ESTRUTURAS DE DADOS

Listas Encadeadas

Roteiro

- Listas Lineares
- Listas Encadeadas
- Pilhas com Listas Encadeadas
- Filas com Listas Encadeadas

Listas Lineares

Estrutura de dados na qual cada elemento é precedido por um elemento e sucedido por outro, com exceção do primeiro que não tem predecessor e do último que não tem sucessor.

Isso gera uma ordem nos elementos, que pode ser a ordem de inclusão.

As estruturas Pilha e Fila são listas lineares.

Implementamos a Pilha e a Fila, como Listas Lineares Sequenciais.

Em Listas Lineares Sequenciais a ordem lógica dos elementos (ordem "vista" pelo usuário) é a mesma da ordem física. Isto é, elementos vizinhos na lista estão em posições vizinhas de memória.

Essa organização confere acesso em tempo constante a qualquer elemento, dado o índice do elemento.

O acesso em tempo constante, dado o índice, permite obter elementos em um vetor ordenado em tempo O(log(n)) com busca binária.

Entretanto, Listas Lineares Sequenciais possuem desvantagens:

- Precisamos alocar espaço suficiente para todos os elementos de uma só vez.
 - Caso falte algum espaço, seria oneroso mover todos os elementos para uma nova posição de memória com mais espaço.
- Para manter a ordem, talvez sejam necessários muitos deslocamentos em memória.
 - Array ordenado: precisamos deslocar vários elementos para manter o array ordenado após inserções ou remoções.

Deslocamento em Memória

Elementos a Deslocar

Elementos a Deslocar

Listas Encadeadas

Lista linear em que a ordem lógica dos elementos não é mesma da ordem física. Como é uma lista linear, cada elemento tem um sucessor e um predecessor.

Elementos estão espalhados na memória.

Cada elemento precisa indicar em que endereço o seu sucessor pode ser encontrado de modo a manter a ordem lógica.

Essa organização retira a grande vantagem das Listas Lineares Sequenciais, o acesso em tempo constante a qualquer elemento, dado o índice do elemento.

Lista Sequencial

Γ	1	10	15	19	22	25	33		
_									

Lista Encadeada

Para encontrar um dado elemento na lista, precisamos percorrer todos os elementos predecessores, de um por um.

Como consequência, a busca binária deixa de fazer sentido, dado que não acessamos o elemento do meio de um array em tempo constante.

 A busca por uma chave pode exigir a comparação com todos os elementos da estrutura, mesmo com o array ordenado.

Entretanto, esta nova estrutura possui vantagens.

- Número de elementos pode aumentar ou diminuir durante a execução do programa.
- A manutenção da ordem lógica não exigirá deslocamento de elementos.

Pilhas com Listas Encadeadas

Como pilhas são estruturas lineares, podemos implementá-las como listas encadeadas.

- O primeiro elemento a entrar na estrutura tem que ser o último a sair. O último elemento a entrar tem que ser o primeiro a sair.
- As inserções e remoções ocorrem na cabeça da pilha.
- Inserções e remoções devem ocorrer em tempo constante. Em outras palavras, independem do número de elementos na estrutura.

Listas Sequenciais

Listas Encadeadas

Push: 35

Push: 10

Listas Sequenciais

Push: 35

Push: 10

Push: 94, 12, 45

Pop

Pop

Push: 32

Listas Encadeadas

Push: 35

Push: 10

Push: 94, 12, 45

Pop

Pop

Push: 32

Filas com Listas Encadeadas

Como filas são estruturas lineares, podemos implementá-las como listas encadeadas.

- Estrutura de dados em que o primeiro elemento a entrar é o primeiro a sair.
- Se Pedro enviou um documento para a impressora antes de Paulo, então o documento de Pedro será impresso antes do documento de Paulo.
- Inserções e remoções devem ocorrer em tempo constante. Em outras palavras, independem do número de elementos na estrutura.

Listas Sequenciais

Enqueue: 35

Enqueue: 10

Enqueue: 94, 12, 45

Dequeue

Dequeue

Enqueue: 32

Listas Encadeadas

Enqueue: 35

Enqueue: 10

Enqueue: 94, 12, 45

Dequeue

Dequeue

Enqueue: 32

ESTRUTURAS DE DADOS

Listas Encadeadas