## **Statistical Independence**

Statistical independence refers to a situation in which two events or random variables do not influence each other in any way.

To understand this better, let us take as an example two statistical variables  $(X \ {
m and} \ Y)$  within a population

| X/Y         | Thin | Fat | Normal | Maringal(Y) |
|-------------|------|-----|--------|-------------|
| Low         | 5    | 10  | 15     | 30          |
| Med         | 5    | 10  | 15     | 30          |
| High        | 10   | 10  | 20     | 40          |
| Marginal(X) | 20   | 30  | 50     | /           |

X: height Y: weight

If we look at the first column, we find the height values fixed by weight. This conditioning is called **Conditional Distribution** and is represented as:

$$Y \mid X = x_i \qquad \qquad \sum_i Y \mid X = x_i = ext{Marginal of Y}$$

## **Various definitions of Statistical Independence**

- If through a conditional distribution the distributions of each section do not change then we are in a case of independence.
- If the distribution of each column and row has equal relative frequency, then the two variables are independent.
- ullet  $ig(n_{ij}$  is an element in (X,Y) distribution

| X/Y   | $y_1$ | • • • | $y_i$         |       | $y_n$ | ТОТ        |
|-------|-------|-------|---------------|-------|-------|------------|
| $x_1$ |       |       |               |       |       | :          |
| :     |       |       |               |       |       | •          |
| $x_i$ |       |       | $n_{ij}$      |       |       | $n_{i}$ .  |
| i     |       |       |               |       |       | :          |
| $x_n$ |       |       |               |       |       | :          |
| TOT   | • • • | • • • | $n_{\cdot j}$ | • • • | • • • | $\cdots n$ |

We can also see independence in the following way:

$$rac{n_{ij}}{n_{\cdot i}} = rac{n_{i\cdot}}{n}$$

Where:

$$rac{n_{ij}}{n_{\cdot j}} = f_{(X|Y=y_i)}$$

$$rac{n_{i\cdot}}{n}=f_{(X=x_i)}$$

We can therefore conclude that if this relationship is true:

$$f_{(X|Y=y_i)} = f_{(X=x_i)}$$

then X and Y are independent.

This also takes up the concept of **Mathematical Independence**:

two events A and B are independent if the joint probability of the two events is equal to the product of the probabilities of the individual events:

$$P(A \cap B) = P(A) \cdot P(B)$$

For random variables X and Y, their independence implies that the joint distribution P(X,Y) is the product of the marginal distributions P(X) and P(Y).

## **Donsker Distribution**

The Donsker Distribution, named after Monroe Donsker, is closely related to the invariance principle or Donsker's theorem. This theorem is fundamental in probability theory and states that a properly normalized sum of random variables (like those in a random walk) converges to a Brownian motion in the limit as the number of steps goes to infinity.

In a Random Walk Donsker's theorem provides a bridge between discrete random walks and continuous processes. It states that the path of a random walk, when rescaled appropriately, converges to a Brownian motion as the number of steps increases.

Statistical Graphs and Visualization: Donsker's theorem is valuable in visualizations because it allows analysts to interpret the discrete paths of a random walk as approximations of a continuous Brownian motion.

## **Graphical Differences**

In this section we can see graphical differences between a classic random walk and one in which reduction is applied:



As we can see, the variance in the second case is smaller than the variance in the first graph. This is due to the scaling effect predicted by the Donsker's distribution.