Contents

- Open the color images and convert to grayscale
- Do some filtering
- Threshold the image
- Morphological filtering
- Segmentation
- should appear as gradiated thresholded image as pixel label value increases
- show the segments in grayscale
- display the final segmented image

%Calvin and Keene Robotics Takehome

Open the color images and convert to grayscale

```
clear all
cpens=imread('penguins.jpg'); %read in a file, convert to matlab matrices
gpens=rgb2gray(cpens); %converts from color to grayscale
imshow(cpens) %displays the image in a window
figure
imshow(gpens)
```


Do some filtering

G = fspecial('gaussian',[10 10],2); %create 10x10 gaussian blur kernel
blurpens= imfilter(gpens,G,'same'); %filters image with gaussian blur(best to use before thre
hsolding
imshow(blurpens)

Threshold the image

threshpens = calvthresh(blurpens,120);
%display the thresholded image
figure
imshow(threshpens)

Morphological filtering

se = strel('square',6); %creates a 8x8 kernel for morph. filtering
erodedpens = imerode(threshpens,se); %erodes image (best to use afterthresholding)
dilatedpens = imdilate(erodedpens,se); %dilates image (best to use afterthresholding)
%displays the image. imscale(dilatedpens) will beuseful if you have images with pixel values
outside the standard range, suchas very large numbers after your semgmentation labeling.
medpens= medfilt2(dilatedpens, [10 10]); %median filters image (best to use afterthresholding
imshow(medpens)

%imsave %saves the current image

Segmentation

%assign a unique value to each white pixel in the image seg1 = calvseg(medpens);

should appear as gradiated thresholded image as pixel label value increases

```
figure
imagesc(seg1)
%segment the image, each segment has a unique value
seg2 = segim2(seg1);
```


show the segments in grayscale

figure
imagesc(seg2)
%relabel the segments so they have a logical order that is sequential
seg3=relabel(seg2);

display the final segmented image

figure
imagesc(seg3)


```
%calculate the segment parameters
segpars=getallseginfo(seg3);
%put them in column form for putting in a table
penguin=segpars(:,1);
area = segpars(:,2);
cx = segpars(:,3);
cy = segpars(:,4);
orientation = segpars(:,5);
table(penguin,area,cx,cy,orientation)
```

ans =

penguin	area	CX	СА	orientation
1	11936	102.87	225.88	-78.323
2	9228	190.48	225.99	76.527
3	5910	272.9	219.91	73.261
4	5495	372.49	223.32	-85.283
5	4098	441.17	220.47	72.49