HackAtari: Atari Learning Environments for Robust and Continual Reinforcement Learning

Quentin Delfosse*,1,2 Jannis Blüml*,1,3 Bjarne Gregory¹ Kristian Kersting^{1,3,4,5}

RL agents cannot adapt to simplifications.

Create infinite environment variations to train and test your RL agents.

Goal: Continual and Robust RL

- (i) Deep RL agents struggle with adaptation to slight environmental changes, unlike adaptive neurosymbolic agents, which learn explicit skills.
- (ii) RL agents learn suboptimal simpler goals instead of their true objectives. Existing methods (e.g. importance maps) fail to detect these misalignments.
- (iii) HackAtari introduces variations in the Atari environments to test RL agents, thus helps to identify misalignments and test agents' robustness.

HackAtari: Creating Atari Games Variations

Creation of Variations: HackAtari modifies Atari environments by altering the RAM values, creating gameplay variations to test RL agents' generalization.

Modification Types:

- (i) Visual Domain Adaptation: Tests robustness to object visual appearances.
- (ii) Dynamics Adaptation: Evaluates agents' adaptability to gameplay shifts, e.g. enemies changing their behaviors.
- (iii) Curriculum Reinforcement Learning (CRL): Use games' simplifications to gradually increases task complexity, assessing skill or curriculum learning.
- (iv) Reward Signal Adaptation: Tests the agents' ability to adapt to new objectives and to align with human values.

Results: Extended ALE for Robust Agents

HackAtari's modified environments:

- (i) ... can be used for learning.
- (ii) ... help to uncover flaws of trained agents.
- (iii) ... allow to learn alternative behaviors.
- (iv) ... enable game simplifications (i.e. curriculum reinforcement learning).

Game	PPO			Human	
Training	original	original	variation	original	original
Testing	original	variation	variation	original	variation
Boxing (OA)	90.9 ± 1.5	1.9 ± 10.2	82.2 ± 9.3	0.6 ± 2.7	-12.8 ± 18.8
Freeway (AC)	31.4 ± 1.5	20.4 ± 0.7	29.1 ± 1.8	21.7 ± 4.8	22.4 ± 1.6
Freeway (MC)	31.4 ± 1.5	24.6 ± 2.7	32.7 ± 0.8	21.7 ± 4.8	29.3 ± 1.5
Pong (LE)	16.0 ± 3.4	-12.6 ± 2.4	18.1 ± 4.4	-13.7 ± 2.3	-12.2 ± 6.4

Conclusion

Framework Introduction: HackAtari introduces variations to Atari games to test RL agents' generalization, robustness, and adaptability, addressing key challenges in RL research.

Evaluation and Insights: It allows to uncover shortcut learning behaviors and evaluate RL agents' performance across different scenarios, revealing flawed decision-making processes.

Broader Implications: Enhance the most popular RL Environments and enable one to test robustness and adaptability across various applications.

