

Product Specification

G151EVN01.0

AU OPTRONICS CORPORATION

$oxedsymbol{\square}$ Preliminary	Specification
-----------------------------------	---------------

Final Specification

Module	15.1" Color TFT-LCD (Free Shape LCD)
Model Name	G151EVN01.0

Customer	Date	Approved by	Date
		Vito Huang	2012/06/21
Checked & Approved by	Date	Prepared by	Date
		Jimmy Tsai	2012/06/21
Note: This Specification is subject to change without notice.		General Display Busines Optronics corporation	s Division / AU

Contents

1. Operating Precautions	4
2. General Description	5
2.1 Display Characteristics	5
2.2 Optical Characteristics	6
3. Functional Block Diagram	9
4. Absolute Maximum Ratings	10
4.1 Absolute Ratings of TFT LCD Module	10
4.2 Absolute Ratings of Environment	10
5. Electrical Characteristics	11
5.1 TFT LCD Module	11
5.2 Backlight Unit	13
6. Signal Characteristic	14
6.1 Pixel Format Image	14
6.2 Signal Description	15
6.3 The Input Data Format	16
6.4 Interface Timing	17
6.5 Power ON/OFF Sequence	18
7. Connector & Pin Assignment	19
7.1 TFT LCD Module: LVDS Connector	19
7.2 Backlight Unit: LED Connector	20
8. Reliability Test	21
9. Mechanical Characteristics	
10. Label and Packaging	24
10.1 Shipping Label (on the rear side of TFT-LCD display)	24
10.2 Carton Package	
11. Safety	25
11.1 Sharp Edge Requirements	25
11.2 Materials	25
11.3 Capacitors	25
11.4 National Test Lah Requirement	25

Product Specification

G151EVN01.0

AU OPTRONICS CORPORATION

Record of Revision

V	ersion and Date	Page		(Old descr	iptio	n				Ne	ew Desc	riptic	n		Remark
0.1	2012/02/16	All	First	Editio	n for Cus	tome	er			All						
1.0	2012/06/21	17	Signal- Clock- Frame Rate: Vences Section- Horizantal Section-	hem- Frequency- Frequency- Pends- Active- Blacking- Pends- Active- Blacking-	Symbol: If Tensi- 1/TV- Tye- Tye- Tye- Tye- Tye- Tye- Tye- Tye	50- 50- 1088- 1080- 8- 880- 840- 40-	Typ. 771- 60- 1086- 1090- 16- 1128- 840- 380-	Max- 165- 75- 2046- 1050- 986- 2048- 1659- 1/208-	MHq- MHq- 1(z)	Signal . Clock . Frame Rate . Vertical Section . Horizontal Section .	Bem. Frequency. Frequency. Period. Active. Blanking. Period. Active. Blanking.	Symbol , 1/ Toxx , 1/Tv , Tv , Tvg , Tsg , Tsg , Tsg ,	Mina 30 a 50 a 1035 a 41 a 720 a 50 a	198., 54., 80., 1086., 1024., 42., 844., 640., 204.,	Max. Unit 83.4 MHz 83.4 MHz 175.4 Hz. 1023.4 1023.4 1024.4	

1. Operating Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, take it easily, or the TFT Module may be damaged.
- 9) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 10) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 11) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 12) Severe temperature condition may result in different luminance, response time and LED life time.
- 13) The data on this specification sheet is applicable when LCD module is placed in landscape position.
- 14) Continuous displaying fixed pattern may induce image sticking. It is recommended to use screen saver or shuffle content periodically if fixed pattern is displayed on the screen.

G151EVN01.0

AU OPTRONICS CORPORATION

2. General Description

This specification applies to the 15.1 inch-wide Color TFT-LCD Module G151EVN01.0.

The display supports the 1280(H) x 248(V) screen format and 16.7M colors. All input signals are 2 Channels LVDS interface compatible.

LED driver board is included. G151EVN01.0 is designed for industrial display applications.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 □ condition:

Items	Unit	Specifications
Screen Diagonal	[inch]	15.1
Active Area	[mm]	376.32 (H) x 72.91(V)
Pixels H x V		1280(x3) x 248
Pixel Pitch	[mm]	0.294 (per one triad) x 0.294
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		P-MVA Mode,Normally Black
Nominal Input Voltage VDD	[Volt]	+5.0 V
Typical Power Consumption	[Watt]	10.85 (1.25 (TFT)+9.6 (LED) W (Typ)) (All white pattern)
Weight	[Grams]	700 (Max)
Physical Size	[mm]	396 (H) x 100.8 (V) x 17.3 (D)
Electrical Interface		Dual Channel LVDS
Surface Treatment		Anti-glare, Hardness 3H
Support Color		16.7M colors (8-bits)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25□ (Room Temperature):

Item	Unit	Conditions		Min.	Тур.	Max.	Note
White Luminance	[cd/m2]	I _F = 80mA		240	300	-	1
Uniformity	%	9 Points		75	80	-	1, 2, 3
Contrast Ratio				1600	2000	-	4
Cross talk	%			-	-	1.5	5
		Rising		-	15	-	
Daguaga Tima	[]	Falling		-	5	-	6
Response Time	[msec]	Rising + Fal	ling	-	20	-	
		Gray to Gra	у	_	8	_	
		Horizontal	(Right)	75	89	-	
Viewing Angle		CR = 10	(Left)	75	89	-	_
Viewing Angle	[degree]	Vertical	(Upper)	75	89	-	7
	[degree]	CR = 10	(Lower)	75	89	-	
		Red x		0.597	0.647	0.697	
		Red y		0.290	0.340	0.390	
		Green x		0.277	0.327	0.377	
Color / Chromaticity Coordinates		Green y		0.551	0.601	0.651	
(CIE 1931)		Blue x		0.092	0.142	0.192	
		Blue y		0.017	0.067	0.117	
		White x		0.263	0.313	0.363	
		White y		0.279	0.329	0.379	
Color Gamut	%			-	70	-	

Note 1: Measurement method

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (SR_3 or equivalent)

Aperture 1 □ with 50cm viewing distance

Test Point Center
Environment < 1 lux

Note 2: Definition of 9 points position (Display active area)

Note 3: The luminance uniformity of 9 points is defined by dividing the minimum luminance values by the maximum test point luminance

Minimum Brightness of nine points

 $\delta_{W9} = \frac{}{Maximum Brightn}$

Maximum Brightness of nine points

Note 4: Definition of contrast ratio (CR):

Note 5: Definition of cross talk (CT)

$$CT = | YB - YA | / YA \times 100 (\%)$$

Where

YA = Luminance of measured location without gray level 255 pattern (cd/m2)

YB = Luminance of measured location with gray level 255 pattern (cd/m2)

Note 6: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "White" to "Black" (falling time) and from "Black" to "White" (rising time), respectively. The response time interval is between 10% and 90% of amplitudes. Please refer to the figure as below.

Note 7: Definition of viewing angle

Viewing angle is the measurement of contrast ratio \Box 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as below: 90° (θ) horizontal left and right, and 90° (Φ) vertical high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated to its center to develop the desired measurement viewing angle.

3. Functional Block Diagram

The following diagram shows the functional block of the 15.1 inches wide Color TFT-LCD Module:

LVDS Connector: JAE (FI-XB30SSL-HF15) or equivalent.

LED Connector: STM,P24033P6 or equivalent.

4. Absolute Maximum Ratings

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min	Max	Unit
Logic/LCD Drive Voltage	VDD	-0.3	+5.5	[Volt]

4.2 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit
Operating Temperature	TOP	0	+50	[°C]
Operation Humidity	HOP	5	90	[%RH]
Storage Temperature	TST	-20	+60	[°C]
Storage Humidity	HST	5	90	[%RH]

Note: Maximum Wet-Bulb should be 39 □ and no condensation.

5. Electrical Characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Symbol	Parameter	Min	Тур	Max	Units	Remark
VDD	Logic/LCD Drive Voltage	3.0	5.0	5.5	[Volt]	±10%
IDD	VDD Current	-	0.25	-	[A]	VDD= 5.0V, All White Pattern At 60Hz
PDD	VDD Power	-	1.25	1.38	[Watt]	VDD= 5.0V, All White Pattern At 60Hz

Measurement condition:

5.1.2 Signal Electrical CharacteristicsInput signals shall be low or Hi-Z state when VDD is off.

Symbol	ltem	Min.	Тур.	Max.	Unit	Remark
VTH	Differential Input High Threshold	-	-	100	[mV]	VCM=1.2V
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VCM=1.2V
VID	Input Differential Voltage	100	400	600	[mV]	
VICM	Differential Input Common Mode Voltage	0.3	-	1.25	[V]	VTH/VTL=±100mV

Note: LVDS Signal Waveform.

Product Specification

G151EVN01.0

AU OPTRONICS CORPORATION

5.2 Backlight Unit5.2.1 LED Light Bar

Following characteristics are measured under stable condition at 25 ☐ (Room Temperature).

Symbol	Parameter	Min	Тур	Max	Unit	Remark
VLED	Input Voltage	10.8	12	13.2	Volt	
ILED	Input Current	-	0.8	1	Α	100% Dimming
PLED	Power Consumption	-	9.6	10.56	Watt	100% Dimming, Note3
FPWM	PWM Dimming Frequency	200	-	20K	Hz	
	Swing Voltage	3	3.3	5	Volt	
	Dimming Duty Cycle	10	-	100	%	
Vanalog	Analog Dimming Voltage	-	N/A	-	·	No Analog Dimming
Operating Life		50000	-	-	Hrs	Ta = 25°C

Note 1: Ta means ambient temperature of TFT-LCD module,

Note 2: If module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 3: LED light bar structure: (5 strings x 6pcs / string =30pcs of LED)

Note 4: Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.. Although this panel resolution is 1280x248, please input 1280x1024 format signal to it. And the data after line 249 (inlculde 249) ALL should be set to "black" command.

Product Specification

G151EVN01.0

AU OPTRONICS CORPORATION

6.2 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	DESCRIPTION
1	RXinO0-	Negative LVDS differential data input (Odd data)
2	RXinO0+	Positive LVDS differential data input (Odd data)
3	RXinO1-	Negative LVDS differential data input (Odd data)
4	RXinO1+	Positive LVDS differential data input (Odd data)
5	RXinO2-	Negative LVDS differential data input (Odd data, H-Sync, V-Sync, DSPTMG)
6	RXinO2+	Positive LVDS differential data input (Odd data, H-Sync, V-Sync, DSPTMG)
7	GND	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RXinO3-	Negative LVDS differential data input (Odd data)
11	RXinO3+	Positive LVDS differential data input (Odd data)
12	RXinE0-	Negative LVDS differential data input (Even data)
13	RXinE0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RXinE1-	Positive LVDS differential data input (Even data)
16	RXinE1+	Negative LVDS differential data input (Even data)
17	GND	Power Ground
18	RXinE2-	Negative LVDS differential data input (Even data)
19	RXinE2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RXinE3-	Negative LVDS differential data input (Even data)
23	RXinE3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	NC	No contact (For AUO test only)
26	NC	No contact (For AUO test only)
27	NC	No contact (For AUO test only)
28	vcc	+5.0V Power Supply
29	vcc	+5.0V Power Supply
30	VCC	+5.0V Power Supply

6.3 The Input Data Format

Note1: 8-bits signal input. Note2: L:NS alike H:Thine alike

6.4 Interface Timing

6.4.1 Timing Characteristics

Signal	ltem	Symbol	Min	Тур	Max	Unit
Clock	Frequency	1/ T _{Clock}	30	54	83	MHz
Frame Rate	Frequency	1/Tv	50	60	75	Hz
	Period	T_V	1035	1066	2047	
Vertical	Active	T_VD	-	1024	-	T_line
Section	Blanking	T_VB	11	42	1023	
	Period	T _H	720	844	1024	
Horizontal	Active	T_{HD}	-	640	-	T_clock
Section	Blanking	T _{HB}	80	204	384	

Note: DE mode only.

6.4.2 Input Timing Diagram

6.5 Power ON/OFF Sequence

VDD power and B/L on/off sequence is as below. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Power ON/OFF sequence timing

Parameter		T		Units	
	Min.	Тур.	Max.		
T1	0.5	-	10	[ms]	
T2	30	40	50	[ms]	
T3	200			[ms]	
T4	0.5		10	[ms]	
`T5	10			[ms]	
T6	10			[ms]	
T7	0			[ms]	
Т8	10			[ms]	
Т9			10	[ms]	
T10	110			[ms]	
T11	0	16	50	[ms]	
T12			10	[ms]	
T13	1000			[ms]	

The above on/off sequence should be applied to avoid abnormal function in the display. Please make sure to turn off the power when you plug the cable into the input connector or pull the cable out of the connector.

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module: LVDS Connector

Connector Name / Designation	Interface Connector / Interface card
Manufacturer	LVDS: JAE or compatible
Type Part Number	LVDS: JAE (FI-XB30SSL-HF15) or equivalent.
Mating Housing Part Number	FI-X30H (JAE) or compatible

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	NC	26	NC
27	NC	28	VCC
29	VCC	30	VCC

7.2 Backlight Unit: LED Connector

Connector Name / Designation	LED Connector
Manufacturer	SIN SHENG or compatible
Connector Model Number	STM,P24033P6
Mating Model Number	2404PS-2 or compatible

PIN#	SIGNAL NAME	DESCRIPTION
1	V12	Input voltage, 12V
2	V12	Input voltage, 12V
3	V12	Input voltage, 12V
4	-	NC
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	BL_EN	Back light enable, 5V
9	BL_DIM_P	Back light dimming, 3.3V

8. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias	Ta= 50□, 80%RH, 300hours	
High Temperature Operation	Ta= 50 □, 300hours	
Low Temperature Operation	Ta= 0 □ , 300hours	
High Temperature Storage	Ta= 60 □, 300hours	
Low Temperature Storage	Ta= -20 □, 300hours	
Thermal Shock Test	-20□/30min, 60□/30min, 100 cycles	
Shock Test (Non-Operating)	50G,20ms,Half-sine wave,(±X, ±Y, ±Z)	
Vibration Test (Non-Operating)	1.5G, (10~200Hz, P-P)	
тылашын төө (тын өрөгиштуу	30 mins/axis (X, Y, Z)	
On/off test	On/10 sec, Off/10 sec, 30,000 cycles	
	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec,	Note 1
ESD	8 points, 25 times/ point.	
	Air Discharge: ± 15KV, 150pF(330Ω) 1sec	
	8 points, 25 times/ point.	

Note1: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost

. Self-recoverable. No hardware failures.

9. Mechanical Characteristics

10. Label and Packaging

10.1 Shipping Label (on the rear side of TFT-LCD display)

10.2 Carton Package

- The outside dimension of carton is 478(L)mm* 281(W)mm*488(H)mm, carton and cushion weight are 2820g.
- 30 pieces per carton box.
- 2*4 boxes per layer. By air, 2 layer / pallet. By sea, refer packing documents. Pallet size (not include carton boxes): 1150 mm * 980 mm * 132 mm

11. Safety

11.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

11.2 Materials

11.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO toxicologist.

11.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

11.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

11.4 National Test Lab Requirement

The display module will satisfy all requirements for compliance to:

UL 60950-1, 2nd Edition, 2007-03027 (Information Technology Equipment)