云南大学数学与统计学院 《算法图论实验》上机实践报告

课程名称: 算法图论实验	年级: 2015 级	上机实践成绩:
指导教师: 李建平	姓名:	专业:
上机实践名称:编程实现 searching 算法	学号: 20151910042	上机实践日期: 2018-10-13
上机实践编号: 1	组号:	

一、 实验目的

- 1. (自己写)
- 2. (自己写)

二、 实验内容

- 1. (自己写)
- 2. (自己写)

三、 实验平台

Windows 10 Pro 1809;

MacOS Mojave;

四、 算法设计

Searching 算法在图论中一般被称为广度优先图遍历算法。在一定规则下循环地使用这个算法可以对一个图进行遍历,并得到所有的连通子图(连通分支)。这个算法十分重要,它是 Dijkstra 算法以及更一般的 Prim 算法的基础与原型。

下面对 Searching 算法(广度优先图遍历算法)进行形式化描述。

Algorithm SEARCHING, Breadth-first traversal algorithm.

图G中的某个起点 v_1

Output 自 v_1 出发所有有路可到达的点以及路过的边所构成的诱导子图,记之为 ε – **CLOSURE**

Begin

Step 1 for each vertex $u \in G$. $V - \{v_1\}$

u. **color** = White

 $u. \mathbf{d} = \infty$

 $u. \boldsymbol{\pi} = \text{NIL}$

Step 2 v_1 . color = Gray

$$v_1.\,\mathbf{d} = 0$$

$$v_1.\,\pi = \mathrm{NIL}$$
 Step 3
$$Q = \phi$$
 Step 4
$$\mathrm{ENQUEUE}(Q,\,v_1)$$
 Step 5
$$\mathbf{while}\,\,Q \neq \phi$$

$$u = \mathrm{DEQUEUE}(Q)$$

$$\mathbf{for}\,\,\mathbf{each}\,\,v \in G.\,\mathrm{ADJ}[u]$$

$$v.\,\,\mathbf{color} = \mathrm{Gray}$$

$$v.\,\,\mathbf{d} = u.\,\,\mathbf{d} + 1$$

$$v.\,\,\pi = u$$

$$\mathrm{ENQUEUE}(Q,\,v)$$

$$v_1.\,\,\mathbf{color} = \mathrm{BLACK}$$

End

五、 程序代码

六、 参考文献

- [1] 林锐. 高质量 C++/C 编程指南 [M]. 1.0 ed., 2001.
- [2] (自己按照 GB7714 标准写)