

Poisson Algebras I, Non-commutative Algebra

Maram Alossaimi (Supervisor: Prof. Vladimir Bavula)

School of Mathematics and Statistics, malossaimi1@sheffield.ac.uk\maram.alosaimi@gmail.com

1. Introduction

A commutative algebra D over a field K is called a *Poisson algebra* if there exists a bilinear product $\{\cdot,\cdot\}:D\times D\to D$, called a *Poisson bracket*, such that

1. $\{a,b\} = -\{b,a\}$ for all $a,b \in D$ (anti-commutative),

2. $\{a,\{b,c\}\}+\{b,\{c,a\}\}+\{c,\{a,b\}\}=0$ for all $a,b,c\in D$ (Jacobi identity), and

3. $\{ab,c\}=a\{b,c\}+\{a,c\}b$ for all $a,b,c\in D$ (Leibniz rule).

Definition. Let D be a Poisson algebra. An ideal I of the algebra D is a Poisson ideal of D if $\{D,I\}\subseteq I$. We denote by $\langle a \rangle$ the Poisson ideal of D generated by the element a. Moreover, a Poisson ideal P of the algebra D is a Poisson prime ideal of D provided

$$IJ \subset P \Rightarrow I \subset P$$
 or $J \subset P$

where I and J are Poisson ideals of D. A set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by PSpec(D).

Definition. Let D be a Poisson algebra over a field K. A K-linear map $\alpha:D\to D$ is a *Poisson derivation* of D if α is a K-derivation of D and

$$\alpha(\{a,b\})=\{\alpha(a),b\}+\{a,\alpha(b)\} \quad \text{for all} \ \ a,b\in D.$$

A set of all Poisson derivations of D is denoted by $\operatorname{PDer}_K(D)$.

2. How do we get our Poisson algebra class A?

Lemma. [3] Let D be a Poisson algebra over a field K, $c \in K$, $u \in D$ and α , $\beta \in \operatorname{PDer}_K(D)$ such that

$$\alpha\beta = \beta\alpha$$
 and $\{d, u\} = (\alpha + \beta)(d)u$ for all $d \in D$.

Then the polynomial ring D[x,y] becomes a Poisson algebra with Poisson bracket

$$\{d,y\}=\alpha(d)y,\quad \{d,x\}=\beta(d)x\quad \text{ and }\quad \{y,x\}=cyx+u \ \text{ for all } \ d\in D. \tag{2}$$

The Poisson algebra D[x,y] with Poisson bracket (2) is denoted by $(D;\alpha,\beta,c,u)$.

3. How do we classify A?

We aim to classify all the Poisson algebra's $\mathcal{A}=(K[t];\alpha,\beta,c,u)$, where K is an algebraically closed field of characteristic zero and K[t] is the polynomial Poisson algebra (with necessarily trivial Poisson bracket, i.e. $\{a,b\}=0$ for all $a,b\in K[t]$). Notice that, it follows from the second part of equality (1) that

$$0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in K[t],$$

which implies that precisely one of the three cases holds:

(Case I:
$$\alpha + \beta = 0$$
 and $u = 0$), (Case II: $\alpha + \beta = 0$ and $u \neq 0$) or (Case III: $\alpha + \beta \neq 0$ and $u = 0$).

4. What have we done so far?

The next lemma states that in order to complete the classification of Poisson algebra class \mathcal{A} . This lemma describes all commuting pairs of derivations of the polynomial Poisson algebra K[t].

Lemma. Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and $\alpha, \beta \in \mathrm{PDer}_K = \mathrm{Der}_K(K[t]) = K[t] \setminus \{0\}$, $\partial_t = d/dt$ then

$$\alpha\beta = \beta\alpha$$
 if and only if $g = \frac{1}{\lambda}f$ for some $\lambda \in K^{\times} := K \setminus \{0\}.$ (3)

By using the previous lemma, we can assume that $\alpha=f\partial_t, \beta=\frac{1}{\lambda}f\partial_t, c\in K, u\in K[t]$, where $f\in K[t]$ and $\lambda\in K^\times$. Then we have the class of Poisson algebras $\mathcal{A}=K[t][x,y]=(K[t];\alpha=f\partial_t,\beta=\frac{1}{\lambda}f\partial_t,c,u)$ with Poisson bracket defined by the rule:

$$\{t,y\} = fy, \quad \{t,x\} = \frac{1}{\lambda}fx \quad \text{and} \quad \{y,x\} = cyx + u.$$
 (4)

The next diagram shows the first case (Case I) of Poisson algebra class A.

Diagram 1: Structure of the first case of Poisson algebra class ${\mathcal A}$

Case I: $\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$ and u = 0

Case I.1:

If f=0, i.e. $\alpha=\beta=0$ and u=0 then $A_1=(K[t];0,0,c,0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\}=0, \ \{t,x\}=0 \ \text{ and } \ \{y,x\}=cyx.$$
 (5)
Case I.1.1: If $c=0$ then the polynomial Poisson algebra $A_2=(K[t];0,0,0,0)$ has trivial Poisson structure

and PSpec(A_2) is the spectrum of the polynomial ring in three variables, i.e. Spec(K[x, y]).

Case I.1.2: If $c \in K^{\times}$ then $A_3 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket (5), we found $PSpec(A_3)$, see diagram 2.

Diagram 2: The containment information between Poisson prime ideals of \mathcal{A}_3

Case I 2

If $\lambda=-1$, i.e. $\beta=-\alpha=-f\partial_t$ for some $f\in K[t]\setminus\{0\}$ and u=0 then $\mathcal{A}_4=(K[t];f\partial_t,-f\partial_t,c,0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\}=fy,\quad \{t,x\}=-fx\quad \text{and}\quad \{y,x\}=cyx. \tag{6}$$

Case I.2.1: If c=0 then $A_5=(K[t];f\partial_t,-f\partial_t,0,0)$ is a Poisson algebra with Poisson bracket

$$\{t, y\} = fy, \quad \{t, x\} = -fx \text{ and } \{y, x\} = 0.$$

Case I . 2 . 1 . 1 :

If $f \in K[t] \setminus K$ and $R_f = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of f then $\mathcal{A}_6 = (K[t]; f\partial_t, -f\partial_t, 0, 0)$ is a Poisson algebra with Poisson bracket (7), we found $\mathsf{PSpec}(\mathcal{A}_6)$, see diagram 3.

Diagram 3: The containment information between Poisson prime ideals of \mathcal{A}_6

Case I.2.1.2

If $f=a\in K^{\times}$, i.e. $R_a=\emptyset$ then $\mathcal{A}_7=(K[t];a\partial_t,-a\partial_t,0,0)$ is a Poisson algebra with Poisson bracket

$$\{t, y\} = ay, \quad \{t, x\} = -ax \quad \text{and} \quad \{y, x\} = 0.$$

The Poisson spectrum of A_7 is a subset of PSpec(A_6).

Case I.2.2: If $c \in K^{\times}$ then $\mathcal{A}_8 = (K[t]; f\partial_t, -f\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket (6).

Case I.2.2.1:

If $f \in K[t] \setminus K$ and $R_f = \{\lambda_1, \dots, \lambda_s\}$ is the set of distinct roots of f then $\mathcal{A}_9 = (K[t]; f\partial_t, -f\partial_t, c, 0)$ is a Poisson algebra with Poisson bracket (6), we found $\mathsf{PSpec}(\mathcal{A}_9)$, see diagram 4.

Diagram 4: The containment information between Poisson prime ideals of \mathcal{A}_{θ}

Case I . 2 . 2 . 2 :

If $f=a\in K^{\times}$, i.e. $R_a=\emptyset$ then $\mathcal{A}_{10}=(K[t];a\partial_t,-a\partial_t,c,0)$ is a Poisson algebra with Poisson bracket

$$\{t, y\} = ay, \quad \{t, x\} = -ax \text{ and } \{y, x\} = cyx.$$

The Poisson spectrum of A_{10} is a subset of $PSpec(A_9)$.

5. Conclusion / Future research

A classification of Poisson prime ideals of $\mathcal A$ was obtained in 10 cases out of 22. We will complete the classification of $\mathcal A$. Then we aim to classify some simple finite dimension modules over the class $\mathcal A$.

Acknowledgements

I would like to thank my supervisor Vlad for providing guidance and feedback throughout this research. Also, I would like to thank my sponsor the University of Imam Mohammad Ibn Saud Islamic.

References

- $[1] \ V. \ V. \ Bavula, The \ Generalized \ Weyl \ Poisson \ algebras \ and \ their \ Poisson \ simplicity \ criterion. \ \textit{Letters in Mathematical Physics}, \\ \textbf{110} \ (2020), 105-119.$
- [2] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1 – 85, 105 – 122 and 166 – 186.
- $\begin{tabular}{l} \textbf{[3] Sei-Qwon Oh, Poisson polynomial rings}. \textit{Communications in Algebra}, \textbf{34} (2006), 1265-1277. \\ \end{tabular}$