

Parameter Estimation and Control of Multirotors Using Integral Concurrent Learning

Cheng-Cheng Yang and Teng-Hu Cheng

Speaker: Cheng-Cheng Yang Advisor: Dr. Teng-Hu Cheng

Date: 2021/08/02

Outlines

- Motivation
- Problem Formulation
- Controller Design
- Stability Analysis
- Experiments
- Conclusion

Motivation

- Knowledge of the geometric and inertia parameters is essential to achieving good control performance.
- The payload or sensors attaching to multirotors may change the geometric and inertia parameters.
- Some geometric and inertia parameters like moment of inertia can not be measured through instrument.
- Existing adaptive control method can only guarantee the stability of multirotors system, can not ensure the parameters converge.

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Problem Formulation - Definition of Symbols

Symbol	Description
x	Position of the multirotor
v	Velocity of the multirotor
R	Rotation matrix from the body- fixed frame to the inertial frame
Ω	Angular velocity in the body- fixed frame
f	Net thrust control input
М	Moment control input
m	Mass of the multirotor
J	Moment of inertia of the multirotor

Body-fixed frame : $\{\vec{X}_B, \vec{Y}_B, \vec{Z}_B\}$

Inertial frame: $\{\vec{X}_E, \vec{Y}_E, \vec{Z}_E\}$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Problem Formulation - Dynamics of the Multirotor

- The multirotor is described by both translational and rotational dynamics.
- The translational dynamics considers forces such as the effects of gravity, thrusts, and the external force.
- The rotational dynamics takes the moment control input, rotational speed, and moment of inertia into account.

$$\dot{x} = v$$

$$m\dot{v} = mge_3 - fRe_3$$

$$\dot{R} = R\widehat{\Omega}$$

$$J\dot{\Omega} + \Omega \times J\Omega = M$$

Translational dynamics

Rotational dynamics

$$J = \begin{bmatrix} J_{xx} & 0 & 0 \\ 0 & J_{yy} & 0 \\ 0 & 0 & J_{zz} \end{bmatrix}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Problem Formulation - Tracking Errors and Estimate Errors

Position and velocity tracking errors

$$e_x \triangleq x - x_d$$
$$e_v \triangleq v - v_d$$

Attitude error function on SO(3) based on <u>Geometric Tracking Control</u>

$$\Psi(R, R_d) \triangleq \frac{1}{2} tr \left[I - R_d^T R \right]$$

Attitude tracking error and the angular velocity tracking error

$$e_R \triangleq \frac{1}{2} (R_d^T R - R^T R_d)^{\vee}$$

$$e_{\Omega} \triangleq \Omega - R^T R_d \Omega_d$$

Estimate error of mass

$$\tilde{\theta}_m \triangleq \theta_m - \hat{\theta}_m$$
, $\theta_m = m$ (mass of the multirotor)

Estimate error of moment of inertia

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

 $[\]tilde{\theta}_I \triangleq \theta_I - \hat{\theta}_I$, $\theta_I = [J_{xx} \quad J_{yy} \quad J_{zz}]^T$ (moment of inertia of the multirotor)

Problem Formulation - Control Objectives

- Track a desired 3D trajectory
- Track a desired yaw angle
- Estimate the mass of the multirotor
- Estimate the moment of inertia of the multirotor

_ _ _ 3D position

____ 3D trajectory

yaw angle

desired yaw angle

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design - Control Architecture

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design – Translational Controller

Translational controller

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design – Translational Controller

Translational controller

$$f = (k_x e_x + k_v e_v + Y_m \hat{\theta}_m) \cdot Re_3 \qquad , Y_m = \begin{bmatrix} -x_{d_1} \\ -\ddot{x}_{d_2} \\ g - \ddot{x}_{d_3} \end{bmatrix} \text{ is a regression matrix}$$

$$= \mathbf{feedback\ term} + \mathbf{adaptive\ term}$$

• Integral CL-based adaptive control update law $\dot{\hat{\theta}}_m$

$$\hat{\theta}_m = \Gamma_m Y_m^T (e_v + C_1 e_x) + k_m^{cl} \Gamma_m \sum_{j=1}^{N_m} \left(y_m^{cl} (t_j) \right)^T \left(F(t_j) - y_m^{cl} (t_j) \, \hat{\theta}_m \right)$$

= adaptive term + ICL - based term

$$y_m^{cl}(t_j) \triangleq \begin{cases} 0_{n \times 1} & t \in [0, \Delta t] \\ \int_{t-\Delta t}^t Y_m^{cl}(\tau) d\tau & t > \Delta t \end{cases}, \quad F(t_j) \triangleq \begin{cases} 0_{n \times 1} & t \in [0, \Delta t] \\ \int_{t-\Delta t}^t f Re_3(\tau) d\tau & t > \Delta t \end{cases}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design - Translational Controller

• Y_m^{cl} defined as follows contains acceleration which is not implementable

$$fRe_3 = mge_3 - m\dot{v} = Y_m^{cl}\theta_m, \quad Y_m^{cl} = \begin{vmatrix} -\ddot{x}_1 \\ -\ddot{x}_2 \\ g - \ddot{x}_3 \end{vmatrix}$$

- By integrating Y_m^{cl} to be y_m^{cl} as defined in last page, y_m^{cl} becomes implementable
- Integrating both sides of the translational dynamics $fRe_3 = Y_m^{cl}\theta_m$ yields

$$\int_{t-\Delta t}^{t} fRe_3(\tau)d\tau = \int_{t-\Delta t}^{t} Y_m^{cl}(\tau)\theta_m d\tau \Rightarrow \int fRe_3(\tau) \Big|_{\tau=t} - \int fRe_3(\tau) \Big|_{\tau=t-\Delta t} = y_m^{cl}\theta_m$$

$$\dot{\hat{\theta}}_m = \Gamma_m Y_m^T (e_v + C_1 e_x) + k_m^{cl} \Gamma_m \sum_{j=1}^{N_m} \left(y_m^{cl} (t_j) \right)^T \left(\mathbf{F}(\mathbf{t}_j) - y_m^{cl} (t_j) \, \hat{\theta}_m \right)$$

$$= \Gamma_m Y_m^T (e_v + C_1 e_x) + k_m^{cl} \Gamma_m \sum_{j=1}^{N_m} \left(y_m^{cl} (t_j) \right)^T y_m^{cl} (t_j) \tilde{\theta}_m$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design - Rotational Controller

Rotational controller

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design - Rotational Controller

Rotational controller

$$M = -k_R e_R - k_\Omega e_\Omega - Y_J \hat{\theta}_J$$

$$, Y_J = \begin{bmatrix} \Omega_1 & \Omega_2 \cdot \Omega_3 & -\Omega_2 \cdot \Omega_3 \\ -\Omega_1 \cdot \Omega_3 & \overline{\Omega}_2 & \Omega_1 \cdot \Omega_3 \\ \Omega_1 \cdot \Omega_2 & -\Omega_1 \cdot \Omega_2 & \overline{\Omega}_3 \end{bmatrix}$$

- = feedback term + adaptive term
- Integral CL-based adaptive control update law $\hat{\theta}_I$

$$\dot{\hat{\theta}}_{J} = \Gamma_{J} Y_{J}^{T} (e_{\Omega} + C_{2} e_{R}) + k_{J}^{cl} \Gamma_{J} \sum_{j=1}^{N_{J}} \left(y_{J}^{cl} (t_{j}) \right)^{T} \left(\overline{M}(t_{j}) - y_{J}^{cl} (t_{j}) \, \hat{\theta}_{J} \right)$$

= adaptive term + ICL - based term

$$y_J^{cl}(t_j) \triangleq \begin{cases} 0_{n \times m} & t \in [0, \Delta t] \\ \int_{t-\Delta t}^t Y_J^{cl}(\tau) d\tau & t > \Delta t \end{cases}, \quad \overline{M}(t_j) \triangleq \begin{cases} 0_{n \times m} & t \in [0, \Delta t] \\ \int_{t-\Delta t}^t M(\tau) d\tau & t > \Delta t \end{cases}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Controller Design – Rotational Controller

• Y_I^{cl} defined as follows contains angular acceleration which is not implementable

$$M = J\dot{\Omega} + \Omega \times J\Omega = Y_J^{cl}\theta_J, \qquad Y_J^{cl} = \begin{bmatrix} \dot{\Omega}_1 & -\Omega_2 \cdot \Omega_3 & \Omega_2 \cdot \Omega_3 \\ \Omega_1 \cdot \Omega_3 & \dot{\Omega}_2 & -\Omega_1 \cdot \Omega_3 \\ -\Omega_1 \cdot \Omega_2 & \Omega_1 \cdot \Omega_2 & \dot{\Omega}_3 \end{bmatrix}$$

- By integrating Y_I^{cl} to be y_I^{cl} as defined in last page, y_I^{cl} becomes implementable
- Integrating both sides of the translational dynamics $M = Y_I^{cl} \theta_I$ yields

$$\int_{t-\Delta t}^{t} M(\tau) d\tau = \int_{t-\Delta t}^{t} Y_{J}^{cl}(\tau) \theta_{J} d\tau \Rightarrow \int M(\tau) \Big|_{\tau=t} - \int M(\tau) \Big|_{\tau=t-\Delta t} = y_{J}^{cl} \theta_{J}$$

$$\begin{split} \dot{\hat{\theta}}_{J} &= \Gamma_{J} Y_{J}^{T} (e_{\Omega} + C_{2} e_{R}) + k_{J}^{cl} \Gamma_{J} \sum_{j=1}^{N_{J}} \left(y_{J}^{cl} (t_{j}) \right)^{T} \left(\overline{\boldsymbol{M}} (\boldsymbol{t_{j}}) - y_{J}^{cl} (t_{j}) \, \hat{\theta}_{J} \right) \\ &= \Gamma_{J} Y_{J}^{T} (e_{\Omega} + C_{2} e_{R}) + k_{J}^{cl} \Gamma_{J} \sum_{j=1}^{N_{J}} \left(y_{J}^{cl} (t_{j}) \right)^{T} y_{J}^{cl} (t_{j}) \tilde{\theta}_{J} \end{split}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis – Closed-Loop Error Systems

• Taking the time derivative of error dynamics e_x , e_v defined in Problem Formulation

$$\begin{split} \dot{e}_x &= \dot{e}_v \\ m\dot{e}_v &= mge_3 - fRe_3 - m\ddot{x}_d \\ &= Y_m\theta_m - fRe_3 \\ &= -k_xe_x - k_ve_v + Y_m\tilde{\theta}_m - X \quad , X = \frac{f}{e_3^TR_d^TRe_3} \Big(\big(e_3^TR_d^TRe_3\big)Re_3 - R_de_3 \Big) \end{split}$$

Taking the time derivative of error dynamics e_R , e_Ω defined in Problem Formulation

$$\begin{split} \dot{e}_R &= \frac{1}{2} \left(R_d^T R \hat{e}_\Omega + \hat{e}_\Omega R^T R_d \right)^\vee \\ &= \frac{1}{2} \left(tr[R^T R_d] I - R^T R_d \right) \equiv C \left(R_d^T R \right) e_\Omega \\ J \dot{e}_\Omega &= J \dot{\Omega} + J \left(\widehat{\Omega} R^T R_d \Omega_d - R^T R_d \dot{\Omega}_d \right) \\ &= J \dot{\Omega} + J \overline{\Omega} = \mathbf{M} + Y_J \theta_J = -k_R e_R - k_\Omega e_\Omega + Y_J \tilde{\theta}_J \end{split}$$

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis – Translational Dynamics

• Let Lyapunov function V_1 defined as

$$V_1 = \frac{1}{2}k_x e_x^T e_x + \frac{1}{2}m e_v^T e_v + C_1 m e_x \cdot e_v + \frac{1}{2}\tilde{\theta}_m^T \Gamma_m^{-1}\tilde{\theta}_m$$

• V_1 is P.D. and it can be lower and upper bounded by

$$\begin{split} z_1^T M_{11} z_1 + \frac{1}{2} \tilde{\theta}_m^T \Gamma_m^{-1} \tilde{\theta}_m &\leq V_1 \leq z_1^T M_{12} z_1 + \frac{1}{2} \tilde{\theta}_m^T \Gamma_m^{-1} \tilde{\theta}_m \\ z_1 &\triangleq [\|e_x\|, \quad \|e_v\|]^T \end{split}$$

$$M_{11} = \frac{1}{2} \begin{bmatrix} k_{\chi} & -C_1 m \\ -C_1 m & m \end{bmatrix}$$

$$M_{12} = \frac{1}{2} \begin{bmatrix} k_x & C_1 m \\ C_1 m & m \end{bmatrix}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis - Translational Dynamics

• Taking the time derivative of V_1 yields

$$\dot{V}_1 = k_x e_x \cdot \dot{e}_x + e_v \cdot m\dot{e}_v + C_1 m\dot{e}_x \cdot e_v + C_1 e_x \cdot m\dot{e}_v - \tilde{\theta}_m^T \Gamma_m^{-1} \dot{\hat{\theta}}_m$$

• Substitute \dot{e}_x and $m\dot{e}_v$ defined in the previous page into \dot{V}_1

$$\dot{V}_{1} \leq -z_{1}^{T}W_{1}z_{1} + z_{1}^{T}W_{12}z_{2} - k_{m}^{cl}\tilde{\theta}_{m}^{T} \left(\sum_{j=1}^{N_{m}} \left(y_{m}^{cl}(t_{j}) \right)^{T} y_{m}^{cl}(t_{j}) \right) \tilde{\theta}_{m}$$

$$W_{1} = \begin{bmatrix} k_{x}C_{1}(1-\alpha) & -\frac{1}{2}C_{1}k_{v}(1+\alpha) \\ -\frac{1}{2}C_{1}k_{v}(1+\alpha) & k_{v}(1-\alpha) - C_{1}m \end{bmatrix}, \qquad W_{12} = \begin{bmatrix} k_{x}e_{v,max} + C_{1}B & 0 \\ B & 0 \end{bmatrix}$$

• M_{11} , M_{12} , W_1 in V_1 and \dot{V}_1 are positive-definite matrices if C_1 satisfies

$$C_1 < min \left\{ \sqrt{\frac{k_x}{m}}, \frac{k_v(1-\alpha)}{m}, \frac{4k_x k_v(1-\alpha)^2}{k_v^2(1+\alpha)^2 + 4mk_x(1-\alpha)} \right\}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis - Rotational Dynamics

• Let Lyapunov function V_2 defined as

$$V_2 = \frac{1}{2}e_{\Omega} \cdot Je_{\Omega} + k_R \Psi(R, R_d) + JC_2 e_R \cdot e_{\Omega} + \frac{1}{2}\tilde{\theta}_J^T \Gamma_J^{-1}\tilde{\theta}_J$$

• V_2 is P.D. and it can be lower and upper bounded by

$$\begin{split} z_2^T M_{21} z_2 + \frac{1}{2} \tilde{\theta}_J^T \Gamma_J^{-1} \tilde{\theta}_J &\leq V_2 \leq z_2^T M_{22} z_2 + \frac{1}{2} \tilde{\theta}_J^T \Gamma_J^{-1} \tilde{\theta}_J \\ z_2 &\triangleq [\|e_R\|, \quad \|e_\Omega\|]^T \end{split}$$

$$M_{21} = \frac{1}{2} \begin{bmatrix} k_R & -C_2 \lambda_{max}(J) \\ -C_2 \lambda_{max}(J) & \lambda_{min}(J) \end{bmatrix}$$

$$M_{22} = \frac{1}{2} \begin{bmatrix} \frac{2k_R}{2 - \psi_2} & -C_2 \lambda_{max}(J) \\ -C_2 \lambda_{max}(J) & \lambda_{min}(J) \end{bmatrix}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis - Rotational Dynamics

• Taking the time derivative of V_2 yields

$$\dot{V}_2 = (e_{\Omega} + C_2 e_R) \cdot (J \dot{e}_{\Omega}) + k_R e_{\Omega} \cdot e_R + J C_2 \dot{e}_R \cdot e_{\Omega} - \tilde{\theta}_I^T \Gamma_I^{-1} \dot{\theta}_I$$

• Substitute \dot{e}_R and $J\dot{e}_\Omega$ defined in the previous page into \dot{V}_2

$$\dot{V}_2 \leq -z_2^T W_2 z_2 - k_J^{cl} \tilde{\theta}_J^T \left(\sum_{j=1}^{N_J} \left(y_J^{cl}(t_j) \right)^T y_J^{cl}(t_j) \right) \tilde{\theta}_J$$

$$W_2 = \begin{bmatrix} C_2 k_R & -\frac{C_2 k_{\Omega}}{2} \\ -\frac{C_2 k_{\Omega}}{2} & k_{\Omega} - C_2 \lambda_{max}(J) \end{bmatrix}$$

• M_{21} , M_{22} , W_2 in V_2 and \dot{V}_2 are positive-definite matrices if C_2 satisfies

$$C_{2} < min \left\{ \frac{k_{\Omega}}{\lambda_{max}(J)}, \frac{4k_{\Omega}k_{R}}{k_{\Omega}^{2} + 4k_{R}\lambda_{max}(J)}, \sqrt{\frac{k_{R}\lambda_{min}(J)}{\lambda_{max}(J)^{2}}} \right\}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Stability Analysis - Overall System

• Let $V = V_1 + V_2$ be a Lyapunov function for the system containing rotational and translational dynamics

$$\begin{split} V &= V_1 + V_2 \\ &= \frac{1}{2} k_x e_x^T e_x + \frac{1}{2} m e_v^T e_v + C_1 m e_x \cdot e_v + \frac{1}{2} \tilde{\theta}_m^T \Gamma_m^{-1} \tilde{\theta}_m \\ &+ \frac{1}{2} e_\Omega \cdot J e_\Omega + k_R \Psi(R, R_d) + J C_2 e_R \cdot e_\Omega + \frac{1}{2} \tilde{\theta}_J^T \Gamma_J^{-1} \tilde{\theta}_J \quad \dots \text{ P.D.} \end{split}$$

• Taking the time derivative of V and substituting \dot{V}_1 and \dot{V}_2 yields

$$\begin{split} \dot{V} &= \dot{V}_1 + \dot{V}_2 \leq -z_1^T W_1 z_1 + z_1^T W_{12} z_2 - k_m^{cl} \tilde{\theta}_m^T \Biggl(\sum_{j=1}^{N_m} \Bigl(y_m^{cl} \bigl(t_j \bigr) \Bigr)^T y_m^{cl} \bigl(t_j \bigr) \Biggr) \tilde{\theta}_m \\ &- z_2^T W_2 z_2 - k_J^{cl} \tilde{\theta}_J^T \Biggl(\sum_{j=1}^{N_J} \Bigl(y_J^{cl} \bigl(t_j \bigr) \Bigr)^T y_J^{cl} \bigl(t_j \bigr) \Biggr) \tilde{\theta}_J \quad \dots \text{ N.D.} \\ &\text{, where } \lambda_{min}(W_2) > {}^{4 \| W_{12} \|^2} /_{\lambda_{min}(W_1)} \end{split}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Hardware Architecture

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Mass Estimation

 The mass estimation of the multirotor with ICL controller converged to 1.15kg and has 1% error with ground truth

Mass estimation	Mass ground truth			
1.15 (kg)	1.16 (kg)			

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Mass Estimation

Position in the Z Direction (ICL controller)

• The accurate mass estimation also make the multirotor have better tracking performance in the *z* direction

Problem Formulation

Controller Design

Stability Analysis

Experiments

Conclusion

Time (sec)

350

400

Z (m)

50

100

ICL controller: $f = (k_x e_x + k_v e_v + Y_m \hat{\theta}_m) \cdot Re_3$

Geometric controller: $f = (k_x e_x + k_v e_v + mge_3 - m\ddot{x}_d) \cdot Re_3$

• The moment of inertia estimation converge to [0.0033, 0.0032, 0.0033] $(kg \cdot m^2)$ which is smaller than the ground truth

Moment of inertia estimation $(kg \cdot m^2)$				g	_	ent of i truth (nertia [kg·m²)
$\begin{bmatrix} 0.0033 \\ 0 \\ 0 \end{bmatrix}$	0 0.0032 0	0 0 0.0033			0.013	0 0.013 0	$\begin{bmatrix} 0 \\ 0 \\ 0.024 \end{bmatrix}$	

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

- We suppose the incorrect convergence is resulted from the measurement noise from gyroscope
- To present the experimental scene more realistically, white
 Gaussian noise is applied to the simulation
- Moreover, we designed an estimator to eliminate the influence of noise on the system

$$M = -k_R e_R - k_\Omega e_\Omega - Y_J \hat{\theta}_J \quad , \quad Y_J = \begin{bmatrix} \overline{\Omega}_1 & \Omega_2 \cdot \Omega_3 & -\Omega_2 \cdot \Omega_3 \\ -\Omega_1 \cdot \Omega_3 & \overline{\Omega}_2 & \Omega_1 \cdot \Omega_3 \\ \Omega_1 \cdot \Omega_2 & -\Omega_1 \cdot \Omega_2 & \overline{\Omega}_3 \end{bmatrix}$$

$$\dot{\hat{\theta}}_{J} = \Gamma_{J} Y_{J}^{T} (e_{\Omega} + C_{2} e_{R}) + k_{J}^{cl} \Gamma_{J} \sum_{j=1}^{N_{J}} \left(\mathbf{y}_{J}^{cl} (\mathbf{t}_{j}) \right)^{T} \left(\overline{M} (\mathbf{t}_{j}) - \mathbf{y}_{J}^{cl} (\mathbf{t}_{j}) \, \hat{\theta}_{J} \right) , \mathbf{Y}_{J}^{cl} = \begin{bmatrix} \dot{\Omega}_{1} & -\Omega_{2} \cdot \Omega_{3} & \Omega_{2} \cdot \Omega_{3} \\ \Omega_{1} \cdot \Omega_{3} & \dot{\Omega}_{2} & -\Omega_{1} \cdot \Omega_{3} \\ -\Omega_{1} \cdot \Omega_{2} & \dot{\Omega}_{1} \cdot \Omega_{2} & \dot{\Omega}_{3} \end{bmatrix}$$

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Estimator of the Angular Velocity

The rotational dynamics of the multirotor ca be written as

$$\begin{split} \dot{\Omega} &= J^{-1}M - J^{-1}\Omega \times J\Omega \\ &= \begin{bmatrix} \frac{M_1}{\hat{f}_{xx}} + \frac{\hat{f}_{yy}}{\hat{f}_{xx}} \Omega_2 \Omega_3 - \frac{\hat{f}_{zz}}{\hat{f}_{xx}} \Omega_2 \Omega_3 \\ \\ &= \begin{bmatrix} \frac{M_2}{\hat{f}_{yy}} + \frac{\hat{f}_{xx}}{\hat{f}_{yy}} \Omega_1 \Omega_3 - \frac{\hat{f}_{zz}}{\hat{f}_{yy}} \Omega_1 \Omega_3 \\ \\ \frac{M_3}{\hat{f}_{zz}} + \frac{\hat{f}_{xx}}{\hat{f}_{zz}} \Omega_1 \Omega_2 - \frac{\hat{f}_{yy}}{\hat{f}_{zz}} \Omega_1 \Omega_2 \end{bmatrix} \end{split}$$

$$\begin{split} \widehat{\Omega}_{k}^{-} &= \widehat{\Omega}_{k-1} + \dot{\Omega}_{k-1} \Delta t \\ &= \begin{bmatrix} \widehat{\Omega}_{k-1,1} + \left(\frac{M_1}{\widehat{f}_{xx}} + \frac{\widehat{f}_{yy}}{\widehat{f}_{xx}} \Omega_2 \Omega_3 - \frac{\widehat{f}_{zz}}{\widehat{f}_{xx}} \Omega_2 \Omega_3 \right) \cdot \Delta t \\ &= \widehat{\Omega}_{k-1,2} + \left(\frac{M_2}{\widehat{f}_{yy}} + \frac{\widehat{f}_{xx}}{\widehat{f}_{yy}} \Omega_1 \Omega_3 - \frac{\widehat{f}_{zz}}{\widehat{f}_{yy}} \Omega_1 \Omega_3 \right) \cdot \Delta t \\ &\widehat{\Omega}_{k-1,3} + \left(\frac{M_3}{\widehat{f}_{zz}} + \frac{\widehat{f}_{xx}}{\widehat{f}_{zz}} \Omega_1 \Omega_2 - \frac{\widehat{f}_{yy}}{\widehat{f}_{zz}} \Omega_1 \Omega_2 \right) \cdot \Delta t \end{bmatrix} \end{split}$$

• The estimated angular velocity can be generated as $\widehat{\Omega}_k = \widehat{\Omega}_k^- + K_{\Omega}(\Omega - \widehat{\Omega}_k^-)$, K_{Ω} is a estimator gain

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Moment of inertia estimation with noise, without estimator in the simulation

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Conclusion

Moment of inertia estimation with noise and estimator in the experiments

Moment of inertia estimation with noise, without estimator in the experiments

• The moment of inertia estimation converge to [0.013, 0.014, 0.022] ($kg \cdot m^2$) and has 8% error with ground truth

Moment of inertia estimation $(kg \cdot m^2)$			Moment of inertia ground truth $(kg \cdot m^2)$)
[0.013	0	0]	ſ	0.013	0	0]	
0	0.014	0		0	0.013	0	
Lo	0	0.022		. 0	0	0.024	

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Moment of inertia estimation **with different initial values** in the experiments

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Trajectory Generation

- Formulate the trajectory generation problem as a quadratic programming (QP) problem
- Write the trajectory passing through given waypoints as piecewise polynomial function of order n as

$$s_i(t) = \sum_{j=0}^n \sigma_{ij} t^j, t_{i-1} \le t < t_i, i \in \{1, 2, \dots, m\},$$

with cost function and constraints defined as

$$\min \int_{t_0}^{t_m} \left\| \frac{d^4 s_i}{dt^4} \right\|^2 dt, \quad p_0$$

$$s. t. A\sigma = b$$

 $s_1 \sim s_m$: trajectory p_m : p_1 p_2 p_m : p_m

 $p_0 \sim p_m$: waypoints

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

NETWORKED CONTROL ROBOTICS LAB 網路控制機器人實驗室

Experiments – Trajectory Generation

• The waypoints are given as

$$p_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 $p_1 = \begin{bmatrix} 0.6 \\ -0.6 \end{bmatrix}$ $p_2 = \begin{bmatrix} 0 \\ 0.6 \end{bmatrix}$ $p_3 = \begin{bmatrix} -0.6 \\ -0.6 \end{bmatrix}$ $p_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

• The desired trajectory is generation as

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Tracking Performance

Position tracking performance of the multirotor using ICL controller

Velocity tracking performance of the multirotor using ICL controller

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Comparison

Tracking performance of the multirotor using **ICL controller**

Tracking performance of the multirotor using **geometric controller**

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Comparison

Tracking performance of the multirotor using **ICL controller**

Tracking performance of the multirotor using **geometric controller**

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Comparison

Tracking performance of the multirotor using **ICL controller**

Tracking performance of the multirotor using **geometric controller**

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Video (ICL controller)

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Video (adaptive controller)

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Experiments – Video (geometric controller)

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Conclusion

- An ICL controller has been developed for controlling a multirotor with an unknown mass and moment of inertia
- The control architecture can be applied to many types of multirotors of unknown mass
- The ICL controller ensures the steady-state errors resulted from the wrong parameters be eliminated
- The ICL controller can guarantee asymptotic convergence of the system parameters, while the adaptive controller cannot
- Future work can be estimate other parameters of the multirotor, such as off-diagonal elements in the inertia matrix and the center of mass.

Motivation

Problem Formulation

Controller Design

Stability Analysis

Experiments

Thanks for listening!