Traditional Petri Net

- 3. Analysis of Petri net
 - 3.1. Meaningful properties in Petri Net
 - 3.2.Reachability
 - 3.2.1. Reachability Tree & reachability graph
 - 3.3. Coverability Tree
 - 3.3.1. Omega: the key to analyze unbounded Petri nets
 - 3.3.2. Algorithm to Construct Coverability tree
 - 3.3.3. Other Information from the voerability tree
 - 3.4. Incidence Matrix

Neccessary Condition of Rreachable

- 3.5. Boundedness and Safety
 - 3.5.1. K-Boundedness
 - 3.5.2. Safety
- 3.6. Liveness
 - 3.6.1. Dead
 - 3.6.2. L1-live
 - 3.6.3. L2-live
 - 3.6.4. L3-live
 - 3.6.5. L4-live(live)
 - 3.6.6. Free of Deadlock
- 4. Petri Net Flavors
 - 4.1. Finite capacity Petri net
 - 4.2. Inhibitor arcs
 - 4.3. Timed Petri Nets
 - 4.4. Colored Petri Nets

Background

Idea

4.5. Stochastic Petri Nets

3. Analysis of Petri net

3.1. Meaningful properties in Petri Net

Boundedness:

is the number of reachable markings bounded

Place Boundedness:

is there a bound on the number of tokens that can be created in a place

Semi-liveness:

is there a reachable marking from which a given transition can fire

Reachablity:

can a certain marking be reached, when we start from an initial marking

3.2.Reachability

A marking m is said to be **Reachabl**e from the initial marking m_0 (denoted by $m \in R(m_0)$), if and only if there exists a firing sequence $< t_1, t_2, t_3, \cdots, t_k >$ such that

$$m=m_0\cdot t_1\cdot t_2\cdots t_k$$

3.2.1. Reachability Tree & reachability graph

Drawbacks

The tree maybe very long

3.3. Coverability Tree

The coverability tree allows us to analyze unbounded Petri nets

- It can be used to find out whether the reachability graph is infinite
- It is always finite, and its construction always terminates

3.3.1. Omega: the key to analyze unbounded Petri nets

Omega: the key to analyze unbounded Petri nets

- Coverability graph uses a concept called "Omega", denoted ω .
- ω represents "arbitrarily many tokens".
- We extend the arithmetic on natural numbers with ω as follows. For all $n \in \mathbb{N}$:

```
• n + \underline{\omega} = \omega + n = \underline{\omega}

• \omega - n = \omega

• \omega + \omega = \omega

• 0 \cdot \omega = 0

• \omega \cdot \omega = \omega

• n \ge 1 \Rightarrow n \cdot \omega = \omega \cdot n = \omega

• n < \omega and \omega \le \omega

Note: \omega - \omega remains undefined, but we will not need it.
```

- ω-markings extends the notion of markings.
- In an ω -marking, each place p will either have $n \in \mathbb{N}$ tokens or ω tokens (arbitrarily many).

Q: what does this mean (in terms of tokens in the marking)?

Example:

 $m = (1, \omega, 0)$

- 1 token in the first place
- Any number of tokens in the second place
- No token in the third place

Firing rules with ω

- 1. If a transition has an input place with ω tokens, that place is considered to have sufficient tokens for the transition to fire, regardless of the arc weight.
- 2. If a place contains an ω -marking, then firing any transition connected with an arc to that place will not change its marking.

Covering Markings:

Marking m is **coverable** if exists m', reachable from m_0 , such that

$$\forall p \in P, m'(p) \geq m(p)$$

Q: Assume that m' is reachable from m_0 . Does m' cover m? (3 points)

(a)

$$m = (1, 4, 1, 0)$$

 $m' = (1, 4, 2, 1)$

(b)

$$m = (1, 4, 1, 0)$$

 $m' = (2, 4, 0, 4)$

no

(c)

$$m = (1, \omega, 0)$$

 $m' = (1, \omega - 10, 100)$

(d)

$$m = (7, \omega, 0)$$

$$m' = (7, \omega, \omega)$$

yes

3.3.2. Algorithm to Construct Coverability tree

- 1. label the initial marking m_0 as root and tag it as "new"
- 2. while new markings exist, pick one, say m
 - 2.1. If m is identical to a marking on the way from the root to m,
 - 2.1.1. mark it as "old";
 - 2.1.2. continue;
 - 2.2. If no transitions are enabled at m_{ij}
 - 2.2.1. tag it as "deadend";
 - 2.2.2. continue;
 - 2.3. For each enabled transition t at m do
 - 2.3.1. obtain the new marking, denoted by m'
 - 2.3.2. if there exists a marking m'' on the path from m_0 to m such that $m' \ge m''$ (i.e., m' covers m'') and $m' \ne m''$,
 - 2.3.2.1. replace m'(p) with ω for any $p \in P$ where m'(p) > m''(p);
 - 2.3.3. introduce m' as a **new node** and connect it to m with a label t

3.3.3. Other Information from the voerability tree

Bounded:

The PN is **bounded** iff ω does not appear in any node label

Safe:

The PN is **safe** iff only '0' and '1' appear in the node labels

Dead:

A transition t is **dead** iff it does not appear as an arc

3.4. Incidence Matrix

Describe a Petri net through equations

- $A_{i,j}$: gain of tokens at node i when transition j fires
- A $marking\ m$ is denoted by a |P| imes 1 column vector
- ullet The **firing unit vector** u_i describes the firing of transition i
 - It consists of all '0', except for the *i*-th position, where it has a '1'.
- ullet A transition t from m_k to m_{k+1} is written as $m_{k+1} = m_k + A \cdot u_i$

transitions
$$\underline{A} = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & \underline{0} & -1 \\ 0 & -2 & 2 \end{bmatrix} \right\} \text{ places}$$

$$m_0 = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Example: m_1 is obtained from m_0 by firing t_3

$$m_{1} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} -2 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix}$$

$$u_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \quad u_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad u_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
Represents
firing of t1

Represents
firing of t2

Represents
firing of t3

Neccessary Condition of Rreachable

A marking m is said to be **Reachabl**e from the initial marking m_0 (denoted by $m \in R(m_0)$), if and only if there exists a firing sequence $< t_1, t_2, t_3, \cdots, t_k >$ such that

$$m=m_0\cdot t_1\cdot t_2\cdots t_k$$

Can be expressed as:

$$m=m_0+A\cdot\sum_{i=1}^k u_i$$

or as

$$m-m_0=\Delta=A\cdotec{x}$$

so, if m is reachable from m_0 , the above equation must have a solution where all components of \vec{x} are positive integers

- this is a neccessary conditions, not sufficient, because it ignore the sequence of transition
- it can used to prove a marking can not be arrived

3.5. Boundedness and Safety

3.5.1. K-Boundedness

A Petri net is said to be **K-bounded** if the number of tokens in **every place** doesn't exceed a finite number **K**.

3.5.2. Safety

1-Boundedness: Every place holds at most 1 token at any time.

3.6. Liveness

Liveness focus on analysis particular transition

A transition *t* in a Petri Net is:

3.6.1. Dead

iff t cannot be fired in any firing sequence

3.6.2. L1-live

iff t can be fired **at least once** in some firing sequence

3.6.3. L2-live

iff $\forall k \in \mathbb{N}+$, t can be fired **at least k times** in some firing sequence(always means we can find a way to construct a sequence in which t can be fired at least k times but the sequence is not infinitely)

• In each sequence, there always some upper-bound or limitation for the firing times of this action

- **L2-Live:** a particular transition can fire *k* times for a particular firing sequence, for any *k*.
 - In the figure below, t₂ can only fire once, twice, thrice, etc, for different firing sequences

- L3-Live: a particular transition can fire infinitely in a particular firing sequence.
 - In the figure below, t₃ can fire infinitely for the firing sequence t₃, t₃, t₃,...
 - Note that the number of times t₁ and t₂, fire is finite for any firing sequence.

3.6.4. L3-live

iff t appears **infinitely often** in some infinite firing sequence

3.6.5. L4-live(live)

iff t is **L1-live** for **every marking that is reachable** from m_0

- A Petri net (N, M_0) is said to be Lk-live if every transition in the net is Lk-live, k = 0,1,2,3,4.
- $L4 \Rightarrow L3 \Rightarrow L2 \Rightarrow L1$

- Every transition is L4-live.
- The Petri net is free of deadlocks.

- dead: iff t cannot be fired in any firing sequence
- $\underline{\text{L1-Live}}$: iff t can be fired at least once in some firing sequence
- **L2-Live**: iff $\forall k \in \mathbb{N}^+$, t can be fired at least k times in some firing sequence
- <u>L3-Live</u>: iff t appears infinitely often in some infinite firing sequence
- **L4-Live** (Live): iff t is L1-live for every marking that is reachable from m_0 .
- t3 is L1-live.
- t1 is L3-live.
- t2 is L2-live.
- The Petri net is not free of deadlocks (if t3 fires first, t1 never fires).

3.6.6. Free of Deadlock

A Petri net is **free of deadlocks** iff there is no reachable marking from m0 in which all transitions are dead

4. Petri Net Flavors

4.1. Finite capacity Petri net

- In a Petri net with **finite place capacity**, each place *p* can hold **at most** *K*(*p*) tokens
- A transition t is enabled only if all output places p_i of t will not exceed their capacity limit $K(p_i)$ after firing t

4.2. Inhibitor arcs

- An inhibitor arc is drawn from a place p to a transition t and means that t is disabled when p is marked with at least one token.
- This simplifies modeling "absence of a condition".

4.3. Timed Petri Nets

- Transitions can take time to finish (ideally)
- Time can be described as a **constant (deterministic)** or distribution (always, we differ it from Timed Petri Nets as Stochastic Petri Nets)
- In timed petri nets, transitions "**take time**" **to fire**. (Presentation of the first item in Petri Nets)
- Time does not pass anywhere else than on transitions.

4.4. Colored Petri Nets

Background

- In standard PN, tokens are indistinguishable entities.
- The semantics of the model does not allow to follow the behavior of an individual token through the PN

Idea

• add colors to the tokens

- Allow to distinguish between different types of tokens
- The colors can model data carried by the processes
- Transitions are aware of the colors
- Places, arcs and transitions can have functions and guards depending on the colors

4.5. Stochastic Petri Nets

- Transitions can take time to finish (ideally)
- Time can be described as a constant (deterministic) or **distribution** (always, we differ it from Timed Petri Nets as Stochastic Petri Nets)
- In timed petri nets, transitions "**take time**" **to fire**. (Presentation of the first item in Petri Nets)
- Time **does not pass anywhere** else than on transitions.

