图算法介绍

1. 基础概念

https://github.com/LongLee220/Graph-algorithm

复杂度

空间复杂度: 算法执行完所需要的存储空间

例如图G=(V,E), |V|=10000,|E|=100000

存储矩阵A:

边列表:

0	0	0	1	0	0	0
1	0	0	0	0	0	0
0	0	0	1	0	1	1
0	0	0	0	0	0	0
0	1	0	0	0	0	1
0	0	1	0	1	0	0
0	1	0	0	0	0	0

时间复杂度: $\lim \frac{T(n)}{O(n)} = C$

例 $sum[a_0, a_1, ..., a_{n-1}]$ 与 $var[a_0, a_1, ..., a_{n-1}]$

$$s = a_0 + a_1 + \dots + a_{n-1}$$

$$m = \frac{s}{n}$$

$$v = \frac{(a_0 - m)^2 + (a_1 - m)^2 + \dots + (a_{n-1} - m)^2}{n}$$

目标

存储与效率

基础知识

广度优先搜索(Breadth-First-Search, BFS)

深度优先搜索(Deep-First-Search, DFS)

$$y = A^T * x$$

Algebra Breadth-First-Search
Input: Digraph G
Output: Node set of v_i
A = Adjacent(G) #构造初始矩阵
BFS_set = [] #存储所有BFS节点
$v_i = [0,, 0, 1, 0, 0]_{n \times 1}$
$A^T[i] = 0$
while $v = 0$ do: # 此判断条件针对非联通,
$v = A^T * v$ #矩阵与向量相乘
for i in range(n) and $i \notin BFS_set$ do:
if v[i] != 0 do :#判断哪些位置有新的邻居
BFS_set.append(i) #添加新邻居
A[i] = 0
v[i] = 1

	0
	1
	0
	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$
	0
	0
Step =2	
	0
	1
<u>, </u>	0
0	0
0	0

Step =3

 v_4 =

Step =1

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	1	0	0	0	0	1
0	0	0	0	0	0	0
0	1	0	0	0	0	0

Algebra Breadth-First-Search
Input: Digraph G
Output: Node set of v_i
A = Adjacent(G) #构造初始矩阵
BFS_set = [] #存储所有BFS节点
$v_i = [0,, 0, 1, 0, 0]_{n \times 1}$
$A^{T}[i] = 0$
while $v = 0$ do: # 此判断条件针对非联通,
$v = A^T * v$ #矩阵与向量相乘
for i in range(n) and $i \notin BFS_set$ do:
if v[i] != 0 do :#判断哪些位置有新的邻居
BFS_set.append(i) #添加新邻居
A[i] = 0
v[i] = 1

	0	0	0	1	0	0	0
	1	0	0	0	0	0	0
$A^T =$	0	0	0	1	0	1	1
$A^T =$	0	0	0	0	0	0	0
	0	1	0	0	0	0	1
	0	0	1	0	1	0	0
	0	1	0	0	0	0	0

图算法介绍

- 1. 基础概念
- 2. 强连通分量

Kosaraju
$$(O(m+n))$$

Kosaraju Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Component(G)
- 3. Call DFS(G) to compute finishing times f[u] for $v \in V$
- 4. Compute G^T
- 5. Call DFS(G^T).
- 6. but in the main loop of DFS, consider the decreasing
- 7. Output the vertices of

 \rightarrow 7 \rightarrow 2

Connected $_$ Component $_1 = [1,2,4,7]$

```
tarjan (O(m+n))
```

tarjan Algorithm (G, s, t)

```
Input: G
1.
   Output: Component(G)
    DFN[u] = Low[u] = ++Index
3.
4.
        Stack.push(u)
5.
        for each (u, v) in E do:
            if (v is not visted) do:
6.
                tarjan(v)
7.
8.
                Low[u] = min(Low[u], Low[v])
9.
            else if (v in S) do:
                Low[u] = min(Low[u], DFN[v])
10.
11.
        if (DFN[u] == Low[u]) do:
12.
            repeat
13.
                v = S.pop
14.
                print v
15.
            until (u== v)
```


1.				3.			
+ node	dfn	low	Stack	+ node	dfn	low	Stack
A	1	1	A	G	6	6	A,B,G
В	2	2	A,B	D	7	1	A,B,G,D
E	3	3	A,B, E				
F	4	4	A,B,E,F				

A,B,E,F,C

2.				4.	4.				
- node	dfn	low	Stack	M_node	dfn	low	Stack		
C	4	4	A,B,E,F	G	6	1	A,B,G,D		
F	3	3	A,B,E	В	2	1	A,B,G,D		
F	2	2	ΔΡ						

```
Algebra (O(m+n))
```

Algebra Algorithm (G, s, t)

```
Input: G
1.
    Output: Component(G)
   V_list = [1, 2, ..., n]
4.
    Cmp_list = [ ]
    while V_list != Ø do:
5.
         node = V_list[0]
6.
        cmp node = [ ]
7.
         C = Algebra_BFS(G, node)
8.
         D = Algebra_BFS(G^T, node)
9.
         cmp\_node.append(C \cap D)
10.
         Cmp_node.append(cmp_node)
11.
         V list.remove(cmp)
12.
```


Connected $_$ Component $_1 = [1,2,4,7]$

图算法介绍

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法

Dijkstra Algorithm (有向+非负权) 1957 $O(n^2)$

Dijkstra Algorithm (G, w, s)

- 1. Initialize-Single-Source
- 2. $S = \emptyset$
- 3. Q = V
- 4. while $Q != \emptyset$ do:
- 5. U = EXTRACT-MIN(Q)
- 6. $S = S \cup \{u\}$
- 7. **for** each vertex $v \in G$, Adj[u] **do:**
- 8. RELAX(u, v, w)

Initialize-Single-Source

- 1. **for** each $v \in V$ **do**:
- 2. $d(v) = \infty$
- 3. d(s) = 0

RELAX(u, v, w)

- 1. if p(s,v) > p(s,u) + w(u,v) then:
- 2. p(s,v) = p(s,u) + w(u,v)
- 3. $v.\pi = u$

最短路

 $S = \{A\}$

 $dist = \{0\}$

 $S = \{A,C\}$

 $dist = \{0,5\}$

 $S = \{A,C,E\}$

 $dist = \{0,5,7\}$

 $S = \{A,C,E,B\}$

 $dist = \{0,5,7,8\}$

 $S = \{A,C,E,B,E\}$ $dist = \{0,5,7,8,9\}$

Dijkstra Algorithm (有向+非负权)1987 $O(n + m \log m)$

Fibonacci Heaps Dijkstra Algorithm (G, w, s)

- Initialize-Single-Source
- 2. Make Heap
- 3. $S = \emptyset$
- 4. Q = V
- 5. while Heap != ∅ do:
- 6. U = root
- 7. $S = S \cup \{u\}$
- 8. **for** each vertex $v \in Q S$, Adj[u] **do:**
- 9. if p(s,v) > p(s,u) + w(u,v) then:
- 10. decrease node v or insert v
- 11. delete u in Heap

步骤:从a-b的堆示意图

Bellman-Ford Algorithm (有向+正负权) 1962 O(nm)

Bellman-Ford(G, w, s)

- 1. Initialize-Single-Source
- 2. for i from 1 to |V|-1 do:
- 3. for each edge(u, v) in |E| do:
- 4. RELAX(u, v, w)
- 5. **for** each edge(u, v) in |E| do:
- 6. **if** p(s,v) > p(s,u) + w(u,v) **do:**
- 7. return False

RELAX(u, v, w)

- 1. **if** p(s,v) > p(s,u) + w(u,v) **do:**
- 2. p(s,v) = p(s,u) + w(u,v)
- 3. $v.\pi = u$

Bellman-Ford Algorithm (有向+正负权) 2014

Bellman-Ford(G, w, s)

- 1. Initialize-Single-Source
- 2. for i from 1 to |V|-1 do:
- 3. $d = d \min A$
- 4. **if** d != d min.+ A **do**:
- 5. return "A negative-weight cycle exists."

0	7	6		
1	0	-	-3	9
	8	0	5	-4
		-2	0	
2			7	0

 $d_k(v) = \min_{\forall u \in N} (d_{k-1}(u) + A(u, v))$

$B \overbrace{5}^{-2} D$	0		0	7	6		
6	∞			0	1	-3	9
A 8 -4 7	∞			8	0	5	-4
7	∞		-	l	-2	0	
C 9 E	∞		2	l	1	7	0
	d_0	_					

最短路

Floyd-Warshall(有向+正权)

```
Floyd-Warshall Algorithm (G, w, s)
```

```
Input: A matrix
1.
    Output: D matrix
    for all i != j do:
        d_{ij} = A_{ij}
4.
    for i from 1 to n do:
6.
        d_{ii} = 0
7.
    while True do:
8.
        for i from 1 to n do:
9.
             for j from 1 to n do:
10.
                 D = D.min[D(i,:) min.+ D(:,j)]
```


0	8	5	11	7
∞	0	2	1	4
9	3	0	4	2
11	∞	∞	0	4
7	17	12	6	0

0	8	5	9	7
11	0	2	1	4
9	3	0	4	2
11	19	16	0	4
7	15	12	6	0

图算法介绍

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法
- 4. 最大流算法

Ford-Fulkerson (O(mn))

Ford-Fulkerson Algorithm (G, s, t) (DFS)

- 1. Input: (G, s, t)
- 2. Output: maximum_flow(s,t)
- 3. for $e(u, v) \in E$ do:
- 4. e(u, v).f = 0
- 5. **while** find a route from s to t in the residual network
- 6. $m = min\{e(u, v).f, e(u, v) \in route\}$
- 7. **for** $e(u, v) \in \text{route } do$:
- 8. **if** $e(u, v) \in f$ **do**:
- 9. e(u, v).f = e(u, v).f + m
- 10. else do:
- 11. e(u, v).f = e(u, v).f m

最大流

Edmonds-karp $(O(m^2n))$

Edmonds-karp Algorithm (G, s, t) (BFS)

- Input: (G, s, t)
 Output: maximum_flow(s,t)
- 3. for $e(u, v) \in E$ do:
- 4. e(u, v).f = 0
- 5. while find a shortest route from s to t in E
- 6. $m = min\{e(u, v).f, e(u, v) \in route\}$
- 7. **for** $e(u, v) \in \text{route } do:$
- 8. **if** $e(u, v) \in f$ **do**:
- 9. e(u, v).f = e(u, v).f + m
- 10. else do:
- 11. e(u, v).f = e(u, v).f m

Dinic $(O(n^2m))$

```
Dinic Algorithm (G, s, t)

1.    Input: (G, s, t)
2.    Output: maximum_flow(s,t)
3.    while find a shortest route from s to t in E do:
4.    BFS()
5.    while find a do:
6.         ans += a
7.    return ans
```


图算法介绍

- 1. 基础概念
- 2. 强连通分量
- 3. 最短路算法
- 4. 最大流算法
- 5. 支撑树算法

$Kruskal (O(n^2 log m))$

Kruskal Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Tree(G)
- 3. Tree(G) = \emptyset
- 4. for each vertex $v \in V$ do:
- 5. MAKE-SET(v)
- 6. sort the edges of E into nondecreasing order by weight
- 7. **for** each edge(u, v) \in E **do**:
- 8. taken in nondecreasing order by weight
- 9. **if** FIND-SET(u) != MAKE-SET(v) **then:**
- 10. Tree(G) = Tree(G) \cup {(u, v)}
- 11. UNION(u, v)
- 12. return Tree(G)

Key(C)=8

Key(G)=9

$$Prim (O(m + nlog m))$$

Prim Algorithm (G, s, t)

- 1. for each vertex $u \in V$ do: A
- 2. $key[u] = \infty$
- $\pi[u] = NIL$ 3.
- Key[r]=0
- Q = V
- while Q $!= \emptyset$ do:
- 7. u = EXTRACT-MIN(Q)
- for each $v \in Adj[u]$ do: 8.
- if $v \in Q \& w(u, v) < key[v]$ then: 9.
- $\pi[v] = u$ 10.
- 11. key[v] = w(u, v)

 $K_{e}(B)=7$

Key(A)=0

Prim Algorithm (G, s, t)

- 1. Initial u
- 2. **for** each vertex $v \in V \setminus u$ **do**:
- 3. $d[v] = \infty$
- 4. d[u] = 0
- 5. $S = V \setminus u$
- 6. Q = set.add(u)
- 7. while $S != \emptyset$ do:
- 8. u = EXTRACT-MIN(Q)
- 9. d = d.min(A[u])
- 10. select 'argmin(d(u')) $u' \in S$
- 11. S.del(u')
- 12. Q.add(u')

$$d = [0, \infty, \infty, \infty, \infty, \infty, \infty]$$

A,
$$d = [0, 7, \infty, 5, \infty, \infty, \infty]$$

D, d =
$$[0, 7, \infty, 5, 15, 6, \infty]$$

F, d =
$$[0, 7, \infty, 5, 8, 6, \infty]$$

B,
$$d = [0, 7, 8, 5, 7, 6, \infty]$$

E,
$$d = [0, 7, 5, 5, 7, 6, 9]$$

C,
$$d = [0, 7, 5, 5, 7, 6, 9]$$

$$F, d = [0, 7, 5, 5, 7, 6, 9]$$

Boruvka (O(nlogm))

Boruvka Algorithm (G, s, t)

- 1. Input: G
- 2. Output: Tree(G)
- 3. Tree(G) = \emptyset
- 4. while Tree(G) does not from a spanning tree do:
- 5. find an edge(u, v) that is safe for Tree(G)
- 6. Tree(G) = Tree(G) \cup {(u, v)}
- 7. return Tree(G)

 $\{A-D, B-A, C-E, F-D, G-E\}$

 $\{B-C, B-E, D-E, F-E, F-E, F-G\}$

Homework

Homework: O放圆陆求最小树, 计看名析算法复杂性 ②效进 kruskal算法 (預加利斯不连通的情况, 处理G为不连通的情形)

- 5.如何求任意两点的最短路?
- 6.有负权的网络如何设计最短路?
- 7. 最大流的快速求解算法

Johnson Algorithm

Stack

1

2

3

Blocked

B

B

2:5

4:5

Stack

2

3

4

5

Blocked

1

2

3

2

3

4

5

Stack

Blocked

B

2:5

4:5

4:6

5

2

3

Stack

2

3

6

Blocked

3

4

5

6

B

Blocked

1

2

B

Stack

5

3

Johnson Algorithm (n + m) *C

Homework

Homework: O放圆陆求最小树, 计看名析算法复杂性 ②效进 kruskal算法 (豫加利斯不连通的情况, 处理G为不连面的情形)

- 5.如何求任意两点的最短路?
- 6.有负权的网络如何设计最短路?
- 7. 最大流的快速求解算法:

https://arxiv.org/pdf/2203.00671.pdf

Push_Relabel $(O(n^2m))$

Push_Relabel Algorithm (G, s, t)

14

- 1. Initialize PreFlow: Initialize Flows and Heights While it
- 2. is possible to perform a Push() or Relabel() on a vertex
- 3. // Or while there is a vertex that has excess flow **Do** Push()
- 4. or Relabel()
- 5. // At this point all vertices have Excess Flow as 0 (Except
- 6. source // and sink)

12

7. Return flow.

19

S

