# transformer fine-tuning for text classification

motivation, intuition, and methods

# Recap

# pre-trained transformer encoder models

### Contextualization

- pre-trained transformer encoder models allow us to generate contextualized embeddings of input sequences
- the contextualization enables, among others, word sense disambiguation
- overall, transformer embeddings are rich representations of words contextual meaning



# pre-trained transformer encoder models

### LM pre-training

- training in machine learning: use labeled data (input–output pairs) to optimize a prediction model
- encoders like BERT use masked language modeling: predict masked-out words in sequence of words
- motivation: pre-training a model to perform language modeling on large text datasets allows it to mimic humans' natural language understanding abilities



BERT & Co. use this

# pre-trained transformer encoder models

### **Transfer learning**

- machine learning approach to reuse generalpurpose model for a specific task
- intuition knowledge gained while learning to perform a general task (e.g., language modeling) can be applied to quickly solve related task (e.g., sentiment classification)
- premise general features learned during pre-training can be relevant for more specific tasks

# What's your plans?

Based on your work on the posters on Monday,

- o who wants to classify texts?
- o who wants to classify texts into predefined categories?
- who already has or will have (human-)labeled data?

**Task**: assign each text to a predefined list of categories

### Approach:

- o take labeled examples (y<sub>i</sub>, x<sub>i</sub>)
- y<sub>i</sub> in predefined list of **label classes**
- o **train** machine learning model

### Example of labeled text dataset

| text                                                       | label    |
|------------------------------------------------------------|----------|
| I found transformers and LLMs confusing and intimidating.  | negative |
| Then I took a course with Lisa and Hauke.                  | neutral  |
| Now I feel very confident that I can master these methods. | positive |

**Task**: assign each text to a predefined list of categories

### Approach:

- take labeled examples (y<sub>i</sub>, x<sub>i</sub>)
- y<sub>i</sub> in predefined list of **label classes**
- train machine learning model

## Classic machine learning

- construct features from set of labeled texts (e.g., bag-of-words document-term matrix)
- select a machine learning algorithm (e.g., Naive Bayes, Random Forest, XGBoost)
- use the labeled data and the ML algorithm to train a model
  - optimization problem: find the model parameters that lead to best predictions of observed labels given the input features
- 1. apply trained model to
  - ➤ labeled held-out data ⇒ evaluation
  - ➤ unlabeled data ⇒ "inference" (prediction)

**Task**: assign each text to a predefined list of categories

### Approach:

- o take labeled examples (y<sub>i</sub>, x<sub>i</sub>)
- y<sub>i</sub> in predefined list of **label classes**
- train machine learning model

## Transfer learning approach: fine-tuning

- take a pre-trained (encoder) model (e.g.,
   BERT) to generate embeddings ⇒ features
- add a classification layer on top of the pre-trained (encoder) model
- use the labeled data to update ("fine-tune") the model parameters
  - optimization problem: update the model parameters that lead to best predictions of observed labels given the input features
- 4. apply the fine-tuned model to
  - ► labeled held-out data ⇒ evaluation
  - ➤ unlabeled data ⇒ "inference" (prediction)

Figure shows BERT model with classification head



### Transfer learning approach: fine-tuning

- take a pre-trained (encoder) model (e.g.,
   BERT) to generate embeddings ⇒ features
- 2. add a classification layer on top of the pre-trained (encoder) model
- use the labeled data to update ("fine-tune") the model parameters
  - optimization problem: update the model parameters that lead to best predictions of observed labels given the input features
- 4. apply the fine-tuned model to
  - ➤ labeled held-out data ⇒ evaluation
  - ➤ unlabeled data ⇒ "inference" (prediction)

Figure shows BERT model with classification head



### The classification layer

- input: d<sub>model</sub>-dimensional contextualized embedding of [CLS] token
- output: n<sub>classes</sub>-dimensional vector ⇒ "logits"
- o applying **softmax** function to logits creates pseudo-probabilities (in [0, 1], sum to 1)
- o *note*: if *n*<sub>classes</sub>=2, this is a logistic regression

### Example of observed labels vs. predictions

|            | class 1 | class 2 | class 3 | class 4 |
|------------|---------|---------|---------|---------|
| labels     | 0       | 0       | 1       | 0       |
| prediction | 0.1     | 0.2     | 0.6     | 0.1     |

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)

### The cross-entropy loss

define as

$$L = -\sum_{i=1}^N y_i \log(\hat{y_i})$$

where

- N is the number of label classes.
- $y_i$  is 1 if the observed class label is i and 0 otherwise
- $\circ$   $\hat{y_i}$  is the predicted probability for class i.

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)

### The cross-entropy loss

simplifies to

$$L = -\log(\hat{y}_{ ext{true}})$$

when only on label is correct per example

### Example of low loss

|            | class 1 | class 2 | class 3   | class 4 |
|------------|---------|---------|-----------|---------|
| labels     | 0       | 0       | 1         | 0       |
| prediction | 0.1     | 0.2     | 0.6       | 0.1     |
| loss       |         |         | -log(0.6) |         |

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)

### The cross-entropy loss

simplifies to

$$L = -\log(\hat{y}_{ ext{true}})$$

when only on label is correct per example

### Example of high loss

|            | class 1 | class 2 | class 3   | class 4 |
|------------|---------|---------|-----------|---------|
| labels     | 0       | 0       | 1         | 0       |
| prediction | 0.6     | 0.2     | 0.1       | 0.1     |
| loss       |         |         | -log(0.1) |         |

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)

### The cross-entropy loss

| pred. prob | loss       |        |
|------------|------------|--------|
| 0.01       | -log(0.01) | = 4.61 |
| 0.10       | -log(0.1)  | = 2.3  |
| 0.25       | -log(0.25) | = 1.39 |
| 0.50       | -log(0.5)  | = 0.69 |
| 0.75       | -log(0.75) | = 0.29 |
| 0.99       | -log(0.99) | = 0.01 |

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)
- 4. **optimization algorithm**: takes the loss and updates the prediction model's parameters

### **Gradient descent optimization**

**Gradient**: The gradient  $\nabla_{\theta}L$  tells us how the loss changes with respect to each parameter (weight) in the model.

*Our goal: Update* the parameters such that we *reduce* the loss

$$oldsymbol{
abla}_{ heta}L=\left(rac{\partial L}{\partial heta_{1}},rac{\partial L}{\partial heta_{2}},...,rac{\partial L}{\partial heta_{n}}
ight)$$

Analogy: It's like how adjust coefficients in an OLS regression to minimize the deviations from the regression slope.

## four ingredients

- 1. **labeled data**: texts assigned to label classes
- 2. **prediction model**: takes texts as inputs and predicts which label class they belong to
- 3. **loss function**: measures how far off the model's predictions are from the actual observed labels (the higher, the worse)
- 4. **optimization algorithm**: takes the loss and updates the prediction model's parameters

### Mini-batch stochastic gradient descent

- Unlike an OLS regression,
  - o neural nets have complex interactions
  - relations between in- and outputs are nonlinear
- Unlike OLS, there exists no closed-form solution to find optimal parameters

### **Solution**

- take a small batch of examples; generate predictions; and then update the model parameters given the loss for this batch
- iterate over all examples in batches (= 1 epoch); repeat for nepochs

# Let have a look at some code illustration these ideas

Go to notebook <u>finetuning sequence classifier illustration.ipynb</u> and follow along

# Let's code

Go to notebook <u>finetune sequence classifier.ipynb</u> and follow along