Supplement for

Nonlinear Systems and Control

Contents

Order Linear Differential Equations	3
Homogeneity of a Linear DE	
First Order Linear Differential Equations	3
Topological Space	3
Metic Space	3
Topological Spaces	3
Continuous Mapping	3
Quotient Spaces	5
Differentiable Manifold	5
Structure of Manifolds	5
Fiber Bundle	5
Vector Field	5
One Parameter Group	5
Lie Algebra of Vector Fields	5
Co-tangent Space	5
Lie Derivatives	5
Frobenius' Theory	5
Lie Series, Chow's Theorem	5
Tensor Field	5
Riemannian Geometry	5
Symplectic Geometry	5
chapter 1 Introduction	7
chapter 2 Second Order Systems	7
chapter 3 Fundamental Properties	7
chapter 4 Lyapunov Stability	8
chapter 5 Input-Output Stability	
chapter 6 Passivity	9
chapter 7 Frequency Domain analysis of Feedback Systems	9
chapter 8 Advanced Stability Analysis	9
chapter 9 Stability of Perturbed Systems	9
chapter 10 Perturbation Theory and Averaging	
chapter 11 Singular Perturbations	9
chapter 12 Feedback Control	9
chapter 13 Feedback Linearization	9
chapter 14 Nonlinear Design Tools	9

Some exercises are mentioned in the textbook's mainbody. So I organize some solutions here for reference. Only a little solutions is presented in this supplement. They are $1.1\ 3.24\ 5.6$.

 $xsro@foxmail.com{:}\ A\ tiny\ supplement\ of\ math\ and\ solutions$

Math Review

Order Linear Differential Equations

Following content is from https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/chap DifferentialEquations.html

Homogeneity of a Linear DE

Given a linear differential equation

$$F_{n(x)}\frac{d^ny}{dx^n} + F_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \ldots + F_2(x)\frac{d^2y}{dx^2} + F_1(x)\frac{dy}{dx} + F_0(x)y = G(x)$$

where $F_{i(x)}$ and G(x) are functions of x, the differential equation is said to be **homogeneous** if G(x) = 0 and **non-homogeneous** otherwise.

Note: One implication of this definition is that y = 0 is a constant solution to a linear homogeneous differential equation, but not for the non-homogeneous case.

First Order Linear Differential Equations

Given a first order non-homogeneous linear differential equation

$$y' + p(t)y = f(t)$$

using variation of parameters the general solution is given by

$$y(t) = v(t)e^{P(t)} + Ae^{P(t)}$$

where $v^{\prime}(t)=e^{-P(t)}f(t)$ and P(t) is an antiderivative of -p(t)

Topological Space

Metic Space

A metric space (M,d) consists of a set M and a mapping, called distance, $d:M\times M\to \mathbb{R}$, which satisfies the following:

- 1. $0 \le d(x, y) < \infty, \forall x, y \in M$
- 2. d(x, y) = 0, if and only if x = y
- 3. d(x, y) = d(y, x)
- 4. Triangle Inequality: $d(x, z) \leq d(x, y) + d(x, z), x, y, z \in M$

Topological Spaces

Continuous Mapping

Definition 0.1: Let M, N be two topological spaces. A mapping $\pi : M \to N$ is continuous, if one of the following two equivalent conditions holds:

• For any $U \subset N$ open, its inverse image

$$\pi^{-1}(U)\coloneqq\{x\in M\mid \pi(x)\in U\}$$

is open

• For any $C \subset N$ closed, its inverse image $\pi^{-1}(C)$ is closed

Note: the two conditions are equivalent.

Definition 0.2: Let M,N be two topological spaces. M and N are said to be homeomorphic(同胚 pei 胚胎) if there exists a mapping $\pi: M \to N$, which is

- 1. one-to-one(单射 injective),
- 2. onto(满射 surjective)
- 3. and continuous (both π and π^{-1} are continuous).

 π is called a homeomorphism.

Note: If a mapping is both injective and surjective it is said to bijective(满射).

Definition 0.3: Given a topological space M.

- 1. A set $U \subset M$ is said to be clopen if it is both closed and open. A topological space(度量空间), M, is said to be **connected** if the only two clopen sets are M and \emptyset
- 2. A continuous mapping $\pi: I = [0,1] \to M$ is called a path on M. M is said to be **pathwise(or arcwise) connected** if for any two points $x,y \in M$ there exists a path, π , such that $\pi(0) = x$ and $\pi(1) = y$

Tip on open and closed set: As described by topologist James Munkres, unlike a door, "a set can be open, or closed, or both, or neither!" https://en.wikipedia.org/wiki/Clopen_set A set is closed if its complement is open. But A set can be closed or open if its complement is closed.

https://en.wikipedia.org/wiki/Open_set

A subset U of a metric space (M,d) is called open if, for any point x in U, there exists a real number ε such that any point $y \in M$ satisfying $d(x,y) < \varepsilon$ belongs to U. Equivalently, U is open if every point in U has a neighborhood contained in U.

Note: \mathbb{R} is connected and A pathwise connected space M is connected while the converse is incorrect.

Definition 0.4: A topological space M is said to be *locally connected* at $x \in M$ if every neighborhood N_x of x contains a connected neighborhood U_x , i.e., $x \in U_x \subset N_x$. M is said to be locally connected if it is locally connected at each $x \in M$

local connectedness does not imply connectedness (hence no pathwise connectedness); conversely, pathwise connectedness (connectedness) does not imply local connectedness.

Definition 0.5: Let $\{U_{\lambda}|\lambda\in\Lambda\}$ be a set of open sets in M. The set is called an open covering of M if

$$\cup_{\lambda \in \Lambda} U_{\lambda} \supset M.$$

M is said to be a compact space if every open covering has a finite sub-covering, i.e., there exists a finite subset $\left\{U_{\lambda_i}|\ i=1,2,...,k\right\}$ such that

$$\cup_{i=1}^k U_{\lambda_i} \supset M$$

From Calculus we know that with the conventional topology, a set, $U \subset \mathbb{R}^n$ is compact, if and only if it is bounded and closed. Unfortunately, it is not true for general metric spaces.

Definition 0.6: In a topological space, M, a sequence $\{x_k\}$ is said to converge to x, if for any neighborhood $U \ni x$ there exists a positive integer N > 0 such that when n > N, $x_n \in U$.

Quotient Spaces

Differentiable Manifold

Structure of Manifolds

Fiber Bundle

Vector Field

One Parameter Group

Lie Algebra of Vector Fields

Co-tangent Space

Lie Derivatives

Frobenius' Theory

Lie Series, Chow's Theorem

Tensor Field

Riemannian Geometry

Symplectic Geometry

xsro@foxmail.com: A tiny supplement of math and solutions

Some Solutions to Nonlinear Systems(3rd edition)

chapter 1 Introduction

Exercise 1.1: A mathematical model that describes a wide variety of physical nonlinear systems is the nth-order differential equation

$$y^{(n)} = g(t, y, \dot{y}, ..., y^{(n-1)}, u)$$
(1)

where u and y are scalar variables. With u as input and y as output, find a state model.

Solution:

Let
$$x_1=y, x_2=y^{(1)}, ..., x_n=y^{({\bf n}-1)}$$

$$\dot{x}_1=x_2 \\ \dot{x}_{{\bf n}-1}=x_n \\ \dot{x}_n=g(t,x_1,...,x_n,u)$$

chapter 2 Second Order Systems

chapter 3 Fundamental Properties

Exercise 3.24 : Let $V: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Suppose that V(t,0)=0 for all $t\geq 0$ and

$$V(t,x) \ge c_1 \|x\|^2; \left\| \frac{\partial V}{\partial x}(t,x) \right\| \le c_4 \|x\|, \forall (t,x) \in [0,\infty) \times D \tag{3}$$

where c_1 and c_4 are positive constants and $D \subset \mathbb{R}^n$ is a convex domain that contains the origin x=0

- 1. Show that $V(t,x) \leq \frac{1}{2}c_4\|x\|^2$ for all $x \in D$. Hint: Use the representation $V(t,x) = \int_0^1 \frac{\partial V}{\partial x}(t,\sigma x)d\sigma x$
- 2. Show that the constants c_1 and x_4 must satisfy $2c_1 \le c_4$
- 3. Show that $W(t,x) = \sqrt{V(t,x)}$ satisfies the Lipschitz condition

$$|W(t,x_2) - W(t,x_1)| \leq \frac{c_4}{2\sqrt{c_1}} \|x_2 - x_1\|, \forall t \geq 0, \forall x_1, x_2 \in D \tag{4}$$

Solution to 1

$$V(t,x) = \int_0^1 \frac{\partial V}{\partial V}(t,\sigma x) dx \le \int_0^1 \left\| \frac{\partial V}{\partial x}(t,\sigma x) \right\| \left\| x \right\| d\sigma \le \int_0^1 c_4 \sigma d\sigma \left\| x \right\|^2 \le \frac{1}{2} c_4 \left\| x \right\|^2 \tag{5}$$

Solution to 2

Since

$$c_1 \|x\|^2 \le V(t, x) \le \frac{1}{2} c_4 \|x\|^2, \forall x \in D$$
 (6)

we must have $c_1 \leq \frac{1}{2}c_4$

Solution to 3

xsro@foxmail.com: A tiny supplement of math and solutions

Consider two ponts x_1 and x_2 such that $\alpha x_1 + (1-\alpha)x_2 \neq 0$ for all $0 \leq \alpha \leq 1$; that is, the origin does not lie on the line connecting x_1 and x_2 . The Jacobian $[\partial W/\partial x]$ is defined for every $x = \alpha x_1 + (1-\alpha)x_2$ and given by

$$\frac{\partial W}{\partial x}(t,x) = \frac{1}{2\sqrt{V(t,x)}} \frac{\partial V}{\partial x}(t,x) \tag{7}$$

By the mean value theorem, there is $\alpha^* \in (0,1)$ such that, with $z=\alpha^*x_1+(1-\alpha^*)x_2$

$$W(t,x_2)-W(t,x_1)=\frac{\partial W}{\partial x}(t,z)(x_2-x_1)=\frac{1}{2\sqrt{V(t,z)}}\frac{\partial V}{\partial x}(t,z)(x_2-x_1) \eqno(8)$$

Hence

$$|W(t,x_2) - W(t,x_1)| \le \frac{1}{2\sqrt{c_1}\|z\|} \tag{9}$$

Consider now the case when the origin lies on the line connecting x_1 and x_2 ; that is , $0=\alpha_0x_1+(1-\alpha_0)x_2$ for some $\alpha_0\in[0,1]$. We have

$$\begin{split} |W(t,x_2)-W(t,0)| &= |W(t,x_2)| = \sqrt{V(t,x_2)} \leq \sqrt{\frac{c_4}{2}} \|x_2\| \\ |W(t,x_1)-W(t,0)| &= |W(t,x_1)| = \sqrt{V(t,x_1)} \leq \sqrt{\frac{c_4}{2}} \|x_1\| \\ |W(t,x_2)-W(t,x_1)| &= |W(t,x_2)-W(t,0)+W(t,0)-W(t,x_1)| \leq \sqrt{\frac{c_4}{2}} (\|x_1\|+\|x_2\|) \end{split} \tag{10}$$

Since the origin lies on the line connecting x_1 and x_2 , we have $\|x_2\| + \|x_1\| = \|x_2 - x_1\|$. We also have $1 \le \sqrt{c_4/2c_1}$. Therefore,

$$|W(t,x_2) - W(t,x_1)| \le \frac{c_4}{2\sqrt{c_1}} \|x_2 - x_1\| \tag{11}$$

chapter 4 Lyapunov Stability

chapter 5 Input-Output Stability

Exercise 5.6: Verify that $D_+W(t)$ satisfies Equation 12(5.12 in textbook) when V(t,x(t))=0.

$$D_{+}W \le \frac{c_{4}L}{2\sqrt{c_{1}}} \|u(t)\| \tag{12}$$

Hint: Using Exercise 3.24, show that

$$V(t+h, x(t+h)) \le c_4 h^2 L^2 ||u||^2 / 2 + ho(h)$$
(13)

where $\frac{o(h)}{h} o 0$ as h o 0. Then apply $c_4 \ge 2c_1$

From textbook, the system is

$$\dot{x} = f(t, x, u), x(0) = x_0$$

$$y = h(t, x, u)$$
(14)

xsro@foxmail.com: A tiny supplement of math and solutions

From V(t,x(t))=0 and Equation 6, we have x(t)=0 Let V(t,x(t))=0.

$$\begin{split} D_{+}W &= \lim \sup_{h \to 0^{+}} \frac{1}{h} [W(t+h,x(t+h)) - W(t,x(t))] \\ &= \lim \sup_{h \to 0^{+}} \frac{1}{h} \sqrt{V(t+h,x(t+h))} \end{split} \tag{15}$$

From Equation 6, We have

$$V(t+h, x(t+h)) \le \frac{c_4}{2} \|x(t+h)\|^2 \tag{16}$$

From textbook 5.9, we have

$$||f(t, x(t), u) - f(t, x(t), 0)|| \le L||u|| \tag{17}$$

Use Taylor Series:

$$x(t+h) = f(t,x,u)h + o(h)$$

$$\Rightarrow ||x(t+h)||^{2} \le (||f(t,x,u)||h + ||o(h)||)^{2}$$
(18)

$$\frac{1}{h^2}V(t+h,x(t+h)) \le \frac{c_4}{2} \left(\frac{\|x(t+h)\|}{h}\right)^2 \le \frac{c_4}{2} \left(\|f(t,x,u)\| + \frac{\|o(h)\|}{h}\right)^2 \tag{19}$$

$$\lim \sup_{h \to 0^+} \frac{1}{h} \sqrt{V(t+h, x(t+h))} \le \sqrt{\frac{c_4}{2}} \|f(t, x, u)\| \le \sqrt{\frac{c_4}{2}} L \|u\| \tag{20}$$

since $\sqrt{c_4/(2c_1)} \ge 1$. Thus

$$D_{+}W \leq \sqrt{\frac{c_{4}}{2}}L\|u\|\sqrt{c_{4}/(2c_{1})} = \frac{c_{4}L}{2\sqrt{c_{1}}}\|u(t)\| \tag{21}$$

which agrees with the right hand side of Equation 12

chapter 6 Passivity

chapter 7 Frequency Domain analysis of Feedback Systems

chapter 8 Advanced Stability Analysis

chapter 9 Stability of Perturbed Systems

chapter 10 Perturbation Theory and Averaging

chapter 11 Singular Perturbations

chapter 12 Feedback Control

chapter 13 Feedback Linearization

chapter 14 Nonlinear Design Tools