Assertions and Tokens + Path tracing

SPIFFE/SPIRE
Out/2022

Recap

- Nested model: Allows appending new assertions to existing tokens
- Token path tracing: token path identification and validation
 - Anonymous mode: No ID associated to keys. Just path validation
 - ID mode: Each signature must be followed by necessary certificates to perform identification and validation

Nested model

Original + Assertion + Assertion

Token tracing

Link between issuer and audience

Work so far...

Prototypes developed:

- **ECDSA-SVID:** uses SVID to sign/validate. Can use SPIFFE-ID or SVID as ID, adding to token or using IdP (available)
- EdDSA-Schnorr: uses Schnorr EdDSA standard signatures/validation
- Schnorr Tracing model: Schnorr EdDSA with issuer/audience validation This prototype uses a secret key as private key generator
- Concatenated Schnorr: uses part of previous signature as next private key, and Galindo-Garcia validation model

ECDSA - SVID (ID/Anonymous mode)

Developed solution: Sign with SVID key, add SPIFFE-ID, SVID or public key to token

Pros

- Off-line validation: token contain necessary certs
- ID and Anonymous mode available

Cons

• ID mode requires more bandwidth

Possibilities

- Remove SVID from token and send it apart (ID artifact)
- Use lightweight SVID
- Also support anonymous mode (sending token without ID artifact)

EdDSA - Schnorr (anonymous mode)

Developed solution: Use standard Schnorr signature and validation

Pros

- Simpler construction
- Slightly smaller signatures

Cons

No identity model adopted

Possibilities

 Study of ECDSA – Schnorr possibility, allowing usage of SVID/Schnorr solution

Schnorr - Tracing model (anonymous mode)

Developed solution: Each hop generates a private key, used by next hop to append assertions

Pros

Implement issuer/audience validation

Cons

No identity model adopted

Possibilities

 Study of ECDSA – Schnorr possibility, allowing usage of SVID/Schnorr solution

Tracing model (biscuits-based model with Schnorr EdDSA)

EdDSA – Concatenated Schnorr (anonymous mode)

Developed solution: **SchCo-biscuits**. Each hop uses part of previous signature as private key.

Pros

- Smaller token size when compared to std. model
- Faster validation (using Galindo-Garcia) than sequencial model
- Cryptographic-linked signatures

Cons

No tracing capabilities

Possibilities

• Study aggregated signatures *state-of-art* to verify its viability

SchCo-Biscuits

(using concatenated Schnorr-based signatures: Galindo-Garcia-style)

Validation runtime and token size comparison

Token with 10 signatures	Std. Schnorr EdDSA	Concatenated Schnorr
1	15.666	8.806
2	16.057	15.548
3	19.031	7.823
4	8.724	12.274
5	18.621	14.156
6	15.904	8.223
7	17.341	11.199
8	13.056	14.249
9	10.706	9.473
10	9.559	8.149
Average runtime	14.467	10.990

	Std. Schnorr EdDSA	Concatenated signatures
x1	196	196
x2	463	351
x 3	730	506
x4	997	661
x5	1264	816
x6	1531	971

*bytes

*milliseconds

Next Steps

- Add proxy and more middle-tiers to PoC scenario
- Implement anonymous/ID mode in PoC application
- Generate assertions using SPIRE selectors
- General solution benchmarks

Future Work

- Specify and implement lightweight SVID
- Identity-based SVID: lightweight SVID with Galindo-Garcia
- Develop Biscuits prototype, with support to Galindo-Garcia
- Protobuf / JSON analysis

