Listas de Vibrações

Victor Locatelli

19 de abril de 2020

Equações:

$$\zeta = \frac{c}{c} \tag{1}$$

$$c_c = 2m\sqrt{\frac{k}{m}} = 2\sqrt{km} = 2m\omega_n$$

$$x_t = A_1 e^{\lambda_1 t} + A_2 e^{\lambda_2 t} \tag{3}$$

Em que λ_1 e λ_2 são calculados com a equação 4 abaixo:

$$\lambda_{1,2} = \omega_n \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right) \tag{4}$$

Ou ainda da forma expandida:

$$x_t = A_1 e^{\left[\omega_n(-\zeta + \sqrt{\zeta^2 - 1})\right]t} + A_2 e^{\left[\omega_n(-\zeta - \sqrt{\zeta^2 - 1})\right]t} \tag{5}$$

- Sistema Superamortecido: $\zeta > 1$
- Sistema criticamente amortecido: $\zeta = 1$
- Sistema sub-amortecido: $\zeta < 1$

Lista 6

Questão 3.9 — A massa do sistema mostrado na figura é liberada a partir do repouso em $x_0 = 125 \,\mathrm{mm}$, quando t=0. Determine o deslocamento x em $t = 0.65 \,\mathrm{s}$ se $c = 300 \,\mathrm{N}\,\mathrm{s/m}$.

Resolução:

Cálculo de c_c e ζ :

Substituindo a equação (2) em (1), temos:

$$\zeta = \frac{c}{2 \cdot \sqrt{k \cdot m}} = \frac{300}{2 \cdot \sqrt{200 \cdot 50}} = 1,5$$

 $\zeta > 1$ constitui um sistema supercrítico.

Cálculo de ω_n :

$$\omega_n = \sqrt{\frac{k}{m}} = \sqrt{\frac{200}{50}} = 2 \, \text{rad/s}$$

Cálculo de λ_1 e λ_2 : da equação 4, temos:

$$\lambda_1 = 2 \cdot (-1, 5 + \sqrt{1, 5^2 - 1}) = -0, 76$$

$$\lambda_2 = 2 \cdot (-1, 5 - \sqrt{1, 5^2 - 1}) = -5, 23$$

(2) Temos então a equação 3 na forma:

$$x_t = A_1 e^{-0.76t} + A_2 e^{-5.23t}$$

Encontrar os valores de A_1 e A_2 :

Derivando x_t , obtemos a equação da velocidade \dot{x}_t :

$$\dot{x}_t = -0.76A_1e^{-0.76t} - 5.23A_2e^{-5.23t}$$

Substituindo t = 0 na equação da posição, temos:

$$x_0 = A_1 e^0 + A_2 e^0 \rightarrow x_0 = A_1 + A_2$$

Do enunciado, temos que $x_0 = 125\,\mathrm{mm}$, obtendo

$$125 \,\mathrm{mm} = A_1 + A_2$$

Substituindo t = 0 na equação da velocidade:

$$\dot{x}_0 = -0,76A_1 - 5,23A_2 = 0$$

Como a velocidade $\dot{x}_0 = 0$ no instante t = 0, temos:

$$0,76A_1 = 5,23A_2 \rightarrow A_1 = -6,88A_2$$

Com isso, podemos substituir A_1 na equação da posição, obtendo:

$$125 = -6,88A_2 + A_2 \rightarrow A_2 = -21,26 \,\mathrm{mm}$$

Com A_2 determinado, encontramos A_1 substituindo em $125 = A_1 + A_2$:

$$A_1 = 125 - (-21, 26) \rightarrow A_1 = 146, 26 \,\mathrm{mm}$$

A equação da posição completa será então:

$$x_t = 146,26e^{-0.76t} - 21,26e^{-5.23t}$$

Para $t = 0.65 \,\mathrm{s}$, temos:

$$x_{0.65} = 146,26e^{-0.76 \cdot 0.65} - 21,26e^{-5.23 \cdot 0.65}$$

$$x_{0.65} = 88,53 \,\mathrm{mm}$$