

Módulo Básico de la Facultad de Ingeniería

1er. Semestre 2021

Profesores: Gladys Olivares y Belfor Galaz

SESIÓN 2 Campo y potencial eléctrico

Prerrequisitos (vistos en clase de teoría):

- Definición del campo eléctrico y del potencial eléctrico (Voltaje)
- Definición del gradiente
- Saber ocupar un multímetro para medir voltaje.

Objetivos

- Obtener la relación funcional del **potencial eléctrico** generado por electrodos planos paralelos.
- Determinar el campo eléctrico.

Fundamentos Teóricos

Las cargas eléctricas generan en cada punto del espacio un campo vectorial llamado *Campo Eléctrico*, que en general se denota \vec{E} . La unidad del *Campo Eléctrico* es Newton partido por Coulomb.

El campo eléctrico en un punto del espacio depende, de la distribución espacial de las cargas eléctricas y de la distancia de éstas al punto donde se desea conocer el campo.

El **campo eléctrico** y el **potencial eléctrico** (o voltaje) V son relacionados por la ecuación siguiente:

$$\vec{E} = -\vec{\nabla}V$$

En coordinas cartesianas, el **operador gradiente** $\overrightarrow{\nabla}$, se define como

$$\vec{\nabla} = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

Figura 1: experimento campo eléctrico.

Módulo Básico de la Facultad de Ingeniería

1er. Semestre 2021

Profesores: Gladys Olivares y Belfor Galaz

MATERIALES

- 1 Fuente de voltaje continúo.
- 1 Multímetro digital.
- 1 Papel conductor *Pasco*

Actividades experimentales

Los datos experimentales se adquirieron usando el protocolo siguiente:

- 1. Ubique los dos electrodos planos. Mida d la distancia que separa los 2 electrodos y L el largo del electrodo. Registre d y L.
- 2. Conecte los electrodos a la fuente continua y poner un voltaje de 10V
- 3. Con la sonda conectada al voltímetro, mida la diferencia de potencial entre el punto A y los puntos de la grilla espaciados de 1cm a lo largo de la recta AB (eje X) de la figura 2. Anote los resultados en una tabla, en conjunto con la distancia entre puntos de medición
- 4. Con la sonda conectada al voltímetro, mida la diferencia de potencial entre el punto C y los puntos de la grilla espaciados de 1cm a lo largo de la recta CD (eje Y) de la figura 2. Anote los resultados en una tabla, en conjunto con la distancia entre puntos de medición.

1er. Semestre 2021

Profesores: Gladys Olivares y Belfor Galaz

Tabla 1: V(x)

X(CM)	V(VOLT)
0	3,44
1	3,20
2	3,00
3	2,90
4	2,68
5	2,59
6	2,39
7	2,26
8	2,14
9	2,00
10	1,80
11	1,65
12	1,50
13	1,45

Tabla 2: V(y)

Y(cm)	V(volt)
0	2,4
1	2,36
2	2,38
3	2,35
4	2,42
5	2,4
6	2,37

Protocolo de análisis

Utilizando los siguientes datos experimentales (Tabla 1 y 2), analice:

- 1. Utilizando una planilla Excel, graficar la tabla 1 y determinar la relación funcional V = V(x), siguiendo la línea AB
- 2. Estime el Campo eléctrico y su incertidumbre a lo largo del eje X.
- 3. Grafique en Excel la tabla 2, y encuentre la relación funcional V(y).
- 4. Estime el Campo eléctrico y su incertidumbre a lo largo del eje Y.
- 5. ¿Es posible concluir que el campo eléctrico a lo largo del eje X es constante?. ¿Cuál es su incertidumbre porcentual?.

Laboratorio de Electricidad y Magnetismo 10127 Módulo Básico de la Facultad de Ingeniería

1er. Semestre 2021

Profesores: Gladys Olivares y Belfor Galaz

6. ¿Es posible concluir que el campo eléctrico a lo largo del eje Y es nulo?.

Ayuda: use la función "LINEST" para estimar los parámetros de ajuste de sus gráficos.