

Unidad 1: "Límites y Continuidad de funciones de una variable real".

Matemática II - Comisión Diaz Almada

Intervalo

DEFINICIÓN: Un intervalo es un conjunto de números reales comprendidos entre dos elementos, **a** y **b**, llamados extremos.

Tipos de Intervalos

Sean $a, b \in R/a < b$

Llamamos **amplitud del intervalo** a la diferencia **b – a**

• Intervalo abierto de extremos a y b

El conjunto: $\{x/a < x < b\}$. Notación: (a, b)

Intervalo

• Intervalo cerrado de extremos a y b

El conjunto: $\{x/a \le x \le b\}$. Notación: [a,b]

· Intervalo semiabierto a izquierda o semicerrado a derecha

El conjunto: $\{x/a < x \le b\}$. Notación: (a, b]

· Intervalo semicerrado a izquierda o semiabierto a derecha

El conjunto: $\{x/a \le x < b\}$. Notación: [a, b)

• CASO ESPECIAL: Intervalo degenerado. Cuando a = b

El conjunto: $\{x/x = a\}$.

Matemática II – Comisión Diaz Almada

Intervalos infinitos o no acotados

• Intervalo no acotado superiormente

El conjunto: $\{x/a \le x < \infty\}$. Notación: $[a, \infty)$

El conjunto: $\{x/a < x < \infty\}$. Notación: (a, ∞)

· Intervalo no acotado inferiormente

El conjunto: $\{x/-\infty < x \le b\}$. Notación: $(-\infty, b]$

El conjunto: $\{x/-\infty < x < b\}$. Notación: $(-\infty, b)$

· Intervalo no acotado ni superior ni inferiormente

El conjunto: $\{x/-\infty < x < \infty\}$ que es R. Notación: $(-\infty, \infty)$

Entorno

DEFINICIÓN: Llamamos entorno de un punto (x_0) a todo intervalo abierto que contiene a dicho punto

$$E(x_0) = \{(a, b)/a < x_0 < b\}$$

• Entorno simétrico de centro x_0 y radio δ (formas alternativas de escribir su notación)

$$E(x_0, \delta) = \{x \in R/|x - x_0| < \delta\} = \{x \in R/x_0 - \delta < x < x_0 + \delta\}$$

= $(x_0 - \delta, x_0 + \delta)$

Matemática II - Comisión Diaz Almada

Entorno Reducido

DEFINICIÓN: Llamamos entorno reducido de un punto (x_0) a todo intervalo abierto que contiene al punto, **excluido dicho punto**

$$E^*(x_0) = \{(a, x_0) \cup (x_0, b)/a < x_0 < b\}$$

• Entorno simétrico reducido de centro x_0 y radio δ (formas alternativas de escribir su notación)

$$E^*(x_0, \delta) = \{ x \in R/0 < |x - x_0| < \delta \}$$

= $\{ x \in R/x_0 - \delta < x < x_0 + \delta \land x \neq x_0 \}$

Función

DEFINICIÓN: Una función f es una regla que asigna a cada elemento x de un conjunto D exactamente \underline{un} elemento, llamado f(x), de un conjunto R.

- Generalmente en este curso consideraremos tanto a D como a R como conjuntos de números reales
- D es el dominio de la función
- El rango de f es el conjunto de todos los valores posibles de f (x) conforme x varía a través de todo el dominio

Matemática II - Comisión Diaz Almada

Función – representaciones visuales

¿Qué ejemplos de funciones usadas en ciencias económicas se les ocurren?

- Sea f(x) una función real de variable real definida en un entorno reducido de x_0 . Nos va a interesar estudiar qué ocurre con los valores de dicha función a medida que x se acerca a x_0 , pero sin importar el valor que toma en el punto x_0 .
- Investiguemos el comportamiento de la función $f(x) = x^2 x + 2$ para valores de **x** cercanos a 2.

Matemática II - Comisión Diaz Almada

Límite de una función

 La siguiente tabla muestra los valores de f(x) para valores de x cercanos a 2, pero no iguales a 2.

X	f(x)	X	f(x)
1.0	2.000000	3.0	8.000000
1.5	2.750000	2.5	5.750000
1.8	3.440000	2.2	4.640000
1.9	3.710000	2.1	4.310000
1.95	3.852500	2.05	4.152500
1.99	3.970100	2.01	4.030100
1.995	3.985025	2.005	4.015025
1.999	3.997001	2.001	4.003001

En la figura vemos que cuando x se aproxima a 2 (por ambos lados de 2), f(x) se aproxima a 4.

Matemática II – Comisión Diaz Almada

Límite de una función

- Parece que podemos hacer que los valores de **f(x)** estén tan cerca de 4 como queramos, tomando a **x** suficientemente cercano a 2.
- Esto lo expresamos diciendo que "el límite de la función $f(x) = x^2 x + 2$ cuando **x** tiende a 2 es igual a 4".
- La notación para esto es

$$\lim_{x \to 2} (x^2 - x + 2) = 4$$

- Otro ejemplo: $f(x) = \frac{x^2 1}{x 1}$ para valores de **x** cercanos a 1.
- Parece que podemos hacer que los valores de *f(x)* estén tan cerca de 2 como queramos, tomando a *x* suficientemente cercano a 1.
- Aún cuando el 1 no pertenece al dominio y el 2 no pertenece a la imagen.
- La notación para esto es

$$\lim_{x \to 1} \left(\frac{x^2 - 1}{x - 1} \right) = 2$$

Matemática II – Comisión Diaz Almada

Límite de una función

DEFINICIÓN: Sea f la función definida sobre algún intervalo abierto que contiene al número a, excepto posiblemente en a misma. Entonces, decimos que el límite de f(x) cuando x tiende a a es a, y lo expresamos como

$$\lim_{x \to a} f(x) = L$$

Si para cada $\varepsilon>0$ existe un número $\delta>0$ tal que

si
$$0 < |x - a| < \delta$$
 entonces $|f(x) - L| < \varepsilon$

DIAZ ALMADA

• Geométricamente, si el límite existe, podemos encontrar un $\delta > 0$ tal que si restringimos a \mathbf{x} en el intervalo $(a - \delta, a + \delta)$ y tomamos $x \neq a$, entonces la función y = f(x) está entre $y = L - \varepsilon$ e $y = L + \varepsilon$.

Matemática II - Comisión Diaz Almada

Límites laterales de una función

Dada una función y = f(x) que tiene por límite $\lim_{x \to a} f(x) = L$, la variable independiente \mathbf{x} puede acercarse al punto \mathbf{a} por izquierda (a^-) o por derecha (a^+) , es así como surgen los límites laterales.

• Definición de límite por izquierda

$$\lim_{x \to a^{-}} f(x) = L$$

Si para todo $\varepsilon>0$ existe un número $\delta>0$ tal que

si
$$a - \delta < x < a$$
 entonces $|f(x) - L| < \varepsilon$

Límites laterales de una función

• Definición de límite por derecha

$$\lim_{x \to a^+} f(x) = L$$

Si para todo $\varepsilon>0$ existe un número $\delta>0$ tal que

si
$$a < x < a + \delta$$
 entonces $|f(x) - L| < \varepsilon$

• IMPORTANTE: El límite de una función en un punto existe si y solo si los límites laterales existen y son iguales (esto es un teorema)

$$\lim_{x \to a} f(x) = L \quad \Leftrightarrow \quad \lim_{x \to a^{-}} f(x) = L = \lim_{x \to a^{+}} f(x)$$

Matemática II - Comisión Diaz Almada

Límite infinito

DEFINICIÓN: Sea **f** la función definida sobre algún intervalo abierto que contiene al número **a**, excepto posiblemente en **a** misma. Entonces,

$$\lim_{x \to a} f(x) = \infty$$

Significa que para todo número M positivo existe un número $\delta>0$ tal que

si
$$0 < |x - a| < \delta$$

entonces $f(x) > M$

Límite infinito

DEFINICIÓN: Sea f la función definida sobre algún intervalo abierto que contiene al número a, excepto posiblemente en a misma. Entonces,

$$\lim_{x \to a} f(x) = -\infty$$

Significa que para todo número N negativo existe un número $\delta>0$ tal que

si
$$0 < |x - a| < \delta$$

entonces $f(x) < N$

Matemática II – Comisión Diaz Almada

Límite al infinito

DEFINICIÓN: Sea f la función definida sobre algún intervalo (a, ∞) . Entonces,

$$\lim_{x \to \infty} f(x) = L$$

Significa que los valores de **f(x)** pueden aproximarse arbitrariamente a L tanto como se desee, eligiendo a **x** suficientemente grande.

Bibliografía

- Casparri (2001), pp. 13 26, 107 122
- Stewart (2012), pp. 9 19, 87 116