Artificial Intelligence in Train Scheduling Problems

Kieran Mollov

Manchester Metropolitan University November 17, 2020

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study: Manchester

Project Motivation

Optimisation of train networks can provide return on all optimality factors; profit, timeliness or robustness. Train networks provide a unique problem where infrastructure expansions are complicated, expensive and disruptive. This leads to largely scheduling based problems, which this project is based upon.

Brief Introduction

Figure: Project Outline

Brief Introduction

Figure: Intended Project Outline

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study : Manchester

RDF - Implementation

Figure: Rail Data Feeds Program Flow

RDF - Purpose

- View the Network Live
- Save Network Statistics
- Create Real World Test Sets

RDF - Outcomes

- Network Rail Listener
- Huxley Connector
- Network Rail Historic Database
- REST API
- Website

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study: Manchester

MILP Model - TSP

Objective Function

$$\sum_{n=1}^{N} A_{n,M}^{s} - D_{n,0}^{s}$$

Example Constraints:

$$D_{n,m}^r \leq A_{n+1,m}^r - H$$

$$A_{n,m+1}^r \geq D_{n,m}^r + E_m$$

MILP Model - TRSP

Objective Function

$$\sum_{n=1}^{N} A_{n,M}^{r} - A_{n,M}^{o}$$

Example Constraints:

$$D_{n,m}^r = D_{n,m}^0$$

$$\delta_{\mathsf{D}} > 1, \delta_{\mathsf{t}} < \mathsf{D}_{\delta_{\mathsf{n}}}^{\delta_{\mathsf{D}}-1} + \mathsf{E}_{\delta_{\mathsf{D}}-1} \to \dots$$

$$\mathbf{A}_{\delta_{\mathbf{n}},\delta_{\mathbf{D}}}^{\mathbf{r}} \geq \mathbf{D}_{\delta_{\mathbf{n}},\delta_{\mathbf{D}}-1}^{0} + \delta_{\mathbf{d}} + \mathbf{E}_{\delta_{\mathbf{d}}-1}$$

MILP Model - TRSP (Passenger Weighted)

Objective Function

$$\sum_{n=1}^{N} P_{n,M}^{c} A_{n,M}^{r}$$

Example Constraints:

$$C - P_{n,m-1}^{l} < 100 \rightarrow P_{c}^{n,m} \le 20\lambda_{n,m}$$

 $C - P_{n,m-1}^{l} \ge 100 \rightarrow P_{c}^{n,m} \le 50\lambda_{n,m}$
 $P_{n,m}^{c} \le D + n, m^{r} - 50A_{n,m}^{r}$

MILP Model - Outcomes

- MiniZinc TRSP Standard Model
- Series of Associated FlatZinc Data Files
- Minizinc TRSP Passenger Weighted Model
- Series of Assocaited FlatZinc Data Files

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study : Manchester

GA - General Algorithm

```
P ← generatePopulation[100]

while endCondition = false do

P ← selection(P)

P ← crossover(P)

P ← mutation(P)

B ← fitness(P)

if B == optimal then

endCondition ← true

return B,P
```

⊳ Get 100 random variables

GA - TSP Framework

	Phenotype					
	toc	line	unit	origin	destination	intermediate
Bit Length	2	8	8	12	12	12 n
Representations	4	256	256	4096	4096	$n(2^{12})$

GA - Basic Scenario

Figure: Toy Example Map

GA - Basic Scenario

GA - Basic Scenario

Figure: Toy Example Combined Stages

GA - Medium Scenario

Figure: Small Example Map

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study: Manchester

SBB Challenge

Figure: Crowd AI SBB Challenge

SBB Challenge

ID	Name	Trains	Routing	Difficulty		
01	dummy	4	V.Few	V.Simple		
02	a_little_less_dummy	58	Few	Simple		
03	FWA_0.125	143	Few	Simple		
04	V1.02_FWA_without_obstruction	148	Few	Medium		
05	V1.02_FWA_with_obstruction	149	Medium	Medium*		
06	V1.20_FWA	365	High	V.Hard		
07	V1.22_FWA	467	High	V.Hard		
08	V1.30_FWA	133	V.High	V.Hard		
09	ZUEZGCH_06001200			287	VV.High	VV.Hard

Table: Description of Problem Scenarios

RL - Delayed Q-Learning

Modelling a PACMDP Update Function

$$Q_{t+1}(s,a) = \frac{1}{m} \sum_{i=1}^{m} (r_{k_i} + \gamma V_{k_i}(s_{k_i})) + \epsilon_1$$

```
Algorithm 1 Delayed O-Learning
  function DLO(\sim S A M c_1)
      for all (s, a) do
          O(s, a) \leftarrow 1/(1 - \gamma)
          U(s, a) \leftarrow 0
          l(s, a) \leftarrow 0
          t(s, a) \leftarrow 0
          LEARN(s, a) \leftarrow TRUE
      while LEARN(s, a) =TRUE do
          U(s, a) \leftarrow U(s, a) + r + \gamma \max_{a'} Q(s', a')
          l(s, a) \leftarrow l(s, a) + 1
          if l(s, a) = m then
              if Q(s,a) - U(s,a)/m \ge 2\epsilon_1 then
                   O(s,a) - U(s,a)/m + \epsilon_1
              else if t(s, a) \ge t^* then
                   LEARN(s, a) \leftarrow FALSE
              t(s, a) \leftarrow t
              \dot{U}(s,a) \leftarrow 0
              l(s, a) \leftarrow 0
          if t(s, a) < t^* then LEARN(s, a) \leftarrow TRUE
```

Figure: Delayed Q-Learning

RL SBB - Objective Function

$$\begin{split} \frac{1}{60} \times \left[\sum_{\mathcal{S}, \mathcal{R}, \mathcal{R} \mathcal{S}} \textit{weightIn}_{\textit{rs}} \times \max \left(0, \left(t^{\textit{entry}}_{\textit{s,r,rs}} - \textit{inLat}_{\textit{s,rs}} \right) \right) \right. \\ \left. + \textit{weightOut}_{\textit{rs}} \times \max \left(0, \left(t^{\textit{exit}}_{\textit{s,r,rs}} - \textit{outLat}_{\textit{s,rs}} \right) \right) \right] \\ \left. + \sum_{\mathcal{S}, \mathcal{R}, \mathcal{R} \mathcal{S}} \textit{p}_{\textit{s,rs}} \times \textit{\beta}_{\textit{s,rs}} \end{split}$$

RL SBB - Discrete Event Simulation

Algorithm 3 tSim Control Functions

```
procedure RUN(self) t \leftarrow \min \text{Time}
\text{while } t < (\max \text{Time} + 10) \text{ do}
\text{for } e \text{ in event}[t] \text{ do}
\text{runNextTrain}[e]
t \leftarrow t + 1
\text{return calculateScore}()
\text{procedure RUNNExtTrain}(\text{self,e})
\text{if } e = type(Node) \text{ then runNode}()
\text{else if } e = type(Resource) \text{ then del e.resource}
\text{else if } e = type(Station) \text{ then } nextEvent \leftarrow \text{new}event[e]
```

RL SBB - Reinforcement Learning Applied Algorithm

```
Algorithm 5 tSim.QTable Class Functions
  procedure GETACTION(self.o.s)
                                            Detting Action for any option or state
      if length(o) = 1 return o[0] then
      if rand; \epsilon then
                                ▷ Uniform Random Package, for better convergence
         a \leftarrow rand(o)
     else
                                                                  m \leftarrow -\infty
                                                             ▶ Action to be performed
         a \leftarrow \text{null}
         for all o do
             v \leftarrow qval(s, o[i])

    p qval is predicted reward of action o[i]

             if v > m then
                 a \leftarrow c
                 m \leftarrow v
      return a
  procedure UPDATE(self, S_n, S_{n-1}, A, r)
                                                                  ▷ Updating Q-Values
                                                                       ▷ Previous Value
     p \leftarrow qval(S_{n-1}, A)
      m \leftarrow 0
      if qval(S_n) > 0 then
                                                               ▷ If exists, update max
         m \leftarrow max(qval(S_n))
      v \leftarrow (1 - \alpha) * p + \alpha * (r + \gamma * m)
                                                                           New Value
                                                ▷ Update Q-Table with new Q-Value
      return v
```

RL SBB - Results

	Solving System						
ID	01			02	03		
	ObjVal	Time	ObjVal	Time	ObjVal	Time	
01	0	5.452	0	4.296	0	7.590	
02	0.43	87	0.43	72.087	0.43	77.042	
03	0.86	45	0.96	198.273	0.11	200.234	
04	24.94	430	24.94	439.121	024.94	435.945	
05	n/a	1800	n/a	1800	n/a	1800	
06	207.12	1355	207.12	1174.690	207.12	1750.154	
07	456.60	1800	442.33	1800	467.10	1800	
80	153.23	1800	122.70	1800	233.6	1800	
09	138.95	1800	38.25	1800	43.95	1800	

Table of Contents

- 1 Rail Data Feeds
- 2 Mixed Integer Linear Programming
- 3 Genetic Algorithms
- 4 Reinforcement Learning
- 5 Case Study: Manchester

Manchester Case Study - Method

- Junction TPH Analysis
- Station Timing Data
- PreviousCaseStudies

Manchester Case Study - Key Outcomes

Final Words - Questions

Brief Discussion and Q&A

(a) Full Research Paper

(b) Full Slides

(c) Full Poster