Apunte Único: Álgebra Lineal Computacional - Práctica $2\,$

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 14/04/25 @ 18:55

Choose your destiny:

(dobleclick en el ejercicio para saltar)

- Notas teóricas
- ⊕ Ejercicios de la guía:

1.	5.	9.	13.	17.	21 .	25 .
2.	6.	10.	14.	18.	22.	
3.	7.	11.	15.	19.	23.	
4.	8.	12.	16.	20.	24.	

\(??.

Esta Guía 2 que tenés se actualizó por última vez: $\frac{14/04/25 @ 18:55}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

Transformaciones lineales

* Dados V y W dos K-espacio vectoriales, una $f: V \to W$ es transformación lineal si cumple:

•
$$f(v_1 + v_2) = f(v_1) + f(v_2) \quad \forall v, w \in V$$

•
$$f(\alpha \cdot v_1) = \alpha \cdot f(v_1) \quad \forall \alpha \in K, v \in V$$

* $f: K^n \to K^m$ si transformo:

$$f(x_1, \dots, x_n) = f\left(\sum_{k=1}^n x_i \underbrace{e_i}_{\in K^{n \times 1}}\right) \stackrel{\text{TL}}{=} \sum_{k=1}^n x_i \underbrace{f(e_i)}_{\in K^{m \times 1}} = \underbrace{\left(f(e_1) \mid \dots \mid f(e_n)\right)}_{A \in K^{m \times n}} \cdot \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} = \underbrace{A \cdot x}_{\in K^{m \times 1}}$$

* Matriz de una transformación lineal:

Dados V y W dos K-espacios vectoriales y $f:V\to W$ una t.l. Sean $B=\{v_1,\cdots,v_2\}$ base de V y $B'=\{w_1,\cdots,w_m\}$ se llama matriz de la transformación lineal de la base B en la base B' a aquella matriz $[f]_{BB'}$ que satisface:

$$[f]_{BB'}[v]_B = [f(v)]_{B'} \quad \forall v \in V$$

- Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. El Nu(A) = $\{x \in K^n / Ax = 0\}$
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. La $\operatorname{Im}(A) = \{Ax \in K^m \text{ con } x \in K^n\} = \langle c_1(A), \dots, c_n(A) \rangle$. También $\operatorname{rg}(A) = \dim(\operatorname{Im}(A))$
- * Propiedades de una transformación lineal:

Sea $f: V \to W$ una t.l. y $B = \{v_1, \ldots, v_n\}$ un conjunto de generadores de V. Entonces $\{f(v_1), \ldots, f(v_n)\}$ es un conjunto generador para la imagen de f.

- f se dice monomorfismo si es inyectiva. Si f es mono, dim(Nu(f)) = 0
- f se dice *epimorfismo* si es survectiva. Si f es epi, $\dim(\operatorname{Im}(f)) = \dim(W)$
- f se dice isomorfismo si es mono y epi. Si f es iso es inversible.

Normas:

- * En general Norma: Sea $\|\cdot\|:K^n\to\mathbb{R}\geq 0$. Entonces $\|\cdot\|$ es norma si cumpe:
 - 1) $||x|| > 0 \ \forall x \in K^n$
 - 2) $||x|| = 0 \Leftrightarrow x = 0$
 - 3) $\|\alpha x\| = |\alpha| \|x\| \ \forall \alpha \in K \ y \ \forall x \in K^n$
 - 4) $||x+y|| \le ||x|| + ||y|| \ \forall x, y \in K^n$ (designaldad triangular)
- * Ejemplos:
 - Norma 2: $||x||_2 = \sqrt{\sum_{k=0}^n |x_k|^2} \xrightarrow{\text{por ejemplo}} ||x||_2 = 1$

• Norma $p: ||x||_p = \sqrt{\sum_{k=0}^n |x_k|^p} \xrightarrow{\text{por ejemplo}} ||x||_p = 1$

• Norma ∞ : $\lim_{p\to\infty}\|x\|_p=\max_{1\leq i\leq n}|x_i|$ $\xrightarrow{\text{por ejemplo}}\|x\|_\infty=1$

* Sea $A \in \mathbb{R}^{n \times n}$ una matriz inversible y sea $\|\cdot\|$ una norma en \mathbb{R}^n definimos el número de condición de A como:

$$Cond(A) = ||A|| ||A^{-1}||$$

- $\operatorname{Cond}(A) = \operatorname{Cond}(A^{-1})$
- $Cond(A) > 1 \quad \forall A \in \mathbb{R}^{n \times n}$
- * Si $A \in \mathbb{R}^{n \times n}$ es inversible, $b, \Delta b \in \mathbb{R}^n, Ax = b$ v $A(x + \Delta x) = b + \Delta b$ entonces,

$$\frac{\|\Delta x\|}{\|x\|} \le \operatorname{Cond}(A) \cdot \frac{\|\Delta b\|}{\|b\|}$$

valiendo la igualdad para alguna elección de b y Δb

Normas subordinadas.

Dada una matriz $A \in K^{n \times n}$, y un par de normas vectoriales $\|\cdot\|_n$, $\|\cdot\|_m$ en K^n y K^m respectivamente, definimos

$$||A|| = \max_{0 \neq x \in K^m} \frac{||Ax||}{||x||} = \max_{x \in K^n, ||x||_m = 1} ||Ax||.$$

Aritmética de punto flotante:

* Escribir 0.25 en base 10:

Base 10 es obviamente nuestra base favorita:

$$\begin{cases}
0.25 \cdot 10 &= 2 + 0.5 \\
0.5 \cdot 10 &= 5 + 0 \\
0 \cdot 10 &= 0 + 0
\end{cases}
\rightarrow (0.25)_{10} = (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 0 \cdot 10^{-3} + 0)_{10} = 0.25$$

Escribir 0.25 en base 2:

$$\begin{cases} 0.25 \cdot 2 &= 0 + 0.5 \\ 0.5 \cdot 2 &= 1 + 0 \\ 0 \cdot 2 &= 0 + 0 \end{cases} \rightarrow (0.25)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0)_2 = 0.01$$

Escribir 0.3 en base 2:

$$\begin{cases} 0.3 \cdot 2 &= 0 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.4 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ \vdots &= \vdots$$

Para escribir al 0.3 en base 2 voy a necesitar infinitos números en la mantisa, la máquina no puede y ahí aparecen los errores de redondeo o truncamiento.

Errores:

Tengo que un número de máquina, número posta que la máquina representa, con la notación mantisa, exponente:

En base
$$10 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 10^{exp}$$
 con $0 \le a_i \le 9(a_1 \ne 0)$
En base $2 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 2^{exp}$ con $0 \le a_i \le 1(a_1 \ne 0)$

Por ejemplo si $m=3 \implies x=0, a_1a_2a_3 \cdot 2^{exp}$. Para cada valor de exp voy a tener un total de $1 \cdot 2 \cdot 2 = 4$

posibles valores de máquina. La separación entre 2 valores x_1 y x_2 consecutivos es de 2^m , por eso para órdenes grandes la separación entre un número y otro es mayor.

Si el número real, real que quiero es x = 0.3, la máquina no puede representarlo de forma exacta. Puedo acotar el error en forma absoluta como:

$$|x - x^*| \le \frac{1}{2} \frac{1}{2^m} \cdot 2^{exp}$$

Y en forma relativa como:

$$\frac{|x - x^*|}{|x|} \le 5 \cdot 2^{-m}$$

Deducción matriz de rotación 2d (ponele):

Quiero que:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \underbrace{\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0}_{\bullet 1} + \underbrace{\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0}_{\bullet 2} = \begin{pmatrix} u_{\theta} \\ v_{\theta} \end{pmatrix}$$

En el gráfico veo lo que quiero lograr.

Entre el gráfico y ★¹:

$$\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0 = \begin{pmatrix} u_{x\theta} \\ u_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{spherical position}}{=}} \begin{pmatrix} u_0 \cdot \cos(\theta) \\ u_0 \cdot \sin(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Entre el gráfico y \bigstar^2 :

$$\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0 = \begin{pmatrix} v_{x\theta} \\ v_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{solicators}}{\rightleftharpoons}} \begin{pmatrix} -v_0 \cdot \sin(\theta) \\ v_0 \cdot \cos(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} b \\ d \end{pmatrix} = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix}$$

Juntando esos resultados:

$$R_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Ejercicios de la guía:

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_2 - 3x_1 + \sqrt{2}x_3, x_1 - \frac{1}{2}x_2)$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x_1, x_2) = (x_1 + x_2, |x_1|)$

(c)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$

(d)
$$f: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 3}$$
, $f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$

(a) Primero veamos que la suma es lineal. Tomemos dos vectores cualesquiera:

$$v = (x_1, y_1, z_1), \quad w = (x_2, y_2, z_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$$

Ahora veo que:

$$f(v) + f(w) = (y_1 - 3x_1 + \sqrt{2}z_1, x_1 - \frac{1}{2}y_1) + (y_2 - 3x_2 + \sqrt{2}z_2, x_2 - \frac{1}{2}y_2)$$

= $(y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$

Son iguales, la suma es lineal Veamos que el producto es lineal. Tomemos un escalar $\alpha \in \mathbb{R}$ y un vector v = (x, y, z). Entonces,

$$f(\alpha v) = f(\alpha x, \alpha y, \alpha z) = (\alpha y - 3\alpha x + \sqrt{2}\alpha z, \alpha x - \frac{1}{2}\alpha y) = \alpha (y - 3x + \sqrt{2}z, x - \frac{1}{2}y) = \alpha f(x, y, z)$$

El producto es lineal

f es una transformación lineal.

(b) Tomemos dos vectores cualesquiera y veamos la suma:

$$v = (x_1, y_1), \quad w = (x_2, y_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2) = (x_1 + x_2 + y_1 + y_2, |x_1 + x_2|)$$

Ahora veamos que:

$$f(v) + f(w) = (x_1 + y_1, |x_1|) + (x_2 + y_2, |x_2|)$$

= $(x_1 + x_2 + y_1 + y_2, |x_1| + |x_2|)$

dado que $|x_1 + x_2| \neq |x_1| + |x_2|$, la suma no es lineal.

 $\implies f$ no es una transformación lineal.

(c) Veamos que vale la suma, tomo dos matrices cualesquiera A y B:

$$f(A+B) = f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}\right) = f\begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$
$$= (a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21})$$

Ahora vemos:

$$f(A) + f(B) = (a_{11}a_{22} - a_{12}a_{21}) + (b_{11}b_{22} - b_{12}b_{21}) = a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

Se ve que:

$$(a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21}) \neq a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

La suma no es lineal.

 $\implies f$ no es una transformación lineal.

(d) Veo que valga la suma: Sea A, B matrices cualesquiera:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \implies f(A+B) = \begin{pmatrix} (a_{22} + b_{22}) & 0 & (a_{12} + b_{12}) + (a_{21} + b_{21}) \\ 0 & (a_{11} + b_{11}) & (a_{22} + b_{22}) - (a_{11} + b_{11}) \end{pmatrix}$$

Ahora miro,

$$f(A) + f(B) = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix} + \begin{pmatrix} b_{22} & 0 & b_{12} + b_{21} \\ 0 & b_{11} & b_{22} - b_{11} \end{pmatrix} = \begin{pmatrix} a_{22} + b_{22} & 0 & (a_{12} + a_{21}) + (b_{12} + b_{21}) \\ 0 & a_{11} + b_{11} & (a_{22} - a_{11}) + (b_{22} - b_{11}) \end{pmatrix}$$

La suma es lineal. Ahora veo el producto:

$$f(\alpha A) = f \begin{pmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{pmatrix} = \begin{pmatrix} \alpha a_{22} & 0 & \alpha(a_{12} + a_{21}) \\ 0 & \alpha a_{11} & \alpha(a_{22} - a_{11}) \end{pmatrix} = \alpha f(A)$$

El producto y la suma son lineales,

f es transformacion lineal

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 🞧

Ejercicio 2. Escribir la matriz de las siguientes transformaciones lineales en base canónica. Interpretar geométricamente cada transformación.

- (a) f(x,y) = (x,0)
- (b) f(x,y) = (x, -y)
- (c) $f(x,y) = (\frac{1}{2}(x+y), \frac{1}{2}(x+y))$
- (d) $f(x,y) = (x\cos t y\sin t, x\sin t + y\cos t)$
- (a) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,0)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Geométricamente estamos proyectando al eje x_0 .

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

△ Si hacés un copy paste de este código debería funcionar lo más bien △

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[1,0],[0,0]])
# Genero 100 puntos aleatorios
# de distancia 1 al origen. Y otros 100 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 100) - 0.5
V_uni = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV uni = M @ V uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(b) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,-1)$$

Entonces, la matriz asociada es:

$$M = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

Geométricamente estamos haciendo una reflexión respecto del eje x_0 .

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

∆ Si hacés un copy paste de este código debería funcionar lo más bien ∆

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[1,0],[0,-1]])
# Genero 10 puntos aleatorios
# de distancia 1 al origen. Y otros 10 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 10) - 0.5
V_uni = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV uni = M @ V uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(c) Para la base canónica:

$$f(1,0) = \left(\frac{1}{2}, \frac{1}{2}\right), \quad f(0,1) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Geométricamente estamos haciendo, llevando (mejores palabras serán bienvenidas) todo a la dirección (1, 1), ponele.

$$f(x_0, x_1) = \frac{1}{2}(x_0 + x_1) \cdot (1, 1) \approx \lambda \cdot (1, 1)$$

Con el siguiente código vas a poder ver mejor gráficamente le efecto que causa la transformación

⚠ Si hacés un copy paste de este código debería funcionar lo más bien Д

```
import numpy as np
import matplotlib.pyplot as plt
# Nuestra Matriz
M = np.array([[0.5, 0.5], [0.5, 0.5]])
# Genero 15 puntos aleatorios
# de distancia 1 al origen. También 15 puntos
# a distancia 3 del origen.
V = np.random.rand(2, 15) - 0.5
V_uni = V/np.linalg.norm(V, axis = 0)
V_3 = 3*V/np.linalg.norm(V, axis = 0)
# Multiplico la matriz por todos esos vectoes
# para ver el efecto
MV uni = M @ V uni
MV_3 = M @ V_3
# Ploteo dos figuras, una para radio 1 y otra para radio 3
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5))
ax1.scatter(V_uni[0], V_uni[1], label="v_uni")
ax1.scatter(MV_uni[0], MV_uni[1], label="Av_uni")
ax1.legend()
ax1.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 1 del origen y su transformación con A')
ax2.scatter(V_3[0], V_3[1], label="v_3")
ax2.scatter(MV_3[0], MV_3[1], label="Av_3")
ax2.legend()
ax2.set_aspect('equal') # aspect ratio para que se vea cuadradito
ax2.set_title('Puntos que distan 3 del origen y su transformación con A')
# plt.tight_layout()
plt.show()
```

(d) Para la base canónica:

$$f(1,0) = (\cos t, \sin t), \quad f(0,1) = (-\sin t, \cos t)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

Geométricamente estamos rotando en sentido antihorario al eje x_2 .

Dale las gracias y un poco de amor ♥ a los que contribuyeron! Gracias por tu aporte:

8 Juan D Elia • 8 naD GarRaz • 9

Ejercicio 3.

- (a) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- (b) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
- (c) Sean $f,g:\mathbb{R}^3\to\mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), f(2,1,0) = (2,1,0), f(-1,0,0) = (1,2,1)$$

 $g(1,1,1) = (1,1,0), g(3,2,0) = (0,0,1), g(2,2,-1) = (3,-1,2)$

De la teoría se tiene que:

Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.

(a) Sale casi solo usando propiedades de transformación lineal:

$$\begin{cases} f(1,1) &= (-5,3) \\ f(-1,1) &= (5,2) \end{cases} \qquad F_2 + F_1 \to F_2 \qquad \begin{cases} f(1,1) &= (-5,3) \\ f(0,2) &= (0,5) \\ f(0,1) &= (-5,3) \\ f(0,1) &= (0,\frac{5}{2}) \end{cases}$$

$$F_1 - F_2 \to F_1 \qquad \begin{cases} f(1,0) &= (-5,\frac{1}{2}) \\ f(0,1) &= (0,\frac{5}{2}) \\ f(0,1) &= (0,\frac{5}{2}) \end{cases}$$

Si bien no es necesario, puedo escribir a la transformación lineal como:

$$f\left(\begin{array}{c} x\\y \end{array}\right) = \left(\begin{array}{cc} -5 & 0\\ \frac{1}{2} & \frac{5}{2} \end{array}\right) \cdot \left(\begin{array}{c} x\\y \end{array}\right) = \left(\begin{array}{c} -5x\\ \frac{1}{2}x + \frac{5}{2}y \end{array}\right)$$

Y ahora calculo lo más pancho:

$$f(5,3) = \begin{pmatrix} -25\\10 \end{pmatrix} \quad \text{y} \quad f(-1,2) = \begin{pmatrix} 5\\\frac{9}{2} \end{pmatrix}$$

(b) Se llega a un absurdo con algunas operaciones.

$$\begin{cases} f(1,1) &= (2,6) \\ f(-1,1) &= (2,1) \\ f(2,7) &= (5,3) \end{cases} \begin{array}{ccccc} F_2 - F_1 \to F_2 \\ F_3 - 2F_1 \to F_3 \end{array} \begin{cases} f(1,1) &= (2,6) \\ f(0,2) &= (4,7) \\ f(0,5) &= (1,-9) \end{cases} \begin{array}{ccccc} \frac{1}{2} \cdot F_2 \to F_2 \\ \frac{1}{5} \cdot F_3 \to F_3 \end{array} \begin{cases} f(1,1) &= (2,6) \\ f(0,1) &= (2,\frac{7}{2}) \\ f(0,1) &= (\frac{1}{5},\frac{-9}{5}) \end{cases}$$

Las operaciones de triangulación aplicadas en la triangulación son lineales y se usó todo el tiempo la definición de linealidad.

(c) Ataco igual que al anterior, la idea es poder compararlos con la misma base del espacio de partida V:

$$\begin{cases} f(1,0,1) &= (1,2,1) \\ f(2,1,0) &= (2,1,0) \\ f(-1,0,0) &= (1,2,1) \end{cases} \xrightarrow{\begin{subarray}{c} \end{subarray}} \begin{cases} f(1,0,0) &= (1,2,1) \\ f(0,1,0) &= (0,-3,-2) \\ f(0,0,1) &= (2,4,2) \end{cases}$$

Ahora con g:

$$\begin{cases} g(1,0,1) &= (1,2,1) \\ g(2,1,0) &= (2,1,0) \\ g(-1,0,0) &= (1,2,1) \end{cases} \xrightarrow{F_2 - 3F_1 \to F_1} \begin{cases} g(1,1,1) &= (1,1,0) \\ g(0,-1,-2) &= (-3,-3,1) \\ g(0,0,-3) &= (1,-3,2) \end{cases}$$

Podría seguir triangulando y llegar hasta que me queden ambas expresiones en la canónica de \mathbb{R}^3 , pero pajilla. Resalté en azul dos filas que me *gritan* que si:

$$(0,0,1) \xrightarrow{f} (2,4,2) \implies (0,0,-3) \xrightarrow{f} (-6,-12,-6)$$

No obstante:

$$(0,0,-3) \xrightarrow{g} (1,-3,2) \neq (0,0,0)$$

Así se concluye que:

$$f \neq g$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

que satisfaga:

$$f(1,-1,1) = (2,a,-1),$$

$$f(1,-1,2) = (a^2,-1,1),$$

$$f(1,-1,-2) = (5,-1,-7).$$

Si los vectores de la salida son linealmente independientes, la transformación lineal existe para cualquier a. Si alguno de ellos es linealmente dependiente, hay que buscar a para que no indetermine el sistema.

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Como el tercer vector es LD se puede escribir:

$$\alpha(1,-1,1) + \beta(1,-1,2) = (1,-1,-2).$$

Hallamos α y β resolviendo:

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$

Resolviendo tenemos $\alpha = 4$, $\beta = -3$.

Entonces:

$$f(1,-1,-2) = f(4(1,-1,1) - 3(1,-1,2)) = = 4(2,a,-1) - 3(a^2,-1,1) = (8 - 3a^2, 4a + 3, -7)$$

Solo es T.L si ese vector es igual al (5,-1,-7) Esto da el sistema:

$$8 - 3a^2 = 5$$
.

$$4a + 3 = -1$$
.

Resolviendo:

$$4a = -4 \Rightarrow a = -1$$
.

$$8 - 3(-1)^2 = 5 \Rightarrow 8 - 3 = 5$$
, (se cumple).

Por lo tanto, la transformación lineal existe si y solo si a = -1.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 😯

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 6. Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$ definido por:

$$f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$$

y $g: \mathbb{R}^4 \to \mathbb{R}^2$ definido por:

$$g(x_1, x_2, x_3, x_4) = (x_1 - x_2, 2x_1 - x_2).$$

Calcular el núcleo y la imagen de f, de g y de $g \circ f$.

Decidir si son monomorfismos, epimorfismos o isomorfismos.

Cálculo de la imagen de f

Aplicamos f a los vectores canónicos de \mathbb{R}^3 :

$$\begin{cases} f(1,0,0) &= (1,1,0,0) \\ f(0,1,0) &= (1,0,0,0) \\ f(0,0,1) &= (0,1,0,0) \end{cases}$$

Por lo tanto, el generador de la imagen de f es:

$$Im(f) = \langle (1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0) \rangle$$

Como (1,1,0,0) LD:

$$Im(f) = \langle (1, 0, 0, 0), (0, 1, 0, 0) \rangle$$

La dimensión de la imagen es 2.

Cálculo del núcleo de f

Buscamos los coeficientes α, β, γ tales que:

$$\alpha(1,1,0,0) + \beta(1,0,0,0) + \gamma(0,1,0,0) = (0,0,0,0)$$

Esto da el sistema:

$$\left\{ \begin{array}{l} \alpha+\beta=0\\ \alpha+\gamma=0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \alpha=-\beta\\ \alpha=-\gamma \end{array} \right.$$

Reemplazo en los vectores de salida:

$$\alpha(1,0,0) - \alpha(0,1,0) - \alpha(0,0,1) = \alpha(1,-1,-1)$$

Por lo tanto, el núcleo de f es:

$$Nu(f) = \langle (1, -1, -1) \rangle$$

Entonces podemos concluir:

i) Como $\text{Im}(f) \neq \mathbb{R}^3$, no es epimorfismo.

ii) Como $Nu(f) \neq \{0\}$, no es monomorfismo.

Cálculo de la imagen de g

Aplicamos g a los vectores canónicos de \mathbb{R}^4 :

$$\begin{cases} g(1,0,0,0) &= (1,2) \\ g(0,1,0,0) &= (-1,-1) \\ g(0,0,1,0) &= (0,0) \\ g(0,0,0,1) &= (0,0) \end{cases}$$

Por lo tanto, el generador de la imagen de g es:

$$Im(g) = \langle (1,2), (-1,-1) \rangle$$

Los vectores son LI, así que la dimension es 2. Implica que Im g es \mathbb{R}^2 .

Cálculo del núcleo de g

Buscamos los coeficientes $\alpha, \beta, \gamma, \delta$ tales que:

$$\alpha(1,2) + \beta(-1,-1) + \gamma(0,0) + \delta(0,0) = (0,0)$$

Esto nos lleva al sistema de ecuaciones:

$$\left\{ \begin{array}{l} \alpha-\beta=0\\ 2\alpha-\beta=0 \end{array} \right. \Leftrightarrow \left\{ \right. \alpha=\beta=0$$

Por lo tanto, el núcleo de g es:

$$0(1,0,0,0) + 0(0,1,0,0) + \gamma(0,0,1,0) + \delta(0,0,0,1) = \gamma(0,0,1,0) + \delta(0,0,0,1) \implies \text{Nu}(g) = \langle (0,0,1,0), (0,0,0,1) \rangle$$

En conclusión

- Como $\operatorname{Im}(g) = \mathbb{R}^2$, es epimorfismo.
- Como $Nu(g) \neq \{0\}$, no es monomorfismo.
- No es isomorfismo.

Calculo $g \circ f$

$$g(f(x_1, x_2, x_3)) = g(x_1 + x_2, x_1 + x_3, 0, 0)$$

$$= (x_1 + x_2 - x_1 - x_3, 2x_1 + 2x_2 - x_1 - x_3)$$

$$= (x_2 - x_3, x_1 + 2x_2 - x_3)$$

$$= g \circ f(x_1, x_2, x_3)$$

Cálculo de la imagen de $g \circ f$

Usando los canónicos como vectores de salida:

$$\begin{cases} g(1,0,0) &= (0,1) \\ g(0,1,0) &= (1,2) \\ g(0,0,1) &= (-1,-1) \end{cases}$$

Por lo tanto, el generador de la imagen de g es:

$$\operatorname{Im}(g) = \langle (0,1), (1,2), (-1,-1) \rangle$$

Es linealmente independiente (-1, -1):

$$Im(q) = \langle (0,1), (1,2) \rangle$$

La dimension es 2. Implica que Im es \mathbb{R}^2 .

Cálculo del núcleo de $g \circ f$

Buscamos los coeficientes $\alpha, \beta, \gamma, \delta$ tales que:

$$\alpha(0,1) + \beta(1,2) + \gamma(-1,-1) = 0 \Longrightarrow \left\{ \begin{array}{lcl} \beta & = & \gamma \\ \alpha & = & -\beta \end{array} \right.$$

Por lo tanto, el núcleo de g es:

$$-\beta(1,0,0) + \beta(0,1,0) + \beta(0,0,1) = \beta(-1,1,1) \implies \text{Nu}(g) = \langle (-1,1,1,1) \rangle$$

En conclusión:

- Como $\text{Im}(g) = \mathbb{R}^2$, es epimorfismo.
- Como $Nu(g) \neq \{0\}$, no es monomorfismo.
- No es isomorfismo.

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

Aritmética de punto flotante

Ejercicio 7. Algunos experimentos: Realizar las siguientes operaciones en Python \clubsuit . En todos los casos, pensar: ¿Cuál es el resultado esperado? ¿Coincide con el obtenido? ¿A qué se debe el problema (si lo hay)? (Notamos ϵ al épsilon de la máquina. Puede obtenerse importando la librería numpy como np y ejecutando el comando np.finfo(float).eps).

- a) Tomando p = 1e34, q = 1, calcular p + q p.
- b) Tomando p = 100, q = 1e 15, calcular (p + q) + q y ((p + q) + q) + q. Comparar con p + 2q y con p + 3q respectivemente.

c)
$$0.1 + 0.2 == 0.3$$

g)
$$\frac{\epsilon}{2}$$

k)
$$(1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})) - 1$$

d)
$$0.1 + 0.3 == 0.4$$

h)
$$(1+\frac{\epsilon}{2})+\frac{\epsilon}{2}$$

l)
$$\sin(10^{j}\pi)$$
 para $1 \le j \le 25$.

e)
$$1e - 323$$

i)
$$1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})$$

f)
$$1e - 324$$

j)
$$((1+\frac{\epsilon}{2})+\frac{\epsilon}{2})-1$$

m)
$$\sin(\frac{\pi}{2} + \pi 10^j)$$
 para $1 \le j \le 25$.

a) El epsilon sería el número más chico tal que:

$$1 + \epsilon \neq 1$$

En el ejercicio estamos haciendo una cuenta fuera del rango de precisión de la máquina:

$$\epsilon = 2.220446049250313 \cdot 10^{-16} = 0.2220446049250313 \cdot 10^{-15}$$
 $\stackrel{\triangle}{\blacktriangle} \rightarrow \text{así } \underline{\text{noto}} \text{ la precisión}$

Con una mantisa m de 16 números significativos, puedo hacer la cuenta:

Primero p + 1:

Segundo p + 1 - p:

Bueh:

$$\underbrace{p-1}_{p} - p \stackrel{!}{=} p - p = 0$$

 Δ Si hacés un copy paste de este código debería funcionar lo más bien Δ

b) Acá el problema es parecido al anterior:

Comparando:

```
import numpy as np

epsilon = np.finfo(float).eps

print(f"epsilon = {epsilon}")  # epsilon = 2.220446049250313e-16

p = 100
q = 1e-15

calculo1 = (p + q) + q
calculo2 = ((p + q) + q) + q
calculo3 = p + 2*q
calculo4 = p + 3*q

print(f"p = {p}\nq = {q}")
print(f"(p + q) + q) + q = {calculo1}")
print(f"(p + q) + q) + q = {calculo2}")
print(f"p + 2q = {calculo3}")
print(f"p + 3q = {calculo4}")
```

c) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

d) 🙉... hay que hacerlo! 📾

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

e) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número no es igual a 0

```
a = 1e-323
print(f"r: {a}\na == 0 => {a == 0}")
```

f) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número justo con ese exponente se llega al límite de qué tan pequeño puede representarse un número, porque en este caso python lo toma como 0.

```
a = 1e-324
print(f"r: {a}\na == 0 => {a == 0}")
```

g) ... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

h) ... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 🜖, o mejor aún si querés subirlo en IATEX→ una *pull request* al 📢

i) ... hay que hacerlo! 🙃

Si querés mandá la solución → al grupo de Telegram 🥑, o mejor aún si querés subirlo en IATEX→ una *pull request* al 📢

- j) @... hay que hacerlo! 🙃
 - Si querés mandá la solución → al grupo de Telegram 0, o mejor aún si querés subirlo en IATEX→ una pull request al 0
- k) ... hav que hacerlo!
 - Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ③.
- l) ... hay que hacerlo!
 - Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ۞.
- m) ... hay que hacerlo! 6
 - Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al .

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 😯

Ejercicio 8. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 9. Para las siguientes matrices

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 3 - \varepsilon & 2 + \varepsilon \\ 0 & 1 + \varepsilon & \varepsilon \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 0.1 \\ 0.1 \end{pmatrix}$$

- (a) Tomando $\varepsilon = 0.001$, resolver el sistema Ax = b mediante eliminación gaussiana sin intercambio de filas usando aritmética de punto flotante en base 10 con 3 dígitos de mantisa y sistema de redondeo.
- (b) Para $\varepsilon = 0.001$, hallar la solución exacta x del sistema y comparar con la solución del ítem anterior ¿Cómo explica la diferencia?

Voy a usar 3 dígitos de mantisa, es decir 3 números significativos:

$$3.01 = 0.301 \cdot 10^{1}$$

$$3.001 = 0.3001 \cdot 10^{1} \xrightarrow{\text{trunca}} 0.3 \cdot 10^{1} = 3$$

$$3.005 = 0.3005 \cdot 10^{1} \xrightarrow{\text{redondea}} 0.301 \cdot 10^{1} = 3.01$$

$$\varepsilon = 0.001 = 0.1 \cdot 10^{-2}$$

(a)
$$(A|b) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 - \varepsilon & 2 + \varepsilon & 0.1 \\ 0 & 1 + \varepsilon & \varepsilon & 0.1 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 0.3 & 10^{1} & 0.2 & 10^{1} & 0.1 \\ 0 & 0.1 & 10^{1} & 0.1 & 10^{-2} & 0.1 \end{pmatrix}$$

$$F_{2} - 2F_{1} \to F_{2} \qquad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0.1 & 0.1 & 0.1 & 10^{-2} & 0.1 \end{pmatrix}$$

$$F_{3} + F_{2} \to F_{3} \qquad \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0.1 \\ 0 & -1 & 0 & 0.1 \\ 0 & 0 & 0.001 & 0.1 \end{pmatrix}$$

Esas cuentas falopas con punto flotante:

La solución sería:

$$\begin{cases} x = 0.2 - 200 = -199.8 \stackrel{•}{=} -200 \\ y = -0.1 \\ z = 0.2 \div (0.1 \cdot 10^{-2}) = 200 \end{cases}$$

(b)
$$(A|b) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 3 - \varepsilon & 2 + \varepsilon & 0.1 \\ 0 & 1 + \varepsilon & \varepsilon & 0.1 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 1 & 2 & 1 & 0 \\ 2 & 2.999 & 2.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \end{pmatrix}$$

$$F_2 - 2F_1 \to F_2 \qquad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1.001 & 0.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \\ 0 & 1.001 & 0.001 & 0.1 \\ 0 & 0 & 0.002 & 0.2 \end{pmatrix}$$

$$F_3 + F_2 \to F_3 \qquad \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & -1.001 & 0.001 & 0.1 \\ 0 & 0 & 0.002 & 0.2 \end{pmatrix}$$

La solución sería:

$$\begin{cases} x = -100 \\ y = 0 \\ z = 100 \end{cases}$$

La solución exacta difiere mucho de la original. A continuación un para de cuentas hechas en Python 🕏.

```
import numpy as np
epsilon = 0.001
# La matriz a resolver A:
A = np.array([[1, 2, 1], \setminus
               [2, 3 - epsilon, 2 + epsilon], \setminus
               [0, 1 + epsilon, epsilon]])
b = np.array([0, 0.1, 0.1])
# Que lo resuelva python
x, y, z = np.linalg.solve(A, b)
                                             \# x = -100.000000000055
print (f''x = \{x\} \setminus p = \{y\} \setminus z = \{z\}'')
                                           # y = -5.50397778192042e-15
                                              \# z = 100.0000000000551
# Solución mantisa 3 floating point corroboración:
X = np.array([-200, -0.1, 200])
print(f"Corroborar cuentas de punto flotante\nA X = {A @ X}")
         \#A \ X = [-0.2 \ -0.0999 \ 0.0999]
# Solución exacta a mano corroboración:
```

X = np.array([-100, 0, 100])
print(f"Corroborar las cuentas horribles esas\nA X = {A @ X}")

$$A X = [0. 0.1 0.1]$$

Dale las gracias y un poco de amor \vee a los que contribuyeron! Gracias por tu aporte:

Ejercicio 10. Considerar las matrices:

$$A = \begin{pmatrix} 1 & n & 5n \\ 1 & 3n & 3n \\ 1 & n & 2n \end{pmatrix} \quad \mathbf{y} \quad \begin{pmatrix} \frac{2n}{3} \\ \frac{2n}{3} \\ \frac{n}{3} \end{pmatrix},$$

con $n \in \mathbb{N}$.

- a) Para $n = 10^4$, resolver el sistema Ax = b por eliminación gaussiana sin intercambio de filas utilizando aritmética de 4 dígitos con redondeo (en base 10).
- b) Verificar que, para todo $n \in \mathbb{N}$, la solución exacta del sistema es $x = (0, \frac{1}{9}, \frac{1}{9})$ y comparar, para $n = 10^4$, la solución aproximada con la solución exacta.

😇... hay que hacerlo! 😚

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 11. Si $x \in \mathbb{R}^n$, probar que las constantes de equialencia entre las normas $\|\cdot\|_1$ y $\|\cdot\|_2$ y entre las normas $\|\cdot\|_2$ y $\|\cdot\|_{\infty}$ vienen dadas por:

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$$
$$\frac{1}{\sqrt{n}} ||x||_1 \le ||x||_2 \le ||x||_1$$

Acá están las definiciones de las normas que se usan en el ejercicio (+ click)

Si x = (0, ..., 0) la desigualdad es el caso de la igualdad. Entonces si tengo un $x \in \mathbb{R}^n$ y $x \neq 0$:

$$x = (x_1, \dots, x_n) \xrightarrow{\text{calculo}} \|x\|_2 = \sqrt{x_1^2 + \dots + x_n^2} = |x_i| \cdot \underbrace{\sqrt{\left(\frac{x_1}{x_i}\right)^2 + \dots + \frac{1}{1} + \dots + \left(\frac{x_n}{x_i}\right)^2}}_{i - \text{\'esimo lugar}} \stackrel{!}{\geq} |x_i| = \|x\|_{\infty}$$

Ahí queda mostrado que:

$$\|x\|_{\infty} \le \|x\|_2$$

Parecido:

$$||x||_2 = \sqrt{|x_1|^2 + \dots + |x_n|^2} \stackrel{!}{\leq} \sqrt{|x_i|^2 + \dots + |x_i|^2} = \sqrt{n \cdot |x_i|^2} = \sqrt{n} \cdot |x_i| = \sqrt{n} \cdot ||x||_{\infty}$$

$$|x_i| = \max\{|x_1|, \dots, |x_n|\}$$

Ahí queda mostrado que:

$$\|x\|_2 \le \sqrt{n} \cdot \|x\|_{\infty}$$

Ahora para la relación entre $\|\cdot\|_1$ y $\|\cdot\|_2$: Recuerdo Desigualdad de *Cauchy Schwartz*:

$$|x^T y| \stackrel{\bigstar^1}{\leq} ||x||_2 \cdot ||y||_2$$

Con $y = \underbrace{(1,\ldots,1)}_{\mathbf{z}} \implies \|y\|_2 = \sqrt{n}$ y tomo el módulo de las coordenadas de x:

$$(|x_1|,\ldots,|x_n|) \cdot \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \stackrel{\bigstar^1}{\leq} \sqrt{n} \cdot \sqrt{|x_1|^2 + \cdots + |x_n|^2} \Leftrightarrow \underbrace{|x_1| + \cdots + |x_n|}_{\|x\|_1} \leq \sqrt{n} \cdot \underbrace{\sqrt{|x_1|^2 + \cdots + |x_n|^2}}_{\|x\|_2}$$

De donde pasando para acá y para allá queda que:

$$\frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2$$

La última que queda también usando al desigualdad de Cauchy Schwartz:

$$|x^t \cdot y| \stackrel{\bigstar^2}{\leq} ||x||_1 \cdot ||y||_1$$

Ahora uso y = x

$$|x^t \cdot x| \stackrel{\bigstar^2}{\leq} ||x||_1 \cdot ||x||_1 \Leftrightarrow (||x||_2)^2 \leq (||x||_1)^2 \Leftrightarrow ||x||_2 \leq ||x||_1$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 🜎

Ejercicio 12. Para cada una de la siguientes sucesiones $\{x_n\}_{n\in\mathbb{N}}$, determinar si existe $\lim_{n\to\infty}$, y en caso afirmativo hallarlo.

a) $x_n = \frac{1}{n}$,

c) $x_n = (-1)^n$,

b) $x_n = \frac{n^2+1}{n^2-1}$,

d) $x_n = (-1)^n e^{-n}$.

a)
$$x_n = \frac{1}{n} \implies \lim_{n \to \infty} \frac{1}{n} = 0$$

b)
$$x_n = \frac{n^2+1}{n^2-1} \implies \lim_{n \to \infty} \frac{n^2+1}{n^2-1} = 1$$

c)
$$x_n = (-1)^n$$

Uso subsucesiones, para mostrar que no existe. La idea es que de existir el límite, sin importar como me acerque a ∞ todo camino debería llegar al mismo resultado.

$$\begin{cases} a_{2n} = (-1)^{2n} & \xrightarrow{n \to \infty} & 1 \\ a_{2n-1} = (-1)^{2n-1} & \xrightarrow{n \to \infty} & -1 \end{cases}$$

Calculo los límites

$$\lim_{n \to \infty} x_{a_{2n}} = 1$$
 y $\lim_{n \to \infty} x_{a_{2n-1}} = -1$

Dado que los límites no coiciden el límite no existe.

d)
$$x_n = (-1)^n e^{-n} \implies \lim_{n \to \infty} (-1)^n \cdot \frac{1}{e^n} = \operatorname{acotado} \cdot 0 = 0.$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 13. Para cada una de las siguientes sucesiones de vectores $\{x_n\}_{n\in\mathbb{N}}$ en \mathbb{R}^2 , determinar si existe $\lim_{n\to\infty} x_n$, y en caso afirmativo hallarlo.

a)
$$x_n = (1 + \frac{1}{n}, 3),$$

c)
$$\mathbf{x}_n = \begin{cases} (\frac{1}{n}, 0) & \text{si } n \text{ es par} \\ (0, -\frac{1}{n}) & \text{si } n \text{ es impar} \end{cases}$$
,

b)
$$\mathbf{x}_n = ((-1)^n, e^{-n}),$$

d)
$$x_n = (\frac{1}{2^n}, 4, \sin(\pi n)).$$

a) Calculo de una:

$$\boldsymbol{x}_n = (1 + \frac{1}{n}, 3) \xrightarrow{n \to \infty} (1, 3)$$

b) $\mathbf{x}_n = ((-1)^n, e^{-n})$, no existe ver ejercicio 12 c)

c)
$$\boldsymbol{x}_n = \left\{ \begin{array}{ll} (\frac{1}{n}, 0) & \text{si } n \text{ es par} \\ (0, -\frac{1}{n}) & \text{si } n \text{ es impar} \end{array} \right.$$

$$x_n \xrightarrow[n \to \infty]{} (0,0)$$

d) $x_n = (\frac{1}{2^n}, 4, \sin(\pi n)).$

Dado que $\sin(\pi \cdot n) = 0 \quad \forall n \in \mathbb{N}$

$$x_n \xrightarrow[n \to \infty]{} (0,4,0)$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 14. Dada una sucesión de vectores $\{\boldsymbol{x}_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^k$ y dos normas $\|\cdot\|_a$ y $\|\cdot\|_b$ de \mathbb{R}^k , usando la equivalencia de normas, probar $\|\boldsymbol{x}_n\|_a\xrightarrow{n\to\infty}0\iff\|\boldsymbol{x}_n\|_b\xrightarrow{n\to\infty}0.$

$$|c_1||x_n||_b \le ||x_n||_a \le c_2 ||x_n||_b$$

En un espacio vectorial de dimension finita todas las normas son equivalentes, entonces existen $c_1, c_2 > 0$ tal que:

(⇒) Reemplazo en la desigualdad tomada por límite:

$$\lim_{n\to\infty} c_1 \|\boldsymbol{x}_n\|_b \leq 0 \leq \lim_{n\to\infty} c_2 \|\boldsymbol{x}_n\|_b$$
hipótesis

sacando las constantes para afuera del límite (propiedad del límite):

$$c_1 \lim_{n \to \infty} \|\boldsymbol{x}_n\|_b \le 0 \le c_2 \lim_{n \to \infty} \|\boldsymbol{x}_n\|_b$$

como $c_1, c_2 > 0$:

$$c_1 \cdot \lim_{n \to \infty} \|\boldsymbol{x}\|_b \le 0 \Leftrightarrow \lim_{n \to \infty} \|\boldsymbol{x}\|_b \le 0$$
 y $c_2 \cdot \lim_{n \to \infty} \|\boldsymbol{x}\|_b \ge 0 \Leftrightarrow \lim_{n \to \infty} \|\boldsymbol{x}\|_b \ge 0$

Por lo tanto, $\lim_{n\to\infty} \|\boldsymbol{x}_n\|_b = 0$, como queriamos ver, vale la ida

(⇐) Vuelvo a reemplazar tomando límite, pero en ese caso

$$\lim_{n\to\infty} \|\boldsymbol{x}_n\|_b = 0 \implies 0 \le \lim_{n\to\infty} \|\boldsymbol{x}_n\|_a \le 0 \stackrel{\text{propiedad}}{\Longrightarrow} \lim_{n\to\infty} \|\boldsymbol{x}_n\|_a = 0$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 😯

👸 naD GarRaz 🞧

Ejercicio 15. Dada una sucesión de vectores $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^k$ probar

$$\|\boldsymbol{x}_n\|_1 \xrightarrow[n \to \infty]{} 0 \iff (x_n)_i \xrightarrow[n \to \infty]{} 0, 1 \leq i \leq k$$

donde $(x_n)_i$ es la i-esima coordenada de x_n .

Tener en cuenta que: $||x_n||_1 \xrightarrow[n \to \infty]{} 0$ es $\lim_{n \to \infty} \sum_{i=1}^n |x_i| = 0$

(i) veo la ida:

Como $||x_n||_1 \xrightarrow[n \to \infty]{} 0$ y la norma se compone de sumar valores mayores o iguales a cero, se puede implicar que cada elemento con n tendiendo a infinito debe ser 0, es decir $(x_n)_i \xrightarrow[n \to \infty]{} 0$ para todo i.

Mas formal:

Por el absurdo: asumo que existe un $(x_n)_i$ distinto de cero

por la implicación se que $\lim_{n\to\infty}\sum_{i=1}^n|x_i|=0$, como solo sumo positivos es absurdo si hay algun x_i tq: x_i no es cero

(ii) veo la vuelta:

Si $(x_n)_i \xrightarrow[n \to \infty]{} 0$ para todo i, puedo implicar que $||x_n||_1 \xrightarrow[n \to \infty]{} 0$, porque es sumar todos esos elementos. Mas formal:

 $\lim_{n\to\infty}\sum_{i=1}^n|x_i|=0 \text{ con cada } x_i=0 \text{ con n tendiendo a infinito:}$

$$\lim_{n \to \infty} \sum_{i=1}^{n} 0 = 0 \text{ vale}$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

😽 Juan D Elia 😯

Ejercicio 16. Sea $A \in \mathbb{R}^{nxn}$, probar que las constantes de equivalencia entre las normas $\|.\|_1$ y $\|.\|_2$ y entre las normas $\|.\|_1$ y $\|.\|_{\infty}$ vienen dadas por:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2 \le \sqrt{n} \|A\|_{\infty}$$

$$\frac{1}{\sqrt{n}} \|A\|_1 \le \|A\|_2 \le \sqrt{n} \|A\|_1$$

La norma matricial es fea, por lo cual voy a usar normas inducidas:

- (a) Veo los dos lados de la desigualdad
 - (i) Arranco por la parte izquierda de la desigualdad. Quiero probar que:

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_2$$

Norma inducida:

$$||A||_2 = \max_{x \neq 0} \left\{ \frac{||Ax||_2}{||x||_2} \right\}$$

Quiero achicar el numerador y agrandar el denominador para armar una expresión más chica. Recordar por ejercicio 11 que:

$$\sqrt{n} \|x\|_{\infty} \stackrel{\bigstar^{1}}{\geq} \|x\|_{2}, \implies \frac{1}{\sqrt{n} \cdot \|x\|_{\infty}} \stackrel{\bigstar^{2}}{\leq} \frac{1}{\|x\|_{2}}$$

$$y \|x\|_{2} \stackrel{\bigstar^{3}}{\geq} \|x\|_{\infty} \implies \frac{1}{\|x\|_{2}} \stackrel{\bigstar^{4}}{\leq} \frac{1}{\|x\|_{\infty}}$$

entonces dado que $Ax \in \mathbb{R}^n$ es un vector, por norma vectorial:

$$\|Ax\|_{2} \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_{2}}{\|x\|_{2}} \right\} \stackrel{\bigstar^{3}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_{\infty}}{\sqrt{n} \|x\|_{\infty}} \right\} = \frac{1}{\sqrt{n}} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} \right\} \stackrel{\text{def}}{=} \frac{1}{\sqrt{n}} \cdot \|A\|_{\infty}$$

Donde se tiene en cuenta que si un conjunto A tiene sus elementos menores al de otro conjunto B en particular sus máximos también esa relación.

(ii) Veo la parte derecha de la desigualdad quiero probar que:

$$||A||_2 \le \sqrt{n} ||A||_{\infty}$$

Ahora como quiero ver que $||A||_2$ es mas chico que otra cosa. agrando el numerador y achico denominador para armar una expresión más grande. Nuevamente usamos el resultado del ejercicio 11:

$$\|A\|_2 \stackrel{\mathrm{def}}{=} \max_{x \neq 0} \left\{ \frac{\|Ax\|_2}{\|x\|_2} \right\} \stackrel{\bigstar^1}{\leq} \max_{x \neq 0} \left\{ \frac{\sqrt{n} \|Ax\|_\infty}{\|x\|_\infty} \right\} = \sqrt{n} \cdot \max_{x \neq 0} \left\{ \frac{\|Ax\|_\infty}{\|x\|_\infty} \right\} \stackrel{\mathrm{def}}{=} \sqrt{n} \|A\|_\infty$$

Queda demostrado.

- (b) Veo los dos lados de la desigualdad. Parecido a lo que se hizo en el anterior:
 - (i) Para ver que es más grande, tengo que armar una expresión mas chica. Achico el numerador y agrando el denominador.

Recordar por ejercicio 11 que: $||x||_2 \ge \frac{1}{\sqrt{n}} ||x||_1$ y $||x||_2 \le ||x||_1$, entonces:

$$||x||_{2} \stackrel{\stackrel{\bullet}{\geq} 1}{\sqrt{n}} ||x||_{1} \iff \frac{\sqrt{n}}{||x||_{1}} \stackrel{\stackrel{\bullet}{\geq} 2}{\geq} \frac{1}{||x||_{2}}$$

$$y$$

$$||x||_{2} \stackrel{\stackrel{\bullet}{\leq} 3}{\leq} ||x||_{1} \iff \frac{1}{||x||_{1}} \stackrel{\stackrel{\bullet}{\leq} 4}{\leq} \frac{1}{||x||_{2}}$$

Usando la norma inducida:

$$||A||_2 \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{||Ax||_2}{||x||_2} \right\} \stackrel{\bigstar^1}{=} \max_{x \neq 0} \left\{ \frac{\frac{1}{\sqrt{n}} ||Ax||_1}{||x||_1} \right\} = \frac{1}{\sqrt{n}} \cdot \max_{x \neq 0} \left\{ \frac{||Ax||_1}{||x||_1} \right\} \stackrel{\text{def}}{=} \frac{1}{\sqrt{n}} \cdot ||A||_1$$

(ii) Para ver que es más chico, tengo que armar una expresión más grande. Agrando el numerador y achico el denominador. Usando nuevamente los resultados del ejercicio 11 para normas vectoriales:

$$||A||_2 \stackrel{\text{def}}{=} \max_{x \neq 0} \left\{ \frac{||Ax||_2}{||x||_2} \right\} \stackrel{\bigstar^3}{\leq} \max_{x \neq 0} \left\{ ||Ax||_1 \cdot \frac{\sqrt{n}}{||x||_1} \right\} = \sqrt{n} \cdot \max_{x \neq 0} \left\{ \frac{||Ax||_1}{||x||_1} \right\} \stackrel{\text{def}}{=} \sqrt{n} \cdot ||A||_1$$

Queda demostrado

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🎖 Juan D Elia 🞧

Ejercicio 17. Probar que para toda matriz $A \in \mathbb{R}^{n \times n}$

(a)
$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$
 (b) $||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}|$

(a) Definición de norma infinito:

$$||A||_{\infty} = \max_{||x||_{\infty} = 1} ||Ax||_{\infty}$$

Veamos que:

$$\|Ax\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij} \cdot x_j| \overset{\text{Des. triangular}}{\leq} \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \cdot |x_j| \overset{\uparrow}{\leq} \max_{1 \leq i \leq n} \sum_{j=1}^{n} |a_{ij}| \cdot \|x\|_{\infty} = \max_{1 \leq i \leq n} \|x\|_{\infty} \cdot \sum_{j=1}^{n} |a_{ij}|$$

Luego, nos queda que

$$||Ax||_{\infty} \le ||x||_{\infty} \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{ij}|$$

Volvamos a $||A||_{\infty}$. Reemplazamos $||Ax||_{\infty}$ por la desigualdad que obtuvimos

$$||A||_{\infty} \le \max_{\|x\|_{\infty}=1} ||x||_{\infty} \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Como $||x||_{\infty} = 1$, nos queda que:

$$||A||_{\infty} \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Llamaremos a esta expresión de la derecha M.

$$||A||_{\infty} \leq M$$

Ahora, busquemos demostrar la igualdad encontrando un x particular. Sea $\tilde{x} = e_{\hat{i}}$ tal que $||Ax||_{\infty} = M$. Es decir, vemos que se cumple que

$$\hat{i} = \max \left\{ i \in [1, n] : \sum_{j=1}^{n} |a_{ij}| \right\}$$

Es decir, la fila cuya suma de módulos es la mayor. Además, vemos que, por ser \tilde{x} un vector canónico, se cumple que $||x||_{\infty} = 1$. Luego como sabemos que:

- $||A||_{\infty} \leq M$ para todo $x \operatorname{con} ||x||_{\infty} = 1$
- Existe un \tilde{x} tal que $||A\tilde{x}||_{\infty} = M$

$$||A||_{\infty} = \max_{\|x\|_{\infty} = 1} ||Ax||_{\infty} = M$$

Puesto que encontramos un x que cumple la igualdad, y se que todo el resto son menores o iguales.

(b) Quiero probar la fórmula cerrada:

$$||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^n |a_{ij}| = \underbrace{\max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}}_{\bullet}$$

Usando normas inducidas o subordinadas voy a ponerle una cota a $||A||_1$ para cualquier $x \in K^n$ con $||x||_1 = 1$:

$$\begin{split} \|Ax\|_1 &= \left\| \left(\begin{array}{c} \sum\limits_{j=1}^n a_{1j} x_j \\ \vdots \\ \sum\limits_{j=1}^n a_{nj} x_j \end{array} \right) \right\|_1 \overset{\text{def}}{=} |\sum\limits_{j=1}^n a_{1j} x_j| + \dots + |\sum\limits_{j=1}^n a_{nj} x_j| \\ &\leq \sum\limits_{j=1}^n |a_{1j}| \cdot |x_j| + \dots + \sum\limits_{j=1}^n |a_{nj}| \cdot |x_j| \\ &\stackrel{!}{=} \sum\limits_{i=1}^n \sum\limits_{j=1}^n |a_{ij}| \cdot |x_j| \\ &\stackrel{!!}{=} \sum\limits_{j=1}^n \sum\limits_{i=1}^n |a_{ij}| \cdot |x_j| = \sum\limits_{j=1}^n |x_j| \cdot \sum\limits_{i=1}^n |a_{ij}| \\ &= |x_1| \cdot \sum\limits_{j=1}^n |a_{i1}| + \dots + |x_n| \cdot \sum\limits_{i=1}^n |a_{in}| \\ &\stackrel{||}{=} \sum\limits_{j=1}^n |x_j| \cdot \max\limits_{1 \leq i \leq n} \{ \|\operatorname{Col}(A_i)\|_1 \} = \|x\|_1 \cdot \max\limits_{1 \leq i \leq n} \{ \|\operatorname{Col}(A_i)\|_1 \} \\ &\stackrel{||}{=} \max\limits_{1 \leq i \leq n} \{ \|\operatorname{Col}(A_i)\|_1 \} = \bigstar^1 \end{split}$$

Después de ese parto se obtiene que:

$$||Ax||_1 \stackrel{\bigstar^1}{\leq} \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}$$

Ahora el razonamiento que sigue es algo así: Dado que la expresión que quedó

$$\max \left\{ \sum_{i=1}^{n} |a_{i1}|, \dots, \sum_{i=1}^{n} |a_{in}| \right\}$$

no depende de x, solo son sumas de los elementos por columna de A y como ya sé, la j-ésima columna de \overline{A} la puedo escribir como:

$$A \cdot \hat{e}_j = A \cdot \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} = \operatorname{Col}(A)_j,$$

Es así que como ese hermoso \hat{e}_j cumple eso va a haber algún otro vector genérico que cumpla que justo nos dé el máximo del conjunto \star^1 . Para creerme esto último, me gusta pensar que Ax vive en el subespacio $\operatorname{Col}(A) = \operatorname{Im}(A)$.

pensando a A como una T.L.

Entonces si en la columna j, tengo un vector cualquiera al que llamo \tilde{x} con $\|\tilde{x}\| = 1$ y ¡Oh sorpresa \mathfrak{O} ! $A \cdot \tilde{x} \in \bigstar^1$ y justo es el elemento máximo \mathfrak{O} de \bigstar^1 por lo tanto el más poronga entre todos los $\|y\| = 1$:

$$\max_{\|y\|=1} \frac{\|Ay\|}{\|y\|} \stackrel{\uparrow}{=} \|A\tilde{x}\|_1 = \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{ij}|, \dots, \sum_{i=1}^n |a_{in}| \right\} = \sum_{i=1}^n |a_{ij}|$$

Y por definición (la otra con $x \neq 0$) de norma inducida con norma 1: $||A||_1 = \max_{x \neq 0} \frac{||Ax||_1}{||x||_1}$, así pudiendo expresar:

$$||A||_1 = \max \left\{ \sum_{i=1}^n |a_{i1}|, \dots, \sum_{i=1}^n |a_{in}| \right\}$$

Dale las gracias y un poco de amor 💚 a los que contribuyeron! Gracias por tu aporte:

🞖 Pedro F. Ģ

👸 naD GarRaz 😱

Ejercicio 18. O... hay que hacerlo! 😚

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc

Ejercicio 19. Se tiene el sistema Ax = b.

(a) Sea x la solución exacta y \tilde{x} la solución obtenida numéricamente. Se llama **residuo** al vector: $r := b - A\tilde{x}$. Si notamos $e = x - \tilde{x}$, mostrar que:

$$\frac{1}{cond(A)} \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|} \le cond(A) \frac{\|r\|}{\|b\|}.$$

(b) En lugar del dato exacto b, se conoce una aproximación \tilde{b} . Se tiene que \tilde{x} satisface: $A\tilde{x} = \tilde{b}$. Probar que:

$$\frac{1}{cond(A)} \frac{||b - \tilde{b}||}{||b||} \le \frac{||x - \tilde{x}||}{||x||} \le cond(A) \frac{||b - \tilde{b}||}{||b||}.$$

¿Cómo se puede interpretar este resultado?

Algunas consideraciones antes de empezar:

- (i) b = Ax
- (ii) $r = Ax A\tilde{x} = A(x \tilde{x})$
- (iii) $e = A^{-1}r$
- (iv) cuando uso la propiedad de consistencia pongo una c arriba de la desigualdad,ojo: varias veces achico el denominador para armar algo mas grande
- (a) Veo primero $\frac{1}{cond(A)} \frac{\|r\|}{\|b\|} \le \frac{\|e\|}{\|x\|}$:

$$\frac{1}{cond(A)}\frac{\|r\|}{\|b\|} = \frac{1}{||A^{-1}||||A||}\frac{||Ae||}{||Ax||} \overset{\text{c}}{\leq} \frac{1}{||A^{-1}||||A||}\frac{||A||||e||}{||Ax||} = \frac{1}{||A^{-1}||}\frac{||e||}{||Ax||} \overset{\text{c}}{\leq} \frac{||e||}{||A^{-1}Ax||} = \frac{||e||}{||x||}$$

ahora veo $\frac{\|e\|}{\|x\|} \leq cond(A)\frac{\|r\|}{\|b\|}$:

$$\frac{||e||}{||x||} = \frac{||A^{-1}r||}{||x||} \overset{\text{c}}{\leq} \frac{||A^{-1}||||r||}{||x||} = \frac{||A||}{||A||} \frac{||A^{-1}||||r||}{||x||} = \frac{cond(A)||r||}{||A||||x||} \overset{\text{c}}{\leq} \frac{cond(A)||r||}{||Ax||} = \frac{cond(A)||r||}{||b||}$$

Queda demostrado

(b) Es igual que el item anterior

Veo primero: $\frac{1}{cond(A)} \frac{||b-\tilde{b}||}{||b||} \le \frac{||x-\tilde{x}||}{||x||}$:

$$\frac{1}{cond(A)}\frac{||b-\tilde{b}||}{||b||} = \frac{1}{||A||||A^{-1}||}\frac{||Ax-A\tilde{x}||}{||b||} = \frac{1}{||A||||A^{-1}||}\frac{||A(x-\tilde{x})||}{||b||} \overset{c}{\leq} \frac{1}{||A||||A^{-1}||}\frac{||A||||(x-\tilde{x})||}{||b||} = \frac{||(x-\tilde{x})||}{||A^{-1}||||b||} \overset{c}{\leq} \frac{1}{||A||||A^{-1}||}\frac{||A||||(x-\tilde{x})||}{||b||} = \frac{||(x-\tilde{x})||}{||A^{-1}|||b||}$$

Queda ver $\frac{||x-\tilde{x}||}{||x||} \leq cond(A)\frac{||b-\tilde{b}||}{||b||}$

$$\frac{||x-\tilde{x}||}{||x||} = \frac{||A^{-1}(b-\tilde{b})||}{||x||} \stackrel{c}{\leq} \frac{||A^{-1}||||(b-\tilde{b})||}{||x||} = \frac{||A||||A^{-1}||||(b-\tilde{b})||}{||A||||x||} = \frac{cond(A)||(b-\tilde{b})||}{||A||||x||} \stackrel{c}{\leq} \frac{cond(A)||(b-\tilde{b})||}{||Ax||} = cond(A) \frac{||b-\tilde{b}||}{||b||}$$
 queda demostrado

Dale las gracias y un poco de amor 🛡 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 😯

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram ②, o mejor aún si querés subirlo en IATEX→ una pull request al ③.

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc

Ejercicio 23. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc

Ejercicio 24. Sea $D_n = \frac{1}{10}I_n$. Verificar que $det(D_n) \to 0$ si $n \to \infty$. $\cite{D_n}$ esta mal condicionada? ¿Es el determinante un buen indicador de cuan cerca esta una matriz de ser singular?

 D_n es la matriz identidad de nxn multiplicado por $\frac{1}{10}$, por lo tanto es la matriz de nxn que en su diagonal tiene $\frac{1}{10}$. Al ser una matriz diagonal su determinante es el producto de los elementos en su diagonal:

$$det(D_n) = \prod_{1}^{n} \frac{1}{10} = (\frac{1}{10})^n = \frac{1}{10^n}$$

para verificar $det(D_n) \to 0$ si $n \to \infty$ tomo limite:

$$\lim_{n\to\infty} \frac{1}{10^n} = 0$$

La matriz esta bien condicionada, se ve facilmente que:

 $||A||_{\infty} = \frac{1}{10} \text{ y } ||A^{-1}||_{\infty} = 10 \text{ ya que tiene todos } 10 \text{ en la diagonal (inversa de matriz diagonal)}.$

Entonces: $Cond_{\infty}(A) = 1$ por lo que esta perfecamente condicionada.

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 😯

Ejercicio 25. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATeX \rightarrow una pull request al \bigcirc .

