LOAN DOCUMENT

	PHOTOGRAPH THIS SHEET
LEVE	INVENTORY
DICACCESSION NUMBER	JOOCUMENT IDENTIFICATION 93
	DISTRIBUTION STATEMENT A Approved for Public Release Distribution Unlimited
	DISTRIBUTION STATEMENT
NTIS GRAM DITC TRAC UNANNOUNCER JUSTIFICATION BY DISTRIBUTION/ AVAILABILITY CODES DISTRIBUTION AVAILABILITY AND/OR SPECIAL DISTRIBUTION STAMP	DATE ACCESSIONED
	DATE RETURNED
DTIC QUALITY INSPESSED	4
20001208	26
DATE RECEIVED IN	TIC REGISTERED OR CERTIFIED NUMBER
	APH THIS SHEET AND RETURN TO DTIC-FDAC
DTIC JON 70A	DOCUMENT PROCESSING SHEET PROVIDENT STOCK IS EXPLAINED.

LOAN DOCUMENT

INTERIM REPORT March 2, 1993

FOR

BIOVENTING FIELD INITIATIVE

AT

NEWARK AIR FORCE BASE, OHIO

to

Captain Catherine M. Vogel
Department of the Air Force
AL/EQ
139 Barnes Drive
Tyndall AFB, Florida 32403-6001

by

BATTELLE Columbus Operations 505 King Avenue Columbus, Ohio 43201-2693

AQM01-02-0399

DEFENSE TECHNICAL INFORMATION CENTER

	REQUEST FOR SCIENTIFIC	AND T	rechn	ICAL REPO	RTS
Tit	AFCEE Collection	<u> </u>			
	943114 H1141(1) 1944-1			2 7 2 6 2 7 7 6 6 6 5 To 1 2 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	
1	Report Availability (Please check one box)			mber of	2b. Forwarding Date
X	This report is available. Complete sections 2a - 2f.		Copies	Forwarded	
Ш	This report is not available. Complete section 3.		12	ach	July /2001
	. Distribution Statement (Please check ONE DOX)			:	1 81
Dal des	D Directive 5230.24, "Distribution Statements on Technical Doc scribed briefly below. Technical documents MUST be assigned	cuments." i a distribl	18 Mar 8 Ition state	7, contains sever ement.	n distribution statements, as
M	DISTRIBUTION STATEMENT A: Approved for pu	ıblic rele	ase. Di	stribution is u	nlimited.
	DISTRIBUTION STATEMENT B: Distribution auth	horized t	o U.S. 0	Sovernment A	gencies only.
	DISTRIBUTION STATEMENT C: Distribution autreontractors.				
	DISTRIBUTION STATEMENT D: Distribution auth DoD contractors only.	norized t	o U.S. [Department of	Defense (DoD) and U.S
	DISTRIBUTION STATEMENT E: Distribution authoromponents only.	norized to	o U.S. D	Department of	Defense (DoD)
	DISTRIBUTION STATEMENT F: Further dissemir indicated below or by higher authority.	nation or	nly as di	iracted by the	controlling DoD office
0	DISTRIBUTION STATEMENT X: Distribution auth individuals or enterprises eligible to obtain export-objective 5230.25, Withholding of Unclassified Tec	-controlle chnical D	ed techni Data fron	ical data in ac n Public Discl	cordance with DoD losure, 6 Nov 84,
2d.	Reason For the Above Distribution Statement (in accords	ilico with	DoD Directive 5.	230.24)
2e,	Controlling Office	·	2f. I	Date of Distri	bution Statement
	HQ AFCEE		Dete	rmination	
5 .			<u> </u>	15 Nov	2000
J.	This report is NOT forwarded for the following r				
	It was previously forwarded to DTIC on				r is
	It will be published at a later date. Enter approxima	ate date	if know	n.	
	In accordance with the provisions of DoD Directive because:	3200,12	2, the re	equested docu	iment is not supplied
			*****************	D-\$	
•	жина жинимере — — — — — — — — — — — — — — — — — —			-41.43411419191919191919	***************************************
Prin	at or Type Name	Signatu	water and		
La	uva Pona	3191111	11 * 	. (,))
Tele	phone	2,00		For DTIC Use On	72
21	10-536-1431		A	Q Number /	101-02-0399

TABLE OF CONTENTS

LIST OF TABLES	ii
LIST OF FIGURES	ii
1.0 INTRODUCTION 1.1 Objectives 1.2 Site Description 1.2.1 Facility 27 1.2.2 Facility 89 1.2.3 Facility 14	1 1 2 2 2 6
2.0 FACILITY 27 2.1.1 Groundwater Measurements 2.1.2 Soil Gas Survey 2.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 2.1.4 Soil and Soil Gas Sampling and Analyses 2.1.5 Soil Gas Permeability and Radius of Influence 2.1.6 In Situ Respiration Test 2.2 Results and Discussion 2.2.1 Soil and Soil Gas Analyses 2.2.2 Soil Gas Permeability and Radius of Influence 2.2.3 In Situ Respiration Test 2.2.4 Bioventing Demonstration	6 6 9 11 11 12 13 13 13 16 16
3.1 Chronology of Events and Site Activities 3.1.1 Groundwater Measurements 3.1.2 Soil Gas Survey 3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation 3.1.4 Soil and Soil Gas Sampling and Analyses 3.1.5 Soil Gas Permeability and Radius of Influence 3.1.6 In Situ Respiration Test 3.2 Results and Discussion 3.2.1 Soil and Soil Gas Analyses 3.2.2 Soil Gas Permeability and Radius of Influence 3.2.3 In Situ Respiration Test	20 20 20 20 20 23 24 24 24 24 25 26 26
4.1 Chronology of Events and Site Activities	30 30 30 30 30 30 32 34

5.0 BAC	KGROUND AREA	35
6.0 FUT	URE WORK	38
7.0 REFI	ERENCE	38
APPENDI	X A: TEST PLAN FOR NEWARK AFB	\-1
APPENDI	X B: ANALYTICAL REPORT FOR FACILITIES 27, 89, AND 14, AND THE BACKGROUND AREA	3-1
APPENDI	X C: FACILITY 27 SOIL GAS PERMEABILITY DATA]-1
APPENDI	X D: FACILITY 27 IN SITU RESPIRATION TEST DATA)-1
APPENDI	X E: FACILITY 89 SOIL GAS PERMEABILITY DATA F	3-1
APPENDI	X F: FACILITY 89 IN SITU RESPIRATION TEST DATA F	7-1
	A ACTO OF TAXABLE DO	
	LIST OF TABLES	
Table 11. Table 12.	Initial Soil Gas Composition at Facility 89	14 15
Table 14.	Results From Soil and Soil Gas Analyses for BTEX and TPH at Background Area	36 36
	LIST OF FIGURES	
Figure 1. Figure 2.	Schematic Diagram of Newark AFB	3
		•

Figure 3.	Schematic Diagram of Facility 89 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)	5
Figure 4.	Schematic Diagram of Facility 14 at Newark AFB (GS - Soil Gas Survey Point;	
	MP - Monitoring Point)	7
Figure 5.	Cross Section of Vent Well and Monitoring Points at Facility 27 Showing Site	
	Lithology and Construction Detail	10
Figure 6.	Radius of Influence at Facility 27	17
Figure 7.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
	Respiration Test at Monitoring Point N1-MPB-9.0'	18
Figure 8.	Cross Section of Vent Well and Monitoring Points at Facility 89 Showing Site	
	Lithology and Construction Detail	22
Figure 9.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
	Respiration Test at Monitoring Point N2-MPA-7.0'	29
Figure 10.	Cross Section of Vent Well and Monitoring Points at Facility 14 Showing Site	
	Lithology and Construction Detail	33
Figure 11.	Oxygen Utilization and Carbon Dioxide Production During the In Situ	
	Respiration Test at the Background Area	37

INTERIM REPORT

FOR

BIOVENTING FIELD INITIATIVE

AT

NEWARK AIR FORCE BASE, OHIO

1.0 INTRODUCTION

This report describes the activities conducted at three sites at Newark Air Force Base (AFB), Ohio, as part of the Bioventing Field Initiative for the U.S. Air Force Center for Environmental Excellence (AFCEE) and the Environmental Quality Directorate of the Air Force Armstrong Laboratory. This report summarizes the results from the first phase of the study, which includes a soil gas survey, air permeability test, in situ respiration test, and installation of bioventing systems. The specific objectives of this task are described in the following section. The test sites at the base are discussed individually, followed by a description of site activities at the background area.

1.1 Objectives

The purpose of these field test methods is to measure the soil gas permeability and microbial activity at three contaminated sites and to evaluate the potential application of the bioventing technology to remediate the sites. The specific test objectives are stated below.

- A small-scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system at each site. Soil gas from the candidate sites should exhibit relatively high total petroleum hydrocarbon (TPH) concentrations, relatively low oxygen concentrations, and relatively high carbon dioxide concentrations. An uncontaminated background location also will be identified.
- The soil gas permeability of the soil and the air vent (well) radius of influence will be determined for each site. These will require air to be withdrawn or injected for approximately 8 hours at vent wells located in contaminated soils. Pressure changes will be monitored in an array of monitoring points.

- Immediately following the soil gas permeability test, an in situ respiration test
 will be conducted at each site. Air will be injected into selected monitoring
 points to aerate the soils. The in situ oxygen utilization and carbon dioxide
 production rates will be measured.
- Using the data from the soil gas permeability and in situ respiration tests, an
 air injection/withdrawal rate will be determined for use in the bioventing test
 at each site. A blower will be selected, installed, and operated for 6 to 12
 months, and periodic measurements of the soil gas composition will be made
 to evaluate the long-term effectiveness of bioventing.

1.2 Site Description

Three sites were initially chosen for the bioventing initiative at Newark AFB, Ohio. A schematic diagram of the base is shown in Figure 1. The dashed line on the map represents the direction from the main gate to each test site. Summaries of the descriptions of each site are presented in the following sections. A detailed description of the test sites is provided in the Test Plan in Appendix A.

1.2.1 Facility 27

Facility 27 (Site N1 on Figure 1; the base motor pool) has three fiberglass underground storage tanks (1,000 gallons unleaded gasoline, 4,000 gallons unleaded gasoline, and 4,000 gallons diesel). The site is an active fuel dispensing facility. Site characterization data have indicated there is soil contaminated with petroleum hydrocarbons in the tank cavity and in the supply line backfill. Figure 2 is a schematic diagram of Facility 27.

1.2.2 Facility 89

Facility 89 is the site of a 20,000 gallon diesel tank (Site N2 on Figure 1). The site is an active fuel dispensing facility. Site characterization data have indicated there is soil contaminated with petroleum hydrocarbons in the tank cavity. Figure 3 is a schematic diagram of Facility 89.

Figure 1. Schematic Diagram of Newark AFB

Figure 2. Schematic Diagram of Facility 27 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

Figure 3. Schematic Diagram of Facility 89 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

1.2.3 Facility 14

Facility 14 is the previous site of a #2 diesel fuel underground storage tank with a capacity of approximately 2,500 gallons (Site N3 on Figure 1). Soil samples have shown contamination with concentrations of TPH ranging from 112 to 322 mg/kg at depths of 5 to 10 feet. A schematic diagram of Facility 14 is shown in Figure 4.

2.0 FACILITY 27

2.1 Chronology of Events and Site Activities

2.1.1 Groundwater Measurements

One groundwater monitoring well was measured at Facility 27. The groundwater level was recorded at 8.65 feet.

2.1.2 Soil Gas Survey

A site deemed suitable for the bioventing demonstration should have soil gas characteristics of low oxygen, high carbon dioxide, and high TPH. This composition of soil gas would indicate that oxygen-limiting conditions for microbial activity are present and that the introduction of air may enhance biodegradation of TPH.

A limited soil gas survey was conducted on July 27, 1992 to locate a suitable test area at Facility 27. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH.

Measurements of oxygen and carbon dioxide in the soil gas were made with a GasTech Model 32530X with oxygen and carbon dioxide ranges of 0 to 25%. The analyzer was calibrated daily against atmospheric oxygen, atmospheric carbon dioxide, a 10% oxygen calibration standard, and a 5% carbon dioxide calibration standard. TPH was measured with a GasTech Trace Techtor with

Figure 4. Schematic Diagram of Facility 14 at Newark AFB (GS - Soil Gas Survey Point; MP - Monitoring Point)

Table 1. Initial Soil Gas Composition at Facility 27

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	2.0	9.0	12.5	4,000
	3.0	19.0	2.3	150
	4.0	NM	NM	NM
GS-2	2.5	19.2	NM	8,000
GS-3	2.5	NM	NM	NM
GS-4	2.5	NM	NM	NM
GS-5	2.5	NM	NM	NM
GS-6	2.5	8.5	5.5	200
	3.5	7.5	6.0	210
	5.0	7.0	6.5	210
GS-7	2.5	NM	NM	NM
	5.0	3.1	8.6	290
	7.5	2.2	8.9	300

NM Not measurable due to inability to collect soil gas sample resulting from low soil gas permeability.

TPH ranges from 0 to 100, 0 to 1,000, and 0 to 10,000 ppm. The GasTech Trace Techtor was calibrated daily against a 4,200-ppm hexane standard.

Soil borings were advanced during previous site characterization activities to depths of approximately 25 feet. No groundwater was encountered at this site at this depth.

The soil gas probes were driven to depths ranging from 2.0 to 7.5 feet at several locations at Facility 27. Table 1 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 27. Oxygen concentrations varied from 2.2 to 21%, whereas TPH concentrations ranged from 150 up to 8,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing.

2.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On July 29, 1992, the vent well (VW) and three monitoring points (MPs) were installed at Facility 27, and collection of soil samples for analyses was begun. The monitoring points were labeled N1-MPA, N1-MPB, and N1-MPC. The locations of the vent well and monitoring points are shown in Figure 2. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 5.

The vent well was installed at a depth of 11.2 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter polyvinyl chloride (PVC) piping with 6 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed at depths as follows:

- Monitoring point N1-MPA was installed at a depth of 9.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.0', 6.5', and 9.0'.
- Monitoring point N1-MPB was installed at a depth of 10.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.0', 6.5', and 9.0'.

MPC

MPB

MPA

Vent Well

F/Kittel11/n-1

• Monitoring point N1-MPC was installed at a depth of 8.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.7', 5', and 8.0'.

A Type J thermocouple was installed with monitoring points N1-MPA-4.0' and N1-MPA-9.0'.

2.1.4 Soil and Soil Gas Sampling and Analyses

Soil boring samples were collected from depths of 4.0 feet to 4.5 feet and from 8.0 feet to 9.0 feet from the Facility 27 monitoring point A borehole and were labeled N1-A-4'-4.5' and N1-A-8'-9'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of benzene, toluene, ethylbenzene, and xylenes (BTEX); TPH; alkalinity; moisture content; pH; iron; total phosphorous; total Kjeldahl nitrogen; and particle size analysis. Soil gas samples were collected from monitoring points N1-MPA and N1-MPC and from the vent well. These samples were labeled N1-A-6.5, N1-C-8', and N1-V-11.2. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH.

2.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is described in the Test Plan and Technical Protocol (Hinchee et al., 1992).

The monitoring points at Facility 27 were allowed to set up for 24 hours prior to air injection. A portable 1-horsepower (HP) explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability.

2.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at Facility 27, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on August 11, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points N1-MPA-6.5', N1-MPA-9.0', N1-MPB-6.5', and N1-MPB-9.0' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on August 17.

Helium concentrations were measured during the in situ respiration test to quantify helium leakage to or from the surface around the monitoring points. Helium loss over time is attributed to either diffusion or leakage. A rapid drop in helium concentration followed by a leveling is an indication of leakage. A gradual loss along with an apparent first-order curve is an indicator of diffusion. As a rough estimate, the diffusion of gas molecules is inversely proportional to the square root of the molecular weight of the gas. Based on molecular weights of 4 for helium and 32 for oxygen, helium diffuses about 2.8 times faster than oxygen, or the diffusion of oxygen is 0.35 times the rate of helium diffusion. As a general rule, we have found that if helium concentrations are at least 50 to 60% of the initial levels at test completion, measured oxygen uptake rates are representative. Greater helium loss indicates a problem, and oxygen utilization rates are not considered representative.

To compare data from one site to another, a stoichiometric relationship of the oxidation of the hydrocarbon was assumed. Hexane was used as the representative hydrocarbon for the organic contaminant. The stoichiometric relationship is given by:

$$C_6H_{14} + 9.5O_2 - 6CO_2 + 7H_2O$$
 (1)

Based on the utilization rates (% per day), the biodegradation rates in terms of milligrams as a hexane equivalent per kilogram of soil per day were computed using the equation below by assuming a soil porosity of 0.2 and a bulk density of 1,440 kg/m³.

$$K_{\beta} = \frac{-K_{o}AD_{o}C}{100}$$
 (2)

where: $K_{f} = biodegradation rate (mg/kg/day)$

 K_0 = oxygen utilization rate (percent per day)

A = volume of air/kilogram of soil, in this case 300/1,440 = 0.21

 D_o = density of oxygen gas (mg/L) assumed to be 1,330 mg/L

C = mass ratio of hydrocarbon to oxygen required for mineralization, assumed to be 1:3.5 from the above stoichiometric equation.

2.2 Results and Discussion

2.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at Facility 27 are presented in Table 2. No detectable concentrations of the BTEX compounds were found in the soil samples, and relatively low TPH concentrations were found with concentrations averaging only 43 mg/kg. Soil gas analyses also showed relatively low BTEX and TPH concentrations, with concentrations ranging from below the detection limit up to 0.046 ppmv of benzene and from 130 to 2,200 ppmv of TPH (Table 2). The results from the soil chemistry analyses are summarized in Table 3. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B.

2.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at Facility 27 are presented in Appendix C. Using the Hyperventilate™ computer model, soil gas permeabilities were calculated at each of the monitoring points. These data are presented in Table 4. The measurable soil gas permeability varied considerably between points with values ranging from 0.026 to 4.3 x 10¹⁰ darcys. No pressure could be detected at any of the soil gas probes at monitoring point C. The radius of influence where 1 inch

Table 2. Results From Soil and Soil Gas Analyses for BTEX and TPH at Facility 27

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	N1-A-4'-4.5'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	49
	N1-A-8'-9'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	36
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH² (ppmv)
Soil Gas	N1-A-6.5	0.046	0.0080	< 0.0020	0.0030	2,200
	N1-C-8'	0.0050	0.0060	< 0.0040	< 0.0040	130
	N1-V-11.2	< 0.011	0.056	0.026	0.31	800

¹ Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

² TPH referenced to jet fuel (molecular weight = 156).

Table 3. Results From Soil Chemistry Analyses at Facility 27

		Sample Name				
Parameter	N1-	A-4'-4.5'	N1-A	-8 ′ - 9′		
Alkalinity (mg/kg CaCO ₃)		410 33		30		
Moisture (% by weight)	18.2		4.0			
pН		7.7		.8		
Iron (mg/kg)	1	16,400		,400		
Total Phosphorous (mg/kg)		570		60		
Total Kjeldahl Nitrogen (mg/kg)		300	4	00		
Particle Size Analysis (%)	Gravel:	6.2	Gravel:	26		
	Sand:	33.8	Sand:	42		
	Silt:	38	Silt:	23		
	Clay:	22	Clay:	9		

Table 4. Results of Hyperventilate™ Soil Gas Permeability Analysis at Facility 27

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)
N1-MPA	4.0	0.026
	6.5	970
	9.0	4.3 x 10 ¹⁰
N1-MPB	4.0	9.3 x 10 ^s
	6.5	4.4 x 10 ⁵
	9.0	1.3 x 10 ⁷
N1-MPC	2.7	NM
	5.0	NM
	8.0	NM

NM No pressure change could be measured at this point.

of pressure was measured was calculated by plotting the log of the pressure change at the monitoring points versus the distance from the vent well (Figure 6). Based on these specifications, the radius of influence at Facility 27 is estimated to be approximately 12 feet.

2.2.3 In Situ Respiration Test

The results of the in situ respiration test for Facility 27 are presented in Appendix D. Each figure in Appendix D illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 7, which shows oxygen, carbon dioxide, and helium at monitoring point N1-MPB-9'. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 5. The biodegradation rates measured at this site were fairly consistent between the monitoring points, with rates ranging from 2.1 to 7.5 mg/kg/day based upon oxygen and from 0.58 to 1.4 mg/kg/day for carbon dioxide.

Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well-sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured during the in situ respiration test. Temperatures during the test ranged from 23.9 to 27°C at monitoring point N1-MPA-4.0′ and from 18.9 to 20°C at monitoring point N1-MPA-9.0′.

2.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at Facility 27. The same blower that was used for the soil gas permeability test was installed for the bioventing system. The system was configured for air extraction due to its proximity to the service station offices. A sample of the exhaust gas was collected after 1 hour of operation. No detectable concentrations of BTEX were found, and the maximum TPH concentration was 130 ppm. The analytical report for these samples is given in Appendix B (Samples N1-EX-1210 and N1-EX-1220). Approval was given to operate the system, and continuous air extraction was initiated during the second week of November 1992. Due to construction in the area, the system was shut down on January 8, 1993 and was restarted on February 4, 1993.

Figure 6. Radius of Influence at Facility 27

Figure 7. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-9.0'

Table 5. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Facility 27

Sample Name	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Production Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0.040	0.80	0.017	0.37
N1-MPA-6.5'	0.39	7.5	0.064	1.4
N1-MPA-9.0'	0.11	2.1	0.027	0.58
N1-MPB-6.5'	0.27	5.2	0.064	1.4
N1-MPB-9.0'	0.26	5.0	0.063	1.4

3.0 FACILITY 89

3.1 Chronology of Events and Site Activities

3.1.1 Groundwater Measurements

Groundwater measurements were taken from the vent well installed at the Facility 89 site. The groundwater level was recorded at 6.8 feet.

3.1.2 Soil Gas Survey

A limited soil gas survey was conducted on July 28, 1992 to locate a suitable test area at Facility 89. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen, carbon dioxide, and TPH in the soil gas were made as described in Section 2.0.

The soil gas probes were driven to depths ranging from 2.5 to 7.5 feet at several locations at Facility 89. Table 6 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 89. Oxygen concentrations varied from 5.8 to 21%, whereas TPH concentrations ranged from 0 to 1,000 ppm. These results indicate that, although not all areas of the site are oxygen-limited, some areas may respond to bioventing.

3.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On July 30, 1992, the vent well (VW) and three monitoring points (MPs) were installed at Facility 89, and collection of soil samples for analyses was begun. The monitoring points were labeled N2-MPA, N2-MPB, and N2-MPC. The location of the vent well and monitoring points is shown in Figure 3. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 8.

The vent well was installed at a depth of 10.2 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 7.6 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular

Table 6. Initial Soil Gas Composition at Facility 89

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	ТРН (ррт)
GS-1	2.5	19.8	0.060	100
GS 1	5.0	14.5		190
			3.8	
	5.7	18	2.5	340
GS-2	2.5	12.8	5.3	230
	5.0	18	2.3	420
GS-3	2.5	18	2.0	180
	5.0	17.9	2.5	180
	7.5	211	0.060	75
GS-4	2.5	12.5	3.3	580
	5.0	211	0.050	100
GS-5	2.5	211	0.050	170
	5.0	15	1.2	210
GS-7	2.5	16.5	2.2	1,000
	5.0	7.5	5.2	190
GS-8	2.5	16	3.3	120
GS-9	2.5	16	3.6	170
GS-10	2.5	16	4.0	280
GS-11	2.5	211	0.050	190
GS-12	2.5	17	3.5	150
	5.0	211	0.050	140
GS-13	2.5	11.5	5.8	120
	5.0	14	4.3	220
GS-14	2.5	5.8	5.2	140

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

MPB

Vent Well

MPA

MPC

Figure 8. Cross Section of Vent Well and Monitoring Points at Facility 89 Showing Site Lithology and Construction Detail

space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed as follows:

- Monitoring point N2-MPA was installed at a depth of 10.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.5', and 7.0'.
- Monitoring point N2-MPB was installed at a depth of 12.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 5.0', 7.5', and 10.0'.
- Monitoring point N2-MPC was installed at a depth of 10.3' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 4.7', 6.5', and 9.0'.

A Type J thermocouple was installed with monitoring points N2-MPA-2.0' and N2-MPA-7.0'.

3.1.4 Soil and Soil Gas Sampling and Analyses

Soil samples were collected from depths of 4.3 to 4.8 feet and from 9.0 to 9.5 feet from the vent well borehole and were labeled N2-V-4.3'-4.8' and N2-V-9.0'-9.5', respectively. A soil sample also was taken from monitoring point N2-MPC at a depth of 10.0 feet and was labeled N2-C-10'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size analysis. Soil gas samples were collected from monitoring points N2-MPC-6.5' and N2-MPC-9.0' and from the vent well. These samples were labeled N2-C-6.5, N2-C-9, N2-V-3-9. These samples were sent under chain of custody to Air Toxics, Ltd., in Rancho Cordova, California, for analyses of BTEX and TPH.

3.1.5 Soil Gas Permeability and Radius of Influence

A detailed description of the method for conducting a soil gas permeability test, including equations to compute k, the soil gas permeability, is described in the Test Plan and Technical Protocol (Hinchee et al., 1992).

The monitoring points at Facility 89 were allowed to set up for 24 hours prior to air injection. A portable 2.5-HP explosion-proof positive displacement blower unit was used to inject air. After air injection was initiated, pressure readings were taken approximately every 1 to 2 minutes for the first hour, then approximately every 10 minutes for the following hour. The HyperventilateTM computer model was used to calculate the soil gas permeability.

3.1.6 In Situ Respiration Test

Immediately following the soil gas permeability test at Facility 89, air containing approximately 1% helium was injected into the soil for approximately 24 hours beginning on August 6, 1992. Air was injected concurrently into the background monitoring well to measure the natural biodegradation of organic material in the soil. The setup for the in situ respiration test was as described in the Test Plan and Technical Protocol (Hinchee et al., 1992). The pump used for air injection was a ½-HP diaphragm pump. Air and helium were injected through monitoring points N2-MPA-7.0', N2-MPB-7.5', N2-MPB-10.0', and N2-MPC-6.5' at the depths indicated by the labels. After the air/helium injection was turned off, the respiration gases were monitored periodically. The respiration test was terminated on August 10. Results of the in situ respiration were calculated as described in Section 2.1.6.

3.2 Results and Discussion

3.2.1 Soil and Soil Gas Analyses

Results of the soil analyses for BTEX and TPH at Facility 89 are presented in Table 7. No detectable concentrations of BTEX were measured in any soil samples, and TPH was only detected at a concentration of 31 mg/kg from the vent well soil sample. The soil gas analyses also showed low BTEX and TPH concentrations, with concentrations ranging from below the detection limit to 0.027

Table 7. Results From Soil and Soil Gas Analyses for BTEX and TPH at Facility 89

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	N2-V-4.3'-4.8'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	31
	N2-V-9.0'-9.5'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	<5.0
	N2-C-10'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	< 5.0
					Total	
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Xylenes (ppmv)	TPH² (ppmv)
Matrix Soil Gas	Sample Name N2-V-3-10		_ 0	•	Xylenes	
	-	(ppmv)	(ppmv)	(ppmv)	Xylenes (ppmv)	(ppmv)

Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

ppmv of toluene and from 3.5 to 74 ppmv of TPH (Table 7). The results from the soil chemistry analyses are summarized in Table 8. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B.

3.2.2 Soil Gas Permeability and Radius of Influence

The raw data for the soil gas permeability test at Facility 89 are presented in Appendix E. Using the Hyperventilate™ computer model, soil gas permeabilities were calculated at each of the monitoring points. These data appear in Table 9. The measurable soil gas permeability varied considerably between points with values ranging from 6.6 up to 8.7 x 10° darcy. No pressure change could be detected at any of the soil gas probes at monitoring point C. Typically, the radius of influence is calculated by plotting the log of the pressure change at a specific monitoring point versus the distance from the vent well. The radius of influence would then be the distance where 1 inch of

TPH referenced to jet fuel (molecular weight = 156).

water pressure can be measured. However, in this instance, 1 inch of water pressure was not achieved at any monitoring point; therefore, a radius of influence based on these specifications cannot be definitively determined at this site, other than to say it is less than 19.7 feet, the distance from the vent well to the closest monitoring point.

3.2.3 In Situ Respiration Test

The results of the in situ respiration test for Facility 89 are presented in Appendix F. Each figure in Appendix F illustrates the oxygen, carbon dioxide, and helium concentrations as a function of time. An example of typical oxygen utilization and carbon dioxide production at this site is shown in Figure 9, which shows oxygen, carbon dioxide, and helium at monitoring point N2-MPA-7'. Biodegradation rates were relatively low at all monitoring points. The rates of oxygen utilization and carbon dioxide production and the corresponding biodegradation rates are summarized in Table 10. The biodegradation rates measured at this site were relatively low, with rates ranging from 0.27 to 0.52 mg/kg/day based on oxygen and from 0.013 to 0.28 mg/kg/day based on carbon dioxide.

Loss of helium was insignificant at all monitoring points, indicating that the monitoring points were well sealed and that the oxygen depletion observed was a result of biodegradation.

Soil temperatures were measured at monitoring point N2-MPA-2.0' during the in situ respiration test. Temperatures during the test ranged from 20.8 to 21.5°C.

3.2.4 Bioventing Demonstration

The decision was made to install a bioventing system at Facility 89. The same blower that was used for the soil gas permeability test was installed for the bioventing system. Continuous air injection was initiated on September 9, 1992 at a flowrate of 27 scfm.

Table 8. Results From Soil Chemistry Analyses at Facility 89

	San	Sample Name		
Parameter	N2-V-3'-4'	N2-V-8'-9'		
Alkalinity (mg/kg CaCO ₃)	420	490		
Moisture (% by weight) ¹	15.0	16.8		
рН	7.8	7.7		
Iron (mg/kg)	18,000	14,200		
Total Phosphorus (mg/kg)	540	540		
Total Kjeldahl Nitrogen (mg/kg)	450	270		
Particle Size Analysis (%)	Gravel: 10	Gravel: 10 Gravel: 1.3		
	Sand: 42	Sand: 38.7		
	Silt: 33	Silt: 45		
	Clay: 15	Clay: 15		

Three soil samples were analyzed for moisture content only. These results were N2-V-4.3'-4.8', 15.7%; N2-V-9.0'-9.5', 26.1%; and N2-C-10', 20.7%.

Table 9. Results of Hyperventilate™ Soil Gas Permeability Analysis at Facility 89

Monitoring Point	Depth (ft)	Soil Gas Permeability (darcy)	
N2-MPA	2.0	6.6	
	4.5	8.7 x 10°	
	7.0	ND	
N2-MPB	5.0	370	
	7.5	2.8 x 10 ⁵	
	10.0	22	
N2-MPC	4.7	NM	
	6.5	NM	
	9.0	NM	

ND No data were collected at this monitoring point.

NM No pressure change was measured at this monitoring point.

Table 10. Oxygen Utilization and Carbon Dioxide Production Rates During the In Situ Respiration Test at Facility 89

Sample Name	Oxygen Utilization Rate (%/hour)	Biodegradation Rate (mg/kg/day)	Carbon Dioxide Production Rate (%/hour)	Biodegradation Rate (mg/kg/day)
Background	0.042	0.80	0.017	0.37
N2-MPA-7.0'	0.015	0.29	0.012	0.26
N2-MPB-7.5'	0.027	0.52	0.0060	0.013
N2-MPB-10.0'	0.014	0.27	0.013	0.28
N2-MPC-6.5'	0.027	0.52	0.0030	0.065

Figure 9. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPA-7.0'

4.0 FACILITY 14

4.1 Chronology of Events and Site Activities

An air permeability test and an in situ respiration test were not conducted at this site.

Originally, these tests were to be conducted at a later date if funding were available. However, the site has been declared clean by the State of Ohio and no further work is planned for this site. Only initial site activities and soil sampling results are presented in this section.

4.1.1 Groundwater Measurements

One groundwater monitoring well was measured at Facility 14. The groundwater level was recorded at 4.0 feet.

4.1.2 Soil Gas Survey

A limited soil gas survey was conducted on July 29, 1992 to locate a suitable test area at Facility 14. Soil gases were sampled by driving a %-inch-diameter stainless steel probe into the soil with a hammer drill. Soil gas was withdrawn with a vacuum pump and analyzed for oxygen, carbon dioxide, and TPH. Measurements of oxygen, carbon dioxide, and TPH in the soil gas were made as described in Section 2.0.

The soil gas probes were driven to depths ranging from 2.0 to 4.5 feet at several locations at Facility 14. Table 11 provides the initial concentrations of oxygen, carbon dioxide, and TPH for the various locations at Facility 14. Oxygen concentrations varied from 0 to 21%, whereas TPH concentrations ranged from 0 to 700 ppm. These results suggest that there is little hydrocarbon contamination at the site, although some areas appear to be oxygen-limited.

4.1.3 Vent Well, Monitoring Point, and Thermocouple Installation

On August 17, 1992, a vent well (VW) and three monitoring points (MPs) were installed at Facility 14, and collection of soil samples for analyses was begun. The monitoring points were labeled N3-MPA, N3-MPB, and N3-MPC. The location of the vent well and monitoring points is

Table 11. Initial Soil Gas Composition at Facility 14

Soil Gas Survey Point	Depth (ft)	Oxygen (%)	Carbon Dioxide (%)	TPH (ppm)
GS-1	2.0	20	0.02	54
	3.5	19.8	0.5	66
GS-2	2.5	0.38	5.0	350
GS-3	2.0	11.0	4.0	240
	3.5	11.0	3.8	380
GS-4	2.5	171	1.0	100
GS-5	2.5	17.8	1.2	170
GS-7	2.5	18.9	0.9	170
GS-8	2.5	8.5	6.5	700
	4.0	15.5	2.3	400
GS-9	2.5	20	0.05	400
	4.0	21	0.05	210
GS-10	2.5	1.5	7.2	85
	4.0	11.5¹	3.7	82
GS-11	2.5	2.1	6.9	172
	3.5	2.0	6.9	182
GS-12	2.5	0	11.5	120
	4.0	0	11.5	240
GS-13	2.5	4.5	10	202
	4.0	4.5	10	220
GS-14	2.5	21	0.7	0
	4.5	17	1.2	80
GS-15	2.5	15.5	3.7	150

Pressure reading on sampling pump was high. Measured oxygen concentration may not be representative of actual soil gas oxygen concentrations. Actual oxygen concentration is likely to be lower.

shown in Figure 4. A cross section of the vent well and monitoring points showing site lithology and construction detail is shown in Figure 10.

The vent well was installed at a depth of 7.25 feet into an 8-inch-diameter borehole. The vent well consisted of Schedule 40 2-inch-diameter PVC piping with 5.0 feet of ten-slot screen. The annular space corresponding to the screened area of the well was filled with silica sand; the annular space above the screened interval was filled with bentonite to prevent short-circuiting of air to or from the surface.

Soil gas probes consisted of ¼-inch tubing with a 1-inch-diameter, 6-inch screened area. The annular space corresponding to the screened area was filled with silica sand. The interval between the screened areas was filled with bentonite, as was the annular space from the shallowest monitoring point to the ground surface. The monitoring points were installed as follows:

- Monitoring point N3-MPA was installed at a depth of 7.3' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.2', 3.7', and 7.0'.
- Monitoring point N3-MPB was installed at a depth of 7.5' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.0', and 7.0'.
- Monitoring point N3-MPC was installed at a depth of 9.0' into an 8-inch-diameter borehole. The monitoring point was screened to three depths: 2.0', 4.0', and 7.0'.

A Type J thermocouple was installed with monitoring points N3-MPA-2.2' and N3-MPA-7.0'.

4.1.4 Soil Sampling and Analyses

A soil boring sample was collected at a depth of 7.0 to 7.5 feet from the Facility 14 vent well borehole and was labeled N3-V-7'-7.5'. Soil samples were also taken from monitoring points N3-MPA and N3-MPC and were labeled N3-A-2'-3', N3-A-6'-7', and N3-C-7.5'-8'. The samples were sent under chain of custody to Engineering-Science, Inc., Berkeley Laboratory for analyses of BTEX, TPH, alkalinity, moisture content, pH, iron, total phosphorous, total Kjeldahl nitrogen, and particle size analysis.

MPC

MPA

MPB

Vent Well

Figure 10. Cross Section of Vent Well and Monitoring Points at Facility 14 Showing Site Lithology and Construction Detail

4.2 Soil Analyses Results and Discussion

Results of the soil analyses for BTEX and TPH at Facility 14 are presented in Table 12. Concentrations in soil samples were relatively low, with no detectable concentrations of benzene up to 7.1 mg/kg toluene. TPH concentrations ranged from 54 to 350 mg/kg. The results from the soil chemistry analyses are summarized in Table 13. The laboratory report for the BTEX, TPH, and soil chemistry analyses is given in Appendix B.

Table 12. Results From Soil Analyses for BTEX and TPH at Facility 14

Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
N3-V-7'-7.5'	< 0.0035	7.1	0.049	0.22	350
N3-A-2'-3'	< 0.00070	< 0.00080	0.0080	0.046	54
N3-A-6'-7'	< 0.00070	< 0.00080	< 0.00060	0.0019	68
N3-C-7.5'-8'	< 0.00080	< 0.00090	< 0.00060	< 0.0011	83

Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

Table 13. Results From Soil Chemistry Analyses at Facility 14

	Sample Name			
Parameter	N3-V-6'-7'	N3-A-2'-3'1	N3-A-6'-7' ¹	
Alkalinity (mg/kg CaCO ₃)	380	290	280	
Moisture (% by weight) ²	14.6	10.5	11.4	
pН	8.1	7.8	7.8	
Iron (mg/kg)	16,900	17,800	14,500	
Total Phosphorous (mg/kg)	270	300	210	
Total Kjeldahl Nitrogen (mg/kg)	240	240	110	

Soil moisture was calculated on a duplicate sample. Results were N3-A-2'-3', 14.8; and N3-A-6'-7', 15.2.

Soil moisture was calculated on two other samples. Results were N3-V-7'-7.5', 14.1; and N3-C-7.5'-8', 19.9.

5.0 BACKGROUND AREA

A background vent well was installed on July 29, 1992 near Facility 27 (Figure 1). The depth of the vent well was 11.2 feet with 6.7 feet of screen using schedule 40, 2-inch-diameter, 10-slot PVC, and 4.5 feet of schedule 40, 2-inch-diameter PVC riser. The area corresponding to the screened section was surrounded by sand, and the remaining 4.5 feet were enclosed by bentonite to seal the vent well.

Soil and soil gas samples were collected from the background area. The site lithology in this area was similar to that in the contaminated areas. Results of analyses for BTEX and TPH are shown in Table 14. No detectable concentrations of BTEX were found in the soil samples, and only minimal concentrations were found in the soil gas samples. TPH concentrations also were low in both soil and soil gas samples. The results from the soil chemistry analyses are shown in Table 15. The analytical report for these samples is provided in Appendix B.

An in situ respiration test was conducted at the background area beginning on August 12 after 24 hours of air injection. The test was concluded on August 17. Biodegradation rates were relatively high in this area (Figure 11). These high rates could be due to the minimal amount of contamination present in this area, based on the soil samples.

Table 14. Results From Soil and Soil Gas Analyses for BTEX and TPH at Background Area

Matrix	Sample Name	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	TPH¹ (mg/kg)
Soil	N-BKG-4.5'-5.0'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	20
	N-BKG-8.5'-9'	< 0.0010	< 0.0020	< 0.0020	< 0.0020	NA
	N-BKG-10	< 0.0010	< 0.0020	< 0.0020	< 0.0020	<4.0
Matrix	Sample Name	Benzene (ppmv)	Toluene (ppmv)	Ethylbenzene (ppmv)	Total Xylenes (ppmv)	TPH² (ppmv)
Soil Gas	N-BG	< 0.0020	0.0020	< 0.0020	0.0020	13

Referenced to a reference oil composed of a mixture of 2,2,4-trimethylpentane, *n*-hexadecane, and chlorobenzene.

Table 15. Results From Soil Chemistry Analyses at the Background Area

		Sample Name			
Parameter	N-H	3KG-4.5'-5.0'	N-BK	G-8.5'-9'	
Alkalinity (mg/kg CaCO ₃)		36		120	
Moisture (% by weight)		12.9		14.7	
рН		6.4		7.4	
Iron (mg/kg)		13,000	15,700		
Total Phosphorous (mg/kg)		480		470	
Total Kjeldahl Nitrogen (mg/kg)		730		300	
Particle Size Analysis (%)	Gravel:	20	Gravel:	25	
	Sand:	45	Sand:	37	
	Silt:	26	Silt:	26	
	Clay:	9	Clay:	12	

² TPH referenced to jet fuel (molecular weight = 156).

NA Sample not analyzed for this parameter.

Figure 11. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at the Background Area

6.0 FUTURE WORK

Base personnel will be required to perform a simple weekly system check to ensure that the blower is operating within its intended flowrate, pressure, and temperature range. An on-site briefing was conducted for base personnel who will be responsible for blower system checks. The principle of operation was explained, and a simple checklist and logbook were provided for blower data. Base personnel will perform minor maintenance activities, such as replacing filters or gauges, or draining condensate from knockout chambers, but they will not be expected to perform complicated repairs or analyze gas samples. Replacement filters and gauges will be provided and shipped to the base and serious problems, such as motor or blower failures, will be corrected by Battelle.

The progress of this system will be monitored by conducting semiannual respiration tests in the vent well and in each monitoring point, and by regularly measuring the oxygen, carbon dioxide, and hydrocarbon concentrations in the extracted soil gas and comparing them to background levels. Soil gas monitoring will be performed on a quarterly basis. At least twice each year, the progress of the bioventing test will be reported to the base point-of-contact.

7.0 REFERENCE

Hinchee, R.E., S.K. Ong, R.N. Miller, D.C. Downey, and R. Frandt. 1992. *Test Plan and Technical Protocol for a Field Treatability Test for Bioventing* (Rev. 2), Report prepared by Battelle Columbus Operations, U.S. Air Force Center for Environmental Excellence, and Engineering-Science, Inc. for the U.S. Air Force Center for Environmental Excellence, Brooks Air Force Base, Texas.

APPENDIX A TEST PLAN FOR NEWARK AFB

505 King Avenue Columbus, Ohio 43201-2693 Telephone (614) 424-6424 Facsimile (614) 424-5263

July 13, 1992

Captain Cathy Vogel HQ AFCESA/RAVW 139 Barnes Drive Tyndall Air Force Base, Florida 32403-5319

Dear Cathy:

SUBJECT: TEST PLAN FOR BIOVENTING INITIATIVE FIELD TEST AT FACILITIES 27 AND 89, NEWARK AFB, OH

Attached is the report "Test Plan and Technical Protocol for a Field Treatability Test for Bioventing." This document was developed as a generic test plan for the Air Force Bioventing Initiative Project in which Newark AFB is participating. This letter outlines site specific information to support the generic test plan.

The sites chosen for the bioventing test initiative are Facility 27 (the base motor pool), with three fiberglass UST's (1000 gal. unleaded gasoline, 4000 gal. unleaded gasoline, and 4000 gallon diesel), and Facility 89 which is the site of a 20,000 gallon diesel tank. Both sites are active fuel dispensing facilities. At both facilities, site characterization data has indicated soil contaminated with petroleum hydrocarbons in the tank cavity and supply line backfill.

The purpose of this project is to investigate the feasibility of using the bioventing technology to remediate petroleum contaminated soils at the Facility 27 and 89 sites.

Figure 1 is a site diagram for Facility 27 showing soil sampling locations for two sampling events (October, 1991 and February, 1992). Table 1 presents the analytical data for each sampling event. The high permeability of the UST backfill relative to the native soils could cause short circuiting of air flow during the air permeability test. During the soil gas survey Battelle will try to identify an area adjacent to the UST system that is sufficiently contaminated for conduct of the test. Soil sample locations 1, 2, and 3 taken on February 6, 1992, appear to be the most promising locations for bioventing system installation.

TABLE 1. SOIL CONTAMINANT CONCENTRATIONS AT FACILITY 27, NEWARK AFB, OH.

CONCENTRATION (mg/Kg)

	SAMPLE OCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENE	XYLENE
	27-200	0.5	166	BDL	BDL	BDL	.009
	27-201	0.5	133	BDL	BDL	BDL	BDL
	27-202	0.5	110	BDL	BDL	BDL	BDL
	27-203	0.5	130	BDL	BDL	BDL	.012
	27-204	0.5	5,140	.024	<.230	<.230	.76
	27-205	0.5	203	BDL	BDL	BDL	BDL
	27-206	3	78	BDL	BDL	BDL	BDL
	27-207	3 3	. 96	BDL	BDL	BDL	BDL
	27-208	1.5	158	BDL	BDL	BDL	BDL
	27-209	1.5	358	BDL	.007	.025	.01;1
	27-210	1.5	94	BDL	BDL	BDL	BDL
	27-211	1.5	59	BDL	BDL	BDL	BDL
	27-212	1.5	. 57	BDL	BDL	BOL	BDL
	27-213	water	0.766	BOL	BDL	BOL	BDL
	27-1	1.5	1880	NA	NA	NA NA	NA
-	27-2	1.5	779	NA	NA	NA	NA
Ť	27-3	1.5	254	NA	NA	NA	NA I
	27-4	2.5	55	NA	NA	NA	NA
	27-5	2.5	52	NA	NA NA	NA ·	NA
	27-6	2.5	675	NA	NA	NA	NA
	27-7	2.5	91	NA NA	l NA	l NA	NA

BDL — BELOW DETECTION LIMIT NA — NOT APPLICABLE (samples analyzed for TPH only).

FIGURE 1 - Facility 27, NAFB, Newark, Ohio Second Phase Sampling, Feb. 6, 1992

Site diagram not to scale

- Sample locations 10/9 & 10/10, 1991
- ⊕ Sample locations 2/6/1992
 mg/Kg = TPH values

Figure 2 and Table 2 present the site diagram and the available soil analytical data for Facility 89, respectively. As with Facility 27, the soil sampling for Facility 89 was conducted in the UST backfill. As with Facility 27, an area adjacent to the fuel dispensing system will be identified for the test.

It is possible that at one of the facilities, or possibly even both facilities, it may not be possible to identify an area outside of the UST backfill that is suitable for the bioventing field testing. If this should be the case, Battelle will consult with the project officer and the base POC to determine whether the field tests should be conducted in the UST backfill. An in situ respiration test could be conducted and a bioventing blower could be installed, but due to the underground obstructions, installation of soil gas monitoring points in optimum locations may be inhibited and air permeability data may be inaccurate.

Project activities-

The following field activities are planned for the bioventing project at Newark AFB. the same procedures will be followed at each site. Additional detail can be found in Section 5.0 of the attached test plan and technical protocol.

- A small scale soil gas survey will be conducted to identify an appropriate location for installation of the bioventing system. The soil gas survey will be conducted adjacent to the fuel dispensing systems outside of the UST backfill. Soil vapor from the candidate site should exhibit high petroleum hydrocarbon concentrations, relatively low O₂ concentrations (typically 0 % to 2.0 %), and relatively high CO₂ concentrations (depending on soil type, 2.0 % to 10.0 % or more). An uncontaminated background location will also be identified.
- Once the installation sites are located one vent well and three 3-level soil gas monitoring points will be installed in the contaminated location and one vent well and one 3-level soil gas monitoring point will be installed in the background area. The wells and monitoring points will be installed using a two-man power auger to bore down to just above the water table. Three to four soil samples will be collected for chemical/physical analysis.
- 3- The air permeability test will be conducted in the contaminated test location.
- 4- Following the air permeability test, in situ respiration tests will be conducted in both the contaminated and the background test locations.
- Depending on the results of the air permeability test and the in situ respiration test, a decision will be made whether or not to install a blower system in the contaminated area for the long term bioventing test. If the decision is made to install, the blower will be plumbed to the vent well and bioventing will be started

TABLE 2. CONTAMINANT CONCENTRATIONS AT FACILITY 89, NEWARK AFB, OH.

CONCENTRATION (mg/Kg)

SAMPLE LOCATION	DEPTH(ft)	TPH	BENZENE	TOLUENE	ETHYLBENZENI	XYLENE
89-1	0.5	7240	<.01	.094	.13	1.2
89-2	4	145	BDL	.006	.016	BDL
89-3	3.5	86	BDL	BDL	.007	BDL
89-4	3	283	BDL	BDL	.008	BDL
89-8	3	114	NA.	NA	NA.	· NA
89-9	3	214	NA	NA	NA .	NA
89-10	, 3	109	NA	NA	NA I	NA
89-11	3	164	NA	NA .	, NA	NA
89-14	3	122	NA	NA .	NA NA	.NA
89-15	1.5	108	NA	NA	NA NA	NA
89-16	3	· 261	NA	NA	NA.	NA NA
89-17	3	. 194	NA	NA	NA	NA
89-18	. 2	158	NA	NA	NA NA	, NA
89-19	4	98	NA	NA	NA I	NA

BDL - BELOW DETECTION LIMIT

NA - NOT APPLICABLE (samplea analyzed for TPH only)

FIGURE 2 — Facility 89, NAFB, Newark, Ohio Second Phase Sampling, Feb. 6, 1992

Site diagram not to scale

Sample locations 10/9 & 10/10, 1991

⊕ Sample locations 2/6/1992 mg/Kg = TPH values

(assuming power is available). Site personnel will be trained for blower operation prior to Battelle leaving the site.

6- A report detailing the results of the in situ respiration test and the air permeability test will be provided to the project officer and the base POC.

Schedule-

Field activities at Newark are planned to begin on July 27, 1992. Battelle will have 2 to 3 people on site for approximately 3 weeks.

Base Support-

The Air Force needs to be able to provide the following:

- Digging permits and utility clearance need to be obtained prior to the initiation of the field work. Underground utilities should be clearly marked to reduce the chance of utility damage or personal injury during soil gas probe and well installation. Due to the fact that both facilities are active fuel pumping systems, and the UST components are FRP, Battelle will not be able to begin field operations without these clearances.
- Electrical power will need to be easily accessible from the project site. The air permeability test and in situ respiration test can be performed using a gasoline powered electric generator. It is desirable that a 50 amp 250 v single phase receptacle be available to plug in our field operations trailer (Hubbell plug cat. # S8269). The operation of the bioventing system will require a permanent 220/110 V power source. If power will not be available immediately after the test is completed the bioventing system will be installed for start-up at a later date.
- Regulatory approval, if any is required, will need to be obtained by the base prior to start-up of the bioventing system. The system will likely be configured for air injection so there will be no point source vapor emission from the system. The wells to be installed will not intersect the apparent water table and no groundwater will be pumped.
- Base and site clearance will be required for Battelle's site employees. We will furnish you with personal information for each person at least one week prior to starting field operations.

Thank you for your support for this bioremediation research project. If you have any questions please feel free to call me at (614) 424-6122.

Sincerely,

Jeffrey A. Kittel

Researcher

Environmental Technology Department

JAK:sh

Enclosure

APPENDIX B

ANALYTICAL REPORT FOR FACILITIES 27, 89, AND 14, AND THE BACKGROUND AREA

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9208040

Work Order Summary

CLIENT:

Mr. Greg Headington

BILL TO:

Accounts Payable

Battelle

Engineering Science

505 King Ave.

1700 Broadway Ste. 900

Columbus, OH 43201

Denver, CO 80290

PHONE:

614-424-5417

INVOICE # 8306

FAX:

614-424-3667

P.O. # DE268.03

DATE RECEIVED:

8/11/92

AMOUNT: \$551.29

DATE REPORTED:

8/14/92

PROJECT # G4468-0630

		Receipt				
FRACTION #	<u>NAME</u>	TEST	VAC./Press.	PRICE		
01A	N-BG	TO-3	2.0 "Hg	\$120.00		
02A	N1-A-6.5	TO-3	1.5 "Hg	\$120.00		
03A	N1-V-11.2	TO-3	1.5 "Hg	\$120.00		
04A	N1-C-8	TO-3	1.0 "Hg	\$120.00		
05A	Lab Blank	TO-3	NA	NC		

Misc. Charges 1 Liter SUMMA Canister Preparation (4) @ \$10.00 each. \$40.00 Shipping (8/3/92) \$31.29

8/18/92 8/14/92

SAMPLE NAME: N-BG ID#: 9208040-01A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: 6081104 Date of Collection: 8/10/92 Dil. Factor: 2.2 Date of Analysis: 8/11/92						
	MDL	MDL	Amount	Amount		
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)		
Benzene	0.002	0.007	Not Detected	Not Detected		
Toluene	0.002	0.008	0.002	0.007		
Total Xylenes	0.002	0.009	0.002	0.008		
Ethyl Benzene	0.002	0.009	Not Detected	Not Detected		

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	6081104 2.5		Date of Collec Date of Analys	tion: 8/10/92 sis: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.022	0.088	13	52

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: N1-C-8 ID#: 9208040-04A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608111i 4.:		Date of Collect Date of Analy	etion: 8/10/92 sis: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.004	0.013	0.005	0.016
Toluene	0.004	0.015	0.006	0.022
Total Xylenes	0.004	0.018	Not Detected	Not Detected
Ethyl Benzene	0.004	0.018	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	608111 4.			ction: 8/10/92 sis: 8/11/92
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	0.042	0.17	130	520

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9208040-05A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608110 1.		Date of Collect	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	6081103 1.0		Date of Collect	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.010	0.040	Not Detected	Not Detected

^{*}TPH referenced to Jet Fuel (MW=156)

11325 SUNRISE GOLD CIRCLE, SUITE 'E' RANCHO CORDOVA, CA 95742 (916) 638-9892 • FAX (916) 638-9917

CHAIN OF CUSTODY RECORD

FIELD SAMPLE 1.D.# SAMPLING MEDIA (Tenax, Canister etc.)	(c.) DATE/TIME ANALYSIS	VAC./PRESSURE LABID #	L
N-86 Aie	10 AUST / 1510 BTEX / TVH		1202
	1/ SOO BTEX /	189" (19	1143
MI-V-11.6 A.R.	4U5 421 1520 BTEX /	1.5"He	1143
	15 30 DIEN / 14	SE	1143
- Controlling			-
RELINQUISHED BY: DATE/TIME RECEIVED I	RECEIVED BY: DATE/TIME RELINQUISHED BY: DATE/TIME	E RECEIVED BY: DATE/TIME	_
009/1669			
	LABUSEONLY		
SHIPPER NAME AIR BILL#	OPENED BY: DATE/TIME TEMP(°C)	CONDITION	
TEMARKS			
نو			

data

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9208088

Work Order Summary

CLIENT:

Mr. Jeff Kittel

BILL TO:

Accounts Payable

Battelle

Engineering Science

505 King Ave.

1700 Broadway Ste. 900

Columbus, OH 43201

Denver, CO 80290

PHONE:

614-424-6122

INVOICE # 8372

FAX:

614-424-3667

P.O. # DE268.03

DATE RECEIVED:

8/21/92

AMOUNT: \$474.64

DATE REPORTED:

9/1/92

PROJECT # G4468-0630

			Receipt	
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./Press.	PRICE
01A	N1-AM-1230	TO-3	0.5 "Hg	\$120.00
02A	N1-EX-1210	TO-3	0 "Hg	\$120.00
03A	N1-EX-1220	TO-3	0.5 "Hg	\$120.00
04A	Lab Blank	TO-3	NA	NC

Misc. Charges 1 Liter SUMMA Canister Preparation (3) @ \$10.00 each.

\$30.00

Shipping (8/13/92)

\$84.64

REVIEWED BY:

CERTIFIED BY:

SAMPLE NAME: N1-AM-1230 ID#: 9208088-01A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	6082410 1.		Date of Collect	etion: 8/19/92 sis: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.004	Not Detected	Not Detected
Toluene	0.001	0.005	Not Detected	Not Detected
Total Xylenes	0.001	0.006	Not Detected	Not Detected
Ethyl Benzene	0.001	0.006	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6082410 Date of Collection: 8/19/92 Dil. Factor: 1.4 Date of Analysis: 8/24/92				
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.014	0.056	0.088	0.35

^{*}TPH referenced to Jet Fuel (MW=156)

Comments:

Total hydrocarbon content reported as TPH but naphtha profile not present. Sample primarily made up of discrete solvents.

SAMPLE NAME: N1-EX-1210 ID#: 9208088-02A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608241 1.		Date of Collect	etion:8/19/92 sis: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.004	0.010	0.031
Toluene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: 6082411 Date of Collection:8/19/92 Dil. Factor: 1.3 Date of Analysis: 8/24/92				
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.013	0.052	130	520

^{*}TPH referenced to Jet Fuel (MW=156)

Comments:

Total hydrocarbon content reported as TPH but naphtha profile not present. Sample primarily made up of discrete solvents.

SAMPLE NAME: N1-EX-1220 ID#: 9208088-03A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608241 63		Date of Collect Date of Analy	tion:8/19/92 sis: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.007	0.021	0.023	0.072
Toluene	0.007	0.025	Not Detected	Not Detected
Total Xylenes	0.007	0.029	Not Detected	Not Detected
Ethyl Benzene	0.007	0.029	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	608241: 6.1		Date of Collect Date of Analys	tion:8/19/92 sls: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.068	0.27	55	220

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9208088-04A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608240 1.		Date of Collect Date of Analy	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.001	0.003	Not Detected	Not Detected
Toluene	0.001	0.004	Not Detected	Not Detected
Total Xylenes	0.001	0.004	Not Detected	Not Detected
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dii. Factor:	6082404 1.0		Date of Collect	
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.010	0.040	Not Detected	Not Detected

^{*}TPH referenced to Jet Fuel (MW=156)

11325 SUNRISE GOLD CIRCLE; SUITE 'E' RANCHO CORDOVA, 'CA 95742 (916) 638-9892 • FAX (916) 638-9917

CHAIN OF CUSTODY RECORD

white	54
COLLECTED BY (Signature)	(614) 424-6122
DE 268,03 COLLECT	5 OH 43201 (
468-0630 PO# DEFE	+
PROJECT # 64468	505

RE LABID #			3	111			L					
VAC./PRESSURE	LINZ .	S. C.	18/1/		0 7 Ma	\$						
ANALYSIS	アアンクレング	10808103	*	"								
	JUB No.		-	=								
DATE/TIME	19 AUG 92 11220	200	1440697 1210	19 AV692/ 1220						,		
FIELD SAMPLE I.D.# SAMPLING MEDIA (Tenax, Canister etc.)	CANISEL		LANIS FEL	Comister						4	and water in	
FIELD SAMPLE I.D.#	NI-AM -1230	グ・リ・ハー	WI-CX-1210	NI-EX -1220								

RELINQUISHED BY: DATE/TIME	RECEIVED BY: DATE/TIME	RELINQUISHED BY: DATE/TIME	RECEIVED BY: DATE/TIME
(My Happy) 19HIG 4/		(. Kow a 8/21/92	
00511		6.05	
	LABU	LABUSEONLY	
SHIPPER NAME AIR BILL	L# OPENED BY: DATE/TIME	(TIME TEMP/°C)	NOTICINO
			NO.
REMARKS			

AN ENVIRONMENTAL ANALYTICAL LABORATORY

WORK ORDER #: 9208087

Work Order Summary

CLIENT:

Mr. Jeff Kittel

BILL TO:

Accounts Payable

Battelle

Engineering Science

505 King Ave.

1700 Broadway Ste. 900

Columbus, OH 43201

Denver, CO 80290

PHONE:

614-424-6122

INVOICE # 8370

FAX:

614-424-3667

P.O. # DE268.03

DATE RECEIVED:

8/20/92

AMOUNT: \$548.27

DATE REPORTED:

9/1/92

PROJECT # G4468-0630

			Receipt	
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC,/Press.	PRICE
01A	N2-V-3-10	TO-3	1.0 "Hg	\$120.00
02A	N2-C-9	TO-3	1.0 "Hg	\$120.00
03A	N2-C-6.5	TO-3	1.0 "Hg	\$120.00
04A	N2-AM	TO-3	1.0 "Hg	\$120.00
05A	Lab Blank	TO-3	NA	NC
02A 03A 04A	N2-C-9 N2-C-6.5 N2-AM	TO-3 TO-3 TO-3	1.0 "Hg 1.0 "Hg 1.0 "Hg	

Misc. Charges 1 Liter SUMMA Canister Preparation (4) @ \$10.00 each.

\$40.00

Shipping (8/14/92)

\$28.27

REVIEWED BY:

CERTIFIED BY:

SAMPLE NAME: N2-V-3-10 ID#: 9208087-01A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil, Factor:	608240 2		Date of Collect	tion: 8/18/92 sis: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.021	0.066	Not Detected	Not Detected
Toluene	0.021	0.077	Not Detected	Not Detected
Total Xylenes	0.021	0.089	Not Detected	Not Detected
Ethyl Benzene	0.021	0.089	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	608240 21.		Date of Collect	tion; 8/18/92 sis: 8/24/92
•	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.21	0.84	74	300

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: N2-C-9 ID#: 9208087-02A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: 6082406 Date of Collection:8/18/92 Dil. Factor: 2.1 Date of Analysis: 8/24/92							
	MDL	MDL	Amount	Amount			
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)			
Benzene	0.002	0.007	0.003	0.009			
Toluene	0.002	0.007	0.006	0.019			
Total Xylenes	0.002	0.007	0.004	0.012			
Ethyl Benzene	0.002	0.007	Not Detected	Not Detected			

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	608240 2.		Date of Collect	tion:8/18/92 sis: 8/24/92
Compound	MDL (ppmv)	MDL (uG/L)	Amount (ppmv)	Amount (uG/L)
TPH*	0.021	0.084	3.5	14

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: N2-C-6.5 ID#: 9208087-03A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: 6082407 Date of Collection:8/18/92 Dil. Factor: 2.1 Date of Analysis: 8/24/92							
	MDL	MDL	Amount	Amount			
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)			
Benzene	0.002	0.007	0.008	0.025			
Toluene	0.002	0.008	0.027	0.099			
Total Xylenes	0.002	0.009	0.012	0.051			
Ethyl Benzene	0.002	0.009	0.002	0.008			

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: 6082407 Date of Collection:8/18/92 Dil. Factor: 2.1 Date of Analysis: 8/24/92							
	MDL	MDL	Amount	Amount			
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)			
TPH*	0.021	0.084	7.8	31			

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: N2-AM ID#: 9208087-04A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608240 2.		Date of Collect Date of Analy	etion: 8/18/92 sis: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	Not Detected	Not Detected
Toluene	0.002	0.008	Not Detected	Not Detected
Total Xylenes	0.002	0.009	Not Detected	Not Detected
Ethyl Benzene	0.002	0.009	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: Dil. Factor:	6082408 2,1		Date of Collec Date of Analys	tion: 8/18/92 sls: 8/24/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.021	0.084	0.44	1.8
		ı		

^{*}TPH referenced to Jet Fuel (MW=156)

SAMPLE NAME: Lab Blank ID#: 9208087-05A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: 6082404 Date of Collection: NA Dil. Factor: 1.0 Date of Analysis: 8/24/92					
	MDL	MDL	Amount	Amount	
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)	
Benzene	0.001	0.003	Not Detected	Not Detected	
Toluene	0.001	0.004	Not Detected	Not Detected	
Total Xylenes	0.001	0.004	Not Detected	Not Detected	
Ethyl Benzene	0.001	0.004	Not Detected	Not Detected	

TOTAL PETROLEUM HYDROCARBONS GC/FID

File Name: 6082404 Date of Collection: NA Dil. Factor: 1.0 Date of Analysis: 8/24/92					
	MDL	MDL	Amount	Amount	
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)	
TPH*	0.010	0.040	Not Detected	Not Detected	

^{*}TPH referenced to Jet Fuel (MW=156)

ķ

11325 SUNRISE GOLD CIRCLE, SUITE 'E' RANCHO CORDOVA, CA 95742 (916) 638-9892 • FAX (916) 638-9917

Page / PO# E-5 Job No DE 268.03 COLLECTED BY (Signature) 279-104 (MM) CHAIN OF CUSTODY RECORD JOLUM BUS PROJECT #6 4468-0630 78ESUL 7 REMARKS SEND

		_	_	_	_	_	 	 	
LAB I.D. #									
VAC./PRESSURE	197/								
ANALYSIS	BTB 1 +PH	Brox / Sall	mer / mm	87EX /TP4					
DATE/TIMĘ	18 AUG 92/125 13TEX 1 TPH	18 AUB 92/ 1435		18 ANG 92/ 1700 BTEX/TPH	- T				
FIELD SAMPLE I.D.# SAMPLING MEDIA (Tenax, Canister etc.)	CANISTER 11:40	CANISTER 1 1.1.	MANISTER / 1. FEX	CANISTER 1 1.tm					
FIELD SAMPLE I.D.#	NQ-1-3-10	N2-C-9	N2-C-6.5	N2- AM					

BELINQUISHED BY: DATE/TIME RECEIVED BY: DATE/TIME	3 8/21/92	692 3259 24// EMP(C) CONDITION
RECEIVED BY: DATE/TIME RELINQUISH	Just ()	LAB USE ONLY CAB USE ONLY CAB OPENED BY: DATE/TIME
REMNQUISMED/BY, DATE/TIME	July Heuly 1 18th 92	SHIPPER NAME AIR BIL

CONDITION

TEMP(°C)

OPENED BY: DATE/TIME

REMARKS

BERKELEY LABORATORY 600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 841-7353

Report Date: September 9, 1992

Work Order No.:4231

Client:

Jeff Kittel Battelle 505 King Ave.

Columbus, OH 43201

Date of Sample Receipt: 08/11/92

Your soil samples identified as:

N1-A-4'-4.5' N-BKG-4.5'-5.0 N1-A-8'-9'

were analyzed for BTEX by EPA Method 8020, pH, alkalinity, iron, total kjeldahl nitrogen, soil mositure, TRPH by EPA Method 418.1, soil classification and total phosphorus.

In addition your soil samples identified as:

N2-V-4.3'-4.8' N2-V-9.0'-9.5' N2-C-10' N-BKG-10

were analyzed for BTEX by EPA Method 8020, soil mositure, and TRPH by EPA Method 418.1.

Finally your soil samples identified as:

N2-V-3'-4' N2-V-8'-9' N-BKG-8.5-9'

were analyzed for pH, alkalinity, iron, total kjeldahl nitrogen, soil mositure, soil classification and total phosphorus.

The analytical reports for the samples listed above are attached.

AIR TOXICS LTD.

SAMPLE NAME: N1-A-6.5 ID#: 9208040-02A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608110 2.		Date of Collect	etion:8/10/92 sis: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.002	0.007	0.046	0.14
Toluene	0.002	0.007	0.008	0.025
Total Xylenes	0.002	0.007	0.003	0.009
Ethyl Benzene	0.002	0.007	Not Detected	Not Detected

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: Dil. Factor:	608110 2.		Date of Collect	tion:8/10/92 sls: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.021	0.084	2200	8800

^{*}TPH referenced to Jet Fuel (MW=156)

AIR TOXICS LTD.

SAMPLE NAME: N1-V-11.2 ID#: 9208040-03A

EPA Method TO-3

(Aromatic Volatile Organics in Air)

BTXE BY GC/PID

File Name: Dil. Factor:	608110' 1'	-	Date of Collect Date of Analy	tion:8/10/92 sis: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
Benzene	0.011	0.034	Not Detected	Not Detected
Toluene	0.011	0.040	0.056	0.21
Total Xylenes	0.011	0.047	0.31	1.3
Ethyl Benzene	0.011	0.047	0.026	0.11

TOTAL PETROLEUM HYDROCARBONS GC/FID

(Quantitated as Jet Fuel)

File Name: Dii. Factor:	6081107 11		Date of Collec Date of Analys	tion:8/10/92 sls: 8/11/92
	MDL	MDL	Amount	Amount
Compound	(ppmv)	(uG/L)	(ppmv)	(uG/L)
TPH*	0.11	0.44	800	3200

^{*}TPH referenced to Jet Fuel (MW=156)

GC ANALYTICAL REPORT Analytical Method

BTEX Aromatic Compounds By 8020

Work Order No.: 4231

% Moisture:14

Client ID:N1A8'-9'

Matrix:SOIL

Laboratory ID: 4231-10

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:08-12-92

Date Confirmed: NA

Compound	Result	Reporting Limit
Benzene	ND	1.0
Ethyl Benzene	ND	2.0
Toluene	ND	2.0
Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: La

GROUP LEADER: Land

Work Order No.: 4231

% Moisture: NA

Client ID: (BLANK)

Matrix:SOIL

Laboratory ID:MSVG3920811

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08-11-92

Date Confirmed: NA

Compound	Result	Reporting Limit	-		
			===		
Benzene	ND	1.0			
Ethyl Benzene	ND	2.0			
Toluene	ND	2.0			
Xylenes (total)	ND	2.0			

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GC ANALYTICAL REPORT Analytical Method

BTEX Aromatic Compounds By 8020

Work Order No.: 4231

% Moisture: NA

Client ID:(BLANK)

Matrix:SOIL

Laboratory ID:MSVG3920812

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08-12-92

Date Confirmed:NA

Compound	Result	Reporting Limit	
Benzene	ND	1.0	
Ethyl Benzene	ND	2.0	
Toluene	ND	2.0	
Xylenes (total)	ND	2.0	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LA

SURROGATE PERCENTAGE RECOVERY BTEX AROMATIC COMPOUNDS BY 8020

MATRIX: SOIL

COLUMN ID: VGC3-VOCOL

LABORATORY NO. a-a-a-TRIFLUOROTOLUENE

0811		101
0811A		107
0811B		98
5 G		148
5 G		112
5 G		110
0812		107
5 G		132
5 G	•	112
5G		142
5 G		145
	0811A 0811B 5G 5G 5G 5G 0812 5G 5G 5G	0811A 0811B 5G 5G 5G 5G 0812 5G 5G

Work Order NO.: 4231

Parameter: TPH Matrix: Soil

Unit: mg/Kg

Analytical

Method: 418.1 Date Extracted: 08/12/92

QC Batch NO.: S92QCB019TPH Date Analyzed: 08/21/92

Sample ID:	Client ID:	Result	Reporting Limit	Percent Moisture
4231-01	N2-V4.3'-4.8'	31	5	15.7
4231-02	N2-V9.0'-9.5'	ND	5	26.1
4231-05	N1A4'-4.5'	49	5	18.2
4231-06	N2C10'	ND	5	20.7
4231-07	NBKG4.5'-5.0'	20	5	12.9
4231-08	NBKG10	ND	4	10.6
4231-10	N1A8'-9'	36	5	14.0
MSTPH920812	METHOD BLANK	ND	4	NA

NA_ Not Analyzed ND_ Not Detected

ANALYST:

Ilan S____

GROUP LEADER;

Mismil

ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate

Work Order NO.: 4231

QC Sample NO.: SSTPH920812A & B

Analytical Method: 418.1

Blank I.D.: MSTPH920812

Matrix: Soil

QC Batch NO.: S92QCB019TPH

Unit: mg/Kg

Parameter	Date Analyzed	BR	SA	BS	PR	BSD	PR	RPD	
ТРН	08/21/92	0		158	96	162	98	3	= =

BS-Blank Spike
BSD-Blank Spike Duplicate
SA-Spike Added
BR_Blank Result
NA-Not Applicable
NC-Not Calculated
ND-Not Detected

RPD=((BS-BSD)/((BS+BSD)/2))*100

PR=((BS OR BSD -BR)/SA)*100

ANALYST:

QUALITY CONTROL:

Qd.

INITIAL CALIBRATION SHEET HORIE'S OIL CONTENT ANALYZER

METHOD : 418.1

INSTRUMENT SERIES : EXT-5- 920821 .

STANDARDS PREP REF : LNN- 288-75-01,02, 03, 04, 05

4.0. NO.(=): 08-2/-92

RUN DATE : _08-21-92

CALIBRATION DATA STO CONCENTRATIONS IN mg/L

0.1 = 84 STD 2 = 42 STD 5 = 21 STD 4 = 10 STD 5 = 5

					•		
. פא אט .	l I Samfli	E IO	 REP 1	READINGS REF Z	REP 3	REF 4	AUG RONG REP 2-5-4
1	FREON	, .	l }	1-01	-01		- 1
2	std.	1	1 60-	72	72	 	72
3	Std.	2	1 42	36	1 1 36	 	36
4	std.	3	1 . 20	1 16	1 16	<u> </u>	1 16
5	std.	4.	1 9	7	7	l . 1 .	7
6	15td .	5	3	1 2	1 2		1 2
						l	.
·			<u> </u>	l. 	l l	1	· !

CALLBRATION CURVE : CONC. FOUND = m(AVG. RONG) + b

WHERE m = SLOPE OF CURVE = 1.135b = Y INTERCEPT OF CURVE = 2.022

CORRELATION COEFFICIENT OF LINEAR REGRESSION r = 0.9997

IS A WITHIN LIMITS (A \geq .995) $\underline{\hspace{0.2cm}}$ Zes if A \leq .995 REPEAT CALIBRATION WITH FRESH STOS.

COMMENTS	:	·
*		
•		• ***
		•

1)/58/24/4-

CONTINUING CALIBRATION SHEET

HORIBA OIL CONTENT ANALYZER METHOD: 4/8./ WO NO. (s): _ MSTRUMENT SERIES : EXT-5- 920821 RUN DATE : 08/L1/9-ANDARDS PREP REF : LN11-288- Sec 1-1 (+1. Verification Std LNN-288-76-01 READINGS (mg/L) | AVG RONG | X1 N NO. | SAMPLE ID | DILUT| REP 1 | REP 2 | REP 5 | REP 4 | REP 2+5+4/DIFF. | TCB -0-11 -01 -01 TICV 14 16 16 16 1 (20.195/ 16 1 MSTPH920812 @-011 -01 -01 -1 101 SSTPH920812A1 25 32 33 I 33 33 155TPH920812B 34 1 34 34 4208-01 1 467 1 1414 164 123 141 1 / + 29 1 55 47 46 46 46 4808-02 229 255 1 1+19 33 22 17 17 4208-03 160 181 181 U 1+29 38 16 13 CCB -01 -01 2a CCV 14 16 16 1 (20,1975/ 4213-11 2 1-0 -0 0 4231-01 3 4 4 4 -02 0 -01 -01 241 -05 6 7 -06 1 0 -01 -01 26 -07 2 2 27 -08 -01 -01 -01 -10 4 5 5 IMSTPH920818 -02 -02: -02 301 SSTPH920818A 1 36 36 36 36 CCB -01 1 -02 1 -02 1 CCV 12 16 16 16 SSTPH92081881 35 35 36 36 3/ 341 4212-01 0 -01 -01 4212-02 1 4 5 ٠;. -03 0 0 4227-01 -02 -02 -2 381 -02 -01 -01 -1 4235-01 1 -01 -02 1. FOR CONTINUING CALIBRATION CHECK? ONLY % DIFF = R1-R2 , 100

WHERE R1 IS THE CONCENTRATION OF STO 3 FROM THE INITIAL CALIBRATION WHERE RZ IS THE CONCENTRATION OF STO 3 FROM THE CALIBRATION CHECK % DIFF IS >15.0 RECALIBRATE ANALYZER BEFORE RUNNING ANY MORE SAMPLES

2. KUN CUNTINUING CALIBRATION AFTER EVERY 10 SAMP	LE
---	----

1 Ds 8 /24/a

COMMENTS :

CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER

THISTRUMENT SERIES : EXT-5- 920821 RUN DATE : 08/21/92 AL 08/21/92
TANDARDS PREP REF : Venf. std: 288-76-01

	1		1 1		REGULA	03 (maz)		AUG BENG		
HIN	i NO.İ	SAMPLE ID	iomuni	REP 1	I PEP 2	i beb s ea (māvi	L) 000 41	AUG RONG	;;1	1
40		4235-02	1	-02	1 -02	1 1 1 2	1 055 441		1011-	<u>.</u>
	411	-03	1 1	- 2	-2	1		-2	!	<u> </u>
2		-04	l i	_ 0	1 0	<u> </u>	<u> </u>	-2		<u>.</u>
	431	CCB		-2	1 -2	<u>-</u>				_
44		CCV		12	1 16	16	1	-2	-	
	451	4235-05	1	5	i 4	4	1	16	1 46	(20.19 2/2)
700		-06	1	465	1	1	1	4		_` /
i	471	-06	11+291	140	63	6.3	63	15		-
3	. 1	4238-03	1	7	1 1		200	63	<u> </u>	-
A	481	-04	1	50	62	62			<u> </u>	-
49	1	-05	1	11	1 -1	-1			<u> </u>	-
	501	-06	1 1	400	1				<u> </u>	
1	1	-06	1+29	46	37	37	<u> </u>		1	-
	521	-07	i	06	1 0			37	<u> </u>	-
53		4243-01	1 1	01	01	0		0		-
	541	CCB	1 1	-2	1 -2	01	<u> </u>			•
	I	cev	!	12	16	16		-2	<u> </u>	T
i	561	4243-01 MS		30	34			16	96	(20.19 ms/c)
9		-01 MSD	1	36	36	34		34		
1	581	-02		03	0 1	36		36	<u> </u>	•
:59	1	-03		4	1 4 1	9		0		•
	601	-04		5	5			4	<u> </u>	•
2		MWTPH920819		0	-2:	-2		5		•
		WTPH920819A1		30	31	31		-2		
63		WTPH920819 B		31	31			31		•
53	641		1	3	-01.	-01		31		,
		4235-07	1	-2	-2	-2			1	,
	661	CCB	1	- Z	-2			-2	<u> </u>	,
		CCV	1	12	16	11		-2		(20.19ms/c)
	681	4238-01		-2	-2 1	-2 I		16	96	(19.19.3/6)
69	1	4243-05	1	-2	-2			-2		-
-	701	4248-02 1	1	-2	-2		1	- 2		
7	i	CCB		-2	-2			-2		
	72	cev		12	16	16		-2 16	96	(20 19ms/c
-	1. FO	R CONTINUEN	IG COLTE	оптая:				, p	7 6	(00 11/3/0

1. FOR CONTINUING CALIBRATION CHECK? ONLY % DIFF = R1-R2 100
R1
HERE R1 IS THE CONCENTRATION OF STD 3 FROM THE INITIAL CALIBRATION
WHERE R2 IS THE CONCENTRATION OF STD 3 FROM THE CALIBRATION CHECK
OF % DIFF IS >15.0 RECALIBRATE ANALYZER BEFORE RUNNING ANY MORE SAMPLES

- •		IING CALIBRATION AFTER	EVERY 10	SAMPLES :	1048/24/2
	COMMENTS :				•
	14				

р	AC	F	of	
Г	ΗĿ	3 C	OT	

DATA SUMMARY SHEET HORIBA OIL CONTENT ANALYZER

METHOD : 418/

WO NO. (s) : ____

INSTRUMENT SERIES = EXT-5- 720821

RUN DATE = 08/2//52

STANDARDS PREP REF = See (of she f

Q C BATCH # = ____

ANALYST = AS / 05

]		CONC	EXTRACT	1	SAMPLE I		FINAL
			FOUND	VOLUME	IDILUT I	AMOUNT	×	,
-	SAMPLE ID	AUG RONGI	(mg/L)	L(mls)	IFACTOR	(m1/am)		CONG KS
	MSTPH948211		0.89	1 100.0	1 1			
	SSTPHAUSZIAI	33	39.49	1 ,	1 1	25.0	NA	13.55
	SSTPHALIFZIS	34	40.62					1 157.96 1
	4208-11	46 1	54.25	+ + -				162.50
	-202	17	21:32	 	301		79.0	18.240.
	-3	/3	16.78		120		91.8	1858.
	4213-11	0 1			1300	1	92.2	12,184, 1
	4231-01	4	7.02		<u> </u>		NA	8.07
	-02		6-56	100.0		25.0	84.3	3/./
	-05		0.89		11		73.9	4.8
		7 1	9.97		1	I	81.8	48.8
	-06		0.89	1			79.3	4.49
	-07	<u> } </u>	4.29		1		87.1	19.7
	-08	-/	0.89		1		89.4	
	-/0	5	7.70	1 1			86.0	3.98
		I·		l l			06.0	35.8
			• •	i	1			
	1			1				
لـــَـــا				1				
					<u> </u>			
1	<u> </u>	. 1						
	1				<u> </u>			1
Ī								
		<u> </u>					ı	1
					1		1	1
-					·	1		
					i	1		

	SPIKE ADDED (mg/ <i>K</i>)	CONC. FOUND (mg/k/s)	PERCENT RP RECOVERY
5570H422821A	165	158	98 37

COMMENTS :

QC Review 103 8/11/5 =

INORGANICS DATA PACKAGE

Client: Project: ES-Denver

Newark AFB

Work Order:

4231

Client's ID:

Matrix:

Solid

N2-V -4.3'-4.8' -9.0'-9.5'

N2-V

N2-V -3'-4'

Sample Date: 07/31/92 07/31/92 07/31/92

% Moisture:

Lab ID:

4231.01

4231.02

4231.03

Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed
Alkalinity	NR	NR	420.	SM 403(M)	50	mg/Kg CaCO3	08/12/92
Moisture	15.7	26.1	15.0	ASTM D2216	5 .1	% by wt	08/14/92
pH	NR	NR	7.8	EPA 9045	NA	pH Units	08/13/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST:

Client: Project:	ES-Denver Newark AFB			Work Orde: Matrix:	r:	4 231 Solid	
Client's ID:	N2-V -8'-9'	N1-A -4'-4.5'	N2-C -10'				
Sample Date: % Moisture:	07/31/92	07/30/92	08/01/92				
Lab ID:	4231.04	4231.05	4231.06				
Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed
Alkalinity Moisture pH	490. 16.8 7.7	410. 18.2 7.7	NR 20.7 NR	SM 403(M) ASTM D2216 EPA 9045	50 5 .1 NA	mg/Kg CaCO3 % by wt pH Units	08/12/92 08/14/92 08/13/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST: Kon Deaton

GROUP LEADED

Client: Project:	ES-Denver Newark AFB			Work Orde Matrix:	r:	4231 Solid	
Client's ID:	N-BKG -4.5'-5.0'	N-BKG -10	N-BKG -8.5'-9'				
Sample Date: % Moisture:		07/28/92	07/28/92				
Lab ID:	4231.07	4231.08	4231.09		Normal		
Parameter		Results		Method	Report Limit	Units	Date Analyzed
Alkalinity Moisture pH	36. 12.9 6.4	NR 10.6 NR	120. 14.7 7.4	SM 403(M) ASTM D221 EPA 9045	50 6 .1 NA	mg/Kg CaCO3 % by wt pH Units	08/12/92 08/14/92 08/13/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST: Non Deaton

Client: Project: ES-Denver

Newark AFB

Work Order: Matrix:

4231 Solid

Client's ID:

N1-A

-8'-9'

Sample Date:

07/30/92

% Moisture:

Lab ID:

4231.10

Parameter	Results	Method	Report Limit	Units	Date Analyzed
Alkalinity	330.	SM 403(M)	50	mg/Kg CaCO3	08/12/92
Moisture	14.0	ASTM D221	6 .1	% by wt	08/14/92
рH	7.8	EPA 9045	NA	pH Units	08/13/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST: Don Dleaton

ES-ENGINEERING-SCIENCE, INC.

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client:

ES-Denver

Project:

Newark AFB

Work Order:

Matrix:

4231 Solid

Client's ID:

Prep Blank

Sample Date:

% Moisture:

Lab ID:

Prep Blank

Parameter

-----Results-----

Method

Report Limit

Normal

Date

Analyzed

Alkalinity Moisture

ND NA SM 403(M) **ASTM D2216** 50 .1 mg/Kg CaCO3 08/12/92 % by wt

Units

08/14/92

Hq

NA

EPA 9045

NA

pH Units

08/13/92

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

on Sleaton

INORGANIC QC SUNMARY - MS and MSD

Work Order:

4231

% Moisture:

NA

Lab ID Spk/Dup: QC Batch:

Alkalinity Moisture рĦ Blank Spk 4235.01 4231.03 452.17 451.44 453.22

Matrix:

Solid

Units:

mg/Kg CaCO3 (Alk) & by wt. (Mois)

pH Units (pH)

	Date Analyzed	Unspiked	-Results		RPD	RPD QC	-Conc Add	ed-	Perc Recov	
Parameter	MS/Dup	Sample	MS/Sample	KSD/Dup		Limit	HS	MSD	KS	MSD
Alkalinity	08/12/92	0.00	23100.00	23100.00	0	20	23650.00 2	3650.00	98	98
Moisture pH	08/14/92 08/13/92		11.92 7.78	11.46 7.77	4	20 20				

* or N = Outside QC Limit:

ANALYST: Non Sleator Date 8/19/92 REVIEWER:

File: M1QCMSWM

QC Limits for & Rec:

CASE NARRATIVE WORK ORDER NO. 4231 SOILS - EPA 6010 IRON

The concentration of iron in sample E1V65 was greater than four times the spike added to the MS and MSD samples. The LCS and duplicate LCS results for iron were checked, and the laboratory was found to be in control. All iron results are therefore reported unqualified.

Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference:

CLIENT ID	ABRIDGED ID
N2-V-3'-4'	N2V34
N2-V-8'-9'	N2V89
N1-A-4'-4.5'	N1A445
N-BKG-4.5'-5.0'	NBKG4
N-BKG-8.5'-9'	NBKG859
N1-A-8'-9'	N1A89

METALS DATA PACKAGE

Engineering Science - Berkeley Laboratory Inorganics Report

		INORGANIC	ANALYSES DATA	SHEET	CLIENT SAMPLE II
ab Name: E_S	BERKELEY_I	ABORATORY_	Contract: A	FCEE	N2V34
ab Code: ESB	L Ca	se No.: 42	08S SAS No.		_ SDG No.: E1V65_
atrix (soil/					nple ID: 4231.03
evel (low/me	d): LOW_			Date Re	eceived: 08/11/92
Solids:	_85.	0			
Cor	ncentration	Units (ug/	L or mg/kg as	received	l): MG/KG
	CAS No.	Analyte	 Concentration		и
	7439-89-6	Iron	18000	<u> </u>	_ _ _ P_
				!_	_ _
				-	- -
					_
					[[
				-	_ _
				_	-
					_ _
1					_ _
				_	_
					_ _
					_ _
					_
				_	
mments:					
					_

Engineering Science - Berkeley Laboratory Inorganics Report

INORGANIC ANALYSES DATA SHEET

CLIENT SAMPLE ID

								Navao
ab Name: I	e_s_berke	LEY_LAB	ORATORY_	Contract: A	FCI	EE		N2V89
b Code: E	ESBL	Case	No.: 42	08S SAS No.			SDG	No.: E1V65_
trix (soi	il/water):	soil_			La	ab Sampi	le ID:	4231.04
vel (low/	med):	LOW						08/11/92
Solids:		_83.2						
	Concentra	tion Un:	its (ug/)	L or mg/kg as	rec	ceived):	MG/K	(G
	1	 1	· -	1	1 1			
	CAS N	o. j 1	Analyte	Concentration	С	Q	м	
	7439-	B9-6 II	ron	14200	<u> </u>		P_	
		_			! _ ! ! _ !			
					_			
					_ _		_	
					-		_	
		_			<u> </u>			
					<u> </u>		_	
		_					_	
		_			_		_	
,		_			-		_	
		_			_		<u> </u>	
					_			
		····		**				
nments:								
								-

Engineering Science - Berkeley Laboratory Inorganics Report

		INORGANIC	ANALYSES DATA	SHEET		CLIENT SAMPLE ID
ab Name: E_S_	_BERKELEY_L	ABORATORY	Contract: A	FCEE	l I	N1A445
						SDG No.: E1V65_
atrix (soil/w						ID: 4231.05
evel (low/med): LOW_	_				ved: 08/11/92
Solids:	_81.	8				
Cone	centration	Units (ug/	L or mg/kg as :	recei	ved): 1	MG/KG
	CAS No.	 Analyte	 Concentration		Q M	-
	7439-89-6	 Iron	16400	- -	 P	_
				!_!_ !_!_	_	
·				- -		_
					_	_
				- -	_	
				- -	_	_
				- - - -	_	_ _
					_	- -
				_ _	_	_ _
				- -		_ _
				- -		_
				- -		-
						-
į						-
						
mments:						

Engineering Science - Berkeley Laboratory Inorganics Report

		INORGANIC	ANALYSES DATA	SHE	ET	CLIENT SAMPLE I
ab Name: E_S	SBERKELEY_L	ABORATORY_	Contract: A	FCE:	E	NBKG4
ab Code: ESE	BL Ca	se No.: 42	08S SAS No.	: _		SDG No.: E1V65_
atrix (soil,	/water): SOIL	_		La	b Sam	ple ID: 4231.07
evel (low/me	ed): LOW_	-				ceived: 08/11/92
Solids:	_87.	1				
Co	oncentration	Units (ug/	L or mg/kg as	rec	eived): MG/KG
	CAS No.	 Analyte	 Concentration	C	Q	М
	7439-89-6	Iron	13000	- - - -		_
1				! _ ! - ! _ ! -		_ll _ll
				- -	~-	_
1				<u> </u>		- -
				<u> </u>		_
				- -		
				- -		_
				- -		-
				- -		-[[
						-
						-
				- -		-
				<u>-</u> -		-
	I			_	-	_
						·
mments:						

GC VOLATILES DATA PACKAGE

BTEX CASE NARRATIVE WORK ORDER NO. 4231 BTEX-EPA METHOD 8020

These seven soil samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Methods 8020. ESBL selected compounds and spiking amounts were used for the surrogates and matrix spike/spike duplicates. ESBL QC acceptance criteria were used for the surrogates. ESBL QC acceptance criteria were used for the matrix spike/spike duplicates.

Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference:

ABRIDGED ID

N2-V-4.3'-4.8'	N2V4.3'-4.8'
N2-V-9.0'-9.5'	N2V9.0'-9.5'
N1-A-4'-4.5'	N1A4'-4.5'
N2-C-10'	N2C10'
N-BKG-4.5'-5.0	NBKG4
N-BKG-10	NBKG10
N1-A-8'-9'	N1A8'-9'

CLIENT ID

All samples were analyzed within EPA Data Validation Technical Holding Times.

Two blanks were analyzed with these samples and met method acceptance criteria for surrogates and contamination.

The continuing calibration checks used for quantifying these samples met method acceptance criteria.

All surrogate recoveries were within ESBL acceptance criteria.

Work Order NO.: 4231

% Moisture: 14

Client ID: N2V4.3'-4.8'

Matrix:SOIL

Laboratory ID:4231-01

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:08-12-92 Date Confirmed: NA

 Compound	Result	Reporting Limit
Benzene	ND	1.0
Ethyl Benzene	ND	2.0
Toluene	ND	2.0
Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

Work Order No.: 4231

% Moisture: 26

Client ID: N2V9.0'-9.5'

Matrix:SOIL

Laboratory ID:4231-02

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:08-12-92

Date Confirmed: NA

 Compound	Result	Reporting Limit
Benzene	ND	1.0
Ethyl Benzene	ND	2.0
Toluene	ND	2.0
Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LA

Work Order No.:4231

% Moisture:18

Client ID: N1A4'-4.5'

Matrix: SOIL

Laboratory ID: 4231-05

Level:LOW

Unit:ug/KG

Dilution Factor:

1

Date Analyzed: 08-11-92

Date Confirmed: NA

Compound	Result	Reporting Limit	
			=======
Benzene	ND	1.0	
Ethyl Benzene	ND .	2.0	
Toluene	ND	2.0	
Xylenes (total)	ND	2.0	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

Work Order No.: 4231

% Moisture:21

Client ID: N2C10'

Matrix:SOIL

Laboratory ID: 4231-06

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08-12-92

Date Confirmed: NA

***	Compound	Result	Reporting Limit
	Benzene	ND	1.0
	Ethyl Benzene	ND	2.0
	Toluene	ND	2.0
	Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

Work Order No.:4231

% Moisture:13

Client ID: NBKG4

Matrix:SOIL

Laboratory ID: 4231-07

Level:LOW

Unit:ug/KG

Dilution Factor:

4

Date Analyzed: 08-11-92

Date Confirmed: NA

***	Compound	Result	Reporting Limit
	Benzene	ND	1.0
	Ethyl Benzene	ND	2.0
	Toluene	ND	2.0
	Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LA

GROUP LEADER: how

Work Order NO.: 4231

% Moisture:11

Client ID: NBKG10

Matrix:SOIL

Laboratory ID:4231-08

Level:LOW

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08-11-92 Date Confirmed: NA

Compound	Result	Reporting Limit
Benzene	ND	1.0
Ethyl Benzene	ND	2.0
Toluene	ND	2.0
Xylenes (total)	ND	2.0

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: Russal

ICP SERIAL DILUTION

EPA SAMPLE NO.

- 1			
	E1V65	L	
4	ł c		

ab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE_____

db Code: ESBL___ Case No.: 4208S_ SAS No.: ____ SDG No.: E1V65_

trix (soil/water): SOIL

Level (low/med): LOW___

Concentration Units: ug/L

	1	T	Serial	1	%	1	Ī
	Initial Sample		Dilution	- 1	Differ-		İ
Analyte	Result (I) (Result (S)	C	ence	10	M
Iron	122559.70	-	129770.28	<u></u> ;	5.9	-	P_
		-!!		- -		-	!
		-!!		- -		-	<u> </u>
						1_	
		-!!		-!-!		!-	! —
	-	-!!		- -		-	!—
		-		-		-	¦ —
		_i i		.i_i		i_	i =
		-!!		-!-!		!-	!—
		_[-		-	<u> </u>
		_i i		1_1		<u> </u>	
		_		1_1		i_	
		-!!		- -		!-	<u> </u>
		-¦¦				-	!
		_		illi		-	_
		_		1_1		1_	
	-	-		. -		-	
		-		-		!-	
		-				-	-

13 PREPARATION LOG

a h	Name.	17	S	BEDKELEY	LABORATORY	
a <i>u</i>	Name:	2	J	DUKKULLI	TYDOVYTOKI	

Contract: AFCEE____

b Code: ESBL__ Case No.:_4208S_ SAS No.: ____ SDG No.:E1V65_

thod: P_

EPA			
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(mL)
l			
01MPA7	_08/17/92	1.00	100_
01MPB7	_08/17/92	1.05	100
01SB17	_08/17/92	1.01	100
01VW14	_08/17/92	1.00	100
E1V65	_08/17/92	1.05	100_
E1V65_S1_	_08/17/92	1.00	100
E1V65_S2_	_08/17/92	1.05	100
E1V7	_08/17/92	1.02	100
E1V75	_08/17/92	1.03	100
LCSS	_08/17/92	1.00	100
LCSSD	_08/17/92	1.00	100
N1A445	_08/17/92	1.01	100
N1A89	_08/17/92	1.05	100
N2V34	_08/17/92	1.00	100
N2V89	_08/17/92	1.04	100
NBKG4	_08/17/92		
NBKG859	_08/17/92		100
PREPBLANK	_08/17/92	1.00	100
<u> </u>			
!			
!			
		!	
l			

FORM XIII - IN

ILMO2.1

14 ANALYSIS RUN LOG

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____

ab Code: ESBL__ Case No.: 4208S_ SAS No.: ____ SDG No.:E1V65_

Enstrument ID Number: TJA 61 M_ Method: P_

Rart Date: 08/17/92

End Date: 08/17/92

1		i i		Ī										A	na	ly	te:	5									
EPA		ii		i					.					••		- J		_									
Sample	D/F	Time	% I	1	F		1				1		1		1	1	1	Ī	I	I	Ī	Ī	Ī	1		I	Ī
No.		!!!		!	E		!	!			!		!		1	ĺ	İ	ĺ	İ	į	İ	İ	İ	i i	i	i	i
STD1	1.00	1523			$\overline{\mathbf{x}}$	_	-	<u> </u> _	<u> </u>	<u> </u> -	-	-	<u> </u> _	<u> </u> _	ļ_	-	ļ-	-	_	-	ļ_	-	<u> </u> _	!-!	-!	-!.	_!-
TD2		1528		¦	X	-	-	¦-	¦-	¦-	-	¦ —	¦-	-	¦-	¦-	!-	¦ —	[-	!-	-	-	! —	!!	-!	-1	-!-
TD3		1532			X		-	!-	¦-	¦-	¦-	!-	¦-	!-	¦-	!-	! —		! —	!-	¦ —	!-	—	!-!	-!	- -	-¦-
STD4		1537			X			i –	¦-	¦-	-	¦ —	¦-	¦-	¦	1-	!-	! —	—	-	-	-	! —		-	- -	-!-
cv		1542		i	X	-	-	¦-	!-	i-	1-	!-	¦-	¦-	¦-	-	!-		! —	!-	!-	-	<u> </u>	-	-!	-!.	- -
CB		1546			X	_	_	i –	¦ –	¦-	-	¦ —	¦-	¦-	¦−	¦-	-	-		-	-	! —	-	-	-	- -	-!-
ICSA	1.00				X	-	_	i –	; —	¦−	¦-	¦ —	¦-	¦-	¦-	-	¦ —	!-	¦ —	-	-	-	-	-	-!	-!	-!-
CSAB	1.00	, ,			X	-	_	i –	¦ –	¦-	<u> </u>	¦ —	¦-	¦-	¦ —	-	-	! —	¦ —	! –	-	! —	-		-!	-!-	-!-
RI		1600				-;	_	i-	i-	i –	-	! —	i−	i−	¦-	!-	-	-	-	! —		! !	-	-!	-!	- -	-!-
REP BLK		1605			X	-	_	-	-	¦ —	-	-	-	-	-	-	-	_	-	¦	-	_	-	-	-!	-¦-	-!-
ZZZZZZ		1609				-	_	-	¦ —	¦ —	-	! —	¦-	-	!-	-	-	-	-	!-	-	-	-	-	-!	- -	-!-
css		1614		_	X	-i	_	¦ —	-	-	-	i –	i –	-	-	-	-	-	_	¦ —	-	_	-	-	-	-[-	-!-
cssD	1.00				X	-		-	-	-	-	¦ —	!-	-	-	-	-	-	-	-	-	-	-	-1	-!	[-	- -
E1V65		1623			x	-	_	¦ –	-	-	-	¦ —	-	!-	-	-	_	_	-		-	-	-	-	-!	-	-!-
1V65_S1		1628			X	-	_	-	-	-	-	-	!-	-	-	-	-	-	-	_	-	-		-!		-¦-	-!-
1V65_S2	1.00	•			X		_	-	-	-	-	-	¦ —	-	<u> </u> –	-			_	-	-	-	-	-1	-!	- -	-!-
ccv	1.00				x	-	_	_	-	-	-	-	<u> </u> –	!-	! — ·	-	-	-	-	-	-		-!	-!	-!	-¦-	-!-
CB	1.00				хİ		-	_		-	-	-	-	¦ —	-	-	-	-		_	-		-!	-!	-1	-!-	-!-
1V65L		1646			Χİ	-;	-	-				_	-	-		-	-:	-	-	-	-	!	-!	-	- -	- -	-!-
1V7		1651			хİ	-	-	_			- i	_	<u> </u> –	-	-		_¦	-	-	_	-	-:	-	-!	- -	- -	-!-
1V75		1655			χį	-;	-	-	-	-	-	-		-	-	-	!		-:	-		-!	-!	-		-!-	-!-
2V34	1.00				x l		-	_			-	_	-	-	-	-	-	-		-	-	-	-1	-	- -	- -	-!-
2V89	1.00				X	-1	-;	_			-:	_		-	-	-	-:	-	-:	-	-:	-	-!	-1	-1	-¦-	-¦-
11A445	1.00				X		-		-		-i	_		_	-	- <u> </u>	-	-1	-;	-	-	-	-	-	- -	-¦-	-¦-
BKG4	1.00				X	-	-i		-	-	-i	-	-		-	-	-	-:	-!	-	-	-	-1	-	-¦:	-¦-	- -
BKG859_		1719			хi	-1	-i	_	-	-	-	-	_	_	-	-	-	-	-;	-¦	-	-	-1	-	- -	-¦-	- -
11A89		1723			X I	-i	-	-	-;	-:	-i	-	-		-	-:	-1	-	-;	-	-!	-	-!	-:	-:	-¦-	-!-
cv	1.00				X I	-i	-i	-	-¦	-	-i	-i	-	-	—	-	-¦	-		-	-1	-	-:	-¦	- -	-¦-	- -
СВ	1.00				X	-i	-i	-1	-¦	-i	-1	-		-	-	-	-	-	-:	-:		-!	-1	-:	-¦-	-¦-	-¦-
1VW14	1.00			-	X I		-¦	-1	-¦	-	-1	-	-	-		-	-	-!	-1	-[-[-	-!	-1	-¦·	-!-	-!
1MPA7	1.00				X	-1	-:	-	-	-	-!	-	-¦	!	-	-!	-1	-!	-!	-!	-1	-!	-!	- -	-¦-	- -	-¦-
1MPB7	1.00	, ,			X	-	-	-	-	-	-	-			-	-	-	-	-!	-	-1	-		- -	-¦-	- -	- -
					-	-1	-:	-	-1	-	-	-:	-	-	-	-!	-:	-:	-1	-!	-	-!	-[- -	-¦-	- -	-! —

FORM XIV - IN

14 ANALYSIS RUN LOG

	b	Name:	ES	BERKELEY	LABORATORY
--	---	-------	----	----------	------------

BORATORY_ Contract: AFCEE_____

tart Date: 08/17/92

Code: ESBL__ Case No.: 4208S_ SAS No.: ____ SDG No.:E1V65_

nstrument ID Number: TJA 61 M_ Method: P_

End Date: 08/17/92

EPA														Aı	na.	Lyt	ces	5									
fample	D/F	Time	8	R	F															!						!	Ţ
No.			0		E	l I		 				 												-		- !	-
1SB17	1.00	1751			X	<u> </u>	_	_	-	_	-	_	-	-	-	-		_	-	-	-	_	-	-!	-	-	- -
SA	1.00	1755			X	1_		i_	<u> </u>	<u> </u>		_	i	_	i _ i					i		_		_;	-	-i	- -
CSAB	1.00	1800			X	 	_	1_	_	_	_	_	 _	_						<u> </u>				\equiv i		_i	
RI	1.00	1805			_	!_	_	_	<u> _ </u>	_	_	_	_	_	_		_1		_	_	_	_		\exists			<u>_i</u> .
V	1.00	1809			X		_	_	_	_	_!	_	_	_	<u> </u>	_!	_!	_	_	_	_	_	_	_	_1	$_{I}$	_1.
B	1.00	1814			X	_	_	_	-	-	_!	_	_	<u> </u> _	_	_!	_!	_!	_	_	_	_	_!	_!	_!	_[_[.
					!-	-	-		-	-	-!	_	-	-	-	-	-!		-		-	_	_!	-!	-!	-!	-!-
					¦-	—	-	_	-	-	!	-		-	-	-	-!	-	-	-	-	-	!	-!	-!	-	- -
					-	-		-		-	!	-	-	-	-	!	-	-		-	-	-	!	-!	-	-1	-1
					i –			_	-	_	_i	-			-			-	-	_	-	-	-	-	-1	-¦	-1
					<u> </u>					_i	\equiv i			i	i	_i	_i	i			i	_;	_	-i	-i	-i	- -
·	!				 _	_	_	_	_	_1	_	_1	_	_	_									\equiv i	$\exists i$	Ξi	Ξί.
		!			! _	<u> </u> _		_	_!	_	_!	_	_	_	_	_!	_	_	_	_	_	_	_!	_	_1	_	_1.
	!	!			_	-!	_	_	_!	_	-!	_	_	_!	_	_!	_!	_!	_!	_	_!	_!	_!	_!	_[_!	_!.
					_	_	-!	_	_!	-	-	-!	_	_!	-!	-!	-!	-!	-!	_	-!	-!	-!	-!	-!	-!	_!.
	[_	_		-	-!	-	-!	-!	-!		!	-	-!	-!	-!	-	-!	-!	-!	-!	-!	-!	-!-
						-		-		-	-1	-!	-	¦	-	-	-	-	-	-	-!	-!	-!	-	-!	- -	- -
					-	-	-;	-	-:	-	-1	-;	-¦	-	-¦	-1	-1	-:	-¦	-:	-	-!	-!	-1	-1	-:	-¦-
					i _ i	_i			_		-	-i	_ <u>_</u> i	-i	-	-		-i	-i	-		-i	-		-	-¦	-¦:
					1_1		\equiv i			_i	_i	\equiv i	_i	_i	Ξi	\equiv i	Ξi	=i	_i	_i	i	_i	_i	_i	_i	_i	_i:
<u> </u>		!			_	_	_1	_	_	_	_1	_1	_1	_1				$\exists i$		_i		_1	$\exists i$	_i	_i	_i.	Ξί.
		!			<u> </u>	_!	_!	_[_!	_[_!	_!	_!	_!	_[_	_[_!	_	_!	_	_!	_[_[_	_[.	_[_
	!				-	!	_!	_!	_	_	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_!	_ļ.	_[.
					!-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	_!	-!	_!	-!	-!	-!	-!	-!	-!.	_ -
					-	-!	-!	-	-	-!	-!	-	-	-!	-!	-!	-!	-!	-!	-	-!	-!	-!	-!	-!	- .	- -
					-	-	-!	-	-	-!	-¦	-	-!	-	-	-!	-1	-!	-	-	-!	-!	-!	-	- -	- -	-¦-
	<u> </u>				-	-	-;	-	-	-1	-1	-1	-1	-	-	-1	-¦	-1	-1	-	-	-¦	-!	-	-1	-¦·	- -
					_	i			_i		_	_		-i		_¦	-¦	-i	-;	-	-	-		-¦	-1	-¦·	- -
		i			<u> </u>	\equiv i	\equiv i		\equiv i	\equiv i	=i	Ξİ	\equiv i			_i	_i			i			i	_;	_ _	_i	-i-
1					<u> </u>		\equiv i	_i	\equiv i	_i	_i	Ξi	\equiv i	_i		-i	-i	ī	-i	-i	-i	-i	i	-i	-i	-i	-i-

FORM XIV - IN

ILMO2.1

_	L	!
Q	L	5
Ę		
()		`
_		1
	クロクサウム	

CHAIN OF CUSTODY RECORD

Form No. OO!

Remarks Received by: Received by: (Signature) Containers Page ___ Number Remarks SEND RESULTS TO: 709 402 30185 BOK BRASS RAFS ZHE 1602 Bens 502 208 1605 202 802. 2001 82 Date/Time (BLLMBUS, 04 43201 Date/Time JEFF KITTEL BATTEUE SOS KING AVE SAMPLE TYPE (V) Relinquished by: (Signature) Relinquished by: (Signature) 以も Date/Time roppe DINAPANT × \times Received for Laboratory by: Received by: (Signature) (Signature) 16-8,8-8XB-N N-BKG-455.0 5-5-4-8.57-9 N-BK6-4,5-5,0 N2-V-4,3/-4.8 Received by: N2-V-9.5 (Signature) 54-14-16-18-31-41 SAMPLE I.D. N3- V-3-41 16,8-0 HEAD INGTON 12-6-101 AI-BKG-N-BKG -1700 N-BKG N2-11-NEWARK AFB Date/Time Date/Time Date/Time V2-V 4-14 NAL 10AU692 Project Title SPEGORY TIME Relinquished by: (Signature), Relindurand by: (Signature) Relinquished by: (Signature) SAMPLERS: (Signature) Columbus Laboratories gon CASTEP 64468-0630 3154492 28 30192 2850292 31 344 92 31542 92 01 AUS 92 28 50192 3150192 31 JUL 92 30JUL 92 31 JUL 92 3054 92 28 JUL92 30542 92 28 JUL 92 2850192 DATE Proj. No.

CHAIN OF CUSTODY RECORD

Remarks Received by: Received by: (Signature) (Signature) Containers 10 ło **Иитре**г 图表 1709 1602 Container No. Results Date/Time Date/Time SAMPLE TYPE (V) Sertell Sertell Remarks Relinquished by: (Signature) Relinquished by: (Signature) 9/1/92 ORCS Date/Time Received for Laboratory by: Received by: (Signature) Received by: JON EASTEP (Signature) SAMPLE I.D. -A-8-91 1-A-8-4 -A-8-4 10 AUG 92 1700 Date/Time Date/Time Date/Time NEWAKK Project Title TIME Mand- Huch to Relinquished by: (Signature) Relinquished by: (Signature) elinquished by: (Signature) SAMPLERS: (Signature) Columbus Laboratories 64418-0630 30 50192 30 50192 30 JUL 92 DATE Gres Proj. No.

TOTAL KJELDAHL NITROGEN TOTAL PHOSPHATE SOIL CLASSIFICATION DATA PACKAGE

Engineering Science, Inc. 600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

W.O. #4231 Sample Descript:

Soil

Analysis for:

Total Phosphorous

First Sample #: 208-3076 Sampled:

7/28-31/92

Received: Analyzed: Aug 14, 1992 Sep 11, 1992

Reported:

Sep 15, 1992

LABORATORY ANALYSIS FOR:

Total Phosphorous

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
208-3076	N2-V-3'-4'	10	540
208-3077	N2-V-8'-9'	10	540
208-3078	N1-A-4'-4.5'	10	570
208-3079	N-BKG-4.5'-5.0'	10	480
208-3080	N-BKG-8.5'-9'	10	470
208-3081	N1-A-8'-9'	10	460
-	Method Blank	10	N.D.

THIS REPORT HAS BEEN APPROVED AND REVIEWED BY

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Please Note:

Analysis results reported on a dry-weight basis.

Tod Granicher Project Manager

TOOL

Engineering Science, Inc. 600 Bancroft Way

Attention: Tom Paulson

Client Project ID:

W.O. #4231

Sampled: Received:

7/28-31/92

Berkeley, CA 94710

Sample Descript: Analysis for:

Soil Total Kjeldahl Nitrogen

Analyzed:

Aug 14, 1992 Aug 25, 1992

First Sample #:

208-3076

Reported:

Sep 15, 1992

LABORATORY ANALYSIS FOR:

Total Kjeldahl Nitrogen

Sample Number	Sample Description	Detection Limit	Sample Result
		mg/kg	mg/kg
208-3076	N2-V-3'-4'	10	450
208-3077	N2-V-8'-9'	10	270
208-3078	N1-A-4'-4.5'	10	300
208-3079	N-BKG-4.5'-5.0'	10	730
208-3080	N-BKG-8.5'-9'	10	300
208-3081	N1-A-8'-9'	10	400
-	Method Blank	0.10	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

20078

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

600 Bancroft Way

Berkeley, CA 94710

Attention: Tom Paulson

Client Project ID: W.O. #4231

QC Sample Group: 2083076-81

Reported: Sep 15, 1992

QUALITY CONTROL DATA REPORT

NALYTE	Total Kjeldahl Nitrogen	Total Phosphorous		
Method:	EPA351.4	EPA365.3		
Analyst:	G. Kern	K. Follett		
Reporting Units:	mg/L	mg/kg		
Date Analyzed:	Aug 25, 1992	Apr 11, 1992	• •	
QC Sample #:	208-3154	208-3081		
Sample Conc.:	640	350		
Spike Conc. Added:	4000	100		
Conc. Matrix Spike:	4400	460		
Op ino.	4400	400		
Matrix Spike				
% Recovery:	94	110		
Conc. Matrix				
Spike Dup.:	4400	450		
Matrix Spike				
Duplicate				
% Recovery:	94	100		
Relative				
Relative % Difference:	0.0	2.2		
	0.0	£.£		

SEQUOIA ANALYTICAL

Tod Granicher

Project Manager

% Recovery: Conc. of M.S. - Conc. of Sample x 100 Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

600 Bancroft Way Berkeley, CA 94710 Client Project ID:

W.O. #4231 Soil. N2-V-3'-4' Sampled:

Jul 31, 1992

Sample Descript:

Method of Analysis: ASTM D422-63

Received: Analyzed:

Aug 14, 1992 Aug 26, 1992

Attention: Tom Paulson

Lab Number:

208-3076

Reported:

Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

218.19g 43.98a 79.84%

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in	0.0	0.0	0.0	100
3/8in	5.98	2.7	2.7	97.3
No.4	14.59	6.7	9.4	90.6
No.10	23.31	10.7	20.0	80.0
PAN	0.0			

TOTAL 43.98

HYDROMETER TEST

, EL	APSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
	2	22	39	35	10.6	0.031
	5	22	35	31	11.2	0.020
	.10	22	31	27	11.9	0.015
	15	22	29	25	12.2	0.012
	25	22	27	23	12.5	0.0094
	40	22	25	21	12.9	0.0076
	60	22	23	19	13.2	0.0062
	90	22	22	18	13.3	0.0051
	120	22	21	17	13.5	0.0045
	1440	22	12	8	15.0	0.0014

% SUSPENDED
(P)
44
39
34
31
29
26
24
23
21
10

% CHEDENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65a FORMULAS: 0.975

1

0.01332

R = H - E - F2.65 S = K[SQRT(L/T)]3

P = (R/W) 100 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

CLIENT SAMPLE ID INORGANIC ANALYSES DATA SHEET NBKG859 Lab Name: E_S__BERKELEY_LABORATORY_ Contract: AFCEE____ hb Code: ESBL___ Case No.: 4208S SAS No.: ____ SDG No.: E1V65_ mtrix (soil/water): SOIL_ Lab Sample ID: 4231.09____ Level (low/med): LOW___ Date Received: 08/11/92 Solids: _85.3 Concentration Units (ug/L or mg/kg as received): MG/KG CAS No. | Analyte |Concentration|C| IM I 7439-89-6 | Iron | _____15700 | ___ mments:

FORM I - IN

CLIENT SAMPLE ID INORGANIC ANALYSES DATA SHEET N1A89 Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____ ab Code: ESBL___ Case No.: 4208S SAS No.: ____ SDG No.: E1V65_ atrix (soil/water): SOIL_ Lab Sample ID: 4231.10____ Level (low/med): LOW___ Date Received: 08/11/92 Solids: _86.0 Concentration Units (ug/L or mg/kg as received): MG/KG CAS No. | Analyte |Concentration|C| M 7439-89-6 |Iron___ 14400|_

m	ments:

		Inor	ganics Report			CITEN	T SAMPLE	ΤD
		INORGANIC	ANALYSES DATA	SHE	ET	CHIEN	. ORNEDB	—,
ab Name: E_S	BERKELEY_L	ABORATORY_	Contract: Al	FCE	E	PRE	P BLANK	_
b Code: ESB	L Ca	se No.: 42	08S SAS No.	: _		SDG N	o.: E1V6	5_
trix (soil/	water): SOIL	_		La	b Sampl	e ID:	PREP BLA	NK
vel (low/me	d): LOW_	·		Da	te Rece	ived:	08/17/92	
Solids:	100.	0						
Coi	ncentration	Units (ug/	L or mg/kg as :	rec	eived):	MG/KG		
	CAS No.	 Analyte	 Concentration	 C	Q	м		
	7439-89-6	Iron	4.5	_ U		P_		
				_		_		
1						_ <u> </u>		
						<u> </u>		
				<u> </u>				
						_		
						_		
1								
1								
		l		l l .				
mments:						•		

FORM I - IN

Inorganics Report

CLIENT SAMPLE ID

SPIKE SAMPLE RECOVERY

E1V65 S1

ab Name:	E_S_BER	KELEY_LABORATORY_		Contract:	Al	FCEE	E1V65 \$	31	
ab Code:	ESBL	Case No.:	42	08S SAS N	ο.	sDG	No.: E1	LVe	55_
trix (so	oil/water): SOIL				Level (lov			
		tration Units (ug	/L	or mg/kg dry	W	eight):MG/KG			
Analyte	Control Limit %R	 Spiked Sample Result (SSR)	C	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
ron		18990.9741_ 18990.9741_	- - -	14775.1296	<u> </u>	120.55	_3497.2	_ _	P_
			_		_ -			 	
			_ _		_ _			_ _	
			-¦		_ _ _			_ _ _	
<u>.</u>			_ _		_ _ 			_ _	
					_ _			_ _ _	
			_ _ _		- - -			 - -	
			- -		! — ! —			 - -	
			_ _		_ _				
!	. [i		-		 			-	

m	ments:				

FORM V (Part 1) - IN

inorganics	Report			
		CLIENT	SAMPLE	•

		SPII	ΚE	SAMPLE RECOVERY	7	CLI	ENT SAME	LE	: ID
ab Name:	ES REPA	KELEY_LABORATORY		Contract: 4	ΑF	CEE	E1V65 S	32	j
		Case No.:					No · E1	ı V e	' 55
			7.	one no.	•				
		: SOIL				Level (low	v/mea): 1	JU1	'
Solids f	or Sample Concent	e: _79.0 cration Units (ug	r / I	. or ma/ka dry v	J P	ight):MG/KG			
•	1 1				1	,,			
Analyte		Spiked Sample					& D		
	7.3	Result (SSR)			_			_	M
ron		17178.8038_	 	14775.1296 _ 	_ _	126.58	_1898.9	_ _	P_
			_		-			_	
			_		-i			_	
	[-			_	
			_		-! -!			_ _	
)	 		_ _		_ _			_	
	[_ 		-			_	
	<u> </u>				-i			_	
			_		-¦			_	_
			_		-			=	
	 		 -		_ _			_ _	
					- j			_	
			_		-¦			_	
			_		_			_ _	
mments:								_	
								_	

FORM V (Part 1) - IN

3/90

MATRIX SPIKE DUPLICATE

C	LI	EN	T	S	٨ŀ	1P	L	E	I	D

	MATRIX SPI	IKE DUPLICATE	1
ab Name: E_S_BERKEL	EY_LABORATORY_	Contract: AFCEE	E1V65 SD
b Code: ESBL	Case No.: 4208S	SAS No.:	SDG No.: E1V65_
trix (soil/water):	soil_	Level	(low/med): _LOW
Solids for Sample:	_79.0	% Solids for	Duplicate: _77.6

Concentration Units (ug/L or mg/kg dry weight):MG/KG

	1	1	1	<u> </u>	1	1 1	1 1	
Analyte	Control Limit	Sample Spike (S)	C	 Sample Spike Duplicate (D)	C	RPD	 Q	M
_	i i	i	i	· · ·	i	i i	i~i	ĺ
Iron		18990.9741		17178.8038		10.0	<u> </u> _	P_
	!		-!		-		-	
					-		-	l —
		!i				!	!-!	i —
			-¦		-		-	<u> </u>
					<u> _ </u>		i_i	
		1	_1		1_1	11	1_1	l
			_!		_	!!	<u> _</u>	!
			_!		-		!-!	!
	<u> </u>				-!		-	
	!	}			-		-	i —
			-		-	¦	-	i —
							i -	
					<u> </u>		1_	
					1_1		1_	l
			_		_		_	! —
	<u> </u>		_!		<u> </u>	[!-!	! —
			-!		-	<u> </u>	!-!	<u> </u>
					-	!!	-	
					[-[-	
	ļ ———— [-	<u> </u>	1-1	
	!				-	!	-	i

CLIENT SAMPLE ID

BLANK SPIKE DUPLICATE

			LCSSD
ab Name: E_SBERKE	LEY_LABORATORY_	Contract: AFCEE	
ab Code: ESBL	Case No.: 4208S	SAS No.:	SDG No.: E1V65_
trix (soil/water):	SOIL_	Level	(low/med): _LOW
Solids for Sample:	100.0	% Solids for	Duplicate: 100.0

Concentration Units (ug/L or mg/kg as received):MG/KG

Analyte	Control Limit	Blank Spike (S) C	Blank Spike Duplicate (D) C	 RPD Q	 M
Iron		81.5360	84.1480	3.2	 P
	-			!!!-	.
				¦ }-	¦
					i =
	-	-		<u> </u>	·{ ˈ
	.	-		-	.
				-	
		-		-	
	.			-	
				-	-
	.			-	
					-
				-	<u> </u>

BLANK SPIKE SAMPLE

b Name: E	E_SBERKELE	Y_LABORA	TORY_	Contract	: AFCEE			
ab Code: E	SBL	Case No	.: 42085	SAS No.:		SDG	No.:	E1V65_
lid LCS S	Source: ES	BL-LCSS_	··					
queous LCS	Source:		_					

halyte		eous (ug/I Found	 True	Solid Found C	(mg/kg) Limit	s %R
Iron			100.0	81.5 _	80.0 _	_120.0 _81.5
	.					
•						
			 ii			
4						
			i			
			i	i_		

BLANK SPIKE SAMPLE

b Name:	E_S_BERK	ELEY_LABORATORY_	Contract:	AFCEE		
ab Code:	ESBL	Case No.: 4208S	SAS No.:	SDG	No.:	E1V65_
lid Lcs	Source:	ESBL-LCSS				
ueous L	CS Source:					

halyte	Aque True	ous (ug/I Found	₄) %R	True	Soli Found	d (mg/kg) C Lin	nits	%R
ron				100.0	84.1	80.0	120.0	_84.1
			-			_		
!	.					_		
		•						
1						_		
						_		

600 Bancroft Way

Client Project ID:

W.O. #4231 Soil. N2-V-8'-9'

Sampled: Received: Jul 31, 1992

Berkeley, CA 94710

Sample Descript: Method of Analysis: ASTM D422-63

Analyzed:

Aug 14, 1992 Aug 26, 1992

Attention: Tom Paulson

Lab Number:

208-3077

Reported: Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

198.66g 21.23g 89.31%

TOTAL

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in	0.0	0.0	0.0	100
3/8in	0.0	0.0	0.0	100
No.4	2.57	1.3	1.3	98.7
No.10	18.66	9.4	10.7	89.3
PAN	0.0			

YDROMETER TEST

	ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
"	2	22	40	36	10.4	0.030
	5	22	34	30	11.4	0.020
P	10	22	30	26	12.0	0.015
	15	22	27	23	12.5	0.012
L	25	22	26	22	12.7	0.0095
.L	40	22	24	20	13.0	0.0076
	60	22	23	19	13.2	0.0062
1	90	22	21	17	13.5	0.0052
	120	22	21	17	13.5	0.0045
ıL	1440	22	12	8	15.0	0.0014

% SUSPENDED
(P)
51
42
37
32
31
28
27
24
24
11

O CHICDENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED): DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65g 0.975 2.65 3 0.01332

21.23

FORMULAS: R = H - E - F

S = K[SQRT(L/T)]

P = (R/W) 100 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

TEM .

600 Bancroft Way Berkeley, CA 94710 Client Project ID:

W.O. #4231

Sampled:

Jul 30, 1992

Sample Descript:

Soil, N1-A-4'-4.5' Method of Analysis: ASTM D422-63

Received: Analyzed: Aug 14, 1992 Aug 26, 1992

Attention: Tom Paulson

Lab Number:

208-3078

Reported:

Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

165.19g 16.41g 90.07%

TOTAL

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEAL TOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in	0.0	0.0	0.0	100
3/8in	6.91	4.2	4.2	95.8
No.4	3.40	2.1	6.3	93.8
No.10	6.10	3.7	10.0	90.1
PAN	0.0			

HYDROMETER TEST

	ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
I.	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
	2	22	41	37	10.2	0.030
L	5	22	36	32	11.1	0.020
	10	22	34	30	11.4	0.014
L	15	22	32	28	11.7	0.012
L	25	22	29	25	12.2	0.0083
	40	22	27	23	12.5	0.0074
	60	22	26	22	12.7	0.0061
L	90	22	24	20	13.0	0.0051
L	120	22	22	18	13.3	0.0044
L	1440	22	18	14	14.0	0.0013

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G): SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

05
65g
0.986
2.65
3
1
0.01332

16.41

FORMULAS:

R = H - E - FS = K[SQRT(L/T)]

P = (R/W)100' $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

600 Bancroft Way Berkeley, CA 94710 Client Project ID:

W.O. #4231

Sampled:

Jul 30, 1992

Sample Descript: Soil, N1-A-8'-9'

Method of Analysis: ASTM D422-63

Received: Analyzed: Aug 14, 1992 Aug 27, 1992

Attention: Tom Paulson

Lab Number:

208-3081

Reported:

Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

158.95a 54.27g 65.86%

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEAL TOTAL = (B)

WEIGHT		CUMULATIVE	CUMULATIVE
RETAINED, g	% RETAINED	% RETAINED	% PASSING
0.0	0.0	0.0	100
33.74	21.2	21.2	78.8
8.19	5.2	26.4	73.6
12.34	7.8	34.1	65.9
0.0			
	0.0 33.74 8.19	RETAINED, g % RETAINED 0.0 0.0 33.74 21.2 8.19 5.2	RETAINED, g % RETAINED % RETAINED 0.0 0.0 0.0 33.74 21.2 21.2 8.19 5.2 26.4

TOTAL 54.27

HYDROMETER TEST

	ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
_	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
	2	21	27	23	12.5	0.034
L	5	21	23	19	13.2	0.022
	10	21	20	16	13.7	0.016
L	15	21	19	15	13.8	0.013
L	25	21	18	14	14.0	0.010
L	40	21	17	13	14.2	0.0080
	60	21	16	12	14.3	0.0066
L	90	21	15	11	14.5	0.0054
L	120	21	14	10	14.7	0.0047
L	1440	21	12	8	15.0	0.0014

% SUSPENDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65g FORMULAS: 0.987 R = H - E - F2.65

3

0.01348

S = K[SQRT(L/T)]P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

30EM

600 Bancroft Way Berkeley, CA 94710 Client Project ID:

W.O. #4231

Sampled:

Jul 28, 1992

Sample Descript:

Soil, N-BKG-4.5'-5.0' Method of Analysis: ASTM D422-63

Received: Analyzed: Aug 14, 1992 Aug 26, 1992

Attention: Tom Paulson

Lab Number:

208-3079

Reported:

Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

240.72g 75.65q 68.57%

SIEVE TEST FOR WEIGHT RETAINED IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEALTOTAL = (B)

		MEIGLIT		OLINAL III ATD III	011111111111	
		WEIGHT		CUMULATIVE	CUMULATIVE	
	SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING	
	1½in	0.0	0.0	0.0	100	
	3/8in	34.96g	14.5	14.5	85.5	
	No.4	13.58g	5.6	20.2	79.8	
	No.10	27.11g	11.3	31.4	68.6	
ļ						
Į						
	PAN	0.0				

TOTAL 75.65g

HYDROMETER TEST

ELAPSED TIMI	E TEMP.	HYDROMETER	CORRECTED		PARTICLE
(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
2	22	29	25	12.2	0.033
5	22	26	22	12.7	0.021
10	22	23	19	13.2	0.015
15	22	21	18	13.3	0.013
25	22	19	15	13.8	0.0099
40	22	17	13	14.2	0.0079
60	22	16	12	14.3	0.0065
90	22	15	11	14.5	0.0053
120	22	14	10	14.7	0.0047
1440	22	11	7	15.2	0.0014

(P)
27
24
20
19
16
14
. 13
12
11
8

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65a FORMULAS: 0.982 R = H - E - F2.65

3

0.01332

S = K[SQRT(L/T)]P = (R/W) 100

 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

DE SOL

600 Bancroft Way Berkelev, CA 94710 Client Project ID:

W.O. #4231

Sampled:

Jul 28, 1992

Sample Descript:

Soil. N-BKG-8.5'-9' Method of Analysis: ASTM D422-63

Received: Analyzed: Aug 14, 1992 Aug 27, 1992

Attention: Tom Paulson

Lab Number:

208-3080

Reported:

Sep 15, 1992

PARTICLE SIZE DISTRIBUTION BY SIEVE AND HYDROMETER

SIEVE TEST

(A) TOTAL WEIGHT OF SAMPLE:

(B) WEIGHT RETAINED IN NO. 10 SIEVE:

(C) % PASSING NO. 10 SIEVE:

216.47g 77.90a 64.01%

SIEVE TEST FOR WEIGHT RETAINED

IN NO. 10 SIEVE

IDEAL PAN = 0.0IDEALTOTAL = (B)

	WEIGHT		CUMULATIVE	CUMULATIVE
SIEVE SIZE	RETAINED, g	% RETAINED	% RETAINED	% PASSING
1½in	0.0	0.0	0.0	100
3/8in	28.87	13.3	13.3	86.7
No.4	26.25	12.1	25.4	74.5
No.10	22.78	10.5	36.0	64.0
PAN	0.0			

TOTAL 77.90

HYDROMETER TEST

	ELAPSED TIME	TEMP.	HYDROMETER	CORRECTED		PARTICLE
	(T)	°C	READING (H)	READING (R)	(L)	DIAM. (S)
וי	2	21	36	32	11.1	0.032
	5	21	31	27	11.9	0.021
l	10	21	27	23	12.5	0.015
IL	15	21	25	21	12.9	0.013
	25	21	23	19	13.2	0.0098
٠L	40	21	22	18	13.3	0.0078
IL	60	21	21	17	13.5	0.0064
ľ	90	21	19	15	13.8	0.0053
L	120	21	18	14	14.0	0.0046
L	1440	21	15	11	14.5	0.0014

% SUSPENDED
(P)
32
27
23
21
19
18
17
15
14
11

OU ODENIDED

WEIGHT OF SOIL USED IN HYDROMETER TEST (D): HYGROSCOPIC MOISTURE CORRECTION FACTOR (G):

SPECIFIC GRAVITY (ASSUMED):

DISPERSING AGENT CORRECTION FACTOR (E):

MENISCUS CORRECTION FACTOR (F):

TEMP./SPEC. GRAVITY DEPENDANT CONSTANT (K):

65g FORMULAS: 0.972 R = H - E - F2.65

0.01348

S = K[SQRT(L/T)]3 P = (R/W) 1001 $W = (J \cdot 100) / C$

 $J = D \cdot G$

SEQUOIA ANALYTICAL

adest

ASTM-ASCE GRAIN SIZE

ENGINEERING-SCIENCE

CHAIN OF CUSTODY RECORD

					CHAIN OF CUSTODY	RECORD	
	ES, JOB	OB NO.	PR	PROJECT NAME/LOCATION	PRESERVATIVES	ATIVES REQUIRED	BILLP TO:
	<u>.</u>		. •	4231,	(2)		
	FIELD	FIELD CONTACT:	<u>.</u> .		Come ANALY	BES REQUIRED	
	SAMPLE	SAMPLERS NAMES	بع ⁽	SIGNATURES	E)5,		
	An	In de los	/ //	DELOS TRIMOS	3715 7789410		
			i	1	5840		
	DATE	TIME	FIE	FIELD SAMPLE IDENTIFIER	'_		пемликв
	7/31/92		N2-	N2-V-3-4, 4231.03A		318 3C/C	Report results ordinsail bus.
	1/31/92		N2-1	N2-11-8-9, 4231.0 4A		1 3077	Use MOL'S for reporting units
	7/30/92		1-12	N1-4-4-45' 4231,05B		3078	Report method blank, ms/msp.
	1/28/92		N-6	N-BKG-4,5-5,0, 4231, 78	/ / /	30.79	Normal Bulk TAT.
	7/26/92		N-81	N-BKG-B,5'-9' 4231, 9B)	\	(KOX)	Roort to: Tom Paulson
	7/30/92		N/-6	N1-A-8'-9', 4231,10C		1308	153.10
	,				Phosphorous	Di. EPR 365,3 Dec 100	Doulson
							B
	FIELD C	CUSTODY	RELIN	RELINQUISHED BY:	in dela). DATE: 05/1/192	// /92 тіме:
100	BRIPPED VIA:	VIA:		AIRBILL #	ON RECEIPT:	CUBTODY BEALB?	; TEHP:
Se.	PETVI	LIVED FOR LABORATORY	ABORA	TORY BY:		DATE: 0 //	0 //4/42 TIME: 12:47.0
	and ha	Val					

BERKELEY LABORATORY 600 BANCROFT WAY BERKELEY, CA 94710 Tel: (415) 841-7353

ENGINEERING-SCIENCE, INC.

Report Date: September 23, 1992

Work Order No.:4254

Client:

Jeff Kittle Battelle 505 King Ave.

Columbus, OH 43201

Date of Sample Receipt: 8/19/92

Your soil samples identified as:

N3-V-6'-7' N3-A-2'-3' N3-A-6'-7'

were analyzed for pH, alkalinity, iron, moisture, total kjeldahl nitrogen and total phosphorus.

Finally, your soil samples identified as:

N3-V-7'-7.5 N3-C-7.5'-8 N3-A-2'-3' N3-A-6'-7'

were analyzed for BTEX by EPA Method 8020, TRPH by EPA Method 418.1 and soil moisture.

The analytical reports for the samples listed above are attached.

GC VOLATILES DATA PACKAGE

BTEX CASE NARRATIVE WORK ORDER NO. 4254 EPA METHOD 8020

These four soil and water samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Methods 8020. QAPjP specified compounds and spiking amounts were used for the surrogates and matrix spike/spike duplicates. ESBL QC acceptance criteria were used for the surrogates. ESBL QC acceptance criteria were for the matrix spike/spike duplicates.

All analytes found at concentrations greater than ESBL reporting limits were quantitated on a second dissimilar column.

All samples were analyzed within EPA Data Validation Technical Holding Times.

Four blanks were analyzed with these samples and met method acceptance criteria for surrogates and contamination.

The continuing calibration checks used for quantifying these samples met method acceptance criteria.

All surrogate recoveries were within ESBL acceptance criteria.

92-BT4254CN BTCN-FRM

GC ANALYTICAL REPORT Analytical Method 8020 Aromatic Compounds

Work Order NO.: 4254

% Moisture: 14

Client ID:N3-V-7'-7.5

Matrix:SOIL

Laboratory ID: 4254-02

Level:LOW

Sample wt./vol: 1 G

Unit:ug/KG

Dilution Factor: 5

Date Analyzed: 08/28/92

Date Confirmed: 08/27/92

 Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	3.5
Ethyl Benzene	9	49 D-2.5	2.9
Toluene	ND	7100	4.1
Xylenes (total)	64	220 D-2.5	5.2

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: Rubru

GC ANALYTICAL REPORT Analytical Method 8020 Aromatic Compounds

Work Order No.: 4254

% Moisture: 15

Client ID:N3-A-2'-3'

Matrix:SOIL

Laboratory ID: 4254-04

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08/26/92

Date Confirmed: 08/27/92

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	0.7
Ethyl Benzene	8	. 5	0.6
Toluene	ND	ND	0.8
Xylenes (total)	46	20	1.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: K

Work Order NO.: 4254

% Moisture: 15

Client ID:N3-A-6'-7'

Matrix:SOIL

Laboratory ID: 4254-06

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08/26/92 Date Confirmed: 08/27/92

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	0.7
Ethyl Benzene	ND	·· ND	0.6
Toluene	ND	ND	0.8
Xylenes (total)	1.3	1.9	1.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: Redri

Work Order No.: 4254

% Moisture:

20

Client ID:N3-C-7.5'-8

Matrix:SOIL

Laboratory ID: 4254-07

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08/26/92

Date Confirmed:NA

		•	
 Compound	Primary Result	Confirmatory Result	Reporting Limit

Benzene	ND	ND	0.8
Ethyl Benzene	ND	ND	0.6
Toluene	ND	ND	0.9
Xylenes (total)	ND	ND	1.1

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: MINING

Work Order No.: 4254

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID:MSVG5920824

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:08/24/92 Date Confirmed: NA

Compound	Primary Result	Confirmatory Result	Reporting Limit

Benzene	ND	ND	0.6
Ethyl Benzene	ND	·· ND	0.5
Toluene	ND	ND	Ø.7
Xylenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: Amel

Work Order NO.: 4254

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID:MSVG5920826

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08/26/92 Date Confirmed:NA

Compound	Primary Result	Confirmatory Result	Reporting Limit
			===========
Benzene	ND	ND	0.6
Ethyl Benzene	ND	·· ND	0.5
Toluene	ND	ND	0.7
Xylenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

Work Order No.: 4254

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID:MSVG5920828

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed: 08/28/92 Date Confirmed: NA

Compound	Primary Result	Confirmatory Result	Reporting Limit
Benzene	ND	ND	0.6
Ethyl Benzene	ND	·· ND	0.5
Toluene	ND	ND	0.7
Xylenes (total)	ND	ND	0.9

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

GROUP LEADER: hull

Work Order NO.: 4254

% Moisture:NA

Client ID: METHOD BLANK

Matrix:SOIL

Laboratory ID: MSVG3920827 CONF.

Level:LOW

Sample wt./vol: 5 G

Unit:ug/KG

Dilution Factor: 1

Date Analyzed:08/27/92 Date Confirmed: NA

Compound		Primary Result	Confirmatory Result	Reporting Limit	
1	Benzene	ND	ND	0.6	
1	Ethyl Benzene	ND	ND	0.5	
•	Toluene	ND	ND	0.7	
2	Xylenes (total)	ND	ND	0.9	

ND-Not Detected NA-Not Applicable D-Dilution Factor

ANALYST: LR

600 BANCROFT WAY BERKELEY, CA 94710

SURROGATE PERCENTAGE RECOVERY BTEX AROMATIC COMPOUNDS BY 8020

MATRIX: SOIL

COLUMN ID: VGC5 DB-624

(Primary column)

LAB	OR	ርጥ 4	DΥ	NO
TUD		ת בי	n ı	NU.

a-a-a-TRIFLUOROTOLUENE

MSVG5920824	100
MSVG5920824A	99
MSVG5920824B	98
MSVG5920826	98
4254-04 5G	133
4254-06 5G	120
4254-07 5G	114
MSVG5920828	104
4254-02 1G	120

ES-ENGINEERING SCIENCE, IN		600 BANCROFT WAY BERKELEY, CA 94710
	SURROGATE PERCENTAGE BTEX AROMATIC COMPOUN	
MATRIX: SOIL	COLUMN ID:	VGC3 VOCOL (Confirmatory column)
LABORATORY NO.	a-a-a-TRIFLUOROTOL	uene
	****	**************
MSVG3920827 4254-02 2G	100 99	

98

98

4254-04 5G

4254-06 5G

TOTAL RECOVERABLE PETROLEUM HYDROCARBONS DATA PACKAGE

ORGANIC ANALYTICAL REPORT

Work Order No.: 4254

Parameter: TPH

Matrix: Soil

Unit: mg/Kg

Analytical

Method: 418.1

Date Extracted: 09/03/92

QC Batch NO.: S92QCB022TPH

Date Analyzed: 09/04/92

**********	*******			
Sample ID:	Client ID:	Result	Reporting Limit	Percent Moisture
4254-02 4254-04 4254-06 4254-07 MSTPH920903	N3-V-7'-7.5' N3-A-2'-3' N3-A-6'-7' N3-C-7.5'-8' METHOD BLANK	350 54 68 83 ND	5 5 5 5 5	14.1 14.8 15.2 19.9

NA_ Not Analyzed ND_ Not Detected

ANALYST:

GROUP LEADER:

humi

ORGANIC QUALITY CONTROL RESULTS SUMMARY Blank Spike/Spike Duplicate

Work Order No.: 4254

QC Sample NO.: SSTPH920903A & B Analytical Method: 418.1

Blank I.D.: MSTPH920903

Matrix: Soil

QC Batch NO.: S92QCB022TPH

Unit: mg/Kg

					*=====				==
Parameter	Date Analyzed	BR	SA	BS	PR	BSD	PR	RPD	
TPH	09/04/92						107	0	= =

BS-Blank Spike BSD-Blank Spike Duplicate SA-Spike Added BR_Blank Result NA-Not Applicable NC-Not Calculated ND-Not Detected

RPD=((BS-BSD)/((BS+BSD)/2))*100

PR=((BS OR BSD -BR)/SA)*100

ANALYST:

QUALITY CONTROL:

INITIAL CALIBRATION SHEET HORIER OIL CONTENT ANALYZER

METHOD: 41-8.1
INSTRUMENT SERIES : EXT-5- 920904 .
STANDARDS PREP REF : LAN 281-77 - 01,2,3,4,5
H.O. NO.(E):
RIIN DATE : 09 0/ 92

CALIBRATION DATA STD CONCENTRATIONS IN mg/L

STD 1 = 84.0 STD 2 = 42.0 STD 5 = 21.0 STD $\Delta = 10.0$ STD 5 = 5.0 mg/L mg/L mg/L mg/L

			٧,		V /	
ו. םא יאט	SAMPLE ID	REP 1	KEADINGS REP 2	REP 3	REP 4	I AUG RONG I REP 2-5-4
1	FREON	0	-F	-1		- f
2	std. 1	68	80	82	82	82
3	std 2	48	43	42	42	42
4	Std3	24	21	21		21
5	Std 4	/1	10	10	10	10
6	std 5	6	5	4	4	4
5 09 104 1921	7CB 09/04/92		i			1
.	10 09/04/9	·	l.			
					1	1

CALLERATION CURVE : CONC. FOUND = m(AVG. RONG) - b

WHERE m = SLOPE OF CURVE = 1.013
b = Y INTERCEPT OF CURVE = 0.334

CORRELATION COEFFICIENT OF LINEAR REGRESSION F = 0.9957

IS r WITHIN LIMITS (r > .995) Yess

IF r < .995 REPEAT CALIBRATION WITH FRESH STDS.

COMMENTS	:	

1039/4/4-

CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER

THOD : 418.1				•	WO NO.	(5):	
HSTRUMENT SERIES :	EXT-5				RUN DAT	E : <u>09-0</u>	04-42
ANDARDS PREP REF	V=2		•				
William Fred Rei	•						•
44.9		•	•				
NO L COMPLETE	1 27-133	7	READIN	GS (mg/	L)	AUG RONG	1 71
N NO. 1 SAMPLE ID 401 4267-04	IDILUT	I KEP 1	I REP 2	I REP 3	REP 4	TREP 2+5+4	DIFF.
1000	1	1 4	10	-0		3 2 2 3	
421 6611	1	1 16	119	0		<u> </u>	
3 1	İ	1	1 7 9	20	20		
-44	1	1	1	-		I and the	
					1000 1000	The second second	
461				1	1		1
	1 .					1	1 1
481			·		1		
						m 1,20	
50	. * * * * * * * * * * * * * * * * * * *		the management	1 2 2 20 00		Paramatan Salah Salah	1 . 1
52	1						i i
- 021	1	<u> </u>	-		[·
	 					- •	
			l	<u> </u>	<u> </u>		
			! !	!	!		<u> </u>
1111			1 .	1 .	<u> </u>		<u></u> .
				<u> </u>		The same of the sa	
			SHOWN AND T	250 2544 400	Tagasaye.		
Se town in	7'				** ** * ** ** ***	Maria Maria Maria	
Parameter Carlotte Commence	-1 15-22.		-42 T. Phys.	1 - 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	To anido the end		
The state of the s		And here of Fight in way.		المارين والماريمين			Total and the same of the
		المنتبط المنادسات	SEATER TO	AASTERDEEL			CARCINE STATE
The 197.22 at Transaction (197.2)	There we give	Control of		THE PERMIT	Notice than	建工业社会的企业	. 200 (3 to the 14
			المراكب والمستراكب والمستراكب والمستراكب	A Contract of	1000000	Englishmen ()	
The second second						A Section 18 Company	
por ships					of other or free	The second secon	
Jahren Davidson				-	ا در شدر اد		
701			-			All Market and All States	
						•	
= 7 2				-			
1. FOR CONTINUING THE ROLL OF THE CONCURRE R2 IS THE CONCURRE R2 IS THE CONCURRENCE REPORTED TO THE RESULT OF THE	ENTRAT	ION OF	STD 3 F	ROM THE	INITIA	R1 L CALIBRATI	I O N
- 15 × 15 / 0	CCHLIB	KHIE HN	HLYZER	BEFORE	RUNNING	ANY MORE S	SAMPLES
2. RUN CONTINUIN	KG CALI	ERATION	AFTER	EVERY 1	0 SAMPL	ES .	
COMMENTS :		•					•

CONTINUING CALIBRATION SHEET HORIBA OIL CONTENT ANALYZER

1ETHOD	:	418.1	

WO NO. (s): ____

STRUMENT SERIES : EXT-5- 920904

ANDARDS FREP REF : LNN-288-77-01,02,03,04,05

VERIFICATION STD. LNN- 288-76-01

•								
		1	READIN	GS (mg/	L) i	AUG RONG	Leg	
N NO. I SAME	LE TO TOTLUT	I REP 1	I REP 2	L REP 3	I REP 41	REP 2+3+4	1 2 FER	45/4/4
			1 -1	1 -1	1	-1	1 1	/
8! 10		1 16	20	20	! !	20	959	(20.59 ~5/2
	H 420903	1 -1	1 -1	I		-1	1 10 101	(20.37 7-
· IOI SSTPH		1 36	1 42	43	1 43 1	43		
	120903 BI	1 43	1 43		1	43	1	
121 424	15-01	1 /2	i 7	7	1 7	7	1	
	-02	4	1 1	1	1 1		1	
	-03	1 2	1 2	2	1 1	2	1	
	-04	1 2	1 1	1	1	<u> </u>	1 1	
161 425	4-02	1 63	1 73	74	1 74 1	74	1	
	-04 1	23	1 12	11	1 11 1	11	!	
181	- 06	13	1 14	14	1 1	14		•
I CC		2	1 -/	1-1	-1 1	- 01	1	
201 CC		1 16	20	20	1	20	00	(20.59 ms/
	54-07	17	16	16	16		78	(20.54)/
22 42	88-01: 1	2/	22	22	1 1	22		
	-02	1112	1					
24 IAS 09/04/42	-03 1 1+1	68	63	62	62	62		
1 00		1 7	0	-1	1 -1	-1		
261 cc		16	1 .20	20		20	C	(20.59 ms)
7 IMWTP	49208041	1	101	0	1	20	78	(20.51 /
28 I SWTP 4	920904 A	131	1 36 1	37	37			
SWIDH	azogova	139	139	39				
301 4257	-011	7	1 3	0	101			•
4261	-01	Ò	0	0				
32 4261	-02	0	0		1 1			
4213	-01	10	0	0	i			
341 4213	-03	0	101		1			
4263		0	r2	0	i			
7	- 02 1	0	1 0: 1	0	· · · · · · · · · · · · · · · · · · ·			
+	3 !	0	0	D	1			
381 200		16	18		20			
4267	-04	4	0	0				
4281	-01			2 74	e lau be			-

1. FOR CONTINUING CALIBRATION CHECK ONLY % DIFF = R1-R2 100

RE R1 IS THE CONCENTRATION OF STO 3 FROM THE INITIAL CALIBRATION HERE R2 IS THE CONCENTRATION OF STD 3 FROM THE CALIBRATION CHECK % DIFF IS >15.0 RECALIBRATE ANALYZER BEFORE RUNNING ANY MORE SAMPLES

~	CHILLRI	CONTRIBUTION		•			
۷.	KUN	CONTRIBUTION	CALIBRATION	OFTER	EHERV	1.0	COMELLED
				HI I CK	CACKI	TO	SHULLES

105 9/4/a. COMMENTS :

•	

PAGE __ of __

DATA SUMMARY SHEET HORIBA OIL CONTENT ANALYZER

METHOD = 418.1	WO NO. (s) =
INSTRUMENT SERIES = EXT-5- 920904	RUN DATE = 09/04/2 09/04/
STANDARDS PREP REF : See CA/c/ &	0>4/4/4.

STANDARDS PREP REF = Sec ralshet.

Q C BATCH # = See extract sheet

ANALYST = A - 5 / 05

I ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	I AUG RDNGI	CONC FOUND (mg/L)	EXTRACT VOLUME (mls)	 DILUT	SAMPLE AMOUNT	%	FINAL CONC
MSTPHALO403	-/ 1	-0.68	1 101121	LEACTOR		SOLID	(ms/Kg)
155TPH920903A 1	43	43.88	1		25.01	NA	0
1557949209035	43	43.88		<u> </u>			175.51
1 4245-01	7	7.42		<u> </u>			175.51 V
-01	/	1.35		<u> </u>		80.6	36.8
1 -03	2	2.36		<u> </u>		85.1	6.33
-04	1	1.35				9.5	10.4
- 4254-02	74	75.27	1	<u> </u>		81.1	6.6
-04	11			<u> </u>		85.9	350.5
-06	14	14.51		<u> </u>	951 -	89-585.	53.9
1 -07 1	16	16.54	 	ļ	777	84.8	68.4
4288-01	22	22.61	<u> </u>	ļ		80.1	82.6
-12	62	63.12	<u> </u>			95.0	95.2
1		63.12	<u> </u>	1 2	1	96.8	521.6
						1	
							
			-				
			<u>!</u>			1	
			-				
			 	<u> </u>			
			<u> </u>				
				1			
			<u> </u>				
	<u>_</u>						
					1		

SAMPLE ID SPIKE ADD (mg/Ks	 PERCENT RPD RECOVERY 107 20

105 9/4/a-

COMMENTS :

INORGANICS DATA PACKAGE

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Denver Newark AFB			Work Order Matrix:	r:	4 254 Solid	
Client's ID:	N3-V	N3-V	N3-A	4			
	-6'-7'·	-7'-7.5'	-2'-3'				
	0950	1015	1115				
Sample Date: % Moisture:	08/17/92	08/17/92	08/17/92				
Lab ID:	4254.01	4254.02	4254.03				
					Normal		
ParameterResults		Results		Method	Report Limit	Units	Date Analyzed
Alkalinity	380.	NR	290.	SM 403(M)	50	mg/Kg CaCO3	08/26/92
Moisture	14.6	14.1	10.5	ASTM D2216	.1	% by wt	08/28/92
pН	8.1	NR	7.8	EPA 9045	NA	pH Units	08/28/92

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable ND- Not Detected

NR- Analysis Not Requested

ANALYST:

INORGANICS ANALYTICAL REPORT

Client: Project:	ES-Denver Newark AFB			Work Orde: Matrix:	r:	4254 Solid	
Client's ID	: N3-A -2'-3'	N3-A -6'-7'	N3-A -6'-7'				
Sample Date:	1130 : 08/17/92	1135 08/17/92	1150 08/17/92				
Lab ID:	4254.04	4254.05	4254.06				
Parameter		Results		Method	Normal Report Limit	Units	Date Analyzed
Alkalinity Moisture pH	NR 14.8 NR	280. 11.4 7.8	NR 15.2 NR	SM 403(M) ASTM D2216 EPA 9045	50 5 .1 NA	mg/Kg CaCO3 % by wt pH Units	08/26/92 08/28/92 08/28/92

Note: Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST: Von Sleator

600 Bancroft Way Berkeley, CA 94710

INORGANICS ANALYTICAL REPORT

Client: Project:

ES-Denver Newark AFB Work Order:

Matrix:

4254 Solid

Client's ID:

N3-C

-7.5'-8'

1500

Sample Date:

08/17/92

% Moisture:

Lab ID:

4254.07

-----Results-----

Parameter

Method

Normal Report Units

Date Analyzed

Alkalinity

NR

SM 403(M)

50 .1

Limit

% by wt

mg/Kg CaCO3 08/26/92 08/28/92

Moisture рH

19.9 NR

ASTM D2216 EPA 9045

NA

pH Units

08/28/92

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

NR- Analysis Not Requested

ANALYST:

INORGANICS ANALYTICAL REPORT

Client: Project: ES-Denver

Newark AFB

Work Order:

Matrix:

4254 Solid

Client's ID:

Prep Blank

Sample Date:

% Moisture:

Lab ID:

Prep Blank

Parameter

-----Results-----

Method

Normal Report Limit

Units

Date Analyzed

Alkalinity Moisture

ND NA SM 403(M) ASTM D2216 50 .1

% by wt

mg/Kg CaCO3 08/26/92 08/28/92

pН

NA

EPA 9045

NA

pH Units

08/28/92

Samples for alkalinity analysis were extracted using 10mL water for each 1g sample. These water extracts were analyzed for alkalinity, and the results were calculated in the solid on a dry-weight basis.

NA- Not Applicable

ND- Not Detected

ANALYST:

INORGANICS QC SUMMARY - LAB CONTROL SAMPLE

Work Order:

4254

% Moisture:

NA

Lab ID of LCS:

Alkalinity:

452.20 LCS

Matrix:

Solid

Units:

mg/Kg CaCO3

	Date Analyzed	LCS	Conc	% Rec	Advisory Lim	
Parameter	LCS	Result	Added	LCS	Low H	igh
Alkalinity	08/26/92	22800.00	23650.00	96	80	120

ANALYST: Jon Sleston Date 9/9/92 REVIEWER: ______ Date ____9/10/92
File:M1QCLCSW

08/28/92

INORGANIC OC SUNNARY - MS and MSD

Work Order: 4254 % Moisture: Hλ Alkalimity Moisture рĦ Matrix: Solid Lab ID Spk/Dup: Blank Spk 4254.01 4254.01 QC Batch: 452.20 451.48 453.30 Units: mg/Kg CaCO3 (Alk) t by wt. (Mois) pH Units (pH) Date -----Results----RPD RPD -Conc Added-Percent Analyzed Unspiked QC Recovered Parameter MS/Dup Sample MS/Sample MSD/Dup Limit MSD MS MS MSD Alkalinity 08/26/92 0.00 22800.00 22850.00 0 20 23650.00 23650.00 96 97 Moisture 08/28/92

14.45

8.06

1

1

20

20

14.60

8.11

* or N = Outside QC Limit:

Non Sleator Date 9/09/92 REVIEWER:

QC Limits for & Rec:

75 -125

File: M1QCHSWN

METALS DATA PACKAGE

CASE NARRATIVE WORK ORDER NO. 4254 METALS - SOILS

The concentration of iron in sample N3V6-07 was greater than four times the spike added to the MS and MSD samples. The LCS and duplicate LCS results for iron were checked, and the laboratory was found to be in control. All iron results in this batch are therefore reported unqualified based on matrix spike recovery.

Client ID's were abridged by the laboratory to facilitate computer entry of analytical data. The following should be used as a reference:

CLIENT ID	ABRIDGED ID
N3-V-6'-7'	N3V6-7
N3-A-2'-3'	N3A2-3
N3-A-6'-7'	N3A6-7

		INORGANIC	ANALYSES DATA	SHE	SET	CLI	ENT S	AMPLE	ID
ab Name: E	S BERKELEY I.	ABORATORY	Contract: A	בירי ב	e ne		N 3V6	-7	
						·			
			SAS No.	: -		SDG	No.:	CA40	_
atrix (soil	/water): SOIL	-		Lā	ab Samp	le II	: 425	4.01_	
evel (low/m	ed): LOW_			Da	ate Rec	eived	i: 08/	19/92	
Solids:	_85.	4							
	Concentration	Units (ug	/L or mg/kg dr	Уй	veight)	MG/	'KG		
	CAS No.	 Analyte	 Concentration	 C	Q	M			
	7439-89-6		16900	-		P_			
				<u> </u>					
·									
				_ _		-			
						_[
				<u> </u>					
				_ _					
				-					
•									
				-					
				_					
				_					
				-!					
				-		_			
	·		I		I	'			
			William Committee of the Committee of th						
mments:									

FORM I - IN

INORGANIC ANALYSES DATA SHEET

CLIENT SAMPLE ID

ab Name: E_S	BERKELEY_L	ABORATORY	Contract: A	FCE	E		N3A2-3
			54S SAS No.			- '- s	DG No.: CA40_
	water): SOIL						ID: 4254.03
evel (low/me	d): LOW_	_		Da	te Red	ceiv	ed: 08/19/92
Solids:	_89.	5					
C	oncentration	Units (ug	/L or mg/kg dr	y w	eight)): M	G/KG
	CAS No.	 Analyte	 Concentration	C	Q	M	1
	7439-89-6	Iron	17800			- <u>-</u> P_	<u>!</u>
				- -		-!-	!
				- -		-!-	<u> </u>
				!_!		-	!
				!_! !_!		- -	
				<u> </u>		-	!
							! !
							! !
							f
							1
				— · — ·		-	
				_i_i.		i_	
			———				
nments:							

FORM I - IN

INORGANIC A	NALYSES DATE	A SHEET

		INORGANIC	ANALYSES DATA	SHEET		
h Name. F C	pepvetev t	**************************************	Combinant B	nann	!	N3A6-7
			Contract: A			
ab Code: ESB	L Ca	se No.: 42	54S SAS No.		SDG	No.: CA40
atrix (soil/	water): SOIL	_		Lab Sam	ple ID:	4254.05
evel (low/me	d): LOW_	_		Date Re	ceived:	08/19/92
Solids:	_88.	6				
C	oncentration	Units (ug	/L or mg/kg dr	y weight): MG/K	G
	CAS No.	 Analyte	 Concentration		M	
			14500	I_I	_ _ _ P_	
				-	- -	
					_ _	
				-	- -	
				-	_ _	
					_ _	
					_ _	
					_ _	
					- -	
				-	_	
					_ _	
				_	_ _	
	· · ·			_	_ _	
•				_/	_	
	*****		· 			
				·		
mments:						

FORM I - IN

CLIENT SAMPLE ID

		11101	ganics Reput		CLI	ENT SAM	PLE ID
		INORGANIC	ANALYSES DATA	SHEET			
ab Name: E_S_	BERKELEY_L	ABORATORY_	Contract: A	FCEE	_	PBLANK	
ab Code: ESBL	Ca	se No.: 42	54S SAS No.	:	SDG	No.: C	A40
atrix (soil/w	ater): SOIL	_		Lab Sam	ple ID	: PBK 4	60.94
vel (low/med	l): LOW_			Date Re	ceived	l: 09/01	/92
Solids:	100.	0					
Co	ncentration	Units (ug	/L or mg/kg dr	y weight): MG/	KG	
	CAS No.	Analyte	 Concentration		M		
	7439-89-6	 Iron	8.9	-	_ _ P_		
				-	- -		
•				i	- -		
				-			
				_	_ _		
				_	_ _		
					-		
					_ _		
					-		
				_	_		
					- -		
					· 		
aments:							

FORM I - IN

Indiganics Report			
	CLIENT	SAMPLE	ID
SPIKE SAMPLE RECOVERY			

		SPIRE	SAMPLE RECOVERS			
ab Name:	E_S_BERI	KELEY_LABORATORY_	Contract: A	FCEE	N3V6-78	1
		Case No.: 4:			S No.: CA	40
): SOIL		Level (lo		
	or Sample			20,01 (10)	winea; L	
				-2-1-1 200		
	Concent	tration Units (ug/l	or mg/kg dry w	eight):MG/KG		
Analyte	Control Limit %R	Spiked Sample Result (SSR) C	 Sample Result (SR) C	 Spike Added (SA)	 	Q }
ron		18473.1403_ _				1
						_ _
						- -
						- -
						- -
						_ _
						_ _
						_ _
	[_ _
						-
	 					_ _
						_ _
nments:						_!

FORM V (Part 1) - IN

3/90

SPIKE SAMPLE RECOVERY

CLIENT SAMPLE ID

Solids f	or Sample Concent): SOIL e: _85.4 cration Units (u	a/T	. or ma/ka dry s	ພວ	Level (low	vinea;		"
Analyte	 Control Limit			Sample		Spike	%R		!
ron		20309.9594_	- 1		- 1	ı		İ	ĺ
			! - ! ! - !		-!			- -	_ _
			! _ ! ! _ !		-! -!			_ _	_ _
			_		-			_ _	_ _
			_ _		-			_	
			-		- -			_	
			<u> </u>		-			_	_
			<u> </u>		- -			_	
			-		-¦:			_	_
			_		- :				_
					-! -!.			_	_
					- . - .			_	
			-		- .			-	
			_1		1.			_i	_

MATRIX SPIKE DUPLICATE

CLIENT	SAMPLE	TI
CHIENI	SWILTE	

ab Name: E_S_BERKEI	LEY_LABORATORY_	Contract: AFCEE	N3V6-7SD
ab Code: ESBL	Case No.: 4254S	SAS No.:	SDG No.: CA40
atrix (soil/water):	soir_	Level	(low/med): _LOW
Solids for Sample:	_85.4	% Solids for	Duplicate: _85.6

Concentration Units (ug/L or mg/kg dry weight):MG/KG

Analyte	Control Limit	Sample Spike (S) C	Sample Spike	
Analyce	Limit	Spike (S) C	Duplicate (D) C	RPD Q M
Iron		18473.1403 _	20309.9594 _	9.5_ _P_
				<u> </u>
				·
]			
				- -
		ll _ l		-
		-		
		-		!!_!_

			ICP SERI	AL DILUTION		EPA SAMPLE NO.	_
b	Name:	E_S_BERKEL	EY_LABORATORY_	Contract: A	FCEE	N3V6-7L	_
b	Code:	ESBL	Case No.: 4254	S_ SAS No.	:	SDG No.: CA40	-
t	rix (s	oil/water):	SOIL_		Level	(low/med): LOW	_

Concentration Units: ug/L

ļ		Serial	8	
1	Initial Sample	Dilution	Differ-	1 1
Analyte	Result (I) C	Result (S) C	ence	IQ M
Iron	262482.23 _	289908.36	10.4	_ P_
			.[]	- -
			.	- -
	!			- -
			!!!!	-
			!!!! !!	-
	-			
	<u> </u>			
			¦	-

Engineering Science - Berkeley Laboratory

Method Detection Limits (Annually)

					-		
ab Name:	E_S_BERKE	LEY_LABORA	ATORY_	Contract	AFCEE		
ab Code: :	ESBL	Case No.:	4254S_	SAS No.:		s	DG No.: CA40
CP ID Num	ber:	TJA_61_	м	Date:	09/01/9	2	
lame AA I	D Number :		****	Matrix: S	SOIL_		
urnace AA	ID Number			(ug/L in	1.00g to	100m	l digestate)
	 Analyte		Back- ground		MDL (ug/L)	M	
	l			İ	47.0		
		ii					
						_	
,							
,							
						_	
						_	
						_	
						!	
omments:							

FORM X - IN

ILMO2.

PREPARATION LOG

iab	Name:	$\mathbf{E}_{_}$	_S_	BERKELEY	Z_L	ABOR.	ATORY	
-----	-------	-------------------	-----	----------	------------	-------	-------	--

Contract: AFCEE____

ab Code: ESBL__ Case No.:_4254S_ SAS No.: ____ SDG No.:CA40__

ethod: P_

EPA			•
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(mL)
1			
CA40	_09/01/92	1.61	100
CA60	_09/01/92	1.47	100
CA90	_09/01/92	1.83	100
GA125	09/01/92	1.62	100
GA155	09/01/92	1.53	100
	09/01/92		100
	_09/01/92	1.63	100
	_09/01/92	1.84	100
	_09/01/92	1.87	100
LCSS	[_09/01/92	1.00	100
LCSSD	_09/01/92	1.00	100
N3A2-3	_09/01/92	1.62	100
N3A6-7	_09/01/92	1.88	100
N3V6-7	_09/01/92		
	_09/01/92		
N3V6-7S2_	_09/01/92	1.51	100
PBLANK	09/01/92	1.00	100
	ll		
		1	
		· ·	

FORM XIII - IN

ILMO2.1

ANALYSIS RUN LOG

Lab Name: E_S_BERKELEY_LABORATORY_ Contract: AFCEE____

ab Code: ESBL__ Case No.: 4254S_ SAS No.: ____ SDG No.:CA40__

nstrument ID Number: TJA 61 M_

Method: P_

Start Date: 09/03/92

End Date: 09/03/92

EPA		!	!		-									A	na.	ly	te	S									
Sample	D/F	 Time	 	R	1=	1	1	1		1		1	1		1	1		,		-	_	,	1				
No.	D/I	ITTHE	1 5 1	v	F		!	!	!	!	!	!	!	!	ĺ	!	!	ļ .	!	ļ	!	ļ	!	!		!!	!
		1	! !		10	!	!	!	!	ļ	!		!	!	!	ļ.	!		ļ	!	ļ	ļ .	ļ	ļ	!	!!	
STD1	1 00	1728	¦		- x	!	!-	!-	¦-	!-	! —	! –	!-	<u> </u>	!-	!-	!-	!-	!-	!-	!-	!-	!-	!-	! –	!-!	_!
TD2		1732	¦		X		!-	!-	!-	!	!-	-	!-	!	<u> </u>	! —	! —	!-	!-	!	!-	! —	!-	!-	!-	!-!	-!
STD3		1737	¦		X		<u> </u>	!-	¦	-	¦	! —	!-	¦-	!-	!-	! —	!-	-	!-	!-	! –	!-	!-	! —	-	-!
STD4		1742	i ——		X		!-	!-	¦-	!-	¦ —	!-	!	!-	!-	!-	!-	!	!-	!-	!-	! —	!-	-	! —	! -!	-!
tcv		1746			X		-	¦-	¦-	¦	¦ —	-	!-	!-	!-		!-	!-	!-	-	!-	! —	!-	!-	! —	-	-!
CB		1751			X	<u>:</u> –	¦-	¦-	-	<u> </u>		¦ —	!-	!-	!-	!-	!-	!	!-	!-	!-	! —	!-	!	! —	!-!	-!
ICSA	1.00				X	-	¦-	-	i-	-	-	-	¦ –	-		-	! –	!-	¦ —	!-	!-	¦ —	<u> </u> –	!-	! —	-	-!
CSAB	1.00			•	X	¦-	¦-	i –	!-	-	-	-	: 	-	-		!-	! —	!-	¦-	!-	! —	!-	! —	! —	-	-!
RI		1805			-	¦-	-	¦-	-	-	_	-	-	-	-	¦ —	[-		!-	-	[-	-	<u> </u> –	-	-	-	-!
BLANK	1.00				ΪX	-	!-	i-	-	-	_	-	-	-	-	-	¦-	!	-	<u> </u>	-	—	!-	-	-	-	-!
ZZZZZZ		1814			-	i−	-	i٦	-	-	-	-	-	-	-	¦ —	!-	¦ —	-	-		¦ —	!-	-	-	-	-
css		1819			X	i –	-	i –	i – i		-	-		-	-	-	!-	-	¦-		-		!-	-	-	-!	-!
CSSD		1823			X	-	-	-	-	-	_	_	-	-	-	-	-	-	-	!-		 	<u> </u> —	-	-	-	-!
N3V6-7		1828			X	-	¦ —	i –	-	-	-		-	-	-	-	-	-		-	-	_	<u> </u>	_	-	-	-1
3V6-7S1	1.00				X	-	-	!-	-	-	-		-	-	-	-	-	-	_	-	-	_	-	-	_	i – !	
3V6-782	1.00				X	-		-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-		-!
cvi	1.00				X	-	-	¦ —	-	-	-	-	-	-	-	-	_	_	-		-	_	-	-	-	-	-1
CB	1.00				X	-	-	-	-	-	-	-			-	-	-	_	-	-	-	_	-	-	-	-	-!
3V6-7L	1.00				X	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	_	-	-		!	- -
3A2-3		1855			X	-	-	-			-	-	-	-	-	-	-		-	-	-	-	-	-	-		-!
I3A6-7	1.00				X	-	-	-		-	-	-!	-	-	-	!		-	-	-	-	-			-¦		-!
A40	1.00				X	-	-	-	-		-1	-¦	-:	-!	-!	- <u> </u>	-	-	-		-	-		-!	-!	-!	-!-
A60	1.00				X	-	-	_	-	-¦	-	-	-¦	-1	-				-!	-	-!	-	-		-!	-	-1
A90	1.00				X	-	_		-		-	-:	-!		-:	-!	-	-:	-!	-:	-!		-	-!	-!	-!	-!-
A125	1.00				X	-	-	-	-	-	-¦	-!	-	-!	-	-!	-	-!	-!	-!	-!	-	-	-!	-!	-!	-!-
A155	1.00				X	_	-	-	-:	-1	-:	-¦	-:	-!	-:	-:	-!	-!	-!	-!	-!	-	-!	-!	-!	-!	-!-
CV	1.00				X	-	-	-	-!	-!	-!	-;	-!	-!	-!	-!	!	-1	!	-!	_	-!	-!	-!	-!	-!	-!-
CB	1.00				X	-		-		-	-:	-1	-!	-	-!	!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!-
A180	1.00	,			X	-	-		-!	-!	-!	-!	-	-!	-!	-!	-!	-!	[-!	-!	-!	-!	-!	-!	-!	-!-
A240	1.00				X	-	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!-
A255	1.00				X	-	-	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-	-!	-!	-!	-!	-!	-!	-!	- -	-!-
A2115_	1.00	•			X	-	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!	-!-
		T 2 2 T			ĮΑį	_!	_	_1		_	_!	_!	_1	_!	_1	_	_1	_	-1	_1	_	_1		_1	_1	_	_ _

FORM XIV - IN

ANALYSIS RUN LOG

<u>Lab Name: E_S_BERKELEY_LABORATORY_</u> Contract: AFCEE____

ab Code: ESBL__ Case No.: 4254S_ SAS No.: ____ SDG No.:CA40__

nstrument ID Number: TJA 61 M_ Method: P_

Start Date: 09/03/92

End Date: 09/03/92

EPA					-									Aı	na:	ly	te	5									
Sample No.	D/F	Time	8	R	F						i				ļ							!			Ţ	1	T
İ						<u> </u>	 	_								! 				 		!	! 	<i> </i> 	-	!	1
ICSA	1.00	1955			X		<u> </u>	_		_i				_	i_	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>		<u> </u>		_ _	_ _
ICSAB	1.00	2000			X	!_	[_]	<u> </u> _	_	_	_	_	_	_	_	_	_	_	_	I _	 _	 _	1_1	_	_1.	_ _	_ _
CRI	1.00	2005			.!_	_	<u> </u> _	<u> </u> _ j	_	_	_	_	_	_	_	_	_	_	_	_	1_1	I _	_		_1.	_ _	_ _
ccv	1.00	2009			X	_	<u> </u> _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	 _	 _	_	_1.	_ _	_ _
ССВ	1.00	2014			X	-	_	-	_	-	-	-	_	_	_	-	-	-	-	-	_	_	-	-	-!-	-!-	- -
					1_	<u> </u>	_						_	_	-		_	-	-	-	-	-	-	-	- -	-¦-	- -
					Ϊ_	1_	i _ i			\equiv i	=i				i –				i	-	i – i	-	i	_	-i-	-i-	-i-
					1_		ii							-	i —	i –		_	i – i	_	i – i	_		i	-i-	-i-	-i-
							<u> </u>		<u> </u>	\equiv i	_i			i		i			i	_	i – i	_	i	_	-i-	-i-	-i-
·					1_		1_1			Ξi	\equiv i		i						i	_	i		i	-i	-i-	-i-	-i-
1					1_	_	<u> </u>	_	_	\equiv i	-i				i	i			i		i		i	-i	-i-	-i-	ï
					1_		<u> </u>			Ξİ	\equiv i	-i				<u> </u>	i				i		i	_i	-i-	-i-	-i-
					1_	_	<u> </u>			_i	i	Ī				i			i – i	_	i		i-i	-	-i-	-i-	-i-
					1_					_i		i	Ī			i			Ī		<u> </u>	_		-i		-i-	-i-
					1_		_		_	\equiv i	_i	_i				i	i		Ī		Ī	_		-i	-i-	-i-	ï
1					1_	_	_				_ i	Ī		ı-i		i			i	_			-i	-i	-;-	-i -	-i-
								-i	-i	-i	-i	i	-i	i		_		_		_			i	_i	-i-	-i-	i-
								-i	ī	-i	-i	-i	-i	i i	<u> </u>	-	-i	i		_		-i	_	-	-i-	- i -	1-
					<u> </u>		i	Ξi	-i	Ī	-i	-i	_i	-i		-	-i		i	_	i	-i		T	-i-	-i-	-i-
							Ī	-i	-i	_i	-i	-i	-i	i i	i	_	_		i		i-i	_	_	-i	-i-	-i-	` -
							ī	-i	-i	ī	-i	-i	-i	_;	-		_i	-i	-i		-i	_	-i	-i	-;-	-i-	`i-
								-i	-i	-i	-i		-i	_	-i	-i	-i	-i	-i	_		_	-i	-i	-¦-	-i-	-i-
		i			i		Ī	i	-i	-i	-i	-i	-i	-i	-i	-;	-i	-i	-;	_	-	-;	-i	-i	-¦-	-i-	:i-
					i -		_i	-i	-i	-i	-i	-i		-	-	-i	-i	-i	-i	_	-	-1	-i	-1	-i-	-¦ -	·¦-
					i^{-1}	i	-i	-i	_i	-i	-i	-i		_	-	_	-;	-i		-i	-;	-	-	-;	-¦-	- -	-1-
i					j – i	i – i	-i		-;	-i	-i	-;	-		-	-1	-	-		-	_ <u> </u>	-	-;	-1	- -	- -	1-
		i			i	-	-i	-i	-;	-;	-i	-;	-;	-:	-1	-!	-;	-;	-1	-:	-:	-;	-;	-1	-¦-	- -	:[-
	-				i – i		-¦	_	-1		-¦	-;	-	-	-	-	-	-	-1	-;	-1	-	-	-1	- -	- -	\ <u> </u> -
	i				-	-	-	-;	딕	-:	-;	-;	-!	-:	-¦	-1	-	-:	-1	-1		-!	-;	-1	-¦-	- -	:{-
	i				-	- <u> </u>	-1	-	-;	-;	-¦	-	-1	-1	-	-	-1	-1	-1	-!	-1	-!	-	-1	-¦-	-¦	1-
i ·					-	-	-1	-1	-1	-¦	-¦	-1	-!	-	-!	-!	-!	-	-	-!	-	-1	-!	-1	- -	- -	: -
						-		-1	-1	-1	-[-!	-¦	-!	-	-1	-!	-!	-!	-!	-1	-!	-1	-1	-¦-	- —	· -

FORM XIV - IN

ILMO2.1

TOTAL KJELDAHL NITROGEN TOTAL PHOSPHATE

DATA PACKAGE

SEQUOIA ANALYTICAL

680 Chesapeake Drive • Redwood City, CA 94063 (415) 364-9600 • FAX (415) 364-9233

Engineering Science, Inc. 600 Bancroft Way
Berkeley, CA 94710

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID: Sample Descript:

W.O. #4254 Soil

Analysis for: First Sample #:

% Moisture 208-3559 Sampled:

Aug 17, 1992

Received: Analyzed:

Aug 21, 1992 Aug 24, 1992

Reported: Sep 15, 1992

LABORATORY ANALYSIS FOR:

% Moisture

	mple mber	Sample Description	Detection Limit %	Sample Result %
208-	3559	N3-V-6-7	0.010	17
208-	3560	N3-A-2'-3'	0.010	9
208-	3561	N3-A-6'-7'	0.010	17

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

JOEAL

Tod Granicher Project Manager THIS REPORT HAS BEEN APPROVED AND REVIEWED BY

ESBL PROJECT MANAGER

DATE

Engineering Science, Inc. 600 Bancroft Way

Berkeley, CA 94710 Attention: Tom Paulson Client Project ID:

W.O. #4254

Sampled: Aug 17, 1992

Sample Descript: Analysis for:

Soil Total Kjeldahl Nitrogen

Received: Aug 21, 1992 Analyzed: Aug 27, 1992

First Sample #:

208-3559

Reported: Sep 15, 1992

LABORATORY ANALYSIS FOR:

Total Kjeldahl Nitrogen

Sample Number	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
208-3559	N3-V-6'-7'	20	240
208-3560	N3-A-2'-3'	20	240
208-3561	N3-A-6'-7'	20	110
-	Method Blank	0.10	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

JELL_

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

Engineering Science, Inc. 600 Bancroft Way

Client Project ID:

W.O. #4254

Sampled:

Aug 17, 1992

Berkeley, CA 94710

Sample Descript: Analysis for:

Soil **Total Phosphorous** Received: Analyzed: Aug 21, 1992 Sep 12, 1992

Attention: Tom Paulson

First Sample #:

208-3559

Reported:

Sep 15, 1992

LABORATORY ANALYSIS FOR:

Total Phosphorous

	nple nber	Sample Description	Detection Limit mg/kg	Sample Result mg/kg
208-	3559	N3-V-6'-7'	10	270
208-	3560	N3-A-2'-3'	10	300
208-	3561	N3-A-6'-7'	10	210
	-	Method Blank	10	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

ZOELL

Tod Granicher Project Manager Please Note:

Analysis results reported on a dry-weight basis.

2083559.ENG <3>

Engineering Science, Inc. 600 Bancroft Way Client Project ID: W.O. #4254

Berkeley, CA 94710 Attention: Tom Paulson

QC Sample Group: 2083559-61

Reported: Sep 15, 1992

QUALITY CONTROL DATA REPORT

Total Kjeldahl	Total	
Nitrogen	Phosphorous	% Moisture
		EPA160.3
		Y. Arteaga
		%
		Aug 24, 1992
208-2430	208-3561	208-3560
49	210	9
4000	100	N.A.
3600	330	N.A.
3000	330	N.A.
89	120	N.A.
0000		_
3600	350	8
89	140	N.A.
	-	- •••
0.0	5.9	12
	Nitrogen EPA351.4 G. Kern mg/kg Aug 27, 1992 208-2430 49 4000 3600	Nitrogen Phosphorous EPA351.4 G. Kern EPA365.3 K. Follett mg/kg Aug 27, 1992 208-2430 Sep 12, 1992 208-3561 49 210 4000 100 3600 330 89 120 369 140

SEQUOIA ANALYTICAL

Tod Granicher Project Manager

% Recovery:	Conc. of M.S Conc. of Sample Spike Conc. Added	x 100	
Relative % Difference:	Conc. of M.S Conc. of M.S.D.	x 100	
	(Conc. of M.S. + Conc. of M.S.D.) / 2		

2083559.ENG <4>

Ballelle Engineering Science BOIS NO, DE 268,03 Columbus Laboratories

Form No.

Proi No	Design of the second					
			SAMPLE TYPE (V)	rPE (√)		
	NEWARK AFB		EM		T	
SAMPLERS:(Signature) A Bush	Hendixh	}	A THE THE		net No. Imber of tainers	
DATE TIME)	4	1/0/		PΝ	
	N3-1-6	1 April 8/21	-ot			Remarks
17 Aub 1997 7:5	5- W3-V-1	-3/	7		-	33803 677
17 Aub 92 2023	D N3-1-6	-71	7			
		-7.5	+			2012 Jos. 6
17AU692 1115	N3-A-2	-5,	7 7 7			AARS TUPE
17 Aub92 1115	N3- A-2	2'-3'	7		-	112 Gans
17AUG92 1130	M3- A-	-31				26 1
7 AUG 92 1135	N3-A-6"	1 / 1	7		-	6/455 / UBC
17 Aubaz 1135	N3-A-6	1/-	7		,	403 glaro
7 AUG 92 1150	N3- A-6'	11-				100 0 10
17 AUG 92 1500	13-6-	78-,52	1		,	Ries turk
					-	Hay tubb
		ts.				
•						Doll mitune
						to all samoles
						per Tearing Stark
						T Paulsas
Relinquished by: (Signature)	Date/Time	Received by: (Signature)		Date/Time	Received by:	
Jours of Haby	11 18 AUG 72 0834				(Signature)	
Relinquistred by: (Signarure))	Received by: (Signature)	Relinquished by: (Signature)	Date/Time	Received by: (Signature)	
Relinquished hv. (Cianatura)	1					
	Date/lime	(Signature)	by: Date/Time Remai	Result HEL	9-7°	TEMP.50
				-d	Page (

10

ENGINEERING-SCIENCE CHAIN OF CUSTODY RECORD

BHIP TO:				Sus-out	REMARKS	9 16 02 (Solid) JAN	0	7	Use MOUS for report,	units Reavet mettation.	MS/MSD. 2 WK TAI	Bernt 16: Town Pauls	K58L.		8 14 192 TIME:	; TEMP: OC	SANIPOTINE: 11.20 1
VES REQUIRED		3 REQUIRED		graff.	in	X 208 355	3 × ×) ×							DATE:	CUBTODY BEALS?	DATE:
PRESERVATIVES		NNALYBES		(15 g d 59 Y 145(7) 20,		X X 4254-12	X X 4254-3B	XX 924-SB							The state of the s	ON RECEIPT:	
PROJECT NAME/LOCATION	1.0.4 4254	Lyde Mar Same	SIGNATURES		FIELD SAMPLE IDENTIFIER	13-1-6-7	13-4-21-3								CUBTODY RELINQUIBHED BY:	AIRBILL #	ORATORY BY:
ES JOB NO.	14	FIELD CONTACT:	SAMPLERS NAMES &		DATE TIME F1	8/7/45/800 A	1115							1	ELD	SHIPPED VIA:	DECETVED FOR LABORATORY

APPENDIX C FACILITY 27 SOIL GAS PERMEABILITY DATA

Table C-1. Results of Soil Gas Permeability Test at Monitoring Point NI-MPA

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H,O) by Depth	epth
Time (min)	4.0′	6.5′	9.0′	Time (min)	4.0′	6.5′	9.0′
0	0			14	0.015	1.22	1.23
	0>	1.24	1.25	16	0.005	1.22	1.23
2	0.01	1.25	1.25	18	0.005	1.23	1.23
3	0.015	1.25	1.25	20	0.005	1.23	1.23
5	0.65	1.23	1.24	22	0.005	1.24	1.00
9	1.00	1.24	1.24	24	0.005	1.24	1.00
7	0.064	1.00	1.20	27	0.005	1.23	1.00
8.25	0.85	1.22	1.23	30	0.005	1.22	1.22
9.25	0.85	1.22	1.22	33	0.005	1.23	1.21
12	0.11	1.22	1.22	36	0	1.235	1.21

Table C-1. Results of Soil Gas Permeability Test at Monitoring Point N1-MPA (Continued)

		Pressure ("H ₂ O) by Depth	1
Time (min)	4.0′	6.5′	9.0′
39	0	1.23	1.21
42	0	1.24	1.215
45	0	1.235	1.22
48	0	1.24	1.225
51	0	1.235	1.22
54	0	1.24	1.23
57	0	1.24	1.23
60	0	1.24	1.23
65	0	1.24	1.23
70	0	1.25	1.22
75	0	1.25	1.25
85	0	1.25	1.25
95	0	1.25	1.25
115	0	1.25	1.25

Table C-2. Results of Soil Gas Permeability Test at Monitoring Point N1-MPB

	Pres	Pressure ("H2O) by Depth)epth		Press	Pressure ("H ₂ O) by Depth	epth
Time (min)	4.0′	6.5′	9.0′	Time (min)	4.0′	6.5′	9.0′
0	0.01	0.01	0	12	0	0.128	0.13
1	0.02	0.14	0.145	14	0	0.132	0.137
2	0.015	0.14	0.145	16	0	0.135	0.135
3	0.005	0.135	0.140	18	0.005	0.125	0.13
4	0.005	0.14	0.14	20	0	0.132	0.135
5	0.002	0.135	0.135	23	0.003	0.125	0.127
9	0	0.125	0.125	26	0	0.13	0.13
7	0>	0.125	0.125	29	0.002	0.13	0.132
∞	0>	0.120	0.127	32	0.005	0.13	0.13
6	0>	0.123	0.125	35	0	0.13	0.132
10	<0>	0.127	0.13	38	0.01	0.138	0.14

Table C-2. Results of Soil Gas Permeability Test at Monitoring Point N1-MPB (Continued)

	I	Pressure ("H ₂ O) by Depth	1
Time (min)	4.0′	6.5′	9.0′
41	0.005	0.125	0.127
44	0	0.13	0.135
47	0	0.125	0.135
50	0	0.13	0.13
60	0	0.135	0.135
70	0.005	0.135	0.135
80	0.02	0.13	0.13
90	0.013	0.13	0.13
100	0.01	0.13	0.13
110	0.02	0.137	0.137
120	0.015	0.135	0.135

Table C-3. Results of Soil Gas Permeability Test at Monitoring Point NI-MPC

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H,O) by Depth	epth
Time (min)	2.7′	5.0′	8.0′	Time (min)	2.7′	5.0′	8.0′
0	0>	0>	<0>	21	0>	0>	0>
1	0>	0>	<0	26	0>	0>	0>
1.5	<0>	0>	<0	36	0>	0>	0>
2	<0>	0>	<0	41	0>	0>	0>
2.5	<0>	0>	<0	46	0>	0>	0>
3	0>	0>	<0>	26	0>	0>	0>
4	<0>	0>	<0	99	<0>	0>	0>
9	<0>	<0>	<0>	76	0>	0>	0>
8	0>	0>	<0	106	<0	0>	0>
10	<0>	0>	<0	136	0>	0>	0>
12	<0>	0>	<0				
14	<0>	0>	<0				
16	0>	0>	0>				

APPENDIX D FACILITY 27 IN SITU RESPIRATION TEST DATA

Figure D-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPA-6.5'

Figure D-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPA-9.0'

Figure D-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-6.5'

Figure D-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N1-MPB-9.0'

APPENDIX E FACILITY 89 SOIL GAS PERMEABILITY DATA

Table E-1. Results of Soil Gas Permeability Test at Monitoring Point N2-MPA

	Press	Pressure ("H ₂ O) by Depth	epth		Press	Pressure ("H,O) by Depth	epth
Time (min)	2.0′	4.5′	7.0′	Time (min)	2.0′	4.5′	7.0′
0	0>	0>	<0	25	0.045	0.32	0>
1	0	0.35	<0	30	0.015	0.34	0>
3	0	0.35	<0	35	0	0.34	0>
4	<0>	0.35	<0	45	0	0.35	0>
9	0.002	0.35	<0	55	0>	0.35	0>
6	0.03	0.35	<0>	\$9	0>	0.36	0>
10	0.07	0.35	<0	85	<0>	0.35	0>
12	0	0.30	<0	105	0	0.33	0>
15	<0>	0.32	0>				
20	0>	0.35	<0>				

Table E-2. Results of Soil Gas Permeability Test at Monitoring Point N2-MPB

Time (min)	Pressu	Pressure ("H2O) by Depth	pth		Press	Pressure ("H2O) by Depth	epth
	5.0′	7.5′	10.0′	Time (min)	5.0′	7.5′	10.0′
0	0	0	0	10	0.031	0.030	0.030
0.5	0.020	0.016	0.015	11	0.032	0.030	0.030
	970.0	0.029	0.029	12	0.035	0.030	0:030
2	0.030	0.029	0.028	13	0.034	0.024	0.020
3	0.030	0.029	0.025	14	0.020	0.011	0.010
4	0.030	0.029	0.025	15	0.024	0.019	0.015
5	0.030	0.029	0.026	16	0.023	0.020	0.019
9	0.031	0.030	0.024	17	0.022	0.021	0.016
7	0.021	0.019	0.015	18	0.025	0.020	0.015
&	0.029	0.026	0.026	19	0.024	0.021	0.017
6	0.029	0.029	0.025	20	0.023	0.019	0.015

Table E-2. Results of Soil Gas Permeability Test at Monitoring Point N2-MPB (Continued)

]	Pressure ("H ₂ 0) by Depth	
Time (min)	5.0′	7.5′	10.0′
25	0.025	0.025	0.022
30	0.025	0.025	0.022
35	0.025	0.025	0.020
45	0.029	0.025	0.020
55	0.029	0.029	0.029
65	0.029	0.026	0.026
85	0.019	0.019	0.015
105	0.019	0.019	0.015

Table E-3. Results of Soil Gas Permeability Test at Monitoring Point N2-MPC

Time (min)	Pressure ("H ₂ O) by Depth (4.7")	Time (min)	Pressure ("H,O) by Depth (6.5')	Time (min)	Pressure ("H ₂ O) by Depth (9.0')	Time (min)	Pressure ("H ₂ O) by Depth (4.7')	Time (min)	Pressure ("H ₂ O) by Depth (6.5')	Time (min)	Pressure ("H ₂ O) by Depth (9.0')
0	0>	0	0>	0	0>	18:38	0>	19:38	0>	19:59	0>
0.3	0>	0.3	0>	0.3	<0>	20	0>	20	0>	20	0>
1:58	0>	2:23	0>	3:07	<0	30	0>	30	0>	30	0>
3:57	<0>	4:24	0>	4:54	<0>	40	0	40	0	40	0>
5:40	0>	90:9	<0>	6:33	<0>	50	0	50	0	20	0>
7:18	<0>	7:38	0>	7:59	<0>	09	0	09	0	09	0>
8:38	0>	9:10	<0>	9:38	<0>	08	0	80	0	08	0>
10:20	<0>	10:47	0>	11:25	0>	100	0	100	0	100	0>
12:05	<0	12:50	0>	13:17	0>						
14:10	<0	17:14	0>	17:46	<0>						

APPENDIX F FACILITY 89 IN SITU RESPIRATION TEST DATA

Figure F-1. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPA-7.0'

Figure F-2. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPB-7.5'

Figure F-3. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPB-10.0'

Figure F-4. Oxygen Utilization and Carbon Dioxide Production During the In Situ Respiration Test at Monitoring Point N2-MPC-6.5'