EUROPEAN PATENT APPLICATION

(e) Jur Cre: **B01D 67/00,** B01D 69/12

Application number: 91870125.1

re.80.er : gnilit to etsQ (SS)

(72) Inventor: Stedronsky, Erwin Raymond 1247 Hampton Park Drive Richmond Heights, Missouri 63117 (US)

(74) Representative: Ernst, Hubert et al Monsanto Services International S.A., Patent Department, Avenue de Tervuren 270-272, Letter Box No. 21
B-1150 Brussels (BE)

771072 2U 06.80.02 : Vihoh9 @

(43) Date of publication of application: 11.03.92 Bulletin 92/11

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Applicant: MONSANTO COMPANY
Patent Department 800 North Lindbergh
Boulevard
St. Louis, Missouri 63167 (US)

(54) Process for surface modifying a support membrane.

Surface modified support membranes and a process therefor are disclosed wherein the support membrane has a substantially uniform layer of hydrogel deposited on essentially the entire surface area thereof.

BNSDOCID: <Eb__0474617A1_1_>

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a process for surface modifying support membranes and to new and improved membranes produced from such process. More particularly, the present invention relates to a process for depositing a uniform layer of a hydrogel onto essentially all of the surface area of a support membrane. In a particularly preferred embodiment, a uniform layer of an ion exchange hydrogel is deposited onto essentially all of the surface area of a porous hollow fiber membrane.

Membrane modifying processes disclosed heretofore involve depositing a layer of coating material on the

2. Prior Art

membrane. In the solvent evaporation or by inteversibly adsorbing the modifying polymer onto the support membrane. In the solvent evaporation process, a solution of the modifying material is applied to the membrane, as solvent is removed from the membrane and the membrane is dried to remove the remaining solvent. In some cases a surfactant is added to aid in obtaining a more uniform distribution of modifying material. This results in a modifier on the membrane whose quantity is determined by the amount of solution retained by the evaporation process, the distribution of a modifier on a membrane depends upon migration phenomena occurring during the evaporation process. The coating can be stabilized by cross-linking the modifying material after or during thin, uniform distribution of in these methods are formulating the modifying material to obtain a sufficiently thin, uniform distribution of polymer on the membrane and often having the modifying material concentrated at one surface of the membrane.

The irreversible adsorption process is disclosed in U.S. Patent 4,794,002 and involves soaking the support membrane in a solution of the modifying polymer dissolved in an appropriate solvent for a period of time sufficiently membrane in a solution of the modifying polymer dissolved in an appropriate solvent for a period of time sufficiently.

I he irreversible adsorption process is disclosed in U.S. Patent 4,794,002 and involves soaking the support membrane in a solution of the modifying polymer dissolved in an appropriate solvent for a period of time sufficient for the modifying polymer to adsorb onto the support membrane. The resulting modified membranes are then washed with excess solvent. This particular process is suitable for surface modifying a variety of polymeric support surfaces by irreversibly adsorbing thereon a suitable modifying polymer which possesses the desired chemical characteristics. For example, a fabric made of a polymeric material such as nylon can be surface modification thereby render clothes made of such a modified fabric more comfortable. Employing this process, one can surface modify and render substantially hydrophilic various laboratory and medical devices which often are made of hydrophobic polymeric materials which interact undesirably with protein material. The surface modifications can be further stabilized by cross-linking or can be derivatized in order to incorporate desired reactive groups, such as, for example, ion exchange groups, e.g., derivatized using chloroacetic acid. Membranes modified by this process have a monomolecular layer of the modifying polymer, as opposed to a pellicular hydrogel, adsorbed onto essentially all of the surface area of the membrane. However, because such membranes contain only a monomolecular layer, adsorption capacity is limited.

U.S. Patent 4,618,533 discloses surface modified membranes having passivation coatings which membranes are prepared by wetting a polymeric porous membrane. Such membranes are prepared utilizing thereof a monomer grafted and cross-linked in aitu onto the membrane. Such membranes are prepared utilizing high concentrations of a free radical initiator and heating the monomer-containing membrane for a short period of time, such as from 2 to 30 minutes, at a temperature between 60 and 95°C. Membranes surface modified under these conditions are often difficult to prepare with reproducible properties because the polymerization under these conducted such that only a portion of the initiator is reacted. The reactions are interrupted before completion to avoid completely filling the pores in the membrane with hydrogel which would thereby drastically reduce the liquid permeability of the membrane (see, for example, U.S. 4,917,793). Furthermore, support membranes prepared in this manner, i.e., directly coated by grafting and cross-linking an ionic or functional monomer thereto, have a limited amount of said monomer bound to the membrane. The utility of such membranes is therefor limited when its application depends upon the quantity of said monomer incorporated into the coating material. For example, the ion exchange adsorption of a protein depends upon incorporation of sufficient ionically substituted monomer onto said coating material.

BRIEF DESCRIPTION OF THE INVENTION

The present surface modification process involves introducing a support membrane into, and imbibing such membrane with, a solution of a functionalized vinyl monomer and a cross-linking agent in a solvent system which includes a volatile solvent, optionally a surfactant, and a film-forming nonvolatile solvent. Such membrane

99

0t

9ε

52

01

can be pretreated with a surfactant to form a coated membrane or, if not pretreated, can be coated with a surfactant by including such surfactant in the solution which contains the funtionalized vinyl monomer. Excess monomer solution is then drained off and the membrane with entrained solution is lyophilized to remove the volatile solvent in order to deposit a uniform layer of monomer and cross-linking agent in a nonvolatile solvent onto essentially all of the surface area of the membrane. The lyophilized monomer-containing membrane is then subjected to free radical polymerization conditions. The resulting new and improved membranes are characterized in that they contain a surfactant layer upon which a uniform layer of hydrogel is deposited.

BRIEF DESCRIPTION OF THE DRAWINGS

The figure is a schematic view of a lyophilizer/oven suitable for use in lyophilizing membranes which contain a solution of monomer and crosslinking agent, for use in heating such membranes to activate polymerization and for use in annealing such membranes.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to surface-modified support membranes having a uniform layer of a hydrogel material deposited onto essentially all of the surface area thereof. As utilized herein, the term "hydrogel refers to a cross-linked polymer which swells in the presence of water without dissolving. Also as utilized herein, the term "surfactant" refers to a compound which acts to reduce the interfacial surface tension, and to promote adhesion, between the monomer mixture and/or the hydrogel and the support membrane, including those compounds which coat the support membrane by adsorbing thereonto through hydrophobic interactions. For clarity and brewity in the delineation of the invention, the following description will be primarily directed toward surface modified semipermeable membranes. It should be understood that the parameters described below can be employed to surface modify nonmembrane polymeric surfaces.

York, 1985). branes: A Structural Perspective", Second Edition, by Robert E. Kesting, published by Wiley-Interscience (New between the crystalline regions. These techniques are discussed in more detail in "Synthetic Polymeric Memconditions which induce the micro-crystalline regions to form, then drawing the crystallized film to produce pores branes, when the polymer is capable of forming microcrystals, involves extrusion of the polymer melt under pore-forming agent is then removed by evaporation or washing. Yet another method for forming porous memthe extrudate is cooled to a temperature below the phase inversion temperature, and the solution gels. The the pore-forming agent, is then extruded through a die at a temperature above the phase inversion temperature, but which is immiscible with the polymer at lower temperatures. A melt containing a mixture of the polymer and forming material can be identified which forms a single phase solution when mixed with the polymer in the melt, the case of some polymers which are not soluble in a wide variety of solvents (e.g., polypropylene), a porewith the solvent. The polymer solution gels and, when the solvent is extracted, a porous structure remains. In and contacting the extruded polymer solution with a liquid which is a nonsolvent for the polymer but is miscible involves dissolving the polymer in a solvent, forming a membrane sheet or tube by extrusion through a die, nonsolvents or temperature and the stretching of micro-crystalline films. Phase inversion using nonsolvents are known to those skilled in the art of membrane manufacture. These methods include phase inversion using tiguous portion of the membrane. Many methods for making porous membranes from hydrophobic polymers meant that the membrane is lacking of voids greater than about 20 times the pore size of the immediately conmembrane. Support membranes can be macro-void containing or macro-void free. By "macro-void free" is one surface such that the modifying polymer can diffuse through the surface pores to treat the interior of the polysulfone, polyethersulfone and polypropylene. Preferably, these membranes are porous enough on at least polymers as well as other hydrophobic polymers. Particularly preferred polymers for support membranes are like. It should be understood that suitable support polymers may include mixtures and blends of the above thereof, polyamides, polyimides, polyetherimide, polypropylene, polyethylene, polyvinylidene fluoride, and the such as, for example, polysulfone, polyethersulfone, poly(2,6-dimethyl,4-phenylene oxide) and derivatives sent invention can be made from a number of polymers, preferably but not limited to hydrophobic polymers mechanical strength. Particularly appropriate support membranes for surface modification according to the precan be made of essentially any polymeric material capable of being fabricated into a membrane with adequate Support membranes which can be surface modified according to the teachings of the present invention

Preferably, the above-described membranes are pretreated either with a surfactant such as, for example, hydroxypropylcellulose, or with a wetting agent such as, for example, a methanol/water solution. Suitable surfactants are those which are compatible with the support membrane to be modified and with the monomers, cross-linking agents and polymerization initiators described in more detail below. Examples of such surfactants

St

0t

52

01

S

include hydroxypropylcellulose, hydrolyzed polyvinyl scetate, polyvinyl slcohol, ethoxylated octylphenol, and the like. Said surfactant may be optionally chemically derivatized such that it becomes directly reative in the free radical polymerization process, for example, sorbitan trioleste. One skilled in the srt of free radical polymerizations can select suitable derivatized surfactants for this process. A preferred surfactant is hydroxypropylcellulose having a weight average molecular weight of from about 25,000 to about 500,000. A most preferred surfactant is a 100,000 molecular weight (Mw) hydroxypropylcellulose. Suitable wetting agents are those which are also compatible, examples of which include alcohols, e.g., methanol. Methods for pretreating such membranes are well-known in the art. See, for example, U.S. Patent 4,794,002.

Where the membrane is not pretreated with a surfactant, a surfactant, such as hydroxypropyl-cellulose, can be included in the monomer solution and in the imbibing solution (as described below). In this case, the membrane is pre-wetted utilizing one of the wetting agents described above. The hydroxypropyl-cellulose or other suitable surfactant will then adsorb, preferably via hydrophobic interactions as described in U.S. Patent 4,794,002, onto the membrane to form a coated membrane and then the monomers will be deposited as described below on said coated support membrane. In addition, a surfactant can, optionally, be included in the monomer solution even though the membrane is pretreated with a surfactant. The amount of surfactant utilized will depend on the size, porosity and the like of the resulting membrane are not affected to equal degrees and will recognize that all physical parameters of the resulting membrane are not affected to equal degrees and the desired amount of surfactant will depend on the morphology of the membrane, the monomers utilized to coat the membrane and the ultimate use. It is preferred, however, that the surfactant be included in the imbibing solution. Such surfactant can be present in amounts ranging from about 0.1 to about 1% w/v, preferably from about 0.3 to about 0.7% w/v. A most preferred amount is about 0.5% w/v.

The pretreated support membrane is then introduced into a solution which contains a functionalized vinyl monomer, a cross-linking agent, and a free radical initiator in a suitable solvent system (described below). Where the support membrane is not pretreated, such solution may optimally include a surfactant as described above. The support membrane is pretreated, such solution may optimally include additional surfactant as described above. The solution of monomers is then introduced into the porous wall of the fiber through a process cribed above. The solution of monomer solution is then drained off and the monomer-containing membrane is lyophilized. After lyophilization, polymerization of the monomers is initiated and then the surface modified is lyophilized.

for a period of time from about 0.5 to about 20 hours, preferably from about 1 to about 2 hours. minutes, preferably from about 2 to about 20 minutes. The diffusive imbibing procedure should be carried out The vacuum imbibing procedure should be carried out for a period of time ranging from about 1 to about 30 is rewetting by vacuum imbibing followed by introduction of monomers into the membrane by diffusive imbibing. identify which method is best for a particular membrane. A preferred method for porous polysulfone membranes methods differently. However, it is within the skill of one skilled in the art of membrane surface modification to of the porous wall and the monomer solution diffuses into the pores. Different fibers respond to these imbibing monomers in solution, the size and structure of the membrane pores and the like. The methanol diffuses out imbibing solution as well. Those skilled in the art will recognize that the time period will vary depending on the in the monomer solution, it is preferable to include an essentially equivalent amount of such surfactant to the mixtures of methanol-water, and then immersing it in the monomer solution. Where a surfactant is to be utilized Diffusive imbibing preferably involves wetting the dry, unmodified membrane with, for example, methanol or solution to diffuse into the pores of the membrane under the influence of an appropriate concentration gradient. brane, fully wetted with a first solution, in a second solution and permitting substances dissolved in the second the solvent vapor, and carries with it the dissolved materials. Diffusive imbibing involves immersing a memexchange with solvent vapor. When the head space is returned to ambient pressure, liquid solvent replaces the vapor pressure of the solvent system. This allows low pressure air trapped in the pores of the fiber to immersed in the solution and the head space over the solution is evacuated to a pressure which is lower than the porous wall of the fiber. The pressure differential can be established by vacuum wherein the dry fiber is are preferred. Convective imbibing depends upon a pressure differential to force a solution into and through are several methods of imbibing. Two of such methods, namely, convective imbibing and diffusive imbibing, wetting agents, surfactants, monomers, and initiators into the pores of the porous support membrane. There As utilized herein, the term "imbibing" refers generically to methods utilized to introduce the solutions of

The term "functionalized vinyl monomer" refers to monomers which are adapted to be imbibed into the pores of the support membrane and which are adapted to be polymerized under free radical polymerization conditions. Such monomers will be functionalized depending on the characteristics one wishes to impart to the fiber. For example, the following Table 1 illustrates various monomers and the corresponding property which would be imparted to the membrane. It should be noted that mixtures of such monomers, as well as mixtures of such monomers with other vinyl monomers (e.g., acrylamide), can also be utilized so long as the character-

99

0⊊

St.

0¢

32

90

52

50

01

membrane is recovered.

will recognize incompatible combinations of vinyl monomers. istics thereof are compatible with the polymerization chemistry. Those skilled in the art of vinyl polymerizations

Cell Attachment	y сь λ f о λ f -ин-вере s -соон	38					
Copper Affinity	N-Acryloyl-IDA						
Periodate Activatable	дјисашјие дјисашјие	οε					
Activated Carboxyl	NHS-Acrylate						
Λεκλ Meak Anion Exchanger	Vinylimidazole 4-vinyl pyridine	52					
Strong Anion Exchanger	Diallyldimethylammonium Chloride						
Strong Anion Exchanger	Trimethylammonioproply- Methacrylamide Chloride	50					
Meak Anion Exchanger	Dimethylaminoproply- Меthacrylamide						
Strong Cation Exchanger	Sulfopropyl-Acrylamide (2- Acrylamido-2-Methylpropane Sulfonic Acid)	S1					
Weak Cation Exchanger	N-Methacryloylylycylglycine Acrylic Acid	01					
FUNCTION	моиомев						
TABLE 1							

Arginylglycylaspartylserine = RGDS Iminodiacetic Acid

modified fiber is particularly suitable for cation exchange separation of protein materials. do-2-methylpropane sulfonate (AmPS), available from Lubrizol Corp., Cleveland, Ohio. The resulting surface A preferred monomer, particularly for surface modifying a porous polysulfone hollow fiber, is 2-acrylami-

For ion exchange coated porous membranes, flow uniformity and reproducibility batch-to-batch are extethylenediamine and methylene-bis-acrylamide. A preferred cross-linking agent is methylene-bisacrylamide. as difunctional vinyl monomers. Examples of such agents include N,N'-diallyltartardiamide, N,N'-diacryloyl Cross-linking agents suitable for use in the present invention include those which are generally referred to

volatile solvent which had previously occupied such volume. A preferred solvent system is a mixture of water walls of the membrane leaving a void volume within the pores of the membrane equal to the volume of the When the volatile solvent is removed, the monomer-containing nonvolatile solvent is deposited on the porous include compatible mixtures of at least one volatile solvent and at least one nonvolatile film-forming solvent. maintain certain flow characteristics, such as uniformity of flow, suitable solvent systems are those which mity of the deposited coating. For surface modification of a porous support membrane wherein it is desired to remely important. Liquid permeability of the membranes of the present invention is extremely sensitive to unifor-

rogel present on the membrane, can be optimized by adjusting the composition of the monomer solution The quantity of hydrogel, as well as the final porosity of the membrane and the charge density of the hyd-

09

St

and glycerin.

FP 0 474 617 A1

amount of cross-linking agent for use in the present invention is about 5 weight percent based on the weight cross-linking agent utilized will depend on the desired characteristics of the resulting hydrogel. A preferred desired quantity of monomers per internal surface areas to the void volume of the membrane. The amount of from this internal surface area. The concentration of the imbibing solution is established from the ratio of the void volume and a defined internal surface area. The quantity of monomers required to coat a fiber is estimated prior to polymerization, the monomers are prepared as a dilute solution. The porous membrane has a defined imbibed into the porous wall of the fiber. Since the monomers are deposited onto the porous support membrane

support membrane (as opposed to having the modifying monomers concentrated at one surface of the memmonomer-containing nonvolatile solvent applied as a uniform film on essentially all of the surface area of the ing off, and the support membrane is lyophilized to remove essentially all of the volatile solvent and leave the Following the imbibing procedure described above, excess monomer solution is removed, such as by drain-

preferably utilizing free radical polymerization techniques, such as by utilizing a free radical initiator. Thus, the Following lyophilization, polymerization of the functionalized monomer and cross-linking agent is initiated, brane) while leaving a void volume within such pores.

fur dioxide, and cobalt triethylenetetramine. The amount of accelerator suitable for use in the present invention a polymerization accelerator can be utilized. Examples of such accelerators include tetraethylenediamine, sultems. For aqueous solvent systems, potassium persulfate and ammonium persulfate are preferred. Optionally, Suitable initiators include those which are adapted to initiate vinyl polymerization in the appropriate solvent syssence of a surfactant to produce a hydrogel coating on essentially all of the surface area of the membrane. functionalized vinyl monomer is polymerized and cross-linked in situ in the nonvolatile solvent and in the pre-

The resulting surface modified porous support membranes have a uniform layer of hydrogel deposited on will range from about 1 to about 4 weight percent based on the amount of the monomers utilized.

produces uniform flow characteristics combined with enhanced absorption capacity. essentially all of the surface area of the surfactant-treated support membrane. Uniformity of the hydrogel layer

Polysulfone porous hollow fibers were purchased from Permea, St. Louis, Missouri, and were received on noted. The following general procedure was employed in the following examples, with certain exceptions where

Fibers are wound into a spiral layer at 3.2-6.2 fibers per centimeter (cm) on an aluminum mandrel with a bobbins and immersed in water. The fibers were utilized as received, without autoclaving.

is cut and separated into two flat mats, each mat is 31.53 cm. long. fiber to dry is acceptable. After the spiral layer is formed, it is taped together with vinyl tape, and the spiral layer circumference of 57.79 cm. No water trough is required for winding these mats. Permitting the bare, uncoated

winding operation. Mats of dry fibers may be stored for prolonged periods of time without the problems of bacbe mechanically secured in such a manner as to remove the circumferential curl induced during the mandrel The mat of fibers is dried in air under ambient conditions without any special precautions. The mats should

long axis of the fibers and inserted into a vacuum imbibing tube. This can be any glass or plastic tube capable The dry mat of fibers is weighed on a "two-place" balance. The mat of fibers is then rolled parallel to the terial contamination associated with storage of wet fibers.

of all of the internal surfaces of the porous wall of the fiber. released abruptly, forcing liquid into the walls and bores. This operation is repeated four times to ensure wetting agitation is often helpful). Evacuation is continued until the liquid is observed to boil. The vacuum is then fiber mat. The headspace is evacuated. Air trapped within the bores and walls of the fibers bubbles out (mild the imbibing solutions. The vessel is filled with 50% MeOH in water [vol/vol], sufficient to totally submerge the of being sealed; of withstanding the mechanical forces caused by evacuation; and of being chemically inert to

The initial compositions need to be adjusted to compensate for the amount of methanol-water entrained within at room temperature. The desired final compositions of the monomer solutions are set forth in the examples. containing the solution of [HPC + monomers], and is agitated by tumbling end-over-end, nutating for two hours methanol-water from the bores of the fibers. The mat of fibers is then immersed in the diffusion imbibing tube The mat of fibers is removed from the vacuum imbibing tube. Manual shaking is sufficient to remove excess

calculated from the known void volume of the fiber, the total length of fibers in the mat, and the density of the the imbibed mat to ascertain that it contains the expected amount of solution. The expected gain of weight is the outside of the fibers. The success of imbibing, draining and blotting is determined at this time by weighing mer solution must be drained from the lumen and blotted, conveniently accomplished using paper towels, from After nutation, the mat of fibers is removed from the solution containing HPC and monomers. Excess monothe porous walls of the fibers and carried over into the monomer solution.

The wet fiber mat is now supported on a perforated aluminum mandrel designed to fit into the cylindrical .noitulos gnididmi

99

09

0t

32

30

52

50

S١

01

of the monomer(s).

EP 0 474 617 A1

vacuum oven. If needed, the mat may be held in place with vinyl tape. A thermocouple is used to monitor temperatures of at least one fiber during the lyophilization and baking operations.

The mat of wet fiber is now quick frozen by immersing in liquid nitrogen. The quick freezing is necessary

to ensure that the monomer solution remains physically in place during the freezing operation rather than beginning to evaporate and migrate due to cryo-pumping onto a freezer element. Excess liquid nitrogen is drained back into its storage container. The freezing operation may be conducted using the open lyophilizer/oven as

Once fully frozen, the fiber mat on the mandrel is transferred to the lyophilizer/oven. A suitable lyophilizer/oven is shown in the Figure and includes a vacuum pump 10, a water vapor trap 12, a pair of butterfly valves 14a and 14b, and a pair of lyophilization chambers 16a and 16b each including a heat source (not shown). In order to ensure uniform heat flux to all of the fibers contained in a lyophilization chamber, all of the fibers are arranged a uniform distance from the heat source. For example, the fibers to be lyophilized can be attached to a vented mandrel which is smaller in diameter than that of the lyophilization chambers. The system is exacusted and lyophilization conducted using the liquid nitrogen cooled water trap 12 until a system pressure of 24 microns is achieved with the fibers warmed to 15-20°C, measured at the thermocouple. These conditions and volatilizing glycerol or acrylamide monomers to any significant extent. The temperature of the fibers must be kept below the eutectic temperature of the monomer solution, in the case of the AmPS monomer composition be kept below the eutectic temperature of the monomer solution, in the case of the AmPS monomer composition the measure is below 100 microns. After the system pressure is below 100 microns, the temperature within the temperature within

When lyophilization is complete, the lyophilizer/oven is isolated from the liquid nitrogen cooled water trap and the vacuum pump. The lyophilizer/oven is then back-filled with dry nitrogen gas to one-half atmosphere total pressure. For certain persulfate initiated polyerizations, a small amount of sulfur dioxide gas is bled in with the nitrogen. The SO_2 gas dissolves in the mixture of monomers remaining on the fibers, with some of the SO_2 being trapped by acid-base reaction with the bicarbonate present in the mixture. This forms sulfite anions which

The lyophilizer/oven is then heated to 50°C for 30 minutes, to allow the polymerization to occur. Following this, the oven is heated to 90°C for 30 minutes, to ensure that any residual accelerator or initiator is reacted. The oven is then heated to 120°C for one hour, to anneal the fibers. Commercially available lyophilizers are generally not available with capability to heat beyond 40°C, therefore customized lyophilizers/ovens are

required and one can be constructed by those skilled in the art to heat to 120°C.

act as the accelerator in the free radical initiator system used for acrylamide hydrogels.

The oven is cooled, vented to atmosphere, and the mat of fibers removed. The mat is now ready for further manufacturing processes which are common to all coating chemistries. The fiber mat is cut and heat-sealed on a trim-sealer into suitable lengths. These lengths can then be inserted into a prepared cartridge shell and the fibers sealed into the cartridge with hot-melt glue, excess fiber length and hot-melt is trimmed off, and the assembled cartridge is now ready.

EXAMPLE 1

the container.

Three sets of hydrogel-coated support membranes, each set including at least three of the membranes, and each set having a different concentration of monomers, were prepared according to the generalized procedure set forth above and utilized to adsorb cytochrome C and IgG to determine capacity of the fibers for each protein. Results are shown in Table 2.

L

09

St

0ε

52

99

09

St

0¢

sε

30

52

50

5 X109 cm3/dyne-sec

'hydroxypropyl cellulose (MW 100,000, DSⁿ3)

methylene-bis-acrylamide

acrylamide

¹ 2,2-acrylamide-2-methylpropane sulfonate

0	Compositi	on of M	onomer	Composition of Monomer Solution (mMoles/liter)	Moles/lit	er)				
		,	4				HPC ⁺	1	IgG µg/cm-	Cyto- chrome C
Run	AmPS	Am²	BAm ³	Run AmPS' Am^2 BAm ³ Glycerin $K_2S_2O_8$ NaHCO ₃ (% w/v)	K ₂ S ₂ O ₈	NaHCO ₃	(% w/v)	å,	fiber	$\mu g/cm-fiber$
A	7.14	7.14 11.6 4.2	4.2	571	0.40 0.40	0.40	0.5	58 ± 7	150 ± 7	420 ± 23
œ	44.7	44.7 78.7 6.7	6.7	571	0.40 0.40	0.40	0.5	55 ± 3	260 ± 14	241 ± 54
C	34.7	34.7 108.7 7.2	7.2	571	0.40 0.40		0.5	109 ± 4	225 ± 25	225 ± 13

TABLE 2

5 61

FP 0 474 617 A1

EXAMPLE 2

This example illustrates the effect of having a surfactant present on the fiber, e.g., HPC, on the deposition of hydrogels onto polysulfone porous hollow fibers. A bare fiber was compared, in terms of protein capacity, with polyacrylamide coated fibers with and without HPC, and also with an HPC-pretreated fiber. Measurements were made on at least three fibers with said without HPC, and also with an HPC-pretreated fiber. Measurements procedure set forth above (the concentration of the imbibing solution being the same as Run B of Example 1) except that for the pretreated fiber, HPC was not included in the imbibing solution. Each run includes a set of at least three membranes. Results are reported in Table 3.

TABLE 3

₹ 53	705	8ī ∓	135	d on fiber	iPC precoate	costing;	SamA	Ð
6 ∓	6	⊅ T ∓	342	er solution	PC in monome	coating;	24mA	Ŧ
8 ∓	91	65 ∓	SIÞ	a	no surfactan	coating;	29mA	Э
-		₹ 75	LE \$			fiber	Bare	a
Cap.	1	၁ ၁ 8- /၁၁ d	qlue XIO ₈					gnu

EXAMPLE 3

32

30

52

50

ςι

This example illustrates the effectiveness of fibers of the present invention, in terms of protein capacity, as compared to those prepared by utilizing evaporative drying as opposed to lyophilization. Using the imbibing solution of Run A of Example 1, two fibers were prepared utilizing the generalized procedure set forth above, except that for one of the fibers the solvent was evaporated by heating as opposed to lyophilizing. The protein capacity of each, as well as the uniformity of flow, was determined by adsorbing proteins onto the coated fibers and slicing the fibers into four equal sections. Results are reported in Table 4.

TABLE 4

Resistan to flow	Bov. IgG (mg/cm)	Cyt.C (µg/cm)	
			Pazilidovi
OL	189	483	Section A
69	725	452	a
† 9	69T	L9†	ວ
98	59 T	T9†	α
			Evaporatively dried
005	7.5	38 ₹	Section A
155	143	978	ਬ
STT	LOT	LLZ	Э
005	€9		σ

Seconds per 5 ml at 1.4 kg/cm

This Example 3 illustrates several points. Most importantly, the fibers prepared according to the present invention have a uniform layer of the hydrogel deposited thereon whereas those which are evaporatively dried have a nonuniform layer. This can be seen by comparing the resistance to flow of the sections of the lyophilized fiber versus that of the fiber prepared utilizing the evaporation method. Note that the resistance to flow for the

fiber prepared utilizing the lyophilization step is uniform throughout the fiber whereas the other fiber has a nonuniform coating resulting in nonuniform flow characteristics. Note also that the binding capacity of each segment of the lyophilized fiber is also uniform and has a much greater capacity than that of the evaporatively dried fiber is extremely high, fiber. In addition, it should be noted that the resistance to flow of the evaporatively dried fiber is extremely high, i.e., has relatively low flow, as compared to the lyophilized fiber.

EXAMPLE 4

This example demonstrates that surfactants other than HPC are suitable for use in the present invention. Two sets of at least three fibers were surface modified according to the general procedure set forth above, except that in one case HPC was utilized and in the other sorbitan trioleate was utilized. For the HPC-containing fibers, the $L_p(X10^9\,\text{cc/dyne-cm})$ was 64 ± 11 and the μ g/cm-fiber of Cytochrome C was 151 ± 13 . For the sorbitan trioleate-containing fiber, L_p was $56\pm10\,\text{ and }\mu$ g Cytochrome C/cm. fiber was 189 ± 20 .

15 EXAMPLE 5

This example illustrates the surface modified membranes of the present invention utilizing different vinyl monomers. In this example, the general procedure described above was utilized except that scrylic acid (AA), quaternized methacrylamide and dimethylaminopropyl methacrylamide were utilized as the monomers. The resulting membranes were tested for liquid permeability and protein capacity. Again, at least three membranes were made for each set. Results are reported in Table 5.

TABLE 5

∓ 5¢ ∓ 32	702 207	BS A BS A	77 7 72 7 70 7 70	69 <i>LL</i>	AUQ AUQ	E D
₽ Т ∓	273	BSA	LT Ŧ	S۷	AMO	ວ
0T ∓	89 †9	Ide	£1 ∓ ₹1 ₹	111 111	AA AA	A A
n-fiber ±0	ity µg/cr Mean	Capac Protein	<u>⊅∓</u> d,	Mean I	Ionic Moiety	Run

 $_{\rm I}$ $_{\rm ID}$ x $_{\rm IO_{\rm 0}}$ cc\q $_{\rm A}$ ue-zec

Claims

- 45 1. A surface modified support membrane comprising a support membrane having a substantially uniform layer of a hydrogel deposited on essentially all of the surface area thereof said hydrogel being formed from a functionalized vinyl monomer polymerized and cross-linked in situ on said support membrane and in the presence of a surfactant.
- 2. The membrane of Claim 1 wherein the support membrane comprises a polymer selected from the group consisting of polysulfone, polyether sulfone, polyetherimide, polypropylene, polyethylene and polyvinylidene fluoride.
- 3. The membrane of Claim 2 wherein said support membrane is porous.
- The membrane of Claim 1 wherein said functionalized vinyl monomer is selected from the group consisting of carboxymethyl acrylamide, sulfopropyl acrylamide, dimethylaminopropyl methacrylamide, trimethylaminopropyl methyacrylamide, vinylimidazole, vinylpyridine, diallyldimethylammonium chloride, NHS-

99

0t

32

30

52

EP 0 474 617 A1

	SOS-COOH, and N-acryloyl-L-histidine.	В
methacryloxy phosphoryl choline, acryloyl-NH-	ylate, N-acryloyl-N-methylglucamine, N-acryloyl-IOA,	эc

- The membrane of Claim 1 wherein said hydrogel is cross-linked through a difunctional vinyl monomer.
- of methylene-bis-acrylamide, N,N'-diacryloyl ethylene diamine and N,N'-diallyltartardiamide. The membrane of Claim 5 wherein said difunctional vinyl monomer is selected from the group consisting .9
- octylphenol sorbitan trioleate hydroxypropyl cellulose, hydrolyzed polyvinyl acetate, and polyvinyl alcohol . ٠٢ The membrane of Claim 1 wherein said surfactant is selected from the group consisting of ethoxylated
- nebis-acrylamide. hydrogel consists of polymerized 2-acrylamido-2-methylpropane sulfonate cross-linked through methyle-The membrane of Claim 1 wherein said support membrane is a porous polysulfone hollow fiber, and said .8
- in situ on said coated support membrane. and a second polymeric material, formed from a functionalized vinyl monomer polymerized and crosslinked adsorbed via hydrophobic interactions onto the surface area thereof to form a coated support membrane A surface modified support membrane comprising a hydrophobic support membrane having a first material
- nylidene fluoride. consisting of polysulfone, polyether sulfone, polyetherimide, polypropylene, polyethylene and polyvi-10. The membrane of Claim 9 wherein said support membrane comprises a polymer selected from the group 50
- hydroxypropylcellulose, hydrolyzed polyvinyl acetate and polyvinyl alcohol. The membrane of Claim 9 wherein said first polymeric material is selected from the group consisting of 92
- DA, methacryloxy phosphoryl choline, acryloyl-NH-RGDS-COOH, and N-acryloyl-L-histidine. 30 moniopropyl methyacrylamide, vinylimidazole, NHS-acrylate, N-acryloyl-N-methylglucamine, N-aryloyllof carboxymethyl acrylamide, sulfopropyl acrylamide, dimethylaminopropyl methacrylamide, trimethylam-12. The membrane of Claim 9 wherein said functionalized vinyl monomer is selected from the group consisting
- vinyl monomer. 13. The membrane of Claim 9 wherein said second polymeric material is cross-linked through a difunctional
- of methylene-bis-acrylamide and N,N-diallyltartardiamide. 14. The membrane of Claim 13 wherein said difunctional vinyl monomer is selected from the group consisting
- crosslinked 2,2-acrylamido-2-methylpropane sulfonate. 0t polymeric material is hydroxypropylcellulose and said second polymeric material is polymerized and 15. The membrane of Claim 9 wherein said support membrane is a porous polysulfone hollow fiber, said first
- vent system including a volatile solvent and a nonvolatile film-forming solvent; 94 prising a functionalized vinyl monomer and a cross-linking agent in a suitable solvent system, said sola) introducing, in the presence of a surfactant, a support membrane into a solution, said solution com-16. A process for surface modifying a support membrane comprising the steps of:
- b) imbibing said support membrane with said solution;
- c) removing excess solution from said support membrane;
- d) lyophilizing said membrane to remove the volatile solvent;
- e) subjecting said membrane to free radical polymerization conditions; and
- recovering said support membrane.

0⊊

32

91

10

g

BNSDOCID: <Eb ____0474617A1_1_>

FP 0 474 617 A1

Бигореап Расепс

BNSDOCID: <Eb__047461781_1_>

EUROPEAN SEARCH REPORT

Application Sumber

þeq ou [,] ot	scument, but publis late in the application for other reasons	T: Theory or princit defects or graffier defining after the filing D: document cited L: document cited L: document cited L: document cited defects of the defects of the document of the document of the defects of the document defects of the docume		ATECORY OF CITED DOC cularly relevant if saken alone entiarly relevant if combined w ment of the same eategory written disclosure mediate document	insq:X insq:Y uoob idoət:A -non:O
.A. = E. R.	DEALS	1661-21-02		HAGUE	THE
Examper		n up for all claims Date of completion of the search	has been draw	The present search report	
B 01 D 69/00 B 01 D 67/00 EECHGICAL FIELDS					
8 01 D 67/00		(GTJ NOITAVON	(ISIS IN	Eb-V-0 405 136 MO-V-3 003 530 Eb-V-0 545 761	A,q A,q
APPLICATION (Int. CLS) CLASSIFICATION OF THE	Relevant to claim		sagessed nue		Category
The state of the s	↓ !	ED TO BE RELEVAN			

	•			÷
,				