第六讲:图论模型和算法 数学模型和算法的应用与 MATLAB 实现

周吕文

中国科学院力学研究所

2017年7月3日

微信公众号: 超级数学建模

图论的起源: 哥尼斯堡七桥问题

图论的起源: 哥尼斯堡七桥问题

图论的定义

图论 (Graph theory) 以图为 研究对象, 研究顶点和边组成 的图形的数学理论和方法.

图论中的图是由若干给定的 顶点及连接两顶点的边所构 成的图形.

图论中的图通常用来描述某 些事物之间的某种特定关系, 用顶点代表事物, 用边表示 相应两个事物间的关系.

N	0	t	e	S
---	---	---	---	---

Notes

Notes

表: 近几年 MCM 中用到图论和网络的特等奖论文统计

年份题号	题目	特等奖论文数
2011 MCM-B	中继器协调问题	4
2012 MCM-B	犯罪克星	7
2013 ICM-C	地球健康的网络模型	5
2014 MCM-B	大学传奇教练	1
2014 ICM-C	使用网络来评估影响和冲击	6
2015 ICM-C	组织人力资本管理	6

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

图论算法简介 概念、算法和实例

图 (无向图) 的构成

$$E(G) = \{a, b, c, d, e, f, g, h\}$$

$$\varphi_G(e) = vx = xv$$

顶点集 边集 关联函数

顶点集 V(G)

图 G 中所有顶点的集合。

边集 E(G)

图 G 中所有边的集合。

关联函数 φ_G

 $\varphi_G \; : \; \mathit{E}(\mathit{G}) \longrightarrow \mathit{V}(\mathit{G})$

环/连杆/重边

b 为环; a 为连杆; d, f 为重边

端点重合为一点的边。

端点不重合的边。

具有相同的两个端点的边。

图论算法简介 概念、算法和实例

图 (无向图) 和有向图

无向图

有向图

Notes

Notes

-			

Notes

-		
-		

有向图的构成

 $\mathit{V}(\mathit{G}) = \{\mathit{u}, \mathit{v}, \mathit{w}, \mathit{x}, \mathit{y}\}$

$$E(G) = \{a, b, c, d, e, f, g, h\}$$

$$\varphi_G(a) = (u, v) = uv$$

有向图的构成

顶点集 弧集 关联函数

顶点集 V(G)

图 G 中所有顶点的集合。

弧集 A(G)

图 G 中所有弧的集合。

关联函数 $arphi_G$

 $\varphi_G \; : \; A(a) \longrightarrow \mathit{V}(\mathit{G})$

周吕文 中国科学院力学研究所 🛞

子图

若 $V(H) \subset V(G)$ 且 $E(H) \subset E(G)$, 则称 H 是 G 的子图。

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

-些特殊的图

图论算法简介 概念、算法和实例

-些特殊的图

Notes

Notes

Notes

些特殊的图

周吕文 中国科学院力学研究所 🍪 第六讲:图论模型和算法

概念、算法和实例

图与网络的数据结构: 无向图关联/邻接矩阵

关联矩阵 $M=(m_{ve})$, $m_{ve}\in\{0,1,2\}$ 表示边 e 与顶点 v 关

邻接矩阵 $A=(a_{uv})$, a_{uv} 表示是否存在从顶点 u 到 v 的弧。

周吕文 中国科学院力学研究所 第六讲:图论模型和算法

图论算法简介 概念、算法和实例

图与网络的数据结构:有向图关联/邻接矩阵

关联矩阵 $M=(m_{va}),\ m_{va}\in\{1,-1,0\}$ 分表示弧 a 与顶点 v 关联的关系(尾、头、其它)。

邻接矩阵 $A=(a_{uv})$, a_{uv} 表示是否存在从顶点 u 到 v 的弧。

周吕文 中国科学院力学研究所 🛞 第六讲: 图论模型和算法

图论算法简介 概念、算法和实例

顶点的度和中心度

度 $d_G(v)$

G 中与 v 关联的边数, $d_G(v) = d^-(v) + d^+(v)$.

以v为弧尾,起始于该点的 弧数。

$$d^{-1}(x) = 3$$

 $d^{+1}(x) = 2$

入度 d⁺(v)

以v为弧头,终止于该点的 弧数。

Notes

Notes

Notes

顶点的度和中心度

点度中心度

$$C_D(v) = d^+(v)$$

接近中心度

$$C_C(v) = \frac{1}{\sum_{u \in V} d(u, v)}$$

中间中心度

$$C_B(v) = \sum_{s \neq v \neq t \in V} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

特征向量中心度

$$C_E(v) = x_v = \frac{1}{\lambda} \sum_{u \in M(v)} x_u = \frac{1}{\lambda} \sum_{u \in V} a_{vu} x_u$$

图论算法简介 概念、算法和实例

图论工具箱: 函数

图论工具箱的相关命令

(2)	化工共和的相大中令
函数名	功能
graphallshortestpaths	求图中所有顶点对之间的最短距离
graphconnredcomp	找无 (有) 向图的 (强/弱) 连通分支
graphisreddag	测试有向图是否含有圈
graphisomorphism	确定一个图是否有生成树
graphmaxflow	计算有向图的最大流
graphminspantree	在图中找最小生成树
graphpred2path	把前驱顶点序列变成路径的顶点序列
graphshortestpath	求指定一对顶点间的最短距离和路径
graphtopoorder	执行有向无圈图的拓扑排序
graphtraverse	求从一顶点出发,所能遍历图中的顶点

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

图论算法简介 概念、算法和实例

图论工具箱:数据结构

满矩阵和稀疏矩阵 (full⇌sparse)

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 4 & 0 & 0 \end{bmatrix} \rightleftharpoons \begin{bmatrix} (2,1) & 2 \\ (3,1) & 3 \\ (3,2) & 6 \\ (4,2) & 5 \\ (5,2) & 3 \\ (5,3) & 1 \\ (5,4) & 1 \\ (6,4) & 2 \\ (6,5) & 4 \end{bmatrix}$$

周吕文 中国科学院力学研究所 😚 第六讲: 图论模型和算法

图论算法简介 概念、算法和实例

图论工具箱:用法举例

Notes

Notes

Notes

网络分析工具箱: 函数

网络分析工具箱的相关命令

1125717	工芸和的相关中文
函数名	功能
degrees	求图中所有顶点的度, 入度和出度
ave_neighbor_deg	求图中所有顶点的相邻顶点平均度
closeness	求图中所有顶点的接近中心度
node_betweenness_faster	求图中所有顶点的中间中心度
edge_betweenness	求图中所有边的中间中心度
eigencentrality	求图中所有顶点的特征向量中心度
clust_coeff	求图中所有顶点的集聚系数

周吕文 中国科学院力学研究所 🛞 第六讲: 图论模型和算法

概念、算法和实例

网络分析工具箱: 用法举例

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

网络分析工具箱: 用法举例

点度中心度的接近中心度的求解

```
01 n = 10; % 顶点数
02 % 给Andre, Betty, ..., Jane标号为1, 2, ...,
03 Andre = 1; Betty = 2; Carol = 3; Dave = 4; Ed = 5; 04 Fanny = 6; Garth = 7; Hale = 8; Ike = 9; Jane = 10;
 05%根据图构造邻接矩阵.
 06 A = zeros(n);
07 A(Andre, [Betty, Carol, Dave, Fanny]) = 1;
08 A(Betty, [Andre, Dave, Ed, Garth]) = 1;
07 A(Andre, [Betty, Carol, Dave, Cd, Garth]) = 1;

08 A(Betty, [Andre, Dave, Ed, Garth]) = 1;

09 A(Carol, [Andre, Dave, Fanny]) = 1;

[Andre, Betty, Carol, Ed, Fanny, Garth]) = 1;
11 A( Ed, [Betty, Dave, Garth]) = 1;
12 A(Fanny, [Andre, Carol, Dave, Garth, Hale]) = 1;
13 A(Garth, [Betty, Dave, Ed, Fanny, Hale]) = 1;
14 A( Hale, [Fanny, Garth, Ike]) = 1;
14 A( Hale, [Fanny, Garth, Ike]
15 A( Ike, [Hale, Jane]) = 1;
16 A( Jane, [Ike]) = 1;
17 Cd = degrees(A)*(n-1) % 计算点度中心度并标准化.
18 Cc = closeness(A)*(n-1) % 计算接近中心度并标准化.
```

图论算法简介 概念、算法和实例

最短路径

G(V, W) 边权为 $w(v_i, v_j)$ 。 两个顶点 v_s 和 v_t 间存在一 条总权最小的路

$$w(\mu) = \min \sum_{(v_i, v_j) \in \mu} w(v_i, v_j)$$

周吕文 中国科学院力学研究所 🛞 第六讲: 图论模型和算:

Notes	

Notes

Notes

最小生成树

G(V, E) 边权为 $w(v_i, v_j)$ 。 若存在 $T \subseteq E$ 且为无循环 图, 使权 T 的总权最小

$$w(T) = \min \sum_{(v_i, v_j) \in T} w(v_i, v_j)$$

```
01 w =
      [ 0
            4 inf 5 inf 3
           0 5 inf 3
02
        4
                          3
03
       inf 5
               0
                  5
                       3 inf
04
        5 inf 5
                          4
       inf 3 3 2 0 1
3 3 inf 4 1 0];
05
06
07 W = sparse(w);
08 [ST, pred] = graphminspantree(W);
```

周吕文 中国科学院力学研究所 🍪 第六讲:图论模型和算法

概念、算法和实例

最短(Hamilton)回路

G(V, W) 边权为 $w(v_i, v_i)$ 。 寻找 G 中的回路 C, 使得 C的总权最小

$$w(\mathit{C}) = \min \sum_{(v_i, v_j) \in \mathit{C}} w(v_i, v_j)$$

```
01 R = 6378.137;
02 dist = zeros(n);
03 for i = 1:n
04
             for j = i+1:n
                     \label{eq:dist} \mbox{dist}(\mbox{i,j}) \; = \; \mbox{distance}(\mbox{lat}(\mbox{i}),\mbox{lon}(\mbox{i}),\mbox{lon}(\mbox{i}),\mbox{lon}(\mbox{j}),\mbox{R});
05
06
08 [order,totdist] = minhamiltonpath(dist)
```

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

灾情巡视路径:问题

分三组(路)巡视,设计总路程最短且各组均衡的巡视路线

图论算法向介 概念、算法和实例

灾情巡视路径: 思路

数据预处理

构造完全图:由图论工具箱 graphallshortestpaths 函数求得 任意两点最短路。

明确目标:将 G 分成三个子图 $G(V_1)$, $G(V_2)$ 和 $G(V_3)$

子顶点集中都包含顶点 $O: O \in V_i$, i = 1, 2, 3; 子顶点集中包含了 V 中所有顶点: $\cup V_i = V$;

最小 Hamilton 回路长度总和最小化: $\min C_{\Sigma} = \min \sum C_i$

最小 Hamilton 回路长度均衡化: $\min\{C_{\max}-C_{\min}\}$

Notes		
Notes		
Notes		

灾情巡视路径:分组

(1) (6) (1) (1) (1) (2) (3) (4)

(1 4 5), (2; 15, 18), (3 6; 22, 3, 4, 8, 11, 13, D, G)

图论算法简介 概念、算法和实例

灾情巡视路径:结果

1: $C_{\Sigma} = 554.1$; $C_{\text{max}} = 237.5$

2: $C_{\Sigma} = 607.6$; $C_{\text{max}} = 203.5$

周吕文 中国科学院力学研究所 🛞 第六讲: 图论模型和算法

Notes

Notes

Notes

掌握图论常见问题 (最短路径、最小生成树等) 的数学描述 和实际意义。

掌握节点中心度的数学描述和实际意义。

会使用工具箱函数求解图论常见问题。

会使用工具桌函数求解网络常见问题。

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

作业

自行学习所给图论教程, 了解最大流、最小费用流问题。 结合模拟退火算法, 针对灾情巡视路径问题开发一个自动分 组程序。

使用网络方法,解决"2014 ICM-C 使用网络来评估影响和冲 击"问题。

Notes

周吕文 中国科学院力学研究所 🛞 第六讲:图论模型和算法

	Notes
Thank You!!!	
Thank Tou	
	Notes
	Notes
	Notes