Семинар 6

6.1. Ранг матрицы

Определение 6.1. Пусть V – линейное пространство, $X \subset V$. *Рангом* системы X называется наибольший размер линейно независимой подсистемы в X (обозн. rk X).

Утверждение 6.1. rk X = dim < X >.

Определение 6.2. Пусть $A \in M_{n \times m}$.

- Cmpoчным рангом матрицы A называется ранг $\mathrm{rk}_r A$ системы её строк.
- Столбиовым рангом матрицы A называется ранг $\mathrm{rk}_{c}A$ системы её столбцов.

Теорема 6.1. (о ранге матрицы). Для любой матрицы $A \in M_{n \times m}$ верно $\mathrm{rk}_r A = \mathrm{rk}_c A$. Итак, можно говорить о *ранге матрицы*, $\mathrm{rk}\ A$, без уточнения, строчный он или столбцовый. Вспомним одно из эквивалентных условий вырожденности матрицы – строки или столбцы

её линейно зависимы. Это значит, что для $A \in M_{n \times n}$ верно:

Утверждение 6.2. A невырождена \leftrightarrow rk A=n.

Теорема 6.2. Размерность пространства решений системы Ax = 0 равна n - r, где n - число неизвестных в системе, r - ранг основной матричной системы.

Следствие. В случае, когда $A \in M_{n \times n}$ и A невырождена, решением Ax = 0 является только нулевой вектор (размерность пространства решений равна нулю).

6.2. Алгебраическая и геометрическая кратность собственного значения

Вернёмся к характеристическому уравнению:

$$\chi_{\varphi}(\lambda) := \det(A - \lambda E) = 0$$

где $A \in M_{n \times n}$ – матрица оператора φ . После разложения характеристического многочлена на множители получаем:

$$(\lambda - \lambda_1)^{k_1} \cdot \dots \cdot (\lambda - \lambda_s)^{k_s} = 0$$

Тогда $\lambda = \lambda_i$ — собственные значения, а k_i — их алгебраическая кратность. Далее ищем собственные векторы из уравнения $Ax = \lambda_i x$.

Пусть мы нашли r ЛНЗ собственных векторов, отвечающих собственному значению λ_i . Они порождают собственное подпространство $L_{\lambda_i} := \langle x_{\lambda_{i_1}}, ..., x_{\lambda_{i_r}} \rangle$. Но как понять, что

для λ_i больше нет собственных векторов, линейно независимых с предыдущими? Очевидно (вообще говоря не очень и это нужно доказывать), что размерность L_{λ_i} не может превосходить алгебраическую кратность λ_i , но они и не обязаны совпадать. На самом деле $\dim L_{\lambda_i} = n - \mathrm{rk}(A - \lambda_i E)$, поскольку L_{λ_i} есть не что иное, как пространство решений системы $(A - \lambda_i E)x = 0$. Число $\dim L_{\lambda_i}$ называется геометрической кратностью λ_i .

6.3. Присоединённые векторы

В качестве основы параграфа использовались эти прекрасные конспекты. Для начала рассмотрим линейный оператор с матрицей:

$$J_{k\times k}(\lambda_0) = \begin{pmatrix} \lambda_0 & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_0 & 1 & \dots & 0 & 0 \\ 0 & 0 & \lambda_0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & \dots & \lambda_0 & 1 \\ 0 & 0 & 0 & \dots & 0 & \lambda_0 \end{pmatrix}$$

Характеристический многочлен $\chi(\lambda) = (\lambda_0 - \lambda)^k$ имеет корень λ_0 кратности k. Теперь найдём размерность собственного подпространства, отвечающего нашему собственному значению. Для этого подставим λ_0 в $J - \lambda E$ и получим матрицу с единицами над главной диагональю. Нетрудно понять, что ранг такой матрицы равен k-1 и, следовательно, размерность собственного подпространства равна k-(k-1)=1. Это значит, что мы не сможем найти базис из k ЛНЗ собственных векторов, чтобы привести $J_k(\lambda_0)$ к диагональному виду. Определение 6.3. Матрица $J_k(\lambda_0)$ называется эсордановой клеткой порядка k, соответствующей собственному значению λ_0 .

Определение 6.4. Ненулевой вектор x называется npucoedun"enhым, отвечающим собственному значению λ , если для некоторого $m \geq 1$ выполняется:

$$(A - \lambda E)^{m-1}x \neq 0, \quad (A - \lambda E)^m x = 0.$$

Число m называется $eucomo \ddot{u}$ присоединённого вектора x.

Далее я настоятельно прошу обратиться к конспектам по ссылке, потому что лучше, чем там, я вряд ли смогу сделать.