迴歸分析作業一 (模擬資料)

指導教授: 沈葆聖 老師

學生: 王奎貿

```
dm'log; clear; output; clear;';
data one; /* 建立一個資料集one*/
rep = 1; n = 100; sigama = 1; /* 產牛rep * n個觀察值 */
beta0 = 1; beta1 = 2; beta2 = 2; beta3 = 5; /* 設定參數 */
mu = 1; sigma = 1; mu2 = 2;
do r = 1 to rep;
do j = 1 to n;
seed1 = 1234; seed2 = 3456; seed3 = 899;
x1 = mu + sigma * rannor(seed1); /* x1隨機從N(1, 1)抽出 */
u = ranuni(seed2);
x2 = (mu2) / 2 * u; /* x2中u做轉換所得 */
epsilon = sigama * rannor(seed3); /* epsilon隨機從N(0, 1)抽出 */
ey = beta0 + beta1*x1 + beta2*x2 + beta3*x1**2;
y = ey + epsilon; /* 建立模型 */
output;
end;
end:
data one; set one; /* 建立資料集one,將剛才的資料集one放入 */
x3 = x1**2; /* 產生一個新變數x3 = x1^2 */
proc sort; by r; /* 根據r排序 */
proc print; run;
proc reg outest = tcorr; by r; /* 建立一個統計摘要表叫做tcorr */
model y = x1 x2 x3; /* 模型 */
output out = out1 p=py r=ry student = ry1 rstudent = ry2; /* 輸出資料檔並命名為
out1,放入了預測值(p)、殘差(r)、學生化殘差、去除化學生化殘差*/
title 'residual plot when model is correct ';
data out1; set out1; if r = 1;
proc gplot; plot ry1*py = ' * '/ vref = 0; /* y軸為學生化殘差, x軸為預測值 */
title 'plot for studentized residual';
proc gplot; plot ry2*py = ' * '/ vref = \mathbf{0}; /* y軸為去除學生化殘差,x軸為預測值
title 'plot for deleted residual ';
proc means noprint; var y py ry; /* 針對y py ry 計算*/
output out = two mean = my mpy mry; /* 算平均, 並輸出資料檔命名為two */
proc print; var my mpy mry;
run;
/* since model is correct, the bias of the estimated coefficient is very small */
proc means data = tcorr noprint; var x1 x2 x3;
```

```
output out = test mean = mx1 mx2 mx3;
proc print; var mx1 mx2 mx3;
proc reg data = one outest = tincorr; by r; /* 用資料集one做回歸分析,並輸出統
計摘要表命名為tincorr */
model y = x1 x2; /* 模型 */
output out = out2 p = py r = ry student = ry1 rstudent = ry2; /* 輸出資料檔命名為
out2,產生預測值、殘差、學生化殘差、去除學生化殘差 */
title 'residual plot when model is incorrect ';
data out2; set out2; if r = 1; /* 建立資料檔命名為out2, 將上一步的out2放入 */
proc gplot; plot ry1*py = ' * '/vref = 0;
title 'plot for studentized residual';
proc gplot; plot ry2*py = '*'/vref = 0;
title 'plot for deleted residual ';
*proc print; *var r x1 y py ry;
proc means noprint; var y py ry;
output out = two mean = my mpy mry;
proc print; var my mpy mry;
/* since model is incorrect, the bias of the estimated coefficient is large */
proc means data = tincorr noprint; var x1 x2;
output out = test mean = inmx1 inmx2;
proc print; var inmx1 inmx2;
run;
```

程式結果

一、當模型正確時:

хЗ

				變異數	的分	析				
來源		DF	平方		均 方		-	F值	Pr > F	
模型		3 2		29384	9384 9794.6		614	ŝ 1	2128.	<.0001
誤差		96 7		77.52464		0.80755		5		
已校正的總計		99		29462						
根 MSE		0.89864 R 3		R 平方	ī		0.9974			
應變平均值	1	15.88101		調整日	調整 R 平方		0.9	973		
變異係數		5.658	56							
			參數	原估計化	直					
變勲	DF		參樂 計位		美	t	值	Pr	> [t]	
Intercept	1	0.8	8399	9 0.214	448	4	.12	<u>_</u>	<.0001	
х1		2.1	5095	5 0.156	606	13	.78	٠	<.0001	
x2	1	1.93	258:	7 0.320	601	5	.91	ه	<.0001	

圖 1: 迴歸分析結果(模型正確下)

1 5.01731 0.05221 96.09 <.0001

從 ANOVA 結果顯示所有的參數估計值皆不等於 0 ,這結果相當合理,因為參數是給定的。另外,在模型正確下,參數的估計值跟實際的參數差異很小。(實際

$$\beta_0=1\ ,\ \beta_1=2\ ,\ \beta_2=2\ ,\ \beta_3=5)$$

圖 2: 殘差圖(模型正確下)

大部分的殘差都落在正負2之間,因此滿足模型變異數同質性。

二、當模型不正確時:

變異數的分析							
來源	DF	平方 和	均 方	F值	Pr > F		
模型	2	21928	10964	141.16	<.0001		
誤差	97	7533.89572	77.66903				
已校正的總計	99	29462					

根 MSE	8.81300	R 平方	0.7443	
應變平均值	15.88101	調整 R 平方	0.7390	
變異係數	55.49396			

參數估計值								
變數	DF	参敷 估計值	標準 誤差	t值	Pr > t			
Intercept	1	-4.00020	2.04346	-1.96	0.0532			
х1	1	14.52393	0.86478	16.79	<.0001			
х2	1	7.51011	3.14597	2.39	0.0189			

圖 3: 迴歸分析結果(模型不正確下)

從 ANOVA 結果顯示所有的參數估計值皆不等於 0,因為參數是給定的。另外, 在模型不正確下,參數的估計值跟實際的參數差異很大。(實際 $\beta_0=1$, $\beta_1=$ 2, $\beta_2=2$, $\beta_3=5$)

圖 4: 殘差圖(模型不正確下) 殘差為二項式的形式,因此不滿足模型變異數同質性。