Proofs, rings, and ideals

Daniel Murfet, William Troiani

University of Melbourne, University of Sorbonne Paris Nord

2022

Geometry of Interaction

Permutations	Operators				Rings
(12)(34)(56)	$\llbracket \pi \rrbracket = \begin{pmatrix} 0 \\ 0 \\ p^* \\ q^* \end{pmatrix}$	$ \begin{array}{c} 0\\qp^* + qp^*\\0\\0\end{array} $	p 0 0 0	$\begin{pmatrix} q \\ 0 \\ 0 \\ 0 \end{pmatrix}$?

Formulas

Definition (Formulas)

- ▶ Unoriented atoms *X*, *Y*, *Z*, ...
- ▶ An oriented atom (or atomic proposition) is a pair (X,+) or (X,-) where X is an unoriented atom.

Pre-formulas:

- Any atomic proposition is a preformula.
- ▶ If A, B are pre-formulas then so are $A \otimes B$, $A \circ B$.
- ▶ If A is a pre-formula then so is $\neg A$.

Formulas: quotient of pre-formulas:

$$\neg (A \otimes B) \sim \neg B \ \Im \ \neg A \qquad \neg (A \ \Im B) \sim \neg B \otimes \neg A$$

$$\neg (X, +) \sim (X, -) \qquad \neg (X, -) \sim (X, +)$$

Polynomial ring of a proof structure

Definition (Sequence of (un)oriented atoms)

Let A be a formula with sequence of oriented atoms $\big((X_1,x_1),...,(X_n,x_n)\big)$. The sequence of unoriented atoms of A is $(X_1,...,X_n)$ and the set of unoriented atoms of A is the disjoint union $\{X_1\}\coprod\cdots\coprod\{X_n\}$.

Definition (Polynomial ring P_A of a formula A)

 P_A is the free commutative k-algebra on the set of unoriented atoms of A:

$$P_A = k[X_1, ..., X_n]$$

Let π be a proof structure with edge set E and denote by A_e the formula labelling edge $e \in E$. The polynomial ring of π , denoted P_{π} is the following, where U_e is the set of unoriented atoms of A_e .

$$P_{\pi} \coloneqq \bigotimes_{e \in E} P_{A_e} \cong k \big[\coprod_{e \in E} U_e \big]$$

Polynomial ring example

Let π denote the following proof net.

$$\begin{split} &P_{\pi} = \\ &k\Big[\{X\}\coprod\{Y\}\coprod\{X\}\coprod\{Y\}\coprod\{X\}\coprod\{Y\}\coprod\{X\}\coprod\{Y\}\coprod\{X\}\coprod\{Y\}\coprod\{X\}\Big] \\ &= k\big[X_1,Y_2,X_3,Y_4,X_5,Y_6,X_7,Y_8,X_9\big] \end{split}$$

But what about the links?

Links

Definition (Link ideal I_l , link coordinate ring R_l)

 $((X_1,x_1),...,(X_n,x_n))$ is the sequence of oriented atoms of A, and $((Y_1,y_1),...,(Y_m,y_m))$ is that of B.

$$\begin{split} I_l &\subseteq P_A \otimes P_{\neg A} \\ I_l &= (X_i - X_i')_{i=1}^n = (X_i \otimes 1 - 1 \otimes X_i)_{i=1}^n \end{split} \quad R_l \coloneqq P_A \otimes P_{\neg A}/I_l \end{split}$$

Tensor/Par links

Let $\boxtimes = \otimes$ if l is a tensor link, and $\boxtimes = \Re$ if l is a par link.

$$I_{l} \subseteq P_{A} \otimes P_{B} \otimes P_{A \boxtimes B}$$

$$I_{l} = \left(\left\{ X_{i} - X_{i}' \right\}_{i=1}^{n} \cup \left\{ Y_{j} - Y_{j}' \right\}_{j=1}^{m} \right)$$

$$= \left(\left\{ X_{i} \otimes 1 \otimes 1 - 1 \otimes 1 \otimes X_{i} \right\}_{i=1}^{n} \cup \left\{ 1 \otimes Y_{j} \otimes 1 - 1 \otimes 1 \otimes Y_{j} \right\}_{j=1}^{m} \right)$$

$$R_l = P_A \otimes P_B \otimes P_{A \boxtimes B} / I_l$$

Definition (Defining ideal I_{π} , coordinate ring R_{π})

 $I_{\pi}\coloneqq \sum_{l}I_{l}\subseteq P_{\pi}$ where l ranges over all links of $\pi.$ $R_{\pi}\coloneqq P_{\pi}/I_{\pi}.$

Example of coordinate ring of a link

Let
$$A := (\neg X_2 \otimes Y_3) \, \Im (\neg Z_6 \otimes W_7)$$
.

Let l denote the red axiom link, and l' denote the blue par link.

$$\begin{split} I_{l} &= (X_{1} - X_{2}) \subseteq k[X_{1}, X_{2}] \\ &= \sum_{l} k[X_{1}, X_{2}] / I_{l} \\ &\cong k[X_{1}] \\ I_{l'} &= (X_{2} - X_{2}', Y_{3} - Y_{3}', Z_{6} - Z_{6}', W_{7} - W_{7}') \\ &= \sum_{l} k[X_{2}, X_{2}', Y_{3}, X_{3}', Z_{6}, Z_{6}', W_{7}, W_{7}'] / I_{l'} \\ &\cong k[X_{2}, Y_{3}, Z_{6}, W_{7}] \end{split}$$

Example of coordinate ring of a proof structure

$$A \coloneqq (\neg X_2 \otimes Y_3) \, \Im \left(\neg Z_6 \otimes W_7\right)$$

$$P_{\pi} = k[X_{1}, X_{2}, X'_{2}, X''_{2}, Y_{3}, Y''_{3}, Y''_{3}, Y_{4}, Z_{5}, Z_{6}, Z''_{6}, W_{7}, W''_{7}, W''_{8}]$$

$$I_{\pi} = (X_{1} - X_{2}) + (Y_{3} - Y_{4}) + (Z_{5} - Z_{6}) + (W_{7} - W_{8})$$

$$+ (X_{2} - X'_{2}, Y_{3} - Y'_{3}) + (Z_{6} - Z'_{6}, W_{7} - W'_{7})$$

$$+ (X'_{2} - X''_{2}, Y''_{3} - Y''_{3}, Z'_{6} - Z''_{6}, W'_{7} - W''_{7})$$

$$R_{\pi} = P_{\pi}/I_{\pi} \cong k[X, Y, Z, W]$$

Persistent walks

Persistent walks

$$(ax),(cut) \qquad \qquad X_1 \coprod \cdots \coprod X_n \xrightarrow{f^1} \otimes_{\gamma} \stackrel{}{\underbrace{\wedge}} Y_1 \coprod \cdots \coprod Y_m \\ X_1 \coprod \cdots \coprod X_n \xleftarrow{J} Y_1 \coprod \cdots \coprod Y_n \qquad \qquad X_1 \coprod \cdots \coprod X_n \coprod Y_1 \coprod \cdots \coprod Y_m$$

Definition

Let π be a proof structure admitting a conclusion A. Choose also an unoriented atom X in A. A **persistent walk** of X is a walk ν in π satisfying the following conditions.

- 1. The formula A labels some edge e_1 , the first edge e_1 of ν is e.
- 2. If i > 1 then X uniquely determines an edge $e_i \neq e_{i-1}$ adjacent with e_{i-1} via J, I^1, I^2 .

Theorem

The coordinate ring of a proof structure π is isomorphic to a polynomial ring in n indeterminants, where the number of persistent walks in π is equal to 2n.

Cut reduction

a-redexes:

m-redex:

Modelling cut-reduction

Definition

Let $\gamma: \pi \longrightarrow \pi'$ be a reduction, there exists homomorphisms.

 T_{γ} , γ reducing an a-redex:

Modelling cut reduction

 T_{γ} , γ reducing an m-redex:

Modelling cut reduction

 S_{γ} , γ reducing an a-redex.

Modelling cut reduction

 S_{γ} , γ reducing an m-redex.

Cut elimination on the level of the coordinate rings

Proposition

Let γ be any reduction, we have $T_{\gamma}(I_{\pi'}) \subseteq I_{\pi}, S_{\gamma}(I_{\pi}) \subseteq I_{\pi'}$ and the induced morphisms of k-algebras $\overline{T}_{\gamma}, \overline{S}_{\gamma}$ making the following diagram commute, are mutually inverse isomorphisms. In the following, $p: P_{\pi} \twoheadrightarrow R_{\pi}$ and $p': P_{\pi'} \twoheadrightarrow R_{P_{\pi'}}$, are projection maps.

$$I_{\pi} \longrightarrow P_{\pi} \xrightarrow{p} R_{\pi}$$

$$S_{\gamma} \left(\stackrel{\frown}{\nearrow} T_{\gamma} \overline{S}_{\gamma} \left(\stackrel{\frown}{\nearrow} \overline{T}_{\gamma} \right) \right)$$

$$I_{\pi'} \longmapsto P_{\pi'} \xrightarrow{p'} R_{\pi'}$$

Permutation

Proposition

Let π be a proof net with single conclusion A with oriented atoms $\big((U_1,u_1),...,(U_n,u_n)\big)$. Then n=2m is even, and there is a subsequence $i_1<\dots< i_m$ with complement $j_1<\dots< j_m$ in $\{1,\dots,n\}$ such that $u_{i_a}=+,u_{j_a}=-$ for $1\leq a\leq m$ and if we write $X_a=U_{i_a},Y_a=U_{j_a}$ for $1\leq a\leq m$ then β_+,β_- in the following diagram are isomorphisms.

Furthermore, the composite $\beta_{-}^{-1}\beta_{+}: k[X_{1},...,X_{m}] \longrightarrow k[Y_{1},...,Y_{m}]$ is given for some permutation σ_{π} of $\{1,...,m\}$ by:

$$\beta_{-}^{-1}\beta_{+}(X_{i}) = Y_{\sigma_{\pi}(i)}, \quad 1 \le i \le m$$

Proofs as permutations

Definition (The essence $\operatorname{Ess} \pi$ of π)

Let π admit no m-redexes and assume all conclusions of all axiom links are atomic. $\operatorname{Ess} \pi$ is the disjoint union of the unoriented atoms appearing as conclusions to axiom links which are not premise to cut links.

Definition

Let d_i denote the least integer such that

$$(\alpha_{\pi} \circ \gamma_{\pi})^{d_i}(X) \in \operatorname{Ess} \pi$$

Notice that such an integer d_i always exists as π is a proof net. Define for any unoriented atom appearing in the conclusion to any axiom link in π :

$$\delta_{\pi}(X) = (\alpha_{\pi} \circ \gamma_{\pi})^{d_i}(X)$$

Comparison

Proposition

Let π be a proof net with single conclusion A with sequence of oriented atoms given by: $((U_1, u_1), ..., (U_n, u_n))$. Then for all i = 1, ..., n we have:

$$\delta_{\pi}(U_i) = U_{\sigma(i)}$$

Division algorithm for polynomials in multiple variables

Choose an order $x_1 < \cdots < x_n$, this induces lexicographic order on the monic monomials of $k[x_1,...,x_n]$ with respect to the degrees. Consider $\mathbb{C}[x > y]$.

$$y < xy < x^2 < x^2y^{10} < x^3 < \cdots$$

Now, divide according to leading terms!

$$\begin{array}{ccc}
q_0: & xy^2 \\
q_1: & y^2 \\
x^2y & \hline{)x^3y^3 + xy^2 - y} \\
& & x^3y^3 \\
\hline
& & xy^2 - y \\
& & xy^2 + y^3 \\
& & -y - y^3
\end{array}$$

Leading terms

Given polynomials $f_1,...,f_n$ we have the following inclusion, where $\langle g_1,...,g_m\rangle$ denotes the ideal generated by the polynomials $g_1,...,g_m.$

$$\langle \operatorname{LT} f_1, \dots, \operatorname{LT} f_n \rangle \subseteq \langle \operatorname{LT} \langle f_1, \dots, f_n \rangle \rangle$$

This reverse inclusion does *not* hold in general. Indeed, consider the polynomial ring k[x,y] with y < x. Let f_1, f_2 respectively denote the polynomials $x^3 - 2xy$ and $x^2y - 2y^2 + x$. We have:

$$\{ LT f_1, LT f_2 \} = \{ x^3, x^2 y \}$$

however, the following polynomial is in the ideal generated by $\{f_1, f_2\}$.

$$y(x^3 - 2xy) - x(x^2y - 2y^2 + x) = -x^2$$

Hence, x^2 is in the leading ideal. However, x^2 is not in the ideal generated by the polynomials x^3, x^2y .

Gröbner bases

Definition

A set of polynomials $\{f_1,...,f_n\}$ satisfying the following:

$$\langle \operatorname{LT} f_1, \cdots \operatorname{LT} f_n \rangle = \langle \operatorname{LT} \{ f_1, \dots, f_n \} \rangle$$

is a *Gröbner basis* for the ideal $\langle f_1,...,f_n \rangle$ generated by $f_1,...,f_n$.

Definition

The S-polynomial of polynomials $g,h \in k[x_1,...,x_n]$ is defined to be the following, where $\beta = (\beta_1,...,\beta_n)$ where $\beta_i = \max \left((\deg g)_i, (\deg h)_i \right)$.

$$S(g,h) \coloneqq \frac{x^{\beta}}{\operatorname{LT} g} g - \frac{x^{\beta}}{\operatorname{LT} h} h$$

This is indeed a polynomial, and is designed to obtain cancellation of leading terms.

Buchberger Algorithm

Definition

Given a finite sequence $G = (f_1, ..., f_m)$ of polynomials in $k[x_1, ..., x_n]$ we define the *Buchberger algorithm* as follows.

Algorithm

On input G.

- 1. For all i < j calculate $S(f_i, f_j)$.
- 2. Consider the lexicographic order on the set of pairs (i,j) where $i,j \in \{1,...,m\}$. From smallest to largest, with respect to this order, divide S(i,j) by G. If the remainder is 0 for all pairs (i,j) then terminate the algorithm and return the sequence G. Otherwise, let (i',j') be the least pair such that division of S(i',j') by G results in a non-zero remainder r.
- 3. Append the polynomial r to the end of the sequence G and return to Step (1).

Let π denote the following proof net.

 π reduces to π' :

We now consider the sets of generators of the defining ideals of π and π' .

$$G_{\pi} \coloneqq \{X_1 - Y_1, Y_1 - Y_2, Y_2 - Y_3, Y_3 - Y_4, Y_4 - X_2\}, \quad G_{\pi'} \coloneqq \{X_1 - X_2\}$$

$$Y_1 > Y_2 > Y_3 > Y_4 > X_1 > X_2$$

There is something to do

$$G_{\pi} = \{f_1 = X_1 - Y_1, f_2 = Y_1 - Y_2, f_3 = Y_2 - Y_3, f_4 = Y_3 - Y_4, f_5 = Y_4 - X_2\}$$

$$Y_1 > Y_2 > Y_3 > Y_4 > X_1 > X_2$$

The leading terms of $f_1, ..., f_5$ respectively are $-Y_1, Y_1, Y_2, Y_3, Y_4$ and the leading term of $f_1 + \cdots + f_5$ is X_1 . Hence:

$$X_1 \in LT\langle G_{\pi} \rangle, \qquad X_1 \notin \langle LT G_{\pi} \rangle$$

Thus, G_{π} is *not* Gröbner basis.

We now calculate the 10 S-polynomials which arise from G_{π} .

$$S(f_1, f_2) = Y_2 - X_1 \qquad S(f_1, f_3) = Y_1 Y_3 - Y_2 X_1 \qquad S(f_1, f_4) = Y_1 Y_4 - X_1 X_3$$

$$S(f_1, f_5) = Y_1 X_2 - X_1 Y_4 \qquad S(f_2, f_3) = Y_1 Y_3 - Y_2^2 \qquad S(f_2, f_4) = Y_1 Y_4 - Y_2 Y_3$$

$$S(f_2, f_5) = Y_1 X_2 - Y_2 Y_4 \qquad S(f_3, f_4) = Y_2 Y_4 - Y_2^2 \qquad S(f_3, f_5) = Y_2 X_2 - Y_3 Y_4$$

$$S(f_4, f_5) = Y_3 X_2 - Y_4^2$$

For each i > j, $i, j \in \{1, ..., 5\}$ we now divide $S(f_i, f_j)$ by G. In fact, this always gives a remainder zero except for the particular case when (i, j) = (1, 2), which we show on the next slide.

Division

Summary

- We defined a new Geometry of Interaction model and showed how it fits into the existing literature (Gol 0, Gol 1).
- We related "plugging of formulas" to an already existing algorithm.

Next steps:

- More algebraic structure, eg, Koszul Complexes.
- Extend this model to MELL.
- Use this as a foundation for more exotic models of MLL/MELL.
 - Quantum error correction codes.
 - Landau-Ginzburg models, the bicategory of hypersurface singularities.

Thank you

Questions?

(Bonus frame) Proof sketch

$$I_{\pi} \longrightarrow P_{\pi} \xrightarrow{p} R_{\pi}$$

$$S_{\gamma} \left(\int_{T_{\gamma}} T_{\gamma} \overline{S}_{\gamma} \left(\int_{\overline{T}_{\gamma}} \overline{T}_{\gamma} \right) \right)$$

$$I_{\pi'} \longrightarrow P_{\pi'} \xrightarrow{p'} R_{\pi'}$$

Existence: easy. $\overline{T}_{\gamma}, \overline{S}_{\gamma}$ isomorphisms: suffices to show:

$$\begin{split} \overline{T}_{\gamma} \overline{S}_{\gamma} p &= p \\ \overline{S}_{\gamma} \overline{T}_{\gamma} p' &= p' \end{split}$$

as p,p' are surjective. This is equivalent to $p'S_{\gamma}T_{\gamma}=p',pT_{\gamma}S_{\gamma}=p$, or $p'(S_{\gamma}T_{\gamma}-1)=0,p(T_{\gamma}S_{\gamma}-1)=0$. It suffices to check this on generators, ie, on unoriented atoms. It is clear that $S_{\gamma}T_{\gamma}=1$, however we have $T_{\gamma}S_{\gamma}\neq 1$. The circumstances where this is the case is indicated schematically on the next slide.

(Bonus frame) Proof continued

(Bonus frame) Example of Proposition

Let π denote the following proof net.

We apply η -expansion:

(Bonus frame) After η -expansion

(Bonus frame) After reducing m-redexes

$$\delta(X_1) = X_3$$
 $\delta(X_3) = X_1$ $\delta(X_4) = X_2$ $\delta(X_2) = X_4$

(Bonus frame) Comparison continued

Returning to π :

The following are elements of the defining ideal I_{π} of π .

$$X_2 - X_8$$
 $X_8'' - X_{12}''$ $X_{12} - X_{10}$ $X_{10}'' - X_6''$ $X_6 - X_4$

and so are $X_i - X_i', X_i' - X_i''$ for i = 2, 4, 6, 10, 12. Hence $\sigma(2) = 4$ and $\sigma(4) = 2$. Similarly, $\sigma(1) = 3$ and $\sigma(3) = 1$.

$$\delta(X_1) = X_3 \quad \delta(X_3) = X_1 \quad \delta(X_4) = X_2 \quad \delta(X_2) = X_4$$