Homework

PB22010344 黄境

2024年10月8日

EXERCISE 1. Bolzano-Weierstrass Theorem

SOLUTION.

- 1. Proof by contradiction.
- (\Rightarrow)Suppose that $\exists \epsilon_0$, s.t. $\forall a \in C, a + \epsilon_0 < u$, thus $u \epsilon_0$ is also an upper bound of C, which has $u \epsilon_0 < u$, contradicting to the assumption that u is the least upper bound of C.
- (\Leftarrow)Suppose that u' < u is an upper bound of C, let $\epsilon_0 = u' u$, thus $\forall a \in C, a + \epsilon_0 = a + u' u = u' (u a) \le u'$, contradicting to the assumption that $\forall \epsilon > 0, \exists a \in C, \text{ s.t. } a > u \epsilon$.
- 2. If the term $a_n > a_m$, $\forall m > n$, we call it a head. If $\{a_n\}$ contains infinite heads, then the sequence of heads is a decreasing subsequence of $\{a_n\}$, or if $\{a_n\}$ only have finite heads, let a_{i_1} be the next term of the last head, then there must exist a_{i_2} s.t. $i_2 > i_1$ and $a_{i_1} \leq a_{i_2}$. Since a_{i_2} is also not a head, we can find a_{i_3} s.t. $i_2 > i_3$ and $a_{i_2} \leq a_{i_3}$. Follow the step and we have a increasing subsquence $\{a_{i_n}\}$. So we have proved that every squence has a monotune subsequence.

Now for bounded sequence $\{a_n\}$, without loss of generality, we assume that it has an increasing subsequence $\{a_{i_n}\}$, then $\{a_{i_n}\}$ is also bounded. By the

least upper bound axiom, let $c = \sup\{a_{i_n}\}$, then $c \in [a,b]$, and we have $\forall \epsilon > 0, \exists a_{i_N}, \text{ s.t. } c - \epsilon < a_{i_N}, \text{ which implies } c - \epsilon < a_{i_M}, \forall M > N, \text{ for the sequence is increasing. That is } 0 \leq c - a_{i_M} < \epsilon, \forall M > N, \text{ which implies } \lim_{n \to \infty} a_{i_n} = c.$

EXERCISE 2. Limit and Limit Points

SOLUTION.

- 1.(\Rightarrow) Since $\lim_{n\to\infty} x_n = x$, let $\epsilon = 1$, $\exists N$, s.t. $\forall n > N, ||x_n x|| \leq 1$. Let $r = 1 + max\{||x_1 - x||, ||x_2 - x||, ..., ||x_N - x||, 1\}, \text{ then } \{x_n\} \in B_r(x), \text{ thus}$ $\{x_n\}$ is bounded. Obviously x is a limit point of $\{x_n\}$, and if x' is another limit point of $\{x_n\}$, then $\lim_{n\to\infty} x_n = x' = x$. Thus x is unique. (\Leftarrow) Suppose that $\exists \{y_n\}$ is a subsequence of $\{x_n\}$, s.t. $\lim_{n\to\infty} y_n$ does not converge to x. Since x is the unique limit point, y_n must be divergent. By Bolzano-Weierstrass theorem, $\exists A$ and a subsequence $\{y_{k_n}\}$ of y_n , s.t. $\lim_{n \to \infty} y_{k_n} = A$. By the definition of limit, $\exists \epsilon$, s.t. $B_{\epsilon}^c(A)$ has infinite terms of y_n . These terms are also a bounded sequence, thus by the Bolzano-Weierstrass theorem, $\exists \{y_{s_n}\}, \text{ s.t. } \lim_{n\to\infty} y_{s_n} = B \neq A, \text{ contradicting to the as-}$ sumption that x is the unique limit point of $\{x_n\}$. Thus we have $\lim_{n\to\infty} x_n = x$. $2. (a) \text{ Since } \{2^{-n}\}_{n=1}^{\infty} \in C, \ \{1-2^{-n}\}_{n=1}^{\infty} \in C, \ \lim_{n \to \infty} 2^{-n} = 0, \ \lim_{n \to \infty} 1 - 2^{-n} = 1,$ and $\forall n, 0 \neq 2^{-n}, 1 \neq 1 - 2^{-n}$, thus 0 and 1 are limit points of C. $\forall x \in (0, 1)$, let $d = min\{x, 1-x\}$, then $\{x+2^{-n}d\}_{n=1}^{\infty} \in C$, s.t. $x+2^{-n}d \to x$ and $x+2^{-n}d\neq x$, thus x is also a limit point of C. By definition, x is a limit point of $C \Leftrightarrow \forall \epsilon > 0, B_{\epsilon}(x) \cap C \setminus \{x\} \neq \emptyset$. Thus $\forall x \notin (0,1)$, let $d = min\{\|x\|, \|1-x\|\}$, then $B_{\frac{d}{2}}(x) \cap C \setminus \{x\} = \emptyset$. That is, C' = [0, 1], and $\{2\} = C \setminus C'$ is an isolated point of C.
- (b) C' is closed \Leftrightarrow (C')^c is open. $\forall a \in (C')^c$, Since a is not a limit point

of C, $\exists B_r(a)$, s.t. $B_r(a) \cap C = \emptyset$. Thus $\forall b$ in $B_r(a)$, $b \notin C'$, which implies $B_r(a) \subset (C')^c$, thus $(C')^c$ is open, thus C' is closed.

Exercise 3. Norms

SOLUTION. 1.(a) Obviously l_p is nonnegative and definite. Since $\|\alpha \mathbf{x}\| = (\sum_{i=1}^{n} (|\alpha x_i|)^p)^{\frac{1}{p}} = \alpha (\sum_{i=1}^{n} |x_i|^p)^{\frac{1}{p}} = \alpha \|\mathbf{x}\|$, l_p is homogeneous. By the Minkowski inequality, l_p satisfies the triangle inequality.

- (b) On the one hand, $\|\mathbf{x}\|_{p} \leq (\sum_{i=1}^{n} \max_{i} |x_{i}|^{p})^{\frac{1}{p}} = n^{\frac{1}{p}} \max_{i} |x_{i}|$, thus $\lim_{p \to \infty} \|\mathbf{x}\|_{p} \leq \lim_{p \to \infty} n^{\frac{1}{p}} \max_{i} |x_{i}| = \max_{i} |x_{i}|$. On the other hand, $\|\mathbf{x}\|_{p} \geq (\max_{i} |x_{i}|^{p})^{\frac{1}{p}} = \max_{i} |x_{i}|$, thus $\lim_{p \to \infty} \|\mathbf{x}\|_{p} \geq \lim_{p \to \infty} \max_{i} |x_{i}| = \max_{i} |x_{i}|$. Thus $\lim_{p \to \infty} \|\mathbf{x}\|_{p} = \max_{i} |x_{i}|$ 2.(a) Let $\mathbf{x} = \sum_{i=1}^{n} \lambda_{i} e_{i}$, the ith element of e_{i} is 1, the others are 0. Thus $\|\mathbf{A}\mathbf{x}\|_{1} = \sum_{i=1}^{m} |a_{i}(\sum_{j=1}^{n} \lambda_{j} e_{j})| = \sum_{i=1}^{m} |\sum_{j=1}^{n} a_{ij} \lambda_{j}|$, a_{i} is the ith row of \mathbf{A} . Since $|\sum_{j=1}^{n} a_{ij} \lambda_{j}| = \sum_{j=1}^{n} |a_{ij} \lambda_{j}|$ if $a_{ij} \lambda_{j}$ are all positive or all negative $\forall i, j$, and $\|\mathbf{x}\|_{1} = \sum_{i=1}^{n} |\lambda_{i}|$, we can simply assume that $a_{ij} \lambda_{j}$ are all positive. Thus $\|\mathbf{A}\mathbf{x}\|_{1} = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij} \lambda_{j}| = \sum_{i=1}^{n} |\lambda_{i}|(\sum_{j=1}^{m} |a_{ji}|), \|\mathbf{A}\|_{1} = \sup_{\lambda_{i}} \frac{\sum_{i=1}^{n} |\lambda_{i}|}{\sum_{i=1}^{n} |\lambda_{i}|}$. On the one hand, $\|\mathbf{A}\|_{1} \leq \sup_{\lambda_{i}} \frac{\sum_{i=1}^{n} |\lambda_{i}|}{\sum_{i=1}^{n} |\lambda_{i}|} = \sup_{\lambda_{i}} \frac{\sum_{j=1}^{n} |a_{ji}|}{\sum_{i=1}^{n} |\lambda_{i}|} = \sup_{\lambda_{i}} \frac{\sum_{j=1}^{m} |a_{ji}|}{\sum_{i=1}^{n} |\lambda_{i}|} = \sum_{j=1}^{m} |a_{ji}|$, then $\|\mathbf{A}\|_{1} \geq \sup_{\lambda_{i}} \frac{\sum_{j=1}^{m} |a_{ji}|}{\sum_{i=1}^{n} |\lambda_{i}|}$. Let $\lambda_{j} = 0, \forall j \neq i$, then $\sup_{\lambda_{i}} \frac{\lambda_{i_{0}} \sum_{j=1}^{m} |a_{ji}|}{\sum_{i=1}^{n} |\lambda_{i}|} \geq \frac{\lambda_{i_{0}}}{\lambda_{i_{0}}} \sum_{j=1}^{m} |a_{ji}|}{\sum_{i=1}^{n} |a_{i}|}$. That is $\|\mathbf{A}\|_{1} = \max_{i} \sum_{j=1}^{m} |a_{ji}|$.
- (b) From (a), we have $\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{i} |\sum_{j=1}^{n} \lambda_{j} a_{ij}|, \|\mathbf{x}\|_{\infty} = \max_{j} |\lambda_{j}|, \text{ so we can also assume that } |\sum_{j=1}^{n} \lambda_{j} a_{ij}| = \sum_{j=1}^{n} |\lambda_{j} a_{ij}|.$ On the one hand, $\max_{i} \sum_{j=1}^{n} |\lambda_{j} a_{ij}| \le (\max_{j} |\lambda_{j}|) (\max_{i} \sum_{j=1}^{n} |a_{ij}|), \text{ which implies } \|\mathbf{A}\|_{\infty} \le \frac{(\max_{j} |\lambda_{j}|)}{\max_{j} |\lambda_{j}|} (\max_{i} \sum_{j=1}^{n} |a_{ij}|) = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$ On the other hand, let $\max_{i} \sum_{j=1}^{n} |a_{ij}| = \sum_{j=1}^{n} |a_{i0j}|, \text{ thus } \|\mathbf{A}\|_{\infty} \ge \sup_{\lambda_{i}} \frac{\sum_{j=1}^{n} |\lambda_{j} a_{i0j}|}{\max_{j} |\lambda_{j}|}.$ Let $\lambda_{i} = \lambda \ne 1$

 $0, \forall i, \text{ thus } \|\mathbf{A}\|_{\infty} \ge \frac{|\lambda|\sum_{j=1}^{n}|a_{i_0j}|}{|\lambda|} = \max_{i} \sum_{j=1}^{n} |a_{ij}|. \text{ Thus, } \|\mathbf{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|.$

EXERCISE 4. Open and Closed Sets

SOLUTION. 1.(a) \Rightarrow (b) Since $\forall x \in C'$, $x \in C$, $\forall y \in C^c$, $y \notin C'$, thus $\exists \epsilon$, s.t. $B_{\epsilon}(y) \cap C = \emptyset$, which implies $B_{\epsilon}(y) \subset C^c$, then $\forall y \in C^c$, y is an inner point of C^c . Thus the complement of C is open.

- (b) \Rightarrow (c) For $B_{\epsilon}(x) \cap C \neq \emptyset$, $\forall \epsilon$, if $x \in C$ then the proof is obvious, thus we only need to show that points in C^c do not have the property. Since C^c is open, $\forall x \in C^c$, $\exists \epsilon_0$, s.t. $B_{\epsilon_0}(x) \subset C^c$, that is $B_{\epsilon_0}(x) \cap C = \emptyset$.
- (c) \Rightarrow (a) There are two situations. Firstly, if $\{x\} \cap C \neq \emptyset$, then obviously $x \in C$. Secondly, since $(B_{\epsilon}(x) \setminus \{x\}) \cap C \neq \emptyset$, $\forall \epsilon$ implies $x \in C'$, then (c) implies $C' \subset C$. That is **cl** C = C.
- 2.(a) $\forall \epsilon > 0, 1 + \epsilon \notin [0, 1]$, which implies 1 is not a inner point of [0, 1], thus [0, 1] is not an open set in \mathbb{R} . Let $\epsilon = \frac{1}{2}$, then $\forall x \in [0, 1], B_{\epsilon}(x) \cap B \subset [0, 1]$, thus [0, 1] is open in B. On the other hand, for $\{2\} = B \setminus [0, 1], B_{\epsilon}(2) \cap B = \{2\} \subset B$, thus [0, 1] is closed in B.
- (b)(\Leftarrow) Since $C = A \cap U$, $\forall x \in C$, $\exists \epsilon$, s.t. $B_{\epsilon}(x) \subset U$. Thus $B_{\epsilon}(x) \cap A = B_{\epsilon}(x) \cap (A \cap U) = B_{\epsilon}(x) \cap C \subset C \subset A$. Thus C is open in A.
- (\Rightarrow) Since $\forall x \in C$, $\exists \epsilon = \epsilon(x)$, s.t. $B_{\epsilon(x)}(x) \cap A \subset C$, consider $\bigcup_x B_{\epsilon(x)}(x)$ is open in \mathbb{R}^n . On the one hand, $A \cap (\bigcup_x B_{\epsilon(x)}(x)) = \bigcup_x (A \cap B_{\epsilon(x)}(x))$. Since $B_{\epsilon(x)}(x) \cap A \subset C$, $\bigcup_x (A \cap B_{\epsilon(x)}(x)) \subset C$. On the other hand, $\forall x \in C$, $x \in B_{\epsilon(x)}(x) \cap A$. Thus $C \subset \bigcup_x (A \cap B_{\epsilon(x)}(x)) = A \cap (\bigcup_x B_{\epsilon(x)}(x))$. Thus $C = A \cap U$, $U = (\bigcup_x B_{\epsilon(x)}(x))$ is open in \mathbb{R}^n .

EXERCISE 5. Extreme Value Theorem and Fixed Point

SOLUTION. 1. If f(0) = 0 or f(1) = 1 then it's obvious, thus we suppose f(0) > 0 and f(1) < 1. Let g(x) = x - f(x), then g(0) < 0, g(1) > 0, $g \in C[0,1]$. By the zero theorem, $\exists x_0 \in [0,1]$, s.t. $g(x_0) = 0$, which implies $f(x_0) = x_0$.

- 2. Let $f(x) = x^2$, then $f: (0,1) \to (0,1)$, $f \in C(0,1)$. Since $f(x) = x \Leftrightarrow x^2 x = 0 \Leftrightarrow x = 0$ or x = 1, f has no fixed point in (0,1).
- 3. Suppose that $\exists x_1, x_2, \text{ s.t. } x_1 \neq x_2, f(x_1) = f(x_2), \text{ then } x_1 = f^{(n)}(x_1) = f^{(n)}(x_2) = x_2.$ Therefore f must be a bijection, thus a monotune function in [0,1]. Since f(0) < f(1), f is increasing in [0,1]. Suppose that $\exists x_0 \in [0,1], \text{ s.t. } f(x) \neq x.$ If f(x) > x, since f is increasing we have $f^{(2)}(x) = f(f(x)) > f(x), f^{(3)}(x) = f(f^{(2)}(x)) > f^{(2)}(x), \ldots$, lead to $x = f^{(n)}(x) > f^{(n-1)}(x) > \cdots > f(x) > x$. If f(x) < x, similarly we have $x = f^{(n)}(x) < f^{(n-1)}(x) < \cdots < f(x) < x$, both lead to contradiction. Thus $f(x) = x, \forall x \in [0,1]$.
- 4. Suppose Imf = [a, b], then let $\lambda = \frac{1}{b}$, $\lambda f = g : [0, 1] \to [\frac{a}{b}, 1]$. Suppose x is not a fixed point of g, let $a = \sup_{y:g(y)=y,y\leq x} \{y\}$, $b = \sup_{y:g(y)=y,y\geq x} \{y\}$, thus $\forall x \in (a,b), g(x) x$ does not change its signal. Without loss of generality, suppose that g(x) > x in (a,b). $\forall x_0 \in (a,b)$, denote $g(x_i)$ by x_{i+1} , that is, $g(x_0) = x_1, g(x_1) = x_2, \ldots$ Thus $g(x_n) = x_{n+1} = x_n + (g(x_n) x_n) = x_{n-1} + (g(x_{n-1}) x_{n-1}) + (g(x_n) x_n) = \cdots = x_0 + \sum_{i=1}^n (g(x_i) x_i)$. Since $g(x_i) > x_i$, $x_0 > 0$, along with the continuity of g, we have $|g(x_n)| = g(x_n) < \infty$, $\forall n$. Thus $\sum_{i=1}^{\infty} g(x_i) x_i < \infty \Rightarrow \lim_{n \to \infty} g(x_n) x_n = 0 \Rightarrow \lim_{n \to \infty} g(x_n) = \lim_{n \to \infty} x_n$. Since $g(x_n) = g^n(x_0)$, $x_n = g^{n-1}(x_0)$, which implies x_0 satisfies the second case, $\forall x_0 \in (a,b)$. Obviously $x \in (a,b)$, Thus we have proved that if x is not a limit point, x satisfies the second case.

EXERCISE 6. Linear Space

SOLUTION. 1. In fact we only need to check that $P_n[x]$ is closed to the addition. $\forall f, g \in P_n[x], degf + g \leq degf \leq n$, thus $f + g \in P_n[x]$. Thus $P_n[x]$ is a linear space.

- 2.(a) Suppose that u and v are two zero vectors of V, then u = u + v = v.
- (b) Suppose that a and b are two additive inverses of c, then $a+c=0=b+c\Rightarrow a+(c+a)=a+(c+b)\Rightarrow (a+c)+a=(a+c)+b\Rightarrow 0+a=0+b\Rightarrow a=b.$ $\forall a,\ a+(-1)a=1a+(-1)a=(1+(-1))a=0,\ \text{thus}\ (-1)a=-a,\ \forall a\in V$ (c) $0v+0v=(0+0)v=0v\Rightarrow 0v+0v+(-0v)=0v+(-0)v=0\Rightarrow 0v=0,$ $\forall v\in V.\ \lambda\mathbf{0}+\lambda\mathbf{0}=\lambda(\mathbf{0}+\mathbf{0})=\lambda\mathbf{0}\Rightarrow \lambda\mathbf{0}+\lambda\mathbf{0}+(-\lambda\mathbf{0})=\lambda\mathbf{0}+(-\lambda\mathbf{0})=0\Rightarrow \lambda\mathbf{0}=0,\ \forall \lambda\in\mathbb{F}.$
- (d) Suppose $\lambda \mathbf{a} = \mathbf{0}$, if $\lambda \neq 0$, then $\lambda^{-1}(\lambda \mathbf{a}) = \mathbf{0} \Rightarrow (\lambda^{-1}\lambda)\mathbf{a} = \mathbf{0} \Rightarrow 1\mathbf{a} = \mathbf{0} \Rightarrow \mathbf{a} = \mathbf{0}$.
- 3. A linear space can have infinite vectors and have at least one subspace \emptyset , since \emptyset is also a linear space, and only have one subspace.

EXERCISE 7. Basis and Coordinates

SOLUTION. 1. Since $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis of V, $\forall v \in V$, v can be uniquely decomposed to the linear combination of $\{\mathbf{a}_i\}$, denote by $v = \sum_{i=1}^n \beta_i \mathbf{a}_i$. Since $\lambda_i \neq 0$, $v = \sum_{i=1}^n \frac{\beta_i}{\lambda_i} \lambda_i \mathbf{a}_i$, $\frac{\beta_i}{\lambda_i}$ are also unique, which implies $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, \dots, \lambda_n \mathbf{a}_n\}$ is also a basis of V.

2.
$$\forall v \in V, v = \sum_{i=1}^{n} \beta_{i} \mathbf{a}_{i} = (\mathbf{a}_{1}, \mathbf{a}_{2}, \dots, \mathbf{a}_{n})(\beta_{1}, \beta_{2}, \dots, \beta_{n})^{T}$$
. Since $(\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{n}) = (\mathbf{a}_{1}, \mathbf{a}_{2}, \dots, \mathbf{a}_{n})\mathbf{P}$ and \mathbf{P} is invertible, $v = (\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{n})\mathbf{P}^{T}(\beta_{1}, \beta_{2}, \dots, \beta_{n})^{T} = (\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{n})(\gamma_{1}, \gamma_{2}, \dots, \gamma_{n})^{T}$. Since β_{i} are unique, γ_{i} are also unique. Thus $\{\mathbf{b}_{1}, \mathbf{b}_{2}, \dots, \mathbf{b}_{n}\}$ is also a basis of V for an invertible matrix \mathbf{P} .

3.(a) From 1, it is $(\frac{x_{1}}{\lambda_{1}}, \frac{x_{2}}{\lambda_{2}}, \dots, \frac{x_{n}}{\lambda_{n}})$.

- (b) Obviously, it is (1, 1, ..., 1) under $\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\}$, $(\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, ..., \frac{1}{\lambda_n})$ under $\{\lambda_1 \mathbf{a}_1, \lambda_2 \mathbf{a}_2, ..., \lambda_n \mathbf{a}_n\}$.
- 4.(a) It is (-x, y). Since $\{\mathbf{c}, \mathbf{b}\}$ is a basis, it is unique.
- (b) In fact, we only need x' + z' = x and y' = y.
- (c) $||(x', y', z')||_1 = |x'| + |y'| + |z'| = |y| + |x'| + |x x'| \ge |x| + |y|$. The equality holds if and only if x'(x x') < 0.

Exercise 8. Derivatives with Matrices

SOLUTION. 1.(a) Denote **a** by $(a_1, a_2, ..., a_n)$. Let $f'(\mathbf{x}) = L(\mathbf{x}) = \sum_{i=1}^n a_i x_i$, then $f(\mathbf{x}) - f(\mathbf{x}_0) = L(\mathbf{x} - \mathbf{x}_0)$, thus $\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0$

(b) Let $f'(\mathbf{x}) = L(\mathbf{x}) = \sum_{i=1}^{n} 2x_i$, thus by the L'Hospital's rule, $\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0$.

(c)
$$f(\mathbf{x}) = \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{T} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}$$
. Let $f'(\mathbf{x}) = L(\mathbf{x}) = 2(1, 1, ..., 1)(\mathbf{A}\mathbf{x} - \mathbf{y})^{T}\mathbf{A}$, thus $\lim_{\mathbf{x} \to \mathbf{x}_{0}; \mathbf{x} \neq \mathbf{x}_{0}} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_{0}) - L(\mathbf{x} - \mathbf{x}_{0})\|_{2}}{\|\mathbf{x} - \mathbf{x}_{0}\|_{2}} = 0$.

2. Let $f: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a function, $\mathbf{x}_0 \in \mathbb{R}^{n \times n}$ be a matrix, and let $L: \mathbb{R}^{n \times n} \to \mathbb{R}$ be a function. We say that f is differentiable at \mathbf{x}_0 with derivative L if we have

$$\lim_{\mathbf{x} \to \mathbf{x}_0; \mathbf{x} \neq \mathbf{x}_0} \frac{\|f(\mathbf{x}) - f(\mathbf{x}_0) - L(\mathbf{x} - \mathbf{x}_0)\|_2}{\|\mathbf{x} - \mathbf{x}_0\|_2} = 0.$$

3. $dtr(\mathbf{A}^T\mathbf{X}) = tr(d\mathbf{A}^T\mathbf{X}) = tr(\mathbf{A}^Td\mathbf{X} + \mathbf{X}d\mathbf{A}^T) = tr(\mathbf{A}^Td\mathbf{X}) = \sum_{i=1}^m \sum_{j=1}^n a_{ij}dx_{ji}$, thus $f' = \sum_{i=1}^m \sum_{j=1}^n a_{ij}x_{ji}$.

EXERCISE 9. Rank of Matrices

SOLUTION. 1. We will prove the theorem with the conclusion in (2), and lately we will prove (2) without using the conclusion in (1).

- (a) By the conclusion in (2), $rank(\mathbf{A})$ is the dimension of the vector space spanned by its rows (row rank) or its columns (column rank). Since row space of \mathbf{A} is the same as the column space of \mathbf{A}^T , we have $dim(Row(\mathbf{A})) = dim(Col(\mathbf{A}^T))$, which implies $rank\mathbf{A} = rank\mathbf{A}^T$. Since the columns of $\mathbf{A}^T\mathbf{A}$ are linear combinations of the columns of \mathbf{A} , we have $rank\mathbf{A} = rank\mathbf{A}^T\mathbf{A}$. Similarly $rank\mathbf{A} = rank\mathbf{A}\mathbf{A}^T$.
- (b) By the conclusion in (2), $rank(\mathbf{AB})$ is the dimension of the image of the transformation defined by \mathbf{AB} . Since $Im(\mathbf{AB}) \subset Im(\mathbf{A})$, $rank(\mathbf{AB}) \leq rank(\mathbf{A})$. Example: $\mathbf{A} = \mathbf{B} = \mathbf{I}_n$.
- 2.(a) In fact, the dimension of $\mathcal{C}(\mathbf{A})$ is equal to the number of vectors in a basis for $\mathcal{C}(\mathbf{A})$. Denote \mathbf{A} by $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$. Without loss of generality, let $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$ be a maximal linearly independent system of \mathbf{A} , then $\forall j \in \{r+1, \dots, n\}$, let $\mathbf{a}_j = \sum_{i=1}^r \lambda_{ji} \mathbf{a}_i$. Since $\mathbf{x} = \sum_{i=1}^n x_i \mathbf{e}_i$, $\mathbf{y} = \sum_{i=1}^n x_i \mathbf{a}_i = \sum_{i=1}^r (x_i + \sum_{j=r+1}^n x_j \lambda_{ji}) \mathbf{a}_i$, $\forall \mathbf{y} \in \mathcal{C}(\mathbf{A})$, which implies $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_r\}$ is a basis of $\mathcal{C}(\mathbf{A})$. Thus $\dim(\mathcal{C}(\mathbf{A})) = r = rank(\mathbf{A})$.
- (b) Denote $n dim(\mathcal{N}(\mathbf{A}))$ by k, Suppose that $\{\mathbf{x}_{k+1}, \mathbf{x}_{k+2}, \dots, \mathbf{x}_n\}$ is a basis of \mathcal{N} , we can find a basis of \mathbb{R}^n , which is $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k, \mathbf{x}_{k+1}, \mathbf{x}_{k+2}, \dots, \mathbf{x}_n\}$. Thus we can get $\{\mathbf{y}_i\}_{i=1}^k$, $y_i = \mathbf{A}\mathbf{x}_i$. $\forall \mathbf{y} \in \mathcal{C}(\mathbf{A})$, $\exists \mathbf{x} \in \mathbb{R}^n$, s.t. $\mathbf{y} = \mathbf{A}\mathbf{x}$. Since $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ is a basis of \mathbb{R}^n , $\mathbf{x} = \sum_{i=1}^n \lambda_i \mathbf{x}_i$, λ_i are unique. Thus $\mathbf{y} = \mathbf{A}\sum_{i=1}^n \lambda_i \mathbf{x}_i = \sum_{i=1}^n \lambda_i (\mathbf{A}\mathbf{x}_i) = \sum_{i=1}^k \lambda_i \mathbf{y}_i + \sum_{i=k+1}^n \mathbf{0} = \sum_{i=1}^k \lambda_i \mathbf{y}_i$, $\forall \mathbf{y} \in \mathcal{C}$, λ_i are unique. Obviously \mathbf{y}_i are linear independent, thus $\{\mathbf{y}_i\}_{i=1}^k$ is a basis of \mathcal{C} , which implies $rank(\mathbf{A}) = dim(\mathcal{C}(\mathbf{A})) = k = n dim(\mathcal{N}(\mathbf{A}))$. That is $rank(\mathbf{A}) + dim(\mathcal{N}(\mathbf{A})) = n$.
- 3. Since $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$, $\mathcal{C}(\mathbf{B})$ and $\mathcal{N}(\mathbf{A})$ are subspaces of \mathbb{R}^n . Therefore we have $n = dim(\mathbb{R}^n) \geq dim(\mathcal{C}(\mathbf{B}) + \mathcal{N}(\mathbf{A})) = dim(\mathcal{C}(\mathbf{B})) + dim(\mathcal{N}(\mathbf{A})) - dim(\mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})) = rank(\mathbf{B}) + n - rank(\mathbf{A}) - dim(\mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A}))$, thus $rank(\mathbf{A}) \geq rank(\mathbf{B}) - dim(\mathcal{C}(\mathbf{B}) \cap \mathcal{N}(\mathbf{A})) = rank(\mathbf{A}\mathbf{B})$.

EXERCISE 10. Properties of Eigenvalues and Singular Values

Solution. 1. $\forall \mathbf{x} \in \mathbb{R}^n$, replace \mathbf{x} with $\frac{\mathbf{x}}{\sqrt{\|\mathbf{x}\|}}$, then $\frac{\mathbf{x}^T}{\sqrt{\|\mathbf{x}\|}} \frac{\mathbf{x}^T}{\sqrt{\|\mathbf{x}\|}} = \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$. Thus without loss of generality, we can suppose that $\|\mathbf{x}\| = 1$. Therefore $\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \mathbf{x}^T \mathbf{A} \mathbf{x}$. Since $\mathbf{A} \in S^n$, let $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ be the eigenvalues of \mathbf{A} , which satisfies $\lambda_i \leq \lambda_j$, $\forall i \leq j$. We can decompose \mathbf{A} by $\mathbf{P}^T \mathbf{S} \mathbf{P}$, \mathbf{P} is an orthogonal matrix, $\mathbf{P} = (\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n)^T, \mathbf{S} = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$. Thus $\mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{P} \mathbf{x})^T \mathbf{S} \mathbf{P} \mathbf{x}$. Since \mathbf{P} is an orthogonal matrix and $\|\mathbf{x}\| = 1$, $(\mathbf{P} \mathbf{x})^T \mathbf{P} \mathbf{x} = \mathbf{x}^T \mathbf{P}^T \mathbf{P} \mathbf{x} = \mathbf{x}^T \mathbf{x} = 1$, which implies $\mathbf{P} \mathbf{x} \in \{\mathbf{x} : \mathbf{x} \in \mathbb{R}^n, \|\mathbf{x}\| = 1\}$. Since \mathbf{P} is invertible, $\sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} \mathbf{x}^T \mathbf{A} \mathbf{x} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} (\mathbf{P} \mathbf{x})^T \mathbf{S} \mathbf{P} \mathbf{x} = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} \mathbf{x}^T \mathbf{S} \mathbf{x}$, Let $\mathbf{x} = \{y_1, y_2, \dots, y_n\}$, $\sum_{i=1}^n y_i^2 = 1$, then $\mathbf{x}^T \mathbf{S} \mathbf{x} = \sum_{i=1}^n \lambda_i y_i^2$. Therefore $\sum_{i=1}^n \lambda_i y_i^2 \leq \sum_{i=1}^n \lambda_i y_i^2 = \lambda_n \sum_{i=1}^n y_i^2 = \lambda_1 \sum_{i=1}^n y_i^2 = \lambda_1 \sum_{i=1}^n y_i^2 = \lambda_1 = \lambda_{\min}$, equality holds when $\mathbf{x} = \{0, 0, \dots, 0, 1\}$ and $\sum_{i=1}^n \lambda_i y_i^2 \geq \sum_{i=1}^n \lambda_1 y_i^2 = \lambda_1 \sum_{i=1}^n y_i^2 = \lambda_1 = \lambda_{\min}$, equality holds when $\mathbf{x} = \{1, 0, 0, \dots, 0\}$. Therefore, $\lambda_{\max}(\mathbf{A}) = \sup_{\mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0} \frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$.