CS260: Machine Learning Algorithms

Lecture 2: Linear regression and classification

Cho-Jui Hsieh UCLA

Jan 9, 2019

Linear Regression

Regression

Classification:

Customer record $\Rightarrow Yes/No$

• Regression: predicting credit limit

Customer record \Rightarrow dollar amount

Input			Output
age	23	•	
Annual salary	30,000		
Year in residence	1		4000
Year in job	1		
x			h(x)

Regression

Classification:

Customer record \Rightarrow Yes/No

Regression: predicting credit limit

Customer record \Rightarrow dollar amount

Input			Output
age	23		
Annual salary	30,000		
Year in residence	1		4000
Year in job	1		
x			h(x)

Linear Regression:
$$h(x) = \sum_{i=0}^{d} w_i x_i = \mathbf{w}^T \mathbf{x}$$

The data set

• Training data:

$$(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$$

 $\mathbf{x}_n \in \mathbb{R}^d$: feature vector for a sample

 $y_n \in \mathbb{R}$: observed output (real number)

The data set

Training data:

$$(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$$

 $extbf{\emph{x}}_n \in \mathbb{R}^d$: feature vector for a sample

 $y_n \in \mathbb{R}$: observed output (real number)

• Linear regression: find a function $h(x) = w^T x$ to approximate y

The data set

Training data:

$$(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)$$

 $extbf{\emph{x}}_n \in \mathbb{R}^d$: feature vector for a sample

 $y_n \in \mathbb{R}$: observed output (real number)

- Linear regression: find a function $h(x) = w^T x$ to approximate y
- Measure the error by $(h(x) y)^2$ (square error)

Training error :
$$E_{\text{train}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

Illustration

Linear regression: find linear function with small residual

Matrix form of E_{train}

$$E_{\text{train}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_{n}^{T} \mathbf{w} - y_{n})^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} \mathbf{x}_{1}^{T} \mathbf{w} - y_{1} \\ \mathbf{x}_{2}^{T} \mathbf{w} - y_{2} \\ \vdots \\ \mathbf{x}_{N}^{T} \mathbf{w} - y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \begin{bmatrix} - - \mathbf{x}_{1}^{T} - - \\ - - \mathbf{x}_{2}^{T} - - \\ \vdots \\ - - \mathbf{x}_{N}^{T} - - \end{bmatrix} \mathbf{w} - \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{bmatrix} \right\|^{2}$$

$$= \frac{1}{N} \left\| \underbrace{\mathbf{X}}_{N \times d} \mathbf{w} - \underbrace{\mathbf{y}}_{N \times 1} \right\|^{2}$$

Minimize E_{train}

$$\min_{\mathbf{w}} f(\mathbf{w}) = \|X\mathbf{w} - \mathbf{y}\|^2$$

- E_{train}: continuous, differentiable, convex
- Necessary condition of optimal w:

$$abla f(oldsymbol{w}^*) = egin{bmatrix} rac{\partial f}{\partial w_0}(oldsymbol{w}^*) \ dots \ rac{\partial f}{\partial w_d}(oldsymbol{w}^*) \end{bmatrix} = egin{bmatrix} 0 \ dots \ 0 \end{bmatrix}$$

Minimizing f

$$f(\mathbf{w}) = \|X\mathbf{w} - \mathbf{y}\|^2 = \mathbf{w}^T X^T X \mathbf{w} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}$$
$$\nabla f(\mathbf{w}) = 2(X^T X \mathbf{w} - X^T \mathbf{y})$$
$$\nabla f(\mathbf{w}^*) = 0 \Rightarrow \underbrace{X^T X \mathbf{w}^* = X^T \mathbf{y}}_{\text{normal equation}}$$

Minimizing f

$$f(\mathbf{w}) = \|X\mathbf{w} - \mathbf{y}\|^2 = \mathbf{w}^T X^T X \mathbf{w} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}$$

$$\nabla f(\mathbf{w}) = 2(X^T X \mathbf{w} - X^T \mathbf{y})$$

$$\nabla f(\mathbf{w}^*) = 0 \Rightarrow \underbrace{X^T X \mathbf{w}^* = X^T \mathbf{y}}_{\text{normal equation}}$$

$$\Rightarrow \mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y} \quad ??$$

More on Linear Regression Solutions

- Case I: X^TX is invertible \Rightarrow Unique solution
 - Often when N > d
 - Yes, $\mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y}$
- Case II: X^TX is non-invertible \Rightarrow Many solutions
 - Often when d > N

Linear System Solver

• A "linear system":

Find the minimum 2-norm solution of $\min_{\mathbf{w}} \|X\mathbf{w} - \mathbf{y}\|$

Linear System Solver

A "linear system":

Find the minimum 2-norm solution of $\min_{\mathbf{w}} \|X\mathbf{w} - \mathbf{y}\|$

- Let $X = U\Sigma V^T$ be the Singular Value Decomposition (SVD) of X:
 - U: $m \times m$ orthonormal matrix ($U^T U = I$)
 - $V: n \times n$ orthonormal matrix $(V^T V = I)^T$
 - $\Sigma = diag[\sigma_1, \sigma_2, \cdots, \sigma_r, 0, \cdots, 0]$ $(\sigma_1, \cdots, \sigma_r > 0)$
 - Solution:

$$\mathbf{w}^+ = X^+ \mathbf{y},$$

where $X^+ = V \Sigma^+ U^T$, $\Sigma^+ = \text{diag}[1/\sigma_1, 1/\sigma_2, \cdots, 1/\sigma_r, 0, \cdots, 0]$

Linear System Solver

A "linear system":

Find the minimum 2-norm solution of $\min_{\mathbf{w}} \|X\mathbf{w} - \mathbf{y}\|$

- Let $X = U\Sigma V^T$ be the Singular Value Decomposition (SVD) of X:
 - U: $m \times m$ orthonormal matrix ($U^T U = I$)
 - $V: n \times n$ orthonormal matrix $(V^T V = I)$
 - $\Sigma = diag[\sigma_1, \sigma_2, \cdots, \sigma_r, 0, \cdots, 0]$ $(\sigma_1, \cdots, \sigma_r > 0)$
 - Solution:

$$\mathbf{w}^+ = X^+ \mathbf{y},$$

where $X^+ = V\Sigma^+U^T$, $\Sigma^+ = \text{diag}[1/\sigma_1, 1/\sigma_2, \cdots, 1/\sigma_r, 0, \cdots, 0]$

• X⁺: pseudo-inverse of X

Why? (details in lecture note)

• Show X^+ **y** satisfies the normal equation

• Is this the minimum 2-norm solution?

Computational Complexity

• Computational cost for computing $(X^TX)^{-1}X^T\mathbf{y}$:

Computational Complexity

• Computational cost for computing $(X^TX)^{-1}X^Ty$:

Computing X^TX : $O(d^2N)$ time

Computing matrix inversion: $O(d^3)$ time

Overall complexity: $O(d^2N + d^3)$

Computational Complexity

• Computational cost for computing $(X^TX)^{-1}X^Ty$:

Computing X^TX : $O(d^2N)$ time Computing matrix inversion: $O(d^3)$ time

Overall complexity: $O(d^2N + d^3)$

• What if $d, N \approx$ millions? (use iterative algorithms, next class)

Binary Classification

- Input: training data $x_1, x_2, \dots, x_n \in \mathbb{R}^d$ and corresponding outputs $y_1, y_2, \dots, y_n \in \{+1, -1\}$
- Training: compute a function f such that $sign(f(x_i)) \approx y_i$ for all i
- Prediction: given a testing sample \tilde{x} , predict the output as sign $(f(\tilde{x}))$

• Assume linear scoring function: $s = f(x) = w^T x$

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

$$P(y=1 \mid \mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x}),$$

where
$$heta(s)=rac{e^s}{1+e^s}=rac{1}{1+e^{-s}}$$

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

$$P(y=1 \mid \mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x}),$$

where
$$heta(s)=rac{e^s}{1+e^s}=rac{1}{1+e^{-s}}$$

• How about $P(y = -1 \mid x)$?

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

$$P(y=1 \mid \mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x}),$$

where
$$heta(s)=rac{e^s}{1+e^s}=rac{1}{1+e^{-s}}$$

• How about $P(y = -1 \mid x)$?

$$P(y = -1 \mid x) = 1 - \frac{1}{1 + e^{-w^T x}} = \frac{1}{1 + e^{w^T x}} = \theta(-w^T x)$$

- Assume linear scoring function: $s = f(x) = w^T x$
- Logistic hypothesis:

$$P(y=1 \mid \mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x}),$$

where
$$heta(s)=rac{e^s}{1+e^s}=rac{1}{1+e^{-s}}$$

• How about P(y = -1 | x)?

$$P(y = -1 \mid x) = 1 - \frac{1}{1 + e^{-w^T x}} = \frac{1}{1 + e^{w^T x}} = \theta(-w^T x)$$

• Therefore, $P(y \mid x) = \theta(y w^T x)$

Maximizing the likelihood

• Likelihood of $\mathcal{D} = (\mathbf{x}_1, y_1), \cdots, (\mathbf{x}_N, y_N)$: $\Pi_{n=1}^N P(y_n \mid \mathbf{x}_n) = \Pi_{n=1}^N \theta(y_n \mathbf{w}^T \mathbf{x}_n)$

Maximizing the likelihood

• Likelihood of $\mathcal{D}=(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$: $\Pi_{n=1}^N P(y_n\mid \mathbf{x}_n)=\Pi_{n=1}^N \theta(y_n\mathbf{w}^T\mathbf{x}_n)$

• Find w to maximize the likelihood!

$$\max_{\boldsymbol{w}} \Pi_{n=1}^{N} \theta(y_{n} \boldsymbol{w}^{T} \boldsymbol{x}_{n})$$

$$\Leftrightarrow \max_{\boldsymbol{w}} \log(\Pi_{n=1}^{N} \theta(y_{n} \boldsymbol{w}^{T} \boldsymbol{x}_{n}))$$

$$\Leftrightarrow \min_{\boldsymbol{w}} - \sum_{n=1}^{N} \log(\theta(y_{n} \boldsymbol{w}^{T} \boldsymbol{x}_{n}))$$

$$\Leftrightarrow \min_{\boldsymbol{w}} \sum_{n=1}^{N} \log(1 + e^{-y_{n} \boldsymbol{w}^{T} \boldsymbol{x}_{n}})$$

Empirical Risk Minimization (linear)

Linear classification/regression:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} loss(\underbrace{\mathbf{w}^{T} \mathbf{x}_{n}}_{\hat{y}_{n}: \text{the predicted score}}, y_{n})$$

- Linear regression: $loss(h(x_n), y_n) = (\mathbf{w}^T \mathbf{x}_n y_n)^2$
- Logistic regression: $loss(h(\mathbf{x}_n), y_n) = log(1 + e^{-y_n \mathbf{w}^T \mathbf{x}_n})$

(Linear) Support Vector Machines

Replace the logistic loss by hinge loss:

$$\min_{\boldsymbol{w}} \frac{1}{N} \sum_{n=1}^{N} \max(0, 1 - y_n \boldsymbol{w}^T \boldsymbol{x}_n)$$

Empirical Risk Minimization (general)

- Assume f_W(x) is the decision function to be learned
 (W is the parameters of the function)
- General empirical risk minimization:

$$\min_{W} \frac{1}{N} \sum_{n=1}^{N} loss(f_{W}(\mathbf{x}_{n}), y_{n})$$

• Example: Neural network $(f_W(\cdot))$ is the network)

Gradient descent and SGD

Optimization

• Goal: find the minimizer of a function

$$\min_{\boldsymbol{w}} f(\boldsymbol{w})$$

For now we assume f is twice differentiable

Convex vs Nonconvex

- Convex function:
 - $\nabla f(\mathbf{x}) = 0 \Leftrightarrow \mathsf{Global} \; \mathsf{minimum}$
 - A function is convex if $\nabla^2 f(x)$ is positive definite
 - Example: linear regression, logistic regression, · · ·
- Non-convex function:
 - $\nabla f(\mathbf{x}) = 0 \Leftrightarrow \text{Global min, local min, or saddle point}$ most algorithms only converge to gradient= 0
 - Example: neural network, · · ·

Gradient Descent

Gradient descent: repeatedly do

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

 $\alpha > 0$ is the step size

• Step size too large \Rightarrow diverge; too small \Rightarrow slow convergence

Why gradient descent?

• At each iteration, form an approximation function of $f(\cdot)$:

$$f(\boldsymbol{w} + \boldsymbol{d}) \approx g(\boldsymbol{d}) := f(\boldsymbol{w}^t) + \nabla f(\boldsymbol{w}^t)^T \boldsymbol{d} + \frac{1}{2\alpha} \|\boldsymbol{d}\|^2$$

- Update solution by ${m w}^{t+1} \leftarrow {m w}^t + {m d}^*$
- $\mathbf{d}^* = \arg\min_{\mathbf{d}} g(\mathbf{d})$ $\nabla g(\mathbf{d}^*) = 0 \Rightarrow \nabla f(\mathbf{w}^t) + \frac{1}{\alpha} \mathbf{d}^* = 0 \Rightarrow \mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^t)$
- d^* will decrease $f(\cdot)$ if α (step size) is sufficiently small

Form a quadratic approximation

$$f(\mathbf{w}^t + \mathbf{d}) \approx g(\mathbf{d}) = f(\mathbf{w}^t) + \nabla f(\mathbf{w}^t)^T \mathbf{d} + \frac{1}{2\alpha} ||\mathbf{d}||^2$$

Minimize g(d):

$$\nabla g(\mathbf{d}^*) = 0 \Rightarrow \nabla f(\mathbf{w}^t) + \frac{1}{\alpha} \mathbf{d}^* = 0 \Rightarrow \mathbf{d}^* = -\alpha \nabla f(\mathbf{w}^t)$$

Update w:

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \mathbf{d}^* = \mathbf{w}^t - \alpha \nabla f(\mathbf{w}^t)$$

Convergence

- Let L be a constant such that $\nabla^2 f(\mathbf{x}) \leq LI$ for all \mathbf{x}
- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$
- ullet In practice, we do not know $L\cdots$
 - need to tune step size when running gradient descent

Applying to Logistic regression

gradient descent for logistic regression

- Initialize the weights \mathbf{w}_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\nabla f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla f(\mathbf{w})$
- Return the final weights w

Applying to Logistic regression

gradient descent for logistic regression

- Initialize the weights w₀
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\nabla f(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

- Update the weights: $\mathbf{w} \leftarrow \mathbf{w} \eta \nabla f(\mathbf{w})$
- Return the final weights w

When to stop?

- Fixed number of iterations, or
- Stop when $\|\nabla f(\boldsymbol{w})\| < \epsilon$

Conclusions

- Linear regression:
 - Square loss \Rightarrow solving a linear system
 - Closed form solution
- Logistic regression:
 - A classification model based on a probability assumption
- Gradient descent: an iterative solver

Questions?