Sheet 2

Discussion of the sheet: Tue., 21.03.2023

This exercise sheet is concerned with the topics

- Weak formulation
- Bilinear forms
- **1.** a) Implement last week's first exercise in MATLAB, with N=4,8,16,32. Is there any change in the error in the nodal values, i.e., $|u(x_j)-u_j|$ for $j\in\{2,\ldots,N\}$?
 - b) Change the right-hand side of the equation from 1 + x to $2x^2 + 3x 4/3$. Find again the exact solution and run the code with the new right-hand side. Calculate the errors

$$\max_{j \in \{2,\dots,N\}} |u(x_j) - u_j|$$

for each N = 4, 8, 16, 32.

- 2. (In very special cases the FEM and FDM are actually equivalent) Consider the 1-dimensional Poisson equation with Dirichlet boundary conditions. Take an equidistant grid $x_i = (i-1)/N$. Show that the finite difference method and the finite element method (with V_h being the space of piecewise linear continuous functions as in the introductory example) yield the same approximate function.
- **3.** Give a compatibility condition on the function g so that the Poisson equation with Neumann boundary conditions

$$-u'' = f$$
 in $(0,1)$
 $u'(0) = g(0)$
 $u'(1) = g(1)$

has a solution. What additional constraint can be added for the uniqueness of the solution u?

4. Derive a weak formulation for the problem

$$-u'' + u = f in (0,1)$$

$$u(0) - 2u'(0) = 0$$

$$u(1) + 2u'(1) = 0$$

with Robin boundary conditions.

5. Let b, c > 0. Find the bilinear form on H_0^1 associated to the equation

$$-u'' + bu' + cu = f in (0, 1)$$
$$u(0) = u(1) = 0$$

Is it symmetric? Is it coercive?

6. a) Let $X = \{u \in C^4([0,1]) : u(0) = u(1) = u'(0) = u'(1) = 0\}$. Show that

$$A(u,v) = \int_0^1 \Delta^2(u)v dx$$

is a symmetric bilinear form on $X \times X$. (Here, Δ^2 denotes the operator $\Delta(\Delta u)$.)

 $\mathbf{b)} \ \text{Let } T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \text{ Is}$

$$A(u, v) = u^T T v$$

a coercive bilinear form on $\mathbb{R}^2 \times \mathbb{R}^2$ (with the Euclidean norm)?