T_{EX} Reference Card

(for Plain T_EX)

Greek Letters

α	\alpha	ι	\iota	ρ	\varrho
β	\beta	κ	\kappa	σ	\sigma
γ	\gamma	λ	\lambda	ς	\varsigma
δ	\delta	μ	\mu	au	\tau
ϵ	\epsilon	ν	\nu	v	\upsilon
ε	\varepsilon	ξ	\xi	ϕ	\phi
ζ	\zeta	0	\0	φ	\varphi
η	\eta	π	\pi	χ	\chi
θ	\theta	ϖ	\varpi	ψ	\psi
ϑ	\vartheta	ρ	\rho	ω	\omega
Γ	\Gamma	Ξ	\Xi	Φ	\Phi
Δ	\Delta	П	\Pi	Ψ	\Psi
Θ	\Theta	\sum	\Sigma	Ω	\Omega
Λ	\Lambda	Υ	\Upsilon		. 0

Symbols of Type Ord

×	\aleph	/	\prime	\forall	\forall
\hbar	\hbar	Ø	\emptyset	\exists	\exists
\imath	\imath	∇	\nabla	\neg	\neg or \lnot
J	\j math		\surd	b	\flat
ℓ	\ell	Τ	\top	Ц	\natural
Ø	\wp	\perp	\bot	#	\sharp
\Re	∖Re		\1	*	\clubsuit
\Im	\Im	_	\angle	\Diamond	\diamondsuit
∂	\partial	\triangle	\triangle	\Diamond	\heartsuit
∞	∞	\	\backslash	\spadesuit	\spadesuit

Large Operators

\sum	\sum	\cap	\bigcap	\odot	\bigodot
$\overline{\Pi}$	\prod	Ü	\bigcup	\otimes	\bigotimes
ĬΪ	\coprod	Ū	\bigsqcup	\oplus	\bigoplus
$\overline{\int}$	\int	V	\bigvee	+	\biguplus
ď	\oint	À	\bigwedge	-	

Binary Operations

\pm	\pm	\cap	\cap	\vee	\vee or \lor
干	\mp	\bigcup	\cup	\wedge	\wedge or \land
\	\setminus	\forall	\uplus	\oplus	\oplus
	\cdot	П	\sqcap	\ominus	\ominus
\times	\times	\sqcup	\sqcup	\otimes	\otimes
*	\ast	◁	\triangleleft	\oslash	\oslash
*	\star	\triangleright	$\$ triangleright	\odot	\odot
\Diamond	\d iamond	?	\wr	†	\dagger
0	\circ	\bigcirc	\bigcirc	‡	\ddagger
•	\bullet	\triangle	\bigtriangleup	П	\aggreen amalg
÷	\div	∇	\bigtriangledown		

Page Layout $hsize=\langle dimen \rangle$

\hsize=\dimen\	set width of page
$\vsize=\langle \dimen \rangle$	set height of page
$\delta = \langle \dim en \rangle$	set width of math displays
$\verb \hoffset= \langle \dim en \rangle $	move page horizontally
\voffset=\dimen\	move page vertically

Relations

\leq or \le	\geq	\geq or \ge	\equiv	\equiv
\prec	\succ	\succ	\sim	\sim
\preceq	\succeq	\succeq	\simeq	\simeq
\11	\gg	\gg	\simeq	$\agnumber \agnumber \agn$
\subset	\supset	\supset	\approx	\approx
\subseteq	\supseteq	\supseteq	\cong	\cong
\sqsubseteq	\supseteq	\sqsupseteq	\bowtie	\bowtie
\in	∉	\notin	\ni	\ni or \owns
\vdash	\dashv	\dashv	=	\models
\smile		\mid	Ė	\doteq
\frown		\parallet	\perp	\perp
\propto				
	<pre>\prec \preceq \ll \subset \subseteq \sqsubseteq \in \vdash \smile \frown</pre>	\prec > \preceq ≥ \lambda \text{Subseteq} ⊃ \sqsubseteq □ \in ∉ \vdash ¬ \smile \frown	\prec > \succ \preceq \succeq \lambdall > \succeq \lambdall > \supset \subseteq \supseteq \sqsubseteq \sqsupseteq \in \notin \vdashv \dashv \smile \mid \frown \parallet	\prec > \succ ~ \preceq ≥ \succeq ≃ \lambda \text{ygg} \subset ⊃ \supset ≈ \subseteq ⊇ \supseteq ≅ \sqsubseteq ⊒ \sqsupseteq ⋈ \in \notin ∋ \vdash ¬ \dashv ⊨ \smile \mid \mid \frown \parallet ⊥

Most relations can be negated by prefixing them with \not.

 $\not\equiv$ \not\equiv $\not\in$ \notin $\not=$ \ne

Arrows

\leftarrow	\leftarrow or \gets	←	\longleftarrow
\Leftarrow	\Leftarrow	\iff	\Longleftarrow
\longrightarrow	\rightarrow or \to	\longrightarrow	\longrightarrow
\Rightarrow	\Rightarrow	\Longrightarrow	\Longrightarrow
\longleftrightarrow	\leftrightarrow	\longleftrightarrow	\longleftrightarrow
\Leftrightarrow	\Leftrightarrow	\iff	\Longleftrightarrow
\mapsto	\mapsto	\longmapsto	$\label{longmapsto} \$
\leftarrow	\hookleftarrow	\hookrightarrow	\hookrightarrow
\uparrow	\uparrow	\uparrow	\Uparrow
\downarrow	\downarrow	$\downarrow \downarrow$	\Downarrow
\uparrow	\updownarrow	1	\Updownarrow
7	\nearrow	\	\searrow
_	\nwarrow	/	\swarrow

The \buildrel macro puts one symbol over another. The format is \buildrel \superscript \\ \over \(\rangle \rangle \).

 $\frac{\alpha\beta}{f(x) \stackrel{\mathrm{def}}{=} x + 1} \qquad \text{\buildrel\alpha\beta\over\longrightarrow} \\ f(x) \stackrel{\mathrm{def}}{=} x + 1 \qquad \text{f(x)\; {\buildrel\rm def\over=} \; x+1}$

Delimeters

	\lbrack or [{	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	<	\langle
]	\rbrack or]	}	\rbrace or \}	\rangle	\rangle
	\vert or	Ĺ	\lfloor	Γ	\lceil
	\Vert or \		\rfloor]	\rceil
	[\![(((\!(((\langle\!\langle
]/!])))\!)	$\rangle\rangle$	\rangle\!\rangle

Left and right delimeters will be enlarged if they are prefixed with \left or \right. Each \left must have a matching \right, one of which may be an empty delimeter (\left. or \right.). To specify a particular size, use the following:

\big1, \bigr \Big1, \Bigr \bigg1, \biggr You can also say \bigm for a large delimenter in the middle of a formula, or just \big for one that acts as an ordinary symbol.

Every Time Insertions

\everypar insert whenever a paragraph begins \everymath insert whenever math in text begins \everydisplay insert whenever displayed math begins

\everycr insert after every \cr

Accents

Type	Example	In Math	In Text
hat	$\hat{\underline{\hat{a}}}$	\hat	\^
expanding hat	\widehat{abc}	\widehat	none
check	\check{a}	\check	\v
tilde	$\widetilde{\underline{ ilde{a}}}$	\tilde	\~
expanding tilde	abc	\widetilde	none
acute	$cute{a}$	\acute	\',
grave	\grave{a}	\grave	\'
dot	\dot{a}	\dot	١.
double dot	\ddot{a}	\ddot	\"
breve	$reve{a}$	\breve	\u
bar	$ar{a}$	\bar	\=
vector	\vec{a}	\vec	none

The \skew (number) command shifts accents for proper positioning, the larger the (number), the more right the shift. Compare

 \hat{A} , \skew6\hat{\hat A} gives \hat{A} , \skew6\hat{\hat A}

Elementary Math Control Sequences

overline a formula	$\overline{x+y}$	<pre>\overline{x+y}</pre>
underline a formula	$\underline{x+y}$	$\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
square root	$\sqrt{x+2}$	$\sqrt{x+2}$
higher order roots	$\sqrt[n]{x+2}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
fraction	$\frac{n+1}{3}$	${n+1}$
fraction, no line	$n \overset{3}{+} 1$	${n+1\neq 3}$
binomial coeff.	$\binom{n+1}{3}$	${n+1\constant{-}losse 3}$
braced fraction	${n+1 \choose 3}$	${n+1}\brace 3}$
bracketed fraction	$\begin{bmatrix} n+1 \\ 3 \end{bmatrix}$	{n+1\brack 3}

The following specify a style for typesetting formulas.

\displaystyle \textstyle \scriptstyle \scriptscriptstyle

Non-Italic Function Names

\arccos	\cos	\csc	\exp	\ker	\limsup	\mbox{min}	\sinh
\arcsin	\cosh	\deg	\gcd	\lg	\ln	\Pr	\sup
\arctan	\cot	\det	\hom	\lim	\log	\sec	\tan
\arg	\coth	\dim	$\$ inf	\liminf	\max	\sin	\tanh
a	m}	a ($\mod n$	a)	mod with p	parenth	eses
a \bmod	m	a mo	od m		mod withou	ut pare	ntheses

The following examples use \mathop to create function names. Example Command Plain TEX Definition $\lim_{x\to 2} \quad \text{$\dim_{x\to 2}$ \def \lim_{\mathbb T} \sum_{0} \def \mathbb T_{x} \def$

Footnotes, Insertions, and Underlines

$\verb \footnote \langle \text{marker} \rangle \{\langle \text{text} \rangle \} $	footnote
\t opinsert \t vmode material \t endinsert	insert at top of page
$\parbox{\parbox{$\sim$}}\parbox{\parbox{\parbox{\sim}}}\parbox{\parbox{\parbox{\parbox{\sim}}}\parbox{\parbox{\parbox{\parbox{\sim}}}}\parbox{\parbox{\parbox{\parbox{\sim}}}\parbox{\parbox{\parbox{\parbox{\sim}}}\parbox{\parbox{\parbox{\parbox{\sim}}}\parbox{\parbox{\parbox{\parbox{\parbox{\parbox{\sim}}}}\parbox{\parbox{\parbox{\parbox{\parbox{\parbox{\parbox{\pa$	insert on full page
$\mbox{\mbox{midinsert}}\mbox{\mbox{\mbox{}}}\mbox{\mbox{}}$	insert middle of page
$\underbar{\langle text \rangle}$	underline text

© 1998 J.H. Silverman, Permissions on back. v1.3 Send comments and corrections to J.H. Silverman, Math. Dept., Brown Univ., Providence, RI 02912 USA. $\langle jhs@math.brown.edu \rangle$

Useful Parameters and Conversions

\day,\month,\year the current day, month, year

\jobname name of current job

\romannumeral \(\number\) convert to lower case roman nums.

 $\label{lowercase} $$ \sup_{\convert to upper case} \convert to upper case $$ \operatorname{lowercase}(\convert to lower case} $$$

Fills, Leaders and Ellipses

Text or Math: ... \dots

Math: ... \ldots ... \cdots : \vdots ... \ddots

The following fill space with the indicated item.

\hrulefill \rightarrowfill \leftarrowfill \dotfill

The general format for constructing leaders is

\leaders\box or rule\\hskip\(glue\) repeat box or rule

\leaders\box or rule\\hfill fill space with box or rule

T_EX Fonts and Magnification

 $\begin{tabular}{ll} $\operatorname{Noman} & \mathbf{Bold} & \mathbf{Typewriter} \\ &\mathbf{Slant} & \mathbf{Italic} & \mathbf{''italic\ correction''} \\ \end{tabular}$

 $\begin{tabular}{ll} $\operatorname{magnification=\langle number\rangle}$ & scale document by $n/1000$ \\ $\operatorname{magstep}\langle number\rangle$ & scaling factor of $1.2^n \times 1000$ \\ $\operatorname{magstephalf}$ & scalling factor of $\sqrt{1.2}$ \\ $\operatorname{font}FN=\langle fontname\rangle$ & load a font, naming it FN \\ \end{tabular}$

 $font\FN=\langle fontname \rangle at \langle dimen \rangle$

load font scaled to dimension

\font\FN=\(\fontname\) scaled \(\lambda\) number\

load font scaled by n/1000

true (dimen) dimension with no scaling

Alignment Displays

 $\label{line} $$ \operatorname{line} \ \operatorname{line}$

\halign horizontal alignment
\halign to\dimen\ horizontal alignment
\openup\dimen\ add space between lines
\noalign{\vmode material\}
insert material after any \cr

\tabskip=\(\g\) set glue at tab stops

\omit omit the template for a column

 $\label{eq:span} span two columns $\\ \operatorname{multispan} \langle \operatorname{number} \rangle $ span several columns $\\$

\hidewidth ignore the width of an entry \crcr insert \cr if one is not present

Boxes

\hbox to\dimen\ hbox of given dimension \vbox to\dimen\ vbox, bottom justified \vbox, top justified

\vcenter to\dimen\ vbox, center justified (math only)

\rlap right overlap material \llap left overlap material

Overfull Boxes

\hfuzz allowable excess in hboxes \vfuzz allowable excess in vboxes

\overfullrule width of overfull box marker. To eliminate entirely, set \overfullrule=0pt.

Indentation and Itemized Lists

\indent indent \
\noindent do not indent

\parindent=\dimen\ set indentation of paragraphs \displayindent=\dimen\ set indentation of math displays

\leftskip=\langle dimen \rangle skip space on left
\rightskip=\langle dimen \rangle skip space on right
\narrower make paragraph narrower
\item{\langle label} singly indented itemized list
\doubly indented itemized list
\hangindent=\langle dimen \rangle singly indented itemized list
\hangindent=\langle dimen \rangle singly indented itemized list
\hangindent=\langle dimen \rangle singly indented itemized list
\hangindent=\langle dimen \rangle skip space on left
\hanging indented itemized list
\hanging indentation for paragraph
\hangafter=\langle number \rangle start hanging indent after line n.

If n < 0, indent first |n| lines.

 $\verb|\parshape=| \langle number \rangle \qquad \qquad general \ paragraph \ shaping \ macro$

Headers, Footers, and Page Numbers

\nopagenumbers turn off page numbering

\pageno current page number. To get roman nums,

set \pageno=\(negative number\)

\folio current page number, roman num if < 0

\footline material to put at foot of page

\headline material to put at top of page. To leave

space, set \voffset=2\baselineskip, make room with \advance\vsize by-\voffset.

Macro Definitions

 $\def\cs{\langle replacement text\rangle}$ define the macro \cs $\def\cs#1\cdots#n{\langle repl. text\rangle}$ macro with parameters $\let\cs=\langle token\rangle$ give \cs token's current meaning

Advanced Macro Definition Commands

\long\def macro whose args may include \par \outer\def macro not allowed inside definitions \global\def or \gdef definition that transcends grouping

\edef expand while defining macro \xdef or \global\edef global version of \edef \noexpand\token\ do not expand token

\expandafter\token\ expand item after token first

 $\label{eq:local_state} $$ \int_{\text{csname...}} (t \circ k_1) \langle t \circ k_2 \rangle $$ equals $$ \left(t \circ k_2 \rangle \langle t \circ k_1 \rangle \langle t \circ k_2 \rangle \rangle $$ csname... \end{csname} $$ create a control sequence name}$

\string\cs list characters in name, \ c s \number \number \ list of characters in number

\the\(\internal\) quantity\\ list of tokens giving value of quantity

Conditionals

The general format of a conditional is

 $\inf\langle \operatorname{condition}\rangle \langle \operatorname{true\ text}\rangle \operatorname{lse}\langle \operatorname{false\ text}\rangle$

 $\label{eq:compare two integers} $$ \left(\frac{\alpha_1}{\alpha_1} \right) = 0. $$ compare two integers $$ \left(\frac{\alpha_1}{\alpha_1} \right) = 0. $$ compare two dimensions $$ \left(\frac{\alpha_1}{\alpha_1} \right) = 0. $$ test for an odd integer $$ test for math mode $$$

 $\label{eq:compare} $$ \inf \langle token_1 \rangle \langle token_2 \rangle$ test if character codes agree $$ \inf \langle token_1 \rangle \langle token_2 \rangle$ test if tokens agree $$ \inf \langle number \rangle$ test for end of file $$ if true, \ iffalse always true, always false $$$

 $\operatorname{\operatorname{vor}} \operatorname{\operatorname{text}}_n \operatorname{\operatorname{lose}} \operatorname{\operatorname{text}} \operatorname{\operatorname{lose}} \operatorname{\operatorname{text}} \operatorname{\operatorname{by}} \operatorname{\operatorname{number}}$

\blobtrue, \blobfalse set conditional \ifblob true, false

Dimensions, Spacing, and Glue Dimensions are specified as $\langle \text{number} \rangle \langle \text{unit of measure} \rangle$. Glue is specified as (dimen) plus(dimen) minus(dimen). point pt | pica inch in centimeter рс x height m width em math unit mu millimeter ex 1 pc = 12 pt 1 in = 72.72 pt 2.54 cm = 1 in 18 mu = 1 em\quad (skip 1em) \qquad Horizontal Spacing: Horizontal Spacing (Text): \thinspace \enspace \enskip \hskip\(\glue\) \hfil \hfill \hfilneg Horizontal Spacing (Math): thin space \, medium space \gt thick space \; neg. thin space \! \mskip(muglue) Vertical Spacing: $\$ \vskip $\$ \vfil \vfill box w/ ht and depth of "(", zero width \strut $\mbox{\phantom}\{\langle \text{text} \rangle\}$ invisible box with dim of \langle text \rangle $\mbox{\text}$ box w/ ht & depth of \(\lambda\) text\\), zero width \h box w/ width of \(\lambda\) text\\, zero ht & depth typeset (text), set ht & depth to zero $\mbox{smash}{\langle \text{text} \rangle}$ $\raise(dimen)\hbox{(text)}$ raise box up $\lceil \lceil \rceil \rceil$ lower box down $\mbox{moveleft}\langle \mbox{dimen} \mbox{vbox} \{\langle \mbox{text} \rangle \}$ move box left $\mbox{moveright} \dim \mbox{(text)} \mod \mbox{right}$ Skip Space Between Lines: \smallskip \medskip \bigskip encourage a break \smallbreak \medbreak \bigbreak break if no room \filbreak Set Line Spacing: \baselineskip = $\langle glue \rangle$ single space \baselineskip = 12pt 1.1/2 space \baselineskip = 18pt double space \baselineskip = 24pt Increase Line Spacing \openup \dimen \ use \jot's $1 \neq 3pt$ Allow Unjustified Lines \raggedright Allow Unjustified Pages \raggedbottom Braces and Matrices rectangular array of entries \matrix matrix with parentheses \pmatrix \bordermatrix matrix with labels on top and left overbrace, may be superscripted \overbrace \underbrace underbrace, may be subscripted For small matrices in text, use the following constructions: $\binom{a\ b}{c\ d}$ {a\,b \choose c\,d} \left({a\atop c} {b\atop d} \right) Displayed Equations \eqno equation number at right \leqno equation number at left

\eqalign display several aligned equations

\eqalignno display aligned equations numbered at right display aligned equations numbered at left

\displaylines display several equations, centered

\cases case by case definitions

\noalign to insert space between lines in displays,

use $\noalign{\{\vskip\glue\}\}}$ after any \cr

\openup\dimen\ add space between all lines in a display

Copyright © 1998 J.H. Silverman, November 1998 v
1.3 Math. Dept., Brown Univ., Providence, RI 02912 USA

TEX is a trademark of the American Mathematical Society

Permission is granted to make and distribute copies of this card provided the copyright notice and this permission notice are preserved on all copies.

Published by Ford & Mason Ltd, GL19 3JB, UK. Further copies of this card can be ordered through our web site: http://www.refcards.com.