Chapitre 1 - Second Degré

vidéo résumé du chapitre

1 polynôme du 2nd degré

1.1 fonction polynôme de degré 2 et forme développée

Définition

- $f(x) = ax^2 + bx + c$ où $a \neq 0$ est appelé fonction polynomiale du second degré
- par abus de langage, on pourra dire polynôme du 2 nd degré
- attention, polynôme et fonction sont des objets différents ... mais c'est 1 autre histoire ...
- il s'agit de la forme développée de la fonction f
- elle existe toujours et est pratique pour évaluer la fonction (en particulier en 0)
- la courbe associée à cette fonction est 1 ${\bf parabole}$
- remarque : la parabole a 1 bosse (degré 2 1 = 1 bosse) ce qui n'est pas 1 hasard \dots

Exemple

• **ex**:
$$f(x) = 3x^2 - 2x + 1$$

$$f(1) =$$

$$f(-2) =$$

résoudre
$$f(x) = 1$$

1.2 visualisation de f et forme canonique

Définition

- soit $f(x) = ax^2 + bx + c$ où $a \neq 0$
- il existe (toujours) 2 réels α et β tel que : $f(x) = a(x \alpha)^2 + \beta$
- cette présentation de la fonction f s'appelle la forme canonique de f
- extrêmement pratique, elle permet de visualiser en un clin d'oeil l'allure de f :
 - le signe de a donne l'orientation de la parabole (haut ou bas)
 - (α ; β) sont les coordonnées du sommet
 - nous avons ainsi une allure rapide de \boldsymbol{f}
- pour trouver α et β , on appliquera la **méthode de reconstitution du carré**

Exemples

• ex 1: $f(x) = 3x^2 - 6x + 1$; trouver la forme canonique puis tracer l'allure de la fonction

• ex 2: $f(x) = -x^2 - 2x - 1$; trouver la forme canonique puis tracer l'allure de la fonction

Preuve

1.3 sens de variation

Cas a > 0

• soit $f(x) = ax^2 + bx + c$ où a > 0

x	$-\infty \qquad \qquad \alpha = -\frac{b}{2a}$	$+\infty$
f(x)	$\beta = f(\alpha)$	$+\infty$

Cas a < 0

• soit $f(x) = ax^2 + bx + c$ où a < 0

x	$-\infty$	$\alpha = -\frac{b}{2a}$	$+\infty$
f(x)	$-\infty$	$\beta = f(\alpha)$	→ -∞

Exemples à faire

• $f(x) = 3x^2 + 2x + 1$

x	$-\infty$ $+\infty$
f(x)	

•
$$f(x) = 3(x+2)^2 + 2$$

Remarque

- rappel : le point de coordonnées (α,β) est le sommet de la parabole
- f présente un axe de symétrie d'équation $x=\alpha$

Preuve du sens de variation

2 Équation du 2nd degré

2.1 Définitions

- équation du 2^{nd} degré : $ax^2 + bx + c = 0$ où $a \neq 0$
- racine (ou zéro) de l'équation : un réel t tel que $at^2+bt+c=0$

2.2 Résolution dans R

Méthode

- soit $f(x) = ax^2 + bx + c$ où $a \neq 0$
- on calcule $\Delta = b^2 4ac$
- 1er cas : $\Delta > 0$; les 2 racines sont alors $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$
- 2^{nd} cas : $\Delta=0$; la racine double est $x_1=-\frac{b}{2a}$ (carré parfait => identité remarquable)
- $3^{\rm ème}$ cas : $\Delta < 0$; l'équation n'a pas de racine

Exemple

• soit $f(x) = x^2 - 5x + 6$

Preuve

3 quelques propriétés de $ax^2 + bx + c$ où $a \neq 0$

3.1 relations coefficients racines

Propriété

- soit $ax^2 + bx + c = 0$ où $a \neq 0$ et $\Delta \geq 0$
- les 2 racines sont alors $x_{1,2} = \frac{-b \pm \sqrt{\Delta}}{2a}$ (éventuellement identiques si)
- on pose $S = x_1 + x_2$ et $P = x_1 \times x_2$
- on a alors : $ax^2 + bx + c = 0 \iff x^2 + \frac{b}{a}x + \frac{c}{a} = 0 \iff \boxed{x^2 Sx + P = 0}$
- remarque HP : cette propriété est une propriété générale lié aux polynômes de tous de degré (somme de Newton)

Preuve

3.2 factorisation de f

Factorisation

- soit $f(x) = ax^2 + bx + c$ où $a \neq 0$
- si $\Delta > 0$ alors $ax^2 + bx + c = a(x x_1)(x x_2)$
- si $\Delta = 0$ alors $ax^2 + bx + c = a(x x_1)^2$

Exemple

• factoriser f et g

$$f(x) = x^2 - 5x + 6$$

$$g(x) = 3x^2 + 12x - 15$$

Preuve

3.3 signe de f grâce à la factorisation de f

Signe de f

- soit $f(x) = ax^2 + bx + c$ où $a \neq 0$ et
- si $\Delta > 0$ alors $ax^2 + bx + c = a(x x_1)(x x_2)$ et on a :
 - $\cos a > 0$

x	$-\infty$		x_1		x_2		$+\infty$
f(x)		+	0	_	0	+	

• $\cos a < 0$

x	$-\infty$	x_1	x_2	$+\infty$
f(x)				

- si $\Delta = 0$ alors $ax^2 + bx + c = a(x x_1)^2$ et on a :
 - $\cos a > 0$

x	$-\infty$	x_1	+∞
f(x)		0	

• $\cos a < 0$

x	$-\infty$	x_1	$+\infty$
f(x)			

- si $\Delta < 0$ alors $f(x) = ax^2 + bx + c$ est du signe de a (ou de c)
- remarque HP: dans ce dernier cas ($\Delta < 0$), la droite y = 0 appelée hyperplan (dimension de l'espace 1 = 2-1 = 1 = > droite) partage le plan (c'est ici notre espace de travail) en 2 parties de signe distinct (+ et -); f se situe entièrement dans l'une des 2 parties et est donc soit positive soit négative; on essaye alors la valeur en 0 pour trouver son signe)

Exemple

- faire les tableaux de signes de $f,\,g$ et h

$$f(x) = x^2 - 5x + 6$$

$$g(x) = 3x^2 - 15$$

$$h(x) = x^2 + 2x + 1$$

Preuve

Visualisation graphique

4 Un peu de python

4.1 recherche de racines

```
1
   from math import sqrt
2
3
   def f(a, b, c):
4
      delta = b**2-4*a*c
5
6
      if delta < 0:</pre>
7
        print("f n'a pas de racines")
      elif delta == 0:
8
9
        print("f possède une racine double : ",-b/(2*a))
10
        print("f possède 2 racines distinctes : x1 = ",(-b+sqrt(delta))/(2*a),"et x2 \leftrightarrow (-b+sqrt(delta))/(2*a)
11
            = ",(-b-sqrt(delta))/(2*a))
12
   print(f(1,-5,6))
13
14
   print(f(1,2,1))
   print(f(1,3,6))
```

- améliorer le programme pour proposer la factorisation (si elle existe)
- proposer un programme qui donne le tableau de signe de f (travailler par intervalle)

4.2 tracer une courbe en python

```
import numpy as np
2
   import matplotlib.pyplot as plt
3
   def trace_courbes(a, b, c, debut, fin, nbre_de_point):
4
5
     x = np.linspace(debut, fin, nbre_de_point)
     y_1 = a*x**2+b*x+c
6
     # mettre une autre fonction ici
7
9
     plt.plot(x, y_1, label="f(x)")
10
     # mettre le 2ème tracé ici
11
     plt.legend()
12
13
     plt.show()
14
15
   trace_courbes(1,2,1,-5,5,30)
   # la figure est pro-active (on peut lire les points en direct)
```


Tracer une courbe sans python

- utiliser votre calculatrice graphique
- le logiciel gratuit geogebra est aussi un bon outil graphique
- $\bullet\,\,$ enfin, il existe des traceurs en ligne , par exemple solumaths