

2025 Level 1 - Quantitative Methods

Learning Modules	Page
Rates and Returns	2
Time Value of Money in Finance	8
Statistical Measures of Asset Returns	17
Probability Trees and Conditional Expectations	23
Portfolio Mathematics	27
Simulation Methods	31
Estimation and Inference	36
Hypothesis Testing	41
Parametric and Non-Parametric Tests of Independence	45
Simple Linear Regression	49
Introduction to Big Data Techniques	58

This document should be used in conjunction with the corresponding learning modules in the 2025 Level 1 CFA® Program curriculum. Some of the graphs, charts, tables, examples, and figures are copyright 2024, CFA Institute. Reproduced and republished with permission from CFA Institute. All rights reserved.

Required disclaimer: CFA Institute does not endorse, promote, or warrant accuracy or quality of the products or services offered by MarkMeldrum.com. CFA Institute, CFA®, and Chartered Financial Analyst® are trademarks owned by CFA Institute.

Rates and Returns

- a. interpret interest rates as required rates of return, discount rates, or opportunity costs and explain an interest rate as the sum of a real risk-free rate and premiums that compensate investors for bearing distinct types of risk
- b. calculate and interpret different approaches to return measurement over time and describe their appropriate uses
- c. compare the money-weighted and time-weighed rates of return and evaluate the performance of portfolios based on these measures
- d. calculate and interpret annualized return measures and continuously compounded returns, and describe their appropriate uses
- e. calculate and interpret major return measures and describe their appropriate uses

Last Revised: 04/26/2024

Rates and Returns

Page 1

Interest rates (r) - can be thought of in 3 ways

- 1/ required rates of return → determining the FV of a PV
- 2/ discount rate → determining the PV of a FV
- 3/ opportunity cost → value forgone (current consumption vs. saving)

Determinants of Interest Rates

vary over time and continuously change $/r = r_f \rightarrow real default risk-free rate (single period)$

- + inflation premium → expected inflation over a period of time
- + default risk premium → compensates for credit risk
- + liquidity premium → risk of loss vs. fair value if an investment needs to be converted to cash quickly
- + maturity premium → compensation for greater price sensitivity from changes in rates

Page 2

• nominal risk-free rate:

$$(1+r) = (1+r_f)(1+\pi^e)$$
 or $r = r_f + \pi^e$

Note: all rates are quoted on an annual basis e.g. 3-mos. T-Bill @ 4% is $\cdot ^{04}/_{4}$ = 1% over 3 months

Rates of Return/

1/ HPR - holding period return e.g./

$$R = \frac{(P_t - P_0) + I}{P_0}$$

$$P_t - \text{ending price} \qquad 105$$

$$P_0 - \text{beginning price} \qquad 100$$

$$I - \text{all income} \qquad \emptyset$$
HPR = $\frac{(105 - 100)}{100} = 5\%$

- multi-period HPR

b

b

$$R = [(1 + HPR_1)(1 + HPR_2)(1 + HPR_3)] - 1$$

2/ Arithmetic or Mean Return
$$\overline{R}_i = \frac{1}{T} \bullet \sum_{t=1}^{T} \, R_{it}$$

3/ Geometric Mean Return $\bar{R}_{G_i} = \left[(1 + R_{i1})(1 + R_{i2}) ... (1 + R_{iT}) \right]^{1/T} - 1$

e.g./
$$R_{i1}$$
 = -50% R_{i2} = 35% $\left[(.5)(1.35)(1.27) \right]^{1/3} - 1 = -5\%$ - the growth rate or compounded return on an investment

Page 4

Rates of Return/

E(R) over multiple

periods

$$R_G \leq R_A \qquad \text{-unless all observations are equal, then} \quad R_G = R_A \\ / \qquad \qquad -\text{ as the variability in the data increases, difference} \\ \text{growth of $1} \\ \text{avg.} \qquad \text{between } R_G \text{ and } R_A \text{ increases} \\ \text{PV}(1+R_G)^N = FV \\ \text{-use to estimate} \\ \text{F(R)} \text{ even realities} \\ \text{-use to estimate } E(R) \text{ over one period} \\ \text{-use to estimate} \\ \text{-use to estimate}$$

4/ Harmonic Mean

$$\overline{X}_H = \frac{n}{\sum (1/x)} \xrightarrow{\quad \text{- arithmetic mean - all obs. have equal weight}} \text{- arithmetic mean - all obs. have equal weight}$$

$$\xrightarrow{\quad \text{- bos. weight inversely proportional to its magnitude}} \xrightarrow{\quad \text{- reduces the effect of outliers}}$$

- most often used with ratios (amount/unit)

e.g./ P/E 45, 15, 15
$$\overline{X}_{H} = \frac{3}{\Sigma \left(\frac{1}{45} + \frac{1}{15} + \frac{1}{15} \right)} = \frac{3}{15} = 19.28$$


```
Page 5
                                            Rates of Return/
                                                          4/ Harmonic Mean

    applied e.g. - dollar-cost averaging (typical DC strategy)

                                                                   1,000/month for 2 months in a stock
                                                                                                                                                                                                                                                                                            P_0 = 10 P_1 = 15
                                                           \overline{X}_{H} = \frac{2}{\left(\frac{1}{10} + \frac{1}{15}\right)} = \frac{2}{16} = \frac{12}{\sinh}. \quad \frac{1000}{10} = \frac{1000}{10} = \frac{1000}{15} = \frac{10
                                                                                                                                                                                                                                                                      ^{2000}/_{166.67 \, \mathrm{sh.}} = 12/sh.
                             Relationship: R_A \times \overline{X}_H = R_G^2
                                                       5/ Others
                                                                                           a) trimmed mean (common with CPI)
                               removes
                                                                                                                                       - remove a %'age from both the largest and smallest
                                   outliers
                                                                                                                e.g. 100 obs., 8% trimmed = 84 obs. (8 highest, 8 lowest)
                                (on both
                                                     sides)
                                                                                              b) winsorized mean - replacing values at both end with
b
                                                                                                                                                                        the cutoff value
                                                                                                  e.g. 100 obs. obs. 1-8 replaced all = obs. 9
                                                                                                                                                                              obs. 93-100 replaced all = obs. 92
```

Page 6 Money-weighted Return (IRR, YTM) - accounts for the timing and magnitude of investments committed more 200 $CF_0 = -200$ $CF_1 = -220$ $CF_2 = 480$ CPT IRR = 9.39%money to a poor performance year HPR = $\frac{25+5}{200}$ = 15% HPR = $\frac{20+10}{450}$ = 6.67% R_A = 10.84% (money weighted) - not comparable across investors/investments - mwrr represents what 'your' money earned, not what \$1 could earn • Time-weighted returns (= R_G) - the growth of \$1 over a given time period - comparable across investments C → break investment period into holding periods (determined by any significant cash in/out-flows) → calculate each HPR, then compound the HPRs, express annually

Last Revised: 04/26/2024

Page 7

- Time-weighted returns (= R_G)
 - previous example from mwrr

$$[(1.15)(1.06\dot{6})]^{1/2} - 1 = 10.75498\%$$

- large funds, HPR = 1 day \rightarrow (1 + HPR₁)(1 + HPR₂) + ... + (1 + HPR₃₆₅) - 1

for liquid underlyings with market prices

C

Page 8

• Annualized Return/ - all rates/returns are quoted annually

$$\begin{split} R_{annual} &= \left(1 + R_{period}\right)^{365/period} & \rightarrow \text{ daily } & (1+R)^{365} - 1 & 7\text{d/wk. } 365\text{d/yr.} \\ & \text{weekly } & (1+R)^{52} - 1 & 52\text{wk./yr.} \\ \text{period = 43 days} & \text{monthly } & (1+R)^{12} - 1 & 12\text{mos./yr.} \\ R_{annual} &= (1+R_{43})^{365/43} - 1 & \text{quarterly } & (1+R)^4 - 1 \end{split}$$

period = 540 days

250 trading days

$$R_{annual} = (1 + R_{540})^{365/540} - 1$$

 $R_{annual} = (1 + R_{540})^{365/_{540}} - 1$ 5d/wk., 20d/m., 250d/yr.

- annualizing returns can be misleading assumes that returns can be repeated
 - Continuously Compounded Returns

d

$$\begin{array}{ccc} & \text{In} \ {\binom{P_t}{P_0}} & & \text{e.g./} \\ & & r_c = \text{In} \left({\frac{105}{100}} \right) = 4.879 \\ & \text{or} & & \text{In} \left(1 + r \right) & & r_c = \text{In} \left(1.05 \right) \end{array} \right) & e^{r_c} - 1 = r \\ & e^{.04879} - 1 = 5\% \end{array}$$

Gross and Net Return/

gross - return before deductions for mgmt. exp., custodial fees, taxes, etc. but after trading expenses (what the fund earns)

> - appropriate measure for evaluating and comparing the investment skill of managers

net - what the investor earns

Pre-tax and After-tax Nominal Return/

- default is to report/state pre-tax return
- each investor's marginal tax rate may differ
- components of return may be reported e.g. 11% 1% int. 4% realized

Real Returns/

gains

 $\frac{1 + nominal return}{1 + risk - free rate} = 1 + risk premium$ $1 + real return = \frac{1 + nominal return}{1 + inflation rate}$

(typically p-o-p CPI)

Page 10

Real Returns/

After-tax real return → investor measure of growth in purchasing power of portfolio Leveraged Returns/

> - leverage can be obtained through margin loans, derivatives, or collateralized loans (repos)

- if $R_P > r_d$, leverage enhances return

e.g./ 10m equity portfolio

$$R_P = 8\%$$

e

$$R_{P}$$
 = 8%
$$R_{L} = 8\% + \frac{3M}{7M}(8\% - 5\%) = 9.2857\%$$
 30% debt financed, r_{d} = 5%

Time Value of Money in Finance

- a. calculate and interpret the present value (PV) of fixed-income and equity instruments based on expected future cash flows
- b. calculate and interpret the implied return of fixed-income instruments and required return and implied growth of equity instruments given the present value (PV) and cash flows
- c. explain the cash flow additivity principle, its importance for the no-arbitrage condition, and its use in calculating implied forward interest rates, forward exchange rates, and option values

The Time Value of Money in Finance

Page 1

- 3 rules of money
 - larger CFs are worth more
 - less risky CFs are worth more (lower discount rate)
 - CFs sooner are worth more (time value of money)

- calculate PV \rightarrow value today - requires discounting at a rate that depends on the timing and type of CF

recall: $r_f + \pi^e$ - gov't. bonds + default + liquidity corporate/private debt + maturity - longer-term debt

+ equity - equity over debt

Page 2

single cash flow.

Fixed Income/ debt instruments (bonds, loans, mortgages, etc.)

- ZCB zero coupon bonds (i.e. T-Bills \rightarrow up to 1 yr. mat.)
 - sold at a discount, mature at par single CF at maturity
- Coupon bonds (Notes, Bonds)
 - investor receives a number of interest payments over time and par at maturity
- Fully ammortizing bonds (mortgage, auto loan)
 - investor receives level payments of both interest and principal


```
Page 3
    ZCB/zero-coupon bond: PV = \frac{FV}{(1+r)^T} r = discount rate, IRR, or YTM
e.g./ • 20-yr. ZCB, YTM = 6.7% \rightarrow PV = ^{100}/_{(1.067)^{20}} = 27.33453
                 (TVM keys FV = 100 	ext{ } I_{/V} = 6.7 	ext{ } PMT = 0 	ext{ } N = 20 	ext{ } CPT PV)
     • price in 3 years if YTM is unchanged?
                                                                            PV = -27.33453
          a) FV_3 = PV(1+r)^3 = 27.33453(1.067)^3 = 33.20510591
                                                                           I/_{V} = 6.7
     or b) PV_3 = \frac{FV}{(1+r)^{17}} = \frac{100}{(1.067)^{17}} = 33.20510591
     • PV = 22.68224 → YTM = ?
                                                                   I/_{V} = 6.7\%
       22.68224 = \frac{100}{(1+r)^{20}} \rightarrow PV = -22.68224 N = 20
       (100/22.68224)^{1/20} - 1 = r PMT = 0
                                        FV = 100 CPT I/V = 7.6999 \sim 7.7\%
     • r = -.05% , 10 yr. ZCB
            PV = {}^{100}/_{(.9995)^{10}} = 100.50137 FV = 100 N = 10 I/_{Y} = -.05 PMT = 0
  • 6 yrs. later P_0 = 95.72, YTM = ? 95.72 = \frac{100}{(1+r)^4} \rightarrow (100/95.72)^{1/4} - 1 = 1.09957%
                PV = -95.72 FV = 100 N = 4 PMT = 0 CPT I/v
```


Perpetuity (some bonds, preferred shares)

e.g./ 3.3% qtly. coupon, P = 97.03
97.03 =
$$\frac{.825}{r_4}$$
 \rightarrow r₄ = .8502%
r = 3.401%

Annuity (mortgage, car loans)

Page 6

- Equity pref. shares, common shares
 - constant dividend perpetuity

 $\mathbf{B} \times \mathbf{r}/_{12}$

- growing dividend (constant rate) growing perpetuity
- growing dividend (non-constant rate)

Constant dividend/ - many REITs
- perpetuity
$$PV = D/r$$

$$D = 1.50 \quad r = 15\%$$

$$PV = \frac{1.50}{.15} = 10$$

Constant growth dividend - commercial real estate (to calculate

$$PV = \frac{D_0(1+g)}{r-g} \quad \text{for CRE: Prop. Value} = \frac{NOI_1}{r-g} \rightarrow \text{cap rate}$$

Variable growth dividend - growth moving to value

- 2 stage model
$$PV = \sum_{i=1}^n \frac{D_0(1+g_s)}{(1+r)^n} + \frac{D_0(1+g_s)^n(1+g_L)}{r-g} = \text{perpetuity}$$
 explicit discount period

e.g./
$$D_0 = 1.50$$
 $g = 6\%$ - growing perpetuity (typical of value stocks) $r = 15\%$

PV =
$$\frac{1.50(1.06)}{.15-.06} = \frac{1.59}{.09} = 17.67$$

 \rightarrow now assume $g_s = 6\%$ for 3 yrs., $g_L = 2\%$ thereafter

$$PV = \frac{1.50(1.06)}{1.15} + \frac{1.50(1.06)^2}{(1.15)^2} + \frac{1.50(1.06)^3}{(1.015)^3} + \frac{\frac{1.50(1.06)^3(1.02)}{.15 - .02}}{(1.15)^3}$$
$$= 1.3826 + 1.2744 + 1.1747 + \frac{14.01734}{.15 - .02}$$

Page 8

recall:
$$PV = \frac{FV}{(1+r)^T}$$
 \rightarrow $PV(1+r)^T = FV$
 $(1+r)^T = FV$

$$PV(1+r)^{T} = FV$$

$$/(1+r)^{T} = FV$$
 $(1+r)^{T} = \frac{FV}{PV}$
 $1+r = \frac{(FV/PV)^{1/T}}{r = \frac{(FV/PV)^{1/T}}{r} - 1}$

$$r = (95.72/_{100.50})^{1/_6} - 1 = -.8088\%$$

$$r = (100/_{95,72})^{1/4} - 1 = 1.10\%$$

Coupon bond/

$$FV = ? = 2(1.02) + 2 + 93.091$$

$$r = (97.131/_{100})^{1/_2} - 1 = -1.445\%$$

Equity/
$$PV = \frac{D_0(1+g)}{r-g} \rightarrow PV(r-g) = D_0(1+g)$$

e.g./ $P_0 = 63$ $D_1 = 1.76$ $g = 4\%$
 $r = \frac{1.76}{63} + 4\% = 6.79\%$

- what if $r = 7\% \rightarrow g$?

• $PV = \frac{D_0(1+g)}{PV} + g$

growth

• $PV = \frac{D_0(1+g)}{r-g} \rightarrow PV$

• $PV = \frac{D_0(1+g)}{r-g} \rightarrow PV$

• $PV = \frac{D_0(1+g)}{r-g} \rightarrow PV$

divide both sides by E

$$\frac{PV}{E} = \frac{D_0/E(1+g)}{r-g} \rightarrow PV$$

- given a P/E and P/E and P/E we can solve for P/E ratio

- compare the implied P/E or P/E to the required P/E or P/E ratio

Page 10

forward P/E
$$\rightarrow$$
 PV/ $E_{t+1} = \frac{D_{t+1}/E_{t+1}}{r-g}$ - if the forward div. is expected to \uparrow or g is expected to \uparrow , stock/index will trade at a

e.g./₁/forward PE = 28 E(DPR) = 70% q = 4% $28 = \frac{70\%}{r - .04} \rightarrow 28r - 1.12 = .7$ r = 1.82/28 = 6.5%

- to \uparrow or g is expected to \uparrow , stock/index will trade at a higher forward multiple
- a higher required return leads to a lower multiple

2/ forward PE = 19 E(DPR) = 60%
r = 8% g = ?

$$19 = \frac{.60}{.08 - g} \rightarrow 1.52 - 19g = .6$$

$$.92 = 19g$$

3/ forward PE = 28 E(DPR) = 70% r = 9% g = 4.5% buy/sell stock? $PE = \frac{.7}{.09 - .045} = 15.5 \times$

-should be trading at $15.5 \times$ $g = \frac{92}{19} = 4.84\%$ forward earnings, not 28 : sell

• Cash flow additivity → principle of no arbitrage - 2 economically equivalent strategies should have the same prior

```
r = 6\%
                               45
                                         - calculate PV of both, select the
which one? A
                                            higher one
                              32.5
                                         or/ take the difference in CFs (A-B)
                          5 12.50
       A - B -
                                                if PV > 0, choose A, else B
         PV = 0 \rightarrow both equivalent
Proof/
                                           - B is clearly superior
                              120
                                             PV(A) = 94.339
                                             PV(B) = 113.2075
                              -20
                                             A-B -18.8679
                            ^{-20}/_{1.06} = -18.8679 \leftarrow
```

Page 12 r = 2.5%• invest for 2 yrs. • buy a 2 yr. ZCB • buy a 1yr. ZCB, buy another in one year r = 3.5%spot $(1.035)^2 = (1.025)(1 + f_{1.1})$ (implied forward rate) $f_{1,1} = \frac{(1.035)^2}{(1.025)} - 1 = 4.5097\%$ - if $f_{1.1} = 5\%$ \rightarrow lock-in rate with FRA \rightarrow (1.025)(1.05) = 1.07625 - would provide an arbitrage profit $(1.035)^2 = 1.071225$ of .5025 per 100 of par .005025 1yr. 2yr. $\Delta f_{1,1} = ?$ May 31 | 98.028 95.109 (100/98.028) - 1 = 2.011% $f_{1,1} = \frac{(1.02539)^2}{(1.02011)}$ June 15 | 97.402 93.937 $(100/95.109)^{1/2} - 1 = 2.539\%$ = 3.069%

$$Forex/_{e.g.}/S_{JPY}|_{USD} = 134.40 \qquad r_{USD} = 2\% \qquad r_{JPY} = .05\% \qquad 6 \text{ mos.} \qquad F_{JPY}|_{USD} = ?$$

$$F_{JPY}|_{USD} = S_{JPY}|_{USD} \cdot \frac{e^{r_{JPY}T}}{e^{r_{USD}T}} = 134.40 \left(\frac{e^{.0005(.5)}}{e^{.02(.5)}}\right) = 133.0959$$

$$e.g./ \qquad r_f \qquad r_d \qquad \qquad P_{f_d} = 1.2602 \cdot \frac{e^{.0212}}{e^{.01291}} = 1.269319$$

$$June 15 \quad 2.667\% \quad 1.562\% \qquad \qquad F_{f_d} = 1.2602 \cdot \frac{e^{.02667}}{e^{.01562}} = 1.274202$$

$$S_{f_d} = 1.2602 \quad 1 \text{ yr.} \rightarrow \Delta F_{f_d} = ? \qquad \qquad F_{f_d} = 1.2602 \cdot \frac{e^{.02667}}{e^{.01562}} = 1.274202$$

$$\Delta F_{f_d} = \uparrow .004883$$
 Option pricing/
$$\qquad \qquad hS^+ - c^+ = hS^- - c^- \\ hS^+ - hS^- = c^+ - c^- \\ hS^+ - S^- = c^+ -$$

Option pricing/

$$hS_0 - c_0 = \frac{hS^+ - c^+}{1 + r}$$

$$hS^+ - c^+ = .25(56) - 6 = 8$$

 $hS^- - c^- = .25(32) - 0 = 8$ identical
 $\therefore 0.25S - c$ is

a risk-free portfolio

$$hS_0 - c_0 = \frac{hS^+ - c^+}{1 + r}$$
 .25(40) - $c_0 = \frac{.25(56) - 6}{1.05}$

$$c_0 = 10 - \frac{8}{1.05} = 2.38095$$

$$|\mathbf{h} = \left| \frac{0 - 18}{56 - 32} \right| = .75$$

$$hS_0 + p_0 = \frac{hS^- + p^-}{1 + r}$$

$$p_0 = \frac{.75(32) + 18}{1.05}$$

$$p_0 = \frac{42}{1.05} - 30$$

$$p_0 = 10$$

Statistical Measures of Asset Returns

- a. calculate, interpret, and evaluate measures of central tendency and location to address an investment problem
- b. calculate, interpret, and evaluate measures of dispersion to address an investment problem
- c. interpret and evaluate measures of skewness and kurtosis to address an investment problem
- d. interpret correlation between two variables to address an investment problem

Last Revised: 04/26/2024

Statistical Measures of Asset Returns

Page 1

- Measures of central tendency/
 - where the data are centered i.e. the expected value
 - Arithmetic mean $\overline{X} = \frac{\sum_{i=1}^n X_i}{n} \quad \text{- describes a representative}$ possible outcome
 - sensitive to outliers (extreme values)
 - Median middle value $\frac{(n+1)}{2} \quad \text{odd # of obs.}$ not affected by $\frac{\left(\frac{n}{2}\right)+\left(\frac{n+2}{2}\right)}{2} \quad \text{ even \# of obs. - average the middle 2 obs.}$ **outliers**
 - mode most frequently occurring value in a dataset
 - a dataset can have more than one mode, or no mode
 - single mode → unimodal

all obs. are

- two modes → bimodal

different

Page 2

Return Bin (%)	Absolute Frequency	Relative Frequency (%)	Cumulative Absolute Frequency	Cumulative Relative Frequency (%)	
-5.0 to -4.0	1	0.08	1	0.08	
−4.0 to −3.0	7	0.56	8	0.64	
-3.0 to -2.0	23	1.83	31	2.46	
−2.0 to −1.0	77	6.12	108	8.59	
-1.0 to 0.0	470	37.36	578	45.95	
0.0 to 1.0	555	44.12	1,133	90.06	
1.0 to 2.0	110	8.74	1,243	98.81	
2.0 to 3.0	13	1.03	1,256	99.84	
3.0 to 4.0	1	0.08	1,257	99.92	
4.0 to 5.0	1	0.08	1,258	100.00	
	count	%	Σ count	Σ %	

Outliers / • do nothing - if values are legitimate and correct

- eliminates judgment

- Delete → trimmed mean
- Replace → winsorized mean
- compare mean with and without outliers

Page 3 Measures of location - quantiles IQR - interquartile range 25, 50, 75 quartiles • quintiles 20, 40, 60, 80 • deciles 10, 20 ... 90 • percentiles 1, 2 ... 99 Box and whisker plot Daily Return (%) ← Maximum of 5.001% ← Upper Boundary for O₂ 2 (Q₃ Upper ← 1.589% (Upper Fence Bound) $0.460\% \rightarrow$ $(Q_2 \text{Lower} \rightarrow$ Bound) Median of 0.044% ← -1.422% (Lower Fence) + upper Box & whisker plot ← Minimum of -4.108% bound lower fence = lower bound - (1.5 x IQR) uses/ • rank performance of portfolios and investment managers in terms of percentile/quartile in which they fall • investment research → bottom return decile → short \ long/short → long → top return decile HF

Page 4

- Dispersion variability around the central tendency
 - a measure of risk or uncertainty
 - max. value min. value • range:
 - no information about the shape of the distribution
 - sensitive to outliers
 - $\mathsf{MAD} = \underline{\sum |X_i \overline{X}|}$ mean absolute deviation
- sample variance

in units squared

- can be added/subtracted

pop: $\sigma^2 = \frac{\sum_{i=1}^{n} (X - \mu)^2}{n}$

degrees of freedom (n - 1 independent obs.)

• sample standard deviation

- in the same units as the data itself

$$\label{eq:S} \textbf{S} = \sqrt{S^2} \, = \sqrt{\frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}} \qquad \text{pop } \sigma = \sqrt{\sigma^2}$$

Last Revised: 04/26/2024

Page 5

Downside deviation

$$S_{target} = \sqrt{\frac{\sum_{i=1}^{n}(X_i - B)^2}{n-1}} \qquad \forall X_i \leq B$$
 full sample n

$$\begin{array}{c} \forall X_i \leq B \\ \mid \\ \text{some minimum} \\ \text{level} \end{array}$$

• as B \uparrow $S_{target} \uparrow$

$$\text{CV} = \ ^{S}/_{\overline{X}}$$
 - a measure of relative dispersion

e.g. - for returns, CV measures the risk per unit of return

- lower = better (less uncertainty, tighter distribution)

$$Skew \approx \frac{1}{n} \, \frac{\sum_{i=1}^n (X_i - \overline{X})^3}{S^3} \qquad \text{for} \quad n > 100$$

$$K_E = \left[\frac{1}{n} \, \frac{\sum_{i=1}^n (X_i - \overline{X})^4}{S^4}\right] - 3 \qquad \begin{array}{l} \text{- measures the combined weight of} \\ \text{the tails relative to the rest of the} \\ \text{distribution} \end{array}$$

Lepto $\rightarrow K_e > 0$ - ow head, uw shoulders, ow tails

 $\label{eq:Meso} \begin{tabular}{ll} \begin{t$

Platy $\rightarrow K_e < 0$ - uw head, ow shoulders, uw tails

Page 8

Scatter Plot

Information Technology

10.0

7.5

0

-2.5

-7.5

-5.0

-7.5

S&P 500

Identify outliers

5.0

-7.5

S&P 500

- used to visualize the joint variation in 2 numerical values
 - may be no relationship, a linear or non-linear relationship
 - scatter plot matrix
 - assess for pairwise association among many variables

Covariance \rightarrow the joint variability of 2 random variables

→ expressed in the same units as the variables

21

$$S_{XY} = \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{n-1}$$

 $S_{XY} > 0$ when they covary together

$$(X_i - \overline{X}) > 0$$
 when $(Y_i - \overline{Y}) > 0$

and
$$(X_i - \overline{X}) < 0$$
 when $(Y_i - \overline{Y}) < 0$

Correlation → measures the linear association between 2 variables

$$r_{XY} = \frac{S_{XY}}{S_X S_Y} \qquad \begin{array}{ccc} \text{Properties:} \\ \text{1/} & \text{-1} \leq r \leq 1 \end{array}$$

2/ r = 0 implies no linear relationship \rightarrow maximum

 Cov(XY) determines the sign of r_{xy}

diversification 3/ $r = 1 \rightarrow perfect positive correlation \rightarrow perfect$ replication

4/ $r = -1 \rightarrow perfect negative correlation \rightarrow perfect hedge$

- Limitations/ linear association only
 - unreliable when outliers are present
 - correlation does not imply causation
 - spurious correlation → chance relationship

Probability Trees and Conditional Expectations

- a. calculate expected values, variances, and standard deviations and demonstrate their application to investment problems
- b. formulate an investment problem as a probability tree and explain the use of conditional expectations in investment application
- c. calculate and interpret an updated probability in an investment setting using Bayes' formula

Probability Trees and Conditional Expectations

Page 1

- Key point investment decisions are made under uncertainty
 - the expected value of a random variable \rightarrow E(X) \rightarrow is a probability-weighted average of the possible outcomes

E(X) forecast of future value estimate of the 'true' population mean based on a sample

$$E(X) = P(X_1)X_1 + P(X_2)X_2 + \dots + P(X_n)X_n = \sum_{i=1}^{n} P(X_i)X_i$$
one outcome only

Variance of a random variable

$$\sigma^{2}(X) = P(X_{1})[X_{1} - E(X)]^{2} + ... + P(X_{n})[X_{n} - E(X)]^{2} = \sum_{i=1}^{n} P(X_{i})[X_{i} - E(X)]^{2}$$
$$\sigma(X) = \sqrt{\sigma^{2}(X)}$$

Page 2

e.g./ P EPS (X)
$$.15 2.60 E(X) = .15(2.60) + .45(2.45) + .24(2.20) + .16(2.00)$$

$$.45 2.45 = 2.3405$$

$$.24 2.20$$

$$.16 2.00 .15 2.60$$

$$2.45 2.45 2.45$$

$$2.20 2.00$$

$$\sigma^{2}(X) = .15(2.60 - 2.3405)^{2} + .45(2.45 - 2.3405)^{2} + .24(2.20 - 2.3405)^{2} + .16(2.00 - 2.3405)^{2}$$

$$= .038785$$

$$\sigma(X) = \sqrt{.038785} = .196939$$

• Bayes' Formula: a method for updating prior probabilities based on new information

Recall: Total Probability Rule

$$P(E) = P(E|S_1)P(S_1) + P(E|S_2)P(S_2) + ... + P(E|S_n)P(S_n)$$

Q: given that we observe E, what is $P(S_n)$? $\rightarrow P(S_n|E)$

$$\frac{P(S_n|E) = \ \frac{P(E|S_n)P(S)}{P(E)} \ = \ \frac{P(E|S_n)}{P(E)} \ \bullet \ P(S)$$

Portfolio Mathematics

- a. calculate and interpret the expected value, variance, standard deviation, covariances, and correlations of portfolio returns
- b. calculate and interpret the covariance and correlation of portfolio returns using the joint probability function for returns
- c. define shortfall risk, calculate the safety-first ratio, and identify an optimal portfolio using Roy's safety-first criterion

Portfolio Mathematics

Page 1

calculate and interpret the expected value, variance, standard deviation, covariances, and correlations of portfolio returns

```
\Rightarrow \text{Portfolio Returns (} E(R_P)\text{, } \sigma_{R_P}\text{, } Cov_{ij}\text{, } \rho_{ij}\text{)}
1/ E(R_P) = E(W_1R_1 + W_2R_2 + \cdots + W_nR_n)
\downarrow \text{also a random variable}
E(R_1) = P(R_{11})R_{11} + P(R_{12})R_{12} + \cdots + P(R_{1n})R_{1n}
probability
```

```
Page 2
  e.g./
                                    \mathbf{E}(\mathbf{R_i})
      SnP500
                                     13%
     Corp. bonds .25
                                     6%
                                                E(R_P) = .5(13\%) + .25(6\%) + .25(15\%) = 11.75\%
     MSCI EAFE .25
                                      15%
                                             measure of expected reward
2 / \sigma^{2}(R_{P}) = \sum_{i=1}^{n} \sum_{j=1}^{n} W_{i} W_{j} \underbrace{Cov(R_{i}R_{j})}_{Cov(R_{i}R_{j})} = \sum_{\underline{t=1}}^{n} (R_{it} - \overline{R}_{i})(R_{jt} - \overline{R}_{J})
to calculate
portfolio variance, need:
           1/all E(R_i)
                                                 • assume 3 assets \rightarrow R_1, R_2, R_3
           2/all Cov(R_i, R_i)
                                                 \sigma^{2}(R_{p}) = W_{1}^{2}\sigma^{2}(R_{1}) + W_{2}^{2}\sigma^{2}(R_{2}) + W_{3}^{2}\sigma^{2}(R_{3})
         (Exhibit #11)
                                                          +2W_1W_2Cov(R_1R_2) + 2W_1W_3Cov(R_1R_3)
                                                          +2W_2W_3Cov(R_2R_3)
```


Last Revised: 04/26/2024

Page 3

•
$$\sigma^2(R_P)$$
 = f(variances, covariances)
always > 0 can be
<0 or > 0

- major point - by selecting assets with zero or negative covariance, portfolio risk is lowered n = 5

- for n securities (or asset classes) \rightarrow n variances 5 vars.

 $n^2 - n$ covariances 25-5=20 Covars.

 $(n^2 - n)/2$ distinct covariances $^{20}/_2 = 10$

Exhibit 12 Covariance Matrix				Exhibit 13	Correlation Mat	rix of Returns	189	
	S&P 500	US Long-Term Corporate Bonds	MSCI EAFE	S&P 500	US Long-Term Corporate Bonds	MSCI EAFE	$\overline{400^{1/2} \cdot 441^{1/2}}$	Ex #13
S&P 500	400	45	189	1.00	0.25	0.45	189	<u> </u>
US long-term corporate bonds	45	81	38	0.25	1.00	0.20	$=\frac{1}{10000000000000000000000000000000000$	
MSCI EAFE	189	38	441	0.45	0.20	1.00	20.21	

Page 4

Recall:

calculate and interpret the covariance and correlation of portfolio returns using

$$= \frac{1}{n-1} (R_{A_1} - \overline{R}_A) (R_{B_1} - \overline{R}_B) + \frac{1}{n-1} (R_{A_2} - \overline{R}_A) (R_{B_2} - \overline{R}_B) + \dots + \frac{1}{n-1} (R_{A_n} - \overline{R}_A) (R_{B_n} - \overline{R}_B)$$
weights

probabilities?

- the concept of joint probability

Cov(
$$R_A R_B$$
) = $\sum_{i=1}^{n} \sum_{j=1}^{n} P(R_{A_i} R_{B_j}) (R_{A_i} - \overline{R}_A) (R_{B_j} - \overline{R}_B)$ where i & j = 1 to n are scenarios value of cross product

if returns are independent:

$$\rightarrow P(R_A R_B) = P(R_A) P(R_B)$$

→ since independence is a stronger property than uncorrelatedness, this property holds for uncorrelated random variables Exhibit #6/7

 Safety first rules focus on shortfall risk - the risk a portfolio value (or return) will fall below some minimum acceptable level over some time horizon

Let R_L = minimum acceptable level of return

z-value
$$\frac{E(R_P) - R_L}{\sigma_P}$$
 • objective is to maximize this ratio - optimal portfolio minimizes N(-SFRatio)

e.g./
$$R_L$$
 = 2%
Portfolio R_P σ
1 12% 15%
2 14% 16%
SFRatio₁ = $\frac{12-2}{15}$ = 0.66 = NORM.S.DIST(-.667,1)
= 0.2525
SFRatio₂ = $\frac{14-2}{16}$ = 0.75 = NORM.S.DIST(-.75,1)
= 0.227

Note: if $R_L = R_f$ \rightarrow SFRatio = Sharpe Ratio Example 3

Simulation Methods

- a. explain the relationship between normal and lognormal distributions and why the lognormal distribution is used to model asset prices when using continuously compounded asset returns
- b. describe Monte Carlo simulation and explain how it can be used in investment applications
- c. describe the use of bootstrap resampling in conducting a simulation based on observed data in investment applications

Common Probability Distributions

Page 1

- commonly used to model
 the probability distribution
 of asset prices
 - a variable Y follows a lognormal distribution if LN(Y) is normally distributed
- completely described by 2 parameters \rightarrow the μ and σ^2 of its associated normal distribution

$$S_T/S_0$$
 = 1 + R_H where R_H = holding period return i.e./ $\frac{S_T-S_0}{S_0}=R_H$
$$\frac{S_T/S_0-S_0/S_0}{S_0}=R_H \rightarrow \frac{S_T/S_0-1}{S_0}=1+R_H$$

Page 2

e.g.
$$S_T$$
 = 34.50 S_0 = 30
$$\frac{S_T}{S_0} = \frac{34.50}{30} = 1.15 = 1 + R_H \quad \therefore R_H = 15\%$$

 $\ln \left(\frac{S_T}{S_0} \right) = r$ where r = continuously compounded return

$$r = \ln \left(\frac{34.50}{30} \right) = \ln(1.15) = 0.13976 \qquad \text{and} \quad r \sim N(\mu T, \sigma^2 T)$$

 $34.50 = 30e^{.13976}$

• more generally:
$$S_T = S_0 e^r$$
 ${S_T/S_0} = e^r$ and $ln{S_T/S_0} = r$

to assume returns are normally distributed, we assume returns
 are 1/independent

2/ identically distributed (μ and σ^2 do not change from period to period)

- so, while
$$S_T = S_0 (1 + R_H)^T \label{eq:solution}$$
 with cont. comp:
$$S_T = S_0 e^{rT}$$

Volatility → annualized sd of the continuously compounded daily returns of the underlying asset

- since
$$r \sim N(\mu T, \sigma^2 T)$$
 , sd = $\sigma \sqrt{T}$

- so both the mean and variance of r scale linearly with time, but the s.d. scales linearly with the square root of time $\begin{array}{c} \text{ } \\ \text{ } \\ \text{ } \end{array}$

e.g. if daily vol. = .01, annualized vol. = $.01\sqrt{250} = 15.81\%$ example #1

Page 4

Monte Carlo Simulation/

Step 1: Specify the quantity of interest

e.g.
$$MV_n$$
 in 10 years

Step 2: Specify a time grid \rightarrow K sub-periods with Δt increment for the full time horizon

e.g. 20 sub-periods,
$$\Delta t = 6$$
 months

Step 3: Specify distributional assumptions for the key risk factors

e.g.
$$E(R_P)$$
 = 6.4% σ = 12% MV_t = $MV_{t-1}(1+R_{P_1})$

Step 4: Draw standard normal random numbers for each key risk factor over each K sub-periods.

- random number generator → produces a distribution of random numbers from 0 to 1, all equally likely

Resampling → repeatedly draw samples from an original data sample in order to estimate population parameters

1/ Bootstrap method/ uses computer simulation

- rather than estimate the distribution, this method creates the distribution
- can also find SE of an estimator even when no analytical formula is available

(e.g. median)

all with n = 30 record, replace - draw another obs., record, replace in times
$$S_{\overline{X}} = \sqrt{\frac{\sum_{i=1}^{B} (\widehat{\theta}_i - \overline{\theta})^2}{B-1}}$$
 hen standard

error

Estimation and Inference

- a. compare and contrast simple random, stratified random, cluster, convenience, and judgmental sampling and their implications for sampling error in an investment problem
- b. explain the central limit theorem and its importance for the distribution and standard error of the sample mean
- c. describe the use of resampling (bootstrap, jackknife) to estimate the sampling distribution of a statistic

Sampling and Estimation

Page 1

- A/ Probability sampling → every member of a population has an equal chance of being selected
 - ∴ samples will be more representative of the population
 - 1/Simple Random Sampling \rightarrow a subset of a larger population such that each element has an equal probability of being selected

```
e.g. population n = 500 random number generator selects n = 500 size n = 50 and n = 50
```

· useful when data are homogeneous

Page 2

- 2/ Systematic Sampling \rightarrow when the population is too large to code select every K^{th} element until the desired sample size is reached
- 3/ Stratified Random Sampling population is sub-divided into sub-populations based on one or more classifications
 - simple random samples are then drawn from each sub-pop.
 - each sample is then pooled to form the main sample

- each sub-sample is proportionate to the size of its sub-population
- guarantees that population sub-divisions are represented in the sample
- statistics will be more precise

- sample statistics are estimates of population parameters - not exact, subject to error
- sampling error → difference between observed values of a statistic and population parameters as a result of using just a subset of the population

example #1

the sample means

4/ Cluster sampling - pop. is divided into clusters each of which is a mini representation of the population - certain clusters are then selected as a whole using simple random sampling → one-stage cluster sampling

Page 4

- 4/ Cluster sampling if sub-samples are selected from each cluster → two-stage cluster sampling
 - usually results in lowest precision since a cluster may not be representative of the population
 - is both cost and time efficient however

- B/ Non-probability sampling depends on factors such as judgment or convenience (in terms of access to data)
 - risk that samples may be non-representative
- 5/ Convenience sampling observations are selected that are easy to obtain or are accessible
 - not necessarily representative, but low cost
- 6/ Judgmental sampling → select observations based on experience and knowledge
 - → useful when there is a time constraint and/or the specialty of the researcher would result in better representation

example 2, 3, 4

Resampling - repeatedly draw samples from an original data sample in order to estimate population parameters

1/ Bootstrap method/ uses computer simulation

- rather than estimate the distribution, this method creates the distribution
- can also find SE of an estimator even when no analytical formula is available

(e.g. median)

record, replace

- draw another obs.,

Page 8

2/ Jackknife method/ - omit one observation from a sample, one at a time

e.g./
$$n = 30$$
 J_1 $n = 29$, omit X_1 J_2 $n = 29$, omit X_2 \vdots J_{30} $n = 29$, omit X_{30}

• will produce similar results from sample to sample (bootstrap may not)

Hypothesis Testing

- a. explain hypothesis testing and its components, including statistical significance, Type I and Type II errors, and the power of a test.
- b. construct hypothesis tests and determine their statistical significance, the associated Type I and Type II errors, and power of the test given a significance level
- c. compare and contrast parametric and nonparametric tests, and describe situations where each is the more appropriate type of test

Hypothesis Testing

Page 1

Statistical Inference → the process of making judgments about a larger group (pop.) based on a smaller group (sample)

e.g./ hypothesis testing – test to see whether a sample statistic is likely to come from a population with the hypothesized value of the population parameter i.e. Does $\overline{X} = \mu_0$?

Hypothesis \rightarrow a statement about one or more populations that are tested using sample statistics

Process: Step 1: State the hypothesis

2: Identify the appropriate test statistic

3: Specify the level of significance

4: State the decision rule

5: Collect data and calculate the test statistic

6: Make a decision

Page 2 Step #1: State the hypothesis $null \rightarrow H_0 \rightarrow assumed to be true unless$ we can reject alternative → H_a - typically want to reject H₀ Two-sided (two-tailed) test e.g. $H_0: \mu = 6\%$ could be fail to vs. $H_a: \mu \neq 6\%$ reject H₀ $\mu = 6\%$ reject H₀ ← • One-sided (left or right tailed) test or/ $H_0: \mu \geq 6\%$ e.g. $H_0: \mu \le 6\%$ left-tailed $H_a: \mu > 6\%$ $H_a: \mu < 6\%$ do not < 6% reject Ho right-tailed left-tailed $\mu = 6\%$ Reject **←** H_0

Last Revised: 04/26/2024

Page 3

- the null (H_0) always contains the equality sign

$$H_0: \overline{X} = \mu_0 \quad H_0: \overline{X} \leq \mu_0 \quad H_0: \overline{X} \geq \mu_0$$

- testing H₀ is always done at equality

(Step #2)

pop. σ^2 is known

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

distributed normally

pop. σ^2 is unknown

$$t = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$$
 t-distributed

What We Want to Test	Test Statistic	Probability Distribution of the Statistic	Degrees of Freedom
Test of a single mean	$t = \frac{\overline{X} - \mu_0}{\sqrt[8]{n}}$	t-Distributed	n – 1
Test of the difference in means	$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$	t-Distributed	$n_1 + n_2 - 2$
Test of the mean of differences	$t = \frac{\overline{d} - \mu_{d0}}{s_{\overline{d}}}$	t-Distributed	n – 1
Test of a single variance	$\chi^2 = \frac{s^2(n-1)}{\sigma_0^2}$	Chi-square distributed	n-1
Test of the difference in variances	$F = \frac{s_1^2}{s_2^2}$	F-distributed	$n_1 - 1$, $n_2 - 1$
Test of a correlation	$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$	t-Distributed	n – 2
Test of independence (categorical data)	$\chi^2 = \sum_{i=1}^m \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$	Chi-square distributed	(r-1)(c-1)

Page 4

Step 3: Specify the Level of Significance

- level of sig. depends on the seriousness of making

	H_0 = true	H_0 = false
fail to reject		Type II error $oldsymbol{eta}$
reject	Type I error \propto level of sig.	Correct $(1-\beta)$ Power of a test

e.g.: H₀: not pregnant
H_a: pregnant

- a mistake
- as $\propto \downarrow$, $\beta \uparrow$
- only way to decrease both is to increase n

$$t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \rightarrow \text{as } n \uparrow,$$

$$\text{denom.} \downarrow,$$

$$t\text{-stat} \uparrow$$

Parametric and Non-Parametric Tests of Independence

- a. explain parametric and nonparametric tests of the hypothesis that the population correlation coefficient equals zero, and determine whether the hypothesis is rejected at a given level of significance
- b. explain tests of independence based on contingency table data

Hypothesis Testing

Page 1

• Tests of Correlation

$$\begin{array}{lll} \mbox{1/ Parametric test} & & \mbox{left} & \mbox{right} \\ \mbox{2-sided} & H_0\colon p=0 & & \mbox{one-sided} & H_0\colon p\geq 0 & H_0\colon p\leq 0 \\ & & H_a\colon p\neq 0 & & H_a\colon p<0 & H_a\colon p>0 \end{array}$$

- recall
$$r_{xy} = \frac{Cov(x,y)}{S_xS_y}$$
 \rightarrow called a Pearson correlation or a Bivariate correlation

test-statistic:
$$t_{n-2} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

- in testing $\,r,$ as $\,n\,{\uparrow}$, H_0 rejected for even small correlations - big data sets, almost any r will be significant

e.g./
$$r$$
 = .02
$$n$$
 = 10,000
$$t_{9,998} = \frac{.02\sqrt{9,998}}{\sqrt{1-.02^2}} \sim 2 \qquad \text{vs. critical } t$$
 = 1.96 ex. #1

Page 2

• Tests of Correlation

- 2/ Non-parametric test
 - if normality assumption for X or Y violated, or outliers are present
 - Spearman rank correlation coefficient
 - basically a correlation, but calculated on rank values and not the values of the observations of X or Y

1/Rank all X from largest to smallest

- assign a rank: 1 = largest ... n = smallest
- for a tie: assign all the same \rightarrow average rank

e.g. 3 tied for
$$6^{th}$$
 $(6+7+8)/3=7$
- each get a rank of 7

- repeat for Y

Last Revised: 04/26/2024

Page 3

• Tests of Correlation/

2/ Non-parametric test

2/ On original data set (pre-ranked):

$$\forall$$
 test r_S , if $n > 30$

$$t_{n-2} = \frac{r_S \sqrt{n-2}}{\sqrt{1-r_S^2}} \qquad \mbox{ • white text example} \\ \mbox{• Example #3}$$

Tests of Independence/

- test if classification types are independent

e.g./ Are growth stocks equally likely to be any size or are they more likely to be large-cap stocks?

Page 4

• Tests of Independence/ Contingency Table (2-way)

observed	Size Base			
Investment Type	Small	Medium	Large	Total
Value	50	110	343	503
Growth	42	122	202	366
Blend	56	149	520	725
Total	148	381	1,065	1,594

A. Expected Frequency of ETFs by Size and Investment Type

		Size Based on Market Capitalization				
Investment Type		Small	Medium	Large		
Value	$E_{SV} \rightarrow$	46.703	120.228	336.070		
Growth	٠,	33.982	87.482 → F	MG 244.536		
Blend		67.315	173.290	484.395		
Total		148.000	381.000	1,065.000		

B. Scaled Squared Deviation for Each Combination of Size and Investment Type

Size Based on Market Capitalization

	Size Da.	sea on market capit	nai ket capitalization			
Investment Type	Small	Medium	Large			
Value	0.233	0.870	0.143			
Growth	1.892	13.620	7.399			
Blend	1.902	3.405	2.617			

non-parametric test of indep

$$\chi^2 = \sum_{i=1}^{m} \frac{\left(O_{ij} - E_{ij}\right)^2}{E_{ij}} \qquad \begin{array}{l} \text{df = (r-1)(c-1)} \\ \text{(right-tailed)} \end{array}$$

 $m = \# \text{ of cells } (3 \times 3 = 9)$ O_{ii} = observed value in each cell E_{ii} = expected value in each cell

$$E_{ij} = \frac{(row_i total) \times (column_j total)}{Overall total}$$

$$E_{SV} = (503 \times 148)/1594 = 46.703$$

$$E_{MG} = (366 \times 381)/1594 = 87.482$$

• Tests of Independence/

H₀: size and type are independent H_a: size and type are not independent

B. Scaled Squared Deviation for Each Combination of Size and Investment Type

	Size Based on Market Capitalization			
Investment Type	Small	Medium	Large	
Value	0.233	0.870	0.143	
Growth	1.892	13.620	7.399	
Blend	1.902	3.405	2.617	

$$\sum_{i=1}^{m} \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = 32.08025$$
= CHISQ.INV(0.95,4) = 9.4877
$$\therefore \text{ reject } H_0$$

standardized residuals =
$$\frac{O_{ij}-E_{ij}}{\sqrt{E_{ij}}}$$
 \rightarrow > 0 means more obs. than expected if categories

Simple Linear Regression

- a. describe a simple linear regression model, how the least squares criterion is used to estimate regression coefficients, and the interpretation of these coefficients
- explain the assumptions underlying the simple linear regression model, and describe how residuals and residual plots indicate if these assumptions may have been violated
- c. calculate and interpret measures of fit and formulate and evaluate tests of fit and of regression coefficients in a simple linear regression
- d. describe the use of analysis of variance (ANOVA) in regression analysis, interpret ANOVA results, and calculate and interpret the standard error of estimate in a simple linear regression
- e. calculate and interpret the predicted value for the dependent variable, and a prediction interval for it, given an estimated linear regression model and a value for the independent variable
- f. describe different functional forms of simple linear regressions

Simple Linear Regression

LOS a (2.5p)	Simple Linear Regression - describe
LOS b (8.5p)	Estimating Parameters - describe
LOS c (7p)	Assumptions of SLR - explain, describe
LOS d, e (5.5p)	Analysis of Variance - calculate, interpret, describe
LOS f (8p)	Hypothesis Testing → Coefficients - formulate, determine
LOS g (4p)	Prediction & Prediction Intervals - calculate, interpret
LOS h (7p)	Functional Forms of LR - describe

Page 1 LOS a - Simple Linear Regression (LR) → one IV - describe DV - dependent variable - Y - the variable we IV - independent variable - X are seeking to explain the explanatory variable LR assumes a linear relationship between the DV and the IV Variation of $Y = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 \rightarrow SST$ or total sum of squares -best guess for Y is \overline{Y} , thus if X gives a more accurate estimate of Y than \overline{Y} , we say X helps explain Y LOS b - describe $\mathbf{Y_i} = \mathbf{b_0} + \mathbf{b_1} \mathbf{X_i} + \mathbf{\epsilon_i}$ $\varepsilon \rightarrow \text{error term (residual)}$ - the portion of the DV that slope coefficient intercept cannot be explained by the IV regression coefficients

(Y is regressed on X)

Page 2 ➤ compute a line of best fit that LOS_b regression - describe residuals minimizes the sum of the squared deviations between the observed values of Y and the predicted values (the regression i.e. $\min \sum_{i=1}^{n} (Y_i - \hat{b}_0 - \hat{b}_1 X_i)^2 = \sum_{i=1}^{n} \epsilon_i^2 \rightarrow SSE$ $(\overline{X}, \overline{Y})$ lies on the regression line DV predicted values the squares $\hat{\mathbf{b}}_0 = \overline{\mathbf{Y}} - \hat{\mathbf{b}}_1 \overline{\mathbf{X}}$ of DV (\widehat{Y}) error - Note: $\varepsilon = Y_i - \widehat{Y}$ implies the (a.k.a. residual residual is in the same units of sum of squares) measurement as the DV (Y) $\mathbf{E}(\mathbf{\varepsilon}) = \mathbf{0}$ $\sum \varepsilon_i = 0$ $\hat{\mathbf{b}}_1 = \frac{\text{Cov}(\mathbf{X}, \mathbf{Y})}{\sigma_{\mathbf{x}}^2} = \frac{\sum_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}})(\mathbf{Y}_i - \overline{\mathbf{Y}})}{\sum_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}})^2} \rightarrow \text{denominator can never be}$ negative, \therefore sign of $\hat{\mathbf{b}}_1$ is determined solely by Cov(X, Y)- if $\hat{b}_1 > 0$, $r_{XY} > 0$

• Interpreting $\hat{\mathbf{b}}_0$ and $\hat{\mathbf{b}}_1$

Page 3 LOS b

- describe

 $\widehat{Y} = b_0 \quad \text{if } X_i = 0 \quad \xrightarrow{} \text{only makes sense if} \\ \quad \text{the IV has meaning at } X = 0$

 $\hat{b}_1 \rightarrow$ the change in Y for a one unit change in X

e.g. $ROA(\%) = 4.875\% + 1.25 \cdot CAPEX(\%) \rightarrow ROA = 4.875\%$ if CAPEX = 0 \rightarrow if $CAPEX \uparrow 1$ unit (i.e. 1%), then $ROA \uparrow 1.25\%$

Data/• cross-sectional - many observations on X & Y for the same time period

• time-series - many observations on Y (and sometimes X) from different time periods

example #2/3

Last Revised: 04/26/2024

Assumptions/

Page 4 LOS c

1/Linearity \rightarrow the relationship between X & Y is linear in the parameters b_0 and b_1 \rightarrow neither is multiplied

explaindescribe

or divided by another regression parameter

→ implies the IV must not be random - if so, there would be no linear relation between X & Y

2/ Homoskedasticity → Var(ε) is the same for all observations
 (vs. heteroskedastic) – a violation indicates the data series
 may come from 2 different populations (CS) or regimes (TS)

3/Independence \rightarrow the pairs (X, Y) are independent of each other $\therefore \epsilon$ is uncorrelated across observations

(no serial correlation)

- needed to correctly estimate the variances $\mbox{ of } b_0 \mbox{ and } b_1$

Assumptions/

Page 5 LOS c

4/ Normality $\rightarrow \varepsilon$ is normally distributed

- explain

- required to conduct valid tests of the values of the regression coefficients

describe

Analysis of Variance/

LOS_d

- calculate

- interpret

Total sum of squares (SST)
$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 \qquad \text{variance}$$

sum of squared errors (SSE) Regression sum of squares (SSR)

$$\sum_{i=1}^{n} (Y_i - \widehat{Y})^2 \qquad \begin{array}{c} \bullet \text{ unexplained} \\ \text{variance} \end{array} \qquad \sum_{i=1}^{n} ($$

explained variance

∴ SST = SSE + SSR

or/ total SS = unexplained SS + explained SS

LOS d - calculate

- interpret

Analysis of Variance/

Coefficient of Determination - measures the

fraction of the total variation in the

DV that is explained by the IV (goodness of fit measure)

- if only 1 IV, square the correlation between IV and DV

- if multiple IVs: total variation in
$$Y = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

explained variation in
$$Y = \sum_{i=1}^{n} (\widehat{Y} - \overline{Y})^2$$

$$R^2 = \frac{SSR}{SST} = \frac{explained \ var.}{total \ var.} = \frac{\sum_{i=1}^n \left(\widehat{Y} - \overline{Y}\right)^2}{\sum_{i=1}^n (Y_i - \overline{Y})^2} \ \ \, \frac{\text{measures fit but is}}{\text{not a statistical test}}$$

Determination

$$\mathbf{H}_0: \mathbf{b}_1 = \mathbf{0}$$

$$H_a: b_1 \neq 0$$

multiple IVs

Analysis of Variance/

$$F = \frac{MSR}{MSE} = \frac{SSR}{df} = \frac{SSR}{df} = \frac{SSR}{k} = \frac{SSR}{k} = \frac{calculater}{sse} = \frac{coefficients}{coefficients} = \frac{coefficients}{k+1 = regression coefficients}$$

- interpret

ANOVA table/

Source

Degrees of **Sum of Squares** Freedom **Mean Square** - describe - calculate - interpret

LOS e

Page 7 LOS_d

calculate

Regression
$$\begin{cases} SSR = \sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2} & 1 & MSR = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{1} & F = \frac{MSR}{MSE} = \frac{\sum_{i=1}^{n} (\hat{Y}_{i} - \overline{Y})^{2}}{1} \\ \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} & n-2 \end{cases}$$
Error
$$\begin{cases} SSE = \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2} & n-2 \\ SST = \sum_{i=1}^{n} (Y_{i} - \overline{Y}_{i})^{2} & n-1 \end{cases}$$

$$= SST = \sum_{i=1}^{n} (Y_{i} - \overline{Y}_{i})^{2} & n-1 \end{cases}$$

$$MSE = \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{n-2}$$

Total
$$= SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

$$MSE = \frac{\sum_{i=1}^{n} (r_i - r_i)^n}{n-2}$$

$$\sqrt{MSE} = SEF$$

• Standard Error of the Estimate (SEE) - a measure of the s.d. of $\hat{\epsilon}_i$

Page 8 LOS e

- describe

$$\begin{array}{l} \text{SEE} = \sqrt{\text{MSE}} \ = \ \left(\frac{\sum_{i=1}^{n} \left(Y_i - \widehat{Y}\right)^2}{n-2}\right)^{1/2} = \left(\frac{\sum_{i=1}^{n} \epsilon_i^2}{n-2}\right)^{1/2} \end{array}$$

the smaller the SEE, the more accurate the regression

(a.k.a. the standard error of the regression or the root mean square

error) Degrees of e.g./ Source **Sum of Squares** Freedom **Mean Square** F-Statistic = F.INV(.95,1,4)191.625 16.0104 Regression 191.625 1 = 7.7147.875 4 11.96875 Error → SEE = $\sqrt{11.96875}$ Total 239.50 5 Example #5

Page 9 LOS f 1/ Hypothesis Tests of \hat{b}_1 : - formulate test statistic: $t = \hat{b}_1 - b_1$ hypothesized value $S_{\hat{b}_1} \rightarrow S_{\hat{b}_1} \rightarrow S$ - determine

e.g./ $b_1 = 1.25$ $\sum_{i=1}^{n} (X_i - \overline{X})^2 = 122.64$

df = n - 2

Degrees of			$H_0: b_1 = 0$			
Source	Sum of Squares	Freedom	Mean Square	F-Statistic	$\mathbf{H_0}: \mathbf{b_1} = \emptyset$ $\mathbf{H_a}: \mathbf{b_1} = \emptyset$	$at \propto = 5\%$
Regression	191.625	1 K	191.625	16.0104	$\mathbf{n}_{\mathbf{a}}$. $\mathbf{b}_{1} = \mathbf{p}$	
Error	47.875	4 n-(k+i	11.96875		= T.INV(.05	,4) = 2.776
Total	239.50	5 N-1				+
	1/11 0670		1	25 – 0	n –	(k+1)
$S_{\hat{b}_1}$	$= \sqrt{11.9678}$	- n 312309	2 <u> </u>	<u> </u>	1 00121 - Da	inct II

$$S_{b_1} = \frac{\sqrt{127.64}}{\sqrt{122.64}} = 0.312398 \implies t = \frac{1.2398}{.312398} = 4.00131 \implies \text{Reject } H_0$$

$$(t^2 = F, \ 4.00131^2 = 16.0104)$$
Note: $H_0: p = 0$
 $H_a: p \neq 0$ $t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \implies \frac{0.8945\sqrt{4}}{\sqrt{1-.8945^2}} = 4.00131 \implies \text{Reject } H_0 \implies \text{only}$

2/ Hypothesis Tests of $\hat{\mathbf{b}}_0$:

$$\begin{aligned} t &= \frac{\hat{b}_0 - B_0}{S_{\hat{b}_0}} \qquad \text{and} \quad S_{\hat{b}_0} &= \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}} \end{aligned}$$

Page 10 LOS f

- formulate
- determine

3/ Hypothesis Tests of \hat{b}_1 if IV is an indicator variable (dummy var.)

- same process as a test of \hat{b}_1

$$Y=b_0+b_1 IND \qquad \text{- if } IND=0 \text{ , } Y=b_0 \\ \text{- if } IND=1 \text{ , } Y=b_0+b_1 \qquad b_0=\text{avg. of all 0 obs.}$$

$$\overline{X}_0 = b_0$$

$$X_0 = b_0$$

$$X_0 = b_0$$

$$X_1 = b_0 + b_1$$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in means in the following matter $\overline{X}_1 = b_0 + b_1$

$$Addifference in \overline{X}_1 = b_0 + b_1$$

$$Addifference in means in \overline{X}_1 = b_0 + b_1$$

 \therefore test-stat. for b_1 = test-stat. of differences in means

Level of Significance and p-values/

Page 11 LOS f

- formulatedetermine
- most software output $\rightarrow \propto = 5\%$, H₀: parameter = 0
- recall: = $(1 T.DIST(+t, df, 1)) \times 2$ example #6
- Prediction interval (or CI) for \widehat{Y} :

LOS g

- calculate
- interpret

- since there are 2 sources of error and not just one \rightarrow adjust $S_{\hat{Y}}$

• Prediction interval (or CI) for
$$\widehat{Y}$$
:
$$S_f^2 = S_e^2 \left[1 + \frac{1}{n} + \frac{(X_f - \overline{X})^2}{(n-1)S_x^2} \right]$$

Page 12 LOS g

- calculate
- interpret

Page 13 LOS h

- describe

- 1. the better the fit of the regression model \rightarrow lower $S_e^2 \rightarrow$ lower S_f^2
- 2. larger $n = smaller S_f^2$
- 3. close X_f is to $\overline{X} \to \text{smaller } S_f^2$

Steps/ Determine \widehat{Y} Select ∝ Determine t_c

> Determine S_f Determine \hat{Y}_f +/- $t_c \cdot S_f$

example #7

1/ Log-lin model

- take the log of both sides

$$\begin{array}{c} \text{ln } Y_i = b_0 + b_1 X_i \\ \downarrow \\ \text{relative} \end{array}$$

change in Y for

absolute change in X

2/ Lin-Log model

$$Y = \mathbf{b_0} + \mathbf{b_1} \cdot \ln(\mathbf{X_i})$$

absolute change in Y for relative change in X

- when Y and X are significantly different in scale

e.g./ Y = percent X = billions of \$ in Revenue(transform X with ln(X))

Revenues

growth rate

of revenue

- exh. #37/38

- selecting a model depends on goodness of fit
 - R²
 - F-stat
 - SEE (S_c)
 - a plot of the residuals should show randomness and the distribution should be normal
 - if not, consider transforming the DV, IV, or both.

Introduction to Big Data Techniques

- a. describe aspects of "fintech" that are directly relevant for the gathering and analyzing of financial data.
- b. describe Big Data, artificial intelligence, and machine learning
- c. describe applications of Big Data and Data Science to investment management

Intro. to Big Data Techniques

Page 1

Fintech - technological innovation in the design and delivery of financial services and products

- analysis of large datasets
 - traditional data
 - alternative data social media, sensor networks
- analytical tools for extremely large datasets → AI → very useful for complex non-linear relationships

Big Data/ data generated from traditional/alternative sources

Characteristics

quality vs. quantity

- Volume millions to billions of data points
- Velocity speed of recording/transmitting/generating has accelerated (real time/near real-time)
- Variety text, image, speech, video
- Veracity credibility/reliability of different sources

Page 2

• structured - can be organized in tables, database entries
• unstructured - cannot be represented in tabular format (voice, images)

(all data must be structured before use)

- financial markets price/volume
- businesses filings, press releases
- governments economic data
- individuals web footprints, transactional data
- sensors images, traffic volume
- Internet of Things smart buildings, appliances

3 main sources of alternative data:

- Individuals (text, photos, audio, website clicks/engagement)
- Business processes (sales, credit card data, corporate exhaust)
- Sensor data (smartphones, RFID chips)
 → IoT array of physical devices
- supply chain info.
- PoS scanner data

etc...

- Ethical/Legal issues → use of personal info./data scraped from web data
- Challenges quality
 volume
 appropriateness

 selection bias
 outliers
 data cleansing/organizing
- AI artificial intelligence systems that exhibit cognitive and decision-making ability comparable or superior to humans
 - from expert systems to neural networks

(if - then rules) (based on how brains learn and process info.)

- Machine learning seek to extract knowledge from large amounts of data without assumptions of the data's underlying probability distribution
 - learn from known examples to determine underlying structure in the data - generate structure without help from a human

Page 4

requires large training datasets

- over/under-fit will not perform well out-of-sample
- Unsupervised learning only inputs, no outputs
- Deep learning multi-stage, non-linear data processing (supervised or unsupervised)
- Data Science comp. science + statistics to extract info. from big data

Data processing methods/

- Capture low latency systems (very little delay) vs. high latency
- Curation ensuring data quality/accuracy
 - detect errors and make adjustments for missing data
- Storage record/archive/access in databases
- Search how data are queried
- Transfer movement of data from storage to analytical application

Data Visualization/

how data is formatted/displayed/summarized in graphical format

(e.g. heat maps, tree diagrams, network graphs)

- tag clouds (text data) - words are sized/displayed based on frequency

Page 6

- Text analytics use large unstructured voice or text datasets
- Natural language processing (NLP) comp. science + AI + linguistics
 - analyze/interpret human language

(e.g. translation, speech recognition)