Decision Tree

Dr Muhammad Atif Tahir

Professor

School of Computer Science

National University of Computing & Emerging Sciences

Karachi Campus

Review Last Week

Prediction Analysis

• kNN Classifier

Classification Techniques

- Decision Tree based Methods
- Rule-based Methods
- Memory based reasoning
- Neural Networks
- Naïve Bayes and Bayesian Belief Networks
- Support Vector Machines

Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Apply Model to Test Data

Start from the root of tree.

Test Data

Refund	Marital Status	Taxable Income	Cheat
No	Married	80K	?

Apply Model to Test Data

Test Data

Apply Model to Test Data Test Data

Apply Model to Test Data Test Data

Apply Model to Test Data Test Data

Apply Model to Test Data

Exercise

Refund	Marital Status	Taxable Income	Cheat
No	Single	80K	?
Yes	Single	100K	?
Yes	Married	1K	?
Yes	Divorced	50K	?

Decision Tree Induction

- Many Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

Decision Tree Based Classification

Advantages:

- Inexpensive to construct
- Extremely fast at classifying unknown records
- Easy to interpret for small-sized trees
- Accuracy is comparable to other classification techniques for many simple data sets

DECISION TREE

- An internal node is a test on an attribute
- A branch represents an outcome of the test, e.g.,
 Color=red
- A leaf node represents a class label or class label distribution
- At each node, one attribute is chosen to split training examples into distinct classes as much as possible
- A new case is classified by following a matching path to a leaf node

Weather Data: Play or not Play?

Outlook	Temperature	Humidity	Windy	Play?
sunny	hot	high	false	No
sunny	hot	high	true	No
overcast	hot	high	false	Yes
rain	mild	high	false	Yes
rain	cool	normal	false	Yes
rain	cool	normal	true	No
overcast	cool	normal	true	Yes
sunny	mild	high	false	No
sunny	cool	normal	false	Yes
rain	mild	normal	false	Yes
sunny	mild	normal	true	Yes
overcast	mild	high	true	Yes
overcast	hot	normal	false	Yes
rain	mild 17	high	true	No

Note:
Outlook is the
Forecast,
no relation to
Microsoft
email program

Example Tree for "Play?"

Building Decision Tree

- Top-down tree construction
 - At start, all training examples are at the root
 - Partition the examples recursively by choosing one attribute each time
- Bottom-up tree pruning
 - Remove subtrees or branches, in a bottom-up manner, to improve the estimated accuracy on new cases

Choosing the Splitting Attribute

- At each node, available attributes are evaluated on the basis of separating the classes of the training examples. A Goodness function is used for this purpose
- Typical goodness functions:
 - information gain (ID3/C4.5)
 - accuracy
 - gini index
 - others (information gain ratio)

Which attribute to select?

A criterion for attribute selection

- Which is the best attribute?
 - The one which will result in the smallest tree
 - Heuristic: choose the attribute that produces the "purest" nodes
- Popular impurity criterion: information gain
 - Information gain increases with the average purity of the subsets that an attribute produces
- Strategy: choose attribute that results in greatest information gain

Computing information

- Information is measured in bits
 - Given a probability distribution, the info required to predict an event is the distribution's entropy
 - Entropy gives the information required in bits (this can involve fractions of bits!)
- Formula for computing the entropy:

entropy
$$(p_1, p_2, K, p_n) = -p_1 \log p_1 - p_2 \log p_2 K - p_n \log p_n$$

*Claude Shannon

Born: 30 April 1916

Died: 23 February 2001

"Father of information theory"

more than anyone laid the groundwork for today's digital revolution. His exposition of information theory, stating that all information could be represented mathematically as a succession of noughts and ones, facilitated the digital manipulation of data without which today's information society would be unthinkable.

Shannon's master's thesis, obtained in 1940 at MIT, demonstrated that problem solving could be achieved by manipulating the symbols 0 and 1 in a process that could be carried out automatically with electrical circuitry. That dissertation has been hailed as one of the most significant master's theses of the 20th century. Eight years later, Shannon published another landmark paper, A Mathematical Theory of Communication, generally taken as his most important scientific contribution.

Shannon applied the same radical approach to cryptography research, in which he later became a consultant to the US government.

Many of Shannon's pioneering insights were developed before they could be applied in practical form. He was truly a remarkable man, yet unknown to most of the world.

Example: attribute "Outlook"

"Outlook" = "Sunny":

$$info([2,3]) = entropy(2/5,3/5) = -2/5log(2/5) - 3/5log(3/5) = 0.971 bits$$

"Outlook" = "Overcast":

$$info([4,0]) = entropy(1,0) = -1log(1) - 0log(0) = 0 bits$$

Note: log(0) is not defined, but we evaluate 0*log(0) as zero

"Outlook" = "Rainy":

$$\inf_{(3,2]} = \operatorname{entropy}(3/5,2/5) = -3/5\log(3/5) - 2/5\log(2/5) = 0.971 \text{ bits}$$

Expected information for attribute:

info([2,3],[4,0],[3,2]) =
$$(5/14) \times 0.971 + (4/14) \times 0 + (5/14) \times 0.971$$

= 0.693 bits

Computing the information gain

• Information gain:

(information before split) – (information after split)

gain("Outlook") = info([9,5]) - info([2,3],[4,0],[3,2]) = 0.940 - 0.693
=
$$0.247$$
 bits

Information gain for attributes from weather data:

```
gain("Outlook") = 0.247 bits
gain("Temperature") = 0.029 bits
gain("Humidity") = 0.152 bits
gain("Windy") = 0.048 bits
```

Continuing to split

gain("Humidity") = 0.971 bits

gain("Temperature") = 0.571 bits

The final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
 - ⇒ Splitting stops when data can't be split any further

*Wish list for a purity measure

- Properties we require from a purity measure:
 - When node is pure, measure should be zero
 - When impurity is maximal (i.e. all classes equally likely),
 measure should be maximal
 - Measure should obey multistage property (i.e. decisions can be made in several stages):

Entropy is a function that satisfies all three properties!

*Properties of the entropy

• The multistage property: entropy(p,q,r) = entropy(p,q+r) + $(q+r) \times$ entropy($\frac{q}{q+r},\frac{r}{q+r}$) measure([2,3,4]) = measure([2,7]) + $(7/9) \times$ measure([3,4])

Simplification of computation:

$$\inf_{\text{o}([2,3,4]) = -2/9 \times \log(2/9) - 3/9 \times \log(3/9) - 4/9 \times \log(4/9)}$$
$$= [-2\log 2 - 3\log 3 - 4\log 4 + 9\log 9]/9$$

 Note: instead of maximizing info gain we could just minimize information

Highly-branching attributes

- Problematic: attributes with a large number of values (extreme case: ID code)
- Subsets are more likely to be pure if there is a large number of values
 - ⇒ Information gain is biased towards choosing attributes with a large number of values
 - ⇒ This may result in *overfitting* (selection of an attribute that is non-optimal for prediction)

Weather Data with ID code

ID	Outlook	Temperature	Humidity	Windy	Play?
А	sunny	not	nign	raise	NO
В	sunny	hot	high	true	No
С	overcast	hot	high	false	Yes
D	rain	mild	high	false	Yes
Е	rain	cool	normal	false	Yes
F	rain	cool	normal	true	No
G	overcast	cool	normal	true	Yes
Н	sunny	mild	high	false	No
I	sunny	cool	normal	false	Yes
J	rain	mild	normal	false	Yes
K	sunny	mild	normal	true	Yes
L	overcast	mild	high	true	Yes
М	overcast	hot	normal	false	Yes
N	rain	mild	high	true	No

Split for ID Code Attribute

Entropy of split = 0 (since each leaf node is "pure", having only one case.

Information gain is maximal for ID code

Gain ratio

- Gain ratio: a modification of the information gain that reduces its bias on high-branch attributes
- Gain ratio should be
 - Large when data is evenly spread
 - Small when all data belong to one branch
- Gain ratio takes number and size of branches into account when choosing an attribute
 - It corrects the information gain by taking the *intrinsic information* of a split into account (i.e. how much info do
 we need to tell which branch an instance belongs to)

Gain Ratio and Intrinsic Info.

 Intrinsic information: entropy of distribution of instances into branches

IntrinsicInfo(S,A) =
$$-\sum \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$
.

Gain ratio (Quinlan'86) normalizes info gain by:

$$GainRatio(S,A) = \frac{Gain(S,A)}{IntrinsicInfo(S,A)}$$

Computing the gain ratio

info(
$$[1,1,K,1) = 14 \times (-1/14 \times \log 1/14) = 3.807$$
 bits

- Importance of attribute decreases as intrinsic information gets larger
- Example of gain ratio:

gain_ratio("Attribute") =
$$\frac{\text{gain}(\text{"Attribute"})}{\text{intrinsic_info}(\text{"Attribute"})}$$

Example:

gain_ratio("ID_code") =
$$\frac{0.940 \text{ bits}}{3.807 \text{ bits}} = 0.246$$

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.362
Gain ratio: 0.247/1.577	0.156	Gain ratio: 0.029/1.362	0.021

Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

More on the gain ratio

- "Outlook" still comes out top
- However: "ID code" has greater gain ratio
 - Standard fix: ad hoc test to prevent splitting on that type of attribute
- Problem with gain ratio: it may overcompensate
 - May choose an attribute just because its intrinsic information is very low
 - Standard fix:
 - First, only consider attributes with greater than average information gain
 - Then, compare them on gain ratio

*CART Splitting Criteria: Gini Index

index, gini(T) is defined as

$$gini(T) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

where p_j is the relative frequency of class j in T. gini(T) is minimized if the classes in T are skewed.

*Gini Index

After splitting T into two subsets T1 and T2 with sizes N1 and N2, the gini index of the split data is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

• The attribute providing smallest gini_{split}(T) is chosen to split the node.

Measure of Impurity: GINI

• Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0	
C2	6	
Gini=0.000		

Gini=	0.278
C2	5
C1	1

C1	2	
C2	4	
Gini=0.444		

C1	3	
C2	3	
Gini=0.500		

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.408

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.32

	N1	N2
C1	5	1
C2	2	4

Gini(Children)

= 7/12 * 0.408 +

5/12 * 0.32

= 0.371

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType			
	Family Sports Luxury			
C 1	1	2	1	
C2	4	1	1	
Gini	0.393			

Two-way split (find best partition of values)

	CarType		
	{Sports, Luxury} {Family}		
C1	3	1	
C2	2 4		
Gini	0.400		

	CarType		
	{Sports} {Family, Luxury}		
C1	2	2	
C2	1	5	
Gini	0.419		

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A
 v and A > v
- Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

	Cheat		No		No)	N	0	Ye	s	Ye	s	Υe	s	N	0	N	0	N	0		No	
		Taxable Income																					
Sorted Values	_		60		70)	7	5	85	,	90)	9	5	10	00	12	20	12	25		220	
Split Positions	→	5	5	6	5	7	2	8	0	8	7	9	2	9	7	11	10	12	22	17	'2	23	80
'		"	>	\=	^	<=	^	<=	>	<=	^	\=	^	<=	^	"	^	\=	^	\=	^	<=	>
	Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0
	No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0
	Gini	0.4	120	0.4	100	0.3	375	0.3	43	0.4	117	0.4	100	<u>0.3</u>	<u>300</u>	0.3	43	0.3	75	0.4	00	0.4	120

Splitting Criteria based on Classification Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Examples for Computing Error

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Misclassification Error vs Gini

	Parent
C1	7
C2	3
Gini	= 0.42

Gini(N1)
=
$$1 - (3/3)^2 - (0/3)^2$$

= 0

Gini(N2)
=
$$1 - (4/7)^2 - (3/7)^2$$

= 0.489

	N1	N2				
C1	3	4				
C2	0	3				
Gini=0.361						

Gini(Children)

= 3/10 * 0

+ 7/10 * 0.489

= 0.342

Gini improves!!

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.

- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Stopping Criteria for Tree Induction

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination

References

- Introduction to Data Mining by Tan, Steinbach, Kumar (Lecture Slides)
- http://robotics.stanford.edu/~ronnyk/glossary.html
- http://www.cs.tufts.edu/comp/135/Handouts/introductionlecture-12-handout.pdf
- http://en.wikipedia.org/wiki/Confusion matrix
- http://www2.cs.uregina.ca/~dbd/cs831/notes/confusion mat rix/confusion matrix.html

Questions!