

Problem C. Longest Common Subsequence

Problem Description

Given two **permutations** a and b of 1, 2, ..., n, please find **any** subsequence $a' \subseteq a$ and $b' \subseteq b$ such that

- 1. |a'| = |b'| = m,
- 2. $a_i' \neq b_i'$ for i = 1, 2, ..., m,
- 3. m is maximized, i.e., there does not exist any answer with length m+1.

There are t test cases.

Input Format

• line 1: t

t blocks:

- line 1: n
- line 2: $a_1 \ a_2 \ \dots \ a_n$
- line 3: b_1 b_2 ... b_n

Output Format

t blocks:

- line 1: m
- line 2: a_1' a_1' \dots a_m'
- line 3: b'_1 b'_2 ... b'_m

Constraints

- $1 \le t \le 10$.
- $2 \le n \le 1000000$.
 - ∘ Sum of n across all test cases ≤ 1000000.
- a_1, a_2, \ldots, a_n is a permutation of $1, 2, \ldots, n$.
- b_1, b_2, \ldots, b_n is a permutation of $1, 2, \ldots, n$.
- All inputs values are integers.

Subtasks

- 1. (20 points) $n \le 16$.
- 2. (60 points) $n \le 1000$.
- 3. (10 points) $n \le 40000$.
- 4. (10 points) No additional constraints.
- If you answered the optimal length m correctly, you can get 50% of a subtask's score;
- furthermore, if your construction is correct, you can get the other 50% of the score.
- Note: The second and third line should not be left blank. You can simply print m 1s in both line if you are not able to construct the answer.

No.	Testdata Range	Time Limit (ms)	Memory Limit (KiB)
Samples	1	1500	262144
1	1-7	1500	262144
2	1-12	1500	262144
3	1-18	1500	262144
4	1-32	1500	262144

Samples

Sample Input 1

```
3
5
3 5 4 1 2
3 4 5 1 2
9
3 1 4 5 9 2 6 8 7
2 7 1 8 4 5 9 3 6
2
1 2
1 2
```

This sample input satisfies the constraints of all the subtasks.

Sample Output 1

```
3
3 4 1
5 1 2
9
3 1 4 5 9 2 6 8 7
2 7 1 8 4 5 9 3 6
1
1
2
```

In the first test case, a' = [3, 4, 1] is a subsequence of a = [3, 5, 4, 1, 2], and b' = [5, 1, 2] is a subsequence of b = [3, 4, 5, 1, 2]. The length of a' and b' is 3, which is the maximum possible length.

Choosing a' = [1, 2, 3, 4] and b' = [2, 3, 4, 5] is not a valid answer, since a' and b' are not subsequences of a and b, respectively.

Choosing a' = [3, 5, 1] and b' = [4, 5, 2] is also not a valid answer, since $a'_2 = b'_2$.