CS 4240: Compilers

Lecture 14: Instruction Scheduling (contd)

Instructor: Vivek Sarkar

(vsarkar@gatech.edu)

February 27, 2019

ANNOUNCEMENTS & REMINDERS

- » Homework 2 to be released today
 - » Due by 11:59pm on Monday, March 4th
 - » 5% of course grade
- » Project 2 released today
 - » Due by 11:59pm on Wednesday, April 3rd
 - » 15% of course grade
- » MIDTERM EXAM: Wednesday, March 13, 4:30pm 5:45pm
 - » 20% of course grade
- » FINAL EXAM: Wednesday, May 1, 2:40 pm 5:30 pm
 - » 30% of course grade

Superscalar (RISC) Processors

What Makes Code Run Fast?

- Many operations have non-zero latencies
- Modern machines can issue several operations per cycle
- Execution time is order-dependent (and has been since the 60's)

Assumed latencies (conservative)

Operation	Cycles
load	3
store	3
loadI	1
add	1
mult	2
fadd	1
fmult	2
shift	1
branch	0 to 8

- Loads & stores may or may not block
 - > Non-blocking ⇒fill those issue slots
- Branch costs vary with path taken
- Branches typically have delay slots
 - > Fill slots with unrelated operations
 - > Percolates branch upward
- Scheduler should hide the latencies

Example: Instruction Scheduling

Input: A basic block represented as a Directed Acyclic Graph

(DAG)

- $I_{\#}$ are instructions in the *basic block*; edges (*i*, *j*) represent dependence constraints
- i_2 is a load instruction.
- Latency of 1 on (i_2, i_4) means that i_4 cannot start for one cycle after i_2 completes.
- Assume 1 FU
- What are the possible schedules?

Example(cont): Possible Schedules

- Two possible schedules for the DAG
- The length of the schedule is the number of cycles required to execute the operations
 - Length(S_1) > Length(S_2)
- Which schedule is optimal?

Formalizing the Instruction Scheduling Problem (contd)

Feasible Schedule: A specification of a *start time* for each instruction such that the following constraints are obeyed:

- 1. Resource: Number of instructions of a given type of any time < corresponding number of FUs.
- 2. Dependence and Latency: For each predecessor j of an instruction i in the DAG, i is the started only δ cycles after j finishes where δ is the latency labeling the edge (j,i),

Output: A schedule with the minimum *overall* completion time (makespan).

Instruction Scheduling (The Abstract View)

To capture properties of the code, build a dependence graph G

- Nodes $n \in G$ are operations with type(n) and delay(n)
- An edge $e = (n_1, n_2) \in G$ if & only if n_2 uses the result of n_1

```
loadAl
                 r0,@w
                           \Rightarrow r1
a:
                 r1,r1
b:
    add
                         ⇒ r1
                 r0,@x \Rightarrow r2
    loadAl
                 r1,r2
d:
    mult
                         ⇒ r1
                 r0,@y \Rightarrow r2
    loadAl
e:
                 r1,r2
    mult
                         ⇒ r1
    loadAl
                 r0,@z \Rightarrow r2
q:
h:
    mult
                 r1,r2
                         ⇒ r1
                           \Rightarrow r0,@w
    storeAl
                 r1
```

b c e f h

a

The Code

The Dependence Graph

Example

$$w \leftarrow w * 2 * x * y * z$$

Simple schedule

1	loadAl	r0,@w	⇒ r1
4	add	r1,r1	⇒ r1
5	loadAl	r0,@x	⇒ r2
8	mult	r1,r2	⇒ r1
9	loadAl	r0,@y	⇒ r2
12	mult	r1,r2	⇒ r1
13	loadAl	r0,@z	⇒ r2
16	mult	r1,r2	⇒ r1
18	storeAl	r1	⇒ r0 ,@w
21	r1 is free		

Schedule loads early

1	loadAl	r0,@w	⇒ r1
2	loadAl	r0,@x	⇒ r2
3	loadAl	r0,@y	\Rightarrow r3
4	add	r1,r1	⇒ r1
5	mult	r1,r2	⇒ r1
6	loadAl	r0,@z	\Rightarrow r2
7	mult	r1,r3	⇒ r1
9	mult	r1,r2	⇒ r1
11	storeAl	r1	⇒ r0,@w
14	r1 is free		

2 registers, 20 cycles 3 registers, 13 cycles

Reordering operations for speed is called instruction scheduling

Instruction Scheduling (Engineer's View)

The Problem

Given a code fragment for some target machine and the latencies for each individual operation, reorder the operations to minimize execution time

The Concept

The Task

- Produce correct code
- Minimize wasted cycles
- Avoid spilling registers
- Operate efficiently

Instruction Scheduling

(Definitions)

- A <u>correct schedule</u> S maps each n∈ N into a non-negative integer representing its cycle number, <u>and</u>
- 1. $S(n) \ge 0$, for all $n \in \mathbb{N}$, obviously
- 2. If $(n_1, n_2) \in E$, $S(n_1) + delay(n_1) \le S(n_2)$
- 3. For each type t, there are no more operations of type t in any cycle than the target machine can issue

The <u>length</u> of a schedule S, denoted L(S), is $L(S) = \max_{n \in N} (S(n) + delay(n))$

The goal is to find the shortest possible correct schedule.

S is <u>time-optimal</u> if $L(S) \le L(S_1)$, for all other schedules S_1

A schedule might also be optimal in terms of registers, power, or space....

A Canonical Greedy List Scheduling Algorithm

- 1. Assign a Rank (priority) to each instruction (or node).
- 2. Sort and build a priority list \mathscr{L} of the instructions in non-decreasing order of Rank.
 - Nodes with smaller ranks occur earlier in this list
 - Smaller ranks imply higher priority
- 3. Greedily list-schedule L.
 - An instruction is ready provided it has not been chosen earlier and all of its predecessors have been chosen and the appropriate latencies have elapsed.
 - Scan $\mathscr L$ iteratively and on each scan, choose the largest number of "ready" instructions from the front of the list subject to resource (FU) constraints.

Addressing Scheduling Questions

- Greediness helps in making sure that idle cycles don't remain if there are available instructions further "down stream."
 - If an instruction is available for a slot, then fill the slot
- Ranks help prioritize nodes such that choices made early on favor instructions with greater enabling power, so that there is no unforced idle cycle.
 - Ranks are an encoding for a scheduling heuristic
 - Ranks are based on characteristics of the operations, and allow the algorithm to compare operations

Applying the Canonical Greedy List Algorithm

Example: Consider the DAG shown below, where nodes are labeled (id, rank)

Sorting by ranks gives a list $\mathcal{L} = \langle i_{3,1}, i_{4,1}, i_{2,2}, i_{1,3}, i_{5,3} \rangle$

The following slides apply the algorithm assuming 2 FUs.
 more...

Applying the Canonical Greedy List Algorithm (cont.)

- 1. On the first scan
 - 1. $i_{1,3}$ is added to the schedule.
 - 2. No other ops can be scheduled, one empty slot
- 2. On the second and third scans
 - 1. $i_{3,1}$ and $i_{4,1}$ are added to the schedule
 - 2. All slots are filled, both FUs are busy
- 3. On the fourth and fifth scans
 - 1. $i_{2,2}$ and $i_{5,3}$ are added to the schedule
 - 2. All slots are filled, both FUs are busy
- 4. All ops have been scheduled

Instruction Scheduling: The Big Picture

- 1. Build a dependence graph, P
- 2. Compute a priority function over the nodes in P
- 3. Use list scheduling to construct a schedule, one cycle at a time
 - a. Use a queue of operations that are ready
 - b. At each cycle
 - I. Choose the highest priority ready operation and schedule it
 - II. Update the ready queue

Local list scheduling

- The dominant algorithm for twenty years
- A greedy, heuristic, local technique

Local List Scheduling

```
Cycle \leftarrow 1
Ready \leftarrow leaves of P
Active \leftarrow \emptyset
while (Ready \cup Active \neq \emptyset)
   if (Ready \neq \emptyset) then
     remove an op from Ready
     S(op) \leftarrow Cycle
     Active ¬ Active ∪ op
   Cycle \leftarrow Cycle + 1
   for each op \in Active
       if (S(op) + delay(op) \le Cycle) then
          remove op from Active
          for each successor s of op in P
              if (s is ready) then
                Ready \leftarrow Ready \cup s
```

Removal in priority order

op has completed execution

If successor's operands are ready, put it on Ready

Scheduling Example

1. Build the dependence graph

```
r0,@w
     loadAl
a:
                               \Rightarrow r1
     add
                    r1,r1 \Rightarrow r1
b:
                    r0,@x \Rightarrow r2
     IoadAl
     mult
                    r1,r2 \Rightarrow r1
d:
     loadAl
                    r0,@y \Rightarrow r2
e:
     mult
                    r1,r2 \Rightarrow r1
     loadAl
                    r0,@z \Rightarrow r2
g:
                    r1,r2 \Rightarrow r1
h:
     mult
                               \Rightarrow r0,@w
i:
     storeAl
                    r1
```

The Code

The Dependence Graph

Scheduling Example

- 1. Build the dependence graph
- 2. Determine priorities: longest latency-weighted path

```
loadAl
                  r0,@w
                            ⇒ r1
a:
                  r1,r1
b:
     add
                         ⇒ r1
                  r0,@x \Rightarrow r2
     loadAl
    mult
                  r1,r2 \Rightarrow r1
d:
                  r0,@y \Rightarrow r2
     loadAl
e:
                  r1,r2
f:
    mult
                         ⇒ r1
                  r0,@z \Rightarrow r2
     loadAl
g:
                  r1,r2
h:
    mult
                          ⇒ r1
                            \Rightarrow r0,@w
i:
     storeAl
                  r1
```

The Code

The Dependence Graph

Scheduling Example

- 1. Build the dependence graph
- 2. Determine priorities: longest latency-weighted path
- 3. Perform list scheduling

```
1) a: loadAl r0,@w ⇒ r1
```

2) c: loadAl
$$r0,@x \Rightarrow r2$$

3) e: loadAl
$$r0$$
,@y $\Rightarrow r3$

4) b: add
$$r1,r1 \Rightarrow r1$$

5) d: mult
$$r1,r2 \Rightarrow r1$$

6) g: loadAl
$$r0,@z \Rightarrow r2$$

7) f: mult
$$r1,r3 \Rightarrow r1$$

9) h: mult
$$r1,r2 \Rightarrow r'$$

New register name used

The Code

The Dependence Graph

Detailed Scheduling Algorithm I

Idea: Keep a collection of worklists W[c], one per cycle

- We need MaxC = max delay + 1 such worklists
- Dependence graph is (N,E)

Code:

```
for each n \in N do begin count[n] := 0; earliest[n] = 0 end
for each (n1,n2) \in E do begin
    count[n2] := count[n2] + 1;
    successors[n1] := successors[n1] \cup \{n2\};
end
for i := 0 to MaxC - 1 do W[i] := \emptyset;
Wcount := 0;
for each n \in N do
    if count[n] = 0 then begin
        W[0] := W[0] \cup \{n\}; Wcount := Wcount + 1;
    end
c := 0; // c is the cycle number
cW := 0;// cW is the number of the worklist for cycle c
instr[c] := \emptyset;
```

Detailed Scheduling Algorithm II

```
while Wcount > 0 do begin
           while W[cW] = \emptyset do begin
               c := c + 1; instr[c] := \emptyset; cW := mod(cW+1,MaxC);
           end
           nextc := mod(c+1,MaxC);
           while W[cW] \neq \emptyset do begin
Priority ——select and remove an arbitrary instruction x from W[cW];
               if ∃ free issue units of type(x) on cycle c then begin
                   instr[c] := instr[c] \cup \{x\}; Wcount := Wcount - 1;
                   for each y \in successors[x] do begin
                       count[y] := count[y] - 1;
                       earliest[y] := max(earliest[y], c+delay(x));
                       if count[y] = 0 then begin
                           loc := mod(earliest[y],MaxC);
                           W[loc] := W[loc] \cup \{y\}; Wcount := Wcount + 1;
                       end
                   end
               else W[nextc] := W[nextc] \cup {x};
           end
       end
```

More List Scheduling

List scheduling breaks down into two distinct classes

Forward list scheduling

- Start with available operations
- Work forward in time
- Ready ⇒ all operands available

Backward list scheduling

- Start with no successors
- Work backward in time
- Ready ⇒ latency covers uses

Variations on list scheduling

- Prioritize critical path(s)
- Schedule last use as soon as possible
- Depth first in dependence graph (minimize registers)
- Breadth first in dependence graph (minimize interlocks)
- Prefer operation with most successors