

Data Analytics Pipelines with Spark and Azure Databricks

20 November 2018

Lace Lofranco Senior Software Engineer Microsoft

Survey

Session objective

At the end of this session, you should:

- Know the key capabilities of Spark and the Azure Databricks platform
- Have an understanding of building advanced analytics workloads with Spark on Azure Databricks

Agenda

Spark Fundamentals

Unified Computing Engine

Azure Databricks

Managed Apache Spark, Integrations with Azure Services

Demo

Recommendation System

Spark Fundamentals

Apache Spark

a unified computing engine and a set of libraries for parallel data processing on computer clusters

Spark SQL

Structured Streaming Mllib (machine learning) GraphX / GraphFrames (graph)

RDDs, DataFrame, Datasets

Apache Spark

a unified computing engine and a set of libraries for parallel data processing on computer clusters

Spark SQL

Structured Streaming ML Pipelines (Mllib/ml) Graph Frames (graph) Deep Learning Pipelines

RDDs, DataFrame, Datasets

Why Spark is fast

Why Spark is fast

Why Spark is fast

Source: http://spark.apache.org/

Apache Spark: APIs

RDDs

Core building block of data processing pipelines

DataFrames

High level APIs that take advantage of query optimizer

Datasets

Data Frames with user objects and custom code

Transformations and Actions

Transformations and Actions

Transformations	Actions
select	show
distinct	count
groupBy	collect
sum	save
orderBy	first
filter	
limit	
summarize	
and much more	

Inside a Spark Application

Azure Databricks Spark as a managed service on Azure

Azure Databricks

Managed Apache Spark platform optimized for Azure

First party service

Not an Azure Marketplace or 3rd party hosted service

Azure Integration

- Azure Active Directory
- Azure data connectors
- Azure Billing
- Power BI

Demo

Hello Azure Databricks!

Hidden Technical Debt in ML Systems

Azure Databricks

Azure Integration

Databricks Core Concepts

Libraries

Databricks File System (DBFS)

- Distributed file system that is a layer over Azure Blob Storage
- Data is persisted even after cluster termination
- Data can be cached locally on the SSD of the worker nodes
- Available in Python and Scala and accessible via DBFS CLI

Demo

Mount Blob Storage in DBFS

Movie Recommendation System

MovieLens Dataset

26M ratings and 750K tag applications applied to 45K movies by 270K users

https://movielens.org/

F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. DOI=http://dx.doi.org/10.1145/2827872

recommendations

MovieLens helps you find movies you will like. Rate movies to build a custom taste profile, then MovieLens recommends other movies for you to watch.

Demo Architecture

Spark SQL

Spark's interface for working with structured and semistructured data

Built on the DataFrame & Datasets API

Hive Integration

Provides JDBC/ODBC access

Databricks Delta

Powerful transactional storage layer using Spark & DBFS

Provides ACID transactions

Fast read access with automatic file management and table statistics

In Preview

Spark SQL

Structured Streaming

Mllib (machine learning)

GraphX (graph)

Apache Spark Core APIs

RDDs, DataFrame, Datasets

Demo

Create and query Tables with Spark SQL

Spark Structured Streaming

Scalable and fault-tolerant stream processing engine

Successor of Spark Streaming (DStreams API)

Same code for Batch and Streaming

Demo Architecture

Demo

Ingest ratings data from Event Hubs with Spark Structured Streaming

Spark MLlib

Scalable Machine Learning library on Spark

- Common ML algorithms
 - classification, regression, clustering,
 & collaborative filtering
- Featurization
 - · Feature extraction, Transformation, dimensionality reduction
- ML Pipelines
 - Combine Transformers and Estimators

Demo Architecture

Demo

Build collaborative filtering recommendation model with Spark ML

Productionizing Machine Learning Workloads

In Spark...

- 1. Batch inference
- 2. Structured Streaming

Out of Spark...

Export model

- Mleap, MLFlow Models, AzureML Service

Containerized Web Service

Productionizing Machine Learning Workloads

ML persistence

 Sparks support saving multistage models built by Data Scientist in Python/R and loading in Scala/Java

Schedule pipelines with Jobs Notification and alerting

Demo Architecture

Demo

Productionize workflow with Spark Jobs

Visualize with Dashboards

Convert Notebooks into Dashboards

Parameterize Notebooks using Widgets

Demo Architecture

Demo

User Recommendation Dashboard

Databricks Developer Tooling

Databricks CLI
Databricks REST API

Commands:

```
clusters
configure

Configures host and authentication info for the CLI.

Utility to interact with DBFS.

Utility to interact with jobs.
```

libraries Utility to interact with libraries.
runs Utility to interact with the jobs runs.

secrets Utility to interact with Databricks secret API. workspace Utility to interact with the Databricks workspace.

Try the demo!

https://github.com/devlace/azure-databricks-recommendation-system

To deploy...

docker run -it
devlace/azdatabricksrecommend

Introduction

The following is a Movie Recommendation System Data pipeline implemented within Azure Databricks. This solution aims to demonstrate Databricks as a Unified Analytics Platform by showing an end-to-end data pipeline including:

- 1. Initial ETL data loading process
- 2. Ingesting succeeding data through Spark Structured Streaming
- 3. Model training and scoring
- 4. Persisting trained model
- 5. Productionizing model through batch scoring jobs
- 6. User dashboards

Architecture

Movie ratings data is generated via a simple .NET core application running in an Azure Container instance which sends this data into an Azure Event Hub. The movie ratings data is then consumed and processed by a Spark Structured Streaming (Scala) job within Azure Databricks. The recommendation system makes use of a collaborative filtering model, specifically the Alternating Least Squares (ALS) algorithm implemented in Spark ML and pySpark (Python). The solution also contains two scheduled jobs that demonstrates how one might productionize the fitted model. The first job creates daily top 10 movie recommendations for all users while the second job retrains the model with the newly received ratings data. The solution also demonstrates Sparks Model Persistence in which one can load a model in a different language (Scala) from what it was originally saved as (Python). Finally, the data is visualized with a parameterize Notebook / Dashboard using Databricks Widgets.

DISCLAIMER: Code is not designed for Production and is only for demonstration purposes.

Other Databricks Demos...

https://github.com/devlace/azure-databricks-anomaly

To deploy...

docker run -it
devlace/azdatabricksanomaly

Anomaly Detection Pipeline on Azure Databricks

The following is an anomaly detection data pipeline on Azure Databricks. This solution was built to demonstrate how to build Advance Analytics Pipelines on Azure Databricks, with a particular focus on the Spark MLLib library. This solution includes:

- 1. Initial ETL Data loading process into SparkSQL tables
- 2. Model training and scoring
 - Explanation of Pipelines, Transformer and Estimators
 - Sample Custom Estimator (PCAAnomaly)
- 3. Persisting trained models
- 4. Productionizing models through
 - Batch inference
 - Streaming

Architecture

More resources

Official Apache Spark website

Azure Databricks Documentation

[Book] Spark: The Definitive Guide

Thank you!

Lace Lofranco Senior Software Engineer, Microsoft lace.lofranco@microsoft.com

Twitter: @LaceLofranco

Github: https://github.com/devlace

