Khôlles de Mathématiques - Semaine 6

Kylian Boyet, George Ober, Félix Rondeau, Hugo Vangilluwen (relecture) 19 novembre 2023

1 Liens entre le graphe de f et ceux de g et h définies par g(x) = af(x) et h(x) = f(x+a).

Démonstration.

FIGURE 1 – Lien entre le graphe de f et de g. FIGURE 2 – Lien entre le graphe de f et de h.

2 Liens entre le graphe de f et ceux de g et h définies par g(x) = f(ax) et h(x) = f(a-x).

 $D\'{e}monstration.$

FIGURE 3 – Lien entre le graphe de f et de g. FIGURE 4 – Lien entre le graphe de f et de h.

3 Présentation exhaustive de la fonction arccos.

 $D\acute{e}monstration$. Premièrement, la dite fonction est la bijection réciproque de la fonction $\cos \left|_{[0,\pi]}^{[-1,1]}\right|$. D'où :

$$\arccos = \begin{vmatrix} [-1,1] & \to & [0,\pi] \\ x & \mapsto & \left(\cos^{[-1,1]}_{[0,\pi]}\right)^{-1}(x) \end{vmatrix}$$

Ainsi, pour $x \in [-1,1]$, $\arccos(x)$ est l'unique solution de l'équation d'inconnue $\theta \in [0,\pi]$,

$$\cos(\theta) = x$$

. Il découle alors naturellement des propriétés héréditairement acquises de $\cos \left| \begin{smallmatrix} [-1,1] \\ [0,\pi] \end{smallmatrix} \right|$:

- 1. arccos est strictement décroissante sur [-1, 1].
- 2. $arccos \in C^0([-1, 1], [0, \pi]).$
- 3. $\operatorname{arccos} \in \mathcal{D}^1(] 1, 1[,]0, \pi[).$
- 4. $i\arccos'(x) = -\frac{1}{\sqrt{1-x^2}}$ pour tout $x \in]-1,1[$.
- 5. arccos admet deux demi-tangentes verticales en -1 et 1.

Graphe de arccos :

FIGURE 5 – arccos en violet, cos en vert et la première bissectrice en bleu.

4 Présentation exhaustive de la fonction arctan.

Démonstration. Premièrement, la dite fonction est la bijection réciproque de la fonction $\tan \left|_{]-\frac{\pi}{2},\frac{\pi}{2}[}$. D'où :

$$\arctan = \begin{vmatrix} \mathbb{R} & \to & \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[\\ x & \mapsto & \left(\tan \right|_{\right] - \frac{\pi}{2}, \frac{\pi}{2}} \right]^{-1} (x)$$

Ainsi, pour $x \in \mathbb{R}$, $\arctan(x)$ est l'unique solution de l'équation d'inconnue $\theta \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$,

$$\tan(\theta) = x$$

Il découle alors naturellement des propriétés héréditairement acquises de $\tan \left|_{\left|-\frac{\pi}{2},\frac{\pi}{2}\right|}\right|$:

- 1. arctan est impaire.
- 2. $\arctan \in \mathcal{C}^0\left(\mathbb{R}, \left] \frac{\pi}{2}, \frac{\pi}{2}\right[\right)$.
- 3. $\arctan \in \mathcal{D}^1(\mathbb{R},]-\frac{\pi}{2},\frac{\pi}{2}[).$
- 4. $\arctan'(x) = \frac{1}{1+x^2}$ pour tout $x \in \mathbb{R}$.

Graphe de arctan :

FIGURE 6 – arctan en violet, tan en vert et la première bissectrice en bleu.

On a aussi (visible sur le graphe):

$$\forall x \in \mathbb{R}_+, \quad \arctan(x) \leqslant x.$$

Et enfin:

$$\forall x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \left\{ \begin{array}{ll} \frac{\pi}{2} & \text{si } x > 0 \\ -\frac{\pi}{2} & \text{si } x < 0. \end{array} \right.$$

5 2 preuves de $\arcsin(x) + \arccos(x) = \frac{\pi}{2} \text{ sur } [-1,1]$, dont une basée sur une interprétation géométrique du cercle trigonométrique.

 $D\acute{e}monstration$. On remarque sur la figure 7 que la droite d'équation polaire $\theta=\frac{\pi}{4}$ est axe de symétrie de la figure. On a donc

$$\frac{\arcsin x + \arccos x}{2} = \frac{\pi}{4}$$

FIGURE 7 – Illustration de la relation $\arccos x + \arcsin x = \frac{\pi}{2}$ pour $x \ge 0$ et $x' \le 0$. En violet le domaine de définition de arccos et en bleu celui de arcsin.

Preuve formelle : Soit $x \in [-1,1]$. Posons $\varphi = \arcsin(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Ainsi :

$$\arcsin(x) + \arccos(x) \ = \ \varphi + \arccos(\sin(\varphi)) \ = \ \varphi + \arccos\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right),$$

or $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ donc $\frac{\pi}{2} - \varphi \in [0, \pi]$ d'où arccos $\left(\cos\left(\frac{\pi}{2} - \varphi\right)\right) = \frac{\pi}{2} - \varphi$ si bien que :

$$\arcsin(x) + \arccos(x) = \varphi + \frac{\pi}{2} - \varphi = \frac{\pi}{2}.$$

Étude analytique rapide des fonctions cosh et sinh.

Démonstration.

• Domaine de définition et symétries : sinh et cosh sont définies sur R. De plus,

$$(i) \ \forall x \in \mathbb{R}, -x \in \mathbb{R},$$

(i)
$$\forall x \in \mathbb{R}, -x \in \mathbb{R},$$

(ii) $\forall x \in \mathbb{R}, \begin{cases} \sinh(-x) &= \frac{e^{-x} - e^x}{2} &= -\frac{e^x - e^{-x}}{2} &= -\sinh(x) \\ \text{et} \\ \cosh(-x) &= \frac{e^{-x} + e^{-(-x)}}{2} &= \frac{e^x + e^{-x}}{2} &= \cosh(x). \end{cases}$

Nous les étudierons sur \mathbb{R}_+ et pour les obtenir les graphes (\mathcal{C}_{sinh} et \mathcal{C}_{cosh}) de ces fonctions sur \mathbb{R} à partir de ceux $(\mathcal{C}_{\sinh}^+$ et $\mathcal{C}_{\cosh}^+)$ obtenus sur \mathbb{R}_+ , nous le complèterons en traçant les images de ces graphes par la symétrie centrale s de centre O et par la réflexion r d'axe (O, \overrightarrow{J}) :

$$C_{\sinh} = C_{\sinh}^{+} \cup s\left(C_{\sinh}^{+}\right)$$
 et $C_{\cosh} = C_{\cosh}^{+} \cup r\left(C_{\cosh}^{+}\right)$

Variations: La fonction $\sinh' = \cosh$ est strictement positive sur \mathbb{R} donc \sinh est strictement croissante sur \mathbb{R} . On en déduit alors le signe de sinh = \cosh' et donc les variations de \cosh :

x	$-\infty$	0	+∞
$\cosh' x = \sinh x$	_	0	+
cosh	+∞		+∞
$\sinh'(x) = \cosh x$	+		+
sinh	$-\infty$		+∞

• Branches infinies en $+\infty$ et position relative de $C_{\rm sinh}$ et $C_{\rm cosh}$.

$$\frac{\cosh(x)}{x} = \underbrace{\frac{e^x}{x}}_{x \to +\infty} + \underbrace{\frac{e^{-x}}{x}}_{x \to +\infty} \xrightarrow{x \to +\infty} 0$$

 ${\rm Donc}\ {\bf le}\ {\bf graphe}\ {\bf de}\ {\bf cosh}\ {\bf admet}\ {\bf une}\ {\bf branche}\ {\bf parabolique}\ {\bf de}\ {\bf direction}\ {\bf asymptotique}$ $(O, \overrightarrow{\jmath})$. De plus,

$$\forall x \in \mathbb{R}, \quad \cosh(x) - \sinh(x) = e^{-x} \xrightarrow[x \to +\infty]{} 0^+$$

Ainsi, les graphes des deux fonctions se rapprochent l'un de l'autre arbitrairement près lorsque $x \to +\infty$, et le graphe de cosh est au-dessus de celui de sinh.

Tangente au graphe de sinh à l'origine et position relative. Posons l'application

$$g \mid \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sinh(x) - x \end{array}$$

Elle est dérivable sur son ensemble de définition, sa dérivée est positive sur cet intervalle $(\forall x \in \mathbb{R}_+, g'(x) = \cosh x - 1 \geqslant 0)$, et g(0) = 0 donc le graphe de sinh est situé au dessus de sa tangente sur \mathbb{R}_+ .

Par imparité de la fonction sinh, la position relative courbe / tangente s'inverse si bien que l'origine est un point d'inflexion du graphe de sinh.

7 Calcul de $\int_0^{2\pi} e^{imt} dt$ en fonction de $m \in \mathbb{Z}$. En Déduire qu'une fonction polynomiale nulle sur un cercle centré en l'origine a tous ses coefficients nuls.

 $D\acute{e}monstration$. Soit $m \in \mathbb{Z}$ fixé quelconque. Calculons

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt$$

 \star Si $m \neq 0$:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \left[\frac{e^{mt}}{im} \right]_0^{2\pi}$$
$$= \frac{1}{2\pi} \left(\frac{1}{im} - \frac{1}{im} \right) = 0$$

 \star Si m=0:

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \frac{1}{2\pi} \int_0^{2\pi} dt = \frac{2\pi}{2\pi} = 1$$

Donc

$$\frac{1}{2\pi} \int_0^{2\pi} e^{imt} dt = \begin{cases} 1 \text{ si } m = 0\\ 0 \text{ si } m \neq 0 \end{cases}$$

Soit $n \in \mathbb{N}$ et $(a_0, ..., a_n) \in \mathbb{C}^{n+1}$ fixés quelconques. Posons, pour tout $z \in \mathbb{C}$, $P(z) = \sum_{k=0}^{n} a_k z^k$. Soit $s \in \mathbb{Z}$ fixé quelconque.

$$\begin{split} \frac{1}{2\pi} \int_0^{2\pi} P(re^{it}) e^{-ist} \mathrm{d}t &= \frac{1}{2\pi} \int_0^{2\pi} \left(\sum_{k=0}^n a_k (re^{it})^k \right) e^{-ist} \mathrm{d}t \\ &= \sum_{k=0}^n \frac{a_k r^k}{2\pi} \underbrace{\int_0^{2\pi} e^{it(k-s)} \mathrm{d}t}_{= \begin{cases} 0 & \text{si } k \neq s \\ 1 & \text{sinon} \end{cases}}_{= \begin{cases} 0 & \text{si } s \notin [0, n] \\ a_s t^s & \text{sinon} \end{split}$$

Supposons à présent qu'il existe un cercle centré en l'origine sur lequel P est identiquement nulle. Notons $R \in \mathbb{R}_+^*$ le rayon d'un tel cercle. Alors,

$$\forall t \in \mathbb{R}, P(Re^{it}) = 0$$

donc

$$\forall s \in \mathbb{Z}, \frac{1}{2\pi} \int_0^{2\pi} P(Re^{it}) e^{-ist} dt = \frac{1}{2\pi} \int_0^{2\pi} 0 dt = \frac{1}{2\pi} [1]_0^{2\pi} = 0$$

or, nous avons vu que

$$\forall s \in [0, n], \frac{1}{2\pi} \int_0^{2\pi} P(Re^{it}) e^{-ist} dt = a_s R^s$$

donc

$$\forall s \in [0, n], a_s R^s = 0 \quad \text{donc} \quad \forall z \in [0, n], a_s = 0$$

ainsi, P est la fonction polynomiale nulle sur \mathbb{C} .

8 Technique de l'intégration par parties.

Démonstration.

$$\int_a^b u'(t)v(t)dt = u(b)v(b) - u(a)v(a) - \int_a^b u(t)v'(t)dt$$

Démonstration : il suffit de reconnaître un terme issu de la dérivée d'un produit de fonctions :

$$(uv)' = u'v + uv' \implies u'v = (uv)' - uv'$$

d'où:

$$\begin{split} \int_a^b u'(t)v(t)dt &= \int_a^b ((uv)'(t)-u(t)v'(t))dt \\ &= \int_a^b (uv)'(t)dt - \int_a^b u(t)v'(t)dt \text{ (linéarité de l'intégrale)} \\ &= \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt \\ &= u(b)v(b)-u(a)v(a) - \int_a^b u(t)v'(t)dt \end{split}$$

La preuve sera suivie d'exemples explicites aux choix de l'examinateur.

9 Technique du changement de variable parties.

 $D\'{e}monstration.$

$$\int_{\phi(a)}^{\phi(b)} f(s)ds = \int_{\substack{s=\phi(u)\\ds=\phi'(u)du}} \int_{a}^{b} f(\phi(u))\phi'(u)du$$

Démonstration : il suffit de reconnaître la dérivée d'une composée de fonctions. En effet, en notant F une primitive de f sur I (ce qui a bien un sens car f est continue sur I),

$$\begin{split} \int_a^b f(\phi(u))\phi'(u)du &= & \left[(F\circ\phi)(u) \right]_a^b \\ &= & F(\phi(b)) - F(\phi(a)) \\ &= & \int_{\phi(a)}^{\phi(b)} f(s)ds \end{split}$$

La preuve sera suivie d'exemples explicites aux choix de l'examinateur.

10 Montrer que, pour f T-périodique sur \mathbb{R} , pour tout $a \in \mathbb{R}$, $\int_a^{a+T} f(t) dt = \int_0^T f(t) dt$.

 $D\acute{e}monstration.$