MATH 110, SUMMER 2013 PRACTICE PROBLEMS FOR 2ND MIDTERM MONDAY, JULY 29TH

JAMES MCIVOR

- (1) Find all eigenvalues and eigenvectors of the operator $T: P_3(\mathbb{F}) \to P_3(\mathbb{F})$ given by $Tp(x) = x^2p''(x)$.
- (2) Suppose an operator $T \in \mathcal{L}(V)$ satisfies $T^n = 0$ for some $n \in \mathbb{N}$. Prove that 0 is the only eigenvalue of T.
- (3) Let T be an operator on V which satisfies $\langle Tv, v \rangle \geq 0$ for all $v \in V$. Prove that any eigenvalues of T must be nonnegative real numbers.
- (4) Let $S: \mathbb{R}^3 \to \mathbb{R}^3$ be the map given by multiplication by the matrix $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Find all invariant subspaces for S. Possible hint: use the factorization

$$\left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

to try to understand the map S geometrically.

- (5) Give examples of the following:
 - (a) An operator with no eigenvalues.
 - (b) An operator which has eigenvalues but is not diagonalizable.
 - (c) An orthonormal basis for $P_2(\mathbb{F})$.
- (6) If (e_1, \ldots, e_n) is an orthonormal basis for an inner product space V, and $T \in \mathcal{L}(V)$ is the operator defined by $T(e_i) = e_{n-i}$, prove that $\langle Tv, Tw \rangle = \langle v, w \rangle$ for all $v, w \in V$.
- (7) Let V be an n-dimensional inner product space, and fix a vector $v \in V$. Define a map $\phi_v \colon V \to \mathbb{F}$ by $\phi_v(u) = \langle u, v \rangle$.
 - (a) What is the dimension of Null ϕ_v ? Does it depend on our choice of v?
 - (b) Now let $U = \operatorname{Span}(v)$, for this same choice of v above. Prove that $\phi_v|_{U^{\perp}}$ is the zero map.
- (8) If T is an operator on the inner product space V such that ||Tv|| = ||v|| for all $v \in V$, prove that T is invertible.