PyNAT - User Guide

Python based Naval Architecture Tools

GitHub Repository Link

https://github.com/praveen-kch/Py-NAT.git

Contains:

- Python Source Scripts
- CUI Application : PyNAT.exe
- Docs
- Sample Test Case & Templates for input preparation

Program and Directory Structure

Section 1

The Application

"PyNAT.exe" is the executable file which starts the Application

"PyNAT" runs in shell / command prompt

Upon starting "PyNAT.exe" ...

It Reads Files from the Directory "in"

Runs the chosen Analysis

Writes results to the Directory "out"

- The "out" directory, its sub directories and files are created by the PyNAT program.
- User need not to create "out" folders or its files.
- > PyNAT overwrites any existing files with the same name.

A Note on Unit System

- All Angles should be given only in degrees. Internally the program converts them to radians for calculations.
- For the rest of the input quantities, User should maintain the consistency of units while preparing the input files
- If input parameters (except angles) are given in SI units then the resultant outputs would also be produced in SI units.
- If input parameters are given in Foot Pound- Seconds Unit System then the resultant outputs would also be in FPS System.

Steps to perform an Analysis using PyNAT

Section 2

Analysis Stages

Stage 1

Prepare the Input Files

Stage 2

Run the Analysis

Stage 3

Understand Results

Stage 1: Preparation of Inputs

• Create the Project Working Directory

Step 1 • Hull Geometry Definition file

Step 2Environment properties

Step 3 • Hydrostatic Analysis Settings

• KN Curve analysis settings

Step 5 • Load Case Definition for GZ curve

Step 0: The Working Directory

Create a Project /
Working Directory
and copy PyNAT.exe
into it

Inside the Working Directory Create a sub directory named "in"

The Input Directory

"in" folder Should Contain Five Input files as shown
These Files are to be created by the user, with required data for analysis.
See example test case directory in GitHub Repository.

Overview of Input Files

File Name	Input Data	Purpose	
Set_EP.dat	Environment Property, Water Density	Read immediately after	
Set_HG.dat	Data that Defines the Hull Geometry	Application is started	
Set_HS.dat	Range of Drafts and Trim angles at which the Hydrostatics are to be Computed	Read when user chooses to perform hydrostatic analysis	
Set_KN.dat	Range of Heel Angles to compute Cross Curves of Stability	Read when the user	
Set_LC.dat	Load Cases defined by Mass displacement and VCG	chooses to perform Large angle stability analysis	

Step 1: The Hull Geometry Definition

Consider only the port side half of the hull (both Y and Z are positive this side)

Create Cutting Planes parallel to YZ plan at various station locations along the length of the ship

Obtain the intersection curves of each section plane with the hull surface

The Obtained Section curves Used to define the Hull geometry

On each of the curves identify the key points required to define the section accurately

Example : Curve Points defining Section at X = 8

X	Y	Z	b/k
8	0.000	4.71	b
8	0.884	6.00	
8	0.000	6.834	b
8	0.000	14.529	b
8	3.538	16.00	
8	6.116	16.924	
8	8.776	18.00	
8	10.657	18.939	
8	12.186	20.00	
8	13.971	22.00	
8	14.839	24.00	
8	15.08	26.00	
8	15.106	28.00	b

The points in red circle are the ends of curves defining the section, Hence those points coordinates are followed by a tab and letter 'b' The program identifies them as break points

Example 2: A section with a Knuckle point

X	Υ	Z	b/k
0	0.000	0	b
0	2.847	0.73	
0	5.73	1.678	
0	7.951	2.73	
0	10.256	4.73	k
0	11.59	10.73	b

The point in the Green circle is a knuckle point, with C0 Continuity Hence those points coordinates are followed by a tab and letter 'k' The program identifies them and splits curve at that point

Make "Set_HG.dat" using the obtained Curve points

First 5 lines contain General data

From the sixth line, Station wise curve points data is entered.

If 'N_{st}' Stations are used to define the hull geometry

Then N_{st} blocks of station data should be included in the "Set_HG.dat"

'tab' should be used to separate data values in a line. Empty stray lines not allowed.

Each Block Contains N_{pt} rows

Each row contains one curve point data First three columns of data include X,Y,Z coordinate values separated by tab and an optional fourth column value which can be the letter "b/k"

 N_{pt} , No. of Points, can be different for each station

'tab' should be used to separate data values in a line. Empty stray lines not allowed.

Note

It is not necessary to give 'b' for bottom most and top most points of the section.

Even if 'b' is not mentioned the program considers them as curve ends

Each Row contains one curve point Data, The X, Y, Z coordinates are measured in Ship Reference Frame

The fourth column is optional parameter 'c' defining the nature of curve / continuity at that curve point.

Give 'b' if the curve is discontinuous at this point i.e., the curve breaks here and a new curve starts from next point

Give 'k' if there is a knuckle at this point i.e., only CO continuity is enforced

Curve Point Coordinates X Y Z b/k

Step 3: Create "Set_EP.dat"

File contains only one numerical values of water density

Step 3: Make "Set_HS.dat" file

PyNAT reads the drafts and trim angles for hydrostatic analysis from this file

Program computes Hydrostatics for all possible combinations of draft and trim

If N drafts and M trim angles are given,
Hydrostatics are computed for a total of N*M floating cases

Step 4: Make "Set_KN.dat" file

PyNAT reads the heel angles from this file, for computing KN curve data.

At each heel angle, a range of 11 displacements in between almost zero and maximum are considered

At each combination of heel and displacement the KN value is computed.

Step 5: Make "Set_LC.dat" file

Each Row / Line defines a Load case

Each Load case is defined by A Mass Displacement and the VCG from Base line.

Program computes GZ curve for each load case

The File should contain only Numerical values separated by tabs and new lines

An extra empty line may throw an error

Stage 2: Running the Analysis

Up on running the PyNAT.exe it would take about a minute to start the application

Stage 2: Running the Analysis

Up on initialization the program loads and prepare the Hull Geometry data for calculations. A plot of the Body Plan view of read sections is shown.

Stage 2: Running the Analysis

The user can inspect the curves fitted.

The body plan plot must be closed to continue with further analysis.

Analysis Loop 0 of 50

Choose the Analysis to be Performed:

Upon closing the body plan plot, the program prompts the user to press a number key to perform a particular analysis.

```
Press '1' for Hydrostatics

Press '2' for Large Angle Stability (KN Curves +GZ : Using Fast Technique)

Press '3' for Large Angle Stability (KN Curves +GZ : Using Direct Technique)

Press '4' for Performing All Calculations

Press '0' or 'E' or 'e' or 'esc' to Exit
```


Upon on choosing an analysis the program performs the analysis and echoes progress on to the terminal...

After completion of the Analysis the results are written to the output files in out directory.

Trim=0.003491 Draft=22.000000 Volume=330645.594914

Trim=0.003491 Draft=24.000000 Volume=364192.288964

PyNAT : Writing Section wise Hydrostatic Data to File: ...\ out\

PyNAT : Writing Hull Hydrostatic Data to File: ...\ out\hs\Res_H

Hydrostatic Analysis Complete

Check Results in Directory: ...\ out\hs

Total Time Elapsed for Hydrostatic Calculations: 17.6830313205719

.....

Analysis Loop 1 of 50

Choose the Analysis to be Performed:

Press '1' for Hydrostatics

Press '2' for Large Angle Stability (KN Curves +GZ : Using Fast Technique)

Press '3' for Large Angle Stability (KN Curves +GZ : Using Direct Technique)

Press '4' for Performing All Calculations

Press '0' or 'E' or 'e' or 'esc' to Exit

After writing the output files, the program again prompts user to choose an analysis to be performed.

User can change the Input files and redo an analysis or can choose a different analysis to be performed.

The program is designed to prompt for 50 times, after which it auto terminates.

Stage 3: Understanding the Results

The "out" directory contains three sub directories...

sec	Contains the prepared hull geometry data
hs	Contains the results from hydrostatic analysis
las	Contains the results from large angle stability analysis

Output files in Directory "sec"

HS_VolDisp.png	Volumetric Displacement vs Draft
HS_MassDisp.png	Mass Displacement vs Draft
HS_WetArea.png	Wetted Hull Surface Area vs Draft
HS_LCB.png	Longitudinal Center of buoyancy from amidships (Positive forward) vs draft
HS_TCB.png	Transverse Center of buoyancy from Center Plane vs draft
HS_VCB.png	Vertical Center of Buoyancy from Base Line vs draft
HS_WPA.png	Water Plane Area vs Draft
HS_LCF.png	Longitudinal Center of Flotation vs draft

HS_BML.png	Longitudinal Metacentric Radius vs Draft
HS_BMT.png	Transverse Metacentric Radius vs Draft
HS_KML.png	Long. Metacenter height from Keel vs Draft
HS_KMT.png	Trans. Metacenter height from Keel vs Draft
HS_TPC.png	Tons per CM immersion vs draft

Res_HS.dat	The results of Hydrostatic Analysis
	Section wise followed by Volumetric Properties

Sect_Areas.png	Sectional Area vs Draft
Sect_Girth.png	Section Girth vs Draft
Sect_TransMom.png	Half Section Transverse moment vs Draft
Sect_VertMom.png	Section Vertical moment vs Draft
	Y ordinate of centroid of half section from Center Line vs draft
	Z ordinate of centroid of section from Base Line vs draft

Res_KN.dat	The KN Curve Calculation Data (from Direct Method)
Res_GZ.dat	The GZ Curve Calculation Data (Direct Method)
Res_KN_FAST.dat	The KN Curve Calculation Data (Fast Method)
Res_GZ_FAST.dat	The GZ Curve Calculation Data (Fast Method)

Examples

The Distribution in the GitHub repository includes the Test Case on a KVLCC2 hull form.

The templets and input files can serve as tools to prepare inputs for other vessels

Note that program writes the Heel and trim angles in radians in some files and in degrees in another. The user have to interpret accordingly.

Suggestion and Feedback will be appreciated

Praveen Kumar CH praveench1888@gmail.com