COSC 305 DATABASE SYSTEM I

LECTURE 3
BY

Dr. SULEIMAN SALIHU JAURO

TODAY'S CLASS

- □ STORAGE STRUCTURE
 - □ Classification of Physical Storage Medium
 - ☐ Storage Devices
 - □ Storage Access and Buffer Management
 - ☐ Storage Hierarchy
- □ File Organization Techniques
 - □ Sequential
 - □ Heap
 - □ Hash
 - □ Clustered
 - □ B+

CLASSIFICATION OF STORAGE

- Classification is based on the following criteria
 - Speed & Cost per unit data
 - Registers
 - Cache
 - Main Memory (RAM)
 - Magnetic Disk
 - Optical Disk
 - Magnetic Tapes
 - Reliability
 - Volatile
 - Non Volatile

STORAGE STRUCTURE

DISK STRUCTURE

MAGNETIC DISK

STORAGE HIERARCHY

DISK MECHANISMS

Access Time

• Time it takes from when a read or write request is issued to when the data transfer begins.

Data Transfer Rate

• The rate at which data can be retrieved from or stored to the disk.

Mean Time to Faliure(MTTF)

 the average time the disk is expected to run continuously without any failure.

STORAGE ACCESS AND BUFFER MANAGEMENT

Block

- A contiguous sequence of sectors from a single track
- Data is transferred between main memory and disk using blocks

File Organization

- Optimize block access time by organizing the blocks to correspond to how data will be accessed.
- Non-volatile buffers speed up disk writes by immediately writing blocks to a non-volatile RAM buffer
- controller then writes to disk whenever the disk has no other requests.

STORAGE ACCESS AND BUFFER MANAGEMENT

Storage Access

- A database file is partitioned into fixed-length storage units called *blocks* (or *pages*).
- Database system seeks to minimize the number of block transfers between disk and main memory.
- Transfer can be reduced by keeping as many blocks as possible in main memory.

Buffer Pool

 Portion of main memory available to store copies of disk blocks

STORAGE ACCESS AND BUFFER MANAGEMENT

- Buffer Manager
 - System component responsible for allocating and managing buffer space in main memory

FILE ORGANIZATION TECHNIQUES

SEQUENTIAL

HEAP

FILE ORGANIZATION TECHNIQUES

HASH B+

FILE ORGANIZATION TECHNIQUES

EMPLOYEE TABLE

DEPARTMENT TABLE

EMP_ID	EMP_NAME	EMP_ADD	EMP_DEP	
1001	STEVE	ADDRI	DOI	
1002	JOHN	ADDRZ	200	
1003	AJITH	ADDRZ	DOZ	
1004	RAM	ADDRY	D03	
1005	CHAITANYA	ADDRI	DOI	

EMP_DEP	DEPT_NAME SALES		
DOI			
DOZ	MARKETING		
D03	HR		

CLUSTER KEY

CLUSTER

EMP_DEP	DEPT_NAME	EMP_ID	EMP_NAME	EMP_ADD
DOI	SALES	1001	STEVE	ADDRI
DOI	SALES	1005	CHAITANYA	ADDRI
DOZ	MARKETING	1002	JOHN	ADDRZ
DOZ	MARKETING	1003	AJITH	ADDRZ
D03	HR	1004	RAM	ADDRY