Tekenschema

Bron: https://hoezithet.net/lessen/wiskunde/functies/tekenschema/

Een functie kunnen we voorstellen als een machientje waar we een waarde voor \$x\$ in stoppen en waar hoogstens één waarde voor \$y\$ uit komt.

De nulwaarden van de functie zeggen welke x-waarden we in de functie moeten stoppen om als functiewaarde (of y-waarde) nul te krijgen. We kunnen nu ook op zoek gaan naar de x-waarden die een *positieve* functiewaarde opleveren en de x-waarden die een *negatieve* functiewaarde opleveren.

Tekenschema vanuit een grafiek

Welke x-waarden welk teken (positief/negatief/nul) opleveren voor de y-waarden, vatten we samen in een tekenschema (ook wel "tekentabel" of "tekenverloop" genoemd). Als de grafiek van een functie is gegeven, kunnen we zien waar de functiewaarden (of de y-waarden) positief, negatief of nul zijn.

We zien op de grafiek:

- Voor x-waarden kleiner dan \$-3\$ zijn alle y-waardennegatief;
- Voor x gelijk aan \$-3\$ is de y-waarde nul;
- Voor x-waarden tussen \$-3\$ en \$3\$ zijn alle y-waardenpositief;
- Voor x gelijk aan \$3\$ is de y-waardenul;
- Voor x-waarden groter dan \$3\$ zijn alle y-waardennegatief.

Dit vatten we als volgt samen in een tekenschema:

Ingang \$x\$	\$- \infty\$		\$-3\$		\$3\$		\$+\infty\$
Uitgang \$y = f(x)\$		\$- }\$	\$\blue{0}\$	\$\green{+}\$	\$\blue{0}\$	\$- }\$	

Het schema toont:

- Als de ingang (\$x\$) iets tussen \$-\infty\$ en \$-3\$ is, is de uitgang (\$y\$) *negatief*;
- Als \$x=-3\$, is \$y\$ nul;
- Als \$x\$ iets tussen \$-3\$ en \$3\$ is, is \$y\$ positief;
- Als \$x=3\$ is, is \$y\$ *nul*;

• Als \$x\$ iets tussen \$3\$ en \$+\infty\$ is, is \$y\$ negatief.

Tekenschema zonder grafiek

We kunnen een tekenschema ook maken zonder een grafiek. Dit doen we in drie stappen.

- 1. Zet de grenzen van het domein in de bovenste rij van het tekenschema:
- 2. Zoek alle nulpunten en zet ze van klein naar groot (volgens xwaarde) tussen de grenzen van het domein;
- 3. Vind de tekens van \$y\$ tussen alle x-waarden in het schema (tenzij die x-waarden buiten het domein liggen).

We werken deze stappen uit voor de (reële) functie met voorschrift $\$f(x) = -x^2 + 9\$$ Dit is de functie die hoort bij de grafiek van daarnet. We hopen dus ook hetzelfde tekenschema te krijgen.

Grenzen van het domein

We kunnen van eender welk reëel getal het kwadraat berekenen, dus we kunnen $f(x) = -x^2 + 9$ voor elk reëel getal x berekenen. Dit betekent dat het domein van f alle reële getallen is: f all

Ingang \$x\$	\$- \infty\$		\$+\infty\$
Uitgang \$y = f(x)\$			

Nulpunten zoeken

We vinden de nulwaarden van de functie $f(x) = -x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de doen, vind je dat $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ door de vergelijking $-x^2 + 9 = 0$ \$ op te lossen naar $-x^2 + 9 = 0$ \$ door de vergelijking

Ingang	\$-	\$-3\$	\$3\$	¢. \inftu¢
\$x\$	\infty\$	\$-2\$	ቅጋቅ	\$+\infty\$

Ingang \$x\$	\$- \infty\$	\$-3\$	\$3\$	\$+\infty\$
Uitgang y = $f(x)$		\$\blue{0}\$	\$\blue{0}\$	

Tekens van \$y\$ tussen alle x-waarden

Om het tekenschema te vervolledigen, moeten we op zoek naar welk teken er moet staan bij \$y\$ tussen alle x-waarden die in het schema staan. Dus tussen \$-\infty\$ en \$-3\$, tussen \$-3\$ en \$3\$, en tussen \$3\$ en \$+\infty\$. Een trucje dat *altijd* werkt is:

- 1. Kies een eenvoudige x-waarde die ligt tussen de twee x-waarden:
- 2. Vul de gekozen x-waarde in in de functie;
- 3. Zet het teken van de uitkomst in het tekenschema.

Bijvoorbeeld het teken van \$y\$ voor \$x\$ tussen \$-3\$ en \$3\$. Een eenvoudig getal dat ligt tussen \$-3\$ en \$3\$ is \$0\$. Die vullen we in in $\$f(x) = -x^2 + 9\$$: $\$\$f(\sigma(0)) = -(\sigma(0))^2 + 9 = \sigma(9)$ \$\$ We komen een **positief** getal uit, dus we zetten een $\$\sigma(+)$ \$ tussen \$-3\$ en \$3\$:

Ingang \$x\$	\$- \infty\$	\$-3\$		\$3\$	\$+\infty\$
Uitgang y = $f(x)$		\$\blue{0}\$	\$\green{+}\$	\$\blue{0}\$	

Voor een x-waarde tussen $-\infy$ en \$-3\$, kunnen we \$-5\$ nemen. \$\$f(\orange{-5}) = -(\orange{-5})^2 + 9 = -25 + 9 = \red{-16}\$\$ Invullen geeft een negatief getal, dus we zetten een \$\red{-}\$ tussen \$-\infty\$ en \$-3\$:

Ingang \$x\$	\$- \infty\$		\$-3\$		\$3\$	\$+\infty\$
Uitgang \$y = f(x)\$		\$- }\$	\$\blue{0}\$	\$\green{+}\$	\$\blue{0}\$	

Voor een x-waarde tussen \$3\$ en \$+\infty\$, ten slotte, kunnen we \$5\$ nemen. $\$f(\sigma_{5}) = -(\sigma_{5})^2 + 9 = -25 + 9 = \rd_{5}$ \$ Invullen geeft een negatief getal, dus we zetten een \rd_{-} \$ tussen \$3\$ en \$+\infty\$:

Ingang \$x\$	\$- \infty\$		\$-3\$		\$3\$		\$+\infty\$
Uitgang y = $f(x)$		\$- }\$	\$\blue{0}\$	\$\green{+}\$	\$\blue{0}\$	\$- }\$	

Et voilà!

We krijgen hetzelfde tekenschema als daarnet.

Enkel nulpunten en grenzen van domein

De x-waarden die in een tekenschema staan (de bovenste rij), zijn ofwel nulwaarden (\$-3\$ en \$3\$ in het vorige voorbeeld) ofwel grenzen van het domein (\$-\infty\$ en \$+\infty\$ in het voorbeeld). Er zijn geen andere x-waarden nodig. Dat is omdat het teken van \$y\$ enkel kan veranderen na een nulpunt of na een grens van het domein.

Voor echt heel speciale functies kan het teken ook na andere x-waarden veranderen, namelijk na een *discontinuïteit*. Zulke functies zullen we niet zo vaak tegenkomen, dus is het niet de moeite om er nu verder op in te gaan. Zorgen voor later!

Samengevat

TEKENSCHEMA

Het tekenschema van een functie \$f\$ toont schematisch het teken van \$y\$ voor alle x-waarden die in het domein van \$f\$ zitten.

TEKENSCHEMA OPSTELLEN

- 1. Zet de grenzen van het domein in het tekenschema;
- 2. Zoek alle **nulpunten** en zet ze tussen de grenzen van het domein;
- 3. Vind de tekens van \$y\$ tussen alle x-waarden in het schema.

Je vindt meer lessen op https://hoezithet.net/

© 2019 hoe zit het?