BST 140.751

Problem Set 1

Due: September 12, 2017.

1 Vector spaces and inner products

- 1. Let W be a subspace of \mathbb{R}^n , and W^{\perp} its orthogonal complement. Show that if the dimension of W is k, then the dimension of W^{\perp} is n-k.
- 2. Let V be an inner product space and $u, v \in V$.
 - (a) Show that $|\langle \mathbf{u}, \mathbf{v} \rangle| \le ||\mathbf{u}||\dot{|}|\mathbf{v}||$
 - (b) Show that $2||\mathbf{u}||^2 + 2||\mathbf{v}||^2 = ||\mathbf{u} + |\mathbf{v}||^2 + ||\mathbf{u} \mathbf{v}||^2$.
- 3. Let us denote the projection of y on x as $\Pi(y|x)$. Show that $y \Pi(y|x)$ is orthogonal to x, for any x and y in \mathbb{R}^n .

2 Regression

- 1. Let y and x be one dimensional vectors of length n. Give the relationship between the slope from regressing y on x and x on y.
- 2. Consider the residuals after mean only regression. Argue that they sum to 0.
- 3. Consider the residuals after regression through the origin. Argue that they are orthogonal to the regressor.
- 4. Consider the residuals after regression through the origin. Argue that they need not sum to 0.
- 5. Consider the residuals from ordinary linear regression. Argue that the residuals are orthogonal to both J_n and x.

3 Least squares

- 1. Show that I H is an idempotent matrix when H is idempotent.
- 2. Let $\mathbf{X} = [\mathbf{x}_1 \ \mathbf{x}_2]$ be an $n \times 2$ design matrix and consider

$$||\mathbf{y} - \mathbf{X}\beta||^2$$

where $\beta = (\beta_1 \ \beta_2)'$. Show that $\hat{\beta}_2$ can be obtained by taking the residuals after regressing \mathbf{x}_1 out of \mathbf{y} and \mathbf{x}_2 then performing regression through the origin on the residuals.

- 3. Argue that X, X', X'X and XX' all have the same matrix rank.
- 4. Suppose that X is such that X'X = I. Find the associated least squares estimate of β .

4 Computing and analysis

- 1. Write an R function called mylm() that takes the response vector y and the matrix of covariates X as input, and returns the following variables:
 - beta, the vector of least squares estimates,
 - fitted, the vector of fitted values,
 - residuals, the vector of residuals.

To fit an intercept, the elements in the first column of X have to be equal to one, so your function should have an option to add a vector of ones to the matrix with the predictors.

2. Find a dataset to try out your function (you can simulate one if you like), and compare the results to the one from the lm() function.