29100	
Ynevou	TIQN.
Anadou	pin Gauss: Enaugntièvos nivaras -> halparwoos
	nioù avarazaoan.
A Madone	en Gauss - Jordan: Enauznfièvos nivateis -> avnyfièvos rationarios.
Eow A	s anadorgàs: t o enaugntienos nivaras enos patituros ovornitaros ararin tropopi.
Leruban	LETA BANTÈS AVELOTONYOÙV DE MYETURO 1 REJOVEUN LÓPIES LES, OI DIOBOITES BÉXOVEUN EBRUSEPES LETABANTÈS.
3	

The transformer exercises from the solution of the person
Letabantes (Ser unaprouv en exorte rosa nyeriva 1 oses raio) Letabantes (Ser unaprouv en exorte rosa nyeriva 1 Tore rosountia exer tinsenirin doon. 3" Trepitamon: Letabantes (vinaprouv en rai ra nyeriva 1 emai divoreça anto ris letabantes). Letabantes (vinaprouv en rai ra nyeriva 1 emai divoreça anto ris letabantes). Tore unaprouv interpes divores nou except forai napatie ropira Che napatierpous ris en en en en en en angente ropira Che napatierpous ris en en en en en angente vous nivares politició ou o o except fores divores oras. L) 1 0 0 0 Exer politició 0 0 11) O 1 2 0 => apa fin outilibació. U) 1 -5 1 4 aneixes divores O 0 0 0 0 > xi. xi en entre freschentes.
Letabantes (Ser unaprouv en exorte rosa nyeriva 1 oses rai o) Letabantes (Ser unaprouv en exerte rosa nyeriva 1 Tore rosountia exer tensenira doon. 3" Trepitamon: Letabantes (vinaprouv en rai ra nyeriva 1 emai divoreça antó ris Letabantes (vinaprouv en rai ra nyeriva 1 emai divoreça antó ris Letabantes (vinaprouv en eserveres herrobantes). Tore unaprouv interpes divers nou exippo forai napatie repra Che napatierpous ris en en exippo forai napatie repra Che napatierpous ris en en exippo forai napatie repra Che napatierpous ris en en exippo forai napatie rosa Topa Sentia O naparam nivares no errangatien y a ris divers oas; Li 1 0 0 0 Exer populario 0 0 11) O 1 2 0 => apa tin autiliación. U 1 -5 1 4 aneixes divers O 0 0 0 0 > x2, x3 edeidepes termbantes.
Letabantes (Ser unaprov en exorte rosa nyerirà 1 oses rai o) Letabantes (Ser unaprov en exerte rosa nyerirà 1 Tore vo obornha exer tensenira avon. 3º Trepitamon: Letabantes (vinaprov enervà 1 emai divoreta antò ris letabantes). Letabantes (vinaprov enervà persona napatie rpira lite unaprovi direpes divers nov exippo forai napatie rpira che napatierpous ris enervas pretibantes). Tore unaprovi direpes divers nov exippo forai napatie rpira che napatierpous ris enervas personal napatie rosa minares Prophiricio ovornhami. Ti orinappenera partis divers oas; i) (1 0 0 0 0 => exer prothin (0 0 0 11) 0 1 2 0 => apa fin orthologoro. ii) (1 -5 1 4) anapes divers o 0 0 0 0 => x1, x3 edevlepes termbantes.
3^n περίπωση: Δεν ισχύει η πρώνη και τα ηγενικά 1 είναι λιχό τερα από τις μεται βλητές (νηάρχουν ελείνθερες μεται βλητές). Τότε υπάρχουν άπειρες λύσεις που εχιρρά forται παραμε γρικά (με παραμετρούς τις ελεύθερες μεται βλητές). Παρά δειχμα: Οι παραχάνω πίναχες προεκτικαν από επαυξημένους πίναχεις γραμμικών συστημάνων. Τι συμπερενεται ματις λύσεις σας; i) (1 0 0 0) \approx εχει γραμμικό (0 0 0 11) 0 1 2 0 \Rightarrow δρα μιη συμφιδαστο. $0 0 0 0 1 \Rightarrow$ δηειρες λύσεις $0 0 0 0 0 \Rightarrow$ χα, χ \approx ελεύθερες μεται βλητες.
3^n περίπωση: Δεν ισχύει η πρώνη και τα ηγενικά 1 είναι λιχό τερα από τις μεται βλητές (νηάρχουν ελείνθερες μεται βλητές). Τότε υπάρχουν άπειρες λύσεις που εχιρρά forται παραμε γρικά (με παραμετρούς τις ελεύθερες μεται βλητές). Παρά δειχμα: Οι παραχάνω πίναχες προεκτικαν από επαυξημένους πίναχεις γραμμικών συστημάνων. Τι συμπερενεται ματις λύσεις σας; i) (1 0 0 0) \approx εχει γραμμικό (0 0 0 11) 0 1 2 0 \Rightarrow δρα μιη συμφιδαστο. $0 0 0 0 1 \Rightarrow$ δηειρες λύσεις $0 0 0 0 0 \Rightarrow$ χα, χ \approx ελεύθερες μεται βλητες.
3^n περίπωση: Δεν ισχύει η πρώνη και τα ηγενικά 1 είναι λιχό τερα από τις μεται βλητές (νηάρχουν ελείνθερες μεται βλητές). Τότε υπάρχουν άπειρες λύσεις που εχιρρά forται παραμε γρικά (με παραμετρούς τις ελεύθερες μεται βλητές). Παρά δειχμα: Οι παραχάνω πίναχες προεκτικαν από επαυξημένους πίναχεις γραμμικών συστημάνων. Τι συμπερενεται ματις λύσεις σας; i) (1 0 0 0) \approx εχει γραμμικό (0 0 0 11) 0 1 2 0 \Rightarrow δρα μιη συμφιδαστο. $0 0 0 0 1 \Rightarrow$ δηειρες λύσεις $0 0 0 0 0 \Rightarrow$ χα, χ \approx ελεύθερες μεται βλητες.
3^n περίπωση: Δεν ισχύει η πρώνη και τα ηγενικά 1 είναι λιχό τερα από τις μεται βλητές (νηάρχουν ελείνθερες μεται βλητές). Τότε υπάρχουν άπειρες λύσεις που εχιρρά forται παραμε γρικά (με παραμετρούς τις ελεύθερες μεται βλητές). Παρά δειχμα: Οι παραχάνω πίναχες προεκτικαν από επαυξημένους πίναχεις γραμμικών συστημάνων. Τι συμπερενεται ματις λύσεις σας; i) (1 0 0 0) \approx εχει γραμμικό (0 0 0 11) 0 1 2 0 \Rightarrow δρα μιη συμφιδαστο. $0 0 0 0 1 \Rightarrow$ δηειρες λύσεις $0 0 0 0 0 \Rightarrow$ χα, χ \approx ελεύθερες μεται βλητες.
LEV 10XUEL M TOWN TO TO THE TOWN AND TENDER OF THE WORLD ANTES). LETCH BANTES (VINAPAUV EARUSEPRS LETUBANTES). TOTE UNAPAUV ATTEMPES AUGUS NOW EXCEPT JONE OF THE POPULAR PREVIOUS THE POPULAR THE POWER PROPERTY OF THE POWER TOWN TO EXCEPT JONES TOWN TO STANGE THE POWER TOWN TOWN TO STANGE THE POWER TOWN TO STANGE THE POWER TOWN TO STANGE THE POWER THE POWER TOWN TOWN TOWN TOWN TO STANGE THE POWER TOWN TO STANGE THE POWER TOWN TOWN TOWN TOWN TOWN TOWN TOWN TOWN
The mapatier variety of the per diverses the transfer to the mapatier pour an experience of the mapatier pour as edenders and experience of the mapatier pour as edenders of the mapatier pour as edenders of the mapatier of
Topa Seigha: Or naparaw nivaxes npoexayar and enang nherous nivaxes pahhrixin ovornhamir. To orhinepeneral years divers ous; i) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow apa fin orthodoxo. ii) \begin{pmatrix} 1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow x_2, x_3 & edevlepes heroubantes.$
The napolierpous als edeblepes frembances. The parties of the contract of th
Thopa Serglia: 0. παρανάνω πίναχες προέχωζαν από επαωξητίενους πίναχες ραμμικών συστημάνων. Τι συμπερένεται ματις λύσεις σας; i) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \Rightarrow \hat{\alpha} $ εχει χραμμική $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 \end{pmatrix} \Rightarrow \hat{\alpha} $ ρα μιπ συμιδιοδαστο. ii) $\begin{pmatrix} 1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \lambda_1 \lambda_2$ ελεύθερες μεταιδηντες. $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
Or naparaw nivares necessary and enarghterous nivares $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Or naparaw nivares necessary and enarghterous nivares $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
i) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \Rightarrow \text{ in a publication.}$ ii) $\begin{pmatrix} 1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{ in a person } $
i) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \Rightarrow \text{ in a publication.}$ ii) $\begin{pmatrix} 1 & -5 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{ in a person } $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
iii) (103/-1) anexpes 200ELS.
iii) (1 0 3 /-1) anexpes 200ELS
allerpes about
0 -4 2 \Rightarrow \times 3 EAEDUSON LIETU HANTÍN
0 0 0

(V) (0) | (X) anerpes diosers branches. Taparinpnon: Αν το σύστητα είναι ομοχενες, δεν υπάρχει χραμμή της μορφής $(0 \ 0 \dots 0 \ b)$, $b \neq 0$, άρα πάντα υπάρχει νουλάχιστο μια diam. Demontia: Αν σε ομογενες χραμμικό σύστημα εχουμε περισσότερους αχνώ-στους από ότι εξισώσεις τότε έχουμε άπειρες λύσεις. Eniduan LE avacaporn Tivara: Low papierie ovocntia: aux+a12 /2+...+a1n Xn=b1 n Ezroviosers Lein azvioani Xi tanz Xz + tann Xn=bn $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ A = \begin{pmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{pmatrix}$ MINOURAS OUTEREDINA TOU ovoring woos. any anz --- ann To ovornia podesta 100 Sivatra us A.X=6

Av o A evai avarapezzilos, zo ce no al Joulie Lie zov. A ono aprocepà: $(A^{-1}A) X = A^{-1}b$										
aplatépà:										
$(A^{-1}A)X = A^{-1}b$										
$= \sum I_n X = A^{-1} b$ $= \sum X = A^{-1} b$										
	=	> X =	A-1 b							
Deing	nal									
Ayo	WAN -	al many of C	Λ			and a size as as givenly				
Avo nxn nivaras A eivai avaraperphos zore w xp ovornha A.X = b èxer hova Sixn dion zny X = A-1 b. (Mova Sixn dion Sign av XI eiva addin dion zore AXI = b = XA-1 A XI = A-1 b = >										
Sion av XI eivar âddn dion rore AXI=b=bA-1AXI=A-1b=b										
$\Rightarrow X_1 = A^{-1}b = X$										
					7					
D.X: V	a and	ei ro y	ρισύσ	mpa						
		1 +2 X2								
		1+5X2	-							
	Λ.	1 +	+81	3 2	1.4.					
/ 1	ີ ລ	3	-1		<u>;</u> , , , ,					
7	x 5	ر ب	0		0	$R_2 \rightarrow R_2 - 2R_1$				
Ĩ	0	8	1 O.	_ , _	1	B3 -> R3-R1				
	A					10 /15-1				
				£						
(1	2	3		.0		$R_1 \rightarrow R_1 + R_3$				
0		-3	-2		0	$R_3 \rightarrow R_3 + 2R_2$				
()	-3	5	-/.	•()	,					
	()	8				, , , , , , , , , , , , , , , , , , , ,				
0		-3	-2		0	1 -> K3 -> -K3				
	0	-	-5	X						
/1	()	C.	^)	()	1	, . "				
	1	2	2	1		K1-8R3				
		7	10	1	0	R2→R2+3R3.				
	\cup	1 /	5 -	ノ ー	1 /					

Beipentia:								
the orange exer applies his making in alleges mosss.								
Low or re overntra pragera AX=b								
Form Xo. X, Sin Divers and OVERINGTOS (Xo #X) ADA								
A Xo=b Har. A X1 = b. That are points on: $A(Xo-X1) = A Xo - A X1 = b - b = 0$								
Eow X2 = X0-X) + 36 R								
$A(X_1+3X_2) = AX_1 + A(AX_2) = b+3 \cdot 0 = b$								
PES AUGELS.								
Mapabenglia eniduone les anadorgis								
$X_1 - X_2 + \partial X_3 - X_4 = 1$								
$2X_1 + X_2 - 2X_3 - 2X_4 = -2$ $-X_1 + 2X_2 - 4X_3 + X_4 = 1$								
$3\chi_1 - 3\chi_{4=13}$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
1 2 -4 1 1 R4-7R4-3R1 3 0 0 -3 +3								
/1-12-11								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
0 3 -6 0 0								