EE2000 Logic Circuit Design

Lecture 9 – Sequential Logic Circuit Design

Examples (Mealy or Moore?)

Other FFs

State diagram

Characteristic equation

$$Q_t^* = D$$

Example (Sequence Detector)

Design a Moore machine to detect the sequence "111" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least three consecutive clock times.

х	0	1	1	0	1	1	1	0	1	1	1	1	1	0
\boldsymbol{Z}	0	0	0	0	0	0	0	1	0	0	0	1	1	1

Question: How about no overlapping is allowed?

x	1	1	1	1	1	0
\boldsymbol{Z}	0	0	0	1	0	0

Example (Sequence Detector)

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	0	1	0	0	0	1	1	1

STEP 1: Determine what needs to be stored in memory and how to store them.

A: Input is '0'

B: one '1' is detected

C: two '1's are detected

D: three '1's are detected and output 1

Example (Sequence Detector)

STEP 2: Work out the State Diagram

x	1	1	1	1	1	1	0
Z	0	0	0	1	0	0	1

A: Input is '0'

B: one '1' is detected

C: two '1's are detected

D: three '1's are detected and output 1

Question: How can we change the diagram if no overlapping is allowed?

$$Q_1^* = D_1 = Q_1Q_2 + xQ_1'$$

 $Q_2^* = D_2 = Q_1'Q_2' + xQ_1$

Present State	Inp	ut X
$Q_1 Q_2$	0	1
(0 0)	(0 1)	(1 1)
(0 1)	(0 1) (0 0) (0 0)	(1 0)
(1 0)	(0 0)	(0 1)
(1 1)	(1 0)	(1 1)

Design a Mealy machine to detect the sequence "111" (Overlapping)

In other words,

Design a system with one input x and one output z such that z = 1 if x has been 1 for at least three consecutive clock times.

х	0	1	1	0	1	1	1	0	1	1	1	1	1	0
\boldsymbol{Z}	0	0	0	0	0	0	1	0	0	0	1	1	1	0

x	0	1	1	0	1	1	1	0	1	1	1	1	1	0
Z	0	0	0	0	0	0	1	0	0	0	1	1	1	0

STEP 1: Determine what needs to be stored in memory and how to store them.

A: input is '0' *if next input is 0, remains at A else B

B: one '1' is detected *if next input is 0, back to A else C

C: two '1's are detected

* if next input is 0, back to A and output '0', else remains at C and output '1'

STEP 2: Work out the State Diagram

A: Input is '0' *if next input is 0, remains at A else B

B: one '1' is detected *if next input is 0, back to A else C

C: two '1's are detected

* if next input is 0, back to A and output '0', else remains at C and output '1'

STEP 3: Work out the analysis table with assigned FFs
3 states → 2 FFs (We use D-FFs in this example)

Present	Input	Next	stage	Present
State (Q_1Q_2)	X	$\boldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	1	0
(10)	Х	х	х	х
C (1 1)	0	0	0	0
C (1 1)	1	1	1	1

Assign State A:

 $Q_1 \rightarrow 0$ and $Q_2 \rightarrow 0$ etc

STEP 4: Work out D_1 and D_2

Present	Input	Next	stage	Present
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	1	0
(10)	х	х	Х	х
C (1 1)	0	0	0	0
C (1 1)	1	1	1	1

STEP 5: Work out *z*

Present	Input	Next	stage	Present
State (Q_1Q_2)	X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	Output Z
A (0 0)	0	0	0	0
A (0 0)	1	0	1	0
B (0 1)	0	0	0	0
B (0 1)	1	1	1	0
(10)	х	х	X	х
C (1 1)	0	0	0	0
C (1 1)	1	1	1	1

$$z = xQ_1$$

STEP 6: Draw the sequential logic circuits

$$D_1 = xQ_2$$

$$D_2 = x$$

$$z = xQ_1$$

Use T FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Innut V	Next	stage	Flip-	Flops	Dragget Output 7
(Q_1Q_2)	Input X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	T_1	T_2	Present Output Z
A (0 0)	0	0	0			0
A (0 0)	1	0	1			0
B (0 1)	0	0	0			0
B (0 1)	1	1	1			0
(10)	х	х	X			x
C (1 1)	0	0	0			0
C (1 1)	1	1	1			1

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

Use T FFs to design a Mealy machine to detect the sequence "111" (Overlapping)

Present State	Innut V	Next	stage	Flip-	Flops	Drosent Output 7
(Q_1Q_2)	Input X	$oldsymbol{Q_1^*}$	$\boldsymbol{Q_2^*}$	T_1	T_2	Present Output Z
A (0 0)	0	0	0	0	0	0
A (0 0)	1	0	1	0	1	0
B (O 1)	0	0	0	0	1	0
B (O 1)	1	1	1	1	0	0
(10)	х	х	X	х	х	x
C (1 1)	0	0	0	1	1	0
C (1 1)	1	1	1	0	0	1

T	Q_{t+1}	$\overline{Q_{t+1}}$	State
0	Q_t	$\overline{Q_t}$	Hold
1	$\overline{Q_t}$	Q_t	Toggle

Present State	Inner t V	Flip-Flops		
(Q_1Q_2)	Input X	T_1	T_2	
A (0 0)	0	0	0	
A (0 0)	1	0	1	
B (O 1)	0	0	1	
B (O 1)	1	1	0	
(10)	x	х	х	
C (1 1)	0	1	1	
C (1 1)	1	0	0	

Exercise (Timing Diagram)

 $z = xQ_1$

Present State	Input X		Present
	0	1	Output Z
А	I	С	0
В	В	I	0
С	С	G	0
D	I	С	1
E	D	Ε	1
F	I	С	1
G	Е	F	1
н	Н	Α	0
I	Α	С	0

Reduce the state table using partitioning method

$$P_0 = (A B C D E F G H I)$$

Group states based on same output

Present State	Input X		Present	
	0	1	Output Z	
А	I	С	0	
В	В	I	0	
С	С	G	0	
н	Н	Α	0	
I	Α	С	0	
D	I	С	1	
E	D	Е	1	
F	ı	С	1	
G	Е	F	1	

Reduce the state table using partitioning method

$$P_1 = (A B C H I)(D E F G)$$

A B C H I \rightarrow Output 0

DEFG \rightarrow Output 1

Present State	Inp	ut X	Present
	0	1	Output Z
А	I	С	0
В	В	I	0
н	Н	Α	0
I	Α	С	0
С	С	G	0
D	I	С	1
F	I	С	1
E	D	Е	1
G	Е	F	1

Reduce the state table using partitioning method

$$P_2 = (A B H I)(C)(D F)(E G)$$

Present State	Input X		Present
	0	1	Output Z
А	I	С	0
I	Α	С	0
В	В	I	0
Н	Н	Α	0
С	С	G	0
D	I	С	1
F	I	С	1
E	D	Е	1
G	Е	F	1

Reduce the state table using partitioning method

$$P_3 = (A I)(B H)(C)(D F)(E)(G)$$

Present State	Input X		Present
	0	1	Output Z
A = I	Α	С	0
B = H	В	Α	0
С	С	G	0
D = F	Α	С	1
E	D	Ε	1
G	Е	D	1

Reduce the state table using partitioning method

$$P_3 = (A I)(B H)(C)(D F)(E)(G)$$