

CS 3251- Computer Networks: Link Layer(3) and Exam

Professor Patrick Traynor Lecture 19 10/24/13

Announcements

- Schedule change next week
 - Enjoy! Relax! Study networking?
- Exams are coming back to you now.
- Project 3 is due 11/05...
 - Designed to be easy, but get it done.

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 5.5 link virtualization: MPLS
- 5.6 data center networking
- 5.7 a day in the life of a web request

Multiprotocol label switching (MPLS)

- initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - fast lookup using fixed length identifier (rather than shortest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables
- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

MPLS versus IP paths

 IP routing: path to destination determined by destination address alone

MPLS versus IP paths

- IP routing: path to destination determined by destination address alone
- MPLS routing: path to destination can be based on source and dest. address
 - fast reroute: precompute backup routes in case of link failure

Traffic Engineering and VPNs

 MPLS is becoming very popular because it allows admins to engineer traffic flowing through their network.

- Virtual Private Networks (VPNs) can allow certain customers to flow on paths not available to other traffic.
 - Or at the very least, reserve some set of resources to make disparate networks "feel" as if they are one system.

Link Layer

- 5.1 Introduction and services
- 5.2 Error detection and correction
- 5.3 Multiple access protocols
- 5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 5.5 link virtualization: MPLS
- 5.6 data center networking
- 5.7 a day in the life of a web request

Data center networks

- 10's to 100's of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Data center networks

Data center networks

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

Next Time

- No class on Tuesday
 - As always, keep an eye on that course calendar!
- The Physical Layer...
 - No reading this time around.
 - Enjoy your break...
 - ...but come back ready to tackle the second half of the class. We won't be slowing down!

