Sequence similarity and global alignment

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Relatedness of Biological Sequence

Phylogenetic Tree of Life

Relatedness of Biological Sequence Phylogenetic Tree of Life

Relatedness of Biological Sequence Phylogenetic Tree of Life

Consider an analogy

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his eleventy-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his **eleventh**-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo **Baggens** of Bag End announced that he would shortly be celebrating his **eleventh**-first birthday with a party of special magnificence, there was much talk and excitement in Hobbiton"

"When Mr. Bilbo Baggins of Bag End announced that he would shortly be celebrating his eleventh-first birthday with a party of special magnificence, there was much talk and excitement in Hobbit-town"

"When Mrs. Bilbo Baggins of Bag End announced that she would shortly be celebrating his eleventh-first birthday with a party of special magnificence, there was much talk and excitement in Hobbit-town"

Sequence tells a story

 If two sequences are similar, this provides evidence of descent from a common ancestor

• Sequences are *conserved* at different rates

 Very similar sequence can indicate a very recent common ancestor, or a highly conserved function

Why compare DNA or protein sequences?

Partial CTCF protein sequence in 8 organisms:

- Identify important sequences by finding conserved regions.
- Find genes similar to known genes.
- Understand evolutionary relationships and distances (D. rerio aka zebrafish is farther from humans than G. gallus aka chicken).
- Interface to databases of genetic sequences.
- As a step in genome assembly, and other sequence analysis tasks.
- Provide hints about protein structure and function (next slides).

*

Sequence can reveal structure

1dtk XAKYCKLPLRIGPCKRKIPSFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

Why Not Exact Matching?

Suffix tree / array and BWT / FM-index are powerful tools for finding exact patterns in a large text, but exact matching is insufficient. Reads have **errors** and there is **true genomic variation** between a reference and a sample.

Typical strategy (many variants):

• Find all places where a substring of the query matches the reference exactly (seeds)

Requires efficient exact search, as we covered with the suffix array/FM-index

 Filter out regions with insufficient exact matches to warrant further investigation - "Filtering"; we may discuss this later

 Perform a "constrained" alignment that includes these exact matching "seeds"

Here is where we use our "alignment" scoring (current lecture)

The Language of Strings

A string s is a finite sequence of characters

|s| denotes the length of the string — the number of characters in the sequence.

A string is defined over an alphabet, Σ

```
\begin{split} &\Sigma_{DNA} = \{A,T,C,G\} \\ &\Sigma_{RNA} = \{A,U,C,G\} \\ &\Sigma_{AminoAcid} = \{A,R,N,D,C,E,Q,G,H,I,L,K,M,F,P,S,T,W,Y,V\} \end{split}
```

The empty string is denoted $\varepsilon - |\varepsilon| = 0$

The Language of Strings

Given two strings $\mathbf{s,t}$ over the same alphabet Σ , we denote the concatenation as \mathbf{st} — this is the sequence of \mathbf{s} followed by the sequence of \mathbf{t}

String **s** is a substring of **t** if there exist two (potentially empty) strings **u** and **v** such that $\mathbf{t} = \mathbf{usv}$

String $\bf s$ is a subsequence of $\bf t$ if the characters of $\bf s$ appear in order (but not nece consecutively) in $\bf t$

String s is a prefix/suffix of t if t = su/us — if neither s nor u are &, then s is a prefix/suffix of t

adapted from a slide by Ben Langmead

The Simplest String Comparison Problem

Given: Two strings

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

where a_i , b_i are letters from some alphabet, Σ , like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by "similar"?

Edit distance between strings a and b = the smallest number of the following operations that are needed to transform a into b:

- mutate (replace) a character
- delete a character
- insert a character

$$riddle \xrightarrow{delete} ridle \xrightarrow{mutate} riple \xrightarrow{insert} triple$$

The String Alignment Problem

Parameters:

- "gap" is the cost of inserting a "-" character, representing an insertion or deletion (insertion/deletion are dual operations depending on the string)
- cost(x,y) is the cost of aligning character x with character y. In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

- Can compute the edit distance by finding the **lowest cost alignment**. (often phrased as finding **highest scoring alignment**.)
- Cost of an alignment is: sum of the cost(x,y) for the pairs of characters that are aligned + $gap \times$ number of characters inserted.

e.g.
$$gap = 3$$
 - RIDDLE TRIP - LE

Representing alignments as edit transcripts

Can think of edits as being introduced by an *optimal editor* working left-to-right. *Edit transcript* describes how editor turns *x* into *y*.

```
Operations:
x: G'CGTATGCGGCTAACGC
                                M = match, R = replace,
y: GCTATACGC
                                I = insert into x, D = delete from x
x: GCGTATGCGGCTAACGC
                               MMD
y: GC-TATGCGGCTATACGC
x: GCGTATGCGGCTA-ACGC
                               MMDMMMMMMMMI
y: GC-TATGCGGCTATACG
x: GCGTATGCGGCTA-
                               MMDMMMMMMMMMIMMM
y: GC-TATGCGGCTATACGC
```

Representing edits as alignments

```
prin-ciple
                         prin-cip-le
prinncipal
                         prinncipal-
(1 gap, 2 mm)
                          (3 gaps, 0 mm)
MMMMIMMMRR
                         MMMMIMD
misspell
                          prehistoric
mis-pell
                          ---historic
 (1 gap)
                           (3 gaps)
 MMMMIMMM
                          DDDMMMMMMM
aa-bb-ccaabb
                         al-go-rithm-
ababbbc-a-b-
                         alKhwariz-mi
(5 gaps, 1 mm)
                          (4 gaps, 3 mm)
MRIMMIMDMDMD
                         MMIRRIMMRDMI
```

NCBI BLAST DNA Alignment

>gb|AC115706.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

Query	1650	gtgtgtgtgggtgcacatttgtgtgtgtgtgcgcctgtgtgtg	1709
Sbjct	56838	GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTG	56895
Query	1710	gtg-gggcacatttgtgtgtgtgtgtgcctgtgtgtgggtgcacatttgtgtgtg	1768
Sbjct	56896	GTCCGGGCATGCATGTCTGTGTGCATGTGTGTGTGTGTGCATGTGTGAGTAC	56947
Query	1769	ctgtgtgtgtgtgcctgtgtgtgggggtgcacatttgtgtgtg	1828
Sbjct	56948	CTGTGTGTGTATGCTTGTGTGTGTGTGTGTGTGTGTGTGT	57007
Query	1829	gggtgcacatttgtgtgtgtgtgtgcctgtgtgtgtgtgggtgcacatttgtgtgtg	1888
Sbjct	57008	TCATCTGTGTGTATGTGTGTGTGAGAGTGCATGCATGTGTGTGTGAGT	57055
Query	1889	gcctgtgtgtgtgggtgcacatttgtgtgtgtgtgtgcctgtgtgtgtgggtgcac	1942
Sbjct	57056	TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC	57114
Query	1943	atttgtgtgtgtgtgcctgtgtgtgtgggtgcacatttgtgtgtg	2002
Sbjct	57115	ATCTGTGTATGTGTGTGTGTGAGTTAGTTCATCTGTGTGTGAGAGTGTGTGA	57168
Query	2003	gtgcacatttgtgtgtgtgcctgtgtgtgtgtgcctgtgtgtg	2062
Sbjct	57169	GCTCATCTGTGTGAGTTCATCTGTATGAGTGTGTGTATGTGTGTGTACAAATGA	57224
Query	2063	gtgtgtgtgtgcctgtgtgtgtgggtgcacatttgtgtgtg	2122
Sbjct	57225	GTTCATCTGTGCATGTGTGTGTGTTTAAGTGTGTTCATCTGTGTGCGTGT	57274

How many alignments are there?

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

How many alignments are there?

Andrade, Helena, et al. "The number of reduced alignments between two DNA sequences." BMC bioinformatics 15.1 (2014): 94.

Interlude: Dynamic Programming

General and powerful algorithm design technique

"Programming" in the mathematical sense — nothing to do with e.g. code

To apply DP, we need optimal substructure and overlapping subproblems

optimal substructure — can combine solutions to "smaller" problems to generate solutions to "larger" problems.

overlapping subproblems — solutions to subproblems can be "re-used" in multiple contexts (to solve multiple) larger problems

$$F_n = F_{n-1} + F_{n-2}$$
 with $F_1 = F_2 = 1$

This recursive way of computing fib(n) is **very** inefficient!

What is the runtime of this approach (i.e. fib(n) = O(?))

$$F_n = F_{n-1} + F_{n-2}$$
 with $F_1 = F_2 = 1$

This recursive way of computing fib(n) is **very** inefficient! Runtime of this approach is fib(n) = $O(\phi^n) = O(2^n)$ golden ratio

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than $O(\phi^n)$?

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than $O(\Phi^n)$?

$$F_n = F_{n-1} + F_{n-2}$$
 with $F_1 = F_2 = 1$

How do we do better than $O(\phi^n)$?

If I compute the solutions in the "right order", I don't need to waste time re-computing the same values.

 $F_n = F_{n-1} + F_{n-2}$ with $F_1 = F_2 = 1$

How do we do better than $O(\phi^n)$?

If I compute the solutions in the "right order", I don't need to waste time re-computing the same values.

```
F_n = F_{n-1} + F_{n-2} with F_1 = F_2 = 1
How do we do better than O(\varphi^n)?
Take 2:
```

```
def fib(n):
   if n == 1 or n == 2:
      return 1
   fm2, fm1 = 1, 1
   for i in xrange(2, n):
      fm2, fm1 = fm1, fm2 + fm1
   return fm1
```

We loop up to n, and perform an addition in each iteration —> O(n); **much better!** Note: O(n) assumes addition is constant, not true for large enough n.

Let G = (V,E) be a **d**irected **a**cyclic **g**raph (DAG) with vertex set V and edge set E.

Since G directed and free of cycles, there exists a (at least one) **topological order** of G — an ordering $p(v_1)$, $p(v_2)$, ..., $p(v_n)$ such that for all $e = (v_i, v_j)$ in E, $p(v_i) < p(v_j)$

In other words, we can label the nodes of G such that all edges point from a vertex with a smaller label to a vertex with a larger label.

Obtaining a topological ordering

Kahn's algorithm

Builds up a valid topo order node-by-node

```
L ← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
    remove a node n from S
    add n to tail of L
    for each node m with an edge e from n to m do
        remove edge e from the graph
        if m has no other incoming edges then
            insert m into S
if graph has edges then
        return error (graph has at least one cycle)
else
    return L (a topologically sorted order)
```

$$O(|V| + |E|)$$
; why?

What's the distance from S to B — d(S,B)?

First, I must go through A, so it's at least d(S,A) + 6

Then, there are 2 ways of getting to A — we choose the shortest.

In general, d(S,X) is the minimum value of d(S,Y) + d(Y,X) for all Y that precede X and are connected by an edge

$$d(S,X) = \min_{Y \mid (Y,X) \in E} \{d(S,Y) + d(Y,X)\}$$

This becomes the DP recurrence for our problem

The problem is solved efficiently by the following algorithm

```
initialize all \operatorname{dist}(\cdot) values to \infty \operatorname{dist}(s)=0 for each v\in V\backslash\{s\}, in linearized order: \operatorname{dist}(v)=\min_{(u,v)\in E}\{\operatorname{dist}(u)+l(u,v)\}
```

Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

One of these possibilities must hold:

- 1. (a_m,b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all
- 4. a_m is matched to some b_i ($j \ne n$) and b_n is matched to some a_k ($k \ne m$).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

$$a = a_1 a_2 a_3 a_4 ... a_m$$

 $b = b_1 b_2 b_3 b_4 ... b_n$

One of these possibilities must hold:

- 1. (a_m,b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all
- 4. a_m is matched to some b_j ($j \ne n$) and b_n is matched to some a_k ($k \ne m$).

No Crossing Rule Forbids #4

4. a_m is matched to some b_j ($j \neq n$) and b_n is matched to some a_k ($k \neq m$).

So, the only possibilities for what happens to the last characters are:

- 1. (a_m, b_n) are matched to each other
- 2. a_m is not matched at all
- 3. b_n is not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

$$OPT(i,j) = \min egin{cases} \cos t(a_i,b_j) + OPT(i-1,j-1) & \operatorname{match}\ a_i,b_j \ \operatorname{gap} + OPT(i-1,j) & a_i & \operatorname{is}\ \operatorname{not}\ \operatorname{matched}\ \operatorname{gap} + OPT(i,j-1) & b_j & \operatorname{is}\ \operatorname{not}\ \operatorname{matched}\ \operatorname{dignment}\ \operatorname{dignment}\ \operatorname{between}\ a_1...a_i & \operatorname{and}\ b_1...b_j & \operatorname{the}\ \operatorname{costs}\ \operatorname{of}\ \operatorname{smaller}\ \operatorname{problems} \end{cases}$$

Key: we don't know which of the 3 possibilities is the right one, so we try them all.

Base case:
$$OPT(i,0) = i \times \text{gap}$$
 and $OPT(0,j) = j \times \text{gap}$.

(Aligning *i* characters to o characters must use *i* gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other OPT(i,j) $(i \le n, j \le m)$ on the way to computing OPT(n,m).

Store those values in a 2D array:

notation here; OPT(i,j) is referring to *column* i, *row* j of the matrix.

NOTE: observe the non-standard

Filling in the 2D Array

Edit Distance Computation

```
EditDistance(X,Y):
   For i = 1, ..., m: A[i, 0] = i*gap
   For j = 1, ..., n: A[0,j] = j*gap
   For i = 1, ..., m:
      For j = 1, ..., n:
         A[i,j] = min(
            cost(a[i],b[j]) + A[i-1,j-1],
            gap + A[i-1,j],
            gap + A[i,j-1]
      EndFor
   EndFor
   Return A[m,n]
```

Where's the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = $O(m \times n)$, where m and n are the lengths of the 2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Finding the actual alignment

gap cost = 3mismatch cost = 1

	5	27												
A	4	24												
(-	3	21												
7	Т	18												
Т	Т	15												
C	3	12												
	2	9												
F	4	6												
	4	3 ←	_0											
		0	3	6	9	12	15	18	21	24	27	30	33	36
			А	Α	G	G	T	Α	T	G	Α	А	T	С

С	27												
Α	24												
G	21												
T	18												
Т	15												
G	12												
С	9												
А	6												
A	3 ←	0	_3										
	0	3	6	9	12	15	18	21	24	27	30	33	36
		А	Α	G	G	T	Α	Т	G	Α	Α	Т	С

†						l			I	I		l	I	
C	\ ,	27												
A	\	24												
G	à	21												
Т	-	18												
T	-	15												
G	à	12												
C	`,	9												
A	\	6												
A	\	3 ←	0	_3-	- 6									
		0	3	6	9	12	15	18	21	24	27	30	33	36
			Α	Α	G	G	Т	Α	Т	G	Α	Α	T	С

Outputting the Alignment

Build the alignment from right to left.

ACGT

A-GA

Follow the backtrack pointers starting from entry (n,m).

- If you follow a diagonal pointer, add both characters to the alignment,
- If you follow a left pointer, add a gap to the y-axis string and add the x-axis character
- If you follow a down pointer, add the y-axis character and add a gap to the x-axis string.

Recap: Dynamic Programming

The previous sequence alignment / edit distance algorithm is an example of dynamic programming.

Main idea of dynamic programming: solve the subproblems in an order so that when you need an answer, it's ready.

Requirements for DP to apply:

- 1. Optimal value of the original problem can be computed from some similar subproblems.
- 2. There are only a polynomial # of subproblems
- 3. There is a "natural" ordering of subproblems, so that you can solve a subproblem by only looking at **smaller** subproblems.

Another View: Recasting as a Graph

Another View: Recasting as a Graph

How would you find a shortest path in this graph *efficiently?*

Side Note: Lower Bounds

- Suppose the lengths of x and y are n.
- Clearly, need at least $\Omega(n)$ time to find their global alignment (have to read the strings!)
- The DP algorithms show global alignment can be done in $O(n^2)$ time.

Side Note: Lower Bounds

- Suppose the lengths of x and y are n.
- Clearly, need at least $\Omega(n)$ time to find their global alignment (have to read the strings!)
- The DP algorithms show global alignment can be done in $O(n^2)$ time.
- A trick called the "Four Russians Speedup" can make a similar dynamic programming algorithm run in O(n² / log n) time.
 - We probably won't talk about the Four Russians Speedup.
 - The important thing to remember is that only one of the four authors is Russian...

(Alrazarov, Dinic, Kronrod, Faradzev, 1970)

Open questions: Can we do better? Can we prove that we can't do better?
 No#