MA 505 HW #4

2.7 (a

(b)
$$P = \{x_1, x_2 \in \mathbb{R}^2 | x_1 + x_2 + s_1 = 40, 2x_1 + x_2 + s_2 = 60, x_1 + s_3 = 20, x_1, x_2, s_1, s_2, s_3 \ge 0\}$$

(c) There are 10 possibilities. Take
$$s_2, s_3 = 0$$

 $x_1 = 20, x_2 = 20, s_1 = 0, s_2 = 0, s_3 = 0$

Notice that taking any combination of s variables will produce this result. Taking $x_1, x_2 = 0$, we have $x_1 = 0, x_2 = 0, s_1 = 40, s_2 = 60, s_3 = 20$. If we take $x_1, s_1 = 0$, we have $x_1 = 0, x_2 = 40, s_1 = 0, s_2 = 20, s_3 = 20$. If we take $x_2, s_1 = 0$, we have $x_1 = 40, x_2 = 0, s_1 = 0, s_2 = -20, s_3 = -20$. If we take $x_1, s_2 = 0$, we have $x_1 = 0, x_2 = 60, s_1 = -20, s_2 = 0, s_3 = 20$. If we take $x_2, s_2 = 0$, we have $x_1 = 30, x_2 = 0, s_1 = 0, s_2 = 0, s_3 = -10$. We can't take $x_1, s_3 = 0$, since this would be an inconsistency. If we take $x_2, s_3 = 0$, we have $x_1 = 20, x_2 = 0, s_1 = 20, s_2 = 20, s_3 = 0$. These are our basic solutions.

(d) Our basic feasible solutions are:

$$x_1 = 20, x_2 = 20, s_1 = 0, s_2 = 0, s_3 = 0$$
 (degenerate) (1,2,3)

$$x_1 = 0, x_2 = 0, s_1 = 40, s_2 = 60, s_3 = 20$$
 (4)

$$x_1 = 0, x_2 = 40, s_1 = 0, s_2 = 20, s_3 = 20$$
 (5)

(6)

- (f) The point (20,20) corresponds to a degenerate bfs.
- **2.10** Take a degenerate bfs. A bfs occurs at the intersection of lines where the respective n-p are zero. Normally we have C(n,m) ways to choose or (n-m) non-basic variables to be zero. In the degenerate case, the difference is we pick (n-m) variables to be zero, and the remaining (m-p) happen to go to zero at the intersection (see 2.7c). Because of this, we only still of choose (n-m) from (n-p) that can go to zero, so we have C(n-p,n-m) possibilities.
- **2.11** (a) Take an arbitrary vector $(a, b)^T$ with $a, b \ge 0$ in the first orthant. $(a, b)^T = a(1, 0)^T + b(1, 0)^T$. This is an arbitrary element in the first orthant. Since a convex cone requires positive coefficients, we can only generate elements in the first orthant. Therefore, the convex cone generated by M is the first orthant.
- (b) Suppose we had a convex cone, S, a subset of the first octant such that $R_+^2 S \neq \{\}$. This means we can take a point $(x_1, x_2)^T$ such that $(x_1, x_2)^T \in R_+^2$ and $(x_1, x_2)^T \notin S$. This point can be generated by $x_1(1, 0)^T + x_2(0, 1)^T$, which implies $(1, 0)^T, (0, 1)^T$ are not contained in S. Therefore, R_+^2 is the smallest convex cone that can contain both.
- **4.** (1) We know P is convex from the previous homework. d is an extremal direction iff $\forall x \in P$, $\lambda \geq 0$, $x + \lambda d \in P$. If d is an extremal direction, for an arbitrary $x \in P$, $A(x + \lambda d) = b = Ax + \lambda Ad \Rightarrow \lambda Ad = 0 \Rightarrow Ad = 0$. We also restrict $d \geq 0$ since any element in P must be positive. Now, assume $d \geq 0$, Ad = 0. Take $x \in P$. Then $x + \lambda d \geq 0$ and $A(x + \lambda d) = Ax = b$.
 - (2) From the definition in part (a), simply take a > 0. $A(ad) = a(Ad) = 0 \Rightarrow ad\varepsilon E$.

(3) Take $d_1, d_2 \in E$ and $a_1, a_2 > 0$ s.t. $a_1 + a_2 = 1$. $A(a_1d_1 + a_2d_2) = a_1(Ad_1) + a_2(Ad_2) = 0$.

5.

Where $x_1 = x$, $x_3 = y$, $x_2 = z$.

(2)
$$int(F_3) = \{x \in R^3 | |x_1| + |x_3| < x_2\}$$

(3)
$$bdry(F_3) = \{x \in R^3 | |x_1| + |x_3| = x_2 \text{ or } x_2 = 0\}$$

- (4) The only real extreme point is at (0,0,0). In reality, this is the intersection of 4 edges, which are $x_2 = x_1$, where $x_1 > 0$, $x_3 = 0$, $x_2 = -x_1$, where $x_1 < 0$, $x_3 = 0$, $x_2 = x_3$, where $x_3 > 0, x_1 = 0$, and $x_2 = -x_3$, where $x_3 < 0, x_1 = 0$. These are vertices of the polyhedron.
- (5) Suppose $(y_1, y_2, y_3)^T$, $(z_1, z_2, z_3)^T \varepsilon R^3$ and $a_1, a_2 \varepsilon R$ s.t. $a_1 + a_2 = 1$, $a_1, a_2 \ge 0$. $a_1|y_1|+a_1|y_3| \le a_1y_2$ and $a_2|z_1|+a_2|z_3| \le a_2z_2$, since we can just multiply through by a positive constant. Note that the constants can also go inside the absolute value. We know $|w_1 + w_2| \le |w_1| + |w_2|$. With these two facts together, we can say: $|a_1y_1 + a_2z_1| + |a_1y_3 + a_2z_3| \le a_1y_2 + a_2z_2$. Therefore, F_3 is convex. Note that the second line above is also true if we don't restrict the constant to be less than or equal to one, so F_3 is also a cone.
- (6) R_{+}^{3} can be generated by vectors in F_{3} . The vectors $(0, 1, 0)^{T}$, $(1, 2, -1)^{T}$, and $(1,2,1)^T$. I can't really think of another relationship.

6. (a)
$$P = \{x_1, x_2 \in \mathbb{R}^2 | 2x_1 - 4x_2 + s_1 = 1, 3x_1 - x_2 - e_1 = -3, x_1, x_2, s_1, e_1 \ge 0\}$$

Take $s_1, e_1 = 0$. Then $x_1 = \frac{-13}{10}, x_2 = \frac{-9}{10}, s_1 = 0, e_1 = 0$. Take $x_1, x_2 = 0$. Then $x_1 = 0, x_2 = 0, s_1 = 1, e_1 = 3$. Take $x_1, s_1 = 0$. Then $x_1 = 0, x_2 = \frac{-1}{4}, s_1 = 0, e_1 = \frac{-11}{4}$. Take $x_1 = 0, e_1 = 0$. Then $x_1 = 0, x_2 = 3, s_1 = 13, e_1 = 0$. Take $x_2, s_1 = 0$. $x_1 = \frac{1}{2}, x_2 = 0, s_1 = 0, e_1 = \frac{9}{2}$. Take $x_2, e_1 = 0$. Then $x_1 = -1, x_2 = 0, s_1 = 3, e_1 = 0$.

The basic solutions are:

$$x_1 = \frac{-13}{10}, x_2 = \frac{-9}{10}, s_1 = 0, e_1 = 0$$

 $x_1 = 0, x_2 = 0, s_1 = 1, e_1 = 3$

$$x_1 = 0, x_2 = \frac{-1}{4}, s_1 = 0, e_1 = \frac{-11}{4}$$

 $x_1 = 0, x_2 = 3, s_1 = 13, e_1 = 0$
 $x_1 = \frac{1}{2}, x_2 = 0, s_1 = 0, e_1 = \frac{9}{2}$
 $x_1 = -1, x_2 = 0, s_1 = 3, e_1 = 0$

(b) The basic feasible solutions are:

$$x_1 = 0, x_2 = 0, s_1 = 1, e_1 = 3$$

 $x_1 = 0, x_2 = 3, s_1 = 13, e_1 = 0$
 $x_1 = \frac{1}{2}, x_2 = 0, s_1 = 0, e_1 = \frac{9}{2}$

please write it c

(c) This is, in fact, an unbounded set. The vector pointing from (0.5,0)+(0,3) is (-0.5,3). We need a vector perpendicular to this. (6,1) works.

(d) With just P, the directions are (0,1) and (1,0). In the standard form, these are (0,3,12,-3) and (0.5,0,-1,1.5).

7. (a)
$$P = \{x_1, x_2 \in \mathbb{R}^2 | 2x_1 - 2x_2^+ + 2x_2^- + s_1 = 3, 8x_1 - x_2^+ + x_2^- - e_1 = -4, x_1, x_2^+, x_2^-, s_1, e_1 \ge 0\}$$

Take $x_1, x_2^+, x_2^- = 0$. Then $x_1 = 0, x_2^+ = 0, x_2^- = 0, s_1^- = 3, e_1^- = 4$. Take $x_1, x_2^-, e_1^- = 0$. The equations are inconsistent, so it doesn't produce a bfs. Take $x_1, x_2^+, s_1^- = 0$. Then

$$x_1=0, x_2^+=0, x_2^-=\frac{3}{2}, s_1=0, e_1=\frac{11}{2}$$
 . Take $x_1, x_2^-, s_1=0$. Then $x_1=0, x_2^+=\frac{-3}{2}, x_2^-=0, s_1=0, e_1=\frac{11}{2}$. Take $x_1, x_2^-, e_1=0$. Then $x_1=0, x_2^+=4, x_2^-=0, s_1=11, e_1=0$. Take $x_1, x_2^+, e_1=0$. Then $x_1=0, x_2^+=0, x_2^-=-4, s_1=11, e_1=0$. Take $x_2^+, x_2^-, s_1=0$. Then $x_1=\frac{3}{2}, x_2^+=0, x_2^-=0, s_1=0, e_1=16$. Take $x_2^+, x_2^-, e_1=0$. Then $x_1=\frac{-1}{2}, x_2^+=0, x_2^-=0, s_1=4, e_1=0$. Take $x_2^+, e_1, s_1=0$. Then $x_1=\frac{-11}{14}, x_2^+=0, x_2^-=\frac{16}{7}, s_1=0, e_1=0$. Take $x_2^-, e_1, s_1=0$. Then $x_1=\frac{-11}{14}, x_2^+=\frac{-16}{7}, x_2^-=0, s_1=0, e_1=0$. These are the basic solutions.

(b) The basic feasible solutions are

$$x_1 = 0, x_2^+ = 0, x_2^- = 0, s_1^- = 3, e_1^- = 4$$
 $x_1 = 0, x_2^+ = 0, x_2^- = \frac{3}{2}, s_1^- = 0, e_1^- = \frac{11}{2}$
 $x_1 = 0, x_2^+ = 4, x_2^- = 0, s_1^- = 11, e_1^- = 0$
 $x_1 = \frac{3}{2}, x_2^+ = 0, x_2^- = 0, s_1^- = 0, e_1^- = 16$

SOM (

(c) We have to pick a direction perpendicular to (-1.5,4). (4,1.5) will do.

(d) There's only one edge to travel along. In R^2 , the direction is $(0,-1)^T$. In R^5 , it's $(0,-4,0,-8,4)^T$.