

LIDAR

- LiDAR (Light Detection and Ranging)
 - Active vs. passive
- Produces 3D ground coordinate
- Direct geo-referencing
 - GPS
 - IMU
 - Laser Scanner
 - Laser Ranger (500 kHz)
- Accurate and dense raw point spacing allows for a high spatial resolution DEM
- Enables accurate creation of DEMs at the meter level

4 main components

Range Calculation

NEON LiDAR Sensors

	Optech Gemini (P1 & P2)	Riegl Q780 (P3)	Optech Galaxy Prime (P1 2021+)
Years Flown	2012 +	2018 +	2021 +
Laser Pulse Length (ns)	10	3	3
Beam Divergence (mRad)	0.8	0.25	0.25
Nominal PRF (kHz)	33-100	300-400	150-900
Pulse Density (pulses/m²)	2-4	4-10+	up to 30

Discrete vs full waveform

- Optech Gemini/Galaxy return signal is split
 - Discrete receiving electronics
 - Waveform digitizer
- Riegl discrete is derived from full waveform
- Discrete returns saves only point locations of returns
- Waveform saves the full return energy signature
- Tradeoff between data size / processing time vs. enhanced information

Trajectory Processing

- NEON base stations set up at FBO (airport) and site
- Use CORS network
- 1 basestation within 20 km of aircraft on site, or 4 basestations all within 70 km that encompass flight
- Aiming for errors in x, y, and z to be
 < 0.05 cm and 0.08 m
- Aiming for errors in roll, pitch, and yaw to be below 0.005° and 0.008°
- PDOP (position dilution of precision) can be high depending satellite configurations

Trajectory Processing Results

Figure 3: D11 OAES R1 P1 v2 fitlines Trajectory Error

0.025
0.02
0.015
0.015
0.005
East Error
North Error
Ellevation Error

Figure 5: 2017050514 P1C1 Position Error

GPS Time (s)

5.05

 $\times 10^{5}$

4.85

4.9

LiDAR point cloud

- A selection of LiDAR points acquired in the survey.
- Fully three-dimensional coordinates

Cloud to grid

- Turn LiDAR point cloud into raster product
- Requires interpolation method
- Many available
- Triangular Irregular Network (TIN) used at NEON

Triangular Irregular Network (TIN)

- Computationally efficient
- Honors location of original LiDAR points
- Does not exploit redundancy in the LIDAR data to reduce noise through averaging
- 4 pts / m², with only 1 m pixels

NEON AOP Lidar Products

Lidar

- Unclassified point cloud (.las v1.3)
- Classified point cloud (.laz v1.3)
- DTM / DSM (1m, .tif)
- Slope / Aspect (1m, .tif)
- Canopy height model (1m, .tif)
- Slant range waveform (.plz,.wvz 0.3)

NEON discrete LiDAR Data – Point Cloud

- L1 product derived from LiDAR
- LAS 1.3 format
- Available by flight line, 4-10+ points/m²

NEON discrete LiDAR Data – Classified Point Cloud

- Classification performed with LAStools (<u>http://rapidlasso.com</u>)
- Classifications based on ASPRS LAS standard classification scheme
- Classes include
 - Ground
 - Vegetation
 - Building
 - Noise
 - Unclassified
- Provided in 1 km by 1 km tiles (LAZ format)

Colorized point cloud

Color from high resolution RGB imagery, added to classified tiles according to LAS 1.3 specification

NEON Science Resources

Videos and Tutorials:

http://www.neonscience.org/lidar-basics

http://www.neonscience.org/resources

http://www.neonscience.org/resources/science-videos

YouTube Channel:

https://www.youtube.com/channel/UCNodgIxpGyEjhV3XXMxFO5g

https://www.youtube.com/watch?v=EYbhNSUnIdU&feature=youtu.be

