- Supplementary Material: Woody plant phenological responses are strongly associated with key functional traits
- Deirdre Loughnan¹, Faith A M Jones^{1,2}, Geoffrey Legault¹, Daniel Buonaiuto^{3,4,5}, Catherine Chamberlain^{3,4,6}, Ailene Ettinger⁷, Mira Garner¹, Ignacio Morales-Castilla ^{8,9}, Darwin Sodhi¹, and E M Wolkovich^{1,3,4}

4 Methods

11

- 5 We used a phylogenetic generalized least-squares regression model (PGLS) to test the relationship
- 6 between day of budburst and each trait. This analysis allowed us to test for phylogenetic non-
- ⁷ independence in the phenology-trait relationship ¹. We obtained a rooted phylogenetic tree by pruning
- the tree developed by ² and performed the PGLS analysis using the mean trait values and mean poste-
- 9 rior estimates of the cue responses from our joint model. The PGLS was run using the "Caper" package 10 in \mathbb{R}^3 .

12 Figures & Tables

Figure S1: A projection of tree traits across the first and second principle component axis. Arrows represent the direction of vectors for six functional traits. Points represent the 26 species for which complete trait data was available

Figure S2: Comparisons of estimated model fits and raw data from joint models of trait effects on budburst phenological cues for 37 species of woody deciduous plants. Four functional traits – a. height, b. SLA, c. seed mass, and d. LNC – were modeled individually, with the calculated trait value being used to jointly model species responses to standardized chilling, forcing, and photoperiod cues. Model posteriors are shown in black, with the thicker line depicting the 66% interval and the thinner black line the 97% interval. Overall species level model posterior distributions were well aligned with the raw data, shown in red, and the species level means from the raw data, denoted as a purple stars.

Figure S3: We expected species with traits associated with acquisitive (e.g., low specific leaf area, SLA, and leaf nitrogen content, LNC) versus conservative (e.g., high SLA and LNC) growth strategies would have different budburst responses to phenological cues. Our joint model allows traits of species to influence their responses to cues. We show an example here with an acquistive species, Alnus incana shown in red, and a conservative species, Quercus robur shown in blue, for SLA (a-c) and LNC (d-f). Our joint model estimated later budburst due to trait effects for both SLA and LNC in response to forcing (a, d,) and chilling (b, e) and for LNC in response to photoperiod (f). Only in response to photoperiod did we estimate the effect of SLA to lead to slightly earlier budburst with longer photoperiods (c). The coloured bands represent the 50% uncertainty intervals of the model estimates and points individual trati measurements.

13 References

- 14 [1] R. P. Freckleton, P. H. Harvey, M. Pagel, American Naturalist 160, 712 (2002).
- ¹⁵ [2] S. A. Smith, J. W. Brown, American Journal of Botany **105**, 302 (2018).
- 16 [3] D. Orme, The caper package: comparative analysis of phylogenetics and evolution in R. (2013).

Table S1: Bibliographic information for trait data sources from both BIEN and Try trait databases.

traitname	unitname	no.obs	no.spp	database	datasetid	reference
Height	m	26	8	bien	10_bien	doi:10.5061/dryad.j25t0
Height	m	2	2	bien	12_bien	doi:10.5061/dryad.m88g7
Height	m	27	19	bien	14_bien	doi:10.5061/dryad.r3n45
Height	m	18	16	bien	18_bien	T-T-T-1
Height	m	90	19	bien	20_bien	LEDA traitbase
Height	m	10	10	bien	21_bien	
Height	m	21	14	bien	22_bien	Moles, Angela
Height	m	47036	19	bien	24_bien	Reams, Greg
Height	m	5	5	bien	25_{bien}	Grime, Hodgson, & Hunt
Height	m	8	5	bien	26_bien	
Height	m	18	1	bien	3 _bien	doi:10.5061/dryad.1cn19
Height	m	120	1	bien	5 _bien	doi:10.5061/dryad.4q78p
Height	m	20	1	bien	$7_{\rm bien}$	doi:10.5061/dryad.6nc8c
Height	m	2	1	try	$156_{-}\mathrm{try}$	Bond-Lamberty et al. (2002)
Height	m	275	3	try	$186_{-}\mathrm{try}$	unpub.
Height	m	28	19	try	20_{-} try	Wright et al. (2004)
Height	m	2	2	try	236_{try}	Prentice et al. (2011)
Height	m	21	21	try	$251_{-}\mathrm{try}$	Schweingruber & Landolt (2005)
Height	m	35	2	try	275_{try}	unpub.
Height	m	5	5	try	28 _try	Moles et al. (2004)
Height	\mathbf{m}	1	1	try	$54_{-}\mathrm{try}$	Cavender-Bares et al. (2006)
Height	\mathbf{m}	11	10	try	86_{try}	Diaz et al. (2004)
LNC	mg/g	287	12	try	$130_{-}\mathrm{try}$	Craine et al. (2009)
LNC	mg/g	44	2	try	$154_{ m try}$	Wilson et al. (2000)
LNC	mg/g	7	4	try	$180_{ ext{try}}$	Wenxuan et al. (2012)
LNC	mg/g	7	3	try	$181_{-\mathrm{try}}$	Yahan et al. (2011)
LNC	mg/g	65	32	try	20_{-} try	Wright et al. (2004)
LNC	mg/g	3	2	try	236 _try	Prentice et al. (2011)
LNC	mg/g	120	20	try	$240_{-}\mathrm{try}$	Vergutz et al. 2012
LNC	mg/g	24	8	try	286 _try	Atkin et al. (2015)
LNC	mg/g	72	22	try	342 _try	Maire et al. (2015)
LNC	mg/g	2	1	try	$37_{-}\mathrm{try}$	Cornelissen et al. (2003)
LNC	mg/g	3216	37	try	412_try	unpub.
LNC	mg/g	6	2	try	443_try	Wang et al. 2017
Seed mass	mg	3	3	bien	12_bien	doi:10.5061/dryad.m88g7
Seed mass	mg	4	2	bien	17_bien	http://ucjeps.berkeley.edu/EFT.htm
Seed mass	mg	250	37	bien	19_bien	KEW database
Seed mass	mg	12	12	bien	$2_{\rm bien}$	doi:10.5061/dryad.12b0h
Seed mass	mg	12	7	bien	$9_{\rm bien}$	doi:10.5061/dryad.h9083
SLA	mm2 mg-1	44	2	try	$154_{-}\mathrm{try}$	Wilson et al. (2000)
SLA	mm2 mg-1	204	3	try	186_try	unpub.
SLA	mm2 mg-1	93	33	try	20_try	Wright et al. (2004)
SLA	mm2 mg-1	2	2	try	236_try	Prentice et al. (2011)
SLA	mm2 mg-1	102	18	try	$25_{ ext{try}}$	Kleyer et al. (2008)
SLA	mm2 mg-1	83	2	try	275_try	unpub.
SLA	mm2 mg-1	40	11	try	286_try	Atkin et al. (2015)
SLA	mm2 mg-1	86	23	try	342_try	Maire et al. (2015)
SLA	mm2 mg-1	615	14	try	37_{try}	Cornelissen et al. (2003)
SLA	mm2 mg-1	6307	37	try	412_try	unpub.
SLA	mm2 mg-1	6	2	try	443_try	Wang et al. 2017
SLA	mm2 mg-1	20	$\frac{2}{2}$	try 6	50_try	Shipley et al. (2002)
~	mm2 mg-1	$\frac{20}{42}$	$\frac{2}{2}$	try	54_try	Cavender-Bares et al. (2006)
SL A				ULY	O 1_01 y	
SLA SLA	mm2 mg-1	1	1	try	$65_{ ext{try}}$	unpub.

Table S2: Summary of model estimates using measurements of tree height for our 37 focal species (n=42781)

/						
	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	12.71	1.96	8.73	12.75	16.46	1.00
muPhenoSp	32.07	2.63	26.97	32.05	37.30	1.00
$\operatorname{muForceSp}$	-10.74	2.86	-16.63	-10.66	-5.38	1.01
$\operatorname{muChillSp}$	-4.08	4.13	-12.46	-4.02	3.99	1.01
muPhotoSp	1.11	2.18	-3.37	1.14	5.27	1.01
betaTraitxForce	0.16	0.19	-0.21	0.16	0.55	1.01
betaTraitxChill	-0.54	0.28	-1.07	-0.54	0.02	1.01
betaTraitxPhoto	-0.25	0.15	-0.54	-0.25	0.08	1.00
$sigma_sp$	5.91	0.76	4.63	5.84	7.57	1.00
$sigma_study$	7.53	1.22	5.52	7.40	10.28	1.00
$sigma_traity$	5.39	0.02	5.36	5.39	5.43	1.00
sigmaPhenoSp	15.11	2.05	11.20	15.06	19.36	1.00
sigmaForceSp	4.96	1.16	3.01	4.85	7.55	1.00
sigmaChillSp	8.53	2.10	5.21	8.26	13.38	1.00
sigmaPhotoSp	3.25	0.86	1.79	3.17	5.15	1.00
$sigmapheno_y$	14.18	0.26	13.69	14.18	14.70	1.00

Table S3: Summary of model estimates using measurements of seed mass data for our 37 focal species (n = 281).

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	1.87	0.50	0.89	1.88	2.84	1.00
muPhenoSp	31.35	2.64	26.32	31.27	36.76	1.00
muForceSp	-8.17	1.60	-11.35	-8.16	-5.07	1.00
$\operatorname{muChillSp}$	-9.41	2.82	-15.21	-9.43	-3.92	1.00
muPhotoSp	-1.26	1.25	-3.72	-1.27	1.19	1.00
betaTraitxForce	-0.30	0.69	-1.61	-0.31	1.06	1.00
beta Traitx Chill	-1.09	1.09	-3.28	-1.08	1.01	1.00
${\bf beta Traitx Photo}$	-0.56	0.58	-1.68	-0.56	0.62	1.00
$sigma_sp$	1.62	0.19	1.30	1.61	2.05	1.00
$sigma_study$	0.97	0.10	0.77	0.97	1.17	1.00
$sigma_traity$	0.25	0.01	0.23	0.25	0.27	1.00
sigmaPhenoSp	14.84	2.25	10.58	14.79	19.42	1.00
sigmaForceSp	4.92	0.98	3.22	4.85	7.03	1.00
sigmaChillSp	10.67	2.57	6.55	10.33	16.65	1.00
sigmaPhotoSp	3.58	0.86	2.13	3.49	5.52	1.00
$sigmapheno_y$	14.12	0.25	13.66	14.12	14.61	1.00

Table S4: Summary of model estimates using measurements of specific leaf area for our 37 focal species (n=7656).

/						
	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	16.85	1.47	14.03	16.85	19.71	1.01
muPhenoSp	31.33	2.55	26.45	31.30	36.39	1.00
$\operatorname{muForceSp}$	-11.40	2.71	-17.29	-11.33	-6.42	1.01
$\operatorname{muChillSp}$	-16.66	4.70	-26.35	-16.61	-7.84	1.00
muPhotoSp	1.85	2.47	-3.13	1.98	6.47	1.00
betaTraitxForce	0.17	0.15	-0.11	0.17	0.47	1.01
betaTraitxChill	0.34	0.25	-0.13	0.34	0.83	1.00
betaTraitxPhoto	-0.23	0.14	-0.50	-0.24	0.05	1.00
$sigma_sp$	7.78	0.93	6.21	7.70	9.77	1.00
$sigma_study$	3.28	0.97	1.87	3.13	5.57	1.00
$sigma_traity$	6.17	0.05	6.07	6.16	6.27	1.00
sigmaPhenoSp	13.92	2.11	10.10	13.79	18.34	1.00
sigmaForceSp	4.97	1.12	3.07	4.87	7.49	1.00
sigmaChillSp	10.57	2.30	6.79	10.33	15.56	1.00
sigmaPhotoSp	3.48	0.81	2.14	3.40	5.36	1.00
$sigmapheno_y$	14.17	0.26	13.66	14.17	14.68	1.00

Table S5: Summary of model estimates using measurements of leaf nitrogen content for our 37 focal species (n=3853.)

	mean	sd	2.5%	50%	97.5%	Rhat
mu_grand	22.61	1.37	19.91	22.60	25.32	1.01
muPhenoSp	31.14	2.52	26.33	31.09	36.29	1.00
$\operatorname{muForceSp}$	-19.33	5.37	-30.02	-19.45	-8.62	1.02
$\operatorname{muChillSp}$	-27.10	7.04	-40.56	-27.27	-12.84	1.01
$\operatorname{muPhotoSp}$	-9.40	4.67	-18.09	-9.41	-0.37	1.02
betaTraitxForce	0.47	0.23	0.01	0.47	0.93	1.02
betaTraitxChill	0.72	0.30	0.12	0.72	1.29	1.01
betaTraitxPhoto	0.31	0.19	-0.06	0.31	0.68	1.02
$sigma_sp$	5.12	0.61	4.09	5.06	6.48	1.00
$sigma_study$	3.55	0.98	2.03	3.44	5.83	1.00
$sigma_traity$	5.13	0.06	5.02	5.13	5.25	1.00
sigmaPhenoSp	14.05	1.97	10.30	13.97	18.23	1.00
sigmaForceSp	4.59	1.09	2.80	4.47	7.05	1.00
sigmaChillSp	8.92	1.97	5.74	8.71	13.44	1.00
sigmaPhotoSp	3.59	0.81	2.25	3.52	5.41	1.00
$sigmapheno_y$	14.17	0.26	13.67	14.17	14.67	1.00