Package 'wevid'

June 4, 2018

Title Weight of evidence for quantifying performance of a binary classifier

Type Package

Version 0.3.0.9000
Date 2018-06-04
Author Paul McKeigue
Maintainer Marco Colombo <m.colombo@ed.ac.uk></m.colombo@ed.ac.uk>
Description The distributions of the weight of evidence (log Bayes factor) favouring case over noncase status in a test dataset (or test folds generated by cross-validation) can be used to quantify the performance of a diagnostic test. This package can be used with any test dataset on which you have compured prior probabilities of case status, posterior probabilities of case status, and you have the observed case-control status. In comparison with the C-statistic (area under ROC curve), the expected weight of evidence (expected information for discrimination) has several advantages as a summary measure of predictive performance. To quantify how the predictor will behave as a risk stratifier, the quantiles of the distributions of weight of evidence in cases and controls can be calculated and plotted.
Depends R (>= 2.10)
License GPL-3
<pre>URL http://www.homepages.ed.ac.uk/pmckeigu/preprints/classify/demoplotw.html</pre>
LazyLoad yes
Imports ggplot2, pROC, reshape2, zoo
ByteCompile TRUE
RoxygenNote 6.0.1
R topics documented:
wevid-package 2 auroc.model 3 cleveland 3

2 wevid-package

wevi		Quantij ributio	 		,	-	_				_		•	_	
Index															12
	weightsofevidence . wtrue.results														
	Wdensities.unadjusted														
	Wdensities.fromraw. Wdensities.mix														
	plotWdists prop.belowthreshold			 								 			8
	plotroc			 								 			6
	means.densities plotcumfreqs		 	 								 		 	 5 5
	lambda.model			 								 		 	 4

Description

This package provides functions for quantifying the performance of a diagnostic test (or any other binary classifier) by calculating and plotting the distributions in cases and noncases of the weight of evidence favouring case over noncase status.

Details

To use it, you should have computed on a test dataset (or on test folds used for cross-validation:

- 1. The prior probability of case status (this may be just the frequency of cases in the training data.
- 2. The posterior probability of case status (using the model learned on the training data to predict on the test data)
- 3. The observed case status (coded as 0=noncase, 1=case).

Author(s)

Paul McKeigue <paul.mckeigue@ed.ac.uk>

Citation for the statistical methods used in this package: McKeigue P. Quantifying performance of a diagnostic test as the expected information for discrimination: relation to the C-statistic. Statistical Methods for Medical Research 2018, in press.

See Also

Useful links:

• http://www.homepages.ed.ac.uk/pmckeigu/preprints/classify/demoplotw.html

auroc.model 3

auroc.model	Compute area under the ROC curve according to model-based densities

Description

Compute area under the ROC curve according to model-based densities

Usage

```
auroc.model(densities)
```

Arguments

densities

Adjusted densities computed by Wdensities.fromraw.

Value

The area under the model-based ROC curve computed from the densities of the weight of evidence in cases and noncases. This model-based ROC curve is always concave (if the densities have been adjusted to make them mathematically consistent).

See Also

plotroc

Examples

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
auroc.model(densities.adj)</pre>
```

cleveland

Example dataset based on cross-validated prediction of outcome in the Cleveland Heart Study

Description

Example dataset based on cross-validated prediction of outcome in the Cleveland Heart Study

Usage

cleveland

4 lambda.model

Format

A data frame with 297 rows and three variables

```
prior.p prior probabilities of case status
posterior.p posterior probabilities of case status
y case-control status
```

Source

http://www.homepages.ed.ac.uk/pmckeigu/preprints/classify/demoplotw.html

lambda.model	Compute the expected information for discrimination (expected weight
	of evidence) from the model-based densities

Description

Compute the expected information for discrimination (expected weight of evidence) from the model-based densities

Usage

```
lambda.model(densities)
```

Arguments

densities Adjusted densities computed by Wdensities.fromraw.

Value

The model-based expected information for discrimination.

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
lambda.model(densities.adj)</pre>
```

means.densities 5

means.densities

Means of densities in cases and controls

Description

Means of densities in cases and controls

Usage

```
means.densities(densities)
```

Arguments

densities

Adjusted densities computed by Wdensities.fromraw.

Value

numeric vector of length 2: mean densities in controls and in cases.

See Also

: lambda.model

plotcumfreqs

Plot the cumulative frequency distributions in cases and in controls

Description

Plot the cumulative frequency distributions in cases and in controls

Usage

```
plotcumfreqs(densities)
```

Arguments

densities

Adjusted densities computed by Wdensities.fromraw.

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotcumfreqs(densities.adj)</pre>
```

6 plotW

plotroc

Plot crude and model-based ROC curves

Description

Plot crude and model-based ROC curves

Usage

```
plotroc(densities, y, W)
```

Arguments

densities Adjusted densities computed by Wdensities.fromraw.

y Binary outcome label (0 for controls, 1 for cases).

W Weight of evidence (natural logs).

Value

ggplot of crude and model-based ROC curves

Examples

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotroc(densities.adj, cleveland$y, W)</pre>
```

plotW

plot log case/control density ratio against weight of evidence as a check that the densities are mathematically consistent

Description

plot log case/control density ratio against weight of evidence as a check that the densities are mathematically consistent

Usage

```
plotW(densities, W)
```

Arguments

densities Adjusted densities computed by Wdensities.fromraw.

W Weight of evidence. (natural logs)

plotWdists 7

Value

ggpplot of natural log case/control density ratio against weight of evidence (should be a straight line of gradient 1 passing through the origin)

Examples

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotW(densities.adj, W)</pre>
```

plotWdists

Plot the distribution of the weight of evidence in cases and in controls

Description

Plot the distribution of the weight of evidence in cases and in controls

Usage

```
plotWdists(Wdensities.unadj, Wdensities.adj, mask = NULL,
    distlabels = c("Crude", "Adjusted"))
```

Arguments

Wdensities.unadj

Unadjusted densities computed by Wdensities.unadjusted.

Wdensities.adj Adjusted densities computed by Wdensities.fromraw.

mask if not null, breaks y axis to show more detail of lower end

distlabels Character vector of length 2

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotWdists(densities.unadj, densities.adj)</pre>
```

8 Wdensities.fromraw

 $\begin{array}{ll} \textit{Proportions of cases and controls below a given threshold of W (natural logs)} \end{array} \\$

Description

Proportions of cases and controls below a given threshold of W (natural logs)

Usage

```
prop.belowthreshold(densities, w.threshold)
```

Arguments

densities Adjusted densities computed by Wdensities.fromraw.
w.threshold Threshold value of weight of evidence (natural logs).

Value

numeric vector of length 2: proportions of controls and cases with weight of evidence below the given threshold.

Examples

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
w.threshold <- log(4) # threshold Bayes factor of 4
prop.belowthreshold(densities.adj, w.threshold)</pre>
```

Wdensities.fromraw

Adjust the crude densities of weights of evidence in cases and controls to make them mathematically consistent

Description

Adjust the crude densities of weights of evidence in cases and controls to make them mathematically consistent

Usage

```
Wdensities.fromraw(densities)
```

Wdensities.mix 9

Arguments

densities Unadjusted densities computed by Wdensities.unadjusted.

Examples

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotWdists(densities.unadj, densities.adj)</pre>
```

Wdensities.mix

Compute smoothed densities for a spike-slab mixture distribution

Description

Compute smoothed densities for a spike-slab mixture distribution

Usage

```
Wdensities.mix(y, W, in.spike, range.xseq = c(-25, 25), x.stepsize = 0.01)
```

Arguments

y Binary outcome label (0 for controls, 1 for cases).

W Weight of evidence.

in. spike logical vector same length as y, TRUE if in spike component, FALSE otherwise.

Typically used where high proportion of values of the predictor are zero

range.xseq Range of points where the curves should be sampled.

x.stepsize Distance between each point.

 ${\it Wdensities.unadjusted} \ \ {\it Calculate the unadjusted smoothed densities of W in cases and in controls}$

Description

Calculate the unadjusted smoothed densities of W in cases and in controls

Usage

```
Wdensities.unadjusted(y, W, range.xseq = c(-25, 25), x.stepsize = 0.01, adjust.bw = 1)
```

10 weightsofevidence

Arguments

y Binary outcome label (0 for controls, 1 for cases).

Weight of evidence.

range.xseq Range of points where the curves should be sampled.

x.stepsize Distance between each point.

adjust.bw Bandwidth adjustment.

Value

unadjusted density object

weightsofevidence

Calculate weights of evidence in natural log units

Description

Calculate weights of evidence in natural log units

Usage

```
weightsofevidence(posterior.p, prior.p)
```

Arguments

posterior.p Vector of posterior probabilities generated by using model to predict on test data

prior.p Prior probabilities on test data.

Value

The weight of evidence in nats for each observation.

```
data("cleveland") # load example dataset
W <- with(cleveland, weightsofevidence(posterior.p, prior.p))
densities.unadj <- Wdensities.unadjusted(cleveland$y, W)
densities.adj <- Wdensities.fromraw(densities.unadj)
plotWdists(densities.unadj, densities.adj)</pre>
```

wtrue.results 11

wtrue.results	Summary evaluation of predictive performance	

Description

Summary evaluation of predictive performance

Usage

```
wtrue.results(studyname, y, posterior.p, prior.p)
```

Arguments

studyname Name of the study.

y Binary outcome label (0 for controls, 1 for cases).

posterior.p Vector of posterior probabilities generated by a logistic regression model.

prior.p Vector of prior probabilities.

Value

A dataframe listing some metrics of predictive performance.

```
data("cleveland") # load example dataset
with(cleveland,
     wtrue.results("cleveland", y, posterior.p, prior.p))
```

Index

```
*Topic datasets
    cleveland, 3
\verb"auroc.model", 3
cleveland, 3
lambda.model, 4
plotcumfreqs, 5
plotroc, 6
plotW, 6
plotWdists, 7
prop.belowthreshold, 8
Wdensities.fromraw, 3-8, 8
{\tt Wdensities.mix}, \textcolor{red}{9}
Wdensities.unadjusted, 7, 9, 9
weightsofevidence, 10
wevid(wevid-package), 2
wevid-package, 2
wtrue.results, 11
```