Quantitative Asset Management

Bernard Herskovic

Spring 2019

Lecture 6: Return Predictability

- 1. Overview: discount rates

 John H Cochrane (2011, JF Presidential address)
- 2. Forecasting stock returns

 John Y Campbell and Samuel B Thompson (RFS, 2007)

 Ivo Welch and Amit Goyal (2007, RFS)
- 3. Forecasting stock returns under economic constraints
 Davide Pettenuzzo, Allan Timmermann, and Rossen
 Valkanov (JFE, 2014)

Return Predictability

- ▶ We are now going to take a closer look at stock return predictability.
- ▶ Returns are said to be predictable whenever investors have any information in their information set today that helps to predict future returns.
- ► This could include past returns, but it also could include other information (such as the dividend yield, interest rates, bond yields, etc..)
- ▶ Whenever returns are predictable, this can be exploited by timing the market. Just rebalancing is no longer the optimal strategy.

Return Predictability: Chasing Yields works!

- 1. Stocks: high dividend yields predict high returns
- 2. Treasury bonds: high yields predict high returns (rather than higher short term interest rates)
- 3. Corporate bonds: high yields predict high returns (rather than defaults)
- 4. Currencies: high yields predict high returns
- 5. Real Estate: high yields predict high returns (not low rental prices)

1. Stock Markets

- High dividend yields or low price/dividend ratios predict high returns
 - ▶ Prices will go up in order to bring the price/dividend ratio back up to its long run steady-state value
 - ► Cash flows will not adjust
- ► This creates room for market timing: when price/dividend ratios are low, we can expect high stock returns over the next (say) 5 years

Time

Low subsequent dividend growth pushes the dividend yield Back down

Time

2. Bond Markets

- ► High Treasury bond yields predict high returns
 - ▶ When the slope of the yield curve is steep, short rates do tend to increase subsequently but not by enough
 - ▶ As a result, bond returns are predictable because the higher yield more than offsets the capital losses
- ▶ This creates room for market timing: when the slope of the yield curve is steep, we can expect high bond returns over the next (say) 1 year

Maturity

3. Corporate Bond Markets

- ► Corporate bond credit spreads (difference between corporate and comparable Treasury bond): predict returns
- Corporate bond credit spreads are higher than default probabilities
- ► Increase in credit spread mostly signal higher expected returns, not higher default probability

4. Currency Markets

- ▶ High interest rates do predict high returns on a currency
- ▶ High interest rates currencies do not tend to depreciate
- ▶ If anything they subsequently appreciate

5. Housing Markets

- ► High price/rent ratios signal mostly low returns, rather than high rents in the future
- ► After 2005, price/rent ratios came down because house prices came down, not because rents increased

Stock Return Predictability

Stock Return Predictability

- ▶ Let's take a look at the dividend/yield data for the U.S.
- ► We'll use the dividend yield for the VW-CRSP Index (includes Amex, NYSE and NASDAQ) available on CRSP
- ▶ This index essentially includes all publicly traded stocks

Dividend Yield

- ► The U.S. dividend yield has been trending down secularly since the early 80's
 - ► This may be partly due to changes in the payout behavior of U.S. corporations (switch to repurchases etc.)
- ▶ But it turns out there is a tight link between the dividend yield and future returns
- ▶ We compare the dividend yield $\log \frac{d_t}{p_t}$ and returns in the future $\log R_{t\to t+k} \log R_{t\to t+k}^f$
- ► Do you know how to compute dividend yield from cumand ex- divided returns?

Regression Results

$$R_{t \to t+k}^e = a + b \times \frac{D_t}{P_t} + \varepsilon_{t+k}$$

Horizon k	b	t(b)	R^2	$\sigma[E_t(R^e)]$	$\frac{\sigma \big[E_t(R^e) \big]}{E(R^e)}$
1 year	3.8	(2.6)	0.09	5.46	0.76
5 years	20.6	(3.4)	0.28	29.3	0.62

Table 1 from Cochrane (2010)

Interpretation

- ▶ Large effects of dividend yield on returns:
 - ▶ One percentage point increase in dividend yield forecasts near four percentage points in return
- ▶ 5.46 percent of variation from fitted value!
 - ▶ This is comparable to the equity premium
- ▶ Note that the R^2 increases with the forecasting horizon:
 - Very hard to predict stock returns between now and the same time tomorrow
 - ▶ Much easier to predict stock returns between now and the same time 5 years from now.

Discount vs. Cash Flow

Time-series facts

- ▶ Dividend yields forecast returns with economically large coefficients
- ► Cambell-Shiller decomposition:

$$dp_t \approx \sum_{j=1}^k \rho^{j-1} r_{t+j} - \sum_{j=1}^k \rho^{j-1} \Delta d_{t+j} + \rho^k dp_{t+k}$$

- dividend yields vary because of cash-flow or discount rate?
- turns out that high prices relative to dividends entirely forecast low returns

Discount vs. Cash Flow

► Regressions

$$\sum_{j=1}^{k} \rho^{j-1} r_{t+j} = a_r + b_r^k dp_t + \varepsilon_{t+k}^r$$

$$\sum_{j=1}^{k} \rho^{j-1} \Delta d_{t+j} = a_{\Delta d} + b_{\Delta d}^k dp_t + \varepsilon_{t+k}^{\Delta d}$$

$$\rho^k dp_{t+k} = a_{dp} + b_{dp}^k dp_t + \varepsilon_{t+k}^{dp}$$

► Cambell-Shiller decomposition implies

$$1 \approx b_r^k - b_{\Delta d}^k + b_{dp}^k$$

Regression Results—Table 2 from Cochrane (2010)

		Coefficient	
Method and Horizon	$b_r^{(k)}$	$b^{(k)}\!$	$ ho^k b^{(k)}_{dp}$
Direct regression , $k = 15$	1.01	-0.11	-0.11
Implied by VAR, $k = 15$	1.05	0.27	0.22
VAR, $k=\infty$	1.35	0.35	0.00

- ▶ pd ratio volatility: variation in expected returns!
- ▶ Old Paradigm: high prices relative to dividends forecast higher dividend growth
- ▶ In the data, we have the opposite!
- ► New Paradigm: high prices relative to dividends forecast lower returns

All price-dividend ratio volatility corresponds to variation in expected returns. None corresponds to variation in expected dividend growth, and none to "rational bubbles."

Chasing High Yields Works!

- ▶ If you regress future Treasury **bond returns** on the slope of the yield curve, you'll also find evidence of return predictability
- ▶ If you regress future **currency returns** on interest rate differences (=difference between forward rate and spot rate) between countries, you'll also find evidence of return predictability
- ► If you regress future **commodity returns** on the difference between the forward price and the spot price, you'll also find evidence of return predictability
- ► These strategies are referred to as 'carry' trades

What's carry?

- ► Carry is the expected return on an investment when the price does not change:
 - 1. Currencies: interest rate difference
 - 2. Commodities: difference between spot price and forward price
 - 3. Stocks: Dividend yield (roughly)
 - 4. Bonds: Slope of the yield curve
- ► Carry predicts returns (see 'Carry' by Koijen, Moskowitz, Pedersen and Vrugt) in all of these markets

New Paradigm

- ► CAPM is a poor measure of risk
- ▶ Stock Returns are predictable
- ▶ Bond Returns are predictable
- ▶ Currency Returns are predictable
- ▶ Professional managers do outperform passive portfolios and simple indexes after adjusting for market beta

Improving Forecasting Regressions

- ▶ Response to Welch and Goyal (2007)
 - ▶ WG: poor predictability of the equity premium
 - ▶ WG: better to just use average returns as predictor
- ► Stock returns are predictable
- Many of the predictability regressions can serious econometric issues
 - e.g. Stambaugh (1999) bias: if dp ratio follow an AR(1) then we get biased estimations
 - There are several papers trying to fix this and other issues
- ► Another issue: out-of-sample performance
 - ▶ We want a model that generate good out-of-sample forecasts

Key contribution:

- Agrees with GW: unimpressive in-sample results and poor out-of-sample performance
- Restricted regressions perform considerably better than unrestricted ones
 - ▶ Truncation based on sign:

$$\max\{R_t^{forecast}, 0\}$$

► Require positive estimated slope

$$\max\{\beta_t^{forecast}, 0\}$$

▶ These improve out-of-sample R^2

► Forecasting variables

- valuation ratios: the dividend-price ratio, earnings-price ratio, smoothed earnings-price ratio, and book-to-market ratio
- ► Smoothed measure of accounting real return on equity (ROE). This gives a measure of the total resources available to be divided between real payouts and real growth in book equity.
- ▶ Nominal interest rates and inflation: the short-term interest rate, the long-term bond yield, the term spread between long- and short-term treasury yields, the default spread between corporate and treasury bond yields, and the lagged rate of inflation.
- ▶ Equity share of new issues proposed by Baker and Wurgler (2000) and the consumption-wealth ratio of Lettau and Ludvigson (2001).

- ► Monthly data and predict simple monthly or annual stock returns on the S&P 500 Index
- ▶ Truncation based on sign:

$$\max\{R_t^{forecast}, 0\}$$

► Require positive estimated slope

$$\max\{\beta_t^{forecast}, 0\}$$

▶ These improve out-of-sample R^2

Table 1: Excess return prediction with regression constraints

	Sample Begin	Forecast	In-Sample	In-Sample	Out-of-Sample R-squared with Different Constraints			
		Begin	t-statistic	R-squared	Unconstrained	Positive Slope	Pos. Forecast	Both
				A: Monthly Returns				
Dividend-price ratio	1872m2	1927m1	1.25	1.13%	-0.65%	0.05%	0.07%	0.08%
Earnings-price ratio	1872m2	1927m1	2.29	0.71	0.12	0.18	0.14	0.18
Smooth earnings-price ratio	1881m2	1927m1	1.85	1.36	0.33	0.42	0.38	0.43
Book-to-market	1926m6	1946m6	1.96	0.61	-0.43	-0.43	0.00	0.00
ROE	1936m6	1956m6	0.36	0.02	-0.93	-0.06	-0.93	-0.06
F-Bill rate	1920m1	1940m1	2.44	0.86	0.52	0.51	0.57	0.55
Long-term yield	1870m1	1927m1	1.46	0.19	-0.19	-0.19	0.20	0.20
Term spread	1920m1	1940m1	2.16	0.65	0.46	0.47	0.45	0.46
Default spread	1919m1	1939m1	0.74	0.10	-0.19	-0.19	-0.19	-0.19
Inflation	1871m5	1927m1	0.39	0.06	-0.22	-0.21	-0.18	-0.17
Net equity issuance	1927m12	1947m12	1.74	0.48	0.34	0.34	0.50	0.50
Consumption-wealth ratio	1951m12	1971m12	4.57	2.60	-1.36	-1.36	0.27	0.27
				B: Annual Returns				
Dividend-price ratio	1872m2	1927m1	2.69	10.8	5.53	5.53	5.63	5.63
Earnings-price ratio	1872m2	1927m1	2.84	6.78	4.93	4.93	4.94	4.94
Smooth earnings-price ratio	1881m2	1927m1	3.01	13.57	7.89	7.89	7.85	7.85
Book-to-market	1926m6	1946m6	1.98	8.26	-3.38	-3.38	1.39	1.39
ROE	1936m6	1956m6	0.35	0.32	-8.60	-0.03	-8.35	-0.03
F-Bill rate	1920m1	1940m1	1.77	4.26	5.54	5.54	7.47	7.47
Long-term yield	1870m1	1927m1	0.91	0.77	-0.15	-0.15	2.26	2.26
Term spread	1920m1	1940m1	1.72	3.10	4.79	4.79	4.74	4.74
Default spread	1919m1	1939m1	0.07	0.01	-3.81	-3.81	-3.81	-3.81
Inflation	1871m5	1927m1	0.17	0.07	-0.71	-0.71	-0.71	-0.71
Net equity issuance	1927m12	1947m12	0.54	0.35	-4.27	-4.27	-2.38	-2.38
Consumption-wealth ratio	1951m12	1971m12	3.76	19.87	-7.75	-7.75	-1.48	-1.48

Table 2: Excess return prediction with valuation constraints

	Sample Begin			In-Sample R-squared	Out-of-Sample R-squared with Different Constraints			
		Forecast Begin	In-Sample t-statistic		Unconstrained	Positive Slope, Pos. Forecast	Pos. Intercept, Bounded Slope	Fixed Coefs
			A: Mon	thly Returns				
Dividend/price	1872m2	1927m1	1.25	1.12%	-0.66%	0.08%	0.19%	0.42%
Earnings/price	1872m2	1927m1	2.28	0.71	0.12	0.18	0.25	0.76
Smooth earnings/price	1881m2	1927m1	1.85	1.35	0.32	0.43	0.43	0.97
Dividend/price + growth	1891m2	1927m1	1.40	1.03	-0.05	0.20	0.17	0.63
Earnings/price + growth	1892m2	1927m1	1.82	0.49	-0.05	0.08	0.07	0.57
Smooth earnings/price + growth	1892m2	1927m1	2.00	1.10	0.11	0.25	0.21	0.72
Book-to-market + growth	1936m6	1956m6	1.61	0.33	-0.35	-0.34	-0.34	0.33
Dividend/price + growth - real rate	1891m5	1927m1	1.47	0.86	-0.02	0.21	0.18	0.41
Earnings/price + growth - real rate	1892m2	1927m1	1.53	0.36	0.00	0.12	0.09	0.39
Smooth earnings/price + growth - real rate	1892m2	1927m1	1.97	0.84	0.15	0.26	0.23	0.52
Book-to-market + growth - real rate	1936m6	1956m6	1.68	0.36	-0.45	-0.45	-0.42	0.24
			B: Ann	ual Returns				
Dividend/price	1872m2	1927m1	2.69	10.89	5.53	5.63	3.76	2.20
Earnings/price	1872m2	1927m1	2.84	6.78	4.93	4.94	4.34	5.87
Smooth earnings/price	1881m2	1927m1	3.01	13.57	7.89	7.85	6.44	7.99
Dividend/price + growth	1891m2	1927m1	1.77	9.30	2.49	2.99	2.67	4.35
Earnings/price + growth	1892m2	1927m1	1.42	4.44	1.69	2.11	1.80	3.89
Smooth earnings/price + growth	1892m2	1927m1	1.75	10.45	3.16	3.33	3.23	5.39
Book-to-market + growth	1936m6	1956m6	1.97	5.45	-3.53	-0.64	-2.39	3.63
Dividend/price + growth - real rate	1891m5	1927m1	1.46	7.69	2.87	3.24	2.95	1.89
Earnings/price + growth - real rate	1892m2	1927m1	1.13	3.27	2.01	2.05	2.04	1.85
Smooth earnings/price + growth - real rate	1892m2	1927m1	1.53	7.90	3.35	3.35	3.38	3.22
Book-to-market + growth - real rate	1936m6	1956m6	2.03	5.77	-1.73	-1.12	-1.82	2.33

Relation between Sharpe Ratio and \mathbb{R}^2

$$r_{t+1} = \mu + x_t + \varepsilon_{t+1}$$

- x_t has mean zero and variance σ_x^2
- ε_t has mean zero and variance σ_{ε}^2
- \blacktriangleright Assume a mean-variance investor with risk aversion γ
- ▶ Unconditional Sharpe ratio:

$$S = ?$$

 $ightharpoonup R^2$ for the regression of excess return pn predictor variable

$$R^2 = ?$$

Campbell & Thompson (2008, RFS)

Relation between Sharpe Ratio and R^2

▶ Optimal mean-variance weight on the risky asset:

$$\alpha = ?$$

and earn an average excess return given by:

$$\mathbb{E}[\alpha r_{t+1}] = ?$$

Campbell & Thompson (2008, RFS)

Relation between Sharpe Ratio and \mathbb{R}^2

▶ Optimal time-varying mean-variance weight:

$$\alpha_t = ?$$

and earn an average excess return given by:

$$\mathbb{E}[\alpha_t r_{t+1}] = ?$$

Campbell & Thompson (2008, RFS)

Relation between Sharpe Ratio and \mathbb{R}^2

▶ Gain from timing the market:

$$\mathbb{E}[\alpha_t r_{t+1}] - \mathbb{E}[\alpha r_{t+1}] = ?$$

▶ Gain from timing the market:

$$\frac{\mathbb{E}[\alpha_t r_{t+1}] - \mathbb{E}[\alpha r_{t+1}]}{\mathbb{E}[\alpha r_{t+1}]} = ?$$

Takeaway

- ▶ Stock returns are predictable
- ► Unconstrained models perform poorly (Welch and Goyal results)
- Simple ad-hoc constraint go a long way in terms of improving out-of-sample performance
- ▶ Predictive regressions R^2 look small but it makes sense: benefit from timing the investment is roughly proportional to $\frac{R^2}{S^2}$

Further Improving Forecasting Regressions

- ► Similar idea to Campbell and Thompson (2008)
- ► Economically motivated constraints offer the potential to sharpen forecasts, particularly when the data are noisy and parameter uncertainty is a concern as in return prediction models.

- ▶ Estimations constraints:
 - ▶ Non-negative equity premia
 - ▶ Bounds on the conditional Sharpe ratio
- ▶ Bayesian approach: compute the predictive density of the equity premium subject to economic constraints
- ▶ Approach makes efficient use of the entire sequence of observations in computing the predictive density and also accounts for parameter uncertainty
- ▶ What is the difference between this approach and the one developed by Campbell and Thompson?

Pettenuzo, Timmermann, and Valkanov (2014, JFE) Equity premium constraint

▶ Linear model to forecast returns:

$$r_{\tau+1} = \mu + \beta x_{\tau} + \varepsilon_{\tau+1}, \quad \tau = 1, ..., t-1,$$

$$\varepsilon_{\tau+1} \sim N(0, \sigma_{\varepsilon}^2).$$

► Equity premium constraint:

$$\mu + \beta x_{\tau} \ge 0$$
 for $\tau = 1, ..., t$.

► Campbell and Thompson approach:

$$\hat{r}_{t+1|t} = \max(0, \hat{\mu}_t + \hat{\beta}_t x_t),$$

- Ignores information about the estimation if negative EP

Equity premium forecast: one-period ahead

Equity premium constraint: using default yield as predictor

Pettenuzo, Timmermann, and Valkanov (2014, JFE) Sharpe Ratio constraint

► Linear model with time-varying volatility:

$$r_{\tau+1} = \mu + \beta x_{\tau} + \exp(h_{\tau+1})u_{\tau+1},$$

where the noise term is standard normal

► The log volatility is a random walk

$$h_{\tau+1} = h_{\tau} + \xi_{\tau+1}$$

where
$$\xi_{\tau+1} \sim N(0, \sigma_{\xi}^2)$$

► Sharpe ratio is given by

$$SR_{\tau+1|\tau} = \frac{\sqrt{H(\mu+\beta x_{\tau})}}{\exp(h_{\tau}+0.5\sigma_{\xi}^{2})},$$

- How to calculate this expression?
- ► Shape ratio bounds

$$SR^{l} \leq SR_{\tau+1|\tau} \leq SR^{u}$$
 for $\tau = 1, ..., t$

Pettenuzo, Timmermann, and Valkanov (2014, JFE) Sharpe Ratio constraint

► Shape ratio bounds

$$SR^{l} \leq SR_{\tau+1|\tau} \leq SR^{u}$$
 for $\tau = 1, ..., t$

- ► SR should be positive
- ► SR around 0.5 are seen as normal
- ▶ Baseline estimation: Sharpe ratios in the unit interval

Pettenuzo, Timmermann, and Valkanov (2014, JFE) Bayesian estimation

There are three parameters to estimate: μ , β , and σ_{ξ}

- ► Economic constraints are priors
- ▶ Parameters are seen as random variables
- ► Start with a prior about the parameters
- ▶ Update your parameters posteriors to get estimates
- ► Updating is tricky given the constraints Solution: simulations

Bayesian estimation: no constraint

Prior of μ and β

$$\begin{bmatrix} \mu \\ \beta \end{bmatrix} \sim \mathsf{N}(\underline{b}, \underline{V})$$

where

$$\underline{b} = \begin{bmatrix} \overline{r}_t \\ 0 \end{bmatrix}, \quad \underline{V} = \begin{bmatrix} \underline{\psi}^2 s_{r,t}^2 & 0 \\ 0 & \underline{\psi} s_{r,t}^2 / s_{x,t}^2 \end{bmatrix}$$

$$\overline{r}_t = \frac{1}{t-1} \sum_{\tau=1}^{t-1} r_{\tau+1}, \quad s_{r,t}^2 = \frac{1}{t-2} \sum_{\tau=1}^{t-1} (r_{\tau+1} - \overline{r}_t)^2$$

$$\overline{x}_t = \frac{1}{t-1} \sum_{\tau=1}^{t-1} x_{\tau}, \quad s_{x,t}^2 = \frac{1}{t-2} \sum_{\tau=1}^{t-1} (x_{\tau} - \overline{x}_t)^2$$

Ψ controls the tightness of the prior

Bayesian estimation: no constraint

Prior for the error precision of the return innovation:

$$\sigma_{\varepsilon}^{-2} \sim G(s_{r,t}^{-2}, \underline{v}_0(t-1))$$

The history of volatility is updated according to

$$p(h^t | \sigma_{\xi}^{-2}) = \prod_{\tau=1}^{t-1} p(h_{\tau+1} | h_{\tau}, \sigma_{\xi}^{-2}) p(h_1)$$

Initial distribution of volatility

$$h_1 \sim N(\ln(s_{r,t}), \underline{k}_h)$$

Prior of σ_{ξ}

$$\sigma_{\xi}^{-2} \sim G(1/\underline{k}_{\xi}, 1)$$

Bayesian estimation: imposing constraints

Modified priors

$$\begin{bmatrix} \mu \\ \beta \end{bmatrix} \sim N(\underline{b}, \underline{V}), \quad \mu, \beta \in A_t$$

EP constraint:

$$A_t = \{\mu + \beta x_{\tau} \ge 0, \tau = 1, ..., t\}$$

Sharpe ratio constraint

$$\tilde{A}_t = \{SR^l \le SR_{\tau+1|\tau} \le SR^u, \tau = 1, ..., t\}$$

Posterior of slope coefficients (using data until 2010)

Full-sample posterior of the Equity premium: log dividend-price ratio

Full-sample posterior of the Equity premium: T-bill rate

Full-sample posterior of the Equity premium: default yield spread

Out-of-sample equity premium forecast

Conditional Sharpe ratio

Out-of-sample R^2 Monthly

	Panel A: full sample (1947–2010)			
Variable	No constraint	CT truncation	EP constraint	SR [0,1] constraint
Log dividend-price ratio	0.10%*	0.25%**	0.64%***	0.49%**

Quarterly

	Panel A: full sample (1947–2010)			
Variable	No constraint	CT truncation	EP constraint	SR [0,1] constraint
Log dividend–price ratio	- 0.16%***	1.20%***	2.11%******	1.68%***

Annua

Variable	Panel A: full sample (1947–2010)			
	No constraint	CT truncation	EP constraint	SR [0,1] constraint
Log dividend-price ratio	1.98%*	3.14%*	5.92%***	5.35%***

Takeaway

- ▶ New method to impose constraint that rule out negative equity premia and bounds the Sharpe ratio
- ► Constraints affect the estimation procedure
- ▶ More efficient use of information available
- ▶ Smoother predictions: reduced effects of outliers
- ► Constraints improve forecasting accuracy