

11

FIG. 1

FIG. 2

FIG. 3

FIGURE 25. A GEL ELECTROPHORESIS

THESE FRAGMENTS CAN BE STRICTLY ISOLATED DEPENDING ON LENGTH THROUGH GEL ELECTROPHORESIS

FIG. 4

F I G. 5

F I G. 6

00000000000000000000000000000000

F I G. 7

M13MP18
M13MP19
PBR322
PSL1180
PSL1190
PT7T318U
PT7T319U
PTZ18R
PTZ19R
PUC18
PUC19, ETC.

FIG. 8

VECTOR DB FORMAT

>ID
PUC18
>SEQ 10:
TCGGCGGTTTCCGTGATGACGGTAAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGAT
GCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTGGCGGGTGTGGCTGGCTTAACTATCGGCATCAGA
GCAGATTGTACTGAGAGTCACCATATGCGGTGTGAAATACCGCACAGATGCAGTAAGGAGAAAATACCGCATCAGGC
ATTCGCCATTCAAGGCTCGCACAAGTGTGGGAAGGGCGATCGGTGCGGGCTCTTCGCTATTACGCCAGCTGGCGAAAGGG
GGATGTGCTGCAAGGCAGTTAACGCCCAGGGTTTCCCAGTCACGACGTTGAAAACGACGGCCAGTGCCAA
GCTTGATGCCATGCCGAGCTGACTCTAGAGGATCCCCGGTACCGAGCTGAAATCGTAATCATGGTCATAGCTGTTCT
GTGTGAAATTGTATCCGCTACAATTCCACACACATACGAGCCGAAGCATAAGGTAAAGCCTGGGTGCTTAATG
AGT GAGCTA ACT CAC ATT AAT TCG TTG CG CT ACT G C C C G T T C C AGT CG GG AA AC CT GT CG TG CC AG CT G C AT TA AT
GAATCGGCCAACCGCGGGGAGAGGGCGGTTTGCCTGGCGCTCTCCGCTTCTCGCTACTGACTCGCTGCGCTCG
GTCGTTCCGCTGCCGAGCGGTATCAGCTCACTCAAAGGCGGTAAACGGTTATCCACAGAATCAGGGATAACGCAGG
AAAGAACATGTGAGCAAAGGCCAGCAGAACGGGAGGAAACGGTAAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTCC
GCCCGGCTGACGAGCATCACAAAATGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAGATACCAGCG
TTTCCCGCTGAAAGCTCCCTCGTGCCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACTGTCGGCTTCTCCCTC
GGGAAGCGTGGCGTTCTCAAAGCTACGCTGTAGGTATCTCAGTTCGGTGTAGGTGCTCGCTCCAGCTGGCTGTG
TGCACGAACCCCCCGTTCAGCCGACCGCTGCCCTTATCCGGTAACATATCGTCTTGAGTCCAACCCGGTAAGACACGAC
TTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTGAAGTG
GTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCTGCCTCTGCTGAAGGCCAGTTACCTTCGGAAAAAGAG
TTGGTAGCTTGTATCCGGCAAACAAACCCACCGCTGGTAGCGGTGGTTTTTTGTTGCAAGCAGCAGATTACGCCAGA
AAAAAAGGATCTCAAGAAGATCTTGTATCTTCTACGGGTCTGACGCTCAGTGGAAAGCAGAACACTCACGTTAAGGGAT
TTGGTCATGAGATTATCAAAAAGGATCTCACCTAGATCTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTA
TATATGAGTAAACCTGGTCTGACAGTTACCAATGCTTAATCAGTGGGACCTATCTCAGCGATCTGTCTATTGTTCA
TCCATAGTTGCCCTGACTCCCCGTCGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGAT
ACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCGACGCCAGCCGGAAAGGCCGAGCGCAGAATGGTC
CTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGGTGCAGGAAAGCTAGAGTAAGTAGTTGCTCTTGCCAGTTAAAGTTG
CGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTGTGGTATGGCTTCAATTAGCTCCGGTCTCCGATGTTG
ACGATCAAGCGAGTTACATGATCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCITCGGTCTCCGATGTTGTCAGAA
GTAAGTTGGCGCAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTTACTGTCATGCCATCCGTAAGATGC
TTTCTGTGACTGGTGAAGTACTCAACCAAGTCATTCTGAGAAATAGTGTATGCCGGCAGGGTTGCTCTTGCCCCGGC
AATACGGGATAATACCGGCCACATAGCAGAACCTTAAAGTGTCTCATCTGGAAAACGTTCTCGGGCGAAAACCTCT
CAAGGATCTTACCGCTGGTAGAGATCCAGTTGCTGATGTAACCCACTCGTCACCCCAACTGATCTTCAGCATCTTACTTT
ACCGCGTTCTGGGTGAGCAAAACAGGAAGGCAAAATGCCGCAAAAAGGGAAATAGGGCGACACGGAAATGTTGAAT
ACTCATACTCTTCTTTCAATATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGACATATTGAATGTA
TTTGGGAAATAAACAAATAGGGTTCCGCGCACATTCCCCAAAAGTGCCACCTGACGTCAAGAAACCATTATTATC
ATGACATTAACCTATAAAATAGGCAGTACGAGGCCCTTCGTC
>MULTI
399..450

FIG. 9

© 1984 by Academic Press Inc.

(* INDICATES MULTIPLE CLONING SITE)

SEQ ID: 9 GTGCCAAGCTGCATGCCCTGAGGTCACTAGAGGATCCCCGGTACCGAGCTCGAAATTCTGAAT

SEQ ID: 10 AAGCTT→HIND III

SEQ ID: 11 GCATGC→SPH I

SEQ ID: 12 CTGGCAG→PST I

SEQ ID: 13 GTCGAC→SAL I, ACC I, HINC II

SEQ ID: 14 TCTAGA→XBA I

SEQ ID: 15 GGATCC→BAMH I

SEQ ID: 16 CCCGGG→SMA I, XMA I

SEQ ID: 17 GGTACC→KPN I

SEQ ID: 18 GAGCTC→SAC I

SEQ ID: 19 GAATTTC→ECOR I

FIG. 10

VECTOR SIDE	OBJECT DNA FRAGMENT SIDE
HIND III	HINDIII
SPH I	SPH I
PST I	PST I
SAL I	SAL I
ACC I	ACC I
HINC II	HINC II
XBA I	XBA I
BAMH I	BAMH I
SMA I	SMA I
XMA I	XMA I
KPN I	KPN I
SAC I	SAC I
ECOR I	ECOR I
	OTHER RESTRICTION ENZYME
	• • •

FIG. 11

00000000000000000000000000000000

DETERMINING RETRIEVAL KEY

TWO RETRIEVAL KEYS ARE GENERATED ON EACH OF 5' (FORWARD) AND 3' (BACKWARD) SIDES ACCORDING TO VECTOR TYPE AND RESTRICTION ENZYME INFORMATION

S 2 1

HOMOLOGY RETRIEVAL

AFTER HOMOLOGY RETRIEVAL USING RETRIEVAL KEY, PRIMARY CANDIDATE LISTS FOR BOUNDARY PORTION 5' AND 3' SIDES ARE GENERATED

S 2 2

HOMOLOGY CHECK

HOMOLOGY CHECK IS MADE BETWEEN MULTIPLE CLONING SITE AND PRECEDING AREA OF PRIMARY CANDIDATE FOR 5' BOUNDARY PORTION AND FOLLOWING AREA OF PRIMARY CANDIDATE FOR 3' BOUNDARY PORTION TO GENERATE LIST OF SECONDARY CANDIDATES FOR BOUNDARY PORTION

S 2 3

SPECIFYING BOUNDARY AREA

CHECK THAT EACH CANDIDATE IS UNIQUE, AND CHECK POSITIONAL RELATIONSHIP BETWEEN 5' SIDE SECONDARY CANDIDATE AND 3' SIDE SECONDARY CANDIDATE. IF OK, THESE CANDIDATES ARE SPECIFIED AS VECTOR UNIT.

S 2 4

DETERMINING PORTION CLEAVED

PORTION CLEAVED IN BOUNDARY AREA IS DETERMINED

S 2 5

F I G. 1 2

WHEN SINGLE-STRANDED AREA IS FOUND ON 3' SIDE

STRAND A 5'	AREA A	AREA B3	AREA C	
STRAND B 3'	AREA C	AREA B3	AREA A	
	← RESTRICTION ENZYME →			
	SITE			

FIG. 13A

WHEN NO SINGLE-STRANDED AREA IS FOUND

STRAND A 5'	AREA A	AREA C	
STRAND B 3'	AREA C	AREA A	
	← RESTRICTION ENZYME →		
	SITE		

FIG. 13B

WHEN SINGLE-STRANDED AREA IS FOUND ON 5' SIDE

STRAND A 5'	AREA A	AREA B5	AREA C	
STRAND B 3'	AREA C	AREA B5	AREA A	
	← RESTRICTION ENZYME →			
	SITE			

FIG. 13C

F I G. 14

F I G . 1 5

F I G. 16

WHEN HIND III IS SPECIFIED ON VECTOR 5' SIDE
XBA I IS SPECIFIED ON VECTOR 3' SIDE, HIND III IS
SPECIFIED ON OBJECT DNA 5' SIDE, AND XBA I IS
SPECIFIED ON OBJECT DNA 3' SIDE

(**** INDICATES RESIDUAL MULTIPLECLONING SITE
(+++) INDICATES AN OBJECT DNA FRAGMENT

***** *****
GTGCCAAGCTT +++++++ +++++++ TCTAGAGGATCCCCGGGTACCGAGCTCGAATTCTGAAT
AAGCTT TCTAGA
↑ ↑
5' SIDE RETRIEVAL KEY 9' SIDE RETRIEVAL KEY
(IN THIS EXAMPLE,
HIND III SITE) (IN THIS EXAMPLE, XBA I SITE)

FIG. 17

SEARCHING BASE SEQUENCE OF OBJECT CLONE USING 5'
SIDE RETRIEVAL KEY

S 51

STORING, AS LIST OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS, RETRIEVAL KEYS AND RETRIEVAL RESULTS OBTAINED AS AREAS INDICATING HOMOLOGY EXCEEDING PREDETERMINED VALUE. (LIST 5)

S 52

F I G. 18

SEARCHING BASE SEQUENCE OF OBJECT CLONE USING 3'
SIDE RETRIEVAL KEY

S 54

STORING, AS LIST OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS, RETRIEVAL KEYS AND RETRIEVAL RESULTS OBTAINED AS AREAS INDICATING HOMOLOGY EXCEEDING PREDETERMINED VALUE. (LIST 3)

S 55

F I G. 19

S 6 1

DEFINING, IN MULTIPLE CLONING SITE OF VECTOR, RESTRICTION ENZYME SITE USED IN SHEARING 5' SIDE IN MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE ON 5' SIDE AS 5' SIDE RESIDUAL MULTIPLE CLONING SITE (5MCS)

S 6 2

WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN MULTIPLE CLONING SITE, SUM OF 5MCS AND 5 BASES ON 5' SIDE FROM 5MCS IS DEFINED AS 5' SIDE RESIDUAL VECTOR AREA (5VA). IF VECTOR DB CONTAINS ONLY BASE SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB, THEN 5 MCS IS 5VA.

A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCHART
ON ALL ELEMENTS IN PRIMARY CANDIDATES FOR BOUNDARY PORTIONS
(LIST 5) OBTAINED IN 5' SIDE HOMOLOGY RETRIEVAL

DEFINING EACH CANDIDATE IN LIST 5 AND SEQUENCE AREA OUTSIDE ON 5' SIDE AS HOMOLOGY CHECK AREA (5HCA) FOR CORRESPONDING CANDIDATE

S 6 3

S 6 4

COMPARING NUMBER OF BASES IN 5' SIDE RESIDUAL VECTOR AREA (5VA), NUMBER OF BASES OF 5HCA, AND NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY CHECK (HCB)

S 6 5

EXTRACTING HCB BASES FROM 3' SIDE OF 5VA TO-CHECK HOMOLOGY TO HCB BASES ON 3' SIDE OF 5HCA

S 6 6

WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 5' SIDE BOUNDARY PORTIONS.

F I G . 2 0

FIG. 21

S 71

DEFINING, IN MULTIPLE CLONING SITE OF VECTOR, RESTRICTION ENZYME SITE USED IN SHEARING 3' SIDE IN MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE ON 3' SIDE AS 3' SIDE RESIDUAL MULTIPLE CLONING SITE (3MCS)

S 72

WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN MULTIPLE CLONING SITE, SUM OF 3MCS AND 5 BASES ON 3' SIDE FROM 3MCS IS DEFINED AS 3' SIDE RESIDUAL VECTOR AREA (3VA). IF VECTOR DB CONTAINS ONLY BASE SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB, THEN 3MCS IS 3VA.

A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCHART
ON ALL ELEMENTS OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS
(LIST 3) OBTAINED IN 3' SIDE HOMOLOGY RETRIEVAL

S 73

DEFINING EACH CANDIDATE IN LIST 3 AND SEQUENCE AREA OUTSIDE ON 3' SIDE AS HOMOLOGY CHECK AREA (3HCA) FOR CORRESPONDING CANDIDATE

S 74

COMPARING NUMBER OF BASES IN 3' SIDE RESIDUAL VECTOR AREA (3VA), NUMBER OF BASES OF 3HCA, AND NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY CHECK (HCB)

S 75

EXTRACTING HCB BASES FROM 5' SIDE OF 3VA TO CHECK HOMOLOGY TO HCB BASES ON 5' SIDE OF 3HCA

S 76

WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 3' SIDE BOUNDARY PORTIONS.

F I G. 22

5' SIDE

 PRIMARY CANDIDATE FOR 3' SIDE BOUNDARY PORTION

 CLONE BASE SEQUENCE
 3HCA

FIG. 23

F I G. 24

