Software Information

General information

TESPy Version: 0.4.3-005 - Grassmann's Graph

Commit: 84386adc@dev

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

Documentation generated: May 17, 2021

Parameter highlighting

Variable component parameters: italic
Specified input parameter: bold
Results of simulation: normalfont

Equations are displayed for input parameters only.

1 Connections in design mode

1.1 Connection specifications and results

Table 1: Connection specifications and results

	m in kg/s	p in bar (1)	h in kJ/kg	T in °C (2)	s in kJ/kgK
label					·
0	1,177.781	250.0000	1,094.69	600.0	2.7674
1	857.314	75.0000	397.67	35.0	1.6468
2	857.314	258.4000	450.33	123.2	1.6668
3	$1,\!177.781$	257.0000	885.84	433.7	2.4966
4	$1,\!177.781$	250.0000	1,094.69	600.0	2.7674
5	$1,\!177.781$	77.9500	934.37	457.1	2.7920
6	857.314	75.1500	558.65	128.2	2.1153
10	320.467	75.1500	558.65	128.2	2.1153
11	320.467	257.5100	670.11	264.1	2.1468
12	857.314	257.5100	670.11	264.1	2.1468
13	$1,\!177.781$	257.5100	670.11	264.1	2.1468
14	$1,\!177.781$	76.9400	718.63	269.1	2.4533
15	1,177.781	75.1500	558.65	128.2	2.1153

1.2 Equations applied

$$0 = p - p_{\text{spec}} \tag{1}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{2}$$

1.3 Specified fluids

Table 2: Specified fluids

1.4 Equations applied

$$0 = x_{\text{CO2}} - x_{\text{CO2,spec}} \tag{3}$$

1.5 Referenced temperature

Table 3: Specified reference values for temperature

	reference	factor in -	delta in °C
label			
0	12	1	0

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (4)

2 Components in design mode

2.1 Components of type HeatExchangerSimple

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$
 (5)

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(6)

2.1.2 Specifications and results

Table 4: Parameters of components of type HeatExchangerSimple

label	Q	pr	zeta
Heater	245,974,293.29		101.53
Water cooler	-138,014,256.36		4.06

2.2 Components of type CycleCloser

2.2.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1]$$

$$\tag{8}$$

2.3 Components of type Compressor

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1] \tag{9}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(10)

2.3.2 Specifications and results

Table 5: Parameters of components of type Compressor

	P	eta_s (11)	pr
label			
Compressor 1	45,145,931.33	0.85	3.45
Compressor 2	35,720,359.99	0.85	3.43

2.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(11)

2.4 Components of type HeatExchanger

2.4.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{12}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(13)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(14)

2.4.2 Specifications and results

Table 6: Parameters of components of type HeatExchanger

label	Q	ttd_u	ttd_l (15)	pr1	pr2
1	-188,427,545.84	5.00	5.00	0.98	1.00
	-254,083,168.77	23.45	5.00	0.99	1.00

2.4.3 Equations applied

$$0 = ttd_{l} - T_{\text{out},1} + T_{\text{in},2} \tag{15}$$

2.5 Components of type Turbine

2.5.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(17)

2.5.2 Specifications and results

Table 7: Parameters of components of type Turbine

	P	eta_s (18)	pr
label			
Turbine	-188,826,328.26	0.90	0.31

2.5.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + (h_{\text{out.s}} - h_{\text{in}}) \cdot \eta_{s}$$
(18)

2.6 Components of type Splitter

2.6.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(19)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (20)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (21)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(22)

2.7 Components of type Merge

2.7.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (23)

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot x_{fl,\text{in},i} - \dot{m}_{\text{out}} \cdot x_{fl,\text{out}} \,\forall fl \in \text{network fluids}, \,\forall i \in \text{inlets}$$
 (24)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \dot{m}_{\text{out}} \cdot h_{\text{out}} \,\forall i \in \text{inlets}$$
(25)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(26)

3 Busses in design mode

3.1 Bus "total output power"

Specified total value of energy flow: $\dot{E}_{\rm bus} = -100,000,000.00\,{\rm W}$

$$0 = \dot{E}_{\text{bus}} - \sum_{i} \dot{E}_{\text{bus},i} \tag{27}$$

Table 8: Results overview for bus total output power

Table 6. Results overview for bus total dusput power						
	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$	
label						
Turbine	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-188,826,328.26	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-185,068,684.32	0.98	
Compressor 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$45,\!145,\!931.33$	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	$47,\!492,\!038.00$	0.95	
Compressor 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	35,720,359.99	$\frac{\dot{E}_{\mathrm{comp}}}{n}$	37,576,646.32	0.95	
total	-	-107,960,036.94	-	-100,000,000.00	-	

3.2 Bus "heat input"

This bus is used for postprocessing only.

Table 9: Results overview for bus heat input

label	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$
Heater total	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	245,974,293.29 245,974,293.29	'/	245,974,293.29 245,974,293.29	1.00