1		
2	CL	AIMS.
3 4 5	We	e claim:
6	1.	A composition for application to a fibrous cellulosic material, the composition
7 .		consisting essentially of a triglyceride having a melting point greater than 120 degrees
8		F, and being characterized by an iodine value between 0 and 30, the triglyceride
9		comprising an oil selected from the group consisting of soybean, corn, cottonseed,
10		rape, canola, sunflower, palm, palm kernel, coconut, cranbe, linseed and peanut, the
11		composition applied in a quantity sufficient to render the cellulosic material resistant
12		to water, the composition being dispersible in a warm aqueous solution.
13		
14	2.	The composition as described in claim 1, wherein the melting point preferably is
15		between approximately 130 and 165 degrees F.
16		
17	3.	The composition as described in claim 2, wherein the melting point most preferably
18		is between approximately 136 and 160 degrees F.
19		
20	4.	The composition as described in claim 2, wherein the composition is further
21		characterized by having a viscosity of between 10 to 200 cps at a temperature of 140
22		degrees F.
23		
24	5.	The composition as described in claim 4, wherein the triglyceride is preferably
25		characterized by an iodine value between 0 and 10.
26		
27	6.	The composition as described in claim 5, wherein the triglyceride is most preferably
28		characterized by an iodine value between approximately 2 and 5.
29		

7. The composition as described in claim 5, wherein the triglyceride comprises a fatty

acid, the fatty acid having between approximately 8 to 22 carbon atoms.

32

30

1	8.	The composition as described in claim 7, wherein the fatty acid preferably is stearic
2		acid.
3		
4	9.	The composition as described in claim 4, further comprising one or more compounds
5		chosen from the group consisting of paraffins, microcrystalline waxes, stearic acid,
6		and oleic acid, and wherein the triglyceride comprises at least 50% of the
7		composition.
8		
9	10.	The composition as described in claim 9, further comprising one or more compounds
10		chosen from the group consisting of dispersants and surfactants.
11		
12	11.	The composition as described in claim 1, wherein the triglyceride is selected from the
13		group consisting of animal fat, animal fat fractions, winterized low iodine value fat
14		fractions, hydrogenated animal fat, stearine and soy stearine, and blends thereof.
15		
16	12.	The composition as described in claim 1, wherein the composition further comprises
17		a polymeric resin and a tackifier, thereby forming an adhesive for application to the
18		fibrous cellulosic material.
19		
20	13.	The composition as described in claim 12, wherein the tackifier is a rosin derivative
21		selected from the group consisting of a rosin ester, hydrogenated rosin, and maleic
22		modified rosin.
23		
24	14.	The composition as described in claim 12, wherein the polymeric resin is ethylene or
25		ethylene vinyl acetate.
26		
27	15.	The composition as described in claim 12, wherein the fibrous cellulosic article is
28		chosen from the group consisting of paper, kraft paper, corrugated paper and
29		linerboard

1	16. The composition as described in claim 1, wherein the triglyceride comprises between
2	approximately 80 to 100% by weight of the composition.
3	
4	17. The composition as described in claim 2, wherein the triglyceride is characterized by
5	having a saponification value of between approximately 150 mg/g KOH to 200
6	mg/g/KOH.
7	
8	18. A method of treating a cellulosic article such that the treated article is resistant to
9	water, the method comprising the steps of:
10	
11	heating a composition to a temperature sufficient to render the composition
12	molten, the composition consisting essentially of a triglyceride having a melting
13	point greater than 120 degrees F, and being characterized by an iodine value
14	between 0 and 30, the triglyceride comprising an oil selected from the group
15	consisting of soybean, corn, cottonseed, rape, canola, sunflower, palm, palm
16	kernel, coconut, cranbe, linseed and peanut;
17	
18	applying to the cellulosic article a quantity of the molten composition sufficient to
19	render the cellulosic article water resistant; and
20	
21	allowing the applied composition to solidify and form a coating, the coating being
22	dispersible from the treated cellulosic article, when the treated cellulosic article is
23	exposed to a warm, alkaline, aqueous solution.
24	
25	19. The method as described in claim 18, wherein the melting point of the composition
26	preferably is between approximately 130 and 165 degrees F.
27	20. The method as described in claim 19, wherein the melting point of the composition
28	most preferably is between approximately 136 and 160 degrees F.

1	21. The method as described in claim 19, wherein the composition is further
2	characterized by having a viscosity of between 10 to 200 cps at a temperature of 140
3	degrees F.
4	
5	22. The method as described in claim 18, wherein the triglyceride is preferably
6	characterized by an iodine value of between 0 and 10.
7	
8	23. The method as described in claim 22, wherein the triglyceride is most preferably
9	characterized by an iodine value between approximately 2 and 5.
10	
11	24. The method as described in claim 19, wherein the triglyceride comprises a fatty acid,
12	the fatty acid having between approximately 8 to 22 carbon atoms.
13	
14	25. The method as described in claim 24, wherein the fatty acid preferably is stearic acid.
15	
16	26. The method as described in claim 24, wherein the composition further comprises one
17	or more compounds chosen from the group consisting of paraffins, microcrystalline
18	waxes, stearic acid, and oleic acid, and wherein the triglyceride comprises at least
19	50% of the composition.
20	
21	27. The method as described in claim 26, wherein the composition further comprises one
22	or more compounds chosen from the group consisting of dispersants and surfactants.
23	
24	28. The method as described in claim 27, wherein the cellulosic article is chosen from
25	the group consisting of paper, kraft paper, corrugated paper and linerboard.
26	
27	29. A composition for application to a fibrous cellulosic material, the composition
28	consisting essentially of a triglyceride having a melting point between 136-160
29	degrees F, the triglyceride being characterized by having an iodine value of between 2
30	and 5, the composition being characterized by a viscosity of between 10 to 200 cps at
31	140 degrees F, wherein the triglyceride comprises a fatty acid, the fatty acid being

stearic acid, and wherein the triglyceride comprises an oil selected from the group consisting of palm and soybean oil, the composition applied in a quantity to render the cellulosic material resistant to water, the composition being dispersible in a warn aqueous solution..