Image Based Flow Visualization

Jeroen Hofman

Department of Computational Science University of Amsterdam

October 3, 2012

Based on Image Based Flow Visualization by J. van Wijk

ACM Transaction on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2002, July 2002, Vol. 21, No. 3, 745-754

Introduction

- Fluid flow is dominant in many fields, for instance climate prediction, industrial processes, thermodynamic flows etc.
 Animation is crucial for physical insight.
- Computations are usually done on large data-sets and high resolutions.
- The method proposed by the author produces efficient visualizations of *unsteady flows*.

Basic Idea

Basic idea for Image Based Flow Visualization (IBVF):

Figure 1: Pipeline image based flow visualization

Formal Setup

$$\mathbf{v}(\mathbf{x},t) \in \mathcal{S} \subset \mathbb{R}^2$$

Path lines $\boldsymbol{p}(t)$, following $d\boldsymbol{p}(t)/dt = \boldsymbol{v}(\boldsymbol{p}(t),t)$.

For a field (image) $F(\mathbf{x}, k)$ representing some property of the flow we have:

$$F(\mathbf{p}_{k+1}, k+1) = \begin{cases} F(\mathbf{p}_k, k) \text{ if } \mathbf{p}_k \in S \\ 0 \text{ otherwise} \end{cases}$$

Problem: this leads to an empty (black) space.

Formal Setup

Solution: blend with background.

$$F(\mathbf{p}_k, k) = (1 - \alpha)F(\mathbf{p}_{k-1}, k-1) + \alpha G(\mathbf{p}_k, k)$$

where α is called the *blending mask*.

If we write out the recurrence:

$$F(\boldsymbol{p}_k, k) = \alpha \sum_{i=0}^{k-1} (1 - \alpha)^i G(\boldsymbol{p}_{k-i}, k-i)$$

Background Image Generation

What type of background images should be used?

Completely random: variation too strong and no streaming.

Make G periodic:

$$G_{i,k} = w((k/M + \phi_i) \mod 1)$$

Phase Profiles

Different phase profiles lead to different textures:

Figure: Results for different profiles: cosine (upper left), square (lower left), exponential decay (upper right), saw tooth (lower right).

Algorithm

- Calculate a distorted mesh R according to flow lines (in case of unsteady flow).
- Render R, texture mapped with the previous image.
- Overlay a random noise pattern in the rectangle and blend with a factor α , whereas the texture mapping of R is blended with a factor 1α .
- Draw injected dye (if present).
- Render combined image on screen, together with overlay.

Results

See demo:

- Meshes.
- Grid generation functions.
- Layouts (arrows, particles, topology, smeared, warped).
- Values for α .

Efficiency

High degree of efficiency because of:

- Highly optimized for use on graphics cards.
- Only 2 operations over the screen used per frame.
- Exploiting frame to frame coherence.
- Velocity field resolution is smaller than image resolution.

Developments

- IBFV model has been implemented in 3D.
- There are many methods using similar techniques like LEA, UFAC, UFLIC and many others. See website by Dr. Zhanping Liu.

A. Telaru, J. van Wijk 3D IBFV: Hardware-accelerated 3D Flow Visualization., 2003, Proceedings of the 14th IEEE Visualization Conference, 233-240

The End

Questions?