Experiment number: 6

Experiment name: Design da mod 16-Synchronous Up Counter Using T- K & Slipflaps

Aparotus used:

1. AND gate - 167408

2. JK- Sf - 1C7473/7676

3. connecting wives

H - Power supply.

Theory:

Synchronous up counter (4bit) Counts from 0000 to 1111 after that it resets. Its operating range in much higher than asychronous counker, this type Counter has common clock to operate all the flip Hops.

Present State	Nextstate	Excitation table of :	TK flir-slar
OA OB OC DO	DAN GON OCN OPN	Jaka Joko Jeka	Jo Ko
0000	0001	OX OX OX	1 ×
0001	0 0 1 0	OX OX IX	× 1
0010	0011	GX OX X O	/ ×
0011	0 1 0 0	0 x 1 x x 1	X 1
0100	0101	OX XOOX	/ X
	0110	Ox XO IX	× 1
0110	0111	0 x x 0 x 0	4 X
0111	1000	φ× * 1 × 1	X
1000	100	XOOX OX	/ *
1001	1010	X O O X X	X 1
	1011	X O O X X O	/ ×
	1100	x 0 1 x × 1	X I
16 11	1101	X O X O O X	/ ×
1160	1 1 0	XOXOIX	X)
11 0 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	∦ ×
1110	11 1 1	1 X x	1
1111	0000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

K-map For Ja:

0	0000	0_	1 14	φĐ
00	0	0	11	X
01	×	1	X	X
	X	+	X	×
10	0	0	1	0

K-Map For &

K-map tor J:

K-map For Ke:

0/0	0000	01		
00				1x
01		1		
11				
		1	4	1

Kmap for Jp:					
0,000001 11 10					
00	1	X	X	1	
ola	1	7	×	1	1
11.	1	4	X	1	
10	1	X	×	1	

Jo = Ko =1

200	K-11	nap	tov	Ko:
200	00	01	11	101
00	X	-11	7	ex Mort
-				in proper
April 1			_	
10	X	1	1.1	1x drawn

Statediagram:

7.111 0000 1101 0000 1100 0010 1001 0110 1000 0110

Design & Practical Procedure:

- 1. Truth table of 4 bit binary to gray code converter is prepared.
- 2. K-map for all the output var (A,B,C,D) are drawn.
- 3. Circuit diagram is drawn as per simplified expression of output variable obtained in
- 4 1 cs are placed on the bread board of 1 ctrainer Kit.
- 5. Connections are made properly & power is torned on.

Observations:-

- Counter is a device which stores (and sometimes displays) the number of times a particular event or process has occurred, often in relationship to a clock signal. Counter are used in digital electronics for counting purpose, they can count specific event happening in the circuit.
- The one advantage of synchronous counter over asynchronous counter is, it can operate on higher frequency than asynchronous counter as it does not have cumulative delay because of same clock is given to each flip flop.
- Synchronous Counters are so called because the clock input of all the individual flip-flops within the counter are all clocked together at the same time by the same clock signal.
- MOD Counters are cascaded counter circuits which count to a set modulus value before resetting. The job of a counter is to count by advancing the contents of the counter by one count with each clock pulse.
- In this experiment we have use four JK flip flop for the mod counter.

Name: kaushik gupta Regno:201900318

sign:kaushik Date:9|3|2021

201900318 KAUSHIK GUPTA cp 9.35

