Report

Table of Contents

Table of Contents

- 1. Purpose
- 2. Two main approaches
- 3. Data Cleaning and Merging Pipeline
 - evaluation_fonciere
 - Description
 - How to Run
 - Output
 - Summary of Code Workflow
 - Main Steps
 - Data Cleaning Summary
 - Feature Engineering Summary
 - Dropped/Excluded Columns
 - Final Output Columns
 - main_evaluation_feat_eng.py
 - Goal of the Script
 - Load Datasets
 - Preprocessing
 - Spatial Join
 - Merge Fire Info Back
 - Time Features
 - Fire Zone Aggregates
 - Missing Coordinates
 - Feature Selection
 - Save Output
 - Summary Stats
 - dense panel building month.py
- 4. Model Evaluation Criteria
- 5. Models Tried
 - RandomForestClassifier
 - Target Variable
 - Confusion Matrix
 - Classification Report
 - LGBMClassifier
 - Target Variable
 - Model Results (All Months)
 - Model Results (Months 1–12 only)
 - Monthly Fire Risk Prediction Using XGBoost
 - Script Location
 - Data Pipeline
 - Feature Engineering

- Model
- Evaluation
- Threshold Optimization
- Final Model Evaluation
- Recommendations
- Binary vs Probabilistic Forecasting
- Summary
- 6. Forecasting and Visualization
 - Data Overview
 - Feature Engineering
 - Model Training
 - Evaluation and Threshold Tuning
 - Future Panel Forecasting
 - Visualization
 - Model Deployment Steps
 - Recommendations
 - Output Files

Purpose

Project A – Predicting High Fire Risk Areas in Montreal

Objective: The objective of this project is to predict high fire risk areas by month in the city of Montreal, based on historical firefighter intervention data and additional open datasets.

Two main approaches

"Panel" Approach

Structure: Each building has one row per month (e.g., Jan 2018, Feb 2018, ..., Dec 2022).

ID_UEV	1	YEAR	1	MONTH	1	Features	1	fire_occurred
001 001 001	İ	2020	İ	2	İ		İ	0 0 1

fire_occurred = 1 for the month of fire; 0 otherwise.

No fire_month column needed — you're modeling fire per building-month.

Good for temporal modeling, like survival analysis or monthly fire risk.

Fire Month or 13 Per-Building Row Approach

Structure: One row per building; fire_month = 1-12 if fire occurred, else 13.

ID_UEV Fe	atures	fire_month
001 002 003	. !	3 13 7

Simple classification task: which month is the fire, or no fire (13).

Only one row per building — no temporal unfolding.

fire_month = 13 explicitly encodes "no fire".

Data Cleaning and Merging Pipeline

evaluation_fonciere

Description

This script processes the Montréal property evaluation dataset, cleans it, and applies basic feature engineering to prepare it for downstream fire risk modeling.

How to Run

python ./dataprep/evaluation_fonciere.py

Output

- datasets/cleaned/eval_cleaned.csv
- datasets/cleaned/eval_cleaned_feat_eng.csv \leftarrow (Recommended for modeling)

Summary of Code Workflow

This script performs: - Cleaning of raw columns - Imputation of missing values - Creation of new features - Normalization of numeric variables

Main Steps

- 1. Load raw dataset
- 2. Clean columns:
 - ANNEE_CONSTRUCTION, NOMBRE_LOGEMENT, ETAGE_HORS_SOL, SUPERFICIE_BATIMENT
- 3. Impute missing values using medians at borough + building type level

- 4. Feature engineering:
 - AGE_BATIMENT
 - RATIO_SURFACE
 - DENSITE_LOGEMENT
 - HAS_MULTIPLE_LOGEMENTS
 - FIRE_FREQUENCY_ZONE
- 5. Normalize continuous features using MinMaxScaler
- 6. Save output to eval_cleaned_feat_eng.csv

Data Cleaning Summary

Column	Cleaning Strategy					
ANNEE_CONSTRUCTION on outliers (<1800 or >2025), impute with borough						
	median (fallback: "unknown")					
NOMBRE_LOGEMENT	Impute with (borough, building-type) median, fallback to					
	borough median					
ETAGE_HORS_SOL	Same imputation logic as above					
SUPERFICIE_BATIMENTE imputation logic as above						

Feature Engineering Summary

Feature Name	Description
AGE_BATIMENT	2025 - ANNEE_CONSTRUCTION
RATIO_SURFACE	SUPERFICIE_BATIMENT / SUPERFICIE_TERRAIN
DENSITE_LOGEMENT	NOMBRE_LOGEMENT / SUPERFICIE_BATIMENT
HAS_MULTIPLE_LOGEMEN	TISif more than 1 housing unit, 0 otherwise
FIRE_FREQUENCY_ZONE	Number of buildings in the same ${\tt NO_ARROND_ILE_CUM}$
	as proxy for risk

All continuous variables are normalized using MinMaxScaler.

Dropped/Excluded Columns

- _ANNEE_CONSTRUCTION_NUM
- Temporary columns used for imputation
- Potential future features like IS_UNKNOWN_YEAR, etc.

Final Output Columns

```
[
'ID_UEV', 'CIVIQUE_DEBUT', 'CIVIQUE_FIN', 'NOM_RUE', 'SUITE_DEBUT',
'MUNICIPALITE', 'ETAGE_HORS_SOL', 'NOMBRE_LOGEMENT', 'ANNEE_CONSTRUCTION',
'CODE_UTILISATION', 'LETTRE_DEBUT', 'LETTRE_FIN', 'LIBELLE_UTILISATION',
'CATEGORIE_UEF', 'MATRICULE83', 'SUPERFICIE_TERRAIN', 'SUPERFICIE_BATIMENT',
'NO_ARROND_ILE_CUM', 'AGE_BATIMENT', 'RATIO_SURFACE', 'DENSITE_LOGEMENT',
'HAS_MULTIPLE_LOGEMENTS', 'FIRE_FREQUENCY_ZONE'
]
```

Description: main_evaluation_feat_eng.py

Detailed Summary of main_evaluation_feat_eng.py

This script processes building and fire incident data to produce a geospatially enriched dataset for **fire risk modeling**. It includes spatial joins, temporal feature extraction, and fire frequency calculations at the zone level.

Goal of the Script Produce a feature-rich dataset at the building level that combines:

- Property evaluation data
- Fire incident history
- Geographic information (coordinates, zones)
- Temporal and structural features

Final output file: evaluation_fire_coordinates_date_feat_eng_2.csv

1. Load Datasets

- eval_cleaned_feat_eng.csv Pre-cleaned building/property data
- adresses.csv Street-level address coordinates
- interventions_cleaned_with_has_fire.csv Fire incident reports

All file paths are dynamically resolved.

2. Preprocessing

Evaluation Data

• Cleans CIVIQUE_DEBUT (street number) and standardizes street names

• Copies original version for later merging

Address Data

- Combines GENERIQUE + SPECIFIQUE into NOM_RUE_CLEAN
- Converts address numbers for matching

Coordinate Assignment

- \bullet Merges buildings and addresses to assign LATITUDE and LONGITUDE
- Filters out rows without coordinates

Incident Data

- Filters rows where DESCRIPTION GROUPE contains "INCENDIE"
- Converts date/time and builds GeoDataFrame
- Buffers incidents with a 100m radius to capture nearby buildings

3. Spatial Join

- Matches each building to nearby fire incidents using gpd.sjoin()
- Assigns:
 - fire = True
 - fire_date
 - NOMBRE_UNITES (fire truck count)
 - CASERNE (station name)

4. Merge Fire Info Back

- Merges fire records with all buildings using ID_UEV
- Fills nulls for non-fire rows
- Re-attaches coordinates from addr_df

5. Time Features

- Extracts:
 - fire_month, fire_year, year_month
 - fire_season (Winter, Spring, Summer, Fall)

6. Fire Zone Aggregates

- Computes per-zone fire counts for year 2024
- Computes:
 - FIRE COUNT LAST YEAR ZONE
 - FIRE_RATE_ZONE = fire count / buildings
- Applies MinMaxScaler to produce normalized versions

7. Missing Coordinates

- Flags rows missing latitude/longitude: missing_coords
- Compares fire rates between missing vs present coordinates

8. Feature Selection

Kept Features

- Structural: AGE_BATIMENT, DENSITE_LOGEMENT, RATIO_SURFACE
- Target: fire, had_fire, fire_date
- Time: fire_month, fire_year, fire_season, year_month
- Spatial: NO_ARROND_ILE_CUM, LATITUDE, LONGITUDE
- Fire Stats: FIRE_COUNT_LAST_YEAR_ZONE, FIRE_RATE_ZONE, and normalized versions

Dropped Features

- Redundant address fields: CIVIQUE_DEBUT, ADDR_DE, etc.
- Internal metadata: MATRICULE83, CASERNE, etc.
- Raw year field: ANNEE CONSTRUCTION (keep AGE BATIMENT instead)

9. Save Output

- Final cleaned file is saved to:
 - $./ datasets/cleaned/evaluation_fire_coordinates_date_feat_eng_2.csv$

Summary Stats

- ~664K total buildings
- ~295K matched to fire incidents
- ~202K rows missing coordinates (optional to drop)
- ~41 clean modeling-ready features

Fire Risk Monthly Panel Construction — Detailed Summary

This document explains the Python script that constructs a monthly panel dataset of buildings in Montréal enriched with fire event labels and engineered features. The final output is a panel of building-month combinations, used for predictive modeling of fire incidents.

Input & Output

Input:

evaluation_fire_coordinates_date_feat_eng_2.csv: Cleaned building dataset with fire incidents and coordinates

Output:

building_month_fire_panel_feat_eng.csv: Building-month panel with labels and features

Workflow Steps

Step 1: Setup Paths and Load Data

Define project root with Path.cwd().parents[1]

Load CSV using pandas

Preview data and confirm file existence

Step 2: Preprocessing & Cleaning

Convert fire_date to datetime

Create month feature

Drop records missing LONGITUDE, LATITUDE, or ID UEV

Convert to GeoDataFrame with EPSG:32188 projection

Step 3: Construct Dense Panel

Extract unique buildings

Generate full range of monthly periods

Create full cartesian product \rightarrow Dense panel (building \times month)

Merge with building coordinates

Step 4: Label Fire Occurrence

Identify building-months with fire events

Create HAS_FIRE_THIS_MONTH binary column

Step 5: Time-Based Features

Extract month_num and year

Add lag features:

fire last 1m, fire last 2m, fire last 3m

Add cumulative and rolling fire counts:

fire_cumcount, fire_rolling_3m, fire_rolling_6m, fire_rolling_12m

Add recency features:

has_fire_last_month, months_since_last_fire

Step 6: Merge Static Building Features

Extract one row per building from cleaned GeoDataFrame

Selected static columns:

MUNICIPALITE, ETAGE_HORS_SOL, NOMBRE_LOGEMENT, AGE_BATIMENT CODE_UTILISATION, CATEGORIE_UEF, SUPERFICIE_TERRAIN, SUPERFICIE_BATIMENT

NO_ARROND_ILE_CUM, RATIO_SURFACE, DENSITE_LOGEMENT, HAS MULTIPLE LOGEMENTS

Fire zone features: FIRE_FREQUENCY_ZONE, FIRE_RATE_ZONE, FIRE_COUNT_LAST_YEAR_ZONE, etc.

Ensure alignment using valid building IDs

Step 7: Save Final Dataset

Export the resulting panel to CSV:

datasets/cleaned/building_month_fire_panel_feat_eng.csv

Next Steps

Add weather, crime, or inspection datasets for richer modeling

Evaluate model with recall and Precision@K

Consider borough-level aggregation or modeling using NO_ARROND_ILE_CUM

3. Model evaluation criteria

- Priority is given to recall over precision as we'd rather capture more fire risk including a few false negatives than miss high risk buildings
- Train set/Test set : we used a temporal split rather than random split Train = data before 2024 Test = data of 2024-2025

This is especially important because of the approximation of fire location due to data obfuscation to avoid leaking knowledge of fires into the train set.

4. Models tried

${\bf Random Forest Classifier}$

(Located in file EDA-incident-evaluation-fonciere.ipynb, for pipeline see instructions)

Target Variable

 $Y = P(Fire \mid X)$

Where X includes:

- log_terrain
- log_batiment
- log_etage_hors_sol
- log_numbre_de_logement
- ANNEE_CONSTRUCTION
- density

Confusion Matrix

	Predicted False	Predicted True
Actual False	64,073	9,540
Actual True	8,273	50,871

Classification Report

Label	Precision	Recall	F1-score	Support
False True	0.89 0.84	0.87 0.86	0.88 0.85	73,613 59,144
Accuracy Macro avg Weighted avg	0.86 0.87	0.87 0.87	0.87 0.86 0.87	132,757 132,757 132,757

ROC AUC: 0.936

${\bf LGBMC lassifier}$

(Located in file Model-building.ipynb, for pipeline see instructions)

Target Variable

 $Y = P(Month of Fire \mid X)$

Where X includes:

- ETAGE_HORS_SOL
- NOMBRE_LOGEMENT
- ANNEE_CONSTRUCTION
- SUPERFICIE_TERRAIN
- SUPERFICIE_BATIMENT
- LONGITUDE
- LATITUDE

Note: Properties with no recorded fire were assigned to month 13 to indicate the absence of fire incidents

Metric	Precision	Recall	F1-score	Support
Accuracy Macro avg Weighted avg	0.457 0.629	0.348 0.676	0.676 0.388 0.640	132,757 132,757 132,757

I then tried to train only on months 1-12:

Metric	Precision	Recall	F1-score	Support
Accuracy Macro avg Weighted avg	0.439 0.437	0.433 0.434	0.434 0.434 0.433	58,954 58,954 58,954

Monthly Fire Risk Prediction Using XGBoost

Script Location

/dataprep/time_model_Xgboost.ipynb

This script trains and evaluates a binary classifier to predict whether a fire will occur in a specific building in a given month. It utilizes a **dense panel dataset** with rich building-level and temporal-spatial features.

Data Pipeline

- Input file: building_month_fire_panel_feat_eng.csv
- Granularity: Monthly panel of all buildings
- Target Variable: HAS_FIRE_THIS_MONTH (0 or 1)

Feature Engineering

Structural & Geographic Features:

- MUNICIPALITE, ETAGE_HORS_SOL, NOMBRE_LOGEMENT, AGE_BATIMENT
- SUPERFICIE_TERRAIN, SUPERFICIE_BATIMENT, RATIO_SURFACE, DENSITE_LOGEMENT
- HAS_MULTIPLE_LOGEMENTS, CODE_UTILISATION, CATEGORIE_UEF
- NO_ARROND_ILE_CUM, BUILDING_COUNT

Zone-Level Fire Risk:

- FIRE_FREQUENCY_ZONE, FIRE_RATE_ZONE, FIRE_COUNT_LAST_YEAR_ZONE
- FIRE_RATE_ZONE_NORM, FIRE_COUNT_LAST_YEAR_ZONE_NORM

Temporal Lag Features:

- fire_last_1m, fire_last_2m, fire_last_3m
- fire_cumcount, fire_rolling_3m, fire_rolling_6m, fire_rolling_12m
- month_num, year

Model: XGBoostClassifier

- Handles class imbalance with scale_pos_weight
- Supports categorical variables with enable_categorical=True
- Optimized with:
 - n_estimators=200, max_depth=6, learning_rate=0.1
 - subsample=0.8, colsample_bytree=0.8

Evaluation (Default Threshold = 0.5)

Class	Precision	Recall	F1-score	Support
No Fire (0) Fire (1)	0.9903 0.0243	$0.7436 \\ 0.4665$	0.8494 0.0461	3,674,405 50,239

Accuracy: 73.99%
Macro F1: 0.4477
Weighted F1: 0.8379

Precision for fires is very low, but recall is moderate. Useful for prioritization, not alarms.

Threshold Optimization

Evaluated thresholds: $0.2 \rightarrow 0.55$ - Best **F2 Score** (recall-focused): **0.55**

Threshold	Precision	Recall	F2 Score
0.50	0.027	0.603	0.113
0.55	0.0262	0.378	0.103

Final Model Evaluation @ Threshold = 0.55

Class	Precision	Recall	F1-score	Support
No Fire	0.9896	$0.8081 \\ 0.3780$	0.8897	3,674,405
Fire	0.0262		0.0490	50,239

• Confusion Matrix:

True Negatives: ~2.97M
False Positives: ~700k
False Negatives: ~31k
True Positives: ~19k

High false positives but acceptable for early warning.

Recommendations

- Use threshold = 0.50-0.55 depending on recall vs precision preference
- Precision is low, so interpret predictions as risk levels
- Use predicted probabilities for prioritizing inspections
- Add weather, crime, or inspection features for improved separation

Binary vs Probabilistic Forecasting

Aspect	model.predict() (Binary)	model.predict_proba() + Threshold
Nature	Hard decision (0 or 1)	Probabilistic risk score (0.0–1.0)
Control over recall/precision	Fixed at 0.5	Fully tunable

Aspect	model.predict() (Binary)	model.predict_proba() + Threshold
Risk prioritization	Not possible	Buildings can be ranked
Early warning usability	Rigid	Flexible, interpretable
Best suited metric	Accuracy, F1	F2 Score, Precision@K, Recall

Recommendation: Use predicted probabilities to forecast fire risk, prioritize inspections, and adapt to seasonal or strategic needs.

Next Steps

- Deploy as a ranking tool not a strict classifier
- Create dashboards that visualize monthly fire risk scores by building
- Use precision@K and F2-score as main evaluation metrics

Summary

XGBoost + panel-level fire features + lag history yields a decent early-warning fire detection model. Prioritize **recall and interpretability**, refine with more context over time. """

5.

Forecasting and visualization

Monthly Fire Risk Forecasting with XGBoost – Project Summary

This script implements a full end-to-end pipeline for monthly fire risk prediction in Montréal using historical building data, engineered features, and an XGBoost classifier. It includes model training, threshold tuning, forecasting future risk, and generating interactive heatmaps for visual interpretation.

Data Overview

Input Files

- building_month_fire_panel_feat_eng.csv: Monthly panel of building features and historical fire labels.
- evaluation_fire_coordinates_date_feat_eng_2.csv: Coordinates and property attributes used for mapping.

Target Variable

• HAS_FIRE_THIS_MONTH: Binary variable indicating whether a fire occurred in a given month for a building.

Feature Engineering

Lag Features

- fire_last_1m, fire_last_2m, fire_last_3m: Fires in previous months per building.
- fire_cumcount, fire_rolling_3m, fire_rolling_6m, fire_rolling_12m: Cumulative or smoothed fire indicators.

Static and Zone Features

• Includes building characteristics (e.g., age, size, density), zone-level fire statistics, and encoded categories.

Model Training

Model: XGBClassifier

- Handles class imbalance using scale_pos_weight.
- Uses 200 estimators, max depth of 6, and categorical encoding.
- $\bullet\,$ Trained on data from years $\,$ 2023 and tested on 2024 data.

Evaluation and Threshold Tuning

Metrics

- Imbalanced classification: only $\sim 1.3\%$ of data are fire cases.
- Default threshold (0.5) leads to poor precision for fire class.
- High recall at low thresholds, but many false positives.

Optimal Threshold

- Evaluated using Precision, Recall, and F2 Score.
- Best **F2 Score 0.103** at **threshold** = **0.55**, prioritizing recall over precision.
- Trade-off: higher recall (catching more fires) with acceptable false positives for early warning.

Future Panel Forecasting

- Generated fire risk predictions for the next **6 months** (panel built using unique buildings × future months).
- Static features frozen from latest available data.
- Missing time-dependent features (e.g., recent fires) set to zero as placeholders.

Visualization

Interactive Folium Heatmaps

- Map Layers: Fire risk scores overlaid as a heatmap with a red-orangeyellow gradient.
- Monthly Maps: Visuals generated per month using ipywidgets for interactive selection.
- Thresholding: Only predictions with risk 0.5 included in visual maps.
- Legend: Custom HTML element included for interpretation.

Model Deployment Steps

- 1. Save the trained XGBoost model using joblib.
- 2. Load future panel, run predictions using saved model.
- 3. Merge predictions with coordinates.
- 4. Save both .csv predictions and .html maps.

Recommendations

Use Threshold = 0.55

- Balanced fire detection rate (recall ~38%) with manageable false positives.
- Suitable for **early warning and resource prioritization** (not final decision making).

Improve Model By:

- Adding external data (e.g., weather, past interventions, crime data).
- Testing ensemble models.
- Ranking buildings by predicted probability for inspection priority.

Output Files

- fire_risk_heatmap.html: Interactive map for current/future fire risks.
- future_fire_risk_panel_6m.csv: Feature panel for 6-month forecast.
- future_panel_predictions.csv: Fire probabilities for each buildingmonth.
- xgb_fire_model.pkl: Trained XGBoost model for reuse.
- fire_risk_map_august_2025.html: Example monthly forecast visualization.

17