16.1.1. Consider a system that has two possible single fermion states, 1 and 2, and can have anywhere from zero to two particles in it. There are therefore four possible states of this system: $|0_1,0_2\rangle$ (the state with no particles in either single-fermion state, a state we could also write as the empty state $|0\rangle$), $|1_1,0_2\rangle$, $|0_1,1_2\rangle$, and $|1_1,1_2\rangle$. (We will also choose the standard ordering of the states to be in the order 1, 2.) Any state of the system could be described as a linear combination of these four basis states, i.e.,

$$|\Psi\rangle = c_1|0_1,0_2\rangle + c_2|1_1,0_2\rangle + c_3|0_1,1_2\rangle + c_4|1_1,1_2\rangle$$

which we could also choose to write as a vector

$$|\Psi\rangle = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix}$$

- (i) Construct 4×4 matrices for each of the operators \hat{b}_1^{\dagger} , \hat{b}_1 , \hat{b}_2^{\dagger} , and \hat{b}_2 .
- (ii) Explicitly verify by matrix multiplication the anticommutation relations

$$\hat{b}_{1}^{\dagger}\hat{b}_{1} + \hat{b}_{1}\hat{b}_{1}^{\dagger} = 1$$

$$\hat{b}_{2}^{\dagger}\hat{b}_{2} + \hat{b}_{2}\hat{b}_{2}^{\dagger} = 1$$

$$\hat{b}_{1}^{\dagger}\hat{b}_{2}^{\dagger} + \hat{b}_{2}^{\dagger}\hat{b}_{1}^{\dagger} = 0$$

$$\hat{b}_{1}^{\dagger}\hat{b}_{1}^{\dagger} + \hat{b}_{1}^{\dagger}\hat{b}_{1}^{\dagger} = 0$$

(i) Let

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \quad |10\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \quad |01\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \quad |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

For \hat{b}_1 we require

$$\hat{b}_1|10\rangle = |00\rangle$$
 and $\hat{b}_1|11\rangle = -|01\rangle$

where the minus sign is due to antisymmetry. It follows that

$$\hat{b}_1 = |00\rangle \otimes |10\rangle - |01\rangle \otimes |11\rangle = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where \otimes indicates an outer product.

For \hat{b}_2 we require

$$\hat{b}_2|01\rangle = |00\rangle$$
 and $\hat{b}_2|11\rangle = |10\rangle$

Hence

$$\hat{b}_2 = |00\rangle \otimes |01\rangle + |10\rangle \otimes |11\rangle = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

For the creation operators we have

$$\hat{b}_1^{\dagger} = (\hat{b}_1)^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

and

$$\hat{b}_2^{\dagger} = (\hat{b}_2)^{\dagger} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(ii) See Eigenmath demo.