TD2 – Mélanges de gaz parfaits

1 Étude de divers modes de compression d'un gaz parfait idéal

On considère une masse $m=10\,\mathrm{kg}$ de dioxygène initialement à la pression $P_0=1\,\mathrm{bar}$ et à la température $T_0=18\,^\circ\mathrm{C}$. On souhaite comprimer cette masse jusqu'à la pression $P_1=2.5\,\mathrm{bar}$. Pour ce faire, on considère les quatre transformations suivantes :

- 1. la compression est isotherme;
- 2. la compression est adiabatique et réversible ;
- 3. la compression est réalisée au moyen d'une pression extérieure constante égale à $2.5\,\mathrm{bar}$:
 - a. de façon adiabatique;
 - b. de façon monotherme.

Déterminer pour chacun de ces modes de compression :

- 1. s'il est réversible ou irréversible ;
- 2. la température et le volume du système dans l'état final;
- 3. la variation d'énergie interne du dioxygène ;
- 4. le travail et la chaleur échangés.

Données :

- le dioxygène est un gaz parfait de masse molaire $M_{\rm O_2}=32\,{\rm g\,mol^{-1}}$;
- les capacités calorifiques molaires du dioxygène seront prises constantes et égales à $c_{\rm v}=5R/2$ et $c_{\rm p}=7R/2$.

2 Mélange idéal de deux gaz

Soit une masse $m=80\,\mathrm{g}$ d'un mélange gazeux de diazote N_2 et de méthane CH_4 , formé de 30 % en masse de diazote. Ce mélange occupe un volume $V=9.95\,\mathrm{L}$ à $T=150\,\mathrm{^{\circ}C}$. Il est considéré comme un mélange idéal de gaz parfaits.

- 1. Calculer la pression totale du mélange gazeux.
- 2. Calculer les pressions partielles de chacun des gaz.

Données:

- Masse molaire du diazote : $M_{\rm N_2} = 28\,{\rm g\,mol^{-1}}$;
- Masse molaire du méthode : $M_{\text{CH}_4} = 16 \,\text{g mol}^{-1}$.

3 Cuve à eau

Figure 1: Cuve à eau

On recueille dans une cuve à eau (fig. 1) un mélange de dihydrogène (H_2) et de vapeur d'eau (H_2O) qui occupe un volume $V=150\,\mathrm{cm}^3$. La pression atmosphérique vaut 1 bar et la température 20 °C. La dénivellation d'eau est $h=5\,\mathrm{cm}$. Évaluer la masse d'hydrogène.

Données : la pression de vapeur saturante de l'eau vaut $P_{\rm H_2O}\left(20\,^{\circ}{\rm C}\right)=0.023\times10^5\,{\rm Pa}.$

4 Dissociation du dibrome

On néglige dans un premier temps la dissociation du dibrome (Br + Br \leftrightarrows Br₂).

- 1. Quel est le volume V_0 occupé par $m_0 = 1$ g de dibrome (Br₂) à $T_0 = 900$ K sous la pression normale?
- 2. Que deviendrait ce volume (noté V_1) à $T_1 = 1800 \,\mathrm{K}$, toujours sous la pression normale?

L'expérience montre que ce volume est en fait $V_1' = 1.2 \,\mathrm{L}$.

- 3. Montrer que ce résultat peut s'expliquer en admettant qu'une partie des molécules Br_2 s'est dissociée en atomes de brome Br .
- 4. Calculer le coefficient de dissociation (c'est-à-dire la proportion des molécules dissociées).

Données: la masse molaire du dibrome vaut $M_{\rm Br_2} = 80\,{\rm g\,mol^{-1}}$.