University of Delaware Department of Mathematical Sciences MATH 243 Midterm Exam 1 Fall 2025

Monday 29th September, 2025

Instructions:

- The time allowed for completing this exam is 90 minutes in total.
- Check your examination booklet before you start. There should be 12 questions on 9 pages.
- Turn off your cell phone and put it away. Headsets, and any other electronic devices are prohibited.
- No calculators.
- Answer the questions in the space provided. If you need more space for an answer, continue your answer on the back of the page and/or the margins of the test pages. No extra paper. Do not separate the pages from the exam booklet.
- For full credit, sufficient work must be shown to justify your answer.
- Partial credit will not be given if appropriate work is not shown.
- Write legibly and clearly; indicate your final answer to every problem. Cross out any work that you do not want graded. If you produce multiple solutions for a problem, indicate clearly which one you want graded.
- Any form of academic misconduct will result in a failing grade.

Question:	1	2	3	4	5	6	7	8	9	10	11	12	Total
Points:	5	7	8	2	8	8	8	8	17	13	6	10	100
Score:													

(5 po	oints) Given two vectors $\mathbf{u} = \langle 2, -1, 2 \rangle$ and $\mathbf{v} = \langle 1, 8, 3 \rangle$. Find the angle formed by thes vectors.
Cons	sider the vectors $\mathbf{u} = \mathbf{i} - 2\mathbf{j} - 2\mathbf{k}$ and $\mathbf{v} = 6\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$.
(a)	(4 points) Compute the scalar projection of ${\bf v}$ onto ${\bf u}$ (comp _u ${\bf v}$).
(b)	(3 points) Compute the vector projection of \mathbf{v} onto \mathbf{u} (proj $_{\mathbf{u}}\mathbf{v}$).
	Cons (a)

- 3. Given three vectors, $\mathbf{a} = \langle 1, 4, -7 \rangle$, $\mathbf{b} = \langle 2, -1, 4 \rangle$ and $\mathbf{c} = \langle 0, -3, 6 \rangle$.
 - (a) (6 points) Find the volume of the parallelepiped determined by vectors **a**, **b** and **c**.

(b) (2 points) Are these three vectors coplanar? Justify your answer.

4. (2 points) Observe the following graphs:

Which equation below gives the surface shown above?

A.
$$\frac{z^2}{4} = x^2 + \frac{y^2}{4} + 1$$

B.
$$z^2 + \frac{x^2}{4} + y^2 = 1$$

C.
$$z = \frac{x^2}{4} - y^2$$

D.
$$\frac{y^2}{4} + 1 = \frac{x^2}{4} + z^2$$

Con	sider the fo	ollowing two points: $A(1, -5, 1)$ and $B(3, 2, -1)$.
(a)	(2 points)	Find the vector \overrightarrow{AB} .
(b)	(2 points) vector.	Find a vector equation for the line containing A and B using \overrightarrow{AB} as a direction
(c)	(2 points)	Express the vector equation of the line as parametric equations.
(d)	(2 points)	Express the parametric equations of the line as symmetric equations.

5.

6.	(8 points) Find a vector equation for the line of intersection between the planes
	x + y + z = 2 and $x + 2y - z = 1$.
7.	(8 points) Find a vector equation of the line tangent to the vector function
	$\mathbf{r}(t) = te^t \mathbf{i} + t^3 \mathbf{j} + \ln(t) \mathbf{k}$
	at the point corresponding to $t = 1$.

8.	(8 points)	Find an	equation	of the plan	e passing	through	the point	(1, -1, 0)	and	containing
	the line de	efined by	the paran	netric equat	ions					

$$x = 1 - t$$
, $y = 3t - 1$, $z = t + 2$.

/ (- Pon	ts) Verify that				
) (6 poin	nts) Evaluate the	e unit tangent v	ector T at the	point P .	
	\				
(6 poin	nts) Find the un	it normal vector	N at the poin	nt <i>P</i> .	

(d) (3 points) Determine the curvature κ at the point P.

I		
I		
I		
I		
I		
I		
l .		
l .		
l .		
l .		
l .		
l .		
l .		
l .		
I		
I		
I		
I		
I		
I		
I		
l .		
l .		

$$\mathbf{a}(t) = \langle 6t, 4e^t, \frac{1}{t} \rangle.$$

You are given the following data:

$$\mathbf{v}(1) = \langle 5, 7, -3 \rangle, \quad \mathbf{r}(1) = \langle 1, 0, 2 \rangle.$$

(a) (6 points) Find the velocity $\mathbf{v}(t)$.

(b) (7 points) Find the position vector $\mathbf{r}(t)$.

(1 points)	points) Find the position vector $\mathbf{I}(t)$.						

11. (6 points) Find the arc length of the curve given by

$$\mathbf{r}(t) = \langle 2\cos t, 2\sin t, t \rangle, \quad 0 \le t \le \frac{\pi}{2}.$$

			ase clearly mark True or False . the circle of radius $r = \frac{1}{3}$ is $\kappa = \frac{1}{9}$. False
(b)		If the magnitude to the vector $\mathbf{r}(t)$	of the vector function $\mathbf{r}(t)$ is constant, then the vector $\mathbf{r}'(t)$ for all t .
(c)	,	` '	angent vector and $\mathbf{N}(t)$ is a unit normal vector to a curve $\times \mathbf{N}(t)$ is a unit vector.
(d)	(9	For all vectors w	
()			and \mathbf{v} in three dimensional space, $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$.
	Check one:	True	and \mathbf{v} in three dimensional space, $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$.