

<u>PES University, Bengaluru</u> (Established under Karnataka Act No. 16 of 2013)

MAY 2022: END SEMESTER ASSESSMENT (ESA) B TECH - MINOR

UE20CS254/19CS254/18CS302 - OPERATING SYSTEM

Time: 3 Hrs Answer All Questions Max Marks: 100

1	a)	What do you mean by a process? Whether the process and program are the same? Justify	3
		Process – a program in execution; process execution must progress in sequential fashion. Program is <i>passive</i> entity stored on disk (executable file), process is <i>active</i> . Program becomes process when executable file loaded into memory.	
	b)	Explain the structure of a process with a neat diagram	5
		The program code, also called text section-Includes current activity including program counter, processor registers Stack containing temporary data-Function parameters, return addresses, local variables Data section containing global variables Heap containing memory dynamically allocated during run time max stack heap data text	1+4
		0	
	c)	Draw and explain the process state transition	6

		SRN	
		As a process executes, it changes state	
		New: The process is being created	
		Running: Instructions are being executed	
		Waiting: The process is waiting for some event to occur	
		Ready: The process is waiting to be assigned to a processor	
		Terminated: The process has finished execution	
		new admitted interrupt exit terminated	
		ready running	
		scheduler dispatch	
		I/O or event completion waiting waiting	
		Consider the set of 5 processes whose arrival time and burst time are given below	6
		SI. No Process Arrival Burst ID Time Time	
		1 P1 3 1 2 P2 1 4	
		3 P3 4 2	
		4 P4 0 6	
		5 P5 2 3 If the CPU scheduling policy is SJF non-preemptive, calculate the average waiting	
		time and average turnaround time.	
		0 6 7 9 12 16	
		P4 P1 P3 P5 P2	
		Gantt Chart	
		Average Turn Around time = (4 + 15 + 5 + 6 + 10) / 5 = 40 / 5 = 8 unit Average waiting time = (3 + 11 + 3 + 0 + 7) / 5 = 24 / 5 = 4.8 unit	
	1		
2	a)	What are two models of inter process communication?	2
		Two models of IPC	
		 Shared memory 	
		 Message passing 	
	b)	Explain Ordinary and Named pipes with an example	6

	SRN	
	Ordinary Pipes allow communication in standard producer-consumer style	
	Producer writes to one end (the write-end of the pipe)	
	Consumer reads from the other end (the read-end of the pipe)	
	Ordinary pipes are therefore unidirectional	
	Require parent-child relationship between communicating processes Windows calls these anonymous pipes	
	Used by the shell; not used very often by application programs-Main limitation is processes need to be related	
	A FIFO special file (a named pipe) is similar to a pipe, except that it is accessed as part of the filesystem. It can be opened by multiple processes for reading or writing. When processes are exchanging data via the FIFO, the kernel passes all data internally without writing it to the filesystem. echo "hello" >> pipe1 FIFO is a full duplex, meaning the first process can communicate with the second process and vice versa at the same time. Message Queues – Communication between two or more processes with full duplex capacity Semaphores – Semaphores are meant for synchronizing access to multiple processes.	
c)	Differentiate any two key points between threads and process and list the attributes that are shared among threads	6

		Process	
		Will by default not share memory	
		Most file descriptors not shared	
		Don't share filesystem context	
		Don't share signal handling Thread	
		Will by default share memory	
		Will share file descriptors	
		Will share filesystem context	
		Will share signal handling	
		Attributes shared among threads process ID and parent process ID;process group ID and session ID;	
		controlling terminal;	
		 process credentials (user and group lds);open file descriptors; 	
		record locks created using fcntl();signal dispositions;	
		file system-related information: umask, cwd and root directory;	
		resource limits;CPU time consumed (as returned by times());	
		resources consumed (as returned by getrusage()); nice value (set by	
		setpriority() and nice()).	
	d)	Enumerate and explain the key solution techniques for critical section problem	6
		 Mutual Exclusion - If process P_i is executing in its critical section, then no other processes can be executing in their critical sections Progress - If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely Bounded Waiting - A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted Assume that each process executes at a nonzero speed No assumption concerning relative speed of the n processes 	
3	a)	Consider a 32-bit logical address space as on modern computers with page size of 4 KB. Then what is the number of page table entries? If each entry is 4 bytes, then what would be the size of page table in MB?	4

SRN

		SRN SRN	
		 Page table would have 1 million entries (2³² / 2¹²) 	
		 4 MB of physical memory for page table alone 	
-	b)	What do you mean by logical address? What are the components of a logical address? Explain	4
		Logical Address is generated by CPU while a program is running. The logical address is virtual address as it does not exist physically, therefore, it is also known as Virtual Address. This address is used as a reference to access the physical memory location by CPU. The hardware device called Memory-Management Unit is used for mapping logical address to its corresponding physical address. Address generated by CPU is divided into:	
		 Page number (p) – used as an index into a page table which contains base address of each page in physical memory-m 	
		 Page offset (d) – combined with base address to define the physical memory address that is sent to the memory unit-n 	
		The logical address space is 2^m and page size 2^n	
	c)	Draw and explain the paging hardware with Translation Look aside Buffer	6
		CPU p d page frame number number number number number number number number number physical address f physical memory	
	d)	Explain external and internal fragmentation in paging	6
		Internal Fragmentation: Paging can leave a free partition of the memory, leading to memory with allocated unused spaces. This is precisely how internal fragmentation occurs in memory. External fragmentation happens when there's a sufficient quantity of area within the memory to satisfy the memory request of a method. However, the process's memory request cannot be fulfilled because the memory offered is in a non-contiguous manner. Whether you apply a first-fit or best-fit memory allocation strategy it'll cause external fragmentation.	
4	a)	What do you mean by a file and filesystem? Where does the file system reside? Give any two examples for file system	6

	SRN SRN	
	File:	
	collection of related information	
	Data cannot to be written to disk unless they are in files	
	Data can be Numeric, alphabetic, alphanumeric, binary	
	is a sequence of bits, bytes, lines, or records, the meaning of which is defined by the file's creator and user	
	File system	
	is a method and data structure that the operating system uses to control how data is <u>stored</u> and retrieved	
	resides on secondary storage (disks)	
	Provided user interface to storage, mapping logical to physical	
	Provides efficient and convenient access to disk by allowing data to be stored, located retrieved easily	
	Examples: NTFS, FAT32	
b)	Explain the file system layers and its functionality with a pictorial representation	6
	and it and an area	
	application programs	
	logical file system Manages metadata information, and the dir structure to provide the file-org module. Also responsible for protection	
	logical file system Manages metadata information, and the dir structure to provide the file-org module. Also	
	logical file system Manages metadata information, and the dir structure to provide the file-org module. Also responsible for protection	
	logical file system Manages metadata information, and the dir structure to provide the file-org module. Also responsible for protection Translates logical to physical block addresses basic file system Issues generic commands to the device driver,	
	logical file system file-organization module basic file system Manages metadata information, and the dir structure to provide the file-org module. Also responsible for protection Translates logical to physical block addresses Issues generic commands to the device driver, manages mem buffers	
	logical file system file-organization module basic file system Manages metadata information, and the dir structure to provide the file-org module. Also responsible for protection Translates logical to physical block addresses Issues generic commands to the device driver, manages mem buffers	

	SRN SRN	
	View protection abstractly as a matrix (access matrix) • Rows represent domains • Columns represent objects	
	 Columns represent objects Access(i, j) is the set of operations that a process executing in Domain i can invoke on Object j 	
	 If a process in Domain D_i tries to do "op" on object O_j, then "op" must be in the access matrix 	
	 User who creates object can define access column for that object Can be expanded to dynamic protection 	
	 Operations to add, delete access rights Special access rights: 	
	 4 owner of O_i 4 copy op from O_i to O_j (denoted by "*") 4 control – D_i can modify D_i access rights 	
	 4 transfer – switch from domain D_i to D_j Copy and Owner applicable to an object 	
C	Control applicable to domain object Explain three different levels/schemes of RAID that helps in enhancing the performance and improving the reliability of the storage system	;

- RAID level 0 refers to disk arrays with striping at the level of blocks
 - No redundancy (such as mirroring or parity bits)
 - lots of disks means low Mean Time To Failure (MTTF)

RAID level 1 refers to disk mirroring.

- A complete file is stored on a single disk
- A second disk contains an exact copy of the file
- o Provides complete redundancy of data
- Read performance can be improved
- o file data can be read in parallel
- Write performance suffers
- o must write the data out twice
- Most expensive RAID implementation

requires twice as much storage space

RAID level 2 is also known as memory-style error correcting code (ECC) organization.

- Stripes data across disks similar to Level-0
 - difference is data is bit interleaved instead of block interleaved
 - For ex, the first bit of each byte can be stored in disk 1, the second bit in disk 2, and so on until the eighth bit is stored in disk 8; the error-correction bits are stored in further disks.
- Uses ECC to monitor correctness of information on disk

RAID level 3, or bit-interleaved parity organization;

- One big problem with Level-2 is the number of extra disks needed to detect which disk had an error
- Modern disks can already determine if there is an error
 - using ECC codes with each sector
- So just need to include a parity disk
 - if a sector is bad, the disk itself tells us, and use the parity disk to correct it
- Transfer rate for reading or writing a single block is faster than RAID level 1.
- But supports fewer I/Os per second, since every disk has to participate in every I/O request.

	SRN			
	Has performance problem due to the expense of computing and writing the parity.			
d)	What are the principles of protection that can be used in the design of a computer system?	4	1	
	Principle of least privilege Fine-grained management more complex, more overhead, but more protective			

_