ASSIGNMENT -2 Python Programming

Assignment Date	25-09-2022
Student Name	AARTHI M
Student Roll Number	923819106001
Maximum Marks	2 Mark

Question-1:

1. Importing Required Package Solution:

```
import pandas as pd import seaborn as
sns import numpy as np from
matplotlib import pyplot as plt
%matplotlib inline Question-2:
```

2. Loading the Dataset Solution:

```
df = pd.read_csv("/content/Churn_Modelling.csv")
df
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	79084.10	0
	***							***		***				***
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.00	2	1	0	96270.64	0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.61	1	1	1	101699.77	0
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0	1	42085.58	1
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.31	2	1	0	92888.52	1
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	1	0	38190.78	0

3. Visualizations Question-3:

3.1 Univariate Analysis Solution:

sns.displot(df.Tenure) Output:

3.2 Bi-Variate Analysis

Solution: df.plot.line()

Output:

3.3 Multi - Variate Analysis Solution:

sns.lmplot("Age", "NumOfProducts", df, hue="NumOfProducts", fit reg=False);

4. Perform descriptive statistics on the dataset.

Question-4:

Solution: df.describe()

Output:

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
coun	t 10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000,50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

5. Handle the Missing values.

Question-5:

Solution:

```
data = pd.read_csv("Churn_Modelling.csv")
pd.isnull(data["Gender"]) Output:
```

Question-6:

6. Find the outliers and replace the outliers. Solution:

Question-7:

7. Check for Categorical columns and perform encoding. Solution:

```
pd.get_dummies(df, columns=["Gender", "Age"], prefix=["Age", "Gender"])
.head()
```

Output:

Question-8:

- 8. Split the data into dependent and independent variables
- 8.1 Split the data into Independent variables. Solution:

```
Drint(X) Output:

C* [[1 15634602 'Hargrave' ... 1 1 1]
  [2 15647311 'Hill' ... 1 0 1]
  [3 15619304 'Onio' ... 3 1 0]
  ...
  [9998 15584532 'Liu' ... 1 0 1]
  [9999 15682355 'Sabbatini' ... 2 1 0]
  [10000 15628319 'Walker' ... 1 1 0]]
```

X = df.iloc[:, :-2].values

8.2 Split the data into Dependent variables. Solution:

```
Y = df.iloc[:, -1].values
print(Y) Output:
```

Question-9:

9. Scale the independent variables Solution:

```
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df[["RowNumber"]] = scaler.fit_transform(df[["RowNumber"]])
print(df)
Output:
```

Question-10:

10. Split the data into training and testing Solution:

```
from sklearn.model_selection import train_test_split
train_size=0.8
X = df.drop(columns = ['Tenure']).copy()
y = df['Tenure']
X_train, X_rem, y_train, y_rem = train_test_split(X,y, train_size=0.8)
test_size = 0.5
X_valid, X_test, y_valid, y_test = train_test_split(X_rem,y_rem, test_size=0.5)
```

```
print(X_train.shape), print(y_train.shape)
print(X_valid.shape), print(y_valid.shape)
print(X_test.shape), print(y_test.shape)
```

```
C→ (8000, 13)
  (8000,)
  (1000, 13)
  (1000,)
  (1000, 13)
  (1000,)
  (None, None)
```