	ECE 4620/5620 [Q,; 5P2013], NO: []
	Name:
Plob	1 A power system has two fossil-
	fueled units on economic dispatch
20	loop. The cost functions and the
20	generation limits of the units are
	given by:
	$\frac{-3}{3}$ 2 $\frac{-3}{2}$ $\frac{2}{5}$
	$C_{1} = 400 + 10 P_{6_{1}} + 8 \times 10 P_{6_{1}}$; [c] = \$1/h
	$C_2 = 300 + 8P + 9 \times 10 P$ MW MW MW
	GZ GZ
·	100 < PG1 < 600 MW
	400 KPG2 < 1000
	Find the oplines = Indian D*
	Find the oftimum solution P* and p* Gr for the cases demand power as given:
(4) (4)	$P_D = 500^{MW}$
(y) h)	Po = 1600 MW
	P - 1000
(4) c)	$P_{D} = 700MW$
(y d)	PD = 1000 MW
(ye)	P = 1300 MW
	, D , 3 , 2
1 :	

	ECE 4620/5620 [Q,; 5P2013]; Key
Solution	$C_{1} = 400 + 10 P_{G_{1}} + 8 \times 10 P_{G_{1}}$ $C_{2} = 300 + 8 P_{G_{2}} + 9 \times 10^{3} P_{G_{2}}$
	where:) 100 < PG, ≤ 600 MW (400 < PGZ ≤ 1000 MW
OI)	PD = 500 is the minimum power that should be supported by There two units in which case:
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
b)	PD = 1600 MW is the Maximum Power that can be supported by these two units in which case:
	$P_{G_1}^* = P_{G_1, Max}^* = G_{00}^{MW}$ $P_{G_2}^* = P_{G_2, Max}^* = 1000^{MW}$
c)	Recall the general formula for cost function: $C_{i} = X_{i} + \beta_{i} \cdot P_{G_{i}} + \lambda_{i} \cdot P_{G_{i}}$

c) [continued]: You can find dCi for each machine, then use equal incremental cost criterion and power balance equation: dc1 - 10 + 16×10 PG1 dez = 8 + 18 x10 P62 10+16×10 PG = 8+18×10 PGZ PG1 + PG2 = PD = 700 Then some the two equations for PG and PGZ Of, use the following: $\frac{1}{\lambda} = \frac{P_0 + \sum \beta_i / 28_i}{\sum 1/28_i} ; 0$ $P_{Gi} = \frac{\lambda - \beta_i}{28i} ; (2)$ Where:) B1 = 10; 8, = 8 x 10 | β= 8; 82=9x10

C) [continued]:

$$\frac{\beta i}{28i} - \frac{\beta 1}{28i} + \frac{\beta 2}{282}$$

$$= \frac{10}{2884i^{3}} + \frac{3}{282}$$

$$= \frac{10}{2884i^{3}} + \frac{3}{2824i^{3}}$$

$$= \frac{1}{28i} - \frac{1}{28i} + \frac{1}{282} + \frac{1}{2884i^{3}}$$

$$= 118.06$$

$$Now,$$

$$\frac{\lambda}{\lambda} = \frac{700 + 1069.44}{118.06} = 14.99$$

$$\frac{\lambda}{\beta i} = \frac{3}{28i} - \frac{3}{288.24}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{3}{288.24}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{\beta i} = \frac{\lambda}{\beta i}$$

$$\frac{\lambda}{$$

d)
$$P_D = 1000 \text{ MW}$$

$$\frac{0}{3} = \frac{1000 + 1069.44}{118.06} = 17.53$$

$$\frac{2}{3} = \frac{3}{281} = \frac{17.53 - 10}{2 \times 8 \times 10^3} = 470.59$$

$$\frac{2}{3} = \frac{3}{2} = \frac{17.53 - 82}{2 \times 2} = \frac{529.41}{2}$$
where both solutions are withing the limits:
$$\frac{1}{100} = \frac{1300 + 1069.44}{118.06} = \frac{1300 + 1069.44}{281} = \frac{20.07}{281} = \frac{629.41}{281}$$

$$\frac{1}{100} = \frac{3}{100} = \frac{3}{100} = \frac{1}{100} = \frac{1}{100}$$