

Ciências ULisboa

Faculdade de Ciências da Universidade de Lisboa

PRÁTICAS DE CARTOGRAFIA

DEGGE – LICENCIATURA EM ENGENHARIA GEOESPACIAL

2020/2021

ALGUNS CONCEITOS

SISTEMAS DE REFERÊNCIA ADOTADOS EM PORTUGAL

Direção-Geral do Território (DGT)

https://www.dgterritorio.gov.pt/geodesia/sistemas-referencia

Portugal Continental		
ED50 - European Datum 1950 (Obsoleto - Substituído pelo sistema PT-TM06-ETRS89)		
Bessel Datum Lisboa (Obsoleto - Substituído pelo sistema PT-TM06-ETRS89)	PT-TM06/ETRS89 - European Terrestrial Reference System 1989	
Datum Lisboa (Obsoleto - Substituído pelo sistema PT- TM06-ETRS89)	2,33 0 233 0	
Datum 73 (Obsoleto - Substituído pelo sistema PT-TM06-ETRS89)		

Arquipélago dos Açores	Arquipélago da Madeira	Regiões Autónomas
Datum S. Braz - S. Miguel (Grupo Oriental do Arquipélago dos Açores)		
Datum Base SW - Graciosa (Grupo Central do Arquipélago dos Açores)	Datum Base SE - Porto Santo (Arquipélago da Madeira)	PTRA08-UTM/ITRF93 - realização do International Terrestrial Reference Frame 1993
Datum Observatório - Flores (Grupo Ocidental do Arquipélago dos Açores)		

Centro de Informação Geoespacial do Exército (CIGeoE)

https://www.igeoe.pt/index.php?id=38&cat=3

Portugal Continental

Datum Lisboa militares (Obsoleto - Substituído pelo sistema TM/WGS84)

WGS84 / TM (Gauss-Kruger)

Regiões Autónomas

WGS 84 / UTM

TIPOS DE COORDENADAS

Coordenadas	V.G. Aboboreira (Beja) PT-TM06-ETRS89
Cartesianas (<i>X, Y, Z</i>)	X= 4 993 821.5571 m Y= -676 850.4038 m Z= 3 896 819.7516 m
Geodésicas ou geográficas (ϕ , λ , h)	<i>φ</i> = 37° 53′ 58.7635″ N λ= 07° 43′ 07.2999″ W Gr <i>h</i> = 257.85 m
Retangulares (<i>M, P</i>)	<i>M</i> = 36 448.61 m <i>P</i> = -196 253.96 m <i>H</i> = 202.90 m

TRANSFORMAÇÃO ENTRE COORDENADAS

TRANSFORMAÇÃO DE COORDENADAS NUM MESMO DATUM

TRANSFORMAÇÃO DE COORDENADAS ENTRE DIFERENTES DATA

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação direta das coordenadas geodésicas (ϕ , λ) dos seguintes vértices geodésicos nas correspondentes coordenadas retangulares (M, P).

	V.G. Aboboreira (Beja)		V. G. Cabeço da Ponta (Porto Santo - Madeira)
PT-TM06/ETRS89	Datum Lisboa	Datum 73	PTRA08-UTM/ITRF93
<i>φ</i> = 37° 53′ 58.7635″ N	<i>φ</i> = 37° 53′ 53.17608″ N	<i>φ</i> = 37° 53′ 56.01135″ N	<i>φ</i> = 33° 02′ 15.2697″ N
λ = 07 $^{\circ}$ 43' 07.2999" WGr	λ = 07° 43′ 03.09455″ WGr	λ = 07° 43′ 10.59207″ WGr	λ = 16° 21′ 41.8679″ WGr
<i>h</i> = 257.85 m	<i>h</i> = 208.7901 m	<i>h</i> = 204.8015 m	<i>h</i> = 32.27 m
<i>M</i> = 36 448.61 m	<i>M</i> = 36 448.0117 m	<i>M</i> = 36 445.0373 m	<i>M</i> = 372 851.2519 m
<i>P</i> = -196 253.96 m	<i>P</i> = -196 254.9317 m	<i>P</i> = -196 255.3140 m	<i>P</i> = 3 656 276.3028 m

A transformação direta das coordenadas geodésicas (ϕ , λ) de um ponto nas correspondentes coordenadas planas (x, y) através da projeção de Gauss (também conhecida por Transversa de Mercator) é definida por via analítica através das fórmulas obtidas por desenvolvimento em série:

$$y = k_0.(\sigma + \frac{\lambda^2}{2} \cdot N \cdot \sin\phi.\cos\phi + \frac{\lambda^4}{24} \cdot N \cdot \sin\phi.\cos^3\phi.k_2 + \frac{\lambda^6}{720} \cdot N \cdot \sin\phi.\cos^5\phi.k_4 + \frac{\lambda^8}{40320} \cdot N \cdot \sin\phi.\cos^7\phi.k_6)$$

$$x = k_0.(\lambda.N.\cos\phi + \frac{\lambda^3}{6} \cdot N\cos^3\phi.k_1 + \frac{\lambda^5}{120} \cdot N\cos^5\phi.k_3 + \frac{\lambda^7}{5040} \cdot N\cos^7\phi.k_5)$$

sendo k_0 o fator de escala, σ o comprimento do arco de meridiano desde o paralelo origem até ao paralelo do ponto, λ a diferença de longitude entre o ponto e o meridiano central da projecção $(\lambda-\lambda_0)$, ϕ a latitude geográfica do ponto, N a grande normal à latitude ϕ :

$$N = \frac{a}{\left(1 - e^2 \cdot \sin^2 \phi\right)^{\frac{1}{2}}}$$

(a, e^2) os parâmetros característicos do elipsóide de referência e ρ o raio de curvatura do meridiano à latitude ϕ :

$$\rho = \frac{a.(1-e^2)}{\left(1-e^2.\sin^2\phi\right)^{\frac{3}{2}}}$$

$$e^2 = f \cdot (2 - f)$$

onde e é a excentricidade do elipsóide e f é o achatamento do elipsóide; e ainda

$$k_1 = \frac{N}{\rho} - tg^2 \phi$$

$$k_2 = \frac{N}{\rho} + 4 \cdot \frac{N^2}{\rho^2} - tg^2 \phi$$

$$k_3 = 4 \cdot \frac{N^3}{\rho^3} \cdot (1 - 6 \cdot tg^2 \phi) + \frac{N^2}{\rho^2} \cdot (1 + 8 \cdot tg^2 \phi) - 2 \cdot \frac{N}{\rho} \cdot tg^2 \phi + tg^4 \phi$$

$$k_4 = 8 \cdot \frac{N^4}{\rho^4} \cdot (11 - 24 \cdot tg^2 \phi) - 28 \cdot \frac{N^3}{\rho^3} \cdot (1 - 6 \cdot tg^2 \phi) + \frac{N^2}{\rho^2} \cdot (1 - 32 \cdot tg^2 \phi) - 2 \cdot \frac{N}{\rho} \cdot tg^2 \phi + tg^4 \phi$$

$$k_5 = 61 - 479 \cdot tg^2 \phi + 179 \cdot tg^4 \phi - tg^6 \phi$$

$$k_6 = 1385 - 3111 \cdot tg^2 \phi + 543 \cdot tg^4 \phi + tg^6 \phi$$

Na projeção de Gauss, aplicada à cartografia portuguesa, usa-se um factor de escala k_0 = 1, dada a pequena largura da nossa faixa continental. A projeção UTM é a projeção de Gauss aplicada a cada um dos 60 fusos, de 6° cada, em que podemos dividir o globo terrestre, tomando-se k_0 = 0,9996 (valor escolhido de modo a tornar iguais as deformações da carta no meridiano médio e nos meridianos limítrofes do fuso).

O comprimento aproximado do arco de meridiano σ entre quaisquer duas latitudes ϕ_0 e ϕ é determinado através de:

$$\sigma = \alpha \cdot \left(1 - e^2\right) \cdot \left\{ A \cdot \left(\phi - \phi_0\right) - \frac{B}{2} \cdot \left(\sin 2\phi - \sin 2\phi_0\right) + \frac{C}{4} \cdot \left(\sin 4\phi - \sin 4\phi_0\right) - \frac{D}{6} \cdot \left(\sin 6\phi - \sin 6\phi_0\right) + \frac{E}{8} \cdot \left(\sin 8\phi - \sin 8\phi_0\right) - \frac{F}{10} \cdot \left(\sin 10\phi - \sin 10\phi_0\right) \right\}$$

com

$$A = 1 + \frac{3}{4} \cdot e^2 + \frac{45}{64} \cdot e^4 + \frac{175}{256} \cdot e^6 + \frac{11025}{16384} \cdot e^8 + \frac{43659}{65536} \cdot e^{10} + \dots$$

$$B = \frac{3}{4} \cdot e^2 + \frac{15}{16} \cdot e^4 + \frac{525}{512} \cdot e^6 + \frac{2205}{2048} \cdot e^8 + \frac{72765}{65536} \cdot e^{10} + \dots$$

$$C = \frac{15}{64} \cdot e^4 + \frac{105}{256} \cdot e^6 + \frac{2205}{4096} \cdot e^8 + \frac{10395}{16384} \cdot e^{10} + \dots$$

$$D = \frac{35}{512} \cdot e^6 + \frac{315}{2048} \cdot e^8 + \frac{31185}{131072} \cdot e^{10} + \dots$$

$$E = \frac{315}{16384} \cdot e^8 + \frac{3465}{65536} \cdot e^{10} + \dots$$

$$F = \frac{3465}{131072} \cdot e^{10} + \dots$$

	PT-TM06/ETRS89	Datum Lisboa	Datum 73	PTRA08- UTM/ITRF93
Elipsoide de referência:	GRS80 a = 6 378 137 m f = 1 / 298.257 222 101	Hayford (ou Internacional 1924) a = 6 378 388 m f = 1/297	Hayford (ou Internacional 1924) a = 6 378 388 m f = 1/297	GRS80 a = 6 378 137 m f = 1 / 298.257 222 101
Projeção cartográfica:	Transversa de Mercator	Transversa de Mercator	Transversa de Mercator	Transversa de Mercator
Latitude da origem das coordenadas retangulares:	39° 40′ 05.73″ N	39° 40′ 00″ N	39° 40′ 00″ N	0°
Longitude da origem das coordenadas retangulares:	08° 07' 59.19" W	08° 07' 54.862″ W	08° 07' 54.862″ W	33° W (fuso 25) 27° W (fuso 26) 15° W (fuso 28)
Falsa origem das coordenadas retangulares:	Em M: 0 m Em P: 0 m	Em M: 0 m Em P: 0 m	Em M: +180.598 m Em P: -86.990 m	Em M: +500 000 m Em P: 0 m
Coeficiente de redução de escala no meridiano central:	1	1	1	0.9996

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação inversa das coordenadas retangulares (M, P) dos vértices geodésicos utilizados no exercício 1 nas correspondentes coordenadas geodésicas (ϕ, λ) .

Para efectuar a transformação inversa das coordenadas planas Gauss (ou UTM) nas correspondentes coordenadas geodésicas basta utilizar um processo iterativo:

1) Toma-se como ponto de partida um valor aproximado para ϕ (ϕ_{ap}), saído de um cálculo anterior ou considerando um valor aproximado para o arco de meridiano σ :

$$\sigma_{ap} = \frac{P}{k_0}$$

sendo P a distância à perpendicular; donde a primeira aproximação para ϕ é dada por:

$$\phi = \phi_0 + \frac{\sigma_{ap}}{A \cdot a \cdot (1 - e^2)}$$

2) Com base neste valor aproximado da latitude recalcula-se o comprimento de arco de meridiano σ usando a expressão:

$$\sigma = a \cdot \left(1 - e^2\right) \cdot \left\{ A \cdot \left(\phi - \phi_0\right) - \frac{B}{2} \cdot \left(\sin 2\phi - \sin 2\phi_0\right) + \frac{C}{4} \cdot \left(\sin 4\phi - \sin 4\phi_0\right) - \frac{D}{6} \cdot \left(\sin 6\phi - \sin 6\phi_0\right) + \frac{E}{8} \cdot \left(\sin 8\phi - \sin 8\phi_0\right) - \frac{F}{10} \cdot \left(\sin 10\phi - \sin 10\phi_0\right) \right\}$$

3) Com este novo valor para σ podemos determinar a correcção a aplicar a ϕ através de:

$$\Delta \phi = \frac{\left(\sigma_{ap} - \sigma\right)}{\rho}$$

onde

$$\rho = \frac{a.(1-e^2)}{(1-e^2.\sin^2\phi)^{\frac{3}{2}}}$$

sendo o novo valor da latitude igual a:

$$\phi' = \phi + \Delta \phi$$

- 4) Entra-se de seguida num processo iterativo, recalculando σ , ρ e $\Delta \phi$ e o novo valor da ϕ' até que $\Delta \phi$ seja inferior à precisão desejada (10⁻¹⁰);
- 5) Com o valor da latitude ϕ resultante do processo iterativo, calcula-se a latitude e longitude do ponto, através das seguintes expressões:

$$\begin{split} \phi &= \phi' - \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^2}{2 \cdot k_0 \cdot N}\right) + \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^4}{24 \cdot k_0^3 \cdot N^3}\right) \cdot \left(-4\psi^2 + 9\psi \cdot \left(1 - t^2\right) + 12t^2\right) - \\ &- \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^6}{720 \cdot k_0^5 \cdot N^5}\right) \cdot \left(8\psi^4 \cdot \left(11 - 24t^2\right) - 12\psi^3 \cdot \left(21 - 71t^2\right) + 15\psi^2 \cdot \left(15 - 98t^2 + 15t^4\right) + \\ &+ 180\psi \cdot \left(5t^2 - 3t^4\right) - 360t^4\right) + \left(\frac{t}{k_0 \cdot \rho}\right) \cdot \left(\frac{M^8}{40320 \cdot k_0^7 \cdot N^7}\right) \cdot \left(1385 + 3633t^2 + 4095t^4 + 1575t^6\right) \end{split}$$

$$(\lambda - \lambda_0) \cdot \cos \phi' = \left(\frac{M}{k_0 \cdot N}\right) - \left(\frac{M^3}{6 \cdot k_0^3 \cdot N^3}\right) \cdot (\psi + 2t^2) +$$

$$+ \left(\frac{M^5}{120 \cdot k_0^5 \cdot N^5}\right) \cdot \left(-4\psi^3 \cdot (1 - 6t^2) + \psi^2 \cdot (9 - 68t^2) + 72\psi t^2 + 24t^4\right) -$$

$$- \left(\frac{M^7}{5040 \cdot k_0^7 \cdot N^7}\right) \cdot \left(61 + 662t^2 + 1320t^4 + 720t^6\right)$$

sendo M a distância à meridiana, $\psi = \frac{N}{\rho}$, calculado com o valor da latitude ϕ' , e $t = tg\phi'$.

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação direta entre coordenadas geodésicas (ϕ , λ , h) dos seguintes vértices geodésicos nas correspondentes coordenadas cartesianas tridimensionais (X, Y, Z).

V.G. Aboboreira (Beja)	V. G. Cabeço da Ponta (Porto Santo - Madeira)
PT-TM06/ETRS89	PTRA08-UTM/ITRF93
<i>φ</i> = 37° 53′ 58.7635″ N	<i>φ</i> = 33° 02′ 15.2697″ N
λ= 07° 43′ 07.2999″ WGr	λ = 16° 21′ 41.8679″ WGr
<i>h</i> = 257.85 m	<i>h</i> = 32.27 m
<i>X</i> = 4 993 821.5571 m	<i>X</i> = 5 135 480.8889 m
Y= -676 850.4038 m	<i>Y</i> = -1 507 717.9053 m
Z= 3 896 819.7516 m	<i>Z</i> = 3 457 470.4300 m

Considerando um triedro cartesiano OXYZ centrado com o elipsóide de referência, com o eixo dos ZZ coincidente com o seu eixo de revolução, com o eixo dos XX assente no semi-plano origem das longitudes geodésicas e o eixo dos YY escolhido de modo a tornar o triedro directo, as coordenadas geodésicas (ϕ , λ , h) de um ponto genérico relacionam-se com as suas coordenadas cartesianas tridimensionais (X, Y, Z) por meio das seguintes expressões:

$$X = (N+h) \cdot \cos \phi \cdot \cos \lambda$$
$$Y = (N+h) \cdot \cos \phi \cdot \sin \lambda$$
$$Z = \left[\left(1 - e^2 \right) \cdot N + h \right] \cdot \sin \phi$$

sendo N a grande normal ao elipsóide de referência à latitude ϕ , h a altitude elipsoidal do ponto e (a, e^2) os seus parâmetros de forma. Estas expressões correspondem à transformação directa das coordenadas geodésicas (ϕ, λ, h) de um ponto nas correspondentes coordenadas cartesianas tridimensionais (X, Y, Z).

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação inversa entre coordenadas cartesianas tridimensionais (X, Y, Z) dos vértices geodésicos utilizados no exercício 3 nas correspondentes coordenadas geodésicas (ϕ , λ , h).

A transformação inversa das coordenadas cartesianas tridimensionais (X, Y, Z) de um ponto nas correspondentes coordenadas geodésicas (ϕ , λ , h) é executada recorrendo a um processo iterativo:

1) A longitude λ pode ser facilmente calculada a partir das coordenadas cartesianas tridimensionais utilizando a seguinte expressão:

$$\lambda = arctg\left(\frac{Y}{X}\right)$$

2) A latitude é obtida por um processo iterativo dado que as quantidades ϕ e h são dependentes uma da outra, pelo que se utiliza um valor aproximado para a latitude o qual é calculado por:

$$\phi_{ap} = arctg \left(\frac{Z}{P \cdot (1 - e^2)} \right)$$

com P igual a:

$$P = \left(X^2 + Y^2\right)^{1/2}$$

3) Com base neste valor aproximado da latitude calcula-se o valor de *N*, e em seguida o valor para a altitude elipsoidal *h* usando a expressão:

$$h = \frac{P}{\cos \phi} - N$$

4) O processo iterativo continua recalculando o valor de ϕ , com N e h calculados no passo anterior, utilizando a expressão:

$$\phi = arctg\left(\frac{Z + e^2 \cdot N \cdot \sin\phi}{P}\right)$$

5) Com este novo valor da latitude ϕ , recalcula-se o valor de N, da altitude elipsoidal h e em seguida um novo valor para a latitude ϕ e assim sucessivamente até alcançar a precisão desejada para a transformação (ϕ - ϕ _{i-1} =10⁻¹⁰).

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas cartesianas tridimensionais (*X*, *Y*, *Z*) - Transformação de Helmert/Fórmulas de Bursa-Wolf - de dois *data* distintos.

Ponto		
Datum 73	PT-TM06/ETRS89	
<i>X</i> = 4 815 286 m	<i>X</i> = 4 815 062.1368 m	
<i>Y</i> = -578 951 m	<i>Y</i> = -578 841.2009 m	
<i>Z</i> = 4 129 745 m	<i>Z</i> = 4 129 782.0548 m	

A transformação de sete parâmetros de Helmert, expressa em formato matricial, é designada por fórmula de Bursa-Wolf e tem a seguinte forma:

$$\begin{bmatrix} X_n \\ Y_n \\ Z_n \end{bmatrix} = \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + (1 + \alpha) \cdot \begin{bmatrix} 1 & -R_z & R_y \\ R_z & 1 & -R_x \\ -R_y & R_x & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

onde (X, Y, Z) são as coordenadas de um dado ponto no sistema de referência geocêntrico origem, (X_n, Y_n, Z_n) são as coordenadas desse mesmo ponto no sistema de referência geocêntrico destino, $(\Delta X, \Delta Y, \Delta Z)$ são as componentes do vetor que une os centros dos dois elipsóides, (R_X, R_Y, R_Z) são os ângulos de rotação em torno dos eixos de referencial de origem e α é o factor de escala (expresso em partes por milhão - ppm).

Nota: A fórmula apresentada encontra-se em conformidade com a norma ISO 19111:2007. No entanto, é de ter em conta outras versões utilizadas em alguns programas que se reflectem nos sinais e/ou no sentido das rotações.

De seguida apresentam-se os parâmetros da transformação de Bursa-Wolf do datum Lisboa e datum 73 para PT-TM06-ETRS89 retirados do sítio da Direção-Geral do Território (https://www.dgterritorio.gov.pt/geodesia/transformacao-coordenadas/portugal-continental) em fevereiro de 2021.

	Parâmetros de Transformação de Bursa-Wolf do Datum Lisboa e Datum 73 para PT-TM06-ETRS89		
	Datum Lisboa para Datum 73 para PT-TM06/ETRS89 PT-TM06/ETRS89		
<i>∆X</i> (m)	-283.088	-230.994	
<i>∆Y</i> (m)	-70.693	+102.591	
<i>∆Z</i> (m)	+117.445	+25.199	
Rx (")	-1.157	+0.633	
R _Y (")	+0.059	-0.239	
R _z (")	-0.652	+0.900	
α (ppm)	-4.058	+1.950	

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas geodésicas (ϕ, λ, h) - Fórmulas de Molodensky - de dois *data* distintos.

Ponto		
Datum 73	PT-TM06/ETRS89	
<i>φ</i> = 40° 36′ 10″ N	<i>∮</i> = 40° 36′ 12.92913″ N	
λ = 6° 51′ 17″ WGr	λ = 6° 51′ 13.48258″ WGr	
<i>h</i> = 826 m	<i>h</i> = 884.0728 m	

A transformação de Molodensky tem cinco parâmetros tendo a seguinte forma:

$$\begin{cases} \phi_n = \phi + \frac{-\Delta X \sin\phi \cos\lambda - \Delta Y \sin\phi \sin\lambda + \Delta Z \cos\phi + \Delta a \frac{e^2 N \sin\phi \cos\phi}{a} + \Delta f \sin\phi \cos\phi \left(\frac{a}{b}\rho + \frac{b}{a}N\right)}{\rho + h} \\ \lambda_n = \lambda + \frac{-\Delta X \sin\lambda + \Delta Y \cos\lambda}{\left(N + h\right) \cos\phi} \\ h_n = h + \Delta X \cos\phi \cos\lambda + \Delta Y \cos\phi \sin\lambda + \Delta Z \sin\phi - \Delta a \left(\frac{a}{N}\right) + \Delta f \left(\frac{b}{a}N \sin^2\phi\right) \end{cases}$$

onde ϕ_n , λ_n , h_n são a latitude, longitude (em radianos) e a altitude elipsoidal (em metros) a obter, ϕ , λ , h são a latitude, longitude (em radianos) e a altitude elipsoidal (em metros) originais, ΔX , ΔY , ΔZ as componentes do vetor que une os centros dos dois elipsóides, a, b os semi-eixos maior e menor do elipsóide origem, e, f a primeira excentricidade e o achatamento do elipsóide origem, Δa , Δf a diferença entre os semi-eixos maiores e os achatamentos dos dois elipsóides, N o raio de curvatura do primeiro vertical (Grande Normal) e ρ o raio de curvatura do meridiano.

$$b=a\cdot(1-f)$$

De seguida apresentam-se os parâmetros da transformação de Molodensky do datum Lisboa e datum 73 para PT-TM06-ETRS89 retirados do sítio da Direção-Geral do Território (https://www.dgterritorio.gov.pt/geodesia/transformacao-coordenadas/portugal-continental) em fevereiro de 2021.

Parâmetros de Transformação de Molodensky do Datum Lisboa e Datum 73 para PT-TM06-ETRS89				
	Datum Lisboa para Datum 73 para PT-TM06/ETRS89 PT-TM06/ETRS89			
<i>∆X</i> (m)	-303.861	-223.150		
△Y (m) -60.693 +110.132		+110.132		
<i>∆Z</i> (m)	△Z (m) +103.607 +36.711			
<i>∆a</i> (m) -251.000 -251.000		-251.000		
	-1.4192686x10 ⁻⁵	-1.4192686x10 ⁻⁵		

Executar um programa, numa linguagem escolhida pelos alunos, que realize a transformação entre as coordenadas retangulares (*M*, *P*) - Transformação Polinomial - de dois *data* distintos.

	Ponto
Datum 73	PT-TM06/ETRS89
<i>M</i> = 20 000 m	<i>M</i> = 19 999.7773 m
<i>P</i> = 20 000 m	<i>P</i> = 20 000.1413 m
<i>h</i> = 100 m	<i>h</i> = 155.6977 m

A transformação polinomial de grau 2 permite transformar coordenadas retangulares num determinado datum nas coordenadas retangulares num outro datum:

$$M_n = a_0 + a_1 u + a_2 v + a_3 u^2 + a_4 u v + a_5 v^2$$

$$P_n = b_0 + b_1 u + b_2 v + b_3 u^2 + b_4 u v + b_5 v^2$$

onde M_n , P_n são as coordenadas rectangulares a obter, X, Y as coordenadas rectangulares originais, a_i , b_i os coeficientes de transformação, X_0 , Y_0 , h, k os parâmetros de normalização e u e v têm a seguinte forma:

$$u = \frac{X - X_0}{h} \qquad v = \frac{Y - Y_0}{k}$$

De seguida apresentam-se os parâmetros da transformação polinomial do datum Lisboa e datum 73 para PT-TM06-ETRS89 retirados do sítio da Direção-Geral do Território (https://www.dgterritorio.gov.pt/geodesia/transformacao-coordenadas/portugal-continental) em fevereiro de 2021.

Coeficientes de Transformação Polinomial de Grau 2 do Datum Lisboa e Datum 73 para PT-TM06-ETRS89 **Datum Lisboa para** Datum 73 para PT-TM06/ETRS89 PT-TM06/ETRS89 +1.38051 +0.28961 **a**0 +129999.16977 +129998.56256 a_1 **a2** -1.69483 -5.26888 **a**3 -0.57226 +0.32257 **a**4 -2.9606 -0.87853 a5 -2.45601 -1.22237 *b*0 +0.80894 -0.08867 *b*1 +1.31669 +2.39595 b2 +279995.74505 +279997.91435 b3 +0.24888 +0.15146 *b*4 +2.65999 +1.11109 *b*5 -3.86484 -1.06143 X_0 0 0 0 0 Y_0 h +130000 +130000 k +280000 +280000

Considerando as coordenadas geodésicas e as correspondentes coordenadas retangulares dos vértices geodésicos ABOBOREIRA (Beja, Baixo Alentejo) e CABEÇUDO (Mogadouro, Trás-os-Montes), calcule a:

Coordenadas PT-TM06-ETRS89	V.G. Aboboreira	V.G. Cabeçudo
Geodésicas ou geográficas (ϕ,λ)	ϕ = 37° 53′ 58.7635″ N λ = 07° 43′ 07.2999″ W Gr	ϕ = 41° 19′ 50.6809″ N λ = 06° 26′ 02.2698″ W Gr
Retangulares (<i>M, P</i>)	<i>M</i> = 36 448.61 m <i>P</i> = -196 253.96 m	<i>M</i> = 142 243.53 m <i>P</i> = 186 002.69 m

- a) deformação linear k em cada um dos vértices;
- b) convergência de meridianos γ em cada um dos vértices;
- c) correção tangente à corda β'' para a distância entre os 2 vértices;
- d) correção de redução dos comprimentos finitos $s_1 s_2$ para a distância entre os 2 vértices⁽¹⁾.

$$k = 1 + \frac{x^2}{2 \cdot \rho_0 \cdot N_0}$$

$$\gamma = -(\lambda - \lambda_0) \cdot \sin \phi$$

$$\beta'' = \frac{1}{6 \cdot \rho_0 \cdot N_0 \cdot \sin 1''} \cdot \left(2 \cdot x_A + x_B\right) \cdot \left(y_B - y_A\right)$$

$$s_1 - s = \frac{s_1}{6 \cdot \rho_0 \cdot N_0} \cdot \left(x_B^2 + x_B \cdot x_A + x_A^2\right)$$

 $^{^{(1)}}$ Para calcular o valor de s_1 , ou seja a geodésica entre os 2 vértices geodésicos, aceda ao seguinte link: <u>https://geographiclib.sourceforge.io/cgi-bin/GeodSolve</u>

Online geodesic calculations using the $\underline{\text{GeodSolve}}$ utility

Geodesic calculation Inverse: lat l	lon1 lat2 lor				
Input (ex. «40.6 -73				3d46'44"W 53d30'	5850e3» [direct]):
41.33074469 -6.43	3963833 37.89	9965653 -7.71869	4417		
Output format: • decima		degrees	degrees minutes seconds		
Heading at point 2:	forward	azimuth	 back azimuth 		
Longitude:	reduce t	to [-180°,180°]	unroll		
Output precision:	1mm 0.0001	1" ▼			
Equatorial radius: 6378137 meters					
Flattening:	1/298.257222	101			
Select action: Submit Reset					
Geodesic (input in b	lack, output 1	n blue):			
ellipsoid (status	•	= 6378137 1/2 = OK	298.257222101		
	azi2 (°) :		9 -6.43396383 3 -7.71869442		

Sabendo que os coeficientes da expressão do módulo da deformação linear na projeção de Bonne são respetivamente $e = 1 + \lambda^2 (\sin \phi - r/R)^2$, $f = -\lambda (\sin \phi - r/R)$, q = 1, calcule os:

- a) elementos da elipse de Tissot (semieixo maior e menor e respetivas direções);
- b) módulos da deformação angular máxima e os respetivos azimutes dessas deformações;

para um ponto com as seguintes coordenadas ϕ = 50° N, λ = 10° EGr, sobre o elipsóide de Hayford (a= 6 378 388 m; f = 1/297). Considere o seguinte valor para a latitude da origem da projeção ϕ 0= 45° N.

$$R = R_0 - \sigma$$

$$r = N \cdot \cos \phi$$

$$R_0 = N_0 \cdot \cot \phi_0$$

$$\begin{cases} k_{1} = \sqrt{\frac{1}{2} \cdot \left[(e+g) + \sqrt{(e-g)^{2} + 4 \cdot f^{2}} \right]} \\ k_{2} = \sqrt{\frac{1}{2} \cdot \left[(e+g) - \sqrt{(e-g)^{2} + 4 \cdot f^{2}} \right]} \end{cases}$$

$$tg2\alpha = \frac{2f}{(e-g)}$$

$$tg\delta_m = \pm \frac{1}{2} \left(\sqrt{\frac{k_1}{k_2}} - \sqrt{\frac{k_2}{k_1}} \right)$$

$$tg\alpha_m = \pm \sqrt{\frac{k_2}{k_1}}$$

nestas equações e, f e g são os valores das equações que se encontram em cima no enunciado do exercício, enquanto que nas expressões seguintes a, e e f, referem-se, respetivamente, ao semieixo maior, à excentricidade e achatamento do elipsóide.

$$R = \frac{a}{\left(1 - e^2 \cdot \sin^2 \phi\right)^{\frac{1}{2}}}$$

$$\begin{split} \sigma &= a \cdot \left(1 - e^2\right) \cdot \left\{A \cdot \left(\phi - \phi_0\right) - \frac{B}{2} \cdot \left(\sin 2\phi - \sin 2\phi_0\right) + \frac{C}{4} \cdot \left(\sin 4\phi - \sin 4\phi_0\right) - \right. \\ &\left. - \frac{D}{6} \cdot \left(\sin 6\phi - \sin 6\phi_0\right) + \frac{E}{8} \cdot \left(\sin 8\phi - \sin 8\phi_0\right) - \frac{F}{10} \cdot \left(\sin 10\phi - \sin 10\phi_0\right) \right\} \end{split}$$