C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor

FTHA – Finite-Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-07-27 14h31m53s UTC

- Modelagem do Motor
 - Mecanismo Biela-Manivela
 - Tempos (*Timings*) do Motor
- 2 Modelagem do Ciclo
 - Modelo de Substância
 - Procedimento de Solução
- 3 Tópicos de Leitura

O ciclo Otto ideal, da termodinâmica aplicada:

40 + 40 + 43 + 43 +

O ciclo Otto ideal, da termodinâmica aplicada:

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

Gás ideal;

O ciclo Otto ideal, da termodinâmica aplicada:

- Gás ideal;
- Processos internamente reversíveis;

O ciclo Otto ideal, da termodinâmica aplicada:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;

O ciclo Otto ideal, da termodinâmica aplicada:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;

O ciclo Otto ideal, da termodinâmica aplicada:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k}$$

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

O ciclo Otto ideal, da termodinâmica aplicada:

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros *r* e *k*, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k}$$
 \rightarrow

• $\eta_t : \eta_t(r,k)$ apenas!

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

Desvios do ciclo Otto ideal—incluem, mas não limitados a:

Diagrama P - V ilustrativo de perdas por (i) combustão não instantânea—verde, (ii) transferência de calor—vermelho—e de (iii) bombeamento—azul. Fonte: adaptado de Wikimedia Commons.

• Modela combustão (adição de calor) de forma não instantânea:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico.
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;
 - Evita modelagem termodinâmica de misturas reativas.

• Inclui todos os parâmetros do ciclo Otto ideal:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e
 - Duração da combustão.

• Diâmetro do pistão/cilindro, D;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;
- Volume máximo (do PMI), V_{PMI};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;
- Volume máximo (do PMI), V_{PMI};
- Razão de compressão, $r = \frac{V_{\rm PMS}}{V_{\rm PMI}}$.

• Diâmetro do pistão/cilindro, D;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};

- Diâmetro do pistão/cilindro, *D*;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;
- Volume máximo (do PMI), V_{PMI};

- Diâmetro do pistão/cilindro, *D*;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Posição do pistão (rel. PMS), x;
- Volume máximo (do PMI), V_{PMI};
- Razão de compressão, $r = \frac{V_{\rm PMS}}{V_{\rm PMI}}$.

Um template de slide.

De duas colunas.

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. Termodinâmica 7ª Edição. Seções 9–3 a 9–5. AMGH. Porto Alegre. ISBN 978-85-8055-200-3.

Naaktgeboren, C.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

