Features meaning in EcoTaxa January15 th, 2018

	Feature from EcoTaxa	Description	Remarks
J	area	Surface area of the object in square pixels	Gorsky et al., 2010
\vee	mean	Average grey value within the object; sum of the grey values of all pixels in the	Gorsky et al., 2010
		object divided by the number of pixels	
	stddev	Standard deviation of the grey value used to generate the mean grey value	Gorsky et al., 2010
	mode	Modal grey value within the object	Gorsky et al., 2010
V	min	Minimum grey value within the object $(0 = black)$	Gorsky et al., 2010
V	max	Maximum grey value within the object (255 = white	Gorsky et al., 2010
	bouding rectangle	The smallest rectangle enclosing the selection uses by the heading	
$\sqrt{}$	X	X position of the center of gravity of the object	Gorsky et al., 2010
J	у	Y position of the center of gravity of the object	Gorsky et al., 2010
	xm	X position of the center of gravity of the object's grey level	Gorsky et al., 2010
	ym	Y position of the center of gravity of the object's grey level	Gorsky et al., 2010
V _.	perim.	The length of the outside boundary of the object	Gorsky et al., 2010
\checkmark	bx	X coordinates of the top left point of the smallest rectangle enclosing the object	Gorsky et al., 2010
V	by	Y coordinates of the top left point of the smallest rectangle enclosing the object	Gorsky et al., 2010
V	width	Width of the smallest rectangle enclosing the object	Gorsky et al., 2010
V	height	Height of the smallest rectangle enclosing the object	Gorsky et al., 2010

			1
V	major	Primary axis of the best fitting ellipse for the object	Gorsky et al., 2010
$\sqrt{}$	minor	Secondary axis of the best fitting ellipse for the object	Gorsky et al., 2010
\bigvee	angle	Angle between the primary axis and a line parallel to the x-axis of the image	Gorsky et al., 2010
V	circ.	circularity: $(4*\pi*Area)/Perim^2$ a value of 1 indicates a perfect circle, a value	Gorsky et al., 2010
		approaching 0 indicates an increasingly elongated polygon	
\checkmark	feret	Maximum feret diameter, i.e. the longest distance between any two points along	Gorsky et al., 2010
		the object boundary	
V	intden	Integrated density. The sum of the grey values of the pixels in the object (i.e.	Gorsky et al., 2010
		= Area*Mean)	
	median	Median grey value within the object	Gorsky et al., 2010
	skew	Skewness of the histogram of grey level values	Gorsky et al., 2010
	kurt	Kurtosis of the histogram of grey level values	Gorsky et al., 2010
\lor	%area	Percentage of object's surface area that is comprised of holes, defined as the	Gorsky et al., 2010
		background grey level	
J	xstart	X coordinate of the top left point of the image	Gorsky et al., 2010
J	ystart	Y coordinate of the top left point of the image	Gorsky et al., 2010
$\sqrt{}$	area_exc	Surface area of the object excluding holes, in square pixels (=Area*(1-	Gorsky et al., 2010
		$\ \ \left(\%\mathrm{area}/100)\right)$	
	fractal	Fractal dimension of object boundary (Berube and Jebrak, 1999)	Gorsky et al., 2010
	skelarea	Surface area of skeleton in pixels. In a binary image, the skeleton is obtained	Gorsky et al., 2010
		by repeatedly removing pixels from the edges of objects until they are reduced	
		to the width of a single pixel	
			•

slope	Slope of the grey level normalized cumulative histogram	Gorsky et al., 2010
histcum1	grey level value at 25% of the normalized cumulative histogram of grey levels	Gorsky et al., 2010
histcum2	grey level value at 50% of the normalized cumulative histogram of grey levels	Gorsky et al., 2010
histcum3	grey level value at 75% of the normalized cumulative histogram of grey levels	Gorsky et al., 2010
XMg5	X position of the center of gravity of the object, using a gamma value of 51	Gorsky et al., 2010
YMg5	Y position of the center of gravity of the object, using a gamma value of 51	Gorsky et al., 2010
nb1	Number of remaining objects in the image after thresholding on level Histcum1	
nb2	Number of remaining objects in the image after thresholding on level Histcum2	
nb3	Number of remaining objects in the image after thresholding on level Histcum2	
compentropy		
compmean		
compslope		
compm1		
compm2		
compm3		
symetrieh	Bilateral horizontal symmetry index.	Romagnan et al., (2016)
symetriev	Bilateral vertical symmetry index.	Romagnan et al., (2016)
symetriehc	Symmetry of the object in relation to the horizontal axis after thresholding at	Romagnan com. pers.
	the grey level Histcum1 value	

	symetrievc	Symmetry of the object in relation to the vertical axis after thresholding at	Romagnan com. pers.
√		grey level Histcum1 value	
	convperim	The perimeter of the smallest polygon within which all points in the objet fit	Romagnan et al., (2016)
	convarea	The area of the smallest polygon within which all points in the objet fit	Romagnan et al., (2016)
	fcons	Measure of contrast based on the texture feature descriptor (Amadasun and	
		King, 1989)	
	thickr	Thickness Ratio; relation between the maximum thickness of an object and the	Romagnan et al., (2016)
		average thickness of the object excluding the maximum	
	tag	ancienne variable dont on ne sert plus (0 ou 1 $->$ 1 si objet "taggué" doublon)	Romagnan com. pers.
	esd	equivalent spherical diameter	To check - customized variable
\checkmark	elongation	major/minor	- customized variable
J	range	max-min	- customized variable
	meanpos	(max - min)/range	- customized variable
	centroids	$\sqrt{(xm-x)^2 + (ym-y)^2}$	To check customized variable
	cv	100*(stdv/mean)	- customized variable
	sr	100*(stdev/(max-min))	- customized variable
\bigvee	perimareaexc	$perim/area_exc$	To check customized variable
\checkmark	feretareaexc	$feret/area_exc$	To check customized variable
\vee	perimferet	perim/feret	- customized variable
1	perimmajor	perim/major	- customized variable

\	circex	$(4*\pi*Area_exc)/perim^2$	To check customized variable
	cdexc	$(centroid)^2/area_exc$	To check customized variable

Bibliography

- Gorsky, G., Ohman, M. D., Picheral, M., Gasparini, S., Stemmann, L., Romagnan, J. B., ... & Prejger, F. (2010). Digital zooplankton image analysis using the ZooScan integrated system. Journal of plankton research, 32(3), 285-303.
- Romagnan, J. B., Aldamman, L., Gasparini, S., Nival, P., Aubert, A., Jamet, J. L., & Stemmann, L. (2016). High frequency mesozooplank-ton monitoring: Can imaging systems and automated sample analysis help us describe and interpret changes in zooplankton community composition and size structure An example from a coastal site. Journal of Marine Systems, 162, 18-28.
- $\bullet \ http://www.obs-vlfr.fr/\tilde{g}aspari/Plankton_Identifier/faq.html\#D5$