Лабораторная работа №2

«Решение систем линейных уравнений на Python»

(трудоемкость 4 часа¹)

Цель работы: познакомиться с возможностями библиотеки NumPy языка программирования Python по решению систем линейных уравнений (СЛУ).

Порядок выполнения работы:

- 1) Ознакомиться с примерами реализации различных способов решения СЛУ средствами библиотеки NumPy языка программирования Python (см. стр. 37-46²)
- 2) Решить одну СЛУ (двумя способами³) согласно варианту:

номер	Задача 1	
варианта	(см. стр. 45-46)	
1	70	
2	71	
3	72	
4	73	
5	74	
6	75	
7	76	
8	77	
9	78	
10	79	
11	80	
12	81	
13	82	
14	83	
15	70	
16	71	
17	72	
11	73	
19	74	
20	75	
21	76	
22	77	
23	78	
24	79	
25	80	

3) Оформить отчет, содержащий:

1 4 часа = 2 пары

2 Здесь и далее указаны оригинальные номера страниц книги (видны на скриншотах).

3 Решая одну систему двумя способами, можно сравнить результаты решения.

- титульный лист;
- цель работы;
- задание для своего варианта;
- листинг программного кода на языке программирования Python с реализацией решения СЛУ и распечаткой результатов. Программный код снабдить смысловыми комментариями;
- вывод по итогам выполнения лабораторной работы.

при неизвестных, X =
$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
 — матрица из неизвестных системы и B = $\begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_n \end{pmatrix}$ — матрица из свободных членов. Реше-

нием системы m линейных уравнений с n переменными называют упорядоченный набор чисел , при подстановке которых в каждое уравнение системы вместо соответствующих переменных получают верное равенство. Вообще, как доказывает Теорема Кронеккера-Капели, СЛУ могут иметь 1 решение, бесконечное множество решений и не иметь решения.

Сначала рассмотрим случай, когда система имеет единственное решение. Это значит, что матрица системы невырожденная, то есть ее определитель не равен нулю, и эту систему можно решать по правилу Крамера или методом обратной матрицы.

62. Решить СЛУ (случай единственного решения)

$$\begin{cases} 3x_1 - x_2 + x_3 = 5 \\ x_1 - x_2 - x_3 = 2 \\ 5x_1 - 3x_2 - x_3 = 10 \end{cases}$$

