

CANADA SALES OFFICE

Matsushita Electric of Canada Ltd. **Industry Division** 5770 Ambler Drive Mississauga, Ontario, L4W 2T3 Tel: (905) 238-2311

Fax: (905) 238-2414 **U.S. SALES OFFICES**

Central Region: Panasonic Industrial Co. 1707 North Randall Road Panazip # 1F-5 Elgin, IL 60123-7847 Tel: (708) 468-5800 Fax: (708) 468-5815

Eastern Region: Panasonic Industrial Co. Two Panasonic Way Panazip # 7H-3 Secaucus, NJ 07094 Tel: (201) 348-4630

Fax: (201) 392-6263

Southern Region: Panasonic Industrial Co. 1854 Shackleford Road Panazip # 11 Norcross, GA 30093 Tel: (404) 717-6310

Fax: (404) 717-6313

Western Region: Panasonic Industrial Co. 6550 Katella Avenue Panazip # 17A-11 Cypress, CA 90630 Tel: (714) 373-7366 Fax: (714) 373-7323

This information is furnished for guidance, with no guarantee as to its accuracy or completeness; its publication conveys no license under any patent or other right, nor does the publisher assume responsibility for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

- TABLE OF CONTENTS -

Capacitors

Aluminum Electrolytic Capacitors	
Axial, 85°C, SU Series, ECE-B(U)	1
Axial, 105°C, NHE/NH Series, ECE-B(GE)	_
Radial, 85°C, SU Series, ECE-A(U)	7
Radial, 105°C, NHE Series, ECE-A(GE)	10
Radial, Low Impedance, 105°C, HFG Series, ECA-(FG)	13
Radial, Low Impedance, 105°C, HFQ Series, ECA-(FQ)	16 19
Radial, Low Impedance, Long Life, 105°C, HFZ Series, ECA-(FZ)	22
Radial, Miniature, 85°C, KA Series, ECE-A(KA)	24
Radial, Miniature, 105°C, KG Series, ECE-A(KG)	26
Snap-In, 85°C, TS-U Series ECE-S(U)	28
Snap-In, 105°C, TS-NH Series, ECE-S(G)	31
Snap-In, 105°C, Long Life, TS-NXA Series, ECO-S(X)	34
Snap-In, Miniature, 85°C, TS-UP Series, ECO-S(P)	37
Snap-In, Miniature, 65°C, TS-HA Series, ECO-S(A)	42
Surface Mount, Can, 85°C, VA Series, ECE-V(A)	47
Surface Mount, Can, 105°C, VV Series, ECE-V(V)	50
Surface Mount, Chip, Solid Electrolyte, SP-CB Series, ECG-C(B)	52
Taping / Packaging Specifications, Aluminum Electrolytic Capacitors	55
raping / rachaging opecinications, Martinarri Electrolytic Capacitors	00
Ceramic Capacitors	
High Voltage Disc, Radial Leaded, ECK-D(KBP)	61
High Voltage Disc, Radial Leaded, Safety Standard, ECK-DGL/DNS/DRS	63
Taping / Packaging Specifications, Radial Leaded Ceramic Disc Capacitors	69
High Voltage Surface Mount, ECK-S/T	73
Multilayer Chip Ceramic, ECU-X/E/V/Y/Z	76
Multilayer Leaded Ceramic, ECU-S/R/B	91
Electric Double-Layer Capacitors ("Gold Cap") Coin Type, μA Load Range, EL Series, EEC-E(L)	97 99 100 101 102 103 104
Film Capacitors	
Radial, General Purpose, Low Voltage, ECQ-B(F)	105
Radial, General Purpose, Low Voltage, Small Size, ECQ-V	110
Radial, General Purpose, High Voltage, ECQ-E(F)	113
Badial High Freduency Medium Voltage ECW-E	119
Radial, High Frequency, Medium Voltage, ECW-F	12
Radial, High Frequency, High Voltage, ECW-H	
Radial, High Frequency, High Voltage, ECW-HRadial, High Frequency, High Temperature, Tight Tolerance, ECH-S	126
Radial, High Frequency, High Voltage, ECW-HRadial, High Frequency, High Temperature, Tight Tolerance, ECH-SRadial, Low Loss, Low Voltage, ECQ-P	129
Radial, High Frequency, High Voltage, ECW-HRadial, High Frequency, High Temperature, Tight Tolerance, ECH-SRadial, Low Loss, Low Voltage, ECQ-PRadial, Low Loss, High Voltage, ECQ-F	129 134
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V)	129 134 137
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y)	129 134 137 139
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y) Taping / Packaging Specifications, Radial Leaded Film Capacitors	129 134 137 139
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y)	129 134 137 139
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y) Taping / Packaging Specifications, Radial Leaded Film Capacitors Surface Mount, Chip, Standard Industrial Grade, ECW-U(B) ECH-U(B)	129 134 137 139
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y) Taping / Packaging Specifications, Radial Leaded Film Capacitors Surface Mount, Chip, Standard Industrial Grade, ECW-U(B) ECH-U(B) Tantalum Electrolytic Capacitors	129 134 137 139 147
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y) Taping / Packaging Specifications, Radial Leaded Film Capacitors Surface Mount, Chip, Standard Industrial Grade, ECW-U(B) ECH-U(B) Tantalum Electrolytic Capacitors Radial, Dipped, High Reliability, EF Series, ECS-F(E)	129 134 137 139 147 147
Radial, High Frequency, High Voltage, ECW-H Radial, High Frequency, High Temperature, Tight Tolerance, ECH-S Radial, Low Loss, Low Voltage, ECQ-P Radial, Low Loss, High Voltage, ECQ-F Radial, Interference Suppressor, Class X, ECQ-U(V) Radial, Interference Suppressor, Class Y, ECQ-U(Y) Taping / Packaging Specifications, Radial Leaded Film Capacitors Surface Mount, Chip, Standard Industrial Grade, ECW-U(B) ECH-U(B) Tantalum Electrolytic Capacitors	129 134 137 139 147

Filte		
	Bead Core, Surface Mount, EXC-CL EMI Filter, Surface Mount, EXC-CET Line Filter, Leaded, ELF-18D	162 164 166
Indu	ctors	
	Surface Mount, Chip, ELJ-A/C	169
Pote	ntiometers	
	Trimmer Potentiometer, Leaded, Carbon, 6mm, Dustproof, Type 6FE, EVN-D Trimmer Potentiometer, Leaded, Cermet 4mm/6mm, Dustproof, EVM-L/3/4, EVN-L/3/4 Trimmer Potentiometer, Leaded, Cermet 5mm, Dustproof, Single-Turn, EVM-M Trimmer Potentiometer, Surface Mount, Cermet, 2/3/4mm Open, 3mm Sealed, EVM-1/2/3/7J/7L	174 177 181 183
Fixed	d Resistors	
	Chip Resistor, Thick Film, ERJ- Resistor Array, Surface Mount, EXB-V/S/2 Resistor Network, Leaded SIP, Low Profile, EXB-F Resistor Network, Surface Mount SIP, EXB-H Resistor Network, Surface Mount SO Package, EXB-M	190 194 197 200 203
Reso	onators	
	Ceramic Resonator, Leaded, EFO-EN/GN	206 209 212 215
Swite	ches	
	Light Touch Switch, Leaded, 6x6mm, 5N Type, EVQ-P(C) / EVQ-2	218 221 223 226 227
Varis	stors / Surge Absorbers ("ZNR")	
	Radial, General Purpose, ERZ-C(D)	228 240

- CONTENTS BY PART PREFIX -

ECA-(FG)	Aluminum Capacitor, Radial, Low Impedance, 105°C, HFG Series	13
ECA-(FQ)	Aluminum Capacitor, Radial, Low Impedance, 105°C, HFQ Series	16
ECA-(FZ)	Aluminum Capacitor, Radial, Low Impedance, Long Life, 105°C, HFZ Series	19
ECE-A(KA)	Aluminum Capacitor, Radial, Miniature, 85°C, KA Series	22
ECE-A(KG)	Aluminum Capacitor, Radial, Miniature, 105°C, KG Series	26
ECE-A(KS)	Aluminum Capacitor, Radial, Miniature, 85°C, KS Series	24
ECE-A(U)	Aluminum Capacitor, Radial, 85°C, SU Series	7
ECE-A(GE)	Aluminum Capacitor, Radial, 105°C, NHE Series	10
ECE-B(U)	Aluminum Capacitor, Axial, 85°C, SU Series	1
ECE-B(GE)	Aluminum Capacitor, Axial, 105°C, NHE/NH Series	4
ECE-S(G)	Aluminum Capacitor, Snap-In, 105°C, TS-NH Series	31
ECE-S(U)	Aluminum Capacitor, Snap-In, 85°C, TS-U Series	28
ECE-V(A)	Aluminum Capacitor, Surface Mount Can, 85°C, VA Series	47
ECE-V(V)	Aluminum Capacitor, Surface Mount Can, 105°C, VV Series	50
ECG-C(B)	Aluminum Capacitor, Surface Mount Chip, Solid Electrolyte, SP-CB Series	52
ECH-S	Film Capacitor, Radial, High Temperature, Tight Tolerance	126
		147
ECH-U(B)	Film Capacitor, Surface Mount Chip, Industrial Grade	
ECK-D(KBP)	Ceramic Capacitor, High Voltage Disc, Radial Leaded	61
ECK-DGL	Ceramic Capacitor, High Voltage Disc, Radial Leaded, Safety Standard	63
ECK-DNS	Ceramic Capacitor, High Voltage Disc, Radial Leaded, Safety Standard	64
ECK-DRS	Ceramic Capacitor, High Voltage Disc, Radial Leaded, Safety Standard	66
ECK-S/T	Ceramic Capacitor, High Voltage, Surface Mount	73
ECO-S(A)	Aluminum Capacitor, Snap-In, Miniature, 105°C, TS-HA Series	42
ECO-S(P)	Aluminum Capacitor, Snap-In, Miniature, 85°C, TS-UP Series	37
ECO-S(X)	Aluminum Capacitor, Snap-In, 105°C, Long Life, TS-NXA Series	34
ECQ-B(F)	Film Capacitor, Radial, General Purpose, Low Voltage	105
ECQ-E(F)	Film Capacitor, Radial, General Purpose, High Voltage	113
ECQ-F	Film Capacitor, Radial, Low Loss, High Voltage	134
ECQ-P	Film Capacitor, Radial, Low Loss, Low Voltage	129
ECQ-U(V)	Film Capacitor, Radial, Interference Suppressor, Class X	137
ECQ-U(Y)	Film Capacitor, Radial, Interference Suppressor, Class Y	139
ECQ-V	Film Capacitor, Radial, General Purpose, Low Voltage, Small Size	110
ECS-F(E)	Tantalum Capacitor, Radial, Dipped, High Reliability, EF Series	151
ECS-H	Tantalum Capacitor, Surface Mount Chip, High Reliability, TEH Series	157
ECS-T	Tantalum Capacitor, Surface Mount Chip, General Purpose, TE Series	154
ECU-S	Ceramic Capacitor, Multilayer Leaded	91
ECU-X	Ceramic Capacitor, Multilayer Chip	76
ECW-F	Film Capacitor, Radial, High Frequency, Medium Voltage	119
ECW-H	Film Capacitor, Radial, High Frequency, High Voltage	121
ECW-U(B)	Film Capacitor, Surface Mount Chip, Standard Grade	147
EEC-A(L)	Gold Capacitor, Radial Leaded Can, Ampere Load Range, AL Series	104
EEC-E(L)	Gold Capacitor, Coin Type, μA Load Range, EL Series	97
EEC-F(H)	Gold Capacitor, Flat Type, µA Load Range, High Temperature, F Series	100
EEC-F(U)		99
, ,	Gold Capacitor, Flat Type, µA Load Range, General Use, NF Series	
EEC-S(H/V)	Gold Capacitor, Miniature Flat Type, µA Load Range, General Use, SG Series	101
EEC-S(T)	Gold Capacitor, Miniature Flat Type, µA Load Range, General Use, Taped, ST Series	102
EEC-W(D)	Gold Capacitor, Radial Leaded Molded Case, mA Load Range, D Series	103
EFO-EC/GC	Ceramic Resonator, Leaded, with Capacitor	209
EFO-EN/GN	Ceramic Resonator, Leaded	206
EFO-H	SAW Resonator, UHF, Leaded	215
EFO-N	Ceramic Resonator, Surface Mount	212
EFO-S	Ceramic Resonator, Low Profile, Surface Mount, with Capacitor	212
EFO-V	Ceramic Resonator, Surface Mount, with Capacitor	212

ELF-18D	Line Filter, Leaded	166
ELJ-A/C	Inductor, Surface Mount Chip	169
ERJ-	Chip Resistor, Thick Film	190
ERZ-C(D)	Varistor, Radial Leaded, General Purpose	228
ERZ-CF/SF	Varistor, Surface Mount Chip	243
ERZ-V(D)	Varistor, Radial Leaded, High Surge Current Capability	240
EVM-1/2/3/7	Trimmer Potentiometer, Surface Mount, Cermet, 2/3/4mm Open, 3mm Sealed	183
EVM-L/3/4	Trimmer Potentiometer, Leaded, Cermet, 4mm/6mm, Dustproof	177
EVM-M	Trimmer Potentiometer, Leaded, Cermet, 5mm, Dustproof, Single-Turn	181
EVN-D	Trimmer Potentiometer, Leaded, Carbon, 6mm, Dustproof, Type 6FE	174
EVN-L/3/4	Trimmer Potentiometer, Leaded, Cermet, 4mm/6mm, Dustproof	177
EVQ-2	Light Touch Switch, Leaded, 6x6mm, Taped, 5N Type	218
EVQ-P(C)	Light Touch Switch, Leaded, 6x6mm, 5N Type	218
EVQ-P(J)	Light Touch Switch, Leaded & Surface Mount, 6x3.6mm	221
EVQ-PA1	Light Touch Switch, Surface Mount, 6x6mm, Ultra-Low Profile	226
EVQ-PH	Light Touch Switch, Surface Mount, 6x6mm, Low Prohle	223
EVQ-QF/QH	Light Touch Switch, Leaded & Surface Mount, 6x6mm, Low Profile	223
EXB-F	Resistor Network, Leaded SIP, Low Profile, Thick Film	197
EXB-H	Resistor Network, Surface Mount SIP, Thick Film	200
EXB-M	Resistor Network, Surface Mount, SO Package	203
EXB-S/V/2	Resistor Array, Surface Mount, Thick Film	194
EXC-CET	EMI Filter, Surface Mount	164
EXC-CL	Bead Core. Surface Mount	162

- QUICK REFERENCE/CAPACITORS -

Miniature Radial Aluminum Capacitors

Series	Features	Part No.	W.V. [Vdc] Cap. [μF]	Temp. Range [°C]	L.C. [uA] max 2 min.	Load Life	Case Size	Page
00103				range [O]	2111111.			1 age
	General Purpose	ECE	[6.3~450]			2000h/	5x11~	
SU	Standard Size	AxxUxxx	0.47~15000	-40~+85	0.01CV or 3	85°C	18x35.5	7
	General Purpose	ECE	[4~50]			1000h/	4x7~	
KA	Small Size (7mm hgt.)	AxxKAxxx	0.1~470	-40~+85	0.01CV or 3	85°C	8x7	22
	General Purpose	ECE	[4~50]			1000h/	3x5~	
KS	Small Size (5mm hgt.)	AxxKSxxx	0.1-330	-40~+85	0.01CV or 3	85°C	8x5	24
	Industrial Grade	ECE	[6.3~450]	-55~+105	0.01CV or 3	1~2000h/	5x11~	
NHE	Standard Size	AxxGExxx	0.1~15000	-25~+105	0.06CV + 10	105°C	18x35.5	10
	Industrial Grade	ECE	[6.3~50]			1000h/	4x7~	
KG	Small Size (7mm hgt.)	AxxKGxxx	0.1~220	-55~+105	0.01CV or 3	105°C	8x7	26
	Low Impedance	ECA	[6.3~63]			2~5000h/	5x11~	
HFG	2-5000 hours/105°C	xxFGxxx	0.1~15000	-55~+105	0.01CV or 3	105°C	18x35.5	13
	Low Impedance	ECA	[6.3~63]			2-7000h/	4x11~	
HFQ	2-7000 hours/105°C	xxFQxxx	6.8~15000	-55~+105	0.01CV	105°C	18x40	16
	Low Impedance	ECA	[6.3~63]			5000h/	8x15 ~	
HFZ	5000 hours/105°C	xxFZxxx	22~5600	-55~+105	0.002CV + 2	105°C	18x40	19

Miniature Axial Aluminum Capacitors

	General Purpose	ECE	[6.3~450]	-40~+85	0.01CV or 3	2000h/	3.5x7~	
SU	Standard Size	BxxUxxx	0.47~22000	-25~+85	0.06CV + 10	85°C	22.4x50	1
	Industrial Grade	BxxGExxx	[6.3~450]	-55~+105	0.01CV or 3	1 ~2000h/	5x11 ~	
NHE/NH	Standard Size	BxxGxxxS	0.1~15000	-25~+105	0.06CV + 10	105°C	18x35.5	4

Surface Mount Aluminum Capacitors

	General Purpose	ECE	[4~50]			2000h/	4.0x5.7~	
VA	+85°C	VxxAxxx	0.1~820	-40~+85	0.01CV or 3	85°C	10.0x10.2	47
	Industrial Grade	ECE	[4~50]			2000h/	4.0x5.4~	
VV	+105°C	VxxVxxxS	0.1~220	-40~+105	0.01CV or 3	105°C	6.3x5.4	50
	Extra Low Impedance	ECG	[6.3~16]			1000h/	Chip	
SP-CB	1000 hours/+105°C	CxxBxxx	4.7~33	-40~+105	0.04CV or 3	105°C	7.9x5.3x3.3	52

Snap-Mount Aluminum Capacitors

	General Purpose	ECE	[16~450]	-40~+85	,	2000h/	22x25~	
TS-U	Standard Size	SxxUxxx	33~47000	-25~+85	see specs.	85°C	35x51	28
	General Purpose	ECO	[16~450]	-40~+85		2000h/	20x25~	
TS-UP	Small Size	SxxPxxx	56~68000	-25~+85	see specs.	85°C	35x50	37
	Industrial Grade	ECE	[10~400]	-40~+105		2000h/	22x25~	
TS-NH	High Ripple	SxxGxxx	33~33000	-25~+105	see specs.	105°C	35x51	31
	Industrial Grade	ECO	[10~400]	-40~+105		2000h/	20x25~	
TS-HA	High Ripple, Miniature	SxxAxxx	56~68000	-25~+105	see specs.	105°C	35x50	42
	Industrial Grade	ECO	[160~400]	-40~+105		5000h/	20x25~	
TS-NXA	Long Life	SxxXxxx	39~1200	-25~+105	see specs.	105°C	35x40	34

Tantalum Capacitors

EF	Resin Dipped Leaded High Reliability	ECS FxxExxxx	[4~50] 0.047~470	-55~+105	0.008CV or 0.5	1000h/ 105°C	see specs.	151
	Surface Mount Chip	ECS	[2.5~35]			2000h/		
TE	General Purpose	Txx[]xxxx	0.047~150	-55~+125	0.01CV or 0.5	125°C	see specs.	154
	Surface Mount Chip	ECS	[4~35]			2000h/		
TEH	High Reliability	Hxx[]xxxx	0.047~100	-55~+125	0.01CV or 0.5	125°C	see specs.	157

Electric Double Layer ("Gold") Capacitors

			W.V. [Vdc]	Temp.			d. Plant	
Series	Features	Part No.	Cap. [F]	Range [°C]	Backup Current	Load Life	Case Size	Page
	Coin Type	EEC	[2.5]			1000h/	diameter	
EL	w/Terminals	E0ELxxx	0.1~2.0	-25~+70	μA range	70°C	6.8-20.0	97
	Flat Can Type	EEC	[5.5]			1000h/	13.5x7.5~	
NF	Low Profile	F5R5Uxxx	0.022~1.0	-25~+70	μA range	70°C	21.5x8.0	99
	Flat Can Type	EEC	[5.5]			1000h/	13.5x9.5~	
F	Industrial Grade	F5R5Hxxx	0.033~0.68	-25~+85	μA range	85°C	21.5x9.5	100
	Miniature Flat Type	EEC	[5.5]			1000h/	11.5x4.5~	
SG	w/Terminals	S5R5[]xxxx	0.022~1.0	-25~+70	μA range	70°C	19.0x6.0	101
	Miniature Flat Type	ÉEC	[5.5]			1000h/		
ST	Taped	S5R5Txxx	0.022~0.22	-25~+70	μA range	70°C	11.5x4.5	102
	Molded Case	EEC	[5.5]			1000h/		
D	High Current	W5R5Dxxx	0.1~3.3	-25~+70	mA range	70°C	see specs.	103
	Radial Leaded Can	EEC	[2.5]			1000h/	6.8x21~	
AL	High Current	A0ELxxx	0.22~10.0	-40~+70	A range	70°C	18.0x35.0	104

Film Capacitors

Series	Features	Part No.	W.V. [Vdc] Cap. [μF]	Temp. Range [°C]	Tolerance	Dissip. Factor (20°C, 1kHz)	Dielectric	Page
	General Purpose	ECQ	[100~1250]				Metallized	
ECQ-E(F)	High Voltage	ExxxxF	0.001~10	-40~+85	5%,10%,20%	1.0% max.	Polyester	113
	General Purpose	ECQ	[50~200]					
ECQ-B(F)	Low Voltage	BxxxxxxF	0.0001~0.47	-40~+85	5%,10%	0.8% max.	Polyester	105
- Constant	General Purpose	ECQ	[50~100]		and the same of th		Metallized	
ECQ-V	Low Volt., Miniature	Vxxxxxx	0.01~2.2	-40~+85	5%	1.0% max.	Plastic	110
	High Frequency	ECW	[250~450]		1.10.00.001		Metallized	
ECW-F	Intermediate Voltage	Fxxxxxx	0.15~3.3	-25~+85	5%,10%	0.1% max.	Polyprop.	119
	High Frequency	ECW	[800~2500]		3%		Metallized	
ECW-H	High Voltage	Hxxxxxxx	0.001~0.068	-25~+85	5%,10%,20%	0.1% max.	Polyprop.	121
	High Frequency	ECH	[50~100]		·		The second secon	
ECH-S	High Tolerance/Temp.	Sxxxxxx	0.001~0.47	-40~+125	1%,2%,5%	0.3% max.	PPS	126
	Low Loss	ECQ	[50~100]					
ECQ-P	High Tolerance	PxxxxxZ	0.001~0.47	-40~+85	1%,2%,5%	0.1% max.	Polyprop.	129
	Low Loss	ECQ	[200~630]					
ECQ-F	Moisture Resistant	Fxxxxx	0.001~0.47	-40~+85	5%,10%,20%	0.1% max.	Polyprop.	134
	Interference Suppress.	ECQ	[250Vac]				Metallized	
ECQ-U(V)	Molded Case, Class X	UxxxxxV	0.001~1.0	-40~+85	10%,20%	1.0% max.	Polyester	137
	Interference Suppress.	ECQ	[250Vac]				Metallized	
ECQ-U(Y)	Resin Dipped, Class Y	UxxxxxY	0.001~0.047	-40~+85	10%,20%	1.0% max.	Polyester	139
	Surface Mount Chip	ECW	[16~100]				Metallized	
ECW-U(B)	General Purpose	UxxxxxxxB	0.001~0.22	-55~+105	5%	1.0% max.	Polyester	147
	Surface Mount Chip	ECH	[16~50]				Metallized	
ECH-U(B)	Industrial Grade	UxxxxxxxB	0.0001~0.1	-55~+125	2%,5%	0.6% max.	PPS	147

Ceramic Disc Capacitors

			W.V. [Vdc]	Temp.		Dissip. Factor	Temperature	
Series	Features	Part No.	Cap. [pF]	Range [°C]	Tolerance	(20°C, 1kHz)	Character.	Page
	High Voltage	ECK	[1~3kVdc]					
KBP	Y5P Temp. Char.	DxxxxxKBP	100~5600	-25~+125	10%	2.5% max.	B/Y5P	61
	Safety Regulation	ECK	[125/250Vac]		Marie	2.5% max.	E/Y5U, B/Y5P	
DGL	(1500Vac Withstand.)	DGLxxxxx	100~10000	-25~+85	20%	5.0% max.	V	63
	Safety Regulation	ECK	[125Vac]			2.5% max.	E/Y5U, B/Y5P	
DNS	Class II (4000Vac)	DNSxxxxx	100~22000	-25~+85	20%	5.0% max.	V	63
	Safety Regulation	ECK	[125Vac]			2.5% max.	E/Y5U, B/Y5P	
DRS	Class I (2600Vac)	DRSxxxxx	100~10000	-25~+85	20%	5.0% max.	V	63

- For general purpose
- Wide CV value range
- Life 2000 hours at +85 °C
- Compact size (ø3.5 x 7 ~)

Item			Р	erformanc	e Characte	eristics	3			
Rated Working Voltage Range	6.3to100V DC				160 to	450V	DC			
Operating Temperature Range	-40 to +85 °C				-25 to	+85 °	'C			
Nominal Capacitance Range	0.1 to 22000μF				1 to 4	70μF				es de la constante de la const
Capacitance Tolerance	±20% (120Hz, +20	°C)								
Leakage Current	$I \le 0.03 \text{CV} \text{ or } 4 \text{ [}\mu\text{A]}$ $I < 0.01 \text{CV} \text{ or } 3 \text{ [}\mu\text{A]}$ whichever is greater working voltage app	after 2 measu	minutes red with	rated	I ≤ 0.0 applic +20 °0	ation c	+10 [μA] of rated	after 2 working	minutes g voltage at	
	Working voltage M	6.3	10	16	25		35	50	63	100
	tan δ max-	0.22	0.19			1	0.12	0.10		0.08
$ an oldsymbol{\delta}$	Lair o max	0.22	0.10	0.10	0.1	<u> </u>	0.12		0.00	0.00
	Working voltage [VI	160	200	250	350		400	450		
	tan \delta max.	0.16	0.18				0.20	0.20		
(120 Hz, +20 °C)	For capacitance values Refer to standard po	ue >100 roducts	00μF, ad table for	d 0.02 pe ø3.5mm	- Constant C			I		
	Refer to standard pr Correction factor for			20Hz, +85	5 °C)					
Ripple Current	Frequency[Hz]		50/6	0	120			1k	10	k
	Correction factor (M	lultiplier	0.7	,	1			1.3	1.	7
	Maximum C-Z (rated	d Cap.	μF] × Im	pedance	$[\Omega]$) value a	at 10k	Hz			
	Working voltage [VI	***************************************	10	16	25		35	50	63	100
	C-Z max. at +20 °C	220	160	125	90		80	60	55	50
	C-Zmax. at -25 °C	3000	1900	1300	800		650	560	500	450
Impedance							1			
	Working voltage [V]		160	200	25	0	35	50	450	
	C-Z max. at +20 °C		100	140	15	0	17	70	270	
	C-Z max. at -25 °C) 2	2400	2500	310	00	35	00	12000	
High Temperature Loading	Test conditions Duration Ambient temperati Applied voltage	ure	: +	000 hours 85 °C ated DC v	vorking vol	tage		-		
, parama	Post test requireme Leakage current Capacitance chang tan δ		: ≤ : ±	:20% of in	cified value iitial measu initial speci	red va	alue (s 2 alue	5% for -	~3.5 ~ 4.5mr	m)
Shelf Life	Test conditions Duration Ambient temperatu Applied voltage	ure	: +	000 hours 85 °C Jone)		e limits	quireme s for hig			

Dimensions

Case size / Ripple Current

øDxL(mm) / (mA) r.m.s. (120 Hz / +85 °C

						,							
Cap (μF)	W.V. (V.DC	6.3 (0	OJ)	10 (l	A)	16 (10	C)	25 (I E	Ξ)	35 (IV)	50 (I F	⊣)
0.1	(0R1)											3.5x 7	0.7
0.2	2(R22)								4			3.5x 7	1.6
0.3	3(R33)											3.5x 7	2.5
0.4	7(R47)											3.5x 7	3.5
1.0	(010)											3.5x 7	7.4
2.2	(2R2)							3.5x 7	9.0			3.5x 7	12
3.3	(3R3)							3.5x 7	11.2			3.5x 7	18
4.7	(4R7)		MANAGEMENT ST.					3.5x 7	14.7	3.7x 7	20	4.5x10.5	30
10	(100)					3.5x7	19.6	4.5x10.5	40	4.5x10.5	45	4.5x10.5	50
22	(220)	3.5x 7	20.7	4.5x10.5	40	4.5x10.5	50	4.5x10.5	60	4.5x10.5	95	6.3x10.5	100
33	(330)	4.5x10.5	50	4.5x10.5	60	4.5x10.5	80	4.5x10.5	90	6.3x10.5	110	6.3x10.5	110
47	(470)	4.5x10.5	70	4.5x10.5	90	4.5x10.5	110	6.3x10.5	130	6.3x10.5	130	6.3x10.5	130
100	(101)	4.5x10.5	100	6.3x10.5	150	6.3x10.5	180	6.3x10.5	180	8 x16	210	8 x16	250
220	(221)	6.3x10.5	240	6.3x10.5	250	8 x16	280	8 x16	310	8 x20	350	10 x20	400
330	(331)	6.3x10.5	300	8x16	330	8 x16	350	8 x20	390	10 x20	440	10 x25	500
470	(471)	8 x16	380	8x16	400	8 x20	440	10 x20	480	10 x25	550	12.5x25	650
1000	(102)	8 x20	580	10x20	630	10x25	680	12.5x25	850	12.5x31.5	900	16 x25	1050
2200	(222)	12.5x25	890	12.5x25	920	12.5x31.5	1000	16 x25	1200	16 x31.5	1250	18 x40	1300
3300	(332)	12.5x25	1020	12.5x31.5	1090	16 x25	1200	16 x31.5	1300	16 x40	1400	22.4x40	1500
4700	(472)	12.5x31.5	1170	16x25	1200	16 x31.5	1360	18 x40	1500	22.4x40	1600	22.4x50	1700
6800	(682)	16x31.5	1270	16x31.5	1400	16 x40	1600	22.4x40	1700	22.4x50	1800		
10000	(103)	16x40	1450	18x40	1600	22.4x40	1800	22.4x50	1800				
15000	(153)	18x40	1700	22.4x40	1900	22.4x50	2000					Case size	Ripple
22000	(223)	22.4x40	2000	22.4x50	2100								current

 $^{^{\}star}$ () shows W.V. and capacitance code

Case size/Ripple current

øD xL(mm) / (mA) r.m.s. (120 Hz / +85 °C)

Сар(µF)	W.V. (V. DC)	63 (IJ)		100 (2A)		160 (2C)		200 (2D)		250 (2E)	
0.1	(0R1)			4. 5x10.5	1.5						
0.22	(R22)			4.5x10.5	3.8						
0.33	(R33)			4.5x10.5	5.0						
0.47	(R47)			4.5x10.5	10						
1.0	(010)			4.5x10.5	16	6.3x10.5	13	6.3x10.5	16		
2.2	(2R2)			4.5x10.5	24	6.3x16	24	6.3x16	27	8x16	31
3.3	(3R3)			4.5x10.5	32	6.3x16	31	8x16	36	8x16	40
4.7	(4R7)			4.5x10.5	40	6.3x16	40	8x16	45	8x20	49
10	(100)	4.5x10.5	55	6.3x10.5	70	8x20	63	10x20	72	10x20	81
22	(220)	6.3x10.5	130	8x16	115	10x20	108	10x25	126	12.5x25	144
33	(330)	63x10.5	130	8x16	145	10x25	144	12.5x25	157	12.5x25	171
47	(470)	8 x16	160	8x20	180	12.5x25	180	12.5x25	193	12.5x31.5	207
100	(101)	8 x20	270	10x25	350	16x25	270	16x31.5	306	16x40	340
220	(221)	10 x25	450	12.5x31.5	550	18x40	400	18x40	440	22.4x40	500
330	(331)	12.5x25	550	16x25	700	22.4x40	490	22.4x50	540		
470	(471)	1 2.5x31.5	750	16x40	900	22.4x50	570				
1000	(102)	16x31.5	1100	22.4x40	1050						
2200	(222)	22.4x40	1400							Case size	Ripple
3300	(332)	22.4x50	1600							1	current

W.V. (V. DC)	350 (2V)	400 (2G)	450 (2	2W)	
1.0	6.3x16	20	8x16	21	8x16	21	
2.2	8x20	36	8x20	36	10x20	38	
3.3	10x20	44	10x20	46	10x25	49	
4.7	10x20	60	10x25	61	12.5x25	63	
10	12.5x25	96	12.5x25	100	16x25	105	
22	16x25	160	16x31.5	160	16x40	161	
33	16x31.5	200	16x40	205	18x40	210	
47	16x40	240	18x40	260	22.4x50	260	
100	22.4x40	350	22.4x50	370	Case size	Ripple current	

 $^{^{\}ast}$ () shows W.V. and capacitance code.

- Industrial grade/compact size
- Wide CV value range $(0.1 \sim 15000 \mu F/6.3 \sim 350 \text{ V})$
- Long life 1000 ~ 2000 hours at + 105 °C

(PHOTO NOT AVAILABLE)

Item			Perforn	nance C	Characteristic	S							
Operating Temperature Range	-55 to +105 °C				-25 to +105	5 °C							
Rated Working Voltage Range	6.3to100V DC				160 to 350\	/ DC			-				
Nominal Capacitance Range	0.1 to 15000μF				1 to 100μF								
Capacitance Tolerance	±20% (120Hz, +20°	C)											
Leakage Current	I < 0.01CV or 3 [μΑ]/ whichever is greater r working voltage appli	neasure	d with rated		I ≤ 0.06CV application +20 °C	+10 [µA]/ a of rated w	after 2 mini orking volta	utes age at					
	Working voltage [V]	6.3	10	16	25	35	50	63	100				
	$tan \delta max.$	0.28	0.22	0.19		0.13	0.10	0.09	0.07				
tan δ	tail o max.	0.20	0.22	0.19	0.10	0.13	0.10	0.09	0.07				
	Working voltage [VI		160	2	200	25	0	350					
	tan \delta max.	tan § max. 0.12 0.12 0.12 0.12											
(120Hz, +20 °C)	For capacitance value	∍>1000µ	uF, add 0.0	2 per ev	ery 1000μF								
	Refer to standard pro Correction factor for f			+85 °C)								
Ripple Current	Frequency[Hz]	50/6	0	120		1k	10k						
	Correction factor (Mu	ultiplier)	0.7		1		1.3	1	.7				
	Test conditions Duration Ambient temperatur Applied voltage	е	:		2000 hours 1000 hours +105 °C DC voltage specified at	160 ~ 350 with maxin	OV & ≤ ø8 d mum permi	ssible ripp	le current				
High Temperature Loading	Post test requirement Leakage current Capacitance change tan δ		°C :		≤ Initial specified value ±20% of initial measured value ≤ 150% (160 350V), ≤200% (6.3 ~ 100V) of initial specified value				of initial				
Shelf Life	Test conditions Duration Ambient temperatur Applied voltage	e	: : :		1000 hours +105 °C k (None)	Post test requirements at +20 °C 0 hours Same limits for high temperature 5 °C loading.							
	Capacitors rated wor the following cleaning			o 100V	shall be capa	able of with	nstanding e	exposure to)				
Cleaning	Conditions		olvent Indition		posure time	Temperature		Ultras wav					
	Freon-TE, TES, TP35 or equivalents		quid or vapor		5 min (total)	≤boiling point at 1 atm		Accep	table				

Explanation of Part Numbers (6.3~100V)

ECE	В		G	E		
Common code	Shape	W.V code	Ser	ries code	Capacitance o	code Suffix
			(Suffix code		Configurations
				В	Ammo-pack	$W = 26mm \text{ for } \emptyset 3.5 \times 7$
				SZ	Ammo-pack	W = 52mm for ø3.5, ø4.5
				AZ	Reel-pack	W = 52mm for Ø3.5 ~ Ø6.3
						$W = 63 \text{mm} \text{ for } \emptyset 3.5 \sim \emptyset 8 \times 1$
				A	Reel-pack	$W = 73 \text{mm for } \emptyset 8 \times 16 \sim \emptyset 12$

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120 Hz/ +105 °C)

Cap. (µF)	/.V. (V. DC)	6.3 (O	J)	10 (1	IA)	16 (1	C)	25 (1	E)	35 (1)	V)	50 (1	H)	63 (1	J)	100 (2A)
0.1	(0R1)											5x10.5	1.1				
0.22	(R22)											5x10.5	2.3				
0.33	(R33)											5x10.5	3.5				
0.47	(R47)											5x10.5	5			5x10.5	9
1.0	(010)											5x10.5	10			5x10.5	14
2.2	(2R2)											5x10.5	18	5x10.5	20	6.3x10.5	21
3.3	(3R3)											5x10.5	22	6.3x10.5	25	6.3x16	31
4.7	(4R7)							5x10.5	22	5x10.5	24	6.3x10.5	26	6.3x10.5	30	6.3x16	38
10	(100)							5x10.5	33	6.3x10.5	36	6.3x16	39	6.3x16	51	6.3x16	61
22	(220)			5x10.5	41	6.3x10.5	46	6.3x10.5	49	6.3x16	62	6.3x16	70	6.3x16	84	8x16	98
33	(330)			6.3x10.5	50	6.3x10.5	57	6.3x16	70	6.3x16	84	6.3x16	91	6.3x16	98	8x20	130
47	(470)			6.3x10.5	60	6.3x16	77	6.3x16	91	6.3x16	98	6.3x16	100	8x16	30	8x20	160
100	(101)	6.3x10.5	91	6.3x16	110	6.3x16	120	6.3x16	130	8x16	160	8x16	170	8x20	210	10x25	280
220	(221)	6.3x16	150	6.3x16	160	8x16	210	8x16	220	8x20	260	10x20	330	10x25	400	12.5x31.5	510
330	(331)	8x16	230	8x16	230	8x16	260	8x20	300	10x20	360	10x25	440	12.5x25	550	16x25	650
470	(471)	8x16	250	8x16	270	8x20	330	10x20	410	10x25	480	12.5x25	580	12.5x31.5	700	16x40	880
1000	(102)	10x20	450	10x20	500	10x25	600	12.5x25	720	12.5x31.5	840	16x25	940	16x31.5	1130		
2200	(222)	12.5x25	780	12.5x25	850	12.5x31.5	1010	16x25	1110	16x31.5	1270	18x40	1490				
3300	(332)	12.5x25	920	12.5x31.5	1080	16x25	1210	16x31.5	1380	16x40	1540						
4700	(472)	12.5x31.5	1150	16x25	1270	16x31.5	1490	18x40	1690								
6800	(682)	16x31.5	1440	16x31.5	1530	16x40	1740										
10000	(103)	16x40	1700	18x40	1840											Case	Ripple
15000(153	3)18x40	1910														size	current

 $^{^{\}star}($) shows W.V and capacitance code.

Explanation of Part Numbers (160 ~ 350V)

ECE	В		G		S
Common code	Shape	W.V code	Series code	Capacitance o	code Suffix
			Suffix code		Configurations
			В	Ammo-pack	W = 26mm for \emptyset 3.5 \times 7
			SZ	Ammo-pack	W = 52mm for ø3.5, ø4.5
			AZ	Reel-pack	W = 52mm for ø3.5 ~ ø6.3
					W = 63mm for ø3.5 ~ ø8 × 16
			Α	Reel-pack	W = 73mm for Ø8 × 16~Ø12.5

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120Hz/+105 °C)

	WW W 500								
Cap (µF)	W.V. (V. DC)	160 (20	;)	200 (2D)		250 (2E)	350 (2V)
1.0	(010)	6.3x10.5	15	6.3x16	17	8x16	20	8x16	25
2.2	(2R2)	6.3x16	25	8x16	30	8x16	35	8x20	45
3.3	(3R3)	8x16	35	8x20	40	8x20	45	10x20	55
4.7	(4R7)	8x16	45	8x20	50	10x20	55	10x25	75
10	(100)	10x20	70	10x20	80	10x25	90	12.5x25	120
22	(220)	10x25	120	12.5x25	140	16x25	160	16x25	200
33	(330)	12.5x25	160	16x25	175	16x25	190	16x31.5	250
47	(470)	16x25	200	16x25	215	16x31.5	230	Case size	Ripple
100	(101)	16x31.5	300	16x40	340				current

 $^{^{\}ast}$ () shows W.V. and capacitance code.

Dimensions

(mm)

- General purpose
- Wide CV value range
- Life 2000 hours at +85 °C
- Safety vent construction for ø6.3mm products

Item			Per	formance	Characterist	ics			
Operating Temperature Range	-40 to +85 °C				225 to +8	5 °C			
Rated Working Voltage Range	6.3to100V DC				160 to 45	OV DC			
Nominal Capacitance Range	0.1 to 15000µF				0.47 to 22	20µF			
Capacitance Tolerance	±20% (120Hz, +20	°C)							
Leakage Current	$I{\le}0.03\text{CV}$ or 4 [μ A] $I<0.01\text{CV}$ or 3 [μ A] whichever is greater working voltage app	after 2 n	ninutes ed with ra	ated	I≤0.06CV application +20 °C				
	Working voltage [V]	6.3	10	16	25	35	50	63	100
	tan & max.	0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.08
tan δ									1
	Working voltage [VI	160	200	250	350	400	450		
	tan δ max.	0.16	0.18	0.18	0.20	0.20	0.20		
(120 Hz, +20 °C)	For capacitance valu	ue >1000)μF, add	0.02 per e	very1000µF				
	Refer to standard pr Correction factor for)Hz, +85 °	C)				
Ripple Current	Frequency[Hz]		50,	/60	120		1k	1	0k
	Correction factor (M	1ultiplier)	С	.7	1		1.3		1.7
	Maximum C-Z (rated	l Cap. [µ	F] × Imp	edance []	value at 10	kHz			
	Working voltage [VI	63	10	16	25	35	50	63	100
	C-Z max. at +20 °C		160	125	90	80	60	55	50
	C-Z max. at -25 °C	3000	1900	1300	800	650	560	500	450
Impedance									
	Working voltage [V]		30	200	250	35		450	
	C-Z max. at +20 °C	10		140	150	17		270	
	C-Z max. at -25 °C	24	00	2500	3100	35	00	12000	
High Temperature Loading	Test conditions Duration Ambient temperatu Applied voltage Post test requiremer Leakage current Capacitance chance	nts at +2	: +89 : Rat 0 °C : ≤In	itial specifi	rking voltage ed value al measured				
	tan δ	-	: ≤15	50% of initi	al specified	value			
Shelf Life	Test conditions Duration Ambient temperatu Applied voltage	ıre	: +8	00 hours 5 °C one)	Post test i Same limit loading.				

Dimensions in mm (not to scale)

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120 Hz/ +105 °C)

Cap. (µF)	/.V. (V. DC)	6.3 (O	J)	10 (1	A)	16 (10	C)	25 (1	E)	35 (1	IV)	50 (1	H)	63 (*	1 J)	100	(2A)
0.47	' (R47)								3			5x11	5	5x11	5	5x11	10
1.0	(010)											5x11	10	5x11	10	5x11	20
2.2	(2R2)											5x11	20	5x11	29	5x11	30
3.3	(3R3)											5x11	35	5x11	40	5x11	40
4.7	(4R7)									5x11	35	5x11	45	5x11	45	5x11	50
10	(100)									5x11	60	5x11	65	5x11	70	6.3x11.2	70
22	(220)					5x11	75	5x11	90	5x11	95	5x11	100	6.3x11.2	105	8x11.5	115
33	(330)			5x11	60	5x11	110	5x11	110	5x11	110	6.3x11.2	110	6.3x11.2	130	10x12.5	145
47	(470)			5x11	90	5x11	130	5x11	130	6.3x11.2	130	6.3x11.2	130	8x11.5	160	10x16	180
100	(101)	5x11	130	5x11	150	6.3x11.2	180	6.3x11.2	180	8x11.5	210	8x12.5	250	10x12.5	270	12.5x20	350
220	(221)	6.3x11.2	240	6.3x11.2	250	8x11.5	280	8x12.5	310	10x12.5	350	10x16	400	10x20	450	16x25	550
330	(331)	6.3x11.2	300	8x11.5	330	8x12.5	350	10x12.5	390	10x16	440	10x20	500	12.5x20	550	16x25	700
470	(471)	8x11.5	380	8x12.5	400	10x12.5	440	10x16	480	10x20	550	12.5x20	650	12.5x25	750	16x31.5	900
1000	(102)	10x12.5	580	10x16	630	10x20	680	12.5x20	850	12.5x25	900	16x25	1050	16x31.5	1100		
2200	(222)	12.5x20	890	12.5x20	920	12.5x25	1000	16x25	1200	16x31.5	1250	18x35.5	1300				
3300	(332)	12.5x20	1020	12.5x25	1090	16x25	1200	16x31.5	1300	18x35.5	1400						
4700	(472)	16x25	1170	16x25	1200	16x31.5	1360	18x35.5	1500								
6800	(682)	16x25	1270	16x31.5	1400	18x35.5	1600										
10000	(103)	16x31.5	1450	18x35.5	1600											Case	Ripple
15000	(153)	18x35.5	1700													size	current

^{* ()} shows W.V. and capacitance code.

Cap. (µF)	W.V. (V. DC)	160 (2C	5)	200 (20))	250 (2E	=)	350 (2	V)	400 (2	!G)	450 (2	W)
0.47	(R47)	5x11	9.5										
1.0	(010)	6.3x11.2	13	6.3x11.2	16	6.3x11.2	18	6.3x11.2	18	8x11.5	18	10x12.5	19
2.2	(2R2)	6.3x11.2	22	6.3x11.2	27	8x11.5	31	10x12.5	28	10x12.5	28	10x16	29
3.3	(3R3)	•6.3x11.2	31	8x11.5	36	10x12.5	40	10x16	35	10x16	35	10x20	35
4.7	(4R7)	8x11.5	40	10x12.5	45	10x12.5	49	10x16	40	10x16	45	12.5x20	50
10	(100)	10x12.5	66	10x16	72	●10x16	81	10x20	70	12.5x20	70	12.5x25	75
22	(220)	•10x16	110	10x20	126	•12.5x20	144	12.5x25	110	16x25	110	16x31.5	110
33	(330)	•10x20	144	•12.5x20	160	12.5x25	171	16x25	140	16x25	140	18x31.5	150
47	(470)	•12.5x20	180	12.5x25	193	16x25	210	16x31.5	170	16x31.5	170		
100	(101)	16x25	300	16x31.5	330	•18x31.5	320					Case	Ripple
220	(221)	•18x31.5	510									size	current

^{*()} shows W.V. and capacitance code.
** suffix "W" for items marked •

- Compact size (Same case size as SU series) and long life (1000 ~ 2000 hours at +105°C)
 Wide CV value range (0.1 ~ 15000µF/6.3 ~ 450V)

Item		Performance Characteristics										
Rated Working Voltage Range	6.3 to 100V DC			160	to 450	V DC						
Operating Temperature Range	-55 to +105°C			-25	to +10	5°C						
Nominal Capacitance Range	0.1 to 15000μF			0.4	7 to 22	ΟμϜ						
Capacitance Tolerance	±20% (120Hz, +20°C)											
Leakage Current	$I \le 0.01$ CV or 3 [μ A] whichever	er is greate	r	I≤	0.06C\	/ +10 [µ	ıA]					
	after 2 minutes application of	rated workir	ng volta	ge at +	20°C							
	Working voltage [V]		6.3	10	16	25	35	50	63	100		
ton S	tan δ max.		0.22	0.19	0.16	0.14	0.12	0.10	0.09	0.07		
$ an\delta$	Working voltage [V]		160	200	250	350	400	450				
	tan δ max.		0.15	0.15	0.15	0.20	0.24	0.24				
(120Hz, +20°C)	For capacitance value >1000 μF , add 0.02 per every 1000 μF											
	Refer to standard products table (120Hz, +105°C) Correction factor for frequency											
		60	120	1k	10k	100k						
	W.V. [V.DC]	Cap. [μ			0.05		1.00	1 10	1.55			
	0.0.50	0.1~ 33			0.85	1	1.30	1.40	1.55			
Maximum Permissible Ripple Current	6.3~50	4	470~3300 ≥4700			0.95	1	1.15	1.20	1.25		
Maximum Fermissible hippie Current			0.47~ 33				1	1.55	1.65	1.80		
	63~100		47~ 220			0.75	1	1.40	1.60	1.65		
	00-100		±7.12 <u>22</u> ≥ 33			0.80	1	1.30	1.35	1.40		
	≥160		1~ 22			0.70	1	1.30	1.70	1.70		
	Impedance ratio max. at 12	OHz.		T			1	1	1			
	Working voltage [V]		6.3	10	16	25	35	50	63	100		
	-25°C/+20°C		4	3	2	2	2	2	2	2		
	-40°C/+20°C		8	6	4	3	3	3	3	3		
	-55°C/+20°C		12	10	8	6	6	6	6	6		
Low Temperature Characteristics	Working voltage [V]			200	250	350	400	450]			
	-25°C/+20°C		160	3	3	6	6	15				
	For capacitance value >1000 μ F: Add 0.5 per another 1000 μ F for -25°C/+20°C. Add 1.0 per another 1000 μ F for -40°C/+20°C. Add 2.0 per another 1000 μ F for -55°C/+20°C.											

Specifications

Item		Performance C	Characteristics		
High Temperature Loading	Ambient temperature : Applied voltage :	2000 hours (100 +105°C DC voltage with at +105°C (Sum AC voltage for mequal to rated D	maximum peri of the DC volt naximum perm	missible ripple age and super issible ripple c	current specified -imposed peak
	Post test requirements at +20°C Leakage current : Capacitance change : tan δ :	≤ Initial specified ±20% of initial r ≤200% of initial	neasured value		
Shelf Life	Ambient temperature :	1000 hours +105°C (None)		requirements a mits for high to	
	Capacitors for ratings of 6.3V to 1 cleaning solvents.		able of withsta	anding exposur	re to following Ultrasonic
Cleaning	Solvents Freon-TE, TES, TP35 or equivalents	condition Liquid or vapor	time ≤ 5 min (total)	ture ≤ boiling point at 1atm	wave Acceptable

Explanation of Part Numbers

Case Size/Ripple current

øDXL (mm)/(mA) r.m.s. (120 Hz/ +105 °C)

	V.V.[V.DC]	6.3 (OJ)		10 (1A)		16 (1C)		25 (1E)		35 (1V)		50 (1H)		63 (1J)		100 (2A)	
Cap. [μ F]		(00)		(17)		(10)		(14)		(10)				(10)		(274)	
0.1	(OR1)								_			5 x 11	1.1				
0.22	? (R22)											5 x 11	2.3				
0.33	(R33)											5 x 11	3.5				
0.47	(R47)											5 x 11	5			5 x 11	9
1	(010)											5 x 11	10			5 x 11	14
2.2	(2R2)											5 x 11	18			5 x 11	21
3.3	(3R3)											5 x 11	22			5 x 11	31
4.7	(4R7)											5 x 11	26			5 x 11	38
10	(100)											5 x 11	39	5 x 11	51	6.3 x 11.2	61
22	(220)											5 x 11	70	6.3 x 11.2	84	8 x 11.5	98
33	(330)									5 x 11	84	6.3 x 11.2	91	6.3 x 11.2	98	10 x 12.5	130
47	(470)					5 x 11	77	5 x 11	91	6.3 x 11.2	98	6.3 x 11.	100	8 x 11.5	130	10 x 16	160
100	(101)	5 x 11	91	5 x 11	110	6.3 x 11.2	120	6.3 x 11.2	130	8 x 11.5	160	8 x 12.5	170	10 x 12.5	210	12.5 x 20	280
220	(221)	6.3 x 11.2	150	6.3 x 11.2	160	8 x 11.5	210	8 x 12.5	220	10 x 12.5	260	10 x 16	330	10 x 20	400	16 x 25	510
330	(331)	6.3 x 11.2	230	8 x 11.5	230	8 x 12.5	260	10 x 12.5	300	10 x 16	360	10 x 20	440	12.5 x 20	550	16 x 25	650
470	(471)	8 x 12.5	250	8 x 12.5	270	10 x 12.5	330	10 x 16	410	10 x 20	480	12.5 x 20	580	12.5 x 25	700	16 x 31.5	880
1000	(102)	10 x 12.5	450	10 x 16	500	10 x 20	600	12.5 x 20	720	12.5 x 25	840	16 x 25	940	16 x 31.5	1130		
2200	(222)	12.5 x 20	780	12.5 x 20	850	12.5 x 25	1010	16 x 25	1110	16 x 31.5	1270	18 x 35.5	1490				
3300	(332)	12.5 x 20	920	12.5 x 25	1080	16 x 25	1210	16 x 31.5	1380	18 x 35.5	1540						
4700	(472)	16 x 25	1150	16 x 25	1270	16 x 31.5	1490	18 x 35.5	1690								
6800	(682)	16 x 25	1440	16 x 31.5	1530	18 x 35.5	1740										
10000	(103)	16 x 31.5	1700	18 x 35.5	1840	, , , , , , , , , , , , , , , , , , , ,										Case	Ripple
15000	(153)	18 x 35.5	1910													size	current

W.V.[V.DC] Cap. [μ F]	160 (2C)		200 (2D)		250 (2E)		350 (2V)		400 (2G)		45 (2V	
0.47 (R47)	6.3x11.2	12	6.3x11.2	12	6.3x11.2	12	8x11.5	11	8x11.5	11	West Techniques and Administration	
1.0 (010)	6.3 x 11.2	17	6.3 x 11.2	17	6.3 x 11.2	17	10 x 12.5	18	10 x 12.5	18	10x12.5	18
2.2 (2R2)	6.3 x 11.2	25	6.3 x 11.2	25	8 x 11.5	29	10 x 16	31	10 x 16	30	10x16	29
3.3 (3R3)	8 x 11.5	36	8 x 11.5	36	10 x 12.5	42	10 x 16	38	10 x 20	40	10x20	41
4.7 (4R7)	8 x 11.5	43	10 x 12.5	50	10 x 12.5	50	10 x 20	49	10 x 20	45	12.5x20	49
10 (100)	10 x 12.5	70	10 x 16	80	10 x 20	88	12.5 x 20	82	12.5 x 25	79	12.5x20	75
22 (220)	10 x 20	130	10 x 20	140	12.5 x 25	155	16 x 25Z	130	16 x 25	145	16x25	115
33 (330)	12.5 x 20	180	12.5 x 25	190	12.5 x 25	190	16 x 25	175	16 x 31.5	185	16x31.5	145
47 (470)	12.5 x 25	220	12.5 x 25	220	16 x 25	230	16 x 31.5W	230	18 x 31.5	230		
100 (101)	16 x 25	330	16 x 31.5	335	18 x 31.5W	340					Case size	Ripple
220 (221)	18 x 31.5W	500										current

^{*} W or Z in above case size table is suffix code.

Example ECEA GE S

** () shows W.V. and capacitance code.

- High CV value per standard case size (same size as SU series)
- Low impedance (approx. 1/2 of HFS series)
- Long life: 2000-5000 hours at +105 °C

Specifications

Item				Perforn	nance	e Characte	eristics				
Operating Temperature Range	−55 to +105 °C										
Rated Working Voltage Range	6.3 to 63V DC										
Nominal Capacitance Range	0.1 to 15000µF										
Capacitance Tolerance	±20% (120Hz, +20 °	°C)									
Leakage Current	I < 0.01CV or 3 [μΑ]					measured		minute	es applica	ation of rat	ed
	Working voltage [VI	6.	3	10		16	25		35	50	63
tan $oldsymbol{\delta}$	tan δ max.	0.2	22	0.19		0.16	0.14		0.12	0.10	0.08
(120Hz, +20 °C)	For capacitance valu	e >10	000µF,	add 0.02	2 per	every 100	00μF			400	
	Refer to standard pro	oduct	s table.	(100kF	łz, +2	20 °C)					
Frequency correction factor for R.C.	Cap. [µF]	[Hz]	50/6 0.55			120 0.65	1k 0.8		10l 0.9		100k 1.00
, ,	470 ~ 3300)	0.75	5	(0.80	0.9	0	0.9	5	1.00
	4700~		0.80)	(0.85	0.9	5	1.0	0	1.00
Ripple Current	Refer to standard pro	oduct	s table	(120Hz,	+85	°C)					
	Test conditions Duration Ambient temperatu Applied voltage	re		:		3000 h 5000 h +105 ° DC vo	°C Itage wit	r ø10n r ø12 - h maxi	nm) ~ ø18mm imum pei	′	ipple current
High Temperature Loading	Post test requiremen Leakage current Capacitance chang tan δ		+20 °C	:		≤Initial ±20% ≤150%	specifie of initial	d value meas 50V),	` e ured valu	J	0 /
Shelf Life	Test conditions Duration Ambient temperature Applied voltage	e		: : :		1000 t +105 ° (None)	nours °C		limits for	rements a high temp	

Explanation of Part Numbers

E C A Common code	W.V code	Se	F G	Capacitance c	ode Suffix
	Capacitances in µF are designated		Suffix code		Configurations
	by three numerals. The first two numerals are the significant digits		В	Ammo-pack	5mm pitch for ø4 ~ ø12.5
	and the last numeral designates			Ammo-pack	7.5mm pitch for ø16 ~ ø18
	the number of zeroes that follow		BQ	Ammo-pack	H = 18.5mm height for ø8 ~ ø12.5
	the significant digits.		i	Ammo-pack	2.5mm pitch for ø3 ~ ø6.5 & ø8x5
	Example: 331—330 µF, 332—3300 µF		AX	Reel-pack	5mm pitch for ø4 ~ ø8 + lead first
			AZ	Reel-pack	5mm pitch for ø4 ~ ø8 - lead first

Standard Products Table

WV.	Cap.		D.C.L	tan δ	Impedance	Ripple current		Dimens	sions	
[V.DC]	[µF]	Part No.	(+20 °C/2 min.)	(120Hz, +20 °C)	(100kHz/+20 °C)	(100kHz/+105 °C)		[m	m]	
			[μA] max.	max.	[] max.	[mA] rms max.	øD	L	Р	ød
	100	ECAOJFG101	6.3	0.22	1.0	140	5	11	2.0	0.5
	220	ECAOJFG221	13.8	0.22	0.42	245	6.3	11.2	2.5	0.5
	330	ECAOJFG331	20.7	0.22	0.42	245	6.3	11.2	2.5	0.6
i	470	ECAOJFG471	29.6	0.22	0.21	400	8	11.5	3.5	0.6
6.3	1000	ECAOJFG102	63.0	0.22	0.15	560	10	12.5	5.0	0.6
(ØJ)	2200	ECAOJFG222	138.6	0.24	0.050	1280	12.5	20	5.0	0.6
	3300	ECAOJFG332	207.9	0.26	0.050	1280	12.5	20	5.0	0.6
	4700	ECAOJFG472	296.1	0.28	0.031	1970	16	25	7.5	0.8
	6800	ECAOJFG682	428.4	0.32	0.031	1970	16	25	7.5	0.8
	10000	ECAOJFG103	630.0	0.40	0.028	2220	16	31.5	7.5	0.8
1	15000	ECAOJFG153	945.0	0.50	0.023	2770	18	35.5	7.5	0.8
	100	ECA1AFG101	10.0	0.19	1.0	140	5	11	2.0	0.5
	220	ECA1AFG221	22.0	0.19	0.42	245	6.3	11.2	2.5	0.5
	330	ECA1AFG331	33.0	0.19	0.21	400	8	11.5	3.5	0.6
	470	ECA1AFG471	47.0	0.19	0.21	400	8	11.5	3.5	0.6
10	1000	ECA1AFG102	100.0	0.19	0.11	720	10	16	5.0	0.6
(1A)	2200	ECA1AFG222	220.0	0.21	0.050	1280	12.5	20	5.0	0.6
	3300	ECA1AFG332	330.0	0.23	0.040	1560	12.5	25	5.0	0.6
	4700	ECA1AFG472	470.0	0.25	0.031	1970	16	25	7.5	0.8
	6800	ECA1AFG682	680.0	0.29	0.028	2220	16	31.5	7.5	0.8
	10000	ECA1AFG103	1000.0	0.37	0.023	2770	18	35.5	7.5	0.8
	47	ECA1CFG470	7.5	0.16	1.0	140	5	11	2.0	0.5
	100	ECA1CFG101	16.0	0.16	0.42	245	6.3	. 11.2	2.5	0.5
	220	ECA1CFG221	35.2	0.16	0.21	400	8	11.5	3.5	0.6
	330	ECA1CFG331	52.8	0.16	0.21	400	8	11.5	3.5	0.6
16	470	ECA1CFG471	75.2	0.16	0.15	560	10	12.5	5.0	0.6
(1C)	1000	ECA1CFG102	160.0	0.16	0.076	940	10	20	5.0	0.6
	2200	ECA1CFG222	352.0	0.18	0.040	1560	12.5	25	5.0	0.6
	3300	ECA1CFG332	528.0	0.20	0.031	1970	16	25	7.5	0.8
	4700	ECA1CFG472	752.0	0.22	0.028	2220	16	31.5	7.5	0.8
	6800	ECA1CFG682	1088.0	0.26	0.023	2770	18	35.5	7.5	0.8

^{* ()} shows W.V. code for part number

W.V. [V. DC]	Cap [µF]	Part No.	D.C.L. (+20 °C/2min.)	tan & (120Hz,+20 °C)	Impedance (100kHz/+20 °C)	Ripple current (100kHz/+105 °C)		Dimens [mr		
			[μA]max.	max.	$[\Omega]$ max.	[mA] rms max.	øD	L	P	ød
	47	ECA1EFG470	11.7	0.14	1.0	140	5	11	2.0	0.5
	100	ECA1EFG101	25.0	0.14	0.57	245	6.3	11.2	2.5	0.5
	220	ECA1EFG221	55.0	0.14	0.21	400	8	11.5	3.5	0.6
25	330	ECA1EFG331	82.5	0.14	0.15	560	10	12.5	5.0	0.6
(1E)	470	ECA1EFG471	117.5	0.14	0.11	720	10	16	5.0	0.6
	1000	ECA1EFG102	250.0	0.14	0.050	1280	12.5	20	5.0	0.6
	2200	ECA1EFG222	550.0	0.16	0.031	1970	16	25	7.5	0.8
	3300	ECA1EFG332	825.0	0.18	0.028	2220	16	31.5	7.5	0.8
	4700	ECA1EFG472	1175.0	0.20	0.023	2770	18	35.5	7.5	0.8
	33	ECA1VFG330	11.5	0.12	1.3	125	5	11	2.0	0.5
	47	ECA1VFG470	16.4	0.12	0.57	210	6.3	11.2	2.5	0.5
	100	ECA1VFG101	35.0	0.12	0.32	325	8	11.5	3.5	0.6
	220	ECA1VFG221	77.0	0.12	0.23	450	10	12.5	5.0	0.6
35	330	ECA1VFG331	115.5	0.12	0.18	565	10	16	5.0	0.6
(1V)	470	ECA1VFG471	164.5	0.12	0.13	720	10	20	5.0	0.6
	1000	ECA1VFG102	350.0	0.12	0.074	1140	12.5	25	5.0	0.6
	2200	ECA1VFG222	770.0	0.14	0.034	2010	16	31.5	7.5	0.8
	3300	ECA1VFG332	1155.0	0.16	0.024	2710	18	35.5	7.5	0.8
	0.1	ECA1HFGOR1	3.0	0.10	24.0	2.0	5	11	2.0	0.5
	0.22	ECA1HFGR22	3.0	0.10	10.0	4.5	5	11	2.0	0.5
	0.33	ECA1HFGR33	3.0	0.10	7.2	6.7	5	11	2.0	0.5
	0.47	ECA1HFGR47	3.0	0.10	5.0	9.5	5	11	2.0	0.5
	1	ECA1HFG010	3.0	0.10	2.4	20	5	11	2.0	0.5
	2.2	ECA1HFG2R2	3.0	0.10	1.3	45	5	11	2.0	0.5
	3.3	ECA1HFG3R3	3.0	0.10	1.3	65	5	11	2.0	0.5
50	4.7	ECA1HFG4R7	3.0	0.10	1.3	95	5	11	2.0	0.5
(1H)	10	ECA1HFG100	5.0	0.10	1.3	125	5	11	2.0	0.5
	22	ECA1HFG220	11.0	0.10	1.3	125	5	11	2.0	0.5
	33	ECA1HFG330	16.5	0.10	0.57	210	6.3	11.2	2.5	0.5
	47	ECA1HFG470	23.5	0.10	0.57	210	6.3	11.2	2.5	0.5
	100	ECA1 HFG101	50.0	0.10	0.32	325	8	11.5	3.5	0.6
	220	ECA1HFG221	110.0	0.10	0.18	565	10	16	5.0	0.6
	330	ECA1HFG331	165.0	0.10	0.13	720	10	20	5.0	0.6
	470	ECAI HFG471	235.0	0.10	0.088	965	12.5	20	5.0	0.6
	1000	ECA1HFG102	500.0	0.10	0.047	1600	16	25	7.5	0.8
	2200	ECAIHFG222	1100.0	0.12	0.024	2710	18	35.5	7.5	0.8
	10	ECA1JFG100	6.3	0.08	2.2	95	5	11	2.0	0.5
	22	ECA1JFG220	13.8	0.08	0.94	165	6.3	11.2	2.5	0.5
	33	ECA1JFG330	20.7	0.08	0.94	165	6.3	11.2	2.5	0.5
63	47	ECA1JFG470	29.6	0.08	0.68	220	8	11.5	3.5	0.6
(1J)	100	ECA1JFG101	63.0	0.08	0.36	360	10	12.5	5.0	0.6
	220	ECA1JFG221	138.6	0.08	0.20	580	10	20	5.0	0.6
	330	ECA1JFG331	207.9	0.08	0.14	765	12.5	20	5.0	0.6
	470	ECA1JFG471	296.1	0.08	0.12	900	12.5	25	5.0	0.6
	1000	ECA1JFG102	630.0	0.08	0.052	1630	16	31.5	7.5	0.8

^{* ()} shows W.V. code.*

- •Low impedance at high frequency and low temperature
- •Wide operating temperature range from -55 to +105 °C
- •Various case sizes (flat to slim) are provided
- •Anti-solvent: Freon-TE, TES, TP35 or equivalents

ltem			Р	erformance	Characte	ristics			
Operating Temperature Range	-55 to +1	05 °C							
Rated Working Voltage Range	6.3 to 63V	'DC							
Nominal Capacitance Range	6.8 to 150	00μF							
Capacitance Tolerance	±20% (12	OHz, +20 °C)							
Leakage Current	I < 0.01C\	√ or 3 [µA]		ever is great g voltage ap			ed		
	Working v	oltage IVI	6.3	10	16	25	35	50	63
$ an oldsymbol{\delta}$	tan 8 ma		0.22	0.19	0.16	0.14	0.12	0.10	0.08
(120Hz, +20 °C)	For capac	itance value >10	000μF, ad	d 0.02 per e	every 1000	DμF			
Impedance at High Frequency	Refer to st	andard product	s table. (100kHz, +2	0 °C)				
Ripple Current	Refer to st	tandard product	s table. (100kHz, +1	05 °C)				
High Temperature Loading	Applied v Post test r Leakage Capacita	temperature /oltage	+20 °C		+105 °C DC volt specific and sup permiss DC wo ≤ Initia ±30%	C cage with med at + 105 per-impose sible ripple rking voltace I specified of initial me	value easured value	ssible rip f the DC tage for	voltage maximum
Shelf Life	tan δ Test cond Duration Ambient Applied	temperature	:		≤ 3009 1000 h +105 ° (None)	Pc ours Sa	specified value ost test requirer me limits for hi ading.		
	Capacitor	s shall be capab	ole of with:	standing ex	oosure to	the followir	ng cleaning sol	ents.	
Cleaning	Conditions	S		Solvent condition	E	rposure time	Temperatur	e (Jltrasonic wave
-	Solvents	Freon-TE, TES or equivalents		Liquid or vapor		≤5 min (total)	≤boiling point at 1 atm	А	cceptable

ECA		FQ		
Common code • shape	W.V code	Series code	Capacitance code	Suffix
		Capacitances in first two numera numeral designa significant digits Example: 331– 332–	n μF are designated by three n als are the significant digits and ates the number of zeroes tha i. –330 μF, –3300 μF	umerals. The d the last t follow the

Dimensions

Case size/Capacitance

W.V. (V. DC)			Cap	oacitance (μF)			
øD x L (mm)	6.3V(OJ)	10V(1A)	16V(1C)	25V(1E)	35V(1V)	50V(1H)	63V(1J)
4x11	68	47	39	27	18	10	6.8
5x11	100	82	56	-39	27	18	12
5 x15	150	100	82	56	39	27	18
6.3x11.2	220	180	120	82	56	33	22
6.3x15	330	220	180	120	82	56	39
8 x12.5	470	330	270	180	120	68	56
8 x15	680L	470L	330L	220L	150L	100	82
8 x20	1000	680	470	330	220	150	100L
10 x12.5	680	470	330	220	150	82	68
10 x16	820	560	390	270	180	120	100
10 x20	1200L	1000L	680L	470L	330L	220L	150L
10 x25	1500	1200	820	560	390	270	180
10 x30	2200L	1500L	1200L	820L	560L	390L	270L
12.5x15	1200	1000	680	470	330	220	150
12.5x20	2200	1800	1200	820	560	330	220
12.5x25	2700	2200	1500	1000	680	470	330
12.5x30	3900	2700	2200L	1500L	1000L	560	390
12.5x35	4700L	3300L	2700L	1800L	1200L	680L	470L
12.5x40	5600L	3900L	3300L	2200L	1500L	820L	560L
16 x15	2700S	1800S	1500S	820S	560S	390	270
16 x20	4700	3300	2200	1500	1000	680	470
16 x25	5600	3900	2700	1800	1200	820	560
16 x31.5	6800	5600	3900	2700	1800	1000	680
16 x35.5	8200	6800L	4700L	3300L	2200L	1200L	820
16 x40	12000	8200L	5600	3900L	2700L	1500L	1000L
18 x15	3300	2200S	1800	1200	820	470S	330S
18 x20	5600S	3900S	3300S	2200S	1500	680S	560S
18 x25	6800S	5600S	3900S	2700S	1800S	1000S	680S
18 x31.5	10000	6800	4700	3300	2200	1200	1000
18 x35.5	12000S	8200	6800	3900	2700	1500	1200
18 x40	15000	10000	8200	4700	3300	1800	1500

^{*} L or S in above case size table is suffix code. Example ECA PQ S

^{* *()} show W.V. code

Maximum Impedance & Ripple Current vs Case Size Table

Case size WV IV DCI	Maximum imp	pedance $[\Omega]$ at 100	OKHz, +20 °C	Max [mA] rm	imum ripple current ns at 100kHZ, +105	°C
Case size W.V. [V. DC] DD x L [mm]	6.3~35V	50V	63V	6.3~35V	50V	63V
4x11	1.000	2.500	3.500	120	90	80
5x11	0.650	1.300	2.000	175	155	145
5x15	0.460	0.900	1.300	235	215	200
6.3x11.2	0.300	0.600	1.000	290	260	240
6.3x15	0.200	0.400	0.700	400	360	330
8x12.5	0.170	0.300	0.380	445	410	370
8x15	0.120	0.230	0.300	575	500	450
8x20	0.090	0.160	0.190	760	670	600
10x12.5	0.120	0.230	0.300	625	510	470
10x16	0.090	0.160	0.190	795	640	580
10x20	0.065	0.110	0.140	1015	890	820
10x25	0.055	0.090	0.120	1190	1040	950
10x30	0.045	0.075	0.095	1440	1300	1110
12.5x15	0.065	0.130	0.160	1010	920	890
12.5x20	0.042	0.080	0.095	1400	1200	1140
12.5x25	0.034	0.070	0.090	1690	1440	1420
12.5x30	0.030	0.060	0.080	1950	1680	1620
12.5x35	0.024	0.050	0.065	2220	1850	1780
12.5x40	0.021	0.043	0.060	2390	2010	1950
16x15	0.046	0.084	0.100	1360	1270	1220
16x20	0.034	0.053	0.070	1730	1470	1450
16x25	0.028	0.044	0.060	2070	1810	1750
16x31.5	0.025	0.033	0.050	2350	2120	2050
16x35.5	0.022	0.028	0.042	2550	2260	2220
16x40	0.018	0.026	0.034	2900	2410	2370
18x15	0.038	0.070	0.085	1620	1470	1410
18x20	0.028	0.050	0.065	2000	1810	1750
18x25	0.025	0.041	0.057	2200	2000	1940
18x31.5	0.023	0.031	0.048	2800	2220	2110
18x35.5	0.021	0.027	0.041	2900	2460	2300
18x40	0.017	0.025	0.033	3000	2560	2510

Frequency Correction Factor for Ripple Current

	Frequency					
W.V. [V.DC]	[Hz]	60	120	1k	10k	100k
						-
	6.8 ~ 330	0.55	0.65	0.85	0.90	1.0
6.3 ~ 63	390 ~ 1000	0.70	0.75	0.90	0.95	1.0
	1200 ~ 2200	0.75	0.80	0.90	0.95	1.0
	2700 ~ 15000	0.80	0.85	0.95	1.00	1.0

- Long life: 5000 hours at + 105°C (Expected life: 13 years at + 60°C)
- Low impedance at high frequency & low temperature
- Wide operating temperature range from -55 to +105°C
- Anti-solvent: Freon-TE, TES, TP35 or equivalents
- · Various case sizes (flat to slim) are provided

ltem			Performa	nce Characte	ristics			
Operating Temperature Range	-55 to +105 °C							
Rated Working Voltage Range	6.3 to 63V DC					- August		
Nominal Capacitance Range	22 to 5600μF							
Capacitance Tolerance	±20% (120Hz, +20 °C	;)			•			
Leakage Current	$I \le 0.01$ CV or 3 [μA]			r is greater m oltage applie		with rated °C for 2 minut	es	
$ an oldsymbol{\delta}$	Working voltage [V]	6.3	10	16	25	35	50	63
	tan δ max.	0.17	0.15	0.10	0.08	0.07	0.06	0.05
(120Hz, +20°C)	For capacitance value	>1000µF,	add 0.02 p	per another 10	000μF			
Impedence at High Frequency	Refer to standard prod	lucts table	(100k/300	k/500kHz, +2	20 °C)			
Impedence at Low Temperature	$Z(100kHz/-10^{\circ}C)$: ≤ 2	times of t	he specifie	d value (100k	Hz, +20°	C)		
Ripple Current	Refer to standard prod	lucts table	(100kHz, -	+105°C)				
Little Tanasanhara Landina	Test conditions Duration Ambient temperature Applied voltage		: : :	specific and su permis	C tage with ed at + 10 per-impo	maximum pel 05°C (the sun sed peak AC le current shoi age)	n of the DC voltage for	voltage maximum
High Temperature Loading	Post test requirements Leakage current Capacitance change tan δ Impedence	at +20 °C	; ; ;	± 20% ≤ 200°	% of initia	d value measured valu al specified va al specified va	lue	
Shelf Life	Test conditions Duration Ambient temperature Applied voltage		:	1000 h +105 ° (None)			3,44,45,000	
onen ale	Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ± 15% of initial measured value tan δ : ≤ 150% of initial specified value Impedence ≤ 200% of initial specified value							
	Capacitors shall be cap	oable of w	ithstanding	exposure to	the follov	ving cleaning s	solvents.	
Cleaning	Conditions	Solver	nt	Exposure time		Temperature	Uli	trasonic wave
	Freon-TE, TES, TP35 or equivalents	Liquid vapoi	or	≤5 min (total)		≤boiling point at 1 atm		ceptable

Dimensions [mm]

Case Size vs Capacitance

Capacital ICE [µi]	Capacitance	μF
--------------------	-------------	----

Case Size W.V.[V.DC]	6.3	10	16	25	35	50	63
D x L [mm]	(OJ)	(1A)	(1C)	(1E)	(1V)	(1H)	(1J)
8 x 15	330	220	150	82	56	33	22
8 x 20	470	390	220L	120L	82L	47	33L
10 x 16	390	330	220	120	82	39	33
10 x 20	560	470	330	180	120	68	47
10 x 25	820	680	390	220	150	82	56
10 x 30	1200L	1000L	560	330L	220L	120L	82L
12.5 x 20	1000	820	470	270	180	100	82
12.5 x 25	1200	1000	680	330	220	120	100
12.5 x 30	1500	1200L	820L	470L	330L	180L	120
12.5 x 35	2200L	1800L	1000L	560L	390L	220L	150L
12.5 x 40	2700L	2200L	1200L	680L	470L	270L	180L
16 x 20	1800	1200	820	470	330	180	150
16 x 25	2200	1800	1000	560	390	220	180
16 x 31.5	3300	2200	1500	820	560	330	220L
16 x 35.5	3900L	2700	1800L	1000L	680	390L	270
16 x 40	4700L	3300L	2200L	1200L	820L	470L	330L
18 x 20	2200S	1800S	1200	560S	470	220S	180S
18 x 25	2700	2200S	1500S	680	560S	270	220
18 x 31.5	3900	3300	1800	1000	820	390	330
18 x 35.5	4700	3900	2200	1200	1000	470	390
18 x 40	5600	4700	2700	1500	1200	560	470

^{*} L and S of above nominal capacitance are the last suffix code of part numbers

ex. ECA1AFZ102Lø10 x 30

ECA1AFZ102 ø12.5 x 30

^{** ()} shows W.V. code

Case Size vs Ripple Current Table

[mA] rms max. at 100kHz, +105°C

W.V. [V.DC] Case Size D x L [mm]	6.3-35V	50V	63V
8 x 15	575	500	450
8 x 20	760	670	600
10 x 16	795	640	580
10 x 20	1015	890	820
10 x 25	1190	1040	950
10 x 30	1440	1300	1110
12.5 x 20	1400	1200	1140
12.5 x 25	1690	1440	1420
12.5 x 30	1950	1680	1620
12.5 x 35	2220	1850	1780
12.5 x 40	2390	2010	1950
16 x 20	1690	1470	1450
16 x 25	2010	1810	1750
16 x 31.5	2350	2120	2050
16 x 35.5	2550	2260	2220
16 x 40	2900	2410	2370
18 x 20	2010	1810	1750
18 x 25	2200	2000	1940
18 x 31.5	2800	2220	2110
18 x 35.5	2900	2460	2300
18 x 40	3000	2560	2510

Frequency Correction Factor for Ripple Current

W.V. [V.DC]		6.3 - 6	3V	
Cap. [μF]	22-330	390-1000	1200-2200	2700-
60	0.55	0.70	0.75	0.80
120	0.65	0.75	0.80	0.85
1k	0.85	0.90	0.90	0.95
10k	0.90	0.95	0.95	1.00
100k	1.00	1.00	1.00	1.00

Case Size vs Impedance Table

Impedance [Ω] max. at +20°C

W.V. [V.DC]		6.3 - 35			50			63	
Case Size Frequency									
DxL[mm]	100kHz	300kHz	500kHz	100kHz	300kHz	500kHz	100kHz	300kHz	500kHz
8 x 15	0.120	0.132	0.144	0.230	0.253	0.276	0.300	0.330	0.360
8 x 20	0.090	0.099	0.108	0.160	0.176	0.192	0.190	0.209	0.228
10 x 16	0.090	0.099	0.108	0.160	0.176	0.192	0.190	0.209	0.228
10 x 20	0.065	0.072	0.078	0.110	0.121	0.132	0.140	0.154	0.168
10 x 25	0.055	0.066	0.071	0.090	0.099	0.108	0.120	0.132	0.144
10 x 30	0.045	0.054	0.058	0.075	0.083	0.090	0.095	0.105	0.114
12.5 x 20	0.042	0.054	0.063	0.080	0.104	0.120	0.095	0.124	0.143
12.5 x 25	0.034	0.044	0.051	0.070	0.091	0.105	0.090	0.117	0.134
12.5 x 30	0.030	0.039	0.045	0.060	0.078	0.090	0.080	0.104	0.120
12.5 x 35	0.024	0.031	0.036	0.050	0.065	0.075	0.065	0.085	0.093
12.5 x 40	0.021	0.027	0.031	0.043	0.056	0.065	0.060	0.078	0.090
16 x 20	0.034	0.051	0.061	0.053	0.080	0.095	0.070	0.105	0.126
16 x 25	0.028	0.042	0.050	0.044	0.060	0.079	0.060	0.090	0.108
16 x 31.5	0.025	0.037	0.045	0.033	0.050	0.059	0.050	0.075	0.090
16 x 35.5	0.022	0.033	0.039	0.028	0.042	0.050	0.042	0.063	0.076
16 x 40	0.018	0.027	0.032	0.026	0.039	0.047	0.034	0.051	0.061
18 x 20	0.028	0.044	0.061	0.050	0.080	0.110	0.065	0.104	0.143
18 x 25	0.025	0.040	0.055	0.041	0.067	0.090	0.057	0.092	0.125
18 x 31.5	0.023	0.036	0.050	0.031	0.050	0.068	0.048	0.077	0.106
18 x 35.5	0.021	0.033	0.046	0.027	0.043	0.059	0.041	0.066	0.090
18 x 40	0.017	0.027	0.037	0.025	0.040	0.055	0.033	0.053	0.073

- Low profile 7mm height for ø4 ~ ø8 mm
- Various lead taping for high density insertion
 Anti-solvent: Freon-TE, TES, TP35 etc.

Item	Performance Characteristics												
Operating Temperature Range	-40 to +85 °C												
Rated Working Voltage Range	4 to 50V DC												
Nominal Capacitance Range	0.1 to 470μF												
Capacitance Tolerance	±20% (120Hz, +20 °C	O)											
Leakage Current	I ≤ 0.01CV or 3 [μA]		hever is greating voltage a										
	Working voltage [V]	4	6.3	10	16	25	35	50					
tan δ (120Hz, +20 °C	tan δ max.	0.35	0.24	0.20	0.16	0.14	0.12	0.10					
	Impedance ratio max.	at 120Hz.	-										
	Working voltage [V]	4	6.3	10	16	25	35	50					
Characteristics at Low Temperature	-25 °C/+20 °C	7	4	3	2	2	2	2					
	-40 °C/+20 °C	15	8	6	4	4	3	3					
High Temperature Loading	Test conditions Duration : 1000 hours Ambient temperature : +105 °C Applied voltage : Rated DC working voltage Post test requirements at +20 °C Leakage current : ≤ Initial specified value												
	Capacitance change : ±20% of initial measured value tan δ : ≤200% of initial specified value						ue ue						
Shelf Life	Test conditions Post test						equirements at +20 °C for high temperature						
	Capacitors shall be ca	apable of w	vithstanding	exposure to	the followir	ng cleaning	solvents.	Annual Control of Cont					
Cleaning	Conditions Solvents	Solv	ent dition	Exposure time	Ter	nperature		asonic vave					
-	Freon-TE, TES, TP35 or equivalents	Liqu vaj	id or oor	≤5 min (total)	l r	Sboiling Soint at 1 atm	Acc	eptable					

Dimensions in mm (not to scale)

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120 Hz/ +85 °C)

W.' Cap. (μF)	V. (V. DC)	4 (00	ā)	6.3 (0	J)	10 (1,	A)	16 (10	D)	25 (18	Ξ)	35 (1)	v)	50 (1H)
0.1	(0R1)													4x7	1
0.22	(R22)													4x7	2
0.33	(R33)													4x7	3
0.47	(R47)													4x7	5
1.0	(010)													4x7	10
2.2	(2R2)													4x7	16
3.3	(3R3)													4x7	18
4.7	(4R7)									4x7	21	4x7	22	4x7	23
10	(100)							4x7	28	4x7	28	5x7	30	5x7	35
22	(220)					4x7	35	4x7	39	5x7	55	6.3x7	60	6.3x7	60
33	(330)					4x7	43	5x7	60	6.3x7	65	6.3x7	65	8x7	75
47	(470)	4x7	34	4x7	46	5x7	65	5x7	70	6.3x7	70	8x7	85		
100	(101)	5x7	61	5x7	71	6.3x7	80	6.3x7	91						
220	(221)	6.3x7	82	6.3x7	103	8x7	120								
330	(331)	8x7	110	8x7	130									Case	Ripple
470	(471)	8x7	140											size	current

^{* ()} shows W.V. and capacitance code.

- Low profile 5mm height for ø3 ~ ø8 mm
 Various lead taping for high density insertion

Item			Perforn	nance Ch	naracteristic	cs						
Operating Temperature Range	−40 to +85 °C											
Rated Working Voltage Range	4 to 50V DC											
Nominal Capacitance Range	0.1 to 330μF											
Capacitance Tolerance	±20% (120Hz, +20 °C)											
Leakage Current	I ≤ 0.01CV or 3 [μA]	wh wc	ichever is g rking voltag	greater m ge applie	easured af d at +20 °(ter 2 m	inutes appl	ication of ra	ated			
	Working voltage [V]	4	6.3	10	16		25	35	50			
tan δ (120Hz, +20 °C)	tan δ max.	0.35	0.24	0.20			0.14	0.12	0.10			
Characteristics at Low Temperature	Impedance ratio max Working voltage [V] -25 °C/+20 °C -40 °C/+20 °C	x. at 120- 4 7 15	z. 6.: 4		10 3 6	16 2 4	25 2 4	35 2 3	50 2 3			
High Temperature Loading	Test conditions Duration Ambient temperatu Applied voltage Post test requiremer Leakage current Capacitance chang tan 8	nts at +20	: : : : : :			working ecified nitial me						
Shelf Life	Test conditions Duration Ambient temperatu Applied voltage	ıre	:		1000 hours +85 °C (None)	s Sa		uirements a r high temp				

Dimensions in mm (not to scale)

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120 Hz/ +85 °C)

	******							1		7					
W Cap. (μF)	.V. (V. DC)	4 (0G	i)	6.3 (0.	J)	10 (14	4)	16 (10	C)	25 (11	Ξ)	35 (1	V)	50 (1	H)
0.1	(0R1)													•4x5	1
0.22	2 (R22)													•4x5	2
0.33	B (R33)													•4x5	3
0.47	(R47)													•4x5	5
1.0	(010)													•4x5	10
2.2	(2R2)									3x5	8			4x5	16
3.3	(3R3)									3x5	10	4x5	16	4x5	18
4.7	(4R7)									•4x5	22	4x5	22	5x5	23
10	(100)							•4x5	28	5x5	28	5x5	30	6.3x5	35
22	(220)	3x5	19	4x5	29	5x5	35	5x5	39	6.3x5	55	6.3x5	60	8x5	60
33	(330)	4x5	26	5x5	38	5x5	43	6.3x5	60	6.3x5	65	8x5	65		
47	(470)	4x5	34	5x5	46	6.3x5	65	6.3x5	70			8x5	85		
100	(101)	5x5	61	6.3x5	71	6.3x5	80	8x5	91						
220	(221)	6.3x5	82			8x5	120							Case	Ripple
330	(331)			8x5	130									size	curren

^{*} ø3x5 size is available on request (shown with ●).
Products of 63 V DC is available on request.
** () shows W.V. and capacitance code.

- Low profile 7mm height for ø4 ~ ø8 mm
 Long life: 1000 hours at +105 °C
 Various lead taping for high density insertion
 Anti-solvent: Freon-TE, TES, TP35 etc.

Item			Performan	ce Characteristic	S					
Operating Temperature Range	−55 to +105 °C									
Rated Working Voltage Range	6.3 to 50V DC									
Nominal Capacitance Range	0.1 to 220μF									
Capacitance Tolerance	±20% (120Hz, +20 °C)									
Leakage Current	$I \leq$ 0.01CV or 3 [µA] whichever is greater measured after 2 minutes application of raworking voltage applied at +20 $^{\circ}C$									
	Working voltage [V]	6.3	10	16	25	35	50			
$\tan \delta$ (120Hz, +20 °C)	tan & max.	0.22	0.19	0.16	0.14	0.12	0.10			
	Impedance ratio max.	at 120Hz.								
	Working voltage [V]	6.3	10	16	25	35	50			
Characteristics at Low Temperature	-25 °C/+20 °C	3	2	2	2	2	2			
	-40 °C/+20 °C	6	5	3	3	3	3			
	-55 °C/+20 °C	8	6	4	4	4	4			
Impedance	Refer to standard products table (100kHz, +20 °C)									
	Test conditions Duration Ambient temperature Applied voltage	e	:	1000 hours +105 °C Rated DC v	vorking voltage					
High Temperature Loading	Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ±20% of initial measured value tan δ : ≤ 200% of initial specified value									
Shelf Life	Test conditions Duration Ambient temperature Applied voltage Test conditions 1000 hours Same limits for high te loading. None)					s at +20 °C emperature				
	Capacitors shall be ca	apable of wit	thstanding e	exposure to the f	ollowing cleani	ng solvents				
Cleaning	Conditions Solvents	Solve conditi		Exposure time	Temperatur	e l	Jltrasonic wave			
	Freon-TE, TES, TP35 or equivalents	Liquid vapo		≤5 min (total)	≤boiling point at 1 atm	А	cceptable			

ECE	Α		KG			
Common code	Shape	W.V. code	Series code	Capacitance code	Suffix	

Dimensions in mm (not to scale)

Case size/Ripple current

øDxL (mm)/(mA) r.m.s. (120 Hz/ +85 °C)

Cap. (μF)	W.V. (V. DC)	6.3	3 (OJ)		10) (1A)		1	6 (1C)		2	25 (1E)		3	35 (1V)		50) (1H)	
0.1	(0R1)																4x7	1.7	22
0.15	(R15)																4x7	2.5	16
0.22	(R22)																4x7	3.5	12
0.33	(R33)																4x7	5.4	10
0.47	(R47)																4x7	7.6	10
0.68	(R68)																4x7	10	10
1.0	(010)																4x7	16	10
1.5	(1R5)																4x7	24	10
2.2	(2R2)																4x7	36	10
3.3	(3R3)							,						ļ			4x7	47	10
4.7	(4R7)													4x7	47	10	4x7	47	10
6.8	(6R8)							4x7	47	10	4x7	47	10	4x7	47	10	5x7	70	5
10	(100)							4x7	47	10	4x7	47	10	5x7	70	5	6.3x7	121	2
15	(150)							4x7	47	10	5x7	70	5	6.3x7	121	2	6.3x7	121	2
22	(220)	4x7	47	10	4x7	47	10	5x7	70	5	5x7	70	5	6.3x7	121	2	8x7	190	1.2
33	(330)	5x7	70	5	5x7	70	5	6.3x7	121	2	6.3x7	121	2	8x7	190	1.2	8x7	190	1.2
47	(470)	5x7	70	5	6.3x7	121	2	6.3x7	121	2	8x7	190	1.2	8x7	190	1.2	øDxL (mm)	(mA)r.m.s.	(Ω)
68	(680)	6.3x7	121	2	6.3x7	121	2	8x7	190	1.2	8x7	190	1.2						100kHz/
100	(101)	6.3x7	121	2	6.3x7	121	2	8x7	190	1.2								,	+20°C
220	(221)	8x7	190	1.2													Casesize	Ripple current	Imped- ance

^{* ()} shows W.V. and capacitance code.

- For general purpose
- Wide CV value range (33 ~ 47000μF/16 ~ 450V)
- Various case sizes
- · Top vent construction

Specifications

ltem	Performance Characteristics										
Rated Working Voltage Range	16 to 250V DC				400 to 450V DC						
Operating Temperature Range	-40 °C to +85 °C				-25 °C to +85 °C						
Nominal Capacitance Range	120 to 47000μF				33 to 390µF						
Capacitance Tolerance	±20% (120Hz, +20 °C)										
Leakage Current	$\begin{array}{ll} I \leq 0.01 \text{CV or 3 [μA$]} & \text{CV} \leq 100,000 \text{ for 16} \sim 100 \text{V} \\ I \leq 3 \overline{\text{VCV}} \left[\mu \text{A} \right] & \text{CV} > 100,000 \text{ for 16} \sim 100 \text{V \& all items of 160} \sim 450 \text{V} \\ \end{array}$										
	Leakage current shall be measured after 5 minutes application of rated working voltage at +20 °C. (C=nominal capacitance in μ F, V=rated working voltage in V)										
	Working voltage [V]	16	25		35	50	63	80~450			
$\tan \delta$ (120Hz, +20 °C)	tan δ max.	0.35	0.30		0.25	0.20	0.20	0.15			
	Refer to standard products table (120Hz, +85 °C) Correction factor for frequency										
Ripple Current	Frequency [Hz]	50	60	1	120	500	1k	10k-50k			
	16~100V	0.93	0.95	1	.00	1.05	1.08	1.15			
	160~450V	0.75	0.80	1	.00	1.20	1.25	1.40			
High Temperature Loading	Test conditions Duration Ambient temperate Applied voltage		2000 hours +85 °C DC voltage with maximum permissible ripple curren specified at +85 °C (≤rated working voltage)								
Tight remperature Loading	Post test requireme Leakage current Capacitance chan tan δ	°C : :		≤ Initial specified value ±20% of initial measured value ≤ 150% of initial specified value							
Shelf Life	Test conditions Duration Ambient temperate Applied voltage	ure	:		1000 hoi +85 °C (None)		imits for high	nts at +20 °C temperature			
Pre-treatment for measurements Measurements shall be conducted after application of DC working voltage for 30 minutes								utes			

Dimensions [mm]

Explanation of Part Numbers

Expected Life for Ripple Current & Ambient Temperature Stress

Calculation Formula

The life of aluminum electrolytic capacitors is highly affected by applied Where: ripple current and ambient temperature. In general the relation

between life time, ripple current and ambient temperature is known as:

$$L = L_0 x 2 \frac{T_0 - [T + \Delta t (I/I_p)^2]}{10}$$

: Ripple current to be applied to the capacitor at T°C (120Hz).....

: Specified maximum permissible ripple current at 120Hz, +85°C[A rms]

: Expected life at T°C.....[h]

L₀: Specified life (TSU series: 2000 hours).....[h]

T : Ambient temperature.....[°C]

 T_0 : Hot spot temperature in the capacitor element = [maximum operating temperature] + [Δt at maximum ambient temperature] = [maximum temperature (TSU series: +90 °C)].....[°C]

 $\Delta t \; : \; \text{Temperature rise at constant current flow of maximum}$ permissible ripple current value specified at +85 °C (see the graph ' Δt vs T).....[°C]

[Conditions: $(I/I_p)^2 \le 2 \text{ times}$]

Expected Life (calculated on the basis of specified life in high temperature loading)

Case Size Table

(16V)	oize rab	n e				(25V)					
Cap. [μF]	Ripple current	(Case size ø[X L [mm]		Cap. [μF]	Ripple current		Case size ø[) x L [mm]	
4700	1.60	22x25				3300	1.60	22x25			
6800	1.80	22x31.5	25x25			4700	1.80	22x31.5	25x25		
10000	2.40	22x40	25x31.5	30x25		6800	2.30	22x40	25x31.5	30x25	
15000	3.20			30x31.5		10000	2.70	22x50	25x40	30x31.5	
		22x50	25x40		05.04.5			22830			05.01.5
22000	3.60		25x50	30x40	35x31.5	15000	3.40		25x50	30x40	35x31.5
33000	4.40			30x50	35x40	22000	4.20			30x50	35x40
47000	4.70				35x51	33000	4.60			<u> </u>	35x51
(35V)						(50V)				***************************************	
Cap.	Ripple		Case size ø[x L [mm]		Cap.	Ripple		Case size ø[) x L [mm]	
[μF]	current					[μF]	current				,
2200	1.40	22x25				1500	1.20	22x25			
3300	1.70	22x31.5	25x25			2200	1.40	22x31.5	25x25		
4700	2.00	22x40	25x31.5	30x25		3300	1.70	22x40	25x31.5	30x25	
6800	2.40	22x50	25x40	30x31.5		4700	2.10	22x50	25x40	30x31.5	
10000	3.00		25x50	30x40	35x31.5	6800	2.60		25x50	30x40	35x31.5
15000	3.70		20/100	30x50	35x40	10000	3.40		ZOXOO	30x50	35x40
22000	4.00			JOXOG	35x51	15000	3.70			30230	35x51
	1 4.00		J	I	00001		0.70	I	L		00001
(63V)	Dinala	T	Cooo oizo el) u l [mm]		(80V)	Dinala	T		D. L. Imamal	
Cap.	Ripple		Case size ø[Z X ⊏ [ITIITI]		Cap.	Ripple	,	Case size ø[) X L [IIIIII]	
[µF]	current		,			[μF]	current				
1000	1.20	22x25				680	1.00	22x25			
1500	1.30	22x31.5	25x25			1000	1.20	22x31.5	25x25		
2200	1.50	22x40	25x31.5	30x25		1500	1.40	22x40	25x31.5	30x25	
3300	1.90	22x50	25x40	30x31.5		2200	1.70	22x50	25x40	30x31.5	
4700	2.30		25x50	30x40	35x31.5	3300	2.10		25x50	30x40	35x31.5
6800	3.00		20/100	30x50	35x40	4700	2.60		20,00	30x50	35x40
10000	3.30			σολοσ	35x51	6800	3.10			OOXOO	35x51
(100V)	0.00		I.		00/01	(160V)	0.10				OOXOT
(100 v) Cap.	Ripple		Case size ø[) x l [mm]		Cap.	Ripple		Case size ø[] x l [mm]	
[μ F]	current			[]		[μF]	current		0.000 0.000 0.00	- // _ [
470	1.00	22x25	1	I		180	0.65	22x25		1	
			05,05						0505		
680	1.10	22x31.5	25x25	00.05		270	0.87	22x31.5	25x25		
1000	1.20	22x40	25x31.5	30x25		390	1.10	22x40	25x31.5	30x25	
1500	1.50	22x50	25x40	30x31.5		560	1.30	22x50	25x40	30x31.5	
2200	1.80		25x50	30x40	35x31.5	820	1.50		25x50	30x40	35x31.5
3300	2.40			30x50	35x40	1200	1.80			30x50	35x40
4700	2.70				35x51	1500	2.00				35x51
(200V)						(250V)					
Cap.	Ripple	(Case size ø[0 x L [mm]		Cap.	Ripple		Case size ø[OxL[mm]	
[μF]	current					[μF]	current				
150	0.65	22x25				120	0.45	22x25			
220	0.87	22x31.5	25x25			150	0.65	22x31.5	25x25		
330			25x25 25x31.5	30x25		220	0.87		25x25 25x31.5	30x25	
	1.10	22x40			-			22x40			
470	1.30	22x50	25x40	30x31.5	05: 04 5	330	1.10	22x50	25x40	30x31.5	05.01.5
680	1.50		25x50	30x40	35x31.5	470	1.30		25x50	30x40	35x31.5
1000	1.80			30x50	35x40	680	1.50			30x50	35x40
1200	2.00				35x51	1000	1.90				35x51
(385/400V						(450V)					
Cap.	Ripple	Case size	øD x L [mm	l]		Cap.	Ripple		Case size øl	ンxL[mm]	
[μF]	current					[μF]	current				
47	0.25	22x25				33	0.20	22x25			
68	0.35	22x31.5	25x25			47	0.29	22x31.5	25x25		
100	0.47	22x40	25x31.5	30x25		68	0.38	22x40	25x31.5	30x25	
150	0.60	22x50	25x40	30x31.5		100	0.52	22x50	25x40	30x31.5	
220	0.75	22,00	25x50	30x31.3	35x31.5	150	0.32	22,00	 	30x31.3	35x31.5
			20000						25x50		
270	0.90			30x50	35x40	220	0.92			30x50	35x40
390	1.10		1	1	35x51	330	1.10	1	I	1	35x51

^{*} Ripple current: [A] rms at 120Hz, +85 °C
** Capacitors of Ø35x51 should be reinforced with supplementary adhesive when mounting to P.W.B.

- Long life 105 °C 2000 hours & high ripple current
- Wide CV value range (47 ~ 47000μF/10 ~ 400V)
- Various case size & top vent constructions

Specifications

Item			Perfo	rmance	e Cha	racterist	ics			
Rated Working Voltage Range	10 to 250V DC				40	DOV DC				
Operating Temperature Range	-40 to +105 °C				-2	25 to +10	05 °C			
Nominal Capacitance Range	68 to 47000μF				30	3 to 220	μF			
Capacitance Tolerance	±20% (120Hz, +20	O °C)								
Leakage Current	$I \le 0.01CV \text{ or } 3 \text{ [}\mu\text{A}\text{]}$ $I \le 3\sqrt{CV} \text{ [}\mu\text{A}\text{]}$	A]				16 ~ 100 16 ~ 100		ems of	160 ~ 450\	V
	Leakage current sh (C=nominal capacit	nall be me tance in p	easured afte uF, V=rated	r 5 mir workin	nutes ig volt	applicati age in V	on of rate	ed worki	ing voltage	at +20 °C.
	Working voltage [V]]	10	1	6	25		35	50	63
$ an \delta$	tan δ max.		0.45	0.0	35	0.30	0	0.23	0.18	0.16
	Rated working volta	age [V]	80	10	00	160		200	250	400
(120Hz, +20 °C)	tan δ max.		0.12	0.	11	0.10)	0.10	0.10	0.10
	Refer to standard p Correction factor fo		,	z, +10	5 °C)					
Ripple Current	Frequency [Hz]	50	60		12	0	500		1k	10k-50k
	10~100V	0.93	0.95		1.0	00	1.05		1.08	1.15
	160~450V	0.75	0.80		1.0	00	1.20		1.25	1.40
High Temperature Loading	Test conditions Duration Ambient temperat Applied voltage		: : :		+8 D(e with m		permissibl I working v	e ripple current oltage)
	Leakage current Capacitance char tan δ		: :		±	20% of	ecified va initial me f initial sp	asured v		
Shelf Life	Test conditions Duration Ambient temperat Applied voltage	ture	:		+8	000 houi 35 °C Ione)	rs Sa			s at +20 °C emperature
	Pre-treatment for m Measurements sha			applic	ation	of DC w	orking vo	oltage fo	r 30 minut	es

Explanation of Part Numbers

Dimensions

[mm]

• Expected Life (calculated on the basis of specified life in high temperature loading - see equation p. 29)

Case Size Table

10V)						(16V)		Υ			
Cap.	Ripple		Case size ø[) x L [mm]		Cap.	Ripple		Case size ø[0 x L [mm]	
[μF]	current		,			[μF]	current				·
4700	1.80	22x25				3300	1.60	22x25			
6800	2.10	22x31.5	25x25			4700	2.00	22x31.5	25x25		
10000	2.50	22x40	25x31.5	30x25		6800	2.40	22x40	25x31.5	30x25	
15000	3.10	22x50	25x40	30x31.5		10000	2.90	22x50	25x40	30x31.5	
22000	3.40		25x50	30x40	35x31.5	15000	3.50		25x50	30x40	35x31.5
33000	3.90			30x50	35x40	22000	4.20			30x50	35x40
47000	4.90				35x51	33000	4.80				35x51
25V)						(35V)					
Cap.	Ripple	T	Case size øl) v l [mm]			Pipple	,	Cooo oizo al) v l [mm]	
Сар. [μF]	current	,	Case size bi	7 X L [111111]		Cap.	Ripple	,	Case size ø[J X L [IIIIII]	
2200	1.50	22x25	T			[μF] 1500	current	22x25		1	
3300	1.70	22x31.5	25x25			2200	1.40		OFWOE		
4700	2.20	22x40	25x25 25x31.5	30x25			1.60	22x31.5	25x25	0005	
						3300	1.80	22x40	25x31.5	30x25	
6800	2.60	22x50	25x40	30x31.5	05.04.5	4700	2.30	22x50	25x40	30x31.5	05.01.5
10000	3.10		25x50	30x40	35x31.5	6800	2.90		25x50	30x40	35x31.5
15000	3.50			30x50	35x40	10000	3.50			30x50	35x40
22000	4.00				35x51	15000	3.90				35x51
50V)						(63V)					
Cap.	Ripple	(Case size øl	0 x L [mm]		Cap.	Ripple	(Case size ø[0 x L [mm]	
[μF]	current			. ,		[μF]	current				
1000	1.30	22x25				680	0.90	22x25			
1500	1.50	22x31.5	25x25			1000	1.30	22x31.5	25x25		
2200	1.90	22x40	25x31.5	30x25		1500	1.60	22x40	25x31.5	30x25	
3300	2.30	22x50	25x40	30x31.5		2200	2.00	22x50	25x40	30x31.5	
4700	2.80	ZZAGO	25x50	30x40	35x31.5	3300	2.50	ZZXOO	25x50	30x40	35x31.5
6800	3.20		20,00	30x50	35x40	4700	2.90		20,00	30x50	35x40
10000	3.70			00000	35x51	6800	3.30			3000	35x51
	0.70		<u></u>		00/01		0.00				00001
30V)						(100V)	T =				
Cap.	Ripple		Case size øl) x L [mm]		Cap.	Ripple		Case size ø[) x L [mm]	
[µF]	current					[μF]	current				
470	0.80	22x25				330	0.70	22x25			
680	1.20	22x31.5	25x25			470	1.20	22x31.5	25x25		
1000	1.50	22x40	25x31.5	30x25		680	1.40	22x40	25x31.5	30x25	
1500	1.80	22x50	25x40	30x31.5		1000	1.70	22x50	25x40	30x31.5	
2200	2.30		25x50	30x40	35x31.5	1500	2.10		25x50	30x40	35x31.5
3300	2.80			30x50	35x40	2200	2.60			30x50	35x40
4700	3.00		:		35x51	3300	2.90				35x51
160V)						(200V)					
Ćap.	Ripple	(Case size ø[0 x L [mm]		Cap.	Ripple		Case size ø[0 x L [mm]	
[μF]	current					[μF]	current				
150	0.70	22x25				100	0.72	22x25			_
220	1.00	22x31.5	25x25			150	0.80	22x31.5	25x25		
330	1.20	22x40	25x31.5	30x25		220	1.00	22x40	25x31.5	30x25	
470	1.40	22x50	25x40	30x31.5		330	1.20	22x50	25x40	30x31.5	
680	1.70		25x50	30x40	35x31.5	470	1.40	22/00	25x50	30x40	35x31.5
820	2.00		20,00	30x50	35x40	680	1.70		20,000	30x40	35x40
1200	2.30			00000	35x51	1000	2.10			00000	35x51
	2.00				00/01		_ <u> </u>				00001
250V)	D: 1	0- :	-0	1		(400V)	Dia-1-	Т) [1	
Cap.	Ripple	Case size	øD x L [mm	IJ		Cap.	Ripple		Case size ø[x ∟ [mm] ا x	
[μF]	current			T		[µF]	current				
68	0.45	22x25				33	0.33	22x25			
100	0.72	22x31.5	25x25			47	0.47	22x31.5	25x25		
150	0.80	22x40	25x31.5	30x25		68	0.56	22x40	25x31.5	30x25	
220	1.05	22x50	25x40	30x31.5		100	0.69	22x50	25x40	30x31.5	
330	1.25		25x50	30x40	35x31.5	150	0.82		25x50	30x40	35x31.5
					0= 10	000	1.00			00	25,40
470	1.45			30x50	35x40	220	1.00			30x50	35x40

^{*}Ripple current: [A] rms at 120Hz, +105 °C ** Capacitors of $\emptyset 35x51$ I should be reinforced with supplementary adhesive when mounting to P.W.B.

- · Premum industrial grade
- Long life 5000 hours at +105°C with ripple current applied
- Expected life: 75000 hours at +65°C with ripple current applied
- Various case sizes & top vent construction

Specifications

Item			Perf	ormance	Character	istics		
Rated Working Voltage Range	160 to 250V DC				400V D	С		
Operating Temperature Range	-40 to +105 °C				-25 to +	-105 °C		
Nominal Capacitance Range	39 to 1200μF							
Capacitance Tolerance	±20% (120Hz, +20°	C)						
Leakage Current	I ≤ 3 √CV [μA]		after (C=r	5 minut nominal c	es applicat capacitanc	ion of rate e in μF, V :	d working voltage at +2 = rated working voltage	20 °C. in V)
$ anoldsymbol{\delta}$	0.15 max (120Hz, +2	0.15 max (120Hz, +20°C)						
	Refer to standard pro Correction factor for f			Hz, +85°	C)			
Ripple Current	Frequency [Hz]	50	60	120	500	1k	10k-50k	
	Correction factor	0.75	0.8	1.0	1.2	1.25	1.4	
	For capacitance value >1000μF, add 0.02 per another 1000μF							
	Test conditions Duration Ambient temperatur Applied voltage	:	: 5000 hours : +105 °C : DC voltage with maximum permissible ripple currer specified at + 105 °C (≤rated working voltage)					
High Temperature Loading	Post test requirement Leakage current Capacitance change δ		°C : :		± 20%		value easured value specified value	
	Test conditions Duration Ambient temperatur Applied voltage	е	:		1000 ho +105 °((None)			
Shelf Life								
Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ± 15% of initial measured value tan δ : ≤ initial specified value						easured value		
	Pre-treatment for mea			er applica			voltage for 30 minutes	

Dimensions

[mm]

Explanation of Part Numbers - Regular Size

Expected Life for Ripple Current & Ambient Temperature Stress

Calculation Formula

The life of aluminum electrolytic capacitors is highly affected by applied ripple current and ambient temperature. In general the relation between life time, ripple current and ambient temperature is known as:

$$L = L0x2 \frac{T_0 - [T + \Delta t (I/I_p)^2]}{10}$$

Where:

I : Ripple current to be applied to the capacitor at T°C (120Hz)..... [A rms]

 I_{p} : Specified maximum permissible ripple current at 120Hz, +105°C.....[A rms]

L : Expected life at T°C.....[h]

L₀: Specified life (TSNXA series: 5000 hours).....[h]

F : Ambient temperature.....[°C]

T₀: Hot spot temperature in the capacitor element = [maximum operating temperature] + [Δt at maximum ambient temperature] = [maximum temperature (TSNXA series: +110 °C)].....[°C]

 Δt : Temperature rise at constant current flow of maximum permissible ripple current value specified at +105 °C (see the graph ' Δt vs T).....[°C]

[Conditions: $(I/I_p)^2 \le 2 \text{ times}$]

• Expected Life (calculated on the basis of specified life in high temperature loading)

Case Size Table

(160V)

Сар	Case code		Case	e size øD ×	: L [mm]	
[μF]	Ripple current	Α	В	С	D	Е
100	0.70	20x25				
150	0.85		22x25			
180	0.90		22x25			
220	1.00		22x30	25x25		
270	1.10		22x30	25x25		
330	1.20		22x35	25x30	30x25	
390	1.30		22x40	25x30	30x25	
470	1.40		22x45	25x35	30x30	
560	1.50			25x40	30x30	
680	1.70			25x45	30x35	35x30
820	2.00				30x40	35x30
1000	2.20				30x50	35x35
1200	2.30					35x40

(200V)

Cap	Case code		Case	size øD x	L [mm]	
[μF]	Ripple current	Α	В	С	D	Е
100	0.70	20x25				
120	0.75		22x25			
150	0.85		22x25			
180	0.90		22x30	25x25		
220	1.00		22x35	25x30	30x25	
270	1.10		22x40	25x30	30x25	
330	1.20		22x45	25x35	30x30	
390	1.30			25x40	30x30	35x25
470	1.40			25x45	30x35	35x30
560	1.50				30x40	35x30
680	1.70				30x45	35x35
820	2.00				30x50	35x40

(250V)

Cap	Case		Case	e size øD x	: L [mm]	
[μF]	Ripple current	Α	В	С	D	E
82	0.64		22x25			
100	0.70		22x30	25x25		
120	0.75		22x30	25x25		
150	0.85		22x35	25x30		
180	0.90		22x40	25x30	30x25	
220	1.00		22x45	25x35	30x30	
270	1.10		22x50	25x40	30x30	
330	1.20			25x45	30x35	35x30
390	1.30			25x50	30x40	35x30
470	1.40				30x45	35x35
560	1.50				30x50	35x40

^{*}Ripple current:[A] rms at 120Hz, +105°C

(400V)

Cap	Case code		Case	e size øD x	L [mm]	
[μF]	Ripple current	Α	В	С	D	Е
39	0.40		22x25			
47	0.47		22x30			
56	0.51		22x35	25x25		
68	0.56		22x40	25x30		
82	0.64		22x45	25x35	30x25	
100	0.70		22x50	25x40	30x30	
120	0.75			25x45	30x35	35x25
150	0.85			25x50	30x40	35x30
180	0.90				30x45	35x35
220	1.00				30x50	35x40

- Compact size & for general purpose
 (20 ~ 40% less volume than TS-U series)
- · Various case size & wide CV value range
- Top vent construction
- Flat Type available for low profile applications

Specifications

Item				Performance	Characteri	stics					
Rated Working Voltage Range	16 to 250V DC				400 to 4	50V DC					
Operating Temperature Range	-40 to +85 °C				-25 to +	85 °C					
Nominal Capacitance Range	180 to 68000μF (120 to 15	000μF	for Flat Type) 56 to 56	60μF (33 to 15	0μF for Flat Ty	pe)			
Capacitance Tolerance	±20% (120Hz, +2	20 °C)									
Leakage Current	l ≤ 3√CV [μA]					es application of rated working voltage at +20 °C apacitance in μF, V=rated working voltage in V)					
	Working voltage [V]	16	25	3:	5 50	63	80			
$ anoldsymbol{\delta}$	tan δ max.		0.50	0.40	0.3	35 0.30	0.25	0.20			
	Working voltage [V]	100	160	20	0 250) 400	450			
	tan δ max.		0.20	0.15	0.1	5 0.18	5 0.15	0.15			
For capacitance $> 33000 \mu F$, add the value of $\frac{(rated\ capacitance\ -\ 33000 \mu F)}{10000 \mu F} \times 0.1$											
	Refer to standard products table (120Hz, +85 °C) Correction factor for frequency										
Ripple Current	Frequency [Hz]	50		60	120	500	1k	10k-50k			
	16~100V	0.93		0.95	1.00	1.05	1.08	1.15			
	160~450V	0.75		0.80	1.00	1.20	1.25	1.40			
High Temperature Loading	Test conditions Duration Ambient temper Applied voltage	Duration : 2000 hours Ambient temperature : +85 °C									
High Temperature Loading Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ±20% of initial measured value tan 8 : ≤ 200% of initial specified value											
Shelf Life	Test conditions Duration : 1000 hours Ambient temperature : +85 °C Applied voltage : (None)			Post test requirements at +20 °C Same limits for high temperature loading.							
	Pre-treatment for Measurements sh			d after applica	ation of DC	working voltac	ge for 30 minut	es			

Dimension - Regular Size

Explanation of Part Numbers - Regular Size

Expected Life for Ripple Current & Ambient Temperature Stress

•Calculation Formula

The life of aluminum electrolytic capacitors is highly affected by applied ripple current and ambient temperature. In general the relation between life time, ripple current and ambient temperature is known as:

$$L = L0x2 \frac{T_0 - [T + \Delta t (I/I_p)^2]}{10}$$

Where:

Ripple current to be applied to the capacitor at T°C (120Hz).....
 [A rms]

lp : Specified maximum permissible ripple current at 120Hz, +85°C....[A rms]

L : Expected life at T°C.....[h]

L_O: Specified life (TSU series: 2000 hours).....[h]

T: Ambient temperature.....[°C]

 T_0 : Hot spot temperature in the capacitor element = [maximum operating temperature] + [Δ t at maximum ambient temperature] = [maximum temperature (TSU series: +90 °C)].....[°C]

∆t: Temperature rise at constant current flow of maximum permissible ripple current value specified at +85 °C (see the graph ' ∆t vs T).....[°C]

[Conditions: $(I/I_p)^2 \le 2$ times]

• Expected Life (calculated on the basis of specified life in high temperature loading)

Case Size Table - Regular Size

(16V)

Cap.	Case code		Case	e size øD x	L [mm]	
[μF]	Ripple current	Α	В	С	D	E
6800	3.15	20 x 25				
8200	3.47	20 x 30				
10000	3.78	20 x 35	22 x 30	25 x 25		
12000	4.52	20 x 40	22 x 30	25 x 25		
15000	5.26		22 x 35	25 x 30	30 x 25	
18000	5.57		22 x 40	25 x 35	30 x 30	
22000	6.10		22 x 50	25 x 40	30 x 30	
27000	6.31			25 x 45	30 x 35	
33000	6.84			25 x 50	30 x 40	35 x 30
39000	6.94				30 x 45	35 x 35
47000	7.47				30 x 50	35 x 40
56000	8.73					35 x 45
68000	9.05					35 x 50

(25\A

(25V)						
Cap.	Case code		Case	size øD x	L [mm]	
[µF]	Ripple current	А	В	С	D	Е
4700	3.05	20 x 25				
5600	3.36	20 x 30				
6800	3.47	20 x 35	22 x 30	25 x 25		
8200	3.57	20 x 40	22 x 30	25 x 25		
10000	3.78		22 x 35	25 x 30	30 x 25	
12000	4.10		22 x 40	25 x 35	30 x 30	
15000	4.63		22 x 50	25 x 40	30 x 30	
18000	5.47			25 x 45	30 x 35	
22000	6.10			25 x 50	30 x 40	
27000	6.21				30 x 45	35 x 35
33000	6.84				30 x 50	35 x 40
39000	7.36					35 x 45
47000	8.00					35 x 50

(35V)

Cap.	Case code		Case	e size øD x	L [mm]	
[μF]	Ripple current	Α	В	С	D	Е
3300	2.73	20 x 25				
3900	2.94	20 x 30				
4700	3.26	20 x 35	22 x 30	25 x 25		
5600	3.36	20 x 40	22 x 30	25 x 25		
6800	3.68		22 x 35	25 x 30		
8200	4.00		22 x 40	25 x 35		
10000	4.42		22 x 50	25 x 40	30 x 30	35 x 25
12000	5.05			25 x 45	30 x 35	35 x 30
15000	5.57			25 x 50	30 x 40	35 x 30
18000	5.68				30 x 45	35 x 35
22000	6.10				30 x 50	35 x 40
27000	6.84					35 x 45
33000	7.15					35 x 50

(50V)

Cap.	Case code		Case	size øD x	L [mm]	
[µF]	Ripple current	А	В	С	D	E
2200	2.26	20 x 25				
2700	2.52	20 x 30				
3300	2.73	20 x 35	22 x 30	25 x 25		
3900	2.75	20 x 40	22 x 30	25 x 25		
4700	3.03		22 x 35	25 x 30	30 x 25	
5600	3.42		22 x 40	25 x 35	30 x 30	1
6800	3.85		22 x 50	25 x 40	30 x 30	
8200	4.41			25 x 45	30 x 35	
10000	4.97			25 x 50	30 x 40	
12000	5.58				30 x 45	35 x 35
15000	6.44				30 x 50	35 x 40
18000	6.94					35 x 45
22000	7.57					35 x 50

(63V)

(03V)										
Cap.	Case code		Case size ØD x L [mm]							
[µF]	Ripple current	Α	В	С	D	E				
2200	2.52	20 x 35	22 x 30	25 x 25						
2700	3.73	20 x 40	22 x 35	25 x 30						
3300	4.10		22 x 40	25 x 30	30 x 25					
3900	4.44		22 x 45	25 x 35	30 x 30					
4700	4.86		22 x 50	25 x 40	30 x 30	35 x 25				
5600	5.36			25 x 45	30 x 35	35 x 30				
6800	5.84			25 x 50	30 x 40	35 x 30				
8200	6.00				30 x 45	35 x 35				
10000	6.52					35 x 40				
12000	7.15					35 x 50				

(80V)

Cap.	Case code		Case	size øD x	L [mm]	
[µF]	Ripple current	А	В	С	D	Е
1500	2.26	20 x 35	22 x 30	25 x 25		
1800	2.52	20 x 40	22 x 30	25 x 25		
2200	2.73		22 x 35	25 x 30	30 x 25	
2700	2.78		22 x 40	25 x 35	30 x 30	
3300	3.21		22 x 50	25 x 40	30 x 30	
3900	3.59			25 x 45	30 x 35	
4700	4.09			25 x 50	30 x 40	
5600	4.55				30 x 45	35 x 35
6800	5.16				30 x 50	35 x 40
8200	5.83					35 x 50

^{*} Ripple current: [A] rms at 120Hz, +85 °C * When $\emptyset 35 \times 45$ and $\emptyset 35 \times 50$ capacitors are mounted in P.C.B, reinforce them with supplementary utensil or adhesives. (Avoid using adhesives including halogenated composition.)

Case Size Table - Regular Size

14	$\Delta \Delta \Delta \Delta \Delta$
11	(V00

Сар.	Case		Case	e size øD x	L [mm]	
[µF]	Ripple current	А	В	С	D	E
1000	1.96	20 x 35	22 x 30	25 x 25		
1200	2.31	20 x 40	22 x 35	25 x 30		
1500	2.57		22 x 40	25 x 30	30 x 25	
1800	2.84		22 x 45	25 x 35	30 x 30	
2200	3.14		22 x 50	25 x 40	30 x 30	
2700	3.71			25 x 45	30 x 35	
3300	4.06			25 x 50	30 x 40	
3900	4.54				30 x 45	35 x 35
4700	5.13				30 x 50	35 x 40
5600	5.75					35 x 45
6800	6.60					35 x 50

(160V)

Cap.	Case code		Case	size øD x L	_ [mm]	
[μF]	Ripple current	Α	В	С	D	Ε
330	1.45	20 x 30	22 x 25			
390	1.62	20 x 35	22 x 30	25 x 25		
470	2.11		22 x 30	25 x 25		
560	2.25		22 x 35	25 x 30	30 x 25	
680	2.50		22 x 40	25 x 35	30 x 25	
820	2.75		22 x 50	25 x 40	30 x 30	ĺ
1000	3.00			25 x 45	30 x 35	35 x 25
1200	3.25			25 x 50	30 x 35	35 x 30
1500	3.73				30 x 45	35 x 35
1800	4.20		ĺ		30 x 50	35 x 40
2200	4.78					35 x 45
2700	5.45					35 x 50

(200V)

Cap.	Case code		Case	e size øD x	L [mm]	
[μF]	Ripple current	Α	В	С	D	E
270	1.41	20 x 30	22 x 25			
330	1.56	20 x 35	22 x 30	25 x 25		
390	1.68		22 x 30	25 x 25		
470	1.85		22 x 35	25 x 30	30 x 25	
560	2.43		22 x 40	25 x 35	30 x 25	
680	2.68		22 x 50	25 x 35	30 x 30	
820	2.93			25 x 45	30 x 35	35 x 25
1000	3.25			25 x 50	30 x 40	35 x 30
1200	3.50				30 x 45	35 x 35
1500	3.87				30 x 50	35 x 40
1800	4.32					35 x 45
2200	4.92					35 x 50

(250V)

Cap.	Case code		Case	size øD x l	_ [mm]	
[μF]	Ripple current	Α	В	С	D	Е
180	1.07	20 x 30	22 x 25			
220	1.17	20 x 35	22 x 30	25 x 25		
270	1.31		22 x 30	25 x 25		
330	1.75		22 x 35	25 x 30	30 x 25	
390	1.91		22 x 40	25 x 35	30 x 25	
470	2.11		22 x 45	25 x 40	30 x 30	
560	2.25			25 x 45	30 x 35	35 x 25
680	2.52			25 x 50	30 x 40	35 x 30
820	2.77				30 x 45	35 x 35
1000	3.32				30 x 50	35 x 40
1200	3.53					35 x 45
1500	4.04					35 x 50

(385/400V)

(303/4000	/					
Сар.	Case code		Cas	e size øD >	κ L [mm]	
[µF]	Ripple current	А	В	С	D	Е
68	0.76	20 x 30	22 x 25			
82	0.83	20 x 30	22 x 25			
100	0.92	20 x 35	22 x 30	25 x 25		
120	1.02	20 x 40	22 x 35	25 x 30		
150	1.16		22 x 40	25 x 30	30 x 25	
180	1.44		22 x 45	25 x 35	30 x 30	
220	1.49		22 x 50	25 x 40	30 x 30	
270	1.67			25 x 45	30 x 35	35 x 30
330	1.90				30 x 40	35 x 35
390	2.13				30 x 45	35 x 40
470	2.39					35 x 40
560	2.69					35 x 50

(450V)

1001/						
Cap.	Case code		Case	size øD x L	_ [mm]	
[µF]	Ripple current	А	В	С	D	Е
56	0.70	20 x 30	22 x 25			
68	0.76	20 x 35	22 x 30			
82	0.83	20 x 35	22 x 30	25 x 25		
100	0.93		22 x 35	25 x 30	30 x 25	
120	1.04		22 x 40	25 x 30	30 x 25	
150	1.19		22 x 50	25 x 40	30 x 30	
180	1.35			25 x 45	30 x 35	35 x 25
220	1.55			25 x 50	30 x 40	35 x 30
270	1.78				30 x 45	35 x 35
330	2.01				30 x 50	35 x 40
390	2.24					35 x 45
470	2.53					35 x 50

^{*} Ripple current: [A] rms at 120Hz, +85 °C
* When \emptyset 35 x 45 and \emptyset 35 x 50 capacitors are mounted in P.C.B, reinforce them with supplementary utensil or adhesives. (Avoid using adhesives including halogenated composition.)

Explanation of Part Numbers - Flat-Type

Dimensions in mm (not to scale)

Case size/Ripple current - Flat-Type

øD + 1 x L max. [mm] [A] rms (120Hz/+85°C)

W.V. Cap. [V. DC] [µF]			25		35		50		63		80		100	
470													22 x 20	1.0
680											22 x 20	1.0	25 x 20	1.1
1000									22 x 20	1.2	25 x 20	1.2	30 x 20	1.2
1500							22 x 20	1.2	25 x 20	1.3	30 x 20	1.4	35 x 20	1.5
2200					22 x 20	1.4	25 x 20	1.4	30 x 20	1.5	35 x 20	1.7		
3300			22 x 20	1.6	25 x 20	1.7	30 x 20	1.7	35 x 20	1.7				
4700	22 x 20	1.6	25 x 20	1.8	30 x 20	2.0	35 x 20	2.1						
6800	25 x 20	1.8	30 x 20	2.3	35 x 20	2.4								
10000	30 x 20	2.4	35 x 20	2.7									Case	Ripple
15000	35 x 20	3.2											size	current

	W.V. V. DC]	160		200		25	250		400		
33										22 x 20	0.20
47								22 x 20	0.25	25 x 20	0.29
68								25 x 20	0.35	30 x 20	0.38
100		-						30 x 20	0.47	35 x 20	0.52
120						22 x 20	0.45				
150				22 x 20	0.65	25 x 20	0.65	35 x 20	0.60		
220		22 x 20	0.75	25 x 20	0.87	30 x 20	0.87				
270		25 x 20	0.87								
330				30 x 20	1.00	35 x 20	1.10				
390		30 x 20	1.10								
470				35 x 20	1.30					Case	Ripple
560		35 x 20	1.30							size	current

- Compact size(30 ~ 40% less volume than TS-NH series)
- Long life 105 °C 2000 hours & high ripple current
- Various case size & top vent construction
- Flat Type available for low profile applications

Specifications

ltem		Performance Characteristics								
Rated Working Voltage Range	10 to 250V DC					400	400V DC			
Operating Temperature Range	-40 °C to +105 °C					-25	-25 °C to +105 °C			
Nominal Capacitance Range	180 to 68000μF (6	8 to	10000µ	F for Flat	t Type)	56 1	to 470µF (3	3 to 100µF	for Flat Typ	e)
Capacitance Tolerance	±20% (120Hz, +2	0 °C)								
Leakage Current	I ≤ 3√CV [μA]	$\leq 3\sqrt{CV}[\mu A]$ after 5 minutes application of rated working voltage at +20 ° (C=nominal capacitance in μF , V=rated working voltage in V)								
	Working voltage [V	1	10	16		25	35	50	63	80
$ an {f \delta}$	tan δ max.		0.55	0.45		0.35	0.30	0.25	0.20	0.17
	Working voltage [V	1	10	0	160~400					
	tan & max.	4	0.1	5		0.15				
(120Hz, +20 °C) For capacitance value >33000μF, add the value of (rated cap. [μF] - 33000μF) x 0.1										
	Refer to standard products table (120Hz, +85 °C) Correction factor for frequency									
Ripple Current	Frequency [Hz]	5	0	60		120	50	00	1k	10k-50k
	10~100V	0.9	93	0.95		1.00	1.0	05	1.08	1.15
	160~400V	0.7	75	0.80		1.00	1.2	20	1.25	1.40
High Temperature Loading	Test conditions Duration : 2000 hours Ambient temperature : +105 °C Applied voltage : DC voltage with maximum permissible ripple current specified at +105 °C (≤rated working voltage)					yt				
riigii reinpelature Loading	Capacitance change : ±20% of i			f initial m	pecified value initial measured value of initial specified value					
Shelf Life	Test conditions Duration Ambient temperature Applied voltage Post test requirements at +20 Same limits for high temperatu loading. (None)									
	Pre-treatment for r Measurements sha			-	r applic	cation of	DC working	g voltage f	or 30 minute	es

Dimension - Regular Size

Explanation of Part Numbers - Regular Size

Expected Life for Ripple Current & Ambient Temperature Stress

Calculation Formula

The life of aluminum electrolytic capacitors is highly affected by applied ripple current and ambient temperature. In general the relation between life time, ripple current and ambient temperature is known as:

$$L = Lox2 \frac{T_0 - [T + \Delta t (I/I_p)^2]}{10}$$

Where:

I : Ripple current to be applied to the capacitor at T°C (120Hz).....
[A rms]

 I_{p} : Specified maximum permissible ripple current at 120Hz,

+105°C.....[A rms]

_ : Expected life at T°C.....[h]

Lo : Specified life (TSHA series: 2000 hours).....[h]

T : Ambient temperature.....[°C]

T₀: Hot spot temperature in the capacitor element = [maximum operating temperature] + [\Delta t maximum ambient temperature] = [maximum temperature (TSHA series: +110 °C)].....[°C]

∆t : Temperature rise at constant current flow of maximum permissible ripple current value specified at +85 °C (see the graph ' ∆t vs T).....[°C]

[Conditions: $(I/I_p)^2 \le 2$ times]

• Expected Life (calculated on the basis of specified life in high temperature loading)

Case Size Table - Regular Size

(10V)

Cap.	Case code		Case size øD x L [mm]					
[μF]	Ripple current	Α	В	С	D	Е		
6800	1.30	20 x 25						
8200	1.60	20 x 30						
10000	1.80	20 x 30	22 x 25					
12000	2.20	20 x 35	22 x 30					
15000	2.30	20 x 40	22 x 35	25 x 25				
18000	2.40		22 x 40	25 x 30				
22000	2.60		22 x 45	25 x 35	30 x 25			
27000	3.10		22 x 50	25 x 40	30 x 30	35 x 25		
33000	3.40			25 x 45	30 x 35	35 x 30		
39000	3.70			25 x 50	30 x 40	35 x 30		
47000	4.20				30 x 45	35 x 35		
56000	5.00				30 x 50	35 x 40		
68000	5.50					35 x 50		

(16V)

(100)									
Cap.	Case code		Case size øD x L [mm]						
[μF]	Ripple current	А	В	С	D	E			
6800	2.20	20 x 30	22 x 25						
8200	2.40	20 x 35	22 x 30						
10000	2.60	20 x 40	22 x 30	25 x 25					
12000	2.90		22 x 35	25 x 30	30 x 25				
15000	3.20		22 x 40	25 x 35	30 x 30				
18000	3.50		22 x 45	25 x 40	30 x 30	35 x 25			
22000	3.80			25 x 45	30 x 35	35 x 30			
27000	4.20			25 x 50	30 x 40	35 x 30			
33000	4.70				30 x 45	35 x 35			
39000	5.10				30 x 50	35 x 40			
47000	5.50					35 x 45			
56000	6.00					35 x 50			

(25V)

Сар.	Case code		Case size øD x L [mm]					
[µF]	Ripple current	А	В	С	D	E		
4700	2.00	20 x 30	22 x 25					
5600	2.20	20 x 35	22 x 30					
6800	2.40	20 x 40	22 x 30	25 x 25				
8200	2.70		22 x 35	25 x 30	30 x 25			
10000	3.00		22 x 40	25 x 35	30 x 30			
12000	3.20		22 x 50	25 x 40	30 x 30	35 x 25		
15000	3.60			25 x 45	30 x 35	35 x 30		
18000	3.90			25 x 50	30 x 40	35 x 35		
22000	4.30				30 x 45	35 x 35		
27000	4.80					35 x 45		
33000	5.50					35 x 50		

(35V)

1,	JO V)						
	Cap.	Case code		Case	size øD x	L [mm]	
	[µF]	Ripple current	Α	В	С	D	E
	3300	1.90	20 x 30	22 x 25			
	3900	2.00	20 x 35	22 x 30			
	4700	2.20	20 x 40	22 x 35	25 x 25		
	5600	2.40		22 x 35	25 x 30	30 x 25	
	6800	2.60		22 x 40	25 x 35	30 x 30	
	8200	2.90		22 x 50	25 x 40	30 x 30	35 x 25
	10000	3.20			25 x 45	30 x 35	35 x 30
	12000	3.50			25 x 50	30 x 40	35 x 30
	15000	3.90				30 x 45	35 x 35
	18000	4.30					35 x 40
	22000	5.00					35 x 45

(50V)

Cap.	Case		Case size øD x L [mm]						
[μF]	Ripple current	Α	В	С	D	E			
1800	1.50	20 x 30	22 x 25						
2200	1.70	20 x 35	22 x 30						
2700	1.80	20 x 40	22 x 30	25 x 25					
3300	2.00		22 x 35	25 x 30					
3900	2.20		22 x 40	25 x 35	30 x 25				
4700	2.50		22 x 45	25 x 40	30 x 30	35 x 25			
5600	2.80		22 x 50	25 x 40	30 x 35	35 x 30			
6800	3.30			25 x 50	30 x 40	35 x 30			
8200	3.60				30 x 45	35 x 35			
10000	4.00				30 x 50	35 x 40			
12000	4.50					35 x 45			
15000	4.80					35 x 50			

(63V)

Cap.	Case code		Case size øD x L [mm]						
[μF]	Ripple current	А	В	С	D	Е			
1200	1.40	20 x 30	22 x 25						
1500	1.50	20 x 35	22 x 30						
1800	1.70	20 x 40	22 x 30	25 x 25					
2200	2.00		22 x 35	25 x 30					
2700	2.20		22 x 40	25 x 35	30 x 25				
3300	2.50		22 x 50	25 x 40	30 x 30	35 x 25			
3900	2.70			25 x 45	30 x 35	35 x 30			
4700	3.00			25 x 50	30 x 40	35 x 30			
5600	3.30				30 x 45	35 x 35			
6800	3.60				30 x 50	35 x 40			
8200	3.90					35 x 45			
10000	4.40					35 x 50			

^{*} Ripple current: [A] rms at 120Hz, +85 °C
* When ø35 x 45 and ø35 x 50 capacitors are mounted in P.C.B, reinforce them with supplementary utensil or adhesives. (Avoid using adhesives including halogenated composition.)

Case Size Table

(80V)

Cap.	Case		Case size øD x L [mm]						
[µF]	Ripple current	Α	В	С	D	Е			
820	1.20	20 x 30	22 x 25						
1000	1.30	20 x 35	22 x 30	25 x 25					
1200	1.50	20 x 40	22 x 30	25 x 25					
1500	1.70		22 x 35	25 x 30					
1800	1.80		22 x 40	25 x 35	30 x 25				
2200	2.10		22 x 45	25 x 35	30 x 30	35 x 25			
2700	2.40			25 x 45	30 x 35	35 x 30			
3300	2.60			25 x 50	30 x 40	35 x 30			
3900	3.00				30 x 45	35 x 35			
4700	3.30				30 x 50	35 x 40			
5600	3.70					35 x 45			
6800	3.90					35 x 50			

(100V)

(1001)									
Cap.	Case code		Case size øD x L [mm]						
[µF]	Ripple current	Α	В	С	D	E			
560	1.10	20 x 30	22 x 25						
820	1.40	20 x 35	22 x 30	25 x 25					
1000	1.70	20 x 40	22 x 35	25 x 30					
1200	1.80		22 x 40	25 x 35	30 x 25				
1500	2.10		22 x 45	25 x 40	30 x 30	35 x 25			
1800	2.30			25 x 45	30 x 35	35 x 30			
2200	2.60			25 x 50	30 x 40	35 x 30			
2700	2.90				30 x 45	35 x 35			
3300	3.20				30 x 50	35 x 40			
3900	3.60					35 x 45			
4700	3.80					35 x 50			

(160V)

Сар.	Cap. Case code Case size ØD x L [mm]						
[μF]	Ripple current	А	В	С	D	Е	
220	1.00	20 x 25					
270	1.10	20 x 30	22 x 25				
330	1.20	20 x 35	22 x 30				
390	1.30	20 x 40	22 x 30	25 x 25			
470	1.40		22 x 35	25 x 30			
560	1.50		22 x 40	25 x 30	30 x 25		
680	1.70		22 x 45	25 x 35	30 x 30		
820	2.00			25 x 40	30 x 30		
1000	2.20			25 x 45	30 x 35		
1200	2.30			25 x 50	30 x 40		
1500	2.50				30 x 45	35 x 35	
1800	2.70				30 x 50	35 x 40	
2200	2.90					35 x 50	

(200V)

Cap.	Case code	Case size øD x L [mm]						
[µF]	Ripple current	Α	В	С	D	Е		
220	1.00	20 x 30	22 x 25					
270	1.10	20 x 35	22 x 30	25 x 25				
330	1.20	20 x 40	22 x 30	25 x 25				
390	1.30		22 x 35	25 x 30	30 x 25			
470	1.40		22 x 40	25 x 35	30 x 25			
560	1.50		22 x 45	25 x 35	30 x 30			
680	1.70			25 x 40	30 x 30			
820	2.00			25 x 50	30 x 35	35 x 30		
1000	2.20				30 x 45	35 x 35		
1200	2.30				30 x 50	35 x 40		
1500	2.50					35 x 50		

(250V)

(2001)						
Сар.	Case code		Cas	e size øD >	k L [mm]	
[µF]	Ripple current	А	В	С	D	Е
180	0.90	20 x 35	22 x 30	25 x 25		
220	1.00	20 x 40	22 x 30	25 x 25		
270	1.10		22 x 35	25 x 30	30 x 25	
330	1.20		22 x 40	25 x 35	30 x 25	
390	1.30		22 x 45	25 x 35	30 x 30	
470	1.40			25 x 45	30 x 35	35 x 30
560	1.50			25 x 50	30 x 35	35 x 30
680	1.70				30 x 45	35 x 35
820	2.00				30 x 50	35 x 40
1000	2.20					35 x 45
1200	2.30					35 x 50

(385/400V)

Cap.	Case code		Case	size øD x l	_ [mm]	
[μF]	Ripple current	А	В	С	D	E
56	0.51	20 x 30	22 x 25			
68	0.56	20 x 35	22 x 30	25 x 25		
82	0.64	20 x 40	22 x 35	25 x 25		
100	0.69		22 x 35	25 x 30		
120	0.75		22 x 40	25 x 35	30 x 25	
150	0.82		22 x 50	25 x 40	30 x 30	
180	0.90			25 x 45	30 x 35	35 x 25
220	1.00			25 x 50	30 x 40	35 x 30
270	1.10				30 x 45	35 x 35
330	1.20				30 x 50	35 x 40
390	1.30					35 x 45
470	1.40					35 x 50

^{*} Ripple current: [A] rms at 120Hz, +85 °C
* When ø35 x 45 and ø35 x 50 capacitors are mounted in P.C.B, reinforce them with supplementary utensil or adhesives. (Avoid using adhesives including halogenated composition.)

Explanation of Part Numbers - Flat-Type

Dimensions in mm (not to scale)

Case size/Ripple current - Flat-Type

ØD+1 x L max. [mm]
[A] rms (120Hz/+105°C)

W.V. Cap. [V. DC] [μF]			25		35		50		63		80		100	
330													22 x 20	0.8
470											22 x 20	0.8	25 x 20	1.0
680									22 x 20	0.9	25 x 20	1.0	30 x 20	1.1
1000							22 x 20	0.9	25 x 20	1.2	30 x 20	1.2	35 x 20	1.2
1500					22 x 20	1.1	25 x 20	1.2	30 x 20	1.3	35 x 20	1.4		
2200		-	22 x 20	1.3	25 x 20	1.4	30 x 20	1.4	35 x 20	1.5				
3300	22 x 20	1.3	25 x 20	1.6	30 x 20	1.7	35 x 20	1.7						
4700	25 x 20	1.6	30 x 20	1.8	35 x 20	2.0								
6800	30 x 20	1.8	35 x 20	2.3										
10000	35 x 20	2.4												

Cap.	W.V. [V. DC]	160		20	0	25	0	400		
	33							22 x 20	0.20	
	47							25 x 20	0.25	
	68					22 x 20	0.40	30 x 20	0.35	
	100			22 x 20	0.50	25 x 20	0.50	35 x 20	0.47	
	150	22 x 20	0.55	25 x 20	0.65	30 x 20	0.65			
	220	22 x 20	0.75	30 x 20	0.87	35 x 20	0.87			
	330	30 x 20	1.00	35 x 20	1.10			Case	Ripple	
	470	35 x 20	1.15					size	current	

- For general purpose
- Life: 2000 hours at 85 °C
- ø4x6 to ø10 x 10.5mm products
- · Excellent space factor
- Bi-polar type is available on request

Specifications

ltem			Performa	ance Characte	eristics			
Operating Temperature Range	-40 to +85 °C							
Rated Working Voltage Range	4 to 50V DC			100				
Nominal Capacitance Range	0.1 to 820μF							
Capacitance Tolerance	±20% (120Hz, +20 °C)						
Leakage Current	I ≤ 0.01CV or 3 [μA]		whicheve working	er is greater m voltage at +20	neasured a D°C. (Bi-p	fter 2 minute oolar type: T≤	s applicati 0.02CV c	on of rated or 6 [μΑ])
	Working voltage [V]	4	6.3	10	16	25	35	50
$ an \delta$	tan δ max.	0.35	0.26	0.20	0.16	0.14	0.12	0.12
(120Hz, +20 °C)	tan δ (Bi-polar) max.	0.70	0.52	0.40	0.32	0.28	0.24	0.24
	Impedance ratio max.	at 120Hz.						
	Working voltage [V]	4	6.3	10	16	25	35	50
Characteristics at Low Temperature	-25°C/+20°C	7	4	3	2	2	2	2
	-40°C/+20°C	15	8	6	4	4	3	3
High Temperature Loading	Ambient temperature Post test requirements Leakage current Capacitance change tan & Test conditions Duration Ambient temperature	at +20 °C	+85 °C C ≤ Initia ±20%	al specified va 6 of initial mea 8 of initial spe hours	sured valu		4 W.V.)	
Shelf Life	Applied voltage Post test requirements Leakage current Capacitance change tan δ	at +20 °((None C ≤ Initia ±30%		sured valu		4 W.V.)	
Resistance to Soldering Heat	Test conditions Capacitors shall be pl heated to +250 °C Post test requirements Leakage current Capacitance change tan §		C ≤ Initia ±10%	s on a plate (to al specified va 6 of initial mea al specified va	lue sured valu		nto the pla	ate)
	Capacitors shall be cap	oable of w	vithstanding	g exposure to	the follow	ing cleaning :	solvents.	
Cleaning	Conditions Solvents	Solv		Exposure time	Te	mperature		rasonic vave
	Freon-TE, TES, TP35 or equivalents	id or	≤5 min (total)		≤boiling point at 1 atm	Acc	eptable	

Explanation of Part Numbers

Marking

Dimensions in mm (not to scale)

Case size/Ripple current

Polariz	<u>red</u>												(mA) r.m	n.s. (120 F	Hz/ +85 °C)
Cap. (µA)	W.V. (V)	4 (0	OG)	6.3	3 (OJ)	10	(1A)	16	6 (1C)	25	5 (1E)	35	5 (1V)	50	(1H)
0.1	(0R1)													В	1
0.22	2 (R22)													В	3
0.33	3 (R33)													В	3
0.47	7 (R47)													В	5
0.68	3 (R68)													В	7
1.0	(010)													В	10
2.2	(2R2)													В	16
3.3	(3R3)													В	16
4.7	(4R7)									В	22	В	22	C	23
6.8	(6R8)									В	25			D	27
10	(100)							В	28	С	28	С	30	D	35
22	(220)			В	29			С	39	D	55	D	60	E	120
33	(330)	В	26			С	43			D	65	E	130	F	110
47	(470)	В	34	С	46			D	70			E	165	G	130
100	(101)	С	61	D	71			Е	200	F	180	G	210		
220	(221)	D	82			E	250			G	310				
330	(331)			E	300	F	330								
470	(471)			F	380	G	400								
680	(681)			G	550									Size	Ripple
820	(821)			G	660									code	current

^{* ()} shows W.V. and capacitance code

Case size/Ripple current

Bi-polar

Сар. (μΑ)	W.V. (V)	6.3 (0	OJ)	10 (1A)	16 (1	C)	25 (1E)	35	(1V)	50	(1H)
0.22	(R22)										1	В	2
0.33	(R33)			-,								В	3
0.47	(R47)											В	5
1.0	(010)		mater									В	10
2.2	(2R2)									В	12	С	16
3.3	(3R3)					В	14	С	18			С	21
4.7	(4R7)					В	20	С	25			D	28
10	(100)			В	25	С	25	D	28				
22	(220)					D	39						
33	(330)			D	43							Size	Ripple
47	(470)	D	46									code	current

^{* ()} shows W.V. and capacitance code

- High reliability surface mount type
 Long life: 2000 hours at +105 °C
- 5.5mm max. height
- Excellent space factor
- Bi-polar type is available on request

Specifications

Item		Pe	formance (Characteri	stics			
Operating Temperature Range	-40 to +105 °C (Bi-pola	ar type -40 to	+85 °C)					
Rated Working Voltage Range	4 to 50V DC		· · · · · · · · · · · · · · · · · · ·					
Nominal Capacitance Range	0.1 to 220μF							
Capacitance Tolerance	±20% (120Hz, +20 °C))						
Leakage Current	I ≤ 0.01CV or 3 [μA]				asured after °C. (Bi-pola			
	Working voltage [V]	4	6.3	10	16	25	35	50
$ an oldsymbol{\delta}$	tan δ max.	0.35	0.26	.20	0.16	0.14	0.12	0.12
(120Hz, +20 °C)	tan δ (Bi-polar) max.	0.70	0.52	.40	0.32	0.28	0.24	0.24
	Impedance ratio max. a	at 120Hz.						
	Working voltage [V]	4	6.3	10	16	25	35	50
Characteristics at Low Temperature	-25°C/+20°C	7	4	3	2	2	2	2
	-40°C/+20°C	15	8	6	4	4	3	3
High Temperature Loading	Duration Applied voltage Ambient temperature Post test requirements Leakage current Capacitance change tan δ	: at +20 °C :	Rated work +105 °C (Bi ≤ Initial spe	ing voltag -polar typ cified valu itial measi	e: +85 °C) e ured value (:		·	у).
Shelf Life	Test conditions Duration Ambient temperature Applied voltage Post test requirements Leakage current Capacitance change tan &	at +20 °C	(None) ≤ Initial spe ±20% of in	-polar typ cified valu itial measi	ured value (:	±30% for	4 W.V.)	
tan δ : ≤ 150% of initial specified value Test conditions Capacitors shall be placed for 30 seconds on a plate (termination face down onto the plate) heated to +250 °C Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ±10% of initial measured value tan δ : ≤ Initial specified value								
	Capacitors shall be cap	pable of withst	anding exp	osure to t	he following	cleaning :	solvents.	
Cleaning	Conditions Solvents	Solvent condition	Expo tim		Tempera	ture	Ultrasc	
	Freon-TE, TES, TP35 or equivalents	Liquid or vapor	≤5 i (tot		≤boilin point a 1 atm	ať	Accepta	

Explanation of Part Numbers

Marking

Dimensions in mm (not to scale)

Case size/Ripple current

Case	SIZE	Libb	16	Gui	ı	CI	п
Polarize	ed						

((10011 / 105 00)	
(mA) r.m.s.	(120 Hz/ +105 °C)	

Cap. (μA)	W.V. (V)	4 ((OG)	6.	.3 (OJ)	10	(1A)	16	(1C)	2	5 (1E)		50 (1H)
0.1	(0R1)											В	1
0.15	(R15)											В	1.5
0.22	(R22)											В	2.3
0.33	(R33)											В	3.5
0.47	(R47)											В	5
0.68	(R68)											В	7
1.0	(010)											В	10.6
1.5	(1R5)											В	13
2.2	(2R2)											В	16
3.3	(3R3)											В	18
4.7	(4R7)									В	21	C,D	22,23
6.8	(6R8)									В	25	C,D	27,29
10	(100)							В	28	С	28	D	35
22	(220)			В	29			С	39	D	55		
33	(330)	В	26	В	26	С	43			D	65		
47	(470)	В	26	С	46			D	70				
100	(101)	С	61	D	71							Size	Ripple
220	(221)	D	82									code	current

Bipolar

(mA) r.m.s. (120 Hz/ +85 °C)

Сар. (µА)	W.V. (V)	6.3 ((OJ)	10	(1A)	16	i (1C)	25	(1E)	50	(1H)
0.22	(R22)									В	2
0.33	(R33)									В	3
0.47	(R47)									В	5
1.0	(010)									В	10
3.3	(3R3)							В	12	D	16
4.7	(4R7)							В	12	D	23
10	(100)	В	20	В	**	С	25	D	28		
22	(220)	С	26					D	55		
33	(330)	D	29	D	**					Size	Ripple
47	(470)	D	35							code	current

^{*()} shows W.V. and capacitance code.

^{**} contact factory.

- Ideal low impedance at high frequency (300kHz to 10MHz) (Reduced ESR due to an applying speciality polymer with high conductivity.)
- Excellent noise-absorbent characteristics
- Surface mountable (Reflow soldering method available.)
- · Very stable capacitance against temperature and frequency
- Excellent endurance characteristics due to adoption of solid electrolyte
- 4-terminal-construction realize further low impedance

Specifications

Item	Performance Characteristics				
Operating Temperature Range	−40 to +105 °C				
Rated Working Voltage Range	6.3to16V DC				
Nominal Capacitance Range	2.2 to 33μF				
Capacitance Tolerance	±20% (120Hz, +20 °C)				
Leakage Current	I ≤ 3 μA after 2 min.				
tan δ	≤ 0.06 (120kHz/+20 °C)				
Impedance	Refer to standard products table (400kHz/+20 °C)				
Permissible Ripple Current	Refer to standard products table (100kHz/+20~+105 °C)				
Surge Voltage	rated working voltage x 1.25				
Endurance	After applying rated working voltage for 1000 hours at +105 °C, and then being stabilized at +20 °C, capacitor shall meet following limits. Capacitance change : ±10% of initial measured value tan \$\delta\$: Initial specified value Leakage current : Initial specified value				
Moisture Resistance	After storing for 500 hours at +40 °C, 90 to 95% RH Capacitance change : +40 - 20% of initial measured value tan δ : Initial specified value Leakage current : Initial specified value				
Permissible Current between terminals with same polarity	2A DC max. (This shall be applicable only when each terminal is landed or the circuit individually.)				

Construction

Dimensions

Stable Capacitance Characteristics

Capacitance-temperature Characteristics

Impedance-frequency Characteristics

Endurance

Capacitance range

Leakage Current

Explanation of Part Numbers

Impedance (400kHz/+20 °C) / Ripple current (100kHz/+20 ~ +105 °C)

	W.V. [V. DC]	6.3		8	10	12.5	16
Cap. [μF]		(OJ)		(0K)	(1A)	(1B)	(1C)
4.7	(4R7)						*
6.8	(6R8)						*
8.2	(8R2)		0.4Ω	1000mA			
10	(100)	*					
15	(150)		0.3Ω	1300mA			
22	(220)	*	0.2Ω	1600mA			
33	(330)	*					

^{*} denotes product under development.

Packaging

Standard Packing Quantity

Embossed taping	
 3000 pcs./reel	

Reel dimensions

Embossed Taping	[mm]
Tape (W=16mm) Feeding hole P2 P0 Chip pocket D0 Chip pocket	M

A ± 0.2	В	± 0.20	W ±	= 0.3	F±	0.1	E±C	.10	P ₁ ± 0.1
8.4		5.65	16	3.0	7.	_	1.7	5	8.0
P ₂ ± 0).1	P ₀ ± 0).1	øD	00		t ₁	t ₂	± 0.1
20		40		1.5	Ω		0.4		3.6

А	В	С	D	Е	W	Т	t
380 ± 2	50 min.	13.0 ± 0.5	21.0 ± 0.8	2.0 ± 0.5		22	2.0

Marking

Packaging Quantities

A type (Radial type) bulk

[unit: pcs.]

0	Long	Long lead		ormed
Case size [mm]	Inner packaging	Outer packaging	Inner package	Outer packaging
ø3 x 5 ~ ø6.3 x 7	200	10000	200	10000
ø6.3 x 9 ~ ø6.3 x 16	200	5000	200	5000
ø8 x 5 ~ ø8 x 12.5	200	4000	200	4000
ø8 x 15 ~ ø8 x 16	200	3000	200	3000
ø8 x 20	200	2000	200	2000
ø10 x 9 ~ ø12.5 x 16	200	2000	200	2000
ø12.5 x 15	100	2000	100	2000
ø12.5 x 20 ~ ø12.5 x 25	100	2000	100	1000
ø12.5 x 30 ~ ø12.5 x 40	100	1000	100	500
ø16 x 16 ~ ø16 x 20	50	1000	50	1000
ø16 x 25 ~ ø16 x 31.5	50	1000	50	500
ø16 x 35.5	50	500	50	200
ø16 x 40	50	500	50	200
ø18 x 15 ~ ø18 x 20	50	1000	50	500
ø18 x 25 ~ ø18 x 40	50	500	50	200
ø20 x 30	50	500		_

B type (Axial type) bulk

Casa siza	Long lead		
Case size [mm]	Inner packaging	Outer packaging	
ø3.5 x 7	200	6000	
ø4.5 x 10.5 ~ ø5 x 10.5		4000	
ø6.3 x 10.5 ~ ø10 x 31.5	100	2000	
ø12.5 x 25 ~ ø16 x 40		1000	
ø18 x 40	50		
ø22.4 x 40		500	
ø22.4 x 50	25	400	
ø25 x 50]	200	

A type (Radial type) taping

	Вох		Ree	l
Case dia. [mm]	Inner packaging	Outer packaging	Inner packaging	Outer packaging
ø3	20000	10000	_	_
ø4	2000	10000	2000	8000
ø5	2000	10000	1500	6000
ø6.3	2000	10000	1000	4000
ø8	1000	5000	750	3000
ø10	500	2000	_	_
ø12.5	500	2000		
ø16 • 18	250	1000	_	

B type (Axial type) taping

0	Box	Вох		el	
Case dia. [mm]	Inner Outer packaging		Inner packaging	Outer packaging	
ø3.5	1000	10000			
W = 26mm	1000	10000			
ø3.5	0000	10000	4000	00000	
W = 52mm	2000	12000	4000	20000	
ø4.5	1500	9000	3000	15000	
ø5	_		1500	7500	
ø6.3		_	1000	5000	
ø8		_	1000	5000	
ø10	_		500	2500	

V type (Chip type) taping

Case code	Inner packaging	Outer packaging
A,B	2000	20000
C,D,E	1000	10000
F,G	500	3000

TS type (Snap-in type)

Case dia. [mm]	Box
ø20	300
ø22 ~ ø25	200
ø30 ~ ø35	100

TS type (Snap-in type)

Case dia. [mm]	Box
ø35	100
ø40	50

 $Please\ consult\ us\ regarding\ lug\ terminal\ types\ (M\ type),\ screw\ terminal\ types\ (G\ type),\ and\ capacitors\ for\ photo\ flash.$

The above tables are as of 1990 and are subject to change without notice.

Axial Lead Type Taping & Packaging

	Style	W	ø3.5	ø4.5	ø5	ø6.3	ø8	ø10	ø12.5
Packaging	Reel	52/63/73	4,000 pcs.	3,000 pcs.	1,500 pcs.	1,000 pcs.	1,000 pcs.	500 pcs.	400 pcs.
quantity		52	2,000 pcs.	1,500 pcs.					
	Ammunition	26	1,000 pcs.						

Taping Specifications (Radial Lead Type)

[mm]

F = 2.5 (ø3, ø4, ø5)

 $F = 2.5 (\emptyset 6.3, \emptyset 8 \times 5, \emptyset 8 \times 7)$

Code	F = 5.0	"F = 2.5	Tolerance
ød	0.40	~ 0.60	±0.05
P₀		2.7	±0.2
F	5.0+0.8	2.5 ± 0.5	
W	18	3.0	±0.5
H₀	16.0	Name of the last o	±0.5
	17.5 ±0.75	18.5-0.5	
Н	'318.5 ^{+0.75}		
	°420.0+0.75		
øD₀	4	.0	±0.2
P	12	2.7	±1.0
P ₁	3.85	5.10	±0.50
P ₂	6.	±1.00	
δh	≤	_	
t	0	.6	±0.3

- *1 for dia ø3 ~ ø6.3 & ø8 x 5 products

 *2 for 4 x 5, 5 x 5, 6.3 x 5, 4 x 7, 5 x 7, 6.3 x 7 products

 *3 for 5 x 11, 5 x 15, 6.3 x 11.2, 6 x 15 products also ø8 products available (suffix "BQ")

 *4 for ø8 x 7, 8 x 9, 8 x 11.5, 8 x 12.5, 8 x 16, 8 x 20 products

F = 5.0 (ø10, ø12.5 (height ≤25)

Code	ø10 ø12.5		Tolerance
ød	0.0	±0.05	
P ₀	12.7	15.0	±0.2
F	5.	.0	+0.8, -0.2
W	18	3.0	±0.5
W ₀	≥12.0	≥15.0	_
W ₁	9.	.0	±0.5
W ₂	0 ~	_	
Н	*116	+0.75, -0	
	^{'2} 18	3.50	+0.75, -0.5
øD ₀	4.	.0	±0.2
Р	12.7	15.0	±1.0
P ₁	3.85	5.0	±0.50
P ₂	6.35	±1.00	
∆h	≤1	_	
t	0.	±0.3	
*1 Suffix "B"			

*2 Suffix "BQ"

 $F = 7.5 (Ø16, Ø18 (height \le 25))$

Code	Standard	Tolerance
ød	0.80	±0.05
Р	30.0	±1.0
P ₀	15.0	±0.2
P ₁	3.75	±0.50
P ₂	7.5	±1.0
F	7.5	±0.5
W	18.0	±0.5
Wo	≥15.0	
W ₁	9.0	±0.5
W ₂	0 ~ 1.5	
Н	18.50	+0.75, -0.50
øD ₀	4.0	±0.2
ΔΡ	≤1.3	
Δh	≤2.0	
t	0.6	±0.3
	≤2.0	 ±0.3

Packaging for Radial Lead Taped Products

Container

No more than 3 consecutive missing components are permitted. Container quantity shall be actual number as indicated

Components shall be capable of sustaining a 500 gram steady pull for 10 seconds in the direction of lead egress.

All polarized components shall be oriented in one direction.

Tape splicing

Order quantity shall be a multiple of packing quantity of one box.

Each box shall be marked with following:

- a) Part name
- b) Manufacturer's part nuimber
- c) Quantity
- d) Manufacturer's name or symbol
- e) Date code or lot number
- f) Country of origin

Ammunition packing is recommended.

Both are available to supply components with polarity by + plus first or - minus first.

Lead forming

Self mounting type

*Direction of bending shape is random.

Dimensions

[mm]

Case	H1			F		Е		for I	P.C.B
dia.	±0.5	H2	НЗ	±0.5	Р	max.	ød	dia. ø	thickness
5	4.5	2.7	2.5	5.0	0.85	1.0	0.5	0.8	1.6
6.3	4.5	2.7	2.5	5.0	1.00	1.0	0.5/0.6	1.0	1.6
8	4.5	2.7	2.5	5.0	1.00	1.0	0.6	1.0	1.6
10/12.5	4.5	2.7	_	5.0	1.30	1.3	0.6	1.0	1.6
16/18	4.5	2.7	_	7.5	1.30	1.3	0.8	1.0	1.6
*4/5/6.3	4.5	2.8	1.5	5.0	0.95	1.3	0.45	0.9	1.6

^{*5}mm & 7m height products (ex. KA/KS series)

Straight & formed lead cut

(Self mounting type is recommended as standard products)

Packaging Specifications

Reel Dimensions in mm (not to scale)

Taping Dimensions in mm (not to scale)

- Wide operating temperature range: -25 to 125 °C
- Improved "Voltage vs. Temperature Rise" through low loss ceramic dielectric materials
- Temperature stable type (Char. B/Y5P)
- · Flame-retardant insulating coating applied

Applications

- · Snubber circuit of switching power supply
- · Horizontal resonance circuit of TV and CRT display
- · Inverter lighting apparatus
- · High voltage and pulse circuit

Specifications

Characteristics	Specifications
Operating Temperature Range	-25 to 125 *°C
Rated Voltage	1kVDC, 2 kVDC and 3 kVDC
Dielectric Withstanding Voltage	200% of the rated voltage for 1 to 5 seconds
Capacitance	Within the specified tolerance, when measured at 1 kHz ±10 %, 1 to 5 Vrms and 20 °C
Dissipation Factor	0.025 max. at 1 kHz \pm 10 %, 1 to 5 Vrms and 20 °C
Insulation Resistance	10000 M Ω min. at 500 VDC and 1 minute electrification
Temperature Characteristics	Capacitance Change: ±10 % max, over the temperature range of -20 to 85 °C

^{*}Including maximum temperature rise of +20 °C

[Temperature Characteristic B/Y5P/2B4]

Dimensions

Standard Product (For DC and Pulse Circuit, Rated Voltage 1kV~3kVDC, B/Y5P/2B4)

Rated	Part Number	Capa	citance		Dimens	sions (mm)	
Voltage		Cap. (pF)	Tol. (%)	D max.	T max.	F	ød
1 - 11 - 13 -	ECKD3A101KBP	100	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A121KBP	120	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A151KBP	150	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A181KBP	180	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A221KBP	220	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A271KBP	270	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A331KBP	330	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A391KBP	390	±10	6.0	4.5	5.0±1.5	0.6
1kVDc	ECKD3A471KBP	470	±10	6.0	4.5	5.0±1.5	0.6
	ECKD3A561KBP	560	±10	7.0	4.5	5.0±1.5	0.6
	ECKD3A681KBP	680	±10	7.0	4.5	5.0±1.5	0.6
		820		7.5	4.5		0.6
	ECKD3A821KBP		±10			5.0±1.5	
	ECKD3A102KBP	1000	±10	9.0	4.5	5.0±1.5	0.6
	ECKD3A122KBP	1200	±10	9.0	4.5	5.0±1.5	0.6
	ECKD3A152KBP	1500	±10	9.5	4.5	5.0±1.5	0.6
	ECKD3A182KBP	1800	±10	10.0	4.5	5.0±1.5	0.6
	ECKD3A222KBP	2200	±10	12.0	4.5	5.0±1.5	0.6
	ECKD3A272KBP	2700	±10	12.0	4.5	5.0±1.5	0.6
	ECKD3A332KBP	3300	±10	13.5	4.5	10.0±2.0	0.6
	ECKD3A392KBP	3900	±10	13.5	4.5	10.0±2.0	0.6
	ECKD3A472KBP	4700	±10	15.5	4.5	10.0±2.0	0.6
	ECKD3A562KBP	5600	±10	17.0	4.5	10.0±2.0	0.6
	ECKD3D101KBP	100	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D121KBP	120	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D151KBP	150	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D181KBP	180	±10	7.0	5.0	7.5±2.0	0.6
-	ECKD3D221KBP	220	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D271KBP	270	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D331KBP	330	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D391KBP	390	±10	7.0	5.0	7.5±2.0	0.6
	ECKD3D471KBP	470	±10	7.5	5.0	7.5±2.0	0.6
	ECKD3D561KBP	560	±10	8.0	5.0	7.5±2.0	0.6
2kVDC	ECKD3D681KBP	680	±10	9.0	5.0	7.5±2.0	0.6
LINUBO	ECKD3D821KBP	820	±10	9.0	5.0	7.5±2.0	0.6
	ECKD3D102KBP	1000	±10	10.0	5.0	7.5±2.0	0.6
ì	ECKD3D102KBP	1200	±10	10.5	5.0	7.5±2.0	0.6
	ECKD3D152KBP	1500	±10	12.0	5.0	7.5±2.0	0.6
	ECKD3D132KBP	1800	±10	12.5	5.0	7.5±2.0	0.6
	ECKD3D162KBP	2200	±10	14.0	5.0	7.5±2.0 10.0±2.0	0.6
}							
	ECKD3D272KBP	2700	±10	16.0	5.0	10.0±2.0	0.6
	ECKD3D332KBP	3300	±10	17.0	5.0	10.0±2.0	0.6
	ECKD3D392KBP	3900	±10	18.0	5.0	10.0±2.0	0.6
	ECKD3D472KBP	4700	±10	25.0	5.0	10.0±2.0	0.8
	ECKD3D562KBP	5600	±10	25.0	5.0	10.0±2.0	0.8
	ECKD3F101KBP	100	±10	7.5	6.0	7.5±2.0	0.65
	ECKD3F121KBP	120	±10	7.5	6.0	7.5±2.0	0.65
	ECKD3F151KBP	150	±10	7.5	6.0	7.5±2.0	0.65
	ECKD3F181KBP	180	±10	7.5	6.0	7.5±2.0	0.65
	ECKD3F221KBP	220	±10	7.5	6.0	7.5±20	0.65
	ECKD3F271KBP	270	±10	7.5	6.0	7.5±2.0	0.65
	ECKD3F331KBP	330	±10	8.0	6.0	7.5±2.0	0.65
	ECKD3F391KBP	390	±10	9.0	6.0	7.5±2.0	0.65
3kVDC	ECKD3F471KBP	470	±10	9.5	6.0	7.5±2.0	0.65
	ECKD3F561KBP	560	±10	10.0	6.0	7.5±2.0	0.65
	ECKD3F681KBP	680	±10	11.0	6.0	7.5±2.0	0.65
	ECKD3F821KBP	820	±10	11.0	6.0	7.5±2.0	0.65
	ECKD3F102KBP	1000	±10	. 12.5	6.0	7.5±2.0	0.65
	ECKD3F122KBP	1200	±10	14.5	6.0	10.0±2.0	0.65
	ECKD3F152KBP	1500	±10	14.5	6.0	10.0±2.0	0.65
			· 10	1-7.0	0.0	10.012.0	0.00
			+10	16.0	60	10.0+2.0	0.65
	ECKD3F132KBP ECKD3F182KBP ECKD3F222KBP	1800 2200	±10 ±10	16.0 17.0	6.0 6.0	10.0±2.0 10.0±2.0	0.65 0.65

 Ceramic Disc Capacitors, "Type GL", rated 250 VAC, are recognized by UL

Related Standards and Certificate Number

Related Standards	Certificate Number/File No.
UL1414	E62674 (Rated 250 VAC)
CSA C22.2	LR58064-7 (Rated 125 VAC)

Specifications (Type GL)

Characteristics		Specifica	itions	
Operating Temperature Range	-25 to 85 °C)		
	Applicable Standards		Rated Voltage	
Rated Voltage	UL	-	250 VAC	
	CS	SA	125 VAC	
Dielectric Withstanding Voltage	1500 VAC fo	or 1 minute		
Capacitance	Within the specified tolerance, when measured at 1 kHz, 1 to 5 Vrms and 20 °C			
	B/Y5P/2B4: 0.025 max.			
Dissipation Factor	E/Y5U/2E4:	0.025 max	Κ.	
	V: 0.05 max	x.		
Insulation Resistance	10000 MΩ r	min. at 500	VDC, 1 minute	
	T.C.	Cap. Char	nge Temp. Range	
	B/Y5P/2B4	±10 % ma	ax25 to 85 °C	
Temperature Characteristics	E/Y5U/2E4	+20 % max	x25 to 85 °C	
(see page 68)	V	+30 % max	x. 0 to 70 °C	
	The reference	ce temperat	ure: 20 °C	

Dimensions

Ratings and Characteristics

Part Number	Capacitance	Tolerance	Temperature	Dimensions in mm			
	(pF)	(%)	Characteristics	D max.	T max.	F	d
ECKDGL101MB	100	±20	B/Y5P/2B4	8.0	5.5	7.5	0.65
ECKDGL151MB	150	±20	B/Y5P/2B4	8.0	5.5	7.5	0.65
ECKDGL221MB	220	±20	B/Y5P/2B4	8.0	5.5	7.5	0.65
ECKDGL331MB	330	±20	B/Y5P/2B4	8.0	5.5	7.5	0.65
ECKDGL471MB	470	±20	B/Y5P/2B4	9.0	5.5	7.5	0.65
ECKDGL681MB	680	±20	B/Y5P/2B4	9.0	5.5	7.5	0.65
ECKDGL102ME	1000	±20	E/Y5U/2E4	9.0	5.5	7.5	0.65
ECKDGL152ME	1500	±20	E/Y5U/2E4	11.0	5.5	7.5	0.65
ECKDGL222ME	2200	±20	E/Y5U/2E4	12.0	5.5	7.5	0.65
ECKDGL332ME	3300	±20	E/Y5U/2E4	15.0	5.5	10.0	0.65
ECKDGL472ME	4700	±20	E/Y5U/2E4	17.0	5.5	10.0	0.65
ECKDGL472ZV	4700	+80, -20	V	12.0	5.5	7.5	0.65
ECKDGL103ZV	10000	+80, -20	V	17.0	5.5	10.0	0.65

- Ceramic Disc Capacitors, Type NS, are recognized by UL, CSA, BSI, SEMKO, SEV and VDE
- The NS (Suffix: X) capacitors are applicable to "Class II" equipment in European safety regulations

Specifications (Type NS)

Characteristics		Specification	าร		
Operating Temperature Range	-25 to 85 °C)			
	Applicable S	Standards	Rated Voltage		
	UL, CSA		125 VAC		
Rated Voltage	VDE (565	-1)	250 VAC		
	VDE (560-	-2),	400 VAC		
	SEV, BS,	SEMKO			
	[For Class II		0 VAC, 1 min.		
	[For Class I	equpiment]			
Dielectric Withstanding Voltage	Notes:	260	0 VAC, 1 min.		
	[T.C. E, 10000 pF] 2000 VAC, 1 min. [T.C. V] 2500 VAC, 1 min.				
Capacitance		pecified tolerar t 1 kHz, 1 to 5	nce, when Vrms and 20 °C	;	
	·	E/Y5U/2E4: 2	2.5% max.		
Dissipation Factor	V: 5.0% ma		5\/rmc may and	4	
	When measured at 1 kHz, 5Vrms max. and 20 °C				
Insulation Resistance	10000 MΩ r	min. at 500 VD	C, 1 minute		
	T.C.	Cap. Change	Temp. Range		
	B/Y5P/2B4	±10 % max.	-25 to 85 °C		
Temperature Characteristics	E/Y5U/2E4	±20 % max.	-25 to 85 °C		
(see page 68)	V	- ³⁰ % max.	0 to 70 °C		
	●The reference	ce temperature	e: 20 °C		

Dimensions

Related Standards and Certificate Numbers

	Related Standa	ard	Certificate Number	T.C.	Cap. Range (Applicable)
UL	(USA)	UL1414	E62674	B/E/V	100~22000 pF
CSA	(Canada)	CSA C22.2	LR31605	B/E/V	100~22000 pF
			32543	В	100~1000 pF
	VDE (Germany)	VDE 560-2*	35912	Е	1500~4700 pF
VDE			32543	V	4700~22000 pF
		VDE 565-1*	32544	В	100~1000 pF
			35912	Е	1500~4700 pF
	(0.1)	SEV 1016**	90,102655,11	B/E	100~4700 pF
SEV	(Switzerland)	SEV1055 X**	90,102655,12	Е	10000pF
BSI	(UK)	BS 415	415226319	B/E/V	100~22000pF
SEMKO	(Sweden)	SEMKO 101	8372418	B/E/V	100~22000 pF

Notes: *VDE 560-2: For coupling use

VDE 565-1: For radio interference suppressor

**SEV 1016: For protection from electric shock

SEV 1055: For radio interference suppressor

Standard Products (Type NS)

	Capac	itance		Dim	nensions (mm)			Appli	cable star	ndards		
Part Number	Rated	Tol.	T.C.	D max.	F	d	UL	CSA	VDE		SEV	BS	SEMKO
	Cap. (pF)	(%)							560-2	565-1			
ECKDNS101MBX	100	±20	В	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS221MBX	220	±20	В	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS471MBX	470	±20	В	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS102MBX	1000	±20	В	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS152MEX	1500	±20	Е	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS222MEX	2200	±20	Е	11.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS332MEX	3300	±20	Ε	13.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS472MEX	4700	±20	Е	16.0	10.0	0.65	0	0	•	•	•	•	•
ECKDNS101MB	100	±20	В	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS221MB	221	±20	В	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS471MB	470	±20	В	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS102MB	1000	±20	В	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS152ME	1500	±20	Е	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS222ME	2200	±20	Е	10.5	7.5	0.65	0	0	0	0	0	0	0
ECKDNS332ME	3300	±20	Е	13.0	10.0	0.65	0	0	0	0	0	0	0
ECKDNS472ME	4700	±20	E	16.0	10.0	0.65	0	0	0	0	0	0	0
ECKDNS103ME	10000	±20	Е	22.0	10.0	0.80	0	0				0	0
ECKDNS472ZV	4700	+80, -20	V	12.0	7.5	0.65	0	0	0	_		0	0
ECKDNS103ZV	10000	+80, -20	V	17.5	10.0	0.65	0	0	0	_		0	0
ECKDNS223ZV	22000	+80, -20	V	24.0	10.0	0.80	0	0	0	_		0	0

Notes: O for Class I equipment

• for Class II equipment

Ceramic disc capacitors, Type RS, are recognized by the following safety regulations:

- UL1414 (125 VAC) and CSA (125 VAC)
- European safety regulations for "Class I" equipment: VDE, SEV, BSI, SEMKO, FIMKO, NEMKO and DEMKO

Specifications (Type RS)

Characteristics		Specifica	ation	S		
Operating Temperature Range	-25 to 85 °C)				
	Applicable S	Standards	Rated Voltage			
D 1 100 11 17 11	UL, CSA			125 VAC		
Rated Working Voltage	VDE (565-1)			250 VAC		
	VDE (560-2), FIMKO NEMKO, DEMKO SEV, BS, SEMKO			400 VAC		
	T.C		Voltage			
Dielectric Withstanding Voltage	B/Y5P/2B4, E	E/Y5U/2E4	2600VAC for 1 min.			
	V		250	OVAC for 1 min.		
Capacitance	Within the to kHz, 5 Vrms	olerance, w s. max. and	hen 20°	measured at 1		
	B/Y5P/2B4, E/Y5U/2E4: 2.5% max.					
Dissipation Factor	V: 5.0% ma	ax.				
	When measured at 1kHz, 5Vrms. max. and 20 °C					
Insulation Resistance	10000 MΩ r	min. at 500	V D	C. 1 minute		
	T.C.	Cap. Char	nge	Temp. Range		
	B/Y5P/2B4	±10 % m	ax.	-25 to 85 °C		
Temperature Characteristics	E/Y5U/2E4	.‡20 % ma	ıx.	-25 to 85 °C		
(see page 68)	V	- ^{‡30} % ma	ıx.	0 to 70 °C		
	• The reference temperature: 20 °C					

Dimensions

Explanation of Part Numbers

Related Standards and Certificate Numbers

	Related Standa	ard	Certificate Number	T.C.	Cap. Range (Applicable)
UL	(USA)	UL1414	E62674	B/E/V	100~10000 pF
CSA	(Canada)	CSA C22.2	LR58064-7	B/E/V	100~10000 pF
			51437	В	100~1000 pF
		VDE 560-2	51438	Е	1500~4700 pF
VDE	(Germany)		51436	V	4700~10000 pF
		VDE 565-1	51454	В	100~1000 pF
			51455	Е	1500~4700 pF
		SEV 1016 (b)	87, 1 02636, 04	B/E	100~3300 pF
		a	87, 1 02636, 05	B/E	100~4700 pF
SEV	(Switzerland)	SEV1055 X	87, 1 02636, 08	B/E	100~4700 pF
		Υ	87, 1 02636, 06	B/E	100~4700 pF
BSI	(UK)	BS 415	226843	B/E/V	100~10000 pF
SEMKO	(Sweden)	SEMKO 101	8731033	B/E/V	100~10000 pF
FIMKO	(Finland)	E101-82	121318-01	B/E/V	100~10000 pF
FIIVINO	(Finiand)	E384-14/82	124364-01	B/E/V	100~10000 pF
NEMKO	(Nonvoy)	IEC 65	E44177	B/E/V	100~10000 pF
NEWKO	(Norway)	132/85	E 44178, E 44179	B/E/V	100~10000 pF
DEMKO	(Denmark)	SECTION 21	98270 EC	B/E/V	100~10000 pF
DLIVINO	(Deninark)	SECTION 101	98270 EC	B/E/V	100~10000 pF

Standard Products (Type NS)

	Capac	citance		Dimensions (mm)			Applicable standards								
Part Number	Rated	Tol.	T.C.	D max.	F	d	UL	CSA	V	DE.	SE	ΞV	BS	SEMKO	FIMKC
	Cap. (pF)	(%)							560-2	565-1	1016	1055		NEMKO	DEMKC
ECKDRS101MB	100	±20	В	9.5	7.5	0.65	0	0	0	0	()	0	0	0	0
ECKDRS151MB	150	±20	В	9.5	7.5	0.65	0	0	0	()	()	()	0	0	0
ECKDRS221MB	220	±20	В	9.5	7.5	0.65	0	0	0	0	0	0	0	0	0
ECKDRS471MB	470	±20	В	9.5	7.5	0.65	0	0	0	O	0	0	0	O	O
ECKDRS102MB	1000	±20	В	10.0	7.5	0.65	0	0	0	0	0	0	0	0	0
ECKDRS152ME	1500	±20	Е	10.0	7.5	0.65	0	0	0	0	0	0	0	0	0
ECKDRS222ME	2200	±20	Е	10.5	7.5	0.65	0	0	0	0	0	0	0	0	0
ECKDRS332ME	3300	±20	E	12.5	7.5	0.65	0	0	0	0	0	0	0	0	0
ECKDRS472ME	4700	±20	Е	16.0	10.0	0.65	0	0	0	0	^	0	0	0	0
ECKDRS472ZV	4700	+80/-20	V	11.0	7.5	0.65	0	0	0	_		_	0	0	0
ECKDRS103ZV	10000	+80/-20	V	17.0	10.0	0.65	0	0	0			_	0	0	0

Notes: \bigcirc : Indicates recognized components by the related standards on the table.

∴: ECKDRS472ME; Applicable only for SEV1016 (a), not applicable for SEV1016 (b).

Temperature Characteristics B/Y5P/2B4

Temperature Characteristics E/Y5U/2E4

Temperature Characteristics V

Standard Products and Indvidual Taping Specifications

For DC and Pulse Circuit, Rated Voltage 500V DC to 3kV DC B/Y5P/2B4, SL/GP

Rated	Temp.	De d Novele en	Capacitance	Taping Dimensions in mm					
Voltage	Char.	Part Number	Range (pF)	Taping Type	F	Po	Р		
1147.00	В	ECKZ3ATITIKBP	100~2700	Z0, R0	5.0±0.8	12.7±0.3	12.7±1.0		
1kV DC B	ECKR3ATITIKBP	3300~5600	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0			
OLAV DO	Б	ECKZ3DTTTKBP	100~1800	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0		
2KV DC	2kV DC B	ECKR3DTTTKBP	2200~3900	Z2, R2	7.5±1.0	15.0±0.3	30.0±1.0		
0147.00	В	ECKZ3FIIIIKBP	100~1200	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0		
3kV DC	В	ECKR3F777KBP	1500~2700	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0		

Safety Regulations Recognized Type RS, NS, and GL

Type	Temp.	Part Number	Capacitance		Taping Dime	nsions in mm	
,	Char.	rarryamser	Range (pF)	Taping Type	F	P _o	Р
RS	В	ECKZRSOOOOB	100 - 1000	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
(For Class I	-	ECKZRSCICIME	1500 - 3300	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
(For Class I equipment)	E	ECKRRSTITIME	4700	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0
	V	ECKZRSIIIIZV	4700	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
	V	ECKRRS	10000	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0
NS	В	ECKZNS	100 - 1000	Z3	10.0±1.2	15.0±0.3	15.0±2.0
(For Class II	E	ECKZNSTITIMEX	1500 - 3300	Z3	10.0±1.2	15.0±0.3	15.0±2.0
equipment)		ECKZING IL HILIVIEX	4700	Z4	10.0±1.2	15.0±0.3	30.0±2.0
330	В	ECKZGLIIIIMB	100 - 680	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
GL	E	ECKZGLIIIIME	1000 - 2200	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
	E	ECKRGLIIIME	3300 - 4700	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0
	V	ECKZGL	4700	Z1, R1	7.5±1.0	15.0±0.3	15.0±2.0
	V	ECKRGL DOZV	10000	Z2, R2	7.5±1.0	15.0±0.3	30.0±2.0

^{*}See next page for taping type detail

Specifications for Straight Lead, Radial Taped Type

Taping Dimensions in mm

P 12.7±1.0 15.0±2.0 30.0±2.0 15.0±2.0 30.0± P ₀ 12.7±0.3 15.0±0.3 15.0±0.3 15.0±0.3 15.0± F 5.0±0.8 7.5±1.0 7.5±1.0 10.0±1.2 10.0± P ₁ 3.85±0.70 3.75±0.80 3.75±0.80 10.0±0.8 10.0± P ₂ 6.35±1.30 7.5±1.5 7.5±1.5 15.0±1.5 15.0± D (To comply with each individual specification) W 18.0 ±0.5 W ₀ 10.0 min. W ₁ 9.0±0.5 W ₂ 3.0 max. H 18.0 ±2.6 e 3.0 max. eD ₀ 4.0±0.2 ed 0.66±0.05 or 0.65±0.05 t ₁ 0.6±0.3 t ₂ 1.5 max.	.pg			_					
P ₀ 12.7±0.3 15.0±0.3 15.0±0.3 15.0±0.3 15.0± F 5.0±0.8 7.5±1.0 7.5±1.0 10.0±1.2 10.0± P ₁ 3.85±0.70 3.75±0.80 3.75±0.80 10.0±0.8 10.0± P ₂ 6.35±1.30 7.5±1.5 7.5±1.5 15.0±1.5 15.0± D (To comply with each individual specification) W 18.0 ±1.6 W ₀ 10.0 min. W ₁ 9.0±0.5 W ₂ 3.0 max. H 18.0 ±2.8 e 3.0 max. ØD ₀ 4.0±0.2 Ød 0.60±0.05 or 0.65±0.05 t ₁ 0.6±0.3 t ₂ 1.5 max.		ZO	Z1	Z2	Z3	Z4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Р	12.7±1.0	15.0±2.0	30.0±2.0	15.0±2.0	30.0±2.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P _o	12.7±0.3	12.7±0.3 15.0±0.3 15.0±0.3 15.0±0.3						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.0±0.8	7.5±1.0	7.5±1.0	10.0±1.2	10.0±1.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₁	3.85±0.70	3.75±0.80	3.75±0.80	10.0±0.8	10.0±0.8			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P ₂	6.35±1.30	7.5±1.5	7.5±1.5	15.0±1.5	15.0±1.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D	(To comply with each individual specification)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W	18.0 +1.0 -0.5							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	W _o	10.0 min.							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W ₁	9.0±0.5							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	W_2	3.0 max.							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	1000	18.0 * ^{2.0}						
ød 0.60±0.05 or 0.65±0.05 t ₁ 0.6±0.3 t ₂ 1.5 max.	е			3.0 max.					
t ₁ 0.6±0.3 t ₂ 1.5 max.	øD _o			4.0±0.2					
t ₂ 1.5 max.	ød		0.60±0.05 or 0.65±0.05						
	t ₁	0.6±0.3							
	t ₂	1.5 max.							
		(To comply with each individual specification)							
$\Delta h_1, \Delta h_2$ 2.0 max.	$\Delta h_1, \Delta h_2$								
L 11.0 max.	L		111111111111111111111111111111111111111	11.0 max.					

Specifications for Crimped Lead, Radial Taped Type

Taping Dimensions in mm

raping Dimensi								
Taping Type	R0	R1	R2	R3	R4			
Symbol	RU	NI NI	MZ	no	Π4			
Р	12.7±1.0	15.0±2.0	30.0±2.0	15.0±2.0	30.0±2.0			
Po	12.7±0.3	12.7±0.3 15.0±0.3 15.0±0.3 15.0±0.3 15.0±0						
F	5.0±0.8	7.5±1.0	7.5±1.0	10.0±1.2	10.0±1.2			
P ₁	3.85±0.70	3.75±0.80	3.75±0.80	10.0±0.8	10.0±0.8			
P ₂	6.35±1.30	7.5±1.5	7.5±1.5	15.0±1.5	15.0±1.5			
D	(To comply with each individual specification)							
W	18.0. _{0.5} +1.0							
W _o	10.0 min.							
W ₁	9.0±0.5							
W_2	3.0 max.							
Н			20.0					
H _o	16.0 +1.0 -0.5							
øD _o	4.0±0.2							
ød	0.60±0.05 or 0.65±0.05							
t ₁	0.6±0.3							
t ₂	1.5 max.							
T	(To comply with each individual specification)							
$\Delta h_1, \Delta h_2$	2.0 max.							
L			11.0 max.	A SAME AND AND A SAME				

Packing Specifications

Packing Quantity

High Voltage Capacitors (1 to 3kV DC)

Temperature	Rated	Capacitance Range	Packing Quantity
Characteristics	Voltage	(pF)	(pcs)
		100 to 2700	2000
	1kV DC	3000	1000
		4700 to 5600	500
D	0147.00	100 to 1800	1000
В	2kV DC	2200 to 3900	500
	3kV DC	100 to 1200	1000
		1500 to 2700	500
		680 to 4700	2000
	1kV DC	6800	1000
		10000	500
Е	014/00	1000 to 3300	1000
	2kV DC	4700 to 6800	500
	0147.00	1000 to 2200	1000
	3kV DC	3300 to 4700	500

Safety Regulations Recognized Type

Type	Temperature	Capacitance Range	Packing Quantity
	Characteristics	(pF)	(pcs.)
RS	B,E,V	100 - 10000	500
NS	B,E	100 - 4700	500
GL	B,E,V	100 - 10000	500

Packing Case

Unit: mm
Dimensions*
150 or 175 or 190 or 215
47 or 55
335

Note: *Tolerance; ±3 mm

Features

- Resin molded type for reflow soldering with a high voltage rating of 1 to 3 kVDC
- High reliability through disc capacitor element molded construction
- Excellent "Voltage vs. Temperature Rise" through low loss ceramic dielectric materials
- Temperature stable type (Characteristics: SL/GP and B/Y5P)

Performance Characteristics

Characteristics	Characteristics SL/GP	Characteristics B/Y5P
Operating Temperature Range	-25 to	105 °C
Rated Voltage	3 kVDC	1 to 2 kVDC
Capacitance Range	10 to 47 pF	1 kVDC - 390 to 470 pF 2 kVDC - 100 to 330 pF
Dielectric Withstanding Voltage	200% of the Rated Vo	Itage for 1 to 5 seconds
Capacitance	Within the specified tolerance at 1 MHz, 1 to 5 Vrms and 20 °C	Within the specified tolerance at 1 kHz, 1 to 5 Vrms and 20 °C
Q or Dissipation Factor (tan ∂)	C<30 pF: Q≥400 + 20 C (C: Cap. pF) C≥30 pF: Q≥1000 at 1 MHz, 1 to 5 Vrms and 20 °C	D.F. (tan ∂)≤0.025 at 1 kHz, 1 to 5 Vrms and 20 °C
Insulation Resistance	10000 MΩ min. at 500 V	DC and 1 minute electrification
Temperature Characteristics	Temperature Coefficient: +350 to -1000 ppm/°C	Max. Capacitance Change: ΔC/C≤±10% (Temperature Range: -25 to 85 °C)

Explanation of Part Numbers

Standard Products

Rated Voltage	Part Number	Rated Capacitance (pF)	Capacitance Tolerance (%)	Temperature Characteristics
	ECC□3F100KG	10	±10	SL/GP
	ECC□3F120KG	12	±10	SL/GP
	ECC□3F150KG	15	±10	SL/GP
	ECC□3F180KG	18	±10	SL/GP
3 kVDC	ECC□3F220KG	22	±10	SL/GP
	ECC□3F270KG	27	±10	SL/GP
	ECC□3F330KG	33	±10	SL/GP
	ECC□3F390KG	39	±10	SL/GP
·	ECC□3F470KG	47	±10	SL/GP
	ECK□3D101KB	100	±10	B/Y5P
	ECK□3D121KB	120	±10	B/Y5P
	ECK 3D151KB	150	±10	B/Y5P
2 kVDC	ECK□3D181KB	180	±10	B/Y5P
	ECK□3D221KB	220	±10	B/Y5P
	ECK 3D271KB	270	±10	B/Y5P
	ECKT3D331KB	330	±10	B/Y5P
1 kVDC	ECK 3A391KB	390	±10	B/Y5P
	ECK 3A471KB	470	±10	B/Y5P

^{☐:} Packaging Styles Code: S; Bulk, T; Embossed Taping

Temperature Characteristics

Applied Voltage vs. Temperature Rise

Markings (Example)

Packaging Specifications

Standard Packing Quantity

Bulk: 1000 pcs./bag

Embossed taping: 2000 pcs./reel

Dimensions in mm (not to scale)

Reel

Embossed taping

Symbol	Α	В	W	F	Е	P₁	P ₂	Po	øDο	t ₁	t ₂
Dim	.±0.2	±0.2	±0.3	±0.1	±0.10	±0.1	±0.05	±0.1	+0.1	±0.1	±0.3
(mm)	6.5	7.5	12.0	5.5	1.75	8.0	2.00	4.0	1.5	0.3	3.2

Leader Part and Taped End

Features

- Small size/wide capacitance range
- Superior humidity characteristic and long life
- Excellent solderability and resistance to soldering due to three layer terminals
- Low inductance and excellent frequency characteristics

Applications

- Class I
- Temperature compensation
- (T.C. Type) •Tuned Circuit and Filters · Class II

(Hi-K Type

•By-pass and Coupling

Specifications

(For "Z5U" Characteristics, see Standard Product Tables)

			Requirement								
ŀ	tem	Class I (T.C. Type)		(Hi-K Type)		Test Me	thod				
,	tom	CΔ~UΔ and SL/GP	B/X7R	F/Y5V	-	10011110					
Operating	A 10.		1.05.00	05.1.05.00							
Temperatur	re Range	-55	to 125 °C	-25 to 85 °C			-				
Rated Volta	age	50V DC	Manager of the Control of the Contro	_							
Dielectric Withstandir	ng Voltage	No	break down		Class I: R Class II: F Limit surge	ated Volta	ge x 2.5	1 to 5s			
Insulation		IR≥10000 mΩ or	500/C M Ω whichever is	less	Rated voltage at 1 minute						
Resistance	(IR)	[CRated	d capacitance in μF]		electrificat	electrification					
Capacitano	е	Within the	specified tolerance		Class	Frequency	Voltage	Temp.			
Q Factor or Dissipation		Capacitance < 30 pF Q≥400+20C*			≤1000pf	4 8 41 1-	0.5~5	remp.			
(tan $oldsymbol{\delta}$)		30 pF ≤ Cap. ≤ 1000 pF Q≥1000	D.F. (tan δ)≤2.5%	D.F. (tan δ)≤5%	>1000pf	4 1/11-	-	20 °C			
(cf. Minimui		Capacitance>1000 pF D.F. (tan δ)≤0.2%				1 kHz ±10%	1±0.2 Vrms				
Without voltage Temperature application Character-			Cap. change:	Cap. change:							
		See page 79	±10% max.	⁺³⁰ % max.		Measurement temperature Class I: 20 °C and 85 °		nge			
istics	Within 1/2 rated voltage application	_	Cap. change: +10 -30 % max.	Cap. change: +30 -95 / max	Class II: -25 to 85 °C						

^{*} Rated Capacitance in pF ** -25 to 85°C for Type B, NPO, 5100~10000pF

Dimensions in mm (not to scale)

Size Code (EIA)	L	W	Т	L ₁ ,L ₂
"10" Type (0402)	1.00±0.05	0.50±0.05	0.50±0.05	0.2±0.1
"11" Type (0603)	1.6±0.1	0.8±0.1	0.8±0.1	0.3±0.2
"12" Type (0805)	2.0±0.2	1.25±0.20	1.45 max.*	0.50±0.25
"13" Type (1206)	3.2±0.2	1.6±0.2	1.25 max.*	0.6±0.3

^{*}Specified by nominal capacitance

Explanation of Part Numbers

		Ε∥C			1 F	1	1 0) 1		J		C	G	(Exam	iple)
Comn	non Code		Packaging Style	Rated	d Voltage	F	Rated Cap.	C	ap. Toleran	се	Te	mp. Char.		Suffix	
	Multilaver	Code	e Style		Voltage	Ex.	Capacitance	Code	Tol.	Note	Note Code	Temp. Char.	Code	Size C	ode
ECU	Ceramic	X	Bulk	2A	100VDC	0R5	0.5pF	С	±0.25pF		С	NPO	Q	10 Type	0402
LCC		Е	Paper Taping (Pitch: 2mm)	1H	50V DC	010	1pF	D	±0.5pF	≤10	Р	N150	V	11 Type	0603
	Capacitor	V	Paper Taping (Pitch: 4mm)	1E		100		F	±1pF	pF	R	N220	N/G	12 Type	0005
		W	Large Reel Taping (2mm)		25V DC		10pF	l		S	S	N330	X	12 Type*	0805
		Y	Embossed Taping (4mm)	1C	16V DC	101	100pF	J	±5%		T	N470	M/H	12 Type	
		Z	Large Reel Taping (4mm)			104	100000pF	K	±10%	>10	U	N750	-	13 Type*	1206
							(0.1 μF)	M	±20%	рF	Nil	SL/GP	L	ided capac	ritance
								Z	+80, -20%		В	B/X7R		products	ntai ice
								l			F	F/Y5V		,	
											Е	E/Z5U			

Capacitance Range in pF

(For "Z5U" Characteristics, see Standard Product Tables)

					Capa	citance Range (pl	F) [50 VDC]		
Class	Size	Dim. "T"	NP0	SL/GP	N150	N220	N330	N470	N750
	Code	(mm)	СΔ		ΡΔ	RΔ	SΔ	TΔ	UΔ
				(SLJ)*	(P∆J)*	(R∆J)*	(S∆J)*	(T∆J)*	(U∆J)*
	"10"	0.50±0.05	0.5 - 220	0.5 - 220		-			
	"11" (0603)	0.8±0.1	0.5 - 1000	0.5 - 1200	0.5 - 150	0.5 - 180	0.5 - 180	0.5 - 220	0.5 - 1200
	"40"	0.65-0.15	0.5 - 2200	0.5 - 2700	0.5 - 220	0.5 - 220	0.5 - 220	0.5 - 270	0.5 - 2700
	"12"	1.00-0.35	2400•2700	_	240 - 330	240 - 390	240 - 470	300 - 470	
(T.C. Type)	(0805)	1.25±0.20	_		360 - 470	430 - 560	510•560	510 - 680	
Type)	"40"	0.65-0.15	0.5 - 4700	0.5 - 5600	0.5 - 560	0.5 - 680	0.5 - 680	0.5 - 820	0.5 - 5600
	"13"	1.00-0.35	5100 - 6800		620 - 1200	750 - 1200	750 - 1500	910 - 1500	
	(1206)	1.25-0.25	7500 - 10000	Name	1300•1500	1300•1500	1600•1800	1600 - 2200	_

					Capacitance	e Range (pF)		
Class	Size	Dim. "T"		B/(RB)*/X7F	₹		F/(FJ)*/Y5V	
	Code	(mm)	50 VDC	25 VDC	16 VDC	50 VDC	25 VDC	16 VDC
	"10"	0.50±0.50		100 - 4700	5600 - 10000		1000 - 10000	15000 - 33000
	"11" (0603)	0.8±0.1	220 - 15000	18000 - 22000	<u> </u>	1000 - 47000	68000	100000
	"12"	0.65-0.15	220 - 22000	18000 - 33000		1000 - 100000	68000 - 220000	-
2	(0805)	1.00-0.35	27000 - 39000	39000 - 56000				
		0.65-0.15	220 - 56000	33000 - 82000		1000 - 220000	100000 - 470000	
(Hi-K Type)	"13"	1.00-0.35	68000 - 100000	100000 - 150000				680000
	(1206)	0 1.25-0.25				_		1000000

^{*}Temperature characteristics codes conform to JIS C6429

Temperature coefficient of Class 1 Capacitors/T.C. Tolerance

(ppm/°C)

	emp. Coeff. Code ap.	CΔ (NP0)	PΔ (N150)	RΔ(N220)	SA (N330)	TΔ (N470)	UA (N750)	SL/GP
T.C.	≤2 pF	CK(±250)	PK(±250)	RL(±250)	SK(±250)	TK(±250)	UK(±250)	+350 to -1000
	3 pF	CJ(±120)	PJ(±120)	RJ(±120)	SJ(±120)	TJ(±120)	UJ(±120)	+350 to -1000
TOI.	ol. ≥4 pF CH(±		PH(±60)	RH(±60)	SH(±60)	TH(±60)	UJ(±120)	+350 to -1000

Temperature Characteristics of Class 2 Capacitors

	Capacitar	nce Change	Measurement	Reference
Temp. Char.	No DC Voltage Applied	1/2 Rated Voltage applied	Temperature Range	Temperature
B* (RB)	±10 % max.	+10, -30 % max.	-25 to 85 °C	20 °C
F** (FJ)	+30, -80 % max.	+30, -95 % max.	-25 to 85 °C	20 °C

^{*}Temperature Characteristics "B" (JIS) covers "X7R" (EIA)

Nominal Capacitance vs. Capacitance Tolerance

Tol. Code	Capacitano	ce Tolerance	Nomin	al Capacitance Available (pF)	Temp. Char.	Class
С		±0.25pF	0.5, 1, 1.5, 2	, 3, 4, 5		
D	≤10pF	±0.5pF	1, 1.5, 2, 3, 4	4, 5, 6, 7, 8, 9, 10	C∆~U∆	
F		±1pF	10		(NP0)(N750)	1
J	>10pF	±5%	E 24		and	(T.C. Type)
K		±10%	E 12	-	SL/GP	
K	±1	0%	E 12	Within Capacitance Range,	B (X7R)	II
М	±2	20%	E 6	E-Series Numbers x 10 ⁿ		(Hi-K Type)
Z	+80,	-20%	E 6		F (Y5V)	

E-Series Numbers

E6						1	.5		2.2			3.3			4.7				6.8					
E12		1	1.	2	1.	5	1.	8	2.	2.2 2.7		3.3 3.9		3.9 4.7		.7	5.6		6.8		8	.2		
E24	1	1.1	1.2	1.3	1.5	1.6	1.8	2	2.2	2.4	2.7	3	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

Minimum Q at 1MHz

Minimum Insulation Resistance

^{**}Temperature Characteristics "F" (JIS) covers "Y5V" (EIA)

Typical Temperature Characteristics

Standard Products for "10" Type (EIA "0402" Type), Taped Version

Capacitance	Capacitance	CΔ(NP0) 50 VDC		50 VDC	
(pF)	Tolerance	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)
0.5	±0.25 pF (C)	ECUE1H0R5CCQ	0.5	ECUE1H0R5CQ	0.5
1	±0.25 pF	ECUE1H010 CQ	0.5	ECUE1H010 Q	0.5
1.5	(C)	ECUE1H1R5 CQ	0.5	ECUE1H1R5 Q	0.5
2	or	ECUE1H020CQ	0.5	ECUE1H020 Q	0.5
3	±0.5 pF	ECUE1H030CQ	0.5	ECUE1H030□Q	0.5
4	(D)	ECUE1H040 CQ	0.5	ECUE1H040 Q	0.5
5	(5)	ECUE1H050CCQ	0.5	ECUE1H050 Q	0.5
6		ECUE1H060DCQ	0.5	ECUE1H060DQ	0.5
7	±0.5 pF	ECUE1H070DCQ	0.5	ECUE1H070DQ	0.5
8	(D)	ECUE1H080DCQ	0.5	ECUE1H080DQ	0.5
9	(=)	ECUE1H090DCQ	0.5	ECUE1H090DQ	0.5
10	±0.5pF(D), ±1pF(F)	ECUE1H100FICQ	0.5	ECUE1H100TQ	0.5
11		ECUE1H110JCQ	0.5	ECUE1H110JQ	0.5
12		ECUE1H120 CQ	0.5	ECUE1H120 Q	0.5
13		ECUE1H130JCQ	0.5	ECUE1H130JQ	0.5
15		ECUE1H150CQ	0.5	ECUE1H150TQ	0.5
16		ECUE1H160JCQ	0.5	ECUE1H160JQ	0.5
18		ECUE1H180 CQ	0.5	ECUE1H180 Q	0.5
20		ECUE1H200JCQ	0.5	ECUE1H200JQ	0.5
22		ECUE1H220 CQ	0.5	ECUE1H220 Q	0.5
24		ECUE1H240JCQ	0.5	ECUE1H240JQ	0.5
27	across a second	ECUE1H270 ICQ	0.5	ECUE1H270 Q	0.5
30		ECUE1H300JCQ	0.5	ECUE1H300JQ	0.5
33		ECUE1H330FICQ	0.5	ECUE1H330 Q	0.5
36		ECUE1H360JCQ	0.5	ECUE1H360JQ	0.5
39		ECUE1H390TCQ	0.5	ECUE1H390 Q	0.5
43	±5%**	ECUE1H430JCQ	0.5	ECUE1H430JQ	0.5
47	(J)	ECUE1H470CQ	0.5	ECUE1H470 Q	0.5
51	or	ECUE1H510JCQ	0.5	ECUE1H510JQ	0.5
56	±10%	ECUE1H560CQ	0.5	ECUE1H560FIQ	0.5
62	(K)	ECUE1H620JCQ	0.5	ECUE1H620JQ	0.5
68		ECUE1H680FICQ	0.5	ECUE1H680TQ	0.5
75		ECUE1H750JCQ	0.5	ECUE1H750JQ	0.5
82		ECUE1H820 CQ	0.5	ECUE1H820 Q	0.5
91		ECUE1H910JCQ	0.5	ECUE1H910JQ	0.5
100	_	ECUE1H101 CQ	0.5	ECUE1H101 Q	0.5
110		ECUE1H111JCQ	0.5	ECUE1H111JQ	0.5
120		ECUE1H121TCQ	0.5	ECUE1H121 Q	0.5
130		ECUE1H131JCQ	0.5	ECUE1H131JQ	0.5
150		ECUE1H151 CQ	0.5	ECUE1H151 Q	0.5
160		ECUE1H161JCQ	0.5	ECUE1H161JQ	0.5
180	_	ECUE1H181 CQ	0.5	ECUE1H181TQ	0.5
200		ECUE1H201JCQ	0.5	ECUE1H201JQ	0.5
220		ECUE1H221□CQ	0.5	ECUE1H221 Q	0.5

(Cap. Tol/ Code)

⁽Packaging Style Code)***

**Capacitance values of "E24" series and capacitance tolerance of ±5% are available on special order.

***Packaging Styles Code: "E" for Taped Version (Taping pitch: 2 mm) and "X" for Bulk Type.

Standard Products for "10" Type, (EIA "0402" Type), Taped Version

			B/>					F/	/5V	
Capacitance	Capacitance	25 VDC		16 VDC	·	Capacitance	25 VDC		16 VDC	
(pF)	Tolerance	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)	Tolerance	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)
100		ECUE1E101 BQ	0.5							
120		ECUE1E121KBQ	0.5	Annual Control of the						
150		ECUE1E151 BQ	0.5	The control of the co						
180		ECUE1E181KBQ	0.5							
220		ECUE1E221 BQ	0.5							
270		ECUE1E271KBQ	0.5							
330		ECUE1E331 BQ	0.5	Million Market (1 a) Market (2 thanks (2 thank			As a constant of the second constant of the second of the			
390		ECUE1E391KBQ	0.5							
470		ECUE1E471 BQ	0.5							
560		ECUE1E561KBQ	0.5				A COMPANIE DE COMP			
680		ECUE1E681 BQ	0.5							
820		ECUE1E821KBQ	0.5							
1000		ECUE1E102 BQ	0.5				ECUE1E102ZFQ	0.5		
1200	±10%	ECUE1E122KBQ	0.5							
1500	(K)	ECUE1E152 BQ	0.5			.00	ECUE1E152ZFQ	0.5		
1800	or	ECUE1E182KBQ	0.5			+80% -20				
2200	±20%	ECUE1E222 IBQ	0.5			(Z)	ECUE1E222ZFQ	0.5		
2700	(M)	ECUE1E272KBQ	0.5	27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
3300		ECUE1E332 BQ	0.5				ECUE1E332ZFQ	0.5		
3900		ECUE1E392KBQ	0.5							
4700		ECUE1E472 BQ	0.5				ECUE1E472ZFQ	0.5		
5600		(Packaging Style Co	de)**	ECUE1C562KBQ	0.5					
6800				ECUE1C682DBQ	0.5		ECUE1E682ZFQ	0.5		
8200				ECUE1C822KBQ	0.5					
10000				ECUE1C103 BQ	0.5		ECUE1E103ZFQ	0.5		
12000				(Cap. Tol. Code)*						
15000									ECUE1C153ZFQ	0.5
18000										
22000									ECUE1C223ZFQ	0.5
27000										
33000									ECUE1C333ZFQ	0.5

^{* :} Capacitance Tolerance Code.

^{**} Packaging Styles Code: "E" for Taped Version (Taping pitch: 2 mm) and "X" for Bulk Type.

Standard Products for "11" Type (EIA "0603" Type), Taped Version [Rated Voltage 50 VDC]

Stant	iai a i	Toducis	101	і і і у	۲	(LIA UU	UJ	i ypc,	ıu	peu veis		i [nated	VOIL	age 50 VDC	7]
		CA(NP0)		SL/GP		PA(N150)		RA(N220)		SA(N330)		T <u>A</u> (N470)		U ∆(N750)	
l '	Capacitance		Dim.		Dim.		Dim.	5	Dim.		Dim.	5	Dim.	5	Dim.
(pF)	Tolerance	Part No.	(mm)	Part No.	(mm)	Part No.	T (mm)	Part No.	T (mm)	Part No.	(mm)	Part No.	(mm)	Part No.	(mm)
0.5	10 05nE(0)	ECUV1H0R5CCV	(mm)		(mm)				(mm)	ECUV1H0R5CSV	(mm)			ECUV1H0R5CUV	(mm)
0.5	±0.20pr(0)		+												
1	.0.05 5		+			ECUV1H010 PV				ECUV1H010 SV				ECUV1H010 UV	
1.5	-		-			ECUV1H1R5_PV				ECUV1H1R5 SV				ECUV1H1R5 UV	-
2	(C)		+			ECUV1H020_PV				ECUV1H020 SV				ECUV1H020 UV	
3	or		+			ECUV1H030ii PV				ECUV1H030 SV				ECUV1H030 UV	
4	±0.5 pF	ECUV1H040LCV	0.8	ECUV1H040 IV	0.8	ECUV1H040 PV	0.8	ECUV1H040LIRV	0.8	ECUV1H040USV	0.8	ECUV1H040 TV	0.8	ECUV1H040 UV	8.0
5	(D)	ECUV1H050L.CV	0.8	ECUV1H050LIV	0.8	ECUV1H050 PV	0.8	ECUV1H050 RV	0.8	ECUV1H050 SV	0.8	ECUV1H050 TV	0.8	ECUV1H050 UV	0.8
6		ECUV1H060DCV	0.8	ECUV1H060DV	8.0	ECUV1H060DPV	0.8	ECUV1H060DRV	0.8	ECUV1H060DSV	8.0	ECUV1H060DTV	0.8	ECUV1H060DUV	0.8
7	±0.5 pF	ECUV1H070DCV	0.8	ECUV1H070DV	0.8	ECUV1H070DPV	0.8	ECUV1H070DRV	0.8	ECUV1H070DSV	0.8	ECUV1H070DTV	0.8	ECUV1H070DUV	0.8
8	(D)	ECUV1H080DCV	0.8	ECUV1H080DV	0.8	ECUV1H080DPV	0.8	ECUV1H080DRV	0.8	ECUV1H080DSV	0.8	ECUV1H080DTV	0.8	ECUV1H080DUV	0.8
9		ECUV1H090DCV	0.8	ECUV1H090DV	0.8	ECUV1H090DPV	0.8	ECUV1H090DRV	0.8	ECUV1H090DSV	0.8	ECUV1H090DTV	0.8	ECUV1H090DUV	8.0
10	±0.5 pF(D) or ±1 pF(F)	ECUV1H100CCV	0.8	ECUV1H100 V	0.8	ECUV1H100 PV	0.8	ECUV1H100 RV	0.8	ECUV1H100 SV	0.8	ECUV1H100 TV	0.8	ECUV1H100 :UV	0.8
12		ECUV1H120_CV	0.8	ECUV1H120 V	0.8	ECUV1H120 PV	0.8	ECUV1H120 RV	0.8	ECUV1H120 SV	0.8	ECUV1H120 TV	0.8	ECUV1H120 UV	0.8
15		ECUV1H150 CV	0.8	ECUV1H150 IV	0.8	ECUV1H150EPV	0.8	ECUV1H150 RV	0.8	ECUV1H150 SV	0.8	ECUV1H150 TV	0.8	ECUV1H150 UV	0.8
18		ECUV1H180UCV	0.8	ECUV1H180 V	0.8	ECUV1H180LPV	0.8	ECUV1H180_RV	0.8	ECUV1H180 SV	0.8	ECUV1H180LTV	0.8	ECUV1H180 UV	0.8
22		ECUV1H220_CV	0.8	ECUV1H220L.V	0.8	ECUV1H220 PV	0.8	ECUV1H220 RV	0.8	ECUV1H220 SV	0.8	ECUV1H220 TV	0.8	ECUV1H220 UV	0.8
27		ECUV1H270CV	0.8	ECUV1H270 V	0.8	ECUV1H270 PV	0.8	ECUV1H270 RV	0.8	ECUV1H270 SV	0.8	ECUV1H270 TV	0.8	ECUV1H270 UV	0.8
33		ECUV1H330 ICV	0.8	ECUV1H330LIV	0.8	ECUV1H330:::PV	0.8	ECUV1H330 RV	0.8	ECUV1H330 SV	0.8	ECUV1H330 TV	0.8	ECUV1H330 UV	0.8
39		ECUV1H390 ICV	0.8	ECUV1H390 IV	0.8	ECUV1H390 PV	0.8	ECUV1H390 RV	0.8	ECUV1H390 SV	0.8	ECUV1H390 TV	0.8	ECUV1H390 IUV	0.8
47		ECUV1H470 CV	0.8	ECUV1H470	0.8	ECUV1H470 PV	0.8	ECUV1H470 RV	0.8	ECUV1H470 SV	0.8	ECUV1H470 TV	0.8	ECUV1H470 UV	0.8
56		ECUV1H560 CV	0.8	ECUV1H560LIV	0.8	ECUV1H560 PV	0.8	ECUV1H560 RV	0.8	ECUV1H560SV	0.8	ECUV1H560 TV	0.8	ECUV1H560 UV	0.8
68		ECUV1H680 CV	0.8	ECUV1H680	0.8	ECUV1H680 PV	0.8	ECUV1H680 RV	0.8	ECUV1H680 SV	0.8	ECUV1H680; ITV	0.8	ECUV1H680 IUV	0.8
82	±5%***	ECUV1H820 C\	0.8	ECUV1H820 IV	0.8	ECUV1H820 PV	0.8	ECUV1H820 RV	0.8	ECUV1H820 SV	0.8	ECUV1H820 TV	0.8	ECUV1H820 UV	0.8
100	(J)	ECUV1H101 IC\	0.8	ECUV1H101 IV	0.8	ECUV1H101: IPV	0.8	ECUV1H101 RV	0.8	ECUV1H101: ISV	0.8	ECUV1H101 ITV	0.8	ECUV1H101 UV	0.8
120	or	ECUV1H121 C\	/ 0.8	ECUV1H121 V	0.8	ECUV1H121 PV	0.8	ECUV1H121 RV	0.8	ECUV1H121 SV	0.8	ECUV1H121 TV	0.8	ECUV1H121 UV	0.8
150	±10%	ECUV1H151 IC\	/ 0.8	ECUV1H151 IV	0.8	ECUV1H151 PV	0.8	ECUV1H151LIRV	0.8	ECUV1H151 SV	0.8	ECUV1H151 TV	0.8	ECUV1H151 UV	0.8
180	(K)	ECUV1H181 CV	/ 0.8	ECUV1H181	0.8			ECUV1H181 RV	0.8	ECUV1H181 SV	0.8	ECUV1H181 TV	0.8	ECUV1H181 UV	0.8
220		ECUV1H221 CV					(P	ackaging Style Cod	-			ECUV1H221 TV	0.8	ECUV1H221 UV	0.8
270			-	ECUV1H271			,		<u> </u>					ECUV1H271 IUV	+
330		ECUV1H331LICV		-	-									ECUV1H331 IUV	
390		ECUV1H391IIICV		-										ECUV1H391 UV	-
470		ECUV1H471 CV	-		-									ECUV1H471UV	
560	-	ECUV1H561 II CV	+			-								ECUV1H561DUV	
680	-			ECUV1H681LJV	-				-					ECUV1H681 UV	
-				ECUV1H821 V	-						-			ECUV1H821UV	_
820	-				+								-		
1000		<u> </u>		ECUV1H102EV										ECUV1H102DUV	
1200		(Cap. Tol. Code)*	^	ECUV1H122□V	0.8			L						ECUV1H122□UV	0.8

 $^{^{\}star}$ Packaging Style Code: "V" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

^{**} Capacitance Tolerance Codes.

^{***} Capacitance values of "E24" series and capacitance tolerance of $\pm 5\%$ are available on special order.

Standard Products for "11" Type, (EIA "0603" Type), Taped Version

			B/	X7R					F/Y5V			
	Capacitance Tolerance	50 VDC	Dim.	25 VDC	Dim.	Capacitance Tolerance	50 VDC	Dim.	25 VDC	Dim.	16 VDC	Dim.
		Part No.	T (mm)	Part No.	T (mm)		Part No.	(mm)	Part No.	T (mm)	Part No.	(mm)
220		ECUV1H221 BV	0.8									
270		ECUV1H271KBV	0.8									
330	:	ECUV1H331 BV	0.8	and the second section is a second se			has not Promobile on all Promobile on all Promobile on the Control of the Control		makiff consists and a fine of the contribution of the contribution of the contribution of		The state of the s	
390		ECUV1H391KBV	0.8						The second secon			
470		ECUV1H471 BV	0.8									
560		ECUV1H561KBV	0.8									
680		ECUV1H681 BV	0.8	AMERICA (1870) per titt og 1980 page			AND THE RESIDENCE OF THE PARTY		According to the second		And the second section of the contract of the	
820		ECUV1H821KBV	0.8	The second secon								
1000		ECUV1H102 BV	0.8			-	ECUV1H102ZFV	0.8				
1200		ECUV1H122KBV	0.8									
1500		ECUV1H152 BV	0.8				ECUV1H152ZFV	0.8				
1800		ECUV1H182KBV	0.8									
2200	±10%	ECUV1H222 BV	0.8				ECUV1H222ZFV	0.8				
2700	(K)	ECUV1H272KBV	0.8			+80						
3300	or	ECUV1H332 BV	0.8			+80 -20 [%]	ECUV1H332ZFV	0.8				
3900	±2%	ECUV1H392KBV	0.8			(Z)						
4700	(M)	ECUV1H472 BV	0.8				ECUV1H472ZFV	0.8				
5600		ECUV1H562KBV	0.8									
6800		ECUV1H682 BV	0.8				ECUV1H682ZFV	0.8				
8200		ECUV1H822KBV	0.8									
10000		ECUV1H103 BV	0.8				ECUV1H103ZFV	0.8				
12000		ECUV1H123KBV	0.8							ļ I		
15000		ECUV1H153 BV	0.8				ECUV1H153ZFV	0.8				
18000		(Cap. Tol. Code)*	*	ECUV1E183KBV	0.8							
22000				ECUE1E223 BV	0.8		ECUV1H223ZFV	0.8		1		
33000							ECUV1H333ZFV	0.8				
47000							ECUV1H473ZFV	0.8				
68000							(Packaging Styles	Code)*	ECUV1E683ZFV	0.8		
100000											ECUV1C104ZFV	0.8

^{*} Packaging Styles Code: "V" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

Standard Products for "12" Type (EIA "0805" Type), Taped Version [Rated Voltage 50 VDC]

		CA(NP0)	T	SL/GP	<u> </u>	PA(N150)		RA(N220)	T	SA(N330)		T <u>A</u> (N470)		U <u>A(</u> N750)	İ
Capacitance	Capacitance		Dim.		Dim.		Dim.		Dim		Dim.		Dim.		Dim.
(pF)	Tolerance	Part No.	T	Part No.	Т	Part No.	Т	Part No.	T	Part No.	T	Part No.	T	Part No.	T
			(mm)		(mm)		(mm)		(mm)	(mm)		(mm)		(mm)
0.5	±0.25pF(C)	ECUV1H0R5CCN	0.65	ECUV1H0R5CN	0.65	ECUV1H0R5CPN	0.65	ECUV1H0R5CR	N 0.6	ECUV1H0R5CSN	0.65	ECUV1H0R5CTN	0.65	ECUV1H0R5CL	N 0.65
1		ECUV1H010□CN	0.65	ECUV1H010\(\text{D}\)	0.65	ECUV1H010□PN	0.65	ECUV1H010_R	N 0.6	5 ECUV1H010USN	0.65	ECUV1H010TN	0.65	ECUV1H010DL	IN 0.65
1.5	±0.25 pF	ECUV1H1R5LJCN	0.65	ECUV1H1R5\\	0.65	ECUV1H1R5□PN	0.65	ECUV1H1R5LJR	N 0.6	ECUV1H1R5USN	0.65	ECUV1H1R5_TN	0.65	ECUV1H1R5DU	JN 0.65
2	(C)	ECUV1H020UCN	0.65	ECUV1H020\(\)N	0.65	ECUV1H020_PN	0.65	ECUV1H020 R	N 0.6	ECUV1H020 ISN	0.65	ECUV1H020UTN	0.65	ECUV1H020DL	IN 0.65
3	or	ECUV1H030□CN	0.65	ECUV1H030_N	0.65	ECUV1H030_IPN	0.65	ECUV1H030 R	N 0.6	ECUV1H030 SN	0.65	ECUV1H030 TN	0.65	ECUV1H03000L	N 0.65
4	±0.5 pF	ECUV1H040CN	0.65	ECUV1H040 N	0.65	ECUV1H040_PN	0.65	ECUV1H040 R	N 0.6	5 ECUV1H040 USN	0.65	ECUV1H040_TN	0.65	ECUV1H040	N 0.65
5	(D)	ECUV1H050CN	0.65	ECUV1H050\(\text{DN}\)	0.65	ECUV1H050[]PN	0.65	ECUV1H050 R	N 0.6	5 ECUV1H050 ISN	0.65	ECUV1H050TTN	0.65	ECUV1H050EL	N 0.65
6		ECUV1H060DCN	0.65	ECUV1H060DN	0.65	ECUV1H060DPN	0.65	ECUV1H060DR	N 0.6	5 ECUV1H060DSN	0.65	ECUV1H060DTN	0.65	ECUV1H060DL	N 0.65
7	±0.5 pF	ECUV1H070DCN	0.65	ECUV1H070DN	0.65	ECUV1H070DPN	0.65	ECUV1H070DRI	N 0.6	5 ECUV1H070DSN	0.65	ECUV1H070DTN	0.65	ECUV1H070DL	N 0.65
8	(D)	ECUV1H080DCN	0.65	ECUV1H080DN	0.65	ECUV1H080DPN	0.65	ECUV1H080DRI	N 0.6	ECUV1H080DSN	0.65	ECUV1H080DTN	0.65	ECUV1H080DL	N 0.65
9		ECUV1H090DCN	0.65	ECUV1H090DN	0.65	ECUV1H090DPN	0.65	ECUV1H090DR	N 0.6	ECUV1H090DSN	0.65	ECUV1H090DTN	0.65	ECUV1H090DL	N 0.65
10	±0.5 pF(D) or ±1 pF(F)	ECUV1H100_CN	0.65	ECUV1H100 N	0.65	ECUV1H100_JPN	0.65	ECUV1H100 R	N 0.6	ECUV1H100 SN	0.65	ECUV1H100 TN	0.65	ECUV1H100 L	IN 0.65
12		ECUV1H120CCN	0.65	ECUV1H120UN	0.65	ECUV1H120 PN	0.65	ECUV1H120 R	N 0.6	ECUV1H120 ISN	0.65	ECUV1H120 TN	0.65	ECUV1H120 L	N 0.65
15		ECUV1H150CCN	0.65	ECUV1H150_N	0.65	ECUV1H150_PN	0.65	ECUV1H150 R	N 0.6	5 ECUV1H150LISN	0.65	ECUV1H150_TN	0.65	ECUV1H150 L	N 0.65
18		ECUV1H180_CN	0.65	ECUV1H180UN	0.65	ECUV1H180_PN	0.65	ECUV1H180 R	N 0.6	ECUV1H180LISN	0.65	ECUV1H180 TN	0.65	ECUV1H180	IN 0.65
22	1	ECUV1H220UCN	0.65	ECUV1H220 N	0.65	ECUV1H220 PN	0.65	ECUV1H220 R	N 0.6	ECUV1H220LISN	0.65	ECUV1H220 ITN	0.65	ECUV1H220	IN 0.65
27	}	ECUV1H270UCC	0.65	ECUV1H270 G	0.65	ECUV1H270 PN	0.65	ECUV1H270 R	N 0.6	5 ECUV1H270 ISN	0.65	ECUV1H270_TN	0.65	ECUV1H270_L	IN 0.65
33		ECUV1H330CC	0.65	ECUV1H330IIIG	0.65	ECUV1H330_PN	0.65	ECUV1H330 IR	N 0.6	5 ECUV1H330 SN	0.65	ECUV1H330 TN	0.65	ECUV1H330	IN 0.65
39		ECUV1H390_CC	0.65	ECUV1H3907G	0.65	ECUV1H390 PN	0.65	ECUV1H390 R	N 0.6	5 ECUV1H390 SN	0.65	ECUV1H390_TN	0.65	ECUV1H390DL	IN 0.65
47		ECUV1H470IIC	0.65	ECUV1H470G	0.65	ECUV1H470TPN	0.65	ECUV1H470 R	N 0.6	5 ECUV1H470 ISN	0.65	ECUV1H470_ITN	0.65	ECUV1H470LIL	IN 0.65
56		ECUV1H560CC	0.65	ECUV1H560EG	0.65	ECUV1H560DPN	0.65	ECUV1H560	N 0.6	5 ECUV1H560 ISN	0.65	ECUV1H560 TN	0.65	ECUV1H560 L	IN 0.65
68		ECUV1H680CC	0.65	ECUV1H680EG	0.65	ECUV1H680TPN	0.65	ECUV1H680DR	N 0.6	5 ECUV1H680 ISN	0.65	ECUV1H680_TN	0.65	ECUV1H680 L	IN 0.65
82		ECUV1H820 CC	0.65	ECUV1H820 IG	0.65	ECUV1H820 PN	0.65	ECUV1H820 R	N 0.6	5 ECUV1H820 SN	0.65	ECUV1H820 ITN	0.65	ECUV1H820 L	IN 0.65
100		ECUV1H101CC	0.65	ECUV1H101□G	0.65	ECUV1H101DPN	0.65	ECUV1H101LIR	N 0.6	5 ECUV1H101 ISN	0.65	ECUV1H101_TN	0.65	ECUV1H101FIL	IN 0.65
120	±5%***	ECUV1H121CC	0.65	ECUV1H121 G	0.65	ECUV1H121 JPN	0.65	ECUV1H121 R	N 0.6	5 ECUV1H121 ISN	0.65	ECUV1H121LITN	0.65	ECUV1H121EIL	JN 0.65
150	(J)	ECUV1H151CC	0.65	ECUV1H151 G	0.65	ECUV1H151[]PN	0.65	ECUV1H151 R	N 0.6	5 ECUV1H151 ISN	0.65	ECUV1H151 TN	0.65	ECUV1H151 L	IN 0.65
180	or	ECUV1H181CC	0.65	ECUV1H181 G	0.65	ECUV1H181 PN	0.65	ECUV1H181 R	N 0.6	ECUV1H181USN	0.65	ECUV1H181 TN	0.65	ECUV1H181DL	IN 0.65
220	±10%	ECUV1H221CC	0.65	ECUV1H221 G	0.65	ECUV1H221_PN	0.65	ECUV1H221UR	N 0.6	5 ECUV1H221 IISN	0.65	ECUV1H221IITN	0.65	ECUV1H221DL	JN 0.65
270	(K)	ECUV1H271 CC	0.65	ECUV1H271_JG	0.65	ECUV1H271_PN	1.0	ECUV1H271 R	N 1.0	ECUV1H271USN	1.0	ECUV1H271UTN	1.0	ECUV1H271DL	N 0.65
330	Ī	ECUV1H331□C0	0.65	ECUV1H331□G	0.65	ECUV1H331 PN	1.0	ECUV1H331_R	N 1.0	ECUV1H331 SN	1.0	ECUV1H331 TN	1.0	ECUV1H331DL	JN 0.65
390	Ī	ECUV1H391IICC	0.65	ECUV1H391□G	0.65			ECUV1H391□R	N 1.0	ECUV1H391 SN	1.0	ECUV1H391□TN	1.0	ECUV1H391□U	JX 0.65
470		ECUV1H471IICX	(0.65	ECUV1H471□G	0.65					ECUV1H471 SN	1.0	ECUV1H471 TN	1.0	ECUV1H471DL	JX 0.65
560		ECUV1H561CX	(0.65	ECUV1H561G	0.65					(Packaging Style	Code)*		ECUV1H561	JX 0.65
680		ECUV1H681 C	(0.65	ECUV1H681□G	0.65									ECUV1H681 U	JX 0.65
820		ECUV1H821 C	(0.65	ECUV1H821□X	0.65									ECUV1H821U	JX 0.65
1000		ECUV1H102CX	(0.65	ECUV1H102□X	0.65									ECUV1H102U	JX 0.65
1200		ECUV1H122CX	(0.65	ECUV1H122 X	0.65									ECUV1H122U	JX 0.65
1500		ECUV1H152CX	(0.65	ECUV1H152UX	0.65									ECUV1H152U	JX 0.65
1800		ECUV1H182DC	(0.65	ECUV1H182 X	0.65									ECUV1H182 U	JX 0.65
2200		EUCV1H222CX	(0.65	ECUV1H222□X	0.65									ECUV1H222□U	JX 0.65
2700		ECUV1H272CX	(1.0	ECUV1H272□X	0.65									ECUV1H272U	JX 0.65
		(Can Tal Cada)	<u> </u>					·							

(Cap. Tol. Code)**

 $^{^{\}star}$ Packaging Style Code: "V" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

^{**} Capacitance Tolerance Codes.

^{***} Capacitance values of "E24" series and capacitance tolerance of $\pm 5\%$ are available on special order.

Standard Products for "12" Type, (EIA "0805" Type), Taped Version

			B/	X7R				FΛ	′5V		E/Z5U	
	Capacitance	50 VDC		25 VDC		Capacitance	50 VDC	T	25 VDC		50VDC	T
(pF)	Tolerance	Part No.	Dim.	Part No.	Dim.	Tolerance	Part No.	Dim. T	Part No.	Dim.	Part No.	Dim. T
		Part No.	(mm)		(mm)		Fait No.	(mm)	Fait No.	(mm)	Fait No.	(mm)
220		ECUV1H221 BN	0.65									
270		ECUV1H271KBN	0.65									
330		ECUV1H331 BN	0.65									
390		ECUV1H391KBN	0.65	The committee of the second as a contract of the second								
470		ECUV1H471 BN	0.65									
560		ECUV1H561KBN	0.65									
680		ECUV1H681 BN	0.65									
820		ECUV1H821KBN	0.65									
1000		ECUV1H102 BN	0.65				ECUV1H102ZFN	0.65				
1200		ECUV1H122KBN	0.65									
1500	-	ECUV1H152 BN	0.65				ECUV1H152ZFN	0.65				
1800	-	ECUV1H182KBN	0.65									
2200	-	ECUV1H222 BN	0.65				ECUV1H222ZFN	0.65				
2700		ECUV1H272KBN	0.65									
3300	±10%	ECUV1H332 BN	0.65				ECUV1H332ZFN	0.65				
3900	(K)	ECUV1H392KBN	0.65			+80						
4700	or	ECUV1H472 BG	0.65			+80 -20 [%]	ECUV1H472ZFN	0.65				
5600	±20%	ECUV1H562KBG	0.65			(Z)						
6800	(M)	ECUV1H682 BG	0.65			-	ECUV1H682ZFN	0.65				
8200		ECUV1H822KBG	0.65									
10000		ECUV1H103 BG	0.65				ECUV1H103ZFG	0.65			ECUV1H103MEN	1.0
12000		ECUV1H123KBX	0.65									
15000		ECUV1H153 BX	0.65				ECUV1H153ZFG	0.65			ECUV1H153MEN	1.0
18000		ECUV1H183KBX	0.65	ECUV1E183KBX	0.65							
22000		ECUV1H223 BX	0.65	ECUE1E223 BX	0.65		ECUV1H223ZFG	0.65			ECUV1H223MEN	1.0
27000		ECUV1H273KBX	1.0	ECUV1E273KBX	0.65							
33000		ECUV1H333 BX	1.0	ECUV1E333 BX	0.65		ECUV1H333ZFX	0.65			ECUV1H333MEN	1.0
39000		ECUV1H393KBX	1.0	ECUV1E393KBX	1.0							
47000		(Cap. Tol. Code)**		ECUV1E473 BX	1.0		ECUV1H473ZFX	0.65			ECUV1H473MEN	1.0
56000				ECUV1E563KBX	1.0							
68000				(Packaging Style C	Code)*		ECUV1H683ZFX	0.65	ECUV1E683ZFX	0.65		
100000							ECUV1H104ZFX	0.65	ECUV1E104ZFX	0.65		
150000									ECUV1E154ZFX	0.65		
220000									ECUV1E224ZFX	0.65		

^{*} Packaging Style Code: "V" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

^{**} \square : Capacitance Tolerance Codes.

Standard Products for "13" Type (EIA "1206" Type), Taped Version [Rated Voltage 50 VDC]

Staniu	iaiu F	roducis	101	13 19	he	(EIA I	200	iype),	ı a	ped vers	101	• [nateu	VOIL	age 50 v]
		CA(NPO)		SL/GP		PA(N150)		RA(N220)		SA(N330)		TA(N470)		U∆(N750)		
Capacitance	Capacitance		Dim.		Dim.		Dim.		Dim.		Dim.		Dim.		1	Dim.
(pF)	Tolerance	Part No.	1 T	Part No.	T	Part No.	T	Part No.	T	Part No.	T	Part No.	T	Part No.		T
			(mm)		(mm)		(mm)		(mm)		(mm)		(mm)		((mm)
0.5	+0.25nF(C)	FCUV1H0R5CCM	0.65	FCUV1H0B5CM	0.65	FCUV1H0R5CPN	1 0.65	FCUV1H0R5CRN	VI 0.65	ECUV1H0R5CSM	0.65	ECUV1H0R5CTM	0.65	ECUV1H0R5C	MLK	0.65
1	ZDIEODI (O)			ļ			-			ECUV1H010 SM				ECUV1H010		
1.5	±0.25 pF									ECUV1H1R5 SM				ECUV1H1R5		
2	(C)	ECUV1H020 CM					+			ECUV1H020 SM				ECUV1H020		
3	or	ECUV1H030 CM					-			ECUV1H030 SM						
4	±0.5 pF						+			ECUV1H040 SM				ECUV1H040		
5	(D)	ECUV1H050 JCM								ECUV1H050 SM	+			ECUV1H050		
6	(5)	ECUV1H060DCM							-	ECUV1H060DSM				ECUV1H060D		
7	±0.5 pF	ECUV1H070DCM			-				+	ECUV1H070DSM				ECUV1H070D		
8	(D)	ECUV1H080DCM	-	ļ	ļ		-			ECUV1H080DSM				ECUV1H080D		
9	(5)	ECUV1H090DCM	+		-					ECUV1H090DSM	-			ECUV1H090D		
10	±0.5 pF(D) or ±1 pF(F)	ECUV1H100 CM								ECUV1H100 SM						
12	or±ipr(r)	ECUV1H120 CM	+							ECUV1H120 SM	+			ECUV1H120		
15		ECUV1H150 CN					-			ECUV1H150 SM				ECUV1H150		
18		ECUV1H180 CM	-				+			ECUV1H180 SM				ECUV1H180		
22	ļ	ECUV1H220 CM								ECUV1H220 SM	-			ECUV1H220		
27		ECUV1H270 CM	+							ECUV1H270 SM	+			ECUV1H270		
33		ECUV1H330 CM		<u> </u>			-			ECUV1H330 SM				ECUV1H330		_
39										ECUV1H390 SM		or the same of the		ECUV1H390		
47		ECUV1H470 CM	+							ECUV1H470 SM	-			ECUV1H470	-	
56		ECUV1H560 CM		1						ECUV1H560 ISM				ECUV1H560		
68		ECUV1H680 CM							+	ECUV1H680 SM				ECUV1H680		-m
82		ECUV1H820 ICM								ECUV1H820 SM		and the same of th		ECUV1H820		
100		ECUV1H101 OCH					-			ECUV1H101 SM				ECUV1H101		
120		ECUV1H121 CH	+							ECUV1H121 ISM	 			ECUV1H121		
150		ECUV1H151 CH								ECUV1H151 SM				ECUV1H151		
180		ECUV1H181 CH								ECUV1H181 SM				ECUV1H181		
220	±5%***	ECUV1H221 ICH	+				+			ECUV1H221 SM				ECUV1H221		
270	(J)	ECUV1H271 CH								ECUV1H271 SM				ECUV1H271		
330	or	ECUV1H331LICH	+							ECUV1H331 SM				ECUV1H331		
390	±10%	ECUV1H391 ICH	+						or The and Thomas The	ECUV1H391 SM				ECUV1H391		-
470	(K)	ECUV1H471 ICH								ECUV1H471_SM				ECUV1H471		
560	(1)	ECUV1H561 CH		 			+			ECUV1H561LISM				ECUV1H561		
680										ECUV1H681LISM				ECUV1H681		
820			_						-	ECUV1H821 SM						
1000			+							ECUV1H201 ISM				ECUV1H102		
1200			-							ECUV1H122 ISM				ECUV1H122		
1500			-							ECUY1H152 ISM	+			ECUV1H152		-
1800	†	ECUV1H182 CW	+					es Code)*				ECUY1H182 TM		ECUV1H182		
2200		EUCV1H222 ICW			-		3 5.51	,	+			ECUY1H222 JTM		ECUV1H222		
2700		ECUV1H272 CW							+		1			ECUV1H272		
3300	İ	ECUV1H332CW					-		+		1			ECUV1H332		
3900	1	ECUV1H392CW					-		+-		+-		-	ECUV1H392		
4700	+	ECUV1H472 CW					-		+					ECUV1H472		
5600	1	ECUV1H562 ICW		 					+-		-		-	ECUV1H562		
6800	1	ECUV1H682 CW			- 5.00		+		+					_55.11662.1		
8200	İ	ECUY1H822 JCW			-		+		+		-		-	<u> </u>	-	
10000	1	ECUY1H103CCW		 					+-						-	
	1	(Cap. Tol. Code)		1	1											

⁽Cap. Tol. Code)**

* Packaging Style Code: "V" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

** \subseteq: Capacitance Tolerance Codes.

*** Capacitance values of "E24" series and capacitance tolerance of ±5% are available on special order.

Standard Products for "13" Type, (EIA "1206" Type), Taped Version

				B/X7R				E/Z5U	
Capacitance	Capacitance	100 VDC	T D:	50 VDC	D:	25 VDC	Dia	50 VDC	D:
(pF)	Tolerance	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)	Part No.	Dim. T (mm)
220		APP AND A Prince (Min. and the address of APP and APP		ECUV1H221 BM	0.65				
270				ECUV1H271KBM	0.65			The second secon	
330				ECUV1H331 BM	0.65				
390				ECUV1H391KBM	0.65	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE			
470				ECUV1H471 BM	0.65				
560		1 To 1 To 1 To 1 To 1 To 1 To 1 To 1 To		ECUV1H561KBM	0.65	The state of the s			
680		THE CONTROL OF THE CO		ECUV1H681 BM	0.65	With the Control of Co			
820				ECUV1H821KBM	0.65				
1000		ECUV2A102KBM	1.0	ECUV1H102 BM	0.65				
1200		ECUV2A122KBM	1.0	ECUV1H122KBM	0.65				
1500		ECUV2A152KBM	1.0	ECUV1H152 BM	0.65				
1800		ECUV2A182KBM	1.0	ECUV1H182KBM	0.65				
2200		ECUV2A222KBM	1.0	ECUV1H222 BM	0.65				
2700		ECUV2A272KBM	1.0	ECUV1H272KBM	0.65				
3300		ECUV2A332KBM	1.0	ECUV1H332 BM	0.65				
3900		ECUV2A392KBM	1.0	ECUV1H392KBM	0.65				
4700		ECUV2A472KBM	1.0	ECUV1H472 BM	0.65				
5600	±10%	ECUV2A562KBM	1.0	ECUV1H562KBM	0.65				
6800	(K)	ECUV2A682KBM	1.0	ECUV1H682 BM	0.65				
8200	or	ECUV2A822KBM	1.0	ECUV1H822KBM	0.65				
10000	±20%	ECUV2A103KBM	1.0	ECUV1H103 BM	0.65			ECUV1H103MEM	1.0
12000	(M)	ECUV2A123KBM	1.0	ECUV1H123KBM	0.65				
15000		ECUV2A153KBM	1.0	ECUV1H153 BM	0.65			ECUV1H153MEM	1.0
18000		ECUV2A183KBM	1.0	ECUV1H183KBM	0.65				
22000		ECUV2A223KBM	1.0	ECUV1H223 BM	0.65			ECUV1H223MEM	1.0
27000		ECUV2A273 BM	1.0	ECUV1H273KBM	0.65				
33000		ECUV2A333 BM	1.0	ECUV1H3337BM	0.65	ECUV1E333 BW	0.65	ECUV1H333MEM	1.0
39000				ECUV1H393KBM	0.65	ECUV1E393KBW	0.65		
47000				ECUV1H473 BM	0.65	ECUV1E473 BW	0.65	ECUV1H473MEM	1.0
56000				ECUV1H563KBM	0.65	ECUV1E563KBW	0.65		
68000				ECUV1H683□BM	1.0	ECUV1E683□BW	0.65	ECUV1H683MEM	1.0
82000				ECUV1H683KBM	1.0	ECUV1E823KBW	0.65		
100000				ECUV1H104 BM	1.0	ECUV1E104□BW	1.0	ECUV1H104MEM	1.0
120000				(Packaging Styles Coc	le)**	ECUV1E124KBW	1.0	· · · · · · · · · · · · · · · · · · ·	
150000						ECUV1E154 BW	1.0	<u> </u>	
220000						(Cap. Tol. Code)*			
330000								 	
470000									
680000									
1000000									

^{* :} Capacitance Tolerance Code.

 $^{^{\}star\star}$ Packaging Styles Code: "E" for Taped Version (Taping pitch: 2 mm) and "X" for Bulk Type.

Standard Products for "13" Type, (EIA "1206" Type), Taped Version

0 "		501/00	NPO/0		
Capacitance (pF)	Capacitance Tolerance	50 VDC	Dim.	100 VDC	Dim.
(Pi)	Tolerance	Part No.	T (mm)	Part No.	T (mm)
1.0		ECUV1H010CCM	1.0	ECUV2A010CCM	1.0
1.2		ECUV1H1R2CCM	1.0	ECUV2A1R2CCM	1.0
1.5		ECUV1H1R5CCM	1.0	ECUV2A1R5CCM	1.0
1.8	±.25	ECUV1H1R8CCM	1.0	ECUV2A1R8CCM	1.0
2.2	pF	ECUV1H2R2CCM	1.0	ECUV2A2R2CCM	1.0
2.7		ECUV1H2R7CCM	1.0	ECUV2A2R7CCM	1.0
3.3		ECUV1H3R3CCM	1.0	ECUV2A3R3CCM	1.0
3.9		ECUV1H3R9CCM	1.0	ECUV2A3R9CCM	1.0
4.7		ECUV1H4R7CCM	1.0	ECUV2A4R7CCM	1.0
5.6	±.5	ECUV1H5R6DCM	1.0	ECUV2A5R6DCM	1.0
6.8	pF	ECUV1H6R8DCM	1.0	ECUV2A6R8DCM	1.0
8.2		ECUV1H8R2DCM	1.0	ECUV2A8R2DCM	1.0
10		ECUV1H100JCM	1.0	ECUV2A100JCM	1.0
12		ECUV1H120JCM	1.0	ECUV2A120JCM	1.0
15		ECUV1H150JCM	1.0	ECUV2A150JCM	1.0
18		ECUV1H180JCM	1.0	ECUV2A180JCM	1.0
22		ECUV1H220JCM	1.0	ECUV2A220JCM	1.0
27		ECUV1H270JCM	1.0	ECUV2A270JCM	1.0
33		ECUV1H330JCM	1.0	ECUV2A330JCM	1.0
39		ECUV1H390JCM	1.0	ECUV2A390JCM	1.0
47		ECUV1H470JCM	1.0	ECUV2A470JCM	1.0
56	J=±5%	ECUV1H560JCM	1.0	ECUV2A560JCM	1.0
82		ECUV1H820JCM	1.0	ECUV2A820JCM	1.0
100		ECUV1H101JCM	1.0	ECUV2A101JCM	1.0
120	K=±10%	ECUV1H121JCM	1.0	ECUV2A121JCM	1.0
150		ECUV1H151JCM	1.0	ECUV2A151JCM	1.0
180		ECUV1H181JCM	1.0	ECUV2A181JCM	1.0
220		ECUV1H221JCM	1.0	ECUV2A221JCM	1.0
330		ECUV1H331JCM	1.0	ECUV2A331JCM	1.0
390		ECUV1H391JCM	1.0	ECUV2A391JCM	1.0
470		ECUV1H471JCM	1.0	ECUV2A471JCM	1.0
560		ECUV1H561JCM	1.0	ECUV2A561JCM	1.0
680		ECUV1H681JCM	1.0	ECUV2A681JCM	1.0
820		ECUV1H821JCM	1.0	ECUV2A821JCM	1.0
1000		ECUV1H122JCM	1.0	ECUV2A122JCM	1.0
1200		ECUV1H122JCM	1.0	(Packaging Code**)	
1500		ECUV1H152JCM	1.0	***************************************	
1800		ECUV1H182JCM	1.0		
2200		ECUV1H222JCM	1.0		

Capacitance Tolerance Code.

^{**} Packaging Styles Code: "V", "Y" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

Standard Products for "13" Type, (EIA "1206" Type), Taped Version

0 1	0 "	501/00		F/Y5V		101/100	
Capacitance (pF)	Capacitance Tolerance	50 VDC	Dim.	25 VDC	Dim.	16 VDC	Dim.
(51)	Toloranoe	Part No.	T (mm)	Part No.	T (mm)	Part No.	T (mm)
220							
270							
330		V					
390	-						
470							
560							
680							
820							
1000		ECUV1H102ZFM	0.65				
1200							
1500	1	ECUV1H152ZFM	0.65			A	
1800	1						
2200		ECUV1H222ZFM	0.65				
2700							
3300		ECUV1H332ZFM	0.65				
3900							
4700		ECUV1H472ZFM	0.65				
5600							
6800	+80	ECUV1H682ZFM	0.65				
8200	-20%						
10000	(Z)	ECUV1H103ZFM	0.65				
12000	-						
15000		ECUV1H153ZFM	0.65				1
18000						***************************************	
22000	1	ECUV1H223ZFM	0.65				
27000							
33000		ECUV1H333ZFM	0.65				
39000							
47000	1	ECUV1H473ZFM	0.65				
56000	1						1
68000	1	ECUV1H683ZFW	0.65				
82000	1						
100000	1	ECUV1H104ZFW	0.65	ECUV1E104ZFW	0.65		
120000					\dagger		
150000	1	ECUV1H154ZFW	0.65	ECUV1E154ZFW	0.65		
220000	1	ECUV1H224ZFW	0.65	ECUV1E224ZFW	0.65		
330000	1	(Packaging Styles Cod		ECUV1E334ZFW	0.65		
470000	1		İ	ECUV1E474ZFW	0.65		
680000	1			(Cap. Tol. Code)*		ECUV1C684ZFW	1.0
1000000	-					ECUY1C105ZFW	1.25

^{*} \square : Capacitance Tolerance Code.

^{**} Packaging Styles Code: "V", "Y" for Taped Version (Taping pitch: 4 mm) and "X" for Bulk Type.

Packaging Specifications

Standard Packing Quantity

Size Code	Style Thickness	Paper Taping	Embossed Taping	Bulk
10 (0402)	0.5 mm	Pitch 2 mm: 10000 (50000) pcs./reel	-	1000 pcs./ bag
11 (0603)	0.8 mm	Pitch 2 mm: 8000 (20000) pcs./reel		1000 pcs.bag
11 (0003)	0.611111	Pitch 4 mm: 4000 (10000) pcs./reel		1000 pcs.bag
	0.65 mm	Pitch 2 mm: 10000 (40000) pcs./reel		1000 pcs./bag
.	0.03 11111	Pitch 4 mm: 5000 (20000) pcs./reel	_	1000 pcs./bag
12 (0805)	1.0 mm	Pitch 4 mm: 8000 (20000) pcs./reel		1000 pcs./bag
	1.011111	Pitch 4 mm: 4000 (10000) pcs./reel		1000 pcs./bag
	1.25 mm		_	1000 pcs./bag
	0.65 mm	Pitch 4 mm: 5000 (20000) pcs./reel		1000 pcs./bag
13 (1206)	1.0 mm	Pitch 4 mm: 4000 (10000) pcs./reel	_	1000 pcs./bag
	1.25 mm		Pitch 4 mm: 2000 (10000) pcs./reel	1000 pcs./bag

() for large size reel

Reel for Taping

Symbol	Α	В	С	D	E	W	W ₁
Dim.	ø180.1	ø60.0±0.5		21.0±0.8		9.0±0.3	1.3±0.2
(mm)	(330±5)	(50 min.)	13.0 ±0.5	(20 min.)	2.0±0.5	(9.5±1.0)	(2.0±0.5)

(): Large size reel

Leader Part and Taped End

Size Co	Symbol	Α	В	W	F	E	P ₁	P ₂	Po	øD ₀	t ₁	t ₂
Dim. (mm)	13	1.95 ±0.20	3.6 ±0.2	8.0 ±0.2	3.50 ±0.05	1.75 ±0.10	4.0 ±0.1	2.00 ±0.05	4.0 ±0.1	1.5	0.6	1.5 max.

Paper Taping

Size Co	Symbol	А	В	W	F	Е	P ₁	P ₂	Po	øD ₀	t ₁	t ₂
	10	0.65 ±0.05	1.15 ±0.05								0.7 mex.	1.0 max.
Dim. (mm)	11 (0603)	1.10 ±0.10	1.90 ±0.10	8.0 ±0.2	3.50 ±0.06	1.75 ±0.10	2.00 ±0.05	2.00 ±0.05	4.0 ±0.1	1.5	1.1	1.4
,	12 (0805)	1.65 ±0.2	2.4 ±0.2								max.	max.

Size Coo	Symbol	А	В	W	F	Е	P ₁	P ₂	Po	øDο	t ₁	t ₂
	11 (0603)	1.10 ±0.10	1.70 ±0.10									
Dim. (mm)	12 (0805)	1.65 ±0.20	2.4 ±0.2	8.0 ±0.2	3.50 ±0.05	1.75 ±0.10	4.0 ±0.1	2.00 ±0.05	4.0 ±0.1	1.5	1.1 max.	1.4 max.
(,	13 (1206)	2.0 ±0.2	3.6 ±0.2									

Embossed Taping

Features

- · High Volumetric Efficiency
- Packaged for Automatic Insertion
- Excellent Stability
- Excellent Solderability
- Excellent Moisture Resistance

PHOTO NOT AVAILABLE

Specifications

Item	NPO,	/COG	X7R		Z5U
Operating Temperature Range	-55 °C to	o 125 °C	-55 °C to 1:	25 °C	+10 °C to 85 °C
Rated Voltage	63 VDC	100 VDC	63 VDC	100 VDC	63 VDC
Capacitance Range*	100-47000 pF	4.7-22000 pF	3300-100,000 pF	220-33000 pF	.01 μf-2.2μF
Capacitance Tolerance	±.5pF, ±5%, ±10%		±10%, ±2	20%	±20%
Dielectric Strength	200% rated \	/DC for 10 s	200% rated VD	C for 10 s	150% rated VDC for 10 s
Q Factor/Dissipation Factor	≤.15	5%	≤2.5%)	≤4.0%
Insulation Resistance	100,000 MΩ or whicheve		50,000 M Ω or (500 m Ω x μ F), whichever is less		10,000 M Ω or (100 μ Ω × μF), whichever is less
Endurance Test (1000 hrs)	150% rated VD0	C at 125 °C	150% rated VDC at 125 °C		125% rated VDC at 85 °C
Temperature Coefficient	0 ±30p	pm/°C	±15%		+22% / -56%

^{*}NPO/COG, X7R - measured at 1.0 VRMS max at 1KHz (1.0 MHz for >100 pF); Z5U - measured at 0.5 VRMS max at 1KHz.

Explanation of Part Numbers

Characteristic Curves

Capacitance change versus temperature

X7R ceramics (typical values)

Z5U ceramics (typical values)

Case Configuration by Case Code

Case Code A L max. = 5.0 mm H max. = 5.5 mm T max. = 2.5 mm S = 2.5 mm	
Case Code B L max. = 5.0 mm H max. = 6.5 mm T max. = 3.1 mm S = 2.5 mm	
Case Code C L max. = 5.0 mm H max. = 5.5 mm T max. = 2.5 mm S = 5.0 mm	
Case Code D L max. = 5.0 mm H max. = 6.5 mm T max. = 3.1 mm S = 5.0 mm	
Case Code E L max. = 7.5 mm H max. = 9.0 mm T max. = 3.8 mm S = 5.0 mm	
Case Code F L max. = 10.0 mm H max. = 11.5 mm T max. = 5.0 mm S = 5.0 mm	

Part Number Selection Guide

Capacitance	Part Number	Part Number	Part Number	Part Number	Part Number	Part Number
pF	Case A	Case B	Case C	Case D	Case E	Case F
NPO/COG 50-63	VDC		The second second second second second second second second second second second second second second second s			
100	ECUS1J101JCA		ECUS1J101JCB			
120	ECUS1J121JCA		ECUS1J121JCB			
150	ECUS1J151JCA		ECUS11511JCB			
180	ECUS1J181JCA		ECUS1J181JCB			
220	ECUS1J221JCA		ECUS1J221JCB			
270	ECUS1J271JCA		ECUS1J272JCB			The company of the second seco
330	ECUS1J331JCA		ECUS1J331JCB			
390	ECUS1J391JCA		ECUS1J391JCB			
470	ECUS1J471JCA		ECUS1J471JCB			
560	ECUS1J561JCA		ECUS1J561JCB			
680		ECUS1J681JCA		ECUS1J681JCB	1	
820		ECUS1J821JCA		ECUS1J821JCB		
1000		ECUS1J102JCA		ECUS1J102JCB		
1200		ECUS1J122JCA		ECUS1J122JCB		
1500		ECUS1J152JCA		ECUS1J152JCB		L
1800		ECUS1J182JCA		ECUS1J182JCB		
2200		ECUS1J222JCA		ECUS1J222JCB		
2700		ECUS1J272JCA		ECUS1J272JCB		
3300		ECUS1J332JCA		ECUS1J332JCB		
3900	 	ECUS1J392JCA		ECUS1J393JCB	,	
4700		ECUS1J472JCA		ECUS1J472JCB		
5600		EC03104720CA		EC03104720CD	ECUS1J562JCB	
6800					EW S1J682JCB	
8200					ECUS1J822JCB	
10000					ECUS1J103JCB	
12000					ECUS1J123JCB	
18000					ECUS1J183JCB	
22000					ECUS1J223JCB	
27000					ECUS1J273JCB	
33000						ECUS1J333JC
39000						ECUS1J393JC
47000						ECUS1J473JC
NPO/COG 100VI				·		
4.7	ECUS2A4R7DCA		ECUS2A4R7DCB			
5.6	ECUS2A5R6DCA		ECUS2A5R6DCB			
6.8	ECUS2A6R8DCA		ECUS2A6R8DCB			
8.2	ECUS2A8R2DCA		ECUS2A8R2DCB			
10	ECUS2A100JCA		ECUS2A100JCB			
12	ECUS2A120JCA		ECUS2A120JCB			
15	ECUS2A150JCA		ECUS2A150JCB			
18	ECUS2A180JCA		ECUS2A180JCB			
22	ECUS2A220JCA		ECUS2A220JCB			
27	ECUS2A270JCA		ECUS2A270JCB			
33	ECUS2A330JCA		ECUS2A330JCB			
39	ECUS2A390JCA		ECUS2A390JCB			
47	EGUS2A470JCA		ECUS2A470JCB			
56	ECUS2A560JCA		ECUS2A560JCB			
68	ECUS2A680JCA		ECUS2A680JCB			
82	ECUS2A820JCA		ECUS2A820JCB			
100	ECUS2A101JCA		ECUS2A101JCB			
	ECUS2A121JCA		ECUS2A121JCB			
120		1		4	 	
120 150			FCUS2A151.ICB	i e		
120 150 180	ECUS2A151JCA ECUS2A181JCA		ECUS2A151JCB ECUS2A181JCB			

93

Capacitance	Part Number	Part Number	Part Number	Part Number	Part Number	Part Number
pF.	Case A	Case B	Case C	Case D	Case E	Case F
270		ECUS2A272JCA		ECUS2A271JCB		
330		ECUS2A331JCA		ECUS2A331JCB		
390		ECUS2A391JCA		ECUS2A391JCB		
470		ECUS2A471JCA		ECUS2A471JCB		
560		ECUS2A561JCA		ECUS2A561JCB		
680		ECUS2A681JCA		ECUS2A681JCB		
820		ECUS2A821JCA		ECUS2A821JCB		
1000		ECUS2A102JCA		ECUS2A102JCB		
1200		ECUS2A122JCA		ECUS2A122JCB		
1500		ECUS2A152JCA		ECUS2A152JCB		
1800					ECUS2A182JCB	
2200	·				ECUS2A222JCB	
2700					ECUS2A272JCB	
3300					ECUS2A332JCB	
3900			سيوره في رو مقي و مقي و مقي و مقي و مسيوره فقي و مسي		ECUS2A392JCB	
4700					ECUS2A472JCB	
5600					ECUS2A562JCB	
6800					ECUS2A682JCB	
8200					ECUS2A822JCB	
10000					ECUS2A103JCB	
12000					20002, 1100002	ECUS2A123JC
15000						ECUS2A153JCI
18000						ECUS2A183JC
22000						ECUS2A223JC
X7R 50-63VDC	1		*	L		LOGOZINZZOGO
3300	ECUS1J332KBA		ECUS1J332KBB			
3900	ECUS1J392KBA		ECUS1J332KBB			
4700						
	ECUS1J472KBA		ECUS1J472KBB			
5600	ECUS1J562KBA		ECUS1J562KBB			
6800	ECUS1J682KBA		ECUS1J682KBB			
8200	ECUS1J822KBA		ECUS1J822KBB			
10000	ECUS1J103KBA		ECUS1J103KBB			
12000	E W S1J123KBA		ECUS1J123KBB			
15000	ECUS1J153KBA		ECUS1J153KBB			
18000	ECUS1J183KBA		ECUS1J183KBB			
22000	ECUS1J223KBA		ECUS1J223KBB			
27000		ECUS1J273KBA		ECUS1J273KBB		
33000		ECUS1J333KBA		ECUS1J333KBB		
39000		ECUS1J393KBA		ECUS1J393KBB		
47000		ECUS1J473KBA		ECUS1J473KBB		
56000		ECUS1J563KBA		ECUS1J563KBB		
68000		ECUS1J683KBA		ECUS1J683KBB		
82000		ECUS1J823KBA		ECUS1J823KBB		
100000		ECUS1J104KBA		ECUS1J104KBB		
120000		ECUS1J124KBA		ECUS1J124KBB		
150000		ECUS1J154RBA		ECUS1J154KBB		
180000					ECUS1J184KBB	
220000			*-*		ECUS1J224KBB	
270000					ECUS1J274KBB	
330000					ECUS1J334KBB	
470000					ECUS1J474RBB	
560000					ECUS1J564KBB	
680000					ECUS1J684KBB	
	 	<u> </u>				E01101100110
820000						ECUS1J824KE

Capacitance	Part Number	Part Number	Part Number	Part Number	Part Number	Part Number
pF	Case A	Case B	Case C	Case D	Case E	Case F
X7R 100VDC	Case / C	Oddo B		Jacob B	0000 E	00001
220	ECUS2A221KBA		ECUS2A221KBB			
270	ECUS2A271KBA	Control to the control of the contro	ECUS2A271KBB			
330	ECUS2A331KBA		ECUS2A331KBB	La describir de la companya del la companya de la c		
390	ECUS2A391KBA		ECUS2A391KBB			
470	ECUS2A471KBA		ECUS2A471KBB			
560	ECUS2A561KBA	and the state of t	ECUS2A561KBB			
680	ECUS2A681KBA		ECUS2A681KBB			
820	ECUS2A821KBA	general personal general control of the control of	ECUS2A821KBB			
1000	ECUS2A102KBA		ECUS2A102KBB		and the second s	
1200	ECUS2A122KBA		ECUS2A122KBB	The second secon		
1500	ECUS2A152KBA	- No. (1974)	ECUS2A152KBB	The second condition of the second conditions		
1800	ECUS2A182KBA		ECUS2A182KBB		a a a a a a a a a a a a a a a a a a a	
2200	ECUS2A222KBA		ECUS2A222KBB			
2700	ECUS2A272KBA		ECUS2A272KBB		A section comments and booking the street of	
3300	ECUS2A332KBA	Construction of the Constr	ECUS2A332KBB			
3900	ECUS2A392KBA		ECUS2A392KBB			
4700	ECUS2A472KBA	THE PERSONNEL PROPERTY AND ADDRESS OF THE PERSON OF THE PE	ECUS2A472KBB			The State of Control o
5600	LOUGEATIZNDA	ECUS2A562KBA	LOUGZA47ZINDD	ECUS2A562KBB		
6800		ECUS2A682KBA		ECUS2A562KBB		
8200		ECUS2A822KBA		ECUS2A822KBB		
10000		ECUS2A022KBA ECUS2A103KBA		ECUS2A022KBB		
12000				ECUS2A103KBB		
15000		ECUS2A123KBA ECUS2A153KBA		ECUS2A123KBB		
18000	\	ECUS2A183KBA		ECUS2A183KBB		
22000		ECUS2A223KBA		ECUS2A223KBB		
27000	1	ECUS2A273KBA		ECUS2A273KBB		
33000	-	ECUS2A333KBA		ECUS2A333KBB		
39000		ECUS2A393KBA		ECUS2A393KBB		
47000		ECUS2A473KBA		ECUS2A473KBB		
56000		ECUS2A563KBA		ECUS2A453KBB		
68000		ECUS2A683KBA		ECUS2A683KBB		
82000		ECUS2A823KBA		ECUS2A823KBB		
100000		ECUS2A104KBA		ECUS2A104KBB	5011001101100	
120000	-				ECUS2A124KBB	
150000					ECUS2A154KBB	
180000				1	ECUS2A184KBB	
220000		н.				ECUs2A224KBB
270000						ECUS2A274KBB
330000						ECVS2A334KBB
Z5U 50-63VDC	FOLIO: HCC: TE:		E01104 (100)			
.010µF	ECUS1J103MEA		ECUS1J103MEB			
.015µF	ECUS1J153MEA		ECUS1J153MEB			
.022µF	ECUS1J223MEA		ECUS1J223MEB			
.033µF	ECUS1J333MEA		ECUS1J333MEB			
.047μF	ECUS1J473MEA	F0110 : :===::=	ECUS1J473MEB	FOLIO		
.068µF		ECUS1J683MEA		ECUS1J683MEB		
.100μF		ECUS1J104MEA		ECUS1J104MEB		
.150μF		ECUS1J154MEA		ECUS1J154MEB		
.220µF		ECUS1J224MEA		ECUS1J224MEB		
.330µF		ECUS1J334MEA		ECUS1J334MEB		
.470μF					ECUS1J474MEB	
.680µF					ECUS1J684MEB	
1.000µF					ECUS1J105MEB	
1.500μF					ECUS1J155MEB	
2.200μF			 			ECUS1J225MEB

Tape Packaging of Radial-Lead Capacitors (Taping in accordance with IEC 286-2)

Dimensions and Tolerances

Dimension	Lead sp	oacing	Tolerance	Remarks
(mm)	2.54 mm	5.08 mm		
В	11.0	11.0	max.	A CONTRACTOR OF THE CONTRACTOR
S	3.1	5.0	max.	
d	0.55	0.55	±0.05	
Р	12.7	12.7	±1.0	Section 1.5 Administration of the control of the co
Po	12.7	12.7	±0.2	±1 mm/20 hole pitches
Ρ,	5.1	3.85	±0.7	
P_2	6.35	6.35	±1.3	
F	2.54	5.08	+0.6/-0.1	
Δh	0	0	±2.0	measured at top of component body
Δр	0	0	±1.3	
W	18.0	18.0	±0.5	
W _o	5.5	5.5	min.	Peel force ≥ 5N
W ₁	9.0	9.0	±0.5	
W ₂	1.0	1.0	-0.5	
Н	18.0	18.0	+2.0/-0	
H _o	16.0	16.0	±0.5	
H ₁	32.2	32.2	max.	
$D_{\!\scriptscriptstyle{0}}$	4.0	4.0	±0.2	
t	0.7	0.7	+0.2	
L	11.0	11.0	max.	
	1.0	1.0	max.	

Features

- IC memory back-up device (mA range load)
- Coin type with various terminal style
- Suitable for application in limited space

Specifications

Item		Performance Ch	aracteristics						
Operating Temperature Range	-25 to +70°C								
Rated Working Voltage	2.5V DC								
Nominal Capacitance Range	0.1F to 2.0F								
Capacitance Tolerance	-20% to +80% (+20 °C)								
Internal Resistance	Refer to "Standard prod	ucts table" for each value							
Characteristics at High and Low	-25°C & +70°C C	apacitance change	±30% of the measured value at +20°C						
Temperature	-25°C In	ternal resistance	≦ 5 times of the measured value at +20°C						
Llich Tennegaritus Leading	The capacitor shall meet Capacitance change	ű	1,000 hours application of 2.5V DC a +70°C ne initial measured value						
High Temperature Loading	Internal resistance	: ≤ 4 times of	of the initial specified value						
Shelf Life	The capacitor shall meet exposure at +70°C with		perature Loading" after 1,000 hours						
Loading with Moisture	The capacitor shall meet the limits specified for "High Temperature Loading" after 500 hours exposure at +55°C/90 to 95% RH with 2.5V DC applied.								

Standard Products Table

Rated working voltage	Normal capacitance	Part number	Internal resistance
[V.DC]	[F]		$[\Omega]$ at 1 kHz
	0.10	EECEOEL104	40
	0.33	EECEOEL334	40
2.5	0.47	EECEOEL474	40
	0.68	EECEOEL684	10
	2.0	EECEOEL205	15

^{*} Terminal configurations A/R VIH

Dimensions

Terminal: A

Part No.	A+0 -0.3	B+0 -0.2	C ₁ ±0.5	D ₁ ±0.1	E ₁ max.	F ₁ ±0.2
EECEOEL104A	6.8	1.4	12.4	0.5	1.9	1.8
EECEOEL334A	9.5	2.1	15.5	2.0	2.9	2.0
EECEOEL474A	11.0	2.0	17.0	2.0	2.8	2.0
EECEOEL684A	20.0	1.6	26.0	2.0	2.5	2.0
EECEOEL205A	18.5	2.2	24.5	2.0	3.0	2.0

Terminal: R

Part No.	A+0 -0.3	B+0 -0.2	C ₂ max.	D ₂ ±0.1	E ₂ max.	F ₂ +0.2	P ₂ ±0.5
EECEOEL104R	6.8	1.4	9.5	0.5	1.9	1.8	2.0
EECEOEL334R	9.5	2.1	13.5	1.5	2.9	2.0	4.5
EECEOEL474R	11.0	2.0	15.0	1.5	2.8	2.0	5.5
EECEOEL684R	20.0	1.6	24.0	1.5	2.5	2.0	5.5
EECEOEL205R	18.5	2.2	22.5	1.5	3.0	2.0	5.5

Terminal: V

Part No.	A+0 -0.3	B+0 -0.2	C ₃ max.	D ₃ +_0.1	E ₃ max.	F ₃ (+)±0.3	F ₃ (-)±0.3	P ₃ +_0.5
EECEOEL334V	9.5	2.1	12.0	0.8	2.9	5.0	4.0	3.0
EECEOEL474V	11.0	2.0	13.0	0.8	2.8	5.0	4.0	3.0
EECEOEL684V	20.0	1.6	22.0	0.8	2.5	5.0	4.0	3.0
EECEOEL205V	18.5	2.2	20.5	0.8	3.0	5.0	4.0	3.0

Terminal: H

Part No.	A ⁺⁰ _{-0.2}	B ⁺⁰ _{-0.2}	C ₄ ±0.5	D ₄ ±0.1	E ₄ max.	F ₄ ±0.3	P ₄ ±0.5
EECEOEL334H	9.5	2.1	10.5	0.8	4.0	5.0	10.0
EECEOEL474H	11.0	2.0	12.0	0.8	3.9	5.0	10.0
EECEOEL684H	20.0	1.6	21.0	8.0	3.5	5.0	20.0
EECEOEL205H	18.5	2.2	19.5	0.8	4.1	5.0	20.0

Features

- IC memory back-up device (µA range load)
- Large capacitance for long time back-up
- General purpose
- 5mm terminal spacing

Specifications

ltem	Performance Characteristics					
Operating Temperature Range	-25 to +70°C					
Rated Working Voltage	5.5V DC					
Nominal Capacitance Range	0.022F to 1.0F		THE RESERVE OF A STREET OF THE			
Capacitance Tolerance	-20% to +80% (+20 °C	0)	The state of the s			
Internal Resistance	Refer to "Standard pro	ducts table" for each value				
Characteristics at High and Low Temperature	-25°C & +70°C	Capacitance change	$\pm 30\%$ of the measured value at +20°C			
	-25°C	Internal resistance	≤ 5 times of the measured value at +20°C			
High Temperature Loading	The capacitor shall meet the following limits after 1,000 hours application of 5.5V DC at +70°C Capacitance change : ±30% of the initial measured value Internal resistance : ≤ 4 times of the initial specified value					
Shelf Life	The capacitor shall meet the limits for "High Temperature Loading" after 1,000 hours exposure at +70°C with no voltage applied.					
Loading with Moisture	The capacitor shall meet the limits specified for "High Temperature Loading" after 500 hours exposure at +55°C/90 to 95% RH with 5.5V DC applied.					

Dimensions

[mm]

Case Code	φD	L
А	13.5	7.5
В	21.5	8.0

Standard Products Table

Rated working voltage [V.DC]	Nominal capacitance [F]	Case code	Part number	Internal resistance $[\Omega]$ at 1kHz
	.022	А	EECF5R5U223	150
	0.033	А	EECF5R5U333	150
	0.047	Α	EECF5R5U473	120
	0.1	Α	EECF5R5U104	75
5.5	0.22	А	EECF5R5U224	75
	0.33	В	EECF5R5U334	40
	0.47	В	EECF5R5U474	30
	1.0	В	EECF5R5U105	30

Features

- IC memory back-up device (µA range load)
- Industrial grade (max. temperature: +85°C)

Specifications

ltem		Performance Chara	acteristics			
Operating Temperature Range	-25 to +85°C					
Rated Working Voltage	5.5V DC					
Nominal Capacitance Range	0.033F to 0.68F					
Capacitance Tolerance	-20% to +80% (+20 °C					
Internal Resistance	Refer to "Standard prod	ducts table" for each value	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Characteristics at High and Low Temperature	-25°C & +85°C -25°C	Capacitance change Internal resistance	± 30% of the measured value at +20°C ≤ 5 times of the measured value at +20°C			
High Temperature Loading	The capacitor shall meet the following limits after 1,000 hours application of 5.5V DC at +85°C Capacitance change : ± 30% of the initial measured value Internal resistance : ≤ 4 times of the initial specified value					
Shelf Life	The capacitor shall meet the limits for "High Temperature Loading" after 1,000 hours exposure at +85°C with no voltage applied.					
Loading with Moisture	The capacitor shall meet the limits specified for "High Temperature Loading" after 500 hours exposure at +55°C/90 to 95% RH with 5.5V DC applied.					

Dimensions [mm]

Case Code	φD	L
Α	13.5	9.5
В	21.5	9.5

Standard Products Table

Rated working voltage [V.DC]	Nominal capacitance [F]	Case code	Part number	Internal resistance [Ω] at 1kHz
	0.033	Α	EECF5R5H333	150
	0.047	Α	EECF5R5H473	120
5.5	0.1	Α	EECF5R5H104	100
	0.47	В	EECF5R5H474	75
	0.68	В	EECF5R5H684	50

- IC memory back-up device (mA range load)
- Volumetric efficiency (50% smaller than NF series)
- Light weight (1.2g)
- General purpose

Specifications

ltem	Performance Characteristics				
Operating Temperature Range	-25 to +70°C				
Rated Working Voltage	5.5V DC				
Nominal Capacitance Range	0.022F to 1.0F				
Capacitance Tolerance	-20% to +80% (+20 °C	D)			
Internal Resistance	Refer to "Standard products table" for each value				
Characteristics at High and Low Temperature	-25°C & +70°C	Capacitance change	\pm 30% of the measured value at +20°C		
	-25°C	Internal resistance	≦ 5 times of the measured value at +20°C		
High Temperature Loading	The capacitor shall mea Capacitance change Internal resistance	: ± 30% of the initia	000 hours application of 5.5V DC at +70°C al measured value nitial specified value		
Shelf Life	The capacitor shall meet the limits for "High Temperature Loading" after 1,000 hours exposure at +70°C with no voltage applied.				
Loading with Moisture		et the limits specified for "Hig to 95% RH with 5.5V DC app	h Temperature Loading" after 500 hours olied.		

Dimensions [mm]

Rated working voltage	Nominal capacitance		Internal resistance	Case code	
[V.DC]	[F]	Part number	$[\Omega]$ at 1kHz	V	Н
	0.022	EECS5R5 7 223	150	А	С
	0.047	EECS5R5 - 473	120	Α	С
5.5	0.10	EECS5R5 □ 104	75	Α	С
5.0	0.22	EECS5R5 ☐ 224	75	А	С
	0.47	EECS5R5 🗆 474	30	В	D
	1.0	EECS5R5 ☐ 105	30	В	D

^{* □ =} V (Configuration: V) or H (Configuration H)

- Lead taping type of SG series
- IC memory back-up device (mA range load)
- Volumetric efficiency (50% smaller than NF series)
- General purpose

Specifications

Item		Performance Characteristics				
Operating Temperature Range	-25 to +70°C	هيي دهماي سنداني دهماي دهماي سنداني بيامهي وسناني وسنداني وسنداني وسنداني				
Rated Working Voltage	5.5V DC	5.5V DC				
Nominal Capacitance Range	0.022F to 0.22F					
Capacitance Tolerance	-20% to +80% (+20 °C	C)				
Internal Resistance	Refer to "Standard pro	Refer to "Standard products table" for each value				
Characteristics at High and Low	-25°C & +70°C	Capacitance change	±30% of the measured value at +20°C			
Temperature	-25°C	Internal resistance	≤ 5 times of the measured value at +20°C			
High Temperature Loading	Capacitance change	et the following limits after 1,0 : $\pm 30\%$ of the initial : ≤ 4 times of the in				
Shelf Life		The capacitor shall meet the limits for "High Temperature Loading" after 1,000 hours exposure at +70°C with no voltage applied.				
Loading with Moisture		et the limits specified for "High to 95% RH with 5.5V DC app	n Temperature Loading" after 500 hours blied.			

Dimensions [mm]

Code	Dimensions	Tolerance
фd	0.55	±0.05
P _o	12.7	±0.2
F	5.0	+0.8/-0.2
W	18.0	±0.5
Wo	≧5.5	-
W ₁	9.0	±0.5
W_2	0~3.0	_
H ₀	18.0	±0.5
ϕD_0	4.0	±0.2
P	12.7	±1.0
P ₁	3.85	±0.50
P ₂	6.35	±1.00
Δh , Δh_1	0	±1.0
H ₁	29.5	±0.5

Rated working voltage [V DC]	Nominal capacitance [F]	Part number	Internal resistance $[\Omega]$ at 1kHz
	0.022	EECS5R5T223	150
	0.047	EECS5R5T473	120
5.5	0.10	EECS5R5T104	75
	0.22	EECS5R5T224	75

- Back-up for mA range load
- Large capacitance (3.3F)
- Molded case

Specifications

Item		Performance Characteristics				
Operating Temperature Range	-25 to +70°C	-25 to +70°C				
Rated Working Voltage	5.5V DC	A COLUMN TO THE PARTY OF THE PA				
Nominal Capacitance Range	1.0F to 3.3F					
Capacitance Tolerance	-20% to +80% (0.1F, ().33F), -20% to +40% (1F, 3.	3F) (+20 °C)			
Internal Resistance	Refer to "Standard pro	Refer to "Standard products table" for each value				
Characteristics at High and Low	-25°C & +70°C	Capacitance change	±30% of the measured value at +20°C			
Temperature	-25°C	Internal resistance	\leq 3 times of the measured value at +20°C			
High Temperature Loading	The capacitor shall mea Capacitance change Internal resistance	,				
Shelf Life		The capacitor shall meet the limits for "High Temperature Loading" after 1,000 hours exposure at +70°C with no voltage applied.				
Loading with Moisture		et the limits specified for "Hig to 95% RH with 5.5V DC app	h Temperature Loading" after 500 hours blied.			

Dimensions [mm]

Case		Dimensions						
code	W	Т	Н	Р	φd			
Α	25.0	9	28.0	17.5	0.7			
В	29.0	10	31.5	22.5	0.7			
С	42.5	15	32.5	32.5	0.8			
D	42.5	15	42.5	32.5	0.8			

Rated working voltage [V.DC]	Nominal capacitance [F]	Case code	Part number	Internal resistance [Ω] at 1kHz
	0.1	А	EECW5R5D104	9.0
	0.33	В	EECW5R5D334	5.0
5.5	1	С	EECW5R5D105	5.0
	3.3	D	EECW5R5D335	2.5

- Low internal resistance, 1/10 of NA series.
- For back-up on ampere order

Specifications

ltem		Performance Characteristics				
Operating Temperature Range	-40 to +70°C					
Rated Working Voltage	2.5V DC					
Nominal Capacitance Range	0.22 to 10F					
Capacitance Tolerance	-20% to +80% (20 °C)					
Characteristics	Capacitance change	±30% of the measured value at +20°C				
at Low Temperature	Internal resistance	≤ 4 times of the measured value at +20°C				
	The capacitor shall mee	et the following limits after 1,000 hours application of 2.5V DC at +70°C				
Endurance	Capacitance change	±30% of measured value				
	Internal resistance	≤ 2 times of initial specified value				
Shelf Life	The capacitor shall meet t at +70°C with no voltage	he limits for "Endurance" after 1,000 hours applied.				
Moisture Resistance		he limits specified for "Endurance" after 500 hours 95% RH with 2.5V DC applied.				

Dimensions [mm]

Nominal capacitance	D- 4	Internal Resistance		Size (mm)			
[F]	Part number	$[\Omega]$ at 1kHz	φD	L	φd	Р	
0.22	EECAOEL224	2.60	6.8	21.0	0.7	2.5	
0.33	EECAOEL334	1.60	6.8	21.0	0.7	2.5	
0.47	EECAOEL474	1.30	8.0	22.0	0.7	3.5	
1.0	EECAOEL105	1.00	8.0	22.0	0.7	3.5	
1.5	EECAOEL155	0.60	12.5	23.0	0.8	5.0	
2.2	EECAOEL225	0.40	12.5	23.0	0.8	5.0	
3.3	EECAOEL335	0.30	12.5	23.0	0.8	5.0	
4.7	EECAOEL475	0.20	12.5	35.0	0.8	5.0	
10.0	EECAOEL106	0.10	18.0	35.0	0.8	7.5	

This series is especially designed for application where high density insertion of components is required.

Features

- · High volumetric efficiency
- · Non-inductive construction
- · Low-loss, high stability
- Epoxy resin coating
- Taped product available (see p. 141)

Specifications

Operating Temperature Range	-40 to +85 °C					
Rated Voltage	50V, 63V, 100V, 200VDC	50V, 63V, 100V, 200VDC				
Capacitance Range	0.0001 to 0.47μF	0.0001 to 0.47μF				
Capacitance Tolerance	±5%(J), ±10%(K) (0.0001 to 0.000	±5%(J), ±10%(K) (0.0001 to 0.00039μF/50V, 63VDC: ±10% only)				
Dissipation Factor	0.8% max. (20 °C, 1kHZ)					
Withstanding Voltage	Between terminals: Rated voltage	(VDC) x 250% 1 to 5s				
Insulation Resistance	C≤0.33mF: 30000MΩmin. C>0.33μF: 10000MΩ•μFmin. (20 °C, 50VDC, 60s: ECQB1H(F), ECQB1J(F)) (20 °C, 100VDC, 60s: ECQB1(F), ECQBX(F))					
Construction	Polyester film, non-inductive, epoxy resin coating					

Dimensions

50VDC

				D	imensions (m	m)			Crimped
Part No.	Cap.		_	Hm		F-0.75	S±0.8	ød	style
	(μF)	L max.	T max.	Type-1	Type-2	Type-1	Type-2	±0.05	5 Type-2
ECQ B1H101KF()	.0001	6.5	3.0	5.5	10.5	5.0	5.0	0.5	N
" 1H121KF()	.00012	п	11	11	и	11	11	п	11
" 1H151KF()	.00015	Ш	11	и	n	п	11	п	n n
" 1H181KF()	.00018	. 11	u	ii .	"	Ш	11	11	11
" 1H221KF()	.00022	"	n	п	"	11	11	"	11
" 1H271KF()	.00027	1)	0	11	li li	11	H	u	lt .
" 1H331KF()	.00033	H	11	II	п	II	II	11	11
" 1H391KF()	.00039	11	11	п	11	u	н	II .	п
" 1H471DF()	.00047	н	ı	и	u	n	11	и	п
" 1H561 F()	.00056	1	"	u	.,	II II	11	П	11
" 1H681: IF()	.00068		11	п			п	П	0
" 1H821 F()	.00082	н	и	11	"	11	11	11	п
" 1H102 F()	.00002	u	11	H	0	0	н	ч	11
" 1H122 F()	.0012	N	II	II	11	II	II	II	ji
" 1H152F()	.0012	п	li li	II.		H	II	11	11
" 1H182 F()	.0018	II II	H	lł .	11	u	n	11	11
" 1H222 F()	.0018		1	li li	u	11	H	п	l II
" 1H272 F()	.0022	11	11	u	n	1		1)	1
" 1H332 F()	.0027	11	u	n		II .	II	п	II
			u u	11	н	"	ıı	п	п
" 1H392 F()	.0039	u	<u> </u>	15	II	11 Telephone (1984) (1984)	II	п	11
" 1H472 F()	.0047	11	11	п	u	11	н	11	п
" 1H562 F()	.0056	Н н		n n	U	ti		11	
" 1H682 F()	.0068	"	" "	" "	11	31	11	1 11	"
" 1H822 F()	.0082	" "	1	u u	41	"	11	"	" "
" 1H103 F()	.01		"						Market and the second s
" 1H123CF()	.012	7.0	11	6.0	11.0	11	"	п	11
" 1H153F()	.015	n	п	n	II	II	11	11	II
" 1H183FF()	.018	n	11	II	П	"	"	"	u
" 1H223FF()	.022	15	II .	u	11	"	11	u	11
" 1H273F()	.027	n	3.5	6.5	11.5	н	u	11	11
" 1H333□F()	.033	7.5	п	II II	II	II ·	11	n	"
" 1H393[]F()	.039	п	"	ll ll	11	tt	11	11	II .
" 1H473□F()	.047	Ш	4.0	"	н	n	н	"	"
" 1H563□F()	.056	8.0	B	7.5	12.5	11	11	II.	II.
" 1H683F()	.068	. 11	и	8.5	13.5	п	п	п	н
" 1H823□F()	.082	u	4.5	11	U	11	н	"	11
" 1H104□F()	.1	u	11	9.5	14.5	II II	11	u	11
" 1H124□F()	.12	11.0	"		"	7.5	u	0.6	Т
" 1H154□F()	.15	11	5.0	11	п	ш	11	"	11
" 1H184□F()	.18	ıı	5.5	11.0	15.0	W	l l	n	11
" 1H224□F()	.22	II II	6.0	11.0	16.0	n	U	ıı ıı	и
" 1H274□F()	.27	13.0	11	12.0	17.0	10.0	п	п	п
" 1H334□F()	.33	п	u	13.0	18.0	п	11	"	- 11
" 1H394□F()	.39	и	6.5	14.0	19.0	"	п	п	11
" 1H474□F()	.47	11	7.0	14.5	19.5	п	п	ш	n

Suffix for lead crimped or taped type (W: Self mounting crimped; 3: Crimped lead taping; 4: Straight lead taping)
Cap. tol. code J: ±5% K: ±10% (0.0001 to 0.00039 is only for ±10% (K))

63VDC

	Cap.			Dimensions (mm)					
Part No.	(μF)	L max.	T max.	H r	nax.	F+0.75 F-0.25	S±0.8	ød	style
				Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECQ B1J101KF()	.0001	6.5	3.0	5.5	10.5	5.0	5.0	0.5	N
" 1J121KF()	.00012	11	11	11	11	"	п	n	и
" 1J151KF()	.00015	11	11	п	- 11	П	и	11	au au
" 1J181KF()	.00018		н	II	11	Ч	11	п	п
" 1J221KF()	.00022	H	"	U	11	п	11	11	и
" 1J271KF()	.00027	11	0	II.	U	П	11	ıı	"
" 1J331KF()	.00033	u	II II	н	M.	H	II	11	"
" 1J391KF()	.00039		п	11	11	II	11	11	
" 1J471 F()	.00047	31	п	11	II	II	11	u	
" 1J561 F()	.00056	tt.	u	н	U	li li	11	II	n
" 1J681 F()	.00068		II	II	II	II	d	to the subtraction and the contract of the subtract of the sub	u
" 1J821 F()	.00082	11	11	n n	u u	u u	п	H	11
" 1J102 F()	.001	H H	II II	11	11	11	II	II	H H
" 1J122 F()	.0012	H H	11	II	II	11	II	JI	II
" 1J152 F()	.0015	н	п	11	и	и	11	и	n n
" 1J182 F()	.0018	H H	H))	н	u	п	н	п
" 1J222 F()	.0022	11	II II	ıı	11	u	11	II	II
" 1J272 F()	.0027	U	ıı	II	II	ı,	9	Manual Control on the State Control of the State Co	ii ii
" 1J332 F()	.0033	11	ll ll	11	II	u	11	II	н
" 1J392 F()	.0039	n	II	11	11	u	11	н	11
" 1J472 F()	.0047		II II	11	11	II	H	II	n
" 1J562 F()	.0056	n	ii ii	n	н	u	п	II	"
" 1J682 F()	.0068	п	п	II	1	u	п	. 11	п
" 1J822 F()	.0082		n n	11	и	и	11	11	11
" 1J103 F()	.01	п	п	11	ıı	11	11	11	11
" 1J123 F()	.012	7.0	n	6.0	11.0	IJ	11	п	
" 1J153 F()	.015	31	· ·	11	11	и	"	п	п
" 1J183 F()	.018	0	п	ıı	11	11	H H	11	H
" 1J223 F()	.022	il	II II	II	H	u	11	II .	11
" 1J273 F()	.027	n	3.5	6.5	11.5	H H	"	0	
" 1J333 F()	.033	7.5	11	11	u	n	п	и	и

Suffix for lead crimped or taped type (W: Self mounting crimped; 3: Crimped lead taping; 4: Straight lead taping)

⁻ Cap. tol. code J: $\pm 5\%$ K: $\pm 10\%$ (0.0001 to 0.00039 is only for $\pm 10\%$ (K))

100VDC

	Cap.			D	imensions (m				Crimped
Part No.	(μF)	L max.	T max.	Hm	nax.	F-0.75	S±0.8	ød	style
	(μι)	Linax	i max.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECQ B1101KF()	.0001	7.0	3.0	5.5	10.5	5.0	5.0	0.5	N
" 1121KF()	.00012	11	н	п	11	11	"		u
" 1151KF()	.00015	u	R .	п	11	и	н	11	"
" 1181KF()	.00018	П	u	n	ır	п	и	ii	"
" 1221KF()	.00022	11	п	u	n n		u	u	n
" 1271KF()	.00027	n	п	п	и	n	н	II	и
" 1331KF()	.00033	u	n	11	11	11	11	1)	"
" 1391KF()	.00039	п	п	11	II.	п	н	н	п
" 1471¬F()	.00047	II	п	II .	19	II	П	Ш	H.
" 1561 F()	.00056	11	П	11	н	SI .	11	II	п
" 1681 F()	,00068	11	II	11	"		15	11	lt lt
" 1821 F()	.00082	"	U	u	II	II	11	и	11
" 1102 F()	.001	11	п	11	Ш	н	11	II	и
" 1122 F()	.0012	· ·	11	"	н	31	11	II	11
" 1152 F()	.0015	"	и	н	II II	11	и	н	11
" 1182 F()	.0018	п	11	6.5	11.5	n	II	II	11
" 1222 F()	.0022	11	II .	"	u	11	ıı .	н	ıı
" 1272 F()	.0027	и	11		11	11	11	H	"
" 1332 F()	.0033	ll ll	ш	11	"	"	п	11	"
" 1392 F()	.0039	II .	11	ıı	11	и	11	II	11
" 1472 F()	.0047	n	п	11	II II	11	"	II	"
" 1562 F()	.0056	п	11	п	"	II	11	II	п
" 1682 F()	.0068	п	п	11	"	п	11	II	
" 1822 F()	.0082	п	3.2	7.0	12.0	п	11	11	11
" 1103 F()	.01	7.0	11	п	п	11	"	II	11
" 1123 F()	.012	7.2	3.5	ii ii	"	11	"	11	11
" 1153□F()	.015	п	4.0	7.5	12.5	li li	11	ıı	п
" 1183 F()	.018	н	4.5	8.0	13.0	н	ш	II	п
" 1223 F()	.022	"	11	9.0	14.0	II	11	II	11
" 1273EF()	.027	7.5	5.0	9.5	14.5	II II	п	11	11
" 1333 F()	.033	н	5.5	10.0	15.0	п	II .	и	11
" 1393□F()	.039	n	6.0	10.5	15.5	11	ıı ı	11	и
" 1473□F()	.047	ıı	6.5	11.5	16.5	и	n	н	
" 1563□F()	.056	10.0	5.0	9.5	14.5	7.5	п	0.6	Т
" 1683 F()	.068	tt.	5.5	10.0	15.0	11	"	11	11
" 1823 F()	.082	11	11	12.0	17.0	11	"	11	"
" 1104DF()	.1	10.5	6.0	12.5	17.5	"	31	ri .	"
" 1124□F()	.12	п	7.0	13.5	18.5	"	"	н	"
" 1154□F()	.15	13.0	. "	12.0	17.0	10.0	11	ıı	и
" 1184\(\text{F()}\)	.18	u	7.5	12.5	17.5	11	п	11	и
" 1224□F()	.22	п	8.0	13.0	18.0	н	и	11	"
" 1274□F()	.27	п	8.5	15.0	20.0	ш	п	ш	"
" 1334□F()	.33	11	9.0	16.0	21.0	11	п	Ш	п
" 1394□F()	.39	ш	10.5	17.0	22.0	ш	11	Ш	"
" 1474□F()	.47	н	11.5	17.5	22.5	11	u	11	. 11

taping)

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Crimped lead taping; 4/5: Straight lead

Cap. tol. code

200VDC

	Cap.	Dimensions (mm)										
Part No.	(μF)	L max.	T max.	Hm	nax.	F±1.0	S±0.8	ød	style			
	(μΓ)	Lillax.	i illax.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2			
ECQB 2102 F()	.001	8.5	4.0	7.0	12.0	5.0	5.0	0.5	N			
" 2122 F()	.0012	n	н	7.5	12.5	"	п	11	1			
" 2152 F()	.0015	п	1	п	п		П	п	11			
" 2182 F()	.0018	ш	4.5			"	и	n				
" 2222 F()	.0022	и	11	u		u	u	11	1 0			
" 2272 F()	.0027	i u	п	8.0	13.0	и	11	H	и			
" 2332 F()	.0033	11.0	II II	7.5	12.5	7.5		0.6	Т			
" 2392 F()	.0039		11	ii ii	10	н	п	u	1 0			
" 2472 F()	.0047	н	u u	8.5	13.5		9	n				
" 2562 F()	.0056	n .	п	u	11	11	и	i. It	<i>j</i> · · · · · · · · · · · · · · · · · · ·			
" 2682 F()	.0068	11		9.0	14.0	u	u u	u u	н			
" 2822 F()	.0082		п п		"	11	и	ų	1 1			
" 2103 F()	.01	u u	н	10.0	15.0	н	п		i ii			
" 2123 F()	.012	<u>u</u>	5.0	10.5	15.5	n n	II	li li	u			
" 2153 F()	.015	11	5.5		l u	11	п	п	"			
" 2183 F()	.018	и	1	10.0	15.0	н	и	11	п			
" 2223 F()	.022	и	6.0	10.5	15.5	и	11	11	0			
" 2273 F()	.027	II .	6.5	11.5	16.5	11	11	ll .	0			
" 2333 F()	.033	11	7.0	12.0	17.0	II	11	11	11			
" 2393 F()	.039	13.5	5.0	12.5	17.5	10.0	7.5	II .	11			
" 2473 F()	.047	11	5.5	13.0	18.0	0	H H	U	В			
" 2563 F()	.056	n	6.0	13.5	18.5	и	11	II	11			
" 2683 F()	.068	16.0	5.5	13.0	18.0	12.5	10.0	ll	п			
" 2823 F()	.082	11	6.0	13.5	18.5	11	11	II II	u			
" 2104 F()	.1	u u	7.0	14.5	19.5	и	п	11	n			
" 2124 F()	.12	19.0	6.5	16.0	21.0	15.0	12.5	ll .	и			
" 2154 F()	.15	11	7.5	17.0	22.0	11	11	ij	11			
" 2184 F()	.18	и	8.0	17.5	22.5	II	н	U U				
" 2224 F()	.22	И	9.0	18.5	23.0	II	п	11				
" 2274 F()	.27	24.0	8.0	17.5	22.5	20.0	15.0	0.8	п			
" 2334 F()	.33	11	9.0	18.5	23.5	, п	н	0	11			
" 2394 F()	.39	п	10.0	19.5	24.5	11	11	II	11			
" 2474 F()	.47	ıı	11.5	20.5	25.5	11	11	11	п			

Suffix for lead crimped or taped type (W: Self mounting crimped; 3: Crimped lead taping)

Cap. tol. code

This capacitor is constructed by stacking double metallized film with a film dielectric coating. Because of the compound dielectric layers and advanced manufacturing techniques, the performance is excellent and the size is greatly reduced.

Features

- · High volumetric efficiency
- Tight capacitance tolerance, ±5% (J)
- · High stability
- Low dissipation factor
- · Stacked and non-inductive construction
- Taped product available (see p. 141)

Specifications

Operating Temperature Range	-40 to +85 °C	
Rated Voltage	50V, 63V, 100VDC	
Capacitance Range	0.01 to 2.2μF	
Capacitance Tolerance	±5%(J)	
Dissipation Factor	1.0% max. (20 °C, 1kHZ)	
Withstanding Voltage	Between terminals: Rated voltage	(VDC) x 150% 60s
Insulation Resistance	C≤0.33μF: 3000MΩmin. C>0.33μF: 1000MΩ•μFmin.	(20 °C, 50VDC, 60s: ECQV1H, ECQV1J) (20 °C, 100VDC, 60s: ECQV1
Construction	Metallized film with dielectric coati	ng, stacked construction, epoxy resin coating

Dimensions

50VDC

	Cap.			D	imensions (m	m)			Crimpe
Part No.		1 2000	Tomay	Hm	nax.	F±0.8	S±0.8	ød	style
	(μF)	L max.	T max.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECQ V1H103JL()	.01	7.3	3.2	5.0	9.0	5.0	5.0	0.5	N
" 1H123JL()	.012		11	"	11	u	II .	11	11
" 1H153JL()	.015	п	п	ti ti	и	п	11	11	
" 1H183JL()	.018	ш	п	п	11	II	н	ıı	11
" 1H223JL()	.022	п	н	11	u	и	II .	п	п
" 1H273JL()	.027	II	п	11	11	11	11	II	п
" 1H333JL()	.033		11	п	II		11	11	11
" 1H393JL()	.039	н	ш	ш	п	п	11	11	11
" 1H473JL()	.047	"	· ·	ll ll	п	11	II	11	"
" 1H563JL()	.056	п	п	н	ii ii	и	11	11	11
" 1H683JL()	.068	"	u	н	п	ш	п	II	u
" 1H823JL()	.082	п	3.6	11	11	11	н	II	п
" 1H104JL()	.1	п	4.0	11	11	u	11	II	n
" 1H124JL()	.12	п	11	11	н	11	II.	11	п
" 1H154JL()	.15	n	4.4	5.5	9.5	II .	u	Ш	н
" 1H184JL()	.18	п	4.5	и	ıı ıı	11	"	ш	п
" 1H224JL()	.22	п	4.8	11	ш	u	"	11	n
" 1H274JL()	.27	п	4.6	7.0	11.0	ii .	ıı ı	II .	11
" 1H334JL()	.33	п	5.2	u	н	u	ıı	II	11
" 1H394JL()	.39	II II	5.7	7.3	11.3	u	н	II	11
" 1H474JL()	.47	11	6.0	11	ш	u	п	II	11
" 1H564JL()	.56	u	5.8	10.0	14.0	u	11	II.	ıı ıı
" 1H684JL()	.68	U	6.5	ti .	lt .	п	п	11	п
" 1H824JL()	.82	11	6.8	11	u	н	ıı .	и	п
" 1H105JL()	1.0	11	8.0	11.0	15.0	н	ıı ı	ii	п
" 1H125JL()	1.2	10.2	6.5	10.0	14.0	7.5	11	11	T
" 1H155JL()	1.5	u	7.2	ш	п	ш	11	п	11
" 1H185JL()	1.8	0	п	12.0	16.5	п	11	п	
" 1H225JL()	2.2		7.9	"	n n	"	п	u	п

— Suffix for lead crimped or taped type (W: Self mounting crimped; 3: Crimped lead taping; 2: Straight lead taping)

Rating & Dimensions 63VDC

İ	Cap.			Di	imensions (m	m)			Crimped
Part No.	Cap. (μF)	L max.	T max.	Hm	nax.	F±0.8	S±0.8	ød	style
	(μι)	L IIIax.	i max.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECQ V1J103JM()	.01	7.5	3.2	6.8	10.8	5.0	5.0	0.5	N
" 1J123JM()	.012	П	"	II	"	· · · · ·	11	11	"
" 1J153JM()	.015	ıı	n ·	п	п	11	11	п	"
" 1J183JM()	.018	11	· ·	II	11	п	11	н	"
" 1J223JM()	.022	п	"	п	н	11	II	II	"
" 1J273JM()	.027	Ш	н	ш	и		11	11	11
" 1J333JM()	.033	u	п	11	"	"	11	п	"
" 1J393JM()	.039	"	ш	II II	11	ш	11	п	п
" 1J473JM()	.047	п	"	. "	11	u	11	11	
" 1J563JM()	.056	11	11	11	II .	II .	11	н	"
" 1J683JM()	.068	н	ıı ı	ıı ı	. "	п	11	n	"
" 1J823JM()	.082	п	11		11	u	11	n	ш
" 1J104JM()	.1	н	n	7.0	11.0	"	U	н	п
" 1J124JM()	.12	п	3.8	II	н	ıı	п	Ш	"
" 1J154JM()	.15	п	4.1	п	u	п		11	n
" 1J184JM()	.18	10.2	3.5	9.0	14.0	7.5	II II	11	T
" 1J224JM()	.22	и	11	п	11	п	U	п	
" 1J274JM()	.27	п	"	п	II	н	tt .	31	n
" 1J334JM()	.33	u	3.8	n	11	li li	ti ti	II	п
" 1J394JM()	.39	п	4.0	II II	"	II II	п	ıı	
" 1J474JM()	.47	п	4.5	п	n	ıı	П	u	n
" 1J564JM()	.56	11	4.9	n	n	ıı ı	П	U	11
" 1J684JM()	.68	н	5.5	10.0	15.0	н	11	n	u
" 1J824JM()	.82	п	6.1	11	11	II.	П	II	и
" 1J105JM()	1.0	II II	6.9	11	n	п	н	II	
00VDC									
ECQ V1103JM()	.01	7.5	3.2	7.0	12.0	5.0	5.0	0.5	N
		7.5	3.2	7.0	12.0	5.0	5.0	U.5 "	IN II
11230101()	.012	н	11	п	11	п	п	II	u
" 1153JM()	.015	11			11	а	11	n n	ıı ıı
11000101()	.018	11	11	" "	11	п	н	11	п
12230101()	.022	11	"						"
" 1273JM()	.027	" "	"	п	"	n		"	
10000101()	.033	"	"	"	"	и	" "	"	"
10900101()	.039	"	" "	"	" "	п	"	"	"
14733101()	.047	н	"	"	п	"	11	"	"
10030101()	.056	11		11	n n	"	"	"	- "
" 1683JM()	.068		4.0	"	"	"	" "		"
" 1823JM()	.082	11	4.1			3		"	"
" 1104JM()	.1		4.5	"	"		11	"	
" 1124JM()	.12	10.2	3.3	9.0	14.0	7.5	11	"	T
" 1154JM()	.15	"		"	"	"	11	"	
" 1184JM()	.18	II	3.6	II.	"	и	11	11	11
" 1224JM()	.22	n	4.0	п	H	11	"	"	11
" 1274JM()	.27	· ·	4.2	н	н	п	11		"
" 1334JM()	.33	II .	4.8	10.0	15.0	tt	11	11	n
" 1394JM()	.39	11	5.5	"	п	II .	"	"	"
" 1474JM(ˌ)	.47	н	6.8	10.5	15.5	п	п	11	

Suffix for lead crimped or taped type (W: Self mounting crimped; 3: Crimped lead taping; 2: Straight lead taping)

The type ECQE(F) series uses a double side metallized polyester film with high dielectric constant(ϵ) which makes it possible to produce large C-values in small dimensions, and is an economical capacitor meeting high requirements for professional circuit design.

Features

- Self-healing property
- · Flame retardant epoxy resin coating
- Taped product available (see pp. 141)

Specifications

Operating Temperature Range	-40 to +85 °C (+105 °C75% of Rated Voltage)
Rated Voltage	100V, 250V, 400V, 630V, 1000V, 1250VDC
Capacitance Range	0.001 to 10μF
Capacitance Tolerance	±5%(J), ±10%(K), ±20% (M)
Dissipation Factor	1.0% max. (20 °C, 1kHz)
Withstanding Voltage	Rated voltage 100V to 630VDC rating Between terminals: Rated voltage(VDC)x150% 60s Rated voltage 1000VDC ~1250VDC rating Between terminals: Rated voltage(VDC)x175% 2 to 5s or 1000VAC 60c Between terminals and enclosure: 1500VAC 60s
Insulation Resistance	100V to 630VDC: C≤0.33μF 9000MΩmin.(20 °C, 100VDC 60s) C>0.33μF 3000MΩ•μFmin. 1000VDC to 1250VDC: 10000MΩmin. (20 °C, 100VDC 60s) 2000MΩmin. (20 °C, 500VDC 60s)
Construction	Metallized polyester film, flame retardant epoxy resin coating

Dimensions

Marking (Example)

Rated	voltage	Rated voltage	Rated voltage	Rated voltage	Rated	l voltage
100\	/DC	250VDC	400VDC	630VDC	1000VDC	1000VDC 125VAC
$(0.01 - 0.1 \mu F)$	(0.12~1.0 µ F)	(0.01~0.33 µ F)	(0.01~0.1 µ F)	(0.01~0.047 µ F)	(0.001~0.47 µ F)	Cap. range:E6 series
103K	124K	393K	193K	103K	M 823M	⊕ 2B102M A2 CES
100	100	250 🗀	400 🗀	630 🗀	Q-E 1000V	MQEF 🔲
Date code	Date code	Date code	Date code	Date code	Date code	Date code
(1.2~10.0 µ F)		(0.39~10.0 µ F)	(0.12~2.2 µ F)	(0.056~2.2 µ F)		Cap range w o E6 series
M125K 100		M 105K 250 □-	Ø)105K 400 □	M105K 630 ☐		®823M Q-Ê 1000V 125V∼ ☐
Date code		Date code	Date code	Date code	,	Date code

Rating & Dimensions

100VDC

	Cap.				Dimens	ions (mm)				Crimped
Part No.	0aρ. (μF)	I may	T max.	H	1 max.	F±1.0	S±0.8	G max.	ød	style
	(μΓ)	L max.	i max.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05	Type-2
ECQ E1103□F()	.01	7.8	4.6	7.7	12.7	5.0	5.0	1.0	0.5	D
" 1123□F()	.012	"	4.5	7.6	12.6	13	"	"	11	11
" 1153□F()	.015	п	II .	"	11	11	11	"	п	11
" 1183□F()	.018	11	4.6	7.7	12.7	n	II	п	II II	11
" 1223□F()	.022	п	4.9	8.0	13.0	"		"	u	11
" 1273□F()	.027	11	4.7	7.8	12.8	"	II .	"	ıı ı	11
" 1333□F()	.033	II II	4.6	7.7	12.7	"	ıı ı	и	16	11
" 1393□F()	.039	ıı ı	4.9	8.0	13.0	"	11	"	ıı	"
" 1473□F()	.047	11	4.5	7.5	12.5		и	u	II .	н
" 1563□F()	.056	п	4.8	7.9	12.9	II	II II	11	11	11
" 1683□F()	.068	п	II	II II	11	II.	ш	п	11	II
" 1823□F()	.082	п	4.7	9.9	14.9	и	"	"	и	11
" 1104□F()	.1	"	5.0	10.0	15.0	II.	11	11	II.	н
" 1124□F()	.12	10.3	4.5	7.5	12.5	7.5	7.5	11	0.6	Ш
" 1154□F()	.15	II II	II	"	li li	ıı	n	11	11	11
" 1184□F()	.18	n	4.8	7.9	12.9	11	II .	11	11	п
" 1224□F()	.22	ii ii	5.0	8.0	13.0	11	n	п	н	"
" 1274□F()	.27	п	4.5	12.0	17.0	II	"	"	ii ii	п
" 1334□F()	.33	п	6.0	10.7	15.7	n	п	"	11	11
" 1394□F()	.39	11	6.3	11.0	16.0	31	ıı ıı	"	н	, 11
" 1474□F()	.47	п	6.0	12.0	17.0	н	ll ll	ll ll	п	11
" 1564□F()	.56	12.0	5.5	10.9	15.9	10.0	10.0	11	и	11
" 1684□F()	.68	п	6.0	11.9	16.9	II II	11	li .	"	"
" 1824□F()	.82	п	II	13.5	18.5	11	11	u	11	11
" 1105□F()	1.0	11	6.7	14.0	19.0	11	II II	"	11	"
" 1125□F()	1.2	18.5	5.5	12.8	17.8	15.0		11	11	В
" 1155□F()	1.5	н	6.0	13.4	18.4	11	ll ll	li II	0.8	п п
" 1185□F()	1.8	п	6.5	14.4	19.4	31	ıı	11	11	li li
" 1225□F()	2.2	11	7.0	15.0	20.0	н		п	"	ıı ıı
" 1275□F()	2.7	"	8.0	15.8	20.8	a	11	n	"	"
" 1335□F()	3.3	11	8.5	16.5	21.5	"	"	"	"	ti
" 1395□F()	3.9	26.0	7.0	16.4	21.4	22.5	15.0	"	"	0
" 1475□F()	4.7	"	7.5	17.0	22.0	"	#	n	"	ш
" 1565□F()	5.6	п	8.3	17.5	22.5	11	11	11	"	11
" 1685□F()	6.8	п	9.0	18.5	23.5	"	"	ii ii	11	ıı
" 1825□F()	8.2	п	10.0	20.0	25.0	ıı	n	1.5	"	"
" 1106□F()	10.0	"	11.5	21.0	26.0	"	11	"	u	11

Suffix for lead crimped or taped type (B: Crimped; 3: Crimped lead taping; 2: Straight lead taping)

Cap. tol. code J: ±5% K: ±10%

250VDC

	Cap.				Dimens	ions (mm)				Crimpe
Part No.	(μF)	L max.	T max.	F	l max.	F±1.0	S±0.8	G max.	ød	style
	(μι)	L IIIax.	i iliax.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05	Type-2
ECQ E2103 F()	.01	10.3	4.3	7.4	12.4	7.5	7.5	1.0	0.6	D
" 2123F()	.012	"	4.4	7.5	12.5	11	u	"	II	"
" 2153 F()	.015	11	11	11	u	11	11	11	11	11
" 2183 F()	.018	n	11	11	11	"	ll ll	u	11	11
" 2223 F()	.022	n	II .	"	11	"		11	п	"
" 2273 F()	.027	u	ti .	"	11	11	"	"	"	11
" 2333 F()	.033	u	4.5	ш	u	11	"	ı	ıı	11
" 2393 F()	.039	n n	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	u	11	II	ıı	ıı	11
" 2473 F()	.047	"	"	"	"	11	"	ıı	и	"
" 2563 F()	.056	н	4.8	7.9	12.9		"	"	II .	"
" 2683□F()	.068	H.	4.5	7.5	12.5	,,	u	11	"	"
" 2823 F()	.082	и	4.9	8.0	13.0	11	11	"	"	п
" 2104[F()	.1	и	5.8	8.4	13.4	"	11	11	11	11
" 2124 F()	.12	u u	6.0	9.0	14.0	1	"	н	"	n
" 2154□F()	.15	п	11	10.8	15.8	11	11	п	п	
" 2184□F()	.18	12.0	5.0	10.3	15.3	10.0	10.0	н	11	u
" 2224 F()	.22	н	5.5	10.5	15.5	п	ıı	п	"	п
" 2274□F()	.27	ш	6.0	11.5	16.5	п	"	п	п	n n
" 2334 F()	.33	11	6.5	12.0	17.0	и	ıı	п	п	"
" 2394□F()	.39	18.5	4.9	11	11	15.0	11	п	II	В
" 2474□F()	.47		5.3	12.5	17.5	11	u	II II	и	n
" 2564□F()	.56	11	5.5	13.0	18.0	11	11	11	11	"
" 2684□F()	.68	п	6.0	13.5	18.5	п	н	11	0.8	n
" 2824DF()	.82	"	6.5	14.5	19.5	11	п	и	11	п
" 2105□F()	1.0	ıı ıı	7.4	15.0	20.0	"	11	п	n n	n
" 2125□F()	1.2	11	8.0	15.9	20.9	II .	"		11	п
" 2155DF()	1.5	11	9.0	16.8	21.8	n	11	"	31	"
" 2185□F()	1.8	26.0	7.5	15.5	20.5	22.5	15.0	II	"	i
" 2225□F()	2.2	я	8.5	16.3	21.3	п	11	n	u	n
" 2275□F()	2.7	11	9.4	17.0	22.0	п	н	ıı ıı	ıı	- "
" 2335□F()	3.3	11	10.3	18.0	23.0	n	"	1.5	"	n
" 2395□F()	3.9	"	11.0	20.5	25.5	"	"	11	"	"
" 2475□F()	4.7	· · ·	12.0	21.5	26.5	"	"	"	"	"
" 2565□F()	5.6	31.0	11.8	17.5	21.0	26.0	27.5	22.5	11	n
" 2685□F()	6.8	11	13.0	22.4	27.4	n	11	н	11	
" 2825□F()	8.2	11	14.3	23.5	28.5	п	11	11	n	n
" 2106□F()	10.0	n n	15.9	25.8	30.8	11	11		"	n

Suffix for lead crimped or taped type, (B: Crimped; 3: Crimped lead taping)

Cap. tol. code J: ±5% K: ±10%

Rating & Dimensions 400VDC

	Cap.				Dimens	ions (mm)				Crimped style
Part No.	(μF)	L max.	T max.	F	ł max.	F±1.0	S±0.8	G max.	ød	
	(μι)	Liliax.	i iliax.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05	Type-2
ECQ E4103□F()	.01	10.3	4.3	7.4	12.4	7.5	7.5	1.0	0.6	D
" 4123□F()	.012	п	4.4	7.5	12.5	11	ıı ıı	п	11	п
" 4153□F()	.015	п	"	"	"	"	"	u	11	"
" 4183□F()	.018	"	(I	11	"	"	11	"	11	-
" 4223□F()	.022	"	4.8	7.9	12.9		u	n	п	ш
" 4273□F()	.027	и	5.5	8.0	13.0	н	п	п	ıı ıı	"
" 4333□F()	.033	п	6.0	9.0	14.0	ч	11	11	11	"
" 4393□F()	.039	12.0	4.9	8.0	13.0	10.0	10.0		11	11
" 4473□F()	.047	12.0	5.0	8.3	13.3	"	10.0	н	ii ii	+
" 4563□F()	.056	n	"	10.0	15.0	11	п	11	11	
" 4683 F()	.068	п	5.4	10.5	15.5		11	11	11	
" 4823□F()	.082	II II	5.8	11.0	16.0	11	11	n		+
		п							II II	
4104	.1		6.3	12.0	17.0		- "		11	+
" 4124 F()	.12	18.5	5.0	10.0	15.0	15.0		- "	11	В
4154LJF()	.15	"		12.4	17.4		ļ		"	
" 4184 F()	.18		5.4	12.5	17.5		"			
" 4224 F()	.22	"	5.9	13.0	18.0	"		"	n	"
" 4274 F()	.27	II .	6.5	14.3	19.3	"	"	"	0.8	"
" 4334□F()	.33	n n	7.0	14.9	19.9	li li	"	11	"	"
" 4394□F()	.39	11	7.5	15.4	20.4	п	"	u	"	11
" 4474_F()	.47	н	7.8	17.0	22.0	n	0	II II	"	"
" 4564□F()	.56	26.0	6.5	16.0	21.0	22.5	15.0	11		11
" 4684□F()	.68	"	7.0	16.5	21.5	II .	II II	II II	11	"
" 4824□F()	.82	"	7.9	17.3	22.3	11	ı.	11	11	11
" 4105CF()	1.0	li li	8.5	18.0	23.0	п	11	"		
" 4125 F()	1.2	и	9.5	18.9	23.9	и	11	п	11	- "
" 4155 F()	1.5	31.0	1)	19.0	24.0	27.5	22.5	н	11	
" 4185 F()	1.8	"	11.0	20.5	25.5	27.0	1 1	1.5	11	
" 4225 F()	2.2	"	11.0	22.0	27.0	"	11	1.0	11	
 	۷.۷			22.0	21.0				1	
0VDC										
ECQ E6103 ()	.01	12.0	4.5	7.5	12.5	10.0	10.0	1.0	0.6	D
" 6123DF()	.012	п	"	7.8	12.8	11		11	11	"
" 6153□F()	.015	"	5.0	8.2	13.2	"	u	11	Ш	"
" 6183□F()	.018	II .	4.9	10.0	15.0	"	II II	II.	"	н
" 6223□F()	.022	"	5.3	10.5	15.5	и	11	II II	"	"
" 6273□F()	.027	11	5.5	10.9	15.9	н	"	11	и	u u
" 6333 F()	.033	"	6.0	11.9	16.9	11	11	11	"	"
" 6393DF()	.039	н	п	13.4	18.4	"		it	11	- "
" 6473DF()	.047	п	6.5	13.5	18.5	11	п	11	п	11
" 6563 F()	.056	18.5	5.4	10.5	15.5	15.0	ıı	n	"	В
" 6683 F()	.068	10.0	5.8	11.0	16.0	10.0	п	п	0	
" 6823□F()	.082	H H	6.5		17.0	13	11	11	- 11	п
	.1	n		12.0	19.0	11		n n	li li	
" 6104F()		н	6.3	14.0		-		11		
" 6124 F()	.12			14.5	19.5	li li	ıı		0.8	
01341()	.15	"	7.5	15.4	20.4		"	"	"	- "
0104[[[()]	.18		8.0	16.0	21.0			1		
" 6224□F()	.22	11	9.0	16.5	21.5	II	н	11	11	п
" 6274□F()	.27	26.0	7.0	11	11	22.5	15.0	II	"	ш
" 6334□F()	.33	"	7.8	17.0	22.0	11	11		11	11
" 6394□F()	.39	n	8.5	17.9	22.9	U	п	II	ч	11
" 6474□F()	.47	п	9.3	18.5	23.5	11	"	"	"	11
" 6564□F()	.56	U	10.0	20.0	25.0	11	"	1.5	n	11
" 6684□F()	.68	1	11.5	21.0	26.0	"	11	11	II II	11
" 6824□F()	.82	31.0	11.3	20.5	25.5	27.5	22.5	11	н	
	1.0	"	12.5	21.9	26.9	"	"	n	п	u
										1
" 6105□F()		п				н	п	11	п	11
" 6105□F() " 6125□F()	1.2	n n	13.5	23.0	28.0	11	11	"	н	n n
" 6105□F()		1								

Suffix (B: Crimped)

—Cap. tol. code J: ±5% K: ±10%

1000VDC

	Con				Dimens	ions (mm)				Crimped
Part No.	Cap.	Lmax	Tmay	Н	max.	F±1.0	S±0.8	G max.	ød	style
	(μF)	L max.	T max.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05	Type-2
ECQ E10102 F()	.001	15.5	6.0	11.0	16.0	12.5	10.0	1.0	0.6	D
" 10122 E()	.0012	н	н	п	п	ll ll	ıı ı	II	11	"
" 10152 E()	.0015	u u	н	п	п	II II	п	11	н	
" 10182 E()	.0018	11	11	11	n	н	п	11	п	11
" 10222 E()	.0022	п	п	11.5	16.5	li li	н	11	II.	н
" 10272 E()	.0027	11	6.5	12.0	17.0	п	11	11	п	"
" 10332 E()	.0033	н	6.0	11.5	16.5	п	п	11	11	11
" 10392 E()	.0039	п	6.5	12.0	17.0	и	п	п	u	п
" 10472 E()	.0047	11	7.0	12.5	17.5	п	п	11	п	11
" 10562 E()	.0056	п	7.5	13.0	18.0	п	п	п	п	11
" 10682 E()	.0068	II II	7.0	12.5	17.5	н	11	II II	li li	п
" 10822 E()	.0082	11	6.5	12.0	17.0	п	12.5	11	11	
" 10103 F()	.01	н	6.0	11.0	16.0	п	11	и	"	п
" 10123 E()	.012	ш	п	12.0	17.0	ш	н	и	В	п
" 10153 E()	.015	п	7.0	12.5	17.5	ш	II II	п	II II	п
" 10183 E()	.018	п	7.5	13.0	18.0	н	п	п	0.8	11
" 10223 E()	.022	н	11	15.5	20.5	п	U	п	п	ш
" 10273 E()	.027	21.0	6.0	13.0	18.0	17.5	п	11	п	В
" 10333 F()	.033	п	6.5	14.0	19.0	п	п	п	п	п
" 10393 F()	.039	п	7.0	14.5	19.5	п	н	II II	п	ш
" 10473 E()	.047	и	7.5	15.5	20.5	п	н	п	п	0
" 10563 E()	.056	п	"	17.0	22.0	11	II II	ll II	п	н
" 10683 E()	.068	п	8.5	18.0	23.0	ıı	и	11	11	"
" 10823 E()	.082	п	9.0	18.5	23.5	н	ıı ıı	ti	и	"
" 10104 F()	.1	11	10.0	20.0	25.0	н	п	11	II II	11
" 10124 F()	.12	26.0	9.0	18.5	23.5	22.5	17.5	п	п	ш
" 10154 F()	.15	"	10.0	20.0	25.0	11	11	1.5	п	11
" 10184 F()	.18		10.5	22.0	27.0	п	11	"	u	н
" 10224 F()	.22	11	12.0	23.0	28.0	п	п	11	11	п

Suffix (B: Crimped)

Cap. tol. code J: ±5% K: ±10%

Note:

Marking for rated voltage

Type E: \[1000V\]

Type F: \[\frac{1}{1}000\text{V}, \quad \text{125V}_\square \quad \text{or } \[\frac{1}{2}\text{B}_\text{J} \]

1250VDC

	Con				Dimens	ions (mm)				Crimped
Part No.	Cap. (μF)	L max.	T max.	Н	max.	F±1.0	S±0.8	G max.	ød	style
	(μr)	L max.	i max.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05	Type-2
ECQ E12102□ F()	.001	15.5	6.0	11.0	16.0	12.5	10.0	1.0	0.6	D
" 12122□ ^{E(} }	.0012	11	"	"	"	11	"	. "	н	"
" 12152□ ^{E(})	.0015	п	н	"	и	u	"	11	11	"
" 12182□ ^{E(})	.0018	"	п	"	11	ıı	11	11		Ü
" 12222□ ^{E(})	.0022	"	II II	11.5	16.5	ıı	u	II II	11	"
" 12272 F()	.0027	11	6.5	12.0	17.0	"	"	"	ti .	"
" 12332□ ^{E(})	.0033	"	6.0	11.5	16.5	II.	u	"	ıı ıı	38
" 12392□ ^{E(})	.0039	и	6.5	12.0	17.0	п	11	"	;I	"
" 12472□ ^{E(})	.0047	"	7.0	12.5	17.5	11	II II	"	11	п
" 12562□ ^{E(})	.0056		7.5	13.0	18.0	n	и	11	11	11
" 12682□ ^{E(} }	.0068	"	"	15.0	20.0	п	11	11	ri ri	"
" 12822□ ^{E(})	.0082	21.0	5.0	12.0	17.0	17.5	12.5	ıı	п	В
" 12103 F()	.01	11	"	12.5	17.5	и	"	"		11
" 12123□ ^{E(} }	.012	11	5.5	13.0	18.0	"	"	и	11	11
" 12153□ ^{E(} }	.015	11	6.0	13.5	18.5		и	п	"	11
" 12183□ ^{E(} }	.018	"	6.5	14.5	19.5	II.	11	11	0.8	и
" 12223□ ^{E(})	.022	п	7.0	15.0	20.0	ii ii	п	11	"	"
" 12273□ ^{E(} }	.027	26.0	6.0	15.5	20.5	22.5	17.5	0		п
" 12333□ ^{E(} }	.033	"	6.5	16.0	21.0	II.	11	"	#	"
" 12393□ ^{E(} }	.039	п	7.0	16.5	21.5	11	11	11	u ·	11
" 12473□ ^{E(} }	.047	"	8.0	17.0	22.0	"	ш	ш	11	"
" 12563□ ^{E(} }	.056	31.0	7.5	"	11	27.5	22.5	11	11	"
" 12683 [E()	.068	"	8.0	17.5	22.5	ı	11	"	ц	"
" 12823 [F()	.082	и	9.0	18.5	23.5	n	· ·	п	II	"
" 12104 = E()	.1	11	10.0	19.5	24.5	"	"	11	11	"
" 12124□ [{ }	.12	"	11.5	20.5	25.5	n	11	1.5	п	"
" 12154□ ^{E(} }	.15	"	12.0	23.0	28.0	п	п	п	11	п
" 12184□ ^{E(} }	.18	"	13.0	24.5	29.5	и	11	n	11	"
" 12224□ 등()	.22	и	14.5	26.5	31.5	п	"	n n	11	"

- Suffix (B: Crimped; Suffix for taped lead: see page 141)

—Cap. tol. code J: ±5% K: ±10% M: ±20%

Note:

Marking for rated voltage

Type E: [1250V]

Type F: $\lceil 1250V$, $125V_{\sim}$ or $\lceil 2B_{\perp}$

This series is designed for applications where high frequency and high current are required.

Features

- · Very low loss at high frequency
- · Very small inherent temperature rise
- · Flame retardant Epoxy resin coating
- · Bulk packaging only

Operating Temperature Range	-25~ +85 °C
Rated Voltage	200V _{P-P} at 15.75kHz (250VDC) 400VDC
Capacitance Range	0.15μF~3.3μF(E-24)
Capacitance Tolerance	±5%(J), ±10%(K)
Dissipation Factor	0.1% max. (20 °C, 1kHZ)
Withstanding Voltage	Between terminals: Rated voltage (VDC) x 150% 60s
Insulation Resistance	C≤0.33μF: 9000MΩmin. C>0.33μF: 3000MΩ•μFmin. (20 °C, 100VDC, 60s)
Construction	Metallized polypropylene film, flame retardant epoxy resin coating

Dimensions

250VDC (200V_{p-p})Cap. tol. $\pm 5\%$ (J), $\pm 10\%$ (K)

	Cap.				Dimensio	ons (mm)			
Part No.	Сар. (μF)	L max.	T max.	Hm	nax.	F±1.5	S±0.8	G max.	ød
	(μΓ)	Lillax.	i illax.	Type-1	Type-2	Type-1	Type-2	Type-1	±0.05
ECW F2H154□N()	.15	19.0	7.0	15.5	20.5	16.0	7.5	1.5	0.6
" 2H184□N()	.18	u	7.5	16.0	21.0	11	II .	II .	П
" 2H224□N()	.22	п	8.0	16.5	21.5	u	10.0	11	п
" 2H274□N()	.27	"	7.5	16.0	21.0	ıı ı	u	u	11
" 2H334□N()	.33	"	n	17.5	22.5	11	II	ıı	u
" 2H394□N()	.39	25.0	tt	15.5	20.5	22.0	17.5	"	0.8
" 2H474□N()	.47	"	11	17.5	22.5	11	11	11	II
" 2H564□N()	.56	"	8.0	18.0	23.0	н	II .	и	и
" 2H684□N()	.68	11	8.5	19.0	24.0	"	11	II .	II .
" 2H824□N()	.82	п	9.5	20.0	25.0	"	11	11	ı
" 2H105□N()	1.0	30.0	9.0	19.5	24.5	27.0	22.5	11	ı
" 2H125□N()	1.2	"	10.0	20.0	25.0	11	11	11	и
" 2H155□N()	1.5	u	11.0	21.5	26.5	11	"	"	11
" 2H185□N()	1.8	"	12.0	22.5	27.5	11	u	II.	II .
" 2H225□N()	2.2	35.5		22.0	27.0	32.0	25.0	п	n
" 2H275□N()	2.7	n	13.0	23.5	28.5	11	U	11	н
" 2H335□N()	3.3	п	15.0	25.5	30.5	11	п	п	н

400VDC Cap. tol. +5%(J), ±10%(K)

ECW F 4154 Z()	.15	18.0	9.5	16.5	21.5	15.0	10.0	3	0.8
" 4184□Z()	.18	19.0	9.5	16.5	21.5	15.5	II .	. "	II
" 4224□Z()	.22	11	10.5	17.0	22.0	u	11	11	П
" 4274□Z()	.27	25.0	9.5	16.0	21.0	22.0	17.5	u	11
" 4334□Z()	.33	11	10.0	17.0	22.0	"	11	11	П
" 4394□Z()	.39	и	11.0	17.5	22.5	u	11	п	ш
" 4474\(\tau\)Z()	.47	30.0	10.5	17.0	22.0	26.5	22.5	11	II
" 4564\(\tau\)Z()	.56	11	II II	19.5	24.5	11	11	н	u
" 4684□Z()	.68	и	11.5	20.5	25.5	II	"	II	11
" 4824□Z()	.82		12.5	21.5	26.5	n		II II	. 11
" 4105□Z()	1.0	н	14.5	23.0	28.0	ıı	11	u u	n
" 4125□Z()	1.2	ii ii	16.0	25.0	30.0	"	"	п	11
" 4155□Z()	1.5	46.0	13.0	22.0	27.0	42.0	25.0	11	11
" 4185□Z()	1.8	11	14.5	23.0	28.0	u	11	11	"
" 4225□Z()	2.2	"	16.0	25.0	30.0	II .	п	п	11

Suffix B for lead crimped type.

— Cap. tol. code.

^{*}Other C-values upon request.

This series is designed for applications where high frequency, high pulse voltage and high current are required.

Features

- · Very low loss at high frequency
- · Very small inherent temperature rise
- · Flame retardant epoxy resin coating
- Taped product available (see p. 141)

Specifications

Operating Temperature Range	-25~ +85 °C
Rated Voltage	1000V _{p-p} at 15.75kHz (1250VDC), 1200V _{p-p} at 15.75kHz (1600VDC) 1500V _{p-p} at 15.75kHz (2500VDC), 800VDC, 1000VDC
Capacitance Range	0.001μF~0.068μF (E-24)
Capacitance Tolerance	±3%(H), ±5%(J), ±10%(K), ±20%(M)
Dissipation Factor	0.1% max. (20 °C, 1kHz) 0.2% max. (20 °C, 10kHz)
Withstanding Voltage	Between terminals: Rated voltage (VDC) x 175% 1 ~ 5s Between terminals and enclosure: 1500VAC 60s
Insulation Resistance	30,000MΩmin. (20°C, 500VDC, 60s)
Construction	Metallized polypropylene film, flame retardant epoxy resin coating

Dimensions

800VDC Cap. tol. $\pm 3\%$ (H), $\pm 5\%$ (J)

:	Cap.		Dimensions (mm)								
Part No.	(μF)	L max.	T max.	H ma		F±1.25	S±0.8	ød			
	(p.,)	21110011	11110011	Type-1	Type-2	Type-1	Type-2	±0.05			
W H 8822□Z(□ZR)	.0082	21.0	7.5	12.0	17.0	16.5	7.5	0.8			
" 8912□Z(□ZR)	.0091	"	8.0	u	II II	и	11	п			
" 8103□Z(□ZR)	.01	15	ii ii	12.5	17.5	п	п	"			
" 8113□Z(□ZR)	.011	п	8.5	"	11	ı.	11	11			
" 8123□Z(□ZR)	.012	n n	11	13.0	18.0	II.	и	11			
" 8133□Z(□ZR)	.013	"	9.0	· · ·	11	и	11	п			
" 8153□Z(□ZR)	.015	15	п	14.5	19.5	п	li li	11			
" 8163□Z(□ZR)	.016	п	ıı .	15.0	20.0	п	11	11			
" 8183□Z(□ZR)	.018		9.5	"	"	п	11	"			
" 8203□Z(□ZR)	.02	п	10.0	15.5	20.5	п	11	"			
" 8223□Z(□ZR)	.022		11	16.0	21.0	п	п	п			
" 8243□Z(□ZR)	.024	п	10.5	16.5	21.5	· · ·	11	11			
" 8273 Z(\(\tau\)ZR)	.027	в	11.0	17.0	22.0	п	н	"			
" 8303□Z(□ZR)	.03	27.0	8.5	14.0	19.0	22.5	11	n			
" 8333□Z(□ZR)	.033	"	11	14.5	19.5	"	"	n			
" 8363□Z(□ZR)	.036	п	9.0	"	10.0		31	n			
" 8393□Z(□ZR)	.039		"	15.0	20.0	u	п	"			
" 8433□Z(□ZR)	.043	11	U	16.5	21.5	п	11	11			
" 8473□Z(□ZR)	.047	u	9.5	17.0	22.0	ll ll		11			
" 8513□Z(□ZR)	.051		3.0	17.5	22.5	ii ii	11	n			
" 8563\(\sum Z(\subseteq ZR)\)	.056	в	10.0	18.0	23.0	II II	п				
" 8623□Z(□ZR)	.062		10.5	10.0	23.0	п	11	n			
" 8683□Z(□ZR)	.068	"	10.0	19.5	24.5		п	"			
		E0/ / I)	10.0	10.0	21.0		1	l			
000VDC Cap. to				100	17.0	10.5		0.0			
" 10562□Z(□ZR)	.0056	21.0	8.0	12.0	17.0	16.5	7.5	0.8			
10022[[2([]211)	.0062	11		12.5	17.5			п			
10002[[2([[2]1)]	.0068	"	8.5	1 11	n	"	" "	"			
1013212(1211)	.0075	"				"	"				
" 10822□Z(□ZR)	.0082	"	"	13.0	18.0	"	"	"			
" 10912□Z(□ZR)	.0091		II .	14.5	19.5			"			
" 10103□Z(□ZR)	.01	"	9.0	II II	п	11	п	"			
" 10113□Z(□ZR)	.011	"	II .	15.0	20.0	II.	"	"			
" 10123□Z(□ZR)	.012	11	9.5	Ш	п	II .	"	"			
" 10133□Z(□ZR)	.013	Ш	u	15.5	20.5	П	"	"			
" 10153□Z(□ZR)	.015	"	10.0	16.0	21.0	11	"	"			
" 10163□Z(□ZR)	.016	11	10.5	u	"	п	n	"			
" 10183□Z(□ZR)	.018	II II	11.0	17.0	22.0	II .	п	н			
" 10203□Z(□ZR)	.02	27.0	8.5	14.0	19.0	22.5	п	п			
" 10223□Z(□ZR)	.022	п	П	14.5	19.5	п	H	Ш			
" 10243□Z(□ZR)	.024	п	9.0	и	n	11	II .	ll ll			
" 10273□Z(□ZR)	.027	"	9.5	15.0	20.0	II II	II .	П			
" 10303□Z(□ZR)	.03	11	9.0	16.5	21.5	11	п	п			
" 10333□Z(□ZR)	.033	II	9.5	17.5	22.5	н	"	11			
" 10363□Z(□ZR)	.036	n	10.0	u	11	и	11	н			
" 10393□Z(□ZR)	.039	п	п	18.0	23.0	п	11	п			
" 10433□Z(□ZR)	.043	"	п	19.5	24.5	11	н	"			
" 10473\(\sum Z(\suz R)\)	.047	29.5	п	18.0	23.0	25.0	17.5	"			
" 10513□Z(□ZR)	.051	"	10.5	18.5	23.5	и	п	п			
" 10563□Z(□ZR)	.056	11	11.0	и	п	u	п	п			
		-	1	 	+	 	 	- 11			
" 10623□Z(□ZR)	.062	п	11.5	19.0	24.0	ıı	п				

Panasonic

Cap. tol. code (H, J) Last suffix R/B: Crimped leads(Type-2)

1250VDC (1000V_{p-p} at 15.75kHz) Cap. tol. $\pm 3\%$ (H), $\pm 5\%$ (J), $\pm 10\%$ (K), $\pm 20\%$ (M)

	Cap.	Dimensions (mm)								
Part No.	(μF)	L max.	T max.	H ma		F±1.25	S±0.8	ød		
- B				Type-1	Type-2	Type-1	Type-2	±0.05		
ECW H10H102 R S	.001	22.0	8.0	13.0	18.0	16.5	10.0	0.8		
" 10H112 R	.0011	li li	II .	13.5	18.5	II II	ll l			
" 10H122 R	.0012	"	8.5	II .	, n	11	11			
" 10H132 S	.0013	"	II	14.0	19.0	"	11			
" 10H152 S	.0015	п	8.0	13.5	18.5	11	н	п		
" 10H162 S	.0016	II .	II .	п	11	II	н			
" 10H182 R	.0018	11	8.5	"	11	н	п			
" 10H202 S	.002	н	9.0	14.0	19.0	И	п	11		
" 10H222 S	.0022	11	8.0	13.0	18.0	н	п	п		
" 10H242 S	.0024	и	"	13.5	18.5	"	11	n		
" 10H272 R	.0027	11	8.5	"	п	"	п			
" 10H302 S	.003	11	и	14.0	19.0	11	tr	11		
" 10H332 R	.0033	"	9.0	11	Ш	"	ll .	11		
" 10H362 S	.0036	"	9.5	14.5	19.5	ıı	11	u u		
" 10H392□ ^R S	.0039	н	9.0	15.5	20.5	п	н	ш		
" 10H432□ ^R S	.0043	п	9.5	16.0	21.0	u	п	п		
" 10H472□ ^R s	.0047	и	10.0	16.5	21.5	и	11	11		
" 10H512□ B	.0051	п	ıı .	п	п	ıı	п	п		
" 10H562□ ^R S	.0056	"	10.5	17.0	22.0	11	п	II		
" 10H622□ R	.0062	п	11.0	17.5	22.5	п	п	"		
" 10H682□ R	.0068	н	11.5	11	п	"	11	11		
" 10H752□ R	.0075	п	ıı ıı	18.5	23.5	п	и	11		
" 10H822 S	.0082	28.0	8.5	15.5	20.5	22.5	15.0	11		
" 10H912□ ^R s	.0091	н	9.0	11	п	11	п	п		
" 10H103 S	.01	и	9.5	16.0	21.0	и	11	11		
" 10H113□ R	.011	п	10.0	16.5	21.5	u	11	п		
" 10H123□ ^R s	.012	п	п	18.0	23.0	и	п	ii		
" 10H133□ ^R	.013	п	п	18.5	23.5	н	п	11		
" 10H153□ ^R S	.015	и	10.5	19.0	24.0	li li	н	li		
" 10H163□ R S	.016	и	11.0	"	п	n n	11	"		
" 10H183□ ^R S	.018	п	11	20.5	25.5	п	11	ii .		
" 10H2O3□ R	.02	30.5	u u	19.5	24.5	25.0	17.5	11		
" 10H223□ ^R S	.022	"	11.5	20.0	25.0	"	u	"		
" 10H243□ B	.024	11	12.0	u	п	ıı ı	п	n		
" 10H273□ B	.027	п	12.5	20.5	25.5	11	11	"		
" 10H303□ ^R s	.03	"	13.5	22.0	27.0	п	u u	u		
" 10H333□ ^R s	.033	"	13.0	23.0	28.0		11	п		
" 10H363□ ^R s	.036	32.5	12.5	22.5	27.5	11	11	u		
" 10H393□ ^R s	.039	н	13.0	23.0	28.0	11	11	lı .		
" 10H433□ ^B S	.043	"	14.0	23.5	28.5	11	п	li .		
" 10H473□ B	.047	ıı ı	14.5	24.0	29.0	"	"	"		
" 10H513□ B	.051	n n	"	24.5	29.5	II II	н	п		
" 10H563□ ^R S	.056	11	15.5	25.0	30.0	11	"	n		
" 10H623□ B	.062	"	16.0	26.5	31.5	п	11	n n		
" 10H683□ ^R	.068	n n	10.0	28.0	33.0	11	11	4		

Cap. tol. code (H, J, K, M)

*Last suffix "R"=straight leads (Type-1)
Last suffix "S"=crimped leads (Type-2)

1600VDC (1200V_{p-p} at 15.75kHz) Cap. tol. $\pm 3\%$ (H), $\pm 5\%$ (J), $\pm 10\%$ (K), $\pm 20\%$ (M)

	Cap.	Dimensions (mm)									
Part No.	(μF)	L max.	T max.		nax.	F±1.25	S±0.8	ød			
	(μι)	E max.	T THEX.	Type-1	Type-2	Type-1	Type-2	±0.05			
ECW H12H102□ R S	.001	22.0	8.0	13.0	18.0	16.5	10.0	8.0			
" 12H112□ ^R s	.0011	II	11	13.5	18.5	П	u	n			
" 12H122□ ^R S	.0012	и	8.5	"	"	п		и			
" 12H132□ ^R S	.0013	п	и	14.0	19.0	п	"	11			
" 12H152□ ^R S	.0015	11	9.0	и	n n	11	U	п			
" 12H162□ ^R	.0016	u u	9.5	14.5	19.5	п	11	11			
" 12H182□ ^R S	.0018	11	9.0	16.0	21.0	н	н	11			
" 12H2O2□ ^B	.002	п	10.0	tt.	11	II	u	'n			
" 12H222 R	.0022	и	11	16.5	21.5	"	u	11			
" 12H242 R	.0024	н	10.5	u .	11	ш	"	ıı			
" 12H272□ ^R s	.0027	п	11.0	17.0	22.0	II	и	11			
" 12H302□ ^R s	.003	Ш	"	17.5	22.5	u	"	11			
" 12H332 R	.0033	11	11.5	18.5	23.5	11		11			
" 12H362□ ^R S	.0036	28.0	8.5	15.5	20.5	22.5	15.0	11			
" 12H392□ ^R S	.0039	п	9.0	11	II II	15	11	и			
" 12H432□ ^R S	.0043	11	9.5	16.0	21.0	и	11	U			
" 12H472□ ^R S	.0047	"	10.0	и	n	н	11	II.			
" 12H512□ ^R _S	.0051	li li	n	16.5	21.5	п	u.	ıı			
" 12H562□ ^R _S	.0056	н	"	18.5	23.5		n	11			
" 12H622 R	.0062	п	u	п	п	н	и	11			
" 12H682 R	.0068	11	10.5	19.0	24.0	11	п	п			
" 12H752□ R S	.0075	п	11.0	19.5	24.5	II .	11	11			
" 12H822□ ^R S	.0082	11	11.5	п	11	н		II			
" 12H912□ ^B s	.0091	11	"	20.0	25.0	II	H H	ш			
" 12H103□ ^R S	.01	30.5	li li	п	"	25.0	17.5	ш			
" 12H113□ ^R s	.011	11	12.0	п	n	II II	11	п			
" 12H123□ ^R S	.012	11	11	20.5	25.5	П	11	ш			
" 12H133□ ^R S	.013	II .	13.0	21.0	26.0	11	11	ш			
" 12H153□ ^R	.015	11	"	23.0	28.0	н	u	u			
" 12H163□ ^R s	.016	II	13.5	23.5	28.5	11	II	IJ			
" 12H183□ ^R S	.018	11	14.0	24.0	29.0	П	п	U			
" 12H2O3□ ^R S	.02	1)	15.0	25.0	30.0	и	II	II II			
" 12H223□ ^R	.022	П	п	25.5	30.5	п	u .	и			
" 12H243□ ^R _S	.024	II.	16.0	26.5	31.5	ш	D D	II			
" 12H273□ ^R _S	.027	32.5	15.5	25.5	30.5	27.0	20.0	п			
" 12H303□ ^R s	.03	II	16.5	26.5	31.5	11	в	ıı			
" 12H333□ ^R S	.033	li li	"	28.5	33.5	11	"	u			
" 12H363□ ^R S	.036	"	17.5	28.0	33.0	11	u	11			
" 12H393LLR	.039	37.5	16.5	27.0	32.0	31.0	25.0	1.0			

Cap. tol. code (H, J, K, M)
*Last suffix "R"=straight leads (Type-1)
Last suffix "S"=crimped leads (Type-2)

2500VDC (1500V_{p-p} at 15.75kHz) Cap. tol. $\pm 3\%$ (H), $\pm 5\%$ (J), $\pm 10\%$ (K), $\pm 20\%$ (M)

	-				Dimensions (mn	n)		
Part No.	Cap.		_	Hn	nax.	F±1.25	S±0.8	ød
	(μF)	L max.	T max.	Type-1	Type-2	Type-1	Type-2	±0.05
ECW H15H102 N	.001	28.0	9.0	15.5	20.5	22.5	15.0	0.8
" 15H112 R	.0011	п	п	16.0	21.0	"	п	ıı .
" 15H122 R	.0012	п	9.5	п	и	11	и	11
" 15H132 R	.0013	п	10.0	16.5	21.5	п	н	11
" 15H152 R	.0015	п	10.5	п	н	п	ш	11
" 15H162 N	.0016	и	п	17.0	22.0	11	н	u
" 15H182 D	.0018	11	п	19.0	24.0	11	н	п
" 15H202 N	.002		11.0	и	п	11	н	"
" 15H222 N	.0022	п	"	19.5	24.5	п	н	u
" 15H242 R	.0024	30.5	10.5	19.0	24.0	25.0	17.5	11
" 15H272□ N	.0027	п	11.0	19.5	24.5	11	н	11
" 15H302 N	.003	n	11.5	20.0	25.0	п	п	11
" 15H332TT N	.0033	0	12.0	20.5	25.5	и	н	п
" 15H362□ N	.0036	п	12.5	п	п	11	ш	11
" 15H392 D	.0039	п	13.0	21.0	26.0	п	"	11
" 15H432□ R	.0043	11	"	23.0	28.0	п	п	"
" 15H472□ R	.0047	п	13.5	23.5	28.5	11	п	u u
" 15H512 \rightarrow \rightarr	.0051	11	14.0	24.0	29.0	11	п	"
" 15H562□ N	.0056	и	14.5	24.5	29.5	u	п	"
" 15H622□ N	.0062	п	15.0	25.0	30.0	u	n	п
" 15H682LJ D	.0068	11	15.5	26.0	31.0	11	п	11
" 15H752 D	.0075	11	н	27.5	32.5	п	и	п
" 15H822 N	.0082	II.	16.0	28.0	33.0	11	п	п
" 15H912 N	.0091	II II	17.0	29.0	34.0	ш	П	п
" 15H103□ N	.01	32.5	16.0	28.0	33.0	27.0	20.0	п
" 15H113□ N	.011	u u	17.0	29.0	34.0	11	п	1.0
" 15H123 R	.012	"	17.5	29.5	34.5	"	"	и
" 15H133EER	.013	37.5	16.0	28.0	33.0	31.0	25.0	п
" 15H153⊋ R	.015	и	17.0	29.0	34.0	"	п	11

Cap. tol. code (H, J, K, M)

^{*}Last suffix "D"=straight Leads (Type-1) Last suffix "N"=crimped Leads (Type-2)

Suitable for circuits requiring high heat resistance and tight tolerance.

Non-inductive wound using polyphenylene sulfide film which has high heat resistance and excellent electrical characteristics.

Features

- · Very low loss at high frequency
- Wide operating temperature range -40~ +125 °C
- Excellent temperature coefficient -100PPM/°C
- Low dissipation factor (tanδ), and excellent frequency characteristics
- Oxygen-free copper lead wire which provides good quality sound
- Taped product available (see pp. 141)

Specifications

Operating Temperature Range	-40~ +125 °C
Rated Voltage	50V, 100VDC
Capacitance Range	0.0001~0.47μF
Capacitance Tolerance	±1%(F), ±2%(G), ±5%(J)
Dissipation Factor	0.3% max. (20 °C, 1kHZ)
Withstanding Voltage	Between terminals: Rated voltage (VDC) x 250% 1~5s
Insulation Resistance	C≤0.33μF: 45000MΩmin. C>0.33μF: 15000MΩ•μFmin. (20 °C, 100VDC, 60s)
Construction	Polyphenylene sulfide film, non-inductive, epoxy resin coating

Dimensions

50VDC Cap. tol. $\pm 1\%$ (F), $\pm 2\%$ (G), $\pm 5\%$ (J)

	Cap.			Di	mensions (m				Crimped
Part No.	(μF)	L max.	T max.	Hm	nax.	F±1.25	S±0.8	ød	style
!	(μι)	Liliax.	i iliax.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECH S1H102 Z()	.001	8.5	4.0	6.5	11.5	5.0	5.0	0.6	N
" 1H122 Z()	.0012	ıı ıı	11	7.0	12.0	п	11	II	lı lı
" 1H152 Z()	.0015	ш	u	u	n	11	П	П	п
" 1H182 Z()	.0018	u	п	11	11	11	11	н	п
" 1H222 Z()	.0022	п	II	н	n	11	tt	п	"
" 1H272 Z()	.0027	11	II	н	п	11	11	11	IT
" 1H332 Z()	.0033	п	11	11	II	n n	15	II	п
" 1H392 Z()	.0039	н	11	"	11	11	11	(I	п
" 1H472 Z()	.0047	II II	II II	И	II	11	II .	II	11
" 1H562□Z()	.0056	ii ii	п	n	II II	ıı	ii	И	n
" 1H682 Z()	.0068	п	п	11	11	п	ш	u	п
" 1H822□Z()	.0082	п	ш	6.5	11.5	и	н	11	п
" 1H103□Z()	.01	и	П	7.0	12.0	п	ш	Ш	п
" 1H123 Z()	.012	п	п	п	п	п	11	11	и
" 1H153 Z()	.015	12.0	4.5	u	"	7.5	п	11	T
" 1H183 Z()	.018	п	"	ıı	п	"	и	и	, n
" 1H223□Z()	.022	ıı ıı	ıı	п	п	п	п	II	ti .
" 1H273 Z()	.027	II II	11	8.5	13.5	ıı	"	II	ш
" 1H333 Z()	.033	"	п	9.0	14.0	11	н	Ш	ш
" 1H393 Z()	.039	0	5.0	9.5	14.5	п	н	и	11
" 1H473 Z()	.047		п	u	п	ıı .	п	н	п
" 1H563□Z()	.056	"	5.5	10.0	15.0	п	п	н	- u
" 1H683□Z()	.068	14.5	5.0	9.5	14.5	10.0	п	н	11
" 1H823 TZ()	.082	п	5.5	10.0	15.0	п	п	п	II
" 1H104□Z()	.1	ii ii	6.0	10.5	15.5	11	11	II II	11
" 1H124 \(\tau\)(\)	.12	ıı	6.5	11.0	16.0	и	11	п	11
" 1H154□Z()	.15	17.0		11	п	12.5	"	11	п
" 1H184□Z()	.18	11	11	12.5	17.5	н	п	11	н
" 1H224 Z()	.22	11	7.0	13.5	18.5	п	п	11	11
" 1H274 Z()	.27	п	7.5	14.5	19.5	п	II	0.8	н
" 1H334□Z()	.33	п	8.5	15.5	20.5	п	"	11	11
" 1H394□Z()	.39	п	9.0	16.0	21.0	н	11	н	н
" 1H474□Z()	.47	ıı	10.0	16.5	21.5	ıı	11	ıı	lı lı

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Taped type for automatic insertion; 2/5:
Straight lead taping)
See page 141 for detailed taping specification

Cap. tol. code

100VDC Cap. tol. $\pm 1\%$ (F), $\pm 2\%$ (G), $\pm 5\%$ (J)

	Cap.				imensions (m				Crimped
Part No.	(μF)	L max.	T max.	Hm		F±1.25	S±0.8	ød	style
				Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECH S1101□Z()	.0001	8.5	4.0	6.5	11.5	5.0	5.0	0.6	N
" 1121□Z()	.00012	II	П	n	"	п	П	II .	"
" 1151□Z()	.00015	II .	"	II.	11	"	"	"	"
" 1181□Z()	.00018	U	II .	II	11	П	н		u
" 1221□Z()	.00022	Ш	и	ıı .	u	н	11	II .	11
" 1271□Z()	.00027	Ш	11	II .	ıı ı	u	Ш	ш	
" 1331□Z()	.00033	II	ıı .	II .	II .	"	"		"
" 1391□Z()	.00039	П	II.	"	ıı	п	н	n .	"
" 1471□Z()	.00047	11	II	II .	II.	П	li .	ш	11
" 1561□Z()	.00056	ıı	11	п	11	и	u	u	11
" 1681 Z()	.00068	11	II	tt	11	11	11	11	п
" 1821 Z()	.00082	11	11	II	II II	II I	Ш	II	"
" 1102 Z()	.001	10.0	4.5	7.0	12.0	п	п	Ш	ıı ıı
" 1122 Z()	.0012	п	. 11	11	11	п	П	п	ıı ıı
" 1152□Z()	.0015	н	11	II	11	н	П	П	ш
" 1182 Z()	.0018	. "	II II	II	11	н	11	11	11
" 1222 Z()	.0022	H.	11	7.5	12.5	l l	II	II	11
" 1272 Z()	.0027	п	"	7.0	12.0	II	п	U U	"
" 1332□Z()	.0033	II .	II	7.5	12.5	"	11	II	II.
" 1392 Z()	.0039	11	11	7.0	12.0	11	II (II	п
" 1472\(\tau Z(\)	.0047	II .	5.0	7.5	12.5		ш	ш	ıı
" 1562 Z()	.0056	12.0	4.5	ш	11	7.5	11	11	Т
" 1682 Z()	.0068	11	11	7.0	12.0	ш	п	н	11
" 1822 Z()	.0082	11	11	7.5	12.5	п	II	Ш	п
" 1103□Z()	.01	II	ıı	7.0	12.0	П	II I	II	11
" 1123□Z()	.012	Ш	5.0	7.5	12.5	Ш	II .	II	п
" 1153□Z()	.015	П	п	п	11	u	и	II	n
" 1183□Z()	.018	· ·	5.5	8.0	13.0	и	п	II	н
" 1223 Z()	.022		5.0	10.0	15.0	ıı	п	11	11
" 1273 \(\text{Z()}\)	.027	п	5.5	10.5	15.5	U	п	п	11
" 1333□Z()	.033	14.5	11	10.0	15.0	10.0	II .	n	- "
" 1393□Z()	.039	п	6.0	II II	li li	11	II .	II	п
" 1473□Z()	.047	11	11	10.5	15.5	11	n	п	11
" 1563\(\text{Z}(\)\)	.056	"	6.5	11.0	16.0	II .	II .	U	ii ii
" 1683 Z()	.068	17.0	11	10.5	15.5	12.5	11		
" 1823 Z()	.082	н	11	12.0	17.0	11	11	ш	
" 1104\(\text{Z}(\)\)	.1		7.0	13.5	18.5	п	н		"
" 1124\(\tau\)Z()	.12	"	7.5	14.0	19.0	ıı	ш	п	11
" 1154\(\text{\text{Z}}\)	.15	20.5	11	н	11	15.0	п	0.8	п
" 1184□Z()	.18	11	II.	14.5	19.5	н	11	11	"
" 1224□Z()	.22	11	8.5	15.5	20.5	ш	II II	II	п
" 1274\(\sum Z(\))	.27	п	9.0	16.5	21.5	11	п	н	u
" 1334\(\sum Z(\)	.33	н	10.0	17.0	22.0	11	II	II	и
" 1394\(\text{Z}(\)	.39	н	10.5	18.0	23.0	и	"	n	n
" 1474\(\sigma Z(\))	.47	· ·	11.5	19.5	24.5	п		п п	

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Taped type for automatic insertion; 2/5: Straight lead taping) See page 141 for detailed taping specification

- Cap. tol. code

This series is designed for applications where tight capacitance tolerance is required, and is an ideal replacement for polystyrene capacitor because of linear negative temperature coefficient, excellent frequency characteristics and low dissipation factor.

Features

- · Wide capacitance range
- Tight capacitance tolerance
- · High insulation resistance
- · Low dissipation factor
- · Non-inductive construction
- Epoxy resin coating
- · Available for automatic insertion

Specifications

Operating Temperature Range	-40~ +85 °C (Derating required above 70°C. See page 145)						
Rated Voltage	50V, 100VDC (Derating required according to cap. value. See page 145)						
Capacitance Range	0.0001~0.47μF						
Capacitance Tolerance	±1%(F), ±2%(G), ±5%(J) (For cap. value 0.0001~0.00091μF, ±5%(J) only.)						
Dissipation Factor	0.1% max. (20 °C, 1kHZ)						
Withstanding Voltage	Between terminals: Rated voltage (VDC) x 250% 1~5s						
Insulation Resistance	C≤0.33μF: 45000MΩmin. C>0.33μF: 15000MΩ•μFmin. (20 °C Rated volt. (VDC) 60s)						
Construction	Polypropylene film, non-inductive, epoxy resin coating						

Dimensions

 $\textbf{50VDC} \hspace{0.2cm} \text{Cap. tol. } \pm 1\%(F), \pm 2\%(G), \pm 5\%(J)$

	Cap.	Dimensions (mm)							
Part No.	(μF)	L max.	T max.	H max.	S±0.8	ød±0.05	Crimped style		
ECQ P1H101JZ()	.0001	8.5	4.5	12.5	5.0	0.5	N		
" 1H111JZ()	.00011	II	u	n	II II	11	II		
" 1H121JZ()	.00012	II .	11	н	II .	11	11		
" 1H131JZ()	.00013	II	"	п	II II	п	11		
" 1H151JZ()	.00015	ii.	и	11	II II	11	11		
" 1H161JZ()	.00016	II.	11	n n	u u	и	n		
" 1H181JZ()	.00018	n	n	"	11	п			
" 1H201JZ()	.0002	II	· ·	u	11	n	п		
" 1H221JZ()	.00022	II	11	11		п	ш		
" 1H241JZ()	.00024	n	11	11	11	п	п		
" 1H271JZ()	.00027	и	11	п	и	n	II II		
" 1H301JZ()	.0003	и	11	11	н	п	ш		
" 1H331JZ()	.00033	п	11	11	11	п	II		
" 1H361JZ()	.00036	п	и	П	и	п	II		
" 1H391JZ()	.00039	п	II II	11	11	11	н		
" 1H431JZ()	.00043	п	и	n	11	ш	11		
" 1H471JZ()	.00047	u	11	п	11	ц	n		
" 1H511JZ()	.00051	n	11	II II	ш	п	11		
" 1H561JZ()	.00056	O O	п	м	11	II	п		
" 1H621JZ()	.00062	П	п	п	п	ti .	ш		
" 1H681JZ()	.00068	15	11	11	li li	11	li li		
" 1H751JZ()	.00075	il .	11	п	11	П	li li		
" 1H821JZ()	.00082	П	п	п	II II	п	11		
" 1H911JZ()	.00091	u	n	п	II II	н	Ш		
" 1H102\(\tau\)()	.001	Ш	п	п	ш	н	"		
" 1H112□Z()	.0011	Ш	п	п	11	ti .	п		
" 1H122 Z()	.0012	Ш	п	II II	Ш	II	п		
" 1H132□Z()	.0013	п	11	0		u	11		
" 1H152 Z()	.0015	П	н	n	u u	н	0		
" 1H162□Z()	.0016	н	п	ш	n	II II	ш		
" 1H182□Z()	.0018	П	п	п	п	li li	ıı		
" 1H202□Z()	.002	n	п	11	п	11	II II		
" 1H222□Z()	.0022	н	п	u	n	п	11		
" 1H242□Z()	.0024	11	п	II II	п	II	ıı		
" 1H272□Z()	.0027	н	n	ı.	п	11	11		
" 1H302□Z()	.003	11	п	ıı ı	и	n			
" 1H332□Z()	.0033	11	11	II II	и	II II	11		
" 1H362□Z()	.0036	ĬI	и	п	11	II II	"		
" 1H392□Z()	.0039	11	н		11	II II	n		
" 1H432□Z()	.0043	II	II II	п	н	п	11		
" 1H472□Z()	.0047	* 11	tt	п	п	п	п		
" 1H512□Z()	.0051	il	u	13.0	п	tt	ıı		
" 1H562□Z()	.0056	n	II II	"	п	п	ш		
" 1H622□Z()	.0062	II	5.0	R	n	и	п		
" 1H682□Z()	.0068	и	"	п	II.	п	ı		

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Crimped lead taping)

Cap. tol. code

50VDC Cap. tol. ±1%(F), ±2%(G), ±5%(J)

	Cap.			Dimensions (mm)			- Crimped
Part No.	(μF)	L max.	T max.	H max.	S±0.8	ød±0.05	style
ECQ P1H752 Z()	.0075	12.0	5.0	14.0	5.0	0.6	Т
" 1H822 \(\bar{Z}(\)	.0082	11	5.5	ıı	11	11	"
" 1H912 Z()	.0091	11	5.0	13.5	II.	и	11
" 1H103 Z()	.01	н	11	u u	п	п	II
" 1H113 Z()	.011	11	11	14.0	11	п	11
" 1H123 Z()	.012) II	5.5	п	Ш	п	II
" 1H133 Z()	.013	Ш	5.0	п	II .	п	11
" 1H153 Z()	.015	II	11	u	11	11	II
" 1H163 Z()	.016	li li	5.5	п	II	11	II
" 1H183 Z()	.018	n n	11	14.5	n	В	н
" 1H2O3 Z()	.02	n	11	n	H	н	П
" 1H223 Z()	.022	п	11	15.5	11	ıı ıı	н
" 1H243 Z()	.024	п	6.0	п	11	ıı ı	11
" 1H273 Z()	.027	11	11	16.0	П	п	п
" 1H303 Z()	.03	п	6.5	п	н	п	II
" 1H333 Z()	.033	u	u	16.5	Ш	п	"
" 1H363 Z()	.036	14.5	5.5	17.0	и	"	п
" 1H393 Z()	.039	n	"	1110	u u	и	II .
" 1H433 Z()	.043	ıı	6.0	п	и	ıı ıı	п п
" 1H473 Z()	.047	11	0.0	17.5	n	п	
" 1H513 Z()	.051	11	6.5	18.5	ıı	11	. 11
" 1H563 Z()	.056	и	0.0	10.0	11	11	н
" 1H623[7Z()	.062	"	7.0	19.0	11	п	п
" 1H683 Z()	.068	ıı ı	7.0	19.0	11	, II	
" 1H753 Z()	.075	17.0	6.5	18.5	7.5		
" 1H823(JZ()	.082	17.0	7.0	19.0	7.0	ii ii	п
		п	7.0	19.0	и	11	11
111919 (2()	.091	li li			II II	"	
11110412()	.1	n n	7.5	19.5	ш	и	11
111114	.11	u	8.0	20.5	п	и	Ш
11124:()	.12	11	8.5		"		11
111104:[2.()	.13			21.0		"	"
111104	.15	20.0	8.0	20.5	10.0	"	n n
" 1H164\(\sum Z(\))	.16	11	8.5		"		"
" 1H184□Z()	.18	11	9.0	21.0	"	n n	"
" 1H2O4□Z()	.20		9.5	21.5	"	"	"
" 1H224□Z()	.22	"		22.0			
" 1H244TZ()	.24	11	10.0	22.5	"	ıı	n
" 1H274□Z()	.27	11	10.5	23.0	п	п	"
" 1H3O4□Z()	,30	22.5	9.5	24.0	12.5	0.8	II
" 1H334□Z()	.33	11	10.0	24.5	"	н	н
" 1H364□Z()	.36	H	10.5	25.0	п	п	11
" 1H394□Z()	.39	n n	11.0	п	11	п	11
" 1H434□Z()	.43	ų.	11.5	25.5	и	п	11
" 1H474□Z()	.47	tt	12.0	26.0	п	п	н

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Crimped lead taping)

— Cap. tol. code

100VDC Cap. tol. $\pm 1\%$ (F), $\pm 2\%$ (G), $\pm 5\%$ (J) ($\pm 5\%$ only for $0.0001 \sim 0.00091 \mu$ F)

	Cap.	Dimensions (mm)						
Part No.	(μF)	L max.	T max.	H max.	S±0.8	ød±0.05	- Crimped style	
ECQ P1101JZ()	.0001	10.0	5.0	13.0	5.0	0.6	N	
" 1111JZ()	.00011	II	п	п	п	п	п	
" 1121JZ()	.00012	н	11	п	п	п	п	
" 1131JZ()	.00013	Ш	В	п	Ш	11	н	
" 1151JZ()	.00015	п	и	11	п	11	II	
" 1161JZ()	.00016	II .	п	u	n	п	11	
" 1181JZ()	.00018	II	п	п	п	n	H	
" 1201JZ()	.0002	н	п	п	11	tt.	11	
" 1221JZ()	.00022	11	п	II .	11	11	11	
" 1241JZ()	.00024	11	П	11	П	It	п	
" 1271JZ()	.00027	u	n	II II	Ш	н	11	
" 1301JZ()	.0003	IJ	u	u	Ш	п	11	
" 1331JZ()	.00033	11	п	· · ·	Ш	П	11	
" 1361JZ()	.00036	11	и	11	и	IF	(1	
" 1391JZ()	.00039	II	11	u	ш	н	п	
" 1431JZ()	.00043	П	11	п	П	П	11	
" 1471JZ()	.00047	n	"	u	II	II II	u	
" 1511JZ()	.00051	n	11	u u	II	п	II .	
" 1561JZ()	.00056	ıı	н	11	н	п	"	
" 1621JZ()	.00062	11	и	н	II	"	п	
" 1681JZ()	.00068	11	п	н	n	п	п	
" 1751JZ()	.00075	н	н	11	II.	n	11	
" 1821JZ()	.00082	II.	11	Ш	11	u	11	
" 1911JZ()	.00091	11	н	п	п	п	ıt	
" 1102 Z()	.001	11	п	ш	ш	П	ш	
" 1112□Z()	.0011	н	н	п	п	н	II	
" 1122□Z()	.0012	Ш	и	п	II	п	п	
" 1132\\(\text{Z}(\)\)	.0013	П	н	п	II	п		
" 1152 Z()	.0015	н	п	п	n	ш	11	
" 1162 Z()	.0016	Ш	п	U	и	11		
" 1182 Z()	.0018	п	п	п	II	u	11	
" 1202 Z()	.002	II	п	п	11	п	· ·	
" 1222 Z()	.0022	n	п	н	ш	п	II.	
" 1242 Z()	.0024	u	ıı ı	п	п	II	11	
" 1272 Z()	.0027	п	ıı	n	II.	li li	11	
" 1302 Z()	.003	п	п	и	n	II II		
" 1332 Z()	.0033	u	n	ш	и	n	п	
" 1362 Z()	.0036	п	п	u	п	и	п	
" 1392 Z()	.0039	n n	п	п	п	п	11	
" 1432 Z()	.0043	u	п	п	п	п	п	
" 1472 Z()	.0043	и	n	п	п	п	п	
" 1512 \(\text{Z}()	.0051	TI TI	u	п	п	11	11	
" 1562 Z()	.0056	п	11	и .	п		п	
" 1622 Z()	.0062	п	5.5	u	11	ш	л	
1044 4	.0002		0.0		1			

Suffix for lead crimped or taped type (W: Self mounting crimped; 3/9: Crimped lead taping)

— Cap. tol. code

100VDC Cap. tol. $\pm 1\%$ (F), $\pm 2\%$ (G), $\pm 5\%$ (J)

	Сар.		1	Dimensions (mm)			Crimped
Part No.	(μF)	L max.	T max.	H max.	S±0.8	ød±0.05	style
ECQ P1752 Z()	.0075	13.0 (12.0)	5.5	14.0	5.0	0.6	Т
" 1822 Z()	.0082	(")	н	11	п	ш	п
" 1912 Z()	.0091	(*)	5.0	13.0	II-	н	II
" 1103 Z()	.01	(*)	11	13.5	II .	U	ш
" 1113 Z()	.011	(*)	11	п	II .	п	11
" 1123 Z()	.012	(")	11	11	ii	II	II
" 1133 Z()	.013	(")	11	п	11	н	ii ii
" 1153 Z()	.015	(")	5.5	14.0	II	п	II.
" 1163 Z()	.016	(")	n	11	11	п	u
" 1183 Z()	.018	(")	6.0	15.0	и	н	п
" 1203 Z()	.02	16.0	5.5	u	II	11	ii
" 1223 Z()	.022	11	и	11	II .	п	п
" 1243 Z()	.024	п	u	п	п	ш	Ш
" 1273 Z()	.027	п	6.0	п	ш	ш	ш
" 1303 !Z()	.03	п	ſ1	15.5	Ш	п	II
" 1333 IZ()	.033	п	6.5	п	II	ıı	ıı ıı
" 1363 Z()	.036	п	11	н	п	п	п
" 1393 Z()	.039	п	7.0	16.0	ıı	11	n
" 1433 Z()	.043		7.5	"	п	п	п
" 1473 Z()	.047	п	n	16.5	п	п	u
" 1513 IZ()	.051	18.0	6.5	17.0	7.5	п	II II
" 1563 Z()	.056	10.0	"	"	"	п	11
" 1623 Z()	.062	11	7.0	17.5	н	11	11
" 1683 Z()	.068	и	1.0	17.0	п	l II	U
" 1753 Z()	.075	ıı ıı	ſt	18.0	и	п	п
" 1823 Z()	.082	п	11	18.5	н	и	и
" 1913 Z()	.091		7.5	10.5	п	11	11
" 1104 Z()	.1	18.5	1.5	19.0	п	II II	п
" 1114 Z()	.11	10.5	n	19.0	10.0	ıı	"
" 1124 Z()	.12	п	8.5	19.5	10.0	11	
" 1134 Z()	.13	П	9.0	20.0	II .	11	<u> </u>
" 1154 Z()	.15	11	9.0	20.0	U	11	п
		п	9.5	20.5		11	
" 1164 Z() " 1184 Z()	.16				12.5		N "
	.18	19.0	10.0	21.0	11	п	11
12042()	.20	11	10.5	21.5	п	11	11
1224 2()	.22		11.0	22.0	" "		
1244.12()	.24	25.0	9.0	21.5	"	0.8	T
1214112()	.27	"	9.5	22.0	"	"	" "
100+12()	.30	11	10.0	22.5	"	" "	"
" 1334\(\sum Z(\))	.33	"		23.0	"	"	" "
" 1364\(\sum Z(\))	.36	11	10.5	23.5	и	, n	"
" 1394\(\sigma Z(\)\)	.39		11.0	24.0		и	
" 1434□Z()	.43	н	11.5	24.5	"		"
" 1474□Z()	.47	II II	12.0	25.0	н	II .	п

Suffix for lead crimped or taped type (W: Self mounting crimped lead 3,9: Crimped lead taping)

[—] Cap. tol. code

^{*} Dimensions in () are for taped product

This series is recommended for applications where high frequency and high current are required.

Features

- · Excellent frequency characteristics
- Excellent temperature characteristics
- · Low dissipation factor
- · High insulation resistance
- Excellent moisture resistance due to wax impregnation

Specifications

Operating Temperature Range	-25~ +85 °C (For a higher temperature than 70 °C, derating is required. See page 145)
Rated Voltage	200V, 400V, 630VDC, 125VAC (Derating is required according to cap. value. See page 145)
Capacitance Range	0.001μF~0.47μF
Capacitance Tolerance	±5%(J), ±10%(K), ±20%(M)
Dissipation Factor	0.1% max. (20 °C, 1kHz)
Withstanding Voltage	Between terminals: Rated voltage (VDC) x 250% 1 ~ 5s, 125VAC x 230% 60s (For type 1A only) Between terminals and enclosure: 1000VAC 60s (For type 1A only)
Insulation Resistance	C≤0.33μF: 45000MΩmin. (20°C, 100VDC 60s) C>0.33μF: 15000MΩ•μFmin. 2000MΩmin. (20 °C, 500VDC 60s) (For type 1A only)
Construction	Polypropylene film, non-inductive, phenolic epoxy resin coating, wax impregnation

Dimensions

200VDC Cap. tol. $\pm 5\%$ (J), $\pm 10\%$ (K), $\pm 20\%$ (M)

	Cap.	Dimensions (mm)								
Part No.	(μF)	L max.	T max.	Hm	nax.	F±1.25	S±0.8	ød	style	
	(μι)	Liliax.	I IIIax.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2	
ECQ F2223 IS(ISH)	.022	18.5	6.0	12.0	17.0	13.5	10.0	0.6	В	
" 2273 S(ISH)	.027	11	II	12.5	17.5		u	11		
" 2333 IS(ISH)	.033	II II	П	13.0	18.0	II	11	II	п	
" 2393 IS(ISH)	.039	11	11	14.5	19.5	II II	и	п	п	
" 2473 IS(ISH)	.047	"	6.5	15.0	20.0	II .	ıı	11	11	
" 2563 IS(ISH)	.056	ıı	7.0	15.5	20.5	II	15.0	и	D	
" 2683 IS(ISH)	.068	"	7.5	16.0	21.0	и	II	Ш	11	
" 2823 S(SH)	.082	24.5	7.0	15.5	20.5	19.5	н	0.7	В	
" 2104 IS(ISH)	.1	II.	8.0		"		11	II	ш	
" 2124 IS(ISH)	.12	п	7.5	16.0	21.0	п	и	п	11	
" 2154 IS(ISH)	.15	25.0	8.5	17.0	23.0	и	20.0	п	D	
" 2184 IS(ISH)	.18	н	9.5	18.0	24.0	II .	II	п	"	
" 2224 IS(ISH)	.22	25.5	10.0	18.5	24.5	II.	II .	11	II	
" 2274 IS(ISH)	.27	II.	11.0	20.0	26.0	11	II .	11	II	
" 2334 S(SH)	.33	26.0	12.0	21.0	27.0	ıı	II .	11	п	
" 2394 IS(ISH)	.39	II	13.5	22.0	29.0	"	"	0.8	II	
" 2474\\(\text{S(\\\SH)}\)	.47	26.5	14.5	23.5	31.5	11	"	н	II .	

400VDC Cap. tol. $\pm 5\%$ (J), $\pm 10\%$ (K), $\pm 20\%$ (M)

ECQ F4822 Z(ZH)	.0082	18.5	7.0	13.0	18.0	13.5	10.0	0.6	В
" 4103 Z(ZH)	.01	n	11	14.5	19.5	11	n	u u	11
" 4123 Z(ZH)	.012	"	11	II	11	п	II II	II .	11
" 4153 Z(ZH)	.015	n	н	"	n n	п	п	11	u
" 4183 Z(ZH)	.018	II II	11	11	11	II II	11	11	11
" 4223 Z(ZH)	.022	11	7.5	15.0	20.0	11	II	11	11
" 4273 Z(ZH)	.027	11	8.0	17.0	22.0	ш	"	11	11
" 4333 Z(ZH)	.033	n	8.5	17.5	22.5	11	15.0	11	D
" 4393 Z(ZH)	.039		9.0	18.0	23.0	11	rr rr	11	11
" 4473 Z(ZH)	.047	11	10.0	18.5	23.5	п	п	п	11
" 4563 Z(ZH)	.056	24.5	8.0	17.0	22.0	19.5	и	0.7	В
" 4683 Z(ZH)	.068	11	9.0	18.0	23.0	II II	u u	п	11
" 4823 Z(ZH)	.082	"	10.0	18.5	23.5	tt.	"	п	11
" 4104 Z(ZH)	.1	25.0	10.5	19.5	26.5	"	20.0	11	D
" 4124 Z(ZH)	.12	Ш	11.5	20.5	27.5	11	"	11	11
" 4154 Z(ZH)	.15	25.5	12.5	21.5	28.5	11	II	"	11
" 4184 Z(ZH)	.18	32.0	п	н	27.5	25.5	п	0.8	В
" 4224 Z(ZH)	.22	II .	13.0	п	11	"	II	11	11
" 4274 Z(ZH)	.27	II .	15.5	24.5	30.5	u u	и	11	п
" 4334 Z(ZH)	.33	11	16.0	25.0	31.0	11	II .	11	n
" 4394 Z(ZH)	.39	39.0	16.5	11	11	31.0	п	11	н
" 4474 Z(ZH)	.47	п	17.0	25.5	31.5	11	II .	П	п

Cap. tol. code

^{* &}quot;H" suffix for crimped lead

630VDC Cap. tol. ±5%(J), ±10%(K), ±20%(M)

	Con			Di	mensions (m	m)			Crimped
Part No.	Cap. (μF)	L max. T max.		Hm	H max.		S±0.8	ød	style
	(μΓ)	Liliax.	I IIIax.	Type-1	Type-2	Type-1	Type-2	±0.05	Type-2
ECQ F6102□Z(□ZH)	.001	12.5	6.0	12.0	17.0	8.5	10.0	0.6	D
" 6122□Z(□ZH)	.0012	11	"	"	н	"	п	п	ss
" 6152□Z(□ZH)	.0015	11	11	"	II	п	н	11	"
" 6182□Z(□ZH)	.0018	11	u	u	11	II	11	n n	11
" 6222□Z(□ZH)	.0022	11	п	13.5	18.5	и	11	н	п
" 6272□Z(□ZH)	.0027	"	6.5	14.0	19.0	11	II	11	n
" 6332□Z(□ZH)	.0033	II	7.0	14.5	19.5	"	п	II .	и
" 6392□Z(□ZH)	.0039	"	7.5	15.0	20.0	"	п	u	11
" 6472□Z(□ZH)	.0047	18.5	7.0	12.5	17.5	13.5	II	II	В
" 6562□Z(□ZH)	.0056	II	7.5	13.0	18.0	и	н	11	n
" 6682□Z(□ZH)	.0068	11	7.0	12.5	17.5	"	II	п	11
" 6822□Z(□ZH)	.0082	n	п	14.5	19.5	II .	н	II.	n n
" 6103□Z(□ZH)	.01	II	7.5	15.0	20.0	"	11	11	11
" 6123□Z(□ZH)	.012	II	п	16.5	21.5	. 11	п	п	В
" 6153□Z(□ZH)	.015	11	8.0	17.0	22.0	п	15.0	ıı	D
" 6183□Z(□ZH)	.018	11	8.5	18.0	23.0	11	11	п	u
" 6223□Z(□ZH)	.022	и	9.5	18.5	23.5	"	п	II	11
" 6273□Z(□ZH)	.027	24.5	8.0	17.0	22.0	19.5	II .	0.7	В
" 6333□Z(□ZH)	.033	"	9.0	17.5	22.5	u	11	II .	"
" 6393 Z(NZH)	.039	11	10.0	18.5	23.5	ıı .	11	II.	11
" 6473 Z(ZH)	.047	25.0	10.5	19.5	24.5	11	п	п	
" 6563□Z(□ZH)	.056	11	11.5	20.0	27.0	ш	20.0	II.	D
" 6683□Z(□ZH)	.068	25.5	12.5	21.0	28.0	n	II	II	н
" 6823□Z(□ZH)	.082	32.0	12.0	20.5	26.5	25.5	н	0.8	В
" 6104\\\Z(\\\ZH)	.1	11	12.5	21.0	27.0	11	II	11	и
" 6124□Z(□ZH)	.12	11	14.5	23.5	29.5	u	н	II	п
" 6154□Z(□ZH)	.15	II	15.0	24.0	30.0	11	н	11	и
" 6184□Z(□ZH)	.18	39.0	16.0	24.5	30.5	31.0	11	П	п
" 6224□Z(□ZH)	.22	11	II	11	11	п	и	11	п

125VAC Cap. tol. ±10%(K), ±20%(M)

.001	15.0	7.5	13.5	18.5	8.5	10.0	0.6	D
.0015	11	8.0	14.0	19.0	11	11	II	"
.0022	"	u	15.5	20.5	п	11	11	11
.0033	"	9.0	16.5	21.5	n	"	н	
.0047	21.0	п	14.5	19.5	13.5	u	11	В
.0068	11	"	15.0	20.0	"	II II	н	u
.01	11	9.5	17.0	22.0	н	"	н	u u
.015	II II	10.0	19.0	24.0	II.	15.0	11	D
.022	п	11.5	20.5	25.5	u	n	п	ı
.033	26.5	10.5	20.0	25.0	19.5		0.7	В
.047	n	12.5	21.5	26.5	"	п	"	"
.068	27.0	14.0	23.0	30.0	"	20.0	н	D
.1	33.0	"	23.5	28.5	24.5	п	0.8	В
.15	n n	17.0	26.0	31.0	u	u	ıı	
.22	40.0	18.0	26.5	31.5	31.0	п	"	11
	.0015 .0022 .0033 .0047 .0068 .01 .015 .022 .033 .047 .068	.0015 " .0022 " .0033 " .0047 21.0 .0068 " .01 " .015 " .022 " .033 26.5 .047 " .068 27.0 .1 33.0 .15 "	.0015 " 8.0 .0022 " " .0033 " 9.0 .0047 21.0 " .0068 " " .01 " 9.5 .015 " 10.0 .022 " 11.5 .033 26.5 10.5 .047 " 12.5 .068 27.0 14.0 .1 33.0 " .15 " 17.0	.0015	.0015 " 8.0 14.0 19.0 .0022 " " 15.5 20.5 .0033 " 9.0 16.5 21.5 .0047 21.0 " 14.5 19.5 .0068 " " 15.0 20.0 .01 " 9.5 17.0 22.0 .015 " 10.0 19.0 24.0 .022 " 11.5 20.5 25.5 .033 26.5 10.5 20.0 25.0 .047 " 12.5 21.5 26.5 .068 27.0 14.0 23.0 30.0 .1 33.0 " 23.5 28.5 .15 " 17.0 26.0 31.0	.0015 " 8.0 14.0 19.0 " .0022 " " 15.5 20.5 " .0033 " 9.0 16.5 21.5 " .0047 21.0 " 14.5 19.5 13.5 .0068 " " 15.0 20.0 " .01 " 9.5 17.0 22.0 " .015 " 10.0 19.0 24.0 " .022 " 11.5 20.5 25.5 " .033 26.5 10.5 20.0 25.0 19.5 .047 " 12.5 21.5 26.5 " .068 27.0 14.0 23.0 30.0 " .1 33.0 " 23.5 28.5 24.5 .15 " 17.0 26.0 31.0 "	.0015 " 8.0 14.0 19.0 " " .0022 " " 15.5 20.5 " " .0033 " 9.0 16.5 21.5 " " .0047 21.0 " 14.5 19.5 13.5 " .0068 " " 15.0 20.0 " " .01 " 9.5 17.0 22.0 " " .015 " 10.0 19.0 24.0 " 15.0 .022 " 11.5 20.5 25.5 " " .033 26.5 10.5 20.0 25.0 19.5 " .047 " 12.5 21.5 26.5 " " .068 27.0 14.0 23.0 30.0 " 20.0 .1 33.0 " 23.5 28.5 24.5 " .15 " 17.0 26.0 31.0 " "	.0015 " 8.0 14.0 19.0 " <

Cap. tol. code

^{* &}quot;H" suffix for crimped lead

This series is especially designed for radio interference suppressors in accordance with UL/CSA and European safety regulations class X.

Self-healing metallized polyester and flame resistant preformed case-with epoxy endfill.

Features

- Excellent active and passive flame-resistant properties
- Overvoltage stress withstanding
- Wide capacitance range (0.001 μF to 1.0 μF)

Specifications

Applicable Standard & Approval Number

Class X Ref No. 88, 1 00318, 01

	UL1414		Across-the-Line Capac	citors		File No. E62674
UL	UL1414		Antenna-Coupling and	Antenna-Coupling and Line-By-Pass Components		
-	UL 1283		Electromagnetic Interfe	erence Filters.		File No. E79502
CSA	CSA C22.2 No. 0-M19	LOOTH F ON CO	Across-The Line, Ante	nna-Isolation		File No. LR35752
CSA	CSA C22.2 NO. 0-W19	02, INO. 1-IVIT901	and Line-by-Pass Cap	acitor		File No. LR35/52
			Class X		Class	s Y (0.001~0.0068μF)
SEMKO	SS 443 04 14	Class X2 Reg No.	. 8804123	0.001-1.0μF	Reg. No. 880	04123
DEMKO	Afsnit 21	Class X2 Ref No.	93236EC	0.001-1.0μF	Ref No. 9323	36EC
NEMKO	NEMKO 132	Class X2 Ref No.	37892	0.001-1.0μF	Ref No. 3789	94
El	IEC384/14	Class X2 Reg.No.	. 110918-01-02	0.001-1.0μF	Reg No. 110	918-01-02
VDE	VDE 0565-1	Class X2 File No.	4811. 6-4670-1070	0.0082-1.0μF	File No. 481	1. 6-4670-1070

 $0.1 - 1.0 \mu F$

Explanation of Part Numbers

SEV 1055

SEV

Dimensions & Marking

Rating & Dimensions

D 111	Cap.				Dimensions (mr	n)		
Part No.	(μF)	L±0.5	T ±0.5	H±0.5	F±0.4	ød±0.05	Р	Q+1.4 -0.6
ECQ U2A102□V	.001	17.5	4.0	10.5	15.0	0.6	0±0.5	1.3
" 2A122□V	.0012	11	"	П	п	u	n	н
" 2A152□V	.0015	n	ır	п	п	и	n	11
" 2A182□V	.0018	11	ıı	п	п	и	11	11
" 2A222□V	.0022	11	ıı .	п	11	и	11	п
" 2A272 V	.0027	п	II .	п	п	н	íi .	п
" 2A332 V	.0033	Ш	II .	п	16	u	п	ıı
" 2A392 V	.0039	п	ıı .	п	11	п	11	11
" 2A472 V	.0047	п	II	п	11	ii	н	11
" 2A562 V	.0056	п	п	п	tt	н		п
" 2A682□V	.0068	п	п	н	H	n	11	п
" 2A822□V	.0082	п	II .	н	н	п	и	п
" 2A103□V	.01	п	ıı ı	п	11	п	11	11
" 2A123□V	.012	II II	И	п	ч	"	11	11
" 2A153□V	.015	II .	11	н	и	п	II .	II
" 2A183□V	.018	II .	4.5	11	н	ıı .	u u	11
" 2A223□V	.022	п	ıı	п	н	п	п	п
" 2A273□V	.027	II .	ıı ı	13.0	11	н	п	11
" 2A333 V	.033	11	"	и	11	"	п	н
" 2A393⊟V	.039	ıı .	5.5	12.5	11	н	11	II
" 2A473□V	.047	и	ıı ı	и	n	н	п	11
" 2A563□V	.056	п	7.0	14.0	11	n	"	II
" 2A683□V	.068	0	· · · · · · · · · · · · · · · · · · ·	11	11	11	п	п
" 2A823□V	.082	н	8.0	15.0	п	"	11	II
" 2A104□V	.1	II .	ıı .	11	п	0.8	п	и
" 2A124 V	.12	25.5	6.5	16.5	22.5	п	11	1.5
" 2A154[]V	.15	"	и	11	п	п	п	ш
" 2A184 V	.18	"	8.5	17.0	п	п	п	н
" 2A224□V	.22	"	и	n	п	II	п	11
" 2A274□V	.27	30.5	10.0	18.0	27.5	11	0±0.75	
" 2A334□V	.33	11	11	н	"	п		n
" 2A394□V	.39	П	12.0	20.0	п	п	п	11
" 2A474□V	.47	n	II.	II .	п	II .	ıı	n
" 2A564□V	.56	11	13.5	23.5	Ш	п	и	n
" 2A684□V	.68	н	п	II	и	п	u	11
" 2A824□V	.82	и	16.5	26.5	II	п	и	11
" 2A105□V	1.0	ш	11	п	11	11	u	11

Cap. tol. code K: ±10% M: ±20%

European Safety standard approved as class Y and UL/CSA approved for across-the line & antennacoupling and line-by-pass applications.

Metallized polyester film and flame retardant epoxy resin is used for the enclosure.

Features

- Self-healing property
- · Overvoltage stress withstanding
- Excellent active and passive flame-resistant properties

Specifications

Reference Standard	UL, CSA, SEMKO, DEMKO, NEMKO, EI, VDE, SEV, BS
Operating Temperature Range	-40~ +100°C
Rated Voltage	250VAC
Capacitance Range	0.001~0.047μF
Capacitance Tolerance	±10%(K), ±20%(M)
Dissipation Factor	1.0% max. (20 °C, 1kHz)
Withstanding Voltage	Between terminals: 2000VAC 60s Between terminals and enclosure: 2000VAC 60s
Insulation Resistance	15000MΩmin. (20 °C 100VDC 60s), 2000MΩmin. (20 °C 500VDC 60s)
Construction	Metallized polyester film, flame retardant epoxy resin coating

Applicable Standard & Approval Number

Type ECQ-UY

	Applid	cable Standard	Approval Number
UL	UL1414		File No. 62674
CSA	C22.2 No. 0-M1982, No. 1M	11981	File No. LR35752
SEMKO	SS 443 04 14	Class Y/X 2	Reg No. 9017269
DEMKO	Afsnit 21	Class Y/X 2	Ref No. 98495 EC
NEMKO	NEMKO 132	Class Y/X 2	Ref No. E44180
El	E384/14	Class Y/X 2	Reg No. 133865-01
VDE	VDE 0565-1	Class Y/X 2	Ref No. 4811. 6-4670-1080
SEV	SEV 1055	Class Y	Ref No. 90. 1 01068, 02
BSI	BS 415		Certificate No. 7171

Explanation of Part Numbers

Dimensions & Marking

Rating & Dimensions

250VDC Cap tol. ±10%(K), ±20%(M)

	Cap.			D	imensions (m	m)			Crimped
Part No.	Cap. (μF)	L max.	T max.	Hm	nax.	F±1.0	S±0.8	ød	style
	(μι)	Linax.	i iliax.	Type-1	Type-2	Type-1	Type-2	bα	Type-2
ECQ U 2A102□Y()	.001	12.0	6.0	11.5	16.5	10.0	7.5	0.6	D
" 2A122□Y()	.0012	11	11	11	и		ш	п	11
" 2A152□Y()	.0015	п .	6.5	u	11	"	ш	II	ıı
" 2A182□Y()	.0018	п	11	11	"	"	11	u	11
" 2A222□Y()	.0022	11	n n	11	п	u	1)	"	11
" 2A272□Y()	.0027	n	п	п	n	n n	u u	п	11
" 2A332□Y()	.0033	11	7.0	12.0	17.0	n n	II .	н	11
" 2A392\(\text{Y}(\))	.0039	n	II .	12.5	17.5	п	11	11	п
" 2A472□Y()	.0047	II	7.5	13.5	18.5	n	"	11	п
" 2A562□Y()	.0056	11	8.5	14.0	19.0	"	11	ıı	11
" 2A682□Y()	.0068	18.5	7.5	13.0	18.0	15.0	u	0.8	В
" 2A822□Y()	.0082	II	н	13.5	18.5	11	11	II.	11
" 2A103□Y()	.01	"	п	15.0	20.0	11	п	II.	п
" 2A123□Y()	.012	u	8.5	15.5	20.5	11	п	15	n
" 2A153□Y()	.015	"	9.0	16.5	21.5	II.	n	11	п
" 2A183□Y()	.018	lt .	10.0	17.5	22.5	11	"	II.	п
" 2A223□Y()	.022	ıı ı	11.0	18.0	23.0	11	"	u	n
" 2A273□Y()	.027	23.5	9.5	16.5	21.5	20.0	15.0	п	п
" 2A333□Y()	.033	II .	10.0	17.5	22.5	11	"	II	п
" 2A393□Y()	.039	п	11.0	18.5	23.5	. 11	II II	II	11
" 2A473□Y()	.047	ш	12.0	20.0	25.0	"	u u	n	п

Suffix B: Crimped lead

Product Specification & PackagingQuantities for radial lead taping

Type	Rated volt.	Cap. range (μF)	Cap. rank (µF)	Style	Packing	Qty./pack	Type	Suffix
			0.0001~0.01	A (D)		2000	No. 2	
		0.0004.000	0.012~0.039	A (D)		2000	No. 3	
		0.0001~0.22	0.047~0.15	A (D)	Ammo	1000	No. 2	E []] 3
			0.18~0.22	A (D)		500	No. 1	
			0.0001~0.01	A (S)	The of Proceedings	2000	No. 2	
	50VDC	0.0001~0.1	0.012~0.039	A (S)	A	2000	No. 3	
			0.047~0.1	A (S)	Ammo	1000	No. 2	- 4
		0.0001 0.00	0.0001~0.047	A (D)	Dool	2000	No. 45	10
		0.0001~0.22	0.056~0.22	A (D)	Reel	1000	No. 45	1119
		0.0001 0.1	0.0001~0.047	A (S)	Dool	2000	No.45	
		0.0001~0.1	0.056~0.1	A (S)	Reel	1000	No. 45	
		0.0001 0.000	0.0001~0.01	A (D)	Ammo	2000	No. 2	гта
		0.0001~0.033	0.012~0.033	A (D)	Ammo	2000	No. 3	7773
ECQB(F)	63//DC	0.0001 0.000	0.0001~0.01	A (S)	Ammo	2000	No. 2	
	63VDC	0.0001~0.033	0.120~0.033	A (S)	Ammo	2000	No. 3	
		0.0001~0.033		A (D)	Reel	2000	No. 45	□□9
		0.0001~0.033		A (S)	Reel	2000	No. 45	□□5
			0.0001~0.01	A (D)		2000	No. 2	
		0.0001~0.1	0.012~0.015	A (D)	Ammo	2000	No. 3	nn3
		0.0001~0.1	0.018~0.027	A (D)	Ammo	1000	No. 2	
			0.033~0.1	A (D)		500	No. 1	
			0.0001~0.01	A (S)		2000	No. 2	
	100VDC	0.0001~0.047	0.012~0.015	A (S)	Ammo	2000	No. 3	[][] 4
	1000000	0.0001~0.047	0.018~0.027	A (S)	Ammo	1000	No. 2	_ I_ I _ I _ I
			0.033~0.047	A (S)		500	No. 1	
		0.0001 0.1	0.0001~0.015	A (D)	Reel	2000	No. 45	
		0.0001~0.1	0.018~0.1	A (D)	Reel	1000	No. 45	<u> </u>
		0.0001 0.047	0.0001~0.015	A (S)	Reel	2000	No. 45	
		0.0001~0.047	0.018~0.047	A (S)	neei	1000	No. 45	III 15
		0.01~2.2	0.01~0.12	A (D)	Ammo	2000	No. 3	ПП3
		0.01~2.2	0.15~2.2	A (D)	Ammo	1000	No. 3	!
		0.01~0.12	0.01~0.12	A (S)	Ammo	2000	No. 3	ПП2
		0.01~1.0	0.15~1.0	A (S)	Ammo	1000	No. 3	1.11.12
	50VDC		0.01~0.12	A (D)		2000	No. 41	
	30000	0.01~2.2	0.15~0.68	A (D)	Reel	1000	No. 41	□□9
			0.82~2.2	A (D)		1000	No. 43	
			0.01~0.12	A (S)		2000	No. 41	
ECQV		0.01~1.0	0.15~0.68	A (S)	Reel	1000	No. 41	□□5
			0.82~1.0	A (S)		1000	No. 43	
		0.01~1.0	0.01~0.39	A (D)	Ammo	2000	No. 3	□□3
		5.01-1.0	0.47~1.0	A (D)	AMINO	1000	No. 3	
		0.01~0.15		A (S)	Ammo	2000	No. 3	□□2
	63 VDC		0.01~0.39	A (D)		2000	No. 41	
		0.01~1.0	0.47~0.68	A (D)	Reel	1000	No. 41	□□9
			0.82~1.0	A (D)		1000	No. 43	
		0.01~0.15		A (S)	Reel	2000	No. 41	□□5

Product Specification & PackagingQuantities for radial lead taping

Type	Rated volt.	Cap. range (μF)	Cap. rank (μF)	Style	Packing	Qty./pack	Type	Suffix	
			0.01~0.068	A (D)		2000	No. 3		
	1	0.01.0.47	0.082~0.1	A (D)	Amma	1000	No. 3		
	1	0.01~0.47	0.12~0.22	A (D)	Ammo	2000	No. 3	□□3	
	1		0.27~0.57	A (D)		1000	No. 3		
			0.01~0.068	A (S)		2000	No. 3		
ECQV	100VDC	0.01~0.1	0.082~0.1	A (S)	Ammo	1000	No. 3	□□2	
			0.01~0.068	A (D)		2000	No. 41		
			0.082~0.1	A (D)		1000	No. 41		
		0.01~0.47	0.12~0.22	A (D)	Reel	2000	No. 41	<u> </u>	
			0.27~0.47	A (D)		1000	No. 41		
			0.01~0.068	A (S)		2000	No. 41		
	}	0.01~0.1	0.082~0.1	A (S)	Reel	1000	No. 41	□□5	
			0.032~0.1	A (D)		1000	No. 1		
		0.01~0.68			Ammo	500			
		0.04.0.4	0.39~0.68	A (D)	A		No. 1	[]	
		0.01~0.1		A (S)	Ammo	1000	No. 1	<u> </u>	
	100VDC	0.01~0.68		A (D)	Reel	1000	No. 45	11119	
		0.82~1.0	1000	В	Ammo	100	No. 4	1113	
			1.2~2.2	С		500	No. 4		
		1.2~3.3	2.7	С	Ammo	500	No. 5	□□3	
			3.3	С		400	No. 5		
		0.01~0.27	0.01~0.082	A (D)	Ammo	1000	No. 1	mm3	
		0.01~0.27	0.1~0.27	A (D)	Amino	500	No. 1	1.11.10	
	}	0.01~0.33		A (D)	Reel	1000	No. 45	9	
		0.01~0.15		B**	Ammo	1000	No. 4	SELE	
	0501/00	0.00 4.5	0.39~1.2	С		500	No. 4		
	250VDC	0.39~1.5	1.5	С	Ammo	400	No. 5	1113	
		0.01~0.33		D	Ammo	1000	No. 4	ROO	
			0.39~0.82	E		500	No. 4		
		0.39~1.5	1.0~1.2	E	Ammo	400	No. 5	REIC	
		0.00 1.0	1.5	E		300	No. 5		
			0.01~0.027	A (D)		1000	No. 1		
			0.01~0.1	0.033~0.1		Ammo	500	No. 1	F7F73
		0.01.0.1	0.000~0.1	A (D)	Deal		}		
ECQE(F)	400VDC	0.01~0.1		A (D)	Reel	1000	No. 45	T 19	
		0.01~0.1		D	Ammo	1000	No. 4	ROO	
		0.12~0.47	0.12~0.33	E	Ammo	500	No. 4	ROO	
			0.39~0.47	E		400	No. 5		
		0.01~0.033	0.01~0.027	A (D)	Ammo	1000	No. 1	□□3	
			0.033	A (D)		500	No. 1		
		0.01~0.033		A (D)	Reel	1000	No. 45	□□9	
		0.047		В	Ammo	1000	No. 4	□□3	
			0.056~0.12	C		500	No. 4		
	630VDC	0.056~0.22	0.15~0.18	С	Ammo	500	No. 5	<u> </u>	
			0.22	С		400	No. 5		
		0.01~0.047		D	Ammo	1000	No. 4	R	
			0.056~0.12	E		500	No. 4		
		0.056~0.22	0.15~0.18	E	Ammo	400	No. 5	ROO	
			0.22	E		300	No. 5		
			0.001~0.0047	E		500	No. 4		
			0.001~0.0047	E		400	No. 4		
	1000VDC	0.001~0.1	0.0068~0.015	E	Ammo	500	No. 4	ROD	
			0.018~0.022	E		400	No. 4		
			0.027~0.039	E		500	No. 4		
			0.047~0.068	E		400	No. 5		
			0.082~0.1	E		300	No. 5		

^{**} F = 7.5mm straight lead taping

Product Specification & Packaging Quantities for radial lead taping

Type	Rated volt.	Cap. range (μF)	Cap. rank (µF)	Style	Packing	Qty./pack	Type	Suffix
			0.001~0.0047	E		500	No. 4	
			0.0056	E		400	No. 4	
ECQE(F)	1250VDC	0.001~0.022	0.0068	E	Ammo	400	No. 5	R□□
			0.0082~0.018	E		500	No. 4	
			0.022	E		500	No. 5	
			0.0082~0.012	E		400	No. 4	
	800VDC	0.0082~0.027	0.013	E	Ammo	300	No. 4	R
			0.015~0.027	Е		300	No. 5	
			0.0056~0.0082	Е		400	No. 4	
	1000VDC	0.0056~0.018	0.0091	Е	Ammo	400	No. 5	RDE
ECWH			0.01~0.018	Е		300	No. 5	
	1000V _{p-p}	0.001 0.0075	0.001~0.0043	E	A 122 22 2	400	No. 4	D
	1250VDC	0.001~0.0075	0.0047~0.0075	E	Ammo	300	No. 4	R
	1200V _{p-p}	0.004 0.000	0.001~0.002	Е	Δ	400	No. 4	D
	1600VDC	0.001~0.033	0.0022~0.033	E	Ammo	300	No. 4	RO
		0.004 0.050	0.001~0.047	A (D)	Δ	1000	No. 1	
		0.001~0.056	0.056	A (D)	Ammo	500	No. 1	
		0.001~0.012		A (S)	Ammo	1000	No. 1	
		0.000 0.47	0.068~0.27	С	A	500	No. 4	3
		0.068~0.47	0.33~0.47	С	Ammo	400	No. 5	
	50VDC	0.068~0.12		D	Ammo	500	No. 1	R□□
	SUVDC		0.15~0.22	E		500	No. 4	
		0.45 0.47	0.27	E	A	400	No. 4	_
		0.15~0.47	0.33	E	Ammo	400	No. 5	R□□
			0.39~0.47	E		300	No. 5	
		0.001~0.056		A (D)	Reel	1000	No. 45	
ECHS		0.001~0.012		A (S)	Reel	1000	No. 45	
		0.0004 0.007	0.0001~0.015	A (D)	A	1000	No. 1	
		0.0001~0.027	0.018~0.027	A (D)	Ammo	500	No. 1	
		0.0001~0.0047		A (S)	Ammo	100	No. 1	
		0.033~0.12		С	Ammo	5000	No. 4	
	100VDC		0.068~0.1	Е		500	No. 4	
		0.000 0.47	0.12~0.18	E	A	400	No. 4	
		0.068~0.47	0.22	E	Ammo	400	No. 5	ROD
			0.27~0.47	E		300	No. 5	
		0.0001~0.027		A (D)	Reel	1000	No. 45	
		0.0001~0.0047		A (S)	Reel	1000	No. 45	
			0.0001~0.022	A (D)		1000	No. 1	
	F0) 75 0	0.0001~0.033	0.024~0.033	A (D)	Ammo	500	No. 1	
	50VDC	0.000 0.10	0.036~0.1	C		500	No. 4	
FOOD		0.036~0.13	0.11~0.13	С	Ammo	400	No.5	
ECQP		0.0001~0.018		A (D)	Ammo	1000	No. 1	
	100VDC		0.02~0.13	C		500	No. 4	
		0.02~0.16	0.15~0.16	C	Ammo	500	No. 5	

Taping Specifications - All Taped Products

Taping Type

Shape	Name Specification		Taping Style
	Standard Taping	5mm lead spacing with 12.7mm body width	A (D), A(S)
Radial type	Odd size taping (I)	5/7.5mm lead spacing with 15mm & up body width	B,C, D, E
	Odd size taping (II)	Other than above (Robotic Insertion)	Please contact factory

Radial taping dimensions

Standard taping (mm)

Odd size taping (I) (mm)

Odd size taping (II)

As the specification of taping changes with various conditions such as dimensions, lead spacing and insertion machine, please contact the nearest sales office for further information.

Dimensions (continued)

(Unit: mm)

Code	Style A ()	Style B	Style C	Style D	Style E			
Р	12.7±1.0	15.0±1.0	25.4±1.0	15.0±1.0	30.0±1.0			
P ₀	12.7±0.2	15.0±0.2	12.7±0.2	15.0±0.2	15.0±0.2			
P´o	_		25.4±0.2	_	30.0±0.2			
P ₁	3.85±0.5	5.0±0.5	3.85±0.5	3.75±0.5	3.75±0.5			
P ₂	6.35±1.3	7.5±1.3	6.35±1.3	7.5±1.3	7.5±1.3			
F	5.0+0.8	5.0+0.8	5.0 ^{+0.8}	7.5+0.8	7.5 ^{+0.8} _{-0.2}			
Δh			0±2.0	l de la constant de l				
W		18.0±0.5						
W _o		9.5 min.						
W ₁	N		9.0±0.5					
W ₂			0-3.0					
H _o	16.0±0.5	16.0±0.5	16.0±0.5	16.0-0-0	16.0-0			
H,	32.2 max.	37.0 max.	37.0 max.	42.0 max.	42.0 max.			
l	2.0 max.	2.0 max. 0						
$\ell_{\rm o}$	7.0 max.							
øD _o	4.0±0.2							
t	0.7±0.2							
L		11.0 max.						

Derating of rated voltage to capacitance value, ECQF and ECQP

		Rated Voltage					
Cap.	value(μF)	50VDC	100VDC	200VDC	400VDC	630VDC	
0.1	1-0.12	49V	98V	195V	390V	615V	
0.1	3–0.15	47V	95V	190V	380V	600V	
0.1	6-0.18	46V	93V	185V	370V	585V	
0.2	0-0.22	45V	90V	180V	360V	570V	
0.2	4-0.27	44V	88V	175V	350V		
0.3	0-0.33	42V	85V	170V	340V		
0.3	5-0.39	41V	83V	165V	320V		
0.4	3-0.47	40V	80V	160V	300V		

Derating of rated voltage to operating Temperature, ECQF and ECQP

Explanation of Part Numbers

Standard taping

Odd size taping

Packing

Uses simple moldless construction and advanced manufacturing techniques, as well as well-established stacking technology.

Features

- Small size (minimum size 2.0 x 1.25 mm)
- High moisture resistance (85 °C, 86 %RH, W. V x 1.0 for 500 hours)

Specifications

Items	Type ECHU (B)	Type ECWU (B)
Operating Temperature Range	-55 to +125 °C	-55 to +105 °C
Rated Voltage	16 VDC, 50 VDC	16 VDC, 50 VDC, 100 VDC
Capacitance Range	0.0001 to 0.1 μF	0.001 to 0.22 μF
Capacitance Tolerance	±2% (G), ±5%(J)	±5% (J)
Withstand voltage	Between terminals: Rated volt. (VDC) x 175% 1-5s	Between terminals: Rated volt. (VDC) x 175% 1-5s
Dissipation Factor	≤0.6% max. at 1 kHz 20 °C	≤1.0% max. at 1 kHz 20 °C
Insulation Resistance	16 VDC: ≥3000MΩ at 20 °C 10 VDC 60s 50 VDC: ≥3000MΩ at 20 °C 50 VDC 60s	16 VDC: ≥3000MΩ at 20 °C 10 VDC 60s 50 VDC: ≥3000MΩ at 20 °C 50 VDC 60s 100 VDC: ≥3000MΩ at 20 °C 100 VDC 60s
Soldering conditions	Flow soldering: 260 °C max., 5 s max. Reflow soldering: 260 °C max. and 30 sec max. at more than 230 °C (Temp. at cap. surface)	Reflow soldering: 240 °C max. and 30 s max. at more than 210 °C (Temp. at cap. surface)
Construction	Metallized Polyphenylene-sulfide Film	Metallized Polyethylene-naphthalate Film

Construction

Dimensions in mm.

W н 1.25 0.8 20 1.25 1.0 3.2 1.6 0.8 3.2 1.6 1.6 1.0 1.4 3.2 3.2 2.5 1.0 3.2 2.5 1.4 3.2 2.5 2.0 4.8 3.3 1.4 4.8 3.3 2.0 4.8

Explanation of Part Numbers

Rating & Dimensions

		ECH	U (B)				ECWU (B)			
Cap. (µF)	16 VDC		50 VDC		16 VDC		50 VDC		100 VDC	
, , ,	Part No.	Size Code	Part No.	Size Code	Part No.	Size Code	Part No.	Size Code	Part No.	Size
0.0001		Code	ECHU1H101()B5			Code		Oode		Codi
0.00012			" 1H121()B5	н	**					
0.00015			" 1H151()B5	, u						
0.00018			" 1H181()B5	5 "						1
0.00022			" 1H221()B5) II						
0.00027	-		" 1H271()B5	5 "						
0.00033			" 1H331()B5	5 "						{
0.00039			" 1H391()B5	-+						
0.00047			" 1H471()B5							
0.00056	Please use		" 1H561()B5	-+	Please use		Please use			1
0.00068	50 VDC rating		" 1H681()B5	-	16 VDC or		50 VDC rating			}
0.00082	of ECHU (B)		" 1H821()B5	i 11	50 VDC rating		of ECHU (B)			
0.001			" 1H102()B5		of ECHU (B)				ECWU1102JB5	H2
0.0012			" 1H122()B5	, "					" 1122KB5	"
0.0015			" 1H152()B5						" 1152JB5	"
0.0018			" 1H182()B5						" 1182JB5	1
0.0022			" 1H222()B5	5 "					" 1222KB5	"
0.0027			" 1H272()B5						" 1272JB5	"
0.0033	ECHU1C332()B5	J1	" 1H332()B5				ECWU1H332JB5	H1	" 1332JB5	НЗ
0.0039	" 1C392()B5	11	" 1H392()B5				" 1H392JB5	ш	" 1392JB5	"
0.0047	" 1C472()B5	11	" 1H472()B5				" 1H472JB5	n	" 1472JB5	"
0.0056	" 1C562()B5	п	" 1H562()B5	+			" 1H562JB5	п	" 1562JB5	G2
0.0068	" 1C682()B5	п	" 1H682()B5	+			" 1H682JB5	н	" 1682JB5	"
0.0082	" 1C822()B5	J2	" 1H822()B5				" 1H822JB5	H2	" 1822JB5	G3
0.01	" 1C103()B5	II	" 1H103()B5				" 1H103JB5	п	" 1103JB5	"
0.012	" 1C123()B5	H1	" 1H123()B5		ECWU1C123JB5	H2	" 1H123JB5	G1	" 1123JB9	E1
0.015	" 1C153()B5	n	" 1H153()B5	+	" 1C153JB5	u	" 1H153JB5	п	" 1153JB9	ı ı
0.018	" 1C183()B5	13	" 1H183()B5		" 1C183JB5	11	" 1H183JB5	G2	" 1183JB9	"
0.022	" 1C223()B5	"	" 1H223()B5		" 1C223JB5	"	" 1H223JB5		" 1223JB9	E2
0.027	" 1C273()B5	H2	" 1H273()B5		" 1C273JB5	11	" 1H273JB5	н	" 1273JB9	"
0.033	" 1C333()B5	u	" 1H333()B5		" 1C333JB5	НЗ	" 1H333JB5	G3	" 1333JB9	E3
0.039	" 1C393()B5	НЗ	" 1H393()B5		" 1C393JB5		" 1H393JB5	и	" 1393JB9	11
0.047	" 1C473()B5	11	" 1H473()B9		" 1C473JB5	11	" 1H473JB5	u	" 1473JB9	11
0.056	" 1C563()B5	G2	" 1H563()B9		" 1C563JB5	G2	" 1H563JB9	E1		+
0.068	" 1C683()B5	н	" 1H683()B9		" 1C683JB5		" 1H683JB9	11		
0.082	" 1C823()B5	G3	" 1H823()B9		" 1C823JB5	G3	" 1H823JB9	E2		
0.1	" 1C104()B5	"	" 1H104()B9		" 1C104JB5	11	" 1H104JB9	11		
0.12				1	" 1C124JB9	E1				
0.15					" 1C154JB9	"				
0.18					" 1C184JB9	ıı	-			
0.22					" 1C224JB9	E2				

Packaging

Embossed carrier taping

		Dimensions (mm)											
Size code	A ₀ ±0.1	B ₀ ±0.1	W±0.3	F±0.05	E±0.1	P1±0.1	P2±0.05	P0±0.1	øD0+0.1	øD1+0.2	T0.05	T2±0.2	K±0.1
J1	1.55	2.3										1.3	1.2
J2	1.55	2.3								}		1.5	1.4
H1, H2	1.9	3.5	8.0	3.5	1.75	4.0	2.0	4.0	ø1.5	ø1.0	0.25	1.5	1.4
НЗ	1.9	3.5										1.9	1.8
G1, G2	2.8	3.5										1.9	1.8
G3	2.8	3.5										2.5	2.4
E1	3.8	5.1										2.0	1.9
E2	3.8	5.1	12.0	5.5	1.75	8.0	2.0	4.0	ø1.5	ø1.5	0.30	2.6	2.5
E3	3.8	5.1										3.4	3.3

Leader part and tape end

Standard packaging quantities

1 0 0	<u>'</u>	
Size code	Reel	quantities
J1, J2, H1, H2	ø178	3000 pcs/reel
H3, G1, G2, G3	ø178	2000 pcs/reel
E1, E2	ø330	3000 pcs/reel
E3	ø330	2000 pcs/reel

Reel dimensions

	Dimensi	ons (mm)
Code	Reel size ø178	Reel size ø330
А	178.0 ± 2.0	330.0 ± 2.0
С	13.0 ± 0.5	13.0 ± 0.5
D	23.5 ± 0.5	21.0 ± 0.8
E	2.0 ± 0.5	2.0 ± 0.5
N	60.0 ± 2.0	80.0 ± 2.0
W1	9.5 ± 0.5	14.0 ± 1.5
W2	11.9 ± 1.5	18.0 ± 2.5
W3	13.3 ± 1.5	
W4	1.2 ± 0.5	2.0 ± 0.5
r	1.0 ± 0.5	1.0 ± 0.25

Recommended Land Dimensions

(Unit: mm)

	Size	Dimensions			Land dimensions								
Туре	Size Code L W J1 2.0 1. J2 2.0 1. H1 3.2 1 H2 3.2 1 H2 3.2 1 /U(B) H3 3.2 1 /U(B) G1 3.2 2 G2 3.2 2 G3 3.2 2	W(D)	T(H)		Flow soldering	3	Reflow soldering						
	0000	L-	VV(D)	1 (1 1)	а	b	С	a	b	С			
	J1	2.0	1.25	0.8	1.0	2.7	1.1	1.0	2.7	1.1			
	J2	2.0	1.25	1.0	1.0	2.7	1.1	1.0	2.7	1.1			
	H1	3.2	1.6	0.8	2.2	3.8	1.4	2.2	3.8	1.4			
•	H2	3.2	1.6	1.0	2.2	3.8	1.4	2.2	3.8	1.4			
ECHU(B)	НЗ	3.2	1.6	1.4	2.2	3.8	1.4	2.2	3.8	1.4			
ECWU(B)	G1	3.2	2.5	1.0	2.2	3.8	2.3	2.2	3.8	2.3			
	G2	3.2	2.5	1.4	2.2	3.8	2.3	2.2	3.8	2.3			
	G3	3.2	2.5	2.0	2.2	3.8	2.3	2.2	3.8	2.3			
	E1	4.8	3.3	1.4	2.6	6.6	3.0	2.6	6.6	3.0			
	E2	4.8	3.3	2.0	2.6	6.6	3.0	2.6	6.6	3.0			
	E3	4.8	3.3	2.8				2.6	6.6	3.0			

Cleaning

- 1. Applicable solvent
 - Trichloro ethane
 - Isopropyl alcohal (For more technical information consult our sales engineer)
- 2. Cleaning methods
 - Dip cleaning

(Room temp.)Less than 5 minutes

- Vaporized cleaning
 - (Less than 50 °C)Less than 5 minutes
- Ultrasonic cleaning
 (Least then 50.00)

(Less than 50 °C) Less than 5 minutes

Note:

- Please avoid using the following cleaning solvents. Toluene, Xylene, MEK or Organochlorine solvent such as Dichloro Ethane and Trichloro Ethylene.)
- 2. It is necessary to remove cleaning solvent from P.W.B. by drying sufficiently
- 3. Consult with our sales engineer in advance when further information on cleaning solvents and conditions is required.

Features

- Highly reliable resin dipped type
- Excellent frequency & temperature characteristics
- Non-flammable epoxy resin

Specifications

Item			Perfo	rmance Characte	eristics			
Operating Temperature Range	-55 to +105	5 °C (-55 to	0 +85 °C for 4	& 6.3V)				
Rated Working Voltage Range	4 to 50V DC							
Nominal Capacitance Range	0.047 to 470)μF						
Capacitance Tolerance	±20% (±109	% is available	e) (120Hz, +2	0 °C)			370-370-370-370-370-370-370-370-370-370-	
Leakage Current	1 ≤ 0.008CV	or 0.05 [μΑ]	which workir	ever is greater m ng voltage at +20	easured after 2) °C	2 minutes ap	oplication of rated	
	Working vol	tage		6.3~50V			4V	
tan δ			 ≤ 1μF		≥ 10	ΟμΕ	6.8~470μF	
(120 Hz, +20 °C)	tan δ max.		0.04	0.06			0.10	
(12.1.1.)	FF.00	0 1		1400/ 51:31:4		1 00 00		
Characteristics at High and Low	-55 °C						<i></i>	
Temperature	+85 °C						<u> </u>	
		1						
	Leakage cu Capacitanc tan δ	urrent e change	: ≤ 0.0 : ±109	% of initial measu	red value	ue		
	Test conditions							
		Conditions	, o		Rating		ting	
			-			2000 hours		
		nnerature					5 °C	
			Derate		e		king voltage	
High Temperature Loading	Source imp	edance		1Ω/V		10	$2 \wedge$	
	Derating volt	age at +105	°C for 10~50\	working				
	Working vol	tage [V DC]	10	16	25	35	50	
Leakage Current	29	41						
	Leakage cu Capacitano	irrent	: ≤ 0.0 : ±10%	of initial measur	ed value	greater		
Shelf Life	Test condition Duration Ambient tel Applied vol	mperature	: 2000 : +85° : (None	hours Same C load	est requiremen e limits for high ing.			

Explanation of Part Numbers

ECS	F		
Common Code	W.V. Code (see impedance table)	Capacitance Code (see impedance table)	Lead/Taping Suffix (see p. 154
	Series Code	(see impedance table)	Suffix (see p. 154

Impedance

Typical/maximum value at 10kHz, +20 $^{\circ}$ C [Ω]

	W.V. [V.DC]	4 (0.0)	0.0 (0.1)	10 (11)	10 (10)	05 (45)	05 (4) 6	50 (11)
Cap. [µF] (Code	(Code)	4 (0G)	6.3 (OJ)	10 (1A)	16 (1C)	25 (1E)	35 (1V)	50 (1H)
0.047	(473)						350 / 490	
0.068	(683)						240 / 350	
0.10	(104)						165 / 270	170 / 270
0.15	(154)						110 / 160	105 / 160
0.22	(224)						75 / 130	80 / 130
0.33	(334)						51 / 85	50 / 85
0.47	(474)						37 / 58	32 / 55
0.68	(684)						27 / 40	25 / 38
1.0	(105)				18 / 28	18 / 28	18 / 28	16 / 26
1.5	(155)				12 / 25	12 / 25	13 / 20	13 / 18
2.2	(225)			10 / 22	10 / 25	9.0 / 15	9.0 / 13	8.0 / 12
3.3	(335)			8.0 / 22	6.5 / 13.5	6.5 / 14.5	6.0 / 10	6.2 / 9.0
4.7	(475)		5.6 / 19	5.0 / 12	5.0 / 12	4.5 / 7.5	4.0 / 7.0	3.5 / 6.5
6.8	(685)	5.5 / 17	4.0 / 10	3.0 / 9.5	3.5 / 7.5	3.0 / 5.5	3.0 / 4.5	2.2 / 4.2
10	(106)	4.5 / 15.5	3.0 / 9.5	2.4 / 7.0	2.5 / 5.0	2.0 / 4.2	2.5 / 3.2	1.8 / 3.0
15	(156)	2.0 / 8.5	2.0 / 6.8	1.8 / 4.5	1.5 / 4.0	1.7 / 2.8	1.2 / 2.5	1.2 / 2.5
22	(226)	1.8 / 7.5	1.5 / 4.0	1.0 / 3.5	1.0 / 2.5	1.2 / 2.5	1.0 / 2.0	
33	(336)	1.2 / 7.0	0.8 / 3.5	0.8 / 2.2	0.7 / 2.2	0.8 / 1.8	0.8 / 1.6	
47	(476)	0.9 / 4.2	0.6 / 2.0	0.6 / 2.0	0.6 / 1.5	0.7 / 1.4	0.6 / 1.2	
68	(686)	0.7 / 2.8	0.5 / 2.0	0.5 / 1.8	0.5 / 1.1	0.6 / 1.0		
100	(107)	0.5 / 2.0	0.5 / 1.5	0.4 / 1.0	0.4 / 0.9			
150	(157)	0.5 / 1.8	0.4 / 0.9	0.4 / 0.9	0.3 / 0.8			
220	(227)	0.4 / 1.1	0.4 / 0.9	0.3 / 0.7				
330	(337)	0.4 / 0.9	0.3 / 0.7					
470	(477)	0.3 / 0.8	_					

Dimensions[mm]

Size code	øD ₁	øD ₂	L	F
Α	3.3	4.5	5.0	2.5±0.5
В	3.3	4.5	5.5	2.5±0.5
С	3.5	4.5	5.5	2.5±0.5
D	3.7	5.0	6.5	2.5±0.5
E	4.0	5.5	7.0	2.5+1.0
F	4.5	5.5	7.0	2.5+1.0
G	4.7	6.0	8.0	2.5+1.0
Н	5.2	6.0	8.5	2.5+1.0
I	5.5	7.0	9.5	2.5 +1.0 (0.5
J	6.0	7.5	11.0	2.5+1.0
K	7.5		12.5	5.0±0.5
L	9.0		14.5	5.0±0.5
M	10.0		15.5	5.0±0.5
øD₁: straigh øD₂: lead fo	nt lead produc orming/taping	ots products		

Case Size Table

ase Size	Tabi	е					
W.V. [V.DC] Cap. [μF]	4	6.3	10	16	25	35	50
0.047						*A	
0.068						*A	
0.1						*A	*A
0.15						*A	*A
0.22						*A	*B
0.33						*A	*C
0.47					1	*B	D
0.68						*B	D
1.0				*A		С	E
1.5				*B	С	С	F
2.2			*B	*C	С	D	G
3.3			*C	С	D	E	Н
4.7		*C	С	D	D E F	F	
6.8	*C	С	D	E	F	Н	K
10	С	D	E	F	Н	1	L
15	D	E	F	G	1	J	М
22	E	F	G	Н	J	K	
33	F	G	Н		K	L	
47	G	H	-	J	L	М	
68	Н	1	J	K	М		
100	1	J	K	L			
150	J	K	L	M			
220	K	L	М				
330	L	М					
470	М						

Lead Forming

5.0mm pitch, A-J size only (suffix "E")

[mm]

5.0mm pitch, A-J size only (suffix "H") [mm]

Lead Taping

2.5mm pitch, A-I size only (suffix "B1")

5.0mm pitch, A-I size only [suffix "B" (H = 21.5)/"BB" (H = 18.5)]

Code	F = 5.0	F = 2.5	Tolerance
ød	0.5	0.5	±0.05
Po	12.7	12.7	±0.2
F	5.0	2.5	±0.8
W	18.0	18.0	±0.5
W _o	≥12.5	≥12.5	Total Control of the
W,	9.0	9.0	±0.5
W_2	0 ~ 3	0 ~ 3	
H₀	16.0		±0.5
Н	18.5±1.0	20.0±0.5	
	21.5±1.0		_
$ØD_0$	4.0	4.0	±0.2
Р	12.7	12.7	±1.0
P,	3.85	5.1	±0.5
P ₂	6.35	6.35	±1.0
Δh	0	0	±1.0
t	0.7	0.7	±0.2

Marking

Features

- For general purpose surface mount type
- Compact size & wide CV range
- High solderability & stable characteristics for soldering

Specifications

ltem			P	erforman	ce Chara	cteristics					
Operating Temperature Range	-55 to +125	°C									
Rated Working Voltage Range	2.5 to 35V D	С									
Nominal Capacitance Range	0.047 to 150	μF									
Capacitance Tolerance	±20% (±10%	6 is available)	(120Hz	z, +20 °C)							
Leakage Current	l ≤ 0.01CV or					after 2 n	ninutes ap	oplication	of rated		
tan δ (120 Hz, +20 °C)	0.06 max. fc	r 4.7 to 68μF		5W.V.							
	-55 °C	Capacitano	ce change) ±1	2% of init	ial measu	red value	at +20 °(D		
Characteristics at High and Low		 									
Temperature	±20% (±10% is available) (120Hz, +20 °C) I ≤ 0.01CV or 0.5 [μA] whichever is greater measured after 2 minutes application of rated working voltage at +20 °C 0.04 max. for ≤3.3μF 0.06 max. for 4.7 to 68μF 0.08 max. for 100 to 150μF and 2.5W.V. -55 °C Capacitance change ±12% of initial measured value at +20 °C +125 °C Leakage current ≤ 12.5 times of initial specified value Capacitance change ±15% of initial measured value at +20 °C Test conditions Relative humidity : 90 to 95% without load Ambient temperature : +40 °C Duration : 500 hours Post test requirements at +20 °C Leakage current : ≤ Initial specified value Capacitance change : ±10% of initial measured value = ±10% of initial measured value Test conditions Test conditions Conditions Derating Rating Duration 2000 hours 2000 hours Ambient temperature +125 °C +85 °C Applied voltage Derated working voltage Rated working voltage Source impedance 1Ω/V 1Ω/V Derating voltage at +125 °C										
Moisture Resistance	Ambient ter Duration Post test req Leakage cu Capacitance	nperature uirements at rrent	: + : 5 +20 °C : ≤ : ±	40 °C 00 hours Initial spe =10% of i	ecified val nitial mea	ue sured val	ue	е			
			Derating					Rating			
	Duration		2000 hours				2000 hours				
	Ambient tem	perature									
			De	Derating Rating 2000 hours 2000 hours +125 °C Derated working voltage Rated working voltage							
High Temperature Loading	Source impe	edance		19	2/\			2000 hours +85 °C Rated working voltage 1Ω/V			
			°C	,							
	Working volt		2.5	4	6.3	10	16			35	
	Derating volt	age [V DC]	1.6	2.5	4	6.3	10	13	16	22	
Post test requirements at $+$ 20 °C Leakage current : \leq 125% of initial specified value Capacitance change : \pm 10% of initial measured value tan δ : \leq Initial specified value											
	Capacitanc	e change									
Shelf Life	Capacitanc	ns nperature	: \le \(\) :		ecified val	ue t test req		at +20 °(ırance".	 D		

Explanation of Part Numbers

ECS	T				
Common Code	Series Code	W.V. Code	Size Code	Capacitance Code	Suffix

Marking

Construction

Size code	L±0.2	W1±0.2	W2±0.1	H±0.2	P±0.3
Υ	3.2	1.6	1.20	1.6	0.8
X	3.5	2.8	2.20	1.9	0.8
С	6.0	3.2	2.20	2.5	1.3
V	5.8	4.6	2.40	3.2	1.3
D	7.3	4.3	3.65	2.8	1.3

Case Size Table

	W.V. [V.DC]	2.5 (OE)	4 (OG)	6.3 (OJ)	10 (1A)	16 (1C)	20 (1D)	25 (1E)	35 (1V)
Cap. [μF]		2.3 (OL)	4 (OG)	0.5 (00)	10 (1A)	10 (10)	20 (TD)	23 (TL)	33 (TV)
0.047	(473)								Υ
0.068	(683)								Υ
0.10	(104)								Υ
0.15	(154)								Υ
0.22	(224)								Υ
0.33	(334)								Υ
0.47	(474)							Υ	Υ
0.68	(684)					Υ	Υ		Υ
1.0	(105)					Υ		Υ	XY
1.5	(155)					Υ	Υ	XY	X
2.2	(225)				Υ	Υ	XY	Χ	X
3.3	(335)			Υ	Υ	Υ	XY	Χ	CX
4.7	(475)		Υ	Υ	Υ	XY	X	CX	DVC
6.8	(685)		Υ	Υ	XY	X	C X	DVC	D V C
10	(106)		Χ	XY	XY	CX	С	DVQ	D V
15	(156)		XY	XY	C X	С	DVC	D V	D
22	(226)		XY	CX	C X	DVC	DV	D	
33	(336)	Y	C X	CX	DVC	DV	D		
47	(476)		C X	DVC	DV	D			
68	(686)	X	DVC	DV	D				
100	(107)		DVC	D					
150	(157)		D						

 $[\]hfill\square$ Parts newly added as smaller size and recommended for new design

⁽⁾ shows W.V. and Cap. code

Standard Products

W.V. [V.DC]	Cap. [μF]	Part No.	Size	D.C.L. (+20°C/ 2 min.) [μΑ] max.	tan δ (120Hz/ +20°C) max.	
0.5	33	ECST0EY336R	Y	0.9	0.08	
2.5	68	ECST0EX686R	X	1.7	0.08	
	4.7	ECST0GY475R	Y	0.5	0.06	
	6.8	ECST0GY685R	Υ	0.5	0.06	
	10	ECST0GY106R	Y	0.5	0.06	
	1.5	ECST0GY156R	Y	0.0	0.00	
	15	ECST0GX156P	X	0.6	0.06	
	22	ECST0GY226R	Y	0.0	0.06	
	22	ECST0GX226R	X	0.9	0.06	
1	33	ECST0GX336R	X	+ 4	0.06	
4	33	ECST0GC336R	С	1.4	0.06	
	47	ECST0GX476R	X	1.0	0.06	
	47	ECST0GC476R	С	1.9	0.06	
		ECST0GC686R	С			
	68	ECST0GV686R	V	2.8	0.06	
		ECST0GD686R	D			
		ECST0GC107R	С			
	100	ECST0GV107R	V	4.0	0.08	
		ECST0GD107R	D			
	150	ECST0GD157R	D	6.0	0.08	
	3.3	ECST0JY335R	Υ	0.5	0.04	
	4.7	ECST0JY475R	Υ	0.5	0.06	
	6.8	ECST0JY685R	Υ	0.5	0.06	
	10	ECST0JY106R	Υ	0.7	0.06	
-	10	ECSTOJX106R	X	0.7	0.00	
	15	ECST0JY156R	Υ	1.0	0.06	
	10	ECST0JX	X	1.0	0,00	
6.3	22	ECST0JX226R	X	1.4	0.06	
0.5		ECST0JC226R	С	1.77	0.00	
	33	ECST0JX336R	X	2.1	0.06	
	000	ECST0JC336R	С	4.1	0.00	
		ECST0JC476R	С			
	47	ECST0JV476R	V	3.0	0.06	
		ECST0JD476R	D			
	68	ECST0JV686R	V	4.3	0.06	
	00	ECST0JD686R	D	4.0	0.00	
	100	ECST0JD107R	D	6.3	0.08	
	2.2	ECST1AY225R	Y	0.5	0.04	
	3.3	ECST1AY335R	Y	0.5	0.04	
	4.7	ECST1AY475R	Y	0.5	0.06	
10	6.8	ECST1AY685R	Y	0.7	0.06	
10	0.0	ECST1AX685R	X	0.1	0.00	
	10	ECST1AY106R	Υ	1.0	0.06	
	10	ECST1AX106R	X	1.0	0.06	
	15	ECST1AX156R	X	1.5	0.06	
	10	ECST1AC156R	С	1.0	0.00	

W.V. [V.DC]	Cap. [μF]	Part No.	Size code	D.C.L. (+20°C/ 2 min.) [μΑ] max	tan δ (120Hz/ +20°C) max.	
	22	ECSTAX226R	Χ	2.2	0.06	
	22	ECST1AC226R	С	2.2	0.00	
		ECST1AC336R	C			
10	33	ECST1AV336R	V	3.3	0.06	
		ECST1A336R	D			
	47	ECST1AV476R	V	4.7	0.06	
	41	ECST1AD476R	D	4.7	0.00	
	68	ECST1AD686R	D	6.8	0.06	
	0.68	ECST1CY684R	Υ	0.5	0.04	
	1.0	ECST1CY105R	Υ	0.5	0.04	
	1.5	ECST1CY155R	Υ	0.5	0.04	
	2.2	ECST1CY225R	Υ	0.5	0.04	
	3.3	ECST1CY335R	Υ	0.6	0.04	
	4,7	ECST1CY475R	Υ	0.8	0.06	
	4.7	ECST1CX475R	X	0.0	0.06	
16	6.8	ECST1CX685	X	1.1	0.06	
	10	ECST1CX106	X	1.6	0.06	
	10	ECST1CC106R	С	1.0	0.00	
	15	ECST1CC156R	С	2.4	0.06	
į.		ECST1CC226R	С			
	22	22 ECST1CV226R		3.6	0.06	
		ECST1CD226R	D			
	33	ECST1CV336R	V	5.3	0.00	
	33	ECST1CD336R	D	0.0	0.08	
	47	ECST1CD476R	D	7.6	0.06	
	0.68	ECST 1DY684R	Υ	0.5	0.04	
	1.5	ECST1DY155R	Υ	0.5	0.04	
	2.2	ECST1DY225R	Υ	0.5	0.04	
	۷.۷	ECST1DX225R	X	0.0	0.04	
	3.3	ECST1DY335R	Υ	0.7	0.04	
	3.3	ECST1DX335R	X	0.7	0.04	
20	4.7	ECST1DX475	X	1.0	0.06	
	6.8	ECST1DX685R	X	1.4	0.06	
	0.0	ECST1DC685R	С	1.4	0.00	
	10	ECST1DC106R	С	2.0	0.06	
		ECST1DC156R	С			
	15	ECST1DV156R	V	3.0	0.06	
		ECST1DD156R	D			
	22	ECST1DV226R	V	4.4	0.06	
		ECST1DD226R	D	4.4	0.06	
	33	ECST1DD336R	D	6.6	0.06	

Features

- Highly reliable surface mount type
- Moisture resistance: 1000 hours at 90~95%RH, +60 °C
- Excellent frequency & temperature characteristics
- High solderability: new solder coverage ≥95%

Specifications

ltem			F	erformano	ce Ch	naracteris	tics				
Operating Temperature Range	-55 to +125 °	С									
Rated Working Voltage Range	4 to 35V DC	THE RESERVE AND THE RESERVE AND ADDRESS OF TAXABLE PERSONS	Photographic and the second consideration of						Annual Control of Cont	in terminal	
Nominal Capacitance Range	0.047 to 100µl	F									
Capacitance Tolerance	±20% (±10%	is available)	(120Hz	z, +20 °C)							
Leakage Current	l ≤ 0.01CV or (0.5 [µA] wh	nichever is orking volt	s greater r tage at +2	neasi 20 °C	ured after	2 minute	es application	on of rated		
	0.04 max. for ≤3.3μF										
tan δ	0.06 max. for	•									
(120 Hz, +20 °C)	·										
mpedance	Refer to stanc	lard produc	ts table (1	00kHz/+2	20 °C	;)					
Characteristics at High and Low	-55 °C	Capacitano						alue at +20) °C		
Temperature	+125 °C	Leakage cu						fied value			
·		Capacitano	ce change	±1:	2% 0	t initial me	easured v	alue at +20			
Moisture Resistance	Test conditions Relative humidity : 90 to 95% without load Ambient temperature : +60 °C Duration : 1000 hours Post test requirements at +20 °C Leakage current : ≤ 200% of initial specified value Capacitance change : ±10% of initial measured value tan δ : ≤ Initial specified value										
	Test conditions	 3									
	Conditions			D							
	Item	Derating					Rating				
	Duration		2000 hours			S		2000 hours			
	Ambient temp	erature	+125					+85 °C			
	Applied voltag		Derated working						ted working voltage		
High Temperature Loading	Source imped	ance	1Ω/V			-	1Ω/V				
	Derating voltag	ge at +125 °	,C								
	Working voltage	ge [V DC]	4	6.3		10	16	20	25	35	
	Derating volta	ge [V DC]	2.5	4		6.3	10	13	16	22	
	Post test requi Leakage curr Capacitance tan δ	ent	: ≤ : ±	125% of 10% of in Initial spe	nitial m	neasured	d value value				
Shelf Life	Test conditions Duration Ambient temp Applied voltage	oerature	: +	000 hours 125 °C None)			mits for hi	ents at +20 gh tempera			
	Test conditions Duration Ambient temp	perature	:	00 cycles 55/+125 °) min. ea	ch)				
Thermal Shock	Post test requi Leakage curr Capacitance tan δ	ent	: ≤ : ±	125% of 5% of init Initial spe	ial me	easured v	d value value				
Solder Heat Resistance	The capacitor	shall withsta	and dinnir	na into so	lder h	ath for 1	0 + 1 sec	at 260 ±5	°C		

Explanation of Part Numbers

Marking

Construction

Case Size Table

V Cap. [μF]	W.V. [V.DC]	4V (0G)	6.3\	/ (OJ)	10V	(1A)	16V	′ (1C)	20V	(1D)	25\	/ (1E)	35V	(1V)
	(473)													Υ	
0.068	(683)													Υ	
0.10	(104)													Υ	
0.15	(154)													Υ	
0.22	(224)													Υ	
0.33	(334)													Y	
0.47	(474)											Υ		X	Y
0.68	(684)							Υ		Υ				X	Y
1.0	(105)							Υ					Y	X	
1.5	(155)							Υ			Y	X		С	X
2.2	(225)					Υ		X	Y	X			X	С	X
3.3	(335)			Υ			Y	X	Y		X	С	X	D	C
4.7	(475)	Υ			Υ	X	Y		X	С	X		С	D	
6.8	(685)		Y	X	Y		X	C	X	С				D	
10	(106)	X	Y		Χ	С	X	С			C	D			D
15	(156)		X	С	Χ	С			С	D			D		
22	(226)		Χ	С			C	D			D				
33	(336)	С			C	D		D							
47	(476)		C	D		D									
68	(686)	D		D											
100	(107)	D													

^() shows W.V. and Cap. code

Parts newly added as smaller size

Standard Products

	Cap. [µA]	Part No.	Size code	D.C.L. (+20°C/ 2 min.) [µA]max.	tan δ (120Hz/ +20°C max.	Impe- dance (100kHz/ +20°C) [Ω] max.
	4.7	ECHS0GY475R	Υ	0.5	0.06	8
	6.8	ECSH0GY685R	Υ	0.5	0.06	8
	0.0	ECSH0GY106R	Y	0.0	0.00	
	10	ECSH0GX106R	X	0.5	0.06	3
4	15	ECSH0GX156R	Χ	0.6	0.06	3
	22	ECSH0GX226R	Χ	0.9	0.06	3
	33	ECSH0GC336R	С	1.4	0.06	3
	47	ECSH0GC476R	С	1.9	0.06	1
	68	ECSH0GD686R	D	2.8	0.06	1
	100	ECSH0GD107R	D	4.0	0.08	1
	3.3	ECSH0JY335R	Υ	0.5	0.04	8
	4.7	ECSH0JY475R	Υ	0.5	0.06	8
		ECSH0JY685R	Υ			
	6.8	ECSH0JX685R	X	0.05	0.06	8
6.3	10	ECSH0JX106R	X	0.7	0.06	3
0.0		ECSH0JX156R	X	1.0	0.06	3
	15	ECSH0JC156R	C	1.0	0.06	3
	22	ECSH0JC226R	C	1.4	0.06	3
	33	ECSH0JC336R	C	2.1	0.06	1
	47	ECSH0JD476R	D	3.0	0.06	1
	68	ECSH0JD686R	D	4.3	0.06	1
	2.2	ECSH1AY225R	Y	0.5	0.04	8
	3.3	ECSH1AY335R	Y	0.5	0.04	8
		ECSH1AY475R	Y	0.0	0.04	-
	4.7	ECSH1AX475R	X	0.5	0.06	8
	6.8	ECSH1AX685R	X	0.7	0.06	8
10	0.0	ECSH1AX106R	X	0.7	0.00	
	10	ECSH1AC106R	C	1.0	0.06	3
	15	ECSH1AC156R	C	1.5	0.06	3
	22	ECSH1AC226R	C	2.2	0.06	3
	33	ECSH1AD336R	D	3.3	0.06	3
	47	ECSH1AD476R	D	4.7	0.06	1
	0.68	ECSH1CY684R	Y	0.5	0.04	15
	1.0	ECSH1CY105R	Y	0.5	0.04	8
	1.5	ECSH1CY155R	Y	0.5	0.04	8
	1.0	ECSH1CY225R	Y	0.0	0.04	
	2.2	ECSH1CX225R	X	0.5	0.04	8
		ECSH1CY335R	Y			
16	3.3	ECSH1CX335R	X	0.6	0.04	8
	4.7	ECSH1CX475R	X	0.8	0.06	8
	7.1	ECSH1CX685R	X	0.0	0.00	
	6.8	ECSH1CC685R	C	1.1	0.06	8
	10	ECSH1CC106R	C	1.6	0.06	3
	15	ECSH1CC106R	C	2.4	0.06	3
	22	ECSH1CC136R				
	33	ECSH1CD226R	D	3.6 5.3	0.06	3

W.V [V.DC]	Cap. [µA]	Part No.	Size code	D.C.L. (+20°C/ 2 min.) [µA]max.	tan 8 (120Hz/ +20°C max.	Impe- dance (100kHz/ +20°C) [Ω] max.
	0.68	ECSH1DY684R	Υ	0.5	0.04	15
	1.5	ECSH1DY155R	Υ	0.5	0.04	8
	2.2	ECSH1DX225R	Χ	0.5	0.04	8
1	3.3	ECSH1DX335R	Χ	0.7	0.04	8
00	4.7	ECSH1DX475R	X	1.0	0.06	0
20	4.7	ECSH1DC475R	С	1.0	0.06	8
	6.8	ECSH1DC685R	С	1.4	0.06	8
	10	ECSH1DC106R	С	2.0	0.06	3
	15	ECSH1DD156R	D	3.0	0.06	3
	22	ECSH1DD226R	D	4.4	0.06	3
	0.47	ECSH1EY474	Υ	0.5	0.04	15
	1.0	ECSH1EY105R	Υ	0.5	0.04	8
	1.5	ECSH1EX155R	Χ	0.5	0.04	8
	2.2	ECSH1EX225R	Χ	0.6	0.04	8
0.5	2.2	ECSH1EX335R	Χ	0.9	0.04	8
25	3.3	ECSH1EC335R	С	0.9	0.04	0
	4.7	ECSH1EC475R	С	1.2	0.06	8
	10	ECSH1ED106R	D	2.5	0.06	3
	15	ECSH1ED156R	D	3.8	0.06	3
	0.047	ECSH1VY473R	Υ	0.05	0.04	60
	0.068	ECSH1VY683R	Υ	0.5	0.04	60
	0.10	ECSH1VY104R	Υ	0.5	0.04	60
	0.15	ECSH1VY154R	Υ	0.5	0.04	60
	0.22	ECSH1VY224R	Υ	0.5	0.04	60
	0.33	ECSH1VY334R	Υ	0.5	0.04	15
	0.47	ECSH1VY474R	Υ	0.5	0.04	15
	0.47	ECSH1VX474R	Χ	0.5	0.04	13
35	0.68	ECSH1VY684R	Υ	0.5	0.04	15
33	0.00	ECSH1VX684R	X	0.5	0.04	10
	1.0	ECSH1VX105R	X	0.5	0.04	8
	1.5	ECSH1VX155R	Χ	0.6	0.04	8
	1.0	ECSH1VC155R	С	0.0	0.04	0
	2.2	ECSH1VX225R	Χ	0.8	0.04	8
	2.2	ECSH1VC225R	С	0.0	0.04	0
	3.3	ECSH1VC335R	С	1.2	0.04	8
	0.0	ECSH1VD335R	D	1.4	0.04	0
	4.7	ECSH1VD475R	D	1.7	0.06	8
	6.8	ECSH1VD685R	D	2.4	0.06	8
	10	ECSH1VD106R	D	3.5	0.06	3

[mm]

Resin dipped type: EF 2.5mm pitch straight lead taping (suffix "B1" EF)

Code	Dimensions	Tolerance		
ød	0.5	±0.05		
P _o	12.7	±0.2		
F	2.5	±0.8		
W	18.0	±0.5		
W _o	5.0≤			
W ₁	9.0	±0.5		
W ₂	0 to 3	_		
Н	20.0	±0.5		
ØD _o	4.0	±0.2		
Р	12.7	±1.0		
P ₁	5.1	±0.5/		
P ₂	6.35	±1.0		
Δh	0	±1.0		
t	0.7	±0.2		

5mm pitch lead taping (H=18.5) (suffix "BB" EF)

Code	Dimensions	Tolerance		
ød	0.5	±0.05		
Po	12.7	±0.2		
F	5.0	±0.8		
W	18.0	±0.5		
W _o	5.0≤			
W ₁	9.0	±0.5		
W_2	0 to 3			
H _o	16.0	±0.5		
Н	18.5	±1.0		
$\emptyset D_0$	4.0	±0.2		
Р	12.7	±1.0		
P,	3.85	±0.5		
P ₂	6.35	±1.0		
Δh	0	±1.0		
t	0.7	±0.2		

Bulk Packaging (pcs.)

Capacitance		Wo	orking	volta	ge (V.	DC)		Inner bag
(μF)	4	6.3	10	16	25	35	50	initial bag
to 2.2								
3.3								200
4.7								
6.8								100
10								100
15								
22								
33								
47								
68								50
100								50
150								
220								
330								
470								

Capacitance		Wo	Per					
(μF)	4	6.3	10	16	25	35	50	carton box
to 2.2								10000
3.3								10000
4.7								
6.8								5000
10								
15								
22								
33								
47								
68								2500
100								2500
150								
220								
330								
470								

Taped Packaging (pcs.)

Case size	Inner box	Outer box
A ~ I	2000	10000

Surface Mount Type

Reel [mm]

Packaging Quantities (unit: pcs)

Taped			
Tape width	Case size	Per reel	Per box
8	Z, P	3000	15000
	Y, X	2000	10000
12	C, D	750	3000
	V	500	2000

		A±2	≥B	C±0.5	D±0.8	E±0.5	W±1.5	t±0.5
Dimension W: 12mm		178	50	13.0	21.0	2.0	14.0	2.0
	W: 8mm	178	50	13.0	21.0	2.0	10.0	2.0

Carrier Tape

Code	A±0.2	B±0.2	W±0.3	F±0.1	E±0.10	P ₁ ±0.1	P ₂ ±0.05	P ₀ ±0.1	ØD ₀ +0.1	t ₁	t ₂ ±0.2
Z	1.35	2.2				4.0		İ			1.3
Р	1.9	3.5	8.0	3.5		4.0				0.2	1.3
Υ	1.9	3.5		0.0	0.0	1.75	4.0	2.00	4.0	1.5	0.2
X	3.3	3.8			1.75	4.0	2.00	2.00 4.0	1.5		2.1
С	3.7	6.4				8.0					3.0
V	5.0	6.2	12.0	5.5		8.0				0.3	3.7
D	4.7	7.7				8.0					3.3

Explanation of Part Numbers

Features

- · Rated current is 2 A max.
- · High impedance
- · No need for ground pattern
- · Suitable for flow soldering and reflow soldering
- · Three kinds of characteristics depending on strength of noise.

General Specifications

Туре	Impe	dance	Rated Current	
	(Ω) at 1 MHz	(Ω) at 100 MHz	(A DC)	
4532	30 max.	115 ± 25%		
3225	15 max.	45 ± 25%	2 max.	
3216	10 max.	10 max. 25 ±25%		

Performance Specifications

Characteristics	Specifications	Test Methods
Resistance to Soldering Heat	No cracking	260 °C, 5 s
Solderability	90 % coverage minimum	230 °C, 3 s
Bending Strength	20 N (2 kgf) min.	20 N (2 kgf) min.
Temperature Cycling	Impedance Δ Z/Z \pm 20%	-25 to + 85 °C 30 min. 50 cycles
Load Life in Humidity	Impedance $\Delta Z/Z \pm 20 \%$	2 A DC 60 °C, 90 to 95 % RH, 1000 h

Explanation of Part Numbers

Impedance

Dimensions in mm (not to scale)

Packaging

Standard Packing Quantity

Appearance Packing style	Embossed taping	Bulk
EXLCL3216U	2000 pcs./reel	2000 pcs./pack
EXLCL3225U	2000 pcs./reel	2000 pcs./pack
EXLCL4532U	1000 pcs./reel	2000 pcs./pack

Embossed Taping

Code		А	В	W	F	E	P ₁
	3216	±0.1 1.9	3.4	8.0	3.5	1.75	4.0
(mm) Dimensions	3225	2.8	3.4	8.0	3.5	1.75	4.0
	4532	3.6	4.9	±0.2 12.0	±0.05 5.5	±0.01 1.75	8.0

Code		P ₂	P _o	øD _o	t,	t ₂
	3216	2.00 4.0 1.5		1.5-0	0.20	max. 1.7
(mm) Dimensions	3225	2.00	4.0	1.5-0	0.20	max. 2.2
	4532	±0.05 4.00	8.0 ±0.1	1.5-0	0.30	max. 2.1

Reel

Code		А	В	С	D
(mm)	3216	178+2	60+1	13.0+0.5	5.0+0.5
Dimensions	3225	17012	00±1	10.0±0.0	0.0±0.0
Birriorioiorio	4532	178±2	60±1	13.0±0.5	5.0±0.5

Code		E	W	Т	t
(mm)	3216	0.010.5	+0.5	15.5	10105
Dimensions	3225	2.0±0.5	9.5-1.0	15.5 max.	1.2±0.5
Dillieligions	4532	2.0±0.5	13.0-1.0	20.5 max.	1.2±0.5

Features

- · Rated current is 2 A max.
- Eight kinds of capacitance range depending on noise frequency
- · Suitable for reflow soldering
- · Suitable for narrow pitch insertion.

General Specifications

	Capacitance Rated Tole		Tolerance	Temperature	Rated	25dB Attenuate	15 dB Attenuate			
Part No.	(pF)	Voltage	(%)	Characteristics	Current	Frequency	Frequency			
	(51)	(V DC)	(70)		(A DC)	(MHz)	(MHz)			
EXCCET220B	22	50	±20	YB	2	800 to 1000	600 to 1000			
EXCCET470B	47	50	±20	YB	2	450 to 550	350 to 1000			
EXCCET101B	100	50	±20	YB	2	300 to 450	200 to 900			
EXCCET271B	270	50	±20	YB	2	200 to 300	80 to 700			
EXCCET471B	470	50	±20	YB	2	100 to 220	50 to 700			
EXCCET102B	1000	50	±20	YB	2	65 to 200	35 to 700			
EXCCET222B	2200	50	±20	YB	2	35 to 180	15 to 700			
EXCCET103B	10000	50	±20	YB	2	15 to 120	15 to 700			

 $^{^{\}star}$ YB Characteristic: Max. Capacitance change is $\pm 10\%$ over temperature range of -25 to +85 $^{\circ}$ C

Performance Specifications

Characteristics	Spec	cifications	Test Methods	
Resistance to Soldering Heat	No	cracking	250 °C, 30 s	
Solderability	90 % cove	erage minimum	230 °C, 10 s	
Bending Strength	20 N ((2 kgf) min.	20 N (2 kgf) min.	
Temperature Cycling	Attenuation 25 dB min.	Insulation resistance 500 M Ω max.	-40 to + 85 °C 30 min. 100 cycles	
Load Life in Humidity	Attenuation 25 dB min.	Insulation resistance 100 MΩ max.	50 V DC, 2 A DC 60 °C, 90 to 95 % RH, 1000 h	

Explanation of Part Numbers

Frequency Characteristics

Dimensions in mm (not to scale)

Packaging

Standard Packing Quantity

Appearance Packing style	Embossed taping	Bulk	
EXCCET	1000 pcs./reel	2000 pcs./pack	

Embossed Taping

Code	А	В	W	F	Ε	P ₁
(mm) Dimensions	2.2±0.1	4.9±0.1	12.0±0.2	5.50±0.05	1.75±0.1	4.0±0.1

Code	P ₂	Po	øD _o	t,	t ₂
(mm) Dimensions	2.00±0.05	4.0±0.1	1.50	0.30±0.05	3.3 max.

Application Notes

Flow soldering method shall not be applied

Reel

Code	А	В	С	D
(mm) Dimensions	178±2	60±1	13.0±0.5	5.0±0.5

Code	E	W	Т	t
(mm) Dimensions	2.0±0.5	13.0-1.0	20.5 max.	1.2±0.5

Features

- These line filters are excellent in high frequency characteristics due to low stray capacitance realized by section windings
- Comply with all safety standards

(V/ H Series)

- By using an unseparated closed magnetic circuit core, high inductance is obtained and distribution of inductance is reduced
- · Leakage flux is greatly decreased

Classification

Series	Type	Features
V	290, 450, 650, 850	Upright construction results in small mounting space
Н	200, 270, 400, 600	Thin equipment design possible due to horizontal construction

Performance Characteristics

Se	eries		Ser	ies V			Seri	ies H		Note				
Item	уре	290	450	650	850	270	200	400	600	Note				
Operating Temperature			-20 to 105 °C (Class E: 115 °C)											
Rated Voltage			Less than AC250 Vrms											
Rated Current			Less than AC5 Arms											
Inductance		Greater than 3 12 mH	Greater than $\frac{10}{1^2}$ mH	Greater than 20 12 mH	Greater than 48 12 mH	Greater than 3 12 mH	Greater than 5 12mH	Greater than 10 mH	Greater than 20 12 mH	I: Prescribed Rated Current				
Dielectric Strength			AC2 kV 1 min.											
Temperature Rise			Less than 45 °C						Resistance Method					
Safety Standard			Electric Appliance Control Act (Japan)•UL∙CSA•IEC											

Attenuation Characteristics

Impedance Characteristics

Dimensions in mm (not to scale)

V Series

Type 290

Type 450, 650

Type 850

H Series

Type 270

Types 200, 400, 600

Examples

		V Series			·	H Series	
Туре	Part No.	Inductance mH min.	Rated Current A rms	Туре	Part No.	Inductance mH min.	Rated Current A rms
	ELF18D290B	0.82	2.0		ELF18D217	1.5	1.6
	ELF18D290D	1.2	1.6		ELF18D219	2.7	1.3
	ELF18D290V	1.8	15		ELF18D216	3.9	1.0
Ī	ELF18D290T	2.2	13	1	ELF18D225	6.8	0.8
	ELF18D290E	2.7	1.1		ELF18D214	8.2	0.7
	ELF18D290S	3.3	1.1	1	ELF18D210	18.0	0.5
000	ELF18D290R	3.9	1.0	000	ELF18D218	22.0	0.4
290	ELF18D290M	5.6	0.8	200	ELF18D212F	1.0	2.1
T	ELF18D290P	6.8	0.7		ELF18D230F	1.2	2.0
Ī	ELF18D290L	8.2	0.6	1	ELF18D228F	2.2	1.5
	ELF18D290G	10.0	0.6	1	ELF18D227F	4.7	1.0
	ELF18D290A	18.0	0.5	1	ELF18D221F	33.0	0.4
1	ELF18D290C	22.0	0.4	1	ELF18D235F	47.0	0.3
ŀ	ELF18D290H	33.0	0.3	+	ELF18D222F	68.0	0.25
	ELF18D450C	2.2	2.2		ELF18D270C	1.8	1.5
	ELF18D450A	2.7	2.0	+	ELF18D270D	2.7	1.1
F	ELF18D450D	5.6	1.4	-	ELF18D270A	6.8	0.7
450	ELF18D450G	8.2	1.1	270	ELF18D270G	10.0	0.6
-	ELF18D450B	18.0	0.8	-	ELF18D270H	18.0	0.5
-	ELF18D450H	39.0	0.5		ELF18D270B	22.0	0.4
	ELF18D650M	15	3.1		ELF18D419	1.5	2.4
+	ELF18D650M	1.8	2.8	+	ELF18D416	2.2	2.0
	ELF18D650B	3.3	2.4	-	ELF18D414	3.3	1.5
	ELF18D650A	3.9	2.4	+	ELF18D433	3.9	1.5
-	ELF18D650X	4.7	2.0	-	ELF18D424	5.6	1.3
-	ELF18D650K	6.8	1.8	+	ELF18D412	6.8	1.2
-	ELF18D650C	8.2	1.7	+	ELF18D415	8.2	1.0
-	ELF18D650W	10.0	1.4	+ 1	ELF18D430	12.0	0.9
-	ELF18D650J	12.0	1.3	+	ELF18D430 ELF18D417	18.0	0.9
}	ELF18D650D	15.0	1.1	400	ELF18D417 ELF18D423	27.0	0.7
-	ELF18D650I	18.0	1.0	400	ELF18D428	33.0	0.5
650	ELF18D650L	22.0	1.0		ELF18D426	0.56	3.4
030	ELF18D650L ELF18D650H	33.0	0.8		ELF18D420F	1.2	3.0
-	ELF18D650P	39.0	0.8		ELF18D435F	2.2	2.2
-			0.7	4	ELF18D435F ELF18D434F	2.7	
	ELF18D650U	47.0 2.2		-		5.6	2.0
-	ELF18D666A	2.7	2.8	-	ELF13D424F ELF18D431F	10.0	1.4
-	ELF18D656Z						
-	ELF18D656Y	4.7	2.5	-	ELF18D417F	18.0	0.8
-	ELF18D656X	5.6	2.2	-{ i	ELF18D427F	39.0	0.5
	ELF18D656K	6.8	2.0		ELF18D437F	68.0	0.4
-	ELF18D656J	12.0	1.6		ELF18D608	1.0	3.4
	ELF18D656V	27.0	1.0		ELF18D610	1.5	3.1
	ELF18D656E	190.0	0.35	4	ELF18D614	1.8	2.8
-	ELF18D850M	1.5	5.0		ELF18D611	2.7	2.6
-	ELF18D860B	2.2	4.5	4	ELF18D605	3.3	2.5
	ELF18D850B	3.3	4.2	-	ELF18D613	3.9	2.2
-	ELF18D850P	3.9	3.7	_	ELF18D604	4.7	2.0
-	ELF18D850Y	4.7	3.5		ELF18D603	5.6	1.8
	ELF18D850X	5.6	3.4	-	ELF18D602	8.2	1.7
-	ELF18D850C	8.2	3.0	4	ELF18D616	10.0	1.4
950	ELF18D850W	10.0	2.5	600	ELF18D609	12.0	1.3
350	ELF18D850D	15.0	2.0	600	ELF18D606	18.0	1.0
L	ELF18D850I	18.0	1.9	4	ELF18D612	22.0	1.0
	ELF18D860C	22.0	1.8]	ELF18D618	27.0	0.8
Ĺ	ELF18D850Z	27.0	1.5	1	ELF18D615	39.0	0.7
	ELF18D850H	33.0	1.4		ELF18D607	68.0	0.5
	ELF18850U	47.0	1.2		ELF18D617F	2.2	2.8
	ELF18D850T	56.0	1.1		ELF18D604F	4.7	2.5
	ELF18D850R	82.0	0.9	1	ELF18D603F	5.6	2.1
					ELF18D601F	10.0	1.6
					ELF18D609F	12.0	1.6
					ELF18D606F	18.0	1.2
				† '	ELF18D624F	33.0	0.8

Features

- Very thin wires are wound on a high magnetic effect drum core, resulting in high Q and excellent frequency characteristics
- High reliability because the coil is molded by heatresistant epoxy resin
- Flow and reflow solderings possible due to adoption of metal terminals

Explanation of Part Numbers

Type	Size	Features	Ind	uctance Range	e (μH)
NA	3.2x2.5x2.2 (LxWxH)	Coreless type. L is stable with respect to temperature and humidity Suitable for high-frequency circuits	0.047	8.2	
FA	3.2x2.5x2.2	Chip inductor for general use Compact size, with a wide inductance range	0.22		220
SA	3.2x2.5x2.2	Use of ferrite resin giving it an additional function of magnetic shield Compact size, with high inductance		10	270
PA	3.2x2.5x2.2	Low DC resistance and large rated DC current Suitable for power circuits Use of ferrite resin giving it the additional function of a magnetic shield		10	330
FC/SC	2.5x2.0x1.6	Smallest of the coil type inductors; Suitable for a variety of small processing circuits SC type is equipped with a magnetic shield function	0.22	22 Type FC Ty	100 pe SC
NC	2.5x2.0x1.6	Low inductance, tight tolerance and small size. Suitable for high-frequency circuits Coreless type. L is stable with respect to temperature and humidity	0.01 0.4	7	

Dimensions in mm (not to scale)

Examples (Type FA)

Part No.		Inductance			Q	SRF*	DCR**	Rated DC Current					
i aitivo.	μH	Freq. MHz	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.					
ELJ FA R22M	0.22			25		230	0.29	360					
R27M	0.27			25		210	0.32	345					
R33M	0.33			25		190	0.35	330					
R39M	0.39		±20%	25		175	0.39	305					
R47M	0.47			25	25.2	160	0.44	290					
R56M	0.56			25		150	0.49	275					
R68M	0.68			25		135	0.55	260					
R82M	0.82			25		125	0.61	245					
1R0M/K	1.0			25		115	0.69	230					
1R2M/K	1.2			25		100	0.75	215					
1R5M/K	1.5			35		90	0.75	210					
1R8M/K	1.8	1.0		35	1	85	0.82	200					
2R2M/K	2.2		±20%	35		80	0.95	190					
2R7M/K	2.7		-	35		75	1.1	180					
3R3M/K	3.3			±10%	35		65	1.2	180				
3R9M/K	3.9		_	35	7.96	60	1.3	175					
4R7M/K	4.7			35		55	1.5	165					
5R6M/K	5.6	İ		35	1	50	1.6	160					
6R8M/K	6.8			35		45	1.8	150					
8R2M/K	8.2			35		40	2.0	140					
100K/J	10								30	1	35	2.1	140
120K/J	12					30		32	2.5	125			
150K/J	15			30		30	2.8	120					
180K/J	18		-	30		27	3.3	110					
220K/J	22			30		25	3.7	105					
270K/J	27	1		30	1 50	22	5.0	90					
330K/J	33	†		30	5.0	20	5.6	85					
390K/J	39		±10%	30		20	6.4	80					
470K/J	47	†		30	1	15	7.0	75					
560K/J	56	1	±5%	30		15	8.0	70					
680K/J	68			30		15	9.0	65					
820K/J	82			25		10	10	60					
101K/J	100	1		25	2.52	10	10	60					
121K/J	120	t		25		10	11	55					
151K/J	150			20		8	15	50					
181K/J	180	0.796		20	0.796	7	17	50					
221K/J	220	1	90	20		7	21	45					

^{*} Self-resonant Frequency ** DC Resistance

Examples (Type NA)

Part No.	Inductance			Q		SRF	DCR	Rated DC Current
i dici (o)	μH	Freq. MHz	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.
ELJNA47NM	0.047		±20%	10	100	680	0.20	450
56NM	0.056					600	0.22	420
68NM	0.068	100				540	0.25	400
82NM	0.082					500	0.27	380
R10M	0.1					450	0.30	360
R12M	0.12				25.2	400	0.67	240
R15M	0.15	25.2				350	0.72	230
R18M	0.18					320	0.81	220
R22K	0.22					280	0.90	210
R27K	0.27					250	1.0	200
R33K	0.33					220	1.1	190
R39K	0.39		±10%			200	1.2	180
R47K	0.47					180	1.4	175
R56K	0.56					160	1.5	170
R68K	0.68					150	1.7	155
R82M	0.82					135	1.9	145
1R0J	1.0		±5%	13	7.96	120	2.1	125
1R2J	1.2					110	2.3	120
1R5J	1.5	1.0				95	2.7	115
1R8J	1.8					85	3.0	110
2R2J	2.2					80	3.2	110
2R7J	2.7					70	3.6	105
3R3J	3.3					62	4.2	100
3R9J	3.9					57	4.4	95
4R7J	4.7					52	7.7	70
5R6J	5.6					46	8.7	65
6R8J	6.8					42	10	60
8R2J	8.2					38	11	60

Examples (Type SA)

Part No.	Inductance			Q		SRF	DCR	Rated DC Current
	μН	Freq. MHz	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.
ELJ SA100K	10		±10%	40	5.0	30	1.8	18
120K	12			40		28	2.0	17
150K	15			40		25	2.2	15
180K	18			40		23	2.5	13
220K	22			40		20	2.8	12
270K	27	1.0		40		18	3.2	10
330K	33			40		17	3.5	10
390K	39			40		15	3.8	9
470K	47			40		14	4.0	8
560K	56			40		13	4.5	7
680K	68			40		12	5.0	6
820K	82			40		11	6.0	6
101K	100			40		10	7.0	5
121K	120			40	1.5	9	8.0	5
151K	150	0.1		40		5	9.0	5
181K	180			40		5	11.0	5
221K	220			40		4	12.0	5
271K	270			40		4	14.0	5

Examples (Type PA)

Part No.	Inductance		Q	L, Q Test	SRF*	DCR**	Rated DC Current
	μН	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.
ELJ PA100K	10		15		23	0.50	240
120K	12		15		21	0.60	230
150K	15		15		18	0.74	220
180K	18		15		17	0.90	205
220K	22	1	15		15	1.15	185
270K	27		15	2.52	13	1.45	165
330K	33		15		12	1.65	155
390K	39		15		11	1.90	145
470K	47		15		9.5	2.25	135
560K	56	±10%	15	1	8.5	3.30	110
680K	68		15		7.5	3.70	105
820K	82		15		7.0	4.20	100
101K	100	}	20		6.5	5.00	90
121K	120		20	}	6.0	7.00	75
151K	150		20		5.5	8.00	70
181K	180		20	0.796	5.0	9.50	65
221K	220		20		4.0	11.00	60
271K	270		20		3.5	14.50	55
331K	330		20		3.0	16.00	50

^{*} Self-resonant Frequency ** DC Resistance

Examples (Type FC/SC)

Part No.	Inductance		Q	L, Q Test	SRF	DCR	Rated DC Current
i ditivo.	μН	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.
ELJ FCR22M	0.22		25		230	0.7	190
FCR27M	0.27		25		210	0.75	180
FCR33M	0.33		25		190	0.85	170
FCR39M	0.39	±20%	25	25.2	175	0.95	160
FCR47M	0.47	12070	25	20.2	160	1.0	155
FCR56M	0.56		25		150	1.1	150
FCR68M	0.68		25		135	1.25	140
FCR82M	0.82		25		125	1.4	130
FC1R0M/K	1.0		25		115	0.65	195
FC1R2M/K	1.2		25		100	0.75	180
FC1R5M/K	1.5		25		90	0.85	170
FC1R8M/K	1.8	±20% ±10%	25	1	85	0.95	160
FC2R2M/K	2.2		25		80	1.05	155
FC2R7M/K	2.7		25	7.96	75	1.2	145
FC3R3M/K	3.3		25	7.90	65	1.3	135
FC3R9M/K	3.9		25		60	1.4	130
FC4R7M/K	4.7	-	25		55	1.55	125
FC5R6M/K	5.6		25		50	1.75	120
FC6R8M/K	6.8	1	25		45	1.95	115
FC8R2M/K	8.2	1	25		40	2.2	105
FC100K/J	10		25		32	3.7	80
FC120K/J	12	±10%	25		30	4.1	75
FC150K/J	15	±10% ±5%	25		28	5.0	70
FC180K/J	18		25		25	5.4	65
FC220K/J	22		25		22	6.0	60
ELJ SC270K	27	±10%	40		20	4.5	18
SC330K	33		40	2.52	18	5.2	14
SC390K	39		40		15	5.7	13
SC470K	47		40		14	6.6	12
SC560K	56		40		13	6.5	17
SC680K	68		25		13	6.5	17
SC820K	82		25		13	7.4	14
SC101K	100		25	0.796	12	8.4	10

Examples (Type NC)

Part No.	Induc	ctance	Q	L, Q Test	SRF*	DCR**	Rated DC Current
1 211110	μН	Tolerance	min.	Freq. MHz	MHz min.	Ω max.	mA max.
ELJ NC10NK/M	0.01		10		2500	0.32	280
NC12NK/M	0.012		10		2200	0.34	270
NC15NK/M	0.015		10	}	1800	0.38	255
NC18NK/M	0.018		10	}	1550	0.40	250
NC22NK/M	0.022		15		1350	0.43	240
NC27NK/M	0.027		15	100	1150	0.47	230
NC22NK/M	0.033		15		1000	0.51	220
NC39NK/M	0.039	±10% ±20%	15	}	890	0.55	215
NC47NK/M	0.047		15		770	0.59	205
NC56NK/M	0.056		15		670	0.63	200
NC68NK/M	0.068		15		590	0.68	190
NC82NK/M	0.082		15		520	0.73	185
NCR10K/M	0.1		10		460	0.80	175
NCR12K/M	0.12		10]	400	0.87	170
NCR15K/M	0.15		10		340	0.98	160
NCR18K/M	0.18		10		300	1.05	155
NCR22K	0.22		10	25.2	260	1.15	145
NCR27K	0.27		10		230	1.25	140
NCR33K	0.33	±10%	10		200	1.37	135
NCR39K	0.39		10		180	1.47	130
NCR47K	0.47		10		160	1.58	125

Packaging Specifications Standard Packing Quantity

	Tape & Reel	Bulk
ELJ-MA	2,000 pcs/reel (ø178)	5,000 pcs/pack
ELJ-FIC	2,000 pcs/reel (ø178)	5,000 pcs/pack

Tape Dimensions

Reel Dimensions

Tape

Type Code	А	В	W	F	Е	P,	P ₂	P ₃	$ØD_{o}$	øD ₁	t,	t ₂
ПА	2.8	3.6	8	3.5	1.75	4.0	2.0	4.0	1.5	_	(0.3)	2.3
ПС	2.4	2.9	8	3.5	1.75	4.0	2.0	4.0	1.5	1.1	(0.3)	1.85

Reel

Type Code	А	В	С	D	E	W	Т	t	r
□А	178	50 min.	13	21	2.0	10			1.0
□С	178	50 min.	13	21	2.0	10		_	1.0

Triangular terminal layout for better sitting

Specifications

Item	Standard			
Nominal Total Resistance & Tolerance	100Ω to 1 MΩ ±30%			
Power Rating & Maximum Operating Voltage	R≤ 500kΩ: 0.1 W 50V (50 °C) R> 500kΩ: 0.1 W 25V (50 °C)			
Rotation Angle	210 ±20 °C			
Rotation Torque	2.0 to 25.0 mN·m (20~250 gf·cm)			
Stopper Strength	surface: 75.0 mN·m (750 gf·cm) reverse: 35.0 mN·m (350 gf·cm)			
Taper	В			
Residual Resistance	$R \leq 1k\Omega\colon 30\Omega \text{ max.}$ $1k\Omega < R \leq 2k\Omega\colon 60\Omega \text{ max.}$ $2k\Omega < R \leq 1M\Omega\colon 3\% \text{ max. or}$ $200\Omega \text{ max., whichever is smaller}$			
Rotation Life	100 turns			
Soldering Heat	240 to 280 °C: 5s max. 280 to 300 °C: 3s max.			
Humidity 40±2°C (90 to 95 % RH)	After 350 hrs $ \left\{ \begin{array}{c} R \leq 100 k\Omega: \ +15\%, \ -0\% \\ 100 k\Omega < R \leq 1M\Omega: \ +20\% \ -0\% \end{array} \right. $			
Humidity Load Life	After 350 hrs R \leq 100k Ω : \pm 15% (1.5h ON, .5h OFF) 100k Ω < R \leq 1M Ω : \pm 20%			
High Temperature	After 250 hrs, 70±3 °C, +5% -15%			

Explanation of Part Numbers

Packaging

Product Item (Type, Series)	Part Numbers	Min. Packaging & Ordering Qty (pcs)
6mm Square Carbon, Dustproof (6FE Type) (Bulk)	EVND2A, EVND8A, EVND8M	5000
6mm Square Carbon, Dustproof (6FE Type) (Radial taping)	EVNDJA, EVNDXA, EVNDCA	10000

Dimensions in mm (not to scale)

Stand-up

EVN D2A

Laydown

EVN D8A

For automatic insertion

EVN D8M

Product Chart & Specifications

i roduct oriant a opcom	oations			
Item Size	4mm High Grade	6mm General Grade	6mm High Grade	
Part Numbers	EVM-LxG	EVN-3xC EVN-4xC	EVM-3xG EVM-4xG	
Nominal Total Resistance & Tolerance		100Ω to 2 MΩ ±25%		
Power Rating & Maximum Operating Voltage	0.2 W, 50V (70 °C)	0.3 W, 100V	(70 °C)	
Rotation Angle		200 ±20 °		
Rotation Torque	1.9 to 24	1.5 mN·m (20~250 gf·cm)		
Stopper Strength	39 mN·m min. (400 gf·cm min.)	29 mN·m min. (300 of·cm min.)		
Taper	В			
Residual Resistance	2% max. or 10k Ω max., whichever is smaller R ≤ 1k Ω : 30 Ω max.			
Soldering Heat	280 °C, 3s	300 °C,	3s	
Rotation Life	20 turns	100 tur	ns	
Humidity/Humidity Load Life (40 ±2 °C, 90~95% RH, 1000hrs)	±5%	,	R≥500: ±3%	
High Temperature/Load Life (70 ±2 °C, 1000 hrs)	±5%		100 ≤ R < 500	
Temperature Coefficient -30 to 100°C	±300 ppr	m/°C	±200 ppm/°C	

Packaging

Product Item	Min. Packaging & Ordering Quantity
4mm Diameter	5000
6mm Diameter General Grade	10000
6mm Diameter High Grade	10000

Explanation of Part Numbers

4 mm Dia. Cermet Trimmer Potentiometers (Dustproof)

3 terminals, Stand-up, for automatic adjustment (high grade)

EVM L1G

3 terminals, Lay-down type, Standard (high grade)

EVM L3G

3 terminals, Lay-down type, For automatic adjustment (high grade)

EVM L4G

3 terminals, Lay-down type, Flux proof (high grade)

EVM LGG

6mm Size Cermet Trimmer Potentiometers

(Dustproof, GeneralGrade/High Grade)

3 terminals, Stand-up type, Both sides adjust

3 terminals, Stand-up type, Both sides adjust, Cross slot

3 terminals, Lay-down type, Both sides adjust

6mm Size Cermet Trimmer Potentiometers

(Dustproof, GeneralGrade/High Grade)

3 terminals, Lay-down type

3 terminals, Lay-down type, Both sides adjust, Cross slot

3 terminals, Lay-down type, Both sides adjust, Cross slot

- Resistance range: 50 Ω to 2 M Ω , Wattage rating: 0.5 W Temperature range: -55 to +125 °C
- · Infinitesimal resolution for fine adjustment
- Very stable contact resistance variation due to multifinger contacts...1% max.
- Excellent setting stability against shock and high temperature
- Low temperature coefficient: 100ppm/°C max.

Environmental Specifications

Type	5mm S	Square
	ΔR	Ess
Temperature Range	-55 to -	+125 °C
Resistance Temperature Coefficient (-55 to + 125 °C)	(5 mm; 200	[100 Ω to 2 M Ω Ω to 1 M Ω)] /°C [Others]
Load Life (70 °C 0.5W 1000 h)	±3	±2
High Temperature Test (125 °C 250 h)	±3	±2
Thermal Shock (25→65→25→125→25 °C)	±2	±2
Vibration Test (20 G, 10 to 2000 Hz)	±1	±1
Shock 980 m/s ² (100G)	±1	±1
Rotation Life	±5	
Soldering Heat (350 °C 3 s)	±1	

Note: ΔR =Total resistance change (%), Ess = Setting stability (%)

Mechanical Specifications

	5 mm Square
Adjust Method	Top & Side
Rotation Angle	230 °
Rotation Torque	9.8 mN·m (100 gf·cm) max.
Stopper Strength	29.4 mN·m (300 gf·cm) min.
Terminal Strength	49.0 mN·m (500 gf·cm) min.

Electrical Specifications

Туре	5 mm Square
Resistance Range	50 to 2 MΩ
Tolerance	±20% (±10% available)
Taper	B(linear)
Power Rating	0.5 W (70 C), over 70 °C, see derating curve at right
Max. Operating Voltage	200 VDC or Voltage Rating, whichever is smaller
Residual Resistance	1% max. against nominal total resistance or 2 Ω max., whichever is larger
Resolution	Infinitesimal
Contact Resistance Variation	3% max. against nominal total resistance
Dielectric Withstanding Voltage	600 VAC for 1 minute
Insulation Resistance	500 VDC 1000 M Ω min.

Power Derating Curve

Voltage Rating

F	\/-!t D-ti
ΙE	=Voltage Rating
Р	=Power Rating
R	=Nominal Total Resistance E=√ P·R

Explanation of Part Numbers

Packaging

r		
	Bulk: 2000 pcs./package min.	Tape: 10000 pcs./package min.

Dimensions in mm (not to scale)

- An extremely compact, lightweight 2 mm open frame type for reflow soldering has been added to our lineup
- 3 mm square series has types for flow soldering and reflow soldering
- Solvent washing type is available
- Saving labor cost through sealing filmless construction (EVM 7J). Automatic adjusting (EVM 7L)
- · Excellent mounting efficiency

Product Chart

Construction	Sealed (filmless)			Open Frame			
Туре	3 mm	2 mm	3 n	nm	4 n	nm	
Thickness (mm)	2.0 (7L: 2.6)	1X: 1.75 2X: 1.80	1.5 (1Y	´: 2.0)	.0) 1		
Adjustable side	Upper	Upper	Upper	Upper/Bottom	Upper	Upper/Bottom	
2 Terminals, Inline				− ⊕ EVM1G		_	
2 Terminals, Triangle	_	_		_	EVM1L	EVM1K	
3 Terminals, Inline	_	_	_	EVM3S	EVM1E	EVM1U	
3 Terminals, Triangle	⊖/⊕ EVM7J/7L	⊖ EVM1X ⊕ EVM2X	⊖ EVM1S ⊕ EVM1Y	_	EVM1D	_	
3 Terminals, Triangle (Flow solder)	⊖/⊕ EVM7J/7L	Θ/\oplus				_	

Explanation of Part Numbers

Specifications

	Type	3mm S	Sealed	2mm Open	3mm Open	4mm Open				
A	Applicable Part Numbers	EVM 7J	EVM 7L	EVM 1X, 2X	EVM 1S, 1Y 3S	EVM 1G, 1L, 1K 1D, 1E, 1U				
		0.05	5 W	0.15 W 0.2 W						
			'	100	4 mm Open					
Sal	Power Rating	For potentiometers of temperatures above shall be derated in a figure at right.	70° C, Power Rating	80 80 EVM 7T						
Electrical	Max. Operating Temperature	50 V (Voltage F	lating 15 VDC)	50	V (Voltage Rating 15	5 VDC)				
	Voltage Rating	15V	DC		15VDC					
	Resistance Range	220 Ω to	o 1 mΩ	200Ω to 1 MΩ 100 Ω to 1 MΩ						
	Tolerance	±25%								
	Taper	B (Linear)								
	Effective Rotation Angle		260	±20°						
-m	Rotation Torque	1.9 to 14.7 mN∙m (20 to 150 gf∙cm)	1.5 to 16.7 mN•m (15 to 170 gf•cm)	1.0 to 14.7 mN•i (10 to 150 gf•cm	19.6 mN•m 200 gf•cm)					
Mechanical	Soldering Strength	Horizontal: 9 Vertical: 4.9	. 0,	Horizontal: Vertical: 2	Horizontal: 9.8 N (1kgf) Vertical: 4.9 N (500 gf)					
	Applicable Soldering	Flow and R	eflow	Reflow						
	Temperature Range		-40 to	+100°C						
	Soldering Heat	250°C, 10s/2	260°C, 5s	260°C, 10s						
	Humidity (40±2°C 90 to 95% RH)	After 1000 hours, Total resistance change: ±5%								
oility	Humidity Load Life (40±2°C 90 to 95% RH)	After 1000 hours, (1.5h ON,).5h OFF) Total resistance change: ±5%								
Durability	High Temperature (70±2°C)	After 1000 hours, Total resistance change: ±5%								
	Load Life (70±2°C)	After 1000 hours, (1.5h ON,).5h OFF) Total resistance change: ±5%								
	Temperature Coefficient			+80°C ppm/°C						
	Rotation Life	After 10 tu Total Resistand			After 20 turns Total Resistance:					

3 mm Square, Sealed Dimensions in mm (not to scale)

Note: PCB mounting not possible after trimming knob has been rotated

3 terminals (for automatic trimming adjustment)

EVM 7 L

Note: PCB mounting not possible after trimming knob has been rotated

2 mm Square, Open Frame

3 mm Square, Open Frame

4 mm Square, Open Frame

Taping/Packaging Specifications

Standard Packing Quantity

Appearance	Style Thickness	Embossed Taping	Bulk	
EVM 7J	2.0 mm	1000/5000 pcs/reel	500 pcs/pack	
EVM 7L	2.6 mm	750/4000 pcs/reel	500 pcs/pack	
EVM 1 i, 2mm	1.5 to 2.0 mm	2000 pcs/reel	1000 pcs/pack	
EVM1, 3mm	1.5 mm	1000/2000 pcs/reel	500 pcs/pack	
EVM 11, 4mm	1.5 mm	1000/5000 pcs/reel	500 pcs/pack	

Embossed Taping

Part No.	Α	В	W	F	E	P ₁
EVM 7J	3.5	4.3	12	5.5	1.75	8
EVM 7L	3.5	4.3	12	5.5	1.75	8
EVM 1□, 2mm	2.45	2.9	8	3.5	1.75	4
EVM 17, 3mm	3.3	4.0	8/12	3.5	1.75	4/8
EVM 1 , 4mm	4.3	5	12	5.5	1.75	8

Part No.	P ₂	P ₀	ϕD_0	t,	t ₂
EVM 7J	2	4	1.5	0.3	2.4
EVM 7L	2	4	1.5	0.3	3.1
EVM 1□, 2mm	2	4	1.5	0.3	2.3
EVM 111, 3mm	2	4	1.5	0.3	2.0 to 2.4
EVM 10, 4mm	2	4	1.5	0.3	2.2

Embossed Taping

(Unit: mm)

Туре	Dim. Code	Α	В	С	D	E	W	t	Packaging Quantity
No.	Tolerance	±2.0	min.	±0.5	±0.8	±0.5	±1.5	±0.5	t ₂ =2.0 to 2.4
	1	178 dia.	50/80 dia.	13.0 dia.	21.0 dia.	2.0	14.0/10.0*	1.0 to 2.0	1000 pcs (P ₁ =8) 2000 pcs (P ₁ =4)
	3	370 dia.	80 dia.	13.0 dia.	21.0 dia.	2.0	14.0/10.0	1.0 to 2.0	5000 pcs (P ₁ =8)

Application Notes

- After automatic assembly, please wash completely with Freon substitute or other appropriate solvent
- For sealed type, use Freon TF substitute.
- Soldering reworking shall be done only once under the following conditions:

Time:

3s max. 280°C max. 20 W max.

Temperature: Soldering iron:

• Small size and light weight
For PCB size reduction and lightweight products

High reliability
 Metal glaze thick film resistive element and 3 layered electrode results in high reliability

Matching with placement machines
 Bulk, Taping and magazine packagings for automatic placement machines

• Solderability
Suitable for both reflow soldering and flow soldering

Conforming to: EIA-RS-481A

Specifications

	Power		Maximum				
Part No.	Rating	Maximum	Overload	Resistance	Resistance		Standard
	at 70°C	RCWV*	Voltage	Tolerance	Min	Max	Res. Values
ERJ2G	1/16 W	50 V	100 V	±2	10	1.0 M	E-24
LINOZG	1710 VV	50 V	100 V	±5	10	1.0 M	E-24
ERJ3EK	1/16 W (1/10 W)**	50 V	100 V	±1	10	1 M	E-24, 96
				±1	10	1.0 M	E-24
ED 100	1/16 W	50.1/	100 V	±2	10	1.0 M	E-24
ERJ3G	(1/10 W)**	50 V		±5	10	1.0 M	E-24
	(1, 10 11)			±10	1.0	10.0 M	E-12
ERJ6EN	1/10 W (1/8 W)**	150 V	200 V	±1	10	1 M	E-24, 96
				±1	10	1.0 M	E-24
FD 100	1/10 W	15014	000.1	±2	10	1.0 M	E-24
ERJ6G ERJ8EN	(1/8 W)**	150 V	200 V	±5	10	1.0 M	E-24
				±10	0.47	10.0 M	E-12
ERJ8EN	1/8 W (1/4 W)**	200 V	400 V	±1	10	1 M	E-24, 96
				±1	10	1.0 M	E-24
	1/8 W			±2	10	1.0 M	E-24
ERJ8G	(1/4 W)**	200 V	400 V	±5	10	1.0 M	E-24
	, ,			±10	0.39	10.0 M	E-12
ERJ14N	1/4 W	200 V	400 V	±1	10	1 M	E-24, 96
				±2	10	1.0 M	E-24
ERJ14	1/4 W	200 V	400 V	±5	10	1.0 M	E-24
				±10	0.39	1.0 M	E-12
ERJ12N	1/2 W	200 V	400 V	±1	10	1 M	E-24, 96
				±2	10	1.0 M	E-24
ERJ12	1/2 W	200 V	400 V	±5	10	1.0 M	E-24
			,	±10	1.0	1.0 M	E-12
				±2	10	1.0 M	E-24
ERJ1W	1 W	250 V	500 V	±5	10	1.0 M	E-24
				±10	1.0	1.0 M	E-12

Rated continuous working voltage (RCWV) shall be determined from RCWV=VPower Rating x Resistance Value, or max RCWV listed above, whichever less.

^{**} Available for reduction of load of pulse characteristic (RCWV × 2.5→RCWV × 2.0)

Standard Precision

High Precision

Dimensions in mm (not to scale)

Part No.		Dim	nensions (mm)		Net Weight
	L	W	а	b	t	(1000 pcs.)
ERJ2GE	±0.05 1.00	±0.05 0.50	±0.10 0.20	±0.05 0.25	±0.05 0.35	0.8 g
ERJ3GS	±0.15 1.60	+0.15 -0.05 0.80	±0.20 0.30	±0.15 0.30	±0.10 0.4 5	
ERJ6GM	±0.20	±0.10	±0.25	max. 0.30	±0.10	
ER6GE	2.00	1.25	0.40	±0.25 0.40	0.60	4 g
ERJ6GM	±0.05 -0.20	±0.05 -0.15	±0.25	max. 0.30	±0.10	
ER6GE	3.20	1.60	0.50	±0.25 0.50	0.60	10g
ERJ14	±0.20 3.20	±0.20 2.50	±0.25 0.50	±0.25 0.50	±0.10 0.60	16 g
ERJ12	±0.20 4.50	±0.20 3.20	±0.25 0.50	±0.25 0.50	±0.10 0.60	27 g
ERJ1W	±0.20 6.40	±0.20 3.20	±0.25 0.65	±0.25 1.30	±020 1.10	79 g

Packaging Specifications

Standard Packing Quantity

Chip	Style				
Res	sistor	Paper Tapng (4mm pitch)	Embossed Taping	Bulk Case	Bulk
Type	Thickness				
ERJ2G	0.35	10000 (2 mm pitch)			1000 pcs./pack
ERJ3G	0.45	5000,10000*, 20000*		25000 pcs./case	1000 pcs./pack
ERJ6G	0.60	5000,10000*,20000*		10000 pcs./case	1000 pcs./pack
ERJ8G	0.60	5000,10000*,20000*	4000 pcs./reel	5000 pcs./case	1000 pcs./pack
ERJ14	0.60		4000 pcs./reel		500 pcs./pack
ERJ12	0.60		2000 pcs./reel		500 pcs./pack
ERJ1W	1.10		1000 pcs./reel		100 pcs /pack
ERJ3EK	0.45	5000		25000 pcs./case	1000 pcs./pack
ERJ6EN	0.60	5000		10000 pcs./case	1000 pcs./pack
ERJ8EN	0.60	5000	4000 pcs./reel	5000 pcs./case	1000 pcs./pack
ERJ14N	0.60		4000 pcs./reel		500 pcs./pack
ERJ12N	0.60		2000 pcs./reel		500 pcs./pack

^{*} Special

Paper Taping

Embossed Taping

		Α	В	W	F	E	P ₁
	2G	±0.05 0.70	±0.05 1.20				±0.10 2.00
Dimensions	3G	±0.10 1.10	±0.10 1.90	±0.20	±0.05 3.50	±0.10 1.75	
(mm)	6G	±0.15 1.60	±0.20 2.50	8.00			±0.10
	8G	±0.15 1.90	±0.20 3.60				4.00

P ₁				Α	В	W	F	Е	P ₁
±0.10 2.00			8G	±0.20 1.90	±0.20 3.50	±0.30	±0.05		±0.10
		Dimensions	14	±0.20 2.80	±0.20 3.50	8.00	3.50	±0.10 1.75	4.00
±0.10	(mm)	(mm)	12	±0.20 3.50	±0.20 4.80	±0.30 12.0	±0.05 5.50		±0.10
4.00			1W	±0.20 3.60	±0.20 6.90				8.00

		P ₂	Po	øD₀	t,	t ₂
	2G				±0.05 0.40	±0.05 0.45
Dimensions	3G	±0.05	-0.10	+0.10 0	±0.05 0.60	±0.05 0.64
(mm)	6G	2.00	4.00	ø1.50	±0.05	±0.05
	8G				0.80	0.84

		P ₂	Po	$ØD_0$	t,	t ₂	øD₁
Dimensions (mm)	8G 14 12 1W	±0.05 2.00	±0.10 4.00	+0.10 Ø1.50	^{тах.} 0.40	±0.10 1.00 ±0.10 1.60	ø1.00 min. ø1.50

Ì		Α	В	W	F	E	P ₁
	3EK	±0.10 1.10	±0.10 1.90				
Dimensions (mm)	6EN	±0.15 1.60	±0.20 2.40	±0.20 8.00	±0.05 3.50	±0.10 1.75	±0.10 4.00
	8EN	±0.15 1.90	±0.20 3.50			!	r

		А	В	l vv	F		P_1
	8EN	±0.20 1.90	±0.20 3.50	±0.30	±0.05		±0.10
Dimensions (mm)	14N	±0.20 2.80	±0.20 3.50	8.00	3.50	±0.20 1.75	4.00
	12N	±0.20 3.50	±0.20 4.80	12.00	±0.05 5.50		±0.10 8.00

		P ₂	Po	øD _o	t,	t ₂
	3EK			+0.10		^{±0.05} 0.64
Dimensions (mm)	6EN	±0.05 2.00	-0.10 4.00	ø1.50	±0.05 0.80	±0.05 0.84
	8EN					

		P ₂	Po	$ØD_0$	t,	t ₂	øD₁
	8EN			+0.10			min.
Dimensions (mm)	14N	±0.05 2.00	±0.10 4.00	ø1.50	max. 0.40	±0.20 1.00	ø1.00
	12N						min. Ø1.50

Reel

		øΑ	øΒ	øС	øD	øΕ
	3EK, 6EN,					
Dimensions	8EN, 14N	±2.0 178.0	min. 60	±0.5 13.0	±1.0 21.0	±1.5
(mm)	12N	170.0	00	13.0	21.0	3.0

		W	T	t	r
Dimonologo	3EK, 6EN, 8EN, 14N	10.0±1.0	12.0±2.0	±0.5	±0.5
Dimensions (mm)	12N	14.0 ^{±1.0}	16.0±2.0	1.0	1.5

		øΑ	øΒ	øС	øD	øΕ
	2G,3G,6G,					
Dimensions	8G,14	±2.0 178.0	min. 60	±0.5 13.0	±1.0 21.0	±1.5
(mm)	12, 1W	176.0	00	13.0	21.0	3.0

		W	Т	t	r
Dimensions	2G,3G,6G, 8G,14	10.0±1.0	12.0±2.0	±0.5	±0.5
(mm)	12, 1W	10.0 ^{±1.0}	16.0 ^{±2.0}	1.0	1.0

Note øA; 10000 pcs./reel=255 20000 pcs./reel=330

Bulk Case

Application Notes

In the case of flow soldering, the land width must be smaller than the Chip Resistor width to properly control the solder amount properly. Generally, the land width should be 0.7 to 0.8 times the width of chip resistor (W). In the case of reflow soldering, solder amount can be adjusted, and the land width should be set to 1.0 to 1.3 times chip resistor width (W).

	Dimensions (mm)					
Туре	а	b	С			
ERJ3EK	0.7 to 0.9	2.0 to 2.2	0.8 to 1.0			
ERJ6EN	1.0 to 1.4	3.2 to 3.8	0.9 to 1.4			
ERJ8EN	2.0 to 2.4	4.4 to 5.0	1.2 to 1.8			
ERJ14N	2.0 to 2.4	4.4 to 5.0	1.8 to 2.8			
ERJ12N	3.3 to 3.7	5.7 to 6.5	2.3 to 3.5			

	·		
ERJ2G	0.5 to 0.6	1.4 to 1.6	0.4 to 0.6
ERJ3G	0.7 to 0.9	2.0 to 2.2	0.8 to 1.0
ERJ6G	1.0 to 1.4	3.2 to 3.8	0.9 to 1.4
ERJ8G	2.0 to 2.4	4.4 to 5.0	1.2 to 1.8
ERJ14	2.0 to 2.4	4.4 to 5.0	1.8 to 2.8
ERJ12	3.3 to 3.7	5.7 to 6.5	2.3 to 3.5
ERJ1W	3.6 to 4.0	7.6 to 8.6	2.3 to 3.5

Example

High density

- 2 resistors in 1.6 mm x 1.6 mm size (V4V)
- 4 resistors in 3.2 mm x 1.6 mm size (V8V),
- 4 resistors in 5.08 mm x 2.2 mm size (S8V),

• Improvement of placement efficiency

Placement efficiency of Chip Resistor Array is two or four times that of discrete chip resistors.

Automatic placement

Taped and reeled packaging (EIA RS-481) is suitable for automatic placement machine.

Series EXBV, S

Specifications

Item		Specifications
Resistance Range		10 Ω to 1 M Ω : E24 series
Resistance Tolerance	V	G: ±2 %, J: ±5 %
nesistance rolerance	S	G: ±2 %, J: ±5 %
Number of Pins	4V	4 terminal
Number of Pins	8V	8 terminal
Number of Resistors	4V	2 resistors
Number of hesistors	8V	4 resistors
Davier Dating at 70.00	٧	1/16 W/element
Power Rating at 70 °C	S	1/10 W/element
Max. Rated Continuous	V	50 V
Working Voltage *	S	100 V
Max. Over-load Voltage	V	100V
Max. Over-load voltage	S	200 V
Temperature Characteri	stic Range	±200 ppm/ °C
Operating Temperature	Range	-55 °C to 125 °C
Storage Temperature Ra	ange	-55 °C to 125 °C

^{*} Rated continuous working voltage (RCWV) shall be determined from RCWV = $\sqrt{\text{Power Rating x Resistance Value}}$, or max. RCWV listed above, whichever is less.

Dimensions in mm (not to scale)

Code		n	L	W	Т
	V4V	4	1.60 +0.20	1.60 +0.2	0.60±0.20
Dimensions	V8V	8	3.20 +0.30 -0.10	1.60 +0.3	0.60±0.20
(mm)	S8V	8	5.08 +0.30	2.20 ^{+0.30}	0.70±0.20
Code		А	В	øD	Р
	V4V	0.00.045	0.30±0.15	(0.0)	0.00
Dimensions	V8V	0.60±0.15		(0.3)	0.80±0.15
(mm)	S8V	0.80±0.15	0.50±0.15	(0.5)	1.27±0.20

Power Derating Curve

Isolated type

Series EXB 2 Specifications

Item	Specifications
Resistance Range	10 Ω to I M Ω , E24 Series
Resistance Tolerance	J: +5 %
Power Rating at 70 °C	1/16 W/element
Maximum RCWV	50V
Maximum Overload Voltage	100V

Dimensions in mm (not to scale)

Explanation of Part Number (EXB-2/S/V)

Performance Characteristics

Characteristics	Specifications	Test Methods
Thermal Shock	Resistance change shall be within $\pm (1\%+0.05\Omega)$.	5 cycles between -65 $^{0}_{-5}^{\circ}$ C and +125 $^{+3}_{-0}^{\circ}$ C
Short-Time Overload	Resistance change shall be within $\pm (2.5\% + 0.05\Omega)$	5 seconds at 2.5 x rated working voltage
Resistance to Soldering Heat	Resistance change shall be within $\pm (1\% + 0.05\Omega)$.	10.0±0.5 seconds, dipping in 270±5°C solder

Performance Characteristics (Continued)

Load Life in Humidity	Resistance change shall be within $\pm (3 \% + 0.05 \Omega)$	1000 hours at 1/10 rated power, 65±2 °C and 90 to 95 % RH (1.5 hours ON, 0.5 hour OFF)
Load Life	Resistance change shall be within $\pm (3\%+0.05~\Omega)$	1000 hours at rated power, 70±2 °C (1.5 hours ON, 0.5 hour OFF)
Solderability	95% coverage min.	Test temperature at solder: 230± 5 °C, Dwell time in solder: 3±0.5 seconds

Packaging Specifications

Standard Packing Quantity

Туре	Thickness	Paper Taping	Embossed Taping
EXB2	0.35±0.05 mm	10000 pcs./reel	_
EXBV	0.6±0.2 mm	5000 pcs./reel	
EXBS	0.7±0.2 mm		2500 pcs./reel

Reel

Taping

Code ØA ØB ØC Dimensions (mm) 2 178.0±20 50 min. 13.0±0.5

C	ode	W	T	t
Dimensions (mm)	V	10.0±1.0	12.0±2.0	1.0±0.5

Code		øΑ	øΒ	øС	
Dimensions (mm)	S	178±2	50 min.	13.0±0.5	

	Code	E	W	T	t	
Dimensions	S	2.0±0.5	14±1.5	20.5 max.	2.0	

Paper Taping

	Code	А	- E	3		W		F	E
	24V	1.20±0.05	1.20)±0.05					
Dimensions	V4V	2.00 ^{±0.15}	2.00) ±0.15	8.	00±0.20	3	.50±0.05	1.75±0.10
(mm)	V8V	2.00±0.15	3.60)±0.20					
	Code	P ₁	P ₂		D 0	øĽ)0	t ₁	t ₂
	24V	2.00 ^{±0.10}	±0.05		±0.10	+0).10	±0.05	±0.05
Dimensions	V4V	±0.10	2.00	4	.00	ø1.	50	0.75	0.79
(mm)	V8V	4.00				01.			

Embossed Taping

		Code	Α	В	W	F	E	P ₀
	Dimensions (mm)	S8V	2.80	5.70	12.00	5.50°	1.75	4.00
1								
		Code	О.	_ n	~~	1 +		~D
,		Code	P ₁	P ₂	$ØD_0$	t,	t ₂	øD,
]		Code	P ₁	P ₂ ±0.05	ØD ₀ +0.10	t ₁	t ₂	ØD ₁ +0.10

- Highly stable thick film Equivalent to MIL-R-83401
- Compact package A short body length which can be inserted onto PC board at 2.54 mm pitch sequentially.

- Automatic SIP insertion capability Available for automatic insertion machine, packaged in either stick magazine or taped and box.
- Low profile 4.95 mm max. seated height.
- Low TC.R. 6200 ppm/°C (Standard), 6100 ppm/°C (Special) TC. Tracking 50 ppm/°C typical.

Specifications

		Common Terminal Circuit EXBF □ E	lsolated Circuit EXBF □ V	Series Circuit EXBF \(\) \(\)	Line Terminator EXBF □ W				
Number of Resis	tors	3 to 13	2 to 7	3 to 13	4 to 12				
Power Rating	Single Resistors	125 mW	200 mW	125 mW	125 mW				
at 70°C	Total Package		125 mW x (pins-1)						
Resistance Rang	e	St	Standard: 22 Ω to 1 M Ω (Special: 10 Ω to 5.6 M Ω)						
Resistance Tolera	ance	F: ±1 %, 0	F: ± 1 %, G: ± 2 %, J: ± 5 % (± 1 Ω min, for values 100 Ω and lower)						
Temperature Coe	efficient		±200 ppm/ °C (Special: ±100 ppm/ °C)						
TC Tracking			50 ppm/°C (Same resistance)						
Maximum Rated Continuous Working Voltage**		100 V							
Maximum Overload Voltage**			150 V						
Operating Tempe	erature Range		−55 °C to	+125 °C					

- Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Power rating 3 Resistance value, or maximum RCWV listed above, whichever less.
- Maximum Overload Voltage shall be the same as the maximum test voltage short time overload test.

Power Derating Curve

Standard Circuits

: Number of Pins

Circuits	Co	mmon Terminal Circu	Isolated Circuit	Series Circuit		
Part Numbers	EXBF□E	EXBF□C EXBF□T		EXBF□V	EXBF□N	
Circuit Configurations	1 2 3 4 n	Center common	Both end common	1 2 3 4 n	1 2 3 4 n	
No. of Resistors	No. of Resistors n-1		n-2	n/2	n-1	

Explanation of Part Numbers

Dimensions in mm (not to scale)

* Leads come down in the center of body thickness.

Part No.	Pins	Dimension A max.
EVDE4	4	0.00
EXBF4	4	9.80
EXBF5	5	12.34
EXBF6	6	14.88
EXBF7	7	17.42
EXBF8	8	19.96
EXBF9	9	22.50
EXBF10	10	25.04
EXBF11	11	27.58
EXBF12	12	30.12
EXBF13	13	32.66
EXBF14	14	35.20

Marking

- (1) Bar identifying pin number 1, marking the defference below Operating Temperature Range
 - !±1% (F) type
 - :±2 % (G) type
 - ! ±5 % (J) type
- (2) Manufacturers identification (Feasible 7-pin and longer)
- (3) The type of circuits

Code	Circuits
E	Common terminal
V	Isolated
N	Series
W	Line terminater
С	Center common
T	Both end common

- (4) Resistance value or custom designed number with three digits, or terminator code number
- (5) Lot number

Package Specifications

Taped & Box Type (Standard) (1000 pcs./box)

	Code	Dimensions (mm) C
	4 to 7 pins	25.4±1.0
Ρ	8 to 12 pins	38.1±1.0
	Po	12.7±0.2
	ΔΡ	0±0.5
	Н	4.95 max.
L		7.0±0.5
	H_0	16.0±0.5
W		18.0±0.5
	W ₀	5 min.

Code	Dimensions (mm)
W_1	9.0±0.5
W_2	3.0 max.
P ₁	2.54±0.25
d ₁	0.50±0.12
d_2	0.25±0.13
Do	4.1±0.2
$\Delta h_{1,} \Delta h_{2}$	2.0 max.
T	2.54 max.
t	0.7±0:2

Taped & Box Type for Panasert RH (1000 pcs/box)

Code	Dimensions (mm) C		
Α	Fig. 1		
A ₁	4.95 max.		
d ₁	0.50±012		
d_2	0.25±013		
Р	25 4±1.0		
P ₀	12.7±0.3		
P ₁	6.35±0.70		
F _{1,} F ₂	2 54 ± 0.25		
F	5.08±0.30		
$\Delta h_{1,} \Delta h_{2}$	1.0 max		

Code	Dimensions (mm)
Ho	19.5 ^{+0.5}
H ₁	23.95 max.
H_2	16.5±0.5
W	180±0.5
W ₀	5.0 min.
W_{t}	9.0±0.5
W_2	1.0 max.
D_0	4.0±0.3
Т	2.54 max.

Pin Dimensions in mm (not to scale)

· Jumper function

Possible to place two pass lines beneath body

· High heat resistance

Heat resistant to 270 °C for 1 minute or 350 °C for 3 seconds

· High power

Power rating is 1/16 W and 1/10 per resistor

· Flexible lead terminals

High reliability against bending, vibration and thermal shock to PC board

Space Saving

70% vs. conventional SO package. 50% vs. discrete chip resistors.

· Automatic mounting

Uses existing chip mounters at a high mounting speed.

^{**}Rated Continuous Working Voltage (RCWV) shall be determined from RCWV=√Rated power x Resistance value, or max. RCWV listed above, whichever is less.

Power Derating Curve

^{&#}x27;**Maximum pulse voltage means the peak of pulse voltage (duty ratio: less than 1/4), and shall be the same as the maximum test voltage of short-time overload test.

Explanation of Part Number

Dimensions in mm (not to scale)

Marking

- (1) Bar mark with a dot for pin number 1
- (2) Type of circuits

	Code	Circuit configuration
Ī	E	Bussed circuit
ſ	٧	Isolated circuit
Ī	W	Line terminator

- (3) Resistance value The first two digits are significant figures of resistance value and the third one denotes the number of zeros.
- (4) Date code Year-month

Packaging Specifications

Embossed Taping (Standard packing quantity: 3000 pcs./reel)

Unit (mm)

Dii Type	mensions	В	А	W	F	E	P ₁	P_{2}	P _o	$ØD_{o}$	t,	t ₂	ØD,
16 mm tape	EXBH5	7.48±0.20	0.4+02	16.0+03	7.5+0.1	1.75+01	4.0+0.1	2.0+0.1	4.0±0.1	1 50.1	0.2+0.1	O Omay	1.5min.
10 mm tape		8.75±0.20	2.4=0.2	10.020.0	7.0=0.1	1.7520.1	4.020.1	2.0=0.1	4.0=0.1	1.00	0.3=0.1	3,2118	1.5
	EXBH8	11.29±0.20											
24 mm tape	EXBH9	12.56±0.20	2.4±0.2	24.0±0.3	11.5±0.1	1.75±0.1	4.0±0.1	2.0±0.1	4.0±0.1	$1.5^{+0.1}_{0}$	0.3±0.1	3.2 _{max} .	1.5min.
	EXBH10	13.83±0.20									,		

Reel

Unit (mm)

Tape width	øΑ	øΒ	С	D	E	W	Т	t
16 mm	330.0 ^{±3.0}	100.0 ^{±2.0}	13.0 ^{±0.5}	25.0 ^{±1.0}	2.2 ^{±0.5}	16.5 ^{±2.0}	21.5 ^{±2.0}	2.0 ^{±1.0}
24 mm	330.0 ^{±3.0}	100.0 ^{±2.0}	13.0 ^{±0.5}	25.0 ^{±1.0}	2.2 ^{±0.5}	24.5 ^{±2.0}	29.5 ^{±2.0}	2.0±1.0

- High density
 Maximum 28 resistors in one SOIC package
- Low profile Maximum height: 2.2 mm
- · High reliability
- Solderable by flow Soldering
 Solderable in 270 °C flow soldering
- Automatic placement
 Placement by same machine as for SOICs

Specifications

Characteristics	Specifications
Resistance Range	Standard 10 Ω ~1M Ω : E12 series
Resistance Tolerance	F: $\pm 1\%$, G: $\pm 2\%$, J: $\pm 5\%$ ($\pm 1\Omega$ Min., Less than 99 Ω)
Number of Pins	16 pins (14 pins on request)
Number of Resistors	4~28 resistors/package
Power Rating	16 pins 500 mW/package (14 pins 430 mW/package)
Maximum Rated Continuous Working Voltage*	50 V
Maximum Overload Voltage	100 V
T. C. R.	Standard: ±200 ppm/°C (Special: ±100 ppm/°C)
Operating Temperature Range	-55°C~+125°C

Power Derating Curve

*Rated Continuous Working Voltage (RCWV) shall be RCWV=√Power Rating Resistance Value, or max. RCWV listed, whichever is less.

Standard Circuits

Dimensions in mm (not to scale)

1.90 ± 0.10 Dimension: mm 0.35 ± 0.10 0.20 ± 0.07 1.12±0.12 1.12 ± 0.12 **A A A A A A A A** 0.22 55 ± 0.15 8912 .62 ± P $10k\Omega J$ म संस्था सम्बं 0.17 ± 0.03 0.45 ± 0.07 1.27 ± 0.10 0.50 ± 11.10 ± 0.20 2.10 ± 0.10 (1) A dot indicating pin No. 1(2) Monthly date code

Construction

Explanation of Part Numbers

Performance Characteristics

Characteristics	Specifications	Test Methods
Thermal Shock	\pm (0.5% + 0.05 Ω) max.	5 cycles between -65 $^{\circ}_{-5}$ °C and +12 $^{+3}_{-5}$ °C
Short Time Overload	\pm (0.25% + 0.05 Ω) max.	5 seconds at 2.5 x rated working voltage (Do not exceed max. overload voltage)
Resistance to Soldering Heat	$\pm (0.25\% + 0.05 \Omega)$ max.	10.0±0.5 seconds, dipping in 270±5 °C solder
Load Life in Humidity	\pm (0.5% + 0.05 Ω) max.	500 hours at 1/10 power rating, 65±2 °C and 90 to 95% relative humidity (1.5 hours ON, 0.5 hour OFF)
Load Life	\pm (1.0% + 0.05 Ω) max.	1000 hours at rated voltage, 70±2 °C (1.5 hours ON, 0.5 hour OFF)
Insulation Resistance	10000 MΩ min.	Measured at 100 V DC. between all pins and package
Dielectric Withstanding Voltage	No evidence of arcing or damage.	1 minute at 500 V DC between all pins and package (500 V/s)
Solderability	95% coverage	Test temperature of solder: 230±5 °C. Dwell time in solder: 3±0.5 s.
Vibration	\pm (0.25% + 0.05 Ω) max.	A single vibration having an amplitude of 1.52 mm for 2 hours in each X, Y, Z directions 20 minutes between 10 and 2000 Hz
Terminal Strength	\pm (0.25% + 0.05 Ω) max.	9.8 N (1.0 kgf) for 30±5 minutes

Panasonic

Package Specifications

Standard Packing Quantity

Thickness Packing Style	Paper tape	Embossed tape
2.2 mm max.	2000 pcs./reel	2000 pcs./reel

Paper Taping

L							
Code	А	В	W	K	E	G	Н
Dimensions (mm)	9.4	12.7	32.0-0.4	26.0	3.0	4.0	8.0 5.0

Code	Р	Р	øD	øD	t	t
Dimensions (mm)	6.0 ^{±0.2}	12.0	4.0	1.00	0.2 max.	3.0 max.

Reel for Paper Tape

Code	А	В	С	W	Т	t
Dimensions (mm)	300 ±1	80 ^{±1}	16.0	34 ^{±2}	38 ^{±2}	1.5.5

Embossed Taping

Chip component

EXB M16□×××□Y Polarization (Pin No. 1) Chip pocket Feeding hole Tape running direction

Reel for Embossed Tape

Code	А	B(16 pins)	W	F	Е	P ₁
Dimensions (mm)	8.20 8.20	11.70	24.00	11.50	1.75	12.00

Code	А	В	С	D	Е	W
Dimensions (mm)	330.0	100.0	13.0	25.0 ±1.0	2.0	24.5

Code	P ₂	Po	øD _o	øD,	t,	t ₂
Dimensions (mm)	2.000	4.000	1.500	1.50	0.35	2.80°

Code	T	t	r
Dimensions (mm)	29.5	2.2	1.0

- Wide range of oscillation frequency: 3.58 to 35 MHz.
- High accuracy, high stability
- Initial frequency tolerance: ±0.5 %
- Saves height on P.C.-board (Height: 5 mm max.)
- Taped version is available for automatic insertion.

Explanation of Part Numbers

Ratings and Characteristics

Type EN

Part N	Part Number		Loop Gain	Temperature
Bulk Type	Taped Type	Oscillation Frequency	(G)	Characteristics
EFOEN3584A4	EFOEN3584T4	3.58 MHz±0.5 %		
EFOEN4004A4	EFOEN4004T4	4.00 MHz±0.5 %		
EFOEN4194A4	EFOEN4194T4	4.19 MHz±0.5 %		Maximum frequency
EFOEN5004A4	EFOEN5004T4	5.00 MHz±0.5 %	10 dB min	drift: ±0.1%
EFOEN6004A4	EFOEN6004T4	6.00 MHz±0.5 %		(-10 to 60°C)
EFOEN8004A4	EFOEN8004T4	8.00 MHz±0.5 %		

[•] Operating Temperature Range: -20 to 60°C

Also other frequency tolerances are available; ± 0.1 , ± 0.2 , ± 0.3 and $\pm 1.0\%$.

Type GN

Part I	Part Number		Loop Coin	Tomporatura	
Bulk Type	Taped Type	Oscillation Frequency	Loop Gain (G)	Temperature Characteristics	
EFOGN1005A4	EFOGN1005T4	10.0 MHz±0.5 %			
EFOGN1205A4	EFOGN1205T4	12.0 MHz±0.5 %		Maximum frequency	
EFOGN1805A4	EFOGN1805T4	18.0 MHz±0.5 %	6 dB min	drift: ±0.3%	
EFOGN2505A4	EFOGN2505T4	25.0 MHz±0.5 %		(-10 to 60°C)	
EFOGN3205A4	EFOGN3205T4	32.0 MHz±0.5 %			

[•] Operating Temperature Range: 20 to 60°C

Also other frequency tolerances are available; ±0.3 and ±1.0%.

[•] Frequency Drift: 0.3 % max. / 10 years

[•] Frequency Drift: 0.3 % max. / 10 years

Dimensions in mm (not to scale)

Test Circuit Diagram

Typical Characteristics (EFOGN4004A4)

Dimensions for taping in mm (not to scale)

- Wide range of oscillation frequency: 3.58 to 35 MHz.
- · No need of capacitors in oscillation circuit
- High accuracy, high stability
 Initial frequency tolerance: 60.5 %
- Excellent temperature characteristics frequency drift: 60.1% max. -10 to 60 °C
- Saves height on P.C.-board (Height: 5 mm max.)
- Taped version is available for automatic insertion.

Explanation of Part Numbers

Ratings and Characteristics

• Type EC

Part N	Part Number		Oscillation Loop Gain	
Bulk Type	Taped Type	Frequency	(G)	Temperature Characteristics
EFOEC3584A4	EFOEC3584T4	3.58 MHz±0.5 %		
EFOEC4004A4	EFOEC4004T4	4.00 MHz±0.5 %		
EFOEC4194A4	EFOEC4194T4	4.19 MHz±0.5 %		Maximum frequency
EFOEC5004A4	EFOEC5004T4	5.00 MHz±0.5 %	10 dB min.	drift: ±0.1%
EFOEC6004A4	EFOEC6004T4	6.00 MHz±0.5 %		(-10 to 60°C)
EFOEC8004A4	EFOEC8004T4	8.00 MHz±0.5 %		

[•] Operating Temperature Range: -20 to 60°C

Also other frequency tolerances are available; ± 0.1 , ± 0.2 , ± 0.3 and $\pm 1.0\%$.

Type GC

Part Number		O = :!! = 4! = :=	Lana Oaira	Tananavatuva	
Bulk Type	Taped Type	Oscillation Frequency	Loop Gain (G)	Temperature Characteristics	
EFOGC1005C4	EFOGC1005T4	10.0 MHz±0.5 %			
EFOGC1205C4	EFOGC1205T4	12.0 MHz±0.5 %		Maximum frequency	
EFOGC1805C4	EFOGC1805T4	18.0 MHz±0.5 %	6 dB min.	drift: ±0.3%	
EFOGC2505C4	EFOGC2505T4	25.0 MHz±0.5 %		(-10 to 60°C)	
EFOGC3205C4	EFOGC3205T4	32.0 MHz±0.5 %			

[•] Operating Temperature Range: -20 to 60°C

Also other frequency tolerances are available; ± 0.1 , ± 0.2 , ± 0.3 and $\pm 1.0\%$.

[•] Frequency Drift: 0.3 % max. / 10 years

[•] Frequency Drift: 0.3 % max. / 10 years

Dimensions in mm (not to scale) • Packing quantity: 4000 pcs./bag Bulk Type Lead Forming Type EFOEC A EFOEC T Oscillation Frequency (kHz) Oscillation Frequency Туре (kHz) 4.0 max Date Code Date Code **M** 4000 Å M 8000 0+0:4 3-**ø**0.5±0.2 4.0 max 2.5 ± 0.3 2.5±03 5.0±0.4 Earth Terminal 3-\$0.50 ± 0.05 EFOGC C EFOGC S Oscillation Frequency (kHz) Туре 8.5 max Date Code M 10000 6 5.0 max. M 10000 C 3-0.45±0.20 - 11 5.0±0.4 3-0.45±0.2 0.3±0.1 (2.5) (2.5) 4.0 max. (2.5) (2.5) 5.0±0.4 8.5 max. Earth Terminal

Test Circuit Diagram

Typical Characteristics (EFOGC4004A4)

Dimensions for taping in mm (not to scale)

- · Constructed with ceramic package
- High reliability against soldering heat and mechanical stress
- · Moisture-proof sealing
- · Stable against solvent cleaning
- · Designed for reflow soldering
- · Flat-bottom plate for better mountings
- [Type V and S] ("Built In Capacitors" Type)
 Contributes simplification of oscillation circuits and reduces the numbers of circuit parts
- [Type S] Low Profile Type (1.8 mm maximum in thickness)

Explanation of Part Numbers

Ratings and Characteristics

Type N Ceramic Resonators, Chip Type (For General Purpose)

Par	t Number			
		Oscillation	Loop Gain	Temperature
Bulk Type	Embossed Taping Type	Frequency	(G)	Characteristics
EFON3584B5	EFON3584E5	3.58 MHz±0.5%		
EFON4004B5	EFON4004E5	4.00 MHz±0.5%		
EFON4194B5	EFON4194E5	4.19 MHz±0.5%		Maximum frequency
EFON5004B5	EFON5004E5	5.00 MHz±0.5%	10 dB min.	drift: ±0.3%
EFON6004B5	EFON6004E5	6.00 MHz±0.5%		(-20 to 80 °C)
EFON8004B5	EFON8004E5	8.00 MHz±0.5%		

Type V ("Built-In Capacitors" Type)

Par	t Number			
		Oscillation	Loop Gain	Temperature
Bulk Type	Embossed Taping Type	Frequency	(G)	Characteristics
EFOV3584B5	EFOV3854E5	3.58 MHz±0.5%		
EFOV4004B5	EFOV4004B5	4.00 MHz±0.5%		Maximum frequency
EFOV4194B5	EFOV4194E5	4.19 MHz±0.5%	10 dB min.	drift: ±0.1%
EFOV5004B5	EFOV5004E5	5.00 MHz±0.5%		(-10 to 60 °C)
EFOV8004B5	EFOV8004E5	8.00 MHz±0.5%		

Type S (Built-In Capacitors, Low Profile Type)

Par	t Number			
		Oscillation	Loop Gain	Temperature
Bulk Type	Embossed Taping Type	Frequency	(G)	Characteristics
EFOS3584B5	EFOS3584E5	3.58 MHz±0.5%		
EFOS4004B5	EFOS4004E5	4.00 MHz±0.5%		Maximum frequency
EFOS4194B5	EFOS4194E5	4.19 MHz±0.5%	10 dB min.	drift: ±0.1%
EFOS5004B5	EFOS5004E5	5.00 MHz±0.5%		(-10 to 60 °C)
EFOS8004B5	EFOS8004E5	8.00 MHz±0.5%		

Operating Temperature Range: -20 to 80 °C
 Note: Also available are types other than above standardproducts in the frequency range of 3.58 to 8 MHz..
 Please contact us for more information.

Dimensions in mm (not to scale)

Test Circuits Diagram (For Type N)

Packaging Specifications

Supplied in bulk or taped & reel packing style

Standard Packing Quantity

Style	Embossed Taping	Bulk
Quantity	2500 pcs./reel	500 pcs./bag

Embossed Taping

Reel

Symbol	øΑ	øΒ	С	D	Е
Dim. (mm)	330	50 min.	13.0±0.5	21.0±0.8	2.0 ± 0.2
Symbol	W	Т	t	r	
Dim. (mm)	16.40	22.4 max.	3 max.	1.0	

Application Notes

Oscillation Frequency

Please note that the oscillation frequency may drift depending on the IC used, the type of microprocessor and the manufacturer. Please contact us in the event of difficulties.

Shock Resistance

This ceramic resonator is so designed as to endure shocks applied when it is dropped onto a wooden plate from a height of 1 m. However, please note that the ceramic element, etc. may be damaged, if the ceramic resonator is dealt more severe shocks. Special care shall, therefore, be taken in handling it.

Soldering Conditions

Reflow soldering shall be done at 220 °C for less than 10 seconds, and peak temperature of 240 °C. (Remark) flow soldering method and dip soldering method shall not be applied.

UHF SAW Resonator is capable of fundamental wave oscillation, and it is particularly suited for simplification, size reduction and stabilization of the circuit, compared with conventional LC oscillation and quartz crystal oscillation.

Features

- Capable of fundamental oscillation.
- Superior temperature characteristics.
- · Suited for circuit simplification, size reduction and stabilization.
- Wide frequency range: 200 to 700MHz (Available for requested frequency)

Explanation of Part Numbers

Typical Characteristics

Ratings and Characteristics

(2 port type)

Item					
	Center Frequency	Insertion Loss	Loaded Q	Capacitance	Temperature
Part No.	(MHz)	(dB)		(pF)	Characteristics
EFOH224MS03	224.50±0.25				
EFOH295MS03	295.50±0.25				
EFOH304MS03	303.875±0.250				
EFOH310MS03	310.00±0.25		7000 min.		
EFOH312MS03	312.00±0.25				Maximum
EFOH315MS03	315.00±0.25	15 max.		1.3±0.3	Frequency Drift:
EFOH318MS03	318.00±0.25				-150 to 50 ppm/°C
EFOH407MS03	407.00±0.25				(-20 to 80°C)
EFOH418MS03	418.00±0.25				
EFOH434MS03	433.92±0.25		5000 min.		
EFOH458MS03	458.00±0.25				

[•]Operating Temperature Range: - 20 to 80°C

(1 port type)

Item				
	Resonant Frequency	Resonant Resistance	Capacitance	Temperature
Part No.	(MHz)	(Ω)	(pF)	Characteristics
EFOH224MS12	224.50±0.25			
EFOH304MS12	303.875±0.250			
EFOH312MS12	312.00±0.25			Maximum Frequency
EFOH315MS12	315.00±0.25	30 max.	2.0+0.5	Drift: -150 to 50 ppm
EFOH318MS12	318.00 ± 0.25			(-20 to 80°C)
EFOH418MS12	418.00±0.25			
EFOH434MS12	433.92±0.25			

[•] Operating Temperature Range: -20 to 80°C

Dimensions in mm (not to scale)

Notes •Also available are types other than above standard products in the frequency range of 200 to 700 MHz.

Test Circuit Diagram

•Other frequency tolerances are available. Please contact us.

[•]Phase shift: 180°

Performance Characteristics (UHF SAW Resonators)

C	Characteristics	Test Methods	Specifications
	Shock	Specimen shall be dropped 10 times onto a wooden board from height of 1 m.	(Change offer the test shall be within the
Mechanical	Vibration	The specified single harmonic vibration shall be applied to the specimen to each of three perpendicular direction for 1 hour (for totals of 3 hours). •Amplitude:0.75 mm/single, (1.5 mm/double) •Sweep frequency and its interval: 10 Hz-55 Hz-10 Hz with duration of 1 minute	 (Change after the test shall be within the following range) [2 port type] [1 port type] •CenterFrequency: •Resonant Frequency: ±100 ppm max. ±100 ppm max. • Insertion Loss: •Resonant Resistance: ±2 dB max. ±5Ω max.
N	Resistance to Soldering Heat	Lead wires of the specimen shall be immersed up to 3 mm from its neck for 5 seconds in a solder bath of 350±5°C	
	Robustness of Terminations (Tensile)	Specimen shall be secured by the body, and the specified force of 10 N(1.02 kgf) shall be applied for 10 seconds in the axial direction of lead wires.	No remarkable mechanical or electrical abnormality.
	Damp Heat (Steady State)	Specimen shall be subjected to in an ambient of 60±2°C and 90 to 95 %RH for 500 hours and be stored at room temperature for 1 hour before the specified measurements.	
	Dry Heat	Specimen shall be subjected to in an ambient of 85±2C for 500 hours and be stored at room temperature for 1 hour before the specified measurements.	(Change after the test shall be within the following range) [2 port type] [1 port type] • Center Frequency: • Resonant Frequency:
Environmental	Cold	Specimen shall be subjected to in an ambient of -40±3C for 500 hours and be stored at room temperature for 1 hour before the specified measurements.	±100 ppm max. •Insertion Loss: ±2 dB max. ±100 ppm max. •Resonant Resistance: ±5 Ω max.
Ш		The specified temperature cycles following shall be repeated 100 times, and be stored at room temperature for 1 hour before the specified measurements.	
	Temperature Cycle	StepTemperaturePeriod1-20±3°C30 minutes2Room Temp.2 to 3 minutes380±2°C30 minutes4Room Temp.2 to 3 minutes	

- 6x6 mm, body thickness 3.2 mm
- · Push stroke 0.25 mm, clear click feeling
- Wide selection with or without ground terminal, laydown or stand-up type with snap-in terminals
- · Wave soldering applicable

Specifications

		Snap action/Push-ON type SPST	
Switch Part	Circuit Diagram	A O O B	
	Power Rating	20 mA 15 VDC	
	Contact Resistance	100 mΩ max.	
Electrical	Insulation Resistance	50 MΩ min. (100 VDC)	
Licotrical	Dielectric Withstanding Voltage	250 VAC for 1 minute	
	Bouncing	3ms max. (ON), 10 ms max. (OFF)	
Mechanical	Operating Force	1.0±0.4 N (100±40 gf) 1.3±0.4 N (130±40 gf) 1.6±0.5 N (160±50 gf) 2.6±0.6 N (260±60 gf) (available)	
	Push Stroke	0.25±0.1 mm	
Endurance	Operating Life	100000 min.	
2.133131100	Operating Temperature	-20 to + 70 °C	

Explanation of Part Numbers

Packaging Specifications

Product Item	Part Numbers	Minimum Packaging & Ordering Quantity (pcs)
5N Type Light Touch Switches (Radial Taping)	EVQ213/214/215 EVQ233/234/235	1000
Emm/ENI Type Light Tayah Cuitahaa /Dully pagkaging)	Lay-down H=5 mm max.	20000
5 mm/5N Type Light Touch Switches (Bulk packaging)	Others	10000

Dimensions in mm (not to scale)

Dimensions in mm (not to scale)

- 6x3.5 mm, high density installation and space saving
- · Excellent clear tactile feeling
- · Auto-dipping applicable
- Excellent soldering heat endurance due to heatresistant resin
- Excellent mounting efficiency by radial taping package

Specifications

		Snap action/Push-ON type SPST				
Switch Part	Circuit Diagram	A O O B				
	Power Rating	20 mA 16 VDC (50 mA 12 VDC)				
	Contact Resistance	100 m Ω max.				
Electrical	Insulation Resistance	100 MΩ min. (100 VDC)				
Liounda	Dielectric Withstanding Voltage	250 VAC for 1 minute				
	Bouncing	10 ms max.				
NA - I i I	Operating Force	2.4±0.6N (240±60 gf) 1.6±0.5N (160±50 gf) (Standard) 1.0±0,.5N (100±50 gf) (Low force type)				
Mechanical	Push Stroke	0.25 ^{+0.2} _{-0.1} mm				
	Push Strength	30 N (3 kgf) min. (Vertical, 1 minute)				
	Soldering Heat	5 s at 260 °C (2 times max.)				
Endurance	Operating Life	50000 min.				
	Operating Temperature	-20 to + 70 °C				

Explanation of Part Numbers

Packaging Specifications

Product Item		Part Numbers	Minimum Packaging & Ordering Quantity (pcs)
	Bulk	EVQPJA/PJB/PJC	10000
6x3.5 mm Square Light Touch Switches	Embossed	EVQPJQ/PJP/PJN	7500
	Radial Taping	EVQPJG/PJH/PJJ	20000

Dimensions in mm (not to scale)

- Super thin 2.0 mm height Light Touch Switch
- For flow soldering and reflow soldering and solvent washing
- · Hermetically sealed
- · Tactile feeling
- · Supplied in bulk or tape & reel packing style
- With or without ground terminal
- · Insertion types available

Product Chart

	Flow Soldering	Reflow soldering	Insertable	Knob	Ground Terminal Available
EVQ-QF	Yes	Yes	Yes (see #4, #5)	No	Yes (standard, see #3)
EVQ-QH	No	Yes	No	Yes	Yes (by request)
EVQ-PH	No	Yes	No	Yes	Yes (by request)

Specifications

	Power Rating	20 mA 15 VDC max. 10 μA 2 VDC min.				
	Contact Resistance	100 mΩ max.				
Electrical	Insulation Resistance	50 MΩ min. (100 VDC)				
	Dielectric Withstanding Voltage	250 VAC for 1 minute				
	Bouncing	3 ms max. (ON) 10 ms max. (OFF)				
Mechanical	Operating Force	1.3±0.4 N (130±40 gf), 1.6±0.5 N (160±50 gf), 2.6±0.6 N (260±60 gf)				
Modifical	Push Stroke	0.25 ±0.1 mm				
	Operating Life	100000 min.				
Endurance	Operating Temperature	-20 to + 70 °C (45 to 85% RH)				
	Storage Temperature	-40 to +85 °C				

Explanation of Part Numbers

Dimensions in mm (not to scale)

- Super thin switch (1 mm) with excellent click feeling
- · For Reflow soldering

Specifications

Electrical Mechanical	Power Rating	20 mA 15 VDC max. 10 μA 2 VDC min.				
	Contact Resistance	100 m Ω max.				
Electrical	Insulation Resistance	50 MΩ min. (100 VDC)				
	Dielectric Withstanding Voltage	250 VAC for 1 minute				
	Bouncing	3 ms max. (ON) 10 ms max. (OFF)				
Mechanical	Operating Force	1.6±0.5 N (160±50 gf)				
Woonanida	Push Stroke	0.25 ^{+0.2} mm				
	Operating Life	100000 min.				
Endurance	Operating Temperature	-10 to + 70 °C (45 to 85% RH)				
	Storage Temperature	-40 to +60 °C (in embossed taping package)				

Note: Non-washable

Dimensions in mm (not to scale)

Explanation of Part Numbers

Packaging Specifications

Standard Packing Quantity

Embossed Taping

	Style	En	Embossed Taping					
Type	Height	Thickness	Inner carton	Outer carton	Bulk			
EVQPA1	1.0 mm	1.0 mm	1000 pcs		4000 pcs/pack			
EVQQF	2.0 mm	2.0 mm	or	20000 pcs.				
EVQPH	3.1 mm	2.011111	4000 pcs					
	2.0 mm		500 pcs		1000 pcs/pack			
EVQQH	2.5 mm	2.5 m/3.1 m	or	10000 pcs				
	3.1 mm		2000 pcs	10000 pcs				
EVQPJ	4.3 mm	3.5 mm	2000 μως		1500 pcs/pack			

Standard soldering method Flow soldering

			
	Item	Con	ditions
		K322V (by Tamura)	
	Application	Specific gravity	: 0.84
	flux	Time	: 2±0.5 s
Soldering	liux	Temperature	: normal temperature
process		Flux method	: Foam flux
	Preheat	100 to 120 °C, 60 s	
	Soldering	Temperature	: 250±5 °C
	Coldening	Time	: 5s max.
		Freon TES (by Mitsu	i)*Substitute
Cleaning	Cleaning	Liquid temperature	: 42±2 °C
process	Clouring	Time	: 2 min max.
		Cleaning method	: Only dip in a liquid

^{*} ODC's controlled under Montreal Protocol are subject to termination earlier than the year of 2000.

- 1. Put the switch in to the pre-heat oven within 10 seconds after the
- 2. Cleaning should be done after the temperature of the switch becomes normal.

Reflow Soldering

Tape running direction

Item	Conditions
Preheat	Set the surface of PWB at 180 °C in 2.5±0.3 minutes after it is put into the preheat or chamber oven.
Soldering	Set the surface of switches at 240 °C in 10 \pm 0.5 seconds after put into soldering oven.

Note: In case you solder in other ways, please consult with our

Part Nos.	Height	Α	В	W	F	Е	P ₁	P ₂	Po	D₀ Dia.	t ₁	t_2
EVQ PA	1.0											1.8±0.2
EVQ QF	2.0							1				2.5±0.2
EVQ QH	2.0/2.5/3.1	7.0±0.2	7.5±0.2	12.0±0.3	5.5±0.1	1.75±0.10	8.0±0.1	2.0±0.1	4.0±0.1	1.5 t ^{0.1}	0.30±0.05	3.3±0.2
EVQ PH	3.1											3.3±0.2
EVQ PJ	4.3/5.0											4.5/5.3±0.2

Reel

	А	В	С	D	E	W	T	t	r
(mm)	ø178.0±2.0	50 min.	13.0±0.5	ø21±1	2.0±0.5	14.0±1.5		1.0 to 2.0±0.5	1.0±0.5
	ø370.0±2.0	11	11	11	н	II .		11	н

- Fast response to rapidly rising surge voltage
- High performance clamping voltage characteristics
- Broad products range:
 - Varistor voltage: 18V to 1.8 kV
- UL and CSA recognized models are available

Explanation of Part Numbers (Type D)

Reference Guide to Standard Products (Type D)

Part No.	Allov	mum vable tage	Varistor Voltage*	Clamping @ Test ((8/20	Current	Maximum Energy (J)		Maximu Peak Cur (8/20 μ	rent
1				(0,20		(0	,	1 times	2 times
	ACrms(V)	DC(V)	(V)	Vxa (V)	lp(A)	10/1000µs	2 ms	(A)	(A)
ERZC05DK180 ERZC07DK180 ERZC10DK180 ERZC14DK180 ERZC20DK180	11	14	18(16-20)	40 36 36 36 36 36	1 2:5 5 10 20	0.4 0.9 2.1 4.0 11	0.3 0.8 1.5 3.5	100 250 500 1000 2000	50 125 250 500 1000
ERZC03DK220 ERZC05DK220 ERZC07DK220 ERZC10DK220 ERZC14DK220 ERZC20DK220	14	18	22(20-24)	48 48 43 43 43 43	0.5 1 2.5 5 10 20	0.5 1.1 2.5 5.0 14	0.16 0.4 0.9 2.0 4.0 13	50 100 250 500 1000 2000	25 50 125 250 500 1000
ERZC03DK270 ERZC05DK270 ERZC07DK270 ERZC10DK270 ERZC14DK270 ERZC20DK270	17	22	27(24-30)	60 60 53 53 53 53	0.5 1 2.5 5 10 20	 0.6 1.4 3.0 6.0	0.2 0.5 1.0 2.5 5.0	50 100 250 500 1000 2000	25 50 125 250 500 1000
ERZC05DK330 ERZC07DK330 ERZC10DK330 ERZC14DK330 ERZC20DK330	20	26	33(30-36)	73 65 65 65 65	1 2.5 5 10 20	0.8 1.7 4.0 7.5 23	0.6 1.2 3.0 6.0 20	100 250 500 1000 2000	50 125 250 500 1000
ERZC03DK390 ERZC05DK390 ERZC07DK390 ERZC10DK390 ERZC14DK390 ERZC20DK390	25	31	39(35-43)	86 86 77 77 77 77	0.5 1 2.5 5 10 20	0.9 2.1 4.6 8.6 26	0.32 0.8 1.5 3.5 7.0 24	50 100 250 500 1000 2000	25 50 125 250 500 1000

Part No.	Maxir Allow	/able	Varistor Voltage*	@ Test	g Voltage Current	Maxir Ene	rgy	Maxim Peak Cu (8/20	ırrent
	Volta	age		(8/20	J μs)	()	(J)		2 times
	ACrms(V)	DC(V)	(V)	Vxa (V)	Ip(A)	10/1000μs	2 ms	(A)	(A)
ERZC05DK470				104	1_	1.1	1.0	100	50
ERZC07DK470 ERZC10DK470	30	38	47(42-52)	93 93	2.5 5	2.5 5.5	1.8 4.5	250 500	125 250
ERZC14DK470	00	30	47 (42 32)	93	10	10	8.5	1000	500
ERZC20DK470	-			93	20	33	30	2000	1000
ERZC05DK560 ERZC07DK560				123 110	1 2.5	1.3 3.1	1.0 2.2	100 250	50 125
ERZC10DK560	35	45	56(50-62)	110	5	7.0	5.5	500	250
ERZC14DK560				110	10	11	10	1000	500
ERZC20DK560 ERZC05DK680	-			110	20	1.6	35 1.2	2000 100	1000
ERZC07DK680				135	2.5	3.6	2.5	250	125
ERZC10DK680	40	56	68(61-75)	135	5	8.2	6.5	500	250
ERZC14DK680 ERZC20DK680				135 135	10 20	14 46	12 40	1000 2000	500 1000
ERZC03DK820				145	2.5	-	0.68	2000	1000
ERZC05DK820				145	5	2.5	1.7	400	200
ERZC07DK820 ERZC10DK820	50	65	82(74-90)	135 135	10 25	5.5 12	3.5 8.0	1200 2500	600 1250
ERZC10DK820 ERZC14DK820	50	65	82(74-90)	135	50	22	8.0 14	4500	2500
ERZC20DK820				135	100	38	27	6500	4000
ERZC05DK101				175	5	3.0	2.0	400	200
ERZC07DK101 ERZC10DK101	60	85	100(90-110)	165 165	10 25	6.5	4.0 10	1200 2500	600 1250
ERZC14DK101	00		100(00 110)	165	50	28	18	4500	2500
ERZC20DK101				165	100	45	30	6500	4000
ERZC03DK121 ERZC05DK121				210 210	2.5 5	4.0	1.0 2.5	200 400	100 200
ERZC07DK121		{		200	10	7.8	5.0	1200	600
ERZC10DK121	75	100	120(108-132)	200	25	18	12	2500	1250
ERZC14DK121 ERZC20DK121				200 200	50 100	32 55	20 40	4500 6500	2500 4000
ERZC05DK151				260	5	4.8	3.0	400	200
ERZC07DK151				250	10	9.7	6.5	1200	600
ERZC10DK151 ERZC14DK151	95	125	150(135-165)	250 250	25 50	22 40	16 25	2500 4500	1250 2500
ERZC20DK151				250	100	70	50	6500	4000
ERZC05DK201				355	5	6.5	4.0	400	200
ERZC07DK201	100	170	000(105 005)	340	10	13	10	1200	600
ERZC10DK201 ERZC14DK201	130	170	200(185-225)	340 340	25 50	30 57	20 35	2500 4500	1250 2500
ERZC20DK201				340	100	95	70	6500	4000
ERZC05DK221				380	5	7.0	4.5	400	200
ERZC07DK221 ERZC10DK221	140	180	220(198-242)	360 360	10 25	14 32	10 23	1200 2500	600 1250
ERZC14DK221	1 10	100	220(100 2 12)	360	50	60	40	4500	2500
ERZC20DK221				360	100	100	75	6500	4000
ERZC03DK241 ERZC05DK241				415 415	2.5 5	8.0	2.0 5.0	200 400	100 200
ERZC07DK241	150	200	240(216-264)	395	10	15	10	1200	600
ERZC10DK241			, ,	395	25	35	25	2500	1250
ERZC14DK241 ERZC20DK241				395 395	50 100	63 108	40 80	4500 6500	2500 4000
ERZC05DK271				475	5	8.5	6.0	400	200
ERZC07DK271		00-	070/04= -0-1	455	10	18	12	1200	600
ERZC10DK271 ERZC14DK271	175	225	270(247-303)	455 455	25 50	40 70	30 50	2500 4500	1250 2500
ERZC20DK271				455	100	127	90	6500	4000
ERZC05DK361				620	5	10	7.5	400	200
ERZC07DK361 ERZC10DK361	230	300	360(334 306)	595	10	25	15 35	1200	600
ERZC10DK361 ERZC14DK361	230	300	360(324-396)	595 595	25 50	47 93	35 65	2500 4500	1250 2500
ERZC20DK361				595	100	163	120	6500	4000
ERZC05DK391				675	5	12	8.0	400	200
ERZC07DK391 ERZC10DK391	250	320	390(351-429)	650 650	10 25	25 60	17 40	1200 2500	600 1250
ERZC14DK391	200	320	333(301 120)	650	50	100	70	4500	2500
ERZC20DK391				650	100	180	130	6500	4000

Maximum Part No. Allowable Voltage		wable	Varistor Voltage*	Clamping @ Test	Current	Maxi Ene	ergy	Peak Cu	Maximum Peak Current (8/20 μs)	
	VOI	lage		8/20 μs)		(1)	1 times	2 times	
	ACrms(V)	DC(V)	(V)	Vxa (V)	lp(A)	10/1000µs	2 ms	(A)	(A)	
ERZC05DK431 ERZC07DK431 ERZC10DK431 ERZC14DK431 ERZC20DK431	275	350	430(387-473)	745 710 710 710 710	5 10 25 50 100	13 28 65 115 190	9.0 20 45 75 140	400 1200 2500 4500 6500	200 600 1250 2500 4000	
ERZC05DK471 ERZC07DK471 ERZC10DK471 ERZC14DK471 ERZC20DK471	300	385	470(423-517)	810 775 775 775 775	5 10 25 50 100	15 30 70 125 220	10 20 45 80 150	400 1200 2500 4500 6500	200 600 1250 2500 4000	
ERZC10DK621 ERZC14DK621 ERZC20DK621	385	505	620(558-682)	1025 1025 1025	25 50 100	70 125 220	45 85 150	2500 4500 6500	1250 2500 4000	
ERZC10DK681 ERZC14DK681 ERZC20DK681	420	560	680(612-748)	1120 1120 1120	25 50 100	70 130 230	45 90 160	2500 4500 6500	1250 2500 4000	
ERZC10DK751 ERZC14DK751 ERZC20DK751	460	615	750(675-825)	1240 1240 1240	25 50 100	75 143 255	50 100 175	2500 4500 6500	1250 2500 4000	
ERZC10DK781 ERZC14DK781 ERZC20DK781	485	640	780(702-858)	1290 1290 1290	25 50 100	80 148 265	50 105 180	2500 4500 6500	1250 2500 4000	
ERZC10DK821 ERZC14DK821 ERZC20DK821	510	670	820(738-902)	1355 1355 1355	25 50 100	85 157 282	55 110 190	2500 4500 6500	1250 2500 4000	
ERZC10DK911 ERZC14DK911 ERZC20DK911	550	745	910(819-1001)	1500 1500 1500	25 50 100	93 175 310	60 120 215	2500 4500 6500	1250 2500 4000	
ERZC10DK102 ERZC14DK102 ERZC20DK102	625	825	1000(900-1100)	1650 1650 1650	25 50 100	102 190 342	65 130 230	2500 4500 6500	1250 2500 4000	
ERZC10DK112 ERZC14DK112 ERZC20DK112	680	895	1100(990-1210)	1815 1815 1815	25 50 100	115 213 383	70 140 250	2500 4500 6500	1250 2500 4000	
ERZC14DK182 ERZC20DK182	1000	1465	1800(1620-1980)	2970 2970	50 100	337 625	240 400	4500 6500	2500 4000	

- Operating Temperature Range:40 to 85 °C
- $\bullet\,$ Storage Temperature Range: 40 to 125 °C
- * Varistor Voltage: 3 and 5 Series -Vo.1mA

Rated Power

7,10,14, 20 SeriesV1 mA

Part No.	Rated Power (W)	Part No.	Rated Power (W)	Part No.	Rated Power (W)
ERZC03DK220-390	0.004	ERZC14DK180-680	0.1	ERZC07DK820-471	0.25
ERZC05DK180-680	0.01	ERZC20DK180-680	0.2	ERZC10DK820-112	0.4
ERZC07DK180-680	0.02	ERZC03DK820-241	0.04	ERZC14DK820-182	0.6
ERZC10DK180-680	0.05	ERZC05DK820-471	0.1	ERZC20DK820-182	1.0

ULand CSA Recognized

Related Standards

Standard No.	UL1414	UL1449	UL4970	CSA Class 2221 01
Title	Across-The-Line Components (Varistors)	Transient Voltage Surge Suppressors	Secondary Protectors for Communication Circuit	Accessories and Parts For Electronic Products Varistor for Across-The- Line use as transient Protection on 120Vac nominal system
File Mo.	E62674 Vol. 5, 10	E86821 Vol. 1	E134178 Vol. 1	LR-92226

UL and CSA Recognized Components, and The AC Rated Voltage.

Part Number	Max. Allowa	able Voltage	Rated Voltage (Vrms)			
T di l'INDITION	ACrms (V)	DC (V)	UL1414	UL1449	CSA (class 2221 01)	
ERZC05DK820U						
ERZC07DK820U						
ERZC09DK820U	50	65	_	45		
ERZC10DK820U			(Not Applicable)		(Not Applicable)	
ERZC14DK820U			, , ,			
ERZC20DK820U						
ERZC05DK101U						
ERZC07DK101U						
ERZC09DK101U	60	85		55		
ERZC10DK101U	00	00	(Not Applicable)	00	(Not Applicable)	
ERZC14DK101U			(1101 Applicable)		(NOT Applicable)	
ERZC20DK101U						
ERZC05DK1010						
1						
ERZCOODK121U	7.5	100				
ERZC09DK121U	75	100	(NI=+ A== 11 - 11 1 1)	00	(NI=+ A = P = 5.15)	
ERZC10DK121U			(Not Applicable)	68	(Not Applicable)	
ERZC14DK121U						
ERZC20DK121U						
ERZC05DK151U						
ERZC07DK151U						
ERCZ09DK151U	95	125	_	86		
ERZC10DK151U			(Not Applicable)		(Not Applicable)	
ERZC14DK151U						
ERZC20DK151U						
ERZC05DK201□						
ERZC07DK201□						
ERZC09DK201						
ERZC10DK201□	130	170	125	118	118	
ERZC14DK201□						
ERZC20DK201□						
ERZC05DK221□						
ERZC07DK221□						
ERZC09DK221□	140	400	105	107	407	
ERZC10DK221□	140	180	125	127	127	
ERZC14DK221□						
ERZC20DK221□						
ERZC05DK241						
ERZC07DK241□						
ERZC09DK241□						
ERZC10DK241□	150	200	125	136	136	
ERZC14DK241□						
ERZC20DK241						
ERZC05DK271□						
ERZC07DK271						
ERZC09DK271						
ERZC10DK271	175	225	125	159	159	
ERZC14DK271						
ERZC20DK271						
			Suffix I I for I II recognized			

 \square : Suffix U for UL recognized components

"W" for UL and CSA recognized connponents

UL and CSA Recognized Components and The AC Rated Voltage

Part Number	Max. Allowa	able Voltage		Rated Voltage (Vrms)			
rait Nullipel	ACrms (V)	DC (V)	UL1414	UL1449	CSA (class 2221 01)		
ERZC05DK361□							
ERZC07DK361□	}						
ERZC09DK361□	230	300	125	209	209		
ERZC10DK361□	200	300	120	209	209		
ERZC14DK361□							
ERZC20DK361□							
ERZC05DK391□							
ERZC07DK391□							
ERZC09DK391□							
ERZC10DK391□	250	320	125	227	227		
ERZC14DK391□							
ERZC20DK391□							
ERZC05DK431□							
ERZC07DK431							
ERZC09DK431							
ERZC10DK431	275	350	125	250	250		
ERZC14DK431	210	000	120	200	200		
ERZC20DK431							
ERZC05DK471							
ERZC07DK471							
ERZC09DK471							
ERZC10DK471□	300	385	125	272	272		
ERZC14DK471	300	360	125	212	212		
ERZC20DK471							
ERZC20DK471							
	005	EOE	105	250	250		
ERZC14DK621	385	505	125	350	350		
ERZC20DK621							
ERZC10DK681	400	F00	105	004	001		
ERZC14DK681	420	560	125	381	381		
ERZC20DK681							
ERZC10DK751		0.15			110		
ERZC14DK751	460	615	125	418	418		
ERZC20DK751□							
ERZC10DK781□							
ERZC14DK781□	485	640	125	440	440		
ERZC20DK781□							
ERZC10DK821							
ERZC14DK821□	510	670	125	463	463		
ERZC20DK821□							
ERZC10DK911							
ERZC14DK911□	550	745	125	500	500		
ERZC20DK911				-			
ERZC10DK102							
ERZC14DK102	625	825	125	568	568		
ERZC20DK102□							
ERZC10DK112□							
ERZC14DK112□	680	895	125	600	600		
ERZC20DK112□							
ERZC14DK182□	1000	1465	125	600	600		
ERZC20DK182□	1000	1400	120	000	000		

 $[\]hfill \square$: Suffix U for UL recognized components $\hfill \text{``W''} \text{ for UL and CSA recognized connponents}$

3 Series Dimensions in mm (not to scale)

Part No.	D max.	Tmax.	W	H max.	L	Shape and Dimensions
ERZC03DK220		3.5				D T
ERZC03DK270						
ERZC03DK390	7.5	4.0	5.0±1.0	6.5	1.5±10	Abbrevation
ERZC03DK820						φ0.6 of part No Ε. 0.9 %
ERZC03DK121						
ERZC03DK241		4.5			2.2±1.0	w July

5 Series Dimensions in mm (not to scale)

Part No.	D max.	T max.	W	Umov	T .	Shape and Dimensions	
	D max.	i max.	VV	H max.	L	Shape and Dimensions	
ERZC05DK180					}	1	
ERZC05DK220							
ERZC05DK270							
ERZC05DK330							
ERZC05DK390	7.5	4.5	5.0±1.0	10.0	1.5±10	. D .	
ERZC05DK470						 - - 	
ERZC05DK560							
ERZC05DK680							
ERZC05DK820						→ / + ! ! !	
ERZC05DK101		4.7			1.6±1.0		
ERZC05DK121		4.8			1.8±1.0	0.6 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	
ERZC05DK151		5.0			2.0±1.0		
ERZC05DK201		5.2			2.0±1.0	3.0 25.0 m	
ERZC05DK221		5.3			2.1±1.0		
ERZC05DK241	7.0	5.4	50±10	10.0	2.2±1.0		
ERZC05DK271		5.6			2.4±1.0		
ERZC05DK361		6.2			3.0±1.0	→ W ← → L ←	
ERZC05DK391		6.4			3.2±1.0		
ERZC05DK431		6.7			3.5±1.0		
ERZC05DK471		7.0			3.8±1.0		

7 Series Dimensions in mm (not to scale)

/ Series Dime	ensions in m	ım (not to	scale)			
Part No.	D max.	T max.	W	H max.	L	Shape and Dimensions
ERZC07DK180		4.5			1.3±1.0	
ERZC07DK220		4.6				1.4±1.0
ERZC07DK270		4.7			1.5±1.0	
ERZC07DK330		4.9			1.7±1.0	
ERZC07DK390		4.8			1.7±1.0	D al alti-
ERZC07DK470		4.9			1.8±1.0	
ERZC07DK560		5.0			1.9±1.0	
ERZC07DK680		5.2		12.0	2.1±1.0	(), ±
ERZC07DK820		4.6			1.6±1.0	
ERZC07DK101		4.7			1.6±1.0	
ERZC07DK121	9.0	4.8	5.0±1.0		1.8±1.0	<u>φ0.6</u>
ERZC07DK151		5.0			2.0±1.0	30 m m 255.0 min.
ERZC07DK201		5.2			2.0±1.0	33.00
ERZC07DK221		5.3			2.1±1.0	
ERZC07DK241		5.4			2.2±1.0	₩ ₩ ₩ <u>₩</u>
ERZC07DK271		5.6			2.4±1.0	W L
ERZC07DK361		6.2			3.0±1.0	
ERZC07DK391		6.4			3.2±1.0	
ERZC07DK431		6.7			3.5±1.0	
ERZC07DK471		7.0			3.8±1.0	

10 Series Dimensions in mm (not to scale)

Part No.	D max.	T max.	W	H max.	L	Shape and Dimensions
ERZC10DK180		4.6			1.3±1.0	
ERZC10DK220		4.7			1.4±1.0	
ERZC10DK270		4.8			1.5±1.0	
ERZC10DK330		5.0			1.7±1.0	
ERZC10DK390		5.1			1.8±1.0	
ERZC10DK470		5.0			1.7±1.0	
ERZC10DK560		5.1			1.9±1.0	D .
ERZC10DK680	13.5	5.3		16 .5	2.2±1.0	
ERZC10DK820		5.0			1.6±1.0	
ERZC10DK101		5.1			1.8±1.0	(),
ERZC10DK121		5.2			2.0±1.0	
ERZC10DK151		5.5			2.2±1.0	
ERZC10DK201		5.6			2.2±1.0	φ0.8 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
ERZC10DK221		5.7	7.5±1.0		2.3±1.0	11 11 01 1111 E1
ERZC10DK241		5.8			2.4±1.0	3.3
ERZC10DK271		6.1			2.6±1.0	
ERZC10DK361		6.7			3.2±1.0	Ų Ų <u>↓</u>
ERZC10DK391		6.8			3.4±10	- W - L
ERZC10DK431		7.2			3.7±1.0	
ERZC10DK471		7.5			4.0±1.0	
ERZC10DK621		7.2			3.8±1.0	
ERZC10DK881	14.0	7.5		17.0	4.1±1.0	
ERZC10DK751		7.8			4.4±1.0	
ERZC10DK781		7.9			4.5±1.0	
ERZC10DK821		8.1			4.7±1.0	
ERZC10DK911		8.6			5.2±1.0	
ERZC10DK102		9.0			5.6±1.0	
ERZC10DK112		9.5			6.1±1.0	

14 Series Dimensions in mm (not to scale)

Part No.	D max.	T max.	W	H max.	L	Shape and Dimensions
ERZC14DK180		4.6			1.3±1.0	
ERZC14DK220		4.7			1.4±1.0	
ERZC14DK270		4.8			1.5±1.0	
ERZC14DK330		5.0			1.7±1.0	
ERZC14DK390		5.1			1.8±1.0	
ERZC14DK470		5.0			1.7±1.0	
ERZC14DK560		5.1			1.9±1.0	
ERZC14DK660	17.0	5.3		20.0	2.2±1.0	D
ERZC14DK820		5.0			1.6±1.0	
ERZC14DK101		5.1			1.8±1.0	
ERZC14DK121		5.2			2.0±1.0	() =
ERZC14DK151		5.5			2.2±1.0	
ERZC14DK201		5.6			2.2±1.0	
ERZC14DK221		5.7	7.5±1.0		2.3±1.0	3.0 max 8.0¢
ERZC14DK241		5.8			2.4±1.0	
ERZC14DK271		6.1			2.6±1.0	3.0 min 255.0 mi
ERZC14DK361		6.7			3.2±1.0	
ERZC14DK391		6.8			3.4±1.0	↓ ↓
ERZC14DK431		7.2			3.7±1.0	- W
ERZC14DK471		7.5			4.0±1.0	-1001-
ERZC14DK621		7.2			3.8±1.0	
ERZC14DK681		7.5		20.5	4.1±1.0	
ERZC14DK751	17.5	7.8			4.4±1.0	Mr.
ERZC14DK781		7.9			4.5±1.0	
ERZC14DK821		8.1			4.7±1.0	
ERZC14DK911		8.6			5.2±1.0	
ERZC14DK102		9.0	-		5.6±1.0	
ERZC14DK112		9.5	* W2		6.1±1.0	
ERZC14DK182		14.0	15.0±1.0*	22.0	9.5±2.0	

20 Series Dimensions in mm (not to scale)

Part No.	D max.	T max.	W	H max.	L	Shape and Dimensions
ERZC20DK180		5.1			1.5± 1.0	
ERZC20DK220		5.2			1.6±1.0	
ERZC20DK270		5.3]		1.7±1.0	
ERZC20DK330		5.5			1.9±1.0	
ERZC20DK390		5.5			1.9±1.0	
ERZC20DK470		5.6			1.9±1.0	
ERZC20DK560		5.7			2.1±1.0	D _ STL
ERZC20DK680	23.0	5.8		27.0	2.4±1.0	
ERZC20DK820	20.0	5.5		27.0	1.8±1.0	
ERZC20DK101		5.6]		2.0±1.0	
ERZC20DK121		5.7	}		2.2±1.0	
ERZC20DK151		5.9	10.0±10		2.4±1.0	Y T T W
ERZC20DK201		6.0			2.4±1.0	φ1.0 ×
ERZC20DK221		6.2			2.6±1.0	3.0 max.
ERZC20DK241		6.3			2.7±1.0	3.0 max
ERZC20DK271		6.5]]		2.9±1.0	52
ERZC20DK361		7.2			3.5±1.0	
ERZC20DK391		7.4			3.7±1.0	
ERZC20DK431		7.7			4.0±1.0	W L
ERZC20DK471		8.0			4.3±1.0	
ERZC20DK621		7.6			4.1±1.0	
ERZC20DK681	24.0	7.9	_	28.0	4.4±1.0	Ws y
ERZC20DK751	24.0	8.3		20.0	4.8±1.0	Y
ERZC20DK781		8.4			4.9±1.0	
ERZC20DK821		8.6			5.1±1.0	
ERZC20DK911		9.1			5.6±1.0	
ERZC20DK102		9.5			6.0±1.0	
ERZC20DK112		10.0	*W2		6.5±1.0	
ERZC20DK182	25.0	14.0	15.0±1.0*	30.0	9.5±2.0	

Performance Characteristics (Electrical)

Characteristics	Test Methods/Description	Specifications
Standard Test Condition	Environmental conditions under which every measuring is done without doubt about the measuring results. Unless specially specified, temperature, relative humidity are 5 to 35 °C, 45 to 85 % RH.	_
Varistor Voltage	The voltage between two terminals with the specified measuring current CmA DC applied is called Vc or VCmA. The measurement shall be made as fast as possible to avoid heat affection.	
Maximum Allowable Voltage	The maximum sinusoidal HMS voltage or maximum DC voltage that can be applied continuously in the specified environmental temperature range.	
Clamping Voltage	The maximum voltage between two terminals with the specified standard impulse current (8/20 µs) illustrated below applied. Crest value 20 µs Time Impulse Width	To meet the specified value.

Performance Characteristics (Electrical)

Characteristics	S		Test Methods/D	escription			Specifications			
Rated Power		The maxim temperatur	um power that can be applied e.	at the specified	ambient					
Maximum Energy			um energy within a varistor vo e of 2 ms or 10/1000 µ s is ap		±10% wher	1	To meet the specified value			
Maximum Peak Current Withstanding	2 times		um current within a varistor vod impulse current (8/20 μ s) as.							
Surge Current	1 time	The maxim the standar	um current within a varistor vod impulse current (8/20 μs) is	oltage change of applied one time	±10% whe	า				
Temperature Coef of Varistor Voltage		Vc at 85°C Vc at 2	- Vc at 25°C x 1/60 x 100 (%/	(C)			0 to -0.05 %/°C max			
Capacitance			e shall be measured at 1 kHz pF), 0 V bias and 20±2°C.	±10%, 1 Vrms	max. (1 MH	lz ±10%	To meet the			
Dissipation Factor			Factor shall be measured at 0%below 100 pF), 0 V bias a		/rms max.		specified value.			
		connected	ed voltage shall be applied to together, with metal foil close ctrical breakdown shall be exa	ly wrapped arou	f the specim nd its body f	en for 1				
Withstanding Volta (Body Insulation)	ige		Classification (Nominal varistor voltage)	Test Voltage (AC)			No breakdown			
			V0.1 mA, V1 mA≤330 V	1000 Vrms						
			V0.1mA, V1mA>330 V	1500 Vrms						
			e of Vc shall be measured afte s continuously with ten secon	•		• •				
		3 Series	ERZC03DK220 to ERZC	03DK390	0.2 A	(2 ms)				
		3 Series	ERZC03DK820 to ERZC03DK241 8 A (8/20 μs)							
		5 Series	ERZC05DK180 to ERZC05DK680 0.5 A (2 ms)				_			
	1	0 061163	ERZC05DK820 to ERZC05DK471 20 A (8/2							
Impulse Life (${f I}$)		7 Series	ERZC07DK180 to ERZC	(8/20 µs)	ΔVCmA/VCmA					
			ERZC07DK820 to ERZC07DK411 50 A (8/20 μs) ERZC10DK180 to ERZC10DK680 50 A (8/20 μs)				≦±10%			
		10 Series	10 Series ERZC10DK180 to ERZC10DK680 50							
			ERZC10DK820 to ERZC	10DK112	100 A	(8/20 µs)				
		14 Series	ERZC14DK180 to ERZC	14DK680	75 A	(8/20 μs)				
			ERZC14DK820 to ERZC		150 A	(8/20 μs)				
		20 Series	ERZC20DK180 to ERZC	20DK680	120 A	(8/20 μs)				
		20 001100	ERZC20DK820 to ERZC	20DK182	200 A	(8/20 µs)				
		0	of Vc shall be measured after es continuously with ten seco							
		2 Cories	ERZC03DK220 to ERZC	03DK390	0.18 A	(2 ms)				
		3 Series	ERZC03DK820 to ERZC	03DK241	6 A	(8/20 µs)				
		5 Corios	ERZC05DK180 to ERZC	05DK680	0.45 A	(2 ms)				
		5 Series	ERZC05DK820 to ERZC	05DK471	14 A	(8/20 µs)				
7 Series			ERZC07DK180 to ERZC	07DK680	12 A	(8/20 µs)	ΔVCmA/VCmA			
Impulse Life (II)		ERZC07DK820 to ERZC	35 A	(8/20 µs)	≦±10%					
10 Series			ERZC10DK180 to ERZC10DK680 35 A (8/20 μs)							
		10 Series	ERZC10DK820 to ERZC	C10DK112	70 A	(8/20 µs)				
		14 Carias	ERZC14DK180 to ERZC	14DK680	45 A	(8/20 µs)				
		14 Series	ERZC14DK820 to ERZC	C14DK182	90 A	(8/20 µs)				
		00.0	ERZC20DK180 to ERZC	20DK680	55 A	(8/20 µs)				
		20 Series	ERZC20DK820 to ERZC	20DK182	100 A	(8/20 µs)				

Note: Varistor Voltage change of forward direction shall be measured in the test of uni-pole surge life and DC load life.

Explanation of Part Numbers -(Crimped Leads)

Dimensions in mm (not to scale)

Taped ZNR's

Explanation of Part Numbers (Crimped Leads and Taped)

Explanation of Part Numbers (Straight Leads and Taped)

Dimensions in mm (not to scale)

Symbol	Dimensions					
P	12.7±1.0					
P _o	12.7±0.3					
P ₁	3.85±0.70					
P ₂	6.35±1.30					
ød	0.60+0.06					
F	5.0±0.5					
Δh	0±2					
W	18.0 ^{+1.0}					
W _o	5.0 min.					
W_0 W_1 W_2	9.0±0.5					
W_2	3 max.					
Н	Approx. 22					
H _o	17.0±0.5					
Q	1 max.					
øD _o	ø4.0±0.2					
t	0.6±0.3					
L	11 max.					

Dimensions in mm (not to scale)

[Straight Leads and Taped]

Symbol	Dimensions					
Р	12.7±1.0					
P_0	12.7±0.3					
P ₁	3.85±0.70					
P_2	6.35±1.30					
ød	0.60+0.06					
F	5.0±0.5					
Δh	0±2					
W	18.0 ^{+1.0}					
W_{o}	5.0 min.					
W_1	9.0±0.5					
W_2	3 max.					
Н	Approx. 20					
H _o	17.0±0.5					
Q	1 max.					
øD₀	ø4.0±0.2					
t	0.6±0.3					
L	11 max.					

Note Relevant Specification: EIAJ

Packaging Specifications

		Flat Box		Reel		
Dimensions in mm (not to scale)		G.				
	Α	55 max.	W	Approx. 44		
	В	330 max. (185/220)	D	360 max.		
	С	340 max.	A	Approx. ø30		
			В	Approx. ø90		
Quantity		1000 pcs.		1000 pcs.		
Part No.	ERZTCLIAK18	0 to 271 (Straight Leads and Taped)	ERZTC BK361 to 471 (Straight Leads and Taped)			
L	ERZTC VK180	to 271 (Crimped Leads and Taped)	ERZTC□WK361	to 471 (Crimped Leads and Taped)		

- Large Surge Current Ratings (approx. 5000A/cm²)
- Excellent Energy Ratings (approx . 250J/cm³)
- All Standard Products are under UL recognition.

Explanation of Part Numbers

5 Series:

Ratings and Characteristics

Varistor Voltage Part No.		Max. Allowable Voltage		Clamping Voltage	Power	Energy (Joule)		Surge Current 8/20ms. (A)		Capacitance (1kHz)
raitivo.	V1mA DC(V)	ACrms (V)	DC (V)	V5A max (V)	(VV)	10/1000 (μs)	2 (ms.)	1 (Time)	2 (Times)	max. (pF)
ERZVO5D820	82 (74-90)	50	65	145	0.1	3.5	2.5	800	600	460
ERZVO5D201	200(185-225)	130	170	355	0.1	8.5	6.0	800	600	120
ER2VO5D221	220(198-242)	140	180	380	0.1	9.0	6.5	800	600	110
ERZVO5D241	240(216-264)	150	200	415	0.1	10.5	7.5	800	600	100
ERZVO5D271	270(247-303)	175	225	475	0.1	11.0	8.0	800	600	90*
ERZVO5D331	330(297-363)	210	270	570	0.1	13.0	9.5	800	600	80*
ERZVO5D471	470(423-517)	300	385	810	0.1	21.0	15.0	800	600	60*

^{*} Measured at 1MHz.

Dimensions in mm (not to scale)

Part No.	D max.	T max.	W ±1	H max.	L ±1
ERZV05D820	7.0	4.1	5	10.0	1.4
ERZV05D201	7.0	4.4	5	10.0	1.7
ERZV05D221	7.0	4.5	5	10.0	1.8
ERZV05D241	7.0	4.6	5	10.0	1.9
ERZV05D271	7.0	4.8	5	10.0	2.1
ERZV05D331	7.0	5.1	5	10.0	2.4
ERZV05D471	7.0	5.8	5	10.0	3.1

7 Series:

Ratings and Characteristics

Part. No.	Varistor Voltage			Clamping Power Voltage		Energy (Joule)		Surge Current 8/20ms. (A)		Capacitance (1kHz)
r art. INO.	V1mA DC(V)	ACrms (V)	DC (V)	V10A max (V)	(VV)	10/1000 (μs)	2 (ms)	1 (Time)	2 (Times)	max. (pF)
ERZV07D820 ERZV07D201 ERZV07D221 ERZV07D241 ERZV07D271 ERZV07D331 ERZV07D471 ERZV07D511	82(74-90) 200(185-225) 220(198-242) 240(216-264) 270(247-303) 330(297-363) 470(423-517) 510(459-561)	50 130 140 150 175 210 300 320	65 170 180 200 225 270 385 410	135 340 360 395 455 545 775 845	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	7 17.5 19 21 24 28 42 45	5 12.5 13.5 15 17 20 30 32	1750 1750 1750 1750 1750 1750 1750 1750	1250 1250 1250 1250 1250 1250 1250 1250	810 200 190 170 150 130 100 90*

^{*} Measured at 1 MHz.

Dimensions in mm (not to scale)

Part No.	D	T	W	H	L
	max.	max.	±1	max.	±1
ERZV07D820 ERZV07D201 ERZV07D221 ERZV07D241 ERZV07D271 ERZV07D331 ERZV07D471 ERZV07D511	8.5 8.5 8.5 8.5 8.5 8.5 8.5	4.1 4.4 4.5 4.6 4.8 5.1 5.8 6.0	55555555	11.5 11.5 11.5 11.5 11.5 11.5 11.5	1.4 1.7 1.8 1.9 2.1 2.4 3.1 3.3

10 Series:

Ratings and Characteristics

Varistor Voltage Part, No.		Max. Allowable Voltage		Clamping Voltage	Power	Energy (Joule)		Surge Current 8/20ms. (A)		Capacitance (1kHz)
V1mA DC(V)	ACrms (V)	DC (V)	V25A max (V)	(VV)	10/1000 (μs)	2 (ms)	1 (Time)	2 (Times)	max. (pF)	
ERZV10D820 ERZV10D201 ERZV10D221 ERZV10D241 ERZV10D271 ERZV10D331 ERZV10D511 ERZV10D821 ERZV10D911 ERZV10D112 ERZV10D112 ERZV10D112	82 (74-90) 200 (185-225) 220 (198-242) 240 (216-264) 270 (247-303) 330 (297-363) 470 (423-517) 510 (459-561) 820 (738-902) 910 (819-1001) 1100 (990-1210) 1800 (1700-1980)	50 130 140 150 175 210 300 320 510 550 680 1200	65 170 180 200 225 270 385 410 670 745 895 1580	135 340 360 395 455 545 775 845 1355 1500 1815 2970	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	14 35 39 42 49 58 85 92 110 130 155 247	10 25 27.5 30 35 42 60 67 80 90 110 183	3500 3500 3500 3500 3500 3500 3500 3500	2500 2500 2500 2500 2500 2500 2500 2500	2000 430 410 380 350 300 230 210 140 120 110 70*

^{*} Measured at 1 MHz.

Dimensions in mm (not to scale)

Part No.	D max.	T max.	W ±1	H max.	L ±1	øD
ERZV10D820 ERZV10D201 ERZV10D221 ERZV10D241 ERZV10D271 ERZV10D331 ERZV10D471 ERZV10D511 ERZV10D821 ERZV10D911 ERZV10D112 ERZV10D112	11.5 11.5 11.5 11.5 11.5 11.5 12.5 12.5	4.5 4.8 4.9 5.0 5.2 5.5 6.2 6.4 8.6 9.7 14.4	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	14.5 14.5 14.5 14.5 14.5 14.5 15.5 15.5	1.6 1.9 2.0 2.1 2.3 2.6 3.3 3.5 5.7 6.8 *B10.5	0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
			*A: W2		*B ±2	

14 Series: Ratings and Characteristics

Part No.	Varistor Voltage	Max. Allowable Voltage		Clamping Voltage	Power	Energy (Joule)		Surge Current 8/20ms. (A)		Capacitance (1kHz)
Tartino.	V _{1mA} DC(V)	ACrms (V)	DC (V)	V50A max (V)	(W)	10/1000 (μs)	2 (ms.)	1 (Time)	(Times)	max. (pF)
ERZV14D820	82 (74-90)	50	65	135	0.6	28	20	6000	4500	3700
ERZV14D201	200 (185-225)	130	170	340	0.6	70	50	6000	4500	770
ERZV14D221	220 (198-242)	140	180	360	0.6	78	55	6000	4500	740
ERZV14D241	240 (216-264)	150	200	395	0.6	84	60	6000	4500	700
ERZV14D271	270 (247-303)	175	225	455	0.6	99	70	6000	4500	640
ERZV14D331	330 (297-363)	210	270	545	0.6	115	80	6000	4500	580
ERZV14D471	470 (423-517)	300	385	775	0.6	175	125	6000	4500	400
ERZV14D511	510 (459-561)	320	410	845	0.6	190	136	6000	4500	350
ERZV14D821	820 (738-902)	510	670	1355	0.6	235	165	6000	4500	280
ERZV14D911	910 (819-1001)	550	745	1500	0.6	255	180	6000	4500	250
ERZV14D112	1100 (990-1210)	680	895	1815	0.6	310	220	6000	4500	210
ERZV14D182	1800 (1700-1980)	1200	1580	1970	0.6	510	360	6000	4500	120

Dimensions in mm (not to scale)

Part No.	D max.	T max.	W ±1	H max.	L ±1	φd
ERZV14D820	15.5	4.5	7.5	18.5	1.6	0.8
ERZV14D201	15.5	4.8	7.5	18.5	1.9	0.8
ERZV14D221	15.5	4.9	7.5	18.5	2.0	0.8
ERZV14D241	15.5	5.0	7.5	18.5	2.1	0.8
ERZV14D271	15.5	5.2	7.5	18.5	2.3	0.8
ERZV14D331	15.5	5.5	7.5	18.5	2.6	0.8
ERZV14D471	15.5	6.2	7.5	18.5	3.3	0.8
ERZV14D511	15.5	6.4	7.5	18.5	3.5	0.8
ERZV14D821	16.0	8.1	7.5	19.0	5.2	0.8
ERZV14D911	16.0	8.6	7.5	19.0	5.7	0.8
ERZV14D112	16.0	9.7	7.6	19.0	6.8	0.8
ERZV14D182	17.0	14.4	*A15.0	20.5	*B10.5	0.8
			*A W2		*B ±2	

Dimensions in mm (not to scale)

Part No.	D max.	T max.	W ±1	H max.	L ±1	фа
ERZV20D820	21.5	4.9	10.0	24.5	1.8	1.0
ERZV20D201	21.5	5.2	10.0	24.5	2.1	1.0
ERZV20D221	21.5	5.3	10.0	24.5	2.2	1.0
ERZV20D241	21.5	5.4	10.0	24.5	2.3	1.0
ERZV20D271	21.5	5.6	10.0	24.5	2.5	1.0
ERZV20D331	21.5	5.9	10.0	24.5	2.8	1.0
ERZV20D471	21.5	6.6	10.0	24.5	3.5	1.0
ERZV20D511	21.5	6.8	10.0	24.5	3.7	1.0
ERZV20D821	22.5	8.5	10.0	25.5	5.4	1.0
ERZV20D911	22.5	9.0	10.0	25.5	5.9	1.0
ERZV20D112	22.5	10.1	10.0	25.5	7.0	1.0
ERZV20D182	23.5	14.8	*A15.0	28.0	*B10.7	1.0
			*A W2		*B ±2	

20 Series: Ratings and Characteristics

Part No.	Varistor Voltage	Max. Allo Volta		Clamping Voltage	Power	Ene (Jou			Current ms. (A)	Capacitance (1kHz)
Fait No.	V _{1mA} DC(V)	ACrms (V)	DC (V)	V100A max (V)	(VV)	10/1000 (μs)	2 (ms.)	1 (Time)	2 (Times)	max. (pF)
ERZV20D820	82 (74-90)	50	65	135	1.0	56	40	10000	6500	7500
ERZV20D201	200 (185-225)	130	170	340	1.0	140	100	10000	6500	1700
ERZV20D221	220 (198-242)	140	180	360	1.0	155	110	10000	6500	1600
ERZV20D241	240 (216-264)	150	200	395	1.0	168	120	10000	6500	1500
ERZV20D271	270 (247-303)	175	225	455	1.0	190	135	10000	6500	1300
ERZV20D331	330 (297-363)	210	270	545	1.0	228	160	10000	6500	1100
ERZV20D471	470 (423-517)	300	385	775	1.0	350	250	10000	6500	900
ERZV20D511	510 (459-561)	320	410	845	1.0	382	273	10000	6500	800
ERZV20D821	820 (738-902)	510	670	1355	1.0	460	325	7000	6500	530
ERZV20D911	910 (819-1001)	550	745	1500	1.0	510	360	7000	6500	500
ERZV20D112	1100 (990-1210)	680	895	1815	1.0	620	440	7000	6500	400
ERZV20D182	1800 (1700-1980)	1200	1580	2970	1.0	1020	720	7000	6500	250

- Designed for flow/reflow soldering
- Excellent response against high steep surge voltage
- · Compact package with large withstanding surge capability
- Low Clamping Voltage for better surge protection

Explanation of Part Numbers

Ratings and Characteristics (Type CF)

Part No	Varistor Voltage	Maxim Allowa Volta	able	Maximum Clamping Voltage*	Rated Power	Energy (2ms)	Maximum Peak Currert (8/20 µs, 2 times)
	V0.1mA (V)	ACrms (V)	DC (V)	Vxa (V)	(VV)	(J)	(A)
ERZCF ☐ MK220	22 (20 – 25)	14	18	48	0.01	0.4	50
ERZCF ☐ MK270	27 (24 – 30)	17	22	60	0 01	0.5	50
ERZCF ☐ MK330	33 (30 – 36)	20	26	73	0.01	0.6	50
ERZCF MK390	39 (35 – 43)	25	31	86	0.01	0.8	50
ERZCF ☐ MK470	47 (42 – 52)	30	38	104	0.01	1.0	50
ERZCF MK560	56 (50 – 62)	35	45	123	0.01	1.0	50
ERZCF 🗆 MK680	68 (61 – 75)	40	56	150	0.01	1.2	50
ERZCF 🗆 MK820	82 (74 – 90)	50	65	145	0.1	1.7	200
ERZCF MK101	100 (90 – 110)	60	85	175	0.1	2.0	200
ERZCF MK121	120 (108 – 132)	75	100	210	0.1	2.5	200
ERZCF ☐ MK151	150 (135 – 165)	95	125	260	0.1	3.0	200
ERZCF MK201	200 (185 – 225)	130	170	355	0.1	4.0	200
ERZCF MK221	220 (198 – 242)	140	180	380	0.1	4.5	200
ERZCF MK241	240 (216 – 264)	150	200	415	0.1	5.0	200
ERZCF ☐ MK271	270 (247 – 303)	175	225	475	0.1	6.0	200
ERZCF ☐ MK361	360 (324 – 396)	230	300	620	0.1	6.0	200
ERZCF MK391	390 (351 – 429)	250	320	675	0.1	6.0	200
ERZCF ☐ MK431	430 (387 – 473)	275	350	745	0.1	6.3	200
ERZCF □ MK471	470 (423 – 517)	300	385	810	0.1	7.0	200

- * Measuring Current of Maximum Clamping VColtage is following: For Varistor Voltage of 22 to 68 V: xA=1A For Varistor Voltage of 82 to 470 V: xA=5A
- Temperature Characteristics of Varistor Voltage 0 to -0.05 %/°C
- Operating Temperature Range: -40 to 85°C
- Storage Temperature Range: -40 to 125°C

Ratings and Characteristics (Type SF)

Part No.	Varistor Voltage	Allov	imum wable tage	Maximum Clamping Voltage*	Rated Power	Energy (ms)	Maximum Peak Current (8/20ms, 2 times)
	V1 mA (V)	ACrms (V)	DC (V)	Vxa (V)	(W)	(J)	(A)
ERZSF □ MK220	22 (20 – 25)	14	18	43	0.02	0.9	125
ERZSF ☐ MK270	27 (24 – 30)	17	22	53	0.02	1.0	125
ERZSF □ MK330	33 (30 – 36)	20	26	65	0.02	1.2	125
ERZSF ☐ MK390	39 (35 – 43)	25	31	77	0.02	1.5	125
ERZSF ☐ MK470	47 (42 – 52)	30	38	93	0.02	1.8	125
ERZSF ☐ MK560	56 (50 – 62)	35	45	110	0.02	2.2	125
ERZSF ☐ MK680	68 (61 – 75)	40	56	135	0.02	2.5	125
ERZSF ☐ MK820	82 (74 – 90)	50	65	135	0.25	3.5	600
ERZSF MK121	120 (108 – 132)	75	100	200	0.25	5.0	600
ERZSF ☐ MK221	220 (198 – 242)	140	180	360	0.25	9.0	600
ERZSF ☐ MK241	240 (216 – 264)	150	200	395	0.25	10.0	600
ERZSF ☐ MK271	270 (247 – 303)	175	225	455	0.25	12.0	600
ERZSF ☐ MK391	390 (351 – 429)	250	320	650	0.25	12.0	400
ERZSF MK471	470 (423 – 517)	300	385	775	0.25	14.0	400

Performance Characteristics

(Electrical)

Characteristics	Test Methods	Specifications
Standard Test Condition	Unless otherwise specified Temperature 5 to 35°C Relative humidity: 45 to 85% RH	_
Varistor Voltage	The voltage between two terminals with the specified measuring current CmA DC applied is called Vc or Vcma. The measurement shall be made as fast as possible to avoid heat affection.	
Maximum Allowable Voltage	The recommended maximum sinusoidal wave voltage (rms) or the maximum DC voltage that can be applied continuously.	
Maximum Clamping Voltage	The maximum voltage between two terminals with the specified impulse current (8/20 µs).	To meet the specified value.
Rated Power	The maximum power that can be applied within the specified ambient temperature.	
Energy	Maximum energy at less than ± 10 % of varistor voltage change when the standard impulse (2 ms) is applied one time.	
Maximum Peak Current	Maximum current at less than ± 10 % of varistor voltage change when impulse current (8/20 μ s) is applied two times continuously with the interval of 5 minutes.	
Temperature Coefficient of Varistor Voltage	<u>Vc at 85°C − Vc at 25°C</u> x 1/60 x 100 (%/°C)	0 to -0.05%/°C

Construction

Dimensions in mm (not to scale)

Packaging Specifications Standard Packing Quantity

Size	Code	Style hickness (mm)	Embossed taping	Bulk	
	CF/SF	3.2±0.3	2000 pcs./reel	500 pcs./bag	

Reel

Embossed taping

Symbol	А	В	С	D	E	
Dim. (mm)	382 max.	50 min.	13±0.5	21±0.8	2.0 ± 0.5	

Symbol	W	Т	t	r
Dim. (mm)	16.4 +2.0	22.4 max.	2.5±0.5	1.0

Symbol	Α	В	W	F	E	P ₁
Dim. (mm)	6.8 max.	11.9 max.	16	7.5	1.75	8

Symbol	P ₂	P _o	øD _o	t,	t ₂
Dim. (mm)	2.0	4.0	1.5	0.6 max.	6.5 max.

1. Soldering Methods

Soldering Method	Recommended Conditions	Suggestions
Flow Soldering	260 °C within 5 seconds	Gas removal is recommended to keep good solderability at high density mounting of components.

Reflow 230 °0 Soldering 10 sec	within onds with the size of terminal surface, part may be ill-situated at solder melting.
-----------------------------------	--

Panasonic