Отчет о выполнении лабораторной работы 1.2.2

Калашников Михаил, Б03-205

В работе использовались крестообразный маятник, набор перегрузов, линейка, компьютер с лазерной установкой для измерения положения маятника.

- 1. С помощью перемещения грузов вдоль стержней маятника, добьемся положения безразличного равновесия. При этом среднее расстояние грузов от оси $R=10.75\ cm$.
- 2. Запишем основные параметры установки в таблицу 1.

	24.045
\parallel Масса платформы m_0	24.915 g
Средняя масса грузов m_1	$151.6 \ g$
Радиус грузов R_1	$16 \pm 1 \ mm$
Высота грузов <i>l</i>	$25 \pm 1 \ mm$
Высота опускания грузов h	$93 \pm 0.1 \ cm$
Радиус малого шкива r_1	$0.90 \pm 0.01 \ cm$
Радиус большого шкива r_2	$1.85 \pm 0.01 \ cm$

Таблица 1: Основные параметры установки

3. Измерения занесем в таблицу 2. Рассчитаем среднее время \bar{t} , угловое ускорение β , момент силы натяжения M_T :

$$\bar{t} = \frac{\sum_{k=1}^{N} t_k}{N}, \ \beta = \frac{2h}{rt^2}, \ M_T = mr(g - r\beta).$$

Погрешность измерений времени может быть найдена как среднеквадратическое отклонение:

$$\sigma_t = \sqrt{\frac{\sum_{k=1}^{N} (t - \bar{t})^2}{N(N-1)}}.$$

Погрешности остальных измерений могут быть найдены по общей формуле:

$$\sigma_Y = \sqrt{\sum_{i=1}^{N} \left(\frac{\delta Y}{\delta X_i} \sigma_{X_i}\right)^2}.$$

Таким образом,

$$\sigma_{\beta} = \sqrt{\left(\frac{2}{rt^2}\sigma_h\right)^2 + \left(\frac{2h}{r^2t^2}\sigma_r\right)^2 + \left(\frac{4h}{rt^3}\sigma_t\right)^2} = \beta\sqrt{\left(\frac{\sigma_h}{h}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(2\frac{\sigma_t}{t}\right)^2};$$

$$\sigma_{M_T} = \sqrt{\left(m(g - 2r\beta)\sigma_r\right)^2 + \left(mr^2\sigma_\beta\right)^2}.$$

Диаметр	Macca						
шкива, ст	перегрузка, g	Время падения, s		$\bar{t} \pm \sigma_{\bar{t}}, \ s$	$\beta \pm \sigma_{\beta}, \ s^{-2}$	$M_T \pm \sigma_M, \ g \cdot m^2$	
0.90	69.52	21.90	22.37	22.25	22.17 ± 0.141	0.42 ± 0.007	6.14 ± 0.068
0.90	83.56	19.94	19.92	19.61	19.82 ± 0.107	0.53 ± 0.008	7.38 ± 0.082
0.90	98.54	17.00	17.15	16.90	17.02 ± 0.073	0.71 ± 0.010	8.70 ± 0.097
0.90	124.91	14.60	14.67	15.30	14.86 ± 0.223	0.94 ± 0.030	11.03 ± 0.122
1.75	69.52	10.67	10.70	10.49	10.62 ± 0.066	0.94 ± 0.013	11.92 ± 0.068
1.75	83.56	9.61	9.40	9.65	9.55 ± 0.078	1.16 ± 0.020	14.32 ± 0.082
1.75	98.54	8.22	8.57	8.46	8.42 ± 0.103	1.50 ± 0.038	16.88 ± 0.096
1.75	124.91	7.48	7.23	7.16	7.29 ± 0.097	2.00 ± 0.055	21.38 ± 0.122

Таблица 2: Результаты измерения времени падения груза

4. Построим график зависимости $M_T(\beta)$ (рис. 1). Зная, что $M_T=M_{fr}+\beta I$, найдем с помощью метода наименьших квадратов параметры M_{fr} и I. Для r=1.75~cm получим значения:

$$M_{fr} = 3.81 \ mN \cdot m, \ I = 8.78 \ g \cdot m^2.$$

5. Занесем результаты экспериментов с различными моментами инерции в таблицу 3. Повторим для них вычисления, описанные в предыдущих пунктах, используя полученную величину M_{fr} . Значения \bar{t} , β , M_T , I запишем в таблицу 4.

$$I = \frac{M_T - M_{fr}}{\beta}$$

$$\sigma_I = I \sqrt{\left(rac{\sigma_{M_T}}{M_T - M_{fr}}
ight)^2 + \left(rac{\sigma_{eta}}{eta}
ight)^2}$$

На основе полученного значения $I_0 = I(R=0) = 4.20 \pm 2.43 \ g \cdot m^2,$ рассчитаем I_{th} по формуле:

$$I_{th} = I_0 + 4m_1R^2 + \frac{1}{3}m_1l^2 + m_1R_1^2.$$

$$\sigma_{I_{th}} = \sqrt{\sigma_{I_0}^2 + (8m_1R\sigma_R)^2 + \left(\frac{2}{3}m_1l\sigma_l\right)^2 + (2m_1R_1\sigma_{R_1})^2}$$

Радиус	Macca	Расстояние до				
шкива, г, ст	перегрузка, m, g	грузов, R , cm	t1, s	t2, s	t3, s	t4, s
1.75	62.9	20.5	14.69	14.50	14.55	15.00
1.75	62.9	17.2	13.00	12.70	12.81	13.38
1.75	62.9	6.6	8.50	8.30	8.49	8.34
1.75	62.9	3.5	7.01	6.97	7.35	7.42
1.75	62.9	0.0	6.37	6.24	6.19	6.45

Таблица 3: Результаты экспериментов с различными моментами инерции системы

Расстояние до					
грузов, R , cm	$ar{t},\;s$	β, s^{-2}	$M_T, mN \cdot m$	$I, g \cdot m^2$	$I_{th}, g \cdot m^2$
20.50	14.68 ± 0.11	0.49 ± 0.01	15.07 ± 0.09	22.84 ± 0.41	29.75 ± 0.49
17.20	12.97 ± 0.15	0.63 ± 0.01	15.07 ± 0.09	17.82 ± 0.44	22.21 ± 0.50
6.60	8.41 ± 0.05	1.50 ± 0.02	15.04 ± 0.09	7.47 ± 0.12	6.91 ± 0.16
3.50	7.19 ± 0.12	2.06 ± 0.07	15.03 ± 0.09	5.45 ± 0.18	5.01 ± 0.20
0.00	6.31 ± 0.06	2.67 ± 0.05	15.01 ± 0.09	4.20 ± 0.09	-

Таблица 4: Обработанные результаты экспериментов с различными моментами инерции системы

6. Построим график зависимости $I(R^2)$ (рис. 2). Значение I(0) соответствует ситуации, когда грузы расположены на оси вращения маятника и не вносят вклад в момент инерции системы. То есть:

$$I(0) = 5.29 \ g \cdot m^2.$$

Это значение учитывает в себе поправку $\Delta I = \frac{1}{3} m_1 l^2 + m_1 R_1^2 = 0.07~g \cdot m^2$. Если ее вычесть, то получим, что

$$I_{0lin} = I(0) - \Delta I = 5.22 \ g \cdot m^2.$$

Рис. 1: График зависимости $M_T(\beta)$

Рис. 2: График зависимости $I(\mathbb{R}^2)$