Tema 1. Aritmética finita. Análisis del error. Computación Numérica

Antonio Palacio

Departamento de Matemáticas Universidad de Oviedo

palacio antonio @uniovi.es

Curso 2021-2022

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 1 / 2

Introducción

Contenidos

- Introducción
- 2 Conceptos de error
- 3 Aritmética de un computador
- 4 Análisis del error

Contenido I

- Introducción
- 2 Conceptos de error
- 3 Aritmética de un computador
- 4 Análisis del error

Antonio Palaci

Aritmética finita. Análisis del erro

Curso 2021-2029

0 / 07

Introducci

¿Para qué el cálculo numérico?

Muchos problemas matemáticos que surgen en problemas reales no son manejables mediante cálculo simbólico.

Principales motivos.

- No existe método simbólico.
- 2 El método simbólico es extremadamente lento.
- 3 El método simbólico falla al ejecutarlo con un ordenador.
- 4 Los datos de los que se dispone son habitualmente aproximaciones inexactas de los reales.

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 3 / 27 Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 4 /

Introducción

Tipos de métodos

Principales fuentes de error

Métodos para resolver problemas matemáticos.

- Métodos directos. Suelen ser traslaciones directas de métodos de cálculo simbólico, y en teoría mediante un número finito de operaciones nos devuelven la solución exacta.
- Métodos iterativos. Se genera una sucesión $\{x_n\}$ tal que en teoría, $\lim_{n\to\infty}x_n=\widehat{x}$, siendo \widehat{x} la solución del problema.

Antonio Palacio

Aritmética finita. Análisis del error

Curso 2021-2022

5 / 27

Antonio Palacio

Aritmética finita. Análisis del erro

Curso 2021-2022

C / OF

Conceptos de error

Contenidos

- Introducción
- 2 Conceptos de error
- 3 Aritmética de un computado:
- Análisis del error

Error en la solución.

- Errores debido al redondeo.
- 2 Errores debidos al método, también llamados errores de truncamiento.
- 3 Errores debidos a la falta de precisión en los datos.

Conceptos de en

Conceptos de error

Definición 1.1

Sean $x, x^* \in \mathbb{R}$.

- Se denomina error absoluto al aproximar x por x^* al número real $|x-x^*|$.
- ② Para $x \neq 0$, se denomina error relativo al aproximar x por x^* a: $\delta_x = \frac{|x x^*|}{|x|}$. A $\delta_x \times 100$ se le denomina error porcentual.

$$0.5 \times 10^{-k} < \delta_x \le 5 \times 10^{-k}.$$

ntonio Palacio Aritmética finita. Análisis del er

Curs

21-2022

Antonio Pala

Aritmética finita. Análisis del erro

Curso 2021-2022

Conceptos de error

Ejemplos I

Ejemplos II

Ejemplo 1.1

Calcule los errores absolutos y relativos cometidos al aproximar x = 1 por $x^* = 2$ e y = 1000 por $y^* = 1001$.

Antonio Palaci

Aritmética finita. Análisis del error

Curso 2021-2022

9 / 27

Antonio Palacio

Aritmética finita. Análisis del erro

Curso 2021-2022

10 / 0

Conceptos de error

Ejemplos III

Ejemplos IV

Ejemplo 1.3

Halle los números reales que son representados por 1000 con una precisión de al menos cuatro dígitos.

Ejemplo 1.2

El cálculo experimental de la constante de un muelle elástico produce el valor de 29,25. Sabiendo que el error relativo cometido no supera el 1%, calcule los valores posibles de dicha constante.

Conceptos de error

Conceptos de error

Ejemplo 1.4

Calcule con cuantas cifras significativas aproxima 200 a 199 y con cuantas aproxima 199 a 200.

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 11 / 27 Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 12 / 27

Contenidos

- Introducción
- 2 Conceptos de error
- 3 Aritmética de un computador
- 4 Análisis del error

Antonio Palaci

Aritmética finita. Análisis del error

Curso 2021-2022

13 / 27

Aritmética de un computado

Aritmética de un computador

Con estos tres números binarios se forma el número real: $(-1)^s \times 1.m \times 2^{e-1023}$ que determina un rango de valores positivos del orden de 10^{-308} a 10^{308} .

Figura: Números reales en doble precisión en el standard IEEE 754

Aritmética de un computa

Aritmética de un computador

La representación interna de un número real en una máquina se realiza mediante números binarios, es decir, mediante una cantidad finita de ceros y unos. Este conjunto de ceros y unos puede ser combinado de diferentes formas (depende de la máquina utilizada) para producir un número real.

El formato standard IEEE-754 (1987) en doble precisión se utilizan $2^6 = 64$ bits (64 ceros/unos) que son interpretados de la siguiente forma:

- ullet El primer bit define un número que se denota por s y determina el signo.
- Los once siguientes bits definen otro número denotado por e y define un exponente, el primero de los dígitos determina el signo del exponente y los 10 restantes el valor del exponente.
- \bullet Los 52 bits restantes definen otro número denotado por m y determina la mantisa.

Antonio Palacio

Aritmética finita. Análisis del erro

Curso 2021-2022

14 /

Aritmética de un computac

Aritmética de un computador

Observaciones:

- Cuando el exponente e es 0 se utiliza la representación $(-1)^s \times 0.m \times 2^{-1022}$ que permite utilizar números mas pequeños (hasta 10^{-324}) denominados no normales.
- Se utilizan códigos especiales para representar $\pm \infty$ o NaN.

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 15 / 27 Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 16 /

Aritmética de un computador

La forma habitual de representar un número es el formato decimal normalizado: $\pm 0.d_1d_2\cdots d_k\times 10^n$, siendo $d_i\in\{0,1,\cdots,9\},\ d_1\geq 1$ y $k\in\mathbb{Z}$. El número natural k y el rango del número entero n dependen de la máquina. El cero se considerará como un caso especial. Con esta representación de los números, se suele decir que la máquina posee aritmética de k-dígitos.

El número máquina que sigue a $x_1 = 0.d_1d_2\cdots d_k \times 10^n$ siendo $d_1 \geq 1$, es

$$x_2 = x_1 + 0. \underbrace{0}_{1} \cdots \underbrace{0}_{n-1} \times 10^n.$$

Es decir, la distancia entre dos números-máquina consecutivos es $10^{-k} \times 10^n$.

Antonio Palacie

Aritmética finita. Análisis del erro

Curso 2021-202

17 / 27

Aritmética de un computador

Aritmética de un computador

Dado un número real

$$x = \pm 0.d_1 d_2 \cdots d_k d_{k+1} \cdots \times 10^n \neq 0$$

admitiremos que su aproximación x^* , en una máquina con k cifras, se obtiene redondeando al número máquina mas cercano, es decir:

- $x^* = \pm 0.d_1 d_2 \cdots d_k \times 10^n \text{ si } d_{k+1} < 5$
- \bullet Siguiente número-máquina si $d_{k+1} \geq 5$ y x>0
- Anterior número-máquina si $d_{k+1} \geq 5$ y x < 0

Nota 1.1

Se habla de aproximación por truncamiento con aritmética de k cifras cuando el número aproximado se obtiene siempre con las k primeras cifras.

Aritmética de un computador

Ejemplo 1.5

Utilizando aritmética de dos dígitos,

- Halle el número máquina que sigue a 1 y el que sigue a 10.
- 2 Calcule cuántos números máquina hay en los intervalos [1,10] y [10,100].

Antonio Palac

Aritmética finita. Análisis del er

Curso 2021-2022

10 / 0

Aritmética de un computac

Aritmética de un computador

Ejemplo 1.6

Sea $\pi=3,141592\cdots$. Calcule su aproximación por redondeo en una máquina con aritmética de 3, 4 y 5 dígitos.

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 19 / 27 Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 20 /

Aritmética de un computador

Aritmética de un computador

Ejemplo 1.7

Sea $x=17{,}01$ y considere una máquina con aritmética de 4 dígitos. Calcule el número real positivo mas pequeño que sumado a x da un número distinto de x. Misma cuestión para $x=1{,}7$.

Antonio Palacio

Aritmética finita. Análisis del error

Curso 2021-2022

21 / 27

.

Contenidos

- Introducción
- 2 Conceptos de error
- 3 Aritmética de un computador
- 4 Análisis del error

Teorema 1.1

Sea $0 \neq x \in \mathbb{R}$ y sea $0 \neq x^*$ su aproximación por redondeo con aritmética de k dígitos. Entonces, x^* aproxima a x con al menos k cifras significativas.

Ejemplo 1.8

Halle los números reales que son representados por 1000 en una máquina con aritmética de 4 dígitos y aproximación por redondeo.

Antonio Palacio

Aritmética finita. Análisis del erre

Curso 2021-2022

00 /

Análisis del er

Análisis del error

Sean $x,y\in\mathbb{R}$ y x^*,y^* sus aproximaciones en una máquina. Representaremos el resultado de una o varias operaciones aritméticas por r=f(x,y) (por ejemplo f(x,y)=x+y). Se pretende estudiar el orden de aproximación de $r_m=(f(x^*,y^*))^*$ a r, es decir, nos interesa saber si la operación aritmética realizada por la máquina se mantiene con un error razonable.

Antonio Palacio Aritmética finita, Análisis del error. Curso 2021-2022 23 / 27 Antonio Palacio Aritmética finita, Análisis del error. Curso 2021-2022 24 /

nálisis del error

Análisis del error

Ejemplo 1.9

Calcule el error relativo cometido al realizar la diferencia entre x = 0.6793 e y = 0.6751 usando aritmética de dos dígitos.

Antonio Palacio

Aritmética finita. Análisis del error

Curso 2021-2022

25 / 2

Análisis del error

Análisis del error

Ejemplo 1.11

Compruebe que, con aritmética de precisión finita, no se verifica la propiedad asociativa: Utilizando aritmética de tres dígitos y los valores x = -1000, y = 1000, z = 1 verifique que $(x^* + (y^* + z^*)^*)^* \neq ((x^* + y^*)^* + z^*)^*$.

Ejemplo 1.12

Compruebe que, con aritmética de 6 dígitos, el punto medio de $a=0.742531\ y$ $b=0.742533\ no\ está\ comprendido\ entre\ a\ y\ b.$

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 27 / 27

Análisis del error

Análisis del error

Ejemplo 1.10

Dada la ecuación de segundo grado $ax^2 + bx + c = 0$, las soluciones pueden expresarse por: $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b + \sqrt{b^2 - 4ac}}$, $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} = \frac{-2c}{b - \sqrt{b^2 - 4ac}}$. Usando ambas expresiones, calcule los dígitos de precisión que se obtienen al calcular las soluciones con aritmética de una cifra y los datos a = 1, b = -3, c = 2 y con aritmética de cuatro dígitos y los datos a = 1, b = 62,10, c = 1. Las soluciones exactas son $x_1 = 2$, $x_2 = 1$ y $x_1 = -0.01610723$, $x_2 = -62.08390$.

Antonio Palacio Aritmética finita. Análisis del error. Curso 2021-2022 26 / 2