Лабораторная работа №14

Жукова Арина Александровна

Содержание

1	Цель работы	5	
2	Выполнение лабораторной работы	6	
	2.1 Создание виртуальных носителей	6	
	2.2 Создание разделов MBR с помощью fdisk	7	
	2.3 Создание логических разделов	9	
	2.4 Создание раздела подкачки	10	
	2.5 Создание разделов GPT с помощью gdisk	12	
	2.6 Форматирование файловой системы XFS	14	
	2.7 Форматирование файловой системы ЕХТ4	15	
	2.8 Ручное монтирование файловых систем	15	
	2.9 Монтирование разделов с помощью /etc/fstab	17	
	2.10 Самостоятельная работа	18	
	2.11 Ответы на контрольные вопросы	19	
3	Выводы	22	
Сг	Список литературы		

Список иллюстраций

2.1	Добавление жестких дисков	6
2.2	Перечень жестких дисков	7
2.3	Справка по командам	8
2.4	Создаём новый раздел	8
2.5	Записываем изменения на диск	9
2.6	Сохранение в таблицу	9
2.7	Добавление расширенного раздела	10
2.8	Обновление таблиц, просмотр информации	10
2.9	Добавление нового раздела	11
	Обновляем таблицу ядра	11
	Форматирование раздела подкачки	12
	Просмотр разделов	12
2.13	Добавление нового раздела	13
2.14	Обновление таблицы, просмотр информации	14
2.15	Создание файловой системы, установка метки файловой системы	15
2.16	Создание файловой системы	15
2.17	Монтируем файловую систему	16
	Монтирование раздела	16
	Создание точки монтирования	17
	Редактирование файла	17
	Проверка примонтирование	18
	Создание партиций	18
2.23	Форматирование файловой системой	19
	Настройка как пространство прокачки	19
2.25	Настройка сервера	19

Список таблиц

1 Цель работы

Получить навыки создания разделов на диске и файловых систем. Получить навыки монтирования файловых систем.

2 Выполнение лабораторной работы

2.1 Создание виртуальных носителей

Добавляем к виртуальной машине два диска размером 512 МБ (рис. 2.1).

Рис. 2.1: Добавление жестких дисков

2.2 Создание разделов MBR с помощью fdisk

1. В командной строке с полномочиями администратора с помощью fdisk просматриваю перечень разделов на всех имеющихся в системе устройствах жёстких дисков (рис. 2.2).

```
| FOOT@Ba2Nukoval@aazhukoval ~] $ su - Пароль:
| Глот@aazhukoval ~] # fdisk --List |
| Диск /dev/sda: 40 618, 42949672960 байт, 83886080 секторов |
| Бізк model: VBOX HARDDISK |
| Единницы: секторов по 1 * 512 = 512 байт |
| Размер сектора (логический/физический): 512 байт / 512 байт |
| Размер I/O (минимальный/оптимальный): 512 байт / 512 байт |
| Тил метки диска: dos |
| Идентификатор диска: 0x7c41a9df |
| Устр-во Загрузочный начало | Конец Секторы Размер Идентификатор Тип |
| /dev/sda! 2048 2099199 2097152 16 83 Linux |
| /dev/sda! 2048 2099199 2097152 16 83 Linux |
| /dev/sda! 2099200 83886079 81786880 396 8e Linux LVM |
| Диск /dev/sdb: 512 MiB, 536870912 байт, 1048576 секторов |
| Бізк model: VBOX НАКОDISK |
| Единицы: секторов по 1 * 512 = 512 байт |
| Размер гом (логический/физический): 512 байт / 512 байт |
| Размер гом (логический/физический): 512 байт / 512 байт |
| Размер гом (минимальный/оптимальный): 512 байт / 512 байт |
| Размер сектора (логический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер сектора по 1 * 512 = 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер сектора по 1 * 512 = 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт / 512 байт |
| Размер гом (погический/физический): 512 байт /
```

Рис. 2.2: Перечень жестких дисков

2. Необходимо сделать разметку диска /dev/sdb с помощью утилиты fdisk. Ввожу m, чтобы получить справку по командам (рис. 2.3).

```
Добро пожаловать в fdisk (util-linux 2.37.4).

Изменения останутся только в памяти до тех пор, пока вы не решите записать их.

Будьте внимательны, используя команду write.

Устройство не содержит стандартной таблицы разделов.

Создана новая метка DOS с идентификатором 0x62ab59c3.

Команда (m для справки): m

Справка:

DOS (MBR)

а переключение флага загрузки
b редактирование вложенной метки диска BSD
с переключение флага dos-совместимости

Общие
d удалить раздел
F показать свободное неразмеченное пространство
l список известных типов разделов
п добавление нового раздела
р вывести таблицу разделов
t изменение типа разделов
t изменение типа разделов
i вывести информацию о разделе
```

Рис. 2.3: Справка по командам

3. Нажимаем р, чтобы просмотреть текущее распределение пространства диска. Вводим п, чтобы добавить новый раздел. Выбираем р, чтобы создать основной раздел. Указываем первый сектор на диске, с которого начнётся новый раздел. По умолчанию предлагается первый доступный сектор, нажимаем Enter для подтверждения выбора. Вводим +100М, чтобы создать раздел на 100 MiB (рис. 2.4).

```
Команда (m для справки): р
Диск /dev/sdb: 512 MiB, 536870912 байт, 1048576 секторов
Disk model: VBOX НАRDDISK
Eдиницы: секторов по 1 * 512 = 512 байт
Pазмер секторов (логический/физический): 512 байт / 512 байт
Pазмер I/O (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: dos
Идентификатор диска: 0x62ab59c3
Команда (m для справки): п
Тип раздела
    р основной (0 primary, 0 extended, 4 free)
    е расширенный (контейнер для логических разделов)
Выберите (по умолчанию - р):р
Номер раздела (1-4, default 1): 1
Первый сектор (2048-1048575, default 2048):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-1048575, default 1048575): +100M
Создан новый раздел 1 с типом 'Linux' и размером 100 MiB.
```

Рис. 2.4: Создаём новый раздел

4. Нажимаем w, чтобы записать изменения на диск и выйти из fdisk (рис. 2.5).

```
Команда (m для справки): w
Таблица разделов была изменена.
Вызывается ioctl() для перечитывания таблицы разделов.
Синхронизируются диски.
```

Рис. 2.5: Записываем изменения на диск

5. Таблица разделов находится только в памяти ядра. Сравниваем вывод команды fdisk -l /dev/sdb с выводом команды cat /proc/partitions. Записываем изменения в таблицу разделов ядра (рис. 2.6).

```
[root@aazhukoval ~]# fdisk -l /dev/sdb
Диск /dev/sdb: 512 MiB, 536870912 байт, 1048576 секторов
Disk model: VBOX HARDDISK
Единицы: секторов по 1 * 512 = 512 байт
Размер сектора (логический/физический): 512 байт / 512 байт
Размер І/О (минимальный/оптимальный): 512 байт / 512 байт
Тип метки диска: dos
Идентификатор диска: 0x62ab59c3
Устр-во Загрузочный начало Конец Секторы Размер Идентификатор Тип
/dev/sdb1 2048 206847 204800 100M 83 Linu
Устр-во
                                                                   83 Linux
[root@aazhukoval ~]# cat /proc/partitions
major minor #blocks name
            0 41943040 sda
                  1048576 sda1
            2 40893440 sda2
                524288 sdb
102400 sdb1
                 524288 sdc
                   52250 sr0
                36749312 dm-0
                 4141056 dm-1
[root@aazhukoval ~]# partprobe /dev/sdb
```

Рис. 2.6: Сохранение в таблицу

2.3 Создание логических разделов

1. Добавляем новый раздел. Вводим е, чтобы создать расширенный раздел. Нажимаем Enter, чтобы принять первый сектор по умолчанию и снова нажимаем Enter, когда fdisk запросит последний сектор. Создаём в нём логический раздел. Нажимаем п. Свободных первичных разделов нет, добавляем логический раздел с номером 5. Нажимаем Enter, чтобы принять выбор первого сектора в качестве сектора по умолчанию. На вопрос о последнем

секторе вводим +101М. После создания логического раздела записываем изменения на диск (рис. 2.7).

Рис. 2.7: Добавление расширенного раздела

2. Обновляем таблицу разделов, просматриваем информацию о добавленных разделах (рис. 2.8).

Рис. 2.8: Обновление таблиц, просмотр информации

2.4 Создание раздела подкачки

 Добавляем новый раздел. По умолчанию добавляем логический раздел под номером 6. Нажимаем Enter, чтобы принять первый сектор по умолчанию.
 На вопрос о последнем секторе вводим +100М. Далее меняем тип раздела. Для этого нажимаем t, вводим номер раздела и тип раздела (в данном случае 82 — раздел подкачки). Записываем изменения (рис. 2.9).

```
Добро пожаловать в fdisk (util-linux 2.37.4).

Изменения останутся только в памяти до тех пор, пока вы не решите записать их. 
Будьте внимательны, используя команду write.

Команда (m для справки): п
Все пространство для логических разделов задействовано.
Добавление логического раздела 6
Первый сектор (417792-1048575, default 417792):
Last sector, +/-sectors or +/-size{K,M,G,T,P} (417792-1048575, default 1048575): +100M

Создан новый раздел 6 с типом 'Linux' и размером 100 MiB.

Команда (m для справки): t
Номер раздела (1,2,5,6, default 6): 6
Нех code or alias (type L to list all): 82

Тип раздела 'Linux' изменен на 'Linux swap / Solaris'.

Команда (m для справки): w
Таблица разделов была изменена.
Вызывается іостl() для перечитывания таблицы разделов.
Синхронизируются диски.
```

Рис. 2.9: Добавление нового раздела

2. Чтобы завершить процедуру и обновляем таблицу разделов ядра, просматриваем информацию о добавленных разделах (рис. 2.10).

Рис. 2.10: Обновляем таблицу ядра

3. Формартируем раздел подкачки. Для включения вновь выделенного пространства подкачки используем swapon /dev/sdb6. Просматриваем размер пространства подкачки, которое выделено в настоящее время (рис. 2.11).

```
[root@aazhukova1 ~]# mkswap /dev/sdb6
Setting up swapspace version 1, size = 100 MiB (104853504 bytes)
6e3 метки, UUID=e54faf6b-4011-4bfe-88f3-339b7b3f19d1
[root@aazhukova1 ~]# swapon /dev/sdb6
[root@aazhukova1 ~]# free -m
total used free shared buff/cache available
Mem: 3658 1191 1897 15 804 2467
Swap: 4143 0 4143
[root@aazhukova1 ~]#
```

Рис. 2.11: Форматирование раздела подкачки

2.5 Создание разделов GPT с помощью gdisk

1. В терминале с полномочиями администратора с помощью gdisk просматриваем таблицы разделов и разделы на втором добавленном диске /dev/sdc (рис. 2.12).

Просмотр разделов

Рис. 2.12: Просмотр разделов

2. Создаём раздел с помощью gdisk. Вводим n , чтобы добавить новый раздел. Применяем номер раздела по умолчанию, который предлагается. Нажимаем Enter, чтобы принять предлагаемый по умолчанию первый сектор. При запросе последнего сектора вводим +100М. Теперь предлагается установить тип раздела. Нажимаем Enter, чтобы принять тип раздела 8300 по умолчанию. Нажимаем р, чтобы отобразить разбиение диска. Записываем изменение диска (рис. 2.13).

```
| Fortition table scan:
| MBR: not present | BSD: not present | APM: n
```

Рис. 2.13: Добавление нового раздела

3. Обновляем таблицу раздела ядра и просматриваем информацию о добавленных разделах (рис. 2.14).

```
[root@aazhukoval ~]# partprobe /dev/sdb
[root@aazhukoval ~]# cat /proc/partitions
major minor #blocks name
             0 41943040 sda
             1 1048576 sdal
2 40893440 sda2
                  524288 sdb
102400 sdb1
            16
                          1 sdb2
                 103424 sdb5
102400 sdb6
524288 sdc
                   102400 sdc1
           0 52250 sr0
0 36749312 dm-0
                  4141056 dm-1
[root@aazhukoval ~]# gdisk -l /dev/sdc
GPT fdisk (gdisk) version 1.0.7
Partition table scan:
  MBR: protective
  BSD: not present
  APM: not present
  GPT: present
Found valid GPT with protective MBR; using GPT.
Disk /dev/sdc: 1048576 sectors, 512.0 MiB
Model: VBOX HARDDISK
Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): 9286F61F-D496-43BA-B044-4C42EFE7DC9B
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 1048542
Partitions will be aligned on 2048-sector boundaries
Total free space is 843709 sectors (412.0 MiB)
Number Start (sector) End (sector) Size
                                                          Code Name
                                  206847 100.0 MiB 8300 Linux filesystem
[root@aazhukoval ~]#
```

Рис. 2.14: Обновление таблицы, просмотр информации

2.6 Форматирование файловой системы XFS

1. В терминале с полномочиями администратора для диска dev/sdb1 создаём файловую систему XFS, устанавливаем метки файловой системы в xfsdisk (рис. 2.15).

Рис. 2.15: Создание файловой системы, установка метки файловой системы

2.7 Форматирование файловой системы ЕХТ4

1. В терминале с полномочиями администратора для диска dev/sdb5 создаём файловую систему EXT4. Устанавливаем метки файловой системы в ext4disk, параметры монтирования по умолчанию для файловой системы (рис. 2.16).

```
[root@aazhukova1 ~]# mkfs.ext4 /dev/sdb5
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 103424 1k blocks and 25896 inodes
Filesystem UUID: fd1958a6-9920-47ac-a7e3-1c040e0754a3
Superblock backups stored on blocks:
        8193, 24577, 40961, 57345, 73729
Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
[root@aazhukoval ~]# tune2fs -L ext4disk /dev/sdb5
tune2fs 1.46.5 (30-Dec-2021)
[root@aazhukoval ~]#
[root@aazhukova1 ~]#
[root@aazhukoval ~]# tune2fs -o acl,user_xattr /dev/sdb5
tune2fs 1.46.5 (30-Dec-2021)
```

Рис. 2.16: Создание файловой системы

2.8 Ручное монтирование файловых систем

1. Создаём точки монтирования для раздела. Монтируем файловую систему. Для проверки корректности монтирования раздела ввожу mount (рис. 2.17).

```
[root@aazhukoval ~]# mdunt /dev/sdb5 /mnt/tmp
[root@aazhukoval ~]# mount /dev/sdb5 /mnt/tmp
[root@aazhukoval ~]# mount
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
tapfs on /dev/shm type tapfs (rw,nosuid,nodev,seclabel,inode6,noexec,relatime)
tapfs on /dev/shm type devtps (rw,nosuid,nodev,seclabel,inode6)
devpts on /dev/shm type devtps (rw,nosuid,nodev,seclabel,inode6)
tapfs on /dev/shm type devtps (rw,nosuid,noexec,relatime,seclabel,gid=5,mode=620,ptmxmode=000)
tapfs on /run type tmpfs (rw,nosuid,nodev,seclabel,size=749300k,nr_inodes=819260,mode=755,inode64)
cgroup2 on /sysffs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,seclabel,sid=19x60,mode=755,inode64)
pstore on /sysffs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,seclabel)
pstore on /sysffs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,seclabel)
pstore on /sysffs/pstore type pstore (rw,nosuid,nodev,noexec,relatime,seclabel)
ydev/mapper/rl-root on / type xfs (rw,relatime,seclabel,atrr2,inode64,logbufs=8,logbsize=32k,noquota)
selinuxfs on /sysffs/pstolinux type selinuxfs (rw,nosuid,noexec,relatime)
systemd-l on /proc/sysffs/binfmt_misc type autofs (rw,relatime,fd=29,pgrp=1,timeout=0,minproto=5,maxproto=5,direct,psi
pe_ino=19607)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime,seclabel)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,seclabel,pagesize=2M)
debugfs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime,seclabel)
tracefs on /sys/kernel/debug type debugfs (rw,nosuid,nodev,noexec,relatime)
configfs on /sys/kernel/config type configfs (rw,nosuid,nodev,noexec,relatime)
configfs on /sys/kernel/con
```

Рис. 2.17: Монтируем файловую систему

2. Чтобы отмонтировать раздел, используем umount с именем точки монтировать используем umount с именем точки монтировать используем umount с именем точки монтировать используем umount с именем используем используем umount с именем используем использ

```
[root@aazhukoval ~]# umount /dev/sdb5
[root@aazhukoval ~]# mount
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime,seclabel)
devtmpfs on /dev type devtmpfs (rw,nosuid,nodev,noexec,relatime,seclabel)
securityfs on /sys/kernel/security type securityfs (rw,nosuid,nodev,noexec,relatime)
tmpfs on /dev/shm type tmpfs (rw,nosuid,nodev,seclabel,sinode64)
devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,seclabel)
tmpfs on /run type tmpfs (rw,nosuid,noexec,relatime,seclabel)
sps on /dev/pts type devpts (rw,nosuid,noexec,relatime,seclabel)
sps on /sys/fs/ps frogoup type group2 (rw,nosuid,nodev,noexec,relatime,seclabel)
sps on /sys/fs/ps type bpf (rw,nosuid,nodev,noexec,relatime,seclabel)
spt on /sys/fs/ps type bpf (rw,nosuid,nodev,noexec,relatime,seclabel)
dev/mapper/rl-root on / type xfs (rw,relatime,seclabel,attr2,inode64,logbufs=8,logbsize=32k,noquota)
selinuxfs on /sys/fs/selinux type selinuxfs (rw,nosuid,nodev,noexec,relatime)
systemd-l on /proc/sys/fs/binfmt_misc type autofs (rw,relatime,fd=29,pgrp=1,timeout=0,minproto=5,maxproto=5,direct,pi
pe_ino=19667)
mqueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime,seclabel)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,seclabel)
hugetlbfs on /dev/hugepages type hugetlbfs (rw,relatime,seclabel)
tracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime,seclabel)
tracefs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime)
configfs on /sys/kernel/tracing type tracefs (rw,nosuid,nodev,noexec,relatime)
configfs on /sys/kernel/type-devised-type ramfs (ro,nosuid,nodev,noexec,relatime,seclabel)
none on /run/credentials/systemd-tmpfiles-setup-dev.service type ramfs (ro,nosuid,nodev,noexec,relatime,seclabel,mode=700)
none on /run/credentials/systemd-tmpfiles-setup-dev.service type ramfs (ro,nosuid,nodev,noexec,relatime,seclabel,mode=700)
none on /run/credentials/systemd-tmpfiles-setup-dev.service type ramfs (ro,nosuid,nodev,noexec,relatime,seclabel,m
```

Рис. 2.18: Монтирование раздела

2.9 Монтирование разделов с помощью /etc/fstab

1. Создайте точку монтирования для раздела XFS /dev/sdb1. Просматриваем информацию об идентификаторах блочных устройств (UUID). Вводим blkid /dev/sdb1 и затем используйте мышь, чтобы скопировать значение идентификатора UUID для устройства /dev/sdb1 (рис. 2.19).

```
[root@aazhukoval ~]# mkdir -p /mnt/data
[root@aazhukoval ~]# blkid
/dev/mapper/rl-swap: UUID="87781c7-0da7-4cfb-8ed0-8bd4c052e88e" TYPE="swap"
/dev/sdb5: LABEL="ext4disk" UUID="fd1958a6-9920-47ac-a7e3-1c040e0754a3" TYPE="ext4" PARTUUID="62ab59c3-05"
/dev/sdb1: LABEL="xf3disk" UUID="87de259-91df-4fc7-925d-828ee537b2dd" TYPE="yef" PARTUUID="62ab59c3-05"
/dev/sdb1: LABEL="xf3disk" UUID="87de259-91df-4fc7-925d-828ee537b2dd" TYPE="yef" PARTUUID="62ab59c3-06"
/dev/sdb1: LABEL="xf3disk" UUID="87de4259-91df-4fc7-925d-828ee537b2dd" TYPE="yef" PARTUUID="62ab59c3-06"
/dev/sr0: UUID="7024-07-10-14-17-04-74" LABEL="Ybox_6As_7.0.20" TYPE="iso9660"
/dev/sr0: UUID="908951b-1031-3f4-bbfc-7680be5b173f8" TYPE="xfs"
/dev/sda2: PARTLABEL="Linux filesystem" PARTUUID="102da2b6-b004-4ff3-93ed-01a143690b07"
/dev/sda2: UUID="9A12Wn-ivID-Zmo2-geLZ-Bc4h-B7u2-01bDMu" TYPE="LVM2_member" PARTUUID="7c41a9df-02"
/dev/sda1: UUID="8d482-bfe0-486c-8783-722831625527" TYPE="xfs" PARTUUID="7c41a9df-01"
/foot@aazhukova1 ~]# blkid /dev/sdb1
/dev/sdb1: LABEL="xfsdisk" UUID="87d4e259-91df-4fc7-925d-828ee537b2dd" TYPE="xfs" PARTUUID="62ab59c3-01"
/foot@aazhukova1 ~]# plkid /dev/sdb1
```

Рис. 2.19: Создание точки монтирования

2. Редактируем файл /etc/fstab (рис. 2.20).

```
fstab [-M--] 0 L:[ 1+15 16/16] *(648 / 648b) <EOF>

# /etc/fstab
# Created by anaconda on Fri Sep 6 09:15:12 2024
# Accessible filesystems, by reference, are maintained under '/dev/disk/'.
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info.
# After editing this file, run 'systemctl daemon-reload' to update systemd
# units generated from this file.
# /dev/mapper/rl-root / xfs defaults 0 0
UUID=abafd482-bfe0-4a6c-8783-722831625527 /boot xfs defaults 0 0
/dev/mapper/rl-swap none swap defaults 0 0
UUID=87d4e259-91df-4fc7-925d-828ee537b2dd /mnt/data xfs defaults 1 2
```

Рис. 2.20: Редактирование файла

3. Монтируем всё что указано в файле, проверяем что раздел примонтирован правильно (рис. 2.21).

Рис. 2.21: Проверка примонтирование

2.10 Самостоятельная работа

1. Добавляем две партиции на диск с разбиением GPT. Создаём оба раздела размером 100 MiB. Один из этих разделов настроен как пространство подкачки, другой раздел отформатирован файловой системой ext4 (рис. 2.22-2.24).

```
[root@aazhukoval ~]# gdisk /dev/sdc
GPT fdisk (gdisk) version 1.0.7

Partition table scan:
    MBR: protective
    BSD: not present
    APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Command (? for help): n
Partition number (2-128, default 2):
First sector (34-1048542, default = 206848) or {+-}size{KMGTP}:
    Last sector (206848-1048542, default = 1048542) or {+-}size{KMGTP}: +100M
    Current type is 8300 (Linux filesystem)
    Hex code or GUID (L to show codes, Enter = 8300):
    Changed type of partition to 'Linux filesystem'

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING
    PARTITIONS!!

Do you want to proceed? (Y/N): Y
    OK; writing new GUID partition table (GPT) to /dev/sdc.
The operation has completed successfully.
    [root@aazhukoval ~]# partprobe /dev/sdc
```

Рис. 2.22: Создание партиций

```
[root@aazhukoval ~]# mkfs.ext4 /dev/sdc2
mke2fs 1.46.5 (30-Dec-2021)
Creating filesystem with 102400 1k blocks and 25584 inodes
Filesystem UUID: b7fe946c-e5c8-4e32-bae4-b4f3439ab7eb
Superblock backups stored on blocks:
8193, 24577, 40961, 57345, 73729

Allocating group tables: done
Writing inode tables: done
Creating journal (4096 blocks): done
Writing superblocks and filesystem accounting information: done
```

Рис. 2.23: Форматирование файловой системой

Рис. 2.24: Настройка как пространство прокачки

2. Настройте сервер для автоматического монтирования этих разделов (рис. 2.25).

```
[stab [-M--] 0 L:[ 1+15 16/16] *(648 / 648b) <EOF>

# /etc/fstab
# Created by anaconda on Fri Sep 6 09:15:12 2024
# Accessible filesystems, by reference, are maintained under '/dev/disk/'.
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info.
# # After editing this file, run 'systemctl daemon-reload' to update systemd
# units generated from this file.
# /dev/mapper/rl-root / xfs defaults 0 0
UUID=abafd482-bfe0-4a6c-8783-722831625527 /boot xfs defaults 0 0
UUID=87d4e259-91df-4fc7-925d-828ee537b2dd /mnt/data xfs defaults 1 2
```

Рис. 2.25: Настройка сервера

2.11 Ответы на контрольные вопросы

1. Какой инструмент используется для создания разделов GUID? Для создания разделов GUID (GUID Partition Table - GPT) обычно используется gdisk (GNU Parted) или подобные инструменты, такие как fdisk с опцией создания GPT

- таблицы разделов. Выбор инструмента зависит от операционной системы и предпочтений.
- 2. Какой инструмент применяется для создания разделов MBR? Для создания разделов MBR (Master Boot Record) чаще всего используется fdisk. Также можно использовать parted, но fdisk более традиционный и распространённый инструмент для работы с MBR.
- 3. Какой файл используется для автоматического монтирования разделов во время загрузки? Файл /etc/fstab (на системах типа Linux/Unix) содержит информацию о файловых системах, которые должны быть автоматически смонтированы при загрузке.
- 4. Какой вариант монтирования целесообразно выбрать, если необходимо, чтобы файловая система не была автоматически примонтирована во время загрузки? В файле /etc/fstab необходимо опустить поле или указать noauto в опциях монтирования для данной строки.
- 5. Какая команда позволяет форматировать раздел с типом 82 с соответствующей файловой системой? Тип 82 обычно ассоциируется с разделами Linux Swap. Для форматирования swap-раздела используется команда mkswap. После создания swap-раздела его необходимо активировать командой swapon.
- 6. Вы только что добавили несколько разделов для автоматического монтирования при загрузке. Как можно безопасно проверить, будет ли это работать без реальной перезагрузки? Можно использовать команду sudo mount -a. Эта команда попытается смонтировать все файловые системы, указанные в /etc/fstab. Однако это не полностью имитирует загрузку системы, так как некоторые сервисы могут быть недоступны.
- 7. Какая файловая система создаётся, если вы используете команду mkfs без какой-либо спецификации файловой системы? Команда mkfs сама по себе

- не создает файловую систему без указания типа. Вам необходимо указать тип файловой системы (например, mkfs.ext4, mkfs.vfat).
- 8. Как форматировать раздел EXT4? Для форматирования раздела EXT4 используется команда mkfs.ext4/dev/. Замените/dev/ на путь к вашему устройству (например, /dev/sda1).
- 9. Как найти UUID для всех устройств на компьютере? Команда blkid отобразит UUID для всех доступных блочных устройств.

3 Выводы

Получила навыки создания разделов на диске и файловых систем. Получила навыки монтирования файловых систем.

Список литературы