Les polynômes

Dans tout ce chapitre, K désigne un corps commutatif.

$$K = \mathbb{R}$$
 ou bien $K = \mathbb{C}$

 \mathbb{R} = Les nombres réels, \mathbb{C} = Les nombres complexes.

Définition 1 : On appelle polynôme à une indéterminée X de degré $n \in \mathbb{N}$ à coefficients a_i tel que $i \in \{0, \dots, n\}$, $a_i \in K$, toute écriture de la forme suivante :

$$P(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n$$
 où $a_i \in K$, $\forall i \in \{0, \dots, n\}$ et $a_n \neq 0$

On peut noter P(X) par P, on écrit donc P(X) = P

Remarque: On peut ajouter à la définition précédente

 X^n est X puissance n

 $a_n X^n$ est la multiplication de a_n et X^n

Donc on peut écrire $a_0 = a_0 X^0$

Définition 2 : On appelle degré de P et on note par deg P ou bien d°P

Le nombre $d^{\circ}P = \max\{i \in \mathbb{N}, a_i \neq 0\}$

Remarques : Dans les définitions précédentes on a :

- 1) Si $a_i = 0$, $\forall i \in \{0, \dots, n\}$, P est dit le polynôme nul et on note P = 0 Par convention, on pose d° $0 = -\infty$
- **2)** Si $a_0 \neq 0$ et $a_i = 0 \ \forall i \in \{1, \dots, n\}$, P est dit polynôme constant.
- 3) Si $P \neq 0$ et d°P = n, alors le terme a_n est appelé terme du plus grand degré ou bien terme dominant, si de plus $a_n = 1$, P est dit polynôme unitaire.

Exemple: Le polynôme $P(X) = 1 + 4X + X^2$ est un polynôme unitaire.

Notations: Dans la définition 1 on a :

- 1) L'ensemble des polynômes à l'indéterminée X à coefficients dans K se note K[X].
- 2) L'ensemble des polynômes de K[X] de degré inférieur ou égal à n se note $K_n[X]$.

Opérations : Soient $P(X) = a_0 + a_1X + a_2X^2 + \cdots + a_nX^n$ et

$$Q(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_m X^m$$
 deux polynômes de $K[X]$ tels que $n \le m$

Soit un élément $\lambda \in K$

1) La somme P+Q des polynômes P et Q est le polynôme noté (P+Q)(X) tel que (P+Q)(X)=

$$(a_0 + b_0) + (a_1 + b_1)X + (a_2 + b_2)X^2 + \dots + (a_n + b_n)X^n + (a_{n+1} + b_{n+1})X^{n+1} + \dots + (a_m + b_m)X^m \quad \text{avec } a_i = 0, \ \forall \ i \in \{n+1, \dots, m\}$$

2) On appelle produit des polynômes P et Q, le polynôme noté (PQ)(X) tel que

$$(PQ)(X) = \sum_{k=0}^{n+m} C_k X^k$$

$$où C_k = \sum_{i=0}^{i=k} a_i b_{k-i}$$

- **3)** On appelle produit de polynôme P par l'élément λ , le polynôme noté $(\lambda P)(X)$ tel que $(\lambda P)(X) = (\lambda a_0) + (\lambda a_1)X + (\lambda a_2)X^2 + \cdots + (\lambda a_n)X^n$
- 4) On appelle polynôme dérivé du polynôme

$$P(X)=a_0+a_1X+a_2X^2+\cdots\cdots+a_nX^n \text{ , le polynôme noté } P'(X) \text{ tel que :}$$

$$P'(X)=a_1+2a_2X+\cdots\cdots+na_nX^{n-1}$$

Notations: on note:

 $P^{(0)}=P$, $P^{(1)}=P'$, $P^{(2)}=P''$,...., $P^{(k)}=\left(P^{(k-1)}\right)'$ où $P^{(k)}$ est appelé la dérivée d'ordre k de P(X).

Exemple: $P(X) = 2 + 3X - X^2 \implies P'(X) = 3 - 2X$

Proposition : Soient P,Q deux polynômes de K[X], alors :

$$(P+Q)' = P' + Q'$$

$$(PQ)' = P'Q + PQ'$$

$$(PQ)^{(n)} = \sum_{k=0}^{k=n} C_n^k P^{(k)} Q^{(n-k)}$$
Où $C_n^k = \frac{n!}{k!(n-k)!}$ C'est la formule de Leibnitz
$$\forall \lambda \in K, (\lambda P)' = \lambda P'$$

Arithmétique dans K[X]:

Définition : Soient A, B deux polynômes de K[X] tel que $B \neq 0$, on dit que B divise A et on écrit B/A s'il existe un polynôme $Q \in K[X]$ tel que A = BQ

On dit que B est un diviseur de A ou bien A est divisible par B.

Division euclidienne:

Proposition – définition : Soient A, B deux polynômes de K[X] avec $\deg A \ge \deg B, \ B \ne 0$ alors il existe un unique couple (Q, R) de polynômes dans K[X] tels que : A = BQ + R avec

 $\deg R < \deg B$, c'est la division euclidienne de A par B, Q s'appelle le quotient de la division euclidienne de A par B et R s'appelle le reste de la division euclidienne de A par B, si le R = 0, on dit que A est divisible par B ou que B divise A.

Exemple 1:
$$A(X) = X^5 + X^4 + 1$$
, $B(X) = X^2 + X + 1$

La division euclidienne de A par B donne :

le quotient $Q(X) = X^3 - X + 1$ et le reste R(X) = 0

Nous effectuons la division euclidienne de A(X) par B(X) comme suit :

$$A(X) = B(X)Q(X) + 0$$

Exemple 2:
$$A(X) = X^3 + 4X^2 + 5X + 1$$
, $B(X) = X^2 + X + 1$

La division euclidienne de A par B donne le quotient Q(X) = X + 3 et R(X) = X - 2

Nous effectuons la division euclidienne de A(X) par B(X) comme suit :

$$X^{3} + 4X^{2} + 5X + 1$$

$$+$$

$$-(X^{3} + X^{2} + X)$$

$$= 3X^{2} + 4X + 1$$

$$+$$

$$-(3X^{2} + 3X + 3)$$

$$= X - 2$$

$$X^{2} + X + 1$$

$$X + 3$$

$$A(X) = B(X)Q(X) + R(X)$$

Remarque : Dans la division euclidienne d'un polynôme A par un polynôme B, il faut écrire tous les polynômes suivant les puissances décroissantes en l'indéterminé X ainsi que les polynômes A et B.

PGCD de deux polynômes : Un plus grand diviseur commun de deux polynômes A et B est un polynôme Q de degré le plus grand possible qui divise à la fois A et B. On dit que Q est un PGCD de A et B. On le note un PGCD(A, B)

Remarque: Un *PGCD* de deux polynômes n'est pas unique, il est unique à coefficients près.

On s'intéresse maintenant au plus grand diviseur commun unitaire de deux polynômes A et B qui est unique.

Notation : Le plus grand diviseur commun unitaire de deux polynômes A et B est noté Le PGCD(A,B).

Proposition : Soient A et B deux polynômes de K[X], et soit R le reste de la division euclidienne de A par B alors :

Le PGCD(A, B) = Le PGCD(B, R) et si B est un diviseur de A (c'est-à-dire R = 0) alors Le PGCD(A, B) = B

Algorithme de PGCD: Soient A et B deux polynômes de K[X], $B \neq 0$ tels que $\deg B \leq \deg A$, alors suivant la théorie de la division euclidienne on a :

$$\begin{array}{lll} A = B \, Q_0 + R_0 & \text{avec} & \deg R_0 < \deg B & \text{et } R_0 \neq 0 \\ \\ B = R_0 \, Q_1 + R_1 & \text{avec} & \deg R_1 < \deg R_0 & \text{et } R_1 \neq 0 \\ \\ R_0 = R_1 \, Q_2 + R_2 & \text{avec} & \deg R_2 < \deg R_1 & \text{et } R_2 \neq 0 \\ \\ R_1 = R_2 \, Q_3 + R_3 & \text{avec} & \deg R_3 < \deg R_2 & \text{et } R_3 \neq 0 \\ \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{array}$$

$$R_{n-1} = R_n Q_{n+1} + R_{n+1} \quad \text{avec} \ R_{n+1} = 0$$

Comme la suite $\deg(R_i)$ est strictement décroissante et positive alors il viendra un moment où $R_{n+1}=0$, avec R_{n+1} est le reste de la division euclidienne de R_{n-1} par R_n

En utilisant la proposition précédente on a :

Le
$$PGCD(A,B)=$$
 Le $PGCD(B,R_0)=$ Le $PGCD(R_0,R_1)=\cdots\cdots=$ Le $PGCD(R_{n-1},R_n)=R_n$, car $R_{n+1}=0$

c'est-à-dire que Le PGCD(A,B) est le dernier reste unitaire non nul dans cette suite des divisions euclidiennes.

Exemple : Soient A et B deux polynômes définis comme suit :

$$A(X) = X^5 - 2X^4 - 6X^3 + 5X^2 + 8X + 12$$

$$B(X) = X^4 + X^3 - X - 1$$

$$A = BQ_0 + R_0$$
 où $Q_0 = X - 3$, $R_0 = -3X^3 + 6X^2 + 6X + 9$

$$B = R_0 Q_1 + R_1$$
 où $Q_1 = \frac{-1}{3}X - 1$, $R_1 = 8X^2 + 8X + 8$

$$R_0 = R_1 Q_2 + R_2$$
 où $Q_2 = \frac{-3}{8} X + \frac{9}{8}$, $R_2 = 0$

Le
$$PGCD(A, B) = \frac{1}{8}R_1 = X^2 + X + 1$$

Remarque : On a effectué la division euclidienne de A par B, ensuite de B par R_0 , ensuite de R_0 par R_1

Polynômes premiers entre eux : Deux polynômes P et Q sont dites premiers entre eux si et seulement si leur PGCD est égal à 1 c'est-à-dire Le PGCD(P,Q)=1

Théorèmes de Bézout : Soient P et Q deux polynômes premiers entre eux, alors il existe

$$u_1$$
, $u_2 \in K[X]$ tels que : $u_1P + u_2Q = 1$

Théorème de Gauss : Soient A,B et C trois polynômes de K[X] alors :

$$(A \text{ divise } BC) \text{ et } (\text{Le } PGCD(A, B) = 1) \Longrightarrow A \text{ divise } C$$

Division suivant les puissances croissantes de X : Soient A et B deux polynômes tels que :

$$A(X) = a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m \in K[X]$$
 et

$$B(X) = b_0 + b_1 X + b_2 X^2 + \dots + b_n X^n \in K[X] \quad \text{tels que } b_0 \neq 0 \text{ et } h \in \mathbb{N}$$

Il existe un couple unique de polynômes (Q,R) tel que $A=BQ+X^{h+1}R$ avec $\deg Q\leq h$

Q s'appelle le quotient de la division suivant les puissances croissantes de A par B à l'ordre h

Et X^{h+1} s'appelle le reste de la division suivant les puissances croissantes de A par B à l'ordre h.

Exemple : Soient deux polynômes A et B définis comme suit :

$$A(X) = 1 - 2X + X^2 - 4X^4 + 2X^5$$
 et $B(X) = 1 + X^2$, $h = 3$

$$A = BQ + X^{h+1}R$$
 où $Q(X) = 1 - 2X + 2X^3$, $R = -4$

Nous effectuons la division suivant les puissances croissantes de A(X) par B(X) à l'ordre 3 comme suit :

C'est la division suivant les puissances croissantes de A par B à l'ordre h=3

Remarque : Dans la division suivant les puissances croissantes d'un polynôme A par un polynôme B, il faut écrire tous les polynômes suivant les puissances croissantes.

Zéros des polynômes :

Définition: Soit $P \in K[X]$ et $\alpha \in K$, on dit que α est une racine de P ou bien on dit que α est un zéro de P si et seulement si $P(\alpha) = 0$

Proposition : Soit $P \in K[X]$ et $\alpha \in K$,

 α est une racine de $P \Leftrightarrow (X - \alpha)$ divise P(X)

 $\Leftrightarrow \exists Q(X) \in K[X] \text{ tel que } P(X) = (X - \alpha)Q(X)$

Multiplicité d'une racine :

Définition: Soient $P \in K[X]$ et $\alpha \in K$, $k \in \mathbb{N} - \{0\}$,

On dit que α est une racine de P d'ordre de multiplicité k si et seulement si $(X - \alpha)^k$ divise P et $(X - \alpha)^{k+1}$ ne divise pas P.

Remarques: Dans la définition précédente si :

k = 1 donc α est une racine simple de P.

k=2 donc α est une racine double de P.

k = 3 donc α est une racine triple de P.

Proposition: Soit $P \in K[X]$ et $\alpha \in K$, $k \in \mathbb{N} - \{0\}$,

lpha est une racine de P d'ordre de multiplicité $k \Leftrightarrow \begin{cases} P(lpha) = 0 \\ P^{(1)}(lpha) = 0 \\ \vdots \\ P^{(k-1)}(lpha) = 0 \\ P^{(k)}(lpha) \neq 0 \end{cases}$

Remarque : dans la proposition précédente, on dit que α est une racine de P d'ordre de multiplicité k ou bien simplement α est une racine de P d'ordre k.

Exemple: $\alpha = 1$ est une racine de P(X).

 $P(X) = X^3 - X^2 - X + 1$, α est une racine de P d'ordre de multiplicité 2 car :

$$P(1) = 0$$
,

$$P'(X) = 3X^2 - 2X - 1$$

$$P'(1) = 0$$

$$P''(X) = 6X - 2$$

$$P''(1) \neq 0$$

Proposition : Soient P un polynôme à coefficients réels et Z un nombre complexe non réel, alors si Z est une racine de P d'ordre k alors le conjugué de Z noté \overline{Z} est aussi une racine de P de même ordre k.

Factorisation des polynômes :

Définition: Soit $P \in K[X]$, on dit que P est irréductible dans K[X] si et seulement si

$$\forall A, B \in K[X], P = AB \Longrightarrow A = \text{constante ou bien } B = \text{constante}$$

On peut déduire facilement le corollaire suivant :

Corollaire:

- 1) Les seuls polynômes irréductibles dans $\mathbb{C}[X]$ sont les polynômes de la forme P(X) = aX + b où $a, b \in \mathbb{C}$
- 2) Les seuls polynômes irréductibles dans $\mathbb{R}[X]$ sont les polynômes de la forme P(X) = aX + b où $a, b \in \mathbb{R}$ $P(X) = aX^2 + bX + c$ où $a, b, c \in \mathbb{R}$ de discriminant $\Delta = b^2 4ac < 0$

Théorème de d'Alembert -Gauss : Tout polynôme non constant de K[X], se factorise de façon unique en produit de polynômes irréductibles et unitaires dans K[X].

Autrement dit:

Dans $\mathbb{C}[X]$:

$$\forall \ P \in \mathbb{C}[X], \ P \ \text{non constant}, \ \exists \ \lambda \in \mathbb{C} - \{0\}, \ \exists \ n \in \mathbb{N} - \{0\}, \ \exists \ \alpha_1, \alpha_2, \cdots , \alpha_n \in \mathbb{C}$$
 deux à deux distincts, $\exists \ r_1, r_2, \cdots , r_n \in \mathbb{N} - \{0\} \ \text{tels que} :$

$$P(X) = \lambda \prod_{k=1}^{k=n} (X - \alpha_k)^{r_k} = \lambda (X - \alpha_1)^{r_1} (X - \alpha_2)^{r_2} \cdots (X - \alpha_n)^{r_n}$$

Dans $\mathbb{R}[X]$:

 $\forall P \in \mathbb{R}[X]$, P non constant, $\exists \lambda \in \mathbb{R} - \{0\}$, il existe un unique couple (A, B) de polynômes unitaires dans $\mathbb{R}[X]$ tel que :

$$P(X) = \lambda A(X)B(X)$$
 avec

$$A(X) = (X - \alpha_1)^{r_1} (X - \alpha_2)^{r_2} \cdots \cdots (X - \alpha_n)^{r_n}$$

Εt

$$B(X) = (X^2 + p_1X + q_1)^{s_1}(X^2 + p_2X + q_2)^{s_2} \cdots (X^2 + p_mX + q_m)^{s_m}$$

Avec
$$(p_i)^2 - 4q_i < 0$$
 pour tout $1 \le i \le m$

$$\alpha_1,\alpha_2,\cdots\cdots,\alpha_n\in\mathbb{R}\quad r_1,r_2,\cdots\cdots,r_n\in\mathbb{N}-\{0\},\ p_1,p_2,\cdots\cdots,p_m\in\mathbb{R}$$

$$q_1, q_2, \dots, q_m \in \mathbb{R}, \quad s_1, s_2, \dots, s_m \in \mathbb{N} - \{0\}.$$

Et on a $\alpha_1, \alpha_2, \dots, \alpha_n$ deux à deux distincts et les couples $(p_1, q_1), (p_2, q_2), \dots, (p_m, q_m)$ deux à deux distincts.

Exercice: Soit $P(X) = X^5 - 2X^4 + X^3 - X^2 + 2X - 1$ un polynôme de $\mathbb{R}[X]$

- 1) Montrer par deux méthodes différentes que $X_0 = 1$ est une racine triple de P.
- **2)** Factoriser P en facteurs irréductible dans $\mathbb{R}[X]$.

Solution:
$$P(X) = X^5 - 2X^4 + X^3 - X^2 + 2X - 1 \in \mathbb{R}[X]$$

1) $X_0 = 1$ est une racine triple de P

Première méthode:

 $X_0=1$ est une racine triple de P c'est-à-dire que $X_0=1$ est une racine de P d'ordre de multiplicité k=3

Selon une proposition vue dans le cours on a :

$$X_0=1$$
 est une racine triple de $P \Leftrightarrow \begin{cases} P(1)=0 \\ P'(1)=0 \\ P''(1)=0 \\ P'''(1)\neq 0 \end{cases}$

$$P'(X) = 5X^4 - 8X^3 + 3X^2 - 2X + 1$$

$$P'(1) = 0$$

$$P''(X) = 20X^3 - 24X^2 + 6X - 2$$

$$P''(1) = 0$$

$$P'''(X) = 60X^2 - 48X + 6$$

 $P'''(1) = 18 \neq 0$ donc $X_0 = 1$ est une racine de P d'ordre de multiplicité k = 3

Conclusion: $X_0 = 1$ est une racine triple de P

Deuxième méthode :

$$P(X) = X^5 - 2X^4 + X^3 - X^2 + 2X - 1 \in \mathbb{R}[X]$$

Selon la définition du cours :

 $X_0 = 1$ est une racine triple de $P \iff (X - 1)^3$ divise P et $(X - 1)^4$ ne divise pas P

• Montrons que $(X-1)^3$ divise P:

Le reste de la division euclidienne de P par $(X-1)^3 = X^3 - 3X^2 + 3X - 1$ est nul,

En effet:

$$X^{5} - 2X^{4} + X^{3} - X^{2} + 2X - 1$$

$$+$$

$$-(X^{5} - 3X^{4} + 3X^{3} - X^{2})$$

$$= X^{4} - 2X^{3} + 2X - 1$$

$$+$$

$$-(X^{4} - 3X^{3} + 3X^{2} - X)$$

$$= X^{3} - 3X^{2} + 3X - 1$$

$$+$$

$$-(X^{3} - 3X^{2} + 3X - 1)$$

$$+$$

$$-(X^{3} - 3X^{2} + 3X - 1)$$

$$= 0$$

Donc $(X-1)^3$ divise P

• Montrons maintenant que $(X-1)^4$ ne divise pas P:

Supposons que $(X-1)^4$ divise P

Si $(X-1)^4$ divise P donc selon la définition de la divisibilité on peut trouver $Q(X) \in \mathbb{R}[X]$ tel que $P(X) = (X-1)^4 Q(X)$.

Mais selon la division euclidienne précédente on a $P(X) = (X-1)^3(X^2+X+1)$

On peut déduire que $(X-1)^4 Q(X) = (X-1)^3 (X^2 + X + 1)$

Cette dernière relation entraı̂ne que $(X-1)^4Q(X)-(X-1)^3(X^2+X+1)=0$

Donc: $(X-1)^3[(X-1)Q(X)-(X^2+X+1)]=0$

Et comme $(X-1)^3$ divise P donc selon la définition de la divisibilité $(X-1)^3 \neq 0$, on peut déduire que $[(X-1)Q(X)-(X^2+X+1)]=0$

donc
$$(X^2 + X + 1) = (X - 1)Q(X)$$
, c'est-à-dire $(X - 1)$ divise $(X^2 + X + 1)$

et selon une proposition vue dans le cours donc $X_0 = 1$, est une racine de $(X^2 + X + 1)$

alors selon la définition d'une racine d'un polynôme on a : $(1)^2 + 1 + 1 = 0$

C'est une contradiction donc $(X-1)^4$ ne divise pas P

Conclusion: $X_0 = 1$ est une racine triple de P

2) Factoriser P en facteur irréductible dans $\mathbb{R}[X]$

Factoriser un polynôme P en facteur irréductible dans $\mathbb{R}[X]$ c'est-à-dire factoriser ce polynôme en produit de polynômes irréductibles et unitaires dans $\mathbb{R}[X]$.

Cette écriture est unique selon le théorème de d'Alembert - Gauss

On a:

$$P(X) = (X-1)^3(X^2 + X + 1)^1$$

Le polynôme (X-1) est un polynôme de $\mathbb{R}[X]$, irréductible dans $\mathbb{R}[X]$ et il est unitaire.

Le polynôme $(X^2 + X + 1)$ est un polynôme de $\mathbb{R}[X]$ et il est unitaire.

Le polynôme $(X^2 + X + 1)$ est irréductible dans $\mathbb{R}[X]$ puisqu'il est de degré égal à 2,

et
$$\Delta(X^2 + X + 1) < 0$$

Conclusion: L'écriture $P(X) = (X-1)^3(X^2+X+1)^1$ est la factorisation du polynôme P(X) en produit de polynômes irréductibles et unitaires dans $\mathbb{R}[X]$.

Remarque: pour la factorisation de P(X) en produit de polynômes irréductibles et unitaires dans $\mathbb{C}[X]$, on peut la déduire facilement à partir de l'écriture suivante :

$$P(X) = (X - 1)^3(X^2 + X + 1)^1$$

Puisque $\Delta(X^2+X+1)<0$ donc les racines du polynôme $h(X)=X^2+X+1$ sont complexes non réels

Soient α et λ les racines du polynôme $h(X) = X^2 + X + 1$

Donc
$$X^2 + X + 1 = (X - \alpha)(X - \lambda)$$

tels que
$$\alpha = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$$
 et $\lambda = \frac{-1}{2} - i\frac{\sqrt{3}}{2}$

On peut donc écrire :

$$P(X) = (X - 1)^3 (X - \alpha)(X - \lambda)$$
 tels que $\alpha = \frac{-1}{2} + i\frac{\sqrt{3}}{2}$ et $\lambda = \frac{-1}{2} - i\frac{\sqrt{3}}{2}$

est la factorisation de P(X) en produit de polynômes irréductibles et unitaires dans $\mathbb{C}[X]$.