CHEM 1032 Spring 2023 UNIT ASSESSMENT 1.	NAME:	 K	(ev	}	 	, , , , , ,	
SECTION:	TUID:						

Before the Unit Assessment begins, read the rest of this page, and follow the instructions.

!!! Do not turn this page until given the signal to begin !!!

Put away everything besides pencil(s) and a scientific calculator.

- Non-programmable (scientific) calculators are permitted. Graphing calculators **are not permitted** (such as these models: TI-83, TI-84, TI-89, Casio FX-9750).
- Any other electronic devices including cell phones, smart phones, and smart watches **are not permitted**. If you are not sure what is permitted, ask *before* the exam begins.

When you are told to begin work, open the booklet and read the directions.

A periodic table and other useful information can be found on the next page.

Grading. Each question is graded by your instructor using the scale below.

1 - Excellent

- The student demonstrates a deep understanding of concepts and problem-solving techniques.
- Calculations are clear and legibly written.
- Any mistakes are minor or careless errors that do not indicate a major conceptual misunderstanding.

0.5 - Fair

- The student demonstrates a partial understanding of concepts and techniques.
- Calculations are clear and legibly written but contain errors.
 - o The student may have started out correctly but gone on a tangent or not finished the problem.
 - o The student may have used pattern matching to answer a different, more familiar question instead.

0 - Unsatisfactory/Incomplete

- The student did not demonstrate an understanding of the problem or has minimal understanding.
- Calculations are unclear, missing, or incomplete.
 - The student may have written some appropriate formulas or diagrams, but nothing further.
 - o The student may have done something entirely wrong.
 - The student may have written almost nothing or nothing at all.

Unit Assessment Time: 50 minutes. It is to your advantage to answer every question.

!!! Do not turn this page until given the signal to begin !!!

Units:

amu atomic mass unit

atm atmosphere g gram

g gram
h hour
J joule
K kelvin

mmHg unit of pressure

M molarity
K kelvin
L liter
mol mole
s second

Symbols:

H enthalpy

v frequency

M molar mass

mol mole

P pressure

t time

T temperature

V volume

Constants:

 N_A Avogadro's number

R ideal gas constant

SI (Metric) Prefixes:

c centi-

d deci-

k kilo-

m milli-

Z 8	M 101	T :	© 8	ರ್ಷ	말 97	C s s	Am 95	₽ 2	ک 🛭	∰ ⊂ %	يو کي	5	> 88
173.05	168.93	167.26	164.93	162.50	158.93	157.25(3)	151.96	150.36(2)	[144.91]	144.24	140.91	140.12	138.91
Ճ	Ħ	щ	Ho	Ŋ	Ъ	Gd	M C	Sm	Pm	Z	Pr	Ce	La
70	69	68	67	66	65	2	83	62	61	8	59	58	57

₹ 87	55 CS	39.098 37 37 85.468	1 5	Z 22.990	6.94	^{1.} 08 工 -	_
₽ Ba	56	40.078(4) 38 S7 87.62	8	12 Ng	Be		N
** **	57-70 *						
Ç ā	71 Lu	39 44.956 88.906) 2				ω
五章	72	47.867 40 40 91.224(2)	22				4
D 5	180.95	50.942 41 82.906(2)	23				51
S g -5	74	51.996 Mo 95.95	g (6
B 5	75	T c 54.938	25				7
H _S	76 OS	55.845(2) A4 101.07(2)	1 26				8
M s	192.22	R 5 5 5 5 5 5 5 5 5 5	27				9
D s	78	58.693 46 106.42	28				10
Rg	79 Au 196.97	63.546(3) 47 Ag	8 (=
ဂ ်	H 0	65.38(2) 48 Cd	l _{ဖွ}			_	12
4 5 5	81 2 04.38	69.723 49) <u>ფ</u>	2 6.982	10.81		13
‡ ፫	2 072	72.630(8) 50 Sn 118.71) _%	£ <u>28</u> 085	12.011		14
115 MC	208.98	74.922 51 Sb	• జ	15 30.974	7		15
116 L V	Po	78.971(8) 52 Te 127.60(3)	2	್ಷ್ಯ ೧ ಕ	15.999		16
1 17	At	79.904 53 126.90	J 35	17 Ω 35.45	18.998		17
0	R _s	54 Xe	36	39.948	10 20.180	He	18

FOR CREDIT, BE CLEAR AND WRITE LEGIBLY 1111 1111

Coffee is an aqueous solution made by extracting molecules from ground coffee beans into water. This most commonly occurs using hot water, making a cup of coffee in a few minutes, or cold water, making a cup of coffee overnight.

In addition to the caffeine molecules we all know and love, some of the other common molecules in coffee are shown below...

Part I – Multiple Choice Questions (1 pt each)

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

Which molecule above would you expect to have the lowest surface tension?

A. Quinic acid B. Acetoin

- C. Dimethyl disulfide
- D. All three molecules have similar surface tension

All of the molecules above have dispersion forces. The best reason to explain this is...

- A. all of the molecules contain electronegative elements, which attract electrons.
- B. all of the molecules contain electrons, which are constantly moving.
- C. all of the molecules contain hydrogen atoms, which like to give up electrons.
- D. Not all molecules above have dispersion forces.

If we assume a 200.0 mL cup of coffee has 0.100 mol of dimethyl disulfide and 0.200 mol of acetoin, what would be the vapor pressure of the solution at 20.0 °C? Remember coffee is an aqueous solution; assume a density of 1.00 g/mL.

- A. 17.54 mmHg
- B. 17.08 mmHg
- 1/2 credit C. 16.22 mmHg D. 0.46 mmHg

When sucrose ($C_{12}H_{22}O_{11}$) is added to a cup of coffee, the enthalpy of mixing (ΔH_{mix}) is...

see other version

- A. endothermic, IMF are broken between the sucrose molecules.
- B. endothermic, IMF are formed between the sucrose molecules.
- C. exothermic, IMF are formed between the sucrose and water molecules.
- D. exothermic, IMF are broken between the sucrose and water molecules.

5. A pure 25.5 g sample of quinic acid requires 9142 J of heat to vaporize at 25 °C. Determine the ΔH_{vap} at this temperature.

Δ	0.36	kJ/mol
/ 1 .	0.50	KJ/IIIOI

B. 14.3 kJ/mol

C. 68.9 kJ/mol

D. 358 kJ/mol

Part II – Open Answer Questions – See Page 1 for full grading details

Excellent Answer = 1 pt

Fair Answer = 0.5 pts

 $Unsatisfactory\ Answer = 0\ pts$

6. Acetoin has an enthalpy of vaporization of 48.7 kJ/mol. If the substance has a vapor pressure of 1.74 mmHg at 20 °C, what is the vapor pressure at 55 °C?

WRITE THE VAPOR PRESSURE HERE →

14.7 mmHg

7. Would you expect coffee to have a lower or higher boiling point than pure water? Explain and support with a drawing what is occurring on a molecular level in the coffee.
Explain your answer here.....

see other version

8.	Sparkling coffee is iced coffee which contains dissolved CO ₂ . If the concentration of CO ₂ in the liquid is
	0.125 M before the can is opened, what is the pressure of CO ₂ in the can? Would you characterize the solution
	as unsaturated, saturated, or super saturated? Why?

9. The melting points of the three molecules of interest are -85, 15, 168 °C. Assign the melting to points to the three molecules and explain your answer.

HO, OH	H-C-H H-C-S-H H-C-H	O H₃C OH
Melting Point	Melting Point	Melting Point

Explain your assignments here....

see other version

10. Coffee beans are made of polar and nonpolar compounds. When made, about 90% of the polar molecules make it into the cup of coffee you drink, while only 10% of the nonpolar molecules do. First, explain this observation using intermolecular forces and then explain why hot coffee brews faster than cold coffee.

Explain your answer here...

see other version

END OF EXAM !!! DON'T FORGET TO CHECK YOUR WORK !!!!

Useful information:

$$1 atm = 760 mmHg = 101.3 kPa$$

$$1 \ atm = 760 \ mmHg = 101.3 \ kPa$$
 $R = 8.314 \frac{J}{mol \cdot K} = = 0.08206 \frac{L \cdot atm}{mol \cdot K}$

 $0 \, ^{\circ}\text{C} = 273 \, \text{K}$

$$\ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H_{vap}}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$X_{\text{solvent}} + iX_{\text{solute}} = 1$$

$$P_{solution} = X_{solvent} P_{solvent}$$

$$\Delta T_f = (i)(m)(K_f)$$

 $S_{gas} = k_{\rm H} P_{gas}$

$$\Delta T_b = (i)(m)(K_b)$$

$$K_f H_2 O = 1.84 \, ^{\circ}C/m$$

$$K_b H_2O = 0.512 \, ^{\circ}C/m$$

H₂O normal boiling point: 100 °C H₂O normal freezing point: 0 °C

H₂O vapor pressure at room temp (20 °C): 17.54 mmHg

CO₂ k_H at 20 °C is 0.037 M/atm

