Einfürung in die Algebra Hausaufgabenblatt Nr. 1

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 22, 2023)

Problem 1. Sei $G := 2\mathbb{N}^* := \{2n|n \in \mathbb{N}^*\}$ die Menge der positiven geraden Zahlen. Wir nennen $a \in G$ zerlegbar, falls sich a als Produkt zweier Elemente aus G schreiben lässt. Ansonsten nennen wir a unzerlegbar. Beispielsweise sind 4 zerlegbar und 6 unzerlegbar. Zeigen Sie:

- (a) G ist multiplikativ abgeschlossen.
- (b) Jedes $a \in G$ lässt sich als Produkt unzerlegbarer Elemente aus G schreiben.
- (c) Selbst wenn man die Reihenfolge der Faktoren nicht berücksichtigt, so ist die Zerlegung nach (b) im Allgemeinen nicht eindeutig.

Proof. (a)
$$2n \times 2n' = 4nn' = 2(nn')$$

(b) Wir beweisen es per Induktion. Nehme an, dass jede Elemente 2n, n < k entweder unzerlegbar ist, oder als Produkt unzerlegbare Elemente aus G geschrieben werden kann. Für 2(1) = 2 ist es klar - 2 ist unzerlegbar.

Sei
$$M_k \subseteq G = \{ m \in G | \exists n \in G, mn = 2k \}$$

Entweder ist $M = \emptyset$, also k ist unzerlegbar, oder es existiert $m, n \in G, mn = 2k$. Weil m und n ein Produkt unzerlegbarer Elemente aus G sind, ist 2k auch ein Produkt unzerlegbarer Elemente.

(c) Gegenbeispiel:

$$G \ni 1020 = 30 \times 34 = 102 \times 10.$$

* jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 2. In dieser Aufgabe stellen wir den Euklidischen Algorithmus zur Berechung des größten gemeinsamen Teilers vor. Seien hierzu zwei natürliche Zahlen $a, b \in \mathbb{N}$ mit $b \neq 0$ vorgelegt. Wir setzen $r_0 := a, r_1 := b$ und rekursiv für alle $i \in \mathbb{N}^*$ mit $r_i \neq 0$.

$$r_{i+1} := \text{Rest von } r_{i-1}$$
 bei der Division durch r_i

(a) Zeigen Sie, dass es ein $n \ge 2$ mit $r_n = 0$ gibt.

Da die Rekursionsformel für i = n nicht mehr anwendbar ist, bricht die Folge (r_i) der Reste beim Index n ab. Daher gibt es nur genau einen Index $n \ge 2$ mit $r_n = 0$. Beweisen Sie nun:

- (b) Für alle $i \in \{1, 2, 3, ..., n\}$ gilt $ggT(a, b) = ggT(r_{i-1}, r_i)$.
- (c) Es ist $ggT(a,b) = r_{n-1}$.
- (d) Berechnen Sie ggT(210,45) mit Hilfe des Euklidschen Algorithmus.

Proof. (a

$$r_{i-1} = qr_i + r_{i+1}$$
 $0 \le r_{i+1} < r_i$

per Definition. Weil $r_{i-1} < r_i$, ist die Folge monoton fallend. Da es endlich viele natürliche Zahlen k < b gibt, muss $r_n = 0$.

(b) Wir beweisen:

$$ggT(r_{i-1}, r_i) = ggT(r_i, r_{i+1}).$$

Die gewünschte Ergebnisse folgt daraus per Induktion.

Es gilt $r_{i-1} - qr_i = r_{i+1}$. Dann folgt: $ggT(r_{i-1}, r_i)$ teilt r_{i-1} und r_i und daher auch $r_{i-1} - qr_i$. Deshalb ist $ggT(r_{i-1}, r_i)$ auch einen Teiler von $r_{i+1} \implies ggT(r_{i-1}, r_i) \le ggT(r_i, r_{i+1})$.

Weil $r_{i-1} = qr_i + r_{i+1}$, ist $ggT(r_i, r_{i+1})$ einen Teiler von r_i und r_{i+1} und daher auch von $qr_i + r_{i+1}$. Deshalb ist es auch einen Teiler von r_{i-1} , und $ggT(r_i, r_{i+1}) \leq ggT(r_{i-1}, r_i)$

(c) Es gilt

$$r_{n-2} = qr_{n-1} + \gamma_n,$$

also r_{n-1} teilt r_{n-2} . Daraus folgt

$$ggT(r_{n-1}, r_{n-2}) = r_{n-1} = ggT(a, b).$$

(d)

$$210 = 4 \times 45 + 30$$
$$45 = 1 \times 30 + 15$$
$$30 = 2 \times 15 + 0$$
$$15$$
$$0$$
$$ggT(210, 45) = 15.$$

Problem 3. Seien p und q zwei ungerade und aufeinanderfolgende Primzahlen, so dass also zwischen p und q keine weiteren Primzahlen existieren. Zeigen Sie, dass p + q ein Produkt von mindestens drei (nicht notwendig verschiedenen) Primzahlen ist.

Proof. Sei obdA p < q. Weil p und q ungerade sind, ist p + q gerade, also $p + q = 2k, k \in \mathbb{N}$. Nehme an, dass p + q ein Produkt von zwei Primzahlen ist, also $k \in \mathbb{P}$. Dann gilt

$$p < k < q, \qquad k \in \mathbb{P},$$

ein Widerspruch. Deshalb ist $k \notin \mathbb{P}$ und k ist ein Produkt von mindestens zwei Primzahlen, also p+q ist ein Produkt von mindestens drei Primzahlen.

Problem 4. Seien $n \in \mathbb{N}^*$ und $a \in \mathbb{Z}$. Zeigen Sie, dass es genau dann ein $x \in \mathbb{Z}$ mit $ax \equiv 1 \pmod{n}$ gibt, wenn ggT(a, n) = 1 gilt.

Proof. $ax \equiv 1 \pmod{n} \iff ax - 1 = kn, k \in \mathbb{Z}$, also ax - kn = 1.

Weil ggT(a,n)=1, gibt es so zwei Zahlen a,-k, so dass ax-kn=1 (Lemma von Bezout)