Institute of Stochastics

Stochastic Geometry | Summer term 2020

PD. Dr. Steffen Winter Steffen Betsch, M.Sc.

Solutions for Work Sheet 2

Problem 1 (Convergence with respect to the Fell topology – Examples, Part 1)

Let $(x_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}^d and $x\in\mathbb{R}^d$. Further, let $(r_n)_{n\in\mathbb{N}}$ be a sequence of positive real numbers and r>0. Denote by B(x,r) the closed ball of radius r around x.

- a) If $x_n \to x$ and $r_n \to r$ (as $n \to \infty$), then $B(x_n, r_n) \to B(x, r)$ in $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$, as $n \to \infty$.
- b) If $||x_n|| \to \infty$, then $\{x_n\} \to \emptyset$ in $(\mathfrak{F}, \mathfrak{O}_{\mathfrak{F}})$, as $n \to \infty$.

Proposed solution:

a) We verify condition (3) from Theorem 1.3 (see also Problem 3 on Work Sheet 1). We can write any $y \in B(x,r)$ as $y = x + \lambda \cdot r \cdot u$ with $\lambda \in [0,1]$ and $u \in \mathbb{R}^d$ such that ||u|| = 1. Put $y_n := x_n + \lambda \cdot r_n \cdot u$. Apparently, $y_n \in B(x_n, r_n)$, and we have

$$\|y - y_n\| \le \|x - x_n\| + \lambda \cdot |r_n - r| \cdot \|u\| \to 0 \quad (as \ n \to \infty),$$

so the first part of (3) is verified. To prove the second part, let $(n_k)_{k\in\mathbb{N}}$ be any increasing sequence in \mathbb{N} , and let $y_{n_k}\in B(x_{n_k},r_{n_k})$ (for each $k\in\mathbb{N}$) be such that $y_{n_k}\to y$ (as $k\to\infty$) for some $y\in\mathbb{R}^d$. Notice that the distance of the point $y_{n_k}\in B(x_{n_k},r_{n_k})$ from B(x,r) is at most $\|x-x_{n_k}\|+|r_{n_k}-r|$. Thus, $\mathrm{dist}(y,B(x,r))=0$ and as B(x,r) is closed, we conclude that $y\in B(x,r)$.

b) We use part (2) of Theorem 1.3. As there exists no open set which has non-empty intersection with \varnothing , the first part of (2) is trivially satisfied. To verify the second part of (2), let C be any compact set in \mathbb{R}^d (they obviously all satisfy $C \cap \varnothing = \varnothing$) and note that, as $||x_n|| \to \infty$, we find an index $n_0 \in \mathbb{N}$ such that $x_n \notin C$ for all $n \ge n_0$ (using that C is bounded). Thus, $C \cap \{x_n\} = \varnothing$ for each $n \ge n_0$.

Problem 2 (Continuity with respect to the Fell topology)

Denote by $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$ the space of closed subsets of \mathbb{R}^d endowed with the Fell topology. Prove that the following maps are continuous:

a)
$$a: \mathbb{R}^d \times \mathcal{F}^d \to \mathcal{F}^d$$
, $a(x, F) := F + x$.

b)
$$r: \mathcal{F}^d \to \mathcal{F}^d$$
, $r(F) := F^* := -F$.

c)
$$e:(0,\infty)\times \mathcal{F}^d\to \mathcal{F}^d$$
, $e(\alpha,F):=\alpha F$.

Also prove that the map $\tilde{e}:[0,\infty)\times\mathbb{F}^d\to\mathbb{F}^d,\ \tilde{e}(\alpha,F):=\alpha F$ is not continuous.

Proposed solution:

- a) Consider a convergent sequence $(x_n, F_n) \to (x, F)$ in $\mathbb{R}^d \times \mathbb{F}^d$, as $n \to \infty$. We apply part (3) of Theorem 1.3 to show that $a(x_n, F_n) \to a(x, F)$ which implies sequential continuity and hence continuity of a:
 - Let $y + x \in a(x, F) = F + x$ and choose $y_n \in F_n$ so that $y_n \to y$ as $n \to \infty$ [using part (3) of Theorem 1.3 for the convergence $F_n \to F$]. Then $y_n + x_n \in a(x_n, F_n) = F_n + x_n$ and $y_n + x_n \to y + x$ (as $n \to \infty$).

Now let $(n_k)_{k\in\mathbb{N}}$ be any increasing sequence in \mathbb{N} , and $z_{n_k}\in a(x_{n_k},F_{n_k})=F_{n_k}+x_{n_k}$ such that $z_{n_k}\to z$, as $k\to\infty$, for some $z\in\mathbb{R}^d$. Then, we have $z_{n_k}-x_{n_k}\in F_{n_k}$ with $z_{n_k}-x_{n_k}\to z-x\in F$ [where $z-x\in F$ follows from the fact that $F_n\to F$], and hence $z\in a(x,F)=F+x$.

By part (3) of Theorem 1.3, we obtain $a(x_n, F_n) = F_n + x_n \to F + x = a(x, F)$ (as $n \to \infty$).

- b) Let $(F_n)_{n\in\mathbb{N}}$ be a convergent sequence in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$ with limit set F. We prove that $r(F_n) = -F_n \to -F = r(F)$ (as $n \to \infty$) using condition (3) of Theorem 1.3:
 - If $F = \emptyset$ then $r(F) = -F = \emptyset$ and the first part of condition (3) is trivially true, so assume $F \neq \emptyset$. Let $x \in r(F) = -F$. Apparently, $y := -x \in F$ and the convergence $F_n \to F$ yields the existence of an index $n_0 \in \mathbb{N}$ and elements $y_n \in F_n$ for each $n \ge n_0$ such that $y_n \to y$ as $n \to \infty$. As $y_n \in F_n$, we have $x_n := -y_n \in r(F_n) = -F_n$, and clearly $x_n = -y_n \to -y = x$ (as $n \to \infty$).
 - Now let $(n_k)_{k\in\mathbb{N}}$ be any increasing sequence in \mathbb{N} , and $z_{n_k}\in r(F_{n_k})=-F_{n_k}$ such that $z_{n_k}\to z$, as $k\to\infty$, for some $z\in\mathbb{R}^d$. Then, $-z_{n_k}\in F_{n_k}$ and $-z_{n_k}\to -z$ (as $k\to\infty$). From the convergence $F_n\to F$ (as $n\to\infty$) we infer that $-z\in F$, and thus $z\in r(F)=-F$.
- c) Let $(F_n)_{n\in\mathbb{N}}$ be a convergent sequence in $(\mathfrak{F}^d,\mathfrak{O}_{\mathfrak{F}^d})$ with limit set F, and let $(\alpha_n)_{n\in\mathbb{N}}$ be a convergent sequence in $(0,\infty)$ with limit $\alpha\in(0,\infty)$. We prove that $e(\alpha_n,F_n)=\alpha_nF_n\to\alpha F=e(\alpha,F)$ (as $n\to\infty$) using condition (3) of Theorem 1.3:
 - If $F = \emptyset$ then $e(\alpha, F) = \alpha F = \emptyset$ and there is nothing to prove. Thus, assume that $F \neq \emptyset$ and let $x \in e(\alpha, F) = \alpha F$. Apparently, $y := \frac{1}{\alpha} x \in F$ and the convergence $F_n \to F$ yields the existence of an index $n_0 \in \mathbb{N}$ and elements $y_n \in F_n$ for each $n \geqslant n_0$ such that $y_n \to y$ as $n \to \infty$. As $y_n \in F_n$, we have $x_n := \alpha_n y_n \in e(\alpha_n, F_n) = \alpha_n F_n$, and $x_n = \alpha_n y_n \to \alpha y = x$ (as $n \to \infty$).
 - Let $(n_k)_{k\in\mathbb{N}}$ be any increasing sequence in \mathbb{N} , and $z_{n_k}\in e(\alpha_{n_k},F_{n_k})=\alpha_{n_k}F_{n_k}$ such that $z_{n_k}\to z$, as $k\to\infty$, for some $z\in\mathbb{R}^d$. Then, $\frac{1}{\alpha_{n_k}}z_{n_k}\in F_{n_k}$ and $\frac{1}{\alpha_{n_k}}z_{n_k}\to\frac{1}{\alpha}z$ (as $k\to\infty$). From the convergence $F_n\to F$ (as $n\to\infty$) we infer that $\frac{1}{\alpha}z\in F$, and thus $z\in e(\alpha,F)=\alpha F$.

To prove that the map \widetilde{e} is not continuous, consider the case d=1 and the sets $F_n:=[0,n]\in \mathcal{F}^1$ as well as $\alpha_n:=\frac{1}{n}\in (0,\infty)$. Then, $F_n\to F:=[0,\infty)$ in $(\mathcal{F}^1,\mathbb{O}_{\mathcal{F}^1})$ and $\alpha_n\to\alpha:=0$ (both as $n\to\infty$). However, $\widetilde{e}(\alpha_n,F_n)=\alpha_nF_n=[0,1]$ does not converge to $\widetilde{e}(\alpha,F)=\alpha F=\{0\}$, so \widetilde{e} is not sequentially continuous.

Problem 3 (Convergence with respect to the Fell topology – Examples, Part 2)

Denote by $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$ the space of closed subsets of \mathbb{R}^d endowed with the Fell topology. For $u \in \mathbb{R}^d$ with ||u|| = 1, and $r \ge 0$, write

$$H_{u,r} := \left\{ x \in \mathbb{R}^d : \langle x, u \rangle = r \right\}.$$

Let u_n be a sequence in \mathbb{R}^d with $||u_n|| = 1$ for each $n \in \mathbb{N}$, and let r_n be a sequence in $[0, \infty)$.

- a) Show that if $u_n \to u$ and $r_n \to r$, then $H_{u_n,r_n} \to H_{u,r}$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.
- b) Show that if $u_n \to u$ and $r_n \to \infty$, then $H_{u_n,r_n} \to \varnothing$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.

Consider the sequence $(P_n)_{n\in\mathbb{N}}$ of paraboloids $P_n=\left\{z\in\mathbb{R}^d\ \Big|\ \frac{z_1^2+\ldots+z_{d-1}^2}{n}=z_d\right\}$, and $e_d=(0,\ldots,0,1)\in\mathbb{R}^d$.

c) Show that $P_n \to H_{\theta_d,0}$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$, as $n \to \infty$.

Proposed solution:

a) Notice that $H_{u_n,r_n} = H_{u_n,0} + r_n u_n$. By the continuity of the map in part a) of Problem 2, it suffices to prove $H_{u_n,0} \to H_{u,0}$ in $(\mathfrak{F}^d, \mathfrak{O}_{\mathfrak{F}^d})$. We use condition (3) of Theorem 1.3. For the first part, fix some $x \in H_{u,0}$. Let x_n be the orthogonal projection of x onto $H_{u_n,0}$, that is, $x_n = x - \langle x, u_n \rangle u_n \in H_{u_n,0}$. From

$$\|\langle x, u_n \rangle u_n\| \to |\langle x, u \rangle| = 0$$

we see that $x_n \to x$. For the second part, let $x_{n_k} \to x$ with $x_{n_k} \in H_{u_{n_k},0}$ for each $k \in \mathbb{N}$. We have

$$\langle x, u \rangle = \lim_{k \to \infty} \langle x_{n_k}, u_{n_k} \rangle = 0,$$

and conclude that $x \in H_{u,0}$.

- b) From Theorem 1.2 (see also Problem 2 on Work Sheet 1) we know that $\{\mathcal{F}^C \mid C \in \mathcal{C}\}$ is a neighborhood base of \varnothing . Let $C \in \mathcal{C}$ be arbitrary. There exists some R > 0 such that $C \subset B(0,R)$, and since $r_n \to \infty$, we find $n_0 \in \mathbb{N}$ such that $r_n > R$, for $n \geqslant n_0$. Therefore, $H_{u_n,r_n} \in \mathcal{F}^C$, for $n \geqslant n_0$. We conclude that $H_{u_n,r_n} \to \varnothing$.
- c) We use part (3) of Theorem 1.3. To prove the first part, let $x=(x_1,\ldots,x_{d-1},0)\in H_{e_d,0}$ be arbitrary. Choose

$$z^{(n)} = \left(\left(1 + \frac{1}{n} \right) x_1, \dots, \left(1 + \frac{1}{n} \right) x_{d-1}, \frac{\left(1 + \frac{1}{n} \right)^2}{n} \left(x_1^2 + \dots + x_{d-1}^2 \right) \right).$$

From

$$\frac{\left(z_{1}^{(n)}\right)^{2}+\ldots+\left(z_{d-1}^{(n)}\right)^{2}}{n}=\frac{\left(1+\frac{1}{n}\right)^{2}\left(x_{1}^{2}+\ldots+x_{d-1}^{2}\right)}{n}=z_{d}^{(n)}$$

we conclude that $z^{(n)} \in P_n$. Moreover, $\|z^{(n)} - x\|^2 = \sum_{j=1}^{d-1} \frac{x_j^2}{n^2} + \frac{(1+1/n)^4}{n^2} \left(x_1^2 + \ldots + x_{d-1}^2\right)^2 \to 0$, as $n \to \infty$. For the proof of the second part, let $z^{(n_k)} \in P_{n_k}$ such that $z^{(n_k)} \to z$ as $k \to \infty$. By definition of P_{n_k} , we have

$$z_d^{(n_k)} = \frac{\left(z_1^{(n_k)}\right)^2 + \ldots + \left(z_{d-1}^{(n_k)}\right)^2}{n_k} \to 0, \quad \text{as } k \to \infty,$$

where we use that $(z_\ell^{(n_k)})^2 \to z_\ell^2 < \infty$, $\ell \in \{1, \dots, d-1\}$. Consequently, $z_d = 0$ and $z \in H_{e_d,0}$.

Problem 4 (On the Hausdorff metric - Part 1)

Let (X, d) be a metric space, and recall from the lecture that, for any set $B \subset X$ and $\varepsilon \geqslant 0$,

$$B_{\oplus \, \varepsilon} := \big\{ x \in \mathbb{X} \, : \, \mathsf{dist}(x, B) \leqslant \varepsilon \big\}$$

denotes the ε -parallel set of B. Here, $\operatorname{dist}(x,B) := \inf_{y \in B} d(x,y)$ is the distance from x to B with respect to the metric d on \mathbb{X} . Also recall that the Hausdorff metric δ on $\mathbb{C}(\mathbb{X}) \setminus \{\varnothing\}$ is defined as

$$\delta(\textbf{\textit{C}},\textbf{\textit{C}}^{\prime}) := \text{inf}\, \big\{ \epsilon \geqslant 0 \; : \; \textbf{\textit{C}} \subset \textbf{\textit{C}}_{\oplus \epsilon}^{\prime}, \; \textbf{\textit{C}}^{\prime} \subset \textbf{\textit{C}}_{\oplus \epsilon} \big\}, \qquad \textbf{\textit{C}},\textbf{\textit{C}}^{\prime} \in \mathfrak{C}(\mathbb{X}) \setminus \{\varnothing\},$$

and that we put $\delta(\varnothing, C) = \delta(C, \varnothing) := \infty$, $C \in \mathcal{C}(\mathbb{X}) \setminus \{\varnothing\}$, as well as $\delta(\varnothing, \varnothing) := 0$. Prove the following assertions:

- $\text{a)} \ \ \delta(\textit{\textbf{C}},\textit{\textbf{C}}') = \max \Big\{ \sup_{x \in \textit{\textbf{C}}} \operatorname{dist}(x,\textit{\textbf{C}}'), \ \sup_{y \in \textit{\textbf{C}}'} \operatorname{dist}(y,\textit{\textbf{C}}) \Big\}, \quad \textit{\textbf{C}},\textit{\textbf{C}}' \in \mathfrak{C}(\mathbb{X}) \setminus \{\varnothing\} \ ,$
- b) δ is a metric on $\mathcal{C}(\mathbb{X}) \setminus \{\emptyset\}$, and
- c) δ is also a metric on $\mathcal{C}(X)$.

Proposed solution:

a) Fix any $C,C'\in \mathfrak{C}(\mathbb{X})\setminus\{\varnothing\}$. First, let $\varepsilon\geqslant 0$ be such that $C\subset C'_{\oplus\varepsilon}$ and $C'\subset C_{\oplus\varepsilon}$. By definition, $\mathrm{dist}(x,C')\leqslant \varepsilon$ for every $x\in C$ and $\mathrm{dist}(y,C)\leqslant \varepsilon$ for every $y\in C'$, so we conclude that

$$\max \left\{ \sup_{x \in C} \operatorname{dist}(x, C'), \sup_{y \in C'} \operatorname{dist}(y, C) \right\} \leqslant \varepsilon.$$

Since we chose an arbitrary $\boldsymbol{\epsilon}$ with the above property, it follows that

$$\max \Big\{ \sup_{x \in \mathcal{C}} \operatorname{dist}(x, \mathcal{C}'), \ \sup_{y \in \mathcal{C}'} \operatorname{dist}(y, \mathcal{C}) \Big\} \leqslant \delta(\mathcal{C}, \mathcal{C}').$$

To prove the converse inequality, put $\varepsilon_1:=\sup_{x\in C}\operatorname{dist}(x,C'),\ \varepsilon_2:=\sup_{y\in C'}\operatorname{dist}(y,C)$, as well as $\varepsilon:=\max\{\varepsilon_1,\varepsilon_2\}$. Since $\operatorname{dist}(x,C')\leqslant \varepsilon_1\leqslant \varepsilon$ for every $x\in C$, we have $C\subset C'_{\oplus\varepsilon}$. Similarly, we find $C'\subset C_{\oplus\varepsilon_2}\subset C_{\oplus\varepsilon}$. We conclude that

$$\delta(\textit{\textbf{C}},\textit{\textbf{C}}')\leqslant \epsilon=\max\{\epsilon_1,\epsilon_2\}=\max\Big\{\sup_{x\in\textit{\textbf{C}}}\operatorname{dist}(x,\textit{\textbf{C}}'),\ \sup_{y\in\textit{\textbf{C}}'}\operatorname{dist}(y,\textit{\textbf{C}})\Big\}.$$

b) Let $C, C', D \in \mathcal{C}(\mathbb{X}) \setminus \{\emptyset\}$. Apparently, $\delta(C, C') \ge 0$ by definition, and we have

$$\delta(\textit{\textbf{C}},\textit{\textbf{C}}') = 0 \quad \Longleftrightarrow \quad \textit{\textbf{C}} \subset \textit{\textbf{C}}'_{\oplus 0} = \textit{\textbf{C}}' \text{ and } \textit{\textbf{C}}' \subset \textit{\textbf{C}}_{\oplus 0} = \textit{\textbf{C}} \quad \Longleftrightarrow \quad \textit{\textbf{C}} = \textit{\textbf{C}}'.$$

Moreover, $\delta(C,C')=\delta(C',C)$ as the definition of δ is symmetric in the two sets. It remains to prove the triangle inequality for which we use the representation from part a). Indeed, observe that for any $x\in C$, we have

$$\operatorname{dist}(x, C') \leqslant d(x, z) + \operatorname{dist}(z, C') \leqslant d(x, z) + \delta(D, C')$$

for every $z \in D$, so by taking $\inf_{z \in D}$ we obtain

$$\operatorname{dist}(x, C') \leq \operatorname{dist}(x, D) + \delta(D, C') \leq \delta(C, D) + \delta(D, C'),$$

and hence $\sup_{x \in C} \operatorname{dist}(x,C') \leqslant \delta(C,D) + \delta(D,C')$. Similarly, $\sup_{y \in C'} \operatorname{dist}(y,C) \leqslant \delta(C',D) + \delta(D,C)$ and part a) implies that the triangle inequality holds.

c) Extending the definition of δ to \varnothing as recalled above, it is immediate that δ remains non-negative, the identity of indiscernibles holds, and δ is symmetric. To verify the triangle inequality, let $C, C', D \in \mathfrak{C}(\mathbb{X})$. If all three sets were non-empty, the inequality follows from b). If $C = C' = D = \varnothing$, then $\delta(C, C') = \delta(C, D) = \delta(D, C') = 0$ and the triangle inequality holds trivially. If one of the three sets is empty and another is non-empty, one of the terms on the right hand side of the inequality will necessarily be ∞ and so it is also trivially satisfied.