Border Gateway Protocol – Part 2

Kameswari Chebrolu

Summary of Framework

- Border gateway routers employ eBGP to exchange IP prefix information
 - Underlying route determination (which next hop AS to take) is based on path vector
 - An AS need not export all the IP prefixes it has learnt (to be covered under exporting routes)
 - When there are multiple routes to a given destination, policy takes precedence over optimality (to be covered under importing routes)

Summary of Framework

- Learned information via <u>eBGP</u> is injected within AS via iBGP sessions
 - Border gateway routers form a mesh of iBGP sessions with all routers within AS
- A forwarding table at a router is dictated by both the IGP and EGP protocols

Exporting Routes

- Route advertisement B → A, for a destination prefix P means B will forward packets sent via
 A to any destination in P
- Transit Customer Routes
 - Export to all: More traffic for customers fatter pipes customers will need -> more revenue fatter

Exporting Routes

Transit Provider Routes

peer will make use of ur provider through u

Export to customers but not to peers

Peer Routes

- Export to customers but not to peers or provider.

U only want ur customer traffic to go through ur ISP

Importing Routes

• Router hears many possible routes to a given destination. Which routes to install?

- Customer > Peer > Provider
 - Customer because you want better performance for them
 - Peer over provider since for provider you have to pay money

Routing

Set 1P Prefix

- Path vector routing

 [P ASI AS4 AS2]

 [P ASI AS4 AS2]

 [P ASI AS4 AS2]

 [P ASI AS4 AS2]

 [P ASI AS4 AS2]
- Advertise complete paths: List of ASs to reach a particular network
 - Each AS is assigned a unique number (16-bit) by a central authority
 - Prevents routing loops
 - Permits policy based routing

Integrating Intra and Inter Domain Routing

	Prefix	BGP Next HOP	Router	IGP Path	7.5.0.0/16 16.12.3.0/24	To/from other ASs 20.0.0.0/8	
	7.5.0.0/16	A	A	A	To/from other ASs	20.0.0.0/8	
1	6.12.3.0/24	Á	Ċ	D, ~	TX TOP	Whicas	
	20.0.0.0/8	C,	D	D			
1	7.19.0.0/16	F 🗸	E	Е	A		
	BGP Table for the AS		F	Е	E		
	Prefix	x Next Ho	p IGP Table	IGP Table for Router B			
	7.5.0.0/	/1 <i>C</i>		F			
	7.5.0.0/		Forwardir	Forwarding table at Router B	17.19.0.0/16		
	16.12.3.0		_			To/from other ASs	
	20.0.0.0)/8 \(\square \)					
	17.19.0.0)/16 E					

Inter vs Intra Domain Routing

• Policy:

- ISPs want control over how their traffic is routed and who routes through their network.
- Within an AS, no policy decisions needed

• Performance:

- In interdomain, policy dominates performance
- In intradomain, one can focus on performance

Inter vs Intra Domain Routing

• Scale:

- Handled via imposing additional hierarchy (via inter and intra domain routing)
- EGP complexity order of the number of ASs
- IGP complexity is of the order of number of networks in a single AS.

Summary

- Internet architecture is complex with different relations between ISPs → complicates routing
- Complexity handled via inter and intra domain routing
- Policy is an important component of interdomain routing
- BGP is a protocol common across ASs that handles interdomain routing via eBGP and iBGP sessions
 - Exporting and importing routes based on policy
 - Saw how intra and inter domain routing work together to build forwarding tables