Reinforcement Learning

CS786 27th August 2024

MDP > RL

- In MDP, {S,A,R,P} are known
- In RL, R and P are not known to begin with
- They are *learned* from experience
- Optimal policy is updated sequentially to account for increased information about rewards and transition probabilities
- Model-based RL
 - Learns transition probabilities P as well as optimal policy
- Model-free RL
 - Learns only optimal policy, not the transition probabilities

Q-learning

- Derived from the Bush-Mosteller update rule
- Agent sees a set of states S
- Possesses a set of A actions applicable to these states
- Does <u>not</u> try to learn p(s, a, s')
- Tries to learn a quality belief about a stateaction combination Q: S X A → Real

Q-learning update rule

- Start with random Q
- Update using

$$Q_{new}(s, a) = (1 - \alpha)Q_{old}(s, a) + \alpha(r + \lambda \max_{a'} Q(s', a'))$$

- Parameter α controls the learning rate
- Parameter λ controls the time-discounting of future reward

Q-learning

- Agent sees a set of states S
- Possesses a set of A actions applicable to these states
- Does <u>not</u> try to learn p(s, a, s')
- Tries to learn a quality belief about a stateaction combination Q: S X A → Real

Q-learning update rule

- Start with random Q
- Update using

$$Q_{new}(s, a) = (1 - \alpha)Q_{old}(s, a) + \alpha(r + \lambda \max_{a'} Q(s', a'))$$

- Parameter α controls the learning rate
- Parameter λ controls the time-discounting of future reward
- s' is the state accessed from s
- a' are actions available in s'

Q-learning algorithm

- Initialize Q(s,a) for all s and a
- For each episode
 - Initialize s
 - For each move
 - Choose a from s using Q (softmax/e-greedy)
 - Perform action a, observe R and s'
 - Update Q(s,a)
 - Move to s'
 - Until s' is terminal/moves run out

1. Select a using choice rule on Q

- 1. Select a using choice rule on Q
- 2. Take action a from state s
- 3. Observe r and s'

- 1. Select a using choice rule on Q
- 2. Take action a from state s
- 3. Observe r and s'
- 4. Recall Q(s',a') for all a' available from s'

- 1. Select a using choice rule on Q
- 2. Take action a from state s
- 3. Observe r and s'
- 4. Recall Q(s',a') for all a' available from s'
- 5. Update Q(s,a)

$$Q_{new}(s, a) = (1 - \alpha)Q_{old}(s, a) + \alpha(r + \lambda \max_{a'} Q(s', a'))$$

- Open Al gym's frozen lake
- Setup: agent is a character that has to walk from a start point (S) across a frozen lake (F) with holes (H) in some locations to reach G
- Specific instantiation

S	F	F	F
F	Ι	F	Η
F	F	F	Н
Н	F	F	G

- Agent starts with an empty Q-matrix
- Action possibilities = {left, right, up, down}
- Reward settings

$$-H = -100$$

$$-G = +100$$

$$- F = 0$$

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

s <u>0</u>	F	F	F
F	Ι	F	Ι
F	F	F	Н
Н	F	F	G

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

S 0	→ F	→ F	F
F	Ι	F	Н
F	F	F	Н
Н	F	F	G

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

S	F 0	$\rightarrow F_{10}$	F
F	Η	F [↓]	Н
F	F	F	Н
Н	F	F	G

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

S 0	→ F	→ F_0	F
F	I	5 ∾ F	I to
F	F	F	Η
Н	F	F	G

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

S 0	→ F	→ F _I	_O F	
F	Ι	F -8	O H	-80
F	F	F	Н	
Н	F	F	G	

- Learning occurs via exploration episodes
- One episode is a sequence of moves
- Let's work through one episode

S 0	→ F ⁰	→ F _I	_o F	
F	Η	F [↓] -8	0 H -8	0
F	F	F	н	
Н	F	F	G +8	0

Generalized model-free RL

- Bush Mosteller style models simply update value based on a discounted average of received rewards
 - Useless in trying to predict the value of sequential events, e.g. A →B → reward
- A more generalized notion of reward learning was needed
 - Q-learning is one instance of temporal difference learning
 - Other flavors of model-free reinforcement learning also exist, e.g. policy gradient methods

SARSA update rule

- Start with random Q
- Update using

$$Q_{new}(s, a) = (1 - \alpha)Q_{old}(s, a) + \alpha(r + \lambda Q_{old}(s', a'))$$

- Parameter α controls the learning rate
- Parameter λ controls the time-discounting of future reward
- s' is the state accessed from s
- a' is the action selected in s'
 - Different from q-learning

SARSA algorithm

- Start with random Q(s, a) for all s and a
- For each episode
 - Initialize s
 - Choose a using Q (softmax/greedy)
 - For each move
 - Take action a, observe r, s'
 - Choose a' from s' by comparing Q(s', .)
 - Update Q(s, a)
 - Move to s', remember a'
 - Until s' is terminal/moves run out

1. Start with a selected in the previous iteration

- 1. Start with a selected in the previous iteration
- 2. Take action a from state s
- 3. Observe r and s'

- 1. Start with a from the previous iteration
- 2. Take action a from state s
- 3. Observe r and s'
- 4. Recall Q(s',a') for all a' available from s'

a' is selected using the choice rule

- 1. Start with a from the previous iteration
- 2. Take action a from state s
- 3. Observe r and s'
- 4. Recall Q(s',a') for all a' available from s'
- Select a' using choice rule on Q
- 6. Update Q(s,a)

$$Q_{new}(s, a) = (1 - \alpha)Q_{old}(s, a) + \alpha(r + \lambda Q_{old}(s', a'))$$

RL in the brain

Temporal difference learning

Consider the Q-learning update

$$Q_{new} = Q_{old} + \alpha(r + \lambda \max_{a'} Q(s', a') - Q(s, a))$$

Or the SARSA update

$$Q_{new} = Q_{old} + \alpha(r + Q(s', a') - Q(s, a))$$

 A generic temporal difference principle can be discerned for behavioral reinforcement

$$V(t+1) = V(t) + \alpha(r + V(s(t+1)) - V(s(t)))$$

The TD learning principle

Bush Mosteller algorithm, with V as learned reinforcement value

$$V(t+1) = V(t) + \alpha(R(t) - V(t))$$

Temporal difference learning

$$V(t+1) = V(t) + \alpha(F(t) - V(t))$$

- Discounted future rewards not available instantaneously
 - Use Bellman optimality principle

$$F(t) = r(t+1) + \lambda F(t+1)$$

Reinterpreting the learning gradient

- In Bush Mosteller, the reward prediction error is driven by the difference between
 - A discounted average of received rewards
 - The current reward
- In TD learning, RPE is the difference between
 - Expected value of discounted future rewards F $F(t) = r(t+1) + \lambda r(t+2) + \lambda R(t+3) + \cdots$
 - Information suggesting the expectation is mistaken

http://www.scholarpedia.org/article/Temporal_difference_learning

The TD reward prediction error

$$\delta(t) = R + \lambda V(s(t+1)) - V(s(t))$$

Learning continues until reward expectations are perfectly aligned with received reward

The role of the future

Myopic learning ($\lambda = 0$)

Future-sensitive learning ($\lambda > 0$)

Dopamine Neurons Code TD Error

$$\delta(t) = r(t) + \gamma V(s(t+1)) - V(s(t))$$

Basal Ganglia for Reinforcement Learning?

(Doya 2000, 2007)

Cocaine addiction (a success story)

- Cocaine pharmacodynamics
 - Is a dopamine reuptake inhibitor
- Under normal circumstances the TD signal is

$$\delta_{t} = r_{t+1} + \gamma V(s_{t+1}) - V(s_{t})$$

When you take cocaine

$$\delta_{t} = \max \left\{ r_{t+1} + \gamma V(s_{t+1}) - V(s_{t}) + D_{t}, D_{t} \right\}$$

The mechanics of physical addiction

- In the beginning, taking cocaine is associated with positive TD signal
 - So taking cocaine is learned
- But presence of cocaine in the system prevents the TD signal from becoming negative
 - No matter what you do
 - Behavior cannot be unlearned!

Reward insensitivity

 Observer will become unable to tradeoff drug consumption with other rewards

Cost insensitivity

Observe is unable to reduce preference with increasing cost

Cocaine addiction (a success story)

- Cocaine pharmacodynamics
 - Is a dopamine reuptake inhibitor
- Under normal circumstances the TD signal is

$$\delta_{t} = r_{t+1} + \gamma V(s_{t+1}) - V(s_{t})$$

When you take cocaine

$$\delta_{t} = \max \left\{ r_{t+1} + \gamma V(s_{t+1}) - V(s_{t}) + D_{t}, D_{t} \right\}$$

Addiction: a computational process gone awry (Redish, 2004)

The model free vs model-based debate

- Model free learning

 actions that lead to rewards become more preferable
- What about goal-based decision-making?
 - Do animals not learn the physics of the world in making decisions?
- Model-based learning
- People have argued for two systems
 - Thinking fast and slow (Balleine & O'Doherty, 2010)

A clever experiment

- The Daw task (Daw et al, 2011) is a two-stage Markov decision task
- Differentiates model-based and model-free accounts empirically

Predictions meet data

- Behavior appears to be a mix of both strategies
- What does this mean?
- Active area of research