1. Una succ. es australa si  $\exists \Pi \in \mathbb{R}_+$   $\xi.q.$   $|a_n| \leq \Pi \ \forall n.$ No es cent, per exemple:  $a_n = (-1)^n = -1, 1, -1, 1, -1, \dots, |p|$ Es australa  $|a_n| \leq 1 \leq 1$  i no té limit jaque  $a_{2n} = 1 \longrightarrow 1$  (el limit si  $\exists$  es inic).  $a_{2n+1} = -1 \longrightarrow -1$ 

a) Xn austada? Veien 2 2 ± Xn ≤ 3 per inducció: :

· H.I. -> 2 4 x 1 4 3 .

· ( > n+1? 2 ≤ ×n+1 ≤ 3?

(i)  $\frac{4(x_n-1)}{x_n} = 2$  (=)  $4x_n-4 = 2x_n = 2x_n = 4$  (=)  $2x_n = 4$  (=)  $4x_n = 2x_n = 2$  (=)  $4x_n = 2x_n = 2$ 

(ii)  $\frac{4(x_n-1)}{x_n} \le 3 \ (=) \ 4x_n-4 \le 3x_n \ (=) \ x_n \le 4$   $x_n \ge 270$  cent pq.  $x_n \le 3 \le 4$ 

b) Xn monst? Verren decreix. i.e. Xn+1 ≤ Xn.

(=) 
$$\frac{4(x_{n}-1)}{x_{n}} \leq x_{n}$$
 (=)  $4x_{n}-4 \leq x_{n}^{2}$   $x_{n} \geq 2x_{n}$ 

(=)  $\times_{n}^{2} - 4 \times_{n} + 4 > 0$  (=) cent pan tot  $\times_{n}$   $\times = \frac{4 \pm \sqrt{16 - 16}}{2} = 2$  =)  $\times_{n} \sqrt{3}$ .

