

Center for Research in Applied Cryptography and Cyber Security

DEFENSE AGAINST ADVERSARIAL EXAMPLES

Yishay Asher • Steve Gutfreund Supervisor: Hanan Rosemarin

Problem Description

Building high accuracy DNN models which are sufficiently resistant to adversarial attacks

Background and Goal

- ✓ An adversarial example is an instance with small, intentional feature perturbations that causes a machine learning model to make a false prediction.
- ✓ The goal is to Find a way to train 'secured' models such that this sort of attacks should not affect them.
- ✓ Project based on the article <u>Bridging machine learning and</u> <u>cryptography in defense against adversarial attacks</u>

Figure 1: example of an adversarial image

Set-Up

- ✓ Mnist and Fashion-Mnist datasets
- ✓ Using well-known neural nets

1 Securing Models

Approach: training models on encrypted images. Encryption techniques:

- ✓ Permutation
- ✓ AES in ECB, CBC and CTR modes

Figure 2: architecture for securing models

2 Cutting Loose Ends

Eliminated the models that did not learn well. Learning encrypted images is not very intuitive, as can be seen in figure 3.

Figure 3: Sample of the encrypted images. Interesting to see how for the human eye it's difficult to distinguish between various classes but a DNN model classifies quite well, as can be seen in table 1

3 Attacking

Attacks:

- ✓ Carlini & Wagner, CW
- ✓ Fast Gradient Sign Method, FGSM

'gray-box' scenario, i.e. the attacker knows the architecture of the model but has no access to the private key.

Figure 4: visualization of a CW attack secured by permutation

Results

There's a slight tradeoff between accuracy on the original images and the accuracy on the adversarial images, but overall, accuracies are good

Classification error (%) on the first 1000 test samples

	model	images	unencrypted	permutated	aes · ecb	aes · cbc	aes · ctr
mnist	A	originals	1.49	3.70	18.40	67.60	3.70
		$cw\ l_2$	100.00	4.50			4.20
		$cw\ l_0$	100.00	7.30			9.60
		$cw\ l_{\infty}$	100.00	5.40			4.90

4.20

8.60

19.30

87.40

2.70

4.90

nnist	model	images	unencrypted	permutated	aes · ecb	aes · cbc	aes · ctr
	A	originals	8.30	12.30	54.60	71.50	17.40
		$cw\ l_2$	100.00	12.70			17.20
on-r		$cw\ l_0$	100.00	12.50			
fashion-mnist		cw l_{∞}	100.00	12.90			
	В	originals	9.50	12.00	55.30	90.30	16.70
		fgsm	77.20	29.80			26.50

Table 1: table containing all the results

Success with Permutation, Coincidence?

2.10

39.50

originals

fgsm

To verify that the learning ability of a permutation model does not result from high density in small images, we trained models on padded images.

	image size	error rate			
	28x28	3.70			
mnist	40x40	3.40			
	60x60	3.30			
fa ala: a a	28x28	12.30			
fashion mnist	40x40	14.40			
	60x60	10.80			

Table 2: results for training permutated data, various image dimensions

Future Work

- Improve accuracy on AES-ECB model
- Nicholas Carlini (the 'C' in CW) believes we still might defeat these defenses
- Test on more complicated datasets; i.e. Cifar-10

