

CLAIMS

We claim:

- Sue O*
1. An inter-chip communication system for the communication of a plurality of N-bit signal groups between a first logic device and a second logic device that are coupled together through an M-bit wide conductive element, comprising:
 - 4 transmission logic in the first logic device for transmitting any N-bit signal group that changed in value M bits at a time across the M-bit conductive element; and
 - 5 reception logic in the second logic device for receiving the N-bit signal group.
 - 1 2. The inter-chip communication system of claim 1, wherein the transmission logic further comprises:
 - 3 an event detector for detecting a change in value among the N-bit signal groups and providing an event indication identifying the particular signal group that changed in value.
 - 1 2. The inter-chip communication system of claim 1, wherein the transmission logic further comprises:
 - 3 an event detector for each N-bit signal group for detecting a change in value in its associated N-bit signal group and providing an event indication identifying that its N-bit signal group changed in value.
 - 1 2 4. The inter-chip communication system of claim 2, wherein $N > M$ and the transmission logic further comprises:
 - 3 a packet scheduler for receiving the event indication and dividing the N-bit signal group associated with the event indication into M-bit data groups.
 - 1 2 5. The inter-chip communication system of claim 3, wherein $N > M$ and the transmission logic further comprises:
 - 3 a packet scheduler for each N-bit signal group for receiving the event indication from the

4 event detector associated with its N-bit signal group and dividing the N-bit signal group into M-
5 bit data groups.

1
2
3
4 6. The inter-chip communication system of claim 4, wherein the transmission logic further
comprises:
scan-out logic for selecting the M-bit data groups for transmission across the M-bit
conductive element.

1
2
3
4 7. The inter-chip communication system of claim 5, wherein the transmission logic further
comprises:
scan-out logic for selecting the M-bit data groups for transmission across the M-bit
conductive element.

1
2
3
4 8. The inter-chip communication system of claim 1, wherein each N-bit signal group is
associated with an identifying header, the reception logic further comprising:
header decode unit for receiving the M-bit data groups and determining which N-bit signal
group these M-bit data groups belong.

1
2
3
4 9. The inter-chip communication system of claim 5, wherein the packet scheduler is capable
of receiving, holding, and passing a token.

1
2 10. The inter-chip communication system of claim 5, wherein the packet scheduler transmits
its M-bit data groups when it holds a token.

1
2 11. The inter-chip communication system of claim 10, wherein the packet scheduler holds a
token, when it receives the token and an event indication.

1
2 12. The inter-chip communication system of claim 10, wherein the packet scheduler passes a
token, when it receives the token and no event indication has been received.

1 13. A data transmission communication system for the transmission of a plurality of N-bit
2 signal groups from a first logic device to a second logic device that are coupled together through
3 an M-bit wide conductive element, comprising:

4 an event detector network for detecting a change in value among the N-bit signal groups
5 and providing an event indication identifying the particular signal group that changed in value;
6 and

7 a scheduler for selecting the N-bit signal group that changed in value and scheduling its
8 transmission.

1 14. The data transmission communication system of claim 13, wherein $N > M$ the scheduler
2 divides the N-bit signal group into a plurality of M-bit groups.

1 15. The data transmission communication system of claim 13, wherein the event detector
2 network includes a plurality of event detectors and each event detector is associated with its own
3 N-bit signal group.

1 16. The data transmission communication system of claim 15, wherein the event detector for
2 each N-bit signal group detects a change in value in its associated N-bit signal group and provides
3 an event indication identifying that its N-bit signal group changed in value.

1 17. The data transmission communication system of claim 15, wherein the scheduler includes
2 a plurality of packet schedulers and each packet scheduler is associated with its own N-bit signal
3 group.

1 18. The data transmission communication system of claim 16, wherein the scheduler includes
2 a plurality of packet schedulers and each packet scheduler is associated with its own N-bit signal
3 group.

Sud 1
Sud 2
Sud 3

1 19. The data transmission communication system of claim 18, wherein the plurality of packet
2 schedulers decides among themselves which N-bit signal group to transmit.

Sud 1
Sud 2
Sud 3

1 20. The data transmission communication system of claim 19, wherein $N > M$ and each packet
2 scheduler receives the event indication and divides the N-bit signal group associated with the
3 event indication into M-bit data groups.

Sud 1
Sud 2
Sud 3

1 21. The data transmission communication system of claim 19, wherein the plurality of packet
2 schedulers passes tokens to each other and depending on which packet scheduler receives an event
3 indication, each packet scheduler holds the token or passes the token.

Sud 1
Sud 2
Sud 3

1 22. The data transmission communication system of claim 19, wherein the packet scheduler
2 transmits its M-bit data groups when it holds a token.

Sud 1
Sud 2
Sud 3

1 23. The data transmission communication system of claim 20, wherein the packet scheduler
2 transmits its M-bit data groups when it holds a token.

Sud 1
Sud 2
Sud 3

1 24. The data transmission communication system of claim 19, wherein the packet scheduler
2 holds a token when it receives the token and an event indication.

Sud 1
Sud 2
Sud 3

1 25. The data transmission communication system of claim 19, wherein the packet scheduler
2 passes a token, when it receives the token and no event indication has been received.

Sud 1
Sud 2
Sud 3

1 26. A method of scheduling the transmission of a packet from a first logic device to a second
2 logic device across an M-bit wide connection, the packet selected from a plurality of N-bit signal
3 groups, comprising steps:

4 detecting a change in value among the N-bit signal groups;
5 selecting the changed N-bit signal group for transmission;
6 processing the N-bit signal group into a transmission data group; and

7 transmitting the transmission data group across the M-bit wide connection.

1 27. The method of claim 26, wherein $N > M$ and the step of processing further comprises:
2 dividing the N-bit signal groups into M-bit data groups, wherein the transmission data
3 group comprises the M-bit data groups.

1 28. The method of claim 26, wherein the step of selecting further comprises:
2 identifying the N-bit signal group that experienced the change in value; and
3 determining when the N-bit signal group should be transmitted.

1 29. The method of claim 27, wherein the step of transmitting includes:
2 transmitting the transmission data group by transmitting, M bits at a time, each M-bit data
3 group.

1 30. The method of claim 28, wherein the step of determining includes:
2 determining whether the identified N-bit signal group currently has a token; and
3 scheduling the transmission of the identified N-bit signal group if it has the token.