MATH 211

Online Asynchronous Survey in Calculus and Analytical Geometry

Dr. Ahmed Kaffel

Department of Mathematical Sciences University of Wisconsin Milwaukee

Spring 2023

How to compute the area below a curve?

Idea:

- divide the area in vertical strips of equal width
- approximate the area using rectangles

Estimate the area below the curve $f(x) = x^2$ from 0 to 1.

Let's split the area in 4 vertical strips:

height of each rectangle = value at right endpoint

The sum of the area of these rectangles is:

$$R_4 = \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{2}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 + \frac{1}{4} \cdot 1^2 = 0.46875$$

The area A below the curve is less then R_4 , that is, $A < R_4$.

Estimate the area below the curve $f(x) = x^2$ from 0 to 1.

Let's split the area in 4 vertical strips:

height of each rectangle = value at left endpoint

The sum of the area of these rectangles is:

$$L_4 = \frac{1}{4} \cdot 0^2 + \frac{1}{4} \cdot \left(\frac{1}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{2}{4}\right)^2 + \frac{1}{4} \cdot \left(\frac{3}{4}\right)^2 = 0.21875$$

The area A below the curve is larger then L_4 , that is, $L_4 < A$.

Estimate the area below the curve $f(x) = x^2$ from 0 to 1.

$$0.21875 = L_4$$
 < A < $R_4 = 0.46875$
 $0.2734375 = L_8$ < A < $R_8 = 0.3984375$
 $0.3087500 = L_{20}$ < A < $R_{20} = 0.3587500$

We have obtained an estimation of A:

we can improve the estimation by taking more strips

Estimate the area below the curve $f(x) = x^2$ from 0 to 1.

We now let the number of strips go to infinity: $\lim_{n\to\infty} R_n$ The formula for the area R_n with n strips is:

$$R_{n} = \frac{1}{n} \cdot \left(\frac{1}{n}\right)^{2} + \frac{1}{n} \cdot \left(\frac{2}{n}\right)^{2} + \frac{1}{n} \cdot \left(\frac{3}{n}\right)^{2} + \dots + \frac{1}{n} \cdot \left(\frac{n}{n}\right)^{2}$$
$$= \frac{1}{n} \cdot \frac{1}{n^{2}} (1^{2} + 2^{2} + 3^{2} + \dots + n^{2})$$

$$1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

$$R_n = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} = \frac{(n+1)(2n+1)}{6n^2}$$

Hence, we have

$$\lim_{n\to\infty} R_n = \lim_{n\to\infty} \frac{1}{6} \left(\frac{n+1}{n} \right) \left(\frac{2n+1}{n} \right) = \frac{2}{6} = \frac{1}{3}$$

Estimate the area below the curve $f(x) = x^2$ from 0 to 1.

$$\lim_{n\to\infty} R_n = \frac{1}{3} \qquad \text{and similar} \qquad \lim_{n\to\infty} L_n = \frac{1}{3}$$

$$\lim_{n\to\infty}L_n=rac{1}{3}$$

The right- and left-approximations converge to the same value.

We define the area A to be the limit of these approximations

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} L_n = \frac{1}{3}$$

Now let's look at a general curve above the *x*-axis:

The area below the curve of a function f on an interval [a, b].

We use *n* rectangles:

- ▶ the width of the interval is b a
- ▶ the width of each strip is $\Delta x = (b a)/n$
- ▶ the interval for the *i*-th strip is $I_i = [a + (i-1)\Delta x, a + i\Delta x]$

Now let's look at a general curve above the *x*-axis:

The area below the curve of a function f on an interval [a, b].

We use *n* rectangles: $\Delta x = (b - a)/n$

The area of the rectangles oriented at right-endpoints is:

$$\frac{R_n}{A} = \Delta x \cdot f(a + 1\Delta x) + \Delta x \cdot f(a + 2\Delta x) + \ldots + \Delta x \cdot f(a + n\Delta x) \\
= \Delta x \left(f(a + 1\Delta x) + f(a + 2\Delta x) + \ldots + f(a + n\Delta x) \right)$$

The area of the rectangles oriented at left-endpoints is:

$$L_n = \Delta x \cdot f(a + 0\Delta x) + \Delta x \cdot f(a + 1\Delta x) + \ldots + \Delta x \cdot f(a + (n-1)\Delta x)$$

= $\Delta x (f(a + 0\Delta x) + f(a + 2\Delta x) + \ldots + f(a + (n-1)\Delta x))$

The **area** A under the graph of a continuous function f whose graph lies above the x-axis is the limit:

$$A = \lim_{n \to \infty} R_n$$

$$= \lim_{n \to \infty} \left[\Delta x \left(f(a + 1\Delta x) + f(a + 2\Delta x) + \ldots + f(a + n\Delta x) \right) \right]$$
where $\Delta x = (b - a)/n$.

For continuous *f* this limit always exists, and is the same as

$$\lim_{n\to\infty} L_n = \lim_{n\to\infty} \left[\Delta x \left(f(a+0\Delta x) + \ldots + f(a+(n-1)\Delta x) \right) \right]$$

Recall that the interval of the *i*-th strip is:

$$I_i = [a + (i-1)\Delta x, a + i\Delta x]$$

$$R_n = \Delta x \big(f(x_1) + f(x_2) + \ldots + f(x_n) \big)$$

where x_i is the right endpoint of the interval I_i

$$L_n = \Delta x (f(x_1) + f(x_2) + \ldots + f(x_n))$$
 where x_i is the left endpoint of the interval I_i

For continuous curve *f* above the *x*-axis we have:

$$A = \lim_{n \to \infty} \left[\Delta x \left(f(x_1) + f(x_2) + \ldots + f(x_n) \right) \right]$$

independent of what **sample points** x_i we take from I_i .

The limit is the same no matter what x_i we choose from I_i !

A famous choice of sample points are upper and lower sums...

lower sum D₅

The **upper sum** is

$$U_n = \Delta x \big(f(x_1) + f(x_2) + \ldots + f(x_n) \big)$$

where x_i is chosen from I_i such that $f(x_i)$ is the maximum on I_i

The lower sum is

$$D_n = \Delta x \big(f(x_1) + f(x_2) + \ldots + f(x_n) \big)$$

where x_i is chosen from I_i such that $f(x_i)$ is the minimum on I_i

Sigma Notation

We can use the **sigma notation** to write sums more compactly:

$$\sum_{i=1}^{n} h(i) = h(1) + h(2) + \ldots + h(n)$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The area under a curve f above the x-axis from a to b is:

$$A = \lim_{n \to \infty} \left(\sum_{i=1}^{n} \Delta x \cdot f(x_i) \right)$$

where:

▶
$$\Delta x = (b - a)/n$$
 is the width of the strips,

▶
$$I_i = [a + (i - 1)\Delta x, a + i\Delta x]$$
 is the interval of the *i*-th strip,

 \triangleright x_i is the sample point from the i-th interval I_i .

Usual choices for x_i are

- ▶ left endpoint $x_i = a + (i 1)\Delta x$ of the interval
- right endpoint $x_i = a + i\Delta x$ of the interval
- ▶ middle $x_i = a + (i \frac{1}{2})\Delta x$ of the interval
- upper sum: $f(x_i)$ is the maximum on the interval I_i
- ▶ lower sum: $f(x_i)$ is the minimum on the interval I_i

upper sum with 5 strips

b

а

а