Primer on Semiconductors

Unit 4: Carrier Transport, Recombination, and Generation

Lecture 4.4: Carrier recombination

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Equilibrium and non-equilibrium

In **equilibrium**:

$$n_0 = N_C e^{(E_F - E_C)/k_B T}$$
 $p_0 = N_V e^{(E_V - E_F)/k_B T}$

Out of equilibrium, there can be additional "excess carriers":

$$n = n_0 + \Delta n \qquad p = p_0 + \Delta p$$

(The excess carrier concentrations can be positive or negative.)

Question: How do the excess carrier concentrations vary with time?

Carrier recombination

Expect:

 $\Delta n(t) = \Delta n(t=0)e^{-t/\tau}$ Δn may be either positive or negative.

Goal: Understand the recombination lifetime, τ_n .

3

How can excess carriers recombine?

We will discuss three different ways:

- 1) Band-to-band (radiative) recombination
- 2) Auger recombination
- 3) SRH (defect-assisted) recombination

1) Band-to-band (radiative) recombination

(Note that this is zero in equilibrium – as it should be.)

Low level injection

The term "low level injection" means that the excess carrier concentration is **orders of magnitude smaller** than the equilibrium majority carrier concentration but orders of magnitude larger that the equilibrium minority carrier concentration.

Example: Low level injection in a p-type semiconductor

$$E_V$$
 filled states
$$p_0 = 10^{17} \text{ cm}^{-3}$$

$$n_0 = 10^3 \text{ cm}^{-3}$$

$$n = n_0 + \Delta n$$

$$p = p_0 + \Delta p$$

$$\Delta n \approx \Delta p$$

$$\Delta n = 10^8 \text{ cm}^{-3} >> n_0$$

$$\Delta p \approx \Delta n = 10^8 \text{ cm}^{-3} << p_0$$

Low level injection in a p-type semi

$$E_{G}$$

$$E_{G}$$

$$E = hf \approx E_{G} - - - >$$

$$E_{V}$$

$$\frac{\partial n}{\partial t}\Big|_{b-b} = -B(np - n_{i}^{2})$$

$$n = n_0 + \Delta n \approx \Delta n$$

$$p = p_0 + \Delta p \approx N_A$$

$$np \approx \Delta n N_A >> n_i^2$$

$$\left. \frac{\partial \Delta n}{\partial t} \right|_{b-b} \approx -BN_A \Delta n = -\frac{\Delta n}{\tau_{bb}}$$

$$\left. \frac{\partial \Delta n}{\partial t} \right|_{b-b} \approx -BN_A \Delta n = -\frac{\Delta r}{\tau_{bb}}$$

$$\tau_{bb} = \frac{1}{BN_A}$$

Excess carrier concentration vs. time

2) Auger recombination

(Note that this is zero in equilibrium – as it should be.)

Low level injection in an n-type semiconductor

$$n = n_0 + \Delta n \approx N_D$$

$$p = p_0 + \Delta p \approx \Delta p \qquad \frac{\partial \Delta p}{\partial t} \bigg|_{Auger} \approx -C_n N_D^2 \Delta p = -\frac{\Delta p}{\tau_{Auger}}$$

$$np \approx \Delta p N_D >> n_i^2$$

$$\tau_{Auger} = \frac{1}{C_n N_D^2}$$

3) SRH (defect-assisted) recombination

energy released as thermal energy

$$\frac{\partial n}{\partial t}\Big|_{SRH} = \frac{\partial p}{\partial t}\Big|_{SRH} = \frac{-(np - n_i^2)}{\tau_p(n + n_1) + \tau_n(p + p_1)} \qquad \qquad \tau_p = 1/c_p N_T
n_1, p_1 \approx n_i$$

(Shockley Read Hall recombination)

Low level injection in a p-type semiconductor

$$\left. \frac{\partial n}{\partial t} \right|_{SRH} = \left. \frac{\partial p}{\partial t} \right|_{SRH} = \frac{-\left(np - n_i^2\right)}{\tau_p\left(n + n_1\right) + \tau_n\left(p + p_1\right)}$$

$$n = n_0 + \Delta n \approx \Delta n$$
 $p + p_1 >> n + n_1$ $p = p_0 + \Delta p \approx N_A$ $p >> p_1$ $\frac{\partial \Delta n}{\partial x} = -\frac{\Delta n}{\partial x}$

$$\tau_{SRH} = \frac{1}{c_n N_T}$$

Recombination under low level injection

band-band
$$\left. \frac{\partial \Delta n}{\partial t} \right|_{b-b} = -\frac{\Delta n}{\tau_{b-b}}$$
 $\tau_{b-b} = \frac{1}{BN_A}$

Auger
$$\frac{\partial \Delta n}{\partial t}\Big|_{Auger} = -\frac{\Delta n}{\tau_{Auger}}$$
 $\tau_{Auger} = \frac{1}{C_p N_A^2}$

SRH
$$\left. \frac{\partial \Delta n}{\partial t} \right|_{SRH} = -\frac{\Delta n}{\tau_n}$$
 $\tau_n = \frac{1}{c_n N_T}$

The minority carrier lifetime is a key parameter for solar cells, bipolar transistors, etc.

Multiple recombination processes

$$\left. \frac{\partial \Delta n}{\partial t} \right|_{tot} = -\frac{\Delta n}{\tau_{eff}} \qquad \frac{1}{\tau_{eff}} = \frac{1}{\tau_{b-b}} + \frac{1}{\tau_{Auger}} + \frac{1}{\tau_{SRH}}$$

$$\Delta n(t) = \Delta n(0)e^{-t/\tau_{eff}}$$

Discussion

When are the various recombination processes dominant?

1) Auger: For heavily doped semiconductors $\tau_{Auger} = \frac{1}{C_p N_A^2}$

2) SRH: When defects are present and other effects don't dominate.

3) Radiative: Only for direct gap semiconductors.

BB recombination in direct gap semiconductors

Conservation of energy:

$$E_{ph} = hf \approx E_G$$

Conservation of momentum:

$$\hbar k_1 - \hbar k_2 = \hbar k_{ph} \approx 0$$

$$k_1 \approx k_2$$

("vertical transitions" photons have very little momentum)

BB recombination in **indirect gap** semiconductors

Conservation of energy:

$$E_{ph} = hf = E_G \pm \hbar \omega_{lv}$$

Conservation of momentum:

$$\hbar k_1 - \hbar k_2 = \hbar k_{ph} + \hbar k_{lv}$$

(must involve a lattice vibration with the right momentum)

BB recombination in indirect semiconductors is very weak!

Three type of recombination

1) Band-to-band radiative recombination

dominates in direct gap semiconductors makes lasers and LEDs possible

2) Auger recombination

dominates when the carrier densities are very high (heavily doped semiconductors or lasers)

3) SRH recombination

dominates in indirect gap semiconductors and in low quality direct gap semiconductors

Recombination-generation

$$R = X(np - n_i^2)$$

$$X = B$$

band-to-band radiative

$$X = C_n n + C_p p$$

Auger

$$X = \frac{1}{\tau_p(n+n_1) + \tau_n(p+p_1)}$$
 SRH

$$(np > n_i^2)$$

net recombination

$$(np < n_i^2)$$

net generation

3) SRH (defect-assisted) generation

releases thermal energy

requires thermal energy

Summary

When excess carriers are introduced, a semiconductor responds by trying to restore equilibrium.

In the simplest, and quite common case, the perturbation decays exponentially with time.

$$\Delta n(t) = \Delta n(t=0)e^{-t/\tau_n}$$
 (low level injection)

The minority carrier lifetime is controlled by radiative, Auger, or defect-assisted process – or by some combination of these.