Question: 1

$$\mathbf{Y} + \mathbf{X'Z} + \mathbf{XY'} = \mathbf{X} + \mathbf{Y} + \mathbf{Z}$$

$$= Y + X\overline{Y} + \overline{X}Z$$

$$= (Y + X)(Y + \overline{Y}) + \overline{X}Z$$

$$= Y + X + \overline{X}Z$$

$$= Y + (X + \overline{X})(X + Z)$$

$$= X + Y + Z$$

Question: 2

(a) Use gates to implement following logic. (You have to show circuit diagram using symbolic representation of logic gates.) $X=A\overline{CD}+\overline{EF}+\overline{AF}$

(b) SOL:

■ Implement $F = X\overline{Y}Z + Y\overline{Z}$ with a 4:1 MUX

Question: 3

Draw 4-to-16 Decoder using 3-to-8 Decoder

Sol 2:

4-to-16 Decoder using two 74LS139, 3-to-8 Decoder

Question: 4

•	Exc	tation	Pable:			
	Present	State	Inpui	Nexi	State	PupPlop
-	A(t)	B(t)	x		B(t+1)	DA DB
	0	0	0	0	.0	0 0
	0	0	M	1	0	01.0
	0		0	0	1	0 1
9	0	.1	1	(1	1 11
-	1	0.	0	1	0	1 0
	1	0	1	0	2-11	(0, 1)
	1	81	0.	1	14	1 11
	1	1	1	0	(0	0 0
	- O#					
1	Ala	01	11 10	A	.00 01	11 10
	0	11	4	0		114 11
	1 1		0/1	1	1	111
				0	Nas will	2007
	DA = A	$\alpha + A$	(';	DB=	AB+R	bx'+ AB'x

Question #5

Convert the following binary numbers to decimal:

- (a) 10101001.11 = 169.75
- (b) 11010010 = 210
- (c) 1000101.101 = 69.625

Convert following decimal numbers to binary:

- (a) 243 = 11110011
- (b) 7685 = 1111000000101
- (c) 451 = 111000011

Convert:

(a) 6532 to octal = 14604(b) 865 to hex = 361

Question: 6

STEP 1:

Label the inputs as X, Y, Z. X is the MSB, Z is the LSB <u>OUTPUT is F is:</u>

1 when input is 101, 110, 111

0 when otherwise

Step 2 (Formulation)

Obtain Truth table

X	Y	Z	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Boolean Expression: F = XY'Z + XYZ' + XYZ

Step 3 (Optimization)

$$F = XY'Z + XYZ' + XYZ$$

$$= XZ + XY$$

Circuit Diagram

Question: 7

(a) SOL:

 35_{10} is positive. In 8-bit two's complement format, $35_{10} = 00100011_2$.

 -72_{10} is negative. In 8-bit two's complement format, $+72_{10} = 01001000_2$; flip the bits and add 1 to get two's complement of a negative number.

$$-72_{10} = 10110111_2 + 00000001_2 = 10111000_2.$$

Add 35_{10} and -72_{10} together in two's complement format:

 $00100011_2 + 10111000_2 = 11011011_2.$

Convert to decimal: 11011011₂ in two's complement is a negative number, so flip the bits and add 1 to find its magnitude.

$$00100100_2 + 00000001_2 = 00100101_2 = 32_{10} + 4_{10} + 1_{10} = 37_{10}$$

The solution is -37_{10} .

$$35_{10} - 72_{10} = 11011011_2 = -37_{10}$$

(b) SOL:

 65_{10} is positive, so in one's complement, $65_{10} = 01000001_2$.

 -25_{10} is negative; $+25_{10}=00011001_2$, so -25_{10} in one's complement format flips the bits of $+25_{10}$.

 $-25_{10} = 11100110_2.$

 $65_{10} - 25_{10} = 01000001_2 + 11100110_2 = 00100111_2 + 1$ carry bit.

One's complement uses an end-around carry if the carry bit is 1, which means add 1 to the sum:

$$65_{10} - 25_{10} = 00100111_2 + 00000001_2 = 00101000_2$$

Convert to decimal to check your answer:

$$65_{10} - 25_{10} = 00101000_2 = 32_{10} + 8_{10} = 40_{10}$$
$$65_{10} - 25_{10} = 00101000_2 = 40_{10}$$

Question: 8

