Etapas

- compreendimento do negocio 🔽
- compreensão dos dados 🔽
- tratamento e limpeza dos dados 🔽
- analise [extrair informações relevantes para responder perguntas]

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import re
sns.set()

df = pd.read_csv('https://raw.githubusercontent.com/Reennaan/movie-analysis/refs/heads/main/movie.csv')

df.head()

→ *	Unnan	ned: 0	Series_Title	Released_Year	Certificate	Runtime	Genre	IMDB_Rating	Overview	Meta_score	Director	Star1	St
	0	1	The Godfather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	Francis Ford Coppola	Marlon Brando	Al Pa
	1	2	The Dark Knight	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Christopher Nolan	Christian Bale	He Lec

Próximas etapas:

New interactive sheet

Dicionário de dados

- Series_Title Nome do filme
- Released_Year Ano de lançamento
- Certificate Classificação etária
- Runtime Tempo de duração
- Genre Gênero
- IMDB_Rating Nota do IMDB
- Overview Overview do filme
- Meta_score Média ponderada de todas as críticas
- Director Diretor
- Star1 Ator/atriz #1
- Star2 Ator/atriz #2
- Star3 Ator/atriz #3
- Star4 Ator/atriz #4
- No_of_Votes Número de votos
- Gross Faturamento

df.describe()


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 999 entries, 0 to 998
Data columns (total 16 columns):
                   Non-Null Count Dtype
 # Column
 0 Unnamed: 0
                    999 non-null
                                    int64
     Series_Title
                   999 non-null
                                   object
     Released_Year 999 non-null
                                   object
     Certificate
                    898 non-null
                                    object
                    999 non-null
     Runtime
                                    object
     Genre
                    999 non-null
                                   object
    IMDB_Rating
                    999 non-null
                                    float64
     Overview
                    999 non-null
                                    object
     Meta score
                    842 non-null
                                   float64
                    999 non-null
     Director
                                    object
 10 Star1
                    999 non-null
                                    object
                    999 non-null
 11 Star2
                                   object
                    999 non-null
 12 Star3
                                    object
 13 Star4
                    999 non-null
                                    object
 14 No_of_Votes
                    999 non-null
                                    int64
                    830 non-null
                                   object
 15 Gross
dtypes: float64(2), int64(2), object(12)
memory usage: 125.0+ KB
```

Limpeza de dados

```
df1 = df.copy();
df1 = df1.drop(["Unnamed: 0"], axis=1)
df1.head()
```

	Series_Title	Released_Year	Certificate	Runtime	Genre	<pre>IMDB_Rating</pre>	Overview	Meta_score	Director	Star1	Star2	St
(0 The Godfather	1972	А	175 min	Crime, Drama	9.2	An organized crime dynasty's aging patriarch t	100.0	Francis Ford Coppola	Marlon Brando	Al Pacino	Jar Ca
	1 The Dark Knight	2008	UA	152 min	Action, Crime, Drama	9.0	When the menace known as the Joker wreaks havo	84.0	Christopher Nolan	Christian Bale	Heath Ledger	Aa Eckl

Próximas etapas: (Gerar código com df1) (Ver gráficos recomendados) (New interactive sheet)

Dados faltantes

aqui eu me deparei com o primeiro problema, existiam dados faltantes em gross que é o dado mais relevante na análise. a minha solução para isso foi descartar 17% do dataframe, 83% ainda é útil

```
print("{:.0%}".format(df1["Gross"].count() / df1.shape[0]))

33%

df1["Gross"] = df1["Gross"].str.replace(',', '', regex=False).astype(float)

df1 = df1.dropna(subset=["Gross"])
```

Adicionando a nota do IMDB às notas nullas de meta_score

@title Adicionando a nota do IMDB às notas nullas de meta_score

```
df1['Meta_score'] = df1['Meta_score'].fillna(df1['IMDB_Rating'])
df1.info()
    <class 'pandas.core.frame.DataFrame'>
     Index: 830 entries, 0 to 996
     Data columns (total 15 columns):
                        Non-Null Count Dtype
     # Column
     0
         Series_Title
                         830 non-null
                                         object
         Released_Year 830 non-null
                                         object
         Certificate
                         784 non-null
                                         object
         Runtime
                         830 non-null
                                         object
         Genre
                         830 non-null
                                         object
         IMDB_Rating
                         830 non-null
                                         float64
      6
         Overview
                         830 non-null
                                         object
                         830 non-null
                                         float64
         Meta_score
         Director
                         830 non-null
                                         object
                         830 non-null
         Star1
                                         object
      10 Star2
                         830 non-null
                                         object
         Star3
                         830 non-null
                                         object
      12 Star4
                         830 non-null
                                         object
      13 No_of_Votes
                         830 non-null
                                         int64
                         830 non-null
                                         float64
      14 Gross
     dtypes: float64(3), int64(1), object(11)
     memory usage: 103.8+ KB
```

Análise exploratória

✓ Matriz de correlação

```
# @title Matriz de correlação
df1["Runtime"] = pd.to_numeric(df1["Runtime"].str.replace(" min", "", regex=False),errors="coerce")
dfnum = df1.select_dtypes(include=[np.number])
dfcorrelation = dfnum.corr();
dfcorrelation
\overline{2}
                     Runtime IMDB_Rating Meta_score No_of_Votes
                                                                         Gross
                                                                                  ☶
        Runtime
                    1.000000
                                  0.246480
                                              -0.080061
                                                            0.172266 0.140002
                                                                                  П.
      IMDB_Rating
                    0.246480
                                  1.000000
                                              0.022429
                                                            0.535900 0.099393
                    -0.080061
       Meta_score
                                  0.022429
                                               1.000000
                                                            0.213179 0.151481
      No_of_Votes
                    0.172266
                                  0.535900
                                              0.213179
                                                            1.000000 0.589527
         Gross
                     0.140002
                                  0.099393
                                              0 151481
                                                            0.589527 1.000000
                   Gerar código com dfcorrelation

    Ver gráficos recomendados

                                                                                    New interactive sheet
 Próximas etapas:
```

Relação entre popularidade, Faturamento e Meta_score

 $\overline{\pm}$

```
# @title Relação entre popularidade, Faturamento e Meta_score
plt.figure(figsize=(10,8))
scatter = plt.scatter(df1['No_of_Votes'], df1['Gross'],c=df1["Meta_score"])
plt.colorbar(scatter, label='Meta_score')
plt.xscale('log')
plt.yscale('log')
plt.xlabel('Numero de Votos')
plt.ylabel('Faturamento')
plt.title('Relação entre popularidade, faturamento e Meta_score ', fontsize=14)
plt.grid(True, alpha=0.3)
plt.show()
```


Genero mais lucrativo

Um dos generos que se destacam é o drama que está incluso 72% dos filmes enquanto os filmes noir representam somente 1%

```
# @title Um dos generos que se destacam é o drama que está incluso 72% dos filmes enquanto os filmes noir representam somente 1%
generos_list = df1["Genre"].str.split(', ').explode();
generos_contagem = generos_list.value_counts();
print(generos_contagem.index[0],"{:.0%}".format(generos_contagem.max() / df1.shape[0]))
print(generos_contagem.index[-1],"{:.0%}".format(generos_contagem.min() / df1.shape[0]))
```

```
→ Drama 72%
Film-Noir 1%
```

Grafico apontando para os generos primarios dos filmes mais populares

```
# @title Grafico apontando para os generos primarios dos filmes mais populares
generos_principal = df1["Genre"].str.split(', ').str[0]
generos_contagem = generos_principal.value_counts(10);

plt.figure(figsize=(10,8))
plt.bar(generos_contagem.head(10).index, generos_contagem.head(10), color="skyblue")
plt.ylabel("Número de filmes")
plt.title("Top 10 Gêneros mais populares")
plt.xticks(rotation=45)
plt.show();
```


Top 10 Gêneros mais populares

Pontuação média por cada gênero baseada no IMDB

```
# @title Pontuação média por cada gênero baseada no IMDB
genero_df = df1.copy()
genero_df["Genre"] = df1["Genre"].str.split(', ').explode("Genre")
contagem = genero_df.groupby("Genre").size();
genero_qualificado = genero_df[genero_df["Genre"].isin(contagem[contagem >= 20].index)]

qualidade_genero = genero_qualificado.groupby("Genre")["IMDB_Rating"].mean().sort_values(ascending=False)

plt.figure(figsize=(10,8))
plt.bar(qualidade_genero.head(10).index, qualidade_genero.head(10), color="skyblue")
plt.xlabel("")
plt.xlabel("Nota")
plt.title("Pontuação de media cada Genero")
plt.xticks(rotation=45)
plt.ylim(7.8, 8.1)
plt.show();
```


Os 10 diretores mais lucrativos

@title Os 10 diretores mais lucrativos
df1.groupby("Director")[["Gross","IMDB_Rating","No_of_Votes"]].median().sort_values("Gross", ascending=False).head(10)

	Gross	<pre>IMDB_Rating</pre>	No_of_Votes
Director			
Anthony Russo	543449915.5	8.1	773068.5
Gareth Edwards	532177324.0	7.8	556608.0
Josh Cooley	434038008.0	7.8	203177.0
Roger Allers	422783777.0	8.5	942045.0
Tim Miller	363070709.0	8.0	902669.0
James Gunn	361494850.5	7.8	806714.5
Byron Howard	341268248.0	8.0	434143.0
David Leitch	324591735.0	7.7	478586.0
Joss Whedon	324397032.0	7.9	772058.0
George Lucas	322740140.0	8.6	1231473.0

→ O Filme mais popular

@title O Filme mais popular
df1.sort_values(['No_of_Votes', 'Meta_score'], ascending=[False,False]).head(1)

As classificações indicativas UA e U tem as maiores bilheterias

```
# @title As classificações indicativas UA e U tem as maiores bilheterias
df1.groupby("Certificate")["Gross"].mean().sort_values(ascending=False).head()
```


Atores mais populares

```
# @title Atores mais populares
stars_df = pd.concat([
    df1[["Star1","Gross","IMDB_Rating","Meta_score"]].rename(columns={"Star1":"actor"}),
    df1[["Star2","Gross","IMDB_Rating","Meta_score"]].rename(columns={"Star2":"actor"}),
    df1[["Star3","Gross","IMDB_Rating","Meta_score"]].rename(columns={"Star3":"actor"}),
    df1[["Star4","Gross","IMDB_Rating","Meta_score"]].rename(columns={"Star4":"actor"})
])
```

```
result = stars_df.groupby("actor").agg({"IMDB_Rating":["median", "count"], "Meta_score": "median", "Gross":"median"})
result.columns = ['Median_IMDB', 'Num_Filmes', 'Median_Meta_score', 'Median_Gross']
result = result.reset_index()
relevant_actor = result[result["Num_Filmes"] >= 5]
```

relevant_actor.sort_values("Median_IMDB", ascending=False).head(10)

		actor	Median_IMDB	Num_Filmes	Median_Meta_score	Median_Gross	
	329	Charles Chaplin	8.40	5	8.4	288475.0	ıl.
	1209	Kevin Spacey	8.30	5	77.0	64616940.0	
	874	Jack Nicholson	8.25	6	75.0	122192157.5	
	775	Harrison Ford	8.25	8	83.0	222665888.5	
	2166	Viggo Mortensen	8.20	5	82.0	85080171.0	
	0	Aamir Khan	8.20	7	8.4	2197331.0	
	1403	Mark Ruffalo	8.15	6	76.0	221535611.5	
	904	James Stewart	8.10	5	96.0	9600000.0	
	1024	Joaquin Phoenix	8.10	5	72.0	119519402.0	
	1284	Leonardo DiCaprio	8.10	11	75.0	142502728.0	

Faturamento dos filmes ao longo dos anos

```
# @title Faturamento dos filmes ao longo dos anos
faturamento_anos = df1.copy()

faturamento_anos = faturamento_anos[faturamento_anos["Released_Year"] != "PG"]
faturamento_anos["Released_Year"] = faturamento_anos["Released_Year"].astype(int)
faturamento_anos = faturamento_anos_grouphy("Released_Year")["Gross"] mean()
```

acarametro-ation tacarametro-ation-broad value (vercasca-rear)[or one limearity

```
faturamento_anos = faturamento_anos.sort_index()

plt.figure(figsize=(10,8))
plt.bar(faturamento_anos.index, faturamento_anos, color="skyblue")
plt.xlabel("")
plt.ylabel("faturamento")
plt.title("faturamento ao longo dos anos")
plt.xticks(rotation=45)
plt.show();
```


E.T e Star Wars foram os grandes culpados da anomalia dos anos 70-80 no gráfico acima

```
# @title E.T e Star Wars foram os grandes culpados da anomalia dos anos 70-80 no gráfico acima
filmes_70_80 = df1[df1["Released_Year"] != "PG"]
filmes_70_80 = filmes_70_80[ (filmes_70_80["Released_Year"].astype(int) >= 1975) & (filmes_70_80["Released_Year"].astype(int) <= 1985) ]
filmes_70_80.groupby("Series_Title")[["Gross","IMDB_Rating","No_of_Votes"]].mean().sort_values("Gross",ascending=False).head(10)</pre>
```


Com o faturamento de E.T. the Extra-Terrestrial seria possível comprar um famicom para cada morador de recife e ainda sobraria dinheiro para comprar 2862186 gameboys

Insights da coluna overview

Aqui podemos observar as palavras mais utilizadas no overview de todos os filmes e também as que estão atreladas aos filmes com maior popularidade. o que podemos concluir aqui é que se a PProductions contratasse alguns stormtrooper para perseguir o chewbacca e Charles Chaplin pelo universo e colocasse o Anthony Russo na direção, a popularidade desse filme seria astronomica.

```
alloverviews = df1[["Genre","Overview","Gross"]].copy()
alloverviews["word"] = alloverviews["Overview"].str.lower().str.split()
alloverviews = alloverviews.explode("word")
alloverviews["word"] = alloverviews["word"].str.replace(r'[^a-z]', '', regex=True)
alloverviews = alloverviews[alloverviews["word"].str.len() > 4]
useless_words = {"with", "from", "their", "into", "after", "they", "that",
                  "during", "must", "when", "while", "between", "them", "young",
                  "finds", "other", "over", "life", "world", "mutant", "fellow",
                  "years","three","about","himself","takes","first","which",
"where","story","american","small"}
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
stopwords_en = set(ENGLISH_STOP_WORDS)
overviwes_count = alloverviews[~alloverviews["word"].isin(useless_words | stopwords_en)].copy()
top_words = overviwes_count["word"].value_counts()
top_gross = overviwes_count.groupby("word")["Gross"].mean().sort_values(ascending=False)
overviwes_count["Genre"] = overviwes_count["Genre"].str.split(', ')
overviwes_count = overviwes_count.explode("Genre");
```

```
action_words = overviwes_count[overviwes_count["Genre"] == "Action"]["word"].value_counts().head(150).index.tolist()
horror_words = overviwes_count[overviwes_count["Genre"] == "Horror"]["word"].value_counts().head(150).index.tolist()
romance_words = overviwes_count[overviwes_count["Genre"] == "Romance"]["word"].value_counts().head(150).index.tolist()
top_wordsdf = top_words.head(10).reset_index()
top_wordsdf.columns = ["Palavra mais comum","frequency"]
top_grossdf = top_gross.head(10).reset_index()
top_grossdf.columns = ["Palavra mais popular","Meta_score"]
tab = pd.concat([top_wordsdf, top_grossdf],axis=1)
tab.head(10)
#print(f'crime: {action_words}')
#print(f'horror: {horror_words}')
#print(f'romance: {romance_words}')
₹
         Palavra mais comum frequency
                                        Palavra mais popular
                                                               Meta_score
                                                 exstormtrooper 936662225.0
      0
                      family
                                    50
      1
                     woman
                                    49
                                                    chewbacca
                                                               936662225.0
                                                    scavenger 936662225.0
      2
                      friends
                                    35
      3
                      father
                                    31
                                                               936662225.0
                                                      restoring
                                                               858373000.0
                       lives
                                    29
                                                       reverse
                                                               858373000.0
      5
                                    28
                  mysterious
                                                        infinity
                                                       balance 858373000.0
      6
                     murder
                                    26
                                                               858373000.0
                       aroup
                                    25
                                                       restore
                        tries
                                    25
                                                       actions
                                                              858373000.0
                      school
                                    24
                                                         ruins 858373000.0
```

✓ inferir genero com valores do dataframe

```
# @title inferir genero com valores do dataframe
overview_analysis = df1["Overview"].copy()
def inferir_genero(overview_analysis):
 action_points = 0
 horror_points = 0
 romance_points = 0
 words = overview_analysis.lower().split()
 for word in words:
   if word in action words:
     action_points += 1
   if word in horror_words:
     horror_points += 1
   if word in romance_words:
     romance_points += 1
 return action_points, horror_points, romance_points;
filme = df1[df1["Series_Title"].str.contains("Kill Bill: Vol. 1")]["Overview"].values[0]
filme = filme.lower()
```

#print(filme)

```
action_points,horror_points,romance_points = inferir_genero(filme)
#Recomendação de testes
#Action:The Dark Knight, Kill Bill: Vol. 1, Star Wars
#Horror: Psycho, Alien, The Thing
#Romance: Titanic, Rebecca, Gone with the Wind

print(f"Pontuação para action: {action_points}")
print(f"Pontuação para horror: {horror_points}")
print(f"Pontuação para romance: {romance_points}")

→ Pontuação para action: 3
Pontuação para horror: 0
Pontuação para romance: 0
```

Atribuindo uma nota no IMDB com base no meta score

```
# @title Atribuindo uma nota no IMDB com base no meta score
df2 = df1.copy()

df2["Meta_score_normalized"] = df2["Meta_score"] / 10
df2["diff"] = df2["IMDB_Rating"] - df2["Meta_score_normalized"]
media_imdb = df2["diff"].mean()
print(df2["diff"].mean())

guess_imdb_rating = {'Series_Title': 'The Shawshank Redemption',
    'Meta_score': 80.0,
    'No_of_Votes': 2343110,
}
guess_imdb_rating["IMDB_Rating"] = guess_imdb_rating["Meta_score"] / 10 + media_imdb
print(guess_imdb_rating["IMDB_Rating"])
```

0.8768915662650602 8.87689156626506

Previsão da nota do IMDB

```
# @title Previsão da nota do IMDB
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
import joblib
x, y = df1[["Meta_score", "No_of_Votes"]], df1["IMDB_Rating"]
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
model = LinearRegression().fit(x_train, y_train)
mae = mean absolute error(y test, model.predict(x test))
print(f"MAE: {mae:.2f}")
guess_imdb_rating = pd.DataFrame({
    'Series_Title': ['The Shawshank Redemption'],
    'Meta score': [80.0],
    'No_of_Votes': [2343110]
})
x_shawshank = guess_imdb_rating[["Meta_score", "No_of_Votes"]]
nota = model.predict(x shawshank)[0]
print(f"Nota prevista: {nota:.1f}")
joblib.dump(model, 'imdb_model.pkl')
→ MAE: 0.19
     Nota prevista: 8.9
     ['imdb_model.pkl']
```

Respostas

- Qual filme você recomendaria para uma pessoa que você não conhece?
 - R- The Dark Knight, por ser o mais popular, bem avaliado, estar na classificação indicativa e generos perfeitos
- Quais são os principais fatores que estão relacionados com alta expectativa de faturamento de um filme?
 - R- Com base nas minhas analises o que mais influência no faturamento de um filme é a popularidade(No_of_Votes), e o que influência na popularidade provavelmente é o marketing do filme junto com um gênero amplo e atrativo para a maioria das pessoas, nesse caso, ação e aventura se destacam. outro fator que parece influenciar nos lucros é a classificação indicativa as classificações U e UA normalmente tem as maiores bilheterias
- Quais insights podem ser tirados com a coluna Overview? É possível inferir o gênero do filme a partir dessa coluna?
 R-Sim, é possível, inicialmente, tentei fazer de maneira manual adicionando palavras chave para dar match com X genero, mas acabei substituindo por um modelo de classificação que coleta as palavras 150 palavras chaves mais comuns em cada gênero, porém o tramanho do overview geralmente é muito curto, isso torna a classificação um pouco imprecisa por falta de detalhes. o meu codigo consegue classificar 3 generos diferentes action, horror e romance tentei utilizar generos distates para maior precisão na hora de inferir um genero, no final o codigo da uma pontuação para cada gênero considere o que teve a maior pontuação como o gênero inferido (e o da segunda maior pontuação como subgenero, talvez)
- Explique como você faria a previsão da nota do imdb a partir dos dados. Quais variáveis e/ou suas transformações você utilizou e por quê?
 - R- eu escolhi observar como as notas do IMDB e do meta score se comportavam. primeiramente eu tive que normalizar as notas do meta escore para dezenas e logo após eu subtraí as duas notas e atribui as diferenças absolutas a uma variável e calculei a média. e o motivo foi a simplicidade
- Qual tipo de problema estamos resolvendo (regressão, classificação)? Qual modelo melhor se aproxima dos dados e quais seus prós e contras? Qual medida de performance do modelo foi escolhida e por quê?
 - R- De início eu fiz de uma maneira bem simples, eu normalizei as notas do Meta_score para dezenas e logo eu subtraí as duas notas e atribui as diferenças a variável e calculei a média. Mas após reler e pesquisar sobre regressão linear eu entendi de fato qual era a proposta do desafio. mas deixei as duas formas mesmo assim. o problema que estamos resolvendo é regressão pois se trata de prever um número contínuo, as variáveis usadas foram Meta_score(critica geral) e No_of_votes(bilheteria/popularidade) o motivo é que essas duas variáveis se provaram ter uma alta correlação durante minhas análises, a performace foi medida pelo mae que indica 0.19 de erro médio na previsão

Observações

- quanto maior o numero de votos (popularidade) maior o faturamento
- filmes bem avaliados no imdb não necessariamente tendem a um maior faturamento
- · Anthony Russo é o diretor mais lucrativo do dataframe
- Action e Adventure são os gêneros mais vistos
- The Godfather de Francis Coppola é o filme mais bem avaliado no IMDB e Metascore
- · grandes blockbusters influenciaram em algumas analises
- fui aprendendo conforme trabalhava nesse projeto então provavelmente existem muito espaço para melhorias discrepancias entre as