

MINIMUM MEAN SQUARED ERROR ESTIMATOR

Why

What if the best estimator for a real-value random variable if we consider the squared loss.

Definition

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and $x : \Omega \to \mathbf{R}$ a random variable.

A minimum mean squared error estimator or MMSE estimator or least square estimator is a value $\xi \in \mathbf{R}$ which minimizes $\mathbf{E}(x-\xi)^2$.

Proposition 1. There is a unique MMSE estimator and it is given by $\mathbf{E}(x)$.

Vector Case

Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and $y : \Omega \to \mathbf{R}^n$ a random variable.¹

A minimum mean squared error estimator or MMSE estimator or least square estimator is a value $\xi \in \mathbf{R}$ which minimizes $\mathbf{E}|x-\xi|^2$.

Proposition 2. There is a unique MMSE estimator and it is given by E(y).

 $^{^{1}\}mathrm{Future}$ editions might collapse this into the previous case.

Case with observation

Let $x: \Omega \to \mathbb{R}^n$ and $y: \Omega \to \mathbb{R}^m$. A minimum mean squared error estimator or MMSE estimator or least square estimator for x given y is an estimator $f: \mathbb{R}^m \to \mathbb{R}^n$ which minimizes $\mathbb{E}|f(x)-y|^2$.

