Paradigmen der Programmierung Dr. Alexander Raschke & Prof. Dr. Thom Frühwirth

MITSCHRIEB VON SCHLINGELWINGEL florian.sihler@web.de

 $Version\ vom:$ 17. Mai 2019

Inhaltsverzeichnis

	0.0.1	Zusammenfassung	 	 	 	 1
Sätze						2
Lemma	ata					3

Schlingelwingel 17. Mai 2019

Dieser Text hier ist sogar unnötig. Komplett leere Dokumente funktionieren mittlerweile auch :D

0.0.1 Zusammenfassung

Satz 1	V	Wertetabelle für Sinus und Kosinus											
Gradmaß	0	30	45	60	90	180	270	360					
Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π					
\sin	0 f	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0					
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1					

Lemma 0.1

Eigenschaften von sin und cos

Für alle $x \in \mathbb{R}$ gilt

$$\diamond \sin\left(x + \frac{\pi}{2}\right) = \cos x, \cos\left(x + \frac{\pi}{2}\right) = -\sin x.$$

$$\diamond \sin(x+\pi) = -\sin x, \ \cos(x+\pi) = -\cos x.$$

$$\label{eq:sin} \diamond \ \sin(x+2\pi) = \sin x, \ \cos(x+2\pi) = \cos(x). \ (\text{zyklisch}).$$

$$\diamond \cos(x) = 0 \Leftrightarrow \exists m \in \mathbb{Z} \, x = \frac{\pi}{2} + m\pi.$$

$$\diamond \sin(x) = 0 \Leftrightarrow \exists m \in \mathbb{Z} \, x = mx.$$

Die Potenzreihen sind auf ihrem Konvergenzintervall weitere Beispiele für relle Funktionen, eine grafische Veranschaulichung umrahmt das Lemma ©. Der Sinus ist hierbei horizontal,

der Kosinus vertikal aufgetragen.

Isch bin a Hädder! Isch bin a Hädder!

Alle Sätze

1 '	Wertetabelle für	Sinus und	Kosinus.																					1
-----	------------------	-----------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Alle Lemmata

0.1	Eigenschaften v	on sin und	cos					1
-----	-----------------	------------	-----	--	--	--	--	---