Zusammenfassung & Wiederholung Numerik 0 Klausur WS 22/23

Disclaimer: Nicht volstaendig, viele Schreib-/Deutschfehler

Format

- Frage 1: Kleine Verstaendnissfragen $10 \times 2p = 20p$
- 4 laengere Fragen: × 10p = 40p (besten 3 zaehlen)

Stoff

- Gesammte Skript ausser Kapitel:
 - -4.4
 - -5.2.2
 - -5.3
 - 5.4.3
 - 6.3 Kommt in der 2ten Klausur:
 - 6.4 Kommt in der 2ten Klausur:
- Alle Uebungsblaetter
- Keine Programmieraufgaben aber algorithmische Fragen schon
- Alle Definitionen & alle Saetze (nicht nur die Aussage aber auch die Voraussetzungen)
- Nicht erwartet: Komplizierte Formel auswendig kennen. (wenn Gegenstad einer Frage dann angegeben + herleiten oder als Hinweis gegeben)
- Hintergrundwissen: LA & Analysis

Zusammenfassung

2 - Konditionierung & Stabilitaet

- Definition einer numerischen Aufgabe absolute/relativer Fehler
- Relative Konditionszahl (Fehlerdaempfung, -verstaerkung) Only general understanding of these concepts is expected

2.3 & 2.4 Zahlendarstellung & Rundungsfehler

- Maschinenzahlen/ -operationen
- Fliesskommagitter, IEEE double precision
- Groesste, kleinste darstellbare Zahl (positive/negative)
- (natuerliche) Rundung absolute/relative Rundungsfehler
- Maschinengenauigkeit $eps \rightarrow Vorwaertsfehleranalyse$

$$x \oplus y = (x+y)(1+eps)$$
 $|\epsilon| < eps$

solche Rechnungen koennen an der Klausur drankommen

3 - Interpolation & Bestapproximation

- Was ist Interpolation/ Best Approximation?
- 2 Wichtige Saetze:
 - Fehler Darstellung (Satz 3.5)

- Existenz und Eindeutigkeit der Loesung (Satz 3.8)
- Lagrange Darstellung
- Newton Darstellung (Herleitung mittels dividierenden Differenzen Satz 3.10)
- Neville & Horner Schema fuer Polynomauswertung
- Allgemeine Interpolationsfehler (Satz 3.12)
 - Abschaetzung in $||\cdot||_{\infty}$
- Richardson Extrapolation zum Limes (Satz 3.16)
 - Anwendung bei numerischen Differentiation
- Stueckweise Polynominterpolation (z.B. Stueckweise Linear)
- Kubische Splineinterpolation
 - Def & Existenz (Satz 3.21)
 - Minimale Kruemmung
- Approximationsfehler (Satz 3.23 ohne Beweis)
- Trigonometrische Interpolation (Beweis nicht so wichtig fuer die Klausur)
 - 2 wichtige Punkte:
 - * Gibbs Phaenomen
 - * FFT (keine Details, nur Ideen)
- Best Approximation
 - $-\mathcal{L}^2$ Skalarprodukt & \mathcal{L}^2 Norm \rightsquigarrow Gaussapproximation
 - Orthogonalitaet des Bestapproximationsfehlers → Gauss-Legendre Polynome (Formel muessen nicht auswendig gelernt werden)
 - Allgemeine Gaussaproximation (Satz 3.31)
 - * Garantierter Fehlerkontrolle
 - * Haar-Wavelettes Definitionen:
 - · Mother Wavelette
 - · Erhalten von Kinder Wavelettes durch Skalierungen/Verschiebungen
 - * Eigenschaften (Lemma 3.34 wichtigste Teil dises Unterkapitels)
 - * Transformationssatz (ohne Beweis)
 - \ast Greedy Algorithmus um adaptiv eine Basis zu finden

4 - Quadratur (Numerische Integration)

- Quadraturformeln
- Fehlerdarstellung (Satz 4.2)
- Sehr wichtig: Genaugkeitsgrad
- Newton-Cotes Formeln (aequidistante Punkte) (Trapez, Simpsonsregeln auswendig kennen sehr wichtig)
 - Fehler Darstellung fuer Newton-Cotes (Lemma 4.11 & Satz 4.12)
- Summierte Newton-Cotes Fehler (Korollar 4.12)
- Adaptive Summierte Simpsonsregel (Nur algorithmische Idee)
- Gausquadratur (nicht Aequidistante Stuetzstellen) → Maximale Genauigkeitsgrad (Lemma 4.21 & Bedingungen im Lemma 4.22)
 - Beispiele mit 1 Punkt & 2 Punkte (wichtig die Bedingungen zu kennen Legendre Polynome)
 - Allgemeine Gaussquadraturformel → Nullstellen der Legendrepolynome (Satz 4.26)
 - Konvergenzsatz (nur Idee) (Satz 4.30 nicht notwendig fuer die Klausur)

5 - Lineare Gleichungssysteme - Direkte Verfahren

- Loesung von Ax = b mit $A \in \mathbb{R}^{m \times n}$, m < n, m = n, m > n
- Loesbarkeit fuer m = n
- Matrixnormen (sehr wichtig)
 - Normaequivalenz in \mathbb{R}^m (Satz 5.5)
 - Eigenschaften von Matrixnormen (sehr wichtig):

- * Vertraeglich
- * Submultiplikativ
- * natuerliche Matrixnorm
- Zeilen- & Spaltensumennormen (wichtigsten Matrix normen Lemma 5.8)
- Eigenwerten/-vektoren
 - * $\forall \lambda, ||\cdot||$ naturelich: $|\lambda| \leq ||A|| d.h.$ Spektrum sind durch Matrixnormen beschraenkt
- Symmetrische, transponierte, orthogonale, positiv-definite Matrix
- Eigenschaften von symmetrischen Matrizen im Bezug auf Spektrum
 - * Spektralnorm $||\cdot||_2$ ist die natuerliche Norm zu Euklidischem Vektornorm
- Fehleranalyse: Konditionszahl (**Def 5.15**)
 - * Stoerungssatz (Satz 5.17, Lemma 5.16)
- Gausseliminationsverfahren: Verfahren, Matrixschreibweise
 - * LR Zerlegung
 - * Pivotierung
 - $*\ Vorwaerts/-Rueckwertseinsetzung$
 - * Komplexitaet des Gaussverfahrens und der LR Zerlegung (Lemma 5.24)
 - * Rueckwertsstabilitaet der LR-Zerlegung mit Spaltenpivotierung (Nur Idee von Lemma 5.30, Satz 5.31 & 5.35 ohne Beweis)
 - * Anwendung des Stoerungsatzes
 - * Aequilibrierung (Rest von LR & Cholesky nicht in der Klausur)
 - * Falls $m \neq n$: Least-square3s Loesung \iff Loesung der Normalgleichung, ! \exists (Satz 5.40!!!)
 - * QR-Zerlegung:
 - · Householder Transformation (**Def 5.4**)
 - · Eigenschaften Householderverfahren (Lemma 5.42 nur Ideen)
 - · Eigenschaften der QR-Zerlegung \rightarrow Loesungsverfahren fuer rang $(A) = \min(m, n)$ (!!!)
 - · Anwendung in der Gausschen Ausgleichsrechnung (!!!)

6 - Iterative Verfahren

- F(x) = 0, $F: \mathbb{R}^n \to \mathbb{R}^n$.
- Iterationsfunktion, Fixpunktiteration
- Leipschitzstetigkeit, Kontraktion (beides bzgl einer Teilmenge $U \subset \mathbb{R}^n$, Definition 6.1)
- Banachsche Fixpunktsatz (Sat 6.2)
- Wie definieren wir Konvergenzordnung/-faktor (**Definition 6.3**)
- Newtonverfahren (auswendig kennen fuer die Klausur!)
 - Herleitung ueber Taylor, geometrische Interpretation
- Jacobi-matrix
 - Invertierbarkeit der Jacobimatrix (Lemma 6.7) → quadratische Konvergenz (Satz 6.9 ohne Beweis via Lemma 6.8)
- Kommt nur in der Wiederholungsklausur:
 - 6.3: Jacobi, GS...
 - 6.4: Numerische Loesung von Diffgleichungen