Machine Learning Foundations

(機器學習基石)

Lecture 11: Linear Models for Classification

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?
- **3 How Can Machines Learn?**

Lecture 10: Logistic Regression

gradient descent on cross-entropy error to get good logistic hypothesis

Lecture 11: Linear Models for Classification

- Linear Models for Binary Classification
- Stochastic Gradient Descent
- Multiclass via Logistic Regression
- Multiclass via Binary Classification
- 4 How Can Machines Learn Better?

Linear Models Revisited

linear scoring function: $s = \mathbf{w}^T \mathbf{x}$

linear classification

NP-hard to solve

linear regression

logistic regression

can linear regression or logistic regression help linear classification?

closed-form solution

discrete $E_{in}(\mathbf{w})$:

Error Functions Revisited

linear scoring function: $s = \mathbf{w}^T \mathbf{x}$

for binary classification $y \in \{-1, +1\}$

linear classification

$$h(\mathbf{x}) = \operatorname{sign}(s)$$

 $\operatorname{err}(h, \mathbf{x}, y) = \llbracket h(\mathbf{x}) \neq y \rrbracket$

$$\operatorname{err}_{0/1}(s, y)$$
= $\llbracket \operatorname{sign}(s) \neq y \rrbracket$

$$= [\operatorname{Sign}(y) + y]$$

linear regression

$$h(\mathbf{x}) = s$$

 $err(h, \mathbf{x}, \mathbf{y}) = (h(\mathbf{x}) - \mathbf{y})^2$

$$err_{SQR}(s, y)$$

$$= (s - y)^2$$

$$= (ys-1)^2$$

logistic regression

$$h(\mathbf{x}) = \theta(s)$$

 $\operatorname{err}(h, \mathbf{x}, y) = -\ln h(y\mathbf{x})$

$$err_{CE}(s, y) = ln(1 + exp(-ys))$$

(ys): classification correctness score

$$0/1 \quad \operatorname{err}_{0/1}(s, y) = \quad [\operatorname{sign}(ys) \neq 1]$$

$$\operatorname{sqr} \quad \operatorname{err}_{\operatorname{SOR}}(s, y) = \quad (ys - 1)^{2}$$

$$\operatorname{ce} \quad \operatorname{err}_{\operatorname{CE}}(s, y) = \quad \ln(1 + \exp(-ys))$$

$$\operatorname{scaled} \operatorname{ce} \quad \operatorname{err}_{\operatorname{SCE}}(s, y) = \quad \log_{2}(1 + \exp(-ys))$$

- 0/1: 1 iff $ys \le 0$
- sqr: large if ys ≪ 1
 but over-charge ys ≫ 1
 small err_{SQR} → small err_{0/1}
- ce: monotonic of yssmall $err_{CE} \leftrightarrow small err_{0/1}$
- scaled ce: a proper upper bound of 0/1 small err_{SCE} ↔ small err_{0/1}

upper bound:

$$0/1 \quad \operatorname{err}_{0/1}(s, y) = [\operatorname{sign}(ys) \neq 1]$$

$$\operatorname{sqr} \quad \operatorname{err}_{\operatorname{SQR}}(s, y) = (ys - 1)^{2}$$

$$\operatorname{ce} \quad \operatorname{err}_{\operatorname{CE}}(s, y) = \ln(1 + \exp(-ys))$$

$$\operatorname{scaled} \operatorname{ce} \quad \operatorname{err}_{\operatorname{SCE}}(s, y) = \log_{2}(1 + \exp(-ys))$$

- 0/1: 1 iff $ys \le 0$
- sqr: large if $ys \ll 1$ **but** over-charge $ys \gg 1$ small $err_{SQR} \rightarrow small err_{0/1}$
- ce: monotonic of ys small $err_{CE} \leftrightarrow small err_{0/1}$
- scaled ce: a proper upper bound of 0/1 small err_{SCE} ↔ small err_{0/1}

upper bound:

$$\begin{array}{rcl} 0/1 & \operatorname{err}_{0/1}(s,y) & = & \llbracket \operatorname{sign}(ys) \neq 1 \rrbracket \\ & \operatorname{sqr} & \operatorname{err}_{\operatorname{SQR}}(s,y) & = & (ys-1)^2 \\ & \operatorname{ce} & \operatorname{err}_{\operatorname{CE}}(s,y) & = & \ln(1+\exp(-ys)) \\ & \operatorname{scaled} & \operatorname{ce} & \operatorname{err}_{\operatorname{SCE}}(s,y) & = & \log_2(1+\exp(-ys)) \end{array}$$

- 0/1: 1 iff $ys \le 0$
- sqr: large if ys ≪ 1
 but over-charge ys ≫ 1
 small err_{SQR} → small err_{0/1}
- ce: monotonic of yssmall $err_{CE} \leftrightarrow small err_{0/1}$
- scaled ce: a proper upper bound of 0/1 small err_{SCE} ↔ small err_{0/1}

upper bound:

$$0/1 \quad \operatorname{err}_{0/1}(s, y) = [\operatorname{sign}(ys) \neq 1]$$

$$\operatorname{sqr} \quad \operatorname{err}_{\operatorname{SQR}}(s, y) = (ys - 1)^{2}$$

$$\operatorname{ce} \quad \operatorname{err}_{\operatorname{CE}}(s, y) = \ln(1 + \exp(-ys))$$

$$\operatorname{scaled} \operatorname{ce} \quad \operatorname{err}_{\operatorname{SCE}}(s, y) = \log_{2}(1 + \exp(-ys))$$

- 0/1: 1 iff $ys \le 0$
- sqr: large if ys ≪ 1
 but over-charge ys ≫ 1
 small err_{SQR} → small err_{0/1}
- ce: monotonic of ys small $err_{CE} \leftrightarrow small err_{0/1}$
- scaled ce: a proper upper bound of 0/1 small err_{SCE} ↔ small err_{0/1}

upper bound:

Theoretical Implication of Upper Bound

For any ys where $s = \mathbf{w}^T \mathbf{x}$

$$\operatorname{err}_{0/1}(s, y) \leq \operatorname{err}_{SCE}(s, y) = \frac{1}{\ln 2} \operatorname{err}_{CE}(s, y).$$

$$\Longrightarrow \qquad E_{\text{in}}^{0/1}(\mathbf{w}) \leq E_{\text{in}}^{SCE}(\mathbf{w}) = \frac{1}{\ln 2} E_{\text{in}}^{CE}(\mathbf{w})$$

$$E_{\text{out}}^{0/1}(\mathbf{w}) \leq E_{\text{out}}^{SCE}(\mathbf{w}) = \frac{1}{\ln 2} E_{\text{out}}^{CE}(\mathbf{w})$$

VC on 0/1:

$$E_{\text{out}}^{0/1}(\mathbf{w}) \leq E_{\text{in}}^{0/1}(\mathbf{w}) + \Omega^{0/1}$$

 $\leq \frac{1}{\ln 2} E_{\text{in}}^{\text{CE}}(\mathbf{w}) + \Omega^{0/1}$

VC-Reg on CE:

$$\begin{array}{lcl} \boldsymbol{E}_{\text{out}}^{0/1}(\boldsymbol{w}) & \leq & \frac{1}{\ln 2} \boldsymbol{E}_{\text{out}}^{\text{CE}}(\boldsymbol{w}) \\ & \leq & \frac{1}{\ln 2} \boldsymbol{E}_{\text{in}}^{\text{CE}}(\boldsymbol{w}) + \frac{1}{\ln 2} \Omega^{\text{CE}} \end{array}$$

small $E_{\text{in}}^{\text{CE}}(\mathbf{w}) \Longrightarrow \text{small } E_{\text{out}}^{0/1}(\mathbf{w})$: logistic/linear reg. for linear classification

Regression for Classification

- 1 run logistic/linear reg. on \mathcal{D} with $y_n \in \{-1, +1\}$ to get \mathbf{w}_{REG}
- 2 return $g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}_{REG}^T \mathbf{x})$

PLA

- pros: efficient + strong guarantee if lin. separable
- cons: works only if lin. separable, otherwise needing pocket heuristic

linear regression

- pros: 'easiest' optimization
- cons: loose bound of err_{0/1} for large |ys|

logistic regression

- pros: 'easy' optimization
- cons: loose bound of err_{0/1} for very negative ys

- linear regression sometimes used to set w₀ for PLA/pocket/logistic regression
- logistic regression often preferred over pocket

Fun Time

Following the definition in the lecture, which of the following is not always $\geq \operatorname{err}_{0/1}(y, s)$ when $y \in \{-1, +1\}$?

- 1 $err_{0/1}(y, s)$
- $2 \operatorname{err}_{SQR}(y, s)$
- $\mathbf{4} \operatorname{err}_{SCE}(y, s)$

Reference Answer: (3)

Too simple, uh? :-) Anyway, note that $err_{0/1}$ is surely an upper bound of itself.

Two Iterative Optimization Schemes

For t = 0, 1, ...

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \mathbf{v}$$

when stop, return last \mathbf{w} as g

PLA

pick (\mathbf{x}_n, y_n) and decide \mathbf{w}_{t+1} by the one example

O(1) time per iteration :-)

logistic regression (pocket)

check \mathcal{D} and decide \mathbf{w}_{t+1} (or new $\hat{\mathbf{w}}$) by all examples O(N) time per iteration :-(

logistic regression with O(1) time per iteration?

Logistic Regression Revisited

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \underbrace{\frac{1}{N} \sum_{n=1}^{N} \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(y_n \mathbf{x}_n \right)}_{-\nabla E_{\text{in}}(\mathbf{w}_t)}$$

- want: update direction $\mathbf{v} \approx \nabla E_{\text{in}}(\mathbf{w}_t)$ while computing \mathbf{v} by one single (\mathbf{x}_n, y_n)
- technique on removing $\frac{1}{N} \sum_{n=1}^{N}$: view as expectation \mathcal{E} over uniform choice of n!

stochastic gradient:

 $\nabla_{\mathbf{w}} \operatorname{err}(\mathbf{w}, \mathbf{x}_n, y_n)$ with random n true gradient:

$$\nabla_{\mathbf{w}} E_{\text{in}}(\mathbf{w}) = \underbrace{\mathcal{E}}_{\text{random } n} \nabla_{\mathbf{w}} \operatorname{err}(\mathbf{w}, \mathbf{x}_n, y_n)$$

Stochastic Gradient Descent (SGD)

stochastic gradient = true gradient + zero-mean 'noise' directions

Stochastic Gradient Descent

- idea: replace true gradient by stochastic gradient
- after enough steps, average true gradients ≈ average stochastic gradient
- pros: simple & cheaper computation :-)
 useful for big data or online learning
- cons: less stable in nature

SGD logistic regression looks familiar? :-):

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \underbrace{\theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(y_n \mathbf{x}_n \right)}_{-\nabla \operatorname{err}(\mathbf{w}_t, \mathbf{x}_n, y_n)}$$

PLA Revisited

SGD logistic regression:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \cdot \theta \left(-y_n \mathbf{w}_t^T \mathbf{x}_n \right) \left(y_n \mathbf{x}_n \right)$$

PLA:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + 1 \cdot \left[y_n \neq \text{sign}(\mathbf{w}_t^T \mathbf{x}_n) \right] \left(y_n \mathbf{x}_n \right)$$

- SGD logistic regression ≈ 'soft' PLA
- PLA \approx SGD logistic regression with $\eta = 1$ when $\mathbf{w}_t^T \mathbf{x}_n$ large

two practical rule-of-thumb:

- stopping condition? t large enough
- η ? 0.1 when **x** in proper range

Fun Time

Consider applying SGD on linear regression for big data. What is the update direction when using the negative stochastic gradient?

- $\mathbf{0} \mathbf{x}_n$
- $2 y_n \mathbf{x}_n$
- 3 $2(\mathbf{w}_t^T\mathbf{x}_n y_n)\mathbf{x}_n$
- $2(y_n \mathbf{w}_t^T \mathbf{x}_n) \mathbf{x}_n$

Reference Answer: (4)

Go check lecture 9 if you have forgotten about the gradient of squared error. :-)

Anyway, the update rule has a nice physical interpretation: improve \mathbf{w}_t by 'correcting' proportional to the residual $(y_n - \mathbf{w}_t^T \mathbf{x}_n)$.

Multiclass Classification

- $\mathcal{Y} = \{\Box, \Diamond, \triangle, \star\}$ (4-class classification)
- many applications in practice, especially for 'recognition'

```
next: use tools for \{\times, \circ\} classification to \{\Box, \Diamond, \triangle, \star\} classification
```


$$\square$$
 or not? $\{\square = \circ, \lozenge = \times, \triangle = \times, \star = \times\}$

$$\Diamond$$
 or not? $\{\Box = \times, \Diamond = \circ, \triangle = \times, \star = \times\}$

$$\triangle$$
 or not? $\{\Box = \times, \Diamond = \times, \triangle = \circ, \star = \times\}$

$$\star$$
 or not? $\{\Box = \times, \Diamond = \times, \triangle = \times, \star = \circ\}$

Multiclass Prediction: Combine Binary Classifiers

but ties? :-)

$$P(\Box | \mathbf{x})$$
? $\{\Box = \circ, \lozenge = \times, \triangle = \times, \star = \times\}$

$$P(\lozenge|\mathbf{x})? \{\Box = \times, \lozenge = \circ, \triangle = \times, \star = \times\}$$

$$P(\triangle|\mathbf{x})$$
? $\{\Box = \times, \Diamond = \times, \triangle = \circ, \star = \times\}$

$$P(\star|\mathbf{x})? \{\Box = \times, \Diamond = \times, \triangle = \times, \star = \circ\}$$

Multiclass Prediction: Combine Soft Classifiers

One-Versus-All (OVA) Decomposition

for $k \in \mathcal{Y}$ obtain $\mathbf{w}_{[k]}$ by running logistic regression on

$$\mathcal{D}_{[k]} = \{(\mathbf{x}_n, y_n' = 2 \, [\![y_n = k]\!] - 1)\}_{n=1}^N$$

- - pros: efficient,
 can be coupled with any logistic regression-like approaches
 - cons: often unbalanced $\mathcal{D}_{[k]}$ when K large
 - extension: multinomial ('coupled') logistic regression

OVA: a simple multiclass meta-algorithm to keep in your toolbox

Fun Time

Which of the following best describes the training effort of OVA decomposition based on logistic regression on some K-class classification data of size N?

- 1 learn K logistic regression hypotheses, each from data of size N/K
- 2 learn K logistic regression hypotheses, each from data of size N ln K
- ${f 3}$ learn K logistic regression hypotheses, each from data of size N
- 4 learn K logistic regression hypotheses, each from data of size NK

Reference Answer: (3)

Note that the learning part can be easily done in parallel, while the data is essentially of the same size as the original data.

Source of **Unbalance**: One versus **All**

idea: make binary classification problems more balanced by one versus one

$$\square$$
 or \lozenge ? $\{\square = \circ, \lozenge = \times, \triangle = \mathsf{nil}, \star = \mathsf{nil}\}$

$$\square$$
 or \triangle ? $\{\square = \circ, \lozenge = \mathsf{nil}, \triangle = \times, \star = \mathsf{nil}\}$

$$\square \text{ or } \star \text{? } \{\square = \circ, \lozenge = \mathsf{nil}, \triangle = \mathsf{nil}, \star = \times\}$$

$$\Diamond$$
 or \triangle ? { \square = nil, \Diamond = \circ , \triangle = \times , \star = nil}

$$\lozenge \text{ or } \star ? \; \{ \square = \mathsf{nil}, \lozenge = \circ, \triangle = \mathsf{nil}, \star = \times \}$$

$$\triangle$$
 or \star ? $\{\Box = \mathsf{nil}, \Diamond = \mathsf{nil}, \triangle = \circ, \star = \times\}$

Multiclass Prediction: Combine Pairwise Classifiers

 $g(\mathbf{x}) = \text{tournament champion} \left\{ \mathbf{w}_{[k,\ell]}^T \mathbf{x} \right\}$ (voting of classifiers)

One-versus-one (OVO) Decomposition

① for $(k, \ell) \in \mathcal{Y} \times \mathcal{Y}$ obtain $\mathbf{w}_{[k,\ell]}$ by running linear binary classification on

$$\mathcal{D}_{[k,\ell]} = \{ (\mathbf{x}_n, y_n' = 2 \, [\![y_n = k]\!] - 1) \colon y_n = k \text{ or } y_n = \ell \}$$

- $oldsymbol{2}$ return $g(\mathbf{x}) = ext{tournament champion} \left\{ \mathbf{w}_{[k,\ell]}^{\mathcal{T}} \mathbf{x}
 ight\}$
 - pros: efficient ('smaller' training problems), stable,
 can be coupled with any binary classification approaches
 - cons: use $O(K^2)$ $\mathbf{w}_{[k,\ell]}$ —more space, slower prediction, more training

OVO: another simple multiclass meta-algorithm to keep in your toolbox

Fun Time

Assume that some binary classification algorithm takes exactly N^3 CPU-seconds for data of size N. Also, for some 10-class multiclass classification problem, assume that there are N/10 examples for each class. Which of the following is total CPU-seconds needed for OVO decomposition based on the binary classification algorithm?

- $\frac{9}{200}N^3$
- $\frac{9}{25}N^3$
- $\frac{4}{5}N^3$
- 4 N^{3}

Reference Answer: (2)

There are 45 binary classifiers, each trained with data of size (2N)/10. Note that OVA decomposition with the same algorithm would take $10N^3$ time, much worse than OVO.

Summary

- When Can Machines Learn?
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?

Lecture 10: Logistic Regression

Lecture 11: Linear Models for Classification

- Linear Models for Binary Classification three models useful in different ways
- Stochastic Gradient Descent follow negative stochastic gradient
- Multiclass via Logistic Regression
 predict with maximum estimated P(k|x)
- Multiclass via Binary Classification predict the tournament champion
- · next: from linear to nonlinear
- 4 How Can Machines Learn Better?