Questions and beyond: day 3

Maria Aloni ILLC-UvA

M.D.Aloni@uva.nl

http://staff.science.uva.nl/~maloni/aloni-lot2008/

9 January 2008

Plan of today: dynamics of questions

- A short intro to dynamic semantics;
- Jeroen Groenendijk (2007): The logic of interrogations. In M. Aloni, P. Dekker and A. Butler (eds). Questions in Dynamic Semantics. CRiSPI series, Elsevier.
- Aloni, Beaver, Clark and van Rooij (2007): The dynamics of topic and focus. In M. Aloni, P. Dekker and A. Butler (eds). Questions in Dynamic Semantics. CRiSPI series, Elsevier.

Dynamic semantics (Kamp, Heim, G&S)

► Classical view:

```
meanings → truth conditions
answerhood conditions
compliance conditions
```

. . .

DYNAMIC VIEW:

meanings → context change potentials

Original linguistic motivation: anaphora

- Cross-sentential and donkey anaphora (Geach'62):
 - (1) a. A man came in. He was pushing a bike. Was he happy?
 - b. $\exists x \phi(x) \land \psi(x) \land ?\chi(x)$
 - c. $\exists x (\phi(x) \land \psi(x)) \land ?\chi(x)$
 - d. $\exists x (\phi(x) \land \psi(x) \land ?\chi(x))$
 - (2) a. If a farmer owns a donkey, he is rich.
 - b. $\exists x \phi(x) \rightarrow \psi(x)$
 - c. $\exists x (\phi(x) \rightarrow \psi(x))$
 - d. $\forall x(\phi(x) \rightarrow \psi(x))$
- In dynamic semantics, the following equivalence hold:
 - (3) a. $\exists x \phi \land \psi \equiv \exists x (\phi \land \psi)$
 - b. $\exists x \phi \to \psi \equiv \forall x (\phi \to \psi)$

Dynamic semantics: contexts

- ▶ Meanings → functions from contexts to contexts;
- Contexts represent speakers' presupposition, what is taken for granted by conversationalists;
- ► Formally, sets of possibilities:
 - Possible worlds (Stalnaker's context set)
 - World-assignment pairs (Heim's files, dynamic info states)
 - ..

A toy example

- Context = set of possible worlds
- [world knowledge]
- ► Comparable to partial models, wrt *C* some propositions *p* are satisfied, some are falsified, and others are neither.
 - (i) $C \subseteq p$

it is presupposed that *p*

(ii) $C \cap p = \emptyset$

it is presupposed that not *p* it is not known whether *p*

(iii) Otherwise

- ▶ Contexts change as conversation proceeds: $C + \phi = C \cap ||\phi||$

Applications: presuppositions, epistemic modals, . . .

Another toy example

- ► C = set of world-assignment pairs
- [world + discourse]
- (5) a. [A fat man] $_i$ came in. He $_i$ was smoking.
 - b. $\exists x (\mathbf{F} x \wedge \mathbf{C} x) \wedge \mathbf{S} x$
- An indefinite set up a discourse marker DM_x
- ▶ Anaphor_x interpreted with respect to C + [indefinite] refers back to DM_x
- ▶ Suppose *a*, *b* and *c* are the fat men coming in in *w*. Only *b* is smoking.

(6)
$$w + \exists x (\mathbf{F}x \wedge \mathbf{C}x) \begin{vmatrix} \mathbf{x} \\ \mathbf{w} & \mathbf{a} \\ \mathbf{w} & \mathbf{b} \\ \mathbf{w} & \mathbf{c} \end{vmatrix} + \mathbf{S}x \frac{\mathbf{x}}{\mathbf{w} & \mathbf{b}}$$

Today's question: what is the CCP of a question?

Two answers:

- ▶ The logic of interrogation;
- The dynamics of topic and focus.

In both cases:

context = what is known + what is under discussion

The logic of interrogation: motivation

- Standard logic deals with reasoning
- ▶ Goal: formalize the notion of valid conclusion
- But, reasoning is just one of many things we can do with language
- G tries to extend the domain of logic to cooperative information exchange (more basic than reasoning)
- His goal: formalize the notion of pertinent move in a dialogue game
- Logic meets pragmatics

- Standard logic: valid conclusion in reasoning
 - (7) a. All men are mortals, Socrates is a man. Thus Socrates is mortal. (valid)
 - Some men are mortal, Socrates is a man. Thus Socrates is mortal. (invalid)
- ▶ Logic of interrogation: pertinent move in a dialogue
 - (8) a. Who smokes? Mary smokes. (pertinent)
 - b. Who smokes? Mary is blond. (impertinent)

Overview

- ▶ The game of interrogation
- A query language
- Semantics for the language
- Logical notions to arbitrate the game
- Answerhood
- ► An application

Game of Interrogation

- ► Two players: the interrogator and the witness
- ► The interrogator may only raise issues by asking the witness non-superfluous questions
- ► The witness may only make credible (Quality), non-redundant (Quantity) statements which exclusively address the issues raised by the interrogator (Relation)
- ► **Goal:** Define logical notions that arbitrate whether an interrogation proceeds in accordance with the rules

Query Language

- ▶ Let *PL* be a language of predicate logic.
- ▶ The Query Language QL is the smallest set such that:

```
i. If \phi \in PL, then \phi \in QL
                                                                  (indicatives \phi!)
```

```
ii. If \phi \in PL, \vec{x} a sequence of n variables, then ?\vec{x} \phi \in QL
                                                               (interrogatives \phi?)
```

Examples of interrogatives

- a. ?Pm
- b. ?∃*xPx*
- c. ?x Px
- d. ?xy Rxy
- e. # \neg ?x Px, $\exists x$?x Px

Did Mary call? Did anyone call? Who called? Who ate what?

Denotational semantics

Standard truth definition for indicatives:

(9)
$$\|\phi!\|_{M,w,g} \in \{0,1\}$$

Partition semantics for interrogatives:

(10)
$$\|?\vec{x}\,\phi\|_{M,w,g} =$$

$$\{v \in W \mid \forall \vec{e} \in D^n \colon \|\phi\|_{v,g[\vec{x}/\vec{e}]} = \|\phi\|_{w,g[\vec{x}/\vec{e}]} \}$$

- ▶ An indicative ϕ ! selects a subset of the set of worlds: the worlds where ϕ ! is true
- An interrogative ϕ ? divides the set of worlds into a number of (mutually exclusive) alternatives.

Pictures: propositions and questions

Dynamic semantics

- ► An update semantics for QL defined in terms of the denotational semantics
- ▶ The notion $C[\phi]$, the effect of updating a context C, defined for indicative and interrogative sentences ϕ
- ➤ A context consists of data (provided by the witness) and issues (raised by the interrogator)

Data and Issues

▶ If we only considered data, a context could be a subset of the set of possible worlds (Stalnaker's context set)

(11)
$$C[!\phi] = C \cap [\phi]$$

- ▶ Interrogatives provide no data, they may only raise issues
- ▶ Issues modeled by structuring the context . . .

Structured contexts

- ▶ A structured context *C* is a symmetric and transitive relation on the set of possible worlds *W*
- ▶ I.e. C is an equivalence relation on a subset of W
- ▶ If two worlds w and v are related in C, $\langle w, v \rangle \in C$, the difference between w and v is not an issue
- ▶ Notation: $w \in C$ means $\langle w, w \rangle \in C$

Semantics for the language

Examples of structured contexts

Updating contexts

- 1. $C[\phi!] = \{ \langle w, v \rangle \in C \mid ||\phi!||_w = ||\phi!||_v = 1 \};$
- 2. $C[\phi?] = \{\langle w, v \rangle \in C \mid ||\phi?||_w = ||\phi?||_v\};$
- 3. For $\tau = \phi_1; \dots; \phi_n, C[\tau] = C[\phi_1] \dots [\phi_n]$.
 - An indicative ϕ ! eliminates a pair of worlds from the context as soon as ϕ ! is false in one of the worlds of the pair
 - An interrogative ϕ ? disconnects those worlds where the question would receive different answers
 - ▶ Interpreting an interrogation, a sequence of a mix of interrogatives and indicatives, is just interpreting the sentences in the sequence one by one

Examples of updates

- 1. $C[\phi!] = \{ \langle w, v \rangle \in C \mid ||\phi!||_w = ||\phi!||_v = 1 \};$
- 2. $C[\phi?] = \{\langle w, v \rangle \in C \mid ||\phi?||_w = ||\phi?||_v\};$

The rules of the game

- Basic intuition:
 - The interrogator may only raise issues by asking the witness non-superfluous questions (Quantity)
 - The witness may only make credible (Quality), non-redundant (Quantity) statements which exclusively address the issues raised by the interrogator (Relation)
- Groenendijk defines three logical notions:
 - Consistency → Quality
 - Informativeness → Quantity
 - Licensing → Relation

Consistency

- ϕ is consistent with τ iff $\exists C : C[\tau][\phi] \neq \emptyset$
- Only indicatives can be inconsistent with the context
- Consistency is the logical notion used to arbitrate credibility of the witness [Quality]
- The witness is judged credible as long as she doesn't contradict herself

Informativeness

- τ entails ϕ iff $\forall C : C[\tau] = C[\tau][\phi]$
- \blacktriangleright ϕ informative after τ iff τ does not entail ϕ
- Both indicatives and interrogatives can be uninformative
- Informativeness is the logical notion used to arbitrate whether statements are non-redundant, and questions are not superflous [Quantity]

Entailment: example

- Uniform for indicatives and interrogatives
- Between indicatives: as in predicate logic
- ▶ Between interrogatives: as in partition semantics
 - (12) ?xPx entails ?Pm and $?\exists xPx$
- Mixed cases:
 - (13) ϕ ! entails ψ ? iff ϕ ! is an exhaustive answer to ψ ?
 - (14) ϕ ? entails ψ ! iff ψ ! is a tautology

Licensing

- ▶ τ licenses ϕ iff $\forall C, w, v : \langle w, v \rangle \in C[\tau] \& w \notin C[\tau][\phi] \Rightarrow v \notin C[\tau][\phi]$
- If ϕ eliminates a world from the context, it should eliminate the whole alternative to which that world belongs
- Licensing is the logical notion used to arbitrate whether the witness exclusively addresses the issues raised by the interrogator [Relevance]

Fact about licensing

- $\blacktriangleright \tau$ licenses ϕ ! iff τ entails ϕ ?
- An indicative is licensed by the context iff the corresponding polar interrogative is part of the issues raised in the context
- Interrogatives are always licensed
- ► Tautologies and contradictions are always licensed

Pertinence

- $ightharpoonup \phi$ is pertinent after au iff
 - i. ϕ is consistent with τ (Quality)
 - ii. ϕ is informative after τ (Quantity)
 - iii. ϕ is licensed after τ (Relation)
- ➤ The logical notion of pertinence arbitrates whether an interrogation is in accordance with the rules of the game

Answerhood

- Answers as pertinent moves:
 - (15) $\phi!$ is a (pertinent) answer to ψ ? iff $\phi!$ is pertinent after ψ ?
- Allows for partial answers, but not for over-informative answers
- ▶ Cf. complete answers in terms of entailment:
 - (16) $\phi!$ is a complete answer to ψ ? iff $\phi!$ entails ψ ?
- Correspond to exhaustive answers in partition semantics
- Allows for over-informative answers

Examples answers

Pertinent answers to ?xPx (who called?)

(17) a.
$$Pa$$
 (a called)
b. $\neg Pa$ (a didn't call)
c. $(Pa \land Pb)$ (a and b called)
d. $\forall xPx$ (everybody called)
e. $\forall x(Px \leftrightarrow x = a)$ (only a called)

Answers (d) and (e) also complete:

(18) a.
$$\forall xPx$$
 entails $?xPx$
b. $\forall x(Px \leftrightarrow x = a)$ entails $?xPx$

Resolving an ambiguity with an issue

- ► An ambiguous sentence:
- (19) Alf rescued Bea. And no-one else.
 - a. Rab; $\neg \exists x (Rxb \land x \neq a)$ (only Alf rescued Bea)
 - b. Rab; $\neg \exists x (Rax \land x \neq b)$ (Alf rescued only Bea)
 - Disambiguation by a preceding interrogative:
- (20) Who rescued Bea? Alf rescued Bea. And no-one else.
 - a. $?x Rxb; Rab; \neg \exists x (Rxb \land x \neq a)$ (pertinent)
 - . ? $x R \times b$; R = b; $\neg \exists x (Rax \land x \neq b)$ (impertinent)
- (21) Whom did Alf rescue? Alf rescued Bea. And no-one else.
 - a. ?x Rax; Rab; $\neg \exists x (Rxb \land x \neq a)$ (impertinent)
 - o. ?x Rax; Rab; $\neg \exists x (Rax \land x \neq b)$ (pertinent)

Conclusion

- A formally precise characterization of the notion of pertinent move in a dialogue game;
- Correct predictions in many cases:
 - (22) Who smokes?
 - a. Mary smokes. (pertinent)
 - b. Mary is blond. (impertinent)
 - (23) Who rescued Bea?
 - Only Alf rescued Bea. (pertinent)
 - b. Alf rescued only Bea. (impertinent)
- But ...

Problems with other over-informative answers:

```
(24) a. Did someone rescue Bea?b. Yes, Alf rescued Bea. (impertinent)
```

▶ And with question strategies (cf. Roberts 1996):

```
(25) a. Who smokes? Does M smoke? (impertinent)b. Who smokes? Does M swim? (pertinent)
```

Next: The dynamics of topic and focus (handout)