1 Conditional Expectations

Suppose X and Z are binary random variables, while Y is just a generic random variable.

Problem 1.1. Is E[Y|X] = BLP[Y|X]?

Solution. If we show that CEF is linear in the conditioning variable, then we can conclude that CEF = BLP. The provided statement is always true since

$$\mathbb{E}\left[Y|X\right] = X\mathbb{E}\left[Y|X=1\right] + (1-X)\mathbb{E}\left[Y|X=0\right] = \mathbb{E}\left[Y|X=0\right] + X\left[\mathbb{E}\left[Y|X=1\right] - \mathbb{E}\left[Y|X=0\right]\right]$$

Problem 1.2. Is E[Y|X, Z] = BLP[Y|X, Z]?

Solution. Note that we can write:

$$\begin{split} \mathbb{E}\left[Y|X,Z\right] &= \mathbb{E}\left[Y|0,0\right] + X\left(\mathbb{E}\left[Y|1,0\right] - \mathbb{E}\left[Y|0,0\right]\right) \\ &+ Z\left(\mathbb{E}\left[Y|0,1\right] - \mathbb{E}\left[Y|0,0\right]\right) + XZ\left(\mathbb{E}\left[Y|1,1\right] - \mathbb{E}\left[Y|1,0\right] - \mathbb{E}\left[Y|0,1\right] + \mathbb{E}\left[Y|0,0\right]\right) \end{split}$$

which means that we need the XZ term to get CEF. So No.

Problem 1.3. Is E[Y|X, Z, XZ] = BLP[Y|X, Z, XZ]?

Solution. Yes, by the argument provided above.

Problem 1.4. If E[Y|Z] = 0 and E[Y|X] = 0, then is E[Y|X, Z] = 0?

Solution. We will provide a counterexample. Let X and Z be independent Bernoulli random variables with mean 0.5, and let

$$Y = \mathbb{I}(X = Z) - 0.5$$

Then we have

$$\mathbb{E}\left[Y|X=1\right] = P\left(Z=1\right)\left(1-0.5\right) + P\left(Z=0\right)\left(0.-0.5\right) = 0 = \mathbb{E}\left[Y|X=0\right]$$

and thus

$$\mathbb{E}\left[Y|Z\right]=0, \mathbb{E}\left[X|Z\right]=0$$

but

$$\mathbb{E}\left[Y|X,Z\right] \neq 0$$

2 True or False

Consider the following two regressions:

[1]:
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + U$$

[2]: $Y = \beta_0^* + \beta_1^* X_1 + \beta_2^* X_2 + U^*$

Is the following statement true or false? "If you have a regressor X_1 that is only correlated to X_3 through X_2 , then β_1 should be the same."

Solution. It is true.

 \triangleright In regression [1], consider the partitioned regression:

$$Y - BLP(Y|1, X_2) = \beta_1 (X_1 - BLP(X_1|1, X_2)) + \beta_3 (X_3 - BLP(X_3|1, X_2)) + (U - BLP(U|1, X_2))$$

▷ In regression [2], consider the partitioned regression

$$Y - BLP(Y|1, X_2) = \beta_1^* (X_1 - BLP(X_1|1, X_2)) + (U^* - BLP(U^*|1, X_2))$$

 \triangleright From regression [2], we then have

$$\beta_{1}^{*} = \frac{\operatorname{Cov}\left[Y - BLP\left(Y|1, X_{2}\right), \left(X_{1} - BLP\left(X_{1}|1, X_{2}\right)\right)\right]}{\operatorname{Var}\left[X_{1} - BLP\left(X_{1}|1, X_{2}\right)\right]} \\ = \beta_{1} + \frac{\operatorname{Cov}\left[\beta_{3}\left(X_{3} - BLP\left(X_{3}|1, X_{2}\right)\right) + \left(U - BLP\left(U|1, X_{2}\right)\right), \left(X_{1} - BLP\left(X_{1}|1, X_{2}\right)\right)\right]}{\operatorname{Var}\left[X_{1} - BLP\left(X_{1}|1, X_{2}\right)\right]}$$

$$Cov(X_3, (X_1 - BLP(X_1|1, X_2))) = 0$$

⊳ From the property of BLP, we also have:

$$Cov (BLP (X_3|1, X_2), X_1 - BLP (X_1|1, X_2)) = 0$$
$$Cov (BLP (U|1, X_2), X_1 - BLP (X_1|1, X_2)) = 0$$

 \triangleright From the assumption about U, we have:

$$Cov(U, X_1 - BLP(X_1|1, X_2)) = 0$$

Therefore, $\beta_1^* = \beta_1$.

3 Estimator for Median

We have Y_i and D_i where $Y_i = Y_i(1)D_i + Y_i(0)(1 - D_i)$. Furthermore, we had the independence assumption that $Y_i(0)$ and $Y_i(1)$ are independent of D_i . We are asked to come up with the estimator $F_1(t)$ and $F_0(t)$ where

$$F_d(t) = Pr\left\{Y_i(d) \le t\right\}$$

The estimator for F_d must be a function of Y_i and D_i but not of $Y_i(0)$ or $Y_i(1)$.

Problem 3.1. Propose an estimator for F_d .

Solution. We only observe Y_i and D_i but not Y_i (1) or Y_i (0). Therefore, for F_1 (t) = $Pr\{Y_i$ (1) $\leq t\}$, we will have to use Y_i s that have $D_i = 1$. Therefore, we can count among those $D_i = 1$ that have $Y_i \leq t$. Mathematically, this amounts to:

$$\hat{F}_{dn}(t) = \frac{\sum I(Y_i \le t) I(D_i = d)}{\sum I\{D_i = d\}}$$

Problem 3.2. Show that the estimator is consistent.

Solution. Note that from the proposed expression:

$$\frac{\sum I(Y_i \le t) I(D_i = d)}{\sum I\{D_i = d\}} = \frac{\frac{1}{N} \sum I(Y_i \le t) I(D_i = d)}{\frac{1}{N} \sum I\{D_i = d\}}$$

we have

$$\frac{1}{N} \sum I(Y_i \le t) I(D_i = d) \xrightarrow{p} P(Y_i \le t, D_i = d)$$
$$\frac{1}{N} \sum I\{D_i = d\} \xrightarrow{p} P(D_i = d)$$

By the continuous mapping theorem, we have

$$\frac{\sum I\left(Y_{i} \leq t\right)I\left(D_{i} = d\right)}{\sum I\left\{D_{i} = d\right\}} \xrightarrow{p} P\left(Y_{i} \leq t \middle| D = d\right) = P\left(Y_{i}\left(d\right) \leq t\right)$$

Problem 3.3. Propose an estimator for the median.

Solution. Since we have random assignment, we can use $D_i = d$ subsample to estimate all the population quantities of $Y_i(d)$. Therefore, the estimate of median for $D_i = d$ is

$$\hat{\theta}_{dn} = \inf\left(t : \hat{F}_{dn}\left(t\right) \ge 0.5\right)$$

Problem 3.4. What assumption do you need to make?

Solution. We need to assume that the population median set of D=d to be unique, i.e.

$$F_d(\theta_d + \epsilon) > 0.5, \forall \epsilon > 0$$

Problem 3.5. Prove that it is consistent.

Solution. We will show that for a given $\epsilon > 0$, we have

$$P\left(\left|\hat{\theta}_{dn} - \theta_d\right| > \epsilon\right) \to 0$$

as $n \to \infty$.

ho Case 1: $heta_{dn}> heta_d+\epsilon$ (which means $F_{dn}\left(heta_d+\epsilon
ight)<0.5$) . Then:

$$P(\theta_{dn} > \theta_{d} + \epsilon) \leq P(F_{dn}(\theta_{d} + \epsilon) < 0.5)$$

$$= P(F_{dn}(\theta_{d} + \epsilon) - F_{d}(\theta_{d} + \epsilon) < 0.5 - F_{d}(\theta_{d} + \epsilon))$$

$$= P(F_{dn}(\theta_{d} + \epsilon) - F_{d}(\theta_{d} + \epsilon) < -\delta_{1})$$

for some $\delta_1 > 0$ by the uniqueness assumption of θ_d . Since $F_{dn}(t) \xrightarrow{p} F_d(t)$ for any t, we have that the above expression converges to zero as $n \to \infty$.

ightharpoonup Case 2: $\theta_{dn} < \theta_d - \epsilon$ (which means $F_{dn} \left(\theta_d - \epsilon \right) \geq 0.5$). We can apply the same steps as above.

Therefore, we conclude that $\theta_{dn} \xrightarrow{p} \theta_{d}$.

4 Instruments

Consider the model $Y = X\beta + U$ and we had an instrument Z such that E[ZU] = 0 and $E[ZX^T]$ has full rank.

Problem 4.1. State the conditions for the instrument variables.

Solution. We require:

 \triangleright Relevance: $\mathbb{E}[ZX']$ to have rank $k+1 \le l+1$

 $hd \operatorname{Exogeneity} : \mathbb{E}\left[ZU\right] = 0$

ightharpoonup Monotonicity: $P\left(D_1^i \geq D_0^i\right) = 1$

Problem 4.2. Provide an estimator for β .

Solution. The standard two-stage least squares estimator works here:

 $\hat{\beta}_n = \left(\sum \Pi'_n Z_i Z'_i \Pi_n\right)^{-1} \left(\sum \Pi'_n Z_i Y_i\right)$

where

$$\Pi_n = \left(\sum Z_i Z_i'\right)^{-1} \left(\sum Z_i X_i'\right)$$

Problem 4.3. You are given two sets of datas: $(Z_i^A, Y_i^A)_{i=1}^N$ and, independently of the first sample, $(Z_i^B, X_i^B)_{i=1}^N$. How does the estimator look like?

Solution. We can consider the following estimator:

$$\tilde{\beta}_n = \left(\sum Z_i^B \left(X_i^B\right)'\right)^{-1} \sum \left(Z_i^A Y_i^A\right)$$

Consistency follows by standard argument.

Problem 4.4. Does the estimator above have the same asymptotic distribution as in (2)?

Solution. Note that this estimator does not have the same asymptotic distribution. To see this, write:

$$\tilde{\beta}_n = \left(\sum Z_i^B \left(X_i^B\right)'\right)^{-1} \sum \left(Z_i^A X_i^A\right) \beta + \left(\sum Z_i^B \left(X_i^B\right)'\right)^{-1} \sum \left(Z_i^A U_i^A\right)$$

which implies:

$$\sqrt{n}\left(\tilde{\beta}_{n}-\beta\right) = \underbrace{\sqrt{n}\left(\sum Z_{i}^{B}\left(X_{i}^{B}\right)'\right)^{-1}\sum \left(Z_{i}^{A}X_{i}^{A}-Z_{i}^{B}X_{i}^{B}\right)\beta}_{[1]} + \sqrt{n}\left(\sum Z_{i}^{B}\left(X_{i}^{B}\right)'\right)^{-1}\sum \left(Z_{i}^{A}U_{i}^{A}\right)$$

in the standard derivation, [1] is zero but here it's not. Therefore, we cannot conclude that the estimator has the same asymptotic distribution as before.