Little British Little Little William Co. U

CLAIMS

Therefore, having thus described the invention, at least the following is claimed:

1	1.	A device, comprising:
2		an optical interconnect layer including:
3		a first cladding layer;
4		a second cladding layer;
5		at least one waveguide having a waveguide core; and
6		an air-gap cladding layer engaging a portion of waveguide core,
7		wherein the first cladding layer and the second cladding layer engage the
8		waveguide.
1	2.	The device of claim 1, wherein the device is chosen from a backplane, a
2		printed wiring board, and a multi-chip module.
l	3.	The device of claim 1, further comprising, at least one coupler element
2		disposed adjacent to the waveguide core.
I	4.	The device of claim 1, further comprising:
2		a first sacrificial layer that can be removed to form the air-gap cladding
1		laver

- 1 5. The device of claim 4, wherein the first sacrificial layer is chosen from
- polynorborenes, polyoxymethylene, polycarbonates, polyethers, and
- 3 polyesters.

l	6.	An optical interconnect layer, comprising:
2		a first cladding layer;
3		a second cladding layer;
4		at least one optical dielectric waveguide having a waveguide core; and
5		an air-gap cladding layer engaging a portion of waveguide core,
6		wherein the first cladding layer and the second cladding layer engage the
7		waveguide.
i	7.	The optical interconnect layer of claim 6, further comprising a substrate made
2		of a dielectric material.
1	8.	The optical interconnect layer of claim 6, wherein the first cladding layer is
2		chosen from polyimides, polynorborenes, epoxides, polyarylenes, ethers, and
3		parylenes.
l	9.	The optical interconnect layer of claim 6, wherein the second cladding layer is
2		chosen from polyimides, polynorborenes, epoxides, polyarylenes, ethers, and
3		parylenes.
l	10.	The optical interconnect layer of claim 6, wherein the air-gap cladding layer
2		has a height from about 1 to about 100 micrometers.

1	11.	A method for monolithically fabricating an optical interconnect layer
2		comprising:
3		(a) disposing at least one waveguide core on a portion of a first
4		cladding layer;
5		(b) disposing a sacrificial layer onto at least one portion of the first
6		cladding layer and a portion of the waveguide core;
7		(c) disposing an second cladding layer onto the first cladding layer and
8		the sacrificial layer; and
9		(d) removing the sacrificial layer to define an air-gap cladding layer
0		within the first cladding layer and the second cladding layer, and wherein the
ŀ		air-gap cladding engages a portion of the waveguide core.
1	12.	The method of claim 11, further including:
2		forming a volume grating layer adjacent to the waveguide core after (a)
3		and before (b).
1	13.	The method of claim 12, further including:
2		forming at least one volume grating coupler element.
1	14.	The method of claim 11, further including:
2		integrating the optical interconnect layer into a device chosen from a
3		backplane, a printed wiring board, and a multi-chip module.

1	15.	A method for fabricating a device having an optical interconnect layer
2		comprising:
3		disposing at least one waveguide core on a portion of a first cladding
4		layer;
5		forming at least one volume grating coupler element adjacent the
6		waveguide core;
7		disposing a sacrificial layer onto at least one portion of the first
8		cladding layer and a portion of the waveguide core;
9		disposing a second cladding layer onto the first cladding layer and the
10		sacrificial layer;
1 1		removing the sacrificial layer to define an air-gap cladding layer within
12		the first cladding layer and the second cladding layer, and wherein the air-gap
13		cladding engages a portion of the waveguide core; and
14		attaching the optical interconnect layer to a device chosen from a
15		backplane, printed wiring board, and a multi-chip module.
ì	16.	The method of claim 15, wherein the sacrificial layer is chosen from
2		polynorborenes, polyoxymethylene, polycarbonates, polyethers, and
3		polyesters.
1	17.	The method of claim 15, wherein the waveguide core includes a transparent
2		dielectric material.
l	18.	The method of claim 15, wherein the first cladding layer is chosen from
2		polyimides, polynorborenes, epoxides, polyarylenes, ethers, and parylenes.

- 1 19. The method of claim 15, wherein the second cladding layer is chosen from
- polyimides, polynorborenes, epoxides, polyarylenes, ethers, and parylenes.