

Machine Learning

# Advice for applying machine learning

Regularization and bias/variance

### Linear regression with regularization

Model: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
 
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

High bias (underfit)

 $\rightarrow \lambda = 10000. \ \theta_1 \approx 0, \theta_2 \approx 0, \dots$ 

Large  $\lambda \leftarrow$ 





High variance (overfit)

regularizaçao

#### Choosing the regularization parameter $\lambda$

$$h_{\theta}(x) = \theta_{0} + \theta_{1}x + \theta_{2}x^{2} + \theta_{3}x^{3} + \theta_{4}x^{4}$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_{j}^{2}$$

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x^{(i)}_{test}) - y^{(i)}_{test})^{2}$$

#### Choosing the regularization parameter $\lambda$

Model: 
$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{m} \theta_j^2$$

1. Try 
$$\lambda = 0 \leftarrow 1$$
  $\longrightarrow$  min  $J(\Theta) \rightarrow \Theta'' \rightarrow J_{ev}(\Theta''')$ 

2. Try  $\lambda = 0.01$   $\longrightarrow$   $J_{ev}(\Theta'')$ 

3. Try  $\lambda = 0.02$   $\longrightarrow$   $J_{ev}(\Theta''')$ 

4. Try  $\lambda = 0.04$   $\longrightarrow$   $J_{ev}(\Theta''')$ 

5. Try  $\lambda = 0.08$ 

3. Try 
$$\lambda = 0.02$$
  $\longrightarrow$   $3$ . (6<sup>th</sup>)

4. Try 
$$\lambda = 0.02$$

5. Try 
$$\lambda = 0.08$$
 $\vdots$ 

12. Try  $\lambda = 10$ 

Pick (say)  $\theta^{(5)}$ . Test error:  $\mathcal{I}_{\text{test}}$ 

Andrew Ng

## Bias/variance as a function of the regularization parameter $\lambda$

