Detection and Analysis Of Burst Signal from Laser Doppler Velocimeter Using LAB VIEW

PROJECT WORK CARRIED AT

NATIONAL
AEROSPACE
LABORATORIES, BANGALORE

EXTERNAL GUIDE

Dr.K.T.Madhavan.,Ph.D

Scientist EII,NAL Bangalore

INTERNAL GUIDE

Mr.J.Palanivel., M.Tech

HOD, ECE AAMEC

Presented By

Manoj kumar.A

Ganesh Ram.R

Vipin . M

Dhinesh Kumar.P

What is LDV ?

Device used to measure Velocity

Doppler shift is utilized

Uses Laser for measuring Doppler frequency

It is used in **Experimental Aero Dynamics**

Principle

The frequency shift induced by Doppler effect is proportional to the velocity.

$$V = (\Delta f * 2 / (\lambda \sin \beta))$$

Why LDV?

No calibration required

No probe in the flow

Senses velocity independent of temperature, density and composition.

Not affected by turbulence

It is a Non-invasive technique

BLOCK DIAGRAM

FRINGE PATTERN

NATURE OF SIGNAL FROM LDV

PROPERTIES

- Random in Arrival
- Constant frequency
- Influenced by particle density and size
- Fewer number of cycles (< 30)</p>
- Consists of electrical and external noises.

TASK AHEAD

Develop a way to detect and process the burst signal.

•Find the velocity through frequency.

Methods of Signal Processing

Demerits

- Spectrum analyzer -- Poor Real time analysis
- Frequency Tracker -- Needs high rate of seeding.
- Periodic Counter -- Needs sophisticated logic to reject noise.
- Transient Recorders -- Low Data Rate.

BEST SUITED METHOD

Frequency Domain Real Time Processing.
FFT and DCA

SIGNAL PROCESSING BLOCK DIAGRAM

OBJECTIVES

- Noise Elimination.
- Burst Detection (using Peak Ratios).
- Computation of Frequency & Velocity.

PARAMETERS TO BE CONSIDERED

- SNR, Sampling Information.
- Filter parameters.
- Threshold Voltage level.

IMPLEMENTATION

- GENERATION OF BURST SIGNAL FROM LDV
- BURST DETECTION AND VALIDATION
- COMPUTATION OF FREQUENCY THROUGH FFT
- COMPUTATION OF FREQUENCY THROUGH DCA
- COMPUTATION OF VELOCITY THROUGH FREQUENCY

METHODS OF GENERATION

Simulation of Burst Signals

 Generation of Burst Signal by Reading Samples from a file

Direct Real Time Acquisition

PEAK DETECTION

- Objectives
- 1. To identify the valid burst that can be processed
- 2. Faster, Rugged validation (within first few cycles)
- Algorithm
- 1. Digitize and compare with the threshold.
- 2. Compare the successive peak amplitudes
- 3. Trigger the FFT block.

PEAK DETECTOR OUTPUT

FFT

N-1

•
$$X(k) = \sum X(n) * \exp(-2j pi n k / N);$$

 $n=0$ $k = 0....N-1$

OBJECTIVES

- To display the results as spectrum plots.
- To get amplitude and phase information from the plots.
- To check the validity of the burst detection.
- Computing the Frequency.

FFT OUTPUT

20000000.0

0.000-

0.0

10000000.0

3000000.0

Time

4000000.0

50000000.0

Highlights an Invalid Signal

DOUBLE CLIPPED AUTO-CORRELATION

It refers to degree of correspondence between a code and a phase shifted replica of it self.

$$N-1$$

 $S(k) = \sum_{n=0}^{\infty} A(n) \times B(n+k); k = 0...N-1$

Highlighting property

-- Correaltion Peaks only at Zero shift.

Number of Shifts	Correlated Sequence Corr. S	um
Original Sequence	1 1 1 1 0 0 0 0 1 1 1 1 0 0	0 0 0
0	1 1 1 1 0 0 0 0 1 1 1 1 0 0	0 0 0 <u>16</u>
1	0 1 1 1 1 0 0 0 0 1 1 1 1 1	0 0 0 12
2	0 0 1 1 1 1 0 0 0 0 1 1 1	1 0 0 8
3	0 0 0 1 1 1 1 0 0 0 0 1 1	1 1 0 4
4	0 0 0 0 1 1 1 1 0 0 0 0 1	1 1 1 0
5	0 0 0 0 0 1 1 1 1 0 0 0 0	1 1 1 3
6	0 0 0 0 0 0 1 1 1 1 0 0 0 0	0 1 1 6
7	0 0 0 0 0 0 0 1 1 1 1 0 0 0	0 0 1 9
8	0 0 0 0 0 0 0 0 1 1 1 1 0 0	0 0 0 <u>12</u>
9	0 0 0 0 0 0 0 0 1 1 1 1 1	0 0 0 10
10	0 0 0 0 0 0 0 0 0 1 1 1	1 0 0 8
11	0 0 0 0 0 0 0 0 0 0 1 1	1 1 0 6
12	0 0 0 0 0 0 0 0 0 0 0 1	1 1 1 4
13	0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 5
14	0 0 0 0 0 0 0 0 0 0 0 0	0 1 1 6
15	0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 7
16	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 8

AUTO-CORRELOGRAM

Objectives

- -- To convert the sample values in to 1's and 0's.
 - -- To XNOR the original and shifted data & find the Sum.
 - -- To plot the Auto-Correlation waveform.
 - -- To identify the valid burst.
 - -- To compute the frequency and Velocity.

DCA OUTPUT

VALIDATION

FRONT PANELS

FUTURE DEVELOPMENTS

Implementation in Digital Signal Processors.

Implementation in FPGA.

OUR SINCERE THANKS TO

NATIONAL AEROSPACE LABORATORIES, BANGALORE

ANJALAI AMMAL MAHALINGAM ENGG. COLLEGE, KOVILVENNI

