

Introduction To Artificial Intelligence and Python

Presented by Nour Droubi & Alaa Maarouf

Agenda Of The Day

Intro to Artificial Intelligence

Intro to Python

Hands-on Exercises

Let's Talk Some Al

△\ Is This AI?

Define Artificial Intelligence

Al allows machines to:

- process large amounts of data
- recognize hidden patterns in the data
- to perform human-like tasks
- learn from experience
- adjust to unseen input

Define Artificial Intelligence

1. Narrow AI (DeepBlue, AlphaGo)

2. General Al

3. Superintelligent Al

Some Applications of Al

An Interdisciplinary Field

Which Ones Are Real?!

https://thispersondoesnotexist.com/

Face Recognition

Denoising Images

Donec scelerisque risus ut accumsan molestie tellus turpis maximus massa Sed mattis dolor Tortor Pellentesque Scelerisque Ultricies lacus ac sollicitudin Mus erat justo

A Why Al?

- Increase amount of data available (advancement in IoT and Big Data)
- Increase usage of social media
- Huge amounts of new articles, videos,... published every day
- → Need for an automated way to process all this data and produce meaningful insights!

A Why Al?

- Automating repetitive learning and discovery through data
- Adding intelligence to existing products
- Adapting through progressive learning algorithms (adapt to new data)
- Analyzing more and deeper data (computation power & Big Data)
- Al achieves very high accuracy
- Making the most out of data(best data wins)

The Race For Al: Google, Intel, Apple In A Rush To Grab Artificial Intelligence

Startups

https://www.cbinsights.com/research/top-acquirers-ai-startups-ma-timeline/

Race To Acquire Top Al Startups Heats Up

Date of acquisition (only includes 1st exits of companies)

Artificial Intelligence market projected to grow 25-fold in eight years!

Source:

https://www.moneycontrol.com/news/business/data-story-next -investment-opportunity-artificial-intelligence-market-projected-to-grow-25-fold-in-eight-years-2411419.html

Revenues from the artificial intelligence (AI) market worldwide, from 2016 to 2025 (in million U.S. dollars)

Let's Define Some Terms!

Learning Styles

- 1. Supervised Learning
- 2. Unsupervised Learning
- 3. Reinforcement Learning

Supervised Learning

Unsupervised Learning

Unsupervised Learning

Reinforcement Learning

Source:

https://medium.freecodecamp.org/a-brief-introduction-to-reinforcement-learning-7799af5840db

Classification Versus Regression

Classification

Regression

Data Science Life Cycle

Data Preprocessing

Exploratory Data Analysis

- plots
- graphs
- summary statistics

Source: http://www.jeannjoroge.com/significance-of-exploratory-data-anaysis/

Feature Extraction

- Extracting important/relevant characteristics that are enclosed within the data
- Transformation of input data into a set of distinctive properties (features) that can well represent the data
- Needs domain-specific expertise to select the features
- Example: Relevant features for a certain disease can be blood pressure and body temperature but not person's height

Predictive Modeling

Split Your Dataset

We need the network to be able to generalize.

Split the training dataset:

- -Train set
- Test set

Jata

Train - Test Split

Train

Test

Evaluating Your Model

Underfitting
Overfitting
Good fitting

Some Challenges of Al

- Feature-based models need domain-specific expertise
- Data often needs a lot of cleaning and preprocessing (missing data, inconsistent data, etc)
- Handling data from different sources and of various types
- Data is not always free
- Generalization and scalability of machine learning models
- Interpretability of decisions taken by these models
- Data privacy concerns (like in the financial and medical sectors)

"Al is likely to be either the best or worst thing to happen to humanity."

-- Stephen Hawking

Computer Programming

Computer Programming

- The process of designing and building a computer program that executes a specific task
- Done through a set of commands that the computer understands

Examples include:

- creating video games
- building websites
- creating animated videos

Programming Languages

What are programming languages?

- Used to create computer programs
- A set of rules that instruct a computer of operations to perform
- Every programming language has its unique words, symbols, and grammatical rules

Programming Languages

Most popular programming languages:

- Java
- · C
- Python
- . C++
- •

A Intro to Python

Python is:

- A high-level and a general-purpose programming language
- · First released in 1991

Python Shell:

 Where the command and lines of code are entered and directly executed

```
Python 3.7 (32-bit)
                                                                                                                  Python 3.7.1 (v3.7.1:260ec2c36a, Oct 20 2018, 14:05:16) [MSC v.1915 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello World!")
Hello World!
```

IDE (Integrated Development Environment):

- Similar to text editors except that they are specific to writing and editing code
- Entire code is written to be saved, used, and executed later

Example IDEs:

· Python IDLE:

```
File Edit Format Run Options Window Help
#My first program
print ("Hello World!")
                                                                                  Ln: 3 Col: 0
```

Example IDEs:

Spyder:

Cloud Alternatives:

- Run completely online on the cloud
- · Require no prior setup

Examples:

Google's Colab

Jupyter Notebook

Using Google Colab

Steps:

- 1- Click on the link of the Jupyter Notebook given
- 2- Sign in with your Gmail account

Using Google Colab

Steps:

3- File -> Save a copy in Drive

Using Google Colab

Steps:

3- Run the code

Demos:

Using python as a calculator

Demos:

Using the print function:

print("Hello World!")

Hello World!

Basic Data types:

- Numbers (signed, unsigned, integers, floating point numbers)
- Characters (a,b,A)
- Boolean (0 or 1, True or False)

Complex Data types:

Strings (combination of characters)

Variables:

Reserved memory locations that store values that can be used again

A variable is created by giving it a name and assigning it to a

number 1

Variable

Assignment

Operator

100

Value

value using the equals sign (=)

Naming rules:

- First character can't be a digit
- Can be of any length
- Can contain uppercase and lowercase letters, digits, and underscore ()

Variables:

```
string = "This is a string"
number_integer = 4
number_decimal = 3.5

print(string)
print(number_integer)
print(number_decimal)
```

This is a string 4 3.5

Arrays:

- A type of variable that holds many pieces of information
- Elements are accessed using their index
- First element -> index = 0
- Second element -> index = 1
- ...
- Last element can also be accessed through index = -1

Arrays:

```
array = [1, 4, "hello", 4.5]

print( array[0] )
print( array[1] )
print( array[2] )
print( array[3] )
```

1 4 hello 4.5

Arrays: Slicing

```
array = [1, 4, "hello", 4.5]

print( array[ : 3 ] )
 print( array[ 2 : ] )
 print( array[ 1 : 3 ] )
 print( array[ : ] )
```

```
[1, 4, 'hello']

['hello', 4.5]

[4, 'hello']

[1, 4, 'hello', 4.5]
```

Operators:

- Addition (+)
- Subtraction ()
- Multiplication (*)
- Division (/)
- Assignment operators (=)
- Relational operators:
 - o greater than: >
 - o greater than or equal: >=
 - o less than: <
 - o less than or equal: <=</p>
 - o equal-to: ==
 - o not-equal-to: !=
- Logical operators:
 - o And: and
 - o Or: or
 - o Not: not
 - o Boolean: True or False

Comments:

- Lines of codes that start with the symbol #
- Not executed by the program
- Usually used to explain your code to other programmers

#This is a comment

If/else statements:

A programming conditional statement

If (condition) \rightarrow do this Else \rightarrow do that

If the condition is satisfied → certain lines of code are executed Otherwise → other lines of code are executed

If/else statements:

```
x = 0
if (x==0):
    print("True")
else:
    print("False")
```

True

If/else statements:

```
x = 3
if (x==0):
   print("True")
else:
   print("False")
```

False

While loops:

A set of statements are executed as long as the condition is True while (condition) \rightarrow do this

```
i = 1
while ( i < 6 ):
    print( i )
    i = i + 1</pre>
```

1 2 3 4 5

For loops:

- Used to iterate over a sequence
- A set of statements are executed for every item in the sequence

```
numbers = [1, 2, 3]
```

for x in numbers:
 print(x)

1 2 3

For loops with the range() function:

range (starting value, ending value, increment value)

- The range function returns a sequence of numbers
- Starts from 0 by default
- Increments by 1 by default
- Ends at the specified number

```
for x in range(3): print(x)
```

0 1 2

Functions:

- A block of code that only runs when it is called
- Defined using the "def" keyword

def my_function():
 print("Hello World!")

Functions:

The code will not run unless the function is called by its name

```
def my_function():
    print("Hello World!")
```

my_function()

Hello World!

Functions:

Function naming rules:

- Start with a letter or underscore only (_)
- Should be lowercase
- Can contain numbers except for the first character
- Shouldn't be the same as a Python Keyword
- Can have any length but preferred to be short

Functions with parameters:

Take parameters as input that can be used inside the function

```
def my_function(number):
    print (number + 2)
```

my_function(5)

7

Functions with the return function:

Allows the function to return the result

```
def my_function(number):
    return (number + 2)
```

my_function(5)

Functions with the return function:

A print function is required to see the result

```
def my_function(number):
    return (number + 2)

print( my_function(5) )
```

7

Language Basics

Indentation:

Indentation is very important

The program will not run if the indentation is not correct

for x in range(3):
 print(x)

for x in range(3):
 print(x)

IndentationError:
 expected an indented block

Language Basics

Types of errors:

- NameError: attempt to access an undeclared variable
- SyntaxError: python interpreter syntax error
- IndexError: request for an out-of-range index for sequence
- ZeroDivisionError: division by any numeric zero
- AttributeError: attempt to access an unknown object attribute

Python for Machine Learning

Python Libraries

To use a library, it should be imported in the code:

import library_name

Built-in functions of the library can be accessed using the dot operand

library_name_function_name

NumPy Library

NumPy Library:

 General-purpose array-processing package

- For Data Analysis
- Provides efficient and high-performance multi-dimensional array object and tools

A NumPy Library

Creating NumPy Arrays:

```
import numpy as np
#One-dimensional NumPy array
list1 = [1, 2, 3]
numpy array= np.array( list1 )
print("One-dimensional array: ", numpy_array)
#Two-dimensional NumPy array
list2 = [[1, 2, 3], [4, 5, 6]]
numpy array2= np.array( list2 )
print("Two-dimensional array: ", numpy_array2)
```

One-dimensional array: [1 2 3]
Two-dimensional array: [[1 2 3]
 [4 5 6]]

A NumPy Library

Shape of NumPy Arrays:

```
import numpy as np
#One-dimensional NumPy array
list1 = [1, 2, 3]
numpy_array= np.array( list1)
print("Shape of array 1: ", numpy_array.shape)

#Two-dimensional NumPy array
list2 = [[1, 2, 3], [4, 5, 6]]
numpy_array2= np.array( list2)
print("Shape of array 2: ", numpy_array2.shape)
```

Shape of array 1: (3,)
Shape of array 2: (2, 3)

A NumPy Library

Reshape function:

Change the dimensions of an array without changing its data

```
import numpy as np
list1 = [1, 2, 3, 4, 5, 6]
numpy_array= np.array( list1)
print( np.reshape ( numpy_array , (3,2) ) )
```

```
[[1 2]
[3 4]
[5 6]]
```

SciPy Library

SciPy Library:

- Depends on NumPy
- Has a variety of high-level science and engineering modules together such as:
 - Signal processing tools
 - Optimization tools
 - Linear algebra routines

Pandas Library

Pandas Library:

- Relational data tool built on top of NumPy
- Used for data analysis
- Main functions:
 - Reading and writing data
 - Data alignment
 - Reshaping
 - Slicing, subsetting
 - Merging and joining of datasets

Matplotlib Library

Matplotlib Library:

- matpletlib
- A 2D and 3D graphic library used to plot scientific figures
- Types of plots:
 - o Pie Plot
 - Area Plot
 - o Bar graphs
 - Scatter plot
 - Histograms

Matplotlib Library

Plotting a straight line:

```
from matplotlib import pyplot as plt
x=[6,8,10]
y=[12,16,20]
plt.plot(x,y)
plt.title("Info")
plt.ylabel("Y axis")
plt.xlabel("X axis")
plt.show()
```


Scikit-learn Library

Scikit-learn Library:

- A simple and efficient library for data mining and data analysis
- Main uses:
 - Classification
 - Regression
 - Clustering
 - Preprocessing
 - Model selection

Hands-on Workshop

Al showcase

Demo Time!

- https://teachablemachine.withgoogle.com/
- https://quickdraw.withgoogle.com/
- https://research.google.com/semantris/
- http://fontmap.ideo.com/
- https://thing-translator.appspot.com/

Thank You See you again TOMORROW!