

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
https://sites.google.com/view/iitkgpakdas/

Group Theory

Group

Definition

Let (S, \circ) be a structure. An element $x \in S$ is said to be an *idempotent* if $x \circ x = x$.

Theorem

A finite monoid (M, \circ, e) is a group if and only if the identity element $e \in M$ is its only idempotent.

Proof.

 (\Rightarrow) : Given M is a finite monoid and it is a group.

R.T.P. If $x \circ x = x$, then x = e is the identity in M, for $x \in M$.

Since M is a group, so x^{-1} exists for each $x \in M$.

Now,
$$x \circ x = x$$
. Then, $x^{-1} \circ (x \circ x) = x^{-1} \circ x$

$$\Rightarrow (x^{-1} \circ x) \circ x = x^{-1} \circ x$$

$$\Rightarrow$$
 $e \circ x = e$, since $x^{-1} \circ x = x \circ x^{-1} = e$, the identity in M

$$\Rightarrow$$
 $x = e$.

Definition

A subgroup of a group G is a subset of the elements of the set G that forms a group under the composition of the group G.

Theorem

Let H be a subgroup of a group G. Then, the identity of H is the same as the identity of G.

Theorem

Let H be a subset of a group G. Then, H forms a subgroup of the group G if and only if $(h_1.h_2^{-1}) \in H$, for every $h_1, h_2 \in H$.

Theorem

Let $H \subseteq \langle G, \cdot \rangle$ be a finite subset of a group G which is closed under the binary composition \cdot . Then, H is a subgroup of G.

Proof. Given $H \subseteq \langle G, \cdot \rangle$ is a finite subset of a group G, and $\forall h_1, h_2 \in H, (h_1 \cdot h_2) \in H$.

RTP: H is a subgroup of G, that is,

$$\forall h_1, h_2 \in H, (h_1 \cdot h_2^{-1}) \in H.$$

In other words, it is sufficient to prove that

$$\forall h_2 \in H, h_2^{-1} \in H.$$

Let $h \in H$. Then start generating its positive powers. We have: $h^1, h^2, h^3, \dots, h^{m+n} = h^m$, for some n > 0 as H is a finite subset.

Now,

$$h^{m+n} = h^m$$

 $\Rightarrow h^m \cdot h^n = h^m$
 $\Rightarrow h^n = e$, identity element in G
 $\Rightarrow h^{n-1} \cdot h = h \cdot h^{n-1} = e$, for $n-1 \ge 0$.

Note that $h^0=e$ is the identity in H, since $h^0\cdot h=h\cdot h^0=h$. Hence, h^{n-1} is the left as well as right inverse of $h\in H$. Thus, $h^{-1}=h^{n-1}$. Since $\forall h\in H, h^{-1}\in H$, take $h_2=h$. Therefore, $\forall h_1, h_2\in H, (h_1\cdot h_2^{-1})\in H$, since H is closed under \cdot . As a result, H is a subgroup of G.

Problem:

- Prove that the intersection of two subgroups of a group *G* is also a subgroup.
- Discover whether the following statement is true or false:
 "The union of two subgroups of a group is also a subgroup."

Problem:

Prove that a group $\langle G, \cdot \rangle$ is abelian, if and only if $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$, for all $a, b \in G$.

Cosets

Definition (Left Coset)

Let *H* be a subgroup of a group $\langle G, \cdot \rangle$. The left cosets of *G* relative of *H* are defined by

$$g \cdot H = \{g \cdot h | h \in H\}, \forall g \in G.$$

If $\cdot = +$, then

$$g \cdot H = g + H = \{g + h | h \in H\}.$$

Definition (Right Coset)

Let H be a subgroup of a group $\langle G, \cdot \rangle$. The right cosets of G relative of H are defined by

$$H \cdot g = \{h \cdot g | h \in H\}, \forall g \in G.$$

Cosets

Example

Let $\underline{3}=\{1,2,3\}$ be a finite set. Considering all 3!=6 permutations on $\underline{3}$, define a set $S_3=\{e,(1\,2),(1\,3),(2\,3),(1\,2\,3),(1\,3\,2)\}$. Then, S_3 forms a group under permutation composition (multiplication). Also, S_3 is called a symmetric group of degree 3. Find the left and right cosets of S_3 relative to a subgroup $H=\{e,(1\,2)\}\subseteq S_3$, where e is the identity permutation defined on 3.

Group

Problem: If *H* be a subgroup of a group $\langle G, \circ \rangle$ and $h \in H$, then $h \circ H = H \circ h = H$.

Group

Problem: For each g in a group [G, .], the set $N_g = \{h | h.g.h^{-1} = g\}$ is called the *normalizer* of g. Show that N_g is a subgroup of G for every g.

Theorem

The left (right) cosets of a group G relative to a subgroup H form a partition of G. Moreover, all of the left or right cosets of G relative to H have equal number of elements.

Definition (Left coset relation)

Let G be a group with subgroup H. The **left coset relation** on G with respect to H is the relation R with the property that $g_1 R g_2$ iff $g_1^{-1} \cdot g_2 \in H$, $\forall g_1, g_2 \in G$.

Definition (Right coset relation)

Let G be a group with subgroup H. The **right coset relation** on G with respect to H is the relation R with the property that $g_1 R_{g_2}$ iff $g_1 \cdot g_2^{-1} \in H$, $\forall g_1, g_2 \in G$.

Theorem

The left (right) coset relation is an equivalence relation on a group G, and the equivalence classes are the left (right) cosets of G with respect to a subgroup H of G.

Normal Subgroup

Definition (Normal Subgroup)

A subgroup H of a group G is said to be a **normal subgroup** if the left coset partition induced by H is identical to the right coset partition induced by H.

Equivalently, H is normal if

$$g \cdot H = H \cdot g, \forall g \in G.$$

Theorem

A subgroup H of a group G is **normal** if and only if

$$g^{-1} \cdot H \cdot g \subseteq H, \forall g \in G.$$

In other words, a subgroup H of a group G is normal if and only if

$$g^{-1} \cdot h \cdot g \in H, \forall g \in G \text{ and } h \in H.$$

Quotient group

Theorem

If H is a normal subgroup of a group $\langle G, \cdot \rangle$, then the quotient structure $\langle G/H, \circ \rangle$ is a group, where \circ is the composition of cosets defined by

$$[g]\circ[h]=[g\cdot h]$$

where [g] denotes a left (right) coset of G relative to H and it is defined by $[g] = g \cdot H, \forall g \in G$, with respect to the left coset operation.

The group $\langle G/H, \circ \rangle$ is called the "quotient group" or "factor group" of G relative to the normal subgroup H.

Definition (Homomorphism of semigroups)

Let $[S,\cdot]$ and [T,*] be two semigroups. A mapping (function) $\theta: [S,\cdot] \to [T,*]$ is called a morphism (or homomorphism) of two semigroups $[S,\cdot]$ and [T,*], if $\forall s_1,s_2 \in S$, $\theta(s_1 \cdot s_2) = \theta(s_1) * \theta(s_2)$.

Definition (Homomorphism of monoids)

Let $[S,\cdot,e_S]$ and $[T,*,e_T]$ be two monoids. A mapping (function) θ : $[S,\cdot,e_S] \to [T,*,e_T]$ is called a morphism (or homomorphism), if the following conditions are met:

- (i) $\forall s_1, s_2 \in S$, $\theta(s_1 \cdot s_2) = \theta(s_1) * \theta(s_2)$.
- (ii) $\theta(e_S) = e_T$, where e_S and e_T denote the identity elements in the monoids $[S, \cdot, e_S]$ and $[T, *, e_T]$, respectively.

Definition (Homomorphism of groups)

Let $[G,\cdot]$ and [G',*] be two groups. A mapping (function) $\mu:[G,\cdot]\to [G',*]$ is called a morphism (or homomorphism), if the following conditions are met:

- ullet (i) $orall g,g'\in G$, $\mu(g\cdot g')=\mu(g)*\mu(g')$.
- (ii) $\mu(e_G) = e_{G'}$, where e_G and $e_{G'}$ denote the identity elements in the groups $[G, \cdot]$ and [G', *], respectively.
- (iii) $[\mu(g)]^{-1} = \mu(g^{-1}), \forall g \in G.$

Definition

Let g be a homomorphism from a structure $[X, \cdot]$ to another structure [Y, *].

- If $g: X \to Y$ is onto (surjective), then g is called an **epimorphism**.
- If g: X → Y is one-one (injective), then g is called an monomorphism.
- If g: X → Y is one-one (injective) and onto (surjective) (that is, g is bijective), then g is called an isomorphism.
- If g: X → Y is called an automorphism, if X = Y and g is a bijection.

Theorem

Let $[G, \cdot]$ and [G', *] be two groups. A mapping (function) $\mu : [G, \cdot] \to [G', *]$ is called a morphism (or homomorphism) of the groups $[G, \cdot]$ and [G', *] if and only if

$$\mu(g \cdot g') = \mu(g) * \mu(g'), \forall g, g' \in G.$$

Example

Let G be the group of non-zero real numbers under the multiplication operation. Determine whether the following functions are morphisms or not:

- (i) $\phi: G \to G$, where $\phi(x) = x^2$, for all $x \in G$.
- (ii) $\psi : G \to G$, where $\psi(x) = 2^x$, for all $x \in G$.

Theorem

Let H be a normal subgroup of G. Then, the mapping $f: G \to G/H$, f(g) = [g], is a group epimorphism. Here, [g] denotes a left (right) coset of G relative to H and it is defined by $[g] = g \cdot H, \forall g \in G$, with respect to the left coset operation.

Kernal of group homomorphism

Definition

The **kernal** of a group homomorphism is the set of domain elements that is mapped onto the identity element in the range.

If $f: G \to G'$ be a group homomorphism and $K \subseteq G$ is the kernal of f, then $f(K) = \{e'_G\}$, where G and G' are groups and $e_{G'}$ is the identity in G'. In other words, $f(x) = e_{G'}$, $\forall x \in K$.

Kernal of group homomorphism

Theorem (Fundamental theorem of group homomorphism)

Let $f: G \to G'$ be any group homomorphism, where G and G' be two groups. Then, the kernal of the homomorphism f is a **normal** subgroup of G.

Theorem (Lagrange's theorem)

The order of a finite group G is divided by the order of its subgroup H.

Proof. Let *G* be a finite group of order *n* and $H \subseteq G$ be its subgroup of order *m*.

Then, |G| = n and |H| = m.

RTP: m|n, that is, n = mk for some positive integer k.

Let $H = \{h_1, h_2, \dots, h_m\} \subseteq G$ be a subgroup of G. Then,

$$a \cdot H = \{a \cdot h_1, a \cdot h_2, \dots, a \cdot h_m\}, a \in G$$

contains m elements and these elements are distinct, since

$$a \cdot h_i = a \cdot h_j \Rightarrow h_i = h_j,$$

by the left cancellation law in G.

$$a \cdot h_i = a \cdot h_j \Rightarrow (a^{-1} \cdot a) \cdot h_i = (a^{-1} \cdot a) \cdot h_j \Rightarrow e \cdot h_i = e \cdot h_j \Rightarrow h_i = h_j,$$

where $e \in G$ as well as $e \in H$ is the identity.

Now, G is a finite group. Therefore, the number of distinct left (right) cosets is also finite. Let the number of distinct left cosets be k, that is, $a_1 \cdot H$, $a_2 \cdot H$, $\cdots a_k \cdot H$ so that the number of elements of the k cosets is km, and this is the total number of elements of G. Since the disjoint left (right) cosets of G form a partition of G, so

$$G = (a_1 \cdot H) \cup (a_2 \cdot H) \cup \cdots \cup (a_k \cdot H).$$

Therefore,

$$|G| = |a_1 \cdot H| + |a_2 \cdot H| + \cdots + |a_k \cdot H|$$

and n = km. This proves that the order of H, i.e., m, is a divisor of n, which is the order of G.

Example

Let $G = S_3$ be a symmetric group of order 3 on the set $\underline{3} = \{1, 2, 3\}$, which contains 3! = 6 permutations, and $H = \{e, (12)\} \subseteq S_3$ is subgroup order 2.

Thus, |G| = 6 and |H| = 2. Hence, 2|6.

Corollary

The index k of a subgroup H of a finite group G is a divisor of the order of G.

Proof. Since n = mk, where |G| = n and |H| = m, so k|n.

Note: The index of H under G, [G : H] = k is the number of distinct left (right) cosets of G relative to H.

Corollary

The order of every element of a finite group G is a divisor of the order of the group G.

Proof. Let $a \in G$ and order of a in G is $Ord_G(a) = m$.

Then, m is the least positive integer such that $a^m = e$, the identity in G. Therefore,

$$a^{1}, a^{2}, a^{3}, \cdots, a^{m-1}, a^{m} = e$$

are all distinct elements in G.

Now, construct a subset $H = \{a^1, a^2, a^3, \dots, a^{m-1}, a^m = e\}.$

We see that |H| = m and it is a subgroup of G. Since the order of H divides the order of G, so n = mk, for some positive integer k, |G| = n. Thus, the order of $a \in G$ divides the order of the group G.

Corollary

If G be a finite group of order n and $a \in G$, then $a^n = e$, where $e \in G$ is the identity element in G.

Proof. Given |G| = n.

If the order of an element a in G is $Ord_G(a) = m$, then m|n, that is, n = mk for some positive integer k.

Since $Ord_G(a) = m$, so $a^m = e$.

Now,

$$a^n = a^{mk}$$
 $= (a^m)^k$
 $= e^k$
 $= e$.