

# 800mA LDO 稳压器电路---AMS1117

#### 概述

AMS1117 是一款正电压输出低压差的三端线性稳压电路,在输出 1A 电流时,输入输出的电压差典型值为 1.8V。

AMS1117 分为两个版本,固定电压输出版本和可调电压输出版本,固定输出版本的输出电压可以为: 1.8V, 3.3V和5.0V,可调电压输出版本能提供的输出电压范围为: 1.8V<sup>2</sup>5.5V。

AMS1117 内部集成过热保护和限流电路,确保芯片和电源系统的稳定性。 该器件广泛适用于各种电子产品中。

#### 特点

- ◆ 能提供包括固定电压输出版本(固定电压包括 1.8V, 3.3V, 5V)跟三端可 调电压输出版本
- ◆ 最高输出电流可达 1A
- ◆ 输出电压精度高达2%
- ◆ 稳定工作电压范围为高达 12 V
- ◆ 限流功能
- ◆ 过热切断
- ◆ 温度范围: -20℃-120℃

# SOT-223-3L SOT-89-3L TO-220-3L TO-263-3L TO-252-2L

## 应用

- ◆ 膝上型电脑,掌上电脑和笔记本
- ◆ 电脑
- ◆ 电池充电器
- ◆ 电池供电系统
- ◆ 便携式设备

#### 内部框图



## 极限参数

| 参数            | 符号     | 范 围                | 单 位           |
|---------------|--------|--------------------|---------------|
| 输入工作电压        | V IN   | 12                 | V             |
| 引脚温度 (焊接 8 秒) | T Lead | 260                | $^{\circ}$    |
| 工作结温范围        | ТJ     | <b>-</b> 20 ∼ 120  | $^{\circ}$    |
| 储存温度          | T STG  | <b>-</b> 65 ∼ +150 | ${\mathbb C}$ |
| 功耗            | P D    | 内部限制 (注1)          | mw            |
| ESD 能力 (最小值)  | ESD    | 2000               | V             |

注 1 : 最大允许功耗是最大工作结温 TJ(max),结对空热阻  $\theta$  JA 和环境温度 Tamb 的函数。最大允许功耗在给定的环境温度下,PD(max)=(TJ(max)-Tamb)/ $\theta$  JA,超过最大允许功耗会导致芯片温度过高,调整器因此会进入到过热切断状态。不同封装类型的结对空热阻  $\theta$  JA 是不同的,由封装技术决定。



## 推荐工作条件

| 参 数    | 符号   | 范 围                | 单 位        |
|--------|------|--------------------|------------|
| 输入电压   | V IN | 3~9                | V          |
| 工作结温范围 | ТЈ   | <b>-</b> 20 ∼ +120 | $^{\circ}$ |

# **电气特性**(除非特别指定,否则黑色字体所示的参数,Tamb =25℃,正常工作结温范围 -40℃~125℃。)

| 参数            | 符号                                                                               | 测试条件                                                                                                             | 最小值            | 典型值            | 最大值            | 单位 |
|---------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|----|
| 基准电压          | VREF                                                                             | AMS1117-ADJ,<br>IOUT=10mA,VIN-VOU<br>T=2V,TJ=25°C,<br>$10mA \le IOUT \le 800mA$ ,<br>$1.4V \le VIN-VOUT \le 10V$ | 1.238<br>1.225 | 1.250<br>1.250 | 1.262<br>1.270 | V  |
| 输出电压 VOUT     | AMS1117-1.8,<br>IOUT=10mA,VIN=3.8V,<br>TJ=25°C,<br>0≤IOUT≤800mA,3.2V<br>≤VIN≤10V | 1.782<br>1.764                                                                                                   | 1.800<br>1.800 | 1.818<br>1.836 | V              |    |
|               | AMS1117-3.3,<br>IOUT=10mA,VIN=5V,TJ<br>=25°C,<br>0≤IOUT≤800mA,<br>4.75V≤VIN≤10V  | 3.267<br>3.235                                                                                                   | 3.300<br>3.300 | 3.333<br>3.365 | V              |    |
|               | AMS1117-5.0,<br>IOUT=10mA,VIN=7V,TJ<br>=25°C,<br>0≤IOUT≤800mA,<br>6.5V≤VIN≤10V   | 4.950<br>4.900                                                                                                   | 5.000<br>5.000 | 5.05<br>5.10   | V              |    |
| 输出电压温度<br>稳定性 | TSOUT                                                                            |                                                                                                                  |                | 0.3            |                | %  |
| 线性调整          | Rline                                                                            | VINMIN≤VIN≤12V,<br>VOUT=Fixed/Adj,IOUT<br>=10mA                                                                  |                | 3              | 7              | mV |
| 负载调整          | Rload                                                                            | 10mA≤IOUT≤1A,<br>VOUT=Fixed/Adj                                                                                  |                | 6              | 12             | mV |
| 漏失电压          | Vdrop                                                                            | IOUT=100mA                                                                                                       |                | 1.00           | 1.20           | V  |



|              |      | IOUT=500mA<br>IOUT=800mA                         |    | 1.05<br>1.10 | 1.25<br>1.30 |      |
|--------------|------|--------------------------------------------------|----|--------------|--------------|------|
| 静态电流         | Iq   | 4.25V≤VIN≤6.5V                                   |    | 5            | 10           | mA   |
| 纹波抑制比        | PSRR | fRIPPLE=120Hz,<br>(VIN-VOUT)=3V,VRIPP<br>LE=1VPP | 60 | 75           |              | dB   |
| 可调管脚电流       | Iadj |                                                  |    | 60           | 120          | μА   |
| 可调管脚电流 变化    |      | $0 \le IOUT \le 1A, 1.4V \le VIN-VOUT \le 10V$   |    | 0.2          | 5            |      |
| 温度稳定性        |      |                                                  |    | 0.5          |              | %    |
| 长期稳定性        |      | Tamb=125°C,1000Hrs                               |    | 0.3          |              | %    |
| RMS 输出噪<br>声 |      | %ofVOUT,10Hz $\leq$ f $\leq$ 10kHz               |    | 0.003        |              | %    |
| 热阻系数         | θ ЈА | SOT-223                                          |    | 120          |              | °C/W |

## 管脚排列





## 功能描述

AMS1117 是一个低漏失电压调整器,它的稳压调整管是由一个 PNP 驱动的 NPN 管组成的,漏失电压定义为: VDROP=VBE+VSAT。

AMS1117 有固定和可调两个版本可用,输出电压可以是: 1.8V,3.3V 和 5.0V。片内过热切断电路提供了过载和过热保护,以防环境温度造成过高的结温,其中过流保护和过热保护模块,能够在应用电路的环境温度大于 120℃以上或负载电流大于 900mA 时,保证芯片和系统的安全。。

为了确保 AMS1117 的稳定性,对可调电压版本,输出需要连接一个至少 22 µ F 的钽电容。对于固定电压版本,可采用更小的电容,具体可以根据实际应用确定。通常,线性调整器的稳定性随着输出电流增加而降低。

## 典型应用电路图



图 1. 典型固定输出电压



图 2. 典型可调输出电压

注:以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。



## 典型电气特性曲线









## 封装外形图

