

# 서울시 전기차 충전소 현황 및 입지추천

3팀

팀장: 최민재

팀원: 김소연, 엄태은, 이석우, 정수현

# 목차 A table of contents

- 프로젝트 개요
- 2 프로젝트 팀 구성 및 역할
- 3 프로젝트 수행 절차 및 결과
- 4 자체 평가 의견





프로젝트 주제 및 선정 배경(기획의도, 기대효과)

#### 전기차 보급량 증가

지난 해 전기차 신규 보급대수가 전년 대비 2 배 이상 증가 누적 보급대수는 25.7만대를 달성.

#### 충전 인프라의 부족

전기차 증가량을 따라가지 못하는 충전소 보급

#### 서울시 전기차 충전소 현황 및 추가 설치 입지조건

#### 현재 인프라 분석

현재 실제 충전 인프라를 바탕으로 분석

#### 충전소 최적입지 추천

다양한 변수를 고려하여 효율적인 최적의 입지 추천

프로젝트 주제 및 선정 배경(기획의도, 기대효과)

급속, 완속 충전기 보급현황

급속 충전기의 사용횟수가 완속보다 높기 때문에, 추가적인 급속충전기 설치 필요

그러나 비용문제와 안정적으로 충전인프라를 늘리기 위해 완속 충전기의 보급도 필요



프로젝트 주제 및 선정 배경(기획의도, 기대효과)

#### 전기차 보급의 증가추세와 충전소 증가추세 비교





충전소도 대폭 증가했지만 전기차의 증가추세를 따라가지 못해 충전소 인프라의 부족이 예상됨

활용 장비 및 재료(개발 환경 등)

1. EDA

2. 상관성 분석

3. 예측

- 데이터 수집 (서울시공공데이터)

- 데이터 전처리

-분류모델을 사용

- 정규화

-최적화 모델 선정

- FP(False Positive) 도출

- 최적의 충전소 입지 선정

#### 프로젝트 기대효과

- 서울시의 최신 인구 통계학적 자료를 활용하여 충전소 현황과 연관성을 도출해 봄으로써 현재 설치되어 있는 충전소의 입지조건을 분석해볼 수 있다.
- 2. 충전소 입지선정을 수치적으로 정의하여 현 입지와 유사하게 인프라가 부족한 곳을 지리적으로 확인 할 수 있기 때문에 현실적인 입지조건을 도출해낼 수 있다.



## 프로젝트 팀 구성 및 역할

팀 구성 및 역할소개

| 이름  | 담당          | 수행역할                                                                        |  |
|-----|-------------|-----------------------------------------------------------------------------|--|
| 최민재 | 팀장          | 인구, 공간정보 데이터 수집 및 전처리, QGIS를 이용 Data Set 구축,<br>머신러닝 적용 및 분석, QGIS를 이용한 시각화 |  |
| 엄태은 | 데이터 수집, 시각화 | 도시계획 데이터 수집 및 전처리,<br>데이터 군집화,<br>데이터 시각화,                                  |  |
| 이석우 | 머신러닝        | 전기차 등록 현황 데이터 수집 및 전처리,<br>분석도구 비교 분석                                       |  |
| 김소연 | 데이터 수집, 정제  | 전기차 충전소 데이터 수집 및 전처리,<br>데이터 시각화                                            |  |
| 정수현 | 데이터 수집, 시각화 | 인구, 도로 데이터 수집, 전처리 및 정규화,<br>프로젝트 방향성 제시,ppt제작                              |  |



## 프로젝트 수행절차 및 과정 **분석개요**

- 현재 설치된 618개의 충전소가 최적의 입지라는 것을 전제
- 100X100m격자 Data Set 구축
- 머신러닝 기법들을 비교분석, 정확도가 가장 높은 모델 선정
- False Positive(FP)를 통해 최적의 충전소입지 선정



### 프로젝트 수행절차 및 과정 분석개요











변수선정 변수 분석 모델링 결과

1주차
2주차
3주차
4주차

## 프로젝트 수행절차 및 과정 변수선정

- 총 64676개의 서울 격자(100X100)을 기준 Unit으로 설정

-다만 격자단위 데이터를 얻기 어려운 변수는 행정동 단위로 수집 (ex 전기차 등록 수, 교통정보)

### 프로젝트 수행절차 및 과정 변수선정

### 독립변수

- 서울시 공간정보(체육시설,주차정,관광,쇼핑,산업단지 등)
- 격자별 인구수
- 전기차 등록 수
- 교통정보(혼잡시간강도, 혼잡빈도강도)

### 종속변수

- 충전소, 급속충전기, 완속충전기의 유무(0, 1)

### 프로젝트 수행절차 및 과정 서울시 전기차 충전소 현황



# 프로젝트 수행절차 및 과정 모델링

- '분류학습방법'으로 진행
- 훈련 데이터와 테스트 데이터의 비율은 9:1로 지정
- 0.05이하의 과적합을 가진 분석기법 중 가장 좋은 정확도를 가진 도구 선정

|                                    | 충전소       |            | 급속        |            | 완속        |            |
|------------------------------------|-----------|------------|-----------|------------|-----------|------------|
| 머신러닝기법                             | 훈련<br>정확도 | 테스트<br>정확도 | 훈련<br>정확도 | 테스트<br>정확도 | 훈련<br>정확도 | 테스트<br>정확도 |
| Gradient<br>Boosting<br>Classifier | 0.739     | 0.724      | 0.740     | 0.730      | 0.757     | 0.754      |
| Random Forest                      | 0.881     | 0.769      | 0.908     | 0.782      | 0.905     | 0.797      |
| LGBM Classifier                    | 0.808     | 0.782      | 0.803     | 0.782      | 0.815     | 0.806      |

3개의 종속변수 모두 LightGBM에서 최고의 성능을 보여주었다.



# 분석 결과

# 프로젝트 수행절차 및 과정 분석 결과

|    | gid      | 충전소FP | 급속FP | 완속FP | 합계 |
|----|----------|-------|------|------|----|
| 0  | 다사643560 | 0     | 0    | 0    | 0  |
| 1  | 다사647551 | 0     | 0    | 0    | 0  |
| 2  | 다사629554 | 0     | 0    | 1    | 1  |
| 3  | 다사645566 | 0     | 0    | 0    | 0  |
| 4  | 다사631573 | 0     | 0    | 0    | 0  |
| 5  | 다사634534 | 0     | 0    | 0    | 0  |
| 6  | 다사649556 | 0     | 0    | 0    | 0  |
| 7  | 다사626569 | 0     | 0    | 0    | 0  |
| 8  | 다사627555 | 0     | 0    | 1    | 1  |
| 9  | 다사629545 | 0     | 0    | 0    | 0  |
| 10 | 다사647561 | 0     | 0    | 0    | 0  |
| 11 | 다사641561 | 1     | 1    | 1    | 3  |
| 12 | 다사647559 | 0     | 0    | 0    | 0  |
| 13 | 다사630540 | 0     | 0    | 0    | 0  |

- LightGBM으로 분석한 결과 중, False Positive 격자가 최적의 입지조건이라는 가정.
- 격자별 충전소, 급속, 완속 FP의 합

## 프로젝트 수행절차 및 과정 분석 결과



• FP의 합을 통해 0~3의 중요도를 도출

• 이를 시각화 한 것이 다음과 같다.

(0: 초록색, 1: 노란색, 2: 주황색, 3: 빨간색)

## 프로젝트 수행절차 및 과정 분석 결과

- FP의 합이 3인 부분만 추출, 1703개의 위·경도 데이터를 확보
- 각 격자 중앙의 좌표를 얻어 K-means 기법으로 상위 20개로 군집화
- 20개의 각 군집의 좌표중 중앙값을 통해 최적의 충전소 좌표 도출





좌표를 기준으로 가까운 충전소 입지를 임의로 선정하였다.

# 프로젝트 수행절차 및 과정

#### 분석 결과

| No | 자치구 | 이름                   | 주소                           | 시설구분    |
|----|-----|----------------------|------------------------------|---------|
| 1  | 금천구 | 현대시장 공영주차장           | 서울 금천구 독산로27길 52             | 공영주차장   |
| 2  | 강서구 | 화곡대림아파트              | 서울 강서구 월정로 160               | 아파트     |
| 3  | 강서구 | 이대서울병원               | 서울특별시 강서구 공항대로 260           | 병원      |
| 4  | 관악구 | 신림푸르지오               | 서울시 관악구 남부순환로 1430           | 아파트     |
| 5  | 동작구 | 대방거주자우선주차장           | 서울 동작구 대방동 391-269           | 주차장     |
| 6  | 동작구 | 총신대학교                | 서울특별시 동작구 사당로 143            | 학교      |
| 7  | 서초구 | 상문고등학교               | 서울특별시 서초구 명달로 45             | 학교      |
| 8  | 강남구 | 대치중학교                | 서울특별시 강남구 남부순환로378길 39       | 학교      |
| 9  | 강남구 | 동현아파트                | 서울시 강남구 언주로146길 18           | 아파트     |
| 10 | 강남구 | 호텔 리베라 아노블리          | 서울 강남구 도산대로 419 (청담동) 5,6,7층 | 숙박시설    |
| 11 | 강남구 | sm엔터테인먼트<br>셀러브리티센터  | 서울 강남구 압구정로 423              | 음반기획,제작 |
| 12 | 강남구 | 한보미도맨션               | 서울시 강남구 삼성로 150              | 아파트     |
| 13 | 송파구 | 오금중학교                | 서울특별시 송파구 오금로35길 20          | 학교      |
| 14 | 송파구 | 가락삼환나우빌아파트           | 서울시 송파구 오금로 432              | 아파트     |
| 15 | 종로구 | 경희궁자이2단지아파트          | 서울시 종로구 송월길 99               | 아파트     |
| 16 | 종로구 | 종로1,2,3,4가동주민센터      | 서울 종로구 삼일대로30길 47            | 공공기관    |
| 17 | 성동구 | 성동구청                 | 서울특별시 성동구 고산자로 270           | 공공기관    |
| 18 | 성북구 | 푸른마을동아아파트            | 서울시 성북구 서경로 31               | 아파트     |
| 19 | 강북구 | 미아뉴타운두산위브트레지움<br>아파트 | 서울 강북구 삼양로27길 95             | 아파트     |
| 20 | 강북구 | 성북강북교육지원청            | 서울 강북구 솔매로50길 65,지방교육청       | 공공기관    |



# 결과

| 결과 유의성  | - 입지선정지수를 도출하여 유의미한 지역을 추천 - k-means의 중앙값을 사용하여 더 정확한 결과를 얻어낼 수 있었다. |  |
|---------|----------------------------------------------------------------------|--|
| 데이터 활용성 | - 다양한 자료를 활용하여 입지선정에 이용함(인구, 교통정보, 차량정보, 지리정보 등)                     |  |
| 분석 창의성  | - 충전소 설치를 위한 입지선정지수를 도출하고 이를 활용한 최적화 문제를 세움                          |  |
| 공공 활용성  | - 최신의 공공데이터를 이용하여 분석을 도출하여 활용도가 높음                                   |  |
| 경제성     | - 추가 충전소를 세울 때 기존 모델에 그대로 대입가능                                       |  |
| 발전방향    | -추가적으로 다양한 정보를 입지선정지수에 반영한다면 더욱 최적화된 결론 도출이 기대됨                      |  |

#### 보완사항

#### **EDA**

- 공공데이터의 양이 방대하고 산발적으로 존재함
≫데이터를 카테고리화 하여 관리(인구,공간정보,자동차,도로,도시계획,경계 등)

#### 분석

- 격자 데이터가 존재하지 않는 변수가 다수 존재≫ 행정동 데이터를 해당 격자에 일괄적으로 적용

급속, 완속 충전기 대수를 예측하고자 하였지만 정확도가 너무 낮음≫ 충전소와 같이 분류데이터로 변환하여 정확도 향상

#### 예측

- LightGBM으로 분석하여 FP를 도출했지만 1703개의 결과가 도출되었음
  ≫입지선정을 객관적으로 하기 위해 k-means기법으로 상위20개만 뽑음
- 군집 반경이 넓어 정확한 주소를 도출하기 어려웠음 ≫상위 20개 반경 중, 공공기관, 아파트 등 많이 이용될 것으로 예상되는 장소 추려냄

#### 아쉬운 점

- 몇 개의 데이터는 행정 동으로 일괄 적용
- 충전소가 설치되어 있는 곳 중 수요에 비해 충전기 개수가 부족한 곳을 예측하지 못함.
- 건물 용도별, 지형 데이터가 충분치 않아 설치가 불가능한 지역을 제외하지 못함

