Divisibilità, mcm, MCD, inizio congruenze

A.Fenu / Spano

October 7, 2019

1

Determinare (121, 13486).

2

Determinare (134, 366) utilizzando l'algoritmo di Euclide. Determinare in seguito [134, 366].

3 *

Determinare $(2^{a} - 1, 2^{b} - 1)$.

4

Determinare la cifra delle decine di 7^{2019} .

5

Determinare le ultime 2 cifre di 2^{20} .

6 *

Dimostrare che per ogni n naturale esistono infinite soluzioni naturali all'equazione $x^2 + y^2 = z^2 + n$.

7

Siano a, b, c interi positivi tali che sia a sia b sia c dividano a + b + c e (a, b) = 1, (b, c) = 1, (c, a) = 1. Determinare tutti i possibili valori di a, b, c.

8

Dimostrare che $\sqrt{2}$ è irrazionale.

0 **

Dimostrare ultimo teorema di Fermat per n = 4.

10

Marianna possiede n tazze, dove n corrisponde alle ultime 3 cifre della somma dei primi 45 quadrati dispari. Sapendo che possiede tante monete quanto vale l'mcd tra n e 4074, determinare la ricchezza di Marianna.

11

Quanto vale [a, b] * (a, b)?

12 Sophie Germain*

Determinare quando $n^4 + 4^n$ è un primo.

13

Mostrare che $x^2 + y^2 + z^2 = 2xyz$ non ha soluzioni intere positive.

14

E' vero che se, sia p che p^2+2 sono numeri primi, allora anche p^3+2 lo è?