Application for 2-Wheeler Rider Risk Estimation

Problem Statement

The "2-Wheeler Rider Risk Estimation" app calculates a real-time risk score based on rider data like lean angle and cumulative speed. It helps identify high-risk scenarios to enhance safety and reduce accidents.

Importance of the Problem

Enhance rider safety by reducing accidents in high-risk scenarios such as

- Skidding
- Collisions, and
- Loss of control.

Identify, quantify, and mitigate factors contributing to risky driving patterns using real-time feedback.

Provide insights based on lean angle and cumulative speed to help riders make safer decisions.

Address the growing need for improved safety measures in two-wheeler transportation.

Objectives

- Tilt estimation
- Risky driving pattern detection
- Application Design

Project Flow

Methodology

Feature Extraction:

Compute physical metrics (pitch and roll) based on accelerometer data

Kalman Filter Implementation

Lean Angle and Clustering

Cumulative Lean Angle

Clusters

Functioning of the App

Snapshots of the App

Backend Preview - Python Server

Backend Preview - Firebase

Challenges

- Real-Time Data Accuracy
- Variability in Riding Styles
- Dynamic Environmental Factors

Future Plans

- Weather-Integrated Risk Adjustment
- Terrain and Elevation Analysis
- Traffic-Aware Risk Assessment
- Insurance comapnies using it to determine premiums