

Desarrollo de una interfaz para un equipo médico

Jorge Sierra Acosta

Tutora Vanesa Muñoz Cruz

Cotutora Estefanía Hernández Martín

Índice

Antecedentes	. 1	Líneas futuras	37
Objetivos	8	Presupuesto	38
Tecnologías	. 9	Bibliografía	39
Módulo procesamiento	12		
Interfaz	23		
Ejemplo uso	32		
Trabajo en desarrollo	33		
Conclusions	35		

Antecedentes - Activaciones cerebrales

Antecedentes - fMRI - Activaciones cerebrales

- No invasiva
- Medida indirecta (flujo sangre)
- Campo magnético artificial
- Baja resolución temporal
- Alta resolución espacial

Antecedentes - PET - Activaciones cerebrales

- Invasiva
- Radiofármaco
- Medida indirecta (flujo sangre)
- Baja resolución temporal
- Alta resolución espacial

Antecedentes - **EEG** - Activaciones cerebrales

- Directamente la actividad eléctrica
- Electrodos
- Gran resolución temporal
- Baja resolución espacial

Antecedentes - MEG - Activaciones cerebrales

- Detecta campos magnéticos minúsculos
- Buena resolución temporal
- Buena resolución espacial

Antecedentes - NIRS

Grupo Neuroquímica y Neuroimagen

Equipo de espectroscopia de infrarrojo cercano (NIRS)

Picos de absorción HbO 630 nm HbR 852 nm

- → 14,188 *Hz*
- → C++ Linux

Antecedentes - NIRS - Ley Beer Lambert

Grupo Neuroquímica y Neuroimagen

$$\mu a(\lambda j) = OD(\lambda j) = -log \frac{\lambda j - \lambda D}{\lambda R - \lambda D}$$

 $\mu a(\lambda j)$ Coeficiente de absorción

 λR Calibración de referencia

 λD Calibración del ruido del entorno

 $OD(\lambda j)$ Densidad óptica

Concentración de hemoglobina

 μa · Coeficiente de extinción molar

Objetivos

- Desarrollo de una aplicación para:
 - Leer las imágenes
 - Calcular un basal
 - Aplicar un análisis de concentración de HbO HbR
 - Calcular imágenes de saturación
 - Sistema portable
 - Sistema intuitivo

Otros:

- Traducción de las rutinas de Matlab
- Desarrollo de análisis estadísticos T-Student

Tecnologías I - Frameworks

{CSS}

(JS)

Dygraphs

DSPFilters

Tecnologías II - Herramientas

Diseño en módulos / Diseño multiplataforma

Módulo de procesamiento

Módulo de interfaz

Dark & Gain

- Frames de calibración
- Dark frame se obtiene a partir de una imagen de la cámara completamente a oscuras
- Gain frame es un frame que representa el ajuste de ganancia de la cámara

Estructura de datos

Procesamiento de las imágenes

Basal

Corrección = (Img - Dark) x Gain

- 1. Promediado de los primeros 24 segundos
- 2. Corrección
- 3. Cálculo de la imagen saturación

Cada frame Con multithreading

- L. Corrección
- 2. Máscara (Valores máximos y mínimos)
- 3. Incorporación al cálculo de la media
- 4. Cálculo de la imagen saturación

Procesamiento de las imágenes

Cálculo de la imagen saturación

$$\begin{split} F_{calibrado} &= (F_{original} - F_{Dark}) * F_{Gain} \\ F_{calibrado} &\to img_1, img_2 \\ \\ img_{sat} &= \frac{\frac{\log img_1}{\log img_2} * \lambda_{HbR_2} - \lambda_{HbR_1}}{\frac{\log img_1}{\log img_2} * (\lambda_{HbR_2} - \lambda_{HbO_2}) + (\lambda_{HbO_1} - \lambda_{HbR_1})} \end{split}$$

Traducción de las rutinas Matlab

```
% Imágenes im1, im2
mask = (im1 > 0.9) | (im2 > 0.9);
im1 (mask) = 0;
im2 (mask) = 0;
```

```
auto matrix1 = img1.getData();
auto matrix2 = img2.getData();
for (int row = 0; row < matrix1.rows(); ++row) {
  for (int col = 0; col < matrix1.cols(); ++col) {
       if (matrix1(row, col) > MASK_VALUE || matrix2(row, col) > MASK_VALUE) {
           imgl.set(row, col, 0);
            img2.set(row, col, 0);
```


Filtrado I

Estructura - Clases

Estructura - Comunicación I

Estructura - Comunicación II

```
class Interface {
public:
    Q_INVOKABLE int getValue();
};
QWebEngineView *view = new QWebEngineView();
QWebChannel *channel = new QWebChannel();
Interface *interface = new Interface();
view->setUrl("URL");
view->page()->setWebChannel(channel);
channel->registerObject("web_interface_id", interface);
<script src="qrc:///qtwebchannel/qwebchannel.js"></script>
<script>
  new QWebChannel(qt.webChannelTransport, function(channel) {
   let channel = channel.objects.web_interface_id;
   channel.getVal(val => console.log(val));
  });
</script>
```


Estructura - Comunicación II

```
class Interface {
public:
    Q_INVOKABLE int getValue();
};
QWebEngineView *view = new QWebEngineView();
QWebChannel *channel = new QWebChannel();
Interface *interface = new Interface();
view->setUrl("URL");
view->page()->setWebChannel(channel);
channel->registerObject("web_interface_id", interface);
<script src="qrc:///qtwebchannel/qwebchannel.js"></script>
<script>
  new QWebChannel(qt.webChannelTransport, function(channel) {
   let channel = channel.objects.web_interface_id;
   channel.getVal(val => console.log(val));
  });
</script>
```


Pantalla principal - номе і

Pantalla principal - номе п

Pantalla principal - номе п

Pantalla principal - номе п

Pantalla opciones - settings

Pantalla información - ABOUT

Esquema de colores

Guías de diseño WCAG

Perceptible

- Alternativas de texto
- Adaptable
- Alternativas para audio y vídeo
- Contenido distinguible

Operable

- Accesible por el teclado
- Contenido seguro (Evitar problemas de salud)
- Tiempo suficiente
- Navegable

Guías de diseño WCAG

Entendible

- Lectura fácil
- Páginas predecibles
- Ayuda al introducir contenido

Robusta

Compatible con múltiples dispositivos

Ejemplo de uso

Trabajo en desarrollo - Tests estadísticos

Trabajo en desarrollo - Ejemplo de uso

Conclusions I

Summary

- A new interface was developed
- Easier for the user
- Faster to work with
- Portable

Conclusions

- The proposed solution brings up an improvement to the Matlab system.
- No more dependencies
- More functionality was added (Save data, or modify parameters)
- Application structure isolates different logic parts
- The technologies selected were adequate

Conclusions II

System validation

- Through continuous validation with the tutor and cotutor
- Suggested: Using user tests
- Suggested: Monkey testing

Líneas futuras

- Enviar un pulso TTL al capturador
- Indica cuando se completa el basal
- Un arduino permite sincronizar el pulso
- La aplicación deberá comunicarse con el Arduino
- QtSerialPort

Presupuesto

Paquetes	Duración (h)	Coste (€)
Análisis	40	800
Diseño	40	800
Implementación	190	3800
Licencia Matlab	-	800
Total	270	6200

Presupuesto

Bibliografía I

Begoña Azkarate, Pedro Morrondo, Angel Mendia, Pilar Marco

Monitorización del sistema nervioso central. Servicio de Medicina Intensiva. Hospital Aránzazu. San Sebastián. País Vasco. España. CIMC 2000 https://www.uninet.edu/cimc2000/cursos/cur1/Begona/Begona.htm

Jech R. (2008)

Functional Imaging of Deep Brain Stimulation: FMRI, SPECT, and PET. In: Tarsy D., Vitek J.L., Starr P.A., Okun M.S. (eds) Deep Brain Stimulation in Neurological and Psychiatric Disorders. Current Clinical Neurology. Humana Press

Fernando Lopes de Silva

EEG and MEG: Relevance to Neuroscience, Neuron, Volume 80, Issue 5, 2013, Pages 1112-1128, ISSN 0896-6273 https://doi.org/10.1016/j.neuron.2013.10.017

Balardin, J.B.m Zimeo Morais, G. A., Furucho, R. A., Trambaiolli, L., Vanzella, P., Biazoli, C., & Sato (2017)
Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments. Frontiers in Human Neuroscience, 11, 258. http://doi.org/10.3389/fnhum.2017.00258

Bibliografía II

Poldrack, R. A. (2017)

Region of interest analysis for fMRI. Social Cognitive and Affective Nouroscience, 2(1), 67·70

http://doi.org/10.1093/scan/nsm006

Mary S. Ahn, Janis L. Breeze, Nikos Makris, David N. Kennedy, Steven M. Hodge, Martha R. Herbert, Larry J. Seidman, Joseph Biederman, Verne S. Caviness, Jean A. Frazier

Anatomic brain magnetic resonance imaging of the basal ganglia in paediatric bipolar disorder

Journal of Affective Disorders, Volume 104, Issues 1·3, 2007, Pages 147-154

University of Missouri (2014)

"Logo color affects consumer emotion toward brands, MU study finds"

https://research.missouri.edu/news/story.php?390

Stuart Clare (2006)

Functional MRI: Methods and Applications, chapter 6.3

https://users.fmrib.ox.ac.uk/~stuart/thesis/

Gracias por su atención

Jorge Sierra Acosta

Tutora Vanesa Muñoz Cruz

Cotutora Estefanía Hernández Martín

Anexo - Multithreading

