EEE 202 CIRCUIT THEORY First Midterm, Spring 2012-13

No credits will be given for unjustified answers.

Prob. 1: (20 pt.s)

For part i and ii, consider the circuit shown in the following figure. Here, boxes represent arbitrary circuit elements. Some voltage and current reference directions are shown in the figure. For other voltage/current reference directions, use passivity sign convention.

i: (4 pt.s) Consider the circuit given above. We have $i_1 = 4$ A, $i_2 = 5$ A, $i_6 = 3$ A, $i_8 = 2$ A. Find as many remaining currents as you can.

$$-i_{2}+i_{1}+i_{3}=0 \implies i_{3}=i_{2}-i_{1}$$

$$i_{3}=1A\cdot(01)$$

$$-i_{6}-i_{8}+i_{7}=0 \implies i_{7}=i_{6}+i_{8}$$

$$i_{7}=5A\cdot(07)$$

$$-i_{1}-i_{7}-i_{7}=0 \implies i_{7}=-i_{1}-i_{7}$$

$$i_{4}=-9A\cdot(07)$$

$$-i_{3}-i_{5}+i_{7}+i_{6}=0 \implies i_{5}=-i_{3}+i_{7}+i_{6}$$

$$i_{7}=5A\cdot(07)$$

$$i_{5}=-7A\cdot(07)$$

ii : (4 pt.s) Consider the circuit given above. We have $v_3=5\ V$, $v_4=4\ V$, $v_5=3\ V$, $v_7=2\ V$. Find as many remaining voltages as you can.

$$-V_{1}+V_{3}+V_{4}=0 \implies V_{1}=V_{3}+V_{4} \qquad V_{6}+V_{7}-V_{4}=0 \implies V_{6}=V_{4}-V_{7}$$

$$V_{6}=2 \quad V. \quad (A)$$

$$V_{5}-V_{3}-V_{2}=0 \implies V_{2}=V_{5}-V_{3}$$

$$V_{2}=-2 \quad V. \quad (A)$$

$$V_{8}-V_{6}-V_{5}=0 \implies V_{8}=V_{5}+V_{6}$$

$$V_{8}=5 \quad V. \quad (A)$$

iii: (6 pt.s) Consider the following circuit. Let v_A , v_B , v_C represent the node voltages of nodes A,B,C. Write the node equations. Simplify these equations so that only node voltages remain as unknowns. (You may write the equations by inspection. You don't have to solve these equations).

v: (6 pt.s) Consider the following circuit. Write the mesh equations by using the mesh currents indicated in the figure. Simplify these equations so that only mesh currents remain as unknowns. (You may write the equations by inspection. You don't have to solve these equations).

Prob. 2: (25 pt.s)

i: (12 pt.s) Consider the circuit shown in Figure 1. Let v_A , v_B , v_C represent the node voltages of nodes A,B,C. Use node analysis and find the voltages v_o and v_x .

ii: (13 pt.s) Consider the circuit shown in Figure 2. Let i_A , i_B , i_C represent the mesh currents as indicated in the Figure 2. Use mesh analysis and find v_x and v_o .

Prob. 3: (30 pt.s)

i: (10 pt.s) Consider the circuit shown in Figure 1. Here the load represents an arbitrary circuit. Find the Thévenin equivalent circuit seen by the load.

ii: (10 pt.s) Consider the circuit shown in Figure 2. Here the load represents an arbitrary circuit. Find the Norton equivalent circuit seen by the load.

iii: (10 pt.s) Consider the circuit shown below. By using superposition, find v_0 .

Prob. 4: (25 pt.s) Consider the following circuit. Here the op-amps are linear and operate in their linear regions; the load represents an arbitrary circuit. Note that in case you use node analysis, use the notation indicated in the Figure.

i: Find v_o in terms of v_1 , v_2 and the resistances.

ii: Assume that the saturation voltage E_{sat} is $E_{sat} = 15 \ V$ for both op-amps. Let $R_1 = R_2 = R_3 = R_4 = 1 \ \Omega$ and $v_2 = 1 \ V$. Find the range of v_1 so that both op-amps operate in the linear region.

