CH6: RECURSIVITE

I. RECURSIVITE

1. Exemple

On considère la suite numérique (u_n) définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = u_n^2 + 2 \ pour \ n \ge 1 \end{cases}$.

- 1. Calculer u_1 , u_2 , u_5 .
- 2. Comment doit-on faire pour calculer u_{10} ?
- 3. Proposer plusieurs programmes permettant de calculer un terme u_n de cette suite.

2. Principe

Une fonction récursive est une fonction qui s'appelle elle-même.

Exemple:

On souhaite écrire de manière récursive le calcul de la puissance d'un nombre a.

On sait que $a^0=1$, et, pour tout entier n, $a^n=a\times a^{n-1}$.

On obtient alors l'implémentation récursive suivante :

```
def puissance(a, n):
    if n == 0:
        return 1
    else:
        return a * puissance(a , n-1)
```

La fonction commence par une condition d'arrêt, qui traite le cas de base (valeur pour laquelle la fonction s'arrête immédiatement).

II. PILE D'EXECUTION

L'appel d'une fonction récursive utilise une structure de pile.

Dans l'exemple précédent, l'appel de puissance(7, 4) va engendrer une suite d'appels « en cascade » que l'on peut représenter par l'arbre suivant :

On peut représenter cela de manière schématisée :

On empile:

APPEL puissance(7,4)=7 * puissance(7,3)

APPEL
$$puissance(7,3)=7 * puissance(7,2)$$
 $puissance(7,4)=7 * puissance(7,3)$

APPEL puissance(7,2)=7 * puissance(7,1) puissance(7,3)=7 * puissance(7,2) puissance(7,4)=7 * puissance(7,3)

APPEL
$$puissance(7,1)=7 * puissance(7,0)$$
 $puissance(7,2)=7 * puissance(7,1)$
 $puissance(7,3)=7 * puissance(7,2)$
 $puissance(7,4)=7 * puissance(7,3)$

Puis on dépile :

EXECUTION

$$puissance(7,1)=7 * 7$$
 $puissance(7,2)=7 * puissance(7,1)$
 $puissance(7,3)=7 * puissance(7,2)$
 $puissance(7,4)=7 * puissance(7,3)$

EXECUTION
$$puissance(7,2)=7 * puissance(7,1)$$
 $puissance(7,3)=7 * puissance(7,2)$
 $puissance(7,4)=7 * puissance(7,3)$

... Et ainsi de suite

```
puissance(7,0)=7
puissance(7,1)=7 * puissance(7,0)
puissance(7,2)=7 * puissance(7,1)
puissance(7,3)=7 * puissance(7,2)
puissance(7,4)=7 * puissance(7,3)
```

La pile utilisée est de taille limitée : 1000 en Python. Au-delà de cette limite, on a une erreur de dépassement de pile :

maximum recursion depth exceeded.

III. ECRITURE D'UNE FONCTION RECURSIVE

Pour écrire une fonction récursive, on doit :

- Déterminer le type de données à renvoyer
- Déterminer la condition d'arrêt (cas de base): pour quelle valeur de l'argument le problème est-il résolu immédiatement, et écrire cette condition
- Déterminer de quelle manière la taille du problème est réduite : quel argument décroît, quelle liste a une taille qui diminue ...
- Ecrire l'appel récursif en veillant à ce qu'on arrive bien à la condition d'arrêt après un certain nombre d'appels.

<u>Exemple</u>: On peut écrire la multiplication d'un nombre a par un entier n à l'aide d'une fonction récursive faisant appel à l'addition.

- La donnée à renvoyer est de type flottant (ou entier si le nombre est entier)
- La condition d'arrêt est : pour n=1, renvoie a.
- A chaque appel récursif, la valeur de n décroit de 1
- L'appel récursif correspond à : $a \times n = a + a \times (n-1)$

On obtient alors le script suivant :

```
def produit(a, n):
    if n == 1:
        return a
    else:
        return a + produit(a , n-1)
```

<u>Application</u>: Ecrire une fonction récursive permettant de calculer la factorielle d'un entier n.

```
On rappelle que n!=1\times 2\times 3\times ...\times (n-1)\times n
```

IV. METHODE « DIVISER POUR REGNER »

1. Principe

Le paradigme de programmation « diviser pour régner » consiste à ramener la résolution d'un problème dépendant d'un entier n à la résolution d'un ou plusieurs sous-problèmes dont la taille des entrées passe de n à $\frac{n}{2}$ ou une fraction de n. Les algorithmes ainsi conçus s'écrivent de manière naturelle de façon récursive.

Cette méthode se décompose en trois phases :

- Diviser : on divise les données initiales en plusieurs sousparties
- Régner: on résout récursivement chacun des sous-problèmes associés (ou on les résout directement si leur taille est assez petite)
- Combiner: on combine les différents résultats obtenus pour obtenir une solution au problème initial.

2. Exemple

On souhaite déterminer le minimum d'une liste. On va donc découper la liste en deux sous-listes et calculer récursivement le minimum de chaque sous-liste, puis les comparer. Le plus petit des deux sera le minimum de la liste totale.

La condition d'arrêt de la récursivité est d'obtenir une liste à un seul élément, dont le minimum est cet élément.

Les trois étapes sont donc :

- Diviser la liste en deux sous-listes en la « coupant » en deux
- Calculer récursivement le minimum de chaque sous-liste. On arrête la récursion lorsque les listes n'ont plus qu'un seul élément.
- Retourner le plus petit des deux minimums de chacune des sous-listes.

Si on prend pour exemple la liste L=[23,12,4,56,35,57,3,11,6], on peut représenter les étapes par l'arbre suivant :

On peut utiliser la fonction dont l'algorithme est donné ci-dessous pour déterminer le minimum d'une liste avec la méthode du « diviser pour régner » :

```
Fonction Minimum(L, d, f):

Si d == f:

Retourner L[d]

Sinon:

m = (d+f) // 2

x = Minimum(L, d, m)

y = Minimum(L,m+1, f)

Si x < y

Retourner x

Sinon

Retourner y
```

Expliquer le rôle des différentes variables utilisées, et le fonctionnement global de cet algorithme, puis le traduire en langage Python et le tester avec la liste précédente.

V. UNE APPLICATION: LE TRI FUSION

On a déjà vu en première deux méthodes de tri, dont le coût est quadratique : le tri par insertion et le tri par sélection.

Une autre méthode de tri, beaucoup plus efficace, est le tri par fusion.

L'idée du tri fusion repose sur la méthode « diviser pour régner » : on découpe la liste à trier en deux sous-listes, on traite chaque problème séparément, puis on rassemble (on fusionne) les résultats. Ce principe est illustré ci-dessous avec la liste [3,4,6,2,5,1,8,7]:

La fusion (partie en bleu) est efficace, car les deux listes obtenues sont triées. Il suffit donc de les parcourir dans l'ordre : le plus petit élément de la liste triée est le plus petit des deux premiers éléments des sous-listes. On l'ajoute donc à la liste triée, et on le retire de la sous-liste correspondante, et on recommence (récursion) :

La fusion de deux listes L1 et L2 peut s'effectuer à l'aide de l'algorithme cidessous :

```
Fonction Fusion(L1, L2):

Si L1 est vide:

Retourner L2

Si L2 est vide:

Retourner L1

Si L1[0] < L2[0]:

Retourner [L1[0] + Fusion(L1[1:], L2)]

Sinon:

Retourner [L2[0] + Fusion(L1, L2[1:])]
```

Expliquer le fonctionnement de cet algorithme et l'implémenter en Python.

La fonction permettant le tri par fusion d'une liste L est donnée par l'algorithme suivant :

```
Fonction TriFusion(L):

nb = le \ nombre \ d'éléments \ de \ L

Si \ nb <=1:

Retourner \ L

L1 = L[x] \ pour \ tout \ x \in \left[0, \frac{nb}{2}\right]

L2 = L[x] \ pour \ tout \ x \in \left[\frac{nb}{2}, nb\right[

Retourner \ Fusion(TriFusion(L1), TriFusion(L2))
```

Expliquer le fonctionnement de cet algorithme, l'implémenter en Python, puis le tester avec la liste précédente.

Complexité

On part d'une liste de n éléments (on va supposer que n est une puissance de 2). On le coupe en deux, ce qui donne deux listes de $\frac{n}{2}$ éléments, puis 4 listes de $\frac{n}{4}$ éléments ...

Le découpage s'arrête lorsqu'on a des listes de taille 1.

On appelle f(n) le nombre de découpes nécessaires pour un tableau de taille n.

On a f(1)=0 et f(2n)=f(n)+1 (si on double la taille du tableau, il faut une découpe de plus).

On reconnait la fonction logarithme de base 2, donc la phase de découpage nécessite $\log_2(n)$ opérations.

A chaque étape de fusion, on parcourt les deux demi-listes une seule fois, donc le coût est linéaire O(n).

Il y a donc $\log_2(n)$ étapes à O(n) opérations chacune, ce qui fait $O(n\log_2(n))$ opérations. C'est beaucoup moins que pour les tris vus en première qui sont en $O(n^2)$.

Voici, à titre d'exemple, les temps d'exécution sur une même machine pour un tri par sélection, et pour un tri par fusion :

Nombre d'éléments dans la liste (n)	Tri par sélection	Tri par fusion
100	0.006s	0.006s
1 000	0.069s	0.010s
10 000	2.162s	0.165s
20 000	7.526s	0.326s
40 000	28.682s	0.541s

TP: suite de Fibonacci, programmation dynamique et mémoïsation