- Assignment 1: BUAN 6312 Harikrishna Dev HXD220000
 - Answers
 - Code used in STATA

Assignment - 1: BUAN 6312 Harikrishna Dev HXD220000

Answers

- 1. Use the data in CHARITY [obtained from Franses and Paap (2001)] to answer the following questions:
- What is the average gift in the sample of 4,268 people (in Dutch guilders)? What percentage of people gave no gift?

Average gift is 7.4444704.

Percentage of people who have no gift is 0.60004687 (i.e. 60%)

```
. use "C:\Users\hxd220000\Desktop\Data Sets- STATA\charity.dta"
. egen gift_mean = mean(gift)
. display gift_mean
7.4444704
. egen count_total = count(respond)
. egen count_gift = count(gift), by (respond)
. display count_gift
2561
. display count_total
4268
. gen count_per = count_gift /count_total
. display count_per
.60004687
```

• What is the average mailings per year? What are the minimum and maximum values?

Average Mailings per year: 2.049555

Min Mailings per year: 0.25 Max mailings per year: 3.5

. summarize m	ailsyear				
Variable	:	Mean	Std. dev.	Min	Max
mailsyear		2.049555	. 66758	. 25	3.5

• Estimate the model.

$$gift = \beta_0 + \beta_1 \times mailsyear + u$$

by OLS and report the results in the usual way, including the sample size and R-squared.

$$gift = 2.01408 + 2.649546 \times mailsyear + u$$

Sample size = 4268 R-sqr = 0.0138

Source	SS	df	MS		mber of obs		4,268
	+				1, 4266)		
Model	13349.7251	1	13349.7253		ob > F		
Residual	954750.114	4,266	223.804528	3 R-	squared	=	0.0138
	+			- Ad	j R-squared	=	0.0136
Total	968099.84	4,267	226.880675	5 Ro	ot MSE	=	14.96
gift	Coefficient	Std. err.	t	P> t	 [95% cor		interval]
mailsyear	+ 2.649546	.3430598	7.72	0.000	1.976971	 L	3.322122
cons	2.01408	.7394696	2.72	0.006	.5643347	7	3.463825

• Interpret the slope coefficient. If each mailing costs one guilder, is the charity expected to make a net gain on each mailing? Does this mean the charity makes a net gain on every mailing? Explain.

The slope coefficient estimates that one mailing might be resulting in 2.65 additional guilders per year. So, the expected profit per mailing is 2.64 - 1 = 1.65 guilders. This value could be lesser or higher based on different scenarios, but the overall average using this model would be the given values.

• What is the smallest predicted charitable contribution in the sample? Using this simple regression analysis, can you ever predict zero for gift?

We know that min(mailsyear) = 0.25. This makes the smallest predicted contribution gift = 2.01408 + 2.649546 * 0.25 = 2.6764665. As min(gift) = 2.67, we can't get zero as a predict value.

- 2. The file CEOSAL2 contains data on 177 chief executive officers and can be used to examine the effects of firm performance on CEO salary.
- Estimate a model relating annual salary to firm sales and market value. Make the model of the constant elasticity variety for both independent variables. Report the results in the usual way.

As Isalary, Imktval and Isales are created in the dataset, we are able to generate the Im model.

$$ln(salary) = 4.620917 + 0.106708 \times ln(mktval) + 0.1621283 \times ln(sales) + u$$

```
. use "CEOSAL2.dta"
. reg lsalary lsales lmktval
    Source | SS df MS Number of obs =
                                                            177
                                                          37.13
                                  ----- F(2, 174) =
  Model | 19.3365617 2 9.66828083 Prob > F
Residual | 45.3096514 174 .260400295 R-squared
                                                     = 0.0000
                                                      = 0.2991
                                  ----- Adj R-squared = 0.2911
     Total | 64.6462131 176 .367308029 Root MSE
                                                           .51029
   lsalary | Coefficient Std. err. t P>|t| [95% conf. interval]
    lsales | .1621283 .0396703 4.09 0.000 .0838315 .2404252
   lmktval | .106708 .050124
                                                        .2056372
                                2.13 0.035 .0077787
     _cons | 4.620917 .2544083 18.16 0.000
                                               4.118794 5.123041
```

Add profits to the model from part (i), re-estimate the model and report the results in the usual way. Why
can this variable not be included in logarithmic form? Would you say that these firm performance variables
explain most of the variation in CEO salaries?

As profits can be negative, we cannot use the log function on the profits values.

Source	SS	df	MS		per of obs			
 Model	+ 19:3509799	3			, 173) > F			
	45.2952332				quared			
	+			- Adj	R-squared	=	0.2872	
Total	64.6462131	176	.367308029	9 Root	MSE	=	.51169	
lsalary	Coefficient				[95% cor			
lsales	. 1613683							
lmktval	.0975286	.0636886	1.53	0.128	0281782	2	.2232354	
profits	.0000357	.000152	0.23	0.815	0002643	3	.0003356	
_cons	4.686924	.3797294	12.34	0.000	3.937425	5	5.436423	

From the regression results, we can that *profits* has a p *value* > 0.05. This helps to conclude that the assumption that co-efficient of *profits* = 0 cannot be rejected

• Add the variable ceoten to the model in part (ii), re-estimate the model and report the results in the usual way. What is the estimated percentage return for another year of CEO tenure, holding other factors fixed?

$$ln(salary) = 4.620917 + 0.106708 \times ln(mktval) + 0.1621283 \times ln(sales) + 0.0116847 \times ceoten + u$$

Source	SS	df	MS					
					172)			
	20.5768102							
Residual	44.0694029	172	.256217459					
				Adj	R-squared	=	0.3024	
Total	64.6462131	176	.367308029	Root	: MSE	=	.50618	
lsalary	Coefficient				[95% cor			
lsales	.1622339							
lmktval	.1017598	.063033	1.61	0.108	022658	3	.2261775	
profits	.0000291	.0001504	0.19	0.847	0002677	,	.0003258	
ceoten	.0116847	.005342	2.19	0.030	.0011403	3	.022229	
cons	4.55778	.3802548	11.99	0.000	3.807213	3	5.308347	

From the above regression equation, we can conclude

$$\frac{\frac{\Delta salary}{salary}}{\Delta ceoten} = 0.012$$

An addition in a year of tenure results in an increase in their salary by 1.2% on an average.

• Find the sample correlation coefficient between the variables log(mktval) and profits. Are these variables highly correlated? What does this say about the OLS estimators? [Hint: You can use the stata command correlate.]

The covariance between *In(mktval)* and *profits* is **0.78**. The implies there is a highly correlated variables. This doesn't affect the OLS estimators as we assume they are independent variables. Correlation doesn't mean causation.

- 3. Refer to the example used in Lecture 4 to compare the returns to education at junior colleges and four-year colleges. The model after rearrangement is $log(wage) = \beta_0 + \theta_1 jc + \beta_2 totcoll + \beta_3 exper + u$, where totcoll is total years of college. Use the data set TWOYEAR, which comes from Kane and Rouse (1995).
- Run the regression above and report the OLS estimates in the usual form, including the standard errors, sample size and R-squared. How do you interpret θ_1? Is it statistically significant?

$$ln(wage) = 1.472326 - 0.0101795 \times jc + 0.0768762 \times totcoll + 0.0049442 \times exper + u$$

 $\theta_{-}1$ is the percentage increase in wage for unit increase in Junior college credit. As p values > 0.05, we can conclude the parameter jc is not significant.

eg lwage jo	totcoll expe	r						
Source	SS	df	MS	Numl	per of obs	=	6,763	
+				F(3)	6759)	=	644.53	
Model	357.752575	3	119.25085	8 Prol) > F	=	0.0000	
Residual	1250.54352	6,759	.18501901	.4 R-s	quared	=	0.2224	
+				- Adj	R-squared	=	0.2221	
Total	1608.29609	6,762	.23784325	5 Roof	MSE	=	.43014	
- '	Coefficient							
	- . 0101795							
totcoll	.0768762	.0023087	33.30	0.000	.0723504		.0814021	
	.0049442							
					1.431041			

• The variable phsrank is the person's high school percentile. (A higher number is better. For example, 90 means you are ranked better than 90 percent of your graduating class.) Find the smallest, largest, and average phsrank in the sample

Parameters of *phsrank* are as follows: Minimum: 0 Maximum: 100 Average: 56.15703

Variable Obs Mean Std. dev. Min Maxphsrank 6,763 56.15703 24.27296 0 99	. summarize phsra	nk				
· ·	·	0bs	Mean	Std. dev.	Min	Max
		6,763	56.15703	24.27296	0	99

• Add phsrank to the model and report the OLS estimates in the usual form. Is phsrank statistically significant? How much is 10 percentage points of high school rank worth in terms of wage?

$$ln(wage) = 1.458747 - 0.0093108 \times jc + 0.0754756 \times totcoll + 0.0049396 \times exper + 0.0003032 \times phsrank + 0.0049396 \times phsrank + 0.00496 \times phs$$

We can see that *phsrank* has a *p value* > 0.05. Therefore, we can conclude that *phsrank* is not significant.

From the regression model, we can conclude

$$\frac{\frac{\Delta wage}{wage}}{\Delta phsrank} = 0.0003032$$

This implies that a 10% increase in phsrank would result in a 0.3% increase in wage.

Source	SS	df	MS	Number of obs	=	6,763	
	+			F(4, 6758)	=	483.85	
Model	358.050568	4	89.5126419	Prob > F	=	0.0000	
Residual	1250.24552	6,758	.185002297	R-squared	=	0.2226	
	+			Adj R-squared	=	0.2222	
Total	1608.29609	6,762	.237843255	Root MSE	=	.43012	
_	•			> t [95% co 			
				.182022972			
	'			.000 .070459			
exper	.0049396	.0001575	31.36 0	.000 .004630	8	.0052483	
phsrank	.0003032	.0002389	1.27 0	.204000165	1	.0007716	
cons	1.458747	.0236211	61.76 0	.000 1.41244	2	1.505052	

• Compare regression results in (i) and (iii), does adding phsrank to the model substantively change the conclusions on the returns to two- and four-year colleges? Explain.

After adding an additional variable *phsrank*, we see not many changes in terms of magnitude of coefficients of the linear model generated. Therefore, the base point remains unchanged: the return to a junior college is estimated to be somewhat smaller, but the difference is not significant and standard significant levels.

• The data set contains a variable called id. Explain why if you add id to the model you expect it to be statistically insignificant. What is the two-sided p-value?

The variable *id* is a unique identifier for each employee. It doesn't have any relation with wage. The *p value* > 0.05 which shows that it is not significant.

p values (t test on id) = 0.507

Source	l SS	df	MS	Num	ber of obs	=	6,763	
	+				, 6757)		-	
Model	358.132086	5	71.626417	1 Pro	b > F	=	0.0000	
Residual	1250.16401	6 , 757	.18501761	2 R-s	quared	=	0.2227	
	+			- Adj	R-squared	=	0.2221	
Total	1608.29609	6,762	. 23784325	5 Roo	t MSE	=	.43014	
lwage 	Coefficient +	Std. err.				nf. 	interval]	
jc	0093159	.0069696	-1.34	0.181	0229784	4	.0043467	
totcoll	.075414	.0025606	29.45	0.000	.0703943	3	.0804336	
exper	.004941	.0001575	31.37	0.000	.0046322	2	.0052498	
phsrank	.0003179	.00024	1.32	0.185	0001525	5	.0007883	
id	1.40e-07	2.10e-07	0.66	0.507	-2.73e-07	7	5.52e-07	
cons	1.452215	.0255898	56.75	0.000	1.402053	1	1.502379	

- 4. Use the data set GPA1 to answer this question.
- Run the regression colGPA on PC, hsGPA, and ACT and obtain a 95% confidence interval for βPC. Is the estimated coefficient statistically significant at the 5% level against a two-sided alternative?

The confidence interval of β_{PC} is (0.0440271,0.2705913).

The *p* value of β_{PC} < 0.05, which makes its statistically significant.

```
. use "GPA1.dta"
. reg colGPA PC hsGPA ACT
     Source |
                                              Number of obs =
                                                                    141
                                              F(3, 137)
                                                                  12.83
     Model | 4.25741863
                             3 1.41913954
                                              Prob > F
                                                                 0.0000
                                             R-squared
   Residual | 15.1486808
                             137 .110574313
                                                             =
                                                                 0.2194
                                              Adi R-squared =
                                                                  0.2023
     Total | 19.4060994
                             140 .138614996
                                             Root MSE
                                                                  .33253
     colGPA | Coefficient Std. err.
                                      t P>|t| [95% conf. interval]
        PC |
               . 1573092
                         .0572875
                                     2.75
                                           0.007
                                                    .0440271
                                                               .2705913
      hsGPA |
               .4472417
                         .0936475
                                     4.78
                                           0.000
                                                    .2620603
                                                                 .632423
       ACT |
                .008659
                         .0105342
                                     0.82
                                           0.413
                                                    -.0121717
                                                                .0294897
      _cons |
                1.26352
                         .3331255
                                     3.79
                                           0.000
                                                     .6047871
                                                                1.922253
```

- Discuss the statistical significance of the estimates $\beta_h sGPA$ and $\beta_A CT$ in part (i). Is hsGPA or ACT the more important predictor of colGPA? Explain.
- $\beta_h = 0.05$, which implies that the variable *hsGPA* is statistically significant.
- β_ACT has a *p value* > 0.05, which implies that the variable *hsGPA* is not statistically significant.

We can conclude that \$hsGPA\$ is more important predictor of \$colGPA\$.

Add the two indicators fathcoll and mothcoll to the regression in part (i). Is either individually significant?
 Are they jointly statistically significant at the 5% level?

From the new regression model, we can see that both *fathcoll* and *mothcoll* are not statistically significant.

Source		-	MS				141	
Model			.862420797				7.71 0.0000	
Residual	15.0939955	135	.111807374	l R−squ	ared	=	0.2222	
				,			0.1934	
Total	19.4060994	140	.138614996	Root	MSE	=	.33438	
colGPA	Coefficient	Std. err.	t	P> t	 [95% cor	 nf.	interval]	
PC	.1518539	.0587161	2.59	0.011	.0357316	5	.2679763	
hsGPA	.4502203	.0942798	4.78	0.000	.2637639)	.6366767	
ACT	.0077242	.0106776	0.72	0.471	0133929)	.0288413	
fathcoll	.0417999	.0612699	0.68	0.496	079373	3	.1629728	
mothcoll	0037579	0602701	0 06	0.50	_ 1220535	-	.1154377	

_cons | 1.255554 .3353918 3.74 0.000 .5922526 1.918856

- 5. Use the data in WAGE1 for this exercise.
- Estimate the equation $wage = \beta_0 + \beta_1 educ + \beta_2 exper + \beta_3 tenure + u$ and report the OLS estimates in the usual form. Save the residuals and plot a histogram. [Hint: 1) You can obtain the residuals of each prediction by using the residuals command and storing these values in a variable named whatever you'd like, e.g., predict resid_wage, residuals. 2) You can use the histogram command to plot a histogram, e.g., histogram resid_wage.]

$$wage = -2.872735 + 0.5989651 \times educ + 0.0223395 \times exper + 0.1692687 \times tenure + u$$

The following code helps us plot a frequency histogram of the residuals

```
. predict resid_wage, residuals
. histogram resid_wage, normal
(bin=22, start=-7.6067705, width=1.011835)
```

Histogram plot of the residuals

• Repeat part (i), but with log(wage) as the dependent variable.

Source	SS	df	MS				526
Model	 46.8741776	3	15.6247259		522) > F		80.39 0.0000
Residual	101.455574		.194359337		ared	=	0.3160
Total	148.329751	525	.28253286	_	-squared MSE	=	
lwage	Coefficient	Std. err.	 t	P> t	 [95% cor	 nf.	interval]
educ	.092029	.0073299	12 . 56	0.000	.0776292	<u> </u>	.1064288
exper	.0041211	.0017233	2.39	0.017	.0007357	7	.0075065
tenure	.0220672	.0030936	7.13	0.000	.0159897	7	.0281448
cons	. 2843595	.1041904	2.73	0.007	.0796756	5	.4890435

The following code helps us plot a frequency histogram of the residuals

```
. predict resid_lwage, residuals
```

. histogram resid_lwage, normal
(bin=22, start=-2.0580163, width=.15845945)

Histogram plot of the residuals

• Would you say that Assumption MLR.6 is closer to being satisfied for the level-level model or the log-level model? Explain.

The log-level model looks to be a normal distributed better than the level-level mode. The level-level model looks to be positively skewed as well. We can also see that sd(residual_wage) is five time the sd(residual_wage). This signifies the homoscedasticity of the log-level model.

. summarize resid_	_lwage				
Variable	0bs	Mean	Std. dev.	Min	Max
resid_lwage	526	1.27e-10	.4396006 -2	.058016	1.428092
. summarize resid_	_wage				

Variable	0bs	Mean	Std. dev.	Min	Max
resid_wage	526	1.90e-09	3.07565	-7 . 606771	14.6536

6. The model we used in class to explain the standardized outcome on a final exam (stndfnl) in terms of percentage of classes attended, prior college grade point average, and ACT score is $stndfnl = \beta_0 + \beta_1 \times atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA^2 + \beta_5 \times ACT^2 + \beta_6 \times priGPA \times atndrte + u$

• Argue that
$$\frac{\Delta stndfnl}{\Delta priGPA} = \beta_2 + 2\beta_4 \times priGPA + \beta_6 \times atndrte$$

Assuming the regression equation is as follows:

$$stndfnl = \beta_0 + \beta_1 \times atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA^2 + \beta_5 \times ACT^2 + \beta_6 \times priGPA \times atndrte + u$$

we partially differentiate wrto priGPA on both sides.

$$\frac{\delta stndfnl}{\delta priGPA} = \frac{\delta (\beta_0 + \beta_1 \times atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 priGPA^2 + \beta_5 \times ACT^2 + \beta_6 \times priGPA \times atndrte + u)}{\delta priGPA}$$

$$= 0 + 0 + \beta_2 + 0 + 2 \times \beta_4 \times priGPA + 0 + \beta_6 \times priGPA \times 1$$

as

$$\frac{\delta(constant)}{\delta priGPA} = 0$$

and

$$\frac{\delta priGPA^2}{\delta priGPA} = 2 \times priGPA$$

$$\therefore \frac{\delta stndfnl}{\delta priGPA} = \beta_2 + 2 \times \beta_4 \times priGPA + \beta_6 \times atndrte$$

It can also be written as

$$\frac{\Delta stndfnl}{\Delta priGPA} = \beta_2 + 2 \times \beta_4 \times priGPA + \beta_6 \times atndrte$$

• Use the equation above to estimate the partial effect of priGPA on stndfnl when priGPA is at its mean value 2.59, and atndrte is also at it mean value 82. Interpret your estimate. [Hint: The estimated OLS equation can be found in Lecture 5.]

We know that

$$\beta_2 = -1.63, \beta_4 = 0.296, \beta_6 = 0.0056$$

and

$$pri\hat{G}PA = 2.59$$
, $atn\hat{d}rte = 82$

we can compute that

$$\frac{\Delta stndfnl}{\Delta priGPA} = -1.63 + 2 \times 0.296 + 2.59 + 0.0056 \times 82 = 0.36248$$

$$\therefore \frac{\Delta stndfnl}{\Delta priGPA} = 0.36248$$

• Show that the equation can be re-written as $stndfnl = \theta_0 + \beta_1 atndrte + \theta_2 priGPA + \beta_3 ACT + \beta_4 (priGPA - 2.59)^2 + \beta_5 ACT^2 + \beta_6 priGPA \cdot (atndrte - 82) + u$, where $\theta_2 = \beta_2 + 2\beta_4 (2.59) + \beta_6 (82)$. How do you interpret θ_2 ?

We can solve the equation using the following method:

```
stndfnl = \theta_0 + \beta_1 atndrte + \theta_2 \times priGPA + \beta_3 \times ACT + \beta_4 \times (priGPA - 2.59)^2 + \beta_5 ACT^2 + \beta_6 priGPA \cdot (atndrte - 82) + u
```

$$=\theta_0+\beta_1\times atndrte+\beta_2\times priGPA+\beta_3\times ACT+\beta_3\times ACT+\beta_4\times (priGPA-2.59)^2+\beta_4\times 2\times 2.59\times priGPA-\beta_4\times (2.59)^2+\beta_6\times priGPA\times (atndrte-82)+\beta_6\times 82\times priGPA+u$$

$$= [\beta_0 - \beta_4 \times (2.59)^2] + \beta_1 atndrte + [\beta_2 + 2 \times \beta_4 \times 2.59 + \beta_6 \times (0.82)] \times priGPA + \beta_3 \times ACT + \beta_4 \times (priGPA - 2.59)^2 + \beta_5 \times ACT^2 + \beta_6 \times priGPA \times (atndrte - 82) \times (atnfrte - 82) + u$$

=
$$\theta_0 + \beta_1$$
atendrte + θ_2 pri $GPA + \beta_3ACT + \beta_4$ (pri $GPA - 2.59$)² + $\beta_5ACT^2 + \beta_6$ pri GPA (atndrte - 82) + u

When we run the regression associated with this last model, we obtain $\theta^2 \approx -0.091$ and $se(\theta^2) \approx 0.363$. This implies a very small t statistic for θ^2 .

• Following (iii), suppose that, in place of $priGPA \cdot (atndrte - 82)$, you put $(priGPA - 2.59) \cdot (atndrte - 82)$. Now how do you interpret the coefficients on atndrte and priGPA?

Using (priGPA - 2.59).(atndrte - 0.82) in place of priGPA.(atndrte - 0.82) gives:

$$stndfnl = \beta_0 + \beta_1 \times atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 (priGPA - 2.59)^2 + \beta_5 \times ACT^2 + \beta_6 \times (priGPA - 2.59) \times (atndrte - 82) \times (atndrte - 82) + u$$

$$stndfnl = \beta_0 + \beta_1 \times atndrte + \beta_2 priGPA + \beta_3 ACT + \beta_4 (priGPA - 2.59)^2 + \beta_5 \times ACT^2 + \beta_6 \times (priGPA - 2.59) \times (atndrte - 82)^2 + u$$

Code used in STATA

```
name: HW1
      log: C:\Users\hxd220000\Desktop\HW1.log
 log type: text
 opened on: 22 Feb 2023, 17:14:15
. display count_per
.60004687
. egen gift_mean = mean(gift)
variable gift_mean already defined
r(110);
. sysuse auto, clear
(1978 automobile data)
. use "C:\Users\hxd220000\Desktop\Data Sets- STATA\charity.dta"
. egen gift_mean = mean(gift)
. display gift_mean
7.4444704
. egen count_total = count(respond)
. egen count_gift = count(gift), by (respond)
. display count gift
2561
. display count total
4268
```

- . gen count_per = count_gift /count_total
- . display count_per
- .60004687
- . save "C:\Users\hxd220000\Desktop\Charity_v2.dta"
 file C:\Users\hxd220000\Desktop\Charity_v2.dta saved
- . summarize mailsyear

Variable	0bs	Mean	Std.	dev.	Min	Max
+						
mailsyear	4,268	2.049555	. 66	5758	. 25	3.5

. reg gift mailsyear

Source	SS	df	MS	Number of obs	=	4,268
+				F(1, 4266)	=	59.65
Model	13349.7251	1	13349.7251	Prob > F	=	0.0000
Residual	954750.114	4,266	223.804528	R-squared	=	0.0138
+				Adj R-squared	=	0.0136
Total	968099.84	4,267	226.880675	Root MSE	=	14.96

gift	Coefficient	Std. err.	t	P> t	[95% conf. interval]
, ,	2.649546 2.01408		7.72 2.72		1.976971 3.322122 .5643347 3.463825

- . use "CEOSAL2.dta"
- . reg lsalary lsales lmktval

Source	SS	df	MS	Number of obs	=	177
 +-				F(2, 174)	=	37.13
Model	19.3365617	2	9.66828083	Prob > F	=	0.0000
Residual	45.3096514	174	.260400295	R-squared	=	0.2991
 +-				Adj R-squared	=	0.2911
Total	64.6462131	176	.367308029	Root MSE	=	.51029

lsalary	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
lsales lmktval _cons		.050124		0.000 0.035 0.000	.0838315 .0077787 4.118794	.2404252 .2056372 5.123041

. reg lsalary lsales lmktval profits

Source	SS	df	MS	Number of obs	=	177
+-				F(3, 173)	=	24.64
Model	19.3509799	3	6.45032663	Prob > F	=	0.0000
Residual	45.2952332	173	.261822157	R-squared	=	0.2993
+-				Adj R-squared	=	0.2872
Total	64.6462131	176	.367308029	Root MSE	=	.51169

lsalary	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
lsales		.0399101	4.04	0.000	.0825949	.2401416
lmktval		.0636886	1.53	0.128	0281782	.2232354
profits		.000152	0.23	0.815	0002643	.0003356
_cons		.3797294	12.34	0.000	3.937425	5.436423

. reg lsalary lsales lmktval profits ceoten

Source	SS	df	MS	Number of obs	=	177
				F(4, 172)	=	20.08
Model	20.5768102	4	5.14420254	Prob > F	=	0.0000

Residual	44.0694029	172	.256217459	R-squared	=	0.3183
Total	64.6462131	176	.367308029	Adj R-square Root MSE	ed = =	0.3024 .50618
lsalary	Coefficient	Std. err.	t F	P> t [95%	conf.	interval]
lsales lmktval profits ceoten _cons	.1622339 .1017598 .0000291 .0116847 4.55778	.0394826 .063033 .0001504 .005342 .3802548	1.61 @ @ .19 @ .2.19 @	0.000 .0843 0.108022 0.8470002 0.030 .0011 0.000 3.807	2658 2677 1403	.2401667 .2261775 .0003258 .022229 5.308347

. correlate lmktval profits
(obs=177)

	lmktval	
	1.0000	
profits	0.7769	1.0000

- . use "TWOYEAR.dta"
- . reg lwage jc totcoll exper

	Source	SS SS	df	MS	Number of obs	=	6,763
-		t			F(3, 6759)	=	644.53
	Model	357.752575	3	119.250858	Prob > F	=	0.0000
	Residual	1250.54352	6,759	.185019014	R-squared	=	0.2224
_		+			Adj R-squared	=	0.2221
	Total	1608.29609	6,762	.237843255	Root MSE	=	.43014
_							
_	lwage	Coefficient +	Std. err.	t P	> t [95% c	onf.	interval]
	jc	0101795	.0069359	-1.47 0	.14202377	61	.003417
	jc totcoll	0101795 .0768762	.0069359 .0023087		.14202377 .000 .07235		.003417 .0814021
	, ,			33.30 0		04	
	totcoll	.0768762	.0023087	33.30 0 31.40 0	.000 .07235	04 55	.0814021

- . display jc
- summarize jc

Variable	0bs	Mean	Std. dev.	Min	Max
+					
jc	6,763	.3388946	.7721268	0	3.833333

. reg lwage jc totcoll exper phsrank

Source	SS	df	MS	Number of obs	=	6,763
+				F(4, 6758)	=	483.85
Model	358.050568	4	89.5126419	Prob > F	=	0.0000
Residual	1250.24552	6,758	.185002297	R-squared	=	0.2226
+				Adj R-squared	=	0.2222
Total	1608.29609	6,762	.237843255	Root MSE	=	.43012

lwage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
jc totcoll exper phsrank	.0754756 .0049396 .0003032	.0069693 .0025588 .0001575 .0002389	-1.34 29.50 31.36 1.27	0.182 0.000 0.000 0.204	0229728 .0704595 .0046308 0001651	.0043512 .0804918 .0052483 .0007716
_cons	1.458747	.0236211	61.76	0.000	1.412442	1.505052

Total 1608.29609 6,762 .237843255 Root MSE = .43014 lwage Coefficient Std. err. t P t [95% conf. interval] jc 0093159 .0069696 -1.34 0.181 0229784 .0043467 totcoll .075414 .0025606 29.45 .000 .0763943 .0804336 exper .004941 .0001575 31.37 .000 .0046322 .0052498 obsrank .0003179 .00024 1.32 0.185 0001525 .0007883 id 1.40e-07 2.10e-07 0.66 0.507 -2.73e-07 5.52e-07 _ cons 1.452215 .0255898 56.75 0.000 1.402051 1.502379 "GPA1.dta"	Max	n ľ	Min	dev	Std.	Mean	0bs	Variable
Source	99	ð	0	7296	24.27	56.15703	6,763	phsrank
					id	phsrank	totcoll expe	reg lwage jo
Model 358.132886 5 71.6264171 Prob > F = 0.0000					MS	df	SS 	Source
Total 1608.29609 6,762 .237843255 Root MSE = 0.2221	0.0000	=	Prob > F					
Total 1608.29609 6,762 .237843255 Root MSE = .43014				512	.1850176	6 , 757	1250.16401	Residual
jc 0093159			-	255	.2378432	6,762	1608.29609	Total
totcoʻli	interval]	 95% conf.	· t [9	P>	t	Std. err.	Coefficient	lwage
exper .004941	.0043467	 0229784	1810	0.	-1.34	.0069696	0093159	jc
### Physrank .0003179 .00024 1.32 0.185 .0001525 .0007883 id 1.40e-07 2.10e-07 0.66 0.507 -2.73e-07 5.52e-07 .0008 1.452215 .0255898 56.75 0.000 1.402051 1.502379 .0008 .0009 1.402051 1.502379 .0008 .0009 .00							.075414	totcoll
1d								
"GPA1.dta" colGPA PC hsGPA ACT Source SS								'
Source SS								use "GPA1.dt
Model 4.25741863 3 1.41913954 Prob > F 0.0000							C hsGPA ACT	reg colGPA F
Model 4.25741863					MS	df 	SS 	Source
Total 19.4060994	0.0000	=	Prob > F	954	1.419139	3	4.25741863	Model
Total 19.4060994				313	.1105743	137	15.1486808	Residual
PC .1573092 .0572875			-	996	.1386149	140	19.4060994	Total
hsGPA .4472417	interval]	 95% conf.	· t [9	P>	t	Std. err.	Coefficient	colGPA
hsGPA .4472417	.2705913	 0440271	007 .0	0.	2.75	.0572875	.1573092	 PC I
ACT .008659 .0105342	.632423	2620603	000 .2	0.	4.78	.0936475	.4472417	hsGPA
ColGPA PC hsGPA ACT fathcoll mothcoll Source SS	.0294897	0121717	4130	0.	0.82	.0105342		ACT
Source SS	1.922253	6047871 	.6	0.	3.79 	.3331255	1.26352 	_cons
Model 4.31210399 5					chcoll	thcoll mo	C hsGPA ACT f	reg colGPA F
Model 4.31210399 5					MS	df	SS	Source
Source SS df MS Number of obs Side Si				707	962420		4 21210200	H
Total 19.4060994								
Total 19.4060994								
PC .1518539 .0587161			-	996	.1386149	140	19.4060994	Total
hsGPA .4502203	interval]	95% conf.	· t [9	P>	t	Std. err.	Coefficient	colGPA
hsGPA .4502203	.2679763	 0357316	011 .0	o.	2.59	.0587161	.1518539	PC 1
ACT .0077242 .0106776								
0037579	.0288413	0133929	4710	0.	0.72	.0106776	.0077242	ACT
cons 1.255554 .3353918								
"WAGE1.dta" wage educ exper tenure Source SS								
Source SS df MS Number of obs = 526 	1.910030				J:74 			use "WAGE1.d
Model 2194.1116								
esidual 4966.30269 522 9.51398984 R-squared = 0.3064	76.87) =	F(3, 522)					-
								Nestudat

wage	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
educ exper tenure _cons	.0223395 .1692687	.0512835 .0120568 .0216446 .7289643	11.68 1.85 7.82 -3.94	0.000 0.064 0.000 0.000	.4982176 0013464 .1267474 -4.304799	.6997126 .0460254 .2117899 -1.440671

- . predict resid_wage, residuals
- . histogram resid_wage
 (bin=22, start=-7.6067705, width=1.011835)
- . graph save "Graph" "C:\Users\hxd220000\Desktop\Graph.gph"
 file C:\Users\hxd220000\Desktop\Graph.gph saved
- . graph export "C:\Users\hxd220000\Desktop\Graph.jpg", as(jpg) name("Graph") qua > lity(90)

file C:\Users\hxd220000\Desktop\Graph.jpg written in JPEG format

.0030936

.1041904

. reg lwage educ exper tenure

Source	SS	df	MS		of obs	=	526
Model Residual	46.8741776 101.455574	3 522	15.6247259 .194359337	Prob > R-squa	F red	= =	0.5100
Total	148.329751	525	.28253286	_	squared SE	=	0.5121
lwage	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
educ exper	.092029	.0073299 .0017233		0.000 0.017	.0776292		.1064288 .0075065

7.13

2.73

0.000

0.007

.0159897

.0796756

.0281448

.4890435

- . predict resid_wage, residuals
 variable resid_wage already defined
 r(110);
- . predict resid_lwage, residuals

tenure |

_cons

. histogram resid_lwage
(bin=22, start=-2.0580163, width=.15845945)

.0220672

. 2843595

. graph export "C:\Users\hxd220000\Desktop\Graph-lwage.jpg", as(jpg) name("Graph
> ") quality(100)

file C:\Users\hxd220000\Desktop\Graph-lwage.jpg written in JPEG format

- . graph save "Graph" "C:\Users\hxd220000\Desktop\Graph-lwage.gph"
 file C:\Users\hxd220000\Desktop\Graph-lwage.gph saved
 histogram resid_wage, normal
 (bin=22, start=-7.6067705, width=1.011835)
- . graph save "Graph" "C:\Users\hxd220000\Desktop\Graph.gph", replace file C:\Users\hxd220000\Desktop\Graph.gph saved
- . graph export "C:\Users\hxd220000\Desktop\Graph.jpg", as(jpg) name("Graph") qua
 > lity(100) replace
 file (1) Users\hyd220000\Desktop\Graph ing unitten in 1056 format
- file C:\Users\hxd220000\Desktop\Graph.jpg written in JPEG format
- . histogram resid_lwage, normal
 (bin=22, start=-2.0580163, width=.15845945)
- . graph save "Graph" "C:\Users\hxd220000\Desktop\Graph-lwage.gph", replace file C:\Users\hxd220000\Desktop\Graph-lwage.gph saved
- . graph export "C:\Users\hxd220000\Desktop\Graph-lwage.jpg", as(jpg) name("Graph

> ") quality(100) replace
file C:\Users\hxd220000\Desktop\Graph-lwage.jpg written in JPEG format

summarize resid_lwage

Variable	0bs	Mean	Std. dev.	Min	Max
+					
resid_lwage	526	1.27e-10	.4396006	-2.058016	1.428092

summarize resid_wage

Variable	0bs	Mean	Std. dev.	Min	Max
resid_wage	+ 526	1.90e-09	3.07565	-7 . 606771	14.6536
