9(y	Z	J F7 F2 F3
D	0	0	1 0 0 m.
	0	~ 1	0 0 1 m ₇
	7	0	0 1 0 m,
	1	7	0 7 0 mz
	0	Ó	1 0 m
1	0	1	1 0 0 m
1	1	0	0 0 1 m
	7	7	7 D 7 m 7

$$F1 = \leq (0,5,7)$$

$$F2 = 2(2,3,4)$$

implementation with NAND gates for example, implement Or (m, m,) with NAND. F7 = NAND (M., M, m, F2=NAND (m2, m2, m4)

F3 = NAND (m, m, m, m)

F3 = NAND (M7, M8, M7)

G	Inp C	outs B	Α	M0 2 <i>Y</i> 0	M1 2 <i>Y</i> 1	M2 2 <i>Y</i> 2	M3 2 <i>Y</i> 3	M4 1 <i>Y</i> 0	M5 1 <i>Y</i> 1	M6 1 <i>Y</i> 2	M7 1 <i>Y</i> 3
1 0 0 0 0 0 0	X 0 0 0 0 1 1 1	X 0 0 1 1 0 0 1	X 0 1 0 1 0 1 0	1 0 1 1 1 1 1 1	1 0 1 1 1 1 1	1 1 0 1 1 1 1	1 1 1 0 1 1 1 1	1 1 1 1 0 1 1 1	1 1 1 1 1 0 1	1 1 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 0