Writeup: Análisis de archivo.exe

Introducción

Este writeup documenta el análisis de simpleServer.exe, un ejecutable sospechoso analizado mediante ingeniería inversa. El objetivo era extraer información clave como:

- 1-Dominio malicioso
- 2-Credenciales incrustadas (usuario y contraseña)
- 3-Método de cifrado utilizado

Para ello, se emplearon diversas herramientas de análisis estático y dinámico, destacando Radare2 y Python para la extracción y descifrado de datos.

Herramientas Utilizadas

Herramienta y comandos	Función
Radare2 (r2)	Ingeniería inversa del ejecutable, extracción de cadenas, desensamblado y análisis de funciones.
Strings (strings)	Extracción de texto legible del ejecutable para identificar información clave.
Python	Creación de un script para descifrar cadenas cifradas con XOR.
Grep (grep)	Filtrado de cadenas relevantes como dominios, contraseñas y comandos sospechosos.

1. Extracción de Cadenas de Texto

¿Por qué extraer cadenas?

Las cadenas de texto en un ejecutable pueden revelar información sensible, como:

Comandos internos (net user, cmd /c)

Dominios maliciosos

Credenciales embebidas

Mensajes de error que indican funcionalidad

Comando Utilizado

strings simpleServer.exe > extracted_strings.txt

```
(root@ kali)-[/home/kali/Downloads]
# cat extracted_strings.txt
!This program cannot be run in DOS mode.
Rich
```

Esto genera un archivo extracted_strings.txt con todas las cadenas legibles.

Filtrar información clave con grep

Comando Utilizado

grep -Ei 'user|pass|auth|domain|info.txt' extracted_strings.txt

```
(root@ kali)-[/home/kali/Downloads]
# grep -Ei 'user|pass|auth|domain|info.txt' extracted_strings.txt
net user > C:\Users\User\info.txt
```

2. Análisis del Código en Radare2

r2 -AA archivo.exe

```
(kali@kali)-[~/Downloads]

$ r2 -AA archivo.exe

INFO: Analyze all flags starting with sym. and entry0 (aa)
```

Esto muestra todas las cadenas encontradas en el binario, confirmando la presencia de

Resultado relevante:

```
26
    0×000023b0 0×1400035b0 15
                                 16
                                      .rdata
                                              ascii Executing info\n
   0×000023c0 0×1400035c0 33
                                 34
                                      ·rdata
                                              ascii net user > C:\Users\User\info.txt
                                              ascii not_a_real_flag_just_trolling
   0×000023e8 0×1400035e8 29
                                30
                                      .rdata
    0×00002408 0×140003608 14
                                 15
                                      .rdata
                                              ascii g`ww|g`dwv+ljf
    0×00002418 0×140003618 22
                                              ascii umlvm`wEg`ww|g`dwv+ljf
                                23
                                      .rdata
    0×00002430 0×140003630 15
                                              ascii 4hQm6I66qME}5w$
                                16
                                      .rdata
    0 \times 00002440 \ 0 \times 140003640 \ 9
                                              ascii N/A Error
```

Esto sugiere que el binario obtiene información de usuarios y contiene posibles cadenas cifradas.

3. Análisis de la Función de Descifrado

Se inspecciona la función identificada con:

pdf @ 0x140001640

Hallazgos Clave en la Función

- Llama a strlen() para calcular la longitud de la cadena.
- Recorre la cadena carácter por carácter.
- Aplica una operación XOR con la constante 0x05:

```
0×1400016ae 0fbe00 movsx eax, byte [rax]
0×1400016b1 83f005 xor eax, 5
0×1400016b4 488b4c2420 mov rcx, qword [var_20h]
```

Esto confirma que las cadenas están cifradas con XOR y la clave 0x05.

4. Descifrado de las Cadenas en Python

Con la clave XOR identificada, se creó un script en Python para recuperar los valores en texto plano.

Código Python para Descifrar

```
| File | Edit | Selection | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ..
```

Resultados Obtenidos

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS SQL HISTORY TASK MC

PS C:\Users\byron> & C:\Users\byron/AppData/Local/Programs/Python/Python
Cifrado: g`ww|g`dwv+ljf -> Descifrado: berrybears.ioc
Cifrado: umlvm`wEg`ww|g`dwv+ljf -> Descifrado: phisher@berrybears.ioc
Cifrado: 4hQm6I66qME}5w$ -> Descifrado: 1mTh3L33tH@x0r!
```

5. Conclusión Final

Pregunta	Respuesta
¿Cuál es el dominio malicioso?	berrybears.ioc
¿Cuál es el usuario presente?	phisher@berrybears.ioc
¿Cuál es la contraseña?	1mTh3L33tH@x0r!

Resumen del Método Utilizado

- 1. Extracción de cadenas (strings) → Identificación de texto cifrado.
- 2. **Análisis en Radare2** → Ubicación de la función que descifra las cadenas.
- 3. **Desensamblado de código (pdf @ dirección)** → Identificación del uso de XOR con 0x05.

4. **Descifrado en Python** → Recuperación de los valores en texto claro.

¿Qué significa este hallazgo?

- El malware se comunica con berrybears.ioc, indicando un servidor de comando y control (C2).
- Las credenciales embebidas (phisher@berrybears.ioc) pueden ser usadas para autenticación.
- La contraseña 1mTh3L33tH@x0r! probablemente se usa para acceder al servidor o cifrar datos antes de enviarlos.

Conclusión Final

El análisis de archivo.exe demostró el uso de **XOR** para cifrado de datos y la existencia de un servidor remoto que recibe información potencialmente robada. Gracias a herramientas como **Radare2**, **Strings**, **Grep y Python**, se logró descifrar el contenido del malware y obtener respuestas clave. Este enfoque puede aplicarse a otros binarios maliciosos para extraer credenciales, identificar servidores de ataque y comprender mejor la funcionalidad del malware.