CSCM603130: Sistem Cerdas Machine Learning

Fariz Darari, Aruni Yasmin Azizah

Fakultas Ilmu Komputer Universitas Indonesia

2019/2020 • Semester Ganjil

Outline

- 1 Learning Agents
- 2 Supervised Learning
- 3 Decision Tree Learning
- 4 Mengukur Kinerja Belajar

Outline

- 1 Learning Agents
- 2 Supervised Learning
- 3 Decision Tree Learning
- 4 Mengukur Kinerja Belajar

Learning Agents

Dua pendekatan membangun agent:

- Dirancang, diprogram, diberi knowledge oleh manusia
- Dirancang sehingga bisa belajar dari input (percept, pengalaman, dst.)

Mengapa learning agent dibutuhkan:

Learning Agents

Dua pendekatan membangun agent:

- Dirancang, diprogram, diberi knowledge oleh manusia
- Dirancang sehingga bisa belajar dari input (percept, pengalaman, dst.)

Mengapa learning agent dibutuhkan:

- Environment yang bervariasi dan berubah seiring berjalannya waktu.
- Agent designer tidak dapat mengetahui semua solusi.

Agent yang Belajar

Kita telah mengenal banyak jenis agent:

- Simple reflex agent (condition-action rules)
- Goal-based agent (memiliki goal):
 - Problem-solving agent: searching
 - Knowledge-based agent: knowledge representation & reasoning dengan pendekatan logika dan probabilistik
- Utility-based agent (mengukur nilai utility sebuh state)

Semua agent ini bisa dibangun dengan metode "pemelajaran" yang tepat!

Contoh: agent supir taksi. Bagaimana dia belajar?

Arsitektur Learning Agent

Supervised learning

Agent belajar fungsi yang memetakan input ke output

- Pada tahap training, learning algorithm menerima pasangan input-output yang spesifik.
- Sample ini dipakai untuk estimasi fungsinya.

Contoh:

Sebuah agent taxi diberikan informasi mengenai lampu sen (input). Jika mobil yang berada di depan agent taxi menyalakan lampu sen, maka taxi harus diperlambat (output).

Contoh task: regression, classification

Unsupervised learning

Sebuah learning algorithm menerima sekumpulan data, dan harus menemukan pola-pola di dalamnya.

Contoh:

Sebuah agent taxi menerima data mengenai laju lalin sepanjang hari. Mungkin ia bisa belajar periode "morning rush hour", "evening rush hour"

Contoh task: Clustering

Reinforcement learning

- Sebuah agent menerima input data dan harus mengambil tindakan.
- Agent lalu menerima reinforcement signal (berupa reward atau punishment mis. good, bad) sebagai akibat tindakan.
- Learning algorithm memodifikasi agent function untuk memaksimalkan signal "good".
- Contoh:

Ketika taxi agent mendapat nilai tip yang sedikit setelah mengantar penumpang, mengindikasikan taxi agent melakukan kesalahan.

Semi-supervised learning

- Learning algorithm menerima beberapa (*labeled*) input yang memiliki pasangan output (baik akurat maupun *noise*).
- Kemudian, learning algorithm harus memberikan output untuk banyak input baru (unlabeled).
- Kesatuan dari supervised learning dan unsupervised learning.
- Contoh:

Agent untuk menebak usia seseorang dari fotonya. Agent menggunakan input beberapa foto orang, beserta usia yang dilaporkan orang tsb, dan usia sebenarnya.

Outline

- 1 Learning Agents
- 2 Supervised Learning
- 3 Decision Tree Learning
- 4 Mengukur Kinerja Belajar

Supervised Learning

Supervised Learning

Prinsip dasar dari supervised learning adalah mempelajari fungsi atau aturan dari pasangan input-output atau "belajar dari pengalaman" (inductive learning).

Metode ilmiah empiris bisa dilihat sebagai proses *inductive learning*:

Supervised Learning

Supervised Learning

Prinsip dasar dari supervised learning adalah mempelajari fungsi atau aturan dari pasangan input-output atau **"belajar dari pengalaman"** (inductive learning).

Metode ilmiah empiris bisa dilihat sebagai proses *inductive learning*:

- 1 Lakukan ujicoba, kumpulkan data
- 2 Rumuskan hipotesis yang konsisten dengan data
- 3 Hipotesis ini memprediksi nilai data baru
- 4 Lakukan ujicoba untuk memeriksa kebenaran prediksi
- 5 Tambahkan ke data yang kita miliki
- 6 Jika hipotesis tidak lagi konsisten, rumuskan ulang!

Supervised Learning

Ide dasar supervised learning:

- Diberikan sebuah training set (example) N berupa pasangan input-output: $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$, dimana y_j dihasilkan dari suatu fungsi yang tidak diketahui y = f(x).
- Cari fungsi hipotesis h yang mengaproksimasi f.
- Fungsi *h* yang bagus bisa memprediksi *example* yang belum dilihat pada saat belajar.
- Jika domain output y diskrit: classification
- Jika domain output y kontinu: regression

Searching dalam Supervised Learning

- Sebuah prosedur induktif mendefinisikan space: hypotheses space.
- Mis. untuk *curve-fitting*, hypotheses space = fungsi polynomial dgn. degree n: $f(x) = k_0 + k_1 x + k_2 x^2 + ... + k_n x^n$
- Search space terlalu kecil: f(x) yang kita cari tidak ada (unrealisable)
- Search space terlalu besar:
 - Makin sulit ditelusuri
 - Makin banyak hipotesis yang konsisten dengan training example

Consistency vs. Simplicity

- Sebuah hipotesis yang consistent bisa menjelaskan semua training example (memetakan input ke output dengan akurat).
- Ada banyak consistent hypothesis untuk sebuah training set.
- Ockham's Razor: pilih yang paling simple! Secara intuitif: generalisasi terhadap example baru.
- Biasanya ada trade-off antara *consistency* dan *simplicity*.

Outline

- 1 Learning Agents
- 2 Supervised Learning
- 3 Decision Tree Learning
- 4 Mengukur Kinerja Belajar

Decision Tree Learning

- Decision tree merupakan representasi dari proses learning
- Hypothesis space mengandung himpunan n input variable dan 1 output variable.
- Tipe variable bisa: boolean, diskrit, kontinu
- Sebuah training example terdiri dari himpunan nilai input variable dan 1 output variable

Contoh: Menunggu di Restoran

SR berniat makan, berada di depan restoran, dan ingin memutuskan apakah rela menunggu/tidak untuk dapat meja di restoran.

Output variable:

WillWait (boolean): nilai true berarti menunggu

Cari metode yang dapat merumuskan fungsi hipotesis yang "menjawab" nilai *WillWait* untuk semua kemungkinan nilai input variable.

Contoh: Menunggu di Restoran

Input variable:

- Alternate (boolean): adakah restoran alternatif?
- Bar (boolean): apakah restoran memiliki bar?
- Fri/Sat (boolean): true jika hari ini adalah Jumat/Sabtu.
- Patrons (diskrit): ada berapa pengunjungnya? (None, Some, Full)
- Price (diskrit): Berapa kisaran harga hidangannya? (\$, \$\$, \$\$\$)
- Raining (boolean): apakah sedang hujan di luar?
- Reservation (boolean): apakah sudah membuat reservasi?
- Type (diskrit): apa jenis makanannya? (French, Italian, Thai, Burger)
- WaitEstimate (diskrit): Berapa lama perkiraan durasi menunggu? (0-10, 10-30, 30-60, >60 menit)

Contoh: Training Examples

	Attributes										Target
Ex.	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X ₂	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X ₃	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X ₄	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X ₆	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X ₇	F	T	F	F	None	\$	T	F	Burger	0-10	F
X ₈	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X ₉	F	T	T	F	Full	\$	T	F	Burger	>60	F
X ₁₀	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X ₁₁	F	F	F	F	None	\$	F	F	Thai	0-10	F
X ₁₂	T	T	T	T	Full	\$	F	F	Burger	30–60	Т

Boolean classification: Example di-classify menjadi positive (T) atau negative (F)

Decision Trees

- Sebuah representasi dari kemungkinan fungsi hipotesis
- Dapat dianggap sebagai sebuah if...then yang besar!
- Decision tree terdiri atas:
 - Internal node: representasi dari pengujian terhadap suatu nilai input variable
 - Himpunan edge dari suatu node: menyatakan semua kemungkinan nilai dari suatu input variable
 - Leaf node: memberikan nilai fungsi (output)

Decision Trees: Contoh

Mis.: inilah decision tree untuk fungsi yang "benar":

Decision Trees: Expresiveness

Sebuah decision tree dapat menyatakan sembarang fungsi dari nilai input (attributes)

Mis. untuk *n* variable boolean, buat tree dari truth table-nya:

Tree ini memiliki satu path root → leaf untuk setiap baris truth table. Kesimpulan: buat satu path untuk setiap training example. Ini namanya "hafal mati"! (Generalisasi? Prediksi contoh baru? Belajar?)

Ingat Ockham's Razor:

Cari decision tree yang paling simple tapi consistent dengan data

Algoritma DTL

Tujuan: cari tree yang simple dan konsisten dengan training examples

Algoritma DTL

```
function \ \mathrm{DTL}(\textit{examples}, \textit{attributes}, \textit{parent\_examples}) \ \textbf{returns} \ \texttt{a} \ \mathsf{tree}
```

if examples is empty then return Plurality-Value(parent_examples) else if all examples have the same classification then return classification else if attributes is empty then return Plurality-Value(examples) else

```
A \leftarrow \operatorname{argmax}_{a \in attributes} \operatorname{IMPORTANCE}(a, examples) tree \leftarrow a new decision tree with root test A for each value v_k of A do  exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}  subtree \leftarrow \operatorname{DTL}(exs, attributes - A, examples) add a branch to tree with label (A = v_k) and subtree subtree return tree
```

Fungsi PLURALITY-VALUE memilih nilai output terbanyak dari himpunan example. Jika masing-masing output sama banyak, pilih acak.

Secara rekursif: cari input variable yang "paling menjelaskan" training example tambahkan node-nya.

Memilih Variable

- implementasi dari fungsi IMPORTANCE pada algoritma DTL.
- Sebuah input variable yang ideal akan memilah example yang ada menjadi "semua positif" atau "semua negatif".
- Berdasarkan prinsip ini, sebuah variable bisa "lebih baik" dari variable lain.
- Contoh: mana yang lebih baik?

Information Theory: Entropy (1)

- Pilih variable yang paling banyak mengandung informasi mengenai nilai output variable.
- Gunakan konsep information gain dari Information Theory (Shannon & Weaver, 1949).
- Entropy adalah ukuran dari ketidakpastian informasi sebuah random variable.
- Bit: satuan informasi untuk menunjukkan besarnya informasi yang terkandung pada sebuah jawaban terhadap suatu pertanyaan.
 - Koin dengan kedua sisinya heads = 0 bit tidak memiliki ketidakpastian
 - Koin dengan sisi *head* dan sisi tail = 1 bit \rightarrow memiliki 2^1 nilai $(\langle 0.5, 0.5 \rangle)$
 - Dua koin yang memiliki *head* dan tail = 2 bit \rightarrow memiliki 2^2 nilai $(\langle 0.25, 0.25, 0.25, 0.25, 0.25 \rangle)$
- Berapa entropy untuk sebuah koin yang kemunculan head-nya memiliki probabilitas 0.99?

Information Theory: Entropy (2)

■ Entropy dari random variable V, dengan nilai v_k dan $P(v_k)$ adalah probabilitas dari v_k :

$$H(V) = \sum_{k} P(v_{k}) \log_{2} \frac{1}{P(v_{k})} = -\sum_{k} P(v_{k}) \log_{2} P(v_{k})$$

■ Dapat diperoleh definisi entropy untuk Boolean variable (B(q)) dimana q adalah probabilitas untuk nilai true:

$$B(q) = -(q \log_2 q + (1-q) \log_2 (1-q))$$

■ Jika training set tdd *p* data positif dan *n* data negatif, maka entropy dari atribut tujuan *Goal*:

$$H(Goal) = B(\frac{p}{p+n})$$

- Untuk sebuah atribut A yang memiliki d nilai yang berbeda, maka training set E akan terbagi ke dalam subset: E_1, \ldots, E_d . Setiap E_k memiliki p_k data positif dan n_k data negatif:
 - Mengikuti percabangan ke-k: $B(p_k/(p_k+n_k))$ bits informasi.
 - Probabilitas memilih secara acak sample dari training set dengan atribut bernilai k: $(p_k + n_k)/(p + n)$.
 - Expected entropy tersisa setelah atribut A diketahui:

Remainder(A) =
$$\sum_{k=1}^{d} \frac{p_k + n_k}{p+n} B(\frac{p_k}{p_k + n_k})$$

Information Theory: Information Gain

Information Gain

Selisih informasi yang dibutuhkan sebelum dan sesudah nilai sebuah atribut diketahui.

$$Gain(A) = B(\frac{p}{p+n}) - Remainder(A)$$

Mana yang lebih baik? Patrons? Type? Bagaimana information gain dari kedua atribut?

Memilih variable terbaik dengan Information Gain

Diketahui *outcome* dari *WillWait* ada 2 (*Yes* dan *No*), jumlah kasus dimana *WillWait* = true adalah $p_1 = 6$, jumlah kasus dimana *WillWait* = false adalah $p_2 = 6$.

•
$$H(WillWait) = H(\langle \frac{6}{6+6}, \frac{6}{6+6} \rangle) = H(\langle 0.5, 0.5 \rangle) = 1$$

■ Remainder(Patrons) =
$$\frac{2}{12}B(\frac{0}{2}) + \frac{4}{12}B(\frac{4}{4}) + \frac{6}{12}B(\frac{2}{6}) = 0.459$$

■ Remainder(Type) =
$$\frac{2}{12}B(\frac{1}{2}) + \frac{4}{12}B(\frac{2}{4}) + \frac{4}{12}B(\frac{2}{4}) + \frac{2}{12}B(\frac{1}{2}) = 1$$

•
$$Gain(Patrons) = 1 - 0.459 = 0.541$$

•
$$Gain(Type) = 1 - 1 = 0$$

Hasil DTL

Tree yang dihasilkan algoritme DTL untuk 12 example:

- Lebih kecil/simple daripada tree yang sebenarnya!
- Hipotesis lebih kompleks (mis. *Bar*, *Rain*) tidak diperlukan.

Isu pada Decision Tree

- Jika ada atribut multivalue? Information gain tidak sesuai, gunakan gain ratio
- jika atribut pada input bernilai kontinue dan numerik? Cari split point yang memberikan Gain tertinggi (expensive!)
 - Urutkan data dari atribut ybs, ambil split point antara 2 example yang memiliki kelas berbeda, sambil hitung example masing-masing kelas pada kedua sisi dari split point.
- jika atribut pada output bernilai kontinu? Gunakan regression tree, bukan classification tree
 - Regression tree memiliki suatu fungsi linier pada setiap leaf, bukan suatu nilai.

Outline

- 1 Learning Agents
- 2 Supervised Learning
- 3 Decision Tree Learning
- 4 Mengukur Kinerja Belajar

- Bagaimana mengukur keberhasilan algoritme DTL dkk.?
- Uji kebenaran hipotesis "menjawab" example baru (generalisasi).
- Pendekatan sederhana: holdout cross-validation.
 - Bagi data secara random: training set dan test set
 - Jalankan learning pada training set
 - Evaluasi keberhasilan pada test set

Pendekatan lain:

- k-fold cross-validation
 - Bagi data menjadi *k* potongan/*fold* (1 potongan untuk test).
 - Train sebanyak k ronde; pada setiap ronde, gunakan potongan test set berbeda untuk validation.

Pendekatan lain:

- k-fold cross-validation
 - Bagi data menjadi k potongan/fold (1 potongan untuk test).
 - Train sebanyak k ronde; pada setiap ronde, gunakan potongan test set berbeda untuk validation.
 - Akurasi final adalah rerata dari akurasi *k* ronde.
- leave-one-out cross-validation (LOOCV)
 Seperti k-fold CV, namun pembagian data sebanyak elemen data (k = n).

Pendekatan lain:

- k-fold cross-validation
 - Bagi data menjadi *k* potongan/fold (1 potongan untuk test).
 - Train sebanyak k ronde; pada setiap ronde, gunakan potongan test set berbeda untuk validation.
 - Akurasi final adalah rerata dari akurasi *k* ronde.
- leave-one-out cross-validation (LOOCV) Seperti k-fold CV, namun pembagian data sebanyak elemen data (k = n).

Isu pada CV: peeking

test set digunakan untuk memilih hipotesis sekaligus mengevaluasinya.

Pendekatan lain:

- k-fold cross-validation
 - Bagi data menjadi *k* potongan/fold (1 potongan untuk test).
 - Train sebanyak k ronde; pada setiap ronde, gunakan potongan test set berbeda untuk validation.
 - Akurasi final adalah rerata dari akurasi *k* ronde.
- leave-one-out cross-validation (LOOCV) Seperti k-fold CV, namun pembagian data sebanyak elemen data (k = n).

Isu pada CV: peeking

- test set digunakan untuk memilih hipotesis sekaligus mengevaluasinya.
- Pisahkan test set, kemudian baru membagi data menjadi training set dan validation set.

Learning Curve

Knowledge = Power

Semakin banyak data, semakin bagus hasil machine learning.

Learning curve

% prediksi benar pada test set sbg. fungsi dari ukuran training set.

Contoh, pada data restoran:

Bentuk Learning Curve

Learning curve juga tergantung masalah yang dipelajari:

- **Realizable**: Fungsi target f(x) bisa dinyatakan
- Non-realizable: Fungsi target f(x) tidak bisa dinyatakan (kurang atribut?)
- Redundant: Banyak atribut noise yang tidak berguna, menyesatkan (overfitting)!

Ringkasan: Machine Learning

- Learning bermanfaat untuk:
 - Unknown environment
 - Lazy designers
- Supervised learning menggunakan prinsip induksi: dari sehimpunan data, estimasi sebuah hipotesis
- Trade-off antara consistency dan simplicity
- Algoritma Decision Tree Learning menggunakan Information Gain
- Metode machine learning diuji dengan tahap training dan testing
- CSCE604235 Pemelajaran Mesin (Machine Learning)

