Math 110 Homework 6 Tarang Srivastava

1 Exercises 5.A

Problem 1: The argument is as follows.

- (a) Let u be an arbitrary vector $u \in U$. If $U \subset \text{null } T$, then $u \in \text{null } T$. So, Tu = 0. Since, U is a vector space, it must be that $0 \in U$, so $Tu \in U$. Thus, U is invariant under T given the condition.
- (b) By definition we have $Tu \in \text{range } T$ for all $u \in U$. Since, range $T \subset U$ we have that for all $u, Tu \in U$. Thus, U is invariant under T given the condition.

Problem 3: We wish to show that for all $u \in \text{range } S$ we have that $Tu \in \text{range } S$. Let $v \in V$, then $STv \in \text{range } S$ by definition. Given ST = TS, we have that STv = TSv. So, $TSv \in \text{range } S$. Let $u \in \text{range } S$, then there exists some $v \in V$ such that Sv = u. Since, $TSv \in \text{range } S$, we have $Tu \in \text{range } S$.

Problem 6: True!

We have a subspace U of V such that it is invariant for all $T \in \mathcal{L}(V, V)$, assume for contradiction that $U \neq 0$ and $U \neq V$. Then, since V is finite dimensional we have some basis of U

$$u_1, ..., u_m$$
 is a basis of U

Then we can extend the basis of U to a basis of V, and since we know that $U \neq V$ it must be that we must extend it by at least one vector.

$$u_1,...,u_m,v_1,...,v_n$$
 is a basis of V

Then, let $T \in \mathcal{L}(V)$ such that for all $i \in 1, ..., n$ we have that

$$Tu_i = v_i$$

and the remaining basis vectors of U, if there are any, are mapped to 0. Let u be an arbitrary vector $u \in U$, then

$$u = a_1 u_1 + \dots + a_m u_m$$

for some scalars $a_1, ..., a_m$. Then,

$$Tu = a_1 T u_1 + \dots + a_m T u_m$$
$$Tu = a_1 v_1 + \dots + a_m v_m$$

Since we have that U is invariant under all linear maps it must be that $Tu \in U$ so there exists some linear combination of $u_1, ..., u_m$ that is equal to Tu. So for some scalars $b_1, ..., b_m$

$$Tu = b_1 u_1 + \dots + b_m u_m$$

Substituting the two representations of Tu we get

$$b_1 u_1 + \dots + b_m u_m = a_1 v_1 + \dots + a_m v_m$$

Then, we have a contradiction since we claimed that $u_1, ..., u_m, v_1, ..., v_n$ is a basis and therefore a linearly independent list of vectors. But since they can be expressed as a linear combination of each other as such they are not linearly independent, by some previous exercises. Thus, it must be that $U = \{0\}$ or U = V.

Problem 8: By defintion we wish to find eigenvalues and eigenvectors, v = (w, z) such that

$$T(w, z) = (z, w) = \lambda(w, z) = (\lambda w, \lambda z)$$

Then, we have to find solutions to $\lambda w = z$ and $\lambda z = w$. Following some substitutions we get

$$z(\lambda^2 - 1) = 0$$

Since, $v \neq 0$ we are left with $\lambda = \pm 1$.

So, $\lambda_1 = 1$ with the corresponding eigenvector $v_1 = (1, 1)$ and $\lambda_2 = -1$ with the corresponding eigenvector $v_2 = (-1, 1)$.

Problem 12: We wish to find eigenvalues and eigenvectors, $p(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$, such that

$$(Tp)(x) = xp'(x) = \lambda p(x)$$

That is, $4a_4x^4 + 3a_3x^3 + 2a_2x^2 + a_1x = \lambda a_4x^4 + \lambda a_3x^3 + \lambda a_2x^2 + \lambda a_1x + \lambda a_0$. So, clearly $4a_4x^4 = \lambda a_4x^4$. Solving for this we get $\lambda = 4$, but then the following terms do not hold so we must have that $a_3 = a_2 = a_1 = a_0 = 0$. So the polynomial for $\lambda = 4$ must be of the form a_4x^4 . We follow with this argument for the remaining terms to get that the eigenvalues are $\lambda = 4, 3, 2, 1$ and that the corresponding eigenvectors are x^4, x^3, x^2, x respectively.

Problem 13: We can just show that $\alpha - \lambda \leq |\alpha - \lambda| < \frac{1}{1000}$ is equivalent to showing $\alpha < \frac{1}{1000} + \lambda$ since we are working with elements in our field and performing field operation it must be the case that $\alpha \in \mathbb{F}$. (Clearly this wont hold in ALL fields but in the world of Axler this is just \mathbb{C} or \mathbb{R}). Then since V is finite dimension there are at most dim V many eigenvalues, that is finite number of eigenvalues. Again, since we are either working with either the reals or complex, which are both infinite just select a number α that satisfies the inequality and is not equal to one of the eigenvalues. Then, it follows by 5.6, since we chose α such that it is not an eigenvalue $T - \alpha I$ is invertible.