1.
2.
3.
4.
5.
6.
7.
8.
9.

,

10.

```
G(V,E) - V ( ) E - V (E- ). G(V,E), V \neq \emptyset, E \subset V \times V, E = E^{-1}. G - P, - Q. P = P(G) = |V|, <math>Q = Q(G) = |E| E ( ). Q = Q(V,E) . Q = Q(V,E) .
```


 \boldsymbol{E} , E V,

$$F:V \to M \qquad / \qquad F:E \to M , \qquad M$$

G = (V, E)

 K_n . n

a) K_2 , b) K_3 , c) K_4 d) K_5 , e) K_6 .

G = (V, E) $V = A \cup B$

 $\{a,b\}$, $a \in A$ $b \in B$. \boldsymbol{A}

 \boldsymbol{A} \boldsymbol{B}

 $K_{m,n}$, \boldsymbol{A} $a \in A, b \in B$ n $\{a,b\} \in E$. $a \in A$ $b \in B$

 $K_{1,2}, K_{2,3}, K_{2,2},$

 $K_{3,3}$.

$$v_1 \in V$$
 $v_2 \in V$ - , $v_1 = v_2$, $e \in E$. $v_1 = v_2$, $e \in E$. $v_2 = e$.

,

,

, v , $\Gamma(v)$.

$$\Gamma(v) = \{u_i \in V | (u_i, v) \in E, \ 0 \le i \le p - 1\}, \qquad p = |V|$$

$$u_1 \qquad u_2 \qquad u_3 \qquad u_4 \qquad u_4 \qquad u_4 \qquad u_4 \qquad u_4 \qquad u_5 \qquad u_5 \qquad u_6 \qquad u_6 \qquad u_8 \qquad u_8 \qquad u_8 \qquad u_8 \qquad u_8 \qquad u_8 \qquad u_9 \qquad u_9$$

$$\Gamma(v) = \{u_i \in V | (u_i, v) \in E, i = 1, ..., 4\}$$

$$V = \{v, u_1, u_2, u_3, u_4\}$$

$$p = |V| = 5, q = |E| = 8$$

$$E = \{(u_1, v), (u_2, v), (u_3, v), (u_4, v), (u_1, u_2), (u_1, u_4), (u_3, u_4), (u_3, u_2)\}$$

ν ,

$$\deg(v) \qquad d(v),$$

$$\forall v \in V \ 0 \le \deg(v) \le p-1, \qquad p = |V|.$$

 $\deg(v) = |\Gamma(v)|.$

$$G \qquad \mathsf{u}(G),$$

$$- \Delta(G).$$

$$\mathsf{u}(G(V,E)) = \min_{v \in V} \deg(v)$$

$$\Delta(G(V,E)) = \max_{v \in V} \deg(v)$$

$$k,$$

$$k - \vdots$$

$$\mathsf{u}(G) = \Delta(G) = k.$$

$$\deg(v) = 0$$

 $\deg(v) = 0$ ν, deg(v) = 1ν,

 ν ,

$$\Gamma^+(v)$$
,
, $v-$
, $\Gamma^-(v)$.

2-

2. 2, ...,

1.

2.

3.

4. ,

·
,
,
,
,
,

 $\sum_{v \in V} \deg(v) = 2q \sum_{v \in V} d^{-}(v) + \sum_{v \in V} d^{+}(v) = 2q -$ q = |E| -

 $\sum_{i=1}^{v_1} \deg(v_i) = 10, q = |E| = 5,$ $v_1 \qquad v_2 \qquad \sum_{i=1}^{5} \deg^-(v_i) = 8, \sum_{i=1}^{5} \deg^+(v_i) = 8, q = 8.$

,

, r(G) .

$$G'(V',E')$$
 $G(V,E)$, $G(V,E)$, $G'(V',E') \preceq G(V,E)$: $G'(V',E') \preceq G(V,E)$: G , G , G , G , G .

$$G'(V',E') \quad V' \subset V \qquad \qquad G,$$

$$G' \qquad \qquad G:$$

$$\forall u,v \in G'(u,v) \in E \Rightarrow (u,v) \in E'.$$

$$\bullet \qquad \qquad G(V,E).$$
(b).
$$G_1(V_1,E_1) \qquad G(V,E),$$

$$V_1 \subset V \qquad E_1 \subset E.$$
(1).
$$G_2(V_2,E_2) \qquad \qquad G(V,E),$$

$$V_2 = V \qquad E_2 \subset E.$$
(d).
$$G_3(V_3,E_3) \qquad \qquad G(V,E),$$

$$V_4 \qquad V_5 \qquad V_6 \qquad V_4 \qquad V_5 \qquad V_6 \qquad V_4 \qquad V_5 \qquad V_6$$

 \dot{v}_2

C

 v_3 v_1

_ .

b

a

ILLIAC-IV, MPP, Cray

d

T3D.

 $S. \\ s_1, s_2, ..., s_m, ..., s_k, n - \\ 1 \leq s_1 < s_2 < ... < s_m < ... < s_k < n \,.$

$$V = \{0, 1, 2, ..., n-1\}$$

,
$$E = \left\{ (i, j) \middle| (\middle| i - j \middle| \bmod n) = s_m, m = 1, 2, ..., k \right\}.$$

$$n$$

$$k -$$

$$s_m \in S - \tag{}$$

$$G(n;S) = G(n;s_1,s_2,...,s_k),$$

,

$$G(n; s_1, ..., s_k)$$
 :

•
$$2k$$
, $s_k \neq \frac{n}{2}$

•
$$(2k-1)$$
, $n s_k = \frac{n}{2}$.

G(V,E) $v_0, e_1, v_1, ..., v_{t-1}, e_t, v_t$ $e_i = (v_{i-1}, v_i) \qquad 1 \le i \le t.$ (v_0, v_t) $v_0 \quad v_t$, () $v_0, v_1, ..., v_t$ $v_0 = v_t \qquad \left(v_0, v_t\right) -$ ().

1. 2. 3

(u,v)- $w, \quad , \quad w$ (u,v)- (u,v)-

$$G_1, G_2, \dots, G_k$$
, G .

,
$$G_{i}$$
 .
$$G = \left\{G_{1},...,G_{k}\right\}$$
 -

$$(p,q,k)$$
-, p -

$$G$$

$$p = |V_1| + |V_2| + |V_3| + |V_4| = 3 + 4 + 6 + 6 = 19$$

$$q = |E_1| + |E_2| + |E_3| + |E_4| = 3 + 4 + 6 + 7 = 20$$

$$k = 4$$

,
$$G = G(19, 20, 4)$$
.

 u_1 u_2 v_3 $\{(v_2,u_1),(v_3,u_1),(v_4,u_4)\}$

b)

c)

)
$$E_r = \{ (v_1, v_3), (v_1, v_5), (v_4, v_3), (v_1, v_3) \}.$$

 (v_1,v_3) .

b) , ;
$$E_r = \{(v_1, v_5), (v_2, v_4), (v_3, v_4)\}.$$

c)

 $E_r = \left\{ \left(v_3, v_8 \right) \right\}.$

1.
$$G = (V, E) - e \in E -$$

$$G_1 = G - e$$

$$G_1 = (V, E \setminus \{e\}).$$

$$e \in E$$
 $e_1 \in E$.

$$(G-e)-e_1=(G-e_1)-e$$
.

2. $G = (V, E) \qquad v \in V - \qquad G \qquad G_2 = G - v$ $V \qquad V \qquad E$

 $v \in V \qquad v_1 \in V.$: $(G-v)-v_1=(G-v_1)-v$.

3. $G = (V, E) \qquad u \in V \qquad v \in V \qquad (u, v) \notin E.$:

 $G_3 = G + e = (V, E \cup \{e\}), \qquad e = (u, v).$

,

$$(G+e)+e_1=(G+e_1)+e$$
, $e \in E$ $e_1 \in E$.

4. $G = (V, E), \qquad v \in V \qquad u \in V,$ $(v, u) \in E.$

$$G_4 = (V \cup \{w\}, (E \cup \{(v,w)\} \cup \{(w,u)\}) \setminus \{(v,u)\}).$$

$$V$$
 w , E (v,w) (w,u) , (v,u)

5.
$$(v)$$

$$G = (V, E),$$

$$v \in V \quad u \in V$$

$$\Gamma(v) = \{v_1, v_2, ..., v_m\}$$

$$\Gamma(u) = \{u_1, u_2, \dots, u_k\}.$$

1.
$$v \quad u \qquad \vdots \\ v \quad u \qquad G \colon G' = G - v - u \\ 2. \qquad \qquad u' \\ \vdots \quad \Gamma(u') = \Gamma(v) \cup \Gamma(u) \colon H = G' + u'.$$

