Atividade 02 - MLP

Conforme apresentado em sala de aula, as Redes Neurais Artificiais, mais precisamente a *Multilayer Perceptron* (MLP), tem a capacidade de generalização de uma função com alto nível de precisão. No entanto, problemas como o *overfitting* e *underfitting* podem comprometer o desempenho e a indução adequada de um modelo preditivo.

Desta forma, implemente uma MLP (em R/Python) com critério de parada baseado no número de iterações e limiar de erro desejado. Vale ressaltar que a seleção da topologia ideal (quantidade de neurônios e camadas) também é uma premissa para a construção de uma MLP adequada. Desta forma:

- 1. Descreva um relatório técnico (em PDF) que apresente os gráficos de desempenho (erros de treinamento, validação, teste) para diferentes configurações de MLPs. Ao final, apresente uma comparação entre os modelos e sugira o melhor setup (topologia, formato dos dados, taxa de aprendizado) para solucionar os seguintes problemas:
 - a. "Iris" (disponível no site da disciplina), e
 - b. mais dois datasets de sua preferência oriundos do repositório OpenML (https://www.openml.org)

IMPORTANTE: Treinar a testar os modelos usando Validação cruzada (CV) nos conjuntos de dados.

DICA: Formato dos dados → {dados normalizados, dados originais}

- 2. Além disso, compare a MLP implementada com uma solução disponível na literatura. Execute ambas MLPs (implementação x pacote) usando a melhor configuração encontrada em (1), e avaliando-as nos mesmos conjuntos de teste.
 - a. Pacote de MLP para R: nnet
 - i. https://cran.r-project.org/web/packages/nnet/index.html
 - i. https://cran.r-project.org/web/packages/nnet/nnet.pdf
 - b. Biblioteca de MLP para Python: sklearn
 - i. http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.M
 LPClassifier.html
 - ii. http://scikit-learn.org/stable/modules/neural-networks-supervised.html

No relatório, descreva todas as tarefas necessárias para a manipulação dos datasets pelas MLPs, analise e justifique os resultados por meio dos conteúdos ministrados em sala de aula.

Instruções para entrega

- Prazo: 8/11/18
- Entrega por email, para:
 - o rgmantovani@uel.br
 - Título do email: AT 02 MLP <NOME>
 - NOME = Nome completo do aluno
- Enviar um arquivo compactado com:
 - Código desenvolvido (R ou Python)
 - Relatório técnico (PDF)
- Avaliação: Trabalhos entregues dentro do prazo serão avaliados com a nota integral.
 Trabalhos entregues com atraso, como comentado em sala de aula, terão decréscimos no valor da atividade.

Links para ajuda

Repositório da disciplina: https://github.com/rgmantovani/ia2018uel

Validação cruzada: https://pt.wikipedia.org/wiki/Validação_cruzada
http://eg.ufpr.br/~walmes/ensino/ML/tutorials/01-cross-validation.html
https://eww.inf.ufpr.br/aurora/disciplinas/datamining/avalia.pdf

ggplot2: https://ggplot2.tidyverse.org matplotlib: https://matplotlib.org

Gráficos de convergência: https://pyskynet.readthedocs.io/en/latest/convergenceplots.html

Material auxiliar:

ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/theses/Inunes_mest/cap6.pdf