Recherche de solution développable en série entières

Exercice 1 [01016] [Correction]

a) Déterminer les séries entières solutions au voisinage de 0 de l'équation différentielle

$$y'' + 2xy' + 2y = 0$$

b) Exprimer parmi celles-ci, celles dont la somme est une fonction paire.

Exercice 2 [00401] [Correction] Résoudre sur]-1,1[l'équation

$$4(1-t^2)y''(t) - 4ty'(t) + y(t) = 0$$

en recherchant les fonctions développables en série entière.

Exercice 3 [00404] [Correction]

a) Résoudre sur R l'équation

$$(1+t^2)y''(t) + 4ty'(t) + 2y(t) = 0$$

en recherchant les séries entières solutions.

b) Résoudre ensuite

$$(1+t^2)y''(t) + 4ty'(t) + 2y(t) = \frac{1}{1+t^2}$$

Exercice 4 [02528] [Correction]

a) Montrer qu'il existe une solution h de l'équation

$$xy'' + y' + y = 0$$

développable en série entière et vérifiant h(0) = 1.

b) Montrer que h ne s'annule qu'une fois sur]0,2[.

Corrections

Exercice 1 : [énoncé]

a) Analyse : Soit $\sum a_n x^n$ une série entière de rayon de convergence R>0 et de somme S.

La fonction S est solution sur $\left]-R,R\right[$ de l'équation différentielle Sur $\left]-R,R\right[$,

$$S''(x) + 2xS'(x) + 2S(x) = \sum_{n=0}^{+\infty} ((n+2)(n+1)a_{n+2} + 2(n+1)a_n)x^n$$

Par conséquent, S est solution de l'équation différentielle

$$y'' + 2xy' + 2y = 0$$

si, et seulement si,

$$\forall n \in \mathbb{N}, a_{n+2} = \frac{-2}{n+2} a_n$$

ce qui donne

$$a_{2p} = \frac{(-1)^p}{p!} a_0$$
 et $a_{2p+1} = \frac{(-1)^p 2^p}{(2p+1)...3} a_1 = \frac{(-1)^p 4^p p!}{(2p+1)!} a_1$

Synthèse : Soit $\sum a_n x^n$ la série entière déterminée par les coefficients précédemment proposés.

Une telle série entière est de rayon de convergence $R = +\infty$ car $a_{2p} = O(1/p!)$ et $a_{2p+1} = O(4^p/p!)$.

De plus par les calculs ci-dessus elle est solution de l'équation différentielle proposée sur \mathbb{R} .

b) Les solutions paires sont obtenue pour $a_{2p+1} = 0$. Cela donne

$$\forall x \in \mathbb{R}, S(x) = a_0 e^{-x^2}$$

Exercice 2: [énoncé]

Soit y la somme de la série entière $\sum a_n t^n$ de rayon de convergence R supposé > 0. $4(1-t^2)y''(t)-4ty'(t)+y(t)=\sum_{n=0}^{+\infty} \left(4(n+2)(n+1)a_{n+2}-(4n^2-1)a_n\right)t^n$ donc y est solution de l'équation étudiée si, et seulement si,

$$\forall n \in \mathbb{N}, a_{n+2} = \frac{(n-1/2)(n+1/2)}{(n+1)(n+2)} a_n$$

donc
$$a_{2p} = {1/2 \choose 2p} a_0$$
 et $a_{2p+1} = {1/2 \choose 2p+1} a_1$.

Or personne, oh non personne, n'ignore que

$$\sqrt{1+t} = \sum_{n=0}^{+\infty} {1/2 \choose n} t^n \text{ et } \sqrt{1-t} = \sum_{n=0}^{+\infty} (-1)^n {1/2 \choose n} t^n$$

avec un rayon de convergence égal à 1.

En prenant $a_0 = a_1 = 1$, on obtient la fonction $t \mapsto \sqrt{1+t}$.

En prenant $a_0 = 1$ et $a_1 = -1$, on obtient $t \mapsto \sqrt{1-t}$.

Ces deux fonctions sont solutions de l'équation étudiée (car R=1) et, étant indépendantes, elles constituent un système fondamental de solutions. La solution générale s'exprime

$$y(t) = \lambda \sqrt{1+t} + \mu \sqrt{1-t}$$

Exercice 3: [énoncé]

a) Soit $y(t) = \sum_{n=0}^{+\infty} a_n t^n$ une série entière solution de rayon de convergence R > 0. Sur]-R, R[, la fonction y est de classe \mathcal{C}^{∞} et

$$y(t) = \sum_{n=0}^{+\infty} a_n t^n, \ y'(t) = \sum_{n=0}^{+\infty} n a_n t^{n-1} \text{ et } y''(t) = \sum_{n=0}^{+\infty} n(n-1) a_n t^{n-2}$$

de sorte que

$$(1+t^2)y''(t) + 4ty'(t) + 2y(t) = \sum_{n=0}^{+\infty} (n+2)(n+1)(a_{n+2} + a_n)t^n$$

Par unicité des coefficients d'un développement en série entière, la fonction y est solution de l'équation étudiée sur]-R,R[si, et seulement si,

$$\forall n \in \mathbb{N}, a_{n+2} = -a_n$$

ce qui donne

$$\forall p \in \mathbb{N}, a_{2p} = (-1)^p a_0 \text{ et } a_{2p+1} = (-1)^p a_1$$

et on obtient

$$y(t) = a_0 \sum_{n=0}^{+\infty} (-1)^p t^{2p} + a_1 \sum_{n=0}^{+\infty} (-1)^p t^{2p+1} = \frac{a_0 + a_1 t}{1 + t^2}$$

Puisque la série entière écrite est de rayon de convergence $R \ge 1$, on peut assurer que les fonctions proposées sont solutions sur]-1,1[à l'équation étudiée. Cela fournit un système fondamental de solutions sur]-1,1[qu'il suffit de réinjecter dans l'équation pour affirmer que ces fonctions forment aussi un système fondamental de solution sur \mathbb{R} .

Puisque l'espace des solutions de cette équation homogène est de dimension 2, on peut conclure que la solution générale est

$$y(t) = \frac{\lambda + \mu t}{1 + t^2}$$

b) La méthode de variation des constantes nous amène à recherche une solution particulière

$$y(t) = \frac{\lambda(t) + \mu(t)t}{1 + t^2}$$

avec λ et μ fonctions dérivables solution du système

$$\begin{cases} \frac{\lambda'(t)}{1+t^2} + \frac{\mu'(t)t}{1+t^2} = 0\\ -\frac{2t\lambda'(t)}{(1+t^2)^2} + \frac{\mu'(t)(1-t^2)}{(1+t^2)^2} = \frac{1}{(1+t^2)^2} \end{cases}$$

On obtient $\lambda'(t) = -\frac{t}{1+t^2}$ et $\mu'(t) = \frac{1}{1+t^2}$ puis

$$y(t) = \frac{t \arctan t - \ln \sqrt{1 + t^2}}{1 + t^2}$$

Cette solution particulière permet ensuite d'exprimer la solution générale.

Exercice 4 : [énoncé]

a) Par analyse synthèse, on obtient

$$h(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n!)^2} x^n$$

de rayon de convergence $R = +\infty$.

b) h(0) = 1 et par application du critère spécial des séries alternées à la série

$$\sum_{n\geqslant 1} \frac{(-1)^n}{(n!)^2} 2^n$$

on obtient

$$-2 < \sum_{n=1}^{+\infty} \frac{(-1)^n}{(n!)^2} 2^n < -1$$

et donc h(2) < 0. On en déduit que h s'annule sur]0, 2[. La fonction h est dérivable et

$$h'(x) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n!(n-1)!} x^{n-1}$$

On peut à nouveau appliquer le critère spécial des séries alternées à cette série pour tout $x \in [0, 2[$ et on en déduit h'(x) < 0.