Behavior Planning

Course 4, Module 5, Lesson 1

Learning Objectives

- Define a behaviour planning system
- Understand the standard input and output of a behaviour planner
- Understand state machines as they relate to behavior planning

Behavior Planning

- A behavior planning system plans the set of high level driving actions, or maneuvers to safely achieve the driving mission under various driving situations
- Behavior planner considers:
 - o Rules of the road
 - Static objects around the vehicle
 - Dynamic objects around the vehicle
- Planned path must be safe and efficient

Can deal with inputs that are inaccurate (corrupted by measurement noise) & incorrect (perception errors of FP or FN dectections)

Driving maneuvers

- Track Speed maintain current speed of the road
- Follow leader match the speed of the leading vehicle and maintain a safe distance
- **Decelerate to stop** begin decelerating and stop before a given space
- **Stop** remain stopped in the current position
- Merge join or switch onto a new drive lane

Output of Behavior Planner

- Driving maneuver to be executed
- Set of constraints which must be obeyed by the planned trajectory of the self driving car which include:
 - o Ideal path center line of convert lane
 - Speed limit
 - Lane boundaries
 - Stop locations
 - Set of interest vehicles

Input Requirements

- High definition road map
- Mission path
- Localization information

Perception Information:

- All observed dynamic objects
 - Prediction of future movement
 - Collision points and time to collision
- All observed static objects
 - Road signs
- · Occupancy grid defining the safe areas to execute nanewers

Finite State Machines

- Each state is a driving maneuver
- Transitions define movement from one maneuver to another
- Transitions define the rule implementation that needs to be met before a transition can occur
- Entry action are modification to the constraints

Advantages of Finite State Machines in Behaviour Planning

- Limiting number of rule checks
- Rule become more targeted and simple
- Implementation of the behavior planner becomes simpler

Summary

- Defined the role of a behaviour planning system
- Standard input and output of a behaviour planner
- Deploying State Machines as a Behavior Planning
 - Advantages of using a state machine for behavior planning

 Next: Building a state machine to handle an intersection scenario without dynamic objects