CS 453X: Class 4

Jacob Whitehill

Linear regression

Let's define a matrix X to contain all the training images:

$$\mathbf{X} = \left[egin{array}{ccccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & & \end{array}
ight]$$

- In statistics, X is called the design matrix.
- Let's define vector y to contain all the training labels:

$$\mathbf{y} = \left[egin{array}{c} y^{(1)} \ dots \ y^{(n)} \end{array}
ight]$$

Using summation notation, we derived:

$$\mathbf{w} = \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} \mathbf{x}^{(i)}^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{x}^{(i)} y^{(i)}\right)$$

Using matrix notation, we can write the solution as:

$$\mathbf{w} = \left(\mathbf{X}\mathbf{X}^{\top}\right)^{-1}\mathbf{X}\mathbf{y}$$

- To compute **w**, do *not* use np.linalg.inv.
- Instead, use np.linalg.solve, which avoids explicitly computing the matrix inverse.

- Once we've "trained" the weights w, we can estimate the y-value (label) for any x.
- We can compute the $\{\hat{y}^{(i)}\}$ for a set of images $\{\mathbf{x}^{(i)}\}$ in one-fell-swoop using matrix operations.
- Let's define our design matrix **X** as before:

$$\mathbf{X} = \left[egin{array}{cccc} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ & & & \end{array}
ight]$$

Then our estimates of the labels is given by:

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

Suppose we have n images, each with just 2 pixels.

$$\mathbf{\hat{y}} = \mathbf{X}^{\top} \mathbf{w}$$

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

$$= \begin{bmatrix} \mathbf{x}_1^{(1)} & \dots & \mathbf{x}_1^{(n)} \\ \mathbf{x}_2^{(1)} & \dots & \mathbf{x}_2^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

This is the index of the *image*.

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w} \\
= \begin{bmatrix} \mathbf{x}_1^{(1)} & \dots & \mathbf{x}_1^{(n)} \\ \mathbf{x}_2^{(1)} & \dots & \mathbf{x}_2^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

This is the index of the *pixel*.

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{2}^{(1)} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} & \mathbf{x}_{2}^{(n)} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{2}^{(1)} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{1}^{(1)} w_{1} + \mathbf{x}_{2}^{(1)} w_{2} \\ \vdots \\ \mathbf{x}_{1}^{(n)} w_{1} + \mathbf{x}_{2}^{(n)} w_{2} \end{bmatrix}$$

Suppose we have n images, each with just 2 pixels.

$$\hat{\mathbf{y}} = \mathbf{X}^{\top} \mathbf{w} \\
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \dots & \mathbf{x}_{1}^{(n)} \\ \mathbf{x}_{2}^{(1)} & \dots & \mathbf{x}_{2}^{(n)} \end{bmatrix}^{\top} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} & \mathbf{x}_{2}^{(1)} \\ \vdots & \vdots \\ \mathbf{x}_{1}^{(n)} & \mathbf{x}_{2}^{(n)} \end{bmatrix} \begin{bmatrix} w_{1} \\ w_{2} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{x}_{1}^{(1)} w_{1} + \mathbf{x}_{2}^{(1)} w_{2} \\ \vdots \\ \mathbf{x}_{1}^{(n)} w_{1} + \mathbf{x}_{2}^{(n)} w_{2} \end{bmatrix} \\
= \begin{bmatrix} \hat{\mathbf{x}}_{1}^{(1)} w_{1} + \hat{\mathbf{x}}_{2}^{(n)} w_{2} \end{bmatrix}$$
With ius

 $= \left[\begin{array}{c} \hat{y}^{(1)} \\ \vdots \\ \hat{y}^{(n)} \end{array}\right] \hspace{1cm} \begin{array}{c} \text{With just a single matrix-vector} \\ \text{multiplication, we have computed} \\ \text{our predictions for } \textit{all of the } n \\ \text{images simultaneously.} \end{array}$

1-d example

• Linear regression finds the weight vector \mathbf{w} that minimizes the f_{MSE} . Here's an example where each \mathbf{x} is just 1-d...

X

The best **w** is the one such that $f_{MSE}(\mathbf{y}, \, \hat{\mathbf{y}})$ is as small as possible, where each $\hat{y} = \mathbf{x}^{\mathsf{T}}\mathbf{w}$.

Exercise

 Which of the following regression lines would be predicted using the model described above?

Exercise

 Which of the following regression lines would be predicted using the model described above?

Notice that the model enforces that (x,y)=(0,0) lie in the graph. Because of this constraint, the model learns the wrong slope to minimize the MSE.

 In order to account for target values y with non-zero mean, we could add a bias term b to our model:

$$\hat{y} = \mathbf{x}^{\top} \mathbf{w} + b$$

We could then compute the gradient w.r.t. both w and b and solve.

$$\nabla_{\mathbf{w}} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{\mathbf{w}} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

$$\nabla_{b} f_{\text{MSE}}(\mathbf{y}, \hat{\mathbf{y}}; \mathbf{w}, b) = \nabla_{b} \left[\frac{1}{2n} \sum_{i=1}^{n} \left(\mathbf{x}^{(i)^{\top}} \mathbf{w} + b - y^{(i)} \right)^{2} \right]$$

 Alternatively, we can implicitly include a bias term by augmenting each input vector x with a 1 at the end:

$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

 Correspondingly, our weight vector w will have an extra component (bias term) at the end.

$$\tilde{\mathbf{w}} = \left[egin{array}{c} \mathbf{w} \\ b \end{array} \right]$$

To see why, notice that:

$$\hat{y} = \tilde{\mathbf{x}}^{\top} \tilde{\mathbf{w}}$$

$$= \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

$$= \mathbf{x}^{\top} \mathbf{w} + b$$

- We can find the optimal w and b based on all the training data using matrix notation.
- First define an augmented design matrix:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \mathbf{x}^{(1)} & \dots & \mathbf{x}^{(n)} \\ 1 & \dots & 1 \end{bmatrix}$$

• Then compute:

$$ilde{\mathbf{w}} = \left(ilde{\mathbf{X}} ilde{\mathbf{X}}^ op
ight)^{-1} ilde{\mathbf{X}} \mathbf{y}$$

Example: age estimation

- Regress the age from 48x48 face images.
- Show demo...

 How can we easily increase the number of training images?

 How can we easily increase the number of training images?

Flip them left-right:

- In numpy:
 - Let faces be a (n x 48 x 48) matrix containing n images.
 - Then facesFlipped = faces[:, :, ::-1]
 contains the left-right flipped images.

All *n* images.

- In numpy:
 - Let faces be a (n x 48 x 48) matrix containing n images.
 - Then facesFlipped = faces[:, :, ::-1] contains the left-right flipped images.

All 48 rows.

- In numpy:
 - Let faces be a (n x 48 x 48) matrix containing n images.
 - Then facesFlipped = faces[:, :, ::-1] contains the left-right flipped images.

All 48 columns but in reverse order.

- Avoid leakage of facial identity information:
 - Make sure that no "flipped" image in the testing set has an "unflipped" image in the training set (and viceversa).
- Data leakage: information in the training set which divulges information about the test set and which can bias the accuracy estimates.

Learned weights

- Inspecting what the machine learned can be useful for debugging (and kinda fun to look at).
- For age estimation:

X

Furrows around nose? Wrinkles in forehead?

W

Higher temperatures associated with larger age values.

- To augment a training set with more examples automatically, we need to use a label-preserving transformation:
 - Flipping left/right is a transformation.
 - It is label-preserving because faces look equally old whether you look at the original or a mirror-image.
- What are other examples of label-preserving transformation on images?

Regression for categorical data

Categorical data

- While computer vision and image analysis have motivated a lot of ML research, they are by no means the only application domain.
- Other big areas:
 - Speech
 - Text
 - Event logs

Case study: housing price prediction

- Suppose we want to predict housing prices, i.e., how much a house will sell for given a set of attributes (area, access to street, # fireplaces, etc.) about it.
- We could define a linear regression model:
 - SalePrice = w_1 * Area + w_2 * NumFireplaces + ... + b
- We can then use linear regression to train the optimal weights w to minimize the MSE.

Kaggle

- A handy resource to practice your ML skills is Kaggle, which is a website that hosts may machine learning competitions (with fabulous prizes).
- Example for House Prices: <u>https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data</u>