AB Geometrie & Topologie

Prof. Bernhard Leeb, Ph.D.

Dr. Stephan Stadler

Analysis I

ÜBUNGSBLATT 5

- 1. Geben Sie eine Bijektion $\beta : \overline{\mathbb{R}} \to [0,1]$ an, welche die Totalordnungen erhält, dh so daß für $x,y \in \overline{\mathbb{R}}$ gilt: $x < y \Leftrightarrow \beta(x) < \beta(y)$.
- 2. Existenz k-ter Wurzeln für alle $k \in \mathbb{N}$. Zeigen Sie:
 - (i) Ist $k \in \mathbb{N}$ gerade, so existiert zu $a \in \mathbb{R}_0^+$ ein eindeutiges $r \in \mathbb{R}_0^+$ mit $r^k = a$.
 - (ii) Ist $k \in \mathbb{N}$ ungerade, so existiert zu $a \in \mathbb{R}$ ein eindeutiges $r \in \mathbb{R}$ mit $r^k = a$.
- 3. Zeigen Sie:
 - (i) $\lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.
 - (ii) $\lim_{n \to \infty} (\sqrt{n+1} \sqrt{n}) = 0.$
 - (iii) Falls $a \in (0,1)$, so $\lim_{n \to \infty} \sqrt[n]{a} = 1$.
 - (iv*) $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Hinweis: Betrachten Sie für $\epsilon > 0$ die Darstellung $n = \frac{1}{\epsilon} \cdot \epsilon n$. Folgern Sie mit der Ungleichung von Bernoulli, daß $1 \leq \sqrt[n]{n} \leq \frac{1}{\sqrt[n]{\epsilon}} \cdot (1 + \epsilon)$ und verwenden Sie (iii).

4. Approximation von Quadratwurzeln durch das Heron-Verfahren. Es seien $a, u \in \mathbb{R}^+$. Wir definieren die Folge $(u_n)_{n \in \mathbb{N}}$ in \mathbb{R}^+ rekursiv durch $u_1 := u$ und

$$u_{n+1} := \frac{1}{2} \left(u_n + \frac{a}{u_n} \right).$$

Beweisen Sie:

- (i) $u_n \ge \sqrt{a}$ für $n \ge 2$, mit Gleichheit nur falls $u_1 = \sqrt{a}$.
- (ii) $u_{n+1} \sqrt{a} \le \frac{1}{2}(u_n \sqrt{a})$ für $n \ge 2$.
- (iii) $\lim_{n\to\infty} u_n = \sqrt{a}$.
- (iv) Finden Sie (mit Beweis) Approximationen von $\sqrt{2}$ und $\sqrt{3}$ durch rationale Zahlen mit Approximationsfehler $<\frac{1}{10^3}$.

Bitte geben Sie Ihre Lösungen bis Montag dem 19.11.2018 um 10:15 h ab. (Übungskästen.)