JSPM's

Rajarshi Shahu College of Engineering, Tathawade, Pune- 411033

(An Empowered Autonomous Institute Affiliated to Savitribai Phule Pune University)

Examination: Mid Semester Examination (MSE)

Semester: I

Academic Year: 2024-25

Programmes: Electronics and Telecommunication Engineering, Electrical

Engineering, Civil Engineering, Information Technology and Computer

Science and Business Systems

Examination Class: F. Y. B. Tech.

Course Code: EE1201T Course Name and Pattern: Introduction to Electrical Engineering

Duration: 1.15 Hour

3

Max. Marks: 30 Marks

- 1. Solve section All three sections A, B, C
- 2. Choose and answer one option from each question.
- 3. Assume suitable and necessary data wherever required.
- 4. Use of log table, scientific calculator, steam table is allowed.

Section A

Q. No.	Question	Bloom's Level	Marks	COs
1	a. Define magnetic flux density with its formula and unit.	BL 1	02	CO1
	b. List the types of induced EMF's in electrical circuit with their formulas.	BL 1	02	CO1
	OR			
1	a. Define Relative permeability with its formula and unit.	BL 1	02	CO1
	b. State Faraday's laws of Electromagnetic Induction.	BL 1	02	CO1
2	a. What are the types of transformer based on number of phases and level of voltages?	BL 1	02	CO1
1	b. Define time period and frequency with its unit. OR	BL 1	02	CO1
2 a	What are the main two parts of transformer? Name the material used for the same.	BL 1	02	CO1
b.	List the different type of powers in single phase AC circuits with their formula and unit.	BL 1	02	CO1
3	Show the ac voltage and current waveforms for purely resistive load and comment on it.	BL 1	02	CO1
	OR			
/	Name the types of reactances with their formula and unit.	BL 1	02	CO1

Section B

Q.		Bloom's Level	Marks	COs
No 4	a. Classify the different types of losses in detail with their formulae.	BL 2	03	CO2
	b. Explain the operation of ac circuit with purely capacitive load in terms of circuit diagram, voltage and current equation. OR	BL 2	03	CO2
4	a. Derive the expression for resonant frequency with usual notation.	BL 2	03	CO2
	b Compare electric circuit with magnetic circuit in terms of similarities and dissimilarities.	BL 2	. 03	CO2
5	a. For pure sinusoidal waveform show that $V_{avg} = \frac{2V_m}{\pi}$.	BL 2	03	CO2
	b. Explain the concept of admittance with its components. OR	BL 2	03	CO2
5	a. Explain the concept of capacitive reactance in terms of definition, circuit diagram, formula and unit.	BL 2	03	CO2
	b. Show well labeled circuit for star connected balanced resistive load.	BL 2	03	CO2
	Section C			
Q. No.	Question	Bloom's Level	Marks	COs
	Question a. Show the expression of current flowing in a pure resistor of 40 Ω connected across 230V, 50Hz, AC supply with the phasor diagram.	Bloom's Level BL 3	Marks	COs CO3
No.	 a. Show the expression of current flowing in a pure resistor of 40 Ω connected across 230V, 50Hz, AC supply with the phasor diagram. b. A 5 kVA,5000/1000V, 50Hz, single phase transformer has iron loss of 150 watt and full load copper loss of 180 watt. Estimate efficiency of the transformer at: i. Half load and 0.85 p.f lagging 			
No.	 a. Show the expression of current flowing in a pure resistor of 40 Ω connected across 230V, 50Hz, AC supply with the phasor diagram. b. A 5 kVA,5000/1000V, 50Hz, single phase transformer has iron loss of 150 watt and full load copper loss of 180 watt. Estimate efficiency of the transformer at: 	BL 3	04	CO3
No. 6	 a. Show the expression of current flowing in a pure resistor of 40 Ω connected across 230V, 50Hz, AC supply with the phasor diagram. b. A 5 kVA,5000/1000V, 50Hz, single phase transformer has iron loss of 150 watt and full load copper loss of 180 watt. Estimate efficiency of the transformer at: i. Half load and 0.85 p.f lagging ii. 75 % of the full load and 0.8 power factor leading 	BL 3	04	CO3