

planetmath.org

Math for the people, by the people.

free algebra

Canonical name FreeAlgebra

Date of creation 2013-03-22 16:51:05 Last modified on 2013-03-22 16:51:05

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771) Entry type Definition Classification msc 08B20

Synonym free algebraic system

Related topic TermAlgebra

Defines free generating set

Let \mathcal{K} be a class of algebraic systems (of the same type τ). Consider an algebra $A \in \mathcal{K}$ http://planetmath.org/SubalgebraOfAnAlgebraicSystemgenerated by a set $X = \{x_i\}$ indexed by $i \in I$. A is said to be a free algebra over \mathcal{K} , with free generating set X, if for any algebra $B \in \mathcal{K}$ with any subset $\{y_i \mid i \in I\} \subseteq B$, there is a homomorphism $\phi: A \to B$ such that $\phi(x_i) = y_i$.

If we define $f: I \to A$ to be $f(i) = x_i$ and $g: I \to B$ to be $g(i) = y_i$, then freeness of A means the existence of $\phi: A \to B$ such that $\phi \circ f = g$.

Note that ϕ above is necessarily unique, since $\{x_i\}$ generates A. For any n-ary polynomial p over A, any $z_1, \ldots, z_n \in \{x_i \mid i \in I\}, \phi(p(z_1, \ldots, z_n)) = p(\phi(z_1), \ldots, \phi(z_n))$.

For example, any free group is a free algebra in the class of groups. In general, however, free algebras do not always exist in an arbitrary class of algebras.

Remarks.

- A is free over itself (meaning K consists of A only) iff A is free over some equational class.
- If K is an equational class, then free algebras exist in K.
- Any term algebra of a given structure τ over some set X of variables is a free algebra with free generating set X.