Affine Chabauty

Marius Leonhardt, Heidelberg University joint work with Martin Lüdtke and Steffen Müller July 8th 2024

The Mordell conjecture 100 years later, Cambridge, MA

Results

- $Y = X \setminus D$ affine curve, where
- X smooth projective curve over $\mathbb Q$ of genus g.
- $\emptyset \neq D \subset X$ divisor with $n = \#D(\overline{\mathbb{Q}}) = \#D(\mathbb{Q})$.
- *J* the Jacobian of X, $r = \operatorname{rk} J(\mathbb{Q})$.
- p a prime of good reduction for Y.

Theorem (L.-Lüdtke-Müller, 2023)

If
$$r < g+n-1$$
, then $(Y(\mathbb{Z}) \subset) Y(\mathbb{Z}_p)_1$ is finite. If $\frac{1}{2}r(r+3) < \frac{1}{2}g(g+3)+n-1$, then
$$\#Y(\mathbb{Z}_p)_1 \le \kappa_p \cdot \prod_\ell n_\ell \cdot \#Y(\mathbb{F}_p) \cdot (4g+2n-2)^2(g+1) \,.$$

1

Method: Abelian Chabauty-Kim

Let
$$U = \pi_1(Y_{\overline{\mathbb{Q}}})^{ab}_{\mathbb{Q}_p}$$
. Then

$$Y(\mathbb{Z}) \hookrightarrow Y(\mathbb{Z}_p)$$

$$\downarrow \qquad \qquad j_p \downarrow$$
 $Sel_U(\mathbb{Q}_p) \xrightarrow{\log_p} H^1_f(G_p, U)(\mathbb{Q}_p)$

Define
$$Y(\mathbb{Z}_p)_1 := j_p^{-1}(im(loc_p)) \subset Y(\mathbb{Z}_p)$$
. Use

$$1 \; \longrightarrow \; \mathbb{Q}_p(1)^{n-1} \; \longrightarrow \; U \; \longrightarrow \; V_p J \; \longrightarrow \; 1$$

to calculate the local and global Selmer dimensions:

	global	local
$V_{ ho}J$	r_p	g
$\mathbb{Q}_{\rho}(1)^{n-1}$	0	<i>n</i> – 1

What's next?

Let J_D be the generalised Jacobian of Y.

Hope

If r < g + n - 1 and p is large enough, then

$$\#Y(\mathbb{Z}_p)_1 \leq \#Y(\mathbb{F}_p) + (2g-2+n).$$

Thank you for your attention!