MANU2112 Engineering Science

Introductory Tutorial

- Q1. Convert the following numbers to scientific notation:
 - a) 568017
 - b) 0.000309
 - c) 37004
 - d) 103.250
- <u>Q2</u>. Re-write the following expression using scientific notation, calculate, and express the result in both, Scientific and standard arithmetic notations

$$\frac{213.4 * 0.003751}{3600.0 * 15.07}$$

Q3. Calculate the following without using a calculator:

$$\frac{10^{-3} * 10^{12}}{10^{-9} * \sqrt{10^8}}$$

- $\underline{Q4}$. A car completes a journey of 350 km in 4 hours 22 ½ minutes. What is its average speed in km/h expressed in scientific notation?
- Q5. The radius of the Sun is 695 500 km. What is its approximate volume written in scientific notation? (Volume of a sphere is $(4/3) \pi R^3$)
- Q6. The surface area of a door is 11 000 cm². How many mm² is that?

<u>Q7</u>

- (a) $V = \sqrt{u^2 + 2as}$, the final velocity of a body, where u = initial velocity, a = its acceleration, s = the distance travelled. Evaluate v when u = 20 km/b, a = 8 m/s², s = 685 mm.
- (b) $T = 2\pi \sqrt{\frac{l}{g}}$, the period (time of oscillation) of a simple pendulum. Evaluate T when l = 893 mm, g = 9.80 m/s².
- (c) On an unknown planet a period of oscillation of a simple pendulum with length of 1.0 m is 4.0 s. What is the acceleration due to gravity *g* on this planet?

Q8. Solve for a variable in parentheses:

1.

$$P = \frac{100(m_1 - m_m)}{m_m}$$

Percentage of excess air supplied to a combustion chamber, where m_1 = total mass of air supplied and m_m = minimum mass of air required for total combustion of the fuel.

 (m_1)

b (m...)

2.

$$\mathbf{a} \quad \ \boldsymbol{\eta} = \frac{W}{W+F}$$

a $\eta = \frac{W}{W + F}$ (F) Efficiency of a lifting machine, where W is the load and F is the friction load.

$$\mathbf{b} \quad \boldsymbol{\eta} = \frac{\boldsymbol{W}}{E \times V}$$

b $\eta = \frac{W}{E \times V}$ (V) Efficiency of a lifting machine where W is the load, V is the velocity ratio and E is the effort force.

Q9

- The mass of one casting is 2.50 times the mass of another. If the total mass of the two castings is 16.7 kg, find the mass of the lighter casting.
- It is known that resistor R_2 is 18.7 Ω greater than resistor R_1 . The two resistors in series have a resistance of $R_1 + R_2 = 56.3 \Omega$. Find the value of R_1 by setting up a single equation containing R_1 .
- A machine can produce article A in 12 minutes or article B in 16 minutes. If it is planned to produce twice as many of A as B in a working week of 40 hours, how many of each will be produced, assuming that the machine works non-stop?

Q10 In these exercises a formula is given.

- Evaluate the subject using the data provided.
- Change the subject to the pronumeral named.
- Evaluate the new subject using the data provided.

Work, W = mgh

a
$$g = 9.81 \text{ m/s}^2$$
, $m = 5.50 \text{ g}$, $h = 875 \text{ mm}$

c
$$g = 9.81 \text{ m/s}^2$$
, $m = 2.65 \text{ t}$, $W = 27.5 \text{ MJ}$

emf,
$$e = iR + \frac{Q}{C}$$

2. **a**
$$i = 3.50 \ \mu\text{A}, R = 6.80 \ \text{k}\Omega, Q = 1.65 \ \mu\text{C}, C = 75.0 \ \mu\text{F}$$

$$Q = 1.50 \text{ mC}, i = 645 \text{ mA}, R = 4.70 \Omega, e = 5.35 \text{ V}$$

Q11. Use the quadratic formula

if
$$ax^2 + bx + c = 0$$
, then $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

to solve following quadratic equations:

(a)
$$x^2 + 6x + 1 = 0$$

(b)
$$x^2 - 8x + 16 = 0$$

(c)
$$2x^2 - x - 3 = 0$$

(d)
$$5x^2 - 7x - 2 = 0$$

(e)
$$4x^2 - 9x + 4 = 0$$

(d)
$$5x^2 - 7x - 2 = 0$$

(f) $3x^2 - 11x - 4 = 0$

Q12. A cyclist travels in a straight line according to $x(t) = (-7 - 6t + t^2) m$, where t is in seconds.

- (a) At what time does the cyclist reach the origin (x = 0)?
- (b) What was her starting point (coordinate) at time = 0?
- (c) How long does it take for her to move from the origin x = 0 to the coordinate x = 10 m?
- (d) If the velocity of the cyclist changes as v(t) = (-6 + 2t)m/s, what is her velocity at x = 10m?

Answers.

1. (a)
$$5.68017*10^5$$
 (b) $3.09*10^{-4}$ (c) $3.7004*10^4$ (d) $1.0325*10^2$

2.
$$\frac{2.134*10^2*3.751*10^{-3}}{3.6000*10^3*1.507*10^1} = 1.475*10^{2-3-3-1} = 1.475*10^{-5}$$

3.
$$\frac{10^{-3}*10^{12}}{10^{-9}*\sqrt{10^8}} = 10^{-3+12+9-4} = 10^{14}$$

4.
$$8.0 * 10^1 km/h$$

5.
$$1.409 * 10^{18} km^3$$

6.
$$1.1 * 10^6 mm^2 = 1 100 000 mm^2$$

7. (a)
$$6.47 \text{ m/s} \approx 7 \text{ m/s}$$
 (b) 1.90 s (c) 2.5 m/s^2

8. 1. (a)
$$m_1 = \left(\frac{P}{100} + 1\right) m_m$$
 (b) $m_m = \frac{100}{P+100} m_1$

2. (a)
$$F = (\frac{1}{\eta} - 1)W$$
 (b) $V = \frac{W}{\eta E}$

(b)
$$V = \frac{W}{\eta E}$$

9. (1) 4.77 kg (2)
$$18.8 \Omega$$
 (3) A = 120, B = 60

10. 1. (a) W =
$$0.0472J$$
 (b) h = 0.106×10^4 m = 1.06 km

2 (a)
$$e = 0.0458 \text{ V}$$

2 (a)
$$e = 0.0458 \text{ V}$$
 (b) $C = 0.000647 \text{ F} = 647 \mu\text{F}$

13. (1) Using uncertainties of direct measurements where

$$t_{av} = \frac{\sum_i t_i}{N}$$
, $N = 10$, $\Delta t_i = |t_i - t_{av}|$, and $\Delta t_{av} = \frac{\sum_i \Delta t_i}{N}$

N	t(s)	Δt (s)
1	6.5	0.006
2	6.46	0.046
3	6.44	0.066
4	6.53	0.024
5	6.56	0.054
6	6.52	0.014
7	6.54	0.034
8	6.5	0.006
9	6.43	0.076
10	6.58	0.074
Average	6.506	0.04

NOTE: Average uncertainty of the measurements (0.04s) is larger than the accuracy of the instrument (0.02 s). The result for time t is

$$t = (6.51 \pm 0.04)$$
s

(2)

Using method to calculate uncertainties of indirect measurements we'll find the relative uncertainty of the speed first:

$$\frac{\Delta(A/B)}{A/B} = \frac{\Delta A}{A} + \frac{\Delta B}{B}$$

$$d = (1.50 \pm 0.01) m$$
, $t = (6.51 \pm 0.04) s$

$$v = \frac{d}{t}$$
, $v_{av} = \frac{1.50}{6.51} = 0.230 \frac{m}{s}$

$$\frac{\Delta v}{v_{qy}} = \frac{\Delta d}{d_{qy}} + \frac{\Delta t}{t_{qy}} = \frac{0.01}{1.50} + \frac{0.04}{6.51} = 0.013$$

$$\Delta v = 0.013 * 0.230 = 0.003 \frac{m}{s}$$

Finally,

$$v = (0.230 \pm 0.003) \, \frac{m}{s}$$

