Project 2: Linear Regression

36-600

Fall 2022

The goal of this project is to use linear regression to model the price of diamonds as a function of other descriptive variables.

Your HTML file (generated by knitting an R Markdown source file) should be uploaded to Canvas by Tuesday, November 1st, at 11:59 PM. As was the case for Project 1, there is no limit on the length here, but concision is a virtue.

Data

You will examine the dataset diamonds.csv, which you will find in the DATA directory on Canvas. (You have seen this before, when in Week 5 you input these data into the K-means algorithm. You will *not* be doing unsupervised learning here, though.)

The response variable is price. Your goal is prediction, and not inference.

The predictor variables are a mix of quantitative and factor variables:

name	description
carat	diamond weight (1 carat ~ 200 milligrams)
cut	graded quality (Fair, Good, Very Good, Premium, Ideal)
color	graded color (J is worst, to D, which is best)
clarity	graded measurement of clarity (I1, SI1, SI2, VS1, VS2, VVS1, VVS2, IF, in that order from worst to best)
X	length of diamond (millimeters)
У	width of diamond (millimeters)
Z	depth/height of diamond (millimeters)
table	width of top part of diamond relative to widest point (percentage)
depth	depth of top part of diamond from the widest point, relative to total depth (percentage)

The file contains an unimportant variable that you will need to remove.

Expectations

Your report should include the following elements:

• A description of the data (sample size, number of variables).

- Concise EDA, including the identification and removal of proposed outliers (if there are any) and, potentially, the transformations of the response variable and/or (some) predictor variables that are highly skew. (Note: always try transformations first before identifying and removing outliers...that lonely data point in a skew distribution may look fine after a transformation is performed.) Also, create a correlation plot and comment on the possibility of multicollinearity in the predictor variables (while mentally noting that your goal here is prediction, so multicollinearity is OK). (One last note: the number of data is large, so if you create scatter plots, randomly sample some much smaller number of points to plot.)
- A description of how you split the data into training and test sets.
- An analysis of the full dataset with linear regression, with comments on the output (does the fit appear to be good?). Provide the mean-squared error and the predicted response vs. observed response diagnostic plot. Comment on the value of adjusted R^2 : is the linear model useful, or might other models perform better? Also, realize that the response variable needs to be transformed if and only if (a) the *residuals* of the fit are not normally distributed *and* (b) you wish to do inference using the hypothesis test output from lm(). To plot the residuals, find the difference between the observed test-set response values and the predicted test-set response values, and make a histogram: does this plot look normal? Here, the goal is prediction of price, not inference, but you may still find that a transformation may (or may not!) make for better model predictions.
- A best-subset-selection analysis of the dataset. Which predictor variables are important for predicting diamond prices? If predictor variables are removed from the full set, compute the new mean-squared error and compare it to the MSE for the full set of predictors.

Done. Remember, again, you are not publishing a journal paper about this analysis, nor are you charged with finding some new or interesting result here. It's a simple straight-up analysis—treat it as such!

For those desiring extra credit (which won't actually be given, but still):

• Do a simple PCA analysis on the predictors with the goal of determining the "true" dimensionality of the predictor variables. No need to map original variables to PCs or do PC regression; I'd just be curious to know if the data lay on, e.g., a subsurface within the native space. This is extra credit because we would not normally go down this path unless we were performing an inferential analysis and our data has a high level of multicollinearity that needs to be mitigated.