EEE205 – Digital Electronics (II) Lecture 3

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- More Powerful PLDs
 - Complex Programmable Logic Devices (CPLD)
 - Field Programmable Gate Arrays (FPGA)

:

Programmable Logic Devices (PLDs)

Types

- SPLDs up to 600 equivalent gates each.
- CPLDs up to thousands of equivalent gates each.
- FPGAs hundreds of thousands of equivalent gates each.

equivalent gates: 2-input NAND gates

Complex Programmable Logic Devices (CPLD)

- A CPLD comprises multiple circuit blocks, each is similar to a PLA or a PAL and called a PAL-like block.
- These PAL-like blocks are connected to a set of interconnection wires.
- Each PAL-like block is also connected to a subcircuit called *I/O block*, which corresponds to the chip's input and output pins.

Complex Programmable Logic Devices (CPLD)

Complex Programmable Logic Devices (CPLD)

- Each PAL-like block includes multiple (typically 16) macrocells.
- A signal in one block can be used as an input to another block.

CPLDs

Example:

An I/O pin may be used as an input - the buffer must be disabled

Field Programmable Gate Arrays (FPGA)

- An FPGA consists of an array of configurable logic blocks (CLBs).
- Interconnects are available between the CLBs.
- The CLBs are surrounded by I/O blocks.

8

Field Programmable Gate Arrays (FPGA)

Configuration Logic Block (CLB):

- It often consists of an LUT (lookup table) that can generate any logic function

 a truth-table based approach.
- Different from AND-OR arrays in SPLDs and CPLDs

 an SOP Booleanexpression based approach.

Field Programmable Gate Arrays (FPGA)

$$\begin{array}{c|cccc} x_1 & x_2 & f_1 \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

$$f_1 = \bar{x}_1 \bar{x}_2 + x_1 x_2$$

- An LUT contains storage cells, each stores an entry of the truth table.
- The outputs of such cells are multiplexed with the input variables as the data select.
- LUTs usually have 4-5 inputs in commercial FPGAs.

10

Field Programmable Gate Arrays (FPGA)

Example: an LUT to implement a multiplexer

Field Programmable Gate Arrays (FPGA)

- 1. Normal LUT mode performs read operations.
- 2. Address decoder with write enable generates clock signals to latches for write operations.

1

9

Field Programmable Gate Arrays (FPGA)

Flip-flops may be included in an FPGA logic block to facilitate registered outputs.

13

15

Field Programmable Gate Arrays (FPGA)

A Programmed FPGA

- Each switch (X) in blue is turned on and each switch in black is turned off.
- The top row implements the function $f_1 = x_1x_2$ and $f_2 = \overline{x_2}x_3$.
- The bottom row produces $f = f_1 + f_2 = x_1x_2 + \overline{x_2}x_3$.

<i>x</i> ₁	<i>x</i> ₂	f ₁			f_2		f_2	
0	0 1 0 1	0	0	0 1 0 1	0	0	0 1 0 1	0
0	1	0	0	1	1	0	1	1
1	0	0	1	0	0	1	0	1
1	1	1	1	1	0	1	1	1
$f_1 = x_1 x_2$			$f_2 = \overline{\chi_2}\chi_3$			$f_1 = f_1 + f_2$		

14

Field Programmable Gate Arrays (FPGA)

Field Programmable Gate Arrays (FPGA)

Recent trend is to incorporate specialized cores:

- 1. RAMs single-port, dual-port, FIFOs
 - 128 bits to over 36K bits per RAM
 - 4 to over 575 per FPGA
- 2. DSPs 18x18-bit multiplier, 48-bit accumulator, etc.
 - up to 512 per FPGA
- 3. Microprocessors and/or microcontrollers
 - up to 2 per FPGA