

Monodromy Groups associated to Non-Isotrivial Drinfeld Modules in Generic Characteristic

Florian Breuer* Richard Pink**

February 1, 2008

Abstract

Let φ be a non-isotrivial family of Drinfeld A -modules of rank r in generic characteristic with a suitable level structure over a connected smooth algebraic variety X . Suppose that the endomorphism ring of φ is equal to A . Then we show that the closure of the analytic fundamental group of X in $\mathrm{SL}_r(\mathbb{A}_F^f)$ is open, where \mathbb{A}_F^f denotes the ring of finite adèles of the quotient field F of A .

From this we deduce two further results: (1) If X is defined over a finitely generated field extension of F , the image of the arithmetic étale fundamental group of X on the adèlic Tate module of φ is open in $\mathrm{GL}_r(\mathbb{A}_F^f)$. (2) Let ψ be a Drinfeld A -module of rank r defined over a finitely generated field extension of F , and suppose that ψ cannot be defined over a finite extension of F . Suppose again that the endomorphism ring of ψ is A . Then the image of the Galois representation on the adèlic Tate module of ψ is open in $\mathrm{GL}_r(\mathbb{A}_F^f)$.

Finally, we extend the above results to the case of arbitrary endomorphism rings.

Mathematics Subject Classification: 11F80, 11G09, 14D05.

Keywords: Drinfeld modules, Drinfeld moduli spaces, Fundamental groups, Galois representations.

1 Analytic monodromy groups

Let \mathbb{F}_p be the finite prime field with p elements. Let F be a finitely generated field of transcendence degree 1 over \mathbb{F}_p . Let A be the ring of elements of F which are regular outside a fixed place ∞ of F . Let M be the fine moduli space over F of Drinfeld A -modules of rank r with some sufficiently high level structure. This is a smooth affine scheme of dimension $r - 1$ over F .

Let F_∞ denote the completion of F at ∞ , and \mathbb{C} the completion of an algebraic closure of F_∞ . Then the rigid analytic variety $M_{\mathbb{C}}^{\mathrm{an}}$ is a finite disjoint union of spaces of the form $\Delta \backslash \Omega$, where $\Omega \subset (\mathbb{P}_{\mathbb{C}}^{r-1})^{\mathrm{an}}$ is Drinfeld's upper half space and Δ is a congruence subgroup of $\mathrm{SL}_r(F)$ commensurable with $\mathrm{SL}_r(A)$.

Let $X_{\mathbb{C}}$ be a smooth irreducible locally closed algebraic subvariety of $M_{\mathbb{C}}$. Then $X_{\mathbb{C}}^{\mathrm{an}}$ lies in one of the components $\Delta \backslash \Omega$ of $M_{\mathbb{C}}^{\mathrm{an}}$. Fix an irreducible component $\Xi \subset \Omega$ of the pre-image of $X_{\mathbb{C}}^{\mathrm{an}}$. Then $\Xi \rightarrow X_{\mathbb{C}}^{\mathrm{an}}$ is an unramified Galois covering with Galois group $\Delta_\Xi := \mathrm{Stab}_\Delta(\Xi)$.

Let φ denote the family of Drinfeld modules over $X_{\mathbb{C}}$ determined by the embedding $X_{\mathbb{C}} \subset M_{\mathbb{C}}$. We assume that $\dim X_{\mathbb{C}} \geq 1$. Since M is a fine moduli space, this means that φ is non-isotrivial. It also implies that $r \geq 2$. Let $\eta_{\mathbb{C}}$ be the generic point of $X_{\mathbb{C}}$ and $\bar{\eta}_{\mathbb{C}}$ a geometric point above it. Let $\varphi_{\bar{\eta}_{\mathbb{C}}}$ denote the pullback of φ to $\bar{\eta}_{\mathbb{C}}$. Let \mathbb{A}_F^f denote the ring of finite adèles of F . The main result of this article is the following:

*Dept. of Mathematics, University of Stellenbosch, Stellenbosch 7600, South Africa, flo@math.jussieu.fr

**Dept. of Mathematics, ETH Zentrum, 8092 Zürich, Switzerland, pink@math.ethz.ch

Theorem 1.1 *In the above situation, if $\text{End}_{\bar{\eta}_C}(\varphi_{\bar{\eta}_C}) = A$, then the closure of Δ_Ξ in $\text{SL}_r(\mathbb{A}_F^f)$ is an open subgroup of $\text{SL}_r(\mathbb{A}_F^f)$.*

The proof uses known results on the p -adic Galois representations associated to Drinfeld modules [9] and on strong approximation [11].

Theorem 1.1 leaves open the following natural question:

Question 1.2 *If $\text{End}_{\bar{\eta}_C}(\varphi_{\bar{\eta}_C}) = A$, is Δ_Ξ an arithmetic subgroup of $\text{SL}_r(F)$?*

Theorem 1.1 has applications to the analogue of the André-Oort conjecture for Drinfeld moduli spaces: see [3]. Consequences for étale monodromy groups and for Galois representations are explained in Sections 2 and 3. The proof of Theorem 1.1 will be given in Sections 4 through 7. Finally, in Section 8 we outline the case of arbitrary endomorphism rings.

For any variety Y over a field k and any extension field L of k we will abbreviate $Y_L := Y \times_k L$.

2 Étale monodromy groups

We retain the notations from Section 1. Let $k \subset \mathbb{C}$ be a subfield that is finitely generated over F , such that $X_C = X \times_k \mathbb{C}$ for a subvariety $X \subset M_k$. Let K denote the function field of X and K^{sep} a separable closure of K . Then $\eta := \text{Spec } K$ is the generic point of X and $\bar{\eta} := \text{Spec } K^{\text{sep}}$ a geometric point above η . Let k^{sep} be the separable closure of k in K^{sep} . Then we have a short exact sequence of étale fundamental groups

$$1 \longrightarrow \pi_1(X_{k^{\text{sep}}}, \bar{\eta}) \longrightarrow \pi_1(X, \bar{\eta}) \longrightarrow \text{Gal}(k^{\text{sep}}/k) \rightarrow 1.$$

Let $\hat{A} \cong \prod_{p \neq \infty} A_p$ denote the profinite completion of A . Recall that $\mathbb{A}_F^f \cong F \otimes_A \hat{A}$ and contains \hat{A} as an open subring. Let φ_η denote the Drinfeld module over K corresponding to η . Its adèlic Tate module $\hat{T}(\varphi_\eta)$ is a free module of rank r over \hat{A} . Choose a basis and let

$$\rho : \pi_1(X, \bar{\eta}) \longrightarrow \text{GL}_r(\hat{A}) \subset \text{GL}_r(\mathbb{A}_F^f)$$

denote the associated monodromy representation. Let $\Gamma^{\text{geom}} \subset \Gamma \subset \text{GL}_r(\hat{A})$ denote the images of $\pi_1(X_{k^{\text{sep}}}, \bar{\eta}) \subset \pi_1(X, \bar{\eta})$ under ρ .

Lemma 2.1 Γ^{geom} *is the closure of $g^{-1}\Delta_\Xi g$ in $\text{SL}_r(\hat{A})$ for some element $g \in \text{GL}_r(\mathbb{A}_F^f)$.*

Proof. Choose an embedding $K^{\text{sep}} \hookrightarrow \mathbb{C}$ and a point $\xi \in \Xi$ above $\bar{\eta}$. Let $\Lambda \subset F^r$ be the lattice corresponding to the Drinfeld module at ξ . This is a finitely generated projective A -module of rank r . The choice of a basis of $\hat{T}(\varphi_\eta)$ yields a composite embedding

$$\hat{A}^r \cong \hat{T}(\varphi_\eta) \cong \Lambda \otimes_A \hat{A} \hookrightarrow F^r \otimes_A \hat{A} \cong (\mathbb{A}_F^f)^r,$$

which is given by left multiplication with some element $g \in \text{GL}_r(\mathbb{A}_F^f)$. Since the discrete group $\Delta \subset \text{SL}_r(F)$ preserves Λ , we have $g^{-1}\Delta g \subset \text{SL}_r(\hat{A})$.

For any non-zero ideal $\mathfrak{a} \subset A$ let $M(\mathfrak{a})$ denote the moduli space obtained from M by adjoining a full level \mathfrak{a} structure. Then $\pi_{\mathfrak{a}} : M(\mathfrak{a}) \twoheadrightarrow M$ is an étale Galois covering with group contained in $\text{GL}_r(A/\mathfrak{a})$, and one of the connected components of $M(\mathfrak{a})_C^{\text{an}}$ above the connected component $\Delta \setminus \Omega$ of M_C^{an} has the form $\Delta(\mathfrak{a}) \setminus \Omega$ for

$$\Delta(\mathfrak{a}) := \{\delta \in \Delta \mid g^{-1}\delta g \equiv \text{id} \pmod{\mathfrak{a}\hat{A}}\}.$$

Let $X(\mathfrak{a})_{k^{\text{sep}}}$ be any connected component of the inverse image $\pi_{\mathfrak{a}}^{-1}(X_{k^{\text{sep}}}) \subset M(\mathfrak{a})_{k^{\text{sep}}}$. Since k^{sep} is separably closed, the variety $X(\mathfrak{a})_C$ over \mathbb{C} obtained by base change is again connected. The

associated rigid analytic variety $X(\mathfrak{a})_{\mathbb{C}}^{\text{an}}$ is then also connected (cf. [8, Kor. 3.5]) and therefore a connected component of $\pi_{\mathfrak{a}}^{-1}(X_{\mathbb{C}}^{\text{an}})$. But one of these connected components is $(\Delta_{\Xi} \cap \Delta(\mathfrak{a})) \setminus \Xi$, whose Galois group over $X_{\mathbb{C}}^{\text{an}} \cong \Delta_{\Xi} \setminus \Xi$ is $\Delta_{\Xi}/(\Delta_{\Xi} \cap \Delta(\mathfrak{a}))$. This implies that $g^{-1}\Delta_{\Xi}g$ and $\pi_1(X_{k^{\text{sep}}}, \bar{\eta})$ have the same images in $\text{GL}_r(A/\mathfrak{a}) = \text{GL}_r(\hat{A}/\mathfrak{a}\hat{A})$. By taking the inverse limit over the ideal \mathfrak{a} we deduce that the closure of $g^{-1}\Delta_{\Xi}g$ in $\text{SL}_r(\hat{A})$ is Γ^{geom} , as desired. \square

Lemma 2.2 $\text{End}_{K^{\text{sep}}}(\varphi_{\eta}) = \text{End}_{\bar{\eta}_{\mathbb{C}}}(\varphi_{\bar{\eta}_{\mathbb{C}}})$.

Proof. By construction $\bar{\eta}_{\mathbb{C}}$ is a geometric point above η , and $\varphi_{\bar{\eta}_{\mathbb{C}}}$ is the pullback of φ_{η} . Any embedding of K^{sep} into the residue field of $\bar{\eta}_{\mathbb{C}}$ induces a morphism $\bar{\eta}_{\mathbb{C}} \rightarrow \bar{\eta}$. Thus the assertion follows from the fact that for every Drinfeld module over a field, any endomorphism defined over any field extension is already defined over a finite separable extension. \square

Theorem 2.3 *In the above situation, suppose that $\text{End}_{K^{\text{sep}}}(\varphi_{\eta}) = A$. Then*

- (a) Γ^{geom} is an open subgroup of $\text{SL}_r(\mathbb{A}_F^f)$, and
- (b) Γ is an open subgroup of $\text{GL}_r(\mathbb{A}_F^f)$.

Proof. By Lemma 2.2 the assumption implies that $\text{End}_{\bar{\eta}_{\mathbb{C}}}(\varphi_{\bar{\eta}_{\mathbb{C}}}) = A$. Thus part (a) follows at once from Theorem 1.1 and Lemma 2.1. Part (b) follows from (a) and the fact that $\det(\Gamma)$ is open in $\text{GL}_1(\mathbb{A}_F^f)$. This fact is a consequence of work of Drinfeld [4, §8 Thm. 1] and Hayes [6, Thm. 9.2] on the abelian class field theory of F , and of Anderson [1] on the determinant Drinfeld module. Note that Anderson's paper only treats the case $A = \mathbb{F}_q[T]$; the general case has been worked out by van der Heiden [7, Chap. 4]. Compare also [9, Thm. 1.8]. \square

3 Galois groups

Let F and A be as in Section 1. Let K be a finitely generated extension field of F of arbitrary transcendence degree, and let $\psi : A \rightarrow K\{\tau\}$ be a Drinfeld A -module of rank r over K . Let K^{sep} denote the separable closure of K and

$$\sigma : \text{Gal}(K^{\text{sep}}/K) \longrightarrow \text{GL}_r(\mathbb{A}_F^f)$$

the natural representation on the adèlic Tate module of ψ . Let $\Gamma \subset \text{GL}_r(\mathbb{A}_F^f)$ denote its image.

Theorem 3.1 *In the above situation, suppose that $\text{End}_{K^{\text{sep}}}(\psi) = A$ and that ψ cannot be defined over a finite extension of F inside K^{sep} . Then Γ is an open subgroup of $\text{GL}_r(\mathbb{A}_F^f)$.*

Proof. The assertion is invariant under replacing K by a finite extension. We may therefore assume that ψ possesses a sufficiently high level structure over K . Then ψ corresponds to a K -valued point on the moduli space M from Section 1. Let η denote the underlying point on the scheme M , and let $L \subset K$ be its residue field. Then ψ is already defined over L , and σ factors through the natural homomorphism $\text{Gal}(K^{\text{sep}}/K) \rightarrow \text{Gal}(L^{\text{sep}}/L)$, where L^{sep} is the separable closure of L in K^{sep} . Since K is finitely generated over L , the intersection $K \cap L^{\text{sep}}$ is finite over L ; hence the image of this homomorphism is open. To prove the theorem we may thus replace K by L , after which K is the residue field of η .

The assumption on ψ implies that even after this reduction, K is not a finite extension of F . Therefore its transcendence degree over F is ≥ 1 . Let k denote the algebraic closure of F in K . Then η can be viewed as the generic point of a geometrically irreducible and reduced locally closed algebraic subvariety $X \subset M_k$ of dimension ≥ 1 . After shrinking X we may assume that

X is smooth. We are then precisely in the situation of the preceding section, with $\psi = \varphi_\eta$. The homomorphism σ above is then the composite

$$\mathrm{Gal}(K^{\mathrm{sep}}/K) \cong \pi_1(\eta, \bar{\eta}) \twoheadrightarrow \pi_1(X, \bar{\eta}) \xrightarrow{\rho} \mathrm{GL}_r(\mathbb{A}_F^f)$$

with ρ as in Section 2. It follows that the groups called Γ in this section and the last coincide. The desired openness is now equivalent to Theorem 2.3 (b). \square

Note: The adèlic openness for a Drinfeld module defined over a *finite* extension of F is still unproved.

4 \mathfrak{p} -Adic openness

This section and the next three are devoted to proving Theorem 1.1. Throughout we retain the notations from Sections 1 and 2 and the assumptions $\dim X \geq 1$ and $\mathrm{End}_{\bar{\eta}_C}(\varphi_{\bar{\eta}_C}) = A$. In this section we recall a known result on \mathfrak{p} -adic openness. For any place $\mathfrak{p} \neq \infty$ of F let $\Gamma_{\mathfrak{p}}$ denote the image of Γ under the projection $\mathrm{GL}_r(\mathbb{A}_F^f) \twoheadrightarrow \mathrm{GL}_r(F_{\mathfrak{p}})$.

Theorem 4.1 $\Gamma_{\mathfrak{p}}$ is open in $\mathrm{GL}_r(F_{\mathfrak{p}})$.

Proof. By construction $\Gamma_{\mathfrak{p}}$ is the image of the monodromy representation

$$\rho_{\mathfrak{p}}: \pi_1(X, \bar{\eta}) \longrightarrow \mathrm{GL}_r(F_{\mathfrak{p}})$$

on the rational \mathfrak{p} -adic Tate module of φ_η . This is the same as the image of the composite homomorphism

$$\mathrm{Gal}(K^{\mathrm{sep}}/K) \cong \pi_1(\eta, \bar{\eta}) \twoheadrightarrow \pi_1(X, \bar{\eta}) \xrightarrow{\rho_{\mathfrak{p}}} \mathrm{GL}_r(F_{\mathfrak{p}}).$$

Since K is a finitely generated extension of F , and $\mathrm{End}_{K^{\mathrm{sep}}}(\varphi_\eta) = A$ by the assumption and Lemma 2.2, the desired openness is a special case of [9, Thm. 0.1]. \square

Next let $\Gamma_{\mathfrak{p}}^{\mathrm{geom}}$ denote the image of Γ^{geom} under the projection $\mathrm{GL}_r(\mathbb{A}_F^f) \twoheadrightarrow \mathrm{GL}_r(F_{\mathfrak{p}})$. Note that this is a normal subgroup of $\Gamma_{\mathfrak{p}}$. Lemma 2.1 immediately implies:

Lemma 4.2 $\Gamma_{\mathfrak{p}}^{\mathrm{geom}}$ is the closure of $g^{-1}\Delta_{\Xi} g$ in $\mathrm{SL}_r(F_{\mathfrak{p}})$ for some element $g \in \mathrm{GL}_r(F_{\mathfrak{p}})$.

5 Zariski density

Lemma 5.1 The Zariski closure H of Δ_{Ξ} in $\mathrm{GL}_{r,F}$ is a normal subgroup of $\mathrm{GL}_{r,F}$.

Proof. Choose a place $\mathfrak{p} \neq \infty$ of F . Then by base extension $H_{F_{\mathfrak{p}}}$ is the Zariski closure of Δ_{Ξ} in $\mathrm{GL}_{r,F_{\mathfrak{p}}}$. Thus Lemma 4.2 implies that $g^{-1}H_{F_{\mathfrak{p}}}g$ is the Zariski closure of $\Gamma_{\mathfrak{p}}^{\mathrm{geom}}$ in $\mathrm{GL}_{r,F_{\mathfrak{p}}}$. Since $\Gamma_{\mathfrak{p}}$ normalizes $\Gamma_{\mathfrak{p}}^{\mathrm{geom}}$, it therefore normalizes $g^{-1}H_{F_{\mathfrak{p}}}g$. But $\Gamma_{\mathfrak{p}}$ is open in $\mathrm{GL}_r(F_{\mathfrak{p}})$ by Theorem 4.1 and therefore Zariski dense in $\mathrm{GL}_{r,F_{\mathfrak{p}}}$. Thus $\mathrm{GL}_{r,F_{\mathfrak{p}}}$ normalizes $g^{-1}H_{F_{\mathfrak{p}}}g$ and hence $H_{F_{\mathfrak{p}}}$, and the result follows. \square

Lemma 5.2 Δ_{Ξ} is infinite.

Proof. Let X, K, k and φ_η be as in Section 2. Then, as M_k is affine and $\dim X \geq 1$, there exists a valuation v of K , corresponding to a point on the boundary of X not on M_k , at which φ_η does not have potential good reduction. Denote by $I_v \subset \mathrm{Gal}(K^{\mathrm{sep}}/Kk^{\mathrm{sep}})$ the inertia group at v . By the criterion of Néron-Ogg-Shafarevich [5, §4.10], the image of I_v in $\Gamma_{\mathfrak{p}}^{\mathrm{geom}}$ is infinite for any place $\mathfrak{p} \neq \infty$ of F . In particular, Δ_{Ξ} is infinite by Lemma 4.2, as desired.

Alternatively, we may argue as follows. Suppose that Δ_{Ξ} is finite. Then after increasing the level structure we may assume that $\Delta_{\Xi} = 1$. Then $\Gamma_{\mathfrak{p}}^{\text{geom}} = 1$ by Lemma 4.2, which means that $\rho_{\mathfrak{p}}$ factors as

$$\pi_1(X, \bar{\eta}) \longrightarrow \text{Gal}(k^{\text{sep}}/k) \longrightarrow \text{GL}_r(F_{\mathfrak{p}}).$$

After a suitable finite extension of the constant field k we may assume that X possesses a k -rational point x . Let φ_x denote the Drinfeld module over k corresponding to x . Via the embedding $k \subset K$ we may consider it as a Drinfeld module over K and compare it with φ_{η} . The factorization above implies that the Galois representations on the \mathfrak{p} -adic Tate modules of φ_x and φ_{η} are isomorphic. By the Tate conjecture (see [12] or [13]) this implies that there exists an isogeny $\varphi_x \rightarrow \varphi_{\eta}$ over K . Its kernel is finite and therefore defined over some finite extension k' of k . Thus φ_{η} , as a quotient of φ_x by this kernel, is isomorphic to a Drinfeld module defined over k' . But the assumption $\dim X \geq 1$ implies that η is not a closed point of M_k ; hence φ_{η} cannot be defined over a finite extension of k . This is a contradiction. \square

Proposition 5.3 Δ_{Ξ} is Zariski dense in $\text{SL}_{r,F}$.

Proof. By construction we have $H \subset \text{SL}_{r,F}$, and Lemma 5.2 implies that H is not contained in the center of $\text{SL}_{r,F}$. From Lemma 5.1 it now follows that $H = \text{SL}_{r,F}$, as desired. \square

The above results may be viewed as analogues of André's results [2, Thm. 1, Prop. 2], comparing the monodromy group of a variation of Hodge structures with its generic Mumford-Tate group. Our analogue of the former is Δ_{Ξ} , and by [9] the latter corresponds to $\text{GL}_{r,F}$. In our situation, however, we do not need the existence of a special point on X .

6 Fields of coefficients

Let $\bar{\Delta}_{\Xi}$ denote the image of Δ_{Ξ} in $\text{PGL}_r(F)$. In this section we show that the field of coefficients of $\bar{\Delta}_{\Xi}$ cannot be reduced.

Definition 6.1 Let L_1 be a subfield of a field L . We say that a subgroup $\bar{\Delta} \subset \text{PGL}_r(L)$ lies in a model of $\text{PGL}_{r,L}$ over L_1 , if there exist a linear algebraic group G_1 over L_1 and an isomorphism $\lambda_1: G_{1,L} \xrightarrow{\sim} \text{PGL}_{r,L}$, such that $\bar{\Delta} \subset \lambda_1(G_1(L_1))$.

Proposition 6.2 $\bar{\Delta}_{\Xi}$ does not lie in a model of $\text{PGL}_{r,F}$ over a proper subfield of F .

Proof. As before we use an arbitrary auxiliary place $\mathfrak{p} \neq \infty$ of F . Let $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}} \triangleleft \bar{\Gamma}_{\mathfrak{p}}$ denote the images of $\Gamma_{\mathfrak{p}}^{\text{geom}} \triangleleft \Gamma_{\mathfrak{p}}$ in $\text{PGL}_r(F_{\mathfrak{p}})$. Lemma 4.2 implies that $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}}$ is conjugate to the closure of $\bar{\Delta}_{\Xi}$ in $\text{PGL}_r(F_{\mathfrak{p}})$. By Proposition 5.3 it is therefore Zariski dense in $\text{PGL}_{r,F_{\mathfrak{p}}}$. On the other hand Theorem 4.1 implies that $\bar{\Gamma}_{\mathfrak{p}}$ is an open subgroup of $\text{PGL}_r(F_{\mathfrak{p}})$. It therefore does not lie in a model of $\text{PGL}_{r,F_{\mathfrak{p}}}$ over a proper subfield of $F_{\mathfrak{p}}$. Thus $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}}$ is Zariski dense and normal in a subgroup that does not lie in a model over a proper subfield of $F_{\mathfrak{p}}$, which by [10, Cor. 3.8] implies that $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}}$, too, does not lie in a model over a proper subfield of $F_{\mathfrak{p}}$.

Suppose now that $\bar{\Delta}_{\Xi} \subset \lambda_1(G_1(F_1))$ for a subfield $F_1 \subset F$, a linear algebraic group G_1 over F_1 , and an isomorphism $\lambda_1: G_{1,F} \xrightarrow{\sim} \text{PGL}_{r,F}$. Since $\bar{\Delta}_{\Xi}$ is Zariski dense in $\text{PGL}_{r,F}$, it is in particular infinite. Therefore F_1 must be infinite. As F is finitely generated of transcendence degree 1 over \mathbb{F}_p , it follows that F_1 contains a transcendental element, and so F is a finite extension of F_1 . Let \mathfrak{p}_1 denote the place of F_1 below \mathfrak{p} . Since $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}}$ is the closure of $\bar{\Delta}_{\Xi}$ in $\text{PGL}_r(F_{\mathfrak{p}})$, it is contained in $\lambda_1(G_1(F_{1,\mathfrak{p}_1}))$. The fact that $\bar{\Gamma}_{\mathfrak{p}}^{\text{geom}}$ does not lie in a model over a proper subfield of $F_{\mathfrak{p}}$ thus implies that $F_{1,\mathfrak{p}_1} = F_{\mathfrak{p}}$.

But for any proper subfield $F_1 \subsetneq F$, we can choose a place $\mathfrak{p} \neq \infty$ of F above a place \mathfrak{p}_1 of F_1 , such that the local field extension $F_{1,\mathfrak{p}_1} \subset F_{\mathfrak{p}}$ is non-trivial. Thus we must have $F_1 = F$, as desired. \square

7 Strong approximation

The remaining ingredient is the following general theorem.

Theorem 7.1 *For $r \geq 2$ let $\Delta \subset \mathrm{SL}_r(F)$ be a subgroup that is contained in a congruence subgroup commensurable with $\mathrm{SL}_r(A)$. Assume that Δ is Zariski dense in $\mathrm{SL}_{r,F}$ and that its image $\bar{\Delta}$ in $\mathrm{PGL}_r(F)$ does not lie in a model of $\mathrm{PGL}_{r,F}$ over a proper subfield of F . Then the closure of Δ in $\mathrm{SL}_r(\mathbb{A}_F^f)$ is open.*

Proof. For finitely generated subgroups this is a special case of [11, Thm. 0.2]. That result concerns arbitrary finitely generated Zariski dense subgroups of $G(F)$ for arbitrary semisimple algebraic groups G , but it uses the finite generation only to guarantee that the subgroup is integral at almost all places of F . For Δ as above the integrality at all places $\neq \infty$ is already known in advance, so the proof in [11] covers this case as well.

As an alternative, we will deduce the general case by showing that every sufficiently large finitely generated subgroup $\Delta_1 \subset \Delta$ satisfies the same assumptions. Then the closure of Δ_1 in $\mathrm{SL}_r(\mathbb{A}_F^f)$ is open by [11], and so the same follows for Δ , as desired.

For the Zariski density of Δ_1 note first that the trace of the adjoint representation defines a dominant morphism to the affine line $\mathrm{SL}_{r,F} \rightarrow \mathbb{A}_F^1$, $g \mapsto \mathrm{tr}(\mathrm{Ad}(g))$. Since Δ is Zariski dense, this function takes infinitely many values on Δ . As the field of constants in F is finite, we may therefore choose an element $\gamma \in \Delta$ with $\mathrm{tr}(\mathrm{Ad}(\gamma))$ transcendental. Then γ has infinite order; hence the Zariski closure $H \subset \mathrm{SL}_{r,F}$ of the abstract subgroup generated by γ has positive dimension. Let H° denote its identity component. Since Δ is Zariski dense and $\mathrm{SL}_{r,F}$ is almost simple, the Δ -conjugates of H° generate $\mathrm{SL}_{r,F}$ as an algebraic group. By noetherian induction finitely many conjugates suffice. It follows that finitely many conjugates of γ generate a Zariski dense subgroup of $\mathrm{SL}_{r,F}$. Thus every sufficiently large finitely generated subgroup $\Delta_1 \subset \Delta$ is Zariski dense.

Consider such Δ_1 and let $\bar{\Delta}_1$ denote its image in $\mathrm{PGL}_r(F)$. Consider all triples (F_1, G_1, λ_1) consisting of a subfield $F_1 \subset F$, a linear algebraic group G_1 over F_1 , and an isomorphism $\lambda_1 : G_{1,F} \xrightarrow{\sim} \mathrm{PGL}_{r,F}$, such that $\bar{\Delta}_1 \subset \lambda_1(G_1(F_1))$. By [10, Thm. 3.6] there exists such a triple with F_1 minimal, and this F_1 is unique, and G_1 and λ_1 are determined up to unique isomorphism. Consider another finitely generated subgroup $\Delta_1 \subset \Delta_2 \subset \Delta$ and let (F_2, H_2, λ_2) be the minimal triple associated to it. Then the uniqueness of (F_1, G_1, λ_1) implies that $F_1 \subset F_2$, that $G_2 \cong G_{1,F_2}$, and that λ_2 coincides with the isomorphism $G_{2,F} \cong G_{1,F} \rightarrow \mathrm{PGL}_{r,F}$ obtained from λ_1 . In other words, the minimal model (F_1, G_1, λ_1) is monotone in Δ_1 .

For any increasing sequence of Zariski dense finitely generated subgroups of Δ we thus obtain an increasing sequence of subfields of F . This sequence must become constant, say equal to $F_1 \subset F$, and the associated model of $\mathrm{PGL}_{r,F}$ over F_1 is the same up to isomorphism from that point onwards. Thus we have a triple (F_1, G_1, λ_1) with $\bar{\Delta}_1 \subset \lambda_1(G_1(F_1))$ for every sufficiently large finitely generated subgroup $\bar{\Delta}_1 \subset \bar{\Delta}$. But then we also have $\bar{\Delta} \subset \lambda_1(G_1(F_1))$, which by assumption implies that $F_1 = F$. Thus every sufficiently large finitely generated subgroup of Δ satisfies the same assumptions as Δ , as desired. \square

Proof of Theorem 1.1. In the situation of Theorem 1.1 we automatically have $r \geq 2$, so the assertion follows by combining Propositions 5.3 and 6.2 with Theorem 7.1 for Δ_Ξ . \square

8 Arbitrary endomorphism rings

Set $E := \mathrm{End}_{\bar{\eta}_C}(\varphi_{\bar{\eta}_C})$, which is a finite integral ring extension of A . Write $r = r' \cdot [E/A]$; then the centralizer of E in $\mathrm{GL}_r(\mathbb{A}_F^f)$ is isomorphic to $\mathrm{GL}_{r'}(E \otimes_A \mathbb{A}_F^f)$. Lemma 2.2 implies that all elements of E are defined over some fixed finite extension of K . This means that an open subgroup of $\rho(\pi_1(X, \bar{\eta}))$ is contained in $\mathrm{GL}_{r'}(E \otimes_A \mathbb{A}_F^f)$. Thus by Lemma 2.1 the same holds for a subgroup of finite index of Δ_Ξ . The following results can be deduced easily from Theorems 1.1, 2.3, and 3.1, using the same arguments as in [9, end of §2].

Theorem 8.1 In the situation of before Theorem 1.1, for $E := \text{End}_{\bar{\eta}_C}(\varphi_{\bar{\eta}_C})$ arbitrary, the closure in $\text{GL}_r(\mathbb{A}_F^f)$ of some subgroup of finite index of Δ_Ξ is an open subgroup of $\text{SL}_{r'}(E \otimes_A \mathbb{A}_F^f)$.

Theorem 8.2 In the situation of before Theorem 2.3, for $E := \text{End}_{K^{\text{sep}}}(\varphi_\eta)$ arbitrary,

- (a) some open subgroup of $\Gamma^{\text{geom}} := \rho(\pi_1(X_{k^{\text{sep}}}, \bar{\eta}))$ is an open subgroup of $\text{SL}_{r'}(E \otimes_A \mathbb{A}_F^f)$, and
- (b) some open subgroup of $\Gamma := \rho(\pi_1(X, \bar{\eta}))$ is an open subgroup of $\text{GL}_{r'}(E \otimes_A \mathbb{A}_F^f)$.

Theorem 8.3 In the situation of before Theorem 3.1, for $E := \text{End}_{K^{\text{sep}}}(\psi)$ arbitrary, suppose that ψ cannot be defined over a finite extension of F inside K^{sep} . Then some open subgroup of $\Gamma := \sigma(\text{Gal}(K^{\text{sep}}/K))$ is an open subgroup of $\text{GL}_{r'}(E \otimes_A \mathbb{A}_F^f)$.

References

- [1] Anderson, G.: *t-Motives*. *Duke Math. J.* **53**, 2 (1986), 457–502.
- [2] André, Y.: Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part. *Compositio Math.* **82** (1992), 1–24.
- [3] Breuer, F.: *Special subvarieties of Drinfeld modular varieties*. In preparation.
- [4] Drinfeld, V. G.: Elliptic modules (Russian). *Math. Sbornik* **94** (1974), 594–627, = *Math. USSR-Sb.* **23** (1974), 561–592.
- [5] Goss, D.: *Basic Structures of Function Field Arithmetic*. *Ergebnisse* **35**, Berlin etc.: Springer (1996).
- [6] Hayes, D. R.: Explicit Class Field Theory in Global Function Fields. In: *Studies in Algebra and Number Theory*, Adv. Math., Suppl. Stud. 6, Academic Press (1979), 173–217.
- [7] van der Heiden, G.-J.: *Weil pairing and the Drinfeld modular curve*. Ph.D. thesis, Rijksuniversiteit Groningen, 2003.
- [8] Lütkebohmert, W.: Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie. *Math. Z.* **139** (1974), 69–84.
- [9] Pink, R.: The Mumford-Tate conjecture for Drinfeld modules. *Publ. RIMS, Kyoto University* **33** (1997), 393–425.
- [10] Pink, R.: Compact subgroups of linear algebraic groups. *J. Algebra* **206** (1998) 438–504.
- [11] Pink, R.: Strong approximation for Zariski dense subgroups over arbitrary global fields. *Comm. Math. Helv.* **75** vol. 4 (2000) 608–643.
- [12] Taguchi, Y.: The Tate conjecture for *t*-motives. *Proc. Am. Math. Soc.* **123** (1995), 3285–3287.
- [13] Tamagawa, A.: The Tate conjecture and the semisimplicity conjecture for *t*-modules. *RIMS Kokyuroku* (Proc. RIMS) **925** (1995), 89–94.