

Concept Bottleneck with Visual Concept Filtering for Explainable Medical Image Classification

MICCAI2023

CANADA

Injae Kim*, Jongha Kim*, Joonmyung Choi, Hyunwoo J. Kim

Motivation

- Concept Bottleneck Model makes the image classification process interpretable by leveraging human-understandable concepts as intermediate targets.
- Recent works that automatically generate concepts by prompting Large Language Model do not consider whether a concept contains visual information or not.
- Non-visual concepts do not align with images, therefore providing a noisy signal that hinders proper training.
- We propose **visual activation score** $\mathcal{V}(c)$, that can effectively prune non-visual concepts.

basal cell carcinoma

	baseline	ours		
Top 1:	early detection and treatment of skin lesions can help prevent skin cancer	surrounded by red, inflamed skin		
Top 2:	more advanced lesions may be darker	in some cases, the skin lesions may be darker in color		
Top 3:	most common type of precancerous lesion in the united states	a type of skin cancer that typically appears as a small, pearly-white or		
Pred:	actinic keratoses (X)	basal cell carcinoma (O)		

• Proposed visual activation score helps filter visually irrelevant concepts and contributes to better classification results.

Results on HAM10000 dataset

Method	Number of Shots						
Method	1	2	4	8	16	Full	
Linear Probe*	44.4	58.5	44.9	49.0	61.5	82.5	
LaBo[8]*	36.5	44.9	44.5	43.0	58.5	80.8	
$LaBo[8]^* + Ours$	53.2 (+16.7)	45.4 (+0.5)	47.4 (+2.9)	46.1 (+3.1)	61.4 (+2.9)	81.0(+0.2)	

• Visual activation score makes a consistent gain in accuracy under every single setting compared to the baseline.

Training Pipeline

Analysis

skin

5 concepts with the highest $\,\mathcal{V}(c)$

- 5 concepts with the lowest $\,\mathcal{V}(c)$
- dark brown or black mole with irregular borders
- central area of darker pigmentationsmall, pearly-white or flesh-colored bump on the
- dark brown or black lesion with irregular borders
- nose, ears, lips, and hands

- others may require medical or surgical treatment
- thought to be caused by a combination of genetic and environmental factors
- may not become apparent for years
- considered to be low-risk
- at least one in their lifetime

$$\mathcal{V}(c) = \operatorname{stdev}(\{\mathcal{T}(c) \cdot \mathcal{I}(x)\}_{x \in X})$$

• Visual activation score is defined as the standard deviation of CLIP scores between the concept and unlabeled images. CLIP scores of visual concepts may largely vary depending on the image.