Introduction to Spatial Database Systems

Vu Tuyet Trinh

Spatial Databases: A Tour, Shashi Shekhar and Sanjay Chawla

Value of SDBMS

- Traditional (non-spatial) database management systems provide:
 - Persistence across failures
 - Allows concurrent access to data
 - Scalability to search queries on very large datasets which do not fit inside main memories of computers
 - Efficient for non-spatial queries, but not for spatial queries
- Non-spatial queries:
 - List the names of all bookstore with more than ten thousand titles.
 - List the names of ten customers, in terms of sales, in the year 2001
- Spatial Queries:
 - List the names of all bookstores with ten miles of Minneapolis
 - List all customers who live in Tennessee and its adjoining states

Value of SDBMS - Spatial Data Examples

- Examples of non-spatial data
 - Names, phone numbers, email addresses of people
- Examples of Spatial data
 - Census Data
 - NASA satellites imagery terabytes of data per day
 - Weather and Climate Data
 - Rivers, Farms, ecological impact
 - Medical Imaging

3

Value of SDBMS - Users, Application Domains

- Many important application domains have spatial data and queries. Some Examples follow:
 - **Army Field Commander**: Has there been any significant enemy troop movement since last night?
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Mississippi?
 - **Medical Doctor**: Based on this patient's MRI, have we treated somebody with a similar condition?
 - Molecular Biologist: Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
 - **Astronomer**: Find all blue galaxies within 2 arcmin of quasars.

Applications+

- Various fields/applications require management of geometric, geographic or *spatial* data:
 - A geographic space: surface of the earth
 - Man-made space: layout of VLSI design
 - Model of rat brain

5

What is a SDBMS?

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs) and a query language from which these ADTs are callable
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific rules for query optimization
- Example: Oracle Spatial Extension
 - can work with Oracle 10g DBMS
 - Has spatial data types (e.g. polygon), operations (e.g. overlap) callable from SQL3 query language
 - Has spatial indices, e.g. R-trees

What is an SDBMS?*

- Common challenge: dealing with large collections of relatively simple geometric objects
- Different from *image* and *pictorial* database systems:
 - Containing sets of objects in space rather than images or pictures of a space

SDBMS Example

- Consider a spatial dataset with:
 - County boundary (dashed white line)
 - Census block name, area, population, boundary (dark line)
 - Water bodies (dark polygons)
 - Satellite Imagery (gray scale pixels)
- Storage in a SDBMS table:

create table census_blocks (
name string,
area float,
population number,
boundary polygon);

Modeling Spatial Data in Traditional DBMS

- •A row in the table census blocks
- •Question: Is Polyline datatype supported in DBMS?

Ç

Spatial Data Types and Traditional Databases

- Traditional relational DBMS
 - Support simple data types, e.g. number, strings, date
 - Modeling Spatial data types is tedious
- Example: next slide shows modeling of polygon using numbers
 - Three new tables: polygon, edge, points
 - Note: Polygon is a polyline where last point and first point are same
 - A simple unit sqaure represented as 16 rows across 3 tables
 - Simple spatial operators, e.g. area(), require joining tables
 - Tedious and computationally inefficient

Mapping "census_table" into a **Relational Database**

Census	blocks

Name	Area	Population	boundary-ID
340	1	1839	1050

Polygon

boundary-ID	edge-name
1050	A
1050	В
1050	С
1050	D

Edge

edge-name	endpoint	
A	1	
A	2	
В	2	
В	3	
c	3	
С	4	
D	4	
D	1	

Point

endpoint	x-000t	y-coor	
1	0	1	
2	0	0	
3	1	0	
4	1	1	

Evolution of DBMS technology

Spatial Data Types and Post-relational Databases

- Post-relational DBMS
 - Support user defined abstract data types
 - Spatial data types (e.g. polygon) can be added
- Choice of post-relational DBMS
 - Object oriented (OO) DBMS
 - Object relational (OR) DBMS
- A spatial database is a collection of spatial data types, operators, indices, processing strategies, etc. and can work with many post-relational DBMS as well as programming languages like Java, Visual Basic etc.

13

How is a SDBMS different from a GIS?

- GIS is a software to visualize and analyze spatial data using spatial analysis functions such as
 - Search Thematic search, search by region, (re-)classification
 - Location analysis Buffer, corridor, overlay
 - Terrain analysis Slope/aspect, catchment, drainage network
 - Flow analysis Connectivity, shortest path
 - Distribution Change detection, proximity, nearest neighbor
 - Spatial analysis/Statistics Pattern, centrality, autocorrelation, indices of similarity, topology: hole description
 - Measurements Distance, perimeter, shape, adjacency, direction
- GIS uses SDBMS
 - to store, search, query, share large spatial data sets

How is a SDBMS different from a GIS?

- SDBMS focuses on
 - Efficient storage, querying, sharing of large spatial datasets
 - Provides simpler set based query operations
 - Example operations: search by region, overlay, nearest neighbor, distance, adjacency, perimeter etc.
 - Uses spatial indices and query optimization to speedup queries over large spatial datasets.
- SDBMS may be used by applications other than GIS
 - Astronomy, Genomics, Multimedia information systems, ...
- Will one use a GIS or a SDBM to answer the following:
 - How many neighboring countries does USA have?
 - Which country has highest number of neighbors?

15

Three meanings of the acronym GIS

- Geographic Information Services
 - Web-sites and service centers for casual users, e.g. travelers
 - Example: Service (e.g. AAA, mapquest) for route planning
- Geographic Information Systems
 - Software for professional users, e.g. cartographers
 - Example: ESRI Arc/View software
- Geographic Information Science
 - Concepts, frameworks, theories to formalize use and development of geographic information systems and services
 - Example: design spatial data types and operations for querying

Components of a SDBMS

Recall: a SDBMS is a software module that

- can work with an underlying DBMS
- supports spatial data models, spatial ADTs and a query language from which these ADTs are callable
- supports spatial indexing, algorithms for processing spatial operations, and domain specific rules for query optimization

Components include

- spatial data model, query language, query processing, file organization and indices, query optimization, etc.

17

Spatial Taxonomy, Data Models

• Spatial Taxonomy:

- multitude of descriptions available to organize space.
- Topology models homeomorphic relationships, e.g. overlap
- Euclidean space models distance and direction in a plane
- Graphs models connectivity, Shortest-Path

Spatial data models

- rules to identify identifiable objects and properties of space
- Object model help manage identifiable things, e.g. mountains, cities, land-parcels etc.
- Field model help manage continuous and amorphous phenomenon, e.g. wetlands, satellite imagery, snowfall etc.

Modeling*

- WLOG assume 2-D and GIS application, two basic things need to be represented:
 - Objects in space: cities, forests, or rivers
 - · modeling single objects
 - Space: say something about every point in space (e.g., partition of a country into districts)
 - · modeling spatially related collections of objects

19

Modeling*

- Fundamental abstractions for modeling single objects:
 - Point: object represented only by its location in space, e.g., center of a state
 - Line (actually a curve or ployline): representation of moving through or connections in space, e.g., road, river
 - Region: representation of an extent in 2d-space, e.g., lake, city

Modeling*

- Instances of spatially related collections of objects:
 - Partition: set of region objects that are required to be disjoint (adjacency or region objects with common boundaries), e.g., thematic maps
 - Networks: embedded graph in plane consisting of set of points (vertices) and lines (edges) objects, e.g. highways, power supply lines, rivers

Modeling*

- Spatial relationships:
 - Topological relationships: e.g., adjacent, inside, disjoint. Are invariant under topological transformations like translation, scaling, rotation
 - Direction relationships: e.g., above, below, or north_of, southwest_of,
 - Metric relationships: e.g., distance
- Enumeration of all possible topological relationships between two simple regions (no holes, connected):
 - Based on comparing two objects boundaries (dA) and interiors (A₀), there are 4 sets each of which be empty or not = 24=16.
 8 of these are not valid and 2 symmetric so:
- 6 valid topological relationships:
 - disjoint, touch, overlap, cover, in, equal

Enqualap

Modeling*

 DBMS data model must be extended by SDTs at the level of atomic data types (such as integer, string), or better be open for user-defined types (OR-DBMS approach):

relation states (sname: STRING; area: REGION; spop: INTEGER)
relation cities (cname: STRING; center: POINT; ext: REGION; cpop:
 INTEGER);

relation rivers (rname: STRING; route: LINE)

23

Spatial Query Language

- Spatial query language
 - Spatial data typese.g. point, linestring, polygon, ...
 - Spatial operationse.g. overlap, distance, nearest neighbor, ...
 - Callable from a query language (e.g. SQL3) of underlying DBMS

SELECT S.name FROM Senator S WHERE S.district.Area() > 300

Query Processing

- Efficient algorithms to answer spatial queries
- Common Strategy filter and refine
 - Filter Step:Query Region overlaps with MBRs of B,C and D
 - Refine Step: Query Region overlaps with B and C

Querying*

Fundamental spatial algebra operations:

- Spatial selection: returning those objects satisfying a spatial predicate with the query object
 - " Il cities in Bavaria" SELECT sname FROM cities c WHERE c.center inside Bavaria.area
 - " Il rivers intersecting a query window"
 SELECT * FROM rivers r WHERE r.route intersects Window
 - "Il big cities no more than 100 Kms from Hagen"
 SELECT cname FROM cities c WHERE dist(c.center, Hagen.center) < 100 and c.pop > 500k
 (conjunction with other predicates and query optimization)

Querying*

- Spatial join: A join which compares any two joined objects based on a predicate on their spatial attribute values.
 - "For each river pass through Bavaria, find all cities within less than 50 Kms."

SELECT r.rname, c.cname, length(intersection(r.route, c.area))

FROM rivers r, cities c

WHERE r.route intersects Bavaria.area and dist(r.route,c.area) < 50 Km

27

File Organization and Indices

- A difference between GIS and SDBMS assumptions
 - •GIS algorithms: dataset is loaded in main memory (a)
 - •SDBMS: dataset is on secondary storage e.g disk (b)
 - •SDBMS uses space filling curves and spatial indices
 - •to efficiently search disk resident large spatial datasets

Organizing spatial data with space filling curves

•Issue:

- •Sorting is not naturally defined on spatial data
- •Many efficient search methods are based on sorting datasets
- Space filling curves
 - •Impose an ordering on the locations in a multi-dimensional space
 - •Examples: row-order (a), z-order (b)
 - Allow use of traditional efficient search methods on spatial data
 - · More details on next sessions

1	2	3	4
5	6	7	s
9	10	11	12
13	14	15	16

29

Spatial Indexing

- •To expedite spatial selection (as well as other operations such as spatial joins, ...)
- •It organizes space and the objects in it in some way so that only parts of the space and a subset of the objects need to be considered to answer a query.
- •Two main approaches:
 - •Dedicated spatial data structures (e.g., R-tree)
 - •Spatial objects mapped to a 1-D space to utilize standard indexing techniques (e.g., B-tree)

Spatial Data Mining

- Analysis of spatial data is of many types
 - Deductive Querying, e.g. searching, sorting, overlays
 - Inductive Mining, e.g. statistics, correlation, clustering, classification, ...
- Data mining is a systematic and semi-automated search for interesting non-trivial patterns in large spatial databases
- •Example applications include
 - •Infer land-use classification from satellite imagery
 - •Identify cancer clusters and geographic factors with high correlation
 - •Identify crime hotspots to assign police patrols and social workers

Summary

- SDBMS is valuable to many important applications
- SDBMS is a software module
 - works with an underlying DBMS
 - provides spatial ADTs callable from a query language
 - provides methods for efficient processing of spatial queries
- Components of SDBMS include
 - spatial data model, spatial data types and operators,
 - spatial query language, processing and optimization
 - spatial data mining
- SDBMS is used to store, query and share spatial data for GIS as well as other applications