

## **NUC472/NUC442 Series CMSIS BSP Guide**

Directory Introduction for 32-bit NuMicro® Family

#### **Directory Information**

| Document   | Driver reference guide and revision history.                                         |
|------------|--------------------------------------------------------------------------------------|
| Library    | Driver header and source files.                                                      |
| SampleCode | Driver sample code.                                                                  |
| ThirdParty | Library from third party, including FatFs, LibMAD, lwIP, uIP, LibMAD, and FreeRTOS™. |

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.

Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com



#### **TABLE OF CONTENTS**

| 1 | DOCUMENT4                                                         |
|---|-------------------------------------------------------------------|
| 2 | LIBRARY5                                                          |
| 3 | SAMPLECODE6                                                       |
| 4 | THIRDPARTY7                                                       |
| 5 | SAMPLECODE\CORTEXM48                                              |
| 6 | SAMPLECODE\ISP9                                                   |
| 7 | SAMPLECODE\NUC472-NUTINY10                                        |
| 8 | SAMPLECODE\STDDRIVER11                                            |
|   | System Manager (SYS)11                                            |
|   | Flash Memory Controller (FMC)11                                   |
|   | External Bus Interface (EBI)11                                    |
|   | General Purpose I/O (GPIO)11                                      |
|   | PDMA Controller (PDMA)11                                          |
|   | Timer Controller (TIMER)12                                        |
|   | Watchdog Timer (WDT)12                                            |
|   | Window Watchdog Timer (WWDT)12                                    |
|   | Real Timer Clock (RTC)12                                          |
|   | PWM Generator and Capture Timer (PWM)13                           |
|   | Enhanced PWM Generator (EPWM)13                                   |
|   | Enhanced Input Capture Timer (ECAP)13                             |
|   | UART Interface Controller (UART)13                                |
|   | Smartcard Host Interface (SC)13                                   |
|   | PS/2 Device Controller (PS/2)14                                   |
|   | Serial Peripheral Interface (SPI)14                               |
|   | I <sup>2</sup> C Serial Interface Controller (I <sup>2</sup> C)14 |
|   | I <sup>2</sup> S Controller (I <sup>2</sup> S)15                  |
|   |                                                                   |



| USB 2.0 Device Controller (USBD)                   | 15 |
|----------------------------------------------------|----|
| USB 1.1 Host Controller (USBH)                     | 16 |
| USB OTG Controller (USBOTG)                        | 16 |
| Controller Area Network (CAN)                      | 17 |
| Ethernet MAC Controller (EMAC)                     | 17 |
| Secure Digital Host Controller (SD)                | 18 |
| Crypto Accelerator (CRYPTO)                        | 18 |
| Image Capture Interface (CAP)                      | 18 |
| CRC Controller (CRC)                               | 18 |
| Analog-to-Digital Converter (ADC)                  | 19 |
| Enhanced 12-bit Analog-to-Digital Converter (EADC) | 19 |
| Analog Comparator Controller (ACMP)                | 19 |



### 1 Document

| CMSIS.html                                                        | Document of CMSIS version 4.5.0.                                   |
|-------------------------------------------------------------------|--------------------------------------------------------------------|
| NuMicro NUC472_NUC442<br>Driver Reference Guide.html              | This document describes the usage of drivers in NUC472/NUC442 BSP. |
| NuMicro NUC472_NUC442<br>Series CMSIS BSP Revision<br>History.pdf | This document shows the revision history of NUC472/NUC442 BSP.     |



# 2 Library

| CMSIS        | Cortex® Microcontroller Software Interface Standard (CMSIS) V4.5.0 definitions by Arm® Corp. |
|--------------|----------------------------------------------------------------------------------------------|
| Device       | CMSIS compliant device header file.                                                          |
| SmartcardLib | Smartcard library binary and header file.                                                    |
| StdDriver    | All peripheral driver header and source files.                                               |
| UsbHostLib   | USB host library source code.                                                                |



# 3 SampleCode

| CortexM4                         | Cortex®-M4 sample code.                                                                                                                                                                                                                                                                                                          |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FreeRTOS                         | Simple FreeRTOS™ demo code.                                                                                                                                                                                                                                                                                                      |
| FreeRTOS_lwIP_httpd              | A simple HTTP server demonstrates LwIP under FreeRTOS™. This HTTP server's IP address could be configured statically to 192.168.0.2, or assign by DHCP server.                                                                                                                                                                   |
| FreeRTOS_IwIP_TCP_<br>EchoServer | A TCP echo server which is implemented with LwIP under FreeRTOS™. This echo server listens to port 80, and its IP address could be configured statically to 192.168.1.2 or assigned by DHCP server. This server replies "Hello World!!" if the received string is "nuvoton", otherwise replies "Wrong Password!!" to its client. |
| FreeRTOS_IwIP_UDP_<br>EchoServer | A UDP echo server which is implemented with LwIP under FreeRTOS™. This echo server listens to port 80, and its IP address could be configured statically to 192.168.1.2 or assigned by DHCP server. After receiving any string from its peer, this server echoes that string back.                                               |
| Hard_Fault_Sample                | Show hard fault information when hard fault happened.                                                                                                                                                                                                                                                                            |
| ISP                              | ISP firmware samples.                                                                                                                                                                                                                                                                                                            |
| ISP_Updater                      | Sample ISP updater that reads firmware from pen driver and updates to APROM.                                                                                                                                                                                                                                                     |
| NUC472-NuTiny                    | Sample code for NUC472 Tiny Board.                                                                                                                                                                                                                                                                                               |
| RTX_Blinky                       | Simple RTX demo code that blinks the on-board LED.                                                                                                                                                                                                                                                                               |
| Semihost                         | Show how to print and get character through IDE console window.                                                                                                                                                                                                                                                                  |
| StdDriver                        | Sample code to demonstrate the usage of NUC472/NUC442 MCU peripheral driver APIs.                                                                                                                                                                                                                                                |
| Template                         | A project template for NUC472/NUC442 MCU.                                                                                                                                                                                                                                                                                        |



# 4 ThirdParty

| FATFS          | A generic FAT file system module for small embedded systems. Its official website is: http://elm-chan.org/fsw/ff/00index_e.html.                                                                                                                                                                                                                                                                     |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FreeRTOSV8.2.1 | A real time operating system available for free download. Its official website is: http://www.freertos.org/.                                                                                                                                                                                                                                                                                         |
| LibMAD         | A MPEG audio decoder library which currently supports MPEG-1 and the MPEG-2 extension to lower sampling frequencies, as well as the de facto MPEG 2.5 format. All three audio layers — Layer I, Layer II, and Layer III (i.e. MP3) are fully implemented. This library is distributed under GPL license. Please contact Underbit Technologies (http://www.underbit.com/) for the commercial license. |
| lwip-1.4.1     | A widely used open source TCP/IP stack designed for embedded systems. Its official website is: http://savannah.nongnu.org/projects/lwip/.                                                                                                                                                                                                                                                            |
| uip-0.9        | uIP is a very small implementation of the TCP/IP stack that is written by Adam Dunkels <adam@sics.se>. More information can be obtained from the uIP homepage at http://www.sics.se/~adam/uip/.</adam@sics.se>                                                                                                                                                                                       |



## 5 SampleCode\CortexM4

| BitBand | Demonstrate the usage of Cortex®-M4 Bit-band.                   |
|---------|-----------------------------------------------------------------|
| DSP_FFT | Demonstrate how to call ARM CMSIS DSP library to calculate FFT. |
| MPU     | Demonstrate the usage of Cortex®-M4 MPU.                        |



## 6 SampleCode\ISP

| ISP_CAN   | In-System-Programming sample code through an CAN interface.                        |
|-----------|------------------------------------------------------------------------------------|
| ISP_DFU   | In-System-Programming sample code through USB DFU( Device Firmware Upgrade) class. |
| ISP_HID   | In-System-Programming sample code through a USBD HID interface.                    |
| ISP_I2C   | In-System-Programming sample code through I <sup>2</sup> C interface.              |
| ISP_RS485 | In-System-Programming sample code through RS485 interface.                         |
| ISP_SPI   | In-System-Programming sample code through SPI interface.                           |
| ISP_UART  | In-System-Programming sample code through UART interface.                          |



# 7 SampleCode\NUC472-NuTiny

| LED Toggle PB.10 to turn on / off the board LEI | Э. |
|-------------------------------------------------|----|
|-------------------------------------------------|----|



### 8 SampleCode\StdDriver

### **System Manager (SYS)**

| SYS_Control | Demonstrate the usage of SYS driver by changing different PLL setting for the system clock source. This sample also enables the CLKO (PC.5) output with frequency set to system clock / 4. |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

### Flash Memory Controller (FMC)

| FMC_MULTI_WORD_PROG | Show FMC ISP multi-word program function. The loader.bin will load fmc_multi_word_prog.bin to SRAM and execute it. |
|---------------------|--------------------------------------------------------------------------------------------------------------------|
| FMC_RW              | Show FMC read flash IDs, erase, read, and write functions.                                                         |
| FMC_VECTOR_REMAP    | Show how to branch programs between LDROM, APROM start page, and APROM other page.                                 |

#### **External Bus Interface (EBI)**

| EBI_SRAM | Configure EBI interface to access SRAM connects on EBI interface. |
|----------|-------------------------------------------------------------------|
|----------|-------------------------------------------------------------------|

### **General Purpose I/O (GPIO)**

| GPIO | Use GPIO driver to control the GPIO pin direction, control their high/low state, and how to use GPIO interrupts. |
|------|------------------------------------------------------------------------------------------------------------------|
|------|------------------------------------------------------------------------------------------------------------------|

### **PDMA Controller (PDMA)**

| PDMA                | Use PDMA channel 2 to demonstrate memory to memory transfer.                        |
|---------------------|-------------------------------------------------------------------------------------|
| PDMA_Scatter_Gather | Use PDMA channel 5 to demonstrate memory to memory transfer by scatter-gather mode. |



## **Timer Controller (TIMER)**

| Timer_Delay            | Demonstrate the usage of TIMER_Delay() API to generate a 1 second delay.                                                            |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| TIMER_EventCounter     | Use pin PB.4 to demonstrates timer event counter function.                                                                          |
| Timer_FreeCountingMode | Use the timer pin PC.8 to demonstrate timer free counting mode function. And displays the measured input frequency to UART console. |
| Timer_Periodic         | Use the timer periodic mode to generate timer interrupt every 1 second.                                                             |
| Timer_ToggleOut        | Demonstrate the timer 0 toggle out function on pin PB.4.                                                                            |
| TIMER_Wakeup           | Use Timer to wake up system from Power-down mode periodically.                                                                      |

### **Watchdog Timer (WDT)**

| WDT_Polling | Use polling mode to check WDT time-out state and reset WDT after time out occurs. |
|-------------|-----------------------------------------------------------------------------------|
| WDT_Wakeup  | Use WDT to wake system up from power-down mode periodically.                      |

## Window Watchdog Timer (WWDT)

### **Real Timer Clock (RTC)**

| RTC_Alarm_Test   | Demonstrate the RTC alarm function. It sets an alarm 10 seconds after execution. |
|------------------|----------------------------------------------------------------------------------|
| RTC_Spare_Access | Show how to access RTC spare registers.                                          |
| RTC_Time_Display | Demonstrate the RTC function and displays current time to the UART console.      |



#### **PWM Generator and Capture Timer (PWM)**

| PWM_Capture  | Demonstrate PWM Capture function by using PWM0 channel 2 to capture the output of PWM0 channel 0. Please connect PA.5 and PC.10 to execute this code. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| PWM_DeadZone | Demonstrate the dead-zone feature with PWM0.                                                                                                          |

#### **Enhanced PWM Generator (EPWM)**

| EPWM_Brake    | Demonstrate the brake function of EPWM0.                              |
|---------------|-----------------------------------------------------------------------|
| EPWM_DeadZone | Demonstrate the dead-zone feature with EPWM0 channel 0 and channel 1. |

### **Enhanced Input Capture Timer (ECAP)**

| ECAP | Demonstrate the Enhanced capture function using PC.5 |
|------|------------------------------------------------------|
|      |                                                      |

### **UART Interface Controller (UART)**

| UART_AutoFlow      | Transmit and receive data using auto flow control.                  |
|--------------------|---------------------------------------------------------------------|
| UART_IrDA          | Transmit and receive UART data in UART IrDA mode.                   |
| UART_PDMA          | Demonstrate UART transmit and receive function with PDMA.           |
| UART_RS485         | Transmit and receive data in UART RS485 mode.                       |
| UART_TxRx_Function | Transmit and receive data from PC terminal through RS232 interface. |

### **Smartcard Host Interface (SC)**

| SC_ReadATR  | Read the smartcard ATR from smartcard 5 interface.                 |
|-------------|--------------------------------------------------------------------|
| SCUART_TxRx | Demonstrate smartcard UART mode by connecting PA.7 and PA.10 pins. |



## **PS/2 Device Controller (PS/2)**

| P5/ | Simulate the behavior of a PS/2 mouse by moving the cursor on the screen. |
|-----|---------------------------------------------------------------------------|
|     |                                                                           |

### **Serial Peripheral Interface (SPI)**

| SPI_DualMode_Flash    | Access SPI Flash using SPI dual mode.                                                                                                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPI_Flash             | Access SPI Flash through SPI interface.                                                                                                                                    |
| SPI_LoopBack          | A SPI read/write demo by connecting SPI0 and SPI1 interface.                                                                                                               |
| SPI_MasterMode        | SPI master mode demo code. This sample code needs to work with <a href="SPI_SlaveMode">SPI_SlaveMode</a> sample code.                                                      |
| SPI_MasterSlave_PDMA  | Demonstrate the usage of PDMA transfer. One SPI interface is use as a host, and the other is slave. Totally 4 PDAM channels are used in this sample.                       |
| SPI_QuadMode_Flash    | Access SPI Flash using SPI quad mode.                                                                                                                                      |
| SPI_SlaveMode         | SPI slave mode demo code. This sample code needs to work with SPI MasterMode sample code.                                                                                  |
| SPI_TFT_LCD           | Display an image on TFT LCD panel via SPI interface.                                                                                                                       |
| SPI_TxRxLoopback_PDMA | Demonstrate the usage of PDMA transfer. One SPI interface is enabled in loopback mode. Two PDMA channels are used in this sample, one for transmit, the other for receive. |

## I<sup>2</sup>C Serial Interface Controller (I<sup>2</sup>C)

| I2C_EEPROM  | Read/write EEPROM via I <sup>2</sup> C interface.                                                     |
|-------------|-------------------------------------------------------------------------------------------------------|
| I2C_GSENSOR | Read G-sensor (DMARD08) data via I <sup>2</sup> C interface.                                          |
| I2C_Master  | An I <sup>2</sup> C master mode demo code. This sample code needs to work with I2C Slave sample code. |
| I2C_Slave   | An I <sup>2</sup> C slave mode demo code. This sample code could                                      |



|                                                | work with <a href="Master">I2C Master</a> sample code.                                                                       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| I <sup>2</sup> S Controller (I <sup>2</sup> S) |                                                                                                                              |
| I2S_MP3PLAYER                                  | A MP3 player sample which plays MP3 files stored on SD memory card.                                                          |
| I2S_NAU8822                                    | An I <sup>2</sup> S demo using NAU8822 audio codec, and used to play back the input from line-in or MIC interface.           |
| I2S_NAU8822_PDMA                               | An I <sup>2</sup> S with PDMA demo using NAU8822 audio codec, and used to play back the input from line-in or MIC interface. |
| I2S_WAVPLAYER                                  | A WAV file player which plays back WAV file stored in USB pen drive.                                                         |

## **USB 2.0 Device Controller (USBD)**

| USBD_Audio_Microphone             | An UAC1.0 sample used to record the sound to PC through the USB interface.                                                                                                       |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USBD_Audio_Speaker                | An UAC1.0 sample used to play the sound sent from PC through the USB interface.                                                                                                  |
| USBD_Bulk                         | Sample USB device bulk transfer code.                                                                                                                                            |
| USBD_HID_MOUSE                    | Simulate a USB mouse and draws circle on the screen.                                                                                                                             |
| USBD_HID_Mouse_Vender             | Simulate a USB mouse that supports vendor command.                                                                                                                               |
| USBD_HID_MouseKeyboard            | Simulate a USB mouse and a USB keyboard.                                                                                                                                         |
| USBD_HID_Transfer                 | Demonstrate how to transfer data between USB device<br>and PC through USB HID interface. A windows tool is<br>also included in this sample code to connect with a USB<br>device. |
| USBD_Mass_Storage_DataFlash       | Use embedded data flash as storage to implement a USB Mass-Storage device.                                                                                                       |
| USBD_Mass_Storage_<br>ShortPacket | Implement a mass storage class sample to demonstrate how to receive a USB short packet.                                                                                          |



| USBD_Mass_Storage_SRAM             | Use internal SRAM as back end storage media to simulate a 30 KB USB pen drive.                         |
|------------------------------------|--------------------------------------------------------------------------------------------------------|
| USBD_Mass_Storage<br>SactterGather | Demonstrate the usage of USBD DMA scatter gather function.                                             |
| USBD_VCOM_SerialEmulator           | Demonstrate how to implement a USB virtual com port device.                                            |
| USBD_VENDOR_LBK                    | A USB device vendor class sample program. This sample code needs to test with <u>USBH_VENDOR_LBK</u> . |

## **USB 1.1 Host Controller (USBH)**

| USBH_AUDIO_CLASS  | A USB Host sample code to support USB Audio Class.                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|
| USBH_HID          | Use USB Host core driver and HID driver. It shows how to submit HID class request and how to read data from interrupt pipe. |
| USBH_HID_KEYBOARD | Show how to use USB Host driver to handle HID keyboard devices                                                              |
| USBH_HID_MULTI    | Show how to implement a USB Host and recognize multi-HID devices when devices plug-in.                                      |
| USBH_UAC_HID      | A USB Host sample code to support USB Audio Class with HID composite device.                                                |
| USBH_UMAS         | Use USB Host core driver, USB mass storage driver, and FATFS file system to show a disk access shell interface.             |
| USBH_VENDOR_LBK   | A USB host vendor class sample program. This sample code needs to test with <u>USBD_VENDOR_LBK</u> .                        |

### **USB OTG Controller (USBOTG)**

| USBOTG_Dual_Role_UMAS | An OTG sample code which will become a USB host when connected with a Micro-A cable, and can access the pen drive when plugged in. It will become a removable disk when connected with a Micro-B cable, |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



| and then plug into PC. |  |
|------------------------|--|
|------------------------|--|

### **Controller Area Network (CAN)**

| CAN_BasicMode_Rx     | Demonstrate CAN bus receive a message with basic mode. This sample code could work with <a href="CAN BasicMode Tx">CAN BasicMode Tx</a> sample code.     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAN_BasicMode_Tx     | Demonstrate CAN bus transmit a message with basic mode. This sample code could work with <a href="CAN BasicMode Rx">CAN BasicMode Rx</a> sample code.    |
| CAN_BasicMode_Tx_Rx  | Demonstrate CAN bus transmit and receive a message with basic mode by connecting CAN0 and CAN1 to the same CAN bus.                                      |
| CAN_NormalMode_Rx    | Demonstrate CAN bus receive a message with normal mode. This sample code could work with <a href="CAN NormalMode Tx">CAN NormalMode Tx</a> sample code.  |
| CAN_NormalMode_Tx    | Demonstrate CAN bus transmit a message with normal mode. This sample code could work with <a href="CAN NormalMode Rx">CAN NormalMode Rx</a> sample code. |
| CAN_NormalMode_Tx_Rx | Demonstrate CAN bus transmit and receive a message with normal mode by connecting CAN 0 and CAN1 to the same CAN bus.                                    |

## **Ethernet MAC Controller (EMAC)**

| EMAC_TimeStamp | Demonstrate the usage of Ethernet time stamp function. It sets current time to 1000 second and prints out current time every second. It also sets an alarm at 1010 second. And rewind current time by 5 seconds after the alarm. |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EMAC_TxRx      | This Ethernet sample tends to get a DHCP lease from DHCP server, and use 192.168.10.10 as IP address if failed to get a lease. After IP address configured, this sample can reply to PING packets.                               |
| EMAC_uIP_httpd | Implement a HTTP server using uIP.                                                                                                                                                                                               |



| EMAC_uIP_telnetd | Implement a Telnet server using uIP. |
|------------------|--------------------------------------|
|------------------|--------------------------------------|

### **Secure Digital Host Controller (SD)**

| SD_FATFS Access a SD card formatted in FAT file system | 1. |
|--------------------------------------------------------|----|
|--------------------------------------------------------|----|

### **Crypto Accelerator (CRYPTO)**

| CRYPTO_AES  | Show Crypto IP AES-128 ECB mode encrypt/decrypt function.               |
|-------------|-------------------------------------------------------------------------|
| CRYPTO_PRNG | Generate random numbers using Crypto IP PRNG.                           |
| CRYPTO_SHA  | Use Crypto IP SHA engine to run through known answer SHA1 test vectors. |
| CRYPTO_TDES | Show Crypto IP Triple DES CBC mode encrypt/decrypt function.            |

### **Image Capture Interface (CAP)**

| CAP_MotionDetection  | Implement motion detection with image capture interface.                                                                                                                                                                     |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAP_Packet_DownScale | Use packet format (all the luma and chroma data interleaved) to store captured image from NT99141 sensor to SRAM.                                                                                                            |
| CAP_Planar_DownScale | Use planar format (all the luma information for a frame, followed by all the information for one chroma channel, and then the information for the other chroma channel) to store captured image from NT99141 sensor to SRAM. |

### **CRC Controller (CRC)**

| CRC_CCITT | Implement CRC in CRC-CCITT mode and get the CRC checksum result. |
|-----------|------------------------------------------------------------------|
| CRC_CRC8  | Implement CRC in CRC-8 mode and get the CRC checksum result.     |



### **Analog-to-Digital Converter (ADC)**

| ADC_Compare         | Demonstrate ADC conversion and comparison function by monitoring the conversion result of channel 0. |
|---------------------|------------------------------------------------------------------------------------------------------|
| ADC_ContinuousScan  | Convert ADC channel 0, 1, 2 in continuous scan mode and prints conversion result.                    |
| ADC_PDMA            | Use PDMA channel 1 to move ADC channel 0, 1, 2 converted data to SRAM.                               |
| ADC_SingleCycleScan | Convert ADC channel 0, 1, 2 in single cycle scan mode and prints conversion result.                  |
| ADC_SingleMode      | Convert ADC channel 0 in single mode and prints conversion result.                                   |

### **Enhanced 12-bit Analog-to-Digital Converter (EADC)**

| EADC_ADINT_Trigger    | Demonstrate how to use ADINT interrupt to trigger EADC.                                                               |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| EADC_Compare          | Demonstrate EADC conversion and comparison function by monitoring the conversion result of sample module 0 channel 2. |
| EADC_PWM_Trigger      | Show how to trigger EADC0 SAMPLE module 0 by PWM channel 0                                                            |
| EADC_SimultaneousMode | Demonstrate EADC0 sample module 2 and EADC1 sample module 2 in simultaneous sampling mode.                            |
| EADC_STADC_Trigger    | Demonstrate how to trigger EADC by STADC external signal.                                                             |
| EADC_SWTRG_Trigger    | Demonstrate how to trigger EADC by writing EADC_SWTRG register.                                                       |
| EADC_Timer_Trigger    | Demonstrate how to trigger EADC by timer.                                                                             |

### **Analog Comparator Controller (ACMP)**

| ACMP | Demonstrate analog comparator (ACMP) comparison by |
|------|----------------------------------------------------|
|      |                                                    |



comparing ACMP0\_P0 input and VBG voltage and shows the result on UART console.



#### **Important Notice**

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.