Устойчивые методы вычисления обратной матрицы Вандермонда в методе Арнольди

Артём Шейнов, Марк Миргалеев, Максим Смирнов

November 6, 2023

Оператор Купмана

Динамическая система, развивающаяся на многообразии ${\mathbb M}$

$$x_{k+1} = f(x_k), k \in \mathbb{Z}, x_k \in \mathbb{M}, f : \mathbb{M} \to \mathbb{M}$$

Оператор Купмана - это линейный оператор U, который действует на скалярно-значные функции на следующим образом: для любой скалярно-значной функции $g:\mathbb{M}\to\mathbb{R}^p$, U преобразует g в новую функцию Ug, заданную оператором:

$$U(g(x)) = g(f(x))$$

Собственные значения и векторы оператора Купмана

 $\phi_j(x):\mathbb{M} o\mathbb{R}$ - собственная функция, $\lambda_j\in\mathbb{C}$ - собственное значение Оператора Купмана:

$$U\phi_j(x) = \lambda_j\phi_j(x), j = 1, 2, \dots$$

Если каждая из p компонент g лежит в интервале области значений $\phi_j(x)$, то мы можем расширить векторную величину g в терминах этих собственных функций:

$$g(x) = \sum_{j=1}^{\infty} \phi_j(x) v_j, v_j \in \mathbb{R}^p$$

$$g(x_k) = \sum_{j=1}^{\infty} U^k \phi_j(x_0) v_j = \sum_{j=1}^{\infty} \lambda_j^k \phi_j(x_0) v_j$$

 v_i - мода Купмана, отвечающая собственной функции $\phi_i(x)$

Приложения оператора Купмана и разложения на моды в физике

- Гидрогазодинамика
- Эпидемиология
- Нейронауки
- Обработка видео
- Энергосистемы
- Организация дорожного движения
- Транспорт
- Робототехника
- Финансы
- Физика плазмы

Струя в перекрестном потоке

Конфигурация "струя в перекрестном потоке" встречается в различных приложениях и представляет собой распространенный способ смешивания струйной жидкости, подаваемой через отверстие, с равномерным поперечным потоком.

Линейный случай

$$f(x) = Ax, \mathbb{M} = \mathbb{R}^n$$

 λ_j, v_j - собственные значения и векторы A:

$$Av_j = \lambda_j v_j, j = 1, 2, ..., n$$

Определим векторы ω_j , как собственные векторы оператора $A^*(A^*\omega_j=\overline{\lambda_j}\omega_j)$. Тогда собственными функциями оператора U будут:

$$\phi_{j}(x) = (x, \omega_{j}), j = 1, 2, ..., n$$

$$U\phi_{i}(x) = \phi_{i}(Ax) = (Ax, \omega_{i}) = (x, A^{*}\omega_{i}) = \lambda_{i}(x, \omega_{i}) = \lambda_{i}\phi_{i}(x)$$

Алгоритм Арнольди для линейных систем

Предположим, что имеется линейная динамическая система

$$x_{k+1} = Ax_k$$

где $x_k \in \mathbb{R}^n$, причем n настолько велико, что мы не можем вычислить собственные значения A напрямую.

$$K = [x_0 \ Ax_0 \ A^2x_0 \ ... \ A^{m-1}x_0], m$$

Сначала рассмотрим частный случай, когда m-я итерация x_m является линейной комбинацией предыдущих итераций.

$$x_m = Ax_{m-1} = c_0x_0 + c_1x_1 + ... + c_{m-1}x_{m-1} = Kc, c = (c_0, c_1, ..., c_{m-1})^T$$

Отсюда следует:

$$AK = KC$$

Алгоритм Арнольди для линейных систем

$$C = \begin{pmatrix} 0 & 0 & \dots & 0 & c_0 \\ 1 & 0 & \dots & 0 & c_1 \\ 0 & 1 & \dots & 0 & c_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & c_{m-1} \end{pmatrix}$$

Пусть a, λ :

$$Ca = \lambda a \Rightarrow AKa = KCa = \lambda Ka$$

Собственные значения матрицы C лежат в области собственных значений оператора A,собственные векторы A, отвечающие этим собственным значениям - Ka, где a - собственный вектор C.

Алгоритм Арнольди для линейных систем

В более общем случае, если m-ая итерация не является линейной комбинацией предыдущих итераций, то вместо равенства имеем остаток

$$r = x_m - KC$$

который минимизируется при выборе c таким образом, что r ортогонален области $span\{x_0,...,x_{m-1}\}$. В этом случае соотношение принимает вид

$$AK = KC + re^{T}, e = (0, ..., 1) \in \mathbb{R}^{m}.$$

Тогда собственные значения C являются приближенными собственными значениями A, называемыми значениями Ритца а соответствующие приближенные собственные векторы задаются v=Ka и называются векторами Ритца. векторами Ритца.

Алгоритм Арнольди

Важной особенностью приведенного алгоритма является то, что он не требует явного знания матрицы A. Все, что требуется, - это последовательность векторов, приведенная ниже. Рассмотрим последовательность $\{x_0,...,x_m\}$, где $x_j\in\mathbb{R}^n$. Определим эмпирические значения Ритца λ_j и эмпирические векторы Ритца v_j этой последовательности по следующему алгоритму:

(i) Определим K и найдем константы c_j такие, что:

$$r = x_m - \sum_{j=0}^{m-1} c_j x_j = x_m - Kc, r \perp span\{x_0, ..., x_{m-1}\}$$

(ii)Определите матрицу C и найдем ее собственные значения и собственные векторы:

$$C = T^{-1}\Lambda T$$

(iii) Определим v_j как столбцы $V=KT^{-1}$.

Матрица Вандермонда в методе Арнольди

Теорема 1. Рассмотрим набор данных $\{x_0,...,x_m\}$, и пусть λ_j , v_j - эмпирические значения Ритца и векторы этой последовательности. Предположим, что λ_j различны. Тогда

$$x_k = \sum_{j=1}^{m} \lambda_j^k v_j, k = 0, ..., m-1$$

$$x_m = \sum_{j=1}^m \lambda_j^m v_j + r$$

Матрица Вандермонда в методе Арнольди

$$K = [x_0...x_{m-1}] = [v_1...v_m] \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \lambda_m^2 & \dots & \lambda_m^{m-1} \end{pmatrix}$$

Крайняя правая матрица является матрицей Вандермонда, которую мы обозначим T. Отметим, что матрица Вандермонда и матрица C тесно связаны между собой, так как T диагонализирует матрицу C, при условии, что собственные значения λ_1 , . . . , λ_m различны. То есть T - это как раз матрица T из (iii) алгоритма Арнольди

Проблема нахождения обратной матрицы Вандермонда

$$V = \begin{pmatrix} 1 & \lambda_1 & \lambda_1^2 & \dots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \lambda_2^2 & \dots & \lambda_2^{m-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \lambda_m^2 & \dots & \lambda_m^{m-1} \end{pmatrix}$$
$$||V||_2 ||V^{-1}||_2 \gg 1$$

Матрицы Вандермонда плохо обусловлены.

Наша цель: Изучить и продемонстрировать устойчивые методы вычисления V^{-1}

Точная формула обратной матрицы Вандермонда

$$V_{kj}^{-1} = \begin{cases} \sum_{\substack{1 \leq m_1 < \ldots < m_{n-k} \leq n, \\ (-1)^{k-1} \frac{1 \leq m_1 < \ldots < m_{n-k} \neq j}{\prod\limits_{\substack{1 \leq m \leq n, \\ m \neq j}} (\lambda_j - \lambda_m)}, 1 \leq k < n \\ \frac{1}{\prod\limits_{\substack{1 \leq m \leq n, \\ m \neq j}} (\lambda_m - \lambda_j)}, k = n \end{cases}$$

Алгоритмы Эйзенберга и Феделя

- Алгоритм PEF(Модифицированый алгоритм Паркера-Трауба)
- (1) Вычисляем $\sigma(n,s)$ для s=0,1,...,n (для числителя)
- (2) Вычисляем $\phi(n,j)$ для j=1,...,n (для знаменателя)
- (3) Вычисляем $\psi(n,i,j)$ для i,j=1,...,n (для числителя)
- (4) Вычисляем j-ый столбец $\psi_{PEF}(n,i,j)\phi(n,j)$ для j=1,...,n Сложность: $\mathcal{O}(n^2)$

Алгоритм EF

- (1) Вычисляем $\phi(n,j)$ для j=1,...,n (для знаменателя)
- (2) Вычисляем $\psi({\it n},i,j)$ для i,j=1,...,n (для числителя)
- (3) Вычисляем j-ый столбец $\psi_{EF}(n,i,j)\phi(n,j)$ для j=1,...,n Сложность: $\mathcal{O}(n^3)$

Вычисление $\sigma(m,s)$

$$\sigma(m,s) = \sigma(m-1,s) + \lambda_m \sigma(m-1,s-1), m, s \in \mathbb{Z}$$

$$\sigma(m,0) = 1, m = 0, 1, 2, ...$$

$$(s < 0) \lor (m < 0) \lor (s > m) \to \sigma(m,s) = 0$$

Вычисление $\phi(i,j)$

$$\phi(m+1,s) = \frac{\phi(m,s)}{\lambda_{m+1} - \lambda_s}, m \in \mathbb{Z}, s = 1,2,..., m$$

$$\phi(m+1,m+1) = \prod_{k=1}^{m} \frac{1}{\lambda_{m+1} - \lambda_k}$$

$$\phi(2,1) = \phi(2,2) = \frac{1}{\lambda_2 - \lambda_1}$$

Вычисление $\psi(n,i,j)$ для алгоритмов PEF и EF

$$\psi_{PEF}(n, i-1, j) = \lambda_j \psi(n, i, j) - (-1)^{i+j} \sigma(n, n+1-i)$$

$$\psi_{PEF}(n, n, j) = (-1)^{i+j}, i = n, n-1, ..., 2; j = 1, 2, ..., n$$

$$\psi_{EF}(n, i, j) = (-1)^{i+j} v_i(n, n-1), i, j = 1, 2, ..., n$$

Индексы ошибок

Хотим получить наиболее быстрое и науличшее решение в терминах точности вычисления матриц Вандермонда, точность оцениваем по следующим метрикам:

$$e_{2} = \frac{||W_{e} - W_{n}||_{2}}{||W_{e}||_{2}}, (T)$$

$$e_{L} = \frac{||W_{n}V - I_{n}||_{2}}{||W_{n}V||_{2}}, (L)$$

$$e_{R} = \frac{||VW_{n} - I_{n}||_{2}}{||VW_{n}||_{2}}, (R)$$

 W_e - обратная матрица, вычисленная с точностью float 128. Все замеры были сделаны с размерностями матриц, не превосходящими 20. При большей размерности нет возможности построить точную матрицу Вандермонда, так как число полностью не умещается в размер float 64.

Зависимость ошибки от размерности матрицы

Зависимость ошибки от размерности матрицы

В индексах L,R алгоритмы EF и PEF не сильно оличаются от обычного метода инверсии из numpy. Но в индексе Т превосходят его на несколько порядков.

Зависимость ошибки от значений вектора, определяющего матрицу Вандермонда

Зависимость ошибки от порядка значений в векторе

При увеличении нормы матрицы Вандермонда производительность PEF снижается.

В будущем предлагается использовать адаптивный метод, реализующий PEF или EF в зависимости от нормы матрицы Вандермонда.

Демонстрация скорости алгоритма РЕГ

PEF работает за $\mathcal{O}(n^2)$ в отличие от других алгоритмов.

Максимальная ошибка методов

Method	T-error Uniform average	T-error Uniform _{max}	T-error Normal average	T-error Normal _{max}
Inv64	1.8486e-09	2.3239e-08	7.2256e-4	1.9920e-2
Math	8.4972e-16	1.6684e-15	1.5738e-15	2.8386e-15
EF	9.3508e-16	1.8557e-15	4.6251e-14	5.5283e-13
PEF	2.8129e-16	7.7120e-16	1.6469e-15	6.4774e-15

Замеры производились 30 раз на матрице размера n=15.

Заключение и выводы

Результаты:

- Реализовали 2 устойчивых метода обращения матрицы Вандермонда
- Показали сильную неустойчивость методов обращения питру по сравнению с методами PEF и EF
- Оценили сложность разработанных методов и показали сильное ускорение по сравнению с математическим методом
- Показали зависимость ошибки от инициализации вектора
 Вандермонда и масштаба его элементов

Хотелось бы реализовать:

 Встроить наши методы в алгоритм Арнольди и посмотреть, как он будет работать на практике (в какой-нибудь физической задаче)

Материалы

Код на Github:
Git
Литература:
Spectral analysis of nonlinear flows
Applied Koopman operator theory for power systems technology
Data-Driven Science and Engineering
On the inversion of the Vandermonde matrix