

#### Goals

- Discuss why networks are useful for analysis
- Discuss annotated vs. data-driven networks
- Method for mapping genes of interest onto network: GSEA

Method for inferring data-driven network: WGCNA

#### Networks can help contextualize biological complexity

**Network Model** 



#### **Mathematical Model**

#### **Organ Rules:**

$$a + b + c = x$$
  
 $a + c - e = x$ 

#### **Tissue Rules:**

$$d+e+f=a$$
  
 $g+h-f=b$ 

#### **Cellular Rules:**

$$j + k + m = g$$
$$j + p - n = f$$
$$n + p - q = d$$

#### **Molecular Rules:**

$$r + s + t = m$$
  
 $u + e - v = n$   
 $q + r - f = p$ 

Linderman, et al., 2015, PMID: **25924949** 

Mast et al., 2014, PMID: 25225336

#### Annotated networks

Known interactions from direct characterization



Gene Set Enrichment Analysis (GSEA)



Subramanian, et al., 2005, PMID: **16199517**Sergushichev, 2016, doi.org/10.1101/060012
https://biostatsquid.com/fgsea-tutorial-gsea/



Expression fold-change

# Enrichment scores measure association of gene set with phenotype



#### Annotated networks vs. data-driven networks



### Weighted Gene Co-expression Network Analysis (WGCNA)



#### Comparing Distance Metrics for Co-expression





Adapted from slide courtesy Andrew Gustin

#### Comparing Distance Metrics for Co-expression





Adapted from slide courtesy Andrew Gustin



|    | BA  | FI  | MI  | NA  | RM  | TO  |
|----|-----|-----|-----|-----|-----|-----|
| BA | 0   | 662 | 877 | 255 | 412 | 996 |
| FI | 662 | 0   | 295 | 468 | 268 | 400 |
| MI | 877 | 295 | 0   | 754 | 564 | 138 |
| NA | 255 | 468 | 754 | 0   | 219 | 869 |
| RM | 412 | 268 | 564 | 219 | 0   | 669 |
| ТО | 996 | 400 | 138 | 869 | 669 | 0   |



|    | BA  | FI  | MI  | NA  | RM  | TO  |
|----|-----|-----|-----|-----|-----|-----|
| BA | 0   | 662 | 877 | 255 | 412 | 996 |
| FI | 662 | 0   | 295 | 468 | 268 | 400 |
| MI | 877 | 295 | 0   | 754 | 564 | 138 |
| NA | 255 | 468 | 754 | 0   | 219 | 869 |
| RM | 412 | 268 | 564 | 219 | 0   | 669 |
| ТО | 996 | 400 | 138 | 869 | 669 | 0   |



|       | BA  | FI  | MI/TO | NA  | RM  |
|-------|-----|-----|-------|-----|-----|
| BA    | 0   | 662 | 877   | 255 | 412 |
| FI    | 662 | 0   | 295   | 468 | 268 |
| MI/TO | 877 | 295 | 0     | 754 | 564 |
| NA    | 255 | 468 | 754   | 0   | 219 |
| RM    | 412 | 268 | 564   | 219 | 0   |



|       | BA  | FI  | MI/TO | NA/RM |
|-------|-----|-----|-------|-------|
| BA    | 0   | 662 | 877   | 255   |
| FI    | 662 | 0   | 295   | 268   |
| MI/TO | 877 | 295 | 0     | 564   |
| NA/RM | 255 | 268 | 564   | 0     |



|          | BA/NA/RM | FI  | MI/TO |
|----------|----------|-----|-------|
| BA/NA/RM | 0        | 268 | 564   |
| FI       | 268      | 0   | 295   |
| MI/TO    | 564      | 295 | 0     |



|             | BA/FI/NA/RM | M <del>I/TO</del> |  |  |
|-------------|-------------|-------------------|--|--|
| BA/FI/NA/RM | 0           | 295               |  |  |
| MI/TO       | 295         | 0                 |  |  |



- \* Height of bar corresponds to how distant samples are from each other
- \*\* Choice of distance cutoff determines number of modules