국가기술자격 실기시험문제지

2013년도 제2회 기사 필답형 실기시험

자 격 종 목	시험시간	문제수	수험번호	성명
소방설비기사(기계)	2시간 30분	14	044-865-0063	다산에듀

문제 01 [배점] 6점

절연유 봉입 변압기에 물분무소화설비를 그림과 같이 설치하고자 한다. 가로 5m, 세로 3m, 높이 1.8m일 때 다음물음에 답하시오.

- (1) 이 소화설비의 유량[l/min]을 구하시오.
- (2) 이 소화설비의 저수량[m³]을 구하시오.
- (3) 고압의 전기기기가 있는 장소와 헤드 사이의 거리[cm]를 적으시오.
 - ① 전압이 66kV 이하일 때
 - ② 전압이 181kV 초과 220kV 이하일 때

문제 02 [배점] 8점

내경이 40mm인 소방용 호스에 내경이 13mm인 노즐이 부착되어 있다. 300ℓ/min의 방수량으로 대기 중에 방사할 경우 다음 물음에 답하시오.

- (1) 소방용 호스의 평균유속[m/s]을 계산하시오.
- (2) 소방용 호스에 부착된 노즐의 평균유속[m/s]을 계산하시오.
- (3) 소방용 호스에 부착된 Flange Volt(플랜지 볼트)에 작용하는 힘(Newton)을 계산하시오.

문제 03 대표 [배점] 7점

어떤 지하상가 제연설비를 화재안전기준과 아래 조건에 따라 설치하려고 한다.

[조건]

- 주덕트의 높이 제한은 600mm이다.(단, 강판 두께, 덕트 후렌지 및 보온두께는 고려하지 않는다.)
- 배출기는 원심 다익형이다.
- 각종 효율은 무시한다.
- 예상 제연구역의 설계 배출량은 45,000 m³/h이다.
- (1) 배출기의 흡입측 주덕트의 최소 폭[mm]을 계산하시오.
- (2) 배출기의 배출측 주덕트의 최소 폭[mm]을 계산하시오.
- (3) 준공 후 풍량시험을 한 결과 풍량은 36,000 m³/h, 회전수는 600 rpm, 축동력은 7.5 kW로 측정되었다. 배출량 45,000 m³/h를 만족시키기 위한 배출구 회전수[rpm]를 계산하시오.

문제 04 [배점] 5점

지상 1층과 2층의 바닥면적의 합계가 $20,000 \text{m}^2$ 인 경우 소화수조를 설치하는데 수원 $[\text{m}^3]$ 과 채수구의 개수를 구하시오.

문제 05 [배점] 8점

전기실에 제1종 분말소화약제를 사용한 분말소화설비를 전역방출방식의 가압식으로 설치하려고 한다. 다음 조건을 참조하여 각 물음에 답하시오.

[조건]

- 특정소방대상물의 크기는 가로 20m, 세로 10m, 높이 3m인 내화구조로 되어 있다.
- 분사헤드의 1개의 방사량은 초당 1.5kg이다.
- 소화약제 저장량은 30초 이내에 방사한다.
- (1) 이 소화설비에 필요한 약제저장량은 몇 kg인가?
- (2) 가압용가스로 질소를 사용할 때 청소에 필요한 양♪ 은 얼마 이상인가?
- (3) 이 소화설비에 필요한 분사헤드의 수는 몇 개인가?
- (4) 분사헤드의 수를 화재안전기준에 맞게 도면에 그리시오.

문제 06 [배점] 5점

불연재료로 된 특정소방대상물 또는 그 부분으로서 옥내소화전 방수구를 설치하지 아니할 수 있는 대상물 5개를 쓰시오.

문제 07 [배점] 5점

할로겐화합물 및 불활성기체 소화설비의 저장용기 재충전 또는 교체기준을 쓰시오.

문제 08 [배점] 9점

지상 10층 건물에 옥내소화전을 설치하려고 한다. 각 층에 옥내소화전 3개씩을 배치하며 이때 낙차는 24m, 배관의 마찰손실수두는 8m, 호스의 마찰손실수두가 7.8m, 펌프효율이 55%, 여유율은 10%이고, 소화전 1개당 방사량은 150 ℓ /min으로 20분간 연속 방수되는 것으로 하였을 때 다음 물음에 답하시오.

- (1) 펌프의 최소 토출량[m⁹/min]을 구하시오.
- (2) 전양정[m]을 구하시오.
- (3) 펌프모터의 최소동력[kW]을 구하시오.
- (4) 수원의 최소 지수량[m³]을 구하시오. (단, 주펌프와 동등 이상의 성능이 있는 별도의 펌프로서 내연기관의 기동과 연동하여 작동된다.)

문제 09 [배점] 5점

그림과 같이 연결송수구와 체크밸브 사이에 자동배수밸브를 설치하는 이유에 대하여 설명하시오.

문제 10 [배점] 6점

다음 물음에 화재안전기준에 맞게 답하시오.

- (1) 특정소방대상물인 의료시설에 설치하여야 하는 피난기구를 충별로 구분하여 답하시오.
 - ① 지상 3층
 - ② 지상 4층 이상 10층 이하
- (2) 피난기구 설치 시 개구부에 관련되는 사항으로 () 안에 적당한 답을 쓰시오. 피난기구는 계단・피난구 기타 피난시설로부터 적당한 거리에 있는 안전한 구조로 된 피난 또는 소화활동상 유효한 개구부[가로 (①)m 이상 세로 (②)m 이상인 것을 말한다. 이 경우 개구부 하단이 바닥에서 (③)m 이상이면 발판 등을 설치하여야 하고, 밀폐된 창문은 쉽게 파괴할 수 있는 파괴장치를 비치하여 야 한다.]에 고정하여 설치하거나 필요한 때에 신속하고 유효하게 설치할 수 있는 상태에 둘 것

문제 11 [배점] 4점

주거용 주방자동소화장치의 설치기준에 대한 설명이다. () 안에 적당한 말을 쓰시오.

탐지부는 수신부와 분리하여 설치하되, 공기보다 가벼운 가스를 사용하는 경우에는 (①)면으로부터 (②) cm 이하의 위치에 설치하고, 공기보다 무거운 가스를 사용하는 장소에는 (③)면으로부터 (④)cm 이하의 위치에 설치할 것

문제 12 [배점] 8점

다음 조건을 참조하여 펌프의 NPSHav(유효흡입양정)을 계산하고 캐비테이션의 발생 유무를 쓰시오.

[조건]

● 흡입수두 : 3m

• 물의 포화증기압 : 2.33kPa

• 흡입배관 마찰손실수두 : 3.5kPa

• NPSH_{re}: 5

• 수조가 펌프보다 낮은 경우이다.

문제 13 [배점] 12점

폐쇄형 헤드를 사용한 스프링클러설비의 말단 배관 중 K점에 필요한 압력수의 수압을 주어진 조건을 이용하여 산정하시오.

[조건]

• 직관 마찰손실수두(100m당)

(단위 : m)

개수	유량	25A	32A	40A	50A
1	80ℓ/min	39.82	11.38	5.40	1.68
2	160ℓ/min	150.42	42.84	20.29	6.32
3	240 l/min	307.77	87.66	41.51	12.93
4	320 l/min	521.92	148.66	70.40	21.93
5	400ℓ/min	789.04	224.75	106.31	32.99
6	480ℓ/min		321.55	152.26	47.43

• 관이음쇠 마찰손실에 해당하는 직관길이

(단위 : m)

				\ = · · /
구분	25A	32A	40A	50A
엘보(90 °)	0.9	1.20	1.50	2.10
리듀서	0.54	0.72	0.90	1.20
티(직류)	0.27	0.36	0.45	0.60
트(분류)	1.50	1.80	2.10	3.00

※ 티는 직류만 사용한다.

- 헤드나사는 $\operatorname{PT}\frac{1}{2}(15\operatorname{A})$ 기준
- 헤드방사압은 0.1MPa 기준
- 수압산정에 필요한 계산과정을 상세히 명시할 것

문제 14 [배점] 12점

가로 20m, 세로 10m인 특수가연물을 저장하는 창고에 포소화설비를 설치하고자 한다. 다음 조건에 따라 물음에 답하시오.

[조건]

- 포헤드를 정방형으로 설치한다.
- 포원액은 3% 수성막포이다.
- 전양정은 35m, 효율은 65%, 여유율은 10%이다.
- (1) 포헤드의 수량은 몇 개인가?
- (2) 수원의 저장량은 몇 m³ 이상으로 하여야 하는가?
- (3) 포원액의 양은 몇 ℓ 이상으로 하여야 하는가?
- (4) 전동기의 출력은 몇 kW인가?

[정답지]

1.

(1) 유량

• 계산과정 : 표면적 =
$$(5m \times 3m \times 1 \text{ 면}) + (5m \times 1.8m \times 2 \text{ 면}) + (3m \times 1.8m \times 2 \text{ 면}) = 43.8m^2$$

유량 = $43.8m^2 \times 10 \ell/(mi \, n \cdot m^2) = 438 \ell/mi \, n$

• 답 : 438 l/min

(2) 저수량

• 계산과정 : 저수량 = $438 \ell/min \times 20min = 8760 \ell = 8.76m^3$

• 답 : 8.76m³

(3) ① 70cm 이상

② 210cm 이상

2.

(1) 호스의 평균유속

• 계산과정 :
$$u = \frac{4Q}{\pi D^2} = \frac{4 \times 0.3 m^3 / 60 s}{\pi \times (0.04 m)^2} = 3.98 m / s$$

• 답: 3.98m/s

(2) 노즐의 평균유속

• 계산과정 :
$$u = \frac{4Q}{\pi D^2} = \frac{4 \times 0.3 m^3 / 60 s}{\pi \times (0.013 m)^2} = 37.67 m / s$$

• 답 : 37.67m/s

(3) 플랜지 볼트에 작용하는 힘

• 계산과정 :
$$F = \frac{9800 N/m^3 imes \frac{\pi}{4} (0.04m)^2 imes (0.3m^3/60s)^2}{2 imes 9.8m/s^2} imes \left(\frac{\frac{\pi}{4} (0.04m)^2 - \frac{\pi}{4} (0.013m)^2}{\frac{\pi}{4} (0.04m)^2 imes \frac{\pi}{4} (0.013m)^2} \right)^2 = 713.19N$$

• 답 : 713.19N

3.

(1) 흡입측 주덕트의 최소 폭

• 계산과정 :
$$Q = uA$$

$$12.5m^3/s = 15m/s \times (0.6m \times L)$$

$$L = \frac{12.5m^3/s}{15m/s \times 0.6m} = 1.39m = 1390mm$$

• 답 : *L* = 1390*mm*

(2) 배출측 주덕트의 최소 폭

$$12.5m^3/s = 20m/s \times (0.6m \times L)$$

$$L = \frac{12.5m^3/s}{20m/s \times 0.6m} = 1.04m = 1040mm$$

• 답 : L = 1040mm

(3) 배출구 회전수

• 계산과정 :
$$N_2=N_1 imesrac{Q_2}{Q_1}=600 rpm imesrac{45,000 m^3/h}{36,000 m^3/h}=750 rpm$$

• 답 : 750rpm

4.

(1) 수원

• 계산과정 :
$$\frac{20,000m^2}{7500m^2}=2.67\Rightarrow 3$$
수원 = $3\times 20m^3=60m^3$

• 답 : $60m^3$

(2) 채수구의 개수 : 2개

5.

(1) 약제저장량

• 계산과정 : $(20m \times 10m \times 3m) \times 0.6kg/m^3 = 360kg$

• 답 : 360kg

(2) 청소에 필요한 양

• 계산과정 : $360kg \times 40 \ell/kg = 14,400 \ell$

• 답 : 14,400ℓ

(3) 분사헤드의 수

• 계산과정 :
$$\frac{360kg}{1.5kg/s \times 30s} = 8$$
개

• 답 : 8개

(4) 배치도

6.

- ① 냉장창고 중 온도가 영하인 냉장실 또는 냉동창고의 냉동실
- ② 고온의 노가 설치된 장소 또는 물과 격렬하게 반응하는 물품의 저장 또는 취급 장소
- ③ 발전소 · 변전소 등으로서 전기시설이 설치된 장소
- ④ 식물원·수족관·목욕실·수영장(관람석 부분은 제외) 또는 그 밖의 이와 비슷한 장소
- ⑤ 야외음악당 야외극장 또는 그 밖의 이와 비슷한 장소

7.

- (1) 할로겐화합물 소화약제 : 저장용기의 약제량 손실이 5%를 초과하거나 압력손실이 10%를 초과할 경우에는 재 충전하거나 저장용기를 교체할 것
- (2) 불활성기체 소화약제 : 저장용기의 압력손실이 5%를 초과할 경우 재충전하거나 저장용기를 교체할 것

8.

- (1) 최소토출량
 - 계산과정 : $Q = N \times 150 \ell/mi \, n = 3 \times 150 \ell/mi \, n = 450 \ell/mi \, n = 0.45 m^3/mi \, n$
 - 답 : 0.45m³/min
- (2) 전양정
 - 계산과정

실양정 $h_1 = 24m$

배관마찰손실수두 $h_2 = 8m$

소방호스마찰손실수두 $h_3 = 7.8m$

- \therefore 전양정 $H = h_1 + h_2 + h_3 + 17 = 24m + 8m + 7.8m + 17 = 56.8m$
- 답 : 56.8m
- (3) 최소동력
 - 계산과정 : $P = \frac{0.163 \times Q \times H}{\eta} \times K = \frac{0.163 \times 0.45 m^3 / min \times 56.8 m}{0.55} \times 1.1 = 8.33 \text{kW}$
 - 답 : 8.33kW
- (4) 최소 저수량
 - 계산과정 : $Q = N \times 150 \ell/min \times 20 min = N \times 3000 \ell = N \times 3 m^3 = 3 \times 3 m^3 = 9 m^3$
 - 답 : 9m³

9.

소화 작업 후 배관 내에 고인 물을 자동으로 배수시켜 체크밸브와 연결송수구 사이에 배관의 부식 및 동파를 방지하기 위하여 설치한다.

10.

- (1) ① 미끄럼대, 구조대, 피난교, 피난용트랩, 다수인 피난장비, 승강식피난기
 - ② 구조대, 피난교, 피난용트랩, 다수인 피난장비, 승강식피난기
- (2) (1) 0.5
- ② 1.0
- ③ 1.2

11.

- ① 천장
- ② 30
- ③ 바닥
- **4** 30

12.

- (1) 유효흡입양정
 - 계산과정

대기압두
$$H_a = 10.332m$$

포화증기압두
$$H_{\rm p}=rac{2.33kPa}{101.325kPa} imes10.332m=0.238m$$

흡입관내 마찰손실수두
$$H_L = \frac{3.5kPa}{101.325kPa} \times 10.332m = 0.357m$$

흡입수두
$$H_s = 3m$$

$$\therefore NPSH_{av} = H_a - H_b - H_L - H_s = 10.332m - 0.238m - 0.357m - 3m = 6.74m$$

- 답 : 6.74m
- (2) $NPSH_{av} > NPSH_{re} = 6.74m > 5m$ 이므로 공동현상이 발생하지 않는다.

13.

• 계산과정

구간	관경	유량	직관 및 등가길이	마찰손실수두
K∼J	50 A	480ℓ/mi n (헤드6개)	직관 : 2m 티(직류) : 1개×0.6m = 0.6m 리듀서(50×32A) : 1개×1.2m = 1.2m 총길이 : 3.8m	$3.8m \times \frac{47.43m}{100m} = 1.80m$
J~C	32 A	240ℓ/mi n (헤드3개)	직관 : $2m + 0.1m + 1m = 3.1m$ 엘보(90°) : 2 개 \times 1.2 $m = 2.4m$ 티(직류) : 1 개 \times 0.36 $m = 0.36m$ 리듀서(32×25 A) : 1 개 \times 0.72 $m = 0.72m$ 총길이 : $6.58m$	$6.58m \times \frac{87.66m}{100m} = 5.77m$
C~B	25A	160l/mi n (헤드2개)	직관 : 2 <i>m</i> <u>티(직류) : 1개×0.27<i>m</i> = 0.27<i>m</i></u> 총길이 : 2.27 <i>m</i>	$2.27m \times \frac{150.42m}{100m} = 3.41m$
B∼A	25A	80l/mi n (헤드1개)	직관 : $2m + 0.1m + 0.1m + 0.3m = 2.5m$ 엘보(90°) : $3개 \times 0.9m = 2.7m$ 리듀서($25 \times 15A$) : $1개 \times 0.54m = 0.54m$ 총길이 : $5.74m$	$5.74m \times \frac{39.82m}{100m} = 2.29m$
총마찰손실수두			13.27 <i>m</i>	

총배관 마찰손실수두압 : $13.27m \Rightarrow \frac{13.27m}{10.332m} \times 101.325 kPa = 130.14 kPa$

헤드말단 최소방사압 : 0.1MPa = 100kPa

E~D 구간 입상수두 : 0.1m

헤드 A에서의 수두 : 0.1m - 0.3m = -0.2m

: K점에서 소요 압력수두

$$P = P_1 + P_2 + 100 = 130.14kPa + \left[\frac{-0.2m + 0.1m}{10.332m} \times 101.325kPa\right] + 100kPa = 229.16kPa$$

• 답 : 229.16kPa

14.

- (1) 포헤드의 수량
 - 계산과정

헤드간의 간격
$$S=2R\cos 45\degree=2\times 2.1\times \cos 45\degree=2.97m$$

가로변의 헤드의 개수
$$=\frac{20m}{2.97m}=6.73\Rightarrow 7$$
개

세로변의 헤드의 개수
$$=\frac{10m}{2.97m}=3.37\Rightarrow 4$$
개

- 답 : 28개
- (2) 수원의 저장량

• 계산과정 :
$$Q_w = (20m \times 10m) \times 6.5\ell/(min \cdot m^2) \times 10min \times 0.97 = 12,610\ell = 12.61m^3$$

- 답 : 12.61m³
- (3) 포원액의 양

• 계산과정 :
$$Q_F=(20m\times 10m)\times 6.5\ell/(mi\,n\cdot m^2)\times 10mi\,n\times 0.03=390\ell$$

- 답 : 390ℓ
- (4) 전동기의 출력
 - 계산과정

$$Q = (20m \times 10m) \times 6.5\ell/(mi \, n \cdot m^2) = 1300\ell/mi \, n = 1.3m^3/mi \, n$$

$$P = \frac{0.163 \times Q \times H}{\eta} \times K = \frac{0.163 \times 1.3 m^3 / min \times 35 m}{0.65} \times 1.1 = 12.55 \text{kW}$$

• 답 : 12.55kW