Find the voltage across the capacitors ($V_1 \ \& \ V_2$) in the below circuit under dc conditions.

Find Vo for the circuit shown.

Find the V_0 in the circuit by using superposition principle.

Calculate the maximum power delivered to the variable resistor R shown in the circuit. Also find the value of R.

Calculate Io in the circuit.

8. a) A 50 mH inductor is connected in parallel with a 2.5 k Ω resistor. The current through the inductor is i(t)=50 e^{-100t} mA.

- (i) Find the voltage across the inductor (V_L) .
- (ii) Find the voltage across the resistor (VR).
- (iii) Calculate the energy in the inductor at t=0.

(3 marks)

b) Find C_{eq} in the below circuit if all capacitors are 10 μF . (2 marks)

Find V_{O} in the circuit shown below. Also calculate the power dissipated in the 5 Ω resistor.

