EDS PROJECT

Guided by: Madhavi Nimkar GROUP [F1]: 602 Sakshi Aher

607 Yash Borkar

613 Atharva Deshmukh 614 Vidhisha Deshmukh

INTRODUCTION

- Data analytics is the process of examining vast volumes of data to extract meaningful patterns, trends, and correlations.
- In the context of the this dataset, data analysis becomes a window through which we can do various analysis such as data manipulation, data visualization, etc.

MOTIVATION

The dataset provides information about the JEE marks of the students with their basic details including Gender and Age.

This data allows us to analyze that a particular student has got specific marks out of 300. Thus we can perform any operation on this data.

DETAILS OF DATASET

Name: Students_Marks

•Number of students: 20

•Number of columns: 5

•Name of Columns: Sr No., Student Name, JEE Mains Marks, Age, Gender

DATA MANIPULATION

Data manipulation is a fundamental process in data analysis that involves transforming and preparing raw data to make it suitable for further exploration and analysis.

```
# Read the CSV file from Google Drive
df = pd.read_csv('/content/drive/MyDrive/EDS Minor
Project/Dataset.csv')

from google.colab import drive
drive.mount('/content/drive')

## 1.Find the student who got the maximum marks?

# Find the student with the maximum marks
max_marks = df['JEE Mains Marks'].max()
student max marks = df.loc[df['JEE Mains Marks'] == max marks, 'Student Name'].values[0]

# Print the student with the maximum marks
print(f"The student with the maximum marks is: {student_max_marks}")
```

2.Find the average marks of female students?

```
# Filter the DataFrame for female students
female_students = df[df['Gender'] == 'Female']

# Calculate the average marks of female students
avg_marks_female = female_students['JEE Mains Marks'].mean()

# Print the average marks of female students
print("Average marks of female students:", avg_marks_female)
```

Average marks of female students: 186.2

The student with the maximum marks is: Arjun Gupta

```
boys above 190 = df[(df['Gender'] == 'Male') & (df['JEE Mains Marks'] >
num boys above 190 = len(boys above 190)
print("Number of boys with marks above 190:", num boys above 190)
##4.Find the students who got the same marks?
same marks group = df.groupby('JEE Mains Marks').filter(lambda group:
same marks = same marks group['JEE Mains Marks'].unique()
    students with same marks = same marks group[same marks group['JEE
    print("Students with marks", marks, ":", student names)
```

```
Students with marks 180 : ['Aarav Sharma', 'Isha Singh', 'Shivam Gupta']

Students with marks 195 : ['Aanya Patel', 'Harsh Joshi', 'Kavya Kapoor', 'Sanvi Singh']

Students with marks 175 : ['Advait Singh', 'Mihir Patel']

Students with marks 185 : ['Aishwarya Desai', 'Rohan Kumar']

Students with marks 190 : ['Akash Verma', 'Pranav Bhatia']

Students with marks 200 : ['Arjun Gupta', 'Nandini Sharma']

Students with marks 188 : ['Karthik Nair', 'Vaishnavi Patel']

###5.How many boys and girls are there?

# Count the number of boys and girls

num_boys = df[df['Gender'] == 'Male'].shape[0]

num_girls = df[df['Gender'] == 'Female'].shape[0]

# Print the counts

print("Number of boys:", num_boys)

print("Number of girls:", num_girls)
```

Number of boys: 10 Number of girls: 10

DATA VISUALIZATION

Plot a graph of maximum marks of male and minimum marks of female student

```
# Find the maximum marks of male students and the minimum marks of
female students
max_marks_male = male_students['JEE Mains Marks'].max()
min_marks_female = female_students['JEE Mains Marks'].min()

# Create the bar plot
plt.bar(['Max Marks (Male)', 'Min Marks (Female)'], [max_marks_male,
min_marks_female], color=['blue', 'red'])

# Set the labels for X and Y axes
plt.xlabel('Category')
plt.ylabel('Marks')

# Set the title of the graph
plt.title('Maximum Marks of Male Students and Minimum Marks of Female
Students')

# Show the plot
plt.show()
```


##6.Make a pie chart of marks scored by students

```
# Group the DataFrame by marks and count the number of students i
category
marks_count = df['JEE Mains Marks'].value_counts()

# Plot the pie chart
plt.pie(marks_count, labels=marks_count.index, autopct='%1.1f%%')

# Set the aspect ratio to 'equal' for a circular pie chart
plt.axis('equal')

# Set the title
plt.title('Distribution of Students\' Marks')

# Show the pie chart
plt.show()
```


PREDICTIVE TECHNIQUES

##9.K-NN Classification

```
= df[['JEE Mains Marks']]
model = LinearRegression()
model.fit(X, y)
print("Linear Regression Equation: Age = {:.2f} * JEE Mains Marks +
plt.plot(X, model.predict(X), color='red')
plt.xlabel('JEE Mains Marks')
plt.ylabel('Age')
```


##10.K-Means Clustering

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
X = df[['JEE Mains Marks']]
kmeans = KMeans(n clusters=2, random state=42)
kmeans.fit(X)
labels = kmeans.labels
plt.scatter(X, [0] * len(X), c=labels, cmap='viridis')
plt.scatter(kmeans.cluster centers , [0, 0], c='red', marker='x')
plt.xlabel('JEE Mains Marks')
plt.title('K-Means Clustering')
plt.show()
```


APPLICATION

- By performing data manipulation techniques such as cleaning, filtering, and transforming the dataset, you can gain a deeper understanding of the data.
- Exploring summary statistics, distributions, and correlations between variables can provide insights into the characteristics and relationships within the dataset.
- After performing data manipulation, visualizing the data, and clustering using K-means, the resulting clusters can serve as new features for predictive modeling.

CONCLUSION

- In Conclusion, our dataset has provided the JEE marks of the students with their basic details including Gender and Age.
- Through data cleaning, preprocessing, visualization, and modeling, we were able to extract meaningful information.

