Villamosipari anyagismeret labor

Követelmények, javaslatok a jegyzőkönyv készítéséhez

2015

(Mielőtt kinyomtatná, beadná a jegyzőkönyvét, nézze át ezt az útmutatót, mindent leírt-e.)

A jegyzőkönyv az elvégzett munkánk dokumentálása, a mérési, gyakorlati körülmények, az eredmények, számítások és következtetések rögzítése. A korrekt jegyzőkönyv alapján egy, a szakterületen jártas embernek meg kell tudni ismételni a mérést, és hasonló eredményre kell jutni.

1. Azonosítás

A fejléc minden pontját pontosan töltsük ki!

	Mérést végezte:			
Mérés címe	név,	neptun kód,	laborcsoport	
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:	(ezt ne:)	

2. *A mérési feladat céljának*, elméleti hátterének, menetének rövid, saját fogalmazásban történő összefoglalása. Ezt a gyakorlatra előre elkészítve hozza.

3. Mérési eredmények:

- A használt műszerek felsorolása (funkció, típus, gyártó)
- A mérési adatok egyértelmű rögzítése, mértékegységgel együtt, szükség esetén áttekinthető táblázatban
- A jegyzőkönyvben szerepelni kell az eredeti kézzel írt mérési adatoknak.

4. Számítások

- Felírjuk az eredeti képletet, definiáljuk a használt betűket, legalább egyszer leírjuk a behelyettesített adatokkal, mértékegységgel (sorozatmérésnél ez többször nem kell). Az eredmények szintén mértékegységgel, szükség esetén táblázatban.
- A diagramok nagyon megkönnyítik az eredmények áttekinthetőségét, ha:
 - A tengelyeken jeleztük az ábrázolt mennyiséget és azok egységét
 - Pontosan jelöltük a mérési (számolt) eredmények pontjait! Utóbb a kirajzolt görbének (egyenesnek) már nem kötelező minden ponton átmenni, hiszen a mérési hiba természetes dolog, annak mértéke az, ami esetleg magyarázatra szorul.
- Értelmezzük, értékeljük a kapott eredményeket!
- **5.** A jegyzőkönyvbe szerkesztett fotók szebbé teszik azt, de jobbá, hasznosabbá csak akkor, ha a fotón látottak értelmezését is megadjuk.
- **6.** Gondoljon arra, hogy munkája más kezébe kerül; legyen olvasható, rendezett a külalakja!

Dr Szenes Ildikó, Dr Pap Andrea, Gröller György, Meszlényi György,

Tompos Péter, Nádas József

Laborvezetők

	Mérést végezte:				
Spektrofotometria	(név, n	eptun kód,	laborcsoport		
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:			

Táblázat a hullámhossz -- abszorpció függvény felvételéhez

$\lambda \rightarrow$	380	400	450	500	550	600	650	700	750	800	850	900
Cu^{2+}												
$[Cu(NH_3)_4]^{2+}$												
festett oldat												

Táblázat a kalibrációs egyenesek

elkészítéséhez

Cu ²⁺⁻	$\lambda_1 =$	$\lambda_2 =$
0,1 mol/l		
0,02 mol/l		
ismeretlen		
	$\lambda_1 =$	$\lambda_2 =$

Az ismeretlen	m o 1/1
koncentrációja:	mol/l

Kalibrációs grafikon					
2 1				_	
1,8					
1,6					
1,4					
1,2					
1					
0,8					
0,6					
0,4					
0,2					
0					
		koncei	ntráció		
		Koncei	ili acio		

A jegyzőkönyv tartalmazza a mérés elméletének rövid, (saját fogalmazású) összefoglalását, a mérés során szerzett tapasztalatokat, az eredmények értékelését.

	Mérést végezte:		
Feszültségoptika	(név, n	eptun kód,	laborcsoport
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:	

	Mérést végezte:					
Feszültségoptika	(név, n	 eptun kód,	laborcsoport			
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:				

4. Poliészter minta feszültségoptikai állandójának meghatározása

Geometriai	vastagság:	szélesség:		
adatok	d = mm	a = mm		
$F_0 = 0 N$	X	$R_0 =$	X	
$F_1 = 10 \text{ N}$	$\sigma_1 =$	$R_1 =$	$R_1 - R_0 =$	c =
$F_2 = 20 \text{ N}$	$\sigma_2 =$	$R_2 =$	$R_2 - R_0 =$	c =
$F_3 = 30 \text{ N}$	σ_3 =	R ₃ =	$R_3 - R_0 =$	c =
				Cátlag =
Számítások, felha	sznált képletek, behe	lyettesítés:		

	Mérést végezte:		
Szigetelőanyagok vizsgálata	(név, n	eptun kód,	laborcsoport
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:	

1. és 4. feladat: dielektromos jellemzők

minta neve	d(mm) (vastagság)	$R(\Omega)$	$\rho(\Omega m)$	C(pF)	Clev mért	Clev számított	Cház	Erel	D

A számításhoz használ	t összefüggések
-----------------------	-----------------

(Az ismert adatokat, nagyságrendi átszámításokat helyettesítse be, az állandók	at vonja	össze, cs	ak ,,d"-t	(mm-ben)	és
R"-t MO-han) kellien hehelvettesíteni!)					

Tapasztalatok, az eredmények értékelése	ρ=	(Ωm)
Tapasztalatok, az eredmenyek ertekelese		

.....

A Clev számított értékei:

Vastagság	mm	0,5	0,6	0,7	0,8	1,0	1,2	1,4	1,5	1,6	1,8	2,0	2,5	3,0	3,5	4
C számított	pF	77	64	55	48	38,5	32	27,5	26	24	21,4	19,2	15,4	12,8	11	9,6

2. feladat: Polarizációs index

idő	10s	20s	30s	40s	50s	1p	2p	3p	4p	5p	6p	7p	8p	9p	10p
R_1															
R ₂															

1-es minta neve:	polarizációs index							
$PI_1 =$								
2-es minta neve:	ellenállás							
$PI_2 =$								
(ha nagy az eltérés a két ellenállás között, a jobb és bal oldalon különböző skálát alkalmazhat)		0 2	4		perc)	8	10	12

1. feladat: Felületi ellenállás

Minta neve	Vd	R mért Ω	R négyzet $arOmega$

Tapasztalatok, az eredmények értékelése

5/b feladat: Kerámia kondenzátorok: ϵ és D ($tg\delta$) frekvenciafüggése

Frekvencia	С	D (tg \delta)	ε/ε ₀ C/C ₀	D/D_{θ}	С	D (tg \delta)	ε/ε_ο C/C ₀	D/D_{θ}
0,1 kHz								
1 kHz								
10 kHz								
100 kHz								
1 MHz			1	1			1	1
5 MHz								

Megj: A relatív változáshoz nem kell kiszámítanunk a dielektromos állandókat, hiszen $\varepsilon/\varepsilon_o = C/C_o$ A számított adatok grafikus ábrázolása. Tervezze meg, milyen grafikon(ok)on lehet pontosan, szemléletesen ábrázolni az eredményeket! (Mit ábrázol a tengelyeken, milyen léptékben, hány görbe fér egy diagramba, stb.)

	Mérést végezte:							
Mechanikai mérések	(név, r	eptun kód,	labor kurzus					
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:						

1. Brinell keménységmérés

A mérés menetének leírása:

A mérés során alkalmazott eszközök:

Sorsz.	Megnevezés	Gyártó	Eszköz típusa
1.			
2.			

Mért értékek, a mérés kiértékelése:

Kiindulási adatok:	Próbatest jele:	
	D (golyó átmérő):	
	F (vizsgálati terhelés) értéke N-ban mérve:	
Mérési adat:	d (lenyomat átmérője):	
Mérés kiértékelése:	Brinell keménység értéke:	

A mérés kiértékelésekor alkalmazott összefüggések:

(alkalmazott összefüggések és a számértékek behelyettesítése)

A vizsgálat jellemzőinek rövid megadása:

Az eredmények értékelése, tapasztalatok:

2. Rockwell keménységmérés

4	, ,	, , 1	1	, ,	
\boldsymbol{A}	meres	menetének	: l	eıras	a:

(szöveges leírás)

A mérés során alkalmazott eszközök:

Sorsz.	Megnevezés	Gyártó	Eszköz típusa
1.			
2.			

Mért értékek, a mérés kiértékelése:

Kiindulási adatok: Próbatest jele:		
	A lenyomat készítő szerszám	
	anyaga, alakja és mérete:	
F (előterhelés) értéke N-ban		
	mérve:	
F (vizsgálati terhelés) értéke N-		
	ban mérve:	
Mérési adat, mérés	Rockwell keménység értéke:	
kiértékelése:		

Az eredmények értékelése, tapasztalatok:

3. Szakító vizsgálat

A mérendő alkatrész rajza és méretei a vizsgálat előtt:

(méretezett szabadkézi rajz)

A mérés menetének rövid leírása:

A mérés során alkalmazott eszközök:

Sorsz.	Megnevezés	Gyártó	Eszköz típusa
1.			
2.			
3.			

Mért értékek, a mérés kiértékelése:

A pendrájvon hazavitt adatpárokból otthon Excel programmal el kell készíteni a beskálázott Szakítódiagramot, és ezt is be kell adni, rajta az összes jellemző érték megjelölésével.

Kiindulási adatok:	a ₀ lemezvastagság	
	b ₀ lemez szélesség	
	A ₀ kiindulási keresztmetszet:	
	l ₀ jeltávolság	
	l _c állandó keresztmetszetű szakasz hossza:	
Vizsgálat alatt.	F _e (egyezményes folyáshatár erő):	
	F _m (legnagyobb terhelés):	
	F _c (terhelés a szakadáskor):	
Vizsgálat utáni mért adatok:	a _u (szakadás utáni a ₀ érték):	
	b _u (szakadás utáni b ₀ érték):	
	A _u (keresztmetszet a szakadás helyén):	
	l _u (l ₀ megnyúlt értéke):	
A mért adatok alapján	Δl=l _u -l ₀ megnyúlás	
számított értékek:	$R_{p\theta,2}$ (egyezményes folyáshatár) MPa-ban:	
	σ _m (szakítószilárdság) MPa-ban:	
	σ _c (kontrakciós feszültség)MPa:	
	ε (fajlagos nyúlás) %-ban:	
	Ψ (kontrakció) %-ban:	

A mérés kiértékelésekor alkalmazott összefüggések:

(alkalmazott összefüggések és a számértékek behelyettesítése)

Az eredmények értékelése, tapasztalatok:

	Mérést végezte:		
Mikroszkópia gyakorlat	(név, no	eptun kód,	laborcsoport
Gyakorlatvezető:	Mérés ideje:	Érdemjegy:	

A mikroszkópok optikai lencséit és a fémcsiszolatokat felületét tilos kézzel megérinteni!

A mikroszkópok részeinek funkciói, ami egyben a használati utasítás a jegyzet 3. oldalán található.

1. Írja le a gyakorlatvezető által kijelölt mikroszkóp részeit <u>részletes magyarázattal,</u> a magyarázatot otthon is elkészítheti. A kijelölt anyagyizsgáló mikroszkóp:

Zeiss egyenes állású anyagvizsgáló mikroszkóp:

Tárgylencse: feladata, hogy a tárgyról nagyított képet készítsen. Optikai hibákra korrigált többlencsés rendszer, mely alapvetően meghatározza a mikroszkóp nagyítási tartományát, és azt, hogy milyen kis részleteket lehet a mikroszkóppal felbontani.

Tárgyasztal: biztosítja a minta rögzítését és a mozgatását. Legjobb az X-Y koordinátarendszer mentén mozgató fogaskerék-fogasléc kapcsolat.

Élességállító rendszer: a minta és a mikroszkópfej közötti távolságot állítja úgy, hogy a tárgy fókuszba kerüljön.

Lámpaház: lámpaházban elhelyezett halogén izzó vagy xenonnal töltött kisülőlámpa, mely széles spektrumú fehér fényt szolgáltat a megfigyeléshez és fényképezéshez a látható sugárzási tartományban 380-780 nanométer között.

Kamera: lehet illesztő lencsével csatlakoztatott digitális fényképezőgép, videokamera; CMOS vagy CCD szenzoros rendszer, melyek a képet monitoron folyamatosan megjelenítik és fotót is készít.

- 2. Határozza meg egy adott tárgylencsével a mikroszkóp nagyítását indoklással:
- 0.1 mm -> 1 cm -> 100 x
- 3. Mérje meg a mikroszkóp látómezejét egy adott tárgylencse használata esetén: mérőeszköz: Egyenes állású anyagvizsgáló Zeiss látómező átmérője: 0,21 mm

4. Íria fel a kijelölt tárgylencse adatait (a lencse felületét tilos megérinteni!):

	Magyarázat
Gyártó	-
Leképezési korrekció	planachromat
Nagyítás	50
Numerikus apertúra	0,8
Fedőüveg vastagsága	-
Végtelen korrekció	végtelen
Lát-e a lencsén antireflexiós réteget,	Nem
ha igen milyen színű	

- 5. A numerikus apertúra alapján a segédletből keresse ki / számolja ki a következő adatokat
 - Felbontóképességet: 0,37
 - A hasznos nagyítás tartománya: 375 750
- 6. Milyen viszonyban van a 2. pontban meghatározott és az 5. pontban kikeresett nagyítás? Magyarázza meg a kapott eredményt.

Egyik 100x, a másik 50x, a különbség a digitális rásegítés miatt van.

- 7. feladat 3 db mikroszkópi minta azonosítása a mellékelt fotósorozattal alapján (magyar elnevezés, tulajdonságok leírása)
 - 1. Ramepuro ottone tisztaréz
 - 2. GHISA Bianca öntöttvas
 - 3. G00 GHISA öntöttvas
- 8. Egy, kiválasztott mintán átlagos szemcseátmérő meghatározása (részletesen írja le a lépéseket, készítsen vázlatrajzot vagy mellékeljen fotót!)

G00 - öntöttvas

A képernyő vízszintes mérete: 0,2 mm

A képernyő vízszintes mérete mentén hány szemcse van: 9

Az átlagos szemcseátmérő kiszámítása (ld. Mérési segédlet):

$$d = L_0/N = 0.2 \text{ mm}/10 = 0.02 \text{ mm}$$

9. Képelemző programmal a gyakorlatvezető által megadott méretek lemérése, képjavítás. Furatátmérő mérése 2 NYÁK lemezen (vázlatrajz vagy foto):

$$186,87 * 10^{-6} \text{ m}$$

10. Megfigyelések sztereo és fémmikroszkóppal: írja le milyen mintákat vizsgált:

Samsung telefon alaplap, NYÁK, AMD processzor