Aula 4 – Mineração de Dados Medidas de Distância

Profa. Elaine Faria
UFU

Agradecimentos

Este material é baseado

- No livro Tan et al, 2006
- Nos slides do prof Andre C. P. L. F. Carvalho

- Agradecimentos
 - Ao professor André C. P. L. F. Carvalho que gentilmente cedeu seus slides

- Importância
 - São usadas em uma série de técnicas de MD e AM. Ex: agrupamento, KNN e detecção de novidade
- Pode ser visto com uma transformação dos dados para um espaço de similaridade (dissimilaridade)
 - Em muitos casos o conjunto de dados inicial não é necessário para executar a técnica de MD -> apenas as medidas de similaridade ou dissimilaridade são suficientes
- Proximidade entre objetos refere-se à proximidade entre seus atributos

- Similaridade entre dois objetos
 - É uma medida numérica do quão parecido dois objetos são
 - Objetos parecidos → similaridade alta
 - É um número não negativo entre 0 (não similar) e 1 (completamente similares)
- Dissimilaridade entre dois objetos
 - É uma medida numérica do quão diferente dois objetos são
 - Objetos similares → dissimilaridade baixa
 - Está no intervalo [0,1] ou [0, ∞]
 - Distância é tipo especial de dissimilaridade

Transformação

- Converter similaridade para dissimilaridade ou viceversa
- Transformar uma medida de proximidade para um intervalo particular, ex: [0,1]

Ex: medida de similaridade no intervalo [1,10], mas o algoritmo só trabalha com similaridade entre [0,1] -> aplicar transformação

$$s' = (s - min_s)/ (max_s - min_s)$$

 $s' = (s - 1)/9$

- Transformação: similaridade para dissimilaridade
 - Se está no intervalo [0,1]d = 1 - s (ou s = d - 1)
 - Se não está no intervalo [0,1] $s = 1/(d+1), s = e^{-(-d)}, s = 1 - ((d - min)/(max - min))$

Similaridade e Dissimilaridade entre Atributos Simples

Proximidade com 1 atributo

Attribute	Dissimilarity	Similarity	
Туре			
Nominal	$d = \left\{egin{array}{ll} 0 & ext{if } p = q \ 1 & ext{if } p eq q \end{array} ight.$	$s = \left\{egin{array}{ll} 1 & ext{if } p = q \ 0 & ext{if } p eq q \end{array} ight.$	
Ordinal	$d = \frac{ p-q }{n-1}$ (values mapped to integers 0 to $n-1$, where n is the number of values)	$s = 1 - \frac{ p-q }{n-1}$	
Interval or Ratio	d = p-q	$s = -d, s = \frac{1}{1+d}$ or $s = 1 - \frac{d - min \cdot d}{max \cdot d - min \cdot d}$	
		$s = 1 - \frac{d - min_d}{max_d - min_d}$	

Dissimilaridade entre Objetos

- Existem várias medidas de dissimilaridade
 - Diferentes medidas podem ser aplicadas a diferentes problemas
- Objetos (ou Instâncias) são descritos por n atributos
 - Calcular a medida de dissimilaridade usando os n atributos
 - Em geral, usa-se medidas de distância
- Distância
 - Medida de dissimilaridade que possui certas propriedades (ver slide 12)

Medidas de Distância

- Distância Euclidiana
 - Distância d entre dois objetos x e y em um espaço n dimensional

$$d(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2}$$

X_k e y_k são o k-ésimo atributo dos objetos x e y

Medidas de Distância

	atributo 1	atributo 2
p1	0	2
p2	2	0
р3	3	1
p4	5	1

matriz de distância

	p1	p2	р3	p4
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Medidas de Distância

- Distância de Minkowski
 - Generalização da distância Euclidiana

$$d(x,y) = \left(\sum_{k=1}^{n} |x_k - y_k|^r\right)^{\frac{1}{r}}$$

- r = 1 : distância city block (Manhattan ou L₁ norm)
- r = 2 : distância Euclidiana (L₂ norm)
- r = ∞ : distância Suprema (L_{max} ou L_∞ norm)

$$d(x,y) = \lim_{r \to \infty} \left(\sum_{k=1}^{n} |x_k - y_k|^r \right)^{\frac{1}{r}}$$

Propriedades das distâncias

Positividade

- d(x,y) >= 0 para todo x e y
- d(x,y)=0 somente se x = y

Simetria

- d(x,y) = d(y,x) para todo x e y
- Desigualdade triangular
 - $-d(x,z) \le d(x,y) + d(y,z)$ para todos os objetos x, y e z.

Propriedades das distâncias

 Medidas que satisfazem as 3 propriedades > métricas

 Ex. de medida de dissimilaridade que não é métrica

Conjuntos A e B

A – B: elementos que estão em A e não estão em B

dist(A,B) = tamanho(A - B)

Ex: $A=\{1,2,3,4\}$ $B=\{2,3,4\}$

Não atende a 2ª parte da propriedade da positividade, nem a simetria, nem a desigualdade triangular.

Similaridade entre Objetos

Propriedades

- -s(x,y) = 1 somente se x = y (0 <= s <= 1)
- -s(x,y)=s(y,x) para todo x e y
- Não há uma propriedade análoga à desigualdade triangular para medidas de similaridade

- Medidas de similaridade para vetores binários
 - Chamadas de coeficiente de similaridade
 - Possuem valores entre 0 e 1 → 1: objetos completamente similares, 0: objetos não similares
 - Comparando objetos x e y que consistem de n atributos binários (vetores binários)
 - f₀₀ = nro de atributos em que x=0 e y=0
 - f₀₁ = nro de atributos em que x=0 e y=1
 - f₁₀ = nro de atributos em que x=1 e y=0
 - f₁₁ = nro de atributos em que x=1 e y=1

Medidas de similaridade para vetores binários:
 Coeficiente de casamento simples

$$SMC = \frac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{00} + f_{11}}$$

- Conta as presenças e ausências igualmente
- Ex: encontrar os estudantes que responderam de forma similar a um teste que consiste de questões true/false.

 Medidas de similaridade para dados binários: Coeficiente de Jaccard

$$J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

- Usado para atributos binários assimétricos
- Não considera as coincidências de 0s

```
• Ex:
```

```
x = (1,0,0,0,0,0,0,0,0,0)

y = (0,0,0,0,0,0,1,0,0,1)
```

$$f_{01} = 2$$
 número de atributos em que $x = 0$ e $y = 1$
 $f_{00} = 7$ número de atributos em que $x = 0$ e $y = 0$
 $f_{10} = 1$ número de atributos em que $x = 1$ e $y = 0$
 $f_{11} = 0$ número de atributos em que $x = 1$ e $y = 1$

SMC =
$$0 + 7/(2+1+0+7) = 0.7$$

J = $0/(2+1+0) = 0$

- Similaridade Cosseno
 - É uma medida do ângulo entre x e y. Se a similaridade é 1, o ângulo entre x e y é 0°; se a similaridade é 0, o ângulo é 90º

$$\cos(x,y) = \frac{x \cdot y}{\|x\| \|y\|} \quad |x \cdot y| = \sum_{k=1}^{n} x_k y_k \quad \|x| = \sqrt{\sum_{k=1}^{n} x_k^2}$$

$$x.y = \sum_{k=1}^{n} x_k y_k$$

$$||x|| = \sqrt{\sum_{k=1}^{n} x_k^2}$$

. → produto interno de dois vetores, ||x|| → é o tamanho (norma) do vetor x

Similaridade Cosseno

```
Ex. Sejam os vetores

x = (3,2,0,5,0,0,0,2,0,0)

y = (1,0,0,0,0,0,0,1,0,2)
```

```
x.y = 3*1+2*0+0*0+5*0+0*0+0*0+0*0+2*1+0*0+0*2 = 5

||x|| = sqrt(3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0) = 6.48

||y|| = sqrt(1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) = 2.24

cos(x,y) = 0.31
```

- Similaridade Cosseno
 - Muito usado em mineração de texto
 - Documentos são vetores, cada atributo representa a frequência de ocorrência de um termo (palavra) no documento
 - Cada documento é esparso (poucos atributos não zero)

Tarefa

 Leitura do Capítulo 2 (Seção 2.4) do livro Tan et al, 2006

Referências

 Tan P., SteinBack M. e Kumar V. Introduction to Data Mining, Pearson, 2006.