 - 0.31 \cdot 0 + 0.18 = 0.18$$

 $x_2^1 = -0.24 \cdot 0 - 0.26 \cdot 0 + 0.88 = 0.88$
 $x_3^1 = 0.53 \cdot 0 - 0.44 \cdot 0 + 0.33 = 0.33$

Вычислим критерий по абсолютным отклонениям:

$$\max \begin{pmatrix} \left| x_{1}^{1} - x_{1}^{0} \right| \\ \left| x_{2}^{1} - x_{2}^{0} \right| \\ \left| x_{3}^{1} - x_{3}^{0} \right| \end{pmatrix} = \max \begin{pmatrix} 0.18 \\ 0.88 \\ 0.33 \end{pmatrix} = 0.88 > \varepsilon$$

Продолжаем вычисления, т.к. точность не достигнута. Для второго приближения получаем:

$$x_1^2 = -0.29 \cdot 0.88 - 0.31 \cdot 0.33 + 0.18 = -0.18$$

 $x_2^2 = -0.24 \cdot 0.18 - 0.26 \cdot 0.33 + 0.88 = 0.75$
 $x_3^2 = 0.53 \cdot 0.18 - 0.44 \cdot 0.88 + 0.33 = 0.04$

Вычислим критерий по абсолютным отклонениям:

$$\max \begin{pmatrix} \left| \frac{x_1^1 - x_1^2}{x_2^1 - x_2^2} \right| \\ \left| \frac{x_2^1 - x_2^2}{x_3^2 - x_3^2} \right| \end{pmatrix} = \max \begin{pmatrix} 0.36 \\ 0.13 \\ 0.31 \end{pmatrix} = 0.36 > \varepsilon$$

Для третьего приближения получаем:

$$x_1^3 = -0.29 \cdot 0.75 - 0.31 \cdot 0.04 + 0.18 = -0.05$$

 $x_2^3 = -0.24 \cdot (-0.18) - 0.26 \cdot 0.04 + 0.88 = 0.91$
 $x_3^3 = 0.53 \cdot (-0.18) - 0.44 \cdot 0.75 + 0.33 = -0.09$

Вычислим критерий по абсолютным отклонениям:

$$\max \begin{pmatrix} \left| x_{1}^{2} - x_{1}^{3} \right| \\ \left| x_{2}^{2} - x_{2}^{3} \right| \\ \left| x_{3}^{2} - x_{3}^{3} \right| \end{pmatrix} = \max \begin{pmatrix} 0.15 \\ 0.16 \\ 0.13 \end{pmatrix} = 0.16 > \varepsilon$$

Для четвертого приближения получаем:

$$x_1^4 = -0.29 \cdot 0.91 - 0.31 \cdot 0.09 + 0.18 = -0.05$$

 $x_2^4 = -0.24 \cdot (-0.05) - 0.26 \cdot (-0.09) + 0.88 = 0.92$
 $x_3^4 = 0.53 \cdot (-0.05) - 0.44 \cdot 0.91 + 0.33 = -0.10$

Вычислим критерий по абсолютным отклонениям:

$$\max \begin{pmatrix} \begin{vmatrix} x_1^3 - x_1^4 \\ \begin{vmatrix} x_2^3 - x_2^4 \\ \end{vmatrix} \end{vmatrix} = \max \begin{pmatrix} 0,0\\0,01\\0,01 \end{pmatrix} = 0,01 = \varepsilon$$

Решение найдено. Проверим наши вычисления, подставив вектор решения в исходную систему уравнений:

$$5.5 \cdot (-0.05) + 1.6 \cdot 0.92 + 1.7 \cdot (-0.1) = 1.027 \approx 1.0$$

 $0.8 \cdot (-0.05) + 3.4 \cdot 0.92 + 0.9 \cdot (-0.1) = 2.998 \approx 3.0$
 $2.4 \cdot (-0.05) - 2.0 \cdot 0.92 - 4.5 \cdot (-0.1) = -1.51 \approx -1.5$

Задача №2. Найти корень нелинейного уравнения $x^3 - 6x - 8 = 0$ методом половинного деления с точностью до 0,01 на интервале [2, 4].

Идея метода половинного деления заключается в делении отрезка, содержащего корень уравнения, пополам.

Рабочая формула метода: $x = \frac{a+b}{2}$.

В качестве нового интервала выбирается та половина отрезка, на концах которого функция имеет разные знаки. Если длина интервала изоляции корня $|a_n - b_n|$ станет меньше или равной заданной точности, итерационный процесс заканчивается. В качестве решения задачи выбирается правая или левая граница последнего интервала, или его середина.

Решение:

- 1. Разделим начальный интервал изоляции корня пополам и получим начальное приближение к корню: $x_0 = \frac{a+b}{2} = \frac{2+4}{2} = 3$.
 - 2. Вычислим значения функции: $f(x_0) = 1$, f(a) = -12, f(b) = 32.
- 3. В качестве нового интервала выбираем $[a, x_0]$, т.к. на концах этого отрезка функция имеет разные знаки. Тогда, a = 2, b = 3
- 4. Проверяем длину отрезка $|a-b|=1\gg 0,01$. Поэтому продолжаем вычислительный процесс.
- 5. Заново разделим отрезок пополам и получим очередное приближение к корню: $x_1 = \frac{2+3}{2} = 2,5$.

6. Вычислим значение функции: $f(x_1) = -7,375$. Находим следующий интервал, где функция на концах отрезка имеет разные знаки: a = 2,5; b = 3, $|a - b| = 0,5 \gg 0,01$

7 TT	1	_
/ Ите п анионные шаги	оформим в	виле таблины.
7. Итерационные шаги	оформим в	виде таблицы.

№ шага	а	b	x	f(a)	f(b)	f(x)	a-b
1	2	4	3	-12	32	1	2
2	2	3	2,5	-12	1	-7,375	1
3	2,5	3	2,75	-7,375	1	-3,703	0,5
4	2,75	3	2,875	-3,703	1	-1,486	0,25
5	2,875	3	2,938	-1,486	1	-0,278	0,125
6	2,938	3	2,969	-0,278	1	0,352	0,062
7	2,938	2,969	2,953	-0,278	0,352	0,035	0,031
8	2,938	2,953	2,945	-0,278	0,035	-0,122	0,015
9	2,945	2,953	2,949	-0,122	0,035	-0,043	0,008

Решение найдено, корень уравнения – $x^* = \frac{a_9 + b_9}{2} = 2,949$, длина интервала – $|a_9 - b_9| = 0,008 < 0,01$

Однако, если учитывать критерий по функции ($|f(x^*)| \le \varepsilon$), тогда придется выполнить еще три итерации.

<u>Задача №3</u>. Найти корень нелинейного уравнения $x^3 - 6x - 8 = 0$ методом простой итерации с точностью до 0,01 на интервале [2, 4].

Преобразуем уравнение f(x) = 0 к равносильному (при $\lambda \neq 0$) $\lambda f(x) = 0$. Для этого прибавим x в обеих частях: $x = x + \lambda f(x)$ $\varphi(x) = x + \lambda f(x)$.

Высокая скорость сходимости обеспечивается при $q=\max_{[a,b]}|\varphi'(x)|\approx 0$. Тогда $\lambda=-\frac{1}{\max\limits_{[a,b]}|f'(x)|}.$

Прежде чем проводить вычисления, проверим условие сходимости метода на выбранном интервале: $|\varphi'(x)| \le 1$

$$f'(x) = 3x^2 - 6$$
, $f'(2) = 6$, $f'(4) = 42$, $\lambda = \frac{1}{42} \approx -0.0238$
 $\varphi'(x) = 1 + \lambda f'(x)$, $\varphi'(2) \approx 0.8572$, $\varphi'(4) \approx 0.0004$.

Условие сходимости выполняется.

Решение:

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$. В качестве начального приближения выбираем $x_0 = b = 4$.

Тогла:

$$x_1 = \varphi(x_0) = 4 - 0.0238 * 32 \approx 3.238$$

 $x_2 = \varphi(x_1) = 3.238 - 0.0238 * 6.521 \approx 3.083$
 $x_3 = \varphi(x_2) = 3.083 - 0.0238 * 2.806 \approx 3.016$
 $x_4 = \varphi(x_3) = 3.016 - 0.0238 * 1.339 \approx 2.984$
 $x_5 = \varphi(x_4) = 2.984 - 0.0238 * 0.667 \approx 2.968$
 $x_6 = \varphi(x_5) = 2.968 - 0.0238 * 0.337 \approx 2.960$
 $x_7 = \varphi(x_6) = 2.960 - 0.0238 * 0.174 \approx 2.956$

Решение найдено, если учитывать сходимость аргументу ПО $|x_7 - x_6| = 0,004 < 0,01$, корень уравнения – $x^* = 2,956$.

Если учитывать сходимость по функции, тогда необходимо продолжить итерационный процесс, т. к. $f(x^*) = 0.093 > \varepsilon$

Как видно из примера, сходимость метода простой итерации выше по сравнению с методом половинного деления.

Задача №4. Решить систему нелинейных уравнений методом Ньютона с точностью до 0,01.

$$\begin{cases} x^2 + y^2 = 4 \\ y = 3x^2 \end{cases}$$

$$\begin{cases} x^2 + y^2 = 4 \\ y = 3x^2 \end{cases} \to \begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases} \to \begin{cases} x^2 + y^2 - 4 = 0 \\ -3x^2 + y = 0 \end{cases}$$

Отметим, что решение системы уравнений являются точки пересечения окружности радиусом, равным 2, и параболы $y = 3x^2$. Следовательно, система имеет не более двух различных решений.

Построим матрицу Якоби:

$$\frac{\partial f}{\partial x} = 2x$$
 $\frac{\partial f}{\partial y} = 2y$ $\frac{\partial g}{\partial x} = -6x$ $\frac{\partial g}{\partial y} = 1$

Тогда будем решать следующую систему линейных уравнений относительно Δx , Δv :

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$
$$\begin{vmatrix} 2x & 2y \\ -6x & 1 \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} 4 - x^2 - y^2 \\ 3x^2 - y \end{pmatrix}$$

А далее вычислять на каждой итерации: $x_{i+1} = x_i + \Delta x_i$, $y_{i+1} = y_i + \Delta y_i$, где x_i , y_i — текущее приближение к корню, x_{i+1}, y_{i+1} — последующее приближение, $\Delta x_i, \Delta y_i$ приращения к очередным приближениям.

Процесс вычисления заканчивается при выполнении следующих условий: $|x_{i+1} - x_i| \le \varepsilon$, $|y_{i+1} - y_i| \le \varepsilon$.

В методе Ньютона важен удачный выбор начального приближения для обеспечения быстрой сходимости.

- 1. Выбираем $x_0=1$, $y_0=2$, подставляем эти значения в систему: $\{2\Delta x_0+4\Delta y_0=-1 \\ -6\Delta x_0+\Delta y_0=1$
- 2. Решаем полученную систему. Для этого выразим из второго уравнения $\Delta y_0 = 1 + 6\Delta x_0$,

Подставим в первое уравнение: $2\Delta x_0 + 4 + 24\Delta x_0 = -1$; $26\Delta x_0 = -5$. Получаем $\Delta x_0 = -0.192$, $\Delta y_0 = -0.154$.

3. Вычисляем очередные приближения:

 $x_1 = x_0 + \Delta x_0 = 1 - 0.192 = 0.808, \quad y_1 = y_0 + \Delta y_0 = 2 - 0.154 = 1.846.$

4. Проверяем критерий окончания вычислений: $|\Delta x_0| = 0.192 > \varepsilon$, $|\Delta y_0| = 0.154 > \varepsilon$

5. Подставляем $x_1=0,808$ и $y_1=1,846$ в систему: $\begin{cases} 1,616\Delta x_1+3,692\Delta y_1=-0,061\\ -4,848\Delta x_1+\Delta y_1=0,113 \end{cases}$

6. Решаем систему: $\Delta x_1 = -0.024$ и $\Delta y_1 = -0.005$. Вычисляем очередные приближения: $x_2 = x_1 + \Delta x_1 = 0.808 - 0.024 = 0.784$,

 $y_2 = y_1 + \Delta y_1 = 1,846 - 0,005 = 1,841.$

7. Проверяем $|\Delta x_1| = 0.024 > \varepsilon$, $|\Delta y_1| = 0.005 < \varepsilon$

8. Подставляем $x_2 = 0.784$ и $y_2 = 1.841$ в систему: $(1.568\Delta x_2 + 3.682\Delta y_2 = -0.004)$

 $-4,704\Delta x_2 + \Delta y_2 = 0,003$

9. Решаем систему: $\Delta x_2 = -0,001$ и $\Delta y_2 = -0,002$. Вычисляем очередные приближения: $x_3 = x_2 + \Delta x_2 = 0,784 - 0,001 = 0,783,$

 $y_3 = y_2 + \Delta y_2 = 1,841 - 0,002 = 1,839.$

10. Проверяем $|\Delta x_2| = 0.001 < \varepsilon$, $|\Delta y_2| = 0.005 < \varepsilon$

Решение найдено за 3 шага.

Проверим наши вычисления, подставив вектор решения в исходную систему уравнений:

 $0,783^2 + 1,839^2 = 3,995 \approx 4$ $1,839 \approx 3 \cdot 0,783^2 = 1,8393$

<u>Задача №5</u>. Вычислить интеграл методом трапеций и методом парабол. Оценить погрешность вычислений.

$$\int_{0}^{n} \left(3x \cos(x + \frac{\pi}{3}) dx \text{ при } n = 6 \right)$$

Решение:

Формула метода трапеций:

$$\int_{a}^{b} f(x) dx = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right)$$

Формула метода парабол:

$$\int_{0}^{b} f(x) = \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) + y_n) \right]$$

Определим значение шага:

$$h = \frac{b-a}{n} = \frac{\pi}{6}$$

i	0	1	2	3	4	5	6
x_i	0	$^{\pi}/_{6}$	$^{\pi}/_{3}$	$^{\pi}/_{2}$	$^{2\pi}/_{3}$	$^{5\pi}/_{6}$	π
y_i	0,00	0,000	-1,571	-4,081	-6,283	-6,802	-4,712

$$\begin{split} I_{\text{трап}} &= h \cdot \left(\frac{y_0 + y_6}{2} + \sum_{i=1}^{5} y_i \right) = \frac{\pi}{6} \cdot \left(\frac{0 - 4,712}{2} - 18,737 \right) = -11,0443 \\ I_{\text{пара6}} &= \frac{h}{3} \left[(y_0 + 4(y_1 + y_3 + y_5) + 2(y_2 + y_4) + y_6) \right] \\ &= \frac{\pi}{18} (0 - 4 \cdot (0 + 4,081 + 6,802) - 2 \cdot (1,571 + 6,283) = -11,1616 \end{split}$$

Найдем точное решение:

$$I_{\text{точн}} = \int_{0}^{\pi} \left(3x\cos(x + \frac{\pi}{3})dx = -\frac{3\sqrt{3}\pi}{2} - 3 \approx -11,1621\right)$$

Оценим погрешности вычислений:

$$\Delta I_{\text{трап}} = \left| I_{\text{точн}} - I_{\text{трап}} \right| = 11,1621 - 11,0443 = 0,1178$$

$$\Delta I_{\text{параб}} = \left| I_{\text{точн}} - I_{\text{параб}} \right| = 11,1621 - 11,1616 = 0,005$$

<u>Задача №6</u>. Построить линейную аппроксимацию для таблично заданной функции:

x	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
у	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7

Вычислить среднеквадратичное отклонение.

Решение:

Составим систему метода наименьших квадратов для линейной функции.

$$\begin{cases} a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \\ a \sum_{i=1}^{n} x_i + bn = \sum_{i=1}^{n} y_i \end{cases}$$

$$\sum_{i=1}^{n} x_i = 47,7 \quad \sum_{i=1}^{n} x_i^2 = 353,37 \quad \sum_{i=1}^{n} y_i = 111,7 \quad \sum_{i=1}^{n} x_i y_i = 766,3$$

Получаем систему линейных уравнений: $\{353,37a+47,7b=766,3 \\ 47,7a+8b=111,7$

$$353,37a + 47,7b = 766,3$$

 $47,7a + 8b = 111,7$

Решая систему, получим значения коэффициентов: a = 1,454; b = 5,291. Построенная линейная модель: $P_1(x) = 1,454x + 5,291$. Вычисленные данные занесем в таблицу:

i	1	2	3	4	5	6	7	8
x_i	1,2	2,9	4,1	5,5	6,7	7,8	9,2	10,3
y_i	7,4	9,5	11,1	12,9	14,6	17,3	18,2	20,7
$P_1(x_i)$	7,036	9,509	11,254	13,290	15,035	16,635	18,671	20,271
$P_1(x_i) - y_i$	0,364	0,009	0,154	0,390	0,435	-0,665	0,471	-0,429
$(P_1(x_i) - y_i)^2$	0,132	0,0001	0,024	0,152	0,189	0,442	0,222	0,184

Определим среднеквадратичное отклонение:

$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (P_1(x_i) - y_i)^2}{n}} = \sqrt{\frac{1,346}{8}} \approx 0,410$$

Задача №7. Найти приближенное значение функции y = f(x) при x = 0.35 для заданной таблицы с помощью интерполяционного многочлена Лагранжа.

x	0,1	0,2	0,3	0,4	0,5
y	1,25	2,38	3,79	5,44	7,14

Решение:

Интерполяционный многочлен Лагранжа:

$$Ln(x) = \sum_{i=0}^{n} y_i l_i(x)$$

$$Ln(x) = \sum_{i=0}^{n} y_i \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j}$$

$$l_0(x) = \frac{(x - x_1)(x - x_2)(x - x_3)(x - x_4)}{(x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)} = \frac{(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.1 - 0.2)(0.1 - 0.3)(0.1 - 0.4)(0.1 - 0.5)} = 0.023 * y_0 = 0.023 * 1.25 = 0.029,$$

$$l_1(x) = \frac{(x - x_0)(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.3)(0.35 - 0.4)(0.35 - 0.5)}{(0.2 - 0.1)(0.2 - 0.3)(0.2 - 0.4)(0.2 - 0.5)} \\ \approx (-0.156) * y_1 = (-0.156) * 2.38 = -0.372,$$

$$l_2(x) = \frac{(x - x_0)(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.4)(0.35 - 0.5)}{(0.3 - 0.1)(0.3 - 0.2)(0.3 - 0.4)(0.3 - 0.5)} \\ \approx 0.703 * y_2 = 0.703 * 3.79 = 2.665,$$

$$l_3(x) = \frac{(x - x_0)(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.5)}{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.5)}{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}$$

$$l_4(x) = \frac{(x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)}{(x_4 - x_0)(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)} = \frac{(0.4 - 0.1)(0.4 - 0.2)(0.4 - 0.3)(0.4 - 0.5)}{(0.5 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)} = \frac{(0.35 - 0.1)(0.35 - 0.2)(0.35 - 0.3)(0.35 - 0.4)}{(0.5 - 0.1)(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)} = \frac{(0.5 - 0.1)(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}{(0.5 - 0.2)(0.5 - 0.3)(0.5 - 0.4)}$$

$$L_4(0,35) = l_0(x) + l_1(x) + l_2(x) + l_3(x) + l_4(x) \approx 4,59336$$

<u>Задача №7</u>. Найти приближенные значения функции y = f(x) при x = 0.15; x = 0.28; x = 0.32; x = 0.47 для заданной таблицы с помощью интерполяционного многочлена Ньютона или Гаусса.

x	0,1	0,2	0,3	0,4	0,5
у	1,25	2,38	3,79	5,44	7,14

Решение:

Для вычисления значение функции при x = 0.15 воспользуемся первой интерполяционной формулой Ньютона, т. к. x лежит в левой половине отрезка, при x = 0.47 — второй интерполяционной формулой Ньютона, т.к. x лежит в правой половине отрезка.

Интерполяционный многочлен Гаусса используется для узлов, находящихся в середине таблицы (a = 0,3).

Для вычисления значение функции при x = 0.32 воспользуемся первой интерполяционной формулой Гаусса, т. к. x > a.

Для вычисления значение функции при x = 0.28 воспользуемся второй интерполяционной формулой Гаусса, т.к. x < a.

Для удобства вычислений построим таблицу конечных разностей:

Конечные разности первого порядка: $\Delta y_i = y_{i+1} - y_i$;

Конечные разности второго порядка: $\Delta^2 y_i = \Delta y_{i+1} - \Delta y_i$;

Конечные разности третьего порядка: $\Delta^3 y_i = \Delta^2 y_{i+1} - \Delta^2 y_i$;

Конечные разности четвертого порядка: $\Delta^4 y_i = \Delta^3 y_{i+1} - \Delta^3 y_i$;

x_i	y_i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$	$\Delta^4 y_i$
0,1	1,25	$\Delta y_0 = 1,13$	$\Delta^2 y_0 = 0.28$	$\Delta^3 y_0 = -0.04$	$\Delta^4 y_0 = -0.15$
0,2	2,38	$\Delta y_1 = 1,41$	$\Delta^2 y_1 = 0.24$	$\Delta^3 y_1 = -0.19$	
0,3	3,79	$\Delta y_2 = 1,65$	$\Delta^2 y_2 = 0.05$		
0,4	5,44	$\Delta y_3 = 1,7$			
0,5	7,14				

Первая интерполяционная формула Ньютона:

$$Nn(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!}\Delta^3 y_0 + \frac{t(t-1)(t-2)(t-3)}{4!}\Delta^4 y_0$$

Для
$$x = 0.15$$
: $t = \frac{(x-x_0)}{h} = \frac{0.15-0.1}{0.1} = 0.5$

$$y(0,15) = 1,25 + 0,5 \cdot 1,13 + \frac{0,5(-0,5)}{2} \cdot 0,28 + \frac{0,5(-0,5)(-1,5)}{6} \cdot (-0,04) + \frac{0,5(-0,5)(-1,5)(-2,5)}{24} \cdot (-0,15) \approx 1,783$$

Вторая интерполяционная формула Ньютона:

$$N_4(x) = y_4 + t\Delta y_3 + \frac{t(t+1)}{2!}\Delta^2 y_2 + \frac{t(t+1)(t+2)}{3!}\Delta^3 y_1 + \frac{t(t+1)(t+2)(t+3)}{4!}\Delta^4 y_0$$

Для
$$x = 0.47$$
: $t = \frac{(x - x_n)}{h} = \frac{0.47 - 0.5}{0.1} = -0.3$
 $y(0.47) = 7.14 - 0.3 \cdot 1.7 + \frac{-0.3(-0.3 + 1)}{2!} 0.05 + \frac{-0.3(-0.3 + 1)(-0.3 + 2)}{3!} (-0.19)$
 $+ \frac{-0.3(-0.3 + 1)(-0.3 + 2)(-0.3 + 3)}{4!} (-0.15) \approx 6.642$

Первая интерполяционная формула Гаусса:

$$P_4(x) = y_0 + t\Delta y_0 + \frac{t(t-1)}{2!}\Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!}\Delta^3 y_{-1} + \frac{t(t+1)(t-1)(t-2)}{4!}\Delta^4 y_{-2}$$

Для
$$x = 0.32$$
: $t = \frac{(x-x_0)}{h} = \frac{0.32-0.3}{0.1} = 0.2$ $y(0.32) \approx 3.79 + 0.2 \cdot 1.65 + \frac{0.2 \cdot (-0.8)}{2} \cdot 0.24 + \frac{0.2 \cdot 1.2 \cdot (-0.8)}{6} \cdot (-0.19) + \frac{0.2 \cdot 1.2 \cdot (-0.8) \cdot (-1.8)}{24} \cdot (-0.15) \approx 4$, 105

Вторая интерполяционная формула Гаусса:

$$P_4(x) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!}\Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!}\Delta^3 y_{-2} + \frac{t(t+1)(t-1)(t-2)}{4!}\Delta^4 y_{-2}$$

Для
$$x = 0.28$$
: $t = \frac{(x-x_0)}{h} = \frac{0.28-0.3}{0.1} = -0.2$
 $y(0.28) \approx 3.79 - 0.2 \cdot 1.41 + \frac{-0.2 \cdot 0.8}{2} \cdot 0.24 + \frac{-0.2 \cdot 0.8 \cdot (-1.2)}{6} \cdot (-0.04) + \frac{-0.2 \cdot 0.8 \cdot (-1.2) \cdot 1.8}{24} \cdot (-0.15) \approx 3.485$

<u>Задача №8</u>. Решить задачу Коши для дифференциального уравнения $y' = y + (1+x)y^2$ на отрезке [1; 1,5] с начальным условием y(1) = -1, h = 0,1:

- 1. методом Эйлера,
- 2. методом Рунге-Кутта 4 порядка.

Сравнить приближенные решения с точным.

Решение:

Формула Эйлера: $y_i = y_{i-1} + hf(x_{i-1}, y_{i-1})$

Формула Рунге-Кутта 4 порядка: $y_{i+1} = y_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$,

$$k_1 = h \cdot f(x_i, y_i)$$

$$k_2 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_1}{2})$$

$$k_3 = h \cdot f(x_i + \frac{h}{2}, y_i + \frac{k_2}{2})$$

$$k_4 = h \cdot f(x_i + h, y_i + k_3)$$

Выполним первый шаг вычислений по методу Эйлера:

$$y_1 = y_0 + hf(x_0, y_0) = -1 + 0.1 \cdot (-1 + (1+1) \cdot (-1)^2) = -0.9$$

Выполним первый шаг вычислений по методу Рунге-Кутта:

$$\begin{aligned} k_1 &= h \cdot f(x_0, y_0) = 0, 1 \cdot 1 = 0, 1 \\ k_2 &= h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right) = 0, 1 \cdot 0, 90012 = 0, 090012 \\ k_3 &= h \cdot f\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right) = 0, 1 \cdot 0, 91463 = 0, 091463 \\ k_4 &= h \cdot f(x_0 + h, y_0 + k_3) = 0, 1 \cdot 0, 82488 = 0, 082488 \\ y_1 &= y_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4) = -1 + \frac{1}{6}(0, 1 + 2 \cdot 0, 090012 + 2 \cdot 0, 091463 + 0, 082488) = -0, 909093 \end{aligned}$$

Вычисления на каждом шаге внесем в таблицу:

i	x_i	Метод Эйлера	Метод Рунге-Кутта 4 порядка	Точное решение
0	1	-1	-1	-1
1	1,1	-0,9	-0,909093	-0,909091
2	1,2	-0,8199	-0,833336	-0,833333

3	1,3	-0,753998	-0,769234	-0,769231
4	1,4	-0,698640	-0,714289	-0,714286
5	1,5	-0,651361	-0,666670	-0,666667

Отметим, что метод Эйлера достаточно груб и дает удовлетворительную точность лишь при малом шаге h. Метод Рунге-Кутта требует большего объема вычислений по сравнению с методом Эйлера, однако это окупается повышенной точностью, что дает возможность проводить счет с большим шагом. Другими словами, для получения результатов с одинаковой точностью в методе Эйлера потребуется значительно меньший шаг, чем в методе Рунге-Кутта.

8.СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Бахвалов, Н.С. Численные методы: учебник / Н.С. Бахвалов, Н.П. Жидков, Г.М. Кобельков. 9-е изд. Москва: Лаборатория знаний, 2020. 636 с. ISBN 978-5-00101-836-0. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/126099. Режим доступа: для авториз. пользователей.
- 2. Волков, Е. А. Численные методы: учебное пособие для вузов / Е. А. Волков. 7-е изд., стер. Санкт-Петербург: Лань, 2022. 252 с. ISBN 978-5-507-44711-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/254663. Режим доступа: для авториз. пользователей.
- 3. Турчак, Л. И. Основы численных методов: учебное пособие / Л. И. Турчак, П. В. Плотников. 2-е изд., перераб.и доп. Москва: ФИЗМАТЛИТ, 2002. 304 с. ISBN 5-9221-0153-6. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/2351. Режим доступа: для авториз. пользователей.
- 4. Демидович, Б. П. Основы вычислительной математики: учебное пособие / Б. П. Демидович, И. А. Марон. 8-е изд., стер. Санкт-Петербург: Лань, 2022. 672 с. ISBN 978-5-8114-0695-1. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210674. Режим доступа: для авториз. пользователей.
- 5. Лабораторный практикум по численным методам: учебное пособие / Т. А. Певцова, О. А. Гущина, Е. А. Рябухина, А. В. Шамаев. Саранск: МГУ им. Н.П. Огарева, 2019. 148 с. ISBN 978-5-7103-3906-0. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/154364. Режим доступа: для авториз. пользователей.
- 6. Демидович, Б. П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения: учебное пособие / Б. П. Демидович, И. А. Марон, Э. З. Шувалова. 5-е изд., стер. Санкт-Петербург: Лань, 2022. 400 с. ISBN 978-5-8114-0799-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210437. Режим доступа: для авториз. пользователей.
- 7. Марчук, Г. И. Методы вычислительной математики: учебное пособие / Г. И. Марчук. 4-е изд., стер. Санкт-Петербург: Лань, 2022. 608 с. ISBN 978-5-8114-0892-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210302. Режим доступа: для авториз. пользователей.
- 8. Копченова, Н. В. Вычислительная математика в примерах и задачах: учебное пособие для вузов / Н. В. Копченова, И. А. Марон. 5-е изд., стер. Санкт-Петербург: Лань, 2021. 368 с. ISBN 978-5-8114-8114-9. Текст:

- электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/171859. Режим доступа: для авториз. пользователей.
- 9. Денисова, Э. В. Основы вычислительной математики / Э. В. Денисова, А. В. Кучер. Санкт-Петербург: НИУ ИТМО, 2010. 164 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/43410. Режим доступа: для авториз. пользователей.
- 10. Русина, Л. Г. Вычислительная математика. Численные методы интегрирования и решения дифференциальных уравнений и систем: учебное пособие для вузов / Л. Г. Русина. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 168 с. ISBN 978-5-8114-9495-8. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/195521. Режим доступа: для авториз. пользователей.
- 11. Зенков, А. В. Вычислительная математика для ІТ-специальностей: учебное пособие / А. В. Зенков. Вологда: Инфра-Инженерия, 2022. 128 с. ISBN 978-5-9729-0883-7. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/282011. Режим доступа: для авториз. пользователей.
- 12. Карманова, Е. В. Численные методы: учебное пособие / Е. В. Карманова. 3-е изд., стер. Москва: ФЛИНТА, 2020. 172 с. ISBN 978-5-9765-2303-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152402. Режим доступа: для авториз. пользователей.
- 13. Срочко, В. А. Численные методы. Курс лекций: учебное пособие / В. А. Срочко. Санкт-Петербург: Лань, 2022. 208 с. ISBN 978-5-8114-1014-9. Текст: электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/210359. Режим доступа: для авториз. пользователей.
- 14. Шевцов, Г. С. Численные методы линейной алгебры: учебное пособие / Г. С. Шевцов, О. Г. Крюкова, Б. И. Мызникова. 2-е изд., испр. и доп. Санкт-Петербург: Лань, 2022. 496 с. ISBN 978-5-8114-1246-4. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/210647. Режим доступа: для авториз. пользователей.
- 15. Киреев, В. И. Численные методы в примерах и задачах: учебное пособие / В. И. Киреев, А. В. Пантелеев. 4-е изд., испр. Санкт-Петербург: Лань, 2022. 448 с. ISBN 978-5-8114-1888-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/212063. Режим доступа: для авториз. пользователей.
- 16. Шамин, Р. В. Современные численные методы в объектноориентированном изложении на С#: учебное пособие / Р. В. Шамин. — 2-е изд. — Москва: ИНТУИТ, 2016. — 282 с. — Текст: электронный // Лань: электроннобиблиотечная система. — URL: https://e.lanbook.com/book/100496.

- 17. Локтионов, И. К. Численные методы : учебник / И. К. Локтионов, Л. П. Мироненко, В. В. Турупалов. Вологда : Инфра-Инженерия, 2022. 380 с. ISBN 978-5-9729-0786-1. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/282047. Режим доступа: для авториз. пользователей.
- 18. Берестова, С. А. Математическое моделирование в инженерии: учебник / С. А. Берестова, Н. Е. Мисюра, Е. А. Митюшов. Екатеринбург: УрФУ, 2018. 244 с. ISBN 978-5-7996-2499-6. Текст: электронный // Лань: электроннобиблиотечная система. URL: https://e.lanbook.com/book/170101. Режим доступа: для авториз. пользователей.

Малышева Татьяна Алексеевна Белозубов Александр Владимирович Болдырева Елена Александровна Рыбаков Степан Дмитриевич Шматков Владислав Николаевич

Лабораторный практикум по вычислительной математике

Учебно-методическое пособие

В авторской редакции
Редакционно-издательский отдел Университета ИТМО
Зав. РИО Н.Ф. Гусарова
Подписано к печати
Заказ №
Тираж
Отпечатано на ризографе