Finančni praktikum

k-total rainbow domination numer vs. domination number

Tim Resnik Lana Herman Univerza v Ljubljani

Fakulteta za matematiko in fiziko

November, 2019

1 Problem naloge

V projektni nalogi se bova ukvarjala z domnevo, ki se ukvarja s povezavo med "k-rainbow total domination number" (označimo z $\gamma_{krt}(G)$) in "domination number" (označimo z $\gamma(G)$).

ki pravi, da za graf G in $k \geq 4$ obstaja tesna povezava $\gamma_{krt}(G) \geq 2\gamma(G)$. Torej se nanaša na "k-rainbow total domination number"in "domination number". V programu Sage bova za majhne grafe izračunala koeficient $\frac{\gamma_{krt}(G)}{\gamma(G)}$ in poskusila najti rezultat, ki bo manjši od 2. Generizirala bova naključen graf z $n \geq 15$ vozlišči. Nato bova z odstranjevanjem in dodajanjem povezav iskala tak graf, ki bo imel zgoraj omenjen koeficient manjši od 2.

Za večje grafe bova poiskala grafe G, za katere velja enakost $\gamma_{krt}(G) = 2\gamma(G)$.

2 Razlaga pojmov

Graf G ima množico vozliščV(G) in množico povezav E(G). Za množico $N_G(v)$ velja, da vsebuje vsa sosednja vozlišča v, v grafu G. Za grafa G in H, je kartezični produkt $G \square H$ graf z množico vozliščV(G)xV(H).

Dominirana množica grafa G je $D \subseteq V(G)$, taka da za vsako vozlišče $v \in V(G)$ in $v \notin D$ velja, da je sosed nekemu vozlišču iz D. Dominirano število, $\gamma(G)$, je velikost najmanjše dominirane množice. Če za $\forall v \in V(G)$ velja, da je sosed vozlišču iz D, za D rečemo, da je totalno dominirana množica grafa G. Totalno dominirano število, $\gamma_t(G)$, je velikost najmanjše totalno dominirane množice. Za pozitivno celo število k, je "k-rainbow domination function" (kRDF) grafa G funkcija f, ki slika iz V(G) v množico $\{1, \cdots, k\}$. Zanjo velja, da za katerikoli $v \in V(G)$ in $f(v) = \emptyset$ velja $\bigcup_{u \in N_G(v)} f(u) = [k]$. Definiramo $||f|| = \sum_{v \in V(G)} |f(v)|$. ||f|| rečemo teža f-a. "k-rainbow domination number", $\gamma_{kr}(G)$, grafa G je minimalna vrednost ||f|| za vse "k-rainbow domination functions". Po definiciji vemo, da za vse $k \geq 1$ velja

$$\gamma_{kr}(G) = \gamma(G \square K_k).$$

Graf K_k predstavlja polni graf na k vozliščih. Nazadnje definirajmo še "k-rainbow total domination function" (kRTDF), katera se od "k-rainbow domination function"razlikuje v dodatnem pogoju, ki zagotavlja, da če za $\forall v \in V(G)$ velja $f(v) = \{i\}$, potem obstaja tak $u \in N_G(v)$, da je $i \in f(u)$. "k-rainbow total domination number", $\gamma_{krt}(G)$, grafa G je minimalna vrednost ||f|| za vse "k-rainbow total domination functions". Tudi tu za vse $k \geq 1$ velja

$$\gamma_{krt}(G) = \gamma_t(G \square K_k).$$