Конечные распознаватели. Основные понятия

Задача распознавания: определить, принадлежит ли заданная цепочка заданному языку.

Язык L — множество цепочек.

 X_L — харакикристическая функция языка, определена на множестве всех цепочек, составленных из алфавита языка:

если
$$\alpha \in L$$
, то $X_L(\alpha) = 1$, иначе $X_L(\alpha) = 0$.

Если функция X_L вычислима (существует алгоритм вычисления значения функции по значению аргумента), то существует машина Тьюринга для её вычисления и её моно использовать для решения задачи распознавания.

Если L — регулярный язык, то вычислить X_L можно *конечным распо- знавателем* — более простой машиной, чем машина Тьюринга.

Конечный распознаватель определяется пятёркой: A=<S, X, s₀, δ , F>, где

S – конечное непустое множество состояний;

Х – конечное непустое множество входных символов;

 $s_0 \in S$ — начальное состояние;

 δ : S×X \to S — функция переходов, которая паре (состояние, входной символ) ставит в соответствие новое состояние (состояние перехода);

F⊆S – множество допускающих состояний.

Конечный распознаватель можно представить как устройство с одним входом, которое в момент времени t может находиться в некотором состоянии $s_t \in S$, а на вход поступает символ $x_t \in X$ из входной цепочки.

Конечный распознаватель определяется пятёркой: $A=<S, X, s_0, \delta, F>$, где

S – конечное непустое множество состояний;

Х – конечное непустое множество входных символов;

 $s_0 \in S$ — начальное состояние;

 δ : S×X \to S — функция переходов, которая паре (состояние, входной символ) ставит в соответствие новое состояние (состояние перехода);

F⊆S – множество допускающих состояний.

Пусть

 s_t — состояние, в котором находится распознаватель в момент времени t.

 x_t — символ, который обрабатывает распознаватель в момент времени t.

Тогда

 $s_{t+1} = \delta(s_t, \, x_t)$ — состояние, в котором будет находиться распознаватель в момент времени t+1.

В момент времени t+1 распознаватель будет обрабатывать следующий символ \mathbf{x}_{t+1} входной цепочки.

В начальный момент времени t=0 распознаватель находится в начальном состоянии s_0 и обрабатывает первый символ входной цепочки. На каждом шаге распознаватель обрабатывает новый (следующий за предыдущим) символ цепочки.

Если после обработки последнего символа входной цепочки распознаватель окажется в допускающем состоянии $s_k \in F$, то входная цепочка *принадлежит* языку (*цепочка допускается распознавателем*),

иначе – не принадлежит языку (цепочка отвергается распознавателем).

Другими словами, конечный распознаватель допускает входную цепочку, если она переводит его из начального состояния в одно из допускающих (позволяет "связать" начальное состояние с одним из допускающих).

Множество (возможно, бесконечное) всех цепочек, допускаемых конечным распознавателем A, образует язык L(A), допускаемый распознавателем A.

Конечный распознаватель определяется пятёркой: $A=<S, X, s_0, \delta, F>$, где

S – конечное непустое множество состояний;

Х – конечное непустое множество входных символов;

 $s_0 \in S$ — начальное состояние;

 δ : S×X \to S — функция переходов, которая паре (состояние, входной символ) ставит в соответствие новое состояние (состояние перехода);

F⊆S – множество допускающих состояний.

Конечный распознаватель можно задать таблицей, строки которой соответствуют входным символам, а столбцы — состояниям. Первый столбец соответствует начальному состоянию, а столбцы, соответствующие допускающим состояниям будем отмечать символом "1". Если распознаватель из состояния s_j при обработке символа x_i переходит в состояние s_k , то в клетке таблице на пересечении строки x_i и столбца s_j записывается состояние s_k .

Пример.

					1
	s0	s1	s2	s3	s4
Ц	s2	s2	s2	s4	s4
	s3	s3	s4		
+	s1				
-	s1				

В этом распознавателе:

S={s0, s1, s2, s3, s4, Error} — множество состояний;

 $X=\{u, ., +, -\}$ — множество входных символов;

s0 — начальное состояние;

функция переодов б задана таблицей;

 $F = \{s4\}$ — множество допускающих состояний.

Конечный распознаватель

					1
	s0	s1	s2	s3	s4
Ц	s2	s2	s2	s4	s4
	s3	s3	s4		
+	s1				
-	s1				

можно задать ориентированным графом.

Вершины графа — состояния.

Дуги — переходы. На дугах записываются входые символы.

Если распознаватель из состояния s_j при обработке символа x_i переходит в состояние s_k , то из вершины s_j проводится дуга, отмеченная символом x_i , в вершину s_k .

Вершина, соответствующая состоянию ошибки, и дуги, ведущие в состояние ошибки, в графе не изображаются (подразумеваются).

Начальное состояние отмечается стрелочкой, а допускающие состояния выделяются жирной линией.

Пример.

Граф распознавателя, представленного выше таблицей.

Таблица конечного распознавателя:

					1
	s0	s1	s2	s3	s4
Ц	s2	s2	s2	s4	s4
•	s3	s3	s4		
+	s1				
-	s1				

Граф конечного распознавателя:

Цепочка	1	8	•	9		
Состояние	s0	s2	s2	s4	s4	допустить

Цепочка	1			
Состояние	s0	s2		отвергнуть

Цепочка	1	•			
Состояние	s0	s2	s4		допустить

Цепочка	_	•	2	2		
Состояние	s0	s1	s3	s4	s4	допустить

Конечный распознаватель называется *полностью определённым*, если определено состояние перехода для каждой пары (состояние, входной символ). В противном случае распознаватель называется *неполностью определённым* или *частичным*. В дальнейшем будем рассматривать только полностью определённые распознаватели.

Конечный распознаватель, который не может одновременно находиться более чем в одном состоянии, называется детерминированным. Определённый выше конечный распознаватель является детерминированным, т.к. имеет только одно начальное состояние (находится в одном состоянии в начальный момент времени) и функция переходов задаёт единственное следующее состояние (состояние перехода) для любой пары (состояние, входной символ).

Конечный распознаватель, который может одновременно находиться более чем в одном состоянии, называется *недетерминированным*. Недетерминированный распознаватель может иметь несколько начальных состояний и может перейти из состояния при обработке входного символа более чем в одно состояние. Недетерминированный конечный распознаватель не подпадает под данное ранее определение конечного распознавателя.

Конечный недетерминированный распознаватель определяется пятёркой: $A=<S, X, S_0, \delta, F>$, где

S – конечное непустое множество состояний;

Х – конечное непустое множество входных символов;

 $S_0 \subseteq S$ – множество начальных состояний;

 δ : S×X \to 2^S, где 2^S обозначает булеан S, т.е. множество всех подмножеств множества S — функция переходов, которая паре (состояние, входной символ) ставит в соответствие подмножество состояний;

F⊆S – множество допускающих состояний.

Недетерминированный распознаватель, так же, как и детерминированный, можно задать таблицей или графом. В клетках таблицы недетерминированного распознавателя записываются множества состояний переходов, а столбцы, соответствующие начальным состояниям, отмечаются символом "↓". В графе недетерминированного распознавателя из одной вершины могут выходить различные дуги, отмеченные одним и тем же входным символом.

Пример. Таблица недетерминированного распознавателя.

	\rightarrow	\rightarrow	\			1
	s0	s1	s2	s3	s4	s5
Ц	s1,s3	s1,s3			s5	s5
	s4		s4	s5		
+	s1,s2					
-	s1,s2					

Пример.

Граф недетерминированного распознавателя.

Недетерминированный распознаватель может из состояния перейти в пустое множество состояний. Если при обработке входной цепочки множество текущих состояний в некоторый момент времени окажется пустым, то распознаватель прекращает работу и цепочка отвергается.

Цепочка *допускается* недетерминированным конечным распознавателем, если после обработки последнего символа входной цепочки он будет находиться во множестве состояний, содержащих в себе хотя бы одно из допускающих.

Если распознаватель представить в виде графа, то допустимой цепочке соответствует путь, помеченный символами этой цепочки, из начального состояния в одно из допускающих.

Очевидно, что детерминированные конечные распознаватели являются подклассом недетерминированных конечных распознавателей.

Таблица недетерминированного распознавателя:

	\	\	\			1
	s0	s1	s2	s3	s4	s5
Ц	s1,s3	s1,s3			s5	s5
•	s4		s4	s5		
+	s1,s2					
-	s1,s2					

Граф недетерминированного распознавателя:

Цепочка	1	8	•	9		
Состояние	s0, s1, s2	s1, s3	s1, s3	s5	s5	допустить

Цепочка	1			
Состояние	s0, s1, s2	s1, s3		отвергнуть

Цепочка	1	•			
Состояние	s0, s1, s2	s1, s3	s5		допустить

Цепочка	_	•	2	2		
Состояние	s0, s1, s2	s1, s2	s4	s5	s5	допустит

Недетерминированный распознаватель, который может перейти на некотором шаге из состояния в состояние без обработки символа входной цепочки, называется недетерминированным конечным распознавателем с є-переходами.

Конечный недетерминированный распознаватель с ε -переходами определяется пятёркой: A=<S, X, S₀, δ , F>, где

S — конечное непустое множество состояний;

Х — конечное непустое множество входных символов;

 $S_0 \subseteq S$ — множество начальных состояний;

 δ : $S \times (X \cup \{\epsilon\}) \to 2^S$, где 2^S обозначает булеан S, т.е. множество всех подмножеств множества S — функция переходов, которая паре (состояние, входной символ) или паре (состояние, ϵ) ставит в соответствие подмножество состояний;

 $F \subseteq S$ — множество допускающих состояний.

Таблица недетерминированного распознавателя с ε-переходами отличается от таблицы недетерминированного распознавателя без ε-переходов наличием дополнительной строки, соответствующей пустому символу ε. В графе распознавателя ε-переходу соответствует дуга, отмеченная символом ε.

Таблица недетерминированного распознавателя с є-переходами:

	\downarrow						1
	s0	s1	s2	s3	s4	s5	s6
Ц		s1,s3			s5	s5	
•			s4	s5			
+	s1,s2						
-	s1,s2						
3	s1,s2					s6	

Граф недетерминированного распознавателя с є-переходами:

Цепочка	1	8	•	9		
Состояние	s0	s1, s3	s1, s3	s5	s5	
	s1, s2			s6	s6	допустить

Цепочка	1			
Состояние	s0	s1, s3		
	s1, s2			отвергнуть

Цепочка	1	•			
Состояние	s0	s1, s3	s5		
	s1, s2		s6		допустить

Цепочка	_	•	2	2		
Состояние	s0	s1, s2	s4	s5	s5	
	s1, s2			s6	s5	допустить