$$n(E) = n(correct) = 1$$

There is only one correct order

$$h(5) = 5.4.3.2.7 = 120$$

$$P(E) = \frac{n(E)}{n(S)} = \frac{1}{120}$$

A)
$$p(3F2M) = \frac{n(3F2M)}{n(s)}$$
 $n(s)$

· order does not matter, ie combination

93] cont,
B)
$$4FIM$$
 $n(3) = 462$
 $n(4FIM) = 6C_{4} 5C_{1} = 15.5 = 75$
 $P(4FIM) = \frac{75}{462} = 0.1623$
C) $5F$ $n(3) = 462$
 $n(5F) = 6C_{5} = 6$
 $P(5F) = \frac{6}{462} = 0.0130$
D) At least $4F$ means $4FIM$ or $5F$
 $P(F \ge 4) = P(4FIM) + P(5F)$

D) At least 4F means 4F/M or of
$$P(F \ge 4) = P(4F/M) + P(5F)$$

= .1623 + .0130
= 6.1753