Задача. Показать, что для случая ТЕ-волны, падающей на плоскую границу раздела двух сред (с параметрами ε_1 , μ_1 и ε_2 , μ_2 соответственно) граничные условия $\Delta E_{\tau}=0$ и $\Delta B_n=0$ эквивалентны.

Решение.

Граничное условие для тангенциальных компонент Е:

$$\Delta E_{\tau} = 0.$$

В любой из двух сред для отдельной плоской монохроматической волны имеем соотношение

$$\mathbf{H} = \frac{c}{\omega \mu} [\mathbf{k} \times \mathbf{E}]. \tag{1}$$

Отсюда z-компонента вектора ${\bf B}$ равна

$$B_z = \mu H_z = \frac{c}{\omega} k_x E_y. \tag{2}$$

Соотношение (2) справедливо не только для отдельной плоской монохроматической волны, но и для произвольной суперпозиции таких волн при условии равенства их ω и k_x . В частности, оно выполняется для полей \mathbf{E}_I , \mathbf{B}_I , образованных в первой среде в результате суперпозиции падающей и отраженной волн.

Тогда получаем граничное условие на нормальную компоненту ${\bf B}$ в виде

$$\Delta B_n = \Delta B_z = \frac{c}{\omega} \Delta(k_x E_y). \tag{3}$$

С учетом $k_{1x} = k_{2x}$ имеем

$$\Delta B_n = \frac{ck_x}{\omega} \Delta E_{\tau},\tag{4}$$

откуда видна эквивалентность двух граничных условий.

