CS 2

Introduction to **Programming Methods**

Last Time: Sorting

Introduced ways to sort, and complexityno optimal way, though

Before then...

Assuming a comparison-based method... what is the best complexity we can get?

- for n numbers, how many permutations?
 - $n \cdot (n-1) \cdot (n-2) \dots \cdot 2 \cdot 1 = n!$
- the sorted list is only *one* of these n! combos
- each comparison kills half the permutations
 e.g., for 1,2,3: (123), (132), (213), (231), (312), (321)
 - if A[1]<A[2], then we are left with (123), (132), (231)
 - like the "20 questions" game... (can find one out of 2²⁰)
- so sorting is $\Omega(\log_2 n!) = \Omega(n \log n)$ (Stirling's)

CS2 - INTRODUCTION TO PROGRAMMING METHODS

5

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Introducing Convex Hull

Given a set $S = \{p_1, p_2, ..., p_N\}$ of points in 2D, convex hull H(S) is the smallest convex polygon in the plane that contains all of S.

Q: find the ordered list of points from S defining the convex hull H(S)

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Why is CH Interesting

Many reasons to look at it a bit

- extends sorting, in a way
 - in fact, easy to prove in 1D that the two problems share the same lower bound
 - > from $\{x_i\}$, compute CH of $\{x_i,x_i^2\}$
- neat in its own right in Comp. Geo.
- results you can see

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Convex Hull Construction

A first algorithm

- test every pair of points
 - are all other points on the same side of the line?
 - > stabbing, or non-stabbing
 - complexity?
 - \rightarrow in $O(n^3)$
 - let's do bette

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Gift Wrapping

Improving on previous algorithm

- find a point on convex hull
 - by going thru points and finding leftmost one (O(n))
- then find non-stabbing line (linear time)
- then repeat from new point
- Worst case?
 - n²
- More precisely, O(nh)
 - output sensitive!

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Can We Do Even Better

Yes, if we can sort in $O(n \log n)$...

So, let's revisit the kooky idea of "dividing" up the problem in smaller problems...

- actually pretty convenient in many cases
 - example: factorial
 - \rightarrow n! = n·(n-1)· ...·2·1
 - \rightarrow n! = n·(n-1)!
 - or Fibonacci numbers
 - \rightarrow Fib(n) = Fib(n-1)+Fib(n-2)
 - ➤ Fib(0)=0, Fib(1)=1.

```
static int factorial(int k)
{ If (k == 0) return 1; // 0! = 1
  else return k*factorial(k-1); }
```

static int Fib(int k)
{ If (k < 2) return k; //Fib(0/1)
else return Fib(k-1)+Fib(k-2); }

CS2 - INTRODUCTION TO PROGRAMMING METHODS

-

Recursive Sorting?

Could we:

- Divide input in half (trivial)
- Recursively sort each half (just two calls)
- Merge two halves together
 - this last step is less trivial, but...
 - how hard is it to merge two sorted lists?
 - \rightarrow compare "head elements" repeatedly \rightarrow O(n)

Base case:

• Sort($\{k\}$) = ... $\{k\}$.

CS2 - INTRODUCTION TO PROGRAMMING METHODS

R

Complexity (I)

So, did we gain anything in doing so?

- let's call T(n) the computational complexity
- T(n) = T(n/2) + T(n/2) + n
 - 2 recursive calls, and one O(n) merge
 - \blacksquare and T(1) = 1

	Com	plexity (II)	
	Let's ti	race a full execution	
log ₂ n _l levels	l list of length n		+n
	2 lists of length n/2		+n/2 +n/2
	4 lists of length n/4		+4 (n/4)
	n lists of length l	:	+n
		CS2 - INTRODUCTION TO PROGRAMMING METHODS	11

Complexity (III)

So, did we gain anything in doing so?

- let's all T(n) the computational complexity
- T(n) = T(n/2) + T(n/2) + n
 - 2 recursive calls, and one O(n) merge
 - \blacksquare and T(1) = 0
- $T(n) = O(n \log n)$


```
+n more than I said
   Code
                                                                  but no change in complexity
public class MergeSorter
                                                    private static void merge(int lo, int m, int hi)
  private static int[] a, b; // auxiliary array b
  public static void sort(int[] input)
                                                      // copy both halves of a to auxiliary array b
                                                      for (i=lo; i<=hi; i++)
                                                         b[i]=a[i];
     a=input;
    int n=a.length; b=new int[n];
     mergesort(0, n-1);
                                                      i=lo; j=m+1; k=lo;
                                                      // copy the next-greatest elmt, each time
                                                      while (i<=m && j<=hi)
  private static void mergesort(int lo, int hi)
                                                        if (b[i] \le b[j])
                                                          a[k++]=b[i++];
    if (lo<hi)
                                                        else
                                                          a[k++]=b[j++];
       int m=(lo+hi)/2;
       mergesort(lo, m);
                                                      // copy remaining elmts of first half (if any)
       mergesort(m+1, hi);
                                                      while (i<=m)
       merge(lo, m, hi);
                                                         a[k++]=b[i++];
                                                    // end class MergeSorter
                   CS2 - INTRODUCTION TO PROGRAMMING METHODS
```

Recursion, More Generally

Common recursive strategies

- Handle first and/or last, recur on rest
- Divide in half, recur on halves
- process, recur on updated state

Complexity of divide-and-conquer methods

- use of master theorem [CLRS]
 - T(n) = a T(n/b) + f(n)
- and variants

CS2 - INTRODUCTION TO PROGRAMMING METHODS

Recursion & Fractals

Snowflakes in "turtle graphics"

- F means "draw forward", + means "turn left by α ", and means "turn right by α "
- set α = 60°, and start with F
- then apply rule: $F \rightarrow F+F--F+F$

CS2 - INTRODUCTION TO PROGRAMMING METHODS

15

Using Recursion on Printers?

CS2 - INTRODUCTION TO PROGRAMMING METHODS