Using mbd

Giovanni Laudanno and Richel J.C. Bilderbeek 2018-11-06

1. Introduction

mbd is a package to support multiple birth model. This model accounts for a diversification process in which multiple birth (at different nodes) are allowed to occur at the same time.

The basic framework is described in Etienne et al. 2012^1 . The main purpose of the package is to provide a tool to estimate, given a phylogenetic tree, the likelihood for a set of four parameters: λ , μ , ν and q. Here:

- λ is the sympatric speciation rate;
- μ is the extinction rate;
- ν is the multiple allopatric speciation trigger rate;
- q is the single-lineage speciation probability.

Those parameters may be inferred through a maximum likelihood approach using the function mbd_ml.

2. Setup

We will need to load the package:

```
library(mbd)
```

Also, we will set the random number generator seed to a value, so that this vignette always produces the same results:

```
set.seed(2)
```

3. Simulating an MBD tree

First we set the parameters of the MBD speciation model:

```
lambda <- 0.2 # sympatric speciation rate
mu <- 0.15 # extinction rate;
nu <- 2.0 # multiple allopatric speciation trigger rate
q <- 0.1 # single-lineage speciation probability</pre>
```

Then we set some basic parameters to create a simulated tree:

¹Etienne, R.S., Haegeman, B., Stadler, T., Aze, T., Pearson, P.N., Purvis, A., Phillimore, A.B.: Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proceedings of the Royal Society of London B: Biological Sciences 279(1732), 1300–1309 (2012)

```
crown_age <- 1
sim_pars <- c(lambda, mu, nu, q)
sim <- mbd_sim(
  pars = sim_pars,
  n_0 = 2, # Use a crown age
  age = crown_age,
  cond = 1 # Condition on non-extinction
)</pre>
```

These are additional auxiliary parameters such as n_0 (equal to 1 if we want a stem, or 2 if we want a crown), cond (let us condition the tree on the survival of crown species) and crown_age (being the total age of the tree).

4. Showing the results

The sim list contain different objects. You can visualize the full tree and keep track of species that die before present time (missing species):

```
graphics::plot(sim$full_tree)
```


If you want you can also show the reconstructed tree, obtained cutting the kinks from the previous tree:

```
graphics::plot(sim$reconstructed_tree)
```


The dataframe containing all the information related to this tree is labeled as L (or L-table). You can access it by typing:

knitr::kable(head(sim\$l_matrix))

birth_time	parent	id	death_time
1.0000000	0	-1	0.0531426
1.0000000	-1	2	-1.0000000
0.4742348	2	3	-1.0000000
0.4396944	-1	-4	-1.0000000

In this table:

- the first column are the times at which species are born;
- the second contains labels of the species' parents; positive and negative values only indicate whether the species belongs to the left or right crown lineage;
- the third contains the labels of the daughter species themselves; positive and negative values only indicate whether the species belongs to the left or right crown lineage;
- the fourth contains the extinction times of the species. If this is equal to -1, then the species is still extant.

To recover the vector of branching times use:

In this vector values repeated more than once indicate that a multiple birth process has taken place.

5. Likelihood estimation

To estimate the likelihood of a phylogeny, one needs

- parameter estimates
- the branching times (topology is irrelevant)

In this case, we will use

- the parameter estimates that we used to generate the tree
- the branching times of the tree we generated

The function mbd_loglik shows the likelihood of the parameters having generated the branching times:

```
mbd::mbd_loglik(
  pars = c(lambda, mu, nu, q),
  brts = sim$brts,
  n_0 = 2, # Crown age
  cond = 1 # Non-extinction
)
```

[1] -1.237561

6. Maximum likelihood estimation

You can also ask for an optimization of the likelihood function using the function mbd_ml either considering a variation of all the parameters (λ, μ, ν, q) or any their subset of your choice.

Because this is a heavy calculation, we will use a simpler tree:

```
phylogeny <- ape::read.tree(text = "((A:1, B:1):2, C:3);")
ape::plot.phylo(phylogeny)</pre>
```

```
brts <- ape::branching.times(phylogeny)</pre>
```

If you want for example to maximize the likelihood only for the parameter q:

```
brts <- sim$brts
start_pars <- c(0.2, 0.15, 1, 0.15)
optim_ids <- c(FALSE, FALSE, TRUE)
n_0 <- 2
cond <- 1
out <- mbd::mbd_ml(
    start_pars = start_pars,
    true_pars = sim_pars,
    optim_ids = optim_ids,
    brts = brts,
    cond = cond,
    n_0 = n_0,
    verbose = TRUE
)</pre>
```

```
## You are optimizing q
## You are fixing lambda mu nu
```

```
## Optimizing the likelihood - this may take a while.
## The loglikelihood for the initial parameter values is -1.24789
## 1 0.15 -1.24788982671216 initial
## 2 0.135287846481876 -1.24103363564973 expand
## 3 0.106964656964657 -1.23648686307913 expand
## 4 0.106964656964657 -1.23648686307913 contract inside
## 5 0.113912133891213 -1.23636226608897 contract inside
## 6 0.110427528675704 -1.23631219027019 contract inside
## 7 0.112167101827676 -1.23630954234395 contract inside
## 8 0.111296634489956 -1.2363038943574 contract inside
## 9 0.111296634489956 -1.2363038943574 contract inside
## 10 0.111296634489956 -1.2363038943574 contract inside
## 11 0.111405368383288 -1.23630383988072 contract inside
## 12 0.111405368383288 -1.23630383988072 contract inside
## 13 0.111378182915196 -1.23630383308519 contract inside
## 14 0.111378182915196 -1.23630383308519 contract inside
## 15 0.111378182915196 -1.23630383308519 contract inside
## 16 0.111378182915196 -1.23630383308519 contract inside
## 17 0.111378182915196 -1.23630383308519 contract inside
## 18 0.111378182915196 -1.23630383308519 contract inside
## Optimization has terminated successfully.
## Maximum likelihood parameter estimates: lambda: 0.2 mu: 0.15 nu: 2 q: 0.111
## Maximum loglikelihood: -1.236304
```

knitr::kable(out)

lambda	mu	nu	q	loglik	df	conv
0.2	0.15	2	0.1113782	-1.236304	1	0