10 ノルムとトレース

定義 10.1. A: 有限次 K - alg とする。 $x \in A$ に対して x 倍写像

$$T_x: A \longrightarrow A$$

 $a \longmapsto xa$

は A が K-alg より K- 線形写像になる。よってある A の基底によって $\dim_K(A)=n$ のとき行列 $T_x:K^n\longrightarrow K^n$ にできる。

この行列 T_x について x のトレース (trace) $\operatorname{Tr}_{A/K}(x)$ と x のノルム (norm) $\operatorname{N}_{A/K}(x)$ を

$$\operatorname{Tr}_{A/K}(x) := \operatorname{Tr}(T_x)$$

 $\operatorname{N}_{A/K}(x) := \det(T_x)$

とするとこの値は K の元であるから

$$\operatorname{Tr}_{A/K}:A\longrightarrow K$$

 $\operatorname{N}_{A/K}:A\longrightarrow K$

という写像になっていて ${
m Tr}_{A/K}$ は K- 線形写像、 ${
m N}_{A/K}$ は乗法的 $({
m N}(xy)={
m N}(x){
m N}(y))$ である。とくに、定義域を乗法群 A^{\times} に制限すれば

$$N_{A/K}|_{A^{\times}}:A^{\times}\longrightarrow K$$

は群準同型になる。

例 10.2. $x \in K$ のとき n := [A:K] として、A の基底を $\{e_1, \ldots, e_n\}$ とする。 $T_x = (t_{ij})_{i,j=1,\ldots,n}$ とおいた とき行列表示は

$$T_x(e_j) = \sum_{i=1}^n t_{ij} e_i$$

とできて $T_x(e_j) = xe_j$ で基底の一次独立性から $t_{ij} = x, t_{ij} = 0 \ (i \neq j)$ となるので

$$T_x = \begin{pmatrix} x & & \\ & \ddots & \\ & & x \end{pmatrix}$$

と書ける。 したがって $\operatorname{Tr}_{A/K}(x)=nx, \operatorname{N}_{A/K}(x)=x^n$ となる。