Wiederholm y M, N Mengh Relation zwischen Mund N; Tulmerge RCMXN (x,y) ER (=): x Ry M=N: Relation out M $R \subset M \times M$

Fin all x14,2 EM Name Teroput (R) reflexin × RX xRy => y Rx (5) symmetrich × Ry undy Rx =) (A) antisymm. xRy undy RZ =) (T) transitiv x Ry ode y RX (V) vollståndig $\frac{B_{n}p}{B_{n}ldglerichild} = f \cdot f : M \rightarrow N$ Aguinalenz relation (P), (S), (T) Ordninge auf Pot (N) (R),(A),(T)€ out R Totalordmy Ordning und (V)

C'Aquiralenrel. auf M × EM: [x]_c = {YEM | YRx} Aquiralenrhlane von x Mc. {[x]c | x & M} Ouroteentemmenge, M modulo C" De: M-> MC, x H) [x]c Quotientenable. Hatten: [x] = [y] ((=) x (y (=) y (x $M \ni \xi \in [X]_{C} \cap [Y]_{C} \Rightarrow \xi C \times \text{ und } \xi C Y = 0$ $\times C \xi \text{ und } \xi C Y = 0 \times C Y \Rightarrow 0 \times C \xi \text{ und } \xi C Y = 0 \times C$

Äquivalenzrelationen (Forts.)

Erinnerung

M Menge

Partition von M: $\mathcal{P} \subseteq \text{Pot}(M)$ mit

- $\blacktriangleright \emptyset \notin \mathcal{P}$,
- ▶ $C \cap C' = \emptyset$ für $C \neq C' \in \mathcal{P}$,
- ▶ $M = \bigcup_{C \in \mathcal{P}} C$.

Beispiel

 $\{\{1,2,4\},\{3\}\}\$ ist Partition von $\{1,2,3,4\}$

Äquivalenzrelationen (Forts.)

Satz

Es sei M Menge, C Äquivalenzrelation auf M. Dann ist M/C eine Partition von M.

Äquivalenzrelationen (Forts.)

Hauptsatz über Äquivalenzrelationen

Es sei M eine Menge.

Dann exisitiert eine Bijektion

$$\{C \mid C \text{ ist Aq.rel. auf } M\} \rightarrow \{P \mid P \text{ ist Partition von } M\}$$

$$C \mapsto M/C$$

$$\text{Bow:} \quad \times_{(Y)} \in \mathcal{M} \quad \times_{(Y)} \in \mathcal{M} \quad \times_{(Y)} = [Y]_{C}$$

$$\text{Mho} \quad \{C\} \rightarrow \{P\} \text{ if uipelities}.$$

$$\text{Sei num } P \text{ Portition non } \mathcal{M} \quad \text{, Definieve}$$

$$C_{p} := \{(X_{(Y)} \in \mathcal{M} \times \mathcal{M} \mid \text{ as gibt } \mathcal{U} \subset P \text{ mit } \times_{(Y)} \in \mathcal{U}\}$$

$$\text{Darm:} \quad \mathcal{M}_{C_{p}} = P \quad \text{, Also infolia Abl. aurjektier.}$$

Homomorphiesatz für Mengen

Beispiel

Es sei $f: M \rightarrow N$ Abbildung.

- ► Nicht-leere Fasern von f bilden Partition von M (frühere Folie).
- ► Welche Äquivalenzrelation?
- ▶ Bildgleichheit: $xR_fx' \Leftrightarrow f(x) = f(x')$.

Homomorphiesatz für Mengen (Forts.)

Homomorphiesatz für Mengen

Es sei $f: M \rightarrow N$ Abbildung, und

$$\kappa: M \to M/R_f$$

die Quotientenabbildung zur Bildgleichheit R_f .

Dann existiert "wohldefinierte Abbildung"

$$ar{f}: M/R_f o N, [x]_{R_f} \mapsto f(x)$$

$$[Y]_{R_f} \Rightarrow f(x) \Rightarrow f(x) \Rightarrow f(y)$$

$$f = \overline{f} \circ \kappa.$$

mit

- $ightharpoonup \bar{f}$ injektiv
- ▶ Im $\bar{f} = \text{Im } f$ (=) Bild $\bar{f} = \text{Bild } f$

Homomorphiesatz für Mengen (Forts.)

Beispiel

$$f: \{1,2,3,4\} \rightarrow \mathbb{Z}, 1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 3, 4 \mapsto 1$$

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}_{R_{\ell}} = \{1,2,4\} \qquad \begin{bmatrix} 3 \\ 1 \\ 1 \\ 1 \end{bmatrix}_{R_{\ell}} = \{3\}$$

$$\exists \{1,2,3,4\} \longrightarrow \{1,2,3,4\} / R_{\ell}$$

$$\exists \{1,2,4\}, \{3\}\} \longrightarrow \mathbb{Z}$$

$$\underbrace{\{1,2,4\}, \{3\}\}}_{\{3\}} \longrightarrow \mathbb{Z}$$

Homomorphiesatz für Mengen (Forts.)

Beispiel

P: farbige Glasperlen in Dose

F: Farben

 $f: P \rightarrow F$: Zuordnung der zugehörigen Farbe zu jeder Glasperle

× Rf y (=) x und y løber gleiche Forbe

F: & 1/Re -> 7

Ey hat gliche Forbe wie x } b) Forbe von X

Ordnungen

Definition

X Menge

- ightharpoonup Präordnung auf X: transitive, reflexive Relation auf X
- ightharpoonup Ordnung auf X: antisymmetrische Präordnung auf X
- ► Totalordnung auf X: vollständige Ordnung auf X

Ordnungen (Forts.)

- ► Präordnung:
 - ▶ reflexiv
 - ▶ transitiv
- ► Ordnung:
 - ▶ reflexiv
 - ► antisymmetrisch
 - ▶ transitiv
- ► Totalordnung:
 - ▶ reflexiv
 - antisymmetrisch
 - ▶ transitiv
 - ▶ vollständig

Ordnungen (Forts.)

Beispiele

- ▶ ≤ auf N: refl., trans, antign., vollst. Totalade
- ► *M* Menge
- ⊆ auf Pot(M): refl., than, antisyn., ¬ vollst.

 Ordrug

 Auf N: 7 refl., thans, antisym, ¬ vollst.
- ▶ " auf Z: $q,b \in \mathcal{H}$. $\alpha(b \in)$ er gill en $x \in \mathcal{H}$ said mit $\alpha.x = b$ rell, trans, 7 antigm. ,7 will.

Geordnete Mengen

Definition

- ► Prägeordnete Menge: besteht aus
 - ► *M* Menge
 - ▶ o Präordnung auf M

Missbrauch von Notation: bezeichne prägeordnete Menge wieder mit *M*

Terminologie und Notationen:

- ▶ Präordnung von M: ONotation: $\leq := O$
- ▶ geordnete Menge: prägeordn. Mge M mit: ≤ Ordnung
- ▶ totalgeordnete Menge: prägeordn. Mge M mit: \leq Totalordn.

Geordnete Mengen (Forts.)

Beispiel

- ▶ N mit üblicher Ordnung
- ► M Menge

Pot(M) mit Teilmengenrelation

Definition

M geordnete Menge

Striktordnung von M: für $x, y \in M$: $x < y :\Leftrightarrow x \le y$ und $x \ne y$ Arriva

Geordnete Mengen (Forts.)

Bemerkung

M prägeordnete Menge, $U \subseteq M$

U wird zu prägeordneter Menge mit: für $u, v \in U$: $u \leq^U v :\Leftrightarrow u \leq^M v$

Beispiele

- ▶ n ⊆ N = it Totalarde auf M
- ► *M* Menge

$$\operatorname{Pot}(M)\setminus\{\emptyset\}$$
 \subseteq Ref(M) . Only light \subseteq

Geordnete Mengen (Forts.)

Bemerkung

M prägeordnete Menge Definiere Relation ⋄ auf M durch

$$x \diamond y :\Leftrightarrow x \leq y \text{ und } y \leq x.$$

Dann ist \diamond eine Äquivalenzrelation auf M.

Beispiel

Sei "|" die Teilbarkeitsrelation auf \mathbb{Z} .

Extremale Elemente

Definition

M prägeordnete Menge, $x \in M$

- ▶ x ist minimales Element: für $y \in M$: $y \le x \Rightarrow x \le y$
- ▶ x ist maximales Element: für $y \in M$: $x \le y \Rightarrow y \le x$

Bemerkung

M geordnete Menge, $x \in M$

- $ightharpoonup x ext{ minimal } \Leftrightarrow ext{(für } y \in M: \quad y \leq x \Leftrightarrow x = y)$ weye Arbiyan.
- ▶ $x \text{ maximal} \Leftrightarrow (\text{für } y \in M: x \leq y \Leftrightarrow x = y)$

Beispiel

```
    in N:
    ▶ minimal:
    ▶ maximal:
    yible minimal
    Willen mill
    M Menge
```

in Pot(M):

- ► minimal: Ø G Pot (M)
- ► maximal: M & Pot (M)
- ▶ $Pot({1,2,3}) \setminus {\emptyset}$:
 - ► minimal: {13, {21, {31}}
 - ► maximal: {1,2,3}
- ▶ $Pot({1,2,3}) \setminus {\{1,2,3\}}$:
 - ► minimal: Ø
 - ► maximal: {1,2}, {2,3}, {1,3}

Definition

M prägeordnete Menge, $x \in M$

- ▶ x ist kleinstes Element (oder Minimum): für $y \in M$: $x \le y$
- ▶ x ist größtes Element (oder Maximum): für $y \in M$: $y \le x$

Bemerkung

M prägeordnete Menge, $x \in M$

x kleinstes Element $\Rightarrow x$ minimales Element

Beispiel

- ightharpoonup in \mathbb{N} :
 - ▶ kleinst: <a>↑
 - ▶ größt: Kines
- ► *M* Menge

in Pot(M):

- ► kleinst: Ø
- ▶ größt: M
- ▶ $Pot({1,2,3}) \setminus {\emptyset}$:
 - ► kleinst: Kem

► größt:

- ▶ $Pot({1,2,3}) \setminus {\{1,2,3\}}$:
 - ► kleinst:
 - ▶ größt: kin.

({1} \$ {2,3})

Bemerkung

M prägeordnete Menge, x kleinstes Element, $y \in M$

äquivalent:

- (a) ▶ y kleinstes Element
- $(x) \Rightarrow x \leq y \text{ und } y \leq x$
- $(d) \triangleright y \leq x$
- (c) = 1 (d) , (l) = 1 (c) Def non minui. Elent, (a) = 1 (l) oben
- (d) \Rightarrow (a) gigeber $y \leq x$, Sui $z \in M$.

Da x hluister Elenst 1 X = 2 => y < x und x < 2

$$(T)$$
 $Y \le 2$. Also ist y blement.

Frage: × kleinster Element y kluinster Element Int x=y?

Antwi Im Allgemeinen; nein Aus den Vor. folgt nur:

dus den Vor. folgt nur: XZY und YZX.

Falls aber \(\) eine Ordnung ist, oo folgt wegen der Antisymmetorie: \(\times = \text{y} \). In diesem Fall ist ein blainster Element ein dentig.

Myse Beispiel in 2 mit «1" Proordning: 1 and -1 mid kleinster Element.

Korollar

M geordnete Menge

es gibt höchstens ein kleinstes Element in M

Notation

M geordnete Menge

▶ es gebe kleinstes Element *x* in *M*

$$min M := x$$

▶ es gebe größtes Element x in M

$$\max M := x$$

Proposition

M total geordnete Menge, $x \in M$

x minimales Element in $M \Leftrightarrow x$ kleinstes Element in M

= " Sei x minimal. Fin y EM gilt norgen (V): $x \leq y$ oder $y \leq x$.

Da x minimal, bolgt in jedem Fall $x \leq y$. Alw ist x blevister Element.