Reinforcement Learning Training 2025

Policy Gradient Algorithm

Concept

- Policy-based methods parameterize the policy (often with a neural network)
- ullet Focus on optimizing the policy itself (not q or v).
- Outputs a probability distribution over actions for each state.

Why?

- Direct policy optimization enables smoother changes
 - Avoiding abrupt behavior shifts seen in value-based methods.
- Can learn stochastic policies natively,
- Handles continuous and large action spaces more naturally

REINFORCE Algorithm

• Learn a policy directly by optimizing the parameters of a policy model using a gradient ascent approach.

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} | s_{t}^{i} \right) \right) \left(\sum_{t=1}^{T} r(s_{t}^{i}, a_{t}^{i}) \right) \right]$$

$$\theta = \theta + \alpha \cdot \nabla_{\theta} J(\theta)$$

REINFORCE

Input:

A model with parameters heta taking state s as input and producing $\pi_{ heta}\left(a|s
ight)$

Other parameters: step size lpha

Initialize:

Initialize weights heta

Loop:

Sample $\{ au^i\}$, a set of N trajectories from current policy $\pi_{ heta}\left(a_t \middle| s_t\right)$

Update model parameters θ :

$$\nabla_{\theta} J\left(\theta\right) \approx \frac{1}{N} \sum_{i=1}^{N} \left[\left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta} \left(a_{t}^{i} \middle| s_{t}^{i} \right) \right) \left(\sum_{t=1}^{T} r\left(s_{t}^{i}, a_{t}^{i} \right) \right) \right] \\
\theta = \theta + \alpha \nabla_{\theta} J\left(\theta\right)$$

Figure 8-3. Neural network model for predicting policy

Actor-Critic

Actor-Critic is a class of reinforcement learning algorithms that combines the strengths of both policy-based and value-based methods by maintaining two separate models: an actor and a critic.

Components

Actor

- The actor is responsible for selecting actions according to a parameterized policy.
- It learns to maximize the expected reward by adjusting the policy parameters based on feedback from the critic.

Critic

- \circ The critic estimates the value function (v or q).
- Evaluating how good the actions taken by the actor are in terms of expected cumulative rewards.

Figure 8-8. Actor-critic network with common weights in the initial layers