Design systému

Komponentová versus procesní architektura

Design systému

Postup architektonického designu

Principy:

- definovat kriteria a jejich priority!
- propojit kriteria s technickým prostředím!

Specifikace

architektury

brzy přehodnotit!

Činnost	Obsah	Pojem
Kriteria	Podmínky a kriteria designu	Kriteria
Komponenty	Jak je systém strukturován	Komponentová architektura
Procesy	Distribuce a koordinace procesů	Procesní architektura

Kriteria designu

Kriterium = žádaná vlastnost architektury

	00000	1000
Kriterium	Je měřítkem	
Použitelnost	přizpůsobitelnosti systému organizačnímu, provoznímu a technickému kontextu	
Bezpečnost	imunity vůči neautorizovanému přístupu k datům a zařízením	
Efektivnost	schopnosti ekonomicky využít technicou platformu	_
Správnost	naplnění uživatelských požadavků	F
Spolehlivost	naplnění požadované přesnosti výkonu funkcí	•
Udržovatelnost	nákladů na lokalizaci a opravu chyby	9
Testovatelnost	nákladů na ujištění, že instalovaný systém správně provádí své určené funkce	
Pružnost	nákladů na modifikaci instalovaného systému	
Srozumitelnost	úsilí potřebného k příslušnému porozumění systému	
Znovupoužitelnost	možnosti použít části systému v jiných systémech	
Přenositelnost	nákladů na přenos systému na jinou technickou platformu	
Interoperabilita	nákladů na propojení systému s jinými systémy	

Principy:

- dobrý design nemá kritické slabiny!
- dobrý design vyvažuje více kriterií!
- dobrý design je
 - použitelný,
 - pružný,
 - srozumitelný!

Postup:

- zvážení obecných kriterií
- analýza specifických podmínek:
- technických (stávající HW/SW, použití vzorů a komponent, nákup komponent...)
 - organizačních (kontrakty, plán vývoje IS, WBS a obsazení rolí...)
 - personálních (kompetence, zkušenosti věcné a technické...)
- stanovení priorit

Komponenty

Komponenta = souhrn programových částí, tvořících celek s definovanými odpovědnostmi

Principy:

redukce složitosti rozdělením komponent podle oblastí zájmu (architektonické vzory)

uvažování stabilních kontextových struktur (stabilní aspekty reality a podmínek práce systému) použití stávajících komponent

Principy:

- zaměření na architekturu bez úzkých míst
- distribuce komponent na procesory
- koordinace sdílení zdrojů s aktivními objekty

Class \$pecifik<mark>a</mark>ce Diagram Distribuce proq. komponent komponent Identifikace sdílených zdrojů Zkoumání distribučních vzorů Architektura: Výběr centralizovaná koordinačních distribuovaná mechanismů decentralizovaná Deployment

Procesní architektura = struktura nezávislých procesů popisující běh systému

Procesor = zařízení schopné provádět program

Programová komponenta = fyzický modul programového kódu

Aktivní objekt = objekt, přiřazený procesu

Zkoumání koordinačních vzorů

Koordinace:

- určeným monitorem
- centrálním dispečerem

Diagram

- kritickými hodnotami stavů
- asynchronní výměnou dat (buffering)

