MATH 450: Homework 1

Problems marked with * will be presented in class by students.

- 1. Prove the following using Axioms 1-9. Indicate which axiom you use at each step.
 - (a) * If x > 1, then $x^2 > x$. If 0 < x < 1, then $x^2 < x$.
 - (b) If x > 0, then $x^{-1} > 0$.
 - (c) If 0 < x < y, then $0 < y^{-1} < x^{-1}$.
- 2. Find the supremum and infimum of the following sets (if they exist). Indicate also if the set has a maximum or minimum element.
 - (a) $\{\frac{1}{n} + (-1)^n : n \in \mathbb{Z}^+\}$
 - (b) ${x: x^2 + x + 1 \ge 0}$
- 3. * Let $A \subseteq \mathbb{R}$ be bounded below. Let $-A = \{-x : x \in A\}$. Show that -A is bounded above, and that $\inf(A) = -\sup(-A)$.

Graduate Problem (for students enrolled in Math 650):

Existence of the n-th root: Prove that for any positive real number x and integer $n \ge 1$ there exists a unique real number y such that $y^n = x$.

- Hint 1: Consider the set $\{z > 0 : z^n \le x\}$. Show that this set is bounded above.
- Hint 2: Use Hint 1 to find a candidate for y. Now you have to show that your candidate is actually the root we are looking for. What method of proof seems appropriate?
- Hint 3: For $0 < h \le 1$, use the binomial formula to show that $(y+h)^n \le y^n + h((1+y)^n y^n)$.