Reference Evapotranspiration (ET_o) Forecasting in California with Deep Global Learning

Machine Learning in Water and Environmental Modeling Workshop May 2, 2025

Module #3

Arman Ahmadi UC Berkeley, Environmental Science, Policy, and Management

Outline

- 1. Overview
- 2. Overarching Goal
- 3. ET_o Forecasting
 - Case Study 1: forecasting accuracy, complexity, and data efficiency
 - Case Study 2: deep global learning
- 4. Key Messages

Overview: ET and ETo

- Source: https://en.wikipedia.org/wiki/Evapotranspiration
- * Walter, I. A., et al. (2004) "ASCE's Standardized Reference Evapotranspiration Equation".
- CALIFORNIA DEPARTMENT OF

- Evapotranspiration (ET):
 - Key water cycle component
 - Affects water availability (drought, irrigation, modeling,...)
- ET_o: ET at a reference surface (well-watered)
- ET = Crop Coefficient * ET_o
- DWR California Irrigation Management Information System (CIMIS) (https://cimis.water.ca.gov/)
 - 145 Active Weather Stations

Solar Radiation Air & Soil Temperature **Relative Humidity** Wind Speed

Penman-Monteith Equation*

Overarching Goal

To leverage the advances in data science and machine learning (ML) to forecast ET_o in California

Case Study 1: Goal

To analyze the accuracy, complexity, and data efficiency of statistical and deep learning models for monthly ET_o forecasting

Computers and Electronics in Agriculture

Statistical and deep learning models for reference evapotranspiration time series forecasting: A comparison of accuracy, complexity, and data efficiency

Arman Ahmadi ^a, Andre Daccache ^a \nearrow \bowtie , Mojtaba Sadegh ^b, Richard L. Snyder ^c

Case Study 1: Data

- ➤ Monthly ET₀ data from 107 active CIMIS stations
- Stations categorized based on their historical data availability:
 - Long: more than 25 years (34 stations)
 - Medium-length: 15 to 25 years (38 stations)
 - Short: 5 to 15 years (35 stations)

Case Study 1: Forecasting Setup

- Univariate time series forecasting (no exogenous variables)
- > Last two years of data (July 2020 to June 2022) as the test set
- > Forecasting horizons:
 - One month ahead
 - Three months ahead
 - Six months ahead
- Multi-step ahead forecasting strategies:
 - o Recursive: $y_{t+1} = f(y_t, ..., y_{t-k+1})$
 - O Multi-input multi-output (MIMO): $[y_{t+H}, ..., y_{t+1}] = F(y_t, ..., y_{t-k+1})$

Case Study 1: Forecasting Models

- Statistical Forecasting Models:
 - (Seasonal) Autoregressive integrated moving average (ARIMA and SARIMA)
 - Holt-Winters' exponential smoothing
 - Theta method
- Machine Learning Model: Light gradient-boosting machine (LightGBM)
- Deep Learning Models:
 - Neural basis expansion analysis for interpretable time series forecasting (N-BEATS)
 - Long short-term memory (LSTM)
 - Temporal convolutional network (TCN)
 - Transformer model
 - Temporal fusion transformer (TFT)

Case Study 1: Model Complexity

Model	Runtime (seconds)	Number of trainable parameters of deep learning models
ARIMA	168 (152 + 16)	_
SARIMA	266 (152 + 114)	_
Holt-Winters	4	_
Theta	1	_
LightGBM	2	-
N-BEATS	59	~ 20,700
LSTM	645	733
TCN	253	~ 4,300
Transformer	367	~ 12,100
TFT	473	~ 15,400

- Model architecture matters
- More parameters ≠
 higher computational
 complexity

Case Study 1: Results

Forecasting Accuracy:

R² for 3 months ahead ET_o forecasts

- Statistical models perform well
- Data length matters for deep learning models

Case Study 1: Results

CIMIS:
Dashed line

Holt-Winters: Red

N-BEATS:
Blue

N-BEATS ≥
Holt-Winters

Case Study 2: Goal

To Develop globally-learned deep learning (DL) models to forecast monthly ET_o in the Central Valley

Journal of Hydrology: Regional Studies

Enhancing the accuracy and generalizability of reference evapotranspiration forecasting in California using deep global learning

```
Arman Ahmadi <sup>a</sup> \stackrel{\triangle}{\sim} \stackrel{\triangle}{\bowtie}, Andre Daccache <sup>b</sup>, Minxue He <sup>c</sup>, Peyman Namadi <sup>c</sup>, Alireza Ghaderi Bafti <sup>d</sup>, Prabhjot Sandhu <sup>c</sup>, Zhaojun Bai <sup>e</sup>, Richard L. Snyder <sup>f</sup>, Tariq Kadir <sup>c</sup>
```

Case Study 2: Local Learning

Case Study 2: Global Learning

- ➤ Global Learning: training a deep forecasting model over multiple time series (stations) instead of one → model learns everything
- Testing the performance of the model over unseen locations (generalizability)

Case Study 2: Data

- ➤ Monthly ET₀ data from 55 CIMIS stations in the Central Valley
- Stations have more than six consecutive years of data
- > 47 stations used as the training set
- > 8 stations used as test set

Case Study 2: Results

Box plots of Root Mean Squared Error (RMSE) and R²

- > CIMIS ET_o vs. forecasted ET_o
- > June 2021-June 2023
- > 8 test stations

Case Study 2: Results

Percent Bias of Four Models at Durham Station

- ➤ Statistical model/

 Locally trained DL →

 large bias
- ➤ Globally trained DL →
 much smaller bias

Key Messages

- Larger dataset → better performance of deep learning (DL) models
- Model complexity: DL model parameters ≠ computational complexity
- Statistical models: reasonable performance, but large bias in certain months (winter)
- ➤ Global learning → forecasting accuracy (much smaller biases)
- Generalizability

Poor Strong
Statistical Models DL Models

Questions?

