Heroes Of Pymoli Data Analysis

- Of the 1163 active players, the vast majority are male (84%). There also exists, a smaller, but notable proportion of female players (14%).
- Our peak age demographic falls between 20-24 (44.8%) with secondary groups falling between 15-19 (18.60%) and 25-29 (13.4%).

```
In [1]: # Dependencies and Setup
import pandas as pd
import numpy as np

# File to Load (Remember to Change These)
file_to_load = "Resources/purchase_data.csv"

# Read Purchasing File and store into Pandas data frame
purchase_data = pd.read_csv(file_to_load)
```

Player Count

Purchasing Analysis (Total)

```
In [3]: # Run basic calculations
        average item price = purchase data["Price"].mean()
        total purchase value = purchase data["Price"].sum()
        purchase count = purchase data["Price"].count()
        item count = len(purchase data["Item ID"].unique())
        # Create a DataFrame to hold results
        summary_table = pd.DataFrame({"Number of Unique Items": item_count,
                                       "Total Revenue": [total purchase value],
                                       "Number of Purchases": [purchase count],
                                       "Average Price": [average item price]})
        # Minor Data Munging
        # summary table = summary table.round(2)
        # summary table ["Average Price"] = summary_table["Average Price"].map("$
        # summary table ["Number of Purchases"] = summary table["Number of Purcha
        # summary table ["Total Revenue"] = summary table["Total Revenue"].map("$
        # summary table = summary table.loc[:,["Number of Unique Items", "Average
        # Display the summary table
        summary_table
```

Out[3]: Average Price Number of Purchases Number of Unique Items Total Revenue

0 3.050987 780 183 2379.77

Gender Demographics

```
In [4]: # Calculate the Number and Percentage by Gender
    gender_demographics_totals = player_demographics["Gender"].value_counts()
    gender_demographics_percents = gender_demographics_totals / num_players *
    gender_demographics = pd.DataFrame({"Total Count": gender_demographics_to
    # Minor Data Munging
    gender_demographics = gender_demographics.round(2)
    gender_demographics
```

Out[4]:

	Percentage of Players	Total Count
Male	113.19	652
Female	19.62	113
Other / Non-Disclosed	2.60	15

Purchasing Analysis (Gender)

```
In [5]: # Run basic calculations
        gender purchase total = purchase data.groupby(["Gender"]).sum()["Price"].
        gender_average = purchase_data.groupby(["Gender"]).mean()["Price"].rename
        gender counts = purchase data.groupby(["Gender"]).count()["Price"].rename
        # Calculate Normalized Purchasing (Average Total Purchase per Person)
        normalized total = gender purchase total / gender demographics["Total Cou
        # Convert to DataFrame
        gender data = pd.DataFrame({"Purchase Count": gender counts, "Average Pur
        # Minor Data Munging
        gender_data["Average Purchase Price"] = gender_data["Average Purchase Pri
        gender data["Total Purchase Value"] = gender data["Total Purchase Value"]
        gender_data ["Purchase Count"] = gender_data["Purchase Count"].map("{:,}"
        gender_data["Avg Total Purchase per Person"] = gender_data["Normalized To
        gender data = gender data.loc[:, ["Purchase Count", "Average Purchase Pri
        # Display the Gender Table
        gender data
```

Out[5]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
Gender				
 Female	113	\$3.20	\$361.94	\$3.20
Male	652	\$3.02	\$1,967.64	\$3.02
Other / Non- Disclosed	15	\$3.35	\$50.19	\$3.35

Age Demographics

```
In [6]: # Establish the bins
   age_bins = [0, 9.90, 14.90, 19.90, 24.90, 29.90, 34.90, 39.90, 99999]
   group_names = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39

# Categorize the existing players using the age bins
   player_demographics["Age Ranges"] = pd.cut(player_demographics["Age"], ag

# Calculate the Numbers and Percentages by Age Group
   age_demographics_totals = player_demographics["Age Ranges"].value_counts(
   age_demographics_percents = age_demographics_totals / num_players * 100
   age_demographics = pd.DataFrame({"Total Count": age_demographics_totals,

# Minor Data Munging
   age_demographics = age_demographics.round(2)

# Display Age Demographics Table
   age_demographics.sort_index()</pre>
```

Out[6]:

	Percentage of Players	Total Count
<10	3.99	23
10-14	4.86	28
15-19	23.61	136
20-24	63.37	365
25-29	17.53	101
30-34	12.67	73
35-39	7.12	41
40+	2.26	13

Purchasing Analysis (Age)

```
In [7]: # Bin the Purchasing Data
        purchase data["Age Ranges"] = pd.cut(purchase data["Age"], age bins, labe
        # Run basic calculations
        age purchase total = purchase data.groupby(["Age Ranges"]).sum()["Price"]
        age average = purchase data.groupby(["Age Ranges"]).mean()["Price"].renam
        age counts = purchase data.groupby(["Age Ranges"]).count()["Price"].renam
        # Calculate Normalized Purchasing (Average Purchase Total per Person)
        normalized total = age purchase total / age demographics["Total Count"]
        # Convert to DataFrame
        age data = pd.DataFrame({"Purchase Count": age counts, "Average Purchase
        # Minor Data Munging
        age_data["Average Purchase Price"] = age_data["Average Purchase Price"].m
        age_data["Total Purchase Value"] = age_data["Total Purchase Value"].map("
        age data ["Purchase Count"] = age data["Purchase Count"].map("{:,}".forma
        age data["Avg Total Purchase per Person"] = age data["Normalized Totals"]
        age_data = age_data.loc[:, ["Purchase Count", "Average Purchase Price",
        # Display the Age Table
        age data
```

Out[7]:

	Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person
10- 14	28	\$2.96	\$82.78	\$2.96
15- 19	136	\$3.04	\$412.89	\$3.04
20- 24	365	\$3.05	\$1,114.06	\$3.05
25- 29	101	\$2.90	\$293.00	\$2.90
30- 34	73	\$2.93	\$214.00	\$2.93
35- 39	41	\$3.60	\$147.67	\$3.60
40+	13	\$2.94	\$38.24	\$2.94
<10	23	\$3.35	\$77.13	\$3.35

Top Spenders

```
In [8]: # Basic Calculations
    user_total = purchase_data.groupby(["SN"]).sum()["Price"].rename("Total P
    user_average = purchase_data.groupby(["SN"]).mean()["Price"].rename("Aver
    user_count = purchase_data.groupby(["SN"]).count()["Price"].rename("Purch

# Convert to DataFrame
    user_data = pd.DataFrame({"Total Purchase Value": user_total, "Average Pu

# Display Table
    user_sorted = user_data.sort_values("Total Purchase Value", ascending=Fal

# Minor Data Munging
    user_sorted["Average Purchase Price"] = user_sorted["Average Purchase Pri
    user_sorted["Total Purchase Value"] = user_sorted["Total Purchase Value"]
    user_sorted = user_sorted.loc[:,["Purchase Count", "Average Purchase Price"]

# Display DataFrame
    user_sorted.head(5)
```

Out[8]:

Purchase Count	Average Purchase Price	Total Purchase Value
Purchase Count	Average Fulchase Frice	iotal Purchase value

SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

```
# Extract item Data
In [9]:
        item_data = purchase_data.loc[:,["Item ID", "Item Name", "Price"]]
        # Perform basic calculations
        total item purchase = item data.groupby(["Item ID", "Item Name"]).sum()["
        average item purchase = item data.groupby(["Item ID", "Item Name"]).mean(
        item_count = item_data.groupby(["Item ID", "Item Name"]).count()["Price"]
        # Create new DataFrame
        item data pd = pd.DataFrame({"Total Purchase Value": total item purchase,
        # Sort Values
        item_data_count_sorted = item_data_pd.sort_values("Purchase Count", ascen
        # Minor Data Munging
        item_data_count_sorted["Item Price"] = item_data_count_sorted["Item Price"]
        item data count sorted["Purchase Count"] = item data count sorted["Purcha
        item data count sorted["Total Purchase Value"] = item data count sorted["
        item popularity = item data count sorted.loc[:,["Purchase Count", "Item P
        item popularity.head(5)
```

Out[9]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

```
In [10]: # Item Table (Sorted by Total Purchase Value)
   item_total_purchase = item_data_pd.sort_values("Total Purchase Value", as

# Minor Data Munging
   item_total_purchase["Item Price"] = item_total_purchase["Item Price"].map
   item_total_purchase["Purchase Count"] = item_total_purchase["Purchase Cou
   item_total_purchase["Total Purchase Value"] = item_total_purchase["Total
   item_profitable = item_total_purchase.loc[:,["Purchase Count", "Item Pric
   item_profitable.head(5)
```

$\Omega_{11}+$	F 1 /1 1	4
Out	1 1 0 1	4

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

In []: