Assignment 1 by Lucas Karlsson

1. Prove using induction that, for every finite alphabet $\Sigma, \forall n \in \mathbb{N}. \mid \Sigma^n \mid = \mid \Sigma \mid^n$.

Solution:

Firstly, we need to show that | $S \cdot \Sigma$ |=| S | · | Σ |, where · is the concatenation operator.

By definition: $s \in S$ and $\sigma \in \Sigma$ this implies that also the string $s \cdot \sigma$ is in $S \cdot \Sigma$ and this string is different for every combination of s and σ

Now we can show $\mid \Sigma^n \mid = \mid \Sigma \mid^n$.

Base case: n = 0

$$\Sigma^0 = \{\epsilon\}, \mid \Sigma^0 \mid = 1$$

The length of a list with a empty string inside is always one, by definition. And anything to the power of zero will always be one. Giving us the following equality:

$$\mid \Sigma^0 \mid = \mid \Sigma \mid^0$$

We now assume that $\mid \Sigma^k \mid = \mid \Sigma \mid^k$ for every n=k

Induction when n = k+1

 $\Sigma^{k+1} = \Sigma^k \cdot \Sigma$ implies that $\mid \Sigma^{k+1} \mid = \mid \Sigma^k \cdot \Sigma \mid$ and we established before that $\mid \Sigma^k \cdot \Sigma \mid = \mid \Sigma^k \mid \cdot \mid \Sigma \mid$ and $\mid \Sigma \mid^k \cdot \mid \Sigma \mid^1 = \mid \Sigma \mid^{k+1}$

By the inductive hypothesis we now have:

$$\mid \Sigma^{k+1} \mid = \mid \Sigma \mid^{k+1}$$

2. Define a language S containing words over the alphabet $\Sigma = \{a, b\}$ inductively given a set of rules.

Solution 1:

```
\#_a () = 0

\#_a (cons(a,as)) = 1 + \#_a (as)

\#_a (cons(_,as)) = \#_a (as)

\#_b () = 0

\#_b (cons(b,bs)) = 1 + \#_b (bs)

\#_b (cons(_,bs)) = \#_b (bs)
```

Solution 2:

Prove that $\forall w \in S$. $\#_a(w) = 2 \#_b(w)$ using induction!

To do this first we need to show that $\#_a(auavb) = 2 + \#_a(u) + \#_a(v)$ and this can be done using a lemma that you can prove by induction. The lemma:

$$\forall u, v \in \Sigma^*. \#_a(uv) = \#_a(u) + \#_a(v)$$

In other words, this is a three-part problem starting by using induction to prove the previous lemma, then using this lemma to show that $\#_a(auavb) = 2 + \#_a(u) + \#_a(v)$ holds. Then using all of this information to prove, again using induction, our first and root problem.

PART1 Basecase:

 $\#_a(uv)$ where $u = \epsilon$ this is the same as writing $\#_a(\epsilon) + \#_a(v)$ because we know $\#_a(\epsilon) = 0$, by definition the empty string cannot contain any a:s

We now assume $P(L) = \#_a(uv) = \#_a(u) + \#_a(v) \ \forall u, v \in S$ where L = |u| This holds because that is how we have defined our function.

Induction, now we need to show that it holds for P(L+1), when $P(L+1) = \#_a(u'uv)$ where $u' \in \Sigma$.

By our previous defintion of our $\#_a$ function we know that we can write $\#_a(u'uv)$ as $\#_a(u') + \#_a(uv)$ and $\#_a(uv)$ as $\#_a(u) + \#_a(v)$ giving us: $P(L+1) = \#_a(u') + \#_a(u) + \#_a(v)$ and $P(L+1) = \#_a(u'u) + \#_a(v)$ where |u'u| = L+1 by our previous assumption we are now done.

We can now show $\#_a(auavb) = 2 + \#_a(u) + \#_a(v)$ with our previous proof. Seperating $\#_a(auavb)$ into multiple function calls give us $\#_a(a) + \#_a(u) + \#_a(u) + \#_a(v) + \#_a(v) + \#_a(v) + \#_a(v)$ which is the same as $1 + \#_a(u) + 1 + \#_a(v) + 0$ and this is equal to $2 + \#_a(u) + \#_a(v)$ and PART2 is now done.

PART3: The Final Proof. Now with all the information we know we can finally use induction to prove $\forall w \in S$. $\#_a(w) = 2 \#_b(w)$

Basecase: $w = uv = \epsilon$

 $\#_a(\epsilon) = 0$, trivial because there cannot be any a:s in an empty string. $2\#_b(\epsilon) = 0$, again trivial because no b:s in an empty string. 0 = 0 and we are done with the basecase.

We now assume that $\#_a(\mathbf{u}) = 2\#_b(\mathbf{u}) \land \#_a(\mathbf{v}) = 2\#_b(\mathbf{v}) \land \#_a(\mathbf{w}) = 2\#_b(\mathbf{w})$ where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in S$ this also implies that $\#_a(uv) = 2\#_b(uv)$ is true.

Induction

We now need to prove this for "auavb" and "buavaw" because they are also by definition a part of the language S.

$$\#_a(auavb) = 2 + \#_a(uv)$$

 $2\#_b(auavb) = 2(1 + \#_b(uv)) = 2 + \#_a(uv)$
Works!
 $\#_a(buavaw) = 2 + \#_a(uvw)$

$$\#_a(buavaw) = 2 + \#_a(uvw)$$

 $2\#_b(buavaw) = 2(1 + \#_b(uvw)) = 2 + \#_a(uvw)$

Our function $\#_a(w) = 2\#_b(w)$ holds for all the contents in our language S.

3. Let $\Sigma = \{0\}$ and define $f, g, h \in \Sigma^* \to N$

Solution 1:

I solved this problem by recreating the functions in Haskell, a functional programming language very well shaped for using recursion. my functions looked like this and all of them where of the type String \rightarrow Int

$$g() = 1$$

 $g('0':w) = length w + g w - h w$
 $h() = 0$
 $h('0':w) = length w + g w$
 $f() = 1$
 $f('0':w) = h w + 2 * g w$

Computing the values gave me the answers:

$$f(00) = 3$$
, $g(00) = 1$, $h(00) = 2$
 $f(000) = 4$, $g(000) = 1$, $h(000) = 3$
 $f(0000) = 5$, $g(0000) = 1$, $h(0000) = 4$.

Solution 2:

For this problem we need to prove $\forall n \in N. f(0^n) = 1 + n$ by first proving that $\forall n \in N. g(0^n) = 1 \wedge h(0^n) = n$.

Basecase: n=0

 $g(0^0) = 1 \wedge h(0^0) = 0$ the same as True \wedge True which is true.

We now assume n = k which gives us $g(0^k) = 1 \wedge h(0^k) = k$

Induction when n = k+1 which gives us $g(0^{k+1}) = 1 \wedge h(0^{k+1}) = k+1$

If we look at the first part of the boolean expression $g(0^{k+1})$ evaluating this using the defined function g give us $g(00^{k+1}) = |0^{k+1}| + g(0^k) - h(0^k)$ and this is the same as k+1-k=1 and 1=1 which gives us true.

Doing the same thing for the second part of the boolean expression $h(0^{k+1})$ using the function h this time gives us $h(00^k) = \mid 0^k \mid +g(0^k)$ which is the same as k+1 and k+1=k+1 and the second part is also true.

 $True \wedge True = True$

The final part is now trivial, we can easily prove $\forall n \in N. f(0^n) = 1+n$ because we know that $f(0^n)$ is equal to $h(0^n) + 2g(0^n)$ by the definition of our function f. We can also see that $h(0^n) = n-1$ and $2g(0^n) = 2*1$ summing these up gives us, and we are now done!

$$f(0^n) = n + 1$$