Revealing Network Structure, Confidentially (Improved Rates for Node-Private Graphon Estimation)

Ilias Zadik¹, joint work with Christian Borgs², Jennifer Chayes² and Adam Smith³

> ¹Massachusetts Institute of Technology (MIT), ²Microsoft Research (MSR) and ³Boston University (BU)

CS Theory Seminar at Northeastern, 2018

Introduction

Large and complicated networks arise everywhere in society! For example,

- the Facebook graph,
- the disease transmission graph
- the collaboration graph
- and many others..

Introduction

Large and complicated networks arise everywhere in society! For example,

- the Facebook graph,
- the disease transmission graph
- the collaboration graph
- and many others..

Statistical Analysis of Networks:

Important across *scientific fields* (sociology, medicine etc) rich in *theory* (random graphs, graph algorithms etc)

The privacy issue

Facts

Network data with human users is sensitive.

Analyzing network data can leak sensitive information.

The privacy issue

Facts

Network data with human users is sensitive.

Analyzing network data can leak sensitive information.

...this leads to **high societal concerns!** (e.g. Cambridge Analytica Scandal)

The privacy issue

Facts

Network data with human users is sensitive. Analyzing network data can **leak sensitive information**.

...this leads to **high societal concerns!** (e.g. Cambridge Analytica Scandal)

Natural Question

How can we **analyze** network data with human users, but **respect individual privacy**?

Privacy and the Loss in Accuracy

An interesting solution (Differential privacy! [DMNS '06]): Restrict yourself on statistical algorithms whose output imply provably almost nothing for any specific user.

Privacy and the Loss in Accuracy

An interesting solution (*Differential privacy!* [*DMNS '06*]): Restrict yourself on statistical algorithms whose output imply provably **almost nothing** for any specific user.

Restricting the class of algorithms may cause significant accuracy loss!

Privacy and the Loss in Accuracy

An interesting solution (Differential privacy! [DMNS '06]): Restrict yourself on statistical algorithms whose output imply provably **almost nothing** for any specific user.

Restricting the class of algorithms may cause significant accuracy loss!

Main Motivation: Quantify the trade-off

How much accuracy is necessarily **sacrificed** if we **restrict** ourselves to differentially private algorithms?

This work: Limits of Network Estimation under Privacy

New algorithms and impossibility results for estimating complex network models, subject to rigorous privacy constraints (node differentially privacy).

This work: Limits of Network Estimation under Privacy

subject to rigorous privacy constraints (node differentially privacy).

New algorithms and impossibility results for estimating complex network models,

(1) Stochastic Block Model-Estimation of probability matrix:

- new analysis of recent private algorithm (BCS'15)
 matches in many regimes the optimal non-private estimation rate
- general lower bounds

This work: Limits of Network Estimation under Privacy

New algorithms and impossibility results

for estimating complex network models, subject to rigorous **privacy constraints (node differentially privacy)**.

(1) Stochastic Block Model-Estimation of probability matrix:

- new analysis of recent private algorithm (BCS'15)
 matches in many regimes the optimal non-private estimation rate
- general lower bounds

(2) Erdos-Renyi-Estimation of probability p:

- Compute (almost) tightly the optimal estimation rate
- Uses a novel extension lemma, potentially of broad use

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

D.P. algorithms: General Idea

If two input datasets "differ only on the data of one user", then outputs are "close" (in distribution).

D.P. **network** algorithms: General Idea

If two input **networks** " differ only on the data of one user", then outputs are "close" (in distribution).

D.P. **network** algorithms: General Idea

If two input **networks** " differ only on the data of one user", then outputs are "close" (in distribution).

What does "differ on one user" means for two networks (graphs)?

D.P. **network** algorithms: General Idea

If two input **networks** " differ only on the data of one user", then outputs are "close" (in distribution).

What does "differ on one user" means for two networks (graphs)?

(Edge-DP) Two graphs are close if they differ in an edge.
 (a simple "local" notion, protects "relationships of individuals".)
 Big literature [NRS '07], [GRU '12], [XCT '14] and many others

D.P. network algorithms: General Idea

If two input **networks** " differ only on the data of one user", then outputs are "close" (in distribution).

What does "differ on one user" means for two networks (graphs)?

- (Edge-DP) Two graphs are close if they differ in an edge.
 (a simple "local" notion, protects "relationships of individuals".)
 Big literature [NRS '07], [GRU '12], [XCT '14] and many others
- (Node-DP) Two graphs are close if they differ in a node.
 (a stronger "global" notion, protects "individuals".)
 Limited literature [KNRS'13], [BBDS '13], [CZ '13] and few others

D.P. network algorithms: General Idea

If two input **networks** " differ only on the data of one user", then outputs are "close" (in distribution).

What does "differ on one user" means for two networks (graphs)?

- (Edge-DP) Two graphs are close if they differ in an edge.
 (a simple "local" notion, protects "relationships of individuals".)
 Big literature [NRS '07], [GRU '12], [XCT '14] and many others
- (Node-DP) Two graphs are close if they differ in a node.
 (a stronger "global" notion, protects "individuals".)
 Limited literature [KNRS'13], [BBDS '13], [CZ '13] and few others

This work is for node-DP!

Intuition: If two n-vertex G, G' differ in **one node**, then outputs are **"close"** (in distribution).

Intuition: If two n-vertex G, G' differ in **one node**, then outputs are "close" (in distribution).

Node-neighbors: We call G, G' node-neighbors if they differ only on the neighborhood of one node.

Intuition: If two n-vertex G, G' differ in **one node**, then outputs are "close" (in distribution).

Node-neighbors: We call G, G' node-neighbors if they differ only on the neighborhood of one node.

Node-Distance: The path metric induced by node-neighbors relation

Intuition: If two n-vertex G, G' differ in **one node**, then outputs are "close" (in distribution).

Node-neighbors: We call G, G' node-neighbors if they differ only on the neighborhood of one node.

Node-Distance: The path metric induced by node-neighbors relation

Definition

A randomized $\mathcal A$ on n-vertex graphs is $\epsilon\text{-node-DP}$ if for all node-neighbors G, G'and v in the output space,

$$\exp(-\epsilon)\mathbb{P}\left(\mathcal{A}(\mathsf{G}')=\mathsf{v}\right)\leq \mathbb{P}\left(\mathcal{A}(\mathsf{G})=\mathsf{v}\right)\leq \exp\left(\epsilon\right)\mathbb{P}\left(\mathcal{A}(\mathsf{G}')=\mathsf{v}\right).$$

k-Stochastic Block Model for Large Networks

Parameters

- n nodes (users)
- k types (based on characteristics such as social status, cultural background, political identity.)
- B \in [0, 1]^{k \times k} symmetric **probability (frequency) matrix** between the k types.

k-Stochastic Block Model for Large Networks

Parameters

- n nodes (users)
- k types (based on characteristics such as social status, cultural background, political identity.)
- $B \in [0, 1]^{k \times k}$ symmetric **probability (frequency) matrix** between the k types.

The k-Stochastic Block Model

- (1) Each node v chooses type(v) from [k] iid **u.a.r.**.
- (2) Nodes v, w connect with an edge w.p. $B_{type(v),type(w)}$ independently.

Figure: n = 12

Figure: k = 4

Figure: Assign Edges

k-Stochastic Block Model for Large Networks

Parameters

- n nodes (users)
- k types (based on characteristics such as social status, cultural background, political identity.)
- B \in [0, 1]^{k \times k} symmetric **probability (frequency) matrix** between the k types.

The k-Stochastic Block Model

- (1) Each node v chooses type(v) from [k] iid u.a.r..
- (2) Nodes v, w connect with an edge **w.p.** $B_{type(v),type(w)}$ independently.

If k = 1, simple **Erdos-Renyi** model G(n, p)!

Modeling Large Networks: k-Stochastic Block Model

k-SBM, G(n, B), for sym. $B \in [0, 1]^{k \times k}$: n nodes, k types (node's choice u.a.r.), each edge between v, w with probability $B_{type(v),type(w)}$ independently.

Figure: k = 4

Figure: Assign Edges

Modeling Large Networks: k-Stochastic Block Model

k-SBM, G(n, B), for sym. $B \in [0, 1]^{k \times k}$: n **nodes**, k **types** (node's choice u.a.r.), each edge between v, w **with probability** $B_{type(v),type(w)}$ **independently.**

• Sparsity: (ρ -sparse) k-SBM, G(n, B), where B \in [0, ρ]^{k \times k}.

Figure: n = 12

Figure: k = 4

Figure: Assign Edges

Modeling Large Networks: k-Stochastic Block Model

```
k-SBM, G(n, B), for sym. B \in [0, 1]^{k \times k}: n nodes, k types (node's choice u.a.r.), each edge between v, w with probability B_{type(v),type(w)} independently.
```

• Sparsity: (ρ -sparse) k-SBM, G(n, B), where B \in [0, ρ] $^{k \times k}$.

Vast literature (without privacy): connections with community detection (gene expressions, webpage sorting), planted bisection problem, statistical physics models.

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

The Statistical Setting

Let (unknown) $B \in [0, \rho]^{k \times k}$ for (known) k.

The Statistical Setting

Let (unknown) $B \in [0, \rho]^{k \times k}$ for (known) k.

Task:

We observe **one** n-vertex sample G from G(n, B). The goal is to estimate B using an ϵ -**node-DP** $\mathcal{A}(G)$.

The Statistical Setting

Let (unknown) $B \in [0, \rho]^{k \times k}$ for (known) k.

Task:

We observe **one** n-vertex sample G from G(n, B).

The goal is to estimate B using an ϵ -node-DP $\mathcal{A}(\mathsf{G})$.

Metric (types-order invariant) for fixed B

$$\delta_2(\mathcal{A}(\mathsf{G}),\mathsf{B}) = \min_{\pi: [k] \to [k]} \frac{1}{k} \|\mathcal{A}(\mathsf{G})_{\pi} - \mathsf{B}\|_2,$$

where
$$\mathcal{A}(\mathsf{G})_{\pi} = \left(\mathcal{A}(\mathsf{G})_{\pi(\mathsf{i}),\pi(\mathsf{j})}\right)_{\mathsf{i},\mathsf{j}}$$

For G \sim G(n, B), focus on **MSE** $\mathbb{E}_{G \sim G(n,B)} \left[\delta_2 \left(\mathcal{A}(G), B \right)^2 \right]$.

The Statistical Question

Performance of Algorithm for general B

Each A has (worst-case over B) **error**

$$\mathrm{err}(\mathcal{A}) = \max_{\mathsf{B} \in [0,\rho]^{k \times k}} \mathbb{E}_{\mathsf{G} \sim \mathsf{G}(\mathsf{n},\mathsf{B})} \left[\delta_2 \left(\mathcal{A}(\mathsf{G}),\mathsf{B} \right)^2 \right]$$

The Statistical Question

Performance of Algorithm for general B

Each A has (worst-case over B) **error**

$$\text{err}(\mathcal{A}) = \max_{\mathsf{B} \in [0,\rho]^{k \times k}} \mathbb{E}_{\mathsf{G} \sim \mathsf{G}(\mathsf{n},\mathsf{B})} \left[\delta_2 \left(\mathcal{A}(\mathsf{G}),\mathsf{B} \right)^2 \right]$$

The Estimation Rate

$$R_{k}(\epsilon) = \min_{A \in -node-DP} err(A).$$

The Statistical Question

Performance of Algorithm for general B

Each \mathcal{A} has (worst-case over B) **error**

$$\mathrm{err}(\mathcal{A}) = \max_{\mathsf{B} \in [0,\rho]^{k \times k}} \mathbb{E}_{\mathsf{G} \sim \mathsf{G}(\mathsf{n},\mathsf{B})} \left[\delta_2 \left(\mathcal{A}(\mathsf{G}),\mathsf{B} \right)^2 \right]$$

The Estimation Rate

$$R_{k}(\epsilon) = \min_{A \in -node-DP} err(A).$$

- Note that we assume G is generated from k-SBM.
- In paper, we generalize to the agnostic setting to fitting k-SBM to a k'-SBM for unknown k' > k.

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

Theorem (informal, (BCSZ FOCS '18))

$$\mathcal{R}_{\mathsf{k}}(\epsilon) = O\left(\rho\left(\frac{\mathsf{k}^2}{\mathsf{n}^2} + \frac{\log\mathsf{k}}{\mathsf{n}}\right)\right) + O\left(\frac{\rho^2(\mathsf{k}-1)^2\log\mathsf{n}}{\mathsf{n}\epsilon} + \frac{1}{\mathsf{n}^2\epsilon^2}\right)$$

Theorem (informal, (BCSZ FOCS '18))

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right)$$

- Intuition: $\frac{k^2}{n^2}$ parametric rate for B, $\frac{\log k}{n} = \frac{\log k^n}{n^2}$ combinatorial rate
- Via a new detailed analysis of an ϵ -node-DP algorithm proposed in (BCS '15).

Theorem (informal, (BCSZ FOCS '18))

$$\mathcal{R}_{k}(\epsilon) = O\left(\rho\left(\frac{k^{2}}{n^{2}} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^{2}(k-1)^{2}\log n}{n\epsilon} + \frac{1}{n^{2}\epsilon^{2}}\right)$$

Theorem (informal, (BCSZ FOCS '18))

$$\mathcal{R}_k(\epsilon) = \underbrace{O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right)}_{Optimal\ non-private\ rate!} + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right)$$

Theorem (informal, (BCSZ FOCS '18))

For any $\epsilon > 0$,

$$\mathcal{R}_k(\epsilon) = \underbrace{O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right)}_{\textit{Optimal non-private rate!}} + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right)$$

Comments:

- (GLZ'14), (MS'17), (KTV'17): Optimal ϵ -independent part.
- Many regimes (e.g. ϵ , k constant and $\frac{1}{n} < \rho < \frac{1}{\log n}$):
 - No additional accuracy loss by imposing privacy!
 - (BCS'15) algorithm, optimal accuracy loss over all algorithms!

Upper Bound: Proof Idea

(1) (BCS'15) algorithm is a (quite non-trivial) combination of **exponential, laplace mechanism and Lipschitz extensions** ideas applied to the optimal non-private algorithm (KTV'17).

Upper Bound: Proof Idea

- (1) (BCS'15) algorithm is a (quite non-trivial) combination of **exponential, laplace mechanism and Lipschitz extensions** ideas applied to the optimal non-private algorithm (KTV'17).
- (2) All these mechanisms provide additive error guarantees.

Upper Bound: Proof Idea

- (1) (BCS'15) algorithm is a (quite non-trivial) combination of **exponential, laplace mechanism and Lipschitz extensions** ideas applied to the optimal non-private algorithm (KTV'17).
- (2) All these mechanisms provide additive error guarantees.
- (3) Adjust the analysis from (KTV'17)- a delicate net argument- to show that it **is not much affected** by additive errors.

Upper Bound: Tightness?

Theorem (informal (BCSZ FOCS '18))

$$\mathcal{R}_{k}(\epsilon) = \underbrace{O\left(\rho\left(\frac{k^{2}}{n^{2}} + \frac{\log k}{n}\right)\right)}_{Optimal\ non-private\ rate!} + O\left(\frac{\rho^{2}(k-1)^{2}\log n}{n\epsilon} + \frac{1}{n^{2}\epsilon^{2}}\right)$$

Upper Bound: Tightness?

Theorem (informal (BCSZ FOCS '18))

For any $\epsilon > 0$,

$$\mathcal{R}_k(\epsilon) = \underbrace{O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right)}_{\textit{Optimal non-private rate!}} + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right)$$

What about the ϵ -dependent parts?

Upper Bound: Tightness?

Theorem (informal (BCSZ FOCS '18))

For any $\epsilon > 0$,

$$\mathcal{R}_k(\epsilon) = \underbrace{O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right)}_{\textit{Optimal non-private rate!}} + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \underbrace{\frac{1}{n^2\epsilon^2}}_{\textit{necessary},k \geq 2}\right)$$

What about the ϵ -dependent parts?

We prove $\frac{1}{n^2\epsilon^2}$ is (almost) necessary if $k \ge 2$.

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

A lower bound for $k \ge 2$: A variant of SBM

We prove that the term $\frac{1}{n^2\epsilon^2}$ is **necessary** under a small model change.

A lower bound for $k \ge 2$: A variant of SBM

We prove that the term $\frac{1}{n^2 \epsilon^2}$ is **necessary** under a small model change.

Recall for some underlying probability matrix B:

Figure: n = 12

Figure: k = 4

Figure: Assign Edges

A lower bound for k > 2: A variant of SBM

We prove that the term $\frac{1}{n^2 \epsilon^2}$ is **necessary** under a small model change.

Recall for some underlying probability matrix B:

Figure: n = 12

Figure: k = 4 **close to** u.a.r.

Figure: Assign Edges

New k-SBM

Suppose each node $i \in [n]$ chooses it's type in a **close to** uniform way. (Say each type has probability in $\left[\frac{1}{4k}, \frac{4}{k}\right]$.)

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right).$$

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right).$$

Proposition (informal, (BCSZ FOCS '18))

For $k \ge 2$ and any $\epsilon > 0$,

$$\mathcal{R}^*_{\mathsf{k}}(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^2\epsilon^2}
ight)$$
 ,

where \mathcal{R}_{ν}^* stands for the rate for the new variant of the SBM.

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right).$$

Proposition (informal, (BCSZ FOCS '18))

For $k \ge 2$ and any $\epsilon > 0$,

$$\mathcal{R}^*_{\mathsf{k}}(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^2\epsilon^2}
ight)$$
 ,

where \mathcal{R}_{k}^{*} stands for the rate for the new variant of the SBM.

Proof: Reduction to privately estimating $q \in [0, 1]$ out of n samples from Bern(q).

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right).$$

Proposition (informal, (BCSZ FOCS '18))

For $k \ge 2$ and any $\epsilon > 0$,

$$\mathcal{R}^*_\mathsf{k}(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^2\epsilon^2}
ight)$$
 ,

where \mathcal{R}_k^* stands for the rate for the new variant of the SBM.

Proof: Reduction to privately estimating $q \in [0, 1]$ out of n samples from $\mathsf{Bern}(q)$.

How crucial is that $k \ge 2$?

$$\mathcal{R}_k(\epsilon) = O\left(\rho\left(\frac{k^2}{n^2} + \frac{\log k}{n}\right)\right) + O\left(\frac{\rho^2(k-1)^2\log n}{n\epsilon} + \frac{1}{n^2\epsilon^2}\right).$$

Proposition (informal, (BCSZ FOCS '18))

For $k \ge 2$ and any $\epsilon > 0$,

$$\mathcal{R}_{\mathsf{k}}^*(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^2\epsilon^2}
ight)$$
 ,

where \mathcal{R}_k^* stands for the rate for the new variant of the SBM.

Proof: Reduction to privately estimating $q \in [0, 1]$ out of n samples from Bern(q).

How crucial is that $k \ge 2$?

If k = 1, the rate can be improved to $\frac{1}{n^3 \epsilon^2}$.

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

A fundamental open problem

Observe simply a G(n, p): estimate **privately** $p \in [0, 1]$

A fundamental open problem

Observe simply a G(n, p): estimate **privately** $p \in [0, 1]$

Task for k = 1

Compute

$$\mathcal{R}_1(\epsilon) = \min_{\mathcal{A} \text{ } \epsilon - \text{node-DP}} \max_{p \in [0,1]} \mathbb{E}_{G \sim G_{n,p}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right].$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \, \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon-\mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Standard Techniques

$$\Omega\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^4\epsilon^2}\right) = \mathcal{R}_1(\epsilon) = O\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^2\epsilon^2}\right).$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \, \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Standard Techniques

$$\Omega\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^4\epsilon^2}\right) = \mathcal{R}_1(\epsilon) = O\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^2\epsilon^2}\right).$$

Upper bound by Laplace mechanism (and our main result for k = 1).

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Standard Techniques

$$\Omega\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^4\epsilon^2}\right) = \mathcal{R}_1(\epsilon) = O\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^2\epsilon^2}\right).$$

Upper bound by Laplace mechanism (and our main result for k = 1). **Lower bounds** by standard methods.

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Standard Techniques

$$\Omega\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^4\epsilon^2}\right) = \mathcal{R}_1(\epsilon) = O\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^2\epsilon^2}\right).$$

Upper bound by Laplace mechanism (and our main result for k=1). **Lower bounds** by standard methods.

What is the true ϵ -dependent rate?!

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Standard Techniques

$$\Omega\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^4\epsilon^2}\right) = \mathcal{R}_1(\epsilon) = O\left(\frac{1}{\mathsf{n}^2} + \frac{1}{\mathsf{n}^2\epsilon^2}\right).$$

Upper bound by Laplace mechanism (and our main result for k = 1). **Lower bounds** by standard methods.

What is the true ϵ -dependent rate?! (Almost tight) answer: $\frac{1}{n^3\epsilon^2}$

The case
$$k = 1$$
: $\frac{1}{n^4 \epsilon^2} \le \epsilon - dep. \le \frac{1}{n^2 \epsilon^2}$

Theorem (BCSZ FOCS '18)

For $\epsilon > \frac{\log n}{n}$,

$$\mathcal{R}_1(\epsilon) = O(\frac{1}{\mathsf{n}^2} + \frac{\mathsf{log}\,\mathsf{n}}{\mathsf{n}^3\epsilon^2}).$$

Furthermore, if G is sampled u.a.r. from graphs with a fixed number of edges (conditional Erdos Renyi) for ϵ constant,

$$\mathcal{R}'_1(\epsilon) = \Omega(\frac{1}{\mathsf{n}^3 \epsilon^2}).$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Laplace Estimator

For any f, $f(G) + Lap(\frac{\Delta}{\epsilon})$ is ϵ -node-DP for

$$\Delta = \max_{G,G':d_v(G,G')=1} |f(G) - f(G')|.$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Laplace Estimator

For any f, $f(G) + Lap(\frac{\Delta}{\epsilon})$ is ϵ -node-DP for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')=1} |\mathsf{f}(\mathsf{G}) - \mathsf{f}(\mathsf{G}')|.$$

Best non-private estimator is $e(G) = \frac{|E[G]|}{\binom{n}{2}}$.

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Laplace Estimator

For any f, $f(G) + Lap(\frac{\Delta}{\epsilon})$ is ϵ -node-DP for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')=1} |\mathsf{f}(\mathsf{G})-\mathsf{f}(\mathsf{G}')|.$$

Best non-private estimator is $e(G) = \frac{|E[G]|}{\binom{n}{2}}$.

We consider the ϵ -node-DP, $\mathrm{e}(\mathsf{G}) + \mathrm{Lap}(\frac{\Delta}{\epsilon})$ for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_{\mathsf{v}}(\mathsf{G},\mathsf{G}')=1} |\mathsf{e}(\mathsf{G}) - \mathsf{e}(\mathsf{G}')|$$

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Laplace Estimator

For any f, $f(G) + Lap(\frac{\Delta}{\epsilon})$ is ϵ -node-DP for

$$\Delta = \max_{G,G':d_v(G,G')=1} |f(G) - f(G')|.$$

Best non-private estimator is $e(G) = \frac{|E[G]|}{\binom{n}{2}}$.

We consider the ϵ -node-DP, $\mathrm{e}(\mathsf{G}) + \mathrm{Lap}(\frac{\Delta}{\epsilon})$ for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_v(\mathsf{G},\mathsf{G}')=1} |\mathsf{e}(\mathsf{G}) - \mathsf{e}(\mathsf{G}')| = \Theta\left(\mathsf{n}/\binom{\mathsf{n}}{2}\right) = \Theta(\frac{1}{\mathsf{n}}).$$

Upper Bound: The Laplace estimator (suboptimal)

$$\mathcal{R}_1(\epsilon) = \mathsf{min}_{\mathcal{A}} \ _{\epsilon - \mathsf{node-DP}} \ \mathsf{max}_{\mathsf{p} \in [0,1]} \ \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = ?$$

Laplace Estimator

For any f, $f(G) + Lap(\frac{\Delta}{\epsilon})$ is ϵ -node-DP for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_{\mathsf{v}}(\mathsf{G},\mathsf{G}')=1} |\mathsf{f}(\mathsf{G})-\mathsf{f}(\mathsf{G}')|.$$

Best non-private estimator is $e(G) = \frac{|E[G]|}{\binom{n}{2}}$.

We consider the ϵ -node-DP, $\mathrm{e}(\mathsf{G}) + \mathrm{Lap}(\frac{\Delta}{\epsilon})$ for

$$\Delta = \max_{\mathsf{G},\mathsf{G}':\mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')=1} |\mathsf{e}(\mathsf{G})-\mathsf{e}(\mathsf{G}')| = \Theta\left(\mathsf{n}/\binom{\mathsf{n}}{2}\right) = \Theta(\frac{1}{\mathsf{n}}).$$

Same upper bound

$$\mathcal{R}_1(\epsilon) = O(rac{1}{\mathsf{n}^2} + rac{1}{\mathsf{n}^2\epsilon^2}).$$

• Recall: $e(G) + Lap(\frac{\Delta}{\epsilon})$ for $\Delta = \max_{G,G':d_V(G,G')=1} |e(G) - e(G')| = \Theta(\frac{1}{n})$.

- Recall: $e(G) + Lap(\frac{\Delta}{\epsilon})$ for $\Delta = \max_{G,G':d_V(G,G')=1} |e(G) e(G')| = \Theta(\frac{1}{n})$.
- $\Delta = \Theta(\frac{1}{n})$ requires $\Theta(n)$ change in one degree and no change in rest. **Deviation** $\Theta(n)$ from average degree in G or G'.

- Recall: $e(G) + Lap(\frac{\Delta}{\epsilon})$ for $\Delta = \max_{G,G':d_V(G,G')=1} |e(G) e(G')| = \Theta(\frac{1}{n})$.
- $\Delta = \Theta(\frac{1}{n})$ requires $\Theta(n)$ change in one degree and no change in rest. **Deviation** $\Theta(n)$ from average degree in G or G'.
- All degrees from G(n, p) are $(n-1)p + O(\sqrt{n \log n})$: $\sqrt{n \log n}$ -window. \Rightarrow G or G' very **atypical** for any Erdos-Renyi graph.

- Recall: $e(G) + Lap(\frac{\Delta}{\epsilon})$ for $\Delta = \max_{G,G':d_V(G,G')=1} |e(G) e(G')| = \Theta(\frac{1}{n})$.
- $\Delta = \Theta(\frac{1}{n})$ requires $\Theta(n)$ change in one degree and no change in rest. **Deviation** $\Theta(n)$ from average degree in G or G'.
- All degrees from G(n, p) are $(n-1)p + O(\sqrt{n \log n})$: $\sqrt{n \log n}$ -window. \Rightarrow G or G' very **atypical** for any Erdos-Renyi graph.
- How to exclude atypical graphs?
 (Challenge: need to be private for all pairs of graphs:)

We construct a **subset** ${\mathcal H}$ of all n-vertex graphs

• typical for ER graphs

$$\max_{p \in [0,1]} \mathbb{P}_{G \sim G(n,p)} \left(G \not\in \mathcal{H} \right) = O(\frac{1}{n^2}),$$

with lower sensitivity

$$\mathsf{max}_{\mathsf{G},\mathsf{G}'\in\mathcal{H}:\mathsf{d}(\mathsf{G},\mathsf{G}')=1}\left|\mathsf{e}(\mathsf{G})-\mathsf{e}(\mathsf{G}')\right|=\mathsf{O}(\sqrt{n\log n}/\binom{n}{2})=\mathsf{O}(\frac{\sqrt{\log n}}{\frac{3}{n^{\frac{3}{2}}}}).$$

- (Privacy in \mathcal{H}): Let $\hat{\mathcal{A}}(\mathsf{G}) = \mathsf{e}(\mathsf{G}) + \mathsf{Lap}(\frac{2\sqrt{\log n}}{n^2\epsilon})$, $\mathsf{G} \in \mathcal{H}$.
 - (1) $\frac{\epsilon}{2}$ -node-DP estimator on $\mathcal H$ and
 - (2) For $G \in \mathcal{H}$, $\mathbb{E}\left[(\hat{\mathcal{A}}(G) p)^2\right] = O(\frac{1}{n^2} + \frac{\log n}{n^3 \epsilon^2})$.

- (Privacy in \mathcal{H}): Let $\hat{\mathcal{A}}(\mathsf{G}) = \mathsf{e}(\mathsf{G}) + \mathsf{Lap}(\frac{2\sqrt{\log \mathsf{n}}}{\frac{3}{\mathsf{n}^2\epsilon}})$, $\mathsf{G} \in \mathcal{H}$.
 - (1) $\frac{\epsilon}{2}$ -node-DP estimator on ${\cal H}$ and
 - (2) For $G \in \mathcal{H}$, $\mathbb{E}\left[(\hat{\mathcal{A}}(G)-p)^2\right] = O(\frac{1}{n^2} + \frac{\log n}{n^3\epsilon^2})$.
- (Privacy in the whole space+ same accuracy:) Extension lemma which extends $\hat{\mathcal{A}}$ to \mathcal{A}
 - (1) ϵ -node-DP estimator on evert n-vertex graph and
 - (2) $\mathcal{A}(\mathsf{G}) = \hat{\mathcal{A}}(\mathsf{G})$ in distribution, when $\mathsf{G} \in \mathcal{H}$.

- (Privacy in \mathcal{H}): Let $\hat{\mathcal{A}}(\mathsf{G}) = \mathsf{e}(\mathsf{G}) + \mathsf{Lap}(\frac{2\sqrt{\log \mathsf{n}}}{\frac{3}{\mathsf{n}^2\epsilon}})$, $\mathsf{G} \in \mathcal{H}$.
 - (1) $\frac{\epsilon}{2}$ -node-DP estimator on ${\cal H}$ and
 - (2) For $G \in \mathcal{H}$, $\mathbb{E}\left[(\hat{\mathcal{A}}(G) p)^2\right] = O(\frac{1}{n^2} + \frac{\log n}{n^3\epsilon^2})$.
- (Privacy in the whole space+ same accuracy:) Extension lemma which extends $\hat{\mathcal{A}}$ to \mathcal{A}
 - (1) ϵ -node-DP estimator on evert n-vertex graph and
 - (2) $\mathcal{A}(\mathsf{G}) = \hat{\mathcal{A}}(\mathsf{G})$ in distribution, when $\mathsf{G} \in \mathcal{H}$.

$$\mathcal{H} \text{ typical for } \mathsf{G}_{\mathsf{n},\mathsf{p}} \text{ implies } \mathbb{E}_{\mathsf{G} \sim \mathsf{G}_{\mathsf{n},\mathsf{p}}} \left[|\mathcal{A}(\mathsf{G}) - \mathsf{p}|^2 \right] = O\left(\tfrac{1}{\mathsf{n}^2} + \tfrac{\log \mathsf{n}}{\mathsf{n}^3 \epsilon^2} \right).$$

The case k = 1: Main Result and Extension Lemma

Theorem (BCSZ FOCS '18)

For $\epsilon > \frac{\log n}{n}$,

$$\mathcal{R}_1(\epsilon) = O(\frac{1}{\mathsf{n}^2} + \frac{\mathsf{log}\,\mathsf{n}}{\mathsf{n}^3\epsilon^2}).$$

Furthermore, if G is sampled u.a.r. from graphs with a fixed number of edges (conditional Erdos Renyi) for ϵ constant,

$$\mathcal{R}'_1(\epsilon) = \Omega(\frac{1}{\mathsf{n}^3 \epsilon^2}).$$

The case k = 1: Main Result and Extension Lemma

Theorem (BCSZ FOCS '18)

For
$$\epsilon > \frac{\log n}{n}$$
,

$$\mathcal{R}_1(\epsilon) = O(\frac{1}{\mathsf{n}^2} + \frac{\log \mathsf{n}}{\mathsf{n}^3 \epsilon^2}).$$

Furthermore, if G is sampled u.a.r. from graphs with a fixed number of edges (conditional Erdos Renyi) for ϵ constant,

$$\mathcal{R}'_1(\epsilon) = \Omega(\frac{1}{\mathsf{n}^3 \epsilon^2}).$$

Special Importance for Upper Bound

Extension Lemma

Extended private algorithm from typical instances to private algorithm on the whole space.

Outline

- (1) Node Differential Privacy and Stochastic Block Model
- (2) The Statistical Task
- (3) Main Results
 - Upper Bound for k-SBM (optimal in many regimes)
 - ▶ Lower Bound for k-SBM, $k \ge 2$
 - ▶ The case k = 1 (Erdos-Renyi case)-an almost tight optimal rate
- (4) The Extension Lemma

The extension lemma: beyond networks

Technical challenge with *designing* differential private algorithms:

- Privacy constraint should hold for any pair of datasets
- Accuracy guarantee suffice to hold for typical datasets of our input distribution.

The extension lemma: beyond networks

Technical challenge with *designing* differential private algorithms:

- Privacy constraint should hold for any pair of datasets
- Accuracy guarantee suffice to hold for typical datasets of our input distribution.

Key contribution: Suffices to be **private** only for **typical** datasets

The extension lemma: beyond networks

Technical challenge with *designing* differential private algorithms:

- Privacy constraint should hold for any pair of datasets
- Accuracy guarantee suffice to hold for typical datasets of our input distribution.

Key contribution: Suffices to be private only for typical datasets

Proposition ("Extending any DP Algorithm, (BCSZ FOCS'18))

Let $\hat{\mathcal{A}}$ ϵ -DP on a subset of the input space $\mathcal{H} \subseteq \mathcal{M}$. Then there exists \mathcal{A} defined on \mathcal{M} which is 1) 2ϵ -DP on \mathcal{M} and 2) $\forall D \in \mathcal{H}$, $\mathcal{A}(D) \stackrel{\mathsf{d}}{=} \hat{\mathcal{A}}(D)$.

Generalizes "extensions": (KNRS'13), (BBDS'13), (CZ'13), (RS'15).

Note on arXiv: "Private Algorithms Can Always Be Extended"

• Differential-privacy can be translated into an ϵ -**Lipschitz condition**. (small input changes leads to small output changes)

• Differential-privacy can be translated into an ϵ -**Lipschitz condition**. (small input changes leads to small output changes)

$$\begin{split} & \max_{V} \frac{\mathbb{P}(\mathcal{A}(G) = v)}{\mathbb{P}(\mathcal{A}(G') = v)} \leq e^{\epsilon d_{V}(G,G')} \Rightarrow \\ & \max_{V} |\log \mathbb{P}\left(\mathcal{A}(G) = v\right) - \log \mathbb{P}\left(\mathcal{A}(G') = v\right)| \leq \epsilon d_{V}(G,G') \end{split}$$

• Differential-privacy can be translated into an ϵ -**Lipschitz condition**. (small input changes leads to small output changes) $\max_{\mathsf{V}} \frac{\mathbb{P}(\mathcal{A}(\mathsf{G}) = \mathsf{V})}{\mathbb{P}(\mathcal{A}(\mathsf{G}') = \mathsf{V})} \leq \mathrm{e}^{\epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')} \Rightarrow \\ \max_{\mathsf{V}} |\log \mathbb{P}\left(\mathcal{A}(\mathsf{G}) = \mathsf{V}\right) - \log \mathbb{P}\left(\mathcal{A}(\mathsf{G}') = \mathsf{V}\right)| \leq \epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')$

• Lipschitz extensions are well-studied in functional analysis.

• Differential-privacy can be translated into an ϵ -Lipschitz condition. (small input changes leads to small output changes) $\max_{\mathsf{V}} \frac{\mathbb{P}(\mathcal{A}(\mathsf{G}) = \mathsf{V})}{\mathbb{P}(\mathcal{A}(\mathsf{G}') = \mathsf{V})} \leq \mathrm{e}^{\epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')} \Rightarrow \\ \max_{\mathsf{V}} |\log \mathbb{P}\left(\mathcal{A}(\mathsf{G}) = \mathsf{V}\right) - \log \mathbb{P}\left(\mathcal{A}(\mathsf{G}') = \mathsf{V}\right)| \leq \epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')$

- Lipschitz extensions are well-studied in functional analysis.
- Standard result: functions with $\ell_{\infty}(\Gamma)$ -output space can always be Lipschitz-extented with the same Lip constant.

• Differential-privacy can be translated into an ϵ -**Lipschitz condition**. (small input changes leads to small output changes) $\max_{\mathsf{V}} \frac{\mathbb{P}(\mathcal{A}(\mathsf{G}) = \mathsf{V})}{\mathbb{P}(\mathcal{A}(\mathsf{G}') = \mathsf{V})} \leq \mathrm{e}^{\epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')} \Rightarrow \\ \max_{\mathsf{V}} |\log \mathbb{P}\left(\mathcal{A}(\mathsf{G}) = \mathsf{V}\right) - \log \mathbb{P}\left(\mathcal{A}(\mathsf{G}') = \mathsf{V}\right)| \leq \epsilon \mathsf{d}_{\mathsf{V}}(\mathsf{G},\mathsf{G}')$

- Lipschitz extensions are well-studied in functional analysis.
- Standard result: functions with $\ell_{\infty}(\Gamma)$ -output space can always be Lipschitz-extented with the same Lip constant.
- ϵ -DP has **almost this property** but not exactly. Yet similar proof (alongside with measure-theory techniques) works by doubling the Lip constant.

(1) We focus on optimal private estimation of **Stochastic Block Model** and **Erdos Renyi** models.

- (1) We focus on optimal private estimation of **Stochastic Block Model** and **Erdos Renyi** models.
- (2) **Stochastic Block Model:** new analysis of existing algorithm (BCS'15) matches **optimal non-private rate** in many regimes. Graphons (k-SBM for $k \to +\infty$) and agnostic learning in the paper!

- (1) We focus on optimal private estimation of **Stochastic Block Model** and **Erdos Renyi** models.
- (2) **Stochastic Block Model:** new analysis of existing algorithm (BCS'15) matches **optimal non-private rate** in many regimes. Graphons (k-SBM for $k \to +\infty$) and agnostic learning in the paper!
- (3) Erdos-Renyi: "almost" tight optimal rate.

- (1) We focus on optimal private estimation of **Stochastic Block Model** and **Erdos Renyi** models.
- (2) **Stochastic Block Model:** new analysis of existing algorithm (BCS'15) matches **optimal non-private rate** in many regimes. Graphons (k-SBM for $k \to +\infty$) and agnostic learning in the paper!
- (3) **Erdos-Renyi**: "almost" tight optimal rate.
- (4) Proved an extension lemma potentially of broad use.

(1) **SBM**: Study of the term $\rho^2 \frac{(k-1)^2 \log n}{n\epsilon}$ (exponential mechanism term).

- (1) **SBM**: Study of the term $\rho^2 \frac{(k-1)^2 \log n}{n\epsilon}$ (exponential mechanism term).
- (2) Complete the lower bound proof of $\frac{1}{n^3 \epsilon^2}$ -rate for **Erdos-Renyi** model.

- (1) **SBM**: Study of the term $\rho^2 \frac{(k-1)^2 \log n}{n\epsilon}$ (exponential mechanism term).
- (2) Complete the lower bound proof of $\frac{1}{n^3\epsilon^2}$ -rate for **Erdos-Renyi** model.
- (3) **Time-efficiency!**No non-trivial efficient private algorithm even for 2-SBM!

- (1) **SBM**: Study of the term $\rho^2 \frac{(k-1)^2 \log n}{n\epsilon}$ (exponential mechanism term).
- (2) Complete the lower bound proof of $\frac{1}{n^3\epsilon^2}$ -rate for **Erdos-Renyi** model.
- (3) **Time-efficiency!**No non-trivial efficient private algorithm even for 2-SBM!
- (4) Statistically optimal private results using **extension lemma!** -Recent work on **private estimation of** $\mathcal{N}(\mu, \Sigma)$ [KV'18],[KLSU'18] What is the **tight statistical rate**? Ongoing work with C. Tzamos.

- (1) **SBM**: Study of the term $\rho^2 \frac{(k-1)^2 \log n}{n\epsilon}$ (exponential mechanism term).
- (2) Complete the lower bound proof of $\frac{1}{n^3\epsilon^2}$ -rate for **Erdos-Renyi** model.
- (3) **Time-efficiency!**No non-trivial efficient private algorithm even for 2-SBM!
- (4) Statistically optimal private results using **extension lemma!** -Recent work on **private estimation of** $\mathcal{N}(\mu, \Sigma)$ [KV'18],[KLSU'18] What is the **tight statistical rate**? Ongoing work with C. Tzamos.

Thank you!!

The case k = 1: Lower Bound Sketch

Theorem (BCSZ FOCS '18)

For $\epsilon > \frac{\log n}{n}$,

$$\mathcal{R}_1(\epsilon) = O(\frac{1}{\mathsf{n}^2} + \frac{\mathsf{log}\,\mathsf{n}}{\mathsf{n}^3\epsilon^2}).$$

Furthermore, if G is sampled u.a.r. from graphs with a fixed number of edges (conditional Erdos Renyi) for ϵ constant,

$$\mathcal{R}'_1(\epsilon) = \Omega(\frac{1}{\mathsf{n}^3 \epsilon^2}).$$

Goal

$$\mathcal{R}_1(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^3\epsilon^2}
ight)$$
 .

Proof for u.a.r n vertices, m edges (conditional ER), call it G(n, m).

Goal

$$\mathcal{R}_1(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^3\epsilon^2}
ight)$$
 .

Proof for u.a.r n vertices, m edges (conditional ER), call it G(n, m).

• From estimation to testing: If

$$\mathcal{R}_1(\epsilon) = o\left(\alpha_n^2\right)$$

then we can distinguish between $G_{n,p}$ and $G_{n,p+\alpha_n}$.

Goal

$$\mathcal{R}_1(\epsilon) = \Omega\left(rac{1}{\mathsf{n}^3\epsilon^2}
ight)$$
 .

Proof for u.a.r n vertices, m edges (conditional ER), call it G(n, m).

• From estimation to testing: If

$$\mathcal{R}_1(\epsilon) = o\left(\alpha_n^2\right)$$

then we can distinguish between $G_{n,p}$ and $G_{n,p+\alpha_n}$.

• General privacy limitation: By using ϵ (-node)-DP algorithms, inputs of (node-)distance at most O $\left(\frac{1}{\epsilon}\right)$ are indistinguishable!

Goal

$$\mathcal{R}_1(\epsilon) = \Omega\left(\frac{1}{\mathsf{n}^3\epsilon^2}\right).$$

Proof for u.a.r n vertices, m edges (conditional ER), call it G(n, m).

• From estimation to testing: If

$$\mathcal{R}_1(\epsilon) = o\left(\alpha_n^2\right)$$

then we can distinguish between $G_{n,p}$ and $G_{n,p+\alpha_n}$.

• **General privacy limitation:** By using ϵ (-node)-DP algorithms, inputs of (node-)distance at most O $\left(\frac{1}{\epsilon}\right)$ are indistinguishable!

Random Graphs Question

For which $\alpha_{\rm n}$, ${\sf G}_{{\sf n},{\sf p}}$ and ${\sf G}_{{\sf n},{\sf p}+\alpha_{\sf n}}$ have node-distance O $\left(\frac{1}{\epsilon}\right)$?

Lower Bound: Coupling Random Graphs

Goal and an Easy Coupling

Need couple $G_{n,p}$ and $G_{n,p+\alpha_n}$ with node-distance $O\left(\frac{1}{\epsilon}\right)$. Each edge α_n -probability slack, easy to couple with $O\left(\alpha_n\binom{n}{2}\right)$ new edges.

Lower Bound: Coupling Random Graphs

Goal and an Easy Coupling

Need couple $G_{n,p}$ and $G_{n,p+\alpha_n}$ with node-distance $O\left(\frac{1}{\epsilon}\right)$. Each edge α_n -probability slack, easy to couple with $O\left(\alpha_n\binom{n}{2}\right)$ new edges.

• Easy $\alpha_{\mathrm{n}} = \frac{1}{\mathrm{n}^2 \epsilon} \left(\Rightarrow \mathcal{R}_1(\epsilon) = \Omega\left(\frac{1}{\mathrm{n}^4 \epsilon^2}\right) \right)$ O $\left(\frac{1}{\epsilon}\right)$ new edges, hence node-distance O $\left(\frac{1}{\epsilon}\right)$.

Lower Bound: Coupling Random Graphs

Goal and an Easy Coupling

Need couple $G_{n,p}$ and $G_{n,p+\alpha_n}$ with node-distance $O\left(\frac{1}{\epsilon}\right)$. Each edge α_n -probability slack, easy to couple with $O\left(\alpha_n\binom{n}{2}\right)$ new edges.

- Easy $\alpha_{\mathsf{n}} = \frac{1}{\mathsf{n}^2 \epsilon} \left(\Rightarrow \mathcal{R}_1(\epsilon) = \Omega\left(\frac{1}{\mathsf{n}^4 \epsilon^2}\right) \right)$ O $\left(\frac{1}{\epsilon}\right)$ new edges, hence *node-distance* O $\left(\frac{1}{\epsilon}\right)$.
- Harder $\alpha_n = \frac{1}{n^{\frac{3}{2}}\epsilon} \left(\Rightarrow \mathcal{R}_1(\epsilon) = \Omega\left(\frac{1}{n^{3}\epsilon^2}\right) \right)$ $O\left(\frac{\sqrt{n}}{\epsilon}\right)$ new edges, can we assign \sqrt{n} -edges per vertex?

Proposition (Key Step)

For appropriate choice of $m=\Theta(n^2)$, there is a coupling between G(n,m) and $G(n,m+o\left(\sqrt{n}\right))$ where instances are always node-neighbors.