EFT Interpretations of Top and Higgs Measurements at LHC and First Steps Towards Global Analyses

Alexander Grohsjean

Top Quark Physics at the Precision Frontier 2019 Fermilab

From Bumps ...

... to Tails

- new states might (just) exist beyond the LHC energy reach
 - indirect effects in kinematic tails, e.g., LEP limits on ~ TeV Z'
- small effects that require precise theoretical control on signal and background predictions

SMEFT in a Nutshell

SM effective field theory (SMEFT)

$$L = L_{SM}^{(4)} + \sum_{i} \frac{C_{i}^{(5)}}{\Lambda_{i}} O_{i}^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda_{i}^{2}} O_{i}^{(6)} + \dots$$

- operator expansion:
 - heavy BSM states are integrated out
 - only local operators from SM fields left
- truncated at dimension 6 (leading B & L preserving interactions)
- order-by-order: self-consistent, renormalizable QFT
- can be matched to UV theories of new physics

Dimension-6 SMEFT Operators

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\daggerarphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$\int f^{ABC} \widetilde{G}_{\mu}^{A\nu} G_{\nu}^{B\rho} G_{\rho}^{C\mu} $	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_p u_r \widetilde{\varphi})$
Q_W	$\left[\varepsilon^{IJK} W_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu} \right]$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(arphi^\dagger arphi)(ar{q}_p d_r arphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$				
	$X^2 \varphi^2$	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi\widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$ \varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu} $	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi\widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)} \mid (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	
$Q_{arphi \widetilde{B}}$	$ \varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r)(\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$\left (\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t) \right $		
		$Q_{ud}^{(8)}$	$\left (\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t) \right $	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$		
$(ar{L})$	$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		B-violating				
Q_{led}	Q_{ledq} $(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$		ρ_{duq} $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^TCu_r^{\beta}\right]\left[(q_s^{\gamma j})^TCl_t^k\right]$				
$Q_{quq}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(u_s^{\gamma})^TCe_t\right]$				
$Q_{quq}^{(8)}$	$d \left((\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t) \right)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^TCq_r^{\beta k}\right]\left[(q_s^{\gamma m})^TCl_t^n\right]$				
$Q_{leq}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$				
$Q_{leq}^{(3)}$	$\left (\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t) \right $						

Table 3: Four-fermion operators.

Table 2: Dimension-six operators other than the four-fermion ones.

- complete, non-redundant set of operators:
 - dimension-6: 59 (76 real)
 - depending on CP/flavor assumptions

Simplified Template Cross Sections (STXS)

evolution from inclusive cross section measurements

arXiv:1610.07922

Simplified Template Cross Sections (STXS)

- evolution from inclusive cross section measurements
 - define several kinematic regions at generator level
 - maximize experimental sensitivity to e.g. BSM effects
 - minimize theory dependence

arXiv:1610.07922

- coefficients A,B from LO MC
 - HEL as effective Lagrangian (SILH basis with flavor-universal couplings)

ATLAS CONF-2017-049

- coefficients A,B from LO MC
 - HEL as effective Lagrangian (SILH basis with flavor-universal couplings)

ATLAS CONF-2017-049

$$\boxed{\frac{\Gamma_f}{\Gamma_{4\ell}} ~\approx ~ \frac{\Gamma_f^{SM}}{\Gamma_{4\ell}^{SM}} \left[1 + \sum_i A_i^f c_i + \sum_{ij} B_{ij}^f c_i c_j - \left(\sum_i A_i^{4\ell} c_i + \sum_{ij} B_{ij}^{4\ell} c_i c_j \right) \right]}$$

$$\sigma_{EFT}/\sigma_{SM} = 1 + \sum_{i} c_i A_i + \sum_{ij} c_i c_j B_{ij}$$

$$\mathcal{B}_{4\ell} = \frac{\Gamma_{4\ell}}{\sum_{f} \Gamma_{f}} \approx \frac{\Gamma_{4\ell}^{SM}}{\sum_{f} \Gamma_{f}^{SM}} \left[1 + \sum_{i} A_{i}^{4\ell} c_{i} + \sum_{ij} B_{ij}^{4\ell} c_{i} c_{j} - \sum_{f} \left(\sum_{i} A_{i}^{f} c_{i} + \sum_{ij} B_{ij}^{f} c_{i} c_{j} \right) \right]$$

- coefficients A,B from LO MC
 - HEL as effective Lagrangian (SILH basis with flavor-universal couplings)

ATLAS CONF-2017-049

Constraining Higgs EFT from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

- 15 dim-6 operators affecting Higgs physics
 - neglect CP-odd ones (-4)
 - neglect Higgs self-couplings/Yukawa couplings to down-type quarks and leptons (-3)
 - neglect Higgs field normalization as sensitivity not good enough for global change in rate (-1)
 - $C_{ww} + c_B = 0$ from precision electroweak parameter S (-1)

Operator	Expression	HEL coefficient	Vertices
O_g	$ H ^2 G^A_{\mu\nu} G^{A\mu\nu}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$	Hgg
O_{γ}	$ H ^2 B_{\mu\nu} B^{\mu\nu}$	$CA = \frac{m_W^2}{g'^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$
O_u	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	$Htar{t}$
O_{HW}	$i (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W^{a}_{\mu\nu}$	$cHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ
O_{HB}	$i\left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu}$	$CHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$	$CWW = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ
O_B	$i \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu \nu}$	$cB = \frac{m_W^2}{g'} \bar{c}_B$	HZZ

ATLAS PUB-2017-018

probe 6 remaining operators

Constraining Higgs EFT from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

Operator	Expression	HEL coefficient	Vertices
\mathcal{O}_g	$ H ^2 G^A_{\mu u} G^{A \mu u}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$	Hgg
O_{γ}	$ H ^2 B_{\mu\nu} B^{\mu\nu}$	$cA = \frac{m_W^2}{g'^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$
O_u	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	$Htar{t}$
O_{HW}	$i (D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W^{a}_{\mu\nu}$	$CHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ
O_{HB}	$i\left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu}$	$cHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$	$CWW = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ
O_B	$i \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu \nu}$	$cB = \frac{m_W^2}{g'} \bar{c}_B$	HZZ

ATLAS PUB-2017-018

Constraining Higgs EFT from $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

Operator	Expression
O_g	$ H ^2 G^A_{\mu u} G^{A \mu u}$
O_{γ}	$ H ^2 B_{\mu\nu} B^{\mu\nu}$
O_u	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$
O_{HW}	$i\left(D^{\mu}H\right)^{\dagger}\sigma^{a}\left(D^{\nu}H\right)W_{\mu\nu}^{a}$
O_{HB}	$i\left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu}$
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu\nu}$
O_B	$i \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$

Observed HEL constraints with H \rightarrow ZZ* and H $\rightarrow \gamma\gamma$

ATLAS PUB-2017-018

STXS Examples from CMS: H→ 4I (2016-2018)

- targeting four production modes: ggH, VBF, VH, ttH/tH
- first results with revised categorization (stage 1.1)

CMS PAS-HIG-19-001

STXS Examples from CMS: H→ \(\tau\tau\) (2016-2017)

 first ττ stage 1 measurement in multiple ggF & VBF bins

CMS PAS-HIG-18-032

Direct Measurement of tt Spin Density Matrix

- top ideal quark for spin measurements
 - decays before forming bound states
 - spin transferred to daughter particles
 - leptons represent an ideal probe of top spin

Direct Measurement of tt Spin Density Matrix

- top ideal quark for spin measurements
 - decays before forming bound states
 - spin transferred to daughter particles
 - leptons represent an ideal probe of top spin
- powerful probe of BSM physics
 - → high sensitivity to EFT, e.g. chromomagnetic dipole moment (CMDM)

$$O_{\mathrm{tG}} = y_{\mathrm{t}}g_{\mathrm{s}}(\overline{Q}\sigma^{\mu\nu}T^{a}t)\tilde{\phi}G^{a}_{\mu\nu}$$

Direct Measurement of tt Spin Density Matrix

- top ideal quark for spin measurements
 - decays before forming bound states
 - spin transferred to daughter particles
 - leptons represent an ideal probe of top spin
- powerful probe of BSM physics
 - → high sensitivity to EFT, e.g. chromomagnetic dipole moment (CMDM)

$$O_{\mathrm{tG}} = y_{\mathrm{t}}g_{\mathrm{s}}(\overline{Q}\sigma^{\mu\nu}T^{a}t)\tilde{\phi}G^{a}_{\mu\nu}$$

00000

- 15 coefficients completely characterize spin dependence of tt production
 - probe by measuring unfolded 1D angular distributions

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}^{+} \cdot \hat{\ell}^{+} + \mathbf{B}^{-} \cdot \hat{\ell}^{-} - \hat{\ell}^{+} \cdot \mathbb{C} \cdot \hat{\ell}^{-} \right)$$

Top Quark Polarization

- polarization consistent with zero for each axis
 - not yet sensitive to small level of polarization in the SM

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}^{+} \hat{\ell}^{+} + \mathbf{B}^{-} \cdot \hat{\ell}^{-} - \hat{\ell}^{+} \cdot \mathbf{C} \cdot \hat{\ell}^{-} \right)$$

Top Quark Spin Correlation - Diagonal Elements

spin correlations consistent with SM along each axis

$$\frac{1}{\sigma} \frac{d\sigma}{d\Omega_{+} d\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left(1 + \mathbf{B}^{+} \cdot \hat{\ell}^{+} + \mathbf{B}^{-} \cdot \hat{\ell}^{-} - \hat{\ell}^{+} \right)$$

Probing Strong Top-Quark Couplings

95% CL limits on CMDM operator from simultaneous fit to all measured differential cross sections to constrain systematics

$$-0.07 < C_{tG}/\Lambda^2 < 0.16 \text{ TeV}^{-2}$$

strongest direct limits to date, additional operator constraints in preparation

CMS PAS-TOP-18-006

- electroweak-top interactions from tīZ production
 - split events with 3/4 leptons into jet/b-jet multiplicity bins

- electroweak-top interactions from tīZ production
- translate cross-section measurements into limits of
 - 4 independent EFT operators

$$c_{tZ} = \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$$

tensor couplings (quad.): $C_{tZ}/C_{tZ}^{[l]}$

$$O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \quad \tilde{\varphi} B_{\mu\nu}$$
$$O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \, \tilde{\varphi} W_{\mu\nu}^I$$

vector couplings (lin.): $C_{\Phi t}/C_{\Phi Q}$

$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu} \varphi)(\bar{u}_{i} \gamma^{\mu} u_{j})$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu} \varphi)(\bar{q}_{i} \gamma^{\mu} q_{j})$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu}^{I} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$

- electroweak-top interactions from t̄Z production
- translate cross-section measurements into limits of
 - 4 independent EFT operators
 - main impact on p_T^z and $cos(\Phi_z^*) \rightarrow use$ to reweight NLO SM simulations

 $c_{tZ} = \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$ $c_{tZ}^{[I]} = \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$ $c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$ $c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$

tensor couplings (quad.): $C_{tZ}/C_{tZ}^{[l]}$

$$O_{uB}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} u_j) \quad \tilde{\varphi} B_{\mu\nu}$$
$$O_{uW}^{(ij)} = (\bar{q}_i \sigma^{\mu\nu} \tau^I u_j) \, \tilde{\varphi} W_{\mu\nu}^I$$

vector couplings (lin.): $C_{\phi t}/C_{\phi Q}$

$$O_{\varphi u}^{(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu} \varphi)(\bar{u}_{i} \gamma^{\mu} u_{j})$$

$$O_{\varphi q}^{1(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu} \varphi)(\bar{q}_{i} \gamma^{\mu} q_{j})$$

$$O_{\varphi q}^{3(ij)} = (\varphi^{\dagger} \overrightarrow{iD}_{\mu}^{I} \varphi)(\bar{q}_{i} \gamma^{\mu} \tau^{I} q_{j})$$

- electroweak-top interactions from ttZ production
- translate cross-section measurements into limits of

$$c_{tZ} = \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{tZ}^{[I]} = \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right)$$

$$c_{\phi t} = C_{\phi t} = C_{\phi u}^{(33)}$$

$$c_{\phi Q}^{-} = C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)},$$

additional bins of p_T^z and cos(Φ_z*) for enhanced sensitivity

Limits on Anomalous Top-EWK Couplings

- 95% CL

68% CL

CMS Preliminary

top EFT

model

77.5 fb⁻¹ (13TeV)

▼ SM

▲ best fit

 most stringent direct constraints on electroweak dipole moments and top-Z vector couplings (individual limits)

CMS PAS-TOP-18-009

Probing Simultaneously tt and tW Production

constraint separately 6 EFT couplings in dilepton final states

$$O_{tW} = (\overline{q}\sigma^{\mu\nu}\tau^{i}t)\tilde{\phi}W^{i}_{\mu\nu}$$

$$O^{(3)}_{\phi q} = (\phi^{+}\tau^{i}D_{\mu}\phi)(\overline{q}\gamma^{\mu}\tau^{i}q)$$

$$O_{\mathrm{u}(\mathrm{c})\mathrm{G}} = (\overline{\mathrm{q}}\sigma^{\mu\nu}\lambda^{a}\mathrm{t})\tilde{\phi}\mathrm{G}^{a}_{\mu\nu} \quad O_{\mathrm{G}} = f_{abc}\mathrm{G}^{a\nu}_{\mu}\mathrm{G}^{b\rho}_{\nu}\mathrm{G}^{c\mu}_{\rho}$$

$$O_{\rm G} = f_{abc} G^{a\nu}_{\mu} G^{b\rho}_{\nu} G^{c\mu}_{\rho}$$

$$O_{tG} = (\overline{q}\sigma^{\mu\nu}\lambda^a t)\tilde{\phi}G^a_{\mu\nu}$$

Analysis Strategy

different categories of jet and b-jet multiplicities

Eff counling	Channel	Categories				
Eff. coupling		1-jet ,0-tag	1-jet ,1-tag	2-jets,1-tag	>2-jets ,1-tag	≥2-jets,2-tags
	ee	_	Yield	Yield	_	Yield
C_G	eμ	Yield	Yield	Yield	_	Yield
	μμ	_	Yield	Yield	_	Yield
	ee	_	NN_{11}	NN_{21}	_	Yield
$C_{\phi q}^{(3)}, C_{tW}, C_{tG}$	eμ	NN_{10}	NN_{11}	NN_{21}	_	Yield
44	$\mu\mu$	_	NN_{11}	NN_{21}	_	Yield
	ee	_		NN_{FCNC}		_
C_{uG} , C_{cG}	eμ	_		NN_{FCNC}		_
	μμ	_		NN_{FCNC}		_

- to distinguish tW from tt topologies
- to split FCNC from SM backgrounds

EFT Limits from Combined tt and tW Production

- limits on one operator at a time
- sensitivity not yet at the level of more dedicated approaches (e.g. CMS PAS-TOP-18-006)

first step towards more global approaches

Probing tttt Production

- not yet observed (σ_{SM} ~ 9fb @ NLO) at I
 - O(10⁵) smaller than tt̄

Probing tttt Production

- not yet observed (σ_{sм} ~ 9fb @ NLO) at LHC
 - O(105) smaller than tt
- high sensitivity to four heavy-quark operators
 - quadratic cross section contributions
 up to ~6 fb for coefficient strengths of 1

Operator	\mathcal{O}^1_{tt}	\mathcal{O}_{QQ}^1	\mathcal{O}^1_{Qt}	\mathcal{O}_{Qt}^8
\mathcal{O}^1_{tt}	5.59	0.36	-0.39	0.3
\mathcal{O}_{QQ}^1		5.49	-0.45	0.13
\mathcal{O}^1_{Qt}			1.9	-0.08
\mathcal{O}_{Qt}^8				0.45

$$\mathcal{O}_{tt}^{1} = (\bar{t}_R \gamma^\mu t_R) \left(\bar{t}_R \gamma_\mu t_R \right)$$

$$\mathcal{O}_{QQ}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{Q}_{L}\gamma_{\mu}Q_{L})$$

$$\mathcal{O}_{Qt}^{1} = (\bar{Q}_{L}\gamma^{\mu}Q_{L})(\bar{t}_{R}\gamma_{\mu}t_{R})$$

$$\mathcal{O}_{Qt}^{8} = \left(\bar{Q}_{L}\gamma^{\mu}T^{A}Q_{L}\right)\left(\bar{t}_{R}\gamma_{\mu}T^{A}t_{R}\right)$$

EFT Sensitivity of tttt

- single lepton and opposite-sign dilepton final states
- two dedicated boosted decision trees:
 - identify 3 jet combinations from all-hadronic top decays rather than ISR/FSR (dijet/trijet masses, b-tagging, jet angles, ...)

EFT Sensitivity of tttt

- single lepton and opposite-sign dilepton final states
- two dedicated boosted decision trees:
 - identify 3 jet combinations from all-hadronic top decays rather than ISR/FSR (dijet/trijet masses, b-tagging, jet angles, ...)
 - distinguish tttt from dominant tt background with separate BDTs per final state

tttt Cross Sections and EFT Limit

- combine results with same sign dilepton and trilepton analysis (EPJC 78 (2017) 140)
 - observed limit of 3.6 σ_{SM} , significance of 1.4 S.D.

Channel	Expected limit	Observed limit	Expected limit	Observed limit
	$(\times \sigma_{\overline{\rm t\bar{t}t\bar{t}}}^{\rm SM})$	$(\times \sigma_{ m t\bar{t}t\bar{t}}^{ m SM})$	(fb)	(fb)
Single lepton	$9.4^{+4.4}_{-2.9}$	10.6	86^{+40}_{-26}	97
Dilepton	$7.3^{+4.5}_{-2.5}$	6.9	67^{+41}_{-23}	64
Combined (this analysis)	$5.7^{+2.9}_{-1.8}$	5.2	52^{+26}_{-17}	48
Multilepton [25]	$2.5^{+1.4}_{-0.8}$	4.6	23^{+12}_{-8}	42
Combined (this analysis + multilepton)	$2.2^{+1.1}_{-0.7}$	3.6	20^{+10}_{-6}	33

- constraint heavy-fermion EFT coefficients (inserting at most one additional EFT vertex)
 - 95% C.L. intervals (contribution of other operators marginalized)

Operator	Expected C_k/Λ^2 (TeV $^{-2}$)	Observed (TeV -2)	Chin. Phys. C42 (2018) 023104
\mathcal{O}^1_{tt}	[-1.5, 1.4]	[-2.2, 2.1]	[-2.92,2.80]
\mathcal{O}_{QQ}^1	[-1.5, 1.4]	[-2.2, 2.0]	
\mathcal{O}_{Qt}^1	[-2.5, 2.4]	[-3.7, 3.5]	[-4.97,4.90]
\mathcal{O}_{Qt}^8	[-5.7, 4.5]	[-8.0, 6.8]	[-10.3,9.33]

increased sensitivity compared to previous results

CMS PAS-TOP-17-019

A Global Analysis within the LHC WGs

- individual measurements of top, Higgs and electroweak processes not easily lend themselves to EFT interpretation
 - e.g. "backgrounds" of ttZ cross sections like ttW, ttH, tqZ, tHq,...
 also affected by EFT
 - considerable statistical overlap between different measurements
- consistent treatment crucial
 - theory model
 - systematic uncertainties
 - correlations across measurements
- intrinsically small effects
 - precise theoretical control
 - excellent experimental precision
- → a global effort including the experimental and theoretical LHC communities desirable

Towards Global Analysis

- LHC Higgs working group (STXS framework):
 - excellent scalability → easy to add new results
 - benefit from new theory developments
 - sensitivity driven by categorization
- LHC Top working group:
 - common EFT model: dim6top (arXiv 1802.07237)
 - re-interpretation of unfolded results
 - good scalability, easy combinable beyond LHC
 - treat background SM-like
 - full phase space results sensitive to efficiency/acceptance differences
 - → fiducial, particle level
 - measurements at detector level
 - good sensitivity
 - probe EFT in all contributing processes
 - so far relying on MC reweighing → further developments crucial
 - several options for later combinations

Summary

- precision SMEFT measurements will be an essential part of the LHC heritage
- the LHC has entered an EFT era
 - large variety of 13 TeV results already available
- first strategies for more global LHC SMEFT measurements established
- need to combine efforts across existing research groups
- right time to re-think and improve research strategies
- still many unexplored processes

Back-Up

Flavor Changing Neutral Currents

arXiv: 1812.11568

FCNC

- large variety of analysis searching for FCNC through Higgs/Z/photon/gluon
 - tt decay and single top production
- multivariate analysis techniques standard to probe tiny signal

combine all possible final states to set limits on e.g. BR (t→Hu/c)

Limits on BSM Models of FCNC

start probing models predicting highest branching fractions

Rare Process: ttZ/ttW

CMS

 $N_b = 0$

10³

10²

10

DESY.

35.9 fb⁻¹ (13 TeV

 $N_{b} > 1$

◆ measurement of t̄X cross sections at 13 TeV using 35.9 fb⁻¹

arXiv:1711.02547

WZ

- ttW from same-sign dilepton events
- ttZ from final states with 3 and 4 leptons
- split events according to number of jets and b-tagged jets
- train BDT for same-sign dilepton events ("D")
 to separate ttW from non-prompt leptons
- fit across categories
 to extract σ_{ttw} vs σ_{ttz}

3 lepton category

Nonprompt

 $N_{b} = 1$

Rare

ttZ 2016 + 2017

- improved analysis strategy:
 - more inclusive trigger
 - multivariate lepton identification (x2 syst. red.)
 - better lepton and efficiency measurements
 - (~15% higher prompt-lepton efficiency)

Source	Uncertainty	Correlated	Impact on the ttZ
	range (%)	in 2016 and 2017	cross section (%)
Integrated luminosity	2.5	×	2
PU modeling	1-2	✓	1
Trigger	2	×	2
Lepton ID efficiency	4.5-6	✓	4
Jet energy scale	1–9	✓	2
Jet energy resolution	0–1	✓	1
B tagging light flavor	0-4	×	1
B tagging heavy flavor	1–4	×	2
Choice in μ_R and μ_F	1–4	✓	1
PDF choice	1–2	✓	1
Color reconnection	1.5	✓	< 1
Parton shower	1–8	✓	1
WZ cross section	10-20	✓	3
WZ + heavy flavor	8	✓	1
ZZ cross section	10	✓	1
t(t)X bg.	10–15	✓	3
$X\gamma$ background	20	✓	1
Nonprompt background	30	✓	< 1
Rare SM background	50	✓	2
Stat. unc. in nonprompt bg.	5-50	×	< 1
Stat. unc. in rare SM bg.	5-100	×	< 1
Total uncertainty			7

Flavor Changing Neutral Currents

forbidden at tree level in SM

suppressed by GIM mechanism at higher orders

many BSM models predict sizable FCNC branching fraction

	SM	2HDM FC / FV	MSSM / w. RPV	RS	
$BR(t \rightarrow cg)$	10 ⁻¹²	10 ⁻⁸ / 10 ⁻⁴	10 ⁻⁷ / 10 ⁻⁶	10 ⁻¹⁰	
$BR(t\tocZ)$	10 ⁻¹⁴	10 ⁻¹⁰ / 10 ⁻⁶	10 ⁻⁷ / 10 ⁻⁶	10 ⁻⁵	
$BR(t\toc\gamma)$	10 ⁻¹⁴	10 ⁻⁹ / 10 ⁻⁷	10 ⁻⁸ / 10 ⁻⁹	10 ⁻⁹	
		10 ⁻⁵ / 10 ⁻³	10 ⁻⁵ / 10 ⁻⁹	10 ⁻⁴	arXiv:1311.2028

 large variety of searches for enhanced couplings of top quarks to u/c quarks via g, Z, γ, H in top production and decay

FCNC Interpretation in Terms of EFT

CMS-PAS-TOP-17-017

set limits on trilinear top-quark-boson couplings

$$L = \sum_{q=u,c} \frac{g}{\sqrt{2}c_W} \frac{\kappa_{tZq}}{\Lambda} \bar{t} \sigma^{\mu\nu} (f_{Zq}^L P_L + f_{Zq}^R P_R) q Z_{\mu\nu}$$

significant improvement compared to 8 TeV result