

Base de données texte

Survol du cours

- Types de manipulation de textes
- Introduction à la recherche d'information textuelle
- Manipulation de base des types de données texte en SQL
- Méthodes statistiques de manipulation de textes
- Exemple d'implémentation : Oracle Text

Techniques de manipulation du texte

- Repérage de l'information (TR : Text Retrieval)
- Extraction de l'information (SDE : Schema-Directed Extraction predefined schema structure)
- Autres manipulations de textes (QDE : Query-Directed Extraction - Ontologies)

- Recherche textuelle = filtrage + tri des documents selon leur pertinence
 - parfois séquentiels
 - parfois réalisés simultanément
- Types de filtrage
 - Correspondance exacte aux mots et phrases
 - Recherches inexactes
 - Recherche en proximité
 - Recherche intelligentes, ex: par thèmes, poids

- Tri : approximation de la précision par une fonction mathématique tenant compte de divers facteurs
 - nombre d'occurrences des mots de la requête dans le doc retrouvé,
 - précision des mots de la requête (plus un mot est fréquent dans la langue, moins il est précis),
 - proximité des mots de la requête dans le document
 - position des occurrences des mots de la requête dans le document
 - ...
 - on privilégie les documents
 - employant fréquemment les mots de la requête,
 - en assignant un poids plus élevé au termes rares dans la langue,
 - en favorisant les documents employant les termes de la requête à proximité les uns des autres,
 - et en favorisant les documents employant les termes de la requête tôt dans le document

- Requêtes et documents
 - document = { termes }
 - $ightharpoonup tf_{ik}$: fréquence du $l^{\text{ème}}$ terme dans le document k
 - idf_i: fréquence documentaire inverse du l'ème terme
 - $\rightarrow w_{ik}$: poids du $i^{\text{ème}}$ terme dans le document k

Pondération des termes par document

Ex.: http://fr.wikipedia.org/wiki/TF-IDF

$$tf_{i,ki} = \frac{tf_{i,k}}{\max_{k} tf_{i,k}}$$

$$idf_i = \log \frac{N}{n_i}$$

$$W_{i,k} = tf_{i,k} \times idf_i$$

N: nombre total de documents dans le corpus ni: nombre de documents qui contient le terme ti

Appariement requête-documents

$$sim(q, d_k) = \frac{\sum_{i=1}^{n} w_{i,k} \times w_{i,q}}{\sqrt{\sum_{i=1}^{n} w_{i,k}^2} \times \sqrt{\sum_{i=1}^{n} w_{i,q}^2}}$$

triés par sim(Q,D)

- Variations d'utilisation
 - recherche ad hoc : (repérage)
 - les besoins de l'utilisateur changent constamment,
 - la BD textuelle évolue peu
 - Exemple : moteurs de recherche du Web
 - recherche récurrente : (filtrage)
 - les besoins de l'utilisateur changent peu,
 - la BD évolue constamment
 - Exemple : application recherchant sur le Web les documents nouveaux sur un thème fixe
 - Possibilité de construire un profil utilisateur

- Variations d'utilisation : l'outil de recherche peut être de trois niveau de complexité:
 - monolingue :
 - les documents sont dans une seule langue
 - la requête est exprimée dans cette langue
 - multilingue :
 - les documents sont dans diverses langues
 - on ne cherche que les documents exprimés dans la langue de l'utilisateur
 - translingue :
 - les documents sont dans diverses langues
 - on cherche tous les documents satisfaisant le besoin en information de l'utilisateur, peu importe la langue de la requête

Extraction de l'information (SDE)

- Manipule de larges collections de textes, e.g. emails
- Documents traités un par un
- Extrait des informations spécifiées par un schéma prédéfini
- Ignore les autres informations des documents
- Focalise sur le contenu qui répond aux critères
- L'objectif est de remplir le schéma plutôt que de répondre à une requête
- Représente des objets, des propriétés et des relations de l'ontologie du domaine

Désavantages de cette approche

- Ne traite pas le corps du document choisi des mots reconnus facilement et les insèrent dans le schéma
- On doit utiliser des méthodes additionnelles pour identifier des mots complexes et des phrases dans le contenu du texte
- Le schéma résultant est utilisé comme métadonnées pour des requêtes

Autres manipulations de textes (QDE)

- Résumé automatique de texte
- Catégorisation automatique de textes selon une série de catégories prédéfinies (classification):
 - notamment le routage automatique de documents : catégorisation automatique des courriels reçus
- Regroupement de textes similaires, sans catégories prédéfinies (regroupement - clustering)
- Dans ce qui suit, on ne traitera que du repérage de l'information ad hoc unilingue

Plan du cours

- Types de manipulation de textes
- Introduction à la recherche d'information textuelle
- Manipulation de base des types de données texte en SQL
- Méthodes statistiques de manipulation de textes
- Exemple d'implémentation : Oracle Text

Qualité d'une extraction de texte

L'outil d'extraction doit permettre l'équilibre entre rappel et précision

- Deux mesures : rappel et précision
- Évaluent la qualité de l'engin à trouver tous et seulement les documents pertinents
- rappel = | Extraits ∩ Pertinents | / | Pertinents |
 - Mesure la couverture des documents repérés par l'engin p/r aux documents pertinents
 - Ex: repère 8 doc.p / 10 pertinents : rappel = 80%
- précision = |Extraits ∩ Pertinents| / |Extraits|
 - Mesure la pertinence des documents repérés par l'engin p/r au total des documents repérés
 - Ex: repère 8 doc.p / 40 repérés : précision = 20%
- Précisions extrapolées aux rappels 0%, 10%,...,100%
- Idéal : rappel = 100% et précision = 100%

Principes de la recherche d'information textuelle

- En recherche basée sur le <u>contenu</u>, on cherche les documents traitant de <u>concepts</u> donnés, éventuellement dans une <u>relation</u> <u>particulière</u>:
- Par exemple, je cherche:
 - Des documents traitant des bases de données;
 - Des documents sur les aspects novateurs des BDR (Base de données relationnelle);
 - Des documents comparant les mérites respectifs des BDRO (Base de données relationnelle-objet) et des BDOO (Base de données orientée-objet).

Principes de la recherche d'information textuelle

- On suppose que le critère de recherche est exclusivement thématique:
 - pas de recherche sur le type de document (scientifique/technique/de vulgarisation, son style, son niveau de langage ...
- On considère aussi que les mots individuels correspondent à des concepts.

1) Problème de <u>délimitation</u> des mots:

- Nombreuses langues asiatiques n'ont pas de délimiteur de mots;
- Nécessite la segmentation préalable du texte avant indexation et recherche

Ex: Trokenbeerenauslese = Troken beeren auslese

- 2) Problème de <u>correspondance</u> entre mots individuels et concepts:
 - une notion d'expression est nécessaire à l'identification d'un concept : "bases de données"
 - Recherche sur les mots individuels alors que l'on cherche le concept : précision trop faible
 - certaines langues germaniques construisent des expressions sous la forme d'un seul mot: allemand Weltkrieg = guerre mondiale (Welt = monde, Krieg = guerre)
 - Recherche sur Krieg: rappel trop faible, car on ignorera les occurrences de Weltkrieg!

On doit traiter les variations dans le texte

- 3) Variations <u>morphologiques</u>: généralement, le pluriel et le singulier sont équivalents *base* = bases;
- 4) Variations <u>morphosyntaxiques</u> des expressions : configuration de la base de données = configuration de bases de données

5) Variations <u>sémantiques</u>:

- Homonymie: plusieurs sens sans liens entre eux: fraise (fruit) et fraise (outil);
- Polysémie: plusieurs sens reliés mais distincts: banque (institution financière) et banque (de données), journal (publication) et journal (intime);
- certaines de ces ambiguïtés sont levées de façon implicite:
 - requête *recettes avec des fraises* : il est peu probable que l'on retrouve des documents utilisant le sens fraise outil.
- Synonymie: plusieurs mots de sens quasiidentique: melon d'eau = pastèque, travail = job, épais = idiot.

Plan du cours

- Types de manipulation de textes
- Introduction à la recherche d'information textuelle
- Manipulation de base des types de données texte en SQL
- Méthodes statistiques de manipulation de textes
- Exemple d'implémentation : Oracle Text

Avec SQL2 ou SQL3

- Le SQL2 (le SQL le plus répandu) n'offre que des fonctions limitées de requêtes pour des chaînes de caractères (like, present)
- Le SQL3 (la nouvelle norme du SQL) offre des fonction étendues pour les textes. OracleText est basé sur le SQL3

Rappel des requêtes texte en SQL2

- Région = 'France' *\(\infty \) correspondance exacte* p. 325
- Région IN ('France', 'Spain')
- Correspondance Inexacte
 - Where SOUNDEX (var1)=SOUNDEX('Errazuriz') p. 327
 - Where var LIKE 'Erraz%' p. 327 Where var LIKE 'Erraz_'
- LIKE 'P_b%medium_bodied%' p. 327
- LIKE '%medium Bodied%' p. 328
- INSTR(wine_name, 'au') p. 328

Stockage d'un texte

- Si un document est semi structuré, il y a possibilité de stocker chaque champ séparément, par exemple:
 - Des courriels: suivant la structure (Expéditeur, Récipiendaires, Date, Sujet, Contenu du message)
 - Un Curriculum Vitae (CV): 4 champs d'entête et le reste du texte dans un champ texte CV.

Donc certains champs sont traités d'une manière classiques, d'autres sont textuels

Exemple: Stockage d'un CV

Table employés, avec CV en mode texte

```
CREATE TABLE employes (

id_employe INTEGER,

nom_employe VARCHAR(20),

prenom_employe VARCHAR(20),

date_naissance DATE,

cv VARCHAR(2000)
)
```


Stockage du texte d'un CV

Contenu de la table employés:

ID_EMPLOYE	NOM_EMPLOYE	PRENOM_EMPLOYE	DATE_NAISS	CV
1 Spécialiste en	April bases de données	Alain	1966-12-11	
2 Données de bas	Garant	Paul	1986-01-20	

- Recherches booléennes
 - Recherche des employés dont le CV contient les mots 'bases' et 'données'
 - en tenant compte de la casse (casse = maj. et min.)

- Recherches booléennes
 - Recherche des employés dont le CV contient les mots 'bases' et 'données'
 - sans tenir compte de la casse

```
SELECT id_employe

FROM employes

WHERE lower(cv) LIKE '%bases%'

AND lower(cv) LIKE '%données%'

/

ID_EMPLOYE
-----
```

lower() retourne la chaîne de caractères en minuscules

upper() retourne la chaîne de caractères en majuscules

- Recherches booléennes
 - Recherche des employés dont le CV contient les mots 'bases' et 'données'
 - sans tenir compte de la casse, mais en tenant compte de l'ordre (bases avant données)

```
SELECT id_employe

FROM employes

WHERE lower(cv) LIKE '%bases%données'

/

ID_EMPLOYE
-----

1
```


- Limitations fonctionnelles
 - Pas de recherche basée sur la proximité:
 - bases et données dans une fenêtre de 10 mots.
 - Pas d'ordonnancement des résultats:
 - à moins de créer une fonction utilisateur SCORE qui retournerait un 'score' = implantation complexe.
 - Pas de recherche sur des fichiers externes, ni sur des fichiers textes en format binaire (.DOC, .PPT, .PDF) et définis comme BFILE ou BLOB.

- Limitations techniques : performance très mauvaise sur de grands textes:
 - si on représente CV par un CLOB ou un VARCHAR(4000), on peut indexer cv, mais index utilisable uniquement dans quelques cas
 - cv = 'blablabla'
 - cv IN ('blablabla','toto','titi')
 - cv LIKE 'blablabla%' (% final uniquement)
 - Index inutilisables sur *fonction*(cv), sur LIKE avec
 % ou _ en position autre que finale ...

Plan du cours

- Types de manipulation de textes
- Introduction à la recherche d'information textuelle
- Manipulation de base des types de données texte en SQL
- Implémentation d'un moteur de recherche
- Exemple d'implémentation : Oracle Text

Principe de l'implémentation d'un moteur de recherche

A- Création de la collection de textes

- Traitement préliminaire des textes à indexer : optionnel
- Indexation des textes traités : obligatoire

B- Traitement des requêtes de l'utilisateur

- Reformulation de la requête de l'utilisateur
 : optionnel
- Exécution de la requête : obligatoire

Étapes typiques de préparation du texte

A- Traitement préliminaire des textes

- 1) Suppression de la casse et/ou de l'accentuation:
 - peut augmenter l'ambiguïté : (la) marche/ (le) marché;
- 2) Correction orthographique automatisée;
- 3) Assimilation de diverses variantes orthographiques:
 - en anglais : centre et center;
 - abréviations/acronymes : ONU remplacé par Organisation des Nations Unies.
- 4) Segmentation du texte en mots (langues asiatiques);
- 5) Segmentation des mots composés en mots (langues germaniques);

A- Traitement préliminaire des textes

- 6) Lemmatisation : on élimine les variations morphologiques
 - marche, marchai, marchais...
 - journa<u>l</u>, journa<u>ux</u>
- 7) Elimination des mots vides :
 - mots très fréquents de la langue : de, le, la ...;
 - diminue la taille de l'index;
 - mais empêche l'exécution de requêtes basées sur des expressions ("base de données").
- 8) Scission du texte en différents passages :
 - de taille arbitraire;
 - ayant une thématique spécifique : utile pour des documents traitant de divers thème;
 - chaque passage sera traité comme un document.

A- Indexation des textes

- Indexation plein texte au moyen du fichier inversé
- 2) Index = liste des mots apparaissant dans la collection de documents
- 3) À chaque mot est associé la liste des documents où il apparaît
- 4) Optionnellement complétée par d'autres infos
 - positions exactes du mot dans le document
 - nombre d'occurrences du mot dans le document
 - Etc.

A- Indexation des textes — liste inversée (de Robert Godin)

Q = 'Informatique' AND 'Influx'

A- Indexation des textes : exemple

Documents:

- d1 : Il est entré dans le marché des actions.
- d2 : Entre autres actions, il a marché pour le Tibet.
- Index : avec liste de positions
 - a d2(5)
 - actions d1(8), d2(3)
 - autres d2(2)
 - dans d1(4)
 - des d1(7)
 - entre d2(1)
 - entré d1(3)
 - ...

B- Reformulation automatique de la requête de l'utilisateur

- Ajout de termes à la requête de l'utilisateur :
 - ajout de variantes orthographiques;
 - ajout des variantes morphologiques d'un mot (si index direct sur les mots, sans lemmatisation);
 - ajout de synonymes;
 - **...**
- Remplacement de termes de la requête de l'utilisateur, si transformation préliminaire des documents:
 - les variantes morphologiques sont remplacées par la forme canonique retenue;

- 2 approches principales : booléenne, vectorielle
- Approche booléenne pure
 - requêtes exprimées sous forme de formules booléennes
 - Ex: recherche de documents sur les 'bases de données' autres que 'hiérarchiques' et 'réseaux'
 - Q = 'bases' AND 'données' AND NOT ('hiérarchiques' OR 'réseaux')
- Approche vectorielle pure
 - requêtes exprimées sous forme de liste de mots (vecteur)
 - Ex: recherche de documents sur les 'bases de données relationnelles'
 - Q = { 'bases', 'données', 'relationnelles' }

- Exécution des requêtes booléennes
 - À chaque mot on associe la liste de documents associés
 - OU est implémenté comme union de listes
 - ET est implémenté comme intersection de listes
 - NON est implémenté comme différence de listes
 - Si les positions des mots sont enregistrées dans l'index, on peut implémenter un NEAR (proximité)
 - mot1 NEAR mot2 si mot1 et mot2 sont distants de moins de 10 mots (par exemple)
- Très performant, mais
 - implémente un repérage sans tri (similarité)
 - souffre du problème du 'tout ou rien' École de technologie supérieure Département de génie logiciel et des TI

- Exécution des requêtes vectorielles
 - chaque document est considéré comme un vecteur dans un espace à N dimensions, où N est le nombre de mots de l'index (corpus - N est très grand)
 - Exemple à partir de l'index précédent (limité aux 7 premières dimensions)

```
d1 : Il est entré
             d2(5)
a
                                     dans le marché des
             d1(8), d2(3), d3(2)
actions
             d2(2), d3(1)
autres
                                     actions.
             d1(4)
dans
                                     d2: Entre autres
des
             d1(7)
                                     actions, il a marché
             d2(1)
entre
                                     pour le Tibet.
entré
             d1(3)
```

d1 = {0,1,0,1,1,0,1} et d2 = {1,1,1,0,0,1,0}d3 : Autres actions associées.

- Exécution des requêtes vectorielles
 - la requête est également considérée comme un vecteur dans cet espace à N dimensions
 - Exemple avec une représentation binaire
 d3 = 'Autres actions' associées.'
 - Plusieurs autres représentations possibles
 - fréquences (tf)
 - fréquences normalisées (tf / max(tf))
 - poids (*tf* × *idf*)
 - entropie (notion d'incertitude)
 - etc.

- Exécution des requêtes vectorielles
 - la pertinence de chaque document est déterminée par une mesure de similarité entre le vecteur requête et chaque vecteur document
 - exemple : le cosinus de l'angle entre les deux vecteurs

$$sim(q, d_i) = \frac{\sum_{k=1}^{N} d_{ik} q_k}{\sqrt{\sum_{k=1}^{N} d_{ik}^2} \times \sqrt{\sum_{k=1}^{N} q_k^2}}$$
 p. 338

- sim(q,d1) = 0.25
- sim(q,d2) = 0.50
- les résultats sont retournés par ordre décroissant de similarité : d2, d1

• Exécution des requêtes vectorielles

- en général, on utilise un poids compris entre 0 et 1, prenant en compte divers facteurs (e.g. $w = tf \times idf$)
- tous les documents comportant au moins un terme de la requête sont retournés
- le modèle vectoriel assure un repérage
 - basé sur la formule mot1 OR mot2 OR ... OR motn
 - impossibilité de spécifier des termes obligatoires
 - impossibilité de spécifier des termes interdits
- le modèle vectoriel assure un tri (similarité)
- permet des requêtes par similarité avec un document (QBE); le document constitue la requête

- Autres modèles et variantes
 - Booléen étendu: utilise *p-norm* pour similarité
 - Vectoriel étendu: termes obligatoires/optionnels (+/-)
 - Vectoriel généralisé: utilise la corrélation entre termes
 - Modèles probabilistes: utilise le théorème de Bayes
 - Ensembles fréquents, ensembles approximatifs
 - Index sémantique latent: utilise factorisation <u>SVD</u>
 Singular Value Decomposition
 - Algorithmes génétiques: pour cooccurrences de termes
 - Réseaux de neurones artificiels
 - MLP (« Multi Layer Perceptron »): induire des règles
 - SOM (« Self-Organized Map »): catégoriser documents, termes
 - Universit A Auto-Associatif »): catégoriser documents par patron École de technologie supérieure

Après l'exécution de requêtes...

- Afficher les résultats
 - Un ensemble de documents, triés selon la pertinence
 - Présentation des résultats et hyperliens
 - Visualiser les relations spatiales
 - L'ensemble résultant peut être présenté comme un ensemble de concepts ou de patrons, organisé en un espace multidimensionnel; ex: <u>KartOO</u> (moteur de recherche cartographique)
- Contrôle de la pertinence
 - L'utilisateur examine et choisi les premiers M résultats
 - Une nouvelle requête est émise basée sur la requête originale et cette information additionnelle

Plan du cours

- Types de manipulation de textes
- Introduction à la recherche d'information textuelle
- Manipulation de base des types de données texte en SQL
- Méthodes statistiques de manipulation de textes
- Exemple d'implémentation : Oracle Text

Oracle Text

- On a vu qu'utiliser SQL2 n'est pas recommandé pour des textes complexes!
- Oracle Text (avec SQL+, PL/SQL et JDeveloper)
- L'administrateur doit vous donner accès:
 - CTXAPP rôle
 - CTX PL/SQL packages
- Il y a un 'wizard' de création d'applications pour aller plus rapidement!

Oracle Text: 3 types d'applications

- Repérage d'information et requêtes plein texte :
 - approprié pour les textes non structurés de format usuel (.txt, .html, .xml, .doc, .pdf, ...);
 - index de type CONTEXT : <u>le seul décrit dans le cours!</u>
- Repérage d'information sur données semistructurées :
 - approprié pour les textes stockés en plusieurs champs, certains de type classique (INTEGER, DATE ...), d'autres de type texte (VARCHAR2, CLOB, BLOB, BFILE) en format usuel;
 - index de type CTXCAT.
- Catégorisation, routage, filtrage de documents
 - sur textes de format .txt, .html et .xml seulement;
 - index de type CTXRULE.

Oracle Text: stockage des

- Principales méthodes de stockage des textes dans une table pour indexation de type CONTEXT:
 - texte stocké dans une table (champ CLOB, BLOB, VARCHAR(2), CHAR, BFILE)
 - texte stocké sur le serveur, en dehors de la BD: chemin et nom du fichier stockés dans un champ de type caractère/texte
 - texte accessible sur le Web : URI stocké dans un champ de type caractère/texte
- Possibilité d'ajouter des colonnes pour méta données : identifiant, format, date, description, auteur ...

Oracle Text: chargement des textes

- Directement dans SQL+ si vous entrez le texte directement au clavier!
- Ou par SQL*Loader (à partir de fichiers sur disque)
- par la procédure PL/SQL
 DBMS_LOB.LOADFROMFILE() pour des LOB

Étapes typiques pour la recherche dans un ou plusieurs texte(s)

Étapes 1, 2 et 3

Création de table

- Insertion des données dans la table
- Création de l'index

```
CREATE INDEX indexdocs ON mesdocuments (texte)
INDEXTYPE IS CTXSYS.CONTEXT
```


Oracle Text: indexation par CONTEXT

- NB: l'index est statique
 - N'évolue pas automatiquement lorsque l'on modifie la colonne texte
 - Il faut réindexer la table lorsque l'on modifie des textes
 - Synchronisation en utilisant 2 Mo de mémoire par :

```
begin
  ctx_ddl.sync_index('indexdocs','2M');
end;
```


Oracle Text: indexation par CONTEXT

- Nombreux paramètres pour l'indexation
- Par défaut :
 - suppose que le texte est stocké dans une colonne texte
 - détecte automatiquement le type de texte
 - suppose que la langue est celle définie lors de la configuration du SGBD
 - utilise une liste prédéfinie de mots vides, non indexés, associée à la langue
 - stocké en convertissant en majuscules

Oracle Text: indexation par CONTEXT

- Quelques 'paramétrisations' possibles:
 - indexer des fichiers externes au SGBD
 - ne pas filtrer/convertir les documents (intéressant si format HTML et TXT)
 - utiliser une liste différente de mots vides
 - créer un index multilingue
 - indexer en tenant compte de la casse
- Possibilité de synchroniser l'index à intervalles réguliers
- Voir "Oracle Text Reference" pour plus de détails

Étape 4 : Requêtes sur CONTEXT

- Deux fonctions additionnelles:
 - CONTAINS(<colonne>, <requête>, <étiquette>)
 retourne un score entre 0 et 100
 - SCORE(<étiquette>) retourne un score calculé par CONTAINS
- Exemple 1 : requête sur un mot:

```
SELECT titre
```

FROM mesdocuments

WHERE CONTAINS (texte, 'informatique') > 0

Oracle Text: requêtes sur CONTEXT

- Calcul du score d'un mot pour un document donné:
 - tient compte du nombre total de documents dans la base
 - tient compte du nombre de documents contenant le mot
 - tient compte du nombre d'occurrences du mot dans le document
- Voir "Oracle Text Reference" pour plus de détails

Quelques fonctions sur les chaînes de caractères en SQL CONTAINS

SQL CONTAINS pour texte	Objectif
ABOUT	Recherche les textes sur un concept ex: 'about(dogs) not about(labradors)', <i>heat</i> might return documents related to temperature, even though the term <i>temperature</i> is not part of the query.
ACCUMulate	Donne une note aux documents qui possède plus d'une occurrence d'un 'terme' ex: dog ACCUM cat (2 termes 51:100%, 1 terme 1:50%)
EQUIValence (=)	Indique des mots équivalents dans une requête, ex: 'labradors=alsatians are big dogs'
Fuzzy	Augmente la portée en incluant des mots qui sont semblablement épelés, ex:'fuzzy(government, 70, 6, n)'

Quelques fonctions sur les chaînes de caractères en SQL CONTAINS

SQL CONTAINS pour texte	Objectifs
Soundex (!) (voir p. 326)	Augmente la portée de la requête et regarde les similitudes phonétiques, ex: WHERE CONTAINS (COMMENT, '!SMYTHE') > 0 ;
near	Trouve des mots qui sont proches les uns des autres dans le texte, ex: 'near((dog, cat), 6)'
wildcard (%)	Convertit en majuscules une chaîne de caractères
Threshold (>)	Ne retourne que les documents qui vont avoir une note > limite, ex: '(lion > 30) and tiger'

Oracle Text: requêtes sur CONTEXT

• Exemple 1 : requête sur une expression avec tri des résultats et affichage du score:

```
SELECT SCORE(1), titre
```

FROM mesdocuments

WHERE **CONTAINS** (texte, 'bases de données',1)>0

ORDER BY SCORE (1) DESC

Oracle Text : requêtes sur CONTEXT

 Exemple 3 : opérateurs booléens + ordre : near((liste de mots), taille fenêtre, ordre)

```
SELECT SCORE(1), titre
FROM mesdocuments
WHERE CONTAINS(texte,
'NEAR((bases de données),objet),5,TRUE)',1)>0
ORDER BY SCORE(1)
```

- bases de données doit précéder objet, dans une fenêtre de taille maximale 5
- score(near((a,b),10) = dépend de la fréquence et de la proximité des termes dans le NEAR

Oracle Text: requêtes sur CONTEXT

Autres catégories d'opérateurs

- Manipulation de textes structurés (typiquement : XML)
 - haspath, inpath
- Utilisation d'un thésaurus (Oracle ou propre à l'utilisateur)
 - broader term, narrower term, preferred term, related term, top term ...
- Utilisation d'un thésaurus multilingue
 - translation term ...
- Requête thématique (base de connaissances d'Oracle, extensible)
 - about
- Lemmatisation
 - \$travail = travail | travaux
- Recherche par phrase, paragraphe et autres sections
 - within

Oracle Text : Écrire le contenu d'un CLOB dans un fichier texte à l'ÉTS

• 4 Étapes typiques:

- 1) Créer un répertoire physique sur le serveur Oracle (142.137.17.104) utilisez SSH pour ça
- 2) Donner le droit d'écriture sur les répertoires de votre compte
- 3) Créer un répertoire oracle (create directory ...)
- 4) Exécuter du code de style: (p. 324)

```
LOOP
   Dbms_Lob.Read (v_clob, v_amount, v_pos, v_buffer);
   UTL_FILE.PUT(v_file, v_buffer);
   v_pos := v_pos + v_amount;
END LOOP;
```

Étape 1: ssh

Cliquer sur quick connect. Adresse Ip 142.137.17.104

Compte étudiant de la forme AG99999 (9 représente un chiffre entre 0 et 9)

Étape 1: ssh (suite)

Entre le mot de passe (code de la

Créer nouveau répertoire Étape 1: ssh (fin)

Étape 2: droits d'accès

Pointer sur le répertoire, cliquer sur le bouton droit et choisir propriété

Nouveau avec 10g (Edwin

www.doag.org/pub/docs/sig/intermedia/ 2003-11/DOAG2003-TextNewFeatures_DE.ppt Baltnes

- Unicode 4.0
- Réécriture de requête (REWRITE)
- Nouvelle requête (near + accum)
- Relaxation Progressive de requêtes (REWRITE ordonnée)
- JDeveloper Text Wizard
- Pointage alternatifs

Nouveau Wizard dans

 $\begin{tabular}{ll} www.doag.org/pub/docs/sig/intermedia/2003-11/DDAG2003_TextNewFeatures_DE.ppt \\ \begin{tabular}{ll} Developer \\ \end{tabular}$

- Text Wizard
- Classification Wizard

Catalog Wizard

www.doag. Dean Ote Get 2014/102601 CINEW FEB 2014

www.doag. Profession Ottered 2004-1/10/2003 CINEW February DE CO

www.doag. Profession Ottered 2004-1/10/2003 CINEW February DE CO

www.doag. Policy of the control of t

www.doag. Dean Ote Get 2014/102601 CINEW FEB 2014

www.doag. Dean Ote Gold 2014/12601 GNew en xite

www.doag. Profession Ottered 2004-1/10/2003 CINEW February DE CO

www.doag.org/DémorndiyLooW/izabdxtNlexte.ppt

```
begin
ctx_ddl.drop_preference('lexer_pref');
end;

begin
ctx_ddl.create_preference('lexer_pref');
end;

drop index EMPLOYEES_idx on EMPLOYEES(LAST_NAME)
indextype is ctxsys.context parameters

('FILTER ctxsys.null_filter LEXER lexer_pref SECTION GROUP CTXSYS.HTML_SECTION_GROUP');
```

```
begin

ctx_ddl.sync_index('EMPLOYEES_idx', '2M');
end;

/
Line 1 Column 1 Insert

| Display | Column |
```


www.doag. Dear Otte Color 2004-1/10/2015 CINEW FEW STEELS

www.doag.depX/tcs/sig/intRed 613 de la 613 de

www.Taexttdocs/sig/Reg nerghexAvangée

www.doag@placenReceneceneceness.

- Out-of-the-Box search engine
 - Fait avec Oracle Text
- Pour vos intranet/extranet
 - Web, Databases, Files, Mail Servers, Repositories
- Développé avec interface Web et les API Java pour l'interface utilisateur

www.doag.org/pub/docs/sig/intermed a/ 2003-11/ VAG 2013_TXtNewFeatures_DE.ppt

[Advanced Search] [Help] [Submit URL]

Search For	enron	Submit
	enron	Submit

Jeff McMahon Resigns as Enron President, COO

JEFF McMAHON RESIGNS AS ENRON PRESIDENT, COO FOR IMMEDIATE RELEASE:

Friday, April 19, 2002 HOUSTON ¿ Enron Corp.

Score: 77 Author: Stefan Buchta < Stefan.Buchta@oracle.com > Last modified: 2002-05-16

02:04:45.0 Page size: 2280 From: Email Server

Enron Stock - Buy One Now As A Collectible

Enron Corp is quite possible to be the largest bankruptcy in the history of the U.S. This is a sure to be collectible.

Score: 71 Author: Stefan Buchta < Stefan. Buchta@oracle.com > Last modified: 2002-05-16

02:05:25.0 Page size: 832 From: Email Server

http://files.oraclecorp.com/content/AllPublic/Users/Users-S/Stefan.Buchta-Public/enron.pdf

Enron Annual Report 2000 Enron Annual Report 2000 Enron manages efficient, flexible networks to reliably deliver

Score: 33 Last modified: 2002-05-16 22:10:08.0 Page size: 792732 From: Files Online Public

www.do.g.drg/pu70cs/SD ftermed b/ 6008-11/DAA 1008 VextNewFestures @E.DpC 1

Welcome to the ORACLE Intranet Search Engine

Ultra Search: Advanced Search			
Basic Search Submit URL Feedbac	<u>k Help</u>		
Search for	Performance	Search	
Narrowed by Title	Oracle9i Server		
And Author	Buchta		
And Description			
And ▼ Subject ▼		Add more attributes	
From	☑ Email Archives ☐ Local Files ☐ Mixed Sources ☑ Server Technologies ☐ arunagrp ☐ dictgrp ☐ portaldatgrp ☐ sarahGRP		
Language	AMERICAN 🔽		

Oracle Text : présentation des résultats

- Suite à une requête
 - Possibilité de conversion du format d'origine en texte, HTML et XML
 - Possibilité de présenter le document avec les termes de la requête surlignés
- Indépendamment des requêtes
 - Possibilité de déterminer automatiquement le/les thèmes du document
 - Possibilité de déterminer automatiquement un passage (gist) représentant le mieux le document

Oracle Text : présentation des résultats

- cf. "Oracle Text Reference", "Oracle Text Application Developer's Guide"
 - http://www.lc.leidenuniv.nl/awcourse/oracle/text.920/a96517/toc.htm

Travaux personnels et labo

- Faire les exercices du Chapitre 10
- Commencez à lire la documentation Oracle Text proposée pour ce cours
- http://www.lc.leidenuniv.nl/awcourse/oracle/text.9 20/a96517/toc.htm
- Continuez votre premier labo
 - SL3
 - Commencer à planifier l'intégration avec le labo
 2!

