Exit[]

Eklipse = 23.5;

$$\left\{ \cos \left[\frac{\pi \text{ Tage}}{180} \right] \cos \left[2 \pi \text{ Tage} \right] - \cos \left[\circ \text{ Eklipse} \right] \sin \left[\frac{\pi \text{ Tage}}{180} \right] \sin \left[2 \pi \text{ Tage} \right],$$

$$\cos [° Eklipse] \cos [2 \pi Tage] \sin \left[\frac{\pi Tage}{180}\right] + \cos \left[\frac{\pi Tage}{180}\right] \sin [2 \pi Tage],$$

$$Sin[° Eklipse] Sin \left[\frac{\pi Tage}{180}\right]$$

Winkel[b_, t_]:=

180 / Pi {ArcCos[Sonne[b, t][[1]] / (Sonne[b, t][[1]] ^ 2 + Sonne[b, t][[2]] ^ 2)],
ArcSin[Sonne[b, t][[3]]]}

m = 13; ParametricPlot[

{Winkel [52.5, t + m * 30], Winkel [47.9, t + m * 30]}, {t, 0, 1}, PlotRange \rightarrow All]

m = 10; ParametricPlot3D[{Sonne[52.5, t], Sonne[47.9, t]}, {t, m * 30, m * 30 + 1}]

