A Book of Abstract Algebra (2nd Edition)

1 Bookmark

Show all steps: ON

Problem

Every complex number a + bi may be represented as a point in the complex plane.

The unit circle in the complex plane consists of all the complex numbers whose distance from the origin is 1; thus, clearly, the unit circle consists of all the complex numbers which can be written in the form

 $\cos x + i \sin x$

for some real number x.

Prove that $f = \{2n\pi : n \in \mathbb{Z}\} = \langle 2\pi \rangle$.

Step-by-step solution

Step 1 of 3

Consider the set T of all the complex numbers lying on the unit circle, with the operation multiplication as:

$$T = \{ \operatorname{cis} x : x \in R \},\,$$

where

cis $x = \cos x + i \sin x$. Let $f: R \to T$ is a homomorphism mapping from R onto T, defined by $f(x) = \cos x$. Objective is to prove that $Kerf = \{2n\pi : n \in Z\}$.

Consider the following properties of trigonometric functions:

$$\sin(x+2\pi) = \sin x \cos 2\pi + \cos x \sin 2\pi$$
$$= \sin x,$$
$$\cos(x+2\pi) = \cos x \cos 2\pi + \sin x \sin 2\pi$$
$$= \cos x.$$

Comment

Step 2 of 3

According to the definition of kernel:

$$\ker f = \{x \in R : f(x) = e\},\$$

where e is a multiplicative identity of T.

Since $f(x) = \operatorname{cis} x$, so equivalently

$$\ker f = \{ x \in G : \operatorname{cis} x = e \}.$$

By the above identities, one have

$$\operatorname{cis}(2n\pi) = \operatorname{cos}(2n\pi) + i\operatorname{sin}(2n\pi)$$
$$= 0.$$

where $n \in \mathbb{Z}$. Thus, $Kerf = \{2n\pi : n \in \mathbb{Z}\}$

Comment

Step 3 of 3

Hence, $Kerf = \langle 2\pi \rangle$.

Comment