REPRESENTATIONS OF REDUCTIVE ALGEBRAIC GROUPS

LECTURER: SIMON RICHE, TYPESETTER: MICHAŁ MRUGAŁA

CONTENTS

1.	Generalities on affine group schemes and smooth representations		2
	1.1	Affine group schemes	2
	1.2	Representations	3
	1.3	Induction	3
2.	Reductive algebraic groups		5
	2.1	Definition	5
	2.2	Structure	5
	2.3	Classification of simple representations	7
	2.4	Characters	8
3.	Some general results about ? of reductive algebraic groups		8
	3.1	Kempf's vanishing theorem	8
	3.2	Borel-Bott-Weil theorem	9
	3.3	Weyl's character formula	10
4.	1		10
	4.1	Frobenius morphism and Frobenius kernel	11
	4.2	Curtis' and Steinberg's theorems	11
	4.3	Linkage principle	12
	4.4	Translation functors	13

§1. GENERALITIES ON AFFINE GROUP SCHEMES AND SMOOTH REPRESENTATIONS

1.1. Affine group schemes Fix k a base field.

Recall that an **affine** *k***-group scheme** is one of the following data:

- (1) An affine scheme *G* over *k* endowed with morphisms of *k*-schemes
 - $m: G \times G \rightarrow G$;
 - $e: \operatorname{Spec}(k) \to G$;
 - inv : $G \rightarrow G$;

which satisfy the usual axioms of groups (with m multiplication, e the unit, inv the inverse).

- (2) A functor $\mathsf{Alg}_k = \{k\text{-algebras}\} \xrightarrow{F} \mathsf{Gps} \text{ such that the composition } \mathsf{Alg}_k \xrightarrow{F} \mathsf{Gps} \to \mathsf{Sets} \text{ is representable.}$
- (3) A commutative Hopf algebra over *k*, i.e. a commutative algebra *A* with morphisms of *k*-algebras
 - $\Delta: A \to A \otimes A$;
 - $\varepsilon: A \to k$;
 - $S: A \rightarrow A$;

such that

$$(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) : A \longrightarrow A \otimes A \otimes A$$
$$(\mathrm{id} \otimes \varepsilon) \circ \Delta = \mathrm{id} = (\varepsilon \otimes \mathrm{id}) \circ \Delta : A \longrightarrow A$$
$$(\mathrm{id}, S) \circ \Delta = \Delta \circ \varepsilon = (S, \mathrm{id}) \circ \Delta : A \longrightarrow A$$

Notation. —

$$A \longrightarrow \operatorname{Spec}(A)$$

 $G \longrightarrow \mathscr{O}(G), \Delta_G.$

Example 1.1.1. —

(1) *Diagonalizable groups:* If Λ is an abstract commutative group we have the affine k-group scheme $Diag(\Lambda) := Spec(k[\Lambda])$ with

$$\Delta(\lambda) = \lambda \otimes \lambda, \quad \varepsilon(\lambda) = 1, \quad S(\lambda) = \lambda^{-1} \quad (\forall \lambda \in \Lambda).$$

In particular for $\Lambda = \mathbb{Z}$, $k[\Lambda] = k[x, x^{-1}]$ and $Diag(\Lambda) = \mathbb{G}_m$ (the **multiplicative group**).

A **(split) torus** is a group scheme of the form $Diag(\Lambda)$ with Λ a finitely generated free abelian group.

(2) Additive group: $\mathbb{G}_a := \operatorname{Spec}(k[x])$ with

$$\Delta(x) = x \otimes 1 + 1 \otimes x$$
, $\varepsilon(x) = 0$, $S(x) = -x$.

More generally for V a k-vector space we have the functor $V_a : R \mapsto (R \otimes V, -)$ which is an affine k-group scheme if V is finite dimensional.

(3) If *V* is a *k*-vector space, GL(V) is the functor $R \mapsto Aut_R(R \otimes V)$. If *V* is finite dimensional this is an affine *k*-group scheme.

In particular, if $V = k^n$ we get

$$\mathbf{GL}_n = \operatorname{Spec}(k[x_{ij}, 1 \le i, j \le n][\det^{-1}])$$

with

$$\Delta(x_{ij}) = \sum_{l} x_{il} \otimes x_{lj}, \quad \varepsilon(x_{ij}) = \delta_{ij}.$$

Similarly we have SL(V), SL_n .

(4) For any abstract group Γ we have the functor (??)

1.2. Representations If G is an affine k-group scheme, a **representation** of G is the datum of a k-vector space V and a morphism of group valued functors $G \to \mathbf{GL}(V)$. [Equivalently, an action of *G* on V_a such that G(R) acts *R*-linearly on $R \otimes V$.]

This datum is equivalent of that of a **comodule** for $\mathcal{O}(G)$, i.e. a *k*-vector space *V* and a *k*-linear map $\Delta_V: V \to V \otimes \mathscr{O}(G)$ such that

$$(\Delta_V \otimes \mathrm{id}_{\mathscr{O}(G)} \circ \Delta_V = (\mathrm{id}_V \otimes \Delta_G) \circ \Delta_V : V \longrightarrow V \otimes \mathscr{O}(G) \otimes \mathscr{O}(G)$$
$$(\mathrm{id}_V \otimes \varepsilon) \otimes \Delta_V = \mathrm{id}_V : V \longrightarrow V.$$

 $[\Delta_V \text{ corresponds to the image of id}_{\mathscr{O}(G)} \in G(\mathscr{O}(G)) = \operatorname{End}_{k\text{-alg}}(\mathscr{O}(G)) \text{ in } \operatorname{End}_{\mathscr{O}(G)}(\mathscr{O}(G) \otimes V).]$

Example 1.2.1. —

- (1) (Right) Regular representation: $V = \mathcal{O}(G)$ with $\Delta_V = \Delta_G$. More generally, given an action of G on an affine scheme X we get a representation with underlying vector space $\mathcal{O}(X)$.
- (2) If V is a finite dimensional vector space, V is a representation of GL(V).
- (3) For any *G* we have the trivial representation *k*.

Notation. — Rep(G) is the abelian category of representations of G. Rep^{fd}(G) is the full subcategory of finite dimensional representations.

If $V \in \text{Rep}(G)$ then V is the union of its finite dimensional subrepresentations.

Example 1.2.2 (Representations of diagonalizable group schemes). — Let Λ be a commutative group, $G = \text{Diag}(\Lambda)$. If $V \in \text{Rep}(G)$ we have

$$\Lambda_V:V\longrightarrow V\otimes\mathscr{O}(G)=\bigoplus_{\lambda\in\Lambda}V\otimes\lambda.$$

Hence there are morphisms ($\rho_{\lambda} : \lambda \in \Lambda$) in End(V) such that

$$\Delta_V(v) = \sum_{\lambda \in \Lambda} \rho_{\lambda}(v) \otimes \lambda, \qquad \forall v \in V.$$

(Here $\rho_{\lambda}(v) = 0$ for all but finitely many λs .)

It is easy to see that

$$\rho_{\lambda} \circ \rho_{\mu} = \begin{cases} \rho_{\lambda} & \text{if } \lambda = \mu \\ 0 & \text{otherwise} \end{cases}$$

and $\mathrm{id} = \sum_{\lambda_\Lambda} \rho_\lambda.$ Hence $V = \bigoplus_{\lambda \in \Lambda} \rho_\lambda(V)$ with

$$\rho_{\lambda}(V) = \{ v \in V : \Delta_{V}(v) = v \otimes \lambda \} = V_{\lambda}.$$

Hence Rep(G) is isomorphic to the category of Λ -graded vector spaces (correct?).

1.3. Induction Let *G* be an affine *k*-group scheme.

A **subgroup** of *G* is a closed subscheme $H \subset G$ such that *e*, inv $|H, m|_{H \times H}$ factor through *H*. Then H is an affine k-group scheme. In this setting we have the restriction functor $Res_H^G : Rep(G) \to$ Rep(H).

Proposition 1.3.1. — *The functor* Res_H^G *has a right adjoint* $\operatorname{Ind}_H^G : \operatorname{Rep}(H) \to \operatorname{Rep}(G)$.

Explicitly, we have

$$\operatorname{Ind}_H^G(V) = (V \otimes \mathscr{O}(G))^H$$

with H acting diagonally via the right-regular representation on $\mathcal{O}(G)$ and G acting on the fixed points via the left regular representation

$$\operatorname{Ind}_H^G(V) = \left\{ \begin{array}{c|c} \operatorname{morphisms} \operatorname{of} \operatorname{functors} & f(gh) = h^{-1}f(g) \\ f: G \to V_a & \forall g \in G(R), h \in H(R), R \in \operatorname{Alg}_k \end{array} \right\}.$$

The canonical isomorphism

$$\operatorname{Hom}_{\operatorname{Rep}(G)}(V,\operatorname{Ind}_H^G(V')) \simeq \operatorname{Hom}_{\operatorname{Rep}(H)}(V,V')$$

is called **Frobenius reciprocity**.

Properties. —

• *Transitivity:* Given subgroups $H_1 \subset H_2 \subset G$ we have

$$\operatorname{Ind}_{H_1}^G \simeq \operatorname{Ind}_{H_2}^G \circ \operatorname{Ind}_{H_1}^{H_2}$$
.

• Tensor identity: For $V_1 \in \text{Rep}(H)$, $V_2 \in \text{Rep}(G)$

$$\operatorname{Ind}_H^G(V_1 \otimes \operatorname{Res}_H^G(V_2)) \simeq \operatorname{Ind}_H^G(V_1) \otimes V_2.$$

• Ind $_H^G$ sends injective objects of Rep(H) to injective objects of Rep(G). In particular,

$$\operatorname{Ind}_H^G(k) = \mathscr{O}(G)$$

is injective.

• Rep(*G*) has enough injectives.

Geometric interpretation: We assume G is an algebraic group (over k), i.e. an affine k-group scheme such that $\mathscr{O}(G)$ is a finitely generated k-algebra. In this setting, for $H \subset G$ a subgroup we have a quotient scheme G/H of finite type over k with a faithfully flat quotient map $\pi: G \to G/H$. For $V \in \operatorname{Rep}(H)$, we have a quasicoherent sheaf $\mathscr{L}_{G/H}(V) \in \operatorname{QCoh}(G/H)$ with

$$\Gamma(V, \mathscr{L}_{G/H}(V)) = \left\{ \text{morphisms } f : \pi^{-1}(V) \longrightarrow V \middle| f(x, h) = h^{-1}f(x) \text{ for all } (?) \right\}.$$

We have $\operatorname{Ind}_H^G(V) = \Gamma(G/H, \mathscr{L}_{G/H}(V))$. If V is finite dimensional, then $\mathscr{L}_{G/H}(V)$ is coherent.

Consequences. —

- If G/H is affine then Ind_H^G is exact.
- If G/H is projective then Ind_H^G preserves finite dimensionality.

Since Rep(H) has enough injectives we can consider the derived functor

$$R \operatorname{Ind}_H^G : D^b \operatorname{Rep}(H) \longrightarrow D^b \operatorname{Rep}(G).$$

The functor $\mathscr{L}_{G/H}$: Rep $(H) \to \mathsf{QCoh}(G/H)$ is exact, hence we have

$$\mathscr{L}_{G/H}: D^b\operatorname{Rep}(H) \longrightarrow D^b\operatorname{QCoh}(G/H).$$

One can check that

$$R \operatorname{Ind}_H^G(V) \simeq R\Gamma(G/H, \mathscr{L}_{G/H}(V)).$$

(??)

Consequences. —

- We have $R^n \operatorname{Ind}_H^G(V) = 0$ for all $V \in \operatorname{Rep}(H)$ if $n > \dim(G/H)$.
- If G/H is projective, then $\mathbb{R}^n \operatorname{Ind}_H^G(V)$ is finite-dimensional for all $V \in \operatorname{Rep}^{\operatorname{fd}}(H), n \in \mathbb{Z}$.

§2. REDUCTIVE ALGEBRAIC GROUPS

From now on *k* is algebraically closed.

2.1. Definition A k-algebraic group G is called **unipotent** if every non-zero representation admits a non-zero fixed vector. [Equivalent condition: G is unipotent if and only if it is isomorphic to a subgroup of unipotent upper-triangular matrices in GL_n for some n.]

Example 2.1.1. — G_a is unipotent as

$$\mathbb{G}_a \simeq \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}.$$

If G is a smooth, connected algebraic group, the smooth, connected, unipotent, normal subgroups of G there is a largest element called the **unipotent radical** of G, denoted $R_u(G)$. An algebraic group G is called **reductive** if it is smooth, connected and $R_u(G)$ is trivial.

One possible motivation for studying representations of reductive algebraic groups is that any simple representation of a smooth connected algebraic group G factors through a simple representation of $G/R_u(G)$, which is a reductive algebraic group.

Example 2.1.2. —

- (1) *Tori:* If Λ is a finitely generated, free abelian group, then $Diag(\Lambda)$ is a reductive algebraic group.
- (2) For any finite-dimensional k-vector space V, GL(V) and SL(V) are reductive algebraic groups.
- (3) Symplectic groups, special orthogonal groups.
- **2.2. Structure** From now on *G* is a redutive algebraic group.

We denote by *B* a **Borel subgroup** (a maximal, connected, smooth, solvable subgroup). Note that:

- a Borel subgroup is unique up to conjugation;
- the quotient G/B is a smooth, projective variety.

Example 2.2.1 (Main Example). — For $G = GL_{n,k}$ one can take

$$B = \left\{ \begin{pmatrix} * & & 0 \\ & \ddots & \\ * & & * \end{pmatrix} \right\}.$$

In this case G/B parametrizes flags in k^n , i.e. data

$$\{0\} \subset V_1 \subset \cdots \subset V_{n-1} \subset k^n$$

with V_i a subspace of dimension i.

Let *T* be a maximal torus contained in *B*.

Example 2.2.2 (Main Example Continued). — We take

$$T = \left\{ \begin{pmatrix} t_1 & 0 \\ & \ddots & \\ 0 & t_n \end{pmatrix} \right\}.$$

Note that

$$T \simeq \text{Diag}(X), \quad X = \{\text{morphisms } T \longrightarrow \mathbb{G}_m\}$$

we call elements of X weights.

Example 2.2.3 (Main Example Continued). — We have $\mathbb{X} \simeq \mathbb{Z}^n$ via

$$(\lambda_1,\ldots,\lambda_n)\leftrightarrow \begin{pmatrix} t_1 & 0 \\ \ddots & \\ 0 & t_n \end{pmatrix}\longmapsto \prod_{i=1}^n t_i^{\lambda_i}.$$

The **roots** $R \subset X$ are the non-zero weights appearing in the action of T on $\mathfrak{g} = \text{Lie}(G)$.

Example 2.2.4 (Main Example Continued). — We have

$$R = \{\varepsilon_i - \varepsilon_j : 1 \le i \ne j \le n\}.$$

We define the **positive roots** $R_+ \subset R$: the weights appearing in the action of T on $\mathfrak{g}/\operatorname{Lie}(B)$, and the **simple roots** $R_s \subset R_+$: positive roots that cannot be written as a sum of two positive roots.

Note. — $R = R_+ \prod -R_+$. Any element of R_+ can be uniquely written as a sum of simple roots.

Example 2.2.5 (Main Example Continued). — In our case

$$R_{+} = \{ \varepsilon_{i} - \varepsilon_{j} : 1 \le i < j < n \}$$

$$R_{s} = \{ \varepsilon_{i} - \varepsilon_{i+1} \}.$$

The **cocharacters** of *G* are

$$X^{\vee} = \operatorname{Hom}_{\mathbb{Z}}(X, \mathbb{Z})$$

= {morphisms $G_m \longrightarrow T$ }.

We have **coroots** $R^{\vee} \subset \mathbb{X}^{\vee}$ and a bijection

$$R \longrightarrow R^{\vee}$$

 $\alpha \longmapsto \alpha^{\vee}$.

Then $(X, R, X^{\vee}, R^{\vee})$ together with the identification $X^{\vee} = \text{Hom}(X, \mathbb{Z})$ and the bijection $R \to R^{\vee}$ is the **root datum** of G. It determines G up to isomorphism.

There is an opposite Borel subgroup $B^+ \subset G$ containing T such that the non-zero weights of T acting on $Lie(B^+)$ are R_+ .

 $W = N_G(T)/T$ is a the **Weyl group**, it is a constant group scheme, associated with a finite group also denoted W. W acts faithfully on X. For $\alpha \in R$ there is an element $s_\alpha \in W$ which acts on X via

$$\lambda \longmapsto \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha.$$

If we set

$$S = \{s_{\alpha} : \alpha \in R_s\} \subset W$$
,

then (W, S) is a Coxeter system. In particular, we have the length function

$$\ell: W \longrightarrow \mathbb{Z}_{\geq 0}$$
 $w \longmapsto \min\{r \geq 0 | \text{there exist } s_1, \dots, s_r \in S \text{ such that } w = s_1 \cdots s_r \}.$

Example 2.2.6 (Main Example Continued). — For example, $W = \mathfrak{S}_n$ is the symmetric group via permutation matrices. The action on $\mathbb{X} = \mathbb{Z}^n$ is by permuting entries

$$S = \{(i, i+1) : 1 < i < n\}$$

The length function counts inversions of permutations.

Example 2.2.7. — Let $G = SL_2$,

$$\begin{split} B &= \left\{ \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\} \subset \mathbf{SL}_{2,k} \\ T &= T &= \left\{ \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \middle| t \in k^{\times} \right\} \simeq \mathbf{G}_m. \end{split}$$

We have $X \simeq \mathbb{Z}$ via

$$\lambda \leftrightarrow \begin{bmatrix} \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \longmapsto t^{\lambda} \end{bmatrix}.$$

We have $R = \{2, -2\}, R_+ = \{2\} = R_s$ and $W = \mathfrak{S}_2 = \mathbb{Z}/2\mathbb{Z}$.

2.3. Classification of simple representations The Borel is a semidirect product $B = T \ltimes U$ with $U = R_u(B)$. Similarly $B^+ = T \ltimes U^+$ with $U^+ = R_u(B^+)$. In particular, $T \xrightarrow{\sim} B/U$, so any $\lambda \in \mathbb{X}$ provides a morphism $B \to \mathbb{G}_m$, which is a one-dimensional representation $k_B(\lambda)$. Define

$$\nabla(\lambda) = \operatorname{Ind}_B^G(k_B(\lambda)).$$

It's easy to see that:

- $\dim(\nabla(\lambda)) < \infty$ for all $\lambda \in \mathbb{X}$ (because G/B is projective).
- The action of *T* on $\nabla(\lambda)$ determines an X-grading

$$\nabla(\lambda) = \bigoplus_{\mu \in \mathbb{X}} \nabla(\lambda)_{\mu}.$$

Here if $\nabla(\lambda) \neq 0$, we have

- $\nabla(\lambda)_{\lambda} = \nabla(\lambda)^{U^{+}}$ and this is one-dimensional,
- if $\nabla(\lambda)_{\mu} \neq 0$ then $\lambda \mu \in \mathbb{Z}_{>0}R_s$.

This follows from the open embedding

$$U^+ \times B \hookrightarrow G$$

induced by multiplication.

Corollary 2.3.1. — We have a bijection

$$\{\lambda \in \mathbb{X} | \nabla(\lambda) \neq 0\} \xrightarrow{\sim} \{\text{simple objects in } \operatorname{Rep}(G)\} / \simeq$$

 $\lambda \longmapsto L(\lambda) = \text{unique simple subrepresentation in } \nabla(\lambda).$

It's less easy to show:

Proposition 2.3.1. — *For* $\lambda \in \mathbb{X}$ *, we have*

$$\nabla(\lambda) \neq 0 \quad \iff \quad \forall \alpha \in R_s, \langle \lambda, \alpha^{\vee} \rangle \geq 0.$$

Idea of the proof. The forward direction is easy using the fact that W permutes

$$\{\mu \in \mathbb{X} | \nabla(\lambda)_{\mu} \neq 0\}.$$

Conversely, one can construct a function

$$\bigcup_{\alpha \in R_s} s_{\alpha} U^+ B \longrightarrow k$$

and then use the fact that the LHS has complement of codimension 2 in *G*, cf. Bruhat decomposition.

We set

$$\mathbb{X}_{+} = \left\{\lambda \in \mathbb{X} \middle| \forall \alpha \in R_{s}, \left\langle \lambda, \alpha^{\vee} \right\rangle \geq 0 \right\}$$

the dominant weights.

Example 2.3.1. — (1) $\nabla(0) = k$ is the trivial representation (because G/B is connected and projective).

(2) Let $G = \mathbf{GL}_{n,k}$

$$X_+ = \{(\lambda_1, \ldots, \lambda_n) | \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n \}.$$

For r > 0

$$\nabla(r,0,\ldots,0)\simeq S^r(V)$$

with $V = k^n$ the natural representation, and

$$\nabla(0,\ldots,0,-r)\simeq S^r(V^*)$$

(cf. sections of line bundles on \mathbb{P}^n).

For $s \in \{1, ..., n\}$,

$$\nabla(\underbrace{1,\ldots,1}_{s},0,\ldots,0) = \bigwedge^{s}(V)$$

$$= L(\underbrace{1,\ldots,1}_{s},0,\ldots,0).$$

For $r \in \mathbb{Z}$

$$\nabla(r,\ldots,r)=k_{\det^r}=L(r,\ldots,r).$$

(3) Let $G = \mathbf{SL}_2$, then $\mathbb{X}_+ = \mathbb{Z}_{>0}$. For $r \geq 0$

$$\nabla(r) = S^r(k^2)$$

(cf. sections of line bundles on $G/B = \mathbb{P}^1$). If $\operatorname{char}(k) = 0$ then $\nabla(r)$ is simple for all $r \geq 0$. If $\operatorname{char}(k) = p > 0$ this is not always true:

$$\nabla(p) = kx^p \oplus kx^{p-1}y \oplus \cdots \oplus kxy^{p-1} \oplus ky^p$$

with x, y a canonical basis of k^2 . Then $kx^p \oplus ky^p$ is a non-trivial G-stable subspace. In fact, $L(p) = kx^p \oplus ky^p$.

More generally, $\nabla(r)$ is simple if and only if $r \leq p - 1$.

- (4) For all $\lambda \in \mathbb{X}_+$, $L(\lambda)^* \simeq L(-w_0\lambda)$ where $w_0 \in W$ is the longest element.
- **2.4. Characters** If $V \in \text{Rep}^{\text{fd}}(G)$ then the action of T determines a grading $V = \bigoplus_{\lambda \in \mathbb{X}} V_{\lambda}$ with

$$V_{\lambda} = \{v \in V | \forall t \in T, tv = \lambda(t)v\}.$$

We set

$$\operatorname{ch}(V) = \sum_{\lambda \in \mathbb{X}} \dim(V_{\lambda}) e^{\lambda} \in \mathbb{Z}[\mathbb{X}].$$

It's easy to check that:

- ch factors through $K^0(\operatorname{Rep}^{\operatorname{fd}}(G)) \to \mathbb{Z}[X]$.
- $\operatorname{ch}(V \otimes V') = \operatorname{ch}(V) \operatorname{ch}(V')$, so the map above is a *ring morphism*.
- ch takes values in $\mathbb{Z}[X]^W$.

Proposition 2.4.1. — ch induces an isomorphism

$$K^0(\operatorname{Rep}^{fd}(G)) \xrightarrow{\sim} \mathbb{Z}[X]^W.$$

Proof idea. Show that

$$\{\operatorname{ch}(L(\lambda))|\lambda\in\mathbb{X}_{+}\}$$

is a basis of $\mathbb{Z}[X]^W$.

§3. Some general results about? of reductive algebraic groups

3.1. Kempf's vanishing theorem

Theorem 3.1.1. — *If* $\lambda \in X_+$ *then*

$$R^n \operatorname{Ind}_B^G(k_B(\lambda)) = 0 \quad \forall n > 0.$$

Note. — We have

$$R^n \operatorname{Ind}_B^G(k_B(\lambda)) = H^n(G/B, \mathscr{L}_{G/B}(k_B(\lambda))),$$

where $\mathcal{L}_{G/B}(k_B(\lambda))$ is a line bundle equal to $\mathcal{O}_{G/B}(\lambda)$.

So we are in fact computing cohomology of some line bundles on G/B. Closely related fact: (??)

In fact, in case p = 0, we get Kempf's vanishing theorem from this proposition using the *Kodaira* vanishing theorem.

Example 3.1.1. —

(1) $H^n(G/B, \mathcal{O}_{G/B}) = 0$ for n > 0, this is the $\lambda = 0$ case.

(2) For $G = \mathbf{SL}_{2,k}$, $\mathbb{X} = \mathbb{Z}$, $G/B = \mathbb{P}^1$ and $\mathscr{O}_{G/B}(\lambda) = \mathscr{O}_{\mathbb{P}^1}(\lambda)$. So we recover the fact that $H^n(\mathbb{P}^1, \mathscr{O}_{\mathbb{P}^1}(m)) = 0$

if n > 0 and m > 0.

Remark. — Serre duality for G/B: $\omega_{G/B} \simeq \mathscr{O}_{G/B}(-\rho)$ where

$$\rho = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$$

implies that for $\lambda \in \mathbb{X}$ we have

$$R^{n}\operatorname{Ind}_{B}^{G}(k_{B}(\lambda))\simeq\left(R^{|R^{+}|-n}\operatorname{Ind}_{B}^{G}\left(-(\lambda+2\rho)\right)\right)^{*}$$

(note that $|R_+| = \dim(G/B)$). So if $\lambda \in -2\rho - \mathbb{X}_+$ then $\mathbb{R}^n \operatorname{Ind}_B^G(k_B(\lambda)) = 0$ if $n \neq |R_+|$. For \mathbf{SL}_2 , this says

$$H^n(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(m)) = 0$$

for $n \neq 1$ if $m \leq -2$.

Here is an interesting application. For $\lambda \in X_+$ we set

$$\Delta(\lambda) = (\nabla(-w_0\lambda))^* = R^{|R|_+} \operatorname{Ind}_B^G (k_B(w_0\lambda - 2\rho))$$

(w_0 is longest length in W). These modules are called **Weyl modules**. We have

$$\Delta(\lambda) \twoheadrightarrow L(\lambda)$$
.

Proposition 3.1.1. — *For* λ , $\mu \in \mathbb{X}_+$ *we have*

$$\operatorname{Ext}^n_{\operatorname{Rep}(G)}\left(\Delta(\lambda),\nabla(\mu)\right) = \begin{cases} k & \text{if } \lambda = \mu, n = 0\\ 0 & \text{otherwise}. \end{cases}$$

The unique (up to scalar) non-zero morphism for $\lambda = \mu$ and n = 0 is the composition

$$\Delta(\lambda) \twoheadrightarrow L(\lambda) \hookrightarrow \nabla(\lambda).$$

This statement says that Rep(G) is a "highest weight category".

3.2. Borel-Bott-Weil theorem We consider the action of *W* on *X* given by

$$w \cdot \lambda = w(\lambda + \rho) - \rho$$
.

More precisely, this defines an action on $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{X}$, which stabilizes \mathbb{X} since $w\rho - \rho \in \mathbb{Z}R$ for all $w \in W$.

Set

$$\overline{C} = \begin{cases} \{\lambda \in \mathbb{X} | \forall \beta \in R_+, \langle \lambda + \rho, \beta^{\vee} \rangle \ge 0 \} & \text{if } p = 0 \\ \{\lambda \in \mathbb{X} | \forall \beta \in R_+, 0 \le \langle \lambda + \rho, \beta^{\vee} \rangle \} & \text{if } p > 0. \end{cases}$$

Example 3.2.1. —

(1) Let $G = \mathbf{SL}_2, \mathbb{X} = \mathbb{Z}$, then

$$\overline{C} = \begin{cases} \{-1, 0, 1, \dots\} & \text{if } p = 0 \\ \{-1, 0, \dots, p - 1\} & \text{if } p > 0. \end{cases}$$

(2) Let $G = \mathbf{SL}_3$, then (picture).

Theorem 3.2.1 (Borel-Bott-Weil). —

(1) If $\lambda \in \overline{C} \setminus X_+$ then

$$R^n \operatorname{Ind}_B^G (k_B(w \cdot \lambda)) = 0$$

for all $w \in W$, $n \in \mathbb{Z}$.

(2) If $\lambda \in \overline{C} \cap X_+$, then for $n \in \mathbb{Z}$, $w \in W$, we have

$$R^n \operatorname{Ind}_B^G (k_B(w \cdot \lambda)) = \begin{cases} \nabla(\lambda) & \text{if } n = \ell(w) \\ 0 & \text{otherwise.} \end{cases}$$

The proof is by induction on $\ell(w)$, the case $\ell(w)=0$ follows from Kempf's vanishing theorem. This uses a decomposition of \mathbb{R}^n Ind $_R^{P(\alpha)}(k_B(\lambda))$ for $\alpha\in R_+$, which is a \mathbf{SL}_2 computation (?)

Remark. — If p = 0 then $W \cdot C = \mathbb{X}$, so we understand all $\mathbb{R}^n \operatorname{Ind}_B^G(k_B(\lambda))$. For p > 0, this then only describes a small number of such spaces. In particular, in this case there can exist $\lambda \in \mathbb{X}$ such that $\mathbb{R}^n \operatorname{Ind}_B^G(k_B(\lambda)) \neq 0$ for several n's.

Corollary 3.2.1. —

- (1) If $\lambda \in \overline{C} \cap X_+$ then $\nabla(\lambda) = L(\lambda)$.
- (2) If $\lambda, \mu \in \overline{C} \cap X_+$ then

$$\operatorname{Ext}^1_{\operatorname{Rep}(G)}(L(\lambda),L(\mu))=0.$$

In particular, if p = 0 the category Rep(G) is semisimple.

Proof.

(1) By BBW and Serre duality

$$\nabla(\lambda)^* \simeq \nabla(-w_0\lambda).$$

Hence $\nabla(\lambda)$ has a unique simple quotient isomorphic to $L(\lambda)$. Since $L(\lambda)$ is also the unique simple submodule of $\nabla(\lambda)$ and has multiplicity 1 as a composition factor (because dim $\nabla(\lambda)_{\lambda} = 1$) we must have $\nabla(\lambda) \simeq L(\lambda)$.

(2) We have

$$\operatorname{Ext}^{1}(L(\lambda), L(\mu)) \simeq \operatorname{Ext}^{1}(\Delta(\lambda), \nabla(\mu)) \simeq 0.$$

Then we use local finiteness of representations.

Remark. —

- (1) In Milne's book (§22.C) there is a different proof of semisimplicity using the action of $\mathfrak g$ and Casimir operators.
- (2) For a connected algebraic group *H* over *k* of characteristic 0 one proves that *H* is reductive if and only if every finite dimensional representation is semisimple. [Thoerem 22.42 in Milne's book.]

Example 3.2.2. — For $G = \mathbf{SL}_2$, write $V = k^2$ for the natural representation. One recovers that $S^r(V)$ is simple if p = 0 or p > 0 and r < p.

3.3. Weyl's character formula For $\lambda \in \mathbb{X}$ we set

$$\chi(\lambda) = \sum_{n \ge 0} (-1)^n \operatorname{ch} \left(\mathbb{R}^n \operatorname{Ind}_B^G(k_B(\lambda)) \right)$$

Note. — If $\lambda \in X_+$, by Kempf's vanishing theorem we have

$$\chi(\lambda) = \operatorname{ch}(\nabla(\lambda)).$$

Theorem 3.3.1. — *For* $\lambda \in X$ *we have*

$$\chi\left(\lambda\right) = \frac{\sum_{w \in W} (-1)^{\ell(w)} e^{w \cdot \lambda}}{\sum_{w \in W} (-1)^{\ell(w)} e^{w \cdot 0}} \in \operatorname{Frac}(\mathbb{Z}[X])$$

In particular, this gives a formula for $\operatorname{ch}(\nabla(\lambda))$ (this formula does not depend on p!). Along the way to prove this theorem, one proves that $\operatorname{ch}(\Lambda(\lambda)) = \operatorname{ch}(\nabla(\lambda))$.

Remark. — The proof in general follows from an analysis of $\operatorname{ch} R^1 \operatorname{Ind}_B^{P(\alpha)}(k_B(\lambda))$ for $\alpha \in R_+$ already used for the BBW theorem.

When p = 0, there is an alternative proof using a Lefschetz-type fixed point formula [cf. reference in Milne's book or §6.1.16 in Chriss-Ginzburg *Representation theory and complex geometry*].

§4. THE CASE OF POSITIVE CHARACTERISTIC

We assume that p > 0.

4.1. Frobenius morphism and Frobenius kernel Set

$$G^{(1)} = \operatorname{Spec}(k) \times_{\operatorname{Spec}(k)} G$$

where $\operatorname{Spec}(k) \to \operatorname{Spec}(k)$ corresponds to

$$k \longrightarrow k$$

 $x \longmapsto x^p$.

In other words, $\mathscr{O}(G^{(1)} = \mathscr{O}(G))$ with k acting by $\lambda \cdot f = \lambda^{1/p} f$ for $\lambda \in k$, $f \in \mathscr{O}(G)$.

We have a Frobenius morphism $Fr: G \to G^{(1)}$ associated with

$$\mathscr{O}(G^{(1)}) \longrightarrow O(G)$$
$$f \longmapsto f^p.$$

Here $G^{(1)}$ is an affine k-group scheme and Fr_G is a morphism of k-group schemes.

We have

$$T^{(1)} \subset B^{(1)} \subset G^{(1)}$$

a maximal torus and Borel subgroup and $G^{(1)}$ is again reductive.

We have

$$\phi: X^*(T^{(1)}) \longrightarrow X$$

$$\lambda \longmapsto \lambda \circ \operatorname{Fr}_T.$$

This morphism is injective, with image pX. The roots of $G^{(1)}$ with respect to $T^{(1)}$ are pR.

Remark. — $G \simeq G^{(1)}$ as k-group schemes. A choice of such isomorphism amounts to choosing a "lift" of G to an \mathbb{F}_p -group scheme.

The **Frobenius kernel** is $G_1 = \ker(\operatorname{Fr}_G)$ (scheme-theoretic kernel). Here $\mathcal{O}(G_1)$ is a finite-dimensional Hopf-algebra and

$$\mathscr{O}(G_1)^* \simeq U\mathfrak{g}/\left\langle x^p - x^{[p]}\right\rangle$$

where $(-)^{[p]}: \mathfrak{g} \to \mathfrak{g}$ is the restricted p-th power operation. The Frobenius morphism induces an isomorphism $G/G_1 \xrightarrow{\sim} G^{(1)}$.

4.2. Curtis' and Steinberg's theorems Let

$$X_{+}^{\text{res}} = \left\{ \lambda \in X \middle| \forall \alpha \in R_s, 0 \le \langle \lambda, \alpha^{\vee} \rangle \le p - 1 \right\}.$$

Theorem 4.2.1 (Curtis). —

- (1) For $\lambda \in \mathbb{X}_+^{\text{res}}$, teh representation $\operatorname{Res}_{G_1}^G(L(\lambda))$ is a simple G_1 -representation.
- (2) If G is semisimple and simply connected, then

$$\lambda \longmapsto \operatorname{Res}_{G_1}^G(L(\lambda))$$

induces a bijection

$$\mathbb{X}_{+}^{\mathrm{res}} \xrightarrow{\sim} \{ simple \ G_1\text{-modules} \} / \sim 1$$

Remark. — If *G* is semisimple and simply connected, $\mathbb{X}_{+}^{\text{res}} \xrightarrow{\sim} \mathbb{X}/p\mathbb{X}$. For general *G*, simple G_1 -modules are parametrized by $\mathbb{X}/p\mathbb{X}$.

A closely related statement is:

Theorem 4.2.2 (Steinberg). — *If* $\lambda \in \mathbb{X}_+^{\text{res}}$, $\mu \in X^*(T^{(1)})_+$ *we have*

$$L(\lambda) \otimes \operatorname{Fr}_G^*(L^{(1)}(\mu)) \simeq L(\lambda + \phi(\mu)).$$

If G, B, T are obtained from similar data over \mathbb{F}_p we have

$$T \longleftrightarrow B \longleftrightarrow G$$

$$\downarrow^{\simeq} \qquad \downarrow^{\simeq} \qquad \downarrow^{\simeq}$$

$$T^{(1)} \longleftrightarrow B^{(1)} \longleftrightarrow G^{(1)}$$

The formula becomes

$$L(\lambda) \otimes \operatorname{Fr}_G^*(L(\mu)) \simeq L(\lambda + \rho \mu)$$

for $\lambda \in \mathbb{X}_{+}^{\text{res}}$, $\mu \in \mathbb{X}_{+}$.

More generally, for $\lambda_0, \ldots, \lambda_r \in \mathbb{X}_+^{\text{res}}$, $\mu \in \mathbb{X}_+$.

$$L(\lambda_0 + p\lambda_1 + p^2\lambda_2 + \dots + p^r\lambda_r + p^{r+1}\mu) \simeq L(\lambda_0) \otimes \operatorname{Fr}_G^* L(\lambda_1) \otimes \dots \otimes (\operatorname{Fr}_G^r)^* L(\lambda_r) \otimes (\operatorname{Fr}_G^{r+1})^* (\mu).$$

Note that $L(p\lambda) \simeq \operatorname{Fr}_G^* L(\lambda)$ for all $\lambda \in \mathbb{X}_+$.

Remark. — If *G* is semisimple and simply connected any $\lambda \in X_+$ can be written uniquely as

$$\lambda_0 + p\lambda_1 + \cdots + p^r\lambda_r$$

with $\lambda_0, ..., \lambda_r \in \mathbb{X}_+^{\text{res}}$. This reduces the description of all simple representations to those corresponding to elements in $\mathbb{X}_+^{\text{res}}$.

4.3. Linkage principle

4.3.1. Affine Weyl group Define

$$W_{\text{aff}} := W \ltimes \mathbb{Z}R$$

which acts (affinely, not linearly) on $\mathbf{R} \otimes_{\mathbb{Z}} \mathbb{X}$. A fundamental domain is

$$\overline{A_0} = \left\{ v \in V \middle| \forall \alpha \in R_+, 0 \le \langle v, \alpha^\vee \rangle \le 1 \right\}.$$

Set

$$S_{\mathrm{aff}} := \left\{ w \in W_{\mathrm{aff}} \middle| V^{\mathrm{W}} \cap \overline{A_0} \text{ has codimension 1 in } V \right\}.$$

Fact. — The pair $(W_{\text{aff}}, S_{\text{aff}})$ is a Coxeter system.

Example 4.3.1. —

- (1) Take $G = \mathbf{SL}_2$, $V = \mathbf{R}$, then $S_{\text{aff}} = \{s, s_0\}$, $S = \{s\}$. (Picture) W_{aff} is the infinite dihedral group generated by s, s_0 .
- (2) Take $G = \mathbf{SL}_3$ and dim V = 2 (Picture).

What is relevant for the study of Rep(G) is the **dot-action** of W_{aff} on X

$$(w,\lambda) \bullet \mu = w(\mu + p\lambda + \rho) - \rho.$$

Theorem 4.3.1 (Linkage principle). — *For* λ , $\mu \in \mathbb{X}_+$ *we have*

$$\operatorname{Ext}^1_{\operatorname{Rep}(G)}(L(\lambda), L(\mu)) \neq 0 \implies W_{\operatorname{aff}} \bullet \lambda = W_{\operatorname{aff}} \bullet \mu.$$

For $c \in \mathbb{X}(W_{\text{aff}}, \bullet)$ we set

$$\operatorname{Rep}_c(G) = \left\{ M \in \operatorname{Rep}(G) \middle| \begin{array}{c} \text{all composition factors of } M \\ \text{are of the form } L(\lambda) \text{ with } \lambda \in \mathbb{X}_+ \cap c \end{array} \right\}$$

a full subcategory of Rep(G).

Corollary 4.3.1. — We have

$$\operatorname{Rep}(G) = \prod_{c \in \mathbb{X}/(W_{\operatorname{aff}}, \bullet)} \operatorname{Rep}_c(G).$$

Remark. —

- (1) The linkage principle was conjectured by Verma. Proved by Humphreys, Carter-Lusztig, Jatzen, Andersen.
- (2) Under mild assumptions on p, the linkage principle follows from a "central character" argument and the description of the center of G and of $U\mathfrak{g}$.
- (3) In fact, what Andersen proves is a "strong linkage principle": if $\lambda \in \mathbb{X}$ satisfies

$$\langle \lambda, \alpha^{\vee} \rangle \geq -1$$

for all $\alpha \in R_s$, $w \in W$, if $L(\mu)$ is a composition factor of $R^i \operatorname{Ind}_B^G(k_B(w \bullet \lambda))$ then $\mu \in W_{\operatorname{aff}} \bullet \lambda$.

Example 4.3.2. — Let $G = SL_2$, then

$$0 \longrightarrow L(p) \longrightarrow \nabla(p) \longrightarrow L(p-2) \longrightarrow 0$$

$$\parallel \qquad \qquad \parallel$$

$$k \langle x^{p}, y^{p} \rangle \qquad k \langle x^{p}, x^{p-1}y, \dots, xy^{p-1}, y^{p} \rangle$$

(Picture)

4.4. Translation functors Recall

$$\overline{C} = \{ \lambda \in \mathbb{X} | \forall \alpha \in R_+, 0 \le \langle \lambda + \rho, \beta^{\vee} \rangle \le p \}.$$

Then \overline{C} is a fundamental domain for W_{aff} acting on X. For $\lambda \in \overline{C}$ we consider the projection

$$\mathrm{pr}_{\lambda}: \mathrm{Rep}(G) = \prod_{\mu \in \overline{C}} \mathrm{Rep}_{W_{\mathrm{aff}} \bullet \mu}(G) \longrightarrow \mathrm{Rep}_{W_{\mathrm{aff}} \bullet \lambda}(G).$$

Given λ , $\mu \in \overline{C}$, denote by ν the unique element in $W(\mu - \lambda) \cap X_+$ and set

$$T^{\mu}_{\lambda}: \operatorname{Rep}(G) \longrightarrow \operatorname{Rep}(G)$$

 $M \longmapsto \operatorname{pr}_{\mu} (L(\nu) \otimes \operatorname{pr}_{\lambda} M)$.

Fact. —

- (1) T^{μ}_{λ} is exact.
- (2) T_{λ}^{μ} is left and right adjoint to T_{μ}^{λ} .

A subset $I \subset S_{\text{aff}}$ is called **finitary** if $\langle I \rangle \subset W_{\text{aff}}$ is finite. Then

$$\overline{C} = \coprod_{\substack{I \subset S_{\text{aff}} \\ \text{finitary}}} \overline{C}_I$$

where

$$\overline{C}_{I} = \left\{ \lambda \in \overline{C} \middle| \operatorname{Stab}_{(W_{\operatorname{aff}} \bullet)}(\lambda) = \langle I \rangle \right\}.$$

Example 4.4.1. — Let $G = \mathbf{SL}_3$ (Picture)

Theorem 4.4.1. — If $\lambda, \mu \in \overline{C}_I$ with I finitary, then T^{μ}_{λ} and T^{λ}_{μ} restrict to quasi-inverse equivalences

$$\operatorname{Rep}_{W_{\operatorname{aff}} \bullet \lambda}(G) \xrightarrow{\sim} \operatorname{Rep}_{W_{\operatorname{aff}} \bullet \mu}(G).$$

For $I \subset S_{\text{aff}}$ finitary we set

$$W_{\mathrm{aff}}^{I} = \left\{ w \in W_{\mathrm{aff}} | \forall x \in W, y \in \langle I \rangle, \ell(xwy) = \ell(x) + \ell(w) + \ell(y) \right\}.$$

Fact. — For $\lambda \in \overline{C}_I$ we have an isomorphism

$$W_{\text{aff}}^{I} \longrightarrow (W_{\text{aff}} \bullet \lambda) \cap X_{+}$$
$$w \longmapsto w \bullet \lambda.$$

So W_{aff}^{I} induces the simples/induced modules in $\mathrm{Rep}_{W_{\mathrm{aff}} \bullet \lambda}(G)$. For λ , μ as in the theorem

$$T^{\mu}_{\lambda}L(w \bullet \lambda) \simeq L(w \bullet \mu)$$

$$T^{\mu}_{\lambda}\nabla(w \bullet \lambda) \simeq \nabla(w \bullet \mu).$$

We have $C_{\emptyset} \neq \emptyset$ if and only if $p \geq h$ (Coxeter number of *G*). In this case, $0 \in \overline{C}_{\emptyset}$. For $\lambda \in \overline{C}_I$, consider

$$T_0^{\lambda}: \operatorname{Rep}_{W_{\operatorname{aff}} \bullet 0}(G) \longrightarrow \operatorname{Rep}_{W_{\operatorname{aff}} \bullet \lambda}(G).$$

Proposition 4.4.1. —

(1) For $W_{\text{aff}}^{\emptyset}$ we have

$$T_0^{\lambda} \nabla (w \bullet 0) = \begin{cases} \nabla (w \bullet \lambda) & \text{if } w \bullet \lambda \in \mathbb{X}_+ \\ 0 & \text{otherwise.} \end{cases}$$

(2) For $y \in W^I_{\mathrm{aff}}$, T^0_λ has a filtration with subquotients

$$\{\nabla(yx \bullet 0)|x \in ?\}.$$

(3) For $w \in W_{\mathrm{aff}}^{\emptyset}$ we have

$$T_0^{\lambda}L(w \bullet 0) = \begin{cases} L(w \bullet 0) & \text{if } w \in W_{\text{aff}}^I \\ 0 & \text{otherwise.} \end{cases}$$

This reduces the study of $\operatorname{Rep}(G)$ to that of $\operatorname{Rep}_{W_{\operatorname{aff}} \bullet 0}(G)$.