TEMA 4c: Polinomios y Teorema de Taylor. El polinomio de Taylor

Sea $f: I \to \mathbb{R}$ una función derivable, donde I es un intervalo abierto.

- Recordamos que la recta tangente de f en un punto $a \in I$ viene dada por $y = P_{1,a}(x) = f(a) + f'(a)(x a)$. Esta función vale f(a) en x = a y su derivada primera vale en dicho punto f'(a).
- De la misma forma, el polinomio de grado 2 que tiene las 2 mismas derivadas que f en x = a es $P_{2,a}(x) = f(a) + f'(a)(x a) + \frac{f''(a)}{2!}(x a)^2$.
- Con más generalidad, definimos polinomios de grados superiores con todas sus derivadas iguales a la de f en a:

Definición

Sea I un intervalo y $f: I \to \mathbb{R}$ una función derivable n veces en $a \in I$. Entonces se define el **polinomio de Taylor de** f **de grado** n **en** a como

$$P_{n,a}(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Otras notaciones: $P_{n,a,f}(x)$, $P_{n,a}f(x)$.

F. Soria (UAM) Cálculo I 1

Propiedades del Polinomio de Taylor (I)

Proposición (1)

El polinomio de Taylor de grado n en a tiene las mismas derivadas que f en dicho punto. Además:

$$\frac{d}{dx}P_{n,a,f}(x) = P'_{n,a,f}(x) = P_{(n-1),a,f'}(x),$$

es decir, la derivada del polinomio de Taylor de grado n de f es el polinomio de Taylor de grado n -1 de la derivada f'.

Proposición (2)

Si f tiene n derivadas en a, se cumple $\lim_{x\to a}\frac{f(x)-P_{n,a,f}(x)}{(x-a)^n}=0. \ \ \text{Además es el}$ único polinomio de grado $\leq n$ que tiene esta propiedad.

Dem.: Para la primera parte, basta usar la Regla de L'Hôpital n-1 veces. Para el recíproco, observamos que si Q(x) es un polinomio de grado $\leq n$ con Q(x)

$$\lim_{x\to a}\frac{Q(x)}{(x-a)^n}=0, \text{ entonces } Q(x)\equiv 0.$$

Propiedades del Polinomio de Taylor (II)

Definición

Dadas dos funciones g(x) y h(x), se dice que g es "o-pequeña" de h cuando x tiende al punto a (y se escribe g(x) = o(h(x)), $x \to a$), si $\lim_{x \to a} \frac{g(x)}{h(x)} = 0$.

Corolario (3)

Si f tiene n derivadas en a, entonces $f(x) = P_{n,a,f}(x) + o((x-a)^n)$, $x \to a$.

Este resultado extiende la noción geométrica de que la recta tangente es la mejor aproximación lineal a la gráfica de una función derivable. La siguiente definición nos da la terminología para describir esta situación:

Definición

Se dice que las gráficas de dos funciones G(x) y H(x) tienen un orden de contacto "superior" a n en a si se cumple $\lim_{x\to a} \frac{G(x)-H(x)}{(x-a)^n}=0$.

Así, $P_{n,a,f}(x)$ siempre tiene un orden de contacto superior a n con f(x)

F. Soria (UAM) Cálculo I 3

Teorema de Taylor

Teorema

Sea f una función para la que existen n+1 derivadas. Entonces

$$f(x) = P_{n,a}(x) + R_{n,a}(x),$$

donde $R_{n,a}(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, para algún c en el intervalo entre a y x.

 $R_{n,a}(x)$ se denomina el resto de Taylor.

Dem.: La demostración se sigue del uso del teorema del valor medio de Cauchy (n+1) veces, con $F(x) = f(x) - P_{n,a}(x)$ y $G(x) = (x-a)^{n+1}$, usando que $= F^{(j)}(a) = G^{(j)}(a) = 0$ para $j = 0, 1, \ldots, n$:

$$\frac{f(x) - P_{n,a}(x)}{(x-a)^{n+1}} = \frac{F(x)}{G(x)} = \frac{F'(t_1)}{G'(t_1)} = \cdots = \frac{F^{(n)}(t_n)}{(n+1)!G^{(n)}(t_n)} = \frac{F^{(n+1)}(c)}{(n+1)!G^{(n+1)}(c)} = \frac{f^{(n+1)}(c)}{(n+1)!},$$

para ciertos puntos t_1, t_2, \ldots, t_n, c entre x y a.

Interpretación:

El valor de $P_{n,a}(x)$ puede ser más fácil de calcular que el de f(x) en un entorno de a determinado. $P_{n,a}(x)$ es entonces un valor aproximado al de f(x), con un error dado por $R_{n,a}(x)$.

Serie de Taylor de una función

La idea asociada a esta noción es la de reemplazar el polinomio de Taylor (que, por definición, corresponde a un número finito de sumandos) por una suma infinita, es decir, por una serie

Definición

Sea $f:I \to \mathbb{R}$ una función con infinitas derivadas. Su serie de Taylor en un punto x=a viene dada por

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \ldots$$

En notación habitual queda $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n, \quad \text{siendo } f^{(0)}(x) = f(x).$

Esta serie puede, o no, "representar" a la función original. Eso dependerá de si $R_{n,a}(x) \to 0$ con n.

EJEMPLOS:

- a) La serie $\sum_{n=0}^{\infty} \frac{x^n}{n!}$, representa punto a punto a la función e^x (es su serie de Taylor en a=0).
- b) Sin embargo, la función $\begin{cases} e^{-1/x}, & \text{si } x>0, \\ 0, & \text{si } x\leq 0. \end{cases}$ tiene infinitas derivadas en a=0 y todas valen 0. Luego sus polinomios y, por tanto, su serie de Taylor en dicho punto dan la función 0.

Series de Taylor de algunas funciones elementales

El cálculo de las series de Taylor consiste en hallar las derivadas $f^{(n)}(a)$ y sustituir en la fórmula anterior. Para algunas de las funciones más frecuentes, sus series de Taylor en a=0 (también llamadas series de MacLaurin) son

1
$$\operatorname{sen} x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \text{ si } x \in \mathbb{R}$$

②
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 si $x \in \mathbb{R}$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \text{ si } x \in \mathbb{R}$$

1
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \text{ si } |x| \le 1$$