TD $n^{\circ}1$: Séries entières, exponentielle, équations de droites et cercles et théorème de Napoléon

Dans tous les exercices, on dit identifie \mathbb{C} à un plan affine réel P.

Exercice 1. Déterminer le rayon de convergence des séries entières suivantes :

$$\sum_{n\geq 0} \frac{n^n}{n!} z^n, \quad \sum_{n\geq 0} n^n z^n, \quad \sum_{n\geq 0} \frac{(2n)!}{(n!)^2} z^n, \quad \sum_{n\geq 1} \left(1 + \frac{1}{n}\right)^{n^2} z^n.$$

Exercice 2. Soit $k \in \{0, 1, 2\}$ et considérons la série entière

$$\sum_{n>1} \frac{z^n}{n^k}.$$

Calculer le rayon de convergence R_k de cette série en fonction de k et montrer que pour k = 0 (resp. k = 1, k = 2) la série diverge sur le cercle de rayon R_0 (resp. converge en certains points du cercle de rayon R_1 , converge en tout point du cercle de rayon R_2).

Exercice 3.

1. Soit $\sum u_n z^n$ une série entière. Montrer que son rayon de convergence est non nul si et seulement s'il existe q > 0 tel que

$$\forall n > 1, |u_n| < q^n.$$

- 2. Soit maintenant une série entière $1 + \sum_{n \geq 1} a_n z^n$ de rayon de convergence non nul et notons S sa somme sur son disque de convergence. Montrer que la fonction 1/S est développable en série entière au voisinage de l'origine.
- 3. En déduire que l'inverse de la somme d'une série entière ne s'annulant pas en 0 est développable en série entière au voisinage de 0.

Exercice 4. On note exp la fonction exponentielle définie sur \mathbb{C} par : $\exp(z) = \sum_{n \geq 0} \frac{z^n}{n!}$

- 1. Montrer que exp est une fonction continue.
- 2. Montrer que pour tout z, z' dans \mathbb{C} , $\exp(z'+z) = \exp(z)\exp(z')$.
- 3. Montrer que exp est dérivable de dérivée $z \mapsto \exp(z)$.

Exercice 5. Le but de cet exercice est de déterminer l'équation complexe d'une droite D de P passant par deux points A et B fixés.

- 1. On note respectivement a et b les affixes de A et B. Soit M un point d'affixe z distinct de A et de B.
 - (a) Montrer que M est sur la droite D si et seulement si $(z-a)(\overline{z}-\overline{b})$ est réel.
 - (b) En déduire qu'il existe $\beta \in \mathbb{C}$ et un $\gamma \in \mathbb{R}$ tels que $M \in D$ si et seulement si $\overline{\beta}z + \beta \overline{z} + \gamma = 0$.
- 2. Retrouver la caractérisation précédente de D à partir d'une de ses équation cartésienne.

Exercice 6.

1. On considère dans \mathbb{C} l'équation $\alpha z\overline{z} + \beta \overline{z} + \overline{\beta}z + \gamma = 0$ avec α et γ réels. Décrire géométriquement l'ensemble des solutions de cette équation dans les cas suivants :

(a)
$$\alpha = \beta = 0$$
 (b) $\alpha = 0$ (c) $\alpha \neq 0$

2. Soit λ un nombre réel positif. Décrire géométriquement l'ensemble $E_{\lambda} = \{z \in \mathbb{C} : |z - a| = \lambda |z - b|\}.$

Exercice 7. Soient A, B, C trois points de P d'affixes respectives a, b, c. Montrer que les trois assertions suivantes sont équivalentes :

(a)
$$ABC$$
 est équilatéral (b) $\frac{c-a}{b-a} = e^{i\pm\frac{\pi}{3}}$ (c) $aj^2 + bj + c = 0$ ou $aj^2 + b + cj = 0$

Exercice 8. Soient $\lambda \in \mathbb{R}$ et A, B deux points du plan. Déterminer l'ensemble des points M du plan tels que $\left\langle \overrightarrow{AM}, \overrightarrow{BM} \right\rangle = \lambda.$

Exercice 9. Soient
$$A$$
 le point d'affixe $1+i$ et B le point d'affixe $-1+2i$. Déterminer l'ensemble des points M de P tels que le triangle ABM soit équilatéral.

Exercice 10.

- 1. Donner l'équation complexe du cercle C_1 de centre 2+i et de rayon $\sqrt{5}$. Même question avec le cercle C_2 de centre 3i et de rayon 1. Déterminer l'intersection $C_1 \cap C_2$.
- 2. Donner l'équation complexe de la droite \mathcal{D} passant par les points d'affixes α et β .
- 3. Notons \mathcal{C} le cercle de centre 1+i et de rayon 1 et \mathcal{D} la droite passant par les points d'affixes 1 et i. Déterminer les images de \mathcal{C} et \mathcal{D} par chacune des transformations suivantes
 - (a) $f: z \mapsto \sqrt{2}(1-i)z + i$,
 - (b) $g: z \mapsto (1+i)\overline{z+i}$.
- 4. Fixons $\omega \in \mathbb{C}^{\times}$ et $k \in \mathbb{R}$. Trouver l'équation complexe des droites orthogonales à la droite d'équation $\omega \overline{z} + \overline{\omega} z = k$.

Exercice 11. (Théorème de Lagrange-Napoléon)

Soient trois points A, B et C deux à deux distincts de P, d'affixes respectifs a, b et c. Considérons des points X, Y et Z tels que les triangles BXC, CYA et AZB soient équilatéraux et d'orientations toutes opposées ou toutes égales à celle du triangle ABC. Notons enfin L (resp. M, N) l'isobarycentre de B, X, C (resp. de C, Y, A, de A, Z, B).

- 1. Montrer que ABC et LMN ont même centre de gravité.
- 2. Que pouvez-vous dire du triangle LMN?