

DATA SHEET (DOC No. HX8238-D-DS)

>> HX8238-D

960 x 240 TFT LCD Single Chip Digital Driver Preliminary version 03 June, 2008

[≫]HX8238-D

960 x 240 TFT LCD Single Chip Digital Driver

List of Contents

1. General Description	5
2. Features	
3. Block Diagram	6
4. PAD Assignment	
5. Pin Description	\\(\(\(\)\(\)\(\)
6. Block Function Description	
6.1 Serial interface 6.2 Data control 6.3 Gamma/grayscale voltage generator 6.4 Boost and regulator circuit 6.5 PWM boost converter 6.6 Shift register 6.7 Data latches 6.8 Aging mode 6.9 Reset circuit	
7. O William O and all Point Indianates	4.5
7.1 Primary register command table	
8. OTP Programming	51
9. Gamma Adjustment Function	52
9.1 Structure of grayscale amplifier 9.2 Gamma adjustment register 9.2.1 Gradient adjusting register 9.2.2 Amplitude adjusting register 9.2.3 Micro adjusting register 9.3 Ladder resistor / 8 to 1 selector	
10. Maximum Rating	60
11. DC Characteristics	61
12. AC Characteristics	62
13. HX8238-D Output Voltage Relationship	
14. Application Circuit	
15. Pad Coordinates	
16. Ordering Information	
17. Revision History	

^{>>}HX8238-D

960 x 240 TFT LCD Single Chip Digital Driver

List of Figures

Figure 6. 1 SPI Timing	
Figure 6. 2	13
F: 7.40: 4 P. 1	
Figure 7. 1 Status Read	
Figure 7. 2 Driver Output Control	
Figure 7. 3 Scan Direction & Display	
Figure 7. 4 LCD-Driving-Waveform Control	
Figure 7. 5 Power Control 1	
Figure 7. 6 Input Data and Color Filter Control	
Figure 7. 5 Power Control 1	
Figure 7. 8 PWM for External LED Driver Control	
Figure 7. 9 Contrast/Brightness Control	24
Figure 7. 10 Frame Cycle Control	
Figure 7. 11 NO Timing Diagram	
Figure 7. 12 EQ Timing Diagram	
Figure 7. 13 Power Control 2	25
rigure 7. 14 Power Control 3	ZI
Figure 7 15 Gate Scan Position	27
Figure 7. 16 Gate Scan Display Position	
Figure 7. 16 Gate Scan Display Position Figure 7. 17 Horizontal Porch Figure 7. 18 Vertical Porch Figure 7. 19 No. of Clock Cycle of Clock	
Figure 7. 18 Vertical Porch	
Figure 7. 19 No. of Clock Cycle of Clock	
Figure 7 20 No. of Clock Cycle of HSYNC	
Figure 7. 21 Power Control 4	
Figure 7. 21 Power Control 4	32
Figure 7. 23 Gamma Control 2	32
Figure 7. 24 Display Interface Control Instruction	35
Figure 7. 25 Entry Mode Instruction	
Figure 7. 26 Display Direction According To SS	36
Figure 7. 27 Gate Control1 Instruction	
Figure 7, 28 CLW Bits	
Figure 7. 29 Gate Control2 Instruction	
Figure 7. 30 Display Control Instruction	
Figure 7. 31 Display Control2 Instruction	
Figure 7. 32 Source Output Timing Control Instruction	30
Figure 7. 33 Power Control1 Instruction	4(
Figure 7. 34 Power Control	
Figure 7. 35 Gamma Control 1	
Figure 7. 36 Gamma Control 2	
Figure 7. 37 Function Control	
Figure 7. 38 PWM for External LED Driver Control	
Figure 7. 39 Power Control 1	
Figure 7. 40 Power Control 2	
Figure 7. 41 Power Up Sequence when SPSW Connect to V	
Figure 7. 41 Power Op Sequence when SPSW Connect to	
i igule 7. 42 Fower Down Sequence when SESW Connect t	0 v 00 (OFE=v 00) 50
E' 0 (OTD D	_
Figure 8. 1 OTP Read Table	
Figure 8. 2 OTP Programming Circuitry	51
Figure 0. 4 Croycools Control Plant	-
Figure 9. 1 Grayscale Control Block	
Figure 9. 2 Grayscale Amplifier	
Figure 9. 3 Resistor Ladder for Gamma Voltages Generation	
Figure 9. 4 Gamma Adjustment Function	5.5

>> HX8238-D

List of Figures

Figure 12. 1 Pixel Timing	
Figure 12. 4 Signal Timing in DE Mode	65
Figure 12. 5 Color Mode Conversion Timing	65 66
Figure 12. 7 CCIR601 Vertical Timing	67
Figure 12. 8 CCIR656 Horizontal Timing	68
Figure 12. 9 CCIR656 Vertical Timing	69
Figure 12. 10 Power Up Sequence	70
Figure 12. 11 Power Down Sequence	71
Figure 12. 12 (a) SPI interface Timing Diagram & Write SPI Example	
Figure 12. 13 (b) SPI interface Timing Diagram & Read SPI Example	
Figure 12. 14 Rising/Falling Time	73
Figure 13. 1 LCD Driving Voltage Relationship	74
Figure 14. 1 Booster Capacitors	75
Figure 14. 2 Power Supply Pins Connections	75
Figure 14. 3 Filtering and Charge Sharing Capacitors	76
Figure 14. 4 Panel and FPC Connection	76
Figure 14. 5 Panel Connection Example	77

^{>>}HX8238-D

List of Tables

	Toble 7. 1 Command Toble (Primory Register Mon)	15
	Table 7. 1 Command Table (Primary Register Map)	
	Table 7: 2 Registers Default Valde(Frimary Register Map)	17
	Table 7: 4 Sten-I in Cycle	10
	Table 7: 5 VGH and VGL Booster Ratio	19
	Table 7. 3 Source Output Level Table 7. 4 Step-Up Cycle Table 7. 5 VGH and VGL Booster Ratio Table 7. 6 Step-Up Cycle Table 7. 7 Op-amp Power	20
	Table 7: 7 On-amp Power	. 20 20
	Table 7: 8 Color Filter Type	21
	Table 7. 0 Color Filter Type	21
	Table 7: 10 Odd/Even Field Advanced Function	22
	Table 7. 7 Op-amp Power	23
	Table 7: 12 Amount of Non-overlan	. 20 24
	Table 7: 13 Delay Amount of Source Output	. 24 24
	Table 7: 14 FO Period	. <u>2</u>
	Table 7: 14 LQ 1 6100	. 24 26
	Table 7: 16 VCOM Amplitude	. 20 27
	Table 7: 10 VOOW Amplitude	. 21 28
	Table 7: 18 No. of Clock Cycle of Clock	20
	Table 7: 19 No. of Clock Cycle of HSYMO	. 20 30
	Table 7: 10 NO. of Glock Cycle of FIG TNO	. 30 31
	Table 7. 13 Delay Afflount of Source Output Table 7. 14 EQ Period Table 7. 15 VLCD63 Voltage Table 7. 16 VCOM Amplitude Table 7. 17 No. of Pixel Per Line Table 7. 18 No. of Clock Cycle of Clock Table 7. 19 No. of Clock Cycle of HSYNC Table 7. 20 VCOMH Table 7. 21 Command Table	. 31 33
	Table 7. 22 Registers Default Value (Secondary Register Map)	. 34
	Table 7. 23 REV Bit And Source Output Level Of Displayed Area	
	Table 7: 24 CLW Rits Setting	. 33 37
	Table 7. 24 CLW Bits SettingTable 7. 25 SDT Bits Setting	. 31 30
	Table 7: 26 FO Rits Setting	. 33 30
	Table 7: 27 SAP Rits Setting	. 33 40
	Table 7. 26 EQ Bits Setting Table 7. 27 SAP Bits Setting Table 7. 28 VCOM Amplitude	. ⊣o ⊿1
	Table 7. 29 VCOMH	1 - 1
	Table 7. 30 LED Driver Control Signal Frequency	1 44
	Table 7:31 Sten-Un Cycle	45
	Table 7. 31 Step-Up CycleTable 7. 32 Step-Up Cycle	45
	Table 7. 33 VGH and VGL Booster Ratio	46
•	Table 7. 34 VLCD63 Voltage	
	Table 1. 04 VEGB00 Vollage	. 40
	Table 8. 1 OTP Programming Sequence	51
	Visit of the trought and the t	
	Table 9. 1 PRP(N)	. 56
	Table 9. 2 VRP(N)0	
	Table 9. 3 VRP(N)1	
	Table 9. 4 PKP and PKN	
	Table 9. 5 Grayscale Voltages Formulas	
	Table 9. 6 Reference Voltages of Positive Polarity	
	Table 9. 7 Reference Voltages of Negative Polarity	
	Table of Fixelender voltages of Hogalite Felanty IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	. 00
	Table 10. 1 Maximum Ratings	. 60
	· ·	
	Table 11. 1 DC Characteristics	. 61
	Table 12. 1 Pixel Timing	
	Table 12. 2 Data Transaction Timing in Normal Operating Mode	
	Table 12. 3 Power Up Sequence	
	Table 12. 4 Power Down Sequence	
	Table 12. 5 SPI Timing	. 73

^{>>}HX8238-D

960 x 240 TFT LCD Single Chip Digital Driver

Preliminary Version 03

June, 2008

1. General Description

The HX8238-D is a single chip controller and driver LSI that integrates the power circuit. It can drive a maximum 960x240 dot graphics on a-TFT panel displays in 16M colors with dithering.

The HX8238-D has a low-voltage operation, 1.6 min voltage. In addition, The HX8238-D is equipped with a DC-DC converter control circuit that generates the supply voltage for source and gate drivers with minimum external components. A common voltage generation circuit is included to drive the TFT-display counter electrode. An integrated gamma control circuit is also included that can be adjusted by software commands to provide maximum flexibility and optimal display quality.

The HX8238-D is suitable for any medium-sized or small portable battery-driven product requiring long-term driving capabilities, such as Digital Still Cameras.

2. Features

- 960 x 240 graphics display a-TFT panel controller/driver for 16M colors with dithering
- Support digital 8-bits serial/24-bits parallel RGB and CCIR601/656 input mode
- Power supply:
 - VDD = 1.6V to 2.5V (non-regulated input for logic)
 - VDDIO = 1.6V to 3.6V (regulated input for logic)
 - VCI = 2.5V to 3.6V (power supply for internal analog circuit)
- Maximum gate driving output voltage: 30Vp-p
- Source driving output voltage: 0V to 5V
- Low current sleep mode and 8-color display mode for power saving
- Display size: 960 x 240
- Support Line and Frame inversion
- Support Contrast/Brightness control
- Source and gate scan direction control
- On-chip voltage generator
- On-chip DC-DC converter up to 6x / -6x
- Programmable gamma correction curve
- Non-Volatile Memory (OTP) for VCOM calibration
- Programmable common electrode voltage amplitude and level for Cs on common structure only
- PWM function to generate power for backlight control
- COG package

3. Block Diagram

4. PAD Assignment

DRV (2)
VFB (2)
VFB (2)
UMMY (1)
VCHS (10)
VSSRC (8)
VCOMH (4)
VCOMH (4)
VCOMH (7)
VCHS (7)
VCHS (7)
VCH (5)
C3P (3)
C3P (3)
C3P (3)
C2P (6)
CYP (6)
VCH (7)
VDD (7)
VCH (7)
VDD (7)
VCH (7)
VDD (7)
VCH (7)
VDD (7)
VCH (7)
VSD (7)
VCH (7)
V G235 G237 G237 G239 DUMMY (6) S0 S1 S2 S3 G6 G4 G2 G0 DUMMY (2) DUMMY (1) DUMMY (1)

Output Pad	Symbol	Size
Bump pitch	Α	18um
Bump width	С	18um
Bump height	Н	85um
Bump gap 1 (Vertical)	J	45um
Bump gap 2 (Horizontal)	K	18um
Bump area	СхН	1530um^2

Input Pad	Symbol	Size
Bump pitch	Α	75um
Bump width	С	50um
Bump height	Н	80um
Bump gap 1 (Vertical)	J	25um
Bump area	CxH	4000um^2

Alignment Mark	Symbol	Size
Alignment mark size	Α	105um
Clearance gap 1	D	15um
Clearance gap 2	K	40um
Alignment mark width	С	25um
Alignment area	AxA	11025um^2

Figure 4. 1 HX8238-D Die Floor Plan (Bump Face Up)

5. Pin Description

Name	I/O	Function	Description
Hanne	., 0	i dilottoli	Input pin to select 16M-colors with dithering or 8-color display mode.
			After entered 8-color display mode, the driver will switch to
СМ	Input	Logic Control	Frame-Inversion-Mode, and only MSB of the data Red, Green and Blue
Civi	iriput	Logic Control	will be considered.
			- Connect to VDDIO for 8-color display mode
			- Connect to VSS for 16M-color with dithering display mode
			Graphic Data Input Pins. Internal pull low RR [7:0]: Red Data - 8-bits
RR [7:0]		Graphic Display	- KK [7:0]. Ked Data - 8-bits - GG [7:0]: Green Data - 8-bits
GG [7:0]	Input	Data	- BB [7:0]: Blue Data - 8-bits
BB [7:0]			For 8 bit interface, only RR[7:0] are used. For unused pins, please
			connect to VSS or floating.
DEN			Display enable pin from controller. Internal pull high.
DEN			Connect to VDDIO or floating if not used.
VSYNC		Diamin. Timin.	Frame synchronization signal. Internal pull high.
	Input	Display Timing	- Fixed to VDDIO or floating if not used.
HSYNC	-	Signals	Line synchronization signal. Internal pull high Fixed to VDDIO or floating if not used
			Dot-clock signal and oscillator source. A non-stop external clock must be
DOTCLK			provided to that pin even at front or black porch non-display period.
			Display shut down pin to put the driver into sleep mode. A sharp falling
			edge must be provided to such pin when IC power on. Internal pull low.
SHUT	Input	Logic Control	- Connect to VDDIO for sleep mode
			- Connect to VSS for normal operating mode
			(Refer to Power Up Sequence)
RL			Input pin to select the Source driver data shift direction Connect to VDDIO for display first RGB data at S0-S2
KL			- Connect to VSS for display first RGB data at S959-S957
		\mathcal{A}	Input pin to select the Gate driver scan direction.
ТВ			- Connect to VSS for Gate scan from G239 to G0 (reverse scan)
		(0)	- Connect to VDDIO for Gate scan from G0 to G239 (normal scan)
		(0)	Input pin to select the color mapping.
BGR	20		Connect to VDDIO for Blue-Green-Red mapping
	0.00		Connect to VSS for Red-Green-Blue mapping
			(See S0-S959 pin description for details)
	Input		Input pin to select the display reversion Connect to VDDIO mapping data '0' to maximum pixel voltage for
REV	input	Panel Mapping	normally white panel
1121		Control	- Connect to VSS for mapping data '0' to minimum pixel voltage for
		Control	normally black panel
SWD[2:0]			Input pin to define color filter type. References register R04h.
SEL[2:0]			Input pin to select input interface mode. References register R04h.
022[2.0]			These pins are internal pull low.
			Input pin to enable internal charge pump circuit. Internal pull high.
CPE			- Connect to VDDIO to enable internal charge pump VCIM, VGH, VGL, VCIX2 and VCOM.
UPE			- Connect to VSS to disable internal charge pump VGH, VGL, VCIX2
			and VCOM.
6			Data sequence control pin, this pin toggle each line under delta
QXH	Output		panel.
POL	'		Polarity signal to monitor VCOM signal
			Control the polarity of POL signal. Internal pull low.
PINV	Input	POL Control	- Connect to VDDIO, POL phase is reversed with internal VCOM signal
			- Connect to VSS, POL phase is same with internal VCOM signal

EXVR VCOMR Input VCOMR Input VCOMH VCOMH Output Analog External reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM	Name	I/O	Function	Description							
RESB Input System Reset Connect to VSS if 2.5 V ≥ System Vdd ≥ 1.6 V, internal regulator will be disabled SPSW Input SPI Select System reset pin. Internal pull high. Connect to VDDIO when not used (Refer to Power Up Sequence) SPSW Input SPI Select SPI Select System reset pin. Internal pull high. Connect to VDDIO when not used (Refer to Power Up Sequence) SPSW Input SPI Select SPI Select Connect to VDDIO for Primary SPI Register. Connect to VSS for Secondary SPI Register. Connect to VSD for Secondary SPI Register. Connect to Secondary SPI Register.			22.0	Input pin to enable internal voltage regulation.							
RESB Input System Reset System reset pin. Internal pull high. System reset pin. Internal pull high. System reset pin. Internal pull high. Connect to VDDIO when not used (Refer to Power Up Sequence) SPI table select. Internal pull high. Connect to VDDIO for Primary SPI Register. Co	REGVDD	Input	Logic Control								
RESB	REGVEE	mpat	Logio Control	· · · · · · · · · · · · · · · · · · ·							
SPSW Input System Reset - Connect to VDDIO when not used (Refer to Power Up Sequence) SP1 table select. Internal pull high Connect to VSS for Secondary SPI Register Connect to VDDIO for Primary SPI Register Connect to VDDIO for Primary SPI Register Connect to VDDIO for Primary SPI Register Connect to Serial Interface. Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Clock pin of serial interface. Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data input pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Serial Interface block) - Data output pin for info logic Connect to System ground (Refer to Seri											
SPSW Input SPI Select SPI table select. Internal pull high Connect to VSS for Secondary SPI Register Connect to VSDIO for Secondary SPI Register Connect to VSDIO for Primary SPI Register Connect to VSDIO for Secondary SPI Register Connect to VSDIO for Secondary SPI Register Connect to VSDIO for Primary SPI Register Connect to VSDIO for Secondary SPI Register Connect to VSDIO for Secondary SPI Register Connect to VSDIO for Secondary SPI Register Connect to USDIO for Primary SPI Register Connect to USDIO for Secondary SPI Register Connect to USDIO for Primary SPI Register Connect to USDIO for Secondary SPI Register Connect to USDIO for Secondary SPI Register Connect to USDIO for Secondary SPI Register Connect to USDIO for Primary SPI Register Connect to USDIO for Secondary SPI Register Connect to Usda (Refer to Secial Interface block) - Leave it OPEN when not used (Refer to Secial Interface block) - Connect to System Yod - Voltage (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Connect to System Yod (Refer to Secial Interface block) - Co	RESB	Input	System Reset								
SPSW Input SPI Select - Connect to VSS for Secondary SPI Register Connect to VDDIO for Primary SPI Register Connect to SPI Serial Interface block) - Leave it OPEN when not used (Refer to Serial Interface block) - Data input prin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin for I/O logic Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin in Serial mode, Internal Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin for lot principle in the Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Data output prin for lot principle in the Pull Pull high Leave it OPEN when not used (Refer to Serial Interface block) - Volage input prin for lot principle in the Pull high Leave it OPEN when not used (Refer to Serial Interface block											
CSB SCK Input Serial Interface SPI SPI SPO Output VDDIO Power VDD Power VSSRC VCIR VCIR VCIR VCIR VCIR VCIR VCIR V	SPSW	Input	SPI Select								
SCK SDI Serial Interface SDI Serial Interface SDI SDO Output SDO Output VDDIO Power VDDIO Power VDD Power VDD Power VDD VDD VSS AVSS AVSS AVSS AVSS AVSS		'									
SCK SDI SDI Serial Interface Data input prin in serial mode, Leave it OPEN when not used (Refer to Serial Interface block) Data output prin in serial mode, Leave it OPEN when not used (Refer to Serial Interface block) Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage input prin for I/O logic. Connect to system Vdd Voltage System Vdd System ground Grounding for analog circuit. Connect to system ground. Grounding for analog circuit. Connect to system ground. Grounding for booster circuit. Connect to system ground. Sooster input voltage pin. Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. Connect to same source of VCI Negative voltage of VCI. Connect a capacitor for stabilization VCIX2 VOLX2 Power Voltage for Analog Voltage for Analog Voltage for Connect a capacitor for stabilization This pin provides voltage reference for internal voltage regulator when register Volvi(6) of Power Control 3 set to "01111XX". Connect to analogo circuit of VCOM generated in driving the VCOM alternation. Connect to appacitor for voldiplication This pin indicates a LIOW level of VCOM	CSB										
SDI SDO Output Serial Interface Data input pin in serial mode, Internal pull high Leave it OPEN when not used (Refer to Serial Interface block) Data output pin in serial mode, - Leave it OPEN when not used (Refer to Serial Interface block) Data output pin in serial mode, - Leave it OPEN when not used (Refer to Serial Interface block) Voltage input pin for I/O logic Connect to system Vdd Voltage input pin for I/O logic Connect to system Vdd VDD ≃ VDDI Onternal regulator will be off for 2.5V ≥ System Vdd ≥ 2.5V VDD ≃ VD ≥ System Vdd System ground pin of the IC Connect to system ground Grounding for analog circuit Connect to system ground Grounding for analog circuit Connect to system ground. Grounding for booster circuit Connect to system ground. Grounding for booster circuit Connect to system ground. Grounding for booster circuit Connect to system ground. Grounding for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to same source of VCI - Connect a capacitor for stabilization - Connect a capacitor for stabilization - Connect a capacitor for stabilization - Connect to VSS - This pin provides voltage reference for internal voltage regulator when register VDV(6:0) of Power Control 3 set to "01111XX" - Connect to an external voltage source for reference - This pin indicates a HIGH level of VCOM generated in driving the VCOM alterna											
SDI SDO Output SDO Ou	SCK	Input									
SDI SDO Output Output Power Supply for Logic Circuits Power Supply for Avisable Circuits Power Supply for Circuits Power Supply for Logic Circuits Power Suppl			Serial Interface								
VDDIO	SDI										
VDDIO Power Supply for Logic Circuits VSS AVSS AVSS AVSS COME Power Supply for Logic Circuits Power Supply for Logic Circuits Fower Supply for Logic Circuits AVSS AVSS AVSS AVSS AVSS AVSS AVSS AVSS VCHS Power Supply for Logic Circuits Ground of the Power Supply VSSRC VCHS Power Supply VCIP Power Supply for Analog Circuits VCIP VCIP VCIP VCIP VCIP AVSI VCIM VCIM VCIX2 VCIX2 Power Supply for Analog Circuits Booster Voltage input pin for I/O logic: Connect to system ground Grounding for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. Connect to system ground. Booster Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. Connect to voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. Connect to same source of VCI VCIX2 VCIX2 Power Voltage for Analog External Reference External Reference Connect to Same source of VCI External Reference External Reference of internal logic: AREGVDD = VDDIO Internal regulator in Incritant logic: AREGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 2.5V ∨ DD2V. (b) REGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) REGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) REGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) REGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) ReGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) ReGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) ReGVDD = VSS Internal regulator vill be onf for 2.5V ≥ System Vdd ≥ 1.6V ∨ DD2V. (b) ReGVDD = VDD. Connect a capacitor for stabilization This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for	SDO	Output									
Power Power Power Supply for Logic Circuits VSS AVSS AVSS Power Power Supply for Logic Circuits Fower Supply for Logic Circuits VSSRC Power Power Supply for Supply for Connect to system ground pin of the IC. Connect to system ground Grounding for analog circuit. Connect to system ground Grounding for analog circuit. Connect to system ground. Grounding for analog circuit. Connect to system ground. Grounding for analog circuit. Connect to system ground. Grounding for booster circuit. Connect to system ground. Booster input voltage pin. Connect to voltage source between 2.5V to 3.6V VCIM VCIM VCIX2 Power Voltage for Analog Logic Circuits Ground of the Power Supply for Analog Circuit. Connect to system ground. Booster input voltage pin. Connect to voltage source between 2.5V to 3.6V VCIM VCIX2 Power Voltage for Analog Connect a capacitor for stabilization External Reference External Reference Faternal Reference of internal Gamma resistor. Connect to an external Voltage reference for internal Voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM alternation.	300	Output									
Voltage input pin for internal logic. (a) REGVDD = VDDIO Internal regulator will be on for 3.6V ≥ System Vdd ≥ 2.5V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VDDIO										
Power Supply for Logic Circuits Power Supply for Logic Circuits VDD = 2V.											
VDD				(a) REGVDD = VDDIO							
VSS AVSS VSSRC VCHS Power VCIP VCIP VCIM VCIX2J Power VCIX2J VCIX2J VCIX2J VCOMR VCOMR VCOMH VOUTUPU VOITING TO THE Power VOITING TO THE Power VOITING TO THE Power VOITING TO THE Power VCIN VCIX2D VOITING TO THE Power VOITING TO THE Power VCIM VCIX2D		Power									
VSS	VDD		Logic Circuits	VDD ~2V.							
VSS AVSS Power VSSRC Power Supply Power Supply VCIP Power Supply Power Supply for Analog Circuits VCIP VCIM VCIM VCIX2 VCIX2 VCIX2 Power Input VCOMR VCOMR VCOMH VCOMH VCOMH VCOMH VCOMH VOLIP VOLIP VOLIP VOLIP VOLIP VOLIP VOLIP VOLIP VCIX2 VCI				(b) REGVDD = VSS							
VSSRC VCHS Power VSPRC VCHS Power VCIP VCIP VCIM VCIM VCIM VCIX2 VCIX2 VCIX2 VCIX2 VCOMR VCOMR VCOMR VCOMH VCOMH VCOMH VOITE VOITE Power Supply for Analog Circuits VCIM VCIM VCIX2 VCIX2 VCIX2 VCIX2 VCIX2 VCIX2 VCIX3 VCIX4 VCIX5 VCIX5 VCIX6 VCIX6 VCIX7 VOITE Connect to voitage source between 2.5V to 3.6V VOITE Connect to voitage source between 2.5V to 3.6V VOITE V											
AVSS AVSS Power VSSRC Power Supply Power Supply Power Supply for Analog Circuit. Power Supply for Analog Circuits VCIP VCIP Power Supply for Analog Circuits Power Supply for Analog Circuits VCIM VCIM VCIX2 Power Supply for Analog Circuits Booster Output VCIX2 VCIX2 Power Supply for Analog Circuits Booster Output VCIX2 VCIX2 VCIX2 Power Supply for Analog Circuits Booster Output VCIX2 VCIX2 VCIX2 Power Supply for Analog Circuits Booster Output Voltage source between 2.5V to 3.6V Voltages Supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. - Connect to voltage source of VCI Negative voltage of VCI. - Connect a capacitor for stabilization Equals to 2 x VCI. - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM alternation.											
VCHS VCHS Power Supply Ground of the Power Supply VCHS VCHS VCHS Power Supply Power Supply Power Supply Power Supply for Analog Circuits VCIP VCIP Power Supply for Analog Circuits Power Supply For Connect to voltage source between 2.5V to 3.6V Voltages upply pin for analog circuit. This pin requires a noise free path for providage source for Connect to Set VCI - Connect a capacitor for stabilization This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM alternation.	VSS										
VSSRC Power Supply Power Supply Power Supply Power Supply Power Supply Power Supply Power Supply for Analog Circuits VCIP VCIP VCIM VCIM VCIX2 Power Supply for Analog Circuits VCIX2 VCIX2 VCIX2 Power Supply for Analog Circuits Booster Voltages in Power Voltages VCIX2 VCIX2 VCIX2 VCIX2 Power Supply for Analog Circuits Booster Voltages VCIX2 VCIX2 VCIX3 VCIX4 VCIX5 Power Supply for Analog Circuits Booster Voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. - Connect to same source of VCI Negative voltage of VCI. - Connect a capacitor for stabilization Equals to 2 x VCI. - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference External Reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "011111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of											
VCIN VCIX2 VCIX2 VCIX2 VCIX2 Power Supply for Analog Circuits VCIX2 VCIX2 Power Supply for Analog Circuits VCIX2 VCIX2 VCIX2 VCIX2 VCIX2 VCIX4 VCIX4 VCIX5 VCIX5 VCIX5 VCIX6 VCIX6 VCIX7 VCIX7 VCIX8 VCIX8 VCIX8 VCIX8 VCIX9	AVSS		Crown d of the								
VCHS VCIP Power Supply for Analog Circuits VCIM VCIM VCIM VCIX2 VCIX2 Power Supply for Analog Circuits Booster input voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. - Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages. - Connect to same source of VCI Negative voltage of VCI. - Connect a capacitor for stabilization Equals to 2 x VCI. - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference External Reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM		Power		Grounding for applied circuit. This pin requires a poice free path for							
VCIP Power Supply for Analog Circuits VCIM VCIM VCIX2 VCIX2 VCIX2 Input VCOMR VCOMR VCOMH VCOMH VCOMH VCOMH VCOMH VCIVI VOID Power Supply for Analog Circuits Negative voltage source of VCI Negative voltage of VCI. - Connect a capacitor for stabilization Equals to 2 x VCI. - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM alternation. This pin indicates a LOW level of VCOM generated in driving the VCOM alternation.	VSSRC		ower buppiy								
VCIP Power Supply for Analog Circuits Power Supply for Analog Circuits VCIM VCIM VCIX2 VCIX2 Power Supply for Analog Circuits Booster of providing accurate LCD driving voltages Connect to same source of VCI Negative voltage of VCI Connect a capacitor for stabilization Equals to 2 x VCI Connect a capacitor for stabilization VCIX2J Power Voltage for Analog EXVR VCOMR Input VCOMR VCIM VCIX2 VCOMR VOITE VOI											
VCIP Power Supply for Analog Circuits VCIM VCIM VCIX2 Output VCIX2 Power Input VCOMR VCOMR Output VCOMH VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VCIX2 Output VOItages Booster input voltage pin Connect to voltage source between 2.5V to 3.6V Voltage supply pin for analog circuit. This pin requires a noise free path for providing accurate LCD driving voltages Connect to same source of VCI Negative voltage of VCI Connect a capacitor for stabilization Equals to 2 x VCI Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External reference of internal Gamma resistor Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX" Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM	VCHS	60	\diamond (O								
Power Supply for Analog Circuits Power Supply for Analog Circuits VCIM VCIM VCIX2 Output VCIX2 Power Supply for Analog Circuits Booster Voltages Voltages Voltages EXVR VCOMR Input VCOMR Power Supply for Analog Circuits Power Supply for Analog Circuits Negative voltage of VCI. - Connect a capacitor for stabilization Equals to 2 x VCI. - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference External Reference This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM This pin the VCOM This pin indicates a LOW level of VCOM This pin the VCOM This p		∞ (\)									
VCIM VCIX2 Output VCIX2 Power Input VCOMR Output VCIX2 Output Voltages For Analog Circuits Negative voltage of VCI - Connect a capacitor for stabilization Equals to 2 x VCI Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External reference of internal Gamma resistor Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX" Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM This pi	VCI		Dower Supply for	1 0 1							
VCIM VCIX2 Output VCIX2 Power Input VCOMR VCIX2 Output Voltage for Analog VCIX2 Output VCIX2 Power Output Voltage for Analog External Reference VCOMH Output Voltages for VCOM Signal VCIX2 Output VOltages For providing accurate LCD driving voltages. - Connect to same source of VCI - Connect a capacitor for stabilization - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM		Power									
VCIX2 Output	VCIP		7 trialog Oriodito								
VCIX2 Output Booster Voltages - Connect a capacitor for stabilization Equals to 2 x VCI Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External Reference External Reference External Reference Output Output Output Output Output Booster Voltages - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External reference of internal Gamma resistor Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX" Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM											
VCIX2J Power Voltages Equals to 2 x VCI Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. EXVR VCOMR Input VCOMR Input VCOMR External Reference External Reference External Reference External reference of internal Gamma resistor Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX" Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM	VCIM		Rooster								
VCIX2J Power Voltage for Analog This is the power supply used by on chip analog blocks and VGH/VGL dcdc. EXVR VCOMR Input VCOMR Input VCOMH Output Voltages for VCOM Signal Voltages for VCOM Signal - Connect a capacitor for stabilization This is the power supply used by on chip analog blocks and VGH/VGL dcdc. External reference of internal Gamma resistor Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX" Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM	1/01//0	Output									
EXVR VCOMR Input VCOMR Input VCOMH VCOMH Output Analog External reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM This pin indicates a LOW level of VCOM generated in driving the VCOM	VCIX2		J								
EXVR Input VCOMR Input VCOMH VCOMH Output Analog External reference of internal Gamma resistor. - Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM	VCIX2.I	Power		This is the power supply used by on chip analog blocks and VGH/VGL							
VCOMR Input VCOMR Laternal Reference External Reference Connect to VSS This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM generated in driving the VCOM	. 517.20	. 01101	Analog								
VCOMR Input Reference Reference This pin provides voltage reference for internal voltage regulator when register VDV[6:0] of Power Control 3 set to "01111XX". - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation. - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM	EXVR										
VCOMR VCOMH Output VCOMSignal VCOMR VCO	VCOMR	Input									
VCOMH Output - Connect to an external voltage source for reference This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM		put	Reference								
VCOMH Output This pin indicates a HIGH level of VCOM generated in driving the VCOM alternation Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM generated in driving the VCOM				- Connect to an external voltage source for reference							
Output Voltages for VCOM Signal - Connect a capacitor for stabilization This pin indicates a LOW level of VCOM generated in driving the VCOM				This pin indicates a HIGH level of VCOM generated in driving the VCOM							
VCOM Signal This pin indicates a LOW level of VCOM generated in driving the VCOM	VCOMH		Voltografia								
		Output									
	VCOML		v Solvi Signal	alternation.							
- Connect a capacitor for stabilization	V COIVIL										

Marsa	1/0	Function	DATA SHEET Preliminary V03								
Name	1/0	Function	Description								
VLCD63			Internal generated power for source driver								
			- Connect a capacitor for stabilization								
VGH	Output	LCD Driving	A positive power output pin for gate driver.								
		Voltages	- Connect a capacitor for stabilization								
VGL			A negative power output pin for gate driver.								
			- Connect a capacitor for stabilization								
СР			- Connect a capacitor to CN								
CXP			- Connect a capacitor to CXN								
CYP			- Connect a capacitor to CYN								
C1P			- Connect a capacitor to C1N								
C2P		Booster and	- Connect a capacitor to C2N								
C3P	Input	Stabilization	- Connect a capacitor to C3N								
CN	mpat	Capacitors	- Connect a capacitor to CP								
CXN		Capacitors	- Connect a capacitor to CXP								
CYN			- Connect a capacitor to CYP								
C1N			- Connect a capacitor to C1P								
C2N			- Connect a capacitor to C2P								
C3N			- Connect a capacitor to C3P								
DRV	Output		Power transistor gate signal for the boost converter								
	_	PWM control	Main boost regulator feedback input. Connect feedback resistive divider								
VFB	Input	T TTIM GOTHLO	to GND.								
			FB threshold is 0.6 V nominal								
TEST4~5	Input		Test pin of the internal circuit. Leave it connect to ground.								
TEST6~17	Output	IC Testing Signal									
VCOM			A power supply for the TFT-display common electrode.								
G0-G239			Gate driver output pins. These pins output VGH, VGL level.								
	Output LCD Driving		Source driver output pins.								
S0-S959		Signals	S (3n): display Red if BGR = LOW, Blue if BGR = HIGH.								
			S (3n+1): display Green.								
		4	S (3n+2): display Blue if BGR = LOW, Red if BGR = HIGH.								
DUMMY	-	4	Floating pins and no connection inside the IC. These pins can be								
			shorted together or connect to any signal.								
<	W.										
	>										

6. Block Function Description

6.1 Serial interface

The SPI is available through the chip select line (CSB), serial transfer clock line (SCK), serial data input (SDI), and serial data output (SDO).

The Driver IC recognizes the start of data transfer at the falling edge of CSB input to initiate the transfer of start byte. It recognizes the end of data transfer at the rising edge of CSB input. The Driver IC is selected when the 6-bit chip address in the start byte transferred from the transmission device and the 6-bit device identification code assigned to the Driver IC are compared and both 6-bit data correspond. The identification code must be 011100(Primary SPI Register) or 011101(Secondary SPI Register). Two different chip addresses must be assigned to the Driver IC because the seventh bit of the start byte is assigned to a register select bit (RS). When RS = 0, index register write or status read is executed. When the RS = 1, instruction write. The eighth bit of the start byte is to specify read or write (R/W bit). The data are received when the R/W bit is 0, and are transmitted when the R/W bit is 1.

After receiving the start byte, the Driver IC starts to transmit or receive data by byte. The data transmission adopts a format by which the MSB is first transmitted (9th SCK started). All Driver IC instructions consist of 16 bits and they are executed internally after two bytes are transmitted with the MSB first (IB15 to 0---9th ~24th SCK).

Figure 6. 1 SPI Timing

6.2 Data control

The display data and frame position information from the controller is synchronized with the Gate Drive circuit and shift registered for the Source Driver circuit.

6.3 Gamma/grayscale voltage generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma-adjusting resistor. 16M colors with dithering possible colors can be displayed.

6.4 Boost and regulator circuit

These two functional blocks generate the voltage of VGH, VGL, VCOMH, VCOML and VLCD63, which are necessary for operating a TFT LCD.

6.5 PWM boost converter

Figure 6. 2

When set PWMS=0, internal PWM function is enabled. The internal reference voltage is adjustable by FB[2:0] in R05h. By adjusting the voltage, you can get different VO to meet your system application.

When set PWMS=1, HX8238-D will send the enable signal from DRV pin to control external LED driver. The enable control signal can be adjusted the duty cycle by DUTY[7:0] in R08h, the duty cycle range is from 1/256 to 256/256. And it also can be adjustable the frequency by PWMF[3:0] in R08h, the frequency range is from 100Hz to 100 KHz.

6.6 Shift register

The shift registers control the direction of line scanning of source.

6.7 Data latches

This block is a series of latches carrying the display signal information. These latches hold the data, which will be fed to the Source Driver to output the required voltage level.

6.8 Aging mode

If only DOTCLK is sent into driver IC without VSYNC, HSYNC, and DEN signals, HX8238-D will enter Aging Mode after power on. In Aging Mode, the display will show Black, White, Red, Green, and Blue images in series automatically.

6.9 Reset circuit

This block is integrated into the Interface Logic which includes Power on Reset circuitry and the hardware reset pin, /RES. Both of these having the same reset function. Once the /RES pin receives a negative reset pulse, all internal circuitry will start to initialize. The minimum pulse width for completing the reset sequence is 10µs. The status of the chip after reset is given by.

7. 3-Wire Serial Port Interface

7.1 Primary register command table

Reg#	Register	R/W	R/S	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
SR	Status Read	1	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0
R01h	Driver output control	0	1	0	RL	REV	PINV	BGR	SM	ТВ	CPE	0	0	0	0	0	0	0	0
R02h	LCD driver AC control	0	1	0	0	0	0	0	0	B/C	0	0	0	0	0	0	0	0	0
R03h	Power control (1)	0	1	DCT3	DCT2	DCT1	DCT0	BTF	BT2	BT1	BT0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0
R04h	Data and color filter control	0	1	0	0	0	0	0	PALM	BLT1	BLT0	OEA1	OEA0	SEL2	SEL1	SEL0	SWD2	SWD1	SWD0
R05h	Function control	0	1	GHN	XDK	GDIS	LPF	DEP	CKP	VSP	HSP	DEO	DIT	0	PWM	0	FB2	FB1	FB0
R06h	Reserved									R	eserved		- 5)				
R08h	LED control	0	1	0	0	0	PWMS	PWMF3	PWMF2	PWMF1	PWMF0	DUTY7	DUTY6	DUTY5	DUTY4	DUTY3	DUTY2	DUTY1	DUTY0
R0Ah	Contrast/ Brightness control	0	1	0	BR6	BR5	BR4	BR3	BR2	BR1	BR0	0	0	0	CON4	CON3	CON2	CON1	CON0
R0Bh	Frame cycle control	0	1	NO1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	0	0	0	0	0	0	0	0
R0Dh	Power control (2)	0	1	0	VRC2	VRC1	VRC0	0	0	VDS1	VDS0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0
R0Eh	Power control (3)	0	1	0	0	1	VDV6	VDV5	VDV4	VDV3	VDV2	VDV1	VDV0	0	O	0	0	0	0
R0Fh	Gate scan starting Position	0	1	0	0	0	0	0	0	0	0	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
R16h	Horizontal Porch	0	1	XLIM8	XLIM7	XLIM6	XLIM5	XLIM4	XLIM3	XLIM2	XLIM1	XLIM0	0	0	0	0	0	0	0
R17h	Vertical Porch	0	1	STH1	STH0	HBP6	HBP5	НВР4	НВР3	HBP2	HBP1	HBP0	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
R1Eh	Power control (4)	0	1	0	0	0	0	0	0	0	0	nOTP	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0
R27h	Reserved										Reserved								
R28h	Reserved						1				Reserved								
R29h	Reserved					-4			-4		Reserved								
R2Bh	Reserved						ı	_ <	PKP	PKP	Reserved PKP	ı		ı			PKP	PKP	PKP
R30h	γ control (1)	0	1	0	0 4	0	7 0	0_	12	11	10	0	0	0	0	0	02	01	00
R31h	γ control (2)	0	1	0	0	0	0	0	PKP 32	PKP 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32h	γ control (3)	0	1	0	0	0	0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33h	γ control (4)	0	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34h	γ control (5)	0	1	0	0	0	0	0	PKN 12	PKN 11	PKN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35h	γ control (6)	0	1	0	0	0	0	0	PKN 32	PKN 31	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36h	γ control (7)	0	Y	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37h	γ control (8)	0	1	0	0	0	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3Ah	γ control (9)	0	1	0	0	0	VRP 14	VRP 13	VRP 12	VRP 11	VRP 10	0	0	0	0	VRP 03	VRP 02	VRP 01	VRP 00
R3Bh	γ control (10)	0	1	0	0	0	VRN 14	VRN 13	VRN 12	VRN 11	VRN 10	0	0	0	0	VRN 03	VRN 02	VRN 01	VRN 00

Note: * means don't care

Software settings will override hardware pin (eg, BGR bits override BGR pin definition)

Table 7. 1 Command Table (Primary Register Map)

7.2 Primary register default value

Reg#	Hex Code	Register Bit Value
R01h	XX00	RL=X, REV=X, PINV=X, BGR=X, SM="0", TB=X, CPE=X
R02h	0200	B/C="1"
R03h	6464	DCT="0110", BT="100", BTF="0", DC="0110", AP="010"
R04h	04XX	PALM="1", BLT="00", OEA= Note ⁽²⁾ , SEL= X, SWD=X
R05h		GHN="1", XDK="0", GDIS="1", LPF="1", DEP="0", CKP="1", VSP= Note ⁽²⁾ ,
		HSP="0", DEO="1", DIT="1", PWM="0", FB="100"
R08h	06FF	PWMS="0", PWMF="0110", DUTY="11111111"
R0Ah	4008	BR="1000000", CON="01000"
R0Bh	D400	NO="11", SDT="01", EQ="100"
R0Dh	3229	VRC="011", VDS="10", VRH="101001"
R0Eh	1200	VDV="1001000"
R0Fh	0000	SCN="00000000"
R16h	9F80	XLIM="100111111"
R17h		STH="00", HBP=Note ⁽²⁾ , VBP=Note ⁽²⁾
R1Eh	005F	nOTP="0", VCM="1011111"
R30h	0000	PKP1="000", PKP0="000"
R31h	0407	PKP3="100", PKP2="111"
R32h	0202	PKP5="010", PKP4="010"
R33h	0000	PRP1="000", PRP0="000"
R34h	0505	PKN1="101", PKN0="101"
R35h	0003	PKN3="000", PKN2="011"
R36h	0707	PKN5="111", PKN4="111"
R37h	0000	PRN1="000", PRN0="000"
R3Ah	0904	VRP1="01001", VRP0="0100"
R3Bh	0904	VRN1="01001", VRN0="0100"

Note: (1) X means the bit is refer to the logic stage of the corresponding hardware pin
(2) The default values of the VSP \ OEA \ HBP \ VBP are automatically set by SEL

Default Value	auto setti	ng	VSP	OEA[1:0]	HBP[6:0]	VBP[6:0]
	NTSC		0	01	1000100	0010010
SEL[2:0] = 000	PAL	PALM=0	0	01	1000100	0010010
		PALM=1				0010010
	NTSC		0	01	1000100	0010010
SEL[2:0] = 001	PAL	PALM=0	0	01	1000100	0010010
		PALM=1				0010010
	NTSC		0	01	1000101	0010110
SEL[2:0] = 010	PAL	PALM=0	0	10	1000101	0011100
		PALM=1				0011000
	NTSC		0	01	1000100	0010110
SEL[2:0] = 011	PAL	PALM=0	0	10	1000111	0011100
		PALM=1				0011000
	NTSC		1	10	1000110	0010001
SEL[2:0] = 100	PAL	PALM=0	1	10	1000110	0011000
		PALM=1	•			0010100
	NTSC		1	10	1000101	0010001
SEL[2:0] = 101	PAL	PALM=0	1	10	1001000	0011000
		PALM=1				0010100
	NTSC		1	10	1000101	0010001
SEL[2:0] = 110	PAL	PALM=0	1	10	1001000	0011000
		PALM=1				0010100
	NTSC		1	10	1000110	0010001
SEL[2:0] = 111	PAL	PALM=0	1	10	1000110	0011000
	' /\L	PALM=1	'		1000110	0010100

Table 7. 2 Registers Default Value (Primary Register Map)

7.3 Primary register command description

Status Read

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0

Figure 7. 1 Status Read

The status read instruction reads the internal status of the HX8238-D.

L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

Driver Output Control (R01h)

R/V	V R	3	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1		0	R L	REV	PINV	BGR	SM	ТВ	CPE	0	0	0	9	0	0	0	0

Figure 7. 2 Driver Output Control

CPE: When CPE=0, Vcim is not shut down, but VGH, VGL, VCOM and Vcix2 are shut down. When CPE=1, internal charge pump Vcim, VGH, VGL, VCOM and Vcix2 are enabled.

REV: Displays all character and graphics display sections with reversal when REV="0". Since the grayscale level can be reversed, display of the same data is enabled on normally white and normally black panels. Source output level is indicated below.

REV	RGB data	Source ou	itput level
KLV	KGB data	VCOM = "L"	VCOM = "H"
	00000H	VO	V63
1			:
	3FFFFH	V63	V0
	00000H	V63	V0
0		:	:
	3FFFFH 🔨 (V0	V63

Table 7. 3 Source Output Level

PINV: When PINV=0, POL output is same phase with internal VCOM signal. When PINV=1, POL output phase is reversed with VCOM signal.

BGR: Selects the <R><G> arrangement. When BGR="0" <R><G> color is assigned from S0. When BGR="1" <G><R> color is assigned from S0.

SM: Change the division of gate driver. When SM = "0", odd/even division (interlace mode) is selected. When SM="1", upper/lower division is selected. Select the division mode according to the mounting method.

TB: Selects the output shift direction of the gate driver. When TB="1", G0 shifts to G239. When TB = "0", G239 shifts to G0.

RL: Selects the output shift direction of the source driver. When RL="1", S0 shifts to S959 and <R><G> color is assigned from S0. When RL="0", S959 shifts to S0 and <R><G> color is assigned from S959. Set RL bit and BGR bit when changing the dot order of R, G and B.

Note: The default setting of register bits **REV**, **BGR**, **TB** and **RL** are defined by the logic stage of corresponding hardware pins. These bits will override the hardware setting once software command was sent to set the bits.

Figure 7. 3 Scan Direction & Display

LCD-Driving-Waveform Control (R02h)

								,									
R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	B/C	0	0	0	0	0	0	0	0	0

Figure 7. 4 LCD-Driving-Waveform Control

B/C: When B/C = 0, frame inversion of the LCD driving signal is enabled. When B/C = 1, line inversion waveform is generated

Power control 1 (R03h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	DCT3	DCT2	DCT1	DCT0	BTF	BT2	BT1	BT0	DC3	DC2	DC1	DC0	AP2	AP1	AP0	0

Figure 7. 5 Power Control 1

DCT3-0: Set the step-up cycle of the step-up circuit for 8-color mode (CM = VDDIO). When the cycle is accelerated, the Vcim and Vcix2 be increased both driving ability of the step-up circuit and current consumption. Adjust the cycle taking into account the display quality and power consumption. VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DCT3	DCT2	DCT1	DCT0	Step-up cycle
0	0	0	0	Fline x 14
0	0	0	(1)	Fline x 12
0	0	1 (0	Fline x 10
0	0	1() 1	Fline x 8
0	1	0	0	Fline x 7
0	1	0	1	Fline x 6
0	1/)	0	Fline x 5
0	1 (1	1	Fline x 4
1	0	0	0	Fline x 3
1	0	0	1	Fline x 2
1		1//	0	Fline x 1
1	0		1	Fline x 0.5
10	1	0	0	Fline x 0.25
1(0)	1	0	1	Reserved
L (1)	1/0	1	0	Reserved
1	~ 100	ノ 1	1	Reserved

Note: Fline = horizontal frequency (Fline Typ. 15KHz)

Table 7. 4 Step-Up Cycle

BT2-0 & BTF: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power supply voltage to be used.

BTF	BT2	BT1	BT0	VGH output	VGL output
0	0	0	0	VCIX2j X 3	- (VCIX2j X 3) + VCI
0	0	0	1	VCIX2j X 3	- (VCIX2j X 2)
0	0	1	0	VCIX2 j X 3	- (VCIX2j X 3)
0	0	1	1	VCIX2j X 2 + VCI	- (VCIX2j X 2) - VCI
0	1	0	0	VCIX2j X 2 + VCI	- (VCIX2j X 2)
0	1	0	1	VCIX2j X 2 + VCI	- (VCIX2j X 2) + VCI
0	1	1	0	VCIX2j X 2	- (VCIX2j X 2)
0	1	1	1	VCIX2j X 2	- (VCIX2j X 2) + VCI
1	Χ	Χ	Χ	VCIX2j X 3	- VCIX2j

Table 7. 5 VGH and VGL Booster Ratio

DC3-0: Set the step-up cycle of the step-up circuit for 16M-colors with dithering mode (CM=VSS).

When the cycle is accelerated, the Vcim and Vcix2 be increased both driving ability of the step-up circuit and current consumption. Adjust the cycle taking into account the display quality and power consumption. VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Fline x 14
0	0	0	1	Fline x 12
0	0	1	0	Fline x 10
0	0	1	1	Fline x 8
0	1	0	0	Fline x 7
0	1	0	1	Fline x 6
0	1	1	0	Fline x 5
0	1	1	1	Fline x 4
1	0	0	0	Fline x 3
1	0	0	1	Fline x 2
1	0	1	0	Fline x 1
1	0	1	7, (Fline x 0.5
1	1	0	0	Fline x 0.25
1	1	0	1	Reserved
1	1	1	0	Reserved
1	1	1 년(1	Reserved

Note: Fline = horizontal frequency (Fline Typ. 15KHz)

Table 7. 6 Step-Up Cycle

AP2-0: Adjust the amount of current from the stable-current source in the internal operational amplifier circuit. When the amount of current becomes large, the driving ability of the operational-amplifier circuits increase. Adjust the current taking into account the power consumption. During times when there is no display, such as when the system is in a sleep mode, set AP2-0 = "000" to halt the operational amplifier circuit and the step-up circuits to reduce current consumption.

AP2	AP1	AP0	Op-amp power
0	0	0	Least
0	0	1	Small
0	1	0	Small to medium
0	1	1	Medium
1	0	0	Medium to large
1	0	1	Large
1	1	0	Large to Maximum
1	1	1	Maximum

Table 7. 7 Op-amp Power

Input Data and Color Filter Control (R04h)

_	_																	
	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	0	0	PALM	BLT1	BLT0	OEA1	OEA0	SEL2	SEL1	SEL0	SWD2	SWD1	SWD0

Figure 7. 6 Input Data and Color Filter Control

SWD2-0: Control and switch the relationship between the R, G, B data and color filter type.

This information contained herein is the exclusive property of Himax and shell not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax.

960x 240 TFT LCD Single Chip Digital Driver

DATA SHEET Preliminary V03

G1 G2 G3 — G4	SWD [2:0]=001 B R G B R G B R G G B R G B R G B R G B R	QXH L H L
234Lines 240Lines	 	
G237 G238 G239 G240	B R G B R G G B R G B R G B R G B R	L H L H

G1 G2 G3 G4	SWD [2:0]=01X R G B R G B B R G B R G R G B R G B B R G B R G	QXH L H L
234Lines 240Lines	 	
G237 G238 G239 G240	R G B R G B B R G B R G R G B R G B B R G B R G	L H L

		5	SWD[2:0]=	111		QXH
G1	R	G	В	R	G	В	L
G2	R	G	В	R	G	В	L
G3	R	G	В	R	G	В	L
G4	R	G	В	R	G	В	L
234Lines 240Lines							
☐ G237	R	G	В	R	G	В	L
G238	R	G	В	R	G	В	L
G239	R	G	В	R	G	В	L
G240	R	G	В	R	G	В	L

Note: The QXH is used to control the input data sequence.

Table 7. 8 Color Filter Type

SEL2-0: Define the input interface mode.

SEL2	SEL1	SEL0	Format	Operating Frequency
0	0	0	Parallel-RGB data format	6.5MHz
U	0	0	(only support stripe type color filter)	0.3IVII 12
0	0	(0)	Serial-RGB data format	19.5MHz
0	1	0	CCIR 656 data format (640RGB)	24.54MHz
0	ار 1	\bigcirc	CCIR 656 data format (720RGB)	27MHz
1	0	0	YUV mode A data format (Cr-Y-Cb-Y)	24.54MHz
1	0	1/	YUV mode A data format (Cr-Y-Cb-Y)	27MHz
1	1	0	YUV mode B data format (Cb-Y-Cr-Y)	27MHz
(1//	1	1	YUV mode B data format (Cb-Y-Cr-Y)	24.54MHz

Input format	DOTCLK Freq (MHz)	Display Data	Active Area (DOTCLK)
YUV mode	24.54	640	1280
10 v mode	27	720	1440

Table 7. 9 Interface Type

OEA1-0: Odd/Even field advanced function.

OEA1	OEA0	
0	0	Display Start @ VBP delay for Odd field and @ VBP-1 for Even field.
0	1	Display Start @ VBP delay for Odd field and @ VBP for Even field.
1	0	Display Start @ VBP delay for Odd field and @ VBP+1 for Even field.
1	1	No use

Table 7. 10 Odd/Even Field Advanced Function

BLT[1:0]: Set the initial power on black image insertion time.

00: 10 fields 01: 20 fields 10: 40 fields 11: 80 fields

PALM: Set the input data line number in PAL mode

0: 280 lines 1: 288 lines

Function Control (R05h)

			_														
R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
,								7	ļ			7 -4-1	19.1				
W	1	GHN	XDK	GDIS	LPF	DEP	CKP	VSP	HSP	DEO	DIT	0	PWM	0	FB2	FB1	FB0

Figure 7. 7 Function Control

FB2-0: Set PWM feedback level adjustment when PWMS=0.

000: 0.4V 001: 0.45V 010: 0.5V 011: 0.55V 100: 0.6V 101: 0.65V

111: 0.75V

PWM: When PWM=0, PWM function is disabled. When PWM=1, PWM function is enabled.

DIT: When DIT=0, dithering function is turned off. When DIT=1, dithering function is enabled.

DEO: When DEO=0, VSYNC/HSYNC are also needed in DE mode. Under this condition, vertical back porch is defined by VBP[6:0] and the horizontal first valid data is defined by DE signal. When DEO=1, only DEN signal is needed in DE mode.

HSP: When HSP=0, HSYNC is negative polarity. When HSP=1, HSYNC is positive polarity.

VSP: When VSP=0, VSYNC is negative polarity. When VSP=1, VSYNC is positive polarity.

CKP: When CKP=0, data is latched in CLK falling edge. When CKP=1, data is latched by CLK rising edge.

DEP: When DEP=0, DEN is negative polarity active. When DEP=1, DEN is positive polarity active.

LPF: When LPF=0, the low pass filter function in YUV mode is disabled. When LPF=1, the low pass filter function is YUV mode is enabled.

GDIS: When GDIS=0, VGL has no discharge path to VSS in standby mode. When GDIS=1, VGL will discharge to VSS in standby mode. When CPE=0, GDIS is fixed to 0, and you can't change it by SPI.

XDK: When XDK=0, VCIX2 is 2 stage pumping from VCI. (VCIX2=3 x VCI) When XDK=1, VCIX2 is 2 phase pumping from VCI. (VCIX2=2 x VCI)

GHN: When GHN=0, all gate outputs are forced to VGH. When GHN=1, gate driver is normal operation.

PWM Control (R08h)

					,													
ſ	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ſ	W	1	0	0	0	PWMS	PWMF3	PWMF2	PWMF1	PWMF0	DUTY7	DUTY6	DUTY5	DUTY4	DUTY3	DUTY2	DUTY1	DUTY0

Figure 7. 8 PWM for External LED Driver Control

PWMS: Select PWM function.

When PWMS=0, use internal PWM circuit. (Default)

When PWMS=1, use external LED driver, DRV pin outputs control signal.

PWMF3-0: Select control signal frequency when set PWMS=1. Adjust range from

100Hz to 100KHz. Default value = 0110.

				E	nable signal frequen	су
PWMF3	PWMF2	PWMF1	PWMF0	Parallel RGB	Serial RGB	YUV/CCIR656
				6.5MHz	19.5MHz	24.54/27MHz
0	0	0	0	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸	DCLK / 2 ⁸
0	0	0	1	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸	DCLK / 2 ⁹
0	0	1	0	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸	DCLK / 2 ¹⁰
0	0	1	((1))	DCLK / 2 ⁹	DCLK / 3 / 2 ⁹	DCLK / 2 ¹¹
0	1	0	0	DCLK / 2 ¹⁰	DCLK / 3 / 2 ¹⁰	DCLK / 2 ¹²
0	1	0	1	DCLK / 2 ¹¹	DCLK / 3 / 2 ¹¹	DCLK / 2 ¹³
0	1	7	0	DCLK / 2 ¹²	DCLK / 3 / 2 ¹²	DCLK / 2 ¹⁴
0	1		1	DCLK / 2 ¹³	DCLK / 3 /2 ¹³	DCLK / 2 ¹⁵
1	0	0	0	DCLK / 2 ¹⁴	DCLK / 3 / 2 ¹⁴	DCLK / 2 ¹⁶
1	0	0	1	DCLK / 2 ¹⁵	DCLK / 3 / 2 ¹⁵	DCLK / 2 ¹⁷
1	0	1	0	DCLK / 2 ¹⁶	DCLK / 3 / 2 ¹⁶	DCLK / 2 ¹⁸
1	0	1		Reserved	Reserved	Reserved
1		0	0	Reserved	Reserved	Reserved
1	1	0	<i>))</i> 1	Reserved	Reserved	Reserved
1//	1	1	0	Reserved	Reserved	Reserved
1	1	1	1	Reserved	Reserved	Reserved

Table 7. 11 LED Driver Control Signal Frequency

DUTY7-0: Select control signal duty cycle when set PWMS=1. Adjust range from 00h(duty cycle=1/256) to FFh(duty cycle=256/256). Default value is FFh.

in whole or in part without prior written permission of Himax.

Contrast/Brightness Control (R0Ah)

_																		
ſ	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ſ	W	1	0	BR6	BR5	BR4	BR3	BR2	BR1	BR0	0	0	0	CON4	CON3	CON2	CON1	CON0

Figure 7. 9 Contrast/Brightness Control

CON4-0: Display Contrast level adjustment. (0.125/step) Adjust range from 00h (level=0) to 1Fh (level=3.875). Default value is 08h (level=1).

BR6-0: Display Brightness level adjustment. (2/step) Adjust range from 00h (level=-128) to 7Fh(level=+126). Default value is 40h(level=0).

Frame Cycle Control (R0Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	N O 1	NO0	SDT1	SDT0	0	EQ2	EQ1	EQ0	0	0	0	0	0	0	0	0

Figure 7. 10 Frame Cycle Control

NO1-0: Sets amount of non-overlap of the gate output.

NO1	NO0	Amount of non-overlap
0	0	1.5µs
0	1	3.0µs
1	0	4.5µs
1	1	6.0µs

Table 7. 12 Amount of Non-overlap

Figure 7. 11 NO Timing Diagram

SDT1-0: Set delay amount from the gate output signal falling edge to the source outputs.

	SDT1	SDT0	Delay amount of the source output
1	0	0	1µs
I	0	1	3µs
ſ	1	0	5µs
I	1	1	7µs

Table 7. 13 Delay Amount of Source Output

EQ2-0: Set the equalizing period.

EQ2	EQ1	EQ0	EQ period
0	0	0	No EQ
0	0	1	3µs
0	1	0	4µs
0	1	1	5µs
1	0	0	6µs
1	0	1	7µs
1	1	0	8µs
1	1	1	9µs

Table 7. 14 EQ Period

Himax Confidential

<u>-P.24-</u> June, 2008

Figure 7. 12 EQ Timing Diagram

Power Control 2 (R0Dh)

П	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	VRC2	VRC1	VRC0	0	0	VDS1	VDS0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0

Figure 7. 13 Power Control 2

VRC[2:0]: Set the VCIX2 charge pump voltage clamp.

VRC[2:0]=000, 5.1V

VRC[2:0]=001, 5.3V

VRC[2:0]=010, 5.5V

VRC[2:0]=011, 5.7V

VRC[2:0]=100, 5.9V

VRC[2:0]=101, reserved

VRC[2:0]=110, reserved

VRC[2:0]=111, reserved

VDS[1:0]: Set the VDD regulator voltage if pin "REGVDD" is set to VDDIO.

VDS[1:0]=00, 1.8V

VDS[1:0]=01, 2V

VDS[1:0]=10, 2.2V

VDS[1:0]=11, 2.5V

VRH5-0: Set amplitude magnification of VLCD63. These bits amplify the VLCD63 voltage 2.464 to 4.456 times the Vref voltage set by VRH5-0.

VRH5	VRH4	VRH3	VRH2	VRH1	VRH0	VLCD63Voltage	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0	VLCD63Voltage
0	0	0	0	0	0	Vref x 2.456	1	0	0	0	0	0	Vref x 3.480
0	0	0	0	0	1	Vref x 2.488	1	0	0	0	0	1	Vref x 3.512
0	0	0	0	1	0	Vref x 2.520	1	0	0	0	1	0	Vref x 3.544
0	0	0	0	1	1	Vref x 2.552	1	0	0	0	1	1	Vref x 3.576
0	0	0	1	0	0	Vref x 2.584	1	0	0	1	0	0	Vref x 3.608
0	0	0	1	0	1	Vref x 2.616	1	0	0	1	0	1	Vref x 3.640
0	0	0	1	1	0	Vref x 2.648	1	0	0	1	1	0	Vref x 3.672
0	0	0	1	1	1	Vref x 2.680	1	0	0	1	1	1	Vref x 3.704
0	0	1	0	0	0	Vref x 2.712	1	0	1	0	0	0	Vref x 3.736
0	0	1	0	0	1	Vref x 2.744	1	0	1	0	0	1	Vref x 3.768
0	0	1	0	1	0	Vref x 2.776	1	0	1	0	(4)	0	Vref x 3.800
0	0	1	0	1	1	Vref x 2.808	1	0	1	0	1	1	Vref x 3.832
0	0	1	1	0	0	Vref x 2.840	1	0	1	7	0	0	Vref x 3.864
0	0	1	1	0	1	Vref x 2.872	1	0	7	7	0	1	Vref x 3.896
0	0	1	1	1	0	Vref x 2.904	1	0	1	1	1	0	Vref x 3.928
0	0	1	1	1	1	Vref x 2.936	1	00	//1 ×	1	_1	1	Vref x 3.960
0	1	0	0	0	0	Vref x 2.968	1	1	0	0	0	0	Vref x 3.992
0	1	0	0	0	1	Vref x 3.000	1 (1	0	0	0	1	Vref x 4.024
0	1	0	0	1	0	Vref x 3.032	1)	0	0		0	Vref x 4.056
0	1	0	0	1	1	Vref x 3.064	1	1	0	9	1	1	Vref x 4.088
0	1	0	1	0	0	Vref x 3.096		1	0	1	0	0	Vref x 4.120
0	1	0	1	0	1	Vref x 3.128	1	1	0	1	0	1	Vref x 4.152
0	1	0	1	1	0	Vref x 3.160	1	1	0	1	1	0	Vref x 4.184
0	1	0	1	1	1	Vref x 3.192	1	1	0	1	1	1	Vref x 4.216
0	1	1	0	0	0	Vref x 3.224	1	1	1	0	0	0	Vref x 4.248
0	1	1	0	0	1	Vref x 3.256	4	1	1	0	0	1	Vref x 4.280
0	1	1	0	1	0	Vref x 3.288	1	1	1	0	1	0	Vref x 4.312
0	1	1	0	1	1	Vref x 3.320) /1	1	1	0	1	1	Vref x 4.344
0	1	1	1	0	0	Vref x 3.352	1	1	1	1	0	0	Vref x 4.376
0	1	1	1	0	1	Vref x 3.384	1	1	1	1	0	1	Vref x 4.408
0	1	1	1 (1	0	Vref x 3.416	1	1	1	1	1	0	Vref x 4.440
0	1	1	1	(1)	1	Vref x 3.448	1	1	1	1	1	1	Vref x 4.472

Note: Vref is the internal reference voltage equals to 1.25V.

Table 7. 15 VLCD63 Voltage

Power Control 3 (R0Eh)

-																		
	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	VDV6	VDV5	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	0	0	0

Figure 7. 14 Power Control 3

VDV6-0: Set the alternating amplitudes of VCOM at the VCOM alternating drive. These bits amplify VCOM amplitude 0.6 to 1.2525 times the VLCD63 voltage. External voltage at VCOMR is referenced when VDV="01111xx".

VDV6	VDV5	VDV4	VDV3	VDV2	VDV1	VDV0	VCOM Amplitude
0	0	0	0	0	0	0	VLCD63 x 0.6000
0	0	0	0	0	0		VLCD63 x 0.6075
0	0	0	0	0	1	0	VLCD63 x 0.6150
0	0	0	0	0	1	とくい	VLCD63 x 0.6225
0	0	0	0	1	0	0	VLCD63 x 0.6300
			:		~(:
			:				Step = 0.0075
			:		$\wedge (0/a)$	~	:
0	1	1	1	0		0	VLCD63 x 1.0350
0	1	1	1	0		1	VLCD63 x 1.0425
0	1	1	1		U /*	*	Reference from
U	ı	I	I			A(C)	external voltage (VCOMR)
1	0	0	0	0	0	0	VLCD63 x 1.0500
1	0	0	0	0	0	1	VLCD63 x 1.0575
			: <	4(/)))	:
			:				Step = 0.0075
					(())		:
1	0	1		0		0	VLCD63 x 1.2450
1	0	1 (1	0	1	1	VLCD63 x 1.2525
1	0	1)1)	1	*	*	Reserved
1	1	*		*	*	*	Reserved

Table 7. 16 VCOM Amplitude

Gate Scan Position (R0Fh)

				\sim													
R/W	RS	IB15	IB14	■IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	0	0	0	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0

Figure 7. 15 Gate Scan Position

SCN7-0: Set the scanning starting position of the gate driver.

Figure 7. 16 Gate Scan Display Position

960x 240 TFT LCD Single Chip Digital Driver

DATA SHEET Preliminary V03

Horizontal Porch (R16h)

						,												
R/	W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
٧	٧	1	XLIM8	XLIM7	XLIM6	XLIM5	XLIM4	XLIM3	XLIM2	XLIM1	XLIM0	0	0	0	0	0	0	0

Figure 7. 17 Horizontal Porch

XLIM8-0: Set the number of valid pixel per line.

					ixoi poi				
XLIM8	XLIM7	XLIM6	XLIM5	XLIM4	XLIM3	XLIM2	XLIM1	XLIM0	No. of pixel per line
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2
0	0	0	0	0	0	0	1	0	3
				: :					Step = 1
1	0	0	1	1	1	1	1	0	319
1	0	0	1	1	1	1	1	1	320
1	0	1	*	*	*	*	*	*	Reserved
1	1	*	*	*	*	*	*	*	Reserved

Table 7. 17 No. of Pixel Per Line

Vertical Porch (R17h)

П	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	STH1	STH0	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0

Figure 7. 18 Vertical Porch

HBP6-0: Set the delay period from falling edge of HSYNC signal to first valid data. The pixel data exceed the range set by XLIM8-0 and before the first valid data will be treated as dummy data. The setting is only effective in SYNC mode timing.

HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	No. of Clock Cycle
0	0	0	0	0	0	0(0)	Can't set
0	0	0	0	0	0	\\\\\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Can't set
0	0	0	0	0	1	0	Can't set
0	0	0	0	0	1	1	Can't set
0	0	0	0	1	0 1	0	Can't set
0	0	0	0	1	0	1	Can't set
0	0	0	0	1	(Φ/a)	0	Can't set
0	0	0	0	1		1 (\	Can't set
0	0	0	1	0	0	0	Can't set
0	0	0	1	0	0		9
				(3//		(())	:
				~4//		112	Step = 1
							:
1	1	1	1	M	1	0	126
1	1	1	1	V 1	(1)	1	127

Table 7. 18 No. of Clock Cycle of Clock

Figure 7. 19 No. of Clock Cycle of Clock

STH1-0: Adjust the first valid data by dot clock. This setting is not valid in parallel RGB input interface.

STH=00: +0 dot clock STH=01: +1 dot clock STH=10: +2 dot clock STH=11: +3 dot clock

VBP6-0: Set the delay period from falling edge of VSYNC to first valid line. The line data within this delay period will be treated as dummy line. The setting is only effective in SYNC mode timing.

							A ((/A \)'
VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	Can't set
0	0	0	0	0	0	1	Can't set
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
							: Step = 1
) ,>	: Step = 1
1	1	1	1	1	0	0	124
1	1	1	1	1	0	1	125
1	1	1	1	1	\ 1	0	126
1	1	1	1	1	Y 1/		127

Table 7. 19 No. of Clock Cycle of HSYNC

Figure 7. 20 No. of Clock Cycle of HSYNC

Power Control 4 (R1Eh)

	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
I	W	1	0	0	0	0	0	0	0	0	nOTP	VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0

Figure 7. 21 Power Control 4

nOTP: nOTP=0, VCOM6-0 value is controlled by OTP memory. (Default) nOTP=1, VCOM6-0 value is controlled by SPI register.

Before OTP programming, no matter what's nOTP setting, VCOMH voltage decided by SPI VCOM6-0. User can adjust the VCOMH voltage by setting VCOMH6-0.

After programmed OTP, VCOMH voltage is decided by nOTP setting. When power on reset, nOTP default value is 0, VCOMH voltage equals to programmed OTP value. If nOTP set to "1", setting of VCM6-0 becomes valid and voltage of VCOMH can be adjusted.

VCM6-0: Set the VCOMH voltage if nOTP = "1". These bits amplify the VCOMH voltage 0.36 to 0.995 times the VLCD63 voltage.

VCM6	VCM5	VCM4	VCM3	VCM2	VCM1	VCM0	VCOMH
0	0	0	0	0	0	0	VLCD63 x 0.360
0	0	0	0	0	0	- //1	VLCD63 x 0.365
0	0	0	0	0	\$ 1	0	VLCD63 x 0.370
0	0	0	0	0	1	1	VLCD63 x 0.375
0	0	0	0	1	0	0	VLCD63 x 0.380
		() :		$\langle \ (\bigcirc \) \ \rangle$)	:	•
						:	Step = 0.005
			1				:
1	7/	1	1	1	0	0	VLCD63 x 0.980
1		1	1	1	0	1	VLCD63 x 0.985
1		1/(1	1	0	VLCD63 x 0.990
1) 1 /		<u> </u>	1	1	1	VLCD63 x 0.995

Note: 2V < VCOMH < VLCD63

Table 7. 20 VCOMH

Gamma Control 1 (R30h to R37h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	PKP1	PKP1	PKP1	0	0	0	0	0	PKP0	PKP0	PKP0
W	1	0	0	0	0	0	PKP3	PKP3	PKP3	0	0	0	0	0	PKP2	PKP2	PKP2
W	1	0	0	0	0	0	PKP5	PKP5	PKP5	0	0	0	0	0	PKP4	PKP4	PKP4
W	1	0	0	0	0	0	PRP1	PRP1	PRP1	0	0	0	0	0	PRP0	PRP0	PRP0
W	1	0	0	0	0	0	PKN1	PKN1	PKN1	0	0	0	0	0	PKN0	PKN0	PKN0
W	1	0	0	0	0	0	PKN3	PKN3	PKN3	0	0	0	0	0	PKN2	PKN2	PKN2
W	1	0	0	0	0	0	PKN5	PKN5	PKN5	0	0	0	0	0	PKN4	PKN4	PKN4
W	1	0	0	0	0	0	PRN1	PRN1	PRN1	0	0	0	0	0	PRN0	PRN0	PRN0

Figure 7. 22 Gamma Control 1

PKP52-00: Gamma micro adjustment registers for the positive polarity output.

PRP12-00: Gradient adjustment registers for the positive polarity output.

PKN52-00: Gamma micro adjustment registers for the negative polarity output.

PRN12-00: Gradient adjustment registers for the negative polarity output.

Gamma Control 2 (R3Ah to R3Bh)

-											/						
R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	VRP00
W	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	V R N 0 0

Figure 7. 23 Gamma Control 2

VRP14-00: Adjustment registers for amplification adjustment of the positive polarity output.

VRN14-00: Adjustment registers for the amplification adjustment of the negative polarity output.

(Refer to Gamma Adjustment Function for details)

7.4 Secondary register command table

Reg No.	Register	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
01h	DISPLAY INTERFACE	IM	0	0	0	0	0	0	0	REV	0	0	0	0	0	0	0
02h	DISPLAY DATA CONTROL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
03h	ENTER MODE	VPL	HPL	DPL	EPL	0	0	0	SS	0	0	0	0	0	0	STB	0
04h	GATE CONTROL 1	0	0	CLW1	CLW0	0	0	0	0	0	0	GAON	0	0	0	0	0
05h	GATE CONTROL 2	0	NW	0	DSC	0	0	0	0	0	0	0	0_	0	0	0	0
06h	DISPLAY CONTROL 1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0
07h	DISPLAY CONTROL 2	0	0	0	0	0	0	HBP9	HBP8	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0
08h	SOURCE OUTPUT TIMING CONTROL	0	0	0	0	SDT1	SDT0	0	0	0	0	0	EQ2	EQ1	EQ0	0	0
09h	POWER CONTROL 1	MSEL	EXM	0	0	GON	0	POC	0	0	SAP2	SAP1	SAP0	0	0	0	0
0ah	POWER CONTROL 2	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0
10h	GAMMA CONTROL(1)	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00
11h	GAMMA CONTROL(1)	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00
12h	GAMMA CONTROL(1)	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0		0	VRP03	VRP02	VRP01	VRP00
13h	GAMMA CONTROL(1)	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRN00
14h	GAMMA CONTROL(1)	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00
15h	GAMMA CONTROL(1)	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20
16h	GAMMA CONTROL(1)	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40
17h	GAMMA CONTROL(1)	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00
18h	GAMMA CONTROL(1)	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20
19h	GAMMA CONTROL(1)	0	0	O	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40
1ah	Function Control	0	0	0	0	0	0	0	OTD	PWM	OTF	FB2	FB1	FB0	0	nOTP	OTG
1bh	PWM Control	0	0	0	PWMS	PWMF3	PWMF2	PWMF1	PWMF0	DUTY7	DUTY6	DUTY5	DUTY4	DUTY3	DUTY2	DUTY1	DUTY0
1ch	Power Control 1	DCT3	DCT2	DCT1	DCT0	DC3	DC2	DC1	DC0	0	XDK	GDIS	0	BTF	BT2	BT1	ВТ0
1dh	Power Control 2	0	VRC2	VRC1	VRC0	0	0	VDS1	VDS0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0

Table 7. 21 Command Table

7.5 Secondary register default value

Reg No.	Hex Code	Register Bit Value
R01h	0000	IM="0", REV="0"
R02h	0000	-
R03h	0100	VPL="0", HPL="0", DPL="0", EPL="0", SS="1", STB="0"
R04h	3000	CLW1="1", CLW0="1", GAON="0"
R05h	5000	NW="1", DSC="1"
R06h	000A	VBP7="0", VBP6="0", VBP5="0", VBP4="0", VBP3="1", VBP2="0", VBP1="1", VBP0="0"
R07h	0021	HBP9="0", HBP8="0", HBP7="0", HBP6="0", HBP5="1", HBP4="0", HBP3="0", HBP2="0", HBP1="0", HBP0="1"
R08h	0410	SDT1="0", SDT0="1", EQ2="1", EQ1="0", EQ0="0"
R09h	0A00	MSEL="0", EXM="0", GON="1", POC="1", SAP2="0", SAP1="0", SAP0="0"
R0Ah	040F	VDV4="0", VDV3="0", VDV2="1", VDV1="0", VDV0="0", VCM4="0", VCM3="1", VCM2="1", VCM1="1", VCM0="1"
R10h	0000	PRP12="0", PRP11="0", PRP10="0", PRP02="0", PRP01="0", PRP00="0"
R11h	0000	PRN12="0", PRN11="0", PRN10="0", PRN02="0", PRN01="0", PRN00="0"
R12h	0904	VRP14="0", VRP13="1", VRP12="0", VRP11="0", VRP10="1", VRP03="0", VRP02="1", VRP01="0", VRP00="0"
R13h	0904	VRN14="0", VRN13="1", VRN12="0", VRN11="0", VRN10="1", VRN03="0", VRN02="1", VRN01="0", VRN00="0"
R14h	0000	PKP12="0", PKP11="0", PKP10="0", PKP02="0", PKP01="0", PKP00="0"
R15h	0407	PKP32="1", PKP31="0", PKP30="0", PKP22="1", PKP21="1", PKP20="1"
R16h	0202	PKP52="0", PKP51="1", PKP50="0", PKP42="0", PKP41="1", PKP40="0"
R17h	0505	PKN12="1", PKN11="0", PKN10="1", PKN02="1", PKN01="0", PKN00="1"
R18h	0003	PKN32="0", PKN31="0", PKN30="0", PKN32="0", PKN31="1", PKN30="1"
R19h	0707	PKN52="1", PKN51="1", PKN50="1", PKN42="0", PKN41="1", PKN40="1"
R1Ah	0020	OTD="0", PWM="0", OTF="0", FB2="1", FB1="0", FB0="0", nOTP="0", OTG="0"
R1Bh	06FF	PWMS="0", PWMF3="0", PWMF2="1", PWMF1="1", PWMF0="0", DUTY7="1", DUTY6="1", DUTY5="1", DUTY4="1", DUTY3="1", DUTY2="1", DUTY1="1", DUTY0="1"
R1Ch	6624	DCT3="0", DCT2="1", DCT1="1", DCT0="0", DC3="0", DC2="1", DC1="1", DC0="0", XDK="0", GDIS="1", BTF="0", BT2="1", BT1="0", BT0="0"
R1Dh	3229	VRC2="0", VRC1="1", VRC0="1", VDS1="1", VDS0="0", VRH5="1", VRH4="0", VRH3="1", VRH2="0", VRH1="0", VRH0="1"

Table 7. 22 Registers Default Value (Secondary Register Map)

7.6 Secondary regsiter command description

Display Interface Control (R01H)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	I M	0	0	0	0	0	0	0	REV	0	0	0	0	0	0	0

Figure 7. 24 Display Interface Control Instruction

IM: Specify the PD data weight. IM="0": 24bits interface IM="1": 8bits interface

REV: Reverses all character and graphics display sections.

REV="0": Normally White Panel REV="1": Normally Black Panel

REV	Data	Source Output Level of Displayed Area								
KLV	Data	Positive Polarity	Negative Polarity							
	6'b000000	VO	V63							
	:		7/ :							
0	:	SON (OM	:							
	6'b111111	V63	V0							
	6'b000000	V63	V0							
4	: 40	:(0)>	:							
'	:		:							
	6'b111111	(V0	V63							

Table 7. 23 REV Bit And Source Output Level Of Displayed Area

Entry Mode (R03H)

_																		
I	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ſ	W	1	VPL	HPL	DPL	EPL	0	0	0	SS	0	0	0	0	0	0	STB	0

Figure 7. 25 Entry Mode Instruction

VPL: Reverses the polarity of the VSYNC signal.

VPL="0": VSYNC is low active. VPL="1": VSYNC is high active.

HPL: Reverses the polarity of the HSYNC signal.

HPL="0": HSYNC is low active. HPL="1": HSYNC is high active.

DPL: Reverses the polarity of the DOTCLK signal.

DPL="0": Display data is fetched at rising edge of DOTCLK. DPL="1": Display data is fetched at falling edge of DOTCLK.

EPL: Set the polarity of ENABLE pin while using DE interface mode.

EPL="0": DE=L write data, DE=H won't write data. EPL="1": DE=H write data, DE=L won't write data.

SS: Selects the output shift direction of the source driver.

SS="0": S960→S1 SS="1": S1→S960

STB: Standby mode

STB="1": Standby mode (SD/GD/TCON/VCOM disable)

STB="0": Standby mode cancel

Figure 7. 26 Display Direction According To SS

Gate Control1 (R04H)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	CLW1	CLW0	0	0	0	0	0	0	GAON	0	0	0	0	0

Figure 7. 27 Gate Control1 Instruction

Figure 7. 28 CLW Bits

CLW2-0: Specify the pulse output timing of the CKV and CKVB signal.

CLW1	CLW0	OEV
0	0	1.5µs
0	1(())	3.0µs
1	0	4.5µs
1	((1)	6.0µs

Note: The values indicate the number of clocks after the falling edge of CKV & CKVB.

Table 7. 24 CLW Bits Setting

GAON: Gate all on.

GAON="0", Gate all on disable. GAON="1", Gate all on enable.

Gate Control2 (R05H)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	NW	0	DSC	0	0	0	0	0	0	0	0	0	0	0	0

Figure 7. 29 Gate Control2 Instruction

NW: Frame or line inversion selection

NW="0": Frame inversion. NW="1": Line inversion.

DSC: Specify state of gate driver output signal.

DSC="0": Gate output disable, GOUT=VGL.

DSC="1": Gate output enable.

Display Control1 (R06H)

-														7				
	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	0	0	0	0	0	0	0	0	VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBPO

Figure 7. 30 Display Control1 Instruction

VBP7-0: Vertical back porch. (4H < VBP < 255H)

VBP7	VBP6	VBP5	VBP4	VBP3	VBP2	VBP1	VBP0	No. of clock cycle of HSYNC
0	0	0	0	0	0	0	0	Can't set
0	0	0	0	0	0	0	1	Can't set
0	0	0	0	0	0	V 1	0	Can't set
0	0	0	0	0	0	1/	<u>)</u>	Can't set
0	0	0	0	0	V	0	0	4
				2))			:
			((- ('		Step = 1
								:
1	1	1	1)	1	0	0	252
1	1	1	(1	1 (1	0	1	253
1	1	1 4		1		1	0	254
1	1	10		1 7	1	1	1	255

Display Control2 (R07H)

I	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ı	W	1	0	0	0	0	0	0	HBP9	HBP8	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0

Figure 7. 31 Display Control2 Instruction

HBP9-0: Horizontal back porch. (8clock < HBP < 1023clock) 8clock < HBP of the Parallel RGB < 255clock 8clock < HBP of the Serial RGB < 1023clock

HBP9	HBP8	HBP7	HBP6	HBP5	HBP4	HBP3	HBP2	HBP1	HBP0	No. of Clock Cycle
0	0	0	0	0	0	0	0	0	0	Can't set
0	0	0	0	0	0	0	0	0	1	Can't set
0	0	0	0	0	0	0	0	1	0	Can't set
0	0	0	0	0	0	0	0	(1)	1	Can't set
0	0	0	0	0	0	0	1	0	0	Can't set
0	0	0	0	0	0	0	1 💉	0	1	Can't set
0	0	0	0	0	0	0	1	1	0	Can't set
0	0	0	0	0	0	0	$\langle 1 \rangle$		1	Can't set
0	0	0	0	0	0	1	0	0	0	8
0	0	0	0	0	0	. 1/	0	0 4	1	9
							9			: Step = 1
					>			7/2	<i>)</i> ~	:
1	1	1	1	1	1	7	1/(\mathcal{N}	0	1022
1	1	1	1	1	1	V 1 /		9 /1	1	1023

Source Output Timing Control (R08H)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	SDT1	SDT0	0	0	0	0	0	EQ2	EQ1	EQ0	0	0

Figure 7. 32 Source Output Timing Control Instruction

SDT1-0: Set delay amount from the gate output signal falling edge to the source output.

SDT1	SDT0	Delay amount of the source output (DOTCL)
0	0	5µs
0		5µs
1	0	1µs
1	1//	3µs

Table 7. 25 SDT Bits Setting

EQ2-0: Sets the Equalized period.

	10 11.10 = 944	<u></u>	
EQ2	EQ1	EQ0	Equalizing Period (DOTCLK)
0	0	0	Not equalized
0	0	1	3µs
0	1	0	4μs
0	1	1	5μs
1	0	0	6µs
1	0	1	7µs
1	1	0	8µs
1	1	1	9µs

Table 7. 26 EQ Bits Setting

Power Control1 (R09H)

-																		
	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
	W	1	MSEL	EXM	0	0	GON	0	POC	0	0	SAP2	SAP1	SAP0	0	0	0	0

Figure 7. 33 Power Control1 Instruction

MSEL: Select the polarity of POL.

MSEL="0": POL is in phase with internal VCOM. MSEL="1": POL is reverse with internal VCOM.

EXM: VCOM enable selection.

EXM = "0": VCOM circuit enable.

EXM = "1": VCOM circuit disable, VCOMOUT floating.

GON: VCOM enable selection.

GON= "0": VCOM circuit disable, VCOMOUT floating

GON= "1": VCOM circuit enable.

POC: Power control.

POC="0": SD output the blanking data when CPE = L.

White display for normally white and black display for normally black.

POC="1": SD output the normal display.

SAP2-0: Set current amount of SD/Power circuit

SAP2	SAP1	SAP0	Amount of Current in SD/Power circuit							
0	0	0	Standby mode(default)							
0	0		Small							
0	1_	0	Small or medium							
0	_1\	1 <	Medium							
1	9	0	Medium or large							
1	0	1/7	Large							
1_ 1	(O) A"	0	Setting Inhibited							
1	1		Setting Inhibited							

Table 7. 27 SAP Bits Setting

Power Control (R0Ah)

						,												
I	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ı	W	1	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	V C M O

Figure 7. 34 Power Control

VDV4-0: Set the alternating amplitudes of VCOM at the VCOM alternating drive. These bits amplify VCOM amplitude 0.7875 to 1.2525 times the VLCD63 voltage. External voltage at VCOMR is referenced when VDV = "01111xx".

VDV4	VDV3	VDV2	VDV1	VDV0	VCOM Amplitude
0	0	0	0	0	VLCD63 x 0.7875
0	0	0	0	1	VLCD63 x 0.8025
0	0	0	1	0	VLCD63 x 0.8175
0	0	0	1	1	VLCD63 x 0.8325
					Step = 0.0150
1	0	0	1	*	Setting inhibited
				(0)	Step = 0.0150
1	1	1	0	9	VLCD63 x 1.2225
1	1	1	1	0	VLCD63 x 1.2375
1	1	1		1 /	VLCD63 x 1.2525

Table 7. 28 VCOM Amplitude

VCM4-0: Set the VCOMH voltage if nOTP="1". These bits amplify the VCOMH voltage 0.68 to 0.990 times the VLCD63 voltage.

VCM4	VCM3	VCM2	VCM1	VCM0	VCOMH
0	0	0	0	0	VLCD63 x 0.680
0	0	0	0	1	VLCD63 x 0.690
0	0	0	7 1	0	VLCD63 x 0.700
0	0	0	1	1	VLCD63 x 0.710
0	0	5	0	0	VLCD63 x 0.720
					: Step = 0.010 :
1	1	1	0	0	VLCD63 x 0.960
1	1	1	0	1	VLCD63 x 0.970
1	1	1	1	0	VLCD63 x 0.980
1	1	1	1	1	VLCD63 x 0.990

Note: 2V < VCOMH < VLCD63

Table 7. 29 VCOMH

Himax Confidential

Gamma Control 1 (R10h to R11h and R14h to R19h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00
W	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00
W	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00
W	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20
W	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40
W	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00
W	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20
W	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40

Figure 7. 35 Gamma Control 1

PKP52-00: Gamma micro adjustment registers for the positive polarity output **PRP12-00:** Gradient adjustment registers for the positive polarity output **PKN52-00:** Gamma micro adjustment registers for the negative polarity output **PRN12-00:** Gradient adjustment registers for the negative polarity output

Gamma Control 2 (R12h to R13h)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	VRP14	VRP13	VRP12	VRP11	VRP10	0	0	0	0	VRP03	VRP02	VRP01	V R P 0 0
W	1	0	0	0	VRN14	VRN13	VRN12	VRN11	VRN10	0	0	0	0	VRN03	VRN02	VRN01	VRNOO

Figure 7. 36 Gamma Control 2

VRP14-00: Adjustment registers for amplification adjustment of the positive polarity output.

VRN14-00: Adjustment registers for the amplification adjustment of the negative polarity output.

(Refer to Gamma Adjustment Function for details)

Function Control (R1Ah)

_						,												
I	R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
ſ	W	1	0	0	0	0	0	0	0	OTD	PWM	OTF	FB2	FB1	FB0	0	nOTP	OTG

Figure 7. 37 Function Control

PWM: When PWM=0, PWM function is disabled. When PWM=1, PWM function is enabled.

FB2-0: Set PWM feedback level adjustment when PWMS=0.

000: 0.4V 001: 0.45V 010: 0.5V 011: 0.55V 100: 0.6V 101: 0.65V

110: 0.7V 111: 0.75V

OTD: OTD=0, VDV4-0 value is controlled by OTP memory. (Default)
OTD=1, VDV4-0 value is controlled by SPI register.
Before OTP programming, no matter what's OTD setting, VCOMA voltage decided by SPI VDV4-0. User can adjust the VCOMA voltage by setting VDV4-0.

After programmed OTP, VCOMA voltage is decided by OTD setting. When power on reset, OTD default value is 0, VCOMA voltage equals to programmed OTP value. If OTD set to "1", setting of VDV4-0 becomes valid and voltage of VCOMA can be adjusted.

nOTP: nOTP=0, VCOM6-0 value is controlled by OTP memory. (Default) nOTP=1, VCOM6-0 value is controlled by SPI register.

Before OTP programming, no matter what's nOTP setting, VCOMH voltage decided by SPI VCOM6-0. User can adjust the VCOMH voltage by setting VCOMH6-0.

After programmed OTP, VCOMH voltage is decided by nOTP setting. When power on reset, nOTP default value is 0, VCOMH voltage equals to programmed OTP value. If nOTP set to "1", setting of VCM6-0 becomes valid and voltage of VCOMH can be adjusted.

OTF: OTF=0, BTF and BT2-0 value are controlled by OTP memory. (Default) OTF=1, BTF and BT2-0 value are controlled by SPI register. Before OTP programming, no matter what's OTF setting, VGH/VGL pump voltage ratio voltage decided by SPI BTF and BT2-0. User can adjust the VGH/VGL pump voltage ratio by setting BTF and BT2-0.

After programmed OTP, VGH/VGL pump voltage ratio voltage is decided by OTF setting. When power on reset, BTF and BT2-0 default value is 0, VGH/VGL pump voltage ratio voltage equals to programmed OTP value. If OTF set to "1", setting of BTF and BT2-0 becomes valid and voltage of VGH/VGL pump voltage ratio can be adjusted.

OTG: Gamma voltage setting is controlled by OTP or SPI.
OTG=0, Gamma setting is controlled by OTP memory. (Default)
OTG=1, Gamma setting is controlled by SPI.

PWM Control (R1Bh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	0	0	PWMS	PWMF3	PWMF2	PWMF1	PWMF0	DUTY7	DUTY6	DUTY5	DUTY4	DUTY3	DUTY2	DUTY1	DUTY0

Figure 7. 38 PWM for External LED Driver Control

PWMS: Select PWM function.

When PWMS=0, use internal PWM circuit. (Default)

When PWMS=1, use external LED driver, DRV pin outputs control signal.

PWMF3-0: Select control signal frequency when set PWMS=1. Adjust range from 100Hz to 100KHz. Default value = 0110.

				Enable sign	al frequency
PWMF3	PWMF2	PWMF1	PWMF0	Parallel RGB 6.5MHz	Serial RGB 19.5MHz
0	0	0	0	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸
0	0	0	1	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸
0	0	1	0	DCLK / 2 ⁸	DCLK / 3 / 2 ⁸
0	0	1	1	DCLK / 2 ⁹	DCLK / 3 / 2 ⁹
0	1	0	0	DCLK / 2 ¹⁰	DCLK / 3 / 2 ¹⁰
0	1	0	1	DCLK/2 ¹¹	DCLK / 3 / 2 ¹¹
0	1	1	0	DCLK / 2 ¹²	DCLK / 3 / 2 ¹²
0	1	1	1	DCLK / 2 ¹³	DCLK / 3 /2 ¹³
1	0	0	0	DCLK / 2 ¹⁴	DCLK / 3 / 2 ¹⁴
1	0	0	4	DCLK / 2 ¹⁵	DCLK / 3 / 2 ¹⁵
1	0	1	0	DCLK / 2 ¹⁶	DCLK / 3 / 2 ¹⁶
1	0	1		Reserved	Reserved
1	1	0	0	Reserved	Reserved
1	1	0	1 1	Reserved	Reserved
1	1	A 1	0	Reserved	Reserved
1	1 ~	1	1	Reserved	Reserved

Table 7. 30 LED Driver Control Signal Frequency

DUTY7-0: Select control signal duty cycle when set PWMS=1. Adjust range from 00h (duty cycle=1/256) to FFh(duty cycle=256/256). Default value is FFh.

Power control 1 (R1Ch)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	DCT3	DCT2	DCT1	DCT0	DC3	DC2	DC1	DC0	0	XDK	GDIS	0	BTF	BT2	BT1	BT0

Figure 7. 39 Power Control 1

DCT3-0: Set the step-up cycle of the step-up circuit for 8-color mode (CM = VDDIO). When the cycle is accelerated, the Vcim and Vcix2 driving ability are of the step-up circuit increase, but their current consumption increase, too. Adjust the cycle taking into account the display quality and power consumption. VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DCT3	DCT2	DCT1	DCT0	Step-up cycle
0	0	0	0	Fline x 14
0	0	0	1	Fline x 12
0	0	1	0	Fline x 10
0	0	1	1	Fline x 8
0	1	0	0	Fline x 7
0	1	0	1	Fline x 6
0	1	1	0	Fline x 5
0	1	1	1	Fline x 4
1	0	0	0	Fline x 3
1	0	0		Fline x 2
1	0	1	0	Fline x 1
1	0	1	7	Fline x 0.5
1	1	0	0	Fline x 0.25
1	1	0	1 //	Reserved
1	1	$(1)^{\vee}$	0	Reserved
1		$\langle \mathcal{A} \rangle$	1	Reserved

Note: Fline = horizontal frequency (Fline Typ. 15KHz)

Table 7. 31 Step-Up Cycle

DC3-0: Set the step-up cycle of the step-up circuit for 16M-color with dithering mode (CM = VSS). When the cycle is accelerated, the Vcim and Vcix2 driving ability are of the step-up circuit increase, but their current consumption increase, too. Adjust the cycle taking into account the display quality and power consumption.

VGH and VGL are always fixed at the step-up cycle of Fline x 0.5.

DC3	DC2	DC1	DC0	Step-up cycle
0	0	0	0	Fline x 14
0	0	0	1	Fline x 12
0	0	1	0	Fline x 10
0	0	1	1	Fline x 8
0	1	0	0	Fline x 7
0	1	0	1	Fline x 6
0	1	1	0	Fline x 5
0	1	1	1	Fline x 4
1	0	0	0	Fline x 3
1	0	0	1	Fline x 2
1	0	1	0	Fline x 1
1	0	1	1	Fline x 0.5
1	1	0	0	Fline x 0.25
1	1	0	1	Reserved
1	1	1	0	Reserved
1	1	1	1	Reserved

Note: Fline = horizontal frequency (Fline Typ. 15KHz)

Table 7. 32 Step-Up Cycle

XDK: When XDK=0, VCIX2 is 2 stage pumping from VCI. (VCIX2=3 x VCI) When XDK=1, VCIX2 is 2 phase pumping from VCI. (VCIX2=2 x VCI)

GDIS: When GDIS=0, VGL has no discharge path to VSS in standby mode. When GDIS=1, VGL will discharge to VSS in standby mode. When CPE=0, GDIS is fixed to 0, and you can't change it by SPI.

BT2-0 & BTF: Control the step-up factor of the step-up circuit. Adjust the step-up factor according to the power supply voltage to be used.

BTF	BT2	BT1	BT0	VGH output	VGL output
0	0	0	0	VCIX2j X 3	- (VCIX2j X 3) + VCI
0	0	0	1	VCIX2j X 3	- (VCIX2j X 2)
0	0	1	0	VCIX2j X 3	- (VCIX2j X 3)
0	0	1	1	VCIX2j X 2 + VCI	- (VCIX2j X 2) - VCI
0	1	0	0	VCIX2j X 2 + VCI	- (VCIX2j X 2)
0	1	0	1	VCIX2j X 2 + VCI	- VCIX2j 2 - VCI
0	1	1	0	VCIX2j X 2	- (VCIX2j X 2)
0	1	1	1	VCIX2j X 2	- (VCIX2j X 2) + VCI
1	Χ	Х	Χ	VCIX2j X 3	- VCIX2j

Table 7. 33 VGH and VGL Booster Ratio

960x 240 TFT LCD Single Chip Digital Driver

DATA SHEET Preliminary V03

Power Control 2 (R1Dh)

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	0	VRC2	VRC1	VRC0	0	0	VDS1	VDS0	0	0	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0

Figure 7. 40 Power Control 2

VRC[2:0]: Set the VCIX2 charge pump voltage clamp.

VRC[2:0]=000, 5.1V

VRC[2:0]=001, 5.3V

VRC[2:0]=010, 5.5V

VRC[2:0]=011, 5.7V

VRC[2:0]=100, 5.9V

VRC[2:0]=101, reserved

VRC[2:0]=110, reserved

VRC[2:0]=111, reserved

VDS[1:0]: Set the VDD regulator voltage if pin "REGVDD" is set to VDDIO.

VDS[1:0]=00, 1.8V

VDS[1:0]=01, 2.0V

VDS[1:0]=10, 2.2V

VDS[1:0]=11, 2.5V

VRH5-0: Set amplitude magnification of VLCD63. These bits amplify the VLCD63 voltage 2.464 to 4.456 times the Vref voltage set by VRH5-0.

VRH5	VRH4	VRH3	VRH2	VRH1	VRH0	VLCD63Voltage	VRH5	VRH4	VRH3	VRH2	VRH1	VRH0	VLCD63Voltage
0	0	0	0	0	0	Vref x 2.456	1	0	0	0	0	0	Vref x 3.480
0	0	0	0	0	1	Vref x 2.488	1	0	0	0	0	1	Vref x 3.512
0	0	0	0	1	0	Vref x 2.520	1	0	0	0	1	0	Vref x 3.544
0	0	0	0	1	1	Vref x 2.552	1	0	0	0	1	1	Vref x 3.576
0	0	0	1	0	0	Vref x 2.584	1	0	0	1	0	0	Vref x 3.608
0	0	0	1	0	1	Vref x 2.616	1	0	0	1	0	1	Vref x 3.640
0	0	0	1	1	0	Vref x 2.648	1	0	0	1	1	0	Vref x 3.672
0	0	0	1	1	1	Vref x 2.680	1	0	0	1	1	1	Vref x 3.704
0	0	1	0	0	0	Vref x 2.712	1	0	1	0	0	0	Vref x 3.736
0	0	1	0	0	1	Vref x 2.744	1	0	1	0	0	1	Vref x 3.768
0	0	1	0	1	0	Vref x 2.776	1	0	1	0	4	0	Vref x 3.800
0	0	1	0	1	1	Vref x 2.808	1	0	1	0	V 1	1	Vref x 3.832
0	0	1	1	0	0	Vref x 2.840	1	0	1	1	0	0	Vref x 3.864
0	0	1	1	0	1	Vref x 2.872	1	0	(1)	1	0	1	Vref x 3.896
0	0	1	1	1	0	Vref x 2.904	1	0	1	1	1	0	Vref x 3.928
0	0	1	1	1	1	Vref x 2.936	1 /	0 (/1	1	_1	1	Vref x 3.960
0	1	0	0	0	0	Vref x 2.968	1		0	0	0	0	Vref x 3.992
0	1	0	0	0	1	Vref x 3.000	1/	1	0	0	0	1	Vref x 4.024
0	1	0	0	1	0	Vref x 3.032	11	7	0	0	7	0	Vref x 4.056
0	1	0	0	1	1	Vref x 3.064		1	0 <	0	4/	1	Vref x 4.088
0	1	0	1	0	0	Vref x 3.096	1	1	0	1	0	0	Vref x 4.120
0	1	0	1	0	1	Vref x 3.128	M	1	0	1	0	1	Vref x 4.152
0	1	0	1	1	0	Vref x 3.160	1	1	0	/ 1	1	0	Vref x 4.184
0	1	0	1	1	1	Vref x 3.192	1	1 .	0	1	1	1	Vref x 4.216
0	1	1	0	0	0	Vref x 3.224	1	$\backslash 1$	/ 1	0	0	0	Vref x 4.248
0	1	1	0	0	1 /	Vref x 3.256	1		1	0	0	1	Vref x 4.280
0	1	1	0	1	0 (Vref x 3.288	1	1	1	0	1	0	Vref x 4.312
0	1	1	0	1	1	Vref x 3.320	1	1	1	0	1	1	Vref x 4.344
0	1	1	1	0	0	Vref x 3.352	1	1	1	1	0	0	Vref x 4.376
0	1	1	1	0	1	Vref x 3.384	<i>JJ1</i>	1	1	1	0	1	Vref x 4.408
0	1	1	1	1	0	Vref x 3.416	1	1	1	1	1	0	Vref x 4.440
0	1	1	1		1	Vref x 3.448	1	1	1	1	1	1	Vref x 4.472

Note: Vref is the internal reference voltage equals to 1.25V.

Table 7. 34 VLCD63 Voltage

7.7 Power up/down sequence of the secondary register command

When set to Secondary Register command and CPE=VSS, the charge pump circuit will not enable and the VCIX2, VGH, VGL need to external input.

VCOM can be selected to internal generation or external input by setting register R09h EXM or GON, it needs set both EXM=0 and GON=1, VCOM will be internal generated. If each EXM=1 or GON=0, then VCOM circuit will be disabled, and VCOM need to be external input.

Please follow the recommend power up/down sequence as below steps: (Set VCOM is external inputted.)

Figure 7. 41 Power Up Sequence when SPSW Connect to VSS (CPE=VSS)

Figure 7. 42 Power Down Sequence when SPSW Connect to VSS (CPE=VSS)

When set to Secondary register command and CPE=VDDIO, the charge pump circuit will enable and the VCIX2, VGH, VGL, VCOM will internal generation.

Please follow the power up/down sequence as Figure 12.10 and Figure 12.11.

8. OTP Programming

OTP Write Sequence

Step	Operation
1	Power up the module. Set nOTP=1 and find out the appropriate value of VCM[6:0] and power off the system
2	Power up the system with VDD=VDDIO=2.5V. If REGVDD=1, set R0Dh=16'h0324.
3	Set appropriate values found from step 1 to register of VCOM (R1Eh)
4	Set R06h=16'h2820 to stop VGH/VGL pumping. Wait 0.5s.
5	Set R60h=16'h8000
6	Set R60h=16'hC000
7	Connect 7.3V to VGH and 0V to VGL (Note1)
8	Set R60h=16'hC200
9	Set R60h=16'hC280
10	Wait 200µs for completing this program
11	Set R60h=16'hC200
12	Remove 7.5V from VGH and 0V from VGL
13	Set R60h=16'h8200
14	Set R60h=16'h0200
15	Set R60h=16'h0040
16	Set R60h=16'h0000

Note: VGH is connected to 7.1~7.4

Table 8. 1 OTP Programming Sequence

You can use above programming sequence to set VCM[6:0] value to OTP cell twice. If you want to check if the OTP cell is still available for programming, you can read the status from R61h shown below.

R/W	RS	IB15	IB14	IB13	IB12	IB11	IB10	IB9	IB8	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
R	1	IND[2]	V CM6[2]	VCM5[2]	VCM4[2]	VCM3[2]	VCM2[2]	VCM1[2]	VCM0[2]	IND[1]	VCM6[1]	VCM5[1]	VCM4[1]	VCM3[1]	VCM2[1]	VCM1[1]	VCM0[1]

Figure 8. 1 OTP Read Table

You can check the IND[2] bit to see if the VCM[6:0] is still programmable or not. If IND[2]=0, you can program new VCM[6:0] value to OTP. If IND[2]=1, it means that the OTP cell have already programmed twice and you can't program it any more. IB6~IB0 indicate the currently effective VCM[6:0] setting in OTP cell.

OTP Programming circuitry

Figure 8. 2 OTP Programming Circuitry

Himax Confidential

<u>-P.51-</u> June, 2008

9. Gamma Adjustment Function

The HX8238-D incorporates gamma adjustment function for the 16M-colors with dithering display. Gamma adjustment is implemented by deciding the 8-grayscale levels with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

Figure 9. 1 Grayscale Control Block

9.1 Structure of grayscale amplifier

Below figure indicates the structure of the grayscale amplifier. It determines 8 levels (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V63.

Figure 9. 2 Grayscale Amplifier

Figure 9. 3 Resistor Ladder for Gamma Voltages Generation

9.2 Gamma adjustment register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are three types of register groups to adjust gradient, amplitude, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Use the same setting of Reference-value and R.G. B.) Following graphics indicates the operation of each adjusting register.

Figure 9. 4 Gamma Adjustment Function

9.2.1 Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistors in the middle of the ladder resistor by registers (PRP(N)0 / PRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

9.2.2 Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistors in the boundary of the ladder resistor by registers (VRP(N)0 / VRP(N)1) for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

9.2.3 Micro adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls each reference voltage level by the 8 to 1 selector towards the 8-level reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

9.3 Ladder resistor / 8 to 1 selector

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors. Also, there has pin (EXVR) that can be connected to VSS or an external variable resistor for compensating the dispersion of length between both panels.

Variable resistor

There are 3 types of the variable resistors that are for the gradient and amplitude adjustment. The resistance is set by the resistor (PRP(N)0 / PRP(N)1) and (VRP(N)0 / VRP(N)1) as below.

PRP(N)[0:1]	Resistance
000	0R
001	4R
010	8R
011	12R
100	16R
101	20R
110	24R
111	28R

Table	e 9. ′	1 PF	₹P(1	1)
-------	--------	------	------	----

VRP(N)0	Resistance
0000	0R
0001	2R
0010	4R
Step	=2R
1110	28R
1111	30R

Table 9. 2 VRP(N)0

VRP(N)1	Resistance				
00000	0R				
00001	1R				
00010	2R				
Step =	1R				
11110	30R				
11111	31R				

Table 9. 3 VRP(N)1

8 to 1 selector

In the 8 to 1 selector, a reference voltage VIN can be selected from the levels which are generated by the ladder resistors. There are six types of reference voltage (VIN1 to VIN6) and totally 48 divided voltages can be selected in one ladder resistor. Following figure explains the relationship between the micro adjusting register and the selecting voltage.

	Positive polarity							Negative polarity					
Register	Selected voltage						Register			Selected	l voltage		
PKP[2:0]	VINP1	VINP2	VINP3	VINP4	VINP5	VINP6	PKN[2:0]	VINN1	VINN2	VINN3	VINN4	VINN5	VINN6
000	KVP1	KVP9	KVP17	KVP25	KVP33	KVP41	000	KVN1	KVN9	KVN17	KVN25	KVN33	KVN41
001	KVP2	KVP10	KVP18	KVP26	KVP34	KVP42	001	KVN2	KVN10	KVN18	KVN26	KVN34	KVN42
010	KVP3	KVP11	KVP19	KVP27	KVP35	KVP43	010	KVN3	KVN11	KVN19	KVN27	KVN35	KVN43
011	KVP4	KVP12	KVP20	KVP28	KVP36	KVP44	011	KVN4	KVN12	KVN20	KVN28	KVN36	KVN44
100	KVP5	KVP13	KVP21	KVP29	KVP37	KVP45	100	KVN5	KVN13	KVN21	KVN29	KVN37	KVN45
101	KVP6	KVP14	KVP22	KVP30	KVP38	KVP46	101	KVN6	KVN14	KVN22	KVN30	KVN38	KVN46
110	KŬP7	KVP15	KVP23	KVP31	KVP39	KVP47	110	KVN7	KVN15	KVN23	KVN31	KVN39	KVN47
111	KVP8	KVP16	KVP24	KVP32	KVP40	KVP48	111	KVN8	KVN16	KVN24	KVN32	KVN40	KVN48

Table 9. 4 PKP and PKN

Grayscale voltage	Positive Polarity	Negative Polarity
VO	VINP0	VINN7
V1	VINP1	VINN6
V2	V8+(V1-V8)*(2241/2703)	V1+(V8-V1)*(462/2703)
V3	V8+(V1-V8)*(1671/2703)	V1+(V8-V1)*(1032/2703)
V4	V8+(V1-V8)*(1209/2703)	V1+(V8-V1)*(1494/2703)
V5	V8+(V1-V8)*(849/2703)	V1+(V8-V1)*(1854/2703)
V6	V8+(V1-V8)*(567/2703)	V1+(V8-V1)*(2136/2703)
V7	V8+(V1-V8)*(294/2703)	, , , , , ,
	, , ,	V1+(V8-V1)*(2409/2703)
V8	VINP2	VINN5
V9	V20+(V8-V20)*(1533/1767)	V8+(V20-V8)*(234/1767)
V10	V20+(V8-V20)*(1356/1767)	V8+(V20-V8)*(411/1767)
V11	V20+(V8-V20)*(1188/1767)	V8+(V20-V8)*(579/1767)
V12	V20+(V8-V20)*(993/1767)	V8+(V20-V8)*(774/1767)
V13	V20+(V8-V20)*(843/1767)	V8+(V20-V8)*(924/1767)
V14	V20+(V8-V20)*(693/1767)	V8+(V20-V8)*(1074/1767)
V15	V20+(V8-V20)*(543/1767)	V8+(V20-V8)*(1224/1767)
V16	V20+(V8-V20)*(441/1767)	V8+(V20-V8)*(1326/1767)
V17	V20+(V8-V20)*(336/1767)	V8+(V20-V8)*(1431/1767)
V18	V20+(V8-V20)*(213/1767)	V8+(V20-V8)*(1554/1767)
V19	V20+(V8-V20)*(81/1767)	V8+(V20-V8)*(1686/1767)
V20	VINP3	VINN4
V21	V43+(V20-V43)*(1887/1965)	V20+(V43-V20)*(78/1965)
V22	V43+(V20-V43)*(1779/1965)	V20+(V43-V20)*(186/1965)
V23	V43+(V20-V43)*(1653/1965)	V20+(V43-V20)*(312/1965)
V24	V43+(V20-V43)*(1536/1965)	V20+(V43-V20)*(429/1965)
V25	V43+(V20-V43)*(1437/1965)	V20+(V43-V20)*(528/1965)
V26	V43+(V20-V43)*(1362/1965)	V20+(V43-V20)*(603/1965)
V27	V43+(V20-V43)*(1278/1965)	V20+(V43-V20)*(687/1965)
V28	V43+(V20-V43)*(1191/1965)	V20+(V43-V20)*(774/1965)
V29	V43+(V20-V43)*(1098/1965)	V20+(V43-V20)*(867/1965)
V30	V43+(V20-V43)*(1008/1965)	V20+(V43-V20)*(957/1965)
V31	V43+(V20-V43)*(927/1965)	V20+(V43-V20)*(1038/1965)
V31	V43+(V20-V43)*(843/1965)	V20+(V43-V20)*(1122/1965)
_		
V33	V43+(V20-V43)*(750/1965)	V20+(V43-V20)*(1215/1965)
V34	V43+(V20-V43)*(678/1965)	V20+(V43-V20)*(1287/1965)
V35	V43+(V20-V43)*(612/1965)	V20+(V43-V20)*(1353/1965)
V36	V43+(V20-V43)*(528/1965)	V20+(V43-V20)*(1437/1965)
V37	V43+(V20-V43)*(450/1965)	V20+(V43-V20)*(1515/1965)
V38	V43+(V20-V43)*(375/1965)	V20+(V43-V20)*(1590/1965)
V39	V43+(V20-V43)*(303/1965)	V20+(V43-V20)*(1662/1965)
V40	V43+(V20-V43)*(222/1965)	V20+(V43-V20)*(1743/1965)
V40	V43+(V20-V43)*(147/1965)	V20+(V43-V20)*(1818/1965)
V41		
	V43+(V20-V43)*(87/1965)	V20+(V43-V20)*(1878/1965)
V43	VINP4	VINN3
V44	V55+(V43-V55)*(936/1014)	V43+(V55-V43)*(78/1014)
V45	V55+(V43-V55)*(867/1014)	V43+(V55-V43)*(147/1014)
V46	V55+(V43-V55)*(792/1014)	V43+(V55-V43)*(222/1014)
V47	V55+(V43-V55)*(723/1014)	V43+(V55-V43)*(291/1014)
V48	V55+(V43-V55)*(648/1014)	V43+(V55-V43)*(366/1014)
V49	V55+(V43-V55)*(561/1014)	V43+(V55-V43)*(453/1014)
V50	V55+(V43-V55)*(465/1014)	V43+(V55-V43)*(549/1014)
V51	V55+(V43-V55)*(387/1014)	V43+(V55-V43)*(627/1014)
V52	V55+(V43-V55)*(291/1014)	V43+(V55-V43)*(723/1014)
V53	V55+(V43-V55)*(201/1014)	V43+(V55-V43)*(813/1014)
V54	V55+(V43-V55)*(111/1014)	V43+(V55-V43)*(903/1014)
V55	VINP5	VINN2
V56	V62+(V55-V62)*(1218/1317)	V55+(V62-V55)*(99/1317)
V57	V62+(V55-V62)*(1092/1317)	V55+(V62-V55)*(225/1317)
V58	V62+(V55-V62)*(936/1317)	V55+(V62-V55)*(381/1317)
V59	V62+(V55-V62)*(774/1317)	V55+(V62-V55)*(543/1317)
V60	V62+(V55-V62)*(579/1317)	V55+(V62-V55)*(738/1317)
	V62+(V55-V62)*(324/1317)	
		V55+(V62-V55)*(993/1317)
V61	, , ,	
V61 V62 V63	VINP6 VINP7	VINN1 VINN0

Table 9. 5 Grayscale Voltages Formulas

Reference	Formula	Micro-adjusting register	Reference voltage
KVP0	VLCD63 - ΔV x VRP0 / SUMRP	-	VINP0
KVP1	VLCD63 - ΔV x (VRP0 + 5R) / SUMRP	PKP0[2:0] = "000"	
KVP2	VLCD63 - ΔV x (VRP0 + 9R) / SUMRP	PKP0[2:0] = "001"	
KVP3	VLCD63 - ΔV x (VRP0 + 13R) / SUMRP	PKP0[2:0] = "010"	
KVP4	VLCD63 - ΔV x (VRP0 + 17R) / SUMRP	PKP0[2:0] = "011"	VINP1
KVP5	VLCD63 - ΔV x (VRP0 + 21R) / SUMRP	PKP0[2:0] = "100"	VINE
KVP6	VLCD63 - ΔV x (VRP0 + 25R) / SUMRP	PKP0[2:0] = "101"	
KVP7	VLCD63 - ΔV x (VRP0 + 29R) / SUMRP	PKP0[2:0] = "110"	
KVP8	VLCD63 - ΔV x (VRP0 + 33R) / SUMRP	PKP0[2:0] = "111"	
KVP9	VLCD63 - ΔV x (VRP0 + 33R + VRHP) / SUMRP	PKP1[2:0] = "000"	
KVP10	VLCD63 - ΔV x (VRP0 + 34R + VRHP) / SUMRP	PKP1[2:0] = "001"	
KVP11	VLCD63 - ΔV x (VRP0 + 35R + VRHP) / SUMRP	PKP1[2:0] = "010"	h.>
KVP12	VLCD63 - ΔV x (VRP0 + 36R + VRHP) / SUMRP	PKP1[2:0] = "011"	VINP2
KVP13	VLCD63 - ΔV x (VRP0 + 37R + VRHP) / SUMRP	PKP1[2:0] = "100"	VINP2
KVP14	VLCD63 - ΔV x (VRP0 + 38R + VRHP) / SUMRP	PKP1[2:0] = "101"	
KVP15	VLCD63 - ΔV x (VRP0 + 39R + VRHP) / SUMRP	PKP1[2:0] = "110"	
KVP16	VLCD63 - ΔV x (VRP0 + 40R + VRHP) / SUMRP	PKP1[2:0] = "111"	
KVP17	VLCD63 - ΔV x (VRP0 + 45R + VRHP) / SUMRP	PKP2[2:0] = "000"	
KVP18	VLCD63 - ΔV x (VRP0 + 46R + VRHP) / SUMRP	PKP2[2:0] = "001"	
KVP19	VLCD63 - ΔV x (VRP0 + 47R + VRHP) / SUMRP	PKP2[2:0] = "010"	
KVP20	VLCD63 - ΔV x (VRP0 + 48R + VRHP) / SUMRP	PKP2[2:0] = "011"	VINP3
KVP21	VLCD63 - ΔV x (VRP0 + 49R + VRHP) / SUMRP	PKP2[2:0] = "100"	VINP3
KVP22	VLCD63 - ΔV x (VRP0 + 50R + VRHP) / SUMRP	PKP2[2:0] = "101")
KVP23	VLCD63 - ΔV x (VRP0 + 51R + VRHP) / SUMRP	PKP2[2:0] = "110"	
KVP24	VLCD63 - ΔV x (VRP0 + 52R + VRHP) / SUMRP	PKP2[2:0] = "111"	
KVP25	VLCD63 - ΔV x (VRP0 + 68R + VRHP) / SUMRP	PKP3[2:0] = "000"	
KVP26	VLCD63 - ΔV x (VRP0 + 69R + VRHP) / SUMRP	PKP3[2:0] = "001"	
KVP27	VLCD63 - ΔV x (VRP0 + 70R + VRHP) / SUMRP	PKP3[2:0] = "010"	
KVP28	VLCD63 - ΔV x (VRP0 + 71R + VRHP) / SUMRP	PKP3[2:0] = "011"	VINDA
KVP29	VLCD63 - ΔV x (VRP0 + 72R + VRHP) / SUMRP	PKP3[2:0] = "100"	VINP4
KVP30	VLCD63 - ΔV x (VRP0 + 73R + VRHP) / SUMRP	PKP3[2:0] = "101"	
KVP31	VLCD63 - ΔV x (VRP0 + 74R + VRHP) / SUMRP	PKP3[2:0] = "110"	
KVP32	VLCD63 - ΔV x (VRP0 + 75R + VRHP) / SUMRP	PKP3[2:0] = "111"	
KVP33	VLCD63 - ΔV x (VRP0 + 80R + VRHP) / SUMRP	PKP4[2:0] = "000"	
KVP34	VLCD63 - ΔV x (VRP0 + 81R + VRHP) / SUMRP	PKP4[2:0] = "001"	
KVP35	VLCD63 - ΔV x (VRP0 + 82R + VRHP) / SUMRP	PKP4[2:0] = "010"	
KVP36	VLCD63 - ΔV x (VRP0 + 83R + VRHP) / SUMRP	PKP4[2:0] = "011"	VINDE
KVP37	VLCD63 - ΔV x (VRP0 + 84R + VRHP) / SUMRP	PKP4[2:0] = "100"	VINP5
KVP38	VLCD63 - ΔV x (VRP0 + 85R + VRHP) / SUMRP	PKP4[2:0] = "101"	
KVP39	VLCD63 - ΔV x (VRP0 + 86R + VRHP) / SUMRP	PKP4[2:0] = "110"	
KVP40	VLCD63 - ΔV x (VRP0 + 87R + VRHP) / SUMRP	PKP4[2:0] = "111"	1
KVP41	VLCD63 - ΔV x (VRP0 + 87R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "000"	
KVP42	VLCD63 - ΔV x (VRP0 + 91R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "001"	
KVP43	VLCD63 - ΔV x (VRP0 + 95R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "010"	1
KVP44	VLCD63 - ΔV x (VRP0 + 99R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "011"	VINIDO
KVP45	VLCD63 - ΔV x (VRP0 + 103R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "100"	VINP6
KVP46	VLCD63 - ΔV x (VRP0 + 107R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "101"	
KVP47	VLCD63 - ΔV x (VRP0 + 111R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "110"	
KVP48	VLCD63 - ΔV x (VRP0 + 115R + VRHP + VRLP) / SUMRP	PKP5[2:0] = "111"	
KVP49	VLCD63 - ΔV x (VRP0 + 120R + VRHP + VRLP) / SUMRP	-	VINP7

Note: (1) SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP0 + VRP1 (2) ΔV: Voltage difference between VLCD63 and of EXVR.

Table 9. 6 Reference Voltages of Positive Polarity

Reference	Formula	Micro-adjusting register	Reference voltage
KVN0	VLCD63 - ΔV x VRN0 / SUMRN	-	VINN0
KVN1	VLCD63 - ΔV x (VRN0 + 5R) / SUMRN	PKN0[2:0] = "000"	
KVN2	VLCD63 - ΔV x (VRN0 + 9R) / SUMRN	PKN0[2:0] = "001"	1
KVN3	VLCD63 - ΔV x (VRN0 + 13R) / SUMRN	PKN0[2:0] = "010"	1
KVN4	VLCD63 - ΔV x (VRN0 + 17R) / SUMRN	PKN0[2:0] = "011"	\ //N/N/4
KVN5	VLCD63 - ΔV x (VRN0 + 21R) / SUMRN	PKN0[2:0] = "100"	VINN1
KVN6	VLCD63 - ΔV x (VRN0 + 25R) / SUMRN	PKN0[2:0] = "101"	1
KVN7	VLCD63 - ΔV x (VRN0 + 29R) / SUMRN	PKN0[2:0] = "110"	
KVN8	VLCD63 - ΔV x (VRN0 + 33R) / SUMRN	PKN0[2:0] = "111"	
KVN9	VLCD63 - ΔV x (VRN0 + 33R + VRHN) / SUMRN	PKN1[2:0] = "000"	
KVN10	VLCD63 - ΔV x (VRN0 + 34R + VRHN) / SUMRN	PKN1[2:0] = "001"	
KVN11	VLCD63 - ΔV x (VRN0 + 35R + VRHN) / SUMRN	PKN1[2:0] = "010"	
KVN12	VLCD63 - ΔV x (VRN0 + 36R + VRHN) / SUMRN	PKN1[2:0] = "011"	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
KVN13	VLCD63 - ΔV x (VRN0 + 37R + VRHN) / SUMRN	PKN1[2:0] = "100"	VINN2
KVN14	VLCD63 - ΔV x (VRN0 + 38R + VRHN) / SUMRN	PKN1[2:0] = "101"	
KVN15	VLCD63 - ΔV x (VRN0 + 39R + VRHN) / SUMRN	PKN1[2:0] = "110"	
KVN16	VLCD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN	PKN1[2:0] = "111"	-
KVN17	VLCD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN	PKN2[2:0] = "000"	
KVN17 KVN18	VLCD63 - ΔV x (VRN0 + 45R + VRHN) / SUMRN	PKN2[2:0] = "001"	-
KVN19	VLCD63 - ΔV x (VRN0 + 40R + VRHN) / SUMRN	PKN2[2:0] = "010"	1
KVN20			
	VLCD63 - ΔV x (VRN0 + 48R + VRHN) / SUMRN	PKN2[2:0] = "011"	VINN3
KVN21	VLCD63 - ΔV x (VRN0 + 49R + VRHN) / SUMRN	PKN2[2:0] = "100"	
KVN22	VLCD63 - ΔV x (VRN0 + 50R + VRHN) / SUMRN	PKN2[2:0] = "101"	\
KVN23	VLCD63 - ΔV x (VRN0 + 51R + VRHN) / SUMRN	PKN2[2:0] = "110"	/
KVN24	VLCD63 - ΔV x (VRN0 + 52R + VRHN) / SUMRN	PKN2[2:0] = "111"	
KVN25	VLCD63 - ΔV x (VRN0 + 68R + VRHN) / SUMRN	PKN3[2:0] = "000"	
KVN26	VLCD63 - ΔV x (VRN0 + 69R + VRHN) / SUMRN	PKN3[2:0] = "001"	
KVN27	VLCD63 - ΔV x (VRN0 + 70R + VRHN) / SUMRN	PKN3[2:0] = "010"	
KVN28	VLCD63 - ΔV x (VRN0 + 71R + VRHN) / SUMRN	PKN3[2:0] = "011"	VINN4
KVN29	VLCD63 - ΔV x (VRN0 + 72R + VRHN) / SUMRN	PKN3[2:0] = "100"	
KVN30	VLCD63 - ΔV x (VRN0 + 73R + VRHN) / SUMRN	PKN3[2:0] = "101"	
KVN31	VLCD63 - ΔV x (VRN0 + 74R + VRHN) / SUMRN	PKN3[2:0] = "110"	
KVN32	VLCD63 - ΔV x (VRN0 + 75R + VRHN) / SUMRN	PKN3[2:0] = "111"	
KVN33	VLCD63 - ΔV x (VRN0 + 80R + VRHN) / SUMRN	PKN4[2:0] = "000"	
KVN34	VLCD63 - ΔV x (VRN0 + 81R + VRHN) / SUMRN	PKN4[2:0] = "001"	
KVN35	VLCD63 - ΔV x (VRN0 + 82R + VRHN) / SUMRN	PKN4[2:0] = "010"	
KVN36	VLCD63 - ΔV x (VRN0 + 83R + VRHN) / SUMRN	PKN4[2:0] = "011"	VINN5
KVN37	VLCD63 - ΔV x (VRN0 + 84R + VRHN) / SUMRN	PKN4[2:0] = "100"	7.1.40
KVN38	VLCD63 - ΔV x (VRN0 + 85R + VRHN) / SUMRN	PKN4[2:0] = "101"	
KVN39	VLCD63 - ΔV x (VRN0 + 86R + VRHN) / SUMRN	PKN4[2:0] = "110"	
KVN40	VLCD63 - ΔV x (VRN0 + 87R + VRHN) / SUMRN	PKN4[2:0] = "111"	
KVN41	VLCD63 - ΔV x (VRN0 + 87R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "000"	
KVN42	VLCD63 - ΔV x (VRN0 + 91R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "001"	
KVN43	VLCD63 - ΔV x (VRN0 + 95R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "010"	
KVN44	VLCD63 - ΔV x (VRN0 + 99R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "011"	VINN6
KVN45	VLCD63 - ΔV x (VRN0 + 103R + VRHN + VRLŃ) / SUMRN	PKN5[2:0] = "100"	VIININO
KVN46	VLCD63 - ΔV x (VRN0 + 107R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "101"	
KVN47	VLCD63 - ΔV x (VRN0 + 111R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "110"	
KVN48	VLCD63 - ΔV x (VRN0 + 115R + VRHN + VRLN) / SUMRN	PKN5[2:0] = "111"	
KVN49	VLCD63 - ΔV x (VRN0 + 120R + VRHN + VRLN) / SUMRN	-	VINN7
	TESES EL A (VIGIO - TESIC - VIGIN - VICEN) / OSININA	1000 \(\text{IDIII}\)	V 11 41 47

Note: (1) SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN0 + VRN1 (2) ΔV: Voltage difference between VLCD63 and of EXVR.

Table 9. 7 Reference Voltages of Negative Polarity

10. Maximum Rating

Maximum Ratings (Voltage Referenced to VSS)

Symbol	Parameter		Unit		
Symbol	r ai ailletei	Min.	Тур.	Max.	Offic
VDD	Supply Voltage	-0.3	-	2.7	V
VDDIO	Supply voltage	-0.3	-	4.0	V
VCI	Input Voltage	VSS-0.3	-	5.0	V
I	Current Drain Per Pin Excluding VDD and VSS	-	25	-	mA
TA	Operating Temperature	-30	•	85	$^{\circ}\!\mathbb{C}$
Tstg	Storage Temperature	-65	- ^ (150	$^{\circ}\mathbb{C}$

Table 10. 1 Maximum Ratings

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that VCI and VOUT be constrained to the range VSS < VDDIO \leq VCI < VOUT.

Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either VSS or VDDIO).

Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11. DC Characteristics

DC Characteristics

(Unless otherwise specified, Voltage Referenced to Vss, VDDIO = 2.2V, TA = 25°C)

Symbol	Parameter	Test condition		Unit		
Syllibol	Farameter	rest condition	Min.	Тур.	Max.	Oilit
V_{DD}	System power supply pins of the logic block	Recommend Operating Voltage Possible Operating Voltage	1.6	-	2.50	V
V_{DDIO}	Power supply pin of IO pins	Recommend Operating Voltage Possible Operating Voltage	1.6	-	3.6	V
V _{CI}	Booster Reference Supply Voltage Range	Recommend Operating Voltage Possible Operating Voltage	2.5 or VDDIO		3.6	V
I _{sleep}	Sleep mode current	-	A (S)	50	-	μΑ
I_{dp}	Operating mode current	VCI=3.3V	X ()	10	12	mΑ
V _{CIM}	Negative V _{CI} Output Voltage	No panel loading	- VCI	-	- VCI+0.7	V
V_{CIX2}	V _{CIX2} primary booster efficiency ⁽¹⁾	No panel loading, ITO for V_{CIX2} , V_{CI} and $V_{CHS} = 10$ Ohm	83	90	-	%
		No panel loading; 4x booster; ITO for C _{YP} , C _{YN} , V _{CIX2} , V _{CI} and V _{CHS} = 10 Ohm	84	89.5	-	%
V_{GH}	Gate driver High Output Voltage Booster efficiency ⁽²⁾	No panel loading; $5x$ booster; ITO for C_{YP} , C_{YN} , V_{CIX2} , V_{CI} and $V_{CHS} = 10$ Ohm	80	88.5	-	%
		No panel loading; 6x booster; ITO for C_{YP} , C_{YN} , V_{CIX2} , V_{CI} and $V_{CHS} = 10$ Ohm	72	80	-	%
V_{GL}	Gate driver Low Output Voltage	- (()	- V _{GH}		-5.1	V
V _{сомн}	VCOM High Output Voltage	- (3)	-	-	5.54	V
V _{COML}	VCOM Low Output Voltage	-(())	V _{CIM} +0.5	-	-	V
V _{COMA}	VCOM Amplitude	-0	-	-	6	V
V _{LCD63}	V _{LCD63} Output Voltage	F) 53	-	-	5.57	V
$\triangle V_{LCD63}$	Max. Source Voltage Variation	/-/	-2	-	2	%
V _{OH1}	Logic High Output Voltage	lout = -100μA	$0.9V_{DDIO}$	-	V_{DD}	V
V _{VD}	Source Output Voltage Deviation	- ((())	-	±20	-	mV
Vos	Source Output Voltage Offset		-	-	±30	mV
V _{OL1}	Logic Low Output Voltage	lout = 100µA	0	-	$0.1V_{DDIO}$	V
V _{IH1}	Logic High Input voltage	-	0.8V _{DDIO}	-	V_{DDIO}	V
V _{IL1}	Logic Low Input voltage	-	0	-	$0.2V_{DDIO}$	V
I _{OH}	Logic High Output Current Source	V out = VDD - 0.4V	50	-	-	μA
I _{OL}	Logic Low Output Current Drain	V out = 0.4V	-	-	-50	μA
I _{OZ}	Logic Output Tri-state Current Drain Source		-1	-	1	μA
III/IIH	Logic Input Current	-	-1	-	1	μΑ
C _{IN}	Logic Pins Input Capacitance	-	-	5	7.5	pF
R _{SON}	Source drivers output resistance	-	-	1	-	kΩ
R _{GON}	Gate drivers output resistance	-	-	500	-	Ω
R _{CON}	VCOM output resistance	-	-	200	-	Ω

Note: (1) VCIX2 efficiency = VCIX2 / (2 x VCI) x 100% (2) VGH efficiency = VGH / (VCI x n) x 100% (where n = booster factor)

Table 11. 1 DC Characteristics

-P.61-

12. AC Characteristics

AC Characteristics

(Unless otherwise specified, Voltage Referenced to Vss, VDDIO = 2.2V, TA = 25° C)

Figure 12. 1 Pixel Timing

Characteristics	Symbol Min.		Тур.		Max.		Unit	
Characteristics	Syllibol	24 bit	8 bit	24 bit	8 bit	24 bit	8 bit	Offic
DOTCLK Frequency	fDOTCLK	-	-	6.5	19.5	10	30	MHz
DOTCLK Period	tDOTCLK	100	33.3	154	51.3	-	-	ns
Vertical Sync Setup Time	tvsys	20	10	-	-	-	-	ns
Vertical Sync Hold Time	tvsyh	20	10	-	-	-	-	ns
Horizontal Sync Setup Time	thsys	20	10	-	-	-	-	ns
Horizontal Sync Hold Time	thsyh	20	10	-	-	-	-	ns
Phase difference of Sync Signal Falling Edge	thv	1			-	24	40	tDOTCLK
DOTCLK Low Period	tCKL	50	15	-	-	-	-	ns
DOTCLK High Period	tCKH	50	15	-	-	-	-	ns
Data Setup Time	tds	12	10	-	-	-	-	ns
Data hold Time	tdh	12	10	-	-	-	-	ns
Reset pulse width	tRES	1	0	-		-		μS

Note: External clock source must be provided to DOTCLK pin of HX8238-D. The driver will not operate if absent of the clocking signal.

Table 12. 1 Pixel Timing

Figure 12. 2 Data Transaction Timing in Parallel RGB (24 bit) Interface (SYNC Mode)

	Characteristics Symbol Min. Typ. Max. Unit								
Characteristics		Symbol	24 bit 8 bit		24 bit 8 bit		24 bit 8 bit		Unit
DOTCLK Frequenc	V-	fDOTCLK	- L4 DIL	-	6.5	19.5	10	30	MHz
DOTCLK Period		tDOTCLK	100	33.3	154	51.3	-	-	ns
Horizontal Frequen	cy (Line)	fH	-		14	.9	22	.35	KHz
Vertical Frequency	(Refresh)	fV	-		60		g	90	Hz
Horizontal Back Po	rch	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Front Po	rch	tHFP	•	-	20	60	-	-	tDOTCLK
Horizontal Data Sta	rt Point	tHBP	-	-	68	204	-	-	tDOTCLK
Horizontal Blanking	Period	tHBP + tHFP	•	-	88	264	-	-	tDOTCLK
Horizontal Display A	Area	HDISP	•	-	320	960	-	-	tDOTCLK
Horizontal Cycle		Hcycle	•	-	408	1224	450	1350	tDOTCLK
Vertical Back Porch		tVBP	-		18		-		Lines
Vertical Front Porch	1	tVFP	-		4		-		Lines
Vertical Data Start I	Point	tVBP	-		18		-		Lines
Vertical Blanking Period		tVBP + tVFP	-		22		-		Lines
Vertical Display	NTSC				240				
Area	PAL	VDISP	-		280(PALM=0)		-		Lines
Alba	PAL				288(PALM=1)				
Vertical Cycle	NTSC	Vcycle	-		262 313		350		Lines
vortioal Oyole	PAL	Voycle							LIHES

Table 12. 2 Data Transaction Timing in Normal Operating Mode

(1) Horizontal Data Transaction Timing

Figure 12.3 Data Transaction Timing in Serial RGB (8 bit) Interface (SYNC Mode)

Figure 12. 4 Signal Timing in DE Mode

Note: The color mode conversion starts at the first falling edge of VSYNC after stage change of CM.

Figure 12. 5 Color Mode Conversion Timing

Figure 12. 6 CCIR601 Horizontal Timing

Figure 12. 7 CCIR601 Vertical Timing

Figure 12. 8 CCIR656 Horizontal Timing

Figure 12. 9 CCIR656 Vertical Timing

Figure 12. 10 Power Up Sequence

Characteristics	Symbol		Unit		
	Symbol	Min.	Тур.	Max.	Offic
VDDD / VDDIO on to falling edge of SHUT	tp-shut	1	-	-	μs
DOTCLK	tclk-shut	1	-	-	clk
Falling edge of SHUT to display start		-	-	14	frame
- 1 line: 408 clk - 1 frame: 262 line -DOTCLK = 6.5MHz	tshut-on	-	166	232.4	ms

Note: It is necessary to input DOTCLK before the falling edge of SHUT.

Display starts at 10th falling edge of VSTNC after the falling edge of SHUT.

Table 12. 3 Power Up Sequence

Himax Confidential

Figure 12. 11 Power Down Sequence

Characteristics	Symbol		Unit		
Cital acteristics	Syllibol	Min.	Тур.	Max.	Onit
Rising edge of SHUT to display off		2	-	-	frame
- 1 line: 408 clk - 1 frame: 262 line - DOTCLK = 6.5MHz	tshut-off	33.4	-	-	ms

Note: DOTCLK must be maintained at lease 2 frames after the rising edge of SHUT.

Display become off at the 2nd falling edge of VSTNC after the falling edge of SHUT.

If RESET signal is necessary for power down, provide it after the 2-frames-cycle of the SHUT period.

Table 12. 4 Power Down Sequence

• Write SPI

Note: The example writes "0x1264h" to register R28h. SPID connected to VSS.

Figure 12. 12 (a) SPI interface Timing Diagram & Write SPI Example

tdh

Read SPI

Figure 12. 14 Rising/Falling Time

Characteristics	Symbol		Spec.		Unit
Gilaracteristics	Symbol	Min.	Тур.	Max.	Oilit
Serial Clock Frequency	fclk	-	-	20	MHz
Serial Clock Cycle Time	tclk	50	-	-	ns
Clock Low Width	tsl	25	-	-	ns
Clock High Width	tsh	25	-	-	ns
Clock Rising Time	trs	-	-	30	ns
Clock Falling Time	tfl	-	-	30	ns
Chip Select Hold Time	tcsh	10	-	-	ns
Chip Select High Delay Time	tcsd	20	-	-	ns
Data Setup Time	tds	5	-	-	ns
Data Hold Time	tdh	10	_	-	ns

Table 12. 5 SPI Timing

13. HX8238-D Output Voltage Relationship

Note: The above voltages level assumed 100% efficiency of the internal booster. There has no voltage drop due to resistance from ITO trace of the panel.

Figure 13. 1 LCD Driving Voltage Relationship

14. Application Circuit

Figure 14. 1 Booster Capacitors

Figure 14. 2 Power Supply Pins Connections

Figure 14. 3 Filtering and Charge Sharing Capacitors

- (1) Capacitors on VCI should be $4.7\mu F$.
- (2) Capacitors on VCIM should be 2.2 uF
- (3) Capacitors on VCIX2 should be $4.7\mu F$.
- (4) Capacitors on VGH, VGL should be 1~4.7μF.
- (5) Other capacitors should be 1μF.
- * VCI should be separate with VCIP at ITO layout to provide noise free path
- * VSS, VCHS, AVSS, and VSSRC should be separated at ITO layout to provide noise free path

Figure 14. 4 Panel and FPC Connection

Figure 14. 5 Panel Connection Example

15. Pad Coordinates

No.	Name	X	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
1	VCOM	-10762.5	-245	50 x 80	51	SCK	-7012.5	-245	50 x 80
2	VCOM	-10687.5	-245	50 x 80	52	SDI	-6937.5	-245	50 x 80
3	VCOM	-10612.5	-245	50 x 80	53	SDI	-6862.5	-245	50 x 80
4	VCOM	-10537.5	-245	50 x 80	54	BB0	-6787.5	-245	50 x 80
5	DUMMY	-10462.5	-245	50 x 80	55	BB0	-6712.5	-245	50 x 80
6	AVSS	-10387.5	-245	50 x 80	56	BB1	-6637.5	-245	50 x 80
7	AVSS	-10312.5	-245	50 x 80	57	BB1	-6562.5	-245	50 x 80
8	AVSS	-10237.5	-245	50 x 80	58	BB2	-6487.5	-245	50 x 80
9	AVSS	-10162.5	-245	50 x 80	59	BB2	-6412.5	-245	50 x 80
10	AVSS	-10087.5	-245	50 x 80	60	BB3	-6337.5	-245	50 x 80
11	AVSS	-10012.5	-245	50 x 80	61	BB3	-6262.5	-245	50 x 80
12	AVSS	-9937.5	-245	50 x 80	62	BB4	-6187.5	-245	50 x 80
13	AVSS	-9862.5	-245	50 x 80	63	BB4	-6112.5	-245	50 x 80
14	AVSS	-9787.5	-245	50 x 80	64	BB5	-6037.5	-245	50 x 80
15	AVSS	-9712.5	-245	50 x 80	65	BB5	-5962.5	-245	50 x 80
16	EXVR	-9637.5	-245	50 x 80	66	BB6	-5887.5	-245	50 x 80
17	EXVR	-9562.5	-245	50 x 80	67	BB6	-5812.5	-245	50 x 80
18	EXVR	-9487.5	-245	50 x 80	68	BB7	-5737.5	-245	50 x 80
19	EXVR	-9412.5	-245	50 x 80	69	BB7	-5662.5	-245	50 x 80
20	VSS	-9337.5	-245	50 x 80	70	GG0	-5587.5	-245	50 x 80
21	VSS	-9262.5	-245	50 x 80	71	GG0	-5512.5	-245	50 x 80
22	VSS	-9187.5	-245	50 x 80	72	GG1	-5437.5	-245	50 x 80
23	VSS	-9112.5	-245	50 x 80	73	GG1	-5362.5	-245	50 x 80
24	VSS	-9037.5	-245	50 x 80	74	GG2	-5287.5	-245	50 x 80
25	VSS	-8962.5	-245	50 x 80	75	GG2	-5212.5	-245	50 x 80
26	VSS	-8887.5	-245	50 x 80	76	GG3	-5137.5	-245	50 x 80
27	VSS	-8812.5	-245	50 x 80	77	GG3	-5062.5	-245	50 x 80
28	SPSW	-8737.5	-245	50 x 80	78	GG4	-4987.5	-245	50 x 80
29	TEST15	-8662.5	-245	50 x 80	79	GG4	-4912.5	-245	50 x 80
30	TEST14	-8587.5	-245	50 x 80	80	GG5	-4837.5	-245	50 x 80
31	TEST13	-8512.5	-245	50 x 80	81	GG5	-4762.5	-245	50 x 80
32	TEST12	-8437.5	-245	50 x 80	82	GG6	-4687.5	-245	50 x 80
33	TEST11	-8362.5	-245	50 x 80	83	GG6	-4612.5	-245	50 x 80
34	TEST10	-8287.5	-245	50 x 80	84	GG7	-4537.5	-245	50 x 80
35	TEST9	-8212.5	-245	50 x 80	85	GG7	-4462.5	-245	50 x 80
36	TEST8	-8137.5	-245	50 x 80	86	RR0	-4387.5	-245	50 x 80
37	TEST7	-8062.5	-245	50 x 80	87	RR0	-4312.5	-245	50 x 80
38	TEST6	-7987.5	-245	50 x 80	88	RR1	-4237.5	-245	50 x 80
39	TEST5	-7912.5	-245	50 x 80	89	RR1	-4162.5	-245	50 x 80
40	TEST4	-7837.5	-245	50 x 80	90	RR2	-4087.5	-245	50 x 80
41	DUMMY	-7762.5	-245	50 x 80	91	RR2	-4012.5	-245	50 x 80
42	QXH	-7687.5	-245	50 x 80	92	RR3	-3937.5	-245	50 x 80
43	POL	-7612.5	-245	50 x 80	93	RR3	-3862.5	-245	50 x 80
44	SDO	-7537.5	-245	50 x 80	94	RR4	-3787.5	-245	50 x 80
45	SDO	-7462.5	-245	50 x 80	95	RR4	-3712.5	-245	50 x 80
46	RESB	-7387.5	-245	50 x 80	96	RR5	-3637.5	-245	50 x 80
47	RESB	-7312.5	-245	50 x 80	97	RR5	-3562.5	-245	50 x 80
48	CSB	-7237.5	-245	50 x 80	98	RR6	-3487.5	-245	50 x 80
49	CSB	-7162.5	-245	50 x 80	99	RR6	-3412.5	-245	50 x 80
50	SCK	-7087.5	-245	50 x 80	100	RR7	-3337.5	-245	50 x 80

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
101	RR7	-3262.5	-245	50 x 80	151	C1N	487.5	-245	50 x 80
102	DEN	-3187.5	-245	50 x 80	152	C1N	562.5	-245	50 x 80
103	DEN	-3112.5	-245	50 x 80	153	VLCD63	637.5	-245	50 x 80
104	HSYNC	-3037.5	-245	50 x 80	154	VLCD63	712.5	-245	50 x 80
105	HSYNC	-2962.5	-245	50 x 80	155	VLCD63	787.5	-245	50 x 80
106	VSYNC	-2887.5	-245	50 x 80	156	VLCD63	862.5	-245	50 x 80
107	VSYNC	-2812.5	-245	50 x 80	157	VLCD63	937.5	-245	50 x 80
108	DOTCLK	-2737.5	-245	50 x 80	158	VLCD63	1012.5	-245	50 x 80
109	DOTCLK	-2662.5	-245	50 x 80	159	VCIX2J	1087.5	-245	50 x 80
110	SHUT	-2587.5	-245	50 x 80	160	VCIX2J	1162.5	-245	50 x 80
111	SHUT	-2512.5	-245	50 x 80	161	VCIX2J	1237.5	-245	50 x 80
112	VSS	-2437.5	-245	50 x 80	162	VCIX2J	1312.5	-245	50 x 80
113	TB	-2362.5	-245	50 x 80	163	VCIX2J	1387.5	-245	50 x 80
114	VDDIO	-2287.5	-245	50 x 80	164	VCIX2J	1462.5	-245	50 x 80
115	REV	-2212.5	-245	50 x 80	165	VCIX2	1537.5	-245	50 x 80
116	VSS	-2137.5	-245	50 x 80	166	VCIX2	1612.5	-245	50 x 80
117	REGVDD	-2062.5	-245	50 x 80	167	VCIX2	1687.5	-245	50 x 80
118	VDDIO	-1987.5	-245	50 x 80	168	VCIX2	1762.5	-245	50 x 80
119	RL	-1912.5	-245	50 x 80	169	VCIX2	1837.5	-245	50 x 80
120	VSS	-1837.5	-245	50 x 80	170	VCIX2	1912.5	-245	50 x 80
121	CM	-1762.5	-245	50 x 80	171	CYN	1987.5	-245	50 x 80
122	VDDIO	-1687.5	-245	50 x 80	172	CYN	2062.5	-245	50 x 80
123	BGR	-1612.5	-245	50 x 80	173	CYN	2137.5	-245	50 x 80
124	VSS	-1537.5	-245	50 x 80	174	CYN	2212.5	-245	50 x 80
125	SEL0	-1462.5	-245	50 x 80	175	CYN	2287.5	-245	50 x 80
126	SEL1	-1387.5	-245	50 x 80	176	CYN	2362.5	-245	50 x 80
127	SEL2	-1312.5	-245	50 x 80	177	CYP	2437.5	-245	50 x 80
128	VDDIO	-1237.5	-245	50 x 80	178	CYP	2512.5	-245	50 x 80
129	SWD0	-1162.5	-245	50 x 80	179	CYP	2587.5	-245	50 x 80
130	VSS	-1087.5	-245	50 x 80	180	CYP	2662.5	-245	50 x 80
131	SWD1	-1012.5	-245	50 x 80	181	CYP	2737.5	-245	50 x 80
132	VDDIO	-937.5	-245	50 x 80	182	CYP	2812.5	-245	50 x 80
133	SWD2	-862.5	-245	50 x 80	183	CXN	2887.5	-245	50 x 80
134	VSS	-787.5	-245	50 x 80	184	CXN	2962.5	-245	50 x 80
135	CPE	-712.5	-245	50 x 80	185	CXN	3037.5	-245	50 x 80
136	PINV	-637.5	-245	50 x 80	186	CXN	3112.5	-245	50 x 80
137	DUMMY	-562.5	-245	50 x 80	187	CXN	3187.5	-245	50 x 80
138	VCIM	-487.5	-245	50 x 80	188	CXN	3262.5	-245	50 x 80
139	VCIM	-412.5	-245	50 x 80	189	CXP	3337.5	-245	50 x 80
140	VCIM	-337.5	-245	50 x 80	190	CXP	3412.5	-245	50 x 80
141	VCIM	-262.5	-245	50 x 80	191	CXP	3487.5	-245	50 x 80
142	VCIM	-187.5	-245	50 x 80	192	CXP	3562.5	-245	50 x 80
143	C1P	-112.5	-245	50 x 80	193	CXP	3637.5	-245	50 x 80
144	C1P	-37.5	-245	50 x 80	194	CXP	3712.5	-245	50 x 80
145	C1P	37.5	-245	50 x 80	195	VDDIO	3787.5	-245	50 x 80
146	C1P	112.5	-245	50 x 80	196	VDDIO	3862.5	-245	50 x 80
147	C1P	187.5	-245	50 x 80	197	VDDIO	3937.5	-245	50 x 80
148	C1N	262.5	-245	50 x 80	198	VDDIO	4012.5	-245	50 x 80
149	C1N	337.5	-245	50 x 80	199	VDDIO	4087.5	-245	50 x 80
150	C1N	412.5	-245	50 x 80	200	VDDIO	4162.5	-245	50 x 80
			I.						•

960x 240 TFT LCD Single Chip Digital Driver

No.	Name	Χ	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
201	VCIP	4237.5	-245	50 x 80	251	TEST16	7987.5	-245	50 x 80
202	VCIP	4312.5	-245	50 x 80	252	VCOMR	8062.5	-245	50 x 80
203	VCIP	4387.5	-245	50 x 80	253	VCOMR	8137.5	-245	50 x 80
204	VCIP	4462.5	-245	50 x 80	254	VCOML	8212.5	-245	50 x 80
205	VCI	4537.5	-245	50 x 80	255	VCOML	8287.5	-245	50 x 80
206	VCI	4612.5	-245	50 x 80	256	VCOML	8362.5	-245	50 x 80
207	VCI	4687.5	-245	50 x 80	257	VCOML	8437.5	-245	50 x 80
208	VCI	4762.5	-245	50 x 80	258	VCOMH	8512.5	-245	50 x 80
209	VCI	4837.5	-245	50 x 80	259	VCOMH	8587.5	-245	50 x 80
210	VCI	4912.5	-245	50 x 80	260	VCOMH	8662.5	-245	50 x 80
211	VCI	4987.5	-245	50 x 80	261	VCOMH <	8737.5	-245	50 x 80
212	VCI	5062.5	-245	50 x 80	262	VCOM	8812.5	-245	50 x 80
213	VCI	5137.5	-245	50 x 80	263	VCOM	8887.5	-245	50 x 80
214	VCI	5212.5	-245	50 x 80	264	VCOM	8962.5	-245	50 x 80
215	VDD	5287.5	-245	50 x 80	265	VCOM	9037.5	-245	50 x 80
216	VDD	5362.5	-245	50 x 80	266	VSSRC	9112.5	-245	50 x 80
217	VDD	5437.5	-245	50 x 80	267	VSSRC	9187.5	-245	50 x 80
218	VDD	5512.5	-245	50 x 80	268	VSSRC	9262.5	-245	50 x 80
219	VDD	5587.5	-245	50 x 80	269	VSSRC	9337.5	-245	50 x 80
220	VDD	5662.5	-245	50 x 80	270	VSSRC	9412.5	-245	50 x 80
221	DUMMY	5737.5	-245	50 x 80	271	VSSRC	9487.5	-245	50 x 80
222	CN	5812.5	-245	50 x 80	272	VSSRC	9562.5	-245	50 x 80
223	CN	5887.5	-245	50 x 80	273	VSSRC	9637.5	-245	50 x 80
224	CN	5962.5	-245	50 x 80	274	VCHS	9712.5	-245	50 x 80
225	CP	6037.5	-245	50 x 80	275	VCHS	9787.5	-245	50 x 80
226	CP	6112.5	-245	50 x 80	276	VCHS	9862.5	-245	50 x 80
227	CP	6187.5	-245	50 x 80	277	VCHS	9937.5	-245	50 x 80
228	VGL	6262.5	-245	50 x 80	278	VCHS	10012.5	-245	50 x 80
229	VGL	6337.5	-245	50 x 80	279	VCHS	10087.5	-245	50 x 80
230	VGL	6412.5	-245	50 x 80	280	VCHS	10162.5	-245	50 x 80
231	VGL	6487.5	-245	50 x 80	281	VCHS	10237.5	-245	50 x 80
232	VGL	6562.5	-245	50 x 80	282	VCHS	10312.5	-245	50 x 80
233	C2N	6637.5	-245	50 x 80	283	VCHS	10387.5	-245	50 x 80
234	C2N	6712.5	-245	50 x 80	284	DUMMY	10462.5	-245	50 x 80
235	C2N	6787.5	-245	50 x 80	285	VFB	10537.5	-245	50 x 80
236	C2P	6862.5	-245	50 x 80	286	VFB	10612.5	-245	50 x 80
237	C2P	6937.5	-245	50 x 80	287	DRV	10687.5	-245	50 x 80
238	C2P	7012.5	-245	50 x 80	288	DRV	10762.5	-245	50 x 80
239	C3N	7087.5	-245	50 x 80	289	DUMMY	11016	242.5	18 x 85
240	C3N	7162.5	-245	50 x 80	290	DUMMY	10998	112.5	18 x 85
241	C3N	7237.5	-245	50 x 80	291	DUMMY	10980	242.5	18 x 85
242	C3P	7312.5	-245	50 x 80	292	DUMMY	10962	112.5	18 x 85
243	C3P	7387.5	-245	50 x 80	293	DUMMY	10944	242.5	18 x 85
244	C3P	7462.5	-245	50 x 80	294	G1	10926	112.5	18 x 85
245	VGH	7537.5	-245	50 x 80	295	G3	10908	242.5	18 x 85
246	VGH	7612.5	-245	50 x 80	296	G5	10890	112.5	18 x 85
247	VGH	7687.5	-245	50 x 80	297	G7	10872	242.5	18 x 85
248	VGH	7762.5	-245	50 x 80	298	G9	10854	112.5	18 x 85
249	VGH	7837.5	-245	50 x 80	299	G11	10836	242.5	18 x 85
250	TEST17	7912.5	-245	50 x 80	300	G13	10818	112.5	18 x 85

No.	Name	Х	Y	Bump Size	No.	Name	Х	Υ	Bump Size
301	G15	10800	242.5	18 x 85	351	G115	9900	242.5	18 x 85
302	G17	10782	112.5	18 x 85	352	G117	9882	112.5	18 x 85
303	G19	10764	242.5	18 x 85	353	G119	9864	242.5	18 x 85
304	G21	10746	112.5	18 x 85	354	G121	9846	112.5	18 x 85
305	G23	10728	242.5	18 x 85	355	G123	9828	242.5	18 x 85
306	G25	10710	112.5	18 x 85	356	G125	9810	112.5	18 x 85
307	G27	10692	242.5	18 x 85	357	G127	9792	242.5	18 x 85
308	G29	10674	112.5	18 x 85	358	G129	9774	112.5	18 x 85
309	G31	10656	242.5	18 x 85	359	G131	9756	242.5	18 x 85
310	G33	10638	112.5	18 x 85	360	G133	9738	112.5	18 x 85
311	G35	10620	242.5	18 x 85	361	G135	9720	242.5	18 x 85
312	G37	10602	112.5	18 x 85	362	G137	9702	112.5	18 x 85
313	G39	10584	242.5	18 x 85	363	G139	9684	242.5	18 x 85
314	G41	10566	112.5	18 x 85	364	G141	9666	112.5	18 x 85
315	G43	10548	242.5	18 x 85	365	G143	9648	242.5	18 x 85
316	G45	10530	112.5	18 x 85	366	G145	9630	112.5	18 x 85
317	G47	10530	242.5	18 x 85	367	G147	9612	242.5	18 x 85
318	G47 G49	10494	112.5	18 x 85	368	G149	9594	112.5	18 x 85
319	G51	10434	242.5	18 x 85	369	G151	9576	242.5	18 x 85
320	G53	10478	112.5	18 x 85	370	G153	9558	112.5	18 x 85
321	G55	10430	242.5	18 x 85	371	G155	9540	242.5	18 x 85
321	G57	10440	112.5	18 x 85	372	G157	9522	112.5	18 x 85
323	G59	10422	242.5	18 x 85	373	G159	9504	242.5	18 x 85
324	G61	10386	112.5	18 x 85	374	G161	9486	112.5	18 x 85
325	G63	10368	242.5	18 x 85	375	G163	9468	242.5	18 x 85
326	G65	10350	112.5	18 x 85	376	G165	9450	112.5	18 x 85
327	G67	10330	242.5	18 x 85	377	G167	9432	242.5	18 x 85
328	G69	10332	112.5	18 x 85	378	G169	9414	112.5	18 x 85
329	G71	10296	242.5	18 x 85	379	G171	9396	242.5	18 x 85
330	G73	10278	112.5	18 x 85	380	G173	9378	112.5	18 x 85
331	G75	10260	242.5	18 x 85	381	G175	9360	242.5	18 x 85
332	G77	10242	112.5	18 x 85	382	G177	9342	112.5	18 x 85
333	G79	10224	242.5	18 x 85	383	G179	9324	242.5	18 x 85
334	G81	10206	112.5	18 x 85	384	G181	9306	112.5	18 x 85
335	G83	10188	242.5	18 x 85	385	G183	9288	242.5	18 x 85
336	G85	10170	112.5	18 x 85	386	G185	9270	112.5	18 x 85
337	G87	10170	242.5	18 x 85	387	G187	9252	242.5	18 x 85
338	G89	10134	112.5	18 x 85	388	G189	9234	112.5	18 x 85
339	G91	10116	242.5	18 x 85	389	G191	9216	242.5	18 x 85
340	G93	10098	112.5	18 x 85	390	G193	9198	112.5	18 x 85
341	G95	10080	242.5	18 x 85	391	G195	9180	242.5	18 x 85
342	G97	10062	112.5	18 x 85	392	G197	9162	112.5	18 x 85
343	G99	10044	242.5	18 x 85	393	G199	9144	242.5	18 x 85
344	G101	10026	112.5	18 x 85	394	G201	9126	112.5	18 x 85
345	G103	10020	242.5	18 x 85	395	G203	9108	242.5	18 x 85
346	G105	9990	112.5	18 x 85	396	G205	9090	112.5	18 x 85
347	G103	9972	242.5	18 x 85	397	G203	9072	242.5	18 x 85
348	G107	9972	112.5	18 x 85	398	G207 G209	9072	112.5	18 x 85
349	G109 G111	9936	242.5	18 x 85	399	G209 G211	9034	242.5	
			112.5			G213			18 x 85
350	G113	9918	112.5	18 x 85	400	9213	9018	112.5	18 x 85

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
401	G215	9000	242.5	18 x 85	451	S31	8100	242.5	18 x 85
402	G217	8982	112.5	18 x 85	452	S32	8082	112.5	18 x 85
403	G219	8964	242.5	18 x 85	453	S33	8064	242.5	18 x 85
404	G221	8946	112.5	18 x 85	454	S34	8046	112.5	18 x 85
405	G223	8928	242.5	18 x 85	455	S35	8028	242.5	18 x 85
406	G225	8910	112.5	18 x 85	456	S36	8010	112.5	18 x 85
407	G227	8892	242.5	18 x 85	457	S37	7992	242.5	18 x 85
408	G229	8874	112.5	18 x 85	458	S38	7974	112.5	18 x 85
409	G231	8856	242.5	18 x 85	459	S39	7956	242.5	18 x 85
410	G233	8838	112.5	18 x 85	460	S40	7938	112.5	18 x 85
411	G235	8820	242.5	18 x 85	461	S41	7920	242.5	18 x 85
412	G237	8802	112.5	18 x 85	462	S42 N	7902	112.5	18 x 85
413	G239	8784	242.5	18 x 85	463	S43	7884	242.5	18 x 85
414	DUMMY	8766	112.5	18 x 85	464	S44	7866	112.5	18 x 85
415	DUMMY	8748	242.5	18 x 85	465	S45	7848	242.5	18 x 85
416	DUMMY	8730	112.5	18 x 85	466	S46	7830	112.5	18 x 85
417	DUMMY	8712	242.5	18 x 85	467	S47	7812	242.5	18 x 85
418	DUMMY	8694	112.5	18 x 85	468	S48	7794	112.5	18 x 85
419	DUMMY	8676	242.5	18 x 85	469	S49	7776	242.5	18 x 85
420	S0	8658	112.5	18 x 85	470	S50	7758	112.5	18 x 85
421	S1	8640	242.5	18 x 85	471	S51	7740	242.5	18 x 85
422	S2	8622	112.5	18 x 85	472	S52	7722	112.5	18 x 85
423	S3	8604	242.5	18 x 85	473	S53	7704	242.5	18 x 85
424	S4	8586	112.5	18 x 85	474	S54	7686	112.5	18 x 85
425	S5	8568	242.5	18 x 85	475	S55	7668	242.5	18 x 85
426	S6	8550	112.5	18 x 85	476	S56	7650	112.5	18 x 85
427	S7	8532	242.5	18 x 85	477	S57	7632	242.5	18 x 85
428	S8	8514	112.5	18 x 85	478	S58	7614	112.5	18 x 85
429	S9	8496	242.5	18 x 85	479	S59	7596	242.5	18 x 85
430	S10	8478	112.5	18 x 85	480	S60	7578	112.5	18 x 85
431	S11	8460	242.5	18 x 85	481	S61	7560	242.5	18 x 85
432	S12	8442	112.5	18 x 85	482	S62	7542	112.5	18 x 85
433	S13	8424	242.5	18 x 85	483	S63	7524	242.5	18 x 85
434	S14	8406	112.5	18 x 85	484	S64	7506	112.5	18 x 85
435	S15	8388	242.5	18 x 85	485	S65	7488	242.5	18 x 85
436	S16	8370	112.5	18 x 85	486	S66	7470	112.5	18 x 85
437	S17	8352	242.5	18 x 85	487	S67	7452	242.5	18 x 85
438	S18	8334	112.5	18 x 85	488	S68	7434	112.5	18 x 85
439	S19	8316	242.5	18 x 85	489	S69	7416	242.5	18 x 85
440	S20	8298	112.5	18 x 85	490	S70	7398	112.5	18 x 85
441	S21	8280	242.5	18 x 85	491	S71	7380	242.5	18 x 85
442	S22	8262	112.5	18 x 85	492	S72	7362	112.5	18 x 85
443	S23	8244	242.5	18 x 85	493	S73	7344	242.5	18 x 85
444	S24	8226	112.5	18 x 85	494	S74	7326	112.5	18 x 85
445	S25	8208	242.5	18 x 85	495	S75	7308	242.5	18 x 85
446	S26	8190	112.5	18 x 85	496	S76	7290	112.5	18 x 85
447	S27	8172	242.5	18 x 85	497	S77	7272	242.5	18 x 85
448	S28	8154	112.5	18 x 85	498	S78	7254	112.5	18 x 85
449	S29	8136	242.5	18 x 85	499	S79	7236	242.5	18 x 85
450	S30	8118	112.5		500	S80	7218		18 x 85
				18 x 85 18 x 85				242.5 112.5	

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
501	S81	7200	242.5	18 x 85	551	S131	6300	242.5	18 x 85
502	S82	7182	112.5	18 x 85	552	S132	6282	112.5	18 x 85
503	S83	7164	242.5	18 x 85	553	S133	6264	242.5	18 x 85
504	S84	7146	112.5	18 x 85	554	S134	6246	112.5	18 x 85
505	S85	7128	242.5	18 x 85	555	S135	6228	242.5	18 x 85
506	S86	7110	112.5	18 x 85	556	S136	6210	112.5	18 x 85
507	S87	7092	242.5	18 x 85	557	S137	6192	242.5	18 x 85
508	S88	7074	112.5	18 x 85	558	S138	6174	112.5	18 x 85
509	S89	7056	242.5	18 x 85	559	S139	6156	242.5	18 x 85
510	S90	7038	112.5	18 x 85	560	S140	6138	112.5	18 x 85
511	S91	7020	242.5	18 x 85	561	S141	6120	242.5	18 x 85
512	S92	7002	112.5	18 x 85	562	S142	6102	112.5	18 x 85
513	S93	6984	242.5	18 x 85	563	S143	6084	242.5	18 x 85
514	S94	6966	112.5	18 x 85	564	S144	6066	112.5	18 x 85
515	S95	6948	242.5	18 x 85	565	S145	6048	242.5	18 x 85
516	S96	6930	112.5	18 x 85	566	S146	6030	112.5	18 x 85
517	S97	6912	242.5	18 x 85	567	S147	6012	242.5	18 x 85
518	S98	6894	112.5	18 x 85	568	S148	5994	112.5	18 x 85
519	S99	6876	242.5	18 x 85	569	S149	5976	242.5	18 x 85
520	S100	6858	112.5	18 x 85	570	S150	5958	112.5	18 x 85
521	S101	6840	242.5	18 x 85	571	S151	5940	242.5	18 x 85
522	S102	6822	112.5	18 x 85	572	S152	5922	112.5	18 x 85
523	S103	6804	242.5	18 x 85	573	S153	5904	242.5	18 x 85
524	S104	6786	112.5	18 x 85	574	\$154	5886	112.5	18 x 85
525	S105	6768	242.5	18 x 85	575	\$155	5868	242.5	18 x 85
526	S106	6750	112.5	18 x 85	576	S156	5850	112.5	18 x 85
527	S107	6732	242.5	18 x 85	577	S157	5832	242.5	18 x 85
528	S108	6714	112.5	18 x 85	578	S158	5814	112.5	18 x 85
529	S109	6696	242.5	18 x 85	579	S159	5796	242.5	18 x 85
530	S110	6678	112.5	18 x 85	580	S160	5778	112.5	18 x 85
531	S111	6660	242.5	18 x 85	581	S161	5760	242.5	18 x 85
532	S112	6642	112.5	18 x 85	582	S162	5742	112.5	18 x 85
533	S113	6624	242.5	18 x 85	583	S163	5724	242.5	18 x 85
534	S114	6606	112.5	18 x 85	584	S164	5706	112.5	18 x 85
535	S115	6588	242.5	18 x 85	585	S165	5688	242.5	18 x 85
536	S116	6570	112.5	18 x 85	586	S166	5670	112.5	18 x 85
537	\$117	6552	242.5	18 x 85	587	S167	5652	242.5	18 x 85
538	S118	6534	112.5	18 x 85	588	S168	5634	112.5	18 x 85
539	S119	6516	242.5	18 x 85	589	S169	5616	242.5	18 x 85
540	S120	6498	112.5	18 x 85	590	S170	5598	112.5	18 x 85
541	S121	6480	242.5	18 x 85	591	S171	5580	242.5	18 x 85
542	S122	6462	112.5	18 x 85	592	S172	5562	112.5	18 x 85
543	S123	6444	242.5	18 x 85	593	S173	5544	242.5	18 x 85
544	S124	6426	112.5	18 x 85	594	S174	5526	112.5	18 x 85
545	S125	6408	242.5	18 x 85	595	S175	5508	242.5	18 x 85
546	S126	6390	112.5	18 x 85	596	S176	5490	112.5	18 x 85
547	S127	6372	242.5	18 x 85	597	S177	5472	242.5	18 x 85
548	S128	6354	112.5	18 x 85	598	S177	5454	112.5	18 x 85
549	S129	6336	242.5	18 x 85	599	S178	5436	242.5	18 x 85
550	S129 S130	6318	112.5	18 x 85	600	S179	5418	112.5	18 x 85
550	5150	0010	114.0	10 / 00	000	3100	UT 10	112.0	10 / 00

No.	Name	Х	Y	Bump Size	No.	Name	Х	Υ	Bump Size
601	S181	5400	242.5	18 x 85	651	S231	4500	242.5	18 x 85
602	S182	5382	112.5	18 x 85	652	S232	4482	112.5	18 x 85
603	S183	5364	242.5	18 x 85	653	S233	4464	242.5	18 x 85
604	S184	5346	112.5	18 x 85	654	S234	4446	112.5	18 x 85
605	S185	5328	242.5	18 x 85	655	S235	4428	242.5	18 x 85
606	S186	5310	112.5	18 x 85	656	S236	4410	112.5	18 x 85
607	S187	5292	242.5	18 x 85	657	S237	4392	242.5	18 x 85
608	S188	5274	112.5	18 x 85	658	S238	4374	112.5	18 x 85
609	S189	5256	242.5	18 x 85	659	S239	4356	242.5	18 x 85
610	S190	5238	112.5	18 x 85	660	S240	4338	112.5	18 x 85
611	S191	5220	242.5	18 x 85	661	S241	4320	242.5	18 x 85
612	S192	5202	112.5	18 x 85	662	S242	4302	112.5	18 x 85
613	S193	5184	242.5	18 x 85	663	S243	4284	242.5	18 x 85
614	S194	5166	112.5	18 x 85	664	S244	4266	112.5	18 x 85
615	S195	5148	242.5	18 x 85	665	S245	4248	242.5	18 x 85
616	S196	5130	112.5	18 x 85	666	S246	4230	112.5	18 x 85
617	S197	5112	242.5	18 x 85	667	S247	4212	242.5	18 x 85
618	S198	5094	112.5	18 x 85	668	S248	4194	112.5	18 x 85
619	S199	5076	242.5	18 x 85	669	S249	4176	242.5	18 x 85
620	S200	5058	112.5	18 x 85	670	S250	4158	112.5	18 x 85
621	S201	5040	242.5	18 x 85	671	S251	4140	242.5	18 x 85
622	S202	5022	112.5	18 x 85	672	S252	4122	112.5	18 x 85
623	S203	5004	242.5	18 x 85	673	S253	4104	242.5	18 x 85
624	S204	4986	112.5	18 x 85	674	\$254	4086	112.5	18 x 85
625	S205	4968	242.5	18 x 85	675	\$255	4068	242.5	18 x 85
626	S206	4950	112.5	18 x 85	676	S256	4050	112.5	18 x 85
627	S207	4932	242.5	18 x 85	677	S257	4032	242.5	18 x 85
628	S208	4914	112.5	18 x 85	678	S258	4014	112.5	18 x 85
629	S209	4896	242.5	18 x 85	679	S259	3996	242.5	18 x 85
630	S210	4878	112.5	18 x 85	680	S260	3978	112.5	18 x 85
631	S211	4860	242.5	18 x 85	681	S261	3960	242.5	18 x 85
632	S212	4842	112.5	18 x 85	682	S262	3942	112.5	18 x 85
633	S213	4824	242.5	18 x 85	683	S263	3924	242.5	18 x 85
634	S214	4806	112.5	18 x 85	684	S264	3906	112.5	18 x 85
635	S215	4788	242.5	18 x 85	685	S265	3888	242.5	18 x 85
636	S216	4770	112.5	18 x 85	686	S266	3870	112.5	18 x 85
637	S217	4752	242.5	18 x 85	687	S267	3852	242.5	18 x 85
638	S218	4734	112.5	18 x 85	688	S268	3834	112.5	18 x 85
639	S219	4716	242.5	18 x 85	689	S269	3816	242.5	18 x 85
640	S220	4698	112.5	18 x 85	690	S270	3798	112.5	18 x 85
641	S221	4680	242.5	18 x 85	691	S271	3780	242.5	18 x 85
642	S222	4662	112.5	18 x 85	692	S272	3762	112.5	18 x 85
643	S223	4644	242.5	18 x 85	693	S273	3744	242.5	18 x 85
644	S224	4626	112.5	18 x 85	694	S274	3726	112.5	18 x 85
645	S225	4608	242.5	18 x 85	695	S275	3708	242.5	18 x 85
646	S226	4590	112.5	18 x 85	696	S276	3690	112.5	18 x 85
647	S227	4572	242.5	18 x 85	697	S277	3672	242.5	18 x 85
648	S228	4554	112.5	18 x 85	698	S278	3654	112.5	18 x 85
649	S229	4536	242.5	18 x 85	699	S279	3636	242.5	18 x 85
650	S230	4518	112.5	18 x 85	700	S280	3618	112.5	18 x 85

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
701	S281	3600	242.5	18 x 85	751	S331	2700	242.5	18 x 85
702	S282	3582	112.5	18 x 85	752	S332	2682	112.5	18 x 85
703	S283	3564	242.5	18 x 85	753	S333	2664	242.5	18 x 85
704	S284	3546	112.5	18 x 85	754	S334	2646	112.5	18 x 85
705	S285	3528	242.5	18 x 85	755	S335	2628	242.5	18 x 85
706	S286	3510	112.5	18 x 85	756	S336	2610	112.5	18 x 85
707	S287	3492	242.5	18 x 85	757	S337	2592	242.5	18 x 85
708	S288	3474	112.5	18 x 85	758	S338	2574	112.5	18 x 85
709	S289	3456	242.5	18 x 85	759	S339	2556	242.5	18 x 85
710	S290	3438	112.5	18 x 85	760	S340	2538	112.5	18 x 85
711	S291	3420	242.5	18 x 85	761	S341 《	2520	242.5	18 x 85
712	S292	3402	112.5	18 x 85	762	S342 N	2502	112.5	18 x 85
713	S293	3384	242.5	18 x 85	763	S343	2484	242.5	18 x 85
714	S294	3366	112.5	18 x 85	764	S344	2466	112.5	18 x 85
715	S295	3348	242.5	18 x 85	765	S345	2448	242.5	18 x 85
716	S296	3330	112.5	18 x 85	766	S346	2430	112.5	18 x 85
717	S297	3312	242.5	18 x 85	767	S347	2412	242.5	18 x 85
718	S298	3294	112.5	18 x 85	768	S348	2394	112.5	18 x 85
719	S299	3276	242.5	18 x 85	769	S349	2376	242.5	18 x 85
720	S300	3258	112.5	18 x 85	770	S350	2358	112.5	18 x 85
721	S301	3240	242.5	18 x 85	771	S351	2340	242.5	18 x 85
722	S302	3222	112.5	18 x 85	772	S352	2322	112.5	18 x 85
723	S303	3204	242.5	18 x 85	773	S353	2304	242.5	18 x 85
724	S304	3186	112.5	18 x 85	774	\$354	2286	112.5	18 x 85
725	S305	3168	242.5	18 x 85	775	\$355	2268	242.5	18 x 85
726	S306	3150	112.5	18 x 85	776	S356	2250	112.5	18 x 85
727	S307	3132	242.5	18 x 85	777	S357	2232	242.5	18 x 85
728	S308	3114	112.5	18 x 85	778	S358	2214	112.5	18 x 85
729	S309	3096	242.5	18 x 85	779	S359	2196	242.5	18 x 85
730	S310	3078	112.5	18 x 85	780	S360	2178	112.5	18 x 85
731	S311	3060	242.5	18 x 85	781	S361	2160	242.5	18 x 85
732	S312	3042	112.5	18 x 85	782	S362	2142	112.5	18 x 85
733	S313	3024	242.5	18 x 85	783	S363	2124	242.5	18 x 85
734	S314	3006	112.5	18 x 85	784	S364	2106	112.5	18 x 85
735	S315	2988	242.5	18 x 85	785	S365	2088	242.5	18 x 85
736	S316	2970	112.5	18 x 85	786	S366	2070	112.5	18 x 85
737	S317	2952	242.5	18 x 85	787	S367	2052	242.5	18 x 85
738	S318	2934	112.5	18 x 85	788	S368	2034	112.5	18 x 85
739	S319	2916	242.5	18 x 85	789	S369	2016	242.5	18 x 85
740	S320	2898	112.5	18 x 85	790	S370	1998	112.5	18 x 85
741	S321	2880	242.5	18 x 85	791	S371	1980	242.5	18 x 85
742	S322	2862	112.5	18 x 85	792	S372	1962	112.5	18 x 85
743	S323	2844	242.5	18 x 85	793	S373	1944	242.5	18 x 85
744	S324	2826	112.5	18 x 85	794	S374	1926	112.5	18 x 85
745	S325	2808	242.5	18 x 85	795	S375	1908	242.5	18 x 85
746	S326	2790	112.5	18 x 85	796	S376	1890	112.5	18 x 85
747	S327	2772	242.5	18 x 85	797	S377	1872	242.5	18 x 85
748	S328	2754	112.5	18 x 85	798	S378	1854	112.5	18 x 85
749	S329	2736	242.5	18 x 85	799	S379	1836	242.5	18 x 85
750	S330	2718	112.5	18 x 85	800	S380	1818	112.5	18 x 85
. 00	3000	_1.0	. 12.0	.5 7 50		3000	.0.0	. 12.0	.5 X 55

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
801	S381	1800	242.5	18 x 85	851	S431	900	242.5	18 x 85
802	S382	1782	112.5	18 x 85	852	S432	882	112.5	18 x 85
803	S383	1764	242.5	18 x 85	853	S433	864	242.5	18 x 85
804	S384	1746	112.5	18 x 85	854	S434	846	112.5	18 x 85
805	S385	1728	242.5	18 x 85	855	S435	828	242.5	18 x 85
806	S386	1710	112.5	18 x 85	856	S436	810	112.5	18 x 85
807	S387	1692	242.5	18 x 85	857	S437	792	242.5	18 x 85
808	S388	1674	112.5	18 x 85	858	S438	774	112.5	18 x 85
809	S389	1656	242.5	18 x 85	859	S439	756	242.5	18 x 85
810	S390	1638	112.5	18 x 85	860	S440	738	112.5	18 x 85
811	S391	1620	242.5	18 x 85	861	S441	720	242.5	18 x 85
812	S392	1602	112.5	18 x 85	862	S442 N	702	112.5	18 x 85
813	S393	1584	242.5	18 x 85	863	S443	684	242.5	18 x 85
814	S394	1566	112.5	18 x 85	864	S444	666	112.5	18 x 85
815	S395	1548	242.5	18 x 85	865	S445	648	242.5	18 x 85
816	S396	1530	112.5	18 x 85	866	S446	630	112.5	18 x 85
817	S397	1512	242.5	18 x 85	867	S447	612	242.5	18 x 85
818	S398	1494	112.5	18 x 85	868	S448	594	112.5	18 x 85
819	S399	1476	242.5	18 x 85	869	S449	576	242.5	18 x 85
820	S400	1458	112.5	18 x 85	870	S450	558	112.5	18 x 85
821	S401	1440	242.5	18 x 85	871	S451	540	242.5	18 x 85
822	S402	1422	112.5	18 x 85	872	S452	522	112.5	18 x 85
823	S403	1404	242.5	18 x 85	873	S453	504	242.5	18 x 85
824	S404	1386	112.5	18 x 85	874	\$454	486	112.5	18 x 85
825	S405	1368	242.5	18 x 85	875	\$455	468	242.5	18 x 85
826	S406	1350	112.5	18 x 85	876	S456	450	112.5	18 x 85
827	S407	1332	242.5	18 x 85	877	S457	432	242.5	18 x 85
828	S408	1314	112.5	18 x 85	878	S458	414	112.5	18 x 85
829	S409	1296	242.5	18 x 85	879	S459	396	242.5	18 x 85
830	S410	1278	112.5	18 x 85	880	S460	378	112.5	18 x 85
831	S411	1260	242.5	18 x 85	881	S461	360	242.5	18 x 85
832	S412	1242	112.5	18 x 85	882	S462	342	112.5	18 x 85
833	S413	1224	242.5	18 x 85	883	S463	324	242.5	18 x 85
834	S414	1206	112.5	18 x 85	884	S464	306	112.5	18 x 85
835	S415	1188	242.5	18 x 85	885	S465	288	242.5	18 x 85
836	S416	1170	112.5	18 x 85	886	S466	270	112.5	18 x 85
837	S417	1152	242.5	18 x 85	887	S467	252	242.5	18 x 85
838	S418	1134	112.5	18 x 85	888	S468	234	112.5	18 x 85
839	S419	1116	242.5	18 x 85	889	S469	216	242.5	18 x 85
840	S420	1098	112.5	18 x 85	890	S470	198	112.5	18 x 85
841	S421	1080	242.5	18 x 85	891	S471	180	242.5	18 x 85
842	S422	1062	112.5	18 x 85	892	S472	162	112.5	18 x 85
843	S423	1044	242.5	18 x 85	893	S473	144	242.5	18 x 85
844	S424	1026	112.5	18 x 85	894	S474	126	112.5	18 x 85
845	S425	1008	242.5	18 x 85	895	S475	108	242.5	18 x 85
846	S426	990	112.5	18 x 85	896	S476	90	112.5	18 x 85
847	S427	972	242.5	18 x 85	897	S477	72	242.5	18 x 85
848	S428	954	112.5	18 x 85	898	S478	54	112.5	18 x 85
849	S428	936	242.5	18 x 85	899	S478	36	242.5	18 x 85
850	S430	918	112.5	18 x 85	900	S480	18	112.5	18 x 85
000	J-30	910	112.0	10 / 00	300	J-00	10	112.0	10 / 00

901 S481 0 242.5 18 x85 951 S531 -900 242.5 18 x 85 903 S482 -118 112.5 18 x85 952 S532 -918 112.5 18 x 85 904 S484 -54 112.5 18 x85 954 S533 -936 242.5 18 x 85 906 S485 -72 242.5 18 x 85 955 S535 -972 242.5 18 x 85 906 S486 -90 112.5 18 x 85 956 S535 -972 242.5 18 x 85 907 S487 -108 242.5 18 x 85 956 S536 -990 112.5 18 x 85 908 S488 -126 112.5 18 x 85 956 S536 -990 112.5 18 x 85 908 S488 -126 112.5 18 x 85 956 S536 -990 112.5 18 x 85 908 S489 -144 242.5 18 x 85 959 S539 -1044 242.5 18 x 85 990 S489 -144 242.5 18 x 85 959 S539 -1044 242.5 18 x 85 991 S490 -162 112.5 18 x 85 959 S539 -1044 242.5 18 x 85 991 S490 -125 18 x 85 961 S541 -1062 112.5 18 x 85 991 S491 -180 242.5 18 x 85 961 S541 -1062 112.5 18 x 85 991 S492 -198 112.5 18 x 85 961 S541 -1062 112.5 18 x 85 991 S492 -198 112.5 18 x 85 961 S541 -1062 112.5 18 x 85 991 S494 -234 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 991 S494 -234 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 991 S494 -234 112.5 18 x 85 963 S544 -1062 112.5 18 x 85 991 S494 -234 112.5 18 x 85 963 S544 -1062 112.5 18 x 85 991 S498 -225 242.5 18 x 85 963 S546 -1170 112.5 18 x 85 991 S499 -324 242.5 18 x 85 963 S548 -1110 112.5 18 x 85 991 S499 -324 242.5 18 x 85 963 S548 -1110 112.5 18 x 85 991 S499 -324 242.5 18 x 85 965 S545 -1130 112.5 18 x 85 991 S499 -324 242.5 18 x 85 966 S546 -1170 112.5 18 x 85 991 S499 -324 242.5 18 x 85 967 S547 -1188 242.5 18 x 85 991 S499 -324 242.5 18 x 85 967 S547 -1188 242.5 18 x 85 992 S500 -342 112.5 18 x 85 967 S550 -1242 112.5 18 x 85 993 S501 -342 112.5 18 x 85 993 S549 -1224 242.5 18 x 85 993 S501 -342 112.5 18 x 85 993 S559 -1242 112.5 18 x 85 993 S501 -342 112.5 18 x 85 993 S559 -1242 112.5 18 x 85 993 S569 -1542 112.5 18 x 85 993 S579 -1462 242.5 18 x 85 994 S520 -7	No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
903 S483 -36 242.5 18 x 85 964 S534 -936 242.5 18 x 85 904 S484 -54 112.5 18 x 85 954 S534 -954 112.5 18 x 85 906 S486 -90 112.5 18 x 85 955 S536 -972 242.5 18 x 85 907 S487 -108 242.5 18 x 85 956 S536 -990 112.5 18 x 85 908 S488 -126 112.5 18 x 85 956 S536 -990 112.5 18 x 85 908 S488 -126 112.5 18 x 85 960 S530 -1004 242.5 18 x 85 909 S490 -141 242.5 18 x 85 960 S540 -1062 112.5 18 x 85 911 S491 -180 242.5 18 x 85 961 S541 -1080 242.5 18 x 85 912 S492 -198 <t< td=""><td>901</td><td>S481</td><td>0</td><td>242.5</td><td>18 x 85</td><td>951</td><td>S531</td><td>-900</td><td>242.5</td><td>18 x 85</td></t<>	901	S481	0	242.5	18 x 85	951	S531	-900	242.5	18 x 85
904 S484 -54 112.5 18 x 85 965 S534 -954 112.5 18 x 85 906 S486 -90 112.5 18 x 85 955 S535 -972 242.5 18 x 85 907 S487 -108 242.5 18 x 85 986 S536 -990 112.5 18 x 85 907 S487 -108 242.5 18 x 85 986 S537 -1008 242.5 18 x 85 908 S489 -144 242.5 18 x 85 986 S538 -1026 112.5 18 x 85 910 S490 -162 112.5 18 x 85 960 S540 -1062 142.5 18 x 85 911 S491 -180 242.5 18 x 85 961 S541 -108 142.5 18 x 85 912 S492 -198 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 912 S494 -234	902	S482	-18	112.5	18 x 85	952	S532	-918	112.5	18 x 85
905	903	S483	-36	242.5	18 x 85	953	S533	-936	242.5	18 x 85
906 S486 -90 112.5 18 x 85 996 S536 -990 112.5 18 x 85 907 S487 -108 242.5 18 x 85 957 S537 -1008 242.5 18 x 85 908 S488 -126 112.5 18 x 85 958 S538 -1024 112.5 18 x 85 909 S490 -144 242.5 18 x 85 959 S539 -1044 242.5 18 x 85 911 S491 -180 242.5 18 x 85 960 S540 -1082 112.5 18 x 85 912 S492 -198 112.5 18 x 85 961 S541 -1080 242.5 18 x 85 913 S493 -216 242.5 18 x 85 962 S542 1098 112.5 18 x 85 914 S494 -234 112.5 18 x 85 966 S544 -1134 112.5 18 x 85 916 S496 -270	904	S484	-54	112.5	18 x 85	954	S534	-954	112.5	18 x 85
907 \$487 -108 \$242.5 18 x 85 968 \$538 -1026 \$112.5 18 x 85 958 \$533 -1026 \$112.5 18 x 85 999 \$539 -1024 \$242.5 18 x 85 999 \$539 -1044 \$242.5 18 x 85 999 \$539 -1044 \$242.5 18 x 85 990 \$539 -1044 \$242.5 18 x 85 999 \$539 -1044 \$242.5 18 x 85 990 \$530 -1042 \$242.5 18 x 85 990 \$539 -1048 \$242.5 18 x 85 991 \$5491 -198 112.5 18 x 85 996 \$540 -1962 112.5 18 x 85 991 \$3491 -242.5 18 x 85 996 \$541 -1980 242.5 18 x 85 996 \$544 -1134 1112.5 18 x 85 991 \$494 -224 121.5 18 x 85 996 \$545 -1152 242.5 18 x 85 996 \$545 -1170 112.5 18 x 85<	905	S485	-72	242.5	18 x 85	955	S535	-972	242.5	18 x 85
908	906	S486	-90	112.5		956	S536	-990	112.5	18 x 85
909	907	S487	-108	242.5	18 x 85	957	S537	-1008	242.5	18 x 85
910 S490 -162 112.5 18 x 85 960 S540 -1062 112.5 18 x 85 911 S491 -180 242.5 18 x 85 961 S541 -1080 242.5 18 x 85 912 S492 -198 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 913 S493 -216 242.5 18 x 85 963 S543 -116 242.5 18 x 85 914 S494 -234 112.5 18 x 85 963 S543 -116 242.5 18 x 85 915 S495 -252 242.5 18 x 85 964 S544 -1134 112.5 18 x 85 916 S496 -270 112.5 18 x 85 964 S544 -110 112.5 18 x 85 916 S496 -224.5 18 x 85 966 S546 -110.0 112.5 18 x 85 918 S499 -324 242.5	908	S488	-126	112.5	18 x 85	958	S538	-1026	112.5	18 x 85
911 S491 -180 242.5 18 x 85 961 S541 -1080 242.5 18 x 85 912 S492 -198 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 914 S494 -234 112.5 18 x 85 963 S543 -1116 242.5 18 x 85 914 S494 -234 112.5 18 x 85 963 S543 -1116 242.5 18 x 85 915 S496 -252 242.5 18 x 85 966 S544 -1134 112.5 18 x 85 916 S496 -252 242.5 18 x 85 966 S546 -1172 112.8 18 x 85 917 S497 -288 242.5 18 x 85 967 S547 -118.8 242.5 18 x 85 918 S498 -306 112.5 18 x 85 967 S547 -118.8 242.5 18 x 85 920 S500 -342	909	S489	-144	242.5	18 x 85	959	S539	-1044	242.5	18 x 85
912 S492 -198 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 913 S493 -216 242.5 18 x 85 963 S543 -116 242.5 18 x 85 914 S496 -224 112.5 18 x 85 964 S544 -1134 112.5 18 x 85 915 S496 -252 242.5 18 x 85 966 S546 -1152 242.5 18 x 85 916 S496 -270 112.5 18 x 85 965 S546 -1170 112.5 18 x 85 917 S497 -288 242.5 18 x 85 966 S546 -1170 112.5 18 x 85 918 S498 -306 112.5 18 x 85 968 S549 +1224 242.5 18 x 85 918 S499 -324 242.5 18 x 85 968 S549 +1224 242.5 18 x 85 920 S501 -324	910	S490	-162	112.5	18 x 85	960	S540	-1062	112.5	18 x 85
912 S492 -198 112.5 18 x 85 962 S542 -1098 112.5 18 x 85 913 S493 -216 242.5 18 x 85 963 S543 -116 242.5 18 x 85 914 S496 -224 112.5 18 x 85 964 S544 -1134 112.5 18 x 85 915 S496 -252 242.5 18 x 85 966 S546 -1152 242.5 18 x 85 916 S496 -270 112.5 18 x 85 965 S546 -1170 112.5 18 x 85 917 S497 -288 242.5 18 x 85 966 S546 -1170 112.5 18 x 85 918 S498 -306 112.5 18 x 85 968 S549 +1224 242.5 18 x 85 918 S499 -324 242.5 18 x 85 968 S549 +1224 242.5 18 x 85 920 S501 -324	911	S491	-180	242.5	18 x 85	961	S541	-1080	242.5	18 x 85
913 S493 -216 242.5 18 x 85 964 S544 -1134 112.5 18 x 85 914 S494 -234 112.5 18 x 85 964 S544 -1134 112.5 18 x 85 916 S496 -270 112.5 18 x 85 966 S545 -1170 112.5 18 x 85 917 S497 -288 242.5 18 x 85 966 S546 -1170 112.5 18 x 85 918 S498 -306 112.5 18 x 85 967 S547 -1188 242.5 18 x 85 919 S499 -324 242.5 18 x 85 968 S548 +1206 112.5 18 x 85 920 S500 -342 112.5 18 x 85 970 S550 -1242 124.5 18 x 85 920 S500 -342 112.5 18 x 85 970 S550 -1272 112.5 18 x 85 921 S503 -396	912	S492				962				
914 S494 -234 112.5 18 x 85 964 S544 -1134 112.5 18 x 85 915 S495 -252 242.5 18 x 85 965 S545 -1152 242.5 18 x 85 917 S497 -288 242.5 18 x 85 966 S546 -1170 112.5 18 x 85 918 S498 -306 112.5 18 x 85 967 S547 -1188 242.5 18 x 85 919 S499 -324 242.5 18 x 85 968 S548 -4206 112.5 18 x 85 920 S500 -342 112.5 18 x 85 969 S549 -1224 242.5 18 x 85 921 S501 -360 242.5 18 x 85 970 S550 -1242 112.5 18 x 85 921 S501 -360 242.5 18 x 85 971 S551 -1242 112.5 18 x 85 922 S502 -378	913	S493					S543			
915 S495 -252 242.5 18 x 85 966 \$546 -1152 242.5 18 x 85 916 S496 -270 112.5 18 x 85 966 \$546 -1170 112.5 18 x 85 918 S498 -306 112.5 18 x 85 967 \$547 -1188 242.5 18 x 85 919 \$499 -324 242.5 18 x 85 968 \$548 -1206 112.5 18 x 85 920 \$500 -342 112.5 18 x 85 968 \$549 -1224 242.5 18 x 85 920 \$500 -342 112.5 18 x 85 970 \$550 1242 112.5 18 x 85 921 \$501 -360 242.5 18 x 85 970 \$550 1242 121.5 18 x 85 922 \$502 -378 112.5 18 x 85 972 \$551 1260 242.5 18 x 85 922 \$505 -432		S494								
916 S496 -270 112.5 18 x 85 966 \$546 -1170 112.5 18 x 85 917 S497 -288 242.5 18 x 85 967 \$547 -1188 242.5 18 x 85 918 S498 -306 112.5 18 x 85 968 \$548 4206 112.5 18 x 85 919 \$499 -324 242.5 18 x 85 968 \$549 +1224 242.5 18 x 85 920 \$500 -342 112.5 18 x 85 970 \$550 +1242 112.5 18 x 85 921 \$501 -360 242.5 18 x 85 970 \$550 +1242 112.5 18 x 85 921 \$501 -360 242.5 18 x 85 970 \$550 +1242 112.5 18 x 85 921 \$503 -378 112.5 18 x 85 972 \$555 1232 122.5 18 x 85 923 \$505 -432	915	S495	-252			965				
917 S497 -288 242.5 18 x 85 967 \$547 -1188 242.5 18 x 85 918 S498 -306 112.5 18 x 85 968 \$548 4206 112.5 18 x 85 919 S499 -324 242.5 18 x 85 969 \$549 1224 242.5 18 x 85 920 \$500 -342 112.5 18 x 85 969 \$559 1224 212.5 18 x 85 921 \$501 -360 242.5 18 x 85 970 \$550 1242 112.5 18 x 85 921 \$502 -378 112.5 18 x 85 971 \$551 1260 242.5 18 x 85 922 \$502 -378 112.5 18 x 85 972 \$552 1278 112.5 18 x 85 923 \$503 -396 242.5 18 x 85 972 \$552 1278 112.5 18 x 85 924 \$504 -411 <										
918 S498 -306 112.5 18 x 85 968 \$548 -4206 112.5 18 x 85 919 S499 -324 242.5 18 x 85 969 \$549 -1224 242.5 18 x 85 920 \$5500 -342 112.5 18 x 85 970 \$550 -1242 112.5 18 x 85 921 \$501 -360 242.5 18 x 85 971 \$554 1260 242.5 18 x 85 922 \$502 -378 112.5 18 x 85 971 \$554 1260 242.5 18 x 85 922 \$503 -396 242.5 18 x 85 973 \$553 -1296 242.5 18 x 85 924 \$504 -414 112.5 18 x 85 973 \$553 -1296 242.5 18 x 85 925 \$505 -432 242.5 18 x 85 973 \$555 -1332 242.5 18 x 85 926 \$506 -450										
919 S499 -324 242.5 18 x 85 969 \$549 -1224 242.5 18 x 85 920 \$500 -342 112.5 18 x 85 970 \$550 -1242 112.5 18 x 85 921 \$5501 -360 242.5 18 x 85 974 \$551 -1260 242.5 18 x 85 922 \$502 -378 112.5 18 x 85 972 \$552 1278 112.5 18 x 85 923 \$503 -396 242.5 18 x 85 972 \$552 1278 112.5 18 x 85 924 \$504 -414 112.5 18 x 85 974 \$554 -1314 112.5 18 x 85 925 \$5505 -432 242.5 18 x 85 975 \$555 -1332 242.5 18 x 85 926 \$5506 -450 112.5 18 x 85 976 \$5556 -1350 112.5 18 x 85 927 \$507 -468	918	S498	-306			968	S548			
920 \$500 -342 112.5 18 x 85 970 \$550 -1242 112.5 18 x 85 921 \$501 -360 242.5 18 x 85 971 \$555 1260 242.5 18 x 85 922 \$502 -378 112.5 18 x 85 972 \$552 1278 112.5 18 x 85 924 \$504 -414 112.5 18 x 85 972 \$555 1-296 242.5 18 x 85 925 \$505 -432 242.5 18 x 85 974 \$554 -1314 112.5 18 x 85 926 \$506 -450 112.5 18 x 85 976 \$555 -1332 242.5 18 x 85 926 \$507 -468 242.5 18 x 85 976 \$556 -1330 112.5 18 x 85 927 \$507 -468 242.5 18 x 85 977 \$557 -1368 242.5 18 x 85 929 \$509 -504										
921 \$501 -360 242.5 18 x 85 974 \$554 1260 242.5 18 x 85 922 \$502 -378 112.5 18 x 85 972 \$552 1278 112.5 18 x 85 923 \$503 -396 242.5 18 x 85 973 \$553 -1296 242.5 18 x 85 924 \$504 -414 112.5 18 x 85 974 \$554 -1314 112.5 18 x 85 925 \$506 -450 112.5 18 x 85 975 \$555 -1332 242.5 18 x 85 926 \$506 -450 112.5 18 x 85 976 \$556 -1350 112.5 18 x 85 927 \$507 -468 242.5 18 x 85 977 \$557 -1368 242.5 18 x 85 927 \$509 -504 242.5 18 x 85 977 \$557 -1368 242.5 18 x 85 927 \$509 -504						/				
922 \$502 -378 \$112.5 \$18 x 85 \$972 \$552 -\$1278 \$112.5 \$18 x 85 923 \$503 -396 \$242.5 \$18 x 85 \$973 \$553 -\$1296 \$242.5 \$18 x 85 924 \$504 -414 \$112.5 \$18 x 85 \$974 \$5554 -\$1314 \$112.5 \$18 x 85 925 \$505 -432 \$242.5 \$18 x 85 \$976 \$5556 -\$1350 \$112.5 \$18 x 85 926 \$506 -450 \$112.5 \$18 x 85 \$976 \$5556 -\$1350 \$112.5 \$18 x 85 927 \$507 -468 \$242.5 \$18 x 85 \$978 \$5556 -\$1350 \$112.5 \$18 x 85 928 \$508 -486 \$112.5 \$18 x 85 \$978 \$5559 -\$1366 \$12.5 \$18 x 85 929 \$509 -504 \$242.5 \$18 x 85 \$979 \$559 -\$1404 \$242.5 \$18 x 85 931										
923 \$503 -396 \$242.5 \$18 x 85 973 \$\$553 -1296 \$242.5 \$18 x 85 924 \$504 -414 \$112.5 \$18 x 85 974 \$554 -1314 \$112.5 \$18 x 85 925 \$505 -432 \$242.5 \$18 x 85 975 \$555 -1332 \$242.5 \$18 x 85 926 \$506 -450 \$112.5 \$18 x 85 976 \$5556 -1332 \$242.5 \$18 x 85 927 \$507 -468 \$242.5 \$18 x 85 976 \$5556 -1330 \$112.5 \$18 x 85 928 \$508 -486 \$112.5 \$18 x 85 978 \$558 -1386 \$112.5 \$18 x 85 929 \$509 -504 \$242.5 \$18 x 85 \$978 \$559 -1404 \$242.5 \$18 x 85 930 \$510 -522 \$172.5 \$18 x 85 980 \$560 -1422 \$112.5 \$18 x 85 931 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>972</td><td></td><td></td><td></td><td></td></t<>						972				
924 \$504 -414 112.5 18 x 85 974 \$554 -1314 112.5 18 x 85 926 \$506 -432 242.5 18 x 85 975 \$555 -1332 242.5 18 x 85 927 \$507 -468 242.5 18 x 85 976 \$556 -1350 112.5 18 x 85 928 \$508 -486 112.5 18 x 85 977 \$557 -1368 242.5 18 x 85 928 \$509 -504 242.5 18 x 85 978 \$558 -1386 112.5 18 x 85 929 \$509 -504 242.5 18 x 85 979 \$559 -1404 242.5 18 x 85 930 \$510 -522 112.5 18 x 85 980 \$560 -1422 112.5 18 x 85 931 \$511 -540 242.5 18 x 85 980 \$560 -1422 112.5 18 x 85 932 \$512 -558										
925 \$505 -432 242.5 18 x 85 926 \$506 -450 112.5 18 x 85 927 \$507 -468 242.5 18 x 85 928 \$508 -486 112.5 18 x 85 929 \$509 -504 242.5 18 x 85 930 \$510 -522 112.5 18 x 85 931 \$511 -540 242.5 18 x 85 932 \$512 -558 112.5 18 x 85 933 \$513 -576 242.5 18 x 85 934 \$514 -594 112.5 18 x 85 935 \$516 -612 242.5 18 x 85 936 \$516 -612 242.5 18 x 85 936 \$516 -630 112.5 18 x 85 937 \$517 -648 242.5 18 x 85 938 \$518 -666 112.5 18 x 85 938 \$519)			
926 \$506 -450 112.5 18 x 85 976 \$556 -1350 112.5 18 x 85 927 \$507 -468 242.5 18 x 85 977 \$557 -1368 242.5 18 x 85 928 \$508 -486 112.5 18 x 85 978 \$558 -1386 112.5 18 x 85 929 \$509 -504 242.5 18 x 85 979 \$559 -1404 242.5 18 x 85 930 \$510 -522 112.5 18 x 85 980 \$560 -1422 112.5 18 x 85 931 \$511 -540 242.5 18 x 85 980 \$560 -1422 112.5 18 x 85 932 \$512 +558 112.5 18 x 85 981 \$561 -1404 242.5 18 x 85 933 \$513 -576 242.5 18 x 85 983 \$563 -1476 242.5 18 x 85 934 \$514 -594										
927 S507 -468 242.5 18 x 85 977 S557 -1368 242.5 18 x 85 928 S508 -486 112.5 18 x 85 978 S558 -1386 112.5 18 x 85 929 S509 -504 242.5 18 x 85 979 S559 -1404 242.5 18 x 85 930 S510 -522 112.5 18 x 85 980 S560 -1422 112.5 18 x 85 931 S511 -540 242.5 18 x 85 980 S560 -1422 112.5 18 x 85 932 S512 -558 112.5 18 x 85 981 S561 -1440 242.5 18 x 85 933 S513 -576 242.5 18 x 85 982 S562 -1458 112.5 18 x 85 934 S514 -594 112.5 18 x 85 983 S564 -1494 112.5 18 x 85 935 S516 -612										
928 S508 -486 112.5 18 x 85 978 S558 -1386 112.5 18 x 85 929 S509 -504 242.5 18 x 85 979 S559 -1404 242.5 18 x 85 930 S510 -522 112.5 18 x 85 980 S560 -1422 112.5 18 x 85 931 S511 -540 242.5 18 x 85 981 S561 -1440 242.5 18 x 85 932 S512 -558 112.5 18 x 85 982 S562 -1458 112.5 18 x 85 933 S513 -576 242.5 18 x 85 982 S562 -1458 112.5 18 x 85 934 S514 -594 112.5 18 x 85 983 S563 -1476 242.5 18 x 85 935 S516 -612 242.5 18 x 85 984 S564 -1494 112.5 18 x 85 936 S516 -612										
929 \$509 -504 242.5 18 x 85 979 \$559 -1404 242.5 18 x 85 930 \$510 -522 112.5 18 x 85 980 \$560 -1422 112.5 18 x 85 931 \$511 -540 242.5 18 x 85 981 \$561 -1440 242.5 18 x 85 932 \$512 -558 112.5 18 x 85 982 \$562 -1458 112.5 18 x 85 933 \$513 -576 242.5 18 x 85 982 \$562 -1458 112.5 18 x 85 934 \$514 -694 112.5 18 x 85 983 \$563 -1476 242.5 18 x 85 935 \$516 -612 242.5 18 x 85 984 \$564 -1494 112.5 18 x 85 936 \$516 -630 112.5 18 x 85 985 \$565 -1512 242.5 18 x 85 937 \$517 -648										
930 S510 -522 112.5 18 x 85 980 S560 -1422 112.5 18 x 85 931 S511 -540 242.5 18 x 85 981 S561 -1440 242.5 18 x 85 932 S512 -558 112.5 18 x 85 982 S562 -1458 112.5 18 x 85 933 S513 -576 242.5 18 x 85 982 S562 -1458 112.5 18 x 85 934 S514 -594 112.5 18 x 85 983 S563 -1476 242.5 18 x 85 935 S516 -612 242.5 18 x 85 984 S564 -1494 112.5 18 x 85 936 S616 -630 112.5 18 x 85 985 S566 -1512 242.5 18 x 85 937 S617 -648 242.5 18 x 85 987 S567 -1548 242.5 18 x 85 939 S519 -684	929	S509	-504	242.5		979	S559			
931 S511 -540 242.5 18 x 85 981 S561 -1440 242.5 18 x 85 932 S512 -558 112.5 18 x 85 982 S562 -1458 112.5 18 x 85 933 S513 -576 242.5 18 x 85 982 S562 -1458 112.5 18 x 85 934 S514 -594 112.5 18 x 85 983 S563 -1476 242.5 18 x 85 935 S516 -612 242.5 18 x 85 984 S564 -1494 112.5 18 x 85 936 S516 -630 112.5 18 x 85 985 S565 -1512 242.5 18 x 85 937 S517 -648 242.5 18 x 85 986 S566 -1530 112.5 18 x 85 938 S518 -666 112.5 18 x 85 987 S567 -1548 242.5 18 x 85 940 S520 -702										
932 S512 -558 112.5 18 x 85 933 S513 -576 242.5 18 x 85 934 S514 -594 112.5 18 x 85 935 S515 -612 242.5 18 x 85 936 S516 -630 112.5 18 x 85 937 S517 -648 242.5 18 x 85 938 S518 -666 112.5 18 x 85 939 S519 -684 242.5 18 x 85 940 S520 -702 112.5 18 x 85 941 S521 -720 242.5 18 x 85 942 S522 -738 112.5 18 x 85 943 S523 -756 242.5 18 x 85 944 S524 -774 112.5 18 x 85 945 S526 -810 112.5 18 x 85 946 S526 -82 242.5 18 x 85 948 S528 -										
933 \$513 \$576 \$242.5 \$18 x 85 983 \$563 \$-1476 \$242.5 \$18 x 85 934 \$514 \$-594 \$112.5 \$18 x 85 \$984 \$564 \$-1494 \$112.5 \$18 x 85 935 \$516 \$-612 \$242.5 \$18 x 85 \$985 \$566 \$-1512 \$242.5 \$18 x 85 936 \$516 \$-630 \$112.5 \$18 x 85 \$986 \$566 \$-1530 \$112.5 \$18 x 85 937 \$517 \$-648 \$242.5 \$18 x 85 \$986 \$566 \$-1530 \$112.5 \$18 x 85 938 \$518 \$-666 \$112.5 \$18 x 85 \$986 \$566 \$-1530 \$112.5 \$18 x 85 939 \$519 \$-684 \$242.5 \$18 x 85 \$988 \$568 \$-1566 \$112.5 \$18 x 85 940 \$520 \$-702 \$112.5 \$18 x 85 \$989 \$569 \$-1584 \$242.5 \$18 x 85 9	932	S512	-558	. 10		982	S562	-1458		18 x 85
934 \$514 -594 112.5 18 x 85 984 \$564 -1494 112.5 18 x 85 935 \$516 -612 242.5 18 x 85 985 \$565 -1512 242.5 18 x 85 936 \$516 -630 112.5 18 x 85 986 \$566 -1530 112.5 18 x 85 937 \$517 -648 242.5 18 x 85 986 \$566 -1530 112.5 18 x 85 938 \$518 -666 112.5 18 x 85 987 \$567 -1548 242.5 18 x 85 939 \$519 -684 242.5 18 x 85 988 \$568 -1566 112.5 18 x 85 940 \$520 -702 112.5 18 x 85 989 \$569 -1584 242.5 18 x 85 941 \$521 -720 242.5 18 x 85 990 \$570 -1602 112.5 18 x 85 942 \$522 -738	933	S513	-576	242.5		983		-1476		18 x 85
935 \$516 -612 242.5 18 x 85 985 \$565 -1512 242.5 18 x 85 936 \$616 -630 112.5 18 x 85 986 \$566 -1530 112.5 18 x 85 937 \$517 -648 242.5 18 x 85 987 \$567 -1548 242.5 18 x 85 938 \$518 -666 112.5 18 x 85 988 \$568 -1566 112.5 18 x 85 939 \$519 -684 242.5 18 x 85 989 \$569 -1584 242.5 18 x 85 940 \$520 -702 112.5 18 x 85 989 \$569 -1584 242.5 18 x 85 941 \$521 -720 242.5 18 x 85 990 \$570 -1602 112.5 18 x 85 942 \$522 -738 112.5 18 x 85 991 \$571 -1620 242.5 18 x 85 943 \$523 -756					18 x 85	984	S564	-1494		18 x 85
936 \$516 -630 \$112.5 \$18 x 85 986 \$566 -1530 \$112.5 \$18 x 85 937 \$517 -648 \$242.5 \$18 x 85 987 \$567 -1548 \$242.5 \$18 x 85 938 \$518 -666 \$112.5 \$18 x 85 988 \$568 -1566 \$112.5 \$18 x 85 939 \$519 -684 \$242.5 \$18 x 85 989 \$569 -1584 \$242.5 \$18 x 85 940 \$520 -702 \$112.5 \$18 x 85 990 \$570 -1602 \$112.5 \$18 x 85 941 \$521 -720 \$242.5 \$18 x 85 991 \$571 -1620 \$242.5 \$18 x 85 942 \$522 -738 \$112.5 \$18 x 85 992 \$572 -1638 \$112.5 \$18 x 85 943 \$523 -756 \$242.5 \$18 x 85 993 \$573 -1656 \$242.5 \$18 x 85 945 \$5	935	S515	-612	242.5		985	S565	-1512	242.5	18 x 85
937 \$517 -648 \$242.5 18 x 85 987 \$567 -1548 \$242.5 18 x 85 938 \$518 -666 \$112.5 \$18 x 85 988 \$568 -1566 \$112.5 \$18 x 85 939 \$519 -684 \$242.5 \$18 x 85 989 \$569 -1584 \$242.5 \$18 x 85 940 \$520 -702 \$112.5 \$18 x 85 989 \$569 -1584 \$242.5 \$18 x 85 941 \$521 -720 \$242.5 \$18 x 85 990 \$570 -1602 \$112.5 \$18 x 85 942 \$522 -738 \$112.5 \$18 x 85 991 \$571 -1620 \$242.5 \$18 x 85 943 \$523 -756 \$242.5 \$18 x 85 992 \$572 -1638 \$112.5 \$18 x 85 944 \$524 -774 \$112.5 \$18 x 85 993 \$573 -1656 \$242.5 \$18 x 85 945 \$525	936		-630	112.5		986	S566	-1530	112.5	18 x 85
938 \$518 -666 \$112.5 \$18 \times 85 988 \$568 -1566 \$112.5 \$18 \times 85 989 \$569 -1584 \$242.5 \$18 \times 85 990 \$570 -1602 \$112.5 \$18 \times 85 991 \$571 -1620 \$242.5 \$18 \times 85 992 \$572 -1638 \$112.5 \$18 \times 85 992 \$573 -1656 \$242.5 \$18 \times 85 993 \$573 -1656 \$242.5 \$18 \times 85 993 \$573 -1656 \$242.5 \$18 \times 85 994 \$574 -1674 \$112.5 \$18 \times 85 995 \$575 -1692 \$242.5 \$18 \times 85 996 \$576 -1710 \$112.5 <t< td=""><td></td><td></td><td>-648</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			-648							
939 \$519 -684 242.5 18 x 85 989 \$569 -1584 242.5 18 x 85 940 \$520 -702 112.5 18 x 85 990 \$570 -1602 112.5 18 x 85 941 \$521 -720 242.5 18 x 85 991 \$571 -1620 242.5 18 x 85 942 \$522 -738 112.5 18 x 85 992 \$572 -1638 112.5 18 x 85 943 \$523 -756 242.5 18 x 85 992 \$572 -1638 112.5 18 x 85 944 \$524 -774 112.5 18 x 85 993 \$573 -1656 242.5 18 x 85 945 \$525 -792 242.5 18 x 85 994 \$574 -1674 112.5 18 x 85 946 \$526 -810 112.5 18 x 85 995 \$575 -1692 242.5 18 x 85 947 \$527 -828	938		-666	112.5	18 x 85		S568	-1566	112.5	18 x 85
941 S521 -720 242.5 18 x 85 991 S571 -1620 242.5 18 x 85 942 S522 -738 112.5 18 x 85 992 S572 -1638 112.5 18 x 85 943 S523 -756 242.5 18 x 85 993 S573 -1656 242.5 18 x 85 944 S524 -774 112.5 18 x 85 994 S574 -1674 112.5 18 x 85 945 S525 -792 242.5 18 x 85 995 S575 -1692 242.5 18 x 85 946 S526 -810 112.5 18 x 85 996 S576 -1710 112.5 18 x 85 947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85	939		-684	242.5	18 x 85	989	S569	-1584	242.5	18 x 85
941 S521 -720 242.5 18 x 85 991 S571 -1620 242.5 18 x 85 942 S522 -738 112.5 18 x 85 992 S572 -1638 112.5 18 x 85 943 S523 -756 242.5 18 x 85 993 S573 -1656 242.5 18 x 85 944 S524 -774 112.5 18 x 85 994 S574 -1674 112.5 18 x 85 945 S525 -792 242.5 18 x 85 995 S575 -1692 242.5 18 x 85 946 S526 -810 112.5 18 x 85 996 S576 -1710 112.5 18 x 85 947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85	940	S520	-702	112.5	18 x 85	990	S570	-1602	112.5	18 x 85
942 S522 -738 112.5 18 x 85 992 S572 -1638 112.5 18 x 85 943 S523 -756 242.5 18 x 85 993 S573 -1656 242.5 18 x 85 944 S524 -774 112.5 18 x 85 994 S574 -1674 112.5 18 x 85 945 S525 -792 242.5 18 x 85 995 S575 -1692 242.5 18 x 85 946 S526 -810 112.5 18 x 85 996 S576 -1710 112.5 18 x 85 947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85	941	S521	-720			991	S571	-1620	242.5	
944 \$524 -774 \$112.5 \$18 \times 85 \$994 \$574 -1674 \$112.5 \$18 \times 85 945 \$525 -792 \$242.5 \$18 \times 85 \$995 \$575 -1692 \$242.5 \$18 \times 85 946 \$526 -810 \$112.5 \$18 \times 85 \$996 \$576 -1710 \$112.5 \$18 \times 85 947 \$527 -828 \$242.5 \$18 \times 85 \$997 \$577 -1728 \$242.5 \$18 \times 85 948 \$528 -846 \$112.5 \$18 \times 85 \$998 \$578 -1746 \$112.5 \$18 \times 85	942	S522	-738	112.5	18 x 85	992	S572	-1638	112.5	18 x 85
944 \$524 -774 \$112.5 \$18 \times 85 \$994 \$574 -1674 \$12.5 \$18 \times 85 945 \$525 -792 \$242.5 \$18 \times 85 \$995 \$575 -1692 \$242.5 \$18 \times 85 946 \$526 -810 \$112.5 \$18 \times 85 \$996 \$576 -1710 \$112.5 \$18 \times 85 947 \$527 -828 \$242.5 \$18 \times 85 \$997 \$577 -1728 \$242.5 \$18 \times 85 948 \$528 -846 \$112.5 \$18 \times 85 \$998 \$578 -1746 \$112.5 \$18 \times 85	943	S523	-756			993	S573	-1656		
945 S525 -792 242.5 18 x 85 995 S575 -1692 242.5 18 x 85 946 S526 -810 112.5 18 x 85 996 S576 -1710 112.5 18 x 85 947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85		S524								
946 S526 -810 112.5 18 x 85 996 S576 -1710 112.5 18 x 85 947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85	945									
947 S527 -828 242.5 18 x 85 997 S577 -1728 242.5 18 x 85 948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85										
948 S528 -846 112.5 18 x 85 998 S578 -1746 112.5 18 x 85										
950 S530 -882 112.5 18 x 85 1000 S580 -1782 112.5 18 x 85										

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
1001	S581	-1800	242.5	18 x 85	1051	S631	-2700	242.5	18 x 85
1002	S582	-1818	112.5	18 x 85	1052	S632	-2718	112.5	18 x 85
1003	S583	-1836	242.5	18 x 85	1053	S633	-2736	242.5	18 x 85
1004	S584	-1854	112.5	18 x 85	1054	S634	-2754	112.5	18 x 85
1005	S585	-1872	242.5	18 x 85	1055	S635	-2772	242.5	18 x 85
1006	S586	-1890	112.5	18 x 85	1056	S636	-2790	112.5	18 x 85
1007	S587	-1908	242.5	18 x 85	1057	S637	-2808	242.5	18 x 85
1008	S588	-1926	112.5	18 x 85	1058	S638	-2826	112.5	18 x 85
1009	S589	-1944	242.5	18 x 85	1059	S639	-2844	242.5	18 x 85
1010	S590	-1962	112.5	18 x 85	1060	S640	-2862	112.5	18 x 85
1011	S591	-1980	242.5	18 x 85	1061	S641	-2880	242.5	18 x 85
1012	S592	-1998	112.5	18 x 85	1062	S642 N	-2898	112.5	18 x 85
1013	S593	-2016	242.5	18 x 85	1063	S643	-2916	242.5	18 x 85
1014	S594	-2034	112.5	18 x 85	1064	S644	-2934	112.5	18 x 85
1015	S595	-2052	242.5	18 x 85	1065	S645	-2952	242.5	18 x 85
1016	S596	-2070	112.5	18 x 85	1066	S646	-2970	112.5	18 x 85
1017	S597	-2088	242.5	18 x 85	1067	S647	-2988	242.5	18 x 85
1018	S598	-2106	112.5	18 x 85	1068	S648	-3006	112.5	18 x 85
1019	S599	-2124	242.5	18 x 85	1069	S649	-3024	242.5	18 x 85
1020	S600	-2142	112.5	18 x 85	1070	S650	-3042	112.5	18 x 85
1021	S601	-2160	242.5	18 x 85	1071	S651	-3060	242.5	18 x 85
1022	S602	-2178	112.5	18 x 85	1072	S652	-3078	112.5	18 x 85
1023	S603	-2196	242.5	18 x 85	1073	S653	-3096	242.5	18 x 85
1024	S604	-2214	112.5	18 x 85	1074	\$654	-3114	112.5	18 x 85
1025	S605	-2232	242.5	18 x 85	1075	\$655	-3132	242.5	18 x 85
1026	S606	-2250	112.5	18 x 85	1076	S656	-3150	112.5	18 x 85
1027	S607	-2268	242.5	18 x 85	1077	S657	-3168	242.5	18 x 85
1028	S608	-2286	112.5	18 x 85	1078	S658	-3186	112.5	18 x 85
1029	S609	-2304	242.5	18 x 85	1079	S659	-3204	242.5	18 x 85
1030	S610	-2322	112.5	18 x 85	1080	S660	-3222	112.5	18 x 85
1031	S611	-2340	242.5	18 x 85	1081	S661	-3240	242.5	18 x 85
1032	S612	-2358	112.5	18 x 85	1082	S662	-3258	112.5	18 x 85
1033	S613	-2376	242.5	18 x 85	1083	S663	-3276	242.5	18 x 85
1034	S614	-2394	112.5	18 x 85	1084	S664	-3294	112.5	18 x 85
1035	S615	-2412	242.5	18 x 85	1085	S665	-3312	242.5	18 x 85
1036	S616	-2430	112.5	18 x 85	1086	S666	-3330	112.5	18 x 85
1037	S617	-2448	242.5	18 x 85	1087	S667	-3348	242.5	18 x 85
1038	S618	-2466	112.5	18 x 85	1088	S668	-3366	112.5	18 x 85
1039	S619	-2484	242.5	18 x 85	1089	S669	-3384	242.5	18 x 85
1040	S620	-2502	112.5	18 x 85	1090	S670	-3402	112.5	18 x 85
1041	S621	-2520	242.5	18 x 85	1091	S671	-3420	242.5	18 x 85
1042	S622	-2538	112.5	18 x 85	1092	S672	-3438	112.5	18 x 85
1043	S623	-2556	242.5	18 x 85	1093	S673	-3456	242.5	18 x 85
1044	S624	-2574	112.5	18 x 85	1094	S674	-3474	112.5	18 x 85
1045	S625	-2592	242.5	18 x 85	1095	S675	-3492	242.5	18 x 85
1046	S626	-2610	112.5	18 x 85	1096	S676	-3510	112.5	18 x 85
1047	S627	-2628	242.5	18 x 85	1097	S677	-3528	242.5	18 x 85
1048	S628	-2646	112.5	18 x 85	1098	S678	-3546	112.5	18 x 85
1049	S629	-2664	242.5	18 x 85	1099	S679	-3564	242.5	18 x 85
1050	S630	-2682	112.5	18 x 85	1100	S680	-3582	112.5	18 x 85

No.	Name	Χ	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
1101	S681	-3600	242.5	18 x 85	1151	S731	-4500	242.5	18 x 85
1102	S682	-3618	112.5	18 x 85	1152	S732	-4518	112.5	18 x 85
1103	S683	-3636	242.5	18 x 85	1153	S733	-4536	242.5	18 x 85
1104	S684	-3654	112.5	18 x 85	1154	S734	-4554	112.5	18 x 85
1105	S685	-3672	242.5	18 x 85	1155	S735	-4572	242.5	18 x 85
1106	S686	-3690	112.5	18 x 85	1156	S736	-4590	112.5	18 x 85
1107	S687	-3708	242.5	18 x 85	1157	S737	-4608	242.5	18 x 85
1108	S688	-3726	112.5	18 x 85	1158	S738	-4626	112.5	18 x 85
1109	S689	-3744	242.5	18 x 85	1159	S739	-4644	242.5	18 x 85
1110	S690	-3762	112.5	18 x 85	1160	S740	-4662	112.5	18 x 85
1111	S691	-3780	242.5	18 x 85	1161	S741	-4680	242.5	18 x 85
1112	S692	-3798	112.5	18 x 85	1162	S742 N	-4698	112.5	18 x 85
1113	S693	-3816	242.5	18 x 85	1163	S743	-4716	242.5	18 x 85
1114	S694	-3834	112.5	18 x 85	1164	S744	-4734	112.5	18 x 85
1115	S695	-3852	242.5	18 x 85	1165	S745	-4752	242.5	18 x 85
1116	S696	-3870	112.5	18 x 85	1166	S746	-4770	112.5	18 x 85
1117	S697	-3888	242.5	18 x 85	1167	S747	-4788	242.5	18 x 85
1118	S698	-3906	112.5	18 x 85	1168	S748	-4806	112.5	18 x 85
1119	S699	-3924	242.5	18 x 85	1169	S749	-4824	242.5	18 x 85
1120	S700	-3942	112.5	18 x 85	1170	S750	-4842	112.5	18 x 85
1121	S701	-3960	242.5	18 x 85	1171	S751	-4860	242.5	18 x 85
1122	S702	-3978	112.5	18 x 85	1172	S752	-4878	112.5	18 x 85
1123	S703	-3996	242.5	18 x 85	1173	S753	-4896	242.5	18 x 85
1124	S704	-4014	112.5	18 x 85	1174	S754	-4914	112.5	18 x 85
1125	S705	-4032	242.5	18 x 85	1175	\$755	-4932	242.5	18 x 85
1126	S706	-4050	112.5	18 x 85	1176	S756	-4950	112.5	18 x 85
1127	S707	-4068	242.5	18 x 85	1177	S757	-4968	242.5	18 x 85
1128	S708	-4086	112.5	18 x 85	1178	S758	-4986	112.5	18 x 85
1129	S709	-4104	242.5	18 x 85	1179	S759	-5004	242.5	18 x 85
1130	S710	-4122	112.5	18 x 85	1180	S760	-5022	112.5	18 x 85
1131	S711	-4140	242.5	18 x 85	1181	S761	-5040	242.5	18 x 85
1132	S712	-4158	112.5	18 x 85	1182	S762	-5058	112.5	18 x 85
1133	S713	-4176	242.5	18 x 85	1183	S763	-5076	242.5	18 x 85
1134	S714	-4194	112.5	18 x 85	1184	S764	-5094	112.5	18 x 85
1135	S715	-4212	242.5	18 x 85	1185	S765	-5112	242.5	18 x 85
1136	S716	-4230	112.5	18 x 85	1186	S766	-5130	112.5	18 x 85
1137	S717	-4248	242.5	18 x 85	1187	S767	-5148	242.5	18 x 85
1138	S718	-4266	112.5	18 x 85	1188	S768	-5166	112.5	18 x 85
1139	S719	-4284	242.5	18 x 85	1189	S769	-5184	242.5	18 x 85
1140	S720	-4302	112.5	18 x 85	1190	S770	-5202	112.5	18 x 85
1141	S721	-4320	242.5	18 x 85	1191	S771	-5220	242.5	18 x 85
1142	S722	-4338	112.5	18 x 85	1192	S772	-5238	112.5	18 x 85
1143	S723	-4356	242.5	18 x 85	1193	S773	-5256	242.5	18 x 85
1144	S724	-4374	112.5	18 x 85	1194	S774	-5274	112.5	18 x 85
1145	S725	-4392	242.5	18 x 85	1195	S775	-5292	242.5	18 x 85
1146	S726	-4410	112.5	18 x 85	1196	S776	-5310	112.5	18 x 85
1147	S727	-4428	242.5	18 x 85	1197	S777	-5328	242.5	18 x 85
1148	S728	-4446	112.5	18 x 85	1198	S778	-5346	112.5	18 x 85
1149	S729	-4464	242.5	18 x 85	1199	S779	-5364	242.5	18 x 85
1150	S730	-4482	112.5	18 x 85	1200	S780	-5382	112.5	18 x 85

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
1201	S781	-5400	242.5	18 x 85	1251	S831	-6300	242.5	18 x 85
1202	S782	-5418	112.5	18 x 85	1252	S832	-6318	112.5	18 x 85
1203	S783	-5436	242.5	18 x 85	1253	S833	-6336	242.5	18 x 85
1204	S784	-5454	112.5	18 x 85	1254	S834	-6354	112.5	18 x 85
1205	S785	-5472	242.5	18 x 85	1255	S835	-6372	242.5	18 x 85
1206	S786	-5490	112.5	18 x 85	1256	S836	-6390	112.5	18 x 85
1207	S787	-5508	242.5	18 x 85	1257	S837	-6408	242.5	18 x 85
1208	S788	-5526	112.5	18 x 85	1258	S838	-6426	112.5	18 x 85
1209	S789	-5544	242.5	18 x 85	1259	S839	-6444	242.5	18 x 85
1210	S790	-5562	112.5	18 x 85	1260	S840	-6462	112.5	18 x 85
1211	S791	-5580	242.5	18 x 85	1261	S841	-6480	242.5	18 x 85
1212	S792	-5598	112.5	18 x 85	1262	S842 N	-6498	112.5	18 x 85
1213	S793	-5616	242.5	18 x 85	1263	S843	-6516	242.5	18 x 85
1214	S794	-5634	112.5	18 x 85	1264	S844	-6534	112.5	18 x 85
1215	S795	-5652	242.5	18 x 85	1265	S845	-6552	242.5	18 x 85
1216	S796	-5670	112.5	18 x 85	1266	S846	-6570	112.5	18 x 85
1217	S797	-5688	242.5	18 x 85	1267	S847	-6588	242.5	18 x 85
1218	S798	-5706	112.5	18 x 85	1268	S848	-6606	112.5	18 x 85
1219	S799	-5724	242.5	18 x 85	1269	S849	-6624	242.5	18 x 85
1220	S800	-5742	112.5	18 x 85	1270	S850	-6642	112.5	18 x 85
1221	S801	-5760	242.5	18 x 85	1271	S851	-6660	242.5	18 x 85
1222	S802	-5778	112.5	18 x 85	1272	S852	-6678	112.5	18 x 85
1223	S803	-5796	242.5	18 x 85	1273	S853	-6696	242.5	18 x 85
1224	S804	-5814	112.5	18 x 85	1274	\$854	-6714	112.5	18 x 85
1225	S805	-5832	242.5	18 x 85	1275	\$855	-6732	242.5	18 x 85
1226	S806	-5850	112.5	18 x 85	1276	S856	-6750	112.5	18 x 85
1227	S807	-5868	242.5	18 x 85	1277	S857	-6768	242.5	18 x 85
1228	S808	-5886	112.5	18 x 85	1278	S858	-6786	112.5	18 x 85
1229	S809	-5904	242.5	18 x 85	1279	S859	-6804	242.5	18 x 85
1230	S810	-5922	112.5	18 x 85	1280	S860	-6822	112.5	18 x 85
1231	S811	-5940	242.5	18 x 85	1281	S861	-6840	242.5	18 x 85
1232	S812	-5958	112.5	18 x 85	1282	S862	-6858	112.5	18 x 85
1233	S813	-5976	242.5	18 x 85	1283	S863	-6876	242.5	18 x 85
1234	S814	-5994	112.5	18 x 85	1284	S864	-6894	112.5	18 x 85
1235	S815	-6012	242.5	18 x 85	1285	S865	-6912	242.5	18 x 85
1236	S816	-6030	112.5	18 x 85	1286	S866	-6930	112.5	18 x 85
1237	S817	-6048	242.5	18 x 85	1287	S867	-6948	242.5	18 x 85
1238	S818	-6066	112.5	18 x 85	1288	S868	-6966	112.5	18 x 85
1239	S819	-6084	242.5	18 x 85	1289	S869	-6984	242.5	18 x 85
1240	S820	-6102	112.5	18 x 85	1290	S870	-7002	112.5	18 x 85
1241	S821	-6120	242.5	18 x 85	1291	S871	-7020	242.5	18 x 85
1242	S822	-6138	112.5	18 x 85	1292	S872	-7038	112.5	18 x 85
1243	S823	-6156	242.5	18 x 85	1293	S873	-7056	242.5	18 x 85
1244	S824	-6174	112.5	18 x 85	1294	S874	-7074	112.5	18 x 85
1245	S825	-6192	242.5	18 x 85	1295	S875	-7092	242.5	18 x 85
1246	S826	-6210	112.5	18 x 85	1296	S876	-7110	112.5	18 x 85
1247	S827	-6228	242.5	18 x 85	1297	S877	-7128	242.5	18 x 85
1248	S828	-6246	112.5	18 x 85	1298	S878	-7146	112.5	18 x 85
1249	S829	-6264	242.5	18 x 85	1299	S879	-7164	242.5	18 x 85
1250	S830	-6282	112.5	18 x 85	1300	S880	-7182	112.5	18 x 85

1301 S881 -7200 242.5 1302 S882 -7218 112.5 1303 S883 -7236 242.5 1304 S884 -7254 112.5 1305 S885 -7272 242.5 1306 S886 -7290 112.5 1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542	18 x 85 18 x 85	1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$931 \$932 \$933 \$934 \$935 \$936 \$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8100 -8118 -8136 -8154 -8172 -8190 -8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85
1303 S883 -7236 242.5 1304 S884 -7254 112.5 1305 S885 -7272 242.5 1306 S886 -7290 112.5 1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$933 \$934 \$935 \$936 \$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8136 -8154 -8172 -8190 -8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85
1304 S884 -7254 112.5 1305 S885 -7272 242.5 1306 S886 -7290 112.5 1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$934 \$935 \$936 \$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8154 -8172 -8190 -8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85
1305 S885 -7272 242.5 1306 S886 -7290 112.5 1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$935 \$936 \$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8172 -8190 -8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85
1306 S886 -7290 112.5 1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$936 \$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947	-8190 -8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85
1307 S887 -7308 242.5 1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$937 \$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8208 -8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5	18 x 85 18 x 85
1308 S888 -7326 112.5 1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$938 \$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8226 -8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5	18 x 85 18 x 85
1309 S889 -7344 242.5 1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1359 1360 1361 1362 1363 1364 1365 1366 1367 1368	\$939 \$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8244 -8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 242.5	18 x 85 18 x 85
1310 S890 -7362 112.5 1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1360 1361 1362 1363 1364 1365 1366 1367 1368	\$940 \$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8262 -8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5 112.5 242.5 112.5 242.5 242.5	18 x 85 18 x 85
1311 S891 -7380 242.5 1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1361 1362 1363 1364 1365 1366 1367 1368	\$941 \$942 \$943 \$944 \$945 \$946 \$947 \$948	-8280 -8298 -8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85
1312 S892 -7398 112.5 1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1362 1363 1364 1365 1366 1367 1368	\$942 \$943 \$944 \$945 \$946 \$947 \$948	-8298 -8316 -8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85
1313 S893 -7416 242.5 1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1363 1364 1365 1366 1367 1368 1369	\$943 \$944 \$945 \$946 \$947 \$948	-8316 -8334 -8352 -8370 -8388 -8406	242.5 112.5 242.5 112.5 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85
1314 S894 -7434 112.5 1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85	1364 1365 1366 1367 1368	\$944 \$945 \$946 \$947 \$948	-8334 -8352 -8370 -8388 -8406	112.5 242.5 112.5 242.5	18 x 85 18 x 85 18 x 85 18 x 85
1315 S895 -7452 242.5 1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85	1365 1366 1367 1368 1369	\$945 \$946 \$947 \$948	-8352 -8370 -8388 -8406	242.5 112.5 242.5	18 x 85 18 x 85 18 x 85
1316 S896 -7470 112.5 1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85 18 x 85	1366 1367 1368 1369	\$946 \$947 \$948	-8370 -8388 -8406	112.5 242.5	18 x 85 18 x 85
1317 S897 -7488 242.5 1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85 18 x 85 18 x 85	1367 1368 1369	\$947 \$948	-8388 -8406	112.5 242.5	18 x 85 18 x 85
1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85 18 x 85	1368 1369	S948	-8406		
1318 S898 -7506 112.5 1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85 18 x 85	1369		-8406		
1319 S899 -7524 242.5 1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85 18 x 85	1369			114.0	18 x 85
1320 S900 -7542 112.5 1321 S901 -7560 242.5	18 x 85		S949	-8424	242.5	18 x 85
1321 S901 -7560 242.5		1370	S950	-8442	112.5	18 x 85
		1371	S951	-8460	242.5	18 x 85
1322 S902 -7578 112.5	18 x 85	1372	S952	-8478	112.5	18 x 85
1323 S903 -7596 242.5	18 x 85	1373	S953	-8496	242.5	18 x 85
1324 S904 -7614 112.5	18 x 85	1374	\$954	-8514	112.5	18 x 85
1325 S905 -7632 242.5	18 x 85	1375	\$955	-8532	242.5	18 x 85
1326 S906 -7650 112.5	18 x 85	1376	S956	-8550	112.5	18 x 85
1327 S907 -7668 242.5	18 x 85	1377	S957	-8568	242.5	18 x 85
1328 S908 -7686 112.5	18 x 85	1378	S958	-8586	112.5	18 x 85
1329 S909 -7704 242.5	18 x 85	1379	S959	-8604	242.5	18 x 85
1330 S910 -7722 112.5	18 x 85	1380	DUMMY	-8622	112.5	18 x 85
1331 S911 -7740 242.5	18 x 85	1381	DUMMY	-8640	242.5	18 x 85
1332 S912 -7758 112.5	18 x 85	1382	DUMMY	-8658	112.5	18 x 85
1333 S913 -7776 242.5	18 x 85	1383	DUMMY	-8676	242.5	18 x 85
1334 S914 -7794 112.5	18 x 85	1384	DUMMY	-8694	112.5	18 x 85
1335 S915 -7812 242.5	18 x 85	1385	DUMMY	-8712	242.5	18 x 85
1336 S916 -7830 112.5	18 x 85	1386	DUMMY	-8730	112.5	18 x 85
1337 S917 -7848 242.5	18 x 85	1387	DUMMY	-8748	242.5	18 x 85
1338 S918 -7866 112.5	18 x 85	1388	DUMMY	-8766	112.5	18 x 85
1339 S919 -7884 242.5	18 x 85	1389	G238	-8784	242.5	18 x 85
1340 S920 -7902 112.5	18 x 85	1390	G236	-8802	112.5	18 x 85
1341 S921 -7920 242.5	18 x 85	1391	G234	-8820	242.5	18 x 85
1342 S922 -7938 112.5	18 x 85	1392	G232	-8838	112.5	18 x 85
1343 S923 -7956 242.5	18 x 85	1393	G230	-8856	242.5	18 x 85
1344 S924 -7974 112.5	18 x 85	1394	G228	-8874	112.5	18 x 85
1345 S925 -7992 242.5	18 x 85	1395	G226	-8892	242.5	18 x 85
1346 S926 -8010 112.5	18 x 85	1396	G224	-8910	112.5	18 x 85
1347 S927 -8028 242.5	18 x 85	1397	G222	-8928	242.5	18 x 85
1348 S928 -8046 112.5	18 x 85	1398	G220	-8946	112.5	18 x 85
1349 S929 -8064 242.5	18 x 85	1399	G218	-8964	242.5	18 x 85
1350 S930 -8082 112.5	18 x 85	1400	G216	-8982	112.5	18 x 85

No.	Name	Х	Υ	Bump Size	No.	Name	Х	Υ	Bump Size
1401	G214	-9000	242.5	18 x 85	1451	G114	-9900	242.5	18 x 85
1402	G212	-9018	112.5	18 x 85	1452	G112	-9918	112.5	18 x 85
1403	G210	-9036	242.5	18 x 85	1453	G110	-9936	242.5	18 x 85
1404	G208	-9054	112.5	18 x 85	1454	G108	-9954	112.5	18 x 85
1405	G206	-9072	242.5	18 x 85	1455	G106	-9972	242.5	18 x 85
1406	G204	-9090	112.5	18 x 85	1456	G104	-9990	112.5	18 x 85
1407	G202	-9108	242.5	18 x 85	1457	G102	-10008	242.5	18 x 85
1408	G200	-9126	112.5	18 x 85	1458	G100	-10026	112.5	18 x 85
1409	G198	-9144	242.5	18 x 85	1459	G98	-10044	242.5	18 x 85
1410	G196	-9162	112.5	18 x 85	1460	G96	-10062	112.5	18 x 85
1411	G194	-9180	242.5	18 x 85	1461	G94	-10080	242.5	18 x 85
1412	G192	-9198	112.5	18 x 85	1462	G92 /	-10098	112.5	18 x 85
1413	G190	-9216	242.5	18 x 85	1463	G90	-10116	242.5	18 x 85
1414	G188	-9234	112.5	18 x 85	1464	G88	-10134	112.5	18 x 85
1415	G186	-9252	242.5	18 x 85	1465	G86	-10152	242.5	18 x 85
1416	G184	-9270	112.5	18 x 85	1466	G84	-10170	112.5	18 x 85
1417	G182	-9288	242.5	18 x 85	1467	G82	-10188	242.5	18 x 85
1418	G180	-9306	112.5	18 x 85	1468	G80	-10206	112.5	18 x 85
1419	G178	-9324	242.5	18 x 85	1469	G 78	-10224	242.5	18 x 85
1420	G176	-9342	112.5	18 x 85	1470	G76	-10242	112.5	18 x 85
1421	G174	-9360	242.5	18 x 85	1471	G74	-10260	242.5	18 x 85
1422	G172	-9378	112.5	18 x 85	1472	G72	-10278	112.5	18 x 85
1423	G170	-9396	242.5	18 x 85	1473	G70	-10296	242.5	18 x 85
1424	G168	-9414	112.5	18 x 85	1474	G68	-10314	112.5	18 x 85
1425	G166	-9432	242.5	18 x 85	1475	G66	-10332	242.5	18 x 85
1426	G164	-9450	112.5	18 x 85	1476	G64	-10350	112.5	18 x 85
1427	G162	-9468	242.5	18 x 85	1477	G62	-10368	242.5	18 x 85
1428	G160	-9486	112.5	18 x 85	1478	G60	-10386	112.5	18 x 85
1429	G158	-9504	242.5	18 x 85	1479	G58	-10404	242.5	18 x 85
1430	G156	-9522	112.5	18 x 85	1480	G56	-10422	112.5	18 x 85
1431	G154	-9540	242.5	18 x 85	1481	G54	-10440	242.5	18 x 85
1432	G152	-9558	112.5	18 x 85	1482	G52	-10458	112.5	18 x 85
1433	G150	-9576	242.5	18 x 85	1483	G50	-10476	242.5	18 x 85
1434	G148	-9594	112.5	18 x 85	1484	G48	-10494	112.5	18 x 85
1435	G146	-9612	242.5	18 x 85	1485	G46	-10512	242.5	18 x 85
1436	G144	-9630	112.5	18 x 85	1486	G44	-10530	112.5	18 x 85
1437	G142	-9648	242.5	18 x 85	1487	G42	-10548	242.5	18 x 85
1438	G140	-9666	112.5	18 x 85	1488	G40	-10566	112.5	18 x 85
1439	G138	-9684	242.5	18 x 85	1489	G38	-10584	242.5	18 x 85
1440	G136	-9702	112.5	18 x 85	1490	G36	-10602	112.5	18 x 85
1441	G134	-9720	242.5	18 x 85	1491	G34	-10620	242.5	18 x 85
1442	G132	-9738	112.5	18 x 85	1492	G32	-10638	112.5	18 x 85
1443	G130	-9756	242.5	18 x 85	1493	G30	-10656	242.5	18 x 85
1444	G128	-9774	112.5	18 x 85	1494	G28	-10674	112.5	18 x 85
1445	G126	-9792	242.5	18 x 85	1495	G26	-10692	242.5	18 x 85
1446	G124	-9810	112.5	18 x 85	1496	G24	-10710	112.5	18 x 85
1447	G122	-9828	242.5	18 x 85	1497	G22	-10728	242.5	18 x 85
1448	G120	-9846	112.5	18 x 85	1498	G20	-10746	112.5	18 x 85
1449	G118	-9864	242.5	18 x 85	1499	G18	-10764	242.5	18 x 85
1450	G116	-9882	112.5	18 x 85	1500	G16	-10782	112.5	18 x 85

No.	Name	X	Υ	Bump Size
1501	G14	-10800	242.5	18 x 85
1502	G12	-10818	112.5	18 x 85
1503	G10	-10836	242.5	18 x 85
1504	G8	-10854	112.5	18 x 85
1505	G6	-10872	242.5	18 x 85
1506	G4	-10890	112.5	18 x 85
1507	G2	-10908	242.5	18 x 85
1508	G0	-10926	112.5	18 x 85
1509	DUMMY	-10944	242.5	18 x 85
1510	DUMMY	-10962	112.5	18 x 85
1511	DUMMY	-10980	242.5	18 x 85
1512	DUMMY	-10998	112.5	18 x 85
1513	DUMMY	-11016	242.5	18 x 85

Name	Х	Υ
Alignmark_R	10862.5	-232.5
Alignmark L	-10862.5	-232.5

16. Ordering Information

Part NO.	Package		
HX8238-D00BPDXXX	PD: means COG		
HX6236-D00BFDXXX	XXX: means chip thickness(µm), default 400µm		

17. Revision History

on of Changes
0/0/2
nd alignment mark location.
gister definition on VCOM.
function on register PWMS,
time to twice on CTM's site.
ing
n and default value.
n and default value.
F[3:0], DUTY[7:0] from register
Supply Pin Connection.
ult value = FF (Page 39)
wer up sequence
ower down sequence.
e R1Eh Power Control
10 to 1011111(Page 15)
PI Register.
e BT[2:0] from 011 to 100.
in R1Ah of the Secondary SPI
of the MSEL and POC.(Page
of the MSEL and FOC.(Fage
VCOM amplitude to control by
VOOW amplitude to control by
the VCOM in POWER ON/OFF
une voolvinin ovver onvoin
definition in Secondary
Sequnce.(Page 71)
from 1.6V ~ 3.6V.(All page)
scription. (Page 10)
on VCIX2 to 4.7μF. (Page 77)