

目录

ONE 初探数据

变量种类、数据可视化

TWO 搭建模型

构建模型、模型参数的稳定性

THREE 理解模型结果

发生比、边际效应

数据简介

数据来自美国加州大学欧文分校

美国个人收入的普查数据

预测变量是年收入分类

数据的变量说明

变量名	变量类型	说明			
age	数值型变量	年龄			
workclass	类别型变量	工作类型,如公务员、私企职工等			
fnlwgt	数值型变量	抽样权重。(普查时使用的变量,与建模分析无关)			
education	类别型变量	学历,如本科、研究生等			
education_num	数值型变量	受教育年限			
martial-status	类别型变量	婚姻状况			
occupation	类别型变量	所在行业			
relationship	类别型变量	家庭角色,比如丈夫、妻子等			
race	类别型变量	种族			
sex	类别型变量	性别			
capital_gain	数值型变量	该年度投资收益			
capital_loss	数值型变量	该年度投资损失			
hours_per_week	数值型变量	每星期工作时间			
native_country	类别型变量	出生国家			
label	类别型变量	年收入分类,分为两类: ">50K"和 "<=50K"			

预测变量

变量种类

数据可视化

为了聚焦于模型,只使用数值型特征:

- · age
- education_num
- · capital_in
- capital_loss
- hours_per_week

使用数据可视化,得到对数据的直观印象

各变量的直方图

数据可视化

education_num和label的交叉报表

hours_per_week和label的交叉报表

目录

ONE 初探数据

变量种类、数据可视化

TWO 搭建模型

构建模型、模型参数的稳定性

THREE 理解模型结果

发生比、边际效应

搭建模型

构建模型

这行代码表示,检验的假设为:变量
education_num的系数等于0;并非
education_num=0

P-value小于0.05。拒绝education_num

检验假设education_num的系数等于0: print re.f_test("education_num=0") <F test: F=array([[1783.4276255]]), p=0.0, df_denom=26042, df_num=1>

检验假设education_num的系数等于0.32和hours_per_week的系数等于0.04同时成立:
print "检验假设education_num的系数等于0.32和hours_per_week的系数等于0.04同时成立:"
<F test: F=array([[0.01940236]]), p=0.980784667777, df_denom=26042, df_num=2>

2) P-value大于0.05。不能拒绝这两个假设同时成立

搭建模型

模型参数的稳定性

模型结论与实际数据 并不完全相符

Logit Regression Results

Dep. Variable:

Model:

Method:

Date:

Time:

label_code

No. Observations:

Logit

Df Residuals:

Df Model:

Pseudo R-squ.:

20:01:50

Log-Likelihood:

converged: True LL-Null:

LLR p-value:

	coef	std err	Z	P> z	[0.025	0.975]	
Intercept	-8.2970	0.128	-64 . 623	0.000	-8.549	-8.045	
age	0.0435	0.001	31.726	0.000	0.041	0.046	
education_num	0.3215	0.008	42.231	0.000	0.307	0.336	
capital_gain	0.0003	1.07e-05	29.650 20.055	0.000	0.000	0.000 0.001	
capital_loss hours_per_week	0.0007	3.64e-05 0.001	26.995	0.000	0.001 0.037	0.043	
	0.0399				, 0.057		

hours_per_week 的系数大于0 参数估 计值 参数都 显著

参数估计值的置 信区间

目录

ONE 初探数据

变量种类、数据可视化

TWO 搭建模型

构建模型、模型参数的稳定性

THREE 理解模型结果

发生比、边际效应

发生比

发生比

在逻辑回归里,模型参数又代表了什么呢?

$$P(y_i = 1) = \frac{1}{1 + e^{-(ax_i + bz_i + c)}}$$

$$odds = \frac{P(y_i = 1)}{1 - P(y_i = 1)}$$

odds被称为发生比

$$\ln \frac{P(y_i = 1)}{1 - P(y_i = 1)} = ax_i + bz_i + c \qquad \ln odds(x_i = k + 1) - \ln odds(x_i = k) = a$$

$$\frac{odds(x_i = k+1)}{odds(x_i = k)} = e^a$$
 ×增加7时,相应的发生比变为之前的e^a倍

边际效应

在逻辑回归里,模型变量的边际效应又是怎样的呢?

$$P(y_i = 1) = \frac{1}{1 + e^{-(ax_i + bz_i + c)}}$$

变量x对模型结果P的影响如何呢?

$$\ln \frac{P(y_i = 1)}{1 - P(y_i = 1)} = ax_i + bz_i + c$$

$$\frac{1}{P} \frac{\partial P}{\partial x} + \frac{1}{1 - P} \frac{\partial P}{\partial x} = a$$

$$\frac{\partial P}{\partial x} = aP(1-P)$$
 变量x的边际效应并不恒定, 常利用训练数据的平均边际效应来衡量

发生比与边际效应

变量对事件发生比的影响

变量的边际效应

Logit Marginal Effects

Dep. Variable: Method: At:		label_code dydx overall				
	dy/dx)	std err	z	P> z /[95.	0% Conf. Int.]	
age education_num capital_gain capital_loss hours_per_week	0.0056 0.0413 4.09e-05 9.372e-05 0.0051	0.000 0.001 1.3e-06 4.54e-06 0.000	33.563 47.313 31.500 20.648 28.167	0.000 0.000 0.000 0.000 0.000	0.005 0.040 3.84e-05 8.48e-05 0.005	0.006 0.043 4.34e-05 0.000 0.005
	力际效应				边际效应的置位	=====================================

14

THANK YOU