Tagery morfosyntaktyczne dla języka polskiego

Łukasz Kobyliński Witold Kieraś

Instytut Podstaw Informatyki Polskiej Akademii Nauk ul. Jana Kazimierza 5, 01-248 Warszawa, Poland

7.12.2015

Wprowadzenie

Cele prezentacji

- podsumowanie obecnego stanu narzędzi do tagowania morfosyntaktycznego w języku polskim,
- porównanie dokładności i wykorzystywanych algorytmów z narzędziami dla innych języków europejskich,
- analiza jakościowa wyników działania poszczególnych tagerów,
- przegląd problemów, które nie zostały zaadresowane przez istniejące tagery,
- stwierdzenie, czy wśród dostępnych narzędzi dostępny jest tager o pożądanych cechach (następny slajd),
- rekomendacje dotyczące dalszych kroków.

Wprowadzenie

Cechy pożądanego tagera (M. Woliński)

Chciałbym tager, który:

- nie jest nadgorliwy, można kazać zostawić interpretacje częściowo nieujednoznacznione (np. usunąć tylko bardzo złe interpretacje),
- informuje o poziomie pewności podjętych decyzji,
- działa na niejednoznacznej segmentacji (stworzonej przez Morfeusza lub np. będącej wynikiem zastosowania po Morfeuszu słownika wyrażeń wieloczłonowych),
- daje się (względnie?) łatwo zainstalować i uruchomić na wszystkich platformach, na których jest Morfeusz,
- da się rozszerzyć o uwzględnianie informacji o czasie powstania tekstu.

Plan

- 🚺 Tagery języka polskiego przegląd rozwiązań
- 2 Tagery morfosyntaktyczne dla innych języków europejskich
- Tagery języka polskiego analiza ilościowa
- Tagery języka polskiego analiza jakościowa
- Dyskusja i rekomendacje

Tagery języka polskiego – przegląd rozwiązań

Czym jest tagowanie – przypomnienie

Segment (token) – wyraz lub jego fragment, znak interpunkcyjny, ciąg cyfr lub symboli. Segmenty sa ciagłe oraz rozłączne.

Znacznik morfosyntaktycnzy (tag) – symbol, który można przypisać segmentowi, określający jego własności morfologiczno-składniowe.

Znakowanie morfosyntaktyczne (tagowanie) – zadanie przypisania ciagowi segmentów ciagu znaczników morfosyntaktycznych.

Segmentacja ⇒ Analiza morfosyntaktyczna ⇒ Ujednoznacznianie morfosyntaktyczne

Pełny stos przetwarzania

Tagery morfostynaktyczne dla języka polskiego

Tagery "archiwalne"

Dostosowane do tagsetu IPI PAN, modele uczone na korpusie IPI.

- tager Ł. Debowskiego statystyczny tager trigramowy, weak correctness = 90.59%
- TaKIPI tager hybrydowy, oparty na drzewach decyzyjnych, częstości unigramów i ręcznie utworzonych regułach. weak correctness = 91.30%

Tagery morfostynaktyczne dla języka polskiego

Tagery uwzględniające tagset NKJP

- Pantera [Acedański 2010] adaptacja algorytmu Brilla do języków bogatych morfologicznie, takich jak polski,
- WMBT [Radziszewski and Śniatowski 2011] tager oparty na uczeniu pamięciowym, rozbudowany o wielowarstwowość dla uwzględnienia wielu atrybutów znakowania w języku polskim,
- Concraft [Waszczuk 2012] tager warstwowy, oparty na Conditional Random Fields (CRF); wyniki dezambiguacji morfosyntaktycznej przekazywane są z jednej warstwy do drugiej,
- WCRFT [Radziszewski 2013] również oparty na CRF; osobne modele wykorzystywane są do dezambiguacji poszczególnych atrybutów opisu morfosyntaktycznego,

Tagery morfostynaktyczne dla języka polskiego

Modele dla tagerów zaimplementowanych dla innych języków

- TnT Tagger statystyczny tager trigramowy, model dla PL przygotowany przez M. Miłkowskiego, dokładność "ok. 88%".
 - http://zil.ipipan.waw.pl/NKJP%20model%20for%20TnT%20Tagger
- OpenNLP tager maksimum entropii, model dla PL przygotowany przez P. Pęzika (nie jest udostępniony publicznie).
 - http://clarin.pelcra.pl/tools/tagger

Tager Brilla – zasada działania

Uczenie tagera

- wytrenuj tager unigramowy na podstawie zbioru uczącego,
- otaguj zbiór rozwojowy za pomocą tagera unigramowego,
- iteracyjnie znajdź transformacje, które mogą poprawić największą liczbę błędów, wprowadzając jednocześnie jak najmniej pomyłek
- zachowaj zbiór najlepszych transformacji model.

r	good(r)	bad(r)
Zmień przypadek przyimka z acc na loc, if jeśli	2496	113
kończy się na <i>na</i> i jeden z kolejnych tokenów jest		
w przypadku <i>loc</i> .		
Zmień przypadek przymiotnika z loc na inst, je-	921	29
śli jeden z kolejnych tokenów ma przypadek inst i		
kończy się na <i>em</i> .		

Tager Brilla – przykładowe reguły

Transformacje Zachodzą według jednego z szablonów:

- $t_i := A \text{ if } t_i = B \land \exists_{o \in O_1} t_{i+o} = C$
- $t_i := A \text{ if } t_i = B \land \forall_{o \in O_2} t_{i+o} = D$
- $t_i := A$ if $t_i = B$ i i—te słowo jest z wielkiej litery
- $t_i := A$ if $t_i = B$ i (i-1)—te słowo jest z wielkiej litery

gdzie:

- $O_1 \in \{\{1\}, \{-1\}, \{2\}, \{-2\}, \{1, 2\}, \{-1, -2\}, \{1, 2, 3\}, \{-1, -2, -3\}\},$
- $O_2 \in \{\{-2, -1\}, \{-1, 1\}, \{1, 2\}\},\$
- A, B, C, D − tagi.

Tager CRF – zasada działania

TODO

Przenośność i łatwość wykorzystania

- Concraft instalowany i uruchamiany z wykorzystaniem Haskell Platform, która dostępna jest pod wszystkie główne systemy operacyjne,
- WCRFT, Pantera wymagają kompilacji, proces kompilacji dostosowany do środowiska Linuksowego,
- WMBT Python.

Concraft, WCRFT, WMBT – silnie zależą od stosu Corpus2 / Toki / Maca, których kompilacja pod Windows jest możliwa, ale nietrywialna (Visual Studio).

Tagery morfosyntaktyczne dla innych języków europejskich

Tagowanie języka angielskiego

System	Metoda	Publikacja	Dokładność
BI-LSTM-CRF	Bidirectional LSTM-CRF Model	Huang et al. (2015)	97.55
SCCN	Semi-supervised conden- sed nearest neighbor	Søgaard (2011)	97.50
Morče/COMPOST	Averaged Perceptron	Spoustová et al. (2009)	97.44
structReg	CRFs with structure regularization	Sun(2014)	97.36
LTAG-spinal	Bidirectional perceptron learning	Shen et al. (2007)	97.33
Stanford Tagger 2.0	Maximum entropy cyclic dependency network	Manning (2011)	97.32
Stanford Tagger 2.0	Maximum entropy cyclic dependency network	Manning (2011)	97.29
Stanford Tagger 1.0	Maximum entropy cyclic dependency network	Toutanova et al. (2003)	97.24

Tagowanie języka angielskiego

System	Metoda	Publikacja	Dokładność
Morče/COMPOST	Averaged Perceptron	Spoustová et al. (2009)	97.23
LAPOS	Perceptron based training with lookahead	Tsuruoka, Miyao, and Kazama (2011)	97.22
SVMTool	SVM-based tagger and tagger generator	Giménez and Márquez (2004)	97.16
Maxent easiest-first	Maximum entropy bidi- rectional easiest-first infe- rence	Tsuruoka and Tsujii (2005)	97.15
Averaged Perceptron	Averaged Perception di- scriminative sequence mo- del	Collins (2002)	97.11
GENiA Tagger**	Maximum entropy cyclic dependency network	Tsuruoka, et al (2005)	97.05
MEIt	MEMM with external lexical information	Denis and Sagot (2009)	96.96
TnT*	Hidden markov model	Brants (2000)	96.46

Tagery języków europejskich – porównanie

Tager	Język	Rozmiar	Korpus	Dokładność
		tagsetu	treningowy	
Concraft	polski	4 000 / 1 000	1M	91,07%
Obeliks	słoweński	1 903	500k	91,34%
Morče	czeski	3 922 / 1 571	2M	95,67%
Featurama	czeski	3 922 / 1 571	2M	95,66%
Morphodita	czeski	3 922 / 1 571	2M	95,75%
BI-LSTM-CRF	angielski	36+12	1M	97,55%

Tagery języka polskiego – analiza ilościowa

Metoda ewaluacji

Miara jakości znakowania

- ze względu na możliwość wystąpienia różnic w segmentacji pomiędzy wynikiem znakowania, a złotym standardem, wykorzystujemy dolne ograniczenie trafności (accuracy lower bound, Acc_{lower}) do oceny dokładności tagerów,
- miara ta karze wszelkie zmiany segmentacyjne w stosunku do złotego standardu i traktuje takie tokeny jako sklasyfikowane błędnie,
- token traktowany jest jako oznakowany prawidłowo, jeśli zbiór jego interpretacji ma niepuste przecięcie ze zbiorem interpretacji zwracanych przez tager,
- niezależne sprawdzamy dokładność dla znanych (Acc_{lower}^K) i nieznanych słów (Acc_{lower}^U), aby ocenić skuteczność ew. modułów odgadywania.

Ewaluacja pojedynczych tagerów

Eksperymenty na milionowym podkorpusie Narodowego Korpusu Jezyka Polskiego, ver. 1.1, 10-krotna walidacja krzyżowa.

n	Tager	Acc _{lower}	Acc_{lower}^{K}	Acc_{lower}^{U}
1	Pantera	88.95%	91.22%	15.19%
2	WMBT	90.33%	91.26%	60.25%
3	WCRFT	90.76%	91.92%	53.18%
4	Concraft	91.07%	92.06%	58.81%

- Acc_{lower} łączna dokładność,
- Acck dokładność dla znanych słów,
- Acc^U_{lower} dokładność dla słów nieznanych.

Analiza rezultatu działania tagerów

Porównanie wyników

- Wszystkie zwracają prawidłowy tag: 82,78%
 <u>unikam</u> fin:sg:pri:imperf
 fin:sg:pri:imperf+ fin:sg:pri:imperf+ fin:sg:pri:imperf+
- Większość zwraca prawidłowy tag: 7,95%
 kapitalistów subst:pl:gen:m1
 subst:pl:gen:m1+ subst:pl:gen:m1+ subst:pl:gen:m1+ subst:pl:acc:m1-
- Równowaga w głosowaniu: 2,71%
 powolny adj:sg:nom:m3:pos

 adj:sg:nom:m3:pos+ adj:sg:acc:m3:pos- adj:sg:acc:m3:pos-
- Prawidłowy tag w mniejszości: 2,38%
 <u>twarzy</u> subst:sg:loc:f subst:sg:gen:f- subst:sg:gen:f- subst:sg:gen:f- subst:sg:loc:f+
- Wszystkie się mylą: 4.18%
 <u>biurka</u> subst:pl:nom:n subst:pl:acc:n- subst:pl:acc:n- subst:sg:gen:n- subst:pl:acc:n- (Peggy) <u>McCreary</u> subst:sg:nom:f
 subst:sg:gen:f- subst:sg:gen:n- subst:sg:nom:n- subst:sg:acc:m1-

Podział na klasy gramatyczne

		Acc_{lower} (%)			
klasa	liczność	PANTERA	WMBT	WCRFT	Concraft
subst	331570	85,21	86,25	87,36	88,29
interp	223542	99,63	99,97	99,97	99,97
adj	128703	76,53	81,10	81,56	82,52
prep	115818	97,04	97,28	97,54	98,05
qub	68079	92,98	93,82	92,91	92,92
fin	59458	98,64	98,70	98,81	98,94
praet	53326	90,90	88,96	89,80	89,69
conj	44840	95,17	95,41	94,61	93,96
adv	42750	95,31	95,59	95,29	94,77
inf	19213	98,91	99,20	99,09	99,14
comp	17842	97,26	97,29	96,84	96,88
num	16160	33,40	56,40	60,32	55,99

Najczęstsze błędy

Concraft: najczęstsze błędy wyboru klasy gramatycznej

Concraft	NKJP	liczność	wystąpienia (%)
adj	subst	199	0.1654
conj	qub	178	0.1479
subst	adj	162	0.1346
adv	qub	159	0.1321
subst	ger	152	0.1263
qub	conj	151	0.1255
subst	brev	140	0.1164
ger	subst	128	0.1064
num	adj	108	0.0898
ppas	adj	108	0.0898
qub	adv	91	0.0756
adj	ppas	71	0.0590
adj	num	71	0.0590

Najczęstsze błędy

Concraft: najczęstsze błędy doboru tagu w ramach klasy subst

NKJP	liczność	wystąpienia (%)
sg:acc:m3	191	0.1587
sg:nom:m3	153	0.1272
sg:nom:n	134	0.1114
sg:acc:n	117	0.0972
pl:acc:m3	89	0.0740
pl:nom:f	78	0.0648
pl:acc:f	71	0.0590
pl:nom:m3	68	0.0565
sg:acc:m1	67	0.0557
sg:gen:m1	53	0.0440
pl:acc:n	48	0.0399
pl:gen:f	47	0.0391
	sg:acc:m3 sg:nom:m3 sg:nom:n sg:acc:n pl:acc:m3 pl:nom:f pl:acc:f pl:nom:m3 sg:acc:m1 sg:gen:m1 pl:acc:n	sg:acc:m3 191 sg:nom:m3 153 sg:nom:n 134 sg:acc:n 117 pl:acc:m3 89 pl:nom:f 78 pl:acc:f 71 pl:nom:m3 68 sg:acc:m1 67 sg:gen:m1 53 pl:acc:n 48

Najczęstsze błędy

pl:acc:m3:pos

pl:nom:n:pos

pl:acc:n:pos

pl:nom:m3:pos

Concraft: najczęstsze błędy doboru tagu w ramach klasy adj NK.IP liczność Concraft wystąpienia (%) sg:nom:m3:pos sg:acc:m3:pos 90 0.0748 sg:acc:m3:pos sg:nom:m3:pos 72 0.0598 sg:nom:m1:pos sg:nom:m3:pos 57 0.0474 51 0.0424 sg:nom:n:pos sg:acc:n:pos pl:acc:m3:pos 49 0.0407 pl:nom:m3:pos 0.0382 pl:nom:f:pos pl:acc:f:pos 46 pl:acc:f:pos 0.0366 pl:nom:f:pos 44 42 0.0349 sg:nom:m3:pos sg:nom:m1:pos 32 0.0266 sg:acc:n:pos sg:nom:n:pos

28

27

25

21

0.0233

0.0224

0.0208

0.0175

pl:nom:m3:pos

pl:acc:n:pos

pl:nom:f:pos

pl:nom:n:pos

Rozmiar danych treningowych

TnT Tagger – NEGRA corpus, 30 000 tokenów testowych.

Rozmiar danych treningowych

MBT Tagger – WSJ corpus, kroswalidacja krzyżowa

Rozmiar danych treningowych

Concraft - NKJP 1M, 100 000 tokenów testowych.

Na czym polega problem?

Jak często występują niejednoznaczności?

Korpus NKJP 1M, Morfeusz 1 SGJP: 645 wystąpień na 1 095 118 segmentów (0.0589%)

مُن مان خ	1 224 / 1	-ii	3		
kiedyś	234 / 1	pis-owi	_	ipn-em	1
gdzieś	172 / <mark>1</mark>	winnym	2	sms-ów	1
miałem	99 / 98	prl-em	2		1
udziałem	40 / 0	wyłom	2	pgr-ach	1
	.′	,	_	zus-em	1
musiałem	28 / 28	rozdziałem	2	vat-em	1
sms-a	6 / 0	hiv-em	2	siadłem	1
działam	6 / 0	pit-ów	2		1
doń	5 / 4	działem	1	msz-ów	1
	l '.		1	zoz-ów	1
tyłem	4 / 0	rop-em	1	mosir-em	1
pis-em	4 / 0	tir-a	1		1
podziałem	3 / 0	kor-owcy	1	vip-om	1
piekłem	3 / 0	urm-em	1	msz-ecie	1
•	l '.		1	zoz-owi	1
czekałem	3 / 3	kor-em	1	czemuś	1
iadłem	3/3	di-a	1	CZCIIIUS	-

Jak często występują niejednoznaczności?

Próbka 100M NKJP, Morfeusz 1 SGJP:

40 354 wystąpień na 101 052 527 segmentów (0.0399%)

kiedyś	12751	czemuś	171	pit-ów	65
miałem	8350	działam	153	Łks-em	60
gdzieś	6171	działem	151	pis-em	44
udziałem	4988	piekłem	130	siadłem	43
musiałem	2173	zus-em	95	skok-i	39
czekałem	537	sms-em	95	gks-em	39
tyłem	523	tir-ów	93	padłem	36
doń	414	zoz-ów	86	pgr-ów	30
podziałem	411	tir-a	85	vip-a	30
sms-a	357	zus-owi	82	pis-owi	28
vip-ów	305	azs-em	81	skok-ów	24
winnym	256	vat-em	76	pks-em	24
sms-ów	207	rozdziałem	76	dj-ów	20
jadłem	199	wyłom	65	dj-e	20

Jak często występują niejednoznaczności?

Korpus NKJP 1M, Morfeusz 2: 2583 wystąpień na 1 095 118 segmentów (0.2359%)

coś	777	komuś	31		
		gdybyśmy	19	czekałem	3
ktoś	382	tom	19	jadłem	3
czym	334	gdybyś	7	rozdziałem	2
kiedyś	234	działam	6	wyłom	2
gdzieś	172			•	_
miałem	99	jam	5	bom	2
czegoś	97	doń	5	coście	1
kogoś	82	oścież	5	czyżbyś	1
0	-	gdybyście	4	czyżem	1
czymś	63	tyłem	4	siadłem	1
kimś	42	musiałem	3	czemuś	1
gdybym	40	podziałem	3	działem	1
udziałem	40	•	_	uziaieiii	T
	1	piekłem	3		

Możliwe rozwiązania: tagset pośredni (A. Radziszewski)

Wprowadźmy tagset pośredni, który pozwoli uniknąć części niejednoznaczności

piekłem

```
piec fin:sg:m1:pri:imperf:prt
piec fin:sg:m2:pri:imperf:prt
piec fin:sg:m3:pri:imperf:prt
piekło subst:sg:inst:n
```

Możliwe rozwiązania: tagset pośredni

Rozwiązanie analogiczne do trypu -p composite w Morfeuszu 2:

```
$ echo piekłem | morfeusz_analyzer
[0,1,piekł,piec:v,praet:sg:m1.m2.m3:imperf,_,_]
[0,2,piekłem,piekło,subst:sg:inst:n2,pospolita,_]
[1,2,em,być,aglt:sg:pri:imperf:wok,_,_]
```

```
$ echo piekłem | morfeusz_analyzer -p composite
[0,1,piekłem,piec:v,praet:sg:m1.m2.m3:pri:imperf,_,_
0,1,piekłem,piekło,subst:sg:inst:n2,pospolita,_]
```

Możliwe rozwiązania: dostosowanie tagera do przetwarzania DAGów

Na przykład, dla tagera Concraft: konieczna jest modyfikacja całego stosu przetwarzania:

- modyfikacja istniejących formatów zapisu korpusów (XML, Plain),
- modyfikacja narzędzi: Corpus2, Maca,
- reimplementacja algorytmu w tagerze, aby był w stanie przetwarzać dane w reprezentacji grafowej.

Poziom pewności ujednoznaczniania morfosyntaktycznego

Oczekujemy, że: tager informuje o poziomie pewności podjętych decyzji

Tagery oparte na metodach uczenia maszynowego mogą zwracać prawdopodobieństwa brzegowe wyboru poszczególnych interpretacji.

Implementacja w Concraft:

```
rzucała space
                                                   tylko space
        rzucać praet:sg:f:imperf 1.000
                                                           Tylka subst:sg:voc:f 0.000
światło space
                                                           tylko conj 0.209
        światło adv:pos 0.000
                                                           tvlko aub 0.791
        światło subst:sg:acc:n 0.929
                                                   na space
        światło subst:sg:nom:n 0.071
                                                           na interi 0.000
        światło subst:sg:voc:n 0.000
                                                           na prep:acc 1.000
                                                           na prep:loc 0.000
```

\$~/.cabal/bin/concraft - pl tag - m model.gz < test.plain

podłoga subst:sg:acc:f 1.000

podłoge space

Problem lematyzacji

Tagery języka polskiego – analiza jakościowa

TODO

Dyskusja i rekomendacje

Różne tagsety dla języka polskiego?

Obecnie funkcjonują równolegle dwa tagsety języka polskiego

- tagset NKJP, używany do anotacji korpusu, a także w większości innych zasobów jezykowych,
- tagset Morfeusza.

Skutkuje to sytuacją, w której w sposób niejawny dokonywana jest ciągła konwersja pomiedzy tagsetami:

```
tagset_from=sgjp
                       tagset_from=morfeusz2; tagset_to=nkjp
tagset_to=nkjp
                       override=dig:num; override=nie:conj
override=n1:n
                       override=romandig:num
override=n2:n
                       override=prefa:ign
override=n3:n
                       override=prefppas:ign
override=p1:m1
                       override=prefs:ign; override=prefv:ign
override=p2:n
                       override=naj:ign; override=cond:ign
override=p3:n
                       override=substa:ign
```

Struktura danych treningowych w NKJP1M

TODO

Podsumowanie

Cechy pożądanego tagera (M. Woliński)

TODO Chciałbym tager, który:

- nie jest nadgorliwy, można kazać zostawić interpretacje częściowo nieujednoznacznione (np. usunąć tylko bardzo złe interpretacje), obecnie: każdy
- informuje o poziomie pewności podjętych decyzji, obecnie: Concraft, możliwe: WCRFT. WMBT
- działa na niejednoznacznej segmentacji (stworzonej przez Morfeusza lub np. będącej wynikiem zastosowania po Morfeuszu słownika wyrażeń wieloczłonowych), obecnie: tylko tagset pośredni, możliwe: w każdym po modyfikacjach całego stosu

Podsumowanie (2)

Cechy pożądanego tagera (M. Woliński)

TODO Chciałbym tager, który:

- daje się (względnie?) łatwo zainstalować i uruchomić na wszystkich platformach, na których jest Morfeusz, obecnie: ograniczeniem jest Maca
- da się rozszerzyć o uwzględnianie informacji o czasie powstania tekstu. obecnie: żaden, możliwe: w każdym jako cecha ML

Podziękowania

Podziękowania za sugestie i uwagi dla:

- Adama Radziszewskiego
- Jakuba Waszczuka
- Szymona Acedańskiego

Dziękujemy za uwagę!

Bibliografia I

陯 Acedański, Szymon, 2010.

A morphosyntactic Brill tagger for inflectional languages.

In Advances in Natural Language Processing.

Brill, Eric and Jun Wu, 1998.

Classifier combination for improved lexical disambiguation.

In Proceedings of the 17th international conference on Computational linguistics - Volume 1, COLING '98. Stroudsburg, PA, USA:

Association for Computational Linguistics.

48 / 51

Bibliografia II

Śniatowski, Tomasz and Maciej Piasecki, 2012.

Combining Polish morphosyntactic taggers.

In Pascal Bouvry, Mieczysław A. Kłopotek, Franck Leprévost, Małgorzata Marciniak, Agnieszka Mykowiecka, and Henryk Rybiński (eds.), Security and Intelligent Information Systems, volume 7053 of LNCS. Springer-Verlag.

Radziszewski, Adam, 2013.

A tiered CRF tagger for Polish.

In R. Bembenik, Ł. Skonieczny, H. Rybiński, M. Kryszkiewicz, and M. Niezgódka (eds.), Intelligent Tools for Building a Scientific Information Platform: Advanced Architectures and Solutions. Springer Verlag.

Bibliografia III

Radziszewski, Adam and Szymon Acedański, 2012.

Taggers gonna tag: an argument against evaluating disambiguation capacities of morphosyntactic taggers.

In Proceedings of TSD 2012, LNCS. Springer-Verlag.

Radziszewski. Adam and Tomasz Śniatowski. 2011a.

A Memory-Based Tagger for Polish.

In Proceedings of the LTC 2011.

van Halteren, Hans, Walter Daelemans, and Jakub Zavrel, 2001.

Improving accuracy in word class tagging through the combination of machine learning systems.

Comput. Linguist., 27(2):199-229.

Bibliografia IV

Waszczuk, Jakub, 2012.

Harnessing the CRF complexity with domain-specific constraints. The case of morphosyntactic tagging of a highly inflected language. In Proceedings of the 24th International Conference on Computational

Linguistics (COLING 2012). Mumbai, India.