Logika cyfrowa

Wykład 3: układy arytmetyczne

Marek Materzok

11 marca 2024

Dodawanie liczb binarnych

$$\frac{a}{c}$$

а	Ь	Co	S
0	0		
0	1		
1	0		
1	1		

$$c_0 = a \oplus L$$

$$\begin{array}{ccc} & a \\ + & b \\ \hline c & s \end{array}$$

а	Ь	Co	S
0	0		
0	1		
1	0		
1	1		

$$s = a \oplus b$$

 $c_o = ab$

$$\begin{array}{ccc} & a \\ + & b \\ \hline c & s \end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 0 \\ \hline 0 & 0 \end{array}$$

а	Ь	Co	S
0	0	0	0
0	1		
1	0		
1	1		

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{c}
 a \\
+ b \\
\hline
 c s
\end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 0 \\ \hline 0 & 0 \end{array}$$

а	Ь	Co	S
0	0	0	0
0	1		
1	0		
1	1		

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{ccc}
 & a \\
 + & b \\
\hline
 & c & s
\end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 0 \\ \hline 0 & 0 \end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 1 \\ \hline 0 & 1 \end{array}$$

а	Ь	Co	S
0	0	0	0
0	1	0	1
1	0		
1	1		

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{ccc}
 & a \\
 + & b \\
\hline
 & c & s
\end{array}$$

$$\begin{array}{ccc}
 & 0 \\
 + & 0 \\
\hline
 & 0 & 0
\end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 0 & 1 \end{array}$$

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{ccc}
 & a \\
 + & b \\
\hline
 & c & s
\end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 0 \\ \hline 0 & 0 \end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 0 & 1 \end{array}$$

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{c}
 a \\
+ b \\
\hline
 c s
\end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 0 \\ \hline 0 & 0 \end{array}$$

$$\begin{array}{c} 0 \\ + 1 \\ \hline 0 & 1 \end{array}$$

$$s = a \oplus b$$

 $c_0 = ab$

$$\begin{array}{c}
 a \\
+ b \\
\hline
 c s
\end{array}$$

$$\begin{array}{ccc}
 & 0 \\
 + & 0 \\
\hline
 & 0 & 0
\end{array}$$

$$\begin{array}{ccc} & 0 \\ + & 1 \\ \hline 0 & 1 \end{array}$$

$$\begin{array}{ccc} & 1 \\ + & 1 \\ \hline 1 & 0 \end{array}$$

$$s = a \oplus b$$

 $c_0 = ab$

Pełny sumator

а	b	С	Co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

			у	Z	
		00	01	11	10
X	0	0	1	0	1
^	1	1	0	1	0
			У	Z	
		00	01	11	10
X	0	0	0	1	0
^	1	0	1	1	1

Pełny sumator

а	Ь	С	Co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Pełny sumator

а	Ь	С	Co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = a \oplus b \oplus c$$

 $c_o = ab + ac + bc$

3

Pełny sumator z półsumatorów

а	Ь	С	Co	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Sumator szeregowy

Sumator szeregowy

Sumator szeregowy

Liczby ujemne – znak-moduł

 Najbardziej znaczący bit określa znak, pozostałe bity – moduł (wartość bezwzględną).

$$(2)_{10} = 0010, (-2)_{10} = 1010$$

- Łatwa zmiana znaku negacja bitu znaku.
- Dwie reprezentacje zera 000...0 i 100...0
- Trudne dodawanie:
 - Jeśli obie liczby mają ten sam znak, dodajemy moduły.
 - Jeśli mają różne znaki, wynikowy znak jest taki, jak znak liczby o większym module.
 Moduły odejmujemy mniejszy od większego.

Przykład – znak-moduł

```
-5 (1101) i 2 (0010)
odejmujemy moduły:
```

Wynik: -3 (1011)

Przykład – znak-moduł

Wynik: 3 (0011)

Przykład – znak-moduł

Wynik: -3 (1011)

Wynik: 3 (0011)

Wynik: -7 (1111)

Liczby ujemne – kod uzupełnień do jedności

- Najbardziej znaczący bit określa znak.
 Reprezentacją liczby -n w k bitach jest 2^k 1 n.
 (2)₁₀ = 0010, (-2)₁₀ = 1101
- Łatwa zmiana znaku negacja wszystkich bitów.

$$(2^k - 1)_{10} = (\underbrace{11 \dots 1}_{k})_2$$

- Dwie reprezentacje zera 00...0 i 11...1
- Komplikacja z dodawaniem czasem potrzebna jest korekta wyniku

Wynik: -3 (1100)

Liczby ujemne – kod uzupełnień do dwóch

- Reprezentacją liczby -n w k bitach jest $2^k n$. $(2)_{10} = 0010, (-2)_{10} = 1110$
- Zmiana znaku negacja wszystkich bitów i dodanie jedynki. $2^k n = (2^k 1 n) + 1$
- Tylko jedna reprezentacja zera, ale
- Istnieje liczba bez przeciwnej, -2^{k-1} : $(-2^{k-1})_{10} = (2^k - (2^{k-1}))_{10} = (2^{k-1})_1 = 10...0$
- Dodawanie takie samo, jak dodawanie bez znaku

Przykład – kod uzupełnień do dwóch

Przykład – kod uzupełnień do dwóch

Przykład – kod uzupełnień do dwóch

Podsumowanie – kody liczb ze znakiem

bin	ZM	U1	U2
0000	0	0	0
:	:	:	:
0111	7	7	7
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1100	-4	-3	-4
1101	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Kody uzupełnień do dwóch – operacje modulo

Układ dodająco-odejmujący

Wykrywanie przepełnienia

 $6 + 3 = 9 \approx -7$

 $6 + 3 = 9 \approx -7$

 $-6 - 5 = -11 \approx 5$

 Przepełnienie gdy dodajemy liczby z tym samym znakiem, a wynik ma inny znak

$$6 - 2 = 4$$

$$6 + 3 = 9 \approx -7$$

0	1	1	0	
	0	1	1	0
+	0	0	1	1
0	1	0	0	1

$$-6 - 5 = -11 \approx 5$$

1	0	1	0	
	1	0	1	0
+	1	0	1	1
1	0	1	0	1

- Przepełnienie gdy dodajemy liczby z tym samym znakiem, a wynik ma inny znak
- Można to rozpoznać przy użyciu dwóch ostatnich bitów przeniesienia

Sumator szybki

Ścieżka krytyczna

Ścieżka najdłuższego opóźnienia w układzie kombinacyjnym.

W sumatorze wielobitowym – ścieżka przeniesienia:

Długość ścieżki krytycznej – 2n bramek

$$s_k = a_k \oplus b_k \oplus c_k$$

$$c_{k+1} = a_k b_k + a_k c_k + b_k c_k$$

$$s_k = a_k \oplus b_k \oplus c_k$$

$$c_{k+1} = a_k b_k + a_k c_k + b_k c_k$$

$$= a_k b_k + (a_k + b_k) c_k$$

$$s_k = a_k \oplus b_k \oplus c_k$$

$$c_{k+1} = a_k b_k + a_k c_k + b_k c_k$$

$$= a_k b_k + (a_k + b_k) c_k$$

$$= g_k + p_k c_k$$

Bit generowania: $g_k = a_k b_k$ Bit propagacji: $p_k = a_k + b_k$

$$s_k = a_k \oplus b_k \oplus c_k$$

$$c_{k+1} = a_k b_k + a_k c_k + b_k c_k$$

$$= a_k b_k + (a_k + b_k) c_k$$

$$= g_k + p_k c_k$$

Bit generowania:
$$g_k = a_k b_k$$

Bit propagacji: $p_k = a_k + b_k$

$$\begin{array}{rcl} c_n & = & g_{n-1} + p_{n-1}c_{n-1} \\ & = & g_{n-1} + p_{n-1}(g_{n-2} + p_{n-2}c_{n-2}) \\ & = & g_{n-1} + p_{n-1}g_{n-2} + p_{n-1}p_{n-2}c_{n-2} = \dots \\ & = & g_{n-1} + p_{n-1}g_{n-2} + p_{n-1}p_{n-2}g_{n-3} + \dots + p_{n-1}p_{n-2} \dots p_0 c_0 \\ & = & \sum_{i=0}^{n-1} g_i \prod_{j=i+1}^{n-1} p_j + c_0 \prod_{j=0}^{n-1} p_j = \sum_{i=-1}^{n-1} g_i \prod_{j=i+1}^{n-1} p_j \end{array}$$

Układ przewidywania przeniesienia – charakterystyka

$$c_n = \sum_{i=-1}^{n-1} g_i \prod_{j=i+1}^{n-1} p_j$$

- n+1 bramek, ścieżka krytyczna 2 bramki, max n+1-wejściowe
- W praktyce ograniczenie fan-in, dla bramek 2-wejściowych: $O(n^2)$ bramek, ścieżka krytyczna $O(\log n)$ bramek
- Dla wysokich *n* skomplikowane, nieplanarne połączenia

Sumator z przewidywaniem przeniesienia

Łączenie sumatorów równoległych

Sumator hierarchiczny

Zamiast łączyć szeregowo – wprowadzić drugi poziom przewidywania przeniesienia:

$$c_n = \sum_{i=0}^{n-1} g_i \prod_{j=i+1}^{n-1} p_j + c_0 \prod_{j=0}^{n-1} p_j = G_0 + P_0 c_0$$

Dla bloków *n*-bitowych:

$$G_{k} = \sum_{i=kn}^{(k+1)n-1} g_{i} \prod_{j=i+1}^{(k+1)n-1} p_{j}$$

$$P_{k} = \prod_{j=kn}^{(k+1)n-1} p_{j}$$

$$c_{kn} = \sum_{i=0}^{k-1} G_{i} \prod_{j=i+1}^{k-1} P_{j} + c_{0} \prod_{j=0}^{k-1} P_{j}$$

Sumator hierarchiczny

Układy mnożące

• Przesunięcie logiczne: wypełnia luki zerami

$$11001 \gg 2 = 11001 \ll 2 =$$

• Przesunięcie arytmetyczne: wypełnia lukę MSB bitem znaku

$$11001 \gg 2 = 11001 \ll 2 =$$

$$11001 \text{ ROR } 2 = 11001 \text{ ROL } 2 =$$

• Przesunięcie logiczne: wypełnia luki zerami

$$11001 \gg 2 = 00110$$

 $11001 \ll 2 = 00100$

• Przesunięcie arytmetyczne: wypełnia lukę MSB bitem znaku

$$11001 \gg 2 = 11001 \ll 2 =$$

$$11001 \text{ ROR } 2 = 11001 \text{ ROL } 2 =$$

• Przesunięcie logiczne: wypełnia luki zerami

$$11001 \gg 2 = 00110$$

 $11001 \ll 2 = 00100$

• Przesunięcie arytmetyczne: wypełnia lukę MSB bitem znaku

$$11001 \gg 2 = 11110$$

 $11001 \ll 2 = 00100$

$$11001 \text{ ROR } 2 = 11001 \text{ ROL } 2 =$$

• Przesunięcie logiczne: wypełnia luki zerami

$$11001 \gg 2 = 00110$$

 $11001 \ll 2 = 00100$

• Przesunięcie arytmetyczne: wypełnia lukę MSB bitem znaku

$$11001 \gg 2 = 11110$$

 $11001 \ll 2 = 00100$

```
11001 \text{ ROR } 2 = 01110
11001 \text{ ROL } 2 = 00111
```

Przykład:
$$14 \times 5 = 70$$

Przykład: $14 \times 5 = 70$

Przykład: $14 \times 5 = 70$

				a_3	a_2	a_1	a_0
			×		b_2	b_1	b_0
				a_3b_0	$a_2 b_0$	a_1b_0	$a_0 b_0$
			$a_{3}b_{1}$	$a_{2}b_{1}$	a_1b_1	a_0b_1	
_	+	$a_3 b_2$	$a_2 b_2$	a_1b_2	$a_0 b_2$		
C	9 6	05	04	03	02	o_1	00

Układ mnożenia pisemnego

Szybsze mnożenie – drzewo Wallace'a

Układy porównujące

Test równości

Test nierówności

Systemy liczbowe

Liczby stałoprzecinkowe

Dzielimy liczbę na części przed i po "kropce":

$$B = b_{n-1}b_{n-2} \dots b_1b_0 \cdot b_{-1}b_{-2} \dots b_{-k}$$

- Wartość: $\sum_{i=-k}^{n-1} b_i \times 2^i$
- Dodawanie i odejmowanie jak dla liczb całkowitych
- Mnożenie i dzielenie wymaga przesunięcia przecinka

Liczby zmiennoprzecinkowe

IEEE 754, pojedyncza precyzja (float):

- Wartość: $(-1)^S \times 1.M \times 2^{E-127}$
- Jeśli E = 0 i M = 0, 0 lub -0
- Jeśli E=255 i $M=0, \infty$ lub $-\infty$
- Jeśli E = 255 i $M \neq 0$, NaN (Not a Number)

Liczby BCD - Binary Coded Decimal

- System dziesiętny kodowany binarnie
- Jedna cyfra dziesiętna reprezentowana przez 4 bity
- Wartości 10-15 nie kodują cyfr

cyfra	kod
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Arytmetyka w SystemVerilogu

Operatory arytmetyczne

Operatory binarne:

- Dodawanie: +
- Odejmowanie: -
- Mnożenie: *
- Dzielenie: /
- Modulo: %
- Potęgowanie: **

Operatory unarne:

- Plus: +
- Negacja: -

- Wynik ma tyle bitów, co większy z parametrów
- Wartość x na dowolnym z bitów wejścia ustala wszystkie bity wyjścia na x
- Operacje są domyślnie bez znaku
- Brak kontroli nad obwodem implementującym operację

Liczby ze znakiem

- Reprezentacja: kod uzupełnień do dwóch
- W stałych: litera s, na przykład: 8'shfe, 4'sd6
- Przy deklaracji portu/drutu: słowo kluczowe signed
- Rzutowanie: funkcje \$signed i \$unsigned
- Aby operacja binarna była ze znakiem, **obydwa parametry** muszą być ze znakiem

Dzielenie ze znakiem

```
module dzielenie(
    output signed [7:0] o,
    input signed [7:0] a,
    input signed [7:0] b
);
    assign o = a / b;
endmodule
```

Rozszerzanie

- Wartości bez znaku są rozszerzane przez dopisanie zer (zero extension)
- Wartości ze znakiem są rozszerzane przez powtórzenie bitu znaku (sign extension)

```
module rozszerzanie(
    output signed[15:0] o,
    input signed[7:0] i
);
    assign o = i;
endmodule
```

Operatory porównania

- Test nierówności: <, <=, >, >=
- Test równości: ==, !=
- Mniejszy argument jest **rozszerzany** do rozmiaru większego
- Test nierówności uwzględnia znak, gdy obydwa argumenty są ze znakiem
- Wynik jest jednobitowy

```
module porownanie(
    output signed o,
    input signed [7:0] a, b
);
    assign o = a < b;
endmodule</pre>
```

- Przesunięcia logiczne: <<, >>
- Przesunięcia arytmetyczne: <<<, >>>
- <<< jest równoważny <<
- >>> uzupełnia bitem znaku liczby ze znakiem, liczby bez znaku uzupełnia zerami

SystemVerilog – różności

Łączenie portów przez nazwy

```
module fulladder(
    output o, co,
    input a, b, c
);
    logic t, c1, c2;
    halfadder hal(.o(t), .c(c1), .a(a), .b(b));
    halfadder ha2(.o(o), .c(c2), .a(t), .b(c));
    assign co = c1 \mid c2;
endmodule
W SystemVerilogu można napisać .o zamiast .o(o)
```

Funkcje – zwracanie wartości

```
module fulladder(
    output o, co,
    input a, b, c
);
    logic t, c1, c2;
    function [1:0] ha(input a, b);
        ha = (\{a^b, a\&b\});
    endfunction
    assign \{t, c1\} = ha(a, b);
    assign \{0, c2\} = ha(t, c);
    assign co = c1 \mid c2;
endmodule
```

Funkcje – parametry wyjściowe

```
module fulladder(
    output o, co,
    input a, b, c
);
    logic t, c1, c2;
    function ha(input a, b, output c);
        ha = a^b:
        c = a\&b;
    endfunction
    assign t = ha(a, b, c1);
    assign o = ha(t, c, c2);
    assign co = c1 \mid c2;
endmodule
```