1

Funções e Modelos

1.6

Funções Inversas e Logaritmos

A Tabela 1 fornece os dados de uma experiência na qual uma cultura começou com 100 bactérias em um meio limitado em nutrientes; o tamanho da população foi registrado em intervalos de uma hora.

O número N de bactérias é uma função do tempo t: N = f(t).

Suponha, todavia, que o biólogo mude seu ponto de vista e passe a se interessar pelo tempo necessário para a população alcançar vários níveis. Em outras palavras, ela está pensando em *t* como uma função de *N*.

t (horas)	N = f(t) = população no instante t
0	100
1	168
2	259
3	358
4	445
5	509
6	550
7	573
8	586

N como uma função de *t* **Tabela 1**

Essa função, chamada de *função inversa* de f, é denotada por f^{-1} , e deve ser lida assim: "inversa de f." Logo, $t = f^{-1}$ (N) é o tempo necessário para o nível da população atingir N.

Os valores de f-1 podem ser encontrados na Tabela 1 ao contrário ou consultando a Tabela 2.

Por exemplo, $f^{-1}(550) = 6$, pois f(6) = 550.

Nem todas as funções possuem inversas.

N	$t = f^{-1}(N)$ = tempo para atingir N bactérias
100	0
168	1
259	2
358	3
445	4
509	5
550	6
573	7
586	8

t como uma função de *N* **Tabela 2**

Vamos comparas as funções *f* e *g* cujo diagrama de

flechas está na Figura 1.

Observe que f nunca assume duas vezes o mesmo valor (duas entradas quaisquer em A têm saídas diferentes), enquanto assume o mesmo valor duas vezes (2 e 3 têm a mesma saída, 4)

Em símbolos,

$$g(2) = g(3)$$

mas $f(x_1) \neq f(x_2)$ sempre que $x_1 \neq x_2$

f é injetora; g não é Figura 1

Funções que compartilham essa última propriedade com f são chamadas funções injetoras.

1 Definição Uma função f é chamada função injetora se ela nunca assume o mesmo valor duas vezes; isto é,

$$f(x_1) \neq f(x_2)$$
 sempre que $x_1 \neq x_2$.

Se uma reta horizontal intercepta o gráfico de f em mais de um ponto, então vemos na Figura 2 que existem números x_1 e x_2 tais que $f(x_1) = f(x_2)$.

Isso significa que f não é uma função injetora.

Esta função não é injetora, pois $f(x_1) = f(x_2)$. Figura 2

Portanto, temos o seguinte método geométrico para determinar se a função é injetora.

Teste da Reta Horizontal Uma função é injetora se nenhuma reta horizontal intercepta seu gráfico em mais de um ponto.

Exemplo 1

A função $f(x) = x^3$ é injetora?

Solução 1:

Se $x_1 \neq x_2$, então $x_1^3 \neq x_2^3$ (dois números diferentes não podem ter o mesmo cubo). Portanto, pela Definição 1, $f(x) = x^3$ é injetora.

Solução 2:

Da Figura 3 vemos que nenhuma reta horizontal intercepta o gráfico de $f(x) = x^3$ em mais de um ponto.

Logo, pelo Teste da Reta Horizontal, *f* é injetora.

As funções injetoras são importantes, pois são precisamente as que possuem funções inversas, de acordo com a seguinte definição:

Definição Seja f uma função injetora com domínio A e imagem B. Então, a sua função inversa f⁻¹ tem domínio B e imagem A e é definida por

$$f^{-1}(y) = x \iff f(x) = y$$

para todo y em B.

Esta definição diz que se f mapeia x em y, então f^{-1} mapeia y de volta para x. (Se f não for injetora, então f^{-1} não seria exclusivamente definido.)

O diagrama de setas na Figura 5 indica que f^{-1} reserva o efeito de f.

Note que

domínio de
$$f^{-1}$$
 = imagem de f imagem de f^{-1} = domínio de f

Por exemplo, a função inversa de $f(x) = x^3$ é $f^{-1}(x) = x^{1/3}$ porque, se $y = x^3$, então

$$f^{-1}(y) = f^{-1}(x^3) = (x^3)^{1/3} = x$$

Atenção

Não confunda o -1 em f^{-1} com um exponente. Assim,

$$f^{-1}(x)$$
 não significa que $\frac{1}{f(x)}$

Assim, 1/f(x) poderia, todavia, ser escrito como $[f(x)]^{-1}$.

Exemplo 3

Se
$$f(1) = 5$$
, $f(3) = 7$, e $f(8) = -10$, encontre $f^{-1}(7)$, $f^{-1}(5)$ e $f^{-1}(-10)$.

Solução:

Da definição de *f*−¹ temos

$$f^{-1}(7) = 3$$
 porque $f(3) = 7$

$$f^{-1}(5) = 1$$
 porque $f(1) = 5$

$$f^{-1}(-10) = 8$$
 porque $f(8) = -10$

Exemplo 3 – Solução

O diagrama na Figura 6 torna claro que f^{-1} reverte o efeito de f nesses casos.

A função inversa reverte entradas e saídas

Figura 6

A letra x é usada tradicionalmente como a variável independente, logo, quando nos concentramos em f^{-1} em vez de f, geralmente revertemos os papéis de x e y na Definição 2 e escreveremos

$$f^{-1}(x) = y \iff f(y) = x$$

Substituindo *y* na Definição 2 e *x* em 3 obtemos as seguintes **equações de cancelamento**:

$$f^{-1}(f(x)) = x$$
 para todo $x \text{ em } A$
 $f(f^{-1}(x)) = x$ para todo $x \text{ em } B$

A primeira lei do cancelamento diz que se começarmos com x, aplicarmos f e, em seguida, obteremos de volta o x, de onde começamos (veja o diagrama de máquina na Figura 7).

Figura 7

Assim, f^{-1} desfaz o que f faz. A segunda equação diz que f desfaz o que f^{-1} faz.

Por exemplo, se $f(x) = x^3$, então $f^{-1}(x) = x^{1/3}$ as equações de cancelamento ficam

$$f^{-1}(f(x)) = (x^3)^{1/3} = x$$

 $f(f^{-1}(x)) = (x^{1/3})^3 = x$

Essas equações simplesmente dizem que a função cubo e a função raiz cúbica cancelam-se uma à outra quando aplicadas sucessivamente.

Vamos ver agora como calcular as funções inversas.

Se tivermos uma função y = f(x) e formos capazes de resolver essa equação para x em termos de y, então, de acordo com a Definição 2, devemos ter $x = f^{-1}(y)$.

Se quisermos chamar a variável independente de x, trocamos x por y e chegamos à equação $y = f^{-1}(x)$.

lacksquare Como Achar a Função Inversa de uma Função f Injetora

- Passo 1 Escreva y = f(x).
- Passo 2 Isole x nessa equação, escrevendo-o em termos de y (se possível).
- Passo 3 Para expressar f^{-1} como uma função de x, troque x por y. A equação resultante é $y = f^{-1}(x)$.

O princípio de trocar x e y para encontrar a função inversa também nos dá um método de obter o gráfico f^{-1} a partir de f. Uma vez que f(a) = b se e somente se $f^{-1}(b) = a$, o ponto (a, b) está no gráfico de f se e somente se o ponto (b, a) estiver no gráfico de f^{-1} .

Porém, obtemos o ponto (b, a) de (a, b) refletindo-o em torno da reta y = x. (Veja a Figura 8.)

Figura 8

Portanto, conforme ilustrado na Figura 9:

O gráfico de f^{-1} é obtido refletindo-se o gráfico de f em torno da reta y = x.

Figura 9

Se a > 0 e $a \ne 1$, a função exponencial $f(x) = a^x$ é crescente ou decrescente, e, portanto, injetora pelo Teste da Reta Horizontal. Assim, existe uma função inversa f^{-1} , chamada **função logarítmica com base** a denotada por \log_a . Se usarmos a formulação de função inversa dada por 3

$$f^{-1}(x) = y \iff f(y) = x$$

teremos

6

$$\log_a x = y \iff a^y = x$$

Dessa forma, se x > 0, então $\log_a x$ é o exponente ao qual deve se elevar a base a para se obter x.

Por exemplo, $log_{10} 0,001 = -3$, pois $10^{-3} = 0,001$.

As equações de cancelamento 4 , quando aplicadas a $f(x) = a^x$ e $f^{-1}(x) = \log_a x$, ficam assim

7

$$\log_a(a^x) = x$$
 para todo $x \in \mathbb{R}$ $a^{\log_a x} = x$ para todo $x > 0$

A função logarítmica \log_a tem o domínio (0, ∞) e a imagem \mathbb{R} . Seu gráfico é a reflexão do gráfico de $y = a^x$ em torno da reta y = x.

A Figura 11 mostra o caso em que a > 1. (As funções logarítmicas mais importantes têm base a > 1.)

O fato de $y = a^x$ é uma função que cresce muito rapidamente para x > 0 está refletido no fato de que $y = \log_a x$ é uma função de crescimento muito lento para x > 1.

Figura 11

A Figura 12 mostra os gráficos de $y = \log_a x$ com vários valores da base a > 1. Uma vez que $\log_a 1 = 0$, os gráficos de todas as funções logarítmicas passam pelo ponto (1, 0).

Figura 12

As seguintes propriedades das funções logarítmicas resultam das propriedades correspondentes das funções exponenciais.

Propriedades de Logaritmos Se x e y forem números positivos, então

1.
$$\log_a(xy) = \log_a x + \log_a y$$

$$2 \quad \log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$

3.
$$\log_a(x^r) = r \log_a x$$
 (onde r é qualquer número real)

Exemplo 6

Use as propriedades dos logaritmos para calcular $\log_2 80 - \log_2 5$.

Solução:

Usando a Propriedade 2, temos

$$\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right) = \log_2 16 = 4$$

pois
$$2^4 = 16$$
.

De todas as possíveis bases *a* para os logaritmos, veremos no Capítulo 3 que a escolha mais conveniente para uma base é *e*.

O logaritmo na base *e* é chamado **logaritmo natural** e tem uma notação especial:

$$\log_e x = \ln x$$

Se fizermos a = e e substituirmos \log_e por "In" em $\boxed{6}$ e $\boxed{7}$, então as propriedades que definem a função logaritmo natural ficam

$$\ln x = y \iff e^y = x$$

9

$$\ln(e^x) = x \qquad x \in \mathbb{R}$$
$$e^{\ln x} = x \qquad x > 0$$

Em particular, se fizermos x = 1, obteremos

$$ln e = 1$$

Exemplo 7

Encontre x se $\ln x = 5$.

Solução 1:

De 8, vemos que

In
$$x = 5$$
 significa $e^5 = x$

Portanto, $x = e^5$.

(Se você tiver problemas com a notação "ln", substitua-a por \log_e . Então a equação torna-se $\log_e x = 5$; portanto, pela definição de logaritmo, $e^5 = x$.)

Exemplo 7 – Solução

Solução 2:

Comece com a equação

$$\ln x = 5$$

e então aplique a função exponencial a ambos os lados da equação:

$$e^{\ln x} = e^{5}$$

Mas a segunda equação do cancelamento 9 afirma que $e^{\ln x} = x$. Portanto, $x = e^5$.

A fórmula a seguir mostra que os logaritmos com qualquer base podem ser expressos em termos de logaritmos naturais.

10 Fórmula de Mudança de Base Para todo número positivo $a \ (a \neq 1)$, temos

$$\log_a x = \frac{\ln x}{\ln a}$$

Exemplo 10

Calcule log₈ 5 correto até a sexta casa decimal.

Solução:

A Fórmula 10 nos dá

$$\log_8 5 = \frac{\ln 5}{\ln 8} \approx 0,773976$$

Os gráficos da função exponencial $y = e^x$ e de sua função inversa, a função logaritmo natural, são indicados na Figura 13.

Em razão de a curva $y = e^x$ cruzar o eixo y com uma inclinação de 1, segue a curva refletida $y = \ln x$ cruza o eixo x com uma inclinação de 1.

O gráfico de $y = \ln x$ é a reflexão do gráfico de $y = e^x$ em torno da reta y = x

Assim como todas as outras funções logarítmicas com base maior que 1, o logaritmo natural é uma função crescente definida em $(0, \infty)$ e com o eixo y como assíntota vertical.

(Ou seja, os valores de $\ln x$ se tornam números negativos muito grandes x tende a 0.)

Exemplo 11

Esboce o gráfico da função $y = \ln (x - 2) - 1$.

Solução:

Iniciaremos com o gráfico de $y = \ln x$ conforme dado na Figura 13.

Deslocamos duas unidades para a direita, obtendo o gráfico de $y = \ln (x - 2)$ e então deslocamos uma unidade para cima para obter ao gráfico de $y = \ln (x - 2) - 1$. (Veja a Figura 14.)

Figura 14

Embora $\ln x$ seja uma função crescente, seu crescimento é muito lento quando x > 1. De fato, $\ln x$ cresce mais vagarosamente do que qualquer força positiva de x.

Para ilustrar este fato, comparamos os valores aproximados das funções $y = \ln x$ e $y = x^{1/2} = \sqrt{x}$ na tabela a seguir.

x	1	2	5	10	50	100	500	1.000	10.000	100.000
ln x	0	0,69	1,61	2,30	3,91	4,6	6,2	6,9	9,2	11,5
\sqrt{x}	1	1,41	2,24	3,16	7,07	10,0	22,4	31,6	100	316
$\frac{\ln x}{\sqrt{x}}$	0	0,49	0,72	0,73	0,55	0,46	0,28	0,22	0,09	0,04

Fazemos os gráficos nas Figuras 15 e 16.

Podemos ver que inicialmente os gráficos de $y = \sqrt{x}$ e $y = \ln x$ crescem a taxas comparáveis, mas eventualmente a função raiz ultrapassa o logaritmo.