Project Discussion

CS3244: Machine Learning

CS3244 Project

Assessment Components

- 1. Application design & problem formulation (8%)
- 2. Model design & construction (6%)
- 3. Evaluation (6%)
- 4. Novelty (4%)
- 5. Instructions (1%)

Content Overview

- 1. The Application
- 2. The Model
- 3. The Evaluation

Designing a Machine Learning (ML) Application

The Machine Learning Application

Is it just about a dataset?

Designing Applications

- SDLC
 - Planning → Analysis → Design → Implementation → Maintenance → Planning → ...
- Planning and Analysis
 - Is there a need for ML in a particular system?
 - User ML needs / needs analysis
 - Use cases incorporating ML solutions

Main Issues

Assume supervised learning

1. What objectives?

- Model accuracy?
- Performance measures
 - Quantifying the objectives

2. What data?

- Use existing dataset or collecting data?
- What do I know about the domain?
 - Features?
 - Hypothesis representation/space?

Objectives Apart from Accuracy

• What are other possible performance measures?

Gathering Data

What do you intend to do about data?

Constructing a Good Predictor

Consistency with Training Data Versus Generalisation

Consistency with training data is just the beginning ...

Real problems → massive instance spaces

https://archive.ics.uci.edu/ml/datasets/Mushroom

Size of instance space: 1,638,333,457,367,040

... *generalisation* is more important (usually)

Consequence of Generalisation Objective

Data is not enough

Example

D: 1,000,000 instances; 100 Boolean variables $2^{100} - 10^6$ instances unlabelled

If all target functions are equally likely, any hypothesis cannot do better than random guessing...

No-Free-Lunch Theorems

Thankfully, real-world problems not drawn uniformly from the set of all possible function

Picking the right Inductive Bias is essential

Inductive bias:

- Hypothesis Representation
- Hypothesis Preference

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. *Neural computation*, 8(7), 1341-1390

Bias-Variance Decomposition

- Generalisation error may be divided
 - Noise
 - Error inherent within the data
 - Typically cannot reduce this
 - Bias
 - Error from assumptions about target function
 - Appropriateness of hypothesis representation
 - Relevance of features / sufficient features
 - Variance
 - Error from sensitivity to small fluctuations in training data
 - More general hypotheses have lower variance

Overfitting & Underfitting

- High bias ⇒ underfitting
 - Model not expressive enough or not appropriately expressive to capture c
 - Higher training error
- High variance ⇒ overfitting
 - Model too expressive and sensitive to smaller changes in training sample
 - Requires more data to converge
 - Lower training error, higher testing error
- Examples
 - Decision trees
 - Larger/deeper tree ⇒ lower bias; higher variance
 - Neural Networks
 - More hidden units ⇒ lower bias; higher variance

Simple Ideas to Improve Generalisation Performance

Feature Selection

- Determine the "right" attributes to use
 - Remove redundant / irrelevant attributes
 - Filter approach use a heuristic
 - Pearson correlation coefficient
 - Information gain
 - Wrapper approach
 - ML algorithm used to assess value of attribute sets
 - Embedded approach
 - Feature selection is part of the ML algorithm

Validation Using Cross-Validation

- k-Fold Cross-validation
- Divide training set, S, into k-folds, s₁, ..., s_k
 For each fold s_i
 Train model using S \ s_i
 Test model using s_i
 Take mean performance
- Wrapper-based approach
 - Selecting hyperparameters
 - Selecting attributes

Ensembles

- General idea
 - Aggregate predictions of multiple hypotheses to generate an overall classification that is more accurate
- General motivation
 - Assume k independent (i.e., uncorrelated) hypotheses
 - Assume generalisation performance > 0.5

Ensemble Framework

Example: Random Forest

Evaluation

Model Evaluation

- How do you know you have succeeded?
- Determine a benchmark
 - Competing model
 - Threshold
- Form hypothesis test to see your model is significantly better than the benchmark
 - m × k-Fold Cross-Validation Performance
 - Each value is a mean (central limit theorem applies)
 - Apply t-test

Experimental Setup for Empirical Evaluation

Example Walkthrough

Summary

- Determine appropriate user ML need
- Determine the important performance measures
 - For prediction, prioritise generalisation performance
- Determine your sources of data
- Apply domain knowledge and feature selection
- Consider performing validation to choose hyperparameters
- Consider ensemble methods
- Evaluate model against a benchmark via a valid hypothesis test

Questions?