

marzec 2021 r.

PRACA KONTROLNA nr 7 - POZIOM PODSTAWOWY

1. Wykaż, że dla dowolnych liczb $a,\ b$ różnych od zera, posiadających ten sam znak, prawdziwa jest nierówność

$$\frac{a}{b} + \frac{b}{a} > \frac{8}{5}.$$

2. Wyznacz t
g $\alpha,$ wiedząc, że α jest kątem ostrym spełnia
jącym równanie

$$\frac{2\sin\alpha + 3\cos\alpha}{\cos\alpha} = 2\cot\alpha.$$

- 3. Spośród 10 białych i 2 czarnych kul losujemy bez zwracania m kul. Jaka jest najmniejsza liczba m, dla której prawdopodobieństwo, że wśród wylosowanych kul jest przynajmniej jedna czarna, przekracza $\frac{1}{2}$?
- 4. Wielomian $W(x) = 2x^3 + px^2 + qx 2$ ma współczynniki całkowite i pierwiastek całkowity, a reszta z jego dzielenia przez dwumian x 2 jest równa 10. Dla jakich x przyjmuje on wartości dodatnie?
- 5. Odcinek o końcach A(1,0) i B(2,1) jest podstawą trójkąta równoramiennego, którego trzeci wierzchołek leży na prostej y=2x+1. Podaj równania prostych zawierających ramiona tego trójkąta i oblicz jego pole.
- 6. Na bokach AC i BC trójkąta równoramiennego ABC obrano punkty M i N, których rzutami prostokątnymi na podstawę AB są punkty S, T. Wykaż, że |AB| = 2|ST| wtedy i tylko wtedy, gdy |AM| = |CN|.

PRACA KONTROLNA nr 7 - POZIOM ROZSZERZONY

- 1. Wykaż, że dla dowolnych liczb rzeczywistych a, b równość $a^3 2b^3 = ab(a+b)$ zachodzi wtedy i tylko wtedy, gdy a = 2b.
- 2. Rozwiąż równanie $\cos x \sin x = \frac{\cos 2x}{\sin 2x + 1}$.
- 3. Liczba dwuelementowych podzbiorów zbioru A jest 3 razy większa niż liczba dwuelementowych podzbiorów zbioru B. Liczba dwuelementowych podzbiorów zbioru A nie zawierających ustalonego elementu $a \in A$ jest sumą liczby dwuelementowych podzbiorów zbioru B i liczby dwuelementowych podzbiorów zbioru B, do którego dodano jeden element. Ile elementów ma każdy z tych zbiorów? Ile każdy z tych zbiorów ma podzbiorów trzyelementowych?
- 4. Reszta z dzielenia wielomianu $W(x)=x^4+x^3+px^2+qx+2$ przez (x^2+1) jest równa (-2x+6). Rozwiąż nierówność W(x)>0.
- 5. Dwa boki trójkąta zawierają się w prostych 2x y = 0 i x 2y = 0, a proste zawierające jego wysokości przecinają się w punkcie S(5, -2). Wyznacz wierzchołki trójkąta i oblicz jego pole.
- 6. Wyznacz równanie krzywej będącej zbiorem środków okręgów, które są styczne do prostej x=2 i do okręgu $x^2+2x+y^2-2y+1=0$.

Rozwiązania (rękopis) zadań z wybranego poziomu prosimy nadsyłać do **20.03.2021r.** na adres:

Wydział Matematyki Politechnika Wrocławska Wybrzeże Wyspiańskiego 27 50-370 WROCŁAW.

Na kopercie prosimy koniecznie zaznaczyć wybrany poziom! (np. poziom podstawowy lub rozszerzony). Do rozwiązań należy dołączyć zaadresowaną do siebie kopertę zwrotną z naklejonym znaczkiem, odpowiednim do formatu listu. Polecamy stosowanie kopert formatu C5 (160x230mm) ze znaczkiem o wartości 3,30 zł. Na każdą większą kopertę należy nakleić droższy znaczek. Prace niespełniające podanych warunków nie będą poprawiane ani odsyłane.

Uwaga. Wysyłając nam rozwiązania zadań uczestnik Kursu udostępnia Politechnice Wrocławskiej swoje **dane osobowe**, które przetwarzamy **wyłącznie** w zakresie niezbędnym do jego prowadzenia (odesłanie zadań, prowadzenie statystyki). Szczegółowe informacje o przetwarzaniu przez nas danych osobowych są dostępne na stronie internetowej Kursu.

Adres internetowy Kursu: http://www.im.pwr.edu.pl/kurs