第 7 章 e: 二阶线性常系数微分方程

数学系 梁卓滨

2017.07 暑期班

Outline

◆ 复数简介

♣ 二阶线性微分方程

♥ 二阶常系数齐次线性微分方程

◆ 二阶常系数非齐次线性微分方程

We are here now...

◆ 复数简介

♣ 二阶线性微分方程

♥ 二阶常系数齐次线性微分方程

◆ 二阶常系数非齐次线性微分方程

引入动机 希望方程 $x^2 = -1$ 有解。方法: 扩充数域

引入动机 希望方程 $x^2 = -1$ 有解。方法: 扩充数域

复数定义

● 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

引入动机 希望方程 $x^2 = -1$ 有解。方法: 扩充数域

复数定义

● 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

• 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

• 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

$$(a + bi) + (c + di) =$$

$$(a + bi) - (c + di) =$$

$$(a + bi)(c + di) =$$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

• 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

$$(a + bi) + (c + di) =$$

$$(a + bi) - (c + di) =$$

$$(a + bi)(c + di) =$$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

● 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

复数: a + bi(其中 a, b 为实数; a 称为实部, b 称为虚部)

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi) - (c + di) =$
 $(a + bi)(c + di) =$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

• 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

复数: a + bi(其中 a, b 为实数; a 称为实部, b 称为虚部)

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

 $(a + bi) - (c + di) = (a - c) + (b - d)i$
 $(a + bi)(c + di) =$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

• 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

复数: a + bi(其中 a, b 为实数; a 称为实部, b 称为虚部)

$$(a+bi)+(c+di) = (a+c)+(b+d)i$$

$$(a+bi)-(c+di) = (a-c)+(b-d)i$$

$$(a+bi)(c+di) = a \cdot c + a \cdot di + bi \cdot c + bi \cdot di$$

引入动机 希望方程 $x^2 = -1$ 有解。方法:扩充数域

复数定义

● 引入"虚数单位",用符号"i"(或者" $\sqrt{-1}$ ")表示,满足 $i^2 = -1$

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi) - (c+di) = (a-c) + (b-d)i$$

$$(a+bi)(c+di) = a \cdot c + a \cdot di + bi \cdot c + bi \cdot di$$

$$= (ac-bd) + (ad+bc)i$$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i) - 3(5-2i) =$$
$$(2+i)^2 =$$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i)-3(5-2i) = (1+2i)-(15-6i)$$
$$(2+i)^2 =$$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i)-3(5-2i)=(1+2i)-(15-6i)=-14+8i,$$

 $(2+i)^2=$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i)-3(5-2i)=(1+2i)-(15-6i)=-14+8i,$$

$$(2+i)^2=(2+i)(2+i)$$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i)-3(5-2i) = (1+2i)-(15-6i) = -14+8i,$$

$$(2+i)^2 = (2+i)(2+i)$$

$$= 2 \cdot 2 + 2 \cdot i + i \cdot 2 + i \cdot i$$

例 计算
$$(1+2i)-3(5-2i)$$
 及 $(2+i)^2$ 。

$$(1+2i)-3(5-2i) = (1+2i)-(15-6i) = -14+8i,$$

$$(2+i)^2 = (2+i)(2+i)$$

$$= 2 \cdot 2 + 2 \cdot i + i \cdot 2 + i \cdot i = 3+4i.$$

例 方程 $x^2 + 1 = 0$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = i$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

例 方程
$$x^2 + 1 = 0$$
在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \Rightarrow$$

$$r_{1,2} = -$$

例 方程
$$x^2 + 1 = 0$$
在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

一元二次方程求根公式:

$$ar^2 + br + c = 0$$

$$r_{1, 2} = ----$$

2a

例 方程
$$x^2 + 1 = 0$$
在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0$$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0$$

$$\Rightarrow r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,
- 当 $b^2 4ac = 0$ 时,
- 当 $b^2 4ac < 0$ 时,

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,
- 当 $b^2 4ac < 0$ 时,

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根
- 当 $b^2 4ac < 0$ 时,

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,\,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} =$$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{(4ac - b^2) \cdot (-1)}}{2a}$$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,\,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{4ac - b^2} \cdot \sqrt{-1}}{2a}$$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{4ac - b^2}i}{2a}$$

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = -\frac{b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a}i$$

一元二次方程求解

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

一元二次方程求根公式:

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4ac = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \underbrace{-\frac{b}{2a}}_{\alpha} \pm \underbrace{\frac{\sqrt{4ac - b^2}}{2a}}_{\beta} i$$

一元二次方程求解

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

一元二次方程求根公式:

$$ar^2 + br + c = 0$$
 \Rightarrow $r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4\alpha c = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \underbrace{-\frac{b}{2a}}_{\alpha} \pm \underbrace{\frac{\sqrt{4ac - b^2}}{2a}}_{\beta} i = \alpha \pm \beta i$$

一元二次方程求解

例 方程 $x^2 + 1 = 0$ 在复数范围内有两个根 $r_1 = i$ 和 $r_2 = -i$

一元二次方程求根公式:

$$ar^2 + br + c = 0 \qquad \Rightarrow \qquad r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- 当 $b^2 4ac > 0$ 时,有两个互异实根;
- 当 $b^2 4\alpha c = 0$ 时,有唯一实根(二重根);
- 当 $b^2 4ac < 0$ 时,有两个互异复根:

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \underbrace{-\frac{b}{2a}}_{\alpha} \pm \underbrace{\frac{\sqrt{4ac - b^2}}{2a}}_{\beta} i = \alpha \pm \beta i$$

例 求 $2r^2 - 3r + 1 = 0$, $r^2 - 4r + 4 = 0$, $r^2 + 2r + 2 = 0$ 的根

$$2r^2 - 3r + 1 = 0$$
 \Rightarrow $r_{1,2} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2}$

$$2r^2 - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$
$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1}$$

$$2r^2 - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

 $r^2 - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2}$$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

解

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

解

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

$$r^2 + 2r + 2 = 0 \implies (r+1)^2 = -1$$

 $2r^2 - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

$$r^2 + 2r + 2 = 0 \implies (r+1)^2 = -1 \implies r+1 = \pm \sqrt{-1}$$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$

$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^{2} + 2r + 2 = 0 \implies r_{1,2} = \frac{-2 \pm \sqrt{2^{2} - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$$

$$= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$$

 $r^2 + 2r + 2 = 0 \implies (r+1)^2 = -1 \implies r+1 = \pm \sqrt{-1} = \pm i$

$$2r^{2} - 3r + 1 = 0 \implies r_{1,2} = \frac{3 \pm \sqrt{(-3)^{2} - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = 1 \text{ or } \frac{1}{2}$$
$$r^{2} - 4r + 4 = 0 \implies r_{1,2} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = 2$$

$$r^2 + 2r + 2 = 0$$
 \Rightarrow $r_{1,2} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1}$ $= \frac{-2 \pm \sqrt{-4}}{2} = -1 \pm i$ 注 也可以用配方法:

$$r^{2} + 2r + 2 = 0 \Rightarrow (r+1)^{2} = -1 \Rightarrow r+1 = \pm \sqrt{-1} = \pm i$$
$$\Rightarrow r = -1 \pm i$$

$$z = a + bi$$

$$z = a + bi$$

$$z \leftrightarrow (a, b)$$

直角坐标

• 复数和平面上的点——对应 $z \leftrightarrow (a, b)$ 直角坐标

复数和平面上的点──对应z ↔ (a, b)

$$z \leftrightarrow (a, b)$$

直角坐标

$$z \longleftrightarrow (a, b) \longleftrightarrow (r, \theta)$$

直角坐标 极坐标

复数和平面上的点──对应ス→(g, b) → (r, e)

$$z \longleftrightarrow (a, b) \longleftrightarrow (r, \theta)$$

直角坐标 极坐标

复数和平面上的点──对应ス → (g, h) → (r, θ)

$$z \longleftrightarrow (a, b) \longleftrightarrow (r, \theta)$$

直角坐标 极坐标

• 复数和平面上的点——对应 $z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$

直角坐标

极坐标

● 复数和平面上的点——对应 $z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$ $a \mapsto b$ $a \mapsto b$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$z \longleftrightarrow (a, b) \longleftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos \theta + i \sin \theta$$
(注: $e^{i\pi} =$)

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

$$e^{i\theta} = \cos \theta + i \sin \theta$$

(注: $e^{i\pi} = -1$)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$

(注: $e^{i\pi} = -1$)

性质
$$e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$$

证明

$$e^{i\alpha} \cdot e^{i\beta}$$

• 复数和平面上的点——对应

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$(: e^{i\pi} = -1)$$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos \theta + i \sin \theta$$

(注: $e^{i\pi} = -1$)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

证明

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$

● 复数和平面上的点一一对应

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\delta: \epsilon^{i\pi} = -1\)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

证明

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= () + i($$

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\dagger: e^{i\pi} = -1\))

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

证明

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta) + i($$

● 复数和平面上的点一一对应

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\dagger: e^{i\pi} = -1\))

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i($$

● 复数和平面上的点——对应

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\delta: \end{e}^{i\pi} = -1\)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta)$$

● 复数和平面上的点——对应

$$z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$$

直角坐标 极坐标

• "定义":

$$e^{i\theta} = \cos \theta + i \sin \theta$$
(注: $e^{i\pi} = -1$)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

● 复数和平面上的点——对应 $z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$

直角坐标

极坐标

● "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\delta: \text{ } e^{i\pi} = -1\)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$
$$= \cos(\alpha + \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

• 复数和平面上的点——对应 $z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$

直角坐标

●"定义":

$$e^{i\theta} = \cos \theta + i \sin \theta$$
(注: $e^{i\pi} = -1$)

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$
$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$
$$= \cos(\alpha + \beta) + i \sin(\alpha + \beta)$$

• 复数和平面上的点——对应 $z \leftrightarrow (a, b) \leftrightarrow (r, \theta)$

直角坐标

● "定义":

$$e^{i\theta} = \cos\theta + i\sin\theta$$
(\(\dagger: e^{i\pi} = -1\))

性质 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$.

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$= \cos(\alpha + \beta) + i \sin(\alpha + \beta) = e^{i(\alpha + \beta)}$$

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式:

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式: $e^{i\alpha} \cdot e^{i\beta}$

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式:

$$e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

 $e^{i(\alpha+\beta)}$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

$$=(\cos\alpha\cos\beta-\sin\alpha\sin\beta)+i(\cos\alpha\sin\beta+\sin\alpha\cos\beta)$$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta,$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

$$cos(\alpha + \beta) = cos \alpha cos \beta - sin \alpha sin \beta,$$

 $sin(\alpha + \beta) = cos \alpha sin \beta + sin \alpha cos \beta.$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地, $\mathbb{R}^{\beta} = \alpha$, 则

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式: $e^{i\alpha} \cdot e^{i\beta} = (\cos\alpha + i\sin\alpha) \cdot (\cos\beta + i\sin\beta)$ = $(\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\cos\alpha\sin\beta + \sin\alpha\cos\beta)$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地, 取 $\beta = \alpha$, 则

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha$$

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式: $e^{i\alpha} \cdot e^{i\beta} = (\cos\alpha + i\sin\alpha) \cdot (\cos\beta + i\sin\beta)$ = $(\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\cos\alpha\sin\beta + \sin\alpha\cos\beta)$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地, 取 $\beta = \alpha$, 则

$$cos(2\alpha) = cos^2 \alpha - sin^2 \alpha = 2 cos^2 \alpha - 1$$

注 反过来,恒等式 $e^{i\alpha} \cdot e^{i\beta} = e^{i(\alpha+\beta)}$ 能帮助记忆三角函数的和差公式: $e^{i\alpha} \cdot e^{i\beta} = (\cos \alpha + i \sin \alpha) \cdot (\cos \beta + i \sin \beta)$ $= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地, 取 $\beta = \alpha$, 则

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$

 $e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$

$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地,取 $\beta = \alpha$,则

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

或者

所以

$$\cos^2\alpha = \frac{1+\cos 2\alpha}{2},$$

$$= (\cos \alpha \cos \beta - \sin \alpha \sin \beta) + i(\cos \alpha \sin \beta + \sin \alpha \cos \beta)$$
$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i\sin(\alpha+\beta)$$

所以

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta,$$
$$\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta.$$

特别地,取 $\beta = \alpha$,则

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

或者

$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}, \quad \sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$

定义 设
$$z = \alpha + i\beta$$
,定义 e^z

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^{z} := e^{\alpha + i\beta}$$

定义 设
$$z = \alpha + i\beta$$
, 定义

$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta}$$

定义 设
$$z = \alpha + i\beta$$
, 定义

$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数

 e^{zx}

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数(
$$zx = (\alpha + i\beta)x$$
)
$$e^{zx}$$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数(
$$zx = (\alpha + i\beta)x = \alpha x + i\beta x$$
)
$$e^{zx}$$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数(
$$zx = (\alpha + i\beta)x = \alpha x + i\beta x$$
)
$$e^{zx} = e^{\alpha x + i\beta x}$$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数
$$(zx = (\alpha + i\beta)x = \alpha x + i\beta x)$$

 $e^{zx} = e^{\alpha x + i\beta x} = e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)],$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数(
$$zx = (\alpha + i\beta)x = \alpha x + i\beta x$$
)
$$e^{zx} = e^{\alpha x + i\beta x} = e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)], \qquad x \in \mathbb{R}$$

定义 设
$$z = \alpha + i\beta$$
, 定义
$$e^z := e^{\alpha + i\beta} := e^{\alpha} \cdot e^{i\beta} = e^{\alpha} (\cos \beta + i \sin \beta)$$

考虑取值为复数的函数(
$$zx = (\alpha + i\beta)x = \alpha x + i\beta x$$
)
$$e^{zx} = e^{\alpha x + i\beta x} = e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)], \qquad x \in \mathbb{R}$$

性质 设
$$z = \alpha + \beta i$$
 为复数, $x \in \mathbb{R}$, 成立
$$\frac{d}{dx}e^{zx} = ze^{zx}$$

性质 设
$$z = \alpha + \beta i$$
 为复数, $x \in \mathbb{R}$,成立

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

性质 设
$$z = \alpha + \beta i$$
 为复数, $x \in \mathbb{R}$, 成立
$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx}$$

性质 设
$$z = \alpha + \beta i$$
 为复数, $x \in \mathbb{R}$, 成立

 $= ze^{zx}$

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx}$$

$$(\alpha + \beta i)e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)]$$

性质 设 $z = \alpha + \beta i$ 为复数, $x \in \mathbb{R}$, 成立

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx} = \frac{d}{dx}\left[e^{\alpha x}\left(\cos(\beta x) + i\sin(\beta x)\right)\right]$$

$$(\alpha + \beta i)e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)]$$

性质 设
$$z = \alpha + \beta i$$
 为复数, $x \in \mathbb{R}$, 成立

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx} = \frac{d}{dx} \left[e^{\alpha x} \left(\cos(\beta x) + i \sin(\beta x) \right) \right]$$
$$= \frac{d}{dx} \left[e^{\alpha x} \cos(\beta x) + i e^{\alpha x} \sin(\beta x) \right]$$

$$(\alpha + \beta i)e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)]$$
$$= ze^{zx}$$

性质 设 $z = \alpha + \beta i$ 为复数, $x \in \mathbb{R}$, 成立

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx} = \frac{d}{dx} \left[e^{\alpha x} \left(\cos(\beta x) + i \sin(\beta x) \right) \right]$$

$$= \frac{d}{dx} \left[e^{\alpha x} \cos(\beta x) + i e^{\alpha x} \sin(\beta x) \right]$$

$$= \frac{d}{dx} \left[e^{\alpha x} \cos(\beta x) \right] + i \frac{d}{dx} \left[e^{\alpha x} \sin(\beta x) \right]$$

$$(\alpha + \beta i)e^{\alpha x} [\cos(\beta x) + i\sin(\beta x)]$$

性质 设 $z = \alpha + \beta i$ 为复数, $x \in \mathbb{R}$, 成立

$$\frac{d}{dx}e^{zx} = ze^{zx}$$

证明 这是

$$\frac{d}{dx}e^{zx} = \frac{d}{dx} \left[e^{\alpha x} \left(\cos(\beta x) + i \sin(\beta x) \right) \right]$$

$$= \frac{d}{dx} \left[e^{\alpha x} \cos(\beta x) + i e^{\alpha x} \sin(\beta x) \right]$$

$$= \frac{d}{dx} \left[e^{\alpha x} \cos(\beta x) \right] + i \frac{d}{dx} \left[e^{\alpha x} \sin(\beta x) \right]$$

$$\vdots$$

$$= (\alpha + \beta i) e^{\alpha x} \left[\cos(\beta x) + i \sin(\beta x) \right]$$

 $= ze^{zx}$

We are here now...

◆ 复数简介

♣ 二阶线性微分方程

♥ 二阶常系数齐次线性微分方程

◆ 二阶常系数非齐次线性微分方程

二阶线性微分方程

• 二阶齐次线性微分方程:

$$y'' + P(x)y' + Q(x)y = 0$$

• 二阶非齐次线性微分方程:

$$y'' + P(x)y' + Q(x)y = f(x)$$

二阶线性微分方程

• 二阶齐次线性微分方程:

$$y'' + P(x)y' + Q(x)y = 0$$

• 二阶非齐次线性微分方程:

$$y'' + P(x)y' + Q(x)y = f(x)$$

问题 这些方程的通解有怎样的"结构"? 可以如何表示?

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解, 其中 C_1 , C_2 是任意常数。

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

$$y'' + P(x)y' + Q(x)y$$

$$= [C_1y_1 + C_2y_2]'' + P(x)[C_1y_1 + C_2y_2]' + Q(x)[C_1y_1 + C_2y_2]$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

$$y'' + P(x)y' + Q(x)y$$

$$= [C_1y_1 + C_2y_2]'' + P(x)[C_1y_1 + C_2y_2]' + Q(x)[C_1y_1 + C_2y_2]$$

$$=C_1$$

$$]+C_2[$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

$$y'' + P(x)y' + Q(x)y$$

$$= [C_1v_1 + C_2v_2]'' + P(x)[C_1v_1 + C_2v_2]' + O(x)[C_1v_1 + C_2v_2]$$

$$= C_1 [y_1'' + P(x)y_1' + Q(x)y_1] + C_2[$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

$$y'' + P(x)y' + Q(x)y$$

$$= [C_1y_1 + C_2y_2]'' + P(x)[C_1y_1 + C_2y_2]' + Q(x)[C_1y_1 + C_2y_2]$$

$$= C_1 \left[y_1'' + P(x)y_1' + Q(x)y_1 \right] + C_2 \left[y_2'' + P(x)y_2' + Q(x)y_2 \right]$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

证明 直接代入验证

$$y'' + P(x)y' + Q(x)y$$

$$= C_1 \left[y_1'' + P(x)y_1' + Q(x)y_1 \right] + C_2 \left[y_2'' + P(x)y_2' + Q(x)y_2 \right]$$

 $= [C_1y_1 + C_2y_2]'' + P(x)[C_1y_1 + C_2y_2]' + Q(x)[C_1y_1 + C_2y_2]$

$$= 0 + 0$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个特解,则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

证明 直接代入验证

$$y'' + P(x)y' + Q(x)y$$

$$= C_1 \left[y_1'' + P(x)y_1' + Q(x)y_1 \right] + C_2 \left[y_2'' + P(x)y_2' + Q(x)y_2 \right]$$

 $= [C_1y_1 + C_2y_2]'' + P(x)[C_1y_1 + C_2y_2]' + Q(x)[C_1y_1 + C_2y_2]$

$$= 0 + 0 = 0$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个(特解),则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

推论

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个(特解),则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

推论 若该特解 y_1 和 y_2 不是成比例(线性无关;即 $\frac{y_1}{y_2} \neq$ 常数),则齐次线性方程 y'' + P(x)y' + Q(x)y = 0 的通解是

$$y = C_1 y_1(x) + C_2 y_2(x).$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个(特解),则

$$y = C_1 y_1(x) + C_2 y_2(x)$$

也是解,其中 C_1 , C_2 是任意常数。

推论 若该特解 y_1 和 y_2 不是成比例(线性无关;即 $\frac{y_1}{y_2} \neq$ 常数),则齐次线性方程 y'' + P(x)y' + Q(x)y = 0 的通解是

$$y = C_1 y_1(x) + C_2 y_2(x).$$

也就是说, 求通解, 只需找到两个线性无关的特解!

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

$$y'' + P(x)y' + Q(x)y = 0$$

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解,

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + C_1 y_1(x) + C_2 y_2(x)$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + C_1 y_1(x) + C_2 y_2(x)$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + \overbrace{C_1 y_1(x) + C_2 y_2(x)}^{Y(x)}$$

是非齐次线性微分方程 (*) 的通解, 其中 C_1 , C_2 是任意常数。

证明 只需验证 $y = y^*(x) + Y(x)$ 是解:

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + \overbrace{C_1 y_1(x) + C_2 y_2(x)}^{Y(x)}$$

证明 只需验证
$$y = y^*(x) + Y(x)$$
 是解:
 $y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + \overbrace{C_1 y_1(x) + C_2 y_2(x)}^{Y(x)}$$

证明 只需验证
$$y = y^*(x) + Y(x)$$
 是解:

$$y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + C_1 y_1(x) + C_2 y_2(x)$$

证明 只需验证
$$y = y^*(x) + Y(x)$$
 是解:

$$y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$$
$$= [y^{*''} + Py^{*'} + Qy^*] + [$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + C_1 y_1(x) + C_2 y_2(x)$$

是非齐次线性微分方程 (*) 的通解, 其中 C_1 , C_2 是任意常数。

证明 只需验证 $y = y^*(x) + Y(x)$ 是解:

$$y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$$
$$= [y^{*''} + Py^{*'} + Qy^*] + [Y'' + PY' + QY]$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + \overbrace{C_1 y_1(x) + C_2 y_2(x)}^{r(x)}$$

证明 只需验证
$$y = y^*(x) + Y(x)$$
 是解:
 $y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$

$$= [y^{*''} + Py^{*'} + Qy^{*}] + [Y'' + PY' + QY]$$

$$= f(x) + 0$$

定理 设 $y_1(x)$, $y_2(x)$ 是

$$y'' + P(x)y' + Q(x)y = 0$$

的两个线性无关特解, $y^*(x)$ 是

$$y'' + P(x)y' + Q(x)y = f(x)$$
 (*)

的一个特解,则

$$y = y^* + \overbrace{C_1 y_1(x) + C_2 y_2(x)}^{Y(x)}$$

证明 只需验证
$$y = y^*(x) + Y(x)$$
 是解:

$$y'' + P(x)y' + Q(x)y = [y^* + Y]'' + P[y^* + Y]' + Q[y^* + Y]$$
$$= [y^{*''} + Py^{*'} + Qy^*] + [Y'' + PY' + QY]$$

We are here now...

◆ 复数简介

♣ 二阶线性微分方程

♥ 二阶常系数齐次线性微分方程

◆ 二阶常系数非齐次线性微分方程

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy =$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy =$$

+ qe^{rx}

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = + pre^{rx} + qe^{rx}$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = r^2e^{rx} + pre^{rx} + qe^{rx}$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时,

•
$$p^2 - 4q = 0$$
 时,

•
$$p^2 - 4q < 0$$
 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

•
$$p^2 - 4q = 0$$
 时,

•
$$p^2 - 4q < 0$$
 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时,

•
$$p^2 - 4q < 0$$
 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2}$

•
$$p^2 - 4q < 0$$
 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$;

•
$$p^2 - 4q < 0$$
 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

所以

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$; 验证 $y_2 = x e^{r_1 x}$ 也是解

• $p^2 - 4q < 0$ 时,

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 Ft, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$; 验证 $y_2 = x e^{r_1 x}$ 也是解

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 Ft, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$; 验证 $y_2 = xe^{r_1 x}$ 也是解

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 Ft, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}, \quad y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$; 验证 $y_2 = x e^{r_1 x}$ 也是解

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

做法 尝试寻找形如

$$y = e^{rx}$$

的特解。代入方程:

$$y'' + py' + q = (e^{rx})'' + p(e^{rx})' + qy = (r^2 + pr + q)e^{rx}$$

所以
 $y'' + py' + q = 0 \iff r^2 + pr + q = 0$

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2} \Rightarrow y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_{1,2} = \frac{-p}{2} \Rightarrow y_1 = e^{r_1 x}$; 验证 $y_2 = x e^{r_1 x}$ 也是解

•
$$p^2 - 4q < 0$$
 Ft, $r_{1,2} = \frac{-\rho \pm \sqrt{\rho^2 - 4q}}{2} = -\frac{\rho}{2} \pm \frac{\sqrt{4q - \rho^2}}{2}i = \alpha \pm \beta i$

$$\Rightarrow V_1 = e^{r_1 x}, \quad V_2 = e^{r_2 x}$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

$p^2 - 4q > 0$	$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$
$p^2 - 4q = 0$	$r_1 = r_2 = \frac{-p}{2}$	$y_1 = e^{r_1 x}, y_2 = x e^{r_1 x}$
$p^2 - 4q < 0$	$r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i$ $= \alpha \pm \beta i$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

$p^2 - 4q > 0$	$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$
$p^2 - 4q = 0$	$r_1 = r_2 = \frac{-p}{2}$	$y_1 = e^{r_1 x}, y_2 = x e^{r_1 x}$
$p^2 - 4q < 0$	$r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i$ $= \alpha \pm \beta i$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$

注
$$p^2 - 4q < 0$$
 时,特解 $v_1 = e^{r_1 x}$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

$p^2 - 4q > 0$	$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$
$p^2 - 4q = 0$	$r_1 = r_2 = \frac{-p}{2}$	$y_1 = e^{r_1 x}, y_2 = x e^{r_1 x}$
$p^2 - 4q < 0$	$r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i$ $= \alpha \pm \beta i$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$

注
$$p^2 - 4q < 0$$
 时,特解
$$v_1 = e^{r_1 x} = e^{(\alpha + \beta i)x}$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

$p^2 - 4q > 0$	$r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$
$p^2 - 4q = 0$	$r_1 = r_2 = \frac{-p}{2}$	$y_1 = e^{r_1 x}, y_2 = x e^{r_1 x}$
$p^2 - 4q < 0$	$r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i$ $= \alpha \pm \beta i$	$y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$

注
$$p^2 - 4q < 0$$
 时,特解
$$y_1 = e^{r_1 x} = e^{(\alpha + \beta i)x} = e^{\alpha x} [\cos(\beta x) + \sin(\beta x)i]$$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

结论 求解方程 $r^2 + pr + q = 0$ 的根 $r_{1,2}$, 则

$$p^{2} - 4q > 0 \qquad r_{1,2} = \frac{-p \pm \sqrt{p^{2} - 4q}}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$p^{2} - 4q = 0 \qquad r_{1} = r_{2} = \frac{-p}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = xe^{r_{1}x}$$

$$p^{2} - 4q < 0 \qquad r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^{2}}}{2}i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$= \alpha \pm \beta i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

注
$$p^2 - 4q < 0$$
 时,特解
$$y_1 = e^{r_1 x} = e^{(\alpha + \beta i)x} = e^{\alpha x} \left[\cos(\beta x) + \sin(\beta x) i \right]$$

的实部、虚部所构成的函数

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

结论 求解方程 $r^2 + pr + q = 0$ 的根 $r_{1,2}$, 则

$$p^{2} - 4q > 0 \qquad r_{1,2} = \frac{-p \pm \sqrt{p^{2} - 4q}}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$p^{2} - 4q = 0 \qquad r_{1} = r_{2} = \frac{-p}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = xe^{r_{1}x}$$

$$p^{2} - 4q < 0 \qquad r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^{2}}}{2}i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$= \alpha \pm \beta i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

注
$$p^2 - 4q < 0$$
 时,特解

$$y_1 = e^{r_1 x} = e^{(\alpha + \beta i)x} = e^{\alpha x} [\cos(\beta x) + \sin(\beta x)i]$$

的实部、虚部所构成的函数

$$e^{\alpha x}\cos(\beta x)$$
, $e^{\alpha x}\sin(\beta x)$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

结论 求解方程 $r^2 + pr + q = 0$ 的根 $r_{1,2}$, 则

$$p^{2} - 4q > 0 \qquad r_{1,2} = \frac{-p \pm \sqrt{p^{2} - 4q}}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$p^{2} - 4q = 0 \qquad r_{1} = r_{2} = \frac{-p}{2} \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = xe^{r_{1}x}$$

$$p^{2} - 4q < 0 \qquad r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^{2}}}{2}i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

$$= \alpha \pm \beta i \qquad y_{1} = e^{r_{1}x}, \quad y_{2} = e^{r_{2}x}$$

注
$$p^2 - 4q < 0$$
 时,特解

$$y_1 = e^{r_1 x} = e^{(\alpha + \beta i)x} = e^{\alpha x} [\cos(\beta x) + \sin(\beta x)i]$$

的实部、虚部所构成的函数

$$e^{\alpha x}\cos(\beta x)$$
, $e^{\alpha x}\sin(\beta x)$

性质 在 $p^2 - 4q < 0$ 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

性质 在 $p^2 - 4q < 0$ 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解 $y_1 = e^{(\alpha + \beta i)x}$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i$$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
 所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
 所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$

$$= (s'' + t''i) + p(s' + t'i) + q(s + ti)$$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$

$$= (s'' + t''i) + p(s' + t'i) + q(s + ti)$$

$$= (s'' + ps' + qs) + (t'' + pt' + qt)i$$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
 所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$
$$= (s'' + t''i) + p(s' + t'i) + q(s + ti)$$
$$= (s'' + ps' + qs) + (t'' + pt' + qt)i$$
 所以
$$s'' + ps' + qs = 0$$
 且 $t'' + pt' + qt = 0$

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

也是两个线性无关特解。

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
 所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$

$$= (s'' + t''i) + p(s' + t'i) + q(s + ti)$$

$$= (s'' + ps' + qs) + (t'' + pt' + qt)i$$
 所以
$$s'' + ps' + qs = 0$$
 且 $t'' + pt' + qt = 0$ 所以 $s = e^{\alpha x} \cos(\beta x)$ 及 $t = e^{\alpha x} \sin(\beta x)$ 为特解。

● 暨南大学

性质 在
$$p^2 - 4q < 0$$
 情形中, $r_{1,2} = \alpha \pm \beta i$ 。可以证明 $e^{\alpha x} \cos(\beta x)$, $e^{\alpha x} \sin(\beta x)$

也是两个线性无关特解。

证明 当
$$p^2 - 4q < 0$$
 时,有特解
$$y_1 = e^{(\alpha + \beta i)x} = e^{\alpha x} \cos(\beta x) + e^{\alpha x} \sin(\beta x)i =: s + ti$$
 所以
$$0 = y_1'' + py_1' + qy_1 = (s + ti)'' + p(s + ti)' + q(s + ti)$$

$$= (s'' + t''i) + p(s' + t'i) + q(s + ti)$$

$$= (s'' + ps' + qs) + (t'' + pt' + qt)i$$
 所以
$$s'' + ps' + qs = 0$$
 且 $t'' + pt' + qt = 0$

所以 $s = e^{\alpha x} \cos(\beta x)$ 及 $t = e^{\alpha x} \sin(\beta x)$ 为特解。

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$
• 特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_1 = r_2 = \frac{-p}{2}$
• 特解: $y_1 = e^{r_1 x}$, $y_2 = x e^{r_2 x}$

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$
• 特解: $v_1 = e^{\alpha x} \cos(\beta x)$, $v_2 = e^{\alpha x} \sin(\beta x)$

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

结论 求解特征方程 $r^2 + pr + q = 0$ 的根 $r_{1,2}$, 则

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

• 特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$

• 通解:

•
$$p^2 - 4q = 0$$
 时, $r_1 = r_2 = \frac{-p}{2}$

• 特解:
$$y_1 = e^{r_1 x}$$
, $y_2 = xe^{r_2 x}$

• 通解:

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$

• 特解:
$$y_1 = e^{\alpha x} \cos(\beta x)$$
, $y_2 = e^{\alpha x} \sin(\beta x)$

• 通解:

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$
- 通解: $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_1 = r_2 = \frac{-p}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = x e^{r_2 x}$
- 通解:

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$

- 特解: $y_1 = e^{\alpha x} \cos(\beta x)$, $y_2 = e^{\alpha x} \sin(\beta x)$
- 通解:

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

结论 求解特征方程 $r^2 + pr + q = 0$ 的根 $r_{1,2}$, 则

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$
- 通解: $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_1 = r_2 = \frac{-p}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = x e^{r_2 x}$
- 通解: $y = (C_1 + C_2 x)e^{r_2 x}$

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$

• 特解:
$$y_1 = e^{\alpha x} \cos(\beta x)$$
, $y_2 = e^{\alpha x} \sin(\beta x)$

• 通解:

目标 找出 y'' + py' + qy = 0 的两个线性无关的特解 y_1, y_2 。

•
$$p^2 - 4q > 0$$
 时, $r_{1,2} = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = e^{r_2 x}$
- 通解: $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

•
$$p^2 - 4q = 0$$
 时, $r_1 = r_2 = \frac{-p}{2}$

- 特解: $y_1 = e^{r_1 x}$, $y_2 = x e^{r_2 x}$
- 通解: $y = (C_1 + C_2 x)e^{r_2 x}$

•
$$p^2 - 4q < 0$$
 时, $r_{1,2} = -\frac{p}{2} \pm \frac{\sqrt{4q - p^2}}{2}i = \alpha \pm \beta i$

- 特解: $y_1 = e^{\alpha x} \cos(\beta x)$, $y_2 = e^{\alpha x} \sin(\beta x)$
- 通解: $y = e^{\alpha x} [C_1 \cos(\beta x) + C_2 \sin(\beta x)]$

例 求微分方程的通解:

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0$$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

 $e^x = e^{3x}$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

 $\implies y = C_1 e^x + C_2 e^{3x}.$
 $y'' + 4y' + 4y = 0 \implies r^2 + 4r + 4 = 0$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$

$$y'' + 4y' + 4y = 0 \implies r^2 + 4r + 4 = 0 \implies r_{1,2} = -2$$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \Rightarrow r^2 - 4r + 3 = 0 \Rightarrow r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$
 $y'' + 4y' + 4y = 0 \Rightarrow r^2 + 4r + 4 = 0 \Rightarrow r_{1,2} = -2$
 $\Rightarrow y = (C_1 + C_2 x)e^{-2x}.$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \Rightarrow r^2 - 4r + 3 = 0 \Rightarrow r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$
 $y'' + 4y' + 4y = 0 \Rightarrow r^2 + 4r + 4 = 0 \Rightarrow r_{1,2} = -2$
 $\Rightarrow y = (C_1 + C_2 x)e^{-2x}.$
 $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \Rightarrow r^2 - 4r + 3 = 0 \Rightarrow r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$
 $y'' + 4y' + 4y = 0 \Rightarrow r^2 + 4r + 4 = 0 \Rightarrow r_{1,2} = -2$
 $\Rightarrow y = (C_1 + C_2 x)e^{-2x}.$
 $y'' - 2y' + 5y = 0 \Rightarrow r^2 - 2r + 5 = 0$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

$$\Rightarrow y = C_1 e^x + C_2 e^{3x}.$$

$$y'' + 4y' + 4y = 0 \implies r^2 + 4r + 4 = 0 \implies r_{1,2} = -2$$

$$\Rightarrow y = (C_1 + C_2 x)e^{-2x}.$$

$$y'' - 2y' + 5y = 0 \implies r^2 - 2r + 5 = 0$$

$$\Rightarrow r_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 5}}{2}$$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \implies r^2 - 4r + 3 = 0 \implies r_1 = 1, r_2 = 3$$

$$\Rightarrow y = C_1 e^x + C_2 e^{3x}.$$

$$y'' + 4y' + 4y = 0 \implies r^2 + 4r + 4 = 0 \implies r_{1,2} = -2$$

$$\Rightarrow y = (C_1 + C_2 x)e^{-2x}.$$

$$y'' - 2y' + 5y = 0 \implies r^2 - 2r + 5 = 0$$

$$\Rightarrow r_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 5}}{2} = 1 \pm 2i$$

$$y'' - 4y' + 3y = 0$$
; $y'' + 4y' + 4y = 0$; $y'' - 2y' + 5y = 0$

$$y'' - 4y' + 3y = 0 \Rightarrow r^2 - 4r + 3 = 0 \Rightarrow r_1 = 1, r_2 = 3$$

 $\Rightarrow y = C_1 e^x + C_2 e^{3x}.$

$$y'' + 4y' + 4y = 0 \implies r^2 + 4r + 4 = 0 \implies r_{1,2} = -2$$

 $\implies y = (C_1 + C_2 x)e^{-2x}.$

$$y'' - 2y' + 5y = 0 \implies r^2 - 2r + 5 = 0$$

$$\Rightarrow r_{1,2} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 5}}{2} = 1 \pm 2i$$

$$\Rightarrow y = e^x [C_1 \cos(2x) + C_2 \sin(2x)].$$

We are here now...

◆ 复数简介

♣ 二阶线性微分方程

♥ 二阶常系数齐次线性微分方程

◆ 二阶常系数非齐次线性微分方程

$$y'' + py' + qy = f(x)$$

$$y'' + py' + qy = f(x)$$

通解的求解步骤:

1. 求解齐次部分

$$y^{\prime\prime} + py^{\prime} + qy = 0$$

的通解

$$C_1y_1 + C_2y_2$$

- 2. 求出原方程的一个特解 y*
- 3. 则原方程的通解为

$$y = y^* + C_1 y_1 + C_2 y_2$$

$$y'' + py' + qy = f(x)$$

通解的求解步骤:

1. 求解齐次部分

$$y'' + py' + qy = 0$$

的通解

$$C_1y_1 + C_2y_2$$

- 2. 求出原方程的一个特解 y*
- 3. 则原方程的通解为

$$y = y^* + C_1 y_1 + C_2 y_2$$

第 7 章 e: 二阶线性常系数微分方程

$$y'' + py' + qy = f(x)$$

通解的求解步骤:

1. 求解齐次部分

$$y'' + py' + qy = 0$$

的通解

$$C_1y_1 + C_2y_2$$

- 2. 求出原方程的一个特解 y*
- 3. 则原方程的通解为

$$y = y^* + C_1 y_1 + C_2 y_2$$

注 关键是求出一个特解, 方法基本靠猜!

$$y'' + py' + qy = f(x)$$

通解的求解步骤:

1. 求解齐次部分

$$y'' + py' + qy = 0$$

的通解

$$C_1y_1 + C_2y_2$$

- 2. 求出原方程的一个特解 y*
- 3. 则原方程的通解为

$$y = y^* + C_1 y_1 + C_2 y_2$$

注 关键是求出一个特解,方法基本靠猜! (待定系数法)

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $v^{*''} + 2v^{*'} + 4v^* =$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $v^{*''} + 2v^{*'} + 4v^* = 0 +$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $v^{*''} + 2v^{*'} + 4v^* = 0 + 2a$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

= 3 - 2x

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases}$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

= 3 - 2x

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases}$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

$$y^{*''} + 2y^{*'} + 4y^{*} = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$$

$$= 3 - 2x$$

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

$$y^{*}'' + 2y^{*}' + 4y^{*} = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$$

$$= 3 - 2x$$

$$(2a + 4b = 3) \qquad (b = 1)$$

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

2. 显然 $y^* = \frac{5}{9}$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

= 3 - 2x

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$, 其中 a 待定。

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

= 3 - 2x

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$, 其中 a 待定。代入方程 $y^{*''} + 4y^{*'} y^* =$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$,其中 a 待定。代入方程 $y^{*''} + 4y^{*'} y^* = ae^x$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

$$= 3 - 2x$$

$$(2a + 4b = 3) \qquad (b = 1)$$

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = \alpha e^x$, 其中 α 待定。代入方程 $y^{*''} + 4y^{*'} y^* = \alpha e^x + 4\alpha e^x$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

$$= 3 - 2x$$

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$, 其中 a 待定。代入方程 $y^{*''} + 4y^{*'} y^* = ae^x + 4ae^x ae^x$

(1)
$$y''+2y'+4y=3-2x$$
; (2) $y''-6y'+9y=5$; (3) $y''+4y'-y=2e^x$

解

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$, 其中 a 待定。代入方程 $y^{*''} + 4y^{*'} y^* = ae^x + 4ae^x ae^x = 4ae^x$

例 求出下列方程的一个特解:

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$

= 3 - 2x

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$
- 3. 猜 $y^* = ae^x$, 其中 a 待定。代入方程 $y^{*''} + 4y^{*'} y^* = ae^x + 4ae^x ae^x = 4ae^x = 2e^x$

(1) .// . 2../ . 4... 2. 2... (2) .// . C../ . D... E. (2) .// . 4../ ... 2.eX

(1) y'' + 2y' + 4y = 3 - 2x; (2) y'' - 6y' + 9y = 5; (3) $y'' + 4y' - y = 2e^x$

解

1. 猜 $y^* = ax + b$, 其中 a, b 待定。代入方程得: $y^{*''} + 2y^{*'} + 4y^* = 0 + 2a + 4(ax + b) = 2a + 4b + 4ax$ = 3 - 2x

$$\Rightarrow \begin{cases} 2a + 4b = 3 \\ 4a = -2 \end{cases} \Rightarrow \begin{cases} b = 1 \\ a = -\frac{1}{2} \end{cases} \Rightarrow y^* = -\frac{1}{2}x + 1$$

- 2. 显然 $y^* = \frac{5}{9}$ 3. 猜 $y^* = ae^x$, 其中 a 待定。代入方程
- $y^{*}'' + 4y^{*}' y^{*} = \alpha e^{x} + 4\alpha e^{x} \alpha e^{x} = 4\alpha e^{x} = 2e^{x}$

所以 $\alpha = \frac{1}{2}$, $y^* = \frac{1}{2}e^x$

例 求出下列方程的一个特解:

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

 \mathbf{m} (1) Step 1 求齐次部分的通解 y'' + 2y' + 4y = 0

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y'' + 2y' + 4y = 0$$

$$\Rightarrow r^2 + 2r + 4 = 0$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

$$\Rightarrow$$
 $r^2 + 2r + 4 = 0 \Rightarrow r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2}$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

$$\Rightarrow r^2 + 2r + 4 = 0 \Rightarrow r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3}i$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

 \mathbf{M} (1) Step 1 求齐次部分的通解

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

$$\Rightarrow r^2 + 2r + 4 = 0 \Rightarrow r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3}i$$

⇒ 齐次的通解是
$$e^{-x} \left[C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x)i \right]$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(1)Step 1 求齐次部分的通解

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

$$\Rightarrow r^2 + 2r + 4 = 0 \Rightarrow r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3}i$$

⇒ 齐次的通解是
$$e^{-x} \left[C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x)i \right]$$

Step 2 原方程的一个特解是 $y^* = -\frac{1}{2}x + 1$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(1)Step 1 求齐次部分的通解

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

$$\Rightarrow r^2 + 2r + 4 = 0 \Rightarrow r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3}i$$

⇒ 齐次的通解是
$$e^{-x} \left[C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x)i \right]$$

Step 2 原方程的一个特解是
$$y^* = -\frac{1}{2}x + 1$$

Step 3 所以原方程的通解是

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(1) Step 1 求齐次部分的通解

$$y^{\prime\prime} + 2y^{\prime} + 4y = 0$$

⇒
$$r^2 + 2r + 4 = 0$$
 ⇒ $r_{1,2} = \frac{-2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3}i$
⇒ 齐次的通解是 $e^{-x} \left[C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x)i \right]$

Step 2 原方程的一个特解是
$$y^* = -\frac{1}{2}x + 1$$

Step 3 所以原方程的通解是

$$y = -\frac{1}{2}x + 1 + e^{-x} \left[C_1 \cos(\sqrt{3}x) + C_2 \sin(\sqrt{3}x)i \right]$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y^{\prime\prime\prime} - 6y^{\prime} + 9y = 0$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y^{\prime\prime} - 6y^{\prime} + 9y = 0$$

$$\Rightarrow r^2 - 6r + 9 = 0$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y^{\prime\prime} - 6y^{\prime} + 9y = 0$$

$$\Rightarrow r^2 - 6r + 9 = 0 \Rightarrow r_1 = r_2 = 3$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y'' - 6y' + 9y = 0$$

⇒ $r^2 - 6r + 9 = 0$ ⇒ $r_1 = r_2 = 3$
⇒ \hat{r} % $\hat{r$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(2) Step 1 求齐次部分的通解

$$y'' - 6y' + 9y = 0$$

⇒ $r^2 - 6r + 9 = 0$ ⇒ $r_1 = r_2 = 3$
⇒ 齐次的通解是 $(C_1 + C_2x)e^{3x}$

Step 2 原方程的一个特解是 $y^* = \frac{5}{9}$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(2)Step 1 求齐次部分的通解

$$y'' - 6y' + 9y = 0$$

 $\Rightarrow r^2 - 6r + 9 = 0 \Rightarrow r_1 = r_2 = 3$
 \Rightarrow 齐次的通解是 $(C_1 + C_2x)e^{3x}$

Step 2 原方程的一个特解是
$$y^* = \frac{5}{9}$$

Step 3 所以原方程的通解是

$$y = \frac{5}{9} + (C_1 + C_2 x)e^{3x}$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

 \mathbf{R} (3) Step 1 求齐次部分的通解 y'' + 4y' - y = 0

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y'' + 4y' - y = 0$$

$$\Rightarrow$$
 $r^2 + 4r - 1 = 0$

(1)
$$y''+2y'+4y=3-2x$$
; (2) $y''-6y'+9y=5$; (3) $y''+4y'-y=2e^x$

$$y'' + 4y' - y = 0$$

$$\Rightarrow$$
 $r^2 + 4r - 1 = 0$ \Rightarrow $r_{1,2} = \frac{-4 \pm \sqrt{16 + 4}}{2}$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y'' + 4y' - y = 0$$

$$\Rightarrow$$
 $r^2 + 4r - 1 = 0$ \Rightarrow $r_{1,2} = \frac{-4 \pm \sqrt{16 + 4}}{2} = -2 \pm \sqrt{5}$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

$$y'' + 4y' - y = 0$$

$$\Rightarrow$$
 $r^2 + 4r - 1 = 0$ \Rightarrow $r_{1,2} = \frac{-4 \pm \sqrt{16 + 4}}{2} = -2 \pm \sqrt{5}$

⇒ 齐次的通解是
$$C_1e^{(-2+\sqrt{5})x} + C_2e^{(-2-\sqrt{5})x}$$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(3) Step 1 求齐次部分的通解

$$y'' + 4y' - y = 0$$

$$\Rightarrow$$
 $r^2 + 4r - 1 = 0$ \Rightarrow $r_{1, 2} = \frac{-4 \pm \sqrt{16 + 4}}{2} = -2 \pm \sqrt{5}$

⇒ 齐次的通解是
$$C_1 e^{(-2+\sqrt{5})x} + C_2 e^{(-2-\sqrt{5})x}$$

Step 2 原方程的一个特解是 $y^* = \frac{1}{2}e^x$

(1)
$$y'' + 2y' + 4y = 3 - 2x$$
; (2) $y'' - 6y' + 9y = 5$; (3) $y'' + 4y' - y = 2e^x$

解(3) Step 1 求齐次部分的通解

$$y'' + 4y' - y = 0$$

⇒
$$r^2 + 4r - 1 = 0$$
 ⇒ $r_{1,2} = \frac{-4 \pm \sqrt{16 + 4}}{2} = -2 \pm \sqrt{5}$
⇒ \hat{r} % \hat{r}

Step 2 原方程的一个特解是
$$y^* = \frac{1}{2}e^x$$

Step 3 所以原方程的通解是

$$y = \frac{1}{2}e^{x} + C_{1}e^{(-2+\sqrt{5})x} + C_{2}e^{(-2-\sqrt{5})x}$$

回忆

$$y'' + py' + qy = f(x)$$

的通解是

$$y = y^* + C_1 y_1 + C_2 y_2$$

回忆 y''+py'+qy=f(x) 原方程的一个特解 $y=y^*+C_1y_1+C_2y_2$

目标

•
$$f(x) = e^{\lambda x} P_m(x)$$

•
$$f(x) = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

目标

•
$$f(x) = e^{\lambda x} P_m(x)$$

•
$$f(x) = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

(其中 P_m , P_l , Q_n 分别为 m, l, n 次多项式)

回忆
$$y''+py'+qy=f(x)$$
 原方程的一个特解 齐次部分 $y''+py'+qy=0$ 的通解是
$$y=y^*+C_1y_1+C_2y_2$$

目标 对如下类型的 f(x), 掌握求方程特解的方法

•
$$f(x) = e^{\lambda x} P_m(x)$$

•
$$f(x) = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

(其中 P_m , P_l , Q_n 分别为 m, l, n 次多项式)

回忆
$$y'' + py' + qy = f(x)$$
 原方程的一个特解 齐次部分 $y'' + py' + qy = 0$ 的通解是
$$y = y^* + C_1 y_1 + C_2 y_2$$

目标 对如下类型的 f(x), 掌握求方程特解的方法(待定系数法)

•
$$f(x) = e^{\lambda x} P_m(x)$$

•
$$f(x) = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

(其中 P_m , P_l , Q_n 分别为 m, l, n 次多项式)

目标 计算以下方程的一个特解 y*:

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

目标 计算以下方程的一个特解 y*:

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式)

目标 计算以下方程的一个特解 y*:

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程 y'' + py' + qy

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: y'' + py' + qy $= e^{\lambda x} \left[R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) \right]$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: y'' + py' + qy $= e^{\lambda x} [R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x)] = e^{\lambda x} P_m(x)$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: y'' + py' + qy $= e^{\lambda x} [R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x)] = e^{\lambda x} P_m(x)$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x)) 为待定多项式),代入原方程,整理可得:

$$[R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x)] = P_m(x)$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

2. 确定多项式 R(x):

$$\lambda^2 + p\lambda + q \neq 0$$

 $\lambda^2 + p\lambda + q = 0 但 2\lambda + p \neq 0$

$$\lambda^2 + p\lambda + q = 0 \pm 2\lambda + p = 0$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

•
$$\lambda^2 + p\lambda + q \neq 0$$
, \mathbb{N}
 $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

$$\lambda^2 + p\lambda + q = 0 \mathop{\mathrm{Id}}\nolimits 2\lambda + p \neq 0$$

$$\lambda^2 + p\lambda + q = 0 \pm 2\lambda + p = 0$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

•
$$\lambda^2 + p\lambda + q \neq 0$$
,则
$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

$$\lambda^2 + p\lambda + q = 0 \oplus 2\lambda + p \neq 0$$

$$\lambda^2 + p\lambda + q = 0 \pm 2\lambda + p = 0$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

•
$$\lambda^2 + p\lambda + q \neq 0$$
,则
$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

$$\lambda^2 + p\lambda + q = 0 \pm 2\lambda + p = 0$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

•
$$\lambda^2 + p\lambda + q \neq 0$$
, 则
$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

$$\lambda^2 + p\lambda + q = 0 且 2\lambda + p = 0$$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

2. 确定多项式 R(x):

•
$$\lambda^2 + p\lambda + q \neq 0$$
, 则
$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

•
$$\lambda^2 + p\lambda + q = 0 \oplus 2\lambda + p \neq 0, 则$$
$$R''(x) + (2\lambda + p)R'(x) = P_m(x) \qquad (R'为m次)$$

•
$$\lambda^2 + p\lambda + q = 0 且 2\lambda + p = 0, 则$$

 $R''(x) = P_m(x)$

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

•
$$\lambda^2 + p\lambda + q \neq 0$$
, 则
$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

$$\lambda^2 + p\lambda + q = 0 但 2\lambda + p \neq 0, 则$$
$$R''(x) + (2\lambda + p)R'(x) = P_m(x) \qquad (R'为m次)$$

•
$$\lambda^2 + p\lambda + q = 0 \perp 2\lambda + p = 0$$
, 则

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

- 2. 确定多项式 R(x):
 - 若 λ 非特征方程的根: $\lambda^2 + p\lambda + q \neq 0$,则

$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R \not \to m \not \to 0)$$

$$\lambda^2 + p\lambda + q = 0 \ \text{但 } 2\lambda + p \neq 0, \text{ 则}$$

$$R''(x) + (2\lambda + p)R'(x) = P_m(x) \qquad (R'为m次)$$

•
$$\lambda^2 + p\lambda + q = 0$$
 且 $2\lambda + p = 0$,则

$$R''(x) = P_m(x)$$
 (R'' 为m次)

■ 整南大學

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

- 2. 确定多项式 R(x):
 - 若 λ 非特征方程的根: $\lambda^2 + p\lambda + q \neq 0$, 则

$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

• 若 λ 为特征方程的单根: $\lambda^2 + p\lambda + q = 0$ 但 $2\lambda + p \neq 0$,则 $R''(x) + (2\lambda + p)R'(x) = P_m(x) \qquad (R' \rightarrow m x)$

$$\lambda^2 + p\lambda + q = 0 且 2\lambda + p = 0, 则$$

 $R''(x) = P_m(x)$ (R''为m次)

$$y'' + py' + qy = e^{\lambda x} P_m(x)$$

计算步骤

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程,整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x)$

- 2. 确定多项式 R(x):
 - 若 λ 非特征方程的根: $\lambda^2 + p\lambda + q \neq 0$, 则

$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_m(x) \qquad (R为m次)$$

• 若 λ 为特征方程的单根: $\lambda^2 + p\lambda + q = 0$ 但 $2\lambda + p \neq 0$,则 $R''(x) + (2\lambda + p)R'(x) = P_m(x) \qquad (R' \rightarrow m x)$

• 若 λ 为特征方程的重根: $\lambda^2 + p\lambda + q = 0$ 且 $2\lambda + p = 0$, 则

 $R''(x) = P_m(x)$ (R''为m次)

▶ 暨南大学

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x},$$

$$\mathbf{H} f(x) = (3x + 1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2,$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式)

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式), 代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

 $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

$$\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得:

$$R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$$

$$\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$
 (R(x)为1次多项式)

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

2. 设
$$R(x) = ax + b$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) =$$

$$\mathbf{R} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b)$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$
 $(R(x))$ 为1次多项式)

2. 设 R(x) = ax + b, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$
 (R(x)为1次多项式)

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$

$$\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$
 $(R(x))$ 为1次多项式)

2. 设 R(x) = ax + b, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$

所以
$$\begin{cases} -a = 3 \\ 2a - b = 1 \end{cases}$$

$$\mathbf{R} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$

 $\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$ (R(x)为1次多项式)

所以
$$\begin{cases} -a = 3 \\ 2a - b = 1 \end{cases} \Rightarrow \begin{cases} a = -3 \\ b = -7 \end{cases}$$

$$\mathbf{R} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$\Rightarrow R''(x) + 2R'(x) - R(x) = 3x + 1$$
 (R(x)为1次多项式)

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$

所以
$$\begin{cases} -a = 3 \\ 2a - b = 1 \end{cases} \Rightarrow \begin{cases} a = -3 \\ b = -7 \end{cases} \Rightarrow R(x) = -3x - 7$$

$$\mathbb{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

$$\Rightarrow$$
 $R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$
 \Rightarrow $R''(x) + 2R'(x) - R(x) = 3x + 1$ (R(x)为1次多项式)

2. 设
$$R(x) = ax + b$$
, 则

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$

所以
$$\begin{cases} -a = 3 \\ 2a - b = 1 \end{cases} \Rightarrow \begin{cases} a = -3 \\ b = -7 \end{cases} \Rightarrow R(x) = -3x - 7$$

所以 $y^* = (-3x - 7)e^{2x}$

 $\mathbf{H} f(x) = (3x+1)e^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = 3x+1.$

例 计算 $y'' - 2y' - y = (3x + 1)e^{2x}$ 的一个特解。

1. 设
$$y^* = e^{\lambda x} R(x)$$
 ($R(x)$ 为待定多项式), 代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 2)R'(x) + (\lambda^2 - 2\lambda - 1)R(x) = 3x + 1$

$$R''(x) + 2R'(x) - R(x) = 2a - (ax + b) = -ax + 2a - b = 3x + 1$$
所以
$$\begin{cases} -a = 3 \\ 2a - b = 1 \end{cases} \Rightarrow \begin{cases} a = -3 \\ b = -7 \end{cases} \Rightarrow R(x) = -3x - 7$$

2. 设 R(x) = ax + b, 则

所以 $v^* = (-3x - 7)e^{2x}$

31/40 ▷ ▷ ▷ ▽

解

$$y^{\prime\prime}-2y^\prime-y=0$$

$$y^{\prime\prime}-2y^\prime-y=0$$

$$\Rightarrow r^2 - 2r - 1 = 0$$

$$y^{\prime\prime\prime}-2y^\prime-y=0$$

$$\Rightarrow$$
 $r^2 - 2r - 1 = 0 \Rightarrow r_{1,2} = 1 \pm \sqrt{2}$

$$y'' - 2y' - y = 0$$

⇒ $r^2 - 2r - 1 = 0$ ⇒ $r_{1,2} = 1 \pm \sqrt{2}$
⇒ 齐次的通解是 $C_1 e^{(1+\sqrt{2})x} + C_2 e^{(1-\sqrt{2})x}$

例 求方程
$$y'' - 2y' - y = (3x + 1)e^{2x}$$
 的通解。

解 Step 1 求齐次部分的通解

$$y'' - 2y' - y = 0$$

⇒ $r^2 - 2r - 1 = 0$ ⇒ $r_{1,2} = 1 \pm \sqrt{2}$
⇒ 齐次的通解是 $C_1 e^{(1+\sqrt{2})x} + C_2 e^{(1-\sqrt{2})x}$

Step 2 原方程的一个特解是 $y^* = (-3x - 7)e^{2x}$

解 Step 1 求齐次部分的通解

$$y'' - 2y' - y = 0$$

⇒ $r^2 - 2r - 1 = 0$ ⇒ $r_{1,2} = 1 \pm \sqrt{2}$
⇒ 齐次的通解是 $C_1 e^{(1+\sqrt{2})x} + C_2 e^{(1-\sqrt{2})x}$

Step 2 原方程的一个特解是 $y^* = (-3x - 7)e^{2x}$

Step 3 所以原方程的通解是

$$y = (-3x - 7)e^{2x} + C_1e^{(1+\sqrt{2})x} + C_2e^{(1-\sqrt{2})x}$$

$$\mathbf{H}f(x) = xe^{2x} = P_m e^{\lambda x},$$

$$\mathbf{m} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2,$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式)

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

$$\Rightarrow R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

$$\Rightarrow R''(x) - R'(x) = x$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

$$\Rightarrow R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

$$\Rightarrow R''(x) - R'(x) = x \quad (R'(x)) 为 1次多项式)$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

2. 设
$$R'(x) = ax + b$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

2. 设
$$R'(x) = ax + b$$
, 则
$$R''(x) - R'(x) =$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

2. 设
$$R'(x) = ax + b$$
, 则
$$R''(x) - R'(x) = a$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$$

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b)$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$$

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$$

$$\Rightarrow R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

$$\Rightarrow R''(x) - R'(x) = x \quad (R'(x) + 1) + (R'(x) +$$

2. 设
$$R'(x) = ax + b$$
. 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a = 1 \\ a - b = 0 \end{cases}$$

$$\mathbf{R} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$$

⇒
$$R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

⇒ $R''(x) - R'(x) = x$ ($R'(x)$ 为1次多项式)

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a=1\\ a-b=0 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=-1 \end{cases}$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$$

⇒
$$R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

⇒ $R''(x) - R'(x) = x$ ($R'(x)$ 为1次多项式)

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a=1 \\ a-b=0 \end{cases} \Rightarrow \begin{cases} a=-1 \\ b=-1 \end{cases} \Rightarrow R'(x)=-x-1$$

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

⇒
$$R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

⇒ $R''(x) - R'(x) = x$ ($R'(x)$ 为1次多项式)

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a=1\\ a-b=0 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=-1 \end{cases} \Rightarrow R'(x)=-x-1$$

不妨取 $R(x) = -\frac{1}{2}x^2 - x$,

$$\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x.$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

⇒
$$R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$$

⇒ $R''(x) - R'(x) = x$ ($R'(x)$ 为1次多项式)

2. 设
$$R'(x) = ax + b$$
, 则

$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a=1\\ a-b=0 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=-1 \end{cases} \Rightarrow R'(x)=-x-1$$

不妨取 $R(x) = -\frac{1}{2}x^2 - x$,所以 $y^* = (-\frac{1}{2}x^2 - x)e^{2x}$

 $\mathbf{H} f(x) = xe^{2x} = P_m e^{\lambda x}, \ \lambda = 2, \ P_m = P_1 = x_0$

例 计算 $y'' - 5y' + 6v = xe^{2x}$ 的一个特解。

1. 设
$$y^* = e^{\lambda x} R(x)$$
 ($R(x)$ 为待定多项式),代入原方程整理可得:

1. 设
$$Y'' = e^{-\kappa}R(x)$$
 ($R(x)$ 为侍定多坝式》,代入原方程整理可侍: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 5)R'(x) + (\lambda^2 - 5\lambda + 6)R(x) = x$

$$\Rightarrow R''(x) - R'(x) = x \quad (R'(x)) + (x' - 3x + 0) \wedge (x') = x$$

2. 设
$$R'(x) = ax + b$$
, 则
$$R''(x) - R'(x) = a - (ax + b) = -ax + a - b = x$$

所以
$$\begin{cases} -a=1\\ a-b=0 \end{cases} \Rightarrow \begin{cases} a=-1\\ b=-1 \end{cases} \Rightarrow R'(x)=-x-1$$

不妨取 $R(x) = -\frac{1}{2}x^2 - x$,所以 $y^* = (-\frac{1}{2}x^2 - x)e^{2x}$

解

$$y^{\prime\prime\prime} - 5y^{\prime} + 6y = 0$$

$$y^{\prime\prime} - 5y^{\prime} + 6y = 0$$

$$\Rightarrow r^2 - 5r + 6 = 0$$

$$y'' - 5y' + 6y = 0$$

 $\Rightarrow r^2 - 5r + 6 = 0 \Rightarrow r_1 = 2, r_2 = 3$

$$y'' - 5y' + 6y = 0$$

⇒ $r^2 - 5r + 6 = 0$ ⇒ $r_1 = 2, r_2 = 3$

⇒ \hat{r} % \hat{r} %

解 Step 1 求齐次部分的通解

$$y'' - 5y' + 6y = 0$$

⇒ $r^2 - 5r + 6 = 0$ ⇒ $r_1 = 2, r_2 = 3$
⇒ 齐次的通解是 $C_1e^{2x} + C_2e^{3x}$

Step 2 原方程的一个特解是 $y^* = (-\frac{1}{2}x^2 - x)e^{2x}$

解 Step 1 求齐次部分的通解

$$y'' - 5y' + 6y = 0$$

⇒ $r^2 - 5r + 6 = 0$ ⇒ $r_1 = 2, r_2 = 3$
⇒ 齐次的通解是 $C_1e^{2x} + C_2e^{3x}$

Step 2 原方程的一个特解是 $y^* = (-\frac{1}{2}x^2 - x)e^{2x}$

Step 3 所以原方程的通解是

$$y = (-\frac{1}{2}x^2 - x)e^{2x} + C_1e^{2x} + C_2e^{3x}$$

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(\mathbf{x}) = (\mathbf{x} + 1)e^{3\mathbf{x}} = P_m e^{\lambda \mathbf{x}},$$

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3,$$

例 计算 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式)

例 计算 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式), 代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

例 计算 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$

 $\Rightarrow R''(x) + (2\lambda - 6)R'(x) + (\lambda^2 - 6\lambda + 9)R(x) = x + 1$

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda - 6)R'(x) + (\lambda^2 - 6\lambda + 9)R(x) = x + 1$

$$\Rightarrow R''(x) = x + 1$$

$$\Rightarrow R''(x) = x + 1$$

例 计算 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的一个特解。

$$\mathbf{R} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

- 1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda 6)R'(x) + (\lambda^2 6\lambda + 9)R(x) = x + 1$
 - $\Rightarrow R''(x) = x + 1$
- 2. 不妨取 $R'(x) = \frac{1}{2}x^2 + x$,

例 计算 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

- 1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda 6)R'(x) + (\lambda^2 6\lambda + 9)R(x) = x + 1$
 - $\Rightarrow R''(x) = x + 1$
- 2. 不妨取 $R'(x) = \frac{1}{2}x^2 + x$, $R(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2$,

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{R} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

- 1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda 6)R'(x) + (\lambda^2 6\lambda + 9)R(x) = x + 1$
 - $\Rightarrow R''(x) = x + 1$

2. 不妨取
$$R'(x) = \frac{1}{2}x^2 + x$$
, $R(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2$, 所以
$$y^* = (\frac{1}{6}x^3 + \frac{1}{2}x^2)e^{3x}$$

例 计算 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的一个特解。

$$\mathbf{H} f(x) = (x+1)e^{3x} = P_m e^{\lambda x}, \ \lambda = 3, \ P_m = P_1 = (x+1).$$

- 1. 设 $y^* = e^{\lambda x} R(x)$ (R(x) 为待定多项式),代入原方程整理可得: $R''(x) + (2\lambda + p)R'(x) + (\lambda^2 + p\lambda + q)R(x) = P_1(x)$ $\Rightarrow R''(x) + (2\lambda 6)R'(x) + (\lambda^2 6\lambda + 9)R(x) = x + 1$
 - $\Rightarrow R''(x) = x + 1$
- 2. 不妨取 $R'(x) = \frac{1}{2}x^2 + x$, $R(x) = \frac{1}{6}x^3 + \frac{1}{2}x^2$, 所以 $y^* = (\frac{1}{6}x^3 + \frac{1}{2}x^2)e^{3x}$

例 求方程 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的通解。

例 求方程 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的通解。

解

例 求方程 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的通解。

$$y^{\prime\prime\prime} - 6y^{\prime} + 9y = 0$$

例 求方程 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的通解。

$$y^{\prime\prime} - 6y^{\prime} + 9y = 0$$

$$\Rightarrow r^2 - 6r + 9 = 0$$

例 求方程 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的通解。

$$y'' - 6y' + 9y = 0$$

 $\Rightarrow r^2 - 6r + 9 = 0 \Rightarrow r_1 = r_2 = 3$

例 求方程 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的通解。

$$y'' - 6y' + 9y = 0$$

⇒ $r^2 - 6r + 9 = 0$ ⇒ $r_1 = r_2 = 3$
⇒ \hat{r} % $\hat{r$

例 求方程 $y'' - 6y' + 9y = (x+1)e^{3x}$ 的通解。

解 Step 1 求齐次部分的通解

$$y'' - 6y' + 9y = 0$$

⇒ $r^2 - 6r + 9 = 0$ ⇒ $r_1 = r_2 = 3$

⇒ 齐次的通解是 $(C_1 + C_2x)e^{3x}$

Step 2 原方程的一个特解是 $y^* = (\frac{1}{6}x^3 + \frac{1}{2}x^2)e^{3x}$

例 求方程 $y'' - 6y' + 9y = (x + 1)e^{3x}$ 的通解。

解 Step 1 求齐次部分的通解

$$y'' - 6y' + 9y = 0$$

⇒ $r^2 - 6r + 9 = 0$ ⇒ $r_1 = r_2 = 3$

⇒ 齐次的通解是 $(C_1 + C_2x)e^{3x}$

Step 2 原方程的一个特解是 $y^* = (\frac{1}{6}x^3 + \frac{1}{2}x^2)e^{3x}$

Step 3 所以原方程的通解是

$$y = (\frac{1}{6}x^3 + \frac{1}{2}x^2)e^{3x} + (C_1 + C_2x)e^{3x}$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \exists \lambda + i\omega \text{ \sharp} \text{ \sharp} \text{ \sharp} \text{ \sharp} \text{ ι} \text{ $$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ t} + i\omega \text{ $t$$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \overline{a}\lambda + i\omega$$
 非特征值
$$R_m^{(1)}, R_m^{(2)}$$
 为 m 次 待定多项式
$$m = \max\{l, n\}$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ # $\frac{1}{2}$} \\ 1 & \Xi \lambda + i\omega \text{ # $\frac{1}{2}$} \end{cases}$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ # $\frac{1}{2}$} \\ 1 & \Xi \lambda + i\omega \text{ # $\frac{1}{2}$} \end{cases}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

 \mathbf{H}_{1} . 特征方程: $r^2 - 1 = 0$,

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ i} \text{ k} \text{ i} \text{ $$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

 \mathbf{H} 1. 特征方程: $r^2 - 1 = 0$, 特征值: $r_{1,2} = \pm 1$,

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ i} + i\omega \text{ i} + i\omega \text{ i} & \Xi \lambda + i\omega \text{ i} + i\omega \text{ i} & \Xi \lambda + i$$

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ # 特征值} \\ 1 & \text{若}\lambda + i\omega \text{ # 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ # Dom Note: } R_m^{(2)} \text{$$

解 1. 特征方程:
$$r^2-1=0$$
,特征值: $r_{1,2}=\pm 1$, 齐次部分 $y''-y=0$ 的通解是 $C_1e^x+C_2e^{-x}$

$$2. \lambda = . \omega = .$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##The definition of the proof of the pro$$

解 1. 特征方程:
$$r^2-1=0$$
,特征值: $r_{1,2}=\pm 1$, 齐次部分 $y''-y=0$ 的通解是 $C_1e^x+C_2e^{-x}$

$$2. \lambda = 1. \omega = .$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##The def} \\ 1 & \text{若}\lambda + i\omega \text{ ##The def} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ ##The def} R_m^{(2)} \text{ ##The def}$$

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

$$\lambda = 1$$
. $\omega = 2$.

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \Xi \lambda + i\omega \text{ # 特征值} \\ 1 & \Xi \lambda + i\omega \text{ # 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ # 为 m 次 待定多项式}$$

$$m = \max\{l, n\}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2. $\lambda = 1$. $\omega = 2$. $\lambda + i\omega = 1 + 2i$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##The def} \\ 1 & \text{若}\lambda + i\omega \text{ ##The def} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ ##The def} R_m^{(2)} \text{ ##The def}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2. $\lambda = 1$, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##The def} \\ 1 & \text{若}\lambda + i\omega \text{ ##The def} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ ##The def} R_m^{(2)} \text{ ##The def}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2. $\lambda = 1$, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设 $v^* = e^x [a\cos(2x) + b\sin(2x)]$

解 1. 特征方程:
$$r^2 - 1 = 0$$
,特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设
$$y^* = e^x \left[a \cos(2x) + b \sin(2x) \right]$$

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值, 故设 $y^* = e^x [a\cos(2x) + b\sin(2x)]$

代入原方程,有
$$y^*'' - y^*$$

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设 $y^* = e^x [a\cos(2x) + b\sin(2x)]$

代入原方程,有
$$y^{*''} - y^* = e^x[(-4a + 4b)\cos(2x) + (-4a - 4b)\sin(2x)]$$

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设
$$y^* = e^x \left[a \cos(2x) + b \sin(2x) \right]$$

代入原方程,有
$$y^{*''} - y^* = e^x [(-4a + 4b)\cos(2x) + (-4a - 4b)\sin(2x)]$$
 $= e^x \cos(2x)$

解 1. 特征方程:
$$r^2 - 1 = 0$$
,特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设
$$y^* = e^x \left[a \cos(2x) + b \sin(2x) \right]$$

代入原方程,有
$$y^{*''}-y^*=e^x[(-4a+4b)\cos(2x)+(-4a-4b)\sin(2x)]$$
 $=e^x\cos(2x)$

$$\Rightarrow \begin{cases} -4a + 4b = 1 \\ -4a - 4b = 0 \end{cases}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $y'' - y = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设
$$y^* = e^x \left[a \cos(2x) + b \sin(2x) \right]$$

代入原方程,有
$$y^{*''} - y^* = e^x [(-4a + 4b)\cos(2x) + (-4a - 4b)\sin(2x)]$$
 $= e^x \cos(2x)$

$$\Rightarrow \begin{cases} -4a + 4b = 1 \\ -4a - 4b = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{8} \\ b = \frac{1}{9} \end{cases}$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程:
$$r^2 - 1 = 0$$
, 特征值: $r_{1,2} = \pm 1$, 齐次部分 $v'' - v = 0$ 的通解是 $C_1 e^x + C_2 e^{-x}$

2.
$$\lambda = 1$$
, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设 $y^* = e^x [\alpha \cos(2x) + b \sin(2x)]$

代入原方程,有
$$y^{*''} - y^* = e^x [(-4a + 4b)\cos(2x) + (-4a - 4b)\sin(2x)]$$
 $= e^x \cos(2x)$

$$\Rightarrow \begin{cases} -4a + 4b = 1 \\ -4a - 4b = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{8} \\ b = \frac{1}{8} \end{cases} \Rightarrow y^* = \frac{1}{8}e^x \left[-\cos(2x) + \sin(2x) \right]$$

例 计算 $y'' - y = e^x \cos(2x)$ 的通解。

解 1. 特征方程: $r^2 - 1 = 0$,特征值: $r_{1,2} = \pm 1$,齐次部分

$$y'' - y = 0$$
 的通解是 $C_1 e^x + C_2 e^{-x}$

2. $\lambda = 1$, $\omega = 2$, $\lambda + i\omega = 1 + 2i$ 不是特征值,故设 $y^* = e^x [a\cos(2x) + b\sin(2x)]$

代入原方程,有
$$y^{*''}-y^*=e^x[(-4a+4b)\cos(2x)+(-4a-4b)\sin(2x)]$$
 $=e^x\cos(2x)$

$$\Rightarrow \begin{cases} -4a + 4b = 1 \\ -4a - 4b = 0 \end{cases} \Rightarrow \begin{cases} a = -\frac{1}{8} \\ b = \frac{1}{8} \end{cases} \Rightarrow y^* = \frac{1}{8}e^x \left[-\cos(2x) + \sin(2x) \right]$$

3. 通解是

$$y = \frac{1}{8}e^{x} \left[-\cos(2x) + \sin(2x) \right] + C_1 e^{x} + C_2 e^{-x}$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ \sharp} \text{$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \ddot{a}\lambda + i\omega$$
 非特征值 $R_m^{(1)}, R_m^{(2)}$ 为 m 次 待定多项式 $m = \max\{l, n\}$

$$\mathbf{H}_{1}$$
 特征方程: $r^2 + 1 = 0$,

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ i} \text{ψ} \text{i} \text{i}$$

例 计算 $y'' + y = \cos x$ 的通解。

 \mathbf{H}_{1} . 特征方程: $r^2 + 1 = 0$, 特征值: $r_{1,2} = \pm i$,

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ 非特征值} \\ 1 & \text{若}\lambda + i\omega \text{ 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ 为m次待定多项式}$$

$$m = \max\{l, n\}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ 非特征值} \\ 1 & \text{若}\lambda + i\omega \text{ 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ 为m次待定多项式}$$

$$m = \max\{l, n\}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

$$2. \lambda = . \omega = .$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ 非特征值} \\ 1 & \text{若}\lambda + i\omega \text{ 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ 为m次待定多项式}$$

$$m = \max\{l, n\}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

$$2. \lambda = 0. \omega = .$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ 非特征值} \\ 1 & \text{若}\lambda + i\omega \text{ 为特征值} \end{cases} R_m^{(1)}, R_m^{(2)} \text{ 为m次待定多项式}$$

$$m = \max\{l, n\}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

$$\lambda = 0$$
. $\omega = 1$.

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##HTL} \\ 1 & \text{若}\lambda + i\omega \text{ ##HTL} \end{cases}$$

$$R_m^{(1)}, R_m^{(2)} \text{ ##DM} \text{$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
. $\omega = 1$. $\lambda + i\omega = i$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \text{若}\lambda + i\omega \text{ ##HTL} \\ 1 & \text{若}\lambda + i\omega \text{ ##HTL} \end{cases}$$

$$R_m^{(1)}, R_m^{(2)} \text{ ##DM} \text{$$

例 计算 $y'' + y = \cos x$ 的通解。

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2. $\lambda = 0$. $\omega = 1$. $\lambda + i\omega = i$ 是特征值.

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$
 $k = \begin{cases} 0 & \ddot{\pi}\lambda + i\omega$ 非特征值 $R_m^{(1)}, R_m^{(2)}$ 为m次待定多项式 $m = \max\{l, n\}$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设
$$y^* = xe^{0 \cdot x} (\alpha \cos x + b \sin x)$$

$$y'' + py' + qy = e^{\lambda x} [P_l(x) \cos(\omega x) + Q_n(x) \sin(\omega x)]$$

计算步骤 设

$$y^* = x^k e^{\lambda x} \left[R_m^{(1)}(x) \cos(\omega x) + R_m^{(2)}(x) \sin(\omega x) \right]$$

$$k = \begin{cases} 0 & \ddot{\pi}\lambda + i\omega$$
 非特征值
$$R_m^{(1)}, R_m^{(2)}$$
 为m次待定多项式
$$m = \max\{l, n\}$$

例 计算 $y'' + y = \cos x$ 的通解。

解 1. 特征方程: $r^2 + 1 = 0$, 特征值: $r_{1,2} = \pm i$, 齐次部分 y'' + y = 0 的通解是 $C_1 \cos x + C_2 \sin x$

2. $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设 $y^* = xe^{0 \cdot x} (a\cos x + b\sin x) = x(a\cos x + b\sin x)$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设
$$y^* = x(a\cos x + b\sin x)$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2. $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设 $v^* = x(a\cos x + b\sin x)$

$$y^{*''} + y^{*}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设
$$y^* = x(a\cos x + b\sin x)$$

$$y^{*''} + y^* = 2b\cos x - 2a\sin x$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设
$$y^* = x(\alpha \cos x + b \sin x)$$

代入原方程,有

$$y^{*''} + y^* = 2b\cos x - 2a\sin x = \cos x$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2.
$$\lambda = 0$$
, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设
$$y^* = x (a \cos x + b \sin x)$$

代入原方程,有

$$y^{*"} + y^{*} = 2b\cos x - 2a\sin x = \cos x$$

$$\Rightarrow \begin{cases} a = 0 \\ b = \frac{1}{2} \end{cases}$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2. $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设 $y^* = x(\alpha \cos x + b \sin x)$

代入原方程,有

$$y^{*"} + y^{*} = 2b\cos x - 2a\sin x = \cos x$$

$$\Rightarrow \begin{cases} a = 0 \\ b = \frac{1}{2} \end{cases} \Rightarrow y^{*} = \frac{1}{2}x\sin x$$

解 1. 特征方程:
$$r^2 + 1 = 0$$
, 特征值: $r_{1,2} = \pm i$, 齐次部分 $y'' + y = 0$ 的通解是 $C_1 \cos x + C_2 \sin x$

2. $\lambda = 0$, $\omega = 1$, $\lambda + i\omega = i$ 是特征值, 故设

$$y^* = x (a \cos x + b \sin x)$$

代入原方程,有

$$y^{*"} + y^* = 2b\cos x - 2a\sin x = \cos x$$

$$\Rightarrow \begin{cases} a = 0 \\ b = \frac{1}{2} \end{cases} \Rightarrow y^* = \frac{1}{2} x \sin x$$

3. 通解是

$$y = \frac{1}{2}x\sin x + C_1\cos x + C_2\sin x$$