UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA ÁREA DE CIENCIAS DE LA COMPUTACIÓN ESCUELA DE CIENCIAS Y SISTEMAS PRIMER SEMESTRE 2024

NOMBRES	CARNET	PORCENTAJE
		DE
		PARTICIPACION
Kevin Eduardo Castañeda Hernández	201901801	25%
Rony Omar Miguel López	201905750	25%
Iván Alessandro Hilario Chacón	201902888	25%
Andrés Alejandro Agosto Méndez	202113580	25%

Introducción

Coca-Cola ha requerido nuestra ayuda como estudiantes de ingeniería en sistemas para realizar una cinta transportadora que traslade su producto durante todo el proceso de empaquetado. El embotellado de las gaseosas se hace en México y se envía a Guatemala para que sean empacadas según los nuevos estándares impuestos por el Ministerio de Salud. Se ha detectado que la embotelladora de México envía desordenadas las botellas y como también trabaja para Pepsi a veces envía producto erróneo, por lo que Coca-Cola Guatemala debe clasificar y desechar las botellas según sea el caso, el CEO solicita que se utilice lo menos posible los microprocesadores.

Mediante el uso de lógica secuencial se desea desarrollar los requerimientos obtenidos del cliente haciendo el menor uso posible de microcontroladores.

OBJETIVOS

General

Aplicar los conocimientos teóricos aprendidos en clase magistral y laboratorio para la construcción de circuitos combinacionales y secuenciales.

Específicos

- 1. Construcción de un sistema que una la lógica combinacional junto a la lógica secuencial.
- 2. Poner en práctica los conocimientos de Lógica Combinacional y Mapas de Karnaugh.
- 3. Aprender el funcionamiento de diferentes elementos electromecánicos.
- 4. Empezar a conocer sobre el uso de microcontroladores.
- 5. Construir un diseño óptimo, logrando utilizar la menor cantidad de dispositivos.
- 6. Resolución de problemas mediante Electrónica Digital.
- 7. Aprender diferentes usos para la lógica secuencial.

Contenido

Semaforo

00111011			1			
Paso 1						
	Semaforo qu	ie con color v	erde de tenga tiempo	de 20 segundo	s y en rojo 10 se	gundos
	Posibles est	ados				
	S0 y S1					
				Α	Z	
				В	Υ	
			Semaforo	C	X	
			Comaroro	D	W	
				E	U	
				S	S	
Paso 2						
	Diagrama de estados					

-		U	L	U						
aso (3 Tab	la de esta	ados y salio	las						
	S	n/S1	0	1	\dashv					
		S0		S1,1						
		S1		S2,1						
		S2		S3,1						
		S3		S4,1						
		S4		S5,1						
		S5		S6,1						
		S6		S7,1						
		S7		S8,1						
		S8		S9,1						
		59		S10,1						
		510		S11,1						
		511		S12,1						
		512		S13,1						
		513		S14,1						
		514		S15,1						
		315		S16,1						
		516		S17,1						
		517		S18,1						
		518		S19,1						
		519		S20,1						
		620		S21,1						
		521	S22,0							
		522	S23,0		_					
		623	S24,0		_					
		624	S25,0		_					
		625	S26,0		_					
		626	S27,0		_					
		627	S28,0		_					
		628	S29,0		_					
		529	S30,0		_					
		630	S31,0		_					
	:	531	S0,0							
so 4	odificad	aa en bina	rio y salid	2						
	Sm	QE	€D	ec.	QB	QΑ				
	80	0	0	0	0	0			FE 00	
	\$1 \$2	0	0	0	1	0				meros de es! 31 aprox 32
	\$3	0	0	0	1	1	n=5			
	\$4	0	0	1	0	0	Tipo	de FF	FF tipo D	7474
	25	0	0	1	_ n	1	i			

Paso 4	odificada	a en bina	rio y salid	3				
	Sm	QE	QD .	ec	QB	QΛ		+
	80	0	0	0	0	0		
	\$1	0	0	0	0	1	Numero de FF 2^n = numeros de	estadis
	\$2	0	Ö	0	1	0	Numeros de estados = 31 aprox 3	
	\$3	0	0	0	1	1	n=5	
	\$4	0	0	1	0	0	Tipo de FF; FF tipo D 7474	
	\$5	0	0	1	0	1		
	\$6	0	0	1	1	0		
	\$7	0	0	1	1	1		
	88	0	1	0	0	0		
	89	0	1	0	0	1		
	\$10	0	1	0	1	0		
	\$11	0	1	0	1	1		
	\$12	0	1	1	0	0		
	\$13	0	1	1	0	1		
	\$14	0	1	1	1	0		
	\$15	0	1	1	1	1		
	\$16	1	0	0	0	0		
	\$17	1	0	0	0	1		
	\$18	1	0	0	1	0		
	\$19	1	0	0	1	1		
	\$20	1	0	1	0	0		
	\$21	1	0	1	0	1		
	\$22	1	0	1	1	0		
	\$23	1	0	1	1	1		
	\$24	1	1	0	0	0		
	\$25	1	1	0	0	1		
	\$26	1	1	0	1	0		
	\$27	1	1	0	1	1		
	\$28	1	1	1	0	0		
	\$29	1	1	1	0	1		
	\$30	1	1	1	1	0		
	\$31	1	1	1	1	1		

Contador Descendente 11-0

Qb	Qc	Qd	Qa+	Qb+	Qc+	Qd+	Ffa	FFb	FFc	FFd	D	С	В	A
0	0	0	0	0	0	1	0	0	0	1	1	0	1	1
0	0	1	0	0	1	0	0	0	1	0	1	0	1	0
0	1	. 0	0	0	1	1	0	0	1	1	1	0	0	1
0	1	. 1	0	1	0	0	0	1	. 0	0	1	0	0	0
1	. 0	0	0	1	0	1	0	1	. 0	1	0	1	1	1
1	. 0	1	0	1	1	0	0	1	. 1	0	0	1	1	0
1	. 1	. 0	0	1	1	1	0	1	. 1	1	0	1	0	1
1	. 1	. 1	1	0	0	0	1		0	0	0	1	0	0
0	0	0	1	0	0	1	1		0	1	0	0	1	1
0	0	1	1	0	1	0	1		1	0	0	0	1	0
0	1	. 0	1	0	1	1	1		1	1	0	0	0	1
0	1	. 1	1	1	0	0	1	. 1	. 0	0	0	0	0	0

Funciones booleanas

Diagrama de los diseños:

1. Teclado

2. Registro Teclado

3. Contraseña

4. Contador intentos y alarma

5. Contadores intento fallido y correcto

7.Driver Stepper

8. Aestable

9. Puente H

10. Servomotor

Equipo Utilizado

Equipo utilizado y componentes	Cantidad	Precio c/u (Q)	Total (Q)		
Protoboards de una galleta	18	35.00	630.00		
Compuertas AND	35	7.00	245.00		
Compuertas XOR	3	7.00	63.00		
Compuertas OR	15	7.00	105.00		

Compuertas NOT	7	7.00	49.00
Comparador	3	11.00	11.00
Decoder	12	11.00	88.00
Sumador	10	13.00	130.00
Resistencias 1K	40	0.50	20.00
Multímetro	1	100.00	100.00
Cargador	1	40.00	40.00
Pinzas	1	5.00	5.00
Pela cables	4	15.00	60.00
Cautín	2	30.00	60.00
Estaño	1mt	5.00	5.00
Cable para protoboard	15 mts	2.00	30.00
Displays	12	5.00	40.00
Tijeras	2	8.00	16.00
Leds	5	1.00	5.00
Arduino Mega	1	200.00	200
Servomotor	1	28	28.00
Flip-Flops tipo D	20	11.00	220.0
Motor Stepper	1	45.00	45.0
Sensor de Color	1	65.0	65
Sensor de proximidad	2	11.0	22
Leds	10	1.0	10
Botones pulsadores	15	1.0	15.00
Total			2405.00

Aporte de cada integrante

Kevin Eduardo Castañeda Hernández	25%
Rony Omar Miguel López	25%
Iván Alessandro Hilario Chacón	25%
Andrés Alejandro Agosto Méndez	25%

Conclusiones

Durante esta practica se utilizaron técnicas de diseño aprendidas durante el curso, se utilizó e implementó lógica secuencial a través del uso de flip flops para poder guardar información por el tiempo requerido.

Se combino lógica secuencial y combinacional para lograr un circuito que pueda realizar operaciones complejas como la aceptación de una contraseña, su comparación y almacenamiento, así como la creación de un circuito aestable para utilizar como reloj y la utilización de motores DC, Stepper y Servomotor para poder convertir la energía a una fuerza mecánica.