IEEE 802.11 PHY Layer Part 2: From bits to signals

Based on IEEE Std 802.11-2012:

- Clause 18: Orthogonal frequency division multiplexing (OFDM) PHY specification
- Annex L: Examples of encoding a frame for OFDM PHYs. Example 1 - BCC encoding
- C. Beard and W. Stallings, Wireless
 Communication Networks and Systems, Chapter 8
 Orthogonal Frequency Division Multiplexing

Learning Outcomes

- Explain how digital modulation techniques (QPSK, QAMs, etc) are used to convert from bits to signals
- Explain the principle used in OFDM and how multiple access is achieved using OFDM and SC-FDMA.
- Understand PPDU encoding process

PHY – Physical Layer

- Physical layer (PHY) consists of two sublayers
 - > PLCP (Convergence Procedure) -- processing bits of PSDU
 - PMD (Medium Dependent) -- converting bits into the OFDM (Orthogonal Frequency Division Multiplexing) symbols

PPDU = PLCP protocol data unit
PSDU = PLCP service data unit
MPDU = MAC protocol data unit
MSDU = MAC service data unit
PLCP = physical (PHY) layer
convergence procedure
MAC = medium access control

From bits to signals: PLCP

In the first part of the PHY layer operations
 (PLCP – Convergence Procedure) the bits of the MPDU undergo the following operations:

From bits to signals: PMD

- In the second part of the PHY layer operations,
 In the PMD Medium Dependent sublayer, the bits of the message are converted into signals following two main steps:
 - Mapping groups of bits into a complex (frequency) domain using (typically) the Quadrature Amplitude Modulation (QAM)
 - Formation of the OFDM signals
- The receiver converts the received signals back to bits

Bit-Mapping by Digital Modulation

Read in week 3 Lecture Notes: Introduction to digital modulation.

- The process of converting bits into signals, that is sinusoids of different frequency and phases is called **Digital Modulation** or <u>Keying</u> or bit encoding.
- The simplest modulation technique is the Binary Phase Shift Keying (BPSK)
- In **BPSK** a single bit, $b \in (0,1)$, is converted into a sinusoid with the phase of either 0 or π :

$$s(t) = (2b - 1)\cos(\omega_c t) = \cos(\omega_c t + b\pi)$$

where $\omega_c = 2\pi f_c$, and f_c is the carrier frequency

In time domain:

The constellation diagram:

Quadrature Phase Shift Keying – QPSK

Encoding table:

$$\varphi_k = \frac{\pi}{4} + k \frac{\pi}{2} \text{ for } k = 0, 1, 2, 3$$

bits	11	01	00	10
k	0	1	2	3

A pair of bits is represented by a sinusoidal signal of a fixed amplitude and the phase depending on the values of the bits

QPSK signal(s) in the time domain:

$$s_k(t) = e^{j(\omega_c t + \varphi_k)} = e^{j\omega_c t} e^{j\varphi_k}$$

 $\omega_c = 2\pi f_c$, f_c – the carrier frequency

The constellation diagram

The quadrature (imaginary) component:

$$Q_k(t) = \sin(\omega_c t + \varphi_k) = \operatorname{imag}(s_k(t))$$

The in-phase (real) component:

$$I_k(t) = \cos(\omega_c t + \varphi_k) = \text{real}(s_k(t))$$

QPSK signal in time domain

- The modulated signal consists of two components:
- a cosine wave (I in-phase) and a sine wave (Q quadrature).
- The total signal (in the bottom) is the sum of the two components
- The data consists of the binary stream:

11000110

Detecting phase from the sum $I_k + Q_k$

If the total signal transmitted is:

$$u_k(t) = I_k(t) + Q_k(t)$$

$$u_k(t) = \cos(\omega_c t + \varphi_k) + \sin(\omega_c t + \varphi_k)$$

- The question is how we can extract at the receiver the phase φ_k so that we can get the bits back.
- Can be done with a little bit of trigonometry. Calculate:
- $cps = u_k \cos(\omega_c t) = \cos \varphi_k + \sin \varphi_k + f(2\omega_c t)$ $cms = u_k \sin(\omega_c t) = \cos \varphi_k \sin \varphi_k + f(2\omega_c t)$ Filter it out!
- $\triangleright \cos \varphi_k = cps + cms$
- $\triangleright \sin \varphi_k = cps cms$

In addition to **BPSK** and **QPSK** the 802.11 standard defines also:

- 16-QAM maps a group of four bits into a complex number representing a sinusoidal signal
- 64-QAM maps six bits into a complex number representing a sinusoidal signal
- The relative amplitudes of the Q and I components are -7, -5, -3, -1, 1, 3, 5, 7
- A scaling factor is used to achieve the same average power for all mappings.

Encoding Tables

Table 18-9—QPSK encoding table

Input bit (b ₀)	l-out
0	-1
1	1

Input bit (b ₁)	Q-out
0	-1
1	1

Table 18-10—16-QAM encoding table

Input bits (b ₀ b ₁)	I-out
00	-3
01	-1
11	1
10	3

Input bits (b ₂ b ₃)	Q-out
00	-3
01	-1
11	1
10	3

Table 18-11—64-QAM encoding table

Input bits (b ₀ b ₁ b ₂)	I-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7

Input bits (b ₃ b ₄ b ₅)	Q-out
000	-7
001	-5
011	-3
010	-1
110	1
111	3
101	5
100	7

Encoding tables links bits to points in the constellation diagram

Note the order of groups of bits in the Gray code (aka reflected code)

Try the MATLAB code for 16QAM:

16-QAM Example

• Then, for 16-QAM the related complex numbers I + jQ are:

$$h_k = {\rm F}$$
 4 E A 2 6 D $d_k = [\ 1+{\rm j}, -1-3{\rm j},\ 1+3{\rm j},\ 3+3{\rm j},\ -3+3{\rm j},\ -1+3{\rm j}\ ,1-{\rm j}\]/\sqrt{10}$

a scaling factor

How to convert the complex numbers into the sinusoidal signals? The best method is to use the **ifft** (inverse Fast Fourier Transform)

Review of the Spectral Processing

- At this stage it would be beneficial to re-examine examples from tutorial week 1 related to spectral analysis/processing.
- Let us look at sec. 1.5: Synthesizing a two-sinusoid signal
- We have specified the frequency range (aka sampling frequency) fs = 8000Hz and the number of samples tt = 20. The frequency step is df = fs/tt = 400Hz
- We defined two frequency points one at 400 Hz and one at 2400Hz so that the **half-spectrum** is:

f	0	400	800	1200	1600	2000	2400	2800	3200	3600
n	0	1	2	3	4	5	6	7	8	9
h[n]	0	2.5	0	0	0	0	7.5	0	0	0

Synthesizing two-sinusoid signal, cont'd

The half-spectrum is:

f	0	400	800	1200	1600	2000	2400	2800	3200	3600
n	0	1	2	3	4	5	6	7	8	9
h[n]	0	2.5	0	0	0	0	7.5	0	0	0

 The full spectrum consists of the half-spectrum and is (conjugated) mirror reflection:

$$h = [hn ; hn(end-1:-1:2)]$$

 The time domain signal is obtained as the inverse Fourier transform:

$$s_t = ifft(h)$$

The duration of such a symbol is

$$Ts = 1/400 = 2.5 ms$$

Another example on the path to OFMD

• Following the 16QAM example we would like to get time signals equivalent to the following combination of bits:

$$h_k = F$$
 4 E $d_k = 1+j, -1-3j, 1+3j$

- Let us assume that the **frequency spacing** df = 100kHz and let the groups of bits be located at 400, 800 and 1200kHz, and the **number of frequency steps** be: tt = 40.
- The **sampling frequency** is: fs = df*tt = 4MHz.
- hn = zeros(1, tt/2); hn([5, 9, 13]) = [1+1i, -1-1i, 1+3i];
- The full spectrum:
 - h = [hn conj(hn(end-1:-1:2))];
- The time signal is s = ifft(h);

OFDM principle

- In OFDM (Orthogonal Frequency Division Multiplexing) the 20MHz frequency channel is divided into 64 frequency subcarriers.
- The subcarrier spacing $\Delta_F = 20/64 = 315.5 \text{kHz}$
- Conceptually, each complex number d_k obtained form QAM (Quadrature Amplitude Modulation) that codes a group of bits will represent a sinusoidal signal of the OFDM sub-carrier frequency

$$f_k = k\Delta_F$$

• The equivalent time signal is obtained by the Inverse Fourier Transform and can be written as:

$$r(t) = \sum_{k} d_k \exp(j2\pi k \Delta_F t) = ifft(d_k)$$

Some details have been omitted for clarity.

OFDM Subcarriers

• Each of the OFDM symbols is represented by 64 subcarriers numbered in the following way <u>Figure 18-11</u> (p.22 out of 48)

$$d_0 \dots d_4 p_{-21} d_5 \dots d_{17} p_{-7} d_{18} \dots d_{23} DC d_{24} \dots d_{29} p_7 d_{30} \dots d_{42} p_{21} d_{43} \dots d_{47} f = -26 \quad -21 \quad -7 \quad -1 \quad 0 \quad 1 \quad 7 \quad 21 \quad 26$$

- 53 subcarriers are numbered form –26 to 26.
- Subcarrier 0 representing the frequency 0 (DC) is set to zero.
- 48 subcarriers marked d_k are used to carry data
- Data points are complex numbers obtained from QAM mapping
- 4 subcarriers marked p_k carry the pilot signals,
- Pilots are -1, +1 values (see 18.3.5.9 for details)
- Pilot signals help to synchronize the transmitter and receiver

Converting OFDM symbol into time domain

$$f = \begin{bmatrix} d_0 \dots d_4 p_{-21} d_5 & \dots d_{17} p_{-7} d_{18} & \dots d_{23} \\ -26 & -21 & -7 & -1 \end{bmatrix} DC \begin{bmatrix} d_{24} \dots d_{29} p_7 d_{30} & \dots d_{42} & p_{21} d_{43} & \dots d_{47} \\ 1 & 7 & 21 & 26 \end{bmatrix}$$

• In order to convert the OFDM symbol into its time domain representation the 52 subcarriers are reorganised into a 64-point vector as follows 18.3.2.6 (p.11)

$$h = [0 \ f(1) \dots f(26) \ 0 \dots 0 \ f(-26) \dots f(-1)]$$

- This is equivalent to forming the full spectrum in the previous examples
- The time domain signal is calculated using the inverse Fourier Transform:

$$s = ifft(h)$$

Duration of an OFDM Symbol

• The duration of one OFDM symbol t_F (symbol interval) is

the inverse of the subcarrier spacing

$$t_F = \frac{1}{\Delta_F} = \frac{64}{20} = 3.2 \mu s$$

plus **time guard** t_g = 0.8 μ s:

$$t_S = t_g + t_F = 0.8 \mu s + 3.2 \mu s = 4 \mu s$$

• The time guard is formed by the **cyclic extension** of the **time domain** OFDM symbol s(1) ... s(64):

The resulting time vector has 81 time samples.

OFDM example

- Follow <u>the example</u> that converts the message:
 Wireless Networks are great
- into the OFDM time signal:

Modulation dependant parameters

Table 18-4—Modulation-dependent parameters

Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N_{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)
BPSK	1/2	1	48	24	6
BPSK	3/4	1	48	36	9
QPSK	1/2	2	96	48	12
QPSK	3/4	2	96	72	18
16-QAM	1/2	4	192	96	24
16-QAM	3/4	4	192	144	36
64-QAM	2/3	6	288	192	48
64-QAM	3/4	6	288	216	54

- Coding rate is related to convolutional coding and puncturing
- Data rate, is related to the coding rate and modulation type
- For 36Mb/s 16-QAM
 with ¾ coding rate
 must be used and we
 have:
- 16-QAM implies $N_{BPSC}=4$, and $N_{CBPS}=4*48=192$ bits where 48 is the number of subcarriers with data
- The number of data bits is smaller by the coding rate

$$N_{BPSC} = \frac{3}{4}192 = 144 \text{ bits}$$

PHY frame format

Data includes:

- the PSDU=MPDU (MAC header, data, FCS),
- 16 SERVICE bits (see 18.3.5.2),
- 6 tail bits
- a number of pad bits so that the total number of bits is a multiple of N_{CBPS} , that is, all OFDM symbols are fully filled in with bits.

Timing relationships

- The PLCP Preamble field is used for synchronization (sec. <u>18.3.3</u>)
- It consists of 10 short symbols and two long symbols.
- GI represents a guard interval.

Transmitter block diagram (p.23)

- FEC Forward Error Correction
- IFFT Inverse Fast Fourier Transform
- IQ Mod. modulation frequency shift from the baseband 20 MHz channel into 2.4/5GHz band, e.g. 2407 to 2412 MHz (channel #1)
- HPA Antenna amplifiers

Overview of the PPDU encoding process (18.3.2.2) p.7

PLCP Preamble:

- a) Produce the PLCP Preamble field, composed of
 - 10 repetitions of a "short training sequence" and
 - two repetitions of a "long training sequence"
- b) Produce the **PLCP header** by filling in the RATE, LENGTH, and SERVICE fields.
- c) Calculate from RATE field
 - the number of data bits per OFDM symbol (N_{DBPS}),
 - the coding rate (R),
 - the number of bits in each **OFDM subcarrier** (N_{BPSC}), and
 - the number of coded bits per OFDM symbol (N_{CBPS}).
- d) Append the PSDU to the SERVICE field of the TXVECTOR (data).

Overview of the PPDU encoding process -- bits

- e) Initiate the scrambler with a pseudo-random nonzero seed, generate a scrambling sequence, and
 XOR is with the extended string of data bits.
- f) Replace the six scrambled zero tail bits following the data with six nonscrambled zero bits to return the convolutional encoder to the zero state.
- g) Encode the extended, scrambled data string with a convolutional encoder (R = 1/2).
 - Omit (**puncture**) some of the encoder output string (chosen according to "puncturing pattern") to reach the desired "coding rate."

Overview of the PPDU encoding process: OFDM 1

- h) Divide the encoded bit string into groups of N_{CBPS} bits. Within each group, perform an "interleaving" (reordering) of the bits according to a rule corresponding to the desired RATE.
- i) Divide the resulting coded and interleaved data string into groups of N_{CBPS} bits.
 - For each of the bit groups, convert the bit group into a complex number according to the modulation encoding tables.
- j) Divide the complex number string into groups of 48 complex numbers.
 - Each such group will be associated with one OFDM symbol.
- k) Four subcarriers are inserted as pilots.
 - The total number of the subcarriers is 52 (48 + 4).

Overview of the PPDU encoding process: OFDM 2

- For each group of subcarriers –26 to 26, convert the subcarriers to time domain using inverse Fourier transform.
 - Prepend to the Fourier-transformed waveform a circular extension of itself thus forming a GI.
- m) Append the OFDM symbols one after another, starting after the SIGNAL symbol describing the RATE and LENGTH fields.
- n) Up-convert the resulting "complex baseband" waveform to an RF according to the center frequency of the desired channel and transmit.

Example of BCC Frame Encoding

- We will follow the steps of encoding a BCC (Block Convolutional Code) frame as presented in IEEE Std 802.11 <u>Annex L</u> (Moodle).
- You have practiced most of the bit processing in the week 6 tute.
- In today's tute you can re-use the code from tute 6.
- Most of the code is available from Moodle

Summary

Reflect on:

- Explain how digital modulation techniques (QPSK, QAMs, etc) are used to convert from bits to signals
- Explain the principle used in OFDM and how multiple access is achieved using OFDM and SC-FDMA.
- Understand PPDU encoding process

Tutorial 7: The implementation of BCC. Reminder: submit together tutorial 6 by 23:55hr on Thursday 12 April 2018

Lecture 08: Mobile Network/LTE