

Выполнил:

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Методы машинного обучения

Отчёт по лабораторной работе № 2

«Изучение библиотек обработки данных.»

студент группы ИУ5 – 23М Кругов Т.Ю. Преподаватель: Гапанюк Ю.Е.

```
In [112]:
```

```
import numpy as np
import pandas as pd
import pandasql as ps
```

```
In [113]:
```

```
data = pd.read_csv ('adult.data.csv')
data.head()
```

Out[113]:

	age	workclass	fnlwgt	education	education- num	marital- status	occupation	relationship	race	
0	39	State-gov	77516	Bachelors	13	Never- married	Adm- clerical	Not-in-family	White	
1	50	Self-emp- not-inc	83311	Bachelors	13	Married- civ- spouse	Exec- managerial	Husband	White	
2	38	Private	215646	HS-grad	9	Divorced	Handlers- cleaners	Not-in-family	White	
3	53	Private	234721	11th	7	Married- civ- spouse	Handlers- cleaners	Husband	Black	
4	28	Private	338409	Bachelors	13	Married- civ- spouse	Prof- specialty	Wife	Black	Fe

In [42]:

data.describe()

Out[42]:

	age	fnlwgt	education- num	capital-gain	capital-loss	hours-per- week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

1. How many men and women (sex feature) are represented in this dataset?

```
In [3]:

print(data['sex'].value_counts())

Male    21790
Female    10771
```

2. What is the average age (age feature) of women?

```
In [12]:

print(data.loc[data['sex'] == 'Female', 'age'].mean())
```

36.85823043357163

Name: sex, dtype: int64

3. What is the percentage of German citizens (native-country feature)?

```
In [5]:
print((data['native-country'] == "Germany").value_counts()/9713)
```

False 3.338207
True 0.014105
Name: native-country, dtype: float64

standard deviation: 14.0

4-5. What are the mean and standard deviation of age for those who earn more than 50K per year (salary feature) and those who earn less than 50K per year?

```
mean_less = data.loc[data['salary']=="<=50K", 'age'].mean() # 4-5
mean_more = data.loc[data['salary']==">50K", 'age'].mean()
std_less = data.loc[data['salary']=="<=50K", 'age'].std()
std_more = data.loc[data['salary']==">50K", 'age'].std()
print('>50K - The average age of the rich: {}, \n standard deviation: {} \n'.format(mean_mo print('<=50K - The average age of the poor: {}, \n standard deviation: {}'.format(mean_less)
>50K - The average age of the rich: 44.2,
standard deviation: 10.5
```

6. Is it true that people who earn more than 50K have at least high school education? (education – Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

```
In [6]: ▶
```

```
print(data.loc[data['salary']==">50K", 'education'].unique()) # 6
```

```
['HS-grad' 'Masters' 'Bachelors' 'Some-college' 'Assoc-voc' 'Doctorate'
'Prof-school' 'Assoc-acdm' '7th-8th' '12th' '10th' '11th' '9th' '5th-6th'
'1st-4th']
```

7. Display age statistics for each race (race feature) and each gender (sex feature). Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

```
In [10]:
group = data.groupby(['race','sex']) # 7
group.describe()
```

Out[10]:

									age		
		count	mean	std	min	25%	50%	75%	max	count	
race	sex										
Amer-	Female	119.0	37.117647	13.114991	17.0	27.0	36.0	46.00	80.0	119.0	112950
Indian- Eskimo	Male	192.0	37.208333	12.049563	17.0	28.0	35.0	45.00	82.0	192.0	125715
Asian-	Female	346.0	35.089595	12.300845	17.0	25.0	33.0	43.75	75.0	346.0	147452
Pac- Islander	Male	693.0	39.073593	12.883944	18.0	29.0	37.0	46.00	90.0	693.0	166175
Black	Female	1555.0	37.854019	12.637197	17.0	28.0	37.0	46.00	90.0	1555.0	212971
DIACK	Male	1569.0	37.682600	12.882612	17.0	27.0	36.0	46.00	90.0	1569.0	242920
Other	Female	109.0	31.678899	11.631599	17.0	23.0	29.0	39.00	74.0	109.0	172519
Other	Male	162.0	34.654321	11.355531	17.0	26.0	32.0	42.00	77.0	162.0	213679
White	Female	8642.0	36.811618	14.329093	17.0	25.0	35.0	46.00	90.0	8642.0	183549
ville	Male	19174.0	39.652498	13.436029	17.0	29.0	38.0	49.00	90.0	19174.0	188987

10 rows × 48 columns

8. Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (marital-status feature)? Consider as married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [65]:
sex= data['sex'] == 'Male'
mar = data['marital-status'].isin(['Married-civ-spouse', 'Married-spouse-absent' , 'Married
bach = data['marital-status'].isin(['Never-married', 'Separated', 'Divorced', 'Widowed'])
print(s)
         False
0
1
          True
         False
2
3
          True
4
          True
         . . .
32556
          True
32557
          True
32558
         False
32559
         False
32560
          True
Name: marital-status, Length: 32561, dtype: bool
                                                                                           H
In [67]:
data.loc[sex & mar, 'salary'].value_counts()
Out[67]:
<=50K
         7576
>50K
         5965
Name: salary, dtype: int64
                                                                                           M
In [66]:
data.loc[sex & bach, 'salary'].value_counts()
Out[66]:
         7552
<=50K
>50K
          697
Name: salary, dtype: int64
9. What is the maximum number of hours a person works per week (hours-per-
```

H

week feature)? How many people work such a number of hours, and what is the percentage of those who earn a lot (>50K) among them?

```
In [68]:
                                                                                            H
print(data['hours-per-week'].max())
```

```
In [77]:
                                                                                         H
(data['hours-per-week'] == 99).value_counts()
Out[77]:
False
        32476
True
           85
Name: hours-per-week, dtype: int64
In [79]:
                                                                                         H
data.loc[data['hours-per-week'] == 99, 'salary'].value_counts()
Out[79]:
<=50K
        60
         25
>50K
Name: salary, dtype: int64
In [ ]:
                                                                                         H
25/85*100
10. Count the average time of work (hours-per-week) for those who earn a little
and a lot (salary) for each country (native-country). What will these be for
Japan?
                                                                                         M
In [96]:
group_sal = data.groupby(['native-country','salary'])
group_sal['hours-per-week'].mean().round(1)
```

Out[96]:

Cambodia

Canada

Vietnam

Yugoslavia

native-country

United-States

salary

<=50K >50K

<=50K

>50K

<=50K

>50K

>50K

<=50K

>50K

<=50K

40.2

45.5

41.4

40.0

37.9

. . .

45.5

37.2 39.2

41.6

49.5

Name: hours-per-week, Length: 82, dtype: float64

In [97]: H

```
for (country, salary), avg in group_sal:
    print(country, salary, round(avg['hours-per-week'].mean(), 3))
? <=50K 40.165
? >50K 45.548
Cambodia <=50K 41.417
Cambodia >50K 40.0
Canada <=50K 37.915
Canada >50K 45.641
China <=50K 37.382
China >50K 38.9
Columbia <=50K 38.684
Columbia >50K 50.0
Cuba <=50K 37.986
Cuba >50K 42.44
Dominican-Republic <=50K 42.338
Dominican-Republic >50K 47.0
Ecuador <=50K 38.042
Ecuador >50K 48.75
El-Salvador <=50K 36.031
El-Salvador >50K 45.0
England <=50K 40.483
                                                                                            H
In [104]:
jap1 = group_sal.get_group(('Japan','<=50K'))</pre>
jap2 = group_sal.get_group(('Japan','>50K'))
hour1 = jap1['hours-per-week'].mean().round(1)
hour2 = jap2['hours-per-week'].mean().round(1)
print ( 'Japan - >50K - hours-per-week: {} \n Japan - <=50K - hours-per-week: {} '.format(h</pre>
Japan - >50K - hours-per-week: 41.0
```

PANDASQL

Japan - <=50K - hours-per-week: 48.0

```
In [105]:
                                                                                                    H
```

```
user usage = pd.read csv('user usage.csv')
user_device = pd.read_csv('user_device.csv')
android_devices = pd.read_csv('android_devices.csv')
```

In [106]: ▶

user_usage.head()

Out[106]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

In [107]:

user_device.head()

Out[107]:

	use_id	user_id	platform	platform_version	device	use_type_id
0	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

In [109]: ▶

android_devices.head(10)

Out[109]:

	Retail Branding	Marketing Name	Device	Model
0	NaN	NaN	AD681H	Smartfren Andromax AD681H
1	NaN	NaN	FJL21	FJL21
2	NaN	NaN	T31	Panasonic T31
3	NaN	NaN	hws7721g	MediaPad 7 Youth 2
4	3Q	OC1020A	OC1020A	OC1020A
5	7Eleven	IN265	IN265	IN265
6	A.O.I. ELECTRONICS FACTORY	A.O.I.	TR10CS1_11	TR10CS1
7	AG Mobile	AG BOOST 2	BOOST2	E4010
8	AG Mobile	AG Flair	AG_Flair	Flair
9	AG Mobile	AG Go Tab Access 2	AG_Go_Tab_Access_2	AG_Go_Tab_Access_2

In [134]:

```
import time
```

Произвольный запрос на соединение двух наборов данных

```
In [132]:
```

```
In [152]:
```

```
data_mobile = resultpanda()
data_mobile.head()
```

Out[152]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT- 19505
1	1710.08	136.88	7267.55	22788	android	SM- G930F
2	1710.08	136.88	7267.55	22789	android	SM- G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM- G361F

```
In [135]:
```

```
start_time = time.time()
resultpanda()
print("--- %s seconds ---" % (time.time() - start_time))
```

^{--- 0.007946252822875977} seconds ---

In [127]:

```
In [136]:

start_time = time.time()
resultSQL(user_usage,user_device)
print("--- %s seconds ---" % (time.time() - start_time))
```

```
--- 0.019946813583374023 seconds ---
```

Произвольный запрос на группировку набора данных с использованием функций агрегирования

```
In [148]:
group = resultpanda().groupby('device')['outgoing_mins_per_month'].mean()
group
```

Out[148]:

```
device
A0001
                            170.395000
C6603
                             92.520000
D2303
                             96.845000
D5503
                            146.450000
                            244.880000
D5803
D6603
                            362.010000
                            135.090000
E6653
EVA-L09
                            115.260000
                             46.262500
F3111
GT-I8190N
                             85.970000
GT-I9195
                            199.430000
GT-I9300
                            167.560000
GT-19505
                            162.770909
GT-19506
                            119.800000
GT-I9515
                            180.310000
GT-N7100
                             16.340000
```

```
In [149]:
                                                                                                H
```

```
start_time = time.time()
group = resultpanda().groupby('device')['outgoing_mins_per_month'].mean()
print("--- %s seconds ---" % (time.time() - start_time))
```

--- 0.010970592498779297 seconds ---

```
H
In [162]:
```

```
query = '''
    SELECT
        device,
        avg('outgoing_mins_per_month')
    FROM data_mobile
    GROUP BY device
result = ps.sqldf(query, locals())
```

Out[162]:

device avg('outgoing_mins_per_month')

0	A0001	0.0
1	C6603	0.0
2	D2303	0.0
3	D5503	0.0
4	D5803	0.0
5	D6603	0.0
6	E6653	0.0
7	EVA-L09	0.0
8	F3111	0.0
9	GT-I8190N	0.0

```
In [163]:
```

```
start_time = time.time()
result = ps.sqldf(query, locals())
print("--- %s seconds ---" % (time.time() - start_time))
```

--- 0.012966394424438477 seconds ---