

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.4 Ω - 7.4 jΩ
Return Loss	- 21.9 dB

Antenna Parameters with Body TSL

		_
Impedance, transformed to feed point	44.1 Ω - 4.9 jΩ	
Return Loss	- 21.8 dB	

General Antenna Parameters and Design

700 0	
Electrical Delay (one direction)	1.154 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 30, 2007

DASY5 Validation Report for Head TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$; $\varepsilon_r = 37.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.7, 7.7, 7.7) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.3 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.33 W/kgMaximum value of SAR (measured) = 23.7 W/kg

0 dB = 23.7 W/kg = 13.75 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 26.07.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN:1012

Communication System: UID 0 - CW; Frequency: 2600 MHz

Medium parameters used: f = 2600 MHz; $\sigma = 2.2$ S/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(7.81, 7.81, 7.81) @ 2600 MHz; Calibrated: 30.12.2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 26.10.2017
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.5 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.17 W/kgMaximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg = 13.54 dBW/kg

Impedance Measurement Plot for Body TSL

ANNEX I Sensor Triggering Data Summary

SAR Sensor

Reduce Power for SAR sensor

	1	LTE			
LTE Band	Power	Tolerance			
1	22. 5	+1dBm/ -1dBm			
3	22	+1dBm/ -1dBm			
7	21. 5	+1dBm/ -1dBm			
38	21.5	+1dBm/ -1dBm			
40	21.5	+1dBm/ -1dBm			
41	21. 5	+1dBm/ -1dBm			
		CSM.			
Mode/	'Rand	Voice (dim)			
CBM/CPRS/BBC	Max Power	30			
E 1800	Non	29			
CBM/CPRS/EDC	Max Power	29			
E 1900	Non	28			
	W	CDMA			
		Modulated Average			
Mode	Band .	(dRm)			
		WEINA			
UMTS 2100	Wax	23. 5			
	Non	22. 5			

Antenna	Band	Full Power Level (PRB dBm)	Reduced power Level (dBm)		
3# Wifi Antenna	WIFI Head Sar	17	15		

Antenna	Trigger Position	Trigger Distance(mm)
4.0	Rear	15
1# Main Antenna	Bottom	15
main antenna	Front	10

According to the above description, this device was tested by the manufacturer to determine the SAR sensor triggering distances for the rear and bottom edge of the device. The measured power state within ± 5 mm of the triggering points (or until touching the phantom) is included for rear and each applicable edge.

To ensure all production units are compliant it is necessary to test SAR at a distance 1mm less than the smallest distance from the device and SAR phantom with the device at maximum output power without power reduction.

We tested the power and got the different proximity sensor triggering distances for rear and bottom edge. But the manufacturer has declared 15mm is the most conservative

triggering distance for main antenna. So base on the most conservative triggering distance of 15mm, additional SAR measurements were required at 14mm from the highest SAR position between rear and bottom edge of main antenna.

Rear

Moving device toward the phantom:

	The power state												
Distance [mm] 21 20 19 18 17 16 15 14 13 12 11										11			
Main antenna	Normal	Normal	Normal	Normal	Normal	Normal	Low	Low	Low	Low	Low		

Moving device away from the phantom:

	The power state												
Distance [mm]	11 12 13 14 15 16 17 18 19 20 21												
Main antenna	+ + + + + + + + + + + + + + + + +												

Bottom Edge

Moving device toward the phantom:

	The power state													
Distance [mm]	_													
Main antenna	Main antenna Normal Normal Normal Normal Normal Normal Low Low Low Low													

Moving device away from the phantom:

	The power state												
Distance [mm]	11 12 13 14 15 16 17 18 19 20 21												
Main antenna	Low	Low	Low	Low	Low	Normal	Normal	Normal	Normal	Normal	Normal		

The influence of table tilt angles to proximity sensor triggering is determined by positioning each edge that contains a transmitting antenna, perpendicular to the flat phantom, at the smallest sensor triggering test distance by rotating the device around the edge next to the

phantom in \leq 10° increments until the tablet is ±45° or more from the vertical position at 0°.

The rear evaluation for main antenna

The bottom edge evaluation for main antenna

Based on the above evaluation, we come to the conclusion that the sensor triggering is not released and normal maximum output power is not restored within the $\pm 45^{\circ}$ range at the smallest sensor triggering test distance declared by manufacturer.

ANNEX J SPOT CHECK

J.1 Dielectric Performance and System Validation

Table J.1-1: Targets for tissue simulating liquid

Frequency(MHz)	Liquid Type	Conductivity (σ)	± 5% Range	Permittivity(ε)	± 5% Range
1900	Body	1.52	1.44~1.60	53.3	50.6~56.0
2450	Head	1.80	1.71~1.89	39.2	37.2~41.2

Table J.1-2: Dielectric Performance of Tissue Simulating Liquid

Measurement Date (yyyy-mm-dd)	Туре	Frequency	Permittivit y ε	Drift (%)	Conductivit y σ (S/m)	Drift (%)
2019-7-13	Body	1900 MHz	54.1	1.50	1.525	0.33
2019-7-13	Head	2450 MHz	39.25	0.13	1.767	-1.83

Table J.1-3: System Validation of Head

Measurement		Target value (W/kg)		Measured	value(W/kg)	Deviation		
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g	
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average	
2019-7-13	2450 MHz	24.2	51.7	25	51.28	1.21%	-1.76%	

Table J.1-4: System Verification of Body

Measurement		Target value (W/kg)		Measured v	value (W/kg)	Deviation	
Date	Frequency	10 g	1 g	10 g	1 g	10 g	1 g
(yyyy-mm-dd)		Average	Average	Average	Average	Average	Average
2019-7-13	1900 MHz	21.4	40.4	21.28	39.68	-0.56%	-1.78%

J.2 SAR test result for spot check

Table J.2-1: Spot Check of Head

Test Band	Channel	Frequency	Figure	Test Position	Tune-Up	Measured Power	Measured 10g SAR	Reported 10g SAR	Measured 1g SAR	Reported 1g SAR	Power Drift
WLAN2450	11	2462	Fig J.2	Left Check	16	15.94	0.281	0.28	0.526	0.53	-0.09

Table J.2-2: Spot Check of Body

Test Band	Channel	Frequency	Figure	Test Position	Tune-Up	Measured Power	Measured 10g SAR	Reported 10g SAR	Measured 1g SAR	Reported 1g SAR	Power Drift
PCS1900	661	1880	Fig J.1	Bottom Edge	25.5	24.49	0.263	0.33	0.423	0.53	-0.05

Note1: The distance between the EUT and the phantom bottom is 10mm.

J.3 Reported SAR Comparison

Table 3.1-1: Highest Reported SAR (1g)

Exposure Configuration	Technology Band	Highest Reported SAR 1g(W/kg) original	Highest Reported SAR 1g(W/kg) spot check	Equipment Class
	GSM 850	0.14	/	
Head	PCS 1900	0.10	/	
(Separation	UMTS FDD	0.15	/	PCE
Distance	LTE Band 5	0.11	/	FUE
	LTE Band 7	0.24	/	
0mm)	LTE Band 41	0.18	/	
	WLAN 2.4	0.25	0.53	DTS
	GSM 850	0.33	/	
Hotspot	PCS 1900	0.66	0.53	
(Separation	UMTS FDD	0.27	/	PCE
Distance	LTE Band 5	0.16	/	I OL
	LTE Band 7	0.43	/	
10mm)	LTE Band 41	0.23	/	
	WLAN 2.4	0.09	/	DTS

Note: The spot check results marked blue are larger than the original result.

J.4 MAIN TEST INSTRUMENTS

Table J.4-1: List of Main Instruments

No.	Name	Туре	Serial Number	Calibration Date	Valid Period
01	Network analyzer	E5071C	MY46110673	January 24, 2019	One year
02	Power meter	NRVD	102083	October 24, 2019	One year
03	Power sensor	NRV-Z5	100542	October 24, 2018	One year
04	Signal Generator	E4438C	MY49070393	January 4, 2019	One Year
05	Amplifier	60S1G4	0331848	No Calibration Requested	
06	BTS	E5515C	MY50263375	January 17, 2019	One year
07	BTS	CMW500	159890	January 3, 2019	One year
08	E-field Probe	SPEAG EX3DV4	7514	August 27, 2018	One year
09	DAE	SPEAG DAE4	1525	September 18, 2018	One year
10	Dipole Validation Kit	SPEAG D1900V2	5d101	July 24, 2018	One year
11	Dipole Validation Kit	SPEAG D2450V2	853	July 24, 2018	One year

^{***}END OF REPORT BODY***

J.5 GRAPH RESULTS

PCS1900_CH661 Bottom Edge

Date: 7/13/2017

Electronics: DAE4 Sn1525 Medium: body 1900 MHz

Medium parameters used: f = 1880; $\sigma = 1.506$ mho/m; $\epsilon r = 54.12$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: PCS1900 1880 Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(7.53,7.53,7.53)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.603 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 16.36 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.66 W/kg

SAR(1 g) = 0.423 W/kg; SAR(10 g) = 0.263 W/kg

Maximum value of SAR (measured) = 0.532 W/kg

Fig J.1

WLAN2450_CH11 Left Cheek

Date: 7/13/2017

Electronics: DAE4 Sn1525 Medium: head 2450 MHz

Medium parameters used: f = 2462; $\sigma = 1.778$ mho/m; $\epsilon r = 39.24$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C, Liquid Temperature: 22.3°C Communication System: WLAN2450 2462 Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(6.95,6.95,6.95)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.853 W/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.085 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.526 W/kg; SAR(10 g) = 0.281 W/kg

Maximum value of SAR (measured) = 0.804 W/kg

Fig J.2

J.6 ANNEX SYSTEM VALIDATION RESULTS

2450 MHz

Date: 2019-7-13

Electronics: DAE4 Sn1525 Medium: Head 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.385$ mho/m; $\epsilon_r = 39.78$; $\rho = 1000$

 kg/m^3

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 2450 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(6.95,6.95,6.95)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Reference Value = 112.6 V/m; Power Drift = 0.04

Fast SAR: SAR(1 g) = 12.87 W/kg; SAR(10 g) = 6.1 W/kg

Maximum value of SAR (interpolated) = 21.08 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value =112.6 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 26.22 W/kg

SAR(1 g) = 12.82 W/kg; SAR(10 g) = 6.25 W/kg

Maximum value of SAR (measured) = 21.57 W/kg

0 dB = 21.57 W/kg = 13.34 dB W/kg

Fig.J.1 validation 2450 MHz 250mW

1900 MHz

Date: 2019-7-13

Electronics: DAE4 Sn1525 Medium: Body 1900 MHz

Medium parameters used: f = 1900 MHz; $\sigma = 1.525$ mho/m; $\varepsilon_r = 54.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.5°C Liquid Temperature: 22.3°C

Communication System: CW Frequency: 1900 MHz Duty Cycle: 1:1

Probe: EX3DV4 – SN7514 ConvF(7.53,7.53,7.53)

System Validation /Area Scan (81x191x1): Interpolated grid: dx=1.000 mm,

dy=1.000 mm

Reference Value = 104 V/m; Power Drift = 0.05

Fast SAR: SAR(1 g) = 10.05 W/kg; SAR(10 g) = 5.45 W/kg

Maximum value of SAR (interpolated) = 16.92 W/kg

System Validation /Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 104 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 17.39 W/kg

SAR(1 g) = 9.92 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 14.57 W/kg

0 dB = 14.57 W/kg = 11.63 dB W/kg

Fig.J.2 validation 1900 MHz 250mW

The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification

Date	Band	Position	Area scan (1g)	Zoom scan (1g)	Drift (%)
2019-7-13	2450	Body	12.87	12.82	0.39
2019-7-13	1900	Head	10.05	9.92	1.31

ANNEX K Accreditation Certificate

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 600118-0

Telecommunication Technology Labs, CAICT

Beijing China

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Electromagnetic Compatibility & Telecommunications

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2018-09-28 through 2019-09-30

Effective Dates

For the National Voluntary Laboratory Accreditation Program