Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure

(Amini & Soleimany et al. 2019)

FACT'20

By: Puck de Haan, Paul ten Kaate, Tim van Loenhout, Jan Erik van Woerden

Content

- Introduction
- Method (principles)
- Issues
- Results
- Discussion and conclusion

Fairness

- Classification task (f).
- Notion of fairness:
 - Classifier should be unbiased w.r.t. latent variables.
 - > Every subset of data treated the same.
- Facial recognition subject to algorithmic bias.
 - \triangleright Skewed training data (x)
 - Gender, skin tone, age, etc.

Approach

- Solution: Uncovering bias in dataset.
- Combine VAE and Classifier
 - ➤ Using latent space of data (z)
- Adjust sampling probabilities
- Straightening dataset

Method -- Model

Source: (Amini & Soleimany et al. 2019)

Method -- Adaptive Resampling

Proposed in paper:

```
Require: Training data \{X, Y\}, batch size b

1: Initialize weights \{\phi, \theta\}

2: for each epoch, E_t do

3: Sample z \sim q_{\phi}(z|X)

4: Update \hat{Q}_i(z_i(x)|X)

5: W(z(x)|X) \leftarrow \prod_i \frac{1}{\hat{Q}_i(z_i(x)|X) + \alpha}

6: while iter < \frac{n}{b} do

7: Sample x_{batch} \sim W(z(x)|X)

8: L(\phi, \theta) \leftarrow \frac{1}{b} \sum_{i \in x_{batch}} \mathcal{L}_i(\phi, \theta)

9: Update: [w \leftarrow w - \eta \nabla_{\phi, \theta} \mathcal{L}(\phi, \theta)]_{w \in \{\phi, \theta\}}

10: end while

11: end for
```

Histogram for all examples for latent variable 1

Implementation issues

- Adaptive resampling
- Model architecture
 - Activations
 - Padding
- Loss
 - > Weights
 - > Reconstruction loss
- Latent dimension

$$\mathcal{L}_{TOTAL} = c_1 \underbrace{\left[\sum_{i \in \{0,1\}} y_i \log \left(\frac{1}{\hat{y}_i} \right) \right] + c_2 \underbrace{\left[\|x - \hat{x}\|_p \right]}_{\mathcal{L}_x(x,\hat{x})} + c_3 \underbrace{\left[\frac{1}{2} \sum_{j=0}^{k-1} (\sigma_j + \mu_j^2 - 1 - \log(\sigma_j)) \right]}_{\mathcal{L}_{KL}(\mu,\sigma)}$$

Complete loss function of the model.

Results -- Adaptive Resampling

- ❖ Frequent → low probability
- Rare → high probability

Faces with the highest sampling probability.

Faces with the lowest sampling probability.

Sampling probabilities of training data after debiasing.

Results -- Accuracy / Bias

- Test-set
 - Portrait images
 - ➤ Genders
 - Skin tones
- Baseline model performs best accuracy-wise.
- Measure of bias decreases when using higher α .

	$\mathbb{E}[\mathcal{A}]$: Recall	$Var[\mathcal{A}]$: Measure of Bias
No debias	94.86	33.65
$\alpha = 0.1$	94.52	27.39
$\alpha = 0.05$	93.97	20.52
$\alpha = 0.01$	94.49	11.35
$\alpha = 0.001$	90.61	10.75

Discussion -- Reproducibility

- Reduced bias
- Decreasing overall accuracy
- Missing and infeasible settings

	$\mathbb{E}[\mathcal{A}]$	Var[A]
	(Precision)	(Measure of Bias)
No Debiasing	95.13	28.84
$\alpha = 0.1$	95.84	25.43
$\alpha = 0.05$	96.47	18.08
$\alpha = 0.01$	97.13	9.49
$\alpha = 0.001$	97.36	9.43

	$\mathbb{E}[\mathcal{A}]$: Recall	$Var[\mathcal{A}]$: Measure of Bias
No debias	92.39	46.20
$\alpha = 0.1$	91.78	36.39
$\alpha = 0.05$	90.76	32.33
$\alpha = 0.01$	90.52	22.00
$\alpha = 0.001$	85.22	22.42

Paper results

Our results

Discussion -- Posterior collapse

Mean over reconstruction loss

Sum over reconstruction loss

Conclusion

- Not 100% reproducible
- Only with severe restrictions

Sources

Alexander Amini, Ava P. Soleimany, Wilko Schwarting, Sangeeta N. Bhatia, and Daniela Rus. 2019. Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure (*AIES '19*). Association for Computing Machinery, New York, NY, USA, 289–295.