talk03 练习与作业

目录

0.1	练习和作业说明	1
0.2	talk03 内容回顾	1
0.3	练习与作业: 用户验证	2
0.4	练习与作业 1, data.frame	2
0.5	练习与作业 2, tibble	15
0.6	练习与作业 3: IO	23

0.1 练习和作业说明

将相关代码填写入以"'{r}" 标志的代码框中,运行并看到正确的结果; 完成后,用工具栏里的"Knit" 按键生成 PDF 文档;

将生成的 PDF 改为: 姓名-学号-talk03 作业.pdf, 并提交到老师指定的 平台/钉群。

0.2 talk03 内容回顾

- 二维表: data.frame, tibble
 - 声明
 - 操作
 - * 增减行、列

- * 合并
- 常用相关函数
 - * nrow, ncol, dim , str , head, tail
- data.frame 和 tibble 的不同
- 高级技巧:
 - * with, within
- IO
 - 系统自带函数
 - readr 带的函数
 - 不同格式的读取
 - 从网络、压缩文件读取

0.3 练习与作业:用户验证

请运行以下命令,验证你的用户名。

如你当前用户名不能体现你的真实姓名,请改为拼音后再运行本作业!

```
Sys.info()[["user"]]
```

[1] "sicheng.wu"

Sys.getenv("HOME")

[1] "/home/vkorpela"

0.4 练习与作业 1, data.frame

注:以下内容来自 https://www.r-exercises.com/。

• 生成下面的 data.frame 的前三列,之后再增加 Sex 这列

```
Age Height Weight Sex
Alex
           25
                 177
                          57
                               F
                               F
Lilly
           31
                          69
                 163
Mark
           23
                 190
                          83
                               М
Oliver
           52
                 179
                          75
                               М
Martha
           76
                 163
                          70
                               F
Lucas
           49
                 183
                          83
                               M
Caroline
           26
                 164
                          53
                               F
```

```
## 先生成前三列;
df1 <- data.frame(
    Age = c(25, 31, 23, 52, 76, 49, 26),
    Height = c(177, 163, 190, 179, 163, 183, 164),
    Weight = c(57, 69, 83, 75, 70, 83, 53),
    row.names = c("Alex", "Lilly", "Mark", "Oliver", "Martha", "Lucas", "Caroline")
)

## 再插入第四列
df1 <- cbind(df1, Sex = c("F", "F", "M", "M", "F", "M", "F"))

## 显示最终结果
df1
```

```
##
           Age Height Weight Sex
            25
## Alex
                  177
                          57
                               F
                 163
                               F
## Lilly
            31
                          69
## Mark
            23
                 190
                          83
                               Μ
## Oliver
            52
                 179
                          75
                               М
## Martha
            76
                 163
                          70
                               F
## Lucas
            49
                  183
                          83
                               М
## Caroline 26
                  164
                               F
                          53
```

• 生成以下 data.frame, 确保 Working 这列的类型是 character, 而不是 factor

	Working
Alex	Yes
Lilly	No
Mark	No
Oliver	Yes
Martha	Yes
Lucas	No
Caroline	Yes

```
## 生成 data.frame
df2 <- data.frame(
    Working = c("Yes", "No", "Yes", "Yes", "No", "Yes"),
    row.names = c("Alex", "Lilly", "Mark", "Oliver", "Martha", "Lucas", "Caroline"),
    stringsAsFactors = FALSE
)
## 显示结果
df2</pre>
```

```
## Working
## Alex Yes
## Lilly No
## Mark No
```

```
## Oliver Yes
## Martha Yes
## Lucas No
## Caroline Yes
```

```
## 显示 Working 列的性质 class(df2[["Working"]])
```

[1] "character"

• 检查系统自带变量 state.center 的内容,将其转化为 data.frame

```
## 代码写这里,并运行;
```

state.center

```
## $x
        -86.7509 -127.2500 -111.6250 -92.2992 -119.7730 -105.5130 -72.3573
##
   [1]
   [8]
        -74.9841 -81.6850 -83.3736 -126.2500 -113.9300 -89.3776 -86.0808
##
## [15]
        -93.3714 -98.1156
                           -84.7674 -92.2724 -68.9801
                                                        -76.6459 -71.5800
## [22]
        -84.6870 -94.6043
                           -89.8065 -92.5137 -109.3200 -99.5898 -116.8510
## [29]
        -71.3924 -74.2336 -105.9420 -75.1449 -78.4686 -100.0990 -82.5963
## [36]
        -97.1239 -120.0680 -77.4500 -71.1244 -80.5056
                                                        -99.7238
                                                                  -86.4560
## [43]
        -98.7857 -111.3300 -72.5450 -78.2005 -119.7460 -80.6665
                                                                  -89.9941
## [50] -107.2560
##
```

\$y

```
## [1] 32.5901 49.2500 34.2192 34.7336 36.5341 38.6777 41.5928 38.6777 27.8744

## [10] 32.3329 31.7500 43.5648 40.0495 40.0495 41.9358 38.4204 37.3915 30.6181

## [19] 45.6226 39.2778 42.3645 43.1361 46.3943 32.6758 38.3347 46.8230 41.3356

## [28] 39.1063 43.3934 39.9637 34.4764 43.1361 35.4195 47.2517 40.2210 35.5053

## [37] 43.9078 40.9069 41.5928 33.6190 44.3365 35.6767 31.3897 39.1063 44.2508
```

[46] 37.5630 47.4231 38.4204 44.5937 43.0504

as.data.frame(state.center)

```
##
             Х
                     У
## 1
      -86.7509 32.5901
     -127.2500 49.2500
## 2
## 3
    -111.6250 34.2192
     -92.2992 34.7336
## 4
## 5
     -119.7730 36.5341
## 6
     -105.5130 38.6777
## 7
      -72.3573 41.5928
## 8
     -74.9841 38.6777
      -81.6850 27.8744
## 9
## 10 -83.3736 32.3329
## 11 -126.2500 31.7500
## 12 -113.9300 43.5648
## 13 -89.3776 40.0495
## 14 -86.0808 40.0495
## 15
      -93.3714 41.9358
## 16 -98.1156 38.4204
## 17 -84.7674 37.3915
      -92.2724 30.6181
## 18
## 19
      -68.9801 45.6226
## 20
      -76.6459 39.2778
## 21 -71.5800 42.3645
## 22
      -84.6870 43.1361
## 23
      -94.6043 46.3943
## 24
      -89.8065 32.6758
## 25
      -92.5137 38.3347
## 26 -109.3200 46.8230
## 27 -99.5898 41.3356
## 28 -116.8510 39.1063
## 29 -71.3924 43.3934
## 30 -74.2336 39.9637
```

```
## 31 -105.9420 34.4764
## 32 -75.1449 43.1361
## 33 -78.4686 35.4195
## 34 -100.0990 47.2517
## 35 -82.5963 40.2210
## 36 -97.1239 35.5053
## 37 -120.0680 43.9078
## 38 -77.4500 40.9069
## 39 -71.1244 41.5928
## 40 -80.5056 33.6190
## 41 -99.7238 44.3365
## 42 -86.4560 35.6767
## 43 -98.7857 31.3897
## 44 -111.3300 39.1063
## 45 -72.5450 44.2508
## 46 -78.2005 37.5630
## 47 -119.7460 47.4231
## 48 -80.6665 38.4204
## 49 -89.9941 44.5937
## 50 -107.2560 43.0504
```

row_1 543 689 173 565 117 ## row_2 557 924 792 604 860

生成一个 50 行 * 5 列的 matrix, 将其行名改为: row_i 格式, 其中 i 为当前的行号, 比如 row_1, row_2 等

```
## 代码写这里,并运行;
df3 <- as.data.frame(matrix(sample(1:1000, 250), nrow = 50))
row.names(df3) <- paste("row_", 1:50, sep = "")
df3
## V1 V2 V3 V4 V5
```

```
## row_3 148 878 505 752 979
## row_4 67 956 29 578 186
## row_5 39 793 843 68 510
## row_6 675 866 977 218 767
## row_7 167 444 519 805 409
## row_8 448 63 183 44 536
## row_9 922 644 555 834 286
## row_10 635 554 103 48 363
## row_11 327 814 200 294 535
## row_12 730 232 424 972 341
## row_13 976 763 662 313 734
## row_14 141 126 296 548 274
## row_15 5 640 314 431 652
## row_16 940 697 854 667 964
## row_17 307 30 276 191 374
## row_18 449 490 213 196 538
## row_19 458 931 883 669 748
## row_20 471 992 269 42 967
## row_21 695 244 220 900 339
## row_22 455 451 710
## row_23 300 88 162 680 518
## row_24 589 418 284 758 707
## row_25 14 171 130 69
## row_26 177 396 122 551 641
## row 27 387 737 985 568 168
## row_28 395 248 506 798 714
## row_29 663 902 509 49 877
## row_30 25 440 277 782 865
## row_31 959 788 593 46 383
## row_32 534 957 833 497 414
## row 33 165 920 22 594 929
## row_34 620 174 187 637 596
## row_35 880 115 308 871 422
```

```
## row_36 225 616 717 65 960

## row_37 818 754 508 665 840

## row_38 687 152 154 827 74

## row_40 37 786 226 569 634

## row_41 178 229 668 100 217

## row_42 164 394 467 359 545

## row_43 139 373 728 310 275

## row_44 691 655 756 140 15

## row_45 330 265 622 495 513

## row_46 511 795 825 723 618

## row_47 975 499 64 886 888

## row_48 31 812 361 842 76

## row_49 379 331 654 925 990

## row_50 781 911 958 790 982
```

- 使用系统自带变量 VADeaths, 做如下练习:
- 检查 VADeaths 的类型,如果不是 data.frame,则转换之;
- 添加新的一列,取名 Total,其值为每行的总合
- 调整列的顺序,将 Total 变为第一列。

```
## 代码写这里,并运行;
class(VADeaths)
```

[1] "matrix" "array"

```
df4 <- as.data.frame(VADeaths)

df4 <- cbind(df4, Total = rowSums(df4))

df4 <- df4[, c(5, 1, 2, 3, 4)]</pre>
```

df4

```
##
         Total Rural Male Rural Female Urban Male Urban Female
## 50-54 44.2
                     11.7
                                    8.7
                                              15.4
                                                             8.4
## 55-59 67.7
                     18.1
                                   11.7
                                              24.3
                                                            13.6
## 60-64 103.5
                     26.9
                                   20.3
                                              37.0
                                                            19.3
## 65-69 161.6
                                                            35.1
                     41.0
                                   30.9
                                              54.6
## 70-74 241.4
                     66.0
                                   54.3
                                              71.1
                                                            50.0
```

• 用系统自带的 swiss 数据做练习:

- 取子集, 选取第 1, 2, 3, 10, 11, 12 and 13 行, 第 Examination, Education 和 Infant.Mortality 列;
- 将 Sarine 行 Infant.Mortality 列的值改为 NA;
- 增加一列, 命名为 Mean, 其值为当前行的平均值;

```
## 代码写这里,并运行;
```

```
df5 <- as.data.frame(swiss)[c(1:3, 10:13), c("Examination", "Education", "Infant.Mortal
df5["Sarine", "Infant.Mortality"] <- NA
df5 <- cbind(df5, Mean = rowMeans(df5))</pre>
```

##		${\tt Examination}$	${\tt Education}$	Infant.Mortality	Mean
##	Courtelary	15	12	22.2	16.40000
##	Delemont	6	9	22.2	12.40000
##	Franches-Mnt	5	5	20.2	10.06667
##	Sarine	16	13	NA	NA
##	Veveyse	14	6	24.5	14.83333
##	Aigle	21	12	16.5	16.50000
##	Aubonne	14	7	19.1	13.36667

• 将下面三个变量合并生成一个 data.frame

```
Id <- LETTERS

x <- seq(1,43,along.with=Id)

y <- seq(-20,0,along.with=Id)

## 代码写这里,并运行;

Id <- LETTERS

x <- seq(1, 43, along.with = Id)

y <- seq(-20, 0, along.with = Id)

df6 <- data.frame(Id, x, y)

df6

## Id x y

## 1 A 1.00 -20.0
```

```
## 1
## 2
     B 2.68 -19.2
## 3
     C 4.36 -18.4
     D 6.04 -17.6
## 4
## 5
     E 7.72 -16.8
     F 9.40 -16.0
## 6
     G 11.08 -15.2
## 7
## 8
     H 12.76 -14.4
## 9
     I 14.44 -13.6
## 10 J 16.12 -12.8
## 11 K 17.80 -12.0
## 12 L 19.48 -11.2
## 13 M 21.16 -10.4
## 14 N 22.84 -9.6
## 15 0 24.52 -8.8
## 16 P 26.20 -8.0
## 17 Q 27.88 -7.2
```

```
## 18 R 29.56 -6.4

## 19 S 31.24 -5.6

## 20 T 32.92 -4.8

## 21 U 34.60 -4.0

## 22 V 36.28 -3.2

## 23 W 37.96 -2.4

## 24 X 39.64 -1.6

## 25 Y 41.32 -0.8

## 26 Z 43.00 0.0
```

问: seq 函数中的 along.with 参数的意义是什么?请举例说明。

答: along.with 参数的意义是使 seq 输出的向量长度与 along.with 给定的向量一致。例如说 seq(0, 10, along.with = 1:101) 就会自动计算步长,输出长度为 101 的向量。

```
## 代码写这里,并运行;
seq(0, 10, along.with = 1:101)
```

```
 [1] \quad 0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 
##
              1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
##
    [16] 1.5
                                                                 2.6 2.7 2.8
                                                                                2.9
    [31] 3.0
##
              3.1
                    3.2 3.3 3.4 3.5
                                        3.6 3.7 3.8 3.9 4.0
                                                                 4.1
                                                                      4.2
                                                                           4.3
                                                                                4.4
    [46] 4.5
              4.6 4.7 4.8 4.9
                                   5.0 5.1 5.2 5.3 5.4 5.5
                                                                 5.6 5.7 5.8
                                                                               5.9
##
    [61] 6.0
             6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3
##
                                                                                7.4
             7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
    [76] 7.5
##
    [91] 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
##
```

• 提供代码, 合并以下两个 data.frame

> df1 的内容

Id Age

1 14

2 12

```
3 15
4 10
>df2 的内容
Id Sex Code
1 F a
2 M b
3 M c
4 F d
合并之后的结果:
> M
Id Age Sex Code
1 14 F a
2 12 M b
3 15 M c
4 10 F d
## 代码写这里, 并运行;
df1 <- data.frame(</pre>
Id = 1:4,
Age = c(14, 12, 15, 10)
)
df2 <- data.frame(</pre>
 Id = 1:4,
 Sex = c("F", "M", "M", "F"),
 Code = c("a", "b", "c", "d")
)
M <- merge(df1, df2, by.df1 = "Id", by.df2 = "Id")</pre>
Μ
```

Id Age Sex Code

```
## 1 1 14 F a

## 2 2 12 M b

## 3 3 15 M c

## 4 4 10 F d
```

• 从上面的 data.frame 中删除 code 列

```
## 代码写这里,并运行;
M["Code"] <- NULL
M

## Id Age Sex
## 1 1 14 F

## 2 2 12 M

## 3 3 15 M

## 4 4 10 F
```

• 练习,回答代码中的问题

答: 前三个可以, 第四个不可以

```
## 1. 生成一个10 行2 列的data.frame df3 <- data.frame( data = 1:10, group = c("A","B")); ## 2. 增加一列, 其长度是1, 可以吗? cbind(df3, newcol = 1); ## 3. 增加一列, 其长度是10, 可以吗? cbind(df3, newcol = 1:10); ## 4. 增加一列, 其长度是2, 可以吗? cbind(df3, newcol = 1:2); ## 5. 增加一列, 其长度是3, 可以吗? cbind(df3, newcol = 1:3);
```

0.5 练习与作业 2, tibble

• 运行以下代码, 生成一个新的 tibble:

```
## 如果系统中没有 lubridate 包,则安装:
if (!require("lubridate")){
  chooseCRANmirror();
  install.packages("lubridate");
}
## Loading required package: lubridate
## Warning in system("timedatectl", intern = TRUE): running command 'timedatectl'
## had status 1
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
library(lubridate);
if (!require("tibble")){
  chooseCRANmirror();
  install.packages("tibble");
}
## Loading required package: tibble
library(tibble);
tibble(
```

```
a = lubridate::now() + runif(1e3) * 86400,
 b = lubridate::today() + runif(1e3) * 30,
 c = 1:1e3,
 d = runif(1e3),
 e = sample(letters, 1e3, replace = TRUE)
)
## # A tibble: 1,000 x 5
##
                                      c de
##
     <dttm>
                        <date>
                                  <int> <dbl> <chr>
## 1 2022-09-16 10:39:23 2022-10-14
                                     1 0.252 h
## 2 2022-09-16 12:26:27 2022-09-18
                                     2 0.681 q
## 3 2022-09-16 12:14:59 2022-09-18
                                     3 0.648 j
## 4 2022-09-16 23:14:04 2022-09-16
                                     4 0.196 e
## 5 2022-09-16 12:21:42 2022-09-20
                                     5 0.926 s
## 6 2022-09-16 13:57:23 2022-10-09
                                     6 0.630 1
## 7 2022-09-17 07:09:20 2022-10-04
                                     7 0.893 g
## 8 2022-09-17 06:17:31 2022-09-28
                                   8 0.729 a
## 9 2022-09-16 10:10:00 2022-10-15
                                     9 0.370 v
## 10 2022-09-17 04:00:57 2022-10-11 10 0.556 g
## # ... with 990 more rows
从中可以看出, tibble 支持一些细分数据类型, 包括:
  • <dttm>
  • <date>
```

• 生成一个如下的 tibble, 完成以下任务:

df <- tibble(</pre>

等;

```
17
x = runif(5),
 y = rnorm(5)
任务:
 • 取一列, 比如 x 这一列, 得到一个 tibble;
 • 取一列, 比如 y 这一列, 得到一个 vector;
## 代码写这里,并运行;
df <- tibble(</pre>
x = runif(5),
y = rnorm(5)
)
df["x"]
## # A tibble: 5 x 1
##
    <dbl>
## 1 0.928
## 2 0.330
## 3 0.461
## 4 0.530
## 5 0.0198
df[["y"]]
```

• 用 tibble 函数创建一个新的空表,并逐行增加一些随机的数据,共 增加三行:

```
## 代码写这里,并运行;
## 新 tibble, with defined columns ... 创建表头
tb <- tibble( name = character(), age = integer(), salary = double() );

## 增加三行随机数据;
tb <- add_row(tb, name = sample(LETTERS, 3), age = sample(18:60, 3), salary = sample(16:60);

## # A tibble: 3 x 3

## name age salary
## <chr> <int> <dbl>
## 1 A 33 21900
## 2 Z 31 31000
```

• ** 请解释为什么下面第一行代码能够运行成功,但第二个不行? **

这个可以:

3 V

```
data.frame(a = 1:6, b = LETTERS[1:2]);
但下面这个不行:
tibble(a = 1:6, b = LETTERS[1:2]);
```

问: 为什么? tibble 循环的规则是什么?

30 39200

答:因为 data.frame 可以循环使用长度能够整除行数的向量,而 tibble 只能重复使用长度为 1 的向量。

• attach 和 detach:

问:这个两个函数的用途是什么?请用 iris 这个系统自带变量举例说明。

答: attach 可以将数据按列加载到环境变量中,便于直接访问。detach 则可以卸载 attach 加载的数据。

加载以前 Sepal.Length 无法直接访问,需要指明数据 iris[["Sepal.Length"]][1:5]

[1] 5.1 4.9 4.7 4.6 5.0

使用 attach 加载 iris 后可以直接通过环境变量访问 iris 中的列 attach(iris)

Sepal.Length[1:5]

[1] 5.1 4.9 4.7 4.6 5.0

使用 detach 卸载后重新回到开始时无法访问的状态 detach(iris)

- 使用内置变量 airquality:
- 检查它是否是 tibble;
- 如果不是, 转化为 tibble;

代码写这里, 并运行;

class(airquality)

[1] "data.frame"

as_tibble(airquality)

```
## # A tibble: 153 x 6
##
      Ozone Solar.R Wind Temp Month
##
      <int>
               <int> <dbl> <int> <int> <int>
##
    1
         41
                 190
                       7.4
                               67
                                       5
##
    2
         36
                 118
                       8
                               72
                                       5
                                             2
##
    3
         12
                 149
                      12.6
                               74
                                       5
                                             3
##
    4
         18
                 313
                      11.5
                               62
                                       5
                                             4
##
    5
         NA
                  NA
                      14.3
                               56
                                       5
                                             5
##
    6
         28
                  NA
                     14.9
                               66
                                       5
                                             6
    7
                 299
                      8.6
                                             7
##
         23
                               65
                                       5
##
    8
         19
                  99
                      13.8
                               59
                                       5
                                             8
                      20.1
##
          8
                  19
                               61
                                       5
                                             9
         NA
                 194
                       8.6
                                       5
## 10
                               69
                                            10
## # ... with 143 more rows
```

• 问: tibble::enframe 函数的用途是什么?请举例说明:

答: tibble::enframe 可以将向量转变为带有 name 列的 tibble 类型数据。其中 name 列内容会根据向量中元素的命名情况自动生成。

```
# 若无命名, name 列为向量中的下标
unnamed <- 10:1
enframe(unnamed)
```

```
## # A tibble: 10 x 2
##
       name value
##
      <int> <int>
##
    1
           1
                10
##
    2
           2
                  9
##
    3
           3
                 8
    4
           4
                 7
##
           5
                 6
##
    5
```

```
##
    6
           6
                 5
##
           7
                 4
##
           8
                 3
##
   9
           9
                 2
## 10
          10
                  1
```

```
# 若有命名, name 列为命名内容
named <- 10:1
names(named) <- LETTERS[1:10]
enframe(named)
```

```
## # A tibble: 10 x 2
##
     name value
##
     <chr> <int>
##
   1 A
               10
   2 B
                9
##
   3 C
##
                8
   4 D
                7
##
## 5 E
                6
##
  6 F
                5
## 7 G
                4
  8 H
                3
## 9 I
                2
## 10 J
                1
```

• 简述 tibble 相比 data.frame 的优势?并用实例展示

答: 1. tibble 支持在创建的时候引用其中某一列的数据, data.frame 不可以; 2. 取数据的子集时数据类型稳定为 tibble, 而 data.frame 数据类型将随取的数据而定;

```
## 代码写这里,并运行;
## 1. 下面的代码可以正常执行 (而在 data.frame 中不可)
tb1 \leftarrow tibble(x = 1:10, y = 2 * x)
tb1
## # A tibble: 10 x 2
##
         Х
               У
##
     <int> <dbl>
##
   1
         1
   2
##
         2
               4
## 3
         3
              6
## 4
         4
              8
## 5
         5
             10
## 6
              12
         6
## 7
         7
              14
## 8
         8
              16
## 9
         9
              18
## 10
        10
              20
## 2. data.frame 可能得到不同数据类型的 subset, 而 tibble 的 subset 一定为 tibble
df2 \leftarrow data.frame(v1 = 1:10, v2 = 10:1)
class(df2[1, 1])
## [1] "integer"
class(df2[1:2])
## [1] "data.frame"
tb2 \leftarrow tibble(v1 = 1:10, v2 = 10:1)
class(tb2[1, 1])
## [1] "tbl_df"
                "tbl"
                             "data.frame"
```

class(tb2[1:2])

[1] "tbl_df" "tbl" "data.frame"

0.6 练习与作业 3: IO

• 提供代码, 正确读取以下文件:

注:数据在当前目录下的 data/ 子目录里

- Table0.txt
- Table1.txt
- Table2.txt
- Table3.txt
- \bullet Table 4.txt
- Table5.txt
- Table6.txt
- states1.csv
- \bullet states 2.csv

注 2: 每个文件读取需要提供两种方法,一种是利用系统自带函数,另一种是 readr 包的函数;

用系统自带函数,并显示读取的内容;

read.table("./data/Table0.txt", header = FALSE)

V1 V2 V3 V4 V5
1 Alex 25 177 57 F
2 Lilly 31 163 69 F
3 Mark 23 190 83 M
4 Oliver 52 179 75 M
5 Martha 76 163 70 F
6 Lucas 49 183 83 M
7 Caroline 26 164 53 F

```
read.table("./data/Table1.txt", header = TRUE)
##
        Name Age Height Weight Sex
## 1
        Alex 25
                    177
                            57
                                 F
                                 F
## 2
       Lilly 31
                    163
                            69
## 3
        Mark 23
                    190
                            83 M
## 4
      Oliver 52
                    179
                            75 M
## 5
      Martha 76
                    163
                            70 F
## 6
       Lucas 49
                    183
                            83
                                 Μ
## 7 Caroline 26
                    164
                                 F
                            53
read.table("./data/Table2.txt", header = TRUE, skip = 2, quote = "/")
##
        Name Age Height Weight Sex
        Alex 25
## 1
                    177
                            57
                                 F
## 2
       Lilly 31
                    163
                            69
                                F
## 3
        Mark 23
                    190
                            83 M
## 4
      Oliver 52
                    179
                            75 M
## 5
      Martha 76
                    163
                            70 F
## 6
       Lucas
              49
                    183
                            83
                                 Μ
## 7 Caroline 26
                    164
                            53
                                 F
read.table("./data/Table3.txt", header = TRUE, skip = 2, na.strings = c("--", "*", "**"
##
        Name Age Height Weight Sex
## 1
        Alex 25
                    177
                            57
                                 F
## 2
       Lilly 31
                     NA
                            69
                                F
## 3
        Mark NA
                    190
                            83 M
## 4
      Oliver 52
                    179
                            75 M
```

70 F

53 F

Μ

NA

NA

183

164

5

6

Martha 76

Lucas 49

7 Caroline 26

```
read.table("./data/Table4.txt", header = TRUE, dec = ",", na.strings = c("--", "*", "**
##
        Name Age Height Weight Sex
                  1.77
## 1
        Alex 25
                           57
## 2
       Lilly 31
                    NA
                           69 F
## 3
       Mark NA
                  1.90
                           83 M
## 4
                  1.79
                          75 M
      Oliver 52
                          70 F
## 5
      Martha 76
                   NA
## 6
                  1.83
                          NA M
       Lucas 49
## 7 Caroline 26
                  1.64
                           53 F
read.table("./data/Table5.txt", header = TRUE, sep = ";", dec = ",", na.strings = c("--
##
        Name Age Height Weight Sex
## 1
       Alex 25
                  1.77
                           57 F
## 2
       Lilly 31
                    NA
                           69 F
## 3
       Mark NA
                  1.90
                          83 M
      Oliver 52
## 4
                  1.79
                          75 M
## 5
      Martha 76
                   NA
                           70 F
       Lucas 49
## 6
                  1.83
                           NA M
## 7 Caroline 26
                  1.64
                           53 F
read.table("./data/Table6.txt", header = TRUE, skip = 2, comment.char = "@", nrows = 7)
##
        Name Age Height Weight Sex
## 1
        Alex 25
                   177
                           57 F
## 2
       Lilly 31
                   163
                           69 F
## 3
       Mark 23
                   190
                           83 M
## 4
      Oliver 52
                   179
                           75 M
                          70 F
## 5
      Martha 76
                   163
## 6
       Lucas 49
                   183
                          83 M
## 7 Caroline 26
                   164
                           53 F
```

read.csv("./data/states1.csv", row.names = 1)

##		Population	Income	Illiteracy	Life.Exp	Murder	HS.Grad	Frost
##	Alabama	3615	3624	2.1	69.05	15.1	41.3	20
##	Alaska	365	6315	1.5	69.31	11.3	66.7	152
##	Arizona	2212	4530	1.8	70.55	7.8	58.1	15
##	Arkansas	2110	3378	1.9	70.66	10.1	39.9	65
##	California	21198	5114	1.1	71.71	10.3	62.6	20
##	Colorado	2541	4884	0.7	72.06	6.8	63.9	166
##	Connecticut	3100	5348	1.1	72.48	3.1	56.0	139
##	Delaware	579	4809	0.9	70.06	6.2	54.6	103
##	Florida	8277	4815	1.3	70.66	10.7	52.6	11
##	Georgia	4931	4091	2.0	68.54	13.9	40.6	60
##	Hawaii	868	4963	1.9	73.60	6.2	61.9	0
##	Idaho	813	4119	0.6	71.87	5.3	59.5	126
##	Illinois	11197	5107	0.9	70.14	10.3	52.6	127
##	Indiana	5313	4458	0.7	70.88	7.1	52.9	122
##	Iowa	2861	4628	0.5	72.56	2.3	59.0	140
##	Kansas	2280	4669	0.6	72.58	4.5	59.9	114
##	Kentucky	3387	3712	1.6	70.10	10.6	38.5	95
##	Louisiana	3806	3545	2.8	68.76	13.2	42.2	12
##	Maine	1058	3694	0.7	70.39	2.7	54.7	161
##	Maryland	4122	5299	0.9	70.22	8.5	52.3	101
##	Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103
##	Michigan	9111	4751	0.9	70.63	11.1	52.8	125
##	Minnesota	3921	4675	0.6	72.96	2.3	57.6	160
##	Mississippi	2341	3098	2.4	68.09	12.5	41.0	50
##	Missouri	4767	4254	0.8	70.69	9.3	48.8	108
##	Montana	746	4347	0.6	70.56	5.0	59.2	155
##	Nebraska	1544	4508	0.6	72.60	2.9	59.3	139
##	Nevada	590	5149	0.5	69.03	11.5	65.2	188
##	New Hampshire	812	4281	0.7	71.23	3.3	57.6	174
##	New Jersey	7333	5237	1.1	70.93	5.2	52.5	115

##	New Mexico	1144	3601	2.2	70.32	9.7	55.2	120
##	New York	18076	4903	1.4	70.55	10.9	52.7	82
##	North Carolina	5441	3875	1.8	69.21	11.1	38.5	80
##	North Dakota	637	5087	0.8	72.78	1.4	50.3	186
##	Ohio	10735	4561	0.8	70.82	7.4	53.2	124
##	Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82
##	Oregon	2284	4660	0.6	72.13	4.2	60.0	44
##	Pennsylvania	11860	4449	1.0	70.43	6.1	50.2	126
##	Rhode Island	931	4558	1.3	71.90	2.4	46.4	127
##	South Carolina	2816	3635	2.3	67.96	11.6	37.8	65
##	South Dakota	681	4167	0.5	72.08	1.7	53.3	172
##	Tennessee	4173	3821	1.7	70.11	11.0	41.8	70
##	Texas	12237	4188	2.2	70.90	12.2	47.4	35
##	Utah	1203	4022	0.6	72.90	4.5	67.3	137
##	Vermont	472	3907	0.6	71.64	5.5	57.1	168
##	Virginia	4981	4701	1.4	70.08	9.5	47.8	85
##	Washington	3559	4864	0.6	71.72	4.3	63.5	32
##	West Virginia	1799	3617	1.4	69.48	6.7	41.6	100
##	Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149
##	Wyoming	376	4566	0.6	70.29	6.9	62.9	173
##		Area						
##	Alabama	50708						
##	Alaska	566432						

Arizona 113417 51945 ## Arkansas ## California 156361 ## Colorado 103766 ## Connecticut 4862 ## Delaware 1982 ## Florida 54090 ## Georgia 58073 ## Hawaii 6425 ## Idaho 82677

##	Illinois	55748
##	Indiana	36097
##	Iowa	55941
##	Kansas	81787
##	Kentucky	39650
##	Louisiana	44930
##	Maine	30920
##	Maryland	9891
##	Massachusetts	7826
##	Michigan	56817
##	Minnesota	79289
##	Mississippi	47296
##	Missouri	68995
##	Montana	145587
##	Nebraska	76483
##	Nevada	109889
##	New Hampshire	9027
##	New Jersey	7521
##	New Mexico	121412
##	New York	47831
##	North Carolina	48798
##	North Dakota	69273
##	Ohio	40975
##	Oklahoma	68782
##	Oregon	96184
##	Pennsylvania	44966
##	Rhode Island	1049
##	South Carolina	30225
##	South Dakota	75955
##	Tennessee	41328
##	Texas	262134
##	Utah	82096
##	Vermont	9267

```
## Virginia 39780

## Washington 66570

## West Virginia 24070

## Wisconsin 54464

## Wyoming 97203
```

read.csv2("./data/states2.csv", row.names = 1)

##		Population	Income	Illiteracy	Life.Exp	Murder	HS.Grad	Frost
##	Alabama	3615	3624	2.1	69.05	15.1	41.3	20
##	Alaska	365	6315	1.5	69.31	11.3	66.7	152
##	Arizona	2212	4530	1.8	70.55	7.8	58.1	15
##	Arkansas	2110	3378	1.9	70.66	10.1	39.9	65
##	California	21198	5114	1.1	71.71	10.3	62.6	20
##	Colorado	2541	4884	0.7	72.06	6.8	63.9	166
##	Connecticut	3100	5348	1.1	72.48	3.1	56.0	139
##	Delaware	579	4809	0.9	70.06	6.2	54.6	103
##	Florida	8277	4815	1.3	70.66	10.7	52.6	11
##	Georgia	4931	4091	2.0	68.54	13.9	40.6	60
##	Hawaii	868	4963	1.9	73.60	6.2	61.9	0
##	Idaho	813	4119	0.6	71.87	5.3	59.5	126
##	Illinois	11197	5107	0.9	70.14	10.3	52.6	127
##	Indiana	5313	4458	0.7	70.88	7.1	52.9	122
##	Iowa	2861	4628	0.5	72.56	2.3	59.0	140
##	Kansas	2280	4669	0.6	72.58	4.5	59.9	114
##	Kentucky	3387	3712	1.6	70.10	10.6	38.5	95
##	Louisiana	3806	3545	2.8	68.76	13.2	42.2	12
##	Maine	1058	3694	0.7	70.39	2.7	54.7	161
##	Maryland	4122	5299	0.9	70.22	8.5	52.3	101
##	Massachusetts	5814	4755	1.1	71.83	3.3	58.5	103
##	Michigan	9111	4751	0.9	70.63	11.1	52.8	125
##	Minnesota	3921	4675	0.6	72.96	2.3	57.6	160
##	Mississippi	2341	3098	2.4	68.09	12.5	41.0	50
##	Missouri	4767	4254	0.8	70.69	9.3	48.8	108

##	Montana	746	4347	0.6	70.56	5.0	59.2	155
##	Nebraska	1544	4508	0.6	72.60	2.9	59.3	139
##	Nevada	590	5149	0.5	69.03	11.5	65.2	188
##	New Hampshire	812	4281	0.7	71.23	3.3	57.6	174
##	New Jersey	7333	5237	1.1	70.93	5.2	52.5	115
##	New Mexico	1144	3601	2.2	70.32	9.7	55.2	120
##	New York	18076	4903	1.4	70.55	10.9	52.7	82
##	North Carolina	5441	3875	1.8	69.21	11.1	38.5	80
##	North Dakota	637	5087	0.8	72.78	1.4	50.3	186
##	Ohio	10735	4561	0.8	70.82	7.4	53.2	124
##	Oklahoma	2715	3983	1.1	71.42	6.4	51.6	82
##	Oregon	2284	4660	0.6	72.13	4.2	60.0	44
##	Pennsylvania	11860	4449	1.0	70.43	6.1	50.2	126
##	Rhode Island	931	4558	1.3	71.90	2.4	46.4	127
##	South Carolina	2816	3635	2.3	67.96	11.6	37.8	65
##	South Dakota	681	4167	0.5	72.08	1.7	53.3	172
##	Tennessee	4173	3821	1.7	70.11	11.0	41.8	70
##	Texas	12237	4188	2.2	70.90	12.2	47.4	35
##	Utah	1203	4022	0.6	72.90	4.5	67.3	137
##	Vermont	472	3907	0.6	71.64	5.5	57.1	168
##	Virginia	4981	4701	1.4	70.08	9.5	47.8	85
##	Washington	3559	4864	0.6	71.72	4.3	63.5	32
##	West Virginia	1799	3617	1.4	69.48	6.7	41.6	100
##	Wisconsin	4589	4468	0.7	72.48	3.0	54.5	149
##	Wyoming	376	4566	0.6	70.29	6.9	62.9	173
##		Area						
##	Alabama	50708						
##	Alaska	566432						
##	Arizona	113417						

Arkansas

Colorado

California

Connecticut

51945

156361

103766

4862

##	Delaware	1982			
##	Florida	54090			
##	Georgia	58073			
##	Hawaii	6425			
##	Idaho	82677			
##	Illinois	55748			
##	Indiana	36097			
##	Iowa	55941			
##	Kansas	81787			
##	Kentucky	39650			
##	Louisiana	44930			
##	Maine	30920			
##	Maryland	9891			
##	Massachusetts	7826			
##	Michigan	56817			
##	Minnesota	79289			
##	Mississippi	47296			
##	Missouri	68995			
##	Montana	145587			
##	Nebraska	76483			
##	Nevada	109889			
##	New Hampshire	9027			
##	New Jersey	7521			
##	New Mexico	121412			
##		47831			
##	North Carolina	48798			
##		69273			
##	Ohio	40975			
##	Oklahoma	68782			
	Oregon	96184			
	Pennsylvania	44966			
	Rhode Island	1049			
##	South Carolina	30225			

75955

South Dakota

```
## Tennessee
                  41328
## Texas
                 262134
## Utah
                  82096
## Vermont
                  9267
## Virginia
                  39780
## Washington
                  66570
## West Virginia
                  24070
## Wisconsin
                  54464
## Wyoming
                  97203
## 用 readr 包的函数读取,并显示读取的内容;
library(readr)
read_table("./data/Table0.txt", col_names = FALSE)
##
## -- Column specification -----
## cols(
    X1 = col_character(),
##
##
    X2 = col_double(),
    X3 = col_double(),
##
    X4 = col_double(),
##
##
    X5 = col_character()
## )
## # A tibble: 7 x 5
##
    X1
                X2
                     ХЗ
                           X4 X5
##
    <chr>
             <dbl> <dbl> <dbl> <chr>
## 1 Alex
                25
                    177
                           57 F
## 2 Lilly
                31
                    163
                           69 F
## 3 Mark
                23
                    190
                           83 M
## 4 Oliver
                52
                    179
                           75 M
## 5 Martha
                76
                           70 F
                    163
## 6 Lucas
                           83 M
                49
                    183
```

```
## 7 Caroline
               26
                   164
                         53 F
read_table("./data/Table1.txt", col_names = TRUE)
##
## -- Column specification -------
## cols(
    Name = col_character(),
##
##
    Age = col_double(),
    Height = col_double(),
##
    Weight = col_double(),
##
##
    Sex = col_character()
## )
## # A tibble: 7 x 5
##
    Name
              Age Height Weight Sex
            <dbl> <dbl> <dbl> <chr>
##
    <chr>
## 1 Alex
              25
                    177
                           57 F
## 2 Lilly
              31
                    163
                           69 F
## 3 Mark
              23
                    190
                           83 M
## 4 Oliver
              52
                    179
                          75 M
## 5 Martha
              76
                    163
                          70 F
## 6 Lucas
              49
                    183
                           83 M
## 7 Caroline
               26
                    164
                           53 F
read_table("./data/Table2.txt", col_names = TRUE, skip = 2)
##
## -- Column specification ------
## cols(
##
    Name = col_character(),
##
    Age = col_double(),
    Height = col_double(),
##
    Weight = col_double(),
##
```

```
##
    Sex = col_character()
## )
## # A tibble: 7 x 5
##
    Name
                 Age Height Weight Sex
    <chr>
               <dbl> <dbl> <dbl> <chr>
##
## 1 /Alex/
                  25
                        177
                               57 /F/
## 2 /Lilly/
                       163
                               69 /F/
                  31
## 3 /Mark/
                               83 /M/
                  23
                       190
## 4 /Oliver/
                  52
                       179
                               75 /M/
## 5 /Martha/
                  76
                       163
                               70 /F/
## 6 /Lucas/
                  49
                        183
                               83 /M/
## 7 /Caroline/
                               53 /F/
                  26
                        164
read_table("./data/Table3.txt", col_names = TRUE, skip = 2, na = c("--", "*", "**", "NA
##
## -- Column specification ------
## cols(
    Name = col_character(),
##
    Age = col_double(),
##
    Height = col_double(),
##
##
    Weight = col_double(),
    Sex = col_character()
##
## )
## # A tibble: 7 x 5
##
    Name
               Age Height Weight Sex
##
    <chr>
             <dbl> <dbl> <dbl> <chr>
## 1 Alex
                25
                      177
                             57 F
## 2 Lilly
                31
                      NA
                             69 F
## 3 Mark
                NA
                      190
                             83 M
## 4 Oliver
                52
                      179
                             75 M
## 5 Martha
                76
                             70 F
                      NA
```

```
## 6 Lucas
              49
                   183
                          NA M
## 7 Caroline
              26
                   164
                          53 F
read_table("./data/Table4.txt", col_names = TRUE, na = c("--", "*", "**", "NA"))
##
## -- Column specification ------
## cols(
    Name = col_character(),
##
    Age = col_double(),
##
    Height = col_number(),
##
##
    Weight = col_double(),
##
    Sex = col_character()
## )
## # A tibble: 7 x 5
    Name
            Age Height Weight Sex
           <dbl> <dbl> <dbl> <chr>
    <chr>
## 1 Alex
              25
                   177
                          57 F
## 2 Lilly
             31
                   NA
                         69 F
## 3 Mark
            NA
                   190
                        83 M
## 4 Oliver
              52
                   179
                         75 M
## 5 Martha
            76
                   NA
                         70 F
## 6 Lucas
              49
                   183
                         NA M
## 7 Caroline
                        53 F
              26
                   164
read_delim("./data/Table5.txt", delim = ";",col_names = TRUE, na = c("--", "*", "**", "
## Warning: One or more parsing issues, see `problems()` for details
## Rows: 7 Columns: 5
## -- Column specification -------
## Delimiter: ";"
```

```
## chr (2): Name, Sex
## dbl (2): Age, Weight
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
## # A tibble: 7 x 5
##
    Name
               Age Height Weight Sex
             <dbl> <dbl> <dbl> <chr>
##
    <chr>>
## 1 Alex
                25
                      177
                              57 F
## 2 Lilly
                31
                              69 F
                       NA
## 3 Mark
                NA
                      190
                              83 M
## 4 Oliver
                52
                      179
                             75 M
## 5 Martha
                76
                              70 F
                       NA
## 6 Lucas
                49
                      183
                              NA M
## 7 Caroline
                26
                      164
                              53 F
read_table("./data/Table6.txt", col_names = TRUE, skip = 2, n_max = 7, comment = "0")
##
## -- Column specification ------
## cols(
##
    Name = col_character(),
    Age = col_double(),
##
    Height = col_double(),
##
    Weight = col_double(),
##
    Sex = col_character()
##
## )
## # A tibble: 7 x 5
    Name
               Age Height Weight Sex
##
    <chr>
             <dbl> <dbl> <dbl> <chr>
                              57 F
## 1 Alex
                25
                      177
## 2 Lilly
                31
                      163
                              69 F
```

```
## 3 Mark
                 23
                       190
                               83 M
## 4 Oliver
                 52
                       179
                               75 M
## 5 Martha
                               70 F
                 76
                       163
## 6 Lucas
                 49
                       183
                               83 M
## 7 Caroline
                 26
                               53 F
                       164
read_csv("./data/states1.csv")
## New names:
## Rows: 50 Columns: 9
## -- Column specification
## ------ Delimiter: "," chr
## (1): ...1 dbl (8): Population, Income, Illiteracy, Life Exp, Murder, HS Grad,
## Frost, Area
## i Use `spec()` to retrieve the full column specification for this data. i
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## * `` -> `...1`
## # A tibble: 50 x 9
##
      ...1
                  Population Income Illiteracy Life E~1 Murder HS Gr~2 Frost
                                                                               Area
##
      <chr>
                       <dbl>
                             <dbl>
                                         <dbl>
                                                  <dbl> <dbl>
                                                                 <dbl> <dbl> <dbl>
   1 Alabama
                        3615
                               3624
                                           2.1
                                                   69.0
                                                          15.1
                                                                  41.3
                                                                             50708
##
                                                                          20
   2 Alaska
                         365
                               6315
                                           1.5
                                                   69.3
                                                          11.3
                                                                  66.7
                                                                         152 566432
##
   3 Arizona
                        2212
                               4530
                                           1.8
                                                   70.6
                                                           7.8
                                                                  58.1
                                                                          15 113417
##
   4 Arkansas
                        2110
                               3378
                                           1.9
                                                   70.7
                                                          10.1
                                                                  39.9
                                                                          65
                                                                             51945
   5 California
##
                       21198
                               5114
                                           1.1
                                                   71.7
                                                          10.3
                                                                  62.6
                                                                          20 156361
##
   6 Colorado
                        2541
                               4884
                                           0.7
                                                   72.1
                                                           6.8
                                                                  63.9
                                                                         166 103766
   7 Connecticut
                                           1.1
                                                   72.5
                                                           3.1
                        3100
                               5348
                                                                  56
                                                                         139
                                                                               4862
##
   8 Delaware
                         579
                               4809
                                           0.9
                                                   70.1
                                                           6.2
                                                                  54.6
                                                                         103
                                                                               1982
   9 Florida
                        8277
                               4815
                                           1.3
                                                   70.7
                                                          10.7
                                                                  52.6
##
                                                                          11
                                                                              54090
                               4091
                                           2
                                                   68.5
                                                                  40.6
## 10 Georgia
                        4931
                                                          13.9
                                                                          60
                                                                              58073
```

... with 40 more rows, and abbreviated variable names 1: `Life Exp`,

2: `HS Grad`

i Using "','" as decimal and "'.'" as grouping mark. Use `read_delim()` for more con ## New names:Rows: 50 Columns: 9-- Column specification -----## Delimiter: ";"

chr (1): ...1
dbl (8): Population, Income, Illiteracy, Life Exp, Murder, HS Grad, Frost, Area

i Use `spec()` to retrieve the full column specification for this data.

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

A tibble: 50 x 9

##		1	Population	Income	Illiteracy	Life E~1	Murder	HS Gr~2	Frost	Area
##		<chr></chr>	<dbl></dbl>							
##	1	Alabama	3615	3624	2.1	69.0	15.1	41.3	20	50708
##	2	Alaska	365	6315	1.5	69.3	11.3	66.7	152	566432
##	3	Arizona	2212	4530	1.8	70.6	7.8	58.1	15	113417
##	4	Arkansas	2110	3378	1.9	70.7	10.1	39.9	65	51945
##	5	California	21198	5114	1.1	71.7	10.3	62.6	20	156361
##	6	Colorado	2541	4884	0.7	72.1	6.8	63.9	166	103766
##	7	Connecticut	3100	5348	1.1	72.5	3.1	56	139	4862
##	8	Delaware	579	4809	0.9	70.1	6.2	54.6	103	1982
##	9	Florida	8277	4815	1.3	70.7	10.7	52.6	11	54090
##	10	Georgia	4931	4091	2	68.5	13.9	40.6	60	58073

^{## # ...} with 40 more rows, and abbreviated variable names 1: `Life Exp`,

^{## # 2: `}HS Grad`