Optimal Control Problems in Wasserstein Spaces A PDE Approach to Multi-Agent Systems

Benoît Bonnet

LIS, Aix-Marseille Université, FRANCE

LabEx Archimède

04/07/2018

14th Viennese Conference on Optimal Control and Dynamic Games

Outline of the talk

Introduction and Motivations

2 Optimal Transport Theory & Wasserstein Spaces

3 Optimal Control Problems and Pontryagin Maximum Principle

Outline of the talk

Introduction and Motivations

2 Optimal Transport Theory & Wasserstein Spaces

3 Optimal Control Problems and Pontryagin Maximum Principle

Example (Finite dim. Drift + Convolution + control)

Consider N agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$ evolving according to

$$\dot{x}_i(t) = v_d(x_i) + \frac{1}{N} \sum_{j=1}^N K(x_i - x_j) + u_i(t),$$
 (S_N)

Objective : design a set of control laws $t \mapsto (u_1(t), ..., u_N(t))$ achieving a certain goal, e.g. forming a consensus, etc...

- No a priori knowledge of the system (number of agents, exact positions, etc...)
- Not so relevant to consider a discrete model for very large systems of interacting agents
- Extremely demanding computationally speaking

Example (Finite dim. Drift + Convolution + control)

Consider N agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$ evolving according to

$$\dot{x}_i(t) = v_d(x_i) + \frac{1}{N} \sum_{j=1}^{N} K(x_i - x_j) + u_i(t),$$
 (S_N)

Objective: design a set of control laws $t \mapsto (u_1(t), ..., u_N(t))$ achieving a certain goal, e.g. forming a consensus, etc...

- No a priori knowledge of the system (number of agents, exact positions, etc...)
- Not so relevant to consider a discrete model for very large systems of interacting agents
- Extremely demanding computationally speaking

Example (Finite dim. Drift + Convolution + control)

Consider N agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$ evolving according to

$$\dot{x}_i(t) = v_d(x_i) + \frac{1}{N} \sum_{j=1}^N K(x_i - x_j) + u_i(t),$$
 (S_N)

Objective: design a set of control laws $t \mapsto (u_1(t), ..., u_N(t))$ achieving a certain goal, e.g. forming a consensus, etc...

- No a priori knowledge of the system (number of agents, exact positions, etc...)
- Not so relevant to consider a discrete model for very large systems of interacting agents
- Extremely demanding computationally speaking

Example (Finite dim. Drift + Convolution + control)

Consider N agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$ evolving according to

$$\dot{x}_i(t) = v_d(x_i) + \frac{1}{N} \sum_{j=1}^{N} K(x_i - x_j) + u_i(t),$$
 (S_N)

Objective: design a set of control laws $t \mapsto (u_1(t), ..., u_N(t))$ achieving a certain goal, e.g. forming a consensus, etc...

- No a priori knowledge of the system (number of agents, exact positions, etc...)
- Not so relevant to consider a discrete model for very large systems of interacting agents
- Extremely demanding computationally speaking

Example (Finite dim. Drift + Convolution + control)

Consider N agents $(x_1,...,x_N) \in (\mathbb{R}^d)^N$ evolving according to

$$\dot{x}_i(t) = v_d(x_i) + \frac{1}{N} \sum_{j=1}^N K(x_i - x_j) + u_i(t),$$
 (S_N)

Objective: design a set of control laws $t \mapsto (u_1(t), ..., u_N(t))$ achieving a certain goal, e.g. forming a consensus, etc...

- No a priori knowledge of the system (number of agents, exact positions, etc...)
- Not so relevant to consider a discrete model for very large systems of interacting agents
- Extremely demanding computationally speaking

Introduction and motivation - Mean-field approximation

Idea: Approximate the large crowd by a single PDE through a *mean-field process*

N ODEs on the agents $(x_1,...,x_N) \rightsquigarrow 1$ PDE on the density μ

Introduction and motivation - Mean-field approximation

Idea: Approximate the large crowd by a single PDE through a *mean-field process*

N ODEs on the agents $(x_1,...,x_N) \rightsquigarrow 1$ PDE on the density μ

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((\nu[\mu(t)](\cdot) + \mathbf{u}(t,\cdot))\mu(t)) = 0.$$
 (S_∞)

where the controls depend on time and space.

Question: Choice of the state space?

Discrete ⊕ continuous objects → *'distributional spaces'*

Problem: Distributional topologies are not very nice...

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((v[\mu(t)](\cdot) + u(t, \cdot))\mu(t)) = 0.$$
 (S_∞)

where the controls depend on time and space.

Question: Choice of the state space?

Discrete \oplus continuous objects \leadsto 'distributional spaces'

Problem: Distributional topologies are not very nice...

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((\nu[\mu(t)](\cdot) + u(t,\cdot))\mu(t)) = 0.$$
 (S_∞)

where the controls depend on time and space.

Question: Choice of the state space?

Discrete ⊕ continuous objects → 'distributional spaces'

Problem: Distributional topologies are not very nice...

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((\nu[\mu(t)](\cdot) + u(t,\cdot))\mu(t)) = 0.$$
 (S_∞)

where the controls depend on time and space.

Question: Choice of the state space?

Discrete ⊕ continuous objects → 'distributional spaces'

Problem: Distributional topologies are not very nice...

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((\nu[\mu(t)](\cdot) + u(t, \cdot))\mu(t)) = 0. \tag{S_{\infty}}$$

where the controls depend on time and space.

Question: Choice of the state space?

Discrete ⊕ continuous objects → 'distributional spaces'

Problem: Distributional topologies are not very nice...

Mean field controlled system described by *transport equations* with non-local velocities

$$\partial_t \mu(t) + \nabla \cdot ((\nu[\mu(t)](\cdot) + u(t,\cdot))\mu(t)) = 0.$$
 (S_∞)

where the controls depend on time and space.

Question: Choice of the state space?

Discrete ⊕ continuous objects → 'distributional spaces'

Problem: Distributional topologies are not very nice...

Outline of the talk

Introduction and Motivations

Optimal Transport Theory & Wasserstein Spaces

3 Optimal Control Problems and Pontryagin Maximum Principle

Kantorovich problem (1942) - (OT_K)

(i)
$$\gamma \in \Gamma(\mu, \nu) = \left\{ \gamma' \in \mathcal{P}_c(\mathbb{R}^{2d}) \text{ s.t. } \pi^1_\# \gamma' = \mu , \ \pi^2_\# \gamma' = \nu \right\}$$

$$(ii) \quad \int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma(x,y) = \min_{\gamma' \in \Gamma(\mu,\nu)} \left[\int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma'(x,y) \right].$$

Kantorovich problem (1942) - (OT_K)

(i)
$$\gamma \in \Gamma(\mu, \nu) = \left\{ \gamma' \in \mathcal{P}_c(\mathbb{R}^{2d}) \text{ s.t. } \pi^1_\# \gamma' = \mu \ , \ \pi^2_\# \gamma' = \nu \right\},$$

$$(ii) \quad \int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma(x,y) = \min_{\gamma' \in \Gamma(\mu,\nu)} \left[\int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma'(x,y) \right].$$

Kantorovich problem (1942) - (OT_K)

(i)
$$\gamma \in \Gamma(\mu, \nu) = \left\{ \gamma' \in \mathcal{P}_c(\mathbb{R}^{2d}) \text{ s.t. } \pi^1_\# \gamma' = \mu \ , \ \pi^2_\# \gamma' = \nu \right\},$$

$$(ii) \quad \int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma(x,y) = \min_{\gamma' \in \Gamma(\mu,\nu)} \left[\int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma'(x,y) \right].$$

Kantorovich problem (1942) - (OT_K)

(i)
$$\gamma \in \Gamma(\mu, \nu) = \left\{ \gamma' \in \mathcal{P}_c(\mathbb{R}^{2d}) \text{ s.t. } \pi^1_\# \gamma' = \mu \ , \ \pi^2_\# \gamma' = \nu \right\},$$

$$(ii) \quad \int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma(x,y) = \min_{\gamma' \in \Gamma(\mu,\nu)} \left[\int_{\mathbb{R}^{2d}} c(x,y) \mathrm{d}\gamma'(x,y) \right].$$

Definition (Wasserstein distance)

Taking $c(x, y) = |x - y|^2$, the quantity

$$W_2(\mu,\nu) = \min_{\gamma \in \Gamma(\mu,\nu)} \left\{ \left(\int_{\mathbb{R}^{2d}} |x-y|^2 d\gamma(x,y) \right)^{1/2} \right\}$$

defines a distance over $\mathcal{P}_c(\mathbb{R}^d)$.

 \sim Infimum of L²-distances over the couplings $\gamma \in \Gamma(\mu, \nu)$.

- ⋄ *W*₂ metrizes the usual weak-* topology of measures.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ is a complete and separable metric space.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ can be endowed with a differential structure

Definition (Wasserstein distance)

Taking $c(x, y) = |x - y|^2$, the quantity

$$W_2(\mu,\nu) = \min_{\gamma \in \Gamma(\mu,\nu)} \left\{ \left(\int_{\mathbb{R}^{2d}} |x-y|^2 d\gamma(x,y) \right)^{1/2} \right\}$$

defines a distance over $\mathcal{P}_c(\mathbb{R}^d)$.

 \sim Infimum of L²-distances over the couplings $\gamma \in \Gamma(\mu, \nu)$.

- ⋄ *W*₂ metrizes the usual weak-* topology of measures.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ is a complete and separable metric space.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ can be endowed with a differential structure

Definition (Wasserstein distance)

Taking $c(x, y) = |x - y|^2$, the quantity

$$W_2(\mu,\nu) = \min_{\gamma \in \Gamma(\mu,\nu)} \left\{ \left(\int_{\mathbb{R}^{2d}} |x - y|^2 d\gamma(x,y) \right)^{1/2} \right\}$$

defines a distance over $\mathcal{P}_c(\mathbb{R}^d)$.

 \sim Infimum of L²-distances over the couplings $\gamma \in \Gamma(\mu, \nu)$.

- ⋄ *W*₂ metrizes the usual weak-* topology of measures.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ is a complete and separable metric space.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ can be endowed with a differential structure

Definition (Wasserstein distance)

Taking $c(x, y) = |x - y|^2$, the quantity

$$W_2(\mu,\nu) = \min_{\gamma \in \Gamma(\mu,\nu)} \left\{ \left(\int_{\mathbb{R}^{2d}} |x-y|^2 d\gamma(x,y) \right)^{1/2} \right\}$$

defines a distance over $\mathcal{P}_c(\mathbb{R}^d)$.

 \sim Infimum of L²-distances over the couplings $\gamma \in \Gamma(\mu, \nu)$.

- \diamond W_2 metrizes the usual weak-* topology of measures.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ is a complete and separable metric space.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ can be endowed with a differential structure

Definition (Wasserstein distance)

Taking $c(x, y) = |x - y|^2$, the quantity

$$W_2(\mu,\nu) = \min_{\gamma \in \Gamma(\mu,\nu)} \left\{ \left(\int_{\mathbb{R}^{2d}} |x-y|^2 d\gamma(x,y) \right)^{1/2} \right\}$$

defines a distance over $\mathcal{P}_c(\mathbb{R}^d)$.

 \sim Infimum of L²-distances over the couplings $\gamma \in \Gamma(\mu, \nu)$.

- \diamond W_2 metrizes the usual weak-* topology of measures.
- $\diamond (\mathcal{P}_c(\mathbb{R}^d), W_2)$ is a complete and separable metric space.
- \diamond $(\mathcal{P}_c(\mathbb{R}^d), W_2)$ can be endowed with a differential structure

Theorem (Ambrosio, Gangbo '07 - Piccoli, Rossi '13)

Under Cauchy-Lipschitz assumptions on v, the Cauchy problem

$$\partial_t \mu(t) + \nabla \cdot (\nu[\mu(t)](t,\cdot)\mu(t)) = 0 \ , \ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d)$$

has a unique Lipschitz solution which is continuous w.r.t. its initial datum.

The solution $t \mapsto \mu(t)$ is given explicitly by

$$\mu(t) = \Phi^{\nu}_{(0,t)}(\cdot)_{\#}\mu^{0}$$
 (image measure)

with $(\Phi^{\nu}_{(0,t)}(\cdot))_t$ the geometric flow generated by $\nu[\mu(t)](t,\cdot)$.

Theorem (Ambrosio, Gangbo '07 - Piccoli, Rossi '13)

Under Cauchy-Lipschitz assumptions on v, the Cauchy problem

$$\partial_t \mu(t) + \nabla \cdot (\nu[\mu(t)](t,\cdot)\mu(t)) = 0 , \ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d)$$

has a unique Lipschitz solution which is continuous w.r.t. its initial datum.

The solution $t \mapsto \mu(t)$ is given explicitly by

$$\mu(t) = \Phi^{
m v}_{(0,t)}(\cdot)_{\#}\mu^0$$
 (image measure)

with $(\Phi_{(0,t)}^{\mathbf{v}}(\cdot))_t$ the geometric flow generated by $v[\mu(t)](t,\cdot)$.

Theorem (Ambrosio,Gangbo '07 - Piccoli,Rossi '13)

Under Cauchy-Lipschitz assumptions on v, the Cauchy problem

$$\partial_t \mu(t) + \nabla \cdot (\nu[\mu(t)](t,\cdot)\mu(t)) = 0 , \ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d)$$

has a unique Lipschitz solution which is continuous w.r.t. its initial datum.

The solution $t \mapsto \mu(t)$ is given explicitly by

$$\mu(t) = \Phi^{\nu}_{(0,t)}(\cdot)_{\#}\mu^{0} \qquad \qquad \text{(image measure)}$$

with $(\Phi^{\mathsf{v}}_{(0,t)}(\cdot))_t$ the geometric flow generated by $v[\mu(t)](t,\cdot)$.

Theorem (Ambrosio,Gangbo '07 - Piccoli,Rossi '13)

Under Cauchy-Lipschitz assumptions on v, the Cauchy problem

$$\partial_t \mu(t) + \nabla \cdot (\nu[\mu(t)](t,\cdot)\mu(t)) = 0 , \ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d)$$

has a unique Lipschitz solution which is continuous w.r.t. its initial datum.

The solution $t \mapsto \mu(t)$ is given explicitly by

$$\mu(t) = \Phi^{\nu}_{(0,t)}(\cdot)_{\#}\mu^{0} \qquad \qquad \text{(image measure)}$$

with $(\Phi^{\mathsf{v}}_{(0,t)}(\cdot))_t$ the geometric flow generated by $v[\mu(t)](t,\cdot)$.

Outline of the talk

Introduction and Motivations

Optimal Transport Theory & Wasserstein Spaces

3 Optimal Control Problems and Pontryagin Maximum Principle

Wasserstein OCP - General problem

Optimal control problem in $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(\mu(t), u(t)) dt + \varphi(\mu(T)) \right] \\ \text{s.t.} & \begin{cases} \partial_t \mu(t) + \nabla \cdot ((v[\mu(t)](t, \cdot) + u(t, \cdot))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d), \end{cases} \end{cases}$$

where $\mathcal U$ is defined by

$$\mathcal{U} = \left\{u \in L^\infty([0,T], C^1(\mathbb{R}^d,\mathbb{R}^d)) ext{ s.t. } \|u(t)\|_{C^1(\mathbb{R}^d,\mathbb{R}^d)} \leq M
ight\}$$

Question : Choice of the control set ${\cal U}$

- \hookrightarrow Cauchy-Lipschitz requires $u(t) \in \mathsf{Lip}_{\mathsf{loc}}(\mathbb{R}^d, \mathbb{R}^d) \oplus \mathsf{sublinear}.$
- \hookrightarrow PMP requires $C^1(\mathbb{R}^d,\mathbb{R}^d) \oplus$ uniformly Lipschitz

Wasserstein OCP - General problem

Optimal control problem in $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(\mu(t), u(t)) dt + \varphi(\mu(T)) \right] \\ \text{s.t.} & \begin{cases} \partial_t \mu(t) + \nabla \cdot ((v[\mu(t)](t, \cdot) + u(t, \cdot))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d), \end{cases} \end{cases}$$

where ${\cal U}$ is defined by

$$\mathcal{U} = \left\{ u \in L^{\infty}([0,T], C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})) \text{ s.t. } \|u(t)\|_{C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})} \leq M \right\}$$

Question : Choice of the control set ${\cal U}$

- \hookrightarrow Cauchy-Lipschitz requires $u(t) \in \mathsf{Lip}_{\mathsf{loc}}(\mathbb{R}^d, \mathbb{R}^d) \oplus \mathsf{sublinear}.$
- \hookrightarrow PMP requires $C^1(\mathbb{R}^d,\mathbb{R}^d) \oplus$ uniformly Lipschitz

Wasserstein OCP - General problem

Optimal control problem in $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(\mu(t), u(t)) dt + \varphi(\mu(T)) \right] \\ \text{s.t.} & \begin{cases} \partial_t \mu(t) + \nabla \cdot ((v[\mu(t)](t, \cdot) + u(t, \cdot))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d), \end{cases} \end{cases}$$

where ${\cal U}$ is defined by

$$\mathcal{U} = \left\{ u \in L^{\infty}([0,T], C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})) \text{ s.t. } \|u(t)\|_{C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})} \leq M \right\}$$

Question : Choice of the control set ${\cal U}$

- \hookrightarrow Cauchy-Lipschitz requires $u(t) \in \mathsf{Lip}_\mathsf{loc}(\mathbb{R}^d, \mathbb{R}^d) \oplus \mathsf{sublinear}$.
- \hookrightarrow PMP requires $C^1(\mathbb{R}^d,\mathbb{R}^d) \oplus$ uniformly Lipschitz

Wasserstein OCP - General problem

Optimal control problem in $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(\mu(t), u(t)) dt + \varphi(\mu(T)) \right] \\ \text{s.t.} & \begin{cases} \partial_t \mu(t) + \nabla \cdot ((v[\mu(t)](t, \cdot) + u(t, \cdot))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}_c(\mathbb{R}^d), \end{cases} \end{cases}$$

where ${\cal U}$ is defined by

$$\mathcal{U} = \left\{ u \in L^{\infty}([0, T], C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})) \text{ s.t. } \|u(t)\|_{C^{1}(\mathbb{R}^{d}, \mathbb{R}^{d})} \leq M \right\}$$

Question : Choice of the control set $\mathcal U$

- \hookrightarrow Cauchy-Lipschitz requires $u(t) \in \mathsf{Lip}_{\mathsf{loc}}(\mathbb{R}^d, \mathbb{R}^d) \oplus \mathsf{sublinear}$.
- \hookrightarrow PMP requires $C^1(\mathbb{R}^d,\mathbb{R}^d) \oplus$ uniformly Lipschitz

- Existence results: Mean-field and Γ-convergence approaches (Bongini, Fornasier, Piccoli, Rossi, Solombrino) or classical PDE methods (Achdou, Laurière).
- Numerical methods: Good methods in the transport ⊕ diffusion case (Albi, Pareschi, Toscani, Zanella,...).
 More and beautiful for pure transport.

- Optimality conditions: Hamilton-Jacobi Optimality conditions (Cavagnari, Marigonda)
- → Recent results on Pontryagin-type conditions
 (Bongini, Fornasier, Rossi, Solombrino '17 & B., Rossi '18)

- Existence results: Mean-field and Γ-convergence approaches (Bongini, Fornasier, Piccoli, Rossi, Solombrino) or classical PDE methods (Achdou, Laurière).
- ◇ Numerical methods : Good methods in the transport ⊕ diffusion case (Albi, Pareschi, Toscani, Zanella,...).
 - → More ad hoc and difficult for pure transport.
- Optimality conditions: Hamilton-Jacobi Optimality conditions (Cavagnari, Marigonda)
- → Recent results on Pontryagin-type conditions (Bongini,Fornasier,Rossi,Solombrino '17 & B., Rossi '18)

- Existence results: Mean-field and Γ-convergence approaches (Bongini, Fornasier, Piccoli, Rossi, Solombrino) or classical PDE methods (Achdou, Laurière).
- Numerical methods: Good methods in the transport ⊕ diffusion case (Albi, Pareschi, Toscani, Zanella,...).
 → More ad hoc and difficult for pure transport.
- Optimality conditions: Hamilton-Jacobi Optimality conditions (Cavagnari, Marigonda)
- → Recent results on Pontryagin-type conditions (Bongini, Fornasier, Rossi, Solombrino '17 & B., Rossi '18)

- Existence results: Mean-field and Γ-convergence approaches (Bongini, Fornasier, Piccoli, Rossi, Solombrino) or classical PDE methods (Achdou, Laurière).
- Numerical methods: Good methods in the transport ⊕ diffusion case (Albi, Pareschi, Toscani, Zanella,...).
 → More ad hoc and difficult for pure transport.
- Optimality conditions: Hamilton-Jacobi Optimality conditions (Cavagnari, Marigonda)
- → Recent results on Pontryagin-type conditions
 (Bongini, Fornasier, Rossi, Solombrino '17 & B., Rossi '18)

- Existence results: Mean-field and Γ-convergence approaches (Bongini, Fornasier, Piccoli, Rossi, Solombrino) or classical PDE methods (Achdou, Laurière).
- Numerical methods: Good methods in the transport ⊕ diffusion case (Albi, Pareschi, Toscani, Zanella,...).
 → More ad hoc and difficult for pure transport.
- Optimality conditions: Hamilton-Jacobi Optimality conditions (Cavagnari, Marigonda)
- → Recent results on Pontryagin-type conditions (Bongini, Fornasier, Rossi, Solombrino '17 & B., Rossi '18).

PMP - Unconstrained finite dimensional case

Theorem (Unconstrained and smooth PMP on \mathbb{R}^d)

Let $(u^*(\cdot), x^*(\cdot))$ be an optimal pair control-trajectory for the problem

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(t, x(t), u(t)) dt + \varphi(x(T)) \right] \\ \dot{x}(t) = f(t, x(t), u(t)), \ x(0) = x^0. \end{cases}$$

Then, there exists a curve $p^*(\cdot)$ called costate such that

$$\begin{cases} \dot{x}^*(t) = \nabla_p \mathcal{H}(t, x^*(t), p^*(t)) &, \ x^*(0) = x^0, \\ \dot{p}^*(t) = -\nabla_x \mathcal{H}(t, x^*(t), p^*(t)) &, \ p^*(T) = -\nabla \varphi(x^*(T)), \end{cases}$$

where

$$\mathcal{H}(t, x^*(t), \rho^*(t)) = \max_{\omega \in \mathcal{U}} \left[\langle \rho^*(t), f(t, x^*(t), \omega) \rangle - L(t, x^*(t), \omega) \right].$$

PMP - Unconstrained finite dimensional case

Theorem (Unconstrained and smooth PMP on \mathbb{R}^d)

Let $(u^*(\cdot), x^*(\cdot))$ be an optimal pair control-trajectory for the problem

$$\begin{cases} \min_{u \in \mathcal{U}} \left[\int_0^T L(t, x(t), u(t)) dt + \varphi(x(T)) \right] \\ \dot{x}(t) = f(t, x(t), u(t)), \ x(0) = x^0. \end{cases}$$

Then, there exists a curve $p^*(\cdot)$ called costate such that

$$\begin{cases} \dot{x}^*(t) = \nabla_p \mathcal{H}(t, x^*(t), p^*(t)) &, \ x^*(0) = x^0, \\ \dot{p}^*(t) = -\nabla_x \mathcal{H}(t, x^*(t), p^*(t)) &, \ p^*(T) = -\nabla \varphi(x^*(T)), \end{cases}$$

where

$$\mathcal{H}(t, x^*(t), p^*(t)) = \max_{\omega \in \mathcal{U}} \left[\langle p^*(t), f(t, x^*(t), \omega) \rangle - L(t, x^*(t), \omega) \right].$$

- \diamond Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
 - \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$

- ⋄ Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(
 u^*(t))$ -scalar product
 - \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$

- ⋄ Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in Lip([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
- \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$

- ⋄ Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
- \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$

- \diamond Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
- \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$

- ⋄ Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
 - \diamond Classical Hamiltonian flow of $\mathcal{H}(t,x,p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$.

- ⋄ Couple state-costate $(x^*(\cdot), p^*(\cdot)) \in \text{Lip}([0, T], \mathbb{R}^{2d})$
- \hookrightarrow measures $\nu^*(\cdot) \in \text{Lip}([0,T],\mathcal{P}_c(\mathbb{R}^{2d}))$ on the product space.
 - \diamond Euclidean scalar product $\langle p^*(t), f(t, x^*(t), u^*(t)) \rangle$
- \hookrightarrow Hilbertian $L^2(\nu^*(t))$ -scalar product
- ⋄ Classical Hamiltonian flow of $\mathcal{H}(t, x, p)$ with respect to $|\cdot|_2$.
- \hookrightarrow Metric Hamiltonian flow of $\mathbb{H}(t,\nu)$ with respect to $W_2(\cdot,\cdot)$.

PMP - Statement

Theorem (B., Rossi '18)

If $(u^*(\cdot), \mu^*(\cdot))$ is an optimal pair for (\mathcal{P}_{OC}) , there exists a curve $\nu^*(\cdot) \in \text{Lip}([0, T], \mathcal{P}_c(\mathbb{R}^{2d}))$ solution of

$$\begin{cases} \partial_t \nu^*(t) + \nabla \cdot (\mathbb{J}_{2d} \nabla_{\nu} \mathbb{H}(t, \nu^*(t)) \nu^*(t)) = 0, \\ \pi_{\#}^1 \nu^*(0) = \mu^0, \\ \pi_{\#}^2 \nu^*(T) = (-\nabla_{\mu} \varphi(\mu^*(T))_{\#} \mu^*(T), \end{cases}$$

where $(x, r) \mapsto \nabla_{\nu} \mathbb{H}(t, \nu^*(t))(x, r)$ is the Wasserstein gradient of the maximized Hamiltonian.

Idea of proof : needle-variations \oplus geometric structure of solutions & differential structure of $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

PMP - Statement

Theorem (B., Rossi '18)

If $(u^*(\cdot), \mu^*(\cdot))$ is an optimal pair for (\mathcal{P}_{OC}) , there exists a curve $\nu^*(\cdot) \in \text{Lip}([0, T], \mathcal{P}_c(\mathbb{R}^{2d}))$ solution of

$$\begin{cases} \partial_t \nu^*(t) + \nabla \cdot (\mathbb{J}_{2d} \nabla_{\nu} \mathbb{H}(t, \nu^*(t)) \nu^*(t)) = 0, \\ \pi^1_{\#} \nu^*(0) = \mu^0, \\ \pi^2_{\#} \nu^*(T) = (-\nabla_{\mu} \varphi(\mu^*(T))_{\#} \mu^*(T), \end{cases}$$

where $(x, r) \mapsto \nabla_{\nu} \mathbb{H}(t, \nu^*(t))(x, r)$ is the Wasserstein gradient of the maximized Hamiltonian.

Idea of proof : needle-variations \oplus geometric structure of solutions & differential structure of $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

PMP - Statement

Theorem (B., Rossi '18)

If $(u^*(\cdot), \mu^*(\cdot))$ is an optimal pair for (\mathcal{P}_{OC}) , there exists a curve $\nu^*(\cdot) \in \text{Lip}([0, T], \mathcal{P}_c(\mathbb{R}^{2d}))$ solution of

$$\begin{cases} \partial_t \nu^*(t) + \nabla \cdot (\mathbb{J}_{2d} \nabla_{\nu} \mathbb{H}(t, \nu^*(t)) \nu^*(t)) = 0, \\ \pi^1_{\#} \nu^*(0) = \mu^0, \\ \pi^2_{\#} \nu^*(T) = (-\nabla_{\mu} \varphi(\mu^*(T))_{\#} \mu^*(T), \end{cases}$$

where $(x, r) \mapsto \nabla_{\nu} \mathbb{H}(t, \nu^*(t))(x, r)$ is the Wasserstein gradient of the maximized Hamiltonian.

Idea of proof: needle-variations \oplus geometric structure of solutions & differential structure of $(\mathcal{P}_c(\mathbb{R}^d), W_2)$

Wasserstein OCP - Future perspectives

Developments with (and without) PMP flavours

- Design of a shooting method
- Study gradient type methods with the same kind of duality involved in this PMP (measure on the product space)
- Intrinsic Lipschitz regularity for mean field optimal controls

Wasserstein OCP - Future perspectives

Developments with (and without) PMP flavours

- Design of a shooting method
- Study gradient type methods with the same kind of duality involved in this PMP (measure on the product space)
- Intrinsic Lipschitz regularity for mean field optimal controls

Wasserstein OCP - Future perspectives

Developments with (and without) PMP flavours

- Design of a shooting method
- Study gradient type methods with the same kind of duality involved in this PMP (measure on the product space)
- Intrinsic Lipschitz regularity for mean field optimal controls

Thank you for your attention !

