Zero Knowledge Proofs

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 30, 2019

Gartner Hype Cycle for Identity

Source: https://twitter.com/IdentityMonk/status/ 1158564314577612800

Zero Knowledge Proofs

- Proofs that yield nothing beyond the validity of an assertion
- Examples of assertions
 - I know the discrete log of a group element wrt a generator
 - I know an isomorphism between two graphs G₁, G₂
- Proofs are a sequence of statements each of which is an axiom or follows from axioms via derivation rules
 - Traditional proofs do not have explicit provers and verifiers
- ZKPs involve explicit interaction between prover and verifier
- Prover and verifier will be modeled as algorithms or machines
 - Verifier is assumed to be probabilistic polynomial-time (PPT)
 - Prover may or may not be PPT

Examples of Interactive Proofs

- Proving that two chalks have different colours to a colour-blind verifier
- Proof of Quadratic Residuosity
 - For a positive integer N, x is called a quadratic residue modulo N if

$$x = w^2 \mod N$$
 for some w

- Suppose N = pq for distinct primes p and q with |p| = |q| = n.
- Without knowing the factorization of N, the best algorithms for checking x ∈ QR_N run in exp (O(n^{1/3})) steps
- Using the factorization of N, x ∈ QR_N can be checked in time which is polynomial in n
- · Proof of Quadratic Non-Residuosity
 - Exhaustive checking is not feasible
 - · Use an idea similar to the chalks example
- More details on the last two examples

```
http://cyber.biu.ac.il/wp-content/uploads/2018/08/WS-19-1-ZK-intro.pdf
```

Knowledge vs Information

- In information theory, entropy is used to quantify information
- Entropy of a discrete random variable X defined over an alphabet $\mathcal X$ is

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- Knowledge is related to computational difficulty, whereas information is not
 - Suppose Alice and Bob know Alice's public key
 - Alice sends her private key to Bob
 - Bob has not gained new information (in the information-theoretic sense)
 - But Bob now knows a quantity he could not have calculated by himself
- Knowledge is related to publicly known objects, whereas information relates to private objects
 - Suppose Alice tosses a fair coin and sends the outcome to Bob
 - Bob gains one bit of information (in the information-theoretic sense)
 - We say Bob has not gained any knowledge as he could have tossed a coin himself

Modeling Assertions and Proofs

- The complexity class \mathcal{NP} captures the asymmetry between proof generation and verification
- A language is a subset of {0,1}*
- Each language $L \in \mathcal{NP}$ has a polynomial-time verification procedure for proofs of statements " $x \in L$ "
 - Example: L is the encoding of pairs of finite isomorphic graphs
- Let $R \subset \{0,1\}^* \times \{0,1\}^*$ be a relation
- R is said to be polynomial-time-recognizable if the assertion " $(x,y) \in R$ " can be checked in time poly(|x|,|y|)
- Each $L \in \mathcal{NP}$ is given by a PTR relation R_L such that

$$L = \{x \mid \exists y \text{ such that } (x, y) \in R_L\}$$

and $(x, y) \in R_L$ only if $|y| \le \text{poly}(|x|)$

• Any y for which $(x, y) \in R_L$ is a proof of the assertion " $x \in L$ "

Interactive Proof Systems

- Let (A, B)(x) denote the output of B when interacting with A on common input x
- Output 1 is interpreted as "accept" and 0 is interpreted as "reject"

Definition

A pair of interactive machines (P, V) is called an **interactive proof system for a language** L if machine V is polynomial-time and the following conditions hold:

• Completeness: For every $x \in L$,

$$\Pr\left[\langle P, V\rangle(x) = 1\right] \geq \frac{2}{3}$$

Soundness: For every x ∉ L and every interactive machine B,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \leq \frac{1}{3}$$

- Remarks
 - Soundness condition refers to any possible prover while completeness condition refers only to the prescribed prover
 - Prescribed prover is allowed to fail with probability $\frac{1}{3}$
 - Arbitrary provers are allowed to succeed with probability $\frac{1}{3}$
 - These probabilities can be made arbitrarily small by repeating the interaction

Generalized Interactive Proof Systems

Definition

Let $c, s: \mathbb{N} \to \mathbb{R}$ be functions satisfying $c(n) > s(n) + \frac{1}{p(n)}$ for some polynomial $p(\cdot)$. A pair of interactive machines (P, V) is called a **generalized** interactive proof system for a language L with **completeness bound** $c(\cdot)$ and **soundness bound** $s(\cdot)$ if machine V is polynomial-time and the following conditions hold:

• Completeness: For every $x \in L$,

$$\Pr\left[\langle P, V \rangle(x) = 1\right] \geq c(|x|)$$

• **Soundness**: For every $x \notin L$ and every interactive machine B,

$$\Pr\left[\langle B, V \rangle(x) = 1\right] \le s(|x|)$$

The following three conditions are equivalent

- There exists an interactive proof system for L with completeness bound $\frac{2}{3}$ and soundness bound $\frac{1}{3}$
- For every polynomial $q(\cdot)$, there exists an interactive proof system for L with error probabilistic max (1 c(|x|), s(|x|)) bounded above by $2^{-q(|x|)}$
- There exists a polynomial $q(\cdot)$ and a generalized interactive proof system for the language L, with acceptance gap c(|x|) s(|x|) bounded below by $\frac{1}{g(|x|)}$.

Graph Isomorphism

• Graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijection $\pi: V_1 \mapsto V_2$ such that $(u, v) \in E_1 \iff (\pi(u), \pi(v)) \in E_2$

Image source: https://en.wikipedia.org/wiki/Graph_isomorphism

$$\pi(a) = 1, \pi(b) = 6, \pi(c) = 8, \pi(d) = 3,$$

 $\pi(g) = 5, \pi(h) = 2, \pi(i) = 4, \pi(j) = 7$

Interactive Proof for Graph Non-Isomorphism

- Graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a bijection $\pi:V_1\mapsto V_2$ such that $(u,v)\in E_1\iff (\pi(u),\pi(v))\in E_2$
- Graphs G_1 and G_2 are non-isomorphic if no such bijection exists
- Prover and verifier execute the following protocol
 - Verifier picks $\sigma \in \{1,2\}$ randomly and a random permutation π from the set of all permutations over V_{σ}
 - Verifier calculates $F = \{(\pi(u), \pi(v) \mid (u, v) \in E\}$ and sends the graph $G' = (V_{\sigma}, F)$ to prover
 - Prover finds $\tau \in \{1,2\}$ such that G' is isomorphic to G_{τ} and sends τ to verifier
 - If $\tau = \sigma$, verifier accepts claim. Otherwise, it rejects.
- Remarks
 - Verifier is a PPT machine but no known PPT implementation for prover
 - If G_1 and G_2 are not isomorphic, then verifier always accepts
 - If G_1 and G_2 are isomorphic, then verifier rejects with probability at least $\frac{1}{2}$
 - Acceptance gap is bounded from below by ¹/₂

Zero Knowledge Interactive Proofs

- Consider an interactive proof system (P, V) for a language L
 - In an interactive proof, we need to guard against a malicious prover
 - To guarantee zero knowledge, we need to guard against a malicious verifier
- Recall that knowledge is related to computational difficulty
- Informal definition
 - An interactive proof system is zero knowledge if whatever can be efficiently computed after interaction with P on input x can also be efficiently computed from x (without interaction)
- Formal definition (ideal)
 - We say (P, V) is perfect zero knowledge if for every PPT interactive machine V* there exists a PPT algorithm M* such that for every x ∈ L the random variables ⟨P, V*⟩(x) and M*(x) are identically distributed
 - M* is called a simulator for the interaction of V* with P
- Unfortunately, the above definition is too strict
- A relaxed definition is used instead

Perfect Zero Knowledge

Definition

Let (P, V) be an interactive proof system for a language L. We say that (P, V) is **perfect zero knowledge** if for every PPT interactive machine V^* there exists a PPT algorithm M^* such that for every $x \in L$ the following two conditions hold:

- 1. With probability at most $\frac{1}{2}$, machine M^* outputs a special symbol \perp
- Let m*(x) be the random variable describing the distribution of M*(x) conditioned on M*(x) ≠⊥. Then the random variables ⟨P, V*⟩(x) and m*(x) are identically distributed
- Remarks
 - M^* is called a **perfect simulator** for the interaction of V^* with P
 - By repeated interactions, the probability that the simulator fails to generate the identical distribution can be made negligible
- Alternative formulation: Replace $\langle P, V^* \rangle(x)$ with view $_{V^*}^P(x)$
 - A verifier's view consists of messages it receives and any randomness it generates
 - Simulator M* has to change accordingly

ZK Proof for Graph Isomorphism

- An isomorphism ϕ between graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ exists
- Prover and verifier execute the following protocol
 - Prover picks a random permutation π from the set of permutations of V_2
 - Prover calculates F = {(π(u), π(v) | (u, v) ∈ E₂} and sends the graph G' = (V₂, F) to verifier
 - Verifier picks $\sigma \in \{1,2\}$ randomly and sends it to prover
 - If σ = 2, then prover sends π to the verifier. Otherwise, it sends π ∘ φ to the verifier where (π ∘ φ) (ν) is defined as π (φ(ν))
 - If the received mapping is an isomorphism between G_σ and G', the verifier accepts. Otherwise, it rejects

Remarks

- Verifier is a PPT machine. If ϕ is known to prover, it is a PPT machine
- If G_1 and G_2 are isomorphic, then verifier always accepts
- If G_1 and G_2 are not isomorphic, then verifier rejects with probability $\frac{1}{2}$
- The prover is perfect zero knowledge (to be argued)

Simulator for Graph Isomorphism Transcript

- For an arbitrary PPT verifier V^* , view $_{V^*}^P(x)=\langle G',\sigma,\psi\rangle$ where ψ is an isomorphism between G_σ and G'
- The simulator M^* uses V^* as a subroutine
- On input (G₁, G₂), simulator randomly picks τ ∈ {1,2} and generates a random isomorphic copy G" of G_τ
 - Note that G'' is identically distributed to G'
- Simulator gives G'' to V^* and receives $\sigma \in \{1,2\}$ from it
 - V^* is asking for an isomorphism from G_{σ} to G''
- If $\sigma = \tau$, then the simulator can provide the isomorphism $\pi : G_{\tau} \mapsto G''$
- If $\sigma \neq \tau$, then the simulator outputs \bot
- If the simulator does not output \bot , then $\langle G'', \tau, \pi \rangle$ is identically distributed to $\langle G', \sigma, \psi \rangle$

References

- Sections 4.1, 4.2, 4.3 of Foundations of Cryptography, Volume I by Oded Goldreich
- Alon Rosen's lecture in the 9th BIU Winter School on Cryptography
 - https://cyber.biu.ac.il/event/ the-9th-biu-winter-school-on-cryptography/
 - https://www.youtube.com/watch?v=6uGimDYZPMw
 - http://cyber.biu.ac.il/wp-content/uploads/2018/ 08/WS-19-1-ZK-intro.pdf