

The 33rd Conference on

Computational Linguistics and Speech Processing

- October 15-16, 2021 Online and National Central University, Taiwan

A Corpus for Dimensional Sentiment Classification on YouTube Streaming Service

Ching-Wen Hsu, Chun-Lin Chou, Hsuan Liu and Jheng-Long Wu Department of Big Data Management, Soochow University, Taipei, Taiwan

CONTENTS

Introduction

4 Methodology

Motivation

Experiment

Related Work

6 Conclusion

Introduction

Why we use

YouTube?

Habitual

People viewing habits have shifted from TV to online social media platforms.

Shareability

Videos themselves are highly shareable, and thus become a fast and effective way to convey ideas.

for audiences to express their opinion.

Omnipresent

People can watch videos at anytime and anywhere.

Motivation

How do we analyze video performance?

Present ways to tract video performance

- average view duration.
 browsing history.
 variance in audience's demographics.

Comments themselves are useful

Analyze audience's comments through multi-dimensional sentiment indicators.

Help YouTuber create improved content

- give YouTubers a sense of its popularity.
 see what resonates with their audience.
- 3. discover audience emotional ups and downs.

Related Work

03

02

Social media reflect public views

Using Amazon's comments to determine audience's preference (Bhatt et al., 2015).

methods deal with text-based classification tasks

Fine-tuned with Bidirectional Encoder Representations from the Transformers (BERT) model using comments. (Sun et al. 2019)

Methodology

25 channels125 videos12,500 comments

Three indicators for analyzing comments

- 1. YouTuber preference
- 2. Video preferences
- 3. Excitement level

Three experts annotate sentiment indicators .

TF-IDF word-embedding

RandomForest Xgboost SVM FastText BERT

Comment Collection

- Subscribe number over 100,000
- Highly popular or controversial.
- A total of 25 channels.

Comment Collection

- Subscribe number over 100,000
- Highly popular or controversial.
- A total of 25 channels.

videos

- selection video duration
 2019/01/01-2021/02/31
- filter top 5 videos through viewing number.
- A total of 125 videos.

Comments

- randomly remain 100
 pieces of comments from
 each videos
- A total of 12,500 comments

Sentiment Indicators

Sentiment Indicators

Sentiment Indicators

No emoji

Looks nice

Barely excited excited

One type of emoji

You are beautiful 😊

Excited

Speak confidently and contain two types of emojis

↓ I used to go to hukilau.
 It was so comfortable and awesome
 ↓

Fairly excited

Emojis are highly repetitive or over three types emojis

I am appreciate that they could understand what I'm saying

excited

Hyper

A lot of rhetoric and a series of emojis

I love everything you said and subscribe your channel immediately

Data Labeling

comments independently

according to three indicators

label the audience's

comments is required

watching videos

Three

annotator

watching videos before labeling

annotation guideline

eliminate non-relative comments

- advertisements.
- 2. comments not using Mandarin.
- 3. comments that post links to external web pages.

annotation agreement

using the majority decision to filter out inconsistent labels.

Annotation agreement scores

Text Processing

Text Classification

Text Classification

- BERT-based classifiers
 - M1: bert-base-multilingual-cased
 - M2: distilbert-base-multilingual-cased
- Machine learning-based classifiers
 - M3: RandomForest + TFIDF
 - M4: Xgboost + TFIDF
 - M5: SVM + TFIDF
- Deep learning-based classifiers
 - M6: FastText + Word embedding

Classification Tasks

• T1: Audience's sentiment toward YouTubers.

• T2: Audience's sentiment towards videos.

• T3: Audience's emotional ups and downs.

Experiment

T1: Audience's sentiment toward YouTubers

Data Distribution

Over half of the audience present a positive attitude towards YouTubers.

The 33rd Conference on

Experiment

T1: Audience's sentiment toward YouTubers

audience's sentiment towards YouTubers

Experiment Result

BERT-based classifiers and deep learning-based classifier have similar performance.

Experiment

T2: Audience's sentiment towards videos

Data Distribution

Although 90% comments have relationship with videos' content, most people do not present their personal positions.

The 33rd Conference on

Experiment

T2: Audience's sentiment towards videos

audience's sentiment towards video

Experiment Result

- . Machine learning-based models achieve the same score in accuracy and F1-score.
- 2. The accuracy of BERT and deep learning- based methods is 10% higher than their F1-score.

Experiment

T3: Audience's emotional ups and downs

Data Distribution

While Barely excited and Slightly excited account for the majority, some audience also express their extremely emotion.

The 33rd Conference on

Experiment

T3: Audience's emotional ups and downs

Experiment Result

emotional ups and downs

- 1. The performance of machine learning-based classifiers reduce significantly.
- 2. Multi-dimensional tasks are more suitable to be analyzed by BERT-based classifiers and deep learning-based classifier.

Conclusion

Within three sentiment detection tasks, machine learning-based classifiers perform the worst.

2 4

The majority of comments are related to videos' content; only few of them have relevant with YouTubers.

BERT slightly outperforms other models in three tasks according to the F1-score.

Whatever comments, people not frequently showing negative or even animosity attitude as their opinion.

The end