Homework 5

Ji Jiabao

2020年6月1日

Exer.1

We just need to prove that int-val(MLP(G))=val(MLP(G)), since $val(MLP(G)) \geq \nu(G)$, we do this following the proof for VCLP(G) in class, the idea is to get int value solution through modifying a non-int value solution a bit.

Suppose we already have a solution \mathbf{x} , and denote $\sum_{e \in E, u \in e} x_e = y_u, \forall u \in V$, we want to change \mathbf{x} to int value, and meanwhile \mathbf{y} becomes int value.

At each step, those edges with $x_e = 0$ could just be ignored, while those edges with $x_e = 1$ and its both ends could be ignored. In the following situations, we just don't take these edges and vertices into account.

- 1. For two vertices u, v with non integral y_u, y_v , suppose there exits a path $e_1, e_2, ... e_m$, where m is odd. Let $d = min(1 y_u, 1 y_v, 1 x_{e_1}, x_{e_2}, ..., 1 x_{e_k})$. Next we modify edges as following. For those $e_i, iodd$, let $e_i = e_i + d$, and for those $e_i, ieven$, let $e_i = e_i d$. By doing this, all constraints remains, and at least one of $y_u, y_v, x_{e_1}, ... x_{e_k}$ becomes integral. In all, val(MLP(G)) increases by d.
- 2. Similar to the situation above, except that the path has an even size. Let $d = min(1 y_u, y_v, 1 x_{e_1}, x_{e_2}, ..., 1 x_{e_{k-1}}, x_{e_k})$. Next we modify edges as the above situation. By doing this, all constraints still remains, and at least one of $y_u, y_v, x_{e_1}, ... x_{e_k}$ becomes integral. In all, val(MLP(G)) remains unchanged.

- 3. If y_u is non integral but y_v integral, we just find all vertices connected with u, v. Denote the left side as L and the right side as R, We shall have $\sum_{u \in L} y_u = \sum_{u \in R} y_u$. But the left side is non integral while the right side is integral, leading to a contradiction.
- 4. If all y_u are integral, but some x_e may still remain non integral. To solve this, we find one of the non integral edge e_1 , with u as one of its end. Since y_u integral, there exists another e_2 non integral connected to u. Continue this, we will find a cycle $e_1, ..., e_k$ with even size since G is bipartite. Let $d = min(1 x_{e_1}, x_{e_2}, ...1 x_{e_{k-1}}, x_{e_k})$, do the updates as the above updates. We can see that \mathbf{y} remains, while at least one x_e becomes integral, and val(MLP(G)) remains.

In the above situations, at least one y_u or one x_e becomes integral. Since both \mathbf{x}, \mathbf{y} are finite, this procedure will end. And since x_e becomes all integral, the original solution becomes an int value solution while not making $\sum_{e \in E} x_e$ worse.