SEGUNDO INVENTÁRIO BRASILEIRO DE EMISSÕES ANTRÓPICAS DE GASES DE EFEITO ESTUFA

RELATÓRIOS DE REFERÊNCIA

EMISSÕES DE GASES DE EFEITO ESTUFA NO TRATAMENTO E DISPOSIÇÃO DE RESÍDUOS

Ministério da Ciência e Tecnologia **2010**

PRESIDENTE DA REPÚBLICA FEDERATIVA DO BRASIL LUÍS INACIO LULA DA SILVA

VICE-PRESIDENTE DA REPÚBLICA JOSÉ DE ALENCAR GOMES DA SILVA

MINISTRO DE ESTADO DA CIÊNCIA E TECNOLOGIA SERGIO MACHADO REZENDE

SECRETÁRIO EXECUTIVO LUIZ ANTONIO RODRIGUES ELIAS

SECRETÁRIO DE POLÍTICAS E PROGRAMAS DE CIÊNCIA E TECNOLOGIA LUIZ ANTONIO BARRETO DE CASTRO

EXECUÇÃO

COORDENADOR GERAL DE MUDANÇAS GLOBAIS DE CLIMA JOSÉ DOMINGOS GONZALEZ MIGUEZ

COORDENADOR TÉCNICO DO INVENTÁRIO NEWTON PACIORNIK

SEGUNDO INVENTÁRIO BRASILEIRO DE EMISSÕES ANTRÓPICAS DE GASES DE EFEITO ESTUFA

RELATÓRIOS DE REFERÊNCIA

EMISSÕES DE GASES DE EFEITO ESTUFA NO TRATAMENTO E DISPOSIÇÃO DE RESÍDUOS

Elaborado por:

Companhia Ambiental do Estado de São Paulo- CETESB

Autores:

João Wagner Silva Alves Sônia Maria Manso Vieira

Publicação do Ministério da Ciência e Tecnologia

Para obter cópias adicionais deste documento ou maiores informações, entre em contato com:

Ministério da Ciência e Tecnologia Secretaria de Políticas e Programas de Pesquisa e Desenvolvimento Departamento de Programas Temáticos Coordenação Geral de Mudanças Globais de Clima Esplanada dos Ministérios Bloco E 2º Andar Sala 268 70067-900 - Brasília - DF

Telefone: 61 3317-7923 e 3317-7523

Fax: 61 3317-7657 e-mail: cpmg@mct.gov.br http://www.mct.gov.br/clima

Revisão:

Mayra Braga Rocha Mauro Meirelles de Oliveira Santos Ana Carolina Avzaradel Newton Paciornik

Revisão de Editoração:

Márcia dos Santos Pimenta

A realização deste trabalho só foi possível com o apoio financeiro e administrativo do:

Fundo Global para o Meio Ambiente - GEF

Programa das Nações Unidas para o Desenvolvimento - PNUD Projeto BRA/95/G31 SCN Quadra 02 Bloco A - Ed. Corporate Center 7º Andar 70712-901 - Brasília - DF Telefone: 61 329-2000

Fax: 61 329-2099 e-mail: registry@undp.org.br

e-mail: registry@undp.org.b http://www.undp.org.br

Agradecimentos:

Expressamos nossa mais profunda gratidão, pelos constantes incentivos e apoio em todos os momentos aos trabalhos realizados, ao Ministro de Estado da Ciência e Tecnologia, Dr. Sérgio Rezende, e ao Secretário Executivo, Dr. Luis Elias. Estendemos nossos agradecimentos ao Dr. Eduardo Campos, que ocupou a pasta de 2004 a 2005 e ao Dr. Luiz Fernandes, que representou a Secretaria Executiva de 2004 a 2007.

Agradecemos às equipes do GEF, do PNUD e da ABC/MRE por meio dos dirigentes dessas instituições: Sra. Monique Barbut, Dr. Jorge Chediek e Ministro Marco Farani, respectivamente, e, em particular, algumas pessoas muito especiais sem as quais a realização desse trabalho não teria sido possível: Robert Dixon, Diego Massera e Oliver Page, do GEF; Rebeca Grynstan, do PNUD/Latino América e Caribe; Kim Bolduc, Eduardo Gutierrez, Carlos Castro, Rose Diegues, Luciana Brant, do PNUD-Brasil, bem como Márcio Corrêa e Alessandra Ambrosio, da ABC/MRE. Agradecemos, igualmente, à equipe da ASCAP/MCT, por meio de sua dirigente, Dra. Ione Egler. Agradecemos, por fim, à equipe da Unidade de Supervisão Técnica e Orientação Jurídica do PNUD-Brasil. A todas essas pessoas, por seu apoio e liderança neste processo, nosso mais sincero agradecimento.

Índice

	Pagina
Apresentação	9
Sumário Executivo	10
1 Introdução	13
1.1 Emissões de gases de efeito estufa no setor de tratamento de resíduos	14
1.1.1 Disposição de resíduos sólidos	14
1.1.2 Incineração de resíduos sólidos	15
1.1.3 Tratamento de efluentes domésticos	15
1.1.4 Tratamento de efluentes industriais	16
1.2 A rede nacional de inventário	16
2. Metodologia	17
2.1 Estimativa das emissões de metano dos locais de disposição de resíduos sólidos	517
2.2 Estimativa das emissões de ${ m CO_2}$ e de ${ m N_2O}$ por incineração de resíduos sólidos $_$	18
2.3 Estimativa das emissões de CH₄ pelo tratamento de efluentes domésticos	19
2.4 Estimativa das emissões de CH₄ pelo tratamento de efluentes industriais	20
3. Dados	22
3.1 Emissões de metano pela disposição e tratamento de resíduos sólidos	22
3.1.1 Constante de geração de metano - k e Fator de normalização para a soma - A _	22
3.1.2 Quantidade total de resíduo gerado e fração de resíduos destinada ao aterro_	27
3.1.3 População urbana	27
3.1.4 taxa de geração de resíduo sólido urbano	29
3.1.5 Potencial de Geração de Metano	34
3.1.6 Fator de correção de metano - MCF _(x)	35
3.1.7 Carbono orgânico degradável - DOC _(x)	38
3.1.8 Fração do carbono orgânico degradável dissimilado	40
3.1.10 Fração de metano no biogás	41
3.1.11 Metano Recuperado - R	41
3.1.12 Fator de Oxidação - OX	42
3.2 Emissões de CO₂ e N₂O por incineração de resíduos sólidos	42
3.2.1 Estimativa da quantidade de resíduo incinerado, por tipo	42
3.2.2 Percentual de carbono de origem fóssil no MSW	
3.2.3 Percentual de carbono de origem fóssil no HW, no CW e no SS	
3.2.4 Eficiência de queima dos incineradores de resíduo	48
3.2.5 Fatores de emissão de N₂O para incineração de resíduos	48

3.3 Emissão de CH₄ pelo tratamento de efluentes domésticos	49
3.3.1 Componente orgânico degradável do efluente doméstico - TOW	49
3.3.2 População	50
3.3.3 Capacidade máxima de produção de metano - B $_0$	51
3.3.4 Sistemas de tratamento	53
3.3.5 Fator de conversão de metano do sistema x tratando o efluente - MCF $_x$	60
3.3.6 Metano recuperado	61
3.4 Emissões de CH₄ pelo tratamento de efluentes industriais	63
3.4.1 Produção industrial	63
3.4.2 Fator de emissão de carga orgânica por unidade produzida	66
3.4.3 Capacidade máxima de produção de metano - B $_0$	66
3.4.4 Fração de efluente industrial tratado por sistema anaeróbio	66
3.4.5 Cerveja	67
3.4.6 Açúcar e álcool	71
3.4.7 Fator de conversão de metano do sistema x tratando o efluente - MCF $_{ m x}$	74
3.4.8 Metano recuperado - R	75
4 Resultados	76
5 Diferenças em relação ao Inventário Inicial	81
6 Referências bibliográficas	82
6.1 Referências bibliográficas para DOC(x) e FCF.CCW(x)	86

Lista de Tabelas

	Página
Tabela 1 - Dados default do IPCC (2006) de k para o MSW misturado	22
Tabela 2 - Ocorrências de temperatura média anual (MAT) na Região Sul do país de 1990 a 2005	24
Tabela 3 - PET da região Sul do Brasil	26
Tabela 4 - População urbana do Brasil dos anos de 1970, 1980, 1991, 2000 e 2007	28
Tabela 5 – Taxa MSW para 1970	29
Tabela 6 – Taxa MSW [kg/hab.dia]-para 2005	31
Tabela 7 - Municípios com população superior a 500.000 habitantes.	33
Tabela 8 - Coeficientes angular e linear empregados para estimar a Taxa MSW para 2005	34
Tabela 9 - Dados default do Good Guidance Practice 2000 para MCF	35
Tabela 10 – Destinação dos resíduos no Brasil, em 1989	36
Tabela 11 - Qualidade do destino dos resíduos no Brasil no ano de 2000	37
Tabela 12- Variação do DOC(x) de 1970 a 2005 nas regiões do Brasil	40
Tabela 13 - Metano recuperado – R	42
Tabela 14 - Resíduo incinerado (IW) nos anos de 1989 e 2000	43
Tabela 15 – MSW, HW, CW e SS incinerados	45
Tabela 16 – Parâmetros para o cálculo do percentual de carbono de origem fóssil nos resíduos	47
Tabela 17 – Valores default para CCW e FCF	48
Tabela 18 – Fatores de emissão de CO ₂ para incineração de resíduos	48
Tabela 19 - Fatores de emissão de N₂O para incineração de resíduos	49
Tabela 20 – População do Brasil, nos anos 1970, 1980, 1991, 2000 e 2007	50
Tabela 21 - Componente orgânico degradável do efluente doméstico, de 1990 a 2005	 52
Tabela 22 – Fração de domicílios com rede coletora no Brasil de 1992 a 2005	 55
Tabela 23 - Distritos com coleta e sistemas de tratamento de esgotos no Brasil, no ano 2000	 58
Tabela 24 – Distritos sem rede coletora de esgoto, com principal solução alternativa, no Brasil, no and	
	59
Tabela 25 - Fração dos sistemas de tratamento anaeróbio de esgotos no Brasil, em 1994	60
Tabela 26 - Fatores de conversão de metano - MCF	61
Tabela 27 - Metano recuperado por reator e digestor anaeróbio	62
Tabela 28 - Emissões de DBO dos setores industriais mais representativos para o ano de 2005	64
Tabela 29 – Produção industrial dos principais setores industriais geradores de carga orgânica	 65
Tabela 30 - Fator de emissão de matéria orgânica	66
Tabela 31 - Sistemas de tratamento secundário cadastrados no setor de cerveja até 1999	67
Tabela 32 - Tratamento de efluentes da indústria de cerveja nos sistemas cadastrados até 1999	68
Tabela 33 - Concentrações de DBO no afluente da indústria de cerveja até 1999	68
Tabela 34 - Vazões afluentes da indústria de cerveja nos sistemas cadastrados até 1999	69
Tabela 35 - Concentrações de DBO no afluente dos sistemas cadastrados até 1999	70
	70 70
Tabela 36 - Análise estatistica das vazões dos sistemas cadastrados até 1999	
Tabela 20. Fana and sisteman de tantamente annihis an estande canain	74
Table 20 Cistament de tentament accomplésie de caste de précesse étable	
Tabela 40 Dados effuentes de seter sucreales eleiro	
Tabela 40 – Dados ejluentes do setor sacrodicobeiro	
Tabela 42 - Dados para obtenção do MCF ponderado dos setores industriais	
Tabela 43 - Fatores de emissão de cada setor industrial Tabela 44 - Matana recuperada por rector apparábile am Ga CU	
Tabela 44 - Metano recuperado por reator anaeróbio em Gg CH ₄ Tabela 45 - Emissãos do CU, pola disposição do residuos sólidos po Brasil, do 1000 a 2005 em Ca CU.	<i>75</i>
Tabela 45 - Emissões de CH ₄ pela disposição de resíduos sólidos no Brasil, de 1990 a 2005 em Gg CH ₄]	
Tabela 46 - Emissões de CO ₂ pela incineração de resíduos sólidos no Brasil, de 1990 a 2005	
Tabela 47 - Emissões de N ₂ O pela incineração de resíduos sólidos no Brasil, de 1990 a 2005	
Tabela 48 - Emissões de CH₄ pelo tratamento de esgotos domésticos no Brasil, de 1990 a 2005 em Gg	
Tabela 49 - Emissões de CH₄ pelo tratamento de efluentes industriais no Brasil, de 1990 a 2005 em Ga	∟π⊿ δ0

Lista de Figuras

3	Página
Figura 1 - Distribuição percentual da quantidade diária de lixo coletado, por unidade de	destino final do lixo
coletado no Brasil no ano 2000	14
Figura 2 - Temperatura média compensada do Brasil	23
Figura 3 - Intensidade pluviométrica no Brasil	24
Figura 4 - Cidades onde foram obtidos dados de composição	39
Figura 5- Variação do DOC _(x) de 1970 a 2005 nas regiões do Brasil	40

Apresentação

O Inventário Nacional de Emissões e Remoções Antrópicas de Gases de Efeito Estufa não controlados pelo Protocolo de Montreal (Inventário) é parte integrante da Comunicação Nacional à Convenção Quadro das Nações Unidas sobre Mudança do Clima (Convenção de Mudança do Clima). A Comunicação Nacional é um dos principais compromissos de todos os países signatários da Convenção de Mudança do Clima.

A responsabilidade da elaboração da Comunicação Nacional é do Ministério da Ciência e Tecnologia, ministério responsável pela coordenação da implementação da Convenção de Mudança do Clima no Brasil, conforme divisão de trabalho no governo que foi estabelecida em 1992. A Segunda Comunicação Nacional Brasileira foi elaborada de acordo com as Diretrizes para Elaboração das Comunicações Nacionais dos Países não Listados no Anexo I da Convenção (países em desenvolvimento) (Decisão 17/CP.8 da Convenção) e as diretrizes metodológicas do Painel Intergovernamental de Mudança do Clima (IPCC).

Em atenção a essas Diretrizes, o presente Inventário é apresentado para o ano base de 2000. Adicionalmente são apresentados os valores referentes aos outros anos do período de 1990 a 2005. Em relação aos anos de 1990 a 1994, o presente Inventário atualiza as informações apresentadas no Primeiro Inventário.

Como diretriz técnica básica, foram utilizados os documentos elaborados pelo Painel Intergovernamental de Mudança Global do Clima (IPCC) "Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories" publicado em 1997, o documento "Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories" publicado em 2000 e o documento "Good Practice Guidance for Land Use, Land Use Change and Forestry" publicado em 2003. Algumas das estimativas já levam em conta informações publicadas no documento "2006 IPCC Guidelines for National Greenhouse Gas Inventories" publicado em 2006.

De acordo com as diretrizes, o Inventário deve ser completo, acurado, transparente, comparável, consistente e ser submetido a processo de controle de qualidade.

A elaboração do Inventário contou com a participação ampla de entidades governamentais e nãogovernamentais, incluindo ministérios, institutos, universidades, centros de pesquisa e entidades setoriais da indústria. Os estudos elaborados resultaram em um conjunto de Relatórios de Referência, do qual o este relatório faz parte, contendo as informações utilizadas, descrição da metodologia empregada e critérios adotados.

Todos os Relatórios de Referência estão foram submetidos a uma consulta ampla de especialistas que não participaram na elaboração do Inventário diretamente, como parte do processo de controle e garantia de qualidade. Esse processo foi essencial para assegurar a qualidade e a correção da informação que constitui a informação oficial do governo brasileiro submetida à Convenção de Mudança do Clima.

Sumário Executivo

Este relatório apresenta as estimativas de emissões de metano decorrentes da disposição e incineração de resíduos sólidos e do tratamento de águas residuárias no Brasil, para o período de 1990 a 2005, com base no *Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories* (Guidelines 1996) e no *Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories* (Good Practice Guidance 2000).

As estimativas realizadas consideraram a população urbana e a taxa de geração de resíduos sólidos urbanos associada a cada município e a taxa de geração de matéria orgânica para o caso dos efluentes.

Os dados estatísticos de população foram obtidos do Instituto Brasileiro de Geografia e Estatística - IBGE, em particular dos Censos Demográficos e da Pesquisa Nacional de Amostragem de Domicílios (PNAD). Os dados a respeito da disposição de resíduos sólidos foram obtidos da Pesquisa Nacional de Saneamento Básico (PNSB) do IBGE, e do Programa de Gerenciamento de Resíduos Sólidos Domiciliares e de Serviços de Saúde, da CETESB. As informações a respeito da situação do tratamento de esgotos domésticos foram obtidas a partir da Pesquisa Nacional de Saneamento Básico (PNSB) e dos Censos Demográficos. As informações sobre os efluentes industriais foram obtidas de um Diagnóstico da Poluição Industrial realizado em onze estados do país (CETESB/ PRONACOP), do Sistema de Licenças e Penalidades - SILP (CETESB) e do Anuário Estatístico Brasileiro (IBGE).

No ano de 2005, as emissões totais de CH₄, devido à disposição de resíduos sólidos, ao tratamento de esgotos domésticos e comerciais e ao tratamento de efluentes industriais, foram 1.743 Gg. No período de 1990 a 2005, as emissões anuais *per capita* de CH₄, ou seja, aquelas devidas à disposição de resíduos sólidos e ao tratamento anaeróbio de efluentes domésticos e industriais, passaram de 8,5 para 9,7kg CH₄/(habitante.ano).

Os serviços de incineração de resíduos geraram emissões de CO_2 e N_2O , estimadas em 110 Gg e 6,8 t, respectivamente, para o ano de 2005.

A Tabela I apresenta um resumo das estimativas das emissões de CH_4 relativas ao tratamento de resíduos no Brasil, e a Tabela II, as emissões de CO_2 e N_2O .

Tabela I - Emissões de CH₄ pelo tratamento de resíduos no Brasil

Fonte	1990	1994	2000	2005	Variação 1990/2005	
		(G	(%)			
Disposição de resíduos sólidos	792	897	1.060	1.104	39,5	
Tratamento de esgotos domésticos	341	369	408	433	27,2	
Tratamento de efluentes industriais	95	103	190	206	117,0	
Emissões totais	1.227	1.369	1.658	1.743	42,0	

Tabela II - Emissões de CO₂ e N₂O pelo tratamento de resíduos no Brasil

Gas	1990	1990 1994 2000 2005						
Gus		(G	g)		(%)			
CO ₂	24	63	92	110	349			
N ₂ O	0,0015	0,0039	0,0059	0,0068	341			

As Figuras I, II e III apresentam a evolução das emissões de CH_4 , CO_2 e N_2O referentes ao tratamento de resíduos no Brasil, para os anos de 1990 a 2005.

Figura I - Emissões de CH₄ provenientes da disposição e tratamento de resíduos no Brasil

Figura II - Emissões de CO₂ provenientes da incineração de resíduos no Brasil

Figura III - Emissões de N₂O provenientes da incineração de resíduos no Brasil

1 Introdução

A disposição e o tratamento de resíduos municipais e industriais podem produzir emissões de gases de efeito estufa. Os resíduos sólidos podem ser descartados em aterros, lixões, podem sofrer reciclagem ou incineração. Os resíduos líquidos podem receber várias formas de tratamentos físico-químicos ou biológicos. Os tratamentos biológicos podem ser por decomposição aeróbia ou anaeróbia.

O gás mais relevante produzido no tratamento de resíduos é o metano. Quantidades significativas de emissões de metano são produzidas e liberadas na atmosfera como produto secundário da decomposição anaeróbia de resíduos, sendo as duas maiores fontes a disposição de lixo em aterros e o tratamento anaeróbio de efluentes. A matéria orgânica presente nos resíduos, em situação de ausência de oxigênio, favorece a ação de bactérias metanogênicas, que a decompõem, gerando o metano.

Este inventário estima as emissões de CH_4 referentes à disposição de resíduos, ao tratamento e disposição de efluentes domésticos e industriais, além das emissões de CO_2 e N_2O da incineração de resíduos.

ara estimar as emissões de gases de efeito estufa do setor de tratamento de resíduos foram necessários dados sobre população, condições climáticas das regiões, situação do saneamento no país e produção industrial. A coleta desses dados foi realizada durante todo o período de elaboração das estimativas.

O levantamento de informações indicou a necessidade de se adaptar e ampliar a base de dados nacional sobre esse tema, visando uma estimativa mais precisa, menos onerosa e mais eficiente que permita a escolha de tecnologias mais adequadas para o país, incluindo a minimização das emissões de GEE.

O método empregado para elaborar as estimativas foi o Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (Guidelines 1996) e o Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (Good Practice Guidance 2000).

1.1 Emissões de gases de efeito estufa no setor de tratamento de resíduos

1.1.1 Disposição de resíduos sólidos

O depósito de lixo em aterros e lixões gera metano quando esses resíduos se encontram em condições favoráveis. Essa geração varia de local para local, em função de fatores como quantidade de resíduos, idade do local de depósito, presença de ambiente anaeróbico, materiais tóxicos, acidez e condições construtivas e de manejo.

O metano proveniente de aterros, além de contribuir consideravelmente para as emissões globais, é um perigo potencial para o meio ambiente local, caso não sejam tomadas medidas que evitem emissões descontroladas, já que, em altas concentrações, pode ser explosivo.

De acordo com a Pesquisa Nacional de Saneamento Básico - PNSB (IBGE, 2000), no Brasil, 73,2% dos resíduos sólidos municipais coletados eram dispostos de forma apropriada em aterros sanitários ou aterros controlados. No entanto, ainda de acordo com o próprio IBGE, nesta avaliação alguns informantes podem ter sido demasiadamente otimistas de modo a evitar a exposição de deficiências do sistema, uma vez que as fontes de informações coletadas pelos pesquisadores do IBGE são, na maioria (88%), os municípios e os órgãos responsáveis pelos serviços de limpeza urbana. Por número de municípios, a avaliação não é tão favorável: 63,6% utilizam lixões e 32,2% aterros adequados.

Figura 1 - Distribuição percentual da quantidade diária de lixo coletado, por unidade de destino final do lixo coletado no Brasil no ano 2000

Fonte: IBGE, 2000

Os tipos e taxas de produção de resíduos sólidos no país variam devido à grande extensão territorial e às diferenças regionais, econômicas e sociais. No Brasil, a taxa de geração de resíduos por habitante varia entre 0,4 e 0,7 kg/hab.dia.

Verifica-se um aumento rápido na taxa de geração de resíduos que não é acompanhada pelas práticas ambientais mais recomendáveis ou pela adoção de tecnologias desenvolvidas para solução desses problemas.

O crescimento demográfico, mudanças de hábitos, melhoria na qualidade de vida e desenvolvimento industrial causam aumento na quantidade gerada de resíduos e a crescente urbanização limita as áreas disponíveis para disposição final dos resíduos. Grandes cidades precisam muitas vezes exportar seu lixo para áreas de municípios vizinhos.

1.1.2 Incineração de resíduos sólidos

Diante da dificuldade de disposição dos resíduos sólidos nas regiões metropolitanas brasileiras, iniciou-se a prospecção de formas alternativas para a destinação dos resíduos. Dentre as possíveis destinações encontradas destaca-se a incineração.

A incineração de resíduos urbanos vem sendo considerada com maior frequência em grandes metrópoles à medida que o custo do transporte do resíduo, para aterros cada vez mais distantes das regiões metropolitanas, aumenta. Essa prática é aplicada a uma fração pequena do resíduo total tratado, sendo mais utilizada para o tratamento de resíduos perigosos de origem industrial e resíduos dos serviços de saúde que, em geral, não podem ser dispostos em aterros comuns, necessitando de tratamento especial.

1.1.3 Tratamento de efluentes domésticos

Efluentes com alto teor de matéria orgânica, como esgotos domésticos têm um alto potencial para emissão de metano. A matéria orgânica presente nesses efluentes é expressa em termos de Demanda Bioquímica de Oxigênio (DBO) que é o principal fator determinante do potencial de geração de metano. A DBO representa a quantidade de oxigênio consumida por microorganismos na oxidação bioquímica de matéria orgânica.

Diferentemente do setor de resíduos sólidos, o país dispõe de várias tecnologias de tratamento de efluentes, desde as convencionais aeróbias, até tecnologias mais recentes, como os reatores anaeróbios de alta carga, em utilização no país desde a década de 80.

1.1.4 Tratamento de efluentes industriais

De acordo com a Norma Brasileira - NBR 9800/1987, efluente líquido industrial é o despejo líquido proveniente do estabelecimento industrial, compreendendo emanações de processo industrial, águas de refrigeração poluídas, águas pluviais poluídas e esgoto.

A fração orgânica presente nesses efluentes varia de acordo com os produtos e processos envolvidos. Com base nos dados do Primeiro Relatório de Referência, no estudo feito pela CETESB e PRONACOP a respeito da geração de carga orgânica pela indústria no país e na análise dos dados de produção industrial do período de 1990 a 2005, foram identificados os setores industriais mais representativos, em termos de emissões de CH₄. Assim, os setores produtivos selecionados para essa estimativa foram: álcool, açúcar, cerveja, leite cru, algodão, papel, suínos, leite pasteurizado, aves e bovinos.

1.2 A rede nacional de inventário

Para o Segundo Inventário Brasileiro de Emissões de Gases de Efeito Estufa do setor de tratamento de resíduos, foi formada a Rede Nacional de Inventário de Gases de Efeito Estufa dos Setores de Resíduos e Efluentes (RNI - RE). Por meio de ofício, o Ministério da Ciência e Tecnologia (MCT) convidou as secretarias estaduais de meio ambiente para compor esta Rede. Foram convidadas empresas públicas e privadas de tratamento de resíduos sólidos, empresas públicas e privadas de tratamento de esgotos e efluentes industriais, associações de classe, Secretarias de Governo, órgãos de entidades governamentais e pesquisadores da área. Além dos membros da Rede, houve também contribuições de empresas de limpeza públicas e operadoras de sistemas de tratamento de resíduos.

A RNI - RE possibilitou a identificação de colaboradores resultando, inclusive, na elaboração de alguns inventários estaduais: inventário de resíduos sólidos e efluentes domésticos do Espírito Santo e do Paraná; inventário de resíduos sólidos de Pernambuco e do Rio Grande do Sul.

2. Metodologia

A descrição da metodologia foi divida em subsetores como se segue: estimativa das emissões de CH_4 em aterros; estimativa de emissões de CO_2 e N_2O por incineração de resíduos; estimativa das emissões de CH_4 pelo tratamento de efluentes domésticos e estimativa das emissões de CH_4 pelo tratamento de efluentes industriais.

2.1 Estimativa das emissões de metano dos locais de disposição de resíduos sólidos

O método utilizado para a estimativa das emissões provenientes dos aterros foi o de decaimento de primeira ordem, do *Guidelines 1996*, e do *Good Practice Guidance 2000*. Este método de decaimento, também conhecido por *Tier 2*, caracteriza-se por considerar que a emissão de CH₄ persiste ao longo de uma série de anos, após a disposição do resíduo. Para a sua aplicação, são necessários dados relativos ao clima (médias anuais de temperatura e chuva), à quantidade de resíduo aterrada, à composição do resíduo, qualidade de operação do aterro e às quantidades de CH₄ recuperada e oxidada.

De acordo com o *Good Practice Guidance 2000*, a estimativa de emissões de CH_4 , do método de decaimento de primeira ordem (*Tier 2*), é descrita conforme a Equação 1.

$$Q_{\scriptscriptstyle (t)} = \sum\nolimits_{\scriptscriptstyle X} \{ [(A \times k \times MSW_{\scriptscriptstyle T}(x) \times MSW_{\scriptscriptstyle F}(x) \times L_0(x)) \times e^{-k.(t-x)} \,] - R(t) \}. (1 - OX) \quad \text{ Equação 1}$$

onde:

 $Q_{(t)}$ = Quantidade de metano gerado no ano t [GgCH₄/ano]

t = Ano do inventário [ano]

x = Anos para os quais os dados foram considerados

A = Fator de normalização para a soma [adimensional]

K = Constante de decaimento [1/ano]

 $MSW_{T(x)}$ = Quantidade total de resíduo sólido urbano¹ gerado no ano x [Gg MSW/ano]

 $MSW_F(x) = Fração de MSW destinado ao aterro no ano x [adimensional]$

 $L_0(x)$ = Potencial de geração de metano [Gg CH₄/Gg MSW]

R = Recuperação do metano [Gg CH₄/ano]

¹ O Municipal Solid Waste (MSW) equivale, na literatura nacional, ao Resíduo Sólido Urbano (RSU). Não estão incluídas nele outras classes de resíduos como os Resíduos de Construção e Demolição (RCD), os Resíduos Sólidos Industriais (RSI) ou os Resíduos de Serviços de Saúde. (RSS).

OX = Fator de oxidação [adimensional]

Sendo que fator de normalização para a soma (A) é definido pela Equação 2 abaixo:

$$A = \frac{1 - e^{-k}}{k}$$
 Equação 2

E Potencial de geração de metano $(L_{0(x)})$ é definido segundo a Equação 3

$$L_{O(x)} = MCF_{(x)} \times DOC_{(x)} \times DOC_f \times F \times \frac{16}{12}$$
 Equação 3

onde:

 $MCF_{(x)}$ = Fator de correção do metano referente ao gerenciamento dos locais de disposição [adimensional]

DOC_(x) = Carbono orgânico degradável [Gg C/Gg MSW]

DOCf = Fração do DOC que decompõe[adimensional]

F= Fração de metano no biogás²[adimensional]

16/12 = Razão de conversão de carbono (C) para metano (CH₄) [adimensional]

O Carbono orgânico degradável (DOC(x))é definido pela Equação 4

$$DOC_{(x)} = (0.4 \times A) + (0.17 \times B) + (0.15 \times C) + (0.3 \times D)$$
 Equação 4

onde:

A= Fração do resíduo correspondente a papéis e têxteis [adimensional]

B= Fração do resíduo proveniente de jardins, parques e outros putrescíveis não alimentares [adimensional]

C= Fração do resíduo correspondente a resíduos alimentares [adimensional]

D= Fração do resíduo correspondente a madeira e palha [adimensional]

Os valores de conteúdo de carbono para essas frações são dados pelo Guidelines 1996.

2.2 Estimativa das emissões de CO_2 e de N_2O por incineração de resíduos sólidos

A estimativa de emissão de CO_2 por incineração de resíduos sólidos é determinada de acordo com a Equação 5.

 $^{^2}$ O Guidelines 1996 fornece um default de 50% de $\mathrm{CH_4}$ no biogás.

$$Q_{CO2} = \sum_{i} (IW_i \times CCW_i \times FCF_i \times EF_i \times 44/12)$$
 Equação 5

Onde:

Q_{CO2} = Quantidade de dióxido de carbono gerada ao ano [Gg CO₂/ano]

i = tipo de resíduo

IW_i = Massa de resíduo incinerado por tipo i [Gg/ano]

CCW = Carbono contido no resíduo tipo i [adimensional]

FCF = Fração de carbono fóssil no resíduo tipo i [adimensional]

EF = Eficiência de queima dos incineradores de resíduo tipo i [adimensional]

44/12 = Conversão de C para CO₂ [adimensional]

Na Equação 6 abaixo, tem-se a estimativa de emissão de N₂O por incineração de resíduos sólidos

$$Q_{N2O} = \sum_{i} (IW_i \times EF_i) \times 10^{-6}$$
 Equação 6

Onde:

Q_{N2O} = Quantidade de óxido nitroso gerada ao ano [GgN₂O/ano]

IW_i = Massa de resíduo incinerado por tipo i [Gg/ano]

EF_i = Fator de emissão para o tipo i de resíduo [kg N₂O/Gg_{resíduo}]

10⁻⁶ = fator de conversão de Gg para kg [10⁻⁶ Gg/kg]

2.3 Estimativa das emissões de CH₄ pelo tratamento de efluentes domésticos

O presente inventário inclui a estimativa de emissões de CH_4 que ocorrem em ETEs com processos anaeróbios de reatores e lagoas, ETEs com processos aeróbios que incluem a digestão anaeróbia de lodo, as emissões dos lançamentos de matéria orgânica que ocorrem em mares, rios e lagos, assim como os processos identificados como tratamento no local, como as latrinas e fossas sépticas.

A seguir, são descritas as metodologias empregadas para a estimativa das emissões de GEE neste inventário segundo o *Good Practice Guidance* (2000).

A Estimativa de emissão de CH₄ por tratamento anaeróbio de efluentes domésticos é definida de acordo com a Equação 7.

$$Emiss\~oes = (TOW_{dom} \times EF) - R$$
 Equação 7

Onde:

Emissões = Quantidade de metano gerada ao ano [kg CH₄/ano]

TOW_{dom} = Efluente doméstico orgânico total [kg DBO/ano]

EF = Fator de emissão [kg CH₄/kg DBO]

 $R = CH_4$ recuperado ao ano [kg CH_4 /ano]

A Estimativa do efluente doméstico orgânico total é definida de acordo com a Equação 8.

$$TOW_{dom} = Pop_{urb} \times D_{dom}$$

Equação 8

Onde:

Pop_{urb} = População urbana [1.000 pessoas]

 D_{dom} = Componente orgânico degradável do efluente doméstico [kg DBO/ 1.000pessoas/ano)]

O fator de emissão (EF) é calculado de acordo com a Equação 9.

$$EF = Bo \times M\acute{e}dia \ Ponderada \ dos \ MCF$$

Equação 9

onde:

B₀= Capacidade máxima de produção de metano [kg CH₄/kg DBO]ou [kg CH₄/kg DQO]

A média ponderada dos MCF é definida pela Equação 10.

$$MCF = \sum_{x} (WS_{i,x} \times MCF_{x})$$

Equação 10

Onde:

WS_{i,x} = Fração de efluente do tipo "i" tratada usando o sistema "x" [adimensional]

MCF_x = Fator de conversão de metano do sistema "x" tratando o efluente "i" [adimensional]

2.4 Estimativa das emissões de CH₄ pelo tratamento de efluentes industriais

A Equação 11 abaixo determina a estimativa de emissão de CH_4 pelo tratamento anaeróbio de efluentes industriais.

$$Emiss\tilde{o}es = (TOW_{ind} \times FE) - R$$

Equação 11

Onde:

Emissões = Quantidade de metano gerada ao ano [kg CH₄/ano]

TOW_{ind} = Efluente industrial orgânico total [kg DQO/ano] ou [kg DBO/ano]

FE =Fator de emissão [kg CH₄/kg DQO] ou [kg CH₄/kg DBO]

R = metano recuperado ao ano [kg CH₄/ano]

A Equação 12 a seguir estima o efluente industrial orgânico total.

$$TOW_{ind} = (P_i \times D_{ind})$$

Equação 12

Onde:

P_i = Produção industrial [t produto/ano]

D_{ind} = Emissão de carga orgânica [kg DBO/t produto]

Para os casos em que não se dispõe de dados nacionais das frações por tipo de tratamento o IPCC sugere substituir a Equação 10 utilizada para o cálculo das emissões de efluentes domésticos, conforme mostrado abaixo incorporando julgamento de especialistas em saneamento.

Média ponderada dos MCF_i = Fração de DQO que degrada anaerobiamente [adimendional]

Para este inventário determinou-se a média ponderada dos MCF_i através da avaliação de especialistas.

A Equação 13 determina o fator de emissão para efluentes industriais.

$$FE_i = Bo_i \times M\acute{e}dia \ Ponderada \ dos \ MCF_i$$

Equação 13

Onde:

 B_{0i} = Capacidade máxima de produção de metano para efluentes industriais [kg CH_4/kg DBO] ou [kg CH_4/kg DQO]

3. Dados

Os dados a seguir, necessários para a implementação da metodologia do IPCC, foram obtidos da literatura nacional e para os casos em que não existem, foram obtidos dentre os valores *default* fornecidos pelo IPCC. Os mesmos estão divididos pelos temas a que se referem.

3.1 Emissões de metano pela disposição e tratamento de resíduos sólidos

Em função da metodologia adotada foram reunidos os dados necessários para o cálculo da estimativa de emissões selecionados de fontes de informação nacionais. A seguir, são descritos esses dados:

3.1.1 Constante de geração de metano - k e Fator de normalização para a soma - A

A constante de geração de CH₄ do método de decaimento de primeira ordem está relacionada ao tempo necessário para que a parcela de Carbono Orgânico Degradável (DOC) do resíduo depositado possa decair para metade de sua massa inicial.

O *k* aplicável aos locais de disposição de resíduos sólidos é determinado por uma série de fatores, os quais se encontram associados à composição do resíduo e às condições da região onde se localiza o aterro, como por exemplo: a temperatura média anual, a precipitação média anual e o potencial de evapotranspiração (IPCC, 2000).

Não foram identificados dados nacionais de k. Diante disso, optou-se por utilizar os valores default recomendados no Guidelines 2006^3 reproduzido parcialmente na Tabela 1, já que esta metodologia diferentemente do Guidelines 1996 e do Good Practice 2000 fornece os valores default de k para massa misturada de MSW em climas boreais e temperados e climas tropicais.

Tabela 1 - Dados default do IPCC (2006) de k para o MSW misturado

	Clima boreal	e temperad	Clima tropical					
	MAT ≤	20° C	MAT ≥ 20° C					
Se	есо	Úmido e	Seco Úmido e molhad					
(MAP/	(MAP/PET < 1) (MAP/PET > 1)				1000mm)	MAP>=1000mm		
default	Faixa	default	Faixa	Default	Faixa	default	Faixa	
0,05	0,05 - 0,06	0,09	0,08 - 0,1	0,065	0,05 - 0,08	0,17	0,15 - 0,2	

Fonte: Adaptado do IPCC (2006)

22

³ Conforme se observa no *IPCC Guidelines*, *Chapter 3 - Solid Waste Disposal*, Tab 3.3, pag 3.17.

Como se observa na Tabela 1, acima, a escolha do *default* de *k* demanda o levantamento das seguintes informações nacionais: Temperatura média anual - MAT, Precipitação média anual - MAP e Potencial de Evapotranspiração - PET. Esses dados são discutidos a seguir:

3.1.1.1 Temperatura média anual - MAT

De acordo com o INMET (2009), a temperatura média anual (MAT) é a média das temperaturas médias mensais, que por sua vez, representam o registro do somatório das temperaturas médias compensadas diárias, divididos pelo número de dias do mês.

Na Figura 2 são apresentados os dados de MAT no país para o período de 1961 a 1990. Essa informação representa a melhor informação disponível e por essa razão foi adotada para a elaboração da estimativa de emissões de GEE do setor de resíduos.

Figura 2 - Temperatura média compensada do Brasil

Fonte: INMET, 2009 - Estação climatológica/agroclimatológica; Normas climatológicas - 1961 - 1990 - anual. Processado em 10:34:42 de 19/03/2008.

De acordo com a Figura 2, em todas as regiões do país, com exceção da região Sul, o MAT é superior a 20°C. A Tabela 2 abaixo confirma a informação da Figura 2.

Tabela 2 - Ocorrências de temperatura média anual (MAT) na Região Sul do país de 1990 a 2005

Ano	MAT [1] das 30 estações meteorológicas do INMET [2]
1990	18,9
1991	18,5
1992	17,9
1993	18,3
1994	17,9
1995	18,3
1996	17,9
1997	18,4
1998	17,9
1999	17,8
2000	17,9
2001	20,5
2002	18,7
2003	18,4
2004	18,2
2005	18,8

Fonte: INMET, 2009

3.1.1.2 Precipitação média anual - MAP

Estimou-se a precipitação média anual (MAP) ocorrida no período de 1961 a 1990. O regime de chuvas das diferentes zonas do Brasil (INMET, 2009) é representado na Figura 3 com dados de 1961 a 1990.

Figura 3 - Intensidade pluviométrica no Brasil

Estação climatológica/agroclimatológica; Normas climatológicas - 1961 - 1990 - anual. Processado em 10:34:42 de 19/03/2008. Fonte: INMET, 2009

Verificou-se que nas regiões Norte e Centro - Oeste, a MAP é superior a 1.000mm/ano. Na região Sudeste, com exceção do norte do Espírito Santo, a MAP é também é superior a 1.000mm/ano. Portanto utilizou-se o valor *default* de k igual a 0,17 de acordo com a Tabela 1. Na região Nordeste há significativa fração do território com MAP inferior a 1.000mm/ano. Os municípios do Norte do Espírito Santo e da região Nordeste, com essa característica, foram identificados manualmente com a sobreposição dos e onde foram inferiores a 1.000mm/ano utilizou-se o valor *default* de k igual a 0,065.

Para o caso da região Sul, como a temperatura média anual mostrou-se inferior a 20° foi necessário estimar-se o potencial de evapotranspiração da região.

3.1.1.3 O potencial de evapotranspiração - PET

O Potencial de Evapotranspiração (PET)⁴ indica a quantidade potencial de água que pode retornar à atmosfera por evapotranspiração, calculada a partir da evaporação potencial do solo e transpiração potencial das plantas, sem limitações quanto a disponibilidade de água e se houver condições de evaporação à superfície do solo. A estimativa do PET depende, além do método empregado, de fatores como o tipo de vegetação e desenvolvimento, tipo de folhagem, profundidade radicular e principalmente o teor de umidade do solo (TEIXEIRA, 1984). O processo de evapotranspiração requer energia, portanto, é mais elevada no verão (CAMARGO, 2000).

Foram levantados dados de PET (INMET, 2009) do ano de 2004 de 24 municípios da região Sul. Esses dados foram reproduzidos na Tabela 3 e foram extrapolados para toda a região.

25

⁴ Há diferentes métodos de determinação de PET. O *Guidelines* 2006 ao indicar a necessidade de dados de PET, como se observa na tabela 1, na página 23 desse documento, não especifica o método que deve ter sido empregado nessa estimativa.

Tabela 3 - PET da região Sul do Brasil

Nome das estações meteorológicas	PET [mm/mês]
Ivaí	67,0
Castro	70,3
Irati	102,2
Curitiba	70,8
Paranaguá	110,1
Indaial	81,4
Iraí	76,1
Chapecó	72,8
Campos Novos	114,7
Lages	62,7
Florianópolis	81,7
São Luiz Gonzaga	79,0
Cruz Alta	69,9
Passo Fundo	65,0
Lagoa Vermelha	107,3
Bom Jesus	59,0
São Joaquim	56,3
Uruguaiana	70,4
Santa Maria	73,7
Caxias do Sul	65,8
Torres	78,6
Santana do Livramento	113,4
Campo Bom	119,3
Encruzilhada do Sul	66,3
Porto Alegre	76,5
Bagé	64,6
Rio Grande	70,8
Santa Vitória do Palmar	63,5

Fonte: INMET 2009

3.1.1.4 MAP/PET para a região Sul do país

De acordo com os dados levantados, a região Sul do país tem temperatura média anual inferior a 20°C, precipitação média anual de 1.582,25mm/ano e potencial médio de evapotranspiração de

⁵ Dado médio obtido utilizando-se os dados de precipitação de 1970 a 2005 nas estações do INMET: Ivaí/PR, Castro/PR, Irati/PR, Curitiba/PR, Paranaguá/PR, Indaial/SC, Irai/RS, Chapecó/SC, Campos Novos/SC, Lages/SC, Florianópolis/SC, São Luis Gonzaga/RS, Cruz Alta/RS, Passo Fundo/RS, Lagoa Vermelha/RS, Bom

980,26mm/ano. Assim, a relação MAP/PET na região Sul do país é igual a 1,6, portanto superior a 1, o que indica que o *k* default a ser empregado é igual a 0,09.

3.1.2 Quantidade total de resíduo gerado e fração de resíduos destinada ao aterro

No Brasil, há poucos dados sobre a quantidade total de resíduo gerado - $MSW_T(x)$ e a fração de resíduos destinada ao aterro - $MSW_F(x)$. O produto desses dois valores significa a quantidade de resíduo MSW depositada em aterros. Na falta de dados disponíveis na literatura nacional essa informação pode ser estimada por meio de dados mais acessíveis como a taxa de resíduo coletado per capita $TaxaMSW_{(x)}$ e a População Urbana $Pop_{urb(x)}$. Assim, o produto $(MSW_T(x))$. $MSW_F(x)$ pode ser reescrito de acordo com a Equação 14, para a quantidade de resíduo aterrado.

$$(MSW_T(x) \times MSW_F(x)) = (Taxa\ MSW(x) \times Pop_{urb}(x))$$
 Equação 14

Onde:

Taxa MSW(x) = Taxa de resíduo coletado per capita [kg MSW/(hab.dia)] ou [Gg MSW/(1000hab.ano)]

 $Pop_{urb}(x) = População urbana [hab] ou [1000hab]$

Assim sendo, não serão discutidos os dados nacionais de geração total de resíduos $MSW_T(x)$ nem os dados de fração de coleta destinada ao aterro $(MSW_F(x))$. A informação sobre a quantidade de resíduos destinados ao aterro foi estimada pelo produto $Pop_{urb}(x)$ x TaxaMSW(x) e esses dados serão discutidos a seguir.

3.1.3 População urbana

Os dados relativos à População Urbana $Pop_{urb}(x)$ de todos os municípios do Brasil empregados nessa estimativa são os correspondentes aos encontrados nos Censos do IBGE para os anos de 1970, 1980, 1991 e 2000, além da Contagem da população de 2007 (IBGE, 2009). A Pop_{urb} de 2005 foi estimada empregando-se a taxa de crescimento populacional urbano da última década daquele município⁷. A Tabela 4 reproduz os totais Estaduais da coleção de dados empregada

Jesus/RS, São Joaquim/SC, Uruguaiana/RS, Santa Maria/RS, Bento Gonçalves/RS, Caxias do Sul/RS, Torres/RS, Santana do Livramento/RS, Campo Bom/RS, Triunfo/RS, Encruzilhada do Sul/RS, Porto Alegre/RS, Bagé/RS, Rio Grande/RS, Santa Vitória do Palmar/RS.

⁶ Dado médio obtido das médias de evapotranspiração do ano de 2004 das estações do INMET citadas na nota de rodapé 5, Castro/PR, Passo Fundo/RS, Santa Maria/RS, Bento Gonçalves/RS, Triunfo/RS, Porto Alegre/RS e Rio Grande/RS. Esse dado foi atribuído para o período de 1970 a 2005.

⁷ Considerando-se a dinâmica de criação de novos municípios, para o caso dos novos, esta informação não se encontra disponível, então, adota-se a taxa de crescimento populacional do Estado.

nessa estimativa, resumindo uma tabela com 5.583 municípios listados pelos Censos de 1970 a 2000 e pela Contagem populacional urbana de 2007 do IBGE.

Tabela 4 - População urbana do Brasil dos anos de 1970, 1980, 1991, 2000 e 2007

Estado			Pop _{urb} (x)		
Estado	1970	1980	1991	2000	2007
Rondônia	59.607	228.168	659.327	884.523	1.221.155
Acre	59.439	131.930	258.520	370.267	550.523
Amazonas	406.052	856.716	1.502.754	2.107.222	2.706.429
Roraima	17.582	48.738	140.818	247.016	332.409
Pará	1.021.195	1.666.993	2.596.388	4.120.693	5.935.081
Amapá	62.400	103.719	234.131	424.683	493.341
Tocantins	129587	293175	530.636	859.961	1.044.647
Maranhão	753.466	1.254.830	1.972.421	3.364.070	5.139.956
Piauí	537.510	897.812	1.367.184	1.788.590	2.547.234
Ceará	1.781.068	2.810.373	4.162.007	5.315.318	6.875.640
Rio Grande do Norte	736.615	1.115.279	1.669.267	2.036.673	2.531.542
Paraíba	1.002.420	1.449.206	2.052.066	2.447.212	3.058.772
Pernambuco	2.811.656	3.784.990	5.051.654	6.058.249	7.127.724
Alagoas	631.973	977.161	1.482.033	1.919.739	2.551.167
Sergipe	415.360	617.851	1.002.877	1.273.226	1.629.118
Bahia	3.086.383	4.660.499	7.016.770	8.772.348	11.827.749
Minas Gerais	6.063.298	8.983.371	11.786.893	14.671.828	16.189.745
Espírito Santo	722.214	1.293.139	1.924.588	2.463.049	2.815.402
Rio de Janeiro	7.906.618	10.368.387	12.199.641	13.821.466	12.953.115
São Paulo	14.277.802	22.196.896	29.314.861	34.592.851	33.455.159
Paraná	2.504.253	4.472.506	6.197.953	7.786.084	8.638.983
Santa Catarina	1.247.158	2.154.250	3.208.537	4.217.931	4.927.652
Rio Grande do Sul	3.554.239	5.250.024	6.996.542	8.317.984	8.889.586
Mato Grosso do Sul	451.692	919.256	1.414.447	1.747.106	1.902.830
Mato Grosso	232.165	655.141	1.485.110	1.987.726	2.397.899
Goiás	1.109.501	2.107.923	3.247.676	4.396.645	4.743.509
Distrito Federal	516.007	1.138.994	1.515.889	1.961.499	2.062.959
Brasil	52.097.260	80.437.327	110.990.990	137.953.959	154.549.324

Fonte: IBGE - Censos Demográficos 1970, 1980, 1991 e 2000 e Contagem 2007

A $Pop_{urb}(x)$ dos anos intermediários aos dos Censos, foi estimada com base em um crescimento linear.

3.1.4 taxa de geração de resíduo sólido urbano

A Taxa MSW(x) foi estimada a partir de dados adaptados da CETESB e da ABRELPE. Dados da CETESB foram empregados para estimar as quantidades destinadas aos aterros em 1970. E dados da ABRELPE foram empregados para estimar as quantidades aterradas no ano de 2005. Os anos intermediários foram interpolados linearmente, a partir dos dois dados de 1970 e 2005.

A CETESB considera os dados da

Tabela 5 com estimativas de quantidades de resíduos destinadas aos aterros *per capita* para a sua prática de controle ambiental no Estado de São Paulo. Essa tabela não leva em conta fatores como o nível de renda, as práticas de reciclagem ou outras que possam induzir a variação das quantidades geradas por habitante e que variam de residência para residência, de bairro para bairro, de cidade para cidade e variam mesmo entre os dias da semana ou os meses do ano. Essas variações todas não são levadas em conta nesse modelo.

Para o inventário, optou-se por continuar empregando os dados da CETESB para estimar a Taxa MSW de 1970 e a publicação ABRELPE para a Taxa MSW de 2005, já que não existem dados da CETESB para o ano de 2005. As Taxa MSW(x) intermediárias foram obtidas a partir da interpolação linear entre essas duas, conforme a Equação 17, da página 35 a seguir.

Tabela 5 - Taxa MSW para 1970

Pop _{urb(1970)}	Taxa MSW ₍₁₉₇₀₎
[habitantes]	[kgMSW/(hab.dia)]
até 100.000	0,4
de 100.001 a 500.000	0,5
de 500.001 a 1.000.000	0,6
mais de 1.000.000	0,7

Fonte: CETESB, não datado

Elaborando estimativas de geração de resíduos a partir dos dados da Tabela 5, observa-se que a sua aplicação para determinados tamanhos de população pode gerar descontinuidade. É o caso, por exemplo, de um município com Pop_{urb} de 500.000, ao passar para uma população de 500.001 habitantes, subitamente a estimativa de geração que era de 0,5 passa para 0,6kg MSW/(hab.dia), um aumento de 20% no período de um ano. Procurando interpretar melhor esta informação, definiu-se uma função linear equivalente, estimando, com o mesmo princípio e limitações, a prática da CETESB. Portanto, a partir do dado da CETESB apresentado nesta tabela acima, optou-

se por estimar a variação linear da *TaxaMSW* ₁₉₇₀ em função do tamanho da população urbana do município.

Dessa forma, obteve-se a função de estimativa da Taxa MSW₍₁₉₇₀₎ em função da população urbana do município para o ano de 1970, adaptando-se a tabela da CETESB para uma forma linear a seguir:

$$Taxa\ MSW_{1970} = 3 \times 10^{-7} \times Pop_{wh(1970)} + 0.4$$
 Equação 15

Onde:

Taxa MSW_{(1970) =} Taxa de geração de MSW do ano de 1970 [kgMSW/(hab.dia)]

3.10⁻⁷ Coeficiente angular [kgMSW/1.000hab(.hab.dia)]

Pop_{urb(1970) =} População urbana [1.000hab]

0,4 = Coeficiente linear [kgMSW/(hab.dia)]

Para estimar a *Taxa MSW* de 2005, foram empregados os dados da ABRELPE (2007) reproduzidos na Tabela 6 a, e para aqueles municípios onde não há dados utilizou-se as equações lineares de estimativa de Taxa MSW das 5 regiões do país da mesma ABRELPE. Estas equações têm os coeficientes lineares e angulares reproduzidos Tabela 8.

Tabela 6 - Taxa MSW [kg/hab.dia]-para 2005

	UF	Município	TaxaMSW		UF	Município	TaxaMSW*		UF	Município	TaxaMSW*		UF	Município	TaxaMSW*
	AM	Manaus	1,2		DF	Brasília	1,58		RJ	Resende	0,65		PR	Londrina	0,8
	AP	Macapá	0,8		GO	Anápolis	0,64		RJ	São Gonçalo	0,8		PR	Marialva	0,51
rte	PA	Parauapebas	0,63		GO	Catalão	0,8	RJ	Volta Redonda	0,6		PR	Maringá	0,8	
	PA	Santarém	0,5	te	GO	Cristalina	0,8		SP	Americana	0,63		PR	Palmas	0,54
2	PA	Tucuruí	0,47	Oeste	GO	Goiânia	0,98		SP	Araraquara	0,7		PR	Rolândia	0,49
Região Norte	RO	Ji - Paraná	0,6	Centro -	MS	Campo Grande	0,75		SP	Assis	0,56		PR	São José dos Pinhais	0,53
	RO	Porto Velho	0,62	Cen	MS	Dourados	0,55		SP	Atibaia	0,6		PR	Toledo	0,5
	то	Araguaína	0,6	Região	MS	Maracaju	0,6	41	SP	Birigui	0,6		PR	União da Vitória	0,51
	ТО	Palmas	0,6	Re	MS	Naviraí	0,61	Sudeste	SP	Campinas	0,69	Sul	RS	Canoas	0,61
	AL	Maceió	1,1		MT	Cáceres	0,55		SP	Carapicuíba	0,57	ão S	RS	Carazinho	0,48
	ВА	Alagoinhas	0,7		МТ	Colíder	0,56	Região	SP	Diadema	0,68	Região !	RS	Erechim	0,5
	ВА	Amargosa	0,6		МТ	Cuiabá	0,62	Reg	SP	Itapira	0,69		RS	Farroupilha	0,48
ste	ВА	Camaçari	0,73		ES	Caraicica	0,6		SP	Jandira	0,55		RS	Passo Fundo	0,53
lorde	ВА	Itabuna	0,7	te	ES	Serra	0,65		SP	Mairiporã	0,62		RS	Porto Alegre	0,93
Região Nordeste	ВА	Porto Seguro	0,67	Região Sudeste	ES	Vitória	0,8		SP	Marapoama	0,53		RS	Santa Cruz do Sul	0,6
Reg	ВА	Salvador	1,44	ão S	MG	Araguari	0,6		SP	Marília	0,62		RS	Santa Rosa	0,61
	ВА	Santo Antônio de Jesus	0,8	Regi	MG	Araxá	0,59		SP	Matão	0,6		RS	São Leopoldo	0,54
	CE	Fortaleza	1,1		MG	Belo Horizonte	1,1		SP	Monte Castelo	0,57		RS	Três Coroas	0,5

CE	Sobral	0,69		мG	Conceição do Mato Dentro	0,6	SP	Osasco	0,84	sc	Biguaçu	0,51
MA	Açailândia	0,8		۸G	Formiga	0,68	SP	Pindamonhangaba	0,58	SC	Blumenau	0,56
МА	Imperatriz	0,7	7	۸G	Governador Valadares	0,6	SP	Ribeirão Preto	0,86	SC	Chapecó	0,6
МА	São Luís	1,19	7	۸G	Ibirité	0,61	SP	Santa Bárbara d'Oeste	0,65			
PE	Caruaru	0,79		۸G	Ituiutaba	0,6	SP	Santo André	0,85			
PE	Jaboatão dos Guararapes	0,8		۸G	Juiz de Fora	0,8	SP	Santópolis do Aguapeí	0,61			
PE	Olinda	0,8	7	۸G	Pedro Leopoldo	0,53	SP	São Bernardo do Campo	0,7			
PE	Petrolina	0,7	7	۸G	Taiobeiras	0,6	SP	São José do Rio Preto	0,74			
PE	Recife	1,2		мG	Uberaba	0,6	SP	São José dos Campos	0,66			
RN	Mossoró	0,82	Ī	۸G	Varginha	0,64	SP	São Vicente	0,61			
SE	Aracaju	0,9	1	۸G	Vespasiano	0,53	SP	Sorocaba	0,64			
SE	Itabaiana	0,65		RJ	Itatiaia	0,64	SP	Várzea Paulista	0,53			

Na Tabela 7, são listados os municípios com população superior a 500.000 habitantes em 2007. A Taxa MSW ₍₂₀₀₅₎ desses municípios não foi estimada pelas regressões regionais geradas pelos dados da Tabela 6. A taxa de geração de resíduos desses municípios é baseada nos dados da ABRELPE.

Tabela 7 - Municípios com população superior a 500.000 habitantes.

	Município	UF	Taxa MSW*
Φ	Rio Branco	AC	0,3
ř	Manaus	AM	1,2
Região Norte	Macapá	AP	0,8
	Belém	PA	1,7
	Porto Velho	RO	0,62
	Boa Vista	RR	3,18
	Maceió	AL	1,1
	Feira de Santana	BA	0,6
ite	Salvador	BA	1,4
des	Fortaleza	CE	1,1
orc	São Luís	MA	1,19
Z	João Pessoa	PB	1,39
Região Nordeste	Jaboatão dos Guararapes	PE	0,8
ŝə	Recife	PE	1,2
_	Teresina	PI	0,72
	Natal	RN	1,8
	Brasília	DF	1,58
ião tro ste	Goiânia	GO	0,98
Região Centro Oeste	Campo Grande	MS	0,75
E 0 0	Cuiabá	MT	0,62
	Vitória	ES	0,8
	Belo Horizonte	MG	1,1
	Contagem	MG	0,5
	Juiz de Fora	MG	0,8
	Uberlândia	MG	0,55
te	Nova Iguaçu	RJ	0,6
les	Rio de Janeiro	RJ	1,28
Região Sudeste	São Gonçalo	RJ	0,8
	Campinas	SP	0,69
	Guarulhos	SP	0,68
Re	Osasco	SP	0,84
	Ribeirão Preto	SP	0,86
	Santo André	SP	0,85
	São Bernardo do Campo	SP	0,7
	São José dos Campos	SP	0,66
	São Paulo	SP	0,91
·=	Curitiba	PR	0,88
Regi ão Sul	Porto Alegre	RS	0,93
~ ~	Florianópolis	SC	0,9

Nota: * Unidade da *TaxaMSW*: [kgMSW.(hab.dia)⁻¹]

Na Tabela 8 são reproduzidos os coeficientes angulares a lineares aplicados na Equação 17 para estimar a Taxa MSW nas cinco regiões do Brasil.

Tabela 8 - Coeficientes angular e linear empregados para estimar a Taxa MSW para 2005

Região	Coeficiente angular	Coeficiente linear		
Norte	0,000433222	0,505862974		
Nordeste	0,000253881	0,705422530		
Sudeste	0,000215948	0,586389774		
Centro - Oeste	0,000370362	0,599942138		
Sul	0,000352869	0,504351428		

Fonte: ABRELPE (2007)

A forma geral para a estimativa da Taxa MSW ano a ano e município a município do Brasil é expressa a seguir pela Equação 16, que dá a taxa MSW empregada para o ano de 2005.

Taxa MSW $_{2005}$ = Coeficiente angular X Pop_{urb} + Coeficiente linear

Equação 16

Onde:

Taxa MSW _{2005 =} Taxa de geração de MSW do ano de 2005 [kgMSW/(hab.dia)] Pop_{urb =} População urbana [1.000hab]

Empregando as estimativas geradas pela Equação 15 e Equação 16, a Equação 17 estima a Taxa MSW, ano a ano, desde 1970 até 2005.

Equação 18 - Transição da Taxa MSW do ano de 1970 para a Taxa MSW do ano de 2005

$$TaxaMSW = TaxaMSW_{1970} + (TaxaMSW_{2005} - TaxaMSW_{1970}).\frac{(ano-1970)}{(2005-1970)}$$
 Equação 17

3.1.5 Potencial de Geração de Metano

O Potencial de Geração de Metano - $L_0(x)$ foi estimado conforme a Equação 3 reproduzida abaixo.

$$L_{O(x)} = MCF_{(x)} \times DOC_{(x)} \times DOC_{f} \times F \times \frac{16}{12}$$

A seguir, são apresentados os dados e fatores de emissão correspondentes às variáveis empregadas na determinação do LO(x), que são: MCF(x), DOC(x), DOC(f) e F.

3.1.6 Fator de correção de metano - $MCF_{(x)}$

O fator de correção de metano está associado à qualidade de operação do aterro. Utilizou-se como referência a classificação disponível no *Good Practice Guidance* 2000, dados estes que podem ser observados na Tabela 9 abaixo.

Tabela 9 - Dados default do Good Guidance Practice 2000 para MCF

Características do local de disposição de MSW	MCF
Aterro sanitário	1,0
Local não gerenciado com profundidade igual ou superior a 5m	0,8
Local não gerenciado com menos de 5m de profundidade	0,4
Depósito de lixo não classificado	0,6

Fonte: Good Guidance Practice 2000

A Tabela 10 reproduz os dados sobre o destino dos resíduos no ano de 1989 da Pesquisa Nacional sobe Saneamento Básico do IBGE (PNSB 1989). O dado do total de resíduos coletados igual 241.614t/dia é superestimado. O IBGE interpreta os resultados da PNSB (2000) afirmando que alguns informantes podem ter sido demasiadamente otimistas de modo a evitar a exposição de deficiências do sistema, o que sugere que a fração correspondente aos resíduos destinados a aterros sanitários seja inferior aos 9,29% e que os 75,41% correspondentes aos resíduos destinados a disposição "a céu aberto" tenham sido subestimados.

Tabela 10 - Destinação dos resíduos no Brasil, em 1989

Quantidade diária de lixo coletado [t/dia]									
Total	Va	zadouro		Outros					
	A céu aberto	co Em áreas alagadas Controlado Sanitário Resíduos especia		Resíduos especiais	Catios				
241.614	182.190	1.588	30.082	22.456	107	5.191			
	Participação [%]								
	75,41	0,66	12,45	9,29	0,04	2,15			

Fonte: IBGE, 1989

Dessa forma, nem os dados da PNSB - 1989 nem os dados da PNSB - 2000 foram empregados nesta estimativa de emissões de CH₄ da disposição de MSW em aterros.

Com o mesmo tema, a Tabela 11 representa o destino dos resíduos no Brasil em 2000. Assim como na publicação anterior, acredita-se que a fração de resíduos coletados e destinados ao vazadouro a céu aberto foi subestimada.

Tabela 11 - Qualidade do destino dos resíduos no Brasil no ano de 2000

	Quantidade diária de lixo coletado						Fração de resíduos coletados por destino					
			[t/dia]					[%]				
UF		Vazad	douro	Ater	ro	Vaza	adouro	Aterro				
OI .	Total[1]	a céu aberto (lixão)	em áreas alagadas	controlado	sanitário	a céu aberto (lixão)	em áreas alagadas	Controlado	sanitário			
Brasil	228.413,0	48.321,7	232,6	84.575,5	82.640,3	21,2	0,1	37,0	36,2			
RO	692,0	537,8	0,0	122,3	31,9	77,7	0,0	17,7	4,6			
AC	538,9	269,2	0,0	27,0	242,7	50,0	0,0	5,0	45,0			
AM	2.864,0	327,8	12,0	2.424,6	27,6	11,5	0,4	84,7	1,0			
RR	133,1	133,1				100,0	0,0	0,0	0,0			
PA	5.181,6	3.725,0	42,5	371,5	1.007,5	71,9	0,8	7,2	19,4			
AP	455,8	453,6	1,8	0,0	0,0	99,5	0,4	0,0	0,0			
TO	1.201,7	832,5	0,0	188,5	159,1	69,3	0,0	15,7	13,2			
MA	2.652,6	1.839,1	0,0	59,3	740,0	69,3	0,0	2,2	27,9			
PI	2.431,3	1.243,8	40,0	1.056,7	90,8	51,2	1,7	43,5	3,7			
CE	10.150,5	2.751,6	0,0	77,6	7.306,5	27,1	0,0	0,8	72,0			
RN	2.373,5	715,3	5,0	1.426,1	219,6	30,1	0,2	60,1	9,3			
РВ	2.894,0	2.691,1	0,0	94,2	67,1	93,0	0,0	3,3	2,3			
PE	6.281,2	3.022,1	0,0	812,0	2.301,3	48,1	0,0	12,9	36,6			
AL	2.999,3	1.698,3	0,0	1.096,0	185,0	56,6	0,0	36,5	6,2			
SE	1.377,1	768,0	0,0	579,1	30,0	55,8	0,0	42,1	2,2			
BA	10.398,3	5.314,2	0,0	870,9	4.089,8	51,1	0,0	8,4	39,3			
MG	15.664,0	4.778,6	19,6	4.181,6	5.296,8	30,5	0,1	26,7	33,8			
ES	2.923,6	914,1	0,0	526,4	1.330,6	31,3	0,0	18,0	45,5			
RJ	17.447,2	4.825,0	20,0	4.578,3	7.328,1	27,7	0,1	26,2	42,0			
SP	105.582,0	3.238,2	47,0	56.565,1	38.586,8	3,1	0,0	53,6	36,6			
PR	7.542,9	2.901,9	9,0	1.657,9	2.726,6	38,5	0,1	22,0	36,2			
SC	4.863,6	1.063,5	7,7	1.127,4	2.455,2	21,9	0,2	23,2	50,5			
RS	7.468,3	1.146,9	20,0	2.048,6	2.864,2	15,4	0,3	27,4	38,4			
MS	1.756,5	727,7	8,0	785,6	194,2	41,4	0,5	44,7	11,1			
MT	2.163,7	877,1	0,0	491,9	599,3	40,5	0,0	22,7	27,7			
GO	7.809,1	1.526,2	0,0	1.385,0	4.759,6	19,5	0,0	17,7	61,0			
DF	2.567,2	0,0	0,0	2.021,9	0,0	0,0	0,0	78,8	0,0			

Fonte: IBGE, 2000

Desses dados conclui-se que, no período anterior a 1989, a quantidade de *MSW* destinada aos locais de disposição de resíduos caracterizados como "aterros sanitários" deveria ser inferior aos 9,29% reportados na Tabela 10.

Portanto, a estimativa do *MCF* empregada para estimar as emissões de CH₄ desde o ano de 1970 considera os dados disponíveis a respeito da qualidade de operação do local de disposição. Na falta deles, considera-se o *default* do IPCC correspondente a local "não classificado", ou seja,

com *default* igual a 0,6. Porém, mesmo não tendo sido declarada a qualidade de operação do aterro, a estimativa do MCF foi melhorada considerando a $Pop_{urb}(x)$ da seguinte maneira:

- Pop_{urb}(x) maior ou igual a 1.000.000 de habitantes tem grande possibilidade de ter "aterro sanitário", ou seja, MCF default do IPCC igual a 1,0;
- Pop_{urb}(x) maior ou igual a 500.000 e menor que 1.000.000 de habitantes tem grande possibilidade de ter "local não gerenciado com profundidade igual ou superior a 5m, ou seja, MCF default do IPCC igual a 0,8";
- $Pop_{urb}(x)$ menor que 500.000 e maior que 50.000 de habitantes tem grande possibilidade de ter "local não classificado, ou seja, *MCF default* do IPCC igual a 0,6; e
- Pop_{urb}(x) menor ou igual a 50.000 de habitantes tem grande possibilidade de ter "local não gerenciado com profundidade inferior a 5m", ou seja, MCF default do IPCC igual a 0,4.

3.1.7 Carbono orgânico degradável - $DOC_{(x)}$

O Carbono orgânico degradável - DOC(x) foi estimado conforme a Equação 4.

Com o levantamento das análises de resíduos de todo o Brasil, publicados desde 1970, observouse que há uma grande diversidade de composições. O conjunto dos dados foi interpretado e rearranjado na forma como prevê o modelo oferecido pelo *Good Guidance Practice* 2000 para a determinação do $DOC_{(x)}$, dividindo a composição dos resíduos em:

- fração do resíduo correspondente a papéis e têxteis;
- fração do resíduo proveniente de podas de jardins, parques e outros putrescíveis não alimentares;
- fração do resíduo correspondente a resíduos alimentares; e
- fração do resíduo correspondente a madeira e palha.

A partir dos dados disponíveis de DOC para os diversos municípios foram estimadas regressões lineares para cada região do país, ilustradas na Figura 5. Os dados originais por município encontram-se nas Referências, item 6.1.

Essa informação subsidiou a estimativa do *DOC* para as cinco regiões do Brasil e a sua variação entre os anos de 1970 e 2005.

A seguir, é reproduzida na Figura 4 a distribuição regional das cidades onde foram obtidos dados de composição do resíduo.

Figura 4 - Cidades onde foram obtidos dados de composição

As regressões lineares têm a forma da Equação 18, abaixo:

 $DOC(x) = coeficiente \ angular * x + coeficiente \ linear$

Equação 18

Onde:

 $DOC_{(x)} = estimativa da variação do DOC no tempo [gC/gMSW]$

X = ano de estimativa [ano]

Figura 5- Variação do $DOC_{(x)}$ de 1970 a 2005 nas regiões do Brasil

A Tabela 12 resume os dados estimados para aplicação na Equação 4, para as cinco regiões do país no período entre 1970 e 2005.

Tabela 12- Variação do DOC(x) de 1970 a 2005 nas regiões do Brasil

D17	coeficiente angular	coeficiente linear
Região	[gC/(gMSW.ano)]	[gC/gMSW]
Norte	-0,002092763	4,354297613
Sudeste	-0,000710593	1,584468345
Sul	-0,002265716	4,676832654
Nordeste	-0,003947267	8,022496505
Centro - Oeste	-0,002526523	5,203955771
Brasil	-0,002668123	5,470658309

Assim, com os dados de DOC(x) dessa tabela, foram estimadas as emissões de CH₄ pela disposição de resíduos urbanos em aterros no Brasil, ano a ano desde 1970 até 2005.

3.1.8 Fração do carbono orgânico degradável dissimilado

O Good Practice Guidance 2000 sugere a utilização de um valor default para - DOC_f entre 0,5 e 0,6. Para o caso desse inventário, empregou-se o default para países em desenvolvimento, igual a 0,5.

3.1.10 Fração de metano no biogás

A fração de metano no biogás foi adotada de acordo com o valor *default* fornecido pelo *Good Practice Guidance* 2000. O valor dado é igual a 0,5.

3.1.11 Metano Recuperado - R

A NBR - 13.896/97 em seu item 5.3 sobre emissões gasosas recomenda que "todo aterro deve ser projetado de maneira a minimizar as emissões gasosas e promover a captação e tratamento adequado das eventuais emanações". Com essa recomendação, essa norma apresenta uma diretriz e não uma obrigação legal. Em consequência disso, os projetos de aterros prevêem a queima do biogás em queimadores abertos, normalmente instalados na saída do poço de drenagem de chorume, o que é adequado para a redução das emissões de metano bem como de odores.

A realização de visitas a aterros sugere que os drenos, quando estão instalados, não estão distribuídos de forma a promover a máxima captura do metano gerado no aterro. Também não se observa em todos os aterros a preocupação em manter o queimador operando ou se operante, não existe a preocupação de mantê-lo queimando todo o tempo. Em alguns casos, isso é até indesejado, pois a chama invisível da queima do metano pode causar ferimentos aos funcionários do aterro.

Nos primeiros projetos de MDL do Protocolo de Quioto arbitrou-se uma linha de base de 20% de queima do metano. Projetos mais recentes reviram essa consideração, tendendo sempre para quantidades menores que aquela inicialmente empregada.

Assim, entre os anos de 1990 a 2002, optou-se por considerar o R igual a zero em todo o país e apenas as quantidades citadas nos Certificados de Redução de Emissão dos projetos de MDL e reproduzidas na Tabela 13 serão consideradas nesta estimativa. Deve-se destacar que as quantidades certificadas correspondem aos dados registrados nos projetos de MDL e que as estimativas de onde essas quantidades são descontadas correspondem às emissões do município, ou seja, um aterro pode receber resíduos de vários municípios e a quantidade de metano recuperada pode ser superior à emissão correspondente à do município, estimada em função da sua população urbana e demais parâmetros descritos ao longo do documento.

Tabela 13 - Metano recuperado - R

Projeto	Município	Estado	[GgCH₄]					
l	Mullicipio	Litado	2003	2004	2005			
NOVA GERAR	NOVA IGUAÇU	RJ	-	-	-			
VEGA	SALVADOR	BA	-	13,6	26,4			
MARCA	CARIACICA	ES	-	-	-			
ONYX - SASA	TREMEMBÉ	SP	1,0	1,5	2,0			
BANDEIRANTES	SP	SP	-	29,9	34,1			

Fonte: http://cdm.unfccc.int/Projects/projsearch.html

3.1.12 Fator de Oxidação - OX

O OX reflete a quantidade de metano dos aterros que é oxidada no solo ou em outro material utilizado na cobertura do resíduo depositado. Se o fator de oxidação é zero, não há oxidação. Por desconhecer estudos a esse respeito no Brasil, foi adotada a recomendação do $Good\ Guidance\ Practice\ 2000\ de\ OX\ igual\ a\ 0\ e\ nos\ aterros\ sanitários\ que\ atendem\ a\ <math>Pop_{urb}\$ superior a 1.000.000 habitantes 8 $OX = 0,1\ (Good\ Practice\ Guidance,\ 2000)$.

3.2 Emissões de CO₂ e N₂O por incineração de resíduos sólidos

3.2.1 Estimativa da quantidade de resíduo incinerado, por tipo

De acordo com o *Good Guidance Practice* 2000, as emissões de CO_2 e N_2O por incineração de resíduos dividem-se por tipo de resíduo:

- MSW: Resíduo sólido urbano (de Municipal Solid Waste)
- HW: Resíduo perigoso (de Hazardous Waste)
- CW: Resíduo de serviços de saúde (de Clinical Waste)
- SS: Lodo de esgoto (de Sewage Sludge)

No Brasil, de acordo com a NBR 10.004/2004, a definição de resíduos perigosos inclui os *resíduos industriais* e os *resíduos serviços de saúde*. Este relatório seguiu a divisão proposta pelo *Good Guidance Practice 2000*.

3.2.1.1 Lixo coletado (MSW, HW, CW e SS) destinado para incineração

Os dados de lixo coletado destinado à incineração apresentados a seguir, na Tabela 14, não foram empregados na estimativa de emissões pelo tratamento de resíduos, pois na definição de "coleta de lixo" da PNSB (2000), por estarem incluídos MSW, HW, CW e SS, sem desagregação. O mesmo acontece com os dados de 1989 da PNSB (1989).

 $^{^{8}}$ Com essa consideração, considera-se que há maior possibilidade de que grandes cidades (Pop_{urb} maior que 1.000.000 hab) são servidas por aterros melhor gerenciados.

Tabela 14 - Resíduo incinerado (IW) nos anos de 1989 e 2000

	Quantidade diária de lixo cole	Quantidade diária de lixo coletado ⁹ e destinado para incineração							
Estado	,	t/dia							
	1989	2000							
Rondônia	3,0	-							
Acre	-	-							
Amazonas	-	0,7							
Roraima	-	-							
Pará	1,0	7,0							
Amapá	2,0	0,4							
Tocantins	-	-							
Maranhão	-	2,1							
Piauí	-	-							
Ceará	-	-							
Rio Grande do Norte	-	-							
Paraíba	-	1,0							
Pernambuco	-	1,3							
Alagoas	-	4,0							
Sergipe	-	-							
Bahia	-	14,0							
Minas Gerais	-	62,0							
Espírito Santo	-	75,9							
Rio de Janeiro	-	23,4							
São Paulo	161,0	783,9							
Paraná	-	6,6							
Santa Catarina	-	7,6							
Rio Grande do Sul	5,0	15,9							
Mato Grosso do Sul	-	-							
Mato Grosso	-	0,1							
Goiás	-	2,2							
Distrito Federal	23,0	23,7							

Fonte: IBGE (1989; 2000)

3.2.1.2 SS destinado para incineração

De acordo como a PNSB (IBGE, 2000), de um total de 9.848 distritos, 1.383 aplicam algum tipo de tratamento ao lodo de esgoto (55) e desses, 12 promovem a incineração. Isso sugere que as emissões por essa prática no Brasil não sejam relevantes.

⁹ As quantidades declaradas como "lixo coletado" na PNSB incluem: os resíduos da "limpeza urbana, coleta de lixo, coleta seletiva, reciclagem, remoção de entulhos e coleta de lixo especial". Além disso, a coleta de lixo especial implica na "coleta de lixo industrial, de unidades de saúde, radioativo e lodos provenientes de estação de tratamento de água e esgoto, além de lixo de portos, aeroportos, rodoviárias etc."

3.2.1.3 MSW destinado para incineração

Por somar quantidades enterradas com quantidades queimadas, os dados do documento "Dimensão Ambiental" do IBGE de 2004 não foram empregados na estimativa de emissões pelo tratamento de resíduos. Observou-se que em 2000, 228.413t/dia de lixo eram coletados. Naquele mesmo ano, 3,3% dos moradores em domicílios particulares e permanentes em área urbana e outros 58,6% em área rural queimavam ou enterram o *MSW* na propriedade. Além disso, a palavra "queimar" pode significar queima aberta, que não é quantificada pelo método adotado.

3.2.1.4 MSW, HW, CW e SS - destinado para incineração

Nas estimativas das emissões de gases de efeito estufa para os resíduos considerados perigosos (HW) empregaram-se dados disponíveis da ABETRE (2006), operadores e fabricantes de incineradores que responderam à solicitação de dados feita pela CETESB. A publicação da ABETRE abrange apenas as empresas privadas e incluiu 78% das empresas do setor de resíduos que não pode mais ser aproveitado no setor industrial. Dados de *resíduos de serviços de saúde (CW)* foram obtidos por meio de consulta ao documento do Sistema Nacional de Informações sobre Saneamento (SNIS - Série Histórica 6), junto com os perfis das unidades de gerenciamento gerados pelo programa. A principal fonte dos dados de incineração de *MSW* foram os operadores e fabricantes.

Sabe-se que parte dos resíduos perigosos pode ser incinerada no processo industrial, não gerando registro da sua existência e inviabilizando a correspondente estimativa das emissões de GEE. A estimativa das emissões de GEE do setor de resíduos desse Relatório refere-se apenas aos resíduos cuja incineração ocorreu fora do processo industrial onde o resíduo foi gerado, e, portanto, corresponde ao que é registrado pelo mercado de serviços contratados, prestados por empresas privadas (ABETRE, 2006).

Dados complementares de incineradores listados pelo SNIS e pela ABETRE foram solicitados aos seus fabricantes e operadores, tais como:

- Capacidade [t/ano],
- Carga [t/ano] desde o início da operação,
- Finalidade de uso para incinerar CW, MSW, HW ou SS e
- Início de operação, a previsão de encerramento das atividades e data do último teste de queima.

Assim, a Tabela 15 resume os dados de incineradores no Brasil que queimam MSW, HW, CW e SS. As unidades listadas pelo SNIS, cujos perfis não apresentavam os dados mínimos para que fossem inseridos nas estimativas, como ano do início das operações, capacidade e tipo de resíduo incinerado, foram excluídas da estimativa. O programa de computador do SNIS (Série Histórica 6)

permite consultar dados de 2002 a 2006, porém, não permite consultar dados de quantidade de resíduos recebida associada ao ano da informação. Por essa razão, optou-se por atribuir a quantidade de resíduos recebida no incinerador ao ano do início de operação do incinerador e que essa quantidade se refere unicamente àquele ano da incineração. Foram feitos contatos com as incineradoras, fabricantes de equipamentos e SNIS visando aumentar a coleção de dados. A informação obtida encontra-se a seguir.

Tabela 15 - MSW, HW, CW e SS incinerados

		Quantidade	e incinerada		Per	íodo
UF	MSW	HW	CW	SS	Início	Último
		1.000	t / ano		a	no
PA			0,39		2004	2004
PA		1			2004	2005
RN			0,5594		2003	2003
PA[1]	0,1056				1996	1996
АМ	0,2112				1997	2002
AC	0,2112				1998	1998
PA			0,1056		1998	2005
PA			0,2112		1999	2005
PA			0,1056		2000	2005
ΑМ		0,4224			2001	2005
PA			0,1056		2001	2005
AC		0,4224			2002	2005
PA			0,4224		2002	2005
ΑМ		0,4224			2002	2005
PA			0,2112		2003	2005
АМ		0,4224			2003	2005
BA		4			1998	2005
ВА		10			1991	2005
ВА		18			2003	2005
AL		12			1990	2005
PE			6,282		2000	2000
CE			10,95		1999	2000
CE			2,4348		2002	2002
PB			0,0121		2005	2005
RN			1,152		2003	2003
MA			0,936		2003	2003
PI	0,1056				1996	1996
PE	0,2112				1997	1997
BA	0,2112				1997	1997
BA	0,1056				1998	2005
BA	0,4224				1999	2005
CE			0,1056		2003	2005
SP[2]		12			1992	1992

	1		1	1	1	
SP[3]		4			1994	2005
SP		3			1987	1987
SP		5			1993	2005
SP		2			2000	2000
RJ		10			1995	1995
RJ		7			1992	2005
SP			3,6		1999	2005
SP			0,0101		1990	1990
ES			0,255		2002	2002
ES			0,31704		1990	1990
SP			0,3752		1991	1991
RJ			0,5215		2004	2004
MG			0,2112		1996	1996
SP		0,1056			1997	2005
SP		0,2112			1997	2005
SP			0,1056		1997	1997
SP		0,2112			1999	2005
SP		0,2112			2001	2005
RJ			0,1056		2003	2005
DF[4]					1990	2005
GO		0,4224			1999	2005
DF[5]			0,1056		2000	2005
RS		0,2112			1993	1993
RS		0,2112			1993	1993
RS			0,2112		1994	1994
RS			0,1056		1995	1995
RS	0,4224				1996	1996
RS			0,8448		1998	2005
RS			0,4224		1998	2005
RS			0,1056		1999	1999
RS			0,1056		1999	1999
RS			0,1056		2000	2000
PR	0,2112				2001	2001
RS		0,1056			2001	2005
SC			0,2112		2003	2005
RS		0,2112			2003	2005
PR		0,2112			2003	2005
The state of the s	•	•	•	Fontos: ARETDE R		===

Fontes: ABETRE, BASF, CETREL, LUFTEC e SNIS (2009)

⁽¹⁾ Os resíduos de aeronaves foram considerados equivalentes aos MSW;(2) O dado se refere ao resíduo industrial. Foi considerado que todo o mesmo é HW e que os incineradores operam com 100% da capacidade;

⁽³⁾ De 1994 a 2004, o incinerador operava com 100% da capacidade de 2.700t/ano A partir de 2005, a capacidade elevada para 3.600t/ano, porém com 80% da capacidade 72t/ano é CW;

⁽⁴⁾ Operação iniciada em 1987 e que continuou operando continuamente até 2005;

⁽⁵⁾ Resíduo de laboratório, equivalente a CW.

3.2.2 Percentual de carbono de origem fóssil no MSW

Considerando os dados da

(análise do DOC) e reconhecendo que tem havido uma tendência de aumento da quantidade de carbono de origem fóssil nos resíduos sólidos municipais, foi buscada uma correlação linear que melhor estimasse a variação do produto $(CCW * FCF)_{(x)}$ de 1990 a 2005 para as cinco regiões do país. Assim, estabeleceu-se a Equação 19 abaixo.

$$CCW * FCF(x) = coeficiente angular * x + coeficiente linear$$

Equação 19

Onde:

 $CCW * FCF_{(x)}$ = Percentual de carbono de origem fóssil no MSW [adimensional] X = ano de estimativa;

A Tabela 16 abaixo resume os parâmetros obtidos, para cada região do país.

Tabela 16 - Parâmetros para o cálculo do percentual de carbono de origem fóssil nos resíduos

Pogião	coeficiente angular	coeficiente linear
Região	ano ^{- 1}	adimensional
Norte	0,007079372822	-13,991874564460
Sudeste	0,002677265589	-5,228514661399
Sul	0,003939387469	-7,742498417537
Nordeste	0,005646907895	-11,174149495593
Centro-Oeste	0,002296693012	-4,470483069883

3.2.3 Percentual de carbono de origem fóssil no HW, no CW e no SS

Tendo determinado quantidade de carbono de origem fóssil nos resíduos MSW, não foram determinadas informações equivalentes para SS, CW e HW. O *Good Guidance Practice* 2000 fornece os valores *default* de CCW e FCF, necessários para esse cálculo. Esses são reproduzidos na Tabela 17 abaixo:

Tabela 17 - Valores default para CCW e FCF

	Dados para estimativa das emissões de CO ₂ pela incineração de resíduos											
Faixa	[%]											
Ιαιλα	MSW	SS	CW	HW								
CCW	40 33 a 50 (material úmido)	30 10 a 40 (material seco)	60 50 a 70ª (material seco)	50 1 a 95 (material úmido)								
FCF	40 30 a 50	0 -	40 40	90 90 a 100 ^b								

Fonte: Good Guidance Practice 2000

Notas:

- a De acordo com o *Good Guidance Practice* 2000, os resíduos de serviços de saúde contêm, principalmente, papéis e plásticos. O conteúdo de carbono desses resíduos pode ser estimado pelos seguintes fatores: papel 50% e plástico de 75 a 85%;
- b O carbono fóssil pode ser reduzido se ele inclui carbono de material de embalagens e materiais similares.

3.2.4 Eficiência de queima dos incineradores de resíduo

Não foram identificados dados nacionais sobre essa variável. Portanto, optou-se por adotar os valores *defaults* do *Good Guidance Practice* 2000 e reproduzidos na Tabela 18 a seguir:

Tabela 18 - Fatores de emissão de CO₂ para incineração de resíduos

Fator de Em	Fator de Emissão para estimativa das emissões de CO ₂ pela incineração de resíduos										
	[%]										
	MSW	SS	CW	HW							
EF ^c	95	95	95	99,5							
Faixa	95 - 99	-	50 - 99,5	95 - 99,5							

Fonte: Good Guidance Practice 2000

3.2.5 Fatores de emissão de N₂O para incineração de resíduos

Foram empregados os valores *default* dos *Guidelines* 2006, já que não havia tal informação nos *Guidelines* 1996 e nem no *Good Guidance Practice* 2000.

Tabela 19 - Fatores de emissão de N₂O para incineração de resíduos

Tipo de resíduo	Tecnologia	Fator de emissão	Base de massa
		g N₂O /t resíduo	
MSW	Incinerado do tipo batelada	60	Massa úmida
Resíduo Industrial	Todo tipo de incineração	100	Massa úmida
SS	Incineração	900	Massa úmida

Notas: (1) O fator de emissão de N₂O depende também do projeto, manutenção e idade do incinerador; (2) Por não haver default de EF para HW empregou-se o EF de Resíduo Industrial; (3) Por não haver default de EF para CW empregou-se o EF de MSW. Fonte: Guidelines 2006 (modificada excluindo-se os EF não empregados nessa estimativa)

3.3 Emissão de CH₄ pelo tratamento de efluentes domésticos

3.3.1 Componente orgânico degradável do efluente doméstico - TOW

O volume de esgotos gerados por pessoa depende da quantidade de água consumida e corresponde normalmente a 80% deste consumo. A carga orgânica unitária varia de país para país, entre 20 e 80 g DBO por habitante, por dia.

Utilizou-se a Demanda Bioquímica de Oxigênio por habitante no Brasil de 54 g DBO/(hab.dia) ou 19.710 kg DBO/(1.000 hab.ano), conforme recomenda a NBR12.209/92. Essa emissão está de acordo com os dados recebidos pela rede nacional de inventário para a maioria dos estados brasileiros.

Os efluentes domésticos são gerados em aglomerados urbanos. Para a estimativa das frações de efluentes coletados e enviados para as estações de tratamento de esgoto doméstico, utilizou-se a PNSB (IBGE, 2000) que contém o número de distritos atendidos por rede coletora e de sistemas de tratamento utilizados. Esses dados são apresentados na tabela 24, além disso, a PNSB contabiliza também os distritos sem rede coletora e suas soluções alternativas, conforme a Tabela 26 mais adiante.

A carga orgânica dos efluentes domésticos pode ser aumentada pelo lançamento de efluentes industriais nos sistemas de esgotamento urbano ou também pode se reduzida por infiltrações pluviais no esgoto. Porém, esses dados foram estimados nulos, pois não há informação a esse respeito.

Para determinar a TOW_{dom} são necessários os dados de Pop_{tot} e D_{dom}:

$$TOW_{dom} = Pop_{tot} \times D_{dom}$$

3.3.2 População

O dado de população empregado nesta estimativa é a população total dos Estados do Brasil (Pop_{tot}). Isso se deve ao fato de que essa estimativa considera esgotos domésticos não coletados, os quais incluem os gerados e degradados em área rural. Os dados do IBGE, discriminados por distritos, convenientemente, não distinguem a população urbana da rural. Dessa forma, a população empregada nessa estimativa, é reproduzida a seguir na Tabela 20, a seguir:

Tabela 20 - População do Brasil, nos anos 1970, 1980, 1991, 2000 e 2007

Estado			População tota	l	
Estado	1970	1980	1991	2000	2007
Rondônia	111.064	491.025	1.132.692	1.379.787	1.453.756
Acre	215.299	301.276	417.718	557.526	655.385
Amazonas	955.203	1.430.528	2.103.243	2.812.557	3.221.939
Roraima	40.885	79.121	217.583	324.397	395.725
Pará	2.166.998	3.403.498	4.950.060	6.192.307	7.065.573
Amapá	114.230	175.258	289.397	477.032	587.311
Tocantins	-	-	919.863	1.157.098	1.243.627
Maranhão	2.992.678	3.996.444	4.930.253	5.651.475	6.118.995
Piauí	1.680.573	2.139.196	2.582.137	2.843.278	3.032.421
Ceará	4.361.603	5.288.429	6.366.647	7.430.661	8.185.286
Rio Grande do Norte	1.550.184	1.898.835	2.415.567	2.776.782	3.013.740
Paraíba	2.382.463	2.770.346	3.201.114	3.443.825	3.641.395
Pernambuco	5.160.625	6.142.229	7.127.855	7.918.344	8.485.386
Alagoas	1.588.068	1.982.915	2.514.100	2.822.621	3.037.103
Sergipe	900.679	1.140.379	1.491.876	1.784.475	1.939.426
Bahia	7.493.437	9.455.392	11.867.991	13.070.250	14.080.654
Minas Gerais	11.485.663	13.380.105	15.743.152	17.891.494	19.273.506
Espírito Santo	1.599.324	2.023.338	2.600.618	3.097.232	3.351.669
Rio de Janeiro	4.742.884	11.291.631	12.807.706	14.391.282	15.420.375
São Paulo	4.251.918	25.042.074	31.588.925	37.032.403	39.827.570
Paraná	17.770.975	7.629.849	8.448.713	9.563.458	10.284.503
Santa Catarina	6.929.821	3.628.292	4.541.994	5.356.360	5.866.252
Rio Grande do Sul	2.901.660	7.773.849	9.138.670	10.187.798	10.582.840
Mato Grosso do Sul	6.664.841	1.369.769	1.780.373	2.078.001	2.265.274
Mato Grosso	1.597.009	1.138.918	2.027.231	2.504.353	2.854.642
Goiás	2.938.029	3.860.174	4.018.903	5.003.228	5.647.035
Distrito Federal	537.492	1.176.908	1.601.094	2.051.146	2.455.903
Brasil	93.133.605	119.009.778	146.825.475	169.799.170	183.987.291

3.3.3 Capacidade máxima de produção de metano - $B_{\rm 0}$

Para a capacidade máxima de produção de metano, utilizou-se o valor default do *Good Practice Guidance* 2000, igual a $0,60 \text{ kg CH}_4/\text{kg DBO}$.

Empregando os dados descritos acima, a Tabela 21 abaixo apresenta a TOW do Brasil dos anos de 1990 a 2005.

Tabela 21 - Componente orgânico degradável do efluente doméstico, de 1990 a 2005

	TOW															
							[1000 kg	DBO/ano]								
UF	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Brasil	2.827.607	2.893.930	2.944.243	2.994.555	3.044.867	3.095.180	3.145.492	3.195.804	3.246.117	3.296.429	3.346.742	3.386.691	3.426.641	3.466.591	3.506.540	3.546.490
Rondônia	21.176	22.325	22.866	23.408	23.949	24.490	25.031	25.572	26.113	26.654	27.196	27.404	27.612	27.820	28.029	28.237
Acre	8.025	8.233	8.539	8.846	9.152	9.458	9.764	10.070	10.376	10.683	10.989	11.264	11.540	11.815	12.091	12.367
Amazonas	40.250	41.455	43.008	44.562	46.115	47.669	49.222	50.775	52.329	53.882	55.435	56.588	57.741	58.894	60.046	61.199
Roraima	4.040	4.289	4.522	4.756	4.990	5.224	5.458	5.692	5.926	6.160	6.394	6.595	6.796	6.996	7.197	7.398
Pará	94.795	97.566	100.286	103.007	105.727	108.448	111.168	113.889	116.609	119.330	122.050	124.509	126.968	129.427	131.886	134.345
Amapá	5.499	5.704	6.115	6.526	6.937	7.348	7.759	8.170	8.580	8.991	9.402	9.713	10.023	10.334	10.644	10.955
Tocantins	0	18.130	18.650	19.170	19.689	20.209	20.728	21.248	21.767	22.287	22.806	23.050	23.294	23.537	23.781	24.025
Maranhão	95.502	97.175	98.755	100.334	101.914	103.493	105.073	106.652	108.232	109.811	111.391	112.707	114.023	115.340	116.656	117.973
Piauí	50.100	50.894	51.466	52.038	52.610	53.182	53.753	54.325	54.897	55.469	56.041	56.574	57.106	57.639	58.171	58.704
Ceará	123.555	125.487	127.817	130.147	132.477	134.807	137.138	139.468	141.798	144.128	146.458	148.583	150.708	152.833	154.958	157.082
Rio Grande do Norte	46.685	47.611	48.402	49.193	49.984	50.775	51.566	52.357	53.148	53.939	54.730	55.398	56.065	56.732	57.399	58.066
Paraíba	62.322	63.094	63.625	64.157	64.689	65.220	65.752	66.283	66.815	67.346	67.878	68.434	68.990	69.547	70.103	70.659
Pernambuco	138.724	140.490	142.221	143.952	145.684	147.415	149.146	150.877	152.608	154.339	156.071	157.667	159.264	160.860	162.457	164.054
Alagoas	48.601	49.553	50.229	50.904	51.580	52.256	52.931	53.607	54.283	54.958	55.634	56.238	56.842	57.446	58.050	58.653
Sergipe	28.775	29.405	30.046	30.686	31.327	31.968	32.609	33.250	33.890	34.531	35.172	35.608	36.045	36.481	36.917	37.353
Bahia	229.595	233.918	236.551	239.184	241.817	244.450	247.083	249.716	252.349	254.982	257.615	260.460	263.305	266.150	268.995	271.840
Minas Gerais	306.063	310.298	315.002	319.707	324.412	329.117	333.822	338.527	343.232	347.936	352.641	356.533	360.424	364.315	368.207	372.098
Espírito Santo	50.224	51.258	52.346	53.433	54.521	55.609	56.696	57.784	58.871	59.959	61.046	61.763	62.479	63.196	63.912	64.629
Rio de Janeiro	249.723	252.440	255.908	259.376	262.844	266.312	269.780	273.248	276.716	280.184	283.652	286.550	289.447	292.345	295.243	298.140
São Paulo	610.887	622.618	634.539	646.460	658.381	670.303	682.224	694.145	706.066	717.987	729.909	737.779	745.649	753.520	761.390	769.261
Paraná	165.057	166.524	168.965	171.407	173.848	176.289	178.731	181.172	183.613	186.054	188.496	190.526	192.556	194.587	196.617	198.647
Santa Catarina	87.886	89.523	91.306	93.090	94.873	96.657	98.440	100.223	102.007	103.790	105.574	107.010	108.445	109.881	111.317	112.752
Rio Grande do Sul	177.678	180.123	182.421	184.718	187.016	189.314	191.611	193.909	196.206	198.504	200.801	201.914	203.026	204.138	205.251	206.363
Mato Grosso do Sul	34.355	35.091	35.743	36.395	37.047	37.698	38.350	39.002	39.654	40.306	40.957	41.485	42.012	42.539	43.067	43.594
Mato Grosso	38.365	39.957	41.002	42.047	43.091	44.136	45.181	46.226	47.271	48.316	49.361	50.347	51.333	52.320	53.306	54.292
Goiás	78.928	79.213	81.368	83.524	85.680	87.835	89.991	92.147	94.302	96.458	98.614	100.426	102.239	104.052	105.865	107.678
Distrito Federal	30.797	31.558	32.543	33.529	34.514	35.500	36.486	37.471	38.457	39.442	40.428	41.568	42.707	43.847	44.987	46.126

3.3.4 Sistemas de tratamento

Um levantamento de informações sobre os sistemas de tratamento anaeróbio implantados no Brasil até 1999 mostrou a expansão da aplicação da digestão anaeróbia no país, tanto para efluentes domésticos quanto industriais. Essas informações estão reunidas no banco de dados STEL (CETESB, 2001).

Para a estimativa das frações de efluentes coletados e enviados para as estações de tratamento de esgoto doméstico, utilizou-se a Pesquisa Nacional de Saneamento Básico (PNSB - IBGE, 2000). A pesquisa informa, por estado, o número de distritos onde cada tipo de tratamento está instalado e, estabelecendo-se algumas premissas, considerou-se esse documento como base.

Foram considerados os tratamentos anaeróbios em ETEs, que incluem a digestão anaeróbia de lodo, processos anaeróbios em reatores e lagoas, latrinas e fossas sépticas. Também foram considerados os lançamentos de matéria orgânica no mar, rios e lagos nos quais, por reações anaeróbias, ocorrem emissões de CH₄.

Em relação aos percentuais de esgoto coletado no país, empregaram-se dados da PNSB (IBGE, 2000) e PNAD do IBGE, os quais apresentaram discrepâncias devido, principalmente, à diferença no método da pesquisa. Mesmo apresentando discrepâncias, os dados dessas duas fontes foram utilizados por ser a melhor informação disponível.

De acordo com a PNSB (2000) dos 5.507 municípios brasileiros, 52,2% possuíam algum serviço de esgotamento sanitário. Os avanços não foram muito significativos se comparados aos resultados da PNSB de 11 anos antes (IBGE, 1989) em que, dos 4.425 municípios existentes, 47,3% tinha algum tipo de serviço de esgotamento sanitário. Neste período o aumento do número de municípios foi de aproximadamente 24% e o de serviços de esgotamento sanitário, que não acompanhou este crescimento, foi de 10%. Dos índices de atendimento por rede coletora aos domicílios recenseados - incluídos os domicílios ocupados, vagos, fechados e de uso ocasional - apenas 33,5% são atendidos por rede geral de esgotos.

Os índices de atendimento revelam as desigualdades regionais. A Região Norte tem menor porcentagem de domicílios atendidos com 2,4%, seguida da Região Nordeste com 14,7%, Centro - Oeste com 28,1%, Região Sul com 22,5% e Região Sudeste com 53,0%. Existe alguma diferença entre o índice de atendimento levantado com as entidades municipais responsáveis pelo saneamento e as pesquisas domiciliares. Nem sempre existe um perfeito entendimento do próprio morador sobre a natureza dos serviços disponíveis. Além disso, respondem ao questionário apenas os moradores encontrados em seus domicílios. Em 2000 existiam 9 milhões de domicílios classificados como fechados, vagos ou de uso ocasional. Assim é que, no Censo 2000, referente

aos domicílios particulares permanentes ocupados, 47,2% de seus moradores informaram dispor do serviço de rede de esgoto (IBGE, 2000).

A PNSB (IBGE, 2000) informa também que os esgotos domésticos não tratados são lançados in natura em corpos d'água. A maioria dos distritos, 84,6%, despeja os esgotos nos rios.

Os sistemas identificados neste relatório são:

- Com rede coletora: filtro biológico; lodo ativado anaeróbio; lodo ativado aeróbio; reator anaeróbio; valo de oxidação; lagoa anaeróbia; lagoa aeróbia; lagoa aerada; lagoa facultativa; lagoa mista; lagoa de maturação; fossa séptica condominial.
- Sem rede coletora: fossas sépticas e sumidouros; fossas secas; valas abertas e lançamento em cursos d'água.

A seguir, foram reunidos dados da literatura nacional que permitiam definir as frações de efluentes de cada fonte geradora de metano. Essas frações foram definidas individualmente em nível nacional para o ano de 1994 e desagregada por estado, por distrito e por tipo de tratamento para o ano de 2000, conforme a PNSB (IBGE, 2000). Anteriormente, a única informação era agregada nacionalmente, tendo sido publicada na PNSB de 1989.

Os percentuais de uso de cada sistema foram obtidos pela observação:

- dos dados do Relatório de Referência do primeiro inventário brasileiro de emissões antrópicas de gases de efeito estufa (VIEIRA, ALVES, 2006);
- da PNAD (IBGE (b), 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2001, 2002, 2003, 2004 e
 2005); e da PNSB (IBGE, 1989, 2000b).

Para estimar os percentuais de uso de cada sistema para os anos de 1990 a 2005, reuniram-se dados de frações de efluentes com rede coletora de 1995 a 2005 obtidas da PNAD (IBGE (b), 1995, 1996, 1997 1998, 1999, 2001, 2002, 2003, 2004, 2005). Esses dados foram combinados com a fração de efluentes de 2000 da PNSB 2000 gerando a Tabela 22.

Tabela 22 - Fração de domicílios com rede coletora no Brasil de 1992 a 2005

	Domicílios com rede coletora no Brasil										
1992	1993	1994	1995	1996	1997	1998					
	%										
47,95	47,68	47	45,89	48,88	49,41	49,3					
1999	2000	2001	2002	2003	2004	2005					
	%										
51,15	41,6	44,93	45,91	47,4	47,43	47,59					

Fonte: PNAD IBGE (1992; 1993; 1995; 1996; 1997; 1998; 1999; 2001; 2002; 2003; 2004; 2005); PNSB IBGE (2000).

Notas: (1) Os dados intermediários são resultado da interpolação entre os dados; (2) O dado de 2000 provém da PNSB do IBGE (2000) que fornece a informação em Distritos.

Na Tabela 22, observa-se que o dado da PNSB, referente ao percentual de esgoto coletado para o ano de 2000, é discrepante em relação aos dados de esgoto coletado para o ano de 1994, obtidos através de pesquisa em domicílio. Essa variação não mostra necessariamente piora no saneamento do país. Trata-se da variação do resultado em função da diferença da metodologia empregada em um levantamento (PNAD) e outro (PNSB). A PNAD é realizada anualmente sendo seus resultados apresentados por domicílio. Por outro lado, a PNSB emprega questionários que são respondidos pelas administrações municipais, sendo seus resultados apresentados por Distrito. Essa é a razão da diferença dos resultados, o que não significa, necessariamente, variação no contexto do saneamento nacional.

No Brasil, segundo a PNSB, apenas 33,5% do número total de domicílios recenseados são atendidos por rede de esgoto.

Os dados para estimar as frações de uso dos sistemas de tratamento de 1990 a 2005 são disponíveis por Distrito e divulgados na PNSB (IBGE, 2000).

Observando-se as informações da Tabela 23 (IBGE, 2000), a soma dos Distritos com sistemas de tratamento inventariados é maior que o número total de Distritos, portanto infere-se que um mesmo Distrito pode apresentar mais de um sistema de tratamento.

A experiência permite afirmar que cada Distrito pode possuir mais de um tipo de tratamento de esgotos e as unidades podem estar dispostas em série ou em paralelo. Por exemplo: diversos tipos de lagoas são amplamente utilizados para o tratamento de esgotos no Brasil. Esse é um exemplo de emprego dos sistemas em série como é o caso do sistema australiano composto de uma lagoa anaeróbia seguida de outra facultativa. Mais um exemplo é o emprego de lagoa anaeróbia seguida de lagoa facultativa e de maturação. Assim, o Distrito atendido por essa instalação pode reportar duas ou três unidades distintas, mas que compõem um mesmo sistema.

Outra característica que deve ser considerada é a existência de sistemas de tratamento convencionais aeróbios compactos e o sistema de fossa séptica condominial para o atendimento de condomínios residenciais, hotéis, corporações e quaisquer outros empreendimentos que assumem isoladamente o tratamento de seus próprios efluentes. A consequência disso é que pequenas quantidades de efluentes são tratados por esses sistemas, que são reportados como sendo do Distrito, porém os mesmos sistemas não tratam os efluentes gerados por toda a população.

Para se obter as frações de tratamento por distrito, aplica-se à fração de cada tratamento uma proporcionalidade entre o número de distritos com tratamento e o total de tratamentos da pesquisa, por Unidade da Federação, observando-se que:

- O total de tratamentos exclui as quantidades listadas como "outros" e "sem declaração"
- Para o cálculo dos percentuais dos tratamentos que emitem metano foram considerados:
 - 1/3 de lodo ativado;
 - o reator anaeróbio;
 - o lagoa anaeróbia;
 - 1/2 de lagoa facultativa;
 - 1/2 de lagoa mista;
 - o 1/2 de lagoa de maturação; e
 - o fossa séptica condominial.
- Não emitem metano os tratamentos:
 - o filtro biológico;
 - 2/3 de lodo ativado;
 - o valo de oxidação;
 - lagoa aeróbia;
 - o lagoa aerada
 - 1/2 de lagoa facultativa;
 - o 1/2 de lagoa mista; e
 - 1/2 de lagoa de maturação.

As quantidades reportadas como "lagoa mista" e "lagoa de maturação" tiveram o mesmo tratamento que a "lagoa facultativa". Por estar em série com outra unidade de tratamento e receber cerca de 50% (TCHOBANOGLOUS *et al.*, 1991) da quantidade de matéria orgânica recebida pelo sistema de tratamento, o número reportado foi proporcionalmente reduzido para inclusão no total dos tratamentos que emitem metano.

A quantidade reportada com "lodo ativado" foi considerada equivalente a 33% (TCHOBANOGLOUS et al., 1991), pois apenas essa fração da matéria orgânica que entra no sistema de lodo ativado é removida no decantador primário e enviada ao digestor anaeróbio. Inferiu-se que todas as estações de lodos ativados contabilizadas na PNSB possuem, além do processo anaeróbio, a digestão anaeróbia dos lodos.

Feitas essas considerações, os percentuais dos sistemas de tratamento do efluente doméstico que emitem metano, as frações WS_{i,x} deste estudo, são estimados para cada estado.

As estimativas das frações de efluentes $WS_{i,x}$ foram calculadas com base na PNSB 2000 e foram usadas para o período 1995 a 2005. Adiciona-se ao $WS_{i,x}$ as fração de esgotos não coletados e seus respectivos tratamentos

Apresentam-se na Tabela 24 as frações de esgotos não coletados e suas destinações, considerados tratamentos e que podem também emitir metano.

Tabela 23 - Distritos com coleta e sistemas de tratamento de esgotos no Brasil, no ano 2000

UF	Distritos	Distritos com tratamento de esgoto (a)	Soma dos distritos com tratamento (b)	Filtro biológico	Lodo ativado	Reator anaeróbio	Valor de oxidação	Lagoa anaeróbia	Lagoa aeróbia	Lagoa aerada	Lagoa facultativa	Lagoa mista	Lagoa de maturação	Fossa séptica condominial	Outros	Sem declaração
Brasil	9.848	1.383	2.101	331	227	297	28	312	136	61	375	46	75	171	20	22
RO	76	1	0	0	0	0	0	1	1	0	1	0	0	0	0	0
AC	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AM	81	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0
RR	15	2	14	0	0	0	0	2	0	0	2	0	1	0	0	0
PA	232	11	5	0	2	7	0	2	0	1	1	0	0	1	0	0
AP	30	2	7	1	0	0	0	1	1	0	1	0	0	1	0	0
TO	151	3	2	1	0	2	0	2	0	0	1	0	1	0	0	0
MA	244	1	2	0	0	0	0	1	0	0	1	0	0	0	0	0
PI	221	1	76	0	0	0	0	0	0	1	1	0	0	0	0	0
CE	760	38	40	19	9	12	0	7	7	0	11	2	7	2	0	0
RN	186	23	69	2	0	1	0	7	3	3	9	1	6	8	0	0
PB	283	60	104	36	0	1	0	7	2	1	8	0	2	8	4	0
PE	381	59	19	21	3	7	0	7	7	6	13	2	5	32	1	0
AL	114	11	10	3	0	6	1	0	2	0	0	1	0	6	0	0
SE	83	8	85	2	0	0	1	2	1	0	2	1	1	0	0	0
BA	812	51	151	8	9	16	2	13	8	6	14	2	4	3	0	0
MG	1.568	114	129	46	13	31	1	20	4	2	11	1	4	14	2	2
ES	249	77	74	64	1	21	1	11	6	3	8	1	3	10	0	0
RJ	276	43	765	22	11	9	2	4	1	0	3	4	2	15	1	0
SP	1.022	561	234	41	153	18	9	149	55	24	222	24	11	33	7	19
PR	748	145	95	15	4	112	0	34	23	1	30	2	9	4	0	0
SC	447	52	102	15	7	21	6	11	4	2	10	0	3	15	0	1
RS	1.147	63	22	27	10	14	3	9	2	3	9	1	4	16	4	0
MS	163	19	39	1	0	15	0	2	0	0	3	0	0	0	1	0
MT	227	13	41	4	3	0	2	8	3	2	5	3	7	2	0	0
GO	309	24	8	3	1	3	0	11	6	5	8	0	4	0	0	0
DF	1	1	2101	0	1	1	0	1	0	1	1	1	1	1	0	0

Nota: Um mesmo distrito pode apresentar mais de um sistema de tratamento. Fonte: PNSB (IBGE, 2000) incluindo a coluna (b), baseada na hipótese descrita acima.

Tabela 24 - Distritos sem rede coletora de esgoto, com principal solução alternativa, no Brasil, no ano 2000

Unidades da Federação	Distritos totais	Distritos sem rede coletora	Fossas sépticas e sumidouros	Fossas secas	Valas Abertas	Lançamento em cursos d'água	Outros	Sem declaração
Brasil	9.848	5.751	2.776	2.431	197	143	185	19
Rondônia	76	71	60	11	0	0	0	0
Acre	22	19	12	2	0	1	2	2
Amazonas	81	80	0	0	80	0	0	0
Roraima	15	13	2	11	0	0	0	0
Pará	232	217	57	146	3	9	2	0
Amapá	30	25	0	21	0	4	0	0
Tocantins	151	147	51	93	2	0	0	1
Maranhão	244	238	179	39	5	5	10	0
Piauí	221	218	201	10	3	3	1	0
Ceará	760	652	264	251	51	8	78	0
Rio Grande do Norte	186	133	75	21	5	17	15	0
Paraíba	283	152	6	146	0	0	0	0
Pernambuco	381	121	32	87	0	2	0	0
Alagoas	114	74	19	54	1	0	0	0
Sergipe	83	33	20	6	4	3	0	0
Bahia	812	530	230	251	25	15	9	0
Minas Gerais	1.568	354	57	260	3	26	4	4
Espírito Santo	249	78	27	9	4	17	15	6
Rio de Janeiro	276	65	37	16	3	9	0	0
São Paulo	1.022	74	25	27	0	0	21	1
Paraná	748	592	238	343	1	1	8	1
Santa Catarina	447	351	298	20	4	18	9	2
Rio Grande do Sul	1.147	898	698	192	3	5	0	0
Mato Grosso do Sul	163	139	32	99	0	0	8	0
Mato Grosso	227	207	109	96	0	0	2	0
Goiás	309	270	47	220	0	0	1	2
Distrito Federal	1	0	0	0	0	0	0	0

Fonte: PNSB (IBGE,2000)

As frações de efluentes tratados por lagoas em 1994 foram obtidas por interpolação da curva obtida com os dados de lagoa da PNSB (IBGE, 1989, 2000). As frações de reatores anaeróbios provêm de Vieira (1994) e as de fossas sépticas do PNAD (IBGE, 1992, 1993, 1995). As informações reunidas são mostradas na Tabela 25. A PNAD (IBGE, 1990) não estava disponível no período de elaboração do inventário. Esses dados não são disponíveis por Unidade da Federação, razão pela qual não foi efetuada a estimativa das emissões por Estado para o período de 1990 a 1994.

Tabela 25 - Fração dos sistemas de tratamento anaeróbio de esgotos no Brasil, em 1994

Disposição	Brasil
Lançamento em cursos d'água com coleta	0,229
Reator anaeróbio	0,018
Lagoa anaeróbia	0,05
Fossas sépticas e sumidouros	0,225
Lançamento em cursos d'água sem coleta	0,305
Outros	0,173
Total	1

Fonte: PNAD - IBGE (1990 a 1994); PNSB - IBGE (1989 e 2000) e Vieira e Alves (1994)

3.3.5 Fator de conversão de metano do sistema x tratando o efluente - MCF_x

Para os fatores de conversão de metano de cada um dos sistemas de tratamento, utilizaram-se os valores *default* dos *Guidelines* 2006, reproduzidos na Tabela 26.

Tabela 26 - Fatores de conversão de metano - MCF

Tipo de tratamento do efluente ou sistema alternativo	MCF									
Sistema sem rede coletora										
Fossas sépticas e sumidouros	0,5									
Fossas secas	0,1									
Vala aberta	0,1									
Lançamento em cursos d'água sem coleta	0,1									
Sistema com rede coletora										
Lodo ativado/Digestor anaeróbio	0,8									
Fossa séptica	0,5									
Reator anaeróbio	0,8									
Lagoa anaeróbia	0,8									
Lagoa facultativa	0,2									
Lagoa mista	0,2									
Lagoa de maturação	0,2									
Fossa séptica condominial	0,5									
Lançamento em cursos d'água com coleta	0,1									

Fonte: Guidelines 2006; julgamento de especialistas para lagoa mista e de maturação.

3.3.6 Metano recuperado

Considerou-se que o metano recuperado em reatores anaeróbios e em digestores anaeróbios de sistemas de lodos ativados contêm sempre um queimador, pois essa é a prática verificada no Brasil. Adotou-se então que 100% de metano recuperado passa por queimadores. A eficiência estimada dos queimadores é de aproximadamente 50%. Para as emissões em sistemas de tratamento em fossa séptica e lagoas anaeróbias e para os lançamentos de efluentes sem tratamento em corpos d'água, considerou-se zero de recuperação de metano (R).

Tabela 27 - Metano recuperado por reator e digestor anaeróbio

UF	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
UF								1000	kg CH₄							
Brasil	20.325	20.688	21.062	21.436	21.810	22.184	22.558	22.932	23.306	23.680	24.054	24.353	24.651	24.950	25.248	25.547
RO	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AC	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AM	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RR	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PA	591	608	625	642	659	676	693	710	727	744	761	776	791	807	822	837
AP	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ТО	-	25	25	26	27	28	28	29	30	30	31	31	32	32	32	33
MA	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CE	293	297	303	308	314	319	325	330	336	341	347	352	357	362	367	372
RN	35	35	36	36	37	38	38	39	39	40	41	41	42	42	43	43
PB	49	49	50	50	51	51	51	52	52	53	53	54	54	54	55	55
PE	400	406	411	416	421	426	431	436	441	446	451	455	460	464	469	474
AL	355	362	367	372	377	382	387	392	397	402	407	411	416	420	425	429
SE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BA	774	788	797	806	815	824	833	841	850	859	868	878	887	897	906	916
MG	1.284	1.301	1.321	1.341	1.361	1.380	1.400	1.420	1.440	1.459	1.479	1.495	1.512	1.528	1.544	1.561
ES	616	629	642	656	669	683	696	709	723	736	749	758	767	776	784	793
RJ	1.620	1.638	1.660	1.683	1.705	1.728	1.750	1.773	1.795	1.818	1.840	1.859	1.878	1.897	1.916	1.934
SP	7.514	7.659	7.805	7.952	8.099	8.245	8.392	8.538	8.685	8.832	8.978	9.075	9.172	9.269	9.366	9.462
PR	3.719	3.752	3.807	3.862	3.917	3.972	4.027	4.082	4.137	4.192	4.247	4.293	4.339	4.385	4.430	4.476
SC	609	620	633	645	658	670	682	695	707	719	732	742	752	762	771	781
RS	414	420	425	431	436	441	447	452	457	463	468	471	473	476	479	481
MS	687	701	714	727	740	753	766	779	792	805	818	829	840	850	861	871
MT	14	14	14	15	15	16	16	16	17	17	17	18	18	18	19	19
GO	120	120	123	127	130	133	136	140	143	146	149	152	155	158	160	163
DF	1.232	1.262	1.302	1.341	1.381	1.420	1.459	1.499	1.538	1.578	1.617	1.663	1.708	1.754	1.799	1.845

3.4 Emissões de CH₄ pelo tratamento de efluentes industriais

O Good Practice Guidance 2000 apresenta uma simplificação em relação aos Guidelines 1996. Recomenda listar as atividades industriais que produzem maiores volume de carga orgânica, identificando três ou quatro das principais atividades industriais com maior potencial de emissões de CH₄.

Para a classificação das atividades industriais com maior potencial de emissões de metano, não foi reeditado o documento empregado na época da realização do primeiro Relatório de Referência - o estudo feito pela CETESB e PRONACOP da década de 80. Essa publicação ainda é a melhor informação a respeito da geração de carga orgânica pela indústria no país. Assim, para classificação das principais atividades industriais, com relação ao potencial de emissão de CH₄, que está relacionado ao potencial de produção de carga orgânica, além do Relatório de Referência de emissões de metano no tratamento e na disposição de resíduos (VIEIRA e ALVES, 2006), foram consultados especialistas que, a partir da lista das atividades industriais com maior potencial de geração de carga orgânica, buscaram dados relativos à produção industrial, para o ano de 2005, dessas atividades. Tais dados foram obtidos na Pesquisa Industrial Anual (PIA-Produto) (IBGE, 2005), no Anuário estatístico do IBGE - 2005 (IBGE, 2006) e com as entidades representativas dos principais setores industriais como: indústria de algodão (ABRAPA), indústria de alimentos ABIA, indústria de papel e celulose (BRACELPA) e indústria de açúcar e álcool (ÚNICA).

Nessa mesma tabela, aplicou-se a curva ABC¹⁰, para seleção dos setores Classe A que abrangem 99,13% das emissões de matéria orgânica dos efluentes gerados no Brasil.

3.4.1 Produção industrial

Os dados relativos à produção industrial dos setores que abrangem 96,03% das emissões de matéria orgânica são mostrados na Tabela 31. Alguns dados de produção foram obtidos dos Anuários Estatísticos do IBGE para o período de 1990 a 2005. Paralelamente, iniciou-se consulta às associações dos setores para levantamento de informações sobre a produção anual dos setores relevantes e completou-se a tabela de produção industrial. Algumas fontes bibliográficas foram substituídas, pois os dados obtidos com associações do setor mostraram-se mais completos do que os obtidos na consulta ao IBGE.

 $^{^{10}}$ A Curva ABC é um recurso para identificar os itens mais importantes a considerar dentro de uma quantidade geralmente grande de itens.

Tabela 28 - Emissões de DBO dos setores industriais mais representativos para o ano de 2005

Setores	P _i (2005)	Ref.	D _{ind}	Ref.	тоw	Representatividade de acordo com a DBO	Classe A da curva ABC
	t /ano		kg DBO/t		Kg DBO/ano	%	%
Açúcar	25.905.723	9	200	1	5.181.144.600	55,54	55,54
Álcool	12.588.557	9	220	2	2.769.482.540	29,69	85,23
Cervejas [m³/ano] e [kgDBO/m³]	9.214.807	10	62,1	1	572.239.515	6,13	91,36
Leite cru	24.915.456	10	11	1	274.070.016	2,94	94,3
Algodão	1.037.856	11	155	2	160.867.680	1,72	96,03
Papel	8.597.307	12	8	2	68.778.456	0,74	96,76
Suínos	2.156.518	13	30	1	64.695.540	0,69	97,46
Leite pasteurizado	5.189.665	10	11	5	57.086.315	0,61	98,07
Aves	7.865.780	13	7	1	55.060.460	0,59	98,66
Bovinos	6.345.811	13	7	8	44.420.677	0,48	99,13
Leite em pó	526.375	12	41	7	21.581.375	0,23	99,37
Celulose	10.352.113	13	2	3	20.704.226	0,22	99,59
Petróleo/Refinaria petroquímica	98.630.518	13	0,2	6	19.726.104	0,21	99,8
PVC	911.084	12	10	2	9.110.840	0,1	99,9
Ácido acético	53.635	12	63	2	3.378.987	0,04	99,93
Manteiga	79.812	12	29,4	7	2.346.473	0,03	99,96
Leite condensado	287.747	12	5,6	7	1.611.383	0,02	99,98
Peixe em conservas	123.765	12	7,9	2	977.744	0,01	99,99
Estireno monômero	518.827	12	1	5	518.827	0,01	99,99
Amônia	924.720	12	0,2	2	184.944	0	99,99
Queijos	5.588	13	28,8	7	160.923	0	100
Ácido nítrico 99%	549.103	12	0,25	5	137.276	0	100
Metanol	236.817	12	0,49	2	116.040	0	100
Benzeno, tolueno e xileno	915.899	12	0,1	5	91.590	0	100
Formaldeído	221.871	12	0,35	2	77.655	0	100
Acetato de vinila	58.412	12	0,35	2	20.444	0	100
Acetona	1.752	12	0,35	2	613	0	100

Fontes: (1) CETESB, 1984 apud SALVADOR, 1991; (2) WHO, 1982 apud SALVADOR, 1991; (3) BRACELPA, 1997 apud MCT, 2006; (4) USAID, 1997; (5) LARRONDO, 1979; (6) IPCC, 2000; (7) GARCIA, 1997; (8) DERISIO, 2000; (9) UNICA, 2009; (10) ABIA, 2008; (11) ABRAPA, 2009; (12) IBGE - PIA - Produto, 2005; (13) Anuário estatístico - IBGE, 2005

Tabela 29 - Produção industrial dos principais setores industriais geradores de carga orgânica

Ano	Álcool ^a	Açúcar ^a	Cervejas ^{b,d}	Leite cru ^{b,d}	Algodão ^c	Papel ^e	Suínos ^f	Leite pasteurizado ^g	Aves ^f	Bovinos ^f
	t/ano	t/ano	m³/ano [1]	t/ano	t/ano	t/ano	t/ano	t/ano	t/ano	t/ano
1990	9.090.060	7.365.344	3.749.150	13.039.250	716.800	4.914.113	729.545	4.003.625	1.604.696	2.835.762
1991	10.038.152	8.604.321	3.881.100	13.231.500	667.100	4.914.113	812.247	4.119.450	1.800.857	2.921.430
1992	9.216.644	10.066.490	4.013.050	13.423.750	420.300	4.915.379	892.616	4.235.275	1.911.817	3.061.761
1993	8.901.566	10.269.996	4.145.000	13.616.000	483.900	5.301.040	885.142	4.351.100	2.074.395	3.123.781
1994	10.011.465	12.618.165	4.276.950	13.808.250	537.100	5.653.597	976.874	4.466.925	2.459.307	3.333.479
1995	9.929.322	13.522.129	8.037.262	18.654.266	410.000	5.935.907	1.154.621	5.202.704	2.793.172	3.707.550
1996	11.323.255	14.802.380	7.948.478	19.904.102	305.800	6.199.022	1.240.182	5.206.866	3.010.616	4.053.178
1997	12.153.968	14.880.691	8.089.990	20.963.590	411.000	6.517.601	1.010.359	5.069.926	3.891.227	3.334.889
1998	10.931.637	17.942.109	8.522.541	21.464.620	520.100	6.589.301	1.119.139	5.047.618	4.195.984	3.397.898
1999	10.279.412	19.387.515	8.519.562	22.044.165	700.300	6.953.246	1.237.829	4.767.475	4.681.277	3.806.747
2000	8.362.142	16.256.105	9.023.303	22.674.628	938.800	7.187.831	1.348.522	4.842.801	5.081.965	3.899.806
2001	9.106.545	19.218.011	9.137.197	23.400.216	766.200	7.437.767	1.588.103	5.037.482	5.566.698	4.330.277
2002	9.964.774	22.567.260	8.031.273	23.496.157	847.500	7.773.913	1.881.135	4.992.145	6.068.885	4.699.613
2003	11.689.992	24.925.793	7.692.102	23.331.684	1.309.400	7.915.504	1.917.515	4.901.787	6.226.427	4.977.213
2004	12.169.918	26.621.221	8.663.276	23.973.305	1.298.659	8.452.411	1.867.687	4.866.984	7.031.506	5.906.212
2005	12.588.557	25.905.723	9.214.807	24.915.456	1.037.856	8.597.307	2.156.518	5.189.665	7.865.780	6.345.811

Fontes: (a) ÚNICA, 2009; (b) ABIA, 2008; (c) ABRAPA, 2009; (d) Vieira; Alves, 2006 - Para o período de 1990 a 1994; (e) IBGE - PIA - Produto, 2005; (f) IBGE - Anuário estatístico, 1993 a 2005; (g) ABIA, 2008.

3.4.2 Fator de emissão de carga orgânica por unidade produzida

Foram consultadas várias fontes de informações, como técnicos e gestores de controle da CETESB e da Secretaria de Meio Ambiente do Estado de São Paulo, técnicos de empresas de tecnologia de tratamento de efluentes e especialistas das associações de empresas dos setores respectivos. Foi também efetuada consulta bibliográfica para obtenção de fatores de emissão de carga orgânica por unidade produzida. A totalidade dos fatores encontrados, mesmo em bibliografia mais recente, tem como referência as mesmas fontes de informações do estudo de Salvador (SALVADOR, 1991) e suas respectivas referências utilizado para elaboração do Primeiro Inventário (preparado em 1998 e publicado em 2006) (Vieira; Alves, 2006). Todas as informações foram analisadas e tratadas, sendo escolhidos os fatores de emissão mais representativos em relação ao sistema produtivo brasileiro. Os fatores de emissão e as respectivas fontes bibliográficas são reproduzidos na Tabela 30.

Tabela 30 - Fator de emissão de matéria orgânica

Setor produtivo	Fator de geração de DBO	Fonte	
Secor productivo	kg DBO/t	Torrec	
Álcool	220	a	
Açúcar	200	b	
Cervejas [kg DBO/m³]	62,1	b	
Leite cru	11	b	
Algodão	155	a	
Papel	8	a	
Suínos	30	b	
Leite pasteurizado	11	d	
Aves	7	b	
Bovinos	7	С	

Fontes: (a) WHO (1982) apud Salvador (1991); (b) CETESB (1984) apud Salvador (1991); (c) DERISIO (2000); (d) LARRONDO (1979) apud Salvador (1991)

3.4.3 Capacidade máxima de produção de metano - Bo

Para a capacidade máxima de produção de metano - $B_{0,}$ utilizou-se o valor default do Good Practice Guidance 2000 de 0,6 kg CH_4/kg DBO.

3.4.4 Fração de efluente industrial tratado por sistema anaeróbio

Para seleção dos setores industriais com maior potencial de emissão de metano, calculou-se a matéria orgânica emitida por cada um dos setores selecionados na primeira fase multiplicando-se os dados de produção industrial da Tabela 29 pelos respectivos fatores de emissão da Tabela 30.

Foram então selecionados os seguintes setores industriais, conforme indica o *Good Practice Guidance* 2000: álcool, açúcar, cerveja, leite cru, algodão, papel, suínos, leite pasteurizado, aves e bovinos.

Para estimativa das frações de efluentes tratados por tipo de tratamento, além da consulta a especialistas, utilizou-se o banco de dados STEL (CETESB, 1999).

A seguir é apresentado o tratamento das informações para obtenção dos dados utilizados para cálculo de emissões de três setores: álcool, açúcar e cerveja. Os demais, leite cru, algodão, papel, suínos, leite pasteurizado, aves e bovinos não contam com dados no banco de dados STEL.

3.4.5 Cerveja

Para a obtenção das frações pelo banco de dados STEL iniciou-se pelo setor de cerveja, por ser aquele com mais sistemas de tratamento cadastrados, 39, sendo 22 com informações sobre o controle analítico da informação e 17 sem essas informações. Para avaliar a representatividade desses dados calculou-se a quantidade de DBO do afluente às estações de tratamento de cervejarias cadastradas no banco até 1999 e comparou-se com a quantidade de DBO gerada na produção de cerveja em 1999, levantada e utilizada no inventário, proveniente de ABIA (ABIA, 2008). A Tabela 31 apresenta os sistemas de tratamentos secundários cadastrados no setor de cerveja.

Tabela 31 - Sistemas de tratamento secundário cadastrados no setor de cerveja até 1999

	Sistemas	Reator	anaeróbio		Lag	Lodo ativado			
Região	de trata- mento	fluxo ascen- dente	com circulação interna	anaeróbia	facul- tativa	aerada aeróbia	aerada facul- tativa	com aeração prolongada	conven- cional
NE	9	6	0	1	1	0	0	0	0
N	3	2	0	0	0	0	1	0	0
СО	1	1	0	0	0	0	0	0	0
SE	20	15	1	1	0	0	1	1	1
S	6	4	0	0	0	1	0	0	1
Brasil	39	28	1	2	1	1	2	1	2

Fonte: Vieira et al. (2001)

Agrupando-se os dados obtidos para o Brasil por tipo de sistema em: reator anaeróbio, lagoa anaeróbia, lagoa facultativa e sistemas aeróbios e calculando-se as respectivas frações, obteve-se a Tabela 32.

Tabela 32 - Tratamento de efluentes da indústria de cerveja nos sistemas cadastrados até 1999

Sistemas de tratamento	Número de sistemas	Fração
Sistemas de tratamento	Numero de sistemas	%
Reator anaeróbio	29	74,36
Lagoa anaeróbia	2	5,13
Lagoa facultativa	1	2,56
Lagoa aerada e facultativa	2	5,13
Lagoa aerada e aeróbia	2	5,13
Lodo ativado de aeração prolongada	1	2,56
Lodo ativado convencional	2	5,13
Total	39	100

A Tabela 33 apresenta as concentrações de DBO no afluente e a Tabela 34, as vazões dos sistemas cadastrados.

Tabela 33 - Concentrações de DBO no afluente da indústria de cerveja até 1999

Estado	Município	Concentração de DBO no afluente
		kg DBO/m³
Bahia	Feira de Santana	0,8
Mato Grosso	Cuiabá	1
Paraná	Curitiba	0,55
Paraná	Ponta Grossa	1,35
Rio de Janeiro	Queimados	1,35
Rio de Janeiro	Queimados	1,2
Rio de Janeiro	Rio de Janeiro	2
Rio Grande do Norte	Natal	2
Rio Grande do Sul	Estrela	2,18
Rio Grande do Sul	Gravataí	1,33
São Paulo	Araraquara	1,35
São Paulo	Guarulhos	1,05
São Paulo	Jacareí	1,35
São Paulo	Jaguariúna	0,857
São Paulo	Ribeirão Preto	1,71
Sergipe	Estância	0,36

Tabela 34 - Vazões afluentes da indústria de cerveja nos sistemas cadastrados até 1999

Estado	Município	Vazão de afluente	
		m³/h	
Bahia	Feira de Santana	9,72	
Mato Grosso	Cuiabá	100	
Paraná	Curitiba	15	
Paraná	Ponta Grossa	250	
Rio de Janeiro	Queimados	200	
Rio de Janeiro	Queimados	360	
Rio de Janeiro	Rio de Janeiro	300	
Rio Grande do Norte	Natal	70	
Rio Grande do Sul	Estrela	60	
Rio Grande do Sul	Gravataí	47	
São Paulo	Araraquara	200	
São Paulo	Guarulhos	334	
São Paulo	Jacareí	120	
São Paulo	Jaguariúna	500	
São Paulo	Ribeirão Preto	115	
Sergipe	Estância	3,5	

Para a obtenção da concentração média de DBO afluente e da vazão média, ordenaram-se os dados em ordem crescente, estimou-se a frequência e a frequência acumulada e identificaram-se os pontos fora da curva como mostram a Tabela 35 e a Tabela 36.

Tabela 35 - Concentrações de DBO no afluente dos sistemas cadastrados até 1999

Estado	Município	Concentração de DBO no afluente	Frequência	Frequência acumulada
		kg DBO/m ³	%	%
São Paulo*	Estância	0,36	2	2
Paraná*	Curitiba	0,55	3	4
Bahia	Feira de Santana	0,8	4	8
São Paulo	Jaguariúna	0,86	4	13
Mato Grosso	Cuiabá	1	5	17
São Paulo	Guarulhos	1,05	5	23
Rio de Janeiro	Queimados	1,2	6	28
Rio Grande do Sul	Gravataí	1,33	7	35
Paraná	Ponta Grossa	1,35	7	42
Rio de Janeiro	Queimados	1,35	7	48
São Paulo	Araraquara	1,35	7	55
São Paulo	Jacareí	1,35	7	61
São Paulo	Ribeirão Preto	1,71	8	70
Rio de Janeiro	Rio de Janeiro	2	10	80
Rio Grande do Norte	Natal	2	10	89
Sergipe	Estrela	2,18	11	100
Concentração média de DBO afluente**		1,39		

^(*) Pontos fora da curva conforme critério do método estatístico "diagrama de caixa"

Tabela 36 - Análise estatística das vazões dos sistemas cadastrados até 1999

Estado	Município	Vazão afluente	Frequência	Frequência acumulada
		m³/h	%	%
Sergipe*	Estância	3,5	0%	0%
Bahia*	Feira de Santana	9,72	0%	0%
Paraná*	Curitiba	15	1%	1%
Rio Grande do Sul	Gravataí	47	2%	3%
Rio Grande do Sul	Estrela	60	2%	5%
Rio Grande do Norte	Natal	70	3%	8%
Mato Grosso	Cuiabá	100	4%	11%
São Paulo	Ribeirão Preto	115	4%	16%
São Paulo	Jacareí	120	4%	20%
Rio de Janeiro	Queimados	200	7 %	28%
São Paulo	Araraquara	200	7 %	35%
Paraná	Ponta Grossa	250	9%	44%
Rio de Janeiro	Rio de Janeiro	300	11%	56%
São Paulo	Guarulhos	334	12%	68%
Rio de Janeiro	Queimados	360	13%	81%
São Paulo	Jaguariúna	500	19%	100%
Vazão média**		204	•	•

^(*) Pontos fora da curva conforme critério do método estatístico "diagrama de caixa"

^(**) Excluindo os pontos fora da curva conforme critério do método estatístico "diagrama de caixa"

^(**) Excluindo os pontos fora da curva conforme critério do método estatístico "diagrama de caixa"

Definiu-se então a DBO dos efluentes industriais tratados do setor de cerveja, considerando-se a vazão média e a concentração média de DBO, obtendo-se a DBO anual tratada por cervejaria.

Empregando-se essa DBO anual em 39 cervejarias obtém-se uma quantidade tratada correspondente a 95,23% do total gerado em 1999. Acredita-se que as informações do banco de dados STEL para o setor de cerveja no território nacional sejam suficientes. Utilizaram-se as informações nele contidas, para obter as frações apresentadas na Tabela 37 e na Tabela 38.

Tabela 37 - Frações de sistemas de tratamento anaeróbios no setor de cerveja

Sistema de Tratamento	Brasil
Reator anaeróbio	0,7081
Lagoa anaeróbia	0,0488
Lagoa facultativa	0,0244
Total de sistemas de tratamento	0,7814

Tabela 38 - Frações de sistemas de tratamento aeróbio no setor de cerveja

Sistema de Tratamento Aeróbio	Brasil
Lagoa aerada e facultativa	0,0488
Lagoa aerada e aeróbia	0,0488
Lodo ativado de aeração prolongada	0,0244
Lodo ativado convencional	0,0488
Total de sistemas de tratamento	0,1709

3.4.6 Açúcar e álcool

As emissões de matéria orgânica dos setores de açúcar e álcool já que ambas as atividades produzem matéria orgânica, variando as relações de quantidade conforme as flutuações do mercado. Os fatores de geração de DBO adotados são também próximos (220kgDBO/t álcool) e (200kgDBO/t açúcar). Utilizou-se então a média de 210kgDBO/t para as emissões conjuntas de açúcar e álcool. A seguir, na Tabela 39, são apresentados os dados do banco STEL.

Tabela 39 - Sistemas de tratamento secundário no setor de açúcar e álcool

Locais	Sistemas de tratamento	RAFA	Filtro anaeróbio
Brasil	4	3	1
Rio de Janeiro	1	1	
São Paulo	3	2	1

Fonte: Vieira et al. (2001)

Foram cadastrados no banco até 1999 apenas quatro sistemas de tratamento de efluente de açúcar e álcool (vinhaça). As informações obtidas com os técnicos e especialistas confirmam esses dados. Os efluentes na sua quase totalidade são lançados no solo como fertilizante sem tratamento anaeróbio, conforme considerado no Relatório de Referência do primeiro inventário (Vieira; Alves, 2006).

Para a estimativa da concentração de DBO anual tratada empregaram-se os dados do banco STEL.

Tabela 40 - Dados efluentes do setor sucroalcooleiro

Concentração DBO afluente por usina tratada (C)	0,02	[kgDBO/m³]
Vazão média afluente (Q)	91,66	[m³/h]
Ano	365	[dia]
Dia	24	[hora]

Fonte: Banco de dados STEL

A quantidade de DBO tratada estimada com os dados do banco STEL resultou em 64.239 kg DBO/ano.

Assim, foram estimadas as emissões de matéria orgânica em 1999 dos setores de açúcar e álcool em 6.230.055 t DBO/ano.

Convertendo em fração a quantidade tratada obteve-se um resultado insignificante: de 0,00001 ou 0,001%.

Os efluentes da indústria de açúcar e álcool, apesar do grande potencial de emissão de metano devido à alta carga de DBO, não representa uma fonte de emissão de metano, pois seus efluentes são lançados no solo como fertilizante, sem tratamento anaeróbio. Em lugar das emissões de açúcar e álcool, outros setores foram selecionados e suas emissões estimadas. Essa mesma consideração foi efetuada para cálculo das emissões desse setor no primeiro inventário.

Com os dados apresentados, chega-se à carga orgânica total, TOW, para os principais setores da economia, conforme Tabela 41.

Tabela 41 - Carga orgânica do setor industrial para o período de 1990 a 2005

Setor	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Setoi								t D	ВО							
Açúcar e álcool	3.472.882	3.929.258	4.040.960	4.012.344	4.726.155	4.888.877	5.451.592	5.650.011	5.993.382	6.138.974	5.090.892	5.847.042	6.705.702	7.556.957	8.001.626	7.950.627
Cerveja	232.822	241.016	249.210	257.405	265.599	499.114	493.600	502.388	529.250	529.065	560.347	567.420	498.742	477.680	537.989	572.240
Leite cru	143.432	145.547	147.661	149.776	151.891	205.197	218.945	230.599	236.111	242.486	249.421	257.402	258.458	256.649	263.706	274.070
Algodão	111.104	103.401	65.147	75.005	83.251	63.550	47.399	63.705	80.616	108.547	145.514	118.761	131.363	202.957	201.292	160.868
Papel	39.313	39.313	39.323	42.408	45.229	47.487	49.592	52.141	52.714	55.626	57.503	59.502	62.191	63.324	67.619	68.778
Suínos	21.886	24.367	26.778	26.554	29.306	34.639	37.205	30.311	33.574	37.135	40.456	47.643	56.434	57.525	56.031	64.696
Leite pasteurizado	44.040	45.314	46.588	47.862	49.136	57.230	57.276	55.769	55.524	52.442	53.271	55.412	54.914	53.920	53.537	57.086
Aves	11.233	12.606	13.383	14.521	17.215	19.552	21.074	27.239	29.372	32.769	35.574	38.967	42.482	43.585	49.221	55.060
Bovinos	19.850	20.450	21.432	21.866	23.334	25.953	28.372	23.344	23.785	26.647	27.299	30.312	32.897	34.840	41.343	44.421

3.4.7 Fator de conversão de metano do sistema x tratando o efluente - MCF_x

Utilizaram-se os dados de tratamentos aplicados nos setor de cerveja e os *default* do *Guidelines* 2006 para obtenção da Média ponderada dos MCF para o setor de cerveja. Para os demais setores industriais utilizou-se o julgamento dos especialistas envolvidos na elaboração dessa estimativa, visto que não há dados publicados específicos para o Brasil, como mostra a Tabela 42.

Tabela 42 - Dados para obtenção do MCF ponderado dos setores industriais

Tipo de tratamento e destino do efluente	MCF	Açúcar e Álcool	Cerveja	Leite cru	Algodão	Papel	Suínos	Leite pasteurizado	Aves	Bovinos
Reator anaeróbio	0,8	0	0,7081	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Lagoa anaeróbia	0,8	0	0,0488	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Lagoa facultativa	0,2	0	0,0244	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Lançamento em cursos d'água	0,1	0	0,0477	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
MCF ponderado		0	0,6152	0,5	0,5	0,5	0,5	0,5	0,5	0,5

Nota: n.d. - dado não disponível

Fonte: Guidelines 2006

Assim, puderam ser calculados os fatores de emissão de cada setor industrial como mostra a Tabela 43.

Tabela 43 - Fatores de emissão de cada setor industrial

	EF
Setor industrial	(kg CH₄/kg DBO)
Açúcar e Álcool	0
Cerveja	0,395
Leite cru	0,3
Algodão	0,3
Papel	0,3
Suínos	0,3
Leite pasteurizado	0,3
Aves	0,3
Bovinos	0,3

3.4.8 Metano recuperado - R

Faz parte do projeto do reator anaeróbio, que é usualmente empregado para o tratamento de efluentes nas indústrias consideradas, a inclusão, junto com o reator anaeróbio, do queimador de gases. Por essa razão, considera-se que em 100% dos empreendimentos há queimadores. A eficiência de queima do queimador empregada nesta estimativa é de 50%. Essa mesma estimativa é feita pelos projetos de MDL onde há queimadores de chama aberta. Recuperação igual a zero foi considerada nos demais setores.

Tabela 44 - Metano recuperado por reator anaeróbio em Gg CH₄

Setor	1990	1991	1992	1993	1994	1995	1996	1997
Álcool	-	-	-	-	-	-	-	-
Açúcar	-	-	-	-	-	-	-	-
Cervejas	42,7	44,2	45,7	47,2	48,7	91,4	90,4	92,0
Leite cru	26,3	26,7	27,1	27,4	27,8	37,6	40,1	42,2
Algodão	20,4	18,9	11,9	13,7	15,3	11,6	8,7	11,7
Papel	7,2	7,2	7,2	7,8	8,3	8,7	9,1	9,6
Suínos	4,0	4,5	4,9	4,9	5,4	6,3	6,8	5,6
Leite pasteurizado	8,1	8,3	8,5	8,8	9,0	10,5	10,5	10,2
Aves	2,1	2,3	2,5	2,7	3,2	3,6	3,9	5,0
Bovinos	3,6	3,7	3,9	4,0	4,3	4,8	5,2	4,3
Total	114,3	115,8	111,7	116,4	121,8	174,5	174,7	180,5

Setor	1998	1999	2000	2001	2002	2003	2004	2005
Álcool	-	-	-	-	-	-	-	-
Açúcar	-	-	-	-	-	-	-	-
Cervejas	97,0	96,9	102,7	103,9	91,4	87,5	98,6	104,8
Leite cru	43,3	44,4	45,7	47,2	47,3	47,0	48,3	50,2
Algodão	14,8	19,9	26,7	21,8	24,1	37,2	36,9	29,5
Papel	9,7	10,2	10,5	10,9	11,4	11,6	12,4	12,6
Suínos	6,2	6,8	7,4	8,7	10,3	10,5	10,3	11,9
Leite pasteurizado	10,2	9,6	9,8	10,2	10,1	9,9	9,8	10,5
Aves	5,4	6,0	6,5	7,1	7,8	8,0	9,0	10,1
Bovinos	4,4	4,9	5,0	5,6	6,0	6,4	7,6	8,1
Total	190,7	198,7	214,2	215,3	208,4	218,1	232,8	237,6

4 Resultados

A seguir, são detalhados os resultados das estimativas de emissões de gases efeito estufa, nas seguintes tabelas:

Tabela 45 - Emissões de CH₄ pela disposição de resíduos sólidos no Brasil, de 1990 a 2005

Tabela 46 - Emissões de CO₂ pela incineração de resíduos sólidos no Brasil, de 1990 a 2005

Tabela 47 - Emissões de N₂O pela incineração de resíduos sólidos no Brasil, de 1990 a 2005

Tabela 48 - Emissões de CH₄ pelo tratamento de esgotos domésticos no Brasil, de 1990 a 2005

Tabela 49 - Emissões de CH₄ pelo tratamento de efluentes industriais no Brasil, de 1990 a 2005

Tabela 45 - Emissões de CH₄ pela disposição de resíduos sólidos no Brasil, de 1990 a 2005 em Gg CH₄

UF	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
RO	1,32	1,69	1,72	1,75	1,78	1,82	1,85	1,88	1,92	1,95	2,43	2,39	2,37	2,36	2,35	2,35
AC	1,13	1,20	1,26	1,32	1,38	1,44	1,50	1,55	1,61	1,66	1,75	1,80	1,85	1,90	1,97	2,04
AM	12,87	13,00	14,19	15,35	16,50	17,62	18,74	19,85	20,94	22,03	23,17	24,14	25,02	25,82	26,56	27,25
RR	0,58	0,63	0,68	0,73	0,78	0,83	0,89	0,94	1,00	1,05	1,14	1,18	1,22	1,26	1,29	1,32
PA	17,90	18,60	19,23	19,95	20,77	20,86	22,27	23,68	25,08	26,46	28,31	29,49	30,60	31,63	32,60	33,52
AP	0,94	1,03	1,07	1,13	1,19	1,25	1,33	1,40	1,48	1,56	1,75	1,81	1,86	1,91	1,95	1,99
TO	1,68	1,82	1,89	1,95	2,01	2,07	2,13	2,19	2,24	2,29	2,59	2,60	2,61	2,62	2,63	2,64
MA	9,48	9,89	10,28	10,74	11,25	12,09	12,94	13,81	14,69	15,56	16,80	17,55	18,25	18,91	19,52	20,10
PI	5,67	5,96	6,23	6,49	6,74	6,97	7,19	7,40	7,60	7,78	8,03	8,19	8,35	8,51	8,67	8,81
CE	34,05	35,24	36,05	36,83	37,57	38,27	38,91	39,52	40,09	40,61	41,44	41,77	42,02	42,21	42,34	42,41
RN	12,85	13,55	14,22	14,84	15,42	15,96	16,46	16,93	17,37	17,77	18,18	18,49	18,73	18,91	19,03	19,10
PB	12,14	12,57	13,28	13,92	14,49	14,98	15,43	15,82	16,17	16,48	16,80	17,01	17,18	17,31	17,41	17,47
PE	39,66	40,49	41,07	41,61	42,11	42,58	43,21	43,76	44,25	44,67	45,30	45,52	45,63	45,65	45,61	45,47
AL	9,30	9,79	10,23	10,66	11,07	11,47	11,85	12,20	12,55	12,87	13,21	13,50	13,75	13,96	14,14	14,28
SE	5,11	5,31	5,50	5,69	5,88	6,05	6,22	6,39	6,54	6,70	6,84	6,97	7,10	7,22	7,32	7,41
BA	44,27	46,31	47,96	49,59	51,15	52,68	54,18	55,60	56,96	58,23	59,79	60,93	62,06	63,16	51,97	41,42
MG	72,06	74,46	76,90	79,38	81,92	84,47	87,02	89,62	92,37	95,12	98,15	100,56	102,74	104,73	106,72	108,54
ES	8,25	8,69	9,07	9,45	9,83	10,22	11,50	12,67	13,76	14,77	15,87	16,79	17,67	18,47	19,19	19,93
RJ	139,60	143,21	146,60	149,84	152,96	155,97	158,89	161,75	164,55	168,30	171,62	173,29	174,45	175,17	175,53	175,55
SP	233,36	240,70	247,74	254,57	261,23	267,73	274,07	281,94	289,59	297,38	306,33	315,36	328,58	334,32	311,23	317,35
PR	28,57	29,82	30,98	32,11	33,21	34,28	35,34	36,37	37,36	38,33	39,47	40,31	41,06	41,73	42,34	42,89
SC	10,94	11,44	11,92	12,39	12,87	13,35	13,83	14,30	14,77	15,23	15,74	16,15	16,55	16,92	17,27	17,60
RS	34,64	35,83	36,86	37,86	38,81	39,71	40,57	41,40	42,19	42,93	43,79	44,37	44,83	45,20	45,47	45,66
MS	6,05	6,52	6,86	7,17	7,46	7,75	8,01	8,26	8,49	8,70	9,01	9,15	9,26	9,35	9,41	9,45
MT	4,55	5,14	5,32	5,48	5,64	5,79	5,93	6,07	6,20	6,33	7,02	7,03	7,02	7,01	6,99	6,96
GO	19,18	20,06	20,81	21,52	22,24	22,95	22,92	23,96	24,93	25,84	27,21	27,84	28,37	28,82	29,22	29,54
DF	25,53	26,70	27,91	29,15	30,41	31,70	32,99	34,30	35,62	36,93	38,25	39,43	40,50	41,47	42,35	43,14
Brasil	791,67	819,65	845,82	871,48	896,68	920,85	946,15	973,59	1.000,30	1.027,55	1.059,99	1.083,60	1.109,63	1.126,52	1.101,04	1.104,18

Tabela 46 - Emissões de CO₂ pela incineração de resíduos sólidos no Brasil, de 1990 a 2005

Sist	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Sist								t C	O ₂							
MSW	-	-	-	-	-		0,26	0,26	0,26	0,33	0,34	0,46	0,37	0,25	0,26	0,57
HW	18,88	32,84	64,68	53,23	56,97	73,39	56,97	57,49	63,63	64,67	67,13	65,88	66,58	97,51	98,5	98,1
CW	5,57	5,61	5,3	5,3	5,53	5,44	5,53	5,44	6,5	19,02	24,36	9,95	12,91	13,4	11,95	11,2
SS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	24,45	38,44	69,98	58,53	62,5	78,83	62,77	63,19	70,4	84,02	91,84	76,3	79,86	111,17	110,71	109,87

Tabela 47 - Emissões de N_2O pela incineração de resíduos sólidos no Brasil, de 1990 a 2005

Sist	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Jisc								t N	l ₂ O							
MSW	-	-	-	-	-	-	0,038	0,038	0,032	0,044	0,044	0,057	0,044	0,032	0,032	0,057
HW	1,150	2,000	3,940	3,242	3,470	4,470	3,470	3,502	3,876	3,939	4,089	4,013	4,055	5,940	6,000	5,975
CW	0,400	0,403	0,380	0,380	0,397	0,391	0,397	0,391	0,467	1,365	1,748	0,714	0,927	0,962	0,858	0,804
SS	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	1,550	2,403	4,320	3,622	3,867	4,861	3,905	3,930	4,374	5,349	5,882	4,784	5,026	6,933	6,889	6,836

Tabela 48 - Emissões de CH₄ pelo tratamento de esgotos domésticos no Brasil, de 1990 a 2005 em Gg CH₄

UF	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
RO	5,25	5,53	5,67	5,80	5,94	6,07	6,21	6,34	6,47	6,61	6,74	6,79	6,84	6,90	6,95	7,00
AC	1,53	1,57	1,63	1,69	1,75	1,81	1,86	1,92	1,98	2,04	2,10	2,15	2,20	2,26	2,31	2,36
AM	19,08	19,65	20,39	21,13	21,86	22,60	23,33	24,07	24,81	25,54	26,28	26,83	27,37	27,92	28,47	29,01
RR	0,46	0,49	0,52	0,54	0,57	0,60	0,62	0,65	0,68	0,70	0,73	0,75	0,78	0,80	0,82	0,85
PA	13,93	14,34	14,74	15,14	15,54	15,94	16,34	16,74	17,14	17,54	17,94	18,30	18,66	19,03	19,39	19,75
AP	0,34	0,35	0,38	0,40	0,43	0,46	0,48	0,51	0,53	0,56	0,58	0,60	0,62	0,64	0,66	0,68
TO	-	2,62	2,69	2,77	2,84	2,92	2,99	3,07	3,14	3,22	3,29	3,33	3,36	3,40	3,43	3,47
MA	22,51	22,90	23,28	23,65	24,02	24,39	24,77	25,14	25,51	25,88	26,25	26,56	26,87	27,19	27,50	27,81
PI	14,10	14,32	14,48	14,64	14,80	14,97	15,13	15,29	15,45	15,61	15,77	15,92	16,07	16,22	16,37	16,52
CE	18,60	18,89	19,24	19,59	19,94	20,30	20,65	21,00	21,35	21,70	22,05	22,37	22,69	23,01	23,33	23,65
RN	7,04	7,18	7,30	7,42	7,54	7,66	7,78	7,90	8,02	8,14	8,26	8,36	8,46	8,56	8,66	8,76
PB	3,67	3,71	3,74	3,78	3,81	3,84	3,87	3,90	3,93	3,96	3,99	4,03	4,06	4,09	4,13	4,16
PE	8,75	8,86	8,97	9,08	9,19	9,30	9,41	9,52	9,63	9,73	9,84	9,94	10,05	10,15	10,25	10,35
AL	4,63	4,72	4,78	4,85	4,91	4,97	5,04	5,10	5,17	5,23	5,30	5,35	5,41	5,47	5,53	5,58
SE	2,54	2,59	2,65	2,71	2,76	2,82	2,88	2,93	2,99	3,05	3,10	3,14	3,18	3,22	3,26	3,29
BA	25,96	26,45	26,74	27,04	27,34	27,64	27,93	28,23	28,53	28,83	29,12	29,45	29,77	30,09	30,41	30,73
MG	9,90	10,04	10,19	10,34	10,49	10,65	10,80	10,95	11,10	11,26	11,41	11,53	11,66	11,79	11,91	12,04
ES	3,44	3,51	3,59	3,66	3,74	3,81	3,89	3,96	4,04	4,11	4,18	4,23	4,28	4,33	4,38	4,43
RJ	16,24	16,42	16,64	16,87	17,09	17,32	17,55	17,77	18,00	18,22	18,45	18,64	18,83	19,01	19,20	19,39
SP	56,91	58,00	59,11	60,22	61,33	62,44	63,55	64,66	65,77	66,89	68,00	68,73	69,46	70,20	70,93	71,66
PR	26,75	26,99	27,38	27,78	28,17	28,57	28,96	29,36	29,76	30,15	30,55	30,88	31,20	31,53	31,86	32,19
SC	19,57	19,94	20,33	20,73	21,13	21,52	21,92	22,32	22,72	23,11	23,51	23,83	24,15	24,47	24,79	25,11
RS	35,63	36,12	36,58	37,04	37,50	37,96	38,42	38,88	39,34	39,80	40,26	40,49	40,71	40,93	41,16	41,38
MS	4,18	4,27	4,35	4,43	4,51	4,59	4,67	4,74	4,82	4,90	4,98	5,05	5,11	5,17	5,24	5,30
MT	6,81	7,10	7,28	7,47	7,65	7,84	8,03	8,21	8,40	8,58	8,77	8,94	9,12	9,29	9,47	9,64
GO	7,99	8,02	8,24	8,46	8,67	8,89	9,11	9,33	9,55	9,76	9,98	10,17	10,35	10,53	10,72	10,90
DF	4,93	5,05	5,21	5,36	5,52	5,68	5,84	6,00	6,15	6,31	6,47	6,65	6,83	7,02	7,20	7,38
Brasil	340,74	349,63	356,11	362,59	369,06	375,54	382,01	388,49	394,96	401,44	407,91	413,01	418,10	423,20	428,29	433,39

Tabela 49 - Emissões de CH₄ pelo tratamento de efluentes industriais no Brasil, de 1990 a 2005 em Gg CH₄

Ano	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005
Álcool	-		-	-	-	-	-	-	-	-	=	-	-	-	-	-
Açúcar	-	-	-	-			-		-		-	-	-			-
Cervejas	49,26	51,00	52,73	54,47	56,20	105,61	104,44	106,30	111,99	111,95	118,57	120,06	105,53	101,08	113,84	121,08
Leite cru	16,75	17,00	17,25	17,50	17,74	23,97	25,57	26,94	27,58	28,32	29,13	30,07	30,19	29,98	30,80	32,01
Algodão	12,98	12,08	7,61	8,76	9,72	7,42	5,54	7,44	9,42	12,68	17,00	13,87	15,34	23,71	23,51	18,79
Papel	4,59	4,59	4,59	4,95	5,28	5,55	5,79	6,09	6,16	6,50	6,72	6,95	7,26	7,40	7,90	8,03
Suínos	2,56	2,85	3,13	3,10	3,42	4,05	4,35	3,54	3,92	4,34	4,73	5,57	6,59	6,72	6,54	7,56
Leite pasteurizado	5,14	5,29	5,44	5,59	5,74	6,68	6,69	6,51	6,49	6,13	6,22	6,47	6,41	6,30	6,25	6,67
Aves	1,31	1,47	1,56	1,70	2,01	2,28	2,46	3,18	3,43	3,83	4,16	4,55	4,96	5,09	5,75	6,43
Bovinos	2,32	2,39	2,50	2,55	2,73	3,03	3,31	2,73	2,78	3,11	3,19	3,54	3,84	4,07	4,83	5,19
Total	94,92	96,67	94,82	98,62	102,85	158,60	158,16	162,73	171,76	176,85	189,71	191,08	180,14	184,34	199,43	205,77

5 Diferenças em relação ao Inventário Inicial

No Primeiro Inventário, não foram estimadas as emissões da incineração. No que se refere à disposição de resíduos sólidos, foi feito um modelo baseado em cada cidade do país, levando em conta seus dados de população, precipitação, clima, modelos de geração de resíduos por região, além da inclusão dos projetos de MDL de recuperação de metano. Em relação ao tratamento de esgotos residenciais, melhores informações sobre sistemas de tratamento disponibilizados pela PNSB propiciaram a elaboração de um modelo mais preciso para cálculo das emissões. Já para o tratamento de esgotos industriais, diminuiu-se o número de setores, mas aprofundaram-se os dados.

6 Referências bibliográficas

alimentos. [mensagem via e - mail]. Mensagem recebida por biogas@cetesbnet.sp.gov.br> em 17 out. 2008.
ABNT - Associação Brasileira de Normas Técnicas. NBR 6023: informação e documentação: referências: elaboração. Brasil: 2002.
NBR 10520: informação e documentação: citações em documentos: apresentação. Rio de Janeiro: 2002.
NBR 10004: resíduos sólidos: classificação. Rio de Janeiro: 2004.
ABRAPA - Associação Brasileira dos Produtores de Algodão. AlgodaoSerieHist. [mensagem via e - mail]. Mensagem recebida por brunapa@cetesbnet.sp.gov.br> em 31 mar. 2009.
ABRELPE - Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais. Panorama dos resíduos sólidos no Brasil. São Paulo, 2005. 180 p.
ALMANÇA, R. A. Avaliação do uso da vinhaça da cana - de - açúcar na geração de energia elétrica (Estudo de caso). 1994. 132 p. Dissertação (Mestrado em Energia) - Universidade de São Paulo, São Paulo, 1994.
AMARAL, F.L. M. Biodigestão anaeróbia dos resíduos sólidos urbanos: um panorama tecnológico atual, 2004. 107p. Dissertação (Mestrado em Tecnologia Ambiental) - Instituto de Pesquisas Tecnológicas do Estado de São Paulo. São Paulo, 2004.
BRASIL. Ministério da Ciência e Tecnologia. Documentos de Concepção de Projeto dos projetos de aterros no Brasil. Disponível em http://www.mct.gov.br/clima . Acesso em: abr. 2009.
Emissões de gases de efeito estufa nos processos industriais e por uso de solventes - Relatório de Referência. Brasília: DF, 2006. 93 p.
Emissões de metano no tratamento e na disposição de resíduos - Relatório de Referência. Brasília, DF: 2006. 86 p.
CDM PIPELINE (http://cdmpipeline.org/).
CETESB - Ambiental do Estado de São Paulo. Cervejas e refrigerantes. São Paulo: CETESB, 2005.

http://www.cetesb.sp.gov.br/Tecnologia/producao_limpa/documentos.asp . Acesso em: 11/05/2009.
Inventário estadual de resíduos sólidos domiciliares. São Paulo: CETESB, 2002. 33 p.
Projeto diagnóstico de bacias hidrográficas: relatório final. Anexo IV. São Paulo, 1984.
Bancos de dados de resíduos sólidos e efluentes líquidos - STEL. Banco de dados do Microsoft Access. CETESB, 1999. Acesso em: 2009.
DERISIO, J. C. Introdução ao controle de poluição ambiental. 2. ed. São Paulo: Signus, 2000.
EDISON, C. PET 003 - Densidade do petróleo. Disponível em: http://carlosedison.blogspot.com/2009/04/pet - 003 - densidade - do - petroleo.html . Acesso em: 08 maio 2009.
FREIRE, W. J.; CORTEZ, L. A. B. Vinhaça de cana - de - açúcar. Guaíba: Agropecuária, 2000. 203p.
IBGE - Instituto Brasileiro de Geografia e Estatística. Indicadores de desenvolvimento sustentável - 2004 - Dimensão ambiental saneamento, Rio de Janeiro: IBGE, 2004.
IBGE - Instituto Brasileiro de Geografia e Estatística.(a) Anuário Estatístico Brasileiro. Rio de Janeiro: IBGE, 1993.
Rio de Janeiro: IBGE, 1995.
Rio de Janeiro: IBGE, 1997a.
Rio de Janeiro: IBGE, 1999a.
Rio de Janeiro: IBGE, 2001a.
Rio de Janeiro: IBGE, 2003a.
Rio de Janeiro: IBGE, 2005a.
Censo Demográfico 1991. Banco de Dados. Disponível em:
http://www.ibge.gov.br/servidor_arquivos_est/ . Diretório:
"Censo_Demográfico_1991\Populacao_Residente_Urbana_Rural". Acesso em: nov. 2008.
a. Censo Demográfico 2000. Banco de Dados. Disponível em:
http://www.ibge.gov.br/servidor_arquivos_est/ . Diretório: "Censo_Demográfico_2000\populacao". Acesso em: nov. 2008.
CC130_DC111051a11c0_2000\populaca0 . ACC330 C111. 1107. 2000.

Pesquisa Industrial Anual - Produto. Banco de dados. Disponível em
http://www.ibge.gov.br/servidor_arquivos_est/> Diretório:
'Industrias_Extrativas_e_de_Transformacao\Pesquisa_Industrial_Anual". Acesso em: 14 abr. 2009.
(b) Pesquisa Nacional por Amostra de Domicílios - Síntese de Indicadores: 1992, 1993,
1995, 1996, 1997, 1998, 1999, 2001, 2002, 2003, 2004 e 2005. Banco de dados. Disponível em
e">http://www.ibge.gov.br/home/mapa_site/mapa_site.php#download>e Diretório:
"Trabalho_e_Rendimento\Pesquisa_Nacional_por_Amostra_de_Domicilios_anual" e na página de
nternet do SIDRA <(http://sidra.ibge.gov.br)>. Acesso em: 18 mar. 2009.
Pesquisa Nacional de Saneamento Básico - 1989. Rio de Janeiro: 1989.
h Descrite Nacional de Conservante Bésica, 2000 Bis de Janeiro Cuéfica Birital, 2000
b. Pesquisa Nacional de Saneamento Básico - 2000. Rio de Janeiro: Gráfica Digital, 2000.
PCC - Intergovernmental Panel on Climate Change. Good Practice Guidance and Uncertainly
Management in National Greenhouse Gas Inventories. Japan: IPCC, 2000.
, ,
Guidelines For National Greenhouse Gas Inventories: Reference Manual Revised. United
Kingdom: IPCC, 1996.
2006 IPCC Guidelines for Greenhouse Gas Inventories. Japan: Guidelines 2006.
LARRONDO, E. G. C. <i>et al.</i> Coeficientes de produção de poluição orgânica industrial. In:
LANNONDO, L. G. C. et al. Coefficientes de produção de polarção organica industrial. III.

LARRONDO, E. G. C. *et al.* Coeficientes de produção de poluição orgânica industrial. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 10., Manaus, 1979. Resumos. Rio de Janeiro: ABES, 1979.

LYRA, M. R. C. C. *et al.* Avaliação da qualidade de água de lençol freático em uma área fertirrigada com vinhaça. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 22, 2003, Joinville. Disponível em: http://www.cepis.org.pe/bvsacd/abes22/dii.pdf. Acesso em: 18 maio 2009.

MCT - Ministério da Ciência e Tecnologia, Coordenação de Pesquisa em Mudanças Globais do MCT e os compromissos brasileiros na Convenção-Quadro das Nações Unidas sobre Mudança do Clima, (http://lba.cptec.inpe.br/lba/port/documentos/mct.html), consultado em julho de 2009.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 2. ed. Rio de Janeiro: LTC, 2003. 463 p.

MUNINET. Censos Demográficos de 1970, 1980, 1991 e 2000. Banco de dados. Disponível em http://muninet.org.br. Acesso em: maio 2008.

ONIP - Organização Nacional da Indústria do Petróleo. Informações do setor. Disponível em http://onip.org.br/main.php?idmain=informacoes&PHPSESSID=3e5347cf8868d0bb58360c400f06b a25>. Acesso em: 18 maio 2009.

ONU - Organização das nações Unidas - Brasil, Convenção Quadro das Nações Unidas sobre Mudança do Clima, (http://www.onu - brasil.org.br/doc_clima.php). Consultado em setembro de 2009.

SALVADOR, N. N. B. Listagem de fatores de emissão para avaliação expedita de cargas poluidoras das águas. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 16., Goiânia, 1991. Anais... TOMO IV. Rio de Janeiro: ABES, 1991.

UNICA - União da Indústria da Cana de Açúcar. Produção de açúcar do Brasil - Açúcar. Disponível em http://www.unica.com.br/downloads/estatisticas/producaoacucar.xls. Acesso em: 30 abr. 2009.

_____. Produção de etanol do Brasil. Disponível em http://www.unica.com.br/downloads/estatisticas/producaoetanol.xls. Acesso em: 30 abr. 2009.

USAID - United States Agency for International Development. Characterization of landfill sites in Brazil for landfill gas recovery. Business Focus Series. USA: 1997.

______. Pollution prevention diagnostic assessment brewery - Final Report. USA: 1997. 39 p.

USEPA - United States Environmental Protection Agency. Feasibility assessment for gas - to - energy at selected landfills in São Paulo, Brasil. Washington D.C., 1997.

Verschueren, K. The handbook of environmental data on organic chemicals. 2 ed. New York (US): 1983. 1312 p.

VIEIRA, L. C.; FREITAS, C. M. K. H. de. Criação do gado leiteiro na Zona Bragantina. Embrapa. Sistemas de Produção. 2005. Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Leite/GadoLeiteiroZonaBragantina/paginas/qualidade.htm. Acesso em: 09 maio 2009.

VIEIRA, S. M. M. Experiência e perspectivas do tratamento anaeróbio de esgotos sanitários no Brasil. In: Taller y Seminário Latino Americano Tratamento Anaeróbio de Águas Residuales, 3., 1994, Montevideo. 1994.

VIEIRA, S. M. M. *et al.* Relatório dos bancos de dados de resíduos sólidos e efluentes líquidos. 2 ed. São Paulo: CETESB, 2001. 102p.

VIEIRA, S. M. M.; ALVES, J. W. S. Emissões de metano no tratamento e na disposição de resíduos - Relatório de Referência. Brasília: MCT, 2006. 86 p.

6.1 Referências bibliográficas para DOC(x) e FCF.CCW(x)

Resumo das estimativas do DOC e do produto CCW * FCF do Brasil, de 1970 até 2005

Região	Município	UF	ano	DOC	CCW * FCF	Ref
СО	Brasília	DF	1977	0,2085	0,0706	19
СО	Goiânia	GO	2002	0,134	0,14	57
СО	Campo Grande	MS	2001	0,1607	0,1122	57
N	Manaus	AM	1979	0,2128	0,0283	2
N	Manaus	АМ	1992	0,1849	0,0862	57
N	Manaus	АМ	2001	0,1686	0,185	57
N	Manaus	АМ	2003	0,161	0,191	57
NE	Maceió	AL	1993	0,1533	0,07	97
NE	Maceió	AL	1996	0,1376	0,09	97
NE	Maceió	AL	2002	0,139	0,13	97
NE	Maceió	AL	2005	0,1382	0,214	97
NE	Salvador	ВА	1993	0,1405	0,11	97
NE	Salvador	ВА	1999	0,115	0,1278	57
NE	Salvador	ВА	2004	0,1521	0,1711	57
NE	Fortaleza	CE	1994	0,1568	0,078	97
NE	Fortaleza	CE	1999	0,0875	0,2	84
NE	Esperança	РВ	1991	0,165	0,07	14
NE	Guarabira	РВ	1991	0,178	0,07	14
NE	Princesa Isabel	РВ	1991	0,1625	0,06	14
NE	Afogados da Ingazeira	PE	2002	0,1241	0,12	105
NE	Afrânio	PE	2002	0,1578	0,116	105
NE	Agrestina	PE	2002	0,1154	0,115	105
NE	Água Preta	PE	2002	0,1058	0,096	105
NE	Águas Belas	PE	2002	0,1285	0,084	105
NE	Alagoinha	PE	2002	0,1036	0,115	105
NE	Aliança	PE	2002	0,1272	0,0805	105
NE	Altinho	PE	2002	0,0919	0,098	105
NE	Amaraji	PE	2002	0,1214	0,0952	105
NE	Angelim	PE	2002	0,1267	0,132	105
NE	Araripina	PE	2002	0,1334	0,1033	105
NE	Arcoverde	PE	2002	0,1269	0,216	105

NE	Barra de Guabiraba	PE	2002	0,1381	0,1596	105
NE	Barreiros	PE	2002	0,1027	0,102	105
NE	Belém de Maria	PE	2002	0,117	0,076	105
NE	Belo Jardim	PE	2002	0,117	0,175	105
NE	Bezerros	PE	2002	0,1203	0,121	105
NE	Bodocó	PE	2002	0,1355	0,125	105
NE	Bom Conselho	PE	2002	0,1195	0,116	105
NE	Bom Jardim	PE	2002	0,1227	0,1457	105
NE	Bonito	PE	2002	0,1069	0,1	105
NE	Brejão	PE	2002	0,1443	0,0772	105
NE	Brejinho	PE	2002	0,1198	0,061	105
NE	Brejo da Madre de Deus	PE	2002	0,1263	0,0404	105
NE	Buenos Aires	PE	2002	0,1271	0,0881	105
NE	Buíque	PE	2002	0,1302	0,108	105
NE	Cabrobó	PE	2002	0,0882	0,101	105
NE	Cachoeirinha	PE	2002	0,1481	0,14	105
NE	Caetés	PE	2002	0,1252	0,138	105
NE	Calçado	PE	2002	0,1197	0,052	105
NE	Calumbi	PE	2002	0,0281	0,7252	105
NE	Camocim de São Félix	PE	2002	0,1364	0,0897	105
NE	Camutanga	PE	2002	0,1314	0,105	105
NE	Canhotinho	PE	2002	0,134	0,0872	105
NE	Capoeiras	PE	2002	0,1435	0,107	105
NE	Carnaíba	PE	2002	0,1445	0,123	105
NE	Carpina	PE	2002	0,1263	0,1245	105
NE	Caruaru	PE	2002	0,1582	0,054	105
NE	Catende	PE	2002	0,1202	0,081	105
NE	Cedro	PE	2002	0,0972	0,1023	105
NE	Chã de Alegria	PE	2002	0,1252	0,127	105
NE	Chã Grande	PE	2002	0,1117	0,0778	105
NE	Condado	PE	2002	0,1214	0,106	105
NE	Correntes	PE	2002	0,132	0,0793	105
NE	Cortês	PE	2002	0,1104	0,1034	105
NE	Cumaru	PE	2002	0,1351	0,115	105
NE	Cupira	PE	2002	0,1216	0,0127	105
NE	Custódia	PE	2002	0,0935	0,1371	105
NE	Dormentes	PE	2002	0,1141	0,085	105
NE	Escada	PE	2002	0,1181	0,1646	105
NE	Exu	PE	2002	0,1154	0,0545	105

NE	Feira Nova	PE	2002	0,1141	0,1227	105
NE	Ferreiros	PE	2002	0,1228	0,0639	105
NE	Flores	PE	2002	0,0329	0,7701	105
NE	Frei Miguelinho	PE	2002	0,1368	0,1344	105
NE	Gameleira	PE	2002	0,13	0,098	105
NE	Garanhuns	PE	2002	0,1095	0,1299	105
NE	Glória do Goitá	PE	2002	0,1227	0,12	105
NE	Goiana	PE	2002	0,1282	0,0905	105
NE	Granito	PE	2002	0,0909	0,1335	105
NE	Gravatá	PE	2002	0,1454	0,08	105
NE	lati	PE	2002	0,1377	0,112	105
NE	Ibimirim	PE	2002	0,1499	0,128	105
NE	Ibirajuba	PE	2002	0,1092	0,071	105
NE	Iguaraci	PE	2002	0,0894	0,1165	105
NE	lnajá	PE	2002	0,0853	0,148	105
NE	Ingazeira	PE	2002	0,1362	0,073	105
NE	Ipubi	PE	2002	0,1286	0,1039	105
NE	Itaíba	PE	2002	0,1285	0,096	105
NE	Itambé	PE	2002	0,1252	0,0995	105
NE	Itapetim	PE	2002	0,1342	0,0784	105
NE	Itaquitinga	PE	2002	0,1057	0,1436	105
NE	Jaqueira	PE	2002	0,1153	0,123	105
NE	Jataúba	PE	2002	0,1225	0,078	105
NE	Joaquim Nabuco	PE	2002	0,1251	0,102	105
NE	Jucati	PE	2002	0,109	0,118	105
NE	Jupi	PE	2002	0,098	0,116	105
NE	Jurema	PE	2002	0,1321	0,143	105
NE	Lagoa do Carro	PE	2002	0,1403	0,122	105
NE	Lagoa do Itaenga	PE	2002	0,1293	0,155	105
NE	Lagoa do Ouro	PE	2002	0,113	0,0932	105
NE	Lagoa dos Gatos	PE	2002	0,1227	0,075	105
NE	Lajedo	PE	2002	0,1042	0,15	105
NE	Macaparana	PE	2002	0,1275	0,0995	105
NE	Machados	PE	2002	0,1344	0,1319	105
NE	Manari	PE	2002	0,1142	0,1019	105
NE	Maraial	PE	2002	0,1144	0,101	105
NE	Mirandiba	PE	2002	0,1218	0,0923	105
NE	Moreilândia	PE	2002	0,1031	0,0992	105
NE	Nazaré da Mata	PE	2002	0,1233	0,095	105
	l		l	·		

NE NE NE	Orobó	PE	2002	0,1322	0,1576	105
	_ ,			i .	i .	İ
NE	Orocó	PE	2002	0,1057	0,082	105
INC	Ouricuri	PE	2002	0,1276	0,102	105
NE	Palmares	PE	2002	0,1203	0,122	105
NE	Palmeirina	PE	2002	0,14	0,0615	105
NE	Panelas	PE	2002	0,1204	0,096	105
NE	Paranatama	PE	2002	0,1215	0,139	105
NE	Parnamirim	PE	2002	0,125	0,12	105
NE	Passira	PE	2002	0,1276	0,105	105
NE	Paudalho	PE	2002	0,1253	0,127	105
NE	Pedra	PE	2002	0,1283	0,1315	105
NE	Pesqueira	PE	2002	0,1029	0,095	105
NE	Poção	PE	2002	0,1341	0,187	105
NE	Pombos	PE	2002	0,1039	0,1154	105
NE	Primavera	PE	2002	0,1196	0,1125	105
NE	Quipapá	PE	2002	0,1346	0,113	105
NE	Quixaba	PE	2002	0,1004	0,122	105
NE	Recife	PE	2003	0,15	0,08	58
NE	Riacho das Almas	PE	2002	0,1153	0,1801	105
NE	Ribeirão	PE	2002	0,1096	0,0769	105
NE	Rio Formoso	PE	2002	0,1188	0,1079	105
NE	Sairé	PE	2002	0,1382	0,1685	105
NE	Salgueiro	PE	2002	0,138	0,15	105
NE	Saloá	PE	2002	0,1316	0,1405	105
NE	Sanharó	PE	2002	0,1147	0,1685	105
NE	Santa Cruz	PE	2002	0,1259	0,079	105
NE	Sta Cruz da Baixa Verde	PE	2002	0,0492	0,6699	105
NE	Sta Filomena	PE	2002	0,1321	0,089	105
NE	Sta Maria da Boa Vista	PE	2002	0,0929	0,144	105
NE	Sta Maria do Cambucá	PE	2002	0,1379	0,1462	105
NE	Sta Terezinha	PE	2002	0,1244	0,075	105
NE	São Benedito do Sul	PE	2002	0,1171	0,102	105
NE	São Bento do Una	PE	2002	0,1083	0,1685	105
NE	São Caetano	PE	2002	0,1098	0,1685	105
NE	São Francisco	PE	2002	0,1116	0,106	105
NE	São João	PE	2002	0,0988	0,1347	105
NE	São Joaquim do Monte	PE	2002	0,1354	0,109	105
NE	S. José da Coroa Grande	PE	2002	0,1234	0,1186	105

NE	São José do Belmonte	PE	2002	0,13	0,079	105
NE	São José do Egito	PE	2002	0,0953	0,083	105
NE	São Vicente Ferrer	PE	2002	0,133	0,1249	105
NE	Serra Talhada	PE	2002	0,0502	0,7138	105
NE	Serrita	PE	2002	0,127	0,14	105
NE	Sertânia	PE	2002	0,14	0,095	105
NE	Sirinhaém	PE	2002	0,1282	0,1153	105
NE	Solidão	PE	2002	0,1451	0,0789	105
NE	Tabira	PE	2002	0,1299	0,0918	105
NE	Tacaimbó	PE	2002	0,1104	0,126	105
NE	Tamandaré	PE	2002	0,112	0,1153	105
NE	Terezinha	PE	2002	0,1345	0,11	105
NE	Timbaúba	PE	2002	0,1243	0,112	105
NE	Tracunhaém	PE	2002	0,1206	0,124	105
NE	Trindade	PE	2002	0,1346	0,1421	105
NE	Triunfo	PE	2002	0,0626	0,6334	105
NE	Tupanatinga	PE	2002	0,1188	0,089	105
NE	Tuparetama	PE	2002	0,0829	0,084	105
NE	Venturosa	PE	2002	0,1399	0,1475	105
NE	Verdejante	PE	2002	0,1144	0,0943	105
NE	Vicência	PE	2002	0,1277	0,0902	105
NE	Vitória de Santo Antão	PE	2002	0,1106	0,1056	105
NE	Xexéu	PE	2002	0,1121	0,082	105
NE	Aracajú	SE	1994	0,1922	0,078	6
NE	Propriá	SE	2000	0,1528	0,1004	96
S	Curitiba	PR	1981	0,1411	0,0605	19
S	Curitiba	PR	1993	0,111	0,06	84
S	Curitiba	PR	2005	0,1921	0,1155	57
S	Alto Feliz	RS	2000	0,0895	0,167	70
S	Bento Gonçalves	RS	1993	0,1786	0,128	78
S	Bento Gonçalves	RS	2000	0,1638	0,053	77
S	Bento Gonçalves	RS	2001	0,1878	0,111	77
S	Bento Gonçalves	RS	2003	0,1864	0,1	77
S	Cachoeira do	RS	1973	0,2094	0,0276	19
S	Sul Campo Bom	RS	1973	0,2421	0,0226	19
S	Canoas	RS	1973	0,2218	0,0316	19
S	Caxias do Sul	RS	1991	0,18	0,089	76

S	Caxias do Sul	RS	2002	0,1933	0,153	73
S	Caxias do Sul	RS	2003	0,1542	0,097	77
S	Caxias do Sul	RS	2005	0,1971	-	55
S	Estância Velha	RS	1973	0,179	0,041	19
S	Esteio	RS	1973	0,2191	0,016	19
S	Feliz	RS	2000	0,116	0,136	70
S	Gravataí	RS	1973	0,2254	0,0241	19
S	Guaíba	RS	1973	0,2107	0,0292	19
S	Harmonia	RS	2000	0,0936	0,226	70
S	Lagoa Vermelha	RS	2003	0,1264	0,2211	72
S	N. Hamburgo	RS	1973	0,1979	0,0262	19
S	Porto Alegre	RS	1973	0,2185	0,0315	19
S	Porto Alegre	RS	1983	0,1552	0,06	6
S	Porto Alegre	RS	1997	0,1475	0,1241	5
S	Porto Alegre	RS	2000	0,1219	0,1388	85
S	Porto Alegre	RS	2002	0,1264	0,1246	5
S	São José do Hortêncio	RS	2000	0,0733	0,23	70
S	São Leopoldo	RS	1973	0,2171	0,0469	19
S	São Marcos	RS	2005	0,15	-	79
S	São Vendelino	RS	2000	0,054	0,22	70
S	Sapiranga	RS	1973	0,2282	0,0248	19
S	Sapucaia do Sul	RS	1973	0,1749	-	19
S	Severiano de Almeida	RS	2001	0,1557	0,1261	71
S	Tupandi	RS	2000	0,0958	0,18	70
S	Vale Real	RS	2000	0,1122	0,119	70
S	Viamão	RS	1973	0,2094	0,0249	19
S	Biguaçu	SC	2005	0,1102	0,0197	61
S	Florianópolis	SC	1988	0,2138	0,0888	10
S	Florianópolis	SC	2002	0,177	0,15	57
S	Florianópolis	SC	2003	0,1786	0,178	32
SE	Cariacica	ES	1970	0,1454	0,1681	47
SE	Vitória	ES	1999	0,0956	0,1177	51
SE	Belo Horizonte	MG	1991	0,19	0,059	18
SE	Belo Horizonte	MG	1993	0,169	0,065	15
SE	Belo Horizonte	MG	2003	0,1422	0,1367	85
SE	Belo Horizonte	MG	2004	0,1392	0,1139	57
SE	Ipatinga	MG	1989	0,1572	0,0698	13
SE	Itajubá	MG	1997	0,2019	0,056	56
SE	Itajubá	MG	2003	0,1423	0,1121	56
	1		1	l .	ı	1

SE	Juiz de Fora	MG	1990	0,1606	0,1078	84
SE	Manhuaçu	MG	1994	0,1605	0,0599	8
SE	Ponte Nova	MG	1994	0,1636	0,0606	8
SE	Timóteo	MG	1994	0,1531	0,0689	8
SE	Ubá	MG	1994	0,1578	0,0504	8
SE	Viçosa	MG	1983	0,1545	0,0525	85
SE	Viçosa	MG	1989	0,1545	0,0525	7
SE	Viçosa	MG	1991	0,1473	0,0428	18
SE	Viçosa	MG	1994	0,1545	0,048	8
SE	Nova Iguaçu	RJ	2004	0,1324	0,1385	42
SE	Paracambi	RJ	2001	0,1643	0,2	82
SE	Paracambi	RJ	2004	0,1545	0,06	81
SE	Rio de Janeiro	RJ	1977	0,1886	0,1546	59
SE	Rio de Janeiro	RJ	1979	0,1902	0,026	2
SE	Rio de Janeiro	RJ	1981	0,1836	0,031	51
SE	Rio de Janeiro	RJ	1986	0,2415	0,0659	51
SE	Rio de Janeiro	RJ	1989	0,2325	0,0976	51
SE	Rio de Janeiro	RJ	1991	0,2047	0,1288	51
SE	Rio de Janeiro	RJ	1993	0,1582	0,1547	51
SE	Rio de Janeiro	RJ	1995	0,1966	0,1283	51
SE	Rio de Janeiro	RJ	1996	0,1856	0,1516	51
SE	Rio de Janeiro	RJ	1997	0,1783	0,1518	51
SE	Rio de Janeiro	RJ	1998	0,1727	0,1623	51
SE	Rio de Janeiro	RJ	1999	0,1751	0,1695	51
SE	Rio de Janeiro	RJ	2000	0,1676	0,1996	51
SE	Rio de Janeiro	RJ	2001	0,1673	0,1776	51
SE	Rio de Janeiro	RJ	2002	0,1615	0,1992	51
SE	Rio de Janeiro	RJ	2003	0,1663	0,177	51
SE	Rio de Janeiro	RJ	2004	0,1576	0,193	51
SE	Rio de Janeiro	RJ	2005	0,1554	0,1556	51
SE	São Gonçalo	RJ	2004	0,1684	0,1	81
SE	Araraquara	SP	1996	0,1316	0,121	84
SE	Botucatu	SP	1999	0,1522	0,0837	58
SE	Campinas	SP	1985	0,1929	0,036	6
SE	Campinas	SP	1995	0,2052	0,1321	50
SE	Guarulhos	SP	1996	0,1942	0,07	85
SE	Guarulhos	SP	2002	0,1479	0,2798	85
SE	Presidente Prudente	SP	2000	0,1673	0,03	49
SE	Santos	SP	1979	0,1328	0,0415	16
			i e e e e e e e e e e e e e e e e e e e	1	1	1

SE	São Carlos	SP	1989	0,1703	0,085	53
SE	São Carlos	SP	1991	0,1931	0,085	6
SE	São Carlos	SP	2005	0,1181	0,1047	53
SE	São Paulo	SP	1971	0,1477	0,041	59
SE	São Paulo	SP	1972	0,1823	0,043	20
SE	São Paulo	SP	1976	0,1618	0,169	59
SE	São Paulo	SP	1977	0,183	0,063	59
SE	São Paulo	SP	1979	0,1856	0,058	6
SE	São Paulo	SP	1982	0,1879	0,0915	1
SE	São Paulo	SP	1989	0,2075	0,09	20
SE	São Paulo	SP	1990	0,1505	0,075	20
SE	São Paulo	SP	1993	0,1946	0,09	20
SE	São Paulo	SP	1998	0,162	0,1208	20
SE	São Paulo	SP	2003	0,1846	0,229	57

(-): dado não disponível

Fontes: As referências a seguir são numeradas conforme aparecem na tabela acima.1 - IPT. Caracterização preliminar do lixo da Cidade de São Paulo, 1976.

- 2 LIMA, L.M.Q.; SILVA, N.; FERNANDES JR., A. Projeto PHOENIX Pesquisa de resíduos sólidos em Campinas. 60p. [197 ?].
- 4 CETESB . Caracterização do lixo domiciliar de Curitiba, 1981.
- 5 PIEROBON, L.R.P. Sistema de geração de energia de baixo custo utilizando biogás proveniente de aterro sanitário. 2007. 154f. Tese (Doutor em Engenharia) Universidade Federal do Rio Grande do Sul, Posto Alegre R.S, 2007.
- 6 NÓBREGA, C. C. *et al.* Caracterização do lixo doméstico da cidade de Aracaju SE. Trabalho apresentado ao 6° SIMPÓSIO LUSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Florianópolis, 1994.
- 7 COELHO, E.J.; PEREIRA NETO, J.T. Sistema de aproveitamento de lixo urbano: uma avaliação sócio econômica. Trabalho apresentado ao 6° SIMPÓSIO LUSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Florianópolis, 1994.
- 8 PEREIRA NETO, J.T. Sistema de aproveitamento de lixo urbano: uma avaliação sócio econômica. Trabalho apresentado ao 6° SIMPÓSIO LUSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Florianópolis, 1994.

- 9 SÁ, F.A.P. A problemática da limpeza pública e a realidade brasileira perspectivas futuras. Trabalho apresentado ao 9° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Belo Horizonte, 1977.
- 10 CASTILHOS JÚNIOR, A.B.; SILVEIRA, S.S.B. Caracterização física, química e granulométrica dos resíduos sólidos urbanos do município de Florianópolis SC. Trabalho apresentado ao 1° SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Rio de Janeiro, 1992.
- 11 PEREIRA NETO, J.T. Um processo para reuso de resíduos em países em desenvolvimento. Trabalho apresentado ao 1° SIMPÓSIO ÍTALO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Rio de Janeiro, 1992.
- 12 EGREJA FILHO, F.B.; PEREIRA NETO, J.T. Avaliação da ocorrência e distribuição química de metais pesados na compostagem do lixo domiciliar urbano. Trabalho apresentado ao 17° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Natal, 1993.
- 13 CAMPOS, H.K.T. Reestruturação dos serviços de limpeza urbana de Ipatinga MG Parâmetros de projeto. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL,16,1991,Goiânia. Anais...Goiânia: ABES,1993,v.2,p.81 97.
- 14 FONSECA, E. Tecnologia alternativa de limpeza urbana: a experiência da Paraíba. CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 16,1991,Goiânia. Anais...Goiânia: ABES, 1993, v.2, p.127 151.
- 15 LATORRE, M.O.F. Projeto coleta seletiva de lixo em Belo Horizonte. In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, 17, 1993, Natal. Anais... Natal: ABES, 1993, v.2, p.89 106.
- 16 CETESB Destinação final dos resíduos sólidos da Baixada Santista, relatório parcial, 1979.
- 17 RUBBO, J. A industrialização e o problema do lixo domiciliar na cidade de Porto Alegre. Trabalho apresentado ao 3° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Curitiba, 1965.
- 18 MERCEDES, S.S.P.; PEREIRA NETO, J.T. O efeito da temperatura na eliminação de patógenso durante a fase ativa da compostagem do lixo urbano.In: CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL,17,1993,Natal. Anais: Natal, ABES, 1993, v.2, p.150 166.
- 19 CNPq ; COLCIENCIAS ;OPS. Curso de atualização em Resíduos Sólidos, Curitiba, 1988.
- 20 IPT; CEMPRE. Manual de gerenciamento integrado. 370p. São Paulo, 2000.

- 21 MERCEDES, S.S.P. Perfil de geração de resíduos sólidos domiciliares no município de Belo Horizonte no ano de 1995. Trabalho apresentado ao 19° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Foz do Iguaçu, 1997.
- 22 METHANE TO MARKETS; ERG; MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e Utilização de Biogás do Aterro Sanitário Controlado Terra Dura, Aracajú, Brasil, Aracaju, 2008. 38p.
- 23 METHANE TO MARKETS; ERG; MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e Utilização de Biogás no Centro de Tratamento de Resíduos Sólidos BR 040, Belo Horizonte, Brasil, 2008, 37p.
- 24 ESSENCIS SOLUÇÕES AMBIENTAIS; SUEZ AMBIENTAL SA. Redução de emissões de gás de aterro Caieiras, SP Brasil. 2005, 44p.
- 25 METHANE TO MARKETS; ERG; MGM INTERNATINAL GROUP. Relatório de avaliação preliminar:captura e utilização de biogás na central de destinação de resíduos sólidos urbanos de Cuiabá, Brasil.2008. 41p.
- 26 QUALIX SERVIÇOS AMBIENTAIS LTDA. Projeto de Gás de Aterro Sanitário de Feira de Santana. 2007. 8p..
- 27 METHANE TO MARKETS; ERG; MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e utilização de biogás no aterro sanitário de Goiânia, Brasil. 2008, 43p.
- 28 METHANE TO MARKETS; ERG; MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e utilização de biogás no aterro sanitário de Ribeirão Preto, Brasil. 2008. 41p.
- 29 BATTRE; SHELL TRADING INTERNACIONAL LIMITED; SHOWA SEKIYU K.K. Projeto de gerenciamento de biogás de aterro de Salvador, Bahia Brasil. 2005. 42p.
- 30 METHANE TO MARKETS ERG; MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e utilização de biogás no Aterro Sanitário Municipal de Santo André, Brasil. 2008.
- 31 FESPSP. Relatório de Impacto Ambiental para a ampliação da área de disposição de resíduos da CTR Santo André, Santo André SP, 2007.
- 32 VEIGA, V.V. Análise de indicadores relacionados à reciclagem de resíduos sólidos urbanos no município de Florianópolis, 2004, 140f. Dissertação de Mestrado em Engenharia de Produção Universidade Federal de Santa Catarina, Florianópolis, 2004.

- 33 PROACTIVA MEIO AMBIENTE BRASIL; VEÓLIA PROPRETÉ. Documentação de Concepção do Projeto Projeto de Captura e Queima de Gás de Aterro Sanitário de Tijuquinhas da Proactiva. 2007. 66p.
- 34 TUMPEX EMPRESA AMAZONENSE DE COLETA DE LIXO LTDA; CONESTOGA ROVERS & ASSOCIATES CAPITAL LIMITED Projeto de Gás de Aterro Sanitário de Manaus. 2006. 54p.
- 35 ONYX. Projeto Onyx de Recuperação de Gás de Aterro Tremembé Brasil Mecanismo de Desenvolvimento Limpo. 2004. 39p.
- 36 BIOGÁS ENERGIA AMBIENTAL S/A; MUNICIPALITY OF SÃO PAULO. Projeto de energia para o Aterro Sanitário Bandeirantes. 2005. 42p.
- 37 CTRVV. Projeto de redução de emissão do aterro CTRVV. 2007. 47p.
- 38 METHANE TO MARKETS; ERG;MGM INTERNATINAL GROUP. Relatório da Avaliação Preliminar: Captura e utilização de biogás no Aterro Sanitário de Uberlândia, Brasil. 2008. 38p.
- 39 CDR; ECONERGY BRASIL LTDA Projeto de Gás de Aterro CDR Pedreira (PROGAEP). 2006. 42p.
- 40 SIL SOLUÇÕES AMBIENTAIS. Projeto de Gás de Aterro SIL, 2006 45p.
- 42 BRITO FILHO, L.F.Estudo de gases em aterros de resíduos sólidos urbanos.2005.218f.Dissertação (Mestrado Ciências em Engenharia Civil) Universidade federal do Rio de Janeiro, Rio de Janeiro, 2005.
- 43 BORBA, S.M.P.Análises de Modelos de geração de gases em aterros sanitários: estudo de caso. 2006. Dissertação (Mestre em Engenharia Civil) Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2006. 149p.
- 44 ECOSECURITIES LTDA; SA PAULISTA; NOVA GERAR ECOENERGIA LTDA; WORD BANK NETHERLANDS CLEAN DEVELOPMENT FACILITY. Projeto de aproveitamento do Biogás de aterro sanitário Nova Gerar Documento de Concepção do Projeto. 2004. 52p.
- 45 BIOGÁS ENERGIA AMBIENTAL S/A; PREFEITURA DE SÃO PAULO. Projeto do aterro São João para geração de energia. 2005. 41p.
- 46 MARCA CONSTRUTUTORA E SERVIÇOS; ECOSECURITIES LTDA Projeto de energia a partir de gases de aterro da empresa MARCA. Documento de Concepção do Projeto. 2004. 85p.
- 47 PREFEITURA MUNICIPAL DE CARIACICA; COOPTTEC. Características dos resíduos sólidos de Cariacica. s.d. 30p.

- 48 QUITAÚNA SERVIÇOS LTDA; ECONERGY BRASIL LTDA. Projeto de gás de aterro Quitaúna (PROGAQ). 43p, 2006.
- 49 SOBRINHO, N.L.C. Uma análise do balanço hídrico do aterro sanitário de Presidente Prudente. 2000, 128f. Tese (Magister Scientiae) Universidade Federal de Viçosa, Viçosa, 2000.
- 50 ENSINAS, A.V.Estudo da geração de biogás no aterro sanitário Delta em Campinas SP. 2003. 143f.Dissertação (Mestrado em Engenharia Mecânica) Universidade Estadual de Campinas, Campinas, 2003.
- 51 COMLURB Companhia Municipal de Limpeza. Caracterização gravimétrica dos resíduos sólidos domiciliares do município do Rio de Janeiro 2005. Disponível em http://comlurb.rio.rj.gov.br/download/caracterizacao_do_lixo_domiciliar_2005.pdf> Acesso em 07/01/2009.
- 52 SILVA, O.C.; CALLADO, N.H..Caracterização dos resíduos sólidos urbanos da cidade de União dos Palmares/AL. Trabalho apresentado no 24° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Belo Horizonte, 2007.
- 53 FRÉSCA, F.R.C. *et al.* Determinação da composição gravimétrica dos resíduos sólidos domiciliares do município de São Carlos/SP. 2008.
- 54 ABRELPE. Panorama dos Resíduos Sólidos no Brasil. 157f. 2006.
- 55 METHANE TO MARKETS ESTERN RESEARCH GROUP, Inc.; MGM INTERNATINAL GROUP, LLC Relatório da Avaliação Preliminar: Captura e utilização de biogás no aterro sanitário municipal de Giácomo, em Caxias do Sul Brasil. 37p, 2008.
- 56 GONÇALVES, A.T.T. Potencialidade energética dos resíduos sólidos domiciliares e comerciais do município de Itajubá MG. 2007.192f.Dissertação (Mestrado em Energia) Universidade Federal de Itajubá (UNIFEI), Itajubá, 2007.
- 57 EPE Empresa de Pesquisa Energética; MCT Ministério da Ciência e Tecnologia. Estudos associados ao pano decenal de energia PDE 2008/2017. 82f, 2008.
- 58 OLIVEIRA, S.Caracterização física do Resíduo Sólido Doméstico da cidade de Botucatu/SP. Revista Engenharia Sanitária e Ambiental, Vol.4, n..4, 1999, ABES, São Paulo/SP.
- 59 CESP. Sistema de usinas termoelétricas a lixo para a cidade de São Paulo, Estudo de viabilidade econômica, Vol.1, 1981, São Paulo/SP.

- 60 AQUINO, D. A.; *et al*.Caracterização física dos resíduos sólidos urbanos no município de Ananindeua na região metropolitana de Belém do Pará. Trabalho apresentado no 24° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Belo Horizonte, 2007.
- 61 DEBORTOLI, R.;BORBA, J.A. Análise do tratamento dos resíduos sólidos e dos benefícios ambientais e econômicos da coleta seltiva:o caso dos catadores de Biguaçu SC. 14p. Biguaçu, 2005.
- 62 MANCINI, D.S. *et al.* Recycling potential of urban solid waste destined for sanitary landfills: the case of Indaiatuba, SP, Brazil, 2007.
- 70 PESSIN, N.; DE CONTO, S. M.; QUISSINI, C. Componentes potencialmente perigosos nos resíduos sólidos domésticos estudo de caso de sete municípios de pequeno porte da região do Vale do Caí/RS. Trabalho apresentado ao VI Seminário Nacional de Resíduos Sólidos, Gramado, ABES, 2002.
- 71 MIOTTO, N; PEITER, M. X.; SARKIS, L. F. P. G.; BRUM, N. F. D. Diagnóstico e proposta de gerenciamento para resíduos sólidos no município de Severiano de Almeida, RS. Trabalho apresentado ao VI Seminário Nacional de Resíduos Sólidos, Gramado, ABES, 2002.
- 72 LIMA, T. N. de; ESCOSTEGUY, P. A. V.; PESSIN, N. Composição gravimétrica dos resíduos sólidos de Lagoa Vermelha. Trabalho apresentado no IV SIMPÓSIO INTERNACIONAL DE QUALIDADE AMBIENTAL. Porto Alegre, ABES, 2004.
- 73 SCHNEIDER, V. E., *et al.* Evolução da geração dos resíduos sólidos urbanos de Caxias do Sul Análise Preliminar. Trabalho apresentado no 22° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL. Joinville: ABES, 2003.
- 74 PESSIN, N. Determinação da Composição Gravimétrica dos Resíduos Sólidos Domésticos da cidade de Caxias do Sul RS. Trabalho apresentado no II SIMPÓSIO INTERNACIONAL DE QUALIDADE AMBIENTAL GERENCIAMENTO DE RESÍDUOS E CERTIFICAÇÃO AMBIENTAL. Porto Alegre: ABES, 1998.
- 75 DE CONTO, S.M.; ZATERRA, A. J.; CARVALHO, G. de A.; MATTÉ, L. L. Composição dos Resíduos Sólidos Domésticos um estudo de caso. Trabalho apresentado no VI Seminário Nacional de Resíduos Sólidos Resíduos Sólidos Urbanos Especiais, Gramado, ABES, 2002.
- 76 PESSIN, N.; MANDELLI, S. M. de C.; SLOMPO, M. Determinação da composição física e das características físico químicas dos resíduos sólidos domésticos da cidade de Caxias do Sul. In: MANDELLI, S. M. de C.; LIMA, L. M.; OJIMA. M. K. (Org.) Tratamento de resíduos sólidos: compêndio de publicações. Caxias do Sul: Universidade de Caxias do Sul, 1991. P. 67 69.

- 77 SCHNEIDER, V. E., PANAROTTO, C. T.; PERESIN, D. Considerações sobre a geração de resíduos em dois municípios do Rio Grande do Sul/Brasil Representatividade das coletas regular e seletiva. Trabalho apresentado no XXIX CONGRESSO INTERAMERICANO DE ENGENHARIA SANITÁRIA E AMBIENTAL. San Juan Puerto Rico: AIDIS, 2004.
- 78 SCHNEIDER, V. E. *et al.* Avaliação do Processo de geração de resíduos sólidos urbanos no município de Bento Gonçalves, no período de 1993 a 2004. In: Relatório de Projeto de Pesquisa 2004. Universidade de Caxias do Sul, Caxias do Sul, 2004.
- 79 PESSIN, N.; DE CONTO, S. M.; QUISSINI, C. S.; GOMES, F. Determinação dos Aspectos Quali quantitativos dos Resíduos Sólidos Domésticos Estudo de Caso Município de São Marcos. Trabalho apresentado no 24° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Belo Horizonte, ABES, 2007.
- 80 CETESB. Programa regional OPS/EHP/LEPIS de Mejoramento de los serviços de aseo urbano. Manual de instrucción, 1982.
- 81 SILVEIRA, A.M. Estudo e peso específico de resíduos sólidos urbanos.2004. 112f. Tese (Mestre em Ciências em Engenharia Civil) Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2004.
- 82 SCHUELER, A.S.. Estudo de caso e proposta para classificação de áreas degradadas na disposição de resíduos sólidos urbanos. 2005, 278f. Tese (Doutor em Ciências em Engenharia Civil) Universidade federal do Rio de Janeiro, Rio de Janeiro, 2005.
- 83 REIS, M. F. P.; *et al.* Estudos preliminares para caracterização dos resíduos sólidos domiciliares do Município de Porto Alegre. Trabalho apresentado no VI Seminário Nacional de Resíduos Sólidos, Gramado, ABES, 2002.
- 84 FRÉSCA, F.R.C. Estudo da geração de resíduos sólidos domiciliares do município de São Carlos, S.P., a partir da caracterização física. 2007. 134f. Dissertação (Mestre em Ciências da Engenharia Ambiental) Universidade de São Paulo, São Carlos, 2007.
- 85 Contato via e mail, informação pessoal;
- 96 FILHO DALTRO, J.; BARRETO, I.M.C.B.N..Estudo das potencialidades dos resíduos sólidos urbanos de Própria Sergipe. 6f, 2001. Trabalho apresentado no 21° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, João Pessoa, ABES, 2001.
- 97 TAVARES, J. C. L.; PINHEIRO, Q.M.L.; CALLADO, N.H.. Levantamento da composição gravimétrica dos resíduos sólidos urbanos da cidade de Maceió. Trabalho apresentado no 24° CONGRESSO BRASILEIRO DE ENGENHARIA SANITÁRIA E AMBIENTAL, Belo Horizonte, ABES, 2007.

- 103 ATP Engenharia. Diagnóstico de resíduos sólidos . PRODETUR Natal/RN, 2006 . In: Plano Diretor de Resíduos sólidos do Pólo de turismo Costa das Dunas. Natal, 2006.
- 104 SCHNEIDER, V. E. Análise da geração dos resíduos sólidos urbanos de Caxias do Sul no ano de 2008. Relatório. Dados não publicados.
- 105- Secretaria de Ciência, Tecnologia e Meio Ambiente; Fundação de Apoio ao Desenvolvimento da Universidade Federal do Pernambuco; Grupo de Resíduos Sólidos da Universidade Federal do Pernambuco. Diagnóstico de resíduos sólidos de Pernambuco. Recife, 2006. 376p.