大学物理(下)

华中科技大学 张智 zzhang@hust.edu.cn

第五篇 光学

第12章 几何光学简介

研究光的直线传播现象。

是波动光学的极限情况。

第13章 波动光学

研究光的干涉、衍射和偏振现象。

第13章 波动光学 Wave Optics

第1节 光波

第2节 光波的叠加 光程

第3节 分波阵面干涉

第4节 分振幅干涉

第5节 光波的衍射

第6节 光波的偏振

第7节 双折射

第8节 偏振光的干涉

第9节 旋光效应

第1节 光波

1. 光的电磁理论

光是电磁波,具有干涉、符射、偏振等性质。

可见光波长: 400nm——760nm

人眼对555 nm 左右的黄绿色 4000Å ____7600Å 的光最敏感。 (1nm=10⁻⁹m=10Å) •

可见光波段

真空中波长(nm)

光波有两个相互垂直的振动矢量,即电场强度E和磁场强度H。

对光的响应都是由于电场而不是磁场所引起,所以选用电场强度E来表征光波。E的振动称为光振动。

因为光是横波, 所以具有偏振特性。

波线上E沿y轴在xy平面上振动故称偏振。

2. 光源 (普通光源、激光光源)

光源的最基本发光单元是分子、原子。

可见光是由原子外层电子的运动、电子能级的跃迁产生的。

常用单色光源及波长(nm)

(1) 普通光源

自发辐射: 高能态跃迁回较低能态或基态,并能把多余的能量以发光的形式辐射出来

自发辐射的时间极短,远远小于仪器(包括人眼)的反应时间。

$$\Delta t < 10^{-8}$$
秒

每一次发光只是一个持续时间极短、长度有限的光波列。

◆ 跃迁后发出光波列,该原子还可以被激发,然后再次发光, 因而原子发光具有间歇性。

◆ 而且,哪个原子发光,发什么样的光都是<mark>随机的。</mark> 独立(同一原子先后发的光)

原子发光的间歇性 和随机性决定了普 通光源不是相干光 源。

(2) 激光光源

受激辐射:

当原子处在高能级上而又未发生自发辐射时,如果受到了一个频率为 $\nu = (E_2 - E_1)/h$ 外来光子的刺激作用,有可能向低能级跃迁,并同时辐射出与外来光子相同的光子。

激光光源: 亮度高、相干性好、单色性好。

3. 光波的描述

描述光波的光矢量 —— 电场强度矢量E电场强度 \vec{E} 的振动称为光振动。

波动理论,沿r方向传播的单色平面波的波函数表示为

$$E = E_0 \cos[\omega(t - \frac{r}{u}) + \varphi]$$

$$E = E_0 \cos(\omega t + \varphi - \frac{2\pi r}{\lambda})$$

$$u = \frac{1}{\sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r}} = \frac{1}{\sqrt{\varepsilon \mu}}$$

能流密度矢量的大小:

$$S=u \varepsilon E^2=u \varepsilon E_0^2 cos^2(\omega t+\varphi-\frac{2\pi r}{\lambda})$$

光强 ——平均能流密度:

$$I = \frac{1}{T} \int_0^T S dt = \frac{1}{2} u \varepsilon E_0^2 = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} E_0^2$$

第2节 光波的叠加 光程

◆ 两列光波在某一区域相遇时,它们互相叠加。若叠加条件不同,观察到的现象不一样。

非相干叠加 $I=I_1+I_2$

相干叠加 $I \neq I_1 + I_2$

房间里两盏灯照在同一物体上只会使物体看起来更亮;而阳光下肥皂泡却呈现出五彩缤纷的颜色。

1. 光程 光程差

(1) 光程

介质的折射率
$$n = \frac{c}{v} = \sqrt{\varepsilon_r \mu_r}$$
 介质中的波长 $\lambda' = vT = \frac{v}{v} = \frac{c}{v} = \frac{\lambda_o}{v}$

◆ 在<u></u>dt时间内

某光波在真空中传播的距离为: $L = c\Delta t = nL'$ 此光在介质n中传播的距离为: $L' = v\Delta t = \frac{c}{n}\Delta t = \frac{L}{n}$

◆ 经**\(\delta\)**t时间后,它们的位相变化

经真空中:
$$\Delta \varphi = \frac{L}{\lambda_0} 2\pi = \Delta \varphi'$$

经历相同的距离L, 位相变化如何?

经介质
$$n$$
中: $\Delta \varphi' = \frac{L'}{\lambda'} 2\pi = \frac{L'}{\lambda_o/n} 2\pi = \frac{L'n}{\lambda_o} 2\pi = \frac{L}{\lambda_o} 2\pi$

$$\Delta \varphi = \frac{L}{\lambda_{\rm o}} 2\pi = \Delta \varphi'$$

$$\Delta \varphi' = \frac{L'}{\lambda'} 2\pi = \frac{L'}{\lambda_0/n} 2\pi = \frac{L'n}{\lambda_0} 2\pi = \frac{L}{\lambda_0} 2\pi$$

通过不同介质的同频率光波,它们的位相变化均可用真空中的几何路程表示。

口定义:光波在某一介质中所经历的几何路程 L'与介质折射率n之积 nL'称为光程。

光程:
$$L = \sum (n_i d_i)$$
 $L = \int n(x) dx$

(2) 光程差

 $\lambda' = vT = \frac{v}{c} = \frac{c}{c}$

两光程之差 $\delta=(n_{s}L_{s}-n_{s}L_{s})$ 叫做光程差。

光程差与位相差:

$$\Delta \varphi = 2\pi \left(\frac{L_2}{\lambda_2} - \frac{L_1}{\lambda_1} \right) = \frac{2\pi}{\lambda_0} (n_2 L_2 - n_1 L_1) = \frac{2\pi}{\lambda_0} \delta$$

注:

- ① 一般空气的 $n \approx 1$
- ② 成像的等光程性: 物点和像点 之间各光线的光程都相等。

$$SC = SA$$
 $S'B = S'F$

透镜或透镜组在光路中 不会带来附加的光程差。

(2) 光程差

两光程之差 $\delta=(n_{o}L_{o}-n_{i}L_{i})$ 叫做光程差。

 $\lambda' = vT = \frac{v}{v} = \frac{c}{nv} = \frac{\lambda_o}{n}$

光程差与位相差:

$$\Delta \varphi = 2\pi \left(\frac{L_2}{\lambda_2} - \frac{L_1}{\lambda_1}\right) = \frac{2\pi}{\lambda_0} (n_2 L_2 - n_1 L_1) = \frac{2\pi}{\lambda_0} \delta$$

注:

③半波损失

光程差: +λ/2

位相差: +π

教学视频-光的干涉

2. 光的干涉

P点的
$$E_1 = E_{10} \cos(\omega t - \frac{2\pi}{\lambda} r_1 + \varphi_{10})$$
 光振动
$$E_2 = E_{20} \cos(\omega t - \frac{2\pi}{\lambda} r_2 + \varphi_{20})$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 \quad 波的叠加原理$$

实为: 同频率、同方向的两个简谐振动的合成

$$\Rightarrow E^2 = E_{10}^2 + E_{20}^2 + 2E_{10}E_{20}\cos\Delta\phi$$

$$\Delta \varphi = -\frac{2\pi}{\lambda} (r_2 - r_1) + (\varphi_{20} - \varphi_{10})$$

频率极高,观察时间τ内,叠加 波振动已经历百 万亿个周期。观 察到的光强实为 平均强度。

与光源的初相位、P点位置以及传播介质有关。

(1) 非相干叠加

$$\Delta \varphi = -\frac{2\pi}{\lambda} (r_2 - r_1) + (\varphi_{20} - \varphi_{10})$$

普通光源的<mark>间歇性和随机性</mark>,观察时间 τ 内,两独立光源在叠加处P点的 光振动的位相差随时间快速变化。

位相差以相同的概率取0~2π之间的一切数值。

$$\cos \Delta \varphi = 0 \implies I = I_1 + I_2$$

两光强简单相加

两光波不相干

(2) 相干叠加

$$\Delta \varphi = -\frac{2\pi}{\lambda} (r_2 - r_1) + (\varphi_{20} - \varphi_{10})$$

若两束光在光场中各点的位相差取恒定值。

$$egin{aligned} \overline{\cos\Delta\phi} = \cos\Delta\phi & \Rightarrow I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos\Delta\phi \\ & \qquad \qquad I > I_1 + I_2 & \text{光强加强 最大,明纹} \\ & \qquad \qquad \qquad k = 0,1,2,...... \\ & \pm (2k+1)\pi \quad I < I_1 - I_2 \quad \text{光强减弱 最小,暗纹} \end{aligned}$$
 $\delta = \begin{cases} \pm k\lambda \\ \pm (2k+1)\frac{\lambda}{2} \end{cases}$ $k = 0,1,2,......$

$$\Delta \varphi = \frac{2\pi}{\lambda} \delta$$

$$\Delta \varphi = \begin{cases} \pm 2k\pi \\ \pm (2k+1)\pi \end{cases}$$

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$$

$$\int_{\text{max}} I_{\text{max}} = I_1 + I_2 + 2\sqrt{I_1 I_2}$$

$$I_{\text{min}} = I_1 + I_2 - 2\sqrt{I_1 I_2}$$

为了描述干涉图样的清晰程度,引入

比度(对比度、反衬度)的概念
$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}} = \frac{2\sqrt{I_1I_2}}{I_1 + I_2}$$
 0 I_1 或 I_2 =0
$$<1 \qquad I_1 = I_2 \neq 0$$

o
$$I_1$$
或 I_2 =o

$$<1$$
 $I_1 \neq I_2 \perp I_1 \neq 0, I_1 \neq 0$

两束光强越接近时,衬比度越大,干涉条纹越清晰。

若:
$$I_1 = I_2 = I_0$$
 $I = I_0 + I_0 + 2I_0 \cos \Delta \varphi = 4I_0 \cos^2 \frac{\Delta \varphi}{2}$

(3) 相干条件及相干光的获取

振动方向相同a) 条件 频率相同有恒定的位相差

(存在相互平行的振动分量)

b) 获得相干光的方法

普通光源或同一光源不同部分发出的光波不相干。如何由普通光源获得相干光?

原则:将同一波列的光分成两束,经不同路径后相遇, 产生干涉。

 分波阵面法
 杨氏实验
 双面镜

 非涅耳双镜
 双棱镜

 洛埃镜
 等倾干涉

 分振幅法
 薄膜干涉

 等厚干涉

第3节 分波阵面干涉

$$\Delta \phi = [(\omega_2 - \omega_1)t + (\varphi_2 - \varphi_1) - 2\pi(\frac{r_2}{\lambda_2} - \frac{r_1}{\lambda_1})] = 常量$$

- ◆ 点光源发出的光波的 同一波阵面上设法分 离出两部分,这两部 分具有相同的位相,按照惠更斯原理,它 们可以视为新的光源。
- 无论点光源的初位相如何变化,分离出的两新光源位相差恒为零。
- ✓ 它们是相干光源,各 自发出的光波在相遇 区域产生干涉,称为 分波阵面干涉。

$$\Delta \phi = [(\omega_2 - \omega_1)t + (\varphi_2 - \varphi_1) - 2\pi(\frac{r_2}{\lambda_2} - \frac{r_1}{\lambda_1})] = 常量$$

1.杨氏双缝干涉(1801年)

(1) 实验原理

英国物理学家托马斯・極

明纹

暗纹

中央明纹

暗纹

明纹

是关于中 央明纹明明 相间的 条纹

杨氏双缝干涉视频

Young's Double-Slit Experiment

Thomas Young, 1773 – 1829, English physicist, medical doctor, and Egyptologist, also the inventor of Young's modulus (strength of materials).

(2) 明暗条纹的位置(真空中) $I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \Delta \varphi$ 设缝间距为d,两屏间距为D>>d $Pb = PS_1$ D >> d对任意点P: 位相差为 $\Delta \phi = \frac{r_2 - r_1}{\lambda} 2\pi = \begin{cases} \pm 2k\pi & \text{明纹} \\ \pm (2k+1)\pi & \text{暗纹} \end{cases} (k=0,1,2...)$ 注: O点处 $\Delta r = 0$ (k=0) 是中央明纹 (零级明纹) 若P点的光程差 $\left\{ \begin{array}{ll} \Delta r \neq k \lambda \\ \Delta r \neq (2k+1) \frac{\lambda}{2} \end{array} \right.$ 则P点为明暗条纹的过渡区

干涉极大极小的条件:

 $\begin{vmatrix} d\sin\theta = \pm k\lambda \end{vmatrix} \begin{vmatrix} d\sin\theta = \pm (2k+1)\frac{\lambda}{2} \end{vmatrix}$

P 点的坐标为x, (实际上 θ 角非常小) $x = Dtg\theta \approx Dsin\theta$: $sin\theta \approx \frac{x}{D}$

$$d\frac{x}{D} = \begin{cases} \pm k\lambda \\ \pm (2k+1)\frac{\lambda}{2} \end{cases} \Rightarrow x = \begin{cases} \pm \frac{D}{d}k\lambda & \text{极大,明条纹} \\ \pm \frac{D}{d}(2k+1)\frac{\lambda}{2} & \text{极小,暗条纹} \end{cases}$$

- $\Delta x = \frac{D}{d}\lambda$ 干涉图样是等间距明暗相间的直条纹。
 - 2) D、 λ 一定, $\Delta x \propto \frac{1}{d}$ $d \downarrow$, $\Delta x \uparrow$ 条纹越清晰,反之 $\Delta x \downarrow$ 。d大到一定程度,条纹全部集中到屏中心。
 - 3) $\lambda = \frac{\Delta xd}{D}$ 由此,可测出各种光波的波长。

$$x_k = \pm k \frac{D}{d} \lambda x_k = \pm (2k+1) \frac{D}{d} \frac{\lambda}{2} (k=0,1,2\cdots)$$

4) D、d 一定, $x_k \propto \lambda$,同一级上 $\lambda \uparrow, x_k \uparrow$ (中央极大除外) 若白光入射,每一级都是彩色条纹分布 ——色散

杨氏干涉条纹是等间距的直条纹。

若用复色光源,则干涉条纹是彩色的(色散)。

白光入射的杨氏双缝干涉照片

$$x_k = \pm k \frac{D}{d} \lambda$$
 明纹 $x_k = \pm (2k+1) \frac{D}{d} \frac{\lambda}{2}$ 暗纹

红光入射的杨氏双缝干涉照片

白光入射的杨氏双缝干涉照片

6) 若把S向上移,条纹如何变化?

 $\Delta r = 0$ (k=0) 中央明纹向下移动

条纹反差小(有衬底)。

$$x_k = \pm k \frac{D}{d} \lambda$$
 明纹 $x_k = \pm (2k+1) \frac{D}{d} \frac{\lambda}{2}$ 暗纹

●干涉极大极小的位置:

P 点的坐标(距O点很近): $x = Dtg \theta \approx Dsin\theta$ $sin\theta \approx \frac{x}{D}$

$$x_k = \pm k \frac{D}{d} \lambda$$
 — 明条纹
$$(k = 0,1,2\cdots)$$

$$x_k = \pm (2k+1) \frac{D\lambda}{d} 2$$
 — 暗条纹

 $S_2Q=dsin\theta$

◆有介质时明暗条纹的位置

装置放入水中,条纹间距将()?

- A. 变大
- B. 变小
- C. 不变

$$(r_2-r_1)=dsin\theta$$

装置放入介质中,则

$$n(r_2-r_1)=\frac{\delta=ndsin\theta}{}$$

$$sin\theta \approx \frac{x}{D}$$

$$x_k = \pm k \frac{D}{d} \lambda$$

$$x_k = \pm (2k+1)\frac{D}{d}\frac{\lambda}{2}$$

公式中 $d \rightarrow nd$

$$I_{\theta}=4I_{0}cos^{2}(\frac{\pi dsin\theta}{\lambda})$$

$$\Delta \phi = \frac{d \sin \theta}{\lambda} \cdot 2\pi$$

可看出P点的光强 I_{θ} 如何随 θ 角变化(即:随位相变化)

注:如果P点两振动的振幅不等,则是

$$I_{ heta} = I_1 + I_2 + 2\sqrt{I_1I_2} cos \Delta \varphi$$

$$\begin{cases} I_{ ext{max}} = I_1 + I_2 + 2\sqrt{I_1I_2} \\ I_{ ext{min}} = I_1 + I_2 - 2\sqrt{I_1I_2} \end{cases}$$

