Ch 27.2- Protein synthesis

- 1) Assembling the machinery and overview
 - Ribosomes: RNP, structure and properties
 - Aminoacyl-tRNA: structure and recognition
 - Basic mechanisms and architecture
- 2) A stepwise process
 - Initiation: steps up to formation of 1st peptide bond
 - **Elongation**: synthesis of the 1st bond to addition of the last amino acid
 - Termination: release completed polypeptide chain
 - **Ribosome recycling**: disassembly of the ribosome for next use

The translation cycle

Stage I: Initiation

Steps in bacterial initiation

- Binary complex formation (30S/mRNA)
 30S subunit binds IF1 and IF3
 Shine-Dalgarno (SD) sequence guides ribosome to AUG
- 2) Ternary complex formation (30S/mRNA/init-tRNA) GTP-IF2 brings in fMet-tRNA^{fMet} selection of initiator tRNA by initiation factors
- 3) Formation of the initiation complex Hydrolysis of GTP
 50S subunit binds
 Initiation factors exit

Stage I: Initiation

Formation of the binary complex:

Bacteria: Shine-Dalgarno recognized by 16S rRNA

variable distance: how to select AUG??

Stage I: Initiation

Formation of the ternary complex: How is the initiator tRNA selected?

Toeprint vs. Footprint

Footprint:

- labeled mRNA
- add nuclease/chemical modifier and probe for protected regions
- directly visualize RNA cleavage events

Toeprint:

- labeled primer annealed to unlabeled mRNA
- add reverse transcriptase and make cDNA copy of mRNA
- pause sites when transcriptase runs into ribosome (30S subunit)

Toeprint assay

Stage I: Initiation

Eukaryotic initiation: similar, but more complex

Stage 2: Elongation

Steps in **bacterial** elongation

- 1) Binding incoming aa-tRNA into the A-site
 - any aa-tRNA but fMet-tRNAfMet
 - aa-tRNA brought in by EF-Tu•GTP
 - hydrolysis of GTP
- 2) Peptidyl transfer reaction
 - NH2 of A-site tRNA attacks ester-linked peptidyl-tRNA
 - left with uncharged tRNA in P-site, pept-tRNA in A-site
 - formation of hybrid states
- 3) Translocation
 - Requires **EF-G**: molecular mimicry

Binding of the incoming aa-tRNA

- Anticodon end of tRNA enters A-site
 if correct: conformational change,
 triggers fast GTP hydrolysis
- 2) Accommodation: acceptor end enters A-site

Both steps: kinetic basis for fidelity

3) Recycling of **EF-Tu*GDP**- **EF-Ts** is a GTP exchange factor

Kinetic steps involved in tRNA selection

Marina V. Rodnina et al. Phil. Trans. R. Soc. B 2017:372:20160182

Stage 2: Elongation

Steps in bacterial elongation

- 1) Binding incoming aa-tRNA into the A-site
 - any aa-tRNA but fMet-tRNAfMet
 - aa-tRNA brought in by EF-Tu•GTP
 - hydrolysis of GTP
- 2) Peptidyl transfer reaction
 - NH2 of A-site tRNA attacks ester-linked peptidyl-tRNA
 - left with uncharged tRNA in P-site, pept-tRNA in A-site
 - formation of hybrid states
- 3) Translocation
 - Requires **EF-G**: molecular mimicry

Peptidyl transfer reaction

- Possibilities considered: - Acid/base catalysis
- Metal ions
- Ribosome as an entropy trap, role of tRNA 2'-OH

Peptidyl transfer reaction

Formation of hybrid states:

Hybrid states visualized by cryo-EM

Peptidyl transfer reaction

Formation of hybrid states:

Problem: How to bring in next aa-tRNA?

Stage 2: Elongation

Steps in **bacterial** elongation

- 1) Binding incoming aa-tRNA into the A-site
 - any aa-tRNA but fMet-tRNAfMet
 - aa-tRNA brought in by EF-Tu•GTP
 - hydrolysis of GTP
- 2) Peptidyl transfer reaction
 - NH2 of A-site tRNA attacks ester-linked peptidyl-tRNA
 - left with uncharged tRNA in P-site, pept-tRNA in A-site
 - formation of hybrid states
- 3) Translocation
 - Requires **EF-G**: molecular mimicry

Translocation

Molecular mimicry Part I: EF-G

Stage 3: Termination... and beyond

- 1) Release factors
 - Bacteria: RF1 and RF2 (RF3 non-essential)
 - RF1: UAG, UAA; RF2: UGA, UAA
 - Eukaryotes have a single eRF for all 3 stop codons
 - Bind and induce peptidyl transfer to OH₂ instead of NH₂
 - Molecular mimicry again
- 2) Dissociation and recycling
 - RRF (Ribosome recycling factor) and EF-G*GTP (hydrolysis of GTP)
 - 50S and 30S dissociate: IF3 rebinds 30S to restart cycle
- 3) Folding and processing of final protein products

Termination and ribosome recycling

Recognition of stop codons by RFs

Korostelev RNA 2011

Molcular mimicry Part II: release factors

Klaholz BP Trends Biochem Sci 2011

Inhibitors of protein synthesis

Disruption of elongation by puromycin

cdc.gov/drugresistance/threat-report-2013

A decade's difference: Doctor visits resulting in antibiotic prescription 1995–96 vs. 2005–06

Ch 27.2- Protein synthesis: Part II

A stepwise process

Stage 1: Initiation- steps up to formation of 1st peptide bond

Stage 2: **Elongation**- synthesis of the 1st bond to addition of the last amino acid

Stage 3: **Termination-** release completed polypeptide chain and ribosome recycling: disassembly of the ribosome for next use

Questions:

- How is fidelity achieved?
- What are roles for energy consumption?
- What are differences/similarities eukarya vs. bacteria?