

Six Sigma: Weeks 9 & 10

John Fico, Adjunct Professor Fall 2020

MAN 3520 Six Sigma: Fall 2020

Weeks 9 & 10

1

Agenda: Weeks 9 & 10

- Continue to build our Six Sigma tool set
 - Hypothesis testing: Paired t-test review examples LS text pages 528; LSSM text page 167
 - Measurement System Analysis (MSA)
 - Video: https://www.youtube.com/watch?time_continue=18&v=qdosHXCsCxY
 - Quick story about MSA at Rockwell Automation
 - Failed sensor during product functional testing
 - Gage Repeatability and Reproducibility Studies
 - Continuous data: LS text pg. 365; LSSM text pg. 62
 - Attribute Agreement Analysis
 - Attribute data: LS text pg. 357; LSSM text pg. 66

Our Six Sigma Journey So Far

Measurement System Analysis

- Goals of GR&R analysis are:
 - Identify and quantify dominant causes of measurement variation
 - Compare variation of measurement system with variation of the measured object
- If lack of *repeatability* is large compared to lack of reproducibility, it is likely that
 - The gauge needs maintenance
 - The gauge can be redesigned
 - There is excessive within-part variation
- If lack of reproducibility is large compared to lack of repeatability, it is likely that
 - Operators need to be better trained
 - Instructions on use of gauge may not be clear
 - There is a need to have a fixture to help operators

Measurement System Analysis

Image from wellesley.edu	Accurate	Inaccurate (systematic error)
Precise		
Imprecise (reproducibility error)		

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10 5

- GR&R studies quantify the precision errors of a measurement system to determine its acceptability
 - A GR&R study measures precision error by taking one part and measuring it several times, with different people
 - Given that the part is not changing in size, any variation in the results must represent the repeatability of the gauge and the reproducibility of measurements by different people
 - A GR&R study repeats this approach on several different parts to assess results
- Acceptable levels of GR&R variation
 - Acceptability of GR&R variation is assessed on ratio (expressed as percentage) of GR&R variation compared to process (part-to-part) variation and customer tolerance. (See page 62).

GR&R Acceptability Criteria	Unacceptable	Marginal	Good	Excellent
GR&R as percentage of the Total Variation = GR&R / Total Variation x 100%	>30%	<30%	<20%	<10%
GR&R as percentage of the Tolerance = GR&R / Tolerance x 100%	>30%	<30%	<20%	<10%

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10

Gage R&R (ANOVA) Report for Measurement

Gage name: Date of study: Reported by: Tolerance: Misc:

Part 10

had most variable

results

- How to do a GR&R study Continuous data
 - A common standard is to use 10 parts, measured by 3 different people, 3 times each, for a total of 90 samples (example from LSSM text page 63)
 - Example: A project is looking at controlling the thickness of steel from a rolling process. A GR&R study for the measurement gage has been completed on 10 pieces of steel, using 3 different appraisers.

Two-Way ANOVA Table With Interaction

Source	DF	SS	MS	F	P
Part Number	9	2.92322	0.324802	36.5530	0.000
Appraiser	2	0.06339	0.031694	3.5669	0.050
Part Number * Appraiser	18	0.15994	0.008886	8.8858	0.000
Repeatability	60	0.06000	0.001000		
Total	89	3.20656			

ANOVA table: assess which sources of variation are statistically significant.

Appraiser *does* affect the result, and there is an interaction between Part Number and Appraiser.

 α to remove interaction term = 0.05

Gage Evaluation

		Study Var	%Study Var	%Tolerance
Source	StdDev (SD)	(6 × SD)	(%SV)	(SV/Toler)
Total Gage R&R	0.066249	0.39749	33.34	39.75
Repeatability	0.031623	0.18974	15.91	18.97
Reproducibility	0.058214	0.34928	29.29	3103
Appraiser	0.027573	0.16544	13.88	16.5
Appraiser*Part Number	0.051270	0.30762	25.80	30.76
Part-To-Part	0.187355	1.12413	94.28	112.41
Total Variation	0.198723	1.19234	100.00	119.23

Total GR&R is high at 33.3% of total variation. Improvements for measurement system needed.

Reproducibility factors contributed twice the variation that Repeatability factors contributed.

Attribute Agreement Analysis

- Principles of Gage R&R can be applied to attribute data as well
- The objective for an attribute MSA (Attribute Agreement Analysis) is for it to reach the correct decision every time
- What are we trying to determine?
 - With Attribute Agreement Analysis, results are used to:
 - assess reproducibility how well appraisers agree with each other
 - assess repeatability how consistently appraisers agree with themselves
 - Within Appraisers: shows repeatability of the each appraiser with herself/himself as a percentage
 - Between Appraisers: shows reproducibility of all appraisers with each other as a percentage
 - Each Appraiser vs. Standard: shows repeatability of each appraiser with a standard or expert response as percentage
 - All Appraisers vs. Standard: shows reproducibility of all appraisers with a standard or expert response as percentage
- Attribute Agreement Analysis Video
 - https://www.youtube.com/watch?time_continue=8&v=SPPJGSkmFSk

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10 9

- GR&R study Attribute data
 - Key differences of Attribute Agreement Analysis and GR&R studies are:
 - More data required attribute data has less resolution. At least 20 parts should be assessed 3 times by each appraiser
 - Ensure selection of parts includes some borderline products or services that really challenge measurement system capability
- **Example:** 30 parts are appraised by 3 appraisers. Each appraiser does 3 trials of the parts. The appraisers either accept or reject the part for each trial. There is also a "correct answer" provided in the data (expert decision).

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10

- GR&R study Attribute data
 - Key differences of Attribute GR&R studies are:
 - More data required attribute data has less resolution. At least 20 parts should be assessed 3 times by each appraiser
 - Ensure selection of parts includes some borderline products or services that really challenge measurement system capability
 - With attribute GR&R, results are used to:
 - assess reproducibility how well appraisers agree with each other
 - assess repeatability how consistently appraisers agree with themselves
 - Example: 30 parts are appraised by 3 appraisers. Each appraiser does 2 trials of the parts. The appraisers either accept or reject the part for each trial. There is also a "correct answer" provided in the data (expert decision).

Inspected # Matched Percent 950 94.36)

Complete agreement (reproducibility) between appraisers on 25/30 parts (83%)

Complete agreement between

appraisers and the standard on

24/30 parts (80%)

Matched: All appraisers' assessments agree with each other.

All Appraisers vs Standard

Inspected # Matched Percent 95% CI 30 24 80.00 (61.43, 92.29)

Matched: All appraisers' assessments agree with the known standard.

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10

11

Within appraisers shows repeatability of appraisers as a percentage score

Tom reached the same decision on 90% of parts, but confidence interval is 73%-97%

Dick reached same decision on 100% of parts, but confidence interval indicates his true performance could be between 90-100%

Tom only agreed with expert decision on 80% of parts

Dick agreed with expert for 97% of parts

Harry agreed with 28/30 parts (93%)

Low within appraiser scores indicates need to help appraisers reach consistent decisions.

Low appraiser vs.
standard scores
indicates need to
provide better
operational definitions
on acceptability criteria
of product/service

12

MAN 3520 Six Sigma: Fall 2020 Weeks 9 & 10