

# A NEW GOODNESS-OF-FIT TEST FOR THE GAMMA DISTRIBUTION BASED ON SAMPLE SPACINGS FROM COMPLETE AND CENSORED SAMPLES

THESIS Hüseyin DUMAN First Lieutenant

AFIT/GOR/ENC/ENS/95M-08

Approved for public release; distribution unlimited

19950503 126

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U. S. Government.

| Accesio                                       | n For          |         |
|-----------------------------------------------|----------------|---------|
| NTIS CRA&I DTIC TAB Unannounced Justification |                |         |
| By                                            |                |         |
| A                                             | vailabilit     | y Codes |
| Dist                                          | Avail a<br>Spe |         |
| A-1                                           |                |         |

# A NEW GOODNESS-OF-FIT TEST FOR THE GAMMA DISTRIBUTION WITH KNOWN SHAPE PARAMETER BASED ON SAMPLE SPACINGS FROM COMPLETE AND CENSORED SAMPLES

## **THESIS**

Presented to the Faculty of the Graduate School of Engineering
of the Air Force Institute of Technology
Air Education and Training Command
In Partial Fulfillment of the
Requirements for the Degree of
Master of Science in Operations Research

Hüseyin DUMAN, B.S. First Lieutenant

March, 1995

Approved for public release; distribution unlimited

## THESIS APPROVAL

STUDENT: 1Lt Hüseyin DUMAN

CLASS: GOR-95M

THESIS TITLE: A NEW GOODNESS-OF-FIT TEST BASED ON

SPACINGS FOR THE GAMMA DISTRIBUTION

WITH KNOWN SHAPE PARAMETER FROM

COMPLETE AND CENSORED SAMPLES

DEFENSE DATE: 1 March 1995

COMMITEE:

NAME/DEPARTMENT

SIGNATURE

Advisor

Dr. Albert H. Moore/ENC

Emeritus Professor

Reader

Dr. Joseph P. Cain, Ph. D./ENS

Associate Professor of Operations Research

Reader

LtCol Paul F. Auclair, Ph. D./ ENS

Assistant Professor of Operations Research

# **Preface**

This thesis aims to improve the power and effectiveness of goodness-of-fit tests for the gamma distribution. The critical value tables were generated for a new test statistic,  $Z^*$ . A power study was conducted to determine the power of the new test and compare it with the power of K-S, Cv-M, and A-D test statistics.

I could not have undertaken such an effort without the guidance of an experienced professor in the field, my thesis advisor Dr. Albert H. Moore. His remarkable insight directed me throughout every phase of this research, and his guidance saved me precious time that I desperately needed. Thank you Dr. Moore for sharing your wisdom and patiently teaching me the finer points of goodness-of-fit procedures.

My appreciations go to Lt. Col. Paul F. Auclair for his careful editing and helpful comments. He was most helpful at revising this thesis for preparing it for publication. I also express my appreciation to Dr. Joseph P. Cain for his assistance and comments.

I offer special thanks to the instructors and personnel of Department of Operational Sciences. Their understanding of the hardships of working toward a graduate degree in a foreign language helped us catch up with the other students.

I would like to thank my fellow classmates, especially Ozzy and Güneş, for their support during those hard times. I am also grateful to my dear parents for the sacrifice they made for years, to raise a child that will manage to get out of his village and do something that they will be proud of.

Finally, I would like to dedicate this thesis effort to my sweetheart Paula. She supported me along such a challenge even though we were thousands of miles apart.

Hüseyin DUMAN

# **Table of Contents**

|                                                | Page |
|------------------------------------------------|------|
| Preface                                        | iii  |
| List of Figures                                | viii |
| List of Tables                                 | ix   |
| Abstract                                       | xvi  |
| I. INTRODUCTION                                | 1-1  |
| 1.1 Background                                 | 1-1  |
| 1.2 An Overview of the Goodness-of-Fit Tests   | 1-2  |
| 1.3 The Gamma Distribution                     | 1-4  |
| 1.4 Problem Statement                          | 1-5  |
| 1.5 Focus of Research                          | 1-5  |
| 1.6 Assumptions                                | 1-6  |
| 1.7 Scope                                      | 1-6  |
| II. LITERATURE REVIEW                          | 2-1  |
| 2.1 The Three Parameter Gamma Distribution     | 2-1  |
| 2.2 The Applications of the Gamma Distribution | 2-5  |
| 2.3 Classical Goodness-of-Fit Tests            | 2-8  |
| 2.3.1 Chi-squared Type Tests                   | 2-8  |
| 2.3.2 Empirical Distribution Function Tests .  | 2-9  |
| 2.3.3 Kolmogorov-Smirnov Test Statistic        | 2-9  |
| 2.3.4 Cramer-von Mises Test Statistic          | 2-9  |
| 235 Anderson-Darling Test Statistic            | 2-10 |

|      |        |         |                                                                        | Page |
|------|--------|---------|------------------------------------------------------------------------|------|
|      | 2.4    | Tests I | Based on Order Statistics                                              | 2-10 |
|      | 2.5    | The Co  | oncept and Types of Censoring                                          | 2-14 |
|      |        | 2.5.1   | Type I Censoring                                                       | 2-15 |
|      |        | 2.5.2   | Type II Censoring                                                      | 2-15 |
|      |        | 2.5.3   | Random Censoring                                                       | 2-17 |
|      | 2.6    | Summa   | ary                                                                    | 2-17 |
| III. | метно  | DOLOG   | <b>GY</b>                                                              | 3-1  |
|      | 3.1    | The Z'  | Test Statistic                                                         | 3-1  |
|      | 3.2    | Comp    | ıtation of Critical Values for $\mathbf{Z}^*$                          | 3-2  |
|      | 3.3    | Power   | Study of the $Z^*$ Statistic                                           | 3-5  |
|      |        | 3.3.1   | The Distributions $H_0$ and $H_a$                                      | 3-5  |
|      |        | 3.3.2   | Power Study Process                                                    | 3-8  |
| IV.  | FINDIN | GS AN   | D DISCUSSION OF ANALYSIS                                               | 4-1  |
|      | 4.1    | The Z   | Test Statistic                                                         | 4-1  |
|      | 4.2    | Critica | al Values for the $Z^*$ Test Statistic                                 | 4-1  |
|      | 4.3    | Power   | Study of $Z^*$ Test Statistic                                          | 4-2  |
|      |        | 4.3.1   | Cross-checks                                                           | 4-2  |
|      | 4.4    | Power   | Results for the $Z^*$ Test Statistic                                   | 4-3  |
|      |        | 4.4.1   | Power Results for Shape Parameter $\alpha=0.5$ from Complete Samples   | 4-4  |
|      |        | 4.4.2   | Power Results for Shape Parameter $\alpha=0.5$ from Censored Samples   | 4-6  |
|      |        | 4.4.3   | Power Results for Shape Parameter $\alpha = 1.0$ from Complete Samples | 4-8  |
|      |        | 4.4.4   | Power Results for Shape Parameter $\alpha = 1.0$ from Censored Samples | 4-10 |
|      |        | 4.4.5   | Power Results for Shape Parameter $\alpha = 1.5$ from Complete Samples | 4-11 |

|              |                                                        | Page |
|--------------|--------------------------------------------------------|------|
|              | 4.4.6 Power Results for Shape Parameter $\alpha = 1.5$ |      |
|              | from Censored Samples                                  | 4-12 |
|              | 4.4.7 Power Results for Shape Parameters               |      |
|              | $\alpha = 2.0, 3.0, $ and $4.0 \ldots \ldots \ldots$   | 4-13 |
|              | 4.4.8 Power Results for Shape Parameter                |      |
|              | $\alpha=2, 3,$ and 4 from Censored Samples .           | 4-15 |
| 4.5          | Comparison of $\mathbf{Z}^*$ and its Competitors       | 4-17 |
|              | 4.5.1 Comparison Between Tests for Shape               |      |
|              | Parameter $\alpha = 1.5$                               | 4-17 |
|              | 4.5.2 Comparison Between Tests for Shape               |      |
|              | Parameter $\alpha = 4.0 \ldots \ldots$                 | 4-20 |
| 4.6          | Power Study Results that Supports the Idea that        |      |
|              | $\mathbf{Z}^*$ is a Directional Test                   | 4-23 |
| 4.7          | Relationship between the Critical Values and the       |      |
|              | Sample Size                                            | 4-27 |
| V. CONCLU    | USIONS AND RECOMMENDATIONS                             | 5-1  |
| 5.1          | Conclusions                                            | 5-1  |
| 5.2          | Recommendations                                        | 5-2  |
| Appendix A.  | Critical Value Tables for the Z* Test Statistic        |      |
| Appendix 11. | from Complete Samples                                  | A-1  |
|              | •                                                      |      |
| Appendix B.  | Critical Value Tables for the Z* Test Statistic        |      |
|              | from Censored Samples                                  | B-1  |
| Appendix C.  | Power Study of Z* Test Statistic for Complete          |      |
|              | Samples                                                | C-1  |
|              |                                                        |      |
| Appendix D.  | Power Study of Z* Test Statistic for Censored          |      |
|              | Samples                                                | D-1  |

|              |                                                                               | Page   |
|--------------|-------------------------------------------------------------------------------|--------|
| Appendix E.  | Fortran Program for the Calculation of Critical Values                        | E-1    |
| Appendix F.  | Fortran Program for the Power Study                                           | F-1    |
| Appendix G.  | Regression Analysis for Complete and Censored Samples                         | G-1    |
| Appendix H.  | Regression Analysis for Shape Parameter $\alpha = 0.5$ , and Complete Samples | H-1    |
| Bibliography |                                                                               | BIB-1  |
| Vita         |                                                                               | VITA-1 |

# List of Figures

| Figure |                                                                                | Page |
|--------|--------------------------------------------------------------------------------|------|
| 2.1.   | The Gamma Distributions with shape parameters, $\alpha = 1.0, 2.0, 3.0, 4.0$ . | 2-1  |
| 2.2.   | Graphs of $\chi^2$ Distributions with $\nu = 2\alpha \dots \dots \dots$        | 2-4  |
| 2.3.   | Typical failure-rate characteristic for engineering devices                    | 2-5  |
| 2.4.   | PDF, CDF and Hazard Functions of the Gamma Distribution                        | 2-6  |
| 2.5.   | Death-rate characteristic for males living in England                          | 2-7  |
| 3.1.   | Generation of Critical Values for $Z^*$                                        | 3-4  |
| 3.2.   | Gamma vs Weibull Distributions in the Power Study                              | 3-6  |
| 3.3.   | Gamma vs Lognormal Distributions in the Power Study                            | 3-7  |
| 3.4.   | Generation of Power tables for the $Z^*$ test statistic                        | 3-9  |
| 4.1.   | Gamma Distributions with $\alpha=0.5$ and $\alpha=1.0.$                        | 4-8  |
| 4.2.   | Gamma(1.0) vs Weibull family                                                   | 4-23 |
| 4.3.   | Gamma (2.5) vs Weibull family                                                  | 4-25 |
| 4.4.   | The relation between the Critical Values and the Shape parameter               | 4-27 |
| 4.5.   | The relation between the Critical Values and the Sample size                   | 4-28 |
| 4.6.   | The relation between the Critical Values and the Significance level            | 4-28 |
| 4.7.   | The Relation between the Predicted Values and the Critical values              | 4-31 |
| 4.8.   | The approximity of Predicted Values to the Critical values for                 |      |
|        | Shape Parameter $\alpha = 0.5$                                                 | 4-32 |

# List of Tables

| Ľ | able  |                                                                                                                                            | Page |
|---|-------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 3.1.  | Statistical Distribution Functions Used for the Power Study                                                                                | 3-5  |
|   | 4.1.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter                                                                   |      |
|   |       | 1.0                                                                                                                                        | 4-1  |
|   | 4.2.  | Power Study: Sample size 10, shape 0.5                                                                                                     | 4-4  |
|   | 4.3.  | Power Study: Sample size 35, shape 0.5                                                                                                     | 4-5  |
|   | 4.4.  | Power Study: Sample size 10, observations 8, shape 0.5                                                                                     | 4-6  |
|   | 4.5.  | Power Study: Sample size 30, observations 24, shape 0.5                                                                                    | 4-7  |
|   | 4.6.  | Power Study: Sample size 10, shape 1.0                                                                                                     | 4-9  |
|   | 4.7.  | Power Study: Sample size 35, shape 1.0                                                                                                     | 4-9  |
|   | 4.8.  | Power Study: Sample size 10, observations 8, shape 1.0                                                                                     | 4-10 |
|   | 4.9.  | Power Study: Sample size 35, observations 28, shape 1.0                                                                                    | 4-10 |
|   | 4.10. | Power Study: Sample size 10, shape 1.5                                                                                                     | 4-11 |
|   | 4.11. | Power Study: Sample size 30, shape 1.5                                                                                                     | 4-11 |
|   | 4.12. | Power Study: Sample size 10, observations 8, shape 1.5                                                                                     | 4-12 |
|   | 4.13. | Power Study: Sample size 35, observations 28, shape 1.5                                                                                    | 4-12 |
|   | 4.14. | Power Study: Sample size 35, shape 2.0                                                                                                     | 4-13 |
|   | 4.15. | Power Study: Sample size 35, shape 3.0                                                                                                     | 4-14 |
|   | 4.16. | Power Study: Sample size 35, shape 4.0                                                                                                     | 4-14 |
|   | 4.17. | Power Study: Sample size 35, observations 28, shape 2.0                                                                                    | 4-15 |
|   | 4.18. | Power Study: Sample size 35, observations 28, shape 3.0                                                                                    | 4-16 |
|   | 4.19. | Power Study: Sample size 35, observations 28, shape 4.0                                                                                    | 4-16 |
|   | 4.20. | Comparative Power Study of $Z^*$ against other test statistics for                                                                         | A 10 |
|   |       | sample size $n = 5$ , shape $\alpha = 1.5$ and significance level= 0.05                                                                    | 4-18 |
|   | 4.21. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n = 5$ , shape $\alpha = 1.5$ and significance level= 0.01 | 4-18 |

| Table |                                                                                                                                             | Page |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.22. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=15$ , shape $\alpha=1.5$ and significance level= $0.05$ . | 4-19 |
| 4.23. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=15$ , shape $\alpha=1.5$ and significance level= 0.01 .   | 4-19 |
| 4.24. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=5,$ shape $\alpha=4.0$ and significance level= $0.05$     | 4-20 |
| 4.25. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=5,$ shape $\alpha=4.0$ and significance level= $0.01$     | 4-20 |
| 4.26. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=15$ , shape $\alpha=4.0$ and significance level= $0.05$ . | 4-21 |
| 4.27. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=15$ , shape $\alpha=4.0$ and significance level= $0.01$ . | 4-21 |
| 4.28. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=25$ , shape $\alpha=4.0$ and significance level= $0.05$ . | 4-22 |
| 4.29. | Comparative Power Study of $Z^*$ against other test statistics for sample size $n=25$ , shape $\alpha=4.0$ and significance level= $0.01$ . | 4-22 |
| 4.30. | Power Study: Sample size 15, shape 1.0                                                                                                      | 4-24 |
| 4.31. | Power Study: Sample size 35, shape 1.0                                                                                                      | 4-24 |
| 4.32. | Power Study: Sample size 15, shape 2.5                                                                                                      | 4-26 |
| 4.33. | Power Study: Sample size 35, shape 2.5                                                                                                      | 4-26 |
| 4.34. | Regression function representing the relation between the critical values and sample parameters for complete or censored sam-               |      |
|       | ples                                                                                                                                        | 4-29 |
| 4.35. | Regression functions representing the relation between the critical values and sample parameters for complete samples only                  | 4-30 |
| 4.36. | Regression functions representing the relation between the critical values and sample parameters for different shape parameters.            | 4-30 |
|       |                                                                                                                                             |      |
| A.1.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter 0.5                                                                | A-1  |

| Table |                                                                          | Page |
|-------|--------------------------------------------------------------------------|------|
| A.2.  | 1 , 1                                                                    |      |
|       | 1.0                                                                      | A-1  |
| A.3.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 1.5                                                                      | A-1  |
| A.4.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 2.0                                                                      | A-2  |
| A.5.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 2.5                                                                      | A-2  |
| A.6.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 3.0                                                                      | A-2  |
| A.7.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 3.5                                                                      | A-3  |
| A.8.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 4.0                                                                      | A-3  |
| B.1.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
| D.11. | 0.5                                                                      | B-1  |
| B.2.  |                                                                          |      |
| D.2.  | 1.0                                                                      | B-1  |
| B.3.  |                                                                          |      |
| 2.0.  | 1.5                                                                      | B-1  |
| B.4.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 2.0                                                                      | B-2  |
| B.5.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 2.5                                                                      | B-2  |
| B.6.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 3.0                                                                      | B-2  |
| B.7.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 3.5                                                                      | B-3  |
| B.8.  | Critical values for $Z^*$ test statistic: Sample size N, shape parameter |      |
|       | 4.0                                                                      | B-3  |

| L | able  |              |                           | Page |
|---|-------|--------------|---------------------------|------|
|   | C.1.  | Power Study: | Sample size 5, shape 0.5  | C-1  |
|   | C.2.  | Power Study: | Sample size 10, shape 0.5 | C-1  |
|   | C.3.  | Power Study: | Sample size 15, shape 0.5 | C-2  |
|   | C.4.  | Power Study: | Sample size 20, shape 0.5 | C-2  |
|   | C.5.  | Power Study: | Sample size 25, shape 0.5 | C-3  |
|   | C.6.  | Power Study: | Sample size 30, shape 0.5 | C-3  |
|   | C.7.  | Power Study: | Sample size 35, shape 0.5 | C-4  |
|   | C.8.  | Power Study: | Sample size 5, shape 1.0  | C-4  |
|   | C.9.  | Power Study: | Sample size 10, shape 1.0 | C-5  |
|   | C.10. | Power Study: | Sample size 15, shape 1.0 | C-5  |
|   | C.11. | Power Study: | Sample size 20, shape 1.0 | C-6  |
|   | C.12. | Power Study: | Sample size 25, shape 1.0 | C-6  |
|   | C.13. | Power Study: | Sample size 30, shape 1.0 | C-7  |
|   | C.14. | Power Study: | Sample size 35, shape 1.0 | C-7  |
|   | C.15. | Power Study: | Sample size 5, shape 1.5  | C-8  |
|   | C.16. | Power Study: | Sample size 10, shape 1.5 | C-8  |
|   | C.17. | Power Study: | Sample size 15, shape 1.5 | C-9  |
|   | C.18. | Power Study: | Sample size 20, shape 1.5 | C-9  |
|   | C.19. | Power Study: | Sample size 25, shape 1.5 | C-10 |
|   | C.20. | Power Study: | Sample size 30, shape 1.5 | C-10 |
|   | C.21. | Power Study: | Sample size 35, shape 1.5 | C-11 |
|   | C.22. | Power Study: | Sample size 5, shape 2.0  | C-11 |
|   | C.23. | Power Study: | Sample size 10, shape 2.0 | C-12 |
|   | C.24. | Power Study: | Sample size 15, shape 2.0 | C-12 |
|   | C.25. | Power Study: | Sample size 20, shape 2.0 | C-13 |
|   | C.26. | Power Study: | Sample size 25, shape 2.0 | C-13 |
|   | C.27. | Power Study: | Sample size 30, shape 2.0 | C-14 |

| Ľ | able                                         | Page |
|---|----------------------------------------------|------|
|   | C.28. Power Study: Sample size 35, shape 2.0 | C-14 |
|   | C.29. Power Study: Sample size 5, shape 2.5  | C-15 |
|   | C.30. Power Study: Sample size 10, shape 2.5 | C-15 |
|   | C.31. Power Study: Sample size 15, shape 2.5 | C-16 |
|   | C.32. Power Study: Sample size 20, shape 2.5 | C-16 |
|   | C.33. Power Study: Sample size 25, shape 2.5 | C-17 |
|   | C.34. Power Study: Sample size 30, shape 2.5 | C-17 |
|   | C.35. Power Study: Sample size 35, shape 2.5 | C-18 |
|   | C.36. Power Study: Sample size 5, shape 3.0  | C-18 |
|   | C.37. Power Study: Sample size 10, shape 3.0 | C-19 |
|   | C.38. Power Study: Sample size 15, shape 3.0 | C-19 |
|   | C.39. Power Study: Sample size 20, shape 3.0 | C-20 |
|   | C.40. Power Study: Sample size 25, shape 3.0 | C-20 |
|   | C.41. Power Study: Sample size 30, shape 3.0 | C-21 |
|   | C.42. Power Study: Sample size 35, shape 3.0 | C-21 |
|   | C.43. Power Study: Sample size 5, shape 3.5  | C-22 |
|   | C.44. Power Study: Sample size 10, shape 3.5 | C-22 |
|   | C.45. Power Study: Sample size 15, shape 3.5 | C-23 |
|   | C.46. Power Study: Sample size 20, shape 3.5 | C-23 |
|   | C.47. Power Study: Sample size 25, shape 3.5 | C-24 |
|   | C.48. Power Study: Sample size 30, shape 3.5 | C-24 |
|   | C.49. Power Study: Sample size 35, shape 3.5 | C-25 |
|   | C.50. Power Study: Sample size 5, shape 4.0  | C-25 |
|   | C.51. Power Study: Sample size 10, shape 4.0 | C-26 |
|   | C.52. Power Study: Sample size 15, shape 4.0 | C-26 |
|   | C.53. Power Study: Sample size 20, shape 4.0 | C-27 |
|   | C.54. Power Study: Sample size 25, shape 4.0 | C-27 |

| Table                                                         | Page |
|---------------------------------------------------------------|------|
| C.55. Power Study: Sample size 30, shape 4.0                  | C-28 |
| C.56. Power Study: Sample size 35, shape 4.0                  | C-28 |
| D.1. Power Study: Sample size 5, observations 4, shape 0.5    | D-1  |
| D.2. Power Study: Sample size 10, observations 8, shape 0.5   | D-1  |
| D.3. Power Study: Sample size 15, observations 12, shape 0.5  | D-2  |
| D.4. Power Study: Sample size 20, observations 16, shape 0.5  | D-2  |
| D.5. Power Study: Sample size 25, observations 20, shape 0.5  | D-3  |
| D.6. Power Study: Sample size 30, observations 24, shape 0.5  | D-3  |
| D.7. Power Study: Sample size 35, observations 28, shape 0.5  | D-4  |
| D.8. Power Study: Sample size 5, observations 8, shape 1.0    | D-4  |
| D.9. Power Study: Sample size 10, observations 8, shape 1.0   | D-5  |
| D.10. Power Study: Sample size 15, observations 12, shape 1.0 | D-5  |
| D.11. Power Study: Sample size 20, observations 16, shape 1.0 | D-6  |
| D.12. Power Study: Sample size 25, observations 20, shape 1.0 | D-6  |
| D.13. Power Study: Sample size 30, observations 24, shape 1.0 | D-7  |
| D.14. Power Study: Sample size 35, observations 28, shape 1.0 | D-7  |
| D.15. Power Study: Sample size 5, observations 4, shape 1.5   | D-8  |
| D.16. Power Study: Sample size 10, observations 8, shape 1.5  | D-8  |
| D.17. Power Study: Sample size 15, observations 12, shape 1.5 | D-9  |
| D.18. Power Study: Sample size 20, observations 16, shape 1.5 | D-9  |
| D.19. Power Study: Sample size 25, observations 20, shape 1.5 | D-10 |
| D.20. Power Study: Sample size 30, observations 24, shape 1.5 | D-10 |
| D.21. Power Study: Sample size 35, observations 28, shape 1.5 | D-11 |
| D.22. Power Study: Sample size 5, observations 4, shape 2.0   | D-11 |
| D.23. Power Study: Sample size 10, observations 8, shape 2.0  | D-12 |
| D.24. Power Study: Sample size 15, observations 12, shape 2.0 | D-12 |
| D.25. Power Study: Sample size 20, observations 16, shape 2.0 | D-13 |

| L | able               |                                            | Page |
|---|--------------------|--------------------------------------------|------|
|   | D.26. Power Study: | Sample size 25, observations 20, shape 2.0 | D-13 |
|   | D.27. Power Study: | Sample size 30, observations 24, shape 2.0 | D-14 |
|   | D.28. Power Study: | Sample size 35, observations 28, shape 2.0 | D-14 |
|   | D.29. Power Study: | Sample size 5, observations 4, shape 2.5   | D-15 |
|   | D.30. Power Study: | Sample size 10, observations 8, shape 2.5  | D-15 |
|   | D.31. Power Study: | Sample size 15, observations 12, shape 2.5 | D-16 |
|   | D.32. Power Study: | Sample size 20, observations 16, shape 2.5 | D-16 |
|   | D.33. Power Study: | Sample size 25, observations 20, shape 2.5 | D-17 |
|   | D.34. Power Study: | Sample size 30, observations 24, shape 2.5 | D-17 |
|   | D.35. Power Study: | Sample size 35, observations 28, shape 2.5 | D-18 |
|   | D.36. Power Study: | Sample size 5, observations 4, shape 3.0   | D-18 |
|   | D.37. Power Study: | Sample size 10, observations 8, shape 3.0  | D-19 |
|   | D.38. Power Study: | Sample size 15, observations 12, shape 3.0 | D-19 |
|   | D.39. Power Study: | Sample size 20, observations 16, shape 3.0 | D-20 |
|   | D.40. Power Study: | Sample size 25, observations 20, shape 3.0 | D-20 |
|   | D.41. Power Study: | Sample size 30, observations 24, shape 3.0 | D-21 |
|   | D.42. Power Study: | Sample size 35, observations 28, shape 3.0 | D-21 |
|   | D.43. Power Study: | Sample size 5, observations 4, shape 3.5   | D-22 |
|   | D.44. Power Study: | Sample size 10, observations 8, shape 3.5  | D-22 |
|   | D.45. Power Study: | Sample size 15, observations 12, shape 3.5 | D-23 |
|   | D.46. Power Study: | Sample size 20, observations 16, shape 3.5 | D-23 |
|   | D.47. Power Study: | Sample size 25, observations 20, shape 3.5 | D-24 |
|   | D.48. Power Study: | Sample size 30, observations 24, shape 3.5 | D-24 |
|   | D.49. Power Study: | Sample size 35, observations 28, shape 3.5 | D-25 |
|   | D.50. Power Study: | Sample size 5, observations 4, shape 4.0   | D-25 |
|   | D.51. Power Study: | Sample size 10, observations 8, shape 4.0  | D-26 |
|   | D 52 Power Study:  | Sample size 15 observations 12 shape 4.0   | D-26 |

# **Abstract**

A new goodness-of-fit test based on spacings was applied to the gamma distribution with known shape parameter. The size of samples varied between 5 and 35. The critical value tables were generated for the  $Z^*$  test statistic for complete and censored samples. The critical values were obtained for five different significance levels: 0.20, 0.15, 0.10, 0.05, and 0.01. An extensive power study, containing 50,000 Monte Carlo runs, was conducted using nine alternative distributions,  $H_a$ .

It was observed that the  $Z^*$  test statistic was more powerful against certain alternatives which are less skewed than the gamma distribution with a given shape parameter.

A regression between the critical values and the sample size, shape parameter, significance levels and degree of censoring was established. Regression functions for each shape parameter studied in this thesis were also presented.

The power of the  $Z^*$  test statistic is compared to the powers of the competing test statistics (K-S,  $W^2$ , and A-D). Tables of power comparison are presented for two different shape parameters.

This thesis reveals that the  $Z^*$  test statistic is a directional test. This feature may be utilized to attain higher power values by coupling the  $Z^*$  and the A-D test statistics in a sequential test.

# A NEW GOODNESS-OF-FIT TEST FOR THE GAMMA DISTRIBUTION WITH KNOWN SHAPE PARAMETER BASED ON SAMPLE SPACINGS FROM COMPLETE AND CENSORED SAMPLES

## I. INTRODUCTION

The Air Force uses statistical models to describe the failure patterns of various mechanical and electronic components in its weapon systems. These models are used especially in reliability and life span analyses. The same type of analysis is done in many other large organizations in the aerospace industry. These studies assume that the sampled data follow a particular statistical distribution function and base their computations on this assumption. The quality of any model's predictions will only be as good as the quality of the assumptions on which the model is based.

Goodness-of-fit tests provide statistical procedures to assess the validity of the distributional assumptions. These tests check the likelihood that an observed sample could have been generated from a population defined by a proposed distribution. In this study, a goodness-of-fit test statistic that hasn't been applied to the gamma distribution was studied. This test statistic is referred to as  $Z^*$ , and is based on order statistics.

# 1.1 Background

The gamma family of distributions is widely used in reliability studies and life span analyses. Like the Weibull, lognormal and inverse Gaussian distributions, the gamma distribution is a positively skewed distribution that is frequently used in

reliability applications and life span analyses (4:113-121). In particular, the gamma distribution is often used to model the time-to-failure distribution of electrical, mechanical, and combined systems (5:243).

An essential and often forgotten aspect of the modelling exercise, the goodness-of-fit test assesses the validity of model and data correspondence. Since inferences about the greater population are based on the sample data set, the distribution modelling the time-to-failure must adequately represent the data. The goodness of fit test is designed to reject the initial assumption of the population distribution if the test statistic exceeds some critical value. The 'power' of a goodness-of-fit test is the probability of rejecting the initial hypothesis when the underlying population model is incorrect (17:431-434).

The goodness-of-fit tests and parameter estimation methods developed for the gamma distribution generally rely on maximum likelihood estimation, minimum distance estimation or a combination of the two. Some powerful goodness-of-fit tests were developed by Viviano (33) and by Özmen (24) for the gamma distribution. Viviano used maximum likelihood estimation, while Özmen used both maximum likelihood and minimum distance estimation in his procedure. Coppa (6) used the  $Z^*$  test statistic, a goodness-of-fit test based on the spacings between adjacent order statistics, in developing an effective test for the Weibull distribution. A goodness-of-fit test based on spacings for the gamma distribution that can be applied to complete and censored samples is not currently available.

#### 1.2 An Overview of the Goodness-of-Fit Tests

Statistical tests can determine if the sample data correspond to a hypothesized failure model. By observation, time to failure sample data can be collected and then compared to a theoretical probability distribution. The tests that determine if the hypothesized distribution fits the sample data are simply called goodness-of-fit

tests. Several of the classical goodness-of-fit tests that are most commonly used in statistical studies include the:

- Chi-square  $(\chi^2)$ , goodness-of-fit test
- $\bullet$  Kolmogorov-Smirnov (K-S) goodness-of-fit test
- Anderson-Darling (A<sup>2</sup>) goodness-of-fit test
- ullet Cramer von Mises ( $W^2$ ) goodness-of-fit test

If these tests indicate an adequate fit, the hypothesized distribution can be used to predict the failure rates of the sampled object or weapon system. Such a study enhances planning for the wartime effectiveness of that particular weapon system and improves the accuracy of the logistics plan.

The objective of a statistical test is to evaluate a hypothesis concerning the values of one or more of the population parameters. We generally have a hypothesized distribution that we wish to support or disprove. If we can find sufficient evidence from the sample data to refute our theory, we conclude that the null hypothesis is false. The converse of the null hypothesis is called the alternative hypothesis.

We decide between the null hypothesis,  $H_0$ , and the alternative hypothesis,  $H_a$ , by evaluating a test statistic based on sample data. If the value of our test statistic falls in a certain range or rejection region, we conclude that  $H_0$  is false and that the sample more than likely did not come from the population predicted by the null hypothesis. All statistical tests of hypothesis work in the same way and are composed of the same basic elements:

- Null hypothesis,  $H_0$
- Alternative hypothesis,  $H_a$
- Test Statistic
- Rejection region

The functioning parts of the statistical test are the test statistic and the rejection region. The rejection region specifies the value of the test statistic for which the null hypothesis  $H_0$  is rejected.

There are two types of errors that can be made when reaching a decision about the null hypothesis:

- A type I error is made if  $H_0$  is rejected when  $H_0$  is true. The probability of a Type I error is denoted by  $\alpha$ .
- A type II error is made if  $H_0$  is accepted when  $H_a$  is true. The probability of a Type II error is denoted by  $\beta$ .

Thus,  $\alpha$  and  $\beta$  measure the risks associated with making an erroneous decision; As such, they provide a practical measure of the efficiency of a test of hypothesis. The power of the test, denoted by  $(1 - \beta)$ , is the probability of rejecting the null hypothesis,  $H_0$ , when it is false. In simple terms, we can explain the power of a test as the probability that the test statistic will reject the null hypothesis,  $H_0$ , when it is false; that is, when the sample is not from the hypothesized population. In this research, we observed whether or not the test statistic accepted samples from Weibull, beta and lognormal distributions as samples from a gamma distribution. In the ideal case, a test statistic is expected to reject the samples from alternative distributions, and to accept the samples that are from the true distribution.

#### 1.3 The Gamma Distribution

There are several failure models and associated goodness-of-fit tests that attempt to satisfy the requirement of modelling component failure patterns. This thesis considered only the three parameter gamma distribution. The probability density function (pdf) of the three parameter gamma distribution is;

$$f(x) = \frac{(x-\delta)^{\alpha-1} e^{\frac{-(x-\delta)}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \qquad (for \quad \alpha > 0, \beta > 0; x > \delta)$$
 (1.1)

The gamma distribution depends on three parameters  $\alpha, \beta$  and  $\gamma$ .  $\alpha$  is the shape parameter,  $\beta$  is the scale parameter, and  $\delta$  is the location parameter. The shape parameter determines the general appearance, or shape, of the distribution. The location parameter determines the guaranteed life, and the scale parameter determines the relative scale of the distribution. In most cases, even if the location parameter is not  $\delta = 0$ , the data can be transformed to the case where  $\delta = 0$ . More detailed information about the gamma distribution will is included in the Literature Review.

# 1.4 Problem Statement

There are several goodness-of-fit tests developed for the three parameter gamma distribution with unknown location and scale parameter based on maximum likelihood estimation, minimum distance estimation, or a combination of both estimation techniques. The objective of this research was to define a new goodness-of-fit test based on spacings by obtaining critical values for the  $Z^*$  test statistic and to compare the power of the  $Z^*$  test with the previous test used by Viviano (33).

#### 1.5 Focus of Research

Tiku and Singh (29) derived a new test statistic ( $Z^*$ ) by modifying Mann's (S) statistic. This new test statistic is based on the ratio of the differences of adjacent order statistics and is computationally simpler than previously developed statistics based on maximum likelihood or minimum distance estimation (32). Evaluation of the  $Z^*$  test statistic indicates that it has a higher power for skewed distributions.

When random variables  $X_i$  are arranged in ascending order of magnitude,  $X_{i;n}$  is said to be the  $i^{th}$  order statistic in a sample of size n. If a test to estimate the failure times is continued until all sample specimens have failed, the sample is complete and consists of the ordered observations of failure times:  $X_1 \ldots, X_n$ . If the test is terminated with p specimens still operating, where p < n, this sample is censored and consists of (n-p) observations of failure times,  $X_1 \ldots, X_{n-p}$ .

This research initially focused on complete samples. When the  $Z^*$  test proved to be more powerful than its predecessors, censored samples were included within the scope of this research.

## 1.6 Assumptions

This research assumed that the shape parameter of the three parameter gamma distribution is known. The shape parameter might be estimated from the complete or the censored sample. The parameters assumed to be unknown are the location and scale parameters.

#### 1.7 Scope

The main objective of this research was to obtain critical values for a new test statistic, and to check its power through an extensive power study. The power study compared the performance of the  $Z^*$  test with the alternative goodness-of-fit tests, (K-S, Cv-M and A-D), used by Viviano (33). The power study compared the performance of the new test statistic in only complete samples. Since there was no previous research on goodness-of-fit tests for fitting censored samples to a gamma distribution, the power study for censored samples was not compared to the power values of any other test statistic.

The objectives of this thesis were to:

- Generate rejection tables at various alpha levels for the  $Z^*$  test statistic from complete and censored samples.
- Conduct a power comparison between the  $Z^*$  and the previous test statistics for complete samples.
- Present the power values of the  $Z^*$  test statistic for censored samples.
- Investigate a regression function that estimates the critical values of the test based on sample size, shape parameter and level of significance,  $\alpha$ .

# II. LITERATURE REVIEW

# 2.1 The Three Parameter Gamma Distribution

A random variable X has a gamma distribution if its probability density function is

$$f(x) = \frac{(x-\delta)^{\alpha-1} e^{\frac{-(x-\delta)}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)} \qquad (for \quad \alpha > 0, \beta > 0; x > \delta)$$
 (2.1)

where  $\alpha$  is the shape parameter,  $\beta$  is the scale parameter, and  $\delta$  is the location parameter. The gamma distribution is a positively skewed distribution for small values of the shape parameter and it is close to symmetric for large values of the shape parameter (3:1-9). Figure 2.1 depicts the broad range of shapes the gamma distribution can assume by varying the shape parameter.



Figure 2.1 The Gamma Distributions with shape parameters,  $\alpha = 1.0, 2.0, 3.0, 4.0$ .

If X is a random variable following a gamma distribution with parameters  $\alpha$  and  $\beta$ , then mean and the variance of X are respectively

$$\mu = E(X) = \alpha \beta \tag{2.2}$$

and

$$\sigma^2 = V(X) = \alpha \beta^2. \tag{2.3}$$

The standard form of the distribution is obtained by setting  $\beta=1$  and  $\delta=0$ , yielding

$$f(x) = \frac{x^{\alpha - 1} e^{-x}}{\Gamma(\alpha)} \qquad (x \ge 0)$$
 (2.4)

If  $\alpha = 1$ , this is an exponential distribution. If  $\alpha$  is a positive integer, it is an Erlang distribution.

The probability integral of the gamma distribution in standard form is

$$P[X \le x] = [\Gamma(\alpha)]^{-1} \int_0^x t^{\alpha - 1} e^{-t} dt.$$
 (2.5)

and is referred to as the incomplete gamma function ratio. The quantity

$$\Gamma_x(\alpha) = \int_0^x t^{\alpha - 1} e^{-t} dt \tag{2.6}$$

is sometimes called an *incomplete gamma function*. Since the incomplete gamma function ratio depends on x and  $\alpha$ , and it would be natural to use a notation representing it as a function of these variables.

However, Pearson found it more convenient to substitute  $x\alpha^{-\frac{1}{2}}$  in place of x for tabulation purposes (15). He defined the incomplete gamma function as

$$I(u, \alpha - 1) = \frac{1}{\Gamma(\alpha)} \int_0^{u\sqrt{\alpha}} t^{\alpha - 1} e^{-t} dt.$$
 (2.7)

The primary significance of the (standard) gamma distribution in statistical theory lies in the fact that if  $U_1, U_2, \ldots, U_{\nu}$  are independent unit normal variables, the pdf of  $\sum_{j=1}^{\nu} U_j^2$  is of form given in Equation 2. 1, with  $\alpha = \frac{1}{2}\nu$ ;  $\beta = 2$ ;  $\delta = 0$ . This particular form of gamma distribution is called a *chi-square distribution with*  $\nu$  degrees of freedom. The corresponding random variable is often denoted by  $\chi^2_{\nu}$ . It is clear that  $\frac{1}{2}\sum_{j=1}^{\nu} U_j^2$  has a standard gamma distribution with  $\alpha = \frac{1}{2}\nu$ .

Expressed symbolically:

$$f_{\chi_{\nu}^{2}}(x^{2}) = \left\{2^{\frac{1}{2}\nu} \Gamma(\frac{1}{2}\nu)\right\}^{-1} (x^{2})^{\frac{1}{2}\nu-1} e^{-\frac{1}{2}x^{2}} \qquad (x^{2} \ge 0)$$
 (2.8)

Although in the above definition,  $\nu$  must be an integer, the distribution stated above is also called a " $\chi^2$  distribution with  $\nu$  degrees of freedom" if  $\nu$  is any positive number (15:111).

If X is a chi-square random variable with  $\nu$  degrees of freedom, the mean and variance of X are given by

$$\mu = E(X) = \nu \tag{2.9}$$

$$\sigma^2 = V(X) = 2 \nu. (2.10)$$

Plots of  $\chi^2$  distributions with different degrees of freedom are presented in Figure 2. 2.



Figure 2.2 Graphs of  $\chi^2$  Distributions with  $\nu = 2\alpha$ .

In the case that the shape parameter  $\alpha$  is not an integer there is no closed form of gamma distribution. When  $\alpha$  is an integer, we obtain the following

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\beta}} \sum_{j=0}^{\alpha - 1} \frac{\left(\frac{x}{\beta}\right)^j}{j!} & \text{if } x > 0 \\ 0 & \text{Otherwise} \end{cases}$$

with shape parameter  $\alpha > 0$ , and scale parameter  $\beta > 0$ .

# 2.2 The Applications of the Gamma Distribution

There are many applications of the gamma distribution in lifetime data analysis. The length of time between malfunctions for aircraft engines has a skewed frequency distribution, as do the lengths of time between arrivals at a supermarket checkout queue. The populations associated with such random variables are often adequately modeled by the gamma distribution (21:164-168). Because the gamma distribution is mathematically tractable and can assume a wide range of shapes, it is widely used in reliability studies for life-testing and in statistical survival analysis for describing the distribution of elapsed time to some generic event of interest.

For distributions representing times to failure, the hazard function is often known as the failure-rate function. Quite usually this failure-rate function follows a fairly standard pattern with respect to time for most technological devices.

A typical pattern of this sort is illustrated in Figure 2.3. Here the failure-rate function is plotted against time and can be seen to fall into three distinct phases.



Figure 2.3 Typical failure-rate characteristic for engineering devices.

This plot is called the 'bathtub curve'. The first phase represents a pattern of failure which typically arises from initial production, test or assembly faults. The last phase illustrates the effects of aging when the device is beginning to wear out and the rate of failures tends to increase. In between the first and last phases is a phase which may be termed the 'useful life' where the failure-rate function remains either sensibly constant or follows a relatively slow change in value.

These three phases can be modeled with three different groups of statistical distributions. The first phase can be represented by a gamma hazard function with a shape parameter close to 0.5. The second phase can be represented by an exponential hazard function, which is a special case of the gamma hazard function with the shape parameter  $\alpha = 1.0$ . The last phase can be modeled by normal distribution. Manufacturers attempt to prolong Phase 2, since this phase has lowest failure rates. For simplicity, most studies assume that the devices under study have survived the first phase and are operating in their second, or 'useful life,' phase are broken-in already which puts the device into the second phase. The exponential distribution approximates the steady failure-rate of Phase 2 fairly well. For this reason, the exponential distribution is used routinely to model the times to failure, while the time period between failures is modeled by gamma distribution (8:535-541).



Figure 2.4 PDF, CDF and Hazard Functions of the Gamma Distribution.

As seen in Figure 2.4, the hazard function of the gamma distribution with shape parameter  $\alpha = 0.5$  may represent Phase I, while the hazard function of the gamma distribution with shape parameter  $\alpha = 1.0$  (i.e. exponential distribution) may represent Phase 2 of the failure-rate function of a device.

Similarly, we can consider a human being to be a biological unit whose failure is called a 'death'. In this case, the failure-rate function is called 'the force of mortality'. Figure 2.5 shows the similarity between the probability of death for human subjects and the failure rate function for electronic components. It shows that the studies in reliability analysis can also be applied in human life-span analysis (16).



Figure 2.5 Death-rate characteristic for males living in England.

Although the gamma distribution plays a major role in lifetime and reliability studies, it is clearly not restricted to such applications. In one novel study, Matis et al. used the gamma distribution extensively as a transit-time model in a stochastic analysis to predict animal abundance at multiple locations and to predict the density of an Africanized honey bee population (13). A similar approach can be used in predicting the spread of a virus, a biological gas or a disease. The transit-time required for the agent to cover a certain area of interest can be modelled by gamma distribution.

#### 2.3 Classical Goodness-of-Fit Tests

In general, formal goodness-of-fit tests seek to determine whether a sample data set can be hypothesized to have come from a commonly known probability distribution. Since inferences about the general population are based on the smaller data set, it is important to test the fit of the data to the population (17:121).

2.3.1 Chi-squared Type Tests. In 1900, Karl Pearson abandoned the assumption that biological populations were normally distributed, and introduced his system of distributions to provide other models. The need to test the fit of his proposed models resulted in the Chi-squared test statistic, which is among today's most used statistical procedures. Pearson's idea was to reduce the general problem of testing fit to a multinomial setting by basing a test on a comparison of observed cell counts versus their expected values under the hypothesis  $H_0$  to be tested. This reduction of data to grouped sets discards some information, making tests of this type somewhat less powerful than other classes of tests of fit (17:179-182).

 $\chi^2$  test statistic is given by

$$\chi^2 = \sum_{j=1}^k \frac{(N_j - np_j)^2}{np_j} \tag{2.11}$$

 $\chi^2$  value is smaller than the critical value if the hypothesized distribution adequately represents the sample. But in comparison with other test statistics  $\chi^2$  test has lower power especially at small sample sizes.

- 2.3.2 Empirical Distribution Function Tests. Goodness of fit tests based on the empirical distribution function (EDF) are discussed extensively by Stephens (27). A great number of statistics have been proposed for testing the null hypothesis  $H_0$  based on the idea of measuring the distance between the theoretical cdf  $F_{\theta}(x)$  and the empirical cdf  $G_n(x)$ . Goodness-of-fit tests based on empirical distribution function include the Kolmogorov-Smirnov test (K-S), Cramer-von Mises test (Cv-M) and Anderson-Darling (A-D) tests (28:44).
- 2.3.3 Kolmogorov-Smirnov Test Statistic. The K-S test statistic is (27);

$$D^{+} = \max [(i/n) - Z_i]$$
  $1 \le i \le n$   
 $D^{-} = \max [Z_i - (i-1)/n]$   $1 \le i \le n$   
 $D = \max [D^{+}, D^{-}]$ 

where  $Z_i = F_{\theta}(x_i)$ .

2.3.4 Cramer-von Mises Test Statistic. The Cv-M test statistic is denoted by  $W^2$ ,

$$W_{\psi}^{2}(G_{n}, F_{\theta}) = \int_{-\infty}^{+\infty} [G_{n}(x) - F_{\theta}(x)]^{2} \psi [F_{\theta}(x)] dF_{\theta}(x)$$
 (2.12)

with special interest given to the case where  $\psi(\cdot) \equiv 1$ .

Stephens' computational formula is (27);

$$W^{2} = \sum_{i=1}^{n} \left[ \frac{F_{\theta}(x_{i})_{i} - (2i-1)}{2n} \right]^{2} + \frac{1}{12n}$$
 (2.13)

2.3.5 Anderson-Darling Test Statistic. The Anderson-Darling statistic is one of the more powerful empirical distribution function based tests of fit in a wide range of circumstances. It is a special case of the Cramer-von Mises distance, where  $\psi(u) = 1/[u(1-u)]$ , 0 < u < 1 and takes the form

$$A_n^2(G_n, F_\theta) = \int_{-\infty}^{+\infty} \left[ G_n(x) - F\theta(x) \right]^2 \left[ F_\theta(x) \left[ 1 - F_\theta(x) \right] \right]^{-1} dF_\theta(x) \tag{2.14}$$

Stephens' computational formula is (27);

$$A^{2} = -\left[\left[\sum_{i=1}^{n} (2i - 1) \left[\ln Z_{i} + \ln(1 - Z_{n+1-i})\right]\right] / n\right] - n$$
 (2.15)

where  $Z_i = F_{\theta}(x_i)$ .

Tests based on these statistics are distribution free; they do not depend on the hypothesized distribution if all the parameters are completely specified.

# 2.4 Tests Based on Order Statistics

The subject of order statistics deals with properties and applications of ordered random variables and of functions of these variables. When random variables  $X_i$  are arranged in ascending order of magnitude, then  $X_{(i;n)}$  is said to be the  $i^{th}$  order statistic in a sample of size n. To illustrate the application of order statistics to goodness of fit tests, consider a life test on a certain electrical component. A random selection of n specimens is made from the population of items available. This sample is placed on test. If the test is continued until all sample specimens have failed, the sample is said to be complete, and it consists of the ordered observations of failure times:  $X_{(1;n)}$  to  $X_{(n;n)}$ . In the common case where testing is terminated with survivors, the sample is said to be censored.

Some frequently encountered functions of order statistics are:

- The extremes  $X_{(1,n)}$  and  $X_{(n,n)}$
- The range  $W = X_{(n;n)} X_{(1;n)}$
- The extreme deviate from the sample mean, defined as Max(  $X_{(i;n)} \bar{X}$ )

These statistics play an important role in practical applications. The extremes arise in the study of floods and droughts, as well as in breaking strength and fatigue failure studies. The range is widely used by quality control practitioners to provide quick estimates of the standard deviation in a normal distribution. The extreme deviate from sample mean is also used in fatigue failure analysis (5).

Some goodness-of-fit tests using order statistics were developed for several other distributions. Cressie (7) summarizes the H, I, and D test statistics in his study of the uniform distribution. If we define the sequence of  $i^{th}$ -order gaps for an ordered sample of n observations on an uniform random variable as

$$G_n^{(m)} = U_{(n+m)} - U_{(n)}$$
  $(n = 0, 1, \dots, n+1-m),$  (2.16)

where  $U_i$  is the  $i^{th}$  uniform order statistic,  $U_{(0)} = 0$ , and  $U_{(n+1)} = 1$ . Then H statistic can be represented as

$$H_n^{(m)} = \sum_{n=0}^{n+1-m} h(nG_n^{(m)}) \qquad (m \le n+1), \tag{2.17}$$

for those  $h(\cdot)$  satisfying certain regularity conditions.

This test statistic was modified also by Pino (25) as D statistic:

$$D_n^{(m)} = \sum_{i=0}^{k_n} k(nG_i^{(m)}) \qquad (m \le n+1), \tag{2.18}$$

where  $k_n = [(n+1)/m] - 1$ . Finally, Holst came up with the L test statistic

$$L_n^{(m)} = \sum_{n=0}^{n+1-m} \log(nG_n^{(m)}) \qquad (m \le n+1), \tag{2.19}$$

These tests were developed for the uniform distribution. Some of these test statistics can be applied to nonuniform distributions, too (7).

Wells et al. (34) studied some tests of fit using spacings statistics with estimated parameters. They assumed that sample data were collected from an unknown underlying continuous cumulative distribution. They present some theorems and proofs in their study showing that those test statistics have the same asymptotic distribution in the case when parameters must be estimated from the sample as in the case when parameters are specified (34).

Some powerful distributional tests based on sample spacings were studied by Hall (9). He revised the test statistics that were studied by Pino (25), and Cressie (7). Hall especially focuses on the S statistic also developed by Pino (25), which is a modification of D statistic, represented as

$$S_n \equiv \sum_{k=1}^{[n/m]} h\left[(n/m)(X_{n,km} - X_{n,(k-1)m})\right]$$
 (2.20)

Another test statistic based on spacings was developed by Mann (18). She used S statistic for the two parameter Weibull distribution, and showed that it was as powerful as the test statistics based on the empirical distribution function. S statistic is the ratio of a linear combination of the sum of order statistics divided by the expected values of a normalized sum of order statistics from a sample.

The advantage of the S statistic was that it was relatively easy to calculate and the parameters of the Weibull distribution did not need to be known or estimated other than the shape parameter. S statistic is represented as

$$S = \frac{\sum_{i=\frac{n}{2}+1}^{n-1} G_i}{\sum_{i=1}^{n-1} G_i}$$
 (2.21)

where  $G_i$  is the ratio defined by

$$G_i = \frac{X_{i+1} - X_i}{\mu_{(i+1)} - \mu_{(i)}} \tag{2.22}$$

In this notation  $X_i$  represents the  $i^{th}$  ordered observation from a sample of size n. Mann et al. used this new test statistic for the two parameter and three parameter Weibull distributions for known shape parameter. When they compared the power of the S statistic, it was observed that the power of the S statistic was at least as good as its competitors (22).

Mann et al. also introduced a derivative of S statistic as M test statistic. This test statistic was used for extreme value distribution (19). M test statistic is given by

$$M = \frac{\left(\frac{n}{2}\right) \sum_{i=\frac{n}{2}+1}^{n-1} G_i}{\left(\frac{n-1}{2}\right) \sum_{i=1}^{n/2} G_i}$$
 (2.23)

where

$$G_i = \frac{X_{i+1} - X_i}{\mu_{(i+1)} - \mu_{(i)}} \tag{2.24}$$

A modification of Mann's S statistic was developed by Tiku (29) as  $Z^*$  test statistic. Tiku modified Mann's S statistic by changing the coefficients of the terms in the linear combination. This statistic is the ratio of the sums of ordered observations divided by sums of their expected values, with different limits on the summations

when compared to Mann's S statistic (32). It was shown as

$$Z^* = \frac{2\sum_{i=1}^{n-2} (n-1-i) G_i}{(n-2)\sum_{i=1}^{n-1} G_i}$$
 (2.25)

where  $G_i$  is as defined in Equation 221. The numerator of  $G_i$  is the difference between ordered observations,  $X_{i+1}$  and  $X_i$ . The denominator of  $G_i$  is the difference between the expected values of the  $(i+1)^{th}$  and  $i^{th}$  order statistics, denoted by  $\mu_{(i+1:n)} - \mu_{(i:n)}$ .

Tiku applied the  $Z^*$  test statistic to the normal distribution. He showed that the power of the  $Z^*$  test statistic was generally more powerful against asymmetric alternatives, and less powerful against symmetric alternatives when compared with tests of normality like Shapiro-Wilk and Cramer-von Mises test statistics.

Balakrishnan (2) contributed to  $Z^*$  test statistic by calculating the power of this test statistic for several distributions. He showed that the approximate power value obtained asymptotically and the simulated power value obtained by 4,000 Monte Carlo runs were very close. He presented the power results for several statistical distributions for complete samples. He found the  $Z^*$  test statistic to be more powerful than Durbin  $D^*$  statistic, and Shapiro-Wilk  $W^*$  statistic when all distributions are considered. More detailed information on  $Z^*$ -statistic is presented in the Methodology chapter.

#### 2.5 The Concept and Types of Censoring

Censoring creates special problems in the analysis of lifetime data. Broadly speaking, censoring occurs when exact lifetimes are known for only a portion of the individuals under study.

When an individual has his lifetime censored at L, we will call L the censoring time for that observation. Formally, an observation is said to be right censored at L if the exact value of the observation is not known but only that it is greater than or equal to L. Similarly, an observation is said to be left censored at L if it is known only

that the observation is less than or equal to L. Right censoring is very common in lifetime data, but left censoring is fairly rare. For convenience, the term 'censoring' will be used meaning in all instances 'right censoring'. There are three predominant types of censoring; Type I, Type II, and Random censoring (17).

2.5.1 Type I Censoring. Sometimes experiments are run over a fixed time period in such a way that an individual's lifetime will be known exactly only if it is less than some predetermined value. In such situations the data are said to be Type I or time censored. For example, in a life test experiment n items may be placed on test, but a decision made to terminate the test after a time L has elapsed. Lifetimes will then be known exactly only for those items that fail by time L. Type I censoring frequently arises in medical research where, for example, a decision is made to terminate a study at a date on which not all the individuals' lifetimes will be known. Let's suppose an AIDS research is made on the lifetime of n AIDS patients who have the disease, and after L years the research is stopped. During this period r of the patients will be dead, for  $0 \le r \le n$ , and n-r of them will be living. We will determine the exact lifetimes of the patients who died in the L year period, but we don't have an idea about the lifetimes of the survivors (17).

2.5.2 Type II Censoring. In contrast, a sample of size n is said to be Type II censored when only its r smallest lifetimes are observed  $(1 \le r \le n)$ . Experiments involving Type II censoring are often used in lifetime testing. As an example, a total of n items is placed on test, but instead of continuing until all n items have failed, the test is terminated at the time the  $r^{th}$  item fails. Such tests can save time and money, since it could take a very long time for all the items to fail in some instances.

The statistical treatment of Type II censored data is, at least in principle, straightforward. The number of observations r is usually decided before the data are collected. The resulting data consist of the r smallest lifetimes  $T_{(1)} \leq T_{(2)} \leq$ 

 $\cdots \leq T_{(r)}$  out of a random sample of n iid lifetimes  $T_1 \cdots T_n$  presumed to have a continuous distribution with pdf f(t) and survivor function S(t). It follows from general results on order statistics that the joint pdf of  $T_{(1)}, \ldots, T_{(r)}$  is

$$f_n(t_{(1)}, t_{(2)}, \dots, t_{(n)}) = \frac{n!}{(n-r)!} f(t_{(1)}) \cdots f(t_{(r)}) [S(t_{(r)})]^{n-r}$$
 (2.26)

For any given parametric model statistical inference can be based on the likelihood function given in Equation 2.24.

To summarize, the difference between Type II and Type I censoring is the termination of the experiment. Type II censoring stops the test when r of the n individuals fail, while Type I stops the test after a predetermined time limit (17).

2.5.2.1 Progressive Type II Censoring. A generalization of Type II censoring is progressive Type II censoring. In this case, the first  $r_1$  failures in a sample of n items are observed: then  $n_1$  of the remaining  $(n-r_1)$  unfailed items are removed from the experiment, leaving  $(n - r_1 - n_1)$  items still present. When further  $r_2$  items have failed,  $n_2$  of the still unfailed are removed, and so on. The experiment terminates after some prearranged series of repetitions of this procedure. In progressive censoring some of the entities are taken out of the sample for some reason. In a sample of AIDS study, if an entity dies of cancer, this entity is not taken into consideration as an observation since the cause of death is not what we would want to observe. This type of censoring is not widely used in lifetime analysis, because it makes the calculations highly complicated, even though it is widely used for the lifespan analysis of the patients in hospitals. Considering that our objective is generating critical values for gamma distribution with a censoring technique that is widely used and easy to calculate, the progressive Type II censoring was not included in this research (17).

2.5.3 Random Censoring. Censoring times are often effectively random. For example, in a medical trial patients may enter the study in a more or less random fashion, according to their time of diagnosis. If the study is terminated at some prearranged date, then censoring times, that is the length of time from an individual's entry into the study until the termination of the study, are random. For inference purposes one often works conditionally on the observed censoring times, proceeding as though the censoring were Type I, but the process by which the data were generated needs to be considered in order to justify this. The assumption of a random censoring mechanism is also a useful device for investigating the properties of certain procedures (17).

#### 2.6 Summary

The need to model failure time data motivated the discussion of the gamma distribution. The wide variety of shapes assumed by both its density and hazard functions makes the gamma distribution suitable for broad range of applications. However, the appropriateness of the gamma distribution to model a particular set of data depends on how well it conforms to the data.

We typically assess how well a distribution represents the data through goodness-of-fit testing. While advances have been made in goodness-of-fit tests, many of these advances have not been applied to the gamma distribution. This research applied a goodness-of-fit test based on spacings to the gamma distribution with known shape parameter.

Chapter 3 explains the methodology employed in this research, while Chapter 4 presents the results and analysis of the research. Finally, Chapter 5 closes this thesis with a set of conclusions and recommendations.

# III. METHODOLOGY

The goal of this thesis was to develop a new goodness-of-fit test for the gamma distribution where the shape parameter  $\alpha$  is known. The scale parameter  $\beta$  and the location parameter  $\gamma$  do not need to be known or estimated.

#### 3.1 The Z\* Test Statistic

The test statistic used throughout this thesis was a derivative of the one used by Tiku (32). It is denoted by  $Z^*$  and is given by

$$Z^* = \frac{2\sum_{i=1}^{n-2} (n-1-i) G_i}{(n-2)\sum_{i=1}^{n-1} G_i}$$
(3.1)

where  $G_i$  is the ratio defined by

$$G_i = \frac{X_{i+1} - X_i}{\mu_{(i+1:n)} - \mu_{(i:n)}}$$
(3.2)

The numerator of  $G_i$ ,  $X_{i+1} - X_i$ , is the difference between the  $i^{th}$  and the  $(i+1)^{st}$  ordered observations of the sample. This difference is referred to as the  $i^{th}$  gap of the sample. There are n-1 gaps in a sample of size n. The values of the order statistics,  $X_i$ , are taken directly from the sample.

The denominator of  $G_i$ ,  $\mu_{(i+1:n)} - \mu_{(i:n)}$ , is the difference between expected value of  $i^{th}$  and the  $(i+1)^{st}$  order statistics from the standard gamma distribution with scale parameter  $\beta$ , shape parameter  $\alpha$ , and location parameter  $\delta$ . There are (n-1)  $\mu_{dif}$  values in a sample of size n (31).

In simplified form, the ratio  $G_i$  becomes

$$G_i = \frac{X_{i+1} - X_i}{\mu_{dif_i}} \tag{3.3}$$

The expected value of the  $m^{th}$  order statistic from a sample of n observations from a gamma distribution with shape parameter  $\alpha$  and scale parameter  $\theta$  is given by

$$E(x_{m,n};\theta,\alpha) = \frac{\theta n}{\Gamma(\alpha)} \binom{n-1}{m-1} \int_0^\infty \left[ \frac{\Gamma(\alpha;z)}{\Gamma(\alpha)} \right]^{m-1} \left[ 1 - \frac{\Gamma(\alpha;z)}{\Gamma(\alpha)} \right]^{n-m} z^{\alpha} e^{-z} dz, \quad (3.4)$$

where  $\Gamma(\alpha; z)$  is the incomplete Gamma function defined by (10)

$$\Gamma(\alpha; z) = \int_0^z t^{\alpha - 1} e^{-t} dt$$
 (3.5)

# 3.2 Computation of Critical Values for Z\*

Monte Carlo Simulation was used to obtain the critical values of the  $Z^*$  test statistic. The specific steps involved in the procedure were:

- 1. For a fixed sample size n and shape parameter  $\alpha$ , random deviates from the gamma distribution were generated using the IMSL subroutine RNGAM. All gamma deviates were generated with scale parameter equal to one and location parameter equal to zero.
- 2. The n random gamma deviates were additively scaled by ten.
- 3. The *n* scaled gamma deviates were sorted in ascending order using IMSL subroutine SVRGN. The values obtained after the sort operation were the  $X_i$ values used in the numerator of  $G_i$ .

- 4. The differences between the expected values of the order statistics,  $\mu_{dif}$  were obtained separately and read into the FORTRAN program for use in the denominator of  $G_i$ .
- 5. The  $G_i$  values were input into the summation formula to compute the  $Z^*$  test statistic value for this one sample of size n.
- 6. Steps 1 to 5 were repeated 10,000 times, thus generating 10,000 independent  $Z^*$  statistics.
- 7. The 10,000 Z\* statistics were sorted in ascending order using the IMSL subroutine SVRGN.
- 8. The 80th, 85th, 90th, 95th and the 99th percentile were found by linear interpolation. These percentiles comprise the critical values for the test statistic.
- 9. These computations were made for 10 different seed values, and their mean values were taken for each percentile.

Figure 3.1 summarizes the process used to generate the critical values for the  $Z^*$  test statistic. This process was repeated for different sample sizes and shape parameters. For shape parameters  $\alpha = 0.5, 1.0, \dots, 4.0$ , the sample size ranged from 5 to 35 in multiples of 5. In addition, a sample size of 40 augmented the  $\alpha = 0.5$  case to illustrate the effect of a higher sample size.



Figure 3.1 Generation of Critical Values for  $Z^*$ 

#### 3.3 Power Study of the Z\* Statistic

The performance of any goodness-of-fit test statistic is known as the *Power of the Test*. It is defined as the probability of rejecting the null hypothesis,  $H_0$ , when an alternate hypothesis  $H_a$  is true. In this thesis, nine alternate distributions were considered in the power study for the  $Z^*$  test statistic. A direct comparison with the prominent competitors was made for shape parameter=1.0 and sample size 5, 15 and 25. Power figures for this case were obtained from Viviano (33). Power data for all other combinations of shape parameter  $\alpha$  and sample size n were accomplished independently via the Monte Carlo method.

3.3.1 The Distributions  $H_0$  and  $H_a$ . The null hypothesis for the power study was that sample deviates follow a gamma distribution with shape parameter  $\alpha$ . The values of  $\alpha$  used were  $\alpha = 0.5$ , 1.0, 1.5, 2.0, 3.0, and 4.0. The 9 alternative hypotheses,  $H_a$ , identified by Distribution numbers 2 thru 10 in Table 3.1.

Table 3.1 Statistical Distribution Functions Used for the Power Study

| Distribution | Distribution Name and Parameters    |
|--------------|-------------------------------------|
| 1            | Gamma with shape parameter=original |
| 2            | Gamma with shape parameter=1.5      |
| 3            | Gamma with shape parameter=2.5      |
| 4            | Gamma with shape parameter=4.0      |
| 5            | Weibull with shape parameter=2.0    |
| 6            | Weibull with shape parameter=3.0    |
| 7            | Lognormal with w=0.0, p=2.0         |
| 8            | Lognormal with w=1.0, p=1.0         |
| 9            | Beta with p=2.0, q=2.0              |
| 10           | Beta with p=2.0, q=3.0              |

For comparison, some of the distributions used in the power study are plotted against gamma distribution. Figure 3.2 indicates the comparison between Weibull distribution and the gamma distributions.



Figure 3.2 Gamma vs Weibull Distributions in the Power Study.

Figure 3.3 compares the lognormal distribution to the gamma distributions with different shape parameters.



Figure 3.3 Gamma vs Lognormal Distributions in the Power Study.

- 3.3.2 Power Study Process. The power study process was very similar to the critical value determination procedure. A Monte Carlo simulation was accomplished with 5000 iterations and a different random number seed than what was used in the critical value program. The steps in the process were:
  - 1. Random deviates from  $H_a$  for a fixed sample size n were generated using the appropriate IMSL subroutine.
  - 2. Deviates were additively scaled by 10 and sorted in ascending order. The values obtained at this point are the  $X_i$  values used in the numerator of  $G_i$ .
  - 3. The differences between the expected values of the order statistics for a sample of size n, shape  $\alpha$  and scale parameter equal to one were read into the program to establish the denominator of  $G_i$ .
  - 4. The  $Z^*$  test statistic was calculated for each iteration.
  - 5. The  $Z^*$  value attained was compared to the critical value at each of five  $\alpha$  levels.
  - 6. The number of times the  $Z^*$  statistic exceeds the critical value was counted for each of the five  $\alpha$  levels. Exceeding the critical value is equivalent to rejecting  $H_0$  at the corresponding significance level.

The process was repeated for each different alternate distribution,  $H_a$ , at various sample sizes.

Figure 3.4 presents the flow diagram followed during the generation of tables of power against alternative distribution.



Figure 3.4 Generation of Power tables for the  $Z^*$  test statistic

#### IV. FINDINGS AND DISCUSSION OF ANALYSIS

This chapter discusses the findings of this research effort. Results applicable to each of the objectives set forth in Chapter 1, Introduction, are presented in sequence.

# 4.1 The Z\* Test Statistic

The  $Z^*$  statistic was utilized during all phases of this thesis effort. On the whole, it was relatively simple to compute once the the differences between the expected values of the order statistics required in the denominator of  $G_i$  were available. These values were taken directly from the tables listed in Harter (10).

#### 4.2 Critical Values for the Z\* Test Statistic

Critical values for  $Z^*$  were obtained via Monte Carlo method by averaging the percentiles obtained in 10 blocks of 10,000 iterations. Linear interpolation at the appropriate levels of significance yielded the desired numerical values of the critical values of the  $Z^*$ . The initial experiments included the sample sizes ranging from 5 to 35 observations. In order to verify the trend of the critical values as the sample size changed, an additional sample of size n = 40 was applied to the gamma distribution with shape parameter  $\alpha = 0.5$ . For illustration purposes, the critical values obtained for shape parameter  $\alpha = 1.0$  are presented in Table 4.1.

Table 4.1 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 1.0

| Sample size | $_{\mathrm{shape}}$ | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 1.0                 | 1.2918          | 1.3564          | 1.4388          | 1.5543          | 1.7426          |
| 10          | 1.0                 | 1.1760          | 1.2160          | 1.2659          | 1.3390          | 1.4695          |
| 15          | 1.0                 | 1.1356          | 1.1667          | 1.2059          | 1.2634          | 1.3676          |
| 20          | 1.0                 | 1.1157          | 1.1424          | 1.1759          | 1.2248          | 1.3141          |
| 25          | 1.0                 | 1.1012          | 1.1255          | 1.1549          | 1.1987          | 1.2781          |
| 30          | 1.0                 | 1.0917          | 1.1128          | 1.1396          | 1.1780          | 1.2516          |
| 35          | 1.0                 | 1.0853          | 1.1045          | 1.1287          | 1.1662          | 1.2347          |

Obviously, as  $\alpha$  decreases from 0.20 to 0.01, the critical values increase as expected. Within each  $\alpha$  level, the critical values decrease gradually as the sample size increases from 5 to 35. However, the rate of decrease within each  $\alpha$  level is not linear. This trend was noted for all shape parameters considered in this thesis. Tabled values for all shape parameters taken from complete samples are listed in Appendix A. The critical values for Type II censored samples with a censoring level of 20% are listed in Appendix B.

#### 4.3 Power Study of Z\* Test Statistic

The power of a goodness-of-fit test is the probability of rejecting the null hypothesis,  $H_0$ , when it is false. Therefore, we seek power values as close to 1.0 as possible for any distribution that is not a gamma distribution with the specified shape parameter. Nine alternative distributions were considered in the power study of  $Z^*$ .

- 4.3.1 Cross-checks. Two different cross-checks were used throughout the computation phases of critical values and power study:
  - When the null hypothesis was input into the power study computer program,
    the attained power should have matched the claimed level of significance, α.
    In all cases, power attained when H<sub>0</sub> within 5 percent of the α level. So, the
    accuracy of the critical values found by the critical value Fortran program in
    Appendix E was checked by the results of power study Fortran program in
    Appendix F.
  - Alternate distributions number 2, 3 and 4 were the gamma distributions with shape parameters equal to 1.5, 2.5 and 4.0. When the null hypothesis is true the power of the null hypothesis and the power of the gamma distribution with the same shape parameter should be equal. Therefore, the accuracy of the power values were checked by duplicating the distributions.

Power study results for the  $Z^*$  test statistic were mixed. For shape parameters less than two, the test yielded good to excellent results. For shape parameter two and higher, the test results were poor. Of particular interest was the excellent performance of the  $Z^*$  test statistic when the null hypothesis was more skewed than the alternative distributions. This observation implies that  $Z^*$  test statistic is very effective for certain alternatives and somewhat weak for others. This results indicate that the  $Z^*$  test statistic is a directional test.

# 4.4 Power Results for the Z\* Test Statistic

In the following sections, the power results are discussed in four phases due to the differing levels of power attained by this goodness-of-fit test. As the null hypothesis  $H_0$  changes from being highly skewed to symmetric, the power results change from excellent to poor. Of course, larger sample sizes produce better power at all values of the null hypothesis. The four groupings for discussion are:

- Gamma shape parameter 0.5
- Gamma shape parameter 1.0
- Gamma shape parameter 1.5
- Gamma shape parameters 2.0, 3.0, 4.0.

For classifying the power values, the following subjective scale is adopted:

- Power of the test values of 0.90 or greater are excellent
- Power of the test values of 0.60 to 0.89 are good
- Power of the test values of 0.40 to 0.59 are fair
- Power of the test values below 0.40 are poor

Although this scale is subjective, this study requires the classification of the powers for clarity and comparison.

Samples. The gamma distribution with shape parameter  $\alpha = 0.5$  from Complete Samples. The gamma distribution with shape parameter 0.5 is the most skewed distribution considered in this analysis. At this shape parameter, the gamma distribution highly differs from all the alternatives except the lognormal distribution (0,2). For this reason, it may be expected that power should be high against every alternative distribution but the lognormal. This expectation is verified by the power values attained by the Monte Carlo experiment. All power tables from sample size 5 through 35 are given in Appendix C. Table 4.2 shows the power values for sample size n = 10.

Table 4.2 Power Study: Sample size 10, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.150           | 0.098           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.767           | 0.689           | 0.577           | 0.408           | 0.142           |
| Gamma(2.5)     | 0.871           | 0.816           | 0.729           | 0.572           | 0.255           |
| Gamma(4.0)     | 0.915           | 0.875           | 0.806           | 0.671           | 0.353           |
| Weibull(2.0)   | 0.941           | 0.909           | 0.849           | 0.727           | 0.407           |
| Weibull(3.0)   | 0.973           | 0.954           | 0.920           | 0.840           | 0.573           |
| Lognormal(0,2) | 0.058           | 0.041           | 0.026           | 0.011           | 0.002           |
| Lognormal(1,1) | 0.486           | 0.404           | 0.308           | 0.191           | 0.051           |
| Beta(2,2)      | 0.974           | 0.955           | 0.917           | 0.825           | 0.535           |
| Beta(2,3)      | 0.955           | 0.927           | 0.876           | 0.761           | 0.439           |

At a significance level of 0.05, the power of the test is at least good for 5 of the 9 alternate hypotheses  $H_a$ . For  $\alpha$  levels of 0.10 and higher, the power ranges from fair to excellent. These were the highest power values attained for the  $Z^*$  test statistic for sample size n = 10..

As the sample size increases, the power of the test is excellent against all of the alternatives except lognormal distribution (0,2), which is the only alternative distribution more skewed than the hypothesized gamma distribution with shape  $\alpha = 0.5$ . The lognormal distribution (1,1) is rejected at fair to excellent level, since it is slightly less skewed than the gamma distribution with shape parameter  $\alpha = 0.5$ . Table 4.3 illustrates the effect of the sample size on the power values.

Table 4.3 Power Study: Sample size 35, shape 0.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.203           | 0.153           | 0.103           | 0.051           | 0.011           |
| Gamma(1.5)      | 1.000           | 0.999           | 0.998           | 0.992           | 0.943           |
| Gamma(2.5)      | 1.000           | 1.000           | 1.000           | 0.999           | 0.993           |
| Gamma(4.0)      | 1.000           | 1.000           | 1.000           | 1.000           | 0.998           |
| Weibull $(2.0)$ | 1.000           | 1.000           | 1.000           | 1.000           | 0.999           |
| Weibull $(3.0)$ | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |
| Lognormal(0,2)  | 0.011           | 0.007           | 0.005           | 0.002           | 0.000           |
| Lognormal(1,1)  | 0.941           | 0.918           | 0.877           | 0.792           | 0.562           |
| Beta(2,2)       | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |
| Beta(2,3)       | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |

These results imply that the  $Z^*$  test statistic is more powerful against the distributions which are more skewed than the gamma distribution with the specified shape parameter  $\alpha$  stated in the null hypothesis.

4.4.2 Power Results for Shape Parameter  $\alpha = 0.5$  from Censored Samples. The power values obtained from censored samples were close to those obtained from complete samples. In most cases, the power against alternative distributions was slightly lower for the censored case due to the reduced information regarding the sample. Table 4.4 presents the power of the tests for the censored case where the sample size was 10, and the number of observations was r = 8.

Table 4.4 Power Study: Sample size 10, observations 8, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.151           | 0.102           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.658           | 0.575           | 0.465           | 0.303           | 0.091           |
| Gamma(2.5)     | 0.765           | 0.694           | 0.594           | 0.423           | 0.154           |
| Gamma(4.0)     | 0.824           | 0.761           | 0.670           | 0.509           | 0.216           |
| Weibull(2.0)   | 0.848           | 0.789           | 0.701           | 0.539           | 0.231           |
| Weibull(3.0)   | 0.908           | 0.865           | 0.798           | 0.662           | 0.353           |
| Lognormal(0,2) | 0.129           | 0.093           | 0.060           | 0.028           | 0.005           |
| Lognormal(1,1) | 0.507           | 0.423           | 0.326           | 0.196           | 0.051           |
| Beta(2,2)      | 0.887           | 0.837           | 0.756           | 0.607           | 0.287           |
| Beta(2,3)      | 0.852           | 0.794           | 0.705           | 0.542           | 0.230           |

At a significance level of 0.05, the power of the test is between fair and good for 6 of the 9 alternate hypotheses  $H_a$ . For  $\alpha$  levels of 0.10 and higher, the power is good for most of the alternatives with the exception of the lognormal distribution.

The effect of the sample size may be observed in Table 4.5, which depicts the results of a power study of censored observations for a sample of n=30 and r=24 observations.

Table 4.5 Power Study: Sample size 30, observations 24, shape 0.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.151           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.993           | 0.986           | 0.973           | 0.930           | 0.747           |
| Gamma(2.5)      | 0.999           | 0.998           | 0.995           | 0.984           | 0.919           |
| Gamma(4.0)      | 1.000           | 0.999           | 0.999           | 0.995           | 0.963           |
| Weibull $(2.0)$ | 1.000           | 0.999           | 0.999           | 0.996           | 0.969           |
| Weibull(3.0)    | 1.000           | 1.000           | 1.000           | 0.999           | 0.992           |
| Lognormal(0,2)  | 0.117           | 0.085           | 0.054           | 0.026           | 0.005           |
| Lognormal(1,1)  | 0.951           | 0.926           | 0.884           | 0.785           | 0.521           |
| Beta(2,2)       | 1.000           | 1.000           | 1.000           | 0.999           | 0.984           |
| Beta(2,3)       | 1.000           | 1.000           | 0.999           | 0.996           | 0.969           |

At a significance level of 0.05, the power is excellent for 7 of the 9 alternative hypotheses. The lognormal distribution (1,1) had a power of 0.785, while the other lognormal distribution (0,2) had a power 0.026.

# 4.4.3 Power Results for Shape Parameter $\alpha = 1.0$ from Complete Samples. The gamma distribution with shape parameter $\alpha = 1.0$ is a non-symmetric distribution. It is equivalent to the exponential distribution. As Figure 4.1 indicates, the gamma distribution with shape parameter $\alpha = 1.0$ is less skewed than the gamma distribution with shape parameter $\alpha = 0.5$ .



Figure 4.1 Gamma Distributions with  $\alpha = 0.5$  and  $\alpha = 1.0$ .

The power results varied by significance level. For a significance level of 0.10 or higher, fair to good power was attained at sample sizes of 15 or greater except when the alternative distribution was the lognormal distribution.

Tables 4.6 and 4.7 present the power study results for sample sizes 10 and 35. All other power tables for this shape parameter are included in Appendix C.

Table 4.6 Power Study: Sample size 10, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.195           | 0.145           | 0.097           | 0.048           | 0.010           |
| Gamma(1.5)      | 0.338           | 0.268           | 0.190           | 0.104           | 0.025           |
| Gamma(2.5)      | 0.505           | 0.423           | 0.323           | 0.198           | 0.057           |
| Gamma(4.0)      | 0.617           | 0.537           | 0.435           | 0.292           | 0.099           |
| Weibull $(2.0)$ | 0.699           | 0.623           | 0.520           | 0.362           | 0.134           |
| Weibull(3.0)    | 0.840           | 0.784           | 0.702           | 0.556           | 0.278           |
| Lognormal(0,2)  | 0.009           | 0.006           | 0.003           | 0.001           | 0.000           |
| Lognormal(1,1)  | 0.136           | 0.102           | 0.066           | 0.032           | 0.007           |
| Beta(2,2)       | 0.844           | 0.786           | 0.698           | 0.544           | 0.253           |
| Beta(2,3)       | 0.761           | 0.688           | 0.585           | 0.421           | 0.163           |

Table 4.7 Power Study: Sample size 35, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.151           | 0.101           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.639           | 0.564           | 0.462           | 0.311           | 0.110           |
| Gamma(2.5)     | 0.933           | 0.904           | 0.853           | 0.747           | 0.476           |
| Gamma(4.0)     | 0.984           | 0.974           | 0.957           | 0.912           | 0.748           |
| Weibull(2.0)   | 0.996           | 0.992           | 0.985           | 0.964           | 0.861           |
| Weibull(3.0)   | 1.000           | 1.000           | 0.999           | 0.997           | 0.984           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.087           | 0.064           | 0.042           | 0.020           | 0.004           |
| Beta(2,2)      | 1.000           | 1.000           | 0.999           | 0.997           | 0.979           |
| Beta(2,3)      | 0.999           | 0.998           | 0.996           | 0.986           | 0.920           |

4.4.4 Power Results for Shape Parameter  $\alpha = 1.0$  from Censored Samples. The power values obtained from censored samples were close to those obtained from complete samples. In most cases, the power against alternative distributions was slightly lower for the censored case due to the reduced information regarding the sample. Table 4.8 presents the power of the test for the censored case where the sample size was 10, and the number of observations was r = 8.

Table 4.9 presents the censored case where the number of observations in a sample size of n = 35 was r = 28.

Table 4.8 Power Study: Sample size 10, observations 8, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | lpha=0.01 |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------|
| Original        | 0.197           | 0.147           | 0.098           | 0.050           | 0.010     |
| Gamma(1.5)      | 0.307           | 0.240           | 0.167           | 0.090           | 0.019     |
| Gamma(2.5)      | 0.426           | 0.347           | 0.259           | 0.151           | 0.038     |
| Gamma(4.0)      | 0.511           | 0.432           | 0.338           | 0.211           | 0.060     |
| Weibull $(2.0)$ | 0.551           | 0.469           | 0.369           | 0.235           | 0.071     |
| Weibull(3.0)    | 0.683           | 0.610           | 0.513           | 0.364           | 0.138     |
| Lognormal(0,2)  | 0.031           | 0.020           | 0.012           | 0.005           | 0.001     |
| Lognormal(1,1)  | 0.191           | 0.145           | 0.098           | 0.050           | 0.009     |
| Beta(2,2)       | 0.636           | 0.556           | 0.452           | 0.304           | 0.101     |
| Beta(2,3)       | 0.561           | 0.479           | 0.376           | 0.240           | 0.073     |

Table 4.9 Power Study: Sample size 35, observations 28, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.150           | 0.099           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.564           | 0.481           | 0.382           | 0.250           | 0.081           |
| Gamma(2.5)     | 0.862           | 0.813           | 0.737           | 0.609           | 0.331           |
| Gamma(4.0)     | 0.946           | 0.923           | 0.883           | 0.800           | 0.568           |
| Weibull(2.0)   | 0.964           | 0.946           | 0.914           | 0.843           | 0.613           |
| Weibull(3.0)   | 0.995           | 0.992           | 0.986           | 0.968           | 0.885           |
| Lognormal(0,2) | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.232           | 0.178           | 0.124           | 0.069           | 0.015           |
| Beta(2,2)      | 0.989           | 0.982           | 0.966           | 0.927           | 0.771           |
| Beta(2,3)      | 0.969           | 0.951           | 0.918           | 0.849           | 0.617           |

Samples. Fair to excellent power values were attained at high sample sizes of 30 and 35 for significance levels greater than or equal to 0.10 except when the alternative distributions were the lognormal distributions (0,2) and (1,1). At significance levels of 0.05 and 0.01, the test attained good results in only 3 of 9 alternate hypotheses. However, the sample sizes necessary for a satisfactory goodness-of-fit test are not prohibitively large. Table 4.10 presents the power values for sample size n = 10. Table 4.11 presents the power values for sample size n = 30.

Table 4.10 Power Study: Sample size 10, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.147           | 0.098           | 0.048           | 0.009           |
| Gamma(1.5)     | 0.199           | 0.150           | 0.099           | 0.050           | 0.010           |
| Gamma(2.5)     | 0.331           | 0.262           | 0.185           | 0.100           | 0.023           |
| Gamma(4.0)     | 0.444           | 0.366           | 0.273           | 0.165           | 0.045           |
| Weibull(2.0)   | 0.538           | 0.453           | 0.349           | 0.214           | 0.061           |
| Weibull(3.0)   | 0.725           | 0.651           | 0.550           | 0.397           | 0.161           |
| Lognormal(0,2) | 0.004           | 0.003           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.070           | 0.050           | 0.030           | 0.014           | 0.002           |
| Beta(2,2)      | 0.734           | 0.660           | 0.556           | 0.394           | 0.150           |
| Beta(2,3)      | 0.615           | 0.530           | 0.419           | 0.267           | 0.084           |

Table 4.11 Power Study: Sample size 30, shape 1.5

| Distribution                    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original                        | 0.206           | 0.154           | 0.103           | 0.050           | 0.009           |
| Gamma(1.5)                      | 0.201           | 0.151           | 0.102           | 0.051           | 0.010           |
| Gamma(2.5)                      | 0.559           | 0.482           | 0.385           | 0.253           | 0.084           |
| Gamma(4.0)                      | 0.788           | 0.729           | 0.644           | 0.503           | 0.243           |
| Weibull(2.0)                    | 0.904           | 0.864           | 0.800           | 0.674           | 0.380           |
| Weibull(3.0)                    | 0.990           | 0.984           | 0.972           | 0.940           | 0.807           |
| Lognormal(0,2)                  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)                  | 0.012           | 0.008           | 0.004           | 0.002           | 0.000           |
| $\overline{\mathrm{Beta}(2,2)}$ | 0.992           | 0.986           | 0.975           | 0.940           | 0.786           |
| Beta(2,3)                       | 0.959           | 0.936           | 0.896           | 0.802           | 0.524           |

# 4.4.6 Power Results for Shape Parameter $\alpha = 1.5$ from Censored Samples. The power values obtained from censored samples for alternative distributions with the shape parameter $\alpha = 1.5$ were lower in most cases than the powers of complete samples. The two power values greater than complete samples were obtained against the lognormal (1,1) alternative distribution. The power values for censored samples are presented in Table 4.12 for sample size of n = 10 and in Table 4.13 for sample size of n = 35.

Table 4.12 Power Study: Sample size 10, observations 8, shape 1.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.198           | 0.145           | 0.096           | 0.048           | 0.009           |
| Gamma(1.5)      | 0.200           | 0.149           | 0.099           | 0.049           | 0.009           |
| Gamma(2.5)      | 0.292           | 0.229           | 0.159           | 0.085           | 0.019           |
| Gamma(4.0)      | 0.373           | 0.301           | 0.220           | 0.127           | 0.030           |
| Weibull $(2.0)$ | 0.408           | 0.331           | 0.245           | 0.142           | 0.036           |
| Weibull(3.0)    | 0.553           | 0.474           | 0.377           | 0.246           | 0.076           |
| Lognormal(0,2)  | 0.018           | 0.011           | 0.006           | 0.002           | 0.000           |
| Lognormal(1,1)  | 0.115           | 0.082           | 0.053           | 0.024           | 0.004           |
| Beta(2,2)       | 0.505           | 0.425           | 0.325           | 0.200           | 0.057           |
| Beta(2,3)       | 0.423           | 0.345           | 0.257           | 0.152           | 0.038           |

Table 4.13 Power Study: Sample size 35, observations 28, shape 1.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.203           | 0.152           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)      | 0.199           | 0.150           | 0.100           | 0.052           | 0.010           |
| Gamma(2.5)      | 0.519           | 0.443           | 0.347           | 0.227           | 0.070           |
| Gamma(4.0)      | 0.728           | 0.663           | 0.572           | 0.437           | 0.197           |
| Weibull $(2.0)$ | 0.793           | 0.732           | 0.643           | 0.502           | 0.233           |
| Weibull(3.0)    | 0.957           | 0.938           | 0.906           | 0.837           | 0.623           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.046           | 0.032           | 0.019           | 0.008           | 0.001           |
| Beta(2,2)       | 0.911           | 0.875           | 0.813           | 0.702           | 0.414           |
| Beta(2,3)       | 0.810           | 0.751           | 0.661           | 0.520           | 0.243           |

# 4.4.7 Power Results for Shape Parameters

 $\alpha=2.0$ , 3.0, and 4.0. As the shape parameter increased to 4.0, the  $Z^*$  test statistic did a poor job in discriminating between the null hypothesis  $H_0$  and the alternate hypothesis  $H_a$ . As the shape parameter increased, the skewness of the alternative distributions relative to the hypothesized distribution induced lower power in the test statistic. When the sample size increased to 35 for shape parameter=4.0, the power to discriminate against the beta(2,2) and Weibull(3.0) alternative distributions was good at significance level of 0.10 or more. The power tables shown in Tables 4.14 - 4.16 were generated for shape parameters  $\alpha=2.0$ , 3.0 and 4.0 and a sample size of n=35, where the test attains higher power.

Table 4.14 Power Study: Sample size 35, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.150           | 0.100           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.076           | 0.052           | 0.031           | 0.013           | 0.002           |
| Gamma(2.5)     | 0.337           | 0.268           | 0.194           | 0.110           | 0.027           |
| Gamma(4.0)     | 0.621           | 0.545           | 0.451           | 0.313           | 0.118           |
| Weibull(2.0)   | 0.806           | 0.742           | 0.650           | 0.501           | 0.227           |
| Weibull(3.0)   | 0.981           | 0.970           | 0.950           | 0.902           | 0.730           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.002           | 0.001           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.986           | 0.977           | 0.957           | 0.907           | 0.707           |
| Beta(2,3)      | 0.921           | 0.882           | 0.816           | 0.690           | 0.383           |

Table 4.15 Power Study: Sample size 35, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.196           | 0.148           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.020           | 0.012           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)     | 0.127           | 0.092           | 0.058           | 0.026           | 0.005           |
| Gamma(4.0)     | 0.327           | 0.262           | 0.189           | 0.105           | 0.028           |
| Weibull(2.0)   | 0.535           | 0.456           | 0.357           | 0.219           | 0.069           |
| Weibull(3.0)   | 0.921           | 0.888           | 0.834           | 0.722           | 0.460           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.938           | 0.907           | 0.853           | 0.733           | 0.448           |
| Beta(2,3)      | 0.748           | 0.672           | 0.567           | 0.397           | 0.156           |

Table 4.16 Power Study: Sample size 35, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.149           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.008           | 0.005           | 0.003           | 0.001           | 0.000           |
| Gamma(2.5)     | 0.065           | 0.044           | 0.025           | 0.010           | 0.002           |
| Gamma(4.0)     | 0.200           | 0.152           | 0.101           | 0.051           | 0.010           |
| Weibull(2.0)   | 0.376           | 0.302           | 0.215           | 0.118           | 0.028           |
| Weibull(3.0)   | 0.841           | 0.790           | 0.710           | 0.567           | 0.292           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.880           | 0.828           | 0.746           | 0.596           | 0.292           |
| Beta(2,3)      | 0.606           | 0.517           | 0.403           | 0.251           | 0.073           |

# 4.4.8 Power Results for Shape Parameter

 $\alpha=2$ , 3, and 4 from Censored Samples. The power values obtained from censored samples were very low, and the  $Z^*$  test statistic was not useful. For shape parameters 2,3, and 4, the  $Z^*$  test statistic is weak even for complete samples. When censoring was added, the resulting power was lower. Table 4.17 presents the power values obtained for shape parameter  $\alpha=2.0$ . The power values for Weibull(3.0) and beta (2,2) alternative distributions are at least good for significance levels of 0.10 or higher.

Table 4.17 Power Study: Sample size 35, observations 28, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.203           | 0.152           | 0.101           | 0.051           | 0.009           |
| Gamma(1.5)      | 0.092           | 0.064           | 0.039           | 0.017           | 0.003           |
| Gamma(2.5)      | 0.312           | 0.245           | 0.175           | 0.097           | 0.023           |
| Gamma(4.0)      | 0.526           | 0.450           | 0.357           | 0.237           | 0.079           |
| Weibull(2.0)    | 0.605           | 0.525           | 0.425           | 0.291           | 0.104           |
| Weibull $(3.0)$ | 0.889           | 0.851           | 0.791           | 0.679           | 0.413           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.016           | 0.010           | 0.006           | 0.002           | 0.000           |
| Beta(2,2)       | 0.796           | 0.733           | 0.643           | 0.497           | 0.229           |
| Beta(2,3)       | 0.633           | 0.554           | 0.454           | 0.310           | 0.111           |

Table 4.18 presents the power values for the shape parameter  $\alpha = 3.0$ . At the significance level of 0.10 or more, the power value for Weibull(3.0) and beta(2,2) are fair to good.

Table 4.18 Power Study: Sample size 35, observations 28, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.152           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.034           | 0.022           | 0.011           | 0.004           | 0.000           |
| Gamma(2.5)     | 0.142           | 0.103           | 0.065           | 0.031           | 0.005           |
| Gamma(4.0)     | 0.301           | 0.238           | 0.170           | 0.094           | 0.022           |
| Weibull(2.0)   | 0.369           | 0.299           | 0.220           | 0.126           | 0.031           |
| Weibull(3.0)   | 0.742           | 0.678           | 0.589           | 0.446           | 0.203           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.005           | 0.003           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)      | 0.596           | 0.513           | 0.413           | 0.273           | 0.089           |
| Beta(2,3)      | 0.402           | 0.326           | 0.241           | 0.142           | 0.035           |

Table 4.19 presents the power values obtained for the shape parameter  $\alpha = 4.0$ . The power for Weibull(3.0) alternative distribution are fair for significance levels of 0.10 or higher.

Table 4.19 Power Study: Sample size 35, observations 28, shape 4.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.151           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.018           | 0.011           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)      | 0.086           | 0.059           | 0.036           | 0.015           | 0.002           |
| Gamma(4.0)      | 0.202           | 0.153           | 0.102           | 0.050           | 0.011           |
| Weibull(2.0)    | 0.260           | 0.201           | 0.137           | 0.070           | 0.014           |
| Weibull $(3.0)$ | 0.629           | 0.554           | 0.455           | 0.316           | 0.119           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.003           | 0.001           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)       | 0.472           | 0.394           | 0.298           | 0.179           | 0.051           |
| Beta(2,3)       | 0.289           | 0.224           | 0.155           | 0.081           | 0.017           |

# 4.5 Comparison of Z\* and its Competitors

Power data for the prominent goodness-of-fit test for the gamma distribution was available in Viviano (33). The power values listed by Viviano were limited to sample sizes of 5, 15 and 25 at alpha levels of 0.05 and 0.01 for only two shape parameters ( $\alpha = 1.5$  and  $\alpha = 4.0$ ). The nine alternate hypotheses used in this thesis were chosen to coincide with the alternative distributions used by Viviano to facilitate a direct comparison. Since alternative distributions #2, #3 and #4 in this research were essentially equivalent to the null hypothesis at the corresponding shape parameters, the power of the test for those distributions should be the significance level of the test. Therefore, subsequent analysis will involve only 6 alternate hypotheses,  $H_a$ . The three competing test statistics were:

- Kolmogorov-Smirnov (K-S)
- Cramer von Mises  $(W^2)$
- Anderson-Darling  $(A^2)$

# 4.5.1 Comparison Between Tests for Shape

Parameter  $\alpha = 1.5$ . Tables 4. 20 and 4. 21 present the comparison of the competing test statistics. Although not very high, the power of the  $Z^*$  test statistic is higher than its competitors in 12 out of 14 direct comparisons for shape parameter  $\alpha = 1.5$ , involving the alternate hypotheses and two significance levels.

Table 4.20 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=5, shape  $\alpha=1.5$  and significance level= 0.05

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.050 | 0.051 | 0.047 | 0.049 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.051 | 0.051 | 0.047 | 0.049 | $Z^*$                |
| Gamma(2.5)      | 0.061 | 0.044 | 0.036 | 0.030 | $Z^*$                |
| Gamma(4.0)      | 0.071 | 0.042 | 0.034 | 0.026 | $Z^*$                |
| Weibull(2.0)    | 0.078 | 0.034 | 0.028 | 0.017 | $Z^*$                |
| Weibull(3.0)    | 0.099 | 0.040 | 0.030 | 0.015 | $Z^*$                |
| Lognormal(0,2)  | 0.019 | 0.383 | 0.405 | 0.423 | $A^2$                |
| Beta(2,2)       | 0.095 | 0.045 | 0.034 | 0.017 | $Z^*$                |

Table 4.21 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=5, shape  $\alpha=1.5$  and significance level= 0.01

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.010 | 0.010 | 0.013 | 0.011 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.010 | 0.010 | 0.013 | 0.011 | $Z^*$                |
| Gamma(2.5)      | 0.014 | 0.007 | 0.007 | 0.006 | $Z^*$                |
| Gamma(4.0)      | 0.014 | 0.006 | 0.006 | 0.005 | $Z^*$                |
| Weibull(2.0)    | 0.015 | 0.003 | 0.002 | 0.002 | $Z^*$                |
| Weibull(3.0)    | 0.020 | 0.003 | 0.001 | 0.001 | $Z^*$                |
| Lognormal(0,2)  | 0.004 | 0.213 | 0.244 | 0.260 | $A^2$                |
| Beta(2,2)       | 0.021 | 0.003 | 0.002 | 0.001 | $Z^*$                |

Tables 4.22 and 4.23 present the power values of the competing test statistics for the shape parameter  $\alpha = 1.5$ , sample size 15 and alpha levels of 0.05 and 0.01.  $Z^*$  exceeds the power of its competitors in 12 of 14 direct comparisons.

Table 4.22 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=15, shape  $\alpha=1.5$  and significance level= 0.05

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.050 | 0.045 | 0.047 | 0.044 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.050 | 0.045 | 0.047 | 0.044 | $Z^*$                |
| Gamma(2.5)      | 0.140 | 0.053 | 0.056 | 0.037 | $Z^*$                |
| Gamma(4.0)      | 0.247 | 0.093 | 0.101 | 0.069 | $Z^*$                |
| Weibull(2.0)    | 0.345 | 0.123 | 0.145 | 0.093 | $Z^*$                |
| Weibull(3.0)    | 0.632 | 0.290 | 0.351 | 0.280 | $Z^*$                |
| Lognormal(0,2)  | 0.000 | 0.873 | 0.909 | 0.928 | $A^2$                |
| Beta(2,2)       | 0.622 | 0.245 | 0.304 | 0.234 | $Z^*$                |

Table 4.23 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=15, shape  $\alpha=1.5$  and significance level= 0.01

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.011 | 0.007 | 0.008 | 0.009 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.011 | 0.007 | 0.008 | 0.009 | $Z^*$                |
| Gamma(2.5)      | 0.039 | 0.009 | 0.009 | 0.004 | $Z^*$                |
| Gamma(4.0)      | 0.086 | 0.022 | 0.024 | 0.011 | $Z^*$                |
| Weibull(2.0)    | 0.132 | 0.033 | 0.036 | 0.020 | $Z^*$                |
| Weibull(3.0)    | 0.362 | 0.106 | 0.142 | 0.086 | $Z^*$                |
| Lognormal(0,2)  | 0.000 | 0.748 | 0.813 | 0.844 | $A^2$                |
| Beta(2,2)       | 0.331 | 0.086 | 0.108 | 0.066 | $Z^*$                |

# 4.5.2 Comparison Between Tests for Shape

Parameter  $\alpha = 4.0$ . Tables 4.24 and 4.25 present the power values of the  $Z^*$  test statistic and its competitors for the shape parameter  $\alpha = 4.0$ , sample size 5 and significance levels of 0.05 and 0.01. Although not particularly high, the power values of  $Z^*$  are higher than its competitors in 8 out of 14 direct comparisons.

Table 4.24 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=5, shape  $\alpha=4.0$  and significance level= 0.05

| Distribution             | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|--------------------------|-------|-------|-------|-------|----------------------|
| Original, H <sub>0</sub> | 0.051 | 0.057 | 0.055 | 0.054 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)               | 0.027 | 0.075 | 0.076 | 0.078 | $A^2$                |
| Gamma(2.5)               | 0.039 | 0.061 | 0.061 | 0.063 | $A^2$                |
| Gamma(4.0)               | 0.049 | 0.057 | 0.055 | 0.054 | $Z^*$                |
| Weibull(2.0)             | 0.058 | 0.047 | 0.045 | 0.042 | $Z^*$                |
| Weibull $(3.0)$          | 0.093 | 0.050 | 0.050 | 0.040 | $Z^*$                |
| Lognormal(0,2)           | 0.004 | 0.439 | 0.462 | 0.489 | $A^2$                |
| Beta(2,2)                | 0.097 | 0.055 | 0.054 | 0.044 | $Z^*$                |

Table 4.25 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=5, shape  $\alpha=4.0$  and significance level= 0.01

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.009 | 0.014 | 0.013 | 0.012 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.005 | 0.018 | 0.019 | 0.024 | $A^2$                |
| Gamma(2.5)      | 0.007 | 0.015 | 0.014 | 0.016 | $A^2$                |
| Gamma(4.0)      | 0.009 | 0.014 | 0.013 | 0.012 | $Z^*$                |
| Weibull(2.0)    | 0.011 | 0.011 | 0.010 | 0.007 | $Z^*$                |
| Weibull(3.0)    | 0.019 | 0.011 | 0.009 | 0.007 | $Z^*$                |
| Lognormal(0,2)  | 0.001 | 0.269 | 0.306 | 0.340 | $A^2$                |
| Beta(2,2)       | 0.021 | 0.008 | 0.008 | 0.006 | $Z^*$                |

Tables 4. 26 and 4. 27 present the power of the competing test statistics. For the shape parameter  $\alpha = 4.0$ , sample size 15, and alpha levels of 0.05 and 0.01,  $Z^*$  exceeds the power of its competitors in 8 of 14 direct comparisons. comparison between competing test statistics.

Table 4.26 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=15, shape  $\alpha=4.0$  and significance level= 0.05

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.049 | 0.052 | 0.051 | 0.045 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.007 | 0.117 | 0.135 | 0.147 | $A^2$                |
| Gamma(2.5)      | 0.022 | 0.060 | 0.062 | 0.064 | $A^2$                |
| Gamma(4.0)      | 0.049 | 0.052 | 0.051 | 0.045 | $Z^*$                |
| Weibull(2.0)    | 0.081 | 0.054 | 0.057 | 0.050 | $Z^*$                |
| Weibull(3.0)    | 0.263 | 0.116 | 0.133 | 0.119 | $Z^st$               |
| Lognormal(0,2)  | 0.000 | 0.915 | 0.949 | 0.963 | $A^2$                |
| Beta(2,2)       | 0.266 | 0.112 | 0.131 | 0.117 | $Z^*$                |

Table 4.27 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=15, shape  $\alpha=4.0$  and significance level= 0.01

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.010 | 0.010 | 0.010 | 0.009 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.001 | 0.034 | 0.040 | 0.049 | $A^2$                |
| Gamma(2.5)      | 0.004 | 0.013 | 0.015 | 0.017 | $A^2$                |
| Gamma(4.0)      | 0.009 | 0.010 | 0.010 | 0.009 | $Z^*$                |
| Weibull(2.0)    | 0.017 | 0.012 | 0.013 | 0.010 | $Z^*$                |
| Weibull(3.0)    | 0.089 | 0.036 | 0.043 | 0.037 | $Z^*$                |
| Lognormal(0,2)  | 0.000 | 0.817 | 0.883 | 0.907 | $A^2$                |
| Beta(2,2)       | 0.081 | 0.034 | 0.040 | 0.034 | $Z^*$                |

Tables 4.28 and 4.29 present the power comparison between the competing test statistics for the shape parameter  $\alpha = 4.0$ , sample size 25 and alpha levels of 0.05 and 0.01.  $Z^*$  test statistic exceeds that of the competition in 8 of 14 direct comparisons.

Table 4.28 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=25, shape  $\alpha=4.0$  and significance level= 0.05

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.048 | 0.052 | 0.051 | 0.048 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.002 | 0.177 | 0.202 | 0.226 | $A^2$                |
| Gamma(2.5)      | 0.014 | 0.072 | 0.075 | 0.075 | $A^2$                |
| Gamma(4.0)      | 0.047 | 0.052 | 0.051 | 0.048 | $Z^*$                |
| Weibull(2.0)    | 0.098 | 0.063 | 0.063 | 0.054 | $Z^*$                |
| Weibull(3.0)    | 0.423 | 0.198 | 0.230 | 0.218 | $Z^*$                |
| Lognormal(0,2)  | 0.000 | 0.993 | 0.997 | 0.999 | $A^2$                |
| Beta(2,2)       | 0.439 | 0.058 | 0.211 | 0.204 | $Z^*$                |

Table 4.29 Comparative Power Study of  $Z^*$  against other test statistics for sample size n=25, shape  $\alpha=4.0$  and significance level= 0.01

| Distribution    | $Z^*$ | K-S   | $W^2$ | $A^2$ | Best power by        |
|-----------------|-------|-------|-------|-------|----------------------|
| Original, $H_0$ | 0.010 | 0.010 | 0.009 | 0.008 | $Z^*, K-S, W^2, A^2$ |
| Gamma(1.5)      | 0.000 | 0.057 | 0.066 | 0.070 | $A^2$                |
| Gamma(2.5)      | 0.002 | 0.017 | 0.016 | 0.017 | $A^2$                |
| Gamma(4.0)      | 0.010 | 0.010 | 0.009 | 0.008 | $Z^*$                |
| Weibull(2.0)    | 0.023 | 0.012 | 0.011 | 0.008 | $Z^*$                |
| Weibull(3.0)    | 0.180 | 0.061 | 0.082 | 0.074 | $Z^*$                |
| Lognormal(0,2)  | 0.000 | 0.968 | 0.985 | 0.991 | $A^2$                |
| Beta(2,2)       | 0.176 | 0.051 | 0.063 | 0.054 | $Z^*$                |

# 4.6 Power Study Results that Supports the Idea that Z\* is a Directional Test

In order to support the discussion of  $Z^*$  test statistic as a directional test, Weibull distributions with shape parameters ranging from 0.5 to 6.0 were tested. Power values of the  $Z^*$  test statistic were observed as the shape of a particular alternative distribution changes. Since Weibull distribution has a variety of shapes ranging from a highly skewed distribution to symmetric distribution, it was selected as the alternative distribution. Figure 4.2 presents the the changes in the plot of Weibull distribution as the shape parameter changes from 0.5 to 6.0, compared to the gamma distribution (1.0). Figure 4.2 shows that gamma distribution with shape



Figure 4.2 Gamma(1.0) vs Weibull family

parameter  $\alpha = 1.0$  is more skewed than most of the Weibull distribution presented in the figure. Only Weibull distribution with shape parameter k = 0.5 was more skewed than the gamma(1.0).

Table 4.30 present the power values of  $Z^*$  test against Weibull alternatives with shape parameters  $k = 0.5, 1.0, \dots, 6.0$ . At a sample size of 15, power values against Weibull alternatives are excellent for k = 2.0, 3.0, 4.0, and 6.0. The power value for Weibull (0.5) is poor, and the power value for Weibull (1.0) is the specified significance level, since Weibull (1.0) and the gamma (1.0) have the same probability density function,  $e^{-x}$ .

Table 4.30 Power Study: Sample size 15, shape 1.0

| Distribution | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $H_o$        | 0.199           | 0.149           | 0.100           | 0.051           | 0.010           |
| Weibull(0.5) | 0.002           | 0.001           | 0.001           | 0.000           | 0.000           |
| Weibull(1.0) | 0.200           | 0.151           | 0.100           | 0.049           | 0.010           |
| Weibull(2.0) | 0.865           | 0.812           | 0.731           | 0.590           | 0.301           |
| Weibull(3.0) | 0.955           | 0.933           | 0.895           | 0.810           | 0.575           |
| Weibull(4.0) | 0.975           | 0.961           | 0.935           | 0.878           | 0.689           |
| Weibull(6.0) | 0.986           | 0.977           | 0.960           | 0.921           | 0.780           |

At the sample size of 35, the power values for less skewed alternatives were excellent as presented in Table 4.31. The power values for more skewed Weibull (0.5) alternative were very poor at all significance levels.

Table 4.31 Power Study: Sample size 35, shape 1.0

| Distribution | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $H_o$        | 0.197           | 0.149           | 0.100           | 0.049           | 0.010           |
| Weibull(0.5) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Weibull(1.0) | 0.200           | 0.150           | 0.102           | 0.050           | 0.009           |
| Weibull(2.0) | 0.996           | 0.993           | 0.986           | 0.965           | 0.859           |
| Weibull(3.0) | 1.000           | 1.000           | 0.999           | 0.997           | 0.984           |
| Weibull(4.0) | 1.000           | 1.000           | 1.000           | 0.999           | 0.995           |
| Weibull(6.0) | 1.000           | 1.000           | 1.000           | 1.000           | 0.998           |

Figure 4.3 shows that half of the Weibull distributions presented are less skewed than the gamma distribution with shape parameter  $\alpha = 2.5$ . Weibull distributions with shape parameters k = 05, 1.0, 2.0 are more skewed than the gamma (2.5) while the other Weibull distributions with k = 3.0, 4.0, 6.0 are less skewed.



Figure 4.3 Gamma (2.5) vs Weibull family

Table 4.32 presents the power values for those Weibull alternative distributions. It was observed that the power values for less skewed Weibull alternative distributions were good at a sample size of 15, and excellent at a sample size of 35.

Table 4.32 Power Study: Sample size 15, shape 2.5

| Distribution | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $H_o$        | 0.197           | 0.148           | 0.098           | 0.048           | 0.009           |
| Weibull(0.5) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Weibull(1.0) | 0.031           | 0.020           | 0.012           | 0.004           | 0.001           |
| Weibull(2.0) | 0.443           | 0.363           | 0.268           | 0.155           | 0.041           |
| Weibull(3.0) | 0.719           | 0.649           | 0.550           | 0.400           | 0.169           |
| Weibull(4.0) | 0.820           | 0.767           | 0.686           | 0.551           | 0.289           |
| Weibull(6.0) | 0.889           | 0.849           | 0.788           | 0.675           | 0.423           |

Table 4.33 presents the power values at a sample size of 35. The power values for more skewed alternatives were poor, while the power for less skewed alternatives were good to excellent.

Table 4.33 Power Study: Sample size 35, shape 2.5

| Distribution | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|--------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| $H_o$        | 0.201           | 0.151           | 0.099           | 0.050           | 0.010           |
| Weibull(0.5) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Weibull(1.0) | 0.004           | 0.002           | 0.001           | 0.000           | 0.000           |
| Weibull(2.0) | 0.661           | 0.582           | 0.478           | 0.328           | 0.116           |
| Weibull(3.0) | 0.956           | 0.934           | 0.895           | 0.814           | 0.575           |
| Weibull(4.0) | 0.987           | 0.980           | 0.965           | 0.929           | 0.794           |
| Weibull(6.0) | 0.996           | 0.994           | 0.988           | 0.976           | 0.913           |

### 4.7 Relationship between the Critical Values and the Sample Size

The analyses conducted throughout this research effort were done at sample sizes in multiples of five. Thus, critical values were only tabulated at these multiples. In order to extend the applicability of this goodness-of-fit test, a relationship between critical value and sample size, shape parameter, censoring % and significance level was investigated.

Figure 4.4 presents the relation between the critical values and the shape parameter for a sample size of 5 and a significance level of 0.05.



Figure 4.4 The relation between the Critical Values and the Shape parameter

Figure 4.5 presents the relation between the critical values and the sample size for shape parameter 0.5 and significance level 0.20.



Figure 4.5 The relation between the Critical Values and the Sample size.

Figure 4.6 presents the relation between the critical values and the significance level for a sample size of 40 and shape parameter 0.5.



Figure 4.6 The relation between the Critical Values and the Significance level

A regression analysis was conducted to estimate the critical values for the  $Z^*$  test as a function of the sample size, gamma shape parameter, significance level, and degree of censoring. The resulting regression function is the linear combination of the variables and the coefficients given in Table 4.33, and is expressed as

 $Critical\ Value = Constant + a_1\ Censor\ \% + a_2\ Censor\ \% * Sample\ size +$   $a_3\ (Censor\ \% * Significance\ level) + \ldots + a_7\ \log(Significance\ level)$ 

This regression function can be used for **both censored and complete sam**ples to calculate critical values.

Table 4.34 Regression function representing the relation between the critical values and sample parameters for complete or censored samples.

| Variables                           | Coefficients |
|-------------------------------------|--------------|
| Constant                            | 2.77599      |
| Censor $\%$ (80, 90,, 100)          | -0.00905     |
| Censor %*Sample size                | 0.00004671   |
| Censor %*Significance level         | -0.01238     |
| $  Samplesize^*Significancelevel  $ | 0.04137      |
| $\log(Samplesize)$                  | -0.67283     |
| $\log(Shape\ parameter)$            | -0.05469     |
| $\log(Significance\ level)$         | -0.12667     |

| $R^2$ | 0.9803  |
|-------|---------|
| MSE   | 0.00055 |

Table 4.35 presents the coefficients of the regression function prepared exclusively for the complete samples.

Regression functions representing the relation between the critical val-Table 4.35 ues and sample parameters for complete samples only.

| Variables                            | Coefficients |                                  |
|--------------------------------------|--------------|----------------------------------|
| Constant                             | 1.89375      |                                  |
| Sample size                          | 0.00457      |                                  |
| $Sample\ size * Significance\ level$ | 0.04359      | $R^2 \parallel 0.9719 \parallel$ |
| $\log(Samplesize)$                   | -0.69377     | 10 0.5115                        |
| $\log(Shapeparameter)$               | -0.06450     |                                  |
| $\log(Significance\ level)$          | -0.12673     |                                  |
| $\sin(Significance\ level)$          | -1.21745     |                                  |

Table 4.36 presents the coefficients of several regression functions prepared for com-

plete samples and various shape parameters.

Table 4.36 Regression functions representing the relation between the critical values and sample parameters for different shape parameters.

| Variable    | $\alpha = 0.5$ | $\alpha = 1.0$ | $\alpha = 1.5$ | $\alpha = 2.0$ |
|-------------|----------------|----------------|----------------|----------------|
| Constant    | 1.76451        | 1.88435        | 1.80714        | 1.80620        |
| n           | 0              | 0.00428        | 0              | 0              |
| n*sig       | 0.04483        | 0.04422        | 0.05101        | 0.05046        |
| $\log(n)$   | -0.50987       | -0.69058       | -0.56634       | -0.56432       |
| $\log(sig)$ | -0.16220       | -0.13079       | -0.12581       | -0.12047       |
| $\sin(sig)$ | -1.38730       | -1.25080       | -1.34907       | -1.33624       |
| $R^2$       | 0.98450        | 0.98180        | 0.97290        | 0.97210        |

| Variable    | $\alpha = 2.5$ | $\alpha = 3.0$ | $\alpha = 3.5$ | $\alpha = 4.0$ |
|-------------|----------------|----------------|----------------|----------------|
| Constant    | 1.80077        | 1.80316        | 1.80263        | 1.79663        |
| n*sig       | 0.05018        | 0.05066        | 0.05129        | 0.05088        |
| $\log(n)$   | -0.56037       | -0.56334       | -0.56461       | -0.56109       |
| $\log(sig)$ | -0.11844       | -0.11802       | -0.11848       | -0.11881       |
| $\sin(sig)$ | -1.32746       | -1.33122       | -1.33869       | -1.32586       |
| $R^2$       | 0.97190        | 0.97050        | 0.96820        | 0.96810        |

Further analysis on the regression was conducted to show that regression functions represent the sample of the critical values within a determined range. The regression function developed for complete and censored samples was examined. Figure 4.7 indicates that the predicted values by the regression is close to the critical values. The line represents the ideal case which predicted values are the same as the critical values. This regression function is valid for

- Censoring between 80% and 100%. 95 would be used in the regression function to represent 5% Type II censoring.
- Shape parameters between 0.5 and 4.0.
- Sample sizes between 5 and 35.
- Significance levels between 0.20 and 0.01.



Figure 4.7 The Relation between the Predicted Values and the Critical values

More detailed analysis of this regression was presented in Appendix G.

Similar analysis was conducted for complete samples and shape parameter  $\alpha = 0.5$ . Figure 4.8 indicates that the predicted values were close to the critical values. The line represents the ideal case which predicted values are the same as the critical values. This regression function is valid for

- Shape parameter 0.5 only.
- Complete samples only.
- Sample sizes between 5 and 35.
- Significance levels between 0.20 and 0.01.



Figure 4.8 The approximity of Predicted Values to the Critical values for Shape Parameter  $\alpha = 0.5$ 

More detailed analysis of this regression function was presented in Appendix H.

### V. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations are based on the findings obtained during this research effort.

#### 5.1 Conclusions

The following conclusions are made based on the critical value and power study programs accomplished during this thesis:

- 1. The tabled critical values of  $Z^*$  for the gamma distribution with shape parameter known are valid. In the Monte Carlo simulations, the goodness-of-fit test achieved the claimed level of significance when the null hypothesis is true.
- 2. The power of the  $Z^*$  test statistic is poor when the alternative distribution,  $H_a$ , is more skewed than the gamma distribution with specified shape parameter.
- 3. The power of the  $Z^*$  test statistic is good to excellent in the situations where the null hypothesis,  $H_0$ , is more skewed than the alternative distributions:
- 4. For shape parameter  $\alpha = 1.0$ ,  $Z^*$ , achieves more power than any other current test statistic used in this research for the alternative distributions studied except lognormal alternatives.
- 5. Critical values for  $Z^*$  at sample sizes not explicitly computed in this thesis can be approximated with the regression. High values of  $R^2$  were attained with regression functions for each shape parameter and for the case when all parameters are included in the regression.

#### 5.2 Recommendations

The following recommendations are proposed for further study:

A sequential test using the  $Z^*$  and A-D test statistics as a couple should be applied to the gamma distribution. Since these two test statistics are the most powerful at different conditions, combining their powers by a sequential test should increase the overall power.

A further study of a modified sequential test using the  $Z^*$  and A-D test statistics and a sample estimate of the shape parameter is highly recommended.

## Appendix A. Critical Value Tables for the $\mathbb{Z}^*$ Test Statistic from Complete Samples

Table A.1 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 0.5

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 0.5   | 1.2939          | 1.3681          | 1.4588          | 1.5858          | 1.7757          |
| 10          | 0.5   | 1.1833          | 1.2331          | 1.2952          | 1.3827          | 1.5407          |
| 15          | 0.5   | 1.1507          | 1.1929          | 1.2442          | 1.3168          | 1.4508          |
| 20          | 0.5   | 1.1323          | 1.1688          | 1.2142          | 1.2816          | 1.4000          |
| 25          | 0.5   | 1.1192          | 1.1517          | 1.1932          | 1.2553          | 1.3698          |
| 30          | 0.5   | 1.1109          | 1.1419          | 1.1805          | 1.2380          | 1.3427          |
| 35          | 0.5   | 1.1039          | 1.1327          | 1.1693          | 1.2239          | 1.3238          |
| 40          | 0.5   | 1.0984          | 1.1254          | 1.1600          | 1.2118          | 1.3077          |

Table A.2 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 1.0

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 1.0   | 1.2918          | 1.3564          | 1.4388          | 1.5543          | 1.7426          |
| 10          | 1.0   | 1.1760          | 1.2160          | 1.2659          | 1.3390          | 1.4695          |
| 15          | 1.0   | 1.1356          | 1.1667          | 1.2059          | 1.2634          | 1.3676          |
| 20          | 1.0   | 1.1157          | 1.1424          | 1.1759          | 1.2248          | 1.3141          |
| 25          | 1.0   | 1.1012          | 1.1255          | 1.1549          | 1.1987          | 1.2781          |
| 30          | 1.0   | 1.0917          | 1.1128          | 1.1396          | 1.1780          | 1.2516          |
| 35          | 1.0   | 1.0853          | 1.1045          | 1.1287          | 1.1662          | 1.2347          |

Table A.3 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 1.5

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 1.5   | 1.2874          | 1.3488          | 1.4265          | 1.5411          | 1.7291          |
| 10          | 1.5   | 1.1686          | 1.2064          | 1.2539          | 1.3235          | 1.4487          |
| 15          | 1.5   | 1.1295          | 1.1581          | 1.1945          | 1.2484          | 1.3437          |
| 20          | 1.5   | 1.1085          | 1.1325          | 1.1626          | 1.2078          | 1.2948          |
| 25          | 1.5   | 1.0952          | 1.1163          | 1.1428          | 1.1823          | 1.2566          |
| 30          | 1.5   | 1.0859          | 1.1051          | 1.1289          | 1.1650          | 1.2330          |
| 35          | 1.5   | 1.0789          | 1.0968          | 1.1191          | 1.1522          | 1.2130          |

Table A.4 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 2.0

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 2.0   | 1.2855          | 1.3478          | 1.4239          | 1.5363          | 1.7183          |
| 10          | 2.0   | 1.1676          | 1.2039          | 1.2507          | 1.3170          | 1.4369          |
| 15          | 2.0   | 1.1274          | 1.1555          | 1.1903          | 1.2413          | 1.3376          |
| 20          | 2.0   | 1.1066          | 1.1302          | 1.1590          | 1.2026          | 1.2839          |
| 25          | 2.0   | 1.0925          | 1.1137          | 1.1399          | 1.1777          | 1.2479          |
| 30          | 2.0   | 1.0837          | 1.1023          | 1.1256          | 1.1600          | 1.2251          |
| 35          | 2.0   | 1.0765          | 1.0938          | 1.1150          | 1.1462          | 1.2058          |

Table A.5 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 2.5

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 2.5   | 1.2834          | 1.3442          | 1.4213          | 1.5311          | 1.7106          |
| 10          | 2.5   | 1.1652          | 1.2010          | 1.2459          | 1.3115          | 1.4327          |
| 15          | 2.5   | 1.1269          | 1.1544          | 1.1895          | 1.2408          | 1.3334          |
| 20          | 2.5   | 1.1049          | 1.1280          | 1.1572          | 1.1999          | 1.2798          |
| 25          | 2.5   | 1.0920          | 1.1122          | 1.1374          | 1.1739          | 1.2430          |
| 30          | 2.5   | 1.0825          | 1.1012          | 1.1243          | 1.1581          | 1.2211          |
| 35          | 2.5   | 1.0758          | 1.0925          | 1.1137          | 1.1441          | 1.2026          |

Table A.6 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 3.0

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 3.0   | 1.2835          | 1.3449          | 1.4206          | 1.5298          | 1.7128          |
| 10          | 3.0   | 1.1650          | 1.2004          | 1.2450          | 1.3110          | 1.4304          |
| 15          | 3.0   | 1.1255          | 1.1529          | 1.1869          | 1.2366          | 1.3288          |
| 20          | 3.0   | 1.1045          | 1.1272          | 1.1561          | 1.1986          | 1.2761          |
| 25          | 3.0   | 1.0912          | 1.1117          | 1.1367          | 1.1736          | 1.2434          |
| 30          | 3.0   | 1.0822          | 1.1006          | 1.1230          | 1.1555          | 1.2183          |
| 35          | 3.0   | 1.0756          | 1.0919          | 1.1124          | 1.1439          | 1.1991          |

Table A.7 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 3.5

| Sample size | $_{ m shape}$ | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 3.5           | 1.2820          | 1.3424          | 1.4184          | 1.5295          | 1.7164          |
| 10          | 3.5           | 1.1630          | 1.1989          | 1.2433          | 1.3065          | 1.4261          |
| 15          | 3.5           | 1.1248          | 1.1517          | 1.1852          | 1.2357          | 1.3272          |
| 20          | 3.5           | 1.1041          | 1.1271          | 1.1562          | 1.1972          | 1.2760          |
| 25          | 3.5           | 1.0910          | 1.1112          | 1.1356          | 1.1726          | 1.2400          |
| 30          | 3.5           | 1.0821          | 1.1004          | 1.1230          | 1.1559          | 1.2173          |
| 35          | 3.5           | 1.0752          | 1.0918          | 1.1121          | 1.1423          | 1.1984          |

Table A.8 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 4.0

| Sample size | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5           | 4.0   | 1.2802          | 1.3411          | 1.4140          | 1.5244          | 1.7155          |
| 10          | 4.0   | 1.1631          | 1.1990          | 1.2426          | 1.3070          | 1.4244          |
| 15          | 4.0   | 1.1244          | 1.1509          | 1.1856          | 1.2346          | 1.3265          |
| 20          | 4.0   | 1.1036          | 1.1266          | 1.1552          | 1.1959          | 1.2743          |
| 25          | 4.0   | 1.0904          | 1.1109          | 1.1364          | 1.1730          | 1.2399          |
| 30          | 4.0   | 1.0814          | 1.0992          | 1.1218          | 1.1550          | 1.2156          |
| 35          | 4.0   | 1.0748          | 1.0910          | 1.1118          | 1.1423          | 1.1983          |

### Appendix B. Critical Value Tables for the $Z^*$ Test Statistic from Censored Samples

Table B.1 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 0.5

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 0.5   | 1.4812          | 1.5582          | 1.6475          | 1.7593          | 1.8976          |
| 10   | 8    | 0.5   | 1.3697          | 1.4148          | 1.4690          | 1.5482          | 1.6834          |
| 15   | 12   | 0.5   | 1.3359          | 1.3726          | 1.4192          | 1.4844          | 1.5990          |
| 20   | 16   | 0.5   | 1.3168          | 1.3496          | 1.3916          | 1.4500          | 1.5546          |
| 25   | 20   | 0.5   | 1.3058          | 1.3356          | 1.3721          | 1.4246          | 1.5229          |
| 30   | 24   | 0.5   | 1.2970          | 1.3245          | 1.3589          | 1.4099          | 1.5001          |
| 35   | 28   | 0.5   | 1.2914          | 1.3167          | 1.3491          | 1.3956          | 1.4853          |

Table B.2 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 1.0

| Size | $\operatorname{Cnsr}$ | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|-----------------------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4                     | 1.0   | 1.4831          | 1.5514          | 1.6328          | 1.7387          | 1.8832          |
| 10   | 8                     | 1.0   | 1.3662          | 1.4046          | 1.4511          | 1.5182          | 1.6380          |
| 15   | 12                    | 1.0   | 1.3260          | 1.3551          | 1.3909          | 1.4453          | 1.5402          |
| 20   | 16                    | 1.0   | 1.3058          | 1.3308          | 1.3617          | 1.4050          | 1.4883          |
| 25   | 20                    | 1.0   | 1.2925          | 1.3147          | 1.3412          | 1.3800          | 1.4547          |
| 30   | 24                    | 1.0   | 1.2835          | 1.3036          | 1.3276          | 1.3627          | 1.4293          |
| 35   | <b>2</b> 8            | 1.0   | 1.2764          | 1.2948          | 1.3178          | 1.3501          | 1.4125          |

Table B.3 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 1.5

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 1.5   | 1.4818          | 1.5499          | 1.6308          | 1.7344          | 1.8795          |
| 10   | 8    | 1.5   | 1.3625          | 1.3993          | 1.4445          | 1.5090          | 1.6252          |
| 15   | 12   | 1.5   | 1.3223          | 1.3493          | 1.3832          | 1.4325          | 1.5239          |
| 20   | 16   | 1.5   | 1.3008          | 1.3237          | 1.3531          | 1.3952          | 1.4722          |
| 25   | 20   | 1.5   | 1.2882          | 1.3080          | 1.3332          | 1.3701          | 1.4381          |
| 30   | 24   | 1.5   | 1.2791          | 1.2972          | 1.3194          | 1.3524          | 1.4147          |
| 35   | 28   | 1.5   | 1.2723          | 1.2886          | 1.3095          | 1.3389          | 1.3966          |

Table B.4 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 2.0

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 2.0   | 1.4806          | 1.5482          | 1.6271          | 1.7316          | 1.8789          |
| 10   | 8    | 2.0   | 1.3625          | 1.3983          | 1.4428          | 1.5041          | 1.6142          |
| 15   | 12   | 2.0   | 1.3213          | 1.3483          | 1.3812          | 1.4302          | 1.5181          |
| 20   | 16   | 2.0   | 1.2990          | 1.3212          | 1.3495          | 1.3898          | 1.4656          |
| 25   | 20   | 2.0   | 1.2869          | 1.3062          | 1.3307          | 1.3656          | 1.4323          |
| 30   | 24   | 2.0   | 1.2775          | 1.2956          | 1.3172          | 1.3486          | 1.4101          |
| 35   | 28   | 2.0   | 1.2703          | 1.2864          | 1.3061          | 1.3350          | 1.3900          |

Table B.5 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 2.5

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 2.5   | 1.4813          | 1.5477          | 1.6257          | 1.7323          | 1.8745          |
| 10   | 8    | 2.5   | 1.3606          | 1.3956          | 1.4388          | 1.4997          | 1.6134          |
| 15   | 12   | 2.5   | 1.3205          | 1.3469          | 1.3805          | 1.4282          | 1.5155          |
| 20   | 16   | 2.5   | 1.2988          | 1.3206          | 1.3482          | 1.3891          | 1.4635          |
| 25   | 20   | 2.5   | 1.2851          | 1.3046          | 1.3287          | 1.3633          | 1.4291          |
| 30   | 24   | 2.5   | 1.2767          | 1.2943          | 1.3161          | 1.3480          | 1.4064          |
| 35   | 28   | 2.5   | 1.2701          | 1.2861          | 1.3054          | 1.3347          | 1.3890          |

Table B.6 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 3.0

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 3.0   | 1.4805          | 1.5463          | 1.6256          | 1.7314          | 1.8758          |
| 10   | 8    | 3.0   | 1.3595          | 1.3938          | 1.4382          | 1.5001          | 1.6100          |
| 15   | 12   | 3.0   | 1.3199          | 1.3464          | 1.3781          | 1.4256          | 1.5104          |
| 20   | 16   | 3.0   | 1.2985          | 1.3203          | 1.3480          | 1.3886          | 1.4585          |
| 25   | 20   | 3.0   | 1.2857          | 1.3049          | 1.3290          | 1.3635          | 1.4279          |
| 30   | 24   | 3.0   | 1.2769          | 1.2934          | 1.3145          | 1.3461          | 1.4038          |
| 35   | 28   | 3.0   | 1.2698          | 1.2853          | 1.3046          | 1.3328          | 1.3866          |

Table B.7 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 3.5

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 3.5   | 1.4803          | 1.5459          | 1.6225          | 1.7285          | 1.8768          |
| 10   | 8    | 3.5   | 1.3585          | 1.3931          | 1.4365          | 1.4992          | 1.6091          |
| 15   | 12   | 3.5   | 1.3191          | 1.3454          | 1.3780          | 1.4259          | 1.5116          |
| 20   | 16   | 3.5   | 1.2985          | 1.3205          | 1.3477          | 1.3876          | 1.4611          |
| 25   | 20   | 3.5   | 1.2855          | 1.3044          | 1.3282          | 1.3629          | 1.4282          |
| 30   | 24   | 3.5   | 1.2759          | 1.2930          | 1.3139          | 1.3448          | 1.4038          |
| 35   | 28   | 3.5   | 1.2690          | 1.2846          | 1.3044          | 1.3331          | 1.3859          |

Table B.8 Critical values for  $Z^*$  test statistic: Sample size N, shape parameter 4.0

| Size | Cnsr | shape | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|------|------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 5    | 4    | 4.0   | 1.4780          | 1.5426          | 1.6226          | 1.7297          | 1.8770          |
| 10   | 8    | 4.0   | 1.3582          | 1.3938          | 1.4371          | 1.4996          | 1.6113          |
| 15   | 12   | 4.0   | 1.3190          | 1.3449          | 1.3779          | 1.4256          | 1.5138          |
| 20   | 16   | 4.0   | 1.2980          | 1.3202          | 1.3473          | 1.3874          | 1.4603          |
| 25   | 20   | 4.0   | 1.2851          | 1.3041          | 1.3274          | 1.3622          | 1.4256          |
| 30   | 24   | 4.0   | 1.2761          | 1.2933          | 1.3141          | 1.3451          | 1.4025          |
| 35   | 28   | 4.0   | 1.2694          | 1.2847          | 1.3042          | 1.3329          | 1.3856          |

# 

Table C.1 Power Study: Sample size 5, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.149           | 0.099           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.441           | 0.353           | 0.256           | 0.142           | 0.031           |
| Gamma(2.5)     | 0.523           | 0.431           | 0.325           | 0.186           | 0.044           |
| Gamma(4.0)     | 0.579           | 0.489           | 0.375           | 0.224           | 0.054           |
| Weibull(2.0)   | 0.619           | 0.527           | 0.413           | 0.252           | 0.062           |
| Weibull(3.0)   | 0.699           | 0.616           | 0.506           | 0.337           | 0.099           |
| Lognormal(0,2) | 0.106           | 0.076           | 0.049           | 0.023           | 0.004           |
| Lognormal(1,1) | 0.306           | 0.237           | 0.164           | 0.082           | 0.016           |
| Beta(2,2)      | 0.703           | 0.617           | 0.504           | 0.337           | 0.100           |
| Beta(2,3)      | 0.651           | 0.561           | 0.448           | 0.281           | 0.076           |

Table C.2 Power Study: Sample size 10, shape 0.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.150           | 0.098           | 0.049           | 0.009           |
| Gamma(1.5)      | 0.767           | 0.689           | 0.577           | 0.408           | 0.142           |
| Gamma(2.5)      | 0.871           | 0.816           | 0.729           | 0.572           | 0.255           |
| Gamma(4.0)      | 0.915           | 0.875           | 0.806           | 0.671           | 0.353           |
| Weibull $(2.0)$ | 0.941           | 0.909           | 0.849           | 0.727           | 0.407           |
| Weibull(3.0)    | 0.973           | 0.954           | 0.920           | 0.840           | 0.573           |
| Lognormal(0,2)  | 0.058           | 0.041           | 0.026           | 0.011           | 0.002           |
| Lognormal(1,1)  | 0.486           | 0.404           | 0.308           | 0.191           | 0.051           |
| Beta(2,2)       | 0.974           | 0.955           | 0.917           | 0.825           | 0.535           |
| Beta(2,3)       | 0.955           | 0.927           | 0.876           | 0.761           | 0.439           |

Table C.3 Power Study: Sample size 15, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.149           | 0.100           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.921           | 0.879           | 0.808           | 0.670           | 0.352           |
| Gamma(2.5)     | 0.975           | 0.957           | 0.924           | 0.846           | 0.583           |
| Gamma(4.0)     | 0.988           | 0.978           | 0.958           | 0.905           | 0.703           |
| Weibull(2.0)   | 0.994           | 0.988           | 0.974           | 0.937           | 0.762           |
| Weibull(3.0)   | 0.998           | 0.996           | 0.992           | 0.976           | 0.884           |
| Lognormal(0,2) | 0.035           | 0.023           | 0.014           | 0.006           | 0.001           |
| Lognormal(1,1) | 0.639           | 0.562           | 0.466           | 0.327           | 0.119           |
| Beta(2,2)      | 0.998           | 0.996           | 0.992           | 0.973           | 0.863           |
| Beta(2,3)      | 0.996           | 0.992           | 0.981           | 0.951           | 0.793           |

Table C.4 Power Study: Sample size 20, shape 0.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.149           | 0.099           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.976           | 0.960           | 0.927           | 0.844           | 0.580           |
| Gamma(2.5)      | 0.996           | 0.992           | 0.984           | 0.955           | 0.816           |
| Gamma(4.0)      | 0.998           | 0.997           | 0.993           | 0.980           | 0.900           |
| Weibull $(2.0)$ | 0.999           | 0.998           | 0.996           | 0.988           | 0.928           |
| Weibull(3.0)    | 1.000           | 1.000           | 0.999           | 0.997           | 0.978           |
| Lognormal(0,2)  | 0.025           | 0.017           | 0.010           | 0.004           | 0.001           |
| Lognormal(1,1)  | 0.759           | 0.697           | 0.610           | 0.463           | 0.216           |
| Beta(2,2)       | 1.000           | 1.000           | 0.999           | 0.997           | 0.971           |
| Beta(2,3)       | 1.000           | 0.999           | 0.998           | 0.992           | 0.944           |

Table C.5  $\,$  Power Study: Sample size 25, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.153           | 0.101           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.994           | 0.989           | 0.976           | 0.937           | 0.751           |
| Gamma(2.5)     | 0.999           | 0.999           | 0.997           | 0.989           | 0.928           |
| Gamma(4.0)     | 1.000           | 1.000           | 0.999           | 0.996           | 0.968           |
| Weibull(2.0)   | 1.000           | 1.000           | 1.000           | 0.998           | 0.982           |
| Weibull(3.0)   | 1.000           | 1.000           | 1.000           | 1.000           | 0.996           |
| Lognormal(0,2) | 0.018           | 0.013           | 0.008           | 0.003           | 0.000           |
| Lognormal(1,1) | 0.846           | 0.801           | 0.729           | 0.599           | 0.322           |
| Beta(2,2)      | 1.000           | 1.000           | 1.000           | 1.000           | 0.995           |
| Beta(2,3)      | 1.000           | 1.000           | 1.000           | 0.999           | 0.986           |

Table C.6 Power Study: Sample size 30, shape 0.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.148           | 0.098           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.998           | 0.997           | 0.993           | 0.978           | 0.876           |
| Gamma(2.5)      | 1.000           | 1.000           | 0.999           | 0.997           | 0.977           |
| Gamma(4.0)      | 1.000           | 1.000           | 1.000           | 0.999           | 0.993           |
| Weibull $(2.0)$ | 1.000           | 1.000           | 1.000           | 1.000           | 0.996           |
| Weibull(3.0)    | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |
| Lognormal(0,2)  | 0.015           | 0.010           | 0.006           | 0.003           | 0.000           |
| Lognormal(1,1)  | 0.904           | 0.869           | 0.815           | 0.709           | 0.453           |
| Beta(2,2)       | 1.000           | 1.000           | 1.000           | 1.000           | 0.999           |
| Beta(2,3)       | 1.000           | 1.000           | 1.000           | 1.000           | 0.998           |

Table C.7 Power Study: Sample size 35, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.153           | 0.103           | 0.051           | 0.011           |
| Gamma(1.5)     | 1.000           | 0.999           | 0.998           | 0.992           | 0.943           |
| Gamma(2.5)     | 1.000           | 1.000           | 1.000           | 0.999           | 0.993           |
| Gamma(4.0)     | 1.000           | 1.000           | 1.000           | 1.000           | 0.998           |
| Weibull(2.0)   | 1.000           | 1.000           | 1.000           | 1.000           | 0.999           |
| Weibull(3.0)   | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |
| Lognormal(0,2) | 0.011           | 0.007           | 0.005           | 0.002           | 0.000           |
| Lognormal(1,1) | 0.941           | 0.918           | 0.877           | 0.792           | 0.562           |
| Beta(2,2)      | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |
| Beta(2,3)      | 1.000           | 1.000           | 1.000           | 1.000           | 1.000           |

Table C.8 Power Study: Sample size 5, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.149           | 0.098           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.259           | 0.199           | 0.135           | 0.069           | 0.014           |
| Gamma(2.5)     | 0.325           | 0.254           | 0.178           | 0.096           | 0.020           |
| Gamma(4.0)     | 0.377           | 0.302           | 0.216           | 0.118           | 0.025           |
| Weibull(2.0)   | 0.419           | 0.340           | 0.244           | 0.136           | 0.030           |
| Weibull(3.0)   | 0.516           | 0.434           | 0.330           | 0.202           | 0.048           |
| Lognormal(0,2) | 0.052           | 0.036           | 0.023           | 0.010           | 0.002           |
| Lognormal(1,1) | 0.164           | 0.123           | 0.079           | 0.039           | 0.007           |
| Beta(2,2)      | 0.525           | 0.440           | 0.337           | 0.205           | 0.051           |
| Beta(2,3)      | 0.460           | 0.377           | 0.278           | 0.157           | 0.037           |

Table C.9 Power Study: Sample size 10, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.195           | 0.145           | 0.097           | 0.048           | 0.010           |
| Gamma(1.5)      | 0.338           | 0.268           | 0.190           | 0.104           | 0.025           |
| Gamma(2.5)      | 0.505           | 0.423           | 0.323           | 0.198           | 0.057           |
| Gamma(4.0)      | 0.617           | 0.537           | 0.435           | 0.292           | 0.099           |
| Weibull $(2.0)$ | 0.699           | 0.623           | 0.520           | 0.362           | 0.134           |
| Weibull(3.0)    | 0.840           | 0.784           | 0.702           | 0.556           | 0.278           |
| Lognormal(0,2)  | 0.009           | 0.006           | 0.003           | 0.001           | 0.000           |
| Lognormal(1,1)  | 0.136           | 0.102           | 0.066           | 0.032           | 0.007           |
| Beta(2,2)       | 0.844           | 0.786           | 0.698           | 0.544           | 0.253           |
| Beta(2,3)       | 0.761           | 0.688           | 0.585           | 0.421           | 0.163           |

Table C.10 Power Study: Sample size 15, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.151           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.414           | 0.337           | 0.250           | 0.146           | 0.039           |
| Gamma(2.5)      | 0.661           | 0.582           | 0.479           | 0.331           | 0.122           |
| Gamma(4.0)      | 0.784           | 0.722           | 0.634           | 0.484           | 0.228           |
| Weibull $(2.0)$ | 0.864           | 0.813           | 0.733           | 0.591           | 0.302           |
| Weibull(3.0)    | 0.955           | 0.934           | 0.893           | 0.810           | 0.571           |
| Lognormal(0,2)  | 0.002           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.124           | 0.091           | 0.060           | 0.031           | 0.006           |
| Beta(2,2)       | 0.959           | 0.937           | 0.896           | 0.802           | 0.536           |
| Beta(2,3)       | 0.910           | 0.869           | 0.803           | 0.672           | 0.373           |

Table C.11 Power Study: Sample size 20, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.198           | 0.148           | 0.097           | 0.049           | 0.009           |
| Gamma(1.5)      | 0.478           | 0.399           | 0.303           | 0.184           | 0.056           |
| Gamma(2.5)      | 0.764           | 0.697           | 0.601           | 0.451           | 0.201           |
| Gamma(4.0)      | 0.885           | 0.841           | 0.774           | 0.652           | 0.379           |
| Weibull $(2.0)$ | 0.939           | 0.909           | 0.860           | 0.757           | 0.485           |
| Weibull(3.0)    | 0.988           | 0.980           | 0.966           | 0.926           | 0.778           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.109           | 0.081           | 0.053           | 0.026           | 0.005           |
| Beta(2,2)       | 0.990           | 0.983           | 0.966           | 0.921           | 0.750           |
| Beta(2,3)       | 0.967           | 0.948           | 0.912           | 0.829           | 0.576           |

Table C.12 Power Study: Sample size 25, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.149           | 0.099           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.541           | 0.457           | 0.358           | 0.230           | 0.074           |
| Gamma(2.5)     | 0.844           | 0.788           | 0.707           | 0.567           | 0.292           |
| Gamma(4.0)     | 0.939           | 0.912           | 0.866           | 0.769           | 0.521           |
| Weibull(2.0)   | 0.976           | 0.961           | 0.933           | 0.864           | 0.647           |
| Weibull(3.0)   | 0.997           | 0.995           | 0.990           | 0.974           | 0.901           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.101           | 0.074           | 0.049           | 0.024           | 0.005           |
| Beta(2,2)      | 0.998           | 0.996           | 0.990           | 0.974           | 0.883           |
| Beta(2,3)      | 0.989           | 0.981           | 0.964           | 0.920           | 0.744           |

Table C.13 Power Study: Sample size 30, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.153           | 0.101           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.594           | 0.515           | 0.414           | 0.277           | 0.097           |
| Gamma(2.5)     | 0.899           | 0.857           | 0.794           | 0.677           | 0.398           |
| Gamma(4.0)     | 0.970           | 0.953           | 0.923           | 0.859           | 0.654           |
| Weibull(2.0)   | 0.990           | 0.983           | 0.969           | 0.933           | 0.776           |
| Weibull(3.0)   | 1.000           | 0.999           | 0.997           | 0.992           | 0.960           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.094           | 0.069           | 0.045           | 0.023           | 0.005           |
| Beta(2,2)      | 1.000           | 0.999           | 0.998           | 0.992           | 0.953           |
| Beta(2,3)      | 0.997           | 0.994           | 0.987           | 0.967           | 0.858           |

Table C.14 Power Study: Sample size 35, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.202           | 0.151           | 0.101           | 0.050           | 0.009           |
| Gamma(1.5)      | 0.639           | 0.564           | 0.462           | 0.311           | 0.110           |
| Gamma(2.5)      | 0.933           | 0.904           | 0.853           | 0.747           | 0.476           |
| Gamma(4.0)      | 0.984           | 0.974           | 0.957           | 0.912           | 0.748           |
| Weibull $(2.0)$ | 0.996           | 0.992           | 0.985           | 0.964           | 0.861           |
| Weibull(3.0)    | 1.000           | 1.000           | 0.999           | 0.997           | 0.984           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.087           | 0.064           | 0.042           | 0.020           | 0.004           |
| Beta(2,2)       | 1.000           | 1.000           | 0.999           | 0.997           | 0.979           |
| Beta(2,3)       | 0.999           | 0.998           | 0.996           | 0.986           | 0.920           |

Table C.15 Power Study: Sample size 5, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.150           | 0.100           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.202           | 0.153           | 0.103           | 0.051           | 0.010           |
| Gamma(2.5)     | 0.257           | 0.197           | 0.135           | 0.068           | 0.012           |
| Gamma(4.0)     | 0.300           | 0.237           | 0.166           | 0.086           | 0.017           |
| Weibull(2.0)   | 0.340           | 0.270           | 0.193           | 0.102           | 0.021           |
| Weibull(3.0)   | 0.436           | 0.360           | 0.269           | 0.153           | 0.034           |
| Lognormal(0,2) | 0.038           | 0.027           | 0.017           | 0.008           | 0.001           |
| Lognormal(1,1) | 0.123           | 0.091           | 0.059           | 0.029           | 0.006           |
| Beta(2,2)      | 0.446           | 0.367           | 0.273           | 0.159           | 0.038           |
| Beta(2,3)      | 0.383           | 0.308           | 0.223           | 0.122           | 0.025           |

Table C.16 Power Study: Sample size 10, shape 1.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.198           | 0.147           | 0.098           | 0.048           | 0.009           |
| Gamma(1.5)      | 0.199           | 0.150           | 0.099           | 0.050           | 0.010           |
| Gamma(2.5)      | 0.331           | 0.262           | 0.185           | 0.100           | 0.023           |
| Gamma(4.0)      | 0.444           | 0.366           | 0.273           | 0.165           | 0.045           |
| Weibull $(2.0)$ | 0.538           | 0.453           | 0.349           | 0.214           | 0.061           |
| Weibull(3.0)    | 0.725           | 0.651           | 0.550           | 0.397           | 0.161           |
| Lognormal(0,2)  | 0.004           | 0.003           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.070           | 0.050           | 0.030           | 0.014           | 0.002           |
| Beta(2,2)       | 0.734           | 0.660           | 0.556           | 0.394           | 0.150           |
| Beta(2,3)       | 0.615           | 0.530           | 0.419           | 0.267           | 0.084           |

Table C.17 Power Study: Sample size 15, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.152           | 0.101           | 0.050           | 0.011           |
| Gamma(1.5)     | 0.200           | 0.151           | 0.101           | 0.050           | 0.011           |
| Gamma(2.5)     | 0.401           | 0.326           | 0.243           | 0.140           | 0.039           |
| Gamma(4.0)     | 0.559           | 0.484           | 0.384           | 0.247           | 0.086           |
| Weibull(2.0)   | 0.681           | 0.603           | 0.499           | 0.345           | 0.132           |
| Weibull(3.0)   | 0.874           | 0.830           | 0.761           | 0.632           | 0.362           |
| Lognormal(0,2) | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.043           | 0.030           | 0.018           | 0.008           | 0.001           |
| Beta(2,2)      | 0.886           | 0.839           | 0.764           | 0.622           | 0.331           |
| Beta(2,3)      | 0.774           | 0.704           | 0.603           | 0.440           | 0.183           |

Table C.18 Power Study: Sample size 20, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.151           | 0.101           | 0.051           | 0.009           |
| Gamma(1.5)     | 0.205           | 0.153           | 0.102           | 0.052           | 0.009           |
| Gamma(2.5)     | 0.466           | 0.388           | 0.298           | 0.184           | 0.051           |
| Gamma(4.0)     | 0.657           | 0.582           | 0.486           | 0.345           | 0.129           |
| Weibull(2.0)   | 0.780           | 0.715           | 0.621           | 0.467           | 0.196           |
| Weibull(3.0)   | 0.946           | 0.921           | 0.878           | 0.788           | 0.531           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.029           | 0.020           | 0.012           | 0.005           | 0.001           |
| Beta(2,2)      | 0.952           | 0.928           | 0.884           | 0.788           | 0.500           |
| Beta(2,3)      | 0.873           | 0.824           | 0.745           | 0.596           | 0.284           |

Table C.19 Power Study: Sample size 25, shape 1.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.203           | 0.154           | 0.105           | 0.052           | 0.010           |
| Gamma(1.5)      | 0.200           | 0.151           | 0.101           | 0.051           | 0.010           |
| Gamma(2.5)      | 0.510           | 0.431           | 0.340           | 0.216           | 0.068           |
| Gamma(4.0)      | 0.732           | 0.668           | 0.574           | 0.427           | 0.186           |
| Weibull $(2.0)$ | 0.855           | 0.803           | 0.724           | 0.580           | 0.292           |
| Weibull(3.0)    | 0.977           | 0.965           | 0.942           | 0.887           | 0.701           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.019           | 0.013           | 0.007           | 0.003           | 0.001           |
| Beta(2,2)       | 0.981           | 0.968           | 0.944           | 0.884           | 0.665           |
| Beta(2,3)       | 0.929           | 0.894           | 0.835           | 0.713           | 0.415           |

Table C.20 Power Study: Sample size 30, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | lpha=0.01 |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------|
| Original       | 0.206           | 0.154           | 0.103           | 0.050           | 0.009     |
| Gamma(1.5)     | 0.201           | 0.151           | 0.102           | 0.051           | 0.010     |
| Gamma(2.5)     | 0.559           | 0.482           | 0.385           | 0.253           | 0.084     |
| Gamma(4.0)     | 0.788           | 0.729           | 0.644           | 0.503           | 0.243     |
| Weibull(2.0)   | 0.904           | 0.864           | 0.800           | 0.674           | 0.380     |
| Weibull(3.0)   | 0.990           | 0.984           | 0.972           | 0.940           | 0.807     |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000     |
| Lognormal(1,1) | 0.012           | 0.008           | 0.004           | 0.002           | 0.000     |
| Beta(2,2)      | 0.992           | 0.986           | 0.975           | 0.940           | 0.786     |
| Beta(2,3)      | 0.959           | 0.936           | 0.896           | 0.802           | 0.524     |

Table C.21 Power Study: Sample size 35, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.149           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.198           | 0.147           | 0.098           | 0.049           | 0.010           |
| Gamma(2.5)     | 0.604           | 0.526           | 0.424           | 0.285           | 0.103           |
| Gamma(4.0)     | 0.840           | 0.785           | 0.707           | 0.572           | 0.309           |
| Weibull(2.0)   | 0.936           | 0.905           | 0.854           | 0.748           | 0.477           |
| Weibull(3.0)   | 0.996           | 0.993           | 0.987           | 0.969           | 0.886           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.010           | 0.006           | 0.004           | 0.001           | 0.000           |
| Beta(2,2)      | 0.997           | 0.995           | 0.989           | 0.970           | 0.872           |
| Beta(2,3)      | 0.979           | 0.965           | 0.937           | 0.870           | 0.639           |

Table C.22 Power Study: Sample size 5, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.147           | 0.098           | 0.048           | 0.010           |
| Gamma(1.5)     | 0.170           | 0.127           | 0.085           | 0.042           | 0.008           |
| Gamma(2.5)     | 0.220           | 0.164           | 0.112           | 0.057           | 0.011           |
| Gamma(4.0)     | 0.260           | 0.201           | 0.138           | 0.070           | 0.016           |
| Weibull(2.0)   | 0.297           | 0.232           | 0.162           | 0.083           | 0.018           |
| Weibull(3.0)   | 0.391           | 0.315           | 0.229           | 0.126           | 0.029           |
| Lognormal(0,2) | 0.031           | 0.022           | 0.013           | 0.005           | 0.001           |
| Lognormal(1,1) | 0.102           | 0.073           | 0.047           | 0.022           | 0.004           |
| Beta(2,2)      | 0.405           | 0.326           | 0.238           | 0.133           | 0.033           |
| Beta(2,3)      | 0.335           | 0.263           | 0.186           | 0.099           | 0.022           |

Table C.23 Power Study: Sample size 10, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.195           | 0.145           | 0.096           | 0.048           | 0.009           |
| Gamma(1.5)     | 0.140           | 0.102           | 0.065           | 0.032           | 0.006           |
| Gamma(2.5)     | 0.245           | 0.188           | 0.127           | 0.065           | 0.015           |
| Gamma(4.0)     | 0.343           | 0.274           | 0.195           | 0.108           | 0.027           |
| Weibull(2.0)   | 0.430           | 0.349           | 0.258           | 0.150           | 0.040           |
| Weibull(3.0)   | 0.632           | 0.555           | 0.451           | 0.305           | 0.109           |
| Lognormal(0,2) | 0.003           | 0.002           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.046           | 0.032           | 0.019           | 0.008           | 0.001           |
| Beta(2,2)      | 0.653           | 0.571           | 0.460           | 0.308           | 0.105           |
| Beta(2,3)      | 0.517           | 0.430           | 0.326           | 0.197           | 0.056           |

Table C.24 Power Study: Sample size 15, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.149           | 0.099           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.119           | 0.085           | 0.054           | 0.025           | 0.004           |
| Gamma(2.5)     | 0.270           | 0.207           | 0.144           | 0.077           | 0.017           |
| Gamma(4.0)     | 0.412           | 0.337           | 0.252           | 0.150           | 0.041           |
| Weibull(2.0)   | 0.537           | 0.454           | 0.353           | 0.223           | 0.067           |
| Weibull(3.0)   | 0.792           | 0.731           | 0.645           | 0.500           | 0.236           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.023           | 0.016           | 0.009           | 0.003           | 0.001           |
| Beta(2,2)      | 0.807           | 0.743           | 0.649           | 0.494           | 0.212           |
| Beta(2,3)      | 0.653           | 0.569           | 0.461           | 0.307           | 0.101           |

Table C.25 Power Study: Sample size 20, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.148           | 0.101           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.104           | 0.073           | 0.046           | 0.021           | 0.004           |
| Gamma(2.5)     | 0.294           | 0.227           | 0.162           | 0.089           | 0.020           |
| Gamma(4.0)     | 0.476           | 0.399           | 0.310           | 0.192           | 0.058           |
| Weibull(2.0)   | 0.624           | 0.543           | 0.439           | 0.293           | 0.098           |
| Weibull(3.0)   | 0.884           | 0.842           | 0.776           | 0.652           | 0.373           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.012           | 0.007           | 0.004           | 0.001           | 0.000           |
| Beta(2,2)      | 0.898           | 0.855           | 0.786           | 0.650           | 0.346           |
| Beta(2,3)      | 0.759           | 0.684           | 0.583           | 0.422           | 0.163           |

Table C.26 Power Study: Sample size 25, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.204           | 0.153           | 0.102           | 0.051           | 0.011           |
| Gamma(1.5)      | 0.096           | 0.066           | 0.040           | 0.017           | 0.003           |
| Gamma(2.5)      | 0.309           | 0.241           | 0.169           | 0.096           | 0.023           |
| Gamma(4.0)      | 0.533           | 0.453           | 0.357           | 0.231           | 0.077           |
| Weibull $(2.0)$ | 0.697           | 0.621           | 0.514           | 0.365           | 0.141           |
| Weibull(3.0)    | 0.938           | 0.909           | 0.861           | 0.767           | 0.517           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.007           | 0.004           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)       | 0.947           | 0.917           | 0.867           | 0.763           | 0.481           |
| Beta(2,3)       | 0.832           | 0.767           | 0.675           | 0.519           | 0.232           |

Table C.27 Power Study: Sample size 30, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.153           | 0.103           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.084           | 0.058           | 0.035           | 0.015           | 0.002           |
| Gamma(2.5)     | 0.324           | 0.258           | 0.186           | 0.104           | 0.025           |
| Gamma(4.0)     | 0.573           | 0.498           | 0.403           | 0.270           | 0.094           |
| Weibull(2.0)   | 0.758           | 0.688           | 0.589           | 0.435           | 0.180           |
| Weibull(3.0)   | 0.966           | 0.948           | 0.916           | 0.846           | 0.628           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.004           | 0.003           | 0.002           | 0.000           | 0.000           |
| Beta(2,2)      | 0.974           | 0.957           | 0.925           | 0.848           | 0.597           |
| Beta(2,3)      | 0.881           | 0.830           | 0.751           | 0.603           | 0.295           |

Table C.28 Power Study: Sample size 35, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha=0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|
| Original        | 0.202           | 0.150           | 0.100           | 0.051           | 0.010         |
| Gamma(1.5)      | 0.076           | 0.052           | 0.031           | 0.013           | 0.002         |
| Gamma(2.5)      | 0.337           | 0.268           | 0.194           | 0.110           | 0.027         |
| Gamma(4.0)      | 0.621           | 0.545           | 0.451           | 0.313           | 0.118         |
| Weibull $(2.0)$ | 0.806           | 0.742           | 0.650           | 0.501           | 0.227         |
| Weibull(3.0)    | 0.981           | 0.970           | 0.950           | 0.902           | 0.730         |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000         |
| Lognormal(1,1)  | 0.002           | 0.001           | 0.000           | 0.000           | 0.000         |
| Beta(2,2)       | 0.986           | 0.977           | 0.957           | 0.907           | 0.707         |
| Beta(2,3)       | 0.921           | 0.882           | 0.816           | 0.690           | 0.383         |

Table C.29 Power Study: Sample size 5, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.198           | 0.149           | 0.099           | 0.051           | 0.011           |
| Gamma(1.5)      | 0.155           | 0.114           | 0.075           | 0.037           | 0.007           |
| Gamma(2.5)      | 0.198           | 0.149           | 0.100           | 0.051           | 0.010           |
| Gamma(4.0)      | 0.234           | 0.177           | 0.122           | 0.063           | 0.013           |
| Weibull $(2.0)$ | 0.269           | 0.208           | 0.142           | 0.074           | 0.016           |
| Weibull(3.0)    | 0.363           | 0.291           | 0.208           | 0.115           | 0.026           |
| Lognormal(0,2)  | 0.028           | 0.020           | 0.012           | 0.005           | 0.001           |
| Lognormal(1,1)  | 0.092           | 0.066           | 0.042           | 0.020           | 0.004           |
| Beta(2,2)       | 0.375           | 0.301           | 0.215           | 0.120           | 0.030           |
| Beta(2,3)       | 0.309           | 0.242           | 0.168           | 0.089           | 0.020           |

Table C.30 Power Study: Sample size 10, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.150           | 0.101           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.108           | 0.077           | 0.049           | 0.022           | 0.004           |
| Gamma(2.5)     | 0.193           | 0.144           | 0.096           | 0.047           | 0.009           |
| Gamma(4.0)     | 0.286           | 0.222           | 0.156           | 0.085           | 0.019           |
| Weibull(2.0)   | 0.363           | 0.291           | 0.209           | 0.117           | 0.028           |
| Weibull(3.0)   | 0.569           | 0.490           | 0.391           | 0.255           | 0.082           |
| Lognormal(0,2) | 0.002           | 0.001           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.036           | 0.023           | 0.014           | 0.006           | 0.001           |
| Beta(2,2)      | 0.591           | 0.507           | 0.399           | 0.254           | 0.079           |
| Beta(2,3)      | 0.448           | 0.364           | 0.268           | 0.157           | 0.040           |

Table C.31 Power Study: Sample size 15, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.194           | 0.145           | 0.095           | 0.047           | 0.009           |
| Gamma(1.5)     | 0.083           | 0.057           | 0.034           | 0.015           | 0.002           |
| Gamma(2.5)     | 0.196           | 0.146           | 0.097           | 0.047           | 0.010           |
| Gamma(4.0)     | 0.321           | 0.253           | 0.179           | 0.098           | 0.024           |
| Weibull(2.0)   | 0.439           | 0.359           | 0.265           | 0.153           | 0.040           |
| Weibull(3.0)   | 0.720           | 0.649           | 0.549           | 0.399           | 0.168           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.015           | 0.009           | 0.005           | 0.002           | 0.000           |
| Beta(2,2)      | 0.740           | 0.666           | 0.562           | 0.398           | 0.152           |
| Beta(2,3)      | 0.560           | 0.473           | 0.362           | 0.223           | 0.064           |

Table C.32 Power Study: Sample size 20, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.150           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.065           | 0.045           | 0.027           | 0.011           | 0.001           |
| Gamma(2.5)      | 0.202           | 0.153           | 0.103           | 0.052           | 0.010           |
| Gamma(4.0)      | 0.364           | 0.293           | 0.212           | 0.121           | 0.032           |
| Weibull $(2.0)$ | 0.507           | 0.425           | 0.325           | 0.201           | 0.057           |
| Weibull(3.0)    | 0.821           | 0.767           | 0.681           | 0.538           | 0.266           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.007           | 0.004           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)       | 0.844           | 0.786           | 0.696           | 0.540           | 0.245           |
| Beta(2,3)       | 0.660           | 0.577           | 0.466           | 0.309           | 0.100           |

Table C.33 Power Study: Sample size 25, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.153           | 0.101           | 0.051           | 0.011           |
| Gamma(1.5)     | 0.052           | 0.035           | 0.020           | 0.008           | 0.001           |
| Gamma(2.5)     | 0.198           | 0.148           | 0.099           | 0.050           | 0.010           |
| Gamma(4.0)     | 0.392           | 0.319           | 0.236           | 0.139           | 0.038           |
| Weibull(2.0)   | 0.566           | 0.480           | 0.379           | 0.246           | 0.079           |
| Weibull(3.0)   | 0.886           | 0.845           | 0.777           | 0.660           | 0.386           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.003           | 0.002           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)      | 0.904           | 0.862           | 0.791           | 0.657           | 0.361           |
| Beta(2,3)      | 0.728           | 0.653           | 0.545           | 0.385           | 0.142           |

Table C.34  $\,$  Power Study: Sample size 30, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.202           | 0.152           | 0.100           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.043           | 0.028           | 0.017           | 0.007           | 0.001           |
| Gamma(2.5)      | 0.201           | 0.150           | 0.100           | 0.051           | 0.010           |
| Gamma(4.0)      | 0.420           | 0.345           | 0.260           | 0.156           | 0.044           |
| Weibull $(2.0)$ | 0.619           | 0.534           | 0.429           | 0.283           | 0.093           |
| Weibull(3.0)    | 0.926           | 0.895           | 0.843           | 0.739           | 0.475           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.002           | 0.001           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)       | 0.943           | 0.913           | 0.861           | 0.752           | 0.460           |
| Beta(2,3)       | 0.785           | 0.712           | 0.613           | 0.449           | 0.178           |

Table C.35 Power Study: Sample size 35, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.151           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.034           | 0.023           | 0.012           | 0.005           | 0.001           |
| Gamma(2.5)     | 0.199           | 0.149           | 0.100           | 0.050           | 0.010           |
| Gamma(4.0)     | 0.450           | 0.373           | 0.282           | 0.176           | 0.052           |
| Weibull(2.0)   | 0.661           | 0.581           | 0.474           | 0.328           | 0.116           |
| Weibull(3.0)   | 0.954           | 0.932           | 0.892           | 0.813           | 0.578           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.966           | 0.945           | 0.909           | 0.823           | 0.552           |
| Beta(2,3)      | 0.837           | 0.776           | 0.682           | 0.525           | 0.231           |

Table C.36 Power Study: Sample size 5, shape 3.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.199           | 0.149           | 0.099           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.142           | 0.103           | 0.067           | 0.033           | 0.006           |
| Gamma(2.5)      | 0.182           | 0.136           | 0.089           | 0.044           | 0.008           |
| Gamma(4.0)      | 0.214           | 0.161           | 0.111           | 0.057           | 0.012           |
| Weibull $(2.0)$ | 0.250           | 0.191           | 0.130           | 0.066           | 0.013           |
| Weibull $(3.0)$ | 0.341           | 0.269           | 0.192           | 0.104           | 0.022           |
| Lognormal(0,2)  | 0.026           | 0.017           | 0.010           | 0.004           | 0.001           |
| Lognormal(1,1)  | 0.082           | 0.059           | 0.037           | 0.017           | 0.003           |
| Beta(2,2)       | 0.354           | 0.279           | 0.199           | 0.110           | 0.026           |
| Beta $(2,3)$    | 0.289           | 0.224           | 0.156           | 0.080           | 0.016           |

Table C.37 Power Study: Sample size 10, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.149           | 0.098           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.091           | 0.065           | 0.040           | 0.017           | 0.003           |
| Gamma(2.5)     | 0.168           | 0.124           | 0.081           | 0.037           | 0.007           |
| Gamma(4.0)     | 0.244           | 0.186           | 0.127           | 0.066           | 0.013           |
| Weibull(2.0)   | 0.319           | 0.251           | 0.177           | 0.096           | 0.021           |
| Weibull(3.0)   | 0.523           | 0.442           | 0.346           | 0.218           | 0.063           |
| Lognormal(0,2) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.028           | 0.019           | 0.011           | 0.005           | 0.001           |
| Beta(2,2)      | 0.545           | 0.460           | 0.357           | 0.220           | 0.062           |
| Beta(2,3)      | 0.401           | 0.319           | 0.231           | 0.128           | 0.030           |

Table C.38 Power Study: Sample size 15, shape 3.0

| Distribution                | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original                    | 0.197           | 0.147           | 0.098           | 0.050           | 0.011           |
| Gamma(1.5)                  | 0.062           | 0.042           | 0.025           | 0.011           | 0.002           |
| Gamma(2.5)                  | 0.158           | 0.116           | 0.075           | 0.036           | 0.007           |
| $\operatorname{Gamma}(4.0)$ | 0.262           | 0.201           | 0.140           | 0.075           | 0.017           |
| Weibull(2.0)                | 0.375           | 0.300           | 0.216           | 0.122           | 0.029           |
| Weibull(3.0)                | 0.665           | 0.589           | 0.491           | 0.346           | 0.133           |
| Lognormal(0,2)              | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)              | 0.011           | 0.007           | 0.003           | 0.001           | 0.000           |
| Beta(2,2)                   | 0.688           | 0.608           | 0.501           | 0.346           | 0.119           |
| Beta(2,3)                   | 0.493           | 0.407           | 0.305           | 0.181           | 0.047           |

Table C.39 Power Study: Sample size 20, shape 3.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.150           | 0.100           | 0.049           | 0.009           |
| Gamma(1.5)      | 0.045           | 0.030           | 0.017           | 0.007           | 0.001           |
| Gamma(2.5)      | 0.152           | 0.112           | 0.072           | 0.034           | 0.005           |
| Gamma(4.0)      | 0.286           | 0.224           | 0.158           | 0.085           | 0.021           |
| Weibull $(2.0)$ | 0.421           | 0.343           | 0.250           | 0.144           | 0.037           |
| Weibull(3.0)    | 0.761           | 0.697           | 0.602           | 0.452           | 0.203           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.004           | 0.003           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)       | 0.789           | 0.722           | 0.622           | 0.458           | 0.189           |
| Beta(2,3)       | 0.581           | 0.495           | 0.385           | 0.240           | 0.071           |

Table C.40 Power Study: Sample size 25, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.151           | 0.101           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.034           | 0.022           | 0.012           | 0.005           | 0.001           |
| Gamma(2.5)     | 0.140           | 0.101           | 0.064           | 0.030           | 0.005           |
| Gamma(4.0)     | 0.301           | 0.235           | 0.167           | 0.091           | 0.021           |
| Weibull(2.0)   | 0.464           | 0.382           | 0.287           | 0.172           | 0.047           |
| Weibull(3.0)   | 0.839           | 0.783           | 0.703           | 0.561           | 0.282           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.002           | 0.001           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)      | 0.860           | 0.804           | 0.718           | 0.567           | 0.268           |
| Beta(2,3)      | 0.644           | 0.558           | 0.447           | 0.293           | 0.089           |

Table C.41 Power Study: Sample size 30, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.148           | 0.099           | 0.052           | 0.010           |
| Gamma(1.5)     | 0.026           | 0.017           | 0.010           | 0.004           | 0.001           |
| Gamma(2.5)     | 0.136           | 0.098           | 0.064           | 0.030           | 0.005           |
| Gamma(4.0)     | 0.318           | 0.250           | 0.180           | 0.102           | 0.025           |
| Weibull(2.0)   | 0.506           | 0.422           | 0.323           | 0.198           | 0.056           |
| Weibull(3.0)   | 0.883           | 0.839           | 0.771           | 0.647           | 0.371           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.908           | 0.864           | 0.795           | 0.666           | 0.357           |
| Beta(2,3)      | 0.699           | 0.617           | 0.507           | 0.348           | 0.117           |

Table C.42 Power Study: Sample size 35, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.196           | 0.148           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.020           | 0.012           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)     | 0.127           | 0.092           | 0.058           | 0.026           | 0.005           |
| Gamma(4.0)     | 0.327           | 0.262           | 0.189           | 0.105           | 0.028           |
| Weibull(2.0)   | 0.535           | 0.456           | 0.357           | 0.219           | 0.069           |
| Weibull(3.0)   | 0.921           | 0.888           | 0.834           | 0.722           | 0.460           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.938           | 0.907           | 0.853           | 0.733           | 0.448           |
| Beta(2,3)      | 0.748           | 0.672           | 0.567           | 0.397           | 0.156           |

Table C.43 Power Study: Sample size 5, shape 3.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.202           | 0.151           | 0.100           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.134           | 0.097           | 0.063           | 0.030           | 0.005           |
| Gamma(2.5)      | 0.173           | 0.127           | 0.084           | 0.041           | 0.008           |
| Gamma(4.0)      | 0.208           | 0.157           | 0.104           | 0.051           | 0.010           |
| Weibull $(2.0)$ | 0.237           | 0.181           | 0.122           | 0.062           | 0.011           |
| Weibull(3.0)    | 0.325           | 0.255           | 0.181           | 0.097           | 0.020           |
| Lognormal(0,2)  | 0.024           | 0.016           | 0.010           | 0.004           | 0.001           |
| Lognormal(1,1)  | 0.081           | 0.057           | 0.035           | 0.016           | 0.002           |
| Beta(2,2)       | 0.339           | 0.269           | 0.190           | 0.103           | 0.023           |
| Beta(2,3)       | 0.272           | 0.209           | 0.143           | 0.073           | 0.014           |

Table C.44 Power Study: Sample size 10, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.151           | 0.101           | 0.052           | 0.010           |
| Gamma(1.5)     | 0.079           | 0.055           | 0.033           | 0.014           | 0.002           |
| Gamma(2.5)     | 0.148           | 0.108           | 0.069           | 0.032           | 0.006           |
| Gamma(4.0)     | 0.218           | 0.165           | 0.112           | 0.058           | 0.012           |
| Weibull(2.0)   | 0.289           | 0.222           | 0.154           | 0.083           | 0.017           |
| Weibull(3.0)   | 0.488           | 0.409           | 0.312           | 0.196           | 0.057           |
| Lognormal(0,2) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.024           | 0.016           | 0.009           | 0.004           | 0.001           |
| Beta(2,2)      | 0.515           | 0.431           | 0.327           | 0.201           | 0.054           |
| Beta(2,3)      | 0.368           | 0.289           | 0.204           | 0.112           | 0.025           |

Table C.45 Power Study: Sample size 15, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.147           | 0.097           | 0.048           | 0.010           |
| Gamma(1.5)     | 0.050           | 0.034           | 0.020           | 0.008           | 0.001           |
| Gamma(2.5)     | 0.130           | 0.094           | 0.060           | 0.028           | 0.004           |
| Gamma(4.0)     | 0.223           | 0.170           | 0.116           | 0.059           | 0.013           |
| Weibull(2.0)   | 0.329           | 0.258           | 0.183           | 0.096           | 0.022           |
| Weibull(3.0)   | 0.619           | 0.542           | 0.443           | 0.297           | 0.107           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.008           | 0.005           | 0.003           | 0.001           | 0.000           |
| Beta(2,2)      | 0.643           | 0.560           | 0.454           | 0.300           | 0.095           |
| Beta(2,3)      | 0.442           | 0.359           | 0.264           | 0.148           | 0.035           |

Table C.46 Power Study: Sample size 20, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.147           | 0.097           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.034           | 0.023           | 0.013           | 0.005           | 0.001           |
| Gamma(2.5)     | 0.119           | 0.085           | 0.052           | 0.025           | 0.004           |
| Gamma(4.0)     | 0.233           | 0.178           | 0.121           | 0.063           | 0.013           |
| Weibull(2.0)   | 0.358           | 0.282           | 0.201           | 0.112           | 0.026           |
| Weibull(3.0)   | 0.712           | 0.638           | 0.537           | 0.389           | 0.158           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.003           | 0.002           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)      | 0.745           | 0.669           | 0.557           | 0.396           | 0.147           |
| Beta(2,3)      | 0.516           | 0.427           | 0.321           | 0.192           | 0.049           |

Table C.47 Power Study: Sample size 25, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.149           | 0.101           | 0.050           | 0.011           |
| Gamma(1.5)     | 0.025           | 0.015           | 0.009           | 0.003           | 0.001           |
| Gamma(2.5)     | 0.105           | 0.074           | 0.046           | 0.020           | 0.004           |
| Gamma(4.0)     | 0.238           | 0.182           | 0.125           | 0.064           | 0.015           |
| Weibull(2.0)   | 0.389           | 0.312           | 0.231           | 0.130           | 0.033           |
| Weibull(3.0)   | 0.787           | 0.723           | 0.634           | 0.488           | 0.229           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.818           | 0.753           | 0.660           | 0.498           | 0.219           |
| Beta(2,3)      | 0.572           | 0.481           | 0.375           | 0.231           | 0.066           |

Table C.48 Power Study: Sample size 30, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.148           | 0.099           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.017           | 0.011           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)     | 0.097           | 0.069           | 0.041           | 0.019           | 0.003           |
| Gamma(4.0)     | 0.247           | 0.190           | 0.131           | 0.069           | 0.015           |
| Weibull(2.0)   | 0.416           | 0.336           | 0.245           | 0.141           | 0.036           |
| Weibull(3.0)   | 0.840           | 0.785           | 0.705           | 0.567           | 0.291           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.871           | 0.817           | 0.735           | 0.587           | 0.286           |
| Beta(2,3)      | 0.621           | 0.535           | 0.422           | 0.268           | 0.080           |

Table C.49 Power Study: Sample size 35, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.194           | 0.145           | 0.099           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.012           | 0.008           | 0.004           | 0.001           | 0.000           |
| Gamma(2.5)     | 0.089           | 0.062           | 0.037           | 0.016           | 0.002           |
| Gamma(4.0)     | 0.249           | 0.191           | 0.134           | 0.071           | 0.016           |
| Weibull(2.0)   | 0.447           | 0.363           | 0.273           | 0.159           | 0.042           |
| Weibull(3.0)   | 0.880           | 0.835           | 0.767           | 0.642           | 0.363           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.908           | 0.867           | 0.798           | 0.663           | 0.361           |
| Beta(2,3)      | 0.671           | 0.584           | 0.474           | 0.316           | 0.103           |

Table C.50 Power Study: Sample size 5, shape 4.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.202           | 0.151           | 0.103           | 0.051           | 0.009           |
| Gamma(1.5)      | 0.128           | 0.094           | 0.060           | 0.027           | 0.005           |
| Gamma(2.5)      | 0.165           | 0.121           | 0.081           | 0.039           | 0.007           |
| Gamma(4.0)      | 0.195           | 0.146           | 0.098           | 0.049           | 0.009           |
| Weibull $(2.0)$ | 0.232           | 0.173           | 0.116           | 0.058           | 0.011           |
| Weibull(3.0)    | 0.313           | 0.244           | 0.175           | 0.093           | 0.019           |
| Lognormal(0,2)  | 0.022           | 0.015           | 0.009           | 0.004           | 0.001           |
| Lognormal(1,1)  | 0.077           | 0.054           | 0.034           | 0.016           | 0.002           |
| Beta(2,2)       | 0.328           | 0.256           | 0.183           | 0.097           | 0.021           |
| Beta(2,3)       | 0.265           | 0.202           | 0.139           | 0.072           | 0.013           |

Table C.51 Power Study: Sample size 10, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.146           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.070           | 0.049           | 0.029           | 0.013           | 0.002           |
| Gamma(2.5)     | 0.132           | 0.095           | 0.060           | 0.028           | 0.005           |
| Gamma(4.0)     | 0.199           | 0.148           | 0.099           | 0.049           | 0.010           |
| Weibull(2.0)   | 0.264           | 0.201           | 0.137           | 0.072           | 0.015           |
| Weibull(3.0)   | 0.458           | 0.378           | 0.289           | 0.172           | 0.047           |
| Lognormal(0,2) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.021           | 0.014           | 0.008           | 0.003           | 0.000           |
| Beta(2,2)      | 0.485           | 0.400           | 0.303           | 0.179           | 0.048           |
| Beta(2,3)      | 0.339           | 0.262           | 0.183           | 0.097           | 0.021           |

Table C.52 Power Study: Sample size 15, shape 4.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.194           | 0.146           | 0.097           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.042           | 0.028           | 0.016           | 0.007           | 0.001           |
| Gamma(2.5)      | 0.110           | 0.080           | 0.049           | 0.022           | 0.004           |
| Gamma(4.0)      | 0.194           | 0.148           | 0.098           | 0.049           | 0.009           |
| Weibull $(2.0)$ | 0.292           | 0.228           | 0.154           | 0.081           | 0.017           |
| Weibull(3.0)    | 0.581           | 0.502           | 0.400           | 0.263           | 0.089           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.006           | 0.004           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)       | 0.607           | 0.523           | 0.412           | 0.266           | 0.081           |
| Beta(2,3)       | 0.401           | 0.320           | 0.228           | 0.127           | 0.028           |

Table C.53 Power Study: Sample size 20, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.147           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.027           | 0.017           | 0.009           | 0.003           | 0.000           |
| Gamma(2.5)     | 0.098           | 0.069           | 0.041           | 0.018           | 0.003           |
| Gamma(4.0)     | 0.200           | 0.148           | 0.099           | 0.051           | 0.009           |
| Weibull(2.0)   | 0.313           | 0.245           | 0.170           | 0.091           | 0.019           |
| Weibull(3.0)   | 0.667           | 0.588           | 0.488           | 0.344           | 0.129           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.002           | 0.001           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)      | 0.706           | 0.623           | 0.511           | 0.353           | 0.122           |
| Beta(2,3)      | 0.466           | 0.379           | 0.279           | 0.161           | 0.038           |

Table C.54 Power Study: Sample size 25, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.148           | 0.098           | 0.048           | 0.010           |
| Gamma(1.5)     | 0.018           | 0.011           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)     | 0.082           | 0.055           | 0.033           | 0.014           | 0.002           |
| Gamma(4.0)     | 0.196           | 0.145           | 0.096           | 0.047           | 0.010           |
| Weibull(2.0)   | 0.336           | 0.262           | 0.181           | 0.098           | 0.023           |
| Weibull(3.0)   | 0.742           | 0.674           | 0.575           | 0.423           | 0.180           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.781           | 0.707           | 0.603           | 0.439           | 0.176           |
| Beta(2,3)      | 0.516           | 0.425           | 0.316           | 0.186           | 0.048           |

Table C.55 Power Study: Sample size 30, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.148           | 0.098           | 0.048           | 0.010           |
| Gamma(1.5)     | 0.013           | 0.008           | 0.004           | 0.001           | 0.000           |
| Gamma(2.5)     | 0.075           | 0.051           | 0.031           | 0.013           | 0.002           |
| Gamma(4.0)     | 0.201           | 0.150           | 0.100           | 0.050           | 0.010           |
| Weibull(2.0)   | 0.356           | 0.282           | 0.199           | 0.110           | 0.026           |
| Weibull(3.0)   | 0.798           | 0.738           | 0.650           | 0.500           | 0.238           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)      | 0.837           | 0.776           | 0.683           | 0.523           | 0.235           |
| Beta(2,3)      | 0.561           | 0.474           | 0.363           | 0.221           | 0.061           |

Table C.56 Power Study: Sample size 35, shape 4.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.199           | 0.149           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.008           | 0.005           | 0.003           | 0.001           | 0.000           |
| Gamma(2.5)      | 0.065           | 0.044           | 0.025           | 0.010           | 0.002           |
| Gamma(4.0)      | 0.200           | 0.152           | 0.101           | 0.051           | 0.010           |
| Weibull $(2.0)$ | 0.376           | 0.302           | 0.215           | 0.118           | 0.028           |
| Weibull(3.0)    | 0.841           | 0.790           | 0.710           | 0.567           | 0.292           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Beta(2,2)       | 0.880           | 0.828           | 0.746           | 0.596           | 0.292           |
| Beta(2,3)       | 0.606           | 0.517           | 0.403           | 0.251           | 0.073           |

## 

Table D.1 Power Study: Sample size 5, observations 4, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.150           | 0.099           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.361           | 0.281           | 0.194           | 0.101           | 0.021           |
| Gamma(2.5)     | 0.418           | 0.333           | 0.235           | 0.125           | 0.027           |
| Gamma(4.0)     | 0.454           | 0.366           | 0.263           | 0.141           | 0.030           |
| Weibull(2.0)   | 0.471           | 0.380           | 0.275           | 0.151           | 0.033           |
| Weibull(3.0)   | 0.537           | 0.446           | 0.336           | 0.195           | 0.044           |
| Lognormal(0,2) | 0.155           | 0.114           | 0.074           | 0.036           | 0.007           |
| Lognormal(1,1) | 0.298           | 0.228           | 0.153           | 0.077           | 0.015           |
| Beta(2,2)      | 0.521           | 0.430           | 0.319           | 0.181           | 0.042           |
| Beta(2,3)      | 0.484           | 0.395           | 0.287           | 0.158           | 0.035           |

Table D.2 Power Study: Sample size 10, observations 8, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.151           | 0.102           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.658           | 0.575           | 0.465           | 0.303           | 0.091           |
| Gamma(2.5)     | 0.765           | 0.694           | 0.594           | 0.423           | 0.154           |
| Gamma(4.0)     | 0.824           | 0.761           | 0.670           | 0.509           | 0.216           |
| Weibull(2.0)   | 0.848           | 0.789           | 0.701           | 0.539           | 0.231           |
| Weibull(3.0)   | 0.908           | 0.865           | 0.798           | 0.662           | 0.353           |
| Lognormal(0,2) | 0.129           | 0.093           | 0.060           | 0.028           | 0.005           |
| Lognormal(1,1) | 0.507           | 0.423           | 0.326           | 0.196           | 0.051           |
| Beta(2,2)      | 0.887           | 0.837           | 0.756           | 0.607           | 0.287           |
| Beta(2,3)      | 0.852           | 0.794           | 0.705           | 0.542           | 0.230           |

Table D.3 Power Study: Sample size 15, observations 12, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.196           | 0.149           | 0.099           | 0.050           | 0.011           |
| Gamma(1.5)     | 0.845           | 0.785           | 0.691           | 0.529           | 0.235           |
| Gamma(2.5)     | 0.930           | 0.897           | 0.834           | 0.713           | 0.406           |
| Gamma(4.0)     | 0.956           | 0.932           | 0.887           | 0.791           | 0.518           |
| Weibull(2.0)   | 0.966           | 0.947           | 0.908           | 0.819           | 0.543           |
| Weibull(3.0)   | 0.986           | 0.976           | 0.956           | 0.903           | 0.706           |
| Lognormal(0,2) | 0.117           | 0.085           | 0.053           | 0.026           | 0.005           |
| Lognormal(1,1) | 0.688           | 0.612           | 0.505           | 0.351           | 0.128           |
| Beta(2,2)      | 0.981           | 0.967           | 0.938           | 0.868           | 0.622           |
| Beta(2,3)      | 0.968           | 0.948           | 0.909           | 0.820           | 0.543           |

Table D.4 Power Study: Sample size 20, observations 16, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.150           | 0.096           | 0.048           | 0.010           |
| Gamma(1.5)     | 0.939           | 0.905           | 0.846           | 0.723           | 0.409           |
| Gamma(2.5)     | 0.982           | 0.970           | 0.944           | 0.879           | 0.649           |
| Gamma(4.0)     | 0.992           | 0.986           | 0.971           | 0.929           | 0.762           |
| Weibull(2.0)   | 0.993           | 0.988           | 0.976           | 0.943           | 0.779           |
| Weibull(3.0)   | 0.998           | 0.997           | 0.992           | 0.979           | 0.892           |
| Lognormal(0,2) | 0.115           | 0.084           | 0.052           | 0.025           | 0.005           |
| Lognormal(1,1) | 0.820           | 0.761           | 0.667           | 0.515           | 0.235           |
| Beta(2,2)      | 0.997           | 0.995           | 0.988           | 0.965           | 0.839           |
| Beta(2,3)      | 0.994           | 0.990           | 0.977           | 0.942           | 0.777           |

Table D.5 Power Study: Sample size 25, observations 20, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.149           | 0.099           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.978           | 0.963           | 0.935           | 0.859           | 0.599           |
| Gamma(2.5)     | 0.996           | 0.992           | 0.983           | 0.957           | 0.823           |
| Gamma(4.0)     | 0.998           | 0.997           | 0.993           | 0.980           | 0.901           |
| Weibull(2.0)   | 0.999           | 0.998           | 0.995           | 0.985           | 0.911           |
| Weibull(3.0)   | 1.000           | 0.999           | 0.999           | 0.996           | 0.969           |
| Lognormal(0,2) | 0.114           | 0.083           | 0.053           | 0.026           | 0.005           |
| Lognormal(1,1) | 0.904           | 0.864           | 0.800           | 0.672           | 0.369           |
| Beta(2,2)      | 1.000           | 0.999           | 0.998           | 0.992           | 0.946           |
| Beta(2,3)      | 0.999           | 0.998           | 0.995           | 0.985           | 0.913           |

Table D.6 Power Study: Sample size 30, observations 24, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.151           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.993           | 0.986           | 0.973           | 0.930           | 0.747           |
| Gamma(2.5)     | 0.999           | 0.998           | 0.995           | 0.984           | 0.919           |
| Gamma(4.0)     | 1.000           | 0.999           | 0.999           | 0.995           | 0.963           |
| Weibull(2.0)   | 1.000           | 0.999           | 0.999           | 0.996           | 0.969           |
| Weibull(3.0)   | 1.000           | 1.000           | 1.000           | 0.999           | 0.992           |
| Lognormal(0,2) | 0.117           | 0.085           | 0.054           | 0.026           | 0.005           |
| Lognormal(1,1) | 0.951           | 0.926           | 0.884           | 0.785           | 0.521           |
| Beta(2,2)      | 1.000           | 1.000           | 1.000           | 0.999           | 0.984           |
| Beta(2,3)      | 1.000           | 1.000           | 0.999           | 0.996           | 0.969           |

Table D.7 Power Study: Sample size 35, observations 28, shape 0.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.151           | 0.101           | 0.052           | 0.011           |
| Gamma(1.5)     | 0.997           | 0.995           | 0.989           | 0.970           | 0.847           |
| Gamma(2.5)     | 1.000           | 1.000           | 0.999           | 0.996           | 0.966           |
| Gamma(4.0)     | 1.000           | 1.000           | 1.000           | 0.999           | 0.987           |
| Weibull(2.0)   | 1.000           | 1.000           | 1.000           | 0.999           | 0.989           |
| Weibull(3.0)   | 1.000           | 1.000           | 1.000           | 1.000           | 0.998           |
| Lognormal(0,2) | 0.121           | 0.087           | 0.057           | 0.028           | 0.005           |
| Lognormal(1,1) | 0.976           | 0.961           | 0.934           | 0.867           | 0.637           |
| Beta(2,2)      | 1.000           | 1.000           | 1.000           | 1.000           | 0.995           |
| Beta(2,3)      | 1.000           | 1.000           | 1.000           | 0.999           | 0.989           |

Table D.8 Power Study: Sample size 5, observations 8, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.150           | 0.100           | 0.052           | 0.010           |
| Gamma(1.5)      | 0.237           | 0.182           | 0.123           | 0.064           | 0.013           |
| Gamma(2.5)      | 0.283           | 0.218           | 0.151           | 0.079           | 0.016           |
| Gamma(4.0)      | 0.312           | 0.246           | 0.171           | 0.088           | 0.018           |
| Weibull $(2.0)$ | 0.328           | 0.258           | 0.181           | 0.096           | 0.020           |
| Weibull $(3.0)$ | 0.389           | 0.314           | 0.229           | 0.127           | 0.027           |
| Lognormal(0,2)  | 0.095           | 0.069           | 0.045           | 0.022           | 0.004           |
| Lognormal(1,1)  | 0.189           | 0.141           | 0.094           | 0.047           | 0.009           |
| Beta(2,2)       | 0.376           | 0.300           | 0.216           | 0.118           | 0.026           |
| Beta(2,3)       | 0.341           | 0.269           | 0.188           | 0.103           | 0.022           |

Table D.9 Power Study: Sample size 10, observations 8, shape 1.0

| Distribution                | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original                    | 0.197           | 0.147           | 0.098           | 0.050           | 0.010           |
| Gamma(1.5)                  | 0.307           | 0.240           | 0.167           | 0.090           | 0.019           |
| Gamma(2.5)                  | 0.426           | 0.347           | 0.259           | 0.151           | 0.038           |
| $\operatorname{Gamma}(4.0)$ | 0.511           | 0.432           | 0.338           | 0.211           | 0.060           |
| Weibull(2.0)                | 0.551           | 0.469           | 0.369           | 0.235           | 0.071           |
| Weibull(3.0)                | 0.683           | 0.610           | 0.513           | 0.364           | 0.138           |
| Lognormal(0,2)              | 0.031           | 0.020           | 0.012           | 0.005           | 0.001           |
| Lognormal(1,1)              | 0.191           | 0.145           | 0.098           | 0.050           | 0.009           |
| Beta(2,2)                   | 0.636           | 0.556           | 0.452           | 0.304           | 0.101           |
| Beta(2,3)                   | 0.561           | 0.479           | 0.376           | 0.240           | 0.073           |

Table D.10 Power Study: Sample size 15, observations 12, shape 1.0

| Distribution                | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original                    | 0.201           | 0.150           | 0.100           | 0.049           | 0.010           |
| Gamma(1.5)                  | 0.368           | 0.297           | 0.217           | 0.121           | 0.031           |
| Gamma(2.5)                  | 0.558           | 0.480           | 0.380           | 0.245           | 0.080           |
| $\operatorname{Gamma}(4.0)$ | 0.669           | 0.597           | 0.502           | 0.353           | 0.138           |
| Weibull(2.0)                | 0.716           | 0.643           | 0.544           | 0.392           | 0.158           |
| Weibull(3.0)                | 0.855           | 0.807           | 0.734           | 0.597           | 0.327           |
| Lognormal(0,2)              | 0.012           | 0.008           | 0.004           | 0.002           | 0.000           |
| Lognormal(1,1)              | 0.201           | 0.152           | 0.104           | 0.053           | 0.012           |
| Beta(2,2)                   | 0.810           | 0.749           | 0.661           | 0.508           | 0.236           |
| Beta(2,3)                   | 0.731           | 0.657           | 0.559           | 0.400           | 0.164           |

Table D.11 Power Study: Sample size 20, observations 16, shape 1.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.148           | 0.099           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.419           | 0.345           | 0.257           | 0.156           | 0.042           |
| Gamma(2.5)     | 0.660           | 0.584           | 0.484           | 0.345           | 0.132           |
| Gamma(4.0)     | 0.787           | 0.727           | 0.641           | 0.504           | 0.241           |
| Weibull(2.0)   | 0.826           | 0.769           | 0.687           | 0.546           | 0.268           |
| Weibull(3.0)   | 0.934           | 0.905           | 0.858           | 0.769           | 0.522           |
| Lognormal(0,2) | 0.005           | 0.003           | 0.002           | 0.001           | 0.000           |
| Lognormal(1,1) | 0.205           | 0.155           | 0.105           | 0.056           | 0.012           |
| Beta(2,2)      | 0.901           | 0.860           | 0.795           | 0.677           | 0.385           |
| Beta(2,3)      | 0.835           | 0.781           | 0.694           | 0.554           | 0.271           |

Table D.12 Power Study: Sample size 25, observations 20, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.149           | 0.100           | 0.052           | 0.010           |
| Gamma(1.5)      | 0.476           | 0.395           | 0.306           | 0.192           | 0.054           |
| Gamma(2.5)      | 0.745           | 0.678           | 0.587           | 0.445           | 0.189           |
| Gamma(4.0)      | 0.863           | 0.815           | 0.748           | 0.623           | 0.351           |
| Weibull $(2.0)$ | 0.895           | 0.853           | 0.790           | 0.669           | 0.388           |
| Weibull(3.0)    | 0.972           | 0.958           | 0.933           | 0.877           | 0.686           |
| Lognormal(0,2)  | 0.002           | 0.002           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.212           | 0.161           | 0.110           | 0.058           | 0.013           |
| Beta(2,2)       | 0.951           | 0.927           | 0.886           | 0.799           | 0.536           |
| Beta(2,3)       | 0.907           | 0.866           | 0.805           | 0.687           | 0.396           |

Table D.13 Power Study: Sample size 30, observations 24, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.150           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.522           | 0.440           | 0.344           | 0.224           | 0.070           |
| Gamma(2.5)      | 0.812           | 0.754           | 0.672           | 0.532           | 0.266           |
| Gamma(4.0)      | 0.914           | 0.879           | 0.826           | 0.724           | 0.466           |
| Weibull $(2.0)$ | 0.938           | 0.910           | 0.864           | 0.770           | 0.511           |
| Weibull(3.0)    | 0.989           | 0.982           | 0.969           | 0.937           | 0.808           |
| Lognormal(0,2)  | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.220           | 0.170           | 0.119           | 0.063           | 0.014           |
| Beta(2,2)       | 0.978           | 0.964           | 0.938           | 0.878           | 0.673           |
| Beta(2,3)       | 0.946           | 0.918           | 0.873           | 0.780           | 0.519           |

Table D.14 Power Study: Sample size 35, observations 28, shape 1.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.150           | 0.099           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.564           | 0.481           | 0.382           | 0.250           | 0.081           |
| Gamma(2.5)      | 0.862           | 0.813           | 0.737           | 0.609           | 0.331           |
| Gamma(4.0)      | 0.946           | 0.923           | 0.883           | 0.800           | 0.568           |
| Weibull $(2.0)$ | 0.964           | 0.946           | 0.914           | 0.843           | 0.613           |
| Weibull(3.0)    | 0.995           | 0.992           | 0.986           | 0.968           | 0.885           |
| Lognormal(0,2)  | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.232           | 0.178           | 0.124           | 0.069           | 0.015           |
| Beta(2,2)       | 0.989           | 0.982           | 0.966           | 0.927           | 0.771           |
| Beta(2,3)       | 0.969           | 0.951           | 0.918           | 0.849           | 0.617           |

Table D.15 Power Study: Sample size 5, observations 4, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.152           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.202           | 0.152           | 0.099           | 0.051           | 0.010           |
| Gamma(2.5)     | 0.235           | 0.179           | 0.120           | 0.061           | 0.014           |
| Gamma(4.0)     | 0.262           | 0.201           | 0.137           | 0.071           | 0.014           |
| Weibull(2.0)   | 0.280           | 0.217           | 0.149           | 0.078           | 0.015           |
| Weibull(3.0)   | 0.335           | 0.264           | 0.184           | 0.099           | 0.020           |
| Lognormal(0,2) | 0.079           | 0.057           | 0.038           | 0.019           | 0.004           |
| Lognormal(1,1) | 0.159           | 0.117           | 0.078           | 0.038           | 0.007           |
| Beta(2,2)      | 0.322           | 0.253           | 0.177           | 0.095           | 0.021           |
| Beta(2,3)      | 0.293           | 0.227           | 0.156           | 0.083           | 0.016           |

Table D.16 Power Study: Sample size 10, observations 8, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.145           | 0.096           | 0.048           | 0.009           |
| Gamma(1.5)     | 0.200           | 0.149           | 0.099           | 0.049           | 0.009           |
| Gamma(2.5)     | 0.292           | 0.229           | 0.159           | 0.085           | 0.019           |
| Gamma(4.0)     | 0.373           | 0.301           | 0.220           | 0.127           | 0.030           |
| Weibull(2.0)   | 0.408           | 0.331           | 0.245           | 0.142           | 0.036           |
| Weibull(3.0)   | 0.553           | 0.474           | 0.377           | 0.246           | 0.076           |
| Lognormal(0,2) | 0.018           | 0.011           | 0.006           | 0.002           | 0.000           |
| Lognormal(1,1) | 0.115           | 0.082           | 0.053           | 0.024           | 0.004           |
| Beta(2,2)      | 0.505           | 0.425           | 0.325           | 0.200           | 0.057           |
| Beta(2,3)      | 0.423           | 0.345           | 0.257           | 0.152           | 0.038           |

Table D.17 Power Study: Sample size 15, observations 12, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.153           | 0.103           | 0.052           | 0.010           |
| Gamma(1.5)     | 0.201           | 0.151           | 0.102           | 0.053           | 0.010           |
| Gamma(2.5)     | 0.351           | 0.283           | 0.206           | 0.118           | 0.028           |
| Gamma(4.0)     | 0.463           | 0.388           | 0.301           | 0.185           | 0.055           |
| Weibull(2.0)   | 0.517           | 0.440           | 0.346           | 0.220           | 0.068           |
| Weibull(3.0)   | 0.714           | 0.647           | 0.558           | 0.415           | 0.178           |
| Lognormal(0,2) | 0.004           | 0.002           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.092           | 0.066           | 0.041           | 0.019           | 0.003           |
| Beta(2,2)      | 0.642           | 0.567           | 0.465           | 0.321           | 0.113           |
| Beta(2,3)      | 0.537           | 0.458           | 0.361           | 0.232           | 0.070           |

Table D.18 Power Study: Sample size 20, observations 16, shape 1.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.152           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.205           | 0.154           | 0.103           | 0.051           | 0.011           |
| Gamma(2.5)      | 0.400           | 0.327           | 0.242           | 0.142           | 0.037           |
| Gamma(4.0)      | 0.550           | 0.475           | 0.379           | 0.250           | 0.087           |
| Weibull $(2.0)$ | 0.605           | 0.527           | 0.424           | 0.286           | 0.101           |
| Weibull(3.0)    | 0.820           | 0.767           | 0.685           | 0.549           | 0.287           |
| Lognormal(0,2)  | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.076           | 0.053           | 0.032           | 0.014           | 0.003           |
| Beta(2,2)       | 0.751           | 0.684           | 0.585           | 0.431           | 0.183           |
| Beta(2,3)       | 0.632           | 0.554           | 0.449           | 0.306           | 0.107           |

Table D.19 Power Study: Sample size 25, observations 20, shape 1.5

| Distribution         | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original             | 0.202           | 0.153           | 0.102           | 0.050           | 0.010           |
| Gamma(1.5)           | 0.199           | 0.151           | 0.101           | 0.049           | 0.010           |
| Gamma(2.5)           | 0.439           | 0.365           | 0.278           | 0.168           | 0.049           |
| Gamma(4.0)           | 0.621           | 0.549           | 0.452           | 0.312           | 0.116           |
| Weibull(2.0)         | 0.679           | 0.607           | 0.510           | 0.363           | 0.144           |
| Weibull(3.0)         | 0.889           | 0.851           | 0.789           | 0.671           | 0.408           |
| Lognormal(0,2)       | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)       | 0.064           | 0.045           | 0.027           | 0.012           | 0.002           |
| Beta(2,2)            | 0.818           | 0.760           | 0.674           | 0.529           | 0.257           |
| $\mathrm{Beta}(2,3)$ | 0.699           | 0.626           | 0.527           | 0.374           | 0.147           |

Table D.20 Power Study: Sample size 30, observations 24, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.151           | 0.101           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.202           | 0.152           | 0.103           | 0.050           | 0.010           |
| Gamma(2.5)     | 0.480           | 0.403           | 0.312           | 0.199           | 0.062           |
| Gamma(4.0)     | 0.675           | 0.603           | 0.511           | 0.374           | 0.157           |
| Weibull(2.0)   | 0.742           | 0.675           | 0.581           | 0.433           | 0.185           |
| Weibull(3.0)   | 0.930           | 0.902           | 0.857           | 0.764           | 0.518           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.053           | 0.036           | 0.022           | 0.009           | 0.002           |
| Beta(2,2)      | 0.876           | 0.829           | 0.759           | 0.627           | 0.338           |
| Beta(2,3)      | 0.758           | 0.692           | 0.598           | 0.448           | 0.192           |

Table D.21 Power Study: Sample size 35, observations 28, shape 1.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.152           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.199           | 0.150           | 0.100           | 0.052           | 0.010           |
| Gamma(2.5)     | 0.519           | 0.443           | 0.347           | 0.227           | 0.070           |
| Gamma(4.0)     | 0.728           | 0.663           | 0.572           | 0.437           | 0.197           |
| Weibull(2.0)   | 0.793           | 0.732           | 0.643           | 0.502           | 0.233           |
| Weibull(3.0)   | 0.957           | 0.938           | 0.906           | 0.837           | 0.623           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.046           | 0.032           | 0.019           | 0.008           | 0.001           |
| Beta(2,2)      | 0.911           | 0.875           | 0.813           | 0.702           | 0.414           |
| Beta(2,3)      | 0.810           | 0.751           | 0.661           | 0.520           | 0.243           |

Table D.22 Power Study: Sample size 5, observations 4, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.197           | 0.148           | 0.099           | 0.050           | 0.009           |
| Gamma(1.5)      | 0.181           | 0.134           | 0.088           | 0.044           | 0.009           |
| Gamma(2.5)      | 0.212           | 0.159           | 0.107           | 0.054           | 0.011           |
| Gamma(4.0)      | 0.239           | 0.180           | 0.122           | 0.062           | 0.012           |
| Weibull $(2.0)$ | 0.252           | 0.192           | 0.131           | 0.068           | 0.013           |
| Weibull(3.0)    | 0.306           | 0.239           | 0.168           | 0.090           | 0.018           |
| Lognormal(0,2)  | 0.067           | 0.047           | 0.030           | 0.015           | 0.003           |
| Lognormal(1,1)  | 0.138           | 0.100           | 0.065           | 0.032           | 0.006           |
| Beta(2,2)       | 0.296           | 0.228           | 0.161           | 0.085           | 0.017           |
| Beta(2,3)       | 0.263           | 0.201           | 0.140           | 0.071           | 0.014           |

Table D.23 Power Study: Sample size 10, observations 8, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.199           | 0.148           | 0.097           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.151           | 0.109           | 0.071           | 0.033           | 0.006           |
| Gamma(2.5)      | 0.230           | 0.175           | 0.117           | 0.061           | 0.013           |
| Gamma(4.0)      | 0.302           | 0.237           | 0.166           | 0.091           | 0.022           |
| Weibull $(2.0)$ | 0.330           | 0.261           | 0.188           | 0.106           | 0.026           |
| Weibull(3.0)    | 0.474           | 0.397           | 0.302           | 0.190           | 0.058           |
| Lognormal(0,2)  | 0.013           | 0.008           | 0.004           | 0.002           | 0.000           |
| Lognormal(1,1)  | 0.085           | 0.060           | 0.037           | 0.017           | 0.003           |
| Beta(2,2)       | 0.428           | 0.349           | 0.259           | 0.154           | 0.042           |
| Beta(2,3)       | 0.349           | 0.279           | 0.201           | 0.113           | 0.027           |

Table D.24 Power Study: Sample size 15, observations 12, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.197           | 0.147           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.133           | 0.096           | 0.062           | 0.029           | 0.005           |
| Gamma(2.5)      | 0.250           | 0.192           | 0.134           | 0.070           | 0.016           |
| Gamma(4.0)      | 0.352           | 0.284           | 0.209           | 0.118           | 0.030           |
| Weibull(2.0)    | 0.401           | 0.326           | 0.243           | 0.140           | 0.036           |
| Weibull $(3.0)$ | 0.610           | 0.535           | 0.441           | 0.306           | 0.113           |
| Lognormal(0,2)  | 0.003           | 0.002           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.058           | 0.040           | 0.023           | 0.010           | 0.001           |
| Beta(2,2)       | 0.533           | 0.450           | 0.352           | 0.222           | 0.069           |
| Beta(2,3)       | 0.425           | 0.348           | 0.261           | 0.151           | 0.038           |

Table D.25 Power Study: Sample size 20, observations 16, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.202           | 0.152           | 0.101           | 0.051           | 0.011           |
| Gamma(1.5)      | 0.124           | 0.090           | 0.056           | 0.025           | 0.004           |
| Gamma(2.5)      | 0.272           | 0.213           | 0.149           | 0.080           | 0.018           |
| Gamma(4.0)      | 0.404           | 0.333           | 0.250           | 0.151           | 0.041           |
| Weibull $(2.0)$ | 0.463           | 0.387           | 0.291           | 0.180           | 0.050           |
| Weibull(3.0)    | 0.717           | 0.650           | 0.556           | 0.415           | 0.180           |
| Lognormal(0,2)  | 0.001           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.042           | 0.028           | 0.016           | 0.007           | 0.001           |
| Beta(2,2)       | 0.626           | 0.548           | 0.445           | 0.301           | 0.103           |
| Beta(2,3)       | 0.491           | 0.412           | 0.314           | 0.195           | 0.057           |

Table D.26 Power Study: Sample size 25, observations 20, shape 2.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.152           | 0.101           | 0.053           | 0.010           |
| Gamma(1.5)      | 0.109           | 0.078           | 0.047           | 0.021           | 0.003           |
| Gamma(2.5)      | 0.283           | 0.222           | 0.155           | 0.084           | 0.019           |
| Gamma(4.0)      | 0.448           | 0.374           | 0.284           | 0.177           | 0.051           |
| Weibull $(2.0)$ | 0.512           | 0.433           | 0.339           | 0.219           | 0.067           |
| Weibull(3.0)    | 0.791           | 0.734           | 0.648           | 0.512           | 0.255           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.030           | 0.020           | 0.011           | 0.005           | 0.000           |
| Beta(2,2)       | 0.687           | 0.614           | 0.514           | 0.365           | 0.142           |
| Beta(2,3)       | 0.540           | 0.460           | 0.359           | 0.231           | 0.070           |

Table D.27 Power Study: Sample size 30, observations 24, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.204           | 0.152           | 0.102           | 0.051           | 0.009           |
| Gamma(1.5)     | 0.101           | 0.070           | 0.044           | 0.020           | 0.003           |
| Gamma(2.5)     | 0.296           | 0.232           | 0.163           | 0.092           | 0.021           |
| Gamma(4.0)     | 0.488           | 0.409           | 0.318           | 0.204           | 0.061           |
| Weibull(2.0)   | 0.563           | 0.481           | 0.382           | 0.252           | 0.079           |
| Weibull(3.0)   | 0.846           | 0.795           | 0.724           | 0.596           | 0.327           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.022           | 0.014           | 0.008           | 0.003           | 0.000           |
| Beta(2,2)      | 0.746           | 0.674           | 0.580           | 0.430           | 0.176           |
| Beta(2,3)      | 0.577           | 0.494           | 0.396           | 0.262           | 0.084           |

Table D.28 Power Study: Sample size 35, observations 28, shape 2.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.152           | 0.101           | 0.051           | 0.009           |
| Gamma(1.5)     | 0.092           | 0.064           | 0.039           | 0.017           | 0.003           |
| Gamma(2.5)     | 0.312           | 0.245           | 0.175           | 0.097           | 0.023           |
| Gamma(4.0)     | 0.526           | 0.450           | 0.357           | 0.237           | 0.079           |
| Weibull(2.0)   | 0.605           | 0.525           | 0.425           | 0.291           | 0.104           |
| Weibull(3.0)   | 0.889           | 0.851           | 0.791           | 0.679           | 0.413           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.016           | 0.010           | 0.006           | 0.002           | 0.000           |
| Beta(2,2)      | 0.796           | 0.733           | 0.643           | 0.497           | 0.229           |
| Beta(2,3)      | 0.633           | 0.554           | 0.454           | 0.310           | 0.111           |

Table D.29 Power Study: Sample size 5, observations 4, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.151           | 0.101           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.165           | 0.121           | 0.080           | 0.039           | 0.008           |
| Gamma(2.5)     | 0.198           | 0.148           | 0.099           | 0.049           | 0.010           |
| Gamma(4.0)     | 0.218           | 0.165           | 0.110           | 0.054           | 0.011           |
| Weibull(2.0)   | 0.236           | 0.182           | 0.123           | 0.061           | 0.013           |
| Weibull(3.0)   | 0.287           | 0.222           | 0.154           | 0.079           | 0.017           |
| Lognormal(0,2) | 0.065           | 0.046           | 0.031           | 0.014           | 0.003           |
| Lognormal(1,1) | 0.131           | 0.096           | 0.062           | 0.029           | 0.006           |
| Beta(2,2)      | 0.278           | 0.215           | 0.149           | 0.078           | 0.018           |
| Beta(2,3)      | 0.245           | 0.185           | 0.128           | 0.064           | 0.014           |

Table D.30 Power Study: Sample size 10, observations 8, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.199           | 0.151           | 0.101           | 0.051           | 0.009           |
| Gamma(1.5)      | 0.127           | 0.090           | 0.058           | 0.027           | 0.004           |
| Gamma(2.5)      | 0.197           | 0.147           | 0.098           | 0.050           | 0.009           |
| Gamma(4.0)      | 0.261           | 0.203           | 0.140           | 0.076           | 0.016           |
| Weibull $(2.0)$ | 0.289           | 0.225           | 0.160           | 0.088           | 0.019           |
| Weibull(3.0)    | 0.425           | 0.350           | 0.265           | 0.161           | 0.043           |
| Lognormal(0,2)  | 0.010           | 0.007           | 0.003           | 0.001           | 0.000           |
| Lognormal(1,1)  | 0.070           | 0.050           | 0.030           | 0.013           | 0.002           |
| Beta(2,2)       | 0.377           | 0.303           | 0.221           | 0.128           | 0.031           |
| Beta(2,3)       | 0.306           | 0.240           | 0.170           | 0.093           | 0.020           |

Table D.31 Power Study: Sample size 15, observations 12, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.195           | 0.148           | 0.096           | 0.048           | 0.010           |
| Gamma(1.5)      | 0.102           | 0.073           | 0.046           | 0.021           | 0.003           |
| Gamma(2.5)      | 0.200           | 0.149           | 0.099           | 0.048           | 0.010           |
| Gamma(4.0)      | 0.288           | 0.228           | 0.159           | 0.086           | 0.020           |
| Weibull(2.0)    | 0.332           | 0.264           | 0.187           | 0.102           | 0.025           |
| Weibull $(3.0)$ | 0.543           | 0.464           | 0.368           | 0.241           | 0.081           |
| Lognormal(0,2)  | 0.002           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.042           | 0.026           | 0.015           | 0.006           | 0.001           |
| Beta(2,2)       | 0.463           | 0.384           | 0.287           | 0.170           | 0.046           |
| Beta(2,3)       | 0.353           | 0.282           | 0.202           | 0.114           | 0.026           |

Table D.32 Power Study: Sample size 20, observations 16, shape 2.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.200           | 0.151           | 0.100           | 0.049           | 0.009           |
| Gamma(1.5)      | 0.085           | 0.059           | 0.035           | 0.013           | 0.002           |
| Gamma(2.5)      | 0.203           | 0.155           | 0.103           | 0.051           | 0.009           |
| Gamma(4.0)      | 0.318           | 0.255           | 0.183           | 0.100           | 0.024           |
| Weibull $(2.0)$ | 0.368           | 0.296           | 0.217           | 0.122           | 0.030           |
| Weibull(3.0)    | 0.633           | 0.559           | 0.463           | 0.321           | 0.121           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.026           | 0.017           | 0.010           | 0.004           | 0.000           |
| Beta(2,2)       | 0.529           | 0.448           | 0.349           | 0.219           | 0.066           |
| Beta(2,3)       | 0.399           | 0.323           | 0.238           | 0.136           | 0.034           |

Table D.33 Power Study: Sample size 25, observations 20, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.153           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.071           | 0.047           | 0.028           | 0.011           | 0.002           |
| Gamma(2.5)     | 0.202           | 0.152           | 0.101           | 0.052           | 0.009           |
| Gamma(4.0)     | 0.344           | 0.273           | 0.199           | 0.115           | 0.028           |
| Weibull(2.0)   | 0.408           | 0.333           | 0.245           | 0.146           | 0.039           |
| Weibull(3.0)   | 0.711           | 0.642           | 0.547           | 0.404           | 0.173           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.018           | 0.011           | 0.006           | 0.003           | 0.000           |
| Beta(2,2)      | 0.590           | 0.509           | 0.406           | 0.272           | 0.091           |
| Beta(2,3)      | 0.436           | 0.355           | 0.266           | 0.157           | 0.042           |

Table D.34 Power Study: Sample size 30, observations 24, shape 2.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.204           | 0.151           | 0.101           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.061           | 0.041           | 0.024           | 0.009           | 0.001           |
| Gamma(2.5)     | 0.200           | 0.148           | 0.099           | 0.049           | 0.009           |
| Gamma(4.0)     | 0.368           | 0.297           | 0.216           | 0.125           | 0.034           |
| Weibull(2.0)   | 0.436           | 0.357           | 0.268           | 0.161           | 0.043           |
| Weibull(3.0)   | 0.762           | 0.698           | 0.609           | 0.467           | 0.223           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.011           | 0.007           | 0.003           | 0.001           | 0.000           |
| Beta(2,2)      | 0.646           | 0.567           | 0.462           | 0.314           | 0.110           |
| Beta(2,3)      | 0.460           | 0.380           | 0.285           | 0.169           | 0.046           |

Table D.35  $\,$  Power Study: Sample size 35, observations 28, shape 2.5

| Distribution      | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original          | 0.200           | 0.150           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)        | 0.053           | 0.035           | 0.020           | 0.008           | 0.001           |
| Gamma(2.5)        | 0.200           | 0.149           | 0.100           | 0.050           | 0.009           |
| Gamma(4.0)        | 0.390           | 0.317           | 0.236           | 0.141           | 0.038           |
| Weibull(2.0)      | 0.464           | 0.385           | 0.293           | 0.178           | 0.052           |
| Weibull(3.0)      | 0.811           | 0.755           | 0.677           | 0.541           | 0.274           |
| Lognormal(0,2)    | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal $(1,1)$ | 0.008           | 0.005           | 0.003           | 0.001           | 0.000           |
| Beta(2,2)         | 0.686           | 0.608           | 0.507           | 0.357           | 0.132           |
| Beta(2,3)         | 0.496           | 0.414           | 0.319           | 0.196           | 0.056           |

Table D.36 Power Study: Sample size 5, observations 4, shape 3.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.197           | 0.148           | 0.098           | 0.048           | 0.010           |
| Gamma(1.5)      | 0.159           | 0.116           | 0.076           | 0.038           | 0.007           |
| Gamma(2.5)      | 0.187           | 0.141           | 0.092           | 0.046           | 0.010           |
| Gamma(4.0)      | 0.206           | 0.156           | 0.105           | 0.052           | 0.011           |
| Weibull $(2.0)$ | 0.225           | 0.172           | 0.115           | 0.057           | 0.011           |
| Weibull(3.0)    | 0.275           | 0.211           | 0.144           | 0.074           | 0.016           |
| Lognormal(0,2)  | 0.058           | 0.041           | 0.026           | 0.012           | 0.002           |
| Lognormal(1,1)  | 0.121           | 0.087           | 0.056           | 0.027           | 0.005           |
| Beta(2,2)       | 0.263           | 0.203           | 0.140           | 0.072           | 0.015           |
| Beta(2,3)       | 0.238           | 0.180           | 0.122           | 0.061           | 0.012           |

Table D.37 Power Study: Sample size 10, observations 8, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.152           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.110           | 0.081           | 0.050           | 0.022           | 0.004           |
| Gamma(2.5)     | 0.176           | 0.131           | 0.085           | 0.040           | 0.008           |
| Gamma(4.0)     | 0.234           | 0.179           | 0.121           | 0.061           | 0.013           |
| Weibull(2.0)   | 0.263           | 0.204           | 0.139           | 0.074           | 0.017           |
| Weibull(3.0)   | 0.393           | 0.323           | 0.237           | 0.139           | 0.037           |
| Lognormal(0,2) | 0.010           | 0.006           | 0.003           | 0.001           | 0.000           |
| Lognormal(1,1) | 0.061           | 0.042           | 0.024           | 0.010           | 0.001           |
| Beta(2,2)      | 0.346           | 0.276           | 0.195           | 0.110           | 0.026           |
| Beta(2,3)      | 0.278           | 0.216           | 0.147           | 0.078           | 0.016           |

Table D.38 Power Study: Sample size 15, observations 12, shape 3.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.196           | 0.148           | 0.101           | 0.051           | 0.011           |
| Gamma(1.5)      | 0.083           | 0.057           | 0.035           | 0.015           | 0.002           |
| Gamma(2.5)      | 0.168           | 0.124           | 0.082           | 0.040           | 0.007           |
| Gamma(4.0)      | 0.246           | 0.188           | 0.131           | 0.069           | 0.016           |
| Weibull $(2.0)$ | 0.289           | 0.225           | 0.158           | 0.084           | 0.020           |
| Weibull(3.0)    | 0.493           | 0.416           | 0.326           | 0.208           | 0.065           |
| Lognormal(0,2)  | 0.002           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.033           | 0.022           | 0.013           | 0.005           | 0.001           |
| Beta(2,2)       | 0.411           | 0.332           | 0.248           | 0.145           | 0.040           |
| Beta(2,3)       | 0.310           | 0.241           | 0.171           | 0.091           | 0.021           |

Table D.39 Power Study: Sample size 20, observations 16, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.152           | 0.101           | 0.051           | 0.011           |
| Gamma(1.5)     | 0.066           | 0.045           | 0.026           | 0.011           | 0.002           |
| Gamma(2.5)     | 0.162           | 0.119           | 0.076           | 0.035           | 0.007           |
| Gamma(4.0)     | 0.266           | 0.208           | 0.145           | 0.076           | 0.017           |
| Weibull(2.0)   | 0.308           | 0.242           | 0.170           | 0.093           | 0.023           |
| Weibull(3.0)   | 0.568           | 0.492           | 0.393           | 0.262           | 0.095           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.020           | 0.013           | 0.006           | 0.002           | 0.000           |
| Beta(2,2)      | 0.467           | 0.386           | 0.292           | 0.173           | 0.051           |
| Beta(2,3)      | 0.339           | 0.270           | 0.192           | 0.104           | 0.025           |

Table D.40 Power Study: Sample size 25, observations 20, shape 3.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.150           | 0.099           | 0.050           | 0.011           |
| Gamma(1.5)      | 0.052           | 0.034           | 0.020           | 0.008           | 0.001           |
| Gamma(2.5)      | 0.152           | 0.110           | 0.070           | 0.034           | 0.006           |
| Gamma(4.0)      | 0.273           | 0.214           | 0.149           | 0.080           | 0.019           |
| Weibull $(2.0)$ | 0.332           | 0.262           | 0.187           | 0.105           | 0.026           |
| Weibull(3.0)    | 0.640           | 0.564           | 0.466           | 0.328           | 0.126           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.012           | 0.007           | 0.004           | 0.002           | 0.000           |
| Beta(2,2)       | 0.515           | 0.433           | 0.333           | 0.209           | 0.062           |
| Beta(2,3)       | 0.361           | 0.288           | 0.205           | 0.113           | 0.027           |

Table D.41 Power Study: Sample size 30, observations 24, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.151           | 0.101           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.041           | 0.028           | 0.016           | 0.006           | 0.001           |
| Gamma(2.5)     | 0.147           | 0.109           | 0.070           | 0.033           | 0.006           |
| Gamma(4.0)     | 0.289           | 0.228           | 0.162           | 0.090           | 0.022           |
| Weibull(2.0)   | 0.349           | 0.282           | 0.205           | 0.113           | 0.028           |
| Weibull(3.0)   | 0.688           | 0.622           | 0.528           | 0.388           | 0.165           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.007           | 0.004           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)      | 0.559           | 0.478           | 0.378           | 0.242           | 0.078           |
| Beta(2,3)      | 0.378           | 0.305           | 0.223           | 0.123           | 0.030           |

Table D.42 Power Study: Sample size 35, observations 28, shape 3.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.202           | 0.152           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)     | 0.034           | 0.022           | 0.011           | 0.004           | 0.000           |
| Gamma(2.5)     | 0.142           | 0.103           | 0.065           | 0.031           | 0.005           |
| Gamma(4.0)     | 0.301           | 0.238           | 0.170           | 0.094           | 0.022           |
| Weibull(2.0)   | 0.369           | 0.299           | 0.220           | 0.126           | 0.031           |
| Weibull(3.0)   | 0.742           | 0.678           | 0.589           | 0.446           | 0.203           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.005           | 0.003           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)      | 0.596           | 0.513           | 0.413           | 0.273           | 0.089           |
| Beta(2,3)      | 0.402           | 0.326           | 0.241           | 0.142           | 0.035           |

Table D.43 Power Study: Sample size 5, observations 4, shape 3.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.197           | 0.147           | 0.098           | 0.049           | 0.010           |
| Gamma(1.5)      | 0.153           | 0.112           | 0.074           | 0.037           | 0.007           |
| Gamma(2.5)      | 0.180           | 0.135           | 0.091           | 0.045           | 0.009           |
| Gamma(4.0)      | 0.200           | 0.149           | 0.099           | 0.050           | 0.009           |
| Weibull(2.0)    | 0.216           | 0.163           | 0.110           | 0.055           | 0.011           |
| Weibull $(3.0)$ | 0.266           | 0.205           | 0.144           | 0.075           | 0.014           |
| Lognormal(0,2)  | 0.056           | 0.039           | 0.025           | 0.012           | 0.002           |
| Lognormal(1,1)  | 0.117           | 0.086           | 0.055           | 0.026           | 0.005           |
| Beta(2,2)       | 0.255           | 0.196           | 0.136           | 0.070           | 0.015           |
| Beta(2,3)       | 0.226           | 0.171           | 0.116           | 0.058           | 0.011           |

Table D.44 Power Study: Sample size 10, observations 8, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.203           | 0.154           | 0.102           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.101           | 0.071           | 0.043           | 0.019           | 0.003           |
| Gamma(2.5)     | 0.160           | 0.117           | 0.077           | 0.035           | 0.006           |
| Gamma(4.0)     | 0.215           | 0.164           | 0.111           | 0.056           | 0.011           |
| Weibull(2.0)   | 0.242           | 0.187           | 0.127           | 0.066           | 0.014           |
| Weibull(3.0)   | 0.367           | 0.298           | 0.217           | 0.123           | 0.032           |
| Lognormal(0,2) | 0.008           | 0.005           | 0.003           | 0.001           | 0.000           |
| Lognormal(1,1) | 0.055           | 0.037           | 0.022           | 0.009           | 0.001           |
| Beta(2,2)      | 0.328           | 0.259           | 0.182           | 0.098           | 0.024           |
| Beta(2,3)      | 0.256           | 0.196           | 0.134           | 0.070           | 0.014           |

Table D.45 Power Study: Sample size 15, observations 12, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.197           | 0.149           | 0.099           | 0.050           | 0.009           |
| Gamma(1.5)     | 0.072           | 0.049           | 0.029           | 0.012           | 0.001           |
| Gamma(2.5)     | 0.146           | 0.106           | 0.068           | 0.031           | 0.005           |
| Gamma(4.0)     | 0.220           | 0.165           | 0.112           | 0.056           | 0.011           |
| Weibull(2.0)   | 0.257           | 0.198           | 0.136           | 0.070           | 0.014           |
| Weibull(3.0)   | 0.456           | 0.380           | 0.290           | 0.179           | 0.053           |
| Lognormal(0,2) | 0.001           | 0.001           | 0.001           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.028           | 0.019           | 0.010           | 0.004           | 0.000           |
| Beta(2,2)      | 0.373           | 0.299           | 0.216           | 0.122           | 0.031           |
| Beta(2,3)      | 0.278           | 0.214           | 0.146           | 0.075           | 0.016           |

Table D.46 Power Study: Sample size 20, observations 16, shape 3.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.197           | 0.147           | 0.098           | 0.048           | 0.009           |
| Gamma(1.5)      | 0.053           | 0.035           | 0.020           | 0.008           | 0.001           |
| Gamma(2.5)      | 0.136           | 0.097           | 0.062           | 0.028           | 0.005           |
| Gamma(4.0)      | 0.224           | 0.169           | 0.117           | 0.060           | 0.012           |
| Weibull $(2.0)$ | 0.266           | 0.206           | 0.142           | 0.075           | 0.016           |
| Weibull(3.0)    | 0.521           | 0.444           | 0.349           | 0.223           | 0.069           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.017           | 0.010           | 0.006           | 0.002           | 0.000           |
| Beta(2,2)       | 0.417           | 0.338           | 0.250           | 0.145           | 0.036           |
| Beta(2,3)       | 0.297           | 0.229           | 0.159           | 0.084           | 0.018           |

Table D.47 Power Study: Sample size 25, observations 20, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.152           | 0.100           | 0.051           | 0.009           |
| Gamma(1.5)     | 0.040           | 0.026           | 0.014           | 0.005           | 0.001           |
| Gamma(2.5)     | 0.123           | 0.089           | 0.055           | 0.025           | 0.004           |
| Gamma(4.0)     | 0.231           | 0.176           | 0.119           | 0.061           | 0.012           |
| Weibull(2.0)   | 0.283           | 0.219           | 0.151           | 0.081           | 0.017           |
| Weibull(3.0)   | 0.585           | 0.509           | 0.412           | 0.277           | 0.095           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.009           | 0.005           | 0.003           | 0.001           | 0.000           |
| Beta(2,2)      | 0.459           | 0.380           | 0.287           | 0.171           | 0.046           |
| Beta(2,3)      | 0.310           | 0.240           | 0.167           | 0.089           | 0.019           |

Table D.48 Power Study: Sample size 30, observations 24, shape 3.5

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.153           | 0.103           | 0.052           | 0.011           |
| Gamma(1.5)     | 0.031           | 0.020           | 0.011           | 0.004           | 0.001           |
| Gamma(2.5)     | 0.116           | 0.081           | 0.052           | 0.023           | 0.003           |
| Gamma(4.0)     | 0.235           | 0.179           | 0.124           | 0.066           | 0.013           |
| Weibull(2.0)   | 0.295           | 0.228           | 0.161           | 0.087           | 0.019           |
| Weibull(3.0)   | 0.638           | 0.562           | 0.466           | 0.329           | 0.124           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.005           | 0.003           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)      | 0.501           | 0.419           | 0.323           | 0.198           | 0.056           |
| Beta(2,3)      | 0.321           | 0.250           | 0.177           | 0.097           | 0.021           |

Table D.49 Power Study: Sample size 35, observations 28, shape 3.5

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.203           | 0.153           | 0.102           | 0.051           | 0.010           |
| Gamma(1.5)      | 0.025           | 0.015           | 0.008           | 0.003           | 0.000           |
| Gamma(2.5)      | 0.110           | 0.077           | 0.047           | 0.021           | 0.004           |
| Gamma(4.0)      | 0.241           | 0.185           | 0.127           | 0.066           | 0.015           |
| Weibull $(2.0)$ | 0.309           | 0.241           | 0.169           | 0.092           | 0.022           |
| Weibull(3.0)    | 0.683           | 0.612           | 0.514           | 0.369           | 0.154           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.004           | 0.002           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)       | 0.530           | 0.446           | 0.346           | 0.216           | 0.065           |
| Beta(2,3)       | 0.337           | 0.266           | 0.189           | 0.102           | 0.024           |

Table D.50 Power Study: Sample size 5, observations 4, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.152           | 0.102           | 0.049           | 0.010           |
| Gamma(1.5)     | 0.151           | 0.112           | 0.072           | 0.034           | 0.007           |
| Gamma(2.5)     | 0.176           | 0.132           | 0.088           | 0.042           | 0.008           |
| Gamma(4.0)     | 0.195           | 0.147           | 0.097           | 0.046           | 0.009           |
| Weibull(2.0)   | 0.212           | 0.160           | 0.106           | 0.052           | 0.010           |
| Weibull(3.0)   | 0.260           | 0.203           | 0.139           | 0.071           | 0.014           |
| Lognormal(0,2) | 0.054           | 0.038           | 0.024           | 0.011           | 0.002           |
| Lognormal(1,1) | 0.114           | 0.084           | 0.053           | 0.025           | 0.005           |
| Beta(2,2)      | 0.249           | 0.192           | 0.131           | 0.067           | 0.013           |
| Beta(2,3)      | 0.218           | 0.166           | 0.111           | 0.055           | 0.011           |

Table D.51 Power Study: Sample size 10, observations 8, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.200           | 0.148           | 0.099           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.094           | 0.065           | 0.039           | 0.017           | 0.002           |
| Gamma(2.5)     | 0.149           | 0.106           | 0.069           | 0.032           | 0.005           |
| Gamma(4.0)     | 0.200           | 0.150           | 0.100           | 0.049           | 0.009           |
| Weibull(2.0)   | 0.226           | 0.171           | 0.114           | 0.057           | 0.012           |
| Weibull(3.0)   | 0.352           | 0.279           | 0.200           | 0.112           | 0.026           |
| Lognormal(0,2) | 0.007           | 0.005           | 0.002           | 0.001           | 0.000           |
| Lognormal(1,1) | 0.052           | 0.034           | 0.020           | 0.008           | 0.001           |
| Beta(2,2)      | 0.308           | 0.240           | 0.166           | 0.089           | 0.019           |
| Beta(2,3)      | 0.241           | 0.181           | 0.123           | 0.062           | 0.011           |

Table D.52 Power Study: Sample size 15, observations 12, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.198           | 0.149           | 0.099           | 0.049           | 0.009           |
| Gamma(1.5)     | 0.063           | 0.043           | 0.025           | 0.010           | 0.002           |
| Gamma(2.5)     | 0.130           | 0.094           | 0.059           | 0.027           | 0.004           |
| Gamma(4.0)     | 0.200           | 0.151           | 0.100           | 0.049           | 0.009           |
| Weibull(2.0)   | 0.234           | 0.178           | 0.120           | 0.060           | 0.011           |
| Weibull(3.0)   | 0.425           | 0.351           | 0.264           | 0.159           | 0.043           |
| Lognormal(0,2) | 0.001           | 0.001           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.025           | 0.015           | 0.009           | 0.003           | 0.000           |
| Beta(2,2)      | 0.349           | 0.279           | 0.198           | 0.107           | 0.023           |
| Beta(2,3)      | 0.253           | 0.194           | 0.131           | 0.066           | 0.011           |

Table D.53 Power Study: Sample size 20, observations 16, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.196           | 0.147           | 0.098           | 0.048           | 0.009           |
| Gamma(1.5)     | 0.044           | 0.028           | 0.015           | 0.006           | 0.001           |
| Gamma(2.5)     | 0.116           | 0.082           | 0.052           | 0.022           | 0.004           |
| Gamma(4.0)     | 0.201           | 0.150           | 0.100           | 0.050           | 0.009           |
| Weibull(2.0)   | 0.241           | 0.182           | 0.124           | 0.062           | 0.013           |
| Weibull(3.0)   | 0.481           | 0.403           | 0.313           | 0.195           | 0.059           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.013           | 0.008           | 0.004           | 0.002           | 0.000           |
| Beta(2,2)      | 0.383           | 0.307           | 0.223           | 0.125           | 0.031           |
| Beta(2,3)      | 0.267           | 0.203           | 0.140           | 0.070           | 0.014           |

Table D.54 Power Study: Sample size 25, observations 20, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.201           | 0.150           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)     | 0.034           | 0.022           | 0.012           | 0.004           | 0.001           |
| Gamma(2.5)     | 0.104           | 0.072           | 0.045           | 0.020           | 0.003           |
| Gamma(4.0)     | 0.198           | 0.148           | 0.099           | 0.050           | 0.009           |
| Weibull(2.0)   | 0.248           | 0.189           | 0.130           | 0.067           | 0.013           |
| Weibull(3.0)   | 0.539           | 0.461           | 0.367           | 0.238           | 0.079           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.007           | 0.004           | 0.002           | 0.001           | 0.000           |
| Beta(2,2)      | 0.417           | 0.340           | 0.252           | 0.145           | 0.039           |
| Beta(2,3)      | 0.273           | 0.209           | 0.142           | 0.073           | 0.015           |

Table D.55 Power Study: Sample size 30, observations 24, shape 4.0

| Distribution   | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original       | 0.199           | 0.148           | 0.098           | 0.050           | 0.011           |
| Gamma(1.5)     | 0.024           | 0.015           | 0.008           | 0.003           | 0.000           |
| Gamma(2.5)     | 0.094           | 0.066           | 0.040           | 0.017           | 0.003           |
| Gamma(4.0)     | 0.203           | 0.152           | 0.101           | 0.051           | 0.010           |
| Weibull(2.0)   | 0.256           | 0.194           | 0.134           | 0.068           | 0.014           |
| Weibull(3.0)   | 0.588           | 0.511           | 0.415           | 0.281           | 0.099           |
| Lognormal(0,2) | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1) | 0.004           | 0.002           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)      | 0.443           | 0.366           | 0.276           | 0.162           | 0.044           |
| Beta(2,3)      | 0.278           | 0.212           | 0.146           | 0.075           | 0.016           |

Table D.56 Power Study: Sample size 35, observations 28, shape 4.0

| Distribution    | $\alpha = 0.20$ | $\alpha = 0.15$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.01$ |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Original        | 0.201           | 0.151           | 0.100           | 0.050           | 0.010           |
| Gamma(1.5)      | 0.018           | 0.011           | 0.006           | 0.002           | 0.000           |
| Gamma(2.5)      | 0.086           | 0.059           | 0.036           | 0.015           | 0.002           |
| Gamma(4.0)      | 0.202           | 0.153           | 0.102           | 0.050           | 0.011           |
| Weibull $(2.0)$ | 0.260           | 0.201           | 0.137           | 0.070           | 0.014           |
| Weibull(3.0)    | 0.629           | 0.554           | 0.455           | 0.316           | 0.119           |
| Lognormal(0,2)  | 0.000           | 0.000           | 0.000           | 0.000           | 0.000           |
| Lognormal(1,1)  | 0.003           | 0.001           | 0.001           | 0.000           | 0.000           |
| Beta(2,2)       | 0.472           | 0.394           | 0.298           | 0.179           | 0.051           |
| Beta(2,3)       | 0.289           | 0.224           | 0.155           | 0.081           | 0.017           |

## Appendix E. Fortran Program for the Calculation of

### **Critical Values**

```
PROGRAM ZCRITIC
    THIS PROGRAMS GENERATES THE CRITICAL VALUES
    FOR THE GAMMA DISTRIBUTION WITH SHAPE PARAMETER=0.5
    FOR OTHER SHAPES CHANGE K=0.5, AND INCLUDE OPEN05.F
    INCLUDED FILE OPENO5.F CONTAINS OPEN STATEMENTS
    TO OPEN TEX OUTPUT FILES, AND MUDIF INPUT FILES
    INTEGER S,I,J,II,JJ,SS,N,SEED,PASS,IERROR,LK,KL,LM
    REAL CRIT80, CRIT85, CRIT90, CRIT95, CRIT99, K
    REAL CRT80, CRT85, CRT90, CRT95, CRT99
    REAL Y(40), X(40), GAP(40), MUDIF(39)
    REAL XX(40), ZSTAR(0:10003), G(40)
    REAL NUMSUM, NUM, DENSUM, DENOM
    EXTERNAL RNSET, SVRGN, RNGAM
     INCLUDE 'zcr/include/open05.f'
    S=10000
    K=0.5
    KL=10*K+1
    LK=KL+1
    LM=LK+1
    WRITE(LK,970)
970 FORMAT('\\begin{table}[h]'/'\\caption{Critical values for '
    +'$Z^*$ test statistic: Sample size N, shape parameter 0.5}')
    WRITE(LK,982)
982 FORMAT('\\begin{center}')
    WRITE(LK,971)
971 FORMAT('\\begin{tabular}{||c|c|c|c|c|c||} \\hline')
    WRITE(LK,983)
983 FORMAT('Sample size&shape&$\\alpha=0.20$&$\\alpha=0.15$&$\\alpha'
    +'=0.10$&$\\alpha=0.05$&$\\alpha=0.01$\\zline',/,'\\hline')
      DO 2000 N=5,40,5
         CRT80=0.0
         CRT85=0.0
         CRT90=0.0
         CRT95=0.0
         CRT99=0.0
```

```
DO 1999 PASS=1,10
         GO TO (15,16,17,18,19,20,21,22,23,24),PASS
15
            SEED=23741324
                 GO TO 25
16
            SEED=27465531
                 GO TO 25
17
            SEED=59351236
                 GO TO 25
18
            SEED=74639465
                 GO TO 25
19
            SEED=56739493
                 GO TO 25
            SEED=98423732
20
                 GO TO 25
21
            SEED=56384628
                 GO TO 25
22
            SEED=48897742
                 GO TO 25
            SEED=96745663
23
                 GO TO 25
24
            SEED=87346239
25
            CALL RNSET(SEED)
                   I=0
                    J=0
                  II=0
                  JJ=0
                   SS=0
            DO 5 I=1,N
              X(I)=0.0
              Y(I) = 0.0
            GAP(I)=0.0
              G(I)=0.0
5
            CONTINUE
            DO 6 I=0,S+1
            ZSTAR(I)=0.0
6
            CONTINUE
                      CRIT80=0.0
                      CRIT85=0.0
                      CRIT90=0.0
                      CRIT95=0.0
                      CRIT99=0.0
        REWIND (N)
                          READ(N,*)(MUDIF(I),I=1,N-1)
```

```
WRITE(LM,903)(MUDIF(I),I=1,N-1)
903
                    FORMAT(1(5F10.6))
                        DO 110 J=1,S
                 CALL RNGAM(N,K,Y)
                          DO 7 I=1,N
                          X(I)=Y(I)+10.0
  7
                          CONTINUE
                          CALL SVRGN(N,X,XX)
                          DO 8 I=1,N-1
                           GAP(I)=XX(I+1)-XX(I)
                          CONTINUE
  8
                          DO 9 I=1,N-1
                           G(I)=GAP(I)/MUDIF(I)
  9
                          CONTINUE
                 NUMSUM=0.0
                          DO 10 I=1,N-2
                          NUMSUM=NUMSUM+(N-1-I)*G(I)
 10
                          CONTINUE
                          NUM=2.0*NUMSUM
                          DENSUM=0.0
                          DO 11 I=1,N-1
                           DENSUM=DENSUM+G(I)
 11
                          CONTINUE
                           DENOM=(N-2)*DENSUM
                           ZSTAR(J)=NUM/DENOM
 110
                         CONTINUE
                SS=S+1
                CALL SVRGN(SS, ZSTAR, ZSTAR)
                CALL EXTRA(S, ZSTAR)
                CALL VALUES (ZSTAR, CRIT80, CRIT85, CRIT90,
                                       CRIT95, CRIT99, SS)
               CRT80=CRT80+CRIT80
               CRT85=CRT85+CRIT85
               CRT90=CRT90+CRIT90
               CRT95=CRT95+CRIT95
               CRT99=CRT99+CRIT99
1999
        CONTINUE
               AVERAGING THE FIVE INDEPENDENT VALUES
C
               CRT80=CRT80/10
               CRT85=CRT85/10
               CRT90=CRT90/10
               CRT95=CRT95/10
               CRT99=CRT99/10
```

```
WRITE(KL,902)CRT80,CRT85,CRT90,
                               CRT95, CRT99
902
              FORMAT(1X.5F7.4)
              WRITE(LK, 972)N, K, CRT80, CRT85, CRT90,
              CRT95, CRT99
              FORMAT(I2,' & ',F3.1,5(' & ',F6.4),'\\','\\\hline')
972
      CLOSE (N)
      S=10000
      CONTINUE
2000
3000
      CONTINUE
      WRITE(LK.973)
      FORMAT('\\end{tabular}'/'\\end{center}'/'\\end{table}')
973
      CLOSE(LK)
       CLOSE(LM)
STOP
1000
      WRITE(*,1001) IERROR
      FORMAT(1X,'IOSTAT = ', IERROR/)
1001
**********************
              SUBROUTINE CRIT
     USING THE TECHNIQUE EXPLAINED IN CHAPTER 3, FIND THE
     CRITICAL VALUES
************************
     SUBROUTINE CRIT(Y1, Y2, D1, D2, Y, RES)
     REAL M,B,Y1,Y2,D1,D2,Y,RES
     IF((D2-D1).EQ.0.0)D2 = D2 * 1.00001
     M = (Y2-Y1)/(D2-D1)
     B = Y1 - M*D1
     RES = (Y-B)/M
     RETURN
     END
*********************
        SUBROUTINE EXTRA
     THIS SUBROUTINE EXTRAPOLATES THE ZCRITICAL(I) DATA
     TO GENERATE ZCRITICAL(0) AND ZCRITICAL(S+1) FOR COMPUTATION *
     OF THE FIVE CRITICAL VALUES.
***********************************
     SUBROUTINE EXTRA(N,D)
     INTEGER N,NO,N1
     REAL Y1, Y2, D(0:10003), D1, D2, ZZ
     Y1 = 0.5/N
```

```
Y2 = 1.5/N
     D1 = D(1)
     D2 = D(2)
     CALL CRIT(Y1, Y2, D1, D2, 0.0, ZZ)
     IF(ZZ.GE.O.O) THEN
       D(0) = ZZ
     ELSE
       D(0) = 0.0
     ENDIF
     Y1 = (REAL(N) - 1.5)/N
     Y2 = (REAL(N) - 0.5)/N
     NO = N-1
     D1 = D(N0)
     D2 = D(N)
     CALL CRIT(Y1, Y2, D1, D2, 1.0, ZZ)
     N1 = N + 1
     D(N1) = ZZ
     RETURN
     END
************************
     THE FOLLOWING SUB DETERMINES THE "TILES AND FINDS
     THE CRITICAL VALUES BY EVOKING THE SUBROUTINE CRIT
*************************
     SUBROUTINE VALUES (D, CRIT80, CRIT85, CRIT90, CRIT95, CRIT99, N)
     INTEGER I,N,NN
     REAL D(0:10003), Y(0:10003), C80, C90, C95, C99, C85,
    + Y79,D79,Y81,D81,DIF90,Y89,Y91,D89,D91,DIF95,DIF80,
    + Y94, Y96, D94, D96, DIF99, Y98, Y100, D98, D100, DIF85,
    + Y84,D84,Y86,D86,CRIT85,CRIT80,CRIT90,CRIT95,CRIT99
     DO 100 I = 1.N
       Y(I) = (REAL(I) - 0.5)/REAL(N)
 100
       CONTINUE
     Y(0) = 0.0
        NN = N + 1
        Y(NN) = 1.0
     C80 = 1000.0
     C85 = 1000.0
     C90 = 1000.0
     C95 = 1000.0
     C99 = 1000.0
     DO 200 I = NN, 0, -1
```

```
IF (Y(I).LE.0.75) GO TO 300
        IF (Y(I).GT.0.75.AND.Y(I).LE.0.80) THEN
C
          GET THE DESIRED %TILE AT 80%
          DIF80 = .80 - Y(I)
          IF (DIF80.LE.C80) THEN
            C80 = DIF80
            Y79 = Y(I)
            D79 = D(I)
            Y81 = Y(I+1)
            D81 = D(I+1)
          ENDIF
        ELSEIF (Y(I).GT.0.80.AND.Y(I).LE.0.85) THEN
          GET THE DESIRED %TILE AT 85%
C
          DIF85 = .85 - Y(I)
          IF (DIF85.LE.C85) THEN
            C85 = DIF85
            Y84 = Y(I)
            D84 = D(I)
            Y86 = Y(I+1)
            D86 = D(I+1)
          ENDIF
        ELSEIF (Y(I).GT.0.85.AND.Y(I).LE.0.90) THEN
C
          GET THE DESIRED %TILE AT 90%
          DIF90 = .90 - Y(I)
          IF (DIF90.LE.C90) THEN
            C90 = DIF90
            Y89 = Y(I)
            D89 = D(I)
            Y91 = Y(I+1)
            D91 = D(I+1)
          ENDIF
        ELSEIF (Y(I).GT.0.90.AND.Y(I).LE.0.95) THEN
          GET THE DESIRED %TILE AT 95%
C
          DIF95 = .95 - Y(I)
          IF (DIF95.LE.C95) THEN
            C95 = DIF95
            Y94 = Y(I)
            D94 = D(I)
            Y96 = Y(I+1)
            D96 = D(I+1)
          ENDIF
        ELSEIF (Y(I).GT.0.95.AND.Y(I).LE.0.99) THEN
```

```
C
          GET THE DESIRED %TILE AT 99%
          DIF99 = .99 - Y(I)
          IF (DIF99.LE.C99) THEN
            C99 = DIF99
            Y98 = Y(I)
            D98 = D(I)
            Y100 = Y(I+1)
            D100 = D(I+1)
          ENDIF
        ENDIF
200
      CONTINUE
300
      IF (DIF80.EQ.0.0) THEN
        CRIT80 = D79
      ELSE
C
        COMPUTE THE CRIT VALUE AT SIGNIFICANCE LEVEL = .20
        CALL CRIT(Y79, Y81, D79, D81, .80, CRIT80)
      ENDIF
      IF (DIF85.EQ.O.O) THEN
        CRIT85 = D84
      ELSE
C
        COMPUTE THE CRIT VALUE AT SIGNIFICANCE LEVEL = .15
        CALL CRIT(Y84, Y86, D84, D86, .85, CRIT85)
      ENDIF
      IF (DIF90.EQ.0.0) THEN
        CRIT90 = D89
      ELSE
C
        COMPUTE THE CRIT VALUE AT SIGNIFICANCE LEVEL = .10
        CALL CRIT(Y89, Y91, D89, D91, .90, CRIT90)
      ENDIF
      IF (DIF95.EQ.0.0) THEN
        CRIT95 = D94
      ELSE
C
        COMPUTE THE CRIT VALUE AT SIGNIFICANCE LEVEL = .05
        CALL CRIT(Y94, Y96, D94, D96, .95, CRIT95)
      ENDIF
      IF (DIF99.EQ.O.O) THEN
        CRIT99 = D98
      ELSE
C
        COMPUTE THE CRIT VALUE AT SIGNIFICANCE LEVEL = .01
        CALL CRIT(Y98, Y100, D98, D100, .99, CRIT99)
      ENDIF
      RETURN
      END
```

### Appendix F. Fortran Program for the Power Study

#### PROGRAM POWER

- \* THIS PROGRAM GENERATES POWER TABLES IN LATEX FORMAT
- \* IT RUNS FOR SHAPE PARAMETER=0.5. FOR OTHER SHAPES
- \* CHANGE K=0.5. AND NECESSARY INCLUDE STATEMENTS THAT
- \* OPEN MUDIF DATA FILES AND CRITICAL VALUE \*.OUT FILES

```
INTEGER I, J, IREPS, N, SEED, IERROR, NN
INTEGER REJ(1:10,0:5), DIST, NUMDIST, II, JJ
CHARACTER*14 D(10)
REAL Y(35), X(35), GAP(35), MUDIF(34)
REAL XX(35), ZSTAR(1:50005), G(20)
REAL NUMSUM, NUM, DENSUM, DENOM, K
REAL CRIT(35)
REAL PWR(10,5)
EXTERNAL RNSET, SVRGN, RNGAM, RNLNL
EXTERNAL RNUN, RNBET, RNNOR, RNWIB
INCLUDE 'zcr/include/open05.f'
INCLUDE 'power/include/pow05.inc'
IREPS=50000
NUMDIST=10
CENSOR=1.0
K=0.5
KL=10*K+1
READ(KL,*)(CRIT(I),I=1,35)
```

- \* IF THE FOLLOWING SET OF ALTERNATIVE DISTRIBUTIONS
- \* ARE CHANGED THEN EXTERNAL STATEMENT AT THE BEGINNING
- \* SHOULD ALSO INCLUDE ADDED DISTRIBUTIONS
  - D(1)="Original"

SEED=816283532 CALL RNSET(SEED)

- D(2) = "Gamma(1.5)"
- D(3) = "Gamma(2.5)"
- D(4) = "Gamma(4.0)"
- D(5)="Weibull(2.0)"
- D(6)="Weibull(3.0)"
- D(7)="Lognormal(0,2)"
- D(8)="Lognormal(1,1)"
- D(9) = "Beta(2,2)"
- D(10) = "Beta(2,3)"
- DO 2000 N=5,35,5

```
I=0
               J=0
               NN=N+4
               LM=N+40
               DO 5 I=1,N
                    X(I) = 0.0
                    Y(I) = 0.0
                    GAP(I)=0.0
                    G(I) = 0.0
 5
               CONTINUE
               DO 71 II=1,10
               DO 71 I=0,5
                     REJ(II,I)=0
 71
               CONTINUE
               DO 81 JJ=1,10
               DO 81 J=1,5
                     PWR(JJ,J)=0.0
 81
               CONTINUE
     LATEX FORMATTING
     WRITE(NN, 970), N
     FORMAT('\\begin{table}[h]'/'\\caption{Power Study: Sample size '
970
     +,I2,', shape 0.5}')
      WRITE(NN,982)
982
      FORMAT('\\begin{center}')
      WRITE(NN,971)
     FORMAT('\\begin{tabular}{||c|c|c|c|c||} \\hline')
971
      WRITE(NN,983)
      FORMAT('Distribution&$\\alpha=0.20$&$\\alpha=0.15$&$\\alpha='
983
     +'0.10$&$\\alpha=0.05$&$\\alpha=0.01$\\zline',/,'\\hline')
      READ(N,*)(MUDIF(I),I=1,N-1)
C
       WRITE(33,903)(MUDIF(I),I=1,N-1)
          DO 100 DIST=1, NUMDIST
                 DO 6 J=1, IREPS
                      ZSTAR(J)=0.0
   6
                 CONTINUE
              DO 110 J=1, IREPS
                        GO TO(200,210,220,230,240,250,
                               260,270,280,290),DIST
                    WRITE(*,101)
 101
                    FORMAT ('ERROR AT COMPUTED GOTO')
```

|     | STOP                                           |
|-----|------------------------------------------------|
| 200 | CALL RNGAM(N,K,Y)                              |
|     | GO TO 440                                      |
| 210 | CALL RNGAM(N,1.5,Y)                            |
|     | GO TO 440                                      |
| 220 | CALL RNGAM(N,2.5,Y)                            |
|     | GO TO 440                                      |
| 230 | CALL RNGAM(N,4.0,Y)                            |
|     | GO TO 440                                      |
| 240 | CALL RNWIB(N,2.0,Y)                            |
|     | GO TO 440                                      |
| 250 | CALL RNWIB(N,3.0,Y)                            |
|     | GO TO 440                                      |
| 260 | CALL RNLNL(N,0.0,2.0,Y)                        |
|     | GO TO 440                                      |
| 270 | CALL RNLNL(N,1.0,1.0,Y)                        |
|     | GO TO 440                                      |
| 280 | CALL RNBET(N,2.0,2.0,Y)                        |
|     | GO TO 440                                      |
| 290 | CALL RNBET(N,2.0,3.0,Y)                        |
| 440 | DO 7 I=1,N                                     |
| 7   | X(I) = Y(I) + 10.0                             |
| 7   | CONTINUE CALL SVRGN(N,X,XX)                    |
|     | CALL SYNGN(N, X, XX)                           |
| *   | THIS ROUTINE IS ALSO USED FOR CENSORED SAMPLES |
| *   | CENSOR IS SET TO 1.0 FOR COMPLETE SAMPLES      |
|     |                                                |
|     | DO 8 I=1,N*CENSOR-1                            |
|     | GAP(I)=XX(I+1)-XX(I)                           |
| 8   | CONTINUE                                       |
|     | DO 9 I=1,N*CENSOR-1                            |
|     | G(I)=GAP(I)/MUDIF(I)                           |
| 9   | CONTINUE                                       |
|     | NUMSUM=0.0                                     |
|     | DO 10 I=1,N*CENSOR-2                           |
|     | NUMSUM=NUMSUM+(N-1-I)*G(I)                     |
| 10  | CONTINUE                                       |
|     | NUM=2.0*NUMSUM                                 |
|     | DENSUM=0.0                                     |
|     | DO 11 I=1,N*CENSOR-1                           |
| 4.4 | DENSUM=DENSUM+G(I)                             |
| 11  | CONTINUE                                       |

```
DENOM=(N-2)*DENSUM
                    ZSTAR(J)=NUM/DENOM
                 CONTINUE
110
         CALL SVRGN(IREPS, ZSTAR, ZSTAR)
         DO 120 I=1, IREPS
               IF(ZSTAR(I).GT.CRIT(N)) THEN
                    DO 99 J=1,5
                    REJ(DIST, J) = REJ(DIST, J) +1
                    CONTINUE
 99
                  ELSEIF(ZSTAR(I).GT.CRIT(N-1)) THEN
                    DO 95 J=1.4
                    REJ(DIST,J)=REJ(DIST,J)+1
 95
                    CONTINUE
                  ELSEIF(ZSTAR(I).GT.CRIT(N-2)) THEN
                    D0 90 J=1,3
                    REJ(DIST, J)=REJ(DIST, J)+1
 90
                    CONTINUE
                  ELSEIF(ZSTAR(I).GT.CRIT(N-3)) THEN
                    DO 85 J=1,2
                    REJ(DIST,J)=REJ(DIST,J)+1
 85
                    CONTINUE
                  ELSEIF(ZSTAR(I).GT.CRIT(N-4)) THEN
                    REJ(DIST,1)=REJ(DIST,1)+1
                  ELSE
                    REJ(DIST,0)=REJ(DIST,0)+1
               ENDIF
 120
          CONTINUE
               DO 130 J=1,5
               PWR(DIST, J) = (REAL(REJ(DIST, J))/
               REAL(IREPS))
 130
               CONTINUE
          WRITE(NN, 972)D(DIST), (PWR(DIST, J), J=1,5)
          FORMAT(A14,5(' & ',F6.3),'\\','\\\hline')
 972
 100
          CONTINUE
        CLOSE(N)
        WRITE(NN, 973)
        FORMAT('\\end{tabular}'/'\\end{center}'/'\\end{table}')
 973
        CLOSE(NN)
       CONTINUE
2000
       STOP
 1000
        WRITE(*,1001) IERROR
        FORMAT(1X,'IOSTAT = ', I3/)
 1001
      END
```

# Appendix G. Regression Analysis for Complete and Censored Samples

This regression function represents the complete or censored samples with shape parameters between 0.5 and 4.0. It is valid for sample sizes between 5 and 35, and for significance levels between 0.20 and 0.01.

1.50.3

#### STEPWISE REGRESSION OF CRITICAL VALUES

A : Censor % \* Sample size

B : Sample Size AD : Censor % \* Significance level

C : Shape Parameter BLOG : LOG(Sample size)

D : Significance level CLOG : LOG(Shape Parameter)

|        |         |      |           |       |      |        |    |    |     |    | В    | C            | D  |    |      |     |     |
|--------|---------|------|-----------|-------|------|--------|----|----|-----|----|------|--------------|----|----|------|-----|-----|
|        |         |      |           |       |      |        |    |    |     |    | L    | L            | L  |    |      |     |     |
|        |         |      |           |       |      |        |    | A  | A   | В  | 0    | 0            | 0  |    |      |     |     |
| STEP   | R SQ    |      | MSE       | 7     | Γ    |        | A  | В  | D   | D  | G    | G            | G  |    |      |     |     |
|        |         | -    |           |       |      | 10 486 |    |    |     |    |      |              |    |    |      |     |     |
| 1      | 0.000   | 0    | 0.02784   |       |      |        |    |    | •   |    |      |              | •  |    |      |     |     |
| 2      | 0.444   | 0    | 0.01551   | -21   | .11  | +      |    | В  |     |    |      |              |    |    |      |     |     |
| 3      | 0.702   | 2    | 0.00832   | -21   | .98  | +      |    | В  | C   |    |      |              | •  |    |      |     |     |
| 4      | 0.826   | 5    | 0.00486   | -19   | .96  | +      | A  | В  | C   |    |      |              |    |    |      |     |     |
| 5      | 0.924   | 2    | 0.00213   | -26   | .75  | +      | A  | В  | C   |    | E    |              | •  |    |      |     |     |
| 6      | 0.952   | 1    | 0.00135   | 17    | .95  | +      | A  | В  | C   | D  | E    |              |    |    |      |     |     |
| 7      | 0.971   | 5    | 8.008E-04 | -19   | .45  | +      | A  | В  | C   | D  | E    |              | G  |    |      |     |     |
| 8      | 0.980   | 3    | 5.545E-04 | -15   | .71  | +      | Α  | В  | C   | D  | E    | $\mathbf{F}$ | G  |    |      |     |     |
| RESULT | ING ST  | EPW] | SE MODEL  |       |      |        |    |    |     |    |      |              |    |    |      |     |     |
| VARIAE | BLE     | COEF | FICIENT   | STD   | ERI  | ROR    |    | S  | ΓUI | Œ  | T    | S            | Т  | P  | )    | V:  | IF  |
|        |         |      |           |       |      |        |    |    |     |    |      |              |    |    |      |     |     |
| CONSTA | ANT     | 2.   | .77599    | 0     | .018 | 399    |    |    | 14  | 16 | . 17 | 7            |    | 0. | 00   |     |     |
|        |         |      | .00905    |       |      |        |    |    |     |    |      |              |    | 0. | 00   | 2   | . 1 |
|        |         |      | 71E-05    |       |      |        |    |    |     |    |      |              |    |    | 00   | 14  | . 1 |
| AD     |         | -0.  | .01238    | 5.00  | 08E- | -04    |    |    | -2  | 24 | .7:  | 1            |    | 0. | 00   | 9   | .9  |
|        |         |      | .04137    |       |      |        |    |    |     |    |      |              |    | 0. | 00   | 6   | .8  |
| BLOG   |         |      | .67283    |       |      |        |    |    |     |    |      |              |    | 0. | 00   | 11  | . 9 |
| CLOG   |         |      | .05469    |       |      |        |    |    |     |    |      |              |    | 0. | 00   | 1   | .0  |
|        |         |      | .12667    |       |      |        |    |    |     |    |      |              |    |    |      |     |     |
|        |         |      | 560       |       |      |        |    |    |     |    |      |              |    |    |      |     |     |
|        |         |      | 0         | -     |      |        |    |    |     |    |      |              |    |    |      |     |     |
| MISSIN | IG CASE | S    | 0         | ADJ 1 | R S  | Į      | 0. | 98 | 01  |    |      |              | SD |    | 0.02 | 355 |     |

| SOURCE     | DF  | SS      | MS        | F       | P      |
|------------|-----|---------|-----------|---------|--------|
|            |     |         |           |         |        |
| REGRESSION | 7   | 15.2576 | 2.17965   | 3930.97 | 0.0000 |
| RESIDUAL   | 552 | 0.30607 | 5.545E-04 |         |        |
| TOTAL      | 559 | 15.5636 |           |         |        |

### STEPWISE ANALYSIS OF VARIANCE OF E

|          | INDIVIDUAL | CUM | CUMULATIVE | CUMULATIVE | ADJUSTED  | MALLOWS' |
|----------|------------|-----|------------|------------|-----------|----------|
| SOURCE   | SS         | DF  | SS         | MS         | R-SQUARED | CP       |
|          |            |     |            |            |           |          |
| CONSTANT | 979.170    |     |            |            |           |          |
|          |            |     |            |            |           |          |
| A        | 4.92988    | 1   | 4.92988    | 4.92988    | 0.3155    | 18621.8  |
| AB       | 4.84713    | 2   | 9.77701    | 4.88851    | 0.6269    | 9882.1   |
| AD       | 3.08646    | 3   | 12.8635    | 4.28782    | 0.8256    | 4317.7   |
| BD       | 0.34264    | 4   | 13.2061    | 3.30153    | 0.8474    | 3701.8   |
| BLOG     | 1.61175    | 5   | 14.8179    | 2.96357    | 0.9516    | 797.0    |
| CLOG     | 0.13679    | 6   | 14.9546    | 2.49244    | 0.9604    | 552.3    |
| DLOG     | 0.30293    | 7   | 15.2576    | 2.17965    | 0.9801    | 8.0      |
| RESIDUAL | 0.30607    | 559 | 15.5636    | 0.02784    |           |          |

# Appendix H. Regression Analysis for Shape Parameter

### $\alpha = 0.5$ , and Complete Samples

B : Sample size BLOG : LOG(Sample size)

D : Significance level DSIN : SIN(Significance level)

DLOG : LOG(Significance level)

|      |        |           |          | E |    | L | S |
|------|--------|-----------|----------|---|----|---|---|
| STEP | R SQ   | MSE       | T        | D | G  | G | N |
|      |        |           |          | - |    |   |   |
| 1    | 0.0000 | 0.02265   |          |   |    |   |   |
| 2    | 0.5954 | 0.00944   | -6.97 +  | A | ١. |   |   |
| 3    | 0.6734 | 0.00786   | -2.76 +  | A | В  |   |   |
| 4    | 0.9472 | 0.00131   | -12.68 + | A | В  |   | D |
| 5    | 0.9845 | 3.982E-04 | -8.49 +  | P | В  | C | D |

### RESULTING STEPWISE MODEL

| VARIABLE | COEFFICIENT | STD ERROR | STUDENT'S T | P      | VIF  |
|----------|-------------|-----------|-------------|--------|------|
|          |             |           |             |        |      |
| CONSTANT | 1.76451     | 0.04327   | 40.78       | 0.0000 |      |
| BD       | 0.04483     | 0.00460   | 9.74        | 0.0000 | 6.2  |
| BLOG     | -0.50987    | 0.02047   | -24.90      | 0.0000 | 2.8  |
| DLOG     | -0.16220    | 0.01910   | -8.49       | 0.0000 | 6.9  |
| DSIN     | -1.38730    | 0.16100   | -8.62       | 0.0000 | 10.4 |

| SOURCE     | DF | SS      | MS        | F      | P      |
|------------|----|---------|-----------|--------|--------|
|            |    |         |           |        |        |
| REGRESSION | 4  | 0.75819 | 0.18955   | 476.02 | 0.0000 |
| RESIDUAL   | 30 | 0.01195 | 3.982E-04 |        |        |
| TOTAL      | 34 | 0.77014 |           |        |        |

STEPWISE ANALYSIS OF VARIANCE OF E

|                    | INDIVIDUAL | L CUM  | CUMULATIVE | CUMULATIVE    | ADJUSTED   | MALLOWS' |
|--------------------|------------|--------|------------|---------------|------------|----------|
| SOURCE             | SS         | DF     | SS         | MS            | R-SQUARED  | CP       |
|                    |            |        |            |               |            |          |
| CONSTANT           | 57.1557    |        |            |               |            |          |
| BD                 | 0.45855    | 1      | 0.45855    | 0.45855       | 0.5832     | 751.5    |
| BLOG               | 0.06002    | 2      | 0.51857    | 0.25929       | 0.6529     | 602.8    |
| DLOG               | 0.21005    | 3      | 0.72863    | 0.24288       | 0.9409     | 77.2     |
| DSIN               | 0.02956    | 4      | 0.75819    | 0.18955       | 0.9824     | 5.0      |
| RESIDUAL           | 0.01195    | 34     | 0.77014    | 0.02265       |            |          |
| R-SQUARED          | )          | 0.9845 | RESID. M   | MEAN SQUARE ( | MSE) 3.982 | E-04     |
| ADJUSTED R-SQUARED |            | 0.9824 | STANDARI   | DEVIATION     | 0.0        | 1995     |
| 1 51 9             |            |        |            |               |            |          |

### **Bibliography**

- 1. Bain, Lee J. Statistical Analysis of Reliability and Life Testing Models ( Theory and Methods). New York, NY: Marcel Dekker, 1978.
- 2. Balakrishnan, N. "Empirical Power Study of a Multi-Sample Test of Exponentiality Based on Spacings," *Journal of Statistics Computation and Simulation*, 18:265-271 (1983).
- 3. Bowman, K.O. and L.R. Shenton. Properties of Estimators for the Gamma Distribution. New York, NY: Marcel Dekker, 1988.
- 4. Cohen, A. Clifford. Truncated and Censored Samples. New York, NY: Marcel Dekker, Inc., 1991.
- 5. Cohen, A. Clifford and N. Balakrishnan. Order Statistics and Inference. San Diego, CA: Academic Press, 1991.
- Coppa, Cpt. Mark C. A New Goodness-of-Fit Test fot the Weibull Distribution based on Spacings. MS thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 1993.
- Cressie, Noel. "An Optimal Statistic Based on Higher Order Gaps," Biometrika, 66(3):619-627 (1979).
- 8. Green, A.E. and A.J. Bourne. *Reliability Technology*. Bristol, GB: John Wiley and Sons, 1972.
- 9. Hall, Peter. "On Powerful distributional Tests Based on Sample Spacings," Journal of Multivariate Analysis, 19(2):201-224 (1986).
- 10. Harter, H. Leon. Order Statistics and their Use in Testing and Estimation (Volume 2). Washington, D.C.: U.S. Gov't Printing Office, 1974.
- 11. Harter, H. Leon and A.H. Moore. "Maximum Likelihood Estimation of Parameters of Gamma and Weibull Populations from Complete and from Censored Samples," *Technometrics*, 7:639-643 (1965).
- 12. Hegazy, Y. A. S. and J. R. Green. "Some New Goodness-of-Fit Tests Using Order Statistics," Applied Statistics, 24(3):299-308 (1975).
- 13. J. H. Matis, W. L. Rubink and M. Makela. "Use of the Gamma Distribution for Predicting Arrival Times of Invading Insect Populations," *Environmental Entomology*, 21(3):436-440 (1992).
- 14. Johnson, Norman L. and Samuel Kotz. Continuous Univariate Distributions 1. New York, NY: John Wiley and Sons, 1970.
- 15. Johnson, Norman L. and Samuel Kotz. Continuous Univariate Distributions 2. New York, NY: John Wiley and Sons, 1970.
- Kapur, K.C. and L.R. Lamberson. Reliability in Engineering Design. New York, NY: John Wiley and Sons, 1977.

- 17. Lawless, J.F. Statistical Models and Methods for Lifetime Data. New York, NY: John Wiley and Sons, 1982.
- 18. Mann, Nancy R. "Point and Interval Estimation Procedures for the Two Parameter Weibull and Extreme Value Distributions," *Technometrics*, 10:231-256 (1968).
- 19. Mann, Nancy R. and others. "A New Goodness-of-Fit Test for the Two Paramter Weibull or Extreme Value Distribution with Unknown Parameters," Communications in Statistics, 2(5):383-400 (1973).
- 20. Mehrotra, K.G. "On Goodness-of-Fit Tests Based on Spacings for Type II Censored Samples," Communications in Statistics, 11:869-878 (1982).
- 21. Mendenhall, William and others. *Mathematical Statistics with Applications*. Boston, MA: PWS-KENT Publishing Company, 1990.
- 22. Nancy R. Mann, Kenneth W. Fertig and Ernest M. Scheuer. Confidence and Tolerance Bounds and A New Goodness-of-Fit Test for Two Parameter Weibull or Extreme Value Distributions. Wright-Patterson AFB, OH: Aerospace Research Laboratories, 1971.
- 23. Nelson, W. Applied Life Data Analysis. New York, NY: John Wiley and Sons, 1982.
- 24. Ozmen, 1Lt Tamer. A Modified Anderson-Darling Goodness-of-Fit Test For the Gamma Distribution with Unknown Scale and Location Parameters. MS thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, March 1993.
- 25. Pino, G. E. Del. "On the Asymptotic Distribution of k-spacings with Applications to Goodness-of-Fit Tests," *American Statistician*, 7:1058–1065 (1979).
- 26. Pyke, R. "Spacings," Journal of the Royal Statistical Society (B), 27:395–449 (1965).
- 27. Stephen and D'Agustino. Goodness-of-fit Techniques. New York, NY: Marcel Dekker, 1986.
- 28. Stephens, M.A. "EDF Statistics for Goodness-of-Fit Tests and some Comparisons," *Journal of the American Statistical Association*, 69:730-737 (1974).
- 29. Tiku, M.L. "Goodness-of-Fit Statistics based on Spacings of Complete or Censored Samples," Australian Journal of Statistics, 22(3):260-275 (1980).
- 30. Tiku, M.L. "A Goodness-of-Fit Statistic Based on the Sample Spacings for Testing a Symmetric Distribution Against Symmetric Alternatives," Australian Journal of Statistics, 23(2):149-158 (1981).

- 31. Tiku, M.L. and others. "A New Statistic for Testing Exponentiality," Communications in Statistics, 3:485-493 (1974).
- 32. Tiku, M.L. and M. Singh. "Testing of the Two Parameter Weibull Distribution," Communications in Statistics, A(10):907-918 (1981).
- 33. Viviano, 1Lt Philip J. A Modified K-S, Cv-M and A-D Test for the Gamma Distribution with Unknown Location and Scale Parameter. MS thesis, School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH, August 1981.
- 34. Wells, Martin T., et al. "Tests of Fit Using Spacings Statistics With Estimated Parameters," Statistics and Probability Letters, 13:365-372 (1992).
- 35. Wilk, M. B. and others. "Probability Plots for the Gamma Distribution," *Technometrics*, 4(1):1-20 (1962).
- 36. Woodruff, B.W. and A.H. Moore. "Application of GOF Tests in Reliability," *Handbook of Statistics*, 7:113-120 (1988).

### Vita

Hüseyin DUMAN was born on 7 January 1969 in Balıkesir, Türkiye. He was graduated from Kuleli Military High School in 1987. He attended the Turkish Air Force Academy, and was a distinguished graduate in 1991, earning a bachelor of science degree in aeronautical engineering. After completing his training in Air Force Technical Schools in İzmir, he was assigned to the 6<sup>th</sup> Main Jet Base, Bandırma as a supply officer. After working one year as a stock control officer, he was found eligible for Postgraduate Education in Operations Research at the Air Force Institute of Technology in 1993. His next assignment is in the Turkish Air Force Command Headquarters in Ankara.

Permanent address:

Bostancı Köyü Gönen Balıkesir

10910 Türkiye

### REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                   | 2. REPORT DATE March 1995                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     | ORT TYPE AND DATES COVERED  Master's Thesis                                                                                                                                                                                                                                                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 4. TITLE AND SUBTITLE                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | 5. FUNDING NUMBERS                                                                                                                                                                                                                                                                                                                                                 |  |  |
| A NEW GOODNESS-OF-FI'<br>BASED ON SPACINGS FRO<br>6. AUTHOR(S)                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Hüseyin DUMAN, 1 Lt, TUA                                                                                                                                                                                                                                           | ΛF                                                                                                                                                                                                                                                     | !                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 7. PERFORMING ORGANIZATION NAME                                                                                                                                                                                                                                    | F(S) AND ADDRESS(ES)                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     | 8. PERFORMING ORGANIZATION                                                                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                   | REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Air Force Institute of Technol                                                                                                                                                                                                                                     | 33-6583                                                                                                                                                                                                                                                | AFIT/GOR/ENC/ENS/95M-08                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        | - 2                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 9. SPONSORING / MONITORING AGENCY                                                                                                                                                                                                                                  | NAME(S) AND ADDRESS                                                                                                                                                                                                                                    | (ES)                                                                                                                                                                                                                                | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        | .*                                                                                                                                                                                                                                  | 43. 7                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 12a. DISTRIBUTION/AVAILABILITY STAT                                                                                                                                                                                                                                | TEMENT                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     | 12b. DISTRIBUTION CODE                                                                                                                                                                                                                                                                                                                                             |  |  |
| Approved for public release; of                                                                                                                                                                                                                                    | distribution unlimited                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| statistic, $Z^*$ , is based on spaci 35. The critical value tables of critical values were obtained for power study, containing 50,00 was observed that the $Z^*$ test than the gamma distribution sample size, shape parameter, test statistic is compared to the | ings from complete or ce<br>were generated for the<br>for five different signific<br>00 Monte Carlo runs, we<br>st statistic was more por<br>with a given shape par<br>significance levels and<br>the powers of the compet<br>a directional test. This | ensored samples. The siz $Z^*$ test statistic for comparing the cance levels: 0.20, 0.15, 0 was conducted using nine owerful against certain a standard Arameter. A regression beding test statistics (K-S, leature may be utilized | known shape parameter. This test we of samples varied between 5 and applete and censored samples. The 0.10, 0.05, and 0.01. An extensive e alternative distributions, $H_a$ . It alternatives which are less skewed between the critical values and the established. The power of the $Z^*$ $W^2$ , and A-D). This thesis reveals to attain higher power values by |  |  |
|                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 14. SUBJECT TERMS                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | 15. NUMBER OF PAGES                                                                                                                                                                                                                                                                                                                                                |  |  |
| *                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | 166                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Critical value, power study, M                                                                                                                                                                                                                                     | Monte Carlo simulation                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     | 16. PRICE CODE                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                                                                                    | SECURITY CLASSIFICATION OF THIS PAGE                                                                                                                                                                                                                   | N 19. SECURITY CLASSIFIC                                                                                                                                                                                                            | ICATION 20. LIMITATION OF ABSTRACT                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                    | UNCLASSIFIED                                                                                                                                                                                                                                           | UNCLASSIFIED                                                                                                                                                                                                                        | UL                                                                                                                                                                                                                                                                                                                                                                 |  |  |

### **GENERAL INSTRUCTIONS FOR COMPLETING SF 298**

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay within the lines to meet optical scanning requirements.

- Block 1. Agency Use Only (Leave blank).
- Block 2. Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract PR - Project
G - Grant TA - Task
PE - Program WU - Work Unit
Element Accession No.

- Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).
- Block 7. <u>Performing Organization Name(s) and Address(es)</u>. Self-explanatory.
- Block 8. Performing Organization Report
  Number. Enter the unique alphanumeric report
  number(s) assigned by the organization
  performing the report.
- Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- Block 10. Sponsoring/Monitoring Agency Report Number. (If known)
- Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement.</u>
Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on Technical Documents."

**DOE** - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. <u>Distribution Code</u>.

DOD - Leave blank.

**DOE** - Enter DOE distribution categories from the Standard Distribution for Unclassified Scientific and Technical Reports.

NASA - Leave blank. NTIS - Leave blank.

- Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.
- **Block 14.** Subject Terms. Keywords or phrases identifying major subjects in the report.
- **Block 15.** <u>Number of Pages</u>. Enter the total number of pages.
- **Block 16.** <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. Security Classifications. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.