$$K_3^*(1780)$$

$$I(J^P) = \frac{1}{2}(3^-)$$

K₃*(1780) MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
1776± 7 OUR A	VERAGE	Error includes scale	facto	or of 1.1		
$1781 \pm 8 \pm 4$		$^{ m 1}$ ASTON	88	LASS	0	11 $K^- p \rightarrow$
$1740 \pm 14 \pm 15$		¹ ASTON	87	LASS	0	$ \begin{array}{c} K^-\pi^+ n \\ 11 K^- p \rightarrow \\ \overline{K}^0 \pi^+ \pi^- n \end{array} $
$1779\!\pm\!11$		² BALDI	76	SPEC	+	$10 \overset{R}{K}^{+} \overset{\pi}{p} \rightarrow \overset{\pi}{K}^{0} \pi^{+} p$
1776 ± 26		³ BRANDENB	76 D	ASPK	0	13 $K^{\pm} p \rightarrow$
\\/- d	46. 6.			£:4- 1:	:	$\mathcal{K}^{\pm}\pi^{\mp}N$
• • • vve do not	use the to	llowing data for ave	rages,	TITS, IIM	its, etc	
$1720 \pm 10 \pm 15$	6111	⁴ BIRD	89	LASS	_	$11 K^- p \rightarrow \overline{K}{}^0 \pi^- p$
1749 ± 10		ASTON	88 B	LASS	_	$11 \ K^- p \rightarrow \ K^- \eta p$
1780 ± 9	300	BAUBILLIER	84 B	HBC	_	$8.25 K^- p \rightarrow$
						$\overline{\it K}{}^0\pi^-$ p
1790 ± 15		BAUBILLIER	82B	HBC	0	8.25 $K^{-}p \rightarrow$
						$K_S^0 2\pi N$
1784 ± 9	2060	CLELAND	82	SPEC	\pm	$50 K^{+} p \rightarrow K_{S}^{0} \pi^{\pm} p$
1786 ± 15		⁵ ASTON	81 D	LASS	0	11 $K^-p \rightarrow$
						$K^-\pi^+$ n
1762 ± 9	190	TOAFF	81	HBC	_	$6.5 \frac{K^-}{F} p \rightarrow$
1050 50		ETIZINI	00	MDC	0	$\overline{K}^0\pi^-p$
1850 ± 50		ETKIN	80	MPS	0	$\begin{array}{c} 6 \ K^- p \rightarrow \\ \overline{K}^0 \pi^+ \pi^- \end{array}$
1812±28		BEUSCH	78	OMEG		$10 K^- p \rightarrow$
- 				- · · · - •		$\overline{K}^0\pi^+\pi^-n$
$1786\pm~8$		CHUNG	78	MPS	0	$6 K^- p \rightarrow K^- \pi^+ n$

K₃(1780) WIDTH

VALUE (MeV)	EVTS	DOCUMENT I	D	TECN	CHG	COMMENT
159±21 OUR	AVERAGE	Error includes s	scale fac	tor of 1.	3. See	the ideogram below.
$203\pm30\pm$ 8		⁶ ASTON	88	LASS	0	11 $K^-p \rightarrow$
$171 \pm 42 \pm 20$		⁶ ASTON		LASS		$K^-\pi^+ n$ 11 $K^-p \rightarrow$
135 ± 22		⁷ BALDI	76	SPEC	+	$ \frac{\overline{K}^{0}\pi^{+}\pi^{-}n}{10 K^{+}p \rightarrow K^{0}\pi^{+}p} $

 $^{^1}$ From energy-independent partial-wave analysis. 2 From a fit to Y_6^2 moment. $J^P=3^-$ found. 3 Confirmed by phase shift analysis of ESTABROOKS 78, yields $J^P=3^-$. 4 From a partial wave amplitude analysis. 5 From a fit to the Y_6^0 moment.

•	• •	We do	not use	the	following	data	for	averages.	fits	limits	etc	•	•	•
•	•	VVC GO	HOL USC	LIIC	TOHOVVIIIE	uata	101	avciagos,	1113,	111111111111111111111111111111111111111	CLC.	•	•	•

$187 \pm 31 \pm 20$	6111	⁸ BIRD	89	LASS	_	$11 \ K^- p \to \ \overline{K}{}^0 \pi^- p$
193^{+51}_{-37}		ASTON	88 B	LASS	_	$11 \ K^- p \rightarrow \ K^- \eta p$
99±30	300	BAUBILLIER	84 B	HBC	_	$8.25 K^- p \rightarrow K^0 \pi^- p$
~ 130		BAUBILLIER	82 B	HBC	0	8.25 $K^- p \rightarrow K_S^0 2\pi N$
$191\!\pm\!24$	2060	CLELAND	82	SPEC	\pm	$50 \ \text{K}^{+} p \rightarrow \ \text{K}^{0}_{S} \pi^{\pm} p$
225 ± 60		⁹ ASTON	81 D	LASS	0	$11 \begin{array}{c} K^- p \rightarrow \\ K^- \pi^+ n \end{array}$
~ 80	190	TOAFF	81	НВС	_	$6.5 \frac{K^{-}p}{\overline{K}^{0}\pi^{-}p}$
$240\!\pm\!50$		ETKIN	80	MPS	0	$ \begin{array}{ccc} 6 & K^{-} & p \rightarrow \\ \hline & \overline{K}^{0} & \pi^{+} & \pi^{-} \end{array} $
$181\!\pm\!44$		¹⁰ BEUSCH	78	OMEG		$10 \begin{array}{c} K - p \rightarrow \\ \overline{K} 0 \pi + \pi - p \end{array}$
$96\!\pm\!31$		CHUNG	78	MPS	0	$6 K^- p \rightarrow K^- \pi^+ n$
270±70		¹¹ BRANDENB	76 D	ASPK	0	$13 \stackrel{\textstyle {\mathcal K}^{\pm}}{{}_{\scriptstyle {\mathcal K}^{\pm}}} \stackrel{\textstyle \rightarrow}{{}_{\scriptstyle {\mathcal K}^{\pm}}} \stackrel{\textstyle \rightarrow}{}$

WEIGHTED AVERAGE 159±21 (Error scaled by 1.3)

 $K_3^*(1780)$ width (MeV)

 $^{^6}$ From energy-independent partial-wave analysis. 7 From a fit to Y_6^2 moment. $J^P=3^-$ found. 8 From a partial wave amplitude analysis. 9 From a fit to Y_6^0 moment.

 $^{^{10}}$ Errors enlarged by us to $4\Gamma/\sqrt{N}$; see the note with the $K^*(892)$ mass.

¹¹ ESTABROOKS 78 find that BRANDENBURG 76D data are consistent with 175 MeV width. Not averaged.

K*(1780) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Confidence level
$\overline{\Gamma_1}$	$K\rho$	$(31 \pm 9)\%$	
Γ_2	$K^*(892)\pi$	(20 \pm 5) %	
Γ3	$K\pi$	$(18.8 \pm \ 1.0) \%$	
Γ_4	$K\eta$	(30 ± 13)%	
Γ ₅	$K_2^*(1430)\pi$	< 16 %	95%

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 4 measurements and one constraint to determine 4 parameters. The overall fit has a $\chi^2=0.0$ for 1 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

K₃*(1780) BRANCHING RATIOS

$\Gamma(K\rho)/\Gamma(K^*(892)\pi$	7)				Γ_1/Γ_2
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
1.52 ± 0.23 OUR FIT					
$1.52\pm0.21\pm0.10$	ASTON	87	LASS	0	$11 \ K^- p \rightarrow \ \overline{K}{}^0 \pi^+ \pi^- n$
$\Gamma(K^*(892)\pi)/\Gamma(K\tau)$	г)				Γ_2/Γ_3
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
1.09±0.26 OUR FIT					
1.09 ± 0.26	ASTON	84 B	LASS	0	$11 \ K^- p \rightarrow \ \overline{K}{}^{0} 2\pi n$
$\Gamma(K\pi)/\Gamma_{total}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	CHG	COMMENT
0.188±0.010 OUR FIT					
0.188 ± 0.010 OUR AVE	RAGE				
$0.187\!\pm\!0.008\!\pm\!0.008$	ASTON	88	LASS	0	$11 K^- p \rightarrow K^- \pi^+ n$
0.19 ± 0.02	ESTABROOKS	5 78	ASPK	0	13 $K^{\pm} p \rightarrow K \pi N$

 $\Gamma(K\eta)/\Gamma(K\pi)$ Γ_4/Γ_3 <u>TECN CHG COMMENT</u> DOCUMENT ID 1.6 ± 0.7 • • • We do not use the following data for averages, fits, limits, etc. • • • 11 $K^- p \rightarrow \overline{K}^0 \pi^- p$ ¹² BIRD **LASS** $0.41 \!\pm\! 0.050$ $11 \ K^- p \rightarrow K^- \eta p$ 88B LASS - 0.50 ± 0.18 **ASTON** $^{12}\,\mathrm{This}$ result supersedes ASTON 88B. $\Gamma(K_2^*(1430)\pi)/\Gamma(K^*(892)\pi)$ Γ_5/Γ_2 VALUE DOCUMENT ID TECN CHG COMMENT $11 \frac{K^- p \rightarrow}{K^0 \pi^+ \pi^- n}$ <0.78 95 **ASTON** LASS 0

K₃*(1780) REFERENCES