Ch 3 : Les réseaux de files d'attente 2. Définitions

Station de service

station	service	client
circuit téléphonique	mise en liaison de deux abonnés	abonné
feu de signalisation	passage d'un carrefour	véhicule
secrétaire	dactylographie	lettre
mécanicien	réparation	machine à réparer
dock	déchargement	bateau

Notation de Kendall (1)

A/B/s/d/e

- A loi d'entrée,
- **B** loi de service,
- s nombre de serveurs,
- d nombre maximum de clients dans la station,
- e discipline de la file d'attente.

Notation de Kendall (2)

Lois

M loi exponentielle,

H loi hyper-exponentielle,

E loi d'Erlang hypo-exponentielle,

D loi déterministe (constante),

G loi générale (espérance et variance),

K loi à transformée de Laplace rationnelle.

Processus poissonnien si la loi est exponentielle. Si capacité infinie et discipline PAPS **d** et **e** sont facultatifs.

Notation de Kendall (3)

Disciplines

PAPS Premier Arrivé, Premier Servi (FIFO),

DAPS Dernier Arrivé, Premier Servi (LIFO),

DAPP DAPS avec **Préemption**

un arrivant est pris immédiatement en charge, le client en cours rejoint la tête de la file.

PS Processeur Partagé : chaque client reçoit une fraction du temps de service par unité de temps.

Carré du coefficient de variation

```
CV<sup>2</sup>[X]=VAR[X]/(E[X])<sup>2</sup>
CV<sup>2</sup>[X]=0 phénomène régulier, loi constante, CV<sup>2</sup>[X]<1 hypo-exponentiel, loi d'Erlang : suite de k opérations exp. de même taux, CV<sup>2</sup>[X]=1 poissonnien, loi exponentielle, CV<sup>2</sup>[X]>1 hyper-exponentiel, en grappe : ex. petits messages et grands pas de moyen
```

Rappel loi exponentielle $E[X] = 1/\mu$ et $Var[X] = 1/\mu^2$

3 La file M/M/1

p(n,t) probabilité d'avoir n clients dans la station

$$p(n,t+\delta t) = p(n,t) (1-(\lambda+\mu)\delta t) + o(\delta t) + p(n-1,t)\lambda\delta t + o(\delta t) + p(n+1,t)\mu\delta t + o(\delta t)$$

$$\frac{d}{dt} p(n,t) = -(\lambda + \mu) p(n,t) + \lambda p(n-1,t) + \mu p(n+1,t)$$

$$\frac{d}{dt} p(0,t) = -\lambda p(0,t) + \mu p(1,t)$$

Solution stationnaire

$$p(n) = (1 - \frac{\lambda}{\mu})(\frac{\lambda}{\mu})^n = (1 - \rho)\rho^n$$

Critères de performance

Taux d'occupation

Longueur station

Séjour station

Loi de Little : $L = \lambda W$

$$1-p(0)=\lambda/\mu=\rho$$

$$L = \lambda / (\mu - \lambda)$$

$$W = 1/(\mu - \lambda)$$

4 Extension de la file M/M/1 M/M/1 avec dépendance d'état

Arrivée et service dépendent du nombre *n* de clients dans la station :

Arrivée poissonnienne de paramètre $\lambda(n)$ Service exponentiel de taux $\mu(n)$

Un processus de naissance et de mort est un processus de Markov :

le processus décroît de 1 : mort

le processus croît de 1 : naissance

Le nombre N_t de clients dans la station au temps t est un processus de naissance et de mort

Transitions du processus

0 vers 0
$$1-\lambda(0)\Delta t$$

0 vers 1 $\lambda(0)\Delta t$
i vers i-1 $\mu(i)\Delta t$
i vers i $1-(\lambda(i)+\mu(i))\Delta t$
i vers i+1 $\lambda(i)\Delta t$

Matrice de transitions $P = I + Q \Delta t$

Recherche d'une suite stationnaire v de probabilités

$$vQ=0$$
 et $\sum_{i=0}^{\infty} v_i=1$

Résolution par récurrence

La condition d'ergodicité du processus devient

$$1 + \sum_{n=0}^{\infty} \frac{\lambda(0)\lambda(1)...\lambda(n)}{\mu(1)\mu(2)...\mu(n+1)} < \infty$$

La distribution limite v renommée p (et n = i) devient

$$p(n) = \frac{\lambda(0)\lambda(1)...\lambda(n-1)}{\mu(1)\mu(2)...\mu(n)} p(0)$$
et
$$p(0) = \left[1 + \sum_{n=1}^{\infty} \frac{\lambda(0)\lambda(1)...\lambda(n-1)}{\mu(1)\mu(2)...\mu(n)}\right]^{-1}$$

Applications

Exercice: M/M/c, comparer M/M/1 et M/M/2; M/M/1/k.

Etude M/M/
$$\infty$$
 et M/G/ ∞

$$\lambda(i) = \lambda \quad \forall i \ge 0$$

$$\mu(i) = i\mu \quad \forall i \ge 0$$

$$p(n) = p(0) \frac{\lambda^n}{n! \mu^n} \quad et \quad 1 = p(0) \sum_{n=0}^{\infty} \frac{\lambda^n}{n! \mu^n}$$

$$p(0) = e^{-\lambda/\mu} \quad et \quad p(n) = e^{-\lambda/\mu} \frac{\lambda^n}{n! \mu^n}$$

II Les théorèmes de Jackson 1 Le réseau général de Jackson

Réseau ouvert à serveur central un central téléphonique

Réseau fermé le nombre N de clients est fixé

Hypothèses et notations

Réseau a *n* stations ; une seule classe de clients ; discipline PAPS.

Arrivées exponentielle de débit $\lambda(K)$ où K est le nombre de clients dans le réseau. Arrivée de l'extérieur en i avec une probabilité qi.

Service de la station i suit une loi exponentielle de taux $\mu i(ki)$ où ki est le nombre de clients dans la station i.

pij probabilité constante d'aller de i en j (sortie : n+1).

On note k = (k1, k2, ..., kn) et q = (q1, q2, ..., qn), on a K = k1+k2+...+kn.

Stations et Flux de Clients

Si $\lambda(K) = \lambda$, on a des M/M/1, M/M/c ou M/M/ ∞ .

Caractéristiques de la station i :

$$1/\mu i(ki)$$

2 Réseau ouvert

a(k,i) vecteur identique à k avec ki remplacée par ki+1; b(k,i) vecteur identique à k avec ki remplacée par ki-1; c(k,i,j) vecteur k avec ki, kj remplacées par ki+1, kj-1. $\mu i(ki) = 0$ si ki = 0; p(k,t) = 0 si une ki < 0 $\frac{d}{dt} p(k, t) = -[\lambda(K) + \sum_{i=1}^{n} \mu_{i}(k_{i})(1 - p_{ii})] p(k, t) +$ $\sum \lambda(K-1) q_i p(b(k,i),t) + \sum \mu(k_i+1) p_{i,n+1} p(a(k,i),t) + \sum \mu(k_i+1) p_{i,n+1} p$ $\sum \mu(k_i+1) p_{ij} p(c(k,i,j),t)$

17

Résultat dans le cas général

P matrice $n \times n$ des transitions de serveur à serveur q = (q1, ..., qn) probabilité d'entrer en i e = (e1, ..., en) tel que e = q + e P v, w, T et C voir poly.

Si e est unique et les ei non négatifs et si C > 0 alors il existe une solution stationnaire unique $\{p(k)\}$ définie par p(k) = C.v(k).w(K)

On a une **FORME MULTIPLICATIVE** de p(k). e = q + e P nombres moyens de passages $\lambda e = \lambda q + \lambda e P$ conservation du flux $\lambda i = \lambda e i$ taux d'arrivée à la station i

3 Réseau fermé

$$\frac{d}{dt}p(k,t) = -\sum_{i=1}^{n} \mu_{i}(k_{i})(1-p_{ii})p(k,t) + \sum_{i,j=1|i\neq j}^{n} \mu(k_{i}+1)p_{ij}p(c(k,i,j),t)$$

Il existe une solution stationnaire unique $\{p(k)\}$

$$p(k) = \frac{1}{G(K)} \prod_{i=1}^{n} \prod_{m=1}^{k_i} \frac{e_i}{\mu_i(m)} \quad \text{et} \quad G(K) = \sum_{k \mid K} \prod_{i=1}^{n} \prod_{m=1}^{k_i} \frac{e_i}{\mu_i(m)}$$
$$\sum_{k=1}^{n} k_i = K$$

où e solution de e = eP, fixer une composante e1 = 1