1.3 Dedução Natural para o Cálculo Proposicional

- a) Indique uma derivação em DNP cuja conclusão seja $p_0 \wedge p_1$ e cuja única hipótese não cancelada seja $p_1 \wedge p_0$.
 - **b)** Indique duas derivações distintas em DNP de conclusão $p_0 \to (p_1 \to (p_0 \lor p_1))$ e sem hipóteses por cancelar.
 - c) Indique as subderivações de cada uma das derivações que apresentou em a) e em **b**).
- 2. Sejam $\varphi, \psi, \sigma \in \mathcal{F}^{CP}$. Encontre demonstrações em DNP das fórmulas abaixo indicadas.
 - a) $(\varphi \land \psi) \rightarrow (\varphi \lor \psi)$.
- **b)** $(\varphi \to (\psi \to \sigma)) \to ((\varphi \to \psi) \to (\varphi \to \sigma)).$
- c) $\varphi \rightarrow \varphi$.
- **d)** $(\neg \varphi \lor \psi) \to (\varphi \to \psi).$
- e) $\varphi \leftrightarrow \neg \neg \varphi$.
- **f**) $((\varphi \to \psi) \land (\psi \to \varphi)) \leftrightarrow (\varphi \leftrightarrow \psi).$
- **g)** $(\varphi \lor \psi) \leftrightarrow (\psi \lor \varphi).$
- **h)** $(\varphi \land \psi) \leftrightarrow \neg (\neg \varphi \lor \neg \psi).$

- 3. Mostre que:
 - **a)** $p_0 \to p_1, \neg p_1 \vdash \neg p_0.$
 - **b)** $p_0 \rightarrow p_1, p_1 \rightarrow p_2, p_2 \rightarrow p_0 \vdash ((p_0 \leftrightarrow p_1) \land (p_1 \leftrightarrow p_2)) \land (p_0 \leftrightarrow p_2).$
- 4. Represente o raciocínio que se segue através de uma consequência sintática e prove que essa consequência sintática é válida: O Tiago disse: "Vou almoçar ao McDonald's ou à Pizza Hut". E, acrescentou: "Se comer no McDonald's, fico mal disposto e não vou ao cinema". Nesse dia, a Joana encontrou o Tiago no cinema e conclui: "O Tiago foi almoçar à Pizza Hut".
- 5. Mostre que os conjuntos $\{p_1 \leftrightarrow p_2, p_1, \neg p_2\}$ e $\{p_0 \lor p_1, \neg p_0 \land \neg p_1\}$ são inconsistentes.
- 6. Demonstre as seguintes proposições, para todos $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$.
 - **a)** $\Gamma \vdash \varphi \land \psi$ sse $\Gamma \vdash \varphi$ e $\Gamma \vdash \psi$. **b)** $\Gamma \vdash \varphi$ sse $\Gamma, \neg \varphi \vdash \bot$.
 - c) $\Gamma \vdash \bot$ se e só se $\Gamma \vdash p_0 \land \neg p_0$. d) Se $\Gamma, \neg \varphi \vdash \varphi$, então $\Gamma \vdash \varphi$.
- 7. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que:
 - a) $(p_0 \lor p_1) \to (p_0 \land p_1)$ não é um teorema de DNP.
 - **b)** $p_0 \vee p_1 \not\vdash p_0 \wedge p_1$.
 - c) $\{p_0 \lor p_1, \neg p_0 \land p_1\}$ é consistente.
 - **d)** $\Gamma \vdash \varphi$ e $\Gamma \vdash \neg \varphi$ se e só se Γ não é satisfazível.
 - e) Se Γ , $\varphi \vdash \psi$ e φ é uma tautologia, então $\Gamma \vdash \psi$.

(Sugestão: aplique o Teorema da Correção e/ou o Teorema da Completude.)

- 8. Dê exemplo de dois conjuntos de fórmulas distintos que contenham $\{p_1 \lor p_2, p_1 \leftrightarrow p_2\}$ e que sejam maximalmente consistentes.
- 9. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que: $\Gamma \models \varphi$ sse existe um subconjunto Γ_0 de Γ , finito, tal que $\Gamma_0 \models \varphi$.