First Name:	Last Name:
Student-No:	Section:
	Grade:

The remainder of this page has been left blank for your workings.

This page has been left blank for your workings.

Indefinite Integrals

- 1. 9 marks Each part is worth 3 marks. Please write your answers in the boxes.
 - (a) Calculate the indefinite integral $\int \frac{\sin(x)}{\sqrt{\cos(x)}} dx$ for $0 < x < \pi/2$.

(b) Calculate the indefinite integral $\int \frac{x+1}{x^2+3x} dx$ for x > 0.

Answer:

(c)	(A	Little	Harder):	Calculate	the	indefinite	integral	ſ	x^2e^{-x}	dx
1	·	, '	(1 1	LITTUIC	maruci	<i>)</i> •	Carculate	UIIC	macmine	mogran	1	u	ux

Answer:

Definite Integrals

- 2. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate $\int_0^{\pi/2} \cos^3(x) dx$.

Answer:

TERSION

(b) Calculate $\int_0^3 \frac{9x^2}{x^2+9} dx$.

Answer:

(c)	(A Littl	le Harder):	Calculate	$\int_1^{e^2}$	$\frac{\ln x}{x^2}$	dx
-----	----------	-------------	-----------	----------------	---------------------	----

Answer:

JERS10XD

Riemann Sum, FTC, and Volumes

- 3. 12 marks Each part is worth 4 marks. Please write your answers in the boxes.
 - (a) Calculate the infinite sum

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3i^{2}}{n^{3}} \sqrt{1 + \frac{i^{3}}{n^{3}}}$$

by first writing it as a definite integral. Then, evaluate this integral.

Answer:

(b) For $x \ge 0$ define F(x) and g(x) by $F(x) = \int_0^x \cos^2(t) dt$ and $g(x) = xF(x^2)$. Calculate $g'(\sqrt{\pi})$.

Answer:

(c) Write a definite integral, with specified limits of integration, for the volume obtained by revolving the bounded region between $x = -y^2$ and $x = -4 + y^2$ about the vertical line x = 2. Do not evaluate the integral.

Answer:

JERS10ND

4. (a) 2 marks Plot the finite area enclosed by $y^2 = x$ and x = 8 - 2y.

(b) 4 marks Write a definite integral with specific limits of integration that determines this area. **Do not evaluate the integral**.

This page has been left blank for your workings.

- 5. A solid has as its base the region in the xy-plane between $y = 1 x^2/9$ and the x-axis. The cross-sections of the solid perpendicular to the x-axis are semi-circles with the diameter of the semi-circle in the base.
 - (a) 4 marks Write a definite integral that determines the volume of the solid.

(b) 2 marks Evaluate the integral to find the volume of the solid.

This page has been left blank for your workings.