# Classification of Water Potability

LIYA LAPIERRE, PRATEEK KAKKAR, NITHARSAN SIVAKANTHAN

## Background

Drinkable water is essential to human health

Interested in finding a series of tests to use to predict Potability (safe drinking water)

If possible, find the least number of tests needed to improve accessibility

## The Data

Water Quality Dataset (Posted on Kaggle)

Metrics for ~ 3300 bodies of water

Predictors: pH level, Hardness, Solids, Chloramines, Organic Carbon, Trihalomethanes, Turbidity

Response: Potability

2000 bodies of water are not Potable, ~1300 are Potable

## Methodology

#### Data Cleaning

> SVD Imputation

#### **Data Exploration**

Principal Component Analysis

#### Modeling

- Logistic Regression
- > Random Forest Classifier
- K-Nearest Neighbor Classifier

## Data Cleaning

Singular Value Decomposition Imputation

Source: (Hui, 2019)

## Data Exploration

➤ Principal Component Analysis



Source: (LearnOpenCV)

## Classification Methods

Logistic Regression



Source: (Rajput, 2018)

## Classification Methods

> Random Forest Classifier



Source: (corporatefinanceinstitute)

## Classification Methods

K Nearest Neighbors



Source: (ResearchGate)

## Results

#### **Logistic Regression**

Accuracy: 61%

• Recall: 0%

• Precision: 0%

• Specificity: 99%

| Potable? | Yes | No  |
|----------|-----|-----|
| P- Yes   | 0   | 1   |
| P- No    | 255 | 400 |

#### **Random Forest**

Accuracy: 68%

• Recall: 35%

• Precision: 66%

• Specificity: 89%

| Potable? | Yes | No  |
|----------|-----|-----|
| P- Yes   | 89  | 46  |
| P- No    | 166 | 355 |

#### KNN

• Accuracy: 65%

• Recall: 25%

Precision: 62%

• Specificity: 91%

| Potable? | Yes | No  |
|----------|-----|-----|
| P- Yes   | 63  | 38  |
| P- No    | 192 | 363 |

## Results Plotted



## Conclusions

•We can predict, with moderate accuracy, the potability of water using several machine learning algorithms

KNN models were very accurate at identifying the samples that were not potable

•The models with only three predictor variables (pH, sulfate, chloramines) were still moderately successful

## Future Considerations

Bacterial levels are an important indicator of potability

Consider using undersampling or oversampling due to unbalanced data

Tune model based on other metrics

## References

Environmental Protection Agency. (n.d.) National Primary Drinking Water Regulations. *EPA.gov.* https://www.epa.gov/sites/default/files/2016-06/documents/npwdr\_complete\_table.pdf

Kadiwal, Aditya. (n.d.) Water Quality. *Kaggle*. <a href="https://www.kaggle.com/datasets/adityakadiwal/water-potability?resource=download">https://www.kaggle.com/datasets/adityakadiwal/water-potability?resource=download</a>

## Appendix

## Tuning KNN



## Random Forest w/ Less predictors

#### **CONFUSION MATRIX**



#### **DETAILS**

| Sensitivity<br>0.357 | Specificity<br>0.718 | <b>Precision</b> 0.446 | <b>Recall</b> 0.357   | <b>F1</b><br>0.397 |
|----------------------|----------------------|------------------------|-----------------------|--------------------|
|                      | Accuracy<br>0.578    |                        | <b>Kappa</b><br>0.078 |                    |

## KNN w/ Less predictors

#### **CONFUSION MATRIX**



#### **DETAILS**

| Sensitivity | Specificity       | Precision | Recall                | <b>F1</b> |
|-------------|-------------------|-----------|-----------------------|-----------|
| 0.275       | 0.898             | 0.631     | 0.275                 | 0.383     |
|             | Accuracy<br>0.655 |           | <b>Kappa</b><br>0.192 |           |