Exploring Hyperspace

Hobson Lane

hobs@totalgood.com

What is High-D?

. 10-D

- Physics breaks (string theory = 12D)
- My mind breaks

. Fails

- Bounding boxes are useless (empty or full)
- Indexing
- Locality-sentiive hashes

Examples

Images

Time Series

Natural Language

Mental Gymnastics

"Imagine a 3D space and then say 12 dimensions to yourself forcefully over and over again."

Geoffrey Hinton

"Imagine a 3D sphere at the edge of universe, your vectors are out there."

Anonymous

Why Squash?

- Feature Extraction
- Abstraction
- Dimension Reduction
- . Generalization
- . Stereotyping?

"Issues" for Al

Features are far from each other

Features on a thin shell

Manifolds have many saddle points

Costs have local minima (though fewer than saddles)

Classes far away in feature space

Indexes? Hash tables? Trees?

- Great for discrete or sparse vectors
 - → [1231123412134]
 - → [42 0 0 3 0 9 0 0 12 0 1 0 0]
 - → ["A" 0 0 0 0 0 0 0 0 "and" 0 0 0 0 0 0 "cat"]
 - → [0.123 0 0 0 0 0 0.567 0 0 0 0 -.42 0 0 0 2.718 0 0 0]
- Bad for dense, real-valued vectors
 - → [0.123 0.456 0.789 -0.1011 ...]

R-Tree (PostGIS)

Wikimedia Creative Commons

R*-Tree

Hashes (dict)

Constant time lookup Pseudorandom (no "distance")

Locality-Sensitive Hashes?

Zip Codes work in 2-D, right?

Semantic Search Index

D	N		100th Cosine Distance	Top 1 Correct	Top 2 Correct	Top 10 Correct	Top 100 Correct	pip	install	lshash3
	2	4254	0	TRUE	TRUE	TRUE	TRUE			
	3	7727	0.0003	TRUE	TRUE	TRUE	TRUE			
	4	12198	0.0028	TRUE	TRUE	TRUE	TRUE			
	5	9920	0.0143	TRUE	TRUE	TRUE	TRUE			
	6	11310	0.0166	TRUE	TRUE	TRUE	TRUE			
	7	12002	0.0246	TRUE	TRUE	TRUE	FALSE			
	8	11859	0.0334	TRUE	TRUE	TRUE	FALSE			
	9	6958	0.0378	TRUE	TRUE	TRUE	FALSE			
1	0	5196	0.0513	TRUE	TRUE	FALSE	FALSE			
1	1	3019	0.0695	TRUE	TRUE	TRUE	FALSE			
1	2	12263	0.0606	TRUE	TRUE	FALSE	FALSE			
1	3	1562	0.0871	TRUE	TRUE	FALSE	FALSE			V
1	4	733	0.1379	TRUE	FALSE	FALSE	FALSE			total
1	5	6350	0.1375	TRUE	TRUE	FALSE	FALSE			\overline{COOD}
1	6	10980	0.0942	TRUE	TRUE	FALSE	FALSE			GOOD
										11

Variance Maximizing D-Reducers

- PCA: Principal Component Analysis
- LSI: Latent Semantic Indexing
- LSA: Latent Semantic Analysis
- SVD: Singular Value Decomposition

 One way to "squash" our hyperspace would be to "lemmatize" LSI, LSA, SVD, and PCA together, eliminating 12 dimensions

Some 3D Vectors

Better projection

Better Projection

Best Projection by Human

What PCA "sees"

A Horse is a Horse unless...

... It's **Mr. Ed,** or a plastic toy on a 3D scanner.

Recurrent Chatbot

Deep Dive into SVD

Singular Value Decomposition of a rectangular matrix

$$M = U \Sigma V^T$$

Open Spaces Twitter Bot

gensim.models.LsiModel

PCA Generalizes Well

LSA on **5.5 M** tweets 81.2% accuracy for **50 k** bot/human tweet examples 79.6% accuracy for **3.3 k** bot/human examples

Only 1.6% gain for **15x** labeled data!

pip install annoy

NLP in Action

NL Search NL Modeling NL Generation

CNNs, RNNs, and LSTMs Word2Vec, GloVe

