

General information

Designation

Fraxinus americana

Typical uses

handles; oars; vehicle parts; baseball bats & other sporting & athletic

Composition overview

Cellulose/Hemicellulose/Lignin/12%H2O

Compositional summary

Hardness - Vickers

Hardness - Brinell

Hardness - Janka

Motorial family	Notimal					
Material family		Natural				
Base material	,	Wood (hardwood)				
Renewable content	100		%			
Composition detail (polymers and natur	al materials)					
Wood	100			%		
Price						
Price	* 2.01	-	2.68	USD/kg		
Price per unit volume	* 1.21e3	-	1.98e3	USD/m^3		
Physical properties						
Density	600	-	740	kg/m^3		
Mechanical properties						
Young's modulus	* 1.82	-	2.03	GPa		
Yield strength (elastic limit)	* 3.48	-	4.26	MPa		
Tensile strength	5.8	-	7.1	MPa		
Elongation	* 0.94	-	1.15	% strain		
Compressive strength	7.2	-	8.8	MPa		
Flexural modulus	1.65	-	1.85	GPa		
Flexural strength (modulus of rupture)	* 5.8	-	7.1	MPa		
Shear modulus	* 0.188	-	0.258	GPa		
Shear strength	* 35.6	-	43.6	MPa		
Rolling shear strength	* 1.32	-	3.97	MPa		
Bulk modulus	* 0.93	-	1.04	GPa		
Poisson's ratio	* 0.02	-	0.04			
Shape factor	5.6					

5.28

5.28

* 24.5

HV

HB

kΝ

6.46

30

6.46

Ash (fraxinus americana) (t)

#EJUPIICK							
Fatigue strength at 10^7 cycles	* 1.74 - 2.13 MPa						
Mechanical loss coefficient (tan delta)	* 0.018 - 0.022						
Differential shrinkage (radial)	* 0.17 - 0.2 %						
Differential shrinkage (tangential)	* 0.28 - 0.34 %						
Radial shrinkage (green to oven-dry)	4.4 - 5.4 %						
Tangential shrinkage (green to oven-dry)	7 - 8.6 %						
Volumetric shrinkage (green to oven-dry)	12 - 14.6 %						
Work to maximum strength	* 10.3 - 12.6 kJ/m^3						
Impact & fracture properties							
Fracture toughness	* 0.496 - 0.606 MPa.m^0.5						
Thermal properties							
Glass temperature	77 - 102 °C						
Maximum service temperature	120 - 140 ℃						
Minimum service temperature	* -7323 °C						
Thermal conductivity	0.13 - 0.17 W/m.℃						
Specific heat capacity	1.66e3 - 1.71e3 J/kg.℃						
Thermal expansion coefficient	* 30.6 - 41.2 µstrain/℃						
Electrical properties							
Electrical resistivity	* 8.54e13 - 1.28e14 µohm.cm						
Dielectric constant (relative permittivity)	* 3.77 - 4.61						
Dissipation factor (dielectric loss tangent)	* 0.052 - 0.063						
Dielectric strength (dielectric breakdown)	* 1 - 2 MV/m						
Magnetic properties							
Magnetic type	Non-magnetic						
Optical properties							
Transparency	Opaque						
Critical materials risk							
Contains >5wt% critical elements?	No						
Durability							
Water (fresh)	Limited use						
Water (salt)	Limited use						
Weak acids	Limited use						
Strong acids	Unacceptable						
Weak alkalis	Acceptable						
Strong alkalis	Unacceptable						

Ash (fraxinus americana) (t)

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	11.6	-	12.8	MJ/kg	
-------------------------------------	------	---	------	-------	--

Sources

0.5 MJ/kg (Ximenes, 2006); 2 MJ/kg (Ximenes, 2006); 9.1 MJ/kg (Hammond and Jones, 2008); 11.6 MJ/kg (Hubbard and Bowe, 2010); 23.7 MJ/kg (Ecoinvent v2.2); 26 MJ/kg (Ecoinvent v2.2)

CO2 footprint, primary production	0.574	-	0.633	kg/kg	
-----------------------------------	-------	---	-------	-------	--

Sources

0.229 kg/kg (Ecoinvent v2.2); 0.412 kg/kg (Ecoinvent v2.2); 0.862 kg/kg (Hammond and Jones, 2008); 0.909 kg/kg (Hubbard and Bowe, 2010)

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 0.588	-	0.65	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0441	-	0.0488	kg/kg
Fine machining energy (per unit wt removed)	* 1.61	-	1.78	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.121	-	0.133	kg/kg
Grinding energy (per unit wt removed)	* 2.74	-	3.03	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.206	-	0.228	kg/kg

Recycling and end of life

Recycle	×		
Recycle fraction in current supply	8.55	- 9.45	%
Downcycle	✓		
Combust for energy recovery	✓		
Heat of combustion (net)	* 19.8	- 21.3	MJ/kg
Combustion CO2	* 1.69	- 1.78	kg/kg
Landfill	✓		
Biodegrade	✓		

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	

