In [1]:

!pip install factor analyzer

```
Requirement already satisfied: factor analyzer in /opt/anaconda3/lib/p
ython3.9/site-packages (0.4.0)
Requirement already satisfied: scikit-learn in /opt/anaconda3/lib/pyth
on3.9/site-packages (from factor analyzer) (1.0.2)
Requirement already satisfied: numpy in /opt/anaconda3/lib/python3.9/s
ite-packages (from factor analyzer) (1.20.3)
Requirement already satisfied: scipy in /opt/anaconda3/lib/python3.9/s
ite-packages (from factor analyzer) (1.7.1)
Requirement already satisfied: pandas in /opt/anaconda3/lib/python3.9/
site-packages (from factor analyzer) (1.3.4)
Requirement already satisfied: python-dateutil>=2.7.3 in /opt/anaconda
3/lib/python3.9/site-packages (from pandas->factor analyzer) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /opt/anaconda3/lib/pyth
on3.9/site-packages (from pandas->factor analyzer) (2021.3)
Requirement already satisfied: six>=1.5 in /opt/anaconda3/lib/python3.
9/site-packages (from python-dateutil>=2.7.3->pandas->factor analyzer)
Requirement already satisfied: joblib>=0.11 in /opt/anaconda3/lib/pyth
on3.9/site-packages (from scikit-learn->factor analyzer) (1.1.0)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/anaconda3/
lib/python3.9/site-packages (from scikit-learn->factor analyzer) (2.2.
0)
```

In [2]:

```
%matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
plt.rcParams['figure.figsize'] = (20.0, 10.0)
plt.rcParams['font.family'] = "serif"

import scipy.optimize as opt
import warnings
warnings.filterwarnings("ignore")
```

In [3]:

```
idx = pd.IndexSlice
```

DATA PREPARATION

In [4]:

df = pd.read_csv("https://raw.githubusercontent.com/owid/co2-data/master/owid-co2-data/
df

Out[4]:

	iso_code	country	year	co2	co2_per_capita	trade_co2	cement_co2	cement_co2
0	AFG	Afghanistan	1949	0.015	0.002	NaN	NaN	
1	AFG	Afghanistan	1950	0.084	0.011	NaN	NaN	
2	AFG	Afghanistan	1951	0.092	0.012	NaN	NaN	
3	AFG	Afghanistan	1952	0.092	0.012	NaN	NaN	
4	AFG	Afghanistan	1953	0.106	0.013	NaN	NaN	
25984	ZWE	Zimbabwe	2016	10.738	0.765	1.415	0.639	
25985	ZWE	Zimbabwe	2017	9.582	0.673	1.666	0.678	
25986	ZWE	Zimbabwe	2018	11.854	0.821	1.308	0.697	
25987	ZWE	Zimbabwe	2019	10.949	0.748	1.473	0.697	
25988	ZWE	Zimbabwe	2020	10.531	0.709	NaN	0.697	

25989 rows × 60 columns

In [5]:

Out[5]:

df.columns

Index(['iso_code', 'country', 'year', 'co2', 'co2_per_capita', 'trade_ co2',

```
co2',
        'cement co2', 'cement co2 per capita', 'coal co2',
       'coal co2 per capita', 'flaring co2', 'flaring co2 per capita',
        'gas_co2', 'gas_co2_per_capita', 'oil_co2', 'oil_co2_per_capit
a',
       'other industry co2', 'other co2 per capita', 'co2 growth prc
t',
       'co2_growth_abs', 'co2_per_gdp', 'co2_per_unit_energy',
'consumption_co2', 'consumption_co2_per_capita',
       'consumption co2 per gdp', 'cumulative co2', 'cumulative cement
_co2',
       'cumulative coal co2', 'cumulative flaring co2', 'cumulative ga
s_{co2'},
        'cumulative oil co2', 'cumulative other co2', 'trade co2 shar
e',
        'share global co2', 'share global cement co2', 'share global co
al co2',
        'share global flaring co2', 'share global gas co2',
        'share global oil co2', 'share global other co2',
        'share global cumulative co2', 'share global cumulative cement
co2',
       'share global cumulative coal co2',
       'share global cumulative flaring co2',
       'share global cumulative gas co2', 'share global cumulative oil
_co2',
       'share global cumulative other co2', 'total ghg', 'ghg per capi
ta',
        'total ghg excluding lucf', 'ghg excluding lucf per capita', 'm
ethane',
        'methane per capita', 'nitrous oxide', 'nitrous oxide per capit
a',
        'population', 'gdp', 'primary energy consumption', 'energy per
capita',
        energy_per_gdp'l,
      dtype='object')
```

In [6]:

checking is there any NaN present in Dataframe df.isna().any()

Out[6]:

the made	m
iso_code	True
country	False
year	False
co2	True
co2_per_capita	True
trade_co2	True
cement_co2	True
cement_co2_per_capita	True
coal_co2	True
coal_co2_per_capita	True
flaring_co2	True
flaring_co2_per_capita	True
gas_co2	True
gas_co2_per_capita	True
oil_co2	True
oil_co2_per_capita	True
other_industry_co2	True
other_co2_per_capita	True
co2_growth_prct	True
co2_growth_abs	True
co2_per_gdp	True
co2_per_unit_energy	True
consumption_co2	True
consumption_co2_per_capita	True
consumption_co2_per_gdp	True
cumulative_co2	True
cumulative_cement_co2	True
cumulative_coal_co2	True
<pre>cumulative_flaring_co2</pre>	True
cumulative_gas_co2	True
cumulative_oil_co2	True
cumulative_other_co2	True
trade_co2_share	True
share_global_co2	True
share global cement co2	True
share global coal co2	True
share global flaring co2	True
share global gas co2	True
share global oil co2	True
share_global_other_co2	True
share_global_cumulative_co2	True
share_global_cumulative_cement_co2	True
share_global_cumulative_coal_co2	True
share global cumulative flaring co2	True
share global cumulative gas co2	True
share global cumulative oil co2	True
share global cumulative other co2	True
total_ghg	True
ghg per capita	True
total_ghg_excluding_lucf	True
ghg_excluding_lucf_per_capita	True
methane	True
methane per capita	True
nitrous oxide	True
HIGIOUD_ONIGC	11 46

```
nitrous_oxide_per_capita True
population True
gdp True
primary_energy_consumption True
energy_per_capita True
energy_per_gdp True
dtvpe: bool
```

In [7]:

```
#df.isna()
```

In [8]:

```
df = df.replace(np.nan, 0)
df = df.replace(np.inf, 0)
df = df.dropna()
```

In [9]:

some of the country values are NaN so filling up with mean values of the column
df.fillna(df.mean()).head()

Out[9]:

	iso_code	country	year	co2	co2_per_capita	trade_co2	cement_co2	cement_co2_per_c
0	AFG	Afghanistan	1949	0.015	0.002	0.0	0.0	_
1	AFG	Afghanistan	1950	0.084	0.011	0.0	0.0	
2	AFG	Afghanistan	1951	0.092	0.012	0.0	0.0	
3	AFG	Afghanistan	1952	0.092	0.012	0.0	0.0	
4	AFG	Afghanistan	1953	0.106	0.013	0.0	0.0	

5 rows × 60 columns

In [10]:

```
def clean_dataset(df):
    assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
    df.dropna(inplace=True)
    indices_to_keep = ~df.isin([np.nan, np.inf, -np.inf]).any(1)
    return df[indices_to_keep].astype(np.float64)
```

DATA PREPROCESSING

```
In [11]:
```

```
# Filling NAs with 0s and creating GDP per capita column
df = df.fillna(0)
# CALCULATING THE GDP PER POPULATION FOR not NA / 0 Values
df['gdp per capita'] = np.where(df['population'] != 0, df['gdp'] / df['population'],
df['gdp per capita']
Out[11]:
            0.000000
0
         1215.332543
1
         1236.236369
2
3
         1262.264378
         1322.255925
            . . .
25984
         1494.033433
         1541.648846
25985
25986
         1573.214825
            0.00000
25987
25988
            0.00000
Name: gdp_per_capita, Length: 25989, dtype: float64
In [12]:
```

```
df.head()
```

Out[12]:

	iso_code	country	year	co2	co2_per_capita	trade_co2	cement_co2	cement_co2_per_c
0	AFG	Afghanistan	1949	0.015	0.002	0.0	0.0	_
1	AFG	Afghanistan	1950	0.084	0.011	0.0	0.0	
2	AFG	Afghanistan	1951	0.092	0.012	0.0	0.0	
3	AFG	Afghanistan	1952	0.092	0.012	0.0	0.0	
4	AFG	Afghanistan	1953	0.106	0.013	0.0	0.0	

5 rows × 61 columns

TRANSPOSING THE DATAFRAME

In [13]:

```
# Converting the dataframe into multi indexed dataframe for better understanding wit
#outer layer & year as Inner layer Index

data = df.set_index(['iso_code','country','year'])
data
```

Out[13]:

			co2	co2_per_capita	trade_co2	cement_co2	cement_co2_per_ca
iso_code	country	year					
AFG	Afghanistan	1949	0.015	0.002	0.000	0.000	0
		1950	0.084	0.011	0.000	0.000	0
		1951	0.092	0.012	0.000	0.000	0
		1952	0.092	0.012	0.000	0.000	0
		1953	0.106	0.013	0.000	0.000	0
ZWE	Zimbabwe	2016	10.738	0.765	1.415	0.639	0
		2017	9.582	0.673	1.666	0.678	0
		2018	11.854	0.821	1.308	0.697	0
		2019	10.949	0.748	1.473	0.697	0
		2020	10.531	0.709	0.000	0.697	0

25989 rows × 58 columns

FILTERING ONLY THESE BELOW TEN COUNTRIES FROM MAIN DATAFRAME BECAUSE IN MY ANALSYIS I NEED ONLY THESE COUNTRIES

In [14]:

```
country_codes = ['AFG','BTN','CHN','GBR','IND','JPN','MYS','RUS','SAU','USA']
analysis_data = data.loc[country_codes] # USING LOC() filtering out the country
final = analysis_data[['co2', 'co2_per_capita', 'gdp', 'gdp_per_capita', 'co2_per_gd
final
```

Out[14]:

			co2	co2_per_capita	gdp	gdp_per_capita	co2_per_g
iso_code	country	year					
AFG	Afghanistan	1949	0.015	0.002	0.000000e+00	0.000000	0.0
		1950	0.084	0.011	9.421400e+09	1215.332543	0.0
		1951	0.092	0.012	9.692280e+09	1236.236369	0.0
		1952	0.092	0.012	1.001733e+10	1262.264378	0.0
		1953	0.106	0.013	1.063052e+10	1322.255925	0.0
USA	United	2016	5248.024	16.247	1.716256e+13	53132.221374	3.0
	States	2017	5207.751	16.020	1.759628e+13	54128.295610	0.2
		2018	5375.491	16.434	1.814065e+13	55459.654757	0.2
		2019	5255.816	15.972	0.000000e+00	0.000000	0.0
		2020	4712.771	14.238	0.000000e+00	0.000000	0.0

1460 rows × 6 columns

DATAFRAME INFO

In [15]:

final.head(10)

Out[15]:

			co2	co2_per_capita	gdp	gdp_per_capita	co2_per_gdp
iso_code	country	year					
AFG	Afghanistan	1949	0.015	0.002	0.000000e+00	0.000000	0.000
		1950	0.084	0.011	9.421400e+09	1215.332543	0.009
		1951	0.092	0.012	9.692280e+09	1236.236369	0.010
		1952	0.092	0.012	1.001733e+10	1262.264378	0.009
		1953	0.106	0.013	1.063052e+10	1322.255925	0.010
		1954	0.106	0.013	1.086636e+10	1333.080489	0.010
		1955	0.154	0.019	1.107819e+10	1339.402333	0.014
		1956	0.183	0.022	1.158124e+10	1378.903601	0.016
		1957	0.293	0.034	1.157897e+10	1356.620995	0.025
		1958	0.330	0.038	1.223884e+10	1409.989065	0.027

In [16]:

```
final.info()
```

<class 'pandas.core.frame.DataFrame'>
MultiIndex: 1460 entries, ('AFG', 'Afghanistan', 1949) to ('USA', 'Uni

Data columns (total 6 columns):

ted States', 2020)

#	Column	Non-Null Count	Dtype
0	co2	1460 non-null	float64
1	co2_per_capita	1460 non-null	float64
2	gdp	1460 non-null	float64
3	gdp_per_capita	1460 non-null	float64
4	co2_per_gdp	1460 non-null	float64
5	co2_per_unit_energy	1460 non-null	float64

dtypes: float64(6)
memory usage: 107.2+ KB

In [17]:

```
# Total number of Countries - 10 and their data entries
final.groupby(level=[0,1]).size()
```

Out[17]:

iso cod	le country	
AFG	Afghanistan	72
BTN	Bhutan	51
CHN	China	122
GBR	United Kingdom	271
IND	India	163
JPN	Japan	153
MYS	Malaysia	131
RUS	Russia	191
SAU	Saudi Arabia	85
USA	United States	221
dtype:	int64	

STATS

In [18]:

final.describe()

Out[18]:

	co2	co2_per_capita	gdp	gdp_per_capita	co2_per_gdp	co2_per_unit_e
count	1460.000000	1460.000000	1.460000e+03	1460.000000	1460.000000	1460.0
mean	676.749615	4.598415	1.143679e+12	7473.893234	0.389464	0.0
std	1435.708663	5.767220	2.639005e+12	10933.908374	0.423208	0.1
min	0.000000	0.000000	0.000000e+00	0.000000	0.000000	0.0
25%	6.834000	0.134000	0.000000e+00	0.000000	0.000000	0.0
50%	81.794000	1.402000	1.915786e+11	2853.209046	0.285000	0.0
75%	571.521000	8.983750	9.329851e+11	9567.947769	0.631250	0.2
max	10667.887000	22.236000	1.815162e+13	55459.654757	1.648000	0.5

In [19]:

```
final_corr_df = final.corr()
final_corr_df
```

Out[19]:

	co2	co2_per_capita	gdp	gdp_per_capita	co2_per_gdp	co2_per_
co2	1.000000	0.576903	0.879032	0.503192	0.305383	_
co2_per_capita	0.576903	1.000000	0.505778	0.795087	0.653995	
gdp	0.879032	0.505778	1.000000	0.641060	0.170822	
gdp_per_capita	0.503192	0.795087	0.641060	1.000000	0.303800	
co2_per_gdp	0.305383	0.653995	0.170822	0.303800	1.000000	
co2_per_unit_energy	0.438799	0.370362	0.472804	0.498188	0.117845	

In [20]:

Type Markdown and LaTeX: α^2

In []:

FITTING

```
In [21]:
```

```
years = [2011,2012,2013,2014,2015,2016,2017,2018,2019]
gdp = final.loc[slice(None), slice(None), years] # filtering recent Ten years only
df1 = gdp.reset_index()
gdp_df = df1.set_index(['iso_code','country'])
```

Analyszing India GDP

```
In [22]:
```

```
india_gdp_df = final.loc['IND']
india_gdp_df = india_gdp_df.reset_index()
india_df = india_gdp_df[['year', 'gdp_per_capita']]
india_df = india_df[0:161]
india_df
```

Out[22]:

	year	gdp_per_capita
0	1858	0.000000
1	1859	0.000000
2	1860	0.000000
3	1861	891.352377
4	1862	0.000000
156	2014	5213.597553
157	2015	5541.036749
158	2016	5864.362584
159	2017	6181.960526
160	2018	6532.220394

161 rows × 2 columns

```
In [23]:
```

```
india_df.plot('year','gdp_per_capita')
```

Out[23]:

<AxesSubplot:xlabel='year'>

EXPOTENTIAL

In [24]:

```
def exponential(t, n0, g):
    """Calculates exponential function with scale factor n0 and growth rate g."""
    t = t - 1960.0
    f = n0 * np.exp(g*t)
    return f
```

In [25]:

```
def linfunc(x, a, b):
    """ Function for fitting
        x: independent variable
        a, b: parameters to be fitted
    """
    y = a*x + b
    return y
```

```
In [26]:
```

```
# Fitting the data
# curvefit expects the argument list of the fit function to be (x, p1, p2, p3, p4,
param, covar = opt.curve fit(exponential, gdp df["year"], gdp df["gdp"],
                             p0=(73233967692.102798, 0.03))
# specify errors: sigma=errors, absolute sigma=True
# list of parameters
print("parameters:", param)
# variance-covariance matrix
print()
print("covariance-matrix", covar)
# one can get the std. dev. this way
# np.diag() extracts the diagonal of a matrix
sigma1 = np.sgrt(np.diag(covar))
print()
print(f"a = \{param[0]:5.3f\} +/- \{sigma1[0]:5.3f\}")
print(f''b = \{param[1]:5.3f\} +/- \{sigma1[1]:5.3f\}'')
parameters: [ 4.62229010e+13 -4.16798896e-02]
covariance-matrix [[ 1.70836329e+28 -6.78360576e+12]
 [-6.78360576e+12 2.69953722e-03]]
a = 46222901027776.000 + / - 130704371965731.125
b = -0.042 +/- 0.052
```

EXPOTENTIAL GROWTH

```
In [27]:
```

```
def exponential(t, n0, g):
    """Calculates exponential function with scale factor n0 and growth rate g."""
    t = t - 1960.0
    f = n0 * np.exp(g*t)
    return f
```

In [28]:

<class 'numpy.int64'>

In [29]:

```
india_df["exp_fit"] = exponential(india_df["year"], *param)
india_df.plot("year", ["gdp_per_capita", "exp_fit"])
plt.show()
```


LOGISTIC GROWTH

In [30]:

```
def logistic(t, n0, g, t0):
    """Calculates the logistic function with scale factor n0 and growth rate g"""
    f = n0 / (1 + np.exp(-g*(t - t0)))
    return f
```

In [31]:

In [32]:

```
india_df["fit"] = logistic(india_df["year"], *param)
india_df.plot("year", ["gdp_per_capita", "fit"])
plt.show()
```


OUTLIERS

```
In [33]:
```

```
def err_ranges(x, func, param, sigma):
    Calculates the upper and lower limits for the function, parameters and
    sigmas for single value or array x. Functions values are calculated for
    all combinations of +/- sigma and the minimum and maximum is determined.
    Can be used for all number of parameters and sigmas >=1.
    This routine can be used in assignment programs.
    import itertools as iter
    # initiate arrays for lower and upper limits
    lower = func(x, *param)
    upper = lower
    uplow = []
                 # list to hold upper and lower limits for parameters
    for p,s in zip(param, sigma):
        pmin = p - s
        pmax = p + s
        uplow.append((pmin, pmax))
    pmix = list(iter.product(*uplow))
    for p in pmix:
        y = func(x, *p)
        lower = np.minimum(lower, y)
        upper = np.maximum(upper, y)
    return lower, upper
In [34]:
#low, up = err ranges(india df['year'], exponential, param, sigmal)
In [35]:
year = np.arange(1875, 2031)
print(year)
[1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
 2029 20301
In [36]:
df final = india df
```

STANDARDISATION

```
In [37]:
```

```
def norm(array):
    """ Returns array normalised to [0,1]. Array can be a numpy array
    or a column of a dataframe"""
   min val = np.min(array)
   max val = np.max(array)
    scaled = (array-min_val) / (max_val-min_val)
    return scaled
def norm df(df):
    Returns all columns of the dataframe normalised to [0,1] with the
    exception the first (containing the names)
    Calls function norm to do the normalisation of one column, but
    doing all in one function is also fine.
    # iterate over all columns
    for col in df.columns[1:]:
                                 # excluding the first column
        df[col] = norm(df[col])
    return df
```

In [38]:

```
#standardization along columns
df_final_std = (df_final.T-df_final.T.mean()) / df_final.T.std()
df_final_std
```

Out[38]:

	0	1	2	3	4	5	6	
year	1.497139	1.497004	1.496862	1.332257	1.496559	1.496397	1.496227	1.49
gdp_per_capita	-0.542701	-0.543673	-0.544666	0.200021	-0.546719	-0.547781	-0.548866	-0.54
exp_fit	-0.411736	-0.409658	-0.407531	-0.691486	-0.403121	-0.400835	-0.398494	-0.39
fit	-0.542701	-0.543673	-0.544666	-0.840792	-0.546719	-0.547781	-0.548866	-0.54

4 rows × 161 columns

CLUSTERING

In [39]:

```
import scipy.cluster.hierarchy as sch

#Create dendrogram
dendrogram = sch.dendrogram(sch.linkage(df_final_std, method='ward'))
plt.axhline(y=11, color='r', linestyle='--')
```

Out[39]:

<matplotlib.lines.Line2D at 0x7fde9b73ce50>

K-Means Clustering

In [40]:

```
# import K-Means clustering libraries
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics import silhouette_score
```

In [41]:

```
def clean_dataset(df):
    assert isinstance(df, pd.DataFrame), "df needs to be a pd.DataFrame"
    df.dropna(inplace=True)
    indices_to_keep = -df.isin([np.nan, np.inf, -np.inf]).any(1)
    return df[indices_to_keep].astype(np.float64)
```

In [42]:

```
df_final_std = clean_dataset(df_final)
df_final_std
```

Out[42]:

	year	gdp_per_capita	exp_fit	fit
0	1858.0	0.000000	119.290809	1.282350e-224
1	1859.0	0.000000	122.083191	1.321403e-224
2	1860.0	0.000000	124.940937	1.361646e-224
3	1861.0	891.352377	127.865578	1.403114e-224
4	1862.0	0.000000	130.858679	1.445845e-224
156	2014.0	5213.597553	4407.915488	1.381989e-222
157	2015.0	5541.036749	4511.096793	1.424077e-222
158	2016.0	5864.362584	4616.693384	1.467447e-222
159	2017.0	6181.960526	4724.761801	1.512137e-222
160	2018.0	6532.220394	4835.359903	1.558189e-222

161 rows × 4 columns

In [43]:

```
Sum_of_squared_distances = []
K = range(2,10)
for num_clusters in K :
    kmeans = KMeans(n_clusters=num_clusters)
    kmeans.fit(df_final_std)
    Sum_of_squared_distances.append(kmeans.inertia_)
plt.plot(K,Sum_of_squared_distances,'bx-')
plt.xlabel('Values of K')
plt.ylabel('Sum of squared distances/Inertia')
plt.title('Optimal k clusters')
plt.show()
```


In [44]:

```
# defining the kmeans function with initialization as k-means++
kmeans = KMeans(n_clusters=2, init='k-means++')
# fitting the k means algorithm on scaled data
kmeans.fit(df_final_std)
```

Out[44]:

KMeans(n_clusters=2)

In [45]:

```
# inertia on the fitted data
kmeans.inertia_
```

Out[45]:

151976915.3806578

In [46]:

```
#Predict
pred = kmeans.predict(df_final_std)
```

In [47]:

```
frame = pd.DataFrame(df_final_std)
frame['cluster'] = pred
frame['cluster'].value_counts()
```

Out[47]:

0 131 1 30

Name: cluster, dtype: int64

In [48]:

frame

Out[48]:

	year	gdp_per_capita	exp_fit	fit	cluster
0	1858.0	0.000000	119.290809	1.282350e-224	0
1	1859.0	0.000000	122.083191	1.321403e-224	0
2	1860.0	0.000000	124.940937	1.361646e-224	0
3	1861.0	891.352377	127.865578	1.403114e-224	0
4	1862.0	0.000000	130.858679	1.445845e-224	0
156	2014.0	5213.597553	4407.915488	1.381989e-222	1
157	2015.0	5541.036749	4511.096793	1.424077e-222	1
158	2016.0	5864.362584	4616.693384	1.467447e-222	1
159	2017.0	6181.960526	4724.761801	1.512137e-222	1
160	2018.0	6532.220394	4835.359903	1.558189e-222	1

161 rows × 5 columns

In [49]:

final

Out[49]:

			co2	co2_per_capita	gdp	gdp_per_capita	co2_per_g
iso_code	country	year					
AFG	Afghanistan	1949	0.015	0.002	0.000000e+00	0.000000	0.0
		1950	0.084	0.011	9.421400e+09	1215.332543	0.0
		1951	0.092	0.012	9.692280e+09	1236.236369	0.0
		1952	0.092	0.012	1.001733e+10	1262.264378	0.0
		1953	0.106	0.013	1.063052e+10	1322.255925	0.0

USA	United	2016	5248.024	16.247	1.716256e+13	53132.221374	3.0
	States	2017	5207.751	16.020	1.759628e+13	54128.295610	0.2
		2018	5375.491	16.434	1.814065e+13	55459.654757	0.2
		2019	5255.816	15.972	0.000000e+00	0.000000	0.0
		2020	4712.771	14.238	0.000000e+00	0.000000	0.0

1460 rows × 6 columns

```
In [50]:
```

```
df_final_G = final.groupby(['iso_code']).mean()
df_final_G
```

Out[50]:

	co2	co2_per_capita	gdp	gdp_per_capita	co2_per_gdp	co2_per_unit
iso_code						
AFG	2.678486	0.132292	2.057002e+10	1196.844618	0.097222	(
BTN	0.376294	0.558549	0.000000e+00	0.000000	0.000000	(
CHN	1930.852590	1.552459	2.736460e+12	2266.431858	0.376025	(
GBR	288.417520	6.238565	4.780764e+11	9167.368158	0.651096	(
IND	333.843521	0.344975	1.070966e+12	1372.412631	0.153417	(
JPN	428.922647	3.769673	1.303417e+12	11354.480490	0.290111	(
MYS	46.350863	2.076252	1.084256e+11	5378.316367	0.241855	(
RUS	603.896063	4.510539	5.720336e+11	4047.051045	0.321476	(
SAU	187.486753	9.989282	3.349011e+11	16829.355161	0.421529	(
USA	1885.624833	9.864443	3.072238e+12	14460.948849	0.637950	(

In [51]:

Out[51]:

```
Text(70.0, 0.5, 'Country')
```

	002	co2_per_capita	gdp g Indicate		co2_per_gdp	co2_per_unit_energy
USA	1885.6	9.9	072238293168.	14460.9	0.6	0.1
SAU	187.5	10.0	334901094195.2	16829.4	0.4	0.2
RUS	603.9	4.5	572033550089.4	4047.1	0.3	0.0
MYS	46.4	2.1	108425625951.8	5378.3	0.2	0.1
o N¶	428.9	3.8	1303417288101.6	11354.5	0.3	0.1
Country IND	333.8	0.3	1070966389778.8	1372.4	0.2	0.1
GBR	288.4	6.2	478076408850.9	9167.4	0.7	0.0
CHN -	1930.9	1.6	736460404232.	2266.4	0.4	0.1
BIN -	0.4	0.6	0.0	0.0	0.0	0.1
AFG	2.7	0.1	20570018211.6	1196.8	0.1	0.1

In []:

In []:			