

DirectFET™ dual P-Channel Power MOSFET ② Typical values (unless otherwise specified)

V_{DSS} V_{GS} R_{DS(on)} $R_{DS(on)}$ ±20V max 5.3m Ω @-10V $9.0 m\Omega@-4.5 V$ -30V max Qoss $Q_{g tot}$ Q_{ad} Q_{as2} Q_{rr} $V_{gs(th)}$ 32nC 15nC 3.2nC 62nC 23nC -1.8V

Applications

Isolation Switch for Input Power or Battery Application

Features and Benefits

- Environmentaly Friendly Product
- RoHs Compliant Containing no Lead, no Bromide and no Halogen
- Dual Common-Drain P-Channel MOSFETs Provides High Level of Integration and Very Low RDS(on)

Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) ①

	-							
SQ	SX	ST	MQ	MX	MT	MP	MC	

Description

The IRF9395MTRPbF combines the latest HEXFET® P-Channel Power MOSFET Silicon technology with the advanced DirectFET™ packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.

Orderable part number	Poekaga Type	Standard	Pack	Note	
Orderable part number	Package Type	Form	Quantity	Note	
IRF9395MTRPbF	DirectFET Medium Can	Tape and Reel	4800	"TR" suffix	
IRF9395MTR1PbF	DirectFET Medium Can	Tape and Reel	1000	"TR1" suffix EOL notice # 264	

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	-30	V
V_{GS}	Gate-to-Source Voltage	±20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ③	-14	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ③	-11	_
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ 10V @	-75	A
I _{DM}	Pulsed Drain Current ®	-110	

Fig 1. Typical On-Resistance vs. Gate Voltage

VGS, Gate-to-Source Voltage (V) 14.0 12.0 V_{DS}= -24\ $V_{DS} = -15V$ 10.0 VDS= -6V 8.0 6.0 4.0 2.0 0.0 0 20 40 60 80 QG Total Gate Charge (nC)

Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage

Notes:

- ① Click on this section to link to the appropriate technical paper.
- $\ensuremath{{\ensuremath{\mathbb Q}}}$ Click on this section to link to the DirectFET Website.
- ③ Surface mounted on 1 in. square Cu board, steady state.
- $\ \, \mbox{\Large \textcircled{4}} \ \mbox{\Large T}_{\mbox{\Large C}}$ measured with thermocouple mounted to top (Drain) of part.
- $\ensuremath{ \mbox{\Large \sc S}}$ Repetitive rating; pulse width limited by max. junction temperature.

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	-30			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.012		V/°C	Reference to 25°C, I _D = -1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		5.3	7.0	0	V _{GS} = -10V, I _D = -14A ©
			9.0	11.9	mΩ	$V_{GS} = -4.5V, I_{D} = -11 A $ ©
$V_{GS(th)}$	Gate Threshold Voltage	-1.3	-1.8	-2.4	V	$V_{DS} = V_{GS}$, $I_D = -50\mu A$
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Coefficient		-6.1		mV/°C	$V_{DS} = V_{GS}, I_D = -30\mu A$
I _{DSS}	Drain-to-Source Leakage Current			-1.0	μA	$V_{DS} = -24V$, $V_{GS} = 0V$
				-150	ŢμA	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100		V _{GS} = -20V
	Gate-to-Source Reverse Leakage			100	nA	$V_{GS} = 20V$
gfs	Forward Transconductance	40			S	$V_{DS} = -15V, I_{D} = -11A$
Q_g	Total Gate Charge		64	_		$V_{DS} = -15V, V_{GS} = -10V, I_{D} = -11A$
Q_g	Total Gate Charge		32			
Q _{gs1}	Pre- Vth Gate-to-Source Charge		6.5			$V_{DS} = -15V$
Q _{gs2}	Post -Vth Gate-to-Source Charge		3.2		nC	$V_{GS} = -4.5V$
Q_{gd}	Gate-to-Drain Charge		15			I _D = -11A
Q_{godr}	Gate Charge Overdrive		7.3		1	See Fig.15
Q _{sw}	Switch charge (Q _{gs2} + Q _{gd})		18.2			
Q _{oss}	Output Charge		23		nC	$V_{DS} = -16V, V_{GS} = 0V$
R _G	Gate Resistance		15	_	Ω	
t _{d(on)}	Turn-On Delay Time		16			$V_{DD} = -15V, V_{GS} = -4.5V$ ©
t _r	Rise Time		142]	I _D = -11A
t _{d(off)}	Turn-Off Delay Time		76		ns	$R_G = 1.8\Omega$
t _f	Fall Time		121]	See Fig.17
C _{iss}	Input Capacitance		3241			$V_{GS} = 0V$
C _{oss}	Output Capacitance		820		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		466]	f = 1.0KHz

Diode Characteristics

Dioac C	Zilai actel istics					
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-57		MOSFET symbol
	(Body Diode)			-57	Α	showing the
I _{SM}	Pulsed Source Current			-110	A	integral reverse
	(Body Diode) ^⑤			-110		p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}C, I_S = -11A, V_{GS} = 0V $ ©
t _{rr}	Reverse Recovery Time		43	65	ns	$T_J = 25^{\circ}C, I_F = -11A, V_{DD} = -15V$
Q _{rr}	Reverse Recovery Charge		62	93	nC	di/dt = 260A/µs ⑥

Notes:

ⓑ Pulse width \leq 400 μ s; duty cycle \leq 2%.

Absolute Maximum Ratings

	Parameter	Max.	Units
P _D @T _A = 25°C	Power Dissipation ③	2.1	
P _D @T _A = 70°C	Power Dissipation ③	1.3	W
P _D @T _C = 25°C	Power Dissipation ④	57	
T _P	Peak Soldering Temperature	270	
T_J	Operating Junction and	-40 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		60	
$R_{\theta JA}$	Junction-to-Ambient ⑦	12.5		
$R_{\theta JA}$	Junction-to-Ambient ®	20		°C/W
R _{eJC}	Junction-to-Case 4,9	_	2.2	
R _{eJ-PCB}	Junction-to-PCB Mounted	1.0		
	Linear Derating Factor ③	0.	02	W/°C

Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ①

Notes:

- ① Used double sided cooling, mounting pad with large heatsink.
- $\ \ \, \mathbb{ P }_{\theta}$ is measured at T_J of approximately 90°C. ® Mounted on minimum footprint full size board with metalized

back and with small clip heatsink.

- Surface mounted on 1 in. square Cu board (still air).
- 9 Mounted to a PCB with small clip heatsink (still air)
- 9 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Fig 4. Typical Output Characteristics

Fig 6. Typical Transfer Characteristics

Fig 8. Typical Capacitance vs.Drain-to-Source Voltage

Fig 5. Typical Output Characteristics

Fig 7. Normalized On-Resistance vs. Temperature

Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage

Fig 10. Typical Source-Drain Diode Forward Voltage

Fig 12. Maximum Drain Current vs. Case Temperature

Fig 11. Maximum Safe Operating Area

Fig 13. Typical Threshold Voltage vs. Junction Temperature

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 15a. Gate Charge Test Circuit

Fig 15b. Gate Charge Waveform

Fig 16a. Unclamped Inductive Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17a. Switching Time Test Circuit

Fig 17b. Switching Time Waveforms

* V_{GS} = 5V for Logic Level Devices

Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET™ Board Footprint, MC Outline (Medium Size Can, C-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.

This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

DirectFET™ Outline Dimension, MC Outline (Medium Size Can, C-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

	DIMENSIONS				
	MET	TRIC	IMPE	RIAL	
CODE	MIN	MAX	MIN	MAX	
Α	6.25	6.35	0.246	0.250	
В	4.80	5.05	0.189	0.201	
С	3.85	3.95	0.152	0.156	
D	0.35	0.45	0.014	0.018	
Е	0.58	0.62	0.023	0.024	
F	0.58	0.62	0.023	0.024	
G	0.58	0.62	0.023	0.024	
Н	1.18	1.22	0.047	0.048	
J	0.56	0.60	0.022	0.023	
J1	1.98	2.02	0.078	0.079	
K	1.02	1.06	0.040	0.041	
L	2.22	2.26	0.088	0.089	
М	0.59	0.70	0.023	0.028	
N	0.03	0.08	0.001	0.003	
Р	0.08	0.17	0.003	0.007	

DirectFET™ Part Marking

GATE MARKING

LOGO

PART NUMBER

BATCH NUMBER

DATE CODE

Line above the last character of the date code indicates "Lead-Free"

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

DirectFET™ Tape & Reel Dimension (Showing component orientation).

DIMENSIONS				
	MET	TRIC	IMPE	RIAL
CODE	MIN	MAX	MIN	MAX
Α	7.90	8.10	0.311	0.319
В	3.90	4.10	0.154	0.161
С	11.90	12.30	0.469	0.484
D	5.45	5.55	0.215	0.219
Е	5.10	5.30	0.201	0.209
F	6.50	6.70	0.256	0.264
G	1.50	N.C	0.059	N.C
Н	1.50	1.60	0.059	0.063

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts (ordered as IRF9395MTRPBF).

REEL DIMENSIONS				
S.	TANDARI	OPTION	(QTY 48	00)
	ME	TRIC	IMP	ERIAL
CODE	MIN	MAX	MIN	MAX
Α	330.0	N.C	12.992	N.C
В	20.2	N.C	0.795	N.C
С	12.8	13.2	0.504	0.520
D	1.5	N.C	0.059	N.C
Е	100.0	N.C	3.937	N.C
F	N.C	18.4	N.C	0.724
G	12.4	14.4	0.488	0.567
Н	11.9	15.4	0.469	0.606

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Qualification Information[†]

Qualification level	Industrial [†]		
Qualification level	(per JEDEC JESD47F ^{††} guidelines)		
Majatura Capaitivity Laval	DirectFET	MSL1	
Moisture Sensitivity Level	Directre1	(per JEDEC J-STD-020D ^{††})	
RoHS Compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

rievision riistory	
Date	Comments
10/25/2013	Updated Qualification level from "Consumer" to "Industrial" on page 9
10/25/2013	Updated data sheet with new IR corporate template
2/24/2014	• Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #264)

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/