

ORGANIC LETTERS

2011 Vol. 13, No. 11 2834–2836

Syntheses of α -Pyrones Using Gold-Catalyzed Coupling Reactions

Tuoping Luo,^{†,‡} Mingji Dai,^{†,‡} Shao-Liang Zheng,[‡] and Stuart L. Schreiber*,^{†,‡}

Howard Hughes Medical Institute, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, United States, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

stuart_schreiber@harvard.edu

Received March 25, 2011

ABSTRACT

Sequential alkyne activation of terminal alkynes and propiolic acids by gold(I) catalysts yields compounds having α -pyrone skeletons. Novel cascade reactions involving propiolic acids are reported that give rise to α -pyrones with different substitution patterns.

In efforts to synthesize compounds having properties that facilitate small-molecule probe and drug discovery, we have developed multicomponent coupling reactions that use gold(I) catalysts and yield, among others, complex α -pyrones. Activation of the electron-deficient alkyne in propargyl propiolate 1 by a cationic gold(I) catalyst results in allenyl propiolate 2, which undergoes a 6-endo-dig cyclization to oxocarbenium intermediate A (Figure 1). In order to generate diverse and previously inaccessible α -pyrones, we investigated the possibility of generating

the vinyl propiolate **5**. We imagined this intermediate undergoing a similar 6-endo cyclization to afford oxocarbenium intermediate **B** and then α -pyrone **6** after deprotonation and proto-demetalation. Intermediate **5** would result from an intermolecular coupling of propiolic acid **3** and alkyne **4** catalyzed by the same gold(I) catalyst. Herein, we describe a new gold(I)-catalyzed cascade reaction based on the concept of sequential alkyne activation, ^{2,6} synthesizing substituted α -pyrones in one step from readily available propiolic acids.

We initiated our investigation using commercially available propiolic acid **3a** and terminal alkyne **4a**. The counterion of the cationic gold(I) catalyst was determined to have

Figure 1. Syntheses of α -pyrones via gold(I)-catalyzed cascade reactions.

[†] Broad Institute of Harvard and MIT.

[‡] Harvard University.

⁽¹⁾ Nielsen, T. E.; Schreiber, S. L. Angew. Chem., Int. Ed. 2008, 47, 48-56

^{(2) (}a) Luo, T.; Schreiber, S. L. *Angew. Chem., Int. Ed.* **2007**, *46*, 8250–8253. (b) Luo, T.; Schreiber, S. L. *J. Am. Chem. Soc.* **2009**, *131*, 5667–5674.

⁽³⁾ For the application of gold-catalyzed 6-endo-dig cyclization, see: (a) Sherry, B. D.; Maus, L.; Laforteza, B. N.; Toste, F. D. *J. Am. Chem. Soc.* **2006**, *128*, 8132–8133. (b) Minnihan, E. C.; Colletti, S. L.; Toste, F. D.; Shen, H. C. *J. Org. Chem.* **2007**, *72*, 6287–6289. (c) Imase, H.; Noguchi, K.; Hirano, M.; Tanaka, K. *Org. Lett.* **2008**, *10*, 3563–3566. (d) Barabé, F.; Bétournay, G.; Bellavance, G.; Barriault, L. *Org. Lett.* **2009**, *11*, 4236–4238. (e) Menon, R. S.; Findlay, A. D.; Bissember, A. C.; Banwell, M. G. *J. Org. Chem.* **2009**, *74*, 8901–8903. (f) Jiang, C.; Xu, M.; Wang, S.; Wang, H.; Yao, Z. J. *J. Org. Chem.* **2010**, *75*, 4323–4325. (g) Liu, Y.; Xu, W.; Wang, X. *Org. Lett.* **2010**, *12*, 1448–1451.

^{(4) (}a) Dickinson, J. M. Nat. Prod. Rep. 1993, 10, 71–98. (b) van Raaij, M. J.; Abrahams, J. P.; Leslie, A. G.; Walker, J. E. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 6913–6917. (c) Steyn, P. S.; van Heerden, F. R. Nat. Prod. Rep. 1998, 15, 397–413. (d) Salomon, C. E.; Magarvey, N. A.; Sherman, D. H. Nat. Prod. Rep. 2004, 21, 105–121. (e) McGlacken, G. P.; Fairlamb, I. J. Nat. Prod. Rep. 2005, 22, 369–385. (f) Sunazuka, T.; Ömura, S. Chem. Rev. 2005, 105, 4559–4580.

Table 1. Optimization of Reaction Conditions for the Synthesis of **6a**

			yield% ^b	
entry	catalyst	${\rm conditions}^a$	6a	7a
1	[(Ph ₃ P)AuCl]/AgOTf	toluene, rt	43	<5
2	[(Ph ₃ P)AuCl]/AgPF ₆	toluene, rt	52	<5
3	[(Ph ₃ P)AuCl]/AgSbF ₆	toluene, rt	<5	84
4	[(Ph ₃ P)AuCl]/AgNTf ₂	toluene, rt	20	60
5	[(Ph ₃ P)AuCl]/AgPF ₆	$\mathrm{CH_{2}Cl_{2}},\mathrm{rt}$	12	$<5^c$
6	[(Ph ₃ P)AuCl]/AgOTf	$\mathrm{CH_{2}Cl_{2}},\mathrm{rt}$	74	<5
7	[(Cy ₃ P)AuCl]/AgOTf	CH_2Cl_2 , rt	75	<5
8	$[(p-CF_3C_6H_4)_3P]AuCl/AgOTf$	CH_2Cl_2 , rt	68	<5
9	AuCl	CH_2Cl_2 , rt	N.R.	
10	AgOTf	CH_2Cl_2 , rt	N.R.	
11	[(Ph ₃ P)AuCl]/AgOTf	CH_2Cl_2 , rt	83^d	<5
12	$[(Ph_3P)AuCl]/AgPF_6$	toluene, rt	35^d	<5 ^e

 a [3a] = 0.2 M, 1.5 equiv of 4a. b Isolated yields after column chromatography. c 39% of 3a was recovered. d 5 equiv of 4a were employed. e 5a was isolated in 29% yield.

a significant effect on the product distribution (Table 1, entries 1-4). When AgOTf or AgPF₆ was used, we isolated α -pyrone **6a** in modest yields (entries 1 and 2), presumably via the vinyl propiolate 5a resulting from the gold-catalyzed Markovnikov addition of the carboxylic acid to the terminal alkyne. ⁵ However, AgSbF₆ led to α-pyrone 7a as the predominant product (entry 3; structure determined by X-ray crystallography), whereas AgNTf2 gave both α-pyrones (entry 4). The reaction was also sensitive to the identity of the solvent. With [(Ph₃P)AuCl]/AgPF₆ as the catalyst, switching the solvent from toluene to dichloromethane significantly lowered the yield of 6a with substantial starting material recovery (Table 1, entry 5). In contrast, with [(Ph₃P)AuCl]/AgOTf as the catalyst, dichloromethane afforded 6a in higher yield than that afforded by toluene (entry 6). The more electron-donating ligand tricyclohexylphosphine and less electron-donating ligand tris(para-trifluoromethylphenyl)phosphine had minimal effects on the reaction (entries 7 and 8). AuCl or AgOTf alone failed to catalyze the cascade reaction

Figure 2. Cyclization of vinyl propiolate 5a into α -pyrone 6a.

(entries 9 and 10). The best result was obtained by increasing the amount of alkyne **4a** to 5 equiv and using the catalyst [(Ph₃P)AuCl]/AgOTf in dichloromethane, which gave rise to **6a** in 83% yield (entry 11). Unexpectedly, increasing the amount of alkyne **4a** and using the catalyst [(Ph₃P)AuCl]/AgPF₆ in toluene (entry 12) resulted in the isolation of the vinyl propiolate **5a**, which was further subjected to the optimized reaction conditions to give **6a** in excellent yield (Figure 2).

Figure 3. Dimerization of propiolic acid leading to 4-hydroxy α -pyrone.

While we do not understand why different counterions provide different product distributions (6a vs 7a), a proposed mechanism of the serendipitously discovered propiolic acid dimerization is offered in Figure 3. The addition of the carboxylic acid to the β -position of the propiolic acid yields vinyl ester **D**. Further activation of **D** by cationic gold(I) generates oxocarbenium **E**, where the acyl group is transferred to the C-Au bond with concomitant regeneration of the gold(I) catalyst. The 6-endo-dig cyclization of carboxylic acid **G** onto the activated alkyne followed by enolization affords 4-hydroxy α -pyrone 7 as the final product.

Org. Lett., Vol. 13, No. 11, 2011

^{(5) (}a) Roembke, P.; Schmidbaur, H.; Cronje, S.; Raubenheimer, H. *J. Mol. Catal. A* **2004**, *212*, 35–42. (b) Cui, D.-M.; Meng, Q.; Zheng, J.-Z.; Zhang, C. *Chem. Commun.* **2009**, 1577–1579. (c) Chary, B. C.; Kim, S. *J. Org. Chem.* **2010**, *75*, 7928–7931. (d) Lee, P. H.; Kim, S.; Park, A.; Chary, B. C.; Kim, S. *Angew. Chem., Int. Ed.* **2010**, *49*, 6806–6809.

^{(6) (}a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. *Angew. Chem., Int. Ed.* **2000**, *39*, 2285–2288. (b) Zhao, J.; Hughes, C. O.; Toste, F. D. *J. Am. Chem. Soc.* **2006**, *128*, 7436–7437. (c) Liu, X.-Y.; Che, C.-M. *Angew. Chem., Int. Ed.* **2008**, *47*, 3805–3810. (d) Sperger, C.; Fiksdahl, A. *Org. Lett.* **2009**, *11*, 2449–2452. (e) Sperger, C. A.; Fiksdahl, A. *J. Org. Chem.* **2010**, *75*, 4542–4553.

⁽⁷⁾ Crystallographic Information Files (CIFs) for **7a** and **6p** are available at the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See Supporting Information for further details.

⁽⁸⁾ For an example of a related acyl transfer involving a gold(III) intermediate, see: Wang, S.; Zhang, L. *J. Am. Chem. Soc.* **2006**, *128*, 8414–8415.

Scheme 1. Gold(I)-Catalyzed Syntheses of α -Pyrones from Propiolic Acids and Alkynes^a

 a Reaction conditions: propiolic acid (0.2–0.7 mmol, 0.2 M), alkyne (5–6 equiv), [(Ph₃P)AuCl]/AgOTf (5 mol %), CH₂Cl₂, rt, 12 h; b phenylpropiolic acid (3.4 mmol), alkyne (5 equiv), [(Ph₃P)AuCl]/AgOTf (5 mol %), CH₂Cl₂, rt, 24 h; c CH₂Cl₂, 50 °C, 12 h; d 3-(naphthalene-2-yl)propiolic acid (0.1 M); e phenylacetylene (6 equiv), toluene, 60 °C, slow addition of acid (over 2 h), 12 h; f 2-butyne (10 equiv), toluene, 60 °C, 12 h.

The scope of the cascade reaction was explored with a variety of propiolic acids and alkynes (Scheme 1). Generally, moderate to excellent yields were obtained with different terminal alkynes and propiolic acids. More sterically hindered alkynes gave lower yields (**6g**). Ether (**6h** and

60), ester (6i and 6j), halide (6k), and alkyne (6m, 6n, and **60)** functional groups are compatible with the reaction conditions. The structure of α -pyrone **6p** was verified by X-ray analysis. Notably, α-pyrone 6t is a natural product with antibiotic and antifungal activity, 9 which recently has been synthesized using a gold(I)-catalyzed cycloisomerization of β -alkynylpropiolactone. ¹⁰ Using the new method reported here. 6t was synthesized in one step from the commercially available propiolic acid and 1-heptyne. Pyrone 6u was synthesized in 77% yield from 3-bromopropiolic acid. The bromide functionality provides a handle to introduce other groups at the C-4 position via transition-metal-catalyzed cross-coupling reactions. Gratifyingly, in separate reactions using 0.5 g of phenylpropiolic acid, pyrones 6c and 6l were obtained in good yields. Unfortunately, neither phenylacetylene nor the internal alkyne 2-butyne reacts at room temperature in CH₂Cl₂. Only a low yield of the corresponding α-pyrone was obtained using elevated reaction conditions (6v and 6w). When 4-methoxy-4-oxobut-2-ynoic acid was used, only a 1,2-addition of the acid to 3-phenyl-1-propyne took place, yielding **5b** in 59% yield. A higher reaction temperature (50 °C) gave a similar result, presumably because the capacity of the triple bond of 4-methoxy-4-oxobut-2-ynoic acid to coordinate gold is diminished by the existing ester group.

The method described herein provides an efficient and simple route to multiply substituted α -pyrones. The generality observed thus far suggests that it will find many future applications.

Acknowledgment. The NIGMS-sponsored Center of Excellence in Chemical Methodology and Library Development (P50-GM069721) sponsored this research. S.L.S. is an investigator with the Howard Hughes Medical Institute.

Supporting Information Available. Experimental procedures and full spectroscopic data for all new compounds and CIFs for **7a** and **6p**. The material is available free of charge via the Internet at http://pubs.acs.org.

2836 Org. Lett., Vol. 13, No. 11, **2011**

⁽⁹⁾ Evidente, A.; Cabras, A.; Maddau, L.; Serra, S.; Andolfi, A.; Motta, A. J. Agric. Food Chem. **2003**, *51*, 6957–6960.

⁽¹⁰⁾ Dombray, T.; Blanc, A.; Weibel, J.-M.; Pale, P. Org. Lett. 2010, 12, 5362–5365.