

Умный Бетон Сила Графена

Графеновая революция в бетоне: внедрение передовых технологий для экологичного и экономически выгодного строительства.

Copyright © 2024, ООО «РусГрафен», все права защищены

Проблема

Проблема устойчивого роста выбросов углекислого газа (СО2).

Источник https://www.statista.com/statistics/264699/worldwide-co2-emissions/

Решение проблемы

РусГрафен

Доля выбросов углекислого газа (СО2) по индустриям

Для решения проблемы устойчивого роста выбросов углекислого газа (CO₂) в строительной отрасли необходимо внедрить добавку или разработать новый строительный материал, который позволит:

Снизить потребление цемента

Уменьшить использование цемента, тем самым сократив выбросы CO₂, связанные с его производством.

Сохранить прочность конструкции

Обеспечить, чтобы новые материалы или добавки не снижали прочность и надёжность строительных конструкций.

Минимизировать изменения технологического процесса

Внедрить решение, которое не требует значительных изменений в существующих производственных процессах.

Перейти на новые технологии

Обеспечить плавный переход на более экологичные технологии, способствуя устойчивому развитию отрасли.

Структура графена — атомы углерода, выстроенные в форме гексагонов

Уникальные свойства

Электропроводность

Теплопроводность

Гидрофобность

Химическая инертность

Гибкость и эластичность

Множество применений

- фотодетекторы, микроэлектроника, оптоэлектроника
- бетон и различные строительные смеси
- биосенсоры, газовые химические сенсоры

- пластики, полимеры, краски, чернила, ткани
- антикоррозийные краски и защитные покрытия
- смазочные материалы и технические жидкости

- износостойкая резина и другие эластомеры
- фильтры для жидкостей и мембраны для газов
- антибактериальные покрытия

Химический графен (оксид графена)

- 🔷 Суперконденсаторы
- Фильтры и мембраны
- Биосенсоры
- → Композитные материалы
- Антибактериальные покрытия

Графеновые нанопластины

- Полимеры и пластики
- Антикоррозийные защитные покрытия
- → Строительные материалы
- Накопители зарядов
- Смазочные материалы

Стандартный бетон

Свойства бетона определяются процессом гидратации и развитием микроструктуры, содержанием воды, условиями отверждения, теплотой гидратации, добавками, а также химическим составом и физическими свойствами исходных материалов.

- Низкая прочность на разрыв.
- Продукты гидратации цемента заполняют большую часть порового пространства, связывая воду и твердые фазы цементной матрицы.
- 🔶 Для предотвращения усадки и повышения прочности на растяжение в обычный бетон добавляют армирование.

В результате бетон зависит от качества исходного сырья и комбинации пластификаторов, армирования волокном и других добавок, которые увеличивают выброс CO₂.

Усиление бетона графеном

- Улучшение связи между агрегатами и матрицей
- Оптимизация структуры пор и микроструктуры матрицы
- 🔶 Обеспечение центров зародышеобразования для формирования новых гидратированных продуктов

Графен предварительно смешивается с водой, что позволяет добавлять эту оптимизированную жидкую смесь непосредственно на месте производства бетона, обеспечивая равномерное распределение и значительное улучшение свойств бетона.

Научное обоснование

Жидкий бетон твердеет через химические реакции гидратации и гелеобразования. Вода и цемент реагируют, образуя пасту, которая со временем затвердевает.

Графен играет ключевую роль, действуя как механическая опора и катализатор начальной фазы гидратации. Это улучшает микроструктурное связывание, придавая конечному продукту повышенную прочность и долговечность, устойчивость к деградации, влаге и морозу.

Процесс взаимодействия графена и цемента

- Смешивание с водой и цементом: Графен смешивается с водой и цементом, создавая равномерную дисперсию и улучшая однородность смеси.
- Интеграция в матрицу: Графеновые слои включаются в цементную матрицу, улучшая её структурные свойства.
- Ускорение гидратации: Графен действует как катализатор, ускоряя начало реакции гидратации.
- Формирование кристаллов: Графен способствует более плотному и прочному формированию кристаллов в цементной матрице.

Исследования в области применения углеродных наноматериалов для улучшения свойств бетона

В рамках подготовки к проекту был проведен тщательный анализ **59 научных публикаций**, посвящённых применению углеродных наноматериалов в бетоне, из них:

- → **33 статьи** посвящены оксиду графена (G0).
- → 21 работа исследует графеновые нанопластины (GNPs) без кислорода.
- → **5 публикаций** описывают использование углеродных нанотрубок (CNTs).
- → 7 работ изучают комбинацию углеродных наноматериалов или сравнивают степень их влияния на конечные свойства бетона.

В исследованиях использовались следующие методы:

- → Ультразвуковая обработка примененная в 11 работах.
- → Классические пластификаторы использованы в 34 исследованиях.

Относительное количество опубликованных статей различных центров по изучению углеродных наноматериалов, используемых для изготовления цементных композитов (данные собраны из Google Scholar с 2011 по 2021 год, всего 14206 опубликованных статей).

Физическое армирование бетона с использованием графена

Графен может связывать трещины в цементной матрице, эффективно перераспределяя напряжение и улучшая механические свойства, такие как прочность на изгиб и растяжение. Это связывание способствует контролю распространения трещин и увеличивает общую прочность материала.

Изображения, сканирующие электронные микроскопические (SEM)

Цемент, содержащий оксид графена (GO); стрелочки показывают связанное с GO зародышеобразование гидратов кальция-силиката (C-S-H).

Метки: GO flakes (чешуйки оксида графена), C-S-H.

(a) и (b) Сканирующие электронные микроскопические (SEM) изображения демонстрируют структуру цемента с добавлением графена.

Стрелки указывают на участки, где графеновые чешуйки взаимодействуют с цементной матрицей, улучшая связь и структурную целостность материала.

Эффект заполнения пор

Благодаря своей высокой удельной поверхности, графен способен эффективно заполнять нанометровые поры цементной матрицы, создавая плотный материал с уменьшенной пористостью. Это значительно повышает прочность и долговечность цементного композита.

Сканирующее электронное микроскопическое (SEM) изображение показывает структуру цемента с включениями графена, который заполняет нанопоры и улучшает микроструктуру материала.

SEM изображение с меткой "GO flake" (чешуйка оксида графена) демонстрирует, как графеновые чешуйки располагаются внутри цементной матрицы, заполняя пустоты и уменьшая пористость.

SEM изображение показывает микропоры (micropores) в цементной матрице. Чешуйки графена (GO flakes) помогают уменьшить количество и размер этих пор, что приводит к улучшению прочностных характеристик материала.

Химическое взаимодействие

Оксид графена (GO), содержащий активные гидроксильные и карбоксильные функциональные группы, вступает в химическое взаимодействие с гидратами цемента. Это взаимодействие способствует изменению процесса гидратации и модификации микроструктуры гидратов, значительно улучшая долговечность и устойчивость бетона к химическим воздействиям.

Молекула оксида графена (GO) с функциональными группами (гидроксильные, карбоксильные группы).

Гидраты цемента (C-S-H, Ca(OH)₂).

Взаимодействие оксида графена с гидратами цемента, образование химических связей, улучшение микроструктуры.

Эффект шаблона

Оксид графена (GO) служит шаблоном для направленного роста кристаллов гидратации, способствуя формированию упорядоченной микроструктуры в цементной матрице. Эта особенность проявляется преимущественно в цементных матрицах, обогащенных листами GO.

Схематическое изображение показывает процесс взаимодействия GO с частицами цемента и рост кристаллов гидратации.

Сканирующее электронное микроскопическое (SEM) изображение показывает упорядоченную микроструктуру цемента с добавлением GO, что свидетельствует о направленном росте кристаллов гидратации.

- → Начальная стадия (Initial stage): GO взаимодействует с частицами цемента.
- → Рост (Growth): Кристаллы гидратации начинают расти на поверхности GO, создавая более упорядоченную структуру.

Сравнительный анализ

Сравнительный анализ применения оксида графена (GO) и графеновых нанопластин (GNPs) как добавок к цементу.

Graphene oxide

График зависимости увеличения прочности бетона от концентрации оксида графена (%).

Схема молекулы оксида графена с функциональными группами (гидроксильные и карбоксильные группы).

Graphene nanoplatelets

График зависимости увеличения прочности бетона от концентрации графеновых нанопластин (%).

Схема графеновых нанопластин с указанием их размеров (толщина 5-15 нм, размер 5-25 мкм).

Эффект от применения

Опыт мировых лабораторий

Страна		Год	Эффект	Концентрация графена относительно цемента по массе
* *	Австралия	2019	 увеличение прочности на сжатие 34,3 % увеличение прочности на растяжение на 26,9 % 	0,07 %
	Польша	2019	 увеличение прочности на разрыв до 79 % увеличение прочности на сжатие на 8 % увеличение модуля Юнга на 9 % 	0,05 %
	Великобритания	2018	 Увеличение прочности сжатия до 120 % Увеличение прочности изгиба на 79,5 % Увеличение теплоёмкости на 88 % Уменьшение водопроницаемости на 80 % 	0,03 %
* *	Австралия	2015	 увеличение прочности на сжатие на 40 % уменьшение пористости на 13,5 % 	0,03 %
•	Индия	2015	• увеличение прочность на сжатие на 63 %	1 %
*)	Китай	2013	 увеличение прочности на сжатие на 38,9 % увеличение прочности на изгиб на 60,7 % увеличение прочности на разрыв на 78,6 % 	0,03 %

Реализованные проекты в мире

	Технология и инновации	Экологическая устойчивость	Коммерческое применение и сотрудничество	Инвестиции и финансирование
Concretene	Разработка уникальной технологии диспергирования графена в бетоне	Фокус на улучшении экологичности бетона	Более 50 клиентов из различных секторов	Развитие технологии поддерживается через патенты и инновации
Nationwide Engineering (NERD)	Разработка и коммерциализация Concretene совместно с GEIC	Активная разработка экологически чистых решений	Коммерциализация и развитие клиентской базы	Привлечение значительных инвестиций для развития
Versarien	Разработка Cementene для улучшения структурной прочности бетона	Улучшение экологических характеристик бетона	Фокус на разработке и оптимизации технологии	Инвестиции в разработку и оптимизацию
First Graphene	Использование добавок PureGRAPH для улучшения свойств бетона	Снижение углеродного следа производства бетона	Работа с промышленными партнерами для внедрения инноваций	Привлечение инвестиций для развития и коммерциализации
Graphenea и Lantania	Исследование применения графена для производства бетонных добавок	Не указано	Основной акцент на исследованиях и разработке	Не указано

Основные преимущества

- → на 120 % увеличивается прочность на сжатие в бетоне.
- → на 80 % увеличение прочности на изгиб.
- → на 80 % снижение влагопроницаемости.
- → до 100 % возможно уменьшение использовании стали (в некоторых конструкциях).

Повышение концентрации графена может придать бетону электропроводные свойства, что делает его пригодным для инновационных применений, например, в умных дорогах и зданиях.

Результат

- → Снижение количества необходимого цемента.
- → Снижение выбросов CO₂ при изготовлении цемента.
- → Снижение стоимости конечного бетонного изделия.

РусГрафен

Экономическая эффективность

Стоимость и состав бетона

- 🔶 Стоимость готового бетона составляет 4700 руб. за кубический метр.
- 1 кубический метр бетона содержит примерно 300 кг портландцемента.
- → Стоимость цемента составляет 5000 руб. за тонну, что эквивалентно 1500 руб. за кубический метр бетона.
- → Концентрация 0.05 % графенового материала к бетону эквивалентна 0.15 кг на кубический метр.

	Графеновый оксид	Графеновые нанопластины
Увеличивает прочность бетона	До 100 %	До 40 %
Стоимость нанодобавки составляет	45 000 руб./кг	4500 руб./кг
Нанодобавка увеличивает стоимость бетона	на 6750 руб./м³	на 675 руб./м³
Может снизить необходимое количество бетона*	Ha 50 %	Ha 29 %

^{*} Не уменьшение количества цемента в м³ бетона, а уменьшение количества бетона в той же конструкции = уменьшение толщины стены.

Методика равномерного распределения графена в бетоне

Для равномерного распределения 150 грамм графена в 1 м³ бетона, мы сначала диспергируем материал в воде, затем добавляем его в сухую смесь цемента, песка и заполнителя.

Методы диспергирования графеновых наноматериалов в водной и цементной матрице

Метод	Система	Описание
Ультразвуковое диспергирование	Вода	Использует звуковые волны высокой мощности для разбивания агломератов углеродных наноматериалов (CNMs)
Кислотная обработка	Вода	Стерические эффекты сильного препятствия могут разделить CNMs от заряженных ионов
Поверхностная модификация	Вода/цементный поровый раствор	Модификация поверхности для улучшения взаимодействия с матрицей
Механическое диспергирование	Цементная матрица	Применение сдвиговой силы, созданной механическим трением, столкновениями и раздавливанием CNMs. Подметоды: Механическое перемешивание, шаровая мельница
Интегрированный метод диспергирования	Цементная матрица	Комбинированное использование вышеуказанных методов
Дым кремнезема или нано-кремнезем	Цементная матрица	Использование сферических частиц для предотвращения агломерации CNMs

Промышленность

Диспергация (распределение) наноматериалов в композитах в промышленных масштабах

Множество научных статей демонстрируют выдающиеся свойства графеновых материалов **в лабораторных количествах** с использованием лабораторных ультразвуковых диспергаторов.

Для промышленности отсутствует решение задачи однородного распределения наноматериалов.

Как следствие используемое оборудование приводит к **неоднородному распределению наночастиц** и, как следствие, к ухудшению механических, термических и электрических характеристиках конечного композита.

Решение для строительной отрасли от «РусГрафен»

Масштабируемый конвергентный промышленный программно-аппаратный комплекс

Универсальая

внедряет широкий спектр наноматериалов в любые жидкие среды

Модульная

состоит из легко встраиваемых, заменяемых и масштабируемых модулей

Ультразвуковая

использует мощную, надежную и эффективную технологию ультразвукового диспергирования наночастиц

Система

требует минимального человеческого участия за счет полной автоматизации и дистанционного контроля

- → Энергопотребление одного модуля 12 кВт.
- → Производительность одного модуля до 500 кг в час конечного полимера при концентрации графена 1 %.

В основу разработки платформы заложены принципы инновационных технологий, таких как конвергентные решения и web-scale архитектуры, используемых в Google, Facebook и Amazon, но адаптированные для применения на предприятиях традиционных отраслей.

RusGraphene FloNano System 300/24

Система для производства и диспергирования графеновых наноматериалов от компании «РУСГРАФЕН»

Составные части

- → Генератор электромагнитных колебаний с частотой 20 кГц.
- Преобразователь электромагнитных колебаний в механические.
- Усилитель механических колебаний.
- Проточный реактор для перемешивания.
- Инфраструктура (насосы, датчики, ёмкости).
- Модуль контроля и управления процессом.
- Технология.

Кавитационные пузыри, образующиеся в области действия ультразвукового диспергатора.

Проделанная работа

Q4 2022 - Q1 2023

- Проведение литературного обзора 60 научных статей проанализировано.
- 🔷 Сбор информации по разновидностям графеновых материалов и по механизмах их работы внутри бетонных конструкций.
- Подготовка оборудования.

Q2 2023 - Q1 2024

- **→ Более 300** бетонных кубиков прошли тест на разрушение.
- → 3 разновидности материалов было проверено.
- → Более 15 различных рецептов концентраций и комбинаций графеновых материалов протестировано.

Полученные результаты

- → Увеличение прочности на сжатие на 20 %.
- → Увеличение прочности на изгиб на 35 %.

Наше предложение для партнёров

Мы предлагаем внедрение графеновых наноматериалов в производство бетона, что позволит значительно улучшить его свойства, уменьшить выбросы CO2 и повысить экономическую эффективность строительных проектов.

Наши услуги

Сопровождение проекта

- 🔶 Предоставление результатов новых лабораторных испытаний.
- Анализ сделанных прототипов и рекомендации по улучшению.

Пилотные проекты

- 🔶 Разработка и реализация пилотных проектов с графеновыми добавками.
- Поддержка на всех этапах коммерциализации.

Масштабирование проекта

- 🔶 Поддержка в масштабировании производства и внедрении технологий графена в крупные строительные проекты.
- Содействие в привлечении первых клиентов с использованием нашей технологии.

Таргетируемые показатели эффективности

- Увеличение прочности бетона до 100 %.
- Снижение выбросов СО2 за счет уменьшения потребления цемента.
- Экономия затрат на материалы за счет повышения эффективности.

Наше предложение для партнёров

Наши преимущества

Финансовая выгода

Снижение затрат на материалы и повышение производительности.

→ Технологическое превосходство

Использование новейшего ультразвукового оборудования и конвергентной технологии для диспергирования графена.

→ Профессиональная поддержка

Обучение специалистов для проведения исследований и разработки технологий.

→ Маркетинговая поддержка

Продвижение новых продуктов и технологий на рынке.

Мы предлагаем нашим партнерам инновационные решения, которые помогут сделать их строительные проекты более эффективными и экологичными.

Материал, который меняет мир

Мы занимаемся исследованием, производством и продажей графеновых и других 2D-материалов, а также продукции на их основе.

Максим Рыбин

- Доктор философии в Лионском институте нанотехнологий
- → Кандидат физико-математических наук, РАН
- Старший научный сотрудник,
 Национальный университет Сингапура
- Более 70 научных публикаций

Дмитрий Мариничев

- 25+ лет руководства высокотехнологичными компаниями
- → Интернет-омбудсмен, представитель при Президенте РФ
- Член Экспертного Совета АСИ
- → Благодарственные письма Президента РФ

Графеновые наноматериалы открывают новые горизонты в строительной индустрии, позволяя создавать более прочные и устойчивые бетонные конструкции.
Это не только технологический прорыв,

Это не только технологический прорыв, но и значительный вклад в устойчивое развитие.

Интеграция графеновых технологий в бетонные смеси предоставляет нашим партнерам уникальные конкурентные преимущества. Это не просто инновация, а фундамент для создания экономически эффективных и экологически чистых строительных решений.

Контактная информация

Звоните и пишите нам для сотрудничества в научно-технологической сфере

R

+7-499-70-30-182, +7-939-111-05-32

info@rusgraphene.ru

https://rusgraphene.ru

Наша миссия:

Применять уникальные свойства графена для разработки передовых технологий и трансформации промышленности

