Módulo: Expresión diferencial

Bioinformática y Estadística 2

Dra. Evelia Coss

Dra. Alejandra Medina

Día 2

- Diversos pipelines bioinformáticos:
 - Alineamiento al genoma de referencia
 - Ensamblaje con el transcriptoma de referencia
 - Ensamblaje de novo
- Ejercicio con Kallisto
 - Pseudoalineamiento de kallisto

Pipeline bioinformática

Dónde estamos...

mRNA-Seq data analysis workflow "https://biocorecrg.github.io/RNAseq_course_2 019/workflow.html"

Alineamiento genómico

Diversos pipelines

¿Cómo saber qué tipo de algoritmo usar?

Conesa, et al. 2016. Genome Biology

Alineamiento y ensamblaje de lecturas guiado por el genoma de referencia

- Podemos anotar nuevos transcritos, así como cuantificarlos.
- Identificación de isoformas.
- Especie con genoma de buena calidad.
- De preferencia contar con un archivo de anotación.
- Empleado normalmente en organismo modelo.

Ensamblaje de transcriptoma guiado

- Expresión por genes, por lo que no vemos isoformas.
- NO hay anotación de nuevos transcritos.
- Si no esta en el archivo de anotación (tx2gene / kallisto) no lo veremos.
- Es necesario un archivo de anotación con buena calidad

Ensamblaje de novo

- Especie con genoma de mala calidad.
- Organismo no modelo.
- No contamos con un archivo de anotación de buena calidad.
- Emplear reads tipo PE.

Práctica: Ensamblaje de transcriptoma guiado

Kallisto

Transcript 1 a Transcript 2 Transcript 3

Pseudoalineamiento de kallisto

- Brujin Graph (T-DBG)
- Los Nodos (v1,v2,v3) son k-mers
- Omite pasos redundantes en el T-DBG.

Práctica 2

- Input
- fastq.gz

• Github

https://github.com/EveliaCoss/RNAseq_classFEB2023/tree/main/RNA_seq# practica2