

Projekt 2

Simon Buschmann, Yannik Buchner - Least Loaded Link First (LLLF) Nikita Podibko, Jan Draeger - Avarage Link Utilization/Random Load Aware Johannes Heinrich, Malek Haoues Rhaiem -

TU Dortmund University - Fakultät für Informatik

Inhaltsverzeichnis

Genereller Ablauf

Least Loaded Link First

Randomized Load Aware

Average Path Length

Genereller Ablauf

Probleme:

Probleme:

Lösung:

• throughput.json wird nicht erstellt

Probleme:

 \bullet throughput.json wird nicht erstellt

Lösung:

• *.topo.sh excecutable machen

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt

Lösung:

• *.topo.sh excecutable machen

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt

- *.topo.sh excecutable machen
- als root das Progam ausführen

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt
- Wie implementieren wir unseren Algorithmus?

- *.topo.sh excecutable machen
- als root das Progam ausführen

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt
- Wie implementieren wir unseren Algorithmus?

- *.topo.sh excecutable machen
- als root das Progam ausführen
- nutze Nanonet um topologie aus dem Projekt 1 von *.json zu *.topo.py zu *.topo.sh konvertieren

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt
- Wie implementieren wir unseren Algorithmus?
- Auch hier werden *.topo.py und *.topo.sh nicht erstellt

- *.topo.sh excecutable machen
- als root das Progam ausführen
- nutze Nanonet um topologie aus dem Projekt 1 von *.json zu *.topo.py zu *.topo.sh konvertieren

Probleme:

- throughput.json wird nicht erstellt
- flow.txt wird nicht erstellt
- Wie implementieren wir unseren Algorithmus?
- Auch hier werden *.topo.py und *.topo.sh nicht erstellt

- *.topo.sh excecutable machen
- als root das Progam ausführen
- nutze Nanonet um topologie aus dem Projekt 1 von *.json zu *.topo.py zu *.topo.sh konvertieren
- als root das Progam ausführen

Probleme:

Probleme:

Lösung:

• nuttcp not in Server/Client Mode error

Probleme:

Lösung:

• nuttcp not in Server/Client Mode error

• Zu geringe demands entfernen

Probleme:

Lösung:

- nuttcp not in Server/Client Mode error
- Zu geringe demands entfernen

• Wartezeit pro Test zu lange

Probleme:

- nuttcp not in Server/Client Mode error
- Wartezeit pro Test zu lange

- Zu geringe demands entfernen
- Abfrage, ob tests durchgelaufen sind

Least Loaded Link First

Testweise haben wir diese Topologie implementiert.

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

•
$$s = 2$$
, $t = 1$, $d = 1$

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

- s = 2, t = 1, d = 1
- s = 6, t = 2, d = 1

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

- s = 2, t = 1, d = 1
- s = 6, t = 2, d = 1
- s = 3, t = 6, d = 1

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

•
$$s = 2$$
, $t = 1$, $d = 1$

•
$$s = 6$$
, $t = 2$, $d = 1$

•
$$s = 3$$
, $t = 6$, $d = 1$

•
$$s = 0$$
, $t = 4$, $d = 1$

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

•
$$s = 2$$
, $t = 1$, $d = 1$

•
$$s = 6$$
, $t = 2$, $d = 1$

•
$$s = 3$$
, $t = 6$, $d = 1$

•
$$s = 0$$
, $t = 4$, $d = 1$

•
$$s = 4$$
, $t = 0$, $d = 1$

Figure 1: Basnet

Testweise haben wir diese Topologie implementiert.

Demands:

- s = 2, t = 1, d = 1
- s = 6, t = 2, d = 1
- s = 3, t = 6, d = 1
- s = 0, t = 4, d = 1
- s = 4, t = 0, d = 1

MLU: 1.0

Figure 1: Basnet

Figure 2: Results

Randomized Load Aware

RandomizedLoadAware

Topologie-Eigenschaft	Warum schlechter für RandomizedLoadAware?
Geringe Pfadvielfalt	Kein Auswahlspielraum für Pfadverteilung.
Zentrale Engpässe	Kann nicht umleiten, wenn es keine Alternativen gibt.
Ungenaue oder unvollständige Kapazitäten	Bewertungsfunktion wird verzerrt.
Zu hohe Netzgröße	Pfaderzeugung / Laufzeit steigt exponentiell.

Figure 3: Beispiel Topologie

Average Path Length

Vorteile der Topologie

- Pfad Diversität: Durch viele Pfadmöglichkeiten
- Tradeoff Visualisierung: Visualisiert gut tradeoff zwischen Pfadlänge (Diagonale Wege) und MLU (Alternative Wege)
- Waypoint Nutzwert: Auch durch Pfad Diversität

Beispiel

Fragen?

Noch Fragen?