Imperial College London

Relativity – Lecture 5

Dr Caroline Clewley

Page 1

Key concepts of lecture 4

Lorentz transformations (1D):

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \gamma(t - \frac{vx}{c^2})$$

Velocity addition:

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$

What if u and $v \ll c$? What if $u' \rightarrow c$?

Page 3

Space fight

Two spacecraft of equal rest length L_0 = 100 m pass very, very close to each other as they travel in opposite directions at a relative speed of 3/5 c.

Space fight

Ali, the captain of ship S, has a laser cannon at his tail that he plans to fire at the nose of Brenda's S' ship when he observes his nose lined up with her tail.

Page 5

Space fight

It is only supposed to be a warning shot across nose and he figures it won't hit because Brenda's S' ship is length contracted.

Space fight

However, his co-pilot says that the shot will hit because Brenda sees that the length of ship S is shortened.

Page 7

Who is right?

Brenda's view

Page 9

Order of events

Ali:

- 1: Ali's nose lines up with Brenda's tail.2: Ali shoots laser from his ship's tail.
- 3: Ali's tail lines up with Brenda's nose.

Brenda:

- 2: Ali shoots laser from his ship's tail.
- 3: Ali's tail lines up with Brenda's nose.
- 1: Ali's nose lines up with Brenda's tail.

The position four-vector and the invariant interval

Events are expressed in 4 coordinates.

(ct, x, y, z) is called the position four-vector, or 4-position.

 $s^2 = c^2 \Delta t^2 - (\Delta x^2 + \Delta y^2 + \Delta z^2)$ is the invariant interval.

For light, s^2 = 0: the separation between two events is lightlike.

Spacelike separation of events

- $s^2 < 0$, so $\Delta r^2 > c^2 \Delta t^2$. Nothing can travel between the two events.
- A reference frame can be found where the two events are simultaneous.

Page 15

Timelike separation of events

- $s^2 > 0$, so $\Delta r^2 < c^2 \Delta t^2$. Information can be exchanged between the two events.
- Causality: the order of events is preserved.
- A reference frame can be found where the two events occur in the same position.

Page 17

Example: street lights in a relativistic car

Page 19

Questions

- 1. What is the order in which the lamps are turned on in the observer's frame?
- 2. What is the order in which the lamps are turned on in the car's frame?
- 3. Where is the car compared to the street lights when the light from lamp A reaches it?

Summary

- 1. Events show up as points in a spacetime diagram. Moving objects have a worldline in this diagram.
- 2. The 4-position contains the four coordinates of an event in time and space.
- 3. The invariant interval $s^2 = c^2 \Delta t^2 \Delta r^2$ denotes the separation between events.
- 4. $s^2 < 0$, spacelike separation, $s^2 > 0$, timelike separation, $s^2 = 0$, timelike separation.