Numerical Solutions to Equations

Faraz Patnam
Dept. of Electrical Engg.,
IIT Hyderabad.
January 30, 2025

Outline

Table of Contents

Problem

Theoritical Solution

Matrix Method

Power Iteration

Problem

Problem Statement

Find the values of k for which the quadratic equation $2x^2 + kx + 5 = 0$. So they've two equal roots.

Theoritical Solution

Value Of k

If the roots are equal then the value of Discriminant is to 0

$$b^2 - 4ac = 0 (3.1)$$

$$k^2 - 4 \times 2 \times 5 = 0 \tag{3.2}$$

$$k = \pm 2\sqrt{10} \tag{3.3}$$

We get two equations since there are two values for k.

$$2x^2 + 2\sqrt{10}x + 5 = 0 \tag{3.4}$$

$$2x^2 - 2\sqrt{10}x + 5 = 0 \tag{3.5}$$

Matrix Method

Characteristic Polynomial

For a Matrix A of order n, the characteristic equation is given by,

$$det(A - \lambda I) = a_n \lambda^n + a_{n-1} \lambda^{n-1} \cdots + a_0 = 0$$
 (4.1)

We know that the roots of the characteristic polynomial are the eigenvalues of the matrix A.

We need to construct a matrix such we can find the eigen value using any iterative algorithm.

Companion Matrix

Matrix A is said to be the companion of a polynomial f(x) if

$$det (A - \lambda I) = 0 \implies f(x) = 0 \tag{4.2}$$

For,

$$f(x) = c_0 + c_1 x + \dots + x^n$$
 (4.3)

The companion matrix is,

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & -c_0 \\ 1 & 0 & \cdots & 0 & -c_1 \\ 0 & 1 & \cdots & 0 & -c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -c_{n-1} \end{pmatrix}$$

$$(4.4)$$

My Companion Matrix

For
$$x^2 + \sqrt{10}x + 2.5 = 0$$

Companion matrix

$$C_1 = \begin{pmatrix} 0 & -2.5 \\ 1 & -\sqrt{10} \end{pmatrix} \tag{4.5}$$

For
$$x^2 - \sqrt{10}x + 2.5 = 0$$

Companion matrix

$$C_2 = \begin{pmatrix} 0 & -2.5\\ 1 & \sqrt{10} \end{pmatrix} \tag{4.6}$$

Matrix Method

- 1. Construct the companion matrix of the obtained polynomials.
- 2. Use power iteration algorithm to find the largest eigen value of the companion matrix, called as $\lambda_{\rm max}$.
- 3. This eigen value obtained is the root of the polynomial.
- 4. Now divide the polynomial with $x \lambda_{max}$ to remove the root.
- 5. Repeat the above steps iteratively on the reduced polynomial until a degree-1 equation is obtained, which gives the final root directly.

Power Iteration

The power iteration algorithm computes the largest eigenvalue λ_{max} of this matrix by iteratively applying the following steps:

$$\tilde{\mathbf{x}}_n = C\mathbf{x}_{n-1},\tag{4.7}$$

$$\mathbf{x}_n = \frac{\tilde{\mathbf{x}}_n}{\|\tilde{\mathbf{x}}_n\|},\tag{4.8}$$

The iteration stops when:

$$|\lambda_{\mathsf{max}}^{(n)} - \lambda_{\mathsf{max}}^{(n-1)}| < \epsilon, \tag{4.9}$$

where ϵ is the desired precision, and $\lambda_n = \frac{\mathbf{x}_n^\top C \mathbf{x}_n}{\mathbf{x}_n^\top \mathbf{x}_n}$. (Rayleigh Quotient)

Power Iteration

Once λ_{max} is found, synthetic division is performed to reduce the polynomial:

$$P(x) = P(x) \div (x - \lambda_{\text{max}}), \tag{4.10}$$

$$P(x) = c_{1,0} + c_{1,1}x + c_{1,2}x^2 + \dots + c_{1,(n-1)}x^{n-1}.$$
 (4.11)

Now, the new companion matrix will be evaluated.

This process is repeated iteratively until the polynomial is reduced to a degree-1 equation:

$$P_1(x) = c_{n-1,0} + c_{n-1,1}x. (4.12)$$

Thus, the update equation would be:

$$P_{n-1}(x) = P_n(x) \div (x - \lambda_n), \tag{4.13}$$

where λ_n can be found using the power iteration of the companion matrix of $P_n(x)$.

Why does it converge?

1. Power iteration works when the matrix A has a dominant eigen value λ_{\max}

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n| \tag{4.14}$$

2. Corresponding eigen vector is v_1

Eigen basis:

- 3. Assume v_1, v_2, \ldots, v_n be the eigen values of matrix A.
- 4. Then the initial vector x_0 can be expressed as linear combination of eigen values

$$x_0 = c_1 v_1 + c_2 v_2 + \dots + c_n v_n \tag{4.15}$$

Result

Quad1:

Root 1: -1.582720

Root 2: -1.579558

Quad2:

Root 1: 1.582720

Root 2: 1.579558

Why does it converge?

After k iterations, vector x_k becomes

$$x_{k} = \frac{c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots + c_{n}\lambda_{n}^{k}v_{n}}{\|c_{1}\lambda_{1}^{k}v_{1} + c_{2}\lambda_{2}^{k}v_{2} + \dots + c_{n}\lambda_{n}^{k}v_{n}\|}$$
(4.16)

since λ_1 is the dominant eigen value as k increases (more precisely $k \to \infty$) the term $c_1 \lambda_1^k v_1$ dominates and all the other terms become negligible

The normalization step $\mathbf{x}_k = \frac{\tilde{\mathbf{x}}_k}{\|\tilde{\mathbf{x}}_k\|}$ ensures that the vector x_k does not grow indefinitely and stabilizes the iteration.

Rate of Convergence

The rate of convergence of power iteration depends on the ratio of the second-largest eigenvalue to the largest eigenvalue:

$$r = \left| \frac{\lambda_2}{\lambda_1} \right| \tag{4.17}$$

- 1. If r is small, the algorithm converges quickly.
- 2. If r is close to 1, the algorithm converges slowly.