Lecture slides

Philip Murray

Lecture 1

- Introduction to nonlinear difference equations
- ► The Malthusian model
- The Ricker model

A general model

Consider the first order difference equation

$$N_{t+1} = N_t f(N_t) = H(N_t), \tag{1} \label{eq:1}$$

where $f(N_t)$ is a function that defines the per capita growth rate. The function $H(N_t)$ describes the total (net) growth rate.

The Malthusian model

The population size at time t+1 is

$$N_{t+1} = N_t + bN_t - dN_t = rN_t,$$

What are the different qualitative behaviours of the Malthusian model?

The Ricker model

$$N_{t+1} = N_t e^{r(1-\frac{N_t}{K})}.$$

Numerical simulation of the Ricker model

Figure 1: A plot of numerical solutions of the Ricker model. (a)r=0.5.