Question - 3.b

- Implementing Emotion Intensity based on following features
 - N-gram (1, 2) in multivariate fashion for each sentence
 - Overall emoticon score (1)
 - This score is calculated before any normalization, because normalization leads to removal of punctuation
 - Normalization
 - Removal of numbers, as numbers have very little to no impact on emotions
 - Removal of punctuation, as it leads to overall increase in unigrams and bigrams and similar to numbers have little impact on emotion.
 - lower case of the characters, in order to reduce number of unigrams and bigrams.
 - lemmatization (Wordnet Lemmatizer), it is performed both on training data, and the lexicons. The aim is to reduce the overall size of feature size.
 - Expanded Emotion Score (10)
 - A vector of size 10, stores aggregated emotion score for each sentence.
 - Emotion Count (10)
 - A vector of size 10, it aggregates the count of emotion. It provides coarse information about the emotion, while emotion score provides much finer details.
 - Polarity Hashtag (1)
 - Aggregates polarity of hashtags, into a single number.
 - Polarity Sentiment (2)
 - It aggregates the polarity of sentiments, into positive and negative.
 - MPQA (4)
 - It aggregates based on lexicon sentiment into positive, negative, neutral or both.
 - Bing (1)
 - It aggregates the positive sentiment in that sentence
- Evaluation
 - Setting
 - Aggregation function is sum
 - No normalization is performed
 - Dataset : Anger
 - SVM Regression

Metric	Train	Test
Pearson Correlation	0.162	0.0757
Spearman Correlation	0.146	0.0932

o Decision Tree

Metric	Train	Test
Pearson Correlation	0.999	0.342
Spearman Correlation	0.999	0.32

o Multi Layer Perceptron

Metric	Train	Test
Pearson Correlation	0.9468	0.06723
Spearman Correlation	0.9475	0.0663

o Setting

Dataset: Joy

o SVM Regression

Metric	Train	Test
Pearson Correlation	0.155	0.105
Spearman Correlation	0.159	0.104

o Decision Tree

Metric	Train	Test
Pearson Correlation	0.999	0.338
Spearman Correlation	0.999	0.328

o Multi Layer Perceptron

Metric	Train	Test
Pearson Correlation	0.291	0.076
Spearman Correlation	0.307	0.026