

PRUEBA DE EVALUACIÓN 23 de noviembre de 2016

- 1. (I) $(1,25 \ pto.)$ Define proyección ortogonal de un vector $v \in \mathbb{R}^n$ sobre un subespacio vectorial S de \mathbb{R}^n .
 - (II) (1,25 pto.) Define núcleo y subespacio imagen de un endomorfismo.
- 2. Para cada $a \in \mathbb{R}$, consideramos las matrices reales

$$A = \begin{pmatrix} a & 0 & a \\ 0 & 1 & 1 \\ 1 & -a & 0 \end{pmatrix} \quad y B = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}.$$

- (I) $(2,5 \ ptos.)$ Calcula, para cada valor de $a \in \mathbb{R}$, el subespacio Col A.
- (II) $(1,5 \ pto.)$ Estudia si existe algún valor de $a \in \mathbb{R}$ para el que $B \in \operatorname{Col} A$. ¿De qué tipo sería el sistema AX = B en ese caso?
- (III) (3,5 ptos.) Si a=1, halla la solución aproximada de norma mínima del sistema AX=B.