Double Covers of Symplectic Dual Polar Graphs

G. Eric Moorhouse^{a,*}, Jason Williford^a

^aDepartment of Mathematics, University of Wyoming, Laramie WY 82071 USA

Abstract

Let $\Gamma = \Gamma(2n,q)$ be the dual polar graph of type Sp(2n,q). Underlying this graph is a 2n-dimensional vector space V over a field \mathbb{F}_q of odd order q, together with a symplectic (i.e. nondegenerate alternating bilinear) form $B: V \times V \to \mathbb{F}_q$. The vertex set of Γ is the set \mathcal{V} of all n-dimensional totally isotropic subspaces of V. If $q \equiv 1 \mod 4$, we obtain from Γ a nontrivial two-graph $\Delta = \Delta(2n,q)$ on \mathcal{V} invariant under PSp(2n,q). This two-graph corresponds to a double cover $\widehat{\Gamma} \to \Gamma$ on which is naturally defined a Q-polynomial (2n+1)-class association scheme on $2|\widehat{\mathcal{V}}|$ vertices.

Keywords: association scheme, Q-polynomial, symplectic group, two-graph, dual polar graph

1. Introduction

Association schemes [2, 6] were first defined by Bose and Mesner [5] in the context of the design of experiments. Philippe Delsarte used association schemes to unify the study of coding theory and design theory in his thesis [9], where he derived his well-known linear programming bound which has since found many applications in combinatorics. There he identified two types of association schemes which were of particular interest: the so-called P-polynomial and Q-polynomial schemes. Schemes which are P-polynomial are precisely those arising from distance-regular graphs, and are well studied. In particular, much effort has gone into the classification of distance-transitive graphs, the P-polynomial schemes which are the orbitals of a permutation group; and it is likely that all such examples are known. Also well-studied are the schemes which are both Q-polynomial and P-polynomial. A well-known conjecture [2, p.312] of Bannai and Ito is the following: for sufficiently large d, a primitive scheme is P-polynomial if and only if it is Q-polynomial.

Classification efforts for Q-polynomial schemes are far less advanced than in the P-polynomial case; in particular it is likely that more examples from permutation groups are yet to be found. The Q-polynomial property has no known

^{*}Corresponding author

 $Email\ addresses:\ {\tt moorhous@uwyo.edu}\ (G.\ Eric\ Moorhouse),\ {\tt jwillif1@uwyo.edu}\ (Jason\ Williford)$

combinatorial characterization, making their study more difficult. However, the list of known examples (see [13, 15, 8]) indicates that these objects have interesting structure from the viewpoint of designs, lattices, coding theory and finite geometry.

In this paper, we give a new family of imprimitive Q-polynomial schemes with an unbounded number of classes. These schemes are formed by the orbitals of a group, giving a double cover of the scheme arising from the symplectic dual polar space graph. We note that only one other family of imprimitive Q-polynomial schemes with an unbounded number of classes is known that is not P-polynomial, namely the bipartite doubles of the Hermitian dual polar space graphs, which are Q-bipartite and Q-antipodal. The schemes in this paper are Q-bipartite, and have two Q-polynomial orderings. Except when the field order q is a square, the splitting field of these schemes is also irrational. We note that this is the only known family of Q-polynomial schemes with unbounded number of classes and an irrational splitting field. In the last section we give open parameters for hypothetical primitive Q-polynomial subschemes of this family.

Our paper is organized as follows: Background material on Gaussian coefficients, two-graphs and double covers of graphs, are covered in Sections 2–3. In Section 4 we recall the standard construction of the symplectic dual polar graph $\Gamma = \Gamma(2n,q)$. There we also introduce the Maslov index, which we use in Section 5 to construct the double cover $\widehat{\Gamma} \to \Gamma$ when $q \equiv 1 \mod 4$. In Section 6 we construct a (2n+1)-class association scheme $\mathcal{S} = \mathcal{S}_{n,q}$ from $\widehat{\Gamma}$; and in Section 7 we show that \mathcal{S} is Q-polynomial. The P-matrix of the scheme is constructed in Section 8. A particularly tantalizing open problem is the question whether \mathcal{S} is in general the extended Q-bipartite double of a primitive Q-polynomial scheme; see Section 9.

2. Gaussian coefficients

For all integers n, k we define the Gaussian coefficient

$${n\brack k} = {n\brack k}_q = \begin{cases} \frac{(q^n-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^k-1)(q^{k-1}-1)\cdots(q-1)}, & \text{if } k\geqslant 0;\\ 0, & \text{if } k<0. \end{cases}$$

In particular for k=0 the empty product gives $\begin{bmatrix} n \\ 0 \end{bmatrix} = 1$. In later sections, q will be a fixed prime power; but here we may regard q as an indeterminate, so that for $n \geq 0$, after cancelling factors we find $\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{Z}[q]$; and specializing to q=1 gives the ordinary binomial coefficients $\begin{bmatrix} n \\ k \end{bmatrix} = \binom{n}{k}$. For general $n \in \mathbb{Z}$ we instead obtain a Laurent polynomial in q with integer coefficients, i.e. $\begin{bmatrix} n \\ k \end{bmatrix} \in \mathbb{Z}[q,q^{-1}]$, as follows from conclusion (ii) of the following.

Proposition 2.1. Let $n, k, \ell \in \mathbb{Z}$. The Gaussian coefficients satisfy

$$(i) \ \left[\begin{smallmatrix} n \\ k \end{smallmatrix} \right] = q^k \left[\begin{smallmatrix} n-1 \\ k \end{smallmatrix} \right] + \left[\begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right] = \left[\begin{smallmatrix} n-1 \\ k \end{smallmatrix} \right] + q^{n-k} \left[\begin{smallmatrix} n-1 \\ k-1 \end{smallmatrix} \right];$$

(ii)
$$\binom{-n}{k} = (-q^{-n})^k \binom{n+k-1}{k}$$
;

(iii)
$$\begin{bmatrix} n \\ k \end{bmatrix} \begin{bmatrix} k \\ \ell \end{bmatrix} = \begin{bmatrix} n \\ \ell \end{bmatrix} \begin{bmatrix} n-\ell \\ k-\ell \end{bmatrix}$$
;

(iv)
$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ n-k \end{bmatrix}$$
 whenever $0 \leqslant k \leqslant n$.

Most of the conclusions of Proposition 2.1 are found in standard references such as [1]. However, our definition of $\binom{n}{k}$ differs from the standard definition found in most sources, which either leave $\binom{n}{k}$ undefined for n < 0, or define it to be zero in that case. Our extension to all $n \in \mathbb{Z}$ means that the recurrence formulas (i) hold for all integers n, k, unlike the 'standard definition' which fails for n = k = 0. Property (i) plays a role in our later algebraic proofs using generating functions. In further defense of our definition, we observe that it has become standard to extend the definition of binomial coefficients $\binom{n}{k}$ so that $\binom{-n}{k} = (-1)^k \binom{n+k-1}{k}$ (see e.g. [1, p.12]); and (ii) naturally generalizes this to Gaussian coefficients. We further note that (iii) holds for all $n, k \in \mathbb{Z}$ whether one takes the standard definition of $\binom{n}{k}$ or ours. The one advantage of the standard definition is that it renders superfluous the extra restriction $0 \le k \le n$ in the symmetry condition (iv). The interpretation of $\binom{n}{k}$ as the number of k-subspaces of an n-space over \mathbb{F}_q is valid for all $n \ge 0$.

In Section 8 we will make use of the well-known generating polynomials

$$E_m(t) = \prod_{i=0}^{m-1} (1 + q^i t) = \sum_{\ell=0}^{\infty} q^{\binom{\ell}{2}} {m \choose \ell} t^{\ell} \quad \text{for } m = 0, 1, 2, \dots;$$

note that in the latter sum, the terms for $\ell > m$ vanish, yielding $E_m(t) \in \mathbb{Z}[q,t]$ (or after specializing to a fixed prime power q, we obtain $E_m(t) \in \mathbb{Z}[t]$). Here we see the usual binomial coefficient $\binom{\ell}{2} = \frac{1}{2}\ell(\ell-1)$. In Section 8 we will make use of the following obvious relations:

Proposition 2.2. For all $m \ge 0$, the generating function $E_m(t)$ satisfies

(i)
$$E_m(-qt) = \frac{1-q^m t}{1-t} E_m(-t);$$

(ii)
$$E_m(q^2t) = \frac{1+q^{m+1}t}{1+qt}E_m(qt)$$
; and

(iii)
$$E_m(r^3t) = \frac{1+rq^mt}{1+rt}E_m(rt)$$
 where $r = \sqrt{q}$.

3. Two-graphs and double covers of graphs

Here we describe the most basic connections between two-graphs and double covers of graphs; see [14, 16, 6, 18] for more details. Our notation is chosen to conform to that used in subsequent sections.

Let \mathcal{V} be any set. Denote by $\binom{\mathcal{V}}{k}$ the collection of all k-subsets of \mathcal{V} (i.e. subsets of cardinality k). A two-graph on \mathcal{V} is a subset $\Delta \subseteq \binom{\mathcal{V}}{3}$ such that for every 4-set $\{x,y,z,w\} \in \binom{\mathcal{V}}{4}$, an even number, i.e. 0, 2 or 4, of the triples

 $\{x,y,z\},\ \{x,y,w\},\ \{x,z,w\},\ \{y,z,w\}$ is in Δ . If Δ is a two-graph on $\mathcal V$, then the complementary set of triples $\overline{\Delta}=\left\{\{x,y,z\}\in\binom{\mathcal V}{3}:\{x,y,z\}\notin\Delta\right\}$ is also a two-graph, called the *complementary two-graph* on $\mathcal V$.

A graph on \mathcal{V} is a subset $\Gamma \subseteq \binom{\mathcal{V}}{2}$. Elements of Γ are called edges. The complete graph on \mathcal{V} is the graph $K_{\mathcal{V}}$ with full edge set $\binom{\mathcal{V}}{2}$. In general the complementary set of pairs $\overline{\Gamma} = \{\{x,y\} \in \binom{\mathcal{V}}{2} : \{x,y\} \notin \Gamma\}$ is the complementary graph on \mathcal{V} .

Every graph on \mathcal{V} may be identified with a signing of the edges of the complete graph $K_{\mathcal{V}}$, i.e. a function $\sigma: \binom{\mathcal{V}}{2} \to \{\pm 1\}$. Under this correspondence, the graph corresponding to σ has as its edge set $\sigma^{-1}(1) = \{\{x,y\} \in \binom{\mathcal{V}}{2} : \sigma(x,y) = 1\}$. (Here we abbreviate $\sigma(\{x,y\}) = \sigma(x,y)$.)

Given Γ and σ as above (which amounts to two graphs which may be entirely unrelated except for sharing the same vertex set \mathcal{V}), we construct a new graph $\widehat{\Gamma} = \widehat{\Gamma}_{\sigma}$ with vertex set $\widehat{\mathcal{V}} = \mathcal{V} \times \{\pm 1\}$ and adjacency relation defined by

$$(x, \varepsilon) \sim (y, \varepsilon') \iff x \sim y \text{ and } \varepsilon \varepsilon' = \sigma(x, y).$$

(Note that $(x,1) \not\sim (x,-1)$ since Γ has no loops.) The map $(x,\varepsilon) \mapsto x$ is a double covering map $\theta:\widehat{\Gamma}\to\Gamma$, also called a double cover or simply a cover; and the fibers of this map are the pairs $\theta^{-1}(x) = \{(x,1), (x,-1)\}$ where $x \in \mathcal{V}$. (By definition, a covering map of graphs is a graph homomorphism $\theta:\widehat{\Gamma}\to\Gamma$ such that for any vertex $x \in \Gamma$, the preimage of the neighborhood graph Γ_x is isomorphic to a disjoint union of copies of Γ_x ; see e.g. [10]. 'Double' refers to the condition that the covering map is 2-to-1.) We also say that the vertices (x, 1)and (x, -1) are antipodal with respect to the covering map. (Note that antipodal vertices must be at distance ≥ 2 ; but we deviate from common custom by not requiring pairs of antipodal vertices to be at maximal distance diam Γ .) We denote by ζ the transposition interchanging antipodal vertices: $(x,1) \stackrel{\xi}{\leftrightarrow} (x,-1)$. Denote by $\operatorname{Aut}_{\zeta} \widehat{\Gamma} \leqslant \operatorname{Aut} \widehat{\Gamma}$ the subgroup consisting of all automorphisms of the graph $\widehat{\Gamma}$ which preserve the antipodality relation. In general, $\operatorname{Aut}_{\zeta}\widehat{\Gamma}$ is the centralizer of ζ in the full automorphism group $\operatorname{Aut}\widehat{\Gamma} \leqslant \operatorname{Sym}\widehat{\mathcal{V}}$; but in our case we obtain equality $\operatorname{Aut}_{\zeta}\widehat{\Gamma}=\operatorname{Aut}\widehat{\Gamma}$ (see Lemma 5.4). Similarly, two covers $\theta_i:\widehat{\Gamma}_i\to\Gamma$ of the same graph Γ (for i=1,2) are equivalent or isomorphic if there is a graph isomorphism $\rho: \widehat{\Gamma}_1 \to \widehat{\Gamma}_2$ which preserves antipodality, i.e. $\theta_1 \circ \rho = \theta_2$.

Given $\sigma:\binom{\mathcal{V}}{2}\to\{\pm 1\}$ as above, for every triple $\{x,y,z\}\in\binom{\mathcal{V}}{3}$ we may define

$$\sigma(x, y, z) = \sigma(x, y)\sigma(y, z)\sigma(z, x) \in \{\pm 1\}.$$

A triple $\{x, y, z\} \in {\mathcal{V} \choose 3}$ is called *coherent* or *non-coherent* according as $\sigma(x, y, z) = 1$ or -1. The set of all coherent triples forms a two-graph on \mathcal{V} , denote by Δ_{σ} ; and the set of non-coherent triples gives the complementary two-graph $\overline{\Delta}_{\sigma}$.

and the set of non-coherent triples gives the complementary two-graph $\overline{\Delta}_{\sigma}$. Two sign functions $\sigma_1, \sigma_2 : {\mathcal{V} \choose 2} \to \{\pm 1\}$ (or the corresponding graphs $\sigma_1^{-1}(1)$, $\sigma_2^{-1}(1)$ on \mathcal{V}) are *switching-equivalent* in the sense of Seidel [16] if there exists a map $f : \mathcal{V} \to \{\pm 1\}$ such that $\sigma_2(x,y) = f(x)f(y)\sigma_1(x,y)$ for all $\{x,y\} \in {\mathcal{V} \choose 2}$. We have $\Delta_{\sigma_1} = \Delta_{\sigma_2}$ iff σ_1 and σ_2 are switching-equivalent. Assuming this holds, then the corresponding covers $\widehat{\Gamma}_{\sigma_1}$ and $\widehat{\Gamma}_{\sigma_2}$ are isomorphic via $(x, \varepsilon) \mapsto (x, f(x)\varepsilon)$.

In the special case of the complete graph $\Gamma = K_{\mathcal{V}}$, the following three notions are equivalent (see [6, §1.5]): two-graphs on \mathcal{V} , switching classes of graphs on \mathcal{V} , and isomorphism classes of double covers of the complete graph $K_{\mathcal{V}}$. For example given a double cover $\widehat{K_{\mathcal{V}}} \to K_{\mathcal{V}}$, the corresponding two-graph is obtained as follows (see [16, p.488]): Each triple $\{x, y, z\}$ of distinct vertices in \mathcal{V} induces a triangle $K_{\{x,y,z\}} \subseteq K_{\mathcal{V}}$; and such a triple is coherent iff its preimage in $\widehat{K_{\mathcal{V}}}$ induces a pair of triangles, rather than a 6-cycle, in $\widehat{K_{\mathcal{V}}}$.

An automorphism of a two-graph Δ is a permutation of the underlying point set \mathcal{V} which preserves the set of coherent triples. We now relate Aut Δ to the group $\operatorname{Aut}_{\zeta} \widehat{K} \leq \operatorname{Aut} \widehat{K}$ defined above for the associated double cover $\widehat{K} \to K$, where we abbreviate the complete graph $K_{\mathcal{V}} = K$. The following is easy to verify (or see [18, §2], where this isomorphism is denoted $\widehat{G}/Z \cong G$):

Proposition 3.1. The group $\operatorname{Aut}_{\zeta}\widehat{K}$ acts naturally on Δ , inducing the full automorphism group of Δ . The kernel of this action is the central subgroup $\langle \zeta \rangle$ of order 2; thus $(\operatorname{Aut}_{\zeta}\widehat{K})/\langle \zeta \rangle \cong \operatorname{Aut} \Delta$.

4. Dual polar graphs of type Sp(2n, q), q odd

Fix a finite field \mathbb{F}_q of odd prime power order q; an integer $n \geq 1$; a 2n-dimensional vector space V over \mathbb{F}_q ; and a symplectic (i.e. nondegenerate alternating) bilinear form $B: V \times V \to \mathbb{F}_q$. The symplectic group Sp(2n,q) consists of all (linear) isometries of B, i.e.

$$Sp(2n,q) = \{g \in GL(V) : B(x^g, y^g) = B(x,y) \text{ for all } x, y \in V\}.$$

The group of all (linear) similarities of B is

$$GSp(2n,q) = \{g \in GL(V) : \text{for some nonzero } \mu \in \mathbb{F}_q \text{ we have } B(x^g,y^g) = \mu B(x,y) \text{ for all } x,y \in V\};$$

some other notations for this group are $GSp_n(q)$ in [12] or $CSp_n(q)$ in [4, p.31]. Replacing GL(V) by $\Gamma L(V) \cong GL(V) \rtimes \operatorname{Aut} \mathbb{F}_q$, the group of all semilinear transformations of V, we obtain the group $\Sigma Sp(2n,q)$ of all semi-isometries, and the group $\Gamma Sp(2n,q)$ of all semi-similarities of B, given by

$$\begin{split} \Sigma Sp(2n,q) &= \{g \in \Gamma L(V) : \text{for some } \tau \in \text{Aut } \mathbb{F}_q \text{ we have} \\ &\quad B(x^g,y^g) = B(x,y)^\tau \text{ for all } x,y \in V \} \\ &\cong Sp(2n,q) \rtimes \text{Aut } \mathbb{F}_q; \\ &\Gamma Sp(2n,q) = \{g \in \Gamma L(V) : \text{for some nonzero } \mu \in \mathbb{F}_q \text{ and } \tau \in \text{Aut } \mathbb{F}_q \\ &\quad \text{we have } B(x^g,y^g) = \mu B(x,y)^\tau \text{ for all } x,y \in V \} \\ &\cong GSp(2n,q) \rtimes \text{Aut } \mathbb{F}_q. \end{split}$$

The projective versions of these groups are

$$\begin{split} PSp(2n,q) &= Sp(2n,q)/\langle -I\rangle, \\ PGSp(2n,q) &= GSp(2n,q)/Z, \\ P\Sigma Sp(2n,q) &= \Sigma Sp(2n,q)/\langle -I\rangle, \\ P\Gamma Sp(2n,q) &= \Gamma Sp(2n,q)/Z \end{split}$$

where the central subgroup Z of order q-1 consists of all scalar transformations $v \mapsto \lambda v$ for $0 \neq \lambda \in \mathbb{F}_q$. We have

$$[P\Gamma Sp(2n,q):P\Sigma Sp(2n,q)]=[PGSp(2n,q):PSp(2n,q)]=2$$

where the nontrivial coset in both cases is represented by $h \in GSp(2n, q)$ satisfying $B(u^h, v^h) = \eta B(u, v)$ and $\eta \in \mathbb{F}_q$ is a nonsquare.

Our choice of notation for these groups, while not universal, is intended to conform reasonably with [7, 12]. The group $P\Gamma Sp(2n,q)$, for example, is denoted $PC\Gamma Sp_n(q)$ in [4, p.31]. It arises (see Theorem 4.1) as the full automorphism group of the associated dual polar graph, which we now describe.

Denote by \mathcal{V} be the collection of all maximal totally isotropic subspaces with respect to B, i.e.

$$\mathcal{V} = \{ X \leqslant V : X^{\perp} = X \}$$

where by definition $X^{\perp} = \{v \in V : B(x,v) = 0 \text{ for all } x \in X\}$. Members of \mathcal{V} are often called *generators*, and every $X \in \mathcal{V}$ has dimension n. Denote by $\Gamma = \Gamma(2n,q)$ the graph on \mathcal{V} where two vertices $X,Y \in \mathcal{V}$ are adjacent iff $X \cap Y$ has codimension 1 in both X and Y. More generally, the distance between X and Y in Γ is $d(X,Y) = k \in \{0,1,2,\ldots,n\}$ where the subspace $X \cap Y$ has codimension k in both X and Y. Let Γ_k denote the graph of the distance-k relation on \mathcal{V} ; i.e. Γ_k has vertex set \mathcal{V} and two vertices $X,Y \in \mathcal{V}$ are adjacent in Γ_k iff d(X,Y) = k. The graph $\Gamma_1 = \Gamma$ is called the *dual polar graph of type* $\operatorname{Sp}(2n,q)$. It is *distance regular*: given any two vertices X,Y in Γ at distance $k \in \{0,1,2,\ldots,n\}$, the vertex Y has $q^{\binom{n-k}{2}}\binom{n}{k}$ neighbors Z in Γ , of which

$$a_k = q^k - 1$$
 are at distance k from X ,
 $b_k = q^{k+1} {n-k \brack 1}$ are at distance $k+1$ from X , and $c_k = {k \brack 1}$ are at distance $k-1$ from X ;

see [6, §9.4]. The edges of $\Gamma_1, \Gamma_2, \ldots, \Gamma_n$ partition the non-identical pairs on \mathcal{V} , viewed as the edges of the complete graph $K_{\mathcal{V}}$; and together with the identity relation $\Gamma_0 = \{(X, X) : X \in \mathcal{V}\}$ we obtain an *n*-class association scheme on \mathcal{V} (see Section 6). This scheme is P-polynomial since Γ is distance regular; see [6].

Theorem 4.1. For $n \ge 2$, the full automorphism group of $\Gamma = \Gamma(2n, q)$ is the group $P\Gamma Sp(2n, q)$ acting naturally on the projective space of V.

PROOF. See [6, p.275] (where this group is however denoted $P\Sigma p(2n,q)$). \square

Note that when n = 1, the dual polar graph $\Gamma(2, q)$ is simply the complete graph K_{q+1} , whose full automorphism group is the symmetric group of degree q + 1.

For use in Section 5 we record the following well-known fact. Although it follows easily from the axioms of polar geometry (or of near polygons), in the interest of self-containment we include a proof.

Lemma 4.2. The 'diamond' graph (as shown) is not an induced subgraph of the dual polar graph Γ .

PROOF. If X, Y, Z are mutually adjacent as shown, then $X \cap Y$ and $X \cap Z$ are distinct subspaces of codimension 1 in X, so $X = (X \cap Y) + (X \cap Z)$, whence $X \subseteq Y + Z$. Thus $X = X^{\perp} \supseteq Y^{\perp} \cap Z^{\perp} = Y \cap Z$. Similarly, $W \supseteq Y \cap Z$. Now $X \cap W$ contains a subspace of dimension n-1, contradicting $d(X, W) \geqslant 2$. \square

Now let X be any n-dimensional vector space over \mathbb{F}_q . An n-linear form $f: X^n \to \mathbb{F}_q$ (i.e. linear in each argument whenever the other n-1 arguments are fixed) is alternating if $f(x_1, x_2, \ldots, x_n) = 0$ whenever two x_i 's coincide; equivalently, $f(x_{1^\tau}, x_{2^\tau}, \ldots, x_{n^\tau}) = -f(x_1, x_2, \ldots, x_n)$ for every odd permutation τ of the indices. The space of all such alternating forms is one-dimensional, and is canonically identified with $(\bigwedge^n X)^*$, the dual space of $\bigwedge^n X$. A determinant function on X is any nonzero alternating form $X^n \to \mathbb{F}_q$. Since $\dim(\bigwedge^n X)^* = 1$, a determinant function is determined up to nonzero scalar multiple.

Fix a choice of determinant function δ_X for each $X \in \mathcal{V}$. Although these choices are not canonical, one may proceed by arbitrarily choosing a basis $\psi_1, \psi_2, \dots, \psi_n$ for $X^* = \text{Hom}(X, \mathbb{F}_q)$; then we obtain a determinant function on X by defining

$$\delta_X(x_1, x_2, \dots, x_n) = \det(\psi_i^*(x_i) : 1 \le i, j \le n).$$

We need to define $\sigma(X,Y) \in \{\pm 1\}$ for any pair $X \neq Y$ in \mathcal{V} . Let $k \in \{1,2,\ldots,n\}$ be the codimension of $X \cap Y$ in both X and Y. Choose bases x_1,x_2,\ldots,x_n and y_1,y_2,\ldots,y_n for X and Y respectively, such that $x_i=y_i$ (for $k < i \leq n$) is a common basis for $X \cap Y$. (These bases depend on the choice of pair (X,Y) and so are unrelated to any bases for X and Y used as a crutch for constructing the corresponding determinant functions). Define

$$\sigma(X,Y) = \chi(\delta_X(x_1, x_2, \dots, x_n)\delta_Y(y_1, y_2, \dots, y_n) \det[B(x_i, y_j) : 1 \leqslant i, j \leqslant k])$$

where $\chi: \mathbb{F}_q^{\times} \to \{\pm 1\}$ is the quadratic character: $\chi(a) = 1$ or -1 according as $a \in \mathbb{F}_q^{\times}$ is a square or a nonsquare. This definition is implicit in [19, 11]; and inspired by the literature, we refer to $\sigma(X,Y)$ (or the ternary function $\sigma(X,Y,Z)$)

defined below) as the *Maslov index*. Note that B induces a nondegenerate bilinear form on the 2k-space $(X+Y)/(X\cap Y)$, so that the $k\times k$ matrix $[B(x_i,y_j):1\leqslant i,j\leqslant k]$ is nonsingular.

Proposition 4.3. Let $X, Y \in \mathcal{V}$ at distance $d(X, Y) = k \in \{0, 1, 2, ..., n\}$.

- (i) The value of $\sigma(X,Y)$ is independent of the choice of bases x_i and y_j as above.
- (ii) Its dependence on the choice of determinant functions is expressed as follows: Replacing δ_X by $c\delta_X$ has the effect of multiplying $\sigma(X,Y)$ by $\chi(c)$.
- (iii) $\sigma(Y, X) = \chi(-1)^k \sigma(X, Y) = (-1)^{k(q-1)/2} \sigma(X, Y).$
- (iv) Let $g \in \Gamma Sp(2n,q)$, so that there exists a nonzero scalar $\mu_g \in \mathbb{F}_q$ and $\tau_g \in \operatorname{Aut} \mathbb{F}_q$ satisfying $B(x^g,y^g) = \mu_g B(x,y)^{\tau_g}$ for all $x,y \in Y$. Then there exist nonzero scalars $\lambda_{g,U} \in \mathbb{F}_q$ for $U \in \mathcal{V}$, such that

$$\sigma(X^g,Y^g) = \chi \big(\mu_q^k \lambda_{g,X} \lambda_{g,Y} \big) \sigma(X,Y).$$

PROOF. Consider a change of basis on $X \cap Y$ specified by $x_i' = y_i' = \sum_{k < j \le n} a_{ij} x_j$ where $A = (a_{ij} : k < i, j \le n)$ is any invertible $(n - k) \times (n - k)$ matrix. Then

$$\delta_X(x_1, \dots, x_k, x'_{k+1}, \dots, x'_n) = (\det A)\delta_X(x_1, \dots, x_n)$$

and $\delta_Y(y_1,\ldots,y_n)$ is multiplied by the same factor, $\det A$. The $(n-k)\times (n-k)$ matrix $[B(x_i,y_j):k< i,j\leqslant n]$ is unchanged, so the value of $\sigma(X,Y)$ is multiplied by a net factor of $\chi((\det A)^2)=1$.

Next consider replacing x_1, \ldots, x_k by x'_1, \ldots, x'_k where

$$x_i' \equiv \sum_{1 \le i \le k} a_{ij} x_j \mod (X \cap Y)$$

for $i=1,2,\ldots,k$ where A is an invertible $k\times k$ matrix, and we leave the basis of Y unchanged. Then

$$\delta_X(x_1', \dots, x_k', x_{k+1}, \dots, x_n) = (\det A)\delta_X(x_1, \dots, x_n);$$

$$\det \left[B(x_i', y_j) : 1 \leqslant i, j \leqslant k \right] = (\det A) \det \left[B(x_i, y_j) : 1 \leqslant i, j \leqslant k \right]$$

and the δ_Y factor is unchanged; so once again, the value of $\sigma(X,Y)$ is multiplied by $\chi((\det A)^2) = 1$. The same argument applies if y_1, \ldots, y_k are replaced by y'_1, \ldots, y'_k , and so (i) follows. Conclusion (ii) is clear.

Interchanging X and Y has the effect of interchanging the δ_X and δ_Y factors, and replacing

$$\begin{split} \left[B(x_i, y_j) : 1 \leqslant i, j \leqslant k \right] \mapsto \\ \left[B(y_i, x_j) : 1 \leqslant i, j \leqslant k \right] = - \left[B(x_i, y_j) : 1 \leqslant i, j \leqslant k \right]. \end{split}$$

The determinant of this matrix accrues a factor of $(-1)^k$, whence (iii) holds.

Let $g \in \Gamma Sp(2n,q)$. There exists a nonzero $\mu_g \in \mathbb{F}_q$ and $\tau_g \in \operatorname{Aut} \mathbb{F}_q$ such that $(au + bv)^g = a^{\tau_g} u^g + b^{\tau_g} v^g$ and $B(u^g, v^g) = \mu_g B(u, v)^{\tau_g}$ for all $a, b \in \mathbb{F}_q$ and $u, v \in V$. Now the map

$$X^n \to \mathbb{F}_q, \quad (x_1, x_2, \dots, x_n) \mapsto \delta_{X^g} (x_1^g, x_2^g, \dots, x_n^g)^{\tau_g^{-1}}$$

is a determinant function on X, so it is a scalar multiple of $\delta_X(x_1, x_2, \dots, x_n)$. Hence there exists a nonzero scalar $\lambda_X = \lambda_{q,X} \in \mathbb{F}_q$ such that

$$\delta_{X^g}\left(x_1^g, x_2^g, \dots, x_n^g\right) = \lambda_{g,X} \delta_X(x_1, x_2, \dots, x_n)^{\tau_g}$$

for all $x_1, x_2, \ldots, x_n \in X$.

Now given $X, Y \in \mathcal{V}$ at distance k, fix bases x_i, y_i as before; then

$$\begin{split} \sigma(X^g,Y^g) &= \chi \left(\delta_{X^g}(x_1^g,x_2^g,\ldots,x_n^g) \delta_{Y^g}(y_1^g,y_2^g,\ldots,y_n^g) \right. \\ &\quad \times \det \left[B(x_i^g,y_j^g) : 1 \leqslant i,j \leqslant k \right] \right) \\ &= \chi \left(\lambda_{g,X} \delta_X(x_1,x_2,\ldots,x_n)^{\tau_g} \lambda_{g,Y} \delta_Y(y_1,y_2,\ldots,y_n)^{\tau_g} \right. \\ &\quad \times \det \left[\mu_g B(x_i,y_j)^{\tau_g} : 1 \leqslant i,j \leqslant k \right] \right) \\ &= \chi \left(\mu_g^k \lambda_{g,X} \lambda_{g,Y} \right) \chi \left(\delta_X(x_1,x_2,\ldots,x_n)^{\tau_g} \delta_Y(y_1,y_2,\ldots,y_n)^{\tau_g} \right. \\ &\quad \times \det \left[B(x_i,y_j) : 1 \leqslant i,j \leqslant k \right]^{\tau_g} \right) \\ &= \chi \left(\mu_g^k \lambda_{g,X} \lambda_{g,Y} \right) \sigma(X,Y) \end{split}$$

since $\chi(a^{\tau}) = \chi(a)$. This proves (iv).

For each triple (X, Y, Z) with distinct $X, Y, Z \in \mathcal{V}$, define

$$\sigma(X, Y, Z) = \sigma(X, Y)\sigma(Y, Z)\sigma(Z, X) \in \{\pm 1\}.$$

A triple (X, Y, Z) of distinct elements of \mathcal{V} is *coherent* or *non-coherent* according as $\sigma(X, Y, Z) = 1$ or -1.

Theorem 4.4. Suppose $q \equiv 1 \mod 4$. Then the set of coherent triples forms a two-graph Δ_{σ} on V, invariant under $P\Sigma Sp(2n,q)$.

PROOF. Let $X, Y, Z, W \in \mathcal{V}$ be distinct. Since $\chi(-1) = 1$, (X, Y, Z) is coherent iff any permutation of its members yields a coherent triple; so the set of coherent triples may be regarded as a collection of unordered triples $\{X, Y, Z\}$. Since

$$\sigma(X,Y,Z)\sigma(X,Y,W)\sigma(X,Z,W)\sigma(Y,Z,W)$$

$$= \sigma(X, Y)^2 \sigma(X, Z)^2 \cdots \sigma(Z, W)^2 = 1,$$

evenly many of the triples in $\{X,Y,Z,W\}$ are coherent. If $g \in \Gamma Sp(2n,q)$ with $B(x^g,y^g)=\mu_g B(x,y)^{\tau_g}$, then

$$\begin{split} \sigma(X^g,Y^g,Z^g) &= \chi(\mu_g^{d(X,Y)}\lambda_{g,X}\lambda_{g,Y})\chi(\mu_g^{d(Y,Z)}\lambda_{g,Y}\lambda_{g,Z}) \\ &\quad \times \chi(\mu_g^{d(Z,X)}\lambda_{g,Z}\lambda_{g,X})\sigma(X,Y,Z) \\ &= \chi(\mu_g)^{d(X,Y)+d(Y,Z)+d(Z,X)}\sigma(X,Y,Z). \end{split}$$

In particular when $g \in \Sigma Sp(2n,q), \ \mu_g = 1 \ \text{and} \ \sigma(X^g,Y^g,Z^g) = \sigma(X,Y,Z). \ \Box$

If $q \equiv 3 \mod 4$, or $g \in P\Gamma Sp(2n,q)$ with $g \notin P\Sigma Sp(2n,q)$, the situation is a little trickier: various subsets of the coherent triples form either two-graphs or skew two-graphs in the sense of [14], invariant under Sp(2n,q). We ignore this case here, and henceforth assume that

$$q \equiv 1 \mod 4$$
.

We next show that in a geodesic path, every triple of vertices is coherent.

Lemma 4.5. Suppose $q \equiv 1 \mod 4$. Let $X, Y, Z \in \mathcal{V}$ such that d(X, Y) = j, d(Y, Z) = k - j and d(X, Z) = k where $1 \leq j < k \leq n$. Then $\sigma(X, Y, Z) = 1$.

PROOF. Choose a hyperbolic basis $e_1, e_2, \ldots, e_n, f_1, f_2, \ldots, f_n$ for V, so that $B(e_i, e_j) = B(f_i, f_j) = 0$ and $B(e_i, f_j) = \delta_{ij}$. Since Sp(2n, q) is transitive on triples of generators satisfying the given distance constraints, by Theorem 4.4 we may suppose that

$$X = \langle e_1, e_2, \dots, e_n \rangle, \quad Y = \langle f_1, f_2, \dots, f_j, e_{j+1}, e_{j+2}, \dots, e_n \rangle,$$

 $Z = \langle f_1, f_2, \dots, f_k, e_{k+1}, e_{k+2}, \dots, e_n \rangle.$

We choose the determinant function δ_X on X given by

$$\delta_X(x_1, x_2, \dots, x_n) = \det[B(x_i, f_j) : 1 \le i, j \le n] \text{ for } x_1, x_2, \dots, x_n \in X;$$

this is nothing other than the determinant of the $n \times n$ matrix whose columns are the coordinates of x_1, \ldots, x_n with respect to the basis e_1, e_2, \ldots, e_n . The determinant functions δ_Y , δ_Z on Y and on Z are defined similarly, using the bases for Y and on Z listed above. The computation of $\sigma(X, Z)$ is simplified by the fact that a basis for $X \cap Z$ is $e_{k+1}, e_{k+2}, \ldots, e_n$. We have

$$\delta_X(e_1, e_2, \dots, e_n) = \delta_Z(f_1, \dots, f_k, e_{k+1}, \dots, e_n) = 1$$

and $[B(e_i, f_j): 1 \leq i, j \leq k]$ is a $k \times k$ identity matrix, with determinant 1; thus $\sigma(X, Z) = 1$. Exactly the same reasoning gives $\sigma(X, Y) = \sigma(Y, Z) = 1$, so $\sigma(X, Y, Z) = 1$.

In the case of triples X, Y, Z not lying on geodesic paths, however, σ (or its two-graph Δ_{σ}) yields interesting nontrivial information. In particular, the restriction of Δ_{σ} to partial spreads (sets of vertices of Γ mutually at distance n) was investigated in [14, §6]. Here we consider triangles in Γ :

Lemma 4.6. Suppose $q \equiv 1 \mod 4$. Let $X, Y \in \mathcal{V}$ such that d(X, Y) = 1, i.e. X and Y are adjacent in Γ . There are $a_1 = q-1$ common neighbors Z of X and Y in Γ ; and exactly half of the resulting triples (X, Y, Z) are coherent.

PROOF. Choose a hyperbolic basis e_i , f_i as in the proof of Lemma 4.5. Again without loss of generality,

$$X = \langle e_1, e_2, \dots, e_n \rangle, \quad Y = \langle f_1, e_2, \dots, e_n \rangle, \quad Z = \langle e_1 + \alpha f_1, e_2, \dots, e_n \rangle$$

where $0 \neq \alpha \in \mathbb{F}_q$. The q-1 choices of α give exactly the q-1 common neighbors of X and Y in Γ . These bases of X,Y,Z give rise to natural choices of determinant functions δ_X , δ_Y , δ_Z as described in the proof of Lemma 4.5. When computing $\sigma(X,Y), \sigma(Y,Z), \sigma(Z,X)$, we use e_2, e_3, \ldots, e_n as the basis of $X \cap Y = X \cap Z = Y \cap Z$. Now

$$\delta_X(e_1, e_2, \dots, e_n) = \delta_Z(e_1 + \alpha f_1, e_2, \dots, e_n) = 1$$

and $B(e_1, e_1 + \alpha f_1) = \alpha$, so $\sigma(X, Z) = \chi(\alpha)$. Similarly, $\sigma(X, Y) = \sigma(Y, Z) = 1$ and

$$\sigma(X, Y, Z) = \chi(\alpha).$$

Since exactly half the nonzero elements of \mathbb{F}_q are squares, the result follows. \square

Theorem 4.7. Suppose $q \equiv 1 \mod 4$. Let $X, Y \in \mathcal{V}$ such that d(X, Y) = k. Then Y has exactly $a_k = q^k - 1$ neighbors $Z \in \mathcal{V}$ at distance k from X in Γ ; and exactly half of the resulting triples (X, Y, Z) are coherent.

PROOF. The result holds for k=1 by Lemma 4.6, so we may assume $k\geqslant 2$. Given $X,Y\in \mathcal{V}$ with d(X,Y)=k, there are ${k\brack 1}$ choices of hyperplane H< Y containing $X\cap Y$. Each such H yields an $\operatorname{Sp}(2,q)$ -space H^\perp/H , which contains q+1 subspaces of the form Z/H with $Z\in \mathcal{V}$. One such Z has distance k-1 from X, this being the subspace $W=(Y\cap Z)+X\cap (Y+Z)=(Y+Z)\cap (X+(Y\cap Z))$. If we exclude W and Y itself, this leaves exactly q-1 choices of Z having the required distances from X and Y; and this gives $(q-1){k\brack 1}=q^k-1=a_k$ choices of Z, the full number. But for how many such Z is the resulting triple (X,Y,Z) coherent? In each case $\sigma(X,W,Y)=\sigma(X,W,Z)=1$ by Lemma 4.5; therefore $\sigma(X,Y,Z)=\sigma(W,Y,Z)$. But by Lemma 4.6, given W,Y at distance 1, exactly half of the q-1 choices of Z yield coherent triples (W,Y,Z). Therefore among the $a_k=(q-1){k\brack 1}$ triples (X,Y,Z) with fixed X and Y, exactly $\frac{q-1}{2}{k\brack 1}=(q^k-1)/2$ such triples are coherent.

5. The Double Cover $\widehat{\Gamma} \to \Gamma$

The resulting double cover $\widehat{\Gamma} = \widehat{\Gamma}(2n,q) \to \Gamma(2n,q)$ has vertex set $\widehat{\mathcal{V}} = \mathcal{V} \times \{\pm 1\}$ and adjacency relation

$$(X,\varepsilon) \sim (Y,\varepsilon') \iff d(X,Y) = 1 \text{ and } \varepsilon\varepsilon' = \sigma(X,Y).$$

The covering map is given by $(X, \varepsilon) \mapsto X$.

Theorem 5.1. Every geodesic path

$$X_0 \sim X_1 \sim \cdots \sim X_k$$

in Γ (meaning that $d(X_i, X_j) = |j - i|$) lifts to exactly two paths

$$(X_0, \varepsilon_0) \sim (X_1, \varepsilon_1) \sim \cdots \sim (X_k, \varepsilon_k)$$

in $\widehat{\Gamma}$, in which $\varepsilon_k = \varepsilon_0 \sigma(X_0, X_k)$ for each $k \geqslant 1$; thus any one of the ε_i determines all the others along this path.

PROOF. We have $\varepsilon_1 = \varepsilon_0 \sigma(X_0, X_1)$ by definition of adjacency in $\widehat{\Gamma}$. Assuming that $\varepsilon_i = \varepsilon_0 \sigma(X_0, X_i)$ for some $i \in \{1, 2, ..., k-1\}$,

$$\varepsilon_{i+1} = \varepsilon_i \sigma(X_i, X_{i+1}) = \varepsilon_0 \sigma(X_0, X_i) \sigma(X_i, X_{i+1}) = \varepsilon_0 \sigma(X_0, X_{i+1})$$

since $\sigma(X_0, X_i, X_{i+1}) = 1$ by Lemma 4.5.

However, not every geodesic path in $\widehat{\Gamma}$ is obtained by lifting a geodesic path in Γ . For example if (X,Y,Z) is an incoherent triangle in Γ , say with $\sigma(X,Y)=\varepsilon$, $\sigma(Y,Z)=\varepsilon'$ and $\sigma(X,Z)=-\varepsilon\varepsilon'$, then

$$(X,1) \sim (Y,\varepsilon) \sim (Z,\varepsilon\varepsilon') \sim (X,-1)$$

is a geodesic path of length 3 in $\widehat{\Gamma}$, obtained by lifting a closed path of length 3 (not a geodesic path) in Γ .

Lemma 5.2. Let $X_0 \sim X_1 \sim \cdots \sim X_k$ be a geodesic path of length $k \ge 1$ in Γ , so that $d(X_i, X_j) = |j - i|$, and let $\varepsilon, \varepsilon' \in \{\pm 1\}$. Then (X_0, ε) and (X_k, ε') have distance k or k+1 in $\widehat{\Gamma}$, according as $\sigma(X_0, X_k) = \varepsilon \varepsilon'$ or $-\varepsilon \varepsilon'$. In particular, the diameter of $\widehat{\Gamma}$ is $\max\{n+1,3\}$.

PROOF. If $\sigma(X_0, X_k) = \varepsilon \varepsilon'$, then we have a path

$$(X_0, \varepsilon_0) \sim (X_1, \varepsilon_1) \sim \cdots \sim (X_k, \varepsilon_k)$$

in $\widehat{\Gamma}$ where $\varepsilon_i = \varepsilon_0 \sigma(X_0, X_i)$ for i = 1, 2, ..., k; in particular if $\varepsilon_0 = \varepsilon$ then $\varepsilon_k = \varepsilon'$. Clearly this path in $\widehat{\Gamma}$ is shortest possible.

Now suppose $\sigma(X_0, X_k) = -\varepsilon \varepsilon'$. We first obtain a path

$$(X_0,\varepsilon) \sim (X_1,\varepsilon_1) \sim \cdots \sim (X_{k-1},\varepsilon_{k-1})$$

in $\widehat{\Gamma}$ where $\varepsilon_i = \varepsilon_0 \sigma(X_0, X_i)$ for $i = 1, 2, \dots, k-1$. Let $Y \in \mathcal{V}$ be adjacent to both X_{k-1} and X_k in Γ , such that $\sigma(X_{k-1}, Y, X_k) = -1$. (By Lemma 4.6, there are $\frac{q-1}{2} \geqslant 1$ choices of such $Y \in \mathcal{V}$.) Appending

$$(X_{k-1}, \varepsilon_{k-1}) \sim (Y, \varepsilon'') \sim (X_k, \varepsilon'),$$

where $\varepsilon'' = \varepsilon_{k-1}\sigma(X_{k-1}, Y) = \varepsilon'\sigma(Y, X_k)$, we obtain a path of length k+1 from (X_0, ε) to (X_k, ε') in $\widehat{\Gamma}$; once again this path is shortest possible.

The fibers of the covering map $\widehat{\Gamma} \to \Gamma$ are the *antipodal* pairs $\{(X,1),(X,-1)\}$ for $X \in \mathcal{V}$.

Lemma 5.3. Let (X, ε) and (W, ε') be any two vertices of $\widehat{\Gamma}$. Then (X, ε) and (W, ε') are antipodal iff they are at distance 3 in $\widehat{\Gamma}$ and are joined by exactly $\frac{1}{2}q(q^n-1)$ paths of length 3 in $\widehat{\Gamma}$.

PROOF. Consider a typical antipodal pair $\{(X,1),(X,-1)\}$ where $X \in \mathcal{V}$. There exist $b_0 = q {n \brack 1}$ vertices $Y \in \mathcal{V}$ adjacent to X in Γ ; and each such vertex Y has $a_1 = q-1$ neighbors Z in common with X. By Lemma 4.6, exactly half of these choices of the vertex Z yield coherent triples (X,Y,Z). In particular, X lies in exactly $b_0 \cdot \frac{1}{2} a_1 = \frac{1}{2} q (q^n - 1)$ incoherent triples (X,Y,Z), giving the same number of paths $(X,1) \sim (Y,\varepsilon) \sim (Z,\varepsilon') \sim (X,-1)$ of length 3 in $\widehat{\Gamma}$. There is no path of length < 3 from (X,1) to (X,-1) in $\widehat{\Gamma}$, otherwise the covering map would give a closed path of length < 3 from X to X in Γ . This shows that any two antipodal vertices (X,1),(X,-1) are at distance 3 in $\widehat{\Gamma}$; and in each case there are exactly $\frac{1}{2}q(q^n-1)$ geodesic paths from (X,1) to (X,-1).

Conversely, let (X, ε) and (W, ε') be any two vertices at distance 3 in $\widehat{\Gamma}$. By Lemma 5.2, $d(X, W) \in \{0, 2, 3\}$ in Γ . Consider first the case that d(X, W) = 3; then by Theorem 5.1, every geodesic path from (X, ε) to (W, ε') in $\widehat{\Gamma}$ arises from a unique geodesic path $X \sim Y \sim Z \sim W$ in Γ . There are exactly $c_3c_2c_1 = (q^2+q+1)(q+1)$ such geodesic paths from X to W; and this number clearly cannot equal $\frac{1}{2}q(q^n-1)$.

Next suppose d(X, W) = 2 in Γ . For every geodesic path

$$(X,\varepsilon) \sim (Y,\varepsilon'') \sim (Z,\varepsilon''') \sim (W,\varepsilon')$$

in $\widehat{\Gamma}$, we have $X \sim Y \sim Z \sim W$ in Γ . Further, the condition d(X,W)=2 requires either $X \sim Z$ or $Y \sim W$ (but not both, by Lemma 4.2). We first count geodesic paths satisfying $X \sim Z$, noting that the vertex W has $c_2=q+1$ neighbors Z in common with X; and in each case $\sigma(X,Z,W)=1$ by Lemma 4.5. Moreover Z has $a_1=q-1$ neighbors Y in common with X (all of which satisfy $\sigma(Y,Z,W)=1$, again by Lemma 4.5). By the two-graph condition, we have $\sigma(X,Y,Z)=-1$ iff $\sigma(X,Y,W)=-1$. By Lemma 4.6, for each Z there are exactly $\frac{1}{2}(q-1)$ choices of Y satisfying the latter condition; and each such pair (Y,Z) yields a unique geodesic path $(X,\varepsilon) \sim (Y,\varepsilon'') \sim (Z,\varepsilon''') \sim (W,\varepsilon')$. We obtain $(q+1)\cdot\frac{1}{2}(q-1)=\frac{1}{2}(q^2-1)$ geodesic paths in this case. There are another $\frac{1}{2}(q^2-1)$ geodesic paths from (X,ε) to (W,ε') satisfying $Y\sim W$, for a total of q^2-1 geodesic paths. Once again, this number cannot equal $\frac{1}{2}q(q^n-1)$.

Lemma 5.4. Aut $\widehat{\Gamma}$ acts naturally on Γ , with kernel $\langle \zeta \rangle$, inducing a proper subgroup Aut $\widehat{\Gamma}/\langle \zeta \rangle <$ Aut Γ .

PROOF. By Lemma 5.3, Aut $\widehat{\Gamma}$ permutes fibres of the covering map $\widehat{\Gamma} \to \Gamma$, and so Aut $\widehat{\Gamma}$ acts naturally on Γ . It remains to be shown that the induced subgroup Aut $\widehat{\Gamma}/\langle \zeta \rangle \leq \operatorname{Aut} \Gamma$ is proper.

Choose a hyperbolic basis $e_1, e_2, \ldots, e_n, f_1, f_2, \ldots, f_n$ for V, so that $B(e_i, e_j) = B(f_i, f_j) = 0$ and $B(e_i, f_j) = \delta_{ij}$, and let $\eta \in \mathbb{F}_q$ be a nonsquare. Consider the subspaces $X, Y, Z, Z' \in \mathcal{V}$ defined by $X = \langle e_1, e_2, \ldots, e_n \rangle$, $Y = \langle f_1, e_2, \ldots, e_n \rangle$, $Z = \langle e_1 + f_1, e_2, \ldots, e_n \rangle$ and $Z' = \langle e_1 + \eta f_1, e_2, \ldots, e_n \rangle$. By straightforward computation, $\sigma(X, Y, Z) = 1$ and $\sigma(X, Y, Z') = -1$. Now consider $g \in GL(V)$ mapping our original ordered basis to the new ordered basis $e_1, \eta e_2, \ldots, \eta e_n, \eta f_1, f_2, \ldots, f_n$ so that $B(u^g, v^g) = \eta B(u, v)$ for all $u, v \in V$

V; thus $g \in GSp(2n,q)$ induces an automorphism of the dual polar graph $\Gamma = \Gamma(2n,q)$. However, g maps the coherent triple $\{X,Y,Z\}$ to the non-coherent triple $\{X,Y,Z'\}$ and so does not preserve Δ_{σ} . If g were induced by an automorphism of $\widehat{\Gamma}$, this automorphism would map $\{X,Y,Z\} \times \{\pm 1\}$ to $\{X,Y,Z'\} \times \{\pm 1\}$. However, the induced subgraphs of $\widehat{\Gamma}$ on these two 6-sets of vertices are not isomorphic (a pair of triangles and a 6-cycle, respectively; see Section 3).

The natural action of $\Sigma Sp(2n,q)$ on \mathcal{V} lifts to an action on $\widehat{\mathcal{V}}$ as follows: Let $g \in \Sigma Sp(2n,q)$ with associated field automorphism τ_g in the earlier notation of this section. Given $(U,\varepsilon) \in \widehat{\mathcal{V}}$, the map

$$U^n \to \mathbb{F}_q, \quad (u_1, u_2, \dots, u_n) \mapsto \delta_{U^g}(u_1^g, u_2^g, \dots, u_n^g)^{\tau_g^{-1}}$$

is a determinant function; so there exists a nonzero constant $\lambda_{g,U} \in \mathbb{F}_q$ such that

$$\delta_{U^g}(u_1^g, u_2^g, \dots, u_n^g) = \lambda_{g,U} \delta_U(u_1, u_2, \dots, u_n)^{\tau_g}.$$

Define $(U,\varepsilon)^g=(U^g,\chi(\lambda_{g,U})\varepsilon)$. One easily checks that this defines an action of $\Sigma Sp(2n,q)$ on $\widehat{\mathcal{V}}$. The central element $-I\in Sp(2n,q)$ fixes every $U\in\mathcal{V}$ and since

$$\delta_U(-u_1, -u_2, \dots, -u_n) = (-1)^n \delta_U(u_1, u_2, \dots, u_n)$$

where $\chi(-1)^n = 1$, -I acts trivially on $\widehat{\mathcal{V}}$; thus $\Sigma Sp(2n,q)$ induces a permutation group $P\Sigma Sp(2n,q)$ on $\widehat{\mathcal{V}}$. The transposition ζ which exchanges antipodal vertices via $(U,1) \stackrel{\zeta}{\leftrightarrow} (U,-1)$ is not induced by any element of $P\Sigma Sp(2n,q)$ since $Z(P\Sigma Sp(2n,q)) = 1$, so we obtain a permutation group $\langle \zeta \rangle \times P\Sigma Sp(2n,q)$ acting faithfully on $\widehat{\mathcal{V}}$. We show that this permutation group preserves the graph $\widehat{\Gamma}$, and is in fact its full automorphism group:

Theorem 5.5. Aut $\widehat{\Gamma} \cong 2 \times P\Sigma Sp(2n,q)$ where this group acts as defined above. The full automorphism group of the two-graph associated to σ is Aut $\Delta_{\sigma} \cong P\Sigma Sp(2n,q)$.

PROOF. Suppose $(X, \varepsilon) \sim (Y, \varepsilon')$ in $\widehat{\Gamma}$, so that $\sigma(X, Y) = \varepsilon \varepsilon'$; and let $g \in \Sigma Sp(2n, q)$ with $\tau_q \in \operatorname{Aut} \mathbb{F}_q$ as above. Then by Proposition 4.3(iv) we have

$$\sigma(X^g, Y^g) = \chi(\lambda_{g,X}\lambda_{g,Y})\sigma(X,Y) = (\chi(\lambda_{g,X})\varepsilon)(\chi(\lambda_{g,Y})\varepsilon')$$

so that by definition, $(X, \varepsilon)^g \sim (Y, \varepsilon')^g$. Thus $P\Sigma Sp(2n, q)$, acting on $\widehat{\Gamma}$ as defined above, preserves the graph $\widehat{\Gamma}$. It is clear that the central factor $\langle \zeta \rangle$ also preserves $\widehat{\Gamma}$, so that $\operatorname{Aut}\widehat{\Gamma}$ has a subgroup isomorphic to $\langle \zeta \rangle \times P\Sigma Sp(2n, q)$. Moreover by Proposition 3.1, $\operatorname{Aut}\widehat{\Gamma}/\langle \zeta \rangle \cong \operatorname{Aut}\Delta_{\sigma}$. (We use the fact that by Lemma 5.4, $\operatorname{Aut}_{\widehat{\Gamma}}\widehat{\Gamma} = \operatorname{Aut}\widehat{\Gamma}$ in the notation of Proposition 3.1.)

Suppose now that $n \ge 2$, so that Aut $\Gamma \cong P\Gamma Sp(2n,q)$ by Theorem 4.1. By Lemma 5.4, Aut $\widehat{\Gamma}$ acts on Γ , inducing a group of automorphisms satisfying

$$P\Sigma Sp(2n,q) \leqslant \operatorname{Aut} \widehat{\Gamma}/\langle \zeta \rangle < P\Gamma Sp(2n,q).$$

This forces Aut $\widehat{\Gamma} \cong \langle \zeta \rangle \times P\Sigma Sp(2n,q)$ and Aut $\Delta_{\sigma} \cong P\Sigma Sp(2n,q)$.

Finally suppose n=1, so that Δ_{σ} is the Taylor-Paley two-graph on q+1 vertices, with full automorphism group $\operatorname{Aut}\Delta_{\sigma}\cong P\Sigma Sp(2,q)=P\Sigma L(2,q)$ by [18, Theorem 2]; see also [14, §4]. As above, $\operatorname{Aut}\widehat{\Gamma}$ has a subgroup isomorphic to $\langle\zeta\rangle\times P\Sigma Sp(2,q)$, and $\operatorname{Aut}\widehat{\Gamma}/\langle\zeta\rangle\cong\operatorname{Aut}\Delta_{\sigma}\cong P\Sigma Sp(2,q)$, so we must have equality: $\operatorname{Aut}\widehat{\Gamma}\cong 2\times P\Sigma Sp(2,q)=2\times P\Sigma L(2,q)$.

6. The Association Scheme

From the double cover $\widehat{\Gamma} \to \Gamma$, we now construct association schemes. As we will see in Section 7, this gives a new family of Q-polynomial association schemes. We begin with the relevant definitions, following [6, Chapter 2].

Let Ω be a finite set. A (symmetric) d-class association scheme on Ω is a pair (Ω, \mathcal{R}) such that

- 1. $\mathcal{R} = \{R_0, \dots, R_d\}$ is a partition of $\Omega \times \Omega$;
- 2. R_0 is the identity relation on Ω ;
- 3. $R_i = R_i^{\top}$ for $0 \leqslant i \leqslant d$; and
- 4. there are constants p_{ij}^k such that for any pair $(x,y) \in R_k$, the number of $z \in \Omega$ such that $(x,z) \in R_i$ and $(z,y) \in R_j$ equals p_{ij}^k .

For the rest of this paper, all association schemes are symmetric (i.e. the third property above holds). Each relation R_i has adjacency matrix A_i defined by

$$(A_i)_{x,y} = \begin{cases} 1, & \text{if } (x,y) \in R_i; \\ 0, & \text{otherwise.} \end{cases}$$

The axioms above imply that $p_{ji}^k = p_{ij}^k$ and the matrices A_0, \ldots, A_d form an algebra of symmetric matrices satisfying $A_i A_j = \sum_k p_{ij}^k A_k$. This matrix algebra is also closed under Schur (entrywise) multiplication, which we will denote by 'o'. This algebra is referred to as the *Bose-Mesner algebra* $\mathfrak A$ of the association scheme.

Since \mathfrak{A} is a commutative algebra consisting of symmetric matrices, its elements are simultaneously diagonalizable, and \mathfrak{A} has a second basis consisting of primitive idempotents E_0, \ldots, E_d . We define the parameters Q_{ij} by $E_j = \frac{1}{|\Omega|} \sum_i Q_{ij} A_i$. Similarly we define the parameters P_{ij} by the relation $A_j = \sum_i P_{ij} E_i$. The matrix P of parameters P_{ij} is often referred to as the character table of the scheme. The matrix Q of parameters Q_{ij} satisfies $Q = |\Omega| P^{-1}$.

We say an association scheme is Q-polynomial if, after suitably reindexing its idempotents, the idempotent E_j is a degree j polynomial in E_1 (where multiplication is done entrywise). This is equivalent to the condition that the jth column of the Q-matrix is a degree j polynomial of the column 1 of the Q-matrix (note that we start indexing the columns at 0).

Permutation groups give many examples of association schemes. Let G be a transitive permutation group acting on a finite set Ω , and suppose the orbits of G on $\Omega \times \Omega$ happen to be symmetric relations; such a group is called *generously*

transitive). It is not hard to check that the orbits of G on $\Omega \times \Omega$ form an association scheme. We will refer to these schemes as Schurian schemes.

We will now construct a (2n+1)-class Schurian association scheme $\mathcal{S} = \mathcal{S}_{n,q}$ with vertex set $\widehat{\mathcal{V}} = \mathcal{V} \times \{\pm 1\}$ of cardinality $|\widehat{\mathcal{V}}| = 2|\mathcal{V}| = 2q^{n^2}\prod_{i=1}^n(q^{2i}-1)$ using the Maslov index σ and the double cover $\widehat{\Gamma} \to \Gamma$ (defined as in Section 5). For $k = 0, 1, 2, \ldots, n$, the kth and (2n+1-k)th relations are given by

$$R_k = \{ ((X, \varepsilon), (Y, \varepsilon')) \in \widehat{\mathcal{V}} \times \widehat{\mathcal{V}} : d(X, Y) = k, \ \varepsilon \varepsilon' = \sigma(X, Y) \};$$

$$R_{2n+1-k} = \{ ((X, \varepsilon), (Y, \varepsilon')) \in \widehat{\mathcal{V}} \times \widehat{\mathcal{V}} : d(X, Y) = k, \ \varepsilon \varepsilon' = -\sigma(X, Y) \}.$$

These are symmetric relations which clearly partition $\widehat{\mathcal{V}} \times \widehat{\mathcal{V}}$. In particular, R_1 is the adjacency relation of our graph $\widehat{\Gamma}$ of Section 5; and the identity and antipodality relations are

$$R_0 = \{((X, \varepsilon), (X, \varepsilon)) : X \in \mathcal{V}, \ \varepsilon = \pm 1\};$$

$$R_{2n+1} = \{((X, \varepsilon), (X, -\varepsilon)) : X \in \mathcal{V}, \ \varepsilon = \pm 1\}.$$

We will write

$$(X,\varepsilon) \stackrel{i}{\sim} (Y,\varepsilon') \iff ((X,\varepsilon),(Y,\varepsilon')) \in R_i$$

In the following, the parameters a_i, b_i, c_i are those of the dual polar graph Γ as given in Section 4.

Lemma 6.1. Let $(X, \varepsilon) \stackrel{k}{\sim} (Y, \varepsilon')$ where $k \in \{0, 1, 2, \dots, 2n+1\}$. The number of $(Z, \varepsilon'') \in \widehat{\mathcal{V}}$ such that $(X, \varepsilon) \stackrel{i}{\sim} (Z, \varepsilon'') \stackrel{1}{\sim} (Y, \varepsilon')$ is

$$p_{i,1}^k = \begin{cases} c_k = {k \brack 1}, & \text{if } i = k-1 \leqslant n; \\ \frac{1}{2}a_k = \frac{1}{2}(q^k - 1), & \text{if } i = k; \\ b_k = q^{k+1}{n-k \brack 1}, & \text{if } i = k+1 \leqslant n+2; \\ b_{2n+1-k} = q^{2n+2-k}{k-n-1 \brack 1}, & \text{if } i = k-1 \geqslant n-1; \\ \frac{1}{2}a_{2n+1-k} = \frac{1}{2}(q^{2n+1-k} - 1), & \text{if } i = 2n+1-k; \\ c_{2n+1-k} = {2n+1-k \brack 1}, & \text{if } i = k+1 \geqslant n+1; \\ 0, & \text{otherwise.} \end{cases}$$

PROOF. (i) First suppose $d(X,Y) = k \le n$, so $\varepsilon \varepsilon' = \sigma(X,Y)$. Then $(Z,\varepsilon'') \in \widehat{\mathcal{V}}$ satisfies $(X,\varepsilon) \stackrel{i}{\sim} (Z,\varepsilon'') \stackrel{1}{\sim} (Y,\varepsilon')$ iff

$$\begin{cases} \frac{\text{case (i.a)}}{i = d(X, Z) \leqslant n} \\ d(Z, Y) = 1 \\ \varepsilon'' = \varepsilon \sigma(X, Z) = \varepsilon' \sigma(Y, Z) \end{cases} \quad or \quad \begin{cases} \frac{\text{case (i.b)}}{i = 2n + 1 - d(X, Z) \geqslant n + 1} \\ d(Z, Y) = 1 \\ \varepsilon'' = -\varepsilon \sigma(X, Z) = \varepsilon' \sigma(Y, Z) \end{cases}$$

Moreover, each such (Z, ε'') satisfies $d(X, Z) \in \{k-1, k, k+1\}$ by the triangle inequality.

There are exactly $c_k = {k \brack 1}$ choices of $Z \in \mathcal{V}$ satisfying d(X, Z) = k-1 and d(Z, Y) = 1. Each such Z yields a coherent triple (X, Y, Z) by Lemma 4.5, so $\varepsilon \varepsilon' = \sigma(X, Y) = \sigma(X, Z)\sigma(Y, Z)$. This yields c_k pairs (Z, ε'') , all of which satisfy (i.a).

There are exactly $b_k = q^{k+1} {n-k \brack 1}$ choices of $Z \in \mathcal{V}$ satisfying d(X,Z) = k+1 and d(Z,Y) = 1. Each such Z yields a coherent triple (X,Y,Z) by Lemma 4.5, once again with $\varepsilon \varepsilon' = \sigma(X,Y) = \sigma(X,Z)\sigma(Y,Z)$. This yields b_k pairs (Z,ε'') , all of which satisfy (i.a).

There are exactly $a_k = q^k - 1$ choices of $Z \in \mathcal{V}$ satisfying d(X, Z) = k and d(Z, Y) = 1. By Theorem 4.7, exactly $a_k/2$ of these Z yield coherent triples (X, Y, Z), in which case $\varepsilon \varepsilon' = \sigma(X, Y) = \sigma(X, Z)\sigma(Y, Z)$; this yields $a_k/2$ pairs (Z, ε'') satisfying (i.a). The remaining $a_k/2$ of these Z yield incoherent triples (X, Y, Z), with $\varepsilon \varepsilon' = \sigma(X, Y) = -\sigma(X, Z)\sigma(Y, Z)$; and the resulting pairs (Z, ε'') satisfy (i.b).

In Section 5 we lifted the action of $P\Sigma Sp(2n,q)$ on \mathcal{V} , to a transitive permutation action of $\langle \zeta \rangle \times P\Sigma Sp(2n,q)$ on $\widehat{\mathcal{V}}$ (below Lemma 5.4). Theorem 5.5 shows that this group preserves R_1 (the adjacency relation of the graph $\widehat{\Gamma}$). We next show that this group preserves each of the relations R_i , and so gives the full automorphism group of the scheme.

Lemma 6.2. The diagonal action of $2 \times PSp(2n,q)$ on $\widehat{\mathcal{V}} \times \widehat{\mathcal{V}}$ preserves each of the relations R_i . The same conclusion holds for the subgroup $2 \times P\Sigma Sp(2n,q)$.

PROOF. Clearly the central factor $(U,\varepsilon) \stackrel{\zeta}{\leftrightarrow} (U,-\varepsilon)$ preserves each R_i . Now let $g \in Sp(2n,q)$, and suppose $X,Y \in \mathcal{V}$ such that $d(X,Y) = k \in \{0,1,2,\ldots,n\}$. Also let $\varepsilon,\varepsilon' \in \{\pm 1\}$, so that $((X,\varepsilon),(Y,\varepsilon')) \in R_k$ or R_{2n+1-k} according as $\varepsilon\varepsilon'\sigma(X,Y)=1$ or -1. Since g preserves distances in Γ , $d(X^g,Y^g)=k$. Let x_1,x_2,\ldots,x_n and y_1,y_2,\ldots,y_n be bases for X and Y respectively, such that a basis for $X \cap Y$ is formed by $x_{k+1}=y_{k+1},\ x_{k+2}=y_{k+2},\ldots,\ x_n=y_n$. Then $(X,\varepsilon)^g=(X^g,\chi(\lambda_{g,X})\varepsilon)$ and $(Y,\varepsilon')^g=(Y^g,\chi(\lambda_{g,Y})\varepsilon')$ where

$$\chi(\lambda_{g,X})\varepsilon\chi(\lambda_{g,Y})\varepsilon'\sigma(X^g,Y^g)$$

$$=\varepsilon\varepsilon'\chi(\lambda_{g,X}\delta_{X^g}(x_1^g,\ldots,x_n^g)\lambda_{g,Y}\delta_{Y^g}(y_1^g,\ldots,y_n^g)$$

$$\times \det\left[B(x_i^g,y_j^g):1\leqslant i,j\leqslant k\right])$$

$$=\varepsilon\varepsilon'\chi(\lambda_{g,X}^2\lambda_{g,Y}^2\delta_X(x_1,\ldots,x_n)\delta_Y(y_1,\ldots,y_n)\det\left[B(x_i,y_j):1\leqslant i,j\leqslant k\right])$$

$$=\varepsilon\varepsilon'\sigma(X,Y).$$

If this value is 1, then both $(X,\varepsilon) \stackrel{k}{\sim} (Y,\varepsilon')$ and $(X,\varepsilon)^g \stackrel{k}{\sim} (Y,\varepsilon')^g$; but if the latter value is -1, then $(X,\varepsilon)^{\frac{2n+1-k}{2}}(Y,\varepsilon')$ and $(X,\varepsilon)^{g^{\frac{2n+1-k}{2}}}(Y,\varepsilon')^g$.

Thus $2 \times PSp(2n,q)$ preserves the relations R_i as claimed. A similar argument holds for $2 \times P\Sigma Sp(2n,q)$.

It is easy to see that $\langle \zeta \rangle \times P\Sigma Sp(2n,q)$ acts transitively on each R_i , and similarly for $\langle \zeta \rangle \times PSp(2n,q)$. This yields

Theorem 6.3. The diagonal action of the group $2 \times PSp(2n,q)$ on $\widehat{\mathcal{V}} \times \widehat{\mathcal{V}}$ has orbits $R_0, R_1, \ldots, R_{2n+1}$; so these form the relations of a (2n+1)-class Schurian association scheme. The same conclusion holds for $2 \times P\Sigma Sp(2n,q)$, which is therefore the full automorphism group of the association scheme \mathcal{S} .

7. The Q-polynomial property

In this section we will use some parameters of the scheme to prove that the association scheme S is Q-polynomial. We will benefit from the action of the A_i 's by left-multiplication on the Bose-Mesner algebra, resulting in matrices L_i defined by $(L_i)_{kj} = p_{ij}^k$. In particular, the parameter p_{1j}^k of the scheme from Lemma 6.1, is the (k,j)-entry of the matrix

$$L_1 = \begin{pmatrix} 0 & b_0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & \frac{a_1}{2} & b_1 & 0 & 0 & \cdots & 0 & 0 & \frac{a_1}{2} & 0 \\ 0 & c_2 & \frac{a_2}{2} & \ddots & 0 & \cdots & 0 & \ddots & 0 & 0 \\ 0 & 0 & \ddots & \ddots & b_{d-1} & 0 & \frac{a_{d-1}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_d & \frac{a_d}{2} & \frac{a_d}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{a_{d-1}}{2} & 0 & b_{d-1} & \ddots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \frac{a_{d-1}}{2} & 0 & b_{d-1} & \ddots & \ddots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 & 0 & \ddots & \frac{a_2}{2} & c_2 & 0 \\ 0 & \frac{a_1}{2} & 0 & 0 & 0 & 0 & 0 & b_1 & \frac{a_1}{2} & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_0 & 0 \end{pmatrix}.$$

As it turns out, this matrix has distinct eigenvalues, which in turn will give us a great deal of information about the scheme. In particular by [6, Proposition 2.2.2], the columns of Q are right eigenvectors of L_1 . We will use the following generalization of [6, Theorem 8.1.1] to prove that S is Q-polynomial.

Theorem 7.1. Suppose A_i is a matrix in a d-class association scheme (Ω, \mathcal{R}) with d+1 distinct eigenvalues. Then (Ω, \mathcal{R}) is Q-polynomial if and only if there is a sequence of distinct complex numbers $\sigma_0, \sigma_1, \ldots, \sigma_d$ and polynomials $s_0(x), s_1(x), \ldots, s_d(x)$ of degree $0, 1, \ldots, d$, respectively, with

$$\sum_{j} p_{ij}^{k} \sigma_{j}^{\ell} = s_{\ell}(\sigma_{k})$$

for $0 \le \ell \le d$. Furthermore, the leading coefficients of the polynomials $s_0(x)$, $s_1(x), \ldots, s_d(x)$ are precisely the eigenvalues of A_i in a Q-polynomial ordering.

PROOF. Without loss of generality we assume A_1 has this property. Let L_1 be the corresponding intersection matrix. Let S, T be the d+1 by d+1 matrices with

 $S_{jk} = \sigma_j^k$ and T_{jk} equal to the coefficient of x^j in the polynomial $s_k(x)$. Then the above statement is equivalent to $L_1S = ST$. Then L_i is similar to T and since T is upper triangular, the diagonal entries of T are precisely the eigenvalues of L_1 . Since T is an upper triangular matrix with distinct diagonal entries, an easy induction shows that it can be diagonalized by an upper triangular matrix. Namely, there is an invertible matrix U and a diagonal matrix D with $D_{jj} = T_{jj}$ such that $U^{-1}TU = D$. Then $L_1(SU) = (SU)D$. This implies that the columns of SU are eigenvectors of L_1 , hence there is a diagonal matrix D' such that SUD' = Q. Since the jth column of SUD' is a degree j polynomial of the first column of T, which is a linear combination of columns 0 and 1 of SUD', it is clear that the jth column of SUD' is a degree j polynomial of the first column of SUD'. This implies that the columns of Q are in a given Q-polynomial ordering, which in turn implies that the ordering of the eigenvalues in T is a Q-polynomial ordering.

This leads to our main result:

Theorem 7.2. The scheme S is Q-polynomial. Furthermore, it has two Q-polynomial orderings.

PROOF. Let $r = \sqrt{q}$ and d = 2n + 1. We define the sequence of polynomials

$$s_{\ell}(x) = \begin{cases} r^{\ell} {n-\ell+1 \brack 1} x^{\ell} + \frac{1}{r^{\ell-2}} {\ell-1 \brack 1} x^{\ell-2}, & \text{for } \ell \text{ odd;} \\ r^{\ell} \left({n-\ell+1 \brack 1} - \frac{1}{r^{\ell}} \right) x^{\ell} + \frac{1}{r^{\ell-2}} \left({\ell-1 \brack 1} + r^{\ell-2} \right) x^{\ell-2}, & \text{for } \ell \text{ even} \end{cases}$$

and constants

$$\sigma_j = \begin{cases} \frac{1}{r^j}, & \text{for } 0 \leqslant j \leqslant n; \\ -\frac{1}{r^{2n+1-j}}, & \text{for } n+1 \leqslant j \leqslant 2n+1. \end{cases}$$

The polynomials $s_0(x), \ldots, s_{2n+1}(x)$ realize $\sigma_0, \ldots, \sigma_{2n+1}$ as a Q-sequence for S, as we proceed to show by direct computation. For $k \leq n$ we have $\sum_j p_{1j}^k \sigma_j^\ell = c_k \sigma_{k-1}^\ell + \frac{a_k}{2} \sigma_k^\ell + b_k \sigma_{k+1}^\ell + \frac{a_k}{2} \sigma_{2n+1-k}^\ell$. For odd ℓ this reduces to

$$\begin{split} c_k \sigma_{k-1}^\ell + b_k \sigma_{k+1}^\ell &= \frac{1}{r^{(k-1)\ell}} {k \brack 1} + q \left({k \brack 1} - {n \brack 1} - {k \brack 1} \right) \frac{1}{r^{(k+1)\ell}} \\ &= \frac{1}{r^{(k+1)\ell}} \left({k \brack 1} q^\ell + q {n \brack 1} - {k \brack 1} \right) \\ &= \frac{1}{r^{(k+1)\ell}} \left({n+1 \brack 1} - {l \brack 1} + {k+\ell \brack 1} - {k+1 \brack 1} \right) \\ &= \frac{1}{r^{(k+1)\ell}} \left({n-\ell+1 \brack 1} r^{2\ell} + {\ell-1 \brack 1} r^{2(k+1)} \right) \\ &= r^\ell {n-\ell+1 \brack 1} \frac{1}{r^{k\ell}} + \frac{1}{r^{\ell-2}} {\ell-1 \brack 1} \frac{1}{r^{k(\ell-2)}} \\ &= s_\ell(\sigma_k), \end{split}$$

whereas for even ℓ we have

$$\sum_{j} p_{1j}^{k} \sigma_{j}^{\ell} = c_{k} \sigma_{k-1}^{\ell} + a_{k} \sigma_{k}^{\ell} + b_{k} \sigma_{k+1}^{\ell}$$

$$\begin{split} &= {k \brack 1} \frac{1}{r^{(k-1)\ell}} + (q-1) {k \brack 1} \frac{1}{r^{k\ell}} + q \left({k \brack 1} - {n \brack 1} - {k \brack 1} \right) \frac{1}{r^{(k+1)\ell}} \\ &= \frac{1}{r^{(k+1)\ell}} \left({k \brack 1} q^{\ell} + q {n \brack 1} - {k \brack 1} \right) + r^{2k+\ell} - r^{\ell} \\ &= \frac{1}{r^{(k+1)\ell}} \left({n+1 \brack 1} - {l \brack 1} + {k+\ell \brack 1} - {k+1 \brack 1} + r^{2k+\ell} - r^{\ell} \right) \\ &= \frac{1}{r^{(k+1)\ell}} \left({n-\ell+1 \brack 1} r^{2\ell} - r^{\ell} + {\ell-1 \brack 1} r^{2(k+1)} + r^{2k+\ell} \right) \\ &= r^{\ell} \left({n-\ell+1 \brack 1} - \frac{1}{r^{\ell}} \right) \frac{1}{r^{k\ell}} + \frac{1}{r^{\ell-2}} \left({\ell-1 \brack 1} + r^{\ell-2} \right) \frac{1}{r^{k(\ell-2)}} \\ &= s_{\ell}(\sigma_k). \end{split}$$

Now we deal with $k \ge n + 1$, noting that

$$\sum_{j} p_{1j}^k \sigma_j^\ell = b_{2n+1-k} \sigma_{k-1}^\ell + \frac{a_{2n+1-k}}{2} \sigma_k^\ell + c_{2n+1-k} \sigma_{k+1}^\ell + \frac{a_{2n+1-k}}{2} \sigma_{2n+1-k}^\ell.$$

For odd ℓ this reduces to

$$b_{2n+1-k}\sigma_{k-1}^{\ell} + c_{2n+1-k}\sigma_{k+1}^{\ell} = -b_{2n+1-k}\sigma_{2n+2-k}^{\ell} - c_{2n+1-k}\sigma_{2n-k}^{\ell}$$
$$= -s_{\ell}(\sigma_{2n+1-k}) = s_{\ell}(-\sigma_{2n+1-k}) = s_{\ell}(\sigma_{k}),$$

while for even ℓ we obtain

$$b_{2n+1-k}\sigma_{k-1}^{\ell} + a_{2n+1-k}\sigma_{k}^{\ell} + c_{2n+1-k}\sigma_{k+1}^{\ell}$$

$$= b_{2n+1-k}\sigma_{2n+2-k}^{\ell} + a_{2n+1-k}\sigma_{2n+1-k}^{\ell} + c_{2n+1-k}\sigma_{2n-k}^{\ell}$$

$$= s_{\ell}(\sigma_{2n+1-k}) = s_{\ell}(-\sigma_{2n+1-k}) = s_{\ell}(\sigma_{k}).$$

For nonsquare q the splitting field of S is irrational, implying that it is a quadratic extension of the rationals, namely $\mathbb{Q}(r)$. The Galois group acts faithfully on the idempotents of the scheme, yielding a second Q-polynomial ordering. This second Q-polynomial ordering can also be obtained by replacing $r \mapsto -r$ in both the σ_j and the polynomials $s_{\ell}(x)$, showing that this second ordering exists for square q as well.

We note that by a result of Suzuki [17], Q-polynomial schemes can have at most two Q-polynomial orderings.

8. The *P*-matrix

We now compute the P-matrix of the scheme S, expressing it in terms of the auxiliary matrices \widetilde{P} and \widehat{P} whose entries are defined by

$$\widetilde{P}_{ij} = \sum_{l=0}^{j} (-1)^{\ell} r^{j-2\ell+(j-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack j-\ell};$$

$$\widehat{P}_{ij} = \sum_{\ell=0}^{j} (-1)^{\ell} r^{(j-\ell)^2 + \ell^2} {i \brack \ell} {n-i \brack j-\ell}.$$

By [6, Proposition 2.2.2], the P-matrix is determined by the left-normalized left eigenvectors of L_1 . We first show that the rows of \widetilde{P} and \widehat{P} are left eigenvectors of the matrices defined by

respectively. We will show that the corresponding diagonal forms are

$$\widetilde{D} = \operatorname{diag}(\widetilde{P}_{i0}, \widetilde{P}_{i1}, \dots, \widetilde{P}_{in}), \quad \widehat{D} = \operatorname{diag}(\widehat{P}_{i0}, \widehat{P}_{i1}, \dots, \widehat{P}_{in}).$$

The ordering we give to the eigenvectors of \widehat{M} and \widehat{M} may seem arbitrary, but will be important later.

Theorem 8.1. $\widetilde{P}\widetilde{M} = \widetilde{D}\widetilde{P}$ and $\widehat{P}\widehat{M} = \widehat{D}\widehat{P}$.

PROOF. Fix i and let $v_i = (\widetilde{P}_{i0}, \widetilde{P}_{i1}, \dots, \widetilde{P}_{in})$. We must show that $v_i \widetilde{M} = \widetilde{P}_{i1} v_i$. In particular, we need to show the following recurrence holds for all j:

$$b_{j-1} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{j-1-2\ell+(j-1-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack \ell-1-\ell} + a_j \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+(j-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack j-\ell}$$

$$+ c_{j+1} \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{j+1-2\ell+(j+1-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack j+1-\ell}$$

$$= \widetilde{P}_{i1} \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+(j-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack j-\ell}.$$

Multiplying both sides by q-1 and substituting for b_{j-1}, a_j and c_{j+1} , we find this is equivalent to showing that the quantity z_j , defined as follows, vanishes for all j:

$$z_{j} = (q^{n+1} - q^{j}) \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{j-2\ell-1+(j-\ell-1)^{2}+\ell^{2}} {i \brack \ell} {n-i \brack \ell-\ell-1}$$

$$+ (q-1)(q^{j}-1) \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+(j-\ell)^{2}+\ell^{2}} {i \brack \ell} {n-i \brack j-\ell}$$

$$+ (q^{j+1}-1) \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{j-2\ell+1+(j-\ell+1)^{2}+\ell^{2}} {i \brack \ell} {n-i \brack j-\ell+1}$$

$$- (q^{i}(q^{n-2i+1}-1) - q+1) \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+(j-\ell)^{2}+\ell^{2}} {i \brack \ell} {n-i \brack j-\ell}.$$

The second and last sums combine, simplifying to

$$\begin{split} z_j &= (q^{n+1} - q^j) \sum_{\ell=0}^{j-1} (-1)^\ell r^{j-2\ell-1+(j-\ell-1)^2+\ell^2} {i \brack \ell} {n-i \brack j-\ell-1} \\ &+ \left((q-1)q^j + q^i - q^{n-i+1} \right) \sum_{\ell=0}^{j} (-1)^\ell r^{j-2\ell+(j-\ell)^2+\ell^2} {i \brack \ell} {n-i \brack j-\ell} \\ &+ (q^{j+1} - 1) \sum_{\ell=0}^{j+1} (-1)^\ell r^{j-2\ell+1+(j-\ell+1)^2+\ell^2} {i \brack \ell} {j-n-i \brack \ell-\ell+1}. \end{split}$$

Now it suffices to show that the generating function $Z(t) = \sum_{j=0}^{\infty} z_j t^j$ vanishes. We first express Z(t) in terms of the polynomials $E_m(t)$ defined in Section 2. Using Proposition 2.2(iii), we are able to rewrite our generating function as $Z(t) = \Sigma_1 + \Sigma_2 + \cdots + \Sigma_6$ where

$$\begin{split} &\Sigma_{1} = q^{n+1} \sum_{j=0}^{\infty} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{j-2\ell-1+(j-\ell-1)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell-1} t^{j} \\ &= q^{n+1} t E_{i}(-t) E_{n-i}(qt); \\ &\Sigma_{2} = -\sum_{j=0}^{\infty} q^{j} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{j-2\ell-1+(j-\ell-1)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell-1} t^{j} \\ &= -q t E_{i}(-qt) E_{n-i}(q^{2}t); \\ &\Sigma_{3} = (q-1) \sum_{j=0}^{\infty} q^{j} \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{j-2\ell+(j-\ell)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell} t^{j} \\ &= (q-1) E_{i}(-qt) E_{n-i}(q^{2}t); \\ &\Sigma_{4} = (q^{i}-q^{n-i+1}) \sum_{j=0}^{\infty} \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{j-2\ell+(j-\ell)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell} t^{j} \\ &= (q^{i}-q^{n-i+1}) E_{i}(-t) E_{n-i}(qt); \\ &\Sigma_{5} = \sum_{j=0}^{\infty} q^{j+1} \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+1+(j-\ell+1)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell+1} t^{j} \\ &= \frac{1}{t} E_{i}(-qt) E_{n-i}(q^{2}t); \\ &\Sigma_{6} = -\sum_{j=0}^{\infty} \sum_{\ell=0}^{j} (-1)^{\ell} r^{j-2\ell+1+(j-\ell+1)^{2}+\ell^{2}} {i \brack \ell} {i \brack j-\ell+1} t^{j} \\ &= -\frac{1}{t} E_{i}(-t) E_{n-i}(qt). \end{split}$$

Using Proposition 2.2(i,ii), we find

$$Z(t) = \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4 + \Sigma_5 + \Sigma_6$$

$$= \left(q^{n+1}t + q^i - q^{n-i+1} - \frac{1}{t}\right)$$

$$+ \frac{(1-q^it)}{(1-t)} \frac{(1+q^{n-i+1}t)}{(1+qt)} \left(-qt + q - 1 + \frac{1}{t}\right) E_i(-t) E_{n-i}(qt) = 0$$

as required.

The strategy for showing $\widehat{P}\widehat{M} = \widehat{D}\widehat{P}$ is very similar but the details are sufficiently different that we provide the details here. Fix i and let $v_i = (\widehat{P}_{i0}, \widehat{P}_{i1}, \dots, \widehat{P}_{in})$. We must show that $v_i \widehat{M} = \widehat{P}_{i1} v_i$. In particular, we need to show the following recurrence holds for all j:

$$b_{j-1} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{(j-1-\ell)^2 + \ell^2} {i \brack \ell} {i \brack j-1-\ell} + c_{j+1} \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{(j+1-\ell)^2 + \ell^2} {i \brack \ell} {i \brack j+1-\ell}$$

$$= \widehat{P}_{i1} \sum_{\ell=0}^{j} (-1)^{\ell} r^{(j-\ell)^2 + \ell^2} {i \brack \ell} {n-i \brack j-\ell}.$$

Multiplying both sides by q-1 and substituting for b_{j-1}, c_{j+1} , we find this is equivalent to showing that the following is zero for all j:

$$z_{j} = (q^{n+1} - q^{j}) \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{(j-\ell-1)^{2} + \ell^{2}} {i \brack \ell} {n-i \brack j-\ell-1}$$

$$+ (q^{j+1} - 1) \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{(j-\ell+1)^{2} + \ell^{2}} {i \brack \ell} {n-i \brack j-\ell+1}$$

$$- q^{i} (q^{2n-i} - 1) \sum_{\ell=0}^{j} (-1)^{\ell} r^{(j-\ell)^{2} + \ell^{2}} {i \brack \ell} {n-i \brack j-\ell+1}.$$

Again, it suffices to show that the generating function $Z(t) = \sum_{j=0}^{\infty} z_j t^j$ vanishes. As before, we first rewrite our generating function as $Z(t) = \Sigma_1 + \Sigma_2 + \cdots + \Sigma_6$ where

$$\begin{split} &\Sigma_{1} = q^{n+1} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{(j-\ell-1)^{2}+\ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell-1 \end{bmatrix} t^{m} = q^{n+1} t E_{i}(-rt) E_{n-i}(rt); \\ &\Sigma_{2} = -q^{j} \sum_{\ell=0}^{j-1} (-1)^{\ell} r^{(j-\ell-1)^{2}+\ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell-1 \end{bmatrix} t^{m} = -qt E_{i}(-r^{3}t) E_{n-i}(r^{3}t); \\ &\Sigma_{3} = q^{j+1} \sum_{\ell=0}^{j+1} (-1)^{\ell} r^{(j-\ell+1)^{2}+\ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell+1 \end{bmatrix} t^{m} = \frac{1}{t} E_{i}(-r^{3}t) E_{n-i}(r^{3}t); \\ &\Sigma_{4} = -\sum_{\ell=0}^{j+1} (-1)^{\ell} r^{(j-\ell+1)^{2}+\ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell+1 \end{bmatrix} t^{m} = -\frac{1}{t} E_{i}(-rt) E_{n-i}(rt); \end{split}$$

$$\Sigma_{5} = -rq^{2n} \sum_{\ell=0}^{j} (-1)^{\ell} r^{(j-\ell)^{2} + \ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell \end{bmatrix} t^{m} = -rq^{n-i} E_{i}(-rt) E_{n-i}(rt);$$

$$\Sigma_{6} = rq^{i} \sum_{\ell=0}^{j} (-1)^{\ell} r^{(j-\ell)^{2} + \ell^{2}} t^{\ell} \begin{bmatrix} i \\ \ell \end{bmatrix} \begin{bmatrix} n-i \\ j-\ell \end{bmatrix} t^{m} = rq^{i} E_{i}(-rt) E_{n-i}(rt)$$

in terms of the polynomials $E_m(t)$ defined in Section 2. Using Proposition 2.2(iii), we find

$$\begin{split} Z(t) &= \Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4 + \Sigma_5 + \Sigma_6 \\ &= \left(q^{n+1}t - \frac{1}{t} - rq^{n-i} + rq^i \right. \\ &+ \left(\frac{1}{t} - qt\right) \frac{(1 - rq^i t)(1 + rq^{n-i} t)}{(1 - rt)(1 + rt)} \right) E_i(-rt) E_{n-i}(rt) = 0 \end{split}$$

as required.

Corollary 8.2. The P-matrix of the Q-polynomial scheme S is given by

$$\begin{cases} P_{i,j} = P_{i,2n+1-j} = \widetilde{P}_{\frac{i}{2},j} & \text{for } i \text{ even, } 0 \leqslant j \leqslant n; \\ P_{i,j} = -P_{i,2n+1-j} = \widehat{P}_{\lfloor \frac{i}{2} \rfloor,j} & \text{for } i \text{ odd, } 0 \leqslant j \leqslant n. \end{cases}$$

PROOF. If (v_0, \ldots, v_n) is a left eigenvector of \widetilde{M} or \widehat{M} , it is easily seen that either $(v_0, \ldots, v_n, v_n, \ldots, v_0)$ or $(v_0, \ldots, v_n, -v_n, \ldots, -v_0)$ is a left eigenvector of L_1 , respectively. The fact that this ordering of the eigenvalues of L_1 is a Q-polynomial ordering follows from Theorem 7.2.

9. A hypothetical subscheme

We ask whether S is the extended Q-bipartite double (in the sense of [13]) of a primitive Q-polynomial scheme. We investigated these parameters up to n=20 and found they satisfied the Krein conditions, had integral eigenvalue multiplicities and nonnegative integral p_{ij}^k , and satisfy the handshaking lemma for all square q. This appears to give an infinite family of feasible parameters for primitive Q-polynomial schemes with an unbounded number of classes. Detailed parameters and a proof of feasibility will be given in a forthcoming paper of Eiichi Bannai and Jianmin Ma.

We give the smallest case below for which existence is unknown:

$$P = \begin{pmatrix} 1 & \frac{r^4 + r^3 + r^2 + r}{2} & \frac{r^4 - r^3 + r^2 - r}{2} & \frac{r^6 + r^4}{2} & \frac{r^6 - r^4}{2} \\ 1 & \frac{r^3 + r^2 + r - 1}{2} & \frac{-r^3 + r^2 - r - 1}{2} & \frac{r^4 - r^2}{2} & \frac{-r^4 - r^2}{2} \\ 1 & \frac{r^2 - 1}{2} & \frac{r^2 - 1}{2} & -r^2 & 0 \\ 1 & \frac{-r^2 - 1}{2} & \frac{-r^2 - 1}{2} & 0 & r^2 \\ 1 & \frac{-r^3 - r^2 - r - 1}{2} & \frac{r^3 - r^2 + r - 1}{2} & \frac{r^4 + r^2}{2} & \frac{-r^4 + r^2}{2} \end{pmatrix}$$

$$Q = \begin{pmatrix} 1 & \frac{r^4 - 1}{2} & \frac{r^6 + r^4 + r^2 + 1}{2} & \frac{r^6 - r^4 + r^2 - 1}{2} & \frac{r^4 + 1}{2} \\ 1 & \frac{r^4 - 2r + 1}{2} & \frac{r^6 - r^4 + r - 1}{2} & \frac{r^6 + r^4 - r^2 - 1}{2} & \frac{r^4 + 1}{2} \\ 1 & \frac{-r^4 - 2r - 1}{2} & \frac{r^5 + r^4 + r - 1}{2} & \frac{-r^5 + r^3 - r + 1}{2} & \frac{-r^3 - r}{2} \\ 1 & \frac{-r^4 - 2r^2 + 1}{2} & \frac{r^5 + r^4 + r + 1}{r^2} & \frac{-r^5 - r^3 - r - 1}{2} & \frac{r^4 + r^4}{r^2} \\ 1 & \frac{-r^4 - 2r^2 + 1}{2r^2} & 0 & \frac{r^4 + 1}{r^4} & \frac{-r^4 - r^4}{2r^2} \end{pmatrix}$$

$$L_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$L_1 = \begin{pmatrix} 0 & \frac{r^4 + r^3 + r^2 + r}{2r^2} & 0 & 0 & 0 \\ 1 & \frac{r^2 + 2r + 1}{4} & \frac{r^4 - 1}{4} & 0 & \frac{r^4 + r^3}{2} \\ 0 & \frac{r^4 + r^3}{2r^2 + 1} & \frac{r^4 + r^3}{4} & \frac{r^4 + r^3 - r^2 - r}{4} \end{pmatrix}$$

$$L_2 = \begin{pmatrix} 0 & 0 & \frac{r^4 + r^3 + r^2 - r}{4} & 0 & 0 & \frac{r^4 + r^3}{4} \\ 0 & \frac{r^2 + 1}{2} & \frac{r^4 + r^3 + r^2 - r}{4} & 0 & \frac{r^4 + r^3}{4} \\ 0 & 0 & \frac{r^2 + 1}{2} & \frac{r^4 + r^3 + r^2 + r}{4} & \frac{r^4 + r^3 - r^2 + r}{4} \end{pmatrix}$$

$$L_3 = \begin{pmatrix} 0 & 0 & \frac{r^4 - r^3 + r^2 - r}{4} & 0 & 0 & \frac{r^4 - r^3}{2} \\ 0 & \frac{r^4 + r^3}{2} & 0 & \frac{r^4 - r^3 + r^2 - r}{2} & \frac{r^4 - r^3 - r^2 + r}{4} \end{pmatrix}$$

$$L_4 = \begin{pmatrix} 0 & 0 & 0 & \frac{r^4 - r^3}{2} & \frac{r^4 - r^3 + r^2 - r}{2} & \frac{r^4 - r^3 + r^2 - r}{4} & \frac{r^6 - r^4}{2} & \frac{r^6 - r^4}{4} \\ 0 & \frac{r^4 + r^3}{2} & 0 & \frac{r^4 - r^3 - r^2 + r}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{2} \end{pmatrix}$$

$$L_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & \frac{r^6 - r^4}{2} & \frac{r^6 - r^4}{4} \\ 0 & 0 & \frac{r^4 - r^3}{4} & \frac{r^2 - r}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{2} \\ 0 & \frac{r^4 + r^3}{4} & 0 & \frac{r^4 - r^3 - r^2 + r}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \\ 0 & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \end{pmatrix}$$

$$L_4 = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \frac{r^6 - r^4}{2} \\ 0 & 0 & \frac{r^4 + r^3}{4} & -r^2 - r & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \\ 0 & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \\ 0 & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \\ 0 & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} & \frac{r^6 - r^4}{4} \end{pmatrix}$$

$$0 & 0 & 0 & 0 &$$

$$L_1^* = \begin{pmatrix} 0 & \frac{r^4-1}{2} & 0 & 0 & 0 \\ 1 & \frac{r^6-5r^4-3r^2-1}{2(r^4+r^2)} & \frac{r^8+2r^4+1}{2(r^4+r^2)} & 0 & 0 \\ 0 & \frac{r^6-r^4+r^2-1}{2(r^4+r^2)} & \frac{r^8-4r^2+3}{4(r^4+r^2)} & \frac{r^6-r^4+r^2-1}{4r^2} & 0 \\ 0 & 0 & \frac{r^6+r^4+r^2+1}{4r^2} & \frac{r^6-3r^4-3r^2-3}{4r^2-1} & \frac{r^4+1}{2r^2} \\ 0 & 0 & 0 & \frac{r^6-r^4+r^2-1}{2r^2} & \frac{r^4-2r^2+1}{2r^2} \end{pmatrix}$$

$$L_2^* = \begin{pmatrix} 0 & 0 & \frac{r^6 + r^4 + r^2 + 1}{2} & 0 & 0 \\ 0 & \frac{r^8 + 2r^4 + 1}{2(r^4 + r^2)} & \frac{r^{10} + r^8 + 2r^6 - 2r^4 + r^2 - 3}{4(r^4 + r^2)} & \frac{r^8 + 2r^4 + 1}{4r^2} & 0 \\ 1 & \frac{r^8 - 4r^2 + 3}{4(r^4 + r^2)} & \frac{r^{10} + 3r^8 + 2r^6 - 2r^4 + r^2 - 5}{4(r^4 + r^2)} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4r^2} & \frac{r^6 + r^4 + r^2 + 1}{4r^2} \\ 0 & \frac{r^6 + r^4 + r^2 + 1}{4r^2} & \frac{r^8 - 1}{4r^2} & \frac{r^8 + 2r^4 + 1}{4r^2} & \frac{r^6 - r^4 + r^2 - 1}{4r^2} \\ 0 & 0 & \frac{r^8 + 2r^6 + 2r^4 + 2r^2 + 1}{4r^2} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4r^2} & \frac{r^6 - r^4 + r^2 - 1}{2r^2} \end{pmatrix}$$

$$L_3^* = \begin{pmatrix} 0 & 0 & 0 & \frac{r^6 - r^4 + r^2 - 1}{2} & 0 \\ 0 & 0 & \frac{r^8 + 2r^4 + 1}{4r^2} & \frac{r^{10} - 3r^8 - 2r^6 - 6r^4 - 3r^2 - 3}{4(r^4 + r^2)} & \frac{r^8 + 2r^4 + 1}{2(r^4 + r^2)} \\ 0 & \frac{r^6 - r^4 + r^2 - 1}{4r^2} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4r^2} & \frac{r^{10} - r^8 + 2r^6 - 2r^4 + r^2 - 1}{4(r^4 + r^2)} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4(r^4 + r^2)} \\ 1 & \frac{r^6 - 3r^4 - 3r^2 - 3}{4r^2} & \frac{r^8 + 2r^4 + 1}{4r^2} & \frac{r^8 - 4r^6 + 4r^4 - 4r^2 + 3}{4r^2} & \frac{r^6 - r^4 + r^2 - 1}{4r^2} \\ 0 & \frac{r^6 - r^4 + r^2 - 1}{2r^2} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4r^2} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4r^2} & 0 \end{pmatrix}$$

$$L_4^* = \begin{pmatrix} 0 & 0 & 0 & \frac{r^4 + 1}{2} \\ 0 & 0 & 0 & \frac{r^8 + 2r^4 + 1}{2(r^4 + r^2)} & \frac{r^6 - r^4 + r^2 - 1}{2(r^4 + r^2)} \\ 0 & 0 & \frac{r^6 + r^4 + r^2 + 1}{4r^2} & \frac{r^8 - 2r^6 + 2r^4 - 2r^2 + 1}{4(r^4 + r^2)} & \frac{r^6 - r^4 + r^2 - 1}{2(r^4 + r^2)} \\ 0 & \frac{r^4 + 1}{2r^2} & \frac{r^6 - r^4 + r^2 - 1}{4r^2} & \frac{r^6 - r^4 + r^2 - 1}{4r^2} & 0 \\ 1 & \frac{r^4 - 2r^2 + 1}{2r^2} & \frac{r^6 - r^4 + r^2 - 1}{4r^2} & 0 & 0 \end{pmatrix}$$

Acknowledgements

This research was supported in part by NSF grant DMS-1400281. The software package MAGMA [3] was instrumental in finding the initial examples of these schemes, as well as in computations related to verifying our proofs.

References

References

- [1] M. Aigner, A Course in Enumeration, Springer-Verlag, Berlin, 2007.
- [2] E. Bannai and T. Ito, Algebraic combinatorics I. Association schemes, Benjamin/Cummings, Menlo Park, 1984.

- [3] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I. The user language, J. Symbolic Comput. 24 (1997) 235–265.
- [4] J.N. Bray, D.F. Holt and C.M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, Camb. Univ. Press, Cambridge, 2013.
- [5] R.C. Bose and D.M. Mesner, On linear associative algebras corresponding to association schemes of partially balanced designs, Ann. Math. Statist. 30 (1959) 21–38.
- [6] A.E. Brouwer, A.M. Cohen and A. Niemaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989.
- [7] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford Univ. Press, Oxford, 1986.
- [8] E.R. van Dam, W.J. Martin and M. Muzychuk, Uniformity in association schemes and coherent configurations: cometric Q-antipodal schemes and linked systems, J. Combin. Theory Ser. A 120 (2013) 1401–1439.
- [9] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. No. 10 (1973).
- [10] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
- [11] M. Kashiwara and P. Schapira, Sheaves on Manifolds, Springer-Verlag, Berlin, 1990.
- [12] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, Camb. Univ. Press, Cambridge, 1990.
- [13] W.J. Martin, M. Muzychuk and J. Williford, Imprimitive cometric association schemes: constructions and analysis, J. Algebraic Combin. 25 (2007) 399–415.
- [14] G. E. Moorhouse, Two-graphs and skew two-graphs in finite geometries, Linear Alg. Appl. 226–22 (1995) 529–551.
- [15] T. Penttila and J. Williford, New families of Q-polynomial association schemes, J. Combin. Theory Ser. A 118 (2011) 502–509.
- [16] J.J. Seidel, A survey of two-graphs, pp.481–511 in Teorie Combinatorie, Accademia Naz. dei Lincei, 1976.
- [17] H. Suzuki, Association schemes with multiple Q-polynomial structures, J. Algebraic Combin. 7 (1998) No. 2, 181–196.

- [18] D.E. Taylor, Two-graphs and doubly transitive groups, J. Comb. Theory Ser. A 61 (1992) 113–122.
- [19] T. Thomas, The character of the Weil representation, J. London Math. Soc. (2) 77 (2008) 221–239.