Pertemuan ke-9

ATURAN RANTAI DAN NOTASI LEIBNIZ

Oleh:

Santi Arum Puspita Lestari, M.Pd Teknik Informatika Universitas Buana Perjuangan Karawang

ATURAN RANTAI

Lambang $D_x y$ dibaca "diferensial y terhadap x", lambang ini mengukur seberapa cepat y berubah terhadap x.

Misalkan:

Diketahui $y = s^2 x^3$

Maka dapat ditulis menjadi:

$$D_x y = s^2 3x^2 = 3s^2 x^2$$

$$D_s y = 2sx^3$$

ATURAN RANTAI

- Jika Yani dapat mengetik dua kali lebih cepat daripada Budi, dan Budi dapat mengetik tiga kali lebih cepat daripada Cindy.
- Maka dapat disimpulkan bahwa Yani enam kali lebih cepat dari pada Cindy.

Andaikan y = f(u) dan u = g(x) menentukan fungsi komposit $y = f(g(x)) = (f \circ g)(x)$ jika g terdiferensialkan di x dan f terdiferensialkan di u = g(x), maka $f \circ g$ terdiferensialkan di x dan $(f \circ g)'(x) = f'(g(x))g'(x)$ Yakni:

$$D_{x}y = D_{u}yD_{x}u$$

Contoh 1:

■ Jika $y = (2x^2 - 4x + 1)^{60}$, hitunglah $D_x y$

Penyelesaian:

ightharpoonup Misalkan: $y = u^{60}$

$$u = 2x^2 - 4x + 1$$

Maka,

$$D_x y = D_u y \cdot D_x u$$

$$D_x y = (60u^{59})(4x - 4)$$

$$D_x y = 60(2x^2 - 4x + 1)^{59}(4x - 4)$$

Contoh 2:

Diketahui $y = \frac{1}{(2x^5-7)^3}$, tentukan nilai $D_{\chi}y$.

Penyelesaian:

Misalkan:
$$y = \frac{1}{u^3} = u^{-3}$$

$$u = 2x^5 - 7$$

Sehingga,

$$D_x y = D_u y D_x u$$

$$D_x y = (-3u^{-4})(10x^4)$$

$$D_x y = \frac{-3}{u^4} \cdot 10x^4$$

$$D_x y = \frac{-30x^4}{(2x^5 - 7)^4}$$

Contoh 3:

Jika $y = \sin(x^3 - 3x)$ maka nilai $D_x y$ adalah

Penyelesaian:

Misalkan: $y = \sin u$

$$u = x^3 - 3x$$

sehingga,

$$D_x y = D_u y D_x u$$

$$D_x y = \cos u \cdot (3x^2 - 3)$$

$$D_x y = [\cos(x^3 - 3x)] \cdot (3x^2 - 3)$$

ATURAN RANTAI BERSUSUN

Andaikan y = f(u) dan u = g(v) dan v = h(x)
Maka,

$$D_x y = D_u y \cdot D_v u \cdot D_x v$$

Contoh 4:

* Tentukanlah nilai $D_x(\sin^3(4x))$

Penyelesaian:

Misalkan: $y = u^3$ dan $u = \sin v$ dan v = 4x $D_x y = D_u y \cdot D_v u \cdot D_x v$ $D_x y = 3u^2 \cdot \cos v \cdot 4$ $D_x y = 3\sin^2(4x) \cdot \cos 4x \cdot 4$ $D_x y = 12\sin^2(4x) \cdot \cos 4x$

NOTASI LEIBNIZ

- ▶ Jika nilai suatu peubah berubah dari x_1 ke x_2 maka $x_2 x_1$, perubahan dalam x disebut **inkremen** dari x, dan dinotasikan dengan Δx (delta x).
- Misalkan $x_1 = 4.1 \, \text{dan} \, x_2 = 5.7 \, \text{maka};$ $\Delta x = x_2 - x_1 = 5.7 - 4.1 = 1.6$
- Andaikan y = f(x) menentukan suatu fungsi. Jika x berubah dari x_1 ke x_2 maka y berubah dari $y_1 = f(x_1)$ ke $y_2 = f(x_2)$.
- Sehingga,

$$\Delta y = y_2 - y_1 = f(x_2) - f(x_1)$$

LAMBANG $\frac{dy}{dx}$ UNTUK DIFERENSIAL

- Lambang $\frac{dy}{dx}$ merupakan labang baku untuk turunan.
- Makna $\frac{dy}{dx}$ sama dengan $\frac{d}{dx}$, D_x yaitu "diferensial terhadap x"

Contoh 5: Tentukan $\frac{dy}{dx}$ jika $y = x^3 - 3x^2 + 7x$.

Penyelesaian:

$$\frac{dy}{dx} = \frac{d}{dx}(x^3 - 3x^2 + 7x)$$

$$\frac{dy}{dx} = 3x^2 - 3(2x) + 7(1) = 3x^2 - 6x + 7$$

LAMBANG $\frac{dy}{dx}$ UNTUK DIFERENSIAL

- Andaikan bahwa y = f(u) dan u = g(x).
- Dalam notasi Leibniz, Aturan Rantai mengambil bentuk yang sangat tepat, yaitu:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

Contoh 6:

Hitunglah $\frac{dy}{dx}$ jika fungsi $y = (x^3 - 2x)^{12}$

Penyelesaian:

Misalkan:
$$y = u^{12} \operatorname{dan} u = x^3 - 2x$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{dy}{dx} = (12u^{11}) \cdot (3x^2 - 2)$$

$$\frac{dy}{dx} = 12(x^3 - 2x)^{11}(3x^2 - 2)$$

Contoh 7:

Tentukan $\frac{dy}{dx}$ dari fungsi $y = cos^3(x^2 + 1)$.

Penyelesaian:

Misalkan:
$$y = u^3$$
, $u = \cos v$, dan $v = x^2 + 1$
Sehingga,
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dv} \frac{dv}{dx}$$

$$\frac{dy}{dx} = (3u^2)(-\sin v)(2x)$$

$$\frac{dy}{dx} = (3\cos^2 v)(-\sin(x^2 + 1))(2x)$$

$$\frac{dy}{dx} = -6x\cos^2(x^2 + 1)\sin(x^2 + 1)$$

DIFERENSIAL TINGKAT TINGGI

- Operasi pendiferensialan suatu fungsi f akan menghasilkan sebuah fungsi baru yaitu f'.
- Jika f' diferensialkan lagi dan masih tetap menghasilkan fungsi lain, maka dinyatakan f'' (dibaca f dua aksen) dan dinamakan diferensial kedua dari f.
- Diferensial kedua boleh didiferensialkan lagi dan menghasilkan f" yakni diferensial ketiga, dan seterusnya.

Contoh 8:

Diketahui sebuah fungsi

$$f(x) = 2x^3 - 4x^2 + 7x - 8$$

Maka, turunannya adalah sebagai berikut

$$f'(x) = 6x^{2} - 8x + 7$$

$$f''(x) = 12x - 8$$

$$f'''(x) = 12$$

$$f''''(x) = 0$$

CARA PENULISAN DIFERENSIAL y = f(x)

Diferensial	Notasi f'	Notasi y'	Notasi D	Notasi Leibniz
Pertama	f'(x)	y'	$D_{x}y$	$\frac{dy}{dx}$
Kedua	f''(x)	у"	$D_x^2 y$	$\frac{d^2y}{dx^2}$
Ketiga	$f^{\prime\prime\prime}(x)$	У'''	D_x^3y	$\frac{d^3y}{dx^3}$
Keempat	f""(x)	у''''	$D_x^4 y$	$\frac{d^4y}{dx^4}$
:	:	:	:	:
Ke-n	$f^n(x)$	y^n	$D_x^n y$	$\frac{d^n y}{dx^n}$

Contoh 9:

Jika $y = \sin 2x$, hitunglah $\frac{d^4y}{dx^4}$.

Penyelesaian:
$$\frac{dy}{dx} = 2\cos 2x$$

$$\frac{d^2y}{dx^2} = -2^2\sin 2x$$

$$\frac{d^3y}{dx^3} = -2^3\cos 2x$$

$$\frac{d^4y}{dx^4} = 2^4\sin 2x = 16\sin 2x$$

SEKIAN DAN TERIMA KASIH