Image Processing and Computer Graphics

Transformations and Homogeneous Coordinates

Matthias Teschner

Computer Science Department University of Freiburg

Motivation

- transformations are used
 - to position, reshape, and animate objects, lights, and the virtual camera
 - to orthographically or perspectivly project three-dimensional geometry onto a plane
- transformations are represented with 4x4 matrices
- transformations are applied to vertices and normals
- vertices (positions) and normals (directions) are represented with 4D vectors

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Vertex Processing

- modelview transform
- (lighting)
- projection transform
- (clipping)
- viewport transform

Modelview Transform

- M_1 , M_2 , M_3 , M_4 , V are matrices representing transformations
- M_1 , M_2 , M_3 , M_4 are model transforms to place the objects in the scene
- V places and orientates the camera in space
 - V⁻¹ transforms the camera to the origin looking along the negative z-axis
- model and view transforms are combined in the modelview transform
- the modelview transform V⁻¹M_{1..4} is applied to the objects

Projection Transform

- P transforms the view volume to the canonical view volume
- the view volume depends on the camera properties
 - orthographic projection → cuboid

■ perspective projection → pyramidal frustum

- canonical view volume is a cube from (-1,-1,-1) to (1,1,1)
- view volume is specified by near, far, left, right, bottom, top

Viewport Transform / Screen Mapping

- projected primitive coordinates (x_p, y_p, z_p) are transformed to screen coordinates (x_s, y_s)
- screen coordinates together with depth value are window coordinates (x_s, y_s, z_w)

[Akenine-Moeller et al.: Real-time Rendering]

Vertex Transforms

object space

modelview transform

eye space / camera space

projection transform

normalized

device coordinates

viewport transform

window space

Vertex Transforms

local object space

model transform

world coordinate space

inverse view transform

eye space / camera space

projection transform

normalized device coordinates

viewport transform

window space

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Some Transformations

- congruent transformations (Euclidean transformations)
 - preserve shape and size
 - translation, rotation, reflection
- similarity transformations
 - preserve shape
 - translation, rotation, reflection, scale

Affine Transformations

allowing for or preserving parallel relationships, w/ scale

- preserve collinearity
 - points on a line are transformed to points on a line
- preserve proportions
 - ratios of distances between points are preserved
- preserve parallelism
 - parallel lines are transformed to parallel lines
- angles and lengths are not preserved

a strain in the structure of a substance produced by pressure, when its layers are laterally shifted in relation to each other

- translation, rotation, reflection, scale, shear are affine
- orthographic projection is a combination of affine transf.
- perspective projection is not affine

Affine Transformations

- affine transformations of a 3D point \mathbf{p} : $\mathbf{p}' = \mathbf{T}(\mathbf{p}) = \mathbf{A}\mathbf{p} + \mathbf{t}$
- affine transformations preserve affine combinations $\mathbf{T}\left(\sum_{i}\alpha_{i}\cdot\mathbf{p}_{i}\right)=\sum_{i}\alpha_{i}\cdot\mathbf{T}(\mathbf{p}_{i}) \text{ for } \sum_{i}\alpha_{i}=1$
- e.g., a line can be transformed
 by transforming its control points

$$\mathbf{p_1}'$$
 $\mathbf{x}' = \mathbf{T}(\mathbf{x}) = \alpha_1 \mathbf{T}(\mathbf{p_1}) + \alpha_2 \mathbf{T}(\mathbf{p_2})$
 $\mathbf{p_2}'$

Affine Transformations

- affine transformations of a 3D point \mathbf{p} $\mathbf{p}' = \mathbf{A}\mathbf{p} + \mathbf{t}$
- the 3x3 matrix A represents scale and rotation
- the 3D vector t represents translation
- using homogeneous coordinates, all affine transformations are represented with one matrix-vector multiplication

Points and Vectors

- the rendering pipeline transforms vertices, normals, colors, texture coordinates
- points (e.g. vertices) specify a location in space
- vectors (e.g. normals) specify a direction
- relations between points and vectors
 - point point = vector
 - point + vector = point
 - vector + vector = vector
 - point + point = not defined

$$\mathbf{p} = \mathbf{p} - \mathbf{O} \quad \mathbf{p} = \mathbf{O} + \mathbf{p}$$

Points and Vectors

- transformations can have <u>different</u>
 <u>effects on</u> points and vectors
- translation
 - translation of a point <u>move</u>s the point <u>to a different position</u>
 - translation of a vector does not change the vector
- using homogeneous coordinates, transformations of vectors and points can be handled in a unified way

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Homogeneous Coordinates of Points

- $(x, y, z, w)^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- $(\lambda x, \lambda y, \lambda z, \lambda w)^T$ represents the same point $(\frac{\lambda x}{\lambda w}, \frac{\lambda y}{\lambda w}, \frac{\lambda z}{\lambda w})^T = (\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ for all λ with $\lambda \neq 0$
- examples
 - \bullet (2, 3, 4, 1) \sim (2, 3, 4)
 - \bullet (2, 4, 6, 1) \sim (2, 4, 6)
 - \bullet (4, 8, 12, 2) \sim (2, 4, 6)

1D Illustration

Homogeneous Coordinates of Vectors

- for varying w, a point $(x, y, z, w)^T$ is scaled and the points $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ represent a line in 3D space
- the direction of this line is characterized by $\left(x,y,z\right)^{T}$
- for $w \to 0$, the point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$ moves to infinity in the direction $(x, y, z)^T$
- $(x,y,z,0)^T$ is a point at infinity in the direction of $(x,y,z)^T$
- $(x, y, z, 0)^T$ is a vector in the direction of $(x, y, z)^T$

1D Illustration

Points and Vectors

- if points are represented in the homogeneous (normalized) form, point - vector relations can be represented

vector + vector = vector
$$\begin{pmatrix} u_x \\ u_y \\ u_z \\ 0 \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} u_x + v_x \\ u_y + v_y \\ u_z + v_z \\ 0 \end{pmatrix}$$

point + vector = point
$$\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} + \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} p_x + v_x \\ p_y + v_y \\ p_z + v_z \\ 1 \end{pmatrix}$$

point - point = vector
$$\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} - \begin{pmatrix} r_x \\ r_y \\ r_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x - r_x \\ p_y - r_y \\ p_z - r_z \\ 0 \end{pmatrix}$$

Homogeneous Representation of Linear Transformations

$$\begin{pmatrix} m_{00} & m_{01} & m_{02} \\ m_{10} & m_{11} & m_{12} \\ m_{20} & m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} \sim \begin{pmatrix} m_{00} & m_{01} & m_{02} & 0 \\ m_{10} & m_{11} & m_{12} & 0 \\ m_{20} & m_{21} & m_{22} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix}$$

 $lacktrians form of \left(egin{array}{c} p_x \\ p_y \\ p_z \end{array}
ight) \ {
m results in} \ \left(egin{array}{c} r_x \\ r_y \\ r_z \end{array}
ight)$, then

the transform of
$$\begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix}$$
 results in $\begin{pmatrix} r_x \\ r_y \\ r_z \\ 1 \end{pmatrix} \sim \begin{pmatrix} r_x \\ r_y \\ r_z \end{pmatrix}$

Affine Transformations and Projections

general form

$$\left(egin{array}{ccccc} m_{00} & m_{01} & m_{02} & t_0 \ m_{10} & m_{11} & m_{12} & t_1 \ m_{20} & m_{21} & m_{22} & t_2 \ p_0 & p_1 & p_2 & w \end{array}
ight)$$

- *m_{ii}* represent rotation, scale
- \bullet t_i represent translation
- p_i represent projection
- w is analog to the fourth component for points / vectors

Homogeneous Coordinates - Summary

- $(x, y, z, w)^T$ with $w \neq 0$ are the homogeneous coordinates of the 3D point $(\frac{x}{w}, \frac{y}{w}, \frac{z}{w})^T$
- $(x,y,z,0)^T$ is a point at infinity in the direction of $(x,y,z)^T$
- $(x, y, z, 0)^T$ is a vector in the direction of $(x, y, z)^T$

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Translation

• of a point $\mathbf{T}(\mathbf{t})\mathbf{p} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + t_x \\ p_y + t_y \\ p_z + t_z \\ 1 \end{pmatrix}$

• of a vector
$$\mathbf{T}(\mathbf{t})\mathbf{v} = \begin{pmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ 0 \end{pmatrix}$$

inverse (T⁻¹ "undoes" the transform T)

$$\mathbf{T}^{-1}(\mathbf{t}) = \mathbf{T}(-\mathbf{t})$$

Rotation

positive (anticlockwise) rotation with angle
$$\phi$$
 $\mathbf{R}_{\mathbf{x}}(\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi & 0 \\ 0 & \sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ around the x -, y -, z -axis

$$\mathbf{R}_{\mathbf{y}}(\phi) = \begin{pmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{R_z}(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 & 0\\ \sin \phi & \cos \phi & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Inverse Rotation

$$\mathbf{R}_{\mathbf{x}}(-\phi) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos -\phi & -\sin -\phi & 0 \\ 0 & \sin -\phi & \cos -\phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \phi & \sin \phi & 0 \\ 0 & -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \mathbf{R}_{\mathbf{x}}^{T}(\phi)$$

$$\mathbf{R_x}^{-1} = \mathbf{R_x}^T \qquad \mathbf{R_y}^{-1} = \mathbf{R_y}^T \qquad \mathbf{R_z}^{-1} = \mathbf{R_z}^T$$

 the inverse of a rotation matrix corresponds to its transpose

Mirroring / Reflection

- mirroring with respect to x = 0, y = 0, z = 0 plane
- changes the sign of the x -, y -, z component

$$\mathbf{P_x} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{P_y} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{P_z} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 the inverse of a reflection corresponds to its transpose

$$\mathbf{P_x}^{-1} = \mathbf{P_x}^T \qquad \mathbf{P_y}^{-1} = \mathbf{P_y}^T \qquad \mathbf{P_z}^{-1} = \mathbf{P_z}^T$$

Orthogonal Matrices

- rotation and reflection matrices are orthogonal $\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$ $\mathbf{R}^{-1} = \mathbf{R}^T$
- $lackbox{\bf R}_1, lackbox{\bf R}_2$ are orthogonal \Rightarrow $lackbox{\bf R}_1 lackbox{\bf R}_2$ is orthogonal
- rotation: $\det \mathbf{R} = 1$ reflection: $\det \mathbf{R} = -1$
- length of a vector does not change $\|\mathbf{R}\mathbf{v}\| = \|\mathbf{v}\|$
- angles are preserved $\langle \mathbf{R}\mathbf{u}, \mathbf{R}\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$

Scale

scaling x -, y - , z - components of a point or vector

$$\mathbf{S}(s_x, s_y, s_z)\mathbf{p} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} s_x p_x \\ s_y p_y \\ s_z p_z \\ 1 \end{pmatrix}$$

- inverse $S^{-1}(s_x, s_y, s_z) = S(\frac{1}{s_x}, \frac{1}{s_y}, \frac{1}{s_z})$
- uniform scaling: $s_x = s_y = s_z = s$

$$\mathbf{S}(s,s,s) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{s} \end{pmatrix}$$

Shear

- one component is offset with respect to another component
- six basic shear modes in 3D
- e.g., shear of x with respect to z

$$\mathbf{H_{xz}}(s)\mathbf{p} = \begin{pmatrix} 1 & 0 & s & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \\ 1 \end{pmatrix} = \begin{pmatrix} p_x + sp_z \\ p_y \\ p_z \\ 1 \end{pmatrix}$$

inverse

$$\mathbf{H_{xz}}^{-1}(s) = \mathbf{H_{xz}}(-s)$$

Basis Transform - Translation

two coordinate systems

$$C_1 = (O_1, \{e_1, e_2, e_3\})$$
 $C_2 = (O_2, \{e_1, e_2, e_3\})$

Basis Transform - Translation

- the coordinates of ${\bf p_1}$ with respect to ${\bf C_2}$ are given by ${\bf p_2}={\bf p_1}-{\bf t}$ ${\bf p_2}={\bf T}(-{\bf t}){\bf p_1}$
- the coordinates of a point in the transformed basis correspond to the coordinates of point in the untransformed basis transformed by the inverse basis transform
 - translating the origin by t corresponds to translating the object by -t
 - also: rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Rotation

two coordinate systems

$$C_1 = (O, \{e_1, e_2, e_3\})$$
 $C_2 = (O, \{b_1, b_2, b_3\})$

Basis Transform - Rotation

• the coordinates of p_1 with respect to C_2 are given by

$$\mathbf{p_2} = \begin{pmatrix} \mathbf{b_1}^T \\ \mathbf{b_2}^T \\ \mathbf{b_3}^T \end{pmatrix} \mathbf{p_1} \sim \begin{pmatrix} \mathbf{b_{1x}} & \mathbf{b_{1y}} & \mathbf{b_{1z}} & 0 \\ \mathbf{b_{2x}} & \mathbf{b_{2y}} & \mathbf{b_{2z}} & 0 \\ \mathbf{b_{3x}} & \mathbf{b_{3y}} & \mathbf{b_{3z}} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{p_1}$$

- b_1 , b_2 , b_3 are the basis vectors of C_2 with respect to C_1
- b₁, b₂, b₃ are orthonormal, therefore the basis transform is a rotation
- rotating the basis vectors by an angle corresponds to rotating the object by the same negative angle

Basis Transform - Application

- the view transform can be seen as a basis transform
- objects are placed with respect to a (global) coordinate system $C_1 = (O_1, \{e_1, e_2, e_3\})$
- the camera is also positioned at O_2 and oriented at $\{b_1, b_2, b_3\}$ given by viewing direction and up-vector
- after the view transform, all objects are represented in the eye or camera coordinate system $\mathbf{C_2} = (\mathbf{O_2}, \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\})$
- placing and orienting the camera corresponds to the application of the inverse transform to the objects
- rotating the camera by R and translating it by T, corresponds to translating the objects by T-1 and rotating them by R-1 rotating them by R-1 computer Science Department Computer Graphics 38

Planes and Normals

■ planes can be represented by a surface normal **n** and a point **r**. All points **p** with $\mathbf{n} \cdot (\mathbf{p} - \mathbf{r}) = 0$ form a plane.

$$n_x p_x + n_y p_y + n_z p_z + (-n_x r_x - n_y r_y - n_z r_z) = 0$$

$$n_x p_x + n_y p_y + n_z p_z + d = 0$$

$$(n_x n_y n_z d)(p_x p_y p_z 1)^T = 0$$

$$(n_x n_y n_z d) \mathbf{A}^{-1} \mathbf{A}(p_x p_y p_z 1)^T = 0$$

- the transformed points $\mathbf{A}(p_x \ p_y \ p_z \ 1)^T$ are on the plane represented by $(n_x \ n_y \ n_z \ d)\mathbf{A^{-1}} = ((\mathbf{A^{-1}})^T(n_x \ n_y \ n_z \ d)^T)^T$
- if a surface is transformed by A, its homogeneous notation (including the surface normal) is transformed by $(A^{-1})^{T}$

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Compositing Transformations

- composition is achieved by matrix multiplication
 - a translation **T** applied to **p**, followed by a rotation **R** $\mathbf{R}(\mathbf{Tp}) = (\mathbf{RT})\mathbf{p}$
 - a rotation **R** applied to **p**, followed by a translation **T** $\mathbf{T}(\mathbf{Rp}) = (\mathbf{TR})\mathbf{p}$
 - lacktriangleright note that generally $\mathbf{TR}
 eq \mathbf{RT}$
 - the order of composed transformations matters

Examples

rotation around a line through t parallel to the x-, y-, z- axis

$$\mathbf{T}(\mathbf{t})\mathbf{R}_{\mathbf{x}\mathbf{y}\mathbf{z}}(\phi)\mathbf{T}(-\mathbf{t})$$

scale with respect to an arbitrary axis

$$\mathbf{R}_{\mathbf{x}\mathbf{y}\mathbf{z}}(\phi)\mathbf{S}(s_x, s_y, s_z)\mathbf{R}_{\mathbf{x}\mathbf{y}\mathbf{z}}(-\phi)$$

e.g., b₁, b₂, b₃ represent an orthonormal basis,
 then scaling along these vectors can be done by

$$\begin{pmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{S}(s_x, s_y, s_z) \begin{pmatrix} \mathbf{b_1} & \mathbf{b_2} & \mathbf{b_3} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^T$$

Rigid-Body Transform

$$\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{pmatrix} \mathbf{p} = \mathbf{T}(\mathbf{t}) \mathbf{R} \mathbf{p}$$

with **R** being a rotation and **t** being a translation is a combined transformation

inverse

$$(\mathbf{T}(\mathbf{t})\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{T}(\mathbf{t})^{-1} = \mathbf{R}^T\mathbf{T}(-\mathbf{t})$$

- in Euclidean coordinates $\mathbf{p}' = \mathbf{R}\mathbf{p} + \mathbf{t}$
- the inverse transform $\mathbf{p} = \mathbf{R}^{-1}(\mathbf{p}' \mathbf{t}) = \mathbf{R}^{-1}\mathbf{p}' \mathbf{R}^{-1}\mathbf{t}$

• therefore
$$\begin{pmatrix} \mathbf{R} & \mathbf{t} \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{R}^T & -\mathbf{R}^T\mathbf{t} \\ 0 & 1 \end{pmatrix}$$

Outline

- transformations in the rendering pipeline
- motivations for the homogeneous notation
- homogeneous notation
- basic transformations in homogeneous notation
- compositing transformations
- summary

Summary

- usage of the homogeneous notation is motivated by a unified processing of affine transformations, perspective projections, points, and vectors
- all transformations of points and vectors are represented by a matrix-vector multiplication
- "undoing" a transformation is represented by its inverse
- compositing of transformations is accomplished by matrix multiplication

