

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики Кафедра алгоритмических языков

#### ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

# Автоматическое извлечение гиперонимов из больших текстовых корпусов.

Автор: группа 425 Шавалиева Ралина Забировна

Научный руководитель: должность??? Лукашевич Наталья Валентиновна

## Содержание

| Введение         |                         |                                                                  |    |  |
|------------------|-------------------------|------------------------------------------------------------------|----|--|
| 1                | Пос                     | становка задачи                                                  | 7  |  |
| 2                | Обз                     | Обзор существующих алгоритмов                                    |    |  |
|                  | 2.1                     | Модель, основанная на лексико-синтаксических шаблонах            | Ć  |  |
|                  | 2.2                     | Векторное представление слов                                     | 10 |  |
|                  |                         | 2.2.1 Представление слов векторами, полученными при SVM разложе- |    |  |
|                  |                         | нии матрицы PPMI                                                 | 1( |  |
|                  |                         | 2.2.2 WORD2VEC                                                   | 13 |  |
|                  |                         | 2.2.3 Dynamic distance-margin model                              | 14 |  |
| 3                | Структура алгоритма     |                                                                  |    |  |
|                  | 3.1                     | Проверка по критерию                                             | 17 |  |
|                  | 3.2                     | Построение множеств частичных отображений                        | 18 |  |
| 4                | Исследование алгоритма  |                                                                  |    |  |
|                  | 4.1                     | Определение класса решаемых задач                                | 20 |  |
|                  | 4.2                     | Анализ                                                           | 20 |  |
|                  | 4.3                     | Вероятностная сложность                                          | 23 |  |
|                  | 4.4                     | Теоретическая возможность распараллеливания                      | 23 |  |
| 5                | Модернизация            |                                                                  |    |  |
|                  | 5.1                     | Оптимизация по времени работы                                    | 25 |  |
|                  | 5.2                     | Обработка особых случаев                                         | 2  |  |
|                  | 5.3                     | Ресурс параллелизма                                              | 27 |  |
| 6                | Практическое применение |                                                                  | 28 |  |
| За               | аклю                    | рчение                                                           | 29 |  |
| $\mathbf{C}_{1}$ | писо                    | к литературы                                                     | 30 |  |
| Приложение А     |                         |                                                                  |    |  |

Приложение Б

#### Введение

В наше время компьютерная обработка естественного языка является одной из самых востребованных областей искусственного интеллекта. Для того, чтобы правильно распознать смысл фразы, написанной человеком, необходимо иметь дополнительные знания о каждом слове этого предложения и существующих связей между ними. К такой вспомогательной информации относится отношение *is-a*, что означает отношение обобщения. Способность к обобщению лежит в основе человеческого познания. Люди без труда могут заменить частное на общее. Например, слово «кошка» на слово «животное», «автомобиль» на «транспорт», «красный» на «цвет». Для каждой пары общее слово имеет термин *гипероним*, а частное - *гипоним*. Для каждого гипонима может существовать несколько гиперонимов, и наоборот.

#### КАРТИНКА

Способность успешного распознавания таких лингвистических отношений приносит вклад в такие области, как вопросно-ответная система, системы семантического поиска, управление записями (система хранения и отслеживания документов), а также информационный поиск и навигация по сайтам. Например, наличие информации, что слова «гепард» и «животное» связаны отношением *is-a*, может помочь при ответе на вопрос «какое самое быстрое животное?». А система информационного поиска сможет подобрать соответствующие сайты, при получении такого же запроса. В добавок, отношение гипоним-гипероним - это основа почти любой семантической сети и таксономии (иерархической системы отношений сущностей определенной области знаний). Наличие таких построенных структур, помогает при реферировании текста, т.е. извлечении из него основного содер-

жания или заданной информации с целью письменного изложения. Таким образом, проблема определения отношений обобщения весьма актуальна как в области лингвистики, так и в области искусственного интеллекта. На данный момент большинство ресурсов, позволяющих определять отношение обобщения, написаны вручную, что очень дорого в плане их создания и поддержки в актуальном состоянии. Ручные словари зачастую имеют не достаточно большую область покрытия. К тому же, в большинстве случаев, нет возможности выставления вероятности наличия связи непрерывной случайной величиной от 0 до 1, а лишь только дискретная степень допустимости существования отношения. Например, 0 - нет связи, 1- слабая, 2 - средняя, 3 - сильная. Таким образом, нет возможности определить, какое из слов в качестве гиперонима подходит больше, если есть несколько кандидатов имеющих одинаковую степень. Для современных задач, появляется необходимость создания автоматической системы поиска связи гипоним-гипероним. Существует два основных вида постановки задачи. Первая, наиболее распространенная, это сопоставление каждой паре слов 1 или 0, в зависимости от того, есть связь или нет. Такого рода задача бинарной классификации неоднократно подвергалась критике за её чрезмерную простоту, а также из-за невозможности сравнения кандидатов, как и в случае ручных словарей. Второй способ заключается в поиске гиперонимов, т. е. предоставлении ранжированного списка слов, которые наиболее вероятно являются гиперонимами заранее заданному гипониму. Поиск таких слов происходит из конкретного словаря, приближенному к словарю всех слов и устойчивых выражений для определенного языка. В данной работе исследуется второй вид постановки задачи - поиск гиперонимов. Рассматриваются различные алгоритмы, как с применением машинного обучения, так и основанные на текстовых шаблонах. И производится сравнение полученных результатов по различиям метрикам качества.

#### 1 Постановка задачи

Целью данной работы является реализация различных алгоритмов извлечения гиперонимов из текстовых корпусов. Исследовать алгоритм, основанный на анализе текстов по средством рукописных регулярных выражений, а также класс алгоритмов, использующих разные виды нейронных сетей, с последующим обучением на размеченных данных. Алгоритм должен для заданного гипонима составлять упорядоченный по вероятности список гиперонимов.

#### ЗАДАЧИ

- 1. Составить обзор существующих подходов к решению поставленной задачи
- 2. Выбор набора данных. Разделение его на обучающую и тестовую части.
- 3. Выбор метрик качества модели, наиболее точно отражающих главные критерии качества. Метрики должны учитывать порядок выбранных гиперонимов, так как основная задача ранжирование списка.
- 4. Построение и тестирование модели, основанной на рукописных шаблонах
- 5. Исследование первой модели векторного представления слов, основанной на гипотезе дистрибутивной семантики. РМІ + SVM.
- 6. Построение моделей, использующих различные комбинации векторов, полученных алгоритмом Word2Vec. Дообучение алгоритмом SGD и LambdaBank.

- 7. Реализация нейронной сети, разделяющей каждое слово на 2 вектора: слово в качестве гипонима и слово в качестве гиперонима. Распараллеливание алгоритма средствами Hadoop MapReduce.
- 8. Сравнение результатов, полученных всеми построенными моделями.

## 2 Обзор существующих алгоритмов

#### 2.1 Модель, основанная на лексико-синтаксических шаблонах

Данный метод был разработан профессором Марти Херст в 1992 году. Алгоритм является одним из первых в области автоматического определения отношения обобщения между словами. Считается, что пара слов в предложении связана отношением гипоним- гипероним, если она удовлетворяет одному из шаблонов, таких как

- [A] for example [B] например
- [A] such as [B] такие как
- [A] include [B] включая
- [A] especially [B] особенно

и др.

Здесь [B] обозначает *гипероним*, а [B] - список *гипонимов*. Например, «I like flowers, such as roses or peonies» - «мне нравятся цветы, такие как розы или пионы». В данном случае в качестве гиперонима выступает слово «цветы», а гипонимы - розы и пионы. Список таких словосочетаний не имеет фиксированного размера. Можно добавлять свои примеры, подходящие конкретной области или исключать неподходящие.

### ПРЕИМУЩЕСТВА

• Высокая точность

#### НЕДОСТАТКИ

- Главный недостаток такого подхода низкая полнота определения связей. Необходим очень большой текстовый корпус, чтобы выделить хотя бы базовые пары отношений.
- Не каждый пример связи можно описать шаблоном.
- Не улавливаются цепочки связей. То есть, если определены пары «ласточка птица» и «птица животное», то может не быть пары «ласточка животное».
- Несмотря на высокую точность, встречаются случаи, когда пара слов неверно отмечена, как имеющая связь is-a. Один из таких примеров пара предложений: «...cities in Asian countries such as **Tokyo** ...» «... города в странах Азии, такие как Токио ...» «...cities in Asian countries such as **Japan** ...» «... города в странах Азии, таких как Япония ...» В первом случае пара «countries Tokyo» была бы отмечена неправильно
- Для ранжирования гиперонимов не достаточно иметь только число, означающее сколько раз встретилась конкретная пара, так как это зависит от конкретного текстового корпуса.

#### 2.2 Векторное представление слов

# 2.2.1 Представление слов векторами, полученными при SVM разложении матрицы PPMI

Данный подход основывается на предположении, которое носит название «дистрибутивная гипотеза»: лингвистические единицы, встречающиеся в схожих контекстах, имеют близкие значения. Для такого подхода необходимо иметь достаточно большой текстовый корпус. Существует несколь-

ко способов получение контекстов для слова. Наиболее популярный называется «window-based» метод. Задается величина ширины окна k. Далее просматриваются все предложения, содержащие конкретное слово. К примеру, интересующее нас слово  $W_i$  находится в позиции i в рассматриваемом предложении. Контекстом данного предложения к  $W_i$  будет набор слов  $(W_{i-k}, \dots W_{i-1}, W_{i+1}, \dots W_{i+k})$  т.е k слов, стоящих до  $W_i$  и k слов после. Величина окна произвольная, но чаще всего выбирается от 2 до 5. Таким образом, для каждого слова строится набор его контекстов. Исследовав схожесть наборов контекстов двух разных слов, можно судить об отношении этих слов между собой. Например, в случае синонимов, наборы контекстов будут близки. Задание же функции вычисления схожести является главным параметром таких моделей. PPMI (positive pointwise mutual information) - положительная поточечная взаимная информация. Функция PPMI является одной из оценок схожести двух лингвистических единиц, например слов, контекстов, абзацев и т.п., на основе заданного текстового корпуса. Для случая вычисления взаимной информации между словом и контекстом данная функция задается следующей формулой:

$$PPMI(w,c) = max(PMI(w,c),0)$$
  
 $PMI(w,c) = \log \frac{p(w,c)}{p(w) \times p(c)})$ , где

- $\bullet$  w слово из текстового корпуса;
- c KOHTEKCT;
- ullet p(w) вероятность встречи слова w в корпусе = частота появления слова в корпусе деленное на общее число слов
- $\bullet$  p(c) вероятность встречи данного контекста = частота появления контекста в корпусе деленное на общее число контекстов

 $\bullet$  p(w,c) - вероятность встречи пары «слово - контекст» = частота появления данной пары в корпусе деленное на общее число пар

Таким образом, PPMI вычисляется напрямую из текстового корпуса. Если слово и контекст не связаны между собой, то

$$p(w,c) = p(w) \times p(c)$$

и РРМІ для этой пары будет равно 0. Чем выше данный показатель, тем чаще слово w появляется в сопровождении контекста  $\mathbf{c}$ . Строится таблица M, строки которой соответствуют словам, а столбцы - контекстам. Таблица заполняется соответствующими значениями РРМІ. Вектор слова определяется величинами, расположенными в его строке. Длина вектора - количество найденных в корпусе контекстов. Таким образом, схожесть наборов контекстов для двух слов определяется близостью их векторов. Как можно заметить, величина встречаемости слова намного меньше размера множества всех контекстов. Значит, матрица M будет иметь большой размер, и при этом она будет сильно разряженной. Возникает проблема «проклятия размерности». Измерение расстояния между такими векторами будет неинформативным, т.к согласно Закону Больших Чисел, сумма n слагаемых стремится к некоторому фиксированному пределу при

$$n \to \infty$$
,

следовательно, расстояния во всех парах объектов стремятся к одному и тому же значению. Одним из решений данной проблемы является снижение размерности алгоритмом SVD (Singular Value Decomposition). Данный алгоритм может приблизить матрицу M размера  $n \times m$ , некоторой другой матрицей  $M_k$  с заданным рангом k, такой, что её можно разложить в произведение трех других матриц.

$$M \approx M_k = U_k \times \Sigma_k \times V_k^T$$
,

где  $U_k$  и  $V_k$  - две унитарные матрицы, состоящие из левых и правых сингулярных векторов соответственно, а  $V_k^T$  - это сопряжённо-транспонированная матрица к  $V_k$ 

 $\Sigma_k$  — матрица размера  $k \times k$  с неотрицательными элементами, у которой элементы, лежащие на главной диагонали — это сингулярные числа (а все элементы, не лежащие на главной диагонали, являются нулевыми)

Полученная матрица  $U_k$  будет иметь размерность  $n \times k$ . Строки такой матрицы будут соответствовать строкам исходной матрицы M, только размерность векторов изменится с m на k. Часть информации потеряется, но существенная её часть остается. Аналогично, матрица  $V_k^T$  несет информацию о столбцах матрицы M, только имея при этом меньший размер. Применительно к нашей задачи, разложение матрицы PPMI приведет к получению компактного векторного представления слов, сохраняющего информацию о контекстах.

Дальнейшая работа с полученными векторами будет описана в пункте 2.4.

#### 2.2.2 WORD2VEC

Еще одним инструментом, реализующим модель векторного представления слов, является Word2Vec. Этот инструмент был разработан группой исследователей Google в 2013 году, под руководством Томаша Миколова. Word2Vec реализует две архитектуры - Continuous Bag-of-Words (CBOW) и Skip-gram. Обе архитектуры построены на нейронных сетях и основаны на дистрибутивной гипотезе. Принцип работы CBOW — предсказывание слова при данном контексте, а Skip-gram наоборот — предсказывает контекст при заданном слове. Независимо от архитектуры, модель принимает

в качестве входных параметров текстовый корпус, и формирует векторное представление каждого слова, входящего в корпус и имеющего частотность в заданном диапазоне. Применяется искусственная нейронная сеть прямого распространения (Feedforward Neural Network) с функцией активации иерархический софтмакс (Hierarchical Softmax) и/или негативное сэмплирование (Negative Sampling). Метрика близости векторов – косинусное расстояние. Таким образом, данная модель позволяет получить еще одно векторное представление каждого слова.

#### 2.2.3 Dynamic distance-margin model

Две предыдущие модели позволили получить векторные представления слов, основываясь на наборах их контекстов. При этом каждое слово учитывалось только один раз, не было различия: слово выступает в качестве гипонима или в качестве гиперонима. Отношение is-а не является симметричным. Если пара слов A-B связана отношением гипоним-гипероним, то пара B-A таким отношением уже не связана. Более того, чем ближе вектор A к вектору B, тем больше вероятность, что слова и являются синонимами. Необходимо подбирать границы близости: не слишком далекие, чтобы слова имели связь друг с другом, и не слишком близкие, чтобы не получать синонимичные пары. С точки зрения построения моделей, задача поиска максимума или минимума решается проще и качественнее, чем определение таких границ. Поэтому возникает предположение о разделение одного вектора слова на два - вектор гипоним и вектор гипероним.

Вектор слова w, используемый, когда данное слово будет выступать в качестве гипЕронима, обозначим за E(w). Например, слово nmuua в отношении (ласточка, птица). Когда в качестве гипОнима - за O(w). Пример:

в паре (птица, животное).

Предполагается, что построенная новая модель должна удовлетворять следующим трем правилам:

- 1. Если пара слов u-v связана отношением гипоним-гипероним, то вектора O(u) и E(v) находятся близко друг к другу.  $O(u) \approx E(v)$
- 2. Если пара слов u-v являются ко-гипонимами, т.е. существует слово w, являющееся гиперонимом, как для слова u, так и для слова v, то должно выполняться соотношение  $O(u) \approx O(v)$
- 3. Аналогично, если пара слов является ко-гиперонимами, то должно быть верно:  $(u) \approx (v)$

Таким образом задача сводится к минимизации расстояний  $O(u) \approx E(v)$ ,  $O(u) \approx O(v)$  и  $(u) \approx (v)$ . В качестве обучающего множества берется набор триплетов (u, v, q), где u - гипоним, v - гипероним, а q - сколько раз пара гипоним-гипероним (u, v) встретилась в текстовом корпусе. Такой набор данных может быть собран вручную или, например, методом шаблонов, описанным в пункте 2.1. Необходимо учитывать, что для получения хороших результатов, размер текстового корпуса должен быть очень большим.

Для каждой пары x=(u,v,q) из выбранного набора данных, вычисляется функция расстояния между векторами O(u) и E(v). В качестве функции расстояния может, например, выступать 1-норма разности векторов. Так

$$f(x) = ||O(u) - E(v)||_1$$

Для того, чтобы оценить величину ошибки модели на примере x, расстояние между векторами слов u и v сравнивается с расстоянием от u до произвольного слова v'. Т.е выбирается негативный пример гиперонима для

гипонима u. По предположению, построенные вектора O(u) и E(v) должны быть ближе, чем вектора O(u) и E(v'). Насколько ближе они должны быть, определяется величинамиц и q'. Величина q' означает, сколько раз пара гипоним-гипероним (u,v') встретилась в текстовом корпусе. Так как слово v выбирается случайным из всего корпуса, то наиболее вероятно q равняется нулю.

## 3 Структура алгоритма

Поставленная задача не является простой, особенно для графов, имеющих большое количество вершин. Для ее решения граф удобно представить в виде матрицы смежности. Пусть, для удобства, элементы этой матрицы состоят из единиц и нулей. Если на пересечении строки i и столбца j стоит 1(0), и  $i \neq j$  - это означает, что существует (не существует) ребро (i,j), если i=j, вершина под номером i имеет (не имеет) петлю. При отображении одной вершины в другую, в матрице смежности меняются местами строки и столбцы соответствующих вершин. Автоморфизмом является следующее отображение:  $\widehat{g}A\widehat{g}^{-1}=A$ , где  $\widehat{g}$  - матричный вид подстановки g. Польза такого представления графа заключается в том, что для поиска автоморфизма g, являющегося отображением множества вершин графа G на себя, достаточно проверить равенство элементов матрицы смежности до и после применения подстановки g.

Идея алгоритма заключается в построении последовательности множеств частичных отображений по матрице смежности графа. Последнее множество из этой последовательности будет содержать в себе все автоморфизмы графа.

Для описания построения такой последовательности будут использоваться следующие определения и обозначения.

### 3.1 Проверка по критерию

Критерием h является проверка подматриц на равенство. Предположим, требуется определить, удовлетворяет ли элемент  $g_k^s$  критерию h. Для этого необходимо, чтобы элементы  $a_{ij}$ , для всех  $i,j \leq k$ , были равны соответ-

ствующим элементам  $a_{r_i r_j}$ . Подматрица  $g_k^s$  выглядит так:

Если хотя бы одно из равенств не выполнено, это означает, что по данной частичной подстановке хотя бы одна вершина отобразилась в другую так, что структура графа изменилась. А так как частичная перестановка  $g_k^s$  фиксирует  $r_1, \ldots r_k$ , то структура останется измененой, что означает отображение не будет являться автоморфизмом.

#### 3.2 Построение множеств частичных отображений

Описание построения  $M'_n$ .

На первом этапе рассматриваются все  $g_1^s$ , образующие множество  $M_1$ . Каждый элемент  $g_1^s$  проверяется по критерию h. Элементы, удовлетворяющие h, образуют  $M_1'$ . В каждый элемент из  $M_1'$  добавляется еще одно отображение  $(2 \to r_2)$ , т.о. происходит переход от  $g_1^s$  к  $g_2^s$ . Из каждого  $g_1^s$  получается разных (n-1) элементов  $g_2^s$ . Всевозможные элементы  $g_2^s$  образуют  $M_2$ . Далее строится  $M_2'$ , добавляя в него только те элементы из  $M_2$ , которые удовлетворяют критерию. Аналогично получаются множества  $M_3, M_3', M_4, \ldots, M_n, M_n'$ .

Таким образом, получается последовательнось множеств частичных отображенией:

$$\{M'_k\}: M'_1 \subseteq M'_2 \subseteq \ldots \subseteq M'_n.$$

Множество  $M'_n$  является множеством всех возможных автоморфизмов (или пустое, если их нет).

#### 4 Исследование алгоритма

#### 4.1 Определение класса решаемых задач

Предложенный алгоритм является универсальным. Используя различный формат вводимых данных, можно решать следующие задачи:

- 1. Нахождение группы автоморфизмов произвольной квадратной матрицы.
- 2. Нахождение левой и правой групп автоморфизомв произваольной матрицы (т.е. блок-схем, дискретных функций и т.д.).
- 3. Нахождение всех изоморфизмов матрицы A на матрицу B.
- 4. Нахождение всех изоморфных вложений матрицы A в матрицу B.
- 5. Поиск клик.
- 6. Решение задачи Коши в подстановках.
- 7. Нахождение группы автоморфизмов матрицы Адамара.
- 8. Нахождение всех изомофризмов кода A на код B.

В рамках дипломной работы рассматриваются первые шесть задач.

#### 4.2 Анализ

Алгоритм применим для любых графов, но для удобство рассматриваются случайные графы, матрицы смежности которых состоят из нулей и едениц. В этом случае получена оценка сложности алгоритма в среднем.

Так как граф случайный, элементы матрицы смежности графа равны 1 или 0 с вероятностью  $\frac{1}{2}$ . Необходимо вычислить наиболее вероятные размеры для каждого множества  $M'_k$ .

Если рассмотреть построение множеств, не учитывая промежуточного критерия, то на k-ом шаге множество увеличивается в (n-k) раз (так как для каждого элемента  $g^s_{(k-1)} = (r_1, \dots, r_{k-1})$  добавляется  $r_k$  из оставшихся (n-k) вариантов):  $|M_{k+1}| = |M_k|(n-k) = n(n-1)\dots(n-k)$ .

С учетом критерия получается:

- 1. Из построения множества  $M_1'$  следует  $|M_1'| pprox \frac{|M_1|}{2}$  (элемент  $a_{11} = a_{r_1 r_1}$ с вероятностью  $\frac{1}{2}$ ).
- 2. На (k+1)-ом шаге требуется совпадение ((k+1)+(k+1)-1) элементов. Так как граф случайный (матрица с равновероятным распределением 0 и 1), то на этом шаге  $|M'_{k+1}| = \frac{1}{2^{2m+1}} |M_k|$  элементов.

Учитывая построение  $\{M_k'\}$  и пункты 1, 2 получим

 $|M'_{k+1}| pprox rac{n!}{(n-k-1)!} pprox rac{1}{e^{k+1}} rac{n^{n+1/2}}{(n-k-1)^{(n-k-1/2)}}$ . Последнее равенство получено используя формулу Стирлинга:  $n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$ , при большом n.

Далее необходимо рассмотреть последовательность  $\{|M'_{k+1}|\}$ .

$$|M'_{k+1}| = \frac{n(n-1)...(n-k)}{2^{(k+1)^2}} \le \frac{n^{k+1}}{2^{(k+1)^2}}$$

 $|M'_{k+1}|=rac{n(n-1)\dots(n-k)}{2^{(k+1)^2}}\leq rac{n^{k+1}}{2^{(k+1)^2}}$  Равенство  $n^{k+1}=2^{(k+1)^2}$  означает, что в множестве осталось небольшое количество элементов. Данное равенство далее будет называться стабилизацией последовательности  $\{M_k'\}$ , а k - значением стабилизации.

После решения данного равенства, получается, что стабилизация наступает при  $k \approx \log_2(n)$ . Это означает, что с вероятностью близкой к единице (для случайного графа) уже на  $k = \lceil \log_2(n) \rceil$  шаге мы обнаружим отсутствие или наличие автоморфизма (в статье это выдвигается как тезис).

Вычисление номера множества k в последовательности  $\{|M_k'|\}$ , соответствующий самому большому множеству:

Пусть 
$$|M'_{k+1}|: |M'_{k+1}| = f(k+1),$$
 
$$f'(k+1) = \frac{\ln(n)n^{k+1}2^{(k+1)^2} - (2k+2)\ln(2)2^{(k+1)^2}n^{k+1}}{(2^{(m+1)^2})^2}.$$

Получается уравнение:

$$\ln(n) - (2k+2)\ln(2) = 0 \implies k+1 \approx \frac{5}{7}\ln(n) - 1.$$

Tак как k и n целые, то

$$k+1 = \left\lceil \left(\frac{5}{7}\ln(n) - 1\right)\right\rceil.$$

Необходимо отметить, что в тот момент, когда  $k \approx \log_2(n)$ , можно судить о том, существуют автоморфизмы в графе или нет. Если размер множества  $M_k = 1$  (только тождественная подстановка), можно утверждать с вероятностью близкой к 1, что автоморфизмов, кроме тривиальной подстановки, не существует. Если  $M_k > 1$ , то, наоборот, с вероятностью близкой к 1 автоморфизм существует. Данный факт позволяет сэкономить память и уменьшить количество операций при поиске автоморфизмов в тех графах, в которых они существуют.

Опираясь на вышесказанное, получены оценки:

• значение стабилизации

$$k \approx \log_2(n)$$

• номер наибольшего по количеству элементов множества

$$k \approx \frac{5}{7} \ln(n)$$

• ограничение на размер множества

$$|M'_k| = \frac{n(n-1)...(n-k-1)}{2(k)^2} \le \frac{n^k}{2(k)^2}$$

• приблизительное количество операций в секунду:

$$\frac{n^{(5/7)\ln(n)}}{2((5/7)\ln(n))^2} \times n(2(\frac{5}{7}\ln(n)) + 1) \times \log_2(n)$$

• затраты оперативной памяти:

$$2 \times \frac{n^{(5/7)\ln(n)}}{2((5/7)\ln(n))^2} \times \log_2(n)$$

#### 4.3 Вероятностная сложность

Сложность всего алгоритма представляет собой сумму сложностей вычисления  $M_1' \dots M_n'$ .

Количество элементов в каждом множестве (с вероятностью близкой к единице):

$$\begin{array}{l} |M_k'| \approx \frac{n!}{(n-k-2)! \ 2^{(k)^2}} \approx \frac{1}{e^k} \frac{n^{n+1/2}}{(n-k-2)^{(n-k-3/2)} \ 2^{(k)^2}} \\ \text{Можно оценить: } |M_k'| = \frac{n(n-1)...(n-k-1)}{2^{(k)^2}} \leq \frac{n^k}{2^{(k)^2}} \end{array}$$

Количество операций сравнения для подсчета всех множеств:

$$\sum_{k=1}^{n} \frac{1}{e^k} \frac{n^{n+1/2}}{(n-k-2)^{(n-k-3/2)} 2^{(k)^2}} \times (n-k)(2k+1)$$

Оценка (были учтены точка стабилизации и точка максимума последовательности множеств):

$$n \times \frac{n^{(5/7)\ln(n)}}{2^{((5/7)\ln(n))^2}} \times n(2(\frac{5}{7}\ln(n)) + 1) \times \log_2(n) = O(n^2(\frac{e}{2})^{\ln(n)^2}\ln(n))$$

Сложность экспоненциальная.

#### 4.4 Теоретическая возможность распараллеливания

Каждое множество  $M_i (i=2\dots n)$  вычисляется из  $M'_{i-1}$  путем добавления в каждый элемент (частичная перестановка, представленная вектором целых чисел) из  $M'_{i-1}$  всех возможных оставшихся чисел, которых нет в соответствующем элементе.

Для этого удобно использовать 2 не фиксированных по количеству строк двумерных массива размера t на n (t может увеличиваться), хранящих

частичные отображения, такого вида:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1i} & ? & \dots & ? \\ a_{21} & a_{22} & \dots & a_{2i} & ? & \dots & ? \\ \dots & & & & & & \\ a_{k1} & a_{k2} & \dots & a_{ki} & ? & \dots & ? \\ ? & ? & \dots & ? & ? & \dots & ? \\ \dots & & & & & & \\ ? & ? & \dots & ? & ? & \dots & ? \end{pmatrix}$$

? - эти значения не известны и заполняются постепенно.

Один массив для  $M'_{i-1}$ , другой для вычисления из предыдущего  $M_i$ . Из каждой строки множества  $M'_{i-1}$  (первый массив), в соответствие с алгоритмом, получается n новых строк длины i, которые записываются во второй массив (расширяется, если нужно).

После этого, второй массив копируется в первый и запускается цикл по всем векторам. Вектор исключается из массива, если  $a_{ji}$  равен какому-либо числу в данном векторе или вектор с  $a_{ji}$  является частичной перестановкой, не удовлетворяющей критерию.

#### 5 Модернизация

#### 5.1 Оптимизация по времени работы

На основе результатов тестирования программы и анализа выяснилось, что эффективность алгоритма тесно связана с тем, как нумеруются вершины графа. Другими словами, время работы программы зависит от того, какой матрицей смежности (из многих) представляется граф.

Модернизация заключается в том, что на каждом этапе можно требовать, чтобы мощность множества частичных отображений была минимальна. Однако представить матрицу смежности нужным образом не представляется возможным при больших размерах, и время работы, затрачеваемой на это, превышает время работы алгоритма. Например, при n=100 потребуется всего лишь 100 операций, чтобы выяснить, с какой вершины эффективнее всего начать отсчет на первой итерации. Но для того, чтобы получить выгоду на второй итерации, уже требуется более 10 000 операций [3]. Поэтому оптимальным является уменьшить только начальное множество частичных отображений.

Для получения первого множества, мощность которого будет наименьшей, в изначальной матрице меняется порядок строк/столбцов (переименование вершин), а именно, необходимо поменять строки и соответствующие им столбцы таким образом, чтобы на месте первого элемента главной диагонали стояло то значение, которое встречается меньше всех других на диагонали. То есть, если на главной диагонали 70% нулей и 30% единиц, необходимо поместить на первую позицию единицу. Эффективность данной модификации исходит из того, что первая итерация алгоритма составляет множество из тех номеров строк (столбцов), в которых значение

на главной диагонали совпадает с первым элементом главной диагонали. Значит, выбрав на эту позицию наименьший по количеству встречаний на диагонали элемент, получается наименьшее по мощности множество.

Оценки получены для случайных матриц (вероятность нуля и единицы в каждой позиции одинакова и равна  $\frac{1}{2}$ ). Предположим, что в матрице  $n \times n$  на главной диагонали находится k нулей, где  $k \leq \frac{1}{2}n$  (если количество нулей больше половины, то за k обозначается количество единиц). Тогда, если на первое место главной диагонали выбирать элемент случайным образом, получим, что математическое ожидание размера полученного множества будет  $\frac{k}{n}*k+\frac{n-k}{n}*(n-k)$ . В модифицированном алгоритме всегда будет получаться k. Таким образом, улучшение составляет  $\frac{k}{n}*k+\frac{(n-k)}{n}*(n-k)=2\frac{k}{n}+\frac{n}{k}-2$  раз. В случае диагонали, состоящей из одних нулей (единиц), то есть k=0, улучшение равняется 1 (мнощьность множеств одинакова). Для получения полной оценки необходимо посчитать матожидание улучшения для произвольного числа нулей и единиц на главной диагонали. Вероятноть k нулей составляет  $\frac{C_n^k}{2^n}$ . Тогда матожидание улучшения  $\frac{1}{2^{n-1}}+2\sum_{i=1}^{n-1}\frac{C_n^k}{2^n}*(2\frac{k}{n}+\frac{n}{k}-2)$ . Далее в таблице приведены значения для различных n:

| Количество вершин графа | Коэф. уменьшения мощности |
|-------------------------|---------------------------|
| 4                       | 2.12500                   |
| 8                       | 2.11198                   |
| 14                      | 1.69565                   |
| 20                      | 1.51723                   |
| 50                      | 1.27697                   |
| 100                     | 1.18312                   |
| 200                     | 1.12400                   |

#### 5.2 Обработка особых случаев

#### 5.3 Ресурс параллелизма

Для поиска автоморфизмов матрицы порядка n итерационным алгоритмом в параллельном варианте требуется выполнить:

\* 
$$n$$
 ярусов сравнений (количество сравнений  $k=1\dots n: \frac{1}{e^k}\frac{n^{n+1/2}}{(n-k-2)^{(n-k-3/2)}\ 2^{(k)^2}} \times (n-k)(2k+1))$ 

При классификации по высоте ЯПФ, таким образом, алгоритм имеет сложность O(n).

При классификации по ширине ЯПФ его сложность  $O(n(\frac{e}{2})^{\ln(n)^2}\ln(n))).$ 

6 Практическое применение

#### Заключение

В результате данной работы разработан модернезированный итерационный алгоритм поиска автоморфизмов и изоморфизмов графов, основанный на алгоритме, предложеном в статье [1]. Получены оценки сложности алгоритма при больших размерах графа (количество вершин n > 1000).

Реализована программа, решающая поставленную задачу на персональном компьютере, при  $n \leq 500$ , а также вычислены значения затрачиваемых ресурсов, при работе программы на суперкомпьютере (при  $n \leq 10^4$ ).

## Список литературы

- [1] Егоров В.Н., Егоров А.В. Группы автоморфизмов и изоморфизм комбинаторных объектов и алгебраических структур // Ломоносовские чтения, Научная конференция, Москва, факультет ВМК МГУ имени М.В.Ломоносова. 2016.
- [2] Егоров В.Н., Марков А.И. О гипотезе Адама для графов с циркулянтными матрицами смежности вершин ДАН СССР // Доклады Академии наук. — 1979. — Т. 249, № 3. — С. 529–532.
- [3] Luks Eugene M. Isomorphism of graphs of bounded valence can be tested in polynomial time // Journal of Computer and System Sciences. 1982.
   Pp. 25:42–64.
- [4] *Рейнгольд Э., Нивергельт Ю., Део Ю.* Комбинаторыне алгоритмы. Теория и практика. Мир, Москва, 1980.
- [5] Babai Laszld. On the complexity of canonical labeling of strongly regular graphs // SIAM, J. Comput. 9(1). 1980.
- [6] Goldberg M.K. A nonfactorial algorithm for testing isomorphism of two graphs // Discrete Appl. Math., 6.— 1983.— P. 229–236.
- [7] Егоров В.Н. О группах автоморфизмов матриц // Прикладная дискретная математика. — 2010.
- [8] Алгоритмы: построение и анализ. / Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн.
- [9] *Воеводин В.В.* Математические основы параллельных вычислений. Изд. Моск. ун-та, 1991.

- [10]  $Bоеводин\ B.B.,\ Bоеводин\ B.A.B.$  Параллельные вычисления. БХВ Петербург, 2002.
- [11] Практика суперкомпьютера «Ломоносов» / Вл. Воеводин, С. Жуматий, С. Соболев и др. // Открытые системы. 2012.

## Приложение А



Рис. 1: Граф Пейли 13-го порядка, сильно регулярный граф с параметрами  ${\rm srg}(13,6,2,3).$ 



Рис. 2: Примеры использования программы

#### Приложение Б

```
Ссылка на дипломную работу с программой на github:
https://github.com/fullincome/university
  Схема реализации представлена на языке С++
#define GRAPH SIZE 300
#define ROW ARR SIZE 10000
#define COL ARR SIZE GRAPH SIZE
const int N = GRAPH SIZE;
vector<array<unsigned short, COL ARR SIZE>>
Mi(ROW_ARR_SIZE, COL_ARR_SIZE);
vector<array<unsigned short,COL ARR SIZE>>
M' i (ROW ARR SIZE, COL ARR SIZE);
unsigned char **matrix;
struct M'i make M'i(Mi) {
    struct M'i M'i;
    for (auto x: Mi) {
         for (int i = 0; i < n; ++i) {
              if (\operatorname{check} h(x) \&\& !\operatorname{eq}(x, i)) {
                  M'i.push back(x.add(i));
             }
```

```
return M'i;
}
struct_Mi make_Mi(M'i) {
    struct_Mi Mi;
    for (auto x: M'i) {
        for (int i = 0; i < n; ++i) {
           Mi.push_back(x.add(i));
        }
    return Mi;
}
int main() {
    //fill matrix
    init_automorphisms(matrix);
    //parallelization of program
    switch(process) {
    case 0:
        begin = 0;
        end = stop_0;
    case 1:
        begin = start_1;
        end = stop_1;
```

```
case N:
    begin = start_n;
    end = M_0.size();

//main cycle
for (i = begin; i < end; ++i) {
    Mi = make_Mi(M'i-1);
    M'i = make_M'i(Mi);
}

//results save (automorphisms output)
final_automorphism(M'i);
}</pre>
```