

İstanbul Bilgi University
Faculty of Engineering and Natural Sciences
Department of Electrical and Electronics Engineering

Course: EEEN 322 - Communication Engineering

Instructor: İpek Şen

Exam / Date: Midterm Exam / 04.04.2019 13:00

Duration: 100 min.

Name & surname:	
ID number:	

Question	1	2	3	4	Total
Score					
Maximum score	20	25	35	30	100
CLO	1,2	1,2,4	1,2,4	1,3,4,5	1,2,3,4,5

Question 1 (20 points)

Suppose that the message signal to be modulated is $m(t) = \operatorname{sinc}(\pi t)$, where $\operatorname{sinc}(x) = \begin{cases} 1, & x = 0 \\ \frac{\sin x}{x}, & x \neq 0 \end{cases}$

a) Find the total energy of m(t). (15p)

b) Is m(t) a power signal or energy signal? State your reasoning. (5p)

*BONUS: Suppose that we perform DSB+C (AM) modulation to modulate m(t) given in (a). Find the minimum carrier amplitude (hint: A in the mathematical expression) that will allow envelope detection for demodulation. (10p)

Question 2 (25 points)

Suppose that we perform DSB+C (AM) modulation to modulate m(t) given in Question 1, using a carrier with frequency 1kHz. Let the carrier amplitude (hint: A in the mathematical expression) be equal to 2.

a) Write the mathematical expression of $\varphi_{AM}(t)$. (5p)

b) Write the mathematical expression of $\Phi_{AM}(\omega)$. (10p)

c) Sketch $\Phi_{AM}(\omega)$ (label the axes carefully). (10p)

Question 3 (35 points)

Suppose you perform DSB-SC modulation and the modulated signal is $\varphi_{DSB-SC}(t) = e^{-|t|} \cos(1000\pi t)$.

a) Give the mathematical expression of the message signal m(t). (5p)

b) Give the value of the carrier frequency in Hz. (5p)

c) Sketch $\varphi_{DSB-SC}(t)$ (label the axes carefully). (10p)

d) Can we use an envelope or rectifier detector circuit for demodulation here (for the specific message signal of this question)? Why? Give a brief and neat explanation. (5p)

e) Write the mathematical expression of the spectrum $\Phi_{os}(\omega)$. (10p)

Question 4 (30 points)

Suppose that DSB+C (AM) modulation is being performed to modulate the message signal $m(t) = 0.25 \cos 5000\pi$ using a carrier with frequency 10MHz.

a) If the power efficiency of the modulation is 10%, what is the amplitude of the carrier? (10p)

b) To be able to demodulate the message signal by using the below circuit, what is the acceptable range of values for the carrier amplitude? (5p)

c) For the output of the above circuit to follow the envelope with acceptable performance, what is the acceptable range of values for R, if C=22 pF? (10p)

d) For the case that m(t) can be demodulated by using the circuit in (b), what is the carrier amplitude that would yield the maximum power efficiency? (5p)

Table 1: Some Fourier Transform pairs

		ororm pairs	
	g(t)	$G(\omega)$	
1	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j\omega}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2+\omega^2}$	<i>a</i> > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2}$	<i>a</i> > 0
5	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}}$	· a > 0
6	$\delta(t)$	1	
7 .	1	$2\pi\delta(\omega)$	*
8	$e^{j\omega_0t}$	$2\pi\delta(\omega-\omega_0)$	
9	$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
10	$\sin \omega_0 t$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$	
11	u(t)	$\pi\delta(\omega) + rac{1}{j\omega}$	
12	sgn t	$\frac{2}{j\omega}$	
13	$\cos \omega_0 t \ u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{\pi}{\omega}$	$\frac{j\omega}{c^2-\omega^2}$
14	$\sin \omega_0 t u(t)$	$\frac{\pi}{2j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]+\frac{\pi}{2}$	•
15	$e^{-at}\sin\omega_0t\ u(t)$	$\frac{\omega_0}{(a+j\omega)^2+\omega_0^2}$	a > 0
16	$e^{-at}\cos\omega_0 t\ u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	a > 0
.7	$rect\left(\frac{t}{\tau}\right)$	τ sinc $\left(\frac{\omega\tau}{2}\right)$	
.8	$\frac{W}{\pi}$ sinc (Wt)	$rect\left(\frac{\omega}{2W}\right)$	
.9	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\omega \tau}{4} \right)$	
.0	$\frac{W}{2\pi} \operatorname{sinc}^2 \left(\frac{Wt}{2} \right)$	$\Delta \left(\frac{\omega}{2W}\right)$	•
1	$\sum_{n=-\infty}^{\infty} \delta(t - nT)$	$\omega_0 \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_0)$	$\omega_0 = \frac{2\pi}{T}$

$$\operatorname{sinc}(x) = \begin{cases} 1, & x = 0 \\ \frac{\sin x}{x}, & x \neq 0 \end{cases}$$

Table 2: Some properties of Fourier Transform

Operation	g(t)	$G(\omega)$
Addition Scalar multiplication	$g_1(t) + g_2(t)$ $kg(t)$	$G_1(\omega) + G_2(\omega)$ $kG(\omega)$
Symmetry (Duality)	G(t)	$2\pi g(-\omega)$
Scaling	g(at)	$\frac{1}{ a }G\left(\frac{\omega}{a}\right)$
Time shift Frequency shift	$g(t-t_0)$	$G(\omega)e^{-j\omega t_0}$
Time convolution	$g(t)e^{j\omega_0t}$ $g_1(t) * g_2(t)$	$G(\omega - \omega_0)$ $G_1(\omega)G_2(\omega)$
Frequency convolution	$g_1(t)g_2(t)$	$\frac{1}{2\pi}G_1(\omega)*G_2(\omega)$
Time differentiation	$\frac{d^n g}{dt^n}$	$(j\omega)^n G(\omega)$
Time integration	$\int_{-\infty}^{t} g(x) dx$	$\frac{G(\omega)}{j\omega} + \pi G(0)\delta(\omega)$

Some definitions & identities:

Parseval's Theorem: $\int_{-\infty}^{\infty} |g(x)|^2 dx$

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(\omega)|^2 d\omega$$

$$\eta = \frac{P_{sidebands}}{P_{sidebands} + P_{carrier}}$$

 $2\sin\alpha\cos\beta = \sin(\alpha - \beta) + \sin(\alpha + \beta)$

 $2\sin\alpha\sin\beta = \cos(\alpha - \beta) - \cos(\alpha + \beta)$

 $2\cos\alpha\cos\beta = \cos(\alpha-\beta) + \cos(\alpha+\beta)$

Hints:

$$\frac{1}{\omega_c} << RC << \frac{1}{2\pi B}$$

 $m(t)\cos\omega_c t$

 $|A+m(t)|\cos\omega_c t$

LAUREATE INTERNATIONAL UNIVERSITIES

Complete the following sections 1-7

Aşağıdaki Bölümleri Doldurunuz 1-7

1. First Names / Ad IPEK SEN	2. Surname / Soyad
3. Department / Bölüm	4. Student ID / Öğrenci No
5. Course Name / Ders Adı	6. Academic Year / Akademik Yıl
EEEN 322	2018-2019 (BAHAR)

7	Data	of	Evam	1	Sinav	Tarihi
1 -	Date	OI.	CXdIII	1	Julay	I all III

04.04.2019 (MdT)

For Examiner's only Öğretim Elemanı İçin			
Question Number Soru Numarası	Marks Puan		
Toplam Puan / Total Marks			

No. of Question / Soru No		Do not write in this margin / Bu alana yazmayınız
Q1	a) $M(+) = SMC(T+)$	
	a) $M(t) = SMC(\pi t)$ $E_m = \int_{-\infty}^{\infty} M(t) ^2 dt = \int_{-\infty}^{\infty} (M(w) ^2 dw$	
	-m 2Ti J	
	$-m(+) = snc(\pi +) \xrightarrow{\mathcal{F}} M(w) = rect(\frac{w}{2\pi})$ (see To	able 1)
	$\frac{m(+)}{3} = \frac{m(+)}{1}$	
	$= \frac{1}{2\pi} \int_{-\infty}^{\infty} M(w) ^2 dw = \frac{1}{2\pi} \int_{-\pi}^{\pi} 1^2 dw = \frac{1}{2\pi} \cdot 2\pi = 1$	(15)
	-b) Since OKEnKo, n(+) is an energy signal	(5)
	* Bonus For envelope detection we shall have	
	At m(+) > 0 ++, i.e. after shifting by A, the	
	Signal shold be above O-level	
	m(t) = sinc(Tit) = sinTit Lan lobes that get	
	smaller on majortude as + gets larger	
	$n(-1.5) = 5n.15\pi = -1$ 1.5 π 1.5 π 1.5 π	
	approvede of the first regative labe) is the regative	
	peak of m(+) -> the moment value of A TS 0.212	(0)
	(See the above sketch of the signal It crosses with =0	[33
	@ += ±1, ±2, ±3, The first repative peak in the one	<u> </u>
	the largest magnifiede and occurs @ t= 11.5)	
	/	

No. of Question / Soru No		Do not write in this margin / Bu alana yazmayınız
Q 2	f==1kH2 = w== 2T1 x f== 2T1 x 1000 = 2000 TI TO	ط/s
	A = 2	
	a)(A+m(+)) 62 ws+	
	= [2 + smc(Tit)] cos 2000 Tit (5)	
	b) - 4m (+) = 2000000 + + 5Mc (71+) 605 2000 TT	
	COS wet FT[S(w-ne)+S(w+we)]	
	$ \begin{array}{c} \cos w_{c} + \stackrel{\mathcal{F}}{\longleftrightarrow} \pi[\mathcal{N}(w_{-}w_{c}) + \mathcal{N}(w_{+}w_{c})] \\ m(+) & (\omega_{c} + w_{c}) + \mathcal{N}(w_{-}w_{c}) + \mathcal{N}(w_{-}w_{c}) \end{array} $	
	$m(+) = sinc(71+) \iff m(\omega) = rect(\frac{\omega}{2\pi})$	
	=) SINC(TIT) COS 2000 TIT () [rect (w-2000 T))	
	, , , , ,	
	$+ \operatorname{rec} + \left(\frac{\omega + 2 \cos \tau}{2 \pi} \right)$	
	> T () 0= [() 0 -> () 1	
	= 271 [f(w-2007) + f(w+2000)]	
	$+\frac{1}{2}\left[\frac{rect\left(\frac{w-2000T}{2\Pi}\right)+rect\left(\frac{w+2000T}{2\Pi}\right)}{2\Pi}\right]$	(10)
	Pan(w)	
	φ + 2π Λ	
	-1/2	$\widehat{\mathcal{O}}$
	-2001π -2000π -1999π 1999π 2000π 2001π	<u>-</u>

No. of Question / Soru No		Do not write in this margin / Bu alana yazmayınız
Q3	(a) $m(t) = e^{- t }$ (5)	
	$\omega_{c} = 1000\pi = f_{c} = \omega_{c} = \frac{1000\pi}{2\pi} = 500 \text{ Hz} = \frac{5}{5}$	
	+ (10)	
	-1 / 16 = 0.002 s	
	d) Since m(+) > 0 ++, yes we can use an	
	- Envelope detector for devolution (observe that	
	the envelope of Yosp-sc (+) given in (c) is the	5)
	- Message Aself)	
	-e) m(+) - (a) w _c + + + + (w + w _e) + + (w + w _e)]	
	$m(+) = e^{- + } \xrightarrow{\mathcal{F}} M(\omega) = 2$ (see Table $1 + \omega^2$	1)
	$= \frac{1}{2} \left[\frac{2}{1 + (\omega - 1000\pi)^2} + \frac{2}{1 + (\omega + 1000\pi)^2} \right]$	(10)
	= 1 1	
	$= \frac{1}{(1+(\omega-1000\pi)^2} + \frac{1}{1+(\omega+1000\pi)^2}$	

No. of Question / Soru No		Do not write in this margin / Bu alana yazmayınız
Q4	m(+) = 0.25.65.5022TT+ , we = 271x107 red/s.	
	a) = Psidebands = 10% = 0.1	
	Pearner + Pstdebands	
	Pam(+) = (A+0.2565500071+] 65271x107+	
	= A 62271 x107+ + 0.25 62502571+ 62271 x107	±
	caring sidebands	
	= A622/1x10++0.125 cos wx++0.125 cos wy+	
	were w = 2T x 10 - 50= 2T	
	and $w_y = 271 \times 10^7 + 5020T$	
	Pearser = A2 , Perzebands = (0.125)2 + (0.125)2 - (2.12	=)2(4)
	2 2 2	~-
	$\frac{1}{2} = \frac{(0.125)^2}{(0.125)^2} = 0.1$	
	$\Rightarrow 0.1 \frac{A^2}{2} + 0.1 (0.125)^2 = (0.125)^2$	
	$0.1 \pm \frac{1}{2} = 0.9.(0.125)^{2}$	
	$A^2 = 18(0.125)^2 \implies A = 0.53$ (3)	
	b) m(+) = 0.25 65 5000 Tit	
	$=)$ $M_{\rm p} = 0.25$	
	For envelope det, A 7 Mp => A 7 0.25 (5)	
	() 1 1 RCEE 1 M(w)	
	$\frac{1}{\omega_{c}} = \frac{1}{2\pi B} = \frac{M(\omega)}{2\pi B}$ $\frac{1}{\sqrt{25\pi}} = \frac{1}{\sqrt{25\pi}} = \frac{1}{\sqrt$	
	- 5020π 5020π ω = 27.8.0 τod/s 3	
	27(B = 5000TC rad/s 3) Barduista 2TT	B
	C= 22 pF	
		/

No. of Question / Soru No		Do not write in this margin / Bu alana yazmayınız
	1 << R << 1 271×10 ⁷ ×22×10 ⁻¹² 5000TI × 22×10 ⁻¹²	
	271x107 x 22x1012 5000TT x 22x1012	
	723.41 K R K 2.894 MA 3	
	→ 7.234 k 2 < R < 289,4 k 2	
	()	
~	d) Max power efferency is obtained with the	
	- sassman allowable carrier applique => A = 0.25	(5)