TD: matrices creuses

- (*) très facile (1-4 lignes), (**) moyen, (***) des subtilités On rappelle les trois formats principaux de matrices creuses.
- COO format triplet ou coordonnées. On stocke des triplets valeur, colonne, ligne. Pratique pour construire une matrice creuse. Sinon, inefficace.
- CSR format ligne compressée. Il utilise trois tableaux: le tableau data des valeurs de taille n_{nz} , le tableau indices de taille n_{nz} qui contient la colonne de chaque valeur, le tableau indptr de taille nombre de lignes+1, qui stocke le numéro du premier élément dans sa ligne.

CSC format colonne compressée. Même principe que CSR, mais par colonne.

Exercice 1 : Opérations sur matrices CSR

- 1. (*) Somme des lignes: Ecrire une fonction sumRow(A,i) pour sommer tous les coefficients de la ligne i d'une matrice A codée en CSR.
- 2. (*) ou (**) Chercher la valeur d'un élément: Ecrire une fonction at(A,i,j) qui retourne la valeur du coefficient A_{ij} (A CSR).
- 3. (**) Produit matrice CSR / vecteur: Ecrire la fonction $\operatorname{produit}(A, \mathbf{v})$, qui réalise le produit $A\mathbf{v}$, où A est une matrice CSR, \mathbf{v} un vecteur de taille n.
- 4. (*) Coût de stockage: Dans l'exemple du système masse-ressort, quel serait le coût de stockage de la matrice A pleine? Même question si elle est stockée sous forme CSR? Si nous avons 10000 ressorts, que les nombres à virgule flottante sont codés en 64 bits (double) et que les indices sont codés par des entiers 32 bits, évaluez le coût mémoire réel de ces deux codages de matrice.
- 5. (*) Calcul de la norme ∞ d'une matrice CSR. Quel est la complexité de cette fonction ? Serait-ce plus compliqué de calculer la norme 1 sur ce type de matrice ?

Exercice 2 : Systèmes triangulaires avec matrice creuse

On suppose que L est une matrice triangulaire inférieure $n \times n$ représentée creuse en format CSR, avec n_{nz} coefficients non nuls.

- 1. (*) Ecrivez la fonction is LowerTriangular(L) qui retourne vrai si et seulement si la matrice L est bien triangulaire inférieure. Quelle est sa complexité en fonction de n et/ou n_{nz} ?
- 2. (**) Ecrivez la fonction solve LowerTriangular(L, b) qui retourne le vecteur solution \mathbf{x} au système $L\mathbf{x} = \mathbf{b}$.

Exercice 3: Conversion vers ou de matrice CSR

1. (***) Conversion COO vers CSR: Ecrire une fonction tocsr(A) qui convertit la matrice A de format COO en une matrice au format CSR.

Exercice 4: Opérations sur matrices CSC

1. (**) Peut-on écrire un algorithme de produit matrice/vecteur aussi efficace entre une matrice stockée en mode CSC (colonne compressée) et un vecteur ? Ecrivez son pseudo-code et donnez sa complexité.

- 2. (**) Produit matrice CSR avec matrice CSC.
- 3. (**) Conversion matrice CSR vers COO, puis COO vers CSC.

Take-away message_

- La plupart des problèmes d'algèbre linéaire que l'on doit résoudre en pratique comportent des matrices creuses, où peu de coefficients par ligne/colonne sont différents de zéro.
- Les représentations CSR (compressed row format) et CSC (compressed column format) sont des représentations efficaces de matrices creuses, avec un coût mémoire proportionnel au nombre de coefficients non nuls.
- Beaucoup d'opérations matrice/matrice et matrice/vecteur peuvent être codés efficacement avec ces formats.
- Il faut adapter les algorithmes de résolution de systèmes linéaires à ces formats, avec des balayage par ligne ou colonne suivant que le format est CSR ou CSC.