### بسم الله الرحمن الرحيم

## Quiz 1 on connections

Student ID Number.....

Please read and then answer the questions

In the connection in the figures below calculate the minimum load that can be taken by bolt group



#### Data

- 1. Black Bolts are 20 mm grade4.6 with a net area in in thread = 245mm2
- 2. Diametre of bolt at thread 17.66 mm
- 3. Properties of channel



D=203.mm, B=76.2mm t=7.1 mm T=11.2mm d=160mm

#### use table below

Table 10.1 Non-preloaded bolts in standard clearance holes (shear and bearing strengths of bolts and connected parts in  $N/mm^2$ )

| Strength of bolts             | Bolt grade |      |      |                   |                   |                   |
|-------------------------------|------------|------|------|-------------------|-------------------|-------------------|
|                               | 4.6        | 8.8  | 10.9 | S275 <sup>a</sup> | S355 <sup>a</sup> | S460 <sup>a</sup> |
| Shear strength p <sub>s</sub> | 160        | 375  | 400  | _                 | _                 | _                 |
| Bearing strength pbb          | 460        | 1000 | 1300 | _                 | _                 | _                 |
| Bearing strength pbs          | -          | -    | -    | 460 <sup>b</sup>  | 550 <sup>b</sup>  | 670 <sup>b</sup>  |

<sup>&</sup>lt;sup>a</sup>Steel grade.

Table 32 — Bearing strength  $p_{\rm bs}$  of connected parts

| Steel grade                                                          | S 275 | S 355 | S 460 | Other grades                  |
|----------------------------------------------------------------------|-------|-------|-------|-------------------------------|
| Bearing strength p <sub>bs</sub> (N/mm <sup>2</sup> )                | 460   | 550   | 670   | $0.67(U_{\rm S} + Y_{\rm S})$ |
| NOTE 1 $U_s$ is the specified minimum tensile strength of the steel. |       |       |       |                               |
| NOTE 2 $Y_s$ is the specified minimum yield strength of the steel.   |       |       |       |                               |

#### Q1 What is the Bolts group capacity in shear

8Marks

- (a)  $800 \, kN$
- (b) 400kNC
- (c) 120 kN
- (d)  $627 \, kN$

#### Q2 What is the Bolts group capacity in bearing

8 Marks

- (a)  $1400 \ kN$
- (b)  $400 \ kN$
- (c) 880 kN
- (d)  $600 \, kN$

<sup>&</sup>lt;sup>b</sup>Connected parts.

Please read and then answer the questions from Q3 to Q10
The bolted bracket connection shown in Figure carries a vertical ultimate load of 300 kN placed at an eccentricity of 250 mm. check that the 12 NO .24-mm diameter Grade 4.6 bolts are adequate where the net area of bolt section at thread =353 mm2
Assume all plates to be 20 mm thick



Table 10.1 Non-preloaded bolts in standard clearance holes (shear and bearing strengths of bolts and connected parts in N/mm<sup>2</sup>)

| Strength of bolts             | Bolt grade |      |      |                   |                   |                   |
|-------------------------------|------------|------|------|-------------------|-------------------|-------------------|
|                               | 4.6        | 8.8  | 10.9 | S275 <sup>a</sup> | S355 <sup>a</sup> | S460 <sup>a</sup> |
| Shear strength p <sub>s</sub> | 160        | 375  | 400  | _                 | _                 | _                 |
| Bearing strength pbb          | 460        | 1000 | 1300 | _                 | _                 | _                 |
| Bearing strength $p_{bs}$     | -          | -    | -    | 460 <sup>b</sup>  | 550 <sup>b</sup>  | 670 <sup>b</sup>  |

<sup>&</sup>lt;sup>a</sup>Steel grade.

Table 34 — Tension strength of bolts

| ) | Tension strength p <sub>t</sub> (N/mm <sup>2</sup> ) | Bolt grade |      |
|---|------------------------------------------------------|------------|------|
|   | 240                                                  |            | 4.6  |
|   | 560                                                  |            | 8.8  |
|   | 700                                                  |            | 10.9 |
|   |                                                      |            |      |

<sup>&</sup>lt;sup>b</sup>Connected parts.

| Q3 Shear load on bolts from load Fs=                | 8 Marks                  |
|-----------------------------------------------------|--------------------------|
| (a) 100kN                                           |                          |
| (b) 43 kN                                           |                          |
| (c) 25 kN                                           |                          |
| (d) 20 kN                                           |                          |
| Q4 Capacity of bolt shear strength Ps=              | 8 Marks                  |
| (a) $400.2 \ kN$                                    |                          |
| (b) $56.48 \text{ kN}$                              |                          |
| (c) 150 kN                                          |                          |
| (d) $36.8  kN$                                      |                          |
| Q5 Ratio - actual shear load /Capacity of bolt in s | hear = Fs / Ps = 8 Marks |
| (a) 0.44                                            |                          |
| (b) 0.60                                            |                          |
| (c) 0.25                                            |                          |
| (d) $0.33$                                          |                          |
| Q6 Maximum tension in bolt from load Ft=            | 8 Marks                  |
| (a) $24.60 \ kN$                                    |                          |
| (b) 56.81 kN                                        |                          |
| (c) $100.4 \text{ kN}$                              |                          |
| (d) 200 kN                                          |                          |
| Q7 Bolt Tension capacity Pt =                       | 8 Marks                  |
| (a) $40.22 \ kN$                                    |                          |
| (b) $24.8 \text{ kN}$                               |                          |
| (c) $118  kN$                                       |                          |
| (d) $67.77  kN$                                     |                          |
| Q8 Ratio of Ft / Pt =                               | 8 Marks                  |
| (a) $0.83$                                          |                          |
| (b) 0.66                                            |                          |
| (c) 0.56                                            |                          |
| (d) 0.48                                            |                          |

Q9 Combined ratio Fs/Ps + Ft/Pt =

8 Marks

- (a) 1.388
- (b) 1.122
- (c) 1.278
- (d) 1.0248

Q10 Is the Bolts group being adequate?

8 Marks

- (a) Not adequate
- (b) adequate
- (c) Partially not adequate
- (d) Partially adequate

# Please read and then answer the questions from Q11 to Q14 In the connection below



Data

Leg of weld= 6mm

Using Class 42 electrode on Grade S275 plate

L1 = 48 mm L2 = 88 mm

Table 37 — Design strength of fillet welds  $p_{\rm w}$ 

| Steel grade | Elec              | Electrode classification<br>(see Table 10) |                   | For other types of electrode and/or other steel grades:                                                     |
|-------------|-------------------|--------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------|
|             | 35                | 42                                         | 50                | $p_{\mathrm{w}} = 0.5 U_{\mathrm{e}} \; \mathrm{but} \; p_{\mathrm{w}} \leq 0.55 U_{\mathrm{s}}$            |
|             | N/mm <sup>2</sup> | N/mm <sup>2</sup>                          | N/mm <sup>2</sup> | where                                                                                                       |
| S 275       | 220               | (220)a                                     | (220)a            | $U_{ m e}$ is the minimum tensile strength of the electrode, as specified in the relevant product standard; |
| S 355       | (220)b            | 250                                        | (250)a            | $U_{ m s}$ is the specified minimum tensile strength of the                                                 |
| S 460       | (220)b            | (250)b                                     | 280               | parent metal.                                                                                               |

Q11 Throat of weld =

5 mark

- (a) 5.0 mm
- (b) 3.2 mm
- (c) 4.2 mm
- (d) 6.0 mm

*Q12 Force F1* =

5 mark

- (a) 33kN
- (b) 102 kN
- (c) 12 kN

(d) 44 kN

*Q13* Force F2 = 5 mark

- (a) 120 kN
- (b) 81 kN
- (c) 40 kN
- (d) 24 kN

Q14 Load capacity of the welded connection Sum (F1+F2) = 5 mark

- (a)  $110 \ kN$
- (b) 77 kN
- (c) 210 kN
- (d) 125. kN