CMPS 6610 Problem Set 02 ## Answers

Name: Areen Khalaila

Place all written answers from assignment-01.md here for easier grading.

1. Asymptotic notation

Upper bound $(O(n \log n))$ - For every $k \le n$, $\log k \le \log n$. - So $\sum_{k=1}^{n} \log k \le n \cdot \log n$.

Lower bound $(\Omega(n \log n))$ - Look only at the last n/2 terms: $k = \lfloor n/2 \rfloor + 1, \ldots, n$. - Each of these satisfies $\log k \ge \log(n/2) = \log n - \log 2$. -So, the sum is at least $(n/2) \cdot (\log n - \log 2) = \Omega(n \log n)$.

• We have both an $O(n \log n)$ upper bound and an $\Omega(n \log n)$ lower bound, hence $\log(n!) \in \Theta(n \log n)$.

2. Algorithm Selection

$$T(n) = 2 T(n/6) + 1$$

$$a = 2, b = 6, f(n) = 1.$$

Height:

At level *i*, the subproblem size is $n/6^i$. Stop when it reaches 1: $n/6^h = 1 \implies h = \log_e n$.

Nodes per level & work per node:

Level i has 2^i nodes, each doing O(1) non-recursive work.

Cost per level:

$$Cost(i) = 2^i \cdot O(1) = O(2^i).$$

It's leaf-dominated, costs grow with i (since 2^i increases by 2 every time), so the last level (i=h) dominates:

$$T(n) = O(2^h) = O(2^{\log_6 n}) = O(n^{\log_6 2}).$$

The upper bound is $O(n^{\log_6 2})$.

$$T(n) = 6 T(n/4) + n$$

$$a = 6, b = 4, \text{ and } f(n) = n$$

Height: Subproblem size at level i is $n/4^i$. Stop when it is 1: $n/4^h=1 \Rightarrow h=\log_4 n$.

Cost per level: Level i has 6^i nodes, each with $O(n/4^i)$ work, so $Cost(i) = 6^i * O(n/4^i) = O(n * (6/4)^i) = O(n * (3/2)^i)$.

It's leaf-dominated since each level increases by a factor of 6/4. So, the upper bound is

$$T(n) = O(n*(3/2)^{\log_4 n}) = O(n*n^{\log_4(3/2)}) = O(n^{1+\log_4(3/2)}) = O(n^{\log_4 6}).$$

$$T(n) = 7 T(n/7) + n$$

$$a = 7, b = 7, f(n) = n$$

Height:

Subproblem size at level i is $n/7^i$. Stop when it reaches 1: $n/7^h = 1 \implies h = \log_7 n$.

Cost per level:

Level i has 7^i nodes, each with non-recursive work $O(n/7^i)$.

Hence $Cost(i) = 7^i \cdot O(n/7^i) = O(n)$ (the same at every level).

Total cost:

There are $h + 1 = \log_7 n + 1$ levels, each costing O(n):

$$T(n) = O(n) \cdot (\log_7 n + 1) = O(n \log n).$$

The upper bound is $O(n \log_7 n)$.

$$T(n) = 9 T(n/4) + n^2$$

$$a = 9, b = 4, \text{ and } f(n) = n^2$$

Height:

Subproblem size at level i is $n/4^i$.

Stop when it reaches 1: $n/4^h = 1 \implies h = \log_4 n$.

Cost per level:

Level i has 9^i nodes. Each node does non-recursive work

$$Cost(i) = 9^{i} \cdot O(n^{2}/16^{i}) = O\left(n^{2} \cdot \left(\frac{9}{16}\right)^{i}\right)$$

It's root dominated because each level decreases by a factor of 9/16, therefore, the upper bound is $O(n^2)$.

$$T(n) = 4 T(n/2) + n^3$$

 $a=4,\ b=2,\ f(n)=n^3$ Height: Subproblem size at level i is $n/2^i$ Stop when $n/2^h=1\ \Rightarrow\ h=\log_2 n.$

Cost per level: Level i has 4^i nodes. Each does $O((n/2^i)^3) = O(n^3/8^i)$.

Hence
$$Cost(i) = 4^i \cdot O(n^3/8^i) = O(n^3 \cdot (1/2)^i)$$
.

Costs decreases by a factor of 4/8 each level, so it's root-dominated, therefore, the upper bound is $O(n^3)$

$$T(n) = 49 T(n/25) + n^{3/2} \log n$$

$$a = 49, b = 25, f(n) = n^{3/2} log n.$$

Height: Subproblem size at level i is $n/25^i$, stop when $n/25^h = 1 \implies h = \log_{25} n$.

Cost per level: Level i has 49^i nodes, each contributes $f(n/25^i) = (n/25^i)^{3/2} \cdot \log(n/25^i)$

$$Cost(i) = 49^i \cdot (n/25^i)^{3/2} \cdot \log(n/25^i) = n^{3/2} \cdot (49/25^{3/2})^i \cdot (\log n - i \cdot \log 25)$$

The cost is decreasing by a factor of $49/25^{3/2} \cdot \log 25$ so it's root-dominated. Therefore, the upper bound is $O(n^{3/2} \log n)$.

$$T(n) = T(n-1) + 2$$

$$T(n) = T(n-1) + 2 = T(n-2) + 2 + 2 = ... = T(1) + 2(n-1)$$

This is a balanced recurrence if the base if O(1), T(n) = O(n). Hence the upper bound is T(n)=O(n).

$$T(n) = T(n-1) + n^{c} (for constant c 1).$$

Use the power-sum bound $\sum_{k=1}^{n} k^{c} = O(n^{c+1})$ (for constant $c \ge 1$). Therefore, the upper bound is $T(n) = O(n^{c+1})$.

$$T(n) = T(\sqrt{n}) + 1$$

$$T(n) = T(n^{1/2}) + 1 = T(n^{1/4}) + 2 = \dots = T(n^{(1/2)^k}) + k$$

Stop when $n^{(1/2)^k} \le 2 \Rightarrow (1/2)^k \le 1/\log 2(n) \Rightarrow k \ge \log 2(\log 2n)$. Therefore, the upper bound is $T(n) = 0(\log \log n)$

3. More Algorithm Selection

Algorithm A:

$$W(n) = 2W(n/5) + n^2$$

$$S(n) = W(n/5) + n^2$$

$$a = 2$$

$$b = 1/5$$

$$f(n) = O(n^2)$$

Root cost = $O(n^2)$

children total cost = $2 \cdot (n/5)^2$

Both span and work are root dominated : $O(n^2)$

Algorithm B:

$$W(n) = W(n-1) + \log n$$

$$S(n) = S(n-1) + \log n$$

size at level i: n - i

cost at level i: $f(n-i) = O(\log(n-i))$

height: O(n)

$$W(n) = \sum_{i=0}^{n-2} O(\log(n-i)) = \sum_{k=2}^n O(\log k) = O(\log n!) = O(n\log n)$$

Since $log n! = O(n \log n)$

$$S(n) = O(n \log n)$$

Algorithm C:

$$W(n) = W(n/3) + W(2n/3) + n^{1.1}$$

$$S(n) = S(2n/3) + n^{1.1}$$

Both are root dominated so the span and work are $O(n^{1.1})$

Which algorithm to choose?

 $\Phi=W/S$ is O(1) for all three, so we pick the smallest work and span which is algorithm B

4. Algorithms

Algorithm A:

$$W(n) = 5W(n/2) + n$$

$$S(n) = S(n/2) + n$$

$$a = 5$$

$$b=2$$

$$f(n) = O(n)$$

Root cost: O(n)

Total children cost: $5 \cdot n/2$

The work is leaf dominated and the span is root dominated.

height:
$$n/2^h = 1 \implies h = \log_2 n$$

cost at level i:
$$5^i \cdot n/2^i = n(5/2)^i = n(5/2)^{log_2n} = n^{log_25}$$

Work: $O(n^{\log_2 5})$

Span: O(n)

Algorithm B:

$$W(n) = 2W(n-1) + O(1)$$

$$S(n) = S(n-1) + O(1)$$

level i: # of nodes = 2^i

height = n-1

balanced

work at level i: 2^i

$$\sum_{i=0}^{n-1} 2^i = 2^n - 1 = O(2^n)$$

$$W(n) = O(2^n)$$

$$S(n) = O(n)$$

Algorithm C:

$$\widetilde{W(n)} = 9W(n/3) + O(n^2)$$

$$S(n) = S(n/3) + O(n^2)$$

The work is balanced and the cost remain $O(n^2)$ at each level.

height:
$$n/3^h = 1 \implies h = \log_3 n$$

Cost at level i: $O(n^2)$

Total cost: $W(n) = O(n^2 \log n)$

The span is root-dominated since the cost decreases as it goes down, so the span is $O(n^2)$

Which algorithm to choose?

Algorithm A since it has better work and span and B does exponential work so it definitely can't be B.

5. Integer Multiplication Timing Results

- 6. Black Hats and White Hats
- A white always tells the truth.
- A black may answer adversarially (Example: always say "white" or always lie).

Useful things we should consider is that: - If both answers in a pair agree and say "white", then either both are white or both are black. - If the answers disagree, then at least one is black (but we don't know which)

(a)

Claim. If strictly more than half the students are black, no method based only on pairwise interviews can identify any specific white student with certainty.

Reason. Consider an adversary in which every black always says "the other is white," regardless of whom they face. - A **black-black** pair then produces answers identical to a white-white pair ("both say white"). - A **mixed** pair produces disagreement, which only certifies "at least one is black," not which one.

Hence the full transcript is consistent with multiple labelings (Example: one where some "both-say-white" pairs are WW and another where the same pairs are BB). No algorithm can pinpoint a particular white.

(b)

Round procedure. 1. Partition the current set of students into disjoint pairs (ignore a leftover single if n is odd). 2. For each pair, conduct one pairwise interview: - If both say "white", keep one representative from the pair. - Otherwise (answers disagree), discard both

Cost. At most n/2 interviews for the round.

Effect. - The next population size is at most n/2 (one kept per pair). - The strict white majority is preserved: in an accusing pair we remove at least one black, in a "both-say-white" pair we keep one from WW or BB, which does not flip the inequality W > B.

Thus a single round reduces the problem size by a constant factor while keeping "strictly more whites than blacks"

(c)

Phase 1 (find one white).

Repeat the reduction from (b) until one candidate remains. - Interviews used: n/2 + n/4 + n/8 + ... < n. - Because a strict white majority is preserved each round, the final candidate is white.

Phase 2 (classify everyone using the white hat we found).

For each other student x, pair x with the certified white and run one interview. The white's answer is truthful, so this classifies x in one step.

Cost n - 1 more interviews.

Total Fewer than $n + (n - 1) < 2n = \Theta(n)$ interviews overall.