Programowanie

Egzamin zasadniczy

14 czerwca 2002

Za każde zadanie można otrzymać od -25 do 25 punktów. Dodatkowo w zadaniu 2 można otrzymać bonus 5 pkt. Egzamin trwa trzy godziny zegarowe.

Zadanie 1. Funkcję *hiperwykładniczą h* : $\mathbb{N} \to \mathbb{N}$ definiujemy indukcyjnie:

$$h(0) = 1$$

 $h(n+1) = 2^{h(n)}$

Udekoruj poniższy program w języku D asercjami w taki sposób, by utworzyły one dowód jego poprawności.

```
{X = n \land n \ge 0}

S = 1;

while (X>0) (

T = S;

S = 1;

while (T!=0) (

S = 2 * S;

T = T - 1;

)

X = X - 1;

)

{S = h(n)}
```

Zadanie 2. Zdefiniuj gramatykę typu 0 generującą język $L = \{a^{2^n} \mid n \ge 0\}$ nad alfabetem $\Sigma = \{a\}$. Uzasadnij, że generuje ona właśnie ten język. *Bonus 5 pkt.*, jeżeli zamiast języka $L = \{a^{2^n} \mid n \ge 0\}$ opiszesz język $L = \{a^{n^2} \mid n \ge 0\}$.

Zadanie 3. Podczas wybuchu supernowej tworzą się długie ciągi złożone z cząstek materii m i antymaterii a. Gdy cząstki materii i antymaterii znajdą się w bezpośrednim sąsiedztwie, następuje ich anihilacja (znikają). Po pewnym czasie ciągi zawierają wyłącznie cząstki jednego rodzaju. W tym zadaniu sformalizujemy opisany wyżej proces. Ciągi cząstek będziemy reprezentować jako słowa nad alfabetem $\{m,a\}$. Binarna relacja R na słowach jest monotoniczna, jeżeli dla dowolnych słów $u,v,x,y\in\{m,a\}^*$, jeśli uRv, to (xuy)R(xvy). Niech \to będzie najmniejszą relacją monotoniczną, taką, że $ma\to\epsilon$ i $am\to\epsilon$, relacja $^*\to$ będzie zwrotnym i przechodnim domknięciem \to , zaś \sim będzie zwrotnym, symetrycznym i przechodnim domknięciem \to .

Udowodnij, że relacja $\stackrel{*}{\to}$ posiada następującą własność, zwaną własnością Churcha-Rosera: dla wszelkich słów $u, v, w \in \{m, a\}^*$, jeżeli $u \stackrel{*}{\to} v$ i $u \stackrel{*}{\to} w$, to istnieje słowo $z \in \{m, a\}^*$, takie, że $v \stackrel{*}{\to} z$ i $w \stackrel{*}{\to} z$.

Słowo $u \in \{m, a\}^*$ jest w postaci normalnej, jeżeli nie istnieje słowo $v \in \{m, a\}^*$, takie, że $u \to v$. Dla danego słowa u postacią normalną u nazywamy każde słowo v będące w postaci normalnej, takie, że $u \stackrel{*}{\to} v$. Pokaż, że każde słowo posiada dokładnie jedną postać normalną.

Zdefiniowane wyżej relacje można traktować jak semantykę operacyjną naszego języka cząstek. Zadaj odpowiadającą jej semantykę denotacyjną, tj. dobierz odpowiednią dziedzinę interpretacji D i odwzorowanie $[\![\cdot]\!]: \{m,a\}^* \to D$, takie, by dla wszystkich słów $u,v \in \{m,a\}^*$ zachodziło $u \sim v$ wtedy i tylko wtedy, gdy $[\![u]\!]=[\![v]\!]$.

Zadanie 4. Niech Σ będzie sygnaturą jednogatunkową, zaś \mathcal{X} zbiorem zmiennych. Rozważmy dwa rodzaje par termów: równości, zapisywane w postaci s=s' i nierówności, zapisywane w postaci $t \neq t'$. Rozwiązaniem zadania

$$\{s_i = s_i'\}_{i=1}^n \cup \{t_j \neq t_j'\}_{j=1}^m$$

jest podstawienie θ , takie, że $s_i\theta=s_i'\theta$, dla $i=1,\ldots,n$, oraz $t_j\theta\neq t_j'\theta$, dla $j=1,\ldots,m$. Niech $\mathcal R$ będzie zbiorem rozwiązań powyższego zadania. Pokaż, że jeżeli $\mathcal R\neq\emptyset$, to istnieje w $\mathcal R$ rozwiązanie najbardziej ogólne, tj. istnieje takie $\theta_0\in\mathcal R$, że dla każdego $\theta\in\mathcal R$ zachodzi $\theta_0\leq\theta$. Podaj przykład ilustrujący, iż — w odróżnieniu od zwykłej unifikacji — jeśli $\theta_0\in\mathcal R$ jest najbardziej ogólnym rozwiązaniem, to istnieją podstawienia $\theta\geq\theta_0$, które nie należą do $\mathcal R$.

Opisz algorytm znajdowania najogólniejszego rozwiązania powyższego zadania i uzasadnij, że jest on poprawny. *Uwaga*: możesz korzystać z własności podstawień, które były omówione na wykładzie lub udowodnione na ćwiczeniach oraz ze zwykłego algorytmu unifikacji.