Álgebra Lineal I

Nota importante: El espacio máximo para escribir las respuestas es de dos folios por las dos caras. Si se envían más de dos folios, solamente se leerán los dos primeros.

Problema1

Calcular las bases de los subespacios de \mathbb{R}^4 S+T y $S\cap T$, siendo $S=\{(x_1,x_2,x_3,x_4)\mid x_1-2x_2+x_4=0\}$ y T el subespacio vectorial generado por los vectores (1,1,1,1) y (2,0,1,2). (3 puntos)

Problema 2

- a) Sea $f: E \to F$ una aplicación lineal. Demostrar que las siguientes afirmaciones son equivalentes: (i) F conserva la independencia lineal: si u_1, \ldots, u_p son vectores independientes en E, sus imágenes $f(u_1), \ldots, f(u_p)$ lo son en F. (ii) El núcleo de f es trivial: $ker(f) = \{0\}$. (iii) f es inyectiva. (2 puntos)
- b) Discutir y calcular las soluciones del sistema de n ecuaciones con n incógnitas

$$(1-n)x_1 + x_2 + \dots + x_n = 0$$

$$x_1 + (1-n)x_2 + \dots + x_n = 0$$

$$\dots = 0$$

$$x_1 + x_2 + \dots + (1-n)x_n = 0$$

(2 puntos)

Problema 3

Sea $B_1 = \{u_1, u_2, u_3\}$ y $B_2 = \{v_1, v_2, v_3\}$ dos bases de \mathbb{R}^3 y sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la aplicación lineal tal que $f(u_1 - u_2) = 2v_1 - v_2 + v_3$, $f(2u_2 + u_3) = v_1 - 3v_2$, $f(-u_1 - u_3) = 5v_3$. Determinar la matriz asociada a f respecto a la base B_1 en el espacio de partida y la base B_2 en el espacio de llegada. (3 puntos)