

Velkommen til KJM1110!

Organisk kjemi I - Vår 2016

$$H_2N$$

Laglederne i KJM1110

Mats Tilset
Foreleser og emneansvarlig
mats.tilset@kjemi.uio.no

Mohamed Amedjkouh Kollokvieleder mamou@kjemi.uio.no

Tore Hansen

Laboratorieleder

tore.bonge-hansen@kjemi.uio.no

Massoud Kaboli

Overingeniør – lab

massoud.kaboli@kjemi.uio.no

Emnets semestersider

http://www.uio.no/studier/emner/matnat/kjemi/KJM1110/v16/

KJM1110 i Classfronter

https://fronter.uio.no/

Classfronter benyttes til

- Beskjeder (se også semestersidene)
- Distribusjon av
 - ✓ Forelesninger, kollokvieoppgaver, fasiter
 - ✓ Laboratorie-rapportskjema
 - ✓ Diverse nyttig informasjon...

<u>NB!!!!</u>

- Innlevering av oppgaver skjer på papir i postkasser utenfor lab Ø153
- Retur av rettede oppgaver skjer også på papir

Noen viktige leveregler

- Mobiltelefoner slås av eller settes på stille under forelesningene
- Husk alltid beskyttelsesbriller på lab
- Aldri spising eller drikking på lab
- Følg alltid alle forsiktighetsregler
 - Husk: Alle dine medstudenter utgjør det største faremomentet!
- Ved obligatoriske innleveringer
 - Husk kildehenvisninger når det er aktuelt (bøker, artikler, internett)
 - Kopiering / plagiering / "kok" er ikke tillatt
- Tidsfrister for innlevering skal overholdes

Hvordan mestrer du best organisk kjemi?

Gå inn for KJM1110 med liv og lyst!!

Benytt deg straks av våre sagnomsuste tilbud:

- Forelesninger
- Laboratørieøvelser
- Kollokvieundervisning
- Husk å jobbe godt og jevnt og trutt fra første dag!
 Alle tilbudene er til for deg!
- Vårt mål er at du ved semesterets slutt, og med hånden på hjertet, vil rope ut:

Det blir mye opp til deg om dette blir...

...eller dødsens vanskelig...?

Læreboka

John E. McMurry: Organic Chemistry, 8. utgave, 2011.

Thomson, Brooks/Cole. ISBN: 0-8400-5453-X.

Pensum i læreboka er definert i detalj på semestersidene.

Laboratoriekurset er også pensum! Laboratorieheftet kjøpes på Akademika.

Kapitlene 1 og 2 i læreboka anses som hovedsakelig kjent materiale, men deler av dette vil repeteres.

Nyttig hjelpemiddel: Molekylbyggesett

- Molekyler har utstrekning i 3 dimensjoner
 - Den romlige anordningen av atomene i et molekyl er svært viktig
- Det finnes modelleringsverktøy for PC
 - Vi har lisens for ChemOffice se Classfronter for installasjon
 - ChemDraw (tegneprogram)
 - Chem3D (modelleringsprogram)
- Molekylbyggesett anbefales på det varmeste
 - Er tilgjengelig på Akademika
 - Tillatt hjelpemiddel på eksamen (midtveis og slutteksamen)

Hva er organisk kjemi?

Organisk kjemi er den delen av kjemien som omhandler studiet av struktur, egenskaper, sammensetning, reaksjoner og syntese av *organiske forbindelser*.

Sjekk www.periodesystemet.no

11

Hva er organiske forbindelser?

"Karbonforbindelsenes kjemi"

Hvorfor organisk kjemi? Selv i det 21. århundret?

Noen greier som vi bare *må ha*

Produksjon av kjemikalier

Vi benytter kjemiske stoffer i alle våre daglige aktiviteter, og er ubetinget avhengige av kjemisk produksjon og industri.

Alt menneskelig forbruk og all produksjon genererer avfall!

E-faktor = samlet avfall (kg) / produkt (kg)

Industrisektor	Årlig produksjon (t)	E-faktor	Produsert avfall (t)
Oljeraffinering	$10^6 - 10^8$	< ca. 0,1	10 ⁵ – 10 ⁷
Bulkkjemikalier og polymerer	$10^4 - 10^6$	<1–5	$10^4 - 5 \times 10^6$
Finkjemikalier	$10^2 - 10^4$	5–50	$5 \times 10^2 - 5 \times 10^5$
Legemidler og elektronikk	10 – 10 ³	25–250	2.5×10 ² - 10 ⁶

Målet er E = 0!

E-faktor = samlet avfall (kg) / ønsket produkt (kg)

E-faktor	M&M modell	Industrisektor
<~0,1		Oljeraffinering
~1		Bulkkjemikalier
~10		og polymerer
~100		Finkjemikalier
>~250		Legemidler og elektronikk

Oksidasjon av alkoholer

En velkjent organisk reaksjon:

Balansert ligning:

Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også

- 133,3 g Cr₂(SO₄)₃
- 59,2 g K₂SO₄
- 114,1 g vann

Bærekraftig kjemi – Grønn kjemi

Fra det kvalitetssikrete norsk nettleksikon, http://snl.no:

- Bærekraftig kjemi, betegnelse på 12 prinsipper for kjemisk virksomhet der målet er å eliminere dannelse av farlige forbindelser i fremstilling og utnyttelse av kjemiske produkter.
- Det er bedre å unngå produksjon av avfallsstoffer enn å fjerne dem i ettertid.
- Kjemiske prosesser skal være atom- og energieffektive, benytte seg av fornybare råvarer, og unngå bruk av toksiske og/eller farlige kjemikalier og løsemidler.
- De kjemiske produktene skal være nedbrytbare i miljøet.
- Grønn kjemi tar utgangspunkt i en fundamental forståelse av kjemien på molekylært nivå og resulterer i miljøvennlige produkter og prosesser. Når disse prinsippene settes i verk for fullt vil det medføre et paradigmeskifte for kjemisk industri.

Vanlig smerte/feberstillende:

Aktualisert med svineinfluensaen:

Acetylsalicylsyre Paracetamol

Tamiflu

Fremstilling av Tamiflu

Oksidasjon av alkoholer

En velkjent organisk reaksjon:

Balansert ligning:

OH
$$3 + K_2Cr_2O_7 + 4 + H_2SO_4$$
 $3 + Cr_2(SO_4)_3 + K_2SO_4 + 7 + H_2O_4$ Molmasse 100,2 Molmasse 98,1 Molmasse 98,1 Molmasse 174,3 Molmasse 294,2 Molmasse 392,2

Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også

- 133,3 g Cr₂(SO₄)₃
- 59,2 g K₂SO₄
- 114,1 g vann

Oksidasjon av alkoholer – et grønnere alternativ

Balansert ligning:

Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også

- 56,6 g CaCl₂
- 32,3 g vann

Oksidasjon av alkoholer – Et enda grønnere alternativ

Når vi lager 100,0 g sykloheksanon fra 101,9 g sykloheksanol, så lager vi også • 16,3 g vann

Veien mot grønn kjemi og bærekraftig produksjon

- Storskala produksjon av enkle organiske kjemikalier kjennetegnes allerede av utstrakt bruk av katalyse og effektive prosesser
 - men det er rom for forbedringer
- Med dagens syntesemetoder i organisk kjemi kan man lage "nesten hva det skal være"
 - Bruken av lange sekvenser med støkiometriske reaksjoner fører til høye E-verdier i produksjon av lav-volums spesialkjemikalier
- Situasjonen kan kun forbedres ved stadig satsing på forskning
 - Nye syntesemetoder
 - Nye katalysatorer
- Kjemi vil være en nøkkelvitenskap arbeidet med energi-, ressurs- og miljøutfordringene som menneskeheten står overfor

Organisk kjemi ved Kjemisk institutt

Flere forskningsseksjoner ved Kjemisk institutt studerer organisk kjemi. Spesielt fremheves to seksjoner som tilbyr BSc-prosjekter og MScoppgaver innen syntese, karakterisering og videre studier av organiske molekyler:

Seksjon for katalyse:

"Vår visjon: Rasjonell design av nye og forbedrede katalysatorer basert på fundamental mekanistisk innsikt"

- Mats Tilset ("Team KJM1110")
- Mohamed Amedjkouh ("Team KJM1110")

Seksjon for organisk kjemi:

"Vår virksomhet er rettet mot syntese av organiske molekyler og strukturstudier ved hjelp av NMR-spektroskopi."

- Tore Bonge-Hansen ("Team KJM1110")
- Lise-Lotte Gundersen
- Tore Benneche
- Frode Rise