舟木確率論ゼミ

M1 久米啓太

平成31年4月24日

命題 2.25 の証明の補足

1)-3) を満たす $\mathbb R$ 上の関数 F が与えられた時, (2.2) を満たすような $(\mathbb R,\mathcal B(\mathbb R))$ 上の確率測度 μ が一意的に定まることの証明をする.

 $Y(w):(0,1)\to\mathbb{R}:w\mapsto \sup\{y\in\mathbb{R}|F(y)< w\}\,,\ w\in(0,1)$ とする. 集合 A に対する $y^\star=\sup A$ は以下を満たす \mathbb{R} の元である.

- 任意の $y \in A$ に対して, $y \le y^*$.
- 任意の $\epsilon > 0$ に対して、ある $y \in A$ が存在して、 $y^* \epsilon < y$.

教科書では

Y はF の左連続な逆関数

であると書かれているが, F に逆関数が存在するとは限らないことに注意する. なぜならば, 1)-3) の条件だけでは F が全単射であることを保証できないからである. F が全単射であるためには, 狭義単調増加, 連続であればよい. Y が左連続であるかは確かめることができなかった.

任意の $x \in \mathbb{R}$ に対し、 $\{w \in (0,1) | Y(w) \le x\} = \{w \in (0,1) | w \le F(x)\}$ が成り立つことを示す。 左辺を A(x) 右辺を B(x) と書くことにする.

まず, $A(x) \subset B(x)$ を示す. $w \in A(x)$ とする. ここで, w > F(x) であると仮定する. F の右連続性から, ある $\delta > 0$ に対して, $w > F(x+\delta)$ となる. よって, $Y(w) \geq x + \delta > x$ となる. これは $w \in A(x)$, つまり $Y(w) \leq x$ であることに矛盾するので, $w \leq F(x)$ である. 以上より, $w \in B(x)$, $A(x) \subset B(x)$.

次に, $A(x) \supset B(x)$ を示す. $w \in B(x)$ とすると, $w \le F(x)$ である. $x \notin \{y \in \mathbb{R} | F(y) < w\}$ より, $Y(w) \le x$ である. 以上より, $w \in A(x)$, $A(x) \supset B(x)$.

$$B(x) = \{w \in (0,1) \mid w \le F(x)\} = \begin{cases} (0, F(x)] & \text{if } F(x) > 0\\ \emptyset & \text{otherwise} \end{cases}$$
 (1)

なので、明らかに $B(x) \in \mathcal{B}((0,1))$ である. よって、任意の $x \in \mathbb{R}$ において A(x) も可測集合であるので、命題 2.15 より Y は確率変数である.

表記法

 $(\Omega, \mathcal{F}, \mu)$ を測度空間とし、 $f: \Omega \to \mathbb{R}$ を可測関数とする.

 $f=\sum_{i=1}^m a_i 1_{A_i},\ a_i\in[0,\infty],\ A_i\in\mathcal{F}$ と有限和でかけるとき、f を単純と呼び、そのときに限り、 $f\in SF^+$ と書く、f が非負値関数であるときに限り、 $f\in m\mathcal{F}^+$ と書く、f が一般の可測関数であるときに限り、 $f\in m\mathcal{F}$ と書く、

集合列 A_n が単調増加し、 $\bigcup_{n=1}^{\infty} A_n = A$ となるとき、 $A_n \nearrow A$ と書く.

また、関数列 f_n が各点で単調増加 $(f_n(\omega) \leq f_{n+1}(\omega)...)$ し、 $\lim_n f_n(\omega) = f(\omega)$ となるとき、 $f_n \nearrow f$ と書く.

積分の基礎事項

定義 1 (測度の積分)・ $(\Omega, \mathcal{F}, \mu)$ を測度空間とする. $f: \Omega \to \mathbb{R}$ を可測関数とすると, f の Ω 上の積分を $\mu(f)$ または, $\int_{\Omega} f(\omega) \mu(d\omega)$ と表記する.

 $f \in SF^+$ のとき,

$$\mu(f) := \sum_{i=1}^{m} a_i \mu(A_i) \tag{2}$$

と定義しする. $f \in m\mathcal{F}^+$ のとき,

$$\mu(f) := \sup \left\{ \mu(h) | h \in SF^+, \ h \le f \right\} \tag{3}$$

と定義する (教科書とは異なることに注意). また, $f \in m\mathcal{F}$ であるとき, $f^+(\omega) := \max(f(\omega), 0)$, $f^-(\omega) := \max(-f(\omega), 0)$ とし, さらに $\mu(f^+)\mu(f^-)$ のうち少なくとも片方が有限な値を取るとき,

$$\mu(f) := \mu(f^+) - \mu(f^-) \tag{4}$$

と定義する.

補題 $\mathbf{2}$ (単純な関数の積分の性質). $f, g \in SF^+$ とする.

- (1) 線型性 α , $\beta \in \mathbb{R}$ のとき, $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$ となる.
- (2) 単調性 $f \leq g$ のとき, $\mu(f) \leq \mu(g)$ となる.

証明. $f=\sum_{i=1}^n a_i 1_{A_i}, g=\sum_{j=1}^m b_j 1_{B_j}$ とする. $a_i, b_j \in [0,\infty], A_i, B_j$ は各々異なる添字同士で互いに素である. $C_{ij}=A_i\cap B_j$ とすると, C_{ij} も異なる i,j 同士で互いに素である.

(1)

$$\alpha f + \beta g = \alpha \sum_{i=1}^{n} a_i 1_{A_i} + \beta \sum_{j=1}^{m} b_j 1_{B_j}$$
 (5)

$$= \sum_{i,j} (\alpha a_i + \beta b_j) 1_{C_i j}, \tag{6}$$

なので,

$$\mu(\alpha f + \beta g) = \sum_{i,j} (\alpha a_i + \beta b_j) \,\mu(C_{ij}) \tag{7}$$

$$= \alpha \sum_{i=1}^{n} a_i \sum_{j=1}^{m} \mu(C_{ij}) + \beta \sum_{j=1}^{m} b_j \sum_{i=1}^{n} \mu(C_{ij})$$
 (8)

$$= \alpha \sum_{i=1}^{n} a_i \mu(A_i) + \beta \sum_{i=1}^{m} \mu(B_i)$$
 (9)

$$= \alpha \mu(f) + \beta \mu(g). \tag{10}$$

(2) $I := \{(i,j) | C_{ij} \neq \emptyset\} \ \text{ξ},$

$$g - f = \sum_{i,j} (b_j - a_i) 1_{C_{ij}}$$
(11)

$$= \sum_{(i,j)\in I} (b_j - a_i) 1_{C_{ij}} \ge 0, \tag{12}$$

であるので, $(i,j) \in I$ ならば, $b_j - a_i \ge 0$ である. よって, $\mu(g-f) = \sum_{(i,j) \in I} (b_j - a_i) \mu(C_{ij}) \ge 0$ であるので, 線形性より $\mu(f) \le \mu(g)$.

単調収束定理

単調収束定理は測度論の中でも重要な定理で、単純な関数で示せる性質を非負値関数、そして一般の可測関数に拡張するためや、Fatouの補題、Lebesugueの収束定理を示す際に使われる定理である。単調収束定理を証明するためにいくつかの命題、補題を証明する.

命題 3. $\forall r, n \in \mathbb{N}$ に対して, $y_n^r \in [0, \infty]$ であり, かつ次の2つを満たすとする.

- y_n^r が r を固定した時, n について単調増加で, $y^r := \lim_n y_n^r$ が存在する.
- y_n^r が n を固定した時, r について単調増加で, $y_n := \lim_r y_n^r$ が存在する.

このとき, $y^{\infty} := \lim_{r} y^{r} = \lim_{n} y_{n} =: y_{\infty}$ となる.

証明. 任意の $\epsilon > 0$ に対し, $y_{n_0} > y_{\infty} - \frac{1}{2}\epsilon$ となる $n_0 \in \mathbb{N}$ が存在する. また, $y_{n_0}^{r_0} > y_{n_0} - \frac{1}{2}\epsilon$ となる $r_0 \in \mathbb{N}$ が存在する. よって, $y^{\infty} \geq y^{r_0} \geq y_{n_0}^{r_0} > y_{n_0} - \frac{1}{2} > y_{\infty} - \epsilon$ となり, $y^{\infty} \geq y_{\infty}$ であることがわかる. 同様に, $y_{\infty} \geq y^{\infty}$ なので, $y^{\infty} = y_{\infty}$ が得られた.

補題 4. $F_n \in \mathcal{F}$ が $F_n \nearrow F$ とする. このとき, $\lim_n \mu(F_n) = \mu(F)$ となる.

証明. $G_1 = F_1$, $G_n = F_n \setminus F_{n-1}$ $(n \ge 2)$ とすると、各 G_n はそれぞれ互いに素である. よって、 $\mu(F_n) = \mu(\bigcup_{k=1}^n G_k) = \sum_{k=1}^n \mu(G_k)$ であるので、 $\lim_n \mu(F_n) = \lim_n \mu(\bigcup_{k=1}^n G_k) = \lim_n \sum_{k=1}^n \mu(G_k) = \sum_{k=1}^\infty \mu(G_k) = \mu(\bigcup_{k=1}^\infty G_k) = \mu(\bigcup_{n=1}^\infty F_n) = \mu(F)$.

補題 **5.** (1) $A \in \mathcal{F}$, $h_n \in SF^+$, $h_n \nearrow 1_A$ とする. このとき, $\lim_n \mu(h_n) = \mu(A)$ である.

証明. (1) 補題 2(2) より, $\mu(h_n) \le \mu(1_A) = \mu(A)$ である. よって, $\liminf_n \mu(h_n) \ge \mu(A)$ を示せば十分である.

 $\epsilon > 0$ とし、 $A_n := \{\omega \in A | h_n(\omega) > 1 - \epsilon\}$ とする. $\omega \in A$ であるとき、 h_n は 1_A に各点収束するから、 $h_{n_0}(\omega) > 1 - \epsilon$ となるような $n_0 \in \mathbb{N}$ が存在するので、 $\omega \in \bigcup_{n=1}^{\infty} A_n$ となり、 $A \subset \bigcup_{n=1}^{\infty} A_n$ よって、 $A = \bigcup_{n=1}^{\infty} A_n$ なので、 $A_n \nearrow A$ である.補題 4 より、 $\lim_{n \to \infty} \mu(A_n) = \mu(A)$ となる.

また、 A_n の定義から、 $(1-\epsilon)1_{A_n} \leq h_n$ であるので、補題 2 より、 $\mu((1-\epsilon)1_{A_n}) = (1-\epsilon)\mu(A_n) \leq \mu(h_n)$ となり、 $\liminf_n \mu(h_n) \geq (1-\epsilon)\mu(A)$ である。 $\epsilon > 0$ は任意にとってよいので $\liminf_n \mu(h_n) \geq \mu(A)$ となる.

(2) $f = \sum_{i=1}^m a_i 1_{A_i}$ とし、各 A_i は互いに素で、 $a_i \geq 0$ とする.このとき、各 i で、 $g_n \nearrow f$ であるので、 $1_{A_i}g_n \nearrow 1_{A_i}f = a_i 1_{A_i}$ となり、 $a_i^{-1}1_{A_i}g_n \nearrow 1_{A_i}$ となる.よって、積分の線形性と(1)とより、 $\lim_n \mu(a_i^{-1}1_{A_i}g_n) = a_i^{-1}\lim_n \mu(1_{A_i}g_n) = \mu(A_i)$ から、 $\lim_n \mu(1_{A_i}g_n) = a_i\mu(A_i)$ となる.また、 $g_n = \sum_{i=1}^m 1_{A_i}g_n$ と表現できる.したがって、

$$\lim_{n} \mu(g_n) = \lim_{n \to \infty} \mu\left(\sum_{i=1}^{m} 1_{A_i} g_n\right)$$
(13)

$$=\lim_{n\to\infty}\sum_{i=1}^{m}\mu(1_{A_i}g_n)\tag{14}$$

$$=\sum_{i=1}^{m}\lim_{n\to\infty}\mu(1_{A_i}g_n)\tag{15}$$

$$=\sum_{i=1}^{m} a_i \mu(A_i) \tag{16}$$

$$=\mu(f). \tag{17}$$

補題 $\mathbf{6}$ (積分の唯一性). (1) $f \in m\mathcal{F}^+$ とし、二つの関数列 f^r 、 $f_n \in SF^+$ が各々 $f^r \nearrow f$ 、 $f_n \nearrow f$ とする. このとき、 $\lim_r \mu(f^r) = \lim_n \mu(f_n)$ である.

(2) $f \in m\mathcal{F}^+$ とし、関数列 $f_n \in SF^+$ が $f_n \nearrow f$ であるとする. このとき、 $\lim_n \mu(f_n) = \mu(f)$ である.

証明・(1) $f_n^r:\Omega\to\mathbb{R}:\omega\mapsto\min\left(f^r(\omega),f_n(\omega)\right)$ とする.このとき,r に関して $f_n^r\nearrow f_n$,n に関して $f_n^r\nearrow f^r$ となる.補題 5(2) より, $\lim_r\mu\left(f_n^r\right)=\mu(f_n)$, $\lim_n\mu\left(f_n^r\right)=\mu(f^r)$ となり,命題 3 から, $\lim_r\mu\left(f_n^r\right)=\lim_n\mu\left(f_n^r\right)$ である.

(2) 非負値関数の定義より、各点で $h_n \leq f$ で $\lim_n \mu(h_n) = \mu(f)$ となるような関数列 $h_n \in SF^+$ が 存在する. 関数列 $g_n \in SF^+$ が $g_n \nearrow f$ であるとする. ここで、 $f'_n := \max(g_n,\ h_1,\ h_2,\ \dots,\ h_n)$ とすると、 $f'_n \in SF^+$ 、 $f'_n \leq f$ となり、 $f'_n \geq g$ であるので、 $f'_n \nearrow f$ である. 積分の定義から、 $\mu(f'_n) \leq \mu(f)$ である. さらに、 $f'_n \geq h_n$ であるので、 $\mu(f'_n) \geq \mu(h_n)$ である. よって、 $\mu(f) = \lim_n \mu(h_n) \leq \lim_n \mu(f'_n)$ となり、 $\lim_n \mu(f'_n) = \mu(f)$ であることがわかった.

関数列 $f_n \in SF^+$ が $f_n \nearrow f$ となるように任意に選んできたとき、(1) より、 $\lim_n \mu(f_n) = \lim_n \mu(f_n') = \mu(f)$ となる.

教科書の期待値の定義はこの補題のことを言っている.

定理 7 (単調収束定理). $f_n \in m\mathcal{F}^+, f_n \nearrow f (\in m\mathcal{F}^{+1})$ とする. このとき, $\lim_n \mu(f_n) = \mu(f)$ となる.

証明. 任意の $r \in \mathbb{N}$ に対して,

$$\alpha^{r}: [0, \infty] \to [0, \infty]: x \mapsto \begin{cases} 0 & \text{if } x = 0\\ (i - 1)2^{-r} & \text{if } (i - 1)2^{-r} < x \le i2^{-r} \ (i \in \mathbb{N}) \end{cases}$$

$$r & \text{if } x > r,$$

$$(18)$$

とする. $f_n^r := \alpha^r \circ f_n, \ f^r := \alpha^r \circ f$ とする. 明らかに $f_n^r, \ f^r \in SF^+$ である. α^r は左連続関数で, $f_n \nearrow f$ だから, $f_n^r \nearrow f^r$ となるので, 補題 5(2) より, $\lim_n \mu(f_n^r) = \mu(f^r)$ である. また, $id: [0,\infty) \to [0,\infty)$ を恒等写像とすると, $a_r \nearrow id$ (証明は Appendix に記載) だから, $f_n^r \nearrow f_n$ となり, 補題 6(2) より, $\lim_r \mu(f_n^r) = \mu(f)$ である. さらに, $f^r \nearrow f$ であるので, 補題 6(2) より, $\lim_r \mu(f^r) = \mu(f)$ である. 以上より, 命題 3 より, $\lim_n \mu(f_n) = \lim_r \mu(f^r) = \mu(f)$ とわかる.

測度論の積分における主要な定理

以下, 単調収束定理を用いて, 非負値可測関数の積分の性質, Fatou の補題, Lebesugue の収束定理を示す.

補題 8 (非負値関数の積分の性質). $f, g \in m\mathcal{F}^+$ とする.

- (1) 線形性 α , $\beta \in \mathbb{R}$ のとき, $\mu(\alpha f + \beta g) = \alpha \mu(f) + \beta \mu(g)$ となる.
- (2) 単調性 $f \leq g$ のとき, $\mu(f) \leq \mu(g)$ となる.

証明. $f_r := \alpha^r \circ f$, $g_r := \alpha^r \circ g$ とすると, f_r , $g_r \in SF^+$ かつ, $f_r \nearrow f$, $g_r \nearrow g$ となる.

- (1) 単純な関数の積分の線形性より、 $\mu(\alpha f_r + \beta g_r) = \alpha \mu(f_r) + \beta \mu(g_r)$ となる. また、明らかに $\alpha f_r + \beta g_r \nearrow \alpha f + \beta g$ であるので、単調収束定理より、 $\mu(\alpha f + \beta g_r) = \lim_r \mu(\alpha f_r + \beta g_r) = \lim_r (\alpha \mu(f_r) + \beta \mu(g_r)) = \alpha \mu(f) + \beta \mu(g)$.
- (2) 単純な関数の積分の単調性より、 $\mu(f_r) \leq \mu(g_r)$ となる. よって、任意の $r \in \mathbb{N}$ に対して、 $\mu(g_r f_r) \geq 0$ となる. 明らかに $g_r f_r \nearrow g f$ であるので、単調収束定理より、 $\mu(g f) = \lim \mu(g_r f_r) \geq 0$ (1) より、 $\mu(g) \geq \mu(f)$ となる.

補題 9 (Fatou の補題).

- (1) Fatou の補題 関数列 $f_n \in m\mathcal{F}$ は μ ($\liminf_n f_n$) $\leq \liminf_n \mu(f_n)$ となる.
- (2) 逆 Fatou の補題 関数列 $f_n \in m\mathcal{F}$ はある関数 $g \in m\mathcal{F}$ に対し $f_n \leq g$ で, $\mu(g) < \infty$ とする. このとき, $\mu(\limsup_n f_n) \geq \limsup \mu(f_n)$ となる.

証明. (1) 関数列 $(g_k)_{k=1}^{\infty}$ を $g_k := \inf_{n \leq k} f_n$ とすると, $\liminf_n f_n = \lim_k g_k$ となる. 定義より g_k は単調増加なので, 単調収束定理より, $\mu(\lim_k g_k) = \lim_k \mu(g_k)$ である. また, $n \geq k$ であるとき,

¹⁾ 可測関数の極限は可測関数である.

 $f_n \geq g_k$ であるので、積分の単調性より $\mu(f_n) \geq \mu(g_k)$ となり、 $\mu(g_k) \leq \inf_{n \geq k} \mu(f_n)$ である. 以上より、 $\mu(\liminf_n f_n) = \mu(\lim_k g_k) = \lim_k \mu(g_k) \leq \lim_k \inf_{n \geq k} \mu(f_n) =: \liminf_n \mu(f_n)$ である.

(2) $g-f_n\in m\mathcal{F}$ に対し、(1) を適用すると $\mu(\liminf_n(g-f_n))\leq \liminf_n\mu(g-f_n)$ となる. 積分の線形性と $\liminf_n 0$ 定義より、 $\mu(\liminf_n(g-f_n))=\mu(g)-\mu(-\liminf_n-f_n)=\mu(g)-\mu(\limsup_n f_n)$ 、 $\lim\inf_n\mu(g-f_n)=\mu(g)+\liminf_n-\mu(f_n)=\mu(g)-\limsup_n\mu(f_n)$ である.以上の 2 式を比較すると、 $\mu(g)-\mu(\limsup_n f_n)\leq \mu(g)-\limsup_n\mu(f_n)$ より、 $\mu(\limsup_n f_n)\leq \lim\sup_n\mu(f_n)$ となる.

定理 **10** (Lebesugue の収束定理). f_n , $f \in m\mathcal{F}$ とし, f_n が f に各点収束するとする. $g \in m\mathcal{F}^+$ が 可積分, つまり $\mu(g) < \infty$ で、かつ、任意の $\omega \in \Omega$ 、 $n \in \mathbb{N}$ に対して $|f_n(\omega)| \leq g(s)$ であるとする. このとき、 $\lim_n \mu(|f_n - f|) = 0$ となり、 $\lim_n \mu(f_n) = \mu(f)$ となる.

証明・ $|f_n-f|\leq 2g$ かつ、 $\mu(2g)<\infty$ であるから、逆 Fatou の補題より、 $\limsup_n\mu\left(|f_n-f|\right)\leq \mu\left(\limsup_n|f_n-f|\right)=\mu(0)=0$ となる.最後から 2 番目の式に出てくる 0 は常に 0 を返す関数である.

したがって, $|\mu(f_n) - \mu(f)| = |\mu(f_n - f)| \le \mu(|f_n - f|)$ より, $0 \le \limsup_n |\mu(f_n - f)| \le \limsup_n \mu(|f_n - f|) = 0$ であるので, $\lim_n |\mu(f_n - f)| = 0$ となる. したがって, $\lim_n \mu(f_n) = \mu(f)$ となる.

Appendix

 $\alpha_r \nearrow id$ の証明

証明. 任意の $x \in [0,\infty)$, $\epsilon > 0$ に対して, $r_0 = \lceil \max(x, -\log_2 \epsilon) \rceil$ とする. $r > r_0$ とする. $x \le r_0 < r$ だから, ある $i \in \mathbb{N}$ が存在して $(i-1)2^{-r} < x \le i2^{-r}$ とできる. よって, $i \ge x2^r$ であるので, $0 < x - \alpha^r(x) = x - (i-1)2^{-r} \le x - (x2^r - 1)2^{-r} = 2^{-r}$ となる. $-\log_2 \epsilon < r$ だから, $2^{-r} < \epsilon$ となる. したがって, $0 < x - \alpha^r(x) < \epsilon$ を示すことができたので, $\alpha^r \nearrow id$.