Caleb Logemann, James Rossmanith

Introducti

_ -----

Convection

Numerical Result

Conclusion

References

Local Discontinuous Galerkin Method for Solving Thin Film Equations

Caleb Logemann James Rossmanith

Mathematics Department, Iowa State University

logemann@iastate.edu

November 4, 2019

Overview

Caleb Logemanr James Rossmanith

Introducti

Derivation

Method Convectio

Numerical Result

Conclusion

Numerical H

- 1 Introduction
- 2 Derivation
- 3 Method
 - Convection
 - Diffusion
- 4 Numerical Results
- 5 Conclusion

Motivation

Caleb Logemann James Rossmanith

Introduction

Derivatio

Method Convection

Numerical Result

Conclusion

■ Aircraft Icing

Runback

■ Industrial Coating

Model Equations

Caleb Logemann James Rossmanith

Introducti

Derivation

Convection

Numerical Result

Conclusion

Conclusion

■ Navier-Stokes Equation

$$\nabla \cdot \mathbf{u} = 0$$

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u}\mathbf{u}) = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \sigma + \mathbf{g}$$

$$\partial_t h_s + (u, v)^T \cdot \nabla h_s = w$$

$$\partial_t h_b + (u, v)^T \cdot \nabla h_b = w$$

- Lubrication or reduced Reynolds number approximation
- Thin-Film Equation 1D with q as fluid height.

$$q_t + (f(x,t)q^2 - g(x,t)q^3)_x = -(h(x,t)q^3q_{xxx})_x$$

Method Overview

Caleb Logemann James Rossmanith

Introduction

Derivation

Method

Diffusion

Trumencal result

Conclusion

Reference

Simplified Model

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x$$
 $(0, T) \times \Omega$

Runge Kutta Implicit Explicit (IMEX)

$$q_t = F(q) + G(q)$$

- F evaluated explicitly
- G solved implicitly

$$F(q) = -(q^2 - q^3)_x$$
$$G(q) = (q^3 q_{xxx})_x$$

Convection

Caleb Logemann James Rossmanith

Introducti

Derivatio

Convection

Numerical Result

Conclusion

Reference

Convection Equation

$$F(q) = f(q)_{x} = 0 \qquad (0, T) \times \Omega$$
$$f(q) = q^{2} - q^{3}$$

Weak Form Find q such that

$$\int_{\Omega} (F(q)v - f(q)v_x) dx + \hat{f}v \Big|_{\partial\Omega} = 0$$

for all test functions v

Notation

Caleb Logemann James Rossmanith

Introduction

Derivation

Convection

Numerical Result

Conclusion

Partition the domain, [a, b] as

$$a = x_{1/2} < \cdots < x_{j-1/2} < x_{j+1/2} < \cdots < x_{N+1/2} = b$$

- $I_j = [x_{j-1/2}, x_{j+1/2}]$
- $x_j = \frac{x_{j+1/2} + x_{j-1/2}}{2}.$

Runge Kutta Discontinuous Galerkin

Caleb Logemani James Rossmanith

Introduct

Derivation

Metho

Convection

Non-sized Decoles

Conclusio

D. C.

■ Find Q(t,x) such that for each time $t \in (0,T)$, $Q(t,\cdot) \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$

$$\begin{split} \int_{I_j} & F(Q) v \, \mathrm{d} x = \int_{I_j} & f(Q) v_x \, \mathrm{d} x \\ & - \left(\mathcal{F}_{j+1/2} v^-(x_{j+1/2}) - \mathcal{F}_{j-1/2} v^+(x_{j-1/2}) \right) \end{split}$$

for all $v \in V_h$

Rusanov/Local Lax-Friedrichs Numerical Flux

$$\mathcal{F}_{j+1/2} = \frac{1}{2} \Big(f \Big(Q_{j+1/2}^- \Big) + f \Big(Q_{j+1/2}^+ \Big) \Big) + \frac{1}{2} \max_{q} \Big\{ \Big| f'(q) \Big| \Big\} \Big(Q_{j+1/2}^- - Q_{j+1/2}^+ \Big)$$

Diffusion

Caleb Logemann James Rossmanith

Introduction

Denvado

Convection

Numerical Resu

Conclusion

References

■ Diffusion Equation

$$G(q) = -(q^3 q_{xxx})_{x}$$
 $(0, T) \times \Omega$

Local Discontinuous Galerkin

$$r = q_{x}$$

$$s = r_{x}$$

$$u = s_{x}$$

$$G(q) = (q^{3}u)_{x}$$

Local Discontinuous Galerkin

Caleb Logemanr James Rossmanith

Introduction

Derivation

Convection Diffusion

Numerical Result

Conclusion

D. C.

Find
$$Q(t,x), R(x), S(x), U(x)$$
 such that for all $t \in (0,T)$
 $Q(t,\cdot), R, S, U \in V_h = \left\{ v \in L^1(\Omega) : v|_{I_j} \in P^k(I_j) \right\}$

$$\int_{I_j} Rv \, \mathrm{d}x = -\int_{I_j} Qv_x \, \mathrm{d}x + \left(\hat{Q}_{j+1/2} v_{j+1/2}^- - \hat{Q}_{j-1/2} v_{j-1/2}^+ \right)$$

$$\int_{I_j} Sw \, \mathrm{d}x = -\int_{I_j} Rw_x \, \mathrm{d}x + \left(\hat{R}_{j+1/2} w_{j+1/2}^- - \hat{R}_{j-1/2} w_{j-1/2}^+ \right)$$

$$\int_{I_j} Uy \, \mathrm{d}x = -\int_{I_j} Sy_x \, \mathrm{d}x + \left(\hat{S}_{j+1/2} y_{j+1/2}^- - \hat{S}_{j-1/2} y_{j-1/2}^+ \right)$$

$$\int_{I_j} G(Q)z \, \mathrm{d}x = -\int_{I_j} Q^3 Uz_x \, \mathrm{d}x + \left(\hat{U}_{j+1/2} z_{j+1/2}^- - \hat{U}_{j-1/2} z_{j-1/2}^+ \right)$$

for all $I_i \in \Omega$ and all $v, w, y, z \in V_h$.

Numerical Fluxes

Caleb Logemann James Rossmanith

Introducti

Derivation

ivietnoa

Diffusion

Numerical Results

Conclusion

$$\hat{Q}_{j+1/2} = Q_{j+1/2}^+$$

$$\hat{R}_{j+1/2} = R_{j+1/2}^-$$

$$\hat{S}_{j+1/2} = S_{j+1/2}^+$$

$$\hat{U}_{j+1/2} = (Q^3 U)_{j+1/2}^-$$

IMEX Runge Kutta

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convection

Conclusion

References

IMEX scheme

$$q^{n+1} = q^n + \Delta t \sum_{i=1}^s (b_i' F(t_i, u_i)) + \Delta t \sum_{i=1}^s (b_i G(t_i, u_i))$$
 $u_i = q^n + \Delta t \sum_{j=1}^{i-1} (a_{ij}' F(t_j, u_j)) + \Delta t \sum_{j=1}^i (a_{ij} G(t_j, u_j))$
 $t_i = t^n + c_i \Delta t$

■ Double Butcher Tableaus

$$\frac{c' \mid a'}{\mid b'^T} \frac{c \mid a}{\mid b^T}$$

Caleb Logemar James Rossmanith

Introducti

Derivation

Convection

.

Conclusion

Reference

■ 1st Order - L-Stable SSP

■ 2nd Order - SSP

$$\begin{array}{c|ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}$$

Caleb Logeman James Rossmanith

Introduct

Derivation

Convection

Diffusion

Numerical Result

Conclusion

Reference

■ 3rd Order - L-Stable SSP

$$\begin{split} \alpha &= 0.24169426078821\\ \beta &= 0.06042356519705\\ \eta &= 0.1291528696059\\ \zeta &= \frac{1}{2} - \beta - \eta - \alpha \end{split}$$

Nonlinear Solvers

Caleb Logemann James Rossmanith

Introducti

Derivatio

Convection

Diffusion

Numerical Result

Conclusion

References

■ Nonlinear System

$$u_i - a_{ii}\Delta tG(u_i) = b$$

Picard Iteration

$$\tilde{G}(q,u)=(q^3u_{xxx})_x$$

$$u_0 = q^n \qquad u_i^0 = u_{i-1}$$

$$u_i^j - a_{ii} \Delta t \tilde{G}(u_i^{j-1}, u_i^j) = b$$

Number of picard iterations equals order in time and space

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection Diffusion

Numerical Results

Conclusion

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x + s(x, t)$$
$$q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$$

1st Order IMEX			
N	error	order	
50	0.0278	-	
100	0.0144	0.955	
200	0.0072	0.988	

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Convection Diffusion

Numerical Results

Conclusion

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x + s(x, t)$$
$$q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$$

2nd Order IMEX			
error	order		
0.00265	-		
0.000689	1.94		
0.000184	1.91		
	error 0.00265 0.000689		

Manufactured Solution

Caleb Logemann James Rossmanith

Introducti

Derivation

Method

Diffusion

Numerical Results

Conclusion

$$q_t + (q^2 - q^3)_x = -(q^3 q_{xxx})_x + s(x, t)$$

 $q(x, t) = 0.1 * \sin(2\pi(x - t)) + 0.15$

3rd Order IMEX			
Ν	error	order	
20	6.57×10^{-5}	_	
40	8.35×10^{-6}	2.97	
80	1.07×10^{-6}	2.96	

Observations

Caleb Logemann James Rossmanith

Introducti

Derivatio

Metho

Convection Diffusion

Numerical Results

Conclusion

CFI Restrictions

■ 1st Order - 0.15

■ 2nd Order - 0.05

■ 3rd Order - 0.01

■ Linearized Problem

$$q_t + (q^2 - q^3)_x = -(f(x, t)q_x xx)_x + s(x, t)$$

 $f(x, t) = (\tilde{q}(x, t))^3$

■ Same CFL restrictions

Caleb Logemanr James Rossmanith

Introduction

Denvation

Method

Convection Diffusion

Numerical Results

Conclusion

Caleb Logemanr James Rossmanith

Introduction

Delivation

Convection

Numerical Results

Conclusion

$$q_r = 0.1$$
 $q_l = 0.3323$ $q(x,0) = (-\tanh(x-50)+1)\frac{q_l-q_r}{2}+q_r$

Caleb Logemani James Rossmanith

Introducti

Delivation

Convection

Numerical Results

Conclusion

$$q_r = 0.1 \qquad q_l = 0.3323 \qquad q_m = 0.6$$

$$q(x,0) = \begin{cases} \frac{q_m - q_l}{2} \tanh(x - 50) + \frac{q_m + q_l}{2} & x < 55 \\ -\frac{q_m - q_r}{2} \tanh(x - 60) + \frac{q_m + q_r}{2} + q_r & x > 55 \end{cases}$$

Caleb Logemanr James Rossmanith

Introduction

Denvation

Convection

Numerical Results

Conclusion

$$q_r = 0.1$$
 $q_l = 0.4$ $q(x,0) = (-\tanh(x-300)+1) \frac{q_l - q_r}{2} + q_r$

Caleb Logemanr James Rossmanith

Introducti

Derivation

Convection

Numerical Results

Conclusion

$$q_r = 0.1$$
 $q_l = 0.8$ $q(x,0) = (-\tanh(x-1100)+1)\frac{q_l-q_r}{2}+q_r$

Conclusion

Conclusion

Observations

- Expensive computations
- Nonlinear Hyper Diffusion has subtle instabilities

Future Work

Hybridized Discontinuous Galerkin Method

Bibliography I

- [1] Andrea L Bertozzi, Andreas Münch, and Michael Shearer. "Undercompressive shocks in thin film flows". In: *Physica D:* Nonlinear Phenomena 134.4 (1999), pp. 431–464.
- Y. Ha, Y.-J. Kim, and T.G. Myers. "On the numerical solution [2] of a driven thin film equation". In: J. Comp. Phys. 227.15 (2008), pp. 7246–7263.
- T.G. Myers and J.P.F. Charpin. "A mathematical model for [3] atmospheric ice accretion and water flow on a cold surface". In: Int. J. Heat and Mass Transfer 47.25 (2004), pp. 5483–5500.
- [4] Tim G Myers. "Thin films with high surface tension". In: SIAM review 40.3 (1998), pp. 441–462.
- [5] NASA. URL: http://icebox.grc.nasa.gov/gallery/ images/C95 03918.html.

Bibliography II

Caleb Logemani James Rossmanith

Introducti

Derivation

Method Convection

Numerical Resul

Conclusion References

- [6] Alexander Oron, Stephen H Davis, and S George Bankoff. "Long-scale evolution of thin liquid films". In: Reviews of modern physics 69.3 (1997), p. 931.
- [7] Lorenzo Pareschi and Giovanni Russo. "Implicit—explicit Runge—Kutta schemes and applications to hyperbolic systems with relaxation". In: *Journal of Scientific computing* 25.1 (2005), pp. 129–155.
- [8] J.A. Rossmanith. DoGPACK. Available from http://www.dogpack-code.org/.