习题四补充讲解(4)

27 解因为 A 的每一行之和都是 3,故 $\xi_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ 有 $A\xi_1 = 3\xi_1$,即 3 是特征值,

又 A 的特征值均为正整数,且 $|A|=3=3\times1\times1$,故还有二重特征值 1.

A 实对称可知属于 1 的特征向量与 ξ 正交

解
$$(1,1,1)$$
 $x=0$,得基础解系 $_{\xi_2}=\begin{pmatrix} -1\\1\\0\\1 \end{pmatrix}$, $_{\xi_3}=\begin{pmatrix} -1\\0\\1 \end{pmatrix}$,即为属于 1 的特征向量

令 $P = (\xi_1, \xi_2, \xi_3)$,则 $P^{-1}AP = \text{diag}(3,1,1)$,于是

$$A = P \operatorname{diag}(3,1,1) P^{-1} = \begin{pmatrix} 1 & -1 & -1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 5 & 2 & 2 \\ 2 & 5 & 2 \\ 2 & 2 & 5 \end{pmatrix}$$

28 解因为 A 实对称,故 A 第一行等于第一列为 $_{(2,-1,2)}$,又 $_{\xi_1} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ 为特征向量,

由 $(2,-1,2)\xi_1=0,(2,-1,2)\xi_2=2$, 于是 $A\xi_1=0\times\xi_1, A\xi_2=2\xi_2$, 即 $\lambda=0,\lambda_2=2$ 若 $\lambda_1\neq\lambda_1,\lambda_2\neq\lambda_2$ 则由 A 实对称可知 ξ_3 与 ξ_1,ξ_3 正交,若 $\lambda_3=\lambda_4$ 或 $\lambda_3=\lambda_4$ 用正交化也可得

$$\xi_3$$
与 ξ_1,ξ_2 正交,解方程组 $\begin{pmatrix} \xi_1^T \\ \xi_2^T \end{pmatrix} x = \begin{pmatrix} -1 & 0 & 1 \\ 1 & 2 & 1 \end{pmatrix} x = \theta$ 得一非零解 $\xi_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$,于是 $\lambda_3 = 5$

$$\Rightarrow$$
 $P = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$, 则 $P^{-1}AP = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix}$, 故有

$$A = Pdiag(0,2,5)P^{-1} = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5 \end{pmatrix} \begin{pmatrix} -1/2 & 0 & 1/2 \\ 1/6 & 1/3 & 1/6 \\ 1/3 & -1/3 & 1/3 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 3 & -1 \\ 2 & -1 & 2 \end{pmatrix}$$

29*证因为 $A^2 = AA = A$,此即 $A(\alpha_1, \dots, \alpha_n) = (\alpha_1, \dots, \alpha_n)$,其中 $A = (\alpha_1, \dots, \alpha_n)$,又 $r(A) = r((\alpha_1, \dots, \alpha_n)) = r$,故 A 有 r 个属于特征值 1 的无关特征向量 $\alpha_{i_1}, \dots, \alpha_{i_r}$,标准正交化得 ξ_1, \dots, ξ_r ,并令 $U = (\xi_1, \dots, \xi_r)$; 另外由 r(A) = r < n 可得 n-r 个属于特征值 0 的标准正交的特征向量 $\eta_1, \dots, \eta_{n-r}$,并令 $V = (\eta_1, \dots, \eta_{n-r})$,由 A 实对称可知 ξ_i 与 η_j 正交,故 $(U, V) = (\xi_1, \dots, \xi_r, \eta_1, \dots, \eta_{n-r})$ 为正交矩阵. 由前所知 A(U, V) = (U, O),于是 $A = A(U, V)(U, V)^T = (U, O)$ $\begin{pmatrix} U^T \\ V^T \end{pmatrix} = UU^T$,且 $U^TU = E_r$