Øving 7

TEP4100 Fluidmekanikk, Vår 2012

Oppgave 5-18 På en gitt lokasjon blåser vinden stasjonært med en hastighet $8 \,\mathrm{m/s}$. Bestem den mekaniske enegien til luften per enhet masse og effektpotensialet i en vindturbin med $50 \,\mathrm{m}$ diameters blader på denne lokasjonen. Bestem også den elektriske effekten når du antar en total effektivitet på $30 \,\mathrm{prosent}$. La tettheten til luft være $1.25 \,\mathrm{kg/m^3}$.

Oppgave 5-45 Et fly flyr på 12000 meters høyde. Bestem overtrykket ved stagnasjonspunktet på nesen til flyet hvis farten er $300 \,\mathrm{km/h}$. Hvordan ville du løst dette problemet hvis farten var $1050 \,\mathrm{km/h}$? Forklar.

Oppgave 5-50 Luft ved $110\,\mathrm{kPa}$ og $50^\circ\mathrm{C}$ strømmer oppover gjennom en 6 cm-diameter skrånet kanal med en volumstrøm på $45\,\mathrm{L/s}$. Kanaldiameteren reduseres så til 4 cm gjennom en innsnevring. Trykkforandringen over innsnevringen måles med et vannmanometer. Høydeforskjellen mellom de to punktene på røret hvor de to manometerarmene er festet er $0.20\,\mathrm{m}$. Bestem høydeforskjellen h mellom fluidnivåene i de to manometerarmene.

Oppgave 5-51 Luft strømmer gjennom et venturimeter med diameter $6.6\,\mathrm{cm}$ ved innløpet (posisjon 1) og $4.6\,\mathrm{cm}$ ved strupen (posisjon 2). Overtrykket måles til $84\,\mathrm{kPa}$ ved innløpet og $81\,\mathrm{kPa}$ ved strupen. Neglisjer friksjonseffekter og vis at volumstrømmen kan uttrykkes som

$$\dot{\mathcal{V}} = A_2 \sqrt{\frac{2(P_1 - P_2)}{\rho(1 - A_2^2 / A_1^2)}}$$

og finn volumstrømmen til luft. La tettheten til luft være $1.2\,\mathrm{kg/m^3}$.

Oppgave 5-57 Et pitotstatisk rør er festet til et vannmanometer og brukes til å måle hastigheten til luft. Hvis defleksjonen (den vertikale avstanden mellom fluidnivåene i de to armene) er $7.3\,\mathrm{cm}$, bestem lufthastigheten. La tettheten til luft være $1.25\,\mathrm{kg/m^3}$.

