Measures of Variability

Dr Tom Ilvento

Department of Food and Resource Economics

Measures of Variability

- Now we will shift to the spread of the data
- Variability is the key to most of statistics
 - Why is there variation?
 - Why do groups differ?
- This lecture will focus on the
 - Range
 - Inter-quartile Range (IQR)
 - Variance (Var, σ², s²)
 - Standard Deviation (Std Dev, σ, s)

2

Central Tendency only tells part of the story

- Imagine two data sets
 - Data set 1 has a mean, median, and mode of 5
 - Data set 2 has a mean, median, and mode of 5

Two data sets

- Data set 1
 - $\{2, 3, 4, 5, 5, 6, 7, 8\}$ $\Sigma x = 40 \text{ n=8}$
 - mean = 5; median = 5; mode =5
- Data set 2
 - $\{5, 5, 5, 5, 5, 5, 5, 5\}$ $\Sigma x = 40$ n=8
 - mean = 5; median = 5; mode =5
- We need something more to help describe a variable – the spread or the variability

3

The Range

- Let's start with the Range
- The range is the difference between the largest measurement and the smallest measurement
- To calculate the range we need
 - Minimum Value
 - Maximum Value

5

Issues with the Range

- It is an order statistic
- Note that the range depends upon the two most extreme values.
- and may be seriously influenced by outliers or unusual cases.

6

The Range for the Marriage Data

- Marriage data for 2005
 - Minimum is 4.2
 - Maximum is 61.0
 - Range is 61.0 4.2 = 56.8
- Without Nevada in the data set, the range is
 - Range is 22.5 4.2 = 18.3

Quantiles		
100.0%	maximum	61.000
99.5%		61.000
97.5%		49.450
90.0%		10.140
75.0%	quartile	8.300
50.0%	median	7.000
25.0%	quartile	6.300
10.0%		5.560
2.5%		4.350
0.5%		4.200
0.0%	minimum	4.200

An alternative to the range - the IQR

- The Inter-Quartile Range (IQR)
- Based on the difference between the Third Quartile (Q3 or the 75 Percentile) and the First Quartile (Q1 or the 25 Percentile)
 - This is a positional measure
 - As long as we can order the data, we can find a value for any percentile.
- IQR is less sensitive to the extreme values in a data set than Range

7

The IQR for the Marriage Data

- Marriage data for 2005
 - Q1 is 6.3
 - Q3 is 8.3
 - IQR is 8.3 6.3 = 2.0
- Without Nevada in the data set, the IQR is

of the values of the variable.

- IQR is 8.3 6.3 = 2.0

NOTHING CHANGED!! The IQR shows the range of the middle 50%

Quantiles		
100.0%	maximum	61.000
99.5%		61.000
97.5%		49.450
90.0%		10.140
75.0%	quartile	8.300
50.0%	median	7.000
25.0%	quartile	6.300
10.0%		5.560
2.5%		4.350
0.5%		4.200
0.0%	minimum	4.200

Excel and the Range/IQR

- Excel will find the max and min values and the quartiles
 - =MIN(B5:B104)
 - =MAX(B5:B104)
 - =QUARTILE(B5:B104,1) for first quartile
 - =QUARTILE(B5:B104,3) for third quartile
- But you have to calculate the ranges yourself by subtracting the values

10

What about using the mean to calculate a measure of spread

- The concept of deviations around the mean can be intuitively appealing.
- If the mean is a good measure of central tendency. then it is reasonable to ask how different (or how far away) is a particular value of X from its mean.
- The mean deviation might be a summary measure
 - But this won't work! Remember, the sum of deviations around the mean always equals zero!
- The Mean Absolute Difference might work, but it doesn't have all the properties we might want.

$$\frac{\sum_{i=1}^{n} (x_i - \overline{x})}{n}$$

$$\sum_{i=1}^{n} |x_i - \overline{x}|$$

The Variance

- Another approach would be to square the differences from the mean
- The square will always give positive values
- This is called the variance

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

ш

Note: Population versus the sample

- When we are dealing with a population we use the Greek term σ^2 (sigma squared)
- When we are dealing with a sample we use s²
- And, we use n-1 in the denominator
 - This has to do with degrees of freedom
 - Which has to do with making inferences from a sample to the population.
 - Using n in the formula for s² tends to underestimate σ²

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{(n-1)}$$

14

A closer look at the Variance

- The numerator is called the Total Sum of Squares
- It is the sum of squared deviations about the mean
- And when we divide by n, or n-1, we have the Mean Squared Deviation
- $\sum_{i=1}^{n} (x_i \overline{x})^2$

Computational formula for the Variance

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

15

Computation formula for the Variance

$$s^{2} = \frac{\sum_{i=1}^{n} x_{i}^{2} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}{n-1}$$

$$s^{2} = \frac{\sum_{i=1}^{4} x_{i}^{2} - \frac{\left(\sum_{i=1}^{4} x_{i}\right)^{2}}{4}}{4-1} = \sum_{i=1}^{n} x_{i}$$

$$s^{2} = \frac{\sum_{i=1}^{4} x_{i}^{2} - \frac{\left(\sum_{i=1}^{4} x_{i}\right)^{2}}{4}}{4-1} = \frac{\left(54 - \frac{14^{2}}{4}\right)}{3}$$

$$\sum_{i=1}^{n} x_{i}$$

$$\sum_{i=1}^{4} x_{i}^{2} - \frac{\left(\sum_{i=1}^{4} x_{i}\right)^{2}}{4} + \frac{\left(54 - \frac{14^{2}}{4}\right)}{3} + \frac{54 - 49}{3} + \frac{67}{3}$$

You try it with the Marriage Data

Calculate the Variance

You try it with the Marriage Data

- Calculate the Variance
- $s^2 = [6967.24 (441.73)^2/51]/(51-1)$
- $s^2 = [6967.24 3825.99]/(50)$
- $s^2 = [3141.25]/(50)$
- $s^2 = 62.83$

17

19

Standard Deviation

- One problem with the variance is that it is expressed in squared units and can be difficult to interpret
- If you take it the square root of the variance we bring it back to original units
- This is called the Standard Deviation
 - s for a sample
 - σ for a population

Standard Deviation

- The standard deviation (Std Dev) is the average deviation of the values from the mean or the average spread
- It is always positive
- The Std Dev is a basic building block for analyzing our data

21

- It provides insights into identifying outliers
- It is important in inference
- For the Marriage Rate data,
 - s = SQRT(Var) = SQRT(62.83) = 7.93

Summary

- Our main measure of variability in the data is the variance – in reference to deviations about the mean
- We focus on squared deviations because of the property of the mean - Variance
- But then take the square root to bring it back to regular terms - Standard Deviation
- For samples we use n-1 as the denominator referred to as degrees of freedom