

Exam #2

Monday, October 13 2017

Duration :	1H20		
NAME: _			

Please write clearly and properly.

Problem	Grade
1	
2	
3	
4	
5	
6	
7	
Total	

Problem 1 (~ 4 points.).	
Is the following function	on injective? Is it surjective? Is it bijective?	Explain.
(1)		
	$f_1 \colon \mathbb{Z} \to \mathbb{Z}$ $n \mapsto n^2$	
	$n \mapsto n^2$	

(2) $f_2 \colon \mathbb{Z} \to \mathbb{Z}$ $n \mapsto -4n + 3$

Problem 2 (∼ 4 points.)**.**

Consider the following functions:

$$f: \mathbb{R} \to \mathbb{R}_{\geqslant 0}$$

$$f: \mathbb{R} \to \mathbb{R}_{\geqslant 0}$$
 $g: \mathbb{R}_{\geqslant 0} \to \mathbb{R}$ $x \mapsto x^2$ $x \mapsto \sqrt{x}$

(1)	Is the composition	$f \circ g$	well-defined?	If yes,	describe	the function	$f \circ g$.	Explain.
-----	--------------------	-------------	---------------	---------	----------	--------------	---------------	----------

(2) Is the composition $g \circ f$ well-defined? If yes, describe the function $g \circ f$. Explain.

Problem 3 (\sim 3 points.).

Is the following sequence: increasing? decreasing? nonincreasing? nondecreasing? *Answer all four questions! No explanations required.*

(1)
$$\forall n \in \mathbb{N} \quad u_n = 1 - \left\lfloor \sqrt{1+n} \right\rfloor$$

(2)
$$\forall n \in \mathbb{N} \quad v_n = \frac{(-1)^n}{n}$$

(3)
$$\forall n \in \mathbb{N} \quad w_n = \sum_{k=1}^n \frac{(-1)^k}{k}$$

Pr	roblem 4 (~ 2 points.).	
Lis	st all the strings over $X = \{0, 1\}$ of length 3 or less.	

Let n be a positive integer. Denote by $\mathcal R$ the relation on $\mathbb Z$ defined by:
$x\mathcal{R}y \iff x = y \pmod{n}$
We recall that by definition, $x = y \pmod{n}$ means that n is a divisor of $x - y$.
(1) Prove that \mathcal{R} is an equivalence relation.

	Assume that $n = 2$. What is the equivalence class of 0? What is the equivalence class of 1? What is the equivalence class of 2? What is the equivalence class of 3?
(3)	
(3)	Going back to the general case of an arbitrary positive integer n , how many equivalence classes are there?

Con	blem 6 (\sim 6) sider the following	owing probl	lem: Given	a finite sec	quence of i	ntegers X =	=(X(1),X(2))	2),
	an integer x ,						re greater tl	nan <i>x</i> .
(1,) Write an al	Igorithm (in	pseudocod	ie) that sor	ves the pro	blem.		

(2) Trace your algorithm for <i>Y</i>	X = (4, 3, 10, 5) and $x = 5$.
(3) What is the complexity of	your algorithm? Carefully explain your answer.

Problem 7 (∼ 4 points.)**.**

True or False? No explanations required.

(1)
$$4n^3 - n^2 + 1 = O(n^3)$$

(2)
$$4n^3 - n^2 + 1 = \Theta(n^3)$$

(3)
$$4n^3 - n^2 + 1 = o(n^3)$$

(4)
$$4n^3 - n^2 + 1 = O(n^4)$$

(5)
$$4n^3 - n^2 + 1 = o(n^4)$$

(6)
$$n^{1000} + 100n^3 = o(e^n)$$

$$(7) n^2 \log n = o(n^3)$$

$$(8) \ n^2 \log n = \Theta(n^2)$$