<título>

NOMBRE DE AUTOR

título

subtítulo

autor

título. 1a ed. Buenos Aires: 2023.

000 p.; 15.5x23 cm. ISBN 978-950-793-000-0

1.

CDD.

Fecha de catalogación: oo/oo/20xx

© 20xx, autor

© 20xx, Ediciones Imago Mundi

Imagen de tapa: .

Hecho el depósito que marca la ley 11.723

Impreso en Argentina, tirada de esta edición: ooo ejemplares

Ninguna parte de esta publicación, incluido el diseño de cubierta, puede ser reproducida, almacenada o transmitida de manera alguna ni por ningún medio, ya sea eléctrico, químico, mecánico, óptico, de grabación o de fotocopia, sin permiso previo por escrito del editor. Este libro se terminó de imprimir en el mes de xxxx de 20xx en San Carlos Impresiones, Virrey Liniers 2203, Ciudad Autónoma de Buenos Aires, República Argentina.

Lorem Ipsum

A la memoria de Nelson

Sumario

	Agradecimiento a Donald Knuth		•		XI
1	¿Por qué sube y baja la bolsa de valores?				1
2	Análisis estructural de una viga trapezoidal				5
3	El ADN: estructura química y función				9
	Referencias				13
	Índice de autoras y autores del aparato bibliográfico				14

Agradecimiento a Donald Knuth

Este libro no podría comenzar sin expresar nuestro más sincero agradecimiento a uno de los pioneros más influyentes en el campo de la informática: el profesor Donald E. Knuth. Su legado ha dejado una huella indeleble en la historia de la ciencia computacional, y su contribución va mucho más allá de los límites del software y las matemáticas. Este prólogo es un tributo a su extraordinaria carrera y a su trabajo monumental, en particular a la creación de TEX, el sistema tipográfico que ha revolucionado la manera en que preparamos documentos técnicos, científicos y académicos.

El nombre de Knuth está íntimamente asociado con la obra maestra *The Art of Computer Programming*, una serie de volúmenes que sigue siendo la referencia definitiva en el campo de la algoritmia y las estructuras de datos. Sin embargo, uno de sus aportes más significativos a la comunidad académica es la creación de TEX, un sistema diseñado para permitir la producción de textos con calidad tipográfica profesional. Su diseño no solo es un testimonio de su genio matemático, sino también de su amor por la tipografía.

Es importante reconocer que TEX surgió como una solución a un problema personal que Knuth enfrentó mientras escribía el segundo volumen de su serie. Insatisfecho con la calidad de impresión de las fórmulas matemáticas en su libro, decidió tomar cartas en el asunto y crear un sistema que permitiera a los matemáticos, científicos y académicos preparar documentos con una presentación impecable. TEX ha sido adoptado de manera global en la comunidad académica, especialmente en matemáticas, física y ciencias de la computación, debido a su capacidad para manejar con precisión la complejidad de las notaciones matemáticas.

No obstante, uno de los derivados más conocidos de TEX es LATEX, un sistema de macros desarrollado por Leslie Lamport, que simplifica el uso de TEX y lo hace accesible a un público más amplio. LATEX ha sido una herramienta invaluable para investigadores,

XII Alberto Moyano

estudiantes y profesionales que desean preparar documentos complejos de manera eficiente y con un control riguroso sobre el diseño tipográfico. Aunque Lamport fue responsable de su creación, es el trabajo de Knuth en TEX lo que establece la base sobre la cual LETEX ha florecido.

Knuth ha sido un defensor de los principios de precisión, elegancia y eficiencia en el diseño de software, y sus enseñanzas han inspirado a generaciones de científicos computacionales. Además, su enfoque hacia la corrección de errores es otro aspecto a destacar. A lo largo de su carrera, ha ofrecido recompensas a quienes encontraran errores en su código o en sus libros, un gesto que refuerza su compromiso con la excelencia y la mejora continua.

En resumen, el impacto de Donald Knuth en la informática moderna es inconmensurable. Su trabajo en TeX y sus contribuciones a la ciencia de la computación continúan mejorando la vida de quienes trabajan en el mundo académico y científico. Este documento es un pequeño testimonio de gratitud por sus contribuciones, que han sido fundamentales para el desarrollo de herramientas que, como este artículo, nos permiten comunicar nuestras ideas de manera clara y profesional.

Gracias, profesor Knuth, por su visión, por su pasión y por su dedicación a la excelencia. Su legado sigue vivo en cada línea de código que escribimos, en cada fórmula matemática que tipografiamos y en cada libro que editamos con TEX y LATEX.

CAPÍTULO 1

¿Por qué sube y baja la bolsa de valores?

1.1 Introducción

La bolsa de valores es uno de los mercados financieros más importantes y a menudo genera una gran cantidad de incertidumbre y especulación. Los precios de las acciones y otros activos financieros suben y bajan debido a múltiples factores (Bodie *et al.* 2013; Mishkin 2018). En este artículo, analizaremos algunos de los principales factores que afectan el movimiento de la bolsa y presentaremos una explicación económica de estos movimientos. Utilizaremos fórmulas económicas y un diagrama para ilustrar los conceptos clave.

1.2 Factores que afectan la bolsa de valores

Los precios en la bolsa de valores están influenciados por factores tanto macroeconómicos como microeconómicos. Los más importantes incluyen:

- Noticias económicas: informes de inflación, tasas de interés y crecimiento económico afectan las expectativas de los inversionistas.
- Política monetaria: las decisiones del banco central sobre las tasas de interés influyen directamente en el costo de capital y las expectativas de los rendimientos.
- Resultados empresariales: los ingresos y utilidades reportados por las empresas influyen en la percepción del valor de sus acciones.

1.3 Modelo del precio de las acciones

El valor de una acción puede ser modelado utilizando el enfoque de los flujos de caja descontados (*Discounted Cash Flow, DCF*). El precio de una acción P_0 puede expresarse como la suma de

los dividendos futuros esperados D_t , descontados a una tasa de descuento r, que representa el riesgo del activo:

$$P_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+r)^t} \tag{1.1}$$

Este modelo sugiere que los precios de las acciones subirán si los dividendos futuros esperados aumentan o si la tasa de descuento disminuye. Por el contrario, los precios bajarán si las expectativas de dividendos disminuyen o si la tasa de descuento aumenta.

1.4 Oferta y demanda en el mercado

El precio de una acción está determinado por la oferta y la demanda en el mercado de valores. Si la demanda de una acción supera la oferta, su precio subirá, y si la oferta supera la demanda, el precio caerá. Esto se puede modelar matemáticamente mediante una función de demanda:

$$Q_d = f(P, I, r) \tag{1.2}$$

Donde:

- Q_d es la cantidad demandada de acciones.
- *P* es el precio de la acción.
- *I* es el ingreso de los inversionistas.
- r es la tasa de interés.

De manera similar, la cantidad ofertada de acciones Q_s está influenciada por factores como la liquidez y el número de acciones disponibles.

1.5 Diagrama de la dinámica del mercado

A continuación se presenta un diagrama simplificado utilizando TikZ, que muestra cómo interactúan la oferta y la demanda en el mercado de valores:

En este gráfico, el punto de equilibrio (Q^*, P^*) representa el precio y la cantidad donde la oferta y la demanda se igualan. Si ocurre un cambio en alguno de los factores determinantes de la demanda o la oferta, el punto de equilibrio se desplazará, afectando el precio de las acciones.

Figura 1.1. Interacción de la oferta y la demanda en el mercado de valores.

1.6 Factores adicionales

Además de la oferta y la demanda, otros factores juegan un papel importante en los movimientos de la bolsa:

1.6.1 Política monetaria y fiscal

Las tasas de interés son un factor crucial en la valoración de activos financieros. Según el modelo CAPM (Capital Asset Pricing Model), el retorno esperado de un activo financiero $E(R_i)$ se calcula como:

$$E(R_i) = R_f + \beta_i (E(R_m) - R_f)$$
(1.3)

Donde:

- R_f es la tasa libre de riesgo.
- β_i es la sensibilidad del activo *i* respecto al mercado.
- $E(R_m)$ es el retorno esperado del mercado.

Este modelo indica que si la tasa libre de riesgo R_f aumenta, el retorno esperado de las acciones también aumentará, lo que puede provocar una caída en los precios actuales de las acciones debido a que los inversionistas exigen mayores rendimientos.

1.6.2 Expectativas del mercado

Las expectativas de los inversionistas sobre el futuro son otro factor clave que afecta el precio de las acciones. Los cambios en las expectativas pueden deberse a informes económicos, cambios en la política gubernamental o eventos inesperados como crisis económicas o avances tecnológicos.

1.7 Conclusión

El precio de las acciones en la bolsa de valores está determinado por una compleja interacción de factores económicos y psicológicos. Las fórmulas de valoración financiera, como el modelo de flujos de caja descontados y el CAPM, nos brindan herramientas para entender cómo la información disponible y las expectativas futuras influyen en los movimientos del mercado. Sin embargo, dado que los mercados financieros también están sujetos a la especulación y al comportamiento de los inversionistas, siempre existe un grado de incertidumbre asociado a los movimientos de la bolsa.

CAPÍTULO 2

Análisis estructural de una viga trapezoidal

2.1 Introducción

En el diseño de estructuras, las vigas son elementos fundamentales que soportan cargas a través de una distribución eficiente del material en su sección transversal. Una de las formas geométricas utilizadas en este contexto es la sección trapezoidal, la cual presenta ventajas tanto en términos de resistencia como de rigidez. Este artículo analiza las propiedades geométricas y mecánicas de una viga trapezoidal, destacando su momento de inercia, su comportamiento bajo cargas distribuidas y su aplicación en diversas estructuras.

A continuación, se presenta la figura de una viga trapezoidal. Las bases b_1 y b_2 representan los extremos inferior y superior de la viga, mientras que s es la altura de la sección. El parámetro x denota la longitud total de la viga, variando desde x=0 hasta x=l.

2.2 Momento de inercia de la sección trapezoidal

El momento de inercia es una medida fundamental en el análisis estructural, ya que determina la rigidez de una viga frente

a la flexión. Para una sección trapezoidal, el cálculo del momento de inercia alrededor de su eje neutro se realiza mediante la fórmula (2.1).

$$I_X = \frac{b_1 s^3}{36} + \frac{b_2 s^3}{36} \tag{2.1}$$

donde b_1 y b_2 son las longitudes de las bases de la sección trapezoidal, y s es la altura. Esta fórmula es aproximada para una viga trapezoidal simple con bases paralelas al eje de la viga.

El momento de inercia también puede expresarse para casos más complejos, considerando una sección variable a lo largo de la longitud de la viga, o la adición de refuerzos en la parte superior o inferior.

2.3 Esfuerzo cortante y flexión

La viga trapezoidal se comporta de manera diferente bajo cargas distribuidas dependiendo de la orientación y distribución del material. El esfuerzo cortante V en una sección transversal de la viga bajo una carga distribuida q(x) está dado por:

$$V(x) = \int_0^x q(\xi) \, d\xi \tag{2.2}$$

Por otro lado, el momento flector M(x), que describe la flexión de la viga a lo largo de su longitud, está dado por:

$$M(x) = \int_0^x V(\xi) d\xi \tag{2.3}$$

Estos conceptos son cruciales para el diseño de estructuras, ya que el conocimiento preciso del esfuerzo cortante y la flexión permite a los ingenieros diseñar vigas que puedan soportar grandes cargas sin fallar.

2.4 Aplicaciones de las vigas trapezoidales

Las vigas trapezoidales se utilizan en diversas aplicaciones de la ingeniería civil y mecánica. Una de sus principales ventajas es la reducción de peso en comparación con secciones rectangulares, sin sacrificar la rigidez estructural. Estas vigas se emplean en puentes, edificaciones y estructuras industriales, donde la eficiencia del material es crucial.

Otra ventaja de las secciones trapezoidales es su capacidad para adaptarse a variaciones en la carga. En muchos casos, las cargas no son uniformemente distribuidas a lo largo de la viga, por lo que una sección trapezoidal puede ofrecer una solución más eficiente en comparación con las secciones rectangulares tradicionales.

2.5 Conclusión

El análisis estructural de vigas trapezoidales es un área esencial en la ingeniería estructural. Estas vigas ofrecen una solución eficiente en términos de peso y resistencia, lo que las hace ideales para aplicaciones que requieren materiales livianos pero rígidos. La figura presentada ilustra cómo las dimensiones de la viga, incluidas las bases y la longitud total, afectan su comportamiento estructural, lo que subraya la importancia de la geometría en el diseño de estructuras.

El cálculo del momento de inercia, los esfuerzos cortantes y la flexión proporcionan las herramientas necesarias para garantizar que las vigas trapezoidales puedan soportar las cargas a las que se someten en la práctica.

CAPÍTULO 3

El ADN: estructura química y función

3.1 Introducción

El ácido desoxirribonucleico (ADN) es una molécula biológica fundamental que almacena la información genética de los organismos vivos. Desde una perspectiva química, el ADN es un polímero formado por subunidades conocidas como nucleótidos. Cada nucleótido está compuesto por tres elementos principales: un grupo fosfato, una base nitrogenada y un azúcar de cinco carbonos llamado desoxirribosa. El estudio del ADN combina aspectos tanto de la química orgánica como de la bioquímica para explicar su estructura y función.

3.2 Estructura química del ADN

El ADN está compuesto por una doble hélice formada por dos cadenas de nucleótidos que se enrollan entre sí. Cada cadena está constituida por un esqueleto de grupos fosfato y desoxirribosa, mientras que las bases nitrogenadas se proyectan hacia el interior de la hélice. Las bases nitrogenadas se dividen en dos tipos: purinas (adenina (A) y guanina (G)) y pirimidinas (citosina (C) y timina (T)).

Los nucleótidos están unidos por enlaces fosfodiéster entre el grupo fosfato de un nucleótido y el carbono 3' del azúcar del siguiente nucleótido. Este enlace se representa químicamente como:

Donde *R* y *R'* representan los fragmentos de nucleótidos adyacentes. La doble hélice se mantiene unida por enlaces de hidrógeno entre pares específicos de bases. La adenina siempre forma dos enlaces de hidrógeno con la timina, mientras que la guanina forma

tres enlaces con la citosina, según la regla de complementariedad de las bases. Esto se puede escribir como:

3.3 Estructura tridimensional del ADN

El ADN tiene una forma helicoidal que fue descrita por primera vez en 1953 por James Watson y Francis Crick. Esta estructura es conocida como la doble hélice. En la forma B del ADN, que es la más común en condiciones fisiológicas, las dos hebras se enrollan con un giro hacia la derecha. Las bases nitrogenadas se apilan en el interior de la hélice, aproximadamente a una distancia de 0.34 nanómetros entre sí, mientras que la hélice completa tiene un paso de 3.4 nanómetros, es decir, cada diez pares de bases forman un giro completo.

Figura 3.1. Estructura de la doble hélice del ADN, mostrando el esqueleto de fosfato-desoxirribosa y el apareamiento de bases nitrogenadas.

3.4 Las bases nitrogenadas: Fórmulas y estructuras

Las bases nitrogenadas son derivadas de dos estructuras fundamentales: la purina y la pirimidina. La fórmula general de una purina es la siguiente:

Mientras que la pirimidina se representa de la siguiente manera:

Estas bases se unen entre sí por enlaces de hidrógeno según los siguientes esquemas:

Figura 3.2. Estructura química de la adenina (izquierda) y la timina (derecha).

3.5 Replicación del ADN

Una de las propiedades más importantes del ADN es su capacidad para replicarse de manera precisa. Este proceso es fundamental para la herencia genética y ocurre antes de la división celular. Durante la replicación, las dos cadenas de la hélice se separan y sirven como plantillas para la síntesis de nuevas cadenas complementarias. La enzima ADN polimerasa cataliza la adición de nuevos nucleótidos siguiendo las reglas de complementariedad de bases.

El proceso de replicación puede resumirse de la siguiente manera:

- 1) Las hebras del ADN parental se separan.
- 2) Las nuevas cadenas se sintetizan añadiendo nucleótidos complementarios.
- 3) El resultado es la formación de dos moléculas de ADN idénticas, cada una con una hebra original y una nueva.

3.6 Conclusión

Desde una perspectiva química, el ADN es una molécula compleja que alberga la información necesaria para el desarrollo y funcionamiento de los organismos vivos. Su estructura, basada en la complementariedad de las bases nitrogenadas y los enlaces fosfodiéster, permite la transmisión precisa de información genética durante la replicación. A medida que se han desarrollado nuevas técnicas de análisis molecular, se ha profundizado en el estudio del ADN, lo que ha abierto nuevas posibilidades para el avance de la biotecnología y la medicina.

Referencias

BODIE, ZVI; ALEX KANE Y ALAN MARCUS

2013 Investments, McGraw-Hill, referencia citada en página 1.

KNUTH, DONALD

1969 *The Art of Computer Programming*, 7 vols., Addison-Wesley, referencia citada en página XI.

MISHKIN, FREDERIC

2018 Economics of Money, Banking and Financial Markets, Pearson, referencia citada en página 1.

Índice de autoras y autores del aparato bibliográfico

Bodie, Zvi, 1

Mishkin, Frederic, 1

Colofón

La composición tipográfica de este libro se realizó utilizando gbTeXpublisher.

Las familias tipográficas utilizadas dentro del libro son: IBM Plex, una superfamilia de tipografía abierta, diseñada y desarrollada conceptualmente por Mike Abbink en IBM con colaboración de Bold Monday y Libertinus, bifurcación de la fuente Linux Libertine, diseñada para el texto del cuerpo y la lectura extendida.