Introduction to Mathematical Programming IE406

Lecture 5

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 2.5-2.7

Existence of Extreme Points

Definition 1. A polyhedron $\mathcal{P} \in \mathbb{R}^n$ contains a line if there exists a vector $x \in \mathcal{P}$ and a nonzero vector $d \in \mathbb{R}^n$ such that $x + \lambda d \in \mathcal{P} \ \forall \lambda \in \mathbb{R}$.

Theorem 1. Suppose that the polyhedron $\mathcal{P} = \{x \in \mathbb{R}^n | Ax \geq b\}$ is nonempty. Then the following are equivalent:

- The polyhedron P has at least one extreme point.
- The polyhedron \mathcal{P} does not contain a line.
- There exist n rows of A that are linearly independent.

Optimality of Extreme Points

Theorem 2. Let $\mathcal{P} \subseteq \mathbb{R}^n$ be a polyhedron and consider the problem $\min_{x \in \mathcal{P}} c^{\top} x$ for a given $c \in \mathbb{R}^n$. If \mathcal{P} has at least one extreme point and there exists an optimal solution, then there exists an optimal solution that is an extreme point.

Proof:

Optimality in Linear Programming

- For linear optimization, a finite optimal cost is equivalent to the existence of an optimal solution.
- The previous result can be strengthened.
- Since any linear programming problem can be written in standard form, we can derive the following result:

Theorem 3. Consider the linear programming problem of minimizing $c^{\top}x$ over a nonempty polyhedron. Then, either the optimal cost is $-\infty$ or there exists an optimal solution which is an extreme point.

Representation of Polyhedra

Theorem 4. A nonempty, bounded polyhedron is the convex hull of its extreme points.

Theorem 5. The convex hull of a finite set of vectors is a polyhedron.

Notes:

Example: Product Mix

• In this example, we consider Top Brass Trophy, a shop that manufactures two kinds of trophies, football and soccer.

- Resource requirements
 - Football trophies: 1 brass football, 1 plaque, 4 board feet of wood.
 - Soccer Trophies: 1 brass soccer ball, 1 plaque, 2 board feet of wood.
- Resource constraints
 - 1000 footballs
 - 1500 soccer balls
 - 1750 plaques
 - 4800 board feet of wood
- Profit is \$12 on football trophies and \$9 on soccer trophies.
- The goal is to maximize profit.

Top Brass Example: Formulation

- What are the decision variables?
- What is the objective function?
- What are the constraints?

Top Brass Example: Solving

- Basic scheme
 - Rewrite constraints in standard form.

- Find an initial basic feasible solution.
- Move to an adjacent vertex that improves the solution value.
- Keep moving until no further improvement is possible.
- Question: What sets of variables do not form a basis?

Top Brass Example: Degeneracy

- Suppose we had the additional constraint $3x_1 + 2x_2 \le 5000$.
- Note that this constraint is redundant.
- This new constraint is linearly dependent on the other constraints.
- Initially, we may not know this.
- What could happen to our solution method?

Top Brass Example: Alternative Representation

- Denote the polyhedron from the example by \mathcal{P} .
- Denote the extreme points of \mathcal{P} by p_1, \ldots, p_6 .
- ullet Then we could also represent ${\mathcal P}$ as

$$\mathcal{P} = \{ x \in \mathbb{R}^n : x = \sum_{i=1}^6 \lambda_i p_i, \sum_{i=1}^6 \lambda_i = 1, \lambda_i \ge 0, i = 1, \dots, 6 \}$$

Rewriting the objective function as

$$\max c^{\top} \sum_{i=1}^{6} \lambda_i p_i,$$

we have another form of the LP.