

Découvrir LoRA avec 2 articles

- (Original Paper) LoRA: Low Rank Adaptation
- Limitations of LoRA

$$W_0 + \Delta W = W_0 + BA$$

Papers overview

LoRA: Low Rank Adaptation (Edward Hu et al.)

- ICLR 2022
- Microsoft
- SOTA benchmarks; Modèles Open source; 10k citations

Computational Limits of Low-Rank Adaptation for Transformer-Based Models (Yao-Chieh Hu et al.)

- Récent! (soumis pour ICLR 2025)
- Universitaires américains
- Surtout sur la Complexité temporelle de LoRA

Etat de l'art

L'adaptation avant LoRA

Adaptation: Modifier un Language Model pour une tâche spécialisée:

- écrire des résumés,
- commenter un article de recherche,
- écrire un TP de C++,
- etc ...

Etat de l'art

L'adaptation avant LoRA

Full fine-tuning

Idée simple: Changer tous les poids du modèle en reprenant le training avec un nouveau set

- + Bonne Performance
- Cher à l'entraînement
- Résultat lourd à stocker

Adapters Layers

Parameter-Efficient Transfer Learning for NLP (Google, 2019)

- Latence à l'inférence

Prompt-based adaptation

Few-Shot Learning

Démonstrations dans le prompt "Language Models are Few-Shot Learners" (OpenAl, NeurlPS, 2020)

Prefix Tuning

Apprendre l'embedding d'un préfixe d'entrée

"Prefix-Tuning: Optimizing Continuous Prompts for Generation" (Li&Liang2021)

- + Modèle reste identique
- Plus faible performance

Etat de l'art

LoRA: Fine-tuning plus efficace!

Full fine-tuning

- + Bonne performance
- Cher à l'entraînement
- Résultat lourd à stocker

Low-Rank Adaptation

- + Performance conservée
- + Plus économe à l'entraînement
- + Résultat plus léger à stocker
- + Vitesse d'inférence conservée

L'adaptation est plus facile à implémenter et à scale

LoRA: L'intuition

- Observation: Les matrices n x n de poids dans les modèles pré-entraînés ont un "rang intrinsèque" << n .
- **Hypothèse**: les modifications **ΔW** de ces matrices lors du fine-tuning sont aussi de **bas** "rang intrinsèque".

$$W = W_0 + \Delta W$$

=> Avoir des milliards de degrés de libertés dans ΔW c'est overkill

LoRA: L'intuition

=> Avoir des milliards de degrés de libertés dans ΔW c'est overkill

- LoRA apprend un sous-espace de faible dimension qui capture les modifications les plus importantes
- Thème récurrent de "Low-Rank Structures" en Machine Learning

LoRA = Low Rank Adaptation

2 manières d'obtenir une matrice *n x n*:

Définie par n² coefficients

Définie par 2 x n x r coefficients

LoRA: Comment ça marche?

No tuning

Full fine-tuning

Low-Rank Adaptation

$$W_0 + \Delta W = W_0 + BA$$

LoRA: Comment ça marche?

Performance

Que disent les benchmarks?

WikiSQL benchmark (fine-grained NLG):

80k exemples

Table:

Player	Country	Points	Winnings (\$)		
Steve Stricker	United States	9000	1260000		
K.J. Choi	South Korea	5400	756000		
Rory Sabbatini	South Africa	3400	4760000		
Mark Calcavecchia	United States	2067	289333		
Ernie Els	South Africa	2067	289333		

Question: What is the points of South Korea player? **SQL:** SELECT Points WHERE Country = South Korea

Answer: 5400

Génère-moi une requête SQL pour accéder aux points du joueur coréen

source: "Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning" (Zhong et al. Salesforce, 2017)

Performance

Que disent les benchmarks?

WikiSQL benchmark (fine-grained NLG):

source: LoRA: Low Rank Adaptation (Edward Hu et al., NeurlPS 2022)

(all w/ GPT-3 175B)

Performance

Que disent les benchmarks?

GLUE: General Language Understanding Evaluation (fine-grained NLU):

Quora Question Pairs, MNLI, Paraphrase Corpus, ...

Model & Method	# Trainable Parameters		SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
Full fine-tuning RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2_{\pm.1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm .1}$	$90.2 \scriptstyle{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
Adapter Dop (AdaptD)*		$87.3_{\pm .1}$	$94.7_{\pm .3}$	$88.4_{\pm .1}$	$62.6_{\pm .9}$	$93.0_{\pm .2}$	$90.6_{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (Adpt)	0.3M	$87.5_{\pm.3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm .7}$	$63.4_{\pm 1.2}$	$93.3_{\pm.3}$	$90.8_{\pm.1}$	$\textbf{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2

(all w/ BaseRoBERTa-base)

Résumé

Les forces de LoRA

- + Capacité d'adaptation
- + 3 x moins de mémoire GPU
- + Résultat plus léger à stocker (30 MB pour un custom GPT)
- + Valable pour tous les Transformers et Diffuseurs

Facile à implémenter pour:

- des POC
- des stages
- les profils personnalisés (Claude Al, ChatGPT, etc)

Résumé

? Les limitations de LoRA

1: Manque de fondements théoriques:

• Solution très populaire, mal comprise théoriquement (choix de r, choix des blocs)

2 : L'update des attention blocks est sous-optimale:

- $O(L^2)$ Computational Complexity (L = taille du contexte)
- Peut se réduire à O(L) grâce à une normalisation ! (sous certaines conditions)

Theorem 1.2 (Informal Version of Theorems 3.1 and A.1). Given appropriately normalized inputs X, pretrained attention weights W_K^{\star} , W_Q^{\star} , W_V^{\star} , and LoRA matrices $\{\alpha A_{\mu}B_{\mu}/r\}_{\mu=K,Q,V}$, there exists an algorithm that solves ALoRAGC in almost linear time $O(L^{1+o(1)})$.

source: Computational Limits of Low-Rank Adaptation for Transformer-Based Models (Yao-Chieh Hu et al.)