2

CLAIMS

•	4		
	1	An apparatus co	mmmmmm
1	1.	Ali abbaiatus co	mmisme.

- 2 at least one processor;
- a memory coupled to the at least one processor; and
- an optimizer residing in the memory and executed by the at least one processor,
- 5 the optimizer analyzing an expression and generating from the expression a graph that
- 6 includes at least one node, the optimizer generating from the graph an execution plan for
- 7 the expression, the execution plan comprising a plurality of execution plans that
- 8 correspond to different portions of the graph.
- 1 2. The apparatus of claim 1 wherein the plurality of execution plans are appended to
- 2 corresponding nodes in the graph.
- 1 3. The apparatus of claim 1 wherein the optimizer generates a new execution plan
 - for the query by changing at least one of the plurality of execution plans, and by using an
- 3 existing execution plan for each portion of the graph that is unaffected by the change.
- 1 4. The apparatus of claim 1 wherein the graph further comprises a plurality of
- 2 relations and a plurality of expressions.

1

2

3

9.

1	5. An apparatus comprising:		
2	at least one processor;		
3	a memory coupled to the at least one processor;		
4	a database residing in the memory;		
5	a database query optimizer residing in the memory and executed by the at l	east	
6	one processor, the database query optimizer processing a query to the database, the	;	
7	database query optimizer comprising:		
8	a graph builder that generates from the query a graph that includes	at least	
9	one node; and		
10	an execution plan generator that generates from the graph an execu-	tion	
11	plan for the query, the execution plan comprising a plurality of execution p	lans	
12	that correspond to different portions of the graph.		
1	6. The apparatus of claim 5 wherein the execution plan generator appends the	;	
2	plurality of execution plans to corresponding nodes in the graph.		
1	7. The apparatus of claim 5 wherein the execution plan generator generates a	new	
2	execution plan for the query by changing at least one of the plurality of execution plans,		
3	and by using an existing execution plan for each portion of the graph that is unaffected b		
4	the change.		
1	8. The apparatus of claim 5 wherein the graph further comprises a plurality or	f	
2	relations and a plurality of expressions in the query.		

plans that each functionally represent the query to estimate which of the plurality of

execution plans will be executed in the least amount of time.

The apparatus of claim 5 wherein the optimizer compares a plurality of execution

- 1 10. A method for evaluating an expression comprising the steps of:
- 2 reading the expression;
- generating from the expression a graph that includes at least one node;
- 4 generating from the graph an execution plan for the expression, the execution plan
- 5 comprising a plurality of execution plans that correspond to different portions of the
- 6 graph.
- 1 11. The method of claim 10 further comprising the step of appending the plurality of
- 2 execution plans to corresponding nodes in the graph.
- 1 12. The method of claim 10 further comprising the step of generating a new execution
- 2 plan for the query by performing the steps of:
- 3 changing at least one of the plurality of execution plans; and
- 4 using an existing execution plan for each portion of the graph that is unaffected by
- 5 the change.
- 1 13. The method of claim 10 further comprising the step of comparing a plurality of
- 2 execution plans that each functionally represent the query to determine which of the
- 3 plurality of execution plans will likely be executed in the least amount of time.

- 1 14. A program product comprising:
- 2 (A) an optimizer that analyzes an expression and generates from the expression a
- 3 graph that includes at least one node, the optimizer generating from the graph an
- 4 execution plan for the expression, the execution plan comprising a plurality of execution
- 5 plans that correspond to different portions of the graph; and
- 6 (B) computer-readable signal bearing media bearing the optimizer.
- 1 15. The program product of claim 14 wherein the computer-readable signal bearing
- 2 media comprises recordable media.
- 1 16. The program product of claim 14 wherein the computer-readable signal bearing
- 2 media comprises transmission media.
- 1 17. The program product of claim 14 wherein the optimizer appends the plurality of
- 2 execution plans to corresponding nodes in the graph.
- 1 18. The program product of claim 14 wherein the optimizer generates a new
- 2 execution plan for the query by changing at least one of the plurality of execution plans,
- and by using an existing execution plan for each portion of the graph that is unaffected by
- 4 the change.
- 1 19. The program product of claim 14 wherein the graph further comprises a plurality
- 2 of relations and a plurality of expressions.

- 1 20. The program product of claim 14 wherein the optimizer compares a plurality of
- 2 execution plans that each functionally represent the expression to estimate which of the
- 3 plurality of execution plans will be executed in the least amount of time.

* * * * *