# Introduction to R Programming

 ${\sf Data\ Visualitazion\ with\ ggplot 2}$ 

Pedro Fonseca

16 Abril 2020

#### The diamonds dataset

- ▶ Diamonds is a dataset included in the ggplot2 package.
- Contains attributes of almost 54000 diamonds.
- ► The variables include price, carat, quality of the cut, color and clarity

#### Bar charts

Let's use a bar chart to display the number of diamonds for each quality of cut:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut))
```



- On the y-axis, bar charts displays counts.
- ▶ But counts are not a variable in diamonds dataset!
- Many graphs, like scatterplots, plot the raw values the dataset.
- Other graphs, like bar charts, calculate new values to plot.
- ► The algorithm used to calculate new values for a graph is called a **stat**, short for statistical transformation.

- ▶ Bar charts, histograms, and frequency polygons bin your data and then plot bin counts.
- Smoothers fit a model to your data and then plot predictions from the model.
- Boxplots compute summary statistics and then display them on specially formatted box.

1. **geom\_bar()** begins with the **diamonds** data set

| carat | cut     | color | clarity | depth | table | price | х    | у    | z    |
|-------|---------|-------|---------|-------|-------|-------|------|------|------|
| 0.23  | Ideal   | Е     | SI2     | 61.5  | 55    | 326   | 3.95 | 3.98 | 2.43 |
| 0.21  | Premium | E     | SI1     | 59.8  | 61    | 326   | 3.89 | 3.84 | 2.31 |
| 0.23  | Good    | Е     | VS1     | 56.9  | 65    | 327   | 4.05 | 4.07 | 2.31 |
| 0.29  | Premium | -1    | VS2     | 62.4  | 58    | 334   | 4.20 | 4.23 | 2.63 |
| 0.31  | Good    | J     | SI2     | 63.3  | 58    | 335   | 4.34 | 4.35 | 2.75 |
|       |         |       |         |       |       |       |      |      |      |



- ➤ You can learn which stat a geom function uses by inspecting the default value of the stat argument.
- ► For example, with ?geom\_bar we learn that the default stat of geom\_bar() is count.
- ► This means that geom\_bar() uses stat\_count() as the default statistical transformation.
- You can generally use geoms and stats interchangeably.

For example, you can recreate the previous plot using stat\_count() instead of geom\_bar():

```
ggplot(data = diamonds) +
stat_count(aes(x = cut))
```



#### This works because:

- Every geom has a default stat, and every stat has a default geom.
- ▶ The default stat of geom\_bar() is count.
- The default geom of stat\_count() is bar.

### Overwrithing the default stat

What if we want a bar chart that plot data as is?

- We may have a table with column heights.
- ► In that case, we need to change the default statistical transformation

### Overriding the default stat

```
ggplot(data = tib) +
geom_bar(aes(x = cut, y = freq),
    stat = "identity")
```



### Overriding the default stat

The default stat of stat\_identity() is point, not bar:

```
ggplot(data = tib) +
stat_identity(aes(x = cut, y = freq))
```



```
geom_col()
```

- ▶ To plot data as is, we can use geom\_col().
- ► The default stat of geom\_col() is stat\_identity().
- geom\_col() expects a column of y values with bar heights.

### geom\_col()

```
ggplot(data = tib) +
geom_col(aes(x = cut, y = freq))
```



- ► Stat functions calculate more variables than the ones that end up being displayed.
- ➤ To find the variables computed by a stat, look for the help section titled "computed variables".
- From ?stat\_count we learn that the computed variables are counts and proportions.
- ggplot\_build() let's us see every value that is calculated in the process of building a graph.

```
plt_1 <- ggplot(data = diamonds) +
  geom_bar(aes(x = cut))

plt_1 <- ggplot_build(plt_1)
plt_1$data[[1]][, 1:8]</pre>
```

```
## y count prop x PANEL group ymin ymax
## 1 1610 1610 1 1 1 1 0 1610
## 2 4906 4906 1 2 1 2 0 4906
## 3 12082 12082 1 3 1 3 0 12082
## 4 13791 13791 1 4 1 4 0 13791
## 5 21551 21551 1 5 1 5 0 21551
```

- ► We can override the default mapping from transformed variables to aesthetics.
- For example, we might want to display a bar chart of proportions rather than counts.

Let's map proportions, instead of counts, to the y axis:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, y = stat(prop)))
```



What went wrong?

Lets see the computed values:

```
plt_2 <- ggplot(data = diamonds) +
  geom_bar(aes(x = cut, y = stat(prop)))

plt_2 <- ggplot_build(plt_2)
plt_2$data[[1]][, 1:8]</pre>
```

```
## 1 1 1610 1 1 1 1 0 1 ## 2 1 4906 1 2 1 2 0 1 ## 4 1 13791 1 4 1 4 0 1 ## 5 1 21551 1 5 0 1
```

- ▶ The prop column is created as count divided by the sum of all of the counts that belong to the same group.
- ▶ By default, ggplot2 created one group for each level of x, so:
  - ► Each proportion is calculated by dividing the count of each group by itself.
  - All the proportions are set to 1.
- ➤ To display proportions instead of counts we have to tell ggplot2 that there is only one group so that it divides the counts by the total number of observations.

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, y = stat(prop), group = 1))
```



```
plt_3 <- ggplot(data = diamonds) +
  geom_bar(aes(x = cut, y = stat(prop), group = 1))
plt_3 <- ggplot_build(plt_3)
plt_3$data[[1]][, 1:5]</pre>
```

```
## y count prop x group
## 1 0.02984798 1610 0.02984798 1 1
## 2 0.09095291 4906 0.09095291 2 1
## 3 0.22398962 12082 0.22398962 3 1
## 4 0.25567297 13791 0.25567297 4 1
## 5 0.39953652 21551 0.39953652 5 1
```

#### Aesthetic of bar charts

You can map the color aesthetic to the grouping variable:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, color = cut))
```



#### Aesthetic of bar charts

We can also change the default fill color of geom\_bar():

```
ggplot(data = diamonds) +
  geom_bar(aes(x = cut, color = cut), fill = "white")
```



#### Aesthetic of bar charts

#### And disable the legend:



#### Stacked bar charts

The fill aesthetic can be mapped to variables other than  $\times$  to add a dimension to the plot:

```
ggplot(data = diamonds) +
geom_bar(aes(x = cut, fill = clarity))
```



- Each colored rectangle represents a combination of cut and clarity.
- ► The stacking is performed automatically by the position adjustment specified in the position argumen of the geom function.
- The default value is stack.

- position = "fill" works like stacking but makes each set of stacked bars the same height.
- ▶ This makes it easier to compare proportions across groups.



Setting position = "dodge" places overlapping objects directly beside one another:



#### Recall our first scatterplot:



Did you notice that the plot displays only 126 points, even though there are 234 observations in the dataset?

- ► The values of hwy and displ are rounded, and many points overlap each other.
- This problem is known as overplotting.
- This makes it hard to see where the mass of the data is.
- Are the data points spread equally throughout the graph, or is there one special combination of hwy and displ that contains 109 values?

- Setting position = "jitter" adds a small amount of random noise to each point, spreading the points.
- While it makes your graph less accurate at small scales, it makes your graph more revealing at large scales.
- ggplot2 comes with a shorthand for geom\_point(position =
  "jitter"):
  - geom\_jitter().



```
p1 <- ggplot(data = mpg, aes(x = displ, y = hwy)) +
    geom_point(position = "jitter") +
    geom_smooth()

p2 <- ggplot(data = mpg, aes(x = displ, y = hwy)) +
    geom_point() +
    geom_smooth()

ggarrange(p1, p2, nrow = 1)</pre>
```

The confidence interval of the smoothed lines can also help:



There are two optional arguments to jitter:

- ▶ Width controls the amount of vertical displacement.
- ▶ Height controls the amount of horizontal displacement.

```
p1 <- ggplot(data = mpg, aes(x = cty, y = hwy)) +
        geom_point()
p2 <- ggplot(data = mpg, aes(x = cty, y = hwy)) +
        geom_jitter()
p3 \leftarrow ggplot(data = mpg, aes(x = cty, y = hwy)) +
  geom_jitter(height = 2, width = 2)
ggarrange(p1, p2, p3, nrow = 1)
```



### Boxplots

```
ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot()
```



coord\_flip() flpis the coordinate system:

```
ggplot(data = mpg, aes(x = class, y = hwy)) +
  geom_boxplot() +
  coord_flip()
```



A pie chart is a stacked bar chart with polar coordinates:

```
ggplot(mpg, aes(x = "", fill = drv)) +
  geom_bar()
```



```
ggplot(mpg, aes(x = "", fill = drv)) +
geom_bar() +
coord_polar("y")
```



```
ggplot(mpg, aes(x = "", fill = class)) +
geom_bar() +
coord_polar("y")
```



```
ggplot(mpg, aes(x = "", fill = drv)) +
  geom_bar() +
  coord_polar()
```



# The ggplot template