22AIE204 Introduction to Computer Networks

Encapsulation TCP/IP model

How two devices communicate over internet?

Figure: Reliable process-to-process delivery of amessage

- ▶ applications running in device A and F interact with each other
- process corresponds to a given application currently active in a device

Figure: Source-to-destination delivery of data at network layer

Source: Data Communications and Networking, Forougan

How the data is sent from device A to B along the two intermediate nodes?

- ▶ data packet is sent from device A to B
- ▶ intermediate nodes/devices will forward the data received to the next node along the path
 - here device A will send the data to first intermediate node which forwards it to the second intermediate node and so on

The interaction between layers in the OSI model

The interaction between layers in the OSI model

How the data is sent from device A to B along the two intermediate nodes?

- ▶ same layers communicate with each other
- ▶ data is passed down the layer at sender and the reverse operation at the receiver
- data is forwarded by the network devices along the path from sender to receiver

Figure: Source-to-destination delivery of data at network layer

The interaction between layers in the OSI model

How the data is passed from device A to B along the two intermediate nodes?

- ▶ data is passed down from higher to lower layers in device A
- ▶ data is transmitted to the first intermediate node at the physical layer
- data received at the first intermediate node is passed to the layers above
- process repeats till it reaches application layer at device B

Data transfer between the layers in a device

Encapsulation:

- ▶ Each layer in the sending device adds its own information as a header to the message it receives from the layer just above it before passing to the layer just below it.
 - same layers between the communicating nodes interact using based on the header
 - information required to forward the data to next node will be stored in the header
- ▶ At receiver, data is passed to the layer above after removing the header de-encapsulation.

Figure: An exchange using the OSI model

The Internet (TCP/IP) Protocol Suite

- ▶ It stands for Transmission Control Protocol/ Internet Protocol.
- ▶ TCP/IP was developed to solve the problem of inter networking
- ▶ Internet based applications and the communication between the end devices connected to the internet are based on this model
- ▶ Protocols define how the communication takes place at each layer and how to interface between the adjacent layers.

The Internet (TCP/IP) Protocol Suite

- ► TCP/IP protocol suite is made of five layers:
 - ► application layer
 - transport layer
 - network layer
 - data link layer and
 - physical layer

The Internets 5-Layer Model

- ▶ Application: used by application program
- ► Transport: establishes end-to-end connections
- ► Network*: data transfer between the end-to-end systems, addressing and routing
- ▶ Data Link*: deals with message delineation, error control & network access
- Physical*: defines how information will be transmitted through the network

^{*}same as corresponding layer in OSI model

TCP/IP model

	OSI		TCP/IP		TCP/IP
7	Application]]	
6	Presentation]	Application	5 - 7	Application
5	Session]			
4	Transport		Transport	4	Transport
3	Network		Internetwork	3	Internetwork
2	Data Link]	Network	2	Data Link
1	Physical		Access	1	Physical

Figure: Comparision of layers in OSI and TCP/IP model

Encapsulation in TCP/IP model

Figure: Encapsulation

Figure: Data transfer between the applications running in different end systems

Kurose, James, and Keith Ross. "Computer networks: A top-down approach featuring the internet" (2010)

Figure: Data transfer between the applications running in different end systems

Source: Data Communications and Networking, Forougan

Questions?