

1

OVERVIEW & OBJECTIVE

02

METHODOLOGY

03

THE MODEL

04

KEY TAKEAWAYS

05

FUTURE OPPORTUNITIES

KNOW YOUR CAR'S IMPACT

Through linear regression modeling, identify features of non-electric cars that are correlated with the car's greenhouse gas emissions (gge).

All data was web-scraped from <u>FuelEconomy.gov</u> = ~5,200 samples

2: EXPLORATORY DATA ANALYSIS

Examined features relationship to greenhouse gas emissions

3: BUILD MODEL

Tested various feature shifts to get strongest results from a model

4: VALIDATION

Conducted validation & cross-validation tests on model's performance

5: PUT MODEL TO THE TEST

All data was web-scraped from $\underline{FuelEconomy.gov} = ~5,200 \text{ samples}$

2: EXPLORATORY DATA ANALYSIS

Examined features relationship to greenhouse gas emissions

3: BUILD MODEL

Tested various feature shifts to get strongest results from a model

4: VALIDATION

Conducted validation & cross-validation tests on model's performance

5: PUT MODEL TO THE TEST

All data was web-scraped from $\underline{FuelEconomy.gov} = ~5,200 \text{ samples}$

2: EXPLORATORY DATA ANALYSIS

Examined features relationship to greenhouse gas emissions

3: BUILD MODEL

Tested various feature shifts to get strongest results from a model

4: VALIDATION

Conducted validation & cross-validation tests on model's performance

5: PUT MODEL TO THE TEST

All data was web-scraped from $\underline{FuelEconomy.gov} = ~5,200 \text{ samples}$

2: EXPLORATORY DATA ANALYSIS

Examined features relationship to greenhouse gas emissions

3: BUILD MODEL

Tested various feature shifts to get strongest results from a model

4: VALIDATION

Conducted validation & cross-validation tests on model's performance

5: PUT MODEL TO THE TEST

All data was web-scraped from $\underline{FuelEconomy.gov} = ~5,200 \text{ samples}$

2: EXPLORATORY DATA ANALYSIS

Examined features relationship to greenhouse gas emissions

3: BUILD MODEL

Tested various feature shifts to get strongest results from a model

4: VALIDATION

Conducted validation & cross-validation tests on model's performance

5: PUT THE MODEL TO THE TEST

MAKE + MODEL +

YEAR

ENGINE CAPACITY

CYLINDERS

TRANSMISSION TYPE

TRANSMISSION SPEED

FUEL TYPE

MILES-PER-GALLON

GREENHOUSE GAS EMISSIONS (from tailpipe)

Numerical ENGINE CAPACITY

Categorical TRANSMISSION TYPE

FUEL TYPE

GREENHOUSE GAS EMISSIONS (from tailpipe)

GREENHOUSE GAS EMISSIONS (from tailpipe)

The first U.S. greenhouse gas vehicle standards began with 2012 models.

'Pre-Regulations' Period

car model years

1984 - 2011

Regulations Period

car model years

2012 - 2021

 $R^2 = 69\%$

Mean Absolute Error (mae) = **47.2**

TAKEAWAYS

What the model tells us: Signs that your car has lower greenhouse gas emissions:

Lower engine capacity. Data showed range from 1 to 8.4 liters, so look for lower end of that range

Cars with model years on or after **2012 at least until 2020**. Time will tell of effects of loosened regulations starting 2021.

Now's the time to learn how to stick shift! Opt for **manual transmission** over automatic.

Regular is best. Then diesel. Then premium. Who wants to pay more anyways?

Signs that your car has lower greenhouse gas emissions:

Lower engine capacity. Data showed range from 1 to 8.4, so look for lower end of that range

Cars made on or after **2012 at least until 2020**. Time will tell of effects of loosened regulations start

Now's the time to learn how to stid manual transmission over auton

Or better yet, go electric!

Regular is best. Then diesel. Then property And who wants to pay more anyway?

- Re-examine after 2021 and beyond to see if model changes for period when regulations were loosened
- Broaden scope of project to include 'full-cycle' of emissions related to car, not limited to but including:
 - manufacturing of car
 - delivery of cars to sales shop
 - o if electric, power source's fuel & related emissions

THANK YOU

Does anyone have any questions?

Celina Plaza

This is where you give credit to the ones who are part of this project.

- Presentation template by Slidesgo
- Icons by Flaticon
- Infographics by Freepik
- Images created by Freepik

APPENDIX

MODEL'S FULL FORMULA

$$Y_{p} = 227.88 + 60.2x_{1} + 13.46x_{2} + 47.5x_{3} + 32.66x_{4} - 63.29x_{5}$$

$$\begin{array}{c} \text{Engine} \\ \text{Capacity} \\ \text{in liters} \\ \text{(numeric)} \end{array} \qquad \begin{array}{c} \text{Automatic} \\ \text{Transmission} \\ \text{(dummy = 1)} \end{array} \qquad \begin{array}{c} \text{Regular gas} \\ \text{(dummy = 1)} \end{array} \qquad \begin{array}{c} \text{Model year} \\ \text{between} \\ \text{2012 - 2021} \\ \text{(dummy = 1)} \end{array}$$

Real Example Tests:

- 1. 2020 Honda CR-V AWD has engine capacity of 1.5 liters, automatic transmission, and takes regular gas..
 - > Model's predict gge: **300.93**, Real gge: **305**
- 2. 2006 Chevrolet SSR Pickup 2WD has engine capacity of 6 liters, manual transmission, and takes premium gas.
 - > Model's predict gge: 636.58, Real gge: 635

GREENHOUSE GAS EMISSIONS DATA BASICS

There are 335 values of actual greenhouse gas emissions -- the "y" values. The values for the greenhouse gas emissions range from 168.0 to 889.0 grams/mile

CORRELATION LIST TO GREENHOUSE GAS EMISSIONS (y)

```
capacity_liters
                          0.773934
cylinders
                          0.740521
gg emissions
                          1.000000
transmission Automatic
                          0.169507
transmission Manual
                         -0.169507
fuel diesel
                         -0.010432
fuel premium
                          0.117899
fuel regular
                         -0.105576
year pre regulations
                          0.343847
year_regulations
                         -0.343847
Name: gg_emissions, dtype: float64
```

CORRELATION HEATMAP

GGE CORRELATION MATRIX

- 0.8 - 0.4 - 0.0

-0.8

PAIR PLOTS (1 of 2)

PAIR PLOTS (2 of 2)

RIDGE MODEL REGRESSION RESULTS - FINAL MODEL


```
COEFFICIENTS for RIDGE Model:
[('capacity_liters', 60.19222009830541),
  ('transmission_Automatic', 13.464090054103353)
  ('fuel_premium', 47.49635509672385),
  ('fuel_regular', 32.65820777307923),
  ('year_regulations', -63.29001086355502)]
```

INERCEPT for RIDGE Model: 227.88099122750089

```
***
RIDGE MODEL:
R^2: 0.6903722423162104
Mean Absolute Error: 47.19790875474612
```

RESIDUALS OF MODEL

PLOTTING COEFFICIENTS FOR RIDGE MODEL

OLS MODEL RESULTS FOR SELECTED MODEL

	OL	S Regressio	n Results				
Dep. Variable:	gg.	_emissions	R	-squared	d:	0.667	
Model:		OLS	Adj. R	-squared	d:	0.666	
Method:	Lea	st Squares	F	-statistic	: :	1680.	
Date:	Thu, 1	6 Jul 2020	Prob (F-	statistic):	0.00	
Time:		13:14:33	Log-L	ikelihood	d: -	23460.	
No. Observations:		4208		AIC	: 4.69	93e+04	
Df Residuals:		4202		віс	2: 4.6	97e+04	
Df Model:		5					
Covariance Type:		nonrobust					
		coef	std err	t	P> t	[0.025	0.975]
Inte	rcept	220.6943	4.515	48.879	0.000	211.842	229.546
capacity		60.3358	0.830	72.683	0.000	58.708	61.963
transmission_Auto		14.3127	2.384	6.003	0.000	9.638	18.988
fuel_pre		56.1192	3.924	14.302	0.000	48.427	63.812
fuel_re		40.0015	3.705	10.797	0.000	32.738	47.265
vear regula		-66.1480		-27.310	0.000	-70.897	-61.399
, o.a o.g.a		3311.133		27.010	0.000	, 0.00,	0.1.000
Omnibus:	337.500	Durbir	n-Watson:	1.9	997		
Prob(Omnibus):	0.000	Jarque-l	Bera (JB):	857.	741		
Skew:	0.467		Prob(JB):	5.54e-	187		
Kurtosis:	5.005		Cond. No.	2	3.3		

LASSO MODEL REGRESSION RESULTS - NOT SELECTED


```
COEFFICIENTS for LASSO Model:
```

```
{'capacity_liters': 60.23716584200582,
  'transmission_Automatic': 9.552830288197704,
  'fuel_premium': 33.16088112384506,
  'fuel_regular': 19.203145188683628,
  'year_regulations': -59.56451385881141}
```

INERCEPT for LASSO Model:

241.71179090637253

LASSO MODEL:

R^2: 0.6875868818662549

Mean Absolute Error: 47.43280666154661

LASSO PATH

