ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Московский технический университет связи и информатики

Кафедра систем радиосвязи

Лабораторная работа № 1

Исследование модема аналоговых РРЛ

Составили в 1995г.: Мордухович Л.Г., к.т.н., доцент

Сухорукова И.Ю., ассистент

Новая редакция в 2008г. Сухорукова И.Ю., доцент

ЦЕЛЬ РАБОТЫ

- 1. Ознакомиться со свойствами ЧМ сигналов при модуляции синусоидальным колебанием и многоканальным телефонным сигналом.
- 2. Изучить функциональную схему и конструкцию модема аналоговой РРЛ.
- 3. Измерить основные технические характеристики модема аналоговой РРЛ.

ДОМАШНЕЕ ЗАДАНИЕ

(выполняется студентами **4-го курса** для допуска к выполнению лабораторной работы)

В случае, когда модуляция осуществляется многоканальным телефонным сигналом (МТС), рассчитать для заданного числа каналов N и соответствующих значений нижней Fн и верхней F_в граничных частот спектра МТС (приведены в табл.1.1, номер варианта соответствует номеру студента в учебной группе):

1. Среднюю мощность МТС, выразив ее в дБм и мВт

$$p_{CP} = -15 + 10 \lg N_{, \text{дБм}} \tag{1.1}$$

$$Pcp = 10^{0.1} p_{cp}, MBT$$
 (1.2)

2. Эффективную девиацию частоты

$$\Delta f_{9} = \Delta f_{K} \sqrt{(Pcp/P_{0})}, \quad \kappa \Gamma u \tag{1.3}$$

учитывая, что

$$P_0 = 1 \text{ MBT};$$

$$\Delta$$
fк=200 к Γ ц при 240 \leq N \leq 900; Δ fк=140 к Γ ц при N > 900.

3. Квазипиковое значение девиации частоты, не превышаемое в течение 99.9% времени наблюдения

$$\Delta f_{\Pi M K} = \Delta f_{\mathcal{I}} \sqrt{10} \, _{, K \Gamma IJ} \tag{1.4}$$

4. Среднеквадратичный индекс модуляции при введении и отсутствии предыскажений

$$\mathbf{m}_{\mathrm{CP}} = \left[\left(\Delta f_{\mathfrak{I}} / \sqrt{(\mathbf{F}_{\mathrm{H}} \cdot \mathbf{F}_{\mathrm{B}})} \right) \cdot \sqrt{\psi}$$
 (1.5)

где $\psi = 0.4 + 1.6(F_H \cdot \mathrm{F_B})$ при введении предыскажений; $\psi = 1$ при отсутствии предыскажений.

5. Необходимую полосу частот, занимаемую МТС при частотной модуляции

$$\Pi_{YM} \approx 2(\Delta f_{\Pi H K} + F_B), \, \kappa \Gamma_{II}$$
(1.6)

Таблица 1.1

№ варианта	1,15,27	2,14,22,28	3,13,17	4,21,29	5,11,19,25	6,10,20,24	7,16,23	8,12,26	9,18,30
(по списку									
в журнале)									
N	300	600	720	960	1020	1260	1320	1800	1920
F _в ,кГц	1300	2540	3340	4028	4636	5636	5932	8204	8524
F_{H} ,к Γ ц	60	60	312	60	312	60	312	312	312

ЛАБОРАТОРНОЕ ЗАДАНИЕ

- 1. Снять динамическую модуляционную характеристику модулятора и определить ее кругизну, приведенную ко входу блока ЧМд.
- 2. Измерить напряжение $U_{\mathfrak{I},BMX}$ на выходе демодулятора.
- 3. Снять зависимость эффективной девиации частоты на выходе модулятора от частоты модулирующего синусоидального сигнала при введении и отсутствии предыскажений.
- 4. Снять амплитудную характеристику ограничителя амплитуды, расположенного в тракте демодулятора, и определить по ней пороговое напряжение на входе ограничителя.
- 5. Исследовать спектры ЧМ сигналов при модуляции многоканальным телефонным сигналом при введении и отсутствии предыскажений.

СОДЕРЖАНИЕ ОТЧЕТА

Отчет выполняется каждым студентом индивидуально.

Он должен содержать:

- 1. Результаты домашнего расчета (для студентов 4-го курса).
- 2. Функциональная схема модема и его основные технические характеристики.
- 3. Таблицы и графики с результатами измерений и расчетов, выполненных по пунктам 1, 3 и 4 лабораторного задания.
- 4. Результаты расчета крутизны демодулятора, выполненного по пункту 2 лабораторного задания.
- 5. Осциллограммы спектров ЧМ сигналов, полученные при выполнении пункта 5 лабораторного задания.

КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Объяснить назначение и устройство модема аналоговой РРЛ. Привести его основные технические параметры.
- 2. Какой вид имеет амплитудная характеристика ограничителя? Как по ней определить номинальное рабочее входное напряжение?
- 3. Пояснить принцип снятия динамической модуляционной характеристики. Какой вид она имеет? Как по ней определить ее крутизну?
- 4. Пояснить принцип измерения крутизны характеристики частотного демодулятора.
- 5. Пояснить принцип снятия зависимости эффективной девиации от частоты модулирующего синусоидального напряжения. Как выглядит эта зависимость при отсутствии и введении предыскажений?
- 6. Что понимается под индексом частотной модуляции при синусоидальном модулирующем напряжении? Показать его на векторной диаграмме ЧМ сигнала.
- 7. Как выглядит спектр ЧМ сигнала при синусоидальном модулирующем напряжении? От каких параметров зависит его вид?
- 8. Что представляет собой многоканальный телефонный сигнал (МТС)? Как определяется его средняя и квазипиковая мощность?
- 9. С какой целью при передаче МТС вводятся предыскажения?
- 10. Что понимается под индексом модуляции в случае, когда модулирующим процессом является МТС?

- 11. Какой вид имеет спектр ЧМ сигнала при модуляции МТС с различными значениями среднеквадратичного индекса модуляции m_{cp}?
- 12. Как рассчитать эффективную и квазипиковую девиацию частоты ЧМ сигнала, модулируемого МТС? Как рассчитать среднеквадратичный индекс модуляции m_{cp}?
- 13. Как определить ширину полосы частот, занимаемую спектром ЧМ сигнала? От каких параметров она зависит?

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Получив разрешение преподавателя на выполнение работы, занять рабочее место за лабораторным столом. **Приборы включать по мере надобности**.

1. СНЯТИЕ ДИНАМИЧЕСКОЙ МОДУЛЯЦИОННОЙ ХАРАКТЕРИСТИКИ МОДУЛЯТОРА МОДЕМА

Методика измерений

Динамическая модуляционная характеристика представляет собой зависимость девиации частоты на выходе частотного модулятора от модулирующего напряжения, поданного на его вход. При этом в данной работе измерение девиации частоты проводится косвенным методом.

Известно, что при модуляции синусоидальным колебанием амплитуда k-ой дискретной составляющей спектра ЧМ сигнала определяется значением функции Бесселя первого рода k-го порядка ${\rm I_k}(m)$, аргументом которой является индекс модуляции:

$$m = \Delta f_{M}/F_{M} , \qquad (1.7)$$

где $\Delta f_{_{\mathrm{M}}}$ - амплитудное значение девиации частоты;

 $\mathbf{F}_{\!_{\mathrm{M}}}$ - частота модулирующего колебания.

В свою очередь:

$$\Delta f_{M} = K_{M} \cdot U_{M}, \kappa \Gamma II, \qquad (1.8)$$

где $K_{\rm M}$ - крутизна модуляционной характеристики модулятора, к Γ ц/мB;

 U_{M} - амплитуда модулирующего колебания.

С другой стороны, известно, что при определенных значениях аргумента функции Бесселя обращаются в нуль. Следовательно, при определенных значениях индекса модуляции m соответствующие дискретные составляющие спектра q сигнала будут обращаться в нуль. Например, составляющая, расположенная на несущей частоте и определяемая функцией Бесселя нулевого порядка $I_0(m)$, обращается в нуль при m = 2,4;5,5;8,65;... (см. рис.1.1).

Таким образом, подав на вход модулятора синусоидальное колебание с известной частотой $F_{_{\rm M}}$ и изменяя его амплитуду $U_{_{\rm M}}$ (что влечет за собой изменение индекса модуляции m), можно, добившись пропадания составляющей спектра, которая расположена на несущей частоте, определить амплитудную девиацию частоты:

$$\Delta f_{\rm M} = \mathbf{F}_{\rm M} \cdot \mathbf{m} \tag{1.9}$$

Очевидно, что эффективная девиация частоты будет равна:

$$\Delta f_{\Im} = K_M \cdot (U_M / \sqrt{2}) = \Delta f_M / 2 \tag{1.10}$$

Или с учетом (1.9):

Рис.1.1. Зависимость функций Бесселя первого рода k-го порядка $I_k(m)$ от индекса модуляции m

Порядок измерений

1.1. Подготовка к работе анализатора спектра

- а) установить в исходное положение органы управления:
- ручку «ЯРКОСТЬ» в крайнее левое положение;
- -переключатель «т ДЕТЕКТОРА mS» в положение 0,03;
- -переключатель «РАЗВЕРТКА S» в положение 0,1;
- -ручку плавной регулировки «РАЗВЕРТКА S» в среднее положение;
- -переключатель «ВЕРТ. МАСШТАБ» в положение «ЛИН»;
- -переключатель «ОБЗОР MHz» в положение «3-90»;
- -ручку плавной регулировки «ОБЗОР MHz» в крайнее правое положение;
- -переключателями «ОТСЧЕТ АМПЛИТУД dB» установить значение -30дБ;
- -тумблер «ПОЛОСА ПРОПУСКАНИЯ kHZ» в положение «3-50»;
- -ручку «УСИЛЕНИЕ» в среднее положение;
- переключатель «МЕТКИ МНz» в положение «ВЫКЛ»;
- ручку «АМПЛИТУДА МЕТОК» в крайнее левое положение;
- -регулятор «ЧУВСТВИТЕЛЬНОСТЬ» в крайнее левое положение;
- -ручки грубой и плавной настройки «ЦЕНТР. ЧАСТОТА» в крайнее правое положение.
- б) включить питание прибора тумблером «СЕТЬ»;

- в) после 3-минутного прогрева ручкой «ЯРКОСТЬ» отрегулировать оптимальное свечение линии развертки;
- г) ручками «ФОКУС», «РАЗМЕР» и «СМЕЩЕНИЕ» добиться четкого изображения линии развертки на экране ЭЛТ и совместить её с нижней линией масштабной сетки ЭЛТ. Размер развертки должен совпадать с горизонтальным размером масштабной сетки;
- д) при нормальной работе прибора и правильной настройке (выполнение предыдущих пунктов) на экране ЭЛТ ручками грубой и плавной регулировки «ЦЕНТР. ЧАСТОТА» добиться появления **вертикального отклика**, соответствующего **нулевой частоте**, совместить его с левым краем масштабной сетки ЭЛТ.
- 1.2. Настройка анализатора спектра на частоту исследуемого сигнала
- а) переключатель «МЕТКИ МНz» поставить в положение «10»;
- б) отрегулировать амплитуду меток ручкой «АМПЛИТУДА МЕТОК» так, чтобы высота их была от 0.5 до 1,5 клетки, а ручкой плавной регулировки «ОБЗОР МНz» установить расстояние между ними около одной клетки Одновременно ручкой «ЦЕНТР. ЧАСТОТА» удерживать нулевую частоту у левого края масштабной сетки ЭЛТ;
- в) соединить кабелем гнездо «ВЫХОД» анализатора спектра (как правило, кабель уже подключен к этому гнезду) с гнездом «ВЫХОД ПЧ» на блоке «ОГР.» в тракте МОДУЛЯТОРА исследуемого модема (см. рис.1.2). Включить питание модема (см. рис.1.2);

Рис. 1.2. Подключение АНАЛИЗАТОРА СПЕКТРА к МОДЕМУ

- г) плавно поворачивая **вправо** ручку «ЧУВСТВИТЕЛЬНОСТЬ» анализатор спектра, наблюдать появление на экране ЭЛТ около 7-ой метки, соответствующей частоте 70 МГц, **вертикальный отклик** несущей частоты модема;
- д) установить его амплитуду размером с высоту экранной сетки ручками «УСИЛЕНИЕ» и «ЧУВСТВИТЕЛЬНОСТЬ»;

- е) переключатель «МЕТКИ МНz» поставить в положение «1»;
- ж) отрегулировать амплитуду меток ручкой «АМПЛИТУДА МЕТОК» так, чтобы высота их была около одной клетки, а ручкой плавной регулировки «ОБЗОР МН2» установить расстояние между ними около 1-1,5 клетки, при этом удерживая ручкой «ЦЕНТР. ЧАСТОТА» отклик несущей частоты в центре экрана ЭЛТ. Если отклик несущей частоты выйдет за пределы экрана ЭЛТ, то вернуть его в центр экрана ручкой «ЦЕНТР. ЧАСТОТА» и для проверки (чтобы не перепутать с нулевой частотой) выключить питание модема на 5-10 сек, а затем включить. Дождаться появления отклика несущей частоты, опять вернуть его в центр экрана ЭЛТ и отрегулировать амплитуду отклика размером с высоту экранной сетки;
- з) переключатель «МЕТКИ МНz» поставить в положение «ВЫКЛ».
- 1.3. На *генераторе* Γ 4-106 установить частоту модулирующего сигнала F_m =300 $\kappa\Gamma$ μ и напряжение $\times 10^4$ мB, включить генератор.
- 1.4 Подать на вход *тракта модулятора модема* (гнездо «ВХОД» внизу на блоке контроля и коммутации) модулирующее синусоидальное напряжение от генератора Г4-106 (см. рис.1.3).
- 1.5 Подключить *милливольтметр* **B3-56 (или B3-38)** к гнездам «Вх.МД» на блоке контроля и коммутации модема (см. рис.1.3). Включить милливольтметр.

Рис.1.3. Подключение генератора Г4-106 и милливольтметра В3-56 к МОДЕМУ

- 1.6. Подготовить таблицу для записи результатов измерений и расчетов (см. табл.1.2).
- 1.7. **Плавно** увеличивая модулирующее напряжение при помощи ручек ГРУБОЙ и ПЛАВНОЙ регулировок напряжения на генераторе Γ 4-106, наблюдать на экране анализатора спектра 1-ый случай <u>полного</u> пропадания составляющей спектра, расположенной на *несущей частоте*. Записать показание милливольтметра, соответствующее этому случаю, в табл.1.2 в графу « $U_{2\,\text{чмл}}$, мВ».

- 1.8. **Плавно** увеличивая далее модулирующее напряжение на генераторе Г4-106 записывать показания милливольтметра в табл. 1.2 для каждого последующего случая полного пропадания составляющей спектра, расположенной на *несущей частоте* и соответствующего индексу модуляции, указанному в табл. 1.2. В случае потери несущей частоты можно ручкой плавной регулировки «ОБЗОР МНz» сжать спектр сигнала, а ручкой «ЦЕНТР. ЧАСТОТА» сместить его по центру ЭЛТ.
- 1.9. По окончании измерений (5 значений $U_{\mathfrak{I}_{\mathcal{I}M\!\!/\!\!/\!\!/}}$, мВ) выключить анализатор спектра.
- 1.10. Рассчитать и занести в табл. 1.2 эффективное значение девиации частоты Δf_3 для каждого значения индекса модуляции, указанного в табл.1.2 и соответствующего пропадания спектральной составляющей, расположенной на несущей частоте:

$$\Delta f_{2} = (F_{\rm m} \cdot m\sigma) / \sqrt{2}, \kappa \Gamma_{\rm H}$$
 (1.12)

1.11. Определить значение крутизны модулятора $K_{\text{ЧМД}}$ для каждого значения индекса модуляции, указанного в табл.1.2 и соответствующего пропадания спектральной составляющей, расположенной на несущей частоте. Полученные значения занести в табл. 1.2.

$$K_{YMJ} = \Delta f_{\Im} / U_{\Im YMJ}$$
, $\kappa \Gamma_{II/MB}$ (1.13)

Таблица 1.2

- 1.12. По полученным значениям $K_{\mathit{ЧМД}}$ определить среднее значение $K_{\mathit{ЧМД},\mathit{CP}}$.
- 1.13. Построить динамическую модуляционную характеристику модулятора $\Delta f_{\ni} = f(U_{\ni, \text{ЧМД}})$.

N 1 2 3 4 5 пропадания несущей 2,4 5,5 8,65 11,3 14,9 m_{σ} Δf_{3} , $\kappa \Gamma_{II}$ $U_{\mathfrak{I}_{\mathcal{I}_{M/I}}}$,мВ

 $K_{YMII.CP.} =$

 $K_{y_{M/I}}$,к Γ ц/мB

2. ИЗМЕРЕНИЕ КРУТИЗНЫ ХАРАКТЕРИСТИКИ ЧАСТОТНОГО ДЕМОДУЛЯТОРА МОДЕМА

Методика измерений

Для измерения крутизны частотного демодулятора (ЧДм) необходимо подать на его вход ЧМ сигнал с известным значением девиации частоты Δf_{\ni} и измерить напряжение на выходе демодулятора $U_{\ni \; BblX}$. Отношение измеренного напряжения к девиации частоты и будет являться крутизной частотного демодулятора. В данной лабораторной работе в качестве источника ЧМ сигнала с известным значением девиации частоты используется модулятор модема, крутизна которого $K_{\mathit{ЧМД.CP.}}$, приведенная ко входу блока частотного модулятора (ЧМд), определена в пункте 1.12. При этом эффективная девиация частоты будет равна:

$$\Delta f_{\mathcal{I}} = K_{\text{ЧМЛ}} \cdot U_{\mathcal{I}} \cdot U_{\mathcal{I}} \quad , \tag{1.14}$$

где $U_{\mathfrak{I}_{HM\!I}}$ – эффективное значение напряжения, приложенного ко входу блока ЧМд.

Порядок измерений

- 2.1. Подключить *милливольтметр* **B3-56 (или B3-38)** к выходу ЧМд (гнездо «Вх.МД» на блоке контроля и коммутации модема), см. рис.1.3.
- 2.2. Подать на вход модулятора (гнездо «ВХОД» на блоке контроля и коммутации модема) от *генератора* Γ 4-106 синусоидальное модулирующее напряжение с частотой 500 $\kappa\Gamma$ μ (см. рис.1.3).
- 2.3. Используя значение $K_{{\it ЧМД.CP}}$, найденное в п.1.12, и, полагая $\Delta \! f_{\it 3}$ =1 МГц, определить

$$U_{\mathfrak{I}.\mathcal{H}\mathcal{I}.BX} = \Delta f_{\mathfrak{I}} / K_{\mathcal{H}\mathcal{I}.CP}, \mathcal{M}B$$
 (1.15)

- 2.4. Установить напряжение модулирующего синусоидального сигнала на входе блока ЧМд *по показанию милливольтметра* ВЗ-56 (или ВЗ-38), равное рассчитанному значению $U_{\mathfrak{I}, \mathcal{I}\mathcal{I}, \mathcal{I}\mathcal{I}, \mathcal{I}\mathcal{I}}$, изменяя напряжение на генераторе Γ 4-106.
- 2.5. Соединить выход модулятора (гнездо «Выход ПЧ» на блоке Огр. тракта модулятора) с входом демодулятора (нижнее гнездо на блоке Атт. тракта демодулятора), см. рис.1.4.
- 2.6. Переключить милливольтметр со входа модулятора (гнездо «Вх.МД» на блоке контроля и коммутации модема) к выходу блока демодулятора (гнездо «Вых.ДМ» на блоке контроля и коммутации), см. рис.1.4 и записать измеренное напряжение Uэ.вых на выходе демодулятора.
 - 2.7. Рассчитать крутизну демодулятора К_{ЧДм}, приведенную к выходу блока ЧДм:

$$K_{\text{ЧДМ}} = U_{\mathfrak{I}.BbIX} / \Delta f_{\mathfrak{I}}$$
, мВ/МГц. (1.16)

Рис.1.4. Подключение генератора Г4-106 и милливольтметра В3-56 к МОДЕМУ, а также соединение тракта *модулятора* с трактом *демодулятора* МОДЕМА

3. СНЯТИЕ ЗАВИСИМОСТИ ЭФФЕКТИВНОЙ ДЕВИАЦИИ ОТ ЧАСТОТЫ МОДУЛИРУЮЩЕГО СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ ПРИ ВВЕДЕНИИ И ОТСУТСТВИИ ПРЕДЫСКАЖЕНИЙ

Методика измерений

Известно, что в РРЛ при передаче многоканальных сигналов, а также телевизионных сообщений на входе модулятора включаются специальные предыскажающие устройства (ПУ) (см. рис. 1.5), коэффициент передачи которых зависит от частоты.

Таким образом, при подаче на вход ПУ модулирующего напряжения с постоянной амплитудой и различными частотами, напряжение, воздействующее непосредственно на вход модулятора, будет различным, и, следовательно, будет различной и девиация частоты ЧМ сигнала на выходе модулятора.

Для измерения девиации частоты необходимо подать на вход демодулятора, крутизна которого заранее известна, ЧМ сигнал и измерить напряжение на выходе ЧДм. Отношение измеренного напряжения к крутизне демодулятора будет равняться девиации частоты ЧМ сигнала.

В настоящей работе в качестве такого калиброванного демодулятора используется частотный демодулятор модема, кругизна которого $K_{\rm ЧДм}$ определена в пункте 2.7.

Эффективная девиация частоты будет равняться:

$$\Delta f_{\mathfrak{I}} = U_{\mathfrak{I}.Bblx} / K_{\eta M / I} \tag{1.17}$$

Отметим, что снятие зависимости девиации частоты на выходе модулятора от частоты модулирующего синусоидального сигнала должно проводиться при неизменном значении модулирующего напряжения на входе ΠY (см. рис. 1.5).

Рис.1.5. Функциональная схема МОДЕМА

Порядок измерений

- 3.1. Подключить *милливольтметр* **B3-56** (или **B3-38**) ко входу блока ЧМд (гнездо «Вх.МД» на блоке контроля и коммутации модема).
 - 3.2. Подать на вход модулятора (гнездо «Вход» на блоке контроля и коммутации модема) от *генератора* Γ 4-106 синусоидальное модулирующее напряжение с частотой 100 к Γ п.
- 3.3. Модулирующее синусоидальное напряжение $U_{\mathfrak{I}.4M\!\!/\!\!/}=U_{\mathfrak{I}.8b\!\!/\!\!/}$, мВ, которое измерено в п.2.5, установить по показанию милливольтметра, регулируя напряжение на *генераторе* Г4-106.
- 3.4. Убедиться, что выход модулятора соединен со входом демодулятора (это соединение выполнялось в п. 2.5). Если соединение отсутствует, то <u>необходимо</u> его сделать (см. рис.1.4).
- 3.5. Переключить милливольтметр к выходу блока ЧДм (гнездо «Вых.ДМ» на блоке контроля и коммутации модема), см. рис.1.4.
- 3.6. **Включить предыскажения**, нажав клавишу **«600к»** на блоке контроля и коммутации модема (см. рис.1.7).
 - 3.7. Записать показания милливольтметра $U_{\it {\it 9.BЫX}}$ (ПУ вкл.) в таблицу 1.3.
- 3.8. **Выключить предыскажения**, нажав клавишу «**ТФ** д**Б**» на блоке контроля и коммутации модема (см. рис.1.7).
 - 3.9. Записать показания милливольтметра $U_{\mathfrak{I},\mathit{BblX}}$ (ПУ выкл.) в таблицу 1.3.
- 3.10. Увеличить частоту модулирующего сигнала Fм, подаваемую от генератора Г4-106, на 0.2 МГц и заполнить таблицу 1.3 показаниями значений Uэ.вых с ПУ вкл. и ПУ

выкл., т.е. повторяя пункты 3.6-3.9 до значения частоты $F_M = 2,7 \, \mathrm{M}\Gamma_{\mathrm{U}}$ (включительно) c *шагом 0.2 МГ* μ .

- 3.11.Отключить генератор Г4-106 от входа тракта модулятора.
- 3.12.Выключить генератор.
- 3.13. Снять коаксиальную перемычку, соединяющую вход тракта модулятора с входом тракта демодулятора.
- 3.14. Рассчитать и занести в таблицу 1.3 соответствующие значения $\Delta f_{\mathfrak{I}}$:

$$\Delta f_{\mathfrak{I}} = U_{\mathfrak{I},BblX} / K_{\mathfrak{I}_{\mathfrak{I}_{M}}}. \tag{1.18}$$

3.15. Построить в одних осях графики зависимости $\Delta f_9 = f(F_M)$ для случая наличия и отсутствия предыскажения. По полученным графикам определить частоту модулирующего колебания F_M *, при которой девиация частоты не зависит от того введены или нет предыскажения.

Таблица 1.3

$F_{\scriptscriptstyle M}$,МГц	$U_{\scriptscriptstyle \mathfrak{I}.\mathit{BB}}$	$_{MX}$, $_{MB}$	$\Delta\!f_{\mathfrak{I}}$,М Γ ц		
	ПУ вкл.	ПУ выкл.	ПУ вкл.	ПУ выкл.	
0,1					
0,3 0,5					
0,5					
0,7					
0,9					
1,1					
1,3					
1,5					
1,7					
1,9					
2,1					
2,1 2,3 2,5					
2,5					
2,7					

4. СНЯТИЕ АМПЛИТУДНОЙ ХАРАКТЕРИСТИКИ ОГРАНИЧИТЕЛЯ АМПЛИТУДЫ

Методика измерений

Исследуемый амплитудный ограничитель (Огр.2) расположен в тракте промежуточной частоты (ПЧ) *демодулятора* и настроен на частоту **70 МГц**.

Для измерения напряжения, подаваемого на вход ограничителя, используется блок аттенюаторов (Атт), который позволяет изменять затухание в пределах $0 \div 31$ дБ ступенями через 1 дБ и расположен в тракте *демодулятора* (см. рис.1.5).

Порядок измерений

- 4.1. Подать на вход блока аттенюаторов, расположенного в тракте демодулятора модема (гнездо «Вх. Дем.», см. рис.1.6), синусоидальное напряжение с частотой 70 МГц от *генератора* ВГИЧМ, подключив соединительный кабель к *выходу генератора* «В».
- 4.2. Установить затухание аттенюатора $\mathbf{a} = \mathbf{0}$ д**Б**, отжав все клавиши.
- 4.3. Подключить *милливольтметр* **B3-43** к гнезду «Вх. ПЧ» на блоке **Огр**., расположенном в *тракте демодулятора* (см. рис.1.6).
- 4.4. Изменяя выходное напряжение генератора **ВГИЧМ** ручкой «*УРОВ. ВЫХ.*», установить по показанию *милливольтметра* **В3-43** $U_{\text{BX},0} = 500 \text{ MB}$.
- 4.5. Переключить милливольтметр к гнездам «Вых. ПЧ» на блоке **Огр**., расположенном в *тракте демодулятора* (см. рис.1.6).
- 4.6. Устанавливая значения затухания аттенюатора от 0 до 31 дБ через 2 дБ, записать соответствующие показания милливольтметра Uвых в таблицу 1.4.
- 4.7. Отключить генератор ВГИЧМ от блока аттенюаторов.
- 4.8. Выключить генератор и милливольтметр ВЗ-43.

Рис.1.6. Подключение генератора ВГИЧМ и милливольтметра В3-43 к АМПЛИТУДНОМУ ОГРАНИЧИТЕЛЮ тракта демодулятора МОДЕМА

4.9. Рассчитать значения U_{BX} , соответствующие измеренным значениям U_{BLIX} по формуле:

$$U_{\text{BX}} = U_{\text{BX}.0} \cdot 10^{-0.05a}, \text{ MB}$$
 (1.19)

Полученные значения занести в таблицу 1.4.

4.10. Построить амплитудную характеристику ограничителя, по которой определить напряжение на его входе U вх.пор, соответствующее порогу ограничителя.

Таблица 1.4

а, дБ	U_{BLIX} , ${}_{M}B$	$U_{{\scriptscriptstyle BX}}$, мВ
	\mathcal{O}_{BblX} , MD	\mathcal{O}_{BX} , MD
0		
2		
4		
6		
8		
10		
12		
14		
16		
18		
20		
22		
24		
26		
28		
30		
31		

5. ИССЛЕДОВАНИЕ СПЕКТРОВ ЧМ СИГНАЛОВ ПРИ МОДУЛЯЦИИ МНОГОКАНАЛЬНЫМ ТЕЛЕФОННЫМ СИГНАЛОМ

Методика исследования

Для проведения данного исследования используются: ЧМд модема, анализатор спектра и имитатор многоканального телефонного сообщения (МТС). В качестве имитатора МТС может быть использована *передающая часть измерителя переходных помех (ИПП-Пд)* или генератор «белого» шума. Имитатор МТС должен создавать напряжение, представляющее собой случайный стационарный процесс с нормальным законом распределения вероятностей мгновенных значений и энергетическим спектром, равномерным в пределах от нижней F_H до верхней F_B граничных частот.

Порядок измерений

- 5.1. Подготовить к работе *анализатор спектра*. Для этого проверить, чтобы органы управления анализатора спектра были в исходном положении, т.е. выполнить п.1.1.
 - 5.2. Настроить анализатор спектра на частоту 70 МГц, для этого:
 - а) переключатель «МЕТКИ МНz» поставить в положение «70 МГц»;
- б) ручками «ЧУВСТВИТЕЛЬНОСТЬ» и «УСИЛЕНИЕ» добиться появления на экране ЭЛТ анализатора спектра отклика несущей частоты модема при этом удерживать ручкой «ЦЕНТР. ЧАСТОТА» отклик несущей в центре экрана ЭЛТ.

- 5.3. На ИПП-Пд установить переключатель «ЧИСЛО КАНАЛОВ» в положение «**600**» и включить прибор.
- 5.4. Включить предыскажающее устройство, нажав клавишу «**600к**» на блоке контроля и коммутации модема (см. рис.1.7).
- 5.5. Подать на вход тракта модулятора (гнездо «Вход» внизу на блоке контроля и коммутации модема) сигнал с выхода ИПП-Пд (см. рис.1.7).
- 5.6. Регулируя на анализаторе спектра «ЧУВСТВИТЕЛЬНОСТЬ», «УСИЛЕНИЕ», «ПОЛОСУ ОБЗОРА» и удерживая ручкой «ЦЕНТР. ЧАСТОТА» спектр сигнала в центре экрана ЭЛТ, добиться, чтобы на экране анализатора спектра укладывался спектр ЧМ сигнала.
- 5.7. Увеличить время развертки луча на экране ЭЛТ анализатора спектра, поставив ступенчатый переключатель «РАЗВЕРТКА S» в положение «**0,3**».
- 5.8. Установить переключатель анализатора спектра « τ ДЕТЕКТОРА mS» в положение «3».

Рис.1.7. Подключение ИПП-Пд к МОДЕМУ

- 5.9. Зарисовать с экрана анализатора спектра огибающую спектра ЧМ сигнала в случае использования предыскажений.
- 5.10.Выключить предыскажения, нажав клавишу «**ТФ** д**Б**» на блоке контроля и коммутации модема.
- 5.11. Зарисовать с экрана анализатора спектра огибающую спектра ЧМ сигнала, когда предыскажения отсутствуют.
- 5.12. Сделать <u>письменный</u> вывод о влиянии предыскажений на форму спектра ЧМ сигнала.
- 5.13. Отключить ИПП-Пд от модема.
- 5.14. Выключить ИПП-Пд, анализатор спектра, модем и измерительные приборы.

ЛИТЕРАТУРА

- 1. Радиорелейные и спутниковые системы передачи / Под ред. А.С. Немировского. М.: Радио и связь, 1986 (с. 22-27, 112-119)
- 2. М.М. Маковеева. Радиорелейные линии связи.- М.: Радио и связь, 1988(с. 37-41,75-80,134-138)
- 3. Приложения к данной лабораторной работе.

ПРИЛОЖЕНИЕ 1

Краткое описание модема аналоговой РРЛ

Модем входит в состав оконечной стойки (OC) аналоговой радиорелейной системы и *предназначен* для:

- генерирования колебаний промежуточной частоты (ПЧ) 70МГц;
- частотной модуляции ПЧ = 70МГц многоканальным телефонным сигналом (МТС) с числом каналов не более 1920 или аналоговым телевизионным сигналом;
 - демодуляции ЧМ сигнала ПЧ 70 МГц.

Основные технические данные модема:

- номинальное значение ПЧ	70±0,05 МГц;
- неравномерность амплитудно-частотной характеристики	
в полосе частот 50 Γ ц ÷ 10 M Γ ц	не более 1 дБ;
- крутизна модуляционной характеристики модулятора (ЧМд),	
приведенная к его входу	32±1,6 кГц/В;
- крутизна демодулятора (ЧДм),	
приведенная к выходу блока ЧДм	60±10 мВ/МГц;
- входные и выходные сопротивления устройства	75 Ом.

Функциональная схема модема (рис.1.5)

Модем содержит следующие функциональные узлы: модулятор, демодулятор, предыскажающее устройство (ПУ) и восстанавливающее устройство (ВУ), блок контроля и коммутации и блок электропитания.

Тракт модулятора объединяет следующие блоки: ЧМД, фазовый корректор (ФК-1) и ограничитель амплитуды (Огр.1).

Тракт демодулятора содержит: аттенюатор (Атт.), фазовый корректор (ФК-2), ограничитель амплитуды (Огр.2) и частотный демодулятор (ЧД).

ПУ и ВУ размещены в блоке контроля и коммутации.

Групповой модулирующий сигнал подается на вход ПУ (гнездо «Вход» на блоке контроля и коммутации). ПУ выбирается в зависимости от режима работы. С помощью кнопочного переключателя могут быть включены либо телевизионные ПУ (клавиша «ТВ»), либо телефонные ПУ на 600 или 1920 каналов (клавиши «600к» или «1920к»). При работе в телевизионном режиме без ПУ для сохранения диаграммы уровней включается аттенюатор «ТВ дБ» с затуханием, равным затуханию, которое вносит это ПУ на частоте нулевых предыскажений (1500 кГц), т.е. 3 дБ. При работе в телефонном режиме без ПУ включается соответствующий аттенюатор «ТФ дБ» на 5 дБ.

С выхода ПУ групповой сигнал (Γ С) поступает на вход блока ЧМД. В этом блоке создаются колебания ПЧ = 70 М Γ ц и осуществляется модуляция ПЧ групповым сигналом.

С выхода ЧМД промодулированный по частоте сигнал поступает на блок ФК-1, предназначенный для коррекции характеристики группового времени запаздывания (ХГВЗ) модулятора. Сигнал с выхода ФК-1 подается на блок Огр.1, в котором подавляется паразитная амплитудная модуляция (ПАМ).

Идеальный Огр. должен обеспечить постоянную амплитуду выходного сигнала $u_{\text{вых}}$, независимо от амплитуды входного сигнала $u_{\text{вх}}$ (кривая 1 на рис.П1.1). Реальный Огр. имеет амплитудную характеристику (АХ) (кривая 2 на рис.П.1.1) близкую к идеальной при входных амплитудах, превышающих пороговое значение $u_{\text{пор}}$. При $u_{\text{вх}} < u_{\text{пор}}$ реальный Огр. работает как усилитель. Чтобы обеспечить низкую мощность тепловых шумов (ТШ) устанавливают коэффициент подавления ПАМ > 30 дБ.

Рис.П.1.1. Амплитудная характеристика ограничителя амплитуды

Поступающий в тракт демодулятора ЧМ сигнал подается на блок Атт., служащий для установки диаграммы уровней. Далее сигнал поступает на ФК-2, который осуществляет коррекцию ХГВЗ демодулятора. С выхода блока ФК-2 сигнал поступает на блок Огр.2, в котором подавляется ПАМ и осуществляется усиление ПЧ. После Огр.2 сигнал подается на блок ЧД, где частотно-модулированный сигнал ПЧ после предварительного усиления преобразуется в амплитудно-модулированный с помощью частотного дискриминатора и затем детектируется. Частотный дискриминатор выполнен на двух взаиморасстроенных контурах с частотами 47 МГц и 100 МГц.

Выделенный ГС подается на вход ВУ, который находится в блоке контроля и коммутации. Восстанавливающее устройство (ВУ) включается одновременно с ПУ с помощью клавишного переключателя.

Сигнал, пришедший на «Вход» модема, например от междугородной телефонной станции, имеет уровень девиации частоты при измерительной мощности 1 мВт равный Δf_{κ} . При передаче по АРРЛ с ростом текущей частоты канала МТС F_{κ} растет уровень шумов. Чтобы выровнять отношение сигнал-шум по всему спектру МТС, до ЧМД модема включают ПУ с коэффициентом передачи, показанным на рис.П.1.2. Это позволяет изменить девиацию частоты на Δf_{κ}^* , т.е. пропорционально коэффициенту передачи ПУ:

$$\Delta f_{\kappa} * = \Delta f_{\kappa} \cdot B^2$$
пк.тф , кГц, где B^2 пк.тф = 0,4 + 1,35 $X \kappa^2 + 0,75 \ X \kappa^4$.

На приемном конце исходные характеристики сигнала надо восстановить. Для этого после ЧД модема ставится восстанавливающее устройство (ВУ) с коэффициентом передачи, обратным ПУ.

С выхода ВУ через Атт. сигнал поступает на групповой (видео) усилитель (ГУ), предназначенный для усиления видеосигнала на выходе демодулятора при работе в телевизионном режиме и позволяющий изменять на 180° (инвертировать) полярность снимаемого с его выхода напряжения.

Рис.П.1.2. Коэффициент передачи ПУ (----) и ВУ (----)

Конструктивно модем выполнен в виде отдельных съемных блоков, соответствующих функциональной схеме, что позволяет оперативно производить ремонт и замену неисправных узлов (рис.П.1.3).

Рис.П.1.3. Конструктивное выполнение МОДЕМА

Основные свойства ЧМ сигналов при модуляции синусоидальным колебанием

В наиболее общем виде ЧМ сигнал можно представить следующим образом:

$$U_{YM}(t) = U_0 \cos(\theta(t)),$$
 (II.1.1)

где $\theta(t)$ – мгновенная фаза ЧМ сигнала, которая связана с его мгновенной частотой дифференциальным соотношением:

$$\omega(t) = 2\pi f(t) = d\theta(t)/dt, \qquad (\Pi.1.2)$$

$$\theta(t) = \int \omega(t)dt = 2\pi \int f(t)dt. \tag{II.1.3}$$

В отсутствии модуляции частота ЧМ сигнала остается постоянной и равной $\omega_0 = 2\pi \cdot f_0$. При этом из (П.1.3) получим, что фаза является линейной функцией времени:

$$\theta(t) = \omega_0 t \div \theta_0 = 2\pi f_0 t + \theta_0, \tag{\Pi.1.4}$$

где θ_0 – начальная фаза.

При частотной модуляции мгновенное значение частоты модулированного сигнала должно изменяться относительно своего среднего значения $\omega_0 = 2\pi \cdot f_0$ прямо пропорционально изменению напряжения модулирующего сообщения $U_C(t)$, т.е.:

$$f(t) = f_0 + K_M \cdot U_C(t),$$
 (II.1.5)

где коэффициент пропорциональности K_{M} (Гц/В) является кругизной модуляционной характеристики модулятора (рис. П.1.4).

Рис. П.1.4

В этом случае, подставив (Π .1.5) в (Π .1.3), получим, что мгновенная фаза ЧМ сигнала должна изменяться следующим образом:

$$\theta(t) = \omega_0 t + K_M 2\pi \cdot \int U_C(t) dt. \tag{\Pi.1.6}$$

Рассмотрим случай, когда модуляция осуществляется синусоидальным колебанием с частотой $\Omega_{M}=2\pi F_{M}$, т.е. положим:

$$U_C(t) = U_M \cos \Omega_M t \tag{\Pi.1.7}$$

Подставив (П.1.7) в (П.1.6), находим:

$$\theta(t) = \omega_0 t + ((K_M \cdot U_M)/F_M)\sin\Omega_M t + \theta_0 \tag{\Pi.1.8}$$

Входящее в (П.1.8) произведение $K_{\scriptscriptstyle M}\cdot U_{\scriptscriptstyle M}$ является максимальным отклонением частоты ЧМ сигнала, возникающим в результате воздействия модулирующего колебания (см. рис.П.1.4). Эту величину обычно называют максимальной девиацией частоты:

$$\Delta f_m = K_M U_M \tag{\Pi.1.9}$$

Подставив (П.1.8) с учетом (П.1.5) в выражение (П.1.1), получим:

$$U_{YM}(t) = U_0 \cos(\omega_0(t) + m \sin \Omega_M t + \theta_0)$$
, (II.1.10)

где

$$m = \Delta f_M / F_M = K_M U_M / F_M$$
 (\Pi.1.11)

Параметр m называют обычно амплитудным индексом частотной модуляции.

Из (П.1.10) следует, что мгновенная фаза ЧМ сигнала изменяется относительно своей линейной составляющей $\omega_0 t$ в пределах $\pm m$ радиан.

Таким образом, амплитудный индекс модуляции представляет собой не что иное, как амплитудное отклонение фазы ЧМ сигнала, обусловленное воздействием модулирующего колебания.

Для определения спектра ЧМ сигнала в рассматриваемом случае можно разложить в ряд выражение (П.1.10). При этом получим:

$$U_{YM}(t) = U_0 I_0(m) \cos(\omega_0 t + \theta_0) + U_0 \sum_{K=1}^{\infty} I_K(m) \cos[(\omega_0 + k\Omega_M)t + k\theta_0] + U_0 \sum_{K=1}^{\infty} (-1)^K I_K(m) \cdot \cos[(\omega_0 - k\Omega_M)t + k\theta_0]$$

$$(\Pi.1.12)$$

где $I_{\kappa}(m)$ – функция Бесселя 1-го рода k-го порядка от аргумента m (рис.1.1).

Из выражения (П.1.12) следует, что при модуляции синусоидальным колебанием спектр ЧМ сигнала является дискретным, теоритически бесконечным и состоит из нижней и верхней боковых полос частот. Частоты двух соседних спектральных составляющих отличаются друг от друга на величину частоты модулирующего колебания Fм. Амплитуды спектральных состовляющих с частотами $\omega_0 \pm k\Omega_M$ равны $U_0I_K(m)$, т.е. определяются значениями соответствующих функций Бесселя, аргументом которых является индекс модуляции. Фазы спектральных составляющих нижней боковой полосы определяются как знаком функции Бесселя, так и порядком составляющих в связи с наличием в (П.1.12) сомножителя $(-1)^K$. Фазы составляющих верхней боковой полосы зависят лишь от знака соответствующих функций Бесселя. Таким образом, фазы всех нечетных составляющих в верхней и нижней боковых полосах частот будут противоположны.

Из вышесказанного следует, что вид спектра ЧМ сигнала в сильной степени определяется величиной индекса модуляции m.

Из рис.П.1.5 видно, что при m<<1 функции Бесселя 2-го порядка и выше имеют пренебрежимо малое значение. При этом спектр амплитуд ЧМ сигнала практически будет состоять лишь из трех составляющих: несущей и двух боковых с частотами $\omega_0 \pm \Omega_M$. Отметим, что фаза нижней боковой будет отличаться на 180° от фазы верхней боковой составляющей.

При увеличении индекса модуляции m амплитуды составляющих более высокого порядка увеличиваются. С другой стороны, амплитуда ЧМ сигнала U_0 в процессе

модуляции остается постоянной и, следовательно, должна оставаться неизменной и средняя мощность ЧМ сигнала. Поэтому появление новых составляющих приводит к уменьшению амплитуд отдельных составляющих. Таким образом, при ЧМ происходит перераспределение мощности по спектру. Отметим, что при определенных значениях т некоторые составляющие спектра могут обратиться в нуль. Это свойство спектра ЧМ сигнала при модуляции синусоидальным колебанием используется для измерения девиации частоты.

При больших значениях индекса модуляции, т.е. при m>>1 функции Бесселя $I_K(m)$ всех порядков имеют примерно одинаковую величину за исключением значений k, близких k m. В этом случае огибающая спектра ЧМ сигнала будет равномерна вблизи несущей, а на составляющих, порядок которых близок k m, появятся «всплески» (см. рис.П.1.5).

Рис.П.1.5

Несмотря на то, что теоритически спектр ЧМ сигнала является бесконечным, в практических случаях его всегда можно ограничить, учитывая лишь те составляющие, на которых сосредоточена основная часть всей мощности. Для определения ширины спектра $\Pi_{\rm ЧM}$ можно использовать следующую приближенную формулу, называемую иногда правилом Карсона:

$$\Pi_{YM} \approx 2(\Delta f_M + F_M) = 2F_M(1+m)$$
(II.1.13)

Отметим, что эта формула дает существенную погрешность при значениях индекса модуляции, близких к 1. В ряде практических случаев полезно использовать следующее более точное империческое выражение:

$$\Pi_{YM} \approx 2F_M \left(1 + m + \sqrt{m}\right) \tag{\Pi.1.14}$$

Полагая в (П.1.14) m<<1, получим, что при этом:

$$\Pi_{YM} \approx 2F_M \tag{\Pi.1.15}$$

В свою очередь, при m>>1 с учетом (П.1.11) имеем:

$$\Pi_{YM} \approx 2\Delta f_M \tag{\Pi.1.16}$$

Таким образом, при малых значениях индекса модуляции ширина спектра ЧМ сигнала равна примерно удвоенному значению модулирующей частоты. При больших значениях индекса модуляции ширина спектра равняется удвоенному значению амплитудной девиации частоты.

Основные свойства ЧМ сигнала при модуляции многоканальным телефонным сигналом

Многоканальный телефонный сигнал (МТС) представляет собой случайный стационарный процесс с нулевым средним значением. При числе каналов N более 240 распределение вероятностей мгновенных значений МТС подчиняется нормальному закону, а его спектральная плотность мощности ограничена по полосе частот и равномерна в пределах от нижней F_H до верхней F_B граничной частоты.

Абсолютный уровень средней мощности МТС в точке с нулевым относительным уровнем (ТОНУ) в час наибольшей нагрузки (ЧНН) в соответствии с рекомендациями МККР равен:

$$p_{\mathit{CP}} = -15 + 10 \lg N$$
 , дБм 0 при №240
$$p_{\mathit{CP}} = -1 + 4 \lg N$$
 , дБм 0 при №240 (П.1.17)

Очевидно, что средняя мощность MTC, выраженная в мВт, будет равняться:

$$Pcp = 10^{0.1} p_{cp}$$
, MBT ($\Pi.1.18$)

Эффективное значение девиации частоты при передаче МТС определяется следующим образом:

$$\Delta f_{\mathcal{I}} = \Delta f_K \sqrt{P_{CP} / P_K} , \qquad (\Pi.1.19)$$

где Δf_{κ} — эффективное значение девиации частоты в одном телефонный канал при передаче измерительного сигнала $P\kappa$;

 $P_{K} = 1 \text{ мВт} - \text{средняя мощность измерительного сигнала.}$

Квазипиковое значение девиации частоты при передаче МТС $\Delta f_{\it ПИК}$, т.е. значение, которое не превышается в течение 99.9% времени для систем с числом каналов более 240 примерно в 2,32 раза больше эффективной двиации частоты $\Delta f_{\it 2}$.

В том случае, когда модулирующим сигналом является МТС, энергетический спектр ЧМ сигнала (спектральная плотность мощности) теоретически является бесконечным, а его форма определяется так называемым среднеквадратичным индексом модуляции \mathbf{m}_{CP} , который равен:

$$\mathbf{m}_{\mathrm{CP}} = \left[\left(\Delta f_{3} / \sqrt{(\mathbf{F}_{\mathrm{H}} \cdot \mathbf{F}_{\mathrm{B}})} \right) \cdot \sqrt{\psi}$$
 (II.1.20)

где $\psi = 0,4+1,6(F_H \ / \ F_B)$ - при введении предыскажений.

 $\psi=1$ - при отсутствии предыскажений.

Отметим, что индекс модуляции m_{CP} представляет собой среднеквадратичное (эффективное) отклонение фазы ЧМ сигнала от своего среднего значения, вызванное воздействием модулирующего процесса. При малых значениях индекса модуляции m_{CP} спектральная плотность мощности (СПМ) ЧМ сигнала состоит из дискретной составляющей, характиризующей мощность, сосредоточенную на несущей частоте, и непрерывной составляющей, характеризующей боковые полосы частот. При этом мощность, сосредоточенная на дискретной составляющей, растет с уменьшением индекса модуляции, а форма непрерывной части спектра существенно зависит от того, введены или нет предыскажения.

При увеличении m_{CP} мощность, сосредоточенная на несущей частоте, будет уменьшаться. В то же время, так как общая средняя мощность ЧМ сигнала должна

оставаться неизменной и равной, P_C , спектр ЧМ сигнала будет расширяться. В этом случае СПМ ЧМ сигнала описывается весьма сложным аналитическим выражением и состоит из суммы теоритически бесконечного числа так называемых парциальных (частичных) спектров. Причем мощность, сосредоточенная в k-ом парциальном спектре, сильно зависит от индекса модуляции. При больших значениях индекса модуляции (в практических случаях при $m_{CP} \ge 1,5 \div 2$) мощность, сосредоточенная на дискретной составляющей, пренебрежимо мала, и СПМ ЧМ сигнала при модуляции МТС описывается гауссовской функцией. В этом случае огибающая спектра ЧМ сигнала повторяет закон распределения плотности вероятностей модулирующего процесса и не изменяется при введении или отсутствии предыскажений.