Ідеали

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

22 лютого 2023

FACULTY OF MECHANICS AND MATHEMATICS

Ідеали

Нехай R — кільце, I — підгрупа адитивної групи кільця R.

Очевидно, $(I, +) \triangleleft (R, +)$.

Означення

Адитивна підгрупа I < R, яка задовольняє умову $\alpha x \in I$ для всіх $x \in I$, $\alpha \in R$ називається *лівим* ідеалом кільця R.

Означення

Адитивна підгрупа I < R, яка задовольняє умову $x\alpha \in I$ для всіх $x \in I$, $\alpha \in R$ називається *правим* ідеалом кільця R.

Ідеали

Означення

Адитивна підгрупа I < R, яка задовольняє умови $\alpha x \in I$ та $x \alpha \in I$ для всіх $x \in I$, $\alpha \in R$, називається двостороннім ідеалом кільця R.

Ідеали, які є власними підмножинами кільця, називаються власними.

3/8

Критерій ідеалу

Теорема

Непорожня підмножина $I\subset R$ є ідеалом тоді і лише тоді, коли

- $a-b \in I$ для всіх $a, b \in I$;
- \bullet $ra \in I$, $ar \in I$ для всіх $a \in I$, $r \in R$.

Доведення.

Подумати та довести самостійно.

Приклади

- Тривіальні ідеали: {0}, R.
- ② В полі немає нетривіальних власних ідеалів. Дійсно, якщо I ненульовий ідеал, то I містить оборотний елемент $x \neq 0$. Тоді $a = ax^{-1}x \in I$ для довільного $a \in \mathbb{k} \Rightarrow I = \mathbb{k}$.
- **③** Множини $n\mathbb{Z}$, $n \in \mathbb{N}_0$, є ідеалами кільця \mathbb{Z} .
- ③ В кільці многочленів R[x] множина всіх многочленів, які діляться на фіксований елемент кільця R[x], є ідеалом.

Наприклад,

$$\left\{ (x^2 + 1)g(x) \mid g(x) \in \mathbb{Z}[x] \right\}$$

 ϵ ідеалом в $\mathbb{Z}[x]$.

Приклади

Множина

$$\{\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} | a, b \in \mathbb{R}, i = 1, \dots, n\}$$

є правим ідеалом кільця $M_2(\mathbb{R})$, а множина

$$\{\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} | a, b \in \mathbb{R}, i = 1, \dots, n\}$$

— лівим.

Якщо R — комутативне кільце з одиницею, то множина

$$(a) = \{ar | r \in R\}$$

є ідеалом.

Для довільних $r, r' \in R$:

$$ar - ar' = a(r - r') \in I$$
 $a (ar)r' = a(rr') \in I$.

Ідеал ⇒ підкільце.

Підкільце ≠ ідеал.

Множина діагональних матриць є підкільцем, але не є ідеалом:

$$D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}, A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \Rightarrow \quad DA = \begin{pmatrix} a & a \\ b & b \end{pmatrix}.$$

7/8

Твердження

Нехай R — комутативне кільце з $1 \neq 0$.

Тоді R є полем \Leftrightarrow єдиними ідеалами в R є тривіальні ідеали $\{0\}$ та R.

Доведення.

- (⇒) Вже доведено, що поле містить лише тривіальні ідеали.
- (←) Візьмемо ненульовий елемент $\alpha \in R$.

Тоді (a) — ненульовий ідеал \Rightarrow R = (a).

$$1 \in R = (a)$$
 \Rightarrow $\exists b \in R : ab = 1$ \Rightarrow R — поле.