

Probabilidade (Parte 1)

Prof. Thiago Novaes

Disciplina: Matemática

Turma: 3º ano

1. Elementos do estudo das probabilidades

Experimento aleatório

Consideramos experimentos aleatórios os fenômenos que apresentam resultados imprevisíveis quando repetidos, mesmo que as condições sejam semelhantes.

Exemplos:

- a) Lançar 2 moedas e observar as faces voltadas para cima.
- b) Retirar 1 carta de 1 baralho com 52 cartas e observar o seu naipe.
- c) De uma urna contendo 4 bolas brancas e 5 vermelhas, retirar 1 bola e observar sua cor.
- d) Abrir 1 livro ao acaso e depois observar os números das duas páginas.

Espaço amostral

Espaço amostral é o conjunto de todos os resultados possíveis de ocorrer num experimento aleatório. Esse conjunto será indicado pela letra S.

Exemplos:

- a) Quando se lançam 2 moedas e se observam as faces voltadas para cima, sendo as faces da moeda cara (c) e coroa (k), o espaço amostral do experimento é:
 S = {(c, c), (c, k), (k, k), (k, c)}, onde o número de elementos do espaço amostral n (S) é igual a 4.
- b) Lançam-se 2 dados, primeiro 1 branco e depois 1 azul, e observam-se os números das faces voltadas para cima.

Nesse experimento, o espaço amostral será composto de muitos elementos, por isso convém construir uma tabela:

Dado branco: B

Dado azul: A

BA	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1,5)	(1,6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2,5)	(2,6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3,6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5,3)	(5, 4)	(5, 5)	(5,6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

Observamos que o espaço amostral S é o conjunto formado por todos os pares ordenados da tabela. Assim, o número de elementos n (S) é igual a 36.

Evento

Evento (E) é qualquer subconjunto de um espaço amostral S. Muitas vezes um evento pode ser caracterizado por um fato.

Exemplos

a) No lançamento de 2 moedas:

E₁: aparecerem faces iguais

 E_1 : {(c, c), (k, k)}

Portanto, o número de elementos do evento E_1 é n $(E_1) = 2$.

E2: aparece cara em pelo menos 1 face

 E_2 : {(c, c), (c, k), (k, c)}, onde n (E_2) = 3

b) No lançamento não simultâneo de 2 dados:

E1: aparecem números iguais

$$E_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$$

E2: o primeiro número é menor ou igual a 2

$$E_2 = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6)\}$$

E₃: a soma dos resultados é menor ou igual a 4

$$E_3 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)\}$$

E4: o número do primeiro dado é o dobro do número do segundo dado

$$E_4 = \{(2, 1), (4, 2), (6, 3)\}$$

Exemplo

Considerar o experimento aleatório: uma moeda é lançada 3 vezes. Determinar:

a) espaço amostral S

b) evento E1: sair 2 caras e 1 coroa

c) evento E_o: sair 3 caras

d) evento E3: sair pelo menos 1 cara

e) evento E4: sair no máximo 2 coroas

f) evento E₅: nenhuma cara

2. Probabilidade

Considerando um espaço amostral S, não-vazio, e um evento E, sendo $E \subset S$, a probabilidade de ocorrer o evento E é o número real P (E), tal que:

$$P(E) = \frac{n(E)}{n(S)}$$

, sendo $0 \le P(E) \le 1$ e S um conjunto eqüiprovável, ou seja, todos os elementos têm a mesma "chance" de acontecer.

n (E): número de elementos do evento E

n (S): número de elementos do espaço amostral S

Exemplo:

Lançando-se um dado, a probabilidade de sair um número ímpar na face voltada para cima é obtida da seguinte forma:

$$S = \{1, 2, 3, 4, 5, 6\}$$
 $n(S) = 6$

$$E = \{1, 3, 5\}$$
 $n(E) = 3$

$$P(E) = \frac{n(E)}{n(S)}$$

$$P(E) = \frac{3}{6} = \frac{1}{2}$$
 ou 50%

Exercício

(Unesp-SP) João lança um dado sem que Antônio veja. João diz que o número mostrado pelo dado é par. A probabilidade de Antônio descobrir esse número é:

a)
$$\frac{1}{2}$$

d)
$$\frac{1}{3}$$

b)
$$\frac{1}{6}$$

e)
$$\frac{3}{36}$$

c)
$$\frac{4}{6}$$

Exercício

(UFSCar-SP) Uma urna tem 10 bolas idênticas, numeradas de 1 a 10. Se retirarmos uma bola da urna, a probabilidade de não obtermos a bola número 7 é igual a:

a)
$$\frac{9}{9}$$

d)
$$\frac{9}{10}$$

b)
$$\frac{1}{10}$$

c)
$$\frac{1}{5}$$

ENEM 2020

Suponha que uma equipe de corrida de automóveis disponha de cinco tipos de pneu (I, II, III, IV, V), em que o fator de eficiência climática EC (índice que fornece o comportamento do pneu em uso, dependendo do clima) é apresentado:

- EC do pneu I: com chuva 6, sem chuva 3;
- EC do pneu II: com chuva 7, sem chuva -4;
- EC do pneu III: com chuva -2, sem chuva 10;
- EC do pneu IV: com chuva 2, sem chuva 8;
- EC do pneu V: com chuva -6, sem chuva 7.

O coeficiente de rendimento climático (CRC) de um pneu é calculado como a soma dos produtos dos fatores de EC, com ou sem chuva, pelas correspondentes probabilidades de se ter tais condições climáticas: ele é utilizado para determinar qual pneu deve ser selecionado para uma dada corrida, escolhendo-se o pneu que apresentar o maior CRC naquele dia. No dia de certa corrida, a probabilidade de chover era de 70% e o chefe da equipe calculou o CRC de cada um dos cinco tipos de pneu.

O pneu escolhido foi

ΑI BII. C III. D IV. FΥ

ENEM 2020

O Estatuto do Idoso, no Brasil, prevê certos direitos às pessoas com idade avançada, concedendo a estas, entre outros benefícios, a restituição de imposto de renda antes dos demais contribuintes. A tabela informa os nomes e as idades de 12 idosos que aguardam suas restituições de imposto de renda. Considere que, entre os idosos, a restituição seja concedida em ordem decrescente de idade e que, em subgrupos de pessoas com a mesma idade, a ordem seja decidida por sorteio.

Nessas condições, a probabilidade de João ser a sétima pessoa do grupo a receber sua restituição é igual a

A) 1/12 B) 7/12 C) 1/8 D) 5/6 **E) 1/4**

Nome	Idade (em ano)		
Orlando	89		
Gustavo	86		
Luana	86		
Teresa	85		
Márcia	84		
Roberto	82		
Heloisa	75		
Marisa	75		
Pedro	75		
João	75		
Antônio	72		
Fernanda	70		

ENEM Digital 2020

Uma casa lotérica oferece cinco opções de jogos. Em cada opção, o apostador escolhe um grupo de K números distintos em um cartão que contém um total de N números disponíveis, gerando, dessa forma, um total de C combinações possíveis para se fazer a marcação do cartão. Ganha o prêmio o cartão que apresentar os K números sorteados. Os valores desses jogos variam de R\$ 1,00 a R\$ 2,00, conforme descrito no quadro.

Um apostador dispõe de R\$ 2,00 para gastar em uma das cinco opções de jogos disponíveis.

Segundo o valor disponível para ser gasto, o jogo que oferece ao apostador maior probabilidade de ganhar prêmio é o

`		
21	\ I	
a	Ι.	

b) II.

c) III. d) IV.

e) V

Jogo	Valor do jogo (R\$)	Números a serem escolhidos	Números disponíveis	Combinações possíveis (C)
Ī	1,50	6	45	8 145 060
П	1,00	6	50	15 890 700
III	2,00	5	60	5 461 512
IV	1,00	6	60	50 063 860
V	2,00	5	50	2 118 760

ENEM 2019 (2^a aplicação)

Uma locadora possui disponíveis 120 veículos da categoria que um cliente pretende locar. Desses, 20% são da cor branca, 40% são da cor cinza, 16 veículos são da cor vermelha e o restante, de outras cores. O cliente não gosta da cor vermelha e ficaria contente com qualquer outra cor, mas o sistema de controle disponibiliza os veículos sem levar em conta a escolha da cor pelo cliente.

Disponibilizando aleatoriamente, qual é a probabilidade de o cliente ficar contente com a cor do veículo?

- 120
- 120
- 120
- 120

ENEM 2019 (2^a aplicação)

Uma empresa sorteia prêmios entre os funcionários como reconhecimento pelo tempo trabalhado. A tabela mostra a distribuição de frequência de 20 empregados dessa empresa que têm de 25 a 35 anos trabalhados. A empresa sorteou, entre esses empregados, uma viagem de uma semana, sendo dois deles escolhidos aleatoriamente.

Tempo de serviço	Número de empregados	
25	4	
27	1	
29	2	
30	2	
32	3	
34	5	
35	3	

Qual a probabilidade de que ambos os sorteados tenham 34 anos de trabalho? Qual a probabilidade de que ambos os sorteados tenham 34 anos de trabalho?

- $o \frac{1}{20}$
- G 1/19
- $\Theta \frac{1}{16}$
- $o \frac{2}{20}$
- $\Theta = \frac{5}{20}$