Quelques mots sur la forme révisée de l'algorithme (primal) simplexe

Anthony Przybylski, Xavier Gandibleux

Université de Nantes, M1 ORO

Pédagogie vs réalité

- Présentation pédagogique de l'algorithme du simplexe
 - Utilisation du tableau simplexe comme structure de données
 - Utilisation d'une itération de la méthode du pivot de Gauss pour mettre à jour le tableau
- Inconvénients
 - Propagation très rapide d'imprécisions numériques dans le tableau simplexe
 - Coût temporel du maintien du tableau
 - Aucune exploitation du caractère creux de la matrice des contraintes
- Implémentations
 - Abandon du tableau simplexe
 - Utilisation/adaptation de notions d'analyse numérique
 - Toujours des progrès en combinant des expérimentations massives (nombreux paramètres dans la méthode) et des éléments théoriques

Pédagogie vs réalité

- Présentation pédagogique de l'algorithme du simplexe
 - Utilisation du tableau simplexe comme structure de données
 - Utilisation d'une itération de la méthode du pivot de Gauss pour mettre à jour le tableau
- Inconvénients
 - Propagation très rapide d'imprécisions numériques dans le tableau simplexe
 - Coût temporel du maintien du tableau
 - Aucune exploitation du caractère creux de la matrice des contraintes
- Implémentations
 - Abandon du tableau simplexe
 - Utilisation/adaptation de notions d'analyse numérique
 - Toujours des progrès en combinant des expérimentations massives (nombreux paramètres dans la méthode) et des éléments théoriques

Pédagogie vs réalité

- Présentation pédagogique de l'algorithme du simplexe
 - Utilisation du tableau simplexe comme structure de données
 - Utilisation d'une itération de la méthode du pivot de Gauss pour mettre à jour le tableau

Inconvénients

- Propagation très rapide d'imprécisions numériques dans le tableau simplexe
- Coût temporel du maintien du tableau
- Aucune exploitation du caractère creux de la matrice des contraintes

Implémentations

- Abandon du tableau simplexe
- Utilisation/adaptation de notions d'analyse numérique
- Toujours des progrès en combinant des expérimentations massives (nombreux paramètres dans la méthode) et des éléments théoriques

Un PL sous forme standard peut s'écrire

$$\begin{array}{rcl}
\text{max } z & = & c^T x \\
s.c. & Ax & = & b \\
x & \ge & 0
\end{array}$$

- Soit \mathcal{B} une base, la sous-matrice $A_{\mathcal{B}}$ définie par les colonnes de A qui sont dans \mathcal{B} est donc inversible
- On note alors ${\mathcal N}$ l'ensemble des variables hors-bases, la sous-matrice de A définie par les colonnes de A qui sont dans ${\mathcal N}$ est notée $A_{{\mathcal N}}$
- La séparation entre les variables de base et hors-bases peut aussi se faire dans les vecteurs c (c_B et c_N) et x (x_B et x_N)

•
$$A = (A_{\mathcal{B}}, A_{\mathcal{N}}), c^{T} = (c_{\mathcal{B}}^{T}, c_{\mathcal{N}}^{T}) \text{ and } x = (x_{\mathcal{B}}^{T}, x_{\mathcal{N}}^{T})^{T}$$

$$Ax = b \iff (A_{\mathcal{B}}, A_{\mathcal{N}})(x_{\mathcal{B}}^{T}, x_{\mathcal{N}}^{T})^{T} = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} + A_{\mathcal{N}}x_{\mathcal{N}} = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} = b - A_{\mathcal{N}}x_{\mathcal{N}}$$

$$\iff x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}x_{\mathcal{N}})$$

En fixant $x_{\mathcal{N}} = 0$, on obtient $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b$. La solution de base associée à \mathcal{B} est donc $(x_{\mathcal{B}}, 0)$

$$c^{T}x = (c_{\mathcal{B}}^{T}, c_{\mathcal{N}}^{T})(x_{\mathcal{B}}^{T}, x_{\mathcal{N}}^{T})^{T}$$

$$= c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b + (c_{\mathcal{N}}^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{N}})x_{\mathcal{N}}$$
Vecteur des coûts réduits : $\bar{c}^{T} = c^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{$

•
$$A = (A_{\mathcal{B}}, A_{\mathcal{N}}), \ c^T = (c_{\mathcal{B}}^T, c_{\mathcal{N}}^T) \text{ and } x = (x_{\mathcal{B}}^T, x_{\mathcal{N}}^T)^T$$

$$Ax = b \iff (A_{\mathcal{B}}, A_{\mathcal{N}})(x_{\mathcal{B}}^T, x_{\mathcal{N}}^T)^T = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} + A_{\mathcal{N}}x_{\mathcal{N}} = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} = b - A_{\mathcal{N}}x_{\mathcal{N}}$$

$$\iff x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}x_{\mathcal{N}})$$

En fixant $x_{\mathcal{N}} = 0$, on obtient $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b$. La solution de base associée à \mathcal{B} est donc $(x_{\mathcal{B}}, 0)$

$$c^{T}x = (c_{\mathcal{B}}^{T}, c_{\mathcal{N}}^{T})(x_{\mathcal{B}}^{T}, x_{\mathcal{N}}^{T})^{T}$$

$$= c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b + (c_{\mathcal{N}}^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{N}})x_{\mathcal{N}}$$
Vecteur des coûts réduits : $\bar{c}^{T} = c^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A$

$$\bar{c}^{T} = (\bar{c}_{\mathcal{B}}^{T}, \bar{c}_{\mathcal{N}})^{T} \text{ avec } \bar{c}_{\mathcal{B}} = 0$$

•
$$A = (A_{\mathcal{B}}, A_{\mathcal{N}}), \ c^T = (c_{\mathcal{B}}^T, c_{\mathcal{N}}^T) \text{ and } x = (x_{\mathcal{B}}^T, x_{\mathcal{N}}^T)^T$$

$$Ax = b \iff (A_{\mathcal{B}}, A_{\mathcal{N}})(x_{\mathcal{B}}^T, x_{\mathcal{N}}^T)^T = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} + A_{\mathcal{N}}x_{\mathcal{N}} = b$$

$$\iff A_{\mathcal{B}}x_{\mathcal{B}} = b - A_{\mathcal{N}}x_{\mathcal{N}}$$

$$\iff x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}(b - A_{\mathcal{N}}x_{\mathcal{N}})$$

En fixant $x_{\mathcal{N}} = 0$, on obtient $x_{\mathcal{B}} = A_{\mathcal{B}}^{-1}b$. La solution de base associée à \mathcal{B} est donc $(x_{\mathcal{B}}, 0)$

$$c^{T}x = (c_{\mathcal{B}}^{T}, c_{\mathcal{N}}^{T})(x_{\mathcal{B}}^{T}, x_{\mathcal{N}}^{T})^{T}$$

$$= c_{\mathcal{B}}^{T}x_{\mathcal{B}} + c_{\mathcal{N}}^{T}x_{\mathcal{N}}$$

$$= c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b + (c_{\mathcal{N}}^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A_{\mathcal{N}})x_{\mathcal{N}}$$
Vecteur des coûts réduits : $\bar{c}^{T} = c^{T} - c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}A$

 $ar{c}^T = (ar{c}_\mathcal{B}^T, ar{c}_\mathcal{N})^T$ avec $ar{c}_\mathcal{B} = 0$

Tableau simplexe associé à la base ${\cal B}$

ĺ	Ē	$c^T - c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} A$	$-c_{\mathcal{B}}^{T}A_{\mathcal{B}}^{-1}b$
	$x_{\mathcal{B}}$	$A_{\mathcal{B}}^{-1}A$	$A_{\mathcal{B}}^{-1}b$

Conséquences

- Il est possible de reconstruire le tableau simplexe associé à chaque base (complètement ou partiellement) à partir du tableau initial/des données du problème
- Utiliser ces formules réduit considérablement les imprécisions numériques mais pour un coût temporel prohibitif
- En particulier, même si $A_{\mathcal{B}}$ est creuse, $A_{\mathcal{B}}^{-1}$ ne l'est pas forcément

La méthode du simplexe en forme révisée

Grandes lignes

- À chaque itération, on sait quelles variables sont en base, ainsi que les valeurs des variables de base mais les éléments du tableau simplexe ne sont pas connus
- Nécessité de calculer les/des coûts réduits pour choisir une variable entrante
- Nécessité de calculer les éléments de la colonne de la variable entrante pour choisir une variable sortante, et mettre à jour les valeurs des variables de base

Calcul des coûts réduits

- Les coûts réduits des variables de base sont nuls
- Les coûts réduits des variables hors-bases sont donnés par

$$\bar{c}_{\mathcal{N}}^T = c_{\mathcal{N}}^T - c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} A_{\mathcal{N}}$$

- On résout $y^T = c_{\mathcal{B}}^T A_{\mathcal{B}}^{-1} \iff y^T A_{\mathcal{B}} = c_{\mathcal{B}}^T$ où y est un vecteur d'inconnues, on a donc un système d'équations à résoudre
- On utilise y dans $c_{\mathcal{N}}^T y^T A_{\mathcal{N}}$ pour obtenir les coûts réduits des variables hors-bases
- Remarque : il n'est pas forcément nécessaire de calculer tous les coûts réduits pour choisir une variable entrante

Exemple (1/4)

On considère la seconde itération de la résolution du PL suivant

On a
$$\mathcal{B} = \{x_1, x_4, x_5\}, x_{\mathcal{B}} = (3, 1, 3) \text{ et } A_{\mathcal{B}} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exemple (2/4)

On résout

$$y^T A_{\mathcal{B}} = c_{\mathcal{B}}^T \iff (y_1, y_2, y_3) \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (3, 0, 0)$$

soit

$$\begin{cases} 2y_1 + y_2 & = 3 \\ y_2 & = 0 \\ y_3 & = 0 \end{cases}$$

On obtient $y^T = (\frac{3}{2},0,0)$ qu'on injecte dans $\bar{c}_{\mathcal{N}}^T = c_{\mathcal{N}}^T - y^T A_{\mathcal{N}}$

$$(\bar{c}_2, \bar{c}_3) = (2,0) - \left(\frac{3}{2}, 0, 0\right) \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} = \left(\frac{1}{2}, -\frac{3}{2}\right)$$

Calcul de la colonne de la variable entrante

 Les éléments de la colonne de la variable entrante (dans le tableau simplexe) sont donnés par

$$A_{\mathcal{B}}^{-1}a$$

où a est la colonne de A dont l'indice correspond à la variable entrante

• On résout $d = A_{\mathcal{B}}^{-1} a \iff A_{\mathcal{B}} d = a$ où d est un vecteur d'inconnues, on a donc un système d'équations à résoudre

Exemple (3/4)

On choisit x_2 comme variable entrante, on a donc $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

$$A_{\mathcal{B}}d = a \Longleftrightarrow \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

soit

$$\begin{cases}
2d_1 & = 1 \\
d_1 & +d_2 & = 1 \\
& d_3 & = 1
\end{cases}$$

On obtient
$$d = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

Choix de la variable sortante et MAJ des valeurs des variables de base

- On connaît
 - les valeurs des variables de base (habituelle colonne de droite du tableau simplexe)
 - la colonne de la variable entrante
- On peut donc
 - choisir la variable sortante
 - mettre à jour les variables de base

de la façon habituelle

Exemple (4/4)

• On a
$$d = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$
 et $x_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$

On obtient donc les ratios $\begin{pmatrix} \frac{3}{\frac{1}{2}} \\ \frac{1}{\frac{1}{2}} \\ \frac{3}{1} \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}$

La variable sortante est donc x_4

• \mathcal{B} devient $(\{x_1, x_4, x_5\} \cup \{x_2\}) \setminus \{x_4\} = \{x_1, x_2, x_5\}$ Le vecteur des variables de base devient (x_1) $(3 - \frac{1}{2} \times 2)$ (2)

$$\begin{pmatrix} x_1 \\ x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 - \frac{1}{2} \times 2 \\ 2 \\ 3 - 1 \times 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Et le changement de base?

- Dans la version pédagogique de l'algorithme du simplexe
 - Toutes les informations du tableau simplexe sont disponibles
 - Le changement de base demande de mettre à jour le tableau simplexe
- Dans la forme révisée de l'algorithme du simplexe
 - Les informations utiles du tableau simplexe doivent être calculées
 - Il n'y aucun traitement à faire (dans cette version basique) pour le changement de base à part la mise-à-jour des valeurs des variables de base

Récapitulatif

Une itération de l'algorithme du simplexe en forme révisée (cas de maximisation)

Entrée: base (primale) admissible \mathcal{B} et solution associée ($x_{\mathcal{B}}, 0$)

- Résoudre le système d'équations $yA_{\mathcal{B}} = c_{\mathcal{B}}$
- Choix d'une variable entrante x_r vérifiant $(\bar{c}_r =)c_r ya > 0$ où a est la colonne de A_N correspondant à x_r
- Résoudre le système d'équations $A_B d = a$
- Choix d'une variable sortante x_s : première variable s'annulant avec l'augmentation de x_r
- $\mathcal{B} \leftarrow (\mathcal{B} \setminus \{r\}) \cup \{s\}$ et actualiser $x_{\mathcal{B}}$

Sortie: Base (primale) admissible \mathcal{B} et solution associée ($x_{\mathcal{B}}, 0$)

Pour une implémentation vraiment efficace

- Le point essentiel est de résoudre efficacement les deux systèmes d'équations
- Pour cela, de nombreuses solutions issues/adaptées de l'algèbre linéaire et l'analyse numérique sont possibles
- En particulier, de nombreuses méthodes ont été proposées pour résoudre des systèmes d'équations en exploitant le caractère creux du système
- Après un changement de base, seule une colonne de $A_{\mathcal{B}}$ est changée \Rightarrow inutile de résoudre intégralement les systèmes d'équations
- Idée principale : décomposer la matrice $A_{\mathcal{B}}$ et maintenir cette décomposition en cas de changement de base
- Les solveurs modernes ont recours à une décomposition LU

Décomposition LU

- Une décomposition de $A_B = LU$, où L est une matrice triangulaire inférieure, et U est une matrice triangulaire supérieure, est maintenue
- La résolution d'un système d'équations du type $A_Bd = a$ où d est le vecteur des inconnues devient LUd = a
- En posant y = Ud, on a d'abord le système triangulaire Ly = a (immédiat) à résoudre
- Ensuite, le système triangulaire Ud = y peut être directement résolu
- Conclusion : chaque système d'équations à résoudre dans la méthode du simplexe révisé demande juste de résoudre deux systèmes d'équations triangulaires

Exemple (1/7)

On considère la seconde itération de la résolution du PL suivant

On a
$$\mathcal{B} = \{x_1, x_4, x_5\}$$
, $x_{\mathcal{B}} = (3, 1, 3)$, $A_{\mathcal{B}} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $U = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Exemple (2/7)

On veut résoudre $y^T A_{\mathcal{B}} = c_{\mathcal{B}}^T \iff y^T L U = c_{\mathcal{B}}^T$ Pour cela, on pose $t^T = y^T L$ et on résout

$$t^T U = c_{\mathcal{B}}^T \iff (t_1, t_2, t_3) \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (3, 0, 0)$$

On obtient $t = (\frac{3}{2}, 0, 0)$ et on résout

$$y^T L = t^T \iff (y_1, y_2, y_3) \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (\frac{3}{2}, 0, 0)$$

On obtient $y^T = (\frac{3}{2},0,0)$ qu'on injecte dans $\bar{c}_{\mathcal{N}}^T = c_{\mathcal{N}}^T - y^T A_{\mathcal{N}}$

$$(\bar{c}_2,\bar{c}_3)=(2,0)-\left(rac{3}{2},0,0
ight)egin{pmatrix} 1 & 1 \ 1 & 0 \ 1 & 0 \end{pmatrix}=\left(rac{1}{2},-rac{3}{2}
ight)$$

Exemple (3/7)

On choisit x_2 comme variable entrante, on a donc $a = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

On veut résoudre $A_B d = a \iff LUd = a$ Pour cela, on pose y = Ud et on résout

$$Ly = a \Longleftrightarrow \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

On obtient
$$y = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 1 \end{pmatrix}$$
 et on résout

$$Ud = y \Longleftrightarrow \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

On obtient
$$d = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$

Exemple (4/7)

• On a
$$d = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 1 \end{pmatrix}$$
 et $x_{\mathcal{B}} = \begin{pmatrix} x_1 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix}$

On obtient donc les ratios $\begin{pmatrix} \frac{3}{\frac{1}{2}} \\ \frac{1}{\frac{1}{2}} \\ \frac{3}{1} \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \\ 3 \end{pmatrix}$

La variable sortante est donc x_4

• \mathcal{B} devient $\{x_1, x_4, x_5\} \cup \{x_2\} \setminus \{x_4\} = \{x_1, x_2, x_5\}$ Le vecteur des variables de base devient

$$\begin{pmatrix} x_1 \\ x_2 \\ x_5 \end{pmatrix} = \begin{pmatrix} 3 - \frac{1}{2} \times 2 \\ 2 \\ 3 - 1 \times 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Décomposition LU et changement de base (1/5)

- En plus de connaître les variables en base ainsi que leurs valeurs, une décomposition LU de la matrice $A_{\mathcal{B}}$ sera supposée connue au début de chaque itération
 - ⇒ Résolution rapide des deux systèmes d'équations
- Le changement de base demandera maintenant de mettre à jour la décomposition LU de la matrice $A_{\mathcal{B}}$ dont une colonne sera modifiée
- On note $\mathcal B$ la base avant changement, et $\mathcal B'$ la base après On connaît la décomposition $A_{\mathcal B}=LU$ et on doit obtenir $A_{\mathcal B'}=L'U'$

Décomposition LU et changement de base (2/5)

- \bullet $A_{\mathcal{B}} = LU \iff L^{-1}A_{\mathcal{B}} = U$
- A_B et A_{B'} ne diffèrent que d'une colonne (la colonne a dont l'indice dans A est le même que pour la variable entrante)
 - \Rightarrow Toutes les colonnes de $L^{-1}A_{\mathcal{B}'}$ sauf une sont directement issues de U
- $L^{-1}a$ a déjà été calculé en résolvant Ly = a (première moitié de la résolution de $A_Bd = a$)
- $L^{-1}A_{\mathcal{B}'}$ est donc obtenu sans calcul et est presque une matrice triangulaire supérieure

Décomposition LU et changement de base (3/5)

- Pour obtenir une matrice triangulaire supérieure, des éliminations gaussiennes sont appliquées
- On multiplie $L^{-1}A_{B'}$ à gauche par des matrices du type

où i correspond à la ième colonne de la matrice (Ce qui est équivalent à ajouter m_i fois la ième ligne à la (i+1)ème)

Décomposition LU et changement de base (4/5)

• L'inverse M_i^{-1} d'une matrice Mi est donnée par

• De plus, la multiplication d'une matrice triangulaire inférieure à droite par des matrices du type M_i^{-1} préserve le caractère triangulaire inférieur

Décomposition LU et changement de base (5/5)

 On peut donc obtenir une matrice triangulaire supérieure U' donnée par

$$U' = M_1 \dots M_k L^{-1} A_{\mathcal{B}'}$$

• Une matrice triangulaire inférieure L' est donnée par

$$L' = LM_k^{-1} \dots M_l^{-1}$$

• On a donc $L'U' = A_{\mathcal{B}'}$, la décomposition voulue est donc obtenue

Exemple (5/7)

• On a
$$\mathcal{B} = \{x_1, x_4, x_5\}$$
, $A_{\mathcal{B}} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $L = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $U = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
• On a $\mathcal{B}' = \{x_1, x_2, x_5\}$, $A_{\mathcal{B}'} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ et par la résolution de $Ly = a$, on a obtenu $y = \begin{pmatrix} 1 \\ \frac{1}{2} \\ 1 \end{pmatrix}$ L' . U' ?

Exemple (6/7)

- On a immédiatement $L^{-1}A_{\mathcal{B}'}=\begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 1 & 1 \end{pmatrix}$ Seul un terme empêche la matrice d'être triangulaire supérieure
- Dans la méthode du pivot de Gauss, on ajouterait à la troisième ligne (-2) fois la seconde lci, on multiplie à gauche la matrice $L^{-1}A_{B'}$ par

$$M_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}$$

Exemple (7/7)

• On obtient
$$U' = M_2 L^{-1} A_{\mathcal{B}'} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• L' est ensuite obtenu par $L' = LM_2^{-1}$

On a
$$L' = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

• On a bien $L'U' = A_{\mathcal{B}'}$

Quelques remarques finales

- Il peut être utile de permuter des colonnes de $L^{-1}A_{\mathcal{B}'}$ avant de commencer les éliminations gaussiennes
- Des permutations de lignes sont aussi possibles (surtout pour des questions de précision numériques)
- La méthode présentée reste simple, de nombreux raffinements ont été proposés pour des raisons d'efficacité/de précision numérique
- Un exemple en petite taille n'est clairement pas convaincant
- Cependant, il ne faut pas oublier que les problèmes réels sont de grande taille, et que la matrice A_B est très creuse
- Les produits de matrices sont donc relativement rapides et stables numériquement

Quelques remarques finales

- Il peut être utile de permuter des colonnes de $L^{-1}A_{\mathcal{B}'}$ avant de commencer les éliminations gaussiennes
- Des permutations de lignes sont aussi possibles (surtout pour des questions de précision numériques)
- La méthode présentée reste simple, de nombreux raffinements ont été proposés pour des raisons d'efficacité/de précision numérique
- Un exemple en petite taille n'est clairement pas convaincant
- Cependant, il ne faut pas oublier que les problèmes réels sont de grande taille, et que la matrice A_B est très creuse
- Les produits de matrices sont donc relativement rapides et stables numériquement