

Forecasting Team

Lorenzo Stella

Matthias Seeger

Jan Gasthaus

Bernie Wang

David Salinas

Tim Januschowski

Syama Rangapuram

Valentin Flunkert

Alexander Alexandrov

Michael Bohlke-Schneider

Why Forecasting

• Predict the future behaviour of a time series given its past

$$z_1, z_2, \ldots, z_T \Longrightarrow P(z_{T+1}, z_{T+2}, \ldots z_{T+\tau})$$

• Predict the future behaviour of a time series given its past

$$z_1, z_2, \ldots, z_T \Longrightarrow P(z_{T+1}, z_{T+2}, \ldots z_{T+\tau})$$

• If I knew the future ...

best action =
$$\underset{a}{\operatorname{argmin}} \operatorname{cost}(a, z_{T+1}, z_{T+2}, \dots z_{T+\tau})$$

• Predict the future behaviour of a time series given its past

$$z_1, z_2, \ldots, z_T \Longrightarrow P(z_{T+1}, z_{T+2}, \ldots z_{T+\tau})$$

• If I knew the future . . .

best action =
$$\underset{a}{\operatorname{argmin}} \operatorname{cost}(a, z_{T+1}, z_{T+2}, \dots z_{T+\tau})$$

• If I have a calibrated forecast $P(z_{T+1}, z_{T+2}, \dots z_{T+\tau})$...

$$\mathsf{best} \ \mathsf{action} = \mathop{\mathsf{argmin}}_{a} \mathrm{E}_{\mathrm{P}}[\mathsf{cost}(a, z_{\mathcal{T}+1}, z_{\mathcal{T}+2}, \dots z_{\mathcal{T}+\tau})]$$

• Predict the future behaviour of a time series given its past

$$z_1, z_2, \ldots, z_T \Longrightarrow P(z_{T+1}, z_{T+2}, \ldots z_{T+\tau})$$

• If I knew the future . . .

best action =
$$\underset{a}{\operatorname{argmin}} \operatorname{cost}(a, z_{T+1}, z_{T+2}, \dots z_{T+\tau})$$

• If I have a calibrated forecast $P(z_{T+1}, z_{T+2}, \dots z_{T+\tau})$...

$$\mathsf{best} \ \mathsf{action} = \mathop{\mathsf{argmin}}_{a} \mathrm{E}_{\mathrm{P}}[\mathsf{cost}(a, z_{\mathcal{T}+1}, z_{\mathcal{T}+2}, \dots z_{\mathcal{T}+\tau})]$$

 Forecasts can be leveraged for optimising business problems in retail, AWS, logistics, professional services, etc.

General Setup

General Setup

[1] Yu, Rao, Dhillon. Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction. NIPS 2016

[2] N. Chapados. Effective bayesian modeling of groups of related count time series. ICML 2014

[3] Flunkert, Salinas, Gasthaus. Probabilistic Forecasting with Autoregressive Recurrent Networks. arXiv 2017 [4] Wen, Torkkola, Narayanaswamy. A Multi-Horizon Quantile Recurrent Forecaster. arXiv 2017

• Generative model for observations: (z_1, \ldots, z_T)

• Generative model for observations: (z_1, \ldots, z_T)

 (z_t) ...

• Generative model for observations: (z_1, \ldots, z_T)

• Generative model for observations: (z_1, \ldots, z_T)

• Generative model for observations: (z_1, \ldots, z_T)

• Generative model for observations: (z_1, \ldots, z_T)

• Linear Gaussian Model

$$I_t = I_{t-1} + g_t \varepsilon_t,$$
 $\varepsilon_t \sim N(0,1)$ (state transistion)
 $z_t = b_t + \mathbf{a_t}^T I_{t-1} + \sigma_t \epsilon_t,$ $\epsilon_t \sim N(0,1)$ (measurements)

• Generative model for observations: (z_1, \ldots, z_T)

• Linear Gaussian Model

$$I_t = I_{t-1} + g_t \varepsilon_t,$$
 $\varepsilon_t \sim N(0,1)$ (state transistion)
 $z_t = b_t + \mathbf{a}_t^T I_{t-1} + \sigma_t \varepsilon_t,$ $\varepsilon_t \sim N(0,1)$ (measurements)

• Free parameters: $\Theta = \{b_t, \pmb{a}_t, \pmb{g}_t, \sigma_t | \ \forall t\} \cup \{\pmb{\mu}_0, \pmb{\Sigma}_0\}$

• Generative model for observations: (z_1, \ldots, z_T)

Linear Gaussian Model

$$I_t = I_{t-1} + g_t \varepsilon_t,$$
 $\varepsilon_t \sim N(0,1)$ (state transistion)
 $z_t = b_t + \mathbf{a}_t^T I_{t-1} + \sigma_t \varepsilon_t,$ $\varepsilon_t \sim N(0,1)$ (measurements)

- Free parameters: $\Theta = \{b_t, \pmb{a}_t, \pmb{g}_t, \sigma_t | \ \forall t\} \cup \{\pmb{\mu}_0, \pmb{\Sigma}_0\}$
- Θ learned using maximum likelihood principle

$$\Theta^* = \operatorname*{argmax}_{\Theta} p_{\mathrm{SS}}(z_1, \ldots, z_T | \Theta)$$

Similar features \rightarrow similar state space models (modulo scale)

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

 $Similar\ features \rightarrow similar\ state\ space\ models\ (modulo\ scale)$

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

Generative Model:

 $Similar\ features \rightarrow similar\ state\ space\ models\ (modulo\ scale)$

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

Generative Model:

Features: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$

Similar features \rightarrow similar state space models (modulo scale)

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

Generative Model:

LSTM $\Theta_t = \theta(\mathbf{h}_t) \\ \mathbf{h}_t = \psi(\mathbf{h}_{t-1}, \mathbf{x}_t, \mathbf{\Phi})$ Features: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T$

Similar features \rightarrow similar state space models (modulo scale)

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

Generative Model:

Similar features → similar state space models (modulo scale)

$$\Theta_t = \Psi(\mathbf{x}_{1:t}, \mathbf{\Phi}), \quad \forall t$$

Generative Model:

• Loss: negative log-likelihood of the data under our model given features

observations $z_{1:T_i}^{(i)}$

 $oldsymbol{\mathsf{x}}_1^{(i)}$ \cdots $oldsymbol{\mathsf{x}}_t^{(i)}$ \cdots

 $\mathbf{x}_{T_i}^{(i)}$ features

• Loss: negative log-likelihood of the data under our model given features

observations $z_{1:T_i}^{(i)}$

• Loss: negative log-likelihood of the data under our model given features

• Loss: negative log-likelihood of the data under our model given features

• Kalman filtering in the case of linear Gaussian model

• Loss: negative log-likelihood of the data under our model given features

- Kalman filtering in the case of linear Gaussian model
- Robust to outliers and can handle missing data (z_{t-1}) is not fed back as feature for time step t)

Test time series (possibly new/unseen) with features in both training and prediction ranges

Test time series (possibly new/unseen) with features in both training and prediction ranges

Test time series (possibly new/unseen) with features in both training and prediction ranges

• Given the posterior of the final state and state space parameters, one can obtain the forecast distribution

$$P(z_{T_i+1}, z_{T_i+2}, \dots, z_{T_i+\tau}|z_1, z_2, \dots, z_{T_i})$$

Test time series (possibly new/unseen) with features in both training and prediction ranges

• Given the posterior of the final state and state space parameters, one can obtain the forecast distribution

$$P(z_{T_i+1}, z_{T_i+2}, \ldots, z_{T_i+\tau}|z_1, z_2, \ldots, z_{T_i})$$

• Analytical form or samples (sampling here is much faster than in DeepAR)

Experiments _____

Data Efficiency:

- Public datasets:
 - traffic: 963 hourly time series measuring occupancy rates of car lanes
 - electricity: 370 hourly time series measuring electricity consumption of different consumers
- Forecast horizon: 7 days
- Metrics: P50QL, P90QL: normalized quantile regression loss

	2-weeks		3-weeks		Full-data	
	P50QL	P90QL	P50QL	P90QL	P50QL	P90QL
DeepAR	0.177	0.153	0.126	0.096	0.132	0.104
DeepState	0.126	0.069	0.125	0.068	0.124	0.07

Results on traffic dataset

Experiments _____

Data Efficiency:

• Public datasets:

• traffic: 963 hourly time series measuring occupancy rates of car lanes

• electricity: 370 hourly time series measuring electricity consumption of different consumers

• Forecast horizon: 7 days

• Metrics: P50QL, P90QL: normalized quantile regression loss

	2-weeks		3-weeks		Full-data	
	P50QL	P90QL	P50QL	P90QL	P50QL	P90QL
DeepAR	0.153	0.147	0.147	0.132	0.09	0.051
DeepState	0.091	0.049	0.095	0.051	0.093	0.049

Results on electricity dataset

Example Predictions

electricity traffic

Experiments _____

More quantitative experiments

- Public datasets:
 - traffic: 963 hourly time series measuring occupancy rates of car lanes
 - electricity: 370 hourly time series measuring electricity consumption of different consumers
- Forecast horizon: 24 hours
- Metrics: P50QL/P90QL (Matrix factorization method only produces point forecasts)

	electricity	traffic	
MatFact	0.16/-	0.20/-	
DeepAR	0.079/ 0.0415	0.128 /0.0961	
DeepState	0.076 /0.0418	0.14/ 0.0957	

Average P50QL/P90QL for rolling day prediction for seven days

Conclusion

DeepState

- · New approach by marrying state space models with deep recurrent neural networks
- Explicitly incorporates structural assumptions and hence data-efficient
- More robust to outliers and can handle missing data
- Learns a joint global model and can forecast time series with little history (cold start problem)

Further directions

· Extensions to other likelihoods