M-N Without Permutations

Ian Dardik

March 29, 2022

1 Introduction

In this note, we consider the verification problem of a transition system $T = (I, \Delta)$ where I is the initial constraint, Δ is the transition relation, and the system is parameterized by a single sort $E = \{e_1, ...\}$ of indistinguishable elements.

To begin, we will introduce notation for the template and finite instances of a transition system. We adopt the convention of [1] where T(E) is the template of T and T(|E|) is a finite instance. We can also refer to the template or a finite instance of a quantified formula F and the sort E. For example, suppose F is in Prenex Normal Form (PNF) and universally quantifies over j variables, i.e. F can be written as:

$$F := \forall x_1, ..., x_i \in E, \phi(x_1, ..., x_i)$$

where ϕ is a non-quantified statement whose only free variables are $x_1, ..., x_j$. Then F(k) is identical to the formula F, except E is replaced by $E(k) \subseteq E$, where $E(k) = \{e_1, ..., e_k\}$, that is, k distinct arbitrary elements of E. Thus we see:

$$F(k) = \forall x_1, ..., x_j \in E(k), \phi(x_1, ..., x_j)$$

In this note, we are concerned with the specific scenario in which we are given a candidate inductive invariant Φ , and the finite instances $\Phi(1), ..., \Phi(k)$ have been proved to be inductive invariants for T(1), ..., T(k); we want to know whether Φ is an inductive invariant for T. We are specifically concerned with the case in which both Δ and Φ are written in PNF and Φ is restricted to universal quantification.

Throughout this note, we will build several lemmas that lead to an interesting result: let m be the number of variables that Φ quantifies over and n be the number of variables that Φ quantifies over; if we suppose that $\Phi(m+n)$ is an inductive invariant for T(m+n), then $\Phi(k)$ is also an inductive invariant for T(k) for all k > m+n. We will refer to this as the M-N Theorem in this note. This result is useful because it reduces the verification problem on T to model checking a finite number of instances T(1), ..., T(m+n). Essentially, m+n is a cutoff instance size for proving that our inductive invariant holds.

Note: I think it is likely that if $\Phi(m+n)$ is an inductive invariant, then it is also the case for $\Phi(k)$ for all k < m+n, but I left this out of this note for the time being to focus on the k > m+n case.

2 Notation

Definition 1 (E(k)). We let $E(k) := \{e_1, ..., e_k\} \subseteq E$, where each e_i is distinct and arbitrarily chosen from E. In particular, it is always the case that |E(k)| = k.

Definition 2 (F(k)). Let F be a quantified formula of the form $Q_1x_1, ..., Q_mx_m \in E, f(x_1, ..., x_m)$, where each $Q_i \in \{\forall, \exists\}$. Then for any k > 0:

$$F(k) := Q_1 x_1, ..., Q_m x_m \in E(k), f(x_1, ..., x_m)$$

Definition 3 (Finite Instances). Let F be a quantified formula of the form $Q_1x_1, ..., Q_mx_m \in E, f(x_1, ..., x_m)$, where each $Q_i \in \{\forall, \exists\}$. Then for any k > 0:

FinInstances
$$(F, k) := \{Q_1 x_1, ..., Q_m x_m \in H, f(x_1, ..., x_m) \mid H \subseteq E \land |H| = k\}$$

The sort E is assumed to be unbound, and hence FinInstances(F, k) is an infinite set.

3 Lemmas

Lemma 1. Let $k \in \mathbb{N}$ such that $s \in \text{States}(k)$ and F is a universally quantified formula. Then:

$$(s \models F(k)) \leftrightarrow (\forall f \in Gr(F, k), s \models f)$$

Proof. Suppose that $s \models F(k)$. For an arbitrary formula $f \in Gr(F, k)$, $F(k) \models f$ and hence we see that $s \to F(k) \land F(k) \to f$. It follows that $s \models f$.

Now suppose that $\forall f \in \operatorname{Gr}(F,k), s \models f$. Suppose, for the sake of contradiction, that $s \not\models F(k)$. Then it must be the case that $s \land \neg F(k)$. We know that F is unversally quantified, so let $F(k) := \forall x_1, ..., x_m \in P, \phi(x_1, ..., x_m)$ where $m \geq 1$. Then, because $\neg F(k)$ holds, it must be the case that $\exists x_1, ..., x_m \in P, \neg \phi(x_1, ..., x_m)$. However, $\phi(x_1, ..., x_m) \in \operatorname{Gr}(F, k)$ which, by our original assumption, implies $\neg s$. Hence we have both s and $\neg s$ and we have reached a contradiction.

Lemma 2. Let F be a quantified formula and k > 0 be given, then:

$$F(k) \leftrightarrow \forall f \in \text{FinInstances}(F, k), f$$

Proof. Let F be a quantified formula of the form $Q_1x_1,...,Q_mx_m \in E, f(x_1,...,x_m)$.

Suppose that F(k) is true. Consider arbitrary $f \in \text{FinInstances}(F, k)$. f has the form $Q_1x_1, ..., Q_mx_m \in H, f(x_1, ..., x_m)$ where $H = \{h_1, ..., h_k\}$ is a particular subset of E. Notice that $F(k) \to f$, and hence f must be true.

Now suppose that $\forall f \in \text{FinInstances}(F, k), f$, then the result follows trivially.

4 The M-N Theorem

In this section, we will establish initiation and consecution in two separate lemmas using similar techniques. The M-N Theorem follows immediately from these two lemmas.

Lemma 3 (M-N Initiation). Suppose that $\Phi(m)$ is an inductive invariant for T(m), then $I(k) \to \Phi(k)$ for all k > m.

Lemma 4 (M-N Consecution). Suppose that Φ and Δ are both in PNF, while Φ is restricted to universal quantification. Let m be the number of variables that Φ quantifies over and n be the number of variables that Δ quantifies over. If $\Phi(\ell)$ is an inductive invariant for all $1 \leq \ell \leq m+n$, then $\Phi(k)$ is inductive for any k > m+n.

Proof. Assume that $[\Phi \wedge \Delta \to \Phi'](\ell)$ is valid for all $1 \le \ell \le m+n$. Let k > m+n be given, we want to show that $[\Phi \wedge \Delta \to \Phi'](k)$ is also valid. Let $s \in \operatorname{States}(k)$ such that $s \models \Phi(k)$ and let $\delta \in \operatorname{Gr}(\Delta, k)$ such that $\delta \models \Delta(k)$. Then $(s \wedge \delta)$ is a formula that describes the states reachable from s in one " δ step", and it suffices to show that $(s \wedge \delta) \models \Phi'(k)$. Furthermore, let $\phi' \in \operatorname{Gr}(\Phi', k)$ be arbitrary, then, by Lemma 1 and the fact that Φ' is in PNF and universally quantified, it suffices to show that $(s \wedge \delta) \models \phi'$.

Let $f_1, ..., f_i$ be the unique elements of E in ϕ and let $d_1, ..., d_j$ be the unique elements of E in δ . We know that $1 \le i \le m$ because $\phi \in Gr(\Phi, k)$ and Φ quantifies over m variables; likewise, we know that $1 \le j \le n$ because $\delta \in Gr(\Delta, k)$ and Δ quantifies over n variables. Then:

$$(s \wedge \delta) \models [\Phi \wedge \Delta](E = \{f_1, ..., f_i, d_1, ..., d_j\}) \in \text{FinInstances}(F, i + j)$$

By our initial assumption, $[\Phi \wedge \Delta \to \Phi'](i+j)$ is valid because $1 \le i+j \le m+n$. Thus, by Lemma 2, $[\Phi \wedge \Delta \to \Phi'](E = \{f_1, ..., f_i, d_1, ..., d_j\})$ is also valid. Hence:

$$(s \wedge \delta) \models \Phi'(E = \{f_1, ..., f_m, d_1, ..., d_n\}) \models \phi'$$

Next we present the M-N Theorem:

Theorem 1 (M-N). Suppose that Φ is in PNF with only universal quantifiers, while Δ is in PNF with only existential quantifiers. Let m be the number of variables that Φ quantifies over and n be the number of variables that Δ quantifies over. If $\Phi(m+n)$ is an inductive invariant, then $\Phi(k)$ is also an inductive invariant for any k > m+n.

Proof. This follows immediately from the previous two lemmas.

References

[1] Aman Goel and Karem Sakallah. On Symmetry and Quantification: A New Approach to Verify Distributed Protocols. In NASA Formal Methods Symposium, pages 131–150. Springer, 2021.