Iterative methods for solutions of linear systems of equations

Lets say we have an equation of the form Ax = b, we can decompose the matrix A into the following form:

...and an upper triangular matrix; that I am not going to write but you get the idea.

Theorem: If A is a diagonally dominant matrix then jacobi iteration converges to the solution of Ax = b.

$$\begin{split} & x_1 = D^{-1}(b - (L + U)x_0) \\ & x_{k+1} = D^{-1}(b - (L + U)x_k) \\ & x_{k+m} = D^{-1}(b - (L + U)x_k) = D^{-1}(b - (L + D + U)x_k + Dx_k) \\ & \to = D^{-1}(b - Ax_k + Dx_k) = D^{-1}r_k + x_k = x_k + D^{-1}r_k \end{split}$$

Note: $b - Ax_k$ is he residual vector. Recall the residual is defined as:

$$Ax = b \rightarrow r = b - Ax$$

We can use this to create the conditional: if $||r_k||_2 \leq tol \rightarrow STOP$.

 $Jacobi\ Iteration$

Inputs: A, x_0

Loop:

$$\begin{split} r &= b - Ax \quad \text{ for all } k = 0, 1, 2, .. \\ x_{k+1} &= x_k + D^{-1} r_k \\ \text{error} &= \|b - Ax_k\| \\ x_k &= x_{k+1} \end{split}$$

Since D is a diagonal matrix, D^{-1} will just be $\frac{1}{D}$, which gives us our x_{k+1} modified matrix.

Lets talk more about some tricks with the residual:

$$r_{k+1} = b - Ax_{k+1} = b - A(x_k + D^{-1}r_k)$$

 $\rightarrow = (b - Ax_k) - AD^{-1}r_k$

Guass-Seidel

$$\begin{split} A &= (L + D + U) \\ Ax &= b \\ (D + U)x &= b - Lx \\ (D + U)x_{k+1} &= (b - Lx) \rightarrow (D + U)x_{k+1} = (b - Lx_k) \\ x &= (D + U)^{-1}(b - Lx) \\ x^{(k+1)} &= (D + U)^{-1}(b - Lx^k) \end{split}$$

We can use our Back-substitution routine to find $(\boldsymbol{D} + \boldsymbol{U})^{-1}$