Introduction to Python Financial Time Series

Contents

4	Financial Time Series								
	4.1	Financial Data	1						
		Correlation analysis and linear regression							

4 Financial Time Series

- Time series are ubiquitous in finance.
- pandas is the main library in Python to deal with time series.

4.1 Financial Data

Financial data

- For the time being we work with locally stored data files.
- These are in .csv-files (comma-separated values), where the data entries in each row are separated by commas.
- Some initialisation:

```
[1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  plt.style.use('seaborn')
  plt.rcParams['font.family'] = 'serif'
```

Data import

- pandas provides a numer of different functions and DataFrame methods for importing and exporting data.
- Here we use pd.read_csv().
- The file that we load contains end-of-day data for different financial instruments retrieved from Thomson Reuters.

```
[2]: filename = './data/tr_eikon_eod_data.csv' # path and filename
f = open(filename, 'r')
f.readlines()[:5] # show first five lines
```

Data import

```
[3]: data = pd.read_csv(filename, # import csv-data into DataFrame index_col=0, # take first column as index parse_dates=True) # index values are datetime
```

[4]: data.info() # information about the DataFrame object

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29

Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	AAPL.O	2138 non-null	float64
1	MSFT.O	2138 non-null	float64
2	INTC.O	2138 non-null	float64
3	AMZN.O	2138 non-null	float64
4	GS.N	2138 non-null	float64
5	SPY	2138 non-null	float64
6	.SPX	2138 non-null	float64
7	.VIX	2138 non-null	float64
8	EUR=	2216 non-null	float64
9	XAU=	2211 non-null	float64
10	GDX	2138 non-null	float64
11	GLD	2138 non-null	float64
		+64(10)	

dtypes: float64(12)
memory usage: 225.1 KB

Data import

[5]: data.head()

[5]:		AAPL.	0 MSFT.0	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	\
	Date									
	2010-01-01	Na	N NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	2010-01-04	30.57282	7 30.950	20.88	133.90	173.08	113.33	1132.99	20.04	
	2010-01-05	30.62568	4 30.960	20.87	134.69	176.14	113.63	1136.52	19.35	
	2010-01-06	30.13854	1 30.770	20.80	132.25	174.26	113.71	1137.14	19.16	
	2010-01-07	30.08282	7 30.452	20.60	130.00	177.67	114.19	1141.69	19.06	
		EUR=	XAU=	GDX	GLD					
	Date									
	2010-01-01	1.4323	1096.35	NaN	NaN					
	2010-01-04	1.4411	1120.00 4	17.71 1	09.80					
	2010-01-05	1.4368	1118.65	18.17 1	09.70					
	2010-01-06	1.4412	1138.50 4	19.34 1	11.51					
	2010-01-07	1.4318	1131.90	19.10 1	10.82					

Data import

[6]: data.tail()

```
[6]:
                AAPL.O MSFT.O INTC.O
                                       AMZN.O
                                                 GS.N
                                                         SPY
                                                                 .SPX
                                                                        .VIX \
    Date
    2018-06-25 182.17
                        98.39
                                50.71 1663.15 221.54 271.00
                                                              2717.07 17.33
    2018-06-26 184.43
                        99.08
                                49.67 1691.09 221.58 271.60
                                                              2723.06 15.92
    2018-06-27 184.16
                        97.54
                                48.76 1660.51 220.18 269.35 2699.63 17.91
```

```
2018-06-28 185.50
                     98.63
                             49.25 1701.45
                                            223.42 270.89 2716.31 16.85
2018-06-29
                     98.61
                                    1699.80
                                             220.57 271.28 2718.37
            185.11
                             49.71
              EUR=
                       XAU=
                               GDX
                                       GLD
Date
2018-06-25
                    1265.00
                             22.01
                                    119.89
            1.1702
2018-06-26
            1.1645
                    1258.64
                             21.95
                                    119.26
2018-06-27
            1.1552
                    1251.62
                             21.81
                                    118.58
2018-06-28
           1.1567
                    1247.88
                             21.93
                                    118.22
2018-06-29
            1.1683
                    1252.25
                             22.31
                                    118.65
```

Data import

[7]: data.plot(figsize=(10, 10), subplots=True);

Data import

- The identifiers used by Thomson Reuters are so-called RIC's.
- The financial instruments in the data set are:

```
[8]: instruments = ['Apple Stock', 'Microsoft Stock', 'Goldman Sachs Stock', 'Intel Stock', 'Amazon Stock', 'Goldman Sachs Stock',
```

```
'SPDR S&P 500 ETF Trust', 'S&P 500 Index',
'VIX Volatility Index', 'EUR/USD Exchange Rate',
'Gold Price', 'VanEck Vectors Gold Miners ETF',
'SPDR Gold Trust']
```

Data import

```
[9]: for ric, name in zip(data.columns, instruments):
    print('{:8s} | {}'.format(ric, name))
```

```
AAPL.O
         | Apple Stock
MSFT.0
        | Microsoft Stock
         | Intel Stock
INTC.O
AMZN.O
         | Amazon Stock
GS.N
         | Goldman Sachs Stock
SPY
         | SPDR S&P 500 ETF Trust
         | S&P 500 Index
.SPX
.VIX
         | VIX Volatility Index
EUR=
         | EUR/USD Exchange Rate
XAU=
         | Gold Price
GDX
         | VanEck Vectors Gold Miners ETF
         | SPDR Gold Trust
GLD
```

Summary statistics

```
[10]: data.describe().round(2)
```

[10]:		AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	\
	count	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	
	mean	93.46	44.56	29.36	480.46	170.22	180.32	1802.71	17.03	
	std	40.55	19.53	8.17	372.31	42.48	48.19	483.34	5.88	
	min	27.44	23.01	17.66	108.61	87.70	102.20	1022.58	9.14	
	25%	60.29	28.57	22.51	213.60	146.61	133.99	1338.57	13.07	
	50%	90.55	39.66	27.33	322.06	164.43	186.32	1863.08	15.58	
	75%	117.24	54.37	34.71	698.85	192.13	210.99	2108.94	19.07	
	max	193.98	102.49	57.08	1750.08	273.38	286.58	2872.87	48.00	
		EUR=	XAU=	GDX	GLD					
	count	2216.00	2211.00	2138.00	2138.00					
	mean	1.25	1349.01	33.57	130.09					
	std	0.11	188.75	15.17	18.78					

```
1.04 1051.36
                          12.47
                                   100.50
min
25%
          1.13 1221.53
                           22.14
                                   117.40
                           25.62
                                   124.00
50%
          1.27 1292.61
75%
          1.35 1428.24
                           48.34
                                   139.00
max
          1.48 1898.99
                           66.63
                                   184.59
```

Summary statistics

• The aggregate()-function allows to customise the statistics viewed:

).round(2)

[11]:		AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR=	\
	min	27.44	23.01	17.66	108.61	87.70	102.20	1022.58	9.14	1.04	
	mean	93.46	44.56	29.36	480.46	170.22	180.32	1802.71	17.03	1.25	
	std	40.55	19.53	8.17	372.31	42.48	48.19	483.34	5.88	0.11	
	median	90.55	39.66	27.33	322.06	164.43	186.32	1863.08	15.58	1.27	
	max	193.98	102.49	57.08	1750.08	273.38	286.58	2872.87	48.00	1.48	
		XAU=	GDX	GLD							
	min	1051.36	12.47	100.50							
	mean	1349.01	33.57	130.09							
	std	188.75	15.17	18.78							
	median	1292.61	25.62	124.00							
	max	1898.99	66.63	184.59							

Returns

- When working with financial data we typically (=always you must have good reasons to deviate from this) work with performance data, i.e., **returns**.
- Reasoning:
 - Historical data are mainly used to make forecasts one or several time periods forward.
 - The daily average stock price over the last eight years is meaningless to make a forecast for tomorrow's stock price.
 - However, the daily returns are possible scenarios for the next time period(s).
- The function pct_change() calculates discrete returns:

$$r_t^{d} = \frac{S_t - S_{t-1}}{S_{t-1}},$$

where S_t denotes the stock price at time t.

Returns

```
[12]: data.pct_change().round(3).head()
```

	AAPL.O	MSFT.0	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR=	\
Date										
2010-01-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
2010-01-04	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.006	
2010-01-05	0.002	0.000	-0.000	0.006	0.018	0.003	0.003	-0.034	-0.003	
2010-01-06	-0.016	-0.006	-0.003	-0.018	-0.011	0.001	0.001	-0.010	0.003	
2010-01-07	-0.002	-0.010	-0.010	-0.017	0.020	0.004	0.004	-0.005	-0.007	
	XAU=	GDX	GLD							
Date										
2010-01-01	NaN	NaN	NaN							
2010-01-04	0.022	NaN	NaN							
2010-01-05	-0.001	0.010 -0	.001							
2010-01-06	0.018	0.024 0	.016							
2010-01-07	-0.006 -	-0.005 -0	.006							
	2010-01-01 2010-01-04 2010-01-05 2010-01-07 Date 2010-01-01 2010-01-04 2010-01-05 2010-01-06	Date 2010-01-01 NaN 2010-01-04 NaN 2010-01-05 0.002 2010-01-06 -0.016 2010-01-07 -0.002 XAU= Date 2010-01-01 NaN 2010-01-04 0.022 2010-01-05 -0.001 2010-01-06 0.018	Date 2010-01-01 NaN NaN 2010-01-04 NaN NaN 2010-01-05 0.002 0.000 2010-01-06 -0.016 -0.006 2010-01-07 -0.002 -0.010 XAU= GDX Date 2010-01-01 NaN NaN 2010-01-04 0.022 NaN 2010-01-05 -0.001 0.010 -0 2010-01-06 0.018 0.024 0	Date 2010-01-01 NaN NaN NaN 2010-01-04 NaN NaN NaN 2010-01-05 0.002 0.000 -0.000 2010-01-06 -0.016 -0.006 -0.003 2010-01-07 -0.002 -0.010 -0.010 XAU= GDX GLD Date 2010-01-01 NaN NaN NaN 2010-01-04 0.022 NaN NaN 2010-01-05 -0.001 0.010 -0.001	Date 2010-01-01 NaN NaN NaN NaN NaN 2010-01-04 NaN NaN NaN NaN NaN 2010-01-05 0.002 0.000 -0.000 0.006 2010-01-06 -0.016 -0.006 -0.003 -0.018 2010-01-07 -0.002 -0.010 -0.010 -0.017 XAU= GDX GLD Date 2010-01-01 NaN NaN NaN 2010-01-04 0.022 NaN NaN 2010-01-05 -0.001 0.010 -0.001 2010-01-06 0.018 0.024 0.016	Date 2010-01-01 NaN NaN NaN NaN NaN NaN NaN 2010-01-04 NaN NaN NaN NaN NaN NaN NaN 2010-01-05 0.002 0.000 -0.000 0.006 0.018 2010-01-06 -0.016 -0.006 -0.003 -0.018 -0.011 2010-01-07 -0.002 -0.010 -0.010 -0.017 0.020 XAU= GDX GLD Date 2010-01-01 NaN NaN NaN 2010-01-04 0.022 NaN NaN 2010-01-05 -0.001 0.010 -0.001 2010-01-06 0.018 0.024 0.016	Date 2010-01-01 NaN NaN NaN NaN NaN NaN NaN NaN 2010-01-04 NaN NaN NaN NaN NaN NaN NaN 2010-01-05 0.002 0.000 -0.000 0.006 0.018 0.003 2010-01-06 -0.016 -0.006 -0.003 -0.018 -0.011 0.001 2010-01-07 -0.002 -0.010 -0.010 -0.017 0.020 0.004 XAU= GDX GLD Date 2010-01-01 NaN NaN NaN 2010-01-04 0.022 NaN NaN 2010-01-05 -0.001 0.010 -0.001 2010-01-06 0.018 0.024 0.016	Date 2010-01-01 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	Date 2010-01-01 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	Date 2010-01-01 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na

Returns

Returns

- ullet In finance, log-returns, also called **continuous returns**, are often preferred over discrete returns: $r_t^{\rm c} = \ln\left(\frac{S_t}{S_{t-1}}\right)$.

 • The main reason is that log-return are additive over time.

 • For example, the log-return from t-1 to t+1 is the sum of the single-period log-returns:

$$r_{t-1,t+1}^{c} = \ln\left(\frac{S_{t+1}}{S_{t}}\right) + \ln\left(\frac{S_{t}}{S_{t-1}}\right) = \ln\left(\frac{S_{t+1}}{S_{t}} \cdot \frac{S_{t}}{S_{t-1}}\right) = \ln\left(\frac{S_{t+1}}{S_{t-1}}\right).$$

• Note: If the sampling (time) interval is small (e.g. one day or one week), then the difference between discrete returns and log-returns is negligible.

Returns

[14]:	rets = np.]	Log(data	/ data.s	hift(1))	# calculates log-returns in a vectorised wa					way	
[15]:	rets.head()	.round(3)								
[15]:		AAPL.O	MSFT.0	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR=	\
	Date										
	2010-01-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
	2010-01-04	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.006	
	2010-01-05	0.002	0.000	-0.000	0.006	0.018	0.003	0.003	-0.035	-0.003	
	2010-01-06	-0.016	-0.006	-0.003	-0.018	-0.011	0.001	0.001	-0.010	0.003	
	2010-01-07	-0.002	-0.010	-0.010	-0.017	0.019	0.004	0.004	-0.005	-0.007	
		XAU=	GDX	GLD							
	Date										
	2010-01-01	NaN	NaN	NaN							
	2010-01-04	0.021	NaN	NaN							
	2010-01-05	-0.001	0.010 -0	.001							
	2010-01-06	0.018	0.024 0	.016							

Returns

```
[16]: rets.cumsum().apply(np.exp).plot(figsize=(10, 6)); # recover price paths from

→ log-returns
```


4.2 Correlation analysis and linear regression

- \bullet To further illustrate how to work with financial time series we consider the S&P 500 stock index and the VIX volatility index.
- Empirical stylised fact: As the S&P 500 rises, the VIX falls, and vice versa.
- Note: This is about **correlation** not **causation**.

Correlation analysis

```
[17]: # EOD data from Thomson Reuters Eikon Data API
raw = pd.read_csv('./data/tr_eikon_eod_data.csv', index_col=0, parse_dates=True)
data = raw[['.SPX', '.VIX']].dropna()
data.tail()
```

```
[17]:
                     .SPX
                            .VIX
      Date
      2018-06-25
                 2717.07
                          17.33
      2018-06-26
                 2723.06
                          15.92
      2018-06-27
                 2699.63 17.91
      2018-06-28
                 2716.31
                          16.85
      2018-06-29 2718.37
                          16.09
```

Correlation analysis

[18]: data.plot(subplots=True, figsize=(10, 6));

Correlation analysis

• Transform both data series into log-returns:

Correlation analysis

```
[21]: rets.plot(subplots=True, figsize=(10, 6));
```


Correlation analysis

Correlation analysis

[23]: rets.corr()

[23]: .SPX .VIX .SPX 1.000000 -0.804382 .VIX -0.804382 1.000000

OLS regression

- Linear regression captures the linear relationship between two variables.
- For two variables x, y, we postulate a linear relationship:

$$y = \alpha + \beta x + \varepsilon, \quad \alpha, \beta \in \mathbb{R}.$$

- Here, α is the intercept, β is the slope (coefficient) and ε is the error term.
- Given data sample of joint observations $(x_1, y_1), \ldots, (x_n, y_n)$, we set

$$y_i = \hat{\alpha} + \hat{\beta}x_i + \hat{\varepsilon}_i,$$

where $\hat{\alpha}$ and $\hat{\beta}$ are estimates of α, β and $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$ are the so-called **residuals**.

• The **ordinary least squares (OLS)** estimator $\hat{\alpha}, \hat{\beta}$ corresponds to those values of α, β that minimise the sum of squared residuals:

$$\min_{\alpha,\beta} \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2.$$

OLS regressions

• Simplest form of OLS regression:

```
[24]: reg = np.polyfit(rets['.SPX'], rets['.VIX'], deg=1) # fit a linear equation (a<sub>□</sub> → polynomial of degree 1) reg.view() # the fitted paramters
```

[24]: array([-6.65160028e+00, 2.62132142e-03])

```
[25]: ax = rets.plot(kind='scatter', x='.SPX', y='.VIX', figsize=(8, 5))
ax.plot(rets['.SPX'], np.polyval(reg, rets['.SPX']), 'r', lw=2);
```


OLS regression

• To do a more refined OLS regression with a proper analysis, use the package statsmodels.

OLS regression

[30]: print(results.summary())

OLS Regression Results

Dep. Variable:	XIV.	R-squared:	0.647
Model:	OLS	Adj. R-squared:	0.647
Method:	Least Squares	F-statistic:	3914.
Date:	Mon, 28 Nov 2022	Prob (F-statistic):	0.00
Time:	21:21:32	Log-Likelihood:	3550.1
No. Observations:	2137	AIC:	-7096.
Df Residuals:	2135	BIC:	-7085.
Df Model:	1		
~	•		

	coef	std err	t	P> t	[0.025	0.975]
const .SPX	0.0026 -6.6516	0.001 0.106	2.633 -62.559	0.009 0.000	0.001	0.005 -6.443
========					=======	
Omnibus:		518.	.582 Durb	in-Watson:		2.094
Prob(Omnib	ous):	0.	.000 Jarq	ue-Bera (JB):		6789.425
Skew:		0.	.766 Prob	(JB):		0.00
Kurtosis:		11.	.597 Cond	. No.		107.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS regression: Interpretation of output and forecasting

- The column coef lists the coefficients of the regression: the coefficient in the row labelled const corresponds to $\hat{\alpha}$ (= 0.0026) and the coefficient in the row .SPX denotes $\hat{\beta}$ (= -6.6515).
- The estimated model in the example is thus:

$$.VIX = 0.0026 - 6.6516.SPX.$$

• The best forecast of the VIX return when observing an S&P return of 2% is therefore $0.0026 - 6.6516 \cdot 0.02 = -0.130432 = -13.0432\%$.

OLS regression: Validation (R^2)

- To validate the model, i.e., to determine, if the model in itself and the explanatory variable(s) make sense, we look R^2 and various p-values (or confidence intervals or t-statistics).
- R^2 measures the fraction of variance in the dependent variable Y that is captured by the regression line; $1 R^2$ is the fraction of Y-variance that remains in the residuals ε_i^2 , $i = 1, \ldots, n$.
- In the output above R^2 is given as 0.647. In other words, 64.7% of the variance in VIX returns are "explained" by SPX returns.
- A high R^2 (and this one is high) is necessary for making forecasts.

OLS regression: Validation (confidence interval)

- An important hypothesis to test in any regression model is whether the explanatory variable(s) have an effect on the independent variable.
- This can be translated into testing whether $\beta \neq 0$. ($\beta = 0$ is the same as saying that the X variable can be removed from the model.)
- Formally, we test the null hypothesis $H_0: \beta = 0$ against the alternative hypothesis $H_1: \beta \neq 0$.
- There are several statistics to come to the same conclusion: confidence intervals, t-statistics and p-values.
- The **confidence interval** is an interval around the estimate $\hat{\beta}$ that we are confident contains the true parameter β . A typial **confidence level** is 95%.
- If the 95% confidence interval does **not** contain 0, then we say β is **statistically significant** at the 5% (=1-95%) level, and we conclude that $\beta \neq 0$.

OLS regression: Validation (t-statistic)

- The t-statistic corresponds to the **number of standard deviations** that the estimated coefficient $\hat{\beta}$ is away from 0 (the mean under H_0).
- For a normal distribution, we have the following rules of thumb:
 - 66% of observations lie within one standard deviation of the mean
 - -95% of observations lie within two standard deviations of the mean
 - 99.7% of observations lie within three standard deviations of the mean
- If the sample size is large enough, then the t-statistic is approximately normally distributed, and if it is large (in absolute terms), then this is an indication against $\beta = 0$.
- In the example above, the t-statistics is -62.559, i.e., $\hat{\beta}$ is approx. 63 standard deviations away from zero, which is practically impossible.

OLS regression: Validation (p-value)

- The p-value expresses the probability of observing a coefficient estimate as extreme (away from zero) as $\hat{\beta}$ under H_0 , i.e., when $\beta = 0$.
- In other words, it measures the probability of observing a t-statistic as extreme as the one observed if $\beta = 0$.
- If the p-value (column P>|t|) is smaller than the desired level of significance (typically 5%), then the H_0 can be rejected and we conclude that $\beta \neq 0$.

- In the example above, the *p*-value is given as 0.000, i.e., it is so small, that we can conclude the estimated coefficient $\hat{\beta}$ is so extreme (= away from zero) that is virtually impossible to obtain such an estimated if $\beta = 0$.
- Finally, the F-test tests the hypotheses $H_0: R^2 = 0$ versus $H_1: R^2 \neq 0$. In a multiple regression with k independent variables, this is equivalent to $H_0: \beta_1 = \cdots = \beta_k = 0$.
- \bullet In the example above, the *p*-value of the *F*-test is 0, so we conclude that the model overall has explanatory power.