Lineær uafhængighed og lineære transformationer, Afsnit 1.7–1.9

15. februar 2021

SLIAL, Blok 1

Forår 2021

Del I Repetition

Vektorspænd

Når vi skal afgøre, om en vektor **b** ligger i $Span\{v_1, v_2, \dots, v_s\}$, skal vi afgøre, om ligningssystemet med totalmatrix $[v_1 \ v_2 \ \cdots \ v_s \ | \ b]$ er konsistent

- ► Hvis b er kendt... rælike reduktion.
- ► Hvis **b** ikke er kendt... $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ $\forall [v_1 v_5 | b]$
 - -> række redukt. -> ligninger som augstr
 om b Espan sv. . hs?

Vektorspænd

Eksempel (b er kendt, Opg. 1.3 13)

$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix} \text{ og } \begin{bmatrix} -3 \\ 7 \\ 3 \end{bmatrix}.$$

prot i sist spite
inhosisten!
b & span [2,-2,]

Vektorspænd

Eksempel (b er ikke kendt, eksemplet fra sidst)

$$A = \left[\begin{array}{ccc} 1 & 2 & 2 \\ 4 & 8 & 3 \\ 3 & 6 & 1 \end{array} \right] \text{ og } \left[\begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right].$$

Vi så, at totalmatricen $[A|\mathbf{b}]$ er rækkeækvivalent med

$$\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ 4b_1 - b_2 \\ b_1 - b_2 + b_3 \end{bmatrix}.$$
 Systematics of the state of

For at **b** ligger i spændet, skal det gælde, at...

Det homogene ligningssystem

Det homogene ligningssystem $A\mathbf{x} = \mathbf{0}$ er særligt, da...

altid how minst 1 lessning!
$$k=0 \qquad A.0 = 0$$

Det inhomogene ligningssystem

Sætning

Lad $A\mathbf{x} = \mathbf{b}$ være et konsistent ligningssystem, hvor $\mathbf{b} \neq \mathbf{0}$, og lad \mathbf{p} være en (hvilken som helst) løsning.

Løsningsmængden for $A\mathbf{x} = \mathbf{b}$ er da alle vektorer \mathbf{w} på formen

$$\mathbf{w} = \mathbf{p} + \mathbf{v}_h,$$

hvor \mathbf{v}_h er en løsning til det homogene system $A\mathbf{x} = \mathbf{0}$.

Det inhomogene ligningssystem Hvorfor er det en løsning?

Lad \mathbf{p} være en løsning til $A\mathbf{x} = \mathbf{b}$

Når $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, hvor \mathbf{v}_h er en løsning til $A\mathbf{x} = \mathbf{0}$, har vi

$$Aw = A(p+v_h) = Ap + Av_h = b + 0 = b$$

To vektorspænd

Lad
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ og $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$.

Hvad kan vi sige, om Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ og Span $\{\mathbf{v}_1, \mathbf{v}_2\}$?

$$V_{3} = V_{1} + V_{1}$$

$$b \in Spen \{V_{1} ... V_{3}\}$$

$$b = C_{1} V_{1} + C_{1} V_{2} + C_{3} V_{3}$$

$$= C_{1} V_{1} + C_{1} V_{2} + C_{3} (V_{1} + V_{2})$$

$$= (C_{1} + C_{3}) V_{1} + (C_{2} + C_{3}) V_{2}$$

$$\in Spen \{V_{1}, V_{2}\}$$

Lineær (u)afhængighed

Definition

Mængden af vektorer $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_s\}$ i \mathbb{R}^n siges at være lineært uafhængig, hvis

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s = \mathbf{0} \tag{1}$$

medfører $c_1 = c_2 = \cdots = c_s = 0$.

Hvis der eksisterer konstanter c_1, c_2, \ldots, c_s ikke alle lig nul, så (1) er opfyldt, kaldes $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_s\}$ i \mathbb{R}^n lineært afhængig.

Simple tilfælde

 $\{\mathbf{v}_1\}$ er lineært afhængig, hvis og kun hvis...

$$C_1V_1 = 0$$
 => $C_1 = 0$ => $V_1 \neq 0$
(ellers huis $V_1 = 0$ $\forall C_1 \in \mathbb{R}$ => $C_1V_1 = 0$)

$$\{\mathbf{v}_1, \mathbf{v}_2\}$$
 er lineært afhængig, hvis og kun hvis...
$$C_1 V_1 + C_2 V_2 = 0 \quad \text{and} \quad C_1 \neq 0 \quad \text{eller} \quad C_2 \neq 0$$

$$\text{hin's} \quad C_1 \neq 0 \quad \Rightarrow \quad V_1 = \left(-\frac{C_2}{C_1}\right) V_2$$

$$\text{eller} \quad C_2 \neq 0 \quad \Rightarrow \quad V_2 = \left(-\frac{C_1}{C_2}\right) V_1$$

Eksempler

$$\left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 5 \end{bmatrix} \right\} \text{ er lineært afhængig, da...}$$

$$-\frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{5} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} 0 \\ 5 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-\frac{1}{5}) \begin{bmatrix} 0 \\ 5 \end{bmatrix} = 0$$

$$\left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \end{bmatrix} \right\} \text{ er lineært uafhængig, da...}$$

$$c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \end{bmatrix} \right\} \text{ er lineært uafhængig, da...}$$

$$c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \end{bmatrix} \right\} \text{ er lineært uafhængig, da...}$$

$$c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -3 \end{bmatrix} \right\} \text{ er lineært uafhængig, da...}$$

$$c_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} c_1 + c_2 = 1 c_2 = 0$$

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ -3 \end{bmatrix} = 0 \quad (\Rightarrow) \quad \begin{cases} 2c_1 + 4c_1 = 0 \\ 2c_1 - 3c_2 = 0 \end{cases} \quad (c_1 = \frac{3}{2}c_1 + \frac{3}{2}c_2 = 0)$$

$$c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} c_2 + 4c_3 = 0 \quad (c_1 = \frac{3}{2}c_2 = 0)$$

$$c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} c_2 + 4c_3 = 0 \quad (c_2 = 0)$$

$$c_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} c_3 + 4c_3 = 0 \quad (c_3 = 0)$$

$$c_3 \begin{bmatrix} 2c_2 + 4c_3 = 0 \\ 2c_3 - 3c_2 = 0 \quad (c_4 = 0) \\ c_4 = 0 \quad (c_4 = 0)$$

$$c_4 \begin{bmatrix} 2 \\ 3 \end{bmatrix} c_3 + 4c_4 = 0 \quad (c_4 = 0)$$

$$c_5 \begin{bmatrix} 2c_4 + 4c_3 = 0 \\ 2c_4 - 3c_2 = 0 \quad (c_4 = 0) \\ c_4 = 0 \quad (c_4 = 0)$$

$$c_5 \begin{bmatrix} 2c_4 + 4c_3 = 0 \\ 2c_4 - 3c_4 = 0 \quad (c_4 = 0) \\ c_4 = 0 \quad (c_4 = 0)$$

$$c_5 \begin{bmatrix} 2c_4 + 4c_3 = 0 \\ 2c_4 - 3c_4 = 0 \quad (c_4 = 0) \\ c_4 = 0 \quad (c_4 = 0) \\ c_4 = 0 \quad (c_4 = 0) \\ c_5 = 0 \quad (c_4 = 0) \\ c_6 = 0 \quad (c_4 = 0) \\ c_6 = 0 \quad (c_4 = 0) \\ c_7 = 0 \quad (c_4 = 0) \\ c_8 = 0 \quad (c_4 =$$

Sprogbrug

Ofte siger vi bare

$$_{n}\mathbf{v}_{1},\mathbf{v}_{2},\ldots,\mathbf{v}_{s}$$
 er lineært (u)afhængige"

i stedet for

$$_{"}\{v_{1},v_{2},\ldots,v_{s}\}$$
 er lineært (u)afhængig"

Observation

CERS

Hvis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s$ er lineært afhængige, eksisterer $\mathbf{c} \neq \mathbf{0}$, så

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s = \mathbf{0}. \tag{2}$$

Antag, at $c_1 \neq 0$. Isoleres \mathbf{v}_1 i (2), får vi

$$\mathbf{v}_1 = \frac{-c_2}{c_1}\mathbf{v}_2 + \frac{-c_3}{c_1} + \cdots + \frac{-c_s}{c_1}\mathbf{v}_s.$$

 V_1 er $l_1 v_1$. Lead of $(v_2 - v_5)$ $v_1 \in \text{spen}(v_1 - v_5)$ Med andre ord:

Observation

Eksempel

Vi så tidligere, at
$$-\frac{1}{2}\begin{bmatrix} 2\\0 \end{bmatrix} + \begin{bmatrix} 1\\1 \end{bmatrix} - \frac{1}{5}\begin{bmatrix} 0\\5 \end{bmatrix} = \mathbf{0}$$
.

Dette betyder også...

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{1}{5} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{1}{5} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix} = -\frac{5}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + 5 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Matrixsøjler

Er søjlerne i $A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n]$ lineært uafhængige?

Vi skal undersøge løsninger til...
$$x_1 \alpha_1 + x_1 \alpha_1 + \dots + x_n \alpha_n = 0$$

$$\begin{pmatrix} 2 & x_1 = x_2 \dots = x_n = 0 \\ A = 0 \end{pmatrix}$$

Sætning

Søjlerne i en matrix A er lineært uafhængige, hvis og kun hvis...

Matrixsøjler

Da matrixsystemet $A\mathbf{x} = \mathbf{0}$ har frie variable, når...

...kan vi udlede:

Korollar

Søjlerne i en matrix A er lineært uafhængige, hvis og kun hvis...

Matrixsøjler Eksempel

Betragt
$$A = \begin{bmatrix} 9 & 2 & 16 & 4 & 20 \\ 8 & 1 & 15 & 1 & 4 \\ 5 & 5 & 5 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} \boxed{1} & 0 & 2 & 0 & 0 \\ 0 & \boxed{1} & -1 & 0 & -2 \\ 0 & 0 & 0 & \boxed{1} & 6 \end{bmatrix}$$

pivot søjler

Thus alle søjler or prod søjler

 $\Rightarrow \text{ søjler or } \text{ prod søjler}$

Antal lin. uafh. vektorer

Hvor mange lineært uafhængige vektorer kan vi have i \mathbb{R}^n ?

Opskriv vektorerne som søjler i en matrix A. Antallet af pivotsøjler...

højst n lederde boeff (n nælder)

højst n lir unflengrere
hekdorer i PM

Antal lin. uafh. vektorer

Eksempel

Kan $\{v_1,v_2,\ldots,v_8\}\subset\mathbb{R}^6$ være lineært uafhængig?

Eksempel

Kan $\{v_1, v_2, v_3, v_4\} \subset \mathbb{R}^4$ være lineært uafhængig?

Matrix-vektor-produkt og afbildninger

Når vi går fra **x** til *A***x** kan vi tænke på dette som en afbildning/funktion:

$$\mathbf{x} \sim \mathbf{A} \mathbf{x}$$
 $T(\mathbf{x}) = A \mathbf{x}$

Hvilke vektorer kan vi putte ind/kommer ud, når A er $m \times n$?

Transformationer

Definition

En transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ er en afbildning, der til hver vektor $\mathbf{v} \in \mathbb{R}^n$ knytter præcist én vektor $T(\mathbf{v}) \in \mathbb{R}^m$.

 \mathbb{R}^n kaldes definitionsmængden, og \mathbb{R}^m kaldes dispositionsmængden.

Nogle gange kaldes $T(\mathbf{v})$ billedet af \mathbf{v} under T

Transformationer Eksempler

$$T_i: \mathbb{R}^3 \to \mathbb{R}^2$$

Eksempel

Lad
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$
 og $T_1(\mathbf{x}) = A\mathbf{x}$.

$$T_1(\begin{bmatrix} 1 \\ 2 \end{bmatrix}) = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 5 \end{bmatrix}$$
Figure 2.

Eksempel

Lad
$$B = \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix}$$
 og $T_2(\mathbf{x}) = B\mathbf{x}$.

Eksempel
$$Lad B = \begin{bmatrix} 7 \\ -1 \\ 0 \end{bmatrix} \begin{cases} 3 \\ \log T_2(\mathbf{x}) = B\mathbf{x}. \end{cases} \qquad T_2 : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$T_2 \left(\begin{bmatrix} 3 \end{bmatrix} \right) = 3 \begin{bmatrix} -7 \\ -1 \end{bmatrix} = \begin{bmatrix} 21 \\ -3 \end{bmatrix} \in \mathbb{R}^3$$

Lineære transformationer

En transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ kaldes *lineær*, hvis den opfylder

- $\cdot \triangleright T(\mathbf{v} + \mathbf{u}) = T(\mathbf{u}) + T(\mathbf{v})$ for alle $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$
- . \blacktriangleright $T(c\mathbf{v}) = cT(\mathbf{v})$ for alle $c \in \mathbb{R}$ og alle $\mathbf{v} \in \mathbb{R}^n$

Bemærk:

Alle matricer overholder $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$ og $A(c\mathbf{v}) = cA\mathbf{v}$ Derfor er alle transformationer på formen $T(\mathbf{x}) = A\mathbf{x}$ lineære

Lineære transformationer Eksempler

Eksempel

Er T_1 og T_2 fra før lineære?

Eksempel

Lad $T: \mathbb{R}^2 \to \mathbb{R}$ være defineret som $T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = [x_1x_2].$

Er T lineær?

T lineær?

$$V = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $C = 2$
 $T(v) = 1 \cdot 2 = 2$
 $C.T(v) = 2 \cdot 4 = 8$

Nei, T are illeged line.

Lineære transformationer

Eksempel

Lad
$$F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
. Er F lineær?

$$C = 0 \qquad F\left(c \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = F\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$0 = C \cdot F\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = C \cdot \left(\begin{bmatrix} x_1 + 5 \\ x_2 + 1 \end{bmatrix}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Observation

Ud fra definitionen af linearitet ser vi, at en lineær afbildning *T* altid overholder

$$T(\mathbf{0}) = T(0 \cdot \vec{0}) = 0 \cdot T(\vec{0}) = \vec{0}$$

og at

$$T(c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s) = T(c_1\mathbf{v}_1) + T(c_1\mathbf{v}_2 + \dots + c_s\mathbf{v}_s)$$

$$= C_1T(\mathbf{v}_1) + T(\mathbf{z}_2\mathbf{v}_2 + \dots + c_s\mathbf{v}_s)$$

$$= C_1T(\mathbf{v}_1) + C_1T(\mathbf{v}_1) + \dots + C_sT(\mathbf{v}_s)$$

Fra lineær transformation til matrix

Forestil jer, at vi har en lineær transformation $T: \mathbb{R}^n \to \mathbb{R}^m$.

Kan vi finde en matrix A, så $T(\mathbf{x}) = A\mathbf{x}$ for alle $\mathbf{x} \in \mathbb{R}^n$?

Fra lineær transformation til matrix

Lad \mathbf{x} være en vilkårlig vektor i \mathbb{R}^n . Vi kan skrive \mathbf{x} som

$$\mathbb{R}^{n} \ni \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} x_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_{2} \\ \vdots \\ 0 \end{bmatrix} + ... + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_{n} \end{bmatrix}$$

$$= x_{1} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + x_{1} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + ... + x_{n} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$= x_{1} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + x_{1} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + ... + x_{n} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$= x_{1} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} + ... + x_{n} \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$$

Fra lineær transformation til matrix

 \mathbf{e}_i betegner vektoren i \mathbb{R}^n , hvor indgang i er 1 og resten er 0

Vi har derfor
$$\mathbf{x} = x_1 e_1 + x_2 e_1 + ... + x_n e_n$$

$$T(\mathbf{x}) = x_1 \frac{T(e_1) + x_2}{ER} \frac{T(e_2) + ... + x_m T(e_m)}{R^m}$$

$$= \left[T(e_1) - T(e_2) - T(e_n)\right]^{K}$$

Standardmatrix

Sætning

Lad $T: \mathbb{R}^n \to \mathbb{R}^m$ være en lineær transformation. Da eksisterer en entydig $m \times n$ -matrix A, sådan at

$$T(\mathbf{x}) = A\mathbf{x}$$
 for alle $\mathbf{x} \in \mathbb{R}^n$.

Yderligere gælder, at

$$A = [T(\mathbf{e}_1) T(\mathbf{e}_2) \cdots T(\mathbf{e}_n)].$$

Matricen A i sætningen kaldes standardmatricen for T

Standardmatrix Eksempler

Eksempel

Eksempel
En lineær afbildning
$$T$$
 opfylder: $T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix}$,

$$T\left(\left[\begin{array}{c}0\\1\\0\\0\end{array}\right]\right)=\left[\begin{array}{c}1\\3\end{array}\right],$$

$$T\left(\left[\begin{array}{c}0\\1\\0\\0\end{array}\right]\right)=\left[\begin{array}{c}1\\3\end{array}\right],\quad T\left(\left[\begin{array}{c}0\\0\\1\\0\end{array}\right]\right)=\left[\begin{array}{c}0\\0\end{array}\right],\quad T\left(\left[\begin{array}{c}0\\0\\0\\1\end{array}\right]\right)=\left[\begin{array}{c}3\\1\end{array}\right].$$

Dens standardmatrix er

Standardmatrix Eksempler

Eksempel

En lineær transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ sender $\mathbf{x} \in \mathbb{R}^2$ over i dens spejling langs linjen y = -x. Find standardmatricen A for T.

Lineære transformationer

På siderne 90–92 i bogen findes eksempler på lineære transformationer:

- ► Rotationer (omkring Origo) er lineære
- ► Spejlinger (langs linje/plan gennem Origo) er lineære
- ► Strækninger og kontraktioner er linære
- ► Projektioner er lineære

Bemærk, at parallelforskydninger ikke er lineære