III- Plans remplissant l'espace (space-filling)

Quel contexte?

Variables continues

Pas d'information a priori sur la réponse (modèle non détorminé)

déterminé)

 Réponse potentiellement complexe (voire discontinue)

- Possibilité de variables peu influentes
- Nombre de facteurs pouvant être élevé

Objectifs

- Les plans doivent :
 - permettre d'utiliser une grande variété de modèles
 - donner de l'information pour n'importe quelle partie du domaine
 - avoir de bonnes projections dans les sous-espaces
 - être robustes à la montée en dimension

« **Remplir l'espace** » : explorer au maximum l'espace des variables

Deux contre-exemples

Plan aléatoire

Plan factoriel

Curiosités de la montée en dimension (1/2)

- Plan en étoile à 3 niveaux
- Inclus dans la boule de rayon 0,5
- Volume de la boule : $V = \frac{r^d \pi^d}{\Gamma(d/2+1)}$

Ratio hypersphère /hypercube :

Pour d grand, on explore 0% du volume!

Curiosités de la montée en dimension (2/2)

• Rapport entre le cube de côté 1 et celui de côté 0,9 :

$$V_1/V_2 = 0.9^p \rightarrow 0$$

Tout le volume est contenu dans l' «écorce »

Tessellations Centroïdales de Voronoï (CVT)

Définitions

- Tessellation : découpage de l'espace
- Région de Voronoi : définie par des points générateurs
- Chaque région possède un centre de masse
- CVT : les points générateurs sont les centres de masse
 - → Cas très particulier des VT!

Propriétés des CVT (1/2)

Les CVT proposent un découpage homogène de l'espace

Propriétés des CVT (2/2)

• Distortion:
$$H(z_i, V_i) = \sum_{i=1}^k \int_{V_i} ||y - z_i||^2 dy$$

• Quadrature :
$$\int_{\Omega} f(y) dy \approx \sum_{i=1}^{k} \int_{V_i} f(z_i) dy = \sum_{i=1}^{k} A_i f(z_i)$$
 avec
$$A_i = volume(V_i)$$

Pour f lipschitzienne :
$$Q = \left| \int_{\Omega} f(y) dy - \sum_{i=1}^{k} A_{i} f(z_{i}) \right| \le L \sum_{i=1}^{k} \int_{V_{i}} ||y - z_{i}|| dy$$

• Les CVT sont stationnaires pour : $\sum_{i=1}^{k} \int_{V_i} ||y-z_i||^p dy$, $p \ge 1$

On a une forme d'optimalité!

CVT et planification

- Distortion minimale : chaque point de l'espace est proche d'un point générateur
- Bonne approximation constante par morceaux
- Propriétés indépendentes de la dimension de l'espace
 - Bon remplissage d'espace
 - On utilise les points générateurs comme plan d'expériences

Construction des CVT (1/2)

- Algorithme de Lloyd (point fixe) :
 - 1. Générer un plan initial
 - 2. Construire la tessellation de Voronoï correspondante
 - 3. Determiner les centres de masses
 - 4. Remplacer les points générateurs par les centres
 - Chaque itération est très coûteuse !

Construction des CVT (2/2)

- Algorithme stochastique: MacQueen
 - 1. Générer un plan initial, initialiser $j_i = 1$
 - 2. Générer aléatoirement un point w
 - 3. Chercher le point générateur z_{k} le plus proche

4. Mettre à jour
$$z_k = \frac{j_k z_k + w}{j_k + 1}$$

5.
$$j_i = j_i + 1$$

- Itération peu coûteuse
- Convergence en loi
- Liens avec l'analyse discriminante (k-means clustering)
- Nécessite des millions d'itérations

Algorithme de McQueen, 6 pts, 1000 itérations

Triangles : points

initiaux

Croix : points

générés

> Ronds : centres de

masse

Algorithme de McQueen, 7 pts, 10000 itérations

Les Hypercubes latins (LHS)

Hypercubes latins (LHS)

- Plans aléatoires
- On découpe chaque dimension en N intervalles
- On prend un unique point par intervalle
 - Les distributions marginales sont uniformes!

Exercice

• Construire un LHS à 5 points en dimension 3

Exercice

Construire un LHS à 5 points en dimension 3

Définition :

Un hypercube latin à n points et s variables, LHD(n,s), est une matrice $n \times s$ dont chaque colonne est une permutation de $\{1, 2, ..., n\}$

Avantages et inconvénients

- Très faciles à générer
- Pas de difficulté pour n et d grands
- Pas de duplication en projection

Ne remplit pas l'espace!

Plans optimisés

Critères basés sur les distances

Critères de comparaison ou d'optimisation :

- Maximin
 - (maximiser la) distance minimum entre deux points du plan
- Minimax

(minimiser la) distance maximale entre n'importe quel point du domaine et le point du plan le plus proche

Exercice

1.Formaliser les critères *maximin* et *minimax*

2. Ecrire les problèmes d'optimisation de plans d'expériences correspondants

Les problèmes d'optimisation

- Maximin : $\max_{x_1,...,x_N} \left[\min_{i \neq j} \left(d(x_i,x_j) \right) \right]$ kN dimensions $\frac{n(n-1)}{2} \text{ distances}$
- Minimax : $\min_{x_1,...,x_N} \left[\max_{x} \left[\min_{i} \left(d(x,x_j) \right) \right] \right]$ Minimax : $\min_{x_1,...,x_N} \left[\max_{x} \left[\min_{i} \left(d(x,x_j) \right) \right] \right]$ n distances

 optim en dimension d

- Minimax est très coûteux
- Les problèmes d'optimisation sont très complexes!

Optimisation

- Le problème général d'optimisation n'est pas soluble :
 - On recherche les d coordonnées de N points, soit un problème à d x N paramètres!
 - Le critère *minimax* est très coûteux à évaluer
- Solution :
 - Utiliser le critère maximin
 - Optimiser une classe de plans, par ex. LHS

Optimisation: algorithmes

• Problème complet (maximin seulement) : optimiseur global

voir le cours!

Algorithme d'échange :

- 1. On construit (aléatoirement ou non) un plan initial
- 2. On choisit (simultanément ou non) un point à enlever au plan et un point à rajouter
- 3. On effectue l'échange
- 4. On répète 2 et 3 jusqu'à satisfaction du critère d'arrêt

Optimisation des LHS (1/3)

- Problème discret!
- On peut permuter 2 cellules (ou blocs) d'une même colonne

Α	В	С		Α	В	С
1	3	5		1	3	5
3	1	2		3	4	2
4	5	3		4	5	3
2	4	1		2	1	1
5	2	4		5	2	4

Optimisation des LHS (2/3)

- Algorithme de recuit simulé [Morris et Mitchell, 1995]:
 - 1. On génère un plan initial
 - 2. On cherche les points critiques (au sens du critère *maximin*)
 - 3. On choisit aléatoirement une colonne d'un point critique
 - 4. On effectue un échange avec une autre cellule de la même colonne prise aléatoirement
 - 5. Si l'échange est bénéfique : on accepte la modification
 - 6. Sinon : on accepte (quand même !) avec une probabilité

$$\pi = \exp\left[-\left(\frac{\Phi(PEX_{nouveau}) - \Phi(PEX_{ancien})}{T}\right)\right]$$

Optimisation des LHS (3/3)

- Remarques :
 - T diminue avec le temps : on accepte moins facilement les changements
 - Acceptation d'un point moins bon : favorise l'exploration
- En pratique :
 - Difficile à régler!
 - Convergence très lente
- Nombreuses variantes / améliorations :
 - Choix des échanges moins aléatoire
 - Autres formes algorithmiques (ES)

LHS maximin

- Le plan le plus utilisé pour les expériences numériques
- Plan à 9 points en 2D :

Plan optimisé (maximin)

Plan aléatoire

Les suites à faible discrépance

Une mesure de remplissage : la discrépance

- Discrépance : mesure de non-uniformité
 Ecart entre la distribution du plan et la distribution uniforme
 Plus la discrépance est faible, plus on remplit l'espace
- Pour un intervalle : comparaison entre le rapport de volumes et celui du nombre de points contenus

$$D = max \left| \frac{N_R}{N} - \frac{V_R}{V} \right|$$

Discrépance L2 centrée :

$$\operatorname{disc}_{2}(D) = \left(\frac{13}{12}\right)^{p} - \frac{2}{N} \sum_{i=1}^{N} \prod_{k=1}^{p} \left(1 + \frac{1}{2} \left| x_{k}^{(i)} - \frac{1}{2} \right| - \frac{1}{2} \left| x_{k}^{(i)} - \frac{1}{2} \right|^{2}\right) + \frac{1}{N^{2}} \sum_{i,j=1}^{N} \prod_{k=1}^{p} \left(1 + \frac{1}{2} \left| x_{k}^{(i)} - \frac{1}{2} \right| + \frac{1}{2} \left| x_{k}^{(j)} - \frac{1}{2} \right| - \frac{1}{2} \left| x_{k}^{(i)} - x_{k}^{(j)} \right|\right)$$

Source: B. looss

Les suites à faible discrépance (1/2)

- Suites équiréparties : une des trois conditions est vérifiée
 - $\frac{1}{n} \sum_{i=1}^{n} f(x_i) \rightarrow \int f(x) dx$
 - $\frac{1}{n} \sum_{i=1}^{n} 1_{f(x_i) \in [0 \ y]^d} \rightarrow Vol([0 \ y]^d)$
 - \bullet $D_n \rightarrow 0$
- Il existe des suites équiréparties telles que :

$$\frac{1}{n} \left| \sum_{i} f(x_{i}) - \int f(x) dx \right| \leq c(f) \frac{\log(n)^{d}}{n}$$

Suites à faible discrépance

Tirage uniforme (Monte-Carlo) : $c(f)\frac{1}{\sqrt{n}}$ Plan factoriel (grille) : $c(f)\frac{1}{n}$

Les suites à faible discrépance (2/2)

- Méthodes de Quasi-Monte-Carlo
- Faible discrépance : convergence plus rapide que la suite aléatoire uniforme
- De nombreuses suites existent :
 - Halton, Hammerley, Sobol', Faure, etc.
 - En général : suites déterministes
- Intérêts :
 - Bon remplissage d'espace
 - Rapides à construire
 - Flexibles (ajout séquentiel)

Exemple : suite de Halton

Limites des suites à faible discrépance

Défauts en grande dimension :

- Alignements en projections
- 'Trous' dans les sous-espaces
- Déterminisme

Halton en 8 dimensions, 80 points : (X7, X8)

Source : J. Franco, 2008

Récapitulatif : remplissage d'espace

- Objectif : exploration du maximum de l'espace à moindre coût
- Plusieurs familles de plans :
 - Suites à faible discrépance
 - CVT
 - LHS
- Plusieurs critères de « qualité » :
 - Maximin
 - Minimax
 - Discrépance
 - Projection
- Pas de solution universelle