Master Informatique - M1 - UE Complexité Chapitre 4 : Cadre formel

Philippe Jégou

Laboratoire d'Informatique et Systèmes - LIS - UMR CNRS 7020

Équipe COALA - COntraintes, ALgorithmes et Applications

(Algorithmique et Complexité de l'Intelligence Artificielle)

Campus de Saint-Jérôme

Département Informatique et Interactions

Faculté des Sciences

Université d'Aix-Marseille

philippe.jegou@univ-amu.fr

21 septembre 2022

Ce qui a été vu

Problèmes de décision :

si un problème de décision est "difficile", alors les problèmes qui en découlent (recherche, optimisation, etc.) le sont

⇒ on commence par l'étude des problèmes de décision

Ce qui a été vu

Problèmes de décision :

si un problème de décision est "difficile", alors les problèmes qui en découlent (recherche, optimisation, etc.) le sont

- ⇒ on commence par l'étude des problèmes de décision
- Difficulté (i.e. complexité) d'un problème : complexité du meilleur algorithme de résolution

Ce qui a été vu

Problèmes de décision :

si un problème de décision est "difficile", alors les problèmes qui en découlent (recherche, optimisation, etc.) le sont

- ⇒ on commence par l'étude des problèmes de décision
- Difficulté (i.e. complexité) d'un problème : complexité du meilleur algorithme de résolution
- Complexité d'un algortihme :

fonction de la taille de la donnée en entrée

Ce qui a été vu

Problèmes de décision :

si un problème de décision est "difficile", alors les problèmes qui en découlent (recherche, optimisation, etc.) le sont

- ⇒ on commence par l'étude des problèmes de décision
- Difficulté (i.e. complexité) d'un problème : complexité du meilleur algorithme de résolution
- Complexité d'un algortihme :

fonction de la taille de la donnée en entrée

• Taille d'une donnée :

liée à son codage

- Proposition d'un "système" de codage :
 - raisonnable

- Proposition d'un "système" de codage :
 - raisonnable
 - permettant de coder tout type de données : des nombres, des noms, des graphes, des bases de données, etc.

- Proposition d'un "système" de codage :
 - raisonnable
 - permettant de coder tout type de données : des nombres, des noms, des graphes, des bases de données, etc.
 - dont la taille des objets codés sera précisément connue :
 - toute donnée sera représentée par un mot au sens des langages formels
 - taille d'une donnée en entree : longueur du mot la codant

- Proposition d'un "système" de codage :
 - raisonnable
 - permettant de coder tout type de données : des nombres, des noms, des graphes, des bases de données, etc.
 - dont la taille des objets codés sera précisément connue :
 - toute donnée sera représentée par un mot au sens des langages formels
 - taille d'une donnée en entree : longueur du mot la codant
- Résolution d'un problème de décision :
 - équivaut à un problème de reconnaissance de langage (formel)
 - question à traiter : est-ce qu'un mot appartient à un langage ?

Ce qui va être vu :

Proposition d'un "système" de codage :

- raisonnable
- permettant de coder tout type de données : des nombres, des noms, des graphes, des bases de données, etc.
- dont la taille des objets codés sera précisément connue :
 - toute donnée sera représentée par un mot au sens des langages formels
 - taille d'une donnée en entree : longueur du mot la codant

Résolution d'un problème de décision :

- équivaut à un problème de reconnaissance de langage (formel)
- question à traiter : est-ce qu'un mot appartient à un langage ?

Temps de calcul connu sans ambiguïté :

nombre de transitions nécessaires par la "machine" utilisée : automate fini, machine de Turing, etc.

Plan

1 Problèmes de décision : partition de l'ensemble des instances

2 Codage des instances : c'est facile avec des mots

3 Problèmes de décision : résolution par reconnaissance de langages

Plan

1 Problèmes de décision : partition de l'ensemble des instances

Codage des instances : c'est facile avec des mots

Problèmes de décision : résolution par reconnaissance de langages

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée: Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée: Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe G'=(S',A') isomorphe à G_2 si

G'=(S',A') sous-graphe de G_1 avec $S'\subseteq S_1$ et $A'\subseteq A_1$, tels que :

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée: Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe G'=(S',A') isomorphe à G_2 si

G'=(S',A') sous-graphe de G_1 avec $S'\subseteq S_1$ et $A'\subseteq A_1$, tels que :

• $|S'| = |S_2|$ et $|A'| = |A_2|$, et

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée: Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe G'=(S',A') isomorphe à G_2 si G'=(S',A') sous-graphe de G_1 avec $S'\subseteq S_1$ et $A'\subseteq A_1$, tels que :

- $|S'| = |S_2|$ et $|A'| = |A_2|$, et
- \exists une bijection $\phi: S_2 \to S'$ vérifiant $\{x,y\} \in A_2 \Leftrightarrow \{\phi(x),\phi(y)\} \in A'$

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée: Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe G'=(S',A') isomorphe à G_2 si G'=(S',A') sous-graphe de G_1 avec $S'\subseteq S_1$ et $A'\subseteq A_1$, tels que :

- $|S'| = |S_2|$ et $|A'| = |A_2|$, et
- \exists une bijection $\phi: S_2 \to S'$ vérifiant $\{x,y\} \in A_2 \Leftrightarrow \{\phi(x),\phi(y)\} \in A'$

Intérêt pratique : Est-ce que la "forme" représentée par G_2 se trouve dans G_1 ? (applications pour la recherche de motifs structurels).

Le problème de l'isomorphisme de sous-graphe

ISO-SOUS-GRAPHE

Donnée : Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe G'=(S',A') isomorphe à G_2 si G'=(S',A') sous-graphe de G_1 avec $S'\subseteq S_1$ et $A'\subseteq A_1$, tels que :

- $|S'| = |S_2|$ et $|A'| = |A_2|$, et
- \exists une bijection $\phi: S_2 \to S'$ vérifiant $\{x,y\} \in A_2 \Leftrightarrow \{\phi(x),\phi(y)\} \in A'$

Intérêt pratique : Est-ce que la "forme" représentée par G_2 se trouve dans G_1 ? (applications pour la recherche de motifs structurels).

Exemple d'instance du problème ISO-SOUS-GRAPHE : un couple (G_1, G_2)

La réponse à la question du problème de décision ici est...

Le problème de l'isomorphismes de sous-graphe

ISO-SOUS-GRAPHE

Donnée : Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe isomorphe à G_2 si $\exists S' \subseteq S_1$ et $\exists A' \subseteq A_1$ tels que :

- $|S'| = |S_2|$ et $|A'| = |A_2|$, et
- \exists une bijection $\phi: S_2 \to S'$ vérifiant $\{x,y\} \in A_2 \Leftrightarrow \{\phi(x),\phi(y)\} \in A'$

Exemple d'instance du problème ISO-SOUS-GRAPHE : un couple (G_1, G_2)

La réponse à la question du problème de décision ici est OUI

$$S' = \{a, d, e, f\}$$
 et $A' = \{\{a, d\}, \{d, e\}, \{d, f\}, \{e, f\}\}$
et la bijection ϕ est $\phi(1) = a, \phi(2) = e, \phi(3) = d, \phi(4) = f$

Le problème de l'isomorphismes de sous-graphe

ISO-SOUS-GRAPHE

Donnée : Deux graphes non-orientés $G_1 = (S_1, A_1)$ et $G_2 = (S_2, A_2)$

Question: G_1 contient-il un sous-graphe isomorphe à G_2 ?

 G_1 contient un sous-graphe isomorphe à G_2 si $\exists S' \subseteq S_1$ et $\exists A' \subseteq A_1$ tels que :

- $|S'| = |S_2|$ et $|A'| = |A_2|$, et
- \exists une bijection $\phi: S_2 \to S'$ vérifiant $\{x,y\} \in A_2 \Leftrightarrow \{\phi(x),\phi(y)\} \in A'$

Exemple d'instance du problème ISO-SOUS-GRAPHE : un couple (G_1, G_2)

Si la question est posée avec un autre graphe G_2 qui est un graphe complet à 5 sommets :

La réponse à la question du problème de décision ici est NON

L'ensemble des instances du problème ISO-SOUS-GRAPHE peut se partitionner en

- 1 sous-ensemble des instances positives : la réponse à la question du problème de décision pour ces instances est OUI
- 1 sous-ensemble des instances négatives : la réponse à la question du problème de décision pour ces instances est NON

L'ensemble des instances du problème ISO-SOUS-GRAPHE peut se partitionner en

- 1 sous-ensemble des instances positives : la réponse à la question du problème de décision pour ces instances est OUI
- 1 sous-ensemble des instances négatives : la réponse à la question du problème de décision pour ces instances est NON

Plus généralement, pour tout problème de décision π on a :

- ullet D_{π} : l'ensemble des instances du problème π
- qui contient deux sous-ensembles disjoints :
 - ullet V_{π} : l'ensemble des instances positives du problème π $(V_{\pi}\subseteq D_{\pi})$
 - $D_{\pi} \setminus V_{\pi}$: l'ensemble des instances négatives du problème π

L'ensemble des instances du problème ISO-SOUS-GRAPHE peut se partitionner en

- 1 sous-ensemble des instances positives : la réponse à la question du problème de décision pour ces instances est OUI
- 1 sous-ensemble des instances négatives : la réponse à la question du problème de décision pour ces instances est NON

Plus généralement, pour tout problème de décision π on a :

- D_{π} : l'ensemble des instances du problème π qui contient deux sous-ensembles disjoints :
 - ullet V_{π} : l'ensemble des instances positives du problème π $(V_{\pi}\subseteq D_{\pi})$
 - ullet $D_{\pi} \setminus V_{\pi}$: l'ensemble des instances négatives du problème π

Conséquence : résoudre un problème de décision π , étant donnée une instance $I \in D_{\pi}$ consiste à savoir :

- ullet si $I\in V_\pi$ (instance positive : la réponse à la question est oui)
- ullet si $I\in D_\piackslash V_\pi$ (instance négative : la réponse à la question est non)