APPENDIX B PROOF OF THEOREM 1

Proof: We define a sequence of games [33] starting with the real attack game \mathcal{G}_0 and ending with the game \mathcal{G}_9 . Let $Succ_i$ be the event that the adversary guesses bit b correctly involved in a test query in \mathcal{G}_0 , where $i=0,1,\ldots,9$. Let Δ_i be the distance between \mathcal{G}_i and \mathcal{G}_{i+1} . Then, we have

$$Adv_{\mathcal{D}}^{LRDID}(\mathcal{A}) \leq 2\Pr[Succ_0] - 1$$
$$= 2\Pr[Succ_n] - 1 - 2\Pr[Succ_9]$$
$$+ 2\Pr[Succ_0]$$

$$\leq 2\Pr[Succ_n] - 1 + 2\sum_{i=0}^{n-1} \Delta_i,$$
 (1)

which implies that if the difference in success probability between any two consecutive games Δ_i is negligible, then \mathcal{A} 's advantage in the original game \mathcal{G}_0 will be almost the same as that in the final game \mathcal{G}_9 [22]. That means if we can show that the value of $\Pr[Succ_n]$ is negligible, then so is $\Pr[Succ_0]$, and therefore $Adv_D^{LRDID}(\mathcal{A})$ too.

Game \mathcal{G}_0 : This game models the real attack scenario. By definition, we have

$$Adv_{\mathcal{D}}^{LRDID}(\mathcal{A}) = 2\Pr[Succ_0] - 1. \tag{2}$$

Game \mathcal{G}_1 : In this game, we simulate oracles for \mathcal{A} to query. Obviously, the simulation of this game is indistinguishable from the real execution of the protocol so we have

$$Pr[Succ_1] = Pr[Succ_0],$$

$$\Delta_0 = |Pr[Succ_1] - Pr[Succ_0]| = 0.$$
(3)

Game \mathcal{G}_2 : This game is the same as \mathcal{G}_1 except that we halt the game if a collision occurs in transcripts

$$(\{DID_U, M_{TC}, H_{TC}, TS_{TC}\}, \{XDID_U^*, M_S, H_S\}, \{H_{HCR}^{ack}\}).$$

Specifically, the transcript can be generated by $Send(\cdot,\cdot)$ or $Execute(\cdot,\cdot)$ -oracle, the number of which is $q_{send}+q_{exe}$ at most [42]. There are $\left(\begin{array}{c}q_{send}+q_{exe}\\2\end{array}\right)$ events in total, each of which occurs with probability $\frac{1}{|\mathcal{T}|}$. Therefore, based on the birthday paradox, we have

$$\Delta_{1} = |Pr[Succ_{2}] - \Pr[Succ_{1}]| \le \begin{pmatrix} q_{send} + q_{exe} \\ 2 \end{pmatrix} \frac{1}{|\mathcal{T}|}$$

$$\le \frac{(q_{send} + q_{exe})^{2}}{|\mathcal{T}|}.$$
 (4)

Game \mathcal{G}_3 : In this game, we consider the situation that \mathcal{A} targets PW_U after only querying $Corrupt^{SC}(\Pi_U^i)$ to get $(ID_{SC}, DID_U, X_U^1, X_U^2, a_U, EB_U)$. \mathcal{A} can get the $H_1(AID_U)$ from $X_U^2 \oplus PK$; while $AID_U = H(ID_U \parallel PW_U \parallel a_U)$, \mathcal{A} can only try one alternative password together with one identity, the probability of which is bounded by q_{send} with probability $\frac{1}{|\mathcal{D}|\cdot|\mathcal{T}|}$. We use the output of $H(\cdot)$ to response to the query to $H(\cdot)$ on $\{ID_U \parallel PW_U \parallel a_U\}$, i.e., to exclude the opportunity of online testing. Therefore, we have

$$\Delta_2 = |Pr[Succ_3] - \Pr[Succ_2]| \le \frac{q_{send}}{|\mathcal{D}| \cdot |\mathcal{I}|}.$$
 (5)

Game \mathcal{G}_4 : In this game, we consider the session key security. The goal of this game is to verify the perfect forward secrecy and known session-specific temporary information attack resistance. To this end, the following two scenarios are considered. We consider the situation that \mathcal{A} targets SK in several strategies:

Strategy 1 (known session-specific temporary information attack). Holding α and β from $Corrupt^E(\cdot)$, \mathcal{A} cannot get A or u_S from querying $H(\cdot)$ or manipulating M_{TC} and M_S . Thus, strategy 1 strategy does not give \mathcal{A} advantage.

Strategy 2 (forward security). Holding ID_U , PW_U and sk from $Corrupt^L(\cdot)$, \mathcal{A} cannot compute the session key SK_{TC}^S without corresponding A and B. Thus, strategy 2 does not give \mathcal{A} advantage.

Therefore, \mathcal{G}_4 and \mathcal{G}_3 are indistinguishable unless that \mathcal{A} luckily guesses the output of $H(\cdot)$, the probability of which is bounded by q_{hash} with probability $ADV_{\mathcal{A}}^{ECCDH}(t)$. So we have

$$\Delta_3 = |Pr[Succ_4] - \Pr[Succ_3]| \le q_{hash} ADV_{\mathcal{A}}^{ECCDH}(t).$$
(6)

Game \mathcal{G}_5 : The goal of this game is to verify the key compromise impersonation attack resistance. The simulation of this game is the same as the game \mathcal{G}_4 except that this game will be aborted if \mathcal{A} issues a $H\left(ID_u\|PW_u\|a_u\right)$ or $H\left(ID_u\|sk\|a_S\right)$ query. There are $q_{hash}\cdot q_{hash}$ events in total, each of which occurs with probability $\frac{1}{2^l}$. As a result, the difference between game \mathcal{G}_4 and game \mathcal{G}_5 is:

$$\Delta_4 = |Pr[Succ_5] - \Pr[Succ_4]| \le q_{hash}^2 \cdot \frac{1}{2^l} = \frac{q_{hash}^2}{2^l}$$
 (7)

Game \mathcal{G}_6 : The only difference between this game and the previous one is that this game will be aborted if \mathcal{A} issues an $Test^{ID}(ID_U)$ or q_{send} Send query with probability $\frac{1}{|\mathcal{D}|}$ to get the real identity of user or his/her password. Thus, we have

$$\Delta_5 = |Pr[Succ_6] - \Pr[Succ_5]| \le Adv_A^{SEnc}(t) + \frac{q_{send}}{|\mathcal{D}|}$$
 (8)

Game \mathcal{G}_7 : The only difference between this game and the previous one is that the leakage of the long-term private key sk of S is a leakage of a random value. Hence, the difference between the two games is

$$\Delta_6 = |Pr[Succ_7] - \Pr[Succ_6]| \le \epsilon \tag{9}$$

Game \mathcal{G}_8 : The only difference between this game and the previous one is that this game will be halted if \mathcal{A} issues an H query. Since \mathcal{A} can get the session key SK, the probability of which is bounded by $\begin{pmatrix} q_{hash} \\ 2 \end{pmatrix}$ with probability $\frac{1}{2^l}$, the difference between the two games is

$$\Delta_7 = |Pr[Succ_8] - \Pr[Succ_7]| \le \begin{pmatrix} q_{hash} \\ 2 \end{pmatrix} \cdot \frac{1}{2^l} \le \frac{q_{hash}^2}{2^{l+1}}$$
(10)

Game \mathcal{G}_9 : In this game, we consider the situation that \mathcal{A} targets ID_U before querying any corrupt oracle. \mathcal{A} may solve an ECCDH to get the session key SK; or, \mathcal{A} may directly compromise the ciphertext DID_U (or DID_U^*). We use private

 $Test_p^{ID}(\Pi_U^i)$ to replace $Test^{ID}(\Pi_U^i)$. Therefore, the output of $Test^{ID}(\Pi_U^i)$ is independent from DID_U and DID_U^* . Then, we have

$$\Pr[Succ_9] = \frac{1}{2}. (11)$$

Without SK, \mathcal{A} 's advantage in distinguishing \mathcal{G}_8 and \mathcal{G}_9 is upper bounded to compromise the symmetric encryption scheme or an ECCDH instance. There are $q_{send}+q_{exe}$ events in total, each of which occurs with probability $Adv_{\mathcal{A}}^{SEnc}(t)+Adv_{\mathcal{A}}^{ECCDH}(t)$. Thus, we have

$$\Delta_8 = \Pr[Succ_9] - \Pr[Succ_8]$$

$$\leq (q_{send} + q_{exe})(Adv_{\mathcal{A}}^{SEnc}(t) + Adv_{\mathcal{A}}^{ECCDH}(t)). \quad (12)$$

After substituting (3)-(12) into inequality (1), we have

$$Adv_{\mathcal{D}}^{LRDID}(\mathcal{A}) \leq 2 \Pr[Succ_8] - 1 + 2 \sum_{i=0}^{8} \Delta_i$$

$$\leq \frac{2(q_{send} + q_{exe})^2}{|\mathcal{T}|} + \frac{2q_{send}}{|\mathcal{D}| \cdot |\mathcal{I}|} + \frac{2q_{send}}{|\mathcal{D}|} + \frac{3q_{hash}^2}{2^l}$$

$$+ 2(q_{send} + q_{exe} + q_{hash})Adv_{\mathcal{A}}^{ECCDH}(t) + 2\epsilon$$

$$+ 2(q_{send} + q_{exe} + 1)Adv_{\mathcal{A}}^{SEnc}(t).$$

Theorem 1 is proved.