вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по ЕАИ, част 1 25.04.2021 г.

Зал. 1 (1.0 точки). Като използвате изучаваните метоли и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a, b\}$ с език

 $L = \{ w \in \Sigma^* \mid (\forall u, v \in \Sigma^*) (w \neq ubabv) \}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a,b,c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е нечетно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

Зад. 3 (1.5 точки). Нека $\Sigma = \{a,b,c\}$. Казваме, че думата $u \in \Sigma^*$ е подредица на думата $w \in \Sigma^*$ ако и само ако $u = \epsilon$ или $u = w_{i_1}w_{i_2}\dots w_{i_k}$ за някои i_1,i_2,\dots,i_k , такива че $0 < i_1 < i_2 < \dots < i_k \leq |w|$, където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L\subseteq \Sigma^*$ езикът $L' = \{u \in \Sigma^* \mid (\exists w \in L)(u \text{ е подредица на } w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по ЕАИ, част 1 25.04.2021 г.

Зад. 1 (1.0 точки). Като използвате изучаваните методи и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a, b\}$ с език $L = \{ w \in \Sigma^* \mid (\forall u, v \in \Sigma^*) (w \neq ubabv) \}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a, b, c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е нечетно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

Зад. 3 (1.5 точки). Нека $\Sigma = \{a,b,c\}$. Казваме, че думата Зада. За (116 голи). Полити $u\in \Sigma^*$ ако и само ако $u=\epsilon$ или $u=w_{i_1}w_{i_2}\dots w_{i_k}$ за някои i_1,i_2,\dots,i_k , такива че $0< i_1< i_2<\dots< i_k\leq |w|$, където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L\subseteq \Sigma^*$ езикът $L' = \{u \in \Sigma^* \mid (\exists w \in L)(u \text{ е подредица на } w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
1					
Име:					

Контролно по ЕАИ, част 1 25.04.2021 г.

Зад. 1 (1.0 точки). Като използвате изучаваните методи и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a, b\}$ с език $L = \{w \in \Sigma^* \mid (\forall u, v \in \Sigma^*)(w \neq ubabv)\}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a, b, c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е нечетно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

 ${\bf 3ag.~3}~(1.5$ точки). Нека $\Sigma=\{a,b,c\}.$ Казваме, че думата $u\in\Sigma^*$ е подредица на думата $w\in\Sigma^*$ ако и само ако $u=\epsilon$ или $u=w_{i_1}w_{i_2}\dots w_{i_k}$ за някои $i_1,i_2,\dots,i_k,$ такива че $0< i_1< i_2<\dots< i_k\leq |w|,$ където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L\subseteq \Sigma^*$ езикът $L' = \{u \in \Sigma^* \mid (\exists w \in L)(u \text{ е подредица на } w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролно по ЕАИ, част 1 25.04.2021 г.

Зал. 1 (1.0 точки). Като използвате изучаваните метоли и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a, b\}$ с език

 $L = \{ w \in \Sigma^* \mid (\forall u, v \in \Sigma^*) (w \neq uabav) \}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a, b, c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е четно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

 ${\bf 3ад.~3}~(1.5$ точки). Нека $\Sigma=\{a,b,c\}.$ Казваме, че думата $u\in\Sigma^*$ е подредица на думата $w\in\Sigma^*$ ако и само ако $u=\epsilon$ или $u=w_{i_1}w_{i_2}\dots w_{i_k}$ за някои $i_1,i_2,\dots,i_k,$ такива че $0< i_1< i_2<\dots< i_k\leq |w|,$ където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L \subseteq \Sigma^*$ езикът $L' = \{u \in \Sigma^* \mid (\exists w \in L)(u \text{ е подредица на } w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:				•	

Контролно по ЕАИ, част 1 25.04.2021 г.

Зал. 1 (1.0 точки). Като използвате изучаваните метоли и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a, b\}$ с език

 $L = \{ w \in \Sigma^* \mid (\forall u, v \in \Sigma^*) (w \neq uabav) \}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a, b, c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е четно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

Зад. 3 (1.5 точки). Нека $\Sigma = \{a, b, c\}$. Казваме, че думата $u \in \Sigma^*$ е подредица на думата $w \in \Sigma^*$ ако и само ако $u = \epsilon$ или $u = w_{i_1}w_{i_2}\dots w_{i_k}$ за някои $i_1,i_2,\dots,i_k,$ такива че $0 < i_1 < i_2 < \dots < i_k \leq |w|$, където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L\subseteq \Sigma^*$ езикът $L' = \{u \in \Sigma^* \mid (\exists w \in L)(u \text{ е подредица на } w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.

вариант	ф. номер	група	поток	курс	специалност
2					
Име:					

Контролно по ЕАИ, част 1 25.04.2021 г.

Зад. 1 (1.0 точки). Като използвате изучаваните методи и конструкции, постройте минимален тотален детерминиран автомат над азбуката $\Sigma = \{a,b\}$ с език $L = \{w \in \Sigma^* \mid (\forall u,v \in \Sigma^*)(w \neq uabav)\}.$

Зад. 2 (1.5 точки). Нека $\Sigma = \{a,b,c\}$. Докажете, че езикът $L = \{w \in \Sigma^* \mid \text{ако } |w| \text{ е четно число, то } (\forall u \in \Sigma^*)(w \neq uuu)\}$ не е регулярен.

Зад. 3 (1.5 точки). Нека $\Sigma=\{a,b,c\}$. Казваме, че думата $u\in\Sigma^*$ е подредица на думата $w\in\Sigma^*$ ако и само ако $u=\epsilon$ или $u=w_{i_1}w_{i_2}\dots w_{i_k}$ за някои i_1,i_2,\dots,i_k , такива че $0< i_1< i_2<\dots< i_k\leq |w|$, където w_{i_j} е i_j -тият символ на w. Докажете, че за всеки регулярен език $L\subseteq \Sigma^*$ езикът $L'=\{u\in \Sigma^*\mid (\exists w\in L)(u\ \mathrm{e}\ \mathrm{nodped}$ ица на $w)\}$ е регулярен.

Оценката се получава по формулата 2 + получени точки. Екипът Ви пожелава успех.