Teorie množin

Ladislav Láska

23. března 2010

Obsah

1	Formální jazyk		
	1.1	Základní součásti jazyka	2
	1.2	Formule	2
2	Axiomy teorie množin		
	2.1	Průnik a rozdíl množin	2
	2.2	Disjunkní množina	3
	2.3	Russelův paradox	3
	2.4	Axiom dvojce	3
		2.4.1 Rovnost množin	3
		2.4.2 Uspořádaná dvojce, k-tice	4
	2.5	Axiom sumy	4
		2.5.1 Neuspořádané k-tice	4
		2.5.2 Průnik	4
	2.6	Schéma axiomu nahrazení	5
		2.6.1 Binární relace	5
		2.6.2 Funkce	6
	2.7	Uspořádání	6
3	Ord	linály	9
	3.1	Věta o ordinálech	9
	3.2	Neexistence množiny všech ordinálů	11
	3.3	Lemma o tranzitivitě a ordinalitě	11
	3.4		11
	3.5		12
	3.6		13
	3.7	Množina všech přirozených čísel	13
4	Kar	·dinály	16

1 Formální jazyk

1.1 Základní součásti jazyka

- 1. proměnné
- 2. binární predikátový symbol \in
- 3. binární predikátový symbol =
- 4. logické spojky $\neg \land \lor \Rightarrow \Leftrightarrow$
- 5. kvantifikátory $(\forall x)$, $(\exists x)$
- 6. pomocné symboly závorky

1.2 **Formule**

- 1. Nechť x, y jsou prvky množiny, pak $(x \in y)$ a (x = y) jsou atomické formule.
- 2. Nechť výrazy φ , ψ jsou formule, potom: $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Rightarrow \psi$, $\varphi \Leftrightarrow \psi$ jsou formule.

Tedy toho hodne chybi

2 Axiomy teorie množin

2.1 Průnik a rozdíl množin

Definice Pro množiny a,b po řadě průnikem a rozdílem nazýváme množinu:

$$a \cup b = \{x : x \in a \land x \in b\} \tag{1}$$

$$a \setminus b = \{x : x \in a \land x \notin b\} \tag{2}$$

Existuje množina a (Axiom existence), podle vydělení pro formuli $x \neq x$ existuje a podle extenziability je jediná množina $\{x \in a : a \neq x\}$.

Definice Ø je jediná množina y splňující:

$$(\forall x)(x \notin y) \tag{3}$$

A nazýváme jí **prázdná množina**.

2.2 Disjunkní množina

Definice Říkáme, že množina a,b jsou disjunkní, že je-li $a \cup b = 0$.

Lemma

- 1. $\neg(\exists y)(y \in \emptyset)$
- 2. $(\forall x)(\emptyset \subset x)$
- 3. $x \subset \emptyset \Leftrightarrow x = 0$

Lemma

$$(\forall a)a = \{x : x \in a \land x = x\} \tag{1}$$

2.3 Russelův paradox

Věta

$$\neg(\exists z)(\forall x)(x \in z) \tag{1}$$

Důkaz Sporem: nechť z je taková množina. Pak mějme formuli $\varphi(x)$ $x \neq x$. Potom podle axiomu vydělení pro tuto formuli máme $t = \{x \in z : x \notin x\}$, tedy t je množina. Protože t je množina a z je množina všech množin. Protože $t \in z$, $t \in t \Leftrightarrow t \notin t$. Tedy neexistuje množina všech množin.

2.4 Axiom dvojce

$$(\forall a)(\forall b)(\exists z)(\forall x)(x \in z \Leftrightarrow (x = a \lor x = b)) \tag{1}$$

Definice Jsou-li a, b množiny, pak množinu se stávající z prvků a, b nazveme **neuspořádanou dvojcí** množin a, b a značíme $\{a, b\}$. Pro $a \neq b$ říkáme, že $\{a, b\}$ dvouprvková, jinak jednoprvková.

2.4.1 Rovnost množin

Lemma

- 1. $\{x\} = \{y\} \Leftrightarrow x = y$
- 2. $\{x\} = \{x, y\} \Leftrightarrow x = y$
- 3. $\{x,y\} = \{u,v\} \Leftrightarrow (x = u \land y = v) \lor (x = v \land y = u)$

2.4.2 Uspořádaná dvojce, k-tice

Uspořádaná dvojce množina,b je množina, která má prvky $\{\{a\},\{a,b\}\}$. Značíme jí < a,b>.

Lemma

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow (x = u \land y = v)$$
 (1)

Definice Jsou-li dány množiny $a_1, a_2, ..., a_k$, pak uspořádanou k - tici definujeme jako:

$$\langle a_1 \rangle = a_1$$
, a dál indukcí (2)

$$\langle a_1, a_2, ..., a_k \rangle = \langle \langle a_1, ..., a_{k-1} \rangle, a_k \rangle$$
 (3)

Lemma

$$\langle a_1, ..., a_k \rangle = \langle b_1, ..., b_k \rangle$$
 (4)

$$\Leftrightarrow$$
 (5)

$$(a_1 = b_1) \wedge \dots \wedge (a_k = b_k) \tag{6}$$

2.5 Axiom sumy

$$(\forall a)(\exists z)(\forall x)(x \in z \Leftrightarrow (\exists y)(x \in y \land y \in a)) \tag{1}$$

Značení

$$\bigcup a = \{x : (\exists y)(y \in a \land x \in y)\}$$
 (2)

Značení Nechť $a = \{b, c\}$. Pak $\bigcup a = b \cup c$

2.5.1 Neuspořádané k-tice

Značení Neuspořádaná k-tice je:

$$\{a, b, c\} = \{a, b\} \cup \{c\} \tag{1}$$

2.5.2 Průnik

Definice Pro neprázdnou množinu a lze analogicky definovat

$$\bigcap a = \{x : (\forall y)(y \in a \Rightarrow x \in y)\}$$
 (1)

Pro neprázdnou a existuje $\bigcap a$:

$$a \neq 0 \quad (\exists x)x \in a, \quad x = x_0 \tag{2}$$

$$a = 0 \quad \bigcap a$$
 není definovaný (3)

2.6 Schéma axiomu nahrazení

Je-li $\psi(u,v)$ formule, která neobsahuje volně proměnné z,w, potom formule:

$$(\forall u)(\forall v)(\forall w)(\psi(u,v) \land \psi(u,w) \Rightarrow v = w) \Rightarrow \tag{1}$$

$$(\forall a)(\exists z)(\forall v)(v \in z \Leftrightarrow (\exists u)(u \in a \land \psi(u, v))) \tag{2}$$

je axiom teorie množin.

Pozorování Pro jedno $u, \psi(u, v)$ platí pro nejvýše jedno v. To je analogie k funkci.

Definice Nechť a, b jsou množiny. **Kartézský součin** $a \times b$ je množina:

$$a \times b = \{ \langle x, y \rangle : x \in a \land y \in b \}$$
 (3)

Důkaz $a \times b$ je množina. Zvolme a zafixujme $y \in b$ a nechť $\psi(x, v)$ je formule $v = \langle x, y \rangle$. Je-li:

$$\psi(x,v) \land \psi(x,w) \Rightarrow v = \langle x,y \rangle \land w = \langle x,y \rangle \Rightarrow v = w \tag{4}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli ψ .

$$M_y = \{ \langle x, y \rangle : x \in a \}$$
 (5)

je množina podle nahrazení pro ψ pro každé y.

Nechť navíc $\psi(y,v)$ je formule $v=M_y$. Je-li:

$$\overline{\psi}(y,v) \wedge \overline{\psi}(y,w) \Rightarrow v = M_y \wedge w = M_y \Rightarrow v = w \tag{6}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli $\overline{\psi}$. Navíc tedy

$$D = \{M_y : y \in b\} \text{ je množina} \tag{7}$$

2.6.1 Binární relace

Definice Binární relace je množina R, jejímiž prvky jsou uspořádané dvojce.

$$\operatorname{dom}(R) = \{x : (\exists y) < x, y > \in R\} \text{ je definiční obork } \operatorname{rng}(R) = \{y : (\exists x) < x, y > \in R\} \text{ je obor hodnot}$$

$$\tag{1}$$

Protože R je množina, dom(R) i rng(R) jsou množiny.

Definice Je-li R relace, definujeme:

$$R^{-1} = \{ \langle x, y \rangle : \langle y, x \rangle \in R \}$$
 (2)

Pro každou relaci R, R^{-1} je relace a $(R_{-1})^{-1} = R$.

Definice Jsou-li R, S relace, pak

$$R \circ S = \{ \langle x, z \rangle : (\exists y) \langle x, y \rangle \in R \land \langle y, z \rangle \in S \}$$
 (3)

Definice Jsou-li R, S, T relace, pak

$$(T \circ S) \circ R = T \circ (S \circ R) \tag{4}$$

2.6.2 Funkce

Množina f se nazývá **funkce**, pokud f je relace a platí:

$$(\forall x \in \text{dom}(f))((y \in \text{rng}(f) \land y \in \text{rng}(f) \land \langle x, y \rangle \in f \land \langle x, y' \rangle \in f) \Rightarrow y = y') \quad (1)$$

Značení $f: A \to B$ znamená: f je funkce, $A = \text{dom}(f), B \supset \text{rng}(f)$. Je-li $C \subseteq A$, pak $f \upharpoonright C = f \cap (C \times B)$ nazýváme x zůžením funkce f na množinu C.

$$f'C = \operatorname{rng}(f \upharpoonright C) = \{f(x) : x \in C\}$$
 (2)

Funkce $f: A \to B$ se nazývá **prostá**, pokud f^{-1} je funkce.

Funkce $f: A \to B$ se nazývá **surjektivní** ("na"), jestliže $B = \operatorname{rng}(f)$

Funkce f se nazývá **bijekce** je-li **surjektivní** a současně **prostá**.

2.7 Uspořádání

Definice Ostře uspořádaná množina je uspořádaná dvojce $\langle a, r \rangle$, kde a je množina a r je relace, $r \subseteq a \times a$. Přičemž r splňuje:

$$\forall x, y, z \in a: \langle x, y \rangle \in r \land \langle y, z \rangle \in r \Rightarrow \langle x, z \rangle \in r \text{ tranzitivita}$$
 (1)

$$\forall x \in a: \ \ \not < x, x > \in r$$
 antireflexivita (2)

Pro zjednodušení místo $\langle x, y \rangle \in r$ píšeme xry.

Definice Ostré uspořádání r nazveme **lineárním**, pokud

$$\forall x, y \in a: \quad x = y \lor xry \lor yrx \tag{3}$$

Definice Jsou-li R, S relace a a, b množiny, pak řekneme, že < a, R > je izomorfní s < b, S >, pokud existuje bijekce $f: a \to b$ taková, že

$$\forall x, y \in a: \langle x, y \rangle \in \mathbb{R} \Leftrightarrow \langle f(x), f(y) \rangle \in S \tag{4}$$

a zobrazení f se nazývá **izomorfismus**.

Definice Mějme uspořádanou množinu < a, r >. Je-li $m \subset a$, pak řekneme, že $x \in a$ je **r-nejmenší** prvek množiny m, jestliže platí:

$$x \in m \land (\forall Y)(y \in m \Rightarrow (xry \lor y = x)) \tag{5}$$

Je-li $m \subseteq a, x \in a$, řekneme, že x je **minimální** prvek množiny m, jestliže platí

$$x \in m \land (\forall y)(y \in m \Rightarrow \not (yrx)) \tag{6}$$

Definice Řekneme, že uspořádání r na množině a je **dobré** (množina < a, r > je dobře uspořádaná) jesltiže r je ostré uspořádání množiny a a každá neprázdná podmnožina a má r-nejmenší prvek.

Pozorování Je-li < a, r > dobře uspořádaná, pak je r lineární uspořádání. $x, y \in a \{x,y\} \subseteq a \ a \{x,y\}$ má r-nejmenší prvek. Je-li to x, pak $xry \lor x = y$. Pokud je to y, pak $yrx \lor y = x$.

Značení Nechť $\langle a, r \rangle$ je uspořádaná množina a $x \in a$. Označme $\langle (\leftarrow, x), r \rangle$ jako:

$$(\leftarrow, x) = \{ y \in a : yrx \} \tag{7}$$

Lemma 1 Je-li < a, r > dobře uspořádaná množina, pak pro každé $x \in a < a, r >$ není izomorfní s $< (\leftarrow, x), r >$

Důkaz Sporem: Předpokládejme, že existuje izomorfismus $f: \langle a, r \rangle \rightarrow \langle (\leftarrow, x), r \rangle$. Definujme $m = \{y \in a : f(y) \neq y\}$. $x \neq (\leftarrow, x)$, tedy $f(x) \neq x \Rightarrow m \neq \emptyset$. $\langle a, r \rangle$ je tedy dobře uspořádaná, tedy musí existovat t r-nejmenší prvek množiny m. Máme pro všechna zrt, platí že f(z) = z.

- 1. f(t)rt ale f(t)rt máme $f(t) \neq t$, f(f(t)) = f(t), spor: f není prosté.
- 2. trf(t): kdykoliv $zrt \Rightarrow f(z)rt$, protože f(z) = z. Navíc kdykoliv $trz \Rightarrow f(t)rf(z)$ protože f je izomorfismus. Tedy trf(t), $t \in (\leftarrow, x) \Rightarrow t \neq rng(f)$, tedy f není zobrazení **na**, což je **spor**.

Lemma 2 Jsou-li < a, r>, < b, s> dvě dobře uspořádané množiny, které jsou izomorfní, pak mezi nimi existuje **jediný** izomorfismus.

Důkaz Sporem: Nechť $f,g:a\to b$ jsou dva různé izomorfismy. Tedy existuje nějaké $x\in a: f(x)\neq g(x)$. Tedy množina $m=\{t\in a: f(t)\neq g(t)\}$ je neprázdná (obsahuje x) a < a,r> je dobře uspořádaná, tedy existuje nejmenší prvek t množiny m. Zřejmě platí, že kdykoliv yrt, pak f(y)=g(y).

- 1. f(t)sg(t). Pokud trz, protože g je izomorfismus, musí platit, že g(t)sg(z). Pokud zrt, pak $f(z) = g(z) \Rightarrow f(z)sf(t) \Rightarrow g(z)sf(t) \Rightarrow g(t) \neq f(t)$. Tedy $f(t) \notin rng(g)$, tedy není **na**.
- 2. g(t)sf(t) analogicky.

Věta Nechť < a, R > a < b, S > dvě dobře uspořádané množiny. Potom nastává právě jedna z následujícíh možností:

- 1. $\langle a, R \rangle \cong \langle b, S \rangle$ (je izomorfní)
- 2. $\exists y \in b : \langle a, R \rangle \cong \langle (\leftarrow, y), S \rangle$
- 3. $\exists x \in a : \langle (\leftarrow, x), R \rangle \cong \langle b, S \rangle$

Důkaz Položme

$$f = \{ \langle v, w \rangle : v \in a \land w \in b \land \langle (\leftarrow, v), R \rangle \cong \langle (\leftarrow, w), S \rangle \}$$
 (8)

1. f je zobrazení: nechť $\langle v, w \rangle \in f, \langle v, w_1 \rangle \in f$. Máme:

$$<(\leftarrow, w), S) \cong <(\leftarrow, v), R> \cong <(\leftarrow, w_1), S>$$
 (9)

tedy

$$<(\leftarrow, w), S>\cong<(\leftarrow, w_1), S>$$
 (10)

a podle Lemma 1 $w = w_1$.

2. f je prosté:

$$< v, w > \in f, < v_1, w > \in f$$
 (11)

$$<(\leftarrow, R> \cong <(\leftarrow, w), S> \cong <(\leftarrow, v), R>$$
 (12)

a podle Lemma 1 $v = v_1$

3. f zachovává uspořádání:

$$< v, w > \in f, < v_1, w_1 > \in f$$
 (13)

Nechť vRv_1 . Máme $<(\leftarrow, v_1), R>\cong<(\leftarrow, w_1), S>$. Nechť $g:<(\leftarrow, v_1), R>\to<(\leftarrow, w_1), S>$ je izomorfismus. Je $vRv_1, g(v)$ protože g je izomorfismus:

$$<(\leftarrow, v), R> \cong <(\leftarrow, g(v)), S>$$
 (14)

z definice f. Podle Lemma 2 existuje izomorfismus jediný, ktedy $w = g(v)Sw_1$. Analogicky: pokud wSw_1 , potom vRv_1 .

Zřejmě platí, že pokud < $v,w>\in f$, pak $f\upharpoonright (\leftarrow,v)$ je izomorfismus mezi < $(\leftarrow,v),R>$ a < $(\leftarrow,w),S>$. Položme:

$$m = \{ v \in a : \forall w \in b \quad \langle v, w \rangle \notin f \} o = \{ w \in b : \forall v \in a \quad \langle v, w \rangle \notin f \}$$
 (15)

Můžou nastat případy:

- (a) $m = o = \emptyset$. Nastal případ, že $\langle a, R \rangle \cong \langle b, S \rangle$ podle f.
- (b) $m = \emptyset \neq o$. Množina < b, S > je dobře uspořádaná, tedy existuje $y \in b$, y je S-nejmenší prvek množiny o. V tom případě f je izomorfismus mezi < a, R > a $< (\leftarrow, y), S >$.
- (c) $m \neq \emptyset = o$. Existuje x R-nejmenší prvek množiny m a $< (\leftarrow, x), R > \cong (b, S)$ a f je hledaný izomorfismus.
- (d) $m \neq \emptyset \neq o$, což je ale ve sporu s definicemi o a m.

3 Ordinály

Definice Množina x se nazývá **tranzitivní**, pokud platí

$$\forall y : y \in x \Rightarrow y \subseteq x \tag{1}$$

Definice Množina x je **ordinál**, pokud x je tranzitivní a dobře uspořádaná relací \in .

Příklad 0 je ordinál

 $\{0, \{0\}, \{\{0\}\}\}\$ je tranzitivní, ale náležení neuspořádává - není ordinál.

 $\{0, \{0\}, \{0, \{0\}, \{0, \{0\}\}\}\}\}\$ je ordinál, obvykle se značí 4.

3.1 Věta o ordinálech

- 1. Je-li x ordinál, $y \in x$ a $y \in z$, pak $x \in z$.
- 2. Jsou-li x, y ordinály, pak $x \cong y$ právě když x = y
- 3. Jsou-li x, y ordinály, pak platí právě jedna z možností: $x = y, x \in y, y \in x$.
- 4. Jsou-li x, y, z ordinály, $x \in y \land y \in z \Rightarrow x \in z$.
- 5. Je-li C neprázdná množina ordinálů, potom $\exists x \in C : \forall y \in C : y = x \lor x \in y$

Důkaz

1. Je-li x ordinál, $y \in x$ a $y \in z$, pak y je ordinál a $y = <(\leftarrow, y), \in > \in x$.

Víme, že: x je ordinál, x je tranzitivní množina, $t \in y, y \in x$. Tedy $t \in x$. x je tranzitivní množina, $t \in x, u \in t$, tedy $u \in x$. V množině x máme $u, t, y \in x, x$ je uspořádané relací náležení a máme $u \in t, t \in y$. Tedy $u \in y$. y je tedy tranzitivní množina.

y je relací náležení uspořádaná: Nechť $u,v,w\in y,\ u\in v \land v\in w.\ y\in x,$ protože x je tranzitivní množina, $u,v,w\in x.$ Přitom $u\in v \land v\in w,\ x$ je relací náležení uspořádaná, tedy $u\in w.\ y$ je tedy relací náležení uspořádaná dobře. Nechť $m\subset y$ je neprázdná množina, kdykoliv $t\in m,$ pak $t\in y,\ x$ je tranzitivní, tedy $m\subseteq x,m\neq\emptyset.$ Protože x je dobře uspořádaná, existuje $z\in m$ nejmenší prvek množiny m v x. Ale $m\subseteq y,$ tedy z je nejmenší prvek i v y.

Zbývá dokázat, že $y = <(\leftarrow, y), \in>$ v x: $t \in y$, protože $y \in x$, je $t \in x$ a $t \in y$. Tedy $t \in (\leftarrow, y)$. A naopak: $t \in (\leftarrow, y)$ v x. Množina x je uspořádaná operací náležení, tedy $t \in y$. Dostáváme, že $(\leftarrow, y) \subseteq y$.

2. Jsou-li x, y ordinály, a platí $x \cong y$ pak x = y. Nechť $h: (x, \in \to (y, \in)$ je izomorfismus. Položme $m = \{z \in x : h(z) \neq z\}$. Pokud $m = \emptyset$, jsme hotovi. Pro spor předokládejme, že $m \neq \emptyset$. V tom případě existuje $t \in m$, t nejmenší prvek množiny m. Protože h je izomorfismus, platí pro $c, d \in x$:

$$c \in d \Leftrightarrow h(c) \in h(d) \tag{1}$$

Tedy speciálně

$$z \in t \Leftrightarrow h(z) \in h(t) \tag{2}$$

Máme (t nejmenší prvek množiny m)

$$z \in t \Leftrightarrow z \in h(t) \tag{3}$$

t = h(t), spor s předpokladem $t \in m$.

- 3. Jsou-li x,y ordinály, pak platí právě jedna z následujících možností: $x=y, x \in y, y \in x$. Podle věty o izomorfismu dobrých uspořádání buď $x \cong y$ a ale podle 2. $\Rightarrow x=y$, nebo $x \cong (\leftarrow, z)$ a $x \cong z \in y$, nebo $y \cong (\leftarrow, t)$, tedy $x \in y \in x$.
- 4. Jsou-li x, y, z ordinály, $x \in y$ a $y \in z$, potom $x \in z$. Protože z je tranzitivní množina.
- 5. Je-li C neprázdná množina ordinálů, pak existuje $x \in C$ tak, že

$$(\forall y \in C)(x = y) \lor (x \in y) \tag{4}$$

 $C \neq \emptyset$, tedy můžeme zvolit $t \in C$. Pak t je nejmenší prvek množiny C a jsme hotovi. V opačném případě existuje $y \in C$, že $y \in t$. Tedy $D = \{y \in C : y \in t\} \neq \emptyset$. t je ordinál: $D \neq \emptyset$, $D \subseteq t$, tedy existuje $x \in D$ nejmenší prvek množiny D. Nechť tedy $y \in t$, tedy $x = y \lor x \in y$; nebo y = t, tedy $x \in t$; nebo $t \in y$, pak $x \in t$, $t \in y$ dává $x \in y$. Tedy $x \in t$ je nejmenší prvek množiny C.

3.2 Neexistence množiny všech ordinálů

Věta Neexistuje množina všech ordinálů:

$$\neg(\exists z)(\forall x)(x \text{ je ordinál } \Rightarrow x \in z) \tag{1}$$

Sporem: Nech množina z existuje. Podle vydělení pro formuli "x je ordinál existuje $m = \{x : x \text{ je ordinál }\}$. Podle věty o ordinálch je m: tranzitivní, ostře uspořádaná relací náležení a to uspořádání je dobré. Podle definice m je ordinál, máme $m \in m$. Což je spor s bodem 3. věty o ordinálech.

3.3 Lemma o tranzitivitě a ordinalitě

Lemma Je-li *a* tranzitivní množina ordinálů, pak *a* je ordinál.

Důkaz Stačí ukázat:

- 1. náležení je dobré uspořádání na množině a. Mějme $x, y, z \in a$: $x \in y, y \in z$. Ale x, y, z jsou ordinály: podle věty o ordinálech (bod 4.) $x \in z$.
- 2. uspořádání je lineární (bod 3.)
- 3. uspořádání je dobré (bod 5.)

3.4

Věta Je-li < A,R> dobře uspořádaná množina. Pak existuje právě jeden ordinál c tak, že < $A,R>\cong < c,\in >.$

Důkaz

- 1. Unicita: Nechť < $A,R>\cong$ < d,\in >. Dostáváme, že $c\cong d$ a podle věty o ordinálech c=d.
- 2. Existence: Položme $B=\{a\in a:<(\leftarrow,R>\cong x>\text{pro nějaký ordinál x }\}$. Nechť navíc f je funkce dom(f)=B a splňuje

$$(\forall a \in B) f(a)$$
 je ordinál takový, že $< (\leftarrow, a), R > \cong < f(a), \in >$ (1)

Položme $c = \operatorname{rng}(f)$: c je množina (nahrazení pro formuli " $< (\leftarrow, a, R > \cong x$ "). Podle předchozího lemmatu je c ordinál. Tedy f je izomorfismus $B \to c$. Pokud B = A, jsme hotovi. Jinak existuje $b \in A : B = (\leftarrow, b)$ a tedy f je izomorfismus mezi < B, R > a $< c, \in >$. Tedy i f(b) je definováno, ačkoli $b \notin B$, což je spor.

3.5

Definice Je-li < A, R > dobře uspořádaná množina, pak typ < A, R > je jediný ordinál c, pro který $< A, R > \cong c$.

Příklad $A = \{\sqrt{2}, \pi, 6, 7\} \cong 4$

Značení Malá řecká písmena $\alpha, \beta, \gamma, \dots$ je ordinál. Přičemž nahradíme:

$$\alpha < \beta \text{ za } \alpha \in \beta \tag{1}$$

$$\alpha \le \beta \text{ za } (\alpha \in \beta) \lor (\alpha = \beta)$$
 (2)

Definice Je-li X množina ordinálů, označme:

$$\sup(X) = \bigcup X \tag{3}$$

$$\operatorname{pro} X \neq \emptyset \text{ označme } \min(X) = \bigcap X \tag{4}$$

Lemma

1. Pro ordinály α, β platí

$$\alpha \le \beta \Leftrightarrow \alpha \subseteq \beta \tag{5}$$

2. Je-li X množina ordinálů, prvek $\sup(X)$ je nejmenší ordinál, který je větší nebo roven všem prvkům z X pokud $X \neq \emptyset$. Prvek $\min(X)$ je nejmenší ordinál v množině X.

Důkaz

1.

- 2. Podle axiomu sumy X je množina, tedy $\bigcup X$ je množina. $\bigcup X$ je ordinál:
 - (a) je-li $x \in \bigcup X$, $y \in x$, musí podle axiomu sumy existovat $t \in X : x \in t$. Máme $x \in t$, $y \in x$, t je ordinál: $y \in t$. Znova podle axiomu sumy $y \in \bigcup X$. Tedy $\bigcup X$ je tranzitivní množina, je to množina ordinálů podle minulého lemmatu.
 - (b) $\forall x \in X: x \leq \bigcup X$ Nechť $x \in X$ libovolné, podle věty o ordinálech nastává právě jedna z možností

$$x \in \bigcup X, x = \bigcup X, \bigcup X \in x \tag{6}$$

Pokud $\bigcup X \in x$, máme x = X, pak $x \in \bigcup X$, tedy $\bigcup x \bigcup X$, spor s ordinalitou $\bigcup X$.

(c) $\bigcup X$ je nejmenší mez. Buď $t < \bigcup X$, tedy $t \in \bigcup X$. Stačí ukázat, že t není horní mezí množiny X. Protože $t \in \bigcup X$, existuje $y \in X$, že $t \in y$. Pro toto y platí t < y, tedy t není horní mezí množiny X.

Nechť $X \neq \emptyset$ máme dokázat, že $\min(X) = \bigcap X$ je ordinál a je nejmenší ze všech ordinálů v X. $\bigcap X$ je množina je-li $t \in \bigcap X$ a je-li $y \in t$, můžeme zvolit libovolné $x \in X$, je $t \in x, y \in t$, x ordinál, tedy $y \in x$. Tedy $\bigcap X$ je tranzitivní množina, podle předchozího lemmatu je $\bigcap X$ ordinál.

Zbývá dokázat, že $\bigcap X \in X$. X je neprázdná množina ordinálů, podle věty o ordinálech (bod 5) existuje nejmenší prvek množiny $x \in X$. Pro takové x platí, že kdykoliv $y \in x$, pak x = y nebo $x \in y$.

$$x = \{t : t \in x\} \subseteq y \text{ pro každé } y \in X$$
 (7)

$$x \le \bigcap X \tag{8}$$

Opačná rovnost $x \geq \bigcap X$ je zřejmá, nebo $\bigcap X \subseteq$ platí pro všechna $y \in X$.

3.6

Definice Pro ordinál α je jeho **ordinální následník** $s(\alpha) = \alpha \cup \{\alpha\}$.

Lemma Pro ordinál α je $s(\alpha)$ též ordinál, $\alpha < s(\alpha)$ a

$$(\forall \beta)(\beta \text{ ordinál } \Rightarrow (\beta < s(\alpha) \Leftrightarrow \beta \le \alpha)) \tag{1}$$

Důkaz Je-li $x \in s(\alpha)$, pak buď $x \in \alpha$ nebo $x \in \{\alpha\}$ z definice. Což je po řadě $x < \alpha$ a $x = \alpha$.

Definice Ordinál α se nazývá **izolovaný**, jestliže $\alpha = \emptyset$ nebo $\exists \beta$ ordinál a $\alpha = s(\beta)$.

Definice Ordinál α se nazývá **limitní**, jestliže $\alpha \neq \emptyset$ a není izolovaný.

Definice 1 = s(0), 2 = s(1), 3 = s(2), ...

Definice Ordinál α je přirozené číslo, jestliže platí

$$(\forall \beta)(\beta \le \alpha \Rightarrow \beta \text{ je izolovaný ordinál}) \tag{2}$$

3.7 Množina všech přirozených čísel

Tvrzení Podle axiomu nekonečna:

$$(\exists x)(\emptyset \in x \land (\forall y)(y \in x \Rightarrow s(y) \in x)) \tag{1}$$

Pozorování Množina x, zaručená axiomem nekonečna, obsahuje všechna přirozená čísla.

Důkaz Sporem: $\exists n$ přirozené číslo takové, že $n \notin x$. Určitě $n \neq 0$ podle axiomu nekonečna. Tedy $\exists m : n = s(m)$. Je $m \in x$? Ne, kdyby bylo $m \in x$, pak i n = s(m) splňuje $m \in x$, což je ve sporu s předpokladem. n je tedy přirozené číslo, tedy ordinál. Množina $x \setminus n$ je neprázdná, nebo $m \in x \setminus n$. Protože n je dobře uspořádaná a $x \setminus n$ je neprázdná, existuje nejmenší prvek $\tilde{n} \in x \setminus n$.

- 1. $\tilde{n}=0$ spor s axiomem nekonečna.
- 2. $\tilde{n} \neq 0$, $\exists \tilde{m} \quad \tilde{n} = s(\tilde{m})$. Protože $\tilde{n} > \tilde{m}$ musí být $\tilde{m} \in x$. Podle axiomu nekonečna $s(\tilde{m}) = \tilde{n} \in x$. Což je spor.

Definice ω je množina všech přirozených čísel. ω je ordinál (podle Lemma 3). Všechny menší ordinály než ω jsou izolované, ω sama je limitní (a to dokonce nejmenší).

Poznámka Existuje, axiom nekonečna a vydělení pro formuli "n je přirozené číslo".

Věta (Peanovy axiomy)

- 1. $0 \in \omega$
- 2. $(\forall n \in \omega)(s(n) \in \omega)$
- 3. $(\forall n, m \in \omega)(n \neq m \Rightarrow s(n) \neq s(m))$
- 4. (indukce) $\forall X \subseteq \omega$

$$((0 \in X \land (\forall n \in X)(s(n) \in X)) \Rightarrow X = \omega). \tag{2}$$

Důkaz Plyne z věty o ordinálech. Ve 4 předpokládeme ke sporu, že $X \neq \omega$, tedy $\omega \setminus X$ je neprázdná množina ordinálů. Tedy má nejmenší prvek n. Pokud n=0 - spor, jinak $n \neq 0$, tedy $n=s(m), m \in X$ - spor.

Definice Nechť α , β jsou ordinály.

$$\alpha + \beta = typ < \alpha \times \{0\} \cup \beta \times \{1\}, R > \tag{3}$$

kde

$$R = \{ \langle \langle \xi, 0 \rangle, \langle \ni, 0 \rangle \rangle : \xi \langle \ni \langle \alpha \} \cup \tag{4}$$

$$\{\langle\langle\xi,1\rangle,\langle\ni,1\rangle\rangle:\xi\langle\ni\langle\beta\}\cup$$

$$\{((\alpha \times \{0\}) : (\beta \times \{1\})\}\tag{6}$$

Věta Pro libovolné ordinály α, β, γ

1.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

$$2. \ \alpha + 0 = \alpha$$

3.
$$\alpha + 1 = s(\alpha)$$

4.
$$\alpha + s(\beta) = s(\alpha + \beta)$$

5. Je-li β je limitní ordinál, pak $\alpha+\beta=\sup\{\alpha+\xi:\xi<\beta\}$

Důkaz Triviální z definice.

Poznámka Pozor, ordinální sčítání není obecně komutativní.

Definice Pro ordinály $\alpha, \beta : \alpha \cdot \beta = typ < \beta \times \alpha, R >$, kde R je lexikografické uspořádání součinu $\beta \times \alpha$, tedy:

$$<<\xi,\ni>,<\xi',\ni'>>\in R \Leftrightarrow (\xi<\xi')\vee(\xi=\xi'\wedge\ni<\ni')$$
 (7)

Věta Pro libovolné ordinály α, β, γ platí:

1.
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

$$2. \ \alpha \cdot 0 = 0$$

3.
$$\alpha \cdot 1 = \alpha$$

4.
$$\alpha \cdot s(\beta) = \alpha \cdot \beta + \alpha$$

5. Je-li β limitní ordinál, pak $\alpha \cdot \beta = \sup\{\alpha \cdot \xi : \xi < \beta\}$

6.
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Poznámka Pozor:

$$\omega \cdot 2 = \omega + \omega \tag{8}$$

$$2 \cdot \omega = \omega \tag{9}$$

4 Kardinály

Definice Nechť a, b jsou množiny.

- 1. Rekneme, že mohutnost množiny a je **menší nebo rovna** mohutnosti množiny b (značíme $a \leq b$), jestliže existuje zobrazení $f: a \rightarrow b$.
- 2. Řekneme, že mohutnost množiny a je **rovna** mohutnosti množiny b (značíme $a \approx b$) pokud existuje bijekce $f: a \to b$.
- 3. Řekneme, že mohutnost množiny a je **ostře menší** mohutnosti množiny b (značíme $a \prec b$) právě když $a \leq b \land (a \approx b)$.

Věta

- 1. $x \approx x$
- 2. $x \approx y \Rightarrow y \approx x$
- 3. $(x \approx y \land y \approx z) \Rightarrow x \approx z$
- $4. x \prec x$
- 5. $(x \leq y \land y \leq z) \Rightarrow x \leq z$

Věta (Kantor-Bernstein) Pro množiny a, b

$$(a \le b \land b \le a) \Rightarrow a \approx b \tag{1}$$

Značení $g''b = g[b] = \{g(x) : x \in b\}$

Důkaz Mějme $f: a \to b$ prosté zobrazení a $g: b \to a$ prosté zobrazení. Pokud f nebo g bijekce, je věta dokázána - nadále tedy předpokládejme, že $f''a \neq b \land f''b \neq a$. (sem vlozit obrazek dvou funkci)

Pro všechna přirozená čísla definujeme indukcí $a_0 = a$, $b_0 = b$. $a_{n+1} = g''b_n$, $b_{n+1} = f''a_n$. Tedy $a_1 = g''b_0 = g''b \subsetneq a = a_0$. Analogicky $b_1 = f''a_0 = f''a \subsetneq b = b_0$. Označme

$$a_{\omega} = \bigcap \{a_n : n \in \omega\} b_{\omega} = \bigcap \{b_n : n \in \omega\}$$
 (2)

Zobrazení $h: a \to b$ definujme předpisem

h(x)=f(x) pro $x\in\bigcup_{n\in\omega}a_{2n}\setminus a_{2n+1}\cup a_{\omega}$ h(x)=t,kde $t\in b$ a g(t)=x pro $x\in\bigcup_{n\in\omega}a_{2n+1}\setminus a_{2n+2}$

 $h: a \to b$ je hledaná bijekce. Je zřejmé, že h je funkce a dom(h) = a.

1. h je prosté: Nechť $x \neq y$, x,y in a. Pokud

$$x, y \in \bigcup_{n \in \omega} a_{2n} \setminus a_{2n+1} \cup a_{\omega} \tag{3}$$

mějme h(x) = f(x), h(y) = f(y), a f je prostá tedy $f(x) \neq f(y)$.

Pokud $x,y\in\bigcup_{n\in\omega}a_{2n+1}\setminus a_{2n+2}$ $h(x)=g^{-1}(x),\ h(y)=g^{-1},\ g$ je zobrazení, tedy $h(x)\neq h(y).$

 $x \in \bigcup_{n \in \omega} a_{2n} \setminus a_{2n+1}, y \in \bigcup n \in \omega a_{2n+1} \setminus a_{2n+2}$

$$\exists n \ x \in a_{2n} \setminus a_{2n+1} : h(x) = b_{2n+1} \setminus b_{2n+2}$$
 (4)

$$\exists m \ y \in a_{2m+1} \setminus a_{2m+2} : h(y) = b_{2m} \setminus b_{2m+1}$$
 (5)

$$\emptyset = (b_{2n+1} \setminus b_{2n+2}) \cap (b_{2m} \setminus b_{2m+1}) \tag{6}$$

$$x \in a_{\omega} \quad \lor \quad h(x) \in b_{\omega}$$
 (7)

2. h je surjektivní: $t \in b$.

$$t \in b_{2m} \setminus b_{2n+1} \tag{8}$$

Pak $g(t) \in a_{2n+1} \setminus a_{2n+2}$. Pro x = g(t) máme h(x) = t. Nebo:

$$t \in b_{2n+1} \setminus b_{2n+2} \tag{9}$$

Pak $b_{2n+1} = f''a_{2n}$ a $\exists x \in a_{2n}f(x) = t, h(x) = t$). Nebo:

$$t \in b_{\omega} \subseteq b_0 = f''a \tag{10}$$

Existuje takové x, že f(x) = t. Pro toto x je $x \in a_{\omega}$. h(x) = t.

Definice Nechť A je množina. Pokud na A existuje dobré uspořádání, pak položme |A| = nejmenší ordinál α , pro který $A \approx \alpha$.

Definice Ordinál α se nazývá **kardinál** pokud $\alpha = |\alpha|$. Ekvidalentně ordinál α je kardinál, právě když

$$(\forall \beta)(\beta < \alpha \Rightarrow (\beta \approx \alpha)) \tag{11}$$

Pozorování ω je kardinál. $\omega + k$ není kardinál (všechny jsou ostře větší než omega a mezi nima a omegou existuje bijekce).

Lemma Je-li $|\alpha| \le \beta \le \alpha$, pak $|\beta| = |\alpha|$.

Důkaz $\beta \subseteq \alpha$, tedy existuje prosté zobrazení $\beta do\alpha$. Máme $\beta \preceq \alpha$. $\alpha \approx |\alpha|$, konečně $|\alpha| \subseteq \beta$, tedy $|\alpha| \preceq \beta$. Aplikuji Kantorovu větu.

Lemma Je-li n přirozený číslo, potom:

- (a) nn + 1
- (b) $(\forall \alpha)(\alpha \approx n \Rightarrow \alpha = n)$

Důkaz

(a) Indukcí: 01. Pokud existuje taková n, že $n \approx n+1$, pak $n \neq 0$ a tedy pro nějaké m, n=m+1. Tedy:

$$n = \{0, 1, 2, ..., n\} \tag{12}$$

$$n+1 = \{0, 1, 2, ..., m, m+1\}$$
(13)

Je-li b bijekce $b: n \to n+1$, pak existuje $i \in n: b(i) = m+1$. Definujme $b': m \to m+1$: Pro j < i: b'(j) = b(j), pro j > i: b'(j) = b(j-1). Tedy b' je bijekce $m \to m+1$, což je spor s minimalitou n. (ten předpis je asi špatně, chce to promakat)

Důsledek Všechna přirozená čísla jsou kardinály a ω je kardinál.

Definice Množina A je **konečná** pokud $|A| < \omega$. Množina A je **spočetná**, pokud $|A| \le \omega$. Množina A se nazývá nespočetná, pokud není spočetná (tj. je velká, nebo jí nelze dobře uspořádat).

4.1 Sčítání a násobení

Definice Jsou-li κ , λ kardinály, pak:

- (a) $\kappa \oplus \lambda = |\kappa \times \{0\} \cup \lambda \times \{1\}|$
- (b) $\kappa \otimes \lambda = |\kappa \times \lambda|$

Poznámka Oproti ordinálnímu sčítání a násobení jsou kardinální operace komutativní.

Lemma Pro $n, m \in \omega$:

$$n \oplus m = n + m < \omega n \otimes m = n \cdot m < \omega \tag{1}$$

Důkaz Stačí ukázat, že $n+m<\omega$ a že $n\cdot m<\omega$. Zbytek je aplikace posledního lemmatu.

Indukcí pro sčítání:

(a)
$$n + 0 = n < \omega$$

(b)
$$n + s(m) = s(\underbrace{n+m}_{<\omega}) < \omega$$

Stejnětak pro násobení:

(a)
$$n \times 0 = 0 < \omega$$

(b)
$$n \times s(m) = \underbrace{n \cdot m}_{<\omega} + n < \omega$$

Věta Každý nekonečný kardinál je limitní ordinál.

Důkaz Sporem: buď κ kardinál a $\kappa = \alpha + 1$. Jenomže $\alpha \ge \omega$, tedy $1 + \alpha = \alpha$. Tedy $\kappa = |\kappa| = |1 + \alpha| = |\alpha| < \kappa$, což je spor.