Geometria analítica

Anotações Práticas

Vinicius Faria January 23, 2022

Contents

1	Espaços vetoriais e subvetoriais	1
	1.1 Espaços vetoriais	1
	1.2 Subespaços vetoriais	2
	1.2.1 Definições	2
	1.2.2 Teoremas	3
1	Espaços vetoriais e subvetoriais	
1.	1 Espaços vetoriais	
	ado um conjunto V, V é um espaço vetorial real caso satisfazer as condiçõ BS: Nas equações abaixo, $\forall x,y,z\in V$ e $\forall \alpha,\beta\in R$	es:
	1. $x + y = y + x$ (Associatividade)	
	2. $(x+y) + z = x + (y+z)$ (Comutatividade)	
	3. $\exists \theta \in V / x + \theta = \theta + x = x$ (Existencia do vetor nulo)	
	4. $-x \in V / x + (-x) = \theta$ (Elemento simétrico da soma)	
	5. $\alpha(x+y) = \alpha x + \alpha y$ (Distributividade)	
	6. $(\alpha + \beta)x = \alpha x + \beta x$ (Distruibitividade)	
	7. $(\alpha \beta)x = \alpha(\beta x)$ (Associatividade)	
	8. $1x = x$ (Elemento neutro).	

Um espaço vetorial que contém os numeros complexos é denominado **espaço** vetorial complexo

A partir das expressões acima, é possivel extrair as afirmações:

- 1. $\alpha\theta = \theta$
- $2. \ 0x = \theta$
- 3. $\alpha x = \theta$, então $\alpha = 0$ ou $x = \theta$
- 4. $(-\alpha)x = \alpha(-x)$

Alguns exemplos de espaços vetoriais, considerando operações normais:

- $V = K_n(x) = P_r(x)/r \le n$
- V = C[a, b] **OBS:** (f + g)(x) = f(x) + g(x) e $(\alpha f)(x) = f(x)$
- $V = R^n$
- $V = M_{mxn}$

Não são espaços vetoriais:

- V = Z
- V = Conjunto de polinômios de grau 3
- Alguns conjuntos com operações diferentes do normal. Ex: $\alpha x = \alpha(x_1, x_2) = (\alpha^2 x_1, \alpha x_2)$

1.2 Subespaços vetoriais

1.2.1 Definições

Dentro de um espaço vetorial V, há subconjuntos W que são espaços vetoriais menores, contidos em V. **Todo espaço vetorial possui 2 subsespaços triviais:** Sub. nulo e ele mesmo. Critérios para subespaços vetoriais:

- 1. $\theta \in W$
- 2. $\forall x, y \in W \rightarrow x + y \in W$
- 3. $\forall \alpha \in R, \forall x \in W \rightarrow \alpha x \in W$

São subespaços:

- Soluções lineares homogêneas
- Qualquer sistema que adote multiplicações/adições usual com a presença do vetor nulo

Não são subespaços:

- Geralmente sistemas com alguma multiplicação/adição fora do comum ou muito específicas (ex. Conjunto de polinomios de terceiro grau)
- $u + v = (u_1, u_1^2) + (v_1, v_1^2)$

1.2.2 Teoremas

Intersecção de subespaços. Dado W_1 e W_2 subespaços vetorias de V, $W_1 \cap W_2$ também é subconjunto de V. Ex - Matriz triangulares inferiores e superiores.

Soma de subespaços. Dado W_1 e W_2 subespaços vetoriais de V, W_1+W_2 também é subconjunto de V. Caso $W_1\cap W_2=\theta,$ a soma é chamada de **soma direta**, denotada por $W_1\oplus W_2$