

Dynamic Max-Consensus in Multi-Agent Systems and Graph Parameter Estimation in Open Networks

Diego Deplano*, Mauro Franceschelli*, Alessandro Giua*

*Department of Electrical and Electronic Engineering, University of Cagliari, Italy

1TH Seminar – 8 March 2023

Outline

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- **3** Graph parameter estimation in open networks
- 4 Ongoing work: consensus via distributed optimization
- **5** Future perspectives

Outline

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- Graph parameter estimation in open networks
- 4 Ongoing work: consensus via distributed optimization
- 5 Future perspectives

What is an agent?

"Agents are computational systems that inhabit some complex dynamic environment, sense and act autonomously in this environment, and by doing so realize a set of goals or tasks for which they are designed."

P. Maess, "Artificial life meets entertainment: Life like autonomous agents", Communications of the ACM, 1995.

What is an agent? Some examples

Self-driving car

Player

Human's opinion

Computational unit

Model of the agent: dynamical system

An agent is modeled as a dynamical system with a state-space representation:

- Continuous time (CT): $\dot{x}(t) = f(y(t), u(t))$ and y(t) = h(x(t)) with $t \in \mathbb{R}$;
- Discrete time (DT): x(k+1) = f(y(k), u(k)) and y(k) = h(x(k)) with $k \in \mathbb{N}$.

What is a multi-agent system?

"A multi-agent system is a **coupled** network of agents that **work together** to find answers to problems that are **beyond** the individual capabilities or knowledge of each agent."

P. Stone, M. Veloso, "Multiagent systems: A survey from a machine learning perspective", Autonomous Robots, 2000.

What is a multi-agent system? Some examples

Multi-Robot control

Game theory

Social opinion dynamics

Optimization theory

Model of the network: graph

A network of agents is modeled with a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where:

- $V \subset \mathbb{N}$ is the set of nodes (grey circles) modeling the agents;
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is the set of edges (black lines) modeling the flow information among agents.

Notation and working assumptions

We consider Multi-Agents Systems (MASs) under the following working assumptions:

- Discrete time framework: $k \in \mathbb{N}$;
- A number of agents equal to $n \in \mathbb{N}$;
- Scalar agents: $x_i(k) \in \mathbb{R}$;
- Time-varying scalar inputs: $u_i(k) \in \mathbb{R}$ for all $k \in \mathbb{N}$;
- Identity output map: $y_i(k) = x_i(k)$ for all $k \in \mathbb{N}$;
- Undirected interaction graph: G = (V, E);
- Set of neighbors $\mathcal{N}_i = \{j \in \mathcal{V} : (i,j) \in \mathcal{E}\}$ for agents $i \in \mathcal{V}$;
- Local interaction protocols $f_i : \mathbb{R}^n \to \mathbb{R}$ for agents $i \in \mathcal{V}$;

Thus, the dynamics of each agent is

$$x_i(k+1) = f_i(u_i(k), x_i(k), x_j(k) : j \in \mathcal{N}_i), \quad \forall i \in \mathcal{V}, k \in \mathbb{N},$$
 (1)

and $x(k) = [x_1(k), \dots, x_n(k)]^{\mathsf{T}} \in \mathbb{R}^n$ denotes the state of the network.

The finite-time consensus problem

Definition: Static consensus problem

The static consensus problem consists in the design of a set of local interaction protocols f_i such that each agent converges to a function $g:\mathbb{R}^n\to\mathbb{R}$ of the initial agents' states $x(0)=[x_1(0),\ldots,x_n(0)]^{\mathsf{T}}\in\mathbb{R}^n$, i.e., there are $k^*,\varepsilon\geq 0$ such that

$$|x_i(k) - g(x(0))| < \varepsilon, \qquad k \ge k^*, \quad \forall i \in \mathcal{V}.$$

Definition: Dynamic consensus problem

The dynamic consensus problem consists in the design of a set of local interaction protocols f_i such that each agent converges to a function $g:\mathbb{R}^n\to\mathbb{R}$ of the time-varying inputs $u(k)=[u_1(k),\ldots,u_n(k)]^{\mathsf{T}}\in\mathbb{R}^n$, i.e., there are $k^*,\varepsilon\geq 0$ such that

$$|x_i(k) - g(u(k))| < \varepsilon, \qquad k \ge k^*, \quad \forall i \in \mathcal{V}.$$

Literature: dynamic consensus on the average function

The **average** is the *sum of values of a data set divided by the number of values*, which is denoted by:

$$\operatorname{avg}(u(k)) = \frac{1}{n} \sum_{i \in \mathcal{V}} u_i(k).$$

- · Spanos, Olfati-Saber, and Murray, "Dynamic consensus on mobile networks", in IFAC World Congr. (2005)
- Freeman, Yang, and Lynch, "Stability and convergence properties of dynamic average consensus estimators", in IEEE 45th Conf. on Dec. and Control (2006)
- Zhu and Martinez, "Discrete-time dynamic average consensus", in Automatica (2010)
- Chen, Cao and Ren, "Distributed average tracking of multiple time-varying reference signals with bounded derivatives", in IEEE Trans. Autom. Control (2012).
- Kia, Cortés, and Martinez "Dynamic average consensus under limited control authority and privacy requirements", in Int. Journal of Robust and Nonlin. Control (2015)
- Scoy, Freeman, and Lynch, "A fast robust nonlinear dynamic average consensus estimator in discrete time", in 5th IFAC NecSys (2015)
- Franceschelli, and Gasparri, "Multi-stage discrete time and randomized dynamic average consensus", in Automatica (2019)
- · George and Freeman, "Robust dynamic average consensus algorithms", in IEEE Trans. Autom. Control (2019)
- Montijano E. and J.I., Sagues, and Martinez, "Robust discrete time dynamic average consensus", in IEEE Trans. Autom. Control (2019)
- Kia, Scoy, Cortés, Freeman, Lynch and Martinez, "Tutorial on dynamic average consensus: The problem, its applications, and the algorithms", in IEEE Control Systems Magazine (2019).

Literature: dynamic consensus on the median function

The **median** is the *middle value separating the greater and lesser halves of a data set*, which, letting $u_1(k), \ldots, u_n(k)$ be sorted in ascending order, is denoted by:

$$\operatorname{med}(u(k)) = \begin{cases} u_{\frac{n+1}{2}}(k) & \text{if } n \text{ is odd} \\ \frac{1}{2}(u_{\frac{n}{2}}(k) + u_{\frac{n}{2}+1}(k)) & \text{if } n \text{ is even} \end{cases}.$$

- Sanai Dashti, Seatzu, and Franceschelli, "Dynamic consensus on the median value in open multi-agent systems", in IEEE 58th Conf. on Dec. and Control (2019).
- Vasiljevic, Petrovic, Arbanas, and Bogdan, "Dynamic median consensus for marine multi-robot systems using acoustic communication", in IEEE Robot. and Autom. Lett. (2020).
- Yu, Chen and Kar, "Dynamic median consensus over random networks", in IEEE 60th Conf. on Dec. and Control (2021).

Literature: dynamic consensus on the max function

The **maximum** is the *highest value of a data set*, which is denoted by:

$$\max(u(k)) = \max_{i \in \mathcal{V}} u_i(k).$$

- Deplano, Franceschelli, and Giua, "Dynamic min and max consensus and size estimation of anonymous multi-agent networks", in IEEE Trans. Autom. Control (2023).
- Deplano, Franceschelli, and Giua, "Dynamic max-consensus with local self-tuning", in IFAC-PapersOnLine (2022).
- Deplano, Franceschelli, and Giua, "Distributed tracking of graph parameters in anonymous networks with time-varying topology", in IEEE Conference on Decision and Control, (2021).
- Deplano, Franceschelli, Giua, "Discrete-time Dynamic consensus on the max value", in 15th European Workshop on Advanced Control and Diagnosis, Springer (2021)
- Lippi, Furchi, Marino, and Gasparri, "An adaptive distributed protocol for finite-time infimum or supremum dynamic consensus", in IEEE Control Systems Letters (2023).
- Sen, Sahoo, and Slingh, "Global max-tracking of multiple time-varying signals using a distributed protocol", in IEEE Control and Sys. Lett. (2022)

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;

Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks" in 3rd IFAC NecSys (2012)

Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom* Control (2013)

Online optimization in distributed systems;

Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in *European Control Conf.* (2021)

Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)

- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010
- and many others...

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;
 - Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks", in 3rd IFAC NecSys (2012)
 - Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2013)
- Online optimization in distributed systems;
 - Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in *European Control Conf.* (2021)
 - Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)
- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010
- and many others...

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;

Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks", in 3rd IFAC NecSys (2012)

Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2013)

Online optimization in distributed systems;

Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in European Control Conf. (2021)

Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)

- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010
- and many others...

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;
 - Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks", in 3rd IFAC NecSys (2012)
 - Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2013)
- Online optimization in distributed systems;
 - Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in *European Control Conf.* (2021)
 - Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)
- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010)
- and many others...

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;
 - Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks", in 3rd IFAC NecSys (2012)
 - Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2013)
- Online optimization in distributed systems;
 - Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in *European Control Conf.* (2021)
 - Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)
- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010)
- and many others...

Possible applications range across different fields:

- Real-time monitoring in decentralized systems;
 Simpson-Porco and Bullo, "Distributed monitoring of voltage collapse sensitivity indices", in *IEEE Trans. Smart Grid* (2016)
- Network's parameter estimation in anonymous networks;
 - Garin, Varagnolo, and Johansson, "Distributed estimation of diameter, radius and eccentricities in anonymous networks", in 3rd IFAC NecSys (2012)
 - Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2013)
- Online optimization in distributed systems;
 - Jiang and Charalambous, "Distributed ADMM using finite-time exact ratio consensus in digraphs", in European Control Conf. (2021)
 - Bastianello and Carli, "ADMM for Dynamic Average Consensus Over Imperfect Networks", in 9th IFAC Necsys (2022)
- Distributed synchronization in wireless sensor networks;
 - Z. Dengchang et al., "Time synchronization in wireless sensor networks using max and average consensus protocol" (2013)
- Leader election in multi-agent systems;
 - T. Borsche and S. A. Attia, "On leader election in multi-agent control systems" (2010)
- and many others...

Outline

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- Graph parameter estimation in open networks
- Ongoing work: consensus via distributed optimization
- 5 Future perspectives

Static max-consensus protocol

Problem: The agents want to estimate the maximum among their initial values, i.e.,

$$\max(x(0)) = \max_{i \in \mathcal{V}} x_i(0).$$

The most popular max-consensus protocol is the following

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{x_j(k-1)\}, \qquad i \in \mathcal{V}.$$

Example: network with n = 10 agents, with initial conditions:

$$x_1(0) = 1$$

 $x_2(0) = 2$
 \vdots
 $x_{10}(0) = 10$

A naive generalization to the dynamic problem

Problem: The agents want to track the maximum among time-varying inputs, i.e.,

$$\max(u(k)) = \max_{i \in \mathcal{V}} u_i(k).$$

A naive generalization is the following

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{x_j(k-1), u_i(k)\}, \qquad i \in \mathcal{V}.$$

Example: network with n = 10 agents, with initial conditions:

$$x_1(0) = u_1(0) = 1$$

 $x_2(0) = u_2(0) = 2$
 \vdots
 $x_{10}(0) = u_{10}(0) = 10$

Our proposed protocols

• The proportional dynamic consensus protocol (PDMC) is

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{ \alpha \cdot x_j(k-1), u_i(k) \}, \qquad \alpha \in (0,1), i \in \mathcal{V},$$

Deplano, Franceschelli, Giua, "Discrete-time Dynamic consensus on the max value", in 15th European Workshop on Advanced Control and Diagnosis, Springer (2021)

The dynamic consensus protocol (DMC) is

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{x_j(k-1) - \alpha, u_i(k)\}, \qquad \alpha \ge 0, \ i \in \mathcal{V}.$$

Deplano, Franceschelli, and Giua, "Dynamic min and max consensus and size estimation of anonymous multi-agent networks", in *IEEE Trans. Autom. Control* (20223).

• The exact dynamic consensus protocol (EDMC) is

$$x_i^0(k) = u_i(k)$$

 $x_i^{\ell}(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{x_j(k-1)\}, \quad \ell = 1, \dots, m, \qquad m \ge 1, \ i \in \mathcal{V}.$

Deplano, Franceschelli, and Giua, "Dynamic min and max consensus and size estimation of anonymous multi-agent networks", in *IEEE Trans. Autom. Control* (20223).

DMC Protocol: Dynamic Max-Consensus

(Input): Tuning parameter $\alpha > 0$ (Initialization): $x_i(0) \in \mathbb{R}$ for $i \in \mathcal{V}$

(Execution): for $k = 1, 2, 3, \ldots$ each node i does

- 1) Gather $x_i(k-1)$ from each neighbor $j \in \mathcal{N}_i$
- 2) Update the current state according to

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \left\{ x_j(k-1) - \alpha, u_i(k) \right\}$$

Deplano, Franceschelli, and Giua, "Dynamic min and max consensus and size estimation of anonymous multi-agent networks", in *IEEE Trans. Autom. Control* (20223).

A simple example

Initial conditions

$$u_1(0) = 1, x_1(0) = 0$$

 $u_2(0) = 2, x_2(0) = 2$

$$u_3(0) = 3, x_3(0) = 5$$

Remarks:

- Regardless of the initial condition, the agents' state converge to a neighborhood of the maximum value of the inputs that depends on α ;
- When the maximum input decreases, the agents' states decreases with a rate given by α .
- Can we do better than this? Yes

STDMC Protocol: Self-Tuning Dynamic Max-Consensus

(Input): uning parameters $\alpha^{\text{MAX}} \ge \alpha^{\text{MIN}} > 0$

(Initialization): $x_i(0) \in \mathbb{R}$ for $i \in \mathcal{V}$

$$\alpha_i(0) \in \{\alpha^{\text{MIN}}, \alpha^{\text{MAX}}\} \text{ for } i \in \mathcal{V}$$

(Execution): for $k = 1, 2, 3, \ldots$ each node i does

- 1) Gather $x_j(k-1)$ and $\alpha_j(k-1)$ from each neighbor $j \in \mathcal{N}_i$
- 2) Update the current state according to

$$x_i(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{x_j(k-1) - \alpha_j(k-1), u_i(k)\}$$

3) Update the current parameter according to

$$\alpha_i(k) = \begin{cases}
\alpha^{\text{MAX}} & \text{if } x_i(k) < x_i(k-1) \\
\alpha^{\text{MIN}} & \text{otherwise}
\end{cases}$$

Deplano, Franceschelli, and Giua, "Dynamic max-consensus with local self-tuning", in IFAC-PapersOnLine (2022).

A simple example

Initial conditions

$$u_1(0) = 1, x_1(0) = 0, \alpha_1(0) = 0$$

 $u_2(0) = 2, x_2(0) = 2, \alpha_2(0) = 0$
 $u_3(0) = 3, x_3(0) = 5, \alpha_3(0) = 0$

Parameters

$$\alpha^{\text{min}} \ll \alpha^{\text{max}}$$

Working assumption

Assumption 1

The variation of the reference signals $u_i(k)$ are bounded a constant $\Pi \ge 0$, i.e., for $k \ge 0$ it holds

$$\Delta u_i(k) = |u_i(k) - u_i(k-1)| \le \Pi$$

Any continuous-time signal with bounded derivative can be over-sampled to reduce its absolute variation.

Working assumption

Assumption 1

The variation of the reference signals $u_i(k)$ are bounded a constant $\Pi \ge 0$, i.e., for $k \ge 0$ it holds

$$\Delta u_i(k) = |u_i(k) - u_i(k-1)| \le \Pi$$

Any continuous-time signal with bounded derivative can be over-sampled to reduce its absolute variation.

Theorem 1: Tracking error of STDMC Protocol

Consider time-varying reference signals $u_i(k) \in \mathbb{R}$ under Assumption 1 and let $\delta_{\mathcal{G}}$ be the diameter of graph \mathcal{G} . If \mathcal{G} is connected and if

$$\alpha^{\text{MAX}} > \Pi$$

then $\exists T_c \geq 0$ such that the tracking error $e_i(k)$ of each agent is bounded by ε_{tr} , i.e., for $k \geq T_c$ it holds

$$e_i(k) = |x_i(k) - \max(u(k))| \le \varepsilon_{tr} = (\alpha^{\text{MAX}} + \Pi)\delta_{\mathcal{G}}, \quad i \in \mathcal{V}$$
 (2)

and moreover

$$T_c \le \max \left\{ \frac{\overline{x}(0) - \overline{u}(0)}{\alpha^{\text{MAX}} - \Pi}, \delta_{\mathcal{G}} \right\}.$$

Theorem 2: Steady-state error of STDMC Protoco

If the reference signals remain constant for $k \ge k_0$, then the steady state error $e_i(k)$ of each agent is bounded by ε_{ss} , i.e., for $k \ge k_0 + 2\delta_{\mathcal{G}}$ by ε_{ss} ,

$$e_i(k) = |x_i(k) - \max(u(k))| \le \varepsilon_{ss} = \alpha^{\text{MIN}} \delta_{\mathcal{G}}, \quad i \in \mathcal{V}.$$
 (3)

Theorem 1: Tracking error of STDMC Protocol

Consider time-varying reference signals $u_i(k) \in \mathbb{R}$ under Assumption 1 and let $\delta_{\mathcal{G}}$ be the diameter of graph \mathcal{G} . If \mathcal{G} is connected and if

$$\alpha^{\text{MAX}} > \Pi$$

then $\exists T_c \geq 0$ such that the tracking error $e_i(k)$ of each agent is bounded by ε_{tr} , i.e., for $k \geq T_c$ it holds

$$e_i(k) = |x_i(k) - \max(u(k))| \le \varepsilon_{tr} = (\alpha^{\text{MAX}} + \Pi)\delta_{\mathcal{G}}, \quad i \in \mathcal{V}$$
 (2)

and moreover

$$T_c \le \max \left\{ \frac{\overline{x}(0) - \overline{u}(0)}{\alpha^{\text{MAX}} - \Pi}, \delta_{\mathcal{G}} \right\}.$$

Theorem 2: Steady-state error of STDMC Protocol

If the reference signals remain constant for $k \ge k_0$, then the steady state error $e_i(k)$ of each agent is bounded by ε_{ss} , i.e., for $k \ge k_0 + 2\delta_{\mathcal{G}}$ by ε_{ss} ,

$$e_i(k) = |x_i(k) - \max(u(k))| \le \varepsilon_{ss} = \alpha^{\min} \delta_{\mathcal{G}}, \quad i \in \mathcal{V}.$$
 (3)

Theorem 3: Tracking error when the bound Π is unknown

If the agents update their local parameter $lpha_i^{ ext{MAX}}$ according to

$$\alpha_i^{\text{MAX}}(k) = \max_{j \in \mathcal{N}_i \cup \{i\}} \{ \alpha_j^{\text{MAX}}(k-1), \theta \cdot \Delta u_i(k) \}, \quad \theta > 1,$$

then $\exists T_c \ge 0$ such that the tracking error $e_i(k)$ is bounded for $k \ge T_c$ by the following

$$e_i(k) = |x_i(k) - \overline{u}(k)| \le (\theta + 1) \prod \delta_{\mathcal{G}} = \varepsilon_{tr}, \qquad i \in \mathcal{V}.$$
 (4)

Main features of the STDMC Protocol

- Robustness to re-initialization;
- **Scalability** in large networks: both the memory burden and the number of exchanged messages do not increase with the dimension of the network.
- Self-tuning logic to achieve arbitrary small steady state error and to cope with unknown inputs variation;
- Boundedness of the tracking error.

Piece-wise linear inputs - Line graph of 6 nodes

$$\alpha^{\text{MAX}} = 0.03$$

$$\alpha^{\mathrm{MIN}}$$
 = 0.01

$$\Pi = 0.02$$

$$\varepsilon_{tr}$$
 = 0.25

$$\varepsilon_{ss}$$
 = 0.05

Piece-wise linear inputs - Line graph of 6 nodes

$$\alpha^{\text{MAX}} = 0.03$$

$$\alpha^{\text{MIN}} = 1 \cdot 10^{-8}$$

$$\Pi = 0.02$$

$$\varepsilon_{tr}$$
 = 0.25

$$\varepsilon_{ss} = 5 \cdot 10^{-8}$$

Arbitrary small steady state error!

Piece-wise linear inputs - Line graph of 6 nodes

$$\alpha^{\text{MAX}} = 0.06$$

$$\alpha^{\text{MIN}} = 1 \cdot 10^{-8}$$

$$\Pi = 0.02$$

$$\varepsilon_{tr}$$
 = 0.40

$$\varepsilon_{ss} = 5 \cdot 10^{-8}$$

Faster convergence rate! But higher tracking error...

Unknown bound Π - Line graph of 6 nodes

$$\alpha_i^{\text{MAX}}(0) = 0.01 \quad \alpha^{\text{MIN}} = 1 \cdot 10^{-8} \quad \Pi = 0.02 \quad \theta = 1.1 \quad \varepsilon_{tr} = 0.22 \quad \varepsilon_{ss} = 5 \cdot 10^{-8}$$

$$\theta$$
 = 1.1

$$\varepsilon_{tr} = 0.22$$

$$\varepsilon_{ss} = 5 \cdot 10^{-8}$$

The assumption $\alpha_i^{\text{MAX}}(0) > \Pi$ is not satisfied!

Sinusoidal inputs - Line graph of 6 nodes

$$\alpha^{\text{MAX}} = 0.06$$

$$\alpha^{\text{MIN}} = 1 \cdot 10^{-8}$$

$$\Pi = 0.02$$

$$\varepsilon_{tr} = 0.40$$

$$\varepsilon_{ss} = 5 \cdot 10^{-8}$$

Random inputs - Random graph of 100 nodes with diameter $\delta_{\mathcal{G}}$ = 5

$$\alpha^{\text{MAX}} = 0.06$$

$$\alpha^{\text{MIN}} = 1 \cdot 10^{-8}$$

$$\Pi = 0.02$$

$$\varepsilon_{tr}$$
 = 0.40

$$\varepsilon_{ss} = 5 \cdot 10^{-8}$$

Outline

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- **3** Graph parameter estimation in open networks

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \operatorname{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes.

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Initial time k = 0

$$e_i(0) = 3, \quad \forall i \in V$$

$$d(0) = r(0) = 3$$

University of Cagliari, Italy

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \mathsf{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes,

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Initial time k = 0

$$e_i(0) = 3, \quad \forall i \in V$$

$$d(0) = r(0) = 3$$

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \mathsf{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes,

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Initial time k = 0

$$e_i(0) = 3, \quad \forall i \in V$$

$$d(0) = r(0) = 3$$

Diego Deplano
University of Cagliari, Italy

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \mathsf{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes,

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Initial time k = 0

$$e_i(0) = 3, \quad \forall i \in V$$

$$d(0) = r(0) = 3$$

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \mathsf{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes,

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Time of change $k = k^*$

$$e_i(k^*) = \cdots, \quad \forall i \in V$$

 $d(k^*) = \cdots, \quad r(k^*) = \cdots$

Let n(k) be the time-varying number of agents and $dist_{ij}(k)$ be the length of the shortest path between agents i, j, then:

• The eccentricity $e_i(k)$ of node $i \in V$ at time k is defined as the maximal distance from i of any other node,

$$e_i(k) = \max_{j \in V} \mathsf{dist}_{ij}(k).$$

• The diameter d(k) of graph $\mathcal{G}(k)$ at time k is defined as the maximal eccentricity among the nodes,

$$d(k) = \max_{i \in V} e_i(k).$$

• The radius r(k) of graph $\mathcal{G}(k)$ at time k is defined as the minimal eccentricity among the nodes,

$$r(k) = \min_{i \in V} e_i(k).$$

Time of change $k = k^*$

$$e_1(k^*) = e_6(k^*) = 5$$

 $e_2(k^*) = e_5(k^*) = 4$
 $e_3(k^*) = e_4(k^*) = 3$
 $d(k^*) = 5, \qquad r(k^*) = 3$

The methodology is based on statistical inference concepts and can be outlined in three steps:

- **Generation**: When a node i joins the network, it generates p > 0 independent random numbers $u_{ij} \in [0,1]$ from a uniform distribution, i.e., $u_{ij} \sim U(0,1)$ with j = 1,...,p;
- **2 Estimation**: The n(k) active nodes execute the STDMC Protocol, thus each node i computes p estimates x_{ij} with j=1,...,p of the maximum value among each local set $[u_{1j},u_{2j},...]$;
- **3 Inference**: Each node i infers the estimate $\hat{n}_i(k)$ of the network size n(k) by maximum likelihood estimation from its own set of estimations $[x_{i1},...,x_{ip}]$.

Varagnolo, Pillonetto, and Schenato, "Distributed cardinality estimation in anonymous networks", in *IEEE Trans. Autom. Control* (2014)

Diego Deplano University of Cagliari, Italy

Diameter and radius estimation: methodology

The methodology exploits the specific steady state error of the STDMC protocol and can be outlined in three steps:

- **1 Generation**: When a node i joins the network, it generates p > 0 independent random numbers $u_{ij} \in [0,1]$ from a uniform distribution, i.e., $u_{ij} \sim U(0,1)$ with j=1,...,p;
- **2** Estimation: The n(k) active nodes execute two instances of the STDMC Protocol with different parameters α^{MIN} to estimate the maximum value among each local set $[u_{1i}, u_{2i}, ...]$:
 - Let x_{ij} be the estimates when $\alpha^{\text{MIN}} = \alpha^*$ for i = 1, ..., p:
 - Let y_{ij} be the estimates when $\alpha^{MIN} = \beta^*$ for i = 1, ..., p.
- **3 Inference**: Each node i computes p estimates ε_{ij} with $j = 1, \dots, p$ of their own eccentricity by exploiting the different steady state errors between x_{ij} and y_{ij} due to $\beta^* > \alpha^* > 0$. Then, it infers the diameter and the radius by running another instance of the STDMC Protocol to estimate z_{ij} the maximum value among each local set of variables $[\varepsilon_{1i}, \varepsilon_{2i}, \ldots]$.

Deplano, Franceschelli, and Giua, "Distributed tracking of graph parameters in anonymous networks with time-varying topology", in IEEE Conference on Decision and Control, (2021)

$$\alpha^{\text{MAX}} = 0.1$$
, $\alpha^{\text{MIN}} = 10^{-12}$, cardinality $s(k)$, diameter $d(k)$, radius $r(k)$

Diego Deplano University of Cagliari, Italy

Outline

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- Graph parameter estimation in open networks
- 4 Ongoing work: consensus via distributed optimization
- 5 Future perspectives

Consensus via distributed optimization

The dynamic consensus problems on average, maximum, and median functions can be recast as distributed time-varying optimization problems of the following type

$$x^{*}(k) = \underset{x_{1},...,x_{n}}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{1}{p} |x_{i} - u_{i}(k)|^{p}$$
s.t.
$$x_{i} = x_{j} \quad \forall (i,j) \in \mathcal{E}$$

$$x_{i} \in \mathcal{X}_{i,k} \quad \forall i \in \mathcal{V}.$$

where:

- i) If p = 2 and $\mathcal{X}_{i,k} = \mathbb{R}$, then $x^*(k) = \operatorname{avg}(u(k))$;
- ii) If p = 2 and $\mathcal{X}_{i,k} = \{x \ge u_i(k)\}$, then $x^*(k) = \max(u(k))$;
- iii) If p = 1 and $\mathcal{X}_{i,k} = \mathbb{R}$, then $x^*(k) = \text{med}(u(k))$.

Reference work: Deplano, D., Bastianello, N., Franceschelli, M., & Johansson, K. H. (2023, December), "A unified approach to solve the dynamic consensus on the average, maximum, and median values with linear convergence", in: 62nd IEEE Conference on Decision and Control (CDC), (2023)

ADMM-based protocols

Dynamic average consensus protocol:

$$x_i(k) = \frac{u_i(k) + \sum_{j \in \mathcal{N}_i} z_{ij}(k-1)}{1 + \rho \eta_i};$$

Dynamic maximum consensus protocol:

$$x_i(k) = \max \left\{ u_i(k), \frac{u_i(k) + \sum_{j \in \mathcal{N}_i} z_{ij}(k-1)}{1 + \rho \eta_i} \right\};$$

Dynamic median consensus protocol (Eq. (5)):

$$x_i(k) = u_i(k) + \max\{\theta_i^- - u_i(k), 0\} + \min\{\theta_i^+ - u_i(k), 0\}, \qquad \theta_i^{\pm}(k) = \frac{\sum_{j \in \mathcal{N}_i} z_{ij}(k-1) \pm 1}{\rho \eta_i};$$

where the auxiliary variables are updated according to

$$z_{ij}(k) = (1 - \alpha)z_{ij}(k - 1) + \alpha(2\rho x_j(k) - z_{ji}(k - 1))$$

Diego Deplano
University of Cagliari, Italy

Theorem 4: Tracking error of ADMM-based protocols

Consider time-varying reference signals $u_i(k) \in \mathbb{R}$ under Assumption 1. The tracking error converges linearly to a neighborhood of the consensus with a bounded radius proportional to Π and $\sqrt{|\mathcal{E}|}$.

Corollary: Steady-state error of of ADMM-based protocols

If the reference signals remain constant, then the steady state error is zero

Remarks

- The main novelty is the linear convergence, indeed, ADMM-based protocol are known to converge with sub-linear rate for convex problems that are not strongly convex;
- An advantage of this approach is that the agents do not need to know (or compute) the inputs' derivatives;
- A disadvantage of this approach is that each agent needs to store and share a number of variables which is the double the number of neighbors;
- The convergence occurs asymptotically and not in finite-time.

Theorem 4: Tracking error of ADMM-based protocols

Consider time-varying reference signals $u_i(k) \in \mathbb{R}$ under Assumption 1. The tracking error converges linearly to a neighborhood of the consensus with a bounded radius proportional to Π and $\sqrt{|\mathcal{E}|}$.

Corollary: Steady-state error of of ADMM-based protocols

If the reference signals remain constant, then the steady state error is zero.

Remarks

- The main novelty is the linear convergence, indeed, ADMM-based protocol are known to converge with sub-linear rate for convex problems that are not strongly convex;
- An advantage of this approach is that the agents do not need to know (or compute) the inputs' derivatives;
- A disadvantage of this approach is that each agent needs to store and share a number of variables which is the double the number of neighbors;
- The convergence occurs asymptotically and not in finite-time.

Theorem 4: Tracking error of ADMM-based protocols

Consider time-varying reference signals $u_i(k) \in \mathbb{R}$ under Assumption 1. The tracking error converges linearly to a neighborhood of the consensus with a bounded radius proportional to Π and $\sqrt{|\mathcal{E}|}$.

Corollary: Steady-state error of of ADMM-based protocols

If the reference signals remain constant, then the steady state error is zero.

Remarks:

- The main novelty is the linear convergence, indeed, ADMM-based protocol are known to converge with sub-linear rate for convex problems that are not strongly convex;
- An advantage of this approach is that the agents do not need to know (or compute) the inputs' derivatives;
- A disadvantage of this approach is that each agent needs to store and share a number of variables which is the double the number of neighbors;
- The convergence occurs asymptotically and not in finite-time.

Diego Deplano University of Cagliari, Italy

Simulations in a network with $n \approx 100$ nodes

- [5] Deplano, Franceschelli, and Giua, "Dynamic max-consensus with local self-tuning", in IFAC-PapersOnLine (2022)
- [9] Vasiljevic, Petrovic, Arbanas, and Bogdan, "Dynamic median consensus for marine multi-robot systems using acoustic communication", in *IEEE Robotics and Automation Letters* (2020)
- [24] Franceschelli and Gasparri, "Multi-stage discrete time and randomized dynamic average consensus", in Automatica (2019)

Diego Deplano University of Cagliari, Italy

- 1 Multi-Agent Systems and the Consensus Problem
- 2 Dynamic Max-Consensus Protocols
- Graph parameter estimation in open networks
- Ongoing work: consensus via distributed optimization
- **5** Future perspectives

Future directions

Possible extensions:

- How to deal with asynchronous activation of the agents and packet losses?
- How do noise in the measurements and delays in the communications affect the tracking?
- How to make the protocol robust against malicious agents?

- Optimal reactive power allocation for distributed renewable energy sources;
- Real-time distributed monitoring in wide-area systems for long-term voltage instability;

Future directions

Possible extensions:

- How to deal with asynchronous activation of the agents and packet losses?
- How do noise in the measurements and delays in the communications affect the tracking?
- How to make the protocol robust against malicious agents?

Possible applications:

- Optimal reactive power allocation for distributed renewable energy sources;
- Real-time distributed monitoring in wide-area systems for long-term voltage instability;

Dynamic Max-consensus in Multi-Agent systems and Graph parameter Estimation in Open Networks

Thank you for your attention!

Diego Deplano

Email: diego.deplano@unica.it

Webpage: https://sites.google.com/view/deplanodiego/