1. 1

FIG.1A

2 / 91

FIG.1B

FIG.1C

FIG.2B

FIG.3

6 \$ 9

FIG.4A

FIG.4B

7 8 91

FIG.4C

** (7
•
(
ı
•
1
1
,
١

8 8 91

FIG. 5

1ST CODING NUCLEOTIDE OF DT-A EXON 1 OF AHCG6 1
5-CAGGGGAGGCACCAAGGATGTTCCAG-GGGCTGATGTTGTT

GATTCTTCTTAAATCTTTTGTGATGGAAAACTTTTCTTCGTACCACGGGACTA

AACCTGGTTATGTAGATTCCATTCAAAAA-3'

FIG.7B

Cis-spliced products

E1 E2 E3 = NORMAL cis-SPLICING (277bp)

E1 E3 = Exon SKIPPING (110bp)

Trans- spliced products

E1 DT-A = 1st EVENT, 196bp. Trans-SPLICING BETWEEN 5' ss OF TARGET & 3' ss OF PTM.

DT-A E3 = 2nd EVENT, 161bp. Irans- SPLICING BETWEEN 3' ss OF TARGET & 5' ss OF PTM.

FIG.8B

FIG.9

FIG. 10B

FIG.11B

FIG.11C

FIG.12A

1. NUCLEOTIDE SEQUENCES OF THE cis-SPLICED PRODUCT (285 bp):

BioLac-TR1

GECTTTCGCTACCTGGAGACGCCCCCCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTG

GOSCITTOSCTAAATACTGGCAGGCGTTTOSTCAGTATCCCCGTTTACAG/GGCGGCTTCGTCTAATAATG Splice junction

GGACTGGGTGGATCAGTGGCTGATTAAATATGATGAAAAGGGCAACCCGTGGTCGGCTTACGCCGGGTGATT1

TGGCGATACCCCCAACCATCGCCAGTTCTGTATGAACCGTCTGGTCTTTGCCGACCCCACCCCATCCAG

2. NUCLEOTIDE SEQUENCES OF THE trans-SPLICED PRODUCT (195 bp)

BioLac-TR1

GCCTTTCGCTACCTGGAGAGGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGCGTAACAGTCTTGG

CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAG/CÓGCTGCTGCTGTTGCTGCTGCT Splice junction

HCGR2
GAGCATGGCGGCATGCCATCCAAGCAGCCACTTCGCCCACGCTGCCC

FIG. 12B

CFTR Pre-therapeutic molecule (PTM or "bullet")

FIG.13

FIG.14

GCTAGCGITTAAACGGGCCCACCATCATTAGGTCATTATTCGCCGCAACATTATTATAACGTTGCTCGAGTACTAAC 80

BINDING DOMAIN

Sau96 1 Hae III

Sau96 | Ban II Apa I

Dra 1

The I

Positions of Restriction Endonucleases sites (unique sites underlined)

DNA sequence 500 b.p. GCTAGCGTTTAA ... TGCCACTCCCAC linear

240 160 GTGTTTCCTATGATGATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGCATCATCATCATCATCATTATAG |320 TAAGCACACAGTGGAAGAATTTCATTGTGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATGTTTG STOP Pst I J'ss TAG + STOP ITTITICCTGCAGACTTCACTTCTAATGATGATTATGGGAGACTGGAGCCTTCAGAGGGTAAAAT ATTCGTGTCACCTTCTTAAAGTAAGACAAGAGTCAAAAGGACCTAATACGGACCGTGGTAATTTCTTTTATAGTAGAAAC CACAAAGGATACTACTATGTGTGTGTGTGTGTGTGTTGGTACGTTGATCTTCTCGTAGTAGTAGTAGTAGTAGTAATC ACCATGGAGAAGAAAAAAAAAGGACGTC|FGAAGATTACTACTACTAATACCCTCTTGACCTCGGAAGTCTCCCATTTTA DGATCGCAAATTTGCCCCGCGTGGGTAGTAATAATCCAGTAATAGGCGCCTTGTAATAATATTGCAACGAGCTCATGATTG EXON 10 CFTR + HIS TAG + STOP Sph I 190 Xmn **IGGTACCTCTTCTT** Kpn I

FIG.15A

		HinD III	Kpn I Dra I	GTACCAAGCTTAAGTT 400	CATCCTTCGAATTCAA	384 1 399	390		PRESENT IN PTM 3'UT	BUT NOT TARGET		XCTCCCTTCACC 480	SCCACGCAAGGAACTGG •		
Sac 1 Ban 11	Sou3A I	Dpn I	BamH 1	TGGACTAGTĠĠATCCĠAGCTCĠ	ACCTGATCACCTAGGCTCGAGC	CF28 112 1 3	373	373	378	378	٠	CATCTGTTGTTTGCCCCTCCCC	3GTAGACAACAAACGGGGAGGGG	٠	
		Pst 1	EcoR V EcoR I	SCSCCCCCCCACTGTGCTGCATATCTGCACAATTCCACCACACTGGACTAGTGCATCCCAGCTCGGTACCAAGCTTAAGÍT 400	CGCCGGCCGTGACACGACCTATAGACGTCTTAAGGTGGTGTGACCTGATCACCTAGGCTCGAGCCATGGTTCGAATTCAA	339 349	344					TAAACCECTGATCAGCCTCCACTGTGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCGTGCCTTCCTT	ATTTCCCCACTAGTCCCACCTCACACGAAGATCAACCGTCCCTAGACAACAAACGGGGGGGG	Vi 2.1	
		Hae III	Not 1	SCICCCCCCACTGTC	DECCEGCCCTGACA(321	323			Sau3A 1	Dpn I	TAAACCGCTGATCA	ATTTCCCCACTAGT	410	410

CTGGAAGGTGCCACTCCCAC 500
GACCTTCCACGTGAGGGTG

FIG. 16

Double Splicing PTM

[0] Spacer+8P+PPT+5'SS|CFTR BD intron 10 CFTR BD intron 9 Spacer+8P+PPI+3'SS CFTR exon 1

91

27

FIG.19

Repaired LacZ mRNA FIG.20

ISSELES CHIECE

(1) 3' BD (120 BP): GATICACTICCICCAAITAICAICCIAAGCAGAAGIGIATAITICIAAITICIAAAGAIICTAITAACICATTIGATIC AAAA1ATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC

(2) Spacer sequences (24 bp): AACATTATTATAACCTIGCTCGAA

3'ss LacZ mini

★ exon (3) Branch point, pyrimidine tract and acceptor splice site: IACIAAC I GCIACC ICTICITITITITI GAIAIC CIGCAG \$\frac{4}{6}\text{GC} \text{GC} \text{GC} \text{GC} \text{ACC} \text{

(4) 5' donor site and 2nd spacer sequence: IGA ACC|CIAACI GITAICACCCAIAIGICICIAACCIGAIICGGCCTICGAIACG CTAAGATCCACCGG LacZ mini 5'88 exou

(5) 5' BD (260 BP): ICAAAAACTITICACATAATITCTTACCTCTTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTGGAA

ACACCAATGATTTTTTTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACAATGAAATTCTTCCACTGTGCTTAA AAAAACCCTCTGAATTCTCCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAAGCCATCATTATTAACTCA **TTATCAAATCACGC**

FIG.21

FIG.23B

Double Trans-splicing Produces Full-length Protein

Figure 24

FIG. 26

to was

SPECIFICITY OF DOUBLE TRANS-SPLICING REACTION

FIG.29

FIG.30

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target

CCCCCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCCGGTACCATCAAGGAGAACATAAT CTTCCCCTCAGTTACGACAGTACCCTTTCGCTCGCTGATTAAGCCCTGTCAGTTGCAGGAGAG ACCAGCT TGC TCATGATCATGGCCGCGCTTAGAACCAAGTGAAGGCCAAGATCAAACATTCCC

MCU in exon 10 of PTM 88 OF 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined).

FIG.31

43 of 91

Sequence of a double Trans—spliced product

FIG.32

CF—TR Repair: 5' Exon—Replacement schematic diagram of a PTM binding to the splices site of intron 10 of a mini—gene target

45 of 91

FIG.34A

FIG.34B

PTM with a long binding domain masking two splice sites and the whole of exon 10 in a mini-gene target.

FIG.34C

MCU in exon 10 of PTM 88 of 192 (46%) bases in PTM exon 10 are not complemetary to its binding domain.

ACCAGCTTCCTCATGATCATGGGCGAGTTACAACCAAGTGAAGGCAAGATCAAACATTCCG <u>C77DGGCGGTCAGTT</u>ACGACGAGTACCGCTAICGCTCGGTGATIAAGGCCTGTCAGTIGGAGGAG <u>GCCGCATCAGC</u>TT<u>T</u>TGCAGCCAATTCAGTT</u>GGATCATGCCCCGGTACCATCAAGGAGAACATAAT

FIG.35

47 of 91

FIG. 36 A

Cis-spliced product [Primers CF1+CF111]

FIG.36A-1

FIG.36B

FIG.37A

51 / 91

FIG.37B

DOJALAGE DHOHOE

1.

	•	Total RNA	# PCR cycles	(69) 500 600 300 ◀ Trans-spliced 200 (299 bp)		
	Ta		20 25 30		9 10 11 12 M 13 14 15	
	lacZCF9	50 ng	0 25		3 17	
ğ			7	in the	2	
Trans-splicing		100 ng	30		12	
ns-s			20 25 30 20 25 30		11	
Tra			70		2	
	lacZCF9m + PTM-CF24		30		6	
	TM-(50 ng	22		°∞ -	
	1 + P		20	* 2 15,	7	
	&			H. 🔩	Σ	
<u>8</u>	BcZ(S. S.	20 25 30		2	
piici	-		3	100 mg	4	
Cis-splicing	F	9	2		'n	
		2008	06 62 02	: :	7	
	1	۶	3			
				A STATE OF THE STA		
				(303 bp)		

FIG. 38A

DISKI SE DIOKOE

FIG. 38B

FIG. 39

FIG.41A

Figure. 4BB

FIG.41C

61 of 91

Exons 1-10

GGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTTATATTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACCATTGGAATGCAGATGAGAATAGCTATGTTTAGT TTGATTTATAAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT CCAÁCAACCTGAACAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAACTGGCACTCCT CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTTCAG GCTGGGCTAGGGAGATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCGAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAAATGATTGAAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAG AATGTAACAGCCTTCTGGGAGGAGGGATTTGGGGAATTATTTGAGAAAGCAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT AGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGA**CGAGCT**T**GCTC**ATGATGATGATGATGGGC**O**GAG TT**A**GA**ACCAAGT**GA**A**GGCAAGATCAA**A**CA**TTCC**GGCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCGGTA CCATCAAGGAGAACATAATC77CGGCGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCTGTCAGTTGGA CCAG

Irons-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATCGTTTGATGACCCTTCTGTATCTATATTCATCATTG

GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTCGAAAACTGATAACACAATGAAATTCTCCACTGT

GCTTAATTTTACCCTCTGAATTCTCCATTTCTCCCATAATCATCACTACACTGAACTCTGGAAATAAAACCCATCATT

ATTAACTCATTATCAAATCACGCT

FIG. 42

153 bp PTMZ4 Binding Domain:

Nhe I

CCTAGC—MATAATGACGAAGCCGCCCTCACGCTCAGGATTCACTTGCCTCCAATTATCATCCTAAGCAGAAGTGTATA

TTCTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTGCTATGC

Sac 11 AC-CCCCCC

FIG.43A

Trans-splicing domain

ACTTCACTTCTAATGATGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAAGAATTTCATTCT GTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGGACATCTCCAAGTTTGCAGAGAAAGACAATATACTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAAATATTTGAAAGCTGTGTCTGTAAACTGATGGC TAACAAAACTAGGATTITGGTCACTTCTAAAATGGAACATTTAAAGAAAGCTGACAAAATATTAATTTTGCATGAAGGT AGCAGCTATTTTTATGGGACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAATTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT CTGATGAGCCTTTAGAGAGAAGGCTGTCCTTAGTACCAGATTCTGAGCAGGGAGAGGCGATACTGCCTCGCATCAGCGT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAACACCATCCACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTITIGICCTAATTIGGIGCTTAGTAATTITICTGCCAGAGGTGGCTGCTTCTTTGGTTGTGCTGTGGCTCCTTGGAA ACACTCCTCTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT ATTTGACTTCATCCAGTTGTTATTAATTGTGATTGGAGCTATAGCAGTTGTCGCAGTTTTACAACCCTACATCTTTGTT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATAGAAATGATTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAAGGAGGAAGGAAGGAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAACTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTCGATGCCGGCTGTGTCCTAAGCCATGCCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA

Histidine tog Stop
TGCTCTGAAAGAGGAGACAGAAGAAGAGGGTGCAAGATACAAGGCTTCATCATCATCATCATCATCATTAG

FIG.44A

_``= _

FIG.44B

Promoter

Nucleotide changes are shown in blue

Boxed+Arrow=Transcription Start

Boxed=Cat box, IAIA box

Chicken \(\beta\)-octin

TIGTATTIATTIATTITTAATTATTTIGTGCAGCGATGGCGCGCGCGCGCGCGCGCGGGGGGGCCCCCAGCC

CEACTOCOLISCACIOCOTTCCCCOCOCOCOCOCOCOCCTCCACCTTACAA TATTAAAATCCTAAGCTTTTATATCTCTATCCCTCTATCTTTTGCTCTATCCAATTTTTATTAACTTAGA **CTTTAAAAAGAAAC**TTAT**GAGAAAA**TTTČČČČĆGAACA*TTATTATAACGTTGCTCGAATACTAACTGGTAC* cherteritititicatatecreas

CTCCGAAACTTTCCTTTTATGCCCAGCGGGGGGGGGGGCCCCGTATAAAAGCGAAGCGCGCGGCCCCCC

Bold=Binding domain Italicized=Spacer+PPT+BP+AG dinucleotide Oval=Downstream elements

CGGGCGGGCGCCTTCTCCTCCGGCCTGTAATTAGCCCTTCGTTTAATCACGGCT TETTICITITICIGECTGCGTGAAAGCCTTGAGGGCTCCGGGAAATTCGTA Sequence not included in construct

F13+F2=235+106=341 bp F13+F4=235+315=550 bp Exon 1 Intron 1(partial) Extent of promoter in original construct Extent of promoter in above construct CBA promoter CMV enhancer

Chicken Beta Actin Promoter (including exon 1 and part of intron 1)

FIG. 44C

FIG.44D

Method:

Excise TSD and part of exon 16 with XhoI and PfIMI and ligate in a PCR product that:
1) eliminates the TSD and splice acceptor site
2) inserts EcoRV adjacent to exon 16
3) restores the coding for exon 16

FIG.45

69 4 91

Repair of Factor VIII
Preliminary results from one experiment

FVIII activity in Exon 16 FVII—KO mice after IV PTM—FVII intraportal infusion (100 μ gDNA)(n=3)

Detailed structure of a mouse factor VIII PTM containing normal sequences for exons 16-26 and a C-terminal FLAG tag. BGH=bovine growth hormone 3' UTR; Binding domain= 125 bp.

91

70

FIG.47A

FLAG=C—terminal tag to be used to detect repaired factor VIII protein.

FIG. 47B

SMaRT Strategy to Disrupt the Expression of Human Papillomavirus Type 16

SMaRT Strategy by 3' Exon Replacement: Schematic diagram of HPV—PTM2 binding to the 3' splice site of the HPV type 16 target pre—mRNA

FIG.51

ITCTAATGTT GTTCCATACA CACTATAACA

FIG.52A

91

76

HPV-PTM2 with 149 bp binding domain targeted to 3'ss at 409:

TICTAATGIT GITCCATACA CACTATAACA ATAATGICTA TACICACTAA Binding domain sequence: CAGTTAATAC ACCTAATTAA CAAATCACAC AACGCTTTGT

FIG. 52B

Binding Domains of HPV-PTM3 and 4

AGTIAATACACCTAATTAACAAATCACACACGGTTTGTTGTATTGCAĞTTCTAATGTTGTTCCATACACACTA GATGATCTGCAACAAGACATACATCGACCGGTCCA(53 nt bubble)CTTCAGGACACAGTGGCTTTTGAC HPV-PTM3 Binding domain (covers both 3'ss at 409 and 526; has 53 bp bubble) TAACAAT

GATGATCTGCAACAAGAC(76 nt bubble)GACACTGGCTTTTGACAGTTAATACACTAATTAACAAATC HPV—PTM4 Binding domain (covers both 3'ss at 409 and 526; has 76 bp bubble) **ACACAACGGTTTGTTGTATTGCAGTTCTAATGTTGTTCCATACACTATAACAAT**

HPV-PTM5 and 6

HPV-PTM5, Binding domain (140 nt, has 53 nt bubble, covers 3'ss at position 409 and 526)

TTGTTGTATTGCAGTTCTAATGTTGTTGTTCCATACACACTATAACA

GATGATCTGCAACAAGAC. GACACAGTGGCTTTTGACAGTTAATACACCTAATTAACAAATCACAACACGGTTTGTTGTATTGCAGTTCT HPV-PTM6, Binding domain (117 nt, has 76 nt bubble, covers 3'ss at position 409 and 526)

91

78

AATGTTGTTCCATACACACTATAACA

FIG.54

) ; ; ;	Binding Domain Binding Domain BO 149 140 117 104	Region A A+B C	PTM HPV-PTM1 HPV-PTM2 HPV-PTM5 HPV-PTM6 HPV-PTM8
	174	O	HPV-PTM9
	140	A+B A+B	HPV-PTM5 HPV-PTM6
A+B	149	∢	HPV-PTM2
A+B	80	⋖	HPV-PTM1
A A A A A A B	Size (nt	Region	PTM
Region -PTM1 A -PTM2 A -PTM5 A+B -PTM6 A+B	Domain	Binding	

FIG.55

F1G.56

Trans —splicing between target pre—mRNA and PTM is accurate (293T cells)

FIG.57

Quantification of *Trans*—splicing efficiency using real—time QRT—PCR FIG 58

The House of the state of the s

Accurate Trans—splicing of HPV—PTM1 in Si Ha Cells (Endogenous target pre—mRNA)

85 / 11

Trans-splicing in SiHa Transfections (Endogenous target)

PTM	% trans-spliced
pcDNA3.1	0
HPV-PTM1	0.16
HPV-PTM5	0.12
HPV-PTM6	0.11
CF-PTM27	0

Quantification of trans-splicing efficiency using real-time QRT-PCR

F19.62

F1G. 63

5' DI-A HPV Exon 3 - 3'

Trans-spliced Chimeric mRNA Poly A
Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target FIG.64

Trans-

of

91

Schematic diagram of a double Trans—splicing PTM binding to the 3' and 5' splice sites of the HPV mini—gene target

90 4 91

SMaRT Strategy by 3' Exon Replocement: Schematic diagram of a PTM binding to the 3' splice site of the HPV mini-gene target

FIG.66A

SMaRT Strategy by 5' Exon Replacement: Schematic diagram of a PTM binding to the 5' splice site of the HPV mini-gene target

FIG.66B

