Minimum spanning tree in a graph with vertex potentials

Let $G = (V, E, \varphi)$ be an undirected connected graph with the set of vertices V, set of edges E and a *vertex potential function* $\varphi: V \to \mathbb{N}_0$, assigning to each vertex $u \in V$ a *potential* $\varphi(u)$, which is a non-negative integer. For two vertices u, v of V, let d(u,v) denote their distance defined as the minimum length of a path from u to v where the length of a path is the number of its edges (note that d(u,u)=0 for each vertex u). Assume there is at least one vertex $u' \in V$ such that $\varphi(u') > 0$. Define $d_{\min}(u)$ as the minimum distance from u to a vertex v with a nonzero potential, i.e.

$$d_{\min}(u) = \min \left\{ d(u,v) : v \in V \land \varphi(v) > 0 \right\}.$$

Define $D_{\min}(u)$ as the set of vertices with nonzero potentials that are closest to u, i.e.

$$D_{\min}(u) = \{ v : v \in V \land \varphi(v) > 0 \land d(u,v) = d_{\min}(u) \}.$$

Finally, define $\Phi(u)$ as the minimum potential of a vertex from $D_{\min}(u)$, i.e.

$$\Phi(u) = \min \{ \varphi(v) : v \in D_{\min}(u) \}.$$

Based on the introduced functions, for each edge $e = \{u,v\} \in E$, define its weight $w_0(e)$ as

$$w_0(\{u,v\}) = d_{\min}(u) + d_{\min}(v) + |\Phi(u) - \Phi(v)|.$$

Figure 1. An example of a graph with the set of vertices $\{1,2,3,4,5,6,7,8\}$ and 13 edges. There are two vertices (4 and 6) with nonzero potentials highlighted in orange, and it holds $\varphi(4)=1$ and $\varphi(6)=4$. The green number attached to a vertex u equals $d_{\min}(u)$, while the red number equals $\Phi(u)$. These numbers determine edge weights (the black numbers assigned to edges). For example, $w(\{2,3\})=d_{\min}(2)+d_{\min}(3)+|\Phi(2)-\Phi(3)|=1+1+|4-1|=5$. The red edges show a minimum spanning tree with respect to the calculated weights.

The task

1 of 3 10/4/19, 1:55 PM

Given an undirected connected graph $G=(V, E, \varphi)$ with vertex potentials such that there are no two vertices $u\neq v$ with the same nonzero potential (i.e., $u\neq v$, $\varphi(u)>0$ and $\varphi(v)>0$ implies $\varphi(u)\neq \varphi(v)$), and the number of vertices with nonzero potentials is at least 1 and at most $1+\sqrt{|V|}$, find a minimum spanning tree of the weighted graph $G=(V, E, w_{\varphi})$.

Input

All the input graphs are of the form $G = (V, E \cup F, \varphi)$ where (V, E) is a grid with 4-neighbourhood system and F is a set of extra edges such that $F \cap E = \emptyset$. Assume the grid consists of $R \ge 2$ rows and $C \ge 2$ columns. Then, the set of vertices V consists of all pairs (r, c) where r=1,...,R and c=1,...,C. Let $(r, c) \in V$. If r > 1, then E contains an edge connecting (r, c) and (r-1, c). If r < R, then E contains $\{(r, c), (r+1, c)\}$. If c > 1, then E contains $\{(r, c), (r, c-1)\}$. Finally, if c < C, then E contains $\{(r, c), (r, c+1)\}$. In addition, for each vertex $(r, c) \in V$, the set of extra edges can contain **at most one** edge connecting (r, c) with a vertex which is not its grid neighbour.

The first input line contains four integers R, C, P and K, separated by spaces. R is the number of grid rows, C is the number of grid columns, P is the number of vertices with nonzero potentials, and K = |F| is the number of extra edges. P input lines representing the nonzero potentials follow. Each of these input lines contains three integers r, c and p, separated by spaces. The integers determine that vertex (r, c) is of potential p. Finally, there are K input lines representing the extra non-grid edges. Each of these lines contains four integers r_1 , r_2 and r_2 , separated by spaces, and representing an edge $\{(r_1, c_1), (r_2, c_2)\}$.

It holds $R^*C \le 4*10^5$, $1 \le P \le 1 + \sqrt{R^*C}$ and $K \le 2000$. In addition, each vertex potential is not greater than 10^4 .

Output

The output contains one line with one integer which equals the weight of a minimum spanning tree of $G = (V, E \cup F, w_{\varphi})$ where $(V, E \cup F, \varphi)$ is the input graph.

Example 1	Example 2	Example 3
Input	Input	Input
2 2 2 0	2 4 2 3	3 4 3 2
1 2 4	1 4 1	2 1 8
2 1 5	2 2 4	2 2 4
	1 2 2 1	3 3 7
Output	1 3 2 2	3 4 3 2
4	1 4 2 3	3 3 2 4
	Output	Output
	12	21

The data and solution of Example 2 is isomorphic with the example in Figure 1.

2 of 3 10/4/19, 1:55 PM

Public data

The public data set is intended for easier debugging and approximate program correctness checking. The public data set is stored also in the upload system and each time a student submits a solution it is run on the public dataset and the program output to stdout and stderr is available to him/her.

Link to public data set

3 of 3 10/4/19, 1:55 PM