Diamond Price Estimation

Kutay Erkan

25.12.2018

The Dataset

- 1 target
- 10 features
 - Color → D: best, J: Worst
 - Clarity \rightarrow FL (Flawless), IF, VVS1, VVS2, VS1, VS2, SI1, SI2, I1, I2, I3

carat	cut	color	clarity	depth	table	price	х	у	Z
0.50	Premium	Е	SI1	62.6	56.0	1314	5.07	5.06	3.17
0.80	Premium	Е	VS1	61.7	58.0	3967	5.98	5.95	3.68
0.70	Fair	Н	VS1	62.0	73.0	2100	5.65	5.54	3.47
0.32	Premium	G	WS2	60.8	59.0	730	4.41	4.44	2.69
	Ideal								
0.70	Ideal	Е	SI1	60.2	57.0	2575	5.78	5.82	3.49
0.38	Ideal	I	SI1	61.6	57.0	626	4.62	4.66	2.86
0.71	Very Good	Н	SI1	62.2	56.0	2188	5.72	5.76	3.57
0.59	Very Good	D	SI1	62.8	57.0	174 3	5.32	5.38	3.36
0.30	Very Good	Е	VS2	62.9	58.0	658	4.22	4.24	2.66

df['volume'] = df['x'] * df['y'] * df['z']

df['volume'] = df['x'] * df['y'] * df['z']

• df['volume'] = df['x'] * df['y'] * df['z']

df['root_price'] = np.cbrt(df['price'])

Exploratory Analysis

carat -	1	-0.13	-0.29	-0.35	0.028	0.18	0.92	0.98	0.98	0.98	1	0.94
cut -	-0.13	1	0.021	0.19	-0.22	-0.43	-0.053	-0.13	-0.13	-0.15	-0.12	-0.08
color -	-0.29	0.021		-0.026	-0.047	-0.026	-0.17	-0.27	-0.27	-0.27	-0.29	-0.17
darity -	-0.35	0.19	-0.026	1	-0.068			-0.37	-0.37	-0.38	-0.35	-0.2
depth -	0.028	-0.22	-0.047	-0.068	1	-0.3	-0.011	-0.025	-0.028	0.097	0.011	-0.0022
table -	0.18	-0.43	-0.026		-0.3	1	0.13	0.2	0.19	0.16	0.17	0.15
price -	0.92	-0.053	-0.17	-0.15	-0.011	0.13	1	0.89	0.89	0.88	0.92	0.95
х -	0.98	-0.13	-0.27	-0.37	-0.025	0.2	0.89	1	1	0.99	0.98	0.96
у -	0.98	-0.13	-0.27	-0.37	-0.028	0.19	0.89	1	1	0.99	0.98	0.96
z -	0.98	-0.15	-0.27	-0.38	0.097	0.16	0.88	0.99	0.99	1	0.98	0.95
volume -	1	-0.12	-0.29	-0.35	0.011	0.17	0.92	0.98	0.98	0.98	1	0.95
root_price -	0.94	-0.08	-0.17	-0.2	-0.0022	0.15	0.95	0.96	0.96	0.95	0.95	1
•	carat -	aut -	color -	darity -	depth -	table -	price -	×	у-	- 2	volume -	root_price -

- 0.50 -0.25

Exploratory Analysis

X	carat -	1	-0.13	-0.29	-0.35	0.028	0.18	0.92	0.98	0.98	0.98	1	0.94
?	cut -	-0.13	1	0.021	0.19	-0.22	-0.43	-0.053	-0.13	-0.13	-0.15	-0.12	-0.08
?	color -	-0.29	0.021	1	-0.026	-0.047	-0.026	-0.17	-0.27	-0.27	-0.27	-0.29	-0.17
?	darity -	-0.35	0.19	-0.026	1	-0.068	-0.16		-0.37	-0.37	-0.38	-0.35	-0.2
?	depth -	0.028	-0.22	-0.047	-0.068	1	-0.3	-0.011	-0.025	-0.028	0.097	0.011	-0.0022
?	table -	0.18	-0.43	-0.026		-0.3	1	0.13	0.2	0.19	0.16	0.17	0.15
X	price -	0.92	-0.053	-0.17	-0.15	-0.011	0.13	1	0.89	0.89	0.88	0.92	0.95
X	х -	0.98	-0.13	-0.27	-0.37	-0.025	0.2	0.89	1	1	0.99	0.98	0.96
×	у -	0.98	-0.13	-0.27	-0.37	-0.028	0.19	0.89	1	1	0.99	0.98	0.96
×	z -	0.98	-0.15	-0.27	-0.38	0.097	0.16	0.88	0.99	0.99	1	0.98	0.95
*	volume -	1	-0.12	-0.29	-0.35	0.011	0.17	0.92	0.98	0.98	0.98	1	0.95
r	, oot_price -	0.94	-0.08	-0.17	-0.2	-0.0022	0.15	0.95	0.96	0.96	0.95	0.95	1
vity: P		carat -	aut -	- color -	darity -	depth -	table -	price -	×	y-	- 2	volume -	not_price -

- 0.75 - 0.50 -0.25

Sensitivity: P

Exploratory Analysis - Cut

Exploratory Analysis - Color

Exploratory Analysis - Clarity

Sensitivity: Perso

Exploratory Analysis - Table & Depth

Exploratory Analysis - Table & Depth

Table % = Table + Diameter

Depth % = Depth + Diameter

	Depth %	Table %
Excellent	59.0% - 61.0%	53% - 60%
Very Good	58.0% - 62.0%	61% - 62%
Good	56% - 64%	62% – 64%
Fair	64% - 70%	64% - 66%
Poor	over 70%	over 66% or under 53%

Source: https://www.torresjewelco.com.au/diamonds/education/depth-table-percentage.html

Label Encoding

```
df['cut']
{'Fair': 1, 'Good': 2, 'Very Good': 3, 'Premium': 4, 'Ideal':5}
df['color']
{'J': 1, 'I': 2, 'H': 3, 'G': 4, 'F':5, 'E':6, 'D':7}
df['clarity']
{'I3': 1, 'I2': 2, 'I1': 3, 'SI2': 4, 'SI1':5,
'VS2':6, 'VS1':7, 'VVS2': 8, 'VVS1':9, 'IF':10, 'FL':11}
```

Train/Validation/Test Split

Separation

• Train: %50

Validation: %25

• Test: %25

Strafitication

• 100 bins on the target using np. digitize, as root_price is continuous

Shuffling

Dataset is ordered on price when imported

Model Selection – Decision Tree

Default Decision Tree regressor on training data

```
Decision Tree Performance on Training Data:
r2: 0.9997
Mean Absolute Error: 0.0251
Mean Squared Log Error: 0.0001
```

Decision Tree Hyperparameter Tuning

GridSearchCV is used

```
    grid={"max_depth":[1,2,3,4,5,6,7,8,9,10,11,12]
    "min_samples_split":[10,20,50,100],
    "min_samples_leaf":[1,5,10,20,50,100]}
```

```
Tuned Hyperparameters:
{'max_depth': 11, 'min_samples_leaf': 5, 'min_samples_split': 20}
```

Model Selection – Decision Tree

Decision Tree regressor on validation data, w/ or w/o tuning

```
Decision Tree Performance on Validation Data, NO Hyperparameter Tuning: r2: 0.9784
Mean Absolute Error: 0.4814
Mean Squared Log Error: 0.0021

Decision Tree Performance on Validation Data, WITH Hyperparameter Tuning: r2: 0.9859
Mean Absolute Error: 0.4141
Mean Squared Log Error: 0.0014
```

Model Selection – Linear Regression

• Linear Regression with the following (rounded) formula:

```
Price = -4.46 + (Volume*0.07) + (Clarity*0.5) + (Color*0.4) + (Cut*0.09) + (Table*0.03) + (Depth*0.05)
```

```
Linear Regression Performance on Training Data:
r2: 0.9317
Mean Absolute Error: 0.8894
Mean Squared Log Error: 0.0055

Linear Regression Performance on Validation Data:
r2: 0.9306
Mean Absolute Error: 0.8918
Mean Squared Log Error: 0.0057
```

Model Selection – Final Performance

Decision Tree Performance on Test Data

r2: 0.9860

Mean Absolute Error: 0.4179

Mean Squared Log Error: 0.0014

Linear Regression Performance on Test Data:

r2: 0.9316

Mean Absolute Error: 0.8952

Mean Squared Log Error: 0.0056