## Chapitre III

Test du rapport de vraisemblance pour des lois classiques

└ Test sur le paramètre d'une Bernouilli

## Plan

- 1 Test sur le paramètre d'une Bernouilli
- 2 Test du rapport de vraisemblance pour les échantillons gaussiens
- 3 Cas des échantillons non gaussiens mais de grande taille

## Test unilatéral à gauche

On considère  $X_1, \ldots, X_n$  i.i.d. de loi  $\mathcal{B}(\theta)$ . On souhaite tester

 $H_0: \theta = \theta_0$  contre  $H_1: \theta = \theta_1$  avec  $\theta_1 < \theta_0$  fixé,

ou bien

 $H_0: \theta \geq \theta_0$  contre  $H_1: \theta < \theta_0$ 

## Statistique de test

 $S_n = \sum_{i=1}^n X_i$  (nombre de succès) ou bien  $\overline{X}_n = \frac{S_n}{n}$  (fréquence des succès).

## Région de rejet

$$\mathcal{R} = \{S_n \leq k_\alpha\} = \{\overline{X}_n \leq c_\alpha\} \text{ avec } \mathbb{P}_{\theta_0}(\mathcal{R}) \leq \alpha$$

## Exemple

Une entreprise de cours particuliers prétend que les étudiants qu'elle suit ont un taux de réussite au BAC de plus de 80%. Une enquête auprès d'un échantillon aléatoire de 100 élèves montre que 75% d'entre eux ont eu le BAC. Soit

$$X_i = \begin{cases} 1 \text{ si le } i\text{-\`eme \'etudiant r\'eussit son bac} \\ 0 \text{ sinon.} \end{cases}$$

Si on doute d'un tel taux de succès on teste :

$$\begin{cases} H_0: p \ge 0.8 \\ H_1: p < 0.8. \end{cases}$$

On a  $X_i \rightsquigarrow \mathcal{B}(p)$  et la statistique de test

$$S_{100} = \sum_{i=1}^{100} X_i \rightsquigarrow \mathcal{B}(100, p)$$

## Test unilatéral à droite

On considère  $X_1, \ldots, X_n$  i.i.d. de loi  $\mathcal{B}(\theta)$ . On souhaite tester

 $H_0: \theta = \theta_0$  contre  $H_1: \theta = \theta_1$  avec  $\theta_1 > \theta_0$  fixé,

ou bien

 $H_0: \theta \leq \theta_0$  contre  $H_1: \theta > \theta_0$ 

### Statistique de test

 $S_n = \sum_{i=1}^n X_i$  (nombre de succès) ou bien  $\overline{X}_n = \frac{S_n}{n}$  (fréquence empirique des succès).

## Région de rejet

$$\mathcal{R} = \{S_n \geq k_\alpha\} = \{\overline{X}_n \geq c_\alpha\} \text{ avec } \mathbb{P}_{\theta_0}(\mathcal{R}) \leq \alpha$$

## Test bilatéral : $H_0$ : $\theta = \theta_0$ contre $H_1$ : $\theta \neq \theta_0$ avec $\theta_0$ fixé

On considère  $X_1, \ldots, X_n$  i.i.d. de loi  $\mathcal{B}(\theta)$ .

On souhaite tester

$$H_0: \theta = \theta_0$$
 contre  $H_1: \theta \neq \theta_0$  avec  $\theta_0$  fixé

## Statistique de test

 $S_n = \sum_{i=1}^n X_i$  (nombre de succès) ou bien  $\overline{X}_n = \frac{S_n}{n}$  (fréquence empirique des succès).

## Région de rejet

$$\mathcal{R}=\{\overline{X}_n\leq c_lpha \ ext{ou} \ \overline{X}_n\geq c_lpha'\} \ ext{avec} \ \mathbb{P}_{ heta_0}(\overline{X}_n\leq c_lpha)\leq rac{lpha}{2} \ ext{et} \ \mathbb{P}_{ heta_0}(\overline{X}_n\geq c_lpha')\geq rac{lpha}{2}$$

## Résumé : Tests pour une proportion.

Soient  $X_1, \ldots, X_n$  i.i.d.  $\mathcal{B}(\theta)$  avec  $\theta_0$  connu. On a

$$S_n = \sum_{i=1}^n X_i \leadsto \mathcal{B}(n, heta_0)$$
 sous  $\mathbb{P}_{ heta_0}$ 

| $H_0$                  | $H_1$                  | Région de rejet                                            |
|------------------------|------------------------|------------------------------------------------------------|
| $\theta \le \theta_0$  | $\theta > \theta_0$    | $\{S_n \geq k_{\alpha}\}$                                  |
| $\theta \geq \theta_0$ | $\theta < \theta_0$    | $\{S_n \leq k_\alpha\}$                                    |
| $\theta = \theta_0$    | $\theta \neq \theta_0$ | $\{S_n \leq k_{\alpha} \text{ ou } S_n \geq k_{\alpha}'\}$ |

## Résumé : Tests asymptotiques pour une proportion.

Soient  $X_1, \ldots, X_n$  i.i.d.  $\mathcal{B}(\theta)$  avec  $\theta_0$  connu. Si  $\theta = \theta_0$  et n assez grand, on a

$$Z = \sqrt{n} rac{\overline{X}_n - heta_0}{\sqrt{ heta_0(1 - heta_0)}} pprox \mathcal{N}(0, 1)$$

| $H_0$                  | H <sub>1</sub>         | Région de rejet : $\mathcal{R}$         |
|------------------------|------------------------|-----------------------------------------|
| $\theta \leq \theta_0$ | $\theta > \theta_0$    | $\{Z \geq z_{1-\alpha}\}$               |
| $\theta \geq \theta_0$ | $\theta < \theta_0$    | $\{Z \leq -z_{1-\alpha}\}$              |
| $\theta = \theta_0$    | $\theta \neq \theta_0$ | $\left\{ Z \geq z_{1-\alpha/2}\right\}$ |

Approximation valable dès que  $n \geq 30$ ,  $n\theta_0 \geq 5$  et  $n(1-\theta_0) \geq 5$ 

Test du rapport de vraisemblance pour les échantillons gaussiens

## Plan

- 1 Test sur le paramètre d'une Bernouilli
- 2 Test du rapport de vraisemblance pour les échantillons gaussiens
- 3 Cas des échantillons non gaussiens mais de grande taille

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance connue

## Test sur la moyenne à variance connue

**Contexte**: On considère  $x_1, \ldots, x_n$  des réalisations de v.a. i.i.d  $X_1, \ldots, X_n$  avec  $X_1 \rightsquigarrow \mathcal{N}(m, \sigma^2)$  avec m inconnu et  $\sigma^2$  connue. (correspond à  $\theta = m$  et  $\Theta = \mathbb{R}$ ) Soit  $m_0$  une valeur donnée, on souhaite tester

$$H_0: m = m_0$$
 contre  $H_1: m = m_1$  avec  $m_1 > m_0$ 

$$V(X_1,...,X_n) = e^{\frac{n}{2\sigma^2}(m_0^2 - m_1^2 + 2(m_1 - m_0)\overline{X}_n)}$$

## Région de rejet

$$\mathcal{R} = \left\{ \overline{X}_n \ge m_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\} = \left\{ \sqrt{n} \frac{\overline{X}_n - m_0}{\sigma} \ge z_{1-\alpha} \right\}$$

où  $z_{1-\alpha}$  désigne le quantile d'ordre  $1-\alpha$  de  $\mathcal{N}(0,1)$ 

TURTURE E 9

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance connue

Test de  $H_0$ :  $m = m_0$  contre  $H_1$ :  $m = m_1$  avec  $m_1 < m_0$  fixés.

## Région de rejet

$$\mathcal{R} = \left\{ \overline{X}_n \le m_0 - \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\} = \left\{ \sqrt{n} \frac{\overline{X}_n - m_0}{\sigma} \le -z_{1-\alpha} \right\}$$

où  $z_{1-\alpha}$  désigne le quantile d'ordre  $1-\alpha$  de  $\mathcal{N}(0,1)$ 

### Règle de décision :

- Si  $\overline{X}_n(\omega) \leq m_0 \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$ , on rejette  $H_0$ .
- Si  $\overline{X}_n(\omega) > m_0 \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$ , on ne rejette pas  $H_0$ .

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance connue

## Test de $H_0$ : $m \ge m_0$ contre $H_1$ : $m < m_0$ avec $m_0$ fixé.

Sous  $H_1$ ,  $\overline{X}_n$  a une plus forte probabilité d'être petit, la zone de rejet est

$$\mathcal{R} = \{\overline{X}_n \le t_\alpha\}$$
 avec  $\sup_{m \le m_0} \mathbb{P}_m \left(\overline{X}_n \le t_\alpha\right) \le \alpha$ 

Comme  $m \mapsto \mathbb{P}_m(\overline{X}_n \leq t_\alpha)$  est décroissante, on obtient :

$$\sup_{m \leq m_0} \mathbb{P}_m \left( \overline{X}_n \leq t_\alpha \right) = \mathbb{P}_{m_0} \left( \overline{X}_n \leq t_\alpha \right)$$

D'où la zone de rejet suivante

## Région de rejet

$$\mathcal{R} = \left\{ \overline{X}_n \le m_0 - \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\} = \left\{ \sqrt{n} \frac{\overline{X}_n - m_0}{\sigma} \le -z_{1-\alpha} \right\}$$

où  $z_{1-\alpha}$  désigne le quantile d'ordre  $1-\alpha$  de  $\mathcal{N}(0,1)$ 

999

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance connue

## Test de $H_0$ : $m = m_0$ contre $H_1$ : $m \neq m_0$

La zone de rejet du test de niveau  $\alpha$  est donné par

$$\mathcal{R} = \left\{ \overline{X}_n \le m_0 - \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}} \right\} \cup \left\{ \overline{X}_n \ge m_0 + \frac{\sigma}{\sqrt{n}} z_{1 - \frac{\alpha}{2}} \right\} = \left\{ \sqrt{n} \left| \frac{\overline{X}_n - m_0}{\sigma} \right| \ge z_{1 - \alpha/2} \right\}$$

où  $z_{1-rac{lpha}{2}}$  désigne le quantile d'ordre  $1-rac{lpha}{2}$  de  $\mathcal{N}(0,1)$ 

### Remarque 6

Faire ce test revient à vérifier que  $m_0$  est dans l'intervalle de confiance de niveau  $1-\alpha$ ,

$$IC_{1-\alpha}(m) = \left[\overline{X}_n - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X}_n + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$$

Si  $m_0 \in IC_{1-\alpha}(m)$ , on rejette pas  $H_0$  et inversement.

Test du rapport de vraisemblance pour les échantillons gaussiens

Lest sur la moyenne à variance connue

## Résumé

Soient  $X_1, \ldots, X_n$  i.i.d.  $\mathcal{N}(m, \sigma^2)$  avec  $\sigma^2$  connu. Si  $m = m_0$ , on a

$$Z = \sqrt{n} \frac{\overline{X}_n - m_0}{\sigma} \rightsquigarrow \mathcal{N}(0, 1)$$

| $H_0$        | $H_1$        | Région de rejet : $\mathcal{R}$         |
|--------------|--------------|-----------------------------------------|
| $m \leq m_0$ | $m > m_0$    | $\{Z \geq z_{1-\alpha}\}$               |
| $m \geq m_0$ | $m < m_0$    | $\{Z \leq -z_{1-\alpha}\}$              |
| $m=m_0$      | $m \neq m_0$ | $\left\{ Z \geq z_{1-\alpha/2}\right\}$ |

Test sur la moyenne à variance connue

## Exemple 15

Dans une banque, les dépôts mensuels d'une certaine catégorie socio-professionnelle se répartissent autour de leur moyenne suivant des lois normales de même écart-type  $\sigma=64$  euros. On s'intéresse seulement aux dépôts dont la moyenne est  $m_0=200$  euros. Afin de choisir entre les hypothèses  $H_0: m=200$  contre  $H_1: m\neq 200$  on prélève un échantillon aléatoire de n=16 clients pour lesquels on observe un dépôt moyen de 190 euros. Effectuer un test de niveau  $\alpha=5\%$  pour prendre une décision.

La zone de rejet du test de niveau 5% est

$$\mathcal{R} = \left\{ \left| \overline{X}_{200} - 200 \right| \ge 31.36 \right\}.$$

Ce test n'est pas UPP!

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance connue

## Courbe de la puissance du test de l'exemple 15

#### Courbe de la puissance des deux tests de régions de rejet R et R1



Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la variance à moyenne connue

Contexte: On considère  $x_1, \ldots, x_n$  des réalisations de v.a. i.i.d  $X_1, \ldots, X_n$  avec  $X_1 \leadsto \mathcal{N}(m, \sigma^2)$  avec m connu et  $\sigma^2$  inconnue (correspond à  $\theta = \sigma^2$  et  $\Theta = \mathbb{R}_+$  ). Soient  $\sigma_0$  et  $\sigma_1$  des valeurs données, on souhaite tester

$$H_0: \sigma^2 = \sigma_0^2$$
 contre  $H_1: \sigma^2 = \sigma_1^2$  avec  $\sigma_1 < \sigma_0$ 

Le rapport de vraisemblance

$$V(X_1,\ldots,X_n) = \left(\frac{\sigma_0}{\sigma_1}\right)^n \exp\left(-\frac{1}{2}\left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_0^2}\right)\sum_{i=1}^n (X_i - m)^2\right)$$

On rejette  $H_0$  si

$$V(X_1,\ldots,X_n) \geq v_{\alpha} \iff V_n^2 \leq t_{\alpha} \text{ avec } V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2.$$

### Statistique de test

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$$

Test du rapport de vraisemblance pour les échantillons gaussiens

└ Test sur la variance à moyenne connue

Test de 
$$H_0$$
:  $\sigma^2 = \sigma_0^2$  contre  $H_1$ :  $\sigma^2 = \sigma_1^2$  avec  $\sigma_1 < \sigma_0$ 

## Région de rejet

$$\mathcal{R} = \{V(X_1, \dots, X_n) \ge v_{\alpha}\} = \left\{V_n^2 \le \frac{\sigma_0^2}{n} \chi_{n,\alpha}^2\right\} = \left\{\underbrace{\frac{nV_n^2}{\sigma_0^2}}_{K} \le \chi_{n,\alpha}^2\right\}$$

où  $\chi^2_{n,\alpha}$  désigne le quantile d'ordre  $\alpha$  de la loi du Khi-deux à n degrés de liberté.

Test du rapport de vraisemblance pour les échantillons gaussiens

└ Test sur la variance à moyenne connue

Test de  $H_0: \sigma^2 \geq \sigma_0^2$  contre  $H_1: \sigma^2 < \sigma_0^2$  avec  $\sigma_0^2$  connu.

## Statistique de test

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$$

On rejette  $H_0$  si

$$V(X_1,\ldots,X_n) \ge v_{\alpha} \iff V_n^2 \le t_{\alpha} \text{ avec } \sup_{\sigma^2 \ge \sigma_0^2} \mathbb{P}_{\sigma^2} \left( V_n^2 \le t_{\alpha} \right) \le \alpha$$

## Région de rejet

$$\mathcal{R} = \left\{ V_n^2 \leq \frac{\sigma_0^2}{n} \chi_{n,\alpha}^2 \right\} = \left\{ \frac{n V_n^2}{\sigma_0^2} \leq \chi_{n,\alpha}^2 \right\} \text{ où } \chi_{n,\alpha}^2 \text{ désigne le quantile d'ordre } \alpha \text{ de } \chi^2(n).$$

PARTIES E SO

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la variance à moyenne connue

# Test de $H_0: \sigma^2 = \sigma_0^2$ contre $H_1: \sigma^2 \neq \sigma_0^2$ avec $\sigma_0^2$ connuc

La zone de rejet du test de RV de niveau  $\alpha$  est donné par

## Zone de rejet

$$\mathcal{R} = \left\{ V_n^2 \le \frac{\sigma_0^2}{n} \chi_{n,\alpha/2}^2 \right\} \cup \left\{ V_n^2 \ge \frac{\sigma_0^2}{n} \chi_{n,1-\alpha/2}^2 \right\}$$

où  $\chi^2_{n\alpha}$  désigne le quantile d'ordre  $\alpha$  de  $\chi^2(n)$ .

## Remarque 7

Faire ce test revient à vérifier que  $\sigma_0^2$  est dans l'intervalle de confiance de niveau  $1-\alpha$ ,

$$IC_{1-\alpha}(\sigma^2) = \left[\frac{nV_n^2}{\chi_{n,1-\alpha/2}^2}, \frac{nV_n^2}{\chi_{n,\alpha/2}^2}\right]$$

Si  $\sigma_0^2 \in IC_{1-\alpha}(\sigma^2)$ , on ne rejette pas  $H_0$  et inversement.



Lest sur la variance à moyenne connue

## Résumé

Soient  $X_1, \ldots, X_n$  i.i.d.  $\mathcal{N}(m, \sigma^2)$  où m est connue. L'EMV de  $\sigma^2$  est donné par  $V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - m)^2$ .

Si 
$$\sigma^2 = \sigma_0^2$$
, on a  $K = \frac{nV_n^2}{\sigma_0^2} \rightsquigarrow \chi^2(n)$ .

| -                          | H <sub>1</sub>             | Region de rejet : $\mathcal{R}$                                                       |
|----------------------------|----------------------------|---------------------------------------------------------------------------------------|
| $\sigma^2 \leq \sigma_0^2$ | $\sigma^2 > \sigma_0^2$    | $\left\{ \mathcal{K} \geq \chi^2_{n;1-\alpha} \right\}$                               |
| $\sigma^2 \geq \sigma_0^2$ | $\sigma^2 < \sigma_0^2$    | $\left\{ \mathcal{K} \leq \chi^2_{n;\alpha} \right\}$                                 |
| $\sigma^2 = \sigma_0^2$    | $\sigma^2 \neq \sigma_0^2$ | $\left\{ K \leq \chi^2_{n,1-\alpha/2} \text{ ou } K \geq \chi^2_{n,\alpha/2}  ight\}$ |

Test sur la variance à moyenne connue

## Exemple 16

On étudie un procédé de fabrication pour lequel la variable de qualité X est la contenance d'un flacon (en cl) normalement distribuée qui doit avoir une espérance m de 100cl. A la suite d'erreurs survenant dans le processus de fabrication, on se demande si la variabilité de la contenance est  $\sigma^2 = 1$  ou  $\sigma^2 = 1/4$ . On prélève un échantillon de 10 flacons sur lesquels on observe  $\sum_{i=1}^{10} (X_i - 100)^2 = 3$ . Donner la règle de décision du test de niveau  $\alpha = 5\%$ .

On teste  $H_0: \sigma^2=1$  contre  $H_1: \sigma^2=1/4$ . La zone de rejet du test de niveau 5% est  $\mathcal{R}=\left\{V_{10}^2\leq \frac{1}{10}3.94\right\}$  Test sur la moyenne à variance inconnue

## Test sur la moyenne à variance inconnue

**Contexte**: On considère  $x_1, \ldots, x_n$  des réalisations de v.a. i.i.d  $X_1, \ldots, X_n$  avec  $X_1 \rightsquigarrow \mathcal{N}(m, \sigma^2)$  avec m inconnu et  $\sigma^2$  inconnue (correspond à  $\theta = m$  et  $\Theta = \mathbb{R}$ ). Soit  $m_0$  une valeur donnée, on souhaite tester

### Test unilatéral à droite

$$H_0: m = m_0$$
 contre  $H_1: m > m_0$ .

## Statistique de test :

$$T = \sqrt{n} \frac{\overline{X}_n - m_0}{S_n}$$

Sous  $H_0$ .

 $T \rightsquigarrow T_{n-1}$  où  $T_{n-1}$  suit la loi de Student à n-1 degrés de liberté.

Sous  $H_1$ ,

$$T = \sqrt{n} \frac{\overline{X}_n - m}{S_n} + \sqrt{n} \frac{m - m_0}{S_n}$$
 prend des valeurs plus grandes que sous  $H_0$ .



Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

Test de  $H_0$ :  $m = m_0$  contre  $H_1$ :  $m > m_0$ .

## Zone de rejet

La zone de rejet est

$$\mathcal{R} = \{ T \geq t_{n-1,1-\alpha} \},\,$$

où  $t_{n-1,1-\alpha}$  est le quantile d'ordre  $1-\alpha$  de la loi de Student à n-1 degrés de liberté.

## Règle de décision

- Si  $T(\omega) \in \mathcal{R}$ , on rejette  $H_0$
- Si  $T(\omega) \notin \mathcal{R}$ , on ne rejette pas  $H_0$ .

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

## Test de $H_0$ : $m \leq m_0$ contre $H_1$ : $m > m_0$

### Statistique de test :

$$T = \sqrt{n} \frac{\overline{X}_n - m_0}{S_n}$$

## Zone de rejet

La zone de rejet est

$$\mathcal{R} = \{ T \geq t_{n-1,1-\alpha} \},\,$$

où  $t_{n-1,1-\alpha}$  est le quantile d'ordre  $1-\alpha$  de la loi de Student à n-1 d.d.l.

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

## Test de $H_0$ : $m \ge m_0$ contre $H_1$ : $m < m_0$

## Statistique de test :

$$T = \sqrt{n} \frac{\overline{X}_n - m_0}{S_n}$$

## Zone de rejet

La zone de rejet est

$$\mathcal{R} = \{ T \leq -t_{n-1,1-\alpha} \},\,$$

où  $t_{n-1,1-\alpha}$  est le quantile d'ordre  $1-\alpha$  de la loi  $T_{n-1}$  à n-1 d.d.l.

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

## Test de $H_0$ : $m = m_0$ contre $H_1$ : $m \neq m_0$

## **Statistique de test**:

$$T = \sqrt{n} \frac{\overline{X}_n - m_0}{S_n}$$

## Zone de rejet

La zone de rejet est

$$\mathcal{R} = \{|T| \geq t_{n-1,1-\alpha/2}\},\,$$

où  $t_{n-1,1-\alpha/2}$  est le quantile d'ordre  $1-\alpha/2$  de la loi  $T_{n-1}$  à n-1 d.d.l.

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

## Résumé

Soient  $X_1, \ldots, X_n$  i.i.d.  $\mathcal{N}(m, \sigma^2)$  avec  $\sigma^2$  inconnue. Si  $m = m_0$  avec  $m_0$  connu, on a

$$T = \sqrt{n} \frac{\overline{X}_n - m_0}{S_n} \rightsquigarrow T_{n-1}$$

| - H <sub>0</sub> | $H_1$        | Région de rejet : ${\mathcal R}$             |
|------------------|--------------|----------------------------------------------|
| $m \leq m_0$     | $m > m_0$    | $\{T \geq t_{n-1;1-\alpha}\}$                |
| $m \geq m_0$     | $m < m_0$    | $\{T \leq -t_{n-1;1-\alpha}\}$               |
| $m=m_0$          | $m \neq m_0$ | $\left\{ T  \geq t_{n-1;1-\alpha/2}\right\}$ |

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la moyenne à variance inconnue

## Exemple 17

Le temps de sommeil par nuit en période de projet pour une promotion en 4ème année d'une école d'ingénieurs est supposé suivre une loi  $\mathcal{N}(m,\sigma^2)$  avec m et  $\sigma^2$  inconnu. On a interrogé 30 étudiants de la promotion pour lesquels, on a obtenu un temps moyen de sommeil de 6.36h et une variance estimée de  $s_n^2=1.85h^2$ . Les enseignants souhaitent savoir si l'espérance du temps de sommeil est significativement inférieure au temps moyen de sommeil des autres individus de la population, qui est de 7 heures.

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la variance à moyenne inconnue

**Contexte**: On considère  $x_1, \ldots, x_n$  des réalisations de v.a. i.i.d  $X_1, \ldots, X_n$  avec  $X_1 \rightsquigarrow \mathcal{N}(m, \sigma^2)$  avec m inconnue. Soit  $\sigma_0^2$  une valeur donnée, on souhaite tester

## Test unilatéral à gauche

$$H_0: \sigma^2 = \sigma_0^2$$
 contre  $H_1: \sigma^2 < \sigma_0^2$ .

### Statistique de test

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{n-1}{n} S_n^2$$

## Région de rejet

$$\mathcal{R} = \left\{ V_n^2 \le \frac{\sigma_0^2}{n} \chi_{n-1,\alpha}^2 \right\} = \left\{ \frac{nV_n^2}{\sigma_0^2} \le \chi_{n-1,\alpha}^2 \right\}$$

où  $\chi^2_{n,\alpha}$  désigne le quantile d'ordre  $\alpha$  de  $\chi^2(n-1)$ .

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la variance à moyenne inconnue

Test de  $H_0: \sigma^2 = \sigma_0^2$  contre  $H_1: \sigma^2 > \sigma_0^2$  avec  $\sigma_0^2$  connu.

## Statistique de test

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2 = \frac{n-1}{n} S_n^2$$

### Région de rejet

$$\mathcal{R} = \left\{ V_n^2 \ge \frac{\sigma_0^2}{n} \chi_{n-1, 1-\alpha}^2 \right\} = \left\{ \frac{n V_n^2}{\sigma_0^2} \ge \chi_{n-1, 1-\alpha}^2 \right\}$$

où  $\chi^2_{n-1,1-\alpha}$  désigne le quantile d'ordre  $1-\alpha$  de  $\chi^2(n-1)$ .

Test du rapport de vraisemblance pour les échantillons gaussiens

Test sur la variance à moyenne inconnue

## Exemple 18

Rappelons que 30 étudiants de 4 ème année avaient donné leur temps moyen de sommeil sur une nuit en période de projet et que nous avions obtenu  $\overline{x}_n = 6.36h$  et  $s_n^2 = 1.86h^2$ . Dans la population, l'écart-type vaut  $\sigma_0 = 1.2$  heure. Les enseignants voudraient savoir si la variabilité est plus forte au sein de la promotion de que dans le reste de la population.