高等微积分

邹文明

第三章: 导数

§3.4. 微分中值定理

定义 1. 假设 X 为数集, $x_0 \in X$, 而 $f: X \to \mathbb{R}$.

若 $\exists \delta > 0$ 使得 $B(x_0, \delta) \subseteq X$ 且

 $\forall x \in B(x_0, \delta)$,

均有 $f(x) \ge f(x_0)$, 则称点 x_0 为 f 的极小值点, 而称 $f(x_0)$ 为 f 的极小值. 相应地, 我们也可以定义极大值点和极大值.

♣ 极小值点和极大值点统称为极值点.

♣ 极小值和极大值统称极值. 1874 1873 1873

评注

- 极值点包含在 f 的定义域 X 当中的某一个开区间内, 这样的点称为 X 的内点.
- •函数 f 是否在点 x_0 取极值, 仅与 f 在该点 邻域上的性态有关, 属于"局部性质".

- •如果函数 f 的定义域为区间,则其最大值点为极大值点当且仅当该点为区间内点.对于最小值点也有同样结论.
- 极值点不一定是最值点.

定理 1. (Fermat) 设 x_0 为 f 的极值点. 若 f 在 点 x_0 处可导, 则 $f'(x_0) = 0$.

证明: 可以假设点 x_0 为 f 的极小值点.

则
$$\exists \delta > 0$$
 使得 $\forall x \in B(x_0, \delta)$,
均有 $f(x) \geq f(x_0)$. 由函数极限的保号性可知

均有
$$f(x) \geqslant f(x_0)$$
. 田图级权限的未亏性的知
 $f'(x_0) = f'_-(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0,$
$$f'(x_0) = f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0,$$

评注

- 导数为零的点称为驻点. 在该点处, 曲线的 切线为水平.
- "可导"的条件不可去掉. 函数 f(x) = |x| 在点 x = 0 取极小值, 但 f 在该点处不可导, 此时上述定理的结论不成立.

• Fermat 定理表明: 极值点为驻点. 该定理的 逆命题不成立. 例如, 对于函数 $f(x) = x^3$, 点 x = 0 为其驻点, 但不是极值点.

定理 2. (Darboux, 导数介值定理)

若 f 在 [a,b] 上可导而 μ 严格介于 $f'_{+}(a), f'_{-}(b)$ 之间, 则 $\exists \xi \in (a,b)$ 使得 $f'(\xi) = \mu$.

证明: 不妨设
$$f'_{+}(a) < \mu < f'_{-}(b)$$
 (否则我们可以考虑 $-f$). $\forall x \in [a,b]$, 定义 $F(x) = f(x) - \mu x$.

则 F 在 [a, b] 上可导, 并且我们有

$$F'_{+}(a) = f'_{+}(a) - \mu < 0,$$

$$F'_{-}(b) = f'_{-}(b) - \mu > 0.$$

 $F'_{+}(a) = \lim_{x \to a^{+}} \frac{F(x) - F(a)}{x - a} < 0,$ $F'_{-}(b) = \lim_{x \to b^{-}} \frac{F(x) - F(b)}{x - b} > 0,$

由导数的定义, 我们有

于是由函数极限的保号性可知,
$$\exists c \in (a,b)$$
 使得 $\frac{F(c)-F(a)}{c-a} < 0$, 同样 $\exists d \in (a,b)$ 使 $\frac{F(d)-F(b)}{d-b} > 0$. 综上所述可知我们有 $F(c) < F(a)$, $F(d) < F(b)$.

由于 F 在 [a,b] 上可导, 因此连续, 于是由最值 定理可知 F 有最小值点 $\xi \in [a,b]$. 再注意到

$$F(\xi) \leq F(c) < F(a), F(\xi) \leq F(d) < F(b),$$

因此 ξ 为 F 的极小值点, 从而由 Fermat 定理
可得 $F'(\xi) = 0$, 也即我们有 $f'(\xi) = \mu$.

推论. 若 f 在某个区间上可导,则其导函数的像集为区间. 若 f' 恒不为零,则它恒正或恒负.

定理 3. (Rolle) 如果 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导 且 f(a) = f(b), 则 $\exists \xi \in (a, b)$ 使得 $f'(\xi) = 0$. 证明: 由题设可知 $f \in \mathscr{C}[a,b]$, 于是由最值定理 立刻可得, $\exists c, d \in [a, b]$ 使得 $f(c) = \min_{x \in [a, b]} f(x)$,

 $f(d) = \max_{x \in [a,b]} f(x)$. 若 f(c) = f(d), 则 $f \equiv f(c)$, 故 $\forall \xi \in (a, b)$, 均有 $f'(\xi) = 0$. 如果 f(c) < f(d), 由 f(a) = f(b) 可知 c, d 当中必有点属于 (a, b), 记作 ξ , 而该点为 f 的极值点, 从而 $f'(\xi) = 0$.

定理 4. (Lagrange, 拉格朗日中值定理) 如果 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 则 $\exists \xi \in (a,b)$ 使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$.

证明: $\forall x \in [a,b]$, 我们定义

$$F(x) = f(x) - \left(f(a) + \frac{f(b) - f(a)}{b - a}(x - a)\right),$$

$$\text{for } F \in \mathscr{L}[a, b] \not= (a, b) \not= \text{for } F \in \mathcal{H} \cap \mathcal{H} = \mathbb{R}$$

则 $F \in \mathcal{C}[a,b]$ 在 (a,b) 内可导, 并且我们还有 F(a) = F(b) = 0. 于是由 Rolle 定理立刻可得知

14/3

约瑟夫·拉格朗日(Joseph-Louis Lagrange,1736 1813): 法国著名数学家,物理学家. 1736年1月25日生于意大利都灵, 1813年4月10日卒于巴黎. 他在数学,力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

拉格朗日总结了18世纪的数学成果,同时又为19世纪的数学研究开辟了道路,堪称法国最杰出的数学大师.同时,他的关于月球运动(三体问题),行星运动,轨道计算,流体力学等方面的成果.成为这些领域的开创性或奠基性研究.

他解决三体运动的定型问题. 拉格朗日对流体运动的理论也有重要贡献, 提出了描述流体运动的拉格朗日方法.

在天体运动方程的解法中, 拉格朗日发现了三体问题运动方程的五个特解, 即拉格朗日平动解. 此外, 他还研究了彗星和小行星的摄动问题, 提出了彗星起源假说等.

评注

•上述定理可由 Rolle 定理导出, 而 Rolle 定理 其实是该定理特殊的情形: 当 f(a) = f(b) 时, Lagrange 中值定理等价于说 $f'(\xi) = 0$. 因此 Lagrange 中值定理与 Rolle 定理等价.

•上述定理中的等式也可表述成

$$f(b) - f(a) = f'(\xi)(b - a).$$

这就解释了为何称之为中值定理. 人们通常 将 ξ 表述成 $\xi = a + (b - a)\theta$, $\theta \in (0,1)$.

上述等式将自变量增量与因变量增量通过 导数联系在一起,因此也常被称为拉格朗日 有限增量定理.

推论 1. 设 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 则 f 为 常值函数当且仅当 $\forall x \in (a,b)$, 均有 f'(x) = 0. 证明: 必要性. 若 f 为常值函数, 那么由导数的 定义立刻可知, $\forall x \in (a,b)$, 均有 f'(x) = 0. 充分性. 如果 $\forall x \in (a,b)$, 均有 f'(x) = 0, 那么 $\forall x \in (a, b]$, 由 Lagrange 中值定理知 $\exists \xi \in (a, x)$ 使得 $f(x) - f(a) = f'(\xi)(x - a) = 0$. 得证.

推论 2. 假设函数 $f, g \in \mathcal{C}[a, b]$ 在 (a, b) 内可导. 如果 $\forall x \in (a,b)$, 均有 f'(x) = g'(x), 则存在常数 $C \in \mathbb{R}$ 使得 $\forall x \in [a, b]$, 均有 f(x) = g(x) + C. 证明: $\forall x \in [a,b]$, 定义 F(x) = f(x) - g(x), 那么 $F \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 并且 $\forall x \in (a,b)$, 均有 F'(x) = 0. 于是 $\exists C \in \mathbb{R}$ 使得 $\forall x \in [a, b]$, 均有 F(x) = C. 故所证结论成立.

定理 5. (Cauchy 中值定理) 假设 $f,g \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 则 $\exists \xi \in (a,b)$ 使得 $(f(b) - f(a))g'(\xi) = (g(b) - g(a))f'(\xi).$ 证明: $\forall x \in [a,b]$, 我们定义 F(x) = (f(b) - f(a))(g(x) - g(a))-(g(b) - g(a))(f(x) - f(a)).则 $F \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 并且我们还有 F(a) = F(b) = 0. 于是由 Rolle 定理立刻可得知 $\exists \xi \in (a,b)$ 使得 $F'(\xi) = 0$ 由此可得所要结论 柯西(Cauchy, 1789-1857) 是法国数学家、物理学家、天文学家。19世纪初期, 微积分已发展成一个庞大的分支, 但微积分的理论基础并不严格, 为解决新问题 并澄清微积分概念, 数学家们展开了数学分析严谨化的工作, 在分析基础的奠基 工作中, 做出卓越贡献的要首推伟大的数学家柯西, 柯西1789年8月21日出生于巴 黎,父亲是一位精通古典文学的律师,与当时法国的大数学家拉格朗日与拉普拉 斯交往密切, 柯西少年时代的数学才华颇受这两位数学家的赞赏, 并预言柯西日 后必成大器, 拉格朗日向其父建议"赶快给柯西一种坚实的文学教育", 1807年至1810年柯西在工学院学习,曾当讨交通道路工程师,由于身体欠佳,接受 了拉格朗日和拉普拉斯的劝告. 放弃工程师而致力于纯数学的研究. 柯西在数学 上的最大贡献是在微积分中引进了极限概念. 并以极限为基础建立了逻辑清晰的 分析体系. 这是微积分发展史上的精华.

评注

• 如果 $\forall x \in [a, b]$, g(x) = x, 此时 Cauchy 中值 定理为 Lagrange 中值定理. 因此 Rolle 定理, Lagrange 中值定理, Cauchy 中值定理等价.

• 若 g' 恒不为零, 由 Lagrange 中值定理可知 $g(a) \neq g(b)$, 于是 Cauchy 中值定理变为

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}.$$

 $f'(\xi) + g'(\xi)f(\xi) = 0.$ 证明: $\forall x \in [a, b]$, 定义 $F(x) = f(x)e^{g(x)}$, 那么有 $F \in \mathscr{C}[a, b]$ 在 (a, b) 内可导且 F(a) = F(b) = 0,

于是 $\exists \xi \in (a,b)$ 使得 $F'(\xi) = 0$, 也即我们有

例 1. 如果 $f,g \in \mathscr{C}[a,b]$ 在 (a,b) 内可导, 并且

f(a) = f(b) = 0, 求证: $\exists \xi \in (a, b)$ 使得

由此立刻可知所证结论成立.

 $0 = f'(\xi)e^{g(\xi)} + f(\xi)e^{g(\xi)}g'(\xi),$

例 2. 试证明: 方程 $x^4 + 3x^3 + 6x^2 - 4x - 8 = 0$ 恰好有两个实根. 证明: 我们定义 $f(x) = x^4 + 3x^3 + 6x^2 - 4x - 8$,

则 f 连续并且 f(0) = -8 < 0, $\lim_{x \to \infty} f(x) = +\infty$, 因此方程 f(x) = 0 在 $(-\infty, 0)$, $(0, +\infty)$ 上均有 实根. 若该方程还有其它实根, 由 Rolle 定理知 f' 至少有两个实根, 故 f'' 至少有一个实根. 但 $f''(x) = 12x^2 + 18x + 12$,其判别式等于 -252, 因此 f" 无实根. 矛盾! 于是所证结论成立.

证明: $\forall x > -1$, 定义 $f(x) = \ln(1+x)$, 则 f 为初等函数, 从而可导. $\forall x > -1$, 借助 Lagrange 中值定理可知, $\exists \theta \in (0,1)$ 使得 $\ln(1+x) = f(x) - f(0) = f'(\theta x)x = \frac{x}{1+\theta x}$.

但当 $x \neq 0$ 时, 我们也有 $\frac{x}{1+x} < \frac{x}{1+\theta x} < x$, 由此

 $\frac{x}{1+x} < \ln(1+x) < x.$

例 3. $\forall x \in (-1, +\infty) \setminus \{0\}$, 求证:

可知所证结论成立.

例 4. $\forall x, y \in [-1, 1]$, 求证: $|\arcsin x - \arcsin y| \geqslant |x - y|$.

证明: $\forall x \in [-1,1]$, 定义 $f(x) = \arcsin x$. 那么 f 连续并且 $\forall x \in (-1,1)$, 我们均有 $f'(x) = \frac{1}{\sqrt{1-x^2}}$. $\forall x, y \in [-1,1]$, 由 Lagrange 中值定理可知存在 ξ 介于 x, y 之间使得 $\arcsin x - \arcsin y = \frac{x-y}{\sqrt{1-\xi^2}}$,

故 $|\arcsin x - \arcsin y| = \frac{|x-y|}{\sqrt{1-\xi^2}} \geqslant |x-y|$.

借助 Lagrange 中值定理可知, 存在 ξ 严格介于 0, x 之间使得我们有 $f(x) = f(x) - f(0) = f'(\xi)x = (e^{\xi} - 1)x.$ 若 x > 0, 那么 $\xi > 0$, 于是 f(x) > 0. 若 x < 0, 则 $\xi < 0$, 此时也有 f(x) > 0. 故所证成立.

4□ > 4回 > 4 = > 4 = > = 9 < ○</p>

28 / 39

证明: $\forall x \in \mathbb{R}$, 令 $f(x) = e^x - 1 - x$. 则 f 连续

可导并且 $\forall x \in \mathbb{R}$, $f'(x) = e^x - 1$. $\forall x \in \mathbb{R} \setminus \{0\}$,

例 5. $\forall x \in \mathbb{R} \setminus \{0\}$, 求证: $e^x > 1 + x$.

同学们辛苦了!

例 6. 求证: 如果 $f: \mathbb{R} \to \mathbb{R}$ 可导使得 $\forall x \in \mathbb{R}$, f'(x) = f(x), 则 $\exists c \in \mathbb{R}$ 使 $\forall x \in \mathbb{R}$, $f(x) = ce^x$.

证明: $\forall x \in \mathbb{R}$, 令 $F(x) = f(x)e^{-x}$. 则 F 在 \mathbb{R} 上可导并且 $\forall x \in \mathbb{R}$, 均有 F'(x) = 0. 从而 $\exists c \in \mathbb{R}$ 使得 $\forall x \in \mathbb{R}$, 均有 F(x) = c, 也即 $f(x) = ce^x$.

证明: 方法 1. 由 Lagrange 中值定理知
$$\exists \xi \in (a,b)$$
 使得 $f(b) - f(a) = f'(\xi)(b - a)$. $\forall x \in [a,b]$, 令 $g(x) = e^x$. 由 Cauchy 中值定理, $\exists \eta \in (a,b)$ 使得 $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\eta)}{g'(\eta)}$, 即 $f(b) - f(a) = (e^b - e^a)e^{-\eta}f'(\eta)$. 由此可得 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a}e^{-\eta}$.

4□ > 4回 > 4 = > 4 = > = 9 < 0</p>

31/39

例 7. 若 $f \in \mathscr{C}[a,b]$ 在 (a,b) 内可导且 $\forall x \in (a,b)$,

 $\frac{f'(\xi)}{f'(\eta)} = \frac{e^b - e^a}{b - a} e^{-\eta}$.

均有 $f'(x) \neq 0$, 求证: $\exists \xi, \eta \in (a,b)$ 使得

进而可得 $\frac{\frac{b}{b-a} = e^{\eta}}{\frac{f'(\eta)}{f'(\eta)}} = 1 = \frac{e^b - e^a}{b-a}e^{-\eta}.$

方法 2. 由 Lagrange 中值定理知 $\exists \eta \in (a,b)$ 使得

因此所证结论成立.

在 (0,1) 内可导, 并且有 F(0) = F(1) = 0. 于是由 Rolle 定理可知, $\exists \xi \in (0,1)$ 使得 $0 = F'(\xi) = 2\xi f(\xi) + \xi^2 f'(\xi)$,

但 $\xi \neq 0$, 由此立刻可得 $2f(\xi) + \xi f'(\xi) = 0$.

证明: $\forall x \in [0, 1]$, $\diamondsuit F(x) = x^2 f(x)$, 则 $F \in \mathscr{C}[0, 1]$

例 8. 若 $f \in \mathcal{C}[0,1]$ 在 (0,1) 内可导且 f(1)=0,

求证: $\exists \xi \in (0,1)$ 使得 $2f(\xi) + \xi f'(\xi) = 0$.

同学们辛苦了!

例 9. 设 $f, g \in \mathcal{C}[a, b]$ 在 (a, b) 内二阶可导且有相同最大值. 若 f(a) = g(a), f(b) = g(b), 求证: $\exists \xi \in (a, b)$ 使得 $f''(\xi) = g''(\xi)$.

证明: $\forall x \in [a, b]$, $\diamondsuit F(x) = f(x) - g(x)$. 则 $F \in \mathscr{C}[a, b]$

在 (a,b) 内为二阶可导. 假设 f,g 在 (a,b) 内的最大值点分别为 α,β ,则 $f(\alpha)=g(\beta)$,并且由函数连续性知这也是 f,g 在 [a,b] 上的最大值.

于是由连续函数介值定理可知, $\exists \eta \in (a,b)$ 使得 $F(\eta) = 0$. 又 F(a) = F(b) = 0, 则由 Rolle 定理 可知, $\exists \xi_1 \in (a, \eta)$, $\exists \xi_2 \in (\eta, b)$ 使得 $F'(\xi_1) = 0$, $F'(\xi_2) = 0$. 再由 Rolle 定理可得知, $\exists \xi \in (\xi_1, \xi_2)$ 使得 $F''(\xi) = 0$, 也即 $f''(\xi) = g''(\xi)$.

若 $\alpha = \beta$, 令 $\eta = \alpha$, 此时 $F(\eta) = 0$. 若 $\alpha \neq \beta$, 则

 $F(\alpha) = f(\alpha) - g(\alpha) = g(\beta) - g(\alpha) \geqslant 0$,

 $F(\beta) = f(\beta) - g(\beta) = f(\beta) - f(\alpha) \leqslant 0,$

例 10. 若
$$f: \mathbb{R} \to \mathbb{R}$$
 可导且使得
$$\lim_{x \to +\infty} f'(x) = e, \ \text{求} \ c$$
 使得
$$\lim_{x \to +\infty} \left(f(x+1) - f(x) \right) = \lim_{x \to +\infty} \left(\frac{x-c}{x+c} \right)^x.$$

解: 当 c = 0 时, 成立 $\lim_{x \to +\infty} \left(\frac{x-c}{x+c}\right)^x = 1$. 当 $c \neq 0$ 时,

 $\lim_{x \to +\infty} \ln \left(\frac{x-c}{x+c} \right)^x = \lim_{x \to +\infty} x \ln \left(1 + \frac{-2c}{x+c} \right)$

$$= \lim_{x \to +\infty} x \cdot \frac{-2c}{x+c} = -2c.$$

于是我们总有 $\lim_{x \to +\infty} (f(x+1) - f(x)) = e^{-2c}$.

由 Lagrange 中值定理, $\forall x \in \mathbb{R}$, $\exists \xi(x) \in (x, x+1)$ 使得 $f(x+1) - f(x) = f'(\xi(x))$, 则由夹逼原理可知 $\lim_{x \to +\infty} \xi(x) = +\infty$. 于是由题设条件与复合函数极限法则可得

 $e^{-2c} = \lim_{x \to +\infty} \left(f(x+1) - f(x) \right)$

$$= \lim_{x \to +\infty} f'(\xi(x)) = \lim_{y \to +\infty} f'(y) = e,$$

进而我们立刻可知 $c=-\frac{1}{2}$.

同学们辛苦了!