FCC TEST REPORT No. 12/1174	05 November 2012
for 47 CFR Part 15 Subpart C	date of issue

Model name:

Typ-K V2

Product description

Dual Receiver 2.4 Dual FHSS

FCC ID

TC PE TC "OMEGA"

W3X2754-70

Applicant

weatronic GmbH, Schmiedestr. 2A, D-15745 Wildau, Germany

Manufacturer

weatronic GmbH, Schmiedestr. 2A, D-15745 Wildau, Germany

The results in this report apply only to the samples tested.

Reproduction or copying of this report or its any part may only be made with the prior

written approval of PE TC "Omega"

PUBLIC ENTERPRISE TESTING CENTER "OMEGA" 29 Vakulenchuk str., Sevastopol, 99053, Crimea, Ukraine, P.O.B.-37

phone: +380 692 53 70 72 fax: +380 692 46 96 79

e-mail: stcomega@stc-omega.biz

Approved by

Sergey Bogach,

Chief TC of PE TC "OMEGA"

FCC TEST REPORT No. 12/1174 Table of contents

1 EQUIPMENT UNDER TEST	
1.1 BASIC DESCRIPTION	4
1.2 TECHNICAL CHARACTERISTICS DECLARED BY MANUFACTURER	
1.3 PHOTOS	
1.5 FHO1US	4
2 GENERAL INFORMATION ABOUT TESTS	6
2.1 TEST PROGRAM AND RESULTS OF THE TESTS	6
2.2 TEST MANNER.	
2.3 TEST CONDITIONS AND TEST MODES	
2.4 TEST EQUIPMENT USED	
2.5 MEASUREMENT UNCERTAINTY	
2.6 PHOTO OF TEST SITE	
2.0 PHOTO OF TEST SITE	······································
3 REPORT OF MEASUREMENTS AND EXAMINATIONS.	10
A 1 II annual description description	16
3.1 HOPPING CHANNEL SEPARATION	
3.2 NUMBER OF HOPPING FREQUENCIES USED	,
3.3 HOPPING CHANNEL BANDWIDTH	
3.4 DWELL TIME OF EACH FREQUENCY	
3.5 OUTPUT POWER	
3.6 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGES MEASUREMENT	18
3.7 RADIATED EMISSION FROM TRANSMITTER PART	
3.8 RADIATED EMISSION FROM RECEIVER PART	29
3.9 ANTENNA REQUIREMENT	33
2.40 PF	2

1 EQUIPMENT UNDER TEST

1.1 Basic description

Equipment Category	Transceiver
Test item description	Dual Receiver 2.4 Dual FHSS
Model name	Typ-K V2
Serial numbers	370120720021

1.2 Technical characteristics declared by manufacturer

Frequency range 2.400 GHz - 2.4835 GHz

Number of channels 81

Carrier frequency of each channel $2401 + n \times 1 \text{ MHz}, n = 0...80$

Channel spacing 1 MHz

Maximum output power 20 dBm (100 mW)

Modulation form FHSS

Modulation type QPSK

Data rate 1 Mbps

Duty cycle (max.) 25%

Antenna type Chip on board

Antenna gain 0 dBi

Temperature range minus 20 °C to 55 °C

Supply voltage 3.2 - 10 V DC

1.3 Photos

Figure 1 – Model Typ-K V2. Front view.

Figure 2 – Model Typ-K V2. Back view.

2 GENERAL INFORMATION ABOUT TESTS

2.1 Test program and results of the tests

Number of test	FCC rule	Description of test	Result (Pass, Fail, N/A)
1	FCC § 15.247 (a)(1) IC RSS-210 A 8.1(b)	Hopping channel separation	Pass
2	FCC § 15.247 (a)(1)(iii) IC RSS-210 A 8.1(b)	Number of hopping frequencies used	Pass
3	FCC § 15.247 (a)(1) IC RSS-210 A 8.2 (a)	Hopping channel bandwidth	Pass
4	FCC § 15.247 (a)(1)(iii) IC RSS-210	Dwell time of each frequency	Pass
5	FCC § 15.247 (b)(1) IC RSS-210 A 8.4 (2)	Output power	Pass
6	FCC § 15.247 (d) IC RSS-210 A 8.5	100 kHz Bandwidth of Frequency Band Edges measurement	Pass
7	FCC § 15.209 IC RSS-210 A 8.5	Radiated Emission from Transmitter Part	Pass
8	FCC § 15.203	Antenna Requirement	Pass
9	FCC § 15.209 IC RSS-210 A 8.5	Radiated Emission from Receiver Part	Pass
10	FCC § 15.247 (h)(i) IC RSS-102 (4.2)	RF exposure	Pass

de 110-

Tested by:

Laboratory engineer

Laboratory engineer

Checked by:

Leading engineer

Boris Trifonov

Maxim Kozub

Fjodor Shubin

2.2 Test manner

For organization of connection was used ancillary transceiver Typ-D V4. The test distance of radiated emission from antenna to EUT is 3 m. Methods of measurement - according to ANSI C63.4-2003.

2.3 Test conditions and test modes

Normal temperature and humidity:

- temperature: from 15 °C to 35 °C;
- relative humidity: from 20 % to 75 %

Normal power source:

- Unom = 5 VDC.

The frequencies for the testing

Channel, No.	Frequency, MHz
0	2401
41	2442
80	2481

2.4 Test equipment used

№	Name	Model	Inventory or serial No.
1.	Spectrum analyzer	FSV40	100821
2.	Spectrum analyzer	R&S FSH8	105763
3.	EMI test receiver	R&S ESU-26	100260
4.	Directional coupler	773D	100101
5.	Attenuator	Agilent 8496B	MY42141168
6.	Attenuator	PE7014-10	101692
7.	Antenna	Schwarzbeck UBAA 9114	9111-214
8.	Antenna	HP11966 model 3115	9903-5701
9.	Antenna	VULB9163	9163244
10.	Antenna	ETS-Lindgren 3117	110306
11.	Preamlifier	U3-40	03792
12.	Preamlifier	Agalent 87405C	MY47010400
13.	Preamlifier	BBV 9719	100218
14.	Antenna	BBHA 9170	9170446
15.	Power supply	Б5-29	12426
16.	Psychrometer	ВИТ-2	B931

All listed above test equipment is calibrated and certified in accordance with established procedure. The equipment has certificates currently in force.

Ancillary equipment

№	Name	Model	Serial Number
1.	Servo - mechnism	XT Mini Blue 07 4220	-
2.	Transmitter Module 2.4 Dual FHSS 12-16 channels	Typ-D V4	30120900002

2.5 Measurement uncertainty

Parameter	Maximum uncertainty
Output power	± 1.3 dB
Frequency range	± 1×10 ⁻⁵
Spurious emissions	± 2.7 dB
Radiated Emission	± 4.8 dB
Time	± 3 %
Temperature	± 1°C
Humidity	± 5 %
DC voltage	± 2 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level using a coverage factor of k=2.

Measurement uncertainty complies with the requirements of the normative documents and is guaranteed by the test procedures and test equipment.

2.6 Photo of test site

Figure 3 - Conducted Test

Figure 4 - Radiated Emission Test

Figure 5 - Radiated Emission Test

3 REPORT OF MEASUREMENTS AND EXAMINATIONS.

3.1 Hopping channel separation

3.1.1 Test procedure

- 1) The transmitter output was connected to the spectrum analyzer according to test setup layout (3.1.2).
- 2) Set RBW of spectrum analyzer to 100 kHz and VBW to 100 kHz.
- 3) The Hopping channel separation is defined as the channel is separated with the next channel.

3.1.2 Test setup layout

3.1.3 Test result

Temperature: +18 °C Relative humidity: 60 %

Hopping channel separation, MHz	Limit (2/3 of 20dB Bandwidth), kHz	Test Result (Pass, Fail, N/A)
1.0	332	Pass

Remark: frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or **two-thirds** of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

3.1.4 Plot Hopping channel separation

3.2 Number of hopping frequencies used

3.2.1 Test procedure

- 1) The transmitter output was connected to the spectrum analyzer according to test setup layout (3.2.2).
- 2) Set RBW of spectrum analyzer to 300 kHz and VBW to 300 kHz.
- 3) The Number of hopping frequencies used is defined as the device has numbers of total channel.

3.2.2 Test setup layout

3.2.3 Test result

Temperature: +18 °C Relative humidity: 60 %

Number of hopping frequencies	Limit	Test Result (Pass, Fail, N/A)
81	15	Pass

Remark: The hopping sequence of a FHSS system is the sequence of the hopping channels used by the equipment. Non-adaptive Frequency Hopping systems shall make use of a hopping sequence(s) that contains at least 15 hopping channels. Adaptive Frequency Hopping systems shall make use of a hopping sequence(s) that is capable of operating over a minimum of 90 % of the band specified in table, from which at any given time a minimum of 20 hopping channels shall be used. Each hopping channel of the hopping sequence shall be occupied at least once during a period not exceeding four times the product of the dwell time per hop and the number of channels.

3.2.4 Plot Number of hopping frequencies (100 MHZ Span)

3.3 Hopping channel bandwidth

3.3.1 Test procedure

- 1) The transmitter output was connected to the spectrum analyzer according to test setup layout (3.3.2).
- 2) Set RBW of spectrum analyzer to 100 kHz and VBW to 100 kHz.
- 3) The Hopping channel bandwidth is defined as the frequency range where the power is higher than peak power minus 20 dB.

3.3.2 Test setup layout

3.3.3 Test result

Temperature: +18 °C Relative humidity: 60%

Channel	Frequency, MHz	Hopping channel bandwidth, MHz	Limit, MHz	Test Result (Pass, Fail, N/A)
0	2401	0.533	1.0	Pass
41	2442	0.546	1.0	Pass
80	2481	0.549	1.0	Pass

Remark: Non-adaptive Frequency Hopping systems shall make use of non-overlapping hopping channels separated by the channel bandwidth as measured at 20 dB below peak power.

The hopping channels defined within a hopping sequence shall be at least 1 MHz apart (channel separation).

3.3.4 Plot Channel bandwidth

3.4 Dwell Time of Each Frequency

3.4.1 Test procedure

- 1) The transmitter output was connected to the spectrum analyzer according to test setup layout (3.4.2).
- 2) Set RBW of spectrum analyzer to 300 KHz and VBW to 1 MHz.
- 3) Set the center frequency on any frequency would be measured and set the frequency span to zero span.

3.4.2 Test setup layout

3.4.3 Test result

Temperature: +18 °C

Relative humidity: 60 %

Channels	Pulse width (ms)	Number of 6 sec	Dwell Time, ms	Limit, s	Test Result (Pass, Fail, N/A)
0	2.4127	20	48.254	0.4	Pass
80	2.4762	10	24.762	0.4	Pass

Remark:

- 1. Dwell time = pulse width * Number of 6 sec.
- 2. 6 sec = 0.4 sec *15 times (Dwell Time * Minimum number of hopping frequencies)

3.4.4 Plots Dwell Time

3.5 Output power

3.5.1 Test procedure

- 1) The transmitter output was connected to the spectrum analyzer according to test setup layout (3.5.2).
- 2) The center frequency of the spectrum analyzer was set to the fundamental frequency and set RBW to 1 MHz and VBW to 1 MHz.

3.5.2 Test setup layout

3.5.3 Test result

Temperature: +18 °C Relative humidity: 60 %

Channel	Frequency, MHz	Measured output power, W	Limit, W	Test Result (Pass, Fail, N/A)
0	2401	0.0302	1.0	Pass
41	2442	0.0260	1.0	Pass
80	2481	0.0245	1.0	Pass

Remark: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2401-2483.5 MHz band: 0.125 watts. So the Limit is 1 watt.

3.6 100 kHz Bandwidth of Frequency Band Edges measurement

3.6.1 Test procedure

The EUT output was connected to the spectrum analyzer according to test setup layout (3.6.2). Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100MHz bandwidth from band edge. The band edges was measured and recorded. The spectrum plots (Peak RBW=VBW=100 kHz) are attached on the following pages.

3.6.2 Test setup layout

3.6.3 Test result

Temperature: +18°C Relative humidity: 60

Frequency, MHz	Measured, dBm	Limit, dBm	Test Result (Pass, Fail, N/A)
2385.87	- 47.8	- 20	Pass
2399.69	- 44.6	- 20	Pass
2484.00	- 48.7	- 20	Pass
2487.41	- 49.7	- 20	Pass

Remark:

Below –20dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth)

3.6.4 Plots Frequency Band Edges

3.7 Radiated Emission from Transmitter Part

3.7.1 Test procedure

- 1) The EUT was placed on a rotatable table top 0.8 m above the floor.
- 2) The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3) The table was rotated 360 degrees to determine the position of the highest radiation.
- 4) The antenna is a broadband antenna and its height is varied between 1 meter and 4 meters above the floor to find the maximum value of the shield strength for both horizontal polarization and vertical polarization of the antenna.
- 5) For each suspected emission, the EUT was arranged to its worst case.
- 6) On any frequency or frequencies below or equal to 1000 MHz the test-receiver was set to Quasipeak detector function with specified bandwidth with maximum hold mode.
- 7) On any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function and peak detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to EUT. Measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

3.7.2 Test setup layout Below 1 GHz antenna 4 m 1 m EMI test receiver (3)

Limit

Frequency (MHz)	Field Strength (dBuV/m at 3-meter)
30-88	40
88-216	43.5
216-960	46
Above 960	54

3.7.3 Test result radiated emission from transmitter part

Temperature: +18 °C Relative humidity: 60 %

Mode Transmitter on

Below 1 GHz

FCC_30_1000

Frequency (MHz)	QuasiPeak (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
37.303548	31.4	200.0	Н	35.9	8.6	40.0
43.597966	31.0	200.0	Н	35.2	9.0	40.0
63.296126	28.0	300.0	Н	32.3	12.0	40.0
85.941878	25.9	300.0	Н	29.9	14.1	40.0
137.47421	27.2	100.0	V	26.8	16.3	43.5
203.82046	24.6	100.0	V	25.9	18.9	43.5
298.88179	40.0	100.0	V	24.3	6.0	46.0
334.28441	23.0	400.0	Н	24.1	23.0	46.0
345.49414	25.5	100.0	V	24.0	20.5	46.0
365.38358	33.2	300.0	Н	23.9	12.8	46.0
412.76843	30.1	100.0	V	24.1	15.9	46.0
451.62030	29.2	100.0	V	25.2	16.8	46.0
689.26818	31.4	200.0	V	34.7	14.6	46.0
957.63436	37.8	300.0	Н	40.8	8.2	46.0

Final Result 2

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
37.303548	24.4	200.0	Н	35.9	15.6	40.0
43.597966	23.9	200.0	Н	35.2	16.1	40.0
63.296126	21.0	300.0	Н	32.3	19.0	40.0
85.941878	18.9	300.0	Н	29.9	21.1	40.0
137.47421	18.9	100.0	V	26.8	24.6	43.5
203.82046	17.6	100.0	V	25.9	25.9	43.5
298.88179	31.8	100.0	V	24.3	14.2	46.0
334.28441	15.9	400.0	Н	24.1	30.1	46.0
345.49414	17.5	100.0	V	24.0	28.5	46.0
365.38358	25.0	300.0	Н	23.9	21.0	46.0
412.76843	21.2	100.0	V	24.1	24.8	46.0
451.62030	18.9	100.0	V	25.2	27.1	46.0
689.26818	24.4	200.0	V	34.7	21.6	46.0
957.63436	30.9	300.0	Н	40.8	15.1	46.0

Above 1 GHz

Polarity Hor.

Ref Level 60.40 dBμV/m Offset -25.00 dB RBW 1 MHz
Att 0 dB SWT 30 ms VBW 1 MHz Mode Auto Sweep
TDF

Marker						
Type	Ref	Trc	Stimulus	Response	Function	Function Result
M1		1	1.3278 GHz	34.22 dBµV/m		
M2		1	1.8357 GHz	36.39 dBµV/m		
МЗ		1	2.2916 GHz	40.04 dBµV/m		
M4		1	3.1599 GHz	38.99 dBµV/m		
M5		1	3.4899 GHz	39.96 dBµV/m		
M6		1	3.746 GHz	40.12 dBμV/m		

Ref Level 70.80 dBµV/m Offset -25.00 dB 🅌 RBW 1 MHz SWT 60 ms 🍚 VBW 1 MHz Att 5 dB Mode Auto Sweep TDF 1Pk Max fcc15<u>i209it Chreck</u> M4[1] 64.13 dBµV/m 17.95220 GHz Line fcc15.209 PASS 55.63 dBµV/₩ M1[1] 65 dBµV/m-13.24600 ОН 60 dBµV/m М2 55 dBµV/m-الماكالهاماللياليا بالسلامي 50 dΒμV/m 45 dBµV/m 40 dBµV/m 35 dBµV/m-Stop 18.0 GHz Start 12.0 GHz 691 pts Marker Type Ref | Trc **Function Function Result** Stimulus Response М1 1 13.246 GHz 55.63 dBµV/m M2 1 14.1317 GHz 55.87 dBµV/m МЗ 1 16.6498 GHz 59.05 dBµV/m M4 17.9522 GHz 64.13 dBµV/m 1

Final Result 3

inal Result 3					
Frequency (MHz)	Antenna factor, dB	Value Average (dBuV/m)	Value Peak (dBuV/m)	Limit peak (dBuV/m)	Limit average (dBuV/m)
1327.8	24.8	24.12	34.22	74	54
1835.7	27.6	26.11	36.39	74	54
2291.6	28.2	29.73	40.04	74	54
3159.9	31.2	29.44	38.99	74	54
3489.9	32.6	30.22	39.96	74	54
3746.0	32.4	30.42	40.12	74	54
4805.0	32.2	45.77	56.15	74	54
4944.0	32.0	35.45	46.17	74	54
6900.0	36.0	35.90	47.56	74	54
10130.0	38.2	41.17	51.08	74	54
10833.0	38.8	41.34	51.30	74	54
18096.0	37.9	44.43	53.98	74	54
18501.0	37.9	46.05	56.16	74	54
19960.0	38.0	44.14	53.97	74	54
20264.0	38.0	43.88	53.32	74	54
23183.0	39.9	44.68	55.07	74	54

1

1

1

1

4.967 GHz

5.534 GHz

6.981 GHz

10.119 GHz

M5

М6

Μ7

M8

Polarity Ver.

55.16 dBµV/m

45.92 dBµV/m

48.67 dBµV/m

51.15 dBµV/m

Frequency (MHz)	Antenna factor, dB	Value Average (dBuV/m)	Value Peak Limit peak (dBuV/m) (dBuV/m)		Limit average (dBuV/m)
1410.3	24.8	26.90	37.63	74	54
1562.2	24.9	26.66	36.97	74	54
2295.9	28.2	32.15	42.62	74	54
2556.4	28.8	32.40	42.42	74	54
3654.8	32.6	28.88	40.37	74	54
4330.0	32.4	29.99	41.44	74	54
4724.0	39.9	31.57	42.69	74	54
4863.0	41.1	50.11	59.97	74	54
5534.0	34.7	35.65	45.92	74	54
6981.0	36.0	37.93	48.67	74	54
10119.0	38.2	40.65	51.15	74	54
13220.0	39.9	44.16	55.19	74	54
13645.4	40.9	44.57	55.96	74	54
17830.7	47.4	52.88	63.74	74	54
18106.0	37.9	37.23	47.28	74	54
18501.0	37.9	38.67	48.83	74	54
19646.0	38.0	36.54	47.00	74	54
19950.0	38.0	35.87	46.79	74	54
20274.0	38.0	35.78	46.03	74	54

3.8 Radiated Emission from Receiver Part

3.8.1 Test procedure

- 1) The EUT was placed on a turn table top 0.8 m above the floor.
- 2) The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 3) The table was rotated 360 degrees to determine the position of the highest radiation.
- 4) The antenna is a broadband antenna and its height is varied between 1 meter and 4 meters above the floor to find the maximum value of the shield strength for both horizontal polarization and vertical polarization of the antenna.
- 5) For each suspected emission, the EUT was arranged to its worst case.
- 6) On any frequency or frequencies below or equal to 1000 MHz the test-receiver was set to Quasipeak detector function with specified bandwidth with maximum hold mode.
- 7) On any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function and peak detector function. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to EUT. Measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz.

3.8.2 Test result radiated emission from receiver part

Temperature: +18 °C Relative humidity: 69 %

Mode Receiver on

Frequency 2481 (worst case) Below 1 GHz

FCC CFR 47 part 15.209 30-1000 MHz

Frequency (MHz)	QuasiPeak (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
30.080000	16.3	150.0	V	-13.3	23.7	40.0
32.000000	27.3	100.0	V	-13.3	12.7	40.0
33.000000	18.1	100.0	V	-13.3	21.9	40.0
33.720000	16.7	100.0	V	-13.3	23.3	40.0
36.280000	14.5	150.0	V	-12.9	25.5	40.0
36.800000	13.7	100.0	V	-12.8	26.3	40.0
39.960000	17.8	100.0	V	-12.0	22.2	40.0
48.000000	23.2	100.0	V	-12.1	16.8	40.0
66.680000	11.9	100.0	V	-15.3	28.1	40.0
89.120000	25.3	100.0	V	-13.6	18.2	43.5
100.80000	25.7	100.0	V	-12.2	17.8	43.5
171.48000	7.0	100.0	Н	-15.9	36.5	43.5
244.92000	11.1	100.0	Н	-11.7	34.9	46.0
335.40000	12.9	250.0	V	-10.2	33.1	46.0
448.72000	15.1	200.0	V	-7.9	30.9	46.0
675.24000	19.6	350.0	Н	-3.9	26.4	46.0
941.60000	23.6	350.0	V	-0.4	22.4	46.0

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
30.080000	9.5	150.0	V	-13.3	30.5	40.0
32.000000	21.9	100.0	V	-13.3	18.1	40.0
33.000000	13.3	100.0	V	-13.3	26.7	40.0
33.720000	11.1	100.0	V	-13.3	28.9	40.0
36.280000	5.9	150.0	V	-12.9	34.1	40.0
36.800000	4.9	100.0	V	-12.8	35.1	40.0
39.960000	14.6	100.0	V	-12.0	25.4	40.0
48.000000	21.5	100.0	V	-12.1	18.5	40.0
66.680000	7.6	100.0	V	-15.3	32.4	40.0
89.120000	22.0	100.0	V	-13.6	21.5	43.5
100.800000	24.8	100.0	V	-12.2	18.7	43.5
171.480000	-0.5	100.0	Н	-15.9	44	43.5
244.920000	3.8	100.0	Н	-11.7	42.2	46.0
335.400000	5.4	250.0	V	-10.2	40.6	46.0
448.720000	8.2	200.0	V	-7.9	37.8	46.0
675.240000	12.6	350.0	Н	-3.9	33.4	46.0
941.600000	17.2	350.0	V	-0.4	28.8	46.0

FCC CFR 47 part 15.209 1-18 GHz

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
1748.000000	31.1	100.0	Н	9.9	22.9	54.0
2186.000000	33.7	100.0	Н	12.4	20.3	54.0
2392.000000	34.4	100.0	V	13.1	19.6	54.0
2936.000000	34.8	100.0	Н	14.3	19.2	54.0
4146.000000	37.3	100.0	V	17.3	16.7	54.0
5638.000000	39.6	100.0	Н	20.3	14.4	54.0
7526.000000	41.5	100.0	V	23.2	12.5	54.0
10017.00000	45.7	100.0	Н	27.0	8.3	54.0
13130.00000	48.9	100.0	V	30.8	5.1	54.0
17439.00000	53.0	100.0	Н	35.2	1.0	54.0

FCC TEST REPORT No. 12/1174 FCC CFR 47 part 15.209 18-25 GHz

Frequency (MHz)	Average (dBuV/m)	Height (cm)	Polarization	Corr. (dB)	Margin (dB)	Limit (dBuV/m)
18466.00000	42.8	100.0	Н	20.0	11.2	54.0
19074.00000	43.2	100.0	Н	20.6	10.8	54.0
19366.00000	43.0	100.0	V	20.8	11.0	54.0
20149.00000	42.8	100.0	V	21.3	11.2	54.0
20941.00000	43.0	100.0	V	21.7	11.0	54.0
21821.00000	43.6	100.0	Н	22.4	10.4	54.0
22567.00000	44.8	100.0	Н	23.7	9.2	54.0
23359.00000	46.3	100.0	V	24.8	7.7	54.0
23607.00000	46.6	100.0	Н	24.9	7.4	54.0
24714.00000	46.6	100.0	V	25.3	7.4	54.0

3.9 Antenna Requirement

3.9.1 Test procedure

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the Transmitter Module Typ-K permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

3.10 RF exposure

3.10.1 General

This test was performed to determine the minimum safe distance between the transmitter antenna and human to avoid public exposure in excess of limits for general population (uncontrolled exposure). Specification test limits are given in Table 3.10.1. Test procedure: §1.1307(b)(1).

Table 3.10.1 — Limits For Maximum Permissible Exposure (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)						
(A) Limits for Occupational/Controlled Exposure										
0.3-3.0	614	1.63	*100	6						
3.0-30	1842/f	4.89/f	*900/f ²	6						
30-300	61.4	0.163	1.0	6						
300-1,500	-	-	f/300	6						
1,500-100,000	-	-	5	6						
(B) Limits for General Population/Uncontrolled Exposure										
0.3-1.34	614	1.63	*100	30						
1.34-30	824/f	2.19/f	*180/f ²	30						
30-300	27.5	0.073	0.2	30						
300-1,500	-	-	f/1500	30						
1,500-100,000	- · 1	-	1.0	30						

f = frequency in MHz * = Plane-wave equivalent power density

3.10.2 Test procedure: 47 CRF, §1.1307(b)(1).

3.10.3 Power density calculation for mobile transmitter

The power density at the specified distance was calculated from the following equation:

$$S = \frac{PG}{4\pi R^2},$$

where

 $S = power density (mW/cm^2)$

P = average power input to the antenna over averaging time (mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator (numeric)

R = distance to the center of radiation of the antenna (cm)

Power density calculation for duty cycle 25 %:

$$S = \frac{0.25 \times 100 \times 1}{4 \times \pi \times 20^2} = 0.005 \ [mW/cm^2]$$

Frequency range, MHz	Maximum	Antenna gain, dBi	EIRP		Power	Limit.	Margin,	
	output power, dBm		dBm	mW	density, mW/m²	mW/cm ²	mW/cm ²	Verdict
2.400 - 2.4835	20	0	20	100	0.005	1.0	0.995	Pass

The equipment is intended for use at a distance of more than 20 cm from humans.