FACIAL AND GESTURE RECOGNITION

Lauren Hunter Chris Metcalf Max Timkovich Eduardo Zapata Guillermo Terrazas

Objectives

FACIAL RECOGNITION

EYE TRACKING

GESTURE RECOGNITION

Facial Recognition

- Recognize a person from a webcam Achieved Tasks:
 - Our first task was to locate the person's face in each frame, which we were able to do using openCV Haar cascades
 - Once we have the face, we use it to compare against our database of faces using an open source project called pyfaces
 - The program will also add a person to the database if they aren't already in it

Facial Recognition

- Challenges
 - multiple people in view of webcam
 - images in database have to have the same dimensions
 - if a person is not in the database, it will still match that person to someone in the database

Eigenfaces

- Pyfaces
 - Implements Eigenfaces
 - based off of PCA (Principal Component Analysis) method: finds the directions with the greatest variance in that data by the use of eigenvalues and eigenvectors

Facial Recognition

DEMO

database with 7 people in it

Eye Tracking

Track eye movement

Our first task was to identify the limbus our region (ROI), the area where the color meets the sclera (white part of the eye)

Eye Tracking

- We used haar cascades to single out a region of interest where the cascades detected eyes in the video.
- Hough circle detection used to locate the center of the irises within the region of interest
- Analyzed coordinates using basic math in order to determine what direction eyes are moving

Eye Tracking

Demo

Emotion Recognition

- Optical flow
- Implementation of PCA
- Average expressions

