单纯形法例题:某工厂生产 I、II 两种商品,已知生产单位商品所需的设备台时、A、B 两种原材料的消耗、设备使用台时限额以及原材料的限额如下表所示。该工厂每生产一件商品 I 可获利 3 元,每生产一件商品 II 可获利 4 元。写出使该工厂所获利润最大的线性规划模型,并用单纯形法求解。

	产品I	产品II	限额
设备	2	1	40 台时
原材料	1	3	30KG

解:设生产产品 I 的数量为 x_1 ,生产产品 II 的数量为 x_2 ,所获利润为z,相应的模型为:

用单纯形法求解。

(1) 建立初始单纯形表,即将目标函数和约束条件填入表格中。

			4	0	0	
	ь	x_1	x_2	x_3	x_4	
	40	2	1	1	0	
	30	1	3	0	1	

- (2) 挑选<mark>单位阵</mark>为初始基。在本题中初始基 $B_1 = [P_3, P_4]$,相应的,基变矢 $X_{B1} = [x_3, x_4]^T$ 。
- (3) 将初始基 $B_1 = [P_3, P_4]$ 对应的基变量按<mark>顺序</mark>填入单纯形表中的 X_B 一列。

		3	4	0	0	
$X_{\mathcal{B}}$	ь	x_1	x_2	x_3	\mathcal{X}_4	
x_3	40	2	1	1	0	
x_4	30	1	3	0	1	

这时,我们可以得到初始基 $B_1 = [P_3, P_4]$ 对应的基可行解。

即令非基变量 $x_1 = 0, x_2 = 0$,根据表中的约束条件可得 $x_3 = 40, x_4 = 30$ (这两个值正好是表中基变量对应的资源向量 b对应的分量,为什么?)

第一个基可行解为 $X_1 = [0,0,40,30]^T$ 。

(4)找到了第一个基可行解,接下来的任务就是判断该基可行解是否为最优解,检验其是否为最优解的标准是: 非基变量 x_i 对应的检验数 $\sigma_i = c_i - C_B \cdot B^{-1} \cdot P_i$ 是否 ≤ 0 。如果所有

非基变量的检验数 σ_{j} 均 ≤ 0 ,那么该基可行解为最优解,如果有一个或若干个非基变量的 检验数 $\sigma_{j} > 0$,那么该基可行解不是最优解,需要继续找另一个基可行解。

因为我们选择的初始基 $B_1 = I$,所以其逆矩阵 $B_1^{-1} = I$ 。

相应的,检验数
$$\sigma_j = c_j - C_B \cdot B^{-1} \cdot P_j$$
, $\Rightarrow \sigma_j = c_j - C_B \cdot P_j$ 。

在计算检验数时需用到 C_B (基变量在目标函数中的系数向量),将 C_B 填入表格最左一列中。

				4	0	0	
C_B	X_{B}	Ь	x_1	x_2	x_3	x_4	
0	x_3	40	2	1	1	0	
0	\mathcal{X}_4	30	1	3	0	1	

接下来就是计算非基变量的检验数(基变量的检验数均等于0,为什么?)

				4	0	0	
C_B	X_B	ь	x_1	x_2	x_3	x_4	
0	x_3	40	2	1	1	0	
0	\mathcal{X}_4	30	1	3	0	1	
$\sigma_j^{(1)} = c_j - C_B \cdot P_j$					0	0	

这时,非基变量的检验数:

所以该基可行解还不是最优解。接下来,我们的任务就是找另一个基可行解。当然,我们希望接下来的这第二个基可行解 X_2 对应的目标函数值比第一个基可行解 X_1 对应的目标函数值更接近 \max 值。

(5) 找另一个基可行解。

由非基变量 \rightarrow 基变量的决策变量,我们称之为进基变量,挑选原则: $\max \left\{ \sigma_j \middle| \sigma_j > 0 \right\} = \sigma_k$

那么 x_k 进基(即由非基变量变为基变量)。

我们称 a_{lk} 为主元素,简称主元,在单纯形表中用[]表示。题中,进基变量: $\max\{\sigma_1=3,\sigma_2=4\}=\sigma_k=\sigma_2,\; \text{即}\,x_2$ 进基成为基变量。

出基变量:
$$\min\left\{\frac{b_i}{a_{ik}}|a_{ik}>0\right\}=\min\left\{\frac{b_1}{a_{12}},\frac{b_2}{a_{22}}\right\}=\min\left\{\frac{40}{1}=40,\frac{30}{3}=10\right\}=\frac{b_2}{a_{22}}$$
,即第 2 个

基变量出基,第 2 个基变量是 x_4 ,所以是 x_4 出基成为非基变量。主元为 a_{22} 。

总结: x_2 进基成为基变量, x_4 出基成为非基变量。也就是说 x_2 代替 x_4 成为基变量,即:

			3	4	0	0	
C_B	X_B	ь	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_{j}^{(1)}$	$= c_j - C_E$	$_{3}\cdot P_{j}$	3	4	0	0	
0	x_3						
4	x_2						

这时的基变矢 $X_{B2} = [x_3, x_2]^T$ 。这两个基变量对应的系数列向量组成的矩阵即为 B_2 。

因为在计算非基变量的检验数的计算过程中会用到 B_2^{-1} ,计算逆矩阵是一件麻烦事,我们当然不想干,怎么办呢?为了计算简便,我们期待 $B_2 = [P_3, P_2] = I$,目前我们只是期待而已。下面先把我们的"期待"填入单纯形表中。

			3	4	0	0	
C_B	X_{B}	ь	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_{j}^{(1)}$	$= c_j - C_E$	$_{3}\cdot P_{j}$	3	4	0	0	
0	\mathcal{X}_3			0	1		
4	x_2			1	0		
$\sigma_j^{(2)}$	$= c_j - C_i$	$g \cdot P_j$					

先来看 X_1 对应的主元 a_{22} 所在的行。行的系数表示的是约束条件: $30 = x_1 + 3x_2 + x_4$ ②。

对应于 X_2 ,我们期待的是:在这个约束条件中, x_2 的系数=1, x_3 的系数=0。要做到这一点,只需在等式左右同除以 3(主元 a_{22} 本身),得 $10 = \frac{1}{3}x_1 + x_2 + \frac{1}{3}x_4$ ②',式②'与式②等价。

接着看另一行。即第一行,该行的系数表示的是约束条件: $40=2x_1+x_2+x_3$ ①。

对应于 X_2 ,我们期待的是: 在这个约束条件中, x_2 的系数 = 0, x_3 的系数 = 1。要做到这一点,需要将① $-1 \times$ ②' \Rightarrow 30 = $\frac{5}{3}x_1 + x_3 - \frac{1}{3}x_4$ ①',式①'与式①等价。

将这两个与原约束条件等价的约束条件填入表格中。

			3	4	0	0	
C_B	X_B	Ь	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_{j}^{(1)}$	$= c_j - C_E$	$g \cdot P_j$	3	4	0	0	
0	x_3	30	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	
4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	
$\sigma_j^{(2)}$	$\sigma_j^{(2)} = c_j - C_B \cdot P_j$						

这时,我们可以得到基 $B_2 = [P_3, P_2]$ 对应的基可行解。

即令非基变量 $x_1=0, x_4=0$,根据表中的约束条件可得 $x_3=30, x_2=10$ (这两个值正好是表中基变量对应的资源向量 b 对应的分量)

那么,第2个基可行解为 $X_2 = [0,10,30,0]^T$ 。

(6) 找到了第2个基可行解,接下来的任务就是判断该基可行解是否为最优解,检验其是 否为最优解的标准前面已经详细讲述,这里就不啰唆了。即转回到步骤(4)。

			3	4	0	0	
C_B	X_B	ь	x_1	x_2	\mathcal{X}_3	\mathcal{X}_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_j^{(1)} = c_j - C_B \cdot P_j$		3	4	0	0		
0	x_3	30	$\frac{5}{3}$	0	1	$-\frac{1}{3}$	

4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	
$\sigma_j^{(2)}$	$= c_j - C_i$	$g \cdot P_j$	$\frac{5}{3}$	0	0	$-\frac{4}{3}$	

这时,非基变量的检验数 $\sigma_1 = \frac{5}{3}$, $\sigma_4 = -\frac{4}{3}$, 其中 $\sigma_1 > 0$, 所以该基可行解不是最优解。

(7)接下来,我们的任务就是找另一个基可行解。即转回到步骤(5)。

选择进基变量: $\max \left\{ \sigma_1 = \frac{5}{3} \right\} = \sigma_k = \sigma_1$, 即 x_1 进基成为基变量。

出基变量:
$$\min\left\{\frac{b_1}{a_{11}}, \frac{b_2}{a_{21}}\right\} = \min\left\{30 \times \frac{3}{5} = 18, 10 \times 3 = 30\right\} = \frac{b_1}{a_{11}}$$
, 即第 1 个基变量出基,第

1个基变量是 x_3 ,所以是 x_3 出基成为非基变量。主元为 a_{11} 。

总结: x_1 进基成为基变量, x_3 出基成为非基变量。也就是说 x_1 代替 x_3 成为基变量, 即:

			3	4	0	0	
C_B	X_B	ь	x_1	x_2	x_3	x_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_{j}^{(1)}$	$= c_j - C_E$	$g \cdot P_j$	3	4	0	0	
0	x_3	30	$\left[\frac{5}{3}\right]$	0	1	$-\frac{1}{3}$	$30 \times \frac{3}{5} = 18$
4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	10×3=30
$\sigma_{j}^{(2)}$	$= c_j - C_i$	$_{g}\cdot P_{j}$	$\frac{5}{3}$	0	0	$-\frac{4}{3}$	
3	x_1						
4	x_2						
$\sigma_{j}^{(3)}$	$= c_j - C_k$	$_{3}\cdot P_{j}$					

这时的基变矢 $X_{B3} = [x_1, x_2]^T$ 。这两个基变量对应的系数列向量组成的矩阵即为 B_3 。

			3	4	0	0	
C_B	X_B	ь	x_1	x_2	x_3	\mathcal{X}_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_{j}^{(1)}$	$= c_j - C_E$	$_{3}\cdot P_{j}$	3	4	0	0	
0	\mathcal{X}_3	30	$\left[\frac{5}{3}\right]$	0	1	$-\frac{1}{3}$	$30 \times \frac{3}{5} = 18$
4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	$10 \times 3 = 30$
$\sigma_j^{(2)}$	$c_j = c_j - C_j$	$g \cdot P_j$	$\frac{5}{3}$	0	0	$-\frac{4}{3}$	
3	x_1		1	0			
4	x_2		0	1			
$\sigma_{j}^{(3)}$	$= c_j - C_L$	$g \cdot P_j$					

先来看主元 a_{11} 所在的行。行的系数表示的是约束条件: $30 = \frac{5}{3}x_1 + x_3 - \frac{1}{3}x_4$ ①'。

我们期待的是:在约束条件中, x_1 的系数=1, x_2 的系数=0。要做到这一点,只需在等式左右同除以 $\frac{5}{3}$ (主元 a_{11} 本身),得 $18=x_1+\frac{3}{5}x_3-\frac{1}{3}x_4$ ①'',式①',与式①'等价。接着看另一行。即第二行,该行的系数表示的是约束条件: $10=\frac{1}{3}x_1+x_2+\frac{1}{3}x_4$ ②'。

我们期待的是:在约束条件中, x_1 的系数=0, x_2 的系数=1。

要做到这一点,需要将②' $-\frac{1}{3}$ ×①'' \Rightarrow 4= $x_2-\frac{1}{5}x_3+\frac{2}{5}x_4$ ②'',式②''与式②'

等价。

约束条件
$$\begin{cases} 30 = \frac{5}{3}x_1 + x_3 - \frac{1}{3}x_4 \\ 10 = \frac{1}{3}x_1 + x_2 + \frac{1}{3}x_4 \end{cases}$$
 就等价的代换成
$$\begin{cases} 18 = x_1 + \frac{3}{5}x_3 - \frac{1}{5}x_4 \\ 4 = x_2 - \frac{1}{5}x_3 + \frac{2}{5}x_4 \end{cases}$$

将这些系数填入表格中。

			3	4	0	0	
C_B	X_B	Ь	x_1	x_2	x_3	x_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_j^{(1)} = c_j - C_B \cdot P_j$			3	4	0	0	
0	x_3	30	$\left[\frac{5}{3}\right]$	0	1	$-\frac{1}{3}$	$30 \times \frac{3}{5} = 18$
4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	$10 \times 3 = 30$
$\sigma_j^{(2)} = c_j - C_B \cdot P_j$			$\frac{5}{3}$	0	0	$-\frac{4}{3}$	
3	x_1	18	1	0	$\frac{3}{5}$	$-\frac{1}{5}$	
4	x_2	4	0	1	$-\frac{1}{5}$	$\frac{2}{5}$	
$\sigma_j^{(3)} = c_j - C_B \cdot P_j$							

这时,我们可以得到基 $B_3 = [P_1, P_2]$ 对应的基可行解。

即令非基变量 $x_3 = 0, x_4 = 0$,根据表中的约束条件可得 $x_1 = 18, x_2 = 4$ (这两个值正好是表中基变量对应的资源向量 b对应的分量)

那么, 第 3 个基可行解为 $X_3 = [18,4,0,0]^T$ 。

(8) 找到了第3个基可行解,接下来的任务就是判断该基可行解是否为最优解,检验其是 否为最优解的标准前面已经详细讲述,这里就不啰唆了。即转回到步骤(4)。

			3	4	0	0	
C_B	X_B	ь	x_1	x_2	x_3	x_4	$\frac{b_i}{a_{ik}}$
0	x_3	40	2	1	1	0	$\frac{40}{1} = 40$
0	\mathcal{X}_4	30	1	[3]	0	1	$\frac{30}{3} = 10$
$\sigma_j^{(1)} = c_j - C_B \cdot P_j$			3	4	0	0	
0	x_3	30	$\left[\frac{5}{3}\right]$	0	1	$-\frac{1}{3}$	$30 \times \frac{3}{5} = 18$
4	x_2	10	$\frac{1}{3}$	1	0	$\frac{1}{3}$	10×3=30
$\sigma_j^{(2)} = c_j - C_B \cdot P_j$			$\frac{5}{3}$	0	0	$-\frac{4}{3}$	
3	x_1	18	1	0	$\frac{3}{5}$	$-\frac{1}{5}$	
4	x_2	4	0	1	$-\frac{1}{5}$	$\frac{2}{5}$	
$\sigma_j^{(3)} = c_j - C_B \cdot P_j$			0	0	-1	-1	

这时,非基变量的检验数 $\sigma_3=-1,\sigma_4=-1$,均<0,所以该基可行解就是最优解。

 $\mathbb{E}[X^* = [18,4,0,0]^T, \quad z^* = C_B \cdot b = 3 \times 18 + 4 \times 4 = 70 \ .$