物理化学期末考题(A) 2004-06-18

题号	1	2	3	4	5	6	7	总分
分数								

1. 填空题(20分)

(1)	描述均相平	衡系统	宏观量间存在的函数关系式称为状态方程,	常
	见的是 n、p	$O \setminus V$	T关系方程。	

②1mol 真实气体的范德华方程:
$$p=($$
);

③1
$$mol$$
 真实气体的维里方程: $p = ($)。

- (2) 在一个绝热恒容的系统中发生了爆炸反应,使系统的温度和压力皆显著升高,则反应前后系统的 ΔU ()、 ΔH ()、 ΔS () (填入>0、=0、或<0)。
- (3) 在 α、β 两相中都含有 A 和 B 两种物质, 当达到相平衡时, 下列 三种结论只有一种是正确的, 它是 ()。

a.
$$\mu_{A}^{\alpha} = \mu_{B}^{\alpha}$$
; b. $\mu_{A}^{\alpha} = \mu_{A}^{\beta}$; c. $\mu_{A}^{\alpha} = \mu_{B}^{\beta}$

(4) 由克拉佩龙方程 $\frac{\mathrm{d}T}{\mathrm{d}p} = \frac{T\Delta_{\alpha}^{\beta}V_{\mathrm{m}}}{\Delta_{\alpha}^{\beta}H_{\mathrm{m}}}$ 可导出适用于蒸发平衡和升华平衡

的克劳修斯 - 克拉佩龙方程的定积分式: p_2 $\Delta_{\text{van}}H_{\text{m}}$ (1 1) p_2 p_3 $\Delta_{\text{van}}H_{\text{m}}$ (1 1)

$$\ln \frac{p_2}{p_1} = -\frac{\Delta_{\text{vap}} H_{\text{m}}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right), 推导中引入的三个基本假设分别是:$$

();

();

().

(5)溶液中溶剂(A)的蒸气压下降,凝固点降低(析出纯溶剂)和 沸点升高(加入不挥发物质)的数值,仅与溶液中溶质(B)的质 点数目有关而与溶质性质无关, 称这种性质为稀溶液的依数性:

蒸 气 压 下 降 公 式 $\Delta p_A = p_A^* \cdot x_B$; 其 中 x_B 是 : (); 凝固点降低公式 $\Delta T_f = K_f \cdot b_B$; 其中 K_f 的物理意义是: (); 沸点升高公式 $\Delta T_b = K_b \cdot b_B$,其中 K_b 的单位(量纲)是:

- (6) 在一定的温度下将 1 molA 1 molB 两种液体混合形成理想液态混合物,则混合过程的 $\Delta_{\text{mix}} H = ($); $\Delta_{\text{mix}} S = ($)。(填入具体数值)
- (7) 已知某化学反应的 $\Delta_r C_{p,m} = 0$,且标准平衡常数 K^0 与温度T的关系为:

$$\lg K^{\theta} = -\frac{2100}{T/K} + 4.67$$
 , 则该反应在 400℃时的

 $\Delta_{\rm r} H_{\rm m}^{\theta} = ($), $\Delta_{\rm r} S_{\rm m}^{\theta} = ($) (填入具体数值)

- (8) 质量同为m的两份同种液体,温度分别为 T_1 和 T_2 ,比热皆为 C_p ,将二者混合起来,则该过程的熵变 ΔS =()(给出 ΔS 与m, C_p , T_1 和 T_2 的关系式。
- 2. (15分)

甲醇(CH_3OH)是重要的化工原料,在高温下通过分子筛可以脱水变为二甲醚(CH_3OCH_3),其工艺中首先要将甲醇气化。已知甲醇在 101.325kPa下的沸点 为 64.65°C,此时摩尔蒸发焓 $\Delta_{vap}H_m$ =35.52 kJ·mol⁻¹,求在上述条件下将 32 kg的液体甲醇变为甲醇蒸气时的Q、W、 ΔU 、 ΔH 、 ΔS 及 ΔG 。

3. (15分)

光气(COC1₂)是一种具有烂苹果气味的无色气体,其毒性比氯气大10倍。1951年侵朝美军曾在朝鲜半岛投下光气炸弹,造成数百人死亡和数千人中毒。

已知:100°C时,光气分解反应: $COCl_2(g) = CO(g) + Cl_2(g)$ 的 $\Delta_r S_m^{\theta} = 125.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}, \quad K^{\theta} = 8.1 \times 10^{-9},$

求: (1) 100℃, 总压为 200 kPa时COCl₂ (g) 的解离度;

- (2) 100℃,上述分解反应的 Δ_rH_m;
- (1) 总压为 200 kPa时,若使COCl₂(g)的解离度达 0.1%的温度 为多少? (设 $\Delta_r C_{p,m}$ =0)

4. (15分)

如同对于一定状态下的真实气体可用不同的状态方程来描述当 然有不同的精度一样,对于真实溶液(或液态混合物)也可以用不 同的模型处理。

已知在温度 T时纯 A(1) 和 B(1) 的饱和蒸气压分别为 $p_A^* = 100$ kPa 和 $p_B^* = 200$ kPa,现有该温度下 $x_B = 0.1$ 的A和B互溶液体且达气液平衡,气相可视为理想气体。

- (1) 若按理想液体混合物处理,求气相组成 y_B 及蒸气总压力p;
- (2) 实际测定气相总压为 123 kPa, 其中 B 的分压为 24 kPa, 若以拉乌尔定律为参考,分别求出液态混合物中 A 和 B 的活度系数。

5. (15分)

工业生产中有时需要结晶与蒸馏联合运用方可得到纯净物质,已知 A 和 B 二组分形成的液态互溶、固态完全不互溶的气、液、固相图 如下:

- (1) 标出 1、2、3、4、5 相区内的 稳定相:
- (2) 图中①、②、③、④、⑤五条 线的名称各是什么?
- (3) 画出系统点 a 的冷却曲线,并描述过程中的相变化
- (4) 现工业中由化学反应只能得到 状态为 b 的混合物。据相图,要得到 纯 B 和纯 A 应如何操作?

6. (20分)

(1) 从定义、性质与纯物质摩尔量的区别、应用等方面谈谈你对偏
摩尔量的理解。
(2) 一定温度下的某化学反应的摩尔反应焓的求法有多种,至少给
出三种计算方法或计算公式:
①:
②:
③:
一定温度下的某化学反应的标准平衡常数度的求法有多种,至少给出
三种计算方法或计算公式:
①:
②:
3:
(3) 对于不形成化合物的二组分系统,按两组分相互溶(熔)解度
分类,相图主要可以分为三种基本类型,分别画出示意图:
a. 二组分液态(或固态)完全互溶系统相图
(i) 无恒沸(熔)点; (ii) 具有最高恒沸(熔)点; (iii)
具有最低恒沸(熔)点。
b. 二组分液态(或固态)部分互溶的气液或固液系统相图
(i)低温时液(固)态部分互溶且具有高会溶点,高温时液(固)
态完全互溶且具有最低恒沸(熔)点;
(ii)低温时液(固)态部分互溶但无高会溶点,高温时具有低
共沸(熔)点。
c. 二组分液态(或固态)完全不互溶系统相图
(4) 若某实际气体的状态方程可用 $p = \frac{nRT}{V - nb}$ 表示,式中 b 只是与气

体性质和温度有关的常数,若该气体定温下由 p_1 可逆变化为 p_2 ,试推导出过程的W、Q、 ΔH 、 ΔS 及 ΔG 与T、p的关系式。