EE 332: Devices and Circuits II

Course Review & Examples for the Final Exam

Prof. Sajjad Moazeni

smoazeni@uw.edu

Autumn 2022

What did we learn?

- MOS basics and modeling
 - I/V char, parasitics, small-signal, body-effect, channel length mod, ...
- Single-stage Amp (CS, CG, SF + Cascode) 4 + +ypes
- Differential Pair (DM vs. CM, single-ended vs. diff, ...)
- Frequency response (Poles/zeros, Bode Plot, Miller approx., GBW)
- Current Mirrors & Biasing /κς Αοκω_{3db} = Ιχω
- Feedback (loop-gain, voltage-voltage fb, ...) & OpAmps 1/5 OTA
- Noise (Definition & Characterization, Thermal Noise, etc.)

Why did we learn?

- Analog circuit is an inevitable part of any electrical system!
 - Remember the world is analog!
- Now you can clearly appreciate the benefit of digital processors
 - You know where the noise is coming from!

All the metrics you learned are fundamentals that any IC and embedded system designer should know ...

- Gain, Noise, Speed, ...
- Techniques and circuit analysis are also essential for any IC designer
- Topics like feedback, noise, ... are useful in Control, Signal processing, communications, etc.

COT Example (CMOS): TI OPAx355

8.2 Functional Block Diagram

Features

- Unity-Gain Bandwidth: 450 MHz
- Wide Bandwidth: 200 MHz GBW
- Low Noise: 5.8 nV/√Hz
- Excellent Video Performance
 - Differential Gain: 0.02%
 - Differential Phase: 0.05°
 - 0.1-dB Gain Flatness: 75 MHz
- Input Range Includes Ground
- Rail-to-Rail Output (within 100 mV)
- Low Input Bias Current: 3 pA
- Low Shutdown Current: 3.4 μA
- Enable and Disable Time: 100 ns and 30 ns
- Thermal Shutdown
- Single-Supply Operating Range: 2.5 V to 5.5 V
- MicroSIZE Packages

Modern Examples: Neuropixel

Fully integrated silicon probes for high-density recording of neural activity [Nature 2017]

A Neural Probe with up to 966 Electrodes and up to 384 Configurable Channels in 0.13µm SOI CMOS [TBioCAS 2017]

Modern Examples: Neuropixel

Extended Data Table 1 | Measured operating parameters of the 4 probe types reported (phase 3)

	Option 1	Option 2	Option 3	Option 4	
Site Count	384	384	960	966	
Channel count	384	384	384	276	
Electrode type	Passive	Active	Passive	Active	
Shank power (mW)	0	1.31	0	1.31	
Base power (mW)		17.5			
Electrode area (μm²)		144			
Crosstalk (at 1kHz)		< 5%			
Gain		selectable from 50 - 2500			
AP band high-pass corner (kHz)		selectable from 0.3 - 1.0			
AP band low-pass corner (kHz)		10			
LFP band high-pass corner (Hz)		0.5			
LFP band low-pass corner (Hz)		1000			
AP band sampling rate (kHz)		30			
LFP band sampling rate (kHz)		2.5			
AP band noise (μV r.m.s.)	5.7 ± 0.8	6.6 ± 0.8	5.5 ± 0.7	6.6 ± 2.5	
LFP band noise (μV r.m.s.)	9.6 ± 5.8	13.0 ± 2.8	8.0 ± 2.5	10.2 ± 1.9	

Modern Examples: Neuropixel

Examples for the Final Exam

 $\frac{g_{\text{exh}}}{g_{\text{exh}}} = \frac{-g_{n, x}(\gamma_{\text{o, II}}\gamma_{\text{o, II}})}{-g_{\text{o, II}}}$

-9m, x (ro, 1100) X -9m5 x (ros 11007)

• Find/Draw: DM & CM half-circuit & gain, Swing

D.M

a domhant pole

• Find: Poles & Bode plots ($C_L=1$ pF, $C_{gs}=C_{gd}=1$ fF/um), 3db-bw, unity-gain bw

An op-amp is configured to provide gain (V_O/V_S) of 5V/V a $R_L = 1k\Omega$ load. Model the op-amp with the following parameters:

- $R_{in} = \infty$ (ideal)
- $R_{out} = 0 \text{ (ideal)}$
 - $A_0 = 100$ (not infinite)
 - $f_0 = 10MHz$ (not ideal: finite 3dB-bandwidth frequency

Find:

- R2/R1?
- Gain error
- Words = Wads x (1+15A)
 of opAmp (Aoxindrofamp) Bandwidth & Unity frequency remans the same!
- If OpAmp's Rout = 100ohm -> find closed loop Rout?

AsVin @

• Find bias currents, gain, input and output resistance.

