Análisis Matemático I

Tema final: Diferenciales sucesivas

- 2 Reglas de diferenciación
- Teorema de Schwartz
- 4 Casos particulares
- Fórmula de Taylor

¿Cómo definimos la diferencial segunda y las siguientes?

$$X,Y \text{ espacios normados, } \Omega = \Omega^{\circ} \subset X\,, \quad f \in D(\Omega,Y)$$

Si
$$Df:\Omega \to L(X,Y)$$
 es diferenciable en $a\in \Omega$, tenemos:

$$D(Df)(a) \in L(X, L(X,Y))$$
!!!

$$T \in L(X, L(X,Y)), x_1, x_2 \in X \Rightarrow T(x_1) \in L(X,Y) \Rightarrow (T(x_1))(x_2) \in Y$$

Definiendo
$$\widetilde{T}(x_1, x_2) = (T(x_1))(x_2) \quad \forall x_1, x_2 \in X$$

obtenemos una aplicación $\widetilde{T}: X^2 \to Y$ que es bilineal

La diferencial segunda de $f:\Omega\to Y$ en un punto $a\in\Omega$

debe definirse como una aplicación bilineal y continua de $X^2\,$ en $Y\,$

Para $n \in \mathbb{N}$, la diferencial n-ésima de f en a, será una aplicación n-lineal y continua de X^n en Y

Aplicaciones multilineales

Definiciones 0000000

$$n\in\mathbb{N},\ X_1,\ldots,X_n\,,Y$$
 espacios vectoriales, $T:X_1\times\ldots\times X_n\to Y$
$$T \ \text{es n-lineal cuando}$$

T es lineal en cada variable, es decir:

Para cada $k \in \Delta_n$ y cualesquiera $x_j \in X_j \ \forall j \in \Delta_n \setminus \{k\}$, la aplicación $x \mapsto T(x_1, \dots, x_{k-1}, x, x_{k+1}, \dots, x_n)$, de X_k en Y, es lineal

Caracterización de la continuidad

$$n\in\mathbb{N}\,,\;X_1,\ldots,X_n\,,Y$$
 normados, $Z=\prod_{k=1}^nX_k$ espacio normado producto

Para una aplicación n-lineal $T: Z \to Y$, son equivalentes:

- T es continua
- $\exists M \in \mathbb{R}_0^+ : ||T(z)|| \leqslant M \prod ||z(k)|| \quad \forall z \in Z$ k=1

Espacios de aplicaciones multilineales

Definiciones 0000000

En lo que sigue, fijamos $n \in \mathbb{N}$ y dos espacios normados X e X

Denotamos por $L^n(X,Y)$ al espacio vectorial formado por todas las aplicaciones n-lineales y continuas de X^n en Y

Se considera siempre como espacio normado con la norma definida, para cada $T \in L^n(X,Y)$ por:

$$||T|| = \sup \{ ||T(z)|| : z \in X^n, ||z(k)|| = 1 \ \forall k \in \Delta_n \}$$

$$= \min \left\{ M \in \mathbb{R}_0^+ : \|T(z)\| \leqslant M \prod_{k=1}^n \|z(k)\| \ \forall z \in X^n \right\}$$

Una identificación canónica

Fijados $p,q\in\mathbb{N}$, para cada aplicación $T\in L^p\!\left(X,L^q(X,Y)\right)$ definimos

$$\widetilde{T}\left(u,v\right) = \Big(T(u)\Big)(v) \quad \forall \left(u,v\right) \in X^{\,p} \times X^{\,q} = X^{\,p+q}$$

Entonces
$$\widetilde{T} \in L^{p+q}(X,Y)$$

y la aplicación
$$T\mapsto \widetilde{T}$$
 de $L^p\!\left(X,L^q(X,Y)\right)$ en $L^{p+q}(X,Y)$

es una biyección lineal que preserva la norma

luego identifica canónicamente esos dos espacios normados

Caso de dimensión finita

Si X tiene dimensión finita,

toda aplicación n-lineal de X^n en Y es continua

Definiciones 0000 • 00

La diferencial segunda de una función

Definición de la diferencial segunda

 $\text{En lo que sigue: } \ \Omega = \Omega^{\circ} \subset X \,, \quad f: \Omega \to Y \,, \quad a \in \Omega$

Decimos que f es dos veces diferenciable en el punto a cuando:

f es diferenciable en un abierto U , con $a\in U\subset \Omega$

y la función $Df: U \to L(X,Y)$ es diferenciable en el punto a

Entonces, la aplicación lineal $D(Df)(a) \in L(X, L(X, Y))$

se identifica canónicamente

con una aplicación bilineal y continua de $\boldsymbol{X}^{\,2}$ en \boldsymbol{Y}

a la que llamamos diferencial segunda de $\,f\,$ en $\,a\,$

y se denota por $D^2 f(a)$

Se tiene por tanto: $D^2 f(a) \in L^2(X,Y)$

Las diferenciales sucesivas

Definición de la diferencial n-ésima por inducción sobre n

Fijado $n \in \mathbb{N}$ suponemos definida la diferencial n-ésima de una función

Decimos que f es n+1 veces diferenciable en el punto a cuando: f es n veces diferenciable en un abierto U, con $a \in U \subset \Omega$

y la función $D^n f: U \to L^n(X,Y)$ es diferenciable en el punto a

y la faileion D j . O T D (11,1) es diferenciable en el panto

Entonces la aplicación lineal $D(D^n f)(a) \in L(X, L^n(X, Y))$ se identifica canónicamente

con una aplicación (n+1)-lineal y continua de \boldsymbol{X}^{n+1} en \boldsymbol{Y}

a la que llamamos diferencial $\,(n+1)\text{-}\mathrm{\acute{e}sima}$ de $\,f\,$ en $\,a\,$

y se denota por $D^{n+1}f(a)$

Se tiene por tanto: $D^{n+1}f(a) \in L^{n+1}(X,Y)$

Grados de regularidad de una función

Espacios de funciones diferenciables

Denotamos por $D^n(\Omega,Y)$ al conjunto de todas las funciones de Ω en Y que son n veces diferenciables en todo punto $x\in\Omega$

Si $f\in D^n(\Omega,Y)$ y la función $D^nf:\Omega\to L^n(X,Y)$ es continua decimos que f es una función de clase C^n en Ω y denotamos por $C^n(\Omega,Y)$ al conjunto de tales funciones

Finalmente, f es de clase C^∞ en Ω cuando es de clase C^n para todo $n\in\mathbb{N}$ y denotamos por $C^\infty(\Omega,Y)$ al conjunto de tales funciones

Por tanto:
$$C^{\infty}(\Omega, Y) = \bigcap_{n=1}^{\infty} C^{n}(\Omega, Y)$$

Para
$$n\geqslant 2$$
 se tiene: $C^{\infty}(\Omega,Y)\subset\ldots\subset C^{n+1}(\Omega,Y)\subset D^{n+1}(\Omega,Y)\subset \subset C^n(\Omega,Y)\subset D^n(\Omega,Y)\subset\ldots\subset C^1(\Omega,Y)\subset D^1(\Omega,Y)$

Teorema de Schwartz

Casos particulares

Linealidad

Suma y producto por escalares

$$f,g:\Omega \to Y\,, \quad \alpha \in \mathbb{R}\,, \quad a \in \Omega$$

Si f y g son n veces diferenciables en el punto a, entonces

$$lpha f + g$$
 es n veces diferenciable en a , con

$$D^{n}(\alpha f + g)(a) = \alpha D^{n}f(a) + D^{n}(g)(a)$$

Por tanto, $D^n(\Omega,Y)$ es un subespacio vectorial de $D^1(\Omega,Y)$

$$C^{\,n}(\Omega,Y)$$
 es subespacio vectorial de $D^{\,n}(\Omega,Y)$

y $C^{\infty}(\Omega,Y)$ es subespacio vectorial de $C^{n}(\Omega,Y)$

Funciones con valores en un producto

Supongamos que $Y = \prod_{i=1}^{M} Y_i$ es un producto de espacios normados

Entonces $f=(f_1,\ldots,f_M):\Omega\to Y$ es n veces diferenciable en $a\in\Omega$ si, y sólo si, f_i es n veces diferenciable en a para todo $j\in\Delta_M$

en cuyo caso se tiene: $D^n f(a) = \left(D^n f_1(a), D^n f_2(a), \dots, D^n f_M(a)\right)$

$$f \in D^n(\Omega, Y) \iff f_j \in D^n(\Omega, Y_j) \ \forall j \in \Delta_M$$

$$f \in C^n(\Omega, Y) \iff f_j \in C^n(\Omega, Y_j) \ \forall j \in \Delta_M$$

$$f \in C^{\infty}(\Omega, Y) \iff f_j \in C^{\infty}(\Omega, Y_j) \ \forall j \in \Delta_M$$

Un ejemplo que luego generalizaremos

Si X_1,X_2 son espacios normados y $T:X_1\times X_2\to Y$ es bilineal y continua, entonces T es una función de clase C^∞ en $X_1\times X_2$

Regla de la cadena

Definiciones

$$X,Y,Z \ \ \text{espacios normados,} \ \ \Omega=\Omega^{\circ}\subset X\,, \quad U=U^{\circ}\subset Y$$

$$f:\Omega\to U\,, \quad g:U\to Z\,, \quad a\in\Omega\,, \quad b=f(a)\in U$$
 Si f es n veces diferenciable en a

y g es n veces diferenciable en b, entonces $g\circ f$ es n veces diferenciable en a

$$f \in D^n(\Omega, Y), g \in D^n(U, Z) \implies g \circ f \in D^n(\Omega, Z)$$

$$f \in C^n(\Omega, Y), g \in C^n(U, Z) \implies g \circ f \in C^n(\Omega, Z)$$

$$f \in C^{\infty}(\Omega, Y), g \in C^{\infty}(U, Z) \implies g \circ f \in C^{\infty}(\Omega, Z)$$

Regla de diferenciación de la función inversa

$$f \in D(\Omega, Y)$$
 inyectiva, $U = f(\Omega)$ abierto, y $f^{-1} \in D(U, X)$. Entonces:

$$f \in D^n(\Omega, Y) \iff f^{-1} \in D^n(U, X)$$

$$f \in C^n(\Omega, Y) \iff f^{-1} \in C^n(U, X)$$

$$f \in C^{\infty}(\Omega, Y) \iff f^{-1} \in C^{\infty}(U, X)$$

Producto de funciones con valores reales

Notación para funciones con valores reales

$$D^{n}(\Omega) = D^{n}(\Omega, \mathbb{R}), \quad C^{n}(\Omega) = C^{n}(\Omega, \mathbb{R}), \quad C^{\infty}(\Omega) = C^{\infty}(\Omega, \mathbb{R})$$

Producto

Si $f,g:\Omega \to \mathbb{R}$ son n veces diferenciables en $a\in \Omega$,

entonces el producto $f\,g\,$ es $\,n\,$ veces diferenciable en $\,a\,$

Por tanto, $D^n(\Omega)$ es un subanillo de $D^1(\Omega)$

$$C^n(\Omega)$$
 es subanillo de $D^n(\Omega)$

y $C^{\infty}(\Omega)$ es un subanillo de $C^{n}(\Omega)$

Cociente de funciones con valores reales

Cociente

$$f,g:\Omega \to \mathbb{R}$$
 , $g(x) \neq 0 \ \forall x \in \Omega$

Si f y g son n veces diferenciables en $a\in\Omega$, entonces la función cociente f/g es n veces diferenciable en a

$$f, g \in D^n(\Omega) \implies f/g \in D^n(\Omega)$$

$$f, g \in C^n(\Omega) \implies f/g \in C^n(\Omega)$$

$$f, g \in C^{\infty}(\Omega) \implies f/g \in C^{\infty}(\Omega)$$

Si $\Omega = \Omega^{\circ} \subset \mathbb{R}^N$, toda función racional en Ω es de clase C^{∞} :

$$\mathcal{R}(\Omega) \subset C^{\infty}(\Omega)$$

La propiedad más importante de las diferenciales sucesivas

Teorema de Schwartz (abstracto)

Sean X e Y espacios normados, Ω un abierto de X

y $f: \Omega \to Y$ una función n veces diferenciable en un punto $a \in \Omega$.

Entonces, la aplicación n-lineal $D^n f(a)$ es simétrica, es decir:

$$D^{n} f(a)(x_{1}, x_{2}, ..., x_{n}) = D^{n} f(a)(x_{\sigma(1)}, x_{\sigma(2)}, ..., x_{\sigma(n)})$$

para cualesquiera $x_1, x_2, \dots, x_n \in X$ y cualquier biyección $\sigma: \Delta_n \to \Delta_n$

Sucesivos vectores derivada

Fijados el espacio normado Y, $n\in\mathbb{N}$ y $a\in\Omega=\Omega^{\circ}\subset\mathbb{R}$, suponemos definido el n-ésimo vector derivada $f^{(n)}(a)$, para una función $f:\Omega\to\mathbb{R}$ que sea n veces derivable en el punto a.

Se dice que $f:\Omega \to Y$ es (n+1) veces derivable en el punto a cuando f es n veces derivable en un abierto U con $a \in U \subset \Omega$ y la función $f^{(n)}:U \to Y$ es derivable en el punto a

Entonces, al vector derivada de $f^{(n)}$ en el punto a se le denota por $f^{(n+1)}(a)$

y se le llama (n+1)-ésimo vector derivada de f en a

Funciones de una variable real (II)

Definiciones

Relación entre diferencial y vector derivada

Para $a \in \Omega = \Omega^{\circ} \subset \mathbb{R}$, $f : \Omega \to Y$, $n \in \mathbb{N}$, son equivalentes:

- f es n veces diferenciable en a(1)
- (2) f es n veces derivable en a

En caso de que se cumplan (1) y (2) se tiene:

$$D^n f(a)(h) = \left(\prod_{k=1}^n h(k)\right) f^{(n)}(a) \quad \forall h \in \mathbb{R}^n,$$

o lo que es lo mismo: $f^{(n)}(a) = D^n f(a)(1, 1, ..., 1)$

Campos escalares (I)

En lo que sigue fijamos $a \in \Omega = \Omega^{\circ} \subset \mathbb{R}^{N}$ y $f : \Omega \to \mathbb{R}$

Suponiendo que f es parcialmente derivable en Ω ,

llamamos derivadas parciales de segundo orden de f en a

a las derivadas parciales en el punto a, supuesto que existan,

de las funciones
$$\frac{\partial f}{\partial x_k}:\Omega\to\mathbb{R}\ \mbox{con}\ k\in\Delta_N\,.$$

Cuando existen, vienen dadas, para $k, j \in \Delta_N$ por:

$$\frac{\partial^2 f}{\partial x_j \partial x_k}(a) = \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} \right) (a)$$

Cuando j=k, en vez de $\frac{\partial^2 f}{\partial x_L \partial x_L}(a)$ escribimos $\frac{\partial^2 f}{\partial x_L^2}(a)$

Relación entre diferencial segunda y derivadas parciales de segundo orden

Si f es dos veces diferenciable en a,

existen todas las derivadas parciales de segundo orden de $\,f\,$ en $\,a\,$ y se tiene:

$$D^2 f(a)(e_j, e_k) = \frac{\partial^2 f}{\partial x_j \partial x_k}(a) \quad \forall j, k \in \Delta_N$$

donde $\{e_1,e_2,\ldots,e_N\}$ es la base usual de \mathbb{R}^N . Equivalentemente:

$$D^{2}f(a)(u,v) = \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{\partial^{2} f}{\partial x_{j} \partial x_{k}}(a) u(j) v(k) \quad \forall u, v \in \mathbb{R}^{N}$$

Por tanto, el teorema de Schwartz afirma en este caso que :

$$\frac{\partial^2 f}{\partial x_i \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_j}(a) \quad \forall j, k \in \Delta_N$$

Campos escalares (III)

Derivadas parciales de orden superior (por inducción)

Las N^n derivadas parciales de orden n de f en a cuando existen, son las derivadas parciales en el punto a de las N^{n-1} funciones derivadas parciales de orden n-1 de f Para manejarlas, conviene suponer que f es n veces diferenciable en a, con lo que existen todas las derivadas parciales de orden n de f en a, y no importa el orden en que se deriva con respecto a las distintas variables, gracias al teorema de Schwartz

Para cada multi-índice $\alpha=(\alpha_1,\ldots,\alpha_N)\in(\mathbb{N}\cup\{0\})^N$ con $\alpha_1+\ldots+\alpha_N=n$ $\partial^n f \qquad \qquad \partial^n f$

se denota por
$$\frac{\partial^n f}{\partial x^{\alpha}}(a) = \frac{\partial^n f}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_N^{\alpha_N}}(a)$$

a la derivada parcial que se obtiene cuando, para cada $j\in\Delta_N$ derivamos $lpha_j$ veces con respecto a la variable x_j

Caracterización de los campos escalares de clase C^n

Las siguientes afirmaciones son equivalentes:

- $f \in C^n(\Omega)$
- Existen todas las derivadas parciales de orden n de f en todo punto de Ω y definen funciones continuas en Ω

Polinomios

Definiciones

Polinomios entre espacios normados

Volvemos a trabajar con dos espacios normados, X e Y

Una función $H:X\to Y$ es un polinomio homogéneo de orden $n\in\mathbb{N}$ cuando existe $T\in L^n(X,Y)$ simétrica, tal que $H(x)=T\left(x^n\right)\ \forall x\in X$ donde hemos abreviado escribiendo $x^n=\left(x,x,\overset{(n)}{\dots},x\right)$

- Polinomio homogéneo de orden 0 = función constante
- ullet Polinomio homogéneo de orden $1\ =\$ aplicación lineal continua
- Si $Y = \mathbb{R}$: Polinomio homogéneo de orden 2 = forma cuadrática

Una función $P:X\to Y$ es un polinomio de orden $n\in\mathbb{N}$ cuando

$$P(x) = \sum_{k=0}^n H_k(x) \;\; \forall x \in X$$
 , donde, para cada $\; k \in \{0\} \cup \Delta_n \;$

 $H_k: X \to Y$ es un polinomio homogéneo de orden k

Fórmula infinitesimal del resto

Polinomio de Taylor de una función

En lo que sigue: $\Omega = \Omega^{\circ} \subset X$, $f: \Omega \to Y$, $a \in \Omega$, $n \in \mathbb{N}$

Si f es n veces diferenciable en a,

El polinomio de Taylor de orden n de f en a viene dado por:

$$T_n(f, a; x) = f(a) + \sum_{k=1}^{n} \frac{1}{k!} D^k f(a) ((x-a)^k) \quad \forall x \in X$$

donde de nuevo hemos escrito $(x-a)^k = (x-a, x-a, \overset{(k)}{\dots}, x-a)$

Fórmula infinitesimal del resto

Si f es n veces diferenciable en a, se tiene:

$$\lim_{x \to a} \frac{f(x) - T_n(f, a; x)}{\|x - a\|^n} = 0$$

Fórmula de Taylor con resto de Lagrange

Supongamos que f es n+1 veces diferenciable en Ω ,

que $[a,x]\subset\Omega$ y que existe $M\in\mathbb{R}^+_0$ tal que

$$||D^{n+1}f(u)|| \leqslant M \quad \forall u \in [a,x]$$

Se tiene entonces: $||f(x) - T_n(f, a; x)|| \le \frac{M ||x - a||^{n+1}}{(n+1)!}$