图像增强 Image Enhancement

动机/目标: 提高图像质量(视觉感受)

途径:分析图像质量下降/视觉感受不好的原因,对症下药

学习方法: • 避免单纯学习算法(如同死背"验方")

- 学会分析图像特性(如同诊断)
- 掌握算法的构思(动机)(如同掌握各味药的药性)
- 学会根据图像特性设计(组合)算法(如同调配中药方)

图像质量因素1: 灰度分布不合理

充分使用灰度动态范围 (不浪费灰度区间)

曝光不足 图像过暗

>>> 没有充分利用高灰度区间

曝光过度 图像过亮

没有充分利用低灰度区间

逆光 图像明暗对比过大

公 只利用了少量的灰度

图像质量因素2: 噪声

抑制噪声 (提高信噪比)

图像质量因素3: 模糊

增强细节,提高对比度

图像质量问题的分类以及应对方法

图像噪声干扰 噪声抑制

图像模糊/低对比度 — 细节增强/对比度增强

灰度映射(灰度直方图变换)

LIST

13

灰度直方图(Gray Histogram)

$$h(r_k)=n_k$$
 cardinality in a set
$$n_k=\mathop{card}_{(x,y)}\{I(x,y)=r_k\}\ \ (灰度等于r_k$$
的像素总数)
$$r_k=[0,K-1]\ \ \ (图像灰度范围)$$

$$\sum_{k} h(r_k) = \sum_{k} n_k = n \quad (图像面积)$$

归一化直方图(normalized histogram) : $p(r_k) = \frac{h(r_k)}{n} = \frac{n_k}{n}$

$$0 \le p(r_k) \le 1$$

$$\sum_{k} p(r_{k}) = 1$$

理解灰度直方图

直方图的"峰" -> 灰度聚类(存在大量像素具备相近的灰度)

视觉特性: 有效灰度级与视觉质量

视觉特性: 灰度范围与视觉质量

视觉特性: 灰度分布与视觉质量

最大限度均匀覆盖灰度范围

以牺牲有效灰度级为价值,增大覆盖灰度范围,且提高分布的均匀性

灰度映射(Gray mapping)

$$s = T(r)$$
 原始图像灰度 r

目标图像灰度s

• 灰度映射函数是单调函数

灰度分段线性映射

伽玛校正(Gamma Correction)

$$s = r^{\gamma}$$

$$s = T(r)$$

 $T'(r) > 1 \rightarrow 灰度范围拉伸$

 $T'(r) < 1 \rightarrow 灰度范围压缩$

2021/11/1 LIST 23

累积直方图(Cumulative Histogram)

$$H(k) = \sum_{i=1}^{k} p(i)$$
 $k = [1, K]$

$$H(k) = \begin{cases} p(1) & (k=1) \\ H(k-1) + p(k) & otherwise \end{cases}$$

直方图均衡算法原理

因为理想累积直方图 $H(s) = s \rightarrow s = H(r)$

灰度	0	1	2	3	4	5	6	7	[0,7]
k	1	2	3	4	5	6	7	8	[1,8]
p(k)	0.05	0.10	0.35	0.30	0.10	0.05	0.05	0.00	
H(k)	0.05	0.15	0.50	0.80	0.90	0.95	1.00	1.00	
S	0.05	0.15	0.50	0.80	0.90	0.95	1.00	1.00	
S	0.4	1.2	4.0	6.4	7.2	7.6	8.0	8.0	
	0	1	4	6	7	8	8	8	[1,8]
灰度	0	0	3	5	6	7	7	7	[0,7]

250

200

图像平滑(噪声抑制) Denoising

图像平滑方法分类

- ●空间域
 - ▶线性方法(线性滤波器)
 - ✓均值滤波器, 高斯滤波器, 维纳滤波器, …
 - ▶非线性方法
 - ✓ 中值滤波器, 全变分, 非局部均值, 双边滤波, 非均匀扩散, …
 - ▶结合线性与非线性方法
- ●基于形态学运算的方法
- ●基于模糊理论的方法
- ●基于人工神经网络的方法
- ●基于统计的方法
- ●变换域的方法
 - ➤小波域, 主成份分析(PCA), ···

图像平均(Image Averaging)

原始图像(无噪声的理想图像):1

采样图像(包含噪声): I(t), (t=1,...,N)

$$I(t) = I + n(t)$$
 $n(t) \rightarrow 服从高斯分布$

$$\hat{I} = \frac{1}{N} \sum_{t=1}^{N} I(t) = I + \frac{1}{N} \sum_{t=1}^{N} n(t)$$

邻域像素的平均

$$\hat{I}(x,y) = \frac{1}{(2W+1)^2} \sum_{i=-W}^{W} \sum_{j=-W}^{W} I(x+i,y+j)$$

加权平均

$$\hat{I}(x,y) = \sum_{i=-W}^{W} \sum_{j=-W}^{W} h(i,j)I(x-i,y-j)$$

灰度图像

频谱图像

频谱特性

低通滤波器 (Lowpass Filter)

$$G(u,v) = H(u,v) F(u,v)$$

H(u,v): 传递函数

F(u,v): 输入图像的频域特性

G(u,v): 输出图像的频域特性

$$g(x,y) = h(x,y) * f(x,y)$$

h(x,y): 点扩展函数 (Point Spread Function)

理想低通滤波器 (Ideal Lowpass Filter)

高斯滤波器(Gaussian Lowpass Filter)

$$h(x) = \sqrt{2\pi} \sigma A e^{-2\pi^2 \sigma^2 x^2}$$

$$H(u) = Ae^{-u^2/2\sigma^2}$$

均值滤波器 (Averaging filter)

$$h(x) = \begin{cases} 1 & (-a/2 \le x \le a/2) \\ 0 & otherwise \end{cases}$$

$$H(u) = \int_{-a/2}^{a/2} e^{-j2\pi ux} dx$$

$$= \frac{e^{-j\pi au} - e^{j\pi au}}{-j2\pi u}$$

$$= \frac{\sin(\pi au)}{\pi u}$$

300₀

中值滤波器(Median Filter)

300 0

加权中值滤波器(Weighted Median Filter)

图像锐化&对比度增强 Image Sharpening Contrast Enhancement

Unsharp Masking

$H_L(u, v) + H_H(u, v) = 1 \rightarrow H_H(u, v) = 1 - H_L(u, v)$

记 $\alpha = \alpha' + 1 \rightarrow \hat{F}(u, v) = H_L(u, v)F(u, v) + H_H(u, v)F(u, v) + \alpha'H_H(u, v)F(u, v)$ $\widehat{F}(u,v) = [1 + \alpha' H_H(u,v)] F(u,v)$

2021/11/1

Laplacian

多分辨Unsharp Masking

同态滤波器(Homomorphic Filter)

Retinex

对比度增强算法

logI(x,y) = logL(x,y) + logR(x,y)

