descriptive statistics

statistics and data analysis (chapter 4)

Björn Malte Schäfer

Graduate School for Fundamental Physics
Fakultät für Physik und Astronomie, Universität Heidelberg

24.Oct.2011

characteristic function Gaussians histograms Edgeworth central limit theorem regression summary

outline: lecture 3 - descriptive statistics

- 1 characteristic function
- 2 Gaussians
- 3 histograms
- 4 Edgeworth
- 6 central limit theorem
- 6 regression
- 7 summary

Gaussians histograms Edgeworth central limit theorem regression summary

repetition

characteristic function

- random distributions
- Bernoulli-, Poisson- and Gauss-distribution
- relations between these distributions
- characterisation of a distribution
- multivariate Gaussians, covariance and correlation coefficient
- conditions on Gaussians: Schur-complement

numerical exercise

generate the sum of n arbitrarily distributed random numbers. show that the higher-order cumulants κ_k tend to zero $\propto n^{(2-k)/2}$

Gaussians histograms Edgeworth central limit theorem regression summar

characteristic function $\phi(t)$

• characteristic function $\phi(t)$: Fourier-transform of p(x)dx:

$$\phi(t) = \int dx \, p(x) \exp(-itx) \leftrightarrow p(x) = \int \frac{dt}{2\pi} \, \phi(t) \exp(+itx)$$

relation to moments: Taylor-expand the exponential:

$$\phi(t) = \int \mathrm{d}x \, p(x) \sum_{n} \frac{(-\mathrm{i}tx)^{n}}{n!} = \sum_{n} \langle x^{n} \rangle \frac{(-\mathrm{i}t)^{n}}{n!}, \quad \langle x^{n} \rangle = \int \mathrm{d}x \, x^{n} p(x)$$

• in analogy: moment generating function m(t)

$$m(t) = \langle \exp(-tx) \rangle = \int dx \, p(x) \exp(-tx)$$

it's a matter of taste to use either the Fourier- or Laplace-transform, with either sign

question

characteristic function

symmetric distribution have vanishing odd-numbered moments

cumulants and the cumulant generating function

 cumulants: expand the logarithm of the moment-generating function:

$$K(t) = \ln m(t) = \sum_{n} \kappa_n \frac{t^n}{n!} \quad \to \quad \kappa_n = \frac{\partial^n}{\partial t^n} K(t)|_t = 0 \tag{1}$$

K(t) is called the cumulant generating function

characteristic function

· naturally, the moment generating function is given by

$$m(t) = \exp(K(t)) \tag{2}$$

regression

summary

- cumulant-generating function of a Gaussian is a second-order polynomial
- there are only two nonzero cumulants in a Gaussian: mean and variance
- with cumulants you can quantify how close a distribution is to a Gaussian

central limit theorem

all moments exist and are finite

Gaussians

- (2n)th moment is \propto varianceⁿ: $\langle x^{2n} \rangle = (2n-1)!! \times \langle x^2 \rangle^n$
- $\phi(t)$ and m(t) are Gaussians again

question

characteristic function

show directly by induction (and partial integration) that $\langle x^{2n} \rangle \propto \langle x^2 \rangle^n$

question

compute $\langle x^{2n} \rangle$ from m(t) for a Gaussian pdf!

question

show that $\langle x^{2n} \rangle = (2n-1)!! \times \langle x^2 \rangle^n$ for a Gaussian pdf!

descriptive statistics Björn Malte Schäfer

sum of Gaussians - the ideal central limit theorem

- sum of Gaussian distributed uncorrelated random numbers is exactly Gaussian distributed → ideal case of the central limit theorem
- look at the characteristic function $\phi_x(t)$ and $\phi_y(t)$ of two Gaussian distributed random numbers x and y

$$\phi_{x+y}(t) = \langle \exp(it(x+y)) \rangle = \langle \exp(itx) \exp(ity) \rangle$$

use independency

$$\dots = \langle \exp(itx) \rangle \langle \exp(ity) \rangle = \phi_x(t)\phi_y(t)$$

characteristic function of a Gaussian is a Gaussian again:

$$\dots \exp\left(-\frac{\sigma_x^2 t^2}{2}\right) \exp\left(-\frac{\sigma_y^2 t^2}{2}\right) = \exp\left(-\frac{(\sigma_x^2 + \sigma_y^2)t^2}{2}\right)$$

• sum is Gaussian distributed, with new variance $\sigma^2 = \sigma_x^2 + \sigma_y^2$

characteristic function Gaussians histograms Edgeworth central limit theorem regression summary

histograms

histogram of 10⁴ draws from a Gaussian distribution

- histogram: count number of events falling inside a given bin → discrete approximation to the probability density
- typical error in each bin: Poisson statistics, $\sqrt{n_i}$ for n_i events
- \bullet rule of thumb: \sqrt{n} bins for n events $_{\rm Bj\"{o}rn}$ $_{\rm Malte}$ $_{\rm Sch\"{a}fer}$

Gaussians (histograms) Edgeworth central limit theorem

regression

summary

skewness

characteristic function

Gaussian (s = 0) and Planck (s > 0)-distribution

• skewness $s = \langle x^3 \rangle / \langle x^2 \rangle^{3/2}$: **asymmetry** of a distribution p(x) dx

s > 0 skewed to right

s = 0 symmetric distribution

s < 0 skewed to left

Gaussians (histograms) Edgeworth central limit theorem regression

summary

kurtosis

characteristic function

Gaussian distribution, and distributions with kurtosis $\neq 3$

• kurtosis $k = \langle x^4 \rangle / \langle x^2 \rangle^2$: **curvature** of a distribution p(x) dx k > 3 flat Table Mountain barycurtic k = 3 Gaussian Mont Blanc mesocurtic k < 3 peaked Matterhorn leptocurtic

regression

weak non-Gaussianity: Edgeworth-expansion

- describe approximatively a probability density g(x)dx close to a Gaussian p(x)dx with measured skewness and kurtosis
 - g(x) has cumulants κ_n and characteristic function g(t)
 - likewise, p(x) has cumulants γ_n and the characteristic function p(t)
- consider characteristic function, and its expansion into cumulants:

$$g(t) = \exp \left[\sum_{n} (\kappa_n - \gamma_n) \frac{(it)^n}{n!} \right] p(t)$$

- $(it)^n p(t)$ is the Fourier transform of $(-\frac{d}{dx})^n p(x)$
- transformed back into real space:

characteristic function

$$g(x) = \exp\left[\sum_{n} (\kappa_n - \gamma_n) \frac{(-1)^n}{n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} \right] p(x)$$

weak non-Gaussianity: Edgeworth-expansion

characteristic function

- p(x) =Gaussian, chosen such that $\mu = \kappa_1$ and $\sigma^2 = \kappa_2$ (remember that a Gaussian has only two non-zero cumulants)
- approximate g(x) with a Gaussian + correction terms

$$g(x) = \exp\left[\sum_{n=3} \kappa_r \frac{(-1)^n}{n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n}\right] \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

- this approximation series is in general case called Gram-Charlier
 A-series, if p(x) is chosen as Gaussian, one refers to the expansion as Edgeworth expansion
- carrying out the derivatives yields a series in Hermite-polynomials

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \left[1 + \frac{\kappa_3}{3!\sigma^3} H_3\left(\frac{x-\mu}{\sigma}\right) + \frac{\kappa_4}{4!\sigma^4} H_4\left(\frac{x-\mu}{\sigma}\right)\right]$$

truncating the series after the 4th order

regression

weak non-Gaussianity: Edgeworth-expansion

carrying out the derivatives yields a series in Hermite-polynomials

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \left[1 + \frac{\kappa_3}{3!\sigma^3} H_3\left(\frac{x-\mu}{\sigma}\right) + \frac{\kappa_4}{4!\sigma^4} H_4\left(\frac{x-\mu}{\sigma}\right)\right]$$

• $H_n(x)$ are the Hermite polynomials

$$H_n(x)$$

beware of the two differing definitions in the literature!

• if the non-Gaussianities κ_n , $n \ge 3$, become too large, p(x) might get negative in violation of the Kolmogorov axioms \rightarrow the Gram-Charlier-series can only be approximative

question

characteristic function

please verify by integration that the cumulants of g(x) are in fact μ , σ and $\kappa_{3,4}$

summary

adding and scaling random distributions

adding random numbers ≡ multiply the characteristic functions

$$\phi_{x+y}(t) = \langle \exp(it(x+y)) \rangle = \langle \exp(itx) \exp(ity) \rangle$$

use independency

characteristic function

$$\dots = \langle \exp(itx) \rangle \langle \exp(ity) \rangle = \phi_x(t)\phi_y(t)$$

- consequently, cumulants $\kappa_n \propto \ln \phi$ add : $\kappa_n(x+y) = \kappa_n(x) + \kappa_n(y)$
- scaling random numbers

$$\phi_{cx}(t) = \langle \exp(it(cx)) \rangle = \langle \exp(itcx) \rangle$$

cumulant is a homogeneous function of order n

$$\kappa_n(cx) = c^n \kappa_n(x), \text{ because } \frac{\partial^n}{\partial t^n} \phi_{cx}(t) = c^k \frac{\partial^n}{\partial (ct)^n} \phi_{cx}(t) = c^k \frac{\partial^n}{\partial t^n} \phi_x(t)$$

central limit theorem

characteristic function

central limit theorem

the sum of a large number of random numbers is approximately Gaussian distributed, if the numbers originate from **independent** random processes with **finite variance**

- CLT is the reason why Gaussian distributions are so ubiquitous
- define auxiliary variable y

$$y = \frac{1}{\sqrt{n}} \sum_{i}^{n} x_{i}$$

notice similarity to the law of large numbers!

derivation of the central limit theorem

characteristic function

- assume (without loss of generality) that the x_i originiate from the same underlying distribution
- consider additivity of x_i in the definition of y:

$$\kappa_k(y) = \sum_{i}^{n} \kappa_k \left(\frac{x_i}{\sqrt{n}} \right) = n^{-k/2} \sum_{i}^{n} \kappa_k(x_i)$$

• cumulants $\kappa_1 < a$ and $\kappa_2 < b$ are finite, with two numbers a, b:

$$\kappa_1(y) \le n^{-1/2} na = \sqrt{n}a \quad \text{and} \quad \kappa_2(y) \le n^{-1} nb = b$$

- cumulants with $k \ge 3$ are suppressed and approximate zero, because their proportionality $\propto n^{(2-k)/2}$
- in the limit $n \to \infty$, only two cumulants remain: Gaussian
- y is Gaussian distributed with $\mu = \sqrt{n}\kappa_1(x_i)$ and $\sigma^2 = \kappa_2(x_i)$

characteristic function Gaussians histograms Edgeworth (central limit theorem) regression summary

central limit theorem: convolution

distributions of the sum of 1,2,4 uniform distributed random numbers

Gaussians histograms Edgeworth (central limit theorem) regression summary

central limit theorem: convergence

characteristic function

convergence of the moments towards the Gaussian values

- start with a uniform distribution and build up $x = \sum_{i=1}^{m} x_i / \sqrt{m}$
- measure the moments of x
- if m is large, the moments approximate their Gaussian values

characteristic function Gaussians histograms Edgeworth (central limit theorem) regression summary

central limit theorem: visualisation

- adding random numbers means multiplying their characteristic functions
- transfrom back to real space: multiplications in Fourier-space are convolutions in real space
- adding random numbers: convolve their probability density
- convolution forces the pdfs to become Gaussian
- final state: convolution of two Gaussians is a Gaussian again

very curious...

the self-convolution of a Cauchy-distribution is the Cauchy-distribution again

Gaussians histograms Edgeworth central limit theorem regression summary

fun with moments: linear regression

- data points (x_i, y_i) , polynomial models y(x)
- data (x_i, y_i) with errors σ_i , polynomial model y(x)
- best model?

characteristic function

→ linear inversion problem formulated with the moments!

fitting of a straight line

characteristic function

Gauß' idea: minimise squared distance between model and data

$$\chi^2 = \sum_{i=1}^N |y(x_i) - y_i|^2 = \sum_{i=1}^N |mx_i + b - y_i|^2 \ge 0$$

• minimisation: partial derivatives of χ^2 wrt model parameters vanish

$$\frac{\partial \chi^2}{\partial m} = 0 \quad \to \quad m \sum_{i=1}^N x_i^2 + b \sum_{i=1}^N x_i = \sum_{i=1}^N y_i x_i \tag{3}$$

regression

summary

$$\frac{\partial \chi^2}{\partial b} = 0 \quad \to \quad m \sum_{i=1}^N x_i + b \sum_{i=1}^N 1 = \sum_{i=1}^N x_i \tag{4}$$

write as a matrix equation (after division with N)

$$\underbrace{\begin{pmatrix} \langle x_i^2 \rangle & \langle x_i \rangle \\ \langle x_i \rangle & 1 \end{pmatrix}}_{=Q} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} \langle y_i x_i \rangle \\ \langle y_i \rangle \end{pmatrix}$$

Gaussians histograms Edgeworth central limit theorem regression summary

fitting of a straight line

characteristic function

- matrix equation can be solved, if $det(Q) \neq 0$, so that Q^{-1} exists
- no numerical extremisation is necessary, and the fitting is mathematically exact
- normalisation by N affects χ^2 , not the χ^2 we're going to treat in the lecture about likelihoods, but convenient because the moments turn out correctly normalised
- fit can be extended to polynomials, but the inversion of the matrix becomes difficult
- overfitting of data is possible a polynomial of order m = N will go through all data points exactly

question

derive the fit of a horizontal line, i.e. of the model y(x) = b to data (x_i, y_i) . show that $b = \langle y_i \rangle$ (as one would expect)!

fitting of a polynomial

characteristic function

fit can be extended to a polynomial model of order m

$$y(x) = \sum_{j=0}^{m} p_j x^j$$

which gives a linear system of equations of the type

$$\begin{pmatrix} \langle x_i^{2m} \rangle & \dots & \langle x_i^m \rangle \\ \vdots & \ddots & \vdots \\ \langle x_i^m \rangle & \dots & 1 \end{pmatrix} \begin{pmatrix} p_m \\ \vdots \\ p_0 \end{pmatrix} = \begin{pmatrix} \langle y_i x_i^m \rangle \\ \vdots \\ \langle y_i \rangle \end{pmatrix}$$

which can be inverted for the parameters $p_0 \dots p_m$

question

it is desirable to introduce a weighting $\propto 1/\sigma_i$ if σ_i are the individual errors in y_i . why σ_i^{-1} ? and how would you incorporate it?

fitting of a horizontal line

• fit a very simple model:

$$y(x) = b$$

· which gives a single equation

$$\frac{\partial \chi^2}{\partial b} = 0 = 2\sum_i (y_i - b) \to b = \frac{1}{N} \sum_i y_i$$

question

is this a surprising result?

question

what happens if there are more parameters p_i than data points x_i ?

characteristic function

Gaussians histograms

Edgeworth

central limit theorem

summary

- Gaussian has amazing properties
- characteristic function gives a way of adding probability distributions
- distributions close to a Gaussian can be approximated with the Edgeworth expansion
- inference of a probability density from data is difficult: only a finite number of moments is measurable
- fitting of polynomials to data can be formulated as a linear problem using the moments of the data
- central limit theorem shows why most random process are approximately Gaussian

now:

we know everything to derive a theory of fitting of arbitrary models!