Dynamic Programming Edit Distance Algorithm

(Class 18)

Edit Distance: Dynamic Programming Algorithm

- Suppose we have an m-character string A and an n-character string B.
- Define E(i, j) to be the edit distance between the first i characters of A and the first j characters of B. For example:

- The edit distance between entire strings A and B is E(m, n).
- The gap representation for the edit sequences has a crucial "optimal substructure" property.
- If we remove the last column, the remaining columns must represent the shortest edit sequence for the remaining substrings.

• The edit distance is 6 for the following two words.

• If we remove the last column, the edit distance reduces to 5.

• We can use the optimal substructure property to devise a recursive formulation of the edit distance problem.

- There are a couple of obvious base cases:
- The only way to convert an empty string (i = 0) into a string of j characters is by doing j insertions. Thus:

$$E(0,j) = j$$

• The only way to convert a string of i characters into the empty j=0 string is with i deletions:

$$E(i,0)=i$$

- There are four possibilities for the last column in the shortest possible edit sequence:
- Deletion: Last entry in bottom row is empty.

In this case

$$E(i,j) = E(i-1,j) + 1$$

• Insertion: The last entry in the top row is empty.

In this case

$$E(i,j) = E(i,j-1) + 1$$

• Substitution: Both rows have characters in the last column.

• If the characters are different, then:

$$E(i,j) = E(i-1,j-1) + 1$$

• Maintenance: Both rows have same characters in the last column.

• If characters are same, no substitution is needed:

$$E(i,j) = E(i-1,j-1)$$

• Thus, the edit distance E(i,j) is the smallest of the four possibilities:

$$E(i,j) = \min \left(\begin{array}{l} E(i-1,j)+1 \\ E(i,j-1)+1 \\ E(i-1,j-1)+1 & \text{if } A[i] \neq B[j] \\ E(i-1,j-1) & \text{if } A[i] = B[j] \end{array} \right)$$

 Consider the example of edit between the words "ARTS" and "MATHS":

- The edit distance would be in E(4,5).
- If we recursion to compute, we will have:

$$E(4,5) = \min \begin{pmatrix} E(3,5) + 1 \\ E(4,4) + 1 \\ E(3,4) + 1 & \text{if } A[4] \neq B[5] \\ E(3,4) & \text{if } A[4] = B[5] \end{pmatrix}$$

- Recursion clearly leads to the same repetitive call pattern that we saw in Fibonacci sequence.
- To avoid this, we will use the dynamic programming approach.
- We will build the solution bottom-up.

Pattern of Building E(i, j) using Table

E(i-1, j-1) E(i-1, j)
$$\downarrow^{D}$$
E(i, j-1) \longrightarrow E(i, j)

- We will build a matrix of 6x4.
- Use the base case E(0, j) to fill first row.
- Use the base case E(i, 0) to fill first column.
- We will fill the remaining E matrix row by row.

		A	R	T	S
	0	→1	→ 2	\rightarrow 3	→4
M					
A					
Т					
Н					
S					

		A	R	T	S
	0	→1	→ 2	→3	→4
M	$\overset{\bullet}{\rightarrow}$				
A	↓ 2				
Т	→ 3				
Н	→ 4				
S	→ 5				

First row and first column entries using the base cases

- We can now fill the second row.
- The table not only shows the values of the cells E[i, j] but also arrows that indicate how it was computed using values in E[i − 1, j], E[i, j − 1] and E[i − 1, j − 1].
- Thus, if a cell E[i,j] has a down arrow from E[i 1, j] then the minimum was found using E[i 1, j].
- For a right arrow, the minimum was found using E[i, j-1].

- For a diagonal down right arrow, the minimum was found using E[i-1, j-1].
- There are certain cells that have two arrows pointed to it.
- In such a case, the minimum could be obtained from the diagonal E[i − 1, j − 1] and either of E[i − 1, j] and E[i, j − 1].
- We will use these arrows later to determine the edit script.

		A	R	T	S
	0	→ 1	→ 2	→ 3	→4
M	→ 1				
A	↓ 2				
Т	→ 3				
Н	↓ 4				
S	→ 5				

		A	R	T	S
	0	→1	→2	→3	→4
M	→ 1	\ 1	→2		
A	↓ 2				
Т	→ 3				
Н	↓ 4				
S	→ 5				

		A	R	T	S
	0	→1	→ 2	→3	→4
M	↓ 1	1	→2	→3	
A	↓ 2				
Т	↓ 3				
Н	↓ 4				
S	→ 5				

		A	R	T	S
	0	→1	→2	→3	→4
M	↓ 1	1	→2	→3	→4
A	↓ 2				
Т	→ 3				
Н	↓ 4				
S	→ 5				

Computing E[1,3] and E[1,4]

- An edit script can be extracted by following a unique path from E[0, 0] to E[4, 5].
- There are three possible paths in the current example.
- Let us follow these paths and compute the edit script.
- In an actual implementation of the dynamic programming version of the edit distance algorithm, the arrows would be recorded using an appropriate data structure.
- For example, each cell in the matrix could be a record with fields for the value (numeric) and flags for the three incoming arrows.

		A	R	T	S
	0	→1	→2	→3	→4
M	1	\rangle 1	<u>></u> 2	<u>></u> 3	<i>></i> 4
A	↓ 2	1	→2		→4
Т	→ 3	↓ 2	2	2	→3
Н	↓ 4	↓ 3	√ 3	√ ₃	3
S	→ 5	↓ 4	4	→ 4	3

The final table with all E[i, j] entries computed

		A	R	T	S
	0	→1	→2	→3	→4
M	↓ 1	1	→2	→3	→4
A	↓ 2	1	→2	→3	→4
Т	→ 3	↓ 2	2	2	→3
Н	→ 4	→ 3	→3	\rightarrow 3	3
S	→ 5	4	4	4	3

Solution path 1:

$$1+ 0+ 1+ 1+ 0 = 3$$
D M S S M

M A T H S
A R T S

		A	R	T	S
	0	→1	→2	→3	→4
M	↓ 1	1	→2	→3	→4
A	↓ 2	1	→2	→3	→4
Т	→ 3	↓ 2	2	2	→3
Н	↓ 4	↓ 3	→ 3	3	3
S	↓ 5	↓ 4	→ 4	→ 4	3

Possible edit scripts. The red arrows from E[0, 0] to E[4, 5] show the paths that can be followed to extract edit scripts.

		A	R	T	S
	0	→1	→2	→3	→4
M	↓ 1	1	→2	→3	→4
A	↓ 2	1	→2	→3	→4
Т	→ 3	↓ 2	2	2	→3
Н	↓ 4	→ 3	3	3	3
S	↓ 5	4	4	4	3

Solution path 2:

		A	R	T	S
	0	→1	→2	→3	→4
M	\rightarrow 1	[∕] ¹	→2	\^3	<i>></i> ⁴
A	→ 2		→2	\3	<i>></i> 4
Т	→ 3	↓ 2	2	2	→3
Н	→ 4	↓ 3	3	3	3
S	→ 5	↓ 4	4	→ 4	3

Solution path 3:

Analysis of DP Edit Distance

- There are $O(n^2)$ entries in the matrix.
- Each entry E(i, j) takes O(1) time to compute.
- The total running time is $O(n^2)$.

- This approach is suitable for small number of inputs.
- But what if we want to solve the DNA sample with millions of characters as input?