Introduction à la théorie de la Persistance

Francis Lazarus

GIPSA-Lab, CNRS

19 Mars 2010

Coder les variations topologiques

Partant d'une filtration d'un espace X:

$$X_1 \subset X_2 \subset \ldots \subset X_n = X$$

On en déduit :

$$H_*(X_1) \rightarrow \ldots \rightarrow H_*(X_n)$$

C'est un objet algébrique que l'on va coder par des intervalles.

- **①** Dans la pratique on se donne $f: X \to \mathbb{R}$ et $X_i = f^{-1}([-\infty, a_i])$
- ② On peut remplacer les ⊂ par des applications continues.
- 3 Dans la pratique on travaille avec des complexes simpliciaux.

Théorie de la persistance homologique

- Robins, V. Towards computing homology from finite approximations Topology proceedings, 1999, V. 24.
- Edelsbrunner, H., Letscher, D. and Zomorodian, A.
 Topological Persistence and Simplification. IEEE
 Symposium on Foundations of Computer Science, 2000.
- Zomorodian, A. and Carlsson, G. Computing Persistent Homology. Discrete & Computational Geometry, 2005, V. 33.

- K : collection de simplexes orientés contenant leurs faces.
- $C_*(K)$: combinaisons formelles sur $\mathbb K$ de simplexes
- $\partial: C_*(K) \to C_*(K)$: opérateur bord.

$$\partial[s_0, s_1, \dots, s_n] = \sum_{i=0}^n (-1)^i [s_0, \dots, \hat{s_i}, \dots, s_n]$$

$$\partial \circ \partial = 0$$

$$H_*(K) = Z_*(K)/B_*(K)$$

- K : collection de simplexes orientés contenant leurs faces.
- $C_*(K)$: combinaisons formelles sur \mathbb{K} de simplexes.
- $\partial: C_*(K) \to C_*(K)$: opérateur bord.

$$\partial[s_0, s_1, \dots, s_n] = \sum_{i=0}^n (-1)^i [s_0, \dots, \hat{s_i}, \dots, s_n]$$

$$\partial \circ \partial = 0$$

$$H_*(K) = Z_*(K)/B_*(K)$$

- K : collection de simplexes orientés contenant leurs faces.
- $C_*(K)$: combinaisons formelles sur \mathbb{K} de simplexes.
- $\partial: C_*(K) \to C_*(K)$: opérateur bord.

$$\partial[s_0, s_1, \ldots, s_n] = \sum_{i=0}^n (-1)^i [s_0, \ldots, \hat{s_i}, \ldots, s_n]$$

$$\partial \circ \partial = 0$$

$$H_*(K) = Z_*(K)/B_*(K)$$

- *K* : collection de simplexes orientés contenant leurs faces.
- $C_*(K)$: combinaisons formelles sur ${\rm I\!K}$ de simplexes.
- $\partial: C_*(K) \to C_*(K)$: opérateur bord.

$$\partial[s_0, s_1, \ldots, s_n] = \sum_{i=0}^n (-1)^i [s_0, \ldots, \hat{s_i}, \ldots, s_n]$$

$$\partial \circ \partial = 0$$

$$H_*(K) = Z_*(K)/B_*(K)$$

- K : collection de simplexes orientés contenant leurs faces.
- $C_*(K)$: combinaisons formelles sur ${\rm I\!K}$ de simplexes.
- $\partial: C_*(K) \to C_*(K)$: opérateur bord.

$$\partial[s_0, s_1, \ldots, s_n] = \sum_{i=0}^n (-1)^i [s_0, \ldots, \hat{s_i}, \ldots, s_n]$$

$$\partial \circ \partial = 0$$

$$H_*(K) = Z_*(K)/B_*(K)$$

Morphisme induit

$$f: K \to L$$
 compatible avec les bords : $\partial \circ f_{\#} = f_{\#} \circ \partial$ où $f_{\#} : C_{*}(K) \to C_{*}(L)$.

On en déduit $f_{\#}(B_*(K)) \subset B_*(L)$, puis

$$f_*:H_*(K)\to H_*(L)$$

Exemple : $K \subset L$ donne $H_*(K) \to H_*(L)$.

Morphisme induit

 $f: K \to L$ compatible avec les bords :

$$\partial \circ f_{\#} = f_{\#} \circ \partial \text{ où } f_{\#} : C_*(K) \to C_*(L).$$

On en déduit $f_\#(B_*(K)) \subset B_*(L)$, puis

$$f_*: H_*(K) \rightarrow H_*(L)$$

Exemple : $K \subset L$ donne $H_*(K) \to H_*(L)$.

Le foncteur homologique

$$H_p(Id) = Id$$
 et $H_p(f \circ g) = H_p(f) \circ H_p(g)$

 H_p facile à calculer si X et f sont simpliciaux.

$$K_1 \subset K_2 \subset \ldots \subset K_n = K$$

$$\downarrow H_*$$

$$H_*(K_1) \to H_*(K_2) \to \ldots \to H_*(K_n)$$

Filtration $\stackrel{H_*}{\longrightarrow}$ chaîne d'applications linéaires.

On remplace l'étude de la filtration par celle des chaîne d'applications linéaires.

$$K_1 \subset K_2 \subset \ldots \subset K_n = K$$

$$\downarrow H_*$$

$$H_*(K_1) \rightarrow H_*(K_2) \rightarrow \ldots \rightarrow H_*(K_n)$$

Filtration $\xrightarrow{H_*}$ chaîne d'applications linéaires.

On remplace l'étude de la filtration par celle des chaîne d'applications linéaires.

$$K_1 \subset K_2 \subset \ldots \subset K_n = K$$

$$\downarrow H_*$$

$$H_*(K_1) \rightarrow H_*(K_2) \rightarrow \ldots \rightarrow H_*(K_n)$$

Filtration $\stackrel{H_*}{\longrightarrow}$ chaîne d'applications linéaires.

On remplace l'étude de la filtration par celle des chaîne d'applications linéaires.

$$(f_i): E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_{n-1}} E_n$$

$$(g_i): F_1 \xrightarrow{g_1} F_2 \xrightarrow{g_2} \cdots \xrightarrow{g_{n-1}} F_n$$

$$(f_i) \oplus (g_i) : E_1 \oplus F_1 \xrightarrow{f_1 \oplus g_1} E_2 \oplus F_2 \xrightarrow{f_2 \oplus g_2} \cdots \xrightarrow{f_{n-1} \oplus g_{n-1}} E_n \oplus F_n$$

$$(f_{i}): \qquad E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} E_{n}$$

$$\downarrow \phi_{1} \qquad \downarrow \phi_{2} \qquad \qquad \downarrow \phi_{n}$$

$$(g_{i}): \qquad F_{1} \xrightarrow{g_{1}} F_{2} \xrightarrow{g_{2}} \cdots \xrightarrow{g_{n-1}} F_{n}$$

$$(f_i) \oplus (g_i) : E_1 \oplus F_1 \stackrel{f_1 \oplus g_1}{\longrightarrow} E_2 \oplus F_2 \stackrel{f_2 \oplus g_2}{\longrightarrow} \cdots \stackrel{f_{n-1} \oplus g_{n-1}}{\longrightarrow} E_n \oplus F_n$$

$$(f_{i}): \qquad E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} E_{n}$$

$$\downarrow \phi_{1} \qquad \downarrow \phi_{2} \qquad \qquad \downarrow \phi_{n}$$

$$(g_{i}): \qquad F_{1} \xrightarrow{g_{1}} F_{2} \xrightarrow{g_{2}} \cdots \xrightarrow{g_{n-1}} F_{n}$$

$$(f_i) \oplus (g_i) : E_1 \oplus F_1 \stackrel{f_1 \oplus g_1}{\longrightarrow} E_2 \oplus F_2 \stackrel{f_2 \oplus g_2}{\longrightarrow} \cdots \stackrel{f_{n-1} \oplus g_{n-1}}{\longrightarrow} E_n \oplus F_n$$

$$(f_{i}): E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{n-1}} E_{n}$$

$$\downarrow \phi_{1} \qquad \downarrow \phi_{2} \qquad \qquad \downarrow \phi_{n}$$

$$(g_{i}): F_{1} \xrightarrow{g_{1}} F_{2} \xrightarrow{g_{2}} \cdots \xrightarrow{g_{n-1}} F_{n}$$

$$(f_i) \oplus (g_i) : E_1 \oplus F_1 \stackrel{f_1 \oplus g_1}{\longrightarrow} E_2 \oplus F_2 \stackrel{f_2 \oplus g_2}{\longrightarrow} \cdots \stackrel{f_{n-1} \oplus g_{n-1}}{\longrightarrow} E_n \oplus F_n$$

Classification des chaînes d'applications linéaires

Chaînes indécomposables :

$$\operatorname{Id}_{\mathbb{K}}[a,b]: \overset{1}{0} \longrightarrow \cdots \longrightarrow 0 \longrightarrow \overset{a}{\mathbb{K}} \overset{ld}{\longrightarrow} \cdots \overset{ld}{\longrightarrow} \overset{b}{\mathbb{K}} \longrightarrow 0 \cdots \longrightarrow \overset{n+1}{0}$$

Décomposition canonique

∃! multi-ensemble d'intervalles, /, tg

$$(f_i)_{i\in[1,n]}\simeq\bigoplus_{[a,b]\in I}\operatorname{Id}_{\mathbb{K}}[a,b]$$

Corollaire

I est un invariant complet pour (f_i) . Ces éléments sont les intervalles de persistance de (f_i) .

Classification des chaînes d'applications linéaires

Chaînes indécomposables :

$$\operatorname{Id}_{\mathbb{K}}[a,b]: \stackrel{1}{0} \longrightarrow \cdots \longrightarrow 0 \longrightarrow \stackrel{a}{\mathbb{K}} \stackrel{\operatorname{Id}}{\longrightarrow} \cdots \stackrel{\operatorname{Id}}{\longrightarrow} \stackrel{b}{\mathbb{K}} \longrightarrow 0 \cdots \longrightarrow \stackrel{n+1}{0}$$

Décomposition canonique

 \exists ! multi-ensemble d'intervalles, I, tq

$$(f_i)_{i\in[1,n]}\simeq\bigoplus_{[a,b]\in I}\operatorname{Id}_{\mathrm{I\!K}}[a,b]$$

Corollaire

l est un invariant complet pour (f_i) . Ces éléments sont les intervalles de persistance de (f_i) .

Classification des chaînes d'applications linéaires

Chaînes indécomposables :

$$\operatorname{Id}_{\mathbb{K}}[a,b]: \stackrel{1}{0} \longrightarrow \cdots \longrightarrow 0 \longrightarrow \stackrel{a}{\mathbb{K}} \stackrel{ld}{\longrightarrow} \cdots \stackrel{ld}{\longrightarrow} \stackrel{b}{\mathbb{K}} \longrightarrow 0 \cdots \longrightarrow \stackrel{n+1}{0}$$

Décomposition canonique

 \exists ! multi-ensemble d'intervalles, I, tq

$$(f_i)_{i\in[1,n]}\simeq\bigoplus_{[a,b]\in I}\operatorname{Id}_{\mathrm{I\!K}}[a,b]$$

Corollaire

I est un invariant complet pour (f_i) . Ces éléments sont les intervalles de persistance de (f_i) .

Preuves de la classification

- Par les rangs et les bases compatibles
- Par réduction à des indécomposables
- Par résultat classique d'algèbre commutative

 $\mathbb{K}[t]$ -module gradué $\mathcal{M} = \bigoplus_i E_i$ avec $te_i = f_i(e_i)$.

Théorème de structure

Tout module gradué de type fini sur un PID gradué *D* est isomorphe (au sens gradué) à une unique décomposition de la forme

$$\bigoplus_{i=1}^n D(\alpha_i) \oplus \bigoplus_{j=1}^m (D/d_jD)(\alpha_j)$$

où $d_i \in D$ est homogène, $d_i \mid d_{i+1}$ et $\alpha_i, \alpha_i \in \mathbb{Z}$.

Supposons $(f_k)_{k\in[1,n]}\simeq\bigoplus_{[i,j]\in I}\operatorname{Id}_{\mathbb{I}\!K}[i,j]$. On pose

- $f_{i,j}: E_i \rightarrow E_j$.
- $\beta_{i,j} = rang(f_{i,j})$.
- $n_{i,j} = \text{multiplicit\'e de } [i,j] \text{ dans } I$.

emme

$$n_{i,j} = \beta_{i,j} - \beta_{i-1,j} - (\beta_{i,j+1} - \beta_{i-1,j+1})$$

Supposons $(f_k)_{k \in [1,n]} \simeq \bigoplus_{[i,j] \in I} \operatorname{Id}_{\mathbb{K}}[i,j]$. On pose

- $f_{i,j}: E_i \rightarrow E_j$.
- $\beta_{i,j} = rang(f_{i,j})$.
- $n_{i,j} = \text{multiplicit\'e de } [i,j] \text{ dans } I$.

Lemme

$$n_{i,j} = \beta_{i,j} - \beta_{i-1,j} - (\beta_{i,j+1} - \beta_{i-1,j+1})$$

Supposons $(f_k)_{k\in[1,n]}\simeq \bigoplus_{[i,j]\in I}\operatorname{Id}_{\mathrm{I\!K}}[i,j]$. On pose

- $f_{i,j}: E_i \rightarrow E_j$.
- $\beta_{i,j} = rang(f_{i,j})$.
- $n_{i,j} = \text{multiplicit\'e de } [i,j] \text{ dans } I.$

Lemme

$$n_{i,j} = \beta_{i,j} - \beta_{i-1,j} - (\beta_{i,j+1} - \beta_{i-1,j+1})$$

preuve :

$$\begin{split} \beta_{i,j}((f_k)_k \oplus (g_k)_k) &= \beta_{i,j}((f_k)_k) + \beta_{i,j}((g_k)_k) \text{ et} \\ \beta_{i,j}(\mathrm{Id}_{\mathrm{I\!K}}(k,l)) &= \left\{ \begin{array}{ll} 1 & \text{si } [i,j] \subset [k,l] \\ 0 & \text{sinon.} \end{array} \right. \end{split}$$

Supposons $(f_k)_{k\in[1,n]}\simeq \bigoplus_{[i,j]\in I}\operatorname{Id}_{\mathrm{I\!K}}[i,j]$. On pose

- $\bullet \ f_{i,j}: E_i \to E_j.$
- $\beta_{i,j} = rang(f_{i,j})$.
- $n_{i,j} = \text{multiplicit\'e de } [i,j] \text{ dans } I$.

Lemme

$$n_{i,j} = \beta_{i,j} - \beta_{i-1,j} - (\beta_{i,j+1} - \beta_{i-1,j+1})$$

preuve:

$$\beta_{i,j}((f_k)_k \oplus (g_k)_k) = \beta_{i,j}((f_k)_k) + \beta_{i,j}((g_k)_k) \text{ et}$$

$$\beta_{i,j}(\operatorname{Id}_{\mathbb{K}}(k,l)) = \begin{cases} 1 & \text{si } [i,j] \subset [k,l] \\ 0 & \text{sinon.} \end{cases}$$

$$\implies \delta_{i,j} := \beta_{i,j} - \beta_{i-1,j} = \#\{[i,\ell] \subset l \mid \ell \geq j\}.$$

$$\implies n_{i,j} = \delta_{i,j} - \delta_{i,j+1}. \square$$

Supposons $(f_k)_{k\in[1,n]}\simeq\bigoplus_{[i,j]\in I}\operatorname{Id}_{\mathbb{K}}[i,j]$. On pose

- $f_{i,j}: E_i \rightarrow E_j$.
- $\beta_{i,j} = rang(f_{i,j})$.
- $n_{i,j} = \text{multiplicit\'e de } [i,j] \text{ dans } I$.

<u>Lem</u>me

$$n_{i,j} = \beta_{i,j} - \beta_{i-1,j} - (\beta_{i,j+1} - \beta_{i-1,j+1})$$

Corollaire

I est un invariant.

Existence de la décomposition

Soit
$$E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} E_{n+1}$$
.
Pour $x \in E_i$, on pose $x(j) = f_{i,j}(x)$.

Base compatible

famille $X \subset \bigcup_i E_i$ telle que pour $1 \le i \le n+1$

$$X(i) := \{x(i) \mid (x \in X) \land (x(i) \neq 0)\}$$

est une base de E_i .

L'intervalle de persistance de $x \in X$ est $I_x := \{i \mid x(i) \neq 0\}.$

Proposition

Toute chaîne admet une base compatible

Preuve : La construire par récurrence sur la longueur de la chaîne

Existence de la décomposition

Soit
$$E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} E_{n+1}$$
.
Pour $x \in E_i$, on pose $x(j) = f_{i,j}(x)$.

Base compatible

famille $X \subset \bigcup_i E_i$ telle que pour $1 \le i \le n+1$

$$X(i) := \{x(i) \mid (x \in X) \land (x(i) \neq 0)\}$$

est une base de E_i .

L'intervalle de persistance de $x \in X$ est $I_x := \{i \mid x(i) \neq 0\}.$

Lemme

Si $(f_i)_i$ admet une X base compatible alors elles admet une décomposition canonique avec $I = \{I_X \mid x \in X\}$

Preuve : Vérifier que $\bigoplus_{x \in X} \operatorname{Id}_{\mathbb{I}\!K}(I_x) \simeq (f_i)_i$ en définissant des morphismes à l'aide des bases X(i).

Existence de la décomposition

Soit $E_1 \xrightarrow{f_1} E_2 \xrightarrow{f_2} \cdots \xrightarrow{f_n} E_{n+1}$. Pour $x \in E_i$, on pose $x(j) = f_{i,j}(x)$.

Base compatible

famille $X \subset \bigcup_i E_i$ telle que pour $1 \le i \le n+1$

$$X(i) := \{x(i) \mid (x \in X) \land (x(i) \neq 0)\}$$

est une base de E_i .

L'intervalle de persistance de $x \in X$ est $I_x := \{i \mid x(i) \neq 0\}$.

Proposition

Toute chaîne admet une base compatible.

Preuve : La construire par récurrence sur la longueur de la chaîne.

Ш

Persistance des sous-chaînes

$$(f_{i}): E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{f_{2}} \cdots \xrightarrow{f_{i-1}} E_{i} \xrightarrow{f_{i}} \cdots \xrightarrow{f_{i}} E_{j} \cdots \xrightarrow{f_{n}} E_{n+1}$$

$$\downarrow = \qquad \qquad \downarrow (f_{j}^{\kappa}): \qquad E_{\kappa(1)} \qquad \longrightarrow E_{\kappa(2)} \longrightarrow \cdots \longrightarrow E_{\kappa(m)}$$

$$\longrightarrow E_{i} \longrightarrow \cdots \longrightarrow E_{j} \longrightarrow E_{j} \longrightarrow E_{\kappa(a)} \longrightarrow \cdots \longrightarrow E_{\kappa(b)} \longrightarrow E_{\kappa(b)$$

Lemme

$$I_{\kappa} = \{ [\lambda(i), \mu(j)] \mid [i, j] \in I \text{ et } \lambda(i) \leq \mu(j) \}.$$

Preuve : Le vérifier pour les chaînes indécomposables.

Soit $f: K \to \mathbb{R}$, croissante sur $K: \sigma \prec \tau \implies f(\sigma) \leq f(\tau)$.

Soit
$$v_1 < v_2 < \cdots < v_n$$
 les valeurs de f , $v_{n+1} = +\infty$ et $K_i = \{f \le v_i\}$.
On a $i < j \implies K_i \subset K_i$

Soit $f: K \to \mathbb{R}$, croissante sur $K: \sigma \prec \tau \implies f(\sigma) \leq f(\tau)$.

Soit
$$v_1 < v_2 < \cdots < v_n$$
 les valeurs de f , $v_{n+1} = +\infty$ et $K_i = \{f \le v_i\}$.
On a $i < j \implies K_i \subset K_i$

Soit $f: K \to \mathbb{R}$, croissante sur $K: \sigma \prec \tau \implies f(\sigma) \leq f(\tau)$.

Soit
$$v_1 < v_2 < \cdots < v_n$$
 les valeurs de f , $v_{n+1} = +\infty$ et $K_i = \{f \le v_i\}$.
On a $i < j \implies K_i \subset K_i$

Soit $f: K \to \mathbb{R}$, croissante sur $K: \sigma \prec \tau \implies f(\sigma) \leq f(\tau)$.

Soit
$$v_1 < v_2 < \cdots < v_n$$
 les valeurs de f , $v_{n+1} = +\infty$ et $K_i = \{f \le v_i\}$.
On a $i < j \implies K_i \subset K_i$

Fonctions et persistance

Soit $f: K \to \mathbb{R}$, croissante sur $K: \sigma \prec \tau \implies f(\sigma) \leq f(\tau)$.

Soit
$$v_1 < v_2 < \cdots < v_n$$
 les valeurs de f , $v_{n+1} = +\infty$ et $K_i = \{f \le v_i\}$.
On a $i < j \implies K_i \subset K_i$

Fonction $f \longrightarrow$ filtration $\mathcal{K}_f \xrightarrow{H_p}$ chaîne d'applications linéaires \longrightarrow intervalles de persistance $I(\mathcal{K}_f)$

Diagramme de persistance

Définition

$$D(f) = \{(v_i, v_i) \mid [i, j[\in I(\mathcal{K}_f)] \cup \Delta^{\infty}.$$

Stabilité du diagramme de persistance

Soient $f,g:K\to {\rm I\!R}$ croissantes. On pose :

$$||f - g||_{\infty} = \sup_{\sigma \in K} |f(\sigma) - g(\sigma)|$$

et

$$d(D, D') = \inf_{\phi} \sup_{p \in D} \|p - \phi(p)\|_{\infty}$$

Théorème de stabilité [CEH07]

$$d(D(f), D(g)) \leq ||f - g||_{\infty}$$

Preuve du théorème de stabilité

Définition

f compatible avec $\mathcal{K}=\mathcal{K}_1\subset\mathcal{K}_2\subset\ldots\subset\mathcal{K}_m$ si \mathcal{K}_f sous-filtration de \mathcal{K} . On pose alors

$$f_{\mathcal{K}}(i) = f(K_i \setminus K_{i-1}) \text{ et } f_{\mathcal{K}}(m+1) = +\infty$$

Diagramme relatif

Si f compatible avec \mathcal{K} , on pose

$$D(f,\mathcal{K}) = \Delta^{\infty} \cup \{ (f_{\mathcal{K}}(i), f_{\mathcal{K}}(j+1)) \}_{[i,j] \in I(\mathcal{K})}$$

Lemme

$$D(f) = D(f, \mathcal{K}).$$

Preuve : Appliquer le lemme des sous-chaînes et remarquer que les points $(f_{\mathcal{K}}(i), f_{\mathcal{K}}(j+1))$ avec $f_{\mathcal{K}}(i) = f_{\mathcal{K}}(j+1)$ sont absorbés par Δ^{∞} .

Preuve du théorème de stabilité

Définition

f compatible avec $\mathcal{K} = \mathcal{K}_1 \subset \mathcal{K}_2 \subset \ldots \subset \mathcal{K}_m$ si \mathcal{K}_f sous-filtration de \mathcal{K} . On pose alors

$$f_{\mathcal{K}}(i) = f(K_i \setminus K_{i-1})$$
 et $f_{\mathcal{K}}(m+1) = +\infty$

Diagramme relatif

Si f compatible avec \mathcal{K} , on pose

$$D(f,\mathcal{K}) = \Delta^{\infty} \cup \{ (f_{\mathcal{K}}(i), f_{\mathcal{K}}(j+1)) \}_{[i,j] \in I(\mathcal{K})}$$

Lemme

$$D(f) = D(f, \mathcal{K}).$$

Preuve : Appliquer le lemme des sous-chaînes et remarquer que les points $(f_{\mathcal{K}}(i), f_{\mathcal{K}}(j+1))$ avec $f_{\mathcal{K}}(i) = f_{\mathcal{K}}(j+1)$ sont absorbés par Δ^{∞} .

on pose $f_t = f + t(g - f)$.

 $\forall \sigma, \tau \in K, \exists u \text{ tel que} : signe(f_t(\sigma) - f_t(\tau)) \text{ est constant pour } t \in [0, u] \text{ (resp. pour } t \in [u, 1]).$

Donc, $\exists 0 = t_0 < t_1 < \ldots < t_r = 1$ tel que l'ordre des f_t -valeurs des simplexes est constant sur chaque $[t_i, t_{i+1}]$. On en déduit \mathcal{K}_i compatible avec *toutes* les f_t pour $t \in [t_i, t_{i+1}]$. d'où

$$D(f_t) = D(f_t, \mathcal{K}_i) = \Delta^{\infty} \cup \{(f_t(\sigma_a), f_t(\sigma_{b+1}))\}_{[a,b] \in I(\mathcal{K}_i)}$$

et

$$d(D(f_{t_i}), D(f_{t_{i+1}})) \le (t_{i+1} - t_i) ||f - g||_{\infty}$$

$$d(D(f), D(g)) \le \sum_{i} (t_{i+1} - t_i) ||f - g||_{\infty} = ||f - g||_{\infty}$$

on pose $f_t = f + t(g - f)$.

 $\forall \sigma, \tau \in K, \exists u \text{ tel que} : signe(f_t(\sigma) - f_t(\tau)) \text{ est constant pour } t \in [0, u] \text{ (resp. pour } t \in [u, 1]).$

Donc, $\exists 0 = t_0 < t_1 < \ldots < t_r = 1$ tel que l'ordre des f_t -valeurs des simplexes est constant sur chaque $[t_i, t_{i+1}]$. On en déduit \mathcal{K}_i compatible avec *toutes* les f_t pour $t \in [t_i, t_{i+1}]$. d'où

$$D(f_t) = D(f_t, \mathcal{K}_i) = \Delta^{\infty} \cup \{(f_t(\sigma_a), f_t(\sigma_{b+1}))\}_{[a,b] \in I(\mathcal{K}_i)}$$

et

$$d(D(f_{t_i}), D(f_{t_{i+1}})) \le (t_{i+1} - t_i) \|f - g\|_{\infty}$$

$$d(D(f),D(g)) \leq \sum_{i} (t_{i+1} - t_i) \|f - g\|_{\infty} = \|f - g\|_{\infty}$$

on pose $f_t = f + t(g - f)$. $\forall \sigma, \tau \in K, \exists u \text{ tel que} : signe(f_t(\sigma) - f_t(\tau)) \text{ est constant pour } t \in [0, u] \text{ (resp. pour } t \in [u, 1]).$

Donc, $\exists 0 = t_0 < t_1 < \ldots < t_r = 1$ tel que l'ordre des f_t -valeurs des simplexes est constant sur chaque $[t_i, t_{i+1}]$. On en déduit \mathcal{K}_i compatible avec *toutes* les f_t pour $t \in [t_i, t_{i+1}]$. d'où

$$D(f_t) = D(f_t, \mathcal{K}_i) = \Delta^{\infty} \cup \{ (f_t(\sigma_a), f_t(\sigma_{b+1})) \}_{[a,b] \in I(\mathcal{K}_i)}$$

et

$$d(D(f_{t_i}), D(f_{t_{i+1}})) \le (t_{i+1} - t_i) \|f - g\|_{\infty}$$

$$d(D(f), D(g)) \leq \sum_{i} (t_{i+1} - t_i) \|f - g\|_{\infty} = \|f - g\|_{\infty}$$

on pose $f_t = f + t(g - f)$.

 $\forall \sigma, \tau \in K, \exists u \text{ tel que} : signe(f_t(\sigma) - f_t(\tau)) \text{ est constant pour } t \in [0, u] \text{ (resp. pour } t \in [u, 1]).$

Donc, $\exists 0 = t_0 < t_1 < \ldots < t_r = 1$ tel que l'ordre des f_t -valeurs des simplexes est constant sur chaque $[t_i, t_{i+1}]$. On en déduit \mathcal{K}_i compatible avec *toutes* les f_t pour $t \in [t_i, t_{i+1}]$. d'où

$$D(f_t) = D(f_t, \mathcal{K}_i) = \Delta^{\infty} \cup \{ (f_t(\sigma_a), f_t(\sigma_{b+1})) |_{[a,b] \in I(\mathcal{K}_i)} \}$$

et

$$d(D(f_{t_i}), D(f_{t_{i+1}})) \le (t_{i+1} - t_i) ||f - g||_{\infty}$$

$$d(D(f), D(g)) \leq \sum_{i} (t_{i+1} - t_i) ||f - g||_{\infty} = ||f - g||_{\infty}$$

Inférence topologique

On connaît P un échantillon de points sur une variété $\mathcal{M} \subset \mathbb{R}^n$. On cherche à évaluer la topologie de \mathcal{M} à partir de P.

On construit une famille croissante de complexes sur P: Complexe de Rips, alpha-complexe, complexe de Čech ... On sélectionne les intervalles de persistance "longs".

Inférence topologique

- cercle
- sphère
- tore

Animations extraites de : Singh, G., Memoli, F., Ishkhanov, T., Sapiro, G., Carlsson, G., and Ringach, D. L. **Topological analysis of population activity in visual cortex**. *Journal of Vision*, 8(8), 2008.

Filtrations simples

Soit $K: K_1 \subset K_2 \subset \ldots \subset K_n$ où $K_i = \mathbb{I}K_{i-1} \cup \sigma_i$. Formule du rang :

$$\dim C_*(K_i) = \dim Z_*(K_i) + \dim B_*(K_i)$$

 $\dim C_*(K_i) = \dim C_*(K_{i-1}) + 1 \Longrightarrow$ Soit $\dim Z_*(K_i)$ soit $\dim B_*(K_i)$ augmente de 1.

Définition

 σ_i (resp. i) est dit positif si dim $Z_*(K_i) = \dim Z_*(K_{i-1}) + 1$ et négatif sinon. On note $\mathcal{P}(\mathcal{K})$ et $\mathcal{N}(\mathcal{K})$ les indices positifs resp. négatifs.

Structure des intervalles

Lemme

Tout intervalle de $I(\mathcal{K})$ est de la forme [i,j] avec $(i,j+1) \in \mathcal{P}(\mathcal{K}) \times (\mathcal{N}(\mathcal{K}) \cup \{n+1\}).$

- Un indice positif est la borne inférieure d'un unique intervalle de $I(\mathcal{K})$,
- un indice négatif j est tel que j-1 est la borne supérieure d'un unique intervalle de $I(\mathcal{K})$.

Preuve : Utiliser dim $H_*(K_i)$ = nombre d'intervalles de $I(\mathcal{K})$ contenant i.

Définition

On note $N: \mathcal{N}(\mathcal{K}) \to \mathcal{P}(\mathcal{K}), j \mapsto N(j)$ tel que $[N(j), j-1] \in I(\mathcal{K})$

Base compatible des bords

Définition

Base compatible des bords est une famille

$$\mathcal{B}(\mathcal{K}) = \{x_j\}_{j \in J} \subset Z_*(K)$$
, avec $J \subset [1, n]$, telle que :

- ② L'application $\nu: J \to [1, n], j \mapsto$ l'indice max des simplexes de x_j est *injective*.

Lemme

 $\nu = \Lambda$

Preuve: Soit $X = \{[z_i]_i\}_{i \in \mathcal{P}(\mathcal{K})}$ avec

- $z_i = x_j$ si $j = \nu(j)$,
- choisir z_i tel que $Z(K_i) = Z(K_{i-1}) \oplus \mathbb{K} z_i$ sinon.

X est une base compatible avec les bons intervalles

Base compatible des bords

Définition

Base compatible des bords est une famille

$$\mathcal{B}(\mathcal{K}) = \{x_j\}_{j \in J} \subset Z_*(K)$$
, avec $J \subset [1, n]$, telle que :

- ② L'application $\nu: J \to [1, n], j \mapsto$ l'indice max des simplexes de x_j est *injective*.

Lemme

$$\nu = N$$

Preuve : Soit $X = \{[z_i]_i\}_{i \in \mathcal{P}(\mathcal{K})}$ avec

- $z_i = x_j$ si $j = \nu(j)$,
- choisir z_i tel que $Z(K_i) = Z(K_{i-1}) \oplus \mathbb{K} z_i$ sinon.

X est une base compatible avec les bons intervalles.

Algorithme

Soit $\mathcal{K}': \mathcal{K}_1 \subset \mathcal{K}_2 \subset \ldots \subset \mathcal{K}_{n-1}$ et $\mathcal{B}(\mathcal{K}')$ une base compatible.

Écrire

$$\partial \sigma_n = \sum_{x \in \mathcal{B}(\mathcal{K}')} \alpha_x x + y$$

avec

- ou bien y = 0,
- ou bien $\nu(y) \notin \nu(\mathcal{B}(\mathcal{K}'))$.

Alors $y = 0 \implies B_*(K_n) = B_*(K_{n-1})$ donc $\mathcal{B}(\mathcal{K}')$ base compatible pour \mathcal{K} , sinon c'est vrai pour $\mathcal{B}(\mathcal{K}') \cup \{y\}$

Puisque $\mathcal{B}(\mathcal{K}')$ échelonnée, on peut appliquer le pivot de Gauss. Complexité en $O(n^3)$.

Diagramme étendu [CEH08]

On considère la chaîne induite par inclusion des paires

Si la filtration provient d'une fonction f on obtient Dgm(f), Ord(f), Ext(f), Rel(f)

Propriétés

Stabilité [CEH08]

$$d(Dgm(f), Dgm(g)) \le ||f - g||_{\infty}$$

Symétrie [CdSM09]

$$Ord_p(f) = Rel_{p+1}^0(-f)$$

$$Ext_p(f) = Ext_p^R(-f)$$

$$Rel_p(f) = Rel_{p+1}^0(-f)$$

Dualité [CEH08]

Si f est définie sur une d-variété

$$Dgm_p(f) = Dgm_{d-p}^T(f)$$

Représentations des quivers

Un quiver est de *type fini* s'il admet un nombre fini de représentations indécomposables,

Théorème de Gabriel

Les quivers de type fini sont ceux de la liste ci-dessous

Cas de A_n [CdS08]

Pour un type donné les indécomposables sont :

$$\operatorname{Id}_{I\!\!K}[{\color{blue}a},{\color{blue}b}]: \overset{1}{0} \longleftrightarrow \cdots \longleftrightarrow 0 \longleftrightarrow \overset{{\color{blue}a}}{I\!\!K} \overset{ld}{\longleftrightarrow} \cdots \overset{ld}{\longleftrightarrow} \overset{{\color{blue}b}}{I\!\!K} \longleftrightarrow 0 \cdots \longleftrightarrow \overset{{\color{blue}n}}{0}$$

Soit \mathcal{R}_i la filtration droite de la suite tronquée en i et $(b_1^i, b_2^i, \dots, b_i^i)$ les dates de naissance associées.

Exemple :
$$B(\bullet \leftarrow \bullet \rightarrow \bullet) = (2,1,3)$$

Décomposition canonique

Si
$$\mathcal{R}_i = (R_0, R_1, \dots, R_i)$$
 on pose dim $\mathcal{R}_i = (\dim R_0, \dim R_1/R_0, \dots, \dim R_i/R_{i-1})$.

On écrit

$$(c_0^i, c_1^i, \dots, c_i^i) = \left\{ egin{array}{ll} \dim(\mathcal{R}_i \cap \ker f_i) & ext{si } f_i =
ightarrow \\ \dim(\mathcal{R}_i - \dim(\mathcal{R}_i \cap \operatorname{Im} f_i)) & ext{si } f_i = \leftarrow \end{array}
ight.$$

Décomposition canonique [CdS08]

Une chaîne de type fixée est isomorphe à

$$\bigoplus_{1 \leq i \leq k \leq n} c_i^k \mathrm{Id}_{\mathrm{I\!K}}(b_i^k, k)$$

Principe du carreau [CdS08]

Correspondance entre intervalles :

Application du carreau

,

Toutes les chaines gauche-droite comportent la même information.

Multifiltration [CS09]

(fig. extraite de Carlsonn et Zomorodian 09)

équivalent à un module 2-gradué sur $\mathbb{K}[t_1,t_2]$ finiment engendré.

Quelques notes sur la persistance : http://www.gipsa-lab.fr/~francis.lazarus/Enseignement /persistance-homol.pdf