Introduction and R

John Muschelli

About Us

John Muschelli

Assistant Scientist, Department of Biostatistics

PhD in Biostatistics, ScM in Biostatistics

Email: jmusche1@jhu.edu

About Us

Kristin Linn

Assistant Professor, Department of Biostatistics and Epidemiology Perelman School of Medicine, University of Pennsylvania

PhD in Biostatistics

Email: klinn@mail.med.upenn.edu

Learning Objectives

- ▶ Introduction to the Statistical Software R
- Reading and Writing Images
- Visualization of Images and Image Data
- Inhomogeneity Correction
- Brain Extraction
- Image Segmentation
- Coregistration Within and Between MRI Studies
- Intensity Normalization

Course Website/Materials

The Course overview is located at (with slides): http://johnmuschelli.com/ISBI_2017.html

All materials for this course (including source for the slides) is located at:

https://github.com/muschellij2/imaging_in_r

RStudio Server

For this course, we will use an RStudio Server because installing all the packages can be a lengthy process. Mostly all the code we show requires a Linux/Mac OSX platform for FSL and other systems:

http://johnmuschelli.com/rstudio_server.html

The code to make the server is located at: https://github.com/muschellij2/rneuro/blob/master/ms_rstudio_droplet.sh

Installing R: Local

If you want to install

- You can install the latest R from http://cran.r-project.org/
- ▶ Install RStudio

What is R?

- ▶ R is a language and environment for statistical computing and graphics
- ▶ R is the open source implementation of the S language, which was developed by Bell laboratories
- ▶ R is both open source and open development

```
(source: http://www.r-project.org/)
```

Why R?

- Powerful and flexible
- Free (open source)
- Extensive add-on software (packages)
- Designed for statistical computing
- High level language

Why not R?

- ► Fairly steep learning curve
 - "Programming" oriented
 - Minimal interface
- Little centralized support, relies on online community and package developers
- Annoying to update
- ► Slower, and more memory intensive, than the more traditional programming languages (C, Java, Perl, Python)

Working with R

- ► The R Console "interprets" whatever you type
 - Calculator
 - Creating variables
 - Applying functions
- "Analysis" Script + Interactive Exploration
 - Static copy of what you did (reproducability)
 - ▶ Try things out interactively, then add to your script

R essentially is a command line with a set of

functions loaded

R Uses Functions, in Packages

- R revolves around functions
 - Commands that take input, performs computations, and returns results
 - When you download R, it has a "base" set of functions/packages (base R)
- Functions are enclosed in packages
 - ► These written by R users/developers (like us) **some are bad**
 - ▶ Think of them as "R Extensions"

RStudio (the software)

RStudio is an Integrated Development Environment (IDE) for R

- It helps the user effectively use R.
- Makes things easier
- ▶ Is NOT dropdown statistical tools (such as Stata)
 - See Rcmdr or Radiant
- ➤ All snapshots in these slides are taken from http://ayeimanol-r.net/2013/04/21/289/

RStudio

Easier working with R

- ► Syntax highlighting, code completion, and smart indentation
- Easily manage multiple working directories and projects

More information

- Workspace browser and data viewer
- Plot history, zooming, and flexible image and PDF export
- ▶ Integrated R help and documentation
- Searchable command history

RStudio/R Console

RStudio/R Console

- Where code is executed (where things happen)
- ▶ You can type here for things interactively
- Code is **not saved** on your disk

RStudio Layout

If RStudio doesn't look like this (or our RStudio), then do:

RStudio -> Preferences -> Pane Layout

Source/Editor

Source

- Where files open to
- Have R code and comments in them
- Can highlight and press (CMD+Enter (Mac) or Ctrl+Enter (Windows)) to run the code

In a .R file (we call a script), code is saved on your disk

Workspace/Environment

Workspace/Environment

- ► Tells you what **objects** are in R
- ▶ What exists in memory/what is loaded?/what did I read in?

History

- Shows previous commands. Good to look at for debugging, but don't rely on it as a script. Make a script!
- Also type the "up" key in the Console to scroll through previous commands

Other Panes

- Files shows the files on your computer of the directory you are working in
- ▶ Viewer can view data or R objects
- ▶ **Help** shows help of R commands
- Plots pretty pictures
- Packages list of R packages that are loaded in memory

Main Packages we will use

- oro.nifti reading/writing NIfTI images
- neurobase extends oro.nifti and provides helpful imaging functions
- fslr wraps FSL commands to use in R
 - registration, image manipulation
- ► ANTsR wrapper for Advanced normalization tools (ANTs) code
 - registration, inhomogeneity correction, lots of tools
- extrantsr allows ANTsR to work with objects from oro.nifti

Data Packages we will use

- ms.lesion contains training/testing data of patients with multiple sclerosis (MS)
 - from the MS lesion challenge 2016 (http://iacl.ece.jhu.edu/index.php/MSChallenge)
- ▶ kirby21.t1 scan-rescan data for 3 subjects from Landman et al. (2011)
 - https://www.nitrc.org/projects/multimodal

Landman, Bennett A, Alan J Huang, Aliya Gifford, Deepti S Vikram, Issel Anne L Lim, Jonathan AD Farrell, John A Bogovic, et al. 2011. "Multi-Parametric Neuroimaging Reproducibility: A 3-T Resource Study." *Neuroimage* 54 (4). Elsevier: 2854–66. https://www.nitrc.org/projects/multimodal/.