→ Data Visualization

Step-1

import seaborn as sns
import matplotlib.pyplot as plt

▼ Step-2 Load Dataset

mpg = sns.load_dataset("mpg")
mpg.head()

name	origin	model_year	acceleration	weight	horsepower	displacement	cylinders	mpg	
chevrolet chevelle malibu	usa	70	12.0	3504	130.0	307.0	8	18.0	0
buick skylark 320	usa	70	11.5	3693	165.0	350.0	8	15.0	1
plymouth satellite	usa	70	11.0	3436	150.0	318.0	8	18.0	2
amc rebel sst	usa	70	12.0	3433	150.0	304.0	8	16.0	3
ford torino	usa	70	10.5	3449	140.0	302.0	8	17.0	4

▼ Step-3 Plot a graph

sns.lineplot(x="cylinders",y="acceleration", data=mpg)

<Axes: xlabel='cylinders', ylabel='acceleration'>

sns.lineplot(x="displacement",y="horsepower", data=mpg)
plt.xlim(2)
plt.ylim(3)

sns.lineplot(x="horsepower",y="displacement", data=mpg)
plt.xlim(20)
plt.ylim(10)

plt.title("2022 Session")

Text(0.5, 1.0, '2022 Session')

- Bar Code

sns.barplot(x="cylinders",y="weight", data=mpg)

<Axes: xlabel='cylinders', ylabel='weight'>

▼ Box Plot

sns.boxplot(x="cylinders",y="acceleration", data=mpg)

<Axes: xlabel='cylinders', ylabel='acceleration'>

→ Scatter Plot

sns.scatterplot(x="horsepower",y="acceleration", data=mpg)

→ Catplot

sns.catplot(x="model_year",y="cylinders", data=mpg,color="blue")

```
<seaborn.axisgrid.FacetGrid at 0x7f1448a8f280>
```

```
import seaborn as sns
\verb|sns.set_theme(style="tricks")|\\
# Load the example dataset for Anscombe's quartet
df = sns.load_dataset("mpg")
# Show the results of a linear regression within each dataset
    data=df, x="cylinders", y="acceleration", col="dataset", hue="dataset",
    col_wrap=2, palette="muted", ci=None,
    height=4, scatter_kws={"s": 50, "alpha": 1}
)
₽
     ValueError
                                                Traceback (most recent call last)
     <ipython-input-54-50d121794431> in <cell line: 2>()
           1 import seaborn as sns
     ----> 2 sns.set_theme(style="model_year")
           3
           4 \# Load the example dataset for Anscombe's quartet
           5 df = sns.load_dataset("mpg")
                                        2 frames
     /usr/local/lib/python3.10/dist-packages/seaborn/rcmod.py in axes_style(style, rc)
                     styles = ["white", "dark", "whitegrid", "darkgrid", "ticks"]
         183
                     if style not in styles:
         184
                         raise ValueError(f"style must be one of {', '.join(styles)}")
     --> 185
         186
         187
                     # Define colors here
     ValueError: style must be one of white, dark, whitegrid, darkgrid, ticks
      SEARCH STACK OVERFLOW
```

```
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_theme(style="whitegrid")
rs = np.random.RandomState(365)
values = rs.randn(365, 4).cumsum(axis=0)
dates = pd.date_range("1 1 2016", periods=365, freq="D")
data = pd.DataFrame(values, dates, columns=["A", "B", "C", "D"])
data = data.rolling(7).mean()
sns.lineplot(data=data, palette="tab10", linewidth=2.5)
```

<Axes: >

import matplotlib.pyplot as plt import seaborn as sns sns.set_theme()

```
# Load the example flights dataset and convert to long-form
flights_long = sns.load_dataset("flights")
flights = flights_long.pivot("month", "year", "passengers")

# Draw a heatmap with the numeric values in each cell
f, ax = plt.subplots(figsize=(9, 6))
sns.heatmap(flights, annot=True, fmt="d", linewidths=.5, ax=ax)
```

<ipython-input-24-fd553bdfde69>:7: FutureWarning: In a future version of pandas all arguments of DataFr
flights = flights_long.pivot("month", "year", "passengers")
<Axes: xlabel='year', ylabel='month'>

		_												
Jan	112	115	145	171	196	204	242	284	315	340	360	417		- 600
Feb	118	126	150	180	196	188	233	277	301	318	342	391		
Mar	132	141	178	193	236	235	267	317	356	362	406	419		- 500
Apr	129	135	163	181	235	227	269	313	348	348	396	461		
May	121	125	172	183	229	234	270	318	355	363	420	472		
-	135	149	178	218	243	264	315	374	422	435	472	535		- 400
month Jul Jur	148	170	199	230	264	302	364	413	465	491	548	622		
Aug	148	170	199	242	272	293	347	405	467	505	559	606		- 300
Sep	136	158	184	209	237	259	312	355	404	404	463	508		
Oct	119	133	162	191	211	229	274	306	347	359	407	461		- 200
Nov	104	114	146	172	180	203	237	271	305	310	362	390		
Dec	118	140	166	194	201	229	278	306	336	337	405	432		
	1949	1950	1951	1952	1953			1956	1957	1958	1959	1960		
year														

0s completed at 11:47 PM

• ×