Rudin Real and Complex Analysis - The Maximum Modulus Principle

Aaron Lou

December 2018

1 Notes

1.1 Introduction

12.1 The maximum modulus theorem (covered in 10.24) states that the constants are the only holomorphic functions in a region Ω whose absolute values have a local maximum at any point of Ω . Another restatement is that if K is the closure of a bounded region Ω and f is continuous on K and holomorphic in Ω , then

$$|f(z)| \le ||f||_{\partial\Omega}$$

 $z\in\Omega$. If there is equality at some z, then f is constant. The RHS is the supremum on the boundary of Ω . Note that by Thm 11.32 that $\|f\|_{\infty} = \|f^*\|_{\infty}$ and therefore

$$|f(z)| \le ||f^*||_{\infty}$$
 on the boundary

1.2 The Schwarz Lemma

12.2 Thm Suppose $f \in H^{\infty}$ and $||f||_{\infty} \leq 1$ and f(0) = 0. Then

$$|f(z)| \le |z| \quad |f'(0)| \le 1$$

if equality holds for $z \in U \setminus \{0\}$ or if equality holds in the second then $f(z) = \lambda z$ where λ is a constant and $|\lambda| = 1$. Geometrically, f is moves U closer to the origin or is a rotation if it is holomorphic.

12.3 Def For $\alpha \in U$, define

$$\varphi_{\alpha}(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$$

12.4 Thm Fix $\alpha \in U$. Then φ_{α} is a one-to-one mapping which carries T onto T, U onto U, and α to 0. The inverse of φ_{α} is $\varphi_{-\alpha}$. We have

$$\varphi'_{\alpha}(0) = 1 - |\alpha|^2 \quad \varphi'_{\alpha}(\alpha) = \frac{1}{1 - |\alpha|^2}$$

12.5 An Extremal Problem Suppose α and β are complex, $|\alpha| < 1$ and $|\beta| < 1$. How large can $|f'(\alpha)|$ be if f is subject to the conditions $f \in H^{\infty}$, $||f|| \le 1$ and $f(\alpha) = \beta$. Note that

$$g = \varphi_{\beta} \circ f \circ \varphi_{-\alpha}$$

This reduces it to the Schwarz lemma, which has $|g'(0)| \leq 1$. The chain rule gives

$$g'(0) = \varphi'_{\beta}(\beta)f'(\alpha)\varphi'_{-\alpha}(0)$$

So we get that

$$|f'(\alpha)| \le \frac{1 - |\beta|^2}{1 - |\alpha|^2}$$

This can only happen iff |g'(0)| = 1, when g is a rotation and $f(z) = \varphi_{-\beta}(\lambda \varphi_{\alpha}(z))$.

12.6 Thm If $f \in H(U)$ and f is one-to-one, f(U) = U, $\alpha \in U$ and $f(\alpha) = 0$, then there is a constant $\lambda : |\lambda| = 1$ s.t. $f(z) = \lambda \varphi_{\alpha}(z)$.

1.3 The Phgramen-Lindelof Method

12.7 For a bounded region Ω , the maximal modulus theorem implies that $\|f\|_{\Omega} = \|f\|_{\partial\Omega}$. For unbounded regions, this is not true. For example, letting

$$\Omega = \left\{ z = x + yi : -\frac{\pi}{2} < y < \frac{\pi}{2} \right\} \quad f(z) = e^{e^z}$$

Suppose f is an entire function and $|f(z)| < 1 + |z|^{1/2}$. Then f is constant. This follows from the Cauchy estimates since all sequence constants besides the first are 0.

12.8 Thm Suppose

$$\Omega = \{x+iy: a < x < b\} \quad \overline{\Omega} = \{x+iy: a \le x \le b\}$$

f is continuous on $\overline{\Omega}, f \in H(\Omega)$ and suppose that |f(z)| < B for all $z \in \Omega$ and some fixed $B < \infty$. If

$$M(x) = \sup \{ |f(x+iy)| : -\infty < y < \infty \} \quad (a \le x \le b)$$

then we have

$$M(x)^{b-a} < M(a)^{b-a}M(b)^{x-a}$$

Corr: Under the same hypotheses, $\log M$ is a convex function on (a, b).

12.9 Thm Suppose

$$\Omega = \left\{ x + iy : |y| < \frac{\pi}{2} \right\} \quad \overline{\Omega} = \left\{ x + iy : |y| \le \frac{\pi}{2} \right\}$$

Suppose f is continuous on $\overline{\Omega}$, $f \in H(\Omega)$, there are constants $\alpha < 1, A < \infty$ s.t.

$$|f(z)| < \exp\{A\exp(\alpha|x|)\}$$
 $(z = x + iy \in \Omega)$

and

$$\left| f\left(x \pm \frac{\pi i}{2} \right) \right| \le 1 \quad -\infty < x < \infty$$

Then $|f(z)| \leq 1$ for all $z \in \Omega$.

12.10 Lindelof's Thm Suppose Γ is a curve with parameter interval [0,1] s.t. $|\Gamma(t)| < 1$ if t < 1 and $\Gamma(1) = 1$. If $g \in H^{\infty}$ and

$$\lim_{t \to 1} g(\Gamma(t)) = L$$

then g has radial limit L at 1.

1.4 An Interpolation Theorem

12.11 The convexity theorem in 12.8 can be used to prove that certain linear transformations are bounded w.r.t. certain L^p -norms. Let X be a measure space, with positive measure μ . Suppose $\{\psi_n\}$ is an orthonormal set of functions in $L^2(\mu)$. Furthermore, let us assume it is bounded in $L^{\infty}(\mu)$.

Then $f \in L^p(\mu)$ where $1 \le p \le 2$, the integrals

$$\widehat{f}(n) = \int_X f \overline{\psi}_n d\mu$$

exist and define a function \widehat{f} on the set of all positive integers. We have that

$$\left\| \widehat{f} \right\|_{\infty} \leq M \left\| f \right\|_{1}$$

where M is the bound on $|\psi_n(x)|$. The Bessel inequality gives $\|\widehat{f}\|_2 \leq \|f\|_2$.

The Hausdorff-Young Theorem With the above assumptions, the inequality

$$\left\| \widehat{f} \right\|_q \leq M^{(2-p)/p} \, \|f\|_p$$

holds if $1 \le p \le 2$ and if $f \in L^p(\mu)$.

1.5 A Converse of the Maximum Modulus Theorem

12.13 Thm Suppose M is a vector space of continuous complex functions on the closed unit disc \overline{U} with the following:

- (a) $1 \in M$
- (b) If $f \in M$ then so is $jf \in M$
- (c) If $f \in M$ then $||f||_I = ||f||_T$

Radós Theorem Assume $f \in C(\overline{U})$, Ω is the set of all $z \in U$ at which $f(z) \neq 0$ and f is holomorphic in Ω . Then f is holomorphic in U.

2 Exercises

Problem 1 Note that the function (z-a)(z-b)(z-c) is holomorphic. By the maximum modulus principle there is no maximum value inside the triangle. The maximum is on the outside, and this occurs when a is in the middle of a segment with value $\frac{\sqrt{3}}{8}$.

Problem 3 If $f \neq 0$ at all points, we can take the multiplicative inverse 1/f and the maximum modulus principle states that the maximum of 1/f occurs on the boundary, or in this case the minimum of f must occur on the boundary. Therefore, when f = 0 at some point |f| can have a local minimum in Ω .

Problem 5 Note that $f_n - f_m$ is holomorphic. Furthermore, note that for any ϵ we can find an N s.t. $f_n - f_m < \epsilon$ for n, m > N. Therefore, inside the Ω we have, by the maximum modulus principle, that

$$|(f_n - f_m)(z)| \le |(f_n - f_m)(z_0)| < \epsilon \quad z \in \Omega, z_0 \in \text{boundary of } \Omega$$

So there is uniform convergence in Ω .

Problem 7 We note that the result must be true. Suppose that M(x) > 0 and M(b) > 0 (if M(b) = 0 then a similar argument to the h_{ϵ} and rectangle argument proves that f = 0). Then if we can appropriately scale the f by some constant λ s.t. M(x) > M(b) and this violates the same h_{ϵ} and rectangle argument.

Problem 9 We define an $h_{\epsilon}(z) = \frac{1-\epsilon}{\exp\{|z|^{\beta}\}}$ for $\alpha < \beta < 1$. Note that we have $|h_{\epsilon}(z)| < 1$. There exists a r s.t. for |z| = r points outside the semicircle have $|fh_{\epsilon}(z)| \leq 1$. By maximum modulus principle, it follows that $|fh_{\epsilon}(z)| \leq 1$ for all $z \in \Pi$. Taking $\epsilon \to 0$ gives us our desired result.

We can let $f = e^x$. Note that this is holomorphic but increases to infinity as $x \to \infty$. If we modify the region to be an arc, the results still hold for $\alpha < 1$ as we can just take the section as our region.

Problem 11 We can define $h_{\epsilon}(z)$ which similarly separates the region Ω into sections where for $z > |z_{\epsilon}|$ we have $|fh_{\epsilon}| \leq M$ and for $|z| \leq |z_{\epsilon}|$ we also have $|fh_{\epsilon}| \leq M$. Taking $h_{\epsilon} \to 1$ as $\epsilon \to 0$ gives us the property that $|f| \leq M$ in Ω .

Problem 13 Note that exp can never reach 0 or infinity and these are asymptotes. This holds on the real line clearly, and on the complex plane this just rotates the value. For sin and cos, the asymptotes are $\pm \infty$.

Problem 15 Suppose not. Then by the identity theorem, we see that there are finitely many zeros in f since otherwise we would either have a zequence z_0 which converges to a circle point or f = 0. Then we take some $\frac{p(z)}{f(z)}$ where p(z) is a polynomial with high enough degree s.t. the fraction evaluates to a noninfinity value at zeros of f (using L'Ohpitals), making it holomorphic. But, this contradicts maximum modulus as we can take p(z) to arbitrarily large exponents w.r.t the sum of the coefficients of p(z).

Problem 17 We reapply $\varphi_{\alpha}(z) = \frac{z-\alpha}{1-\overline{\alpha}z}$ as in the example to find that $|f'(\alpha)| \le \frac{1-|\beta|^2}{1-|\alpha|^2}$ and this gives us $M(c) = 1-c^2, M=1$ and there is no f with f'(0) = M.