第7.2节 闭合电路的欧姆定律及其应用

{INCLUDEPICTURE"第七章 2.tif"}

要点一 电阻的串、并联

1. (多选)在如图 7-2-1 所示的电路中,通过电阻 R_1 的电流 I_1 是(

{INCLUDEPICTURE"15WL7-22.TIF"}

图 7-2-1

A. $I_1 = \{eq \setminus f(U_1, R_1)\}$ B. $I_1 = \{eq \setminus f(U_1, R_1)\}$ C. $I_1 = \{eq \setminus f(U_2, R_2)\}$

D. $I_1 = \{eq \setminus \{(U_1, R_1 + R_2)\}\}$

2.(多选)一个 T 形电路如图 7-2-2 所示,电路中的电阻 $R_1 = 10 \Omega$, $R_2 = 120 \Omega$, $R_3 = 40 \Omega$. 另有一测试电源,电动势为 100 V,内阻忽略不计。则()

{INCLUDEPICTURE"15WL7-23.TIF"}

图 7-2-2

- A. 当 cd 端短路时, ab 之间的等效电阻是 40Ω
- B. 当 ab 端短路时,cd 之间的等效电阻是 40Ω
- C. 当 ab 两端接通测试电源时, cd 两端的电压为 80 V
- D. 当 cd 两端接通测试电源时, ab 两端的电压为 $80 \,\mathrm{V}$
- 3. 求解并联电路中的电阻值是电学中比较常见的问题,但是在有的问题中常规方法会 比较繁琐,若合理应用一些结论,会有"柳暗花明又一村"的感觉。尝试一下下面这个问题: 有两个电阻 R_1 =8.45 Ω , R_2 =41.57 Ω , 若将它们并联, 其并联电阻可能是()

A. 4Ω

B. 10Ω

C. 7Ω D. 50Ω

要点二 电路的动态分析

[典例] (多选)如图 7-2-4 所示,图中的四个电表均为理想电表,当滑动变阻器滑片 P向右端移动时,下面说法中正确的是(

{INCLUDEPICTURE"15WL7-26.TIF"}

图 7-2-4

- A. 电压表 V_1 的读数减小,电流表 A_1 的读数增大
- B. 电压表 V_1 的读数增大, 电流表 A_1 的读数减小
- C. 电压表 V2的读数减小, 电流表 A2的读数增大
- D. 电压表 V_2 的读数增大, 电流表 A_2 的读数减小

[针对训练]

1. (多选)如图 7-2-5 所示电路中,电源内阻不能忽略,两个电压表均为理想电表。当滑 动变阻器 R_2 的滑动触头 P 移动时,关于两个电压表 V_1 与 V_2 的示数,下列判断正确的是()

{INCLUDEPICTURE"15WL7-27.tif"}

图 7-2-5

A. P 向 a 移动, V_1 示数增大、 V_2 的示数减小

第{ PAGE * MERGEFORMAT }页 共{ NUMPAGES * MERGEFORMAT }页

- B. $P \cap b$ 移动, V_1 示数增大、 V_2 的示数减小
- C. P 向 a 移动, V_1 示数改变量的绝对值小于 V_2 示数改变量的绝对值
- D. $P \cap b$ 移动, V_1 示数改变量的绝对值大于 V_2 示数改变量的绝对值

要点三 闭合电路的功率及效率问题

[**典例**] 如图 7-2-7 所示,已知电源电动势为 6 V,内阻为 1 Ω ,保护电阻 R_0 =0.5 Ω ,求:当电阻箱 R 读数为多少时,保护电阻 R_0 消耗的电功率最大,并求这个最大值。

{INCLUDEPICTURE"15WL7-29.TIF"}

图 7-2-7

变式 1: 例题中条件不变,求当电阻箱 R 读数为多少时,电阻箱 R 消耗的功率 P_R 最大,并求这个最大值。

变式 2: 在例题中,若电阻箱 R 的最大值为 3 Ω , R_0 =5 Ω ,求: 当电阻箱 R 读数为多少时,电阻箱 R 的功率最大,并求这个最大值。

变式 3: 例题中条件不变, 求电源的最大输出功率。

变式 4: 如图 7-2-8 所示,电源电动势 E=2 V,内阻 r=1 Ω ,电阻 $R_0=2$ Ω ,可变电阻的阻值范围为 $0\sim10$ Ω 。求可变电阻为多大时,R 上消耗的功率最大,最大值为多少?

{INCLUDEPICTURE"15WL7-30.TIF"}

图 7-2-8

要点四 两类 U-I 图像的比较与应用

[典例] (多选)在如图 7-2-9 所示的图像中,直线 I 为某一电源的路端电压与电流的关系图像,直线 II 为某一电阻 R 的伏安特性曲线。用该电源直接与电阻 R 相连组成闭合电路。由图像可知()

{INCLUDEPICTURE"15WL7-33.TIF"}

图 7-2-9

- A. 电源的电动势为 3 V,内阻为 0.5Ω
- B. 电阻 R 的阻值为 1Ω
- C. 电源的输出功率为2W

D. 电源的效率为 66.7%

[针对训练]

1.(多选)如图 7-2-10 所示为两电源的 *U-I* 图像,则下列说法正确的是()

{INCLUDEPICTURE"15WL7-34.TIF"}

图 7-2-10

- A. 电源①的电动势和内阻均比电源②大
- B. 当外接相同的电阻时,两电源的输出功率可能相等
- C. 当外接相同的电阻时,两电源的效率可能相等
- D. 不论外接多大的相同电阻, 电源①的输出功率总比电源②的输出功率大
- 2. (多选)如图 7-2-11 所示,直线 A 为电源的 U-I 图线,直线 B 和 C 分别为电阻 R_1 、 R_2

第{ PAGE * MERGEFORMAT }页 共{ NUMPAGES * MERGEFORMAT }页

的 U-I 图线,用该电源分别与 R_1 、 R_2 组成闭合电路时,电源的输出功率分别为 P_1 、 P_2 ,电源的效率分别为 η_1 、 η_2 ,则()

{INCLUDEPICTURE"15WL7-36.TIF"}

图 7-2-11

A. $P_1 > P_2$

B. $P_1 = P_2$

C. $\eta_1 > \eta_2$

D. $\eta_1 < \eta_2$

要点五 含电容器的电路

[**典例**] (多选)如图 7-2-12 所示, C_1 =6 μ F, C_2 =3 μ F, R_1 =3 Ω , R_2 =6 Ω ,电源电动势 E=18 V,内阻不计。下列说法正确的是()

{INCLUDEPICTURE"15WL7-37.TIF"}

图 7-2-12

- A. 开关S断开时, a、b两点电势相等
- B. 开关 S 闭合后, a、b 两点间的电流是 2 A
- C. 开关 S 断开时 C_1 带的电荷量比开关 S 闭合后 C_1 带的电荷量大
- D. 不论开关 S 断开还是闭合, C_1 带的电荷量总比 C_2 带的电荷量大

[针对训练]

1. (多选)如图 7-2-13 所示, R_1 、 R_2 、 R_3 、 R_4 均为可变电阻, C_1 、 C_2 均为电容器,电源的电动势为 E. 内阻 $r \neq 0$ 。若改变四个电阻中的一个阻值,则()

{INCLUDEPICTURE"15WL7-40.TIF"}

图 7-2-13

- A. 减小 R_1 , C_1 、 C_2 所带的电量都增加
- B. 增大 R_2 , C_1 、 C_2 所带的电量都增加
- C. 增大 R_3 , C_1 、 C_2 所带的电量都增加
- D. 减小 R_4 , C_1 、 C_2 所带的电量都增加
- 2. (多选)如图 7-2-14 所示的电路中,电源的电动势 E 和内阻 r 一定,A、B 为平行板电容器的两块正对金属板, R_1 为光敏电阻。当 R_2 的滑动触头 P 在 a 端时,闭合开关 S,此时电流表 A 和电压表 V 的示数分别为 I 和 U。以下说法正确的是()

{INCLUDEPICTURE"15WL7-41.TIF"}

图 7-2-14

- A. 若仅将 R_2 的滑动触头 P 向 b 端移动,则 I 不变,U 增大
- B. 若仅增大 A、B 板间距离,则电容器所带电荷量减少
- C. 若仅用更强的光照射 R_1 ,则 I增大,U增大,电容器所带电荷量增加
- D. 若仅用更强的光照射 R_1 ,则 U 变化量的绝对值与 I 变化量的绝对值的比值不变