FF 三因子资产定价模型的实证检

巡

蒋志强

zqjiang.ecust@qq.com

实证检验方法

- 1. 时间序列检验
- 2. 横截面检验
- 3. 拓展:中国股市的三因子模型

多因子模型

CAPM 不是一个令人满意的模型

- ➤ Roll (1977)指出:真正的市场组合是不可观测, 实证研究中使用市场指数,只是近似替代物。
- ➤即使我们接受零假设,仅表示接受市场组合替代物条件下的有效性,不表示 CAPM 成立。
- ▶一个市场组合收益率还不足以解释众多股票的收益率,且市场组合(股票指数)难以预测,故引入多因子模型成为必然!

多因子模型

- ✓ 套利定价模型(Ross, 1976):假设资产的收益率由 *K* 个因子生成。
- ✓在无套利均衡条件下,资产(预期)的均衡收益率满足

$$E(R_i) = r_f + [E(\delta_1) - r_f] \cdot b_{i1} + [E(\delta_2) - r_f] \cdot b_{i2} + \dots + [E(\delta_k) - r_f] \cdot b_{ik}$$

✓若预期收益率 > 均衡收益率,有

$$\alpha_i = R_i - E(R_i) > 0$$

多因子模型

多因子模型的优缺点

- ✓预测市场指数十分困难,故 CAPM 只具有理论意义
- ✓寻找可预测的因子成为替代市场指数的必然选择,多因子模型更多地用于实际选股
- ✓多因子模型并没有告诉你哪些因子影响股票收益率,寻找因子就成为"独家秘笈"
- ✓在有效市场条件下,寻找规律者自己消灭 规律

常用的多因子模型

CRR 模型 (Chen, Roll and Ross, 1986)

$$r_{i} = \alpha + \beta_{mp} \cdot MP + \beta_{DEI} \cdot DEI + \beta_{UI} \cdot UI + \beta_{UPR} \cdot UPR + \beta_{UTS} \cdot UTS + \varepsilon$$

- ► MP 是工业产值增长率
- > DEI 是预期的通货膨胀率的变化值
- > UI 是实现的通胀率与预期通胀率之差
- ► UPR 是 BAA 级债券与长期国债的收益率之 差
- > UTS 是长期国债与短期国债的收益率之差

常用的多因子模型

Fama-French 三因子模型 (Fama and French , 1996)

FF 模型之前的实证结果

- ▶ 规模效应:小市值公司较大市值公司有更高的平均收益率 (Banz,1981)
- ▶ 财务杠杆:负债与股票市值之比可解释股票平均收益率 (Bhandari, 1988)
- ➤ BE/ME:账面市值比(B/M)与美国股票平均收益率正相关 (Stattman 1980,Lanstein 1985)
- ▶ E/P: 盈余与股票市值之比(市盈率倒数)有助于解释股票平均 收益率 (Basu, 1977)

风险因子

- >市场风险溢价 R_m - R_f
- ≻账面市值比(B/M)溢价 HML
- ▶规模溢价 SMB

规模组合构建:

- 1. 每年 6 月底计算各上市股票的市值(规模)
- 2. 根据市值中位数将股票分成两类 规模小的所有股票称为 S 类 规模大的所有股票称为 B 类

账面市值比组合构建:

每年 (t年) 6 月基于账面市值比 B/M 分类股票

- 1. 计算 t-1 年末股票账面值 B
- 2. 计算 t-1 年末股票最后一个交易日的股价 \times 发行股数 M
- 3. 计算 B/M 并分成三组:

最低30%的股票记为L类

中间 40% 的股票记为 M 类

最高30%股票记为H类

规模(S、B)和B/M(H、M、L)

两两组合构成6个投资组合

S/L, S/M, S/H, B/L, B/M, B/H

规模溢价 SMB = 公司规模最小的投资组合收益率 - 公司规模最大的投资组合收益率

$$SMB = \frac{S/L + S/M + S/H}{3} - \frac{B/L + B/M + B/H}{3}$$
$$= \frac{(S/L - B/L) + (S/M - B/M) + (S/H - B/H)}{3}$$

账面市值比溢价 HML = 高账面市值比投资组合收益率 - 低账面市值比投资组合收益率

$$HML = \frac{B/H + S/H}{2} - \frac{B/L + S/L}{2}$$

市场风险溢酬为 $R_m - R_f$

- $> R_f$ 为无风险利率
- ► R_m 所有股票的市值加权投资组合收益率(市场 指数的收益率替代)

资产组合 i 的 FF 模型为

$$r_i = \alpha_i + \beta_{mi}r_{mt} + \beta_{si}SMB + \beta_{hi}HML + \xi_i$$

单资产多因子模型检验步骤:

- 1. 用 OLS 估计参数,得到 α_i 的估计值
- 2. 计算 $\alpha_i = 0$ 的 t 检验统计量
- 3. 确定显著性水平,比较分位数或计算 p 值,作出统计推断

假设有 T 个样本,如何进行参数估计和检验 $\hat{r}_{it} = \hat{\alpha}_i + \hat{\beta}_{mi}r_{mt} + \hat{\beta}_{si}SMB_t + \hat{\beta}_{hi}HML_t + \xi_{it}$

✓ Fama-French 三因子模型

✓ 抽象为<u>多元线性回归模型</u>

✓ 最小二乘线性拟合进行参数估计

求解:

对上式中的求偏导,并有:

$$A = \begin{bmatrix} n & \sum X_{1i} & \sum X_{2i} & \sum X_{3i} \\ \sum X_{1i} & \sum X_{1i}^{2} & \sum X_{1i}X_{2i} & \sum X_{1i}X_{3i} \\ \sum X_{2i} & \sum X_{2i}X_{1i} & \sum X_{2i}^{2} & \sum X_{2i}X_{3i} \\ \sum X_{3i} & \sum X_{3i}X_{1i} & \sum X_{3i}X_{2i} & \sum X_{2i}^{2} \\ \end{bmatrix} b = \begin{bmatrix} \sum Y_{i} \\ \sum X_{1i}Y_{i} \\ \sum X_{2i}Y_{i} \\ \sum X_{2i}Y_{i} \\ \sum X_{3i}Y_{i} \end{bmatrix}$$

$$b = \begin{bmatrix} \sum Y_i \\ \sum X_{1i} Y_i \\ \sum X_{2i} Y_i \\ \sum X_{3i} Y_i \end{bmatrix}$$

最小二乘估计量为:
$$\hat{\beta}_i = [\hat{\alpha}_i, \hat{\beta}_{mi}, \hat{\beta}_{si}, \hat{\beta}_{hi}]$$

 $\hat{\beta}_i = A \setminus b$

检验 H_0 : $\alpha_i = 0$ 的统计量 (t 检验)

$$t_{\hat{\beta}} = \hat{\beta}_i. / \sqrt{s^2 \{ \text{diag}[(X^T X)^{-1}] \}}$$

$$s^2 = \frac{\sum e_t^2}{T - K - 1}$$

$$X = [1, X_1, X_2, X_3]$$

Fama-French 三因子模型

```
数据(锐思数据库, 2009-2017 年,月度): 行业指数(行业组合)、市场溢酬因子 (r_m - r_f)、公司规模因子 (SMB)、公司价值因子 (HML)、无风险收益 r_f 行业组合:上证能源、上证金融、上证消费、上证材料、上证工业、上证医药、上证信息
```


行业组合:上证能源、上证金融、上证消费、上证材料、上证工业、 上证医药、上证信息

	α	β	S	h
材料	-0.0019	1.1989***	0.0432	-0.1363
工业	-0.0025	1.1745***	-0.0527	0.1447
金融	0.0038	1.1065***	-0.2955***	0.3742***
信息	0.0022	1.0917***	0.3180**	-1.0102***
能源	-0.0068	1.0711***	-0.037	0.2413*
医药	0.0087*	0.6921***	0.0546	-0.9498***
消费	0.0067*	0.7794***	0.0604	-0.5464***

- ✓ 材料和工业组合可用 CAPM 模型解释。不能拒绝 $\alpha = 0$ 。
- ✓ 金融和信息组合可用 <u>FF</u> <u>三因子模型</u>解释。<u>不能拒绝</u> $\alpha = 0$ 。
- ✓ 医药和消费组合 $\underline{\text{rescale FF}}$ =因子模型解释。 $\underline{10\%}$ 显著性拒绝 $\underline{\alpha=0}$ 。
- ✓ 一般 s>0, h<0 , $\frac{\textbf{金融和能源与此相反}}{\textbf{o}}$ 。通常<u>剔除金融;能源金融属性强</u>。

多资产多因子模型检验步骤:

- 1. 用 OLS 估计参数,得到 α_i 的估计值
- 2. 联合检验 H_0 : $\alpha_1=\alpha_2=,...,\alpha_N=0$,计算统计量
- 3. 确定显著性水平,比较分位数或计算 p 值,作出统计推断

假设有 N 个资产,每个资产有 T 个样本,如何进行参数估计和检验?

✓ Fama-French 三因子模型写成向量形式

✓ 最小二乘线性拟合进行参数估计

假设有N个资产,每个资产有T个样本,如何进行参数估计和检验?

用 OLS 估计参数

$$\mathbf{r}_{t} = \boldsymbol{\alpha} + \boldsymbol{\beta}_{m} r_{mt} + \boldsymbol{\beta}_{s} SMB_{t} + \boldsymbol{\beta}_{h} HML_{t} + \boldsymbol{\varepsilon} t$$

$$[\alpha, \boldsymbol{\beta}_m, \boldsymbol{\beta}_s, \boldsymbol{\beta}_h] = \left[\sum_{t=1}^T \mathbf{r}_t, \sum_{t=1}^T \mathbf{r}_t r_{mt}, \sum_{t=1}^T \mathbf{r}_t S M B_t, \sum_{t=1}^T \mathbf{r}_t H M L_t\right] \times$$

$$\begin{bmatrix} T & \sum_{t=1}^{T} r_{mt} & \sum_{t=1}^{T} SMB_{t} & \sum_{t=1}^{T} HML_{t} \\ \sum_{t=1}^{T} r_{mt} & \sum_{t=1}^{T} r_{mt}^{2} & \sum_{t=1}^{T} SMB_{t} r_{mt} & \sum_{t=1}^{T} HML_{t} r_{mt} \\ \sum_{t=1}^{T} SMB_{t} & \sum_{t=1}^{T} r_{mt}SMB_{t} & \sum_{t=1}^{T} SMB_{t}^{2} & \sum_{t=1}^{T} HML_{t}SMB_{t} \\ \sum_{t=1}^{T} HML_{t} & \sum_{t=1}^{T} r_{mt}HML_{t} & \sum_{t=1}^{T} SMB_{t}HML_{t} & \sum_{t=1}^{T} HML_{t}^{2} \end{bmatrix}^{-1}$$

假设有N个资产,每个资产有T个样本,如何进行参数估计和检验?

联合检验 H_0 : $\alpha_1 = \alpha_2 = ,..., \alpha_N = 0$ (GRS 检验)

$$S_{\text{GRS}} = \frac{T - N - K}{N} \left[1 + \hat{\mu}_K^T \hat{\Omega}^{-1} \hat{\mu}_K \right]^{-1} \hat{\alpha}^T \hat{\Sigma}^{-1} \hat{\alpha} \sim F(N, T - N - K)$$

$$\hat{\mu}_K = \frac{1}{T} \sum_{t=1}^T \mathbf{f}_t, \mathbf{f}_t = [f_{1t}, \cdots, f_{Kt}]^T$$

$$\hat{\Omega} = \frac{1}{T} \sum_{t=1}^{T} (\mathbf{f}_t - \hat{\mu}_K) (\mathbf{f}_t - \hat{\mu}_K)^T$$

$$\hat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} \mathbf{e}_t \mathbf{e}_t^T, \mathbf{e}_t = [e_{1t}, \cdots, e_{Nt}]^T$$

Fama-French 三因子模型

```
数据(锐思数据库, 2009-2017年, 月度):
```

行业指数(行业组合)、市场溢酬因子 $(r_m - r_f)$ 、公司规模因子 (SMB)、公司价值因子 (HML)、无风险收益

 r_f

行业组合:上证能源、上证金融、上证消费、上证材料、 上证工业、上证医药、上证信息

alpha1, alpha2, alpha3, alpha4, alpha5, alpha6, alpha7, GRS, pvalue -0.0034, 0.0074, 0.0091, 0.0020, 0.0013, 0.0109, 0.0057, 3.0412, 0.0022

思考

- ▶ 价值股:高的净资产与市值比率 B/M 、盈余与股票市值之比 E/P 、现金流与股价之比 C/P 、现金股利与股价之比 D/P 的公司股票。
- 成长股:低的净资产与市值比率 B/M 、盈余与股票市值之比 E/P 、现金流与股价之比 C/P 、现金股利与股价之比 D/P 的公司股票。

在中国,到底是成长股好,还是价值股好呢?

横截面检验

- 1. 排序检验法(非参检验)
- 2. Fama-MacBeth 回归(参数检验)

多变量排序(两个变量 x_1 , x_2)

》序贯排序: x_1 是预测变量₁ x_2 是控制变量, 先排 x_2 ,再排 x_1

 \triangleright 独立排序: x_1 和 x_2 分别排序

排序法实证案例 (Fama and French 1992)

检验市值和 β 对股票平均收益率的解释能力数据:

- > CRSP 非金融类上市公司的市场数据
- > Compustat 上市公司损益表与资产负债表

排序方法:

- \triangleright 在 t 年的 6 月份,股票依市值分成 10 个分位;
- > 每个分位中按 β 分成 10 个分位 $(\beta \, \Pi \, t)$ 年前 2-6 年的数据计算)
- ▶ 100 个投资组合,持有 1 年后调整组合
- ▶ 计算组合收益率的均值

排序法实证案例 (Fama and French 1992)

B和市值双变量排序

表 3-6 先按市值 (ME) 再按β值序贯排序的资产组合月平均收益率

10 (0) 21	全部	低β	β-2	β - 3	β-4	β-5	β-6	β-7	β-8	β-9	高β
全部	1. 25	1.34	1. 29	1.36	1. 31	1.33	1. 28	1. 24	1. 21	1. 25	1. 14
小ME	1.52	1.71	1.57	1.79	1.61	1.50	1.50	1. 37	1. 63	1.50	1.42
ME - 2	1. 29	1. 25	1.42	1.36	1.39	1.65	1.61	1. 37	1.31	1. 34	1.11
ME - 3	1. 24	1.12	1.31	1. 17	1. 70	1. 29	1. 10	1. 31	1. 36	1. 26	0.76
ME - 4	1. 25	1. 27	1. 13	1.54	1.06	1.34	1.06	1.41	1, 17	1.35	0.98
ME - 5	1. 29	1.34	1.42	1. 39	1.48	1.42	1.18	1, 13	1. 27	1. 18	1.08
ME - 6	1. 17	1.08	1. 53	1. 27	1. 15	1. 20	1, 21	1. 18	1.04	1.07	1.02
ME - 7	1. 07	0. 95	1. 21	1. 26	1.09	1.18	1.11	1. 24	0. 62	1. 32	0.76
ME - 8	1. 10	1.09	1. 05	1. 37	1. 20	1. 27	0.98	1. 18	1. 02	1.01	0.94
ME -9	0.95	0. 98	0.88	1. 02	1. 14	1. 07	1. 23	0.94	0. 82	0. 88	0.59
大ME	0. 89	1.01	0.93	1. 10	0.94	0.93	0.89	1.03	0.71	0.74	0.56

控制市值,平均收益率不随 β 的增大而上升

排序法优点:

• 无函数形式假设,可发现非线性关系

排序法缺点:

- 组内平均,不能体现组内变量特征
- 变量增加,排序麻烦
- 一维无控制变量,无法排除其他因素影响

横截面检验

- 1. 排序检验法(非参检验)
- 2. Fama-MacBeth 回归(参数检验)

Fama-MacBeth 回归

其他公司特征 (Fama and French 1992)

β值,市值 (ME),普通账面值 (BE),总账面资产 (A),盈利 (E) 账面市值比 (BE/ME),盈利价格比 (E/P)

$$R = \gamma_0 + \gamma_1 \beta + \gamma_2 \ln(ME) + \gamma_3 \ln(BE/ME) + \gamma_4 \ln(A/ME) +$$

= $\gamma_5 \ln(A/BE) + \gamma_6 E/P \text{ dummy} + \gamma_7 E(+)/P + \epsilon$

- ✓ BE, A, E 为公司日历年 t-1 之前的最新会计年度末之值;
- ✓ BE/ME 和 A/ME 中的 ME 为 t-1 年 12 月的值;
- ✓ ln(ME) 为 t 年 6 月的值;
- ✓ E 为正, E(+)/P 为盈利价格比, E/P dummy 为 0; E
 为负, E(+)/P 为 0, E/P dummy 为 1。

Fama-MacBeth 回归

$$R = \gamma_0 + \gamma_1 \beta + \gamma_2 \ln(ME) + \gamma_3 \ln(BE/ME) + \gamma_4 \ln(A/ME) +$$

= $\gamma_5 \ln(A/BE) + \gamma_6 E/P \text{ dummy} + \gamma_7 E(+)/P + \epsilon$

			\mathbf{E}/P					
		E(+)/P	Dummy	ln(A/BE)	ln(A/ME)	ln(BE/ME)	ln(ME)	$oldsymbol{eta}$
	_							0.15 (0.46)
Beta 如何计算?	\checkmark						-0.15 (-2.58)	
每月一次回归,	✓						-0.17 (-3.41)	-0.37 (-1.21)
得到回归系数的						0.50 (5.71)		
时间序列,求均				-0.57 (-5.34)	0.50 (5.69)			
值和 t 统计量		4.72 (4.57)	0.57 (2.28)					
						0.35 (4.44)	-0.11 (-1.99)	
结果解释,课本	\checkmark			-0.50 (-4.56)	0.35 (4.32)	(1.11)	-0.11 (-2.06)	
P55 页		2.99 (3.04)	0.06 (0.38)				-0.16 (-3.06)	
		0.87 (1.23)	-0.14 (-0.90)			0.33 (4.46)	$-0.13 \\ (-2.47)$	
	_	1.15 (1.57)	-0.08 (-0.56)	-0.46 (-4.45)	0.32 (4.28)		-0.13 (-2.47)	

Fama-MacBeth 回归

Fama-MacBeth 回归优点:

- 易处理多变量情形
- · 所有观测值都有作用

Fama-MacBeth 回归缺点:

- 有特定的函数形式,模型本身可能存在问题
- 若实际关系为非线性,统计推断可能存在问题

Liu, J.-N., Stambaugh, R. F., Yuan, Y., Size and value in China, *Journal of Financial Economics*, **134**, (2019) 48-69.

与 FF 三因子模型不同之处

- 去掉壳公司(去掉市值最低的 30% 公司)
- ➤ Value: Earning Price Ratio 检验因子有效性:
- > 排序法
- ➤ Fama-MacBeth 回归

Liu, J.-N., Stambaugh, R. F., Yuan, Y., Size and value in China, *Journal of Financial Economics*, **134**, (2019) 48-69.

检验因子有效性 排序法

实验验证

- > 去掉壳公司,市值和盈利价格比序贯排序
- > 按年调整投资组合,计算投资组合平均收益率

Liu, J.-N., Stambaugh, R. F., Yuan, Y., Size and value in China, *Journal of Financial Economics*, **134**, (2019) 48-69.

检验因子有效性 Fama-MacBeth 回归

Quantity	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Intercept	0.0149	0.0581	0.0571	0.0659	0.0629	0.0690	0.0564	0.0716	0.0728
	(1.94)	(3.32)	(3.19)	(3.90)	(3.74)	(4.03)	(3.19)	(4.40)	(4.39)
eta	-0.0002		-0.0010	-0.0018	-0.0017	0.0002	-0.0010	-0.0002	-0.0004
	(-0.09)		(-0.37)	(-0.71)	(-0.67)	(0.07)	(-0.37)	(-0.06)	(-0.15)
log <i>ME</i>		-0.0049	-0.0046	-0.0046	-0.0048	-0.0068	-0.0047	-0.0066	-0.0064
		(-2.91)	(-2.69)	(-2.73)	(-3.00)	(-4.34)	(-2.80)	(-4.49)	(-4.40)
log <i>BM</i>				0.0057	,		, ,	0.0022	0.0035
G				(3.21)				(1.31)	(1.76)
log <i>AM</i>				, ,	0.0045			0.0014	` ,
O					(3.03)			(0.99)	
EP^+					,	0.9503		0.7825	0.7960
						(4.88)		(4.38)	(5.06)
D(EP < 0)						0.0006		-0.0005	-0.0001
_ ()						(0.31)		(-0.29)	(-0.04)
CP ⁺						(===)	0.0546	0.0181	(212 2)
							(3.41)	(1.35)	
D(CP < 0)							0.0019	0.0016	
2(0, (0)							(3.11)	(2.37)	
R^2	0.0196	0.0277	0.0441	0.0652	0.0677	0.0615	0.0454	0.0832	0.0776

The regressors include preranking CAPM β_i estimated using the past 12 months of daily returns with a five-lag Dimson (1979) correction; the log of month-end market cap (log M); the log of book-to-market (log BM); the log of assets-to-market (log AM); EP+, which equals the positive values of earnings-to-price, and zero otherwise; D(EP < 0), which equals one if earnings are negative, and zero otherwise; CP+ and D(CP < 0) (with the last two similarly defined).

Liu, J.-N., Stambaugh, R. F., Yuan, Y., Size and value in China, *Journal of Financial Economics*, **134**, (2019) 48-69.

构建因子

- ➢ 每月去掉壳公司(市值最低的 30%),剩余 70%的股票为研究对象;
- ➢ 按市值中值分成小市值组 (S) 和大市值组 (M) ;
- ➢ 按 EP 值分组: 顶部 30% (V), 中间 40% (M), 底部 30% (G);
- **取交集构建 6 个投资组合 S/V**, S/M, S/G, B/V, B/M, B/G; ($SMB = \frac{1}{3}(S/V + S/M + S/G) \frac{1}{3}(B/V + B/M + B/G)$, **通 股)** $VMG = \frac{1}{2}(S/V + B/V) \frac{1}{2}(S/G + B/G)$.

Liu, J.-N., Stambaugh, R. F., Yuan, Y., Size and value in China, *Journal of Financial Economics*, **134**, (2019) 48-69.

因子模型

 $R_t = \alpha + \beta_{MKT}MKT_t + \beta_{SMB}SMB_t + \beta_{VMG}VMG_t + \epsilon_t,$

与 FF 三因子模型比较

Factors	Avg. R-square
Panel A: All individual stocks in China	
MKT	0.385
MKT, SMB	0.507
MKT, VMG	0.471
MKT, SMB, VMG	0.536
Panel B: All but the smallest 30% of stocks in China	
MKT	0.417
MKT, SMB	0.528
MKT, VMG	0.501
MKT, SMB, VMG	0.562
Panel C: All individual stocks in the US	
MKT	0.177
MKT, SMB	0.231
MKT, HML	0.226
MKT, SMB, HML	0.273

	Alphas with respect to:			
Factors	CH-3	FF-3		
Panel A: Alpha (t-stati:	stic)			
FFSMB	-0.04	_		
	(-0.66)	_		
FFHML	0.34	_		
	(0.97)	_		
SMB	_	0.47		
	-	(7.03)		
VMG	-	1.39		
	_	(7.93)		
Panel B: GRS F-statistic	cs (p-value)			
FFSMB, FFHML	0.88	_		
	(0.41)	-		
SMB, VMG	_	33.90		
	_	(2.14×10^{-1})		

如何进行时间序列检验:单资产和多资产?

Greenblatt 的神奇公式及其改进

・资本回报率要高

ROC = 息稅前利润 / 资本

・价格要便宜

Earnings Yield = 息稅前利润 / 企业总价值

	神奇公式	沪深 300 指数
年化收益	19.29 %	7.85 %
最大回撤	-43.75 %	-46.70 %
夏普率	0.58	0.16

https://zhuanlan.zhihu.com/p/40032563