ECE 2534

Overview of

PIC32, Cerebot Digilent, MPLAB,

and other things

The BIG PICTURE

The BIG PICTURE

The BIG PICTURE

Digilent board (high-level view)

PIC32 package

From Digilent schematics

Cerebot 32MX7			
Copyright 2010, Digilent Inc.		Engineer:	NEA
SHEET: PIC32 Microcontroller		Author:	GA
TITLE: Cerebot 32MX7		Rev:	С
Doc#: 500-186	Date: 10/20/2010	Sheet: 5/9	

From Digilent schematics

One bit on a PIC32 I/O Port

Summary

- Need to think at several levels . . .
 - Entire system

The microcontroller is (ultimately) a component in a larger system

- Microcontroller board
 - •The microcontroller has to sit somewhere, with power supply and electrical connections
 - •The microcontroller has I/O ports that interface to external devices
- Microcontroller
 - •The microcontroller has on-chip peripherals, such as timers, that need to be controlled through software
 - •The microcontroller has a (rather complex) CPU that will try to fetch instructions and execute them
 - •Instructions and data sit in memory (on-chip, possibly off-chip)
- Circuits & electronics
 - None of this works without good electrical design, proper signal conditioning, etc.