

Física General

Base Vectorial

Prof. Dr. David Macias Ferrer

Instituto Tecnológico de Cd. Madero Depto. de Ciencias Básicas Centro de Investigación en Petroquímica

Física General

Magnitudes Vectoriales y Escalares

Magnitud Escalar.- Aquella que se caracteriza únicamente por su magnitud Ejemplos:

- Densidad
- Masa
- Volumen
- Temperatura
- Tensión eléctrica (voltaje)
- Rapidez

Física General

Magnitudes Vectoriales y Escalares

Magnitud Vectorial.- Aquellas que además de poseer magnitud tienen dirección

Ejemplos:

- Fuerza
- Velocidad
- Peso
- Aceleración
- Flujo calórico
- Corriente eléctrica
- Flujo magnético

Física General

Vector

Es una entidad matemática que posee magnitud y dirección

Notación simbólica

A, **a** etc (letras negritas), \vec{a} ó \overline{AB}

Notación geométrica

Los vectores geométricamente se representan con *flechas* o *segmentos dirigidos*.

La magnitud de un vector se denomina *módulo del vector*

La dirección de un vector lo determina el ángulo director que se mide con respecto a un marco de referencia

El sentido, lo determina hacia donde apunta la flecha del vector

Física General

Espacio vectorial.- Un conjunto de vectores de posición y vectores libres *Vector de posición*.- Un vector que parte del origen de un sistema de coordenadas xy y localiza un punto P(x,y)

Vector libre.- Es aquel que se puede mover libremente a lo largo de una línea o bien en forma paralela a ésta (Línea de acción del vector)

Ángulo de dirección ó ángulo director

Física General

Suma de dos Vectores.-

La suma de dos vectores coincide en magnitud con la diagonal mayor del paralelogramo

El método del paralelogramo solo se aplica para suma de **dos** vectores

Física General

Suma de dos Vectores.-

El método del polígono para suma de vectores

Física General

Suma de mas de dos Vectores.-

El método del polígono puede ser aplicado para más de dos vectores

Física General

Diferencia de Vectores.-

Es válido que:

$$\left| \vec{a} - \vec{b} \right| = \left| \vec{b} - \vec{a} \right|$$

Para cualquiera dos vectores a y b

La diferencia de dos vectores coincide en magnitud con la diagonal menor del paralelogramo La punta de la flecha del vector diferencia siempre apuntará hacia el minuendo

Física General

Multiplicación de un Vector por un Escalar.-

Un escalar puede cambiar la magnitud y/o dirección a un vector

Física General

Espacios V² y V³.- La base del espacio V² es el conjunto de vectores unitarios \mathbf{i} y \mathbf{j} , por otro lado la base del espacio V³ es el conjunto de vectores unitarios \mathbf{i} , \mathbf{j} y \mathbf{k} .

Forma analítica de un vector

$$\mathbf{r} = \mathbf{x}\mathbf{i} + \mathbf{y}\mathbf{j}$$

 $x, y \in \Re$, son las componentes escalares de **r**

xi y yj son las componentes vectoriales de \mathbf{r}

Física General

Espacios V² y V³.- La base del espacio V² es el conjunto de vectores unitarios \mathbf{i} y \mathbf{j} , por otro lado la base del espacio V³ es el conjunto de vectores unitarios \mathbf{i} , \mathbf{j} y \mathbf{k} .

Forma analítica de un vector

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

 $x, y, z \in \Re$ son las componentes escalares de **r**

x**i** , y**j** y z**k** son las componentes vectoriales de **r**

Física General

Notación Simbólica Espacio V^2 (2D)

Dado el vector:
$$\mathbf{r} = x\mathbf{i} + y\mathbf{j}$$

Es llamado vector de posición o radio vector del punto P(x, y) en \Re^2

$$\mathbf{r} = \vec{r} = x\mathbf{i} + y\mathbf{j} = \begin{pmatrix} x \\ y \end{pmatrix} = \langle x, y \rangle$$

Notación Simbólica Espacio V^3 (3D)

Dado el vector:

$$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$$

Es llamado vector de posición o radio vector del punto P(x, y, z) en \Re^3

$$\mathbf{r} = \vec{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \langle x, y, z \rangle$$

Física General

Notación Simbólica

Se pueden usar subíndices para diferenciar dos vectores distintos:

$$\mathbf{r}_1 = x_1 \mathbf{i} + y_1 \mathbf{j}, \quad \mathbf{r}_2 = x_2 \mathbf{i} + y_2 \mathbf{j}, \quad para \mathbf{V}^2, etc$$

$$\mathbf{r}_1 = x_1 \mathbf{i} + y_1 \mathbf{j} + z_1 \mathbf{k}, \quad \mathbf{r}_2 = x_2 \mathbf{i} + y_2 \mathbf{j} + z_2 \mathbf{k}, \quad para \mathbf{V}^3, etc$$

La magnitud o módulo de un vector **r** está dado por:

$$|\mathbf{r}| = \sqrt{x^2 + y^2}$$
 ó $|\mathbf{r}| = \sqrt{x^2 + y^2 + z^2}$

Física General

Ejemplo 1.- Encontrar el módulo del vector

$$\mathbf{r} = 3\mathbf{i} - 5\mathbf{j}$$

Sol.- La magnitud o módulo de un vector **r** está dado por:

$$|\mathbf{r}| = \sqrt{(3)^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34}$$

Ejemplo 2.- Encontrar el módulo del vector

$$\mathbf{r} = \mathbf{i} - 3\mathbf{j} + 6\mathbf{k}$$

$$|\mathbf{r}| = \sqrt{(1)^2 + (-3)^2 + (6)^2} = \sqrt{1 + 9 + 36} = \sqrt{46}$$

Física General

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + \mathbf{j}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = \mathbf{i} + 3\mathbf{j}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $2\mathbf{r}_1$

Física General

Ejemplo 2.- Dados los vectores, encontrar:

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + \mathbf{j}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = \mathbf{i} + 3\mathbf{j}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $2\mathbf{r}_1$

Sol. a)

$$\mathbf{r}_1 + \mathbf{r}_2 = \overrightarrow{AB} + \overrightarrow{AC} = \langle 6, 1 \rangle + \langle 1, 3 \rangle = 6\mathbf{i} + \mathbf{j} + \mathbf{i} + 3\mathbf{j} = 7\mathbf{i} + 4\mathbf{j}$$
$$\mathbf{r}_1 + \mathbf{r}_2 = \langle 7, 4 \rangle = 7\mathbf{i} + 4\mathbf{j}$$

Física General

Ejemplo 2.- Dados los vectores, encontrar:

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + \mathbf{j}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = \mathbf{i} + 3\mathbf{j}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $2\mathbf{r}_1$

Sol. b)

$$\overrightarrow{CB} = \mathbf{r}_1 - \mathbf{r}_2 = \overrightarrow{AB} - \overrightarrow{AC} = \langle 6, 1 \rangle - \langle 1, 3 \rangle = 6\mathbf{i} + \mathbf{j} - (\mathbf{i} + 3\mathbf{j}) = 5\mathbf{i} - 2\mathbf{j}$$
$$\mathbf{r}_1 - \mathbf{r}_2 = \langle 5, -2 \rangle = 5\mathbf{i} - 2\mathbf{j}$$

Física General

Ejemplo 2.- Dados los vectores, encontrar:

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + \mathbf{j}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = \mathbf{i} + 3\mathbf{j}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $2\mathbf{r}_1$

Sol. 3)

$$2\mathbf{r}_1 = 2\overrightarrow{AB} = 2\langle 6,1 \rangle = 2(6\mathbf{i} + \mathbf{j}) = \langle 12,2 \rangle = 12\mathbf{i} + 2\mathbf{j}$$

Física General

Vector unitario en la dirección de cualquier vector

Dado un vector cualquiera

$$\mathbf{r} = \overrightarrow{AB} = x\mathbf{i} + y\mathbf{j}$$
 donde $|\overrightarrow{AB}| = \sqrt{x^2 + y^2}$

Un vector unitario en la dirección de **r** está dado por la expresión:

$$\mathbf{u}_{\mathbf{r}} = \left(\frac{1}{|\mathbf{r}|}\right)\mathbf{r}$$

$$\left|\mathbf{u_{r}}\right| = \left|\left(\frac{1}{\sqrt{x^{2} + y^{2}}}\right)\left(x\mathbf{i} + y\mathbf{j}\right)\right| = \left|\left\langle\frac{x}{\sqrt{x^{2} + y^{2}}}, \frac{y}{\sqrt{x^{2} + y^{2}}}\right\rangle\right| = \sqrt{\left(\frac{x}{\sqrt{x^{2} + y^{2}}}\right)^{2} + \left(\frac{y}{\sqrt{x^{2} + y^{2}}}\right)^{2}}$$

$$\left|\mathbf{u_{r}}\right| = \sqrt{\frac{x^{2}}{x^{2} + y^{2}} + \frac{y^{2}}{x^{2} + y^{2}}} = \sqrt{\frac{x^{2} + y^{2}}{x^{2} + y^{2}}} = \sqrt{1} = 1$$

Física General

Ejemplo 3.- Dado el vector:
$$\mathbf{r} = \overrightarrow{AB} = -3\mathbf{i} + 5\mathbf{j} = \langle -3, 5 \rangle = \begin{pmatrix} -3 \\ 5 \end{pmatrix} \rightarrow (0, 0), (-3, 5)$$

Encontrar un vector unitario que tenga la misma dirección que r.

Sol.- Encontremos primeramente el modulo de r:

$$\left|\mathbf{r}\right| = \left|\overrightarrow{AB}\right| = \sqrt{\left(-3\right)^2 + \left(5\right)^2} = \sqrt{34}$$

Aplicando la fórmula para el vector unitario

$$\mathbf{u_r} = \left(\frac{1}{|\mathbf{r}|}\right)\mathbf{r} = \frac{1}{\sqrt{34}}\langle -3,5\rangle = \left\langle -\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right\rangle \rightarrow (0,0), \left(-\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right)$$

Física General

Ejemplo 3.- Dado el vector:
$$\mathbf{r} = \overrightarrow{AB} = -3\mathbf{i} + 5\mathbf{j} = \langle -3, 5 \rangle = \begin{pmatrix} -3 \\ 5 \end{pmatrix} \rightarrow (0,0), (-3,5)$$

Encontrar un vector unitario que tenga la misma dirección que r.

Geométricamente:

Física General

Ejemplo 4.- Dado el vector: $\mathbf{r} = \overline{BC} = 4\mathbf{i} - 3\mathbf{j}$

Encontrar un vector que tenga la misma dirección que **r** y que tenga una magnitud de 10 unidades.

Sol. Encontremos primeramente el modulo de **r**:

$$|\mathbf{r}| = |\overrightarrow{BC}| = \sqrt{(4)^2 + (-3)^2} = \sqrt{25} = 5$$

Aplicando la fórmula para el vector unitario

$$\mathbf{u_r} = \left(\frac{1}{|\mathbf{r}|}\right)\mathbf{r} = \frac{1}{5}\langle 4, -3 \rangle = \left\langle \frac{4}{5}, -\frac{3}{5} \right\rangle$$

$$10\mathbf{u_r} = 10\left\langle\frac{4}{5}, -\frac{3}{5}\right\rangle = \left\langle8, -6\right\rangle \rightarrow \left|\left\langle8, -6\right\rangle\right| = \sqrt{64 + 36} = 10$$

Física General

Ejemplo 4.- Dado el vector: $\mathbf{r} = BC = 4\mathbf{i} - 3\mathbf{j}$

Encontrar un vector que tenga la misma dirección que r y que tenga una magnitud

de 10 unidades.

Física General

Espacio Tridimensional \Re^3

Física General

Ejemplo 5.- Dado el vector:

$$\mathbf{r} = \overrightarrow{AB} = -3\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} = \langle -3, 5, 4 \rangle = \begin{pmatrix} -3 \\ 5 \\ 4 \end{pmatrix} \rightarrow (0,0,0), (-3,5,4)$$

Encontrar un vector unitario que tenga la misma dirección que r.

$$|\mathbf{r}| = |\overrightarrow{AB}| = \sqrt{(-3)^2 + (5)^2 + (4)^2} = \sqrt{50}$$

Sol. Encontremos primeramente el modulo de r:

$$\mathbf{u_r} = \left(\frac{1}{|\mathbf{r}|}\right)\mathbf{r} = \frac{1}{\sqrt{50}}\langle -3,5,4\rangle = \left\langle -\frac{3}{\sqrt{50}}, \frac{5}{\sqrt{50}}, \frac{4}{\sqrt{50}}\right\rangle \to (0,0,0), \left(-\frac{3}{\sqrt{50}}, \frac{5}{\sqrt{50}}, \frac{4}{\sqrt{50}}\right)$$

Aplicando la fórmula para el vector unitario

Física General

Física General

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $4\mathbf{r}_1 3\mathbf{r}_2$

Física General

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $4\mathbf{r}_1 3\mathbf{r}_2$

$$\mathbf{r}_{1} + \mathbf{r}_{2} = \overrightarrow{AB} + \overrightarrow{AC} = \langle 6, 3, 4 \rangle + \langle -1, 2, 3 \rangle = 5\mathbf{i} + 5\mathbf{j} + 7\mathbf{i}$$
$$\mathbf{r}_{1} + \mathbf{r}_{2} = \langle 5, 5, 7 \rangle$$

Física General

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$
 y $\mathbf{r}_2 = \overrightarrow{AC} = -\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $4\mathbf{r}_1 3\mathbf{r}_2$

$$\overrightarrow{CB} = \mathbf{r}_1 - \mathbf{r}_2 = \overrightarrow{AB} - \overrightarrow{AC} = \langle 6, 3, 4 \rangle - \langle -1, 2, 3 \rangle = 6\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} - (-\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}) = 7\mathbf{i} + \mathbf{j} + \mathbf{k}$$
$$\mathbf{r}_1 - \mathbf{r}_2 = \langle 7, 1, 1 \rangle$$

Física General

$$\mathbf{r}_1 = \overrightarrow{AB} = 6\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$$

- a) El vector $\mathbf{r}_1 + \mathbf{r}_2$
- b) El vector \overrightarrow{CB}
- c) El vector $4\mathbf{r}_1 3\mathbf{r}_2$

$$4\mathbf{r}_{1} - 3\mathbf{r}_{2} = 4\langle 6, 3, 4 \rangle - 3\langle -1, 2, 3 \rangle = \langle 24, 12, 16 \rangle - \langle -3, 6, 9 \rangle$$
$$4\mathbf{r}_{1} - 3\mathbf{r}_{2} = \langle 27, 6, 7 \rangle$$

Física General

Dirección de un Vector en 2D

Dado un vector cualquiera:
$$\mathbf{r} = \overrightarrow{AB} = x\mathbf{i} + y\mathbf{j} = \langle x, y \rangle = \begin{pmatrix} x \\ y \end{pmatrix}$$

El ángulo director, la medida angular que le da la dirección al vector y que se mide siempre en contra de las manecillas del reloj desde la parte positiva del eje x, viene dado por:

$$\theta = arctan\left(\frac{y}{x}\right)$$

Este ángulo director puede ser agudo, recto, obtuso, llano, entrante o perigonal, dependiendo de la ubicación del vector en los cuadrantes

Física General

Dirección de un Vector en 2D

Ejemplo 7.- Dado el vector :
$$\mathbf{r} = -4\mathbf{i} + 3\mathbf{j} = \langle -4, 3 \rangle = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

Encontrar su ángulo director

$$\theta = \arctan\left(\frac{-3}{4}\right) = -36.8698^{\circ}$$

$$\theta = -36.8698^{\circ} + 180^{\circ} = 143.13^{\circ}$$

Este ángulo director es obtuso ya que el vector se encuentra en el segundo cuadrante

Física General

Dirección de un Vector en 2D

Ejemplo 8.- Dado el vector :
$$\mathbf{r} = -4\mathbf{i} - 3\mathbf{j} = \langle -4, -3 \rangle = \begin{pmatrix} -4 \\ -3 \end{pmatrix}$$

Encontrar su ángulo director

$$\theta = \arctan\left(\frac{-3}{-4}\right) = 36.8698^{\circ}$$

$$\theta = 36.8698^{\circ} + 180^{\circ} = 216.8698^{\circ}$$

Este ángulo director es entrante ya que el vector se encuentra en el tercer cuadrante

Los ángulos medidos en contra de las manecillas del reloj son *positivos*, caso contrario son *negativos*

Física General

Dirección de un Vector en 3D

Dado un vector cualquiera:
$$\mathbf{r} = \overrightarrow{AB} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = \langle x, y, z \rangle = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Los ángulos directores θ_x , θ_y y θ_z medidos desde la parte positiva de los ejes x, y y z respectivamente se calculan mediante las relaciones

$$cos(\theta_x) = \frac{x}{|\mathbf{r}|} \to \theta_x = arccos\left(\frac{x}{|\mathbf{r}|}\right)$$

$$cos(\theta_y) = \frac{y}{|\mathbf{r}|} \rightarrow \theta_y = arccos(\frac{y}{|\mathbf{r}|})$$

$$cos(\theta_z) = \frac{z}{|\mathbf{r}|} \rightarrow \theta_z = arccos\left(\frac{z}{|\mathbf{r}|}\right)$$

Física General

Dirección de un Vector en 3D

$$\mathbf{r} = \overrightarrow{AB} = 4\mathbf{i} + 5\mathbf{j} + 3\mathbf{k} = \langle 4, 5, 3 \rangle = \begin{bmatrix} 5 \\ 5 \\ 3 \end{bmatrix}$$

Encontrar su dirección en el espacio \Re^3

Sol.- El modulo del vector es:

$$|\mathbf{r}| = |\langle 4, 5, 3 \rangle| = \sqrt{4^2 + 5^2 + 3^2} = 7.071$$

Por lo tanto, los ángulos directores son:

$$cos(\theta_x) = \frac{x}{|\mathbf{r}|} = \frac{4}{7.071} \to \theta_x = arccos(0.5656) = 55.5^{\circ}$$

$$cos(\theta_y) = \frac{y}{|\mathbf{r}|} = \frac{5}{7.071} \rightarrow \theta_y = arccos(0.7071) = 50^\circ$$

$$cos(\theta_z) = \frac{z}{|\mathbf{r}|} = \frac{3}{7.071} \rightarrow \theta_z = arccos(0.4242) = 64.9^{\circ}$$

Física General

Dirección de un Vector (Resumen)

La dirección de un vector se determina:

Mediante el ángulo director θ en V^2 .

Mediante los ángulos directores θ_x , θ_y y θ_z en V^3 .

