

TimeGraph: GPU Scheduling for **Real-Time Multi-Tasking Environments**

Shinpei Kato*, Karthik Lakshmanan*, Raj Rajkumar*, and Yutaka Ishikawa**

* Carnegie Mellon University ** The University of Tokyo

Graphics Applications

Graphics Processing Unit (GPU)

Peak Performance

Peak Performance "per Watt"

General-Purpose Computing on GPU (GPGPU)

3-D On-line Game

Autonomous Driving

Virtual Reality

3-D Interface

Computer Vision

Scientific Simulation

Outline

- 1. Introduction
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- **5. Summary**

GPU Is Command-Driven

Multi-Tasking Problem

Impact of Interference

Observe Frame Rate of OpenArena (3-D Game) on Linux

NVIDIA proprietary driver **Nouveau** open-source driver

Outline

- 1. Introduction
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- **5. Summary**

TimeGraph Architecture

Priority Support – Predictable Response Time (PRT) Policy

- When GPU is not idle, GPU commands are queued
- When GPU gets idle, GPU commands are dispatched

Priority Support – High Throughput (HT) Policy

- When GPU is not idle, GPU commands are queued, only if priority is lower than current GPU context
- When GPU gets idle, GPU commands are dispatched

Reservation Support – Posterior Enforcement (PE) Policy

- Enforce GPU resource usage optimistically
- Specify capacity (C) and period (P) per task (/proc/GPU/\$TASK)

Reservation Support – Apriori Enforcement (AE) Policy

- Enforce GPU resource usage pessimistically
- Specify capacity (C) and period (P) per task (/proc/GPU/\$TASK)

GPU Execution Time Prediction

- History-based approach
 - Search records of previous sequences of GPU commands that match the incoming sequences of GPU commands
 - Works for 2-D but needs investigation for 3-D and Compute
- Please see the paper for the detail

Outline

- 1. Introduction
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- **5. Summary**

Experimental Setup

- GPU: NVIDIA GeForce 9800 GT
- CPU: Intel Xeon E5504
- OS: Linux Kernel 2.6.36
 - Nouveau open-source driver

- Phoronix Test Suite http://www.phoronix-test-suite.com/
 - Including OpenGL 3-D game programs
- Gallium3D Demo Suite http://www.mesa3d.org/
 - Including OpenGL 3-D widget and graphics-bomb programs

Performance Protection

Frame Rate of 3-D Game competing with Graphics Bomb in background

Interference on Time

No TimeGraph Support

Priority Support (PRT)

Priority Support (PRT) + Reservation Support (PE)

Standalone Performance

Overhead is acceptable for protecting GPU

Outline

- 1. Introduction
- 2. What's Problem
- 3. Our Solution "TimeGraph"
- 4. Evaluation
- **5. Summary**

Concluding Remarks

- TimeGraph enables prioritization and isolation for GPU applications in multi-tasking environments
 - Device-driver solution: no modification to user-space
 - Scheduling of GPU commands
 - Reservation of GPU resource usage
- http://rtml.ece.cmu.edu/projects/timegraph/

Current Status

- GPGPU support (collaboration with PathScale Inc.)
 - Visit http://github.com/pathscale/pscnv
- Making open-source fast and reliable
 - It's getting competitive to the proprietary driver!
 - Some result from our OSPERT'11 paper (*) below:

* Available at http://www.contrib.andrew.cmu.edu/~shinpei/papers/ospert11.pdf

Thank you for your attention! Questions?

