

- 1.实验报告如有雷同, 雷同各方当次实验成绩均以 0 分计。
- 2. 当次小组成员成绩只计学号、姓名登录在下表中的。
- 3.在规定时间内未上交实验报告的,不得以其他方式补交,当次成绩按0计。
- 4.实验报告文件以 PDF 格式提交。

院系	数据科学与计算机学院		班 级	16 级计	科教务 2 班	组长	钟哲灏	
学号	16337331		163373	327	16337341			
学生	钟哲灏		郑映雪	Î	朱志儒			
	实验分工							
钟哲灏 进行实验、数据分析		折		朱志儒	辅助实验、数据分析、完成9-2、			
						9-3 实验报告		
郑映雪	雪 辅助实验、数据分析、完成 9-		成 9-1					
	实验报告							

【实验题目】NAT 实验

【实验目的】配置网络地址变换,提供共享服务器的可靠外部访问。

【实验内容】

实验拓扑:

第二版

1. 完成实验 9.1 静态 NAT (P306)、9.2 动态 NAT(P308)、9.3 端口 NAT (P311)。

2. 注意:实验中的 ISP 路由器不用配置默认路由(课本上是错的,因为配置了默认路由,就直接可以互相 ping 通,不需要 NAT 了)。

【实验要求】

重要信息信息需给出截图, 注意实验步骤的前后对比。

【实验记录】

拓扑图:

实验 9-1

步骤一:

- (1) 在主机 A、B 的 Windows 下建立一个用户名和口令,以便实验验证。
- (2) 在完成步骤 2 后,验证整个网络的连通性(须确保连通)。

主机 A 与主机 B 可以连通,如下所示:

```
C: Wsers Administrator>ping 192.168.1.6

正在 Ping 192.168.1.6 具有 32 字节的数据:
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128

192.168.1.6 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 0ms,平均 = 0ms
```

主机 A 与外网无法连接,如下所示:


```
C: Wsers Administrator>ping 100.1.1.2

正在 Ping 100.1.1.2 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
100.1.1.2 的 Ping 统计信息:
数据包:已发送 = 4,已接收 = 0,丢失 = 4 <100% 丢失>,
```

外网也无法连接主机 A 和主机 B, 如下所示:

```
C: Wsers \Administrator > ping 192.168.1.5

正在 Ping 192.168.1.5 具有 32 字节的数据:
请求超时。
请求超时。

192.168.1.5 的 Ping 统计信息:
数据包: 已发送 = 4,已接收 = 0,丢失 = 4 (100% 丢失),

C: Wsers \Administrator > ping 192.168.1.6

正在 Ping 192.168.1.6 具有 32 字节的数据:
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
请求超时。
```

(3) 查看 NAT 表。

此时查看 RG 和 ISP 的 NAT 表如下所示,在配置前表中没有内容。

```
RG(config) #show ip nat trans
Pro Inside global Inside local Outside local Outside global

ISP(config) #show ip nat trans
Pro Inside global Inside local Outside local Outside global
```

步骤二: 在路由器上配置 IP 路由选择和 IP 地址。

步骤四: 指定一个内部端口和一个外部端口。

步骤五:验证测试。

(1) 在路由器 ISP 端用 Telnet (或远程桌面) 登陆远程主机 200.1.1.80, 测试 NAT 的转换。

```
Telnet 200.1.1.80

Telnet server could not log you in using NTLM authentication.
Your password may have expired.
Login using username and password

Welcome to Microsoft Telnet Service

login: chy
password:

Telnet 200.1.1.80

****

Microsoft Telnet Server.

****

C:\Users\chy>
```

(2) 查看地址翻译的过程: #debug ip nat, 分析结果。

分析:内网IP地址192.168.1.6映射到外网IP地址200.1.1.81,外网IP到地址200.1.1.81映射到内网IP地址192.168.1.6。

```
RG#debug ip nat
RG#NAT: [A] pk 0x00803e6a s 200.1.1.81->192.168.1.6:0x0000d5a4 [0x000009
19]
NAT:
     [B] pk 0x00803e6a d 200.1.1.81->192.168.1.6:0x0000d5a4 [0x00000058]
             0x00003e7b s 192.168.1.6->200.1.1.81:0x0000f628
NAT:
                                                                [0x0000091a]
     [ A ]
         рk
            0x00803e7b s 200.1.1.81->192.168.1.6:0x0000f628
                                                                 [0x0000091a]
NAT: [A] pk
         рk
             0 \times 00803 = 7b d 200.1.1.81 -> 192.168.1.6:0 \times 0000 = 628
NAT:
                                                                 [0x00000059]
NAT:
             0x00003e69 s 192.168.1.6->200.1.1.81:0x0000d9f4
                                                                 [0x0000091c]
         рk
     [ A ]
                                                                 [0x0000091d]
             0 \times 0 0 0 0 3 = 6a s 192.168.1.6 -> 200.1.1.81:0 \times 0 0 0 0 d 5 a 4
NAT:
     [A]
         рk
             0x00803e69 s 200.1.1.81->192.168.1.6:0x0000d9f4
NAT:
         рk
                                                                 [0x0000091c]
NAT:
         рk
             0x00803e69 d 200.1.1.81->192.168.1.6:0x0000d9f4
                                                                 [0x000005a1
             0x00803e6a s 200.1.1.81->192.168.1.6:0x0000d5a4
NAT:
                                                                 [0x0000091d1
     [A] pk
             0x00803e6a d 200.1.1.81->192.168.1.6:0x0000d5a4
NAT:
     [B]
         рk
                                                                 [0x0000005b]
NAT:
     [ A ]
         рk
             0x00003e7b s 192.168.1.6->200.1.1.81:0x0000f628
                                                                 [0x0000091f]
             0x00803e7b s 200.1.1.81->192.168.1.6:0x0000f628
         рk
NAT:
     [ A ]
                                                                 [0x0000091f]
             0x00803e7b d 200.1.1.81->192.168.1.6:0x0000f628
NAT:
     [ B ]
                                                                 [0x000005c1
         рk
             0x00003e78 s 192.168.1.6->200.1.1.81:0x0000d8ac
                                                                 [0x00000920]
NAT:
     [A] pk
             0x00003e79 s 192.168.1.6->200.1.1.81:0x0000fa46
NAT:
     [ A ]
         рk
NAT: [A]
         pk 0x00803e78 s 200.1.1.81->192.168.1.6:0x0000d8ac [0x00000920]
NAT: [B] pk 0x00803e78 d 200.1.1.81->192.168.1.6:0x0000d8ac [0x0000005d]
```


(3) 查看 NAT 表: #show ip nat translation, 分析结果。

分析: 从 NAT 表中可以看到, 内网 IP 地址 192.168.1.6 映射到外网 IP 地址 200.1.1.81。

RG#show ip nat trans			
Pro Inside global	Inside local	Outside local	Outside glo
udp 200.1.1.81:57765 .2:53	192.168.1.6:57765	192.168.164.2:53	192.168.164
udp 200.1.1.81:49688	192.168.1.6:49688	192.168.164.2:53	192.168.164
udp 200.1.1.81:54269	192.168.1.6:54269	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:61963	192.168.1.6:61963	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:54549	192.168.1.6:54549	192.168.164.2:53	192.168.164
.2:53 udp_200.1.1.81:59224	192.168.1.6:59224	192.168.164.2:53	192.168.164
.2:53 udp_200.1.1.81:53837	192.168.1.6:53837	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:60909	192.168.1.6:60909	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:52970	192.168.1.6:52970	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:56742	192.168.1.6:56742	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:61878	192.168.1.6:61878	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:49912	192.168.1.6:49912	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:62258	192.168.1.6:62258	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:59018	192.168.1.6:59018	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:52897	192.168.1.6:52897	192.168.164.2:53	192.168.164
.2:53 udp 200.1.1.81:54585	192.168.1.6:54585	192.168.164.2:53	192.168.164
. 2:53			
udp 200.1.1.81:62040 .2:53	192.168.1.6:62040	192.168.164.2:53	192.168.164

(4) 捕获数据包,结合(2)与(3)分析 Telnet 登录时地址的转换。

分析:可以看到内部网络 IP 地址 192.168.1.5 转化成公共 IP 地址 200.1.1.80。远程主机连接主机 A 时通过访问 200.1.1.80 该公共 IP 地址以达到连接主机 A 的目的。

No.	,	Time	Source	Destination	Protoco1	Length	Info
	4	1.987216	100.1.1.2	192.168.1.5	TCP	66	1468 → 23 [SYN]
	5	1.987265	192.168.1.5	100.1.1.2	TCP	66	23 → 1468 [SYN,
	6	2.005142	100.1.1.2	192.168.1.5	TCP	60	1468 → 23 [ACK]
	11	6.533904	192.168.1.5	100.1.1.2	TELNET	75	Telnet Data
	12	6.559964	100.1.1.2	192.168.1.5	TELNET	84	Telnet Data
	13	6.560887	192.168.1.5	100.1.1.2	TELNET	97	Telnet Data
	14	6.783779	100.1.1.2	192.168.1.5	TCP	60	1468 → 23 [ACK]
	16	9.153853	100.1.1.2	192.168.1.5	TELNET	111	Telnet Data
	17	9.154669	192.168.1.5	100.1.1.2	TELNET	209	Telnet Data
	18	9.197971	100.1.1.2	192.168.1.5	TELNET	99	Telnet Data

- > Frame 11: 75 bytes on wire (600 bits), 75 bytes captured (600 bits) on interface 0
- > Ethernet II, Src: 00:88:99:00:13:4a (00:88:99:00:13:4a), Dst: FujianSt_3e:3d:10 (00:1a:a9:
- > Internet Protocol Version 4, Src: 192.168.1.5, Dst: 100.1.1.2
- > Transmission Control Protocol, Src Port: 23, Dst Port: 1468, Seq: 1, Ack: 1, Len: 21
- > Telnet

采用地址转换后,不能再进行端对端 IP 的追踪,也就是说,不能再经过网络地址转换使用 ping 和 tracert 命令,另外一些 IP 对 IP 的程序也可能无法正常运行,请思考原因。

原因: NAT 把私有 IP 地址映射到外部网络的合法 IP 地址,NAT 路由器在发送数据包之前,把内部 IP 地址翻译成外部合法的 IP 地址,通过 NAT 技术也可以把个别 IP 地址隐藏起来,起到保护内部网络设备的作用。所以采用地址转换后,不能再进行端对端 IP的追踪。

实验 9-2

步骤一:

- (1) 在远程主机 100.1.1.2 上建立用户名和口令
- (2) 验证整个网络的连通性

Aping B 如图所示:

```
C: Wsers Administrator > ping 192.168.1.6

正在 Ping 192.168.1.6 具有 32 字节的数据:
来自 192.168.1.6 的回复: 字节=32 时间=2ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128

192.168.1.6 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 2ms,平均 = 0ms
```

Aping 远程主机如图所示:

```
C: Wsers Administrator>ping 100.1.1.2
正在 Ping 100.1.1.2 具有 32 字节的数据:
来自 192.168.1.5 的回复: 无法访问目标主机。
```

(3) 查看 NAT 表: #show ip nat translations

RG(config) #show ip nat trans Pro Inside global Inside local bal

Outside local

Outside glo

步骤二: 在路由器上配置 IP 路由选择和 IP 地址

步骤三: 定义 IP 访问列表

步骤四:配置静态 NAT

步骤五: 指定一个内部端口和一个外部端口

步骤六:验证测试

(1) 用 2 台主机 Telnet 登陆远程主机 100.1.1.2 测试 NAT 的转换

主机 A Telnet 登陆 100.1.1.2 如图所示

配管理员:C:\Windows\system32\cmd.exe
Microsoft Windows [版本 6.1.7601]
版权所有 (c) 2009 Microsoft Corporation。保留所有权利。
C:\Users\Administrator>telnet 100.1.1.2

(2) 查看地址翻译过程: #debug ip nat


```
RG#debug ip nat
RG#NAT: [A] pk 0x00003e7e s 192.168.1.6->200.1.1.206:0x0000e7f6 [0x00000
ac81
NAT: [A] pk 0x00803e7e s 200.1.1.206->192.168.1.6:0x0000e7f6 [0x00000ac8
NAT: [B] pk 0x00803e7e d 200.1.1.206->192.168.1.6:0x0000e7f6 [0x00000004
NAT: [A] pk 0x00003e7a s 192.168.1.6->200.1.1.206:0x0000e7f7 [0x00000aca
NAT: [A] pk 0x00803e7a s 200.1.1.206->192.168.1.6:0x0000e7f7 [0x000000aca
NAT: [B] pk 0x00803e7a d 200.1.1.206->192.168.1.6:0x0000e7f7 [0x00000005
NAT: [A] pk 0x00003e7d s 192.168.1.5->200.1.1.205:0x000004bb [0x00000bfb
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x0000004bb [0x00000006
NAT: [A] pk 0x00003e7d s 192.168.1.5->200.1.1.205:0x000004bb [0x00000bfc
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x000004bb [0x00000007
NAT: [A] pk 0x00003e7d s 192.168.1.5->200.1.1.205:0x000004bb [0x00000bfd
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x000004bb [0x00000008
NAT: [A] pk 0x00003e7d s 192.168.1.5->200.1.1.205:0x000004bb [0x00000bfe
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x000004bb [0x00000009
NAT: [A] pk 0x00003e7d s 192.168.1.5->200.1.1.205:0x000004bb [0x00000bff
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x0000004bb [0x0000000a
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x000004bb [0x0000000b
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x000004bb [0x0000000c
NAT: [B] pk 0x00803e7d d 200.1.1.205->192.168.1.5:0x0000004bb [0x0000000d
```

(3) 查看 NAT 表: #show ip nat translations

RG#show ip nat trans			
Pro Inside global	Inside local	Outside local	Outside glo
udp 200.1.1.81:57765	192.168.1.6:57765	192.168.164.2:53	192.168.164
udp 200.1.1.81:49688	192.168.1.6:49688	192.168.164.2:53	192.168.164
udp 200.1.1.81:54269 .2:53	192.168.1.6:54269	192.168.164.2:53	192.168.164
udp 200.1.1.81:61963	192.168.1.6:61963	192.168.164.2:53	192.168.164
udp 200.1.1.81:54549	192.168.1.6:54549	192.168.164.2:53	192.168.164
udp 200.1.1.81:59224 .2:53	192.168.1.6:59224	192.168.164.2:53	192.168.164
udp 200.1.1.81:53837	192.168.1.6:53837	192.168.164.2:53	192.168.164
udp 200.1.1.81:60909 .2:53	192.168.1.6:60909	192.168.164.2:53	192.168.164
udp 200.1.1.81:52970 .2:53	192.168.1.6:52970	192.168.164.2:53	192.168.164
udp 200.1.1.81:56742 .2:53	192.168.1.6:56742	192.168.164.2:53	192.168.164
udp 200.1.1.81:61878	192.168.1.6:61878	192.168.164.2:53	192.168.164
udp 200.1.1.81:49912 .2:53	192.168.1.6:49912	192.168.164.2:53	192.168.164
udp 200.1.1.81:62258	192.168.1.6:62258	192.168.164.2:53	192.168.164
udp 200.1.1.81:59018	192.168.1.6:59018	192.168.164.2:53	192.168.164
udp 200.1.1.81:52897	192.168.1.6:52897	192.168.164.2:53	192.168.164
udp 200.1.1.81:54585	192.168.1.6:54585	192.168.164.2:53	192.168.164
udp 200.1.1.81:62040 .2:53	192.168.1.6:62040	192.168.164.2:53	192.168.164

(4) 捕获数据包,分析 Telnet 时地址转换情况

分析:由(2)、(3)中可以看到内部网络 IP 地址 192.168.1.5 转化成公共 IP 地址 200.1.1.205,主机 A Telnet 连接远程主机时使用 200.1.1.205 该公共 IP 地址访问远程主机,远程主机连接主机 A 时也访问 200.1.1.205 该公共 IP 地址以达到连接主机 A 的目的。

No.	Time	Source	Destination	Protocol	Length Info
	16 11.394666	100.1.1.2	192.168.1.5	TELNET	75 Telnet Data
	17 11.395365	192.168.1.5	100.1.1.2	TELNET	57 Telnet Data
	18 11.413827	100.1.1.2	192.168.1.5	TELNET	62 Telnet Data
	19 11.413893	192.168.1.5	100.1.1.2	TELNET	81 Telnet Data
	20 11.439235	100.1.1.2	192.168.1.5	TELNET	89 Telnet Data
	22 12.637747	192.168.1.5	100.1.1.2	TELNET	111 Telnet Data
	23 12.681476	100.1.1.2	192.168.1.5	TELNET	209 Telnet Data
	24 12.681552	192.168.1.5	100.1.1.2	TELNET	99 Telnet Data
	27 12.901431	192.168.1.5	100.1.1.2	TELNET	485 Telnet Data

实验 9-3

步骤一:

- (1) 在远程主机 100.1.1.1 上建立一个用户和口令
- (2) 验证整个网络的连通性

A ping B 如图所示:

```
C: Wsers Administrator>ping 192.168.1.6

正在 Ping 192.168.1.6 具有 32 字节的数据:
来自 192.168.1.6 的回复: 字节=32 时间=2ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128
来自 192.168.1.6 的回复: 字节=32 时间<1ms TTL=128

192.168.1.6 的 Ping 统计信息:
数据包: 已发送 = 4, 已接收 = 4, 丢失 = 0 <0% 丢失>,
往返行程的估计时间<以毫秒为单位>:
最短 = 0ms,最长 = 2ms,平均 = 0ms
```

(3) 查看 NAT 表: #show ip nat translations

RG(config) #show ip nat trans Pro Inside global Inside local

Outside local

Outside glo

步骤二: 在路由器上配置 IP 路由选择和 IP 地址

步骤三: 配置静态转换

步骤四: 指定一个内部端口和一个外部端口

步骤五:验证测试

(1) 用 2 台主机 Telnet 登陆远程主机及 100.1.1.1 测试 NAT 的转换

主机 A Telnet 登陆 100.1.1.2 如图所示

(2) 查看地址翻译过程: #debug ip nat

```
RG#debug ip nat RG#NAT: [B] pk 0x00803e7d d 200.1.1.2->192.168.1.5:0x000004ce [0x0000005
            рk
                 0x00003e7d s 192.168.1.5->200.1.1.2:0x000004ce [0x00000f95]
NAT:
       [B]
                 0x00803e7d d 200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x0000005a]
NAT:
            рk
            рk
NAT:
       [ B ]
                 0 \times 00803 = 7d d 200.1.1.2 -> 192.168.1.5: 0 \times 000004 ce
                                                                                      [0x000005b1
                 0x00003e7d
                                    192.168.1.5->200.1.1.2:0x000004ce
            рk
                                                                                      [0x00000f96]
NAT:
       [ A ]
            рk
                 0x00803e7d
                                 d 200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x000005c
NAT:
                 0 \times 0 0 0 0 3 = 7 d
                                    192.168.1.5->200.1.1.2:0x000004ce
                                                                                      [0x00000f98
NAT:
            рk
                 0 x 0 0 8 0 3 e 7 d
0 x 0 0 0 0 3 e 7 d
                                                                                      [0x000005d]
NAT:
       [B]
                                 d 200.1.1.2 -> 192.168.1.5:0 \times 000004ce s 192.168.1.5-> 200.1.1.2:0 \times 000004ce
                                                                                      [0x00000f99
NAT:
                 0 x 0 0 8 0 3 e 7 d
                                   200.1.1.2->192.168.1.5:0x000004ce
NAT:
       [B]
                                                                                      [0x0000005e
                                   192.168.1.5->200.1.1.2:0x000004ce
200.1.1.2->192.168.1.5:0x000004ce
192.168.1.5->200.1.1.2:0x000004ce
NAT:
                 0x00003e7d
0x00803e7d
                                                                                      [0x00000f9a
            рk
            рk
NAT:
       [ B ]
                                 d
                                                                                      [0x000005f
                 0x00003e7d
                                                                                      [0x00000f9b]
NAT:
       [ A ]
            рk
                                 s
NAT:
       ſВĺ
            рk
                 0 \times 00803 = 7d
                                 d
                                   200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x00000060
                 0x00003e7d
0x000803e7d
0x00003e7d
                                 s 192.168.1.5->200.1.1.2:0x0000004ce
d 200.1.1.2->192.168.1.5:0x000004ce
s 192.168.1.5->200.1.1.2:0x000004ce
                                                                                      [0x00000f9c
NAT:
       [B]
NAT:
             рk
                                                                                       0x00000061
                                                                                      [0x00000f9d
NAT:
       [ A ]
            рk
NAT:
                 0 \times 00803 = 7d
                                   200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x00000062
       [B]
            рk
                                 d
                 0 \times 0 0 0 0 3 = 7 d
                                    192.168.1.5->200.1.1.2:0x000004ce
                                                                                      [0x00000f9e
NAT:
            рk
            рk
                 0 x 0 0 8 0 3 e 7 d
0 x 0 0 8 0 3 e 7 d
                                    200.1.1.2->192.168.1.5:0x000004ce
NAT:
       [B]
                                 d
                                                                                      [0x0000063
                                    200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x00000064
NAT:
       [B]
            рk
                                 d
            рk
NAT:
                 0 \times 00803 = 7d
                                   200.1.1.2->192.168.1.5:0x000004ce
                                                                                      [0x00000065
                 0 \times 0 0 0 0 3 = 7 d
                                    192.168.1.5->200.1.1.2:0x000004ce
                                                                                      [0x00000f9f
NAT:
                                 s
NAT:
                 0 x 0 0 0 0 3 e 7 d
0 x 0 0 8 0 3 e 7 d
       [ A ]
            рk
                                 S
                                    1\,9\,2\,.\,1\,6\,8\,.\,1\,.\,5\,-\,>\,2\,0\,0\,.\,1\,.\,1\,.\,2\,:\,0\,x\,0\,0\,0\,0\,0\,4\,c\,e
                                                                                      [0x00000fa01
                                   200.1.1.2->192.168.1.5:0x000004ce
NAT:
                                 d
                                                                                      10x00000066
       [ B ]
            рk
                 0 \times 0 0 0 0 3 = 7 d
                                    192.168.1.5->200.1.1.2:0x000004ce
                                                                                       0x00000fa1
NAT:
            рk
                                                                                      [0x0000067
NAT:
       [B]
            рk
                 0 \times 0 0 8 0 3 e 7 d
                                 d
                                    200.1.1.2 -> 192.168.1.5:0x000004ce
NAT:
            рk
                 0 \times 0 0 0 0 3 = 7 d
                                 s
                                    1\,9\,2\,.\,1\,6\,8\,.\,1\,.\,5\,-\,>\,2\,0\,0\,.\,1\,.\,1\,.\,2\,:\,0\,x\,0\,0\,0\,0\,0\,4\,\text{ce}
                                                                                      [0x00000fa2
                 0x00803e7d
                                 d 200.1.1.2->192.168.1.5:0x000004ce
                                                                                      10x00000068
NAT:
       [B]
            рk
NAT:
       [ A ]
            рk
                 0x00003e7d
                                    192.168.1.5->200.1.1.2:0x000004ce
                                                                                      [0x00000fa3
                                 s
            pk 0x00803e7d d 200.1.1.2->192.168.1.5:0x0000004ce [0x00000069]
pk 0x00003e7d s 192.168.1.5->200.1.1.2:0x0000004ce [0x000000fa4]
NAT:
```


(3) 查看 NAT 表: #show ip nat translations

RG#show ip nat trans
Pro Inside global Inside local Outside local Outside global
tcp 200.1.1.2:1232 192.168.1.5:1232 100.1.1.1:23 100.1.1.1:2

(4) 捕获数据包,分析 Telnet 时地址的转换情况

分析: 由 (2)、(3) 可以看出私有地址 192.168.1.5 转换成 200.1.1.2 公共 IP 地址的 1232 端口。主机 A Telnet 连接远程主机时使用 200.1.1.2 公共 IP 地址的 1232 端口访问远程主机, 远程主机连接主机 A 时也使用 200.1.1.2 公共 IP 地址的 1232 端口来连接主机 A。

No.	Time	Source	Destination	Protocol	Length Info
	5 12.464090	192.168.1.5	100.1.1.1	TCP	66 1230 → 23 [SYN] Seq=0 Win=8192 Len=0 MSS=
	6 12.482333	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [SYN, ACK] Seq=0 Ack=1 Win=4096
	7 12.482399	192.168.1.5	100.1.1.1	TCP	54 1230 → 23 [ACK] Seq=1 Ack=1 Win=65392 Len
	8 12.485009	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	9 12.500115	100.1.1.1	192.168.1.5	TELNET	66 Telnet Data
	10 12.506867	100.1.1.1	192.168.1.5	TELNET	60 Telnet Data
	11 12.506911	192.168.1.5	100.1.1.1	TELNET	75 Telnet Data
	12 12.514435	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=19 Ack=2 Win=4095 Len
	13 12.514453	192.168.1.5	100.1.1.1	TELNET	64 Telnet Data
	14 12.525970	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=19 Ack=23 Win=4074 Le
	15 12.531950	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=19 Ack=33 Win=4064 Le
	16 13.001406	100.1.1.1	192.168.1.5	TELNET	82 Telnet Data
	17 13.002787	192.168.1.5	100.1.1.1	TELNET	63 Telnet Data
	18 13.007759	100.1.1.1	192.168.1.5	TELNET	60 Telnet Data
	19 13.016235	100.1.1.1	192.168.1.5	TELNET	63 Telnet Data
	20 13.016281	192.168.1.5	100.1.1.1	TCP	54 1230 → 23 [ACK] Seq=42 Ack=58 Win=65335 L
	21 13.022856	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=42 Win=4087 Le
	23 15.824428	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	24 15.840747	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=43 Win=4095 Le
	25 16.040253	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	26 16.056416	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=44 Win=4095 Le
	27 16.224268	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	28 16.241837	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=45 Win=4095 Le
	29 16.424435	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	30 16.440596	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=46 Win=4095 Le
	31 16.608194	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	32 16.624540	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=47 Win=4095 Le
	33 16.768135	192.168.1.5	100.1.1.1	TELNET	55 Telnet Data
	34 16.784676	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=48 Win=4095 Le
	35 17.016212	192.168.1.5	100.1.1.1	TELNET	56 Telnet Data
	36 17.032398	100.1.1.1	192.168.1.5	TCP	60 23 → 1230 [ACK] Seq=58 Ack=50 Win=4094 Le
	37 17.038695	100.1.1.1	192.168.1.5	TELNET	60 Telnet Data
	38 17.045840	100.1.1.1	192.168.1.5	TELNET	63 Telnet Data
	39 17.045862	192.168.1.5	100.1.1.1	TCP	54 1230 → 23 [ACK] Seq=50 Ack=69 Win=65324 L

学号	姓名	自评分数	
16337331	钟哲灏	99	
16337327	郑映雪	99	
16337341	朱志儒	99	