Siddharth Krishnan

Senior Undergraduate Discipline of Electrical Engineering Indian Institute of Technology Gandhinagar

siddharth.krishnan@iitgn.ac.in +91 9920968182

ACADEMIC DETAILS			
Degree/ Board	Institute	Year	CPI/%
B.Tech*	IIT Gandhinagar	2016-Present	9.17
Maharashtra Board(HSC)	Pace Junior Science College	2016	90.62
ICSE	Bombay Scottish School, Mahim	2014	93

^{*}B.Tech with Minors in **Physics** - expected in July 2020

FIELDS OF INTEREST

- Atomistic Materials Simulation
- High-throughput Computation for materials
- Quantum Materials and devices for energy storage, energy harvesting, and electronic and optical devices
- Computational Nanoscale device modeling

INTERNSHIPS

• Cascaded Tunneling Field Effect Transistor(CasTFET)

(Guide:Dr. Tillmann Kubis, Network for Computational Nanotechnology, Purdue University, May'19 - August'19)

- Performed calculations for Si-Ge heterostructures using a Tight-Binding Hamiltonian based Non-Equilibrium Green's Formalism on the NEMO5
- o Studied the effect of Electrical field on the electron and hole distributions in the nanostructure
- Analysed the results to assess their performance as CastFETs
- o Optimised the geometry of the nanostructures to improve the carrier distributions for high ON current
- o Explored novel material systems(such as InAs-GaSb nanostructures) for their application in CasTFET
- Attempted to generate tight-binding parameters for calculating electronic properties of InAs-GaSb nanostructures
- o Wrote PBS scripts to execute calculations of computing clusters

• Modeling Thermal Capacitances in Hetero-junction Bipolar Transistors

(Guide: Dr.Anjan Chakravorthy, Professor, Indian Institute of Technology Madras, May'18 - August'18)

- Conducted a numerical study of heat flow in various transistor geometries using TCAD and circuit modeling tools
- Proposed a *compact model* for transient self-heating in *Si-Ge HBTs*
- Implemented the compact model in *Verilog A*
- Obtained an accurate model which matched with TCAD thermal simulations of the transistor

• Non-Equilibrium Green's Function

(Guide:Dr. Tillmann Kubis, Network for Computational Nanotechnology, Purdue University, (May'19 - August'19)

- Implemented Non-Equilibrium Green's under the Effective Mass approximation for AlGaAs-GaAs Heterostructures
- Applied the reduced eigenspace approximation for calculating transmission through these nanostructures
- Conducted a literature survey to understand the basic theory behind Non-Equilibrium Greens Function Formalism

RESEARCH PROJECTS

• Electron Transport in Graphene Nanostructures

(Guide:Dr. Ravi Hegde, Assisstant Professor, Indian Institute of Technology Gandhinagar, December'18 - present)

- o Understanding the fundamentals of transport physics in nanoscale low dimensional systems
- Calculating the Conductance of various Graphene dots of different geometries in Kwant(python library)
- Calculated the I-V curve for these structures using Landauer Formalism
- Calculating the conductance curves for Graphene-Hexagonal Boron Nitride Ring-Dot Heterostructures and observing the effect of changes in the geometry of the structure on its transport
- Attempting to gain a deep understanding of transport in these structures and to discover new physics which can be exploited in various novel devices

• Cost-Effective Integration of Bipolar Transistors in 180nm CMOS Technology

(Guide:Dr.Nihar Mohapatra, Associate Professor, Indian Institute of Technology Gandhinagar, Jan'18 - Apr'18)

- Studied the various aspects of the process which strongly affect the bipolar transistors performance
- Optimized the doping concentration of the base region and the collector region of the BJT as well as the emitter and base thickness
- o Studied the effect of Shallow Trench Isolation edges on the breakdown voltage of the transistor
- Experimented with various lateral device geometries and studied the variation in the device performance
- \circ Attained a gain β of 120 and an Early Voltage of 23 V for a bipolar NPN transistor

COURSE PROJECTS

• Materials Science of Quantum Computers

(April'18 - May'18)

- Conducted a literature survey, studying the various methods of realizing qubits and the materials involved
- o Analyzed the properties of the materials which are required for this application
- o Identified the advantages and disadvantages for different methods of realizing quantum bits
- o Compiled the findings from the research and analysis into a comprehensive report

• Computational Model for Vector Mediated Epidemics

(October'19 - December'19)

- o Implement a stochastic model based on Markov Process for Vector Mediated Epidemic spread
- Modelled stationary hosts as lattice points, sharing the lattice sites with mobile vectors
- Used Monte-Carlo methods to observe phase transition in the process
- o Optimized and parallelized the code for efficient use fo available hardware
- Studied the effect of variation in active parameters like the host(human) recovery rate and the number of lattice points were varied on the epidemic spread

Numerical Methods for Quantum and Classical Physics

(February'19 - April'19)

- Implemented Euler-Cromer and Velocity Verlet method for calculating phase space plots for mechanical oscillators and astronomical bodies.
- Numerically solved the Schrodinger Equation for various potentials using matching and shooting method

CONFERENCES/PRESENTATIONS

• Asymmetric Current-Voltage Characteristics in Graphene-hBN Dot-Ring Nanostructures -a numerical study IEEE NMDC 2019- Stockholm, Sweden

TECHNICAL SKILLS

- Script: Python, C, C++, VerilogA, PBS
- Tools: MATLAB, NEMO5, SILVACO(TCAD), Sentaurus (TCAD), Cadence Virtuoso, LATEX

TEACHING EXPERIENCE

- **Teaching Assistant for Electronic Devices**, IIT Gandhinagar (*August'19 November'19*)
 - Designed question papers and problem sets, conducted MATLAB introduction session, corrected answer scripts and organised learning sessions for the introductory course on solid state device physics for undergraduates

ACADEMIC ACHIEVEMENTS

• Dean's List holder for the 2nd, 3rd, 4th and 5th semester. Dean's List is awarded to a student for excelling in academics by obtaining a CPI of 8.5 or higher in that particular semester

RELEVANT COURSES

- Undergraduate Level Courses:
 - o Electronic Devices
 - o Introduction to Materials Science
 - o Probability and Random Processes
- Graduate Level Courses:
 - o Computational Physics (Fall Semester 2019)
 - o Quantum Mechanics I (Fall Semester 2019)
 - Statistical Mechanics(Spring Semester 2020)
 - o Physics of Transistors
 - o Nanoscale Device Engineering
 - o Lasers
 - o Physics of 2D materials

CO-CURRICULAR ACTIVITIES

- EWYL Program(Earn While You Learn)
 - Prepared Question Banks for Undergraduate Mathematics Courses, September 2017-March 2018 at IIT Gandhinagar
- Member of Team LATEX (Student Organisation)
 - Organised and co-instructed a workshop in January 2018 and January 2019 on **Introduction to LATEX** for the entire student community of IIT Gandhinagar

EXTRA-CURRICULAR ACTIVITIES

- Represented IIT Gandhinagar in various sports tournaments as a member of the college basketball team
- Prepared Question Banks for Undergraduate Mathematics Courses, September 2017-March 2018 at IIT Gandhinagar