

91258 / B0385 Natural Language Processing

Lesson 17. Bidirectional RNN \rightarrow Long Short-Term Memory Networks

Alberto Barrón-Cedeño a.barron@unibo.it

27/11/2024

Table of Contents

End of Chapter 8, Chapter 9 of Lane et al. (2019)

Left and right context

Not only the previous context is important to understand the *current* token

3 / 20

A. Barrón-Cedeño DIT, LM SpecTra 2024

Left and right context

Not only the previous context is important to understand the *current* token

They wanted to pet the dog whose fur was brown.

Left and right context

Not only the previous context is important to understand the *current* token

They wanted to pet the dog whose fur was brown.

- Descriptions and relevant information often come later
- A standard RNN neglects information from the future

Bidirectional recurrent neural network

- We arrange 2 RNNs:
 - one takes the input as usual
 - the other takes the backward input
 - means concatenation

Implementation difference

```
# Adding one bidirectional recurrent layer

model.add(Bidirectional(SimpleRNN(
    num_neurons,
    return_sequences=True),
    input_shape=(maxlen, embedding_dims))
)
```

■ Let us see

units	Acc	Acc_{val}
50	0.8156	0.7662

^{*} remember we had used 50 units last time for the RNN

units	Acc	Acc_{val}
50	0.8156	0.7662
40	0.8244	0.7540

^{*} remember we had used 50 units last time for the RNN

units Acc Ac		Acc_{val}
50	0.8156	0.7662
40	0.8244	0.7540
30	0.8259	0.7874

^{*} remember we had used 50 units last time for the RNN

units	Acc	Acc_{val}	
50	0.8156	0.7662	
40	0.8244	0.7540	
30	0.8259	0.7874	
20	0.8072	0.8076	

^{*} remember we had used 50 units last time for the RNN

units	Acc	Acc_{val}	
50	0.8156	0.7662	
40	0.8244	0.7540	
30	0.8259	0.7874	
20	0.8072	0.8076	
10	0.8007	0.8016	

^{*} remember we had used 50 units last time for the RNN

units	Acc	Acc _{val}	
50	0.8156	0.7662	
40	0.8244	0.7540	
30	0.8259	0.7874	
20	0.8072	0.8076	
10	0.8007	0.8016	
5	0.7973	0.8006	

^{*} remember we had used 50 units last time for the RNN

units	Acc	Acc Acc _{val}	
50	0.8156	0.7662	
40	0.8244	0.7540	
30	0.8259	0.7874	
20	0.8072	0.8076	
10	0.8007	0.8016	
5	0.7973	0.8006	
1	0.7070	0.7822	

^{*} remember we had used 50 units last time for the RNN

LSTMs

The effect of token x_t dilutes significantly as soon as in t + 2

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts. . .

The young woman went to the movies with her friends.

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts. . .

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

2024

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts. . .

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

- In both cases, went is the main verb
- A (Bi)RNN would hardly reflect that in the second case

The effect of token x_t dilutes significantly as soon as in t+2

Consider the following —fairly plausible— texts. . .

The young woman went to the movies with her friends.

The young woman, having found a free ticket on the ground, went to the movies.

- In both cases, went is the main verb
- A (Bi)RNN would hardly reflect that in the second case
- We need an architecture able to "remember" the entire input

8 / 20

A. Barrón-Cedeño DIT, LM SpecTra 2024

State: the memory of an LSTM

State: the memory of an LSTM

- The memory state contains attributes
- The attributes are updated with every instance
- The rules of the state are trained NNs

State: the memory of an LSTM

- The memory state contains attributes
- The attributes are updated with every instance
- The rules of the state are trained NNs

2024

9 / 20

Now we have two learning objectives:

- Learn to predict the target labels
- Learn to identify what has to be remembered

Unrolled LSTM

- Activation from t-1 plus memory state
- The memory state sends a vector with the state of each LSTM cell, of cardinality number_of_units

The LSTM cell (layer)

Input: output $_{t-1} \oplus input_t$

The LSTM cell (layer)

Input: output $_{t-1} \oplus input_t$

Gates: a FF layer + an activation function each

Input:
$$[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$$

A. Barrón-Cedeño

Input: $[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$

Forget: How much of the memory should be erased —forgetting long-term dependencies as new ones arise 351*50=17,550 parameters

(Lane et al., 2019, p. 280)

→ロト→個ト→単ト→重 から○

DIT, LM SpecTra

Input: $[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$

Forget: How much of the memory should be erased —forgetting long-term dependencies as new ones arise 351*50=17,550 parameters

Feed-forward NN with sigmoid activation function: [0, 1]

(Lane et al., 2019, p. 280)

2024

12 / 20

DIT, LM SpecTra

Forget is a mask:

LSTM Candidate Gate

LSTM Candidate Gate

Input: $[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$

Candidate: How much to augment the memory —what to remember and where to do it

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - り Q ()

A. Barrón-Cedeño

LSTM Candidate Gate

Candidate choice

Which values should be updated (\sim forget)

Candidate values

Computes those new values

(Lane et al., 2019, p. 283)

LSTM Output Gate

LSTM Output Gate

Input:
$$[x_{[t,0]}, x_{[t,1]}, \dots, x_{[t,299]}, h_{[t-1,0]}, h_{[t-1,1]}, \dots h_{[t-1,49]}, 1]$$

Output: produces the output vector —both for the actual task and back to the memory

- sigmoid to the input
- tanh to the state

LSTM Output Gate

* The figure says "added". It is a product

 The main network uses the output of the memory in the same fashion as in a RNN

- The main network uses the output of the memory in the same fashion as in a RNN
- The memory decides what to keep/feed to the network

- The main network uses the output of the memory in the same fashion as in a RNN
- The memory decides what to keep/feed to the network
- The weights of the memory are also learned by back-propagation

- The main network uses the output of the memory in the same fashion as in a RNN
- The memory decides what to keep/feed to the network
- The weights of the memory are also learned by back-propagation

LSTM: Result

arch	units	Acc	Acc_{val}
BiRNN	50	0.8156	0.7662
BiRNN	40	0.8244	0.7540
BiRNN	30	0.8259	0.7874
BiRNN	20	0.8072	0.8076
BiRNN	10	0.8007	0.8016
BiRNN	5	0.7973	0.8006
BiRNN	1	0.7070	0.7822
LSTM	50	0.8692	0.8678

References

Lane, H., C. Howard, and H. Hapkem 2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.