Project II

- Problem
 - Given m documents, compute the term-term relevance using MapReduce algorithm and Spark implementation
 - Input: A text file, each line represents a document
 - Output: A list of term-term pairs sorted by their similarity descending
 - t1 t2 s1 t3 t4 s2
- Sub-problems:
 - Compute Term Frequency Inverse Document Frequency (TF-IDF) for each term
 - Output: mxn matrix (m: #documents, n: #terms)
 - Computer and sort term-term relevance between a query term and all terms associated with the TF-IDF matrix
 - Input: a query term t
 - Output: term-term relevance between the query term and those terms in the tfidf matrix sorted by the relevance score (descending)

TF-IDF

- Term Frequency Inverse Document Frequency
 - Relevant to text processing
 - Common web analysis algorithm

The Algorithm, Formally

$$ext{tf}_{\mathbf{i}} = \frac{n_i}{\sum_k n_k}$$
 $ext{idf}_{\mathbf{i}} = \log \frac{|D|}{|\{d: t_i \in d\}|}$ $ext{tfidf} = ext{tf} \cdot ext{idf}$

- | D | : total number of documents in the corpus
- $|\{d: t_i \in d\}|$ humber of documents where the term t_i appears (that is $n_i \neq 0$.

Semantic Similarity

$$similarity = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Example

		D1	D2	D3
D1: I like data science D2: I hate data D3: want A	1	1	1	0
	like	1	0	0
	data	1	1	0
	science	1	0	0
	hate	0	1	0
	want	0	0	1
	Α	0	0	1

Example

	tf			
		D1	D2	D3
	1	1/4	1/3	0
D1: I like data science	like	1/4	0	0
D2: I hate data D3: want A	data	1/4	1/3	0
20	science	1/4	0	0
	hate	0	1/3	0
	want	0	0	1/2
	Α	0	0	1/2

Example

idf

D1: I like data science	
D2: I hate data	
D2	

D3: want A

	D1	D2	D3
1	log(3/2)	log(3/2)	log(3/2)
like	log(3/1)	log(3/1)	log(3/1)
data	log(3/2)	log(3/2)	log(3/2)
science	log(3/1)	log(3/1)	log(3/1)
hate	log(3/1)	log(3/1)	log(3/1)
want	log(3/1)	log(3/1)	log(3/1)
Α	log(3/1)	log(3/1)	log(3/1)

Example

tf*idf

D1: I like data science
D2: I hate data

D3: want A

	D1	D2	D3
I	0.044	0.059	0.0
like	0.119	0.0	0.0
data	0.044	0.059	0.0
science	0.119	0.0	0.0
hate	0.0	0.159	0.0
want	0.0	0.0	0.238
Α	0.0	0.0	0.238

Example

I (0.044, 0.059, 0.0) A (0.0, 0.0, 0.238)

Similarity (I, A) = (0.044*0.0+0.059*0.0+0.0*0.238)

sqrt(0.044*0.044+0.059*0.059+0.0*0.0) x sqrt(0.0*0.0+0.0*0.0+0.238*0.238)