HW2

Anthony Kolotov

Jan 24 2025

- 1. Write the following statements in symbolic form using the symbols \sim , \vee , and \wedge and the indicated letters to represent component statements. Let m= "More people are moving into Miami" and c= "the city gets more crowded."
 - (a) More people are moving into Miami but the city does get more crowded.

Symbolic form: $m \wedge c$

(b) Neither more people are moving into Miami nor the city gets more crowded.

Symbolic form: $\sim m \land \sim c$

- 2. Write the following statements in symbolic form using the symbols \sim , \vee , and \wedge and the indicated letters to represent component statements. Let H = "John is healthy," S = "John is strong," and W = "John is wise."
 - (a) John is wise and healthy but not strong. Symbolic form: $W \wedge H \wedge \sim S$
 - (b) John is not wise but he is healthy and strong. Symbolic form: $\sim W \wedge H \wedge S$
 - (c) John is neither healthy, strong, nor wise. Symbolic form: $\sim H \land \sim S \land \sim W$
 - (d) John is neither strong nor wise, but he is healthy. Symbolic form: $H \land \sim S \land \sim W$
 - (e) John is wise, but he is not both healthy and strong. Symbolic form: $W \wedge \sim (H \wedge S)$
- 3. Write truth tables for the following statement forms (make sure you follow the right order of precedence to parse the logic formula).
 - (a) $p \wedge \sim q$

p	q	$\sim q$	$p \land \sim q$
Т	Т	F	F
T	F	Γ	Τ
F	Т	F	F
F	F	Т	F

(b) $\sim (p \land q) \lor (p \lor q)$

p	q	$p \wedge q$	$\sim (p \wedge q)$	$p \lor q$	$\sim (p \land q) \lor (p \lor q)$
Т	Т	Т	\mathbf{F}	T	Т
T	F	F	${ m T}$	T	T
F	Т	F	${ m T}$	Т	T
F	F	F	${ m T}$	F	T

(c) $p \wedge (q \wedge r)$

p	q	r	$q \wedge r$	$p \wedge (q \wedge r)$
T	Т	Т	T	T
T	T	F	F	F
Γ	F	Т	F	\mathbf{F}
T	F	F	F	\mathbf{F}
F	T	Т	Т	\mathbf{F}
F	T	F	F	\mathbf{F}
F	F	Т	F	\mathbf{F}
F	F	F	F	F

(d) $p \wedge (\sim q \vee r)$

p	q	r	$\sim q$	$\sim q \vee r$	$p \wedge (\sim q \vee r)$
Т	Т	Т	F	Т	T
T	Т	F	F	F	F
T	F	Т	T	Т	${ m T}$
T	F	F	T	Т	T
F	Т	Т	F	Т	F
F	Т	F	F	F	F
F	F	Т	T	Т	F
F	F	F	Т	${ m T}$	F

4. Use the truth table method to prove the following distributive laws.

(a)
$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \land q) \lor (p \land r)$
Т	Т	Т	Т	Т	Т	Т	Т
T	T	F	T	${ m T}$	Τ	F	T
T	F	Т	Т	${ m T}$	F	Т	T
T	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

(b)
$$p \lor (q \land r) = (p \lor q) \land (p \lor r)$$

p	q	r	$q \wedge r$	$p \lor (q \land r)$	$p \lor q$	$p \lor r$	$(p \vee q) \wedge (p \vee r)$
T	Т	Т	Т	Т	Т	Т	Т
T	Γ	F	F	$^{\mathrm{T}}$	Т	Т	${ m T}$
T	F	Т	F	${ m T}$	Т	Т	${ m T}$
T	F	F	F	${ m T}$	Т	Т	${ m T}$
F	Т	Т	Т	${ m T}$	Т	Т	${ m T}$
F	Т	F	F	F	Т	F	\mathbf{F}
F	F	Т	F	F	F	Т	\mathbf{F}
F	F	F	F	F	F	F	\mathbf{F}

5. Assume that x is a particular real number and use De Morgan's laws to write negations for the following statements.

(a) $x \ge -10$

Negation: x < -10

(b) -10 < x < 2

Negation: $x \le -10 \lor x \ge 2$

(c) $x \le -10$ or x > 2Negation: $-10 < x \le 2$

- 6. Use the truth tables method to establish which of the following statement forms are tautologies, which are contradictions, and which are neither.
 - (a) $(p \wedge q) \vee (\sim p \vee (p \wedge \sim q))$

p	q	$\sim p$	$p \wedge q$	$p \land \sim q$	$(p \land q) \lor (\sim p \lor (p \land \sim q))$
T	Т	F	Т	F	${ m T}$
T	F	F	F	Т	${ m T}$
F	T	T	F	F	${ m T}$
F	F	Т	F	F	${f T}$

This is a tautology

(b) $((\sim p \land q) \land (q \land r)) \land \sim q$

p	q	r	$\sim p$	$\sim q$	$(\sim p \land q)$	$(q \wedge r)$	$((\sim p \land q) \land (q \land r)) \land \sim q$
T	Т	Т	F	F	F	Т	F
T	Γ	F	F	F	F	F	F
T	F	Т	F	\mathbf{T}	F	F	F
T	F	F	F	T	F	F	F
F	Γ	Т	T	F	${ m T}$	T	F
F	Т	F	T	F	${ m T}$	F	F
F	F	Т	\mathbf{T}	T	F	\mathbf{F}	F
F	F	F	Т	Т	F	F	\mathbf{F}

This is a contradiction

(c) $(\sim p \lor q) \lor (p \land \sim q)$

m	a	$\sim p$	210	$\alpha + m \setminus \alpha$	$n \wedge a \cdot a$	$(\sim p \lor q) \lor (p \land \sim q)$
P	4	$r \circ p$, ~ q	$r \circ p \vee q$	$p \wedge q$	$(\circ p \lor q) \lor (p \land \circ q)$
T	T	F	F	T	F	Γ
Т	F	F	Т	F	Т	m T
F	Т	T	F	Т	F	m T
F	F	T	T	T	F	m T

This is a tautology

(d) $(p \to r) \leftrightarrow (q \to r)$

\ <u>-</u>		(-	,		
p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \leftrightarrow (q \to r)$
T	T	Т	Т	Т	Т
T	T	F	F	F	ightharpoons T
T	F	T	Т	$T \mid T \mid T$	
T	F	F	F	Т	F
F	T	T	Т	Т	T
F	$\mid T \mid$	F	T	F	F
F	F	T	T	Т	ightharpoonup
F	F	F	Т	Т	ightharpoons T

This is neither

(e) $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$

(<u>1</u>	(1		/ (1	1///			
p	q	r	$q \rightarrow r$	$p \to (q \to r)$	$p \wedge q$	$(p \land q) \to r$	$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
Т	Т	Т	Т	T	Т	T	Т
Γ	Т	F	F	\mathbf{F}	Γ	\mathbf{F}	F
T	F	Т	Т	${ m T}$	F	${ m T}$	Γ
Т	F	F	F	\mathbf{F}	F	\mathbf{F}	Γ
F	Т	Т	T	${ m T}$	F	${ m T}$	Γ
F	Т	F	F	${ m T}$	F	\mathbf{F}	Γ
F	F	Т	Γ	${ m T}$	F	${ m T}$	Γ
F	F	F	F	${ m T}$	F	${ m T}$	$ brack { m T}$

This is a neither

- 7. Write each of the following three statements in symbolic form and determine which pairs are logically equivalent. Make sure to include truth tables and a brief explanation.
 - (a) If it walks like a duck and it talks like a duck, then it is a duck. Symbolic form: $(P \land Q) \to D$
 - (b) Either it does not walk like a duck or it does not talk like a duck, or it is a duck.

Symbolic form: $(\sim P \lor \sim Q) \lor D$

(c) If it does not walk like a duck and it does not talk like a duck, then it is not a duck.

Symbolic form: $(\sim P \land \sim Q) \rightarrow \sim D$

Equivalence: The first and third statements are logically equivalent because they both express the condition for a duck to exist based on walking

4

and talking. The second statement is a different logical form but equivalent to the first in certain logical contexts.

- 8. Use the logical equivalence $p \to q \equiv \sim p \lor q$ and de Morgan's laws to rewrite the following statement forms using \land and \sim only (that is, you should eliminate all \lor , \to and \leftrightarrow symbols in your answer statement forms).
 - (a) $p \land \sim q \to r$ Rewritten form: $\sim (p \land \sim q) \lor r \equiv \sim p \lor q \lor r$
 - (b) $p \lor \sim q \to r \lor q$ Rewritten form: $\sim p \lor q \lor r \lor q \equiv \sim p \lor r$
 - (c) $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$ Rewritten form: $\sim p \lor (q \lor r) \leftrightarrow \sim p \land q \lor r$
- 9. Rewrite the following statements which use "necessary condition" or "sufficient condition" form and turn them into statements using "if-then" form.
 - (a) A necessary condition for Jon's team to win the championship is that it wins the rest of its games.
 - i. If Jon's team wins the rest of its games, then it will be a necessary condition for winning the championship.
 - (b) Winning this championship is a necessary condition for Andy to qualify for the Paris 2024 Olympics Games.
 - i. If Andy wins this championship, then he will quality for the Paris 2024 Olympics games.