

Diseños experimentales

DISENO

A MENUDO. EL DISEÑO DE UN EXPERIMENTO ORIGINA SU ÉXITO O SU FRACASO. EN EL EJEMPLO DE COMPARACIÓN APAREADA, NUESTRO ESTADÍSTICO PASÓ DE ACUMULAR Y ANALIZAR DATOS DE FORMA PASIVA A PARTICIPAR ACTIVAMENTE EN EL DISEÑO EXPERIMENTAL.

Repetición: Se asignan LOS MISMOS TRATAMIENTOS A LAS DIFE-RENTES UNIDADES EXPERIMENTALES. SIN LA REPETICIÓN, RESULTA IMPOSIBLE ESTABLECER LA VARIABILIDAD NATURAL Y EL ERROR DE LA MEDIDA.

Control local: HACE

REFERENCIA A CUALQUIER MÉTODO QUE REPRESENTE Y REDUZCA LA VARIABILIDAD NATURAL. UNA DE SUS FORMAS ES LA AGRUPACIÓN DE LAS UNIDADES EXPERI-MENTALES EN BLOQUES.

Alegtorización: ¡Es el PASO PRIMORDIAL DE TODAS LAS ESTADÍS. TICAS! LOS TRATAMIENTOS DEBEN SER ASIGNADOS DE FORMA ALEATORIA A LAS UNIDADES EXPERIMENTALES.

UN MODELO DE REGRESIÓN DEL TOTAL DE LA POBLACIÓN ES UNA

 $Y = \alpha + \beta z + \epsilon$

LETRAS GREGAS, QUE INDICANEL DOMINIO DEL MODELO

Y ES LA VARIABLE ALEATORIA DEPENDIENTE; X ES LA VARIABLE INDEPENDIEN-TE (QUE PUEDE SER ALEATORIA O NO); α Y β SON LOS PARÁMETROS QUE QUEREMOS ESTIMAR; Y € REPRESENTA LAS FLUCTUACIONES DEL ERROR ALEATORIO.

Modelos Lineales

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

$$i = 1, ..., \tau_i = m$$
úmero de tratamientos

$$j = 1, ..., n_j = n$$
úmero de repeticiones por tratamientos

Donde

 Y_{ij} = unidad experimental que recibe el tratamiento i en la repetición j

 $\mu = media de los tratamientos$

 τ_i = efecto del i – ésimo tratamiento

 $\varepsilon_{ij} = error \ experimental$

FV	gl
Tratamientos	τ – 1
Error	$\tau(n-1)$
Total	τn - 1

Diseño Completamente al Azar (DCA)

Tratamientos al Azar El número de repeticiones puede ser diferente Las unidades experimentales deben ser homogéneas

Ventajas	Desventajas
 Fácil de planear y analizar Máximo grado de libertad del error Las repeticiones por tratamiento pueden ser diferentes 	 No recomendados para mucho tratamientos (n > 20) No recomendado para material de estudio heterogéneo

Diseño Completamente al Azar (DCA)

$$Y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}$$

$$i = 1, ..., \tau_i = n$$
úmero de tratamientos

$$j = 1, ..., n_j = n$$
úmero de bloques

Donde

 Y_{ij} = unidad experimental que recibe el tratamiento i en el bloque j

 $\mu = media de los tratamientos$

 τ_i = efecto del i – ésimo tratamiento

 $\beta_i = efecto del j - ésimo bloque$

 $\varepsilon_{ii} = error \ experimental$

FV	gl	
Tratamientos	τ – 1	
Bloques	n – 1	
Error	$(\tau - 1)(n - 1)$	
Total	$\tau n - 1$	

Diseño en Bloques Completos al Azar (DBCA)

Diseño en bloques completamente al azar.

Disminuye el error experimental
Las repeticiones son los bloques
Permite formar grupos de unidades homogéneas
Los tratamientos son asignados al azar dentro de cada bloque

Ventajas	Desventajas
 Preciso, simple y flexible Fácil de analizar Las parcelas perdidas pueden ser estimadas 	 No recomendados para mucho tratamientos (n > 20) No recomendado para material de estudio heterogéneo. El número de repeticiones deben ser iguales

Diseño en Bloques Completos al Azar (DBCA)

$$Y_{ij} = \mu + \tau_i + F_j + C_k + \varepsilon_{ij}$$

 $i = 1, ..., \tau = n$ úmero de tratamientos

 $j = 1, ..., \tau = m$ úmero de tratamientos

 $k = 1, ..., \tau = m umero de tratamientos$

Donde

 \boldsymbol{Y}_{ij} = unidad experimental que recibe el tratamiento i en la fila j con columna k

 μ = media de los tratamientos

 τ_i = efecto del i – ésimo tratamiento

 F_j = efecto del j - ésima fila

 C_k = efecto del k – ésima columna

 $\varepsilon_{ii} = error \ experimental$

FV	gl	
Tratamientos	τ – 1	
Filas	τ – 1	
Columnas	τ – 1	
Error	$(\tau - 1)(t - 2)$	
T otal	$\tau^2 - 1$	

Diseño Cuadrado Latino (DCL)

Disminuye el error experimental.

Permite formar grupos de unidades homogéneas en 2 direcciones. Los tratamientos son asignados al azar de forma que cada fila y columna contenga todos los tratamientos.

Ventajas	Desventajas	
Muy precisoSencillo	 Número de tratamientos limitados por filas y columnas (n < 10). Los grados de libertad del error son limitados. 	

Diseño Cuadrado Latino (DCL)

Error experimental

Theory Demonstration

Factor	Conjunto de tratamientos de una misma clase
Niveles de un factor	Son los diferentes tratamientos que pertenece a un determinado factor. Puede ser Cualitativo o Cuantitativo
Tratamiento	Combinación específica entre los niveles de un factor
Experimento Factorial	Combinación de factores para formar tratamientos

Diseño Factorial

Ventajas	Desventajas
 Permite estudiar los efectos, principales e interacción de factores (simples, cruzados y anidados) Todas las unidades experimentales intervienen en la determinación de los efectos principales e interacciones (alto número de repeticiones) Alto número de grados de libertad del error, disminuyendo la varianza 	 Mayor número de unidades experimentales genera mayores costos y trabajo en la ejecución. Análisis compleja, a medida que el número de factores y niveles aumenta. Algunas combinaciones en el experimento son innecesarias, más importantes para balancear el experimento. Análisis de la varianza diferente

Diseño Factorial

Analysis of variance & Mean Comparison Test