PSI* - simulations 19 mai 2025

Planche 1:

Exercice 1

Soit X et Y deux variables aléatoires indépendantes à valeurs dans $\mathbb N$ et de même loi. On suppose que la variable Z = X + Y + 1 suit une loi géométrique de paramètre $p \in]0,1[$.

- 1) Déterminer l'espérance de X.
- **2)** Calculer la fonction génératrice de X.
- 3) Déterminer la loi de X.

Exercice 2

Soient E un espace de dimension finie, p et q dans $\mathcal{L}(E)$ tels que $p+q=\mathrm{Id}$ et $\mathrm{rg}\,p+\mathrm{rg}\,q\leqslant \dim E$. Montrer que p et q sont des projecteurs.

Planche 2:

Soit $f_n: x \mapsto -a_0 + \sum_{k=1}^n a_k x^k$ avec $a_0 > 0$, $a_1 > 0$ et $a_k \ge 0$ pour $k \in \{2, ..., n\}$.

- 1) Montrer qu'une telle fonction f_n s'annule une unique fois sur \mathbb{R}_+^* . On note u_n son zéro.
- **2)** On pose $g_n: x \mapsto -1 + \sum_{k=1}^n (k+1)x^k$.
 - a) Représenter les graphes sur [0,1] des g_n pour $n \in \{1,\ldots,7\}$. Conjecture sur la suite (u_n) ?
 - b) Donner une expression simple de g_n et en déduire le résultat.
- 3) Déterminer la limite de (u_n) pour $a_k = k!$ pour $k \in \mathbb{N}$.

PSI* - simulations 19 mai 2025

Planche 3:

Soit $A_n = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telle que, pour tout $i, a_{i,i} = 0$ et, pour tout $i \neq j, a_{i,j} = j$.

- 1) Écrire une fonction M(n) renvoyant A_n .
- 2) Écrire une fonction renvoyant les valeurs propres de A_n . Afficher A_n et ses valeurs propres pour n variant de 2 à 10. En déduire une conjecture sur A_n .
- 3) Montrer que les valeurs propres de A_n vérifient l'équation $\sum_{k=1}^n \frac{k}{x+k} = 1$.
- 4) En déduire que A_n est diagonalisable.

Planche 4:

Soit $u_n = \prod_{k=0}^n (1 - \frac{1}{k^2 \pi^2})$.

- 1) Calculer u_n pour $1 \le n \le 10$ avec un nombre de décimales satisfaisant, puis $\frac{1}{u_{10^n}}$ pour $1 \le n \le 4$. Commenter.
- 2) Soient f et g définies sur $]0,\pi[$ par $f(t)=\sum_{n=1}^{+\infty}\frac{2t}{t^2-n^2\pi^2}$ et $g(t)=\frac{\cos t}{\sin t}-\frac{1}{t}$. Quelle est la limite de g en 0? Montrer que f et g sont continues sur $[0,+\infty[$.
- 3) Représenter graphiquement f et g sur $]0, +\infty[$. On admettra dans la suite l'égalité des deux fonctions.
- 4) Calculer, pour $x \in]0, +\infty[$, $\lim_{n\to+\infty} \sum_{k=0}^{n} \ln(1-\frac{x^2}{k^2\pi^2})$. Ind. Calculer de deux façons l'intégrale $\int_0^x g(t) dt$.
- **5)** En déduire la limite de (u_n) .