

Code Based Software Projects Popularity Estimation

Hung Phan (hungphd@iastate.edu)

Iowa State University - COMS 574 Course Project

Github:

https://github.com/pdhung3012/CodeBasedProjectStarPrediction

Content

- Introduction.
- Related Works.
- Background.
- Materials.
- Approach.
- Result.
- Conclusion.

Introduction

• Input: properties of source code project without manual define,

- Prediction object:
 - Popularity: The star of project in Github.

- We predict 2 types of popularity:
 - Levels of popularity.
 - Score of popularity.

Related Works

- https://github.com/simon-weber/Predicting-Code-Popularity:
 - Relies on Feature Engineering features: num of files, num of commits.
 - Predict by 2-4 ranges: high-low and high-medium-below-low (specify manually).
 - Python repos.
 - Prediction type: Classification.
- https://github.com/Doodies/Github-Stars-Predictor
 - Also rely on Feature Engineering on number of commits, licenses....
 - Restrict the project data set that has number of star greater than 100.
 - Prediction type: Regression.

Background

Classification Algorithm:

Background

Regression Algorithm:

Materials

- Dataset: Collect from Alon et all (2018): https://github.com/tech-srl/code2seq/blob/master/README.md#datasets
- 9500 Java Projects.
- Technique we use: Java AST Parser by JDT.
- Splitting training and testing data:
- 9000 for training.
- 500 for testing.
- My code is available at: https://github.com/pdhung3012/CodeBasedProjectStarPrediction

Approach

- 1. Get Information from AST Node.
- Collect non-terminal nodes right above terminal nodes.
- Collect for each files in Software Project.
- 2. Select top-k files which has the most "import" statements for each projects.
- k=50.
- 3. Vectorizing from sequences of AST Nodes:
- TF-IDF.
- 4. Running ML models.

Results

- 1. RQ1: Accuracy on Popularity Level Classification.
- 2. RQ2: Accuracy on Popularity Prediction.
- 3. RQ3: Tuning on Hyper Parameters of Best ML model.
 - 1. RQ 3.1: SVC Classification.
 - 2. RQ 3.2: XGBoostRegressor.

RQ1. Accuracy on Popularity Level Classification

We have 4 categories: 0 (star<=178), 1 (star in (178, 328]), 2 (star in (328, 741]) and 3 (star > 741).

- Each ranges have around 25% entities in training data set.
- Link (for all experiments):
 https://docs.google.com/spreadsheets/d/1kFwMrVuUMcuVq9wV2vg
 QAWpa3i-MuSwCQXc9B-9-fXg/edit?usp=sharing

RQ1. Accuracy on Popularity Level Classification

No	ML Model	Accuracy (%)
1	GNB	22.70
2	LR	28.62
3	DT	22.37
4	RF	21.05
5	AB	22.70
6	LDA	29.61
7	QDA	25.99
8	SVC	32.89
9	MLP	30.26
10	GBo	28.62

RQ2. Popularity Prediction

No	ML Model	MAE
1	DTR	1111.02
2	RFR	878.68
3	ABR	4366.48
4	XGBR	657.27
5	LSVR	604.02
6	MLPR	786.77
7	GBR	836.53

RQ 3.1. Support Vector Machine Tuning

Metric	Range	Best Param		Origin Acc
С	1	1		
	['rbf', 'poly',		32.89%	32.89%
kernel	['rbf', 'poly', 'sigmoid']	rbf		

RQ 3.2. XGBRegressor

Metric	Range	Best Param	Best MAE	Default MAE
objective	reg:linear	reg:linear		657.27
colsample_bytree	0.3	0.3		
learning_rate	[0.1,1]	0.1	649.02	
max_depth	[1,3,5]	5	648.02	
alpha	[10,20]	10		
n_estimators	[10,100]	10		

Conclusion

- In this project, we want to:
 - 1. Provide solution for Github popularity prediction at ranges and exact prediction.
 - 2. Propose some observations:
 - The popularity prediction is challenging if we want to predict the details information to users.
 - The star is good but also depend on time:
 - We will use star/30 days as predicted metrics for future works.
 - 3. The large scale project vectorization is challenging in:
 - Scale of software.
 - Summarizing what types of code to predict.
 - 4. We got 31% accuracy in best classification and 666 in MAE for best regression.

Future Works

- Finding better strategies for representing big code by text.
 - Combine AST+ code.
- More efficient way for vectorization:
 - Code2vec.
 - Doc2vec.
- Applying Deep Learning (RNN, CNN).