[Info 525]Logique

CLAVIER Paul

November 18, 2013

Contents

1	Log	ique	3	
	1.1		3	
		1.1.1 Vocabulaire	3	
		1.1.2 Syntaxe	4	
2	Validité d'une formule 4			
	2.1	Sémantique	4	
	2.2	Validité et Consistance	5	
	2.3	Remarque: Métalangage	5	
3	Thé	eorie syntaxique	5	
	3.1	Introduction	5	
	3.2	Équivalence et remplacement	5	
	3.3	Algèbre de Boole	6	
	3.4	Formes normales	6	
	3.5	Méthode des arbres	7	
	0.0	3.5.1 Méthode syntaxique	7	
4	Validité d'un raisonnement			
	4.1	Théorie sémantique	7	
		4.1.1 Objectifs	7	
5	Déc	luction naturelle	8	
	5.1	Règles pour l'implication	8	
	5.2	Règle pour la disjonction	8	
	5.3	Règles pour la négation	8	
6	Déc	luctibilité sémantique	8	

1 Logique

1.1 Introduction

Le calcul des propositions ou des énoncés:

- des plus élémentaires (ordre 0)
- des plus fondamentaux
- des plus simples: propositions non analysée

Calcul:

- étudie les énoncés qui sont soit vrais, soit faux
- Vériconditionnel: comment les énoncés complexes deviennent vrais ou faux selon que énoncés qui le compose sont vais ou faux.

Définition : Un énoncé ou proposition est de qui est vrai ou faux

Notion simplificatrice de la vérité

On s'intéresse à la structure des propositions complexes

- indépendamment de leur contenu de signification
- indépendamment de la langue naturelle

La logique est un langage

- Vocabulaire
- \bullet Syntaxe
- Sémantique

1.1.1 Vocabulaire

- 1. Ensemble infini dénombrable de proposition
 - $\bullet\,$ désignés par une lettre minuscule
- 2. Ensemble d'opérateurs
 - négation: ¬
 - conjonction: \wedge
 - disjonction: \vee
 - implication: \rightarrow
 - \bullet équivalence: \leftrightarrow
- 3. Ensemble de séparateurs: $(,), [,], \{, \}$

1.1.2 Syntaxe

- Le vocabulaire peut donner lieu à de multiples assemblages de symboles
- Les assemblages qui font partie du langage sont appelés des formules
- Les formules sont obtenues à partir de règles de formation

Formules:

- 1. Toute proposition est une formule: formule atomique
- 2. Récurrence: Si A et B sont deux formules Alors $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$, ... sont des formules
- 3. Clôture: rien d'autre n'est une formule

Remarques:

- 1. Les parenthèses permettent de déterminer l'ordre d'application des règles
- 2. Langage objet et méta-langage
 - langage objet: objet de la théorie (langage des formules)
 - introduction de nouveaux symboles: A, B, ⇔, ⊨, ... qui permettent de parler des formules (langage de l'observateur)
- 3. L'ensemble des formules est infini dénombrable
- 4. Cet ensemble est récursif

2 Validité d'une formule

2.1 Sémantique

- La sémantique attribue une signification aux formules du langage
- Un proposition est soit vraie soit fausse

Définition: Le domaine sémantique est $\{V, F\}$

Définition : Interpréter une formule consiste à lui attribuer la valeur V ou F

Définition: On appelle assignation sur n propositions un ensemble d'interprétations de ces propositions. Elle définit un monde possible

Définition: L'interprétation est une fonction appelée fonction de vérité $\{assignations\} \longrightarrow \{V, F\}$. A partir de n propositions, il est possible de définir 2^{2^n}

Opérateur propositionnel :

- Les fonctions de vérité d'une ou de deux propositions constituent les définitions sémantiques des opérateurs propositionnels
- Ces opérateurs suffisent pour exprimer les fonctions de vérité de plus de 2 propositions

Définition : Une assignation qui rend vrai une formule est appelé un modèle pour cette formule

2.2 Validité et Consistance

Définition: Une formule est sémantiquement consistance, ou consistance, si elle admet au moins un modèle.

Définition: Une formule est dite valide si toutes ses assignations sont des modèles. Une formule valide est aussi appelée tautologie.

Théorème: Si une formule est valide (resp. inconsistante), la formule obtenue en substituant chaque occurrence d'une lettre de proposition par une formule quelconque est également valide (resp. inconsistante).

2.3 Remarque: Métalangage

- L'expression: "A est une formule valide" appartiens au métalangage, on la note: \vDash
- Le symbole \(\mathbb{P} \) ne peut pas apparaître dans une formule du langage objet

Remarque : \rightarrow est un opérateur logique comme les autres.

3 Théorie syntaxique

3.1 Introduction

Pour connaître la validité d'un formule, on dispose de 2 méthodes:

- méthode sémantique (table de vérité)
- méthode symbolique (syntaxique): transformer, réécrire, une formule équivalente pour aboutir à une formule remarquable (tautologie)

3.2 Équivalence et remplacement

• Des formules différentes peuvent avoir la même table de vérité

Définition : 2 formules ont la même table de vérité ssi:

$$\models A \leftrightarrow B$$

Définition : Relation d'équivalence logique:

$$A \Leftrightarrow B \ ssi \models A \leftrightarrow B$$

Remarques:

- \Leftrightarrow n'est pas un opérateur permettant de définir une formule
- $A \Leftrightarrow B$ est une relation du méta-langage
- \Leftrightarrow est une relation d'équivalence (réflexive, transitive, symétrique)

Théorème de remplacement : Notons $\Phi(F)$ une formule contenant la sous formule F. Si $A \Leftrightarrow B$ alors $\Phi(A) \Leftrightarrow \Phi(A/B)$ (A est remplacé par B).

Corollaire : Si $A \Leftrightarrow B$, alors si $\models \Phi(A), \models \Phi(A/B)$

Intérêt : On peut construire une chaîne d'équivalences sans passer par les tables de vérité.

5

3.3 Algèbre de Boole

Calcul : transformer une formule en une formule équivalente.

Équivalences fondamentales : justifiées par les tables de vérité.

Définition : 1 et 0 sont deux formules particulières. 1 désigne la classe des formules valides, 0 désigne celle des formules inconsistantes.

Idempotence : $A \lor A \Leftrightarrow A$, $A \land A \Leftrightarrow A$.

Non contradiction : $A \land \neg A \Leftrightarrow 0$

 $\mathbf{Tiers}\ \mathbf{exclu}\ :\ A \vee \neg A \Leftrightarrow 1$

Double négation : $\neg \neg A \Leftrightarrow A$

Éléments neutres : $A \wedge 1 \Leftrightarrow A, A \vee 0 \Leftrightarrow A$

Commutativité : $A \lor B \Leftrightarrow B \lor A$, $A \land B \Leftrightarrow B \land A$

 $\begin{array}{c} \textbf{R\'e\'ecriture} \,:\, A \leftrightarrow B \Leftrightarrow (A \land B) \lor (\neg A \land \neg B) \\ A \rightarrow B \Leftrightarrow \neg A \lor B \end{array}$

Corollaires:

Lois d'absorption : $A \lor (A \land B) \Leftrightarrow A, A \land (A \lor B) \Leftrightarrow A$

3.4 Formes normales

Rôle important : manipulation "courante" des formules mises sous formes normales.

Définition: On appelle *clause* une disjonction de termes ou chaque terme est soit une lettre de proposition, soit une négation de lettre de proposition.

Définition: Une formule est dite en forme normale conjonctive (FNC) si elle est une conjonction de clauses.

Définition: Une formule est dite en *forme normale disjonctive (FND)* si elle est une disjonction de conjonctions dont chaque terme est une lettre de proposition ou une négation de lettre de proposition.

Théorème : Pour chaque formule, il existe au moins une FNC et une FND logiquement équivalente. Elles sont appelées formes normales de cette formule.

Algorithme de normalisation:

- 1. Élimination des connecteurs \rightarrow et \leftrightarrow
- 2. Application des lois de De Morgan et élimination des doubles négations
- 3. Application des règles de la distributivité

3.5 Méthode des arbres

3.5.1 Méthode syntaxique

- décider si une formule est valide ou inconsistante
- permet de développer une formule
 - construire une FND équivalente
- ullet système formel \Rightarrow définir des règles de réécriture
- méthode graphique:
 - une conjonction est vraie ssi les 2 termes sont vrais: séquence
 - une disjonction est vraie ssi au moins 1 terme est vrai: branchement
- règles de constructions

Construire un arbre à partir d'une formule donnée en ré-écrivant chaque formule

on pointe une formule pour indiquer qu'elle a été réécrite

- règles de réécriture pour: $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ et leur négation.
- construction de chemins
- fermeture d'un chemin: on ferme un chemin dès qu'il contient une formule et sa négation
- arbre complètement développé: les formules sont réécrites jusqu'au lettres de propositions ou leurs négations
- chemins non fermés de l'arbre complètement développé
 - chemins de vérité: conjonction de lettres de proposition obtenues en lisant l'arbre de bas en haut. Si la valeur d'un chemin est vraie, la formule est vraie
 - termes d'une FND équivalente

4 Validité d'un raisonnement

4.1 Théorie sémantique

4.1.1 Objectifs

Jusqu'à présent :

- véracité des énoncés
- relation entre formules (\Leftrightarrow)

Déduction :

• Opération qui consiste à adjoindre à un ensemble d'énoncés un autre énoncé nécessairement vrai si les premiers le sont.

- \bullet Relation de déductibilité entre hypothèses et conséquence résultante
- Tautologie Validité: A est valide si toutes les assignations sont des modèles

Définition: Nous notons $A_0, A_1, \ldots, A_n \models B$ ssi toute assignation qui vérifie conjointement A_0, A_1, \ldots, A_n vérifie également B

Définition: B est une conséquence valide de A_0, A_1, \ldots, A_n . \models est une relation, la relation de déductibilité, entre formules.

Remarque: Une tautologie est toujours vraie, conditionnée par aucune prémisse: $\models A$ est une abréviation de $\emptyset \models A$.

Propriétés de la relation ⊨ : E et F désignent deux listes de formules finies

- 1. si $AinE, E \models A$
- 2. si $E \models A$ alors $E, F \models A$
- 3. si $E \models A$ et $F, A \models B$ alors $E, F \models B$

Théorème : $B \models A \text{ ssi} \models B \rightarrow A$.

Théorème: $A_0, \ldots, A_n \models A \text{ ssi } A_0, \ldots, A_{n-1} \models An \to A$.

5 Déduction naturelle

5.1 Règles pour l'implication

- $\bullet \rightarrow_e : A, A \rightarrow B \vdash B$
- $\bullet \rightarrow_i : X, A \vdash B, X \vdash A \rightarrow B$

5.2 Règle pour la disjonction

- $\bullet \lor_i : A \vdash A \lor B$
- \vee_e si $A \vdash C$ et $B \vdash C$, alors $A \vee B \vdash C$

5.3 Règles pour la négation

- $\bullet \ \neg \neg_e : \neg \neg A \vdash A$
- \neg_i : si $X, A \vdash B$ et $x, A \vdash \neg B$ alors $X \vdash \neg A$

6 Déductibilité sémantique