unscharfe Menge

$$\tilde{A} = \left\{ \left(x, \mu_{\scriptscriptstyle A}(x)\right) \colon x \in X \right\} \ \mathrm{mit} \ \mu_{\scriptscriptstyle A} \colon X \to \left[0, 1\right]$$

Stützmenge $supp(\tilde{A}) = \{x \in X : \mu_A(x) > 0\}$ leere unscharfe Menge

falls $\mu_A(x) = 0 \quad \forall x \in X$, Bezeichnung $\tilde{\emptyset}$ unscharfe Universalmenge

falls $\mu_A(x) = 1 \quad \forall x \in X$, Bezeichnung \tilde{X}

Höhe
$$hgt(\tilde{A}) = \sup_{x \in X} \mu_A(x)$$

normal hgt(A)=1) subnormal hgt(A)<1

$$\frac{1}{3}(x-5)^2 \prec 1$$

$$|x-5| < \sqrt{3} \implies 5 - \sqrt{3} \le x < 5 + \sqrt{3}$$

Fuzzy-Potenzmenge $\tilde{P}(X)$

Inklusion $\tilde{A} \subseteq \tilde{B} \Leftrightarrow \mu_{A}(x) \leq \mu_{B}(x) \quad \forall x \in X$ Gleichheit $\tilde{A} = \tilde{B} \iff \mu_A(x) = \mu_B(x) \quad \forall x \in X$.

Fuzzy-Zahl, wenn

*es genau eine reelle Zahl x_0 mit $\mu_{\Delta}(x_0) = 1$

sie muss normal sein

* $\mu_{\Delta}(x)$ stückweise stetig ist

Diskrete Fuzzy-Zahl

*wie FuzzyZahl, nur nicht stetig

Fuzzy-Intervall

*es gibt 2 versch. reelle Zahlen mit

$$\mathbf{x}_1, \mathbf{x}_2 \; \boldsymbol{\mu}_{\mathbf{A}}(\mathbf{x}) = 1 \quad \forall \mathbf{x} \in [\mathbf{x}_1, \mathbf{x}_2]$$

* $\mu_{\scriptscriptstyle \Delta}(x)$ stückweise stetig ist

Fuzzy-Punkt

*es genau ein x_0 mit $\mu_{\Delta}(x_0) = 1$ gibt und

* $\mu_{\Delta}(x)$ stückweise stetig ist

Kompensatorische Operatoren

arithmetisches Mittel
$$\frac{\tilde{A} + \tilde{B}}{2}$$

$$\mu_{\frac{\tilde{A}+\tilde{B}}{2}}(x) = \frac{1}{2} (\mu_{A}(x) + \mu_{B}(x)) \quad \forall x \in X$$

geometrisches Mittel $\sqrt{\tilde{A}} \cdot \tilde{B}$

$$\mu_{\sqrt{\tilde{A}\cdot\tilde{B}}}(x) = \sqrt{\mu_{A}(x)\cdot\mu_{B}(x)} \quad \forall x \in X$$

γ-Verknüpfung ÷, B̃

$$\mu_{A_{\gamma}B}(x) = (\mu_{A \cdot B}(x))^{1-\gamma} \cdot (\mu_{A+B}(x))^{\gamma}$$

kartesische Produkt

$$\begin{split} & \mu_{A_{1} \otimes A_{2} \otimes \cdots \otimes A_{n}} (x_{1}, x_{2}, \dots, x_{n}) = \\ & \min \left\{ \mu_{A_{1}} (x_{1}), \mu_{A_{2}} (x_{2}), \dots, \mu_{A_{n}} (x_{n}) \right\} \end{split}$$

 $\textbf{Komplement} \ \ \tilde{A}^{\mathrm{c}} = \left\{ \left(x, \mu_{A^{\mathrm{c}}}(x)\right) \colon x \in X, \mu_{A^{\mathrm{c}}}(x) = 1 - \mu_{A}(x) \right\}$

Durchschnitt $\tilde{A} \cap \tilde{B}$ **t-Norm**

 $\mu_{A \cap B}(x) = \min \{ \mu_A(x), \mu_B(x) \} \quad \forall x \in X$

Vereinigung $\tilde{A} \cup \tilde{B}$ **t-Conorm**

 $\mu_{A \cup B}(x) = \max \{\mu_A(x), \mu_B(x)\} \quad \forall x \in X$

→kommut., assoz., distributiv, adjunktiv, de Morgan für ∪∩

algebraisches Produkt $\tilde{A} \cdot \tilde{B}$ t-Norm

$$\mu_{A \cdot B}(x) = \mu_A(x) \cdot \mu_B(x) \quad \forall x \in X$$

algebraische Summe $\tilde{A} + \tilde{B}$ t-Conorm

 $\mu_{\scriptscriptstyle A+B}(x) = \mu_{\scriptscriptstyle A}(x) + \mu_{\scriptscriptstyle B}(x) - \mu_{\scriptscriptstyle A}(x) \cdot \mu_{\scriptscriptstyle B}(x) \quad \forall x \in X$

→kommut., assoz., de Morgan

beschränktes Produkt à ó B t-Norm

$$\mu_{A \delta B}(x) = \max \left\{ 0, \mu_{A}(x) + \mu_{B}(x) - 1 \right\} \quad \forall x \in X$$

beschränktes Summe $\tilde{A} \circ \tilde{B}$ t-Conorm

 $\mu_{A \circ B}(x) = \min \{1, \mu_A(x) + \mu_B(x)\} \quad \forall x \in X$

drastisches Produkt $\tilde{A} \cap \tilde{B}$ t-Norm

$$\mu_{A \bar{\cap} B}(x) = \begin{cases} \mu_A(x) & \text{für } \mu_B(x) = 1 \\ \mu_B(x) & \text{für } \mu_A(x) = 1 \\ 0 & \text{sonst} \end{cases} \forall x \in$$

drastische Summe

$$\begin{array}{ll}
A \underline{\cup} B & \textbf{t-Conorm} \\
\text{für } \mu_B(x) = 0 \\
\text{für u} & (x) = 0, \quad \forall x \in X
\end{array}$$

$$\mu_{A \underline{\cup} B}(x) = \begin{cases} \mu_{A}(x) & \text{für } \mu_{B}(x) = 0 \\ \mu_{B}(x) & \text{für } \mu_{A}(x) = 0 \\ 1 & \text{sonst} \end{cases} \forall x \in X$$

t-Norm

t(0,0) = 0 und t(1,a) = t(a,1) = a $\forall a \in X$

 $t(a,b) = t(b,a) \quad \forall a,b \in X \quad \text{kommutativ}$ $t(a, t(b, c)) = t(t(a, b), c) \quad \forall a, b, c \in X \text{ assoziativ}$

 $t(a,b) \le t(c,d)$ wenn $a \le c, b \le d$ monoton

t-Conorm

$$s(1,1)=1 \text{ und } s(0,a)=s(a,0)=a \quad \forall a \in X$$

 $s(a,b) = s(b,a) \quad \forall a,b \in X$

 $s(a,s(b,c)) = s(s(a,b),c) \quad \forall a,b,c \in X \text{ assoziativ}$ $s(a, b) \le s(c, d)$ wenn $a \le c, b \le d$ monoton

Ist t(x, y) eine t-Norm, so ist

$$s(x,y)=1-t(1-x,1-y)$$
 eine t-Conorm

$$\begin{split} \widetilde{A} & \widehat{\frown} \widetilde{B} \subseteq \widetilde{A} \circ \widetilde{B} \subseteq \widetilde{A} \cdot \widetilde{B} \subseteq \widetilde{A} \cap \widetilde{B} \\ \text{und } \widetilde{A} \cup \widetilde{B} \subseteq \widetilde{A} + \widetilde{B} \subseteq \widetilde{A} \circ \widetilde{B} \subseteq \widetilde{A} \cup \widetilde{B} \end{split}$$

$$\delta[((a \to b) \land a) \to b] = \min\{1, 1 + \delta(b) - \delta((a \to b) \land a)\}$$

 $= \min \left\{ 1; 1 + \delta(b) - \min(\delta(a \rightarrow b); \delta(a) \right\}$

 $= \min \left\{ 1; 1 + \delta(b) - \min \left\{ \delta(\min \left\{ 1; 1 + \delta(b) - \delta(a) \right\}; \delta(a) \right\} \right\}$

check mittels Zahlen!!

 $\delta(a) = 0.7$ $\delta(b) = 0.2$

 $\delta(M_p) = \min\{1; 1, 2-0, 5\} = 0, 7 \neq 1$

→ ist kein allgemeingültiger Ausdruck

→ Modus Ponens gilt nicht bei Fuzzy!!!!

$$\gamma \Big(x \Big) = \frac{\log \mu_{A_{\gamma_B}}(x) - \log \mu_{A}(x) - \log \mu_{B}(x)}{\log \Big(\mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x) \cdot \mu_{B}(x) \Big) - \log \mu_{A}(x) - \log \mu_{B}(x)}$$

$$\hat{\gamma} = \frac{1}{|X_0|} \sum_{x \in X_0} \gamma(x)$$

Zu Urbildern:

Gibt es zu einem $y \in Y$ mehr als ein Urbild, d.h. besteht die Menge

 $f^{-1}(y) = \{x \in X : f(x) = y\}$ aus mehr als einem Element, so ist nahe liegend,

$$\mu_{B}(y) = \sup_{x \in f^{-1}(y)} \mu_{A}(x)$$
 zu setzen.

Def.: Referenzfunktion: g(0)=1, g monoton fallend Funktionsarten: $g_1(t) = \max\{0, 1-t\}$ $g_{2}(t) = \max\{0, 1-t^{\lambda}\}\$ $\lambda > 0$ $g_3(t) = (1+t^{\lambda})^{-1}$ $\lambda > 0$ $g_4(t) = \exp(-t^{\lambda})$ $\lambda > 0$

Modus Ponens

$$(a \rightarrow b) \land a \rightarrow b$$

$$\mu_A(x) = \begin{cases} \dfrac{x-u}{w1} & u \leq x \leq m \\ \dfrac{o-x}{w2} & m \leq x \leq o \\ 0 & sonst \end{cases}$$

Erweiterungsprinzip

$$\mu_{\scriptscriptstyle{B}}(y) \!=\! \begin{cases} \sup_{(x_1,x_2,\dots,x_n) \in \Gamma^1(y)} \min \bigl\{ \mu_{\scriptscriptstyle{I}}(x_1), \! \mu_{\scriptscriptstyle{2}}(x_2), \! \dots, \! \mu_{\scriptscriptstyle{n}}(x_n) \bigr\} \\ & \text{falls } f^{-1}(y) \neq \varnothing \\ 0 & \text{sonst} \end{cases}$$

geg.: *die Grundmengen $X_1, X_2, ..., X_n$ und

*die Fuzzy-Mengen $\tilde{A}_i \in P(X_i)$ mit den

Zugehörigkeitsfunktionen $\mu_i(x)$, i = 1,...,n*eine Abbildung

$$f: X_1 \times X_2 \times \dots \times X_n \to Y$$

LR-Fuzzy-Zahl

$$\mu_{A}\left(x\right) = \begin{cases} L\left(\frac{a-x}{\alpha}\right) & \text{für} \quad x \leq a \quad \text{und} \quad \alpha > 0 \\ \\ R\left(\frac{x-a}{\beta}\right) & \text{für} \quad x \geq a \quad \text{und} \quad \beta > 0 \end{cases}$$

L(t) und R(t) sind Ref.funktionen. Abkürzend: $\left.\tilde{A}=\left(a,\alpha,\beta\right)_{LR}$

Bei **Fuzzy-Intervall** entsprechend noch weiterer Bereich mit Wert 1, abkürzend: $\tilde{A} = (m_1, m_2, \alpha, \beta)_{\text{I p}}$

Triangulär: Beide Seiten haben Ref.Funktion g1: $\tilde{A} = (a, \alpha, \beta)_{tri}$

Nach Erw.prinzip Addition und Subtraktion:

$$\begin{split} \left(a,\alpha,\beta\right)_{LR} & \oplus \left(b,\gamma,\delta\right)_{LR} = \left(a+b,\alpha+\gamma,\beta+\delta\right)_{LR} \\ \tilde{A}_1 & = \left(a,\alpha,\beta\right)_{LL} & -\tilde{A}_1 = \left(-a,\beta,\alpha\right)_{LL} \\ \tilde{A}_1 & (-)\tilde{A}_1 = \tilde{A}_1 \oplus \left(-\tilde{A}_1\right) = \left(a,\alpha,\beta\right)_{LL} + \left(-a,\beta,\alpha\right)_{LL} = \left(0,\alpha+\beta,\alpha+\beta\right)_{LL} \end{split}$$

Fuzzy-Regler: allgemein:

Bestandteile: Wissensbasis, Dialogmodul (Zugriff auf Wissensbasis), Inferenz-Maschine (diese zieht Schlussfolgerungen)....

Linguistische Variable: Tripel LV = (T, X, M)

Beispiel: T={langsam, schnell}, $X = [0, 200], M = \{\tilde{M}_1, \tilde{M}_m, \tilde{M}_s\}$

Modifikatoren:

einstellige Operatoren, sie werden auf Term der LV angwendet.

- **Konzentration** CON (\tilde{A}) mit $\mu_{CON}(x) = (\mu_A(x))^2$
- **Dehnung** $DIL(\tilde{A})$ mit $\mu_{DIL}(x) = (\mu_{A}(x))^{1/2}$
- Kontrastverstärkung INT(Ã) mit

$$\mu_{\text{INT}}(x) = \begin{cases} 2 \big(\mu_{\text{A}}(x)\big)^2 & \mu_{\text{A}}(x) \leq 0.5 \\ 1 - 2 \big(1 - \mu_{\text{A}}(x)\big)^2 & \mu_{\text{A}}(x) > 0.5 \end{cases}$$

ANWENDUNG:

- sehr $\tau' = \operatorname{sehr} \tau \operatorname{mit} \widetilde{M}_{\tau'} = \operatorname{CON}(\widetilde{M}_{\tau})$
- ziemlich τ' = ziemlich τ mit $\tilde{M}_{\tau'}$ = DIL $\left(\tilde{M}_{\tau}\right)$
- nicht sehr τ' = nicht sehr τ mit $\tilde{M}_{\tau'} = \left(CON(\tilde{M}_{\tau})\right)^c$
- $\quad \text{sehr sehr} \quad \tau' = \text{sehr sehr} \ \tau \quad \text{mit} \quad \tilde{M}_{\tau'} = CON \Big(CON \Big(\tilde{M}_{\tau} \Big) \Big)$
- ziemlich nicht τ' = ziemlich nicht τ mit $\tilde{M}_{\tau'}$ = DIL $\left(\left(\tilde{M}_{\tau}\right)^c\right)$

n-stellige Fuzzy-Relation auf $X_1 \times X_2 \times \cdots \times X_n$

$$\tilde{R} = \left\{ \left((x_1, x_2, \dots, x_n), \mu_R(x_1, x_2, \dots, x_n) \right) : (x_1, x_2, \dots, x_n) \in X_1 \times X_2 \times \dots \times X_n \right\}$$

n-stellige Fuzzy-Relation zwischen den Fuzzy-Mengen

$$\tilde{A}_{1} \cdot \tilde{R} \subseteq \tilde{A}_{1} \otimes \tilde{A}_{2} \otimes \cdots \otimes \tilde{A}_{n}$$

 $\textbf{Max-Min-Verkettung} \ von \ \ \tilde{R} \ \ und \ \ \tilde{S}$

$$\begin{split} \tilde{R} \circ_{MM} \tilde{S} &= \left\{ \left(\left(x,z\right), \mu_{R \circ_{MM} S}(x,z) \right) : \left(x,z\right) \in X \times Z \right\} \text{ mit} \\ \mu_{R \circ_{MM} S}(x,z) &= \sup_{y \in Y} \min \left\{ \mu_{R}(x,y), \mu_{S}(y,z) \right\} \end{split}$$

Max-Prod-Verkettung von \tilde{R} und \tilde{S}

$$\tilde{R} \circ_{MP} \tilde{S} = \left\{ \left(\left(x, z \right), \mu_{R \circ_{MP} S}(x, z) \right) : \left(x, z \right) \in X \times Z \right\} \text{ mit}$$

$$\mu_{R_{^{\circ}MP}S}(x,z) = \sup_{y \in Y} \big\{ \mu_{R}(x,y) \cdot \mu_{S}(y,z) \big\}$$

Fuzzy-Inferenz-Bild von \tilde{A} bezüglich der Relation \tilde{R} :

$$\tilde{R} = \left\{ \left(\left(x,y \right), \mu_R \left(x,y \right) \right) \colon \! \left(x,y \right) \in X \times Y \right\} \text{ eine zweistellige Fuzzy-}$$

Relation und $\,\tilde{A}=\left\{\left(x,\mu_{_{\!A}}(x)\right)\colon x\in X\right\}\,$ eine Fuzzy-Menge

(einstellige Relation) auf X. Durch die Verkettung $\tilde{A}\circ \tilde{R}$ wird \tilde{A} in eine Fuzzy-Menge $\tilde{B}=\left\{\left(x,\mu_{B}\left(y\right)\right)\colon y\in Y\right\}$ abgebildet.

Einstellige Relation:

$$\tilde{A} \circ_{MM} \tilde{R}: \quad \mu_{A \circ_{MM} R}(x, y) = \sup_{x \in X} \min \left\{ \mu_{A}(x), \mu_{R}(x, y) \right\}.$$

Erweiterter Modus Ponens:

Vorgehensweise zum schließen unter unscharfen Aussagen:

0. Gegeben sind: **Terme** α und α' einer LV u über Grundbereich X und der Term β einer LV v über einem Grundbereich Y: durch Fuzzy-Mengen \tilde{A}, \tilde{A}' und \tilde{B} gegeben.

Zusätzlich Regel "WENN $u=\alpha$ DANN $v=\beta$ ".

1. Wähle eine **Implikationsrelation**, d.h. eine Verknüpfung $I(\tilde{A}, \tilde{B})$, die die Regel $\alpha \to \beta$ in eine unscharfe Relation $\tilde{R}_1 \subseteq P(X \times Y)$ umsetzt:

$$\tilde{R}_{I}(x,y) = I(\tilde{A}(x), \tilde{B}(y))$$

2. Bestimme ausgehend von \tilde{A}' und $\tilde{R}_{_{L}}$ eine **Relation**

$$\begin{split} \tilde{R}_T &\subseteq P\big(X \times Y\big) \text{ aus } \qquad \tilde{R}_T\big(x,y\big) = \tilde{A}'(x) \bullet \tilde{R}_I(x,y) \\ \text{wobei "} \bullet \text{" ein zunächst beliebiger UND-Operator bzgl. der x-Werte ist,} \\ \text{die Relation } \tilde{R}_T\big(x,y\big) \text{ gilt, wenn sowohl } \tilde{A}'(x) \text{ als auch } \tilde{R}_I\big(x,y\big) \end{split}$$

4. Für alle $y \in Y$ folgt $\tilde{B}''(y)$ aus $\tilde{B}''(y) = hgt_{x \in X} \left(\tilde{R}_T(x,y) \right)$

NACH MAMDANI:

- Implikations regel: $\,\tilde{R}_{_{\,\text{I}}}=\tilde{A}\otimes\tilde{B}\,$
- UND-Operator: Durchschnitt $\tilde{R}_{T}(x,y) = \tilde{A}'(x) \cap \tilde{R}_{T}(x,y)$

$$\lambda=hgt\big(\tilde{A}\cap\tilde{A}'\big);$$
 wenn $\,\lambda=1\,$ ist $\,\tilde{B}''(y)=\tilde{B}(y)$, wenn $\,\lambda<1$, so

ist $\mu_{B'}(y) = min \left[\lambda, \mu_B(y)\right]$, d.h. die Zugehörigkeitsfunktion $\mu_B(y)$ wird in der Höhe λ abgeschnitten. Die Größe λ heißt "Aktivierungsgrad" der Regel

Gödel-Implikation $% \left(1\right) =\left(1\right) +\left(1\right) +$

$$\mu_{G}(x,y) = \begin{cases} 1 & \text{für } \mu_{A}(x) \leq \mu_{B}(y) \\ \mu_{B}(y) & \text{sonst} \end{cases}$$

UND-Operator ist der Durchschnitt

Relationalgleichungssystem:

$$\tilde{C} = \bigcap_{i=1}^q \! \left(\tilde{A}_i \left(\cdot \right) \tilde{B}_i \right) \text{, dabei muss c dann eine Lösung sein. (bzgl.}$$

Inklusion größte). Wenn nicht, dann zumindest Näherungslösung

${\bf Max\text{-}Min\text{-}Inferenz methode}$

- $\tilde{R}_i = \tilde{A}_i \otimes \tilde{B}_i$ zu jeder Relationalgleichung bestimmen
- mit $\tilde{R} = \bigcup_{i=1}^{q} \tilde{R}_{i}$ zusammenfassen

$$\mu_{B'}(y) = \max_{i} \min(\beta_{i}, \mu_{B_{i}}(y))$$

$$\beta_i = \sup_{x \in X} \mu_{A_i \cap A'}(x) = hgt\Big(\tilde{A}_i \cap \tilde{A}'\Big) \text{ ist Aktivierungsgrad der i-ten Regel.}$$

Indirekter Beweis: Gegenannahme!! dann zum Wdspr. führen $\tilde{A} \subseteq \tilde{B} \Leftrightarrow \mu_A(x) \leq \mu_B(x) \quad \forall x \in X \\ \Rightarrow \exists x \in X \text{ mit } \quad \mu_A(x) > 0 \land \mu_B(x) = 0$ das ist Widerspruch -> q.e.d