STSCI 5080 Probability Models and Inference

Lecture 10: Order Statistics and Expected Values

September 27, 2018

Independence

Definition

Random variables X_1, \ldots, X_n are independent if

$$P(X_1 \in A_1, \ldots, X_n \in A_n) = P(X_1 \in A_1) \cdots P(X_n \in A_n)$$

for any subsets $A_1, \ldots, A_n \subset \mathbb{R}$.

Definition

If random variables X_1, \ldots, X_n are independent with common cdf F (on \mathbb{R}), then they are called a random sample from F.

"
$$X_1, \ldots, X_n \sim F$$
 i.i.d.",

where "i.i.d." means "independent and identically distributed". E.g.,

$$X_1,\ldots,X_n\sim N(\mu,\sigma^2)$$
 i.i.d.

Distributions of maximum and minimum

Example

If X_1, \ldots, X_n are i.i.d. with common cdf F and pdf f, then find the cdfs and pdfs of $U = \max_{1 \le i \le n} X_i$ and $V = \min_{1 \le i \le n} X_i$.

Theorem

The cdf of $U = \max_{1 \le i \le n} X_i$ is

$$F_{IJ}(u) = \{F(u)\}^n.$$

Hence, the pdf of U is

Proof.

 $\max X_i \le u \Leftrightarrow X_i \le u \text{ for all } 1 \le i \le n,$ $1 \le i \le n$

we have

$$F_U(u) = P\left(\max_{1 \le i \le n} X_i \le u\right) = P(X_1 \le u, \dots, X_n \le u)$$
$$= P(X_1 \le u) \cdots P(X_n \le u) = \{F(u)\}^n.$$

 $f_U(u) = nf(u)\{F(u)\}^{n-1}$.

Example

Let X and Y be lifetimes (in year) of two cars, and suppose that $X,Y\sim Ex(\lambda)$ i.i.d. with $\lambda=0.1$. What is the probability that at least one car will be working for more than 10 years?

Example

Let X and Y be lifetimes (in year) of two cars, and suppose that $X, Y \sim Ex(\lambda)$ i.i.d. with $\lambda = 0.1$. What is the probability that at least one car will be working for more than 10 years?

The cdf of
$$Ex(0.1)$$
 is $F(x)=1-e^{-0.1\cdot x}$ for $x\geq 0$. The cdf of $U=\max\{X,Y\}$ is
$$F_U(u)=(1-e^{-0.1\cdot u})^2$$

for $u \ge 0$, so that

$$P(U > 10) = 1 - F_U(10) = 1 - (1 - e^{-1})^2 \approx 0.60.$$

Theorem

The cdf of $V = \min_{1 \le i \le n} X_i$ is

$$F_V(v) = 1 - \{1 - F(v)\}^n$$
.

Hence, the pdf of V is

$$f_V(v) = nf(v)\{1 - F(v)\}^{n-1}.$$

Proof.

Since

$$\min_{1 \le i \le n} X_i > v \Leftrightarrow X_i > v \text{ for all } i = 1, \dots, n,$$

we have

$$P\left(\min_{1 \le i \le n} X_i > \nu\right) = P(X_1 > \nu, \dots, X_n > \nu)$$

= $P(X_1 > \nu) \cdots P(X_n > \nu) = \{1 - F(\nu)\}^n$.

$$= P(X_1 > v) \cdots P(X_n > v) = \{1 - F(v)\}^n$$

Hence,
$$F_V(v) = 1 - P(\min_{1 \le i \le n} X_i > v) = 1 - \{1 - F(v)\}^n$$
.

Example

If $X_1, \ldots, X_n \sim Ex(\lambda)$ i.i.d., find the distribution of $V = \min_{1 \le i \le n} X_i$.

Example

If $X_1, \ldots, X_n \sim Ex(\lambda)$ i.i.d., find the distribution of $V = \min_{1 \le i \le n} X_i$.

Since $F(x) = 1 - e^{-\lambda x}$ for $x \ge 0$, we have

$$F_V(u) = 1 - \{1 - F(v)\}^n = 1 - e^{-n\lambda v}$$

for $v \ge 0$. This is the cdf of $Ex(n\lambda)$, and so $V \sim Ex(n\lambda)$.

Statistic

Definition

Let X_1, \ldots, X_n be a random sample. Then a function of X_1, \ldots, X_n is called a statistic of X_1, \ldots, X_n

Order statistics

Definition

Let X_1, \ldots, X_n be a random sample from a pdf f. Then the order statistics $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ are defined by sorting X_1, \ldots, X_n in increasing order.

Example

$$X_{(1)} = \min_{1 \le i \le n} X_i$$
 and $X_{(n)} = \max_{1 \le i \le n} X_i$.

Densities of order statistics

Theorem

Let X_1, \ldots, X_n be independent continuous random variables with common pdf f, and let $X_{(1)} < \cdots < X_{(n)}$ be order statistics of X_1, \ldots, X_n . For any $k = 1, \ldots, n$, the pdf of $X_{(k)}$ is

$$f_{X_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} f(x)F(x)^{k-1} \{1 - F(x)\}^{n-k},$$

where F denotes the cdf corresponding to f.

See the supplemental material for a proof.

Chapter 4 Expected Values

Expected values

- A random variable may take many different values.
- The expected value/expectation/mean is a summary of the possible values of a random variable. "average value".

Expectation: discrete case

Definition

The expected value (or expectation or mean) of a discrete random variable X with pmf p(x) is defined by

$$E(X) = \sum_{x} xp(x)$$

whenever the sum is absolutely convergent, i.e., $\sum_{x} |x| p(x) < \infty$.

If X is non-negative, then we also define

$$E(X) = \sum_{x} xp(x) = \sum_{x>0} xp(x)$$

even when $\sum_{x>0} xp(x) = \infty$.

Example

Find the expected values of the following random variables: (a) X is a Bernoulli random variable with success probability p. (b) $X \sim P(\lambda)$.

Example

Find the expected values of the following random variables: (a) X is a Bernoulli random variable with success probability p. (b) $X \sim P(\lambda)$.

(a)
$$E(X) = p$$
. (b) $E(X) = \lambda$.

Some cautions

- The expectation is a non-random number.
- The expectation is determined uniquely by the pmf or the cdf.
- "The Poisson distribution $Po(\lambda)$ has mean λ ."

Example

If X takes values in 2^k , $k = 0, 1, \dots$ such that

$$P(X=2^k) = \frac{1}{2^{k+1}},$$

then

$$E(X) = \sum_{x} xP(X = x) = \sum_{k=0}^{\infty} 2^k \frac{1}{2^{k+1}} = \infty.$$

Expectation: continuous case

Definition

The expected value (or expectation or mean) of a continuous random variable X with pdf f(x) is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

whenever $\int_{-\infty}^{\infty} |x| f(x) dx < \infty$.

If X is non-negative, then we also define

$$E(X) = \int_{-\infty}^{\infty} xf(x)dx = \int_{0}^{\infty} xf(x)dx$$

even when $\int_0^\infty x f(x) dx = \infty$.

Example

Find the expected values of the following random variables: (a) $X \sim Ex(\lambda)$. (b) $X \sim N(\mu, \sigma^2)$.

Example

Find the expected values of the following random variables: (a) $X \sim Ex(\lambda)$. (b) $X \sim N(\mu, \sigma^2)$.

(a)
$$E(X) = \frac{1}{\lambda}$$
. (b) $E(X) = \mu$.

Example

If X has the Cauchy density

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty,$$

then E(X) is not well-defined.

Example

If X has the Cauchy density

$$f(x) = \frac{1}{\pi(1+x^2)}, -\infty < x < \infty,$$

then E(X) is not well-defined.

X takes both positive and negative values, but

$$\int_{-\infty}^{\infty} |x| \frac{1}{\pi(1+x^2)} dx = \frac{2}{\pi} \int_{0}^{\infty} \frac{x}{1+x^2} dx = \frac{1}{\pi} \left[\log(1+x^2) \right]_{0}^{\infty} = \infty.$$