Numerikus módszerek 1.

8. előadás: Iterációs módszerek LER megoldására, Jacobi- és csillapított Jacobi-iteráció

Dr. Bozsik József

ELTE IK

Tartalomjegyzék

- 1 lterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 6 Csillapított Jacobi-iteráció
- 6 Matlab példák

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Tekintsük a következő leképezést:

$$\varphi \colon \mathbb{R}^n \to \mathbb{R}^n, \quad \varphi(x) = Bx + c,$$

ahol a $B \in \mathbb{R}^{n \times n}$ mátrixot átmenet mátrixnak nevezik és $c \in \mathbb{R}^n$,

Tekintsük a következő leképezést:

$$\varphi \colon \mathbb{R}^n \to \mathbb{R}^n, \quad \varphi(x) = Bx + c,$$

ahol a $B \in \mathbb{R}^{n \times n}$ mátrixot *átmenet mátrixnak* nevezik és $c \in \mathbb{R}^n$,

majd ennek segítségével képezzük a következő (vektor)sorozatot, iterációt:

$$x^{(0)} \in \mathbb{R}^n$$
 (tetszőleges), $x^{(k+1)} = \varphi(x^{(k)})$ $(k = 0, 1, 2, \dots)$.

Tekintsük a következő leképezést:

$$\varphi \colon \mathbb{R}^n \to \mathbb{R}^n, \quad \varphi(x) = Bx + c,$$

ahol a $B \in \mathbb{R}^{n \times n}$ mátrixot átmenet mátrixnak nevezik és $c \in \mathbb{R}^n$,

majd ennek segítségével képezzük a következő (vektor)sorozatot, iterációt:

$$x^{(0)} \in \mathbb{R}^n$$
 (tetszőleges), $x^{(k+1)} = \varphi(x^{(k)})$ $(k = 0, 1, 2, \dots)$.

Példa

Egyszerűen számolhatók a következő sorozat elemei!

$$x^{(0)} := \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad x^{(k+1)} := \frac{1}{5} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \cdot x^{(k)} + \frac{1}{5} \begin{bmatrix} 7 \\ -1 \end{bmatrix}, \quad (k \in \mathbb{N}_0).$$

Kérdések: Mit tud ez a sorozat / iteráció? Konvergens? Milyen értelemben? Ha konvergens, mi a határértéke?

Kérdések: Mit tud ez a sorozat / iteráció? Konvergens? Milyen értelemben? Ha konvergens, mi a határértéke? A választ majd a fixponttétel adja meg.

Kérdések: Mit tud ez a sorozat / iteráció? Konvergens? Milyen értelemben? Ha konvergens, mi a határértéke? A választ majd a fixponttétel adja meg.

Eml.:

Definíció: vektorsorozat konvergenciája, határértéke

Az $\left(x^{(k)}|k\in\mathbb{N}\right)\subset\mathbb{R}^n$ vektorsorozat *konvergens* a $\|.\|$ vektornormában, ha $\exists\,x^*\in\mathbb{R}^n$, melyre

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall k > N : ||x^{(k)} - x^*|| < \varepsilon.$$

Ekkor a sorozat *határértéke* x^* , azaz $\lim_{k \to \infty} x^{(k)} = x^*$.

Mi köze ennek lineáris egyenletrendszerekhez?

Mi köze ennek lineáris egyenletrendszerekhez?

Ha folytonos φ függvény és $\lim_{k\to\infty}x^{(k)}=x^*$, akkor a folytonosságra vonatkozó átviteli elvből

$$\varphi(x^*) = \lim_{k \to \infty} \varphi(x^{(k)}) = \lim_{k \to \infty} x^{(k+1)} = x^*.$$

Mi köze ennek lineáris egyenletrendszerekhez?

Ha folytonos φ függvény és $\lim_{k\to\infty}x^{(k)}=x^*$, akkor a folytonosságra vonatkozó átviteli elvből

$$\varphi(x^*) = \lim_{k \to \infty} \varphi(x^{(k)}) = \lim_{k \to \infty} x^{(k+1)} = x^*.$$

A korábban megadott φ -vel $x^* = B \cdot x^* + c$.

Vagyis
$$(I - B) \cdot x^* = c$$
, azaz x^* az $(I - B) \cdot x = c$ LER megoldása.

Alkalmazzuk az A = I - B, b = c, Ax = b jelölést...

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Hogyan írhatjuk át a megadott alakba?

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Hogyan írhatjuk át a megadott alakba?

Általában:

$$Ax = b,$$
 $A = P + Q,$ $(P + Q)x = b,$

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Hogyan írhatjuk át a megadott alakba?

Általában:

$$Ax = b,$$
 $A = P + Q,$ $(P + Q)x = b,$

átrendezve:

$$Px = -Qx + b \iff x = -P^{-1}Qx + P^{-1}b,$$

Fordítva: Adott Ax = b LER esetén keressünk vele ekvivalens Bx + c = x egyenletet. Ebből felírhatunk egy iterációt:

$$x^{(k+1)} = Bx^{(k)} + c.$$

Hogyan írhatjuk át a megadott alakba?

Általában:

$$Ax = b,$$
 $A = P + Q,$ $(P + Q)x = b,$

átrendezve:

$$Px = -Qx + b \iff x = -P^{-1}Qx + P^{-1}b,$$

iterációs alakban írva:

$$x^{(k+1)} = \underbrace{-P^{-1}Q}_{P} \cdot x^{(k)} + \underbrace{P^{-1}b}_{C}.$$

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Definíció: fixpont

Az $x^* \in \mathbb{R}^n$ pontot (vektort) a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Az $x = \varphi(x)$ egyenletet *fixpontegyenletnek* nevezzük.

Definíció: fixpont

Az $x^* \in \mathbb{R}^n$ pontot (vektort) a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Az $x = \varphi(x)$ egyenletet *fixpontegyenletnek* nevezzük.

Definíció: kontrakció

A $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés kontrakció, ha $\exists \, q \in [0,1)$, hogy

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Definíció: fixpont

Az $x^* \in \mathbb{R}^n$ pontot (vektort) a $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *fixpontjának* nevezzük, ha $x^* = \varphi(x^*)$.

Az $x = \varphi(x)$ egyenletet *fixpontegyenletnek* nevezzük.

Definíció: kontrakció

A $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ leképezés *kontrakció*, ha $\exists \, q \in [0,1)$, hogy

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.$$

Megj.:

- kontrakció ≈ összehúzás
- q: kontrakciós együttható

Állítás

Ha $\|B\|<1$, akkor a $\varphi\colon\mathbb{R}^n\to\mathbb{R}^n,\ \varphi(x)=B\cdot x+c$ leképezés kontrakció. (Az \mathbb{R}^n -en alkalmazott vektornormához illeszkedő mátrixnormát tekintve.)

Állítás

Ha $\|B\|<1$, akkor a $\varphi\colon\mathbb{R}^n\to\mathbb{R}^n,\ \varphi(x)=B\cdot x+c$ leképezés kontrakció. (Az \mathbb{R}^n -en alkalmazott vektornormához illeszkedő mátrixnormát tekintve.)

Biz.:

$$\|\varphi(x) - \varphi(y)\| = \|(Bx + c) - (By + c)\| =$$

$$= \|Bx - By\| = \|B(x - y)\| \le \underbrace{\|B\|}_{:=q<1} \cdot \|x - y\|.$$

Tétel: Banach-féle fixponttétel \mathbb{R}^n -re

Ha a $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$ függvény kontrakció \mathbb{R}^n -en q kontrakciós együtthatóval, akkor

 $\mathbf{0} \ \exists \, x^* \in \mathbb{R}^n : x^* = \varphi(x^*)$, azaz létezik fixpont,

Tétel: Banach-féle fixponttétel \mathbb{R}^n -re

Ha a $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$ függvény kontrakció \mathbb{R}^n -en q kontrakciós együtthatóval, akkor

- $\mathbf{1} \exists x^* \in \mathbb{R}^n : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 a fixpont egyértelmű,

Tétel: Banach-féle fixponttétel \mathbb{R}^n -re

Ha a $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$ függvény kontrakció \mathbb{R}^n -en q kontrakciós együtthatóval, akkor

- $\mathbf{1} \exists x^* \in \mathbb{R}^n : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 a fixpont egyértelmű,
- 3 $\forall x^{(0)} \in \mathbb{R}^n$ esetén az $x^{(k+1)} = \varphi(x^{(k)}), \ (k \in \mathbb{N}_0)$ sorozat konvergens és $\lim_{k \to \infty} x^{(k)} = x^*$,

Tétel: Banach-féle fixponttétel \mathbb{R}^n -re

Ha a $\varphi\colon \mathbb{R}^n \to \mathbb{R}^n$ függvény kontrakció \mathbb{R}^n -en q kontrakciós együtthatóval, akkor

- $\mathbf{0} \ \exists x^* \in \mathbb{R}^n : x^* = \varphi(x^*)$, azaz létezik fixpont,
- 2 a fixpont egyértelmű,
- 3 $\forall x^{(0)} \in \mathbb{R}^n$ esetén az $x^{(k+1)} = \varphi(x^{(k)}), \ (k \in \mathbb{N}_0)$ sorozat konvergens és $\lim_{k \to \infty} x^{(k)} = x^*$,
- 4 továbbá a következő hibabecslések teljesülnek:
 - $||x^{(k)} x^*|| \le q^k \cdot ||x^{(0)} x^*||$,
 - $||x^{(k)} x^*|| \le \frac{q^k}{1 q} \cdot ||x^{(1)} x^{(0)}||.$

Biz.:

a A φ leképezés kontrakció voltából következik, hogy φ folytonos (sőt egyenletesen folytonos) is, ugyanis $\forall \, \varepsilon > 0$ -hoz válasszuk $\delta = \varepsilon/q$ -t. Ekkor ha $\|x-y\| < \delta$, akkor

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\| < q \cdot \frac{\varepsilon}{q} = \varepsilon.$$

Biz.:

a A φ leképezés kontrakció voltából következik, hogy φ folytonos (sőt egyenletesen folytonos) is, ugyanis $\forall \, \varepsilon > 0$ -hoz válasszuk $\delta = \varepsilon/q$ -t. Ekkor ha $\|x-y\| < \delta$, akkor

$$\|\varphi(x) - \varphi(y)\| \le q \cdot \|x - y\| < q \cdot \frac{\varepsilon}{q} = \varepsilon.$$

6 Belátjuk, hogy a tételben definiált $(x^{(k)})$ Cauchy-sorozat, így konvergens. Elsőként egymást követő tagok eltérését becsüljük:

$$||x^{(k+1)} - x^{(k)}|| = ||\varphi(x^{(k)}) - \varphi(x^{(k-1)})|| \le$$

$$\le q \cdot ||x^{(k)} - x^{(k-1)}|| \le$$

$$\le \dots \le q^k \cdot ||x^{(1)} - x^{(0)}||.$$

Biz. folyt.:

G Legyen $m \in \mathbb{N}$, $m \geq 1$, vizsgáljuk meg két m távolságra lévő tag különbségét! A háromszög-egyenlőtlenséget és a mértani sor összegképletét is felhasználva:

$$\begin{aligned} \left\| x^{(k+m)} - x^{(k)} \right\| &= \left\| \left(x^{(k+m)} - x^{(k+m-1)} \right) + \dots + \left(x^{(k+1)} - x^{(k)} \right) \right\| \le \\ &\le \left\| x^{(k+m)} - x^{(k+m-1)} \right\| + \dots + \left\| x^{(k+1)} - x^{(k)} \right\| \le \\ &\le \left(q^{m+k-1} + \dots + q^k \right) \cdot \left\| x^{(1)} - x^{(0)} \right\| = \\ &= q^k \cdot \left(q^{m-1} + \dots + 1 \right) \cdot \left\| x^{(1)} - x^{(0)} \right\| < \\ &< \frac{q^k}{1-q} \cdot \left\| x^{(1)} - x^{(0)} \right\|. \end{aligned}$$

Mivel $k \to \infty$ esetén $(q^k) \to 0$, ezért $(x^{(k)})$ Cauchy-sorozat,

Biz. folyt.:

d Minden \mathbb{R}^n -beli Cauchy-sorozat konvergens, így $(x^{(k)})$ konvergens, $x^* := \lim(x^{(k)})$. φ folytonosságából az átviteli elv értelmében

$$\varphi(x^*) = \lim \varphi(x^{(k)}) = \lim x^{(k+1)} = x^*,$$

azaz x^* fixpontja φ -nek.

Biz. folyt.:

d Minden \mathbb{R}^n -beli Cauchy-sorozat konvergens, így $(x^{(k)})$ konvergens, $x^* := \lim(x^{(k)})$. φ folytonosságából az átviteli elv értelmében

$$\varphi(x^*) = \lim \varphi(x^{(k)}) = \lim x^{(k+1)} = x^*,$$

azaz x^* fixpontja φ -nek.

6 Az **egyértelműség** belátásához indirekt tegyük fel, hogy létezik legalább két $x^* \neq x^{**}$ fixpont. Ekkor

$$||x^* - x^{**}|| = ||\varphi(x^*) - \varphi(x^{**})|| \le q \cdot ||x^* - x^{**}||.$$

Átrendezve
$$||x^* - x^{**}|| (1 - q) \le 0.$$

Tehát $||x^* - x^{**}|| = 0$, vagyis $x^* = x^{**}$ következik. Ellentmondás!

1 A hibabecsléshez vizsgáljuk először a k-adik tag hibáját:

$$||x^{(k)} - x^*|| = ||\varphi(x^{(k-1)}) - \varphi(x^*)|| \le q \cdot ||x^{(k-1)} - x^*|| \le \dots \le q^k \cdot ||x^{(0)} - x^*||.$$

Valamint a korábbi képletben:

$$\left\|x^{(k+m)}-x^{(k)}\right\|<\frac{q^k}{1-q}\cdot\left\|x^{(1)}-x^{(0)}\right\|$$

 $m \to \infty$ esetén felhasználva, hogy a vektornorma folytonos függvény

$$||x^* - x^{(k)}|| \le \frac{q^k}{1 - q} ||x^{(1)} - x^{(0)}||.$$

Következmény: iteráció konvergenciájának elégséges feltétele

Ha ||B|| < 1, az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció konvergens minden kezdőértékre.

Megj.: Attól még lehet konvergens valamely kezdőértékből indítva, ha $\|B\| \geq 1$. (Nem szükséges feltétel.)

Következmény: iteráció konvergenciájának elégséges feltétele

Ha ||B|| < 1, az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció konvergens minden kezdőértékre.

Megj.: Attól még lehet konvergens valamely kezdőértékből indítva, ha $\|B\| \geq 1$. (Nem szükséges feltétel.)

Lemma: spektrálsugár és az indukált normák kapcsolata

$$\varrho(B) = \inf \left\{ \|B\| \, : \, \|.\| \, \text{ indukált mátrixnorma} \, \right\},$$
azaz $\forall \, \varepsilon > 0 : \exists \, \text{indukált} \, \|.\| : \|B\| < \varrho(B) + \varepsilon.$

Következmény: iteráció konvergenciájának elégséges feltétele

Ha ||B|| < 1, az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció konvergens minden kezdőértékre.

Megj.: Attól még lehet konvergens valamely kezdőértékből indítva, ha $\|B\| \geq 1$. (Nem szükséges feltétel.)

Lemma: spektrálsugár és az indukált normák kapcsolata

$$\varrho(B) = \inf \left\{ \|B\| \, : \, \|.\| \, \text{ indukált mátrixnorma} \right\},$$
azaz $\forall \, \varepsilon > 0 : \exists \, \text{indukált} \, \|.\| : \|B\| < \varrho(B) + \varepsilon.$

Biz.: Nélkül.

Tétel: iteráció konvergenciájának ekvivalens feltétele

Az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció akkor és csak akkor konvergens minden kezdőértékre, ha

$$\varrho(B) < 1.$$

Tétel: iteráció konvergenciájának ekvivalens feltétele

Az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció akkor és csak akkor konvergens minden kezdőértékre, ha

$$\varrho(B) < 1$$
.

Biz.:

• \Leftarrow : Az előző Lemma alapján trivi.

Tétel: iteráció konvergenciájának ekvivalens feltétele

Az $x^{(k+1)} = B \cdot x^{(k)} + c$ iteráció akkor és csak akkor konvergens minden kezdőértékre, ha

$$\varrho(B) < 1$$
.

Biz.:

- \Leftarrow : Az előző Lemma alapján trivi.
- \Rightarrow : Indirekt tegyük fel, hogy $\varrho(B) \geq 1$, azaz $\exists |\lambda| \geq 1$ sajátérték, és legyen $x^{(0)}$ olyan, hogy $x^{(0)} x^* (\neq 0)$ kezdeti hiba a B λ -hoz tartozó sajátvektora legyen.

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \implies \dots$$

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \implies \dots$$

$$B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*) \ (k \in \mathbb{N})$$

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \quad \Rightarrow \dots$$

$$B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*) \ (k \in \mathbb{N})$$

$$x^{(k)} - x^* = (Bx^{(k-1)} + c) - (Bx^* + c) = B(x^{(k-1)} - x^*) =$$

$$= B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*)$$

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \implies \dots$$

$$B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*) (k \in \mathbb{N})$$

$$x^{(k)} - x^* = (Bx^{(k-1)} + c) - (Bx^* + c) = B(x^{(k-1)} - x^*) =$$

$$= B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*)$$

$$\|x^{(k)} - x^*\| = |\lambda|^k \cdot \underbrace{\|x^{(0)} - x^*\|}_{\text{konst.}} \implies 0 \quad (k \to \infty)$$

Ekkor:

$$B(x^{(0)} - x^*) = \lambda(x^{(0)} - x^*)$$

$$B^2(x^{(0)} - x^*) = \lambda^2(x^{(0)} - x^*) \implies \dots$$

$$B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*) (k \in \mathbb{N})$$

$$x^{(k)} - x^* = (Bx^{(k-1)} + c) - (Bx^* + c) = B(x^{(k-1)} - x^*) =$$

$$= B^k(x^{(0)} - x^*) = \lambda^k(x^{(0)} - x^*)$$

$$\|x^{(k)} - x^*\| = |\lambda|^k \cdot \underbrace{\|x^{(0)} - x^*\|}_{\text{konst.}} \implies 0 \quad (k \to \infty)$$

Ellentmondásra jutottunk.

Megj.: Az iteráció futtatása során nem áll rendelkezésünkre kontrakciós együttható, annak kiszámítása elméleti feladat. Ehelyett ún. tapasztalati kontrakciós együtthatóval dolgozunk.

Megj.: Az iteráció futtatása során nem áll rendelkezésünkre kontrakciós együttható, annak kiszámítása elméleti feladat. Ehelyett ún. tapasztalati kontrakciós együtthatóval dolgozunk.

$$q^{(k)} \approx \frac{\left\| x^{(k+1)} - x^{(k)} \right\|}{\left\| x^{(k)} - x^{(k-1)} \right\|}$$

a k. lépésbeli tapasztalati kontrakciós együtthatónk.

Megj.: Az iteráció futtatása során nem áll rendelkezésünkre kontrakciós együttható, annak kiszámítása elméleti feladat. Ehelyett ún. tapasztalati kontrakciós együtthatóval dolgozunk.

$$q^{(k)} \approx \frac{\left\| x^{(k+1)} - x^{(k)} \right\|}{\left\| x^{(k)} - x^{(k-1)} \right\|}$$

a k. lépésbeli tapasztalati kontrakciós együtthatónk.

2 Ennek ismeretében a hibabecslés alakja:

$$||x^{(k)} - x^*|| \le \frac{q^{(k)}}{1 - q^{(k)}} ||x^{(k)} - x^{(k-1)}||.$$

Tehát menet közben ellenőrizni tudjuk, hogy elegendő-e a pontosság.

 $oxed{3}$ Ha $|q^{(k)}|>1$ az első néhány lépés után, akkor leállíthatjuk az iterációt divergencia miatt.

- **3** Ha $|q^{(k)}| > 1$ az első néhány lépés után, akkor leállíthatjuk az iterációt divergencia miatt.
- **4** Vannak esetek, amikor a $(q^{(k)})$ sorozat nem monoton, ekkor érdemes $q^{(k)}$ helyett a $q \approx \sqrt{q^{(k)}q^{(k-1)}}$ mértani középpel dolgozni.

- **3** Ha $|q^{(k)}| > 1$ az első néhány lépés után, akkor leállíthatjuk az iterációt divergencia miatt.
- **4** Vannak esetek, amikor a $(q^{(k)})$ sorozat nem monoton, ekkor érdemes $q^{(k)}$ helyett a $q \approx \sqrt{q^{(k)}q^{(k-1)}}$ mértani középpel dolgozni.
- A fenti segítséggel "inteligens" iterációs módszer programot írhatunk, mely a sorozat elemeiből a hibabecslést elő tudja állítani és divergencia esetén sem számol feleslegesen sokat.

Példa

Mit állíthatunk a következő iteráció konvergenciájáról?

$$x^{(k+1)} := \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot x^{(k)} + \frac{1}{7} \begin{bmatrix} 32.4 \\ \sqrt{\pi} \end{bmatrix}, \quad (k \in \mathbb{N}_0).$$

Példa

Mit állíthatunk a következő iteráció konvergenciájáról?

$$x^{(k+1)} := \frac{1}{5} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \cdot x^{(k)} + \frac{1}{7} \begin{bmatrix} 32.4 \\ \sqrt{\pi} \end{bmatrix}, \quad (k \in \mathbb{N}_0).$$

Mivel $\|B\|_1=\frac{3}{5}=q$ a kontrakciós együttható, ezért az iteráció bármely $x^{(0)}\in\mathbb{R}^2$ kezdőértékre konvergens. Hibabecslést az 1-es vektornormában írhatnánk fel.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- **6** Matlab példák

Speciális iterációs módszerek

Tekintsük az Ax = b lineáris egyenletrendszert, majd írjuk fel annak mátrixát

$$A = L + D + U$$

alakban, ahol L alsó háromszögmátrix, D diagonális mátrix, U pedig felső háromszögmátrix, méghozzá

- $l_{ij} = a_{ij} \quad (i < j),$
- $d_{ij} = a_{ij}$ (i = j),
- $u_{ij} = a_{ij} \quad (i > j)$.

Az elemek L,D,U mátrixokba pakolásáról van szó. A továbbiakban tegyük fel, hogy A diagonális elemei nem nullák. Ha mégis az lenne, cseréljük meg a LER-ben a sorokat, hogy teljesítse a feltételt.

Speciális iterációs módszerek

Példa:

Példa A = L + D + U felbontásra:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 7 & 8 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}.$$

Speciális iterációs módszerek

Példa:

Példa A = L + D + U felbontásra:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 7 & 8 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}.$$

Megj.: Semmi köze az *LU*-felbontáshoz.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- **6** Matlab példák

Átalakítás:

$$Ax = b$$

$$(L + D + U)x = b$$

$$Dx = -(L + U)x + b$$

$$x = -D^{-1}(L + U)x + D^{-1}b$$

Átalakítás:

$$Ax = b$$

$$(L + D + U)x = b$$

$$Dx = -(L + U)x + b$$

$$x = -D^{-1}(L + U)x + D^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: Jacobi-iteráció

$$x^{(k+1)} = \underbrace{-D^{-1}(L+U)}_{B_J} \cdot x^{(k)} + \underbrace{D^{-1}b}_{c_J} = B_J \cdot x^{(k)} + c_J$$

Eml.:

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b$$

Írjuk fel koordinátánként (komponensenként)!

Eml.:

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b$$

Írjuk fel koordinátánként (komponensenként)!

Állítás: a Jacobi-iteráció komponensenkénti alakja

$$x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} - b_i \right) \quad (i = 1, \dots, n)$$

Eml.:

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b$$

Írjuk fel koordinátánként (komponensenként)!

Állítás: a Jacobi-iteráció komponensenkénti alakja

$$x_i^{(k+1)} = \frac{-1}{a_{ii}} \left(\sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} - b_i \right) \quad (i = 1, \dots, n)$$

Biz.: Házi feladat meggondolni. Egyszerű.

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b = D^{-1}((D-A) \cdot x^{(k)} + b) =$$

$$= x^{(k)} + D^{-1}(-Ax^{(k)} + b) = x^{(k)} + D^{-1}r^{(k)}$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b = D^{-1}\left((D-A) \cdot x^{(k)} + b\right) =$$

$$= x^{(k)} + D^{-1}\left(-Ax^{(k)} + b\right) = x^{(k)} + D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := D^{-1}r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
.

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = -D^{-1}(L+U) \cdot x^{(k)} + D^{-1}b = D^{-1}\left((D-A) \cdot x^{(k)} + b\right) =$$

$$= x^{(k)} + D^{-1}\left(-Ax^{(k)} + b\right) = x^{(k)} + D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := D^{-1}r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
.

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}.$$

Algoritmus: Jacobi-iteráció

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \dots, \text{ leállásig}$
 $s^{(k)} := D^{-1}r^{(k)} \iff Ds^{(k)} = r^{(k)} \text{ LER}$
 $x^{(k+1)} := x^{(k)} + s^{(k)}$
 $r^{(k+1)} := r^{(k)} - As^{(k)}$

Algoritmus: Jacobi-iteráció

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \dots, \text{ leállásig}$
 $s^{(k)} := D^{-1}r^{(k)} \iff Ds^{(k)} = r^{(k)} \text{ LER}$
 $x^{(k+1)} := x^{(k)} + s^{(k)}$
 $r^{(k+1)} := r^{(k)} - As^{(k)}$

Megj.: Látjuk, hogy $x^{(k+1)} - x^{(k)} = s^{(k)}$, vagyis a tapasztalati kontrakciós együtthatók számításához lépésenként egy norma értéket és egy osztást kell elvégezni.

Jacobi-iteráció

Tétel

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Biz.: Írjuk fel a B_J mátrix elemeit: $b_{ii}=0$ és $i\neq j$ -re $b_{ij}=-\frac{a_{ij}}{a_{ii}}$.

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Biz.: Írjuk fel a B_J mátrix elemeit: $b_{ii}=0$ és $i\neq j$ -re $b_{ij}=-\frac{a_{ij}}{a_{ii}}$.

$$\|B_J\|_{\infty} = \|-D^{-1}(L+U)\|_{\infty} = \max_{i=1}^n \sum_{j=1, j \neq i}^n \frac{|a_{ij}|}{|a_{ii}|}$$

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Biz.: Írjuk fel a B_J mátrix elemeit: $b_{ii}=0$ és $i\neq j$ -re $b_{ij}=-\frac{a_{ij}}{a_{ii}}$.

$$\|B_J\|_{\infty} = \|-D^{-1}(L+U)\|_{\infty} = \max_{i=1}^n \sum_{j=1, j \neq i}^n \frac{|a_{ij}|}{|a_{ii}|}$$

Ha A szig. diag. dom. a soraira, akkor

$$\forall i: |a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}| \quad \Leftrightarrow \quad 1 > \sum_{j=1, j\neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|}.$$

Ha A szig. diag. dom. a soraira, akkor az Ax = b LER-re felírt Jacobi-iteráció konvergens bármely $x^{(0)}$ esetén.

Biz.: Írjuk fel a B_J mátrix elemeit: $b_{ii}=0$ és $i\neq j$ -re $b_{ij}=-\frac{a_{ij}}{a_{ii}}$.

$$\|B_J\|_{\infty} = \|-D^{-1}(L+U)\|_{\infty} = \max_{i=1}^n \sum_{j=1, j \neq i}^n \frac{|a_{ij}|}{|a_{ii}|}$$

Ha A szig. diag. dom. a soraira, akkor

$$\forall i: |a_{ii}| > \sum_{j=1, j\neq i}^{n} |a_{ij}| \quad \Leftrightarrow \quad 1 > \sum_{j=1, j\neq i}^{n} \frac{|a_{ij}|}{|a_{ii}|}.$$

Tehát minden összeg egynél kisebb, így a maximumuk is, ezzel az elégséges feltétel miatt a konvergencia teljesül.

$$\left\|B_J
ight\|_{\infty}=\max_{i=1}^n\sum_{j=1,\,j
eq i}^nrac{\left|a_{ij}
ight|}{\left|a_{ii}
ight|}<1$$

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 6 Csillapított Jacobi-iteráció
- 6 Matlab példák

A csillapítás avagy tompítás alapötlete:

$$x_J^{(k+1)}$$
 helyett $(1-\omega) \cdot x^{(k)} + \omega \cdot x_J^{(k+1)}$

A csillapítás avagy tompítás alapötlete:

$$x_J^{(k+1)}$$
 helyett $(1-\omega) \cdot x^{(k)} + \omega \cdot x_J^{(k+1)}$

A csillapítás avagy tompítás alapötlete:

$$x_J^{(k+1)}$$
 helyett $(1-\omega) \cdot x^{(k)} + \omega \cdot x_J^{(k+1)}$

Megj.:

- alulrelaxálás (0 < ω < 1), túlrelaxálás (ω > 1)
- ullet $\omega=1$ az eredeti módszert adja

Induljunk a Jacobi-módszerből és a "helyben hagyásból":

$$x = -D^{-1}(L+U) \cdot x + D^{-1}b \quad / \cdot \omega$$

$$x = x \quad / \cdot (1-\omega)$$

Induljunk a Jacobi-módszerből és a "helyben hagyásból":

$$\begin{array}{rcl}
x & = & -D^{-1}(L+U) \cdot x + D^{-1}b & / \cdot \omega \\
x & = & x & / \cdot (1-\omega)
\end{array}$$

A kettő súlyozott összege:

$$x = [(1-\omega)I - \omega D^{-1}(L+U)] \cdot x + \omega D^{-1}b$$

Induljunk a Jacobi-módszerből és a "helyben hagyásból":

$$x = -D^{-1}(L+U) \cdot x + D^{-1}b \quad / \cdot \omega$$

$$x = x \quad / \cdot (1-\omega)$$

A kettő súlyozott összege:

$$x = [(1-\omega)I - \omega D^{-1}(L+U)] \cdot x + \omega D^{-1}b$$

Ezek alapján az iteráció a következő.

Definíció: csillapított Jacobi-iteráció ω paraméterrel – $J(\omega)$

$$x^{(k+1)} = \underbrace{\left[(1 - \omega)I - \omega D^{-1} (L + U) \right]}_{B_{J(\omega)}} \cdot x^{(k)} + \underbrace{\omega D^{-1} b}_{c_{J(\omega)}}$$

Csillapított Jacobi-módszer

Írjuk fel koordinátánként!

Írjuk fel koordinátánként!

Állítás: $J(\omega)$ komponensenkénti alakja

$$x_i^{(k+1)} = (1 - \omega) \cdot x_i^{(k)} + \omega \cdot x_{i,J}^{(k+1)},$$

ahol $x_{i,J}^{(k+1)}$ a hagyományos Jacobi-módszer (J=J(1)) által adott, azaz

$$x_{i,J}^{(k+1)} = \frac{-1}{a_{i,i}} \left(\sum_{j=1, j \neq i}^{n} a_{i,j} x_j^{(k)} - b_i \right).$$

Írjuk fel koordinátánként!

Állítás: $J(\omega)$ komponensenkénti alakja

$$x_i^{(k+1)} = (1 - \omega) \cdot x_i^{(k)} + \omega \cdot x_{i,J}^{(k+1)},$$

ahol $x_{i,J}^{(k+1)}$ a hagyományos Jacobi-módszer (J=J(1)) által adott, azaz

$$x_{i,J}^{(k+1)} = \frac{-1}{a_{i,i}} \left(\sum_{j=1, j \neq i}^{n} a_{i,j} x_j^{(k)} - b_i \right).$$

Biz.: Házi feladat meggondolni. Nem nehéz.

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = (1 - \omega)x^{(k)} - \omega D^{-1}(L + U) \cdot x^{(k)} + \omega D^{-1}b =$$

$$= (1 - \omega)x^{(k)} + \omega D^{-1}(D - A) \cdot x^{(k)} + b =$$

$$= (1 - \omega)x^{(k)} + \omega x^{(k)} + \omega D^{-1}(-Ax^{(k)} + b) =$$

$$= x^{(k)} + \omega D^{-1}r^{(k)}$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = (1 - \omega)x^{(k)} - \omega D^{-1}(L + U) \cdot x^{(k)} + \omega D^{-1}b =$$

$$= (1 - \omega)x^{(k)} + \omega D^{-1}\left((D - A) \cdot x^{(k)} + b\right) =$$

$$= (1 - \omega)x^{(k)} + \omega x^{(k)} + \omega D^{-1}\left(-Ax^{(k)} + b\right) =$$

$$= x^{(k)} + \omega D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := \omega D^{-1} r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}.$$

Írjuk fel az iteráció reziduum vektoros alakját!

$$x^{(k+1)} = (1 - \omega)x^{(k)} - \omega D^{-1}(L + U) \cdot x^{(k)} + \omega D^{-1}b =$$

$$= (1 - \omega)x^{(k)} + \omega D^{-1}\left((D - A) \cdot x^{(k)} + b\right) =$$

$$= (1 - \omega)x^{(k)} + \omega x^{(k)} + \omega D^{-1}\left(-Ax^{(k)} + b\right) =$$

$$= x^{(k)} + \omega D^{-1}r^{(k)}$$

Vezessük be az $s^{(k)} := \omega D^{-1} r^{(k)}$ segédvektort, ezzel egy lépésünk alakja:

$$x^{(k+1)} = x^{(k)} + s^{(k)}$$
.

Az új reziduum vektor:

$$r^{(k+1)} = b - Ax^{(k+1)} = b - A(x^{(k)} + s^{(k)}) = r^{(k)} - As^{(k)}$$

Algoritmus: csillapított Jacobi-iteráció $J(\omega)$

$$r^{(0)} := b - Ax^{(0)}$$
 $k = 1, \ldots,$ leállásig
$$s^{(k)} := \omega D^{-1} r^{(k)} \quad \Leftrightarrow \quad Ds^{(k)} = \omega r^{(k)} \text{ LER}$$

$$x^{(k+1)} := x^{(k)} + s^{(k)}$$

$$r^{(k+1)} := r^{(k)} - As^{(k)}$$

Algoritmus: csillapított Jacobi-iteráció $J(\omega)$

$$r^{(0)}:=b-Ax^{(0)}$$
 $k=1,\ldots,$ leállásig
$$s^{(k)}:=\omega D^{-1}r^{(k)} \quad \Leftrightarrow \quad Ds^{(k)}=\omega r^{(k)} \text{ LER}$$

$$x^{(k+1)}:=x^{(k)}+s^{(k)}$$

$$r^{(k+1)}:=r^{(k)}-As^{(k)}$$

Megj.: Látjuk, hogy $x^{(k+1)} - x^{(k)} = s^{(k)}$, vagyis a tapasztalati kontrakciós együtthatók számításához lépésenként egy norma értéket és egy osztást kell elvégezni.

Tétel a csillapított Jacobi-iteráció $(J(\omega))$ konvergenciája

Ha az Ax=b LER-re a Jacobi-iteráció konvergens minden kezdőértékre, akkor $0<\omega<1$ -re a csillapított Jacobi-iteráció is az.

Tétel a csillapított Jacobi-iteráció $(J(\omega))$ konvergenciája

Ha az Ax=b LER-re a Jacobi-iteráció konvergens minden kezdőértékre, akkor $0<\omega<1$ -re a csillapított Jacobi-iteráció is az.

Biz.: $J(\omega)$ iteráció esetén az átmenet mátrix $(1-\omega)I + \omega B_J$. Először belátjuk, hogy a $B_{J(\omega)}$ mátrix μ_i sajátértékeire teljesül, hogy

$$\mu_i = (1 - \omega) + \omega \lambda_i$$

ahol λ_i -k a B_J sajátértékei. A két mátrix sajátvektorai (v_i -k) azonosak.

Tétel a csillapított Jacobi-iteráció $(J(\omega))$ konvergenciája

Ha az Ax = b LER-re a Jacobi-iteráció konvergens minden kezdőértékre, akkor $0 < \omega < 1$ -re a csillapított Jacobi-iteráció is az.

Biz.: $J(\omega)$ iteráció esetén az átmenet mátrix $(1-\omega)I + \omega B_J$. Először belátjuk, hogy a $B_{J(\omega)}$ mátrix μ_i sajátértékeire teljesül, hogy

$$\mu_i = (1 - \omega) + \omega \lambda_i,$$

ahol λ_i -k a B_J sajátértékei. A két mátrix sajátvektorai (v_i -k) azonosak.

$$B_{J(\omega)}v_i = ((1-\omega)I + \omega B_J)v_i = (1-\omega)v_i + \omega \lambda_i v_i =$$

$$= \underbrace{((1-\omega) + \omega \lambda_i)}_{Ii} v_i = \mu_i v_i \quad (i=1,\ldots,n)$$

Biz. folyt: A bizonyításban a konvergenciára vonatkozó szükséges és elégséges feltételt használjuk. Belátjuk, hogy

$$\varrho(B_J) < 1 \quad \Rightarrow \quad 0 < \omega < 1 : \ \varrho(B_{J(\omega)}) < 1.$$

Biz. folyt: A bizonyításban a konvergenciára vonatkozó szükséges és elégséges feltételt használjuk. Belátjuk, hogy

$$\varrho(B_J) < 1 \quad \Rightarrow \quad 0 < \omega < 1 : \ \varrho(B_{J(\omega)}) < 1.$$

 $\varrho(B_J) < 1$ -ből következik, hogy minden *i*-re $|\lambda_i| < 1$.

Biz. folyt: A bizonyításban a konvergenciára vonatkozó szükséges és elégséges feltételt használjuk. Belátjuk, hogy

$$\varrho(B_J) < 1 \quad \Rightarrow \quad 0 < \omega < 1 : \ \varrho(B_{J(\omega)}) < 1.$$

 $\varrho(B_J) < 1$ -ből következik, hogy minden *i*-re $|\lambda_i| < 1$.

Felhasználjuk, hogy $0<\omega<1$ és becsüljük $\mu_i=(1-\omega)+\omega\lambda_i$ -t:

$$|\mu_i| \leq (1-\omega) + \omega |\lambda_i| < (1-\omega) + \omega = 1 \quad (i = 1, \ldots, n).$$

Biz. folyt: A bizonyításban a konvergenciára vonatkozó szükséges és elégséges feltételt használjuk. Belátjuk, hogy

$$\varrho(B_J) < 1 \quad \Rightarrow \quad 0 < \omega < 1 : \ \varrho(B_{J(\omega)}) < 1.$$

 $\varrho(B_J) < 1$ -ből következik, hogy minden *i*-re $|\lambda_i| < 1$.

Felhasználjuk, hogy $0<\omega<1$ és becsüljük $\mu_i=(1-\omega)+\omega\lambda_i$ -t:

$$|\mu_i| \leq (1-\omega) + \omega |\lambda_i| < (1-\omega) + \omega = 1 \quad (i = 1, \ldots, n).$$

Ha minden *i*-re $|\mu_i|<1$ teljesül, akkor $\varrho(B_{J(\omega)})<1$, vagyis a csillapított iteráció minden kezdőértékre konvergens.

Tartalomjegyzék

- 1 Iterációs módszerekről általában
- 2 A Banach-féle fixponttétel
- 3 Speciális iterációs módszerek
- 4 Jacobi-iteráció
- 5 Csillapított Jacobi-iteráció
- 6 Matlab példák

Példák Matlab-ban

- 1 Példa iterációra, konvergens vektorsorozat számítására.
- **2** Konvergens és divergens iterációk tulajdonságainak szemléltetése n = 2,3 dimenzióban.
- A tapasztalati kontrakciós együtthatók szemléltetése a csillapított Jacobi iteráció esetén.

1. Példa:

A LER alakja Ax = b, ahol

$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, x = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Vizsgáljuk a csillapított Jacobi iteráció tapasztalati kontrakciós együtthatóit $\omega=1,0.8,0.6,1.2,1.8,-0.1$ esetén!

1. Példa:

 $q \approx 0.3536$

 $q \approx 0.4828$

0.32

1. Példa:

 $q \approx 0.6243$

1. Példa:

q > 1, divergens sorozat

1. Példa:

q > 1, divergens sorozat