In [23]: #import Libraries import pandas as pd from sklearn.datasets import make_classification from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import numpy as np from sklearn.metrics import accuracy_score from sklearn import preprocessing from sklearn import pipeline import warnings warnings.filterwarnings('ignore')

In [24]: #import libraries #import csv_dataset #check for missing values #declare axes #split #create mode and fit #test #accuracy #optimization

In [25]: df = pd.read_csv("C:\\Users\\JOHNSON\\Downloads\\my notes\\linear\\assignment\\ df[:5]

Out[25]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4											>

```
In [26]: df.isnull().sum()
```

Out[26]: fixed acidity 0 volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide density 0 0 рΗ sulphates 0 alcohol 0 quality 0

dtype: int64

In [27]: x=df.drop(['quality'],axis=1)
x

Out[27]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alco
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 11 columns

localhost:8888/notebooks/LOGISTIC REGRESSION final.ipynb

```
In [28]: y=df['quality']
         У
Out[28]:
         0
                 5
                 5
         1
                 5
         2
         3
                 6
                 5
         1594
                 5
         1595
                 6
         1596
                 6
         1597
                 5
         1598
         Name: quality, Length: 1599, dtype: int64
         x_train, x_test, y_train, y_test= train_test_split(x,y, test_size=0.2, random_s
In [29]:
         scaler = preprocessing.StandardScaler().fit(x_train)
         x train scaled = scaler.fit transform(x train)
         x_test_scaled=scaler.transform(x_test)
In [30]:
         logistic_model= LogisticRegression()
         logistic model.fit(x train scaled, y train)
         predictions=logistic model.predict(x test scaled)
         predictions
Out[30]: array([5, 5, 6, 5, 6, 5, 5, 6, 6, 6, 6, 5, 6, 5, 5, 7, 5, 5, 7, 5, 5, 5,
                6, 6, 5, 5, 7, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 5, 5, 6, 5,
                6, 6, 7, 5, 5, 6, 5, 5, 6, 6, 5, 5, 6, 5, 6, 5, 5, 6, 5, 7, 5,
                7, 5, 6, 5, 7, 5, 6, 6, 6, 5, 7, 6, 6, 7, 5, 7, 5, 6, 6, 6, 5, 6,
                6, 5, 6, 5, 6, 6, 5, 6, 5, 6, 5, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 5,
                7, 5, 6, 5, 6, 6, 6, 5, 5, 6, 6, 5, 6, 5, 5, 5, 6, 6, 5, 6, 6, 5,
                5, 6, 6, 5, 5, 5, 5, 6, 6, 6, 6, 6, 5, 6, 5, 6, 5, 6, 5, 6,
                6, 6, 5, 6, 5, 6, 6, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 6, 5, 5, 6,
                6, 5, 5, 5, 6, 5, 7, 5, 6, 6, 6, 7, 5, 6, 6, 6, 6, 6, 5, 5, 5,
                5, 6, 5, 5, 5, 5, 7, 6, 5, 6, 6, 6, 6, 5, 6, 6, 7, 6, 5, 5, 6, 5,
                5, 6, 6, 6, 5, 5, 5, 7, 5, 5, 5, 5, 6, 6, 6, 6, 5, 6, 5, 5, 5,
                6, 6, 5, 5, 6, 5, 7, 5, 6, 6, 5, 5, 4, 5, 6, 6, 6, 7, 6, 6, 5, 7,
                6, 6, 5, 5, 6, 6, 5, 6, 5, 5, 5, 6, 6, 6, 5, 7, 5, 5, 5, 6,
                5, 6, 5, 6, 5, 7, 5, 5, 5, 6, 5, 6, 6, 7, 5, 5, 6, 5, 5, 5, 6, 6,
                6, 7, 6, 6, 5, 5, 5, 6, 5, 5, 6, 5], dtype=int64)
In [31]:
         accuracy= accuracy_score(y_test, predictions)
         accuracy
Out[31]: 0.575
In [32]: | from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error
```

Out[35]: LogisticRegression()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Out[39]: LogisticRegression(n_jobs=-1, solver='newton-cg')

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.