倍数的特征介绍

(1)、	2 的倍数	
(2)、	3 的倍数	
(3)′	4 的倍数	
(4)、	5 的倍数	
(5)、	6 的倍数	
(6)、	7 的倍数	
(7)、	8 的倍数	
(8)	9 的倍数	
(9)、	10 的倍数	
(10)、	11 的倍数	

(11)、	12 的倍数	(21)、	28 的倍数
(12)、	13 的倍数	(22)、	30 的倍数
(13)、	14 的倍数	(23)、	33 的倍数
(14)、	15 的倍数	(24)、	35 的倍数
(15)、	18 的倍数	(25)、	36 的倍数
(16)、	20 的倍数	(26)、	37 的倍数
(17)、	21 的倍数	(27)、	42 的倍数
(18)、	22 的倍数	(28)、	45 的倍数
(19)、	24 的倍数	(29)、	72 的倍数
(20)、	25 的倍数	(30)、	99 的倍数

1. 偶数, 也就是 2 的倍数, 具有如下特征:

$$\{x = 2n | n \in \mathbb{Z}\}$$

偶数的个位数一定是 0、2、4、6、8 中的一个。

-10、-8、-6、-4、-2、0、2、4、6、8、10 都是偶数。

注意: 2002 年, 国际数学协会 (International Mathematical Association) 规定 0 是偶数。2004 年, 我国规定 0 是偶数。

2. 奇数, 也就是 2 的倍数余 1, 具有如下特征:

$$\{x = 2n + 1 | n \in \mathbb{Z}\}$$

奇数的个位数一定是 1、3、5、7、9 中的一个。

-9、-7、-5、-3、-1、1、3、5、7、9 都是奇数。

- 3 的倍数,具有如下特征:
- 1. 所有位上的数字之和是 3 的倍数,则该数是 3 的倍数。反之亦然。

证明:设一个数字为 $\overline{a_n a_{n-1} \dots a_1 a_0}$,则:

$$\overline{a_n a_{n-1} \cdots a_1 a_0} = 10^n a_n + 10^{n-1} a_{n-1} + \cdots + 10^1 a_1 + 10^0 a_0$$

$$= (10^n - 1)a_n + (10^{n-1} - 1)a_{n-1} + \cdots + (10^1 - 1)a_1 + a_n + a_{n-1} + \cdots + a_1 + a_0$$

对于任意一个整数 n, 都有: $10^n - 1$ 是 3 的倍数,

只要 $a_n + a_{n-1} + \cdots + a_1 + a_0$ 是 3 的倍数,则:

 $\overline{a_n a_{n-1} \dots a_1 a_0}$ 是 3 的倍数。

习题

判断下列数字是不是 3 的倍数:

- 1. 0、3、6、9、12、15、18、21、24、27、30、33、36、39、42、45、48;
- 2.51、54、57、60、63、66、69、72、75、78、81、84、87、90、93、96、99;
- 3. 102、105、108、111、114、117、120、123、126、129、132、135、138;
- 4. 141、144、147、150、153、156、159、162、165、168、171、174、177;
- 5. 180、183、186、189、192、195、198、201、204、207、210、213、216、219;

- 4 的倍数,具有如下特征:
- 1. 十位上的数字为偶数,个位数一定是 0、4、8 中的一个。如: 20、24、28、40、44、48、60、64、68、80、84、88、100、104、108。
- 2. 十位上的数字为奇数,个位数一定是 2、6 中的一个。如: 12、16、32、36、52、56、72、76、92、96。

- 5 的倍数,具有如下特征:
- 1. 所有个位数为 0 或 5 的数字, 都是 5 的倍数。反之亦然。如:

```
0、5、10、15、20、25、30、35、40、45;
50、55、60、55、70、75、80、85、90、95;
100、105、110、115、120、125、130、135、140、145;
150、155、160、165、170、175、180、185、190、195;
200、205、210、215、220、225、230、235、240、245;
250、255、260、265、270、275、280、285、290、295;
```

- 6 的倍数,具有如下特征:
- 1. 所有位上的数字之和是 3 的倍数且个位数是偶数,则该数是 6 的倍数。反之亦然。

←□ → ←□ → ← □ → □ → □ → ○ ○ ○

- 8 的倍数,具有如下特征:
- 1. 百位上的数字为偶数,十位与个位组成的数一定是 4 的倍数。如:

```
8、16、24、32、40、48、56、64、72、80、88、96;
```

```
208、216、224、232、240、248、256、264、272、280、288、296;
```

- 408、416、424、432、440、448、456、464、472、480、488、496;
- 608、616、624、632、640、648、656、664、672、680、688、696;
- 808、816、824、832、840、848、856、864、872、880、888、896。
- 2. 百位上的数字为奇数,十位与个位组成的数一定是 2 的倍数但不是 4 的倍数。如:
 - 102、106、112、120、128、136、144、152、160、168、176、184、192;
 - 302、306、312、320、328、336、344、352、360、368、376、384、392;
 - 502、506、512、520、528、536、544、552、560、568、576、584、592;
 - 702、706、712、720、728、736、744、752、760、768、776、784、792;
 - 902、906、912、920、928、936、944、952、960、968、976、984、992。

- 9 的倍数,具有如下特征:
- 1. 所有位上的数字之和是 9 的倍数,则该数是 9 的倍数。反之亦然。

证明: 设一个数字为 $\overline{a_n a_{n-1} \dots a_1 a_0}$, 则:

$$\overline{a_n a_{n-1} \cdots a_1 a_0} = 10^n a_n + 10^{n-1} a_{n-1} + \cdots + 10^1 a_1 + 10^0 a_0$$

$$= (10^n - 1)a_n + (10^{n-1} - 1)a_{n-1} + \cdots + (10^1 - 1)a_1 + a_n + a_{n-1} + \cdots + a_1 + a_0$$

对于任意一个整数 n, 都有: $10^n - 1$ 是 9 的倍数.

只要 $a_n + a_{n-1} + \cdots + a_1 + a_0$ 是 9 的倍数,则:

 $\overline{a_n a_{n-1} \dots a_1 a_0}$ 是 9 的倍数。

- 10 的倍数,具有如下特征:
- 1. 所有个位数为 0 的数字, 都是 10 的倍数。反之亦然。

←□ → ←□ → ← □ → □ → □ → ○ ○ ○

- 11 的倍数,具有如下特征:
- 1. 所有奇数位上的数字之和减去所有偶数位上的数字之和, 如果是 11 的倍数, 则该 数是 11 的倍数。反之亦然。

证明: 设一个数字为 $\overline{a_{2n}a_{2n-1}\ldots a_{2}a_{1}a_{0}}$, 则:

$$\overline{a_{2n}a_{2n-1}\cdots a_{2}a_{1}a_{0}} = 10^{2n}a_{2n} + 10^{2n-1}a_{2n-1} + \cdots + 10^{2}a_{2} + 10^{1}a_{1} + 10^{0}a_{0}$$

$$= (10^{2n} - 1)a_{n} + (10^{2n-1} + 1)a_{2n-1} + \cdots + (10^{2} - 1)a_{2} + (10^{1} + 1)a_{1}$$

$$+ a_{2n} - a_{2n-1} + \cdots + a_{2} - a_{1} + a_{0}$$

对于任意一个整数 n,都有: $10^{2n}-1$ 是 11 的倍数,且 $10^{2n-1}+1$ 是 11 的倍数, 只要 $a_{2n} - a_{2n-1} + \cdots + a_2 - a_1 + a_0$ 是 11 的倍数,则:

 $\overline{a_{2n}a_{2n-1}\dots a_{2}a_{1}a_{0}}$ 是 11 的倍数。

习题

判断以下各个数字是不是 11 的倍数:

- 1. 11、22、33、44、55、66、77、88、99
- 2.110、121、132、143、154、165、176、187、198
- 3. 209、220、231、242、253、264、275、286、297
- 4. 308、319、330、341、352、363、374、385、396
- 5. 407、418、429、440、451、462、473、484、495
- 6.506、517、528、539、550、561、572、583、594
- 7.605、616、627、638、649、660、671、682、693
- 8.704、715、726、737、748、759、770、781、792
- 9.803、814、825、836、847、858、869、880、891
- 10.902、913、924、935、946、957、968、979、990

习题

判断以下各个数字是不是 11 的倍数:

11. 1001、1012、1023、1034、1045、1056、1067、1078、1089 12.1100、1111、1122、1133、1144、1155、1166、1177、1188、1199 13.1210、1221、1232、1243、1254、1265、1276、1287、1298 14.1309、1320、1331、1342、1353、1364、1375、1386、1397 15.1408、1419、1430、1441、1452、1463、1474、1485、1496 16. 1507、1518、1529、1540、1551、1562、1573、1584、1595 17. 1606、1617、1628、1639、1650、1661、1672、1683、1694 18. 1705、1716、1727、1738、1749、1760、1771、1782、1793 19.1804、1815、1826、1837、1848、1859、1870、1881、1892

20.1903、1914、1925、1936、1947、1958、1969、1980、1991

- 12 的倍数,具有如下特征:所有位上的数字之和是 3 的倍数,且:
- 1. 十位上的数字为偶数, 个位数一定是 0、4、8 中的一个。
- 2. 十位上的数字为奇数, 个位数一定是 2、6 中的一个。

- 15 的倍数,具有如下特征:
- 1. 所有位上的数字之和是 3 的倍数 (3 的倍数的特征);
- 2. 所有个位数为 0 或 5(5 的倍数的特征)。

←□ → ←□ → ← □ → ← □ → ← ○

- 24 的倍数,具有如下特征:所有位上的数字之和是 3 的倍数,且:
- 1. 百位上的数字为偶数,十位与个位组成的数一定是 4 的倍数。如:
- 2. 百位上的数字为奇数,十位与个位组成的数一定是 2 的倍数但不是 4 的倍数。如: