Problem

Each of the following languages is the complement of a simpler language. In each part, construct a DFA for the simpler language, then use it to give the state diagram of a DFA for the language given. In all parts, $\Sigma = \{a, b\}$.

Aa. {wl w does not contain the substring ab}

Ab. {wl w does not contain the substring baba}

c. (wl w contains neither the substrings ab nor ba)

d. {wl w is any string not in a*b*}

e. {wl w is any string not in (ab+)*}

f. {wl w is any string not in $a^* \cup b^*$ }

g. {wl w is any string that doesn't contain exactly two a's}

h. {wl w is any string except a and b}

Step-by-step solution

Step 1 of 16

(a) The language is

 $\overline{L} = \{ w \mid w \text{ does not contain the substring } ab \}$

 \overline{L} is the complement of a simpler language $L\!.$

Then the simple language is $L = \{ w | w \text{ contain the substring } ab \}$

DFA recognizes the language L is a follows:

Comments (4)

Step 2 of 16

DFA that recognizes the language $\ \overline{L}$ is as follows:

Step 3 of 16

(b) The language is

 $\overline{L} = \{ w | w \text{ does not contain the substring } baba \}$

 \overline{L} is the complement of a simpler language L.

Then the simple language is $L = \{ w | w \text{ contain the substring } baba \}$

DFA that recognizes the language L is as follows:

Comment

Step 4 of 16

DFA that recognizes the language *L* is as follows:

Comment

Step 5 of 16

(c) The language is

 $\overline{L} = \{ w \mid w \text{ contains neither the substrings } ab \text{ nor } ba \}$

 \overline{L} is the complement of a simpler language $\mathit{L}.$

Then the simple language is $L = \{ w | w \text{ contains either the substring } ab \text{ or } ba \}$

DFA that recognizes the language L is as follows

DFA that recognizes the language \overline{L} is as follows:

Comment

Comment

Step 7 of 16

(d) The language is

 $\overline{L} = \{ w | w \text{ is any string not in } a*b* \}$

 \overline{L} is the complement of a simpler language $\mathit{L}.$

Then the simple language is $L = \{ w | w \text{ is any string in } a*b* \}$

DFA that recognizes the language L as follows

Comments (7)

Step 8 of 16

DFA that recognizes the language $\ \overline{L}$ is as follows:

Comments (4)

Step 9 of 16

(e) The language is

 $\overline{L} = \{ w \mid w \text{ is any string not in } (ab^+)^* \}$

 \overline{L} is the complement of a simpler language $\mathit{L}.$

Then the simple language is $L = \{ w | w \text{ is any string in } (ab^+)^* \}$

DFA that recognizes the language L is as follows:

Comments (7)

Step 10 of 16

DFA that recognizes the language $\ \overline{L}$ is as follows:

(f)

Comments (5)

Step 11 of 16

The language is

 $\overline{L} = \{ w \mid w \text{ is any string not in } a^* \cup b^* \}$

 \overline{L} is the complement of a simpler language L.

Then the simple language is $L = \{ w | w \text{ is any string in } a^* \cup b^* \}$

DFA that recognizes the language L is as follows:

DFA that recognizes the language $\ \overline{L}$ is as follows:

Comment

Step 13 of 16

(g) The language is

 \overline{L} ={ $w \mid w$ is any string that doesn't contain exactly two a's}

 \overline{L} is the complement of a simpler language L.

Then the simple language is $L \equiv \{ w | w \text{ is any string contain exactly two } a \text{'s} \}$

DFA that recognizes L is as follows:

Comment

Step 14 of 16

DFA that recognizes $\ \overline{L}$ is as follows:

Comment

Step 15 of 16

(h) The language is

 $\overline{L} = \{ w \mid w \text{ is any string except } a \text{ and } b \}$

