A Stateful Inspection of FireWall-1

Thomas Lopatic, John McDonald TÜV data protect GmbH

tl@dataprotect.com, jm@dataprotect.com

Dug Song
CITI at the University of Michigan
dugsong@umich.edu

Overview

- Architecture of FireWall-1
- Attacking the firewall's state I
- FWZ encapsulation
- Attacking the firewall's state II
- Attacking authentication between firewall modules
- Hardening FireWall-1
- The big picture

Topology

Problems in Inspection

- Unreliable / unauthenticated input
- Layering restrictions on inspection
- Layering violations in inspection
- Ambiguous end-to-end semantics

Example: Airport Security

- Unreliable / unauthenticated input
 Examining baggage tags
- Layering restrictions on inspection
 Examining shape, size, weight
- Layering violations in inspection
 Parallelizing bag content inspection
- Ambiguous end-to-end semantics
 Checking for known contraband

Classification of the Attacks

- Unreliable / unauthenticated input
 - TCP fastmode
- Layering restrictions on inspection
 - FWZ VPN encapsulation
- Layering violations in inspection
 - FTP data connection handling
 - unidirectional TCP data flow
 - RSH error connection handling
- Ambiguous end-to-end semantics
 - Parsing of FTP "PORT" commands

FireWall-1 Modules

Inter-Module Protocol

S/Key Authentication

$$Hash_n(x) = Hash(Hash(... Hash(x))) = Hash(Hash_{n-1}(x))$$

n times

- "y = MakeSeed(time(NULL))"
- Attack: brute force

FWN1 Authentication

- Shared key K ("fw putkey")
- Attack: choose $R_2 = R_1$, so that $S_2 = S_1$

FWA1 Authentication

- Shared key K ("fw putkey")
- Attack: choose $R_2 = 0$, so that
 - $R_1 \land R_2 = R_1$ and
 - $S_2 = \text{Hash}((R_1 \land R_2) + K) = \text{Hash}(R_1 + K) = S_1$
- To be solved: encryption

Stateful Inspection I

Stateful Inspection II

- UDP "connections"
 - from a client, port C
 - to a server, port S + wildcard port
- <s-address, s-port, d-address, d-port, protocol>

Stateful Inspection III

Fastmode Services

- non-SYN packets accepted
 - Source port = fastmode service
 - Destination port = fastmode service
- Stealth scanning (FINs, ...)

FTP "PORT" Parsing

data connection

172.16.0.2

Application: bounce attack

"PORT 172,16,1349632,2,p1,p2"

1349632 = 65536 * (192 - 172) + 256 * (168 - 16)

192.168.0.2

FTP "PASV" Handling

- Advertise small Maximal Segment Size
- Server replies split

One-way Connections I

One-way Connections II

FWZ Encapsulation I

2. d-address = firewall, protocol = 94

- VPN tunneling protocol
- Decapsulation without decryption or authentication
- Cannot be disabled

FWZ Encapsulation II

Key to spoofing attacks

Fake "PORT" Commands

s-addr = 172.16.0.2 d-addr = 192.168.0.1

"PORT 172,16,0,2,128,7"

d-addr = 192.168.0.2

IP header

TCP header + payload

encapsulation info

RSH Error Connections I

- <172.16.0.2, 1024, 192.168.0.2, 514, 6> in "connections"
- <172.16.0.2, 1025, 192.168.0.2, magic, 6> in "pending"
- Reversed matching

RSH Error Connections II

SYN

- s-addr:s-port
- d-addr:magic
- seq + 1
- 172.16.0.2:1024
- 192.168.0.2:magic
- 250001

- packet #2
 (port info)
- s-addr:error-port
- d-addr:magic
- protocol
- 172.16.0.2:1025
- 192.168.0.2:magic
- 6 (TCP)

- s-addr:s-port
- d-addr:magic
- seq + 1

- 172.16.0.2:32775
- 192.168.0.2:magic
- 6 = seq + 1 = TCP

Fake UDP Requests

s-addr = 172.16.0.2 d-addr = 192.168.0.1

s-port = 161 d-port = 53

d-addr = 192.168.0.2

IP header

UDP header

encapsulation info

FWZ Encapsulation III

Key to non-routable addresses

Anti-Spoofing Protection I

1. s-addr = 192.168.0.1 d-addr = 192.168.0.1

s-port = 161 d-port = 53

d-addr = 192.168.0.2

2. s-addr = 192.168.0.2 d-addr = 192.168.0.1

s-port = any d-port = 161

1. fake DNS request

2. tunnel to firewall

192.168.0.2

Anti-Spoofing Protection II

1. s-addr = 224.0.0.1 d-addr = 192.168.0.1

s-port = 161 d-port = 53

d-addr = 192.168.0.2

2. s-addr = 192.168.0.2 d-addr = 192.168.0.1

s-port = 53 d-port = 161

d-addr = 224.0.0.1

1. fake DNS request

2. tunnel to firewall

192.168.0.2

Hardening I

- Disable implicit rules
 - DNS
 - control connections
 - ICMP
- Restrictive access rules
 - no "any" sources or destinations
 - deny broadcast / multicast addresses
 - "minimal privilege"
- Properly configure anti-spoofing mechanism
- Filter protocol 94 (e.g. IP Filter)

Hardening II

- Different (virtual) IP addresses for public services
- Restrict control connections
 - FWA1 authentication
 - VPN technology
 - never use "127.0.0.1: */none"
- More than one line of defense!

Fixes by Check Point

Solutions by Check Point available today at

http://www.checkpoint.com/techsupport

Thanks.

Thomas Lopatic

John McDonald

Dug Song tl@dataprotect.com jm@dataprotect.com dugsong@umich.edu