

Europäisches Patentamt

European Patent Office

Office européen des brevets

11 Publication number:

0 534 443 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 92116413.3

2 Date of filing: 24.09.92

(a) Int. Cl.5: **C07D** 237/34, C07D 403/04, C07D 409/04, C07D 409/14, C07D 407/04, C07D 407/14, C07D 417/04, C07D 417/14, C07D 401/14, C07D 413/04, C07D 413/14, C07D 409/12, C07D 495/04, C07D 491/04, A61K 31/50

Priority: 26.09.91 JP 247647/91
 18.12.91 JP 335277/91
 08.09.92 JP 239545/92

- 43 Date of publication of application: 31.03.93 BulletIn 93/13
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU NL
 PT SE

Applicant: MITSUBISHI KASEI CORPORATION
 5-2, Marunouchi 2-chome Chiyoda-ku
 Tokyo 100(JP)

Inventor: Iwase, Norimichi 28-6 Umegaoka, Midori-ku Yokohama-shi, Kanagawa-ken(JP) Inventor: Morinaka, Yasuhiro 1-15-2 Kandatsu-higashi Tsutiura-shi, Ibaraki-ken(JP) Inventor: Tamao, Yoshikuni 2-5-1 Naruse Machida-shi, Tokyo(JP) Inventor: Kanayama, Toshiji 3-3-223 Tsutsujigaoka, Midori-ku Yokohama-shi, Kanagawa-ken(JP) Inventor: Yamada, Kumi 6-7-17 Chuo-rinkan

Representative: TER MEER - MÜLLER -STEINMEISTER & PARTNER Mauerkircherstrasse 45 W-8000 München 80 (DE)

Yamato-shi, Kanagawa-ken(JP)

(S) 3,6-Disubstituted pyridazine derivatives.

A 3,6-disubstituted pyridazine derivative having excellent platelet agglutination inhibitory effects. It is useful for a preventive medicine or a therapeutic medicine for a cerebrovascular disorder such as cerebral thrombosis and cerebral embolism, an ischemic heart disease such as myocardial infarction, and a circulation disorder such as a peripheral circulation disorder. A pharmaceutical composition containing a composition of the present invention as an effective ingredient and a process for preparing the same are also disclosed.

The present invention relates to 3,6-disubstituted pyridazine derivatives and, more particularly- to 3,6-disubstituted pyridazine derivatives which have platelet agglutination inhibitory action and, hence, are useful as a preventive medicine or a therapeutic medicine for a cerebrovascular disorder such as cerebral thrombosis and cerebral embolism, an ischemic heart disease such as myocardial infarction, and a circulation disorder such as a peripheral circulation disorder. The present invention also relates to optical antipodes of such 3,6-disubstituted pyridazine derivatives and pharmaceutically acceptable acid-addition salts thereof.

Most cerebrovascular disorders such as cerebral thrombosis and cerebral embolism, ischemic heart diseases such as myocardial infarction, and circulation disorders such as a peripheral circulation disorder are caused by a thrombus which is produced in a blood vessel and which occludes the blood vessel. Such a thrombus is produced mainly because platelets agglutinate in the earlier stage of the formation of the thrombus.

As compounds having a platelet agglutination inhibitory action, various 4-phenylphthalazine derivatives are conventionally known. For example, Japanese patent Laid-Open Nos. 53659/1981, 53660/1981 and 48972/1982 disclose 1-anylino-4-phenylphthalazine derivatives, and Japanese Patent Laid-Open Nos. 218377/1985 and 243074/1985 disclose the compounds represented by the following general formulas (II) and (III), respectively, as compounds having a strong platelet agglutination inhibitory action in vitro:

$$\begin{array}{c}
\text{N} & \text{CH}_3 \\
\text{NHCH}_2 & \text{CCH}_3 \\
\text{CH}_3
\end{array}$$
... (III)

These compounds, however, show almost no platelet agglutination inhibitory action whey they are administered orally, or the platelet agglutination inhibitory action in vivo cannot be said to be satisfactory.

British patent No. 1303016, Journal of Medicinal Chemistry, 12,555 (1969), etc. disclose 1-amino-4-phenyl-phthalazine derivatives represented by the following general formula (IV):

55

30

35

40

wherein R^5 represents a hydrogen atom or a chlorine atom, R^6 represents an alkyl group having 1 to 3 carbon atoms, $-(CH_2)_yN(CH_3)_2$, wherein y represents 2 or 3, a cyclohexyl group, or

wherein x represents 1 or 2.

5

10

15

30

However, the compounds concretely disclosed have a restricted structure, and only an anti-inflammatory action and an anti-rheumatoid action are described as the pharmaceutical effects thereof.

As phthalazine derivatives having a non-substituted imidazole group at the fourth position, Japanese Patent Laid-Open Nos. 129180/1990, 129181/1990, 129182/1990 and 129183/1990 disclose compounds represented by the following general formulas (V) to (VIII), respectively:

$$\begin{array}{c}
N = \\
N =$$

wherein E represents -NH-, -O- or -S-, and R⁷ represents a straight-chain or branched-chain alkyl group having 1 to 18 carbon atoms, a straight-chain or branched-chain alkyl group having 2 to 4 carbon atoms containing a hydroxyl group, an allyl group, a 3-methoxypropyl group, a tetrahydrofurfuryl group, a furfuryl group, a benzyl group which may be substituted by a chlorine atom or an alkyl group, or a phenyl group which may be substituted by a phenethyl group, a pyridylmethyl group or a chlorine atom, provided that when E is -NH-, R⁷ is not a substituted or non-substituted phenyl group;

$$\begin{array}{c}
N = \\
N =$$

wherein R⁸ represents a lower alkoxyphenyl group, an allyloxyphenyl group, a pyridylmethyloxyphenyl group, a furyl group which may have a substituent, a thienyl group which may have a substituent;

55

50

x

wherein R⁹ which may be the same or different from each other represents a hydroxyl group, a lower alkyl group, a methoxy group, an acetylamino group, a halogen atom, a methylthio group or an ethoxycarbonyl-vinyl group, and £ represents an integer of 0 to 3; and

wherein R¹⁰ represents a hydrogen atom, a lower alkyl group, R¹¹ which may be the same or different from each other represents a hydroxyl group, an alkyl group having 1 to 5 carbon atoms, a lower alkoxy group, an acylamino group, a halogen atom, a cyano group, a nitro group, an anmino group, a carboxyl group, a lower alkoxycarbonyl group, a lower alkylcarbonyl group or an alkylthio group, and 1 represents an integer of 0 to 3.

As a phthalazine derivative having a non-substituted pyridyl group at the fourth position, Japanese patent Laid-Open No. 106873/1991 discloses a compound represented by the following general formulas (IX):

wherein R¹² represents a hydrogen atom or a methoxy group, and R¹³ represents -NR¹⁴R¹⁵, wherein R¹⁴ represents an alkyl group, a phenyl group which may be substituted by a halogen atom or a cyano group, or a pyrimidinyl group which may have a substituent, and R¹⁵ represents a hydrogen atom or a lower alkyl group, or R¹⁴ and R¹⁵ may combine to form a piperidino group, a piperazino group, a morpholino group or an imidazolyl group.

As a result of studies of pyridazine derivatives having excellent platelet agglutination inhibitory action, the present inventors have found that 3,6-disubstituted pyridazine derivatives satisfy the above-described requirements. The present invention has been achieved on the basis of this finding.

The present invention provides 3,6-disubstituted pyridazine derivatives represented by the following general formula (I), optical antipodes thereof and pharmaceutically acceptable acid-addition salts thereof:

5

10

15

20

30

35

$$\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

10

5

wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a phenyl group, a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms, a phenylthio group, a nitrogen-containing saturated cyclic group, a pyridyl group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

$$-\text{CHR}^1$$

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and £ represents an integer of 0 to 3),

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6);

$$-(H)-(A)^{W}$$

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above), -CHR3R4 (wherein R3 represents an alkyl group having 1 to 5 carbon atoms, and R4 represents a cycloalkyl group having 5 to 8 carbon atoms or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

50

$$-N$$
 $(2)_n$

5 (wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring; a furan ring; or a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) to (4) are excluded:

(1) compounds represented by the formula (I) wherein A represents a non-substituted imidazolyl group, the ring C represents a benzene ring, and B represents

$$-NH-CH_2$$

(wherein X_1 independently represents a halogen atom or an alkyl group having 1 to 4 carbon atoms, and 1 is as defined above), or an alkylamino group having 3 to 8 carbon atoms;

(2) compounds represented by the formula (I) wherein A represents a phenyl group which may have a substituent, the ring C represents a benzene ring, and B represents

(wherein R1, X and L are as defined above);

5

10

15

20

25

30

35

40

45

(3) compounds represented by the formula (I) wherein A represents a non-substituted phenyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms; and

(4) compounds represented by the formula (I) wherein A represents a pyridyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms.

The present invention also provides a pharmaceutical composition containing, as an active ingredient, a 3,6-disubstituted pyridazine derivative of the above formula (I), an optical antipode thereof and a salt thereof.

The present invention also provides a process for the preparation of a 3,6-disubstituted pyridazine derivative of the above formula (I), an optical antipode thereof or a salt thereof.

Compounds according to the present invention are 3,6-disubstituted pyridazine derivatives represented by the following general formula (I), optical antipodes thereof and pharmaceutically acceptable acid-addition salts thereof:

$$\begin{array}{c|c}
A \\
\hline
C \\
\hline
N \\
N
\end{array}$$
... (I)

wherein A represents an alkyl group having 3 to 6 carbon atoms (e.g., propyl group and hexyl group); a cycloalkyl group having 5 to 7 carbon atoms (e.g., cyclopentyl group and cycloheptyl group); a phenyl group, a thienyl group (e.g., 2-thienyl group and 3-thienyl group), a furyl group (e.g., 2-furyl group and 3-furyl group), a thiazolyl group (e.g., 2-thiazolyl group), a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms (e.g., benzyl group and phenylpropyl group), a phenylthio group, a nitrogen-containing saturated cyclic group (e.g., pyrrolidino group, piperidino group and morpholino group), a pyridyl group (e.g., 2-pyridyl group and 3-pyridyl group), or an imidazolyl group (e.g., 1-imidazolyl group and 2-imidazolyl group) each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms (e.g., methoxy group and butoxy group) and a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom and iodine atom); B represents -NH-D [wherein D represents

5

15

25

35

40

50

55

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (e.g., methyl group and butyl group), X independently represents a halogen atom (e.g., fluorine atom, chlorine atom, bromine atom and iodine atom), an alkyl group having 1 to 4 carbon atoms (e.g., methyl group and butyl group) or an alkoxy group having 1 to 4 carbon atoms (e.g., methoxy group and butoxy group), and 1 represents an integer of 0 to 3),

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms (e.g., methyl group and butyl group), Y independently represents an alkyl group having 1 to 4 carbon atoms (e.g., methyl group, butyl group) or an alkoxy group having 1 to 4 carbon atoms (e.g., methoxy group and butoxy group), or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms (e.g., methylene group and propylene group) which may be substituted by an alkyl group having 1 to 3 carbon atoms (e.g., methyl group and propyl group), and m represents an integer of 0 to 6),

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms (e.g., cyclopentyl group and cycloheptyl group), and Y and m represent are as defined above), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms (e.g., methyl group, propyl group and pentyl group), and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms (e.g., cyclopentyl group and cycloactyl group) or a thienyl group (e.g., 2-thienyl group and 3-thienyl group)), or an alkyl group having 3 to 8 carbon atoms (e.g., propyl group, pentyl group and octyl group)]; or

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms (e.g., methyl group and butyl group) or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring; a furan ring; or a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms (e.g., methyl group and butyl group), provided that the following compounds (1) to (4) are excluded:

(1) compounds represented by the formula (I) wherein A is a non-substituted imidazolyl group, the ring C is a benzene ring, and B is

(wherein X_1 independently represents a halogen atom or an alkyl group having 1 to 4 carbon atoms, and I is as defined above) or an alkylamino group having 3 to 8 carbon atoms;

(2) compounds represented by the formula (I) wherein A is a phenyl group which may have a substituent, the ring C is a benzene ring, and B is

5

10

(wherein R1, X and t are as defined above);

- (3) compounds represented by the formula (I) wherein A is a non-substituted phenyl group, the ring C is a benzene ring, and B is an alkylamino group having 3 to 8 carbon atoms; and
- (4) compounds represented by the formula (I) wherein A is a pyridyl group, the ring C is a benzene ring, and B is an alkylamino group having 3 to 8 carbon atoms.

Among these, examples of preferable compounds are:

(1) compounds represented by the formula (I) wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a thienyl group, a furyl group, a thiazolyl group or a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms, a phenylthio group, a nitrogencontaining saturated cyclic group or an imidazolyl group, each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

20

15

$$-CHR^{1} \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc$$

25

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X and £ represent the same as defined above.

30

35

(wherein R2, Y and m are as defined above),

40

(wherein the ring H, Y and m are as defined above), or an alkyl group having 3 to 8 carbon atoms]; or

45

50

55

(wherein Z and n are as defined above); and the ring C represents a benzene ring;

(2) compounds represented by the formula (I) wherein A represents a phenyl group which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents -CHR³R⁴ (wherein R³ and R⁴ are as defined above)]; and the ring C represents a benzene ring; and

(3) compounds represented by the formula (I) wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a phenyl group, a thienyl group or a pyridyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R1, X and t are as defined above);

5

10

15

20

30

35

40

45

50

(wherein R2, Y and m are as defined above); or

-(Y) m

(wherein the ring H, Y and m are as defined above)]; and the ring C represents a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms.

As examples of more preferable compounds will be cited compounds represented by the formula (I) wherein A represents a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a phenoxy group; a phenylthio group; a pyrrolidinyl group; a piperidyl group; a morpholinol group; a pyridyl group; a benzyl group which may be substituted by a halogen atom; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents 0 or 1),

(wherein R2 represents an alkyl group having 1 to 4 carbon atoms),

(wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represent an integer of 0 to 6), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms); or

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring, or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) and (2) are excluded:

- (1) compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring; and
- (2) compounds represented by the formula (I) wherein A is a pyridyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring.

Particularly preferably compounds are, for example, compounds represented by the formula (I) wherein A represents a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a pyrrolidinyl group; a piperidyl group; a morpholinol group; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

$$-CHR^1 \longrightarrow (X)$$

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and £ represents 0 or 1),

(wherein R2 represents an alkyl group having 1 to 4 carbon atoms),

5

15

20

25

30

35

40

50

55

45 (wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represent an integer of 0 to 6), -CHR³R³ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

$$-N$$
 N
 $(Z)_n$

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring; or a furan ring or a thiophene ring each of

which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring are excluded.

Examples of the most preferable compounds are compounds represented by the formula (I) wherein A represents a phenyl group; or a furyl group or a thienyl group each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, B represents -NH-D [wherein D represents

(wherein R^2 represents an alkyl group having 1 to 4 carbon atoms)], and the ring C represents a benzene ring, or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms.

Concrete examples of the compounds according to the present invention will be shown in Tables 1 to 5.

Table 1

	Ą
\bigcirc	\bigcirc N
\bigcirc	N O'N
	ו בו

mp. Na	A	

Comp. No	Α	В
1	—(H)	-ин-сн Сн ³
2	- ⟨ H ⟩	-NH-CH CH2 CH3
3	-(H)	-NH-CH CH2CH2CH3
4	-(H)	-NH-CH CH2CH2CH2CH3
5	-(H)	-NH-CH CH3
6	- (H)	-NH-CH CH3
7	-{H}	-NH-CH CH3

Table 1 (continued)

5	Comp. No.	Α	В
10	8	- (H)	-NH-CH CH3
15	9	- ⟨ H ⟩	-NH-CH CH ₃
20	10	- ⟨ H ⟩	-NH-CH CH3
25	11	-(H)	-NH-CH OCH3
20	1 2	- ⟨ H ⟩	-ин-сн Сн 3 осн 3
30	1 3	- (H)	-NH-CH CH3
35	1 4	-(H)	-NH-CH CH3
40	1 5	-(H)	-NH-CH CH3
45			

50

Table 1 (continued)

5	Comp. Na	A	В
10	1 6	-{H}	-NH-CH CH3
15	1 7	- ⟨ H ⟩	-NH-CH C1
20	1 8	- ⟨ H⟩	-NH-CH CH ₃ C1
26	19	- ⟨ H ⟩	-NH-CH CH3
30	2 0	- ⟨ H ⟩	-NH-CH F CH3
35	2 1	-(H)	-NH-CH CH3
	2 2	- (H)	-ин-сн <u>сн</u> 3
40	2 3	- (H)	-NH-CH CH3
45		l	

50

Table 1 (continued)

5	Comp. Na	А	В
10	2 4	- (H)	-NH-CH CH ₂ CH ₃
15	2 5	—(H)	-NH-CH CH2CH2CH3
. 20	2 6	- ⟨ H⟩	-NH-CH CH2CH2CH3
	2 7	- (H)	- N <u>N</u>
25	2 8	-(H)	- NNN
30	2 9	- (H)	-NN CH ₃
35	3 0	- ⟨ H ⟩	-NN C ₂ H ₅
40	3 1	-(H)	- N N C 3 H 7 (n)
	3 2	-(H)	- N N C 4 H 9 (n)
45	ļ		

1,5%

50

Table 1 (continued)

5	Comp. Na	A	В
10	3 3	- (H)	- N N
	3 4	- ⟨ H⟩	- N H -⟨H⟩
15	3 5	-(H)	-NH-←H CH3
20	3 6	- ⟨ H ⟩	-NH-H
25	3 7	- ⟨ H ⟩	- и н — с н ₃
30	3 8	- ⟨ H⟩	CH_3 CH_3 $-NH \longrightarrow H$ CH_3
35	3 9	- (H)	-NH-H CH ₃
40	4 0	—(H)	$-NH - H CH_3$ $-CH_3$ CH_3
45	4 1	- (H)	-NH-H-C ₂ H ₅

50

Table 1 (continued)

5	Comp. Na	Α	В
	4 2	- (H)	$-NH - H - C_3H_7$ (n)
10	4 3	- ⟨ H⟩	$-NH - H - C_4 H_9 (n)$
15	4 4	− (H)	- N H -⟨∑⟩
	4 5	- (H)	- N H -⟨H
20	4 6	- (H)	- N H - (H)
	4 7	- ⟨ H⟩	-NH- (CH ₂) ₂ CH ₃
25	4 8	⊣ (H) ,	-NH- (CH ₂) ₃ CH ₃
	4 9	- ⟨ H ⟩	-NH- (СН ₂) ₄ СН ₃
30	5 0	− ⟨ H ⟩	-NH- (CH ₂) ₅ CH ₃
	5 1	- ⟨ H ⟩	-ин- (сн ₂) ₆ сн ₃
35	5 2	- (H)	-NH- (СН ₂) ₇ СН ₃
40	5 3	- ⟨ H⟩	-NH-CH ^{CH₂CH₃}
	5 4	- (H)	-ин-сн<(СН ₂) ₂ СН ₃
45	L		

50

Table 1 (continued)

5	Comp. Na	A	В
10	5 5	<u>-</u> H	-NH-СН-СН (СН ₃) ₂
	5 6	-(H)	-NH-СН-СН ₂ -СН (СН ₃) ₂
15	5 7	-(H)	-NH-СН- (СН ₂) ₃ СН ₃
20	5 8	- (H)	-NH-СН- (СН ₂) ₄ СН ₃
25	5 9	-(H)	-NH-СН- (СН ₂) ₅ СН ₃
30	60	- H	- N H - C H - C H ₂ C H ₃ С Н ₂ С Н ₃
	6 1	- (H)	- N H - C H - C H ₂ C H ₂ C H ₃
35	6 2	- (H)	- N H - C H - C H ₂ C H ₂ C H ₃
40	6 3	- ⟨ H⟩	-NHC (CH ₃) ₃
45			

50

Table 1 (continued)

5	Comp. Na	А	В
	6 4	- ⟨ H ⟩	-инсн ₂ с (сн ₃) ₃
10	6 5	-⟨H⟩	-NH-CH ₂ -(O)
15	6 6	− (H)	- N H - C H ₂ -\(\frac{H}{2}\)
	6 7	- (CH ₂) ₂ CH ₃	-NH-CH CH3
20	6 8	- (СН ₂) ₂ СН ₃	-NH-CH CH ₂ CH ₃
25	6 9	- (СН ₂) ₂ СН ₃	-NH-CH CH3
30	70	- (CH ₂) ₂ CH ₃	-NH-CH CH ₂ CH ₃
	7 1	- (CH ₂) ₂ CH ₃	- N_N
35	7 2	- (CH ₂) ₂ CH ₃	- N H -⟨H⟩
40	7 3	- (CH ₂) ₂ CH ₃	- N H - C H < C H 2 C H 3 C H 3 C H 3
	74	- (CH ₂) ₂ CH ₃	-NH-СН ₂ С (СН ₃) ₃
45			

50

Table 1 (continued)

5	Comp. Na	Α .	В
10	7 5	-сн (сн ₃) ₂	-NH-CH CH3
	7 6	-сн (сн ₃) ₂	-NH-CH CH2 CH3
15	77	-сн (сн ₃) _{2.}	-ин-сн Сн3
20	7 8	-СН (СН ₃) ₂	-NH-CH CH ₂ CH ₃
25	7 9	-сн (сн ₃) ₂	- N_N
	8 0	-CH (CH3)2	-ин <u>-</u> Ну
30	8 1	-СН (СН ₃) ₂	-NH-CH ^{CH₂CH₃} CH ₂ CH ₃
35	8 2	-сн (сн ₃) ₂	-NH-СН ₂ С (СН ₃) ₃
40	8 3	- (СН ₂) ₃ СН ₃	-NH-CH CH3
45	8 4	- (СН ₂)3СН3	-NH-CH CH ₂ CH ₃

50

Table 1 (continued)

5	Comp. No.	A	В
10	8 5	- (СН ₂) ₃ СН ₃	-NH-CH CH3
	8 6	- (СН ₂) ₃ СН ₃	-NH-CH CH2CH3
15	8 7	- (СН ₂) ₃ СН ₃	- N_N
20	8 8	- (CH ₂)3CH ₃	- N H -⟨H⟩
25	8 9	- (CH ₂) ₃ CH ₃	- N H - C H $^{\text{C}$ H $_{2}$ C H $_{3}$
	9 0	- (CH ₂) ₃ CH ₃	-NH-CH ₂ C (CH ₃) ₃
30	9 1	-C (CH ₃) ₃	-NH-CH CH3
35	9 2	-C (CH ₃) ₃	-NH-CH CH2CH3
40	93	-C (CH ₃) ₃	-NH-CH CH3
45	9 4	-с (СН ₃) ₃	-NH-CH CH ₂ CH ₃

50

Table 1 (continued)

5	Comp. No.	A	В
	No.		^
:	9 5	-C (CH ₃) ₃	- N_N
10	9 6	-c (cH ₃) ₃	- N H - H
15	97	-C (CH ₃) ₃	-NH-CHCH2CH3 CH2CH3
	98	-C (CH ₃) ₃	-NH-CH ₂ C (CH ₃) ₃
20	9 9	- (CH ₂) ₄ CH ₃	-NH-CH CH3
25	100	- (СН ₂) ₄ СН ₃	-NH-CH CH ₂ CH ₃
30	101	- (CH ₂) ₄ CH ₃	-NH-CH CH3
35	102	- (CH ₂) ₄ CH ₃	-NH-CH CH ₂ CH ₃
	103	- (CH ₂) ₄ CH ₃	- N_N
40	104	- (СН ₂) ₄ СН ₃	- N H -⟨H⟩
45	105	- (CH ₂) ₄ CH ₃	$-NH-CH < CH_2CH_3 CH_2CH_3$

50

Table 1 (continued)

5	Comp. Na	A	В
	106	- (CH ₂) ₄ CH ₃	-NH-CH ₂ C(CH ₃) ₃
10	107	- (CH ₂) ₅ CH ₃	-NH-CH CH3
15	108	- (СН ₂) ₅ СН ₃	-NH-CH CH ₂ CH ₃
20	109	- (СН ₂) ₅ СН ₃	-NH-CH CH3
	110	- (CH ₂) ₅ CH ₃	-NH-CH CH ₂ CH ₃
25	111	- (CH ₂) ₅ CH ₃	- N_N_N
20	112	- (CH ₂) ₅ CH ₃	-ин-(н)
30	1 1 3	- (CH ₂) ₅ CH ₃	$-NH-CH < \frac{CH_2CH_3}{CH_2CH_3}$
35	114	- (СН ₂) ₅ СН ₃	-NH-CH ₂ C (CH ₃) ₃
40	115	-{ ^s }	-ин-сн Сн ³
	116	≺ ^s }	-ин-сн Сн ₂ сн ₃

50

Table 1 (continued)

5	Comp. No.	A	В
10	117	√ ^s }	-NH-CH CH2CH2CH3
15	118	~s>	-NH-CH CH2CH2CH3
20	119	-√ ^s	-NH-CH CH3 CH3
	120	~s>	-NH-CH CH3 CH3
25			0.11
30	1 2 1	~s	-ин-сн Сн3
35	122	≺s}	-NH-CH CH3
	123	√ \$}	-NH-CH CH3
40	124	~s>	-NH-CH CH3
45	L		

50

Table 1 (continued)

5	Comp. No.	A	В
10	1 2 5	s)	-NH-CH OCH3
15	126	~s	-NH-CH CH3 OCH3
20	127	~s)	-NH-CH CH ₃
25	1 2 8	~(s)	$-NH-CH$ CH_3 $OC_3H_7(n)$
30	129	$\langle s \rangle$	-NH-CH CH ₃ OC ₄ H ₉ (n)
35	1 3 0	-{s}	-NH-CH CH3
•	1 3 1	√ ^s }	-NH-CH CI
40	1 3 2	-{ ^S }	-NH-CH CI
45	1	i	

50

Table 1 (continued)

5	Comp. Na	Α	В
10	1 3 3	≺ ^s }	-NH-CH CH3
15	134	$-\langle s \rangle$	-NH-CH F CH3
20	135	₹	-NH-CH CH3 F
	136	~s	-NH-CH CH3
25	1 3 7	√ S) ,	-NH-CH CH3
30	1 3 8	√ ^s)	-NH-CH CH2CH3
35	1 3 9	≺s)	-NH-CH CH ₂ CH ₂ CH ₃
40	1 4 0	√ ^S)	-NH-CH CH2CH2CH3
45	141		- N_N
_			- ····

50

Table 1 (continued)

5	Comp. Na	Α	В
10	1 4 2	≺ ^s }	CH ₃
15	1 4 3	≺ ^s }	CH3
	144	- (^s)	$-N$ C_2H_5
20	1 4 5	$\langle s \rangle$	- N_N C ₃ H ₇ (n)
25	146	~(s)	- N N C 4 H 9 (n)
30	147	≺s}	- × N
35	148	~(s)	- N H - H
	149	-{ ^s }	-NH-H
40	150	≺ ^s }	-NH-H CH ₃
45			

50

Table 1 (continued)

5	Comp. Na	Α	В
	151	¬(^S)	-ин—(н)—сн ₃
10	152	≺ ^s }	CH ₃ CH ₃
15	153	s (S)	$-NH \xrightarrow{CH_3}$
20	154	~s>	$-NH \xrightarrow{CH_3} CH_3$ CH_3 CH_3
25	155	-{s}	-NH-√H)-C ₂ H ₅
30	156	$\langle s \rangle$	$-NH-H$ C_3H_7 (n)
35	157	¬(s)	$-NH - H - C_4 H_9 (n)$
	158	S	– и н —
40	159	-{ ^S }	-ин-(н)
45	160	\prec^s	- NH -(H)

50

Table 1 (continued)

5	Comp.	Α	В
	161	√ ^s >	-NH- (CH ₂) ₂ CH ₃
10	162	≺ ^s }	-NH- (CH ₂) ₃ CH ₃
	163	√ ^S	-NH- (CH ₂) ₄ CH ₃
15	164	S ·	-ин- (сн ₂) ₅ сн ₃
	165	¬(s)	-NH-(CH2)6CH3
20	166	$\langle s \rangle$	-NH- (CH ₂) ₇ CH ₃
	167	-{ ^S }	-NH-CH<
25	168	s)	-NH-CH(CH ₂) ₂ CH ₃
30	169	¬(S)	-ин-сн-сн (сн ₃) ₂
35	170	¬(^s)	-NH-СН-СН ₂ -СН (СН ₃) ₂
40	171	¬(S)	-ин-сн- (сн ₂) ₃ сн ₃
	172	~s	-ин-сн- (сн ₂) ₄ сн ₃
45			

50

Table 1 (continued)

5	Comp. Na	А	В
	173	¬(s)	-NH-CH- (CH ₂) ₅ CH ₃
10	174	¬(^s)	-NH-CH-CH ₂ CH ₃ CH ₂ CH ₃
15	175	\(\sigma^s\)	-NH-CH-CH ₂ CH ₂ CH ₃
20	176	√ ^s }	-NH-CH-CH ₂ CH ₂ CH ₃
	177	\prec $\stackrel{s}{\searrow}$	-инс (сн ₃) ₃
25	178	~(s)	, -инсн ₂ с (сн ₃) ₃
30	179	$\langle s \rangle$	-NH-CH ₂ -⟨○⟩
	180	~\s\)	-NH-CH ₂ -(H)
35			
40	181	_{ _S } сн ₃	-ин-сн сн3
	182	√S> сн ₃	-NH-CH СН ₂ СН ₃
45			

50

Table 1 (continued)

5	Comp. Na	Α	В
10	183	_{S} сн₃	-NH-CH CH3
15	184	S CH3	-NH-CH CH ₂ CH ₃
20	186	-{S}- СН3	-NH-⟨H⟩
	187	-√S}-CH ₃	-NH-CH $<$ CH $_2$ CH $_3$
25	188	-√S}-CH3	-NH-CH ₂ C (CH ₃) ₃
30	189	CH3	-NH-CH CH3
35	190	CH3	-NH-CH CH ₂ CH ₃
	191	CH3	-NH-CH CH3
40	192	√s) CH3	-NH-CH CH ₂ CH ₃
45			

50

Table 1 (continued)

5	Comp.	A	В
10	193	S CH ₃	- N_N
	194	Сн3	- N H -⟨H⟩
15	195	CH3	-NH-CH ^{CH₂CH₃} CH ₂ CH ₃
20	196	CH ₃	-NH-СН ₂ С (СН ₃) ₃
25	197	CH ₃	-NH-CH CH3
30	198	S СН ₃	-NH-CH CH ₂ CH ₃
35	199	S CH ₃	-NH-CH CH3
40	200	CH ₃	-NH-CH CH 2 CH 3
45	201	CH ₃	- N_N

50

Table 1 (continued)

5	Comp. Na	Α .	В
	202	√ ^s >	-ин-(н)
10	203	С́Н ₃ S СН ₃	-ин-сн<сн ₂ сн ₃
15	204	\s\s\	-NH-СН ₂ С (СН ₃) ₃
20	205	С́Н ₃ —(S) С ₂ Н ₅	-NH-CH CH3
25	206	-{S}-C ₃ H ₇ (n)	-NH-CH CH3
30	207	S	-NH-CH CH3
35	208	S	-ин-сн Сн ₂ сн ₃
40	209	-Cs	-NH-CH CH3
45	210	-\s	-NH-CH CH2CH3

50

Table 1 (continued)

5	Comp. No.	Α	В
	2 1 1	S	- N_N
10	2 1 2	-\s	- N H - ⟨ H ⟩
15	2 1 3	S	-NH-СН ^{СН₂СН₃}
	214	S	-NH-CH ₂ C(CH ₃) ₃
20	2 1 5		-NH-CH CH3
25	2 1 6		-NH-CH CH2CH3
30	217		-NH-CH CH2CH2CH3
35	218		-NH-CH CH2CH2CH2CH3
40	2 1 9		-NH-CH CH3
	220	~°)	-NH-CH CH3 CH3
45			<u></u>

50

Table 1 (continued)

5	Comp. Na	Α	В
10	2 2 1		-NH-CH CH3
15	222		$-NH-CH \xrightarrow{C_2H_5} C_{2H_5}$
20	2 2 3		-NH-CH CH ₃ C ₄ H ₉ (n)
05	2 2 4	√° >	-NH-CH CH3
25	2 2 5		-NH-CH OCH3
30	226		-NH-CH CH3 OCH3
35	227		-NH-CH CH3
40	2 2 8	~°)	-NH-CH CH3
45			

50

Table 1 (continued)

5	Comp.	A	В
10	2 2 9		$-NH-CH \xrightarrow{OC_3H_7(n)}$ $-OC_4H_9(n)$
15	230		-NH-CH CH3
20	2 3 1		-NH-CH C1
25	232		-NH-CH CI
30	2 3 3		-NH-CH CH3
	234		-NH-CH F CH3
35	2 3 5		-NH-CH CH3
40	236		-NH-CH СН3
4 5			U

50

Table 1 (continued)

5	Comp. Na	Α	В
10	237		-NH-CH CH3
	238	$\neg \langle \circ \rangle$	-NH-CH CH ₂ CH ₃
15	239		-NH-CH CH ₂ CH ₂ CH ₃
20	240	~°)	-NH-CH CH2CH2CH2CH3
25	241	(°)	- N_N
30	2 4 2		-NNN
35	2 4 3	~°)	-NNCH3
40	244	~°)	-N_N C ₂ H ₅
. 45	2 4 5		-NN C ₃ H ₇ (n)

50

Table 1 (continued)

5	Comp.	Α	В
10	2 4 6		- N N C 4 H 9 (n)
	247		- X_X
15	248		- N H - (Н)
20	249		CH ³
25	250	(°)	- N H -⟨H⟩
	251		- N H -⟨H⟩- C H 3
30	252		CH ₃ CH ₃
35	253		- NH → H CH3
40	254		$-NH - H CH_3$ $-CH_3$ CH_3
45	L		

50

Table 1 (continued)

5	Comp. Na	A	В
	255	\prec°	-NH-(H)-C ₂ H ₅
10	256		$-NH-H-C_3H_7(n)$
	257		-NH-(H)-C ₄ H ₉ (n)
15	258		– n н – (У)
20	259		– и н – (Н
	260		- N H - H
25	2 6 1		-NH- (CH ₂) ₂ CH ₃
30	262		-NH- (CH ₂) ₃ CH ₃
30	263		-NH- (CH ₂) ₄ CH ₃
	264		-NH- (CH ₂) ₅ CH ₃
35	265		-NH-(CH ₂) ₆ CH ₃
	2 6 6	$\langle 0 \rangle$	-NH- (CH ₂) ₇ CH ₃
40	2 6 7	~°)	-NH-CH < CH ₂ CH ₃ CH ₃
45			

50

Table 1 (continued)

5	Comp. No.	Α	В
10	268		-NH-CH(CH ₂) ₂ CH ₃
	269		-NH-СН-СН (СН ₃) ₂
15	270		-NH-СН-СН ₂ -СН (СН ₃) ₂ СН ₃
20	271	~°>	-ин-сн- (сн ₂) ₃ сн ₃
25	272		-NH-СН- (СН ₂) ₄ СН ₃
30	273		-NH-CH- (CH ₂) ₅ CH ₃
	274		- м н - с н - с н ₂ с н ₃ с н ₂ с н ₃
35	275	~°)	- N H - C H - C H ₂ C H ₂ C H ₃
40	276	~°)	- м н - с н - с н ₂ с н ₂ с н ₃ с н ₂ с н ₃
45			

50

Table 1 (continued)

5	Comp. Na	A	В
	277		-инс (сн ₃) ₃
10	278		-NHCH ₂ C (CH ₃) ₃
15	279	~°).	- N H - C H ₂ -⟨O⟩
73	280		- NH - CH ₂ -(H)
20	2 8 1	√ <mark>0</mark> сн³	-NH-CH CH3
25	282	-√О сн3	-NH-CH CH ₂ CH ₃
30	283	СН3	-NH-CH CH3
	284	—(°)— С Н 3	-NH-CH CH2 CH3
35	285	-{O}-СН3	- N_N
40	286	-√О сн3	-ин-(н)
	287	-√О сн3	-NH-CH CH2CH3
45			

50

Table 1 (continued)

5	Comp. No.	A	В
	288	_O_ сн ₃	-NH-CH ₂ C(CH ₃) ₃
10	289	СН3	-NH-CH CH3
15	290	CH3	-NH-CH CH3
20	291	-{ ^O }-C ₂ H ₅	-NH-CH CH3
25	292	$ C_3H_7(n)$	-NH-CH CH3
30	293	$\langle s \rangle$	-NH-CH CH3
35	294	√ _s)	-NH-CH CH ₂ CH ₃
40	295	$\langle s \rangle$	-NH-CH CH3
10	296	$\langle s \rangle$	-ин-сн сн ₂ сн ₃
45			

50

Table 1 (continued)

5	Comp. Na	A	В
	297	$-\langle s \rangle$	- × N
10	298	\prec_s^N	- N H -⟨H⟩
15	299	$ <_s^{N} $	-NH-CH ^{CH₂CH₃} CH ₂ CH ₃
	300	$ <_{\rm s}^{\rm N} $	-NH-CH ₂ C (CH ₃) ₃
20	3 0 1	-0-	-NH-CH CH3
25	302	-o- ()	-NH-CH CH ₂ CH ₃
30	303	-0-	-NH-CH CH3
35	304	-0-	-NH-CH CH2 CH3
40	3 0 5	-0-	- ZZ
4 5	3 0 6	-0-(0)	-ин-(н)

50

Table 1 (continued)

5	Comp. Na	A	В
	307	-0-🔷	$-NH-CH < CH_2CH_3 \\ CH_2CH_3$
10	308	-0-(0)	-NH-CH ₂ C(CH ₃) ₃
15	309	-о- <u>(О</u>)-сн ₃	-NH-CH CH3
20	3 1 0	-о- (О)	-NH-CH CH3
	3 1 1	-0-⟨⊙⟩ CH ₃	-NH-CH CH3
25	3 1 2	- o - О - с ₂ н ₅	-NH-CH CH3
30	3 1 3	-0-⟨O⟩-C ₃ H ₇ (n)	-NH-CH CH3
35	314	-o-∕⊙∕-cı	-NH-CH CH3
40	3 1 5	- O - (C) - F	-NH-CH CH3
	3 1 6	- C H 2 -⟨○⟩	-ин-сн CH3
45			

50

Table 1 (continued)

5	Comp. No.	Α	В
10	3 1 7	-CH ₂ -	-NH-CH CH ² CH ³
	3 1 8	- С Н ₂ -	-NH-CH CH3
15	319	-сн ₂ О	-NH-CH CH ₂ CH ₃
20	3 2 0	-сн ₂ -	- N_N
25	3 2 1	-сн ₂ -Ф	- N H - \(\frac{H}{\rightarrow}\)
	3 2 2	- С H ₂ -О	$-NH-CH < \frac{CH_2CH_3}{CH_2CH_3}$
30	3 2 3	-сн ₂ -О	-NH-CH ₂ C. (CH ₃) ₃
35		- сн ₂ -{О}-сн ₃	-NH-CH CH3
40	3 2 5	- сн ₂ -О	-NH-CH CH3
	i	-сн ₂ -{О	-ин-сн Сн 3
45		CH ₃	

SΛ

Table 1 (continued)

5	Comp.	A	В
	3 2 7	-сн ₂ -О-с ₂ н ₅	-NH-CH ← CH ₃
10	3 2 8	-сн ₂ -⊙-с ₃ н ₇ (п	-NH-CH CH3
15			-NH-CH CH3
20	3 3 0	-сн ₂ -О-ғ	-NH-CH CH3
25	3 3 1	-s- (()	-NH-CH CH3
	3 3 2	- s - ()	-NH-CH CH ₂ CH ₃
30	3 3 3	- s - ()	-NH-CH CH3
35	3 3 4	-s-(O)	-NH-CH CH ₂ CH ₃
40	3 3 5	- s - ()	- N_N
	3 3 6	- s - ()	- N H -⟨H⟩
15			

50

Table 1 (continued)

5	Comp. Na	A	В
	3 3 7	-s- -	-NH-CH <ch2ch3 CH2CH3</ch2ch3
10	3 3 8	- s - (()	-мн-сн ₂ с (сн ₃) ₃
15	3 3 9	-s-О-сн ₃	-NH-CH CH3
20	3 4 0	-s-O	-NH-CH CH3
25	3 4 1	- S - O	-NH-CH CH3
	3 4 2	-s-O-c ₂ H ₅	-ин-сн сн3
30	3 4 3	-S-(C ₃ H ₇ (n)	-NH-CH CH3
35	3 4 4	- S-(O)-C1	-NH-CH CH3
40	3 4 5	- S-(O)-F	-NH-CH CH 3
45		L	

50

Table 1 (continued)

5	Comp. Na	A	В
:	3 4 6	- Ŋ	-NH-CH CH3
10	3 4 7	- N	-NH-CH CH2CH3
15	3 4 8	- N	-NH-CH CH3
20	3 4 9	-1 <u>/</u>	-NH-CH CH ₂ CH ₃
25	350	- N	
	3 5 1	- N	- и н - (Н)
30	3 5 2	- N	-NH-CH < CH2CH3 CH3
35	3 5 3	- N	-NH-CH ₂ C(CH ₃) ₃
40	354	- M	-NH-CH CH3
	3 5 5	-N	-NH-CH CH2CH3
45			

50

Table 1 (continued)

5	Comp.	А	В
10	3 5 6	- N	-NH-CH CH3
15	358	-N	-NH-CH CH ₂ CH ₃
20	3 5 9	-M_	- N H -⟨H⟩
25	360	- N	$-NH-CH < CH_2CH_3 \\ CH_2CH_3$
	3 6 1	- N	-NH-CH ₂ C (CH ₃) ₃
30	362	- N_O	-NH-CH CH3
35	363	- N_O	-NH-CH CH2CH3
40	3 6 4	- N_O	-NH-CH CH3
	365	- N_O	-NH-CHCH2CH3
45	L		

50

Table 1 (continued)

5	Comp. Na	A	В
	3 6 6	- N_O	
10	367	- N_O	- N H - (H)
15	368	- NO	-NH-CH < CH2CH3 CH2CH3
	369	- N_O	-NH-CH ₂ C(CH ₃) ₃
20	370	- N N	-NH-CH CH3
25	371	- N N	-NH-CH CH ₂ CH ₃
30	372	- N N	-NH-CH CH2CH2CH3
35	373	- N N	-NH-CH CH2CH2CH3
40	374	- N N	-ин-сн Сн3 Сн3
	375	- N N	-ин-сн Сн3 сн3
45			

50

Table 1 (continued)

5	Comp. Na	Α	В
10	3 7 6	- N N	-NH-CH CH3
15	377	- N_N	-ин-сн <mark>сн³</mark>
20	3 7 8	- N N	-NH-CH CH ₃
25	379	- N_N	-NH-CH CH3
	380	- N N	-NH-CH OCH3
	3 8 1	- N N	-ин-сн Сн ₃ осн ₃
35	382	- N N	-NH-CH CH3
40	383	- N N	-NH-CH CH3
45			· ·

50

Table 1 (continued)

5	Comp. Na.	Α	В
10	384	- 2 Z	$-NH-CH \xrightarrow{CH_3} OC_4 H_9 (n)$
15	3 8 5	- N N	-NH-CH CH3
20	386	- N N	-NH-CH CI
25	387	- N N	-NH-CH C1
30	388	- N N	-NH-CH CH3
	389	- N N	-NH-CH F CH ₃
35	390	- N N	-NH-CH CH3
40	3 9 1	- N N	-NH-CH CH3
45			·

50

Table 1 (continued)

5	Comp. Na	A	В
10	3 9 2	- N N	-NH-CH CH 3
,,	3 9 3	- N N	-NH-CH CH2CH3
15	3 9 4	- N_N	-NH-CH CH2CH2CH3
20	3 9 5	- N_N	-NH-CH CH2 CH2 CH3
25	396	-NNN	-NH-CH CH3
30	3 9 7	-NNN	-NH-CH CH ₂ CH ₃
	3 9 8	-NNN	-NH-CH CH 3
35	3 9 9	-NNN	-NH-CH CH ₂ CH ₃
40	400	- N N	-NH-⟨H⟩
45			

50

Table 1 (continued)

5	Comp.	A	В
10	401	-NN	-NH-СН<СН ₂ СН ₃
10	402	-NNN	-NH-CH ₂ C (CH ₃) ₃
15	403	-N_N	-ин-сн сн ³
20 .	404	CH ₃	-NH-CH CH2CH3
25	405	-MM CH3	-NH-CH CH3
30	406	-N CH3	-NH-CH CH ₂ CH ₃
35	407	- N N	- N H -⟨H⟩
40	408	CH ₃	-NH-CH < CH ₂ CH ₃ CH ₃
40	409	- N N	-NH-CH ₂ C(CH ₃) ₃
45		,СН3	

50

Table 1 (continued)

5	Comp.	A	В
10	4 1 0	CH3	-ин-сн Сн³
15	411	√N CH ₃	-NH-СН СН ₂ СН ₃
20	4 1 2	√NN CH3	-NH-CH CH3
25	4 1 3	√N ĊH ₃	-NH-CH CH ₂ CH ₃
30	414	ĊH ₃	-ин—(н)
35	415	ĊH ₃	-ин-сн<сн ₂ сн ₃
40	4 1 6	√N ĊH3	-NH-СН ₂ С (СН ₃) ₃
45			

50

Table 1 (continued)

5	Comp. Na	А	В
10	417	-N N C 2 H 5	-ин-сн Сн ³
15	418	-NN C ₂ H ₅	-NH-CH CH ₂ CH ₃
20	419	-N N C 2 H 5	-NH-CH CH3
25	420	-NNC2H5	-NH-CH CH ₂ CH ₃
	421	-NN C ₂ H ₅	- N H - H
30	4.22	$-N N C_2 H_5$	-NH-CH <ch2ch3 CH2CH3</ch2ch3
35	4 2 3	- N N	-NH-CH ₂ C(CH ₃) ₃
40	424	C ₂ H ₅	-NH-CH CH ³
45	425	- N N C 3 H 7 (n)	-NH-CH CH2CH3

50

Table 1 (continued)

5	Comp. Na	A	В
. 10	4 2 6	-N N C ₃ H ₇ (n)	-NH-CH CH3
į	427	- N N C 3 H 7 (n)	-NH-CH CH ₂ CH ₃
15	428	-N N C 3 H 7 (n)	-ин-(н)
20	429	- N N C 3 H 7 (n)	-NH-CH <ch2ch3 CH2CH3</ch2ch3
25	4 3 0	- N N	-NH-CH ₂ C (CH ₃) ₃
30	4 3 1	`C ₃ H ₇ (n)	-NH-CH CH3
35	4 3 2		-NH-CH CH ₂ CH ₃
	4 3 3	-💿	-NH-CH CH2CH2CH3
40	4 3 4	-©	-NH-CH CH (CH ₃) ₂
45			

50

Table 1 (continued)

5	Comp. Na	Α	В
10	4 3 5	◇	-NH-CH CH2CH2CH2CH3
15	436		-NH-CH CH ₂ CH (CH ₃) ₂
20	437	-⊘	-NH-CH CH(CH ₃)CH ₂ CH ₃
25	438	-⊘	-NH-CH t C4 H9
30	439	-⊘	-NH-CH (CH ₂) ₄ CH ₃
	440		-NH-CH CH ₂ C (CH ₃) ₃
35	441	-⊘	-NH-CHCH2CH3 CH2CH3
40			
45	<u> </u>		

50

Table 1 (continued)

5	Comp.	A	В
10	4 4 2	- ⊘	-NH-CH CHCH2CH2CH3
15	443	-⊘-сн ₃	-NH-CH CH3
20	444	-Осн ₃	-NH-CH CH3
25	4 4 5	н ₃ с	-NH-CH CH3
30	446	-{○}- сн ₂ сн ₃	-NH-CH CH3
35	447	CH ₂ CH ₃	-NH-CH CH3
40	4 4 8	сн ₂ сн ₃	-NH-CH CH3
45			

50

Table 1 (continued)

5	Comp. No.	A	В
10	449	-∕⊙-с ₄ н ₉	-NH-CH CH3
15	450	- С ₄ н ₉	-NH-CH CH3
20	451	- O	-ин-сн <mark>сн 3</mark>
25	4 5 2	-О́-сн ₃	-NH-CH CH3
30	4 5 3	- ⊘ -осн₃	-NH-CH CH3
	454	-© осн ₃	-NH-CH CH ₃
35	455	-О осн ₃	-NH-CH CH3
40	4 5 6	-⊘- осн ₂ сн ₃	-NH-CH CH3
45			-

50

Table 1 (continued)

5	Comp.	Α	В
10	457	осн ₂ сн ₃ -⊘	-NH-CH CH3
15	458	осн ₂ сн ₃	-NH-CH CH3
20	459	О-ос ₄ н ₉	-NH-CH CH3
25	460	ОС ₄ Н ₉ -ОО ОС ₄ Н ₉	-NH-CH CH3
30	461	-©	-NH-CH CH3
35	462	осн ₃	-NH-CH CH3
40	463	-∕⊙-cı	-NH-CH CH3
45	464	-© c ı	-NH-CH CH3

50

Table 1 (continued)

5	Сошр. Na	Α	В .
10	4 6 5	C I	-NH-CH CH3
15	466		-NH-CH CH3
20	467	-✓o ^F	-NH-CH CH3
25	468	F -	-NH-CH CH3
30	469	(⊙)Вг	-NH-CH CH3
	470		-NH-CH CH3
35	471	-⊘-сн ₃	-NH-CH CH ₂ CH ₃
40	472	-⊘- сн ₂ сн ₃	-NH-CH CH ₂ CH ₃

Table 1 (continued)

5	Comp.	A	В
10	473	О́-с ₄ н ₉	-NH-CH CH ₂ CH ₃
15	474	-{○}-осн₃	-NH-CH CH ₂ CH ₃
20	475	-{⊙}- осн ₂ сн ₃	-NH-CH CH2CH3
25	476	-⊘-ос ₄ н ₉	-NH-CH CH ₂ CH ₃
30	477	(⊙) C I	-NH-CH CH ₂ CH ₃
35	478	- ⊘ - F	-NH-CH CH ₂ CH ₃
	479	- ⊘ -Br	-NH-CH CH ₂ CH ₃
45	480	-{⊙}- сн ₃	-NH-CH C4 H9

50

Table 1 (continued)

5	Comp. Na	A	В
10	481	-{⊙}- сн ₂ сн ₃	-NH-CH C ₄ H ₉
15	482	-{○}- с ₄ н ₉	-NH-CH C4 H9
20	483	-⊘-осн ₃	-NH-CH C4 H9
25	484	-∕⊙- осн ₂ сн ₃	-NH-CH C4 H9
30	485		-NH-CH C4 H9
30	486	(⊙) c ı	-NH-CH C4 H9
35	487		-NH-CH C4 H9
40	488	(○) B r	-NH-CH C4 H9
45 L		<u>.</u>	

50

Table 1 (continued)

			•
5	Comp. Na	A	В
10	489	-🗇	-NH-CH CH3
15	490	-⊘	-NH-CH CH2 CH3
20	4 9 1	-⊚	-NH-CH CH2 CH2 CH3
25	492	-⊘	-NH-CH CH (CH ₃) ₂ .
30	493	-	-NH-CH CH2CH2CH2CH3
35	494	- ⊘	-NH-CH CH ₂ CH (CH ₃) ₂
40	495	-💿	-NH-CH CHCH2CH3
45			33

50

Table 1 (continued)

5	Comp. Na	Α	В
10	496		-NH-CH t C4 H9
15	497	-⊘	-NH-CH (CH ₂) ₄ CH ₃
20	498	-⊘	-NH-CH CH2 C (CH3)3
25	499	-⊘	-NH-CH CHCH2CH3 CH2CH3
30	500	-⊘	-NH-CH CHCH2 CH2 CH3
35	501		-NH-CH CH3
40	502	-📀	-NH-CH CH2CH3
45			

50

Table 1 (continued)

5	Comp. Na	A	В
10	5 0 3	-©	-NH-CH CH2CH2CH3
15	504	-⊘	-NH-CH СН (СН ₃) ₂
20	505	💿	-NH-CH CH2CH2CH3
25	506	-⊘	-NH-CH CH ₂ CH (CH ₃) ₂
30	507	-💿	-NH-CH CHCH ₂ CH ₃ CH ₃
35	508	-⊚	-NH-CH t C4 H9
40	509	-💿	-NH-CH (CH ₂) ₄ CH ₃
45			

50

Table 1 (continued)

5	Comp. Na	A	В
10	5 1 0	-📀	-NH-CH СН ₂ С (СН ₃)3
15	511	-🗇	-NH-CH CHCH2CH3
20	5 1 2	-⊘	-NH-CH CHCH2CH2CH3
25			3
30			
35			
40			
45			

50

EP 0 534 443 A1

Table 2

S.	A
	NON N
•	T B

Comp. Na	A	. В
5 1 3	\rightarrow	-ин-сн Сн ₃
514	-📀	-NH-CH CH2CH3
5 1 5	-©	-NH-CH CH3
5 1 6	-📀	-NH-CH CH3
517	-📀	-NH-CH CH3
518	-🗇	-NH-CH CH ₃
	1 .	

.

Table 2 (continued)

5	Comp. Na	A	В
10	5 1 9	\bigcirc	-NH-CH CH ₂ CH ₃
15	5 2 0	-⊘	-NH-CH CH2CH2CH3
20	5 2 1	-	-NH-CH CH3
25	5 2 2	-€H3	-ин-сн Сн ³
30	5 2 3	-{s}	-ин-сн Сн ³
35	5 2 4	-⊘	-ин-
40	5 2 5	-⊚	-ин-⟨У
45			

50

Table 3 (continued)

S N

		_	
10	Comp. No.	Α	В
15	5 2 6	√	-ин-сн Сн 3
20	5 27	- ⊙	-NH-CH CH3
25	5 2 8		-NH-CH CH2 CH3
30	529	-⊘ .	-NH-CH CH2 CH2 CH3
35	530	-⊘	-NH-CH CH3
40	5 3 1	- ⊘	-NH-CH CH3
45			

50

5

Table 3 (continued)

Table 3 (continued)			
5	Comp. Na.	A	В
10	5 3 2	\Diamond	-NH-CH CH3
15	533		-NH-CH CH3
25	534		-NH-CH CH3
30	535	$-\langle O \rangle$	-ин-сн Сн3
35	-5 3 6	→	-ин-сн сн ₃
40 45			
	L		L

50

EP 0 534 443 A1

Table 4

 $H_3 C \longrightarrow S \longrightarrow N$

10	
15	

Comp. Na	Α	В
5 3 7	- ⊘	-ин-сн сн ³
5 3 8		-ин-сн Сн ³

Table 5

O N N

Comp. Na	А	В
5 3 9	- ⊘	-NH-CH ← CH3

A process for preparing a compound according to the present invention will now be explained. A compound according to the present invention can be synthesized by a given method which meets the object of the present invention including the following methods.

(i) When the ring C represents a benzene ring,

(A and B are as defined above)

50

55

The process 1 is a process for preparing a compound (X). The compound (X) can be prepared either by a method a or a method b. The method a is a method of preparing the compound (X) by reacting phthalic anhydride with Grignard reagent or lithium reagent. In the case of using a solvent, ether, tetrahydrofuran, dioxane, benzene, toluene, methylene chloride, dichloroethane, dimethylformamide, N-methylpyrrolidone, hexamethylphosphoroamide or the like is used either singly or in the form of a mixture. The reaction temperature is -78 to 100 °C, preferably -78 to 30 °C, and the reaction time is 10 minutes to 24 hours.

The method <u>b</u> is a method of preparing the compound (X) by a Friedel-Crafts reaction between phthalic anhydride and a compound represented by the formula A-H, wherein A is as defined above. In the case of using a catalyst, aluminum chloride, titanium tetrachloride, tin chloride, boron trifluoride etherate or the like is used. In the case of using a solvent, methylene chloride, dichloroethane, nitrobenzene, carbon disulfide or the like is used. The reaction temperature is -78 to 200 °C, preferably -50 to 100 °C, and the reaction time is 10 minutes to 24 hours.

The process 2 is a process for preparing a compound (XI). By reacting the compound (X) and hydrazine or hydrazine hydrate, the compound (XI) is prepared. In the case of using a solvent, water, methanol, ethanol, benzene, toluene or the like is used. The reaction temperature is 0 to 150°C, preferably 20 to 100°C.

The process 3 is a process for preparing a compound (XII) by a chlorination of the compound (XI) without a solvent or in a solvent such as benzene, toluene, chloroform and dichloroethane. As a chlorinating agent, thionyl chloride, phosphorus oxychloride, phosphorus trichloride, phosphorus pentachloride or the like is used.

The process 4 is a process for preparing a compound (I - a) according to the present invention from the compound (XII). The compound (XII) is reacted with a compound represented by the formula B-H, wherein B represents the same as defined above. Examples of solvents used are ethers such as tetrahydrofuran and dioxane; hydrocarbon halides such as chloroform and dichloroethane; aromatic hydrocarbons such as benzene, toluene, xylene and chlorobenzene; amides such as dimethylformamide and N-methylpyrrolidone; and dimethylsulfoxide. The amount of solvent used is 0.1 to 100 by weight ratio based on the compound (XII). In the case of using a catalyst, an organic base such as triethylamine, disopropylethylamine, pyridine and N,N-dimethylanyline, or an inorganic base such as NaOH, KOH, NaHCO₃, Na₂CO₃, KHCO₃ and K₂CO₃ is used. The amount of catalyst used is 0.5 to 30, preferably 1 to 10 by weight ratio based on the compound (XII). The reaction temperature is 0 to 300 °C, preferably 20 to 150 °C, and the reaction time is 10 minutes to 24 hours.

(ii) When the ring C represents a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms,

wherein A and B are as defined above and R represents an alkyl group having 1 to 4 carbon atoms. The process 1 is a process for introducing

0 || -C-A

50

55

40

45

group into the ortho position of a compound (XIII) so as to prepare a compound (XIV). A base such as butyl lithium is brought into reaction with the compound (XIII) so as to produce an ortho-lithiated compound. A compound represented by the general formula A-COR' (wherein A is as defined above, and R' represents a halogen atom, an alkoxy group, an imidazolyl group or a cyano group) is then reacted with the thus-produced ortho-lithiated compound, thereby preparing the compound (XIV). In the case of using a solvent, ether, tetrahydrofuran, etc. are used either singly or in the form of a mixture.

The process 2 is a process for cleaving the oxazoline ring of the compound (XIV) so as to prepare a compound (XV). The reaction is carried out in the presence of an acid such as hydrochloric acid, sulfuric

acid, mesylic acid and tosylic acid. As a solvent, water, dioxane, tetrahydrofuran, ethanol, methanol, etc. are used either singly or in the form of a mixture.

The processes 3, 4 and 5 correspond to the processes 2, 3 and 4, respectively, in (i) when the ring C represents a benzene ring.

(iii) When the ring C represents a furan ring which may be substituted by an alkyl group having 1 to 4 carbon atoms,

5

35

45

50

Process 4

$$R \xrightarrow{O} N$$
 N
 N
 N

(I - c)

wherein A and B are as defined above and R represents an alkyl group having 1 to 4 carbon atoms.

The process 1 is a process for introducing A-C=O group into the second position of a compound (XVIII) so as to prepare a compound (XX). The reaction is carried out by bringing the dilithiated compound of the compound (XVIII) which is produced by a base into reaction with a compound represented by the general formula A-COR' (wherein A is as defined above, and R'represents a halogen atom, an alkoxy group, an aryloxy group, an imidazolyl group or a cyano group). At this time, n-butyllithium, s-butyllithium, LDA, LHMDS, etc. are usable as a base. The amount of base used is 1 to 10, preferably 2 to 4 by molar ratio. As a solvent, tetrahydrofuran, diethyl ether, diisopropyl ether, hexane, heptane, etc. are used either singly or in the form of a mixture.

The processes 2, 3, and 4 correspond to the processes 2, 3 and 4, respectively, in (i) when the ring C represents a benzene ring.

The salts of the compound represented by the general formula (I) are preferably physiologically tolerable salts. They are, for example, the salts of inorganic acids such as hydrochlorides, hydrobromides, hydroiodides, sulfides and phosphates, and the salts of organic acids such as methane sulfonates, p-toluene sulfonates, benzene sulfonates, camphor sulfonates, acetates, benzoates, malates, lactates, glycolates, glucronates, maleates, fumarates, oxalates, ascorbates, citrates, salicylates, nicotinates and tartrates. Since some compounds represented by the general formula (I) and some salts thereof exist in the form of a hydrate or a solvate, the compounds of the present invention include the hydrates and solvates thereof.

When a compound of the present invention is orally administered to an adult as a medicine, it is preferable that a dose of 1 to 100 mg is administered 1 to 3 times a day. In the case of using a compound of the present invention as an intravenous injection for an adult, it is preferable that a dose of 0.01 to 10 mg is administered 2 to 5 times a day. In the case of using a compound of the present invention as a medicine for intestinal administration for an adult, it is preferable that a dose of 1 to 100 mg is administered 1 to 3 times a day. It is more preferable to appropriately increase or decrease the dose depending upon the age, the condition of the disease and the condition of the patient.

When a compound of the present invention is formed into a medicine, at least one compound represented by the general formula (I) or at least one pharmaceutically tolerable salt thereof is mixed with a pharmaceutical carrier, a shaping agent and other additives. The carrier may be either a solid or a liquid. Examples of a solid carrier are lactose, white clay (kaolin), sucrose, crystalline cellulose, cornstarch, talc, agar agar, pectin, acacia gum, stearic acid, magnesium stearate, lecithin and sodium chloride.

Examples of a liquid carrier are syrup, glycerin, peanut oil, polyvinyl pyrrolidone, olive oil, ethanol, benzyl alcohol, propylene glycol, and water.

Such a medicine may be used in various forms. In the case of using a solid carrier, a medicine may be prepared in the form of tablets, powder, hard gelatin capsules, suppositories or troche. The amount of solid carrier may be varied in a wide range, but it is preferably about 1 mg to 1 g.

In the case of using a liquid carrier, a medicine may be prepared in the form of syrup, emulsion, soft gelatin capsule, sterile injection contained in an ampule or the like, or aqueous or nonaqueous suspension.

The present invention will be explained in more detail hereinunder with reference to the following examples. It is however, to be understood that the present invention is not restricted thereto and any modification is possible within the scope of the present invention.

[Examples]

5 Example 1

10

Synthesis of (R)-1-(α-phenylethylamino)-4-cyclohexylphthalazine (Compound No. 1 in Table 1)

10.0 g of phthalic anhydride was dissolved in 200 m1 of tetrahydrofuran, and 40 m1 of cyclohexylmagnesium chloride (2.0 M, ether solution) was added dropwise to the solution at -50°C. After stirring the solution at the same temperature for 1 hour, the reaction solution was poured into 0.5-N hydrochloric acid, and extracted with chloroform. After the organic layer was dried over magnesium sulfide, it was purified by silica gel chromatography (eluent: chloroform-methanol) to obtain 12.0 g of o-(cyclohexanoyl) benzoic acid.

12.0 g of o-(cyclohexanoyl) benzoic acid and 3.1 g of hydrazine hydrate were dissolved in 60 mt of ethanol, and the solution was refluxed for 4 hours. Ethanol was distilled off and the remaining solution was crystallized by adding ether, thereby obtaining 7.5 g of 4-cyclohexyl-1-phthalazinone.

1.0 g of 4-cyclohexyl-1-phthalazinone and 5 mt of phosphorus oxychloride were dissolved in 10 mt of dichloroethane, and the solution was stirred at 100 °C for 4 hours. The reaction solution was distilled off, and a 1-N aqueous NaOH solution was added thereto under cooling with ice. The solution was extracted with chloroform and dried over magnesium sulfide. The solvent was then distilled off, thereby obtaining 1.1g of 1-chloro-4-cyclo-hexylphthalazine.

1.1g of 1-chloro-4-cyclohexylphthalazine and 1.6 g of D- α -phenylethylamine were dissolved in N-methylpyrrolidone, and the solution was stirred at 140 °C for 6 hours. After cooling the solution, an aqueous 5% NaOH solution was added to the solution, and the resultant solution was extracted with chloroform. The organic layer was dried, concentrated, purified by silica gel chromatography (eluent: hexane, chloroform, ethyl acetate), and recrystallized from ether to obtain 1.05 g of (R)-1-(α -phenylethylamino)-4-cyclohexylphthalazine.

Melting point: 162.5 to 164.0 °C.

Examples 2 to 38

Compounds of Examples 2 to 38 shown in Table 6 were synthesized in accordance with the method in Example 1.

Example 39

5

10

Synthesis of (R)-1-(α-phenylethylamino)-4-(3-thienyl) phthalazine (Compound No. 207 in Table 1)

35 mt of normal butyllithium (1.5 M, hexane solution) was dissolved in 50 mt of ether, and 6.0 g of 3-bromthiophene was added dropwise to the solution at -70°C. Separately from this, 5.5 g of phthalic anhydride was dissolved in 80 mt of tetrahydrofuran, and the lithium reagent obtained above wad added dropwise to this solution at -70°C.

After stirring the solution at the same temperature for 1 hour, the reaction solution was poured into 0.5-N hydrochloric acid, and extracted with chloroform. After the organic layer was dried over magnesium sulfide, it was purified by silica gel chromatography (eluent: chloroform-methanol) to obtain 1.8 g of o-(3-thenoyl)benzoic acid.

1.8 g of o-(3-thenoyl)benzoic acid and 580 mg of hydrazine hydrate were dissolved in 20 m1 of ethanol, and the solution was refluxed for 4 hours. After cooling the solution, it was crystallized by adding ether, thereby obtaining 910 mg of 4-(3-thienyl)-1-phthalazinone

500 mg of 4-(3-thienyl)-1-phthalazinone and 3 ml of phosphorus oxychloride were dissolved in 6 ml of dichloroethane, and the solution was stirred at 100 °C for 4 hours. The reaction solution was distilled off, and a 1-N aqueous NaOH solution was added thereto under cooling with ice. The solution was extracted with chloroform and dried over magnesium sulfide. The solvent was then distilled off, thereby obtaining 515 mg of 1-chloro-4-(3-thienyl)phthalazine.

510 mg of 1-chloro-4-(3-thienyl)phthalazine and 790 mg of D- α -phenylethylamine were dissolved in 2 mt of N-methylpyrrolidone, and the solution was stirred at 140 °C for 6 hours. After cooling the solution, an aqueous 5% NaOH solution was added to the solution, and the resultant solution was extracted with chloroform. The organic layer was dried, concentrated, purified by silica gel chromatography (eluent: hexane, chloroform, ethyl acetate), and recrystallized from ether to obtain 492 mg of (R)-1-(α -phenylethylamino)-4-(3-thienyl)phthalazine.

Melting point: 144.0 to 146.0 °C.

Examples 40 and 41

35

Compounds of Examples 40 and 41 shown in Table 6 were synthesized in accordance with the method in Example 39.

Example 42

40

Synthesis of (R)-1-(α-phenylethylamino)-4-(4-methyl-2-thienyl)phthalazine (Compound No. 189 in Table 1)

1.90 g of phthalic anhydride and 3.58 g of aluminum chloride were dissolved in 40 mt of dichloroethane, and 2-bromo-3-methylthiophene was added dropwise to the solution at room temperature. After stirring the solution for 4 hours, the reaction solution was poured into a 1-N hydrochloric acid under cooling with ice, and extracted with chloroform. By purifying the extract by silica gel chromatography (eluent: chloroform, ethyl acetate), 1.70 g of o-(5-bromo-2-thenoyl)benzoic acid was obtained.

1.70 g of o-(5-bromo-2-thenoyl)benzoic acid and hydrazine hydrate were dissolved in 40 mt of ethanol, and the solution was refluxed for 4 hours. After cooling the solution, it was crystallized by adding ether, thereby obtaining 315 mg of 4-(5-bromo-4-methyl-2-thienyl)-1-phthalazinone.

300 mg of 4-(5-bromo-4-methyl-2-thienyl)-1-phthalazinone, 500 mg of 5% palladium carbon (Pd-C) and 1 ml of concentrated hydrochloric acid were added to 50 ml of ethanol, and hydrogen gas was reacted with the resulting mixture under ordinary pressure. After the end of the reaction, the mixture was filtered, and the filtrate was concentrated to obtain 205 mg of 4-(4-methyl-2-thienyl)phthalazinone.

200 mg of 4-(4-methyl-2-thienyl)phthalazinone and 2 mt of phosphorus oxychloride were dissolved in 4 mt of dichloroethane, and the solution was stirred at 100 °C for 4 hours. The reaction solution was distilled off, and a 1-N aqueous NaOH solution was added thereto under cooling with ice. The solution was extracted with chloroform, dried and concentrated to obtain 206 mg of 1-chloro-4-(4-methyl-2-thienyl)phthalazine.

200 mg of 1-chloro-4-(4-methyl-2-thienyl)phthalazine and 100 mg of D- α -phenylethylamine were dissolved in 2 mt of N-methylpyrrolidone, and the solution was stirred at 140 °C for 8 hours. After the solution was subjected to aftertreatment, it was purified by column chromatography, thereby obtaining 25 mg of (R)-1-(α -phenylethylamino)-4-(4-methyl-2-thienyl) phthalazine.

Melting point: 118.5 to 121. 0 °C.

Examples 43 and 44

Compounds of Examples 43 and 44 shown in Table 6 were synthesized in accordance with the method 10 in Example 42.

Example 45

Synthesis of (R)-1-(α-cyclohexylethylamino)-4-(2-furyl) phthalazine (Compound No. 237 in Table 1)

15

3.4 g of furan was dissolved in 30 mt of tetrahydrofuran, and the solution was added dropwise to 34 mt of normal butyllithium (1.6 M, hexane solution) at -40 °C. After stirring the resultant solution at 0 °C for 4 hours, the lithium reagent was added dropwise to a solution of 7.4 g of phthalic anhydride in 100 mt of tetrahydrofuran at -70 °C. After stirring the solution at the same temperature for 1 hour, the reaction solution was poured into 0.5-N hydrochloric acid, and extracted with chloroform. By purification by column chromatography (eluent: chloroform, methanol), 2.0 g of o-(2-furoyl) benzoic acid was obtained.

2.0 g of o-(2-furoyl) benzoic acid and 690 mg of hydrazine hydrate were dissolved in 30 m1 of ethanol, and the solution was refluxed for 4 hours.

After cooling the solution, it was crystallized by adding ether, thereby obtaining 1.0 g of 4-(2-furyl)-1-phthalazinone.

1.0 g of 4-(2-furyl)-1-phthalazinone and 5 mt of phosphorus oxychloride were dissolved in 5 mt of dichloroethane, and the solution was stirred at 100 °C for 3 hours. The reaction solution was distilled off, and a 1-N aqueous NaOH solution was added thereto under cooling with ice. The solution was extracted with chloroform, dried and concentrated to obtain 910 mg of 1-chloro-4-(2-furyl))phthalazine.

300 mg of 1-chloro-4-(2-furyl)phthalazine and 495 mg of R-cyclohexylethylamine were dissolved in 2 mt of N-methylpyrrolidone, and the solution was stirred at 150°C for 8 hours. After the solution was subjected to after-treatment, it was purified by column chromatography, thereby obtaining 135 mg of (R)-1- $(\alpha$ -cyclohexylethylamino)-4-(3-furyl) phthalazine.

Melting point: 152.0 to 153.0 °C.

35

Example 46

Synthesis of 1-(1-imidazolyl)-4-(2-furyl)phthalazine (Compound No. 241 in Table 1)

300 mg of 1-chloro-4-(2-furyl)phthalazine and 707 mg of imidazol were dissolved in 2 mt of N-methylpyrrolidone, and the solution was stirred at 150°C for 10 hours. After the solution was subjected to after-treatment, it was purified by column chromatography, thereby obtaining 14.5 mg of 1-(1-imidazolyl)-4-(2-furyl)phthalazine.

Melting point: 151.0 to 152.5 °C.

Examples 47 to 59

Compounds of Examples 47 to 59 and 59' shown in Table 6 were synthesized in accordance with the method in Example 46.

Example 60

Synthesis of (R)-1-(1-cyclohexylethylamino)-4-phenylphthalazine (R compound of Compound No. 431 in Table 1)

55

50

722 mg (3.0 mmol) of 1-chloro-4-phenylphthalazine and 1.15 g (9.0 mmol) of (R)-(-)-1-cyclohexylethylamine were added to 2 mt of N-methylpyrrolidone, and the resultant mixture was stirred at 120 to 130 °C for 6 hours under heating. After the end of the reaction, the mixture was cooled. 20 mt of an

aqueous 5% NaOH solution was added to the mixture and the solution was extracted with chloroform. The organic layer was dried over MgSO₄, concentrated, purified by silica gel chromatography (eluent: ethyl acetate: hexane: chloroform = 1:3:1) and recrystallized from ether-chloroform, thereby obtaining 751 mg of (R)-1-(1-cyclohexylethylamino)-4-phenylphthalazine.

Melting point: 164.0 to 167.0 °C.

Examples 61 to 68

5

15

20

25

30

35

40

45

50

55

Compounds of Examples 61 to 68 shown in Table 6 were synthesized in accordance with the method in 10 Example 60.

Т	а	b	1	е	6
1	а	U	1	C	•

	Comp. of Ex. No.	(%)	Comp. of Ex. No.	m.p. (℃)	
5	(Comp. No. in Tablel)	m. p. (°C)	(Comp. No. in Table1)		
	2 (No. 2)	178. 5~180. 0	29 (No.116)	139.5~143.0	
	3 (No.34)	182. 0~184. 0	30 (Na 118)	133. 0~135. 0	
10	4 (Na.44)	172. 0~174. 5	31 (Na.120)	119.0~121.5	
	5 (No.40)	221. 5~222. 0	3 2 (No.1 3 1)	198.5~201.0	
	6 (No.58)	amorphous	33 (No.125)	164.0~165.0	
15	7 (Na.23)	amorphous	3 4 (No.1 3 7)	88.0~ 92.0	
10	8 (Na. 27)	165. 0~170. 0	35 (Na.138)	amorphous	
	9 (No. 67)	121. 0~122. 0	36 (No.141)	162. 0~163. 5	
	10 (Na.75)	125. 0~125. 5	37 (No.142)	154.0~155.0	
20	11 (No.91)	178. 0~179. 0	38 (No.147)	194.0~195.5	
	1 2 (No. 3 1 6)	amorphous	4 0 (No. 2 0 8)	152. 0~156. 0	
	13 (No.329)	amorphous	4 1 (No. 1 8 1)	178.0~179.5	
25	14 (No.301)	181. 0~184. 0	4 3 (No. 1 9 7)	134. 0~136. 5	
	15 (No.331)	152. 0~153. 5	44 (No.215)	149. 0~152. 5	
	16 (No.161)	amorphous	47 (Na. 354)	130.0~134.0	
30	17 (Na 162)	107. 0~109. 0	48 (No.346)	168.0~171.0	
	18 (No.167)	125. 0~130. 0	49 (No.362)	160.0~161.0	
	19 (No.177)	177. 0~180. 0	50 (Na 370)	170.0~174.0	
35	20 (No.178)	188. 0~189. 0	51 (Na 3 7 1)	199.5~201.0	
	21 (No.168)	amorphous	5 2 (No. 3 7 3)	183. 0~185. 5	
	22 (Na.174)	139. 0~145. 0	53 (No.375)	192.0~193.5	
40	23 (No.169)	109.0~110.5	54 (No.386)	195.0~197.0	
	2 4 (No.1 7 0)	132. 5~135. 5	55 (No.380)	151.0~152.5	
	2 5 (No.1 7 3)	oil	56 (No. 396)	110.0~116.0	
45	26 (Na.150)	amorphous	57 (Na.403)	85.0~ 90.0	
	27 (Na.152)	amorphous	5 8 (Na. 4 1 0)	118.0~119.0	
	28 (Na.115)	140. 0~141. 0	5 9 (No. 2 9 3)	135. 0~136. 5	
50	•		59' (Na.283)	168 ∼175 decomposition	

Table 6 (continued)

Comp. of Ex. No. (Comp. No. in Table1)	m.p. (°C)
Comb. No. III Igoreia	
6 1 (No. 4 3 1)	165. 0~167. 0
6 2 (No. 4 3 2)	amorphous
6 3 (No. 4 3 3)	139. 0~145. 0
6 4 (No. 4 3 4)	147. 0~150. 0

Comp. of Ex. No. (Comp. No. in Tablel	n.p. (°C)
65 (Na.445)	amorphous
66 (No.454)	amorphous
67 (No.489)	158. 0~159. 5
68 (Na.501)	191.0~192.0

In Table 6, the compounds in Examples 7, 9, 10, 11, 12, 13, 14, 15, 28, 34, 41, 43, 44, 47, 48, 49, 50, 56, 57, 58, 59, 65 and 66 are R compounds, the compound in Example 61 is an S compound, and the compounds in Examples 62, 63, 64, 67 and 68 are RS compounds. The compound in Example 8 is a hydrochloride and that in Example 59' is a fumarate.

Example 69

5

10

20

Synthesis of (R)-4-(1-phenylethylamino)-7-(2-thienyl)thieno[2,3-d]pyridazine (Compound No. 523 in Table 2)

2.0 g of 2-(3-thienyl)-4,4-dimethyloxazoline was dissolved in 50 m1 of ether, and 10 m1 of s-butyllithium (1.3 M, cyclohexane solution) was added dropwise thereto at -70°C. The solution was stirred for 1 hour. The reaction solution was added dropwise to a solution of 2.4 g of 2-thenoyl chloride in 50 m1 of tetrahydrofuran at -78°C, and the solution was stirred for 30 minutes. Thereafter, 1 m1 of methanol was added to the solution, and the reaction solution was concentrated. After adding water thereto, the solution was extracted with chloroform. The chloroform layer was dried and concentrated, and the residue was purified by silica gel chromatography to obtain 2.8 g of 2-(2-thenoyl)-3-(4,4-dimethyl-2-oxazoline-2-yl)-thiophene.

2.8 g of 2-(2-thenoyl)-3-(4,4-dimethyl-2-oxazoline-2-yl)thiophenewas added to a solution of 30 mt of concentrated hydrochloric acid, 20 mt of water and 20 mt of dioxane, and the solution was stirred at 100°C for 8 hours. After cooling the solution, an aqueous NaCt solution was added thereto. The resultant solution was extracted with chloroform and dried. After the solvent was distilled off, the residue was purified by silica gel chromatography to obtain 0.70 g of 2-(2-thenoyl)-3-thiophene carboxylic acid.

0.70 g of 2-(2-thenoyl)-3-thiophene carboxylic acid and 0.22 g of hydrazine hydrate were dissolved in 20 mt of ethanol, and the solution was refluxed for 5 hours. After cooling the solution, it was crystallized by adding ether, thereby obtaining 0.61 g of 7-(2-thienyl)thieno[2,3-d]pyridazine-4(5H)-one.

0.30 g of 7-(2-thienyl)thieno[2,3-d]pyridazine-4(5H)-one and 0.30 g of phosphorus oxychloride were dissolved in 10 mt of dichloroethane, and the solution was stirred at 100 °C for 10 hours. The reaction solution was concentrated, and a 1-N aqueous KOH solution was added thereto under cooling with ice. The solution was extracted with chloroform and dried. The solvent was distilled off, thereby obtaining 0.31 g of 4-chloro-7-(2-thienyl)thieno[2,3-d]pyridazine.

0.31 g of 4-chloro-7-(2-thienyl)thieno[2,3-d]pyridazine and 0.48 g of (R)-1-phenylethylamine was dissolved in 2 m1 of N-methylpyrrolidone, and the solution was stirred at 150°C for 10 hours. After cooling the solution, an aqueous 5% KOH solution was added thereto, and the solution was extracted with chloroform and dried. The solvent was distilled off, and the residue was purified by silica gel chromatography to obtain 0.27 g of (R)-4-(1-phenylethylamino)-7-(2-thienyl)-thieno[2,3-d]pyridazine.

Melting point: 215.5 to 216.5 °C.

Examples 70 to 94

Compounds of Examples 70 to 94 shown in Tables 7, 8 and 9 were synthesized in accordance with the method in Example 69.

55

Table 7

Table 8

Comp	. of Ex. No.	- a (°C)
(Comp.	No.in Table2)	m.p. (°C)
7.0	(No.513)	187.5~188
7 1	(Na.514)	162 ~163
7 2	(No. 5 1 5)	205 ~206
7 3	(No.516)	184 ~186
7 4	(No. 5 1 7)	183 ~184.5
7 5	(No.518)	165. 0~166. 0
7 6	(Na.519)	amorphous
77	(Na.520)	amorphous
7 8	(No.521)	154. 5~156. 0
7 9	(Na.522)	89. 0~ 95. 0
8 0	(Na.524)	215. 5~216. 5
8 1	(Na.525)	

Comp. of Ex. No. m. p. (°C	"
(Comp. No. in Table3)	<i>,</i>)
8 2 (Na 5 2 6) 82 ~ 8	35
8 3 (Na 5 2 7)	
8 4 (No.5 2 8)	
8 5 (Na.5 2 9)	
8 6 (No.5 3 0) 140 ~14	7
8 7 (No.5 3 1) 130 ~13	32
8 8 (No.5 3 2) 129 ~13	30
8 9 (No.5 3 3) 130 ~13	2
9 0 (No.5 3 4) amorphou	ıs
9 1 (Na.5 3 5) $78 \sim 8$	5
9 2 (No.5 3 6) amorphou	is

25

5

10

15

20

In Tables 7 and 8, the compounds in Examples 70, 75, 78, 79, 82, 88, 90, 91 and 92 are R compounds, and the compound in Example 83 is an S compound.

30

Table 9

Comp. of Ex. No. (Comp. No. in Table4)	m.p. (*C)
9 3 (No. 5 3 7)	172 ~175
9 4 (No. 5 3 8)	152 ~154

35

In Table 9, the compounds in Examples 93 and 94 are R compounds.

Example 95

Synthesis of (R)-4-(1-cyclohexylethylamino)-7-phenylfurano[2,3-d]pyridazine (Compound No. 539 in Table 5)

5.96 g of diisopropylamine was dissolved in 50 ml of tetrahydrofuran, and 35 ml of n-butyllithium (1.6 M) was added dropwise thereto at 0°C, and then a solution of 3.0 g of 3-furoic acid in 20 ml of tetrahydrofuran was added dropwise thereto at -78°C. The reaction solution was added dropwise to a solution of 5.6 g of benzoyl chloride in 50 ml of tetrahydrofuran at -78°C, and the resultant solution was stirred for 30 minutes. After diluted hydrochloric acid was added, the mixed solution was extracted with chloroform and the extract was purified by silica gel chromatography to obtain 3.2 g of 2-benzoyl-3-froic acid.

3.0 g of 2-benzoyl-3-froic acid and 0.76 g of hydrazine hydrate were dissolved in 30 m1 of ethanol, and the solution was refluxed for 3 hours. After cooling the solution, it was concentrated, and the residue was purified by silica gel chromatography to obtain 0.25 g of 7-phenyl-furano[2,3-d]pyridazine-4-(5H)-one.

0.15 g of 7-phenyl-furano[2,3-d]pyridazine-4-(5H)-one and 10 mt of phosphorus oxychloride were dissolved in 10 mt of dichloroethane, and the solution was stirred at 100°C for 3 hours. The reaction solution was concentrated, and a 1-N aqueous KOH solution was added thereto under cooling with ice. The solution was extracted with chloroform and dried. The solvent was distilled off, thereby obtaining 0.10 g of 4-chloro-7-phenyl-furano[2,3-d]pyridazine.

0.10 g of 4-chloro-7-phenyl-furano[2,3-d]pyridazine and 0.165 g of (R)-1-cyclohexylethylamine was dissolved in 1 mt of N-methylpyrrolidone, and the solution was stirred at 140 °C for 6 hours. After cooling the solution, an aqueous 5% KOH solution was added thereto, and the solution was extracted with chloroform. By purifying the extract by silica gel chromatography, 0.061 g of (R)-4-(1-cyclohexylethylamino)-7-phenyl-furano[2,3-d]pyridazine was obtained.

Melting point: 126 to 130 °C.

Experiment 1

Inhibitory effects of 3,6-disubstituted pyridazine derivatives on platelet agglutination of rats ex vitro

Arterial blood of a rat was centrifuged to obtain platelet rich plasma. 5 mt of a medicinal solution was added to $250~\mu$ t of the platelet rich plasma, and the mixture was incubated for 2 minutes. Thereafter, 3 μ g of collagen (produced by Hormon-Chemie) was added to the mixture as a platelet agglutination inducer, and changes in the platelet agglutination were observed and recorded by a 2-channel platelet agglutination degree measuring instrument (Model DP247E, produced by Sienco) for 10 minutes.

The platelet agglutination inhibitory ratio was calculated from the following formula:

Inhibitory ratio = $(Tc - Ts)/Tc \times 100$

20

30

Tc: Agglutination degree when only a solvent was added

Ts: Agglutination degree when a medicinal solution was added

The inhibitory ratios of each compound having different mol concentrations are shown in Tables 10 to 25 14.

Experiment 2

Inhibitory effects of 3,6-disubstituted pyridazine derivatives on platelet agglutination of rats in vivo (oral administration)

A rat group consisting of 8 male Wistar-ST rats each weighing about 250 g was tested. Each compound was suspended in aqueous 1% tragacanth solution. The thus-prepared suspension was orally administered to each rat at a dose of 4 mt/kg. One hour after, blood was collected from each carotid artery through a cannula into a plastic test tube containing 3.8% sodium citrate in amount corresponding to 1/10 of the volume of the test tube) and the mixture was stirred. Thereafter, the mixture was centrifuged at $200 \times g$ rpm for 15 minutes, and the supernatant liquid was taken as platelet rich plasma (PRP). The residue was further centrifuged at $2000 \times g$ rpm for 15 minutes, and the supernatant liquid was collected as platelet poor plasma (PPP) and used for measurement of the platelet agglutinating ability. The platelet agglutinating ability was measured by a 2-channel platelet agglutination degree measuring instrument (Model DP247E, produced by Sienco), and recorded by a 2-pen recorder.

Collagen (produced by Hormon-Chemie) having a concentration of 7 to 10 μ g/mt was used as a platelet agglutination inducer.

The platelet agglutination inhibitory ratio was calculated from the following formula:

Inhibitory ratio = $(A - B)/A \times 100$ (%)

- A: Agglutination degree in the group (controlled group) to which only a solution of 1% tragacanth was administered
- B: Agglutination degree in the group to which the tragacanth solution containing a compound was administered

The results are shown in Tables 10 to 14.

55

45

Table 10

	lable 10				
	Comp. of Ex. No.	in v	itro Inhibit	ory	ex vivo
5	(Comp. No. in Table1)	rati	ratio(%)		Inhibitory ratio(%)(p.o)
	(Comp. No. III Table)	10 ⁻⁷ M	3×10 ⁻⁷ M	10 ⁻⁶ M	l mg∕kg
	1 (Na.1)	89. 2	97. 1		
	2 (Na.2)	56.0	96. 0		
10	3 (Na 34)		18. 4	100	
	4 (Na.44)		100		
	5 (Na.40)			51.8	
15	6 (Na.58)	35. 2	58. 3	98.0	
,,,	7 (Na.23)	96. 1			
	9 (Na 67)			23.8	
	10 (Na.75)			36.8	
20	11 (Na.91)			56.2	
	12 (Na316)			17.9	
	13 (Na.329)			22.5	
25	14 (Na.301)		8. 2	75.8	
25	15 (Na331)		13.5	88.1	
	16 (Na.161)	30. 8	32. 7	100	
	17 (Na.162)	27.5	80. 4	100	
30	18 (Na.167)	100			10.5
	19 (Na.177)	46. 9	100		
	20 (Na 178)	100			48. 9
0.5	21 (Na168)	100		İ	42. 5
35	22 (Na 174)	100			38. 5
	23 (Na.169)	100			15. 3
	24 (Na 170)	100			41.5
40	25 (Na 173)	0	5	57.5	
	26 (Na 150)	100			38. 5
	27 (Na 152)	100			53. 6 ·
	28 (Na.115)	100			
4 5	29 (Na.116)	100			56. 2

50

Table 10 (continued)

Table 10 (continued)						
	Comp. of Ex. No.	in v	itro Inhibit	ory	ex vivo	
5	(Comp. No. in Tablel)	ratio(X)			Inhibitory ratio(%)(p.o)	
•	(Comp. No. 111 Table1)	10 ⁻⁷ M	3×10 ⁻⁷ M	10 ⁻⁶ M	l mg∕kg	
	30 (Na.118)	68. 0	94. 6			
	31 (Na120)		52. 2	91.0		
10	32 (Na.131)	52. 5	73. 6	88. 5		
	33 (Na.125)		14. 6	78. 9		
	34 (No.137)	98. 6				
15	35 (Na.138)	47.6	97.7			
70	36 (Na.141)	49.6	85. 1			
	37 (Na.142)		49. 4	73.6		
	38 (Na.147)	49. 4	92. 6			
20	39 (No.207)	94. 9				
	40 (No.208)	91. 2	100			
	41 (No.181)	55. 8	91. 3			
	42 (No.189)	96. 3				
25	43 (No.197)		55. 0	85. 8		
	44 (No.215)		16. 2	52.6		
	45 (Na237)	98. 6				
30	46 (No.241)		40. 6	66.5		
	47 (Na.354)		28.6	91.5		
	48 (No.346)	62. 7	91. 9		25. 3	
	49 (No.362)		81. 4	92. 1		
35	50 (Na 370)		37. 6	94.5		
	51 (Na.371)			13. 4		
	52 (No.373)			0.4		
40	53 (Na.375)			8.5		
· ·	54 (Na.386)			35. 5 :		
	55 (Na.380)			10.1		
	56 (No.396)			3.8		
45	57 (Na 403)			44. 1		

50

Table 10 (continued)

Comp. of Ex. No.	in vitro	Inhibitory r	ex vivo Inhibitory ratio (%)(p.o)	
(Comp. No. in Table 1)	1 0 ⁻⁷ M	3×10 ⁻⁷ M	1 0 ⁻⁶ M	l mg∕kg
5 8 (No.410)			2. 5	
5 9 (No293)			27. 7	
6 0 (No.431) (R)	94. 3			51. 3
6 1 (No.431) (S)	30. 2	94. 4		
6 2 (No.432)		61. 3	83. 5	
6 3 (No.433)		90. 3		
6 5 (No.445)	93. 2			
6 7 (Na.489)	61.0			41.1
6 8 (No.501)	95. 0			

In Table 10, the compounds in Examples 1, 7, 9, 10, 11, 12, 13, 14, 15, 28, 34, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 59, 60 and 65 are R compounds, the compound in Example 61 is an S compound, and the compounds in Examples 62, 63, 67 and 68 are RS compounds.

Table 11

: (1)	

10

15

20

	Comp. of Ex. No. (Comp. No. in Table 2)		Inhibitory ra	tio(%)	ex vivo Inhibitory ratio (%)(p. o)	
		1 0 ⁻⁷ M	3 × 10 ⁻⁷ M	1 0 ⁻⁶ M	1 mg/kg	
	6 9 (No. 5 2 3)	50.8	95.2			
35	7 0 (No. 5 1 3)	95.2				
	7 1 (No. 5 1 4)	30.7	98.6			
	7 2 (No. 5 1 5)	5.1	95.3			
	7 3 (No. 5 1 6)	42.8	95.6			
	7 4 (No. 5 1 7)	73.4	93.5	1		
40	7 5 (No. 5 1 8)	94.5			50.2	
	7 9 (No. 5 2 2)		6.6	94.3		
	8 0 (No. 5 2 4)	100				
	8 1 (No. 5 2 5)	100				

45

In Table 11, the compounds in Examples 69, 70, 75 and 79 are R compounds.

50

Table 12

	Comp. of Ex. No. (Comp. No. in Table 3)	in vitro Inhibitory ratio(%)			ex vivo Inhibitory ratio (%)(p. o)	
5		1 0 ⁻⁷ M	3 × 10 ⁻⁷ M	1 0 ⁻⁶ M	1 mg/kg	
	8 2 (No. 5 2 6)	93.3			37.9	
	8 3 (No. 5 2 7)		94.3			
	8 4 (No. 5 2 8)		24.5	61.6		
	8 5 (No. 5 2 9)			40.7		
10	8 6 (No. 5 3 0)		78.2	90.2		
	8 7 (No. 5 3 1)			18.0		
	8 9 (No. 5 3 3)		49.5	95.4		
	9 0 (No. 5 3 4)	32.7	94.4		60.6	

In Table 12, the compounds in Examples 82 and 90 are R compounds, and the compound in Example 83 is an S compound.

Table 13

20

25

15

 Comp. of Ex. No. (Comp. No. in Table 4)
 in vitro Inhibitory ratio(%)
 ex vivo Inhibitory ratio (%)(p.o)

 1 0⁻⁷M
 3 × 10⁻⁷M
 1 0⁻⁶M
 1 mg/kg

 9 3 (No. 5 3 7)
 9.3
 93.4

In Table 13, the compound in Example 93 is an R compound.

30

35

Table 14

Comp. of Ex. No. (Comp. No. in Table 5)	in vitro Inhibitory ratio(%)		io(%)	ex vivo Inhibitory ratio (%)(p.o)	
	1 0 ⁻⁷ M	$3 \times 10^{-7} M$	1 0 ⁻⁶ M	1 mg/kg	
9 5 (No. 5 3 9)	94.4	100		63.1	

In Table 14, the compound in Examples 95 is an R compound.

40 Experiment 3

Effects of 3,6-disubstituted pyridazine derivatives on on the myocardial infarction of a rat induced by the ligation of the left coronary artery

A rat group consisting of 8 male SD rats each weighing 200 to 250 g was tested. Myocardial infarction was produced in accordance with a method of Selye et al. That is, each rat was fixed on an operating boar on its back, and an about 1.5 cm incision had been made through the skin along the left sternal border under weak etherization. The pericardium was broken to exteriorize the heart, and the left coronary artery was ligated at a position of 1 to 2 mm apart from the origin thereof with black blade 4-O silk suture (produced by Hama Ika Kogyo). Thereafter, the heart was restored to its original position and the chest was sutured. The air in the throacic cavity was discharged by pressing both side breast portions. After the resumption of respiration, the ST elevation in the standard limb lead II by an electrocardiograph (Model ECG-6601, produced by Nihon Koden Co.,). 24 hours after the ligation, blood was collected from the aortas at the abdomen. A fatal amount of blood was then drawn from each rat. The heart was taken out, and a tissue slice (about 2 mm thick) having an annular cross section was cut from the central portion of the heart. The tissue slice was incubated in 20 mt of 1% TTC (tryphenyl tetrazolium chloride, produced by Wako Pure Chemical Industries Limited) dissolved in 0.09 M of phosphoric acid buffer (pH 8.6) at 37 °C for 20 minutes while shielding light. The tissue slice was photographed by a stereoscopic microscope to produce

a color slide. The image of the tissue slice was projected on a wall surface from the color slide. The cut surface, the infarcted portion (portion not dyed with TTC) and the non-infarcted portion (portion dyed with TTC) were traced on a sheet, and the area of the infarcted portion in the whole cross section was calculated. The medicine was suspended in an aqueous 1% tragacanth solution and orally administered to each rat 60 minutes before the ligation of the left coronary artery.

The myocardial infarction inhibitory ratio was calculated from the following formula:

Inhibitory ratio =
$$\frac{A - B}{A} \times 100$$
 (%)

- A: Infarction degree in the group (controlled group) to which only a solution of 1% tragacanth was administered
- B: Infarction degree in the group to which the tragacanth solution containing a medicine was administered

The results are shown in Table 15.

Table 15

25

30

35

40

10

15

Compounds No. (table 1,2,3 and 4)	doses (mg/kg)	percentage of inhibition
4 3 1 (R)	1	6 8.5
	3	8 2.2
Aspirin*	100	1 0.7
Ticlopidine*	30	1 0.1

*;anti-platelet aggregation agents

Claims

1. A 3,6-disubstituted pyridazine derivative represented by the following general formula (I), an optical antipode thereof and a pharmaceutically acceptable acid-addition salt thereof:

$$\begin{array}{c}
A \\
C \\
O \\
N
\end{array}$$
... (I

45

wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a phenyl group, a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms, a phenylthio group, a nitrogen-containing saturated cyclic group, a pyridyl group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

55

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms,

and I represents an integer of 0 to 3),

5

10

15

20

25

30

35

40

45

50

55

-CHR²

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6);

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

-N $(z)_n$

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring; a furan ring; or a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) to (4) are excluded:

(1) compounds represented by the formula (I) wherein A represents a non-substituted imidazolyl group, the ring C represents a benzene ring, and B represents

(wherein X₁ independently represents a halogen atom or an alkyl group having 1 to 4 carbon atoms, and £ is as defined above), or an alkylamino group having 3 to 8 carbon atoms;

(2) compounds represented by the formula (I) wherein A represents a phenyl group which may have a substituent, the ring C represents a benzene ring, and B represents

(wherein R1, X and 1 are as defined above);

(3) compounds represented by the formula (I) wherein A represents a non-substituted phenyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon

atoms: and

15

20

25

30

35

40

45

- (4) compounds represented by the formula (I) wherein A represents a pyridyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms.
- 2. A compound according to claim 1, wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms; a phenylthio group; a nitrogen-containing saturated cyclic group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and t represents an integer of 0 to 3),

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6),

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above), or an alkyl group having 3 to 8 carbon atoms]; or

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring.

- 3. A compound according to claim 1, wherein A represents a phenyl group which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms)]; and the ring C represents a benzene ring.
- 4. A compound according to claim 1, wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; or a phenyl group, a thienyl group or a pyridyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

$$-CHR^1 \longrightarrow O$$

5

(wherein R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents an integer of 0 to 3),

10

15

(wherein R2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alky! group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6), or

25

20

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above); and the ring C represents a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms.

A compound according to claim 1, wherein A represents a phenyl group which may be substituted by 30 an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a phenoxy group; a phenylthio group; a pyrrolidinyl group; a piperidyl group; a morpholinol group; a pyridyl group; a benzyl group which may be substituted by a halogen atom; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

40

35

45

(wherein R1 represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and I represents 0 or 1),

50

(wherein R2 represents an alkyl group having 1 to 4 carbon atoms),

5

10

15

20

25

30

35

40

45

50

55

(wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represent an integer of 0 to 6), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring, or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) and (2) are excluded:

- (1) compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring; and
- (2) compounds represented by the formula (I) wherein A is a pyridyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring.
- 6. A compound according to claim 1, wherein A represents a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a pyrrolidinyl group; a piperidyl group; a morpholinol group; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents 0 or 1),

(wherein R2 represents an alkyl group having 1 to 4 carbon atoms),

(wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an

alkyl group having 1 to 3 carbon atoms, and m represent an integer of 0 to 6), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

5

10

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring; or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring are excluded.

15

7. A compound according to claim 1, wherein A represents a phenyl group; or a furyl group or a thienyl group each of which may be substituted by an alkyl group having 1 to 4 carbon atoms; and B represents -NH-D [wherein D represents

20

25

(wherein R² represents an alkyl group having 1 to 4 carbon atoms)].

- 8. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
- 30 9. A pharmaceutical composition for a diseases caused by platelet agglutination, said composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier.
 - 10. A pharmaceutical composition according to claim 9, wherein said disorder caused by platelet agglutination is ischemic heart disease.

35

- 11. A pharmaceutical composition according to claim 10 wherein said ischemic heart disease is myocardial infarction.
- **12.** A pharmaceutical composition according to claim 10 wherein said ischemic heart disease is angina pectoris.
 - 13. A pharmaceutical composition according to claim 9, wherein said disorder caused by platelet agglutination is a cerebrovascular disorder.
- 45 14. A pharmaceutical composition according to claim 13, wherein said cerebrovascular disorder is cerebral thrombosis.
 - 15. A pharmaceutical composition according to claim 13, wherein said cerebrovascular disorder is cerebral

- 16. A pharmaceutical composition according to claim 9, wherein said disorder caused by platelet agglutination is a circulation disorder.
- 17. A pharmaceutical composition according to claim 16, wherein said circulation disorder is a peripheralcirculation disorder.
 - A process for the manufacture of the compounds as defined in claims 1 to 7, characterized by
 (i) when the ring C represents a benzene ring, reacting phthalic anhydride with

- (a) a Grignard reagent or a lithium reagent of formula A-M wherein A is as defined in claims 1 to 7 and M represents MgCl, MgBr, Mgl or Li or
- (b) with a compound of formula A-H wherein A is as defined above to produce a compound of formula (X)

5

10

wherein A is as defined above, reacting compound (X) with hydrazine or hydrazine hydrate to produce a compound of formula (XI)

20

15

25

wherein A is as defined above, reacting compound (XI) with a chlorinating agent to provide a compound of formula(XII)

30

35

wherein A is as defined above. and reacting compound (XII) with a compound of the formula B-H, wherein B is as defined in claims 1 to 7 to produce a compound of formula (I-a)

40

$$\begin{array}{ccc}
 & A & N \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 &$$

45

50

wherein A and B are as defined above,

or

(ii) when the ring C represents a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, reacting a compound of formula (XIII)

 $\begin{array}{c}
R \longrightarrow \\
O \longrightarrow CH_3
\end{array} (XIII)$

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a base such as butyl lithium to produce an ortho-lithiated compound, which is then reacted with a compound represented by the general formula

A-COR',

5

10

15

20

25

30

40

45

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an imidazolyl group or cyano group to produce a compound of for mula (XIV)

$$R \xrightarrow{\hat{\Lambda}} O$$

$$C H_3$$

$$C H_3$$

$$(XIV)$$

wherein A and R are as defined above, cleaving the oxazoline ring of compound (XIV) to prepare a compound of formula (XV)

wherein A and R are as defined above, and reacting the compound (XV) with hydrazine or hydrazine hydrate to produce a compound of formula (XVI)

wherein R and A are as defined above, reacting the compound (XVI) with a chlorinating agent to produce a compound of formula (XVII)

$$R = \bigcup_{S} \bigcap_{N}^{A} \bigcap_{N} (XVII)$$

wherein A and R are as defined above and reacting compound (XVII) with a compound of formula B-H, wherein B is as defined above to produce a compound of formula (I-b)

$$R = \bigcup_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} N$$

wherein A, B and R are as defined above; or

(iii) when the ring C represents a furan ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, reacting a compound of formula (XVIII)

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a compound of formula (XIX)

A-COR' (XIX),

5

10

15

20

25

30

35

40

50

55

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an aryloxy group, an imidazolyl group or a cyano group, to produce a compound of formula (XX)

wherein R and A are as defined above, reacting compound (XX) with hydrazine or hydrazine hydrate to produce a compound of formula (XXI)

$$R = \bigvee_{i=1}^{A} \bigvee_{i=1}^{N} V_{i}$$
(XXI)

wherein R and A are as defined above, reacting compound (XXI) with a chlorinating agent to produce a compound of formula (XXII)

$$R = \begin{pmatrix} 0 & A & A \\ \vdots & \ddots & \vdots \\ 0 & N & N \end{pmatrix}$$
(XXII)

wherein A and R are as defined above and reacting compound (XXII) with a compound of formula B-H, wherein B is as defined above, to produce a compound of formula (I-c)

$$R = \begin{cases} 0 & A \\ 0 & N \\ N & N \end{cases}$$
 (I - c)

wherein A, B and R are as defined above.

Claim for the following Contracting State: ES

5 1. A process for the manufacture of a 3,6-disubstituted pyridazine derivative represented by the following general formula (I), an optical antipode thereof and a pharmaceutically acceptable acid-addition salt thereof:

wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a phenyl group, a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms, a phenylthio group, a nitrogen-containing saturated cyclic group, a pyridyl group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and £ represents an integer of 0 to 3),

40

45

50

5

10

15

5

10

15

20

25

30

35

40

45

50

55

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6);

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above),

-CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms or a thienyl group), or an alkyl group having 3 to 8 carbon atoms?: or

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring; a furan ring; or a thiopene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) to (4) are excluded:

(1) compounds represented by the formula (I) wherein A represents a non-substituted imidazolyl group, the ring C represents a benzene ring, and B represents

(wherein X₁ independently represents a halogen atom or an alkyl group having 1 to 4 carbon atoms, and 1 is as defined above), or an alkylamino group having 3 to 8 carbon atoms;

(2) compounds represented by the formula (I) wherein A represents a phenyl group which may have a substituent, the ring C represents a benzene ring, and B represents

(wherein R1, X and 1 are as defined above);

- (3) compounds represented by the formula (I) wherein A represents a non-substituted phenyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms; and
- (4) compounds represented by the formula (I) wherein A represents a pyridyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms,

characterized by

5

10

20

25

30

35

40

45

50

- (i) when the ring C represents a benzene ring, reacting phthalic anhydride with
 - (a) a Grignard reagent or a lithium reagent of formula A-M wherein A is as defined above and M represents MgCl, MgBr, MgI or Li or
 - (b) with a compound of formula A-H wherein A is as defined above to produce a compound of formula (X)

wherein A is as defined above,

reacting compound (X) with hydrazine or hydrazine hydrate to produce a compound of formula (XI)

wherein A is as defined above,

reacting compound (XI) with a chlorinating agent to provide a compound of formula (XII)

wherein A is as defined above,

and reacting compound (XII) with a compound of the formula B-H, wherein B is as defined above to produce a compound of formula (I-a)

$$\bigcap_{B}^{A} \bigcap_{N}^{N} \qquad (I - a)$$

wherein A and B are as defined above, or

(ii) when the ring C represents a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, reacting a compound of formula (XIII)

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a base such as butyl lithium to produce an ortho-lithiated compound, which is then reacted with a compound represented by the general formula

A-COR',

5

10

15

30

35

40

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an imidazolyl group or cyano group to produce a compound of for mula (XIV)

25 R C H 3 (XIV)

wherein A and R are as defined above, cleaving the oxazoline ring of compound (XIV) to prepare a compound of formula (XV)

wherein A and R are as defined above, and reacting the compound (XV) with hydrazine or hydrazine hydrate to produce a compound of formula (XVI)

$$R = \bigvee_{N \in \mathbb{N}} \bigvee_{N \in \mathbb{N}} (XVI)$$

wherein R and A are as defined above, reacting the compound (XVI) with a chlorinating agent to produce a compound of formula (XVII)

$$R = \bigcup_{S} \bigcap_{N}^{N}$$
(XVII)

wherein A and R are as defined above and reacting compound (XVII) with a compound of formula B-H, wherein B is as defined above to produce a compound of formula (I-b)

wherein A, B and R are as defined above; or

(iii) when the ring C represents a furan ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, reacting a compound of formula (XVIII)

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a compound of formula (XIX)

A-COR' (XIX),

5

10

15

20

25

30

35

40

45

50

55

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an aryloxy group, an imidazolyl group or a cyano group, to produce a compound of formula (XX)

$$R = 0$$

wherein R and A are as defined above,

reacting compound (XX) with hydrazine or hydrazine hydrate to produce a compound of formula (XXI)

$$R = \bigcup_{\substack{1 \\ N \text{iff}}} \bigwedge_{N \text{iff}} (XXI)$$

wherein R and A are as defined above, reacting compound (XXI) with a chlorinating agent to produce a compound of formula (XXII)

$$R = \begin{pmatrix} 0 & A & N \\ \vdots & \ddots & N \\ N & N & N \end{pmatrix}$$
 (XXII)

wherein A and R are as defined above and reacting compound (XXII) with a compound of formula B-H, wherein B is as defined above, to produce a compound of formula (I-c)

$$R = \bigcup_{N \in \mathbb{N}} \binom{N}{N} \qquad (I - c)$$

wherein A, B and R are as defined above.

Claims for the following Contracting State: GR

 A 3,6-disubstituted pyridazine derivative represented by the following general formula (I), an optical antipode thereof and a pharmaceutically acceptable acid-addition salt thereof:

$$\begin{array}{c|c}
 & A \\
 & \downarrow \\
 & N \\
 & N \\
 & N \\
 & \dots & (I)
\end{array}$$

wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a phenyl group, a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms, a phenylthio group, a nitrogen-containing saturated cyclic group, a pyridyl group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms; an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents an integer of 0 to 3),

55

50

5

10

15

20

30

35

40

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6);

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above),

-CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring; a furan ring; or a thiophene ring which maybe substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) to (4) are excluded:

(1) compounds represented by the formula (I) wherein A represents a non-substituted imidazolyl group, the ring C represents a benzene ring, and B represents

$$-NH-CH_2$$

(wherein X_1 independently represents a halogen atom or an alkyl group having 1 to 4 carbon atoms, and 1 is as defined above), or an alkylamino group having 3 to 8 carbon atoms;

(2) compounds represented by the formula (I) wherein A represents a phenyl group which may have a substituent, the ring C represents a benzene ring, and B represents

(wherein R1, X and £ are as defined above);

- (3) compounds represented by the formula (I) wherein A represents a non-substituted phenyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms; and
- (4) compounds represented by the formula (I) wherein A represents a pyridyl group, the ring C represents a benzene ring, and B represents an alkylamino group having 3 to 8 carbon atoms.

5

20

15

25

35

30

45

40

50

2. A compound according to claim 1, wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; a thienyl group, a furyl group, a thiazolyl group, a phenoxy group, a phenylalkyl group having 7 to 9 carbon atoms; a phenylthio group; a nitrogen-containing saturated cyclic group or an imidazolyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents an integer of 0 to 3),

$$-CHR^2$$

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6),

5

10

15

20

25

30

35

40

45

50

55

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above), or an alkyl group having 3 to 8 carbon atoms]; or

(wherein Z independently represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 to 2); and the ring C represents a benzene ring.

- 3. A compound according to claim 1, wherein A represents a phenyl group which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cycloalkyl group having 5 to 8 carbon atoms)]; and the ring C represents a benzene ring.
- 4. A compound according to claim 1, wherein A represents an alkyl group having 3 to 6 carbon atoms; a cycloalkyl group having 5 to 7 carbon atoms; or a phenyl group, a thienyl group or a pyridyl group each of which may have at least one substituent selected from the group consisting of an alkyl group having 1 to 3 carbon atoms and a halogen atom; B represents -NH-D [wherein D represents

(wherein R¹ represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, X independently represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and £ represents an integer of 0 to 3),

(wherein R² represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, Y independently represents an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, or any given two Ys combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6), or

(wherein the ring H represents a cycloalkyl group having 5 to 7 carbon atoms, and Y and m are as defined above); and the ring C represents a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms.

5. A compound according to claim 1, wherein A represents a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a phenoxy group; a phenylthio group; a pyrrolidinyl group; a piperidyl group; a morpholino group; a pyridyl group; a benzyl group which may be substituted by a halogen atom; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents 0 or 1),

(wherein R2 represents an alkyl group having 1 to 4 carbon atoms),

5

(wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

15

20

25

30

10

$$-N$$
 N
 $(z)_n$

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring, or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the following compounds (1) and (2) are excluded:

- (1) compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring; and
- (2) compounds represented by the formula (I) wherein A is a pyridyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring.
- 6. A compound according to claim 1, wherein A represents a phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, a chlorine atom or an alkoxy group having 1 to 4 carbon atoms; an alkyl group having 3 to 6 carbon atoms; a cyclohexyl group; a thiazolyl group; a pyrrolidinyl group; a piperidyl group; a morpholino group; or a thienyl group, a furyl group or an imidazolyl group each of which may be substituted by an alkyl group having 1 to 3 carbon atoms; B represents -NH-D [wherein D represents

35

40

(wherein R¹ represents an alkyl group having 1 to 4 carbon atoms, and X represents a chlorine atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and 1 represents 0 or 1),

45

50

(wherein R² represents an alkyl group having 1 to 4 carbon atoms),

55

(wherein Y independently represents an alkyl group having 1 to 4 carbon atoms or any given two Ys

may combine to form an alkylene group having 1 to 3 carbon atoms which may be substituted by an alkyl group having 1 to 3 carbon atoms, and m represents an integer of 0 to 6), -CHR³R⁴ (wherein R³ represents an alkyl group having 1 to 5 carbon atoms, and R⁴ represents a cyclohexyl group or a thienyl group), or an alkyl group having 3 to 8 carbon atoms]; or

-N (Z) n

10

15

20

5

(wherein Z represents an alkyl group having 1 to 4 carbon atoms or a phenyl group, and n represents an integer of 0 or 1); and the ring C represents a benzene ring; or a furan ring or a thiophene ring each of which may be substituted by an alkyl group having 1 to 4 carbon atoms, provided that the compounds represented by the formula (I) wherein A is a phenyl group, B is an alkylamino group having 3 to 8 carbon atoms, and the ring C is a benzene ring are excluded.

7. A compound according to claim 1, wherein A represents a phenyl group; or a furyl group or a thienyl group each of which may be substituted by an alkyl group having 1 to 4 carbon atoms; and B represents -NH-D [wherein D represents

25

30

(wherein R² represents an alkyl group having 1 to 4 carbon atoms)].

- 8. A process for the manufacture of the compounds as defined in claims 1 to 7, characterized by
 - (i) when the ring C represents a benzene ring, reacting phthalic anhydride with
 - (a) a Grignard reagent or a lithium reagent of formula A-M wherein A is as defined in claims 1 to 7 and M represents MgCl, MgBr, Mgl or Li or
 - (b) with a compound of formula A-H wherein A is as defined above to produce a compound of formula (X)

35

40

45

wherein A is as defined above, reacting compound (X) with hydrazine or hydrazine hydrate to produce a compound of formula (XI)

$$\bigcup_{V} \bigcup_{N} \bigcup_{N} \bigvee_{N} \bigvee_{N$$

50

55

wherein A is as defined above, reacting compound (XI) with a chlorinating agent to provide a compound of formula (XII)

wherein A is as defined above,

and reacting compound (XII) with a compound of the formula B-H, wherein B is as defined in claims 1 to 7 to produce a compound of formula (I-a)

$$\begin{array}{c}
A \\
N \\
N
\end{array}$$
(I - a)

wherein A and B are as defined above,

or

5

10

15

20

25

35

40

45

(ii) when the ring C represents a thiophene ring which may be substituted by an alkyl group having 1 to 4 carbon atoms, reacting a compound of formula (XIII)

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a base such as butyl lithium to produce an ortho-lithiated compound, which is then reacted with a compound represented by the general formula

A-COR',

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an imidazolyl group or cyano group to produce a compound of formula (XIV)

$$R \xrightarrow{A} O \xrightarrow{C H_3} C H_3 \qquad (XIV)$$

50

wherein A and R are as defined above, cleaving the oxazoline ring of compound (XIV) to prepare a compound of formula (XV)

wherein A and R are as defined above,

5

10

15

20

25

30

35

40

45

50

55

and reacting the compound (XV) with hydrazine or hydrazine hydrate to produce a compound of formula (XVI)

wherein R and A are as defined above, reacting the compound (XVI) with a chlorinating agent to produce a compound of formula (XVII)

$$R = \bigcup_{N \in \mathcal{N}} N$$
 (XVII)

wherein A and R are as defined above and reacting compound (XVII) with a compound of formula B-H, wherein B is as defined above to produce a compound of formula (I-b)

$$R = \begin{cases} X \\ X \\ X \\ X \end{cases}$$
 (I - b)

wherein A, B and R are as defined above; or
(iii) when the ring C represents a furan ring which may be substituted by an alkyl group having 1 to
4 carbon atoms, reacting a compound of formula (XVIII)

wherein R represents an alkyl group having 1 to 4 carbon atoms, with a compound of formula (XIX)

A-COR' (XIX),

wherein A is as defined above and R' represents a halogen atom, an alkoxy group, an aryloxy group, an imidazolyl group or a cyano group, to produce a compound of formula (XX)

wherein R and A are as defined above, reacting compound (XX) with hydrazine or hydrazine hydrate to produce a compound of formula (XXI)

wherein R and A are as defined above, reacting compound (XXI) with a chlorinating agent to produce a compound of formula (XXII)

$$R = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & \ddots & \\ & & & \\ & & C \neq \end{pmatrix}$$
 (XXII)

wherein A and R are as defined above and reacting compound (XXII) with a compound of formula B-H, wherein B is as defined above, to produce a compound of formula (I-c)

$$R = \bigcup_{B}^{A} \bigcup_{N}^{N}$$
 (I - c

wherein A, B and R are as defined above.

EUROPEAN SEARCH REPORT

Application Number

EP 92 11 6413 PAGE1

- í	DOCUMENTS CONSIL		Delcoor	G ACCEPTATION OF THE
ategory	Citation of document with in of relevant pas	lication, where appropriate, tages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
(DE-A-2 021 195 (ASPR * page 14 *	O-NICHOLAS LTD)	1,8	C07D237/34 C07D403/04 C07D409/04
(,D	PATENT ABSTRACTS OF vol. 14, no. 356 (C-1990 & JP-A-21 29 181 (MCO. LTD.) * abstract *		1,9	C07D409/14 C07D407/04 C07D407/14 C07D417/04 C07D417/14 C07D401/14 C07D401/04
(,D	PATENT ABSTRACTS OF vol. 14, no. 356 (C-1990 & JP-A-21 29 182 (MCO. LTD.) * abstract *	745)(4299) 2 August	1,9	C07D413/04 C07D413/14 C07D409/12 C07D495/04 C07D491/04 A61K31/50
N,D	PATENT ABSTRACTS OF vol. 14, no. 356 (C-1990 & JP-A-21 29 180 (NCO. LTD.) * abstract *	JAPAN 745)(4299) 2 August IORISHITA PHARMACEUT.	1,9	TECHNICAL FIELDS SEARCHED (Int. CL5)
\)	EP-A-0 159 652 (MITS PHARMACEUTICAL CO. L & JP-A-60 218 377 (M K. K.)	SUBISHI YUKA .TD.) HITSUBISHI YUKA YAKUHIN	1,9	A61K
 D	PATENT ABSTRACTS OF vol. 5, no. 114 (C-6 & JP-A-56 53 659 (M. K.) * abstract *	JAPAN 64)(786) 23 July 1981 HITSUBISHI YUKA YAKUHIN	1,9	
	The present search report has be	-/		
	Place of search	Date of completion of the search		Brandser
E	BERLIN	14 DECEMBER 1992		FRELON D.
X : par Y : par	CATEGORY OF CITED DOCUMEN ticularly relevant if taken alone ticularly relevant if combined with ano unnent of the same category hnological background	E : earlier patent do after the filing d	cument, but pub ate in the applicatio	alished on, ar n

RPO FORM 1503 03.82 (P0401)

EUROPEAN SEARCH REPORT

Application Number

EP 92 11 6413 PAGE2

	DOCUMENTS CONSIL	DERED TO BE RELEVAN	4.1,	
Category	Citation of document with in of relevant pas	dication, where appropriate,	Relevant to chaim	CLASSIFICATION OF THE APPLICATION (Int. CL5)
A,D	PATENT ABSTRACTS OF vol. 15, no. 293 (C- 1991	-853)(4821) 25 July	1,9	
	& JP-A-31 06 873 (N CO. LTD.) * abstract *	4ORISHITA PHARMACEUT.	:	
A,D	JOURNAL OF MEDICINAL vol. 12, no. 3, May pages 555 - 6 H.M. HOLAVA ET AL. * example 11 *	_ CHEMISTRY 1969, WASHINGTON US	1,8	
				TECHNICAL FIELDS
				SEARCHED (Int. Cl.5)
	The present search report has be	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
	BERLIN	14 DECEMBER 1992		FRELON D.
Y:pa	CATEGORY OF CITED DOCUMEN rticularly relevant if taken alone rticularly relevant if constitute with ano sument of the same category	E : earlier patent (after the filing	focument, but pub date i in the application	dished on, of
A : tec O : no	hnological background n-written disclosure ernediate document	& : member of the	same patent fami	ly, corresponding

THIS PAGE BLANK (USPTO)