Odsjek za računarstvo i informatiku Kurs: Multimedijalni sistemi Godina studija: I godina MoE studija Semestar: I	Profesor: vanr. prof. dr. Haris Šupić, dipl. ing. el. Asistent: Dinko Osmanković, PhD
Tutorijal	Tema: DCT, kompresija podataka

Tutorijal za II parcijalni ispit iz MMS-a

1. Izračunati DCT koeficijente za matricu:

$$X = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} \tag{1}$$

Rješenje:

DCT matrica Y se dobiva kao $Y = DCT(X) = CXC^T$, gdje je Y matrica koeficijenata DCT-a koji se dobivaju primjenom relacije:

$$Y_{pq} = \alpha_p \alpha_q \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} X_{mn} \cos \frac{\pi (2m+1)p}{2M} \cos \frac{\pi (2n+1)q}{2N}, 0 \le p \le M-1 \land 0 \le q \le N-1$$
(2)

gdje su:

$$\alpha_p = \begin{cases} 1/\sqrt{M}, & p = 0\\ \sqrt{2/M}, & 1 \le p \le M - 1 \end{cases}$$

$$\alpha_q = \begin{cases} 1/\sqrt{N}, & q = 0\\ \sqrt{2/N}, & 1 \le q \le N - 1 \end{cases}$$
(3)

Matrično se C može zapisati kao:

$$C = \sqrt{\frac{2}{n}} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & \cdots & 1/\sqrt{2} \\ \cos\frac{\pi}{2n} & \cos\frac{3\pi}{2n} & \cdots & \cos\frac{(2n-1)\pi}{2n} \\ \cos\frac{2\pi}{2n} & \cos\frac{6\pi}{2n} & \cdots & \cos\frac{2(2n-1)\pi}{2n} \\ \vdots & \vdots & \vdots & \vdots \\ \cos\frac{(n-1)\pi}{2n} & \cos\frac{(n-1)3\pi}{2n} & \cdots & \cos\frac{(n-1)(2n-1)\pi}{2n} \end{bmatrix}$$
(4)

Obzirom da je matrica X dimenzija 4×4 najbolje je koristiti i DCT blok istih dimenzija, dok se za veće matrice koriste uglavnom 4×4 i 8×8 . Matrica C sada postaje:

$$C = \sqrt{\frac{2}{4}} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ \cos\frac{\pi}{8} & \cos\frac{3\pi}{8} & \cos\frac{5\pi}{8} & \cos\frac{7\pi}{8} \\ \cos\frac{2\pi}{8} & \cos\frac{6\pi}{8} & \cos\frac{10\pi}{8} & \cos\frac{14\pi}{8} \\ \cos\frac{3\pi}{8} & \cos\frac{9\pi}{8} & \cos\frac{15\pi}{8} & \cos\frac{21\pi}{8} \end{bmatrix} = a \begin{bmatrix} a & a & a & a \\ b & c & -c & b \\ a & -a & -a & a \\ c & -b & b & -c \end{bmatrix}$$
 (5)

gdje su $a=\cos\frac{\pi}{4}=1/\sqrt{2}; b=\cos\frac{\pi}{8}; c=\cos\frac{3\pi}{8}.$ Matrica Y se dobiva kao:

$$Y = CXC^{T} = a \begin{bmatrix} a & a & a & a \\ b & c & -c & b \\ a & -a & -a & a \\ c & -b & b & -c \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} a \begin{bmatrix} a & b & a & c \\ a & c & -a & -b \\ a & -c & -a & b \\ a & -b & a & -c \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$(6)$$

Ova matrica se komprimira nekim algoritmom kompresije, najčešče RLE koji se odvija na sljedeći način. Elementi matrice se pretvaraju u niz dijagonalnim (zigzag) kretanjem kroz matricu. Takvo kretanje je prikazano na slici 1.

Slika 1: Zig-zag kretanje

U ovom zadatku se matrica na ovaj način transformira u sljedeći niz:

$$L = [3, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0]$$

$$(7)$$

RLE kodirani niz se formira na način da se zapiše prvo broj sukcesivnih pojavljivanja simbola, a zatim simbol. Vrijedi:

$$L_C = [1, 3, 2, 0, 1, 1, 1, 0, 1, 1, 5, 0, 1, -1, 4, 0]$$
(8)

Inverznu DCT je lako dobiti i vrijedi $X = C^T Y C$.

2. Zadana je sljedeća kvantizacijska matrica:

$$Q = \begin{bmatrix} 10 & 20\\ 20 & 100 \end{bmatrix} \tag{9}$$

Izračunati kvantizirane matrice, dekvantizirane matrice i error matrice za sljedeće ulazne matrice:

(a)
$$X_1 = \begin{bmatrix} 24 & 24 \\ 24 & 24 \end{bmatrix}$$

(b)
$$X_2 = \begin{bmatrix} 32 & 28 \\ 28 & 54 \end{bmatrix}$$

Rješenje:

(a) Kvantizirana matrica se računa prema formuli:

$$X_q = [\lfloor x_{ij}/q_{ij} \rfloor] \tag{10}$$

gdje su x_{ij} i q_{ij} elementi matrica Xi Q,respektivno. Za ovaj zadatak vrijedi:

$$X_q = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \tag{11}$$

Dekvantizirana matrica se dobiva množenjem po elementima matrica X_q i Q. Vrijedi:

$$\overline{X} = \begin{bmatrix} \lfloor xq_{ij} \cdot q_{ij} \rfloor \end{bmatrix} = \begin{bmatrix} 20 & 20 \\ 20 & 0 \end{bmatrix}$$
 (12)

Error matrica se dobiva kao:

$$E = X - \overline{X} = \begin{bmatrix} 24 & 24 \\ 24 & 24 \end{bmatrix} - \begin{bmatrix} 20 & 20 \\ 20 & 0 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ 4 & 24 \end{bmatrix}$$
 (13)

(b) U ovom slučaju vrijedi:

$$X_q = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} \tag{14}$$

$$\overline{X} = \begin{bmatrix} 30 & 20 \\ 20 & 0 \end{bmatrix} \tag{15}$$

$$E = \begin{bmatrix} 2 & 8 \\ 8 & 45 \end{bmatrix} \tag{16}$$

3. Posmatranjem sekvence od 62 poruke koju je emitirao neki ergodični izvor bez memorije, ustanovljeno je da se 10 puta pojavila poruka A, 24 puta poruka B, 8 puta poruka C, 12 puta poruka D i 8 puta poruka E. Kodirajte poruke koje emitira ovaj izvor prvo Shannon-Fano kodom, a zatim Huffmanovim kodom.

Rješenje:

Konstrukcija Shannon-Fano koda prikazana je u sljedećoj tabeli:

Znak	Frekvencija			
В	24	36/0	24/00	
D	12	30/0	12/01	
A	10		10/10	
С	8	26/1	16/11	8/110
Е	8		10/11	8/111

Ovaj kod se može predstaviti i u obliku binarnog stabla:

Slika 2: Stablo za Shannon-Fano kod

Dakle, Shannon-Fano kod daje kodiranje $A \to 00$, $B \to 01$, $C \to 10$, $D \to 110$ i $E \to 111$. Ukupan broj potrebnih bita za kodiranje ovih simbola je 12.

Konstrukcija Huffmanovog koda je prikazana u sljedećoj tabeli:

Po	četak	Itera	cija 1	Itera	cija 2	Iterac	ija 3	Kraj
В	24	В	24	В	24	D/00		D/000
D	12	C/0	16	D/0	22	brace A/01	38	A/001
A	10	$\mathrm{E}/1$	10	A/1		C/10	30	C/010
С	8	D	12	C/0	16	E/11		E/011
Е	8	A	10	E/1	10	В	24	B/1

Slika 3: Stablo za Huffmanov kod

I ovaj kod se može predstaviti i u obliku binarnog stabla:

Dakle, Huffmanov kod daje kodiranje $A \to 001$, $B \to 1$, $C \to 010$, $D \to 000$ i $E \to 011$. Ukupan broj bita potreban za kodiranje ovih simbola je 13.

U oba slučaja, kod koji je određen nije jedinstven, ali broj bita mora biti isti (12, odnosno 13) za sve varijante. Drugim riječima, postoji izomorfizam između svih stabala dobivenih Shannon-Fano, odnosno Huffmanovim algoritmom.

4. Korištenjem LZW algoritma enkodirati sljedeći string:

BABAABAAA#

a zatim dekodirati sekvencu

Rješenje:

LZW algoritam kompresije se može zapisati pseudo kodom na sljedeći način:

Odvijanje algoritma je prikazano u sljedećoj tabeli:

Kod	Ključ	Kod	Ključ
66	В	256	BA
65	A	257	AB
256	BA	258	BAA
257	AB	259	ABA
65	A	260	AA
260	AA		

Izlaz iz enkodera se čita iz prve kolone i on je <66><65><256><257><65><260>.

LZW algoritam dekompresije se može zapisati pseudo kodom na sljedeći način:

```
Ulaz: String za enkodiranje, rjecnik
 1: novi\_string \leftarrow ""
2: while ch \leftarrow s[i] ! = '\#' do
        if novi\_string + ch in rjecnik then
 3:
 4:
            novi \ string = novi \ string + ch
        else
 5:
             enkodirati novi_string u izlaz
 6:
             dodati novi\_string + ch u rjecnik
 7:
             novi \quad string \leftarrow ch
 8:
        end if
 9:
10: end while
11: ispisati novi string u izlaz
    Ulaz: String za dekodiranje, rjecnik
 1: novi \ string \leftarrow ""
 2: pročitati \overrightarrow{prethodni\_kod}i dekodirati ga
 3: while ch \leftarrow s[i] \hspace{0.1cm} ! = \hspace{0.1cm} '\#' \hspace{0.1cm} \mathbf{do}
        if ch in rjecnik then
             kljuc \leftarrow rjecnik[ch]
 5:
             dodati kljuc u rjecnik
 6:
            novi \ string \leftarrow kljuc
 7:
 8:
        end if
 9: end while
10: ispisati novi string u izlaz
```

Ključ	Kod	Ključ
В		
A	256	BA
BA	257	AB
AB	258	BAA
A	259	ABA
AA	260	AA

Odvijanje algoritma je prikazano u sljedećoj tabeli: