

*Feature Extraction and Scene Interpretation for Map-Based Navigation and Map Building

Line segmentation & extraction

김진형

ISL seminar.

2019-04-10

^{*}Arras, Kai O., and Roland Y. Siegwart. "Feature extraction and scene interpretation for map-based navigation and map building." *Intelligent Systems & Advanced Manufacturing.* International Society for Optics and Photonics, 1998.

Line segmentation & extraction

Feature

- Line segment, curve segment, corner, breakpoint
- Line segment: the world is consist of several lines! Rather than curve.

Line segmentation

 Extract point group(which is representing line segments) from LRF measurements

Line extraction

Extract LINE from point group

Line segmentation & extraction

2019-04-10

Line segmentation from LRF data

Line segmentation

- Split-and-Merge algorithm
 - ightharpoonup N개의 점들로 이루어진 데이터 집합 $S_I=\{p_i|i=1,...,N\}$ 에서 시작점 p_I 과 끝점 p_N 을 연결하는 선분 l_I 을 구한다.
 - $\triangleright S_1$ 에서 l_1 과 가장 거리가 멀리 떨어진 점 p_k 를 찾는다.

여기서, 수선의 길이는
$$d = \frac{p_1 p_k \cdot p_1 p_N}{|p_1 p_N|}$$

 \triangleright d가 임계값을 넘어가면, S_1 을 다음과 같이 둘로 나눈다.

$$S_2 = \{p_i \mid i = 1, \dots, k\}, S_3 = \{p_i \mid i = k, \dots, N\}$$

- \triangleright 집합 S_2 와 S_3 에 대하여 1~3과정을 반복
- → 모든 데이터가 각각의 선분으로 분해된 경우, 동일 직선상의 선분을 합친다.

Line extraction

Probabilistic line extraction

• Line segment를 표현하는 점군에 대하여 least square 방법으로 각 점들로부터 오차가 최소화 되는 직선의 방정식을 구한다.

 $\alpha = \frac{1}{2} \tan^{-1} \left| \frac{\sum w_i \rho_i^2 \sin 2\theta_i - \frac{2}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos \theta_i \sin \theta_j}{\sum w_i \rho_i^2 \cos 2\theta_i - \frac{1}{\sum w_i} \sum \sum w_i w_j \rho_i \rho_j \cos(\theta_i + \theta_j)} \right| + \frac{\pi}{2}$ $r = \frac{\sum w_i \rho_i \cos(\theta_i - \alpha)}{\sum w}$

$$x\cos\alpha + y\sin\alpha = r$$

$$\alpha = \frac{1}{2} \tan^{-1} \left(\frac{-2\sum w_i (\overline{y}_w - y_i) (\overline{x}_w - x_i)}{\sum w_i ((\overline{y}_w - y_i)^2 - (\overline{x}_w - x_i)^2)} \right)$$

$$\overline{x}_{w} = \frac{\sum w_{i} \rho_{i} \cos \theta_{i}}{\sum w_{i}}$$

$$r = \overline{x}_{w} \cos \alpha + \overline{y}_{w} \sin \alpha$$

$$\overline{y}_w = \frac{\sum w_i \rho_i \sin \theta_i}{\sum w_i}$$

Experimental result

Experimental result

L Image System Laboratory

Conclusion

● Hough transform과의 차이

- HT는 Dominant한 직선을 지날 듯 한 Measurements를 필터링
- Line extraction은 Measurements가 내포하는 선분을 추출

2019-04-10