CS 222 Computer Organization & Architecture

Lecture 27 [05.04.2019]

Cache Optimization Techniques

John Jose

Assistant Professor

Department of Computer Science & Engineering Indian Institute of Technology Guwahati, Assam.

Accessing Cache Memory

- Hit Time: Time to find the block in the cache and return it to processor [indexing, tag comparison, transfer].
- * Miss Rate: Fraction of cache access result in a miss.
- Miss Penalty: Number of cycles required to fetch the block from the next level of memory hierarchy. It is the extra (not total) time (or cycle) for a miss in addition to hit time which is incurred by all accesses.

How to optimize cache?

- Reduce Average Memory Access Time
- **AMAT=** Hit Time + Miss Rate x Miss Penalty
- Motives
 - Reducing the miss rate
 - Reducing the miss penalty
 - Reducing the hit time

Types of Cache Misses

Compulsory

- Very first access to a block
- Will occur even in an infinite cache

Capacity

- If cache cannot contain all the blocks needed
- Misses in fully associative cache (due to the capacity)

Conflict

- If too many blocks map to the same set
- Occurs in associative or direct mapped cache

Larger Block Size

- Larger block size to reduce miss rate
- Advantages
 - Utilize spatial locality
 - Reduces compulsory misses

Disadvantages

- Increases miss penalty
- More time to fetch a block to the cache [bus width issue]
- Increases conflict misses
- More number of blocks mapped to the same location
- Pollution: Bring useless data and evict useful data

Larger Block Size

Larger Caches

- Larger cache to reduce miss rate
- * Advantages
 - Reduces capacity misses
 - Can accommodate larger memory footprint
- Drawbacks
 - Longer hit time
 - Higher cost, area and power

	Cache size			
Block size	4K	16K	64K	256K
16	8.57%	3.94%	2.04%	1.09%
32	7.24%	2.87%	1.35%	0.70%
64	7.00%	2.64%	1.06%	0.51%
128	7.78%	2.77%	1.02%	0.49%
256	9.51%	3.29%	1.15%	0.49%

Larger Caches

Higher Associativity

Higher associativity to reduce miss rate

- Fully associative caches are the best; high hit time.
- So increase the associativity to the possible level

* Advantages

- Reduce conflict miss
- Reduce miss rate and eviction rate

Drawbacks

- Increase in the hit time
- Complex design than direct mapped
- More time to search in the set (tag comparison time)

Indexing, Tag comparison, Transfer

AMAT vs cache associativity

Multilevel caches

- Multilevel caches to reduce miss penalty
- Caches should be faster to keep pace with the speed of processors, AND cache should be larger to overcome the widening gap between the processor and main memory
- Multiple levels of cache between processor and memory.
- ❖ The L1 cache should be small enough to match the clock cycle time of the fast processor. [Low hit time]
- ❖ The L2 cache should be large enough to capture many accesses that would go to main memory, thereby lessening the effective miss penalty. [Low miss rate]

Multilevel caches

Average memory access time = Hit time_{L1} + Miss $rate_{L1} \times Miss penalty_{L1}$ Miss $penalty_{L1}$ = Hit time_{L2} + Miss $rate_{L2} \times Miss penalty_{L2}$ Average memory access time = Hit time_{L1} + Miss $rate_{L1}$ $\times (Hit time_{L2} + Miss rate_{L2} \times Miss penalty_{L2})$

Multilevel caches

- Multilevel caches to reduce miss penalty
- Local miss rate: Number of misses in a cache level divided by number of memory access to this level.
- Global miss rate: Number of misses in a cache level divided by number of memory access generated by the CPU.
- Inclusive and Exclusive caches

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/