

A STUDY ON GROWTH PROPERTIES OF n -ITERATED ENTIRE FUNCTIONS

DIBYENDU BANERJEE*, SIMUL SARKAR

Department of Mathematics, Visva-Bharati, Santiniketan-731235, India

*Correspondence: dibyendu192@rediffmail.com

ABSTRACT. We consider a new type of iteration of n entire functions and study some growth properties.

1. INTRODUCTION, DEFINITIONS AND NOTATIONS

If f and g be two transcendental entire functions defined in the open complex plane \mathbb{C} , then Clunie [5] proved that $\lim_{r \rightarrow \infty} \frac{T(r, fog)}{T(r, f)} = \infty$ and $\lim_{r \rightarrow \infty} \frac{T(r, fog)}{T(r, g)} = \infty$. In [15], Singh proved some comparative growth properties of $\log T(r, fog)$ and $T(r, f)$ and raised the problem of investigating the comparative growth properties of $\log T(r, fog)$ and $T(r, g)$. After this several authors {see [4], [10], [11] etc.} made close investigation on comparative growth of $\log T(r, fog)$ and $T(r, g)$ by imposing certain restrictions on orders of f and g .

In [8] Lahiri and Banerjee introduced the concept of relative iterations of $f(z)$ with respect to $g(z)$ as follows:

$$f_1(z) = f(z)$$

$$f_2(z) = f(g(z)) = f(g_1(z))$$

$$f_3(z) = f(g(f(z))) = f(g_2(z)) = f(g(f_1(z)))$$

...

$$f_n(z) = f(g(f \dots (f(z) \text{ or } g(z)) \dots \text{according as } n \text{ is odd or even}))$$

and so are $g_n(z)$.

Using this idea of relative iterations growth properties of iterated entire functions have been studied closely by many authors {see [1],[2],[3], [6] } to achieve great results. But in this paper we consider a more general situation by taking n entire functions and form a new type of iteration [defined below] to study the comparative growth of iterations of n entire functions that includes some previous results.

For n entire functions $f_1(z), f_2(z), \dots, f_n(z)$, let

Keywords: Entire function; Growth; Iteration.

$$\begin{aligned} F_1(z) &= f_1(z) \\ F_2(z) &= f_2(f_1(z)) \\ \dots &\quad \dots \quad \dots \end{aligned}$$

$$F_n(z) = f_n(f_{n-1}(\dots(f_2(f_1(z)))) = f_n(F_{n-1}(z)), n \geq 2.$$

Following Sato [14], we write $\log^{[0]}x = x$, $\exp^{[0]}x = x$ and for positive integer m , $\log^{[m]}x = \log(\log^{[m-1]}x)$, $\exp^{[m]}x = \exp(\exp^{[m-1]}x)$.

First we need the following definitions.

Definition 1.1. The order ρ_f and the lower order λ_f of a meromorphic function f are defined as

$$\rho_f = \limsup_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}$$

and

$$\lambda_f = \liminf_{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}.$$

If f is entire then

$$\begin{aligned} \rho_f &= \limsup_{r \rightarrow \infty} \frac{\log^{[2]} M(r, f)}{\log r} \\ \text{and} \quad \lambda_f &= \liminf_{r \rightarrow \infty} \frac{\log^{[2]} M(r, f)}{\log r}. \end{aligned}$$

Definition 1.2. The hyper order $\bar{\rho}_f$ and hyper lower order $\bar{\lambda}_f$ of a meromorphic function f are defined as

$$\bar{\rho}_f = \limsup_{r \rightarrow \infty} \frac{\log^{[2]} T(r, f)}{\log r}$$

and

$$\bar{\lambda}_f = \liminf_{r \rightarrow \infty} \frac{\log^{[2]} T(r, f)}{\log r}.$$

If f is entire then

$$\bar{\rho}_f = \limsup_{r \rightarrow \infty} \frac{\log^{[3]} M(r, f)}{\log r}$$

and

$$\bar{\lambda}_f = \liminf_{r \rightarrow \infty} \frac{\log^{[3]} M(r, f)}{\log r}.$$

Definition 1.3. A function $\lambda_f(r)$ is called a lower proximate order of a meromorphic function f if

- (i) $\lambda_f(r)$ is nonnegative and continuous for $r \geq r_0$, say;
- (ii) $\lambda_f(r)$ is differentiable for $r \geq r_0$ except possibly at isolated points at which $\lambda'_f(r - 0)$ and $\lambda'_f(r + 0)$ exist;
- (iii) $\lim_{r \rightarrow \infty} \lambda_f(r) = \lambda_f < \infty$;
- (iv) $\lim_{r \rightarrow \infty} r\lambda'_f(r)\log r = 0$;

and (v) $\liminf_{r \rightarrow \infty} \frac{T(r, f)}{r^{\lambda_f(r)}} = 1$.

Throughout we assume $f_1(z), f_2(z), \dots, f_n(z)$ be n non-constant entire functions having orders ρ_{f_k} and lower orders $\lambda_{f_k}(k = 1, 2, \dots, n)$ respectively. Also we follow Hayman [7] for standard definitions, terminologies and conventions.

2. LEMMAS

The following lemmas will be needed in the sequel.

Lemma 2.1. [1] *For two non-constant entire functions $f(z)$ and $g(z)$*

$$\log M(r, f(g)) \leq \log M(M(r, g), f), \quad r > 0.$$

Lemma 2.2. [7] *Let $f(z)$ be an entire function. For $0 \leq r < R < \infty$, we have*

$$T(r, f) \leq \log^+ M(r, f) \leq \frac{R+r}{R-r} T(R, f).$$

In particular, for large r , $T(r, f) \leq \log M(r, f) \leq 3T(2r, f)$.

Lemma 2.3. [13] *Let $f(z)$ and $g(z)$ be two entire functions. Then we have*

$$T(r, f(g)) \geq \frac{1}{3} \log M\left(\frac{1}{8}M\left(\frac{r}{4}, g\right) + O(1), f\right).$$

Lemma 2.4. [9] *Let f be an entire function. Then for $k > 2$*

$$\liminf_{r \rightarrow \infty} \frac{\log^{[k-1]} M(r, f)}{\log^{[k-2]} T(r, f)} = 1.$$

Lemma 2.5. [11] *Let f be a meromorphic function. Then for $\delta (> 0)$ the function $r^{\lambda_f + \delta - \lambda_f(r)}$ is an increasing function of r .*

Lemma 2.6. [12] *Let f be an entire function of finite lower order. If there exist entire functions $a_i(i = 1, 2, 3, \dots, n; n \leq \infty)$ satisfying $T(r, a_i) = o\{T(r, f)\}$ and*

$$\sum_{i=1}^n \delta(a_i, f) = 1$$

then

$$\lim_{r \rightarrow \infty} \frac{T(r, f)}{\log M(r, f)} = \frac{1}{\pi}.$$

Lemma 2.7. Let $f_1(z), f_2(z), \dots, f_n(z)$ be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$ where $i = 2, 3, 4, \dots, n$. Then for arbitrary $\epsilon > 0$ and for large r

$$\log^{[n-k]} T(r, F_n) \leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1)$$

and

$$\log^{[n-k]} T(r, F_n) \geq (\lambda_{f_{k+1}} - \epsilon) \log M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1)$$

where $1 \leq k \leq n-1$.

Proof. We get from Lemma 2.1 and Lemma 2.2 for all large values of r and $\epsilon > 0$

$$\begin{aligned} T(r, F_n) &\leq \log M(r, F_n) \\ &\leq \log M(M(r, F_{n-1}), f_n) \\ &\leq M(r, F_{n-1})^{\rho_{f_n} + \epsilon} \\ \text{or, } \log T(r, F_n) &\leq (\rho_{f_n} + \epsilon) \log M(M(r, F_{n-2}), f_{n-1}) \\ &\leq (\rho_{f_n} + \epsilon) [M(r, F_{n-2})]^{\rho_{f_{n-1}} + \epsilon} \\ \text{i.e., } \log^{[2]} T(r, F_n) &\leq (\rho_{f_{n-1}} + \epsilon) \log M(r, F_{n-2}) + O(1). \end{aligned}$$

Repeating the process at some stage, we have

$$\log^{[n-k]} T(r, F_n) \leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1),$$

where $1 \leq k \leq n-1$.

Again for choosing ϵ ($0 < \epsilon < \min\{\lambda_{f_i}; i = 2, 3, 4, \dots, n\}$) we have from Lemma 2.2 and Lemma 2.3 and for all large values of r

$$\begin{aligned} T(r, F_n) &\geq \frac{1}{3} \log M\left(\frac{1}{8} M\left(\frac{r}{4}, F_{n-1}\right) + O(1), f_n\right) \\ &\geq \frac{1}{3} \left[\frac{1}{9} M\left(\frac{r}{4}, F_{n-1}\right)\right]^{\lambda_{f_n} - \epsilon} \\ \text{i.e., } \log T(r, F_n) &\geq (\lambda_{f_n} - \epsilon) \log M\left(\frac{r}{4}, F_{n-1}\right) + O(1) \\ &\geq (\lambda_{f_n} - \epsilon) T\left(\frac{r}{4}, F_{n-1}\right) + O(1) \\ &\geq (\lambda_{f_n} - \epsilon) \frac{1}{3} \left[\frac{1}{9} M\left(\frac{r}{4^2}, F_{n-2}\right)\right]^{\lambda_{f_{n-1}} - \epsilon} + O(1) \\ \text{or, } \log^{[2]} T(r, F_n) &\geq (\lambda_{f_{n-1}} - \epsilon) \log M\left(\frac{r}{4^2}, F_{n-2}\right) + O(1). \end{aligned}$$

Repeating the process at some stage, we have

$$\log^{[n-k]} T(r, F_n) \geq (\lambda_{f_{k+1}} - \epsilon) \log M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1)$$

where $1 \leq k \leq n-1$.

3. THEOREMS

In this section we present the main results of the paper.

Theorem 3.1. *Let f_1, f_2, \dots, f_n be entire functions having positive lower orders. Then*

(i)

$$\liminf_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \leq 3\rho_{f_{k+1}} 2^{\lambda_{F_k}},$$

(ii)

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \geq \frac{\lambda_{f_{k+1}}}{(4^{n-k})^{\lambda_{F_k}}}$$

where $1 \leq k \leq n - 1$.

Proof. We may clearly assume $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$ where $i = 1, 2, 3, \dots, n - 1$. Now from Lemma 2.7 and for arbitrary $\epsilon > 0$

$$(3.1) \quad \log^{[n-k]} T(r, F_n) \leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1), \quad 1 \leq k \leq n - 1.$$

We choose $\epsilon > 0$ such that $\epsilon < \min\{1, \lambda_{f_i}; i = 2, 3, 4, \dots, n\}$.

Since

$$\liminf_{r \rightarrow \infty} \frac{T(r, F_k)}{r^{\lambda_{F_k}(r)}} = 1,$$

there is a sequence of values of r tending to infinity for which

$$(3.2) \quad T(r, F_k) < (1 + \epsilon)r^{\lambda_{F_k}(r)}$$

and for all large values of r

$$(3.3) \quad T(r, F_k) > (1 - \epsilon)r^{\lambda_{F_k}(r)}.$$

Thus for a sequence of values of r tending to infinity, we get for any $\delta > 0$

$\frac{\log M(r, F_k)}{T(r, F_k)} \leq \frac{3T(2r, F_k)}{T(r, F_k)} \leq \frac{3(1+\epsilon)(2r)^{\lambda_{F_k}+\delta}}{(1-\epsilon)(2r)^{\lambda_{F_k}+\delta-\lambda_{F_k}(2r)}} \cdot \frac{1}{r^{\lambda_{F_k}(r)}} \leq \frac{3(1+\epsilon)}{1-\epsilon} 2^{\lambda_{F_k}+\delta}$, because $r^{\lambda_{F_k}+\delta-\lambda_{F_k}(r)}$ is an increasing function of r by Lemma 2.5.

Since $\epsilon, \delta > 0$ be arbitrary, we have

$$(3.4) \quad \liminf_{r \rightarrow \infty} \frac{\log M(r, F_k)}{T(r, F_k)} \leq 3.2^{\lambda_{F_k}}.$$

Therefore from (3.1) and (3.4) we get

$$\liminf_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \leq 3\rho_{f_{k+1}} 2^{\lambda_{F_k}}, \quad \text{where } 1 \leq k \leq n - 1.$$

This proves (i).

Again we have from Lemma 2.2, Lemma 2.7 and (3.3)

$$\begin{aligned} \log^{[n-k]} T(r, F_n) &\geq (\lambda_{f_{k+1}} - \epsilon) \log M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1) \\ &\geq (\lambda_{f_{k+1}} - \epsilon) T\left(\frac{r}{4^{n-k}}, F_k\right) + O(1) \\ &\geq (\lambda_{f_{k+1}} - \epsilon)(1 - \epsilon)(1 + o(1)) \frac{\left(\frac{r}{4^{n-k}}\right)^{\lambda_{F_k} + \delta}}{\left(\frac{r}{4^{n-k}}\right)^{\lambda_{F_k} + \delta - \lambda_{F_k} \left(\frac{r}{4^{n-k}}\right)}}. \end{aligned}$$

Since $r^{\lambda_{F_k} + \delta - \lambda_{F_k}(r)}$ is an increasing function of r , we have

$$\log^{[n-k]} T(r, F_n) \geq (\lambda_{f_{k+1}} - \epsilon)(1 - \epsilon)(1 + o(1)) \frac{r^{\lambda_{F_k}(r)}}{(4^{n-k})^{\lambda_{F_k} + \delta}}$$

for all large values of r .

So by (3.2) for a sequence of values of r tending to infinity

$$\log^{[n-k]} T(r, F_n) \geq (\lambda_{f_{k+1}} - \epsilon) \frac{1 - \epsilon}{1 + \epsilon} (1 + o(1)) \frac{T(r, F_k)}{(4^{n-k})^{\lambda_{F_k} + \delta}}.$$

Since $\epsilon, \delta > 0$ be arbitrary, it follows from the above that

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \geq \frac{\lambda_{f_{k+1}}}{(4^{n-k})^{\lambda_{F_k}}}.$$

This proves (ii).

Example 3.1. Let $f_1(z) = z$, $f_2(z) = z$, $f_3(z) = \exp z$. Then $\lambda_{f_1} = \lambda_{f_2} = 0$ and $\lambda_{f_3} = 1$.

Now for $n = 3$ and $k = 2$, $F_n(z) = \exp z$ and $F_k(z) = z$, so that $T(r, F_n) = \frac{r}{\pi}$, $T(r, F_k) = \log r$ and $\lambda_{F_2} = 0$.

Therefore,

$$\frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} = \frac{\log \frac{r}{\pi}}{\log r}.$$

So,

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} = 1.$$

Also $\frac{\lambda_{f_{k+1}}}{(4^{n-k})^{\lambda_{F_k}}} = \frac{1}{4^0} = 1$.

So from this example we can say that if the function are not of positive lower orders then the theorem is also true.

Theorem 3.2. Let f_1, f_2, \dots, f_n be such that λ_{f_k} ($k = 1, 2, 3, \dots, n-1$) are non zero finite. Also there exist entire functions a_j ($j = 1, 2, 3, \dots, n$; $n \leq \infty$) satisfying $T(r, a_j) = o\{T(r, F_k)\}$ as $r \rightarrow \infty$ and $\sum_{j=1}^n \delta(a_j, F_k) = 1$.

Then

$$\frac{\pi \lambda_{f_{k+1}}}{(4^{n-k})^{\lambda_{F_k}}} \leq \limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \leq \pi \rho_{f_{k+1}}$$

where $1 \leq k \leq n - 1$.

Proof. If $\lambda_{f_{k+1}} = 0$ then the first inequality is obvious. Now we suppose that $\lambda_{f_{k+1}} > 0$ ($k = 1, 2, 3, \dots, n - 2$).

Choose $\epsilon > 0$ such that $\epsilon < \min\{1, \lambda_{f_i}; \text{ for } i = 2 \text{ to } n\}$. Then we have from Lemma 2.7 and for all large r

$$(3.5) \quad \begin{aligned} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} &\geq (\lambda_{f_{k+1}} - \epsilon) \frac{\log M(\frac{r}{4^{n-k}}, F_k)}{T(r, F_k)} + O(1) \\ i.e., \quad \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} &\geq (\lambda_{f_{k+1}} - \epsilon) \frac{\log M(\frac{r}{4^{n-k}}, F_k)}{T(\frac{r}{4^{n-k}}, F_k)} \cdot \frac{T(\frac{r}{4^{n-k}}, F_k)}{T(r, F_k)} + O(1). \end{aligned}$$

Also from (3.2) and (3.3) we get for a sequence of values of $r \rightarrow \infty$ and $\delta > 0$

$$\begin{aligned} \frac{T(\frac{r}{4^{n-k}}, F_k)}{T(r, F_k)} &> \frac{1 - \epsilon}{1 + \epsilon} \cdot \frac{(\frac{r}{4^{n-k}})^{\lambda_{F_k}(\frac{r}{4^{n-k}})}}{r^{\lambda_{F_k}(r)}} \\ &\geq \frac{1 - \epsilon}{1 + \epsilon} \cdot \frac{(\frac{r}{4^{n-k}})^{\lambda_{F_k} + \delta}}{(\frac{r}{4^{n-k}})^{\lambda_{F_k} + \delta - \lambda_{F_k}(\frac{r}{4^{n-k}})} \cdot r^{\lambda_{F_k}(r)}} \\ &\geq \frac{1 - \epsilon}{1 + \epsilon} \cdot \frac{1}{(4^{n-k})^{\lambda_{F_k} + \delta}}, \end{aligned}$$

because $r^{\lambda_{F_k} + \delta - \lambda_{F_k}(r)}$ is an increasing function of r .

Since $\epsilon, \delta > 0$ be arbitrary, so using Lemma 2.6, we have from (3.5)

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \geq \frac{\pi \lambda_{f_{k+1}}}{(4^{n-k})^{\lambda_{F_k}}}.$$

If $\rho_{f_{k+1}} = \infty$, the second inequality is obvious. So we may suppose $\rho_{f_{k+1}} < \infty$.

Now from Lemma 2.7 we get

$$\begin{aligned} \log^{[n-k]} T(r, F_n) &\leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1) \\ \text{or, } \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} &\leq (\rho_{f_{k+1}} + \epsilon) \frac{\log M(r, F_k)}{T(r, F_k)} + O(1) \\ &\leq (\rho_{f_{k+1}} + \epsilon) \frac{1}{\frac{T(r, F_k)}{\log M(r, F_k)}} + O(1). \end{aligned}$$

Now from Lemma 2.6 we have

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \leq \pi(\rho_{f_{k+1}} + \epsilon).$$

Since $\epsilon > 0$ is arbitrary, so we write

$$\limsup_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(r, F_k)} \leq \pi \rho_{f_{k+1}}.$$

This proves the theorem.

Theorem 3.3. *Let f_1, f_2, \dots, f_n be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$, where $i = 2, 3, \dots, n$. Then for $m = 0, 1, 2, \dots$*

$$\frac{\bar{\lambda}_{F_k}}{\rho_{F_k}} \leq \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\bar{\rho}_{F_k}}{\lambda_{F_k}}$$

where $F_k^{(m)}$ denotes the m^{th} derivative of F_k and $1 \leq k \leq n - 1$.

Proof. For given ϵ ($0 < \epsilon < \min\{\lambda_{f_i}, i = 2 \text{ to } m\}$) we get from Lemma 2.2 and Lemma 2.7 for all large values of r

$$\begin{aligned} \log^{[n-k]} T(r, F_n) &\geq (\lambda_{f_{k+1}} - \epsilon) \log M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1). \\ \text{So, } \log^{[n-k+2]} T(r, F_n) &\geq \log^{[2]} T\left(\frac{r}{4^{n-k}}, F_k\right) + O(1). \end{aligned}$$

So for all large values of r

$$\begin{aligned} \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} &\geq \frac{\log^{[2]} T\left(\frac{r}{4^{n-k}}, F_k\right) + O(1)}{\log T(r, F_k^{(m)})} \\ (3.6) \quad \text{i.e., } \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} &\geq \frac{\log^{[2]} T\left(\frac{r}{4^{n-k}}, F_k\right)}{\log \frac{r}{4^{n-k}}} \cdot \frac{\log \frac{r}{4^{n-k}}}{\log T(r, F_k^{(m)})} + o(1). \end{aligned}$$

For all large values of r and arbitrary $\epsilon > 0$ we have

$$(3.7) \quad \log T(r, F_k^{(m)}) < (\rho_{F_k} + \epsilon) \log r.$$

Since $\epsilon > 0$ is arbitrary, so from (3.6) and (3.7) we have

$$(3.8) \quad \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} \geq \frac{\bar{\lambda}_{F_k}}{\rho_{F_k}}.$$

Again from Lemma 2.7, for all large values of r

$$(3.9) \quad \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\log^{[3]} M(r, F_k)}{\log T(r, F_k^{(m)})} + o(1).$$

Also for all large values of r and arbitrary ϵ ($0 < \epsilon < \lambda_{F_k}$, $k = 1 \text{ to } n$) we have

$$(3.10) \quad \log T(r, F_k^{(m)}) > (\lambda_{F_k} - \epsilon) \log r.$$

Since $\epsilon > 0$ is arbitrary so from (3.9) and (3.10) we have,

$$(3.11) \quad \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+2]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\bar{\rho}_{F_k}}{\lambda_{F_k}}.$$

Thus the results follows from (3.8) and (3.11).

Theorem 3.4. *Let f_1, f_2, \dots, f_n be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$, where $i = 2, 3, \dots, n$. Then*

$$\frac{\lambda_{F_k}}{\rho_{F_k}} \leq \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq 1 \leq \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq \frac{\rho_{F_k}}{\lambda_{F_k}}$$

where $1 \leq k \leq n - 1$.

Proof. For given ϵ ($0 < \epsilon < \min\{\lambda_{f_i}, i = 2 \text{ to } n - 1\}$), we get from Lemma 2.7 for all large r

$$(3.12) \quad \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq \frac{\log^{[2]} M(r, F_k)}{\log T(r, F_k)} + o(1).$$

$$\text{i.e., } \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq \liminf_{r \rightarrow \infty} \frac{\log^{[2]} M(r, F_k)}{\log T(r, F_k)}$$

$$(3.13) \quad \text{or, } \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq 1 (\text{ by Lemma 2.4}).$$

Also,

$$\begin{aligned} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} &\geq \frac{\log^{[2]} M(\frac{r}{4^{n-k}}, F_k)}{\log T(r, F_k)} + o(1) \\ &= \frac{\log^{[2]} M(\frac{r}{4^{n-k}}, F_k)}{\log \frac{r}{4^{n-k}}} \cdot \frac{\log \frac{r}{4^{n-k}}}{\log T(r, F_k)} + o(1). \end{aligned}$$

Also for all large values of r and for arbitrary $\epsilon_1 > 0$, we have

$$\log T(r, F_k) < (\rho_{F_k} + \epsilon_1) \log r.$$

Since $\epsilon_1 > 0$ is arbitrary, so we have from above

$$(3.14) \quad \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \geq \frac{\lambda_{F_k}}{\rho_{F_k}}.$$

Also from (3.12), we get for all large values of r

$$\begin{aligned} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} &\leq \frac{\log^{[2]} M(r, F_k)}{\log r} \cdot \frac{\log r}{\log T(r, F_k)} + o(1) \\ &\leq \frac{\log^{[2]} M(r, F_k)}{\log r} \cdot \frac{1}{\frac{\log T(r, F_k)}{\log r}} + o(1). \end{aligned}$$

Therefore,

$$(3.15) \quad \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} \leq \frac{\rho_{F_k}}{\lambda_{F_k}}.$$

Again from Lemma 2.7

$$(3.16) \quad \log^{[n-k+1]} T(r, F_n) \geq \log^{[2]} M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1).$$

From (3.3) we obtain for all large values of $r, \delta > 0$ and $0 < \epsilon < 1$ and using Lemma 2.2 we get

$$\begin{aligned} \log M\left(\frac{r}{4^{n-k}}, F_k\right) &> (1 - \epsilon)\left(\frac{r}{4^{n-k}}\right)^{\lambda_{F_k}(\frac{r}{4^{n-k}})} \\ &= \frac{(1 - \epsilon)\left(\frac{r}{4^{n-k}}\right)^{\lambda_{F_k} + \delta}}{\left(\frac{r}{4^{n-k}}\right)^{\lambda_{F_k} + \delta - \lambda_{F_k}(\frac{r}{4^{n-k}})}} \\ &\geq \frac{(1 - \epsilon)}{(4^{n-k})^{\lambda_{F_k} + \delta}} \cdot r^{\lambda_{F_k}(r)} \end{aligned}$$

because $r^{\lambda_{F_k} + \delta - \lambda_{F_k}(r)}$ is an increasing function of r .

So by (3.2) we get for a sequence of values of r tending to infinity,

$$\log M\left(\frac{r}{4^{n-k}}, F_k\right) \geq \frac{1 - \epsilon}{1 + \epsilon} \frac{1}{(4^{n-k})^{\lambda_{F_k} + \delta}} \cdot T(r, F_k)$$

$$(3.17) \quad i.e., \log^{[2]} M\left(\frac{r}{4^{n-k}}, F_k\right) \geq \log T(r, F_k) + O(1).$$

Now from (3.16) and (3.17) we obtain,

$$\begin{aligned} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} &\geq \frac{\log^{[2]} M\left(\frac{r}{4^{n-k}}, F_k\right)}{\log T(r, F_k)} + o(1) \\ (3.18) \quad So, \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k)} &\geq 1. \end{aligned}$$

So the theorem follows from (3.13), (3.14), (3.15) and (3.18).

Theorem 3.5. *Let f_1, f_2, \dots, f_n be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$, where $i = 2, 3, \dots, n$. Then for $m = 0, 1, 2, \dots$*

$$\frac{\lambda_{F_k}}{\rho_{F_k}} \leq \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\rho_{F_k}}{\lambda_{F_k}}$$

where $F_k^{(m)}$ denotes the m^{th} derivative of F_k and $1 \leq k \leq n - 1$.

Proof. For given ϵ ($0 < \epsilon < \min\{\lambda_{f_i}, i = 2 \text{ to } m\}$) we get from Lemma 2.2 and Lemma 2.7 and also for all large values of r

$$\log^{[n-k]} T(r, F_n) \geq (\lambda_{f_{k+1}} - \epsilon) \log M\left(\frac{r}{4^{n-k}}, F_k\right) + O(1).$$

$$\text{So, } \log^{[n-k+1]} T(r, F_n) \geq \log T\left(\frac{r}{4^{n-k}}, F_k\right) + O(1).$$

So for all large values of r

$$\begin{aligned} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} &\geq \frac{\log T\left(\frac{r}{4^{n-k}}, F_k\right) + O(1)}{\log T(r, F_k^{(m)})} \\ (3.19) \quad \text{i.e., } \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} &\geq \frac{\log T\left(\frac{r}{4^{n-k}}, F_k\right)}{\log \frac{r}{4^{n-k}}} \cdot \frac{\log \frac{r}{4^{n-k}}}{\log T(r, F_k^{(m)})} + o(1). \end{aligned}$$

For all large values of r and arbitrary $\epsilon > 0$ we have

$$(3.20) \quad \log T(r, F_k^{(m)}) < (\rho_{F_k} + \epsilon) \log r.$$

Since $\epsilon > 0$ is arbitrary, so from (3.19) and (3.20) we have

$$(3.21) \quad \liminf_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} \geq \frac{\lambda_{F_k}}{\rho_{F_k}}.$$

Again from Lemma 2.7, for all large values of r

$$(3.22) \quad \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\log^{[2]} M(r, F_k)}{\log T(r, F_k^{(m)})} + o(1).$$

Also for all large values of r and arbitrary ϵ ($0 < \epsilon < \lambda_{F_k}$, $k = 1 \text{ to } n$) we have

$$(3.23) \quad \log T(r, F_k^{(m)}) > (\lambda_{F_k} - \epsilon) \log r.$$

Since $\epsilon > 0$ is arbitrary so from (3.22) and (3.23) we have,

$$(3.24) \quad \limsup_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{\log T(r, F_k^{(m)})} \leq \frac{\rho_{F_k}}{\lambda_{F_k}}.$$

Thus the results follows from (3.21) and (3.24).

Theorem 3.6. *Let f_1, f_2, \dots, f_n be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$. Then for $m = 0, 1, 2, 3, \dots$*

$$\lim_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{T(r, F_k^{(m)})} = 0$$

for all $n (\geq 2)$ and $1 \leq k \leq n - 1$.

Proof. From Definition 1.1 and Lemma 2.7 for all sufficiently large values of r and $\epsilon > 0$

$$\begin{aligned} \log^{[n-k]} T(r, F_n) &\leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1), \\ \log M(r, F_k) &< r^{\rho_{F_k} + \epsilon} \end{aligned}$$

and

$$T(r, F_k^{(m)}) > r^{(\lambda_{F_k} - \epsilon)}.$$

So,

$$\begin{aligned} \frac{\log^{[n-k+1]} T(r, F_n)}{T(r, F_k^{(m)})} &\leq \frac{\log^{[2]} M(r, F_k)}{r^{(\lambda_{F_k} - \epsilon)}} + o(1) \\ &\leq \frac{(\rho_{F_k} + \epsilon) \log r}{r^{(\lambda_{F_k} - \epsilon)}} + o(1). \end{aligned}$$

Therefore,

$$\lim_{r \rightarrow \infty} \frac{\log^{[n-k+1]} T(r, F_n)}{T(r, F_k^{(m)})} = 0.$$

Theorem 3.7. Let f_1, f_2, \dots, f_n be such that $0 < \lambda_{f_i} \leq \rho_{f_i} < \infty$ and also $\rho_{F_i} < \infty$ ($i = 1$ to $n - 1$). Then for $m = 0, 1, 2, 3, \dots$

$$\lim_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(e^r, F_k^{(m)})} = 0$$

for all $n (\geq 2)$ and $1 \leq k \leq n - 1$.

Proof. From Definition 1.1 and Lemma 2.7 for all sufficiently large values of r and ϵ ($0 < \epsilon < \lambda_{F_i}$; $i = 1$ to $n - 1$)

$$\begin{aligned} \log^{[n-k]} T(r, F_n) &\leq (\rho_{f_{k+1}} + \epsilon) \log M(r, F_k) + O(1), \\ \log M(r, F_k) &< r^{\rho_{F_k} + \epsilon} \end{aligned}$$

and

$$T(e^r, F_k^{(m)}) > e^{r^{(\lambda_{F_k} - \epsilon)}}.$$

So,

$$\begin{aligned} \frac{\log^{[n-k]} T(r, F_n)}{T(e^r, F_k^{(m)})} &\leq \frac{(\rho_{f_{k+1}} + \epsilon) \log M(r, F_k)}{T(e^r, F_k^{(m)})} + o(1) \\ &\leq \frac{(\rho_{f_{k+1}} + \epsilon) \cdot r^{\rho_{F_k} + \epsilon}}{e^{r^{(\lambda_{F_k} - \epsilon)}}} + o(1). \end{aligned}$$

Therefore,

$$\lim_{r \rightarrow \infty} \frac{\log^{[n-k]} T(r, F_n)}{T(e^r, F_k^{(m)})} = 0.$$

REFERENCES

- [1] D. Banerjee and R. K. Dutta, The growth of iterated entire functions, *Bull. Math. Anal. Appl.* 3 (3) (2011), 35-49.
- [2] D. Banerjee and N. Mondal, On maximum modulus and maximum term of iterated entire functions, *Indian J. Math.* 55 (3) (2013), 283-295.
- [3] D. Banerjee and N. Mondal, On the growth of iterated entire functions, *Int. J. Anal. Appl.* 4 (1) (2014), 21-25.
- [4] S. S. Bhoosnurmath and V. S. Prabhaiah, On the generalized growth properties of composite entire and meromorphic functions, *J. Indian Acad. Math.* 29 (2) (2007), 343-369.
- [5] J. Clunie, The composition of entire and meromorphic functions, *Mathematical Essays dedicated to macintyre*, Ohio Univ. Press (1970), 75-92.
- [6] R. K. Dutta and N. Mandal, The growth of iterated entire functions in terms of order, *Glob. J. Pure Appl. Math.* 13 (9) (2017), 6093-6106.
- [7] W. K. Hayman, *Meromorphic Functions*, The clarendon Press, Oxford, 1964.
- [8] B. K. Lahiri and D. Banerjee, Relative fix points of entire functions, *J. Indian Acad. Math.* 19(1) (1997), 87-97.
- [9] I. Lahiri, Generalised proximate order of meromorphic functions, *Math. Bechnk*, 41(1989), 9-16.
- [10] I. Lahiri, Growth of composite integral functions, *Indian J. Pure Appl. Math.*, 20(9) (1989), 899-907.
- [11] I. Lahiri and S. K. Datta, On the growth of composite entire and meromorphic functions, *Indian J. Pure Appl. Math.* 35 (4) (2004), 525-543.
- [12] Q. Lin and C. Dai, On a conjecture of Shah concerning small functions, *Kexue Tong(English Ed.)* 31 (4) (1986), 220-224.
- [13] K. Niino and C. C. Yang, Some growth relationships on factors of two composite entire functions, *Factorization Theory of Meromorphic Functions and Related Topics*, Marcel Dekker Inc. (New York and Basel) (1982), 95-99.
- [14] D. Sato, On the rate of growth of entire functions of fast growth, *Bull. Amer. Math. Soc.* 69 (1963), 411-414.
- [15] A. P. Singh, Growth of Composite entire functions, *Kodai Math. J.* 8 (1985), 99-102.