(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 22 April 2004 (22.04.2004)

(10) International Publication Number WO 2004/033460 A1

- (51) International Patent Classification?: C07D 491/04, A61K 31/47 // (C07D 491/04, 307:00, 221:00)
- (21) International Application Number:

PCT/US2003/024419

- (22) International Filing Date: 4 August 2003 (04.08.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

- (30) Priority Data: 60/417,975
 - 11 October 2002 (11.10.2002)
- (71) Applicant (for all designated States except US): LIGAND PHARMACEUTICALS INCORPORATED [US/US]; 10275 Science Center Drive, San Diego, CA 92121-1117 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ZHI, Lin [CN/US]; 3988 Via Cangrejo, San Diego, CA 92130 (US). VAN OEVEREN, Cornelis, Arjan [NL/US]; 3635 Promontory Place, Carlsbad, CA 92008 (US). PEDRAM, Bijan [CA/US]; 7665 Palmilla Drive, Apt. #5103, San Diego, CA 92122 (US). KARANEWSKY, Donald [US/US]: 1797 Continental Lane, Escondido, CA 92029 (US).

- (74) Agent: PAGLIERY, Richard, H.; Paul, Hastings, Janofsky & Walker LLP, P.O. Box 919092, San Diego, CA 92191-9092 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

097007 (54) Title: 5-CYCLOALKENYL 5H-CHRC CEPTOR MODULATOR COMPOUNDS (54) Title: 5-CYCLOALKENYL 5H-CHROMENO[3,4-F]QUINOLINE DERIVATIVES AS SELECTIVE PROGESTERONE RE-

(57) Abstract: The present invention is directed to compounds, pharmaceutical compositions, and methods for modulating processes mediated by Progesterone Receptor. Also provided are methods of making such compounds and pharmaceutical compositions.

10

15

20

5-CYCLOALKENYL 5H-CHROMENO[3,4-AQUINOLINE DERIVATIVES AS SELECTIVE PROGESTERONE RECEPTOR MODULATOR COMPOUNDS

Field of the Invention

This invention relates to nonsteroidal 5-cycloalkenyl 5H-chromeno[3,4-f]quinoline derivatives that may be modulators (*i.e.*, agonists, partial agonists and antagonists) of progesterone receptors and to methods for the making and use of such compounds.

Background of the Invention

Progesterone receptor (PR) modulators have been widely used in regulation of female reproduction systems and in treatment of female hormone dependent diseases. The effectiveness of known steroidal PR modulators is often tempered by their undesired side-effect profile, particularly during long-term administration. For example, the effectiveness of synthetic progestins, such as norgestrel, as female birth control agents must be weighed against the increased risk of breast cancer and heart disease. Similarly, the progesterone antagonist, mifepristone (RU486), if administered for chronic indications, such as uterine fibroids, endometriosis and certain hormone-dependent cancers, could lead to homeostatic imbalances in a patient due to its inherent cross-reactivity as a glucocorticoid receptor (GR) antagonist. Accordingly, identification of compounds that have good receptor-selectivity for PR over other steroid hormone receptors as well as good tissue-selectivity (e.g., selectivity for uterine tissue over breast tissue) would be of significant value in the improvement of women's health.

A group of nonsteroidal molecules, which contain a di- or tetra-hydroquinoline ring as core pharmacophore (Todd, Jones; *et al.* US Patent Nos. 5,693,646; 5,693,647

10

and 5,696,127) (M.J. Coghlan *et al.*, PCT Publication Nos. WO 99/41256 A1 and WO 99/41257 A1) have been described as steroid receptor modulator compounds.

The entire disclosures of the publications and references referred to herein are incorporated by reference herein and are not admitted to be prior art.

Summary of the Invention

The present invention is directed to compounds, pharmaceutical compositions, and methods for modulating processes mediated by Progesterone Receptor. More particularly, the invention relates to nonsteroidal compounds and compositions which may be high affinity, high specificity agonists, partial agonists (*i.e.*, partial activators and/or tissue-specific activators) and/or antagonists for progesterone receptors. Also provided are methods of making such compounds and pharmaceutical compositions.

Compounds of the present invention may be represented by the formulae:

(I)

15 wherein:

 R^{1} is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl,

Br, CN, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl,

Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁-C₈ alkyl, C₁-C₈

heteroalkyl, C₁-C₈ haloalkyl, allyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

15 R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl; or

 ${
m R}^{14}$ and ${
m R}^{15}$ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

15

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

and pharmaceutically acceptable salts and prodrugs thereof.

10 <u>Definitions and Nomenclature</u>

As used herein, the following terms are defined with the following meanings, unless explicitly stated otherwise. Furthermore, in an effort to maintain consistency in the naming of compounds of similar structure but differing substituents, the compounds described herein are named according to the following general guidelines. The numbering system for the location of substituents on such compounds is also provided.

10

.15

A 5H-chromeno[3,4-f]quinoline is defined by the following structure:

The term "alkyl," alone or in combination, refers to an optionally substituted straight-chain or branched-chain or cyclic-chain alkyl radical having from 1 to about 12 carbon atoms. The term also includes substituted straight-chain or branched-chain alkyl radicals having from 1 to about 6 carbon atoms as well as those having from 1 to about 4 carbon atoms. Examples of alkyl radicals include methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, tert-amyl, pentyl, hexyl, heptyl, octyl and the like.

The term "alkenyl," alone or in combination, refers to an optionally substituted straight-chain or branched-chain hydrocarbon radical having one or more carbon-carbon double-bonds and having from 2 to about 18 carbon atoms. The term also includes substituted straight-chain or branched-chain alkyl radicals having one or more carbon-carbon double bonds and having from 2 to about 6 carbon atoms as well as those having from 2 to about 4 carbon atoms. Examples of alkenyl radicals include ethenyl, propenyl, 1,3-butadienyl and the like.

Methylidene, alone or in combination, refers to =CH₂ and may be optionally substituted.

10

15

20

Allyl, alone or in combination, refers to -CH₂-CH=CH₂ and may be optionally substituted.

The term "alkynyl," alone or in combination, refers to an optionally substituted straight-chain or branched-chain hydrocarbon radical having one or more carbon-carbon triple-bonds and having from 2 to about 12 carbon atoms. The term also includes substituted straight-chain or branched-chain alkyl radicals having one or more carbon-carbon triple bonds and having from 2 to about 6 carbon atoms as well as those having from 2 to about 4 carbon atoms. Examples of alkynyl radicals include ethynyl, propynyl, butynyl and the like.

The term "heteroalkyl" refers to alkyl groups, as described above, in which one or more skeletal atoms are oxygen, nitrogen, sulfur or combinations thereof. The term heteroalkyl also includes alkyl groups in which one 1 to about 6 skeletal atoms are oxygen, nitrogen, sulfur or combinations thereof, as well as those in which 1 to 4 skeletal atoms are oxygen, nitrogen, sulfur or combinations thereof and those in which 1 to 2 skeletal atoms are oxygen, nitrogen, sulfur or combinations thereof.

The term "halogen" includes F, Cl, Br and I.

The term "mediate" means affect or influence. Thus, for example, conditions mediated by a progesterone receptor are those in which a progesterone receptor plays a role. Progesterone receptors are known to play a role in conditions including, for example, infertility, contraception, pregnancy maintenance and termination, female hormone deficiency, female sexual dysfunction, dysfunctional uterine bleeding, endometriosis, mood disorder, osteoporosis, and hormone-dependent cancers.

The term "selective" refers to compounds that display reactivity towards a particular receptor (e.g., a progesterone receptor) without displaying substantial cross-reactivity towards another receptor (e.g., glucocorticoid receptor). Thus, for example, selective compounds of the present invention may display reactivity towards progesterone receptors without displaying substantial cross-reactivity towards other steroid hormone receptors.

Detailed Description of the Invention

Compounds of the present invention may be represented by the formulae:

10

(I)

wherein:

 R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

15 R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

 R^{14} and R^{16} taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

5 n is 0, 1, 2, or 3;

and pharmaceutically acceptable salts and prodrugs thereof.

Compounds of the invention include those represented by the formulae:

 (Π)

10 wherein:

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^6 is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

R⁸ and R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, C₁-C₄ alkyl, C₁-C₄ heteroalkyl, C₁-C₄ haloalkyl, allyl, and C₂-C₄ alkenyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, Cl, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl;

R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or "-O-" bridge;

10 n is 0, 1, 2, or 3;

15

and pharmaceutically acceptable salts and prodrugs thereof.

In one aspect, the present invention provides a pharmaceutical composition comprising an effective amount of a progesterone receptor modulator compound according to any one of formulae I through II shown above wherein R¹ through R²⁴, and n all have the same definitions as given above.

In another aspect, the present invention comprises a method of modulating processes mediated by progesterone receptors comprising administering to a patient an effective amount of a compound according to any one of the formulae I through II shown above, wherein R¹ through R²⁴, and n all have the same definitions as those given above.

10

15

20

Any of the compounds of the present invention can be synthesized as pharmaceutically acceptable salts for incorporation into various pharmaceutical compositions. As used herein, pharmaceutically acceptable salts include, but are not limited to, hydrochloric, hydrobromic, hydroiodic, hydrofluoric, sulfuric, citric, maleic, acetic, lactic, nicotinic, succinic, oxalic, phosphoric, malonic, salicylic, phenylacetic, stearic, pyridine, ammonium, piperazine, diethylamine, nicotinamide, formic, urea, sodium, potassium, calcium, magnesium, zinc, lithium, cinnamic, methylamino, methanesulfonic, picric, tartaric, triethylamino, dimethylamino, and tris(hydroxymethyl)aminomethane. Additional pharmaceutically acceptable salts are known to those skilled in the art.

The PR agonist, partial agonist and antagonist compounds of the present invention may be particularly useful for female hormone replacement therapy and as modulators of fertility (e.g., as contraceptives, contragestational agents or abortifacients, in vitro fertilization, pregnancy maintenance), either alone or in conjunction with one or more estrogen receptor modulators. The PR modulator compounds of this invention may be also used in the treatment of dysfunctional uterine bleeding, dysmenorrhea, endometriosis, leiomyomas (uterine fibroids), hot flushes, mood disorders, and meningiomas. The PR modulator compounds of this invention also may be used in the treatment of various hormone-dependent cancers, including, without limitation, cancers of ovaries, breast, endometrium and prostate. The PR modulator compounds of this invention can also be used in treatment of female osteoporosis, either alone or in combination with one or more estrogen receptor modulators.

10

15

20

It will be understood by those skilled in the art that while the compounds of the present invention will typically be employed as a selective agonists, partial agonists or antagonists, that there may be instances where a compound with a mixed steroid receptor profile is preferred. For example, use of a PR agonist (*i.e.*, progestin) in female contraception often leads to the undesired effects of increased water retention and acne flare ups. In this instance, a compound that is primarily a PR agonist, but also displays some AR and MR modulating activity, may prove useful. Specifically, the mixed MR effects would be useful to control water balance in the body, while the AR effects would help to control any acne flare ups that occur.

Furthermore, it will be understood by those skilled in the art that the compounds of the present invention, including pharmaceutical compositions and formulations containing these compounds, can be used in a wide variety of combination therapies to treat the conditions and diseases described above. Thus, the compounds of the present invention can be used in combination with other hormones and other therapies, including, without limitation, chemotherapeutic agents such as cytostatic and cytotoxic agents, immunological modifiers such as interferons, interleukins, growth hormones and other cytokines, hormone therapies, surgery and radiation therapy.

Representative PR modulator compounds (i.e., agonists, partial agonists and antagonists) according to the present invention include:

(±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 24);

- (±)-(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **25**);
- (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 27);
- 5 (-)-(51,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
 - (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 29);
- (±)-(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl
 5H-chromeno[3,4-f]quinoline (compound 30);
 - (+)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 32);
 - (-)-(51,1'1)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 33);
- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 34);
 - (±)-(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **35**);
- (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-20 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 37);

- (-)-(5*l*, *l* '*l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 38);
- (±)-(51,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 39);
- 5 (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5*H*-chromeno[3,4-f]quinoline (compound 41);
 - (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-f]quinoline (compound 42);
- (±)-(5*l*, 1'*l*)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl
 5*H*-chromeno[3,4-*f*]quinoline (compound 44);
 - (\pm)-(51,1'u)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 45);
 - (\pm) -(5l, l'l)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 47);
- (±)-(5l,1'u)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 48);
 - (\pm)-(5l, l'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound **50**);
- (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-20 trimethyl-5H-chromeno[3,4-f]quinoline (compound 51);

- (±)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **52**);
- (±)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 53);
- 5 (±)-(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 55);
 - (\pm) -(5l, l'u)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 56);
- (±)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl
 5H-chromeno[3,4-f]quinoline (compound 58);
 - (\pm)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 59);
 - (±)-(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 61);
- (±)-(5l,1'l)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **62**);
 - (±)-(5l,1'l)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **63**);
- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-20 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 64);

- (\pm) -(5l,l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 65);
- (±)-(51,1'1)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 67);
- 5 (±)-(5l,1'u)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 68);
 - (±)-5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 69);
- (±)-(5l, 1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **71**);
 - (+)-(5l, 1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 73);
 - (-)-(51,1'1)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74);
- (±)-(5l, l'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 75);
 - (\pm)-(5*l*, *l'u*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 76);
- (±)-(5l, 1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-20 methylidene-5*H*-chromeno[3,4-*f*]quinoline (compound 77);

- (±)-(5l,1'l)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **79**);
- (±)-(5l,1'u)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **80**);
- 5 (±)-(5l,1'l)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 81);
 - (\pm) -(5l, 1'u)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 82);
- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-1,2,2,410 tetramethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **83**);
 - (±)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 84);
 - (±)-(5l,1'l)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **85**);
- (±)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 87);
 - (\pm) -(5l, l'u)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 88);
- (±)-(5l,1'l)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-20 chromeno[3,4-f]quinoline (Compound 89);

20

(±)-(51,1'1)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 91);

 (\pm) -(5l, l'u)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 92);

5 (±)-(51,1'1)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound **94**);

 (\pm) -(5l, l'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylene-5*H*-chromeno[3,4-f]quinolin-3-ol (Compound 95);

(±)-(5l,1'l)- 5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound **96**);

(±)-(5l, 1'u)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 97); and

(\pm)-(5l, l'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5H-chromeno[3,4-f]quinolin-4-one (Compound 98).

The sequence of steps for the general schemes to synthesize the compounds of the present invention is shown below. In each of the Schemes the R groups (e.g., R¹, R², etc.) correspond to the specific substitution patterns noted in the Examples. However, it will be understood by those skilled in the art that other functionalities disclosed herein at the indicated positions of compounds of formulae I and II also comprise potential substituents for the analogous positions on the structures within the Schemes. In a

10

further aspect, the present invention contains a novel process for the preparation of the compounds of the present invention.

Scheme I

Scheme I describes the synthesis of the 5-cycloalkenyl analogues 3, 4 and 5.

Reduction of lactones 1, which were prepared by the previously disclosed methods

(Todd, Jones; et al. US Patent Nos. 5,693,646; 5,693,647 and 5,696,127), with DIBAL-H

followed by acid catalyzed methylation provides lactal intermediates 2. Treatment of the

lactal 2 with a nucleophile, such as a cyclic allylsilane 6, in the presence of a Lewis acid,

such as BF₃-OEt₂, affords the final product 3. Compound of structure 4 may also

isolated as a minor product. Methylation of compound 3 with iodomethane in the

presence of a base, such as sodium hydride, provides N-methylated product of structure

5.

10

15

20

The compounds of the present invention also include racemates, stereoisomers and mixtures of said compounds, including isotopically-labeled and radio-labeled compounds. Such isomers can be isolated by standard resolution techniques, including fractional crystallization and chiral column chromatography.

As noted above, any of the PR modulator compounds of the present invention can be combined in a mixture with a pharmaceutically acceptable carrier to provide pharmaceutical compositions useful for treating the biological conditions or disorders noted herein in mammalian, and particularly in human patients. The particular carrier employed in these pharmaceutical compositions may take a wide variety of forms depending upon the type of administration desired. Suitable administration routes include enteral (e.g., oral), topical, suppository, inhalable and parenteral (e.g., intravenous, intramuscular and subcutaneous).

In preparing the compositions in oral liquid dosage forms (e.g., suspensions, elixirs and solutions), typical pharmaceutical media, such as water, glycols, oils, alcohols, flavoring agents, preservatives, coloring agents and the like can be employed. Similarly, when preparing oral solid dosage forms (e.g., powders, tablets and capsules), carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like will be employed. Due to their ease of administration, tablets and capsules represent a desirable oral dosage form for the pharmaceutical compositions of the present invention.

For parenteral administration, the carrier will typically comprise sterile water, although other ingredients that aid in solubility or serve as preservatives may also be

10

15

20

included. Furthermore, injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like will be employed.

For topical administration, the compounds of the present invention may be formulated using bland, moisturizing bases, such as ointments or creams. Examples of suitable ointment bases are petrolatum, petrolatum plus volatile silicones, lanolin and water in oil emulsions such as EucerinTM, available from Beiersdorf (Cincinnati, Ohio). Examples of suitable cream bases are NiveaTM Cream, available from Beiersdorf (Cincinnati, Ohio), cold cream (USP), Purpose CreamTM, available from Johnson & Johnson (New Brunswick, New Jersey), hydrophilic ointment (USP) and LubridermTM, available from Warner-Lambert (Morris Plains, New Jersey).

The pharmaceutical compositions and compounds of the present invention will generally be administered in the form of a dosage unit (e.g., tablet, capsule, etc.). The compounds of the present invention generally are administered in a daily dosage of from about 1 µg/kg of body weight to about 50 mg/kg of body weight. Typically, the compounds of the present invention are administered in a daily dosage of from about 2 µg/kg to about 25 mg/kg of body weight. Most often, the compounds of the present invention are administered in a daily dosage of from about 10 µg/kg to about 5 mg/kg body weight. As recognized by those skilled in the art, the particular quantity of pharmaceutical composition according to the present invention administered to a patient will depend upon a number of factors, including, without limitation, the biological activity desired, the condition of the patient, and tolerance for the drug.

10

The compounds of this invention also have utility when radio- or isotopically-labeled as ligands for use in assays to determine the presence of PR in a cell background or extract. They are particularly useful due to their ability to selectively activate progesterone receptors, and can therefore be used to determine the presence of such receptors in the presence of other steroid receptors or related intracellular receptors.

The compounds and pharmaceutical compositions of the present invention may be extremely potent activators of PR. For example, the compounds and compositions of the present invention may display 50% maximal activation of PR at a concentration of less than 50 nM. Some compounds and compositions of the present invention may display 50% maximal activation of PR at a concentration of less than 20 nM, and some may display such activity at a concentration of less than 10 nM.

The invention will be further illustrated by reference to the following non-limiting Examples.

EXAMPLE 1

Preparation of (\pm) -(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline and (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline

(Compounds 24 and 25, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19}$ $= R^{20} = R^{21} = H, R^{10} = F, R^6 = R^{17} = methyl, R^{14}/R^{16} = a \text{ bond}, n = 1)$

These compounds were prepared according the following general procedure:

A mixture of a 5-methoxy-5*H*-chromeno[3,4-*f*]quinoline, such as 9-fluoro-2,2,4-trimethyl-5-methoxy-1,2-dihydro-5*H*-chromeno[3,4-*f*]quinoline (compound 26, Structure

10

20

2 of Scheme I, where $R^8 = R^9 = H$, $R^{10} = F$, $R^6 = methyl$), and a cyclic allylsilane derivative, such as 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where $R^{17} = methyl$, $R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) (1.0-1.5 equiv.), in dry CH₂Cl₂ was cooled to -25°C, after which a Lewis acid such as BF₃:Et₂O (excess) was added dropwise. The resulting mixture was stirred at -25°C for half an hour, then warmed up gradually to 0°C and quenched with slow addition of aqueous NaHCO₃ (concentrated). The reaction mixture was extracted with CH₂Cl₂ (3 x). The extracts were washed with brine, combined, dried over anhydrous Na₂SO₄, filtered, and concentrated. Purification by flash chromatography (hexane:EtOAc, 9:1) afforded 40-90% of a diastereomeric mixture of the 5-alkenyl products, which then were separated by prep TLC or HPLC.

Compound 24 was isolated as the major isomer: 1 H-NMR (500 MHz, CDCl₃)

7.38 (d, J = 8.2, 1H), 7.29 (dt, J = 9.4, 3.1, 1H), 6.91 (dd, J = 8.6, 4.9, 1H), 6.82 (dt, J = 8.6, 3.1, 1H), 6.61 (d, J = 8.2, 1H), 5.64 (s, 1H), 5.52 (d, J = 14.0, 1H), 5.51 (s, 1H), 4.00

(s, 1H), 2.40 (m, 1H), 2.24 (s, 3H), 1.87 (m, 1H), 1.80 (m, 1H), 1.64 (m, 1H), 1.56 (s, 3H), 1.38 (s, 3H), 1.28 (m, 1H), 1.22 (m, 1H), 1.14 (s, 3H), 1.06 (m, 1H).

Compound 25 was isolated as a minor isomer: 1 H NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.29 (dt, J = 9.4, 3.1, 1H), 6.86 (m, 1H), 6.82 (m, 1H), 6.61 (dd, J = 8.2,1.8, 1H), 5.63 (d, J = 10.1, 1H), 5.47 (s, 1H), 4.89 (s, 1H), 3.99 (s, 1H), 2.38 (m, 1H), 2.17 (s, 3H), 1.88 (m, 2H), 1.77 (m, 1H), 1.69 (m, 2H), 1.54 (s, 3H), 1.48 (m, 1H), 1.38 (d, J = 1.8, 3H), 1.20 (d, J = 1.2, 3H).

EXAMPLE 2

Preparation of (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline and (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline

(Compounds 27 and 28, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19}$ $= R^{20} = R^{21} = H, R^{10} = F, R^6 = R^{17} = methyl, R^{14}/R^{16} = a \text{ bond}, n = 1)$

These compounds were obtained through chiral HPLC separation of compound 24 using a Chiral AD Semiprep Column, 250x20 mm ID, 90% Hexanes/EtOH. Data for compound 27, $[\alpha]^{22}_{D} = +332.3$ and compound 28, $[\alpha]^{22}_{D} = -317.1$ (EtOH).

10 EXAMPLE 3

5

15

20

Preparation of (\pm) -(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline and (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compounds 29 and 30, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19}$ $= R^{20} = R^{21} = H, R^{10} = \text{hydroxy}, R^6 = R^{17} = \text{methyl}, R^{14}/R^{16} = \text{a bond}, n = 1)$

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where R^{17} = methyl, $R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) and 9-hydroxy-2,2,4-trimethyl-5-methoxy-1,2-dihydro-5*H*-chromeno[3,4-*f*]quinoline (Compound 31, Structure 2 of Scheme I, where $R^8 = R^9 = H$, R^{10} = hydroxy, R^6 = methyl).

Compound 29 was isolated as the major isomer: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.10 (d, J = 2.4, 1H), 6.86 (d, J = 8.5, 1H), 6.82 (dt, J = 8.6, 3.1, 1H), 6.62 (dd, J = 8.5, 2.7, 1H), 6.60 (d, J = 8.2, 1H), 5.67 (s, 1H), 5.50 (s, 1H), 5.48 (d, J = 12.2, 1H), 3.96 (s, 1H), 2.42 (m, 1H), 2.24 (s, 3H), 1.87 (m, 1H), 1.77 (m, 1H), 1.66 (s, 3H), 1.64 (m, 1H), 1.38 (s, 3H), 1.28 (m, 1H), 1.20 (m, 1H), 1.13 (s, 3H), 1.02 (m, 1H).

Compound 30 was isolated as a minor isomer: 1 H NMR (500 MHz, CDCl₃) 7.38 (d, J= 8.8, 1H), 7.18 (d, J= 3.7, 1H), 7.10 (d, J= 3.7, 1H), 6.81 (d, J= 7.9, 1H), 6.62 (m, 1H), 5.59 (d, J= 10.2, 1H), 5.47 (s, 1H), 4.90 (s, 1H), 4.45 (s, 1H), 3.96 (s, 1H), 2.40 (m, 1H), 2.17 (s, 3H), 1.88 (m, 1H), 1.78 (m, 1H), 1.68 (m, 1H), 1.60 (s, 3H), 1.38 (s, 3H), 1.30 (m, 2H), 1.20 (s, 3H), 0.90 (m, 1H).

EXAMPLE 4

Preparation of (+)-(51,1'1)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro
2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline and (-)-(51,1'1)-5-(3-methyl-2
cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline

(Compounds 32 and 33, Structure 3 of Scheme I, where R⁸ = R⁹ = R¹³ = R¹⁵ = R¹⁸ = R¹⁹

= R²⁰ = R²¹ = H, R¹⁰ = hydroxy, R⁶ = R¹⁷ = methyl, R¹⁴/R¹⁶ = a bond, n = 1)

These compounds were obtained through chiral HPLC separation of compound 29 using a Chiral AD Semiprep Column, 250x20 mm ID, 90% Hexanes/EtOH. Data for compound 32, $[\alpha]^{22}_{D} = +201.6$ and compound 33, $[\alpha]^{22}_{D} = -207.7$ (EtOH).

5

10

10

15

20

EXAMPLE 5

Preparation of (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline, (±)-(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compounds 34 and 35, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = R^{17} = \text{methyl}$, $R^{14}/R^{16} = \text{a bond}$, n = 1) and (±)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compounds 87, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{14} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = \text{methyl}$, $R^{16}/R^{17} = \text{methylidene}$, n = 1)

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-dimethylphenylsilyl-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where R^{17} = methyl, R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H, n = 1) and 7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5-methoxy-5H-chromeno[3,4-f]quinoline (Compound 36, Structure 5 of Scheme I, where R^8 = R^{10} = fluorine, R^9 = H, R^6 = methyl).

Compound 34 was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.36 (d, J = 8.2, 1H), 7.29 (dt, J = 9.4, 1.8, 1H), 6.70 (td, J = 9.5, 3.0, 1H), 6.61 (d, J = 8.2, 1H), 5.64 (d, J = 9.5, 1H), 5.63 (s, 1H), 5.51 (s, 1H), 4.04 (s, 1H), 2.38 (m, 1H), 2.24 (s, 3H), 1.88 (m, 1H), 1.77 (m, 1H), 1.69 (m, 1H), 1.65 (s, 3H), 1.39 (s, 3H), 1.30 (m, 1H), 1.25 (m, 1H), 1.14 (s, 3H), 1.10 (m, 1H).

Compound 35 was isolated as a miner product: 1 H NMR (500 MHz, CDCl₃) 7.35 (d, J = 8.2, 1H), 7.10 (dt, J = 9.8, 2.4, 1H), 6.70 (td, J = 10.8, 3.0, 1H), 6.61 (d, J = 8.2, 1H), 5.74 (d, J = 10.4, 1H), 5.48 (s, 1H), 4.87 (s, 1H), 4.03 (s, 1H), 2.37 (m, 1H), 2.17 (s, 26)

WO 2004/033460 PCT/US2003/024419

3H), 1.90 (m, 1H), 1.78 (m, 1H), 1.72 (m, 2H), 1.54 (s, 3H), 1.52 (m, 1H), 1.38 (s, 3H), 1.20 (d, J = 1.21, 3H).

Compound 87 was isolated as a 1.6:1 mixture of two diastereomers: 1 H NMR (500 MHz, CDCl₃) 7.36 (d, J = 8.2, 1H), 7.34 (d, J = 8.2, 1H), 7.14-7.08 (m, 2H), 6.73-6.67 (m, 2H), 6.60 (d, J = 11.3, 1H), 6.58 (d, J = 8.2, 1H), 6.10 (d, J = 10.1, 1H), 5.72 (d, J = 10.1, 1H), 5.64 (d, J = 9.2, 1H), 5.62 (s, 1H), 5.51 (s, 1H), 5.42 (s, 1H), 5.39-5.37 (m, 1H), 5.31-5.29 (m, 1H), 4.08-4.02 (m, 1H), 4.01-3.99 (m, 1H), 2.33-2.30 (m, 2H), 2.24 (s, 3H), 2.23 (s, 3H), 2.20-2.00 (m, 4H), 1.99-1.86 (m, 2H), 1.84-1.78 (m, 2H), 1.39 (s, 3H), 1.36 (s, 3H), 1.32-1.22 (m, 4H), 1.14 (s, 3H), 1.13 (s, 3H), 0.98-0.92 (m, 2H).

10 EXAMPLE 6

5

15

Preparation of (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline and (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline

(Compounds 37 and 38, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20}$ $= R^{21} = H, R^8 = R^{10} = \text{fluorine}, R^6 = R^{17} = \text{methyl}, R^{14}/R^{16} = \text{a bond}, n = 1)$

These compounds were obtained through chiral HPLC separation of compound 34 using a Chiral AD Semiprep Column, 250x20 mm ID, 90% Hexanes/EtOH. Data for compound 37, $[\alpha]^{22}_D = +342.4$ and compound 38, $[\alpha]^{22}_D = -340.0$ (EtOH).

20

EXAMPLE 7

Preparation of (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4trimethyl-5H-chromeno[3,4-f]quinoline (Compound 39, Structure 3 of Scheme I, where R⁸ = $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^{10} = \text{methoxy}$, $R^6 = R^{17} = \text{methyl}$, $R^{14}/R^{16} = a$ bond, n = 1)

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where R^{17} = methyl, $R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n =1) and 5,9dimethoxy-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 40, Structure 2 of Scheme I, where $R^8 = R^9 = H$, $R^{10} = \text{methoxy}$, $R^6 = \text{methyl}$) as a yellow 10 solid: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.43 (d, J = 7.9, 1H), 7.16 (s, 1H), 6.92 (d, J = 8.9, 1H), 6.72 (m, 1H), 6.62 (m, 1H), 5.59 (s, 1H), 5.49 (s, 1H), 5.48 (d, J = 9.8, 1H), 3.96 (s, 1H), 3.82 (s, 3H), 2.41 (m, 1H), 2.24 (s, 3H), 1.87 (m, 1H), 1.78 (m, 1H), 1.62 (m, 1H), 1.57 (s, 3H), 1.38 (s, 3H), 1.26 (m, 1H), 1.20 (m, 1H), 1.13 (s, 3H), 1.04 (m, 1H).

15 **EXAMPLE 8**

> Preparation of (\pm) -(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2dimethyl-5H-chromeno[3,4-f]quinoline and (\pm) -(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-9fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-f]quinoline (Compounds 41 and 42, Structure 3 of Scheme I, where $R^6 = R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, R^{10} = fluorine, R^{17} = methyl, R^{14}/R^{16} = a bond, n = 1)

> These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where R^{17} = methyl, $R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) and

9-fluoro-1,2-dihydro-2,2-dimethyl-5-methoxy-5*H*-chromeno[3,4-f]quinoline (Compound 43, Structure 5 of Scheme I, where R^{10} = fluorine, $R^6 = R^8 = R^9 = H$).

Compound 41 was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.38 (d, J= 8.5, 1H), 7.28 (dd, J= 9.8, 3.1, 1H), 6.89 (dd, J= 8.5, 4.9, 1H), 6.79 (dt, J= 8.6, 2.8, 1H), 6.48 (d, J= 8.5, 1H), 6.43 (d, J= 10.1, 1H), 5.62 (s, 1H), 5.58 (d, J= 10.1, 1H), 5.10 (d, J= 9.2, 1H), 3.86 (s, 1H), 2.44 (m, 1H), 1.89 (m, 1H), 1.80 (m, 1H), 1.74 (m, 1H), 1.56 (s, 3H), 1.35 (s, 3H), 1.34 (m, 2H), 1.31 (s, 3H), 1.27 (m, 1H).

Compound 42 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.31 (d, J= 8.5, 1H), 7.28 (dd, J= 8.9, 2.1, 1H), 6.87 (dd, J= 9.2, 5.2, 1H), 6.80 (dt, J= 8.2, 10 3.1, 1H), 6.49 (d, J= 8.2, 1H), 6.36 (d, J= 10.1, 1H), 5.55 (d, J= 10.4, 1H), 5.10 (d, J= 10.1, 1H), 4.88 (s, 1H), 3.88 (s, 1H), 2.44 (m, 1H), 1.90 (m, 1H), 1.72 (m, 1H), 1.60 (m, 2H), 1.56 (s, 3H), 1.52 (m, 2H), 1.35 (s, 3H), 1.32 (s, 3H).

EXAMPLE 9

Preparation of (\pm) -(5l, 1'l)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro
2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline and (\pm) -(5l, 1'u)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline

(Compounds 44 and 45, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{19} = R^{20}$ $= R^{21} = H$, $R^{10} = F$, $R^6 = R^{17} = methyl$, $R^{14}/R^{16} = a$ bond, n = 0)

These compounds were prepared in a similar fashion as that described in

Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methylcyclopentene

(Compound 46, Structure 6 of Scheme I, where R¹⁷ = methyl, R¹⁵ = R¹⁹ = R²⁰ = R²¹ = H,

n = 0) and compound 26 (Structure 2 of Scheme I, where $R^8 = R^9 = H$, $R^{10} =$ fluorine, $R^6 =$ methyl).

Compound 44 was isolated as a major product: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.5, 1H), 7.29 (dd, J = 10.4, 2.8, 1H), 6.86 (dd, J = 8.9, 5.2, 1H), 6.79 (dt, J = 8.2, 3.1, 1H), 6.60 (d, J = 8.2, 1H), 5.61 (d, J = 8.8, 1H), 5.52 (s, 1H), 5.34 (s, 1H), 3.99 (s, 1H), 3.00 (m, 1H), 2.24 (s, 3H), 2.29 (m, 1H), 1.63 (m, 2H), 1.55 (s, 3H), 1.38 (s, 3H), 1.14 (s, 3H), 1.06 (m, 1H).

Compound 45 was isolated as a minor product: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.29 (dd, J = 8.8, 1.8, 1H), 6.85 (dd, J = 8.6, 5.2, 1H), 6.81 (dt, J = 8.2, 10 3.1, 1H), 6.60 (d, J = 8.2, 1H), 5.55 (d, J = 10.4, 1H), 5.47 (s, 1H), 4.81 (s, 1H), 3.99 (s, 1H), 2.96 (m, 1H), 2.34 (m, 1H), 2.18 (m, 1H), 2.14 (s, 3H), 2.09 (m, 1H), 1.91 (m, 1H), 1.55 (s, 3H), 1.38 (s, 3H), 1.20 (s, 3H).

EXAMPLE 10

Preparation of (\pm) -(5l, l'l)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline and (\pm) -(5l, l'u)-5-(3,5,5trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compounds 47 and 48, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15}$ $= R^{18} = R^{21} = H, R^{10} = \text{fluorine}, R^6 = R^{17} = R^{19} = R^{20} = \text{methyl}, R^{14}/R^{16} = \text{a bond}, n = 1)$

These compounds were prepared in a similar fashion as that described in

Example 1 general procedure from 3-(dimethylphenylsilyl)-3,5,5-trimethylcyclohexene

(Compound 49, Structure 6 of Scheme I, where R¹⁷ = R¹⁹ = R²⁰ = methyl, R¹⁵ = R¹⁸ = R²¹

= H, n = 1) and compound 26 (Structure 2 of Scheme I, where R^{10} = fluorine, R^6 = methyl, $R^8 = R^9 = H$).

Compound 47 was isolated as a major product: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.39 (d, J = 8.2, 1H), 7.30 (dd, J = 9.8, 3.1, 1H), 6.91 (dd, J = 8.9, 4.9, 1H), 6.82 (dt, J = 8.6, 3.1, 1H), 6.62 (d, J = 8.2, 1H), 5.64 (s, 1H), 5.52 (d, J = 9.5, 1H), 5.51 (d, J = 1.2, 1H), 4.01 (s, 1H), 2.43 (m, 1H), 2.22 (d, J = 1.2, 3H), 1.77 (d, J = 17.1, 1H), 1.65 (s, 3H), 1.48 (d, J = 17.4, 1H), 1.38 (s, 3H), 1.12 (s, 3H), 0.88 (t, J = 12.2, 1H), 0.81 (s, 3H), 0.77 (m, 1H), 0.58 (s, 3H).

Compound 48 was isolated as a minor isomer: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.28 (dd, J = 10.1, 2.7, 1H), 6.87 (dd, J = 8.9, 5.2, 1H), 6.82 (dt, J = 7.9, 2.8, 1H), 6.62 (d, J = 8.2, 1H), 5.56 (d, J = 10.1, 1H), 5.50 (s, 1H), 4.94 (s, 1H), 3.99 (s, 1H), 2.42 (m, 1H), 2.17 (s, 3H), 1.83 (s, 1H), 1.56 (m, 4H), 1.38 (s, 3H), 1.22 (s, 3H), 0.97 (s, 3H), 0.58 (s, 3H).

EXAMPLE 11

Preparation of (\pm) -(5l, l'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline, (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-

- 5 fiquinoline (Compounds 50, 51, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{17} =$ methyl, $R^{14}/R^{16} =$ a bond, n = 0) and (±)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-fiquinoline (Compound 52, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{14} = R^{15} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{17} =$ methyl, $R^{16}/R^{19} =$ a bond, n = 0)
- These compounds were prepared in a similar fashion as that described in Example 1 general procedure from compound 46 (Structure 6 of Scheme I, where R^{17} = methyl, $R^{15} = R^{19} = R^{20} = R^{21} = H$, n = 0) and compound 36 (Structure 2 of Scheme I, where $R^9 = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl).

Compound **50** was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.35 (d, J= 8.2, 1H), 7.08 (d, J= 9.5, 1H), 6.68 (dt, J= 9.6, 2.8, 1H), 6.60 (d, J= 8.2, 1H), 5.73 (d, J= 8.5, 1H), 5.53 (s, 1H), 5.32 (s, 1H), 4.04 (s, 1H), 2.98 (m, 1H), 2.30 (m, 1H), 2.24 (s, 3H), 2.12 (m, 1H), 1.66 (s, 3H), 1.65 (m, 1H), 1.38 (s, 3H), 1.14 (s, 3H), 0.88 (m, 1H).

Compound 51 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.35 (d, J = 8.5, 1H), 7.09 (d, J = 7.9, 1H), 6.85 (t, 8.5, 1H), 6.60 (d, J = 8.2, 1H), 5.68 (d, J = 10.4, 1H), 5.48 (s, 1H), 4.79 (s, 1H), 3.99 (s, 1H), 2.95 (m, 1H), 2.36 (m, 1H), 2.18 (m, 1H), 2.14 (s, 3H), 1.94 (m, 1H), 1.65 (s, 3H), 1.38 (s, 3H), 1.20 (s, 3H), 0.88 (m, 1H).

10

15

Compound **52** was isolated as minor products: (*syn:anti* ratio of 2.2:1) ¹H NMR (500 MHz, CDCl₃) 7.33 (d, J = 8.6, 1H), 7.10 (dt, J = 9.8, 2.8, 1H), 6.69 (td, J = 9.5, 2.7, 1H), 6.61 (d, J = 8.2, 1H), 5.93 (d, J = 8.9, 1H), 5.53 (s, 1H), 5.41 (s, 1H), 4.03 (s, 1H), 2.88 (m, 1H), 2.23 (d, J = 0.6, 3H), 2.04 (m, 1H), 1.66 (s, 3H), 1.52 (m, 1H), 1.56 (m, 1H), 1.38 (s, 3H), 1.15 (s, 3H), 0.88 (m, 1H).

EXAMPLE 12

Preparation of (±)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 53, Structure 3 of Scheme I, where $R^8 = R^9 = R^{15} = R^{17} = R^{20} = H, R^{10} = \text{fluorine}, R^6 = \text{methyl}, R^{13}/R^{14} = \text{a bond}, R^{19}/R^{21} \text{ a}$ bond, n = 0)

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 5-(dimethylphenylsilyl)-1,3-cyclopentadiene (Compound 54, Structure 6 of Scheme I, where $R^{15} = R^{17} = R^{20} = H$, $R^{19}/R^{21} = a$ bond, n = 0) and compound 26 (Structure 2 of Scheme I, where $R^{10} =$ fluorine, $R^6 =$ methyl, $R^8 = R^9 = H$) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) 7.37 (d, J = 8.2, 1H), 7.23 (dd, J = 9.5, 2.8, 1H), 6.79 (dd, J = 8.6, 4.9, 1H), 6.74 (td, J = 8.4, 2.8, 1H), 6.64 (d, J = 8.2, 1H), 6.61 (s, 1H), 6.33 (dd, J = 5.2, 1.2, 1H), 6.22 (dt, J = 5.2, 1.8, 1H), 5.94 (t, J = 1.4, 1H), 5.48 (s, 1H), 3.94 (s, 1H), 3.08 (dd, J = 23.8, 1.5, 1H), 2.95 (dd, J = 23.8, 1.5, 1H), 2.11 (d, J = 1.5, 3H), 1.28 (s, 3H), 1.25 (s, 3H).

WO 2004/033460 PCT/US2003/024419

5

15

20

EXAMPLE 13

Preparation of (\pm) -(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline and (\pm) -(5l,1'u)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compounds 55 and 56, Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, R^{10} = fluorine, R^6 = methyl, R^{17} = ethyl, R^{14}/R^{16} = a bond, n = 1)

These compounds were prepared in a similar fashion as that described in

Example 1 general procedure from 3-(dimethylphenylsilyl)-3-ethylcyclohexene

(Compound 57, Structure 6 of Scheme I, where R¹⁷ = ethyl, R¹⁵ = R¹⁸ = R¹⁹ = R²⁰ = R²¹

= H, n = 1) and compound 26 (Structure 2 of Scheme I, where R¹⁰ = fluorine, R⁶ = methyl, R⁸ = R⁹ = H).

Compound 55 was isolated as a major product: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.29 (dd, J = 9.8, 3.1, 1H), 6.90 (dd, J = 8.9, 4.9, 1H), 6.81 (dt, J = 8.2, 2.8, 1H), 6.61 (d, J = 8.2, 1H), 5.59 (s, 1H), 5.56 (d, J = 9.5, 1H), 5.50 (d, J = 0.9, 1H), 4.00 (s, 1H), 2.40 (m, 1H), 2.24 (d, J = 0.9, 3H), 1.93 (q, J = 6.7, 2H), 1.88 (m, 1H), 1.80 (m, 1H), 1.67 (m, 1H), 1.38 (s, 3H), 1.27 (m, 1H), 1.22 (m, 1H), 1.14 (s, 3H), 0.98 (m, 1H), 0.95 (t, J = 7.6, 3H).

Compound 56 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.38 (d, J = 7.9, 1H), 7.29 (dd, J = 9.8, 3.1, 1H), 6.86 (m, 1H), 6.82 (m, 1H), 6.61 (d, J = 8.2, 1H), 5.59 (d, J = 10.7, 1H), 5.46 (s, 1H), 4.92 (s, 1H), 3.98 (s, 1H), 2.40 (m, 1H), 2.18 (s, 3H), 1.98 (m, 1H), 1.85 (q, J = 7.9, 2H), 1.70 (m, 3H), 1.46 (m, 1H), 1.38 (s, 3H), 1.20 (s, 3H), 0.98 (m, 1H), 0.94 (t, J = 7.6, 3H).

20

EXAMPLE 14

Preparation of (\pm) -(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline and (\pm) -(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compounds 58 and 59, Structure 3 of Scheme I, where $R^9 = R^{10} = R^{13} = R^{15} = R^{18} = R^{19}$ $= R^{20} = \dot{R}^{21} = H, R^8 = \text{fluorine}, R^6 = R^{17} = \text{methyl}, R^{14}/R^{16} = \text{a bond}, n = 1)$

These compounds were prepared in a similar fashion as that described in

Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene

(Structure 6 of Scheme I, where R¹⁷ = methyl, R¹⁵ = R¹⁸ = R¹⁹ = R²⁰ = R²¹ = H, n = 1)

and 7-fluoro-1,2-dihydro-2,2,4-trimethyl-5-methoxy-5H-chromeno[3,4-f]quinoline

(Compound 60, Structure 2 of Scheme I, where R⁸ = fluorine, R⁶ = methyl, R⁹ = R¹⁰ = H).

Compound 58 was isolated as a major product: 1 H NMR (500 MHz, acetone- d_{6}) 7.54 (d, J = 8.2, 1H), 7.50 (d, J = 7.6, 1H), 6.95 (m, 2H), 6.75 (d, J = 8.2, 1H), 5.64 (s, 1H), 5.63 (s, 1H), 5.62 (d, J = 9.5, 1H), 5.54 (s, 1H), 2.36 (m, 1H), 2.23 (s, 3H), 1.90 (m, 1H), 1.78 (m, 1H), 1.70 (m, 1H), 1.62 (s, 3H), 1.37 (s, 3H), 1.29 (m, 2H), 1.13 (s, 3H).

Compound 59 was isolated as a minor product: 1 H NMR (500 MHz, acetone- d_{6}) 7.53 (d, J = 8.5, 1H), 7.50 (d, J = 6.7, 1H), 6.96 (m, 2H), 6.76 (d, J = 8.2, 1H), 5.73 (d, J = 10.4, 1H), 5.64 (s, 1H, 5.51 (d, J = 1.2, 1H), 4.96 (m, 1H), 2.35 (m, 1H), 2.18 (s, 3H), 1.90 (m, 1H), 1.80 (m, 1H), 1.73 (m, 1H), 1.58 (s, 3H), 1.48 (m, 1H), 1.37 (s, 3H), 1.28 (m, 1H), 1.21 (s, 3H).

20

EXAMPLE 15

Preparation of (\pm) -(5l, 1'l)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 61, Structure 3 of Scheme where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = \text{methyl}$, $R^{17} = R^{10} = R^{10}$ ethyl, $R^{14}/R^{16} = a$ bond, n = 1), $(\pm)-(5l, 1'l)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-$ 5 dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 62, Structure 3 of Scheme where $R^9 = R^{13} = R^{14} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, R^{16}/R^{17} = ethylidene, n = 1) and (±)-(5l,1'u)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 88, Structure 3 of Scheme where $R^9 = R^{13} = R^{14} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = \text{methyl}$, 10 $R^{16}/R^{17} = \text{ethylidene}, n = 1$

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from compound 57 (Structure 6 of Scheme I, where R^{17} = ethyl, $R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) and compound 36 (Structure 5 of Scheme II, where $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, $R^9 =$ H).

Compound 61 was isolated as a major product: ¹H NMR (500 MHz, CD₃COCD₃) 7.54 (d, J = 8.2, 1H), 7.31 (dt, J = 8.9, 1.8, 1H), 6.83 (td, 9.4, 3.0, 1H), 6.76 (d, J = 8.2, 1H), 5.72 (m, 2H), 5.55 (d, J= 4.9, 1H), 5.53 (s, 1H), 2.80 (s, 3H), 2.36 (m, 1H), 2.22 (s, 3H), 1.90 (q, J = 7.6, 2H), 1.82 (m, 1H), 1.72 (m, 1H), 1.30 (m, 1H), 1.37 (s, 3H), 1.14 (s, 3H), 0.90 (t, J = 7.6, 3H).

Compound 62 was isolated as a minor product: ¹H NMR (500 MHz, CD₃COCD₃) 7.51 (d, J = 8.2, 1H), 7.30 (dt, J = 10.1, 2.8, 1H), 6.83 (td, 9.6, 2.8, 1H), 6.75 (d, J = 8.6, 1H), 5.87 (d, J = 10.1, 1H), 5.71 (s, 1H), 5.57 (d, J = 1.5, 1H), 5.03 (m, 1H), 2.84 (s, 3H),

10

2.39 (m, 1H), 2.16 (m, 1H), 2.22 (m, 1H), 1.90 (m, 2H), 1.82 (m, 1H), 1.70 (m, 1H), 1.60 (m, 1H), 1.50 (m, 1H), 1.38 (s, 3H), 1.14 (s, 3H), 0.83 (d, J = 7.3, 3H).

Compound 88 was isolated as a 1:1 mixture of two E/Z-isomers: 1 H NMR (500 MHz, acetone- d_{o}) 7.50 (d, J = 8.5, 1H), 7.49 (d, J = 8.5, 1H), 7.34-7.24 (m, 2H), 6.90-6.80 (m, 2H), 6.64 (d, J = 8.5, 1H), 6.61 (d, J = 8.5, 1H), 5.86 (d, J = 7.9, 1H), 5.49 (s, 1H), 5.36 (s, 1H), 5.34 (s, 1H), 5.22 (s, 1H), 5.16 (s, 1H), 4.79 (s, 1H), 2.44-2.38 (m, 1H), 2.34-2.28 (m, 1H), 2.25 (s, 3H), 2.23 (s, 3H), 1.90-1.74 (m, 6H), 1.68-1.58 (m, 2H), 1.34 (s, 3H), 1.30 (s, 3H), 1.36-1.22 (m, 8H), 1.22 (s, 3H), 1.18 (s, 3H), 0.92-0.84 (m, 6H).

EXAMPLE 16

Preparation of (±)-(51,1'1)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound 63, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{14} = R^{15} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{17} =$ methyl, $R^{16}/R^{18} =$ a bond, n = 1)

EXAMPLE 17

Preparation of (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline and (±)-(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compounds 64 and 65, Structure 3 of Scheme I, where $R^8 = R^{13} = R^{15} = R^{18}$ $= R^{19} = R^{20} = R^{21} = H, R^9 = \text{methoxy}, R^6 = R^{17} = \text{methyl}, R^{10} = \text{fluorine}, R^{14}/R^{16} = a$ bond, n = 1)

These compounds were prepared in a similar fashion as that described in

Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene

(Structure 6 of Scheme I, where R¹⁷ = methyl, R¹⁵ = R¹⁸ = R¹⁹ = R²⁰ = R²¹ = H, n = 1)

and 9-fluoro-1,2-dihydro-5,8-dimethoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline

(Compound 66, Structure 2 of Scheme I, where R⁸ = H, R⁶ = methyl, R⁹ = methoxy, R¹⁰ = fluorine).

Compound 64 was isolated as a major product: 1 H NMR (500 MHz, CD₃COCD₃) 7.44 (d, J=12.5, 1H), 7.42 (d, J=8.2, 1H), 6.73 (d, J=6.6, 1H), 6.71 (d, J=7.2, 1H), 5.68 (s, 1H), 5.52 (m, 2H), 5.48 (s, 1H), 3.90 (s, 3H), 2.40 (m, 1H), 2.20 (s, 3H), 2.08 (m, 1H), 1.96 (m, 1H), 1.78 (m, 1H), 1.65 (m, 1H), 1.63 (s, 3H), 1.36 (s, 3H), 1.26 (m, 2H), 1.12 (s, 3H).

Compound 65 was isolated as a minor product: ${}^{1}H$ NMR (500 MHz, CD₃COCD₃) 7.44 (d, J=12.5, 1H), 7.42 (d, J=8.2, 1H), 6.73 (d, J=8.2, 1H), 6.70 (d, J=7.6, 1H), 5.63 (s, 1H), 5.48 (s, 1H), 5.46 (d, J=12.5, 1H), 4.96 (m, 1H), 3.88 (s, 3H), 2.39 (m, 1H), 2.20 (s, 3H), 1.94 (m, 1H), 1.78 (m, 1H), 1.72 (m, 1H), 1.57 (s, 3H), 1.46 (m, 1H), 1.36 (s, 3H), 1.28 (m, 2H), 1.20 (s, 3H).

EXAMPLE 18

Preparation of (\pm) -(5l,1'l)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline, (\pm) -(5l,1'u)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compounds 67, 68, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{17} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, $R^{14}/R^{16} =$ a bond, n = 0) and (\pm) -5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 69, Structure 3 of Scheme I, where $R^9 =$ $R^{15} = R^{16} = R^{17} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^8 =$ $R^{10} =$ fluorine, $R^8 =$ methyl, $R^{13}/R^{14} =$ a bond, $R^{10}/R^{10} =$ fluorine, $R^8 =$ methyl, $R^{10}/R^{10} =$ fluorine, $R^8 =$ fluorine

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)cyclopentene (Compound 70, Structure 6 of Scheme I, where $R^{15} = R^{17} = R^{19} = R^{20} = R^{21} = H$, n = 0) and compound 36 (Structure 2 of Scheme I, where $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, $R^9 = H$).

Compound 61 was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.37 (d, J= 8.2, 1H), 7.10 (dt, J= 9.5, 2.7, 1H), 6.71 (td, J= 9.5, 3.1, 1H), 6.61 (d, J= 8.2, 1H), 5.77 (ddd, 1H), 5.71 (d, J= 10.4, 1H), 5.48 (d, J= 1.2, 1H), 5.23 (ddd, 1H), 5.53 (s, 1H), 4.02 (s, 1H), 3.01 (m, 1H), 2.46 (m, 1H), 2.28 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.39 (s, 3H), 1.28 (m, 2H), 1.19 (s, 3H).

Compound 62 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.37 20 (d, J= 8.2, 1H), 7.09 (dt, J= 9.8, 1.8, 1H), 6.69 (td, J= 9.6, 2.8, 1H), 6.61 (d, J= 8.6, 1H), 5.78 (m, 1H), 5.77 (s, 1H), 5.75 (s, 1H), 5.74 (m, 1H), 5.53 (s, 1H), 4.05 (s, 1H), 2.93 (m, 1H), 2.38 (m, 1H), 2.24 (d, J=0.9, 3H), 1.63 (m, 2H), 1.39 (s, 3H), 1.15 (s, 3H).

PCT/US2003/024419

Compound 63 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.31 (d, J= 8.6, 1H), 7.04 (m, 1H), 6.66 (m, 1H), 6.61 (d, J= 8.6, 1H), 6.31 (m, 1H), 5.49 (m, 1H), 5.16 (q, J= 1.8, 1H), 3.96 (s, 1H), 2.52 (m, 1H), 2.35 (m, 1H), 2.18 (s, 3H), 1.85 (m, 1H), 1.78 (m, 1H), 1.29 (d, J= 20.8, 3H), 1.16 (m, 2H), 1.15 (s, 3H).

EXAMPLE 19

Preparation of (±)-(5l, l'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 71, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{15} = R^{17} =$ methyl, $R^{14}/R^{16} =$ a bond, n = 0)

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-2,3-dimethylcyclopentene (Compound 72, Structure 6 of Scheme I, where R¹⁹ = R²⁰ = R²¹ = H, R¹⁵ = R¹⁷ = methyl, n = 0) and compound 36 (Structure 2 of Scheme I, where R⁸ = R¹⁰ = fluorine, R⁶ = methyl, R⁹ = H) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) 7.32 (d, J = 8.2, 1H), 7.09 (dt, J = 9.8, 2.7, 1H), 6.69 (td, J = 10.8, 2.8, 1H), 6.59 (d, J = 7.5, 1H), 5.92 (d, J = 8.2, 1H), 5.53 (s, 1H), 4.01 (s, 1H), 2.86 (m, 1H), 2.29 (m, 1H), 2.22 (s, 3H), 2.00 (m, 1H), 1.57 (s, 3H), 1.55 (s, 3H), 1.50 (m, 1H), 1.38 (s, 3H), 1.14 (s, 3H).

20

EXAMPLE 20

Preparation of (+)-(51,1'1)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline and (-)-(51,1'1)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compounds 73 and 74, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{15} = R^{17} =$ methyl, $R^{14}/R^{16} =$ a bond, n = 0)

These compounds were obtained through chiral HPLC separation of compound 71 using a Chiral AD Semiprep Column, 250x20 mm ID, 90% Hexanes/EtOH. Data for compound 73, $[\alpha]^{22}_{D} = +256.7$ and compound 74, $[\alpha]^{22}_{D} = -263.8$ (EtOH).

10 EXAMPLE 21

Preparation of (\pm) -(5l,1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline, (\pm) -(5l,1'u)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compounds 75 and 76, Structure 3 of Scheme I, where $R^9 = R^{15} = R^{16} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = \text{methyl}$, $R^{13}/R^{14} = a \text{ bond}$, n = 1) and (\pm) -(5l,1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylidene-5H-chromeno[3,4-f]quinoline (Compound 77, Structure 4 of Scheme I, where $R^4 = R^{17} = H$, X = O)

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)cyclohexene (Compound 78, Structure 6 of Scheme I, where $R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) and compound 36 (Structure 2 of Scheme I, where $R^8 = R^{10} =$ fluorine, $R^6 =$ methyl, $R^9 = H$).

WO 2004/033460 PCT/US2003/024419

5

10

15

Compound 75 was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.35 (d, J= 8.2, 1H), 7.08 (td, J= 9.8, 1.8, 1H), 6.69 (dt, J= 9.5, 3.0, 1H), 6.61 (d, J= 8.2, 1H), 5.90 (d, J= 11.0, 1H), 5.76 (m, 1H), 5.68 (d, J= 9.5, 1H), 5.52 (d, J= 1.2, 1H), 4.06 (s, 1H), 2.41 (m, 1H), 2.24 (d, J= 1, 3H), 1.94 (m, 2H), 1.66 (m, 2H), 1.39 (s, 3H), 1.28 (m, 1H), 1.25 (m, 1H), 1.14 (s, 3H).

Compound 76 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.35 (d, J = 8.2, 1H), 7.10 (td, J = 9.8, 1.8, 1H), 6.70 (dt, J = 8.6, 2.7, 1H), 6.60 (d, J = 8.2, 1H), 5.78 (d, J = 10.4, 1H), 5.68 (m, 1H), 5.48 (s, 1H), 5.12 (d, J = 7.9, 1H), 4.04 (s, 1H), 2.41 (m, 1H), 2.20 (s, 3H), 1.98 (m, 2H), 1.78 (m, 2H), 1.38 (s, 3H), 1.28 (m, 1H), 1.25 (m, 1H), 1.18 (s, 3H).

Compound 77 was isolated as a minor product: 1 H NMR (500 MHz, CDCl₃) 7.31 (d, J= 8.6, 1H), 7.08 (m, 1H), 6.68 (m, 1H), 6.43 (d, J= 8.2, 1H), 5.85 (m, 1H), 5.73 (m, 1H), 5.40 (s, 1H), 5.18 (s, 1H), 4.04 (s, 1H), 2.33 (d, J= 11.3, 1H), 2.27 (d, J= 12.2, 1H), 2.00 (m, 1H), 1.93 (m, 1H), 1.68 (m, 1H), 1.94 (m, 2H), 1.34 (s, 3H), 1.18 (m, 1H), 1.14 (s, 3H), 0.86 (m, 2H).

20

EXAMPLE 22

Preparation of (±)-(5l,1'l)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline and (±)-(5l,1'u)-5-(2methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4
f]quinoline (Compounds 79 and 80, Structure 3 of Scheme I, where R⁸ = R⁹ = R¹³ = R¹⁶
= R¹⁷ = R¹⁸ = R¹⁹ = R²⁰ = R²¹ = H, R¹⁰ = fluorine, R⁶ = methyl, R¹⁴/R¹⁵ = methylidene, n
= 1)

 $(\pm)-(5l,1'l)-5-(2-\text{excyclohexyl})-9-\text{fluoro}-1,2-\text{dihydro}-2,2,4-\text{trimethyl}-5H \text{chromeno}[3,4-f]\text{quinoline and }(\pm)-(5l,1'u)-5-(2-\text{excyclohexyl})-9-\text{fluoro}-1,2-\text{dihydro}-2,2,4 10 \quad \text{trimethyl}-5H-\text{chromeno}[3,4-f]\text{quinoline (Compounds 81 and 82, Structure 3 of Scheme I,}$ $\text{where } R^8=R^9=R^{13}=R^{16}=R^{17}=R^{18}=R^{19}=R^{20}=R^{21}=H, R^{10}=\text{fluorine,}$ $R^6=\text{methyl}, R^{14}/R^{15}=\text{carbonyl}, n=1)$

Compounds 81 and 82 were prepared in a similar fashion as that described in Example 1 general procedure from 1-(trimethylsilyloxy)cyclohexene and compound 26 (Structure 2 of Scheme I, where R^{10} = fluorine, R^6 = methyl, R^8 = R^9 = H).

Compound 81 was isolated as a major product: 1 H NMR (500 MHz, CDCl₃) 7.36 (d, J= 8.6, 1H), 7.30 (dd, J= 13.4, 4.6, 1H), 6.81 (d, J= 7.0, 1H), 6.80 (d, J= 8.2, 1H), 6.61 (d, J= 8.5, 1H), 6.58 (d, J= 9.2, 1H), 5.49 (s, 1H), 3.99 (s, 1H), 2.84 (m, 1H), 2.45 (m, 1H), 2.28 (s, 3H), 2.24 (m, 1H), 1.99 (m, 1H), 1.68 (m, 2H), 1.40 (m, 2H), 1.37 (s, 3H), 1.11 (s, 3H).

Compound 82 was isolated as a minor product: ${}^{1}H$ NMR (500 MHz, CDCl₃) 7.36 (d, J = 8.6, 1H), 7.30 (dd, J = 7.3, 1H), 6.81 (d, J = 8.8, 1H), 6.79 (d, J = 7.6, 1H), 6.59

WO 2004/033460 PCT/US2003/024419

5

10

20

(d, J = 8.2, 1H), 6.44 (d, J = 5.8, 1H), 5.49 (s, 1H), 3.99 (s, 1H), 2.59 (m, 1H), 2.35 (m, 1H), 2.26 (s, 3H), 2.20 (m, 1H), 1.90 (m, 2H), 1.80 (m, 1H), 1.70 (m, 2H), 1.45 (m, 2H), 1.37 (s, 3H), 1.12 (s, 3H).

The title compounds **79** and **80** were prepared by using a Wittig procedure from compounds **81** and **82**. Data for compound **79**: 1 H NMR (500 MHz, CDCl₃) **7**.38 (d, J = 8.2, 1H), **7**.31 (dd, J = 7.6, 2.8, 1H), 6.78 (m, 1H), 6.80 (d, J = 8.2, 1H), 6.61 (m, 1H), 6.02 (d, J = 10.1, 1H), 5.52 (s, 1H), 4.83 (s, 1H), 4.71 (s, 1H), 4.02 (s, 1H), 2.50 (m, 1H), 2.42 (s, 3H), 2.30 (m, 1H), 2.07 (m, 1H), 1.60 m, m1H), 1.45 (m, 2H), 1.39 (s, 3H), 1.30 (m, 1H), 1.18 (m, 1H), 1.12 (s, 3H, 1.08 (m, 1H). Data for compound **80**: 1 H NMR (500 MHz, CDCl₃) **7**.38 (d, J = 8.8, 1H), **7**.34 (m, 1H), 6.78 (m, 1H), 6.86 (m, 1H), 6.54 (d, J = 8.9, 1H), 6.01 (d, J = 9.2, 1H), 5.47 (s, 1H), 4.41 (s, 1H), 4.10 (s, 1H), 3.98 (s, 1H), 2.56 (m, 1H), 2.30 (s, 3H), 2.04 (m, 3H), 1.76 (m, 1H), 1.68 (m, 1H), 1.58 (m, 1H), 1.36 (s, 3H), 1.30 (m, 2H), 1.09 (s, 3H).

EXAMPLE 23

Preparation of (±)-(51,1'1)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro1,2,2,4-tetramethyl-5H-chromeno[3,4-f]quinoline (Compound 83, Structure 5 of Scheme

1)

This compound was prepared by methylation of compound 39 (Structure 3 of Scheme I, where $R^8 = R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^{10} = \text{methoxy}$, $R^6 = R^{17} = \text{methyl}$, $R^{14}/R^{16} = \text{a bond}$, n = 1) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) 7.56 (d, J = 8.5, 1H), 7.28 (d, J = 2.1, 1H), 6.92 (d, J = 8.9, 1H), 6.75 (m, 2H), 5.69 (s, 1H), 5.54 (s, 1H), 5.50 (d, J = 9.8, 1H), 3.83 (s, 3H), 2.89 (s, 3 H), 2.41 (m, 1H), 2.26 (s, 1H), 5.54 (s, 1H), 5.55 (m, 2H), 5.55 (m, 2

3H), 1.87 (m, 1H), 1.77 (m, 1H), 1.66 (s, 3H), 1.62 (m, 1H), 1.51 (s, 3H), 1.28 (m, 2H), 1.18 (m, 1H), 0.96 (s, 3H).

EXAMPLE 24

Preparation of (\pm)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*
5 chromeno[3,4-f]quinoline (Compounds 84, Structure 3 of Scheme I, where $\underline{R^8 = R^9 = R^{13} = R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H, R^{10} = F, R^6 = \text{methyl}, R^{14}/R^{16} = a}$ bond, n = 1)

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)cyclohexene (Compound 78, Structure 6 of Scheme I, where $R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 1) and compound 26 (Structure 2 of Scheme I, where $R^{10} =$ fluorine, $R^6 =$ methyl, $R^8 = R^9 = H$) as a 1:1 mixture of two diastereomers: 1H NMR (500 MHz, CDCl₃) 7.38 (d, J = 8.2, 1H), 7.38 (d, J = 8.2, 1H), 7.30 (t, J = 2.8, 1H), 7.28 (t, J = 2.8, 1H), 6.90-6.85 (m, 2H), 6.85-6.80 (m, 2H), 6.61 (d, J = 8.2, 1H), 6.61 (d, J = 8.2, 1H), 5.91 (d, J = 10.1, 1H), 5.78-5.71 (m, 1H), 5.67 (d, J = 10.1, 1H), 5.70-5.64 (m, 1H), 5.57 (d, J = 9.8, 1H), 5.51 (s, 1H), 5.47 (s, 1H), 5.18-5.14 (m, 1H), 4.02-3.98 (m, 2H), 2.46-2.38 (m, 1H), 2.24 (s, 3H), 2.20 (s, 3H), 2.04-1.90 (m, 4H), 1.80-1.70 (m, 3H), 1.68-1.62 (m, 1H), 1.48-1.42 (m, 1H), 1.49 (s, 3H), 1.47 (s, 3H), 1.32-1.22 (m, 2H), 1.16 (s, 3H), 1.14 (s, 3H), 0.98-0.92 (m, 2H).

WO 2004/033460 PCT/US2003/024419

EXAMPLE 25

Preparation of (±)-(5l,1'l)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (Compound **85**, Structure **3** of Scheme I, where $R^9 = R^{13} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{15} = R^{17} =$ methyl, $R^{14}/R^{16} =$ a bond, n = 1)

5

10

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-2,3-dimethylcyclohexene (Compound 86, Structure 6 of Scheme I, where $R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^{15} = R^{17} = methyl$, n = 1) and Compound 36 (Structure 2 of Scheme I, where $R^8 = R^{10} = fluorine$, $R^9 = H$, $R^6 = methyl$) as a yellow solid: ¹H NMR (500 MHz, acetone- d_6) 7.50 (d, J = 8.2, 1H), 7.30 (dt, J = 10.1, 1.8, 1H), 6.84 (td, J = 9.8, 2.8, 1H), 6.75 (d, J = 8.2, 1H), 6.01 (d, J = 6.4, 1H), 5.72 (s, 1H), 5.55 (d, 1.2, 1H), 2.30 (m, 1H), 2.22 (s, 3H), 2.00-1.8 (m, 3H), 1.59 (s, 3H), 1.50 (s, 3H), 1.46-1.40 (m, 1H), 1.37 (s, 3H), 1.36-1.26 (m, 3H), 1.15 (s, 3H).

EXAMPLE 26

Preparation of (\pm) -(5l, l'l)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 89, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H, R^8 = R^{10} = \text{fluorine}, R^6 = \text{methyl},$ $R^{14}/R^{16} = \text{a bond}, n = 2)$

This compound was prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)cycloheptene (Compound 90, Structure 6 of Scheme I, where $R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 2) and Compound 36 (Structure 2 of Scheme I, where $R^8 = R^{10} =$ fluorine, $R^9 = H$, $R^6 =$ methyl) as a yellow solid: ¹H NMR (500 MHz, CDCl₃) 7.36 (d, J = 8.6, 1H), 7.10 (d, J = 9.8, 1H), 6.68 (ddd, 46)

WO 2004/033460 PCT/US2003/024419

J = 9.5, 2.8, 2.8, 1H), 6.61 (d, J = 8.2, 1H), 6.03 (d, J = 11.6, 1H), 5.84-5.76 (m, 1H), 5.80 (d, J = 10.1, 1H), 5.52 (s, 1H), 4.10 (s, 1H), 2.47 (m, 1H), 2.24 (s, 3H), 2.12-2.04 (m, 2H), 1.94-1.84 (m, 1H), 1.78-1.84 (m, 1H), 1.44-1.44 (m, 1H), 1.38 (s, 3H), 1.24-1.18 (m, 2H), 1.11 (s, 3H), 0.98-0.92 (m, 1H).

EXAMPLE 27

5

10

15

20

Preparation of (±)-(5l,1'l)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline and (±)-(5l,1'u)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compounds **91** and **92**, Structure **3** of Scheme I, where $R^9 = R^{13} = R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = \text{methyl}$, $R^{14}/R^{16} = \text{a bond}$, n = 3)

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)cyclooctene (Compound 93, Structure 6 of Scheme I, where $R^{13} = R^{15} = R^{17} = R^{18} = R^{19} = R^{20} = R^{21} = H$, n = 3) and Compound 36 (Structure 2 of Scheme I, where $R^8 = R^{10} =$ fluorine, $R^9 = H$, $R^6 =$ methyl) as a yellow solid: Compound 91 ¹H NMR (500 MHz, CDCl₃) 7.36 (d, J = 8.6, 1H), 7.10 (d, J = 9.8, 1H), 6.68 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.58 (d, J = 8.2, 1H), 5.87 (d, J = 9.5, 1H), 5.74-5.66 (m, 1H), 5.56 (t, J = 10.1, 1H), 5.52 (s, 1H), 4.03 (s, 1H), 2.90-2.80 (m, 1H), 2.26 (s, 3H), 1.88-1.80 (m, 1H), 1.54-1.46 (m, 2H), 1.40-1.32 (m, 2H), 1.23-1.17 (m, 2H), 1.38 (s, 3H), 1.24-1.18 (m, 2H), 1.19 (s, 3H), 1.07-0.98 (m, 1H); Compound 92 ¹H NMR (500 MHz, CDCl₃) 7.33 (d, J = 8.5, 1H), 7.11 (d, J = 9.8, 1H), 6.71 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.61 (d, J = 8.2, 1H), 5.87 (d, J = 8.8, 1H), 5.54 (s, 1H), 5.54-5.48 (m, 1H), 5.23 (t, J = 10.4, 1H), 4.01 (s, 1H), 2.88-2.80 (m, 1H), 2.26 (s, 3H), 1.96-1.88 (m,

1H), 1.84-1.70 (m, 2H), 1.54-1.46 (m, 2H), 1.45-1.38 (m, 1H), 1.38 (s, 3H), 1.36-1.26-1.17 (m, 2H), 1.20-1.00 (m, 2H), 1.10 (s, 3H).

EXAMPLE 28

Preparation of (±)-(5l,1'l)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2
dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 94, Structure 3 of

Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{17} =$ methyl, $R^{14}/R^{16} =$ -O-, $R^8 = R^{19} =$ 1 and (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9
difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylene-5*H*-chromeno[3,4-f]quinolin-3-ol

(Compound 95, Structure 4 of Scheme I, where $R^4 =$ hydroxy, $R^{17} =$ methyl, X = 0)

These compounds were prepared by epoxidation of Compound 34 (Structure 3 of 10 Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ R^{17} = methyl, R^{14}/R^{16} = a bond, n = 1) according to a standard procedure as yellow solids: Compound 94. ¹H NMR (500 MHz, acetone- d_6) 7.54 (d, J = 8.5, 1H), 7.35 (ddd, J= 9.2, 1.8, 1.8, 1H), 6.89 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.76 (d, J = 8.5, 1H), 6.02 (d, J = 9.5, 2.8, 2.8, 1H), 6.76 (d, J = 8.5, 1H), 6.77 (d, J = 8.5, 1H), 6.78 (d, J = 8.5, 1H), 10.1, 1H), 5.74 (s, 1H), 5.54 (s, 1H), 3.15 (d, J = 2.1, 1H), 2.28 (d, J = 0.6, 3H), 2.16-15 2.00 (m, 1H), 1.72-1.66 (m, 2H), 1.37 (s, 3H), 1.40-1.28 (m, 1H), 1.28 (s, 3H), 1.11 (s, 3H), 1.08-0.93 (m, 2H), 0.84-0.76 (m, 1H; Compound 95, ¹H NMR (500 MHz, acetone d_6) 7.48 (d, J = 8.5, 1H), 7.28 (ddd, J = 9.2, 1.8, 1.8, 1H), 6.83 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.60 (d, J = 8.5, 1H), 5.80 (d, J = 8.8, 1H), 5.70 (d, J = 21.4, 1H), 5.68 (s, 1H), 5.55 (s, 1H), 5.41 (s, 1H), 4.55 (d, J = 4.9, 1H), 4.18 (dt, J = 4.6, 1.2, 1H), 2.30-2.22 (m, 1H), 20 1.90-1.74 (m, 1H), 1.74-1.66 (m, 1H), 1.58 (s, 3H), 1.35 (s, 3H), 1.32-1.24 (m, 4H), 1.08 (s, 3H).

EXAMPLE 29

Preparation of (±)-(51,1'l)-5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 96, Structure 3 of Scheme I, where $R^9 = R^{13} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = R^{15} = R^{17} = R^{10} = R$ methyl, $R^{14}/R^{15} = -O$, n = 0)

This compound was prepared by epoxidation of Compound 71 (Structure 3 of Scheme I, where $R^9 = R^{13} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 = R^{15} = R^{17} =$ methyl, $R^{14}/R^{16} = a$ bond, n = 0) as a solid: ¹H NMR (500 MHz, acetone- d_6) 7.49 (d, J =8.5, 1H), 7.34 (ddd, J = 9.2, 1.8, 1.8, 1H), 6.89 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.73 (d, J =10 8.6, 1H), 6.18 (d, J = 9.5, 1H), 5.68 (s, 1H), 5.53 (s, 1H), 2.35 (dt, J = 9.8, 1.8, 1H), 2.28 (d, J = 0.6, 3H), 1.69 (dd, J = 13.7, 8.2, 1H), 1.48 (s, 3H), 1.47-1.43 (m, 1H), 1.36 (s, 3H), 1.47-1.43 (m, 1H), 1.48 (s, 3H), 1.47-1.43 (m, 1H), 1.36 (s, 3H), 1.47-1.43 (m, 1H), 1.48 (s, 3H), 1.3H), 1.25 (s. 3H), 1.01 (s. 3H), 0.98-0.92 (m. 1H), 0.78-0.72 (m. 1H).

EXAMPLE 30

Preparation of (\pm) -(5l, l'u)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 97, Structure 3 of 15 Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} = \text{fluorine}$, $R^6 = R^{10} = R$ $R^{17} = \text{methyl}, R^{14}/R^{16} = -0, n = 1$

This compound was prepared by epoxidation of Compound 35 (Structure 3 of Scheme I, where $R^9 = R^{13} = R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H$, $R^8 = R^{10} =$ fluorine, $R^6 =$ R^{17} = methyl, R^{14}/R^{16} = a bond, n = 1) according to a standard procedure as yellow 20 solids: Compound 97, ¹H NMR (500 MHz, acetone- d_6) 7.57 (d, J = 8.5, 1H), 7.35 (ddd, J= 9.2, 1.8, 1.8, 1H), 6.88 (ddd, J = 9.5, 2.8, 2.8, 1H), 6.80 (d, J = 8.5, 1H), 5.94 (d, J =10.4, 1H), 5.77 (s, 1H), 5.61 (s, 1H), 2.65 (s, 1H), 2.27 (d, J = 0.9, 3H), 2.12-2.06 (m,

WO 2004/033460 PCT/US2003/024419

1H), 1.86-1.80 (m, 1H), 1.76-1.68 (m, 1H), 1.66-1.58 (m, 1H), 1.46-1.40 (m, 1H), 1.37 (s, 3H), 1.36-1.26 (m, 2H), 1.21 (s, 3H), 1.11 (s, 3H).

EXAMPLE 31

Preparation of (±)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4
tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-f]quinolin-4-one (Compound 98, Structure 4

of Scheme I, where R⁴ = H, R¹⁷ = methyl, X = O)

These compounds were prepared in a similar fashion as that described in Example 1 general procedure from 3-(dimethylphenylsilyl)-3-methyl-1-cyclohexene (Structure 6 of Scheme I, where R^{17} = methyl, R^{15} = R^{18} = R^{19} = R^{20} = R^{21} = H, n = 1) and 7,9-difluoro-1,2,3,4-tetrahydro-5-methoxy-2,2-dimethyl-5*H*-chromeno[3,4-f]quinolin-4-one (Compound 99). 1 H NMR (500 MHz, CDCl₃), 7.55 (d, J = 8.9, 1H), 7.02-6.95 (m, 1H), 6.70-6.64 (m, 1H), 6.66 (d, J = 8.6, 1H), 6.42 (d, J = 5.8, 1H), 5.26 (s, 1H), 4.42 (s, 1H), 2.67 (d, J = 15.2, 1H), 2.56 (d, J = 15.0, 1H), 2.48 (m, 1H), 1.94-1.80 (m, 2H), 1.78-1.66 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.32 (s, 3H), 1.42-1.36 (m, 1H), 1.29-1.25 (m, 1H).

EXAMPLE 32

The in vitro activity of selected hPR modulator compounds of the present invention were evaluated utilizing the cotransfection assay, and in standard receptor competitive binding assays, according to the following illustrative Examples.

20 Cotransfection assay

10

15

The function and detailed preparation procedure of the cotransfection assays have been described previously (Pathirana, C. et al., Nonsteroidal Human Progesterone

Receptor Modulators from the Marine Alga Cymopolia Barbata. *Mol. Pharm.* **1995**, *47*, 630-635). Briefly, the cotransfection assays were carried out in CV-1 cells (African green monkey kidney fibroblasts), which were transiently transfected, by the standard calcium phosphate coprecipitation procedure (Berger, T. S. *et al.*, Interaction of Glucocorticoid Analogues with the Human Glucocorticoid Receptor. *J. Steroid Biochem. Mol. Bio.* **1992**, *41*, 733-738) with the Plasmid containing receptor, MTV-LUC reporter, pRS-β-Gal, and filler DNA (Rous sarcoma virus chloramphenicol acetyltransferase). The agonist activity was determined by examining the LUC expression (normalized response) and the efficacy readout was a relative value to the maximal LUC expression produced by progesterone. All the cotransfection experiments were carried out in 96-well plates by automation (Beckman Biomomek automated workstation).

Receptor Binding Assays

5

10

15

20

The preparation of receptor binding assays for hPR-A was described in literature (Pathirana, C. et al., Nonsteroidal Human Progesterone Receptor Modulators from the Marine Alga Cymopolia Barbata. *Mol. Pharm.* **1995**, *47*, 630-635.)

The agonist, antagonist and binding activity assay results of selected progesterone receptor modulator compounds of the present invention and the standard reference compounds on PR are shown in Table 1 below. Efficacy is reported as the percent maximal response observed for each compound relative to the reference agonist and antagonist compounds indicated above. Also reported in Table 1 for each compound is its antagonist potency or IC₅₀ (which is the concentration (nM), required to reduce the maximal response by 50%), and its agonist potency or EC₅₀ (nM), which is the effective concentration that produced 50% of the maximum response.

Table 1: Agonist, antagonist and binding activity of progesterone receptor modulator compounds of present invention and the reference agonist compound, progesterone (Prog), and reference antagonist compound, RU486 and ZK299.

Cmpd	PR Agonist CV-1 Cells		PR Antagonist CV-1 Cells		PR Binding
No.	Efficacy (%)	Potency (nM)	Efficacy (%)	Potency (nM)	K _i (nM)
Prog	100	2.9	na	na	3.5
RU486	na	na	96	0.18	0.58
ZK299	na	па	99	1.6	18
24	168	3.6	na	na	6.4
25	86	9.7	na	na	6.3
27	68	43	na	na	241
28	171	0.9	na	na	2.0
34	164	0.5	na	na	3.7
35	100	5.4	na	na	14
37	na	na	50	113	>1000
38	166	0.6	na	na	1.9
41	122	10	na	na	11
42	27	38	na	na	143
44	123	6.7	na	na	7.7
45	94	9.1	na	na	17
64	na	na	80	1900	485
65	na	na	59	650	329
71	139	3.4	na	na	3.9

na = not active (i.e. efficacy of <20 and potency of >10,000)

EXAMPLE 33

The in vivo activity of selected hPR modulator compounds of the present

invention were evaluated utilizing the McPhail assay, according to the following

illustrative Examples. The Clauberg or McPhail assay is a classic assay utilizing rabbits

to measure progestational activity. The reason rabbit is used is because the results

observed in rabbit have proved to be a good indicator and predictor of activity in the

human. In this assay, immature rabbits are treated initially with estradiol, which induces

10

growth in the uterus. This is followed by treatment with a progestin, which causes a large change in the glandular content of the uterus. It is this change in the glandular component, which is a measure of the progestational activity of a progestin. The measurement of these glandular changes are carried out histologically using stained sections of the uterus. The assay results of the new 5-cycloalkenyl compounds are tabulated in Table 2. The in vivo potency of the progestins is presented as the minimum active dose (MAD) in mg/kg.

Table 2: The potency (MAD in mg/kg) of selected 5-cycloalkenyl compounds of present invention in the McPhail assay.

Compd #	MAD (mg/kg)	EC ₅₀ (nM)	K _i (nM)
24	0.25	3.6	6.4
34	0.25	0.5	3.7
38	0.10	0.6	1.9
71	0.25	3.4	3.9

Pharmacological and Other Applications

The following Example provides illustrative pharmaceutical composition formulations:

15 EXAMPLE 34

Hard gelatin capsules are prepared using the following ingredients:

	 Quantity (mg/capsule)
COMPOUND 24	10
Starch, dried	100
Magnesium stearate	<u>10</u>
Total	120 mg

The above ingredients are mixed and filled into hard gelatin capsules in 120 mg quantities.

A tablet is prepared using the ingredients below:

	Quantity (<u>mg/tablet)</u>
COMPOUND 24	10
Cellulose, microcrystalline	200
Silicon dioxide, fumed	10
Stearic acid	<u>10</u>
Total	230 mg

The components are blended and compressed to form tablets each weighing 230 mg.

Tablets, each containing 10 mg of active ingredient, are made as follows:

	Quantity (<u>mg/tablet)</u>
COMPOUND 24	10
Starch	45
Cellulose, microcrystalline	35
Polyvinylpyrrolidone (PVP) (as 10% solution in water)	
	4
	4.5
Sodium carboxymethyl starch (SCMS)	4.5
Magnesium stearate	0.5
Talc	<u> </u>
Total	100 mg

The active ingredient, starch and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The solution of PVP is mixed with the resultant powders, which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50°C and passed through a No. 18 mesh U.S. sieve. The SCMS, magnesium stearate and talc, previously passed through a No. 60 mesh U.S. sieve are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

Suppositories, each containing 225 mg of active ingredient, may be made as follows:

Quantity	
(mg/suppository)	Į

COMPOUND 24 20
Saturated fatty acid glycerides 2,000
Total 2,020 mg

The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of normal 2 g capacity and allowed to cool.

An intravenous formulation may be prepared as follows:

Quantity

COMPOUND 24	10 mg
isotonic saline	1000 mL
glycerol	100 mL
The compound is dissolved in the glycerol and	then the solution is slowly diluted

with isotonic saline. The solution of the above ingredients is then administered intravenously at a rate of 1 mL per minute to a patient.

The present invention includes any combination of the various species and subgeneric groupings falling within the generic disclosure. This invention therefore includes the generic description of the invention with a proviso or negative limitation removing any subject matter from the genus, regardless of whether or not the excised material is specifically recited herein.

The scope of the invention is not to be limited by the description of the examples.

Modifications and alterations of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the present invention.

Therefore, it will be appreciated that the scope of this invention is to be defined

by the appended claims, rather than by the specific examples which have been presented
by way of example.

What is claimed is:

1. A compound of the formula:

(I)

5

10

15

wherein:

 R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_6 alkyl, and C_1 – C_6 haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁-C₈ alkyl, C₁-C₈ heteroalkyl, C₁-C₈ haloalkyl, allyl, C₂-C₈ alkenyl and C₂-C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

10 R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

 R^{14} and R^{16} taken together form a bond or "-O-" bridge; or

15 R^{16} and R^{18} taken together form a bond when n is 1; or

 $R^{16} \ \text{and} \ R^{19} \ \text{taken together form a bond when n is 0;}$

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 2. A compound according to claim 1, wherein R¹ is selected from the group of hydrogen, C₁-C₄ alkyl, COR¹¹, SO₂R¹¹, and CONR¹¹R¹².
- A compound according to claim 1, wherein R² and R³ each independently
 is selected from the group of C₁-C₄ alkyl, and C₁-C₄ haloalkyl.
 - 4. A compound according to claim 1, wherein

R⁵ and R⁷ taken together form a bond;

R⁴ and R⁶ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁-C₄ alkyl, and C₁-C₄ haloalkyl.

10 5. A compound according to claim 1, whererin

R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and C_{1-} C_4 alkyl.

- 15 6. A compound according to claim 1, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁-C₆ alkyl, C₁-C₆ heteroalkyl, and C₁-C₆ haloalkyl.
 - 7. A compound according to claim 6, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.

- 8. A compound according to claim 1, wherein R^{11} through R^{12} each independently is selected from the group of hydrogen, and C_1 – C_4 alkyl.
 - 9. A compound according to claim 1, wherein

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

- 5 R¹⁵, R¹⁷, R¹⁸, R¹⁹, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁-C₄ alkyl, and C₁-C₄ haloalkyl.
 - 10. A compound according to claim 1, wherein

R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, and di-substituted methylidene;

- R^{14} , R^{15} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 - C_4 alkyl, and C_1 - C_4 haloalkyl.
 - 11. A compound according to claim 1, wherein

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

- 15 R^{14} , R^{15} , R^{17} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 - C_4 alkyl, and C_1 - C_4 haloalkyl.
 - 12. A compound according to claim 1, wherein said compound is selected from the group of:

(±)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 24);

- (±)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 25);
- 5 (+)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 27);
 - (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
- (±)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl
 5*H*-chromeno[3,4-*f*]quinoline (compound **29**);
 - (±)-(5l, 1'u)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **30**);
 - (+)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 32);
- (-)-(5*l*, *I'l*)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 33);
 - (±)-(5l, 1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 34);
- (±)-(5l,1'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-20 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 35);

(+)-(5*l*, *l'l*)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 37);

- (-)-(51,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **38**);
- 5 (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 39);
 - (\pm)-(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H-chromeno[3,4-f]quinoline (compound 41);
- (±)-(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2-dimethyl-5H
 10 chromeno[3,4-f]quinoline (compound 42);
 - (±)-(51,1'1)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 44);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 45);
- (±)-(5*l*, 1'*l*)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 47);
 - (\pm) -(5l, l'u)-5-(3,5,5-trimethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 48);
- (±)-(5l,1'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,420 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **50**);

(±)-(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 51);

- (±)-5-(3-methyl-3-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 52);
- 5 (±)-5-(2-cyclopenta-1,3-dienyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 53);
 - (±)-(5l, 1'l)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 55);
- (\pm)-(5*l*, 1'u)-5-(3-ethyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-10 chromeno[3,4-f]quinoline (compound **56**);
 - (±)-(51,1'1)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 58);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-7-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 59);
- (±)-(5l,1'l)-5-(3-ethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 61);
 - (±)-(51,1'l)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **62**);
 - (\pm) -(5l, l'l)-5-(3-methyl-3-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-
- 20 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 63);

- (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 64);
- (\pm) -(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-8-methoxy-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 65);
- 5 (±)-(5l,1'l)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 67);
 - (±)-(5l,1'u)-5-(2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 68);
- (±)-5-(1-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*
 10 chromeno[3,4-*f*]quinoline (compound 69);
 - (±)-(5l,1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 71);
 - (+)-(51,1'1)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 73);
- 15 (-)-(5*l*,1'*l*)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74);
 - (±)-(5l,1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound 75);
- (\pm)-(5*l*,1'*u*)-5-(2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-20 chromeno[3,4-f]quinoline (compound 76);

(±)-(5l,1'l)-5-(2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-4-methylidene-5*H*-chromeno[3,4-*f*]quinoline (compound 77);

- (±)-(5l, 1'l)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 79);
- 5 (±)-(5l,1'u)-5-(2-methylidenecyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 80);
 - (\pm) -(5l, l'l)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 81);
- (\pm)-(51,1'u)-5-(2-oxocyclohexyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5H10 chromeno[3,4-f]quinoline (compound 82);
 - (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-methoxy-1,2-dihydro-1,2,2,4-tetramethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 83);
 - (±)-5-(2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (compound **84**);
- (±)-(5*l*,1'*l*)-5-(2,3-dimethyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **85**);
 - (±)-5-(3-methylidene-cyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **87**);
- (±)-(5l,1'u)-5-(3-ethylidenecyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl20 5H-chromeno[3,4-f]quinoline (compound 88);

- (±)-(5l,1'l)- 5-(2-cycloheptenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 89);
- (\pm) -(5l, 1'l)- 5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 91);
- 5 (±)-(5l,1'u)-5-(2-cyclooctenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 92);
 - (±)-(5l,1'l)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 94);
- (±)-(5l, 1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2dimethyl-4-methylene-5*H*-chromeno[3,4-f]quinolin-3-ol (Compound **95**);
 - (±)-(5l,1'l)- 5-(2,3-epoxy-2,3-dimethylcyclopentyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-f]quinoline (Compound 96);
 - (\pm) -(5l, l'u)- 5-(2,3-epoxy-3-methylcyclohexyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (Compound 97); and
- (±)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-dimethyl-5*H*-chromeno[3,4-f]quinolin-4-one (Compound 98).
 - 13. A compound according to claim 1, wherein said compound is selected from the group of:
- (±)-(5l, l'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl20 5H-chromeno[3,4-f]quinoline (compound 24);

- (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-9-fluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **28**);
- (-)-(51,1'l)-5-(3-methyl-2-cyclohexenyl)-9-hydroxy-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 33);
- 5 (±)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 34);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 35);
- (-)-(5l,1'l)-5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2-dihydro-2,2,4-10 trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 38);
 - (±)-(5l,1'l)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **50**);
 - (\pm) -(5l, l'u)-5-(3-methyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5H-chromeno[3,4-f]quinoline (compound 51);
- (±)-(5l,1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound **71**);
 - (-)-(51,1'l)-5-(2,3-dimethyl-2-cyclopentenyl)-7,9-difluoro-1,2-dihydro-2,2,4-trimethyl-5*H*-chromeno[3,4-*f*]quinoline (compound 74); and
- (±)-(5l,1'l)- 5-(3-methyl-2-cyclohexenyl)-7,9-difluoro-1,2,3,4-tetrahydro-2,2-20 dimethyl-5*H*-chromeno[3,4-f]quinolin-4-one (Compound 98).

14. A compound of the formula:

(II)

wherein:

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^6 is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

R⁸ and R¹⁰ each independently is selected from the group consisting of

hydrogen, F, Cl, Br, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, C₁-C₄ alkyl, C₁-C₄ heteroalkyl,

C₁-C₄ haloalkyl, allyl, and C₂-C₄ alkenyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹⁴, R¹⁵, R¹⁸, R²², R²³, R²⁴ each independently is selected from the group of hydrogen, F, Cl, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl;

 R^{22} , R^{23} , R^{24} together consists of not more than 3 carbon atoms;

 R^{16} taken together with one of R^{14} , R^{18} , and R^{22} form a bond or "-O-" bridge;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

15. A compound according to claim 14, wherein

5 R^2 and R^3 each independently is selected from the group of C_1 – C_4 alkyl;

R⁶ is selected from the group of F, Cl, Br, C₁-C₄ alkyl, and C₁-C₄ haloalkyl;

 R^8 and R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 10 alkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, C_1 – C_4 alkyl;

 R^{16} taken together with one of R^{14} , R^{18} , and R^{22} form a bond or "-O-" bridge; n is 0, 1, or 2.

15 16. A compound according to claim 15, wherein

R² and R³ each independently is CH₃;

R⁶ is selected from the group of F, Cl, Br, CH₃, CH₂CH₃, and CF₃;

R⁸ is hydrogen or F;

 R^{10} is selected from the group of hydrogen, F, Cl, Br, CN, OH, OCH₃, CH₃, CH₂CH₃, and CF₃;

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;

 R^{15} , R^{18} , R^{22} , R^{23} , and R^{24} each independently is hydrogen or CH₃.

5 17. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a compound of formula:

(I)

10 wherein:

R¹ is selected from the group of hydrogen, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ heteroalkyl, COR¹¹, CO₂R¹¹, SO₂R¹¹, and CONR¹¹R¹²;

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 - C_6 alkyl, and C_1 - C_6 haloalkyl; or

15 R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

 R^4 through R^7 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl,

Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁-C₈ alkyl, C₁-C₈

heteroalkyl, C₁-C₈ haloalkyl, allyl, C₂-C₈ alkenyl and C₂-C₈ alkynyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

R¹³ is hydrogen; or

10 R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

15 R¹⁶ and R¹⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

- 5 18. A pharmaceutical composition according to claim 17, wherein R¹ is selected from the group of hydrogen, C₁-C₄ alkyl, COR¹¹, SO₂R¹¹, and CONR¹¹R¹².
 - 19. A pharmaceutical composition according to claim 17, wherein R² and R³ each independently is selected from the group of C₁-C₄ alkyl, and C₁-C₄ haloalkyl.
 - 20. A pharmaceutical composition according to claim 17, wherein
- 10 R⁵ and R⁷ taken together form a bond;

 R^4 and R^6 each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.

21. A pharmaceutical composition according to claim 17, wherein

R⁶ and R⁷ taken together are selected from the group of methylidene, and carbonyl;

 R^4 and R^5 each independently is selected from the group of hydrogen, F, and C_1 – C_4 alkyl.

- 22. A pharmaceutical composition according to claim 17, wherein R⁸ through R¹⁰ each independently is selected from the group of hydrogen, F, Cl, Br, NO₂, CN, OR¹¹, SR¹¹, C₁-C₆ alkyl, C₁-C₆ heteroalkyl, and C₁-C₆ haloalkyl.
- A pharmaceutical composition according to claim 22, wherein R⁸ through
 R¹⁰ each independently is selected from the group of hydrogen, F, and OR¹¹.
 - 24. A pharmaceutical composition according to claim 17, wherein R¹¹ through R¹² each independently is selected from the group of hydrogen, and C₁-C₄ alkyl.
 - 25. A pharmaceutical composition according to claim 17, wherein R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge;
- 10 R^{15} , R^{17} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
 - 26. A pharmaceutical composition according to claim 17, wherein R^{16} and R^{17} taken together are selected from the group of methylidene, monosubstituted methylidene, and di-substituted methylidene;
- 15 R^{14} , R^{15} , R^{18} , R^{19} , R^{20} each independently is selected from the group of hydrogen, F, Cl, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl.
 - 27. A pharmaceutical composition according to claim 17, wherein
 - R¹⁶ and R¹⁸ taken together form a bond when n is 1; or
 - R¹⁶ and R¹⁹ taken together form a bond when n is 0;

5

R¹⁴, R¹⁵, R¹⁷, R²⁰ each independently is selected from the group of hydrogen, F, Cl, C₁–C₄ alkyl, and C₁–C₄ haloalkyl.

- 28. A method of treating an individual having a condition mediated by a progesterone receptor comprising administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.
- 29. A method of treating an individual having a condition mediated by a progesterone receptor comprising administering to said individual a pharmaceutically effective amount of a compound represented by formula (I):

10 (I)

wherein:

 R^1 is selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, C_1 – C_4 heteroalkyl, COR^{11} , CO_2R^{11} , SO_2R^{11} , and $CONR^{11}R^{12}$;

R² and R³ each independently is selected from the group of hydrogen, C₁-C₆ alkyl, and C₁-C₆ haloalkyl; or

R² and R³ taken together form a cycloalkyl ring of from three to twelve carbons;

R⁴ through R⁷ each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁-C₄ alkyl, C₁-C₄ haloalkyl, and C₁-C₄ heteroalkyl; or

R⁵ and R⁷ taken together form a bond; or

R⁶ and R⁷ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene and carbonyl;

 R^8 through R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, I, NO₂, CN, OR¹¹, NR¹¹R¹², SR¹¹, COR¹¹, CO₂R¹¹, CONR¹¹R¹², C₁–C₈ alkyl, C₁–C₈ heteroalkyl, C₁–C₈ haloalkyl, allyl, C₂–C₈ alkenyl and C₂–C₈ alkynyl;

R¹¹ and R¹² each is independently selected from the group of hydrogen, C₁-C₄

alkyl, C₁-C₄ heteroalkyl, and C₁-C₄ haloalkyl;

R¹³ is hydrogen; or

R¹³ and R¹⁴ taken together form a bond;

 R^{14} through R^{20} each independently is selected from the group of hydrogen, F, Cl, Br, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl; or

15 R¹⁴ and R¹⁵ taken together are selected from the group of methylidene, carbonyl and thiocarbonyl; or

 ${
m R}^{16}$ and ${
m R}^{17}$ taken together are selected from the group of methylidene, monosubstituted methylidene, di-substituted methylidene, carbonyl and thiocarbonyl; or

R¹⁴ and R¹⁶ taken together form a bond or "-O-" bridge; or

R¹⁶ and R¹⁸ taken together form a bond when n is 1; or

R¹⁶ and R¹⁹ taken together form a bond when n is 0;

R²¹ is hydrogen; or

R²¹ and R²⁰ taken together form a bond;

5 n is 0, 1, 2, or 3;

or a pharmaceutically acceptable salt or prodrug thereof.

30. A method of treating an individual having a condition mediated by a progesterone receptor comprising administering to said individual a pharmaceutically effective amount of a compound represented by formula (II):

10

(II)

wherein:

 R^2 and R^3 each independently is selected from the group of hydrogen, C_1 – C_4 alkyl, and C_1 – C_4 haloalkyl;

R⁶ is selected from the group of hydrogen, F, Cl, Br, CN, OR¹¹, C₁-C₄ alkyl, and C₁-C₄ haloalkyl;

 R^8 and R^{10} each independently is selected from the group of hydrogen, F, Cl, Br, CN, OR^{11} , $NR^{11}R^{12}$, SR^{11} , COR^{11} , C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, C_1 – C_4 haloalkyl, allyl, and C_2 – C_4 alkenyl;

 R^{11} and R^{12} each is independently selected from the group of hydrogen, C_1 – C_4 alkyl, C_1 – C_4 heteroalkyl, and C_1 – C_4 haloalkyl;

 R^{14} , R^{15} , R^{18} , R^{22} , R^{23} , R^{24} each independently is selected from the group of hydrogen, F, Cl, OR^{11} , C_1 – C_4 alkyl, C_1 – C_4 haloalkyl, and C_1 – C_4 heteroalkyl;

R²², R²³, R²⁴ together consists of not more than 3 carbon atoms;

R¹⁶ taken together with one of R¹⁴, R¹⁸, and R²² form a bond or "-O-" bridge;

10 n is 0, 1, 2, or 3;

15

20

or a pharmaceutically acceptable salt or prodrug thereof.

- 31. A method according to claim 28, wherein said condition is selected from the group of dysfunctional uterine bleeding, dysmenorrhea, endometriosis, leiomyomas (uterine fibroids), hot flushes, mood disorders, meningiomas, hormone-dependent cancers and female osteoporosis.
- 32. A method according to claim 28, wherein said condition is alleviated with female hormone replacement therapy.
- 33. A method of modulating fertility in an individual comprising administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.

- 34. A method of providing contraception to an individual comprising administering to said individual a pharmaceutically effective amount of a compound according to any one of claims 1, 12 or 14.
- 35. A method of modulating a progesterone receptor in an individual
 comprising administering to said individual a compound according to any one of claims 1, 12, or 14 in an amount effective to modulate a progesterone receptor.
 - 36. A method according to claim 35, wherein said modulation is activation.
- 37. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 100 nM.
 - 38. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 50 nM.
- 39. A method according to claim 36, wherein said compound provides at least
 50% maximal activation of the progesterone receptor at a concentration of less than
 20 nM.
 - 40. A method according to claim 36, wherein said compound provides at least 50% maximal activation of the progesterone receptor at a concentration of less than 10 nM.

10

- 41. A method of treating cancer, comprising administering to a patient in need thereof an effective amount of a compound according to any one of claims 1, 12 or 14.
- 42. A method according to claim 41, wherein said cancer is selected from the group of ovarian cancer, breast cancer, endometrium cancer and prostate cancer.
 - 43. A method of determining the presence of a progesterone receptor (PR) in a cell or cell extract comprising (a) labeling a compound according to any one of claims 1, 12 or 14; (b) contacting the cell or cell extract with said labeled compound; and (c) testing the contracted cell or cell extract to determine the presence of progesterone receptor.

In Illinal Application No PCI/US 03/24419

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D491/04 A61K31/47 //(C07D491/04,307:00,221:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC \ 7 \ C07D \ A61K$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, EMBASE, PAJ, WPI Data, CHEM ABS Data

U. DUCUM	INTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Retevant to claim No.	
Х	WO 02 02565 A (ABBOTT LAB ;LIGAND PHARM INC (US)) 10 January 2002 (2002-01-10) examples 131,133,136,137,140-143,144,146,148-150,15 2-170,209,212,220-222,224,225,236-243,246, 247,252,253,263-265,270-273	1-11, 17-27	
X	WO 99 41256 A (ABBOTT LAB; LIGAND PHARM INC (US)) 19 August 1999 (1999-08-19) cited in the application examples277,284,288,291,297,299,302,303,319,325,340,341,375,390-393,414,415,417-420,422,441	1-11, 17-27	

X Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filling date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filling date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 21 January 2004	Date of mailing of the international search report 29/01/2004
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Frelon, D

Category °	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	Chance of decement, where appropriate, of the relevant passages	Helevant to claim No.	
X	WO 99 41257 A (ABBOTT LAB ;LIGAND PHARM INC (US)) 19 August 1999 (1999-08-19) cited in the application overlapping	1-11, 17-27	
Y	LIN ZHI ET AL: "5-ARYL-1,2-DIHYDROCHROMENOÄ3,4-FÜQUINOLIN ES: A NOVEL CLASS OF NONSTEROIDAL HUMAN PROGESTERONE RECEPTOR AGONISTS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 3, 1998, pages 291-302, XP002161933 ISSN: 0022-2623 chart 2	1-43	
Y	TEGLEY C M ET AL: "5-BENZYLIDENE 1,2-DIHYDROCHROMENOÄ3,4-FÜQUINOLINES, A NOVEL CLASS OF NONSTEROIDAL HUMAN PROGESTERONE RECEPTOR AGONISTS" JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. WASHINGTON, US, vol. 41, no. 22, 1998, pages 4354-4359, XP002161937 ISSN: 0022-2623 table 1	1-43	
Y	ZHI L ET AL: "5-alkyl 1,2-dihydrochromeno'3,4-f!quinolines: a novel class of nonsteroidal progesterone receptor modulators" BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, OXFORD, GB, vol. 8, no. 23, 1 December 1998 (1998-12-01), pages 3365-3370, XP004143759 ISSN: 0960-894X table 1	1-43	
	ZHI L ET AL: "NOVEL CLASS OF NON-STEROIDAL PROGESTERONE RECEPTOR ANTAGONISTS" EXPERT OPINION ON THERAPEUTIC PATENTS, ASHLEY PUBLICATIONS, GB, vol. 9, no. 6, 1999, pages 695-700, XP001094162 ISSN: 1354-3776 page 697	1-43	

Box i Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)						
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:						
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:						
Although claims 28-43 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.						
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:						
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).						
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)						
This International Searching Authority found multiple inventions in this international application, as follows:						
As all required additional search fees were timely paid by the applicant, this International Search Report covers.all searchable claims.						
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.						
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:						
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:						
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.						

Patent document		Publication		Patent family	Publication
cited in search report		date		member(s)	date
WO 0202565	Α	10-01-2002	US	6506766 B1	14-01-2003
			AU	7019401 A	14-01-2002
			BR	0112160 A	07-10-2003
			CA	2415037 A1	10-01-2002
			CN	1451009 T	22-10-2003
			EP	1299392 A2	09-04-2003
			WO	0202565 A2	10-01-2002
			ÜS	2003073703 A1	17-04-2003
WO 9941256	Α	19-08-1999	AT	230749 T	15-01-2003
	• •		ΑÜ	766441 B2	16-10-2003
			AU	2677399 A	30-08-1999
			BG	104719 A	31-05-2001
			BR	9907788 A	30-10-2001
			CA	2320943 A1	19-09-1999
			CN	1119348 B	27-08-2003
			DE	69904804 D1	13-02-2003
			DE	69904804 T2	06-11-2003
			DK	1053239 T3	22-04-2003
			EP	1053239 A1	22-11-2000
			ES	2192035 T3	16-09-2003
			HU	0100460 A2	28-09-2001
			JP	2002503665 T	05-02-2002
			NO	200230303 T	11-09-2000
			NZ	506013 A	28-03-2003
			PL	343018 A1	30-07-2001
			SI	1053239 T1	31-12-2003
			SK	11972000 A3	06-08-2001
			TR	200003094 T2	22-01-2001
			WO	9941256 A1	19-08-1999
			ZA	9901156 A	12-08-1999
			US	2003073703 A1	17-04-2003
			US	6506766 B1	14-01-2003
WO 9941257	Α	19-08-1999	US	2001049377 A1	06-12-2001
			ΑT	237620 T	15-05-2003
			AU	760511 B2	15-05-2003
			AU	2600399 A	30-08-1999
			BG	104698 A	31-05-2001
			BR	9907847 A	09-01-2001
			CA	2320911 A1	19-08-1999
			CN	1297451 T	30-05-2001
			DE	69906938 D1	22-05-2003
			DK	1053240 T3	11-08-2003
			EP	1053240 A1	22-11-2000
			HU	0100846 A2	28-09-2001
			JP	2002503666 T	05-02-2002
			NO	20004052 A	12-10-2000
			NZ	506012 A	28-03-2003
			PL	342999 A1	16-07-2001
			PT	1053240 T	30-09-2003
			SI	1053240 T1	31-12-2003
			SK	11962000 A3	12-03-2001
			TR	200002345 T2	21-11-2000
			WO	9941257 A1	19-08-1999
			ZA	9900533 A	26-07-1999
			4 ٦	9900000 M	40-01-1999

En- DOT/ICA/010 /natest family assess / lisks 40001

BEST AVAILABLE CODY