

Probability and Stochastic Processes

Expectations of Simple Random Variables, Supremum, Infimum, Limit Supremum, and Limit Infimum of a Sequence of Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

23/26 September 2024

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$, and X is a simple random variable, then

$$\mathbb{E}[X\cdot\mathbf{1}_A]=0.$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$, and X is a simple random variable, then

$$\mathbb{E}[X\cdot\mathbf{1}_A]=0.$$

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 1$, and X is a simple random variable, then

$$\mathbb{E}[X\cdot \mathbf{1}_A]=\mathbb{E}[X].$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 0$, and X is a simple random variable, then

$$\mathbb{E}[X\cdot\mathbf{1}_A]=0.$$

• If $A \in \mathscr{F}$ such that $\mathbb{P}(A) = 1$, and X is a simple random variable, then

$$\mathbb{E}[X\cdot \mathbf{1}_A]=\mathbb{E}[X].$$

• If X, Y are simple, and $X(\omega) \geq Y(\omega) \geq 0$ for all $\omega \in \Omega$, then

$$\mathbb{E}[X] \geq \mathbb{E}[Y].$$

• If *X* is simple, then

$$\mathbb{E}[X] = 0 \quad \Longleftrightarrow \quad \mathbb{P}(\{X = 0\}) = 1.$$

• If *X* is simple, then

$$\mathbb{E}[X] = 0 \quad \Longleftrightarrow \quad \mathbb{P}(\{X = 0\}) = 1.$$

• Linearity of expectations (for simple random variables) If X, Y are simple, and $\alpha \ge 0$, then

$$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X], \qquad \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

• If *X* is simple, then

$$\mathbb{E}[X] = 0 \iff \mathbb{P}(\{X = 0\}) = 1.$$

• Linearity of expectations (for simple random variables) If X, Y are simple, and $\alpha \ge 0$, then

$$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X], \qquad \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y].$$

• If X is simple, then

$$\begin{split} & \mathbb{E}[X \cdot \mathbf{1}_{\{X \geq x\}}] \geq x \cdot \mathbb{P}(\{X \geq x\}), & x \geq 0, \\ & \mathbb{E}[X \cdot \mathbf{1}_{\{X \leq x\}}] \leq x \cdot \mathbb{P}(\{X \leq x\}), & x \geq 0, \\ & \mathbb{E}[X \cdot \mathbf{1}_{\{X = x\}}] = x \cdot \mathbb{P}(\{X = x\}), & x \geq 0. \end{split}$$

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

• If X is simple, then the function $\mathbb{Q}_X:\mathscr{F}\to[0,1]$ defined via

$$\mathbb{Q}_X(A) = rac{\int\limits_{\Omega} X \, d\mathbb{P}}{\int\limits_{\Omega} X \, d\mathbb{P}}, \qquad A \in \mathscr{F},$$

is a probability measure on (Ω, \mathscr{F}) .

• If $A, B \in \mathcal{F}$, $A \subseteq B$, and X is simple, then

$$\int_A X d\mathbb{P} \le \int_B X d\mathbb{P}.$$

{Supremum, Infimum, Limit Supremum, Limit Infimum, Limit} of Random Variables

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

• The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is an upper bound for the set A, i.e., $y \le x$ for all $y \in A$, and

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is an upper bound for the set A, i.e., $y \le x$ for all $y \in A$, and
 - x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon>0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon>x-\varepsilon.$$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon>0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon>x-\varepsilon.$$

- Notation: $x = \sup A$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon>0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon>x-\varepsilon.$$

- Notation: $x = \sup A$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon>0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon>x-\varepsilon.$$

- Notation: $x = \sup A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

• The supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists y_{\varepsilon} \in A \quad \text{such that} \quad y_{\varepsilon} > x - \varepsilon.$$

- Notation: $x = \sup A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is an upper bound for the sequence, i.e., $x_n \leq x$ for all $n \in \mathbb{N}$, and

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_{\varepsilon} \in A \quad \text{such that} \quad \gamma_{\varepsilon} > x - \varepsilon.$$

- Notation: $x = \sup A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the sequence, i.e., $x_n ≤ x$ for all $n ∈ \mathbb{N}$, and
 - -x is the smallest among all upper bounds for the sequence, i.e.,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_{N_{\varepsilon}} > x - \varepsilon.$$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The supremum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is an upper bound for the set A, i.e., y ≤ x for all y ∈ A, and
 - -x is the smallest among all upper bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists y_{\varepsilon} \in A \quad \text{such that} \quad y_{\varepsilon} > x - \varepsilon.$$

- Notation: $x = \sup A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is an upper bound for the sequence, i.e., $x_n \leq x$ for all $n \in \mathbb{N}$, and
 - x is the smallest among all upper bounds for the sequence, i.e.,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_{N_{\varepsilon}} > x - \varepsilon.$$

- Notation: $x = \sup_{n>1} x_n$

Supremum of a Sequence of Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty}=\{X_1,X_2,\ldots\}$ be a sequence of random variables w.r.t. \mathscr{F} .

Lemma

Let X be defined as

$$X(\omega) = \sup_{n>1} X_n(\omega), \qquad \omega \in \Omega.$$

Then, $X: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ is a random variable with respect to \mathscr{F} .

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

• The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is a lower bound for the set A, i.e., $y \ge x$ for all $y \in A$, and

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon < x + \varepsilon.$$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists y_{\varepsilon} \in A \quad \text{such that} \quad y_{\varepsilon} < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

• The infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is a lower bound for the sequence, i.e., $x_n \ge x$ for all $n \in \mathbb{N}$, and

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_\varepsilon \in A \quad \text{such that} \quad \gamma_\varepsilon < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - x is a lower bound for the sequence, i.e., $x_n \ge x$ for all $n \in \mathbb{N}$, and
 - -x is the largest among all lower bounds for the sequence, i.e.,

$$\forall \varepsilon>0, \quad \exists N_\varepsilon \in \mathbb{N} \quad \text{such that} \quad x_{N_\varepsilon} < x + \varepsilon.$$

Let $A \subseteq \mathbb{R}$ be a subset of real numbers.

- The infimum of the set A is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the set A, i.e., y ≥ x for all y ∈ A, and
 - -x is the largest among all lower bounds for the set A, i.e.,

$$\forall \varepsilon > 0, \quad \exists \gamma_{\varepsilon} \in A \quad \text{such that} \quad \gamma_{\varepsilon} < x + \varepsilon.$$

- Notation: $x = \inf A$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

- The infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that
 - -x is a lower bound for the sequence, i.e., $x_n \ge x$ for all $n \in \mathbb{N}$, and
 - -x is the largest among all lower bounds for the sequence, i.e.,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_{N_{\varepsilon}} < x + \varepsilon.$$

- Notation: $x = \inf_{n>1} x_n$

Infimum of a Sequence of Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty} = \{X_1, X_2, \ldots\}$ be a sequence of random variables w.r.t. \mathscr{F} .

Lemma

Let X be defined as

$$X(\omega) = \inf_{n>1} X_n(\omega), \qquad \omega \in \Omega.$$

Then, $X: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ is a random variable with respect to \mathscr{F} .

Limit Supremum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Supremum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Supremum of a Sequence of Real Numbers

The limit supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

$$x = \inf_{n \ge 1} \sup_{k > n} x_k,$$

Equivalently,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_k < x + \varepsilon \qquad \forall k \geq N_{\varepsilon}.$$

Limit Supremum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Supremum of a Sequence of Real Numbers

The limit supremum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

$$x = \inf_{n \ge 1} \sup_{k > n} x_k,$$

Equivalently,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_k < x + \varepsilon \qquad \forall k \geq N_{\varepsilon}.$$

Notation:

$$x = \limsup_{n \to \infty} x_n$$
.

Limit Supremum of a Sequence of Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty} = \{X_1, X_2, \ldots\}$ be a collection of random variables w.r.t. \mathscr{F} .

Lemma

Let X be defined as

$$X(\omega) = \limsup_{n \to \infty} X_n(\omega), \qquad \omega \in \Omega.$$

Then, $X: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ is a random variable with respect to \mathscr{F} .

Limit Infimum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Infimum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Infimum of a Sequence of Real Numbers

The limit infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

$$x = \sup_{n \ge 1} \inf_{k \ge n} x_k.$$

Limit Infimum of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit Infimum of a Sequence of Real Numbers

The limit infimum of the sequence $\{x_n\}_{n=1}^{\infty}$ is an element $x \in \mathbb{R} \cup \{\pm \infty\}$ such that

$$x = \sup_{n \ge 1} \inf_{k \ge n} x_k.$$

Notation:

$$x = \liminf_{n \to \infty} x_n$$
.

Equivalently,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad x_k > x - \varepsilon \qquad \forall k \geq N_{\varepsilon}.$$

Limit Infimum of a Sequence of Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty} = \{X_1, X_2, \ldots\}$ be a collection of random variables w.r.t. \mathscr{F} .

Lemma

Let X be defined as

$$X(\omega) = \liminf_{n \to \infty} X_n(\omega), \qquad \omega \in \Omega.$$

Then, $X: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ is a random variable with respect to \mathscr{F} .

Limit of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit of a Sequence of Real Numbers

We say that $x \in \mathbb{R} \cup \{\pm \infty\}$ is the limit of the sequence $\{x_n\}_{n=1}^{\infty}$ if

$$\liminf_{n\to\infty} x_n = x = \limsup_{n\to\infty} x_n.$$

Equivalently,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad |x_k - x| < \varepsilon \quad \forall k \geq N_{\varepsilon}.$$

Limit of a Sequence of Real Numbers

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.

Limit of a Sequence of Real Numbers

We say that $x \in \mathbb{R} \cup \{\pm \infty\}$ is the limit of the sequence $\{x_n\}_{n=1}^\infty$ if

$$\liminf_{n\to\infty} x_n = x = \limsup_{n\to\infty} x_n.$$

Equivalently,

$$\forall \varepsilon > 0, \quad \exists N_{\varepsilon} \in \mathbb{N} \quad \text{such that} \quad |x_k - x| < \varepsilon \quad \forall k \geq N_{\varepsilon}.$$

Notation:

$$x = \lim_{n \to \infty} x_n$$
.

Limit of a Sequence of Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_n\}_{n=1}^{\infty} = \{X_1, X_2, \ldots\}$ be a sequence of random variables w.r.t. \mathscr{F} .

Lemma

Let X be defined as

$$X(\omega) = \lim_{n \to \infty} X_n(\omega), \qquad \omega \in \Omega.$$

Then, $X: \Omega \to \mathbb{R} \cup \{\pm \infty\}$ is a random variable with respect to \mathscr{F} .