Introduction Hardware Software Design Positioning Conclusion

VapsBee

Michael Lippautz Simon Kranzer Thomas Pfeiffenberger

January 28, 2010

Outline

- Introduction
- 2 Hardware
 - Boards
 - Zigbee
- Software Design
 - Zigbee
 - Board Setup
 - Reader
- Positioning
 - Methodes
 - Trilateration
- Conclusion

Introduction

Goal

Real-time positioning of an embedded device using:

- Zigbee nodes placed in space
- Positioning based on signal strength indicators
- C and nesC as programming languages
- 400msec./position

Introduction (cont)

Challenges

- Programming the Beacons
- Timing constraints
- Board setup
- Hardware restrictions on signal strength (8bit value)
- Choose an adequate algorithm (positioning)

Introduction (cont)

Teammembers and their jobs

- Michael Lippautz
 - Beaglebord setup and programming
 - Igep V2 setup and programming
 - Presentation, Dokumentation
- Simon Kranzer
 - Zigbee (sender & receiver) setup and programming
 - Positioning with Zigbee inquest
 - Presentation, Dokumentation
- Thomas Pfeiffenberger
 - Positioning inquest and programming
 - Presentation, Dokumentation

Beaglboard vs. Igep V2

The Igep-V2-board replaces the Beagleboard since we destroyed it during the last tests by blowing the processor! ©

Igep V2

- Single board computer (like Beagleboard)
- Designed by ISEE
- Specification (igep-platform.com)
- Built around OMAP3530 processor
 - ARM Cortex-A8
 - 600MHz
 - 256KB L2 cache
 - DSP TMS320C64x+
 - POWERVR SGX 530
 - Wifi IEEE 802.11b/g

MeshNetics ZDM1281-A2 (ZigBit)

Sender and Receiver

Radio

- IEEE 802.15.4 (WPAN)
- Zigbee

Chips

- ATmega1281
 - 16MHz
 - 128KB Flash
- AT86RF230 transceiver
 - 2.4GHz

Figure: MeshNetics Zigbit

Application

Toolchain (Zigbee)

Stack

- OpenMAC
- 802.15.4 Open Source MAC Layer
- Based on TinyOS an event-driven
 OS designed for sensor networks
 with limited resources

Language

- MeshC by (Luxoft Labs)
- Based on NesC for TinyOS1.1

Figure: OpenMAC architecture

Sender

Key facts

Timing

- Send rate of $T \ge 10 \mathit{msec}$ via ZigBee
- For the demo: 200 msec

Data

- ID
- Temperature, Light, Acceleration (not used)

Receiver

Key facts

Timing

- $T \ge 50$ msec incl. processing
- For the demo: 300 msec

Dataflow (1-cycle)

- Receive packets from nodes
- Get IDs from packets
- Aquire RSSI and LQI (Stack)
- Calculate packetRSSI, averagedRSSI (variable)
- Send data via UART


```
SMT:L0I:255:RSSI:67(08):ID:02
SMT; LQI: 255; RSSI: 64(09); ID: 03
SMT; LQI: 255; RSSI: 70(07); ID: 01
SMT; LQI: 255; RSSI: 76(05); ID: 02
SMT; LQI: 255; RSSI: 64(09); ID: 03
SMT; LQI: 255; RSSI: 67(08); ID: 02
SMT;LQI:255;RSSI:73(06);ID:01
SMT; LQI: 255; RSSI: 76(05); ID: 02
SMT; SMT; LQI: 255; RSSI: 73(06); ID: 01
SMT; LQI : 255; RSSI : 70(07); ID: 01
SMT;LQI:255;RSSI:76(05);ID:02
SMT;LQI
SMT; LQI: 255; RSSI: 64(09); ID: 03
SMT;LQI
SMT; LQI: 255; RSSI: 64(09); ID: 02
SMT; LQI: 255; RSSI: 61(10); ID: 02
SMT; LQI: 255; RSSI: 64(09); ID: 03
SMT; LQI: 255; RSSI: 55(12); ID: 02
SMT;LQI:255;RSSI:64(09);ID:03
SMT; LQI: 255; RSSI: 73(06); ID: 01
SMT; LQI: 255; RSSI: 52(13); ID: 02
SMT; LQI: 255; RSSI: 70(07SMT; LQI: 255; RSSI: 67(08); ID: 03
SMT; LQI: 255; RSSI: 49(14); ID: 02
```


General (Board)

- Kernel and rootfs built using OpenEmbedded (openembedded.net)
- Distribution: Ångström (with reduced # of packages)

Problems

- Standard Linux Kernel preemption (no RT at all)
 - When CPU is in user-mode
 - When Kernel returns to user space from syscall
 - When Kernel is locked by mutex
- Only 1 explicit serial port available

Solutions

RT

Apply official RT patch (rt.wiki.kernel.org)

- NO hard real-time guarantees ©
- BUT
 - Kernel preemptable (mutex/spinlocks and interrupts)
 - Priorities on programs
 - \implies 1 task RT manageable

Serial port

/* Use Kernel based pin muxing to enable an additional UART (beagle) */

Main program

Initialization

```
set scheduling priority // 1 above kernel /* open & configure serial port (beagle) // data source */ open & configure usb2serial port (igep) acquire memory // use to store node data lock heap // no memory alloc after this point
```

Be RT

```
while (TRUE)
{
    sleep [xxx us - xx ms]
    <<threaded>>
    read data into memory
    calc position
    output
}
```

Positioning

Challenges

- Triangulation
 - measuring angles
- Trilateration
 - measuring distances
- Alternativ Positioning Systems
 - Point of interest
 - Human interaction
- Choose an adequate algorithm \Rightarrow Trilateration

Trilateration

Distance calculation

Figure: Trilateration

Trilateration

Distance calculation

- RSSI Received Signal Strength Indication
- Mapping RSSI ← Distance
- LQI Link Quality Indication
- $RSSI(d) = RSSI(d_0) + 10n * \log(\frac{d}{d_0})$
- $dist_A^2 = (x_0 x_A)^2 + (y_0 y_A)^2$

Conclusion

Open issues

- Hardware restrictions on signal strength (8bit value)
- Evaluation of the positioning algorithm
- no hard real time -> GIOTTO e-machine
- defining new Use Case "**Guaranteed measurements**" (e.g. temperature)

Introduction Hardware Software Design Positioning Conclusion

THANK YOU!

Positioning with Zigbee

Measurements

- RSSI Received Signal Strength Indicator
- LQI Link Quality

Calculation

- Beacon broadcast its position via Zigbee
- Distance by RSSI or LQI
- Position by Weighted Centroid Localization (WCL)¹

$$P_i(x,y) = \frac{\sum_{n=1}^{j=1} (w_{ij}B_j(x,y))}{\sum_{n=1}^{j=1} w_{ij}}$$
 where P_i is a position, B_j are the

beacons and w_{ij} with $w_{ij} = \frac{1}{(d_{ii})^g}$ are the weights and d_{ij} is the (measured) distance to a beacon and g the degree to ensure remote beacons have still impact.

¹Localization in Zigbee-based Sensor Networks, Jan Blumenthal et al., **WISP 2007**