Меры. Внешние меры

Мера Лебега

Утв. 1.

$$E \subset \mathcal{A}_{\lambda} \Leftrightarrow E = \bigcup_{m} K_{m} \cup E_{0} \Leftrightarrow E = B \cup B_{0}$$

где K_m это компакты, E_0 и B_0 это множества меры нуль и B это борелевское множество.

1) Покажем, что всякое борелевское множество B можно представить в виде $B = \bigcup_m K_m \cup B_0$, где K_m это компакты, B_0 это множество меры нуль. Можно считать, что $B \subset I$ - лежит в некотором замкнутом бруске, поскольку всё \mathbb{R}^n можно представить в виде счетного объединения замкнутых брусов, тогда:

$$\mathbb{R}^n = \bigcup_k I_k \Rightarrow B = \bigcup_k (I_k \cap B)$$

Следовательно, если каждое множество $I_k \cap B$ представить в виде счетного объединения компактов и счетного множества меры нуль (что просто будет множеством меры нуль), то можно и всё борелевское так представить. λ это конечная σ -аддитивная мера на борелевских множествах на бруске: $\mathcal{B}(I)$, тогда по теореме с прошлой лекции будет верно:

$$\forall m, \exists F_m \subset B \colon \lambda(B \setminus F_m) < \frac{1}{m}$$

 F_m это замкнутое множество, $F_m \subset I \Rightarrow F_m$ это компакт. Возьмем объединение F_m , тогда:

$$\bigcup_{m} F_m \subset B, \ B \setminus \bigcup_{m} F_m \subset B \setminus F_m \Rightarrow \lambda(B \setminus \cup_m F_m) \le \lambda(B \setminus F_m) < \frac{1}{m} \to 0$$

Следовательно, получаем:

$$B = \bigcup_{m} F_m \cup \left(B \setminus \bigcup_{m} F_m \right)$$

где $B \setminus \bigcup_m F_m$ это множество меры нуль;

- 2) Заметим, что все стрелочки \Leftarrow очевидны, поскольку борелевские множества измеримы \Rightarrow компакты измеримы, мы знаем, что множества меры нуль всегда измеримы (в самом начале обсуждения внешней меры проговорили) и также мы знаем, что множество измеримых это σ -алгебра \Rightarrow всё что получаем счётным объединением это элемент этой σ -алгебры;
- 3) По первому пункту достаточно доказать, что всякое измеримое множество E есть объединение борелевского с множеством меры нуль. Разберём случай, когда E лежит в брусе E С E по аналогичным с пунктом 1) причинам. Рассмотрим множество E С E это измеримое по Лебегу множество, как разница двух измеримых, тогда:

$$\exists \{I_j^m\} \colon D \subset \bigcup_j I_j^m = D_m, \sum_j |I_j^m| \le \lambda(D) + \frac{1}{m}$$

где последнее верно в силу того, что мы выбрали покрытие, которое мало отличается от точной нижней грани по D. Заметим, что D_m это борелевское множество, как счетное объединение

борелевских множеств, кроме того $D \subset D_m$ и верно:

$$\lambda(D_m) \le \sum_{j} |\mathbf{I}_j^m| \le \lambda(D) + \frac{1}{m}, \ D \subset D_m \Rightarrow \lambda(D_m \setminus D) = \lambda(D_m) - \lambda(D \cap D_m) \le \frac{1}{m}$$

Рассмотрим $C = \cap_m D_m$, это опять борелевское множество, более того, $\forall m, D \subset D_m \Rightarrow D \subset C$. Заметим также, что верно:

$$C \subset D_m \Rightarrow (C \setminus D) \subset (D_m \setminus D) \Rightarrow \lambda(C \setminus D) \leq \lambda(D_m \setminus D) \leq \frac{1}{m} \xrightarrow[m \to \infty]{} 0$$

Устремляя $m \to \infty$, мы получаем, что $\lambda(C \setminus D) = 0$. Таким образом, мы взяли дополнение к E и накрыли его борелевским множеством, которое отличается по мере от множества D на множество меры нуль \Rightarrow мы представили D как борелевское множество минус множество меры нуль. Рассмотрим множество $B = I \setminus C$, тогда: $B \subset E$, B - борелевское.

Рис. 1: Построение множества B.

Также заметим, что: $E \setminus B = C \setminus D$ или подробнее:

$$E \setminus B = E \setminus (I \setminus C) = (E \cap C) \cup (E \setminus I) = E \cap C = (C \cap E) \cup (C \setminus I) = C \setminus (I \setminus E) = C \setminus D \Rightarrow$$
$$\Rightarrow \lambda(E \setminus B) = \lambda(C \setminus D) = 0 \Rightarrow E = B \cup (E \setminus B) = B \cup B_0$$

Итого, E это борелевское множество B объединенное с множеством меры нуль $B_0 = E \setminus B$;

Rm: 1. Фактически в последнем пункте доказательства мы взяли измеримое множество D и поместили его в борелевское множество C так, что зазор оказался меры нуль: $\lambda(C \setminus D) = 0$. Следовательно, переходя к дополнениям мы научились включать внутрь борелевское множество так, чтобы зазор был меры нуль.

Следствие 1. Пусть $f: \mathbb{R}^m \to \mathbb{R}^n$, $n \ge m$ - локально липшицево отображение, то есть на каждом брусе верно:

$$\exists L > 0 \colon ||f(x_1) - f(x_2)|| \le L \cdot ||x_1 - x_2||$$

Тогда для всякого измеримого по Лебегу множества $E \subset \mathbb{R}^m$ множество f(E) измеримо.

 \square Ранее уже было доказано (см. лекцию 6), что если E это множество меры нуль, то f(E) это множество меры нуль. Пусть E - произвольное измеримое множество, тогда по утверждению выше:

$$E = \bigcup_{s} K_s \cup A, \ \lambda(A) = 0 \Rightarrow f(E) = \bigcup_{s} f(K_s) \cup f(A)$$

Поскольку отображение локально липшицево, то образ компакта - компакт, а f(A) это множество меры нуль, следовательно f(E) это измеримое множество.

Rm: 2. Множество меры нуль не обязательно будет переходить в множество меры нуль. Например, функция: $\frac{C(x)+x}{2}$, где C(x) - Канторовская лестница, есть гомеоморфизм $[0,1] \to [0,1]$ и это отображение множество Кантора переводит в множество меры $\frac{1}{2}$.

Rm: 3. Аналогично с помощью отображения выше можно изготовить измеримое по Лебегу, но не Борелевское множество: в множестве положительной меры можно найти неизмеримое по Лебегу (множество Витали) и затем взять прообраз ⇒ получится множество, которое будет лежать внутри Канторовского, но оно меры нуль ⇒ всё что лежит внутри тоже меры нуль ⇒ измеримо по Лебегу, но при этом это будет не Борелевское множество, поскольку при гомеоморфизме если получили Борелевское, то и было взято Борелевское.

Утв. 2. Если E это допустимое множество, то E измеримо по Лебегу и $\lambda(E) = |E|$.

 \square E допустимое \Rightarrow оно ограничено и ∂E это множество меры нуль, тогда:

$$E = \mathring{E} \cup A, \ A \subset \partial E \Rightarrow \lambda(A) = 0$$

где мы берём A, поскольку ∂E не обязательно принадлежит $E\Rightarrow E$ - измеримо. Заметим, что:

- 1) $\overline{E} = E \cup \partial E$ это допустимое множество, поскольку E допустимое и ∂E множество меры нуль. Ещё можно сказать так: ∂E это допустимое множество, поскольку граница границы это она сама (граница это замкнутое множество), а объединение допустимых это допустимое множество;
- 2) $|E| = |\overline{E}|$, это так поскольку эти множества отличаются на множество, объем которого равен нулю: $C \subset \partial E$, так как ∂E замкнутое множество, то $\partial C \subset \partial E$, поскольку замыкание наименьшее замкнутое множество, содержащее C, ∂E ограниченное множество, так как E ограниченное $\Rightarrow C$ ограниченное, $\partial C \subset \partial E \Rightarrow \partial C$ имеет меру нуль $\Rightarrow C$ это допустимое множество. Тогда:

$$\overline{E} = E \cup C, \, C = \overline{E} \setminus E \subset \partial E, \, E \cap C = \varnothing \Rightarrow |\overline{E}| = |E \cup C| = |E| + |C| = |E|$$

 $3) \ \lambda(E) = \lambda(\overline{E})$ - очевидно:

$$\overline{E} = E \cup C, \ C = \overline{E} \setminus E \Rightarrow \lambda(\overline{E}) = \lambda(\overline{E} \setminus E) + \lambda(E \cap \overline{E}) = \lambda(C) + \lambda(E) = \lambda(E)$$

Далее, считаем, что E - замкнуто.

Рис. 2: Объем допустимого множества по определению внутри бруса I.

По определению:

$$\exists \mathbf{I} \colon E \subset \mathbf{I}, \, |E| = \int_{\mathbf{I}} \chi_E(x) dx$$

Возьмем разбиение $\mathbb{T}_N = \{\mathbf{I}_j^N\}$ бруска I такое, что:

- (1) diam $\{I_j^N\} < \frac{1}{N};$
- (2) Каждое следующее разбиение \mathbb{T}_{N+1} получается разбиением предыдущих брусков \mathbb{T}_N ;

Рис. 3: Разбиение \mathbb{T}_{N+1} , полученное из предыдущего разбиения \mathbb{T}_N .

Тогда будет верно:

$$|E| = \lim_{N \to \infty} \sum_{j} \sup_{\mathbf{I}_{j}^{N}} \chi_{E}(x) \cdot |\mathbf{I}_{j}^{N}|, \quad \sup_{\mathbf{I}_{j}^{N}} \chi_{E}(x) = \begin{cases} 0, & \mathbf{I}_{j}^{N} \cap E = \emptyset \\ 1, & \mathbf{I}_{j}^{N} \cap E \neq \emptyset \end{cases}$$

Рассмотрим объединение брусков разбиения пересекающихся с E:

$$Q_N = \bigcup_{j: \, \mathbf{I}_j^N \cap E \neq \varnothing} \mathbf{I}_j^N \Rightarrow \lambda(Q_N) = \sum_{j: \, \mathbf{I}_j^N \cap E \neq \varnothing} |\mathbf{I}_j^N| = \sum_j \sup_{\mathbf{I}_j^N} \chi_E(x) \cdot |\mathbf{I}_j^N|$$

Рис. 4: Объединение брусков разбиения пересекающихся с E: Q_N .

Заметим, что:

$$\mathbf{I}_{j}^{N+1}\cap E\neq\varnothing\Rightarrow\mathbf{I}_{j}^{N+1}\subset\mathbf{I}_{k}^{N}\Rightarrow\mathbf{I}_{k}^{N}\cap E\neq\varnothing\Rightarrow Q_{N+1}\subset Q_{N}$$

Шапошников С.В.

Рис. 5: Измельчение разбиения и влияние на Q_N : $Q_{N+1} \subset Q_N$.

Кроме того $\cap_N Q_N = E$, поскольку очевидно, что: $\forall N, E \subset Q_N \Rightarrow E \subset \cap_N Q_N$. Пусть $\exists y \notin E$ и $y \in \cap_N Q_N$, поскольку E - замкнутое подмножество бруска I (дополнение к замкнутому - открытое), тогда:

$$\exists \, \mathcal{B}(y,r) \subset \mathcal{I} \colon \mathcal{B}(y,r) \cap E = \varnothing \Rightarrow \exists \, N \colon \operatorname{diam} \mathcal{I}_j^N < \frac{1}{N} < r$$

следовательно, никакой брусок разбиения не сможет задевать точку y, иначе внутри этого шара появилась бы точка множества $E \Rightarrow \bigcap_N Q_N = E$. Тогда по непрерывности меры:

$$\sum_{j} \sup_{\mathbf{I}_{j}^{N}} \chi_{E}(x) \cdot |\mathbf{I}_{j}^{N}| = \lambda(Q_{N}) \xrightarrow[N \to \infty]{} \lambda(E) \Rightarrow |E| = \lim_{N \to \infty} \sum_{j} \sup_{\mathbf{I}_{j}^{N}} \chi_{E}(x) \cdot |\mathbf{I}_{j}^{N}| = \lambda(E)$$

Следствием этого утверждения является очень важная для нас теорема.

Теорема 1. Пусть L(x) = Ax + b, где $A \in Mat_{n,n}$, b - вектор. Тогда для всякого измеримого ограниченного множества E верно равенство:

$$\lambda(L(E)) = |\det A| \cdot \lambda(E)$$

Rm: 4. Заметим, что ограниченность нужна в случае, когда у нас бесконечность, а матрица A - вырожденная, тогда надо будет пояснять, что в $0\cdot\infty$ ответом будет 0.

 \square Пусть $\det A = 0$, тогда $L(\mathbb{R}^n)$ это подмножество гиперплоскости \Rightarrow множество меры нуль. Подробнее:

$$\begin{cases} y_1 = a_{11}x_1 + \dots + a_{1n}x_n + b_1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ y_n = a_{n1}x_1 + \dots + a_{nn}x_n + b_n \end{cases}$$

Поскольку $\det A = 0$, то строчки линейно зависимы, тогда:

$$\exists c_2, \dots, c_n \colon y_1 - c_2 y_2 - \dots - c_n y_n = \widetilde{b} \Rightarrow y_1 = c_2 y_2 + \dots + c_n y_n + \widetilde{b}$$

Мы получили уравнение, задающее гиперплоскость, или по-другому: всё что лежит на графике хорошей непрерывной функции это всё множество меры нуль, поскольку сам этот график является множеством меры нуль (см. лекцию 3). Следовательно, получили верное равенство: $\lambda(L(\mathbb{R}^n)) = 0 = 0 \cdot \lambda(E)$.

Пусть $\det A \neq \emptyset$, поскольку E - ограниченное, то можно далее считать, что $E \subset I$ и рассматриваем только подмножества замкнутого бруса I. На измеримых по Лебегу множествах в бруске I определены две σ -аддитивные, конечные меры:

$$\mu_1(E) = \lambda(L(E)), \quad \mu_2(E) = |\det A| \cdot \lambda(E)$$

L - линейное отображение \Rightarrow локально липшицево (даже вообще липшицево) $\Rightarrow L(E)$ это измеримое множество. Для μ_2 σ -аддитивность очевидна, поскольку $\det A \neq 0$ и мы просто умножаем на число. Для μ_1 мы знаем, что L это взаимнооднозначное соответствие, тогда:

$$L(\cup_j E_j) = \cup_j L(E_j), \quad L(\cap_j E_j) = \cap_j L(E_j), \quad L(E \setminus D) = L(E) \setminus L(D)$$

Следовательно, когда будем брать объединение попарно непересекающихся множеств, то сможем его выносить наружу и далее воспользоваться σ -аддитивностью λ и обратно расставить $L \Rightarrow \mu_1$ тоже будет σ -аддитивной мерой. Заметим, ряд моментов:

1) Верна эквивалентность:

$$\mu_1(E) = 0 \Leftrightarrow \mu_2(E) = 0$$

 $\mu_2(E) = 0 \Leftrightarrow E$ - множество меры нуль, тогда L(E) - множество меры нуль, поскольку L липшицева, тогда $\mu_1(E) = 0$ и наобоорот, L(E) - множество меры нуль, тогда $L^{-1}(L(E)) = E$ тоже будет множеством меры нуль, поскольку L - липшицева $\Rightarrow L^{-1}$ - липшицева $\Rightarrow \lambda(E) = 0 \Rightarrow \mu_2(E) = 0$;

- 2) Если E это брус, то $\mu_1(E) = \mu_2(E)$, поскольку L(E) и E это допустимые множества, а для меры Жордана это уже доказано (см. лекцию 6);
- 3) Всякое открытое множество $\mathcal{U} = \sqcup_j \mathrm{I}_j \sqcup A$, где I_j это открытые, попарно не пересекающиеся бруски, а A это множество меры нуль (см. лекцию 5 и 6), где границы брусков мы убрали в множество меры нуль, тогда:

$$\mu_1(\mathcal{U}) = \sum_j \mu_1(I_j) + \mu_1(A) = \sum_j \mu_1(I_j) = \sum_j \mu_2(I_j) = \sum_j \mu_2(I_j) + \mu_2(A) = \mu_2(\mathcal{U})$$

Поскольку $\mu_1 = \mu_2$ на всех открытых множествах, то $\mu_1 = \mu_2$ на всех борелевских множествах в I (см. следствие 1, лекция 10);

Пусть E это измеримое по Лебегу $\Rightarrow E = B \sqcup D$, где B - борелевское, D - множество меры нуль. Тогда:

$$\mu_1(E) = \mu_1(B) + \mu_1(D) = \mu_1(B) = \mu_2(B) = \mu_2(B) + \mu_2(D) = \mu_2(E)$$

<u>Схема доказательства</u>: Есть брусок I, на нём: σ -алгебра измеримых в I \supset борелевская σ -алгебра \supset открытые множества:

$$\mathcal{A}_{\lambda}(I) \supset \mathcal{B}(I) \supset \{\text{открытыe}\}$$

Взяли измеримое, собрали как: $E = B \cup D$, где B это борелевское множество, а D это множество меры нуль и открытые множества собрали, как $\mathcal{U} = \sqcup_i \mathrm{I}_i \sqcup A$, где I_i это открытые бруски, а A это множество меры нуль. Далее, по теореме мы перешли от \mathcal{U} к B (о том, что если совпали на открытых, то и на борелевских). На I_j совпадает, так как это верно для меры Жордана \Rightarrow совпадают на открытых \Rightarrow совпадают на борелевских \Rightarrow совпадают на измеримых по Лебегу.

Rm: 5. Это же доказательство можно проделать впрямую для меры Лебега, не опираясь на меру Жордана и на интеграл Римана, но тогда обычно рассматривают две ситуации: сначала смотрят, когда мы вытягиваем по той или иной координате, и отдельно ситуации, когда сдвигаем и поворачиваем (делаем ортогональное преобразование), но вместо брусков используются шары и для них легко проверить, что ортогональные преобразования сохраняют их меру Лебега.

Следствие 2. Мера Лебега не зависит от выбора прямоугольной системы координат в \mathbb{R}^n .

Пусть в \mathbb{R}^n у нас изначально была система координат (x_1, \ldots, x_n) , связанная с базисом (e_1, \ldots, e_n) с репером в точке O. Введем другую систему координат (y_1, \ldots, y_n) с репером в точке O_1 и базисом (η_1, \ldots, η_n) так, чтобы: $\langle \eta_i, \eta_j \rangle = \delta_{ij}$.

Puc. 6: Смена системы координат в \mathbb{R}^n .

Можно с новой системой координат провести все наши построения и получить меру λ_y против первоначальной меры λ_x . Эти меры совпадают из-за того, что переход от одной системы координат к другой осуществляется преобразованием: y = Cx + b, где C - ортогональная матрица. Тогда:

$$C^* \cdot C = C \cdot C^* = E \Rightarrow |\det C| = 1 \Rightarrow \lambda_y = 1 \cdot \lambda_x = \lambda_x$$

Rm: 6. Пусть X это конечномерное евклидово пространство, $\dim(X) = n$. Пусть на X задано скалярное произведение \langle , \rangle . Выберем в нём ортонормированный базис: (e_1, \ldots, e_n) так, что $\langle e_i, e_j \rangle = \delta_{ij}$. Тогда:

$$\forall x \in X, \ x = x_1 e_1 + \ldots + x_n e_n \Rightarrow \mathcal{U} \colon X \to \mathbb{R}^n, \ \mathcal{U}(x) = (x_1, \ldots, x_n)$$

то есть отображение - запись каждой точки x в базисе (e_1, \ldots, e_n) . Кроме того, скалярное произведение будет сохранено:

$$\langle \mathcal{U}(x), \mathcal{U}(y) \rangle_{\mathbb{R}^n} = \langle x, y \rangle_X$$

На \mathbb{R}^n есть мера Лебега λ (только что построили), но тогда на X тоже возникает мера Лебега:

$$\lambda_X(E) = \lambda(\mathcal{U}(E))$$

Что здесь произвольно? Произвольным является выбор ортонормированного базиса, λ_X не зависит от выбора о.н. базиса e_i . Тем самым, на всяком конечномерном евклидовом пространстве у нас появляется мера Лебега: вводим произвольно о.н. базис, отождествляем это пространство с \mathbb{R}^n и оттуда забираем меру Лебега.

Получается мера Лебега это инвариантный объект, если мы совершаем ортогональные преобразования, но она будет зависеть от скалярного произведения: введём на X скалярное произведение по-другому, получим другую меру Лебега.

Rm: 7. Пусть мы в \mathbb{R}^n , где $\langle x,y\rangle = x_1y_1 + \ldots + x_ny_n$. Возьмем в \mathbb{R}^n какую-нибудь k-мерную аффинную плоскость: $\Pi_k \subset \mathbb{R}^n$. Выберем в этой плоскости ортонормированный базис: (η_1, \ldots, η_k) так, что:

$$\langle \eta_i, \eta_j \rangle_{\mathbb{R}^n} = \delta_{ij} \Rightarrow \forall p \in \Pi_k, \ p \mapsto (y_1, \dots, y_k), \ \exists \ b \colon p = b + \eta_1 y_1 + \dots + \eta_k y_k$$

Рис. 7: k-мерная аффинная плоскость Π_k .

Тогда Π_k отождествляется с $\mathbb{R}^k \Rightarrow$ на Π_k определена мера Лебега λ_{Π_k} , которая не зависит от выбора прямоугольной системы координат в Π_k , по тем же причинам, что и выше: пересчет координат будет выдаваться отображением с ортогональной матрицей, чей определитель будет равен 1. Следовательно в каждой k-мерной плоскости в \mathbb{R}^n у нас появилась своя мера Лебега: λ_{Π_k} .

Детальнее: в Π_k мы выбираем систему координат (η_1, \dots, η_k) и получаем координаты (y_1, \dots, y_k) , следовательно у нас есть взаимнооднозначное отображение $\mathcal{U}: \Pi_k \to \mathbb{R}^k$.

Рис. 8: Отождествление \mathbb{R}^k и Π_k .

Тогда всякое множество $E \subset \Pi_k$ переходит в множество $\mathcal{U}(E)$. В \mathbb{R}^k мы можем посчитать обычную меру Лебега у этого множества: $\lambda(\mathcal{U}(E))$ и эту меру Лебега припишем мере множества E:

$$\lambda(\mathcal{U}(E)) = \lambda_{\Pi_k}(E)$$

Если мы вводим другую систему координат: (z_1, \ldots, z_k) , то проделаем для неё всё тоже самое, получив отображение $\widetilde{\mathcal{U}}$, тогда:

$$\lambda(\widetilde{\mathcal{U}}(E)) = \lambda_{\Pi_k}(E) = \lambda(\mathcal{U}(E))$$

где равенства верны в силу того, что переход между системами координат задается так:

$$z = \mathcal{L}(y) = Cy + b, \, |\det C| = 1 \Rightarrow \widetilde{\mathcal{U}}(E) = \mathcal{L}(\mathcal{U}(E)) \Rightarrow \lambda(\widetilde{\mathcal{U}}(E)) = |\det C| \cdot \lambda(\mathcal{U}(E)) = \lambda(\mathcal{U}(E))$$

Теорема 2. $L(x) = Ax + b \colon \mathbb{R}^k \to \mathbb{R}^n$, где $n \ge k$ и $\operatorname{rk}(A) = k$. Тогда $L(\mathbb{R}^k) = \Pi_k$ - k-мерная аффинная плоскость в \mathbb{R}^n и верно, что для всякого измеримого ограниченного множества $E \subset \mathbb{R}^k$:

$$\lambda_{\Pi_k}(L(E)) = \sqrt{\det(A^T \cdot A)} \cdot \lambda(E)$$

Rm: 8. С помощью этой теоремы можно считать объемы в *k*-мерных плоскостях, где мы знаем как эти плоскости были заданы параметрически. На плоскостях ещё можно использовать меру Лебега без каких-либо специальных конструкций, чтобы перейти от плоскостей к кривым поверхностям потребуется вместо меры Лебега рассмотреть меру Хаусдорфа.

Если в \mathbb{R}^k мы взяли (y_1, \dots, y_k) , то смотря обратное отображение к \mathcal{U} , мы задаем плоскость Π_k так:

$$y_1\eta_1 + \ldots + y_k\eta_k + h = Ay + h$$

где A это матрица у которой $\det\left(A^T\cdot A\right)=1$. В теореме выше предлагается брать не ортонормированные вектора, а произвольные.

Rm: 9. Возьмем множества X,Y и какое угодно отображение $f\colon X\to Y,\,\sigma$ -алгебру $\mathcal A$ на X и меру μ на ней. Рассмотрим набор: $\{C\colon f^{-1}(C)\in\mathcal A\}$ это σ -алгебра:

$$\emptyset = f^{-1}(\emptyset), Y = f^{-1}(X), f^{-1}(\cap_i C_i) = \cap_i f^{-1}(C_i)$$

На этой σ -алгебре возникает мера: $\mu \circ f^{-1}(C) = \mu(f^{-1}(C))$ и так мы перенесем меру из X с помощью отображения f на Y. Заметим, что никаких требований к f здесь нет, но σ -алгебра на Y может оказаться очень бедной.