麦克风工作原理

P

动圈麦克风

动圈麦克风内部结构示意图

- 基于电磁感应原理
- 声波振动振膜带动线圈
- 线圈在磁场中运动产生电流

● 核心原理

麦克风本质是能量转换器,将声能转换为电能,产生与声波形状相同的电信号

● 电容麦克风

电容麦克风工作原理图

- 基于电容变化原理
- 两片金属薄膜形成电容器
- 声波振动改变薄膜间距,产生电流变化

表克风类型对比

- ▶ 动圈麦克风:坚固耐用,无需电源,适合现场演出
- 电容麦克风:灵敏度高,需电源,适合录音室
- ▶ 驻极体麦克风: 特殊电容麦克风,振膜永久带电

采样原理

连续信号采样为离散数字信号过程

4

连续信号

原始声波

0

采样间隔

固定时间点

الد

采样点

离散时间信号

数字信号

二进制数据

④ 采样要点

采样率:每秒采集样本数 H z 采样间隔:相邻样本点的时间差 采样精度:决定信号还原质量

国 奈奎斯特定理

采样频率必须大于信号最高频率的2倍

 $fs > 2 \times fmax$

避免混叠现象,确保信号完整还原

音频信号中int16和float32的转换

int16 格式

❷ 16位整数,占用2字节

❷ 值范围: -32768 到 32767

❷ 固定精度,动态范围约96dB

☑ CD音质标准格式

◇ 文件体积较小,处理速度快

❷ 32位浮点数,占用4字节

❷ 值范围: -1.0 到 1.0 (归一化)

❷ 高精度,动态范围约150dB

❷ 专业音频处理标准

② 文件体积较大,计算复杂度高

⇄ 转换过程

国 转换公式

int16 → float32: float_value = int_value / 32768.0

float32 \rightarrow int16: int_value = roundfloat_value *32767.0

田 格式对比

特性	int16	float32
存储空间	2字节/样本	4字节/样本
动态范围	约96dB	约150dB
量化噪声	较高	极低
处理速度	快	较慢

❖ 应用场景

16 int16: CD音质、游戏音频、移动设备

32 float32: 专业录音、音频处理、混音

音频文件格式

无损音频格式

- 保留原始音质,无音质损失
- ❷ 文件体积大,适合专业音频制作

WAV

微软标准,兼容性极佳

开源压缩,体积小50-70%

ALAC

APE

高压缩率,解码较慢

有损音频格式

- 压缩率高,去除人耳不易察觉信息
- ❷ 文件体积小,适合网络传输

WAV格式音频文件图标

1 格式对比

格式类型	音质	文件大小	适用场景
无损格式	极高	大	专业录音、音乐制作
有损格式	良好	小	日常听歌、网络传输

选择音频格式需权衡音质与文件大小

MP3 最流行,兼容性最好

效率高于MP3,苹果首选

OGG 开源免费,多声道支持

AAC

✔ 发展趋势

- 无损压缩格式日益普及
- 高解析度音频需求增长
- ▶ 流媒体平台支持多格式

总结

物理声波

频率、振幅、波形

电信号转换

麦克风工作原理

采样

连续→离散时间

詳

量化

连续→离散幅度

音频文件

无损/有损格式

≋ 声音的物理特性

● 频率: 决定音调高低

● 振幅:决定响度大小

● 波形: 决定音色特征

● 麦克风工作原理

● 动圈麦克风: 电磁感应原理

● 电容麦克风: 电容变化原理

◎ 将声能转换为电能

~ 采样与量化

● 采样:时间离散化,采样率>2×最高频率

● 量化:幅度离散化,位数决定精度

● 采样率和量化位数共同决定音质

■ 音频文件格式

● 无损格式: WAV、FLAC、ALAC

● 有损格式: MP3、AAC、WMA

● 选择需权衡音质与文件大小

₹ 核心要点

声音从物理声波到数字音频文件的转换是一个多步骤过程,涉及物理特性转换、能量转换、时间离散化、幅度离散化和数据存储。理解这一过程有助于我们更好地选择音频设备和音频格式,满足不同场景的需求。

I2S协议

1 基本概念

- ☑ I2S Inter ICSound 集成电路内置音频总线
- ❷ 由飞利浦公司开发,用于音频设备间传输数字音频数据
- ❷ 串行通信协议,专用于数字音频传输
- ❷ 支持立体声和多声道音频传输

品 信号线组成

串行时钟

位同步信号

字选择

声道选择信号

SD

串行数据

音频数据传输

☑ 可选信号: MCLK 主时钟 用于同步系统时钟

小 工作原理

- ❷ WS信号标识左右声道,高电平为左声道,低电平为右声道
- ❷ SCK信号提供位时钟,每个时钟周期传输一位数据
- ❷ SD信号在SCK的下降沿或上升沿传输数据

- **♬** 音频编解码器与处理器间的音频数据传输
- ◆》数字信号处理器DSP与DAC/ADC间的通信
- ⋒ 蓝牙音频模块与主控制器间的数据传输
- ♥ 麦克风阵列与音频处理芯片间的连接
- □ 智能手机中音频子系统内部通信