Fórmula de Taylor

- 1. Desenvolva, pela fórmula de Taylor, até aos termos de 2^a ordem a função $f(x,y) = xy^2$, em torno do ponto (1,2).
- Determine um polinómio de 2^o grau aproximado $f(x,y) = \sqrt{x^2 + y^2}$, em torno do ponto (1,2) e use-o 2. Determine função para estimar $\sqrt{(1.02)^2 + (1.97)^2}$.
- 3. Determine polinómios do grau indicado para as seguintes funções em torno dos pontos dados.

(a)
$$f(x,y) = \frac{1}{2+x-2y}$$
, grau 3, torno de (2,1).

(b)
$$f(x,y) = \ln(x^2 + y^2)$$
, grau 3, torno de (1,0).

(c)
$$f(x,y) = \int_0^{x+y^2} e^{-t^2}$$
, grau 3, torno de $(0,0)$.

(d)
$$f(x,y) = \frac{\sin x}{y}$$
, grau 2, torno de $(\frac{\pi}{2}, 1)$.

Extremos livres

1. Determine os extremos das seguintes funções

a)
$$f(x,y)=x^2+xy+y^2+x-y+1$$
 b) $f(x,y)=2x^3+2y^3-6axy$ c) $f(x,y,z)=2x^2+y^2+4z^2$ d) $f(x,y)=x^2y^2-2xy$

c)
$$f(x, y, z) = 2x^2 + y^2 + 4z^2$$
 d) $f(x, y) = x^2y^2 - 2xy$

e)
$$f(x,y) = (x-y)^2 - x^4 - y^4$$
 f) $f(x,y) = y^2 - 4x^2y + 3x^4$

g)
$$f(x,y) = 2xy - 3x^2 - 2y^2 + 10$$
 h) $f(x,y) = (x^2 + y^2 - 1)^2$

a)
$$f(x,y) = x^2 + xy + y^2 + x - y + 1$$
 b) $f(x,y) = 2x^3 + 2y^3 - 6axy$ c) $f(x,y,z) = 2x^2 + y^2 + 4z^2$ d) $f(x,y) = x^2y^2 - 2xy$ e) $f(x,y) = (x-y)^2 - x^4 - y^4$ f) $f(x,y) = y^2 - 4x^2y + 3x^4$ g) $f(x,y) = 2xy - 3x^2 - 2y^2 + 10$ h) $f(x,y) = (x^2 + y^2 - 1)^2$ i) $f(x,y) = \frac{9}{4}y^2 - 3x^2y + x^4 - x^5$ j) $f(x,y) = x^4 + y^4 - 2(x+y)^2$

2. Determine todos os pontos $P(x,y,z) \in \mathbf{R}^3$ onde eventualmente possa ser extremos o valor da função

$$\Phi(x, y, z) = x^2 + y^2 + 10 - 2x + \cos^2 z - 8y.$$

Desses pontos indique, justificando, aqueles onde a função é máxima, mínima ou não tem extremos.

3. Determine os extremos das seguintes funções.

a)
$$f(x,y) = 2(y^3 + x^2 + xy)$$
 b)

a)
$$f(x,y) = 2(y^3 + x^2 + xy)$$
 b) $f(x,y) = x^3 + x^2y + 2x - 9y$ c) $f(x,y) = 2(x-y)^2 - 2(x^4 + y^4)$ d) $f(x,y) = x^4 - 2x^2y^2 + y^4 + 1$

e)
$$z = x^4 - y^3 - y^2$$
 f) $f(x,y) = \frac{x}{y} + \frac{8}{x} - y$

g)
$$f(x,y) = \cos(x+y)$$
 h) $f(x,y) = x^2 y e^{-(x^2+y^2)}$

g)
$$f(x,y) = \cos(x+y)$$

i) $f(x,y) = \frac{xy}{2+x^4+y^4}$

4. Considere uma função real u definida em \mathbb{R}^2 , diferenciável para qualquer ordem de derivação e que satisfaz as condições

$$\begin{cases} \frac{\partial u}{\partial t} = x.u(x,t) \\ \frac{\partial u}{\partial x} = t.u(x,t) \end{cases}, \ u(0,0) = 1.$$

Verifique se admite extremo na origem.

- 5. Determine as dimensões de uma caixa rectangular sem topo com um dado volume Ve com a mínima área de superfície total.
- 6. O custo (por unidade de área) do material usado para fazer a base da caixa rectangular é o dobro do custo do material usado para fazer o topo e os lados laterais. Determine as dimensões de uma caixa de volume V de modo a minimizar o custo de fabrico.

Extremos condicionados

1. Determine os extremos das funções seguintes, considerando as equações de ligação

a)
$$f(x,y) = \log xy$$
; $2x + 3y = 5$ b) $f(x,y) = xy$; $x^2 + y^2 = 2a^2$ c) $f(x,y) = x^2 + y^2$; $\frac{x}{2} + \frac{y}{3} = 1$

c)
$$f(x,y) = x^2 + y^2$$
; $\frac{x}{2} + \frac{y}{3} = 1$

- 2. Calcule os extremos da função z = x + 2y quando $x^2 + y^2 = 5$
- 3. De todos os triângulos de hipotenusa igual a 4, determine o de área máxima.
- 4. Determine os extremos das funções seguintes, considerando as equações de ligação indicadas:

(a)
$$f(x, y, z) = x^2 + 3y^2 + 5z^2$$
; $2x + 3y + 5z = 100$

(b)
$$f(x, y, z) = x + y + z$$
; $\frac{1}{4} + \frac{1}{y} + \frac{1}{z} = 1$

(c)
$$f(x, y, z) = x - 2y + 2z$$
; $x^2 + y^2 + z^2 = 9$

- 5. Decomponha o número k > 0 na soma de três números cujo produto é máximo.
- 6. Determine os extremos da função $f(x,y,z)=ax^2+by^2$ sobre a superfície esférica $S=\left\{(x,y,z):x^2+y^2+z^2=1\right\}$, supondo que a<0 e b>0.
- 7. Utilizando a teoria do extremo ligado, determine o ponto de cota mais alta da intersecção do parabolóide $x^2 + y^2 = 5 - z$ com o plano x + y + z = 1.
- 8. Determinar, utilizando a teoria do extremo ligado, os pontos da superfície $x^2 y^2 + z =$ R (R constante) onde a função $v = x + y - z^2$ tem um possível extremo, indicando, no caso deste existir, qual a sua natureza.
- 9. Pretende-se construir, com uma folha de zinco de área igual a $24 \, dm^2$, uma caixa paralelipípeda fechada. Determine, quais as dimensões que deve ter essa caixa de modo que a sua capacidade seja máxima.

2