K-Means Clustering

K-Means Clustering: Mathematical Procedure

Algorithm Steps

- 1. Initialization Step
 - Choose K initial centroids randomly from data points
 - Let centroids be: $\mu_1, \mu_2, \dots, \mu_K$
- 2. Assignment Step
 - For each data point \mathbf{x}_i , calculate distance to all centroids:

$$d(\mathbf{x}_i, \mu_i) = \|\mathbf{x}_i - \mu_i\|^2$$

• Assign point to closest centroid:

$$c_i = \arg\min_j \|\mathbf{x}_i - \mu_j\|^2$$

- 3. Update Step
 - Recalculate centroids as mean of assigned points:

$$\mu_j = \frac{1}{|C_j|} \sum_{\mathbf{x}_i \in C_j} \mathbf{x}_i$$

where $|C_j|$ is number of points in cluster j

- 4. Convergence Check
 - Repeat Steps 2-3 until:
 - Centroids don't change significantly, OR
 - Cluster assignments remain stable, OR
 - Maximum iterations reached

Mathematical Formulas

• Euclidean Distance:

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(q_x - p_x)^2 + (q_y - p_y)^2}$$

• Squared Euclidean Distance:

$$d^{2}(\mathbf{p}, \mathbf{q}) = (q_{x} - p_{x})^{2} + (q_{y} - p_{y})^{2}$$

• Centroid Calculation:

$$\mu = \left(\frac{\sum x_i}{n}, \frac{\sum y_i}{n}\right)$$

• Sum of Squared Errors (SSE):

$$SSE = \sum_{j=1}^{K} \sum_{\mathbf{x}_i \in C_j} \|\mathbf{x}_i - \mu_j\|^2$$

Example 1: Student Performance Clustering

Student Data (Exam Scores out of 100)

Student	Math Score	English Score
A	85	90
В	92	88
\mathbf{C}	45	50
D	50	55
${ m E}$	88	85
F	40	45
G	95	92
Н	48	52

K=2 Clusters: High Performers vs Low Performers

Initial Centroids: $\mu_1 = A(85, 90), \, \mu_2 = C(45, 50)$

Iteration 1 - Distance Calculations:

$$d(A, \mu_1) = (85 - 85)^2 + (90 - 90)^2 = 0$$

$$d(A, \mu_2) = (85 - 45)^2 + (90 - 50)^2 = 1600 + 1600 = 3200$$

$$d(B, \mu_1) = (92 - 85)^2 + (88 - 90)^2 = 49 + 4 = 53$$

$$d(B, \mu_2) = (92 - 45)^2 + (88 - 50)^2 = 2209 + 1444 = 3653$$

$$d(C, \mu_1) = (45 - 85)^2 + (50 - 90)^2 = 1600 + 1600 = 3200$$

$$d(C, \mu_2) = (45 - 45)^2 + (50 - 50)^2 = 0$$

$$d(D, \mu_1) = (50 - 85)^2 + (55 - 90)^2 = 1225 + 1225 = 2450$$

$$d(D, \mu_2) = (50 - 45)^2 + (55 - 50)^2 = 25 + 25 = 50$$

$$d(E, \mu_1) = (88 - 85)^2 + (85 - 90)^2 = 9 + 25 = 34$$

$$d(E, \mu_2) = (88 - 45)^2 + (85 - 50)^2 = 1849 + 1225 = 3074$$

$$d(F, \mu_1) = (40 - 85)^2 + (45 - 90)^2 = 2025 + 2025 = 4050$$

$$d(F, \mu_2) = (40 - 45)^2 + (45 - 50)^2 = 25 + 25 = 50$$

$$d(G, \mu_1) = (95 - 85)^2 + (92 - 90)^2 = 100 + 4 = 104$$

$$d(G, \mu_2) = (95 - 45)^2 + (92 - 50)^2 = 2500 + 1764 = 4264$$

$$d(H, \mu_1) = (48 - 85)^2 + (52 - 90)^2 = 1369 + 1444 = 2813$$

$$d(H, \mu_2) = (48 - 45)^2 + (52 - 50)^2 = 9 + 4 = 13$$

Cluster Assignments:

- High Performers: A, B, E, G
- Low Performers: C, D, F, H

Iteration 2

Update Centroids:

$$\mu_1 = \left(\frac{85 + 92 + 88 + 95}{4}, \frac{90 + 88 + 85 + 92}{4}\right) = (90, 88.75)$$

$$\mu_2 = \left(\frac{45 + 50 + 40 + 48}{4}, \frac{50 + 55 + 45 + 52}{4}\right) = (45.75, 50.5)$$

Re-check Assignments:

$$d(A, \mu_1) = (85 - 90)^2 + (90 - 88.75)^2 = 25 + 1.56 = 26.56$$

$$d(A, \mu_2) = (85 - 45.75)^2 + (90 - 50.5)^2 = 1540.56 + 1560.25 = 3100.81$$

$$d(D, \mu_1) = (50 - 90)^2 + (55 - 88.75)^2 = 1600 + 1139.06 = 2739.06$$

$$d(D, \mu_2) = (50 - 45.75)^2 + (55 - 50.5)^2 = 18.06 + 20.25 = 38.31$$

Final Clusters:

- High Performers: A, B, E, G
- Low Performers: C, D, F, H

Example 2: Body Type Classification

Person Data (Height in cm, Weight in kg)

Person	Height	Weight
Person1	155	45
Person2	160	50
Person3	165	55
Person4	185	85
Person5	190	90
Person6	195	95
Person7	175	65
Person8	172	68
Person9	168	62
Person10	162	58

K=3 Clusters: Short, Normal, Tall

Initial Centroids: $\mu_1 = \text{Person1}(155, 45), \ \mu_2 = \text{Person3}(165, 55), \ \mu_3 = \text{Person5}(190, 90)$ Iteration 1 - Sample Distance Calculations:

$$d(P1, \mu_1) = (155 - 155)^2 + (45 - 45)^2 = 0$$

$$d(P1, \mu_2) = (155 - 165)^2 + (45 - 55)^2 = 100 + 100 = 200$$

$$d(P1, \mu_3) = (155 - 190)^2 + (45 - 90)^2 = 1225 + 2025 = 3250$$

$$d(P3, \mu_1) = (165 - 155)^2 + (55 - 45)^2 = 100 + 100 = 200$$

$$d(P3, \mu_2) = (165 - 165)^2 + (55 - 55)^2 = 0$$

$$d(P3, \mu_3) = (165 - 190)^2 + (55 - 90)^2 = 625 + 1225 = 1850$$

$$d(P7, \mu_1) = (175 - 155)^2 + (65 - 45)^2 = 400 + 400 = 800$$

$$d(P7, \mu_2) = (175 - 165)^2 + (65 - 55)^2 = 100 + 100 = 200$$

$$d(P7, \mu_3) = (175 - 190)^2 + (65 - 90)^2 = 225 + 625 = 850$$

Cluster Assignments:

- Short: Person1, Person2, Person10
- Normal: Person3, Person7, Person8, Person9
- Tall: Person4, Person5, Person6

Iteration 2

Update Centroids:

$$\mu_1 = \left(\frac{155 + 160 + 162}{3}, \frac{45 + 50 + 58}{3}\right) = (159, 51)$$

$$\mu_2 = \left(\frac{165 + 175 + 172 + 168}{4}, \frac{55 + 65 + 68 + 62}{4}\right) = (170, 62.5)$$

$$\mu_3 = \left(\frac{185 + 190 + 195}{3}, \frac{85 + 90 + 95}{3}\right) = (190, 90)$$

Re-check Critical Points:

$$d(P2, \mu_1) = (160 - 159)^2 + (50 - 51)^2 = 1 + 1 = 2$$

$$d(P2, \mu_2) = (160 - 170)^2 + (50 - 62.5)^2 = 100 + 156.25 = 256.25$$

$$d(P9, \mu_1) = (168 - 159)^2 + (62 - 51)^2 = 81 + 121 = 202$$

$$d(P9, \mu_2) = (168 - 170)^2 + (62 - 62.5)^2 = 4 + 0.25 = 4.25$$

Final Clusters:

• Short: Person1, Person2, Person10 (Height: 155-162cm)

• Normal: Person3, Person7, Person8, Person9 (Height: 165-175cm)

• Tall: Person4, Person5, Person6 (Height: 185-195cm)

Example 3: Customer Spending Behavior

Monthly Spending Data (\$)

Customer	Food	Entertainment	Shopping
C1	200	50	100
C2	180	40	80
C3	500	200	400
C4	450	180	350
C5	220	60	120
C6	480	190	380
C7	190	45	90
C8	510	210	420

K=2 Clusters: Conservative vs Big Spenders

Initial Centroids: $\mu_1 = C1(200, 50, 100), \ \mu_2 = C3(500, 200, 400)$

Distance Calculations (3D Euclidean Squared):

$$d(C1, \mu_1) = (200 - 200)^2 + (50 - 50)^2 + (100 - 100)^2 = 0$$

$$d(C1, \mu_2) = (200 - 500)^2 + (50 - 200)^2 + (100 - 400)^2 = 90000 + 22500 + 90000 = 202500$$

$$d(C2, \mu_1) = (180 - 200)^2 + (40 - 50)^2 + (80 - 100)^2 = 400 + 100 + 400 = 900$$

$$d(C2, \mu_2) = (180 - 500)^2 + (40 - 200)^2 + (80 - 400)^2 = 102400 + 25600 + 102400 = 230400$$

$$d(C5, \mu_1) = (220 - 200)^2 + (60 - 50)^2 + (120 - 100)^2 = 400 + 100 + 400 = 900$$

$$d(C5, \mu_2) = (220 - 500)^2 + (60 - 200)^2 + (120 - 400)^2 = 78400 + 19600 + 78400 = 176400$$

Cluster Assignments:

• Conservative Spenders: C1, C2, C5, C7

• **Big Spenders:** C3, C4, C6, C8

Example 4: Simple 2D Points

Data Points

Point	Coordinates
A	(1, 1)
В	(1, 2)
\mathbf{C}	(3, 4)
D	(3, 5)
\mathbf{E}	(6, 1)
F	(6, 2)

Iteration 1

Initial Centroids: $\mu_1 = A(1, 1), \ \mu_2 = C(3, 4)$

Distance Calculations:

$$d(A, \mu_1) = (1-1)^2 + (1-1)^2 = 0$$

$$d(A, \mu_2) = (1-3)^2 + (1-4)^2 = 4+9 = 13$$

$$d(B, \mu_1) = (1-1)^2 + (2-1)^2 = 0+1 = 1$$

$$d(B, \mu_2) = (1-3)^2 + (2-4)^2 = 4+4 = 8$$

$$d(C, \mu_1) = (3-1)^2 + (4-1)^2 = 4+9 = 13$$

$$d(C, \mu_2) = (3-3)^2 + (4-4)^2 = 0$$

$$d(D, \mu_1) = (3-1)^2 + (5-1)^2 = 4+16 = 20$$

$$d(D, \mu_2) = (3-3)^2 + (5-4)^2 = 0+1 = 1$$

$$d(E, \mu_1) = (6-1)^2 + (1-1)^2 = 25+0 = 25$$

$$d(E, \mu_2) = (6-3)^2 + (1-4)^2 = 9+9 = 18$$

$$d(F, \mu_1) = (6-1)^2 + (2-1)^2 = 25+1 = 26$$

$$d(F, \mu_2) = (6-3)^2 + (2-4)^2 = 9+4 = 13$$

Cluster Assignments:

- Cluster 1: A, B (closer to μ_1)
- Cluster 2: C, D, E, F (closer to μ_2)

Iteration 2

Update Centroids:

$$\mu_1 = \left(\frac{1+1}{2}, \frac{1+2}{2}\right) = (1, 1.5)$$

$$\mu_2 = \left(\frac{3+3+6+6}{4}, \frac{4+5+1+2}{4}\right) = (4.5, 3)$$

Re-check Critical Points:

$$d(E, \mu_1) = (6-1)^2 + (1-1.5)^2 = 25 + 0.25 = 25.25$$

$$d(E, \mu_2) = (6-4.5)^2 + (1-3)^2 = 2.25 + 4 = 6.25$$

$$d(F, \mu_1) = (6-1)^2 + (2-1.5)^2 = 25 + 0.25 = 25.25$$

$$d(F, \mu_2) = (6-4.5)^2 + (2-3)^2 = 2.25 + 1 = 3.25$$

Final Assignments:

- Cluster 1: A, B
- Cluster 2: C, D, E, F

Student's Work: Customer Segmentation

Customer Data (Annual Spending in \$1000s)

Customer	Groceries	Electronics
C1	15	2
C2	12	1
C3	3	20
C4	2	25
C5	18	3

Iteration 1

Initial Centroids: $\mu_1 = C1(15,2), \ \mu_2 = C3(3,20)$ Distance Calculations (Squared Euclidean):

$$d(C1, \mu_1) = (15 - 15)^2 + (2 - 2)^2 = 0$$

$$d(C1, \mu_2) = (15 - 3)^2 + (2 - 20)^2 = 144 + 324 = 468$$

$$d(C2, \mu_1) = (12 - 15)^2 + (1 - 2)^2 = 9 + 1 = 10$$

$$d(C2, \mu_2) = (12 - 3)^2 + (1 - 20)^2 = 81 + 361 = 442$$

$$d(C3, \mu_1) = (3 - 15)^2 + (20 - 2)^2 = 144 + 324 = 468$$

$$d(C3, \mu_2) = (3 - 3)^2 + (20 - 20)^2 = 0$$

$$d(C4, \mu_1) = (2 - 15)^2 + (25 - 2)^2 = 169 + 529 = 698$$

$$d(C4, \mu_2) = (2 - 3)^2 + (25 - 20)^2 = 1 + 25 = 26$$

$$d(C5, \mu_1) = (18 - 15)^2 + (3 - 2)^2 = 9 + 1 = 10$$

$$d(C5, \mu_2) = (18 - 3)^2 + (3 - 20)^2 = 225 + 289 = 514$$

Cluster Assignments:

• Cluster 1: C1, C2, C5

• Cluster 2: C3, C4

Iteration 2

Update Centroids:

$$\mu_1 = \left(\frac{15 + 12 + 18}{3}, \frac{2 + 1 + 3}{3}\right) = (15, 2)$$

$$\mu_2 = \left(\frac{3 + 2}{2}, \frac{20 + 25}{2}\right) = (2.5, 22.5)$$

Re-check Distances:

$$d(C1, \mu_1) = 0, d(C1, \mu_2) = (15 - 2.5)^2 + (2 - 22.5)^2 = 156.25 + 420.25 = 576.5$$

$$d(C2, \mu_1) = 10, d(C2, \mu_2) = (12 - 2.5)^2 + (1 - 22.5)^2 = 90.25 + 462.25 = 552.5$$

$$d(C5, \mu_1) = 10, d(C5, \mu_2) = (18 - 2.5)^2 + (3 - 22.5)^2 = 240.25 + 380.25 = 620.5$$

Final Result:

- Budget Shoppers (Cluster 1): C1, C2, C5
- Tech Enthusiasts (Cluster 2): C3, C4

Convergence Analysis

SSE Calculation for Student Example

$$SSE_{High Performers} = d(A, \mu_1)^2 + d(B, \mu_1)^2 + d(E, \mu_1)^2 + d(G, \mu_1)^2$$

$$= 26.56 + 8 + 13 + 29 = 76.56$$

$$SSE_{Low Performers} = d(C, \mu_2)^2 + d(D, \mu_2)^2 + d(F, \mu_2)^2 + d(H, \mu_2)^2$$

$$= 13.56 + 38.31 + 63.06 + 13 = 127.93$$

$$Total SSE = 76.56 + 127.93 = 204.49$$

Key Observations

- K-means effectively groups similar students by performance
- Body type clustering reveals natural height-based categories
- Customer segmentation identifies distinct spending patterns
- Algorithm converges quickly with well-separated data
- Feature scaling may be needed for different measurement units