M1 Informatique Parallélisme

Université Toulouse III – Paul Sabatier 118 route de Narbonne 31062 Toulouse cedex 9

Travaux dirigés - n°5 - Les réseaux de Petri

Quelques rappels

Un réseau de Petri (RdP) est un moyen de :

- modéliser le comportement des systèmes dynamiques à événements discrets;
- décrire des relations existantes entre des conditions et des événements.

Un RdP est un graphe orienté composé de places et de transitions :

- Une place est représentée par un cercle ;
- Une transition est représentée par un trait ;
- Un arc relie soit une place à une transition, soit une transition à une place.

Chaque place contient un nombre entier positif ou nul de jetons.

Une transition est **armée** (ou franchissable) lorsque toutes les places qui sont en entrée de cette transition contiennent au moins le nombre de jetons spécifié par le poids de l'arc d'entrée correspondant.

Le **franchissement** consiste alors à retirer les jetons de chacune des places d'entrée et à rajouter un ou plusieurs jetons à chacune des places de sortie de la même transition, selon le poids des arcs de sortie.

Remarques:

- Ces deux actions se font simultanément ; le franchissement d'une transition n'est pas divisible.
- On peut remarquer qu'il n'y a pas conservation du nombre de jetons.
- Lorsqu'une transition est validée, cela n'implique pas qu'elle soit franchie immédiatement. Cette validation n'est qu'une possibilité de progression à cet instant-là.
- Lorsque deux arcs sortent d'une place et que les transitions correspondantes sont validées, le choix de la transition qui sera franchie est arbitraire (indéterminisme).

TD 1/2

M1 Informatique Parallélisme

Exercice 1. Modélisation d'une exécution séquentielle d'actions

1. Produire la portion de RdP correspondant à l'exécution de trois actions A1, A2 et A3 en séquence.

2. Produire la portion de RdP correspondant à N répétitions d'une séquence de deux actions A1 et A2.

Exercice 2. Modélisation du parallélisme

Produire le RdP correspondant au lancement de deux séquences d'actions (A1, A2, A3) et (B1 et B2) en parallèle puis attente de leurs terminaisons.

Exercice 3. Modélisation d'une activité

Produire le RdP correspondant à une activité réalisant la réception d'un message à partir du réseau puis son traitement par deux tâches en parallèle.

- La première tâche est constituée de la séquence : A1 et A2 ;
- La seconde tâche est constituée de la séquence : B1 et B2.

Les contraintes suivantes doivent être respectées :

- L'action B2 ne peut pas commencer avant la fin de l'action A1.
- Un nouveau message ne peut pas être admis tant qu'il y a un traitement en cours (session en cours).

Exercice 4. Modélisation d'un affichage concurrent

On considère une première activité réalisant un cycle infini constitué de la séquence : B1, A1, A2, B2 et une seconde activité qui réalise un cycle infini constitué de la séquence : B3, A3, A4, B4 où l'action Bi consiste à effectuer un certain traitement et l'action Ai à afficher une portion de message à l'écran.

- 1. Produire le RdP permettant à ces deux activités d'afficher respectivement le message produit par (A1, A2) et le message produit par (A3, A4).
- 2. Produire le RdP permettant à ces deux activités d'afficher les messages produits par (A1, A2) et par (A3, A4) de manière **alternée** à l'écran.

TD 2/2