SOME OTHER ALGEBRAIC PROPERTIES OF FOLDED HYPERCUBES

S. MORTEZA. MIRAFZAL

ABSTRACT. We construct explicity the automorphism group of the folded hypercube FQ_n of dimension n>3, as a semidirect product of N by M, where N is isomorphic to the Abelian group \mathbb{Z}_2^n , and M is isomorphic to Sym(n+1), the symmetric group of degree n+1, then we will show that the folded hypercube FQ_n is a symmetric graph.

Keywords: Hypercube; 4-cycle; Linear extension; Permutation group; Semidirect product; Symmetric graph
AMS Subject Classifications: 05C25; 94C15

1. Introduction and Preliminaries

A folded hypercube is an edge transitive graph, this fact is the main result that has been shown in [8]. In this note, we construct explicity the automorphism group of a folded hypercube, then we will show that a folded hypercube is not only an edge transitive graph, but also a symmetric graph. In this paper, a graph G = (V, E) is considered as an undirected graph where V = V(G) is the vertex-set and E = E(G) is the edge-set. For all the terminology and notation not defined here, we follow [2,3,5]. The hypercube Q_n of dimension n is the graph with vertex-set $\{(x_1,x_2,...,x_n)|x_i \in \{0,1\}\}$, two vertices $(x_1,x_2,...,x_n)$ and $(y_1,y_2,...,y_n)$ are adjacent if and only if $x_i = y_i$ for all but one i. The folded hypercube FQ_n of dimension n, proposed first in [1], is a graph obtained from the hypercube Q_n by adding an edge, called a complementary edge, between any two vertices $x = (x_1, x_2, ..., x_n)$, $y = (\bar{x_1}, \bar{x_2}, ..., \bar{x_n})$, where $\bar{1} = 0$ and $\bar{0} = 1$. The graphs shown in Fig. 1, are the folded hypercubes FQ_3 and FQ_4 . The graphs $\Gamma_1 = (V_1, E_1)$ and $\Gamma_2 = (V_2, E_2)$ are called isomorphic,

1

if there is a bijection $\alpha: V_1 \longrightarrow V_2$ such that, $\{a,b\} \in E_1$ if and only if $\{\alpha(a),\alpha(b)\} \in E_2$ for all $a,b \in V_1$. In such a case the bijection α is called an isomorphism. An automorphism of a graph Γ is an isomorphism of Γ with itself. The set of automorphisms of Γ , with the operation of composition of functions, is a group, called the automorphism group of Γ and denoted by $Aut(\Gamma)$. A permutation of a set is a bijection of it with itself. The group of all permutations of a set V is denoted by Sym(V), or just Sym(n) when |V| = n. A permutation group G on V is a subgroup of Sym(V). In this case we say that G acts on V. If Γ is a graph with vertex-set V, then we can view each automorphism as a permutation of V, so $Aut(\Gamma)$ is a permutation group. Let G acts on V, we say that G is transitive (or G acts transitively on V) if there is just one orbit. This means that given any two elements u and v of V, there is an element β of G such that $\beta(u) = v$.

The graph Γ is called vertex transitive if $Aut(\Gamma)$ acts transitively on $V(\Gamma)$. For $v \in V(\Gamma)$ and $G = Aut(\Gamma)$, the stabilizer subgroup G_v is the subgroup of G containing all automorphisms which fix v. In the vertex transitive case all stabilizer subgroups G_v are conjugate in G, and consequently isomorphic, in this case, the index of G_v in G is given by the equation, $|G:G_v|=\frac{|G|}{|G_v|}=|V(\Gamma)|$. If each stabilizer G_v is the identity group, then every element of G, except the identity, does not fix any vertex, and we say that G acts semiregularly on V. We say that G acts regularly on V if and only if G acts transitively and semiregularly on G and in this case we have |V|=|G|. The action of G and G is called edge transitive if this action is transitive. The graph G is called symmetric, if for all vertices G is an automorphism G such that G are adjacent, and G and G are adjacent, there is an automorphism G such that G are adjacent, and G are adjacent, there is an automorphism G such that G are adjacent, and G are adjacent, and G are adjacent, there is an automorphism G such that G are adjacent, and G are adjacent, and a symmetric graph is vertex transitive and edge transitive.

Let G be any abstract finite group with identity 1, and suppose that Ω is a set of generators of G, with the properties :

(i)
$$x \in \Omega \Longrightarrow x^{-1} \in \Omega$$
; (ii) $1 \notin \Omega$;

The Cayley graph $\Gamma = \Gamma(G, \Omega)$ is the graph whose vertex-set and edgeset defined as follows: $V(\Gamma) = G$; $E(\Gamma) = \{\{g, h\} \mid g^{-1}h \in \Omega\}$. It can be shown that the hypercube Q_n is the Cayley graph $\Gamma(Z_2^n, B)$, where $B = \{e_1, e_2, ..., e_n\}$, e_i is the element of Z_2^n with 1 in the i-th position and 0 in the other positions for, $1 \le i \le n$. Also, the folded hypercube FQ_n is the Cayley graph $\Gamma(Z_2^n, S)$, where $S = B \cup \{u = e_1 + e_2 + ... + e_n\}$. Hence the hypercube Q_n and the folded hypercube FQ_n are vertex transitive graphs. Since Q_n is Hamiltonian [6] and a spanning subgraph of FQ_n , so FQ_n is Hamiltonian. Some properties of the folded hypercube FQ_n are discussed in [6, 7, 8].

The group G is called a semidirect product of N by Q, denoted by $G = N \rtimes Q$, if G contains subgroups N and Q such that, (i) $N \subseteq G$ (N is a normal subgroup of G); (ii) NQ = G; (iii) $N \cap Q = \{1\}$.

Fig. 1. The folded hypercubes FQ_3 and FQ_4 .

2. Main results

Lemma 2.1. If $n \neq 3$, then every 2-path in FQ_n is contained in a unique 4-cycle.

Proof. If n=2, then it is trivial that the assertion of the Lemma is true, so let n>3. Let P:uvw be a 2-path in FQ_n . If $u=(x_1,...,\bar{x_i},...,x_n)$, $v=(x_1,...,x_i,...,x_n)$, $w=(x_1,...,\bar{x_j},...,x_n)$, then only vertex $x=(x_1,...,x_{i-1},\bar{x_i},...,x_{j-1},\bar{x_j},...,x_n)$ and v are adjacent to both vertices u and w. Hence the 4-cycle C:uvwx is the unique 4-cycle that contains the 2-path P. If u=

 $(\bar{x_1}, \bar{x_2}, ..., \bar{x_n}), \ v = (x_1, ..., x_i, ..., x_n), \ w = (x_1, ..., x_{j-1}, \bar{x_j}, x_{j+1}, ..., x_n),$ then only vertices $x = (\bar{x_1}, ..., \bar{x_{j-1}}, x_j, \bar{x_{j+1}}, ..., \bar{x_n})$ and v are adjacent to both vertices u and w.

In the folded hypercube FQ_3 any 2-path is contained in 3 4-cycles, hence the assertion of Lemma 2.1 is not true in FQ_3 .

Remark 2.2. For a graph Γ and $v \in V(\Gamma)$, let N(v) be the set of vertices w of Γ such that w is adjacent to v. Let $G = Aut(\Gamma)$, then G_v acts on N(v), if we restrict the domains of the permutations $g \in G_v$ to N(v). Let L_v be the set of all elements g of G_v such that g fixes each element of N(v). Let Y = N(v) and $\Phi : G_v \longrightarrow Sym(Y)$ be defined by the rule, $\Phi(g) = g_{|Y|}$ for any element g in G_v , where $g_{|Y|}$ is the restriction of g to Y. In fact Φ is a group homomorphism and $ker(\Phi) = L_v$, thus G_v/L_v and the subgroup $\phi(G_v)$ of Sym(Y) are isomorphic. If |Y| = deg(v) = k, then $|G_v| / |L_v| \le k!$.

Lemma 2.3. If n > 3 and $G = Aut(FQ_n)$, then $|G| \le (n+1)!2^n$

Proof. Let $v \in V(FQ_n)$ and L_v be the subgroup which is defined in the above, we show that $L_v = \{1\}$. Let $g \in L_v$ and w be an arbitrary vertex of FQ_n . If the distance of w from v is 1, then w is in N(v), so g(w) = w. Let the distance of w from v be 2. Then there is a vertex u such that P: vuw is a 2-path, hence by Lemma 2.1. there is a 4-cycle that contains this 2-path, thus there is a vertex t such that C: tvuw is a 4-cycle. Since $t \in L_v$, then g(t) = t, so g(C): tvug(w) is a 4-cycle. By Lemma 2.1 the 2-path $P_1: tvu$ is contained in a unique 4-cycle, thus g(C) = C, therefore g(w) = w. The set S is a generating set for the Abelian group Z_2^n , so the Cayley graph $FQ_n = \Gamma(Z_2^n, S)$ is a connected graph. Now, by induction on the distance w from v, it follows that g(w) = w, so g = 1 and $L_v = \{1\}$. Now, by the Remark 2.2. , $|G_v| \leq |L_v|(n+1)! \leq (n+1)!$.

The folded hypercube FQ_n is a vertex transitive graph, hence $|G| = |G_v||V(FQ_n)| \le (n+1)!2^n$.

Theorem 2.4. If n > 3, then $Aut(FQ_n)$ is a semidirect product of N by M, where N is isomorphic to the Abelian group \mathbb{Z}_2^n and M is isomorphic to the group Sym(n+1).

Proof. Let $Aut(FQ_n) = G$, $v \in \mathbb{Z}_2^n = V(FQ_n)$ and ρ_v be the mapping $\rho_v: Z_2^n \longrightarrow Z_2^n$ defined by $\rho_v(x) = v + x$. Since FQ_n is the Cayley graph $\Gamma(Z_2^n, S)$, then ρ_v is an automorphism of FQ_n and $N = \{\rho_v | v \in Z_2^n\}$ is a subgroup of G isomorphic to \mathbb{Z}_2^n . Note that the Abelian group \mathbb{Z}_2^n is also a vector space over the field $F = \{0,1\}$ and $B = \{e_1, e_2, ..., e_n\}$ is a basis of this vector space and any subset of the set $S = B \cup \{u = e_1 + e_2 + ... + e_n\}$ with n elements is linearly independent over F and is a basis of the vector space \mathbb{Z}_2^n . Let A be a subset of S with n elements and $f: B \longrightarrow A$ be a one to one function. We can extend f over \mathbb{Z}_2^n linearly. Let ϕ be the linear extension of f over \mathbb{Z}_2^n , thus ϕ is a linear mapping of the vector space \mathbb{Z}_2^n into itself such that $\phi_{|B} = f$. Since B and A are bases of the vector space \mathbb{Z}_2^n , hence ϕ is a permutation of \mathbb{Z}_2^n . In fact ϕ is an automorphism of \mathbb{Z}_2^n . If A = B, then $\phi(u) = \phi(e_1) + \phi(e_2) + ... + \phi(e_n) = e_1 + e_2 + ... + e_n = u$. If $A \neq B$, then $u \in A$ and for some $i, j \in \{1, 2, ..., n\}$ we have $\phi(e_i) = u$ and $e_i \notin A$. Then $\phi(u) = \phi(e_1) + \phi(e_2) + ... + \phi(e_n) = e_1 + e_2 + ... +$ $e_{j-1} + e_{j+1} + ... + e_n + u = u - e_j + u = e_j \in S$. Now, it follows that ϕ maps S into S. If $[v, w] \in E(FQ_n)$, then w = v + s for some $s \in S$, hence $\phi(w) = \phi(v) + \phi(s)$, now since $\phi(s) \in S$ we have $[\phi(v), \phi(w)] \in E(FQ_n)$. For a fixed n-subset A of S there are n! distinct one to one functions such as f, thus there are n! automorphisms of the folded hypercube FQ_n such as ϕ . The set S has n+1 elements, so there are n+1 n-subset of S such as A, hence there are (n+1)! one to one functions $f: B \longrightarrow S$. Let $M = \{\phi: Z_2^n \longrightarrow Z_2^n \mid \phi \text{ is a linear extension of a one to one function } \}$ $f: B \longrightarrow S$. Then M has (n+1)! elements and any element of M is an automorphism of FQ_n . If $\alpha \in M$, then α maps S onto S, hence $\alpha_{|S|}$, the restriction of α to S, is a permutation of S. Now it is an easy task to show that M is isomorphic to the group Sym(S). Every element of M fixes the element 0, thus $N \cap M = \{1\}$, hence $|MN| = \frac{|M||N|}{|N \cap M|} = (2^n)(n+1)!$, therefore $|Aut(FQ_n)| \geq (2^n)(n+1)!$. Now, by the Lemma 2.3. it follows that $|Aut(FQ_n)| = (n+1)!2^n$, therefore $Aut(FQ_n) = MN$.

We show that the subgroup N is a normal subgroup of $Aut(FQ_n) = G = MN = NM$. It is enough to show that for any $f \in M$ and $g \in N$, we have $f^{-1}gf \in N$. There is an element $y \in Z_2^n$ such that $g = \rho_y$. Let b be an arbitrary vertex of FQ_n , then $f^{-1}gf(b) = f^{-1}\rho_y f(b) = f^{-1}(y+f(b)) = f^{-1}(y) + b = \rho_{f^{-1}(y)}(b)$, hence $f^{-1}gf = \rho_{f^{-1}(y)} \in N$.

It is an easy task to show that the folded hypercube FQ_3 is isomorphic to $K_{4,4}$, the complete bipartite graph of order 8, so $Aut(FQ_4)$ is a group with $2(4!)^2 = 1152$ elements [2], therefore Theorem 2.3 is not true for n = 3.

If n > 1, then the assertion of Lemma 2.1 is also true for the hypercube Q_n and by a similar method that has been seen in the proof of Theorem 2.4. we can show that $Aut(Q_n) \cong \mathbb{Z}_2^n \rtimes Sym(n)$, the result which has been discussed in [4] by a different method.

Theorem 2.5. If $n \geq 2$, then the folded hypercube FQ_n is a symmetric graph.

Proof. The folded hypercube FQ_2 is isomorphic to K_4 , the complete graph of order 4, and the folded hypercube FQ_3 is isomorphic to $K_{4,4}$, the complete bipartite graph of order 8, both of these are clearly symmetric. Let $n \geq 4$. Since The folded hypercube FQ_n is a Cayley graph, then it is vertex transitive, now it is sufficient to show that for a fixed vertex v of $V(FQ_n)$, G_v acts transitively on N(v), where $G = Aut(FQ_n)$. As we can see in the proof of Theorem 2.3, since each element of M is a linear mapping of the vector space Z_2^n over $F = \{0,1\}$, then for the vertex v = 0 the stabilizer group of G_v is M. The restriction of each element of M to N(0) = S is a permutation of S. If $f \in M$ fixes each element of S, then f is the identity mapping of the vector space Z_2^n . Since |S| = n + 1, then Sym(S) has (n+1)! elements. On the other hand $\bar{M} = \{f_{|S|} | f \in M\}$ has (n+1)! elements, hence $\bar{M} = Sym(S) = G_0$. We know that Sym(X) acts transitively on X, where X is a set, so G_0 acts transitively on N(0).

Corollary 2.6. The connectivity of the folded hypercube FQ_n is maximum, say n + 1.

Proof. Since the folded hypercube FQ_n is a symmetric graph, then it is edge transitive, on the other hand this graph is a regular graph of valency n+1. We know that the connectivity of a connected edge transitive graph is equal to its minimum valency [3, pp. 55].

The above fact has been rephrased in [1] and has been found in a different manner.

ACKNOWLEDGMENT

The author is grateful to professor Alireza Abdollahi and professor A. Mohammadi Hassanabadi for their helpful comments and thanks the Center of Excellence for Mathematics, University of Isfahan.

References

- [1] A. El-Amawy, S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel Distrib. Syst. 2 (1991) 31-42.
- [2] N. L. Biggs, Algebraic Graph Theory (Second edition), Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1993).
- [3] C. Godsil, G. Royle, Algebraic Graph Theory, Springer (2001).
- [4] F. Harary, The Automorphism Group of a Hypercube, Journal of Universal Computer Science, vol. 6, no. 1 (2000), 136-138.
- [5] Rotman, J. J., An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995.
- [6] J.M. Xu, Topological structure and analysis of interconnection networks, Kluwer Academic Publishers, Dordrecht, (2001).
- [7] J.-M. Xu, M.-J. Ma, Cycles in folded hypercubes, Appl. Math. Lett. 19 (2) (2006) 140-145.
- [8] J.-M. Xu, Mei-Jie Ma, Algebraic properties and panconnectivity of folded hypercubes, Ars Combinatoria. 95 (2010), 179-186. (J.-M. Xu's Homepage)

Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran

 $E ext{-}mail\ address:$ smortezamirafzal@yahoo.com