Mathematical descriptions of Fourier Symmetrization

The Fourier symmetrization consists of two steps. One is correcting distortion of an original FFT image, and the other is folding and rotating a corrected image based on a crystal symmetry. This note gives mathematical descriptions about each step.

Correcting distortion

An FFT image is usually distorted due to various reasons such as piezo creep, thermal drift, and difference of piezo constants in x and y directions. This section describes mathematical basis of correcting such distortion. Here we think about uniform distortion constant in time: expansion, shrinkage, and shear in x and y directions (Fig. 1). Such distortion results in deviation of FFT peak locations from ideal ones. Our goal is to find how to correct the deviation.

Figure 1: Distortion. (a) ideal, (b) expansion and shrinkage, (c) x-shear, (d) y-shear.

Let coordinates of atomic peaks observed in an FFT image $\mathbf{q}_1 = (q_{1x}, q_{1y})$ and $\mathbf{q}_2 = (q_{2x}, q_{2y})$. Due to the distortion, these peaks are shifted from the ideal locations, $\mathbf{q}_1{}'$ and $\mathbf{q}_2{}'$. This shift is expressed by a 2×2 matrix M, $\mathbf{q}_i{}' = M\mathbf{q}_i$. Our goal is nothing but getting the matrix M.

When shear direction is x, M is given as a product of matrices of shear and expansion (or shrinkage),

$$M = \begin{pmatrix} m_1 & m_2 \\ 0 & m_3 \end{pmatrix} = \begin{pmatrix} 1 & m_2/m_3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} m_1 & 0 \\ 0 & m_3 \end{pmatrix}. \tag{1}$$

To get these three parameters of M, we solve the following three equations: $|\mathbf{q}_i'| = 1/a_i$ and $\mathbf{q}_1' \cdot \mathbf{q}_2' = |\mathbf{q}_1'||\mathbf{q}_2'|\cos\theta$, where a_i is the distance¹ between atomic rows corresponding to \mathbf{q}_i and θ is the angle between \mathbf{q}_1' and \mathbf{q}_2' determined by a crystal symmetry. Given $\mathbf{q}_i' = M\mathbf{q}_i$, these three equations are

$$(q_{1x}m_1 + q_{1y}m_2)^2 + (q_{1y}m_3)^2 = 1/a_1^2, (2)$$

$$(q_{2x}m_1 + q_{2y}m_2)^2 + (q_{2y}m_3)^2 = 1/a_2^2, (3)$$

$$(q_{1x}m_1 + q_{1y}m_2)(q_{2x}m_1 + q_{2y}m_2) + q_{1y}q_{2y}m_3^2 = \cos\theta/(a_1a_2). \tag{4}$$

These equations can be rewritten as

$$\begin{pmatrix} q_{1x}^2 & 2q_{1x}q_{1y} & q_{1y}^2 \\ q_{2x}^2 & 2q_{2x}q_{2y} & q_{2y}^2 \\ q_{1x}q_{2x} & q_{1x}q_{2y} + q_{2x}q_{1y} & q_{1y}q_{2y} \end{pmatrix} \begin{pmatrix} A \\ B \\ C \end{pmatrix} = \begin{pmatrix} 1/a_1^2 \\ 1/a_2^2 \\ \cos\theta/(a_1a_2) \end{pmatrix},$$
(5)

where $A = m_1^2$, $B = m_1 m_2$, and $C = m_2^2 + m_3^2$.

When shear direction is y, M is given as

$$M = \begin{pmatrix} m_1 & 0 \\ m_2 & m_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ m_2/m_1 & 1 \end{pmatrix} \begin{pmatrix} m_1 & 0 \\ 0 & m_3 \end{pmatrix}. \tag{6}$$

We can get equations for y-shear case in the same manner to get Eq. (5). The resultant equations have the same form as Eq. (5), but $A = m_1^2 + m_2^2$, $B = m_2 m_3$, and $C = m_3^2$.

Now we find that equations to be solved are Eq. (5) with respect to A, B, and C. By solving the equations, we finally get the matrix as

$$m_1 = \sqrt{A}, \quad m_2 = \frac{B}{\sqrt{A}}, \quad m_3 = \sqrt{C - \frac{B^2}{A}} \quad \text{(for } x\text{-shear)},$$
 (7)

¹This is the d value in terms of X-ray diffraction. It depends on the symmetry of lattice whether this is the same as the lattice constant a_0 . For example, $a_i = a_0$ for 4mm and $a_i = \sqrt{3}a_0/2$ for 3m.

$$m_1 = \sqrt{A - \frac{B^2}{C}}, \quad m_2 = \frac{B}{\sqrt{C}}, \quad m_3 = \sqrt{C} \quad \text{(for } y\text{-shear)},$$
 (8)

where

$$A = \frac{q_{2y}^2/a_1^2 + q_{1y}^2/a_2^2 - 2q_{1y}q_{2y}\cos\theta/(a_1a_2)}{(q_{1x}q_{2y} - q_{1y}q_{2y})^2},$$
(9)

$$B = -\frac{q_{2x}q_{2y}/a_1^2 + q_{1x}q_{1y}/a_2^2 - (q_{1x}q_{2y} + q_{1y}q_{2x})\cos\theta/(a_1a_2)}{(q_{1x}q_{2y} - q_{1y}q_{2y})^2},$$
(10)

$$A = \frac{q_{2y}^{2}/a_{1}^{2} + q_{1y}^{2}/a_{2}^{2} - 2q_{1y}q_{2y}\cos\theta/(a_{1}a_{2})}{(q_{1x}q_{2y} - q_{1y}q_{2y})^{2}},$$

$$B = -\frac{q_{2x}q_{2y}/a_{1}^{2} + q_{1x}q_{1y}/a_{2}^{2} - (q_{1x}q_{2y} + q_{1y}q_{2x})\cos\theta/(a_{1}a_{2})}{(q_{1x}q_{2y} - q_{1y}q_{2y})^{2}},$$

$$C = \frac{q_{2x}^{2}/a_{1}^{2} + q_{1x}^{2}/a_{2}^{2} - 2q_{1x}q_{2x}\cos\theta/(a_{1}a_{2})}{(q_{1x}q_{2y} - q_{1y}q_{2y})^{2}}.$$
(10)

In actual process with Igor Pro, the wave scaling is changed to correct expansion or shrinkage in x and y directions $(m_1 \text{ and } m_3)$. You may want to change aspect ratio of a window to plot a symmetrized FFT image. Parameters used to correct distortion $(m_1, m_2, \text{ and } m_3)$ are saved as wave note of a resultant symmetrized wave.

Folding and rotating an FFT image

Folding and rotating an FFT image are done based on mirror and rotational symmetries of a crystalline lattice, respectively. Important properties of an FFT image for this purpose are that amplitude of an FFT image has

- 1. mirror symmetry same as that of an original real-space image.
- 2. rotational symmetry same as that of an original real-space image,
- 3. C_2 symmetry.

We make sure these properties in the following sections. Let f(x,y) and $F(q_x,q_y)$ are a real-space image and its Fourier transform, respectively,

$$F(q_x, q_y) = \int f(x, y)e^{-i(q_x x + q_y y)} dx dy.$$
(12)

mirror symmetry

When f(x,y) has mirror symmetry with respect to x-axis, f(x,y) = f(-x,y),

$$F(q_x, q_y) = \int f(-x, y)e^{-i(q_x x + q_y y)} dx dy$$
(13)

$$= -\int f(x,y)e^{-i(-q_x x + q_y y)} dxdy \tag{14}$$

$$= -F(-q_x, q_y). \tag{15}$$

Therefore, $|F(q_x, q_y)| = |F(-q_x, q_u)|$.

rotational symmetry

When f(x,y) has rotational symmetry, $f(x,y) = f(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$,

$$F(q_x, q_y) = \int f(x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)e^{-i(q_x x + q_y y)}dxdy$$
 (16)

$$= \int f(x,y)e^{-i(q_x(x\cos\theta + y\sin\theta) + q_y(-x\sin\theta + y\cos\theta))}dxdy$$
 (17)

$$= F(q_x \cos \theta - q_y \sin \theta, q_x \sin \theta + q_y \cos \theta). \tag{18}$$

C_2 symmetry

Since f(x, y) is a real function,

$$F^{*}(q_{x}, q_{y}) = \int f^{*}(x, y)e^{i(q_{x}x + q_{y}y)}dxdy$$

$$= \int f(x, y)e^{-i(-q_{x}x - q_{y}y)}dxdy$$

$$= F(-q_{x}, -q_{y}).$$
(20)

$$= \int f(x,y)e^{-i(-q_x x - q_y y)} dx dy \tag{20}$$

$$= F(-q_x, -q_y). \tag{21}$$

Therefore, $|F(q_x, q_y)| = |F(-q_x, -q_y)|$.

Symmetrization

Fig. 2 shows equivalent points in FFT space, which are averaged by symmetrization. p3m1 and p31m have different sets of equivalent points. Due to C_2 symmetry described above, however, eventually they have the same set of equivalent points. Consequently, atomic peaks can be available to indicate high-symmetry direction for all symmetries. Half of the equivalent points are used for actual calculation to reduce amount of calculation. Effective multiplicity is 2, 6, and 4 for 2mm, 3m, and 4mm, respectively.

Figure 2: Equivalent points in FFT space for each symmetry.