

Propuesta Final LAVADORA DE ECUS

Proyecto Final

Equipo de cátedra

- Ezequiel Blanca
- Cristian Lukaszewicz
- Juan Ignacio Szombach

- Federico Bellomi
- Nicolas De Lio
- Elias Joglar

Facultad de Ingeniería

Índice

1.	Introducción	. 3
2.	Necesidades a explorar	. 3
3.	Descripción de la propuesta	. 4
	Integración con Robot SCARA:	. 4
4.	Alcance	. 5
	1. Robot SCARA:	. 5
5.	CAJA LAVADORA	. 6
	5.1 Requerimientos funcionales	. 6
	5.2 Diagrama de bloques.	. 6
	5.3 Detalle preliminar de los pines necesarios del microcontrolador	. 7
	5.4 Costos del prototipo.	. 8
6.	ROBOT SCARA	. 9
	6.1 Requerimientos funcionales	. 9
	6.2 Diagrama de bloques	. 9
	6.3 Detalle preliminar de los pines necesarios del microcontrolador	10
	6.4 Costos del prototipo.	11

Universidad Nacional de Lomas de Zamora Facultad de Ingeniería

1. Introducción

En el ámbito de la electrónica automotriz, uno de los problemas más frecuentes y críticos es el deterioro de las placas electrónicas (ECU) causado por la presencia de humedad y suciedad. Estos factores pueden provocar desde fallas intermitentes hasta la inutilización completa del sistema, generando importantes consecuencias técnicas y económicas. Actualmente, los métodos de limpieza más utilizados (como el cepillado manual con alcohol isopropílico o el lavado ultrasónico) presentan limitaciones en términos de efectividad, tiempo de ejecución y grado de automatización, lo que evidencia una necesidad concreta de mejora en los procesos de mantenimiento.

2. Necesidades a explorar

La problemática se centra en la complejidad de lograr una correcta limpieza de placas electrónicas automotrices (ECU-Computadora de control de motor). Estas placas, debido mayormente a humedad, provocan fallos en los vehículos inhabilitando su funcionamiento. Lo cierto es que estas fallas si no son reparadas a tiempo suelen provocar una situación irrecuperable (fallo de integrados, corrosión de la pcb, circuitos en corto en la placa). A la hora de comprobar el funcionamiento en este tipo de casos se suele hacer una limpieza previa mediante cepillado y líquidos que no conducen la corriente eléctrica, como por ejemplo alcohol isopropílico. Este tipo de limpieza debe de hacerse manual y requiere mucho tiempo y cuidado del técnico, a su vez la limpieza mediante cepillado solo elimina restos superficiales, es decir no elimina un 100%. Existe otro método de limpieza el cual es mediante lavado ultrasónico, para realizar este método se sumerge la placa en un líquido como puede ser el alcohol antes mencionado y mediante electrólisis se retiran restos más puntuales en la placa. Este método es algo más práctico, pero a su vez menos usado en la industria automotriz, ya que la placa requiere de un prelavado mediante aspersión y cepillado para retirar restos superficiales que el lavado ultrasónico no puede eliminar.

Facultad de Ingeniería

3. Descripción de la propuesta

Este proyecto presenta el desarrollo de una célula de trabajo totalmente automatizada diseñada para la limpieza y reacondicionamiento de Unidades de Control Electrónico (ECU) y otras placas electrónicas complejas. La solución ataca una necesidad crítica en la industria de la reparación electrónica: la eliminación eficiente y estandarizada de contaminantes como humedad, suciedad y residuos que provocan fallos en los circuitos.

Para esto se utiliza una máquina de limpieza de doble etapa que integra dos tecnologías en una sola unidad compacta.

- 1. Etapa de Aspersión Controlada: Utiliza un chorro presurizado de alcohol isopropílico para la remoción de suciedad superficial de manera efectiva y segura.
- Etapa de Limpieza Ultrasónica: Sumerge la placa en una batea con el mismo solvente, empleando ondas ultrasónicas de alta frecuencia para una limpieza profunda a nivel microscópico, eliminando residuos en áreas de difícil acceso sin causar daño a los componentes.

Integración con Robot SCARA:

Para aumentar la eficiencia y eliminar la intervención humana en el proceso de carga y descarga, la célula incorpora un robot SCARA, este brazo robótico es el encargado de gestionar el flujo de trabajo de manera autónoma:

- Pick & Place: El robot SCARA, equipado con un gripper, tomará las placas electrónicas desde una bandeja o cinta de entrada.
- Vision por cámara: El robot detectara estas placas mediante una cámara alojada en el extremo del brazo, la imagen será analizada mediante inteligencia artificial y luego enviada al robot en forma de posición para que este se dirija.
- Inserción en la Máquina: El robot abrirá la puerta de la lavadora, posicionará la ECU en el sistema de sujeción interno y dará la señal para iniciar el ciclo de limpieza.
- Extracción y Reposicionamiento: Una vez que la máquina finaliza su ciclo de limpieza y secado, el robot retirará la placa limpia y la colocará en una zona de salida o inspección.

Facultad de Ingeniería

4. Alcance

El proyecto contempla el desarrollo e implementación de un sistema automatizado compuesto por un robot tipo SCARA y una lavadora de ECUs, con el objetivo de optimizar el manejo y la limpieza de placas electrónicas, este proyecto será realizado en su totalidad, desarrollando tanto el sistema automatizado como el robot SCARA y su sistema de visión

1. Robot SCARA:

- Integración de un sistema de visión artificial con IA para la detección, identificación y localización precisa de la placa electrónica sobre una superficie de trabajo.
- Determinación autónoma del punto óptimo de sujeción de la placa, considerando su geometría y delicadeza.
- Manipulación segura y precisa de la placa, con capacidad de traslado y posicionamiento dentro de la lavadora de ECUs.

2. Lavadora de ECUs:

- Recepción automatizada de la placa electrónica desde el robot SCARA.
- Ejecución de un ciclo de limpieza compuesto por dos procesos diferenciados:
- Aspersión controlada, para la eliminación de impurezas superficiales.
- Limpieza por ultrasonido, para la remoción profunda de residuos sin comprometer la integridad de los componentes electrónicos.
- Finalización del ciclo con la entrega de la placa limpia en una bandeja o estación designada.

3. Objetivos Específicos del Alcance:

- Lograr la integración coordinada entre el robot y la lavadora de ECUs, garantizando un flujo de trabajo autónomo.
- Minimizar la intervención humana, limitándola a la carga inicial y descarga final de placas.
- Asegurar que el sistema cumpla con criterios de seguridad, repetibilidad y eficiencia, permitiendo un proceso de limpieza estandarizado y confiable.

Facultad de Ingeniería

5.CAJA LAVADORA.

5.1 Requerimientos funcionales.

- El sistema debe mover los ejes X e Y de manera sincronizada.
- Debe detectar los límites de recorrido mediante endstops.
- Al encenderse, debe realizar un homing automático.
- Debe accionar el gripper para sujetar la ECU cuando está en posición.
- Debe detener el movimiento si se detecta sobrecorriente en el gripper.
- Debe comunicar cuando la ECU está correctamente sujeta.
- Debe de activar el sistema de aspersión.
- Debe de activar el sistema de ultrasonido luego de terminar con la aspersión.
- Debe volver a la posición inicial con la ecu sujetada luego del proceso de limpieza.

5.2 Diagrama de bloques.

Facultad de Ingeniería

5.3 Detalle preliminar de los pines necesarios del microcontrolador.

Utilizamos una ramps 1.4 sobre el microcontrolador Arduino Mega, por lo tanto los pines utilizados para la caja son los siguientes.

Pára los motores paso a paso.

X_STEP \rightarrow D54 (A0) X_DIR \rightarrow D55 (A1) X_ENABLE \rightarrow D38 Y_STEP \rightarrow D60 (A6) Y_DIR \rightarrow D61 (A7) Y_ENABLE \rightarrow D56 (A2) Z_STEP \rightarrow D46 Z_DIR \rightarrow D48 Z_ENABLE \rightarrow D62 (A8) E0_STEP \rightarrow D26 E0_DIR \rightarrow D28 E0_ENABLE \rightarrow D24 E1_STEP \rightarrow D36 E1_DIR \rightarrow D34 E1_ENABLE \rightarrow D30

Para los finales de carrera.

 $X_MIN \rightarrow D3$ $X_MAX \rightarrow D2$ $Y_MIN \rightarrow D14$ $Y_MAX \rightarrow D15$ $Z_MIN \rightarrow D18$ $Z_MAX \rightarrow D19$

Servomotores.

Servo $0 \rightarrow D11$ Servo $1 \rightarrow D6$ Servo $2 \rightarrow D5$ Servo $3 \rightarrow D4$

Facultad de Ingeniería

5.4 Costos del prototipo.

Parte mecanica.

- Diseño e impresión 3D \$120 mil pesos
- 3-Motores paso a paso \$48 mil pesos
- 4-Servo motores \$50 mil pesos
- 6-Rodamientos lineales 8mm 13 mil pesos
- 3-Rodamiento de bolas 8mm 6 mil pesos
- 2 Varilla lisa y rectificada de 8mm 30 mil pesos
- 2 Varilla roscada cnc 8mm con tuerca. 32 mil pesos
- Inyectores automotrices Gratis
- Bomba elevadora de presión Gratis

Total parte mecanica. \$299 mil pesos

Parte electronica.

- 1 Arduino Mega 30 mil pesos
- 1 Ramps 9 mil pesos
- 3 Driver pololus 18 mil pesos
- 4 Sensores final de carrera 12 mil pesos
- 4 Sensores de corriente 28 mil pesos
- Fuente 12v 30 mil pesos
- Fuente 5v 23 mil pesos

Total electronica \$150 mil pesos.

Total mecanica + electronica. \$449 mil pesos.

Estos precios son estimativos , posiblemente sea mayor el monto final debido a modificaciones/complicaciones. En esta lista está referido lo fundamental ya comprado con su precio final.

Luego poseemos un presupuesto de los elementos faltantes, se estima.

Impresión 3D de los soportes para los inyectores \$50 mil pesos Batea y sistema ultrasonico \$240 mil pesos. Perfiles de aluminio \$45 mil pesos. Acrilicos para hermetizar \$20 mil pesos. Mangueras de alta presión \$15 mil pesos

Aproximadamente al dia de la fecha. \$370 mil pesos.

Facultad de Ingeniería

6. ROBOT SCARA

6.1 Requerimientos funcionales.

- Realizar movimientos de un SCARA, 3 rotaciones en el plano XY y un movimiento lineal en el eje Z
- Levantar cargas de 100g
- Tener una repetibilidad de por lo menos 1mm
- Incluir un gripper para tomar las ECUs
- Contar con un sistema de visión que escanee el area de trabajo
- Contar con un modelo de IA en una PC que procese la imagen captada por la cámara
- Utilizar una secuencia de homing al iniciar
- Contar con cinemática inversa

6.2 Diagrama de bloques.

Facultad de Ingeniería

6.3 Detalle preliminar de los pines necesarios del microcontrolador.

Utilizamos una ramps 1.4 sobre el microcontrolador Arduino Mega, por lo tanto los pines utilizados para el robot scara son los siguientes.

Pára los motores paso a paso.

 $\begin{array}{l} \textbf{X_STEP} \rightarrow \textbf{D54} \; (\textbf{A0}) \\ \textbf{X_DIR} \rightarrow \textbf{D55} \; (\textbf{A1}) \\ \textbf{X_ENABLE} \rightarrow \textbf{D38} \\ \textbf{Y_STEP} \rightarrow \textbf{D60} \; (\textbf{A6}) \\ \textbf{Y_DIR} \rightarrow \textbf{D61} \; (\textbf{A7}) \\ \textbf{Y_ENABLE} \rightarrow \textbf{D56} \; (\textbf{A2}) \\ \textbf{Z_STEP} \rightarrow \textbf{D46} \\ \textbf{Z_DIR} \rightarrow \textbf{D48} \\ \textbf{Z_ENABLE} \rightarrow \textbf{D62} \; (\textbf{A8}) \\ \textbf{E0_STEP} \rightarrow \textbf{D26} \\ \textbf{E0_DIR} \rightarrow \textbf{D28} \\ \textbf{E0_ENABLE} \rightarrow \textbf{D24} \\ \textbf{E1_STEP} \rightarrow \textbf{D36} \\ \textbf{E1_DIR} \rightarrow \textbf{D34} \\ \textbf{E1_ENABLE} \rightarrow \textbf{D30} \\ \end{array}$

Para los finales de carrera.

 $X_MIN \rightarrow D3$ $X_MAX \rightarrow D2$ $Y_MIN \rightarrow D14$ $Y_MAX \rightarrow D15$ $Z_MIN \rightarrow D18$ $Z_MAX \rightarrow D19$

Servomotores.

Servo 0 \rightarrow D11 Servo 1 \rightarrow D6 Servo 2 \rightarrow D5 Servo 3 \rightarrow D4

Adicionalmente, se penso en añadir Encoders para los stepper, si se llegara a poder implementar se utilizaran los puertos analógicos

Facultad de Ingeniería

6.4 Costos del prototipo.

Parte mecanica.

- Impresión 3D \$70 mil pesos
- Perfil UPN 80 + Base de Acero \$15 mil pesos
- Rodamientos 608, 698, 628 y 6805 \$170 mil pesos
- Pernos de posicion, bulones tuercas y arandelas \$30 mil pesos
- Correas GT2 \$15 mil pesos
- Insertos M3 \$60 mil pesos

Subtotal: 360 mil pesos

Parte Electronica

- 3 Nema 17 \$45 mil pesos
- Servomotor \$5 mil pesos
- Fuente de 15A \$20 mil pesos
- Arduino mega \$20 mil pesos
- Ramps 1.4 \$10 mil pesos
- Driver drv 8825 \$15 mil pesos
- Finales de carrera \$15 mil pesos
- 8 metros de cable para steppers y finales de carrera \$15 mil pesos

Subtotal: 145 mil pesos

Total: 505 mil pesos

En teoría no quedan productos por comprar, salvo algunos ajustes de tornillos, pernos, etc pero ya los componentes principales fueron adquiridos.