

Is Vanilla Bayesian Optimization Enough for High-Dimensional Architecture Design Optimization?

Yuanhang Gao*, Donger Luo*, Chen Bai, Bei Yu, Hao Geng, Qi Sun, Cheng Zhuo

2024.10.29

Outline

- **1** Background
- 2 Preliminary
- 3 MCT-Explorer
- 4 Experiments

01

Background

Introduction

Microarchitecture Design Space exploration:

- The design of Microarchitecture could be considered as **setting the configurable parameters**
- Find configurations that meet the desired performance, power, and area(PPA)

Problem

Two major challenges:

- Design space **exponentially explode**.
- VLSI integration flow is **time-consuming**.

Number of Parameters

Previous Solutions

- Design parameters are **manually** configured by computer architects
- Limitation: extensive domain expertise and significant amount of human effort
- Machine learning-based process simulation models or surrogate models
- Limitation: black-box process and lacks effective guidance

Limitations

High-dimensional Problems

The **high-dimensional design parameters** and huge design space, which normally occur in the complicated SoCs for Large Language Model (LLM) tasks, pose a great challenge to existing techniques.

For example, an SoC could have 65 parameters and O(10³⁰) design space

Limitations of Previous Methods

Poor fitting effect for high-dimensional problem

Motivation

- Some important parameters affect the PPA values more while others contribute less to PPA values
- Those important parameters could be explored by **Monte-Carlo Tree Search(MCTS)**

02

Preliminary

Problem Definition

Pareto Optimality:

Let functions $\{\mathbf{f}_i(\mathbf{x})\}_{i=1}^m$, *i.e.*, \mathbf{f}_1 = power, \mathbf{f}_2 = area, \mathbf{f}_3 = cycles, denote the m-dimension metrics to be minimized and \mathbb{X} denotes the parameter space. \mathbf{x}_1 is said to (Pareto) dominate \mathbf{x}_2 ($\mathbf{x}_1 \succeq \mathbf{x}_2$) if

$$\mathbf{f}_i(\mathbf{x}_1) \le \mathbf{f}_i(\mathbf{x}_2), \forall i \in \{1, ..., m\},\$$

 $\mathbf{f}_i(\mathbf{x}_1) < \mathbf{f}_i(\mathbf{x}_2), \exists i \in \{1, ..., m\}.$

Pareto-optimal set X^* : The collection of parameter vectors that are not dominated by others.

Power or Area

Design Space Exploration:

Given a search space \mathbb{X} , each microarchitecture design inside \mathbb{X} is regarded as a feature vector \mathbf{x} . Metric space is $\mathbb{Y} = \{\mathbf{y} | \mathbf{y} = \mathbf{f}(\mathbf{x}), \mathbf{x} \in \mathbb{X}\}$. The objective is to find the subset $\mathbb{X}^* \subset \mathbb{X}$ forming the Pareto-optimal set.

03

MCT-Explorer

Framework

Figure 1: Overview of our MCT-Explorer.

- Utilize the Monte Carol Tree Search to select important parameters
- Performing Bayesian
 Optimization(BO) according
 to partial parameters
- Mitigating the issue of inaccurate fitting in highdimensional Bayesian Optimization

Custom Monte Carlo Tree Search Variants(1)

Node: represent a set of parameter index

Selection: choose the next node

Node split: split the parameter indexes

Analysis: acquire new candidates points

and update parameter score

Back-propagation: divide parameter

indexes into child nodes

Custom Monte Carlo Tree Search Variants(2)

Upper Confidence Bound(UCB): determine which branch to choose

$$UCB(X) = v_X + 2C_p \sqrt{2(\log n_p)/n_X},$$

- First term: evaluates the **average importance score** of parameters in the node
- Second term: **encourages exploration** of less visited nodes

The first term is computed according to the global importance score **s**

$$v_X = \mathbf{s} \cdot g(\mathbb{A}_X)/|\mathbb{A}_X|,$$

where \mathbb{A}_X is the set of parameter indexes in node X

Global Importance Score

Importance score s:

a vector with length equal to the total number of variables

$$\mathbf{s} = \frac{\sum_{(\mathbb{I}, \mathbb{M}) \in \mathbb{T}} \sum_{\mathbf{y} \in \mathbb{M}} \mathsf{HV}(\mathbf{f}^{\mathsf{ref}}, \mathbf{y}) \cdot g(\mathbb{I})}{\sum_{(\mathbb{I}, \mathbb{M}) \in \mathbb{T}} |\mathbb{M}| \cdot g(\mathbb{I})}$$
 element-wise division

- Numerator: the sum of contributions of each parameter
- Denominator: the frequency of each parameter participates in obtaining new candidates

One Iteration of MCTS

Selection

• Root Node A represents all parameter indexes {1,2,3,..., 10}

Node C is chosen at this iteration

Node Split

The chosen node at selection step

Further evaluation

- The chosen node C represents parameter indexes {1, 3, 4, 8, 10}
- The parameter indexes inside {1, 3, 4, 8, 10} are randomly split into several subsets

Analyze & Model Each Parameter

Reduced microarchitecture embedding: X_I

For example, given $\mathbf{x} = (2, 4, 8, \dots, 3, 4, 4)$ and $\mathbb{I} = \{3, 8\}$, $\mathbf{x}_{\mathbb{I}}$ is (8, 3)

Acquire New Candidates

Surrogate model: Gaussian Process

$$\begin{bmatrix} \mathbf{y} \\ f' \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu} \\ \mu_* \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{\mathbf{X}_{\mathbb{I}}\mathbf{X}_{\mathbb{I}}|\boldsymbol{\theta}} + \sigma_e^2 \mathbf{I} & \mathbf{K}_{\mathbf{X}_{\mathbb{I}}\mathbf{X}'_{\mathbb{I}}|\boldsymbol{\theta}} \\ \mathbf{K}_{\mathbf{x}'_{\mathbb{I}}\mathbf{X}_{\mathbb{I}}|\boldsymbol{\theta}} & k_{\mathbf{x}'_{\mathbb{I}}\mathbf{x}'_{\mathbb{I}}|\boldsymbol{\theta}} \end{bmatrix} \right).$$

Acquisition function: Joint entropy search

Fill in Reduced Embedding

Reduced embedding Complete embedding

- The candidates acquired from BO is not complete
- We fill in the missing part using data from current Pareto Sets
- Search for the closest possible alternative within design space

Split and Back-Propagation

Prior-optimization Parameter Importance

- Parameter importance scores are updated according to newly acquired points
- Parameter indexes inside node C are split into two child nodes

The Complete Algorithm

Algorithm 3 MCT-Explorer $(N_v, N_s, k, T, \mathbb{X}, \mathbb{D})$

Input: N_v is the batch size of parameter index subsets, N_s is the sample batch size, k is the number of Pareto configurations to fill in the absent part, T is the total time budget for EDA_flow, \mathbb{X} is the design space, \mathbb{D} is the index set of SoC parameters.

Output: \mathbb{X}^* : Pareto-optimal designs.

```
1: for i = 1 : N_v do
          \mathbb{I}_i = sampled index subset from \mathbb{D};
       \bar{\mathbb{I}}_i = \mathbb{D} \setminus \mathbb{I}_i;
          \mathbb{X}_i = \{\mathbf{x}_j\}_{j=1}^{N_s} sampled from \mathbb{X}; \bar{\mathbb{X}}_i = \{\mathbf{x}_j\}_{j=1}^{N_s} sampled from
    \mathbb{X}:
          \mathbb{M}_i = \text{EDA flow}(\mathbb{X}_i); \overline{\mathbb{M}}_i = \text{EDA flow}(\overline{\mathbb{X}}_i);
          T = T - runtime overhead of EDA flow;
 7: end for
8: \mathbb{T} = \{(\mathbb{I}_i, \mathbb{M}_i), (\bar{\mathbb{I}}_i, \bar{\mathbb{M}}_i)\}_{i=1}^{N_v};
 9: X*= Current Pareto Set:
10: Calculate the parameter score s using \mathbb{T} by Equation (5);
11: Initialize the Monte Carlo Tree;
12: while T > 0 do
          X = the leaf node selected by UCB;
          T_X, \mathbb{T} = \text{Node-Analysis}(X, \mathbb{T}, \mathbb{X}^*, N_v, N_s, k); \rightarrow \text{Algorithm 2}
          T = T - T_X;
15:
          \mathbb{X}^* = Updated Pareto Set;
          Back-propagate to update the UCB value of ancestor node;
18: end while
19: return Pareto-optimal designs \mathbb{X}^*;
```


Initialization (lines 1-11)

- Initialize global score s
- Initialize the Monte Carlo Tree

Iteration of MCTS (lines 13-17)

- Selection
- Node-Analysis
- Update Pareto Set
- Back-propagation

04

Experiments

Experiment Setting

FP Gemmini Accelerator

Three dataset

- Single-Gemmini SoC dataset 1124 designs (19 parameters)
- Dual-Gemmini SoC dataset 1035 designs (65 parameters)
- In-house dataset contains 1300 designs (270 parameters)

Each dataset consumed 3000 to 5000 CPU hours to run syntheses and simulations to obtain power, performance, and area (PPA) values.

Chipyard, Cadence Genus and PrimeTime were used to get PPA reports

Evaluation Metrics

Hypervolume (HV):

$$HV\left(\mathbf{f}^{\text{ref}},\mathbf{X}\right) = \Lambda\left(\bigcup_{\mathbf{x}\in\mathbf{X}}\left[\mathbf{f}_{1}\left(\mathbf{x}\right),\mathbf{f}_{1}^{\text{ref}}\right]\times\cdots\times\left[\mathbf{f}_{m}\left(\mathbf{x}\right),\mathbf{f}_{m}^{\text{ref}}\right]\right),$$

Average distance to reference set (ADRS):

ADRS
$$(\Gamma, \Omega) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \min_{\omega \in \Omega} dist(\gamma, \omega),$$

Comparison on Hypervolume and ADRS

Dual-Gemmini SoC dataset

0.60 0.8 -Hypervolume 0.45 GLSVLSI'07 $\mathop{\mathsf{ADRS}}_{0.0}$ HPCA'07 DAC'16 ASPDAC'20 ICCAD'21 ISCA'23 0.2AAAI'24 Ours 0.00 0.0 -120 90 150 60 120 150 Runtime (hours) Runtime (hours)

Outperform **30.9%** with only **33.3%** runtime overhead in ADRS metric

In-house dataset

Learned-Pareto Sets

Nearly **outmost** Pareto Sets

Relative Cycles of LLM Tasks on the Found Pareto-optimal Sets

Achieve less cycles on LLM tasks.

The Importance Score of Parameters

Among **270** parameters, **32** score higher than others

Thanks!