Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție LISP

(DEFUN Fct(F L)

(COND

((NULL L) NIL)

((FUNCALL F (CAR L)) (CONS (FUNCALL F (CAR L))) (Fct F (CDR L)))))

(T NIL)

)
```

Rescrieți această definiție pentru a evita dublul apel recursiv (FUNCALL F (CAR L)). Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

B.	B. Dându-se o listă neliniară formată din numere mai mari sau egale cu 2, se cere un program SWI-PROLOG care fiecare număr neprim cu suma divizorilor săi proprii. Repetați procesul până când lista rămâne doar cu num exemplu . pentru lista [10, 20, 30, 40] rezultatul va fi [7, 7, 41, 7] (lista inițială devine la început [7, 21, 41, 49], a 7] iar final [7, 7, 41, 7]). Va trebui să returnați doar lista finală.	ere prime. <u>De</u>

C. Dându-se o listă formată din numere întregi, să se genereze în PROLOG lista submulţimilor cu număr par de elemente. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista $L=[2,3,4] \Rightarrow [[],[2,3],[2,4],[3,4]]$ (nu neapărat în această ordine)

D.	Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2). Se cere să se determine lista nodurilor de pe nivelurile pare din arbore (în ordinea nivelurilor 0, 2,). Nivelul rădăcinii se consideră 0. Se va folosi o funcție MAP. <u>Exemplu</u> pentru arborele (a (b (g)) (c (d (e)) (f))) => (a g d f)	