Solution Notes p3010 2001 MROD

Numerical Analysis I

Question A.

A=2 is the base of the floating point implementation, P=24 is the number of digits (of base B) of precision, emax = +127, emin = -126 are the limits of the exponent.

The exponent takes emax - emin + 3 = 256 stored values, requiring 8 bits.

The significand is stored in 23 lits (p=23 + 1 hidden lit).

The expanent e is stored as e + e max.

Exponent	Fraction	Represents	
e=emin-1	f = 0	±O	zero
e=emin-1	f # 0	±0.fx2emin	denomal numbers
emin ≤ e ≤ e max	any f	±1.fx2e	normalised numbers
e=enax+1	f = 0	±∞	infinities
e=emax+1	$f \neq 0$	NaN	Not a Number
			[S marks]

[6 marks]

[6 marks]

- (a) x w n evaluates to NaN in all cases
- (b) +0 w " " "
- (c) $\times \omega \pm \infty$ evaluates to $\pm \infty$ for $\omega = + \text{ or } *$
- " ± 0 for $\omega = /$ (d) Ito evaluates to +00
- 1-00 " " NaN

(e) z = 1 x 2 emin = 2 -126

- (f) largest representable number smaller than ? = largest representable positive denomal number = 0.11,..1 x 2 emin = (1 - 2-23) x 2-126
- (3) smallest representable positive number = smallest positive denomal number = 0.00...01 × 2 emin = 2-23 × 2 emin = 2-149 [3 marks]