

CES Seminar Work WS17/18, Karsten Paul Supervisor: Christopher Zimmermann

Agenda

- Introduction to fracture
 - Brittle and ductile fracture
- Phase-field formulation
 - Griffith's theory of brittle fracture
 - Phase-field theory
 - Energy approximation
 - Strong form
- Numerical formulation
 - Weak form
 - Spatial and temporal discretization
- Numerical result
- Summary

A phase-field model of dynamic fracture Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

A phase-field model of dynamic fracture Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

A phase-field model of dynamic fracture Introduction to fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

How to describe the splitting of the material?		

Introduction to fracture

Cracks: Brittle and ductile fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

How to describe the splitting of the material?

Sharp interface models

- Insert discontinuities into the body
- Enrich displacement field Cohesive segments method $u(x,t) \approx \sum_{A} (N_{A}(x)u_{A}(t) + ...)$
- Mesh handling
 Virtual crack closure technique
- Great drawback: 3D

Introduction to fracture

Cracks: Brittle and ductile fracture

- Engineering designs: reliable prediction of fracture and material failure
 - Experiments: high expense and enormous costs
 - FEM: approximate crack nucleation and propagation

How to describe the splitting of the material?

Sharp interface models

- Insert discontinuities into the body
- Enrich displacement field Cohesive segments method $u(x,t) \approx \sum_{A} (N_{A}(x)u_{A}(t) + ...)$
- Mesh handling
 Virtual crack closure technique
- Great drawback: 3D

Diffuse interface models

- Phase-field methods
- Model interfaces between different phases
- Smooth transition
- No discontinuities

Phase-field formulation

Phase-field formulation

Notation and assumptions

- Small deformation and deformation gradients
- Isotropic linear elasticity
- Body Ω with boundary $\partial \Omega$
- Fracture surface Γ
- Dirichlet BC $u = g \ on \ \partial \Omega_{g_i}$
- Neumann BC $t = h \ on \ \partial \Omega_{h_i}$

Phase-field formulation

- Elastic energy density: $\Psi_e(\varepsilon) = \frac{1}{2}\lambda \ tr(\varepsilon)^2 + \mu \ \varepsilon$:
- Critical fracture energy density: G_c Energy necessary to create a unit area of fracture surface

Phase-field formulation

Griffith's theory and phase-field theory

- Elastic energy density: $\Psi_e(\varepsilon) = \frac{1}{2}\lambda \ tr(\varepsilon)^2 + \mu \ \varepsilon$:
- Critical fracture energy density: G_c Energy necessary to create a unit area of fracture surface

Recall: Hamilton's principle

Motion of mechanical system: $J(q, \dot{q}) = \int_{t_0}^{t_1} L(q, \dot{q}, t) dt \stackrel{!}{\to} stationary \ point$

Lagrangian (here): $L(\boldsymbol{u}, \dot{\boldsymbol{u}}, t) = \int_{\Omega} \left(\frac{1}{2} \rho \dot{\boldsymbol{u}} \dot{\boldsymbol{u}} - \Psi_e(\boldsymbol{\varepsilon}) \right) d\Omega - \int_{\Gamma} G_c d\Gamma$

Euler-Lagrange equation to find minimizer

- Phase-field:
 - Approximation: $\int_{\Gamma} G_c d\Gamma \approx \int_{\Omega} G_c \Gamma_{c,n} d\Omega$
 - Crack density functional: $\Gamma_{\rm c,2} = \frac{1}{4l_0} \left[(c-1)^2 + 4l_0^2 |\nabla c|^2 \right]$ $\Gamma_{\rm c,4} = \frac{1}{4l_0} \left[(c-1)^2 + 2l_0^2 |\nabla c|^2 + l_0^4 (\Delta c)^2 \right]$

- Phase-field:
 - Approximation: $\int_{\Gamma} G_c d\Gamma \approx \int_{\Omega} G_c \Gamma_{c,n} d\Omega$
 - Crack density functional: $\Gamma_{c,2} = \frac{1}{4l_0} \left[(c-1)^2 + 4l_0^2 |\nabla c|^2 \right]$ $\Gamma_{c,4} = \frac{1}{4l_0} \left[(c-1)^2 + 2l_0^2 |\nabla c|^2 + \frac{l_0^4 (\Delta c)^2}{l_0^4 (\Delta c)^2} \right]$

Energy approximation and strong form

Coupling phase-field and kinematics

$$\Psi_{e}(\boldsymbol{\varepsilon},c) = g(c)\Psi_{e}^{+}(\boldsymbol{\varepsilon}) + \Psi_{e}^{-}(\boldsymbol{\varepsilon})$$
Tensile Compressive

 $g(c) = m(c^3 - c^2) + 3c^2 - 2c^3$ \triangle Crack growth driven by development of elastic strains

Phase-field formulation

Energy approximation and strong form

Coupling phase-field and kinematics

$$\Psi_e(\boldsymbol{\varepsilon},c) = g(c)\Psi_e^+(\boldsymbol{\varepsilon}) + \Psi_e^-(\boldsymbol{\varepsilon})$$
Tensile Compressive

$$g(c) = m(c^3 - c^2) + 3c^2 - 2c^3$$
 \triangle Crack growth driven by development of elastic strains

Strong form: Governing equations (abbreviated)

• Local form of the linear momentum balance: $\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \rho \ddot{\boldsymbol{u}}$

Energy approximation and strong form

Coupling phase-field and kinematics

$$\Psi_e(\boldsymbol{\varepsilon},c) = g(c)\Psi_e^+(\boldsymbol{\varepsilon}) + \Psi_e^-(\boldsymbol{\varepsilon})$$
Tensile Compressive

 $g(c) = m(c^3 - c^2) + 3c^2 - 2c^3$ \triangle Crack growth driven by development of elastic strains

Strong form: Governing equations (abbreviated)

- Local form of the linear momentum balance: $\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{b} = \rho \ddot{\boldsymbol{u}}$
- Phase-field evolution, 2^{nd} order theory: $\frac{2l_0H}{G_c}g'(c) + c 4l_0^2\Delta c = 1$
- Phase-field evolution, 4^{th} order theory: $\frac{2l_0H}{G_c}g'(c) + c 2l_0^2\Delta c + l_0^4\Delta(\Delta c) = 1$
- + BC + IC

Numerical formulation

Weak form (abbreviated)

Weak form: Multiply with variation and integrate by parts

Find
$$\mathbf{u}(t)$$
 and $c(t)$ s.t. \forall variations \mathbf{w} and q :
$$(\rho \ddot{\mathbf{u}}, \mathbf{w})_{\Omega} + (\sigma, \nabla \mathbf{w})_{\Omega} = (\mathbf{h}, \mathbf{w})_{\partial \Omega_h} + (b, \mathbf{w})_{\partial \Omega_g}$$

$$\left(\frac{2l_0H}{G_c}g'(c) + c, q\right)_{\Omega} + (4l_0^2\nabla c, q)_{\Omega} = (1, q)_{\Omega}$$
 , for $n = 2$
$$\left(\frac{2l_0H}{G_c}g'(c) + c, q\right)_{\Omega} + (2l_0^2\nabla c, q)_{\Omega} + (l_0^4\Delta c, q)_{\Omega} = (1, q)_{\Omega}$$
 , for $n = 4$

· · · · - -

+ BC + $IC_{,(\cdot,\cdot)_{\Omega}}$: L^{2} inner product

- FE approximation: $u(x,t) \approx u^h(x,t) = \sum_{A=1}^n N_A(x) u_A(t)$
 - Semidiscrete Galerkin form analogue

Numerical formulation

Weak form (abbreviated)

Weak form: Multiply with variation and integrate by parts

Find
$$\mathbf{u}(t)$$
 and $c(t)$ s.t. \forall variations \mathbf{w} and q :
$$(\rho \ddot{\mathbf{u}}, \mathbf{w})_{\Omega} + (\boldsymbol{\sigma}, \nabla \mathbf{w})_{\Omega} = (\mathbf{h}, \mathbf{w})_{\partial \Omega_h} + (b, \mathbf{w})_{\partial \Omega_g}$$

$$\left(\frac{2l_0H}{G_c}g'(c) + c, q\right)_{\Omega} + (4l_0^2\nabla c, q)_{\Omega} = (1, q)_{\Omega}$$
 , for $n = 2$
$$\left(\frac{2l_0H}{G_c}g'(c) + c, q\right)_{\Omega} + (2l_0^2\nabla c, q)_{\Omega} + \left(\frac{l_0^4\Delta c, q}{G_c}\right)_{\Omega} = (1, q)_{\Omega}$$
 , for $n = 4$

- + BC + IC, $(\cdot,\cdot)_{\Omega}$: L^2 inner product
- FE approximation: $u(x,t) \approx u^h(x,t) = \sum_{A=1}^n N_A(x) u_A(t)$
 - Semidiscrete Galerkin form analogue

Numerical formulation

Spatial and temporal discretization

Recall

- Crack density functional: $\Gamma_{c,4} = \frac{1}{4l_0} [(c-1)^2 + 2l_0^2 |\nabla c|^2 + l_0^4 (\Delta c)^2]$
- Term in the weak form: $(l_0^4 \Delta c, q)_{\Omega}$
 - \implies 2nd-order continuous derivatives of c required

A phase-field model of dynamic fracture Numerical formulation

Spatial and temporal discretization

Isogeometric Analyis (IGA)

- Splines (e.g. NURBS) used for geometric domain and analysis
- Exact representation of geometries
- Smooth basis (FEA: continuous but not smooth basis)
- More accurate stress representation

A phase-field model of dynamic fracture Numerical formulation

Spatial and temporal discretization

Isogeometric Analyis (IGA)

- Splines (e.g. NURBS) used for geometric domain and analysis
- Exact representation of geometries
- Smooth basis (FEA: continuous but not smooth basis)
- More accurate stress representation

Generalized- α scheme

- Implicit
- Newton-iteration required
- 2nd-order accuracy for optimal parameters

A phase-field model of dynamic fracture Numerical result

Three-dimensional crack propagation over time

Initial state

- Nucleation sites randomly seeded
- Displacement imposed on top and bottom surface

Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V: A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Computer Methods in Applied Mechanics and Engineering 273 (2014), pages 100-118

A phase-field model of dynamic fracture Numerical result

Three-dimensional crack propagation over time

Initial state

- Nucleation sites randomly seeded
- Displacement imposed on top and bottom surface

Crack progression

- Branching
- Turning
- Merging

Red: Isosurface at c=0.1

Blue: Area interior to this isosurface

Borden, M.J., Hughes, T.J.R., Landis, C.M., Verhoosel, C.V: A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework, Computer Methods in Applied Mechanics and Engineering 273 (2014), pages 100-118

Phase-field method: Models and benefits

General differences:

Quasi-static | Dynamic

 2^{nd} -order- 4^{th} -order phase-field theory

Brittle fracture | Ductile fracture

Small deformations | Large deformations

Elasticity | Elastoplasticity

Phase-field method: Models and benefits

General differences:

Quasi-static Dynamic 2^{nd} -order- 4^{th} -order phase-field theory Brittle fracture Ductile fracture Small deformations Large deformations Elasticity Elastoplasticity

- Phase-field: Smooth transition
 - Additional PDE coupled to stress equilibrium

Phase-field method: Models and benefits

General differences:

Quasi-static Dynamic 2^{nd} -order- 4^{th} -order phase-field theory Brittle fracture Ductile fracture Small deformations Large deformations Elasticity Elastoplasticity

- Phase-field: Smooth transition
 - Additional PDE coupled to stress equilibrium
- Benefits: 2D to 3D
 - Crack not a function of the geometry
 - No numerical tracking of crack

Thank you for your attention

