Q-1. Solve
$$\int_{0}^{2} x + 3 \int_{0}^{2} x + 2y = e^{e^{x}}$$
 (Nort. 2018)
 $\Rightarrow \int_{0}^{2} x + 3 \int_{0}^{2} x + 2y = e^{e^{x}}$
 $\therefore D^{2}y + 3Dy + 2y = e^{e^{x}}$
 $\therefore D(D) = D^{2} + 3D + 2$ $\int_{0}^{2} (x) = e^{e^{x}}$
 $\therefore D(D) = D^{2} + 3D + 2$ $\int_{0}^{2} (x) = e^{e^{x}}$
 $\therefore C = C_{1} e^{-x} + C_{2} e^{-2x}$
 $\therefore C = C_{1} e^{-x} + C_{2} e^{-2x}$
 $\therefore C = C_{1} e^{-x} + C_{2} e^{-2x}$

	$= 1 \int e^{-x} \int e^{x} e^{e^{x}} dx$
	0+2 -x ex7
	= 1 e e $D+2$
5	$= e^{-2x} \int e^{2x} e^{-x} e^{e^{x}} dx$
	$Y = e^{-2x} e^{e^x}$
	FEOT CONTRACTA CONTRACTA
	y = yc + yp
	$y = C_1 e^{-x} + C_2 e^{-2x} + e^{-2x} e^{x}$
0-9	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = xe^{-x}$. (My 2017)
	$\frac{dx^2}{dx^2}$ $\frac{dx}{dx}$
	lot d = 0.
	$(D^2 + 2D + 1)y = x.e^{-x}.$
	$: Y_{e} = (c_{1} + xc_{2})e^{-x} - 0$
	$f(x) = x e^{-x} cox = e^{-x} (x cox).$
	$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{e^2}{2} \left(\frac{1}{2} \cos x \right) \right)$

Longary with
$$\frac{1}{\Phi(D+\Delta)} = e^{+AX}$$
, $V = \frac{1}{\Phi(D)} = e^{AX}$ $V = \frac{1}{\Phi(D)} = e^{-AX}$ $V = \frac{1}{\Phi(D)} = e^{-X}$ $(x \cos x)$ $(x \cos x$

(Nov. 2017) Q-3. Solve $(2^2-22)y=e^x$. tunx-> Here, $O(D) = D^2 - 2D + 2$, $f(x) = e^x \tan x$.

roots = $2 \pm \sqrt{4-8}$ = 1 ± i $\therefore \gamma_c = e^{\alpha} \left[c_1 \cos \alpha + c_2 \sin \alpha \right] - (1)$ In MVP, ye = C, y, + C, y. $\therefore y_1 = e^{\chi} \cos \chi \qquad , y_2 = e^{\chi} \cdot \sin \chi.$: y' = e cox - e sinx, y' = e sinx + e cox = $e^{x} \cos x$ $e^{x} \sin x$ $e^{x} \cos x - e^{x} \sin x$ $e^{x} \sin x + e^{x} \cos x$ $= e^{2x} \left(\frac{\sin x}{\cos x} + \cos^2 x - \frac{\sin x}{\cos x} + \sin^2 x \right)$ $=e^{2x}\left(\omega^2x+\sin^2x\right)$ $=e^{2x}(1)$ W = e2x - $U = \begin{cases} -\frac{y}{2} & f(x) & dx = \begin{cases} -\frac{e^x}{2} & \sin x \\ e^{e^x} & \frac{e^x}{2} \end{cases}$ - U= - [log(secx+tanx) - sinx]

 $V = \int \frac{y}{v} \cdot y(x) \cdot dx = \int \frac{e^x}{e^{2x}} \cdot \frac{e^x}{v} \cdot \frac{t}{t} dx$ = $\int \sin x \, dx$ = - 5000 % Using MVP, yp = lly, + Vy2 = $\left[\sin x - \log \left(\sec x + \tan x\right)\right] e^{x} \cdot \cos x + \left[-\cos x\right] e^{x} \sin x$ $y_{\rho} = -e^{x} \cdot \cos x \cdot \log \left(\sec x + \tan x\right) - 4$ $\therefore y = e^{\alpha} \left[c_1 \cos \alpha + c_2 \sin \alpha - \cos \alpha \cdot \log(\sec \alpha + \tan \alpha) \right]$ Q-4. χ^2 , $\frac{d^2y}{dx^2}$, (-x), $\frac{dy}{dx}$, $\frac{dy}{dx}$ = $\cos(\log x)$ + $x \sin(\log x)$ [Not. 2018] Given equation becomes, $D(D-1)y - Dy + 4y = \cos(z) + e^{3}\sin(z)$ $(D^{2}-2D+4)y = \cos(z) + e^{3}\sin(z)$, y depends on z.

Subtitute @ in @, we get $y = cost + C_1 e^{-t} - C_2 e^{t} - cost$ $y = C_1 e^{-t} - C_2 e^{t}$