Beginner Test 3

Stellenbosch Camp 2018

Time: 4 hours

- 1. Let AB be a chord in a circle with centre O, and let C be a point on the larger arc AB. Show that $\angle AOB = 2\angle ACB$.
- 2. Factorise the following polynomial completely:

$$(2x+3)^6 - (2x-1)^6$$
.

- 3. How many different rearrangments are there of the word TARTAGLIA?
- 4. In the figure ABC is a tangent to the circumscribed circle of $\triangle PBG$. PS and DG are both parallel to ABC. Chords BP and BS cut DG at E and F respectively. Prove that:

a.
$$\angle G_1 = \angle P_1$$

b.
$$\triangle BGP$$
 is similar to $\triangle BEG$

c.
$$BG^2 = BP \times BE$$

c.
$$BG^2 = BP \times BE$$

d. $\frac{BG^2}{BP^2} = \frac{BF}{BS}$

- 5. Consider a game wherein two players Emma and Dylan take turns to take between 1 and 7 stones, inclusive, from a pile which starts with 2018 stones. If Emma plays first, does one of the players have a winning strategy, and if so what is it?
- 6. Determine all solutions (x, y) of the system of equations

$$\frac{4}{x} + \frac{5}{y^2} = 12,$$
$$\frac{3}{x} + \frac{7}{y^2} = 22.$$

- 7. Suppose k is a positive integer that does not divide 2008. Let [x] denote the greatest integer less than or equal to x. For example, [11.75] = 11 and $[\pi] = 3$. What is the maximum possible value of $k \times \left[\frac{2018}{k}\right]$?
- 8. The student lockers at Olympic High are numbered consecutively beginning with locker number 1. The plastic digits used to number the lockers cost 3 cents per piece. Thus, it costs 3 cents to number locker 9 and 6 cents to number locker 42. If it costs R206.91 to label all the lockers, how many lockers are there at the school?
- 9. Consider the function $f(x) = \frac{1}{1-x}$ and its iterates f^r defined as

$$f^{1}(x) = f(x)$$

$$f^{2}(x) = f(f(x))$$

$$f^{3}(x) = f(f(f(x)))$$

$$f^{4}(x) = f(f(f(f(x)))),$$

and so on. Calculate the value of $f^{2018}(2018)$.

- 10. Given the equation $x^{2018} = y^x$,
 - (a) find all pairs (x, y) of solutions with x prime and y a positive integer;
 - (b) find all pairs (x, y) of positive integers satisfying the equation.