Newton's Laws

First: Momentum stays the same as long as $\vec{F}_{net} = 0$.

Second: $\vec{F}_{\text{net}} = m\vec{a}$.

Third: Every force occurs as one member of an action/reaction pair of forces.

Conservation

Momentum, energy, and angular momentum are conserved for an isolated system. Mass is conserved in normal situations.

Linear Motion

$$d = v_i t + \frac{1}{2} a t^2$$
 $v_f = v_i + a t$ $v_f^2 = v_i^2 + 2a d$ $v_f^2 = v_i^2 + 2a d$ $K = \frac{1}{2} m v^2$ $\vec{p} = m \vec{v}$ $J_x = \int_{t_i}^{t_f} F_x(t) dt$

Springs

Hooke's law:
$$(F_{sp})_s = -k\Delta s$$

$$U_s = \frac{1}{2}k(\Delta s)^2$$

Rotational Motion

$$\begin{aligned} \omega_f &= \omega_i + \alpha \Delta t &\quad \theta_f &= \theta_i + \omega_i \Delta t + \frac{1}{2}\alpha(\Delta t)^2 &\quad \omega_f^2 &= \omega_i^2 + 2\alpha \Delta \theta \\ a_{\text{tangential}} &= \alpha r &\quad a_{\text{centripital}} &= v^2/r &= \omega^2 r &\quad x_{\text{cm}} &= \frac{1}{M}\int x \; dm \\ I &= \sum_i m_i r_i^2 &\qquad \qquad I &= \int r^2 dm \\ K_{\text{rot}} &= \frac{1}{2}I\omega^2 &\qquad E_{\text{mech}} &= K_{\text{rot}} + U_g &= \frac{1}{2}I\omega^2 + Mgy_{\text{cm}} \\ \text{parallel axis theorem:} &I &= I_{\text{cm}} + Md^2 &\tau \equiv rF\sin\phi &\alpha &= \frac{\tau_{\text{net}}}{I} \\ v_{\text{cm}} &= R\omega &K_{\text{rolling}} &= K_{\text{rot}} + K_{\text{cm}} &\vec{\tau} &= \vec{r} \times \vec{F} &\vec{L} &= \vec{r} \times \vec{p} \\ d\vec{L}/dt &= \vec{\tau}_{net} &\qquad \vec{L} &= I\vec{\omega} \end{aligned}$$

Planets

Frances
$$F_{1\text{on2}} = F_{2\text{on1}} = \frac{Gm_1m_2}{r^2}$$
 Satellite Speed: $v = \sqrt{\frac{GM}{r}}$ Escape Velocity: $v = \sqrt{\frac{2GM}{r}}$ On Surface: $g = \frac{GM}{R_L}$ $U_g = \frac{Gm_1m_2}{r}$ Kepler's 3rd: $T^2 = \left(\frac{4\pi^2}{GM}\right)r^3$

Kepler's 2nd: $\frac{\Delta A}{\Delta t} = \frac{L}{2m}$

Simple Harmonic/Circular Motion

Uniform circular motion projected onto one dimension is simple harmonic motion.

Any system with a linear restoring force will undergo simple harmonic motion around the equilibrium position.

$$x(t) = A\cos(\omega t + \phi_0)$$
 $v_x(t) = -\omega A\sin(\omega t + \phi_0)$

pendulum: $\omega = 2\pi f = \sqrt{\frac{g}{L}}$

damped oscillator: $x(t) = Ae^{-bt/2m}\cos(\omega t + \phi_0)$

time constant: $\tau = m/b$ damped system: $E = E_0 e^{-t/\tau}$

Fluids and Elasticity

Archimedes' principle: The magnitude of the buoyant force equals the weight of the fluid displaced by the object.

Ideal-fluid model: Incompressible. Smooth, laminar flow. Non-viscuous.

Bernoulli's is a statement of energy conservation.

$$p=F/A$$

$$p_g=p-1$$

$$\rho=m/V$$

$$v_1A_1=v_2A_2$$
 Bernoulli's:
$$p_1+\frac{1}{2}\rho gy_1=p_2+\frac{1}{2}\rho v_2^2+\rho gy_2$$

$$(F/A)=Y(\Delta L/L)$$

$$p=-B(\Delta V/V)$$

Matter

Phases: solid, liquid gas. Ideal-gas model. Isochoric process $\rightarrow V$ constant and $W{=}0$, Isobaric $\rightarrow p{=}$ constant, Isothermal $\rightarrow T$ constant and $\Delta E_{th} = 0$, Adiabatic $\rightarrow Q{=}0$. conduction, convection, radiation, evaporation.

Second law: entropy cannot decrease.

Ideal Gas Law: pV = nRT

First Law of Thermo:
$$\Delta E_{th} = W + Q$$
 $W = -\int_{V_{\rm i}}^{V_{\rm f}} p \ dV$ specific heat: $Q = Mc\Delta T$ $\epsilon_{\rm avg} = \frac{3}{2}k_{\rm B}T$ $p = \frac{2}{3}\frac{N}{V}\epsilon_{\rm avg}$

Waves

Transverse, Longitudinal. Snapshot graph, history graph. Superposition, nodes, and antinodes.

$$v = \lambda f \ \omega = vk \ D(x,t) = A\sin(kx - \omega t + \phi_0) \ I = P/a \ I \propto A^2$$

Doppler:
$$f_{\pm} = \frac{f_0}{1 \mp v_s/v}$$
 Doppler: $f_{\pm} = 1 \pm \frac{v_o}{v} f_0$

Double slit. angles of bright fringes: $\theta_m = m \frac{\lambda}{d}$ where m = 0, 1, 2, ..., d is slit spacing. $I_{double} = 4I_1 \cos^2 \frac{\pi d}{\lambda L} y$.

Diffraction grating: angles of bright fringes: $d \sin \theta_m = mA$, $m = 0, 1, 2, \dots$

Single slit: angles of dark fringes $\theta_p = p \frac{\lambda}{a}, p = 1, 2, 3, \dots$

Circular aperture: $w = 2y_1 = 2L \tan \theta_1 \approx \frac{2.44\lambda L}{D}$

New

de broglie:
$$\lambda = \frac{h}{p} = \frac{h}{mv}$$
 $E_n = n^2 \frac{h^2}{8mL^2}, \quad n = 1, 2, 3, \dots$

snells: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

 $\label{eq:base_signal} \textbf{Base SI Units} \ length: m, mass: kg, time: s, current: A(ampere), temp: K, amount: mol, luminous intensity: cd(candela) \\ \textbf{Symbols}$

	Name	Units	
A	area	m^2	
	amplitude		
a	acceleration	m/s^2	
	area		
\vec{B}	magnetic field 1	$1 \text{ tesla} = 1 \text{ T} \equiv 1 \text{ N/A m (flux density)}$	
b	damping constant		
C	capacitance	$1 \text{ farad} = 1 \text{ F} \equiv 1 \text{ C/V}$	
c	speed of light	299,792,458 m/s	
	specific heat	J/kg K	
d	distance	m	
\vec{E}	electric field	1 N/C = 1 V/m	
E	energy	$1 \text{ joule} = 1 \text{ J} = 1 \text{ kg m}^2/\text{s}^2$	
e	various	2.71828, electron, elem. charge.	
F	force	$1 \text{ N} = 1 \text{ kg m/s}^2$	
f	frequency	frequency $(1 \text{ Hz} = 1/\text{s})$	
,	various	function, friction (N)	
G	gravity constant	$6.674 * 10^{-11} \text{ N m}^2/\text{kg}^2$	
g	accel. d.t. gravity		
\vec{H}	magnetic field 2	A/m (field strength)	
h	height	m	
h	planck's constant	$6.626 * 10^{-34} \text{ J s}$	
\hbar	reduced planck's	$\mathrm{h}/2\pi$	
I	intensity	$ m W/m^2$	
	electric current	1 ampere = 1 A = 1 C/s	
	mmnt. of inertia	kg m ² – "rotational mass"	
i	imaginary unit	$\sqrt{-1}$	
î	x-axis unit vec	also $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$ for y and z axes	
J	impulse	kg m/s – equiv to ΔP	
K	kinetic energy	J	
$k_{\rm B}$	boltzmann const.	$1.381 * 10^{-23} \text{ J/K} = R/N_A$	
иъ	wave number	rad/m - "spacial freq. of wave"	
	spring constant	J/m^2	
L	inductance	$1 \text{ henry} = 1 \text{ H} \equiv 1 \text{ Wb/A} = 1 \text{ T m}^2/\text{A}$	
	ang. momentum	kg m ² /s	
l	length	m	
m	mass	kg	
N	various	normal vector, atomic number	
N_{A}	avogadro's num	$6.02 * 10^{23} \text{ 1/mol}$	
n	ind. of refraction	unitless $-n = c/v$	
	quantum number	$n = 1, 2, 3, \ldots$, parameterizes quantum	
	_	energy state for particle	
\vec{p}	momentum	$kg m/s - \vec{p} \equiv m\vec{v}$	
p	pressure	$1 \text{ pascal} = 1 \text{ Pa} \equiv 1 \text{ N/m}^2$	
\overline{Q}	heat	1 joule = $1 J = 0.2389$ cal	
Currell Berry 2016			

q	elect. charge	1 coulumb = 1 C = 1 A s - (q or Q)
R	elect. resistance	$1 \text{ ohm} = 1 \Omega = 1 \text{ V/A}$
	gas constant	8.314 J/mol K
r	radius	m
S	entropy	
S	entropy	
s	arc length	m
	position	m
T	period	S
	abs. temperature	1 kelvin = 1 K = $T_C + 273$
t	time	s
U	potential energy	1 joule = 1 J
u	atomic mass unit	$1 \text{ u} = 1.66 * 10^{-27} \text{ kg}$
\overline{V}	voltage	1 volt = 1 V = 1 J/C
•	volume	m^3
\vec{v}	velocity	m/s
\overline{W}	work	$1 \text{ N m} = 1 \text{ kg m}^2/\text{s}^2 = 1 \text{ J}$
\overline{w}	width	m
$\stackrel{\sim}{x}$	displacement	m
\overline{Z}	elec. impedance	$1 \text{ ohm} = 1 \Omega$
α	ang. accel	rad/s^2
Δ	change in var.	used to signify change i.e. Δx
ϵ	permittivity	$F/m = \epsilon_r \epsilon_0$
ϵ_0	vac. permittivity	$8.854 * 10^{-12} \text{ F/m}$
θ	angle	rad
λ	wavelength	m
μ	mag. moment	$\stackrel{\text{in}}{\text{A}} m^2$
•	coeff. friction	unitless
μ	permeability	$H/m = N/A^2 - \mu = \mu_0 \mu_r$
μ	perm const.	$r\pi * 10^{-7} \text{T m/A}$
μ_0 π	π	3.14159
π	mass density	$kg/m^3 - \rho = m/V$
ρ	resistivity	$\Omega \text{ m} - \rho = 1/\sigma$
σ	conductivity	$\frac{1}{1/\Omega}$ m
σ		•
au	torque	$N m - \tau = \vec{r} \times \vec{F}$
	time constant	different for circuits, oscillations, etc
-	2π	6.28319
Φ	field strength	units vary dep. on context
Φ_m	magnetic flux	$1 \text{ weber} = 1 \text{ Wb} = 1 \text{ T } m^2$
ϕ	phase	radians — operand to sinusoidal fn.
ψ	wave function	unitless, represents q.m. state
Ω	elec. resistance	$1 \text{ ohm} = 1 \Omega = 1 \text{ V/A}$
ω	ang. velocity	rad/s
F –	$\rightarrow N = \frac{kg \ m}{s^2}$	$F \to N = \frac{kgm}{s^2}$ $F \to N = \frac{kgm}{s^2}$
F –	$\rightarrow N = \frac{kgm}{s^2}$	$F \to N = \frac{kgm}{s^2}$ $F \to N = \frac{kgm}{s^2}$ $F \to N = \frac{kgm}{s^2}$

Miscellaneous

 $\vec{A}\times\vec{B}\equiv AB\sin\alpha,$ in the direction given by right-hand rule

Currell Berry, 2016