ME6406 Machine Vision

Professor Kok-Meng Lee

Georgia Institute of Technology
George W. Woodruff School of Mechanical Engineering
Atlanta, GA 30332-0405
Email: kokmeng.lee@me.gatech.edu

Part 3A Camera model and calibration

http://kmlee.gatech.edu/me6406

1

Course Outline

- · Introduction and low-level processing
 - Physics of digital images, histogram equalization, segmentation, edge detection, linear filters.
- · Model-based Vision
 - Hough transform, pattern representation, matching
- · Geometric methods
 - Camera model, calibration, pose estimation
- · Neural network for machine vision
 - Basics, training algorithms, and applications
- Color images and selected topics
 - Physics, perception, processing and applications

Kok-Meng Lee (Georgia Tech)

2

http://kmlee.gatech.edu/me6406

Reading Materials:

5. Tsai, R. "A Versatile Camera Calibration Technique for High-accuracy 3D Machine Vision Metrology using Off-the-shelf TV Cameras and Lenses," IEEE Trans. on Robotics and Automation, Vol. 3, No.4, August 1987, pp: 323-344

Kok-Meng Lee (Georgia Tech)

□ Reasons for Camera Calibration

- Need to recover 3D quantitative measures about the observed scene from 2D images.
- Model and predict the performance or accuracy of any machine vision algorithms
- Determine the camera location relative to the calibration board (or the working plane)
- Basis for other calibration; robot kinematics, hand-eye relationship, geometric calibrations.

□ Definition

- The problem of determining the elements that govern the relationship or transformation between the 2D image that a camera sees and the 3D of the observed scene.
- Two kinds of parameters defining this 2D/3D relationship:
 - Intrinsic
 - Extrinsic

Kok-Meng Lee (Georgia Tech)

□ Intrinsic parameters

- Parameters that characterize the inherent geometric properties of the camera and optics:
 - Image center
 - Image X and Y scale factors
 - Lens principal distance (effective focus length)
 - Lens distortion coefficients

□ Externsic parameters

- Parameters that indicates the position and orientation of the camera with respect to the world coordinate system:
 - Translation $(T_x, T_y \text{ and } T_z)$
 - Rotation about X, Y and Z axes.

Kok-Meng Lee (Georgia Tech)

9

	Tsai Camera Model (Step 4 example	e)
	Table 2 Camera Sensor and Variables, Definitions, and Values	
Variable	Definition	Value
dx	Center to center distance between adjacent sensor elements in the x scanline	11.6 µm
dy	Center to center distance between adjacent sensor elements in the y scanline	13.6 µm
N _{cx}	Number of sensor elements in the x direction	768 pixels
N_{cy}	Number of sensor elements in y direction	484 pixels
N_{fx}	Number of pixels in a line as sampled by the computer	512 pixels
N_{fy}	Number of rows (sensor elements plus blank rows) in y direction	512 pixels
C_{x}	Camera center x-coordinate taken to be the center of the camera sensor	768/2 = 384 pixels
Cy	Camera center y-coordinates taken to be the center of the camera sensor	484/2 = 242 pixels
W_x	X-coordinate of top-left window element defined by user	varies
Wy	Y-coordinate of top-left window element defined by user	varies
CCD CMC	Camera NTSC signal Digitizing S 000000	Monitor display

Tai	ble 1 PULNIX Camera Properties				
Imager	2/3 inch progressive scanning interline transfer CCD				
No. Pixels	768 (H) x 484 (V)				
Cell Size	11.6 μm x 13.6 μm progressive scanning				
Scanning	525 lines, 30 Hz or 60 Hz 2:1 interlace				
	Internal/External autoswitch				
Sync	HD/VD 4.0 ∀p-p impedance 4.7 kΩ				
	VD=interlace/non-interlace, HD=15.734 kHz+/- 5%				
Dataclock Output	14.31818 MHz				
TV Resolution	470 (H) x 484 (V) analog				
1 v Resolution	760(H) x 484 (V) digital sampling				
S/N Ratio	50 dB min. (AGC=off)				
Min. Illumination	10.0 lux. f=1.4 (no shutter)				
wiii. muiimatton	sensitivity 10 μV/e-				
Size (WxHxL)	46 x 51 x 171.7 mm				
Size (WATIAL)	1.81 x 2.0 x 6.766 inches				
Weight	225 grams (4.3 oz)				
Power Requirement	12 V DC 500 mA				
Lens Mount	C Mount				
Gamma	0.45 or 1.0 (0.45) std				
Operating Temperature	-10° C to 50° C				

1a) Solve for five parameters:

$$r_{11}/T_{v}$$
, r_{21}/T_{v} , r_{12}/T_{v} , r_{22}/T_{v} , T_{x}/T_{v}

Assumption 2: xy plane // uv plane,

$$xv_d - yu_d = 0 (1)$$

From Camera Model **Step 1**:

Substituting (2) into (1):

$$(r_{11}X + r_{12}Y + r_{13}Z + T_x)v_d - (r_{21}X + r_{22}Y + r_{23}Z + T_y)u_d = 0$$

25

Two-stage approach (Stage 1a)

1a) Solve for five parameters:

$$r_{11}/T_y$$
, r_{21}/T_y , r_{12}/T_y , r_{22}/T_y , T_x/T_y

$$(r_{11}X_i + r_{12}Y_i + T_x)v_{di} - (r_{21}X_i + r_{22}Y_i + T_y)u_{di} = 0$$

$$\begin{bmatrix}
A \\
r_{11} \\
r_{12} \\
r_{21} \\
r_{22} \\
T_{x} \\
T_{y}
\end{bmatrix} = 0$$

6 unknowns: r_{11} , r_{12} , r_{21} , r_{22} , T_{x} , T_{y} Homogeneous equation: $[A]x^* = 0$

For calibration, over-determined system $n \ge 6$ (trivial solutions, $\mathbf{x}^* = 0$)

26

Two-stage approach (Stage 1a)

1a) Solve for five parameters using least square (pseudo-inverse): $\mu_1 = \mu_{11} = r_{11}/T_v$; $\mu_2 = \mu_{12} = r_{12}/T_v$; $\mu_3 = \mu_{21} = r_{21}/T_v$; $\mu_4 = \mu_{22} = r_{22}/T_v$;

$$\left[X_i\left(\frac{r_{11}}{T_y}\right) + Y_i\left(\frac{r_{12}}{T_y}\right) + \left(\frac{T_x}{T_y}\right)\right]v_{di} - \left[X_i\left(\frac{r_{21}}{T_y}\right) + Y_i\left(\frac{r_{22}}{T_y}\right) + 1\right]u_{di} = 0$$

28

Two-stage approach (Stage 1b, 1c)

Given $\mu_{ij} = \frac{r_{ij}}{T_{v_i}}$ (i, j=1,2) and $\mu_5 = \frac{T_{v_i}}{T_{v_i}}$

From pseudoinverse solutions to $\mu_1 = \mu_{11y}$; $\mu_2 = \mu_{12}$;

 $\mu_3 = \mu_{21}; \mu_4 = \mu_{22}$

$$\begin{bmatrix} \mathbf{R} \end{bmatrix} = \begin{bmatrix} \mu_{11} T_y & \mu_{12} T_y & r_{13} \\ \mu_{21} T_y & \mu_{22} T_y & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \alpha^{\mathsf{T}} \quad \boldsymbol{\alpha} = \begin{bmatrix} \mu_{11} T_y \\ \mu_{12} T_y \\ r_{13} \end{bmatrix}, \, \boldsymbol{\beta} = \begin{bmatrix} \mu_{21} T_y \\ \mu_{22} T_y \\ r_{23} \end{bmatrix}$$

Find T_{ij} using the orthogonality of [R]

$$\alpha \cdot \beta = 0$$

$$\alpha \cdot \alpha = 1 \Rightarrow r_{13}^2 = 1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2 \right)$$

$$\alpha \bullet \alpha = 1 \Rightarrow r_{13}^{2} = 1 - T_{y}^{2} \left(\mu_{11}^{2} + \mu_{12}^{2} \right) \qquad \begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix} \times \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix}$$

$$\beta \bullet \beta = 1 \Rightarrow r_{23}^{2} = 1 - T_{y}^{2} \left(\mu_{21}^{2} + \mu_{22}^{2} \right) \qquad \begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \end{bmatrix} \times \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix}$$

29

Two-stage approach (Stage 1b, 1c)

Find T_{ν} using the orthogonally of [R]

$$\mathbf{\alpha} = \begin{bmatrix} \mu_{11} T_y \\ \mu_{12} T_y \\ r_{13} \end{bmatrix}, \mathbf{\beta} = \begin{bmatrix} \mu_{21} T_y \\ \mu_{22} T_y \\ r_{23} \end{bmatrix} \qquad \mathbf{\alpha} \cdot \mathbf{\beta} = 0$$

$$T_y^2 \mu_{11} \mu_{21} + T_y^2 \mu_{12} \mu_{22} + r_{13} r_{23} = 0$$
To avoid square roots,

To avoid square roots, $\mathbf{α} \cdot \mathbf{α} = 1 \Rightarrow r_{13}^2 = 1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2\right)$ $\mathbf{β} \cdot \mathbf{β} = 1 \Rightarrow r_{23}^2 = 1 - T_y^2 \left(\mu_{21}^2 + \mu_{22}^2\right)$ $T_y^4 \left[(\mu_{11}\mu_{21} + \mu_{12}\mu_{22})^2 = \left[-r_{13}r_{23} \right]^2$ $T_y^4 \left[(\mu_{11}\mu_{21} + \mu_{12}\mu_{22})^2 + (\mu_{12}\mu_{22}) + (\mu_{12}\mu_{22})^2 \right] = \left[1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2\right) \right] \left[1 - T_y^2 \left(\mu_{21}^2 + \mu_{22}^2\right) \right]$ $= 1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2 + \mu_{21}^2 + \mu_{22}^2\right) + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{22}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{22}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{22}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{22}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{12}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{12}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{12}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{12}^2\right)$ $= 1 - T_y^2 U + T_y^4 \left(\mu_{11}^2 + \mu_{12}^2\right) \left(\mu_{21}^2 + \mu_{22}^2\right)$

Two-stage approach (Stage 1(b, c)

Find T_n using the orthogonality of [R]

 $\alpha \cdot \beta = 0$ Solve for T_{α}^2

 $\alpha \cdot \alpha = 1 \Rightarrow r_{13}^2 = 1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2 \right)$ $\beta \cdot \beta = 1 \Rightarrow r_{23}^2 = 1 - T_y^2 \left(\mu_{21}^2 + \mu_{22}^2 \right)$ Solve for r_{13}^2 and r_{23}^2

Image plane

Multiple "±" solutions exist!

T_v may be positive or negative but

- 1) the image and object are in the same quadrant; and
- f and T_z are positive (based on the definition and the fact that object is in front of the camera.

30

Kok-Meng Lee (Georgia Tech)

Two-stage approach (Stage 1b)

Find T_{ij} using the orthogonally of [R]

 $T_{\nu}^{4} \left[2(\mu_{11}\mu_{21})(\mu_{12}\mu_{22}) \right] = 1 - T_{\nu}^{2}U + T_{\nu}^{4}(\mu_{11}^{2}\mu_{22}^{2} + \mu_{12}^{2}\mu_{21}^{2})$

 $T_{y}^{4} \left[\mu_{11}^{2} \mu_{22}^{2} - 2(\mu_{11}\mu_{21})(\mu_{12}\mu_{22}) + \mu_{12}^{2} \mu_{21}^{2} \right] - UT_{y}^{2} + 1 = 0$ $(\mu_{11}\mu_{22} - \mu_{12}\mu_{21})^{2}$

 $(\mu_1 \mu_4 - \mu_2 \mu_3)^2 T_v^4 - U T_v^2 + 1 = 0$

From pseudoinverse solutions to Stage 1a): $\mu_1 = \mu_{11y}; \ \mu_2 = \mu_{12};$

 $\mu_3 = \mu_{21}; \mu_4 = \mu_{22}$

Only the negative sign is relevant. Proof is given in Tsai' paper (Appendix)

32

Two-stage approach (Stage 1b)

Let
$$T_y = (T_y^2)^{1/2}$$
 then $r_{ij} = \mu_{ij}T_y$ (i, j=1,2) and $T_x = \mu_5T_y$

To determine the sign of $T_{\nu\nu}$ select one object point $P(X_0, Y_0, 0)$:

$$\begin{bmatrix} \xi_{x} \\ \xi_{y} \end{bmatrix} = \begin{bmatrix} r_{11}X_{o} + r_{12}Y_{o} + T_{x} \\ r_{21}X_{o} + r_{22}Y_{o} + T_{y} \end{bmatrix}$$

 $\begin{bmatrix} \xi_x \\ \xi_y \end{bmatrix} = \begin{bmatrix} r_{11}X_o + r_{12}Y_o + T_x \\ r_{21}X_o + r_{22}Y_o + T_y \end{bmatrix}$ If (ξ_x, ξ_y) have the sign as (u_{do}, v_{do}) , then T_y has the correct sign. Otherwise, negate it.

33

Summary of Stage 1

1a) Calculate T_v^2

1b) Let $T_y = (T_y^2)^{1/2}$ Determine the sign of T_y

$$\begin{bmatrix} \boldsymbol{\xi}_x \\ \boldsymbol{\xi}_y \end{bmatrix} = \begin{bmatrix} r_{11} \boldsymbol{X}_o + r_{12} \boldsymbol{Y}_o + T_x \\ r_{21} \boldsymbol{X}_o + r_{22} \boldsymbol{Y}_o + T_y \end{bmatrix} \quad \begin{array}{l} \text{If } (\boldsymbol{\xi}_{x'}, \boldsymbol{\xi}_y) \text{ have the sign as } (\boldsymbol{u}_{do'}, \boldsymbol{v}_{do}), \text{ then } T_y \\ \text{has the correct sign.} \\ \text{Otherwise, negate it.} \end{array}$$

1c) Check $sgn(r_{11}r_{21} + r_{12}r_{22}) = negative$

Choose $s_1 = s_2 = +1$: If yes, keep the signs; otherwise $s_2 = -1$.

$$r_{13} = s_1 \sqrt{1 - T_y^2 \left(\mu_{11}^2 + \mu_{12}^2\right)}$$
 $r_{23} = s_2 \sqrt{1 - T_y^2 \left(\mu_{21}^2 + \mu_{22}^2\right)}$

Note: The signs of (s_1, s_2) and all associated signs may need to be adjusted after computing f and T_r , which must be positive; two other possibilities: $s_1 = s_2 = -1 \text{ or } s_1 = -s_2 = -1$).

Calculate $\gamma = \alpha \times \beta$ where $\gamma = \begin{bmatrix} r_{31} & r_{32} & r_{33} \end{bmatrix}^T$

Kok-Meng Lee (Georgia Tech)

Two-stage approach (Stage 1c)

The unknown signs s_1 and s_2 are determined 1c) Solve for [R] T_x , T_y from the orthogonal property of [R].

$$\begin{bmatrix} \mathbf{R} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & s_1 \sqrt{1 - r_{11}^2 - r_{12}^2} \\ r_{21} & r_{22} & s_2 \sqrt{1 - r_{21}^2 - r_{22}^2} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \qquad (\boldsymbol{\alpha} \cdot \boldsymbol{\beta} =) \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\beta} = 0
\Rightarrow \begin{bmatrix} r_{11} & r_{12} & r_{13} \end{bmatrix} \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \end{bmatrix} = 0$$

$$\Rightarrow \underbrace{(r_{11}r_{21} + r_{12}r_{22}) + s_1 s_2}_{} \sqrt{1 - r_{11}^2 - r_{12}^2} \sqrt{1 - r_{21}^2 - r_{22}^2} = 0$$

The two factors, a and b, must be equal and opposite.

Thus, choose $s_1 = s_2 = +1$, check $sgn(r_{11}r_{21} + r_{12}r_{22}) = negative$ If yes, keep the signs; otherwise $s_2 = -1$.

Kok-Meng Lee (Georgia Tech)

34

Two-stage approach (Stage 2)

Stage 2: Perspective Constraint

Given [R] T_{y} , T_{y} solve for f, k, T_{z}

Recall Camera Model Step 1 and Steps 2 and 3:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} T_x \\ T_y \\ T_z \end{pmatrix} \Rightarrow \frac{x_i}{z_i} = \frac{r_{11}X_i + r_{12}Y_i + T_x}{r_{31}X_i + r_{32}Y_i + T_z}$$

Z=0 (2D board)

$$u = f \frac{x}{z}$$

$$u = \frac{u_d}{(1 + k_1 r_d^2)}$$
Eliminating u,
$$u_d = f(1 + k_1 r_d^2) \frac{r_{11} X_i + r_{12} Y_i + T_x}{r_{31} X_i + r_{32} Y_i + T_z}$$

Kok-Meng Lee (Georgia Tech

35

Notes on Tsai's Radial lens distortion

If Tsai's model were used, $u_i = u_{di} \left(1 + \kappa_1 r_{di}^2\right)$ Recall Steps 1 and 2 $x_i = r_{11} X_i + r_{12} Y_i + T_x = \text{known}$ $z_i = r_{31} X_i + r_{32} Y_i + T_z$ $u_i = f \frac{x_i}{z_i}$ $u_{di} \left(1 + \kappa_1 r_{di}^2\right) = \frac{x_i}{r_{31} X_i + r_{32} Y_i + T_z}$ $u_{di} \left(r_{31} X_i + r_{32} Y_i + T_z\right) \left(1 + \kappa_1 r_{di}^2\right) = f x_i$ Tsai's model for solving T_{zi} , k_1 and f are non-linear!

Kok-Meng Lee (Georgia Tech)

38

Two-stage approach (Stage 2)

Stage 2: Perspective Constraint

Given [**R**] $T_{x'}$ T_{v} solve for f, k_1 , T_z

$$\begin{bmatrix} x_1 & r_{d1}^2 x_1 & -u_{d1} \\ x_2 & r_{d2}^2 x_2 & -u_2 \\ \vdots & \vdots & \vdots \\ x_n & r_{dn}^2 x_n & -u_{dn} \end{bmatrix} \begin{bmatrix} f \\ f k_1 \\ T_z \end{bmatrix} = \begin{bmatrix} (r_{31} X_1 + r_{32} Y_1) u_{d1} \\ (r_{31} X_2 + r_{32} Y_2) u_{d2} \\ \vdots \\ (r_{31} X_n + r_{32} Y_n) u_{dn} \end{bmatrix}$$

where $x_i = r_{11}X_i + r_{12}Y_i + T_x$

$$[\mathbf{A}']\mathbf{x}' = \mathbf{b}' \qquad \mathbf{x}' = \mathbf{A}^+\mathbf{b}'$$

Note: The signs of (s_1, s_2) and all associated signs may need to be adjusted after computing f and T, which must be positive.

Kok-Meng Lee (Georgia Tech)

Numerical Example

- † The following Table gives 5 point-correspondences input to the calibration system.
- Φ The units for both the world coordinate system and the u-v image coordinate system are centimeters.
- ♦ Assume that this is no lens distortion, compute (*f*, [**R**], **T**)

	0	bject poin	its	Image	points
i	X_i	Y_i	Z_i	u _i	v_i
1	0.00	5.00	0.00	-0.58	0.00
2	10.00	7.50	0.00	1.73	1.00
3	10.00	5.00	0.00	1.73	0.00
4	5.00	10.00	0.00	0.00	1.00
5	5.00	0.00	0.00	0.00	-1.00

Kok-Meng Lee (Georgia Tech)

41

Numerical Example	points		Object		Im	age
(cont.)	i	X_i	Y_i	Z_i	u_i	v_i
Stage 1: Calculate T	1	0.00	5.00	0.00	-0.58	0.00
Stage 1: Calculate T_y	2	10.00	7.50	0.00	1.73	1.00
	3	10.00	5.00	0.00	1.73	0.00
$U = \sum_{j=1}^{4} \mu_{j}^{2} = 0.0699$	4	5.00	10.00	0.00	0.00	1.00
j=1	5	5.00	0.00	0.00	0.00	-1.00
$T_{y}^{2} = \frac{U - \left[U^{2} - 4(\mu_{1}\mu_{4} - \mu_{2}\mu_{3})^{2}\right]}{2(\mu_{1}\mu_{4} - \mu_{2}\mu_{3})^{2}}$ Try $T_{y} = +5$ $r_{II} = -0.865; r_{I2} = r_{2I} = 0; r_{22} = 0$ Check Point 2: $\xi_{x} = r_{11}X + r_{11}$ $\xi_{y} = r_{21}X + r_{12}$ Wrong sign \Longrightarrow	$=-1; T_x = -1; T_x = -1;$	= 4.325 $= -4.32$ $= -2.5$	225 ₅	$\mathbf{I} = \begin{bmatrix} r_1 1 / T_y \\ r_1 1 / T_y \\ r_2 1 / T_y \\ r_2 1 / T_y \\ r_3 1 / T_y \end{bmatrix}$	$ = \begin{bmatrix} -0.\\ 0.\\ -0.\\ 0.8 \end{bmatrix} $	173 0 0 0 0.2 365
Kok-Meng Lee (Georgia Tech)						43

Numerical Example						
	points		Object	Image		
Stage 1 $[A]\mu = b$	i	X_i	Y_{i}	Z_i	u_i	v_i
	1	0.00	5.00	0.00	-0.58	0.00
$\mathbf{\mu} = \begin{bmatrix} \frac{r_{11}}{T_{}} & \frac{r_{12}}{T_{}} & \frac{r_{21}}{T_{}} & \frac{r_{22}}{T_{}} & \frac{T_{x}}{T_{}} \end{bmatrix}^{T}$	2	10.00	7.50	0.00	1.73	1.00
$\mu = \left \frac{T_{\nu}}{T_{\nu}} \right \frac{T_{\nu}}{T_{\nu}} \left \frac{T_{\nu}}{T_{\nu}} \right $	3	10.00	5.00	0.00	1.73	0.00
	4	5.00	10.00	0.00	0.00	1.00
	5	5.00	0.00	0.00	0.00	-1.00
$a_{i} = \begin{bmatrix} v_{i}X_{i} & v_{i}Y_{i} & -u_{i}X_{i} & -u_{i}Y_{i} & v_{i} \end{bmatrix} $ $\mathbf{A} = \begin{bmatrix} 0 & 0 & 0 & 2.9 & 0 \\ 10 & 7.5 & -17.3 & -12.9 & 1 \\ 0 & 0 & -17.3 & -8.65 & 0 \\ 5 & 10 & 0 & 0 & 1 \\ -5 & 0 & 0 & 0 & -1 \end{bmatrix} \mathbf{b} = \begin{bmatrix} -0.58 \\ 1.73 \\ 1.73 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} = \mathbf{A}^{+}\mathbf{b} = \begin{bmatrix} -0.173 \\ 0 \\ 0 \\ -0.2 \\ 0.865 \end{bmatrix}$						

42

Numerical Example (cont.) $T_{y} = -5 \quad \text{Recalculate} \qquad r_{II} = 0.865; \quad r_{I2} = r_{2I} = 0; \quad r_{22} = 1; \quad T_{x} = -4.325$ $\text{Try } s_{I} = s_{2} = +1 \quad r_{13} = s_{1} \sqrt{1 - r_{11}^{2} - r_{12}^{2}} = 0.5018 \qquad r_{23} = s_{2} \sqrt{1 - r_{21}^{2} - r_{22}^{2}} = 0$ $sign(r_{11}r_{21} + r_{12}r_{22}) = 0 \quad \text{non-positive, OK}$ $\mathbf{\gamma} \qquad \mathbf{\beta} \qquad \mathbf{\beta} \qquad r_{31} = r_{12}r_{23} - r_{13}r_{22} = -0.5018$ $\begin{bmatrix} r_{31} \\ r_{32} \\ r_{33} \end{bmatrix} = \begin{bmatrix} r_{11} \\ r_{12} \\ r_{13} \\ r_{21} \\ r_{22} \\ r_{23} \end{bmatrix} \times \begin{bmatrix} r_{21} \\ r_{22} \\ r_{23} \\ r_{23} \end{bmatrix} = r_{13}r_{21} - r_{11}r_{23} = 0$ $r_{33} = r_{11}r_{22} - r_{12}r_{21} = 0.8650$ $\Rightarrow \mathbf{R} = \begin{bmatrix} 0.865 & 0 & 0.5018 \\ 0 & 1 & 0 \\ -0.5018 & 0 & 0.865 \end{bmatrix}$ Kok-Meng Lee (Georgia Tech)

Numerical	points	Object			Image	
Example	i	X_i	Y_i	Z_i	u_i	v_i
cont.)	1	0.00	5.00	0.00	-0.58	0.00
,	2	10.00	7.50	0.00	1.73	1.00
Stage 2	3	10.00	5.00	0.00	1.73	0.00
· · · · · · · · · · · · · · · · · · ·	4	5.00	10.00	0.00	0.00	1.00
	5	5.00	0.00	0.00	0.00	-1.00
Solving for the unknow	vn <i>x'</i> ,	[A	$[T] \begin{bmatrix} J \\ T \end{bmatrix}$	$=\mathbf{b}'$		
			$\underbrace{\sum_{\mathbf{x}'}^{1}}_{\mathbf{x}'}$			325

Simplified for Stage 1a)

1a) Similarly, solve for r_{12}/T_{11} , r_{22}/T_{11}

 Φ Appropriately position the camera relative to the calibration such that $T_u > 0$ and $T_v/T_u = \rho$.

◆ Select points on the x-axis of the 2D calibration board, X=Z=0.

$$\begin{split} & \text{Let } a_{i1} = X_i v_{di}; \ \, a_{i2} = X_i u_{di}; \ \, \text{and } b_i = u_{di} - \rho v_{di} \\ & \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix} = \frac{1}{\det \left| \mathbf{A} \right|} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \\ & \text{where } \det \left| \mathbf{A} \right| = a_{11} a_{22} - a_{12} a_{21} \end{split}$$

$$\begin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix} = \frac{1}{X_1 v_{d1} X_2 u_{d2} - X_1 u_{d1} X_2 v_{d2}} \begin{bmatrix} X_2 u_{d2} & -X_1 u_{d1} \\ -X_2 v_{d2} & X_1 v_{d1} \end{bmatrix} \begin{bmatrix} u_{d1} - \rho v_{d1} \\ u_{d2} - \rho v_{d2} \end{bmatrix}$$

Simplified for Stage 1a)

1a) Solve for two parameters: r_{11}/T_{yy} r_{21}/T_{yy}

 Φ Appropriately position the camera relative to the calibration such that $T_v > 0$ and $T_v/T_v = \rho$.

♦ Select points on the x-axis of the 2D calibration board, Y=Z=0.

 $(r_{11}X_i + v_{12}Y_i + r_{13}Z_i + T_x)v_{di} - (r_{21}X_i + r_{22}Y_i + r_{23}Z_i + T_y)u_{di} = 0$

$$X_{i}v_{di}\left(\frac{r_{11}}{T_{y}}\right) + v_{di}\left(\frac{T_{x}}{T_{y}}\right) - X_{i}u_{di}\left(\frac{r_{21}}{T_{y}}\right) - u_{di} = 0$$

$$\begin{bmatrix} X_i v_{di} & -X_i u_{di} \end{bmatrix} \begin{bmatrix} \mu_1 \\ \mu_3 \end{bmatrix} = u_{di} - \rho v_{di}$$

54

Simplified for Stage 1a)

1a) Similarly, solve for r_{12}/T_{11} , r_{22}/T_{11}

- Appropriately position the camera relative to the calibration such that $T_y > 0$ and $T_y/T_y = \rho$.
- ◆ Select points on the x-axis of the 2D calibration board, X=Z=0.

$$(r_{11}X_j + r_{12}Y_j + r_{13}Z + T_x)v_{di} - (r_{21}X_j + r_{22}Y_j + r_{23}Z_j + T_y)u_{di} = 0$$

$$V_{j}v_{dj}\left(\frac{r_{12}}{T_{y}}\right) + v_{dj}\left(\frac{T_{x}}{T_{y}}\right) - Y_{j}u_{dj}\left(\frac{r_{22}}{T_{y}}\right) - u_{dj} = 0 \qquad \left[Y_{j}v_{dj} - Y_{j}u_{dj}\right]\begin{bmatrix}\mu_{2}\\\mu_{4}\end{bmatrix} = u_{dj} - \rho v_{dj}$$

$$\begin{bmatrix} \mu_2 \\ \mu_4 \end{bmatrix} = \frac{1}{Y_3 v_{d3} Y_4 u_{d4} - Y_3 u_{d3} Y_4 v_{d4}} \begin{bmatrix} Y_4 u_{d4} & -Y_3 u_{d3} \\ -Y_4 v_{d4} & Y_3 v_{d3} \end{bmatrix} \begin{bmatrix} u_{d3} - \rho v_{d3} \\ u_{d4} - \rho v_{d4} \end{bmatrix}$$

55