Creating a condensed scRNA-seq atlas of the lung

... and the framework to create other condensed atlases

Goals

- Condense very large, dense scRNA-seq datasets into smaller, most relevant data
- Compare and contrast different scRNA-seq datasets cohesively
- Create a navigable interface to easily answer questions about scRNA-seq datasets
 - Does cell type A express gene A more than cell type B?
 - Is expression of gene A higher earlier in development or later?
 - In dataset A what does expression of gene X look like?

Outline

- 1. Align datasets
 - a. Assign the same set of cell types to all datasets
 - b. Ensure metadata is consistent
- 2. Extract relevant data from each dataset into a database
 - Across whole dataset and each metadata
 - i. Cell count
 - ii. Average expression of each gene
 - iii. Percent expressing of each gene
- 3. Create API to pull and visualize data
 - a. Ying's project

Align datasets

- Choose a atlas scRNA-seq dataset to align others to
 - This has cell type list to assign to all data
- Run northstar package using atlas above
 - Run only looking for neighbors in the atlas
 - This forces only cell types from atlas to be assigned, no identification of new clusters/cell types
- Make sure metadata naming is consistent across all datasets

Example reannotation

- Dataset similar to ours in developing lung
 - Has additional timepoints we do not
- Mesenchymal cells annotated with much less diversity than our own
 - E.g. missing vascular smooth muscle cells (VSMC)
- Reannotation using Northstar identifies Pericyte 1 as VSMC

Extract relevant data

- Standardized pipeline of handling count matrices
- Must have consistent naming conventions for
 - Cell type
 - Timepoint
 - More metadata to be added in the future
- Important plotting info
 - Gene expression averages
 - Gene expression percent of group expressing
 - Abundances
 - o More?

Data Structure ideas/options (work in progress)

Python dictionary

Levels

- Metadata level 1 (cell type)
 - a. By metadata columns
 - i. Cell counts
 - ii. Average expression
 - iii. Percent Expressing
- 2. Meta data level 2 (cell type _ timepoint)
 - a. E.g.
 - i. Cell type / timepoint
 - ii. Cell type / dataset

Stored as H5 files

Cell type Avg. Exp.	Gene A	Gene B	Gene C
ASM			
AT2			

Cell type/Timepoint Avg Exp	Gene A	Gene B	Gene C	
ASM_P1				
ASM_P7				

Web Interface

- Ying's project
- Creating a user friendly interface to access data and ask relevant biological questions
- Heatmaps / Dotplots / Barplots