1. Find the vector going from point a to point b and write it in column-vector form and unit-vector form:

$$a = (-1, 1, 2)$$
 $b = (3, 5, 8)$

2. Find a value for n that will make the magnitude of vector \vec{a} 5:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ n \end{pmatrix}$$

For the same vector \vec{a} as above, is it possible to find a value for n that will make \vec{a} have a magnitude of 1? Find such a value n or explain why no such value exists:

3. Consider the path formed by the 4 vectors in the diagram below:

(a) Fill in + or - signs in between the vectors on the left hand side of the equation below to make the equation true:

$$\vec{a} \quad \vec{b} \quad \vec{c} \quad \vec{d} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(b) Let the following be the values for the vectors in the diagram:

$$\vec{a} = \begin{pmatrix} -2\\4 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 2\\3 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} c_x\\c_y \end{pmatrix}$ $\vec{d} = \begin{pmatrix} -3\\-5 \end{pmatrix}$

Find the value of c_x and c_y :

4. In the diagram below, the magnitude of \vec{a} is 10 and the angle between \vec{a} and \vec{b} is 50°. Find the magnitude of \vec{b} that will make the dot product $\vec{a} \cdot \vec{b} = 10$

