3. x_1 = Number of hours of Process 1 and x_2 = Number of hours of Process 2. Then the appropriate LP is

min z = $4x_1 + x_2$ s.t. $3x_1 + x_2 \ge 10$ (A constraint) $x_1 + x_2 \ge 5$ (B constraint) $x_1 \ge 3$ (C constraint) $x_1 x_2 \ge 0$

AB is $3x_1 + x_2 = 10$. CD is $x_1 + x_2 = 5$. EF is $x_1 = 3$. The feasible region is shaded. Dotted line is isocost line $4x_1 + x_2 = 24$. Moving isocost line down to left we see that H (where B and C constraints intersect) is optimal. Thus optimal solution to LP is $x_1 = 3$, $x_2 = 2$, z = 4(3) + 2 = \$14.

5. Let x_1 = desks produced, x_2 = chairs produced. LP formulation is max $z = 40x_1 + 25x_2$

s.t.
$$-2x_1 + x_2 \ge 0$$

 $4x_1 + 3x_2 \le 20$

 $x_1, x_2 \ge 0$

Graphically we find the optimal solution to be $x_1 = 2$, $x_2 = 4$ and z = 180.

Section 3.3

1. AB is $x_1 + x_2 = 4$. CD is $x_1 - x_2 = 5$. From graph we see that there is no feasible solution (Case 3).

is $z = 4x_1 + x_2 = 4$. Feasible region is bounded by AEDF. Since isoprofit line is parallel to AE, entire line segment AE is optimal. Thus we have alternative or multiple optimal solutions.

3. AB is $x_1 - x_2 = 4$. AC is $x_1 + 2x_2 = 4$. Feasible region is bounded by AC and infinite line segment AB. Dotted line is isoprofit line z = 0. To increase z we move parallel to isoprofit line in an upward and `leftward' direction. We will never entirely lose contact with the feasible region, so we have an unbounded LP (Case 4).

4. AB is $2x_1 + x_2 = 6$. CD is $x_1 + 3x_2 = 9$. The feasible region is bounded by AECF. Dotted line is $3 = 3x_1 + x_2$. Moving up and to right (and parallel to isoprofit line) we find that point A is optimal. A is where constraints $2x_1 + x_2 \le 6$ and $x_2 \ge 0$ are binding.

Thus E has $2x_1 + x_2 = 6$ and $x_2 = 0$. Optimal solution to the LP is $x_1 = 3$, $x_2 = 0$, z = 9.

