

战术级 MEMS 6 自由度惯性传感器

FSS-IMU614E 产品手册

特性

战术级 MEMS 陀螺仪

- 3.0°/h 零偏稳定性
- 0.04/s 零偏重复性
- 0.05°/s 输出噪声

战术级 MEMS 加速度计

- 30ug 零偏稳定性
- 1mg 零偏重复性
- 0.7mg 输出噪声

大范围精细化温度补偿

- -40℃至85℃温度补偿
- 精细化温度标定

独立转台标定

- 独立标定每个模块: 灵敏度、零偏、非正 交误差
- 提供用户标定安装误差接口

高强度工况耐受

- 超强冲击耐受: 2000g(0.5ms, 半正弦, 3轴)
- 超强振动耐受: 10g (10²2KHz, 3轴)
- 全温环境稳定工作: -40℃ ~ 85℃
- 100%磁屏蔽

实时而灵活的数字接口、体积小巧

- 高达 400Hz 的可配置输出采样率
- 支持串口、I2C、SPI 多种接口
- 24*24*10mm, 重量仅 10g

产品概述

FSS-IMU614E 是原极科技倾力打造的 6 自由度 MEMS 惯性传感器模块。标配输出三轴陀螺仪与 加速度信息和高精度姿态角。

高精度、高分辨率,可捕捉细微的震动与倾斜。大量程的输出,让大动态下的动作感知成为可能。所有模块出厂前都配置超宽温域的精细化温补与独立标定,让每个模块都能在各种极限工况下稳定发挥,同时保证所有产品性能高度一致。

预留的**组合导航接口**可以兼容目前主流卫星导航方案。

应用领域

- 自动驾驶: 车载、农机、工程车、水下
- 精密测量: 井下、隧道、震动、倾斜
- 稳定平台:云台、动中通、无人机
- 自动控制: 大型工业设备、自控系统

在标准性能及输出参数的基础上,原极也为您的特殊需求提供**定制化服务**,在产品上助您一臂之力!

目录

目示	₹	1
图例	列	2
	列	
1.	性能参数	4
	1.1 陀螺仪关键指标	4
	1.2 加速度计关键指标	5
	1.3 姿态角关键指标	5
2.	外形结构	7
3.	电气特性	8
4	引脚描述	9

FSS-IMU614E 产品手册

图例

图 1 陀螺仪 ALLAN 方差曲线	. 6
图 2 加速度计 ALLAN 方差曲线	. 6
四 - %元之《八····································	
图 4 引脚示意图	

表例

表 1	陀螺仪关键指标	. 4
表 2 7	加速度计关键指标	. 5
	电气特性	
	- 3 (4) 1 (2) 1 (4) 1	

1. 性能参数

1.1 陀螺仪关键指标

表 1 陀螺仪关键指标

参数	测试条件/备注	最小值	典型值	最大值	单位
测量范围			±500		°/s
零偏稳定性 X 轴	@25°C, 1σ		3.0		°/hr
零偏稳定性 Y 轴	@25°C, 1σ		2.0		°/hr
零偏稳定性 Z 轴	@ 25℃ , 1σ		2.0		°/hr
零偏重复性	@25°C, 1σ		0.04		°/s
轴间非正交			±1.0		‰
g 值敏感误差			0.007		°/s/g
内部低通截止频率	软件可调整	0.2	47	47	Hz
ODR ¹		1	100	400	Hz
测量延时				5.0	ms
全温范围零偏变化2	-40 ~ 85°C, rms		0.015		°/s
随机游走 X 轴 3	Allan variance@25℃, 1σ		0.4		°/√hr
随机游走Y轴	Allan variance@25℃, 1σ		0.2		°/√hr
随机游走 Z 轴	Allan variance@25℃, 1σ		0.2		°/√hr
输出噪声 4	rms@47Hz cf		0.05		°/s
刻度系数误差			±0.6‰		
刻度系数非线性			0.05%		

¹最大输出更新率不大于 200Hz@115200bps

²温度范围即测试环境,也是 RMS 指标

³ IEEE 标准,在静态 25℃环境下 Allan 方差曲线给出

⁴静态 25℃环境,截止频率 47Hz 条件下的 RMS 指标

1.2 加速度计关键指标

表 2 加速度计关键指标

参数	测试条件/备注	最小值	典型值	最大值	单位
测量范围			±6		g
零偏稳定性	@25°C , 1σ		30		μg
零偏重复性	@25°C, 1σ		1.0		mg
轴间非正交			±1.0		% 0
内部低通截止频率	软件可调整	0.2	47	47	Hz
ODR ¹		1	100	400	Hz
测量延时				5.0	ms
全温范围零偏变化2	-40 ~ 85°C, rms		1.5		mg
随机游走 X 轴 ³	Allan variance@25°C,1σ		0.05		m/s/√hr
随机游走Y轴	Allan variance@25℃, 1σ		0.04		m/s/√hr
随机游走 Z 轴	Allan variance@25℃, 1σ		0.04		m/s/√hr
输出噪声 4	rms@47Hz cf		0.7		mg

¹最大输出更新率不大于 200Hz@115200bps

1.3 姿态角关键指标

表 3 姿态角关键指标

 参数	测试条件/备注	最小值	典型值	最大值	单位
横滚角	静态/动态		±0.3/±0.8		0
俯仰角	静态/动态		±0.3/±0.8		0
航向角	@10min,动态无辅助,非连续旋转		±2.5		0
ODR ¹		1	100	400	Hz

¹最大输出更新率不大于 200Hz@115200bps

²温度范围即测试环境,也是 RMS 指标

³ IEEE 标准,在静态 25℃环境下 Allan 方差曲线给出

⁴静态 25℃环境,截止频率 47Hz 条件下的 RMS 指标

^注姿态角精度测量条件为载体平稳运动。如需载体在任意运动状态下保持上述精度,请参考 IA-IMU6A500R 产品并接入 GPS/RTK 数据

图 1 陀螺仪 ALLAN 方差曲线

图 2 加速度计 ALLAN 方差曲线

2. 外形结构

图 3 外形结构及尺寸 (单位: mm)

3. 电气特性

表 4 电气特性

, ,					
参数	符号	接口类型	最小	最大	单位
电源输入	VCC		3.0	3.3	V
电源地	GND				
串口输出	TX1	UART	0.3	3.3	V
串口输入	RX1	UART	0.3	3.3	V
预留引脚	NC	IO	0.3	3.3	V
电流	I		50	150	mA
使用温度	Т		-45	85	°C

4. 引脚描述

PCB焊盘尺寸图[单位:mm] TOP VIEW

表5引脚描述

引脚	信号	备注
1	VCC	电源输入,2.8~3.3V 输入,60mA,纹波不大于 40mV
2	GND	电源地
3	RST	外部复位引脚,建议空接或外部上拉
4	SWDIO	工厂烧录
5	SWCLK	工厂烧录
6	TX2	备用串口 2,用于升级 IMU 固件,建议引出测试点
7	RX2	备用串口 2,用于升级 IMU 固件,建议引出测试点
8	TX1	IMU 数据通信口 (LVTTL)
9	RX1	IMU 数据通信口 (LVTTL)
10	I2C_SCL	备用 I2C 接口
11	I2C_SDA	备用 I2C 接口
12	RX3	备用接口

FSS-IMU614E 产品手册

13	MOSI	SPI 数据输入			
14	MISO	SPI 数据输出			
15	SCK	SPI 串行时钟			
16	NSS	SPI 片选			
17	PPS	外部同步采样触发信号			
18	DR	DR 数据准备就绪指示			

注1主机初始化时需使用/RST将IMU硬件复位一次