Числовые ряды

Пусть $\{a_n\} \subset \mathbb{R}$. $a_1 + a_2 + \ldots + a_n + \ldots$

Пусть $\{a_n\} \subset \mathbb{R}$. $a_1+a_2+\ldots+a_n+\ldots = \sum_{n=1}^\infty a_n$

Пусть
$$\{a_n\} \subset \mathbb{R}.$$
 $a_1+a_2+\ldots+a_n+\ldots = \sum_{n=1}^\infty a_n$

Пусть
$$\{a_n\} \subset \mathbb{R}.$$
 $a_1+a_2+\ldots+a_n+\ldots = \sum_{n=1}^{\infty} a_n$

$$S_n = \sum_{i=1}^n a_i$$
 — частичная сумма ряда

Пусть
$$\{a_n\} \subset \mathbb{R}$$
. $a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$

$$S_n = \sum_{i=1}^n a_i$$
 — частичная сумма ряда

Определение. Если существует (конечный) предел S частичных сумм ряда, то ряд называется cxodsuumcs, а число S называется cymmoù psda:

Пусть
$$\{a_n\} \subset \mathbb{R}$$
. $a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$

$$S_n = \sum_{i=1}^n a_i$$
 — частичная сумма ряда

Определение. Если существует (конечный) предел S частичных сумм ряда, то ряд называется cxodsumcs, а число S называется cymmoù psda:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n.$$

Пусть
$$\{a_n\} \subset \mathbb{R}$$
. $a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$

$$S_n = \sum_{i=1}^n a_i$$
 — частичная сумма ряда

Определение. Если существует (конечный) предел S частичных сумм ряда, то ряд называется cxodsumcs, а число S называется cymmoù psda:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n.$$

Обозначения:

$$\sum_{n=1}^{\infty} a_n < \infty, \qquad \sum_{n=1}^{\infty} a_n - cx.$$

Пусть
$$\{a_n\} \subset \mathbb{R}$$
. $a_1 + a_2 + \ldots + a_n + \ldots = \sum_{n=1}^{\infty} a_n$

$$S_n = \sum_{i=1}^n a_i$$
 — частичная сумма ряда

Определение. Если существует (конечный) предел S частичных сумм ряда, то ряд называется cxodsuumcs, а число S называется cymmoù psda:

$$S = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n.$$

Обозначения:

$$\sum_{n=1}^{\infty} a_n < \infty, \qquad \sum_{n=1}^{\infty} a_n - cx.$$

В противном случае говорят, что ряд расходится.

Примеры: $\sum_{n=1}^{\infty} 1$

Примеры:
$$\sum_{n=1}^{\infty} 1$$
, $\sum_{n=1}^{\infty} (-1)^n$

Примеры:
$$\sum_{n=1}^{\infty}1, \quad \sum_{n=1}^{\infty}(-1)^n, \quad \sum_{n=1}^{\infty}q^n.$$

Пусть ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится.

Пусть ряд
$$\sum_{n=1}^{\infty}a_n$$
 сходится. Тогда $r_n:=S-S_n=\sum_{i=n+1}^{\infty}a_i-$ остаток ряда.

Пусть ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится. Тогда $r_n:=S-S_n=\sum_{i=n+1}^{\infty} a_i-$ остаток ряда.

1) $a_n \to 0$;

Пусть ряд
$$\sum_{n=1}^{\infty} a_n$$
 сходится. Тогда $r_n:=S-S_n=\sum_{i=n+1}^{\infty} a_i-$ остаток ряда.

- 1) $a_n \to 0$;
- 2) $r_n \to 0$.

Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится. Тогда $r_n:=S-S_n=\sum_{i=n+1}^{\infty} a_i-$ остаток ряда.

- 1) $a_n \to 0$;
- 2) $r_n \to 0$.

Пример:
$$\sum_{n=1}^{\infty} \sin n.$$

Необходимые и достаточные условия сходимости ряда: критерий Коши

Необходимые и достаточные условия сходимости ряда: критерий Коши

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \forall \, \varepsilon > 0 \,\, \exists \, n(\varepsilon) \in \mathbb{N} \,\, : \,\, \forall \, n > n(\varepsilon) \,\, \forall \, p \in \mathbb{N} \,\, \left| \sum_{i=n+1}^{n+p} a_i \right| < \varepsilon$$

Необходимые и достаточные условия сходимости ряда: критерий Коши

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \forall \, \varepsilon > 0 \,\, \exists \, n(\varepsilon) \in \mathbb{N} \,\, : \,\, \forall \, n > n(\varepsilon) \,\, \forall \, p \in \mathbb{N} \,\, \left| \sum_{i=n+1}^{n+p} a_i \right| < \varepsilon$$

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n}.$$

1) Присоединение, удаление, изменение конечного числа элементов ряда не влияет на его сходимость/расходимость.

- 1) Присоединение, удаление, изменение конечного числа элементов ряда не влияет на его сходимость/расходимость.
- 2) Умножение (всех элементов) ряда на $const \neq 0$ не влияет на его сходимость/расходимость.

- Присоединение, удаление, изменение конечного числа элементов ряда не влияет на его сходимость/расходимость.
- 2) Умножение (всех элементов) ряда на $const \neq 0$ не влияет на его сходимость/расходимость.
- 3) Сумма сходящихся рядов есть сходящийся ряд.

- Присоединение, удаление, изменение конечного числа элементов ряда не влияет на его сходимость/расходимость.
- 2) Умножение (всех элементов) ряда на $const \neq 0$ не влияет на его сходимость/расходимость.
- 3) Сумма сходящихся рядов есть сходящийся ряд.
- Члены сходящегося ряда можно группировать в произвольном порядке, не меняя порядка их следования, при этом сумма ряда не изменится.

Теорема. Пусть $\{a_n\}$ — неубывающая последовательность и $a_n \to +\infty$.

Теорема. Пусть $\{a_n\}$ — неубывающая последовательность и $a_n \to +\infty$. Тогда

- а) $\sum_{n=0}^{\infty} (a_{n+1} a_n)$ расходится;
- б) $\sum_{n=1}^{\infty} \left(\frac{1}{a_n} \frac{1}{a_{n+1}} \right)$ сходится.

Теорема. Пусть $\{a_n\}$ — неубывающая последовательность и $a_n \to +\infty$. Тогда

- а) $\sum_{n=1}^{\infty} (a_{n+1} a_n)$ расходится;
- б) $\sum_{n=1}^{\infty} \left(\frac{1}{a_n} \frac{1}{a_{n+1}} \right)$ сходится.

Пример.
$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n} \right).$$

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\} - \text{ограничена}.$$

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\} - \text{ограничена}.$$

Теорема (признак сравнения).

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\}$$
 — ограничена.

Теорема (признак сравнения). Пусть даны два ряда с неотрицательными

членами:
$$\sum_{n=1}^{\infty} a_n$$
, $\sum_{n=1}^{\infty} b_n$.

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\} - \text{ограничена}.$$

Теорема (признак сравнения). Пусть даны два ряда с неотрицательными

членами:
$$\sum_{n=0}^{\infty} a_n$$
, $\sum_{n=0}^{\infty} b_n$. Пусть $0 \leqslant a_n \leqslant b_n$ (при $n \geqslant n_0$).

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\}$$
 — ограничена.

Теорема (признак сравнения). Пусть даны два ряда с неотрицательными

членами:
$$\sum_{n=1}^{\infty}a_n, \ \sum_{n=1}^{\infty}b_n.$$
 Пусть $0\leqslant a_n\leqslant b_n$ (при $n\geqslant n_0$). Тогда

1)
$$\sum_{n=1}^{\infty} b_n$$
 – сходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ – сходится;

1. Ряды с неотрицательными членами

$$\sum_{n=1}^{\infty} a_n, \qquad a_n \geqslant 0.$$

$$\sum_{n=1}^{\infty} a_n < \infty \quad \Leftrightarrow \quad \{S_n\}$$
 — ограничена.

Теорема (признак сравнения). Пусть даны два ряда с неотрицательными

членами:
$$\sum_{n=1}^{\infty}a_n, \ \sum_{n=1}^{\infty}b_n.$$
 Пусть $0\leqslant a_n\leqslant b_n$ (при $n\geqslant n_0$). Тогда

- 1) $\sum_{n=1}^{\infty} b_n$ сходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ сходится;
- 2) $\sum_{n=1}^{\infty} a_n$ расходится $\Rightarrow \sum_{n=1}^{\infty} b_n$ расходится.

Теорема (признак сравнения в предельной форме).

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1}^{\infty} a_n, \ \sum_{n=1}^{\infty} b_n,$

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$,

где $a_n\geqslant 0,\, b_n>0$ (при $n\geqslant n_0$).

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$, где $a_n \geqslant 0, \, b_n > 0$ (при $n \geqslant n_0$). Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = k \in [0, +\infty]$.

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1}^{n} a_n$, $\sum_{n=1}^{n} b_n$, где $a_n \geqslant 0, \, b_n > 0$ (при $n \geqslant n_0$). Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = k \in [0, +\infty]$. Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1}^{\infty}a_n, \sum_{n=1}^{\infty}b_n,$ где $a_n\geqslant 0,\, b_n>0$ (при $n\geqslant n_0$). Пусть $\lim_{n\to\infty}\frac{a_n}{b_n}=k\in [0,+\infty].$ Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$0 < k \leqslant +\infty$$
, то $\sum_{n=1}^{\infty} b_n$ - расходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ - расходится.

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1} a_n, \sum_{n=1} b_n,$ где $a_n \geqslant 0, \, b_n > 0$ (при $n \geqslant n_0$). Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = k \in [0, +\infty]$. Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$0 < k \leqslant +\infty$$
, то $\sum_{n=1}^{\infty} b_n$ - расходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ - расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1} a_n, \sum_{n=1} b_n,$ где $a_n\geqslant 0,\, b_n>0$ (при $n\geqslant n_0$). Пусть $\lim_{n\to\infty} \frac{a_n}{b_n}=k\in [0,+\infty].$ Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$0 < k \leqslant +\infty$$
, то $\sum_{n=1}^{\infty} b_n$ – расходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ – расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Примерs:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$$

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1} a_n, \sum_{n=1} b_n,$ где $a_n \geqslant 0, \, b_n > 0$ (при $n \geqslant n_0$). Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = k \in [0, +\infty].$ Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$0 < k \leqslant +\infty$$
, то $\sum_{n=1}^{\infty} b_n$ – расходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ – расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Примерs:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}, \quad \sum_{n=1}^{\infty} \sin \frac{x}{n}$$

Теорема (признак сравнения в предельной форме). Пусть $\sum_{n=1} a_n, \sum_{n=1} b_n,$ где $a_n \geqslant 0, \, b_n > 0$ (при $n \geqslant n_0$). Пусть $\lim_{n \to \infty} \frac{a_n}{b_n} = k \in [0, +\infty]$. Тогда

1) если
$$0\leqslant k<\infty$$
, то $\sum_{n=1}^\infty b_n$ – сходится \Rightarrow $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$0 < k \leqslant +\infty$$
, то $\sum_{n=1}^{\infty} b_n$ - расходится $\Rightarrow \sum_{n=1}^{\infty} a_n$ - расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n^p}.$$

Примерs:
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}, \quad \sum_{n=1}^{\infty} \sin \frac{x}{n}, \quad \sum_{n=1}^{\infty} \left(1 - \cos \frac{x}{n}\right).$$

Теорема (признак Коши).

1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ – сходится;

- 1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

- 1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Коши в предельной форме).

- 1) Если $\sqrt[n]{a_n} \leqslant q < 1$ при $n \geqslant n_0,$ то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Коши в предельной форме). Пусть $a_n \geqslant 0$ и $\lim_{n \to \infty} \sqrt[n]{a_n} = q$.

- 1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Коши в предельной форме). Пусть $a_n\geqslant 0$ и $\lim_{n\to\infty}\sqrt[n]{a_n}=q$.

1) Если q < 1, то $\sum_{n=1}^{\infty} a_n$ – сходится;

- 1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Коши в предельной форме). Пусть $a_n\geqslant 0$ и $\lim_{n\to\infty}\sqrt[n]{a_n}=q$.

- 1) Если q < 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если q>1, то $\sum_{n=1}^{\infty}a_{n}$ расходится;

- 1) Если $\sqrt[n]{a_n}\leqslant q<1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ сходится;
- 2) если $\sqrt[n]{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Коши в предельной форме). Пусть $a_n\geqslant 0$ и $\lim_{n\to\infty}\sqrt[n]{a_n}=q$.

- 1) Если q < 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если q>1, то $\sum_{n=1}^{\infty}a_n$ расходится;
- 3) если q=1, то $\displaystyle\sum_{n=1}a_n$ может как сходиться, так и расходиться.

Теорема (признак Даламбера).

$$1)$$
если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\;\sum_{n=1}^\infty a_n$ – сходится;

- 1) если $\frac{a_{n+1}}{a_n} \leqslant d < 1$ при $n \geqslant n_0$, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\displaystyle\sum_{n=1}^{\infty}a_n$ расходится.

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме).

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме). Пусть $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d$.

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме). Пусть $a_n>0$ и $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d$. Тогда

1) если d < 1, то $\sum_{n=1}^{\infty} a_n$ – сходится;

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме). Пусть $a_n>0$ и $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d$. Тогда

- 1) если d < 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если d>1, то $\sum_{n=1}^{\infty}a_n$ расходится;

- 1) если $\frac{a_{n+1}}{a_n}\leqslant d<1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\frac{a_{n+1}}{a_n}\geqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Даламбера в предельной форме).

Пусть $a_n > 0$ и $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = d$. Тогда

- 1) если d < 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если d>1, то $\sum_{n=1}^{\infty}a_n$ расходится;
- 3) если d=1, то $\sum_{n=1}^{\infty}a_{n}$ может как сходиться, так и расходиться.

Примеры:
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$$

Примеры:

ы:
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}, \quad \sum_{n=1}^{\infty} \frac{x^n}{n!}$$

Примеры:

ры:
$$\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}, \quad \sum_{n=1}^{\infty} \frac{x^n}{n!}, \quad \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!(2n+1)}.$$

Теорема (признак Раабе).

Теорема (признак Раабе). Пусть $a_n > 0$.

Теорема (признак Раабе). Пусть $a_n > 0$.

1) Если
$$\left(1 - \frac{a_{n+1}}{a_n}\right) n \geqslant r > 1$$
 при $n \geqslant n_0$, то $\sum_{i=1}^{\infty} a_i -$ сходится;

Теорема (признак Раабе). Пусть $a_n > 0$.

- 1) Если $\left(1 \frac{a_{n+1}}{a_n}\right) n \geqslant r > 1$ при $n \geqslant n_0$, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если $\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

- 1) Если $\left(1 \frac{a_{n+1}}{a_n}\right) n \geqslant r > 1$ при $n \geqslant n_0$, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если $\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Раабе в предельной форме).

- 1) Если $\left(1-\frac{a_{n+1}}{a_n}\right)n\geqslant r>1$ при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ сходится;
- 2) если $\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$ при $n\geqslant n_0$, то $\sum_{n=1}^\infty a_n$ расходится.

Теорема (признак Раабе в предельной форме). Пусть $a_n > 0$

1) Если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\geqslant r>1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^{\infty}a_n$ – сходится;

2) если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ – расходится.

Теорема (признак Раабе в предельной форме). Пусть $a_n > 0$ и пусть

$$\lim_{n \to \infty} \left(1 - \frac{a_{n+1}}{a_n} \right) \cdot n = r.$$

1) Если r > 1, то $\sum_{n=1}^{\infty} a_n$ – сходится;

1) Если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\geqslant r>1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^{\infty}a_n$ – сходится;

2) если
$$\left(1 - \frac{a_{n+1}}{a_n}\right) n \leqslant 1$$
 при $n \geqslant n_0$, то $\sum_{n=1}^{\infty} a_n$ – расходится.

Теорема (признак Раабе в предельной форме). Пусть $a_n > 0$ и пусть

$$\lim_{n \to \infty} \left(1 - \frac{a_{n+1}}{a_n} \right) \cdot n = r.$$

- 1) Если r > 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если r < 1, то $\sum_{n=1}^{\infty} a_n$ расходится;

1) Если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\geqslant r>1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^{\infty}a_n$ – сходится;

2) если
$$\left(1-\frac{a_{n+1}}{a_n}\right)n\leqslant 1$$
 при $n\geqslant n_0,$ то $\sum_{n=1}^\infty a_n$ – расходится.

Теорема (признак Раабе в предельной форме). Пусть $a_n > 0$ и пусть

$$\lim_{n \to \infty} \left(1 - \frac{a_{n+1}}{a_n} \right) \cdot n = r.$$

- 1) Если r > 1, то $\sum_{n=1}^{\infty} a_n$ сходится;
- 2) если r < 1, то $\sum_{n=1}^{\infty} a_n$ расходится;
- 3) если r=1, то $\sum_{n=1}^{\infty}a_{n}$ может как сходиться, так и расходиться.

Теорема (признак Коши-Маклорена (интегральный признак)).

a) $f(x) \ge 0$;

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$
- d) интегрируема на [1, A] при любом A > 1.

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$
- d) интегрируема на [1, A] при любом A > 1.

Тогда, если

1) если
$$\exists \lim_{A \to +\infty} \int_1^A f(x) \, dx$$
, то $\sum_{n=1}^\infty a_n$ – сходится;

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$
- d) интегрируема на [1, A] при любом A > 1.

Тогда, если

1) если
$$\exists \lim_{A \to +\infty} \int_1^A f(x) dx$$
, то $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$\lim_{A \to +\infty} \int_1^A f(x) \, dx = +\infty$$
, то $\sum_{n=1}^\infty a_n$ – расходится.

- a) $f(x) \geqslant 0$;
- b) f(x) невозрастающая;
- c) $f(n) = a_n;$
- d) интегрируема на [1, A] при любом A > 1.

Тогда, если

1) если
$$\exists \lim_{A \to +\infty} \int_1^A f(x) \, dx$$
, то $\sum_{n=1}^\infty a_n$ – сходится;

2) если
$$\lim_{A \to +\infty} \int_1^A f(x) \, dx = +\infty$$
, то $\sum_{n=1}^\infty a_n$ – расходится.

Пример:
$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n+1)}.$$

Оценка остатка ряда:

$$F(+\infty) - F(n+1) \leqslant r_n \leqslant F(+\infty) - F(n)$$
.