In Class Exercise 1

ECO 6416

2024-06-28

Contents

```
1 National Park Visitor Data
                                                                        1
  2
     Here are all the packages needed to get started.
library(readxl) # to read in xlsx files
options(scipen = 999) # to remove scientific notation
sessionInfo()
## R version 4.2.1 (2022-06-23 ucrt)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 19045)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_United States.utf8
## [2] LC_CTYPE=English_United States.utf8
## [3] LC_MONETARY=English_United States.utf8
## [4] LC NUMERIC=C
## [5] LC_TIME=English_United States.utf8
## attached base packages:
             graphics grDevices utils
## [1] stats
                                      datasets methods
                                                      base
##
## other attached packages:
## [1] readxl_1.4.2
##
## loaded via a namespace (and not attached):
  [1] compiler_4.2.1
                    fastmap_1.1.1
                                  cli_3.6.1
                                                tools_4.2.1
  [5] htmltools_0.5.5 rstudioapi_0.14
                                  yaml_2.3.7
                                                cellranger_1.1.0
                    knitr_1.42
## [9] rmarkdown_2.21
                                  xfun_0.39
                                                digest_0.6.31
## [13] rlang_1.1.1
                    evaluate 0.21
```

1 National Park Visitor Data

Go to Webcourses and download the national_park_attendance.xlsx file. Be sure to save the file in an easy to locate folder.

```
parks <- read_xlsx("C:/Users/jo585802/Downloads/national_park_attendance.xlsx")</pre>
head(parks)
## # A tibble: 6 x 2
     `National Park`
##
                                              `Number of Visitors, 2017`
##
     <chr>
                                                                    <dbl>
## 1 1. Great Smoky Mountains National Park
                                                                11388893
## 2 2. Grand Canyon National Park
                                                                 6254238
## 3 3. Zion National Park
                                                                 4504812
## 4 4. Rocky Mountain National Park
                                                                 4437215
## 5 5. Yosemite National Park
                                                                 4366890
## 6 6. Yellowstone National Park
                                                                 4116524
tail(parks)
## # A tibble: 6 x 2
##
     `National Park`
                                             `Number of Visitors, 2017`
##
     <chr>>
                                                                  <dbl>
## 1 54. Katmai National Park
                                                                  37818
## 2 55. North Cascades National Park
                                                                  30326
## 3 56. Isle Royale National Park
                                                                  28196
## 4 57. Lake Clark National Park
                                                                  22755
## 5 58. Kobuk Valley National Park
                                                                  15500
## 6 59. Gates of the Arctic National Park
                                                                  11177
```

1.1 Dimensions of the Data

Describe the three dimensions of the data in the above table (circle correct answers)

- univariate / bivariate / multivariate
- two categorical / two quantitative / one categorical one quantitative
- cross section / time series

1.2 Confidence Interval

```
summary(parks$`Number of Visitors, 2017`)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 11177 304003 642809 1443314 1789159 11388893
sd(parks$`Number of Visitors, 2017`)
```

[1] 1946009

a) Give the output above, what is the best prediction of attendance at any park at the 95% level of confidence? Show the result as (low, high) and round to the nearest 100 thousand.

b) How comfortable are you with your prediction? Justify your answer.

1.3 Choosing Measure of Center

Which statistic provides the best measure of center? You can use the chart below to help.

```
hist(parks$`Number of Visitors, 2017`,
    main = "Histogram of Number of Visitors, 2017",
    xlab = "Number of Visitors, 2017")
```

Histogram of Number of Visitors, 2017

