

第七組:

林貝爾、陳姳蓁、易祐辰、黃亮臻、黃淑郁、彭琳

報告架構

- 動機與目的
- 文獻回顧
- 資料收集與預處理
- 研究方法
- 研究分析與結果
- 討論與後續研究建議

研究動機與目的

動機

人們使用通訊軟體進行文字訊息傳遞時, 經常會在語句中加上對應的表情符號。

目的 探討一段句子被人所賦予的情緒, 並找出最貼近這些文字情緒的表情符號。

文獻回顧一說明

林育龍先生

《對使用者評論之情感分析研究 – 以 Google Play為例》

- 針對app市集評論進行中文文本之文字探勘
- 利用中文情感分析判斷一個評論的正負向情緒

文獻回顧-特色差異

林育龍先生論文

- 為2014年之研究結果
- 針對app評論相關之文本
- 判別正負向情緒

我們的研究

- 範圍為2018-2022年間
- 類型涵蓋不同面相
- 將情緒細分成更多類型

資料收集與預處理-建立表情符號分類模型之資料

資料收集與預處理-建立表情符號分類模型之資料

(一) 文本預處理

(二)建立表情符號類別

- 取得資料樣本包含1020個表情 符號
- · 篩選出帶有情緒意涵的214個表 情符號
- · 合併有相似情緒與使用時機的表情符號,分為40類

(三) 資料平衡化

40 類表情符號分佈圖

資料收集與介紹 - 與模型推薦表現比較之問卷調查

題目範例:真的精彩

研究方法

One-Hot-Encoding

舉例:「專題一起努力。」

LASSO選詞

原因:

- 原始資料有9萬個不同詞彙
- 資料量龐大且矩陣太過稀疏

優點:

- 不重要的詞彙所對應的係數會收縮到0
- 篩選出較重要的詞彙

研究方法

Word2Vec

將單詞轉為詞向量,找出詞與詞之間的相關性

資料來源 ➡ 資料預處理 ➡ **特徵擷取** ➡ 分類器

使用 PCA 將詞向量視覺化

資料來源 → 資料預處理 **→ 特徵擷取** → 分類器

句向量

使用 TF-IDF 演算法對詞進行加權平均。

• TF: 詞在一份文件出現的次數,即為詞頻

• IDF:包含詞的文件比例

TF×IDF值越大,給予該詞彙較大權重

句向量

舉例:「我明天想要去慶生欸。」

句向量 =
$$0.1 \times 3 + 0.15 \times 3 + 0.1$$

研究方法

分類器種類

- KNN:多數決計算相鄰個數
- SVM: 找出決策邊界讓兩類之間 margin 最大化
- · Naïve Bayes:利用貝式定理找出發生最大機率的類別

推薦表情符號,設定3個中1個/5個中1個即正確

分析結果 Multinomial LASSO 搭配 Multinomial Naïve Bayes

訓練集	特徵選取	平衡化	樣本數	變數數量	測試集 正確率 (3中1)	測試集 正確率 (5中1)	
1.1	無	無	150,000	9,808詞彙	56.1%	66.6%	
1.2	LASSO	無	665,000	2,587詞彙	56.9%	68.9%	
1.3	無	有	58,652	9808詞彙	23.9%	38.6%	
1.4	LASSO	有	58,652	2,587詞彙	38.8%	48.7%	

分析結果 Multinomial LASSO 搭配 Multinomial Naïve Bayes

訓練集	特徵選取	平衡化	樣本數	變數數量	測試集 正確率 (3中1)	測試集 正確率 (5中1)
1.1	無	無	150,000	9,808詞彙	56.1%	66.6%
1.2	LASSO	無	665,000	2,587詞彙	56.9%	68.9%
1.3	無	有	58,652	9808詞彙	23.9%	38.6%
1.4	LASSO	有	58,652	2,587詞彙	38.8%	48.7%

分析結果 句向量資料搭配 KNN、SVM、Gaussian Naïve Bayes

利用 PCA 將句向量300維降至前 20 個主成分

Accuracy	不平	至衡	平衡		
	測試集	測試集	測試集	測試集	
	(3中1)	(5中1)	(3中1)	(5中1)	
SVM	53.3%	65.6%	36.4%	46.8%	
KNN	55.0%	66.4%	34.8%	44.8%	
Gaussian	45.8%	57.0%	28.6%	39.3%	

分析結果 模型表現與問卷結果之比較

Accuracy	問卷(3中1)		問卷(5中1)		
	不平衡	平衡	不平衡	平衡	
SVM	35.0% 33.8%		40.0%	41.3%	
KNN	20.0%	23.8%	25.0%	37.5%	
Gaussian	20.0%	10.0%	30.0%	20.0%	
問卷	20%		25%		

討論與後續建議 一、資料不平衡再處理

方法1: Tomek Link (欠採樣 undersampling)

方法2:SMOTE (過採樣 oversampling)

方法3:SMOTE + ENN

討論與後續建議 一、資料不平衡再處理

結果:模型的表現皆比原始不平衡資料差

40類	原KNN	Tomek	SMOTE	SMOTE
正確率		links		+ENN
測試集 3中1	55.0%	54.9%	44.1%	14.6%
測試集 5中1	66.4%	66.0%	54.1%	14.6%

討論與後續建議二、表情符號類別數修正

方法:類別數調降成20組

Accuracy	40類 3中1	20類 3中1	40類 5中1	20類 5中1
問卷	20.0%	35.0%	25.0%	42.5%
KNN	55.0%	59.9%	66.4%	72.5%
SVM	53.3%	58.4%	65.6%	71.5%
GauBayes	45.8%	50.7%	57.0%	64.0%
MultBayes	56.1%	60.3%	66.9%	72.5%

討論與後續建議三、表情符號類別修正

方法:由資料特徵(而非人為判別)建立表情符號類別

結果:使用 KNN 預測五大類的準確率為99.9%

214個表情符號之分群樹狀圖

討論與後續建議三、表情符號類別修正

方法:由資料特徵(而非人為判別)建立表情符號類別

結果:使用 KNN 預測五大類的準確率為99.9%

討論與後續建議 四、檢視句向量

300維句向量

t-SNE 二維散佈圖

句向量的資訊 可能不足以辨別 表情符號類別

討論與後續建議 四、檢視句向量

原因:詞向量轉句向量的加權不理想

韣緖鬤響:

開心 VS 生氣

×

數學 VS 體能

改善方法:1. 使用LASSO對詞向量給予權重

2. 透過分群找出與情緒相關的詞,並給較高權重

Choose One!!!

- 化妝師為什麼要這樣
- 數不清啦
- 身為芋頭控一定要去吃看看

附錄1:目前已爬取之網站類型占比

縱軸:個數/占比,橫軸:Facebook & Instagram/分組

附錄2:表情符號

Word2Vec

常用參數名稱	值/方法
訓練模型方法(sg)	CBOW
加快訓練速度的方法(hs)	negative sampling
矩陣維度大小(vector_size)	300
模型訓練次數(epochs)	30
過濾少於此出現次數的詞(min_count)	10
詞產生上下文關係的個數(window size)	9

訓練模型方法(sg)

0=CBOW

CBOW:給定背景詞預測目標詞

常用參數名稱

值/方法

加快訓練速度的方法(hs)

0=negative sampling

結合負採樣(negative sampling)

- 加快模型訓練的速度
- 訓練模型效果更好

舉例:「好想喝蘋果果汁喔。」

TF-IDF 公式

使用 TF-IDF 演算法對詞進行加權平均。

• TF: 詞在一份文件出現的次數,即為詞頻

• IDF:包含詞的文件比例

TF×IDF值越大,給予該詞彙較大權重

$$score_{t,d} = \frac{n_{t,d}}{\sum_{k=1}^{T} n_{k,d}} \times \log(\frac{D}{d_t})$$

TF (a) IDF (a)

KNN模型

SVM公式

Gaussian Radial Basis Function kernel (RBF)
 將資料投射到無限維

$$k(x,y) = e^{-\gamma||a-b||^2}$$

預測結果為資料與決策邊界的距離,透過 Platt Scaling 將結果投射到 (0,1) 之間,使其成為機率值

$$P(y_i = 1|f_i) = \frac{1}{1 + e^{Af_i + B}}$$

SVI模型 哪一條線比較合適?

soft margin

hard margin

貝式分類器

假設所有特徵皆為獨立,透過貝式定理,計算在已知資料下哪個目標發生 的機率最大。

• 高斯貝式分類器 (GaussianNB)

用於特徵 x 為連續變數且符合常態分佈,將連續數值離散化

$$P(x = v|c) = \frac{1}{\sqrt{2\pi\sigma_c^2}} e^{-\frac{(v - \mu_c)^2}{2\sigma_c^2}}$$

貝式分類器

• 多項式貝式分類器

用於特徵 x 為類別變數時,經常用於文本分析模型

$$P(Y_k) = \frac{N_{Y_k} + \alpha}{N + k_{\alpha}}$$

$$P(X_i|Y_k) = \frac{N_{Y_{k,x_i}} + \alpha}{N_{Y_k} + n\alpha}$$

Naïve Bayes 模型

舉例:

「快點過來!」

$$P(\Theta) \cdot P(快點 \mid \Theta) = \frac{4}{10} \times \frac{3}{4} = \frac{3}{10}$$

$$P(w) \cdot P(快點 \mid w) = \frac{6}{10} \times \frac{2}{6} = \frac{2}{10}$$

Naïve Bayes 模型

舉例:

「快點過來!」

$$P(\Theta) \cdot P(BB \mid \Theta) \cdot P(BR \mid \Theta) = \frac{4}{10} \times \frac{3}{4} \times \frac{1}{4} = \frac{3}{40}$$

$$P(w) \cdot P(快點 | w) \cdot P(快點 | w) = \frac{6}{10} \times \frac{2}{6} \times \frac{3}{6} = \frac{4}{40}$$