Geometria della programmazione lineare

- poliedri
- punti estremi, vertici, soluzioni di base
- esistenza di punti estremi

rif. Fi 3.1; BT 2.1, 2.2, 2.5

Iperpiani, semispazi

Definizione

Sia \mathbf{a} un vettore non nullo di \mathbb{R}^n e b uno scalare.

l'insieme $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T\mathbf{x} = b\}$ è detto *iperpiano*

l'insieme $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T\mathbf{x} \leq b\}$ è detto *semispazio*

Un semispazio è chiuso e convesso (per la convessità della funzione ${\bf a}^T{\bf x}-b$) e l'iperpiano coincide con la sua frontiera

Poliedri, politopi

Definizione

Si definisce *poliedro* ogni insieme che <u>può essere descritto</u> come l'intersezione di un numero finito di semispazi

quindi:

un poliedro è a sua volta un insieme chiuso e convesso la regione ammissibile di un problema di PL è un poliedro

Definizione

Un poliedro limitato è detto politopo

Esempi

- L'insieme $P = \{x \in \mathbb{R} | x^2 - 8x + 15 \le 0\}$ è un poliedro

in quanto può essere descritto da $\{x:3\leq x\leq 5\}$

— L'insieme vuoto è un poliedro in quanto può essere descritto da $\{x: x \leq 0, x \geq 1\}$

Punti estremi

Definizione

Sia P un poliedro. Un vettore $\mathbf{x}^* \in P$ è un *punto estremo* di P se non esistono due punti distinti $\mathbf{y}, \mathbf{z} \in P$ diversi da \mathbf{x}^* , ed uno scalare $\lambda \in (0,1)$ tali che $\mathbf{x}^* = \lambda \mathbf{y} + (1-\lambda)\mathbf{z}$

 \boldsymbol{x} punto estremo, \boldsymbol{w} no

Vertici

Definizione

Sia P un poliedro. Un vettore $\mathbf{x}^* \in P$ è un *vertice* di P se esiste un qualche \mathbf{c} tale che $\mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{y}$, per ogni $\mathbf{y} \in P, \mathbf{y} \neq \mathbf{x}^*$

quindi \mathbf{x}^* è un vertice di P se e solo se P giace su un lato di un iperpiano $\{\mathbf{z}: \mathbf{c}^T\mathbf{z} = \mathbf{c}^T\mathbf{x}^*\}$ che interseca P solo in \mathbf{x}^*

Algebricamente...

Si consideri un sistema

$$\mathbf{a}_i^T \mathbf{x} \ge b_i, \qquad i \in M_1$$

$$\mathbf{a}_i^T \mathbf{x} \le b_i, \qquad i \in M_2$$

$$\mathbf{a}_i^T \mathbf{x} = b_i, \qquad i \in M_3$$

Definizione

Se un vettore $\mathbf{x}^* \in \mathbb{R}^n$ soddisfa $\mathbf{a}_i^T \mathbf{x}^* = b_i$ per qualche $i \in M_1, M_2, M_3$, il corrispondente vincolo si dice *attivo* in \mathbf{x}^* .

Soluzioni di base

Definizione

Un vettore x^* si dice soluzione di base se

- (i) tutti i vincoli di uguaglianza sono attivi in \mathbf{x}^* (i.e. \mathbf{x}^* è ammissibile risp. ad essi)
- (ii) fra tutti i vincoli attivi in \mathbf{x}^* ce ne sono n (i cui vettori \mathbf{a}_i sono) linearmente indipendenti

Una soluzione di base \mathbf{x}^* che soddisfa $\underline{\text{tutti}}$ i vincoli è detta soluzione di base ammissibile (sba)

Osservazione Se il numero m di vincoli che definiscono un poliedro $P\subseteq\mathbb{R}^n$ è minore di n non esistono soluzioni di base

Esempio

- 1] $x_2 \le 4$
- 2 $x_1 + 2x_2 \le 10$
- 3 $2x_1 + x_2 \le 12$
- 4] $x_1 \ge 0$
- $[5] x_2 \ge 0$

in ciascuno dei punti A,B,C,D,E,F sono attivi due vincoli: se sono linearmente indipendenti il punto è una soluzione di base

Algebricamente

Teorema

Sia $I=\{i|\mathbf{a}_i^T\mathbf{x}^*=b_i\}$ l'insieme dei vincoli attivi in \mathbf{x}^* . Allora, esistono n vettori $\{\mathbf{a}_i|i\in I\}$ linearmente indipendenti se e solo se il sistema di equazioni $\mathbf{a}_i^T\mathbf{x}=b_i, i\in I$ ha un'unica soluzione.

È facile verificare che ciò è vero per tutti i punti A,B,C,D,E,F.

Ad es. per C si ha $I=\{1,2\}$ ed il sistema di equazioni è: $\begin{cases} x_2=4\\ x_1+2x_2=10 \end{cases}$ di cui C=(2,4) è soluzione unica

quindi A, B, C, D, E, F sono soluzioni di base. Inoltre, A, B, C, D, E sono **sba** mentre F è **non ammissibile**

Esempio

$$P = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 = 1, x_1, x_2, x_3 \ge 0\}$$

- ightharpoonup A, B, C soluzioni di base ammissibili
- ightharpoonup D non è sol. di base (non soddisfa il vincolo =)
- ► E è ammissibile ma non sol. di base (solo due vincoli attivi)

Esempio

$$P = \{(x_1, x_2, x_3) | x_1 + x_2 + x_3 \le 1, x_1 + x_2 + x_3 \ge 1, x_1, x_2, x_3 \ge 0\}$$

- ▶ E non è sol. di base $(x_1 + x_2 + x_3 = 1, x_2 = 0 \text{ ha } \infty \text{ soluzioni})$
- in questo caso anche D è soluzione di base. Quindi, il fatto che un punto sia o no soluzione di base dipende dalla rappresentazione del poliedro

Equivalenza punti estremi-vertici-sba

Teorema

Sia P un poliedro non vuoto e sia $\mathbf{x}^* \in P$. Le tre affermazioni seguenti sono equivalenti:

- (a) \mathbf{x}^* è un vertice
- (b) \mathbf{x}^* è un punto estremo
- (c) \mathbf{x}^* è una soluzione di base ammissibile

Dimostrazione Dimostriamo il risultato mostrando che

$$(a) \implies (b) \implies (c) \implies (a)$$

Senza perdere di generalità assumiamo che tutti i vincoli di disuguaglianza abbiano la forma $\mathbf{a}_i^T \geq b_i$

Dimostrazione $((a) \implies (b))$

Dimostrazione $(a) \implies (b)$

Se ${f x}^*$ è vertice, allora esiste ${f c}$ tale che ${f c}^T{f x}^*<{f c}^T{f y}$, per ogni ${f y}\in P, {f y}
eq {f x}^*$

Quindi, presi due punti generici $\mathbf{w}, \mathbf{z} \in P$, entrambi diversi da \mathbf{x}^* , risulta $\mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{w}$, $\mathbf{c}^T\mathbf{x}^* < \mathbf{c}^T\mathbf{z}$. Di conseguenza, per ogni $\lambda \in (0,1)$ si ha:

$$\mathbf{c}^{T}(\lambda \mathbf{w} + (1-\lambda)\mathbf{z}) = \lambda \mathbf{c}^{T}\mathbf{w} + (1-\lambda)\mathbf{c}^{T}\mathbf{z} > \lambda \mathbf{c}^{T}\mathbf{x}^{*} + (1-\lambda)\mathbf{c}^{T}\mathbf{x}^{*} = \mathbf{c}^{T}\mathbf{x}^{*}$$

cioè

$$\mathbf{c}^T \mathbf{x}^* < \mathbf{c}^T (\lambda \mathbf{w} + (1 - \lambda) \mathbf{z})$$

quindi, $\mathbf{x}^* \neq \lambda \mathbf{w} + (1 - \lambda)\mathbf{z}$, cioè, \mathbf{x}^* non è esprimibile come combinazione convessa (stretta) di \mathbf{w}, \mathbf{z}

Dimostrazione $((b) \implies (c))$

Supponiamo che \mathbf{x}^* non sia sba e dimostriamo che non è punto estremo.

 $\mathbf{x}^* \in P$ implica che tutti i vincoli di uguaglianza sono attivi in \mathbf{x}^* . Quindi, se \mathbf{x}^* non è sba, non esistono n vettori \mathbf{a}_i linearmente indipendenti, con $i \in I = \{i | \mathbf{a}_i^T \mathbf{x}^* = b_i\}$.

Di conseguenza:

i vettori \mathbf{a}_i , $i \in I$, giacciono in un sottospazio proprio di \mathbb{R}^n e (vedi Lez 2) esiste un qualche vettore $\mathbf{d} \in \mathbb{R}^n \setminus 0_n$ ortogonale a tutti i vettori \mathbf{a}_i , cioè tale che

$$\mathbf{a}_i^T \mathbf{d} = 0$$
, per ogni $i \in I$

Dimostrazione (cont.)

Scegliamo un $\epsilon>0$ piccolo e costruiamo i vettori:

$$\mathbf{y} = \mathbf{x}^* + \epsilon \mathbf{d}, \qquad \mathbf{z} = \mathbf{x}^* - \epsilon \mathbf{d}$$

- ightharpoonup per $i \in I$ si ha: $\mathbf{a}_i^T \mathbf{y} = \mathbf{a}_i^T \mathbf{x}^* + \epsilon \mathbf{a}_i^T \mathbf{d} = \mathbf{a}_i^T \mathbf{x}^* = b_i$
- ▶ per $i \notin I$ risulta $\mathbf{a}_i^T \mathbf{x}^* > b_i$: quindi, se ϵ è sufficientemente piccolo, $\mathbf{a}_i^T \mathbf{y} = \mathbf{a}_i^T \mathbf{x}^* + \epsilon \mathbf{a}_i^T \mathbf{d} > b_i$.

Quindi, se ϵ è sufficientemente piccolo, $\mathbf{y} \in P$. Analogamente si dimostra che $\mathbf{z} \in P$.

Ma abbiamo anche $\mathbf{x}^* = (\mathbf{y} + \mathbf{z})/2$, cioè \mathbf{x}^* non è punto estremo

Dimostrazione $((c) \implies (a))$

 \mathbf{x}^* è sba. Poniamo $\mathbf{c} = \sum_{i \in I} \mathbf{a}_i$. Quindi abbiamo:

$$\mathbf{c}^T \mathbf{x}^* = \sum_{i \in I} \mathbf{a}_i^T \mathbf{x}^* = \sum_{i \in I} b_i$$

Inoltre, per ogni $\mathbf{x} \in P$ ed ogni i risulta $\mathbf{a}_i^T \mathbf{x} \geq b_i$ e

$$\mathbf{c}^T \mathbf{x} = \sum_{i \in I} \mathbf{a}_i^T \mathbf{x} \ge \sum_{i \in I} b_i \tag{1}$$

Dimostrazione (cont.)

In sostanza, \mathbf{x}^* è una soluzione ottima per il problema di minimizzare $\mathbf{c}^T\mathbf{x}$ su P.

Si osservi infine che la disequazione (1) è soddisfatta all'uguaglianza se e solo se $\mathbf{a}_i^T\mathbf{x}=b_i$ per ogni $i\in I$.

Dato che \mathbf{x}^* è una sba, ci sono n vincoli attivi in \mathbf{x}^* linearmente indipendenti, cioè \mathbf{x}^* è l'unica soluzione del sistema $\mathbf{a}_i^T\mathbf{x}=b_i, i\in I$ (teorema precedente).

Segue che \mathbf{x}^* è l'unica soluzione ottima di $\min \mathbf{c}^T \mathbf{x}$ su P, cioè è un vertice di P.

Conseguenze

- ▶ la proprietà di essere punto estremo (o vertice) è puramente geometrica e lo stesso vale per le sba
- si ricordi che, al contrario, la proprietà di essere soluzione di base dipende dalla rappresentazione del poliedro

Corollario

Dato un numero finito m di disuguaglianze lineari, il numero di soluzioni di base o di sba (e quindi di vertici) è finito.

- ▶ Ogni soluzione di base è definita da *n* vincoli attivi linearmente indipendenti, che definiscono un unico punto
- quindi, diverse soluzioni di base corrispondono a diversi insiemi di n vincoli linearmente indipendenti
- quindi, numero di sba $\leq {m \choose n}$

Esempio (continua)

abbiamo $\binom{5}{2} = \frac{5!}{2!(5-2)!} = 10$

1]
$$x_2 \le 4$$

2] $x_1 + 2x_2 \le 10$
3] $2x_1 + x_2 \le 12$
4] $x_1 \ge 0$
5] $x_2 \ge 0$

$$E = (6,0)$$

$$x_1 + 2x_2 = 10$$

$$x_2 = 4$$

$$x_3 = 4$$

$$x_4 = (0,0)$$

$$(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)\\$$
 quindi 9 soluzioni di base (identificare quelle mancanti in figura), in quanto i vincoli 1 e 5 sono linearmente dipendenti

Esistenza di punti estremi

Non tutti i poliedri hanno punti estremi. Ad es, se la matrice \mathbf{A} ha meno di n righe, il poliedro $\mathbf{x} \in \mathbb{R}^n | \mathbf{A} \mathbf{x} \geq \mathbf{b}$ non ha sba.

In generale si ha:

Definizione

Si dice che un poliedro $P\subset\mathbb{R}^n$ contiene una retta se esiste un vettore $\mathbf{x}\in P$ ed un vettore non nullo \mathbf{d} tali che $\mathbf{x}+\lambda\mathbf{d}\in P$ per ogni scalare λ

Teorema

Un poliedro $P \subset \mathbb{R}^n$ ha almeno un punto estremo se e solo se non contiene una retta

Esempi

P contiene una retta e non ha vertici Q non contiene una retta ed ha vertici

Osservazione Un poliedro in forma standard non contiene mai una retta e quindi ha almeno un punto estremo