Estimação dos principais direcionadores dos custos operacionais das empresas brasileiras de transmissão de energia elétrica utilizando modelos de regressão e programação linear

Igor Mazzeto Resende Soares
Orientador: Prof. Dr. Marcelo Azevedo Costa

Universidade Federal de Minas Gerais Departamento de Estatística - ICEX

25 de agosto de 2023

Agenda

- 🕕 Introdução
 - Justificativa
 - Objetivos
- 2 Metodologia
- Estudo de caso Resultados
 - Estatísticas descritivas
 - Regressão linear múltipla
 - Regressão não linear modelo gama
 - Programação linear
 - Modelo de programação linear com aplicação de bootstrap
- 4 Conclusões
 - Comparação de resultados
 - Conclusões

Justificativa

- Importância da estimação do PMSO para determinação da RAP e consequentemente.
- Aplicação de técnicas estatísticas considerando restrições físicas e técnicas intrínsecas à operação de transmissão de energia elétrica .

Objetivos

São objetivos deste trabalho:

- Analisar as correlações existentes entre as variáveis e sua representatividade e importância para a realização de previsões.
- Definir um modelo de regressão linear múltipla ou de programação linear para o custo operacional que respeite as restrições impostas pela natureza da operação.
- Discutir os resultados encontrados e apresentar uma alternativa ao regulador para o modelo utilizado na definição dos custos operacionais.

Metodologia

- Pesquisa descritiva quantitativa e que dispõe de um estudo de caso.
- Serão respondidas questões relacionadas ao funcionamento de fenômenos que occorem no âmbito do SEB.

Estudo de caso - Resultados

- Base de dados fornecidas pela NT nº 097/2022–SRM/ANEEL por meio de uma planilha eletrônica
- Base composta por 125 observações e 20 colunas
- Variável de interesse custos operacionais compostos pelas contas de pessoal, materiais, serviços de terceiros e outros (PMSO)

Estudo de caso - direcionadores de custo

Descrição dos direcionadores:

- X_1 : Extensão de equipamentos de rede com tensionamento maior de 230 kV
- ② X_2 : Módulos de manobra com tensão igual ou superior a 230 kV
- lacktriangle X_4 : Potência aparente total, em MVA, de equipamentos de subestação
- § X₆: Equipamentos de subestação com tensão inferior a 230 kV
- X₇: Módulos de manobra com tensão inferior a 230 kV
- X₈: Extensão de equipamentos de rede com tensionamento maior de 230 kV

Estatísticas descritivas

Tabela: Estatísticas descritivas das variáveis dependente e independentes

	PMSO	<i>X</i> ₁	X_2	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	<i>X</i> ₈
Mínimo	1.273,0	0,0	4,0	7,0	0,0	0,0	0,0	0,0	0,0
1º Quartil	30.523,0	773,6	68,0	56,0	2.348,0	977,0	2,0	17,0	0,0
Mediana	103.467,0	3.517,7	138,0	116,0	7.500,0	4.227,0	5,0	43,0	45,2
Média	270.875,0	4.693,6	270,4	209,0	18.441,0	6.467,0	64,8	313,4	787,9
3º Quartil	262.355,0	6.848,9	345,0	275,0	19.527,0	9.485,0	80,0	375,0	500,7
Máximo	1.439.704,0	18.376,7	1.218,0	763,0	98.256,0	41.208,0	346,0	1.841,0	7.297,6

Histograma PMSO

Figura: Histograma PMSO

Boxplots: anual e por tipo de empresa

Figura: Boxplot anual

Fonte: Autor.

Figura: Boxplot por tipo

Boxplot por concessionária

Figura: Boxplot por concessionária

Correlação

Figura: Matriz de correlação

DEST UFMG

Gráficos de dispersão

Figura: Gráficos de dispersão

Ajuste modelo linear múltiplo

Tabela: Coeficientes do ajuste do modelo

Reg	Regressão linear				
	Coeficientes				
β_0	-64.039,21				
β_1	13,32				
β_2	794,1				
β_3	169,74				
β_{4}	-0,52				
β_5	8,86				
β_6	621,45				
β_7	-189,72				
β_8	-8,01				

Fonte: Autor

Características do ajuste:

•
$$R^2 = 0.92$$

• Modelo ajustado:

$$\hat{y} = -64.03 + 13.32x_1 + 794.1x_2 + 169.7x_3 - 0.5x_4 + 8.8x_5 + 621.4x_6 - 189.7x_7 - 8x_8$$

Testes dos pressupostos do modelo de regressão

Tabela: Pressupostos do modelo

Testes dos pressupostos do modelo								
Teste	Pressuposto	Estatística	Hipótese nula	valor-p	Significância	Veredicto		
Teste-F	Significância	F = 0,92	$\beta_1 =\beta_k = 0$	$2.20 \cdot 10^{-16}$	0,05	Rejeitado		
Breusch-Pagan	Homoscedasticidade	LM = 2,25	$\delta_1 = \delta_k = 0$	$6,50 \cdot 10^{-8}$	0,05	Rejeitado		
Durbin-Watson	Autocorrelação	d = 1,07	$Correla \boldsymbol{\varsigma} \tilde{ao} = 0$	$2,46 \cdot 10^{-10}$	0,05	Rejeitado		

Testes de normalidade para o modelo de regressão

Tabela: Testes de normalidade

Testes de normalidade para os resíduos						
Teste	Estatística	Hipótese nula	valor-p	Significância	Veredicto	
Shapiro-Wilk	W = 0,92	$H_0: X \sim N$	$5.54 \cdot 10^{-6}$	0,05	Rejeitado	
Anderon-Darling	A = 2,25	$H_0: X \sim N$	$9,76 \cdot 10^{-6}$	0,05	Rejeitado	
Kolmogorov-Smirnov	D = 0, 15	$H_0: X \sim N$	$2,03 \cdot 10^{-7}$	0, 05	Rejeitado	

Análise de resíduos

Gráfico de probabilidades Q-Q e gráfico de resíduos versus ajuste

Figura: Gráficos de resíduos

Análise de resíduos

Figura: Gráficos de resíduos

Ajustes para modelo de regressão multivariado

Figura: Modelo multivariado

PMSO: estimado x observado Modelo de regressão multivariada 1.500.000 1.000.000-Estimado 500,000--500.000· 1 000 000 500,000 Observado

Fonte: Autor.

 $R^2: 0.92$

Figura: Modelo multivariado - Log

Fonte: Autor.

 $R^2: 0.97$

Ajuste linear múltiplo leave-one-out com validação cruzada

Implementação de validação cruzadas em conjunto com a técnica leave-one-out:

- Oriar um novo banco de dados com informações de uma empresa escolhida: base de dados de validação
- ② Criar outro banco de dados com informações das empresas remanescentes: base de treinamento
- Implementar modelo de regressão linear múltiplo utilizando o banco de dados de treino
- Implementar a técnica de AIC para escolher o melhor modelo e conjunto de variáveis
- Aplicar o modelo de regressão linear múltiplo na base de dados de validação para estimar os valores de PMSO do modelo
- Armazenar os dados do PMSO estimado para a empresa do banco de dados de validação
- Realizar esse procedimento para todas as 28 empresas

DEST

UFMG

Ajustes para modelo de regressão leave-one-out

Figura: Modelo multivariado

Fonte: Autor.

 $R^2: 0.32$

Figura: Modelo multivariado - Log

Fonte: Autor.

 $R^2: 0.93$

Ajuste - modelo gama

Implementação do modelo gama para lidar com os problemas encontrados anteriormente.

Foi escolhido o modelo gama devido a evidência de proporcionalidade quadrática na variância dos resíduos.

Implementação do modelo com as seguintes abordagens:

- Ajuste com implementação do critério de informação de Akaike (AIC)
 Regressão gama (1)
- Ajuste com implementação do AIC e partição da base de dados em dois, um conjunto para treino o modelo e outro para aplicação do modelo preditivo (análogo ao realizado na seção anterior) – Regressão gama (2)
 DEST

Ajuste - Modelo Gama

Tabela: Ajuste - modelo gama

Resultados - ajuste modelo Gama						
Coeficientes	(1) Step AIC	(2) Step AIC - Partição				
β_0	-1.754,9	-1.273,8				
β_1	19,6	17,9				
β_2	376,0	431,0				
eta_3	-	-				
β_4	-	-				
β_5	-	-				
β_6	1.006,3	585,7				
β_7	-	-				
β_8	-25,5	-				

Fonte: Autor.

Tabela: Qualidade do ajuste

Modelo	R^2	Deviance		
Regressão Gama (1)	0,82	1,00		
Regressão Gama (2)	0,72	1,00		
Fonte: Autor.				

DEST

Resultados para modelo de regressão gama

Figura: Modelo (1)

Fonte: Autor.

 $R^2: 0.82$ p-valor: 1,00

Figura: Modelo (2)

Fonte: Autor.

 $R^2: 0.72$ p-valor: 1,00

Resultados para modelo de regressão gama - logaritmo

Figura: Modelo (1)

Fonte: Autor.

 $R^2: 0.94$

Figura: Modelo (2)

Fonte: Autor.

 $R^2: 0.92$

Programação linear

Abaixo, algumas ponderações para implementação do modelo de programação linear:

- Modelo oriundo da regressão quantílica a $y = \beta_0 + \beta x + \varepsilon$ com minimização de erros
- ullet Função objetivo: minizar erros com fator au
- Restrições:
 - β ≥ 0
 - $\beta_0 = \alpha$
- Particionamento do erro em dois termos
- Implementação de modelo clássico e abordagem leave-one-out

Formulação do modelo de programação linear

A abordagem escolhida foi a da mediana, portanto au=0.5

minimizar:
$$\sum_{j=1}^n \tau e_{1j} \ + \ (1-\tau)e_{2j}$$
 sujeito a:
$$y_j = \alpha_j + \beta_{kj}x_{kj} + e_{1j} - e_{2j}, \quad \forall j \in \{1,\dots,n\}$$

$$\beta_k \geq 0, \quad \forall k \in \{1,\dots,8\}$$

$$e_j = e_{1j} + e_{2j}, \quad \forall j \in \{1,\dots,n\}$$

$$N \in \{0,\dots,128\}$$

Algoritmo leave-one-out

- Remover as observações para a concessionária na qual queremos estimar o PMSO.
- Resolver o modelo de programação linear utilizando o conjunto de dados com as concessionárias que restaram.
- Ocom o output do modelo contendo os coeficientes de interesse, estimar o PMSO para a concessionária de interesse.
- Armazenar resultado.
- Realizar o procedimento 28 vezes, número de concessionárias presentes no estudo.

Solução modelo linear

Tabela: Solução - programação linear

Programação Linear						
Coeficientes	Modelo completo	Leave-one-out				
β_0	-29.345,2	27.379,5				
eta_{1}	20,7	20,9				
eta_{2}	450,0	446,3				
eta_3	-	-				
$eta_{ extsf{4}}$	1,8	1,7				
$eta_{f 5}$	3,7	3,7				
eta_{6}	-	11,9				
eta_{7}	-	-				
eta_{8}	-	-				
R^2	0,88	0,79				
	Г					

Soluções dos modelos: PMSO estimado x observado

Figura: Modelo linear

Fonte: Autor.

Figura: Modelo linear - leave-one-out

PMSO estimado x observado - logaritmo

Figura: Modelo linear - log

Fonte: Autor.

Figura: Leave-one-out - log

Modelo linear - bootstrap

Para a verificar a robustez das restrições do modelo de programação linear foi implementada a técnica de bootstrap e para intervalo de confiança percentílico. O modelo completo foi escolhido por apresentar maior coeficiente de determinação.

Nesse procedimento foram realizadas 10.000 simulações com observações aleatoriamente no software R. Abaixo os passos do procedimento:

- É gerada uma nova base de dados utilizando a técnica de reamostragem com reposição
- é implementado o algoritmo SIMPLEX para resolver o modelo com a nova base de dados oriunda da reamostragem
- A solução contendo os coeficientes de regressão é computada
- Os passos de 1 a 3 são realizados 10.000 vezes

Resultados para procedimento bootstrap - β_0

Figura: Histograma de soluções para β_0

DEST UFMG

Resultados para procedimento bootstrap - coeficientes

Figura: Histograma de soluções para $\beta_1, \beta_2, \beta_3, \beta_4$

Resultados para procedimento bootstrap - coeficientes

Figura: Histograma de soluções para $\beta_5, \beta_6, \beta_7, \beta_8$

Intervalos de confiança bootstrap

O nível de confiança escolhido para construir o intervalo foi de 95%. Dessa forma, obteve-se os seguintes intervalos com seus limites definidos:

Tabela: Intervalo de Confiança Percentílico - Bootstrap

Intervalo de Confiança Percentílico						
	Bootstrap					
Coeficientes	2,5%	97,5%				
β_0	-64.426,7	-10.021,2				
β_1	6,3	40,0				
β_2	206,3	672,2				
β_3	0,0	51,3				
$eta_{ extsf{4}}$	0,0	4,6				
β_5	0,0	11,1				
β_{6}	0,0	281,0				
β_7	0,0	0,0				
β_8	0,0	0,0				

Resultados agrupados - finais

- Para comparação dos resultados, foram considerados os modelos implementados com as técnicas de validação cruzada e leave-one-out na escala logarítmica.
- Tal abordagem foi utilizada para atenuação das distorções presentes no banco de dados aqui descritas.
- Dessa forma, no estudo, foram considerados os resultados dos ajustes de modelos de regressão linear, regressão não-linear (modelo gama) e de programação linear.

Tabela: Resultados Finais

Comparativo de R^2				
Modelo	R^2			
Regressão linear - Leave-one-out - Log	0,93			
Regressão Gama (2) - Log	0,92			
Modelo Linear - Leave-one-out - Log	0,80			

Conclusões

- O ajuste produzido pelo modelo linear múltiplo se mostrou inadequado por violar os pressupostos de normalidade e as restrições operacionais.
- O ajuste produzido pelo modelo gama se mostrou razoável em relação a capacidade preditiva, entretanto apresentou problemas de subdispersão.
- O modelo de programação linear se mostrou o mais efetivo para estimar o PMSO pois respeita as restrições operacionais e apresenta melhor capacidade preditiva.
- Cinco entre as oito variáveis mostraram-se relevantes (coeficiente posivito e não nulo) quando aplicado o modelo linear.
- Atualmente a ANEEL implementa uma metodologia que utiliza direcionadores de custo redundantes podendo comprometer ou enviesar as estimativas de eficiência.

