Лабораторна робота № 4

Програмування найпростіших обчислювальних алгоритмів лінійної структури

Мета роботи: навчитися складати й програмувати мовою С найпростіші обчислювальні алгоритми лінійної структури, а також визначати константи, використовувати функції стандартної математичної бібліотеки math.h і формати функцій printf і scanf при введенні-виведенні даних.

Завдання: дано алгоритм, відповідно до якого треба послідовно виконати такі дії:

- вивести на екран вигляд заданих функцій f_1 , f_2 , f_3 ;
- ввести значення параметра a і змінної x;
- трьом змінним y,z,t дійсного типу послідовно присвоїти значення трьох заданих функцій (при цьому константи для першої функції f_1 визначити в декларативній частині, функцію f_2 записати з мінімумом операцій, функцію f_3 запрограмувати без оптимізації), ОДЗ не перевіряти;
- вивести обчислені значення (у=значення_у) на екран у форматі з фіксованою точкою;
- виконати переприсвоєння значень змінних $(y \leftarrow z, z \leftarrow t, t \leftarrow y)$;
- знову вивести на екран значення змінних (у=значення_у) у форматі з фіксованою точкою.

Намалювати блок-схему алгоритму і запрограмувати його мовою С. Текст програми подати в структурованому вигляді. Коментарі в програмі обов'язкові (17-25%; не забувайте в коментарях писати **прізвише, групу, варіант, назву роботи**). За алгоритмом провести розрахунки не менш ніж з трьома різними наборами значень параметра a і змінної x (значення a і x підбирати так, щоб вони задовольняли ОДЗ). Правильність обчислень перевірити в Excel (при захисті роботи показувати результат розрахунку). У звіті формули набирати лише в Microsoft Equation.

Варіанти завдань (номер варіанту відповідає номеру студента за списком)

1.
$$\frac{\sqrt{x-2}}{3-ax} + |\cos x - 4|$$
, $\frac{1}{4}x^3 + \frac{3}{10}x^2 + 7e^{1-tgx}$, $\frac{7}{8}x^{-0.12}$

2.
$$\frac{x-a}{1-7\sqrt{x}} - \log_5|x-1|$$
, $\frac{3}{4}x^2 - \frac{7}{10}x + 2e^{-tgx}$, $\frac{3}{5}x^{-5,3}$

3.
$$\frac{3x-2a}{\sqrt{x}+5} - \ln|x+2|$$
, $\frac{5}{2}x^2 - \frac{7}{10}x - e^{1-ctgx}$, $\frac{4}{5}x^{-2,1}$

4.
$$\sqrt{\frac{x-a}{3x+1}} + \left|\sin x - 2\right|, \frac{1}{4}x + \frac{7}{5}x^3 - 2e^{x-3}, \frac{7}{10}x^{4,2}$$

5.
$$\sqrt{\frac{\ln x + 1}{5x + a}} + |x + 5tgx|, \frac{1}{8}x - \frac{3}{10}x^2 - e^{ctgx + 1}, \frac{5}{8}x^{-4,1}$$

6.
$$\frac{7x-a}{3+\log_2 x} + \sqrt{|x+3|}$$
, $\frac{1}{4}x^2 - \frac{4}{10}x^3 - e^{3x+5}$, $\frac{4}{5}x^{-0.3}$

7.
$$\sqrt{\frac{5x-a}{x^2-1}} + \cos|x-1|$$
, $\frac{5}{4}x^2 - \frac{4}{20}x - 2e^{\sin x}$, $\frac{4}{5}x^{5,4}$

8.
$$\frac{\sqrt{\ln x + 3}}{3x + a - 4} + ctg|x - 4|, \frac{7}{4}x^3 - \frac{4}{5}x + xe^{-3tgx}, \frac{7}{8}x^{0,7}$$

9.
$$\frac{\sqrt{x+3}}{2a-x} + \log_3 \left|\cos x + 3\right|, \frac{8}{10}x + \frac{7}{4}x^3 - e^{1+x}, \frac{3}{8}x^{-4,4}$$

10.
$$\sqrt{\frac{x+a}{2x+5}} + |\sin x - 2|, \frac{9}{2}x + \frac{3}{10}x^2 + e^{ctg 2x}, \frac{1}{2}x^{6,3}$$

11.
$$\frac{2x+a}{\sqrt{x}-3} - \log_3|x-4|$$
, $\frac{1}{2}x + \frac{3}{10}x^2 - e^{-tgx+2}$, $\frac{3}{4}x^{3,1}$

12.
$$\frac{\sqrt{\ln x + 2}}{4x - a} + \sin|x + 4|$$
, $\frac{3}{4}x^2 - \frac{4}{5}x^3 + e^{ctg(x+2)}$, $\frac{3}{5}x^{-0.2}$

13.
$$\sqrt{\frac{x+1}{2-ax}} - \log_5|x-1|$$
, $\frac{1}{4}x^2 + \frac{7}{5}x + 4e^{tg(x-6)}$, $\frac{3}{5}x^{3,4}$

14.
$$\frac{5x-a}{1-\sqrt{x+1}}-ctg|x-5|$$
, $\frac{3}{4}x+\frac{6}{5}x^3-7e^{x-8}$, $\frac{1}{4}x^{4,2}$

15.
$$\frac{2x-a}{3-\sqrt{x-1}} - 3\cos|x|$$
, $\frac{3}{2}x^3 - \frac{3}{10}x + 7e^{-2tgx}$, $\frac{4}{5}x^{6,8}$

16.
$$\sqrt{\frac{x+2}{2-ax}} + 4|\log_2 x - 1|$$
, $\frac{5}{4}x^2 + \frac{3}{10}x - 2e^{3tgx+5}$, $\frac{2}{5}x^{2,6}$

17.
$$\frac{\sqrt{\ln(x+1)}}{5x-a} + \sin|x+5|$$
, $\frac{7}{2}x^2 - \frac{2}{5}x^3 + 2e^{tgx}$, $\frac{3}{8}x^{-3.8}$

18.
$$\sqrt{\frac{4x-a}{x-2}} + \log|x-2|$$
, $\frac{5}{2}x + \frac{7}{5}x^2 - e^{4tgx}$, $\frac{3}{4}x^{1,9}$

19.
$$\sqrt{\frac{2x+a}{4x-3}} + \left|\cos x\right|, \frac{3}{4}x^3 + \frac{9}{5}x + 4e^{tg(x-6)}, \frac{3}{5}x^{3,3}$$

20.
$$\frac{\sqrt{x+2}}{a-3x} + tg|\cos x + 3|$$
, $\frac{1}{10}x + \frac{5}{4}x^2 - e^{2+x}$, $\frac{3}{8}x^{-5,4}$

21.
$$\frac{x-3a}{2+\sqrt{x-3}}-tg|x-2|$$
, $\frac{7}{2}x^3-\frac{3}{10}x+e^{ctgx}$, $\frac{2}{5}x^{3,8}$

22.
$$\frac{\sqrt{x+2}}{2-ax} + |\cos x + 5|$$
, $\frac{3}{4}x^3 + \frac{7}{10}x^2 + 7e^{2-tgx}$, $\frac{7}{8}x^{-0.26}$

23.
$$\sqrt{\frac{x-a}{2x+1}} + |\sin x - 3|$$
, $\frac{1}{4}x + \frac{11}{5}x^2 + e^{igx-5}$, $\frac{1}{5}x^{3,9}$

24.
$$\sqrt{\frac{5x+a}{x-3}} + \sin|x-5|$$
, $\frac{3}{8}x^3 - \frac{7}{5}x - 6e^{ctgx-1}$, $\frac{2}{5}x^{4,9}$

25.
$$\frac{x-3}{1-\sqrt{x+a}} - 5\sin|x|$$
, $\frac{1}{4}x - \frac{1}{2}x^3 - e^{tgx+7}$, $\frac{5}{8}x^{6,2}$

26.
$$\sqrt{\frac{x-3}{3x+a}} - 5\sin|x|$$
, $\frac{1}{2}x^2 + \frac{8}{5}x - 5e^{ctg(x+1)}$, $\frac{1}{4}x^{4,6}$

27.
$$\sqrt{\frac{x-1}{7x+a}} + |x-tgx|, \frac{1}{2}x + \frac{7}{5}x^3 + 2e^{-x+5}, \frac{1}{2}x^{-0.4}$$

28.
$$\frac{\sqrt{3x+5}}{x-a} + \cos|x+5|$$
, $\frac{1}{10}x^2 + \frac{7}{4}x + 7e^{ctg(x-3)}$, $\frac{3}{4}x^{-3,11}$

29.
$$\sqrt{\frac{x+a}{5x-3}} + |\sin x|, \frac{3}{2}x^3 - \frac{7}{10}x + e^{ctgx}, \frac{5}{8}x^{4,8}$$

30.
$$\frac{\sqrt{\ln x + 5}}{3x + a} + \log_3 |x + 5|$$
, $\frac{1}{8}x^2 - \frac{8}{10}x^3 + e^{tg^{3x}}$, $\frac{1}{8}x^{-4,4}$

Структура програми

Директиви препроцесорові		процесорові	<pre>#include <stdio.h></stdio.h></pre>
			#define _USE_MATH_DEFINES
			#include <math.h></math.h>
			#define N 255
Про	тотипи (заг	оловки) функцій користувача	<pre>int fm(int a, int b);</pre>
		, 13	<pre>double fa(double x);</pre>
Заго	оловок голо	вної функції (програми)	int main()
{			
	деклара-	визначення констант	const double A=2.128e-2;
	тивна		const int B=286;
		опис змінних	long int 1; unsigned char uc;
	частина	опис змінних	int i,j,k; int a=25, h=6;
			char str[10];
:			static int b[2][3]={{1,2,3},{4,5,6}};
Ĭ. <u>Ē</u>	викону-	оператори програми, ко-	оператор присвоювання a=a+sin(x)-1;
Тіло функції	вана час-	жен з яких закінчується ;	оператор прийняття рішення (умовний) if-else
ф с	тина		оператор варіанту switch-case-default
			оператор циклу for, while, do-while
L			<pre>OПератор функції printf("x=%f\n",x); scanf("%f",&x);</pre>
			оператори переходу return, goto, continue, break
			блок операторів {} ({} — операторні дужки)
			порожній оператор; {}
}			
Опи	Описи функцій користувача		int fm(int a,int b) {if (a>b) return a; return b;}
3111	Описи функции користува на		double fa(double x); {if (x<0) x=-x; return x;}

Ключові (зарезервовані) слова мови С (стандарт С89, або ANSI С), які не можна використовувати як ідентифікатори*

auto — автоматичний (тип	float — дійсна величина з пла-	static — статичний (тип
пам'яті);	ваючою точкою;	пам'яті);
break — завершити;	for — для;	struct — величина структур-
case — варіант;	goto — перейти;	ного типу (структура);
char — символьна величина;	if — якщо;	switch — перемикач;
const — константа	int — цілочисельна величина;	typedef — визначення типу
continue — закінчити поточну	long — цілочисельна величи-	(визначає скорочене ім'я
ітерацію циклу;	на подвійної точності;	для позначення типу);
default — за замовчуванням	register — регістровий (тип	union — об'єднання;
(дія при відсутності варіан-	пам'яті);	unsigned — величина беззна-
ту вибору);	return — повернення;	кового типу (старший роз-
do — виконати;	short — цілочисельна величи-	ряд не вважається знаком);
double — дійсна величина по-	на скороченої довжини;	void — величина, значення
двійної точності;	signed — ціле число зі знаком	якої відсутнє;
else — інакше;	(старший розряд вважаєть-	volatile — об'єкт, значення
enum — перераховуваний	ся знаком);	якого може змінюватися
тип;	sizeof — визначення розміру	без явних вказівок програ-
extern — зовнішній (тип	операнда в байтах;	міста;
пам'яті);		while — доки.

У стандарті С99 додано ще 5 ключових слів: **inline**, **restrict**, **_Bool**, **_Complex**, **_Imaginary**. Ці слова, крім слова **inline** (вказівка компілятору оптимізувати виклик функції), в середовищі VS 2010 не є ключовими.

У стандарті С11 додано ще 7 ключових слів: _Alignas, _Alignof, _Atomic, _Generic, _Noreturn, _Static_assert, _Thread_local.

*Але, якщо підімкнуто певну бібліотеку й ім'я змінної збігається з іменем бібліотечної функції, то не можна буде скористатися відповідною функцією підімкнутої бібліотеки.

Типи даних, визначені стандартом С

Тип	Пам'ять (байтів) у VS 2010	Діапазон значень у VS 2010
char / signed char	1	$-128 \dots 127 (-2^7 \dots 2^7 - 1)$
unsigned char	1	$0 \dots 255 (2^8-1)$
short int / signed short int	2	$-32768 \dots 32767 (-2^{15} \dots 2^{15}-1)$
unsigned short int	2	0 65535 (2 ¹⁶ –1)
int / signed int / long int / signed long int	4	-2147483648 2147483647 (-2 ³¹ 2 ³¹ -1)
unsigned int / unsigned long int	4	0 4294967295 (2 ³² –1)
long long int	8	–9223372036854775808 9223372036854775807 (–2 ⁶³ 2 ⁶³ –1); стандарт С99
unsigned long long int	8	0 18446744073709551615 (0 2 ⁶⁴ –1); стандарт С99
float	4	9.9e-45 3.4e+38; точність — 6-7 десяткових цифр; мантиса — 24 біти
double / long double	8	4.94e–324 1.7e+308; точність — 15-16 десят- кових цифр; мантиса — 53 біти

Перетворення типів операндів у виразах

(перетворення виконуються відповідно до таблиці при перегляді її згори вниз)

	Γ		
№	Початкові типи операндів	Типи операндів після перетворення	Пояснення
1.	long double α	long double α	якщо один операнд має тип long double, то і дру-
	∀ β	long double β	гий операнд перетвориться на long double
2.	double α	double α	якщо один операнд має тип double, то і другий опе-
	∀β	double β	ранд перетвориться на double
3.	float α	float α	якщо один операнд має тип float, то і другий опе-
	∀β	float α	ранд перетвориться на float
4.	long long int α	long long int α	якщо один операнд має тип long long int і другий
	∀ ціле зі знаком β	long long int β	операнд ϵ беззнаковим цілим, то і другий перетво-
	-		риться на long long int
5.	unsigned long int α	unsigned long int α	якщо один операнд має тип unsigned long int, то і
	∀ β	unsigned long int β	другий перетвориться на unsigned long int
6.	long int α	long int α	якщо long int покриває всі значення unsigned int,
	unsigned int β	long int β	то другий операнд перетвориться на long int
		unsigned long int α	
		unsigned long int β	int, то обидва операнди перетворяться на unsigned
			long int
7.	long int α	long int α	якщо один операнд має тип long int, то і другий
	∀β	long int β	перетвориться на long int
8.	unsigned int α	unsigned int α	якщо один операнд має тип unsigned int, то і другий
	∀ β	unsigned int β	перетвориться на unsigned int
9.	char α	int α	усі операнди типу char перетворюються на int
10.	unsigned char α	III U	
11.	short int α	int a	усі операнди типу short int перетворюються на int
12.	unsigned short int α	unsigned int α	усі операнди типу unsigned short int перетворю-
	_	_	ються на unsigned int

Із наведених у таблиці правил перетворення видно, що якщо операнди мають різні типи, то відбувається приведення операнда молодшого типу до старшого типу; при цьому для даних цілих типів старшим вважається тип unsigned порівняно з типом signed. Проте, хоч стандартом мови С визначається перетворення операнда до типу unsigned, реалізація може залежати від компілятора. Поєднання у виразах цілих чисел типів signed і unsigned може призвести до непередбачуваних результатів. Тому у виразах краще використовувати явне перетворення типів.

Операції (операції подано за спаданням пріоритетів; у кожній групі, відокремленій суцільною лінією, пріоритети однакові):

Група операцій	Знак операції	Опис
первинні	()	підвищення пріоритету (дужки)
	[]	виділення елемента масиву
		виділення елемента запису
	->	виділення елемента запису
унарні	!	логічне заперечення
	~	побітове заперечення
	-	зміна знака
	++	збільшення на одиницю
		зменшення на одиницю
	&	взяття адреси
	*	звернення за адресою
	(тип)	перетворення типу
	sizeof()	визначення розміру в байтах
мультиплікативні	*	множення
	/	ділення
	%	визначення остачі від ділення
адитивні	+	додавання
	-	віднімання
зрушення	<<	зсув вліво
	>>	зсув вправо
відношень	<	менше ніж
(порівняння)	<=	менше або дорівнює
	>	більше ніж
	>=	більше або дорівнює
	==	дорівнює
	!=	не дорівнює
побітові	&	побітове логічне «і» (логічне множення)
(порозрядні)	^	побітове виключне «або»
		побітове логічне «або»
логічні	&&	логічне «і»
		логічне «або»
умови	?:	умовна (тернарна) операція
присвоювання	=	присвоювання
	+=, - =, *=, /=, % ₀ =,	складені операції присвоювання
кома	<=, >>=, &=, =, ^=	= (a*=b означає a=a*b) операція кома
ROMA	,	опораци кома

Основні стандартні математичні функції і константи мови С

Аргументи функцій записують в круглих дужках. Наприклад: sin(x), abs(x-1), fabs(sin(a)) тощо.

При обчисленні значення функції x^y (реалізує функція pow(x,y)), якщо x > 0, можна використовувати рівність $x^y = e^{y \ln x}$ (exp(y*log(x)).

Значення $\log_a b$ обчислюється за формулою $\log_a b = \frac{\ln b}{\ln a}$. Значення $\operatorname{ctg} \alpha$ обчислюється за формулою $\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$ або $\operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha}$.

Значення числа e = 2,718281828459045 можна одержати, скориставшись функцією e^x : $e = \exp(1)$. Якщо в тексті програми курсор навести на ім'я функції, то відобразяться всі можливі її прототипи.

Якщо в тексті програми в директиві #include <xxxxx.h> клацнути правою клавішею мишки по імені бібліотеки і в контекстному меню вибрати команду Open Document <xxxxx.h>, то відкриється заголовочний файл бібліотеки, в якому за допомогою пошуку (Ctrl+F) можна знайти потрібну інформацію.

Бібліотеки мови С, їхні функції й константи описано на сайті www.cplusplus.com/reference/

a) бібліотека math.h* (www.cplusplus.com/reference/cmath/ldexp/) — функції і константи

Ім'я функції**	Прототип	Опис
sin	double sin(double x);	синус sin x
cos	double cos(double x);	косинус соз х
tan	double tan(double x);	тангенс tg x
asin	double asin(double x);	арксинус arcsin x
acos	double acos(double x);	арккосинус arccos x
atan	double atan(double x);	арктангенс arctg x
sinh	double sinh(double x);	гіперболічний синус sh $x = (e^x - e^{-x})/2$
cosh	<pre>double cosh(double x);</pre>	гіперболічний косинус ch $x = (e^x + e^{-x})/2$
tanh	double tanh(double x);	гіперболічний тангенс th $x = \sinh x/\cosh x$
sqrt	double sqrt(double x);	квадратний корінь \sqrt{x}
cbrt	double cbrt(double x);	кубічний корінь $\sqrt[3]{x}$; стандарт С99
pow(x,y)	double pow(double x, double y); abo double pow(double x, int y);	значення х
exp	double exp(double x);	показникова функція e^x
log	double log(double x);	натуральний логарифм $\ln x$
log10	double log10(double x);	десятковий логарифм $\log_{10} x$
abs	int abs(double x); abo int abs(int x);	ціле абсолютне значення х
fabs	double fabs(double x);	абсолютне значення х
round	double round(double x);	заокруглює до найближчого цілого числа (round(3.1)=3; round(3.5)=4; round(3.8)=4;round(-3.1)= -3; round(-3.5)= -4; round(-3.8)= -4); <i>стандарт С99</i>
trunc	double trunc(double x);	відкидає дробову частину числа (trunc(3.1)=3; trunc(3.5)=3; trunc(-3.1)= -3; trunc(-3.5)= -3; trunc(-3.8)= -3); стандарт С99
ceil	double ceil(double x);	заокруглює до найближчого більшого цілого числа (ceil(3.1)=4; ceil(3.5)=4; ceil(3.8)=4; ceil(-3.1)= -3;

		ceil(-3.5) = -3; ceil(-3.8) = -3
floor	double floor(double x);	заокруглює до найближчого меншого цілого числа (floor(3.1)=3; floor(3.5)=3; floor(3.8)=3; floor(-3.1)= -4; floor(-3.5)= -4; floor(-3.5)= -4
fmod	double fmod(double x, double y);	залишок від ділення двох чисел x/y (fmod(3.1, 3.8)=3.1; fmod(3.1, 1.4)=0.3; fmod(-3.1, 1.4)= -0.3)
fmax	double fmax(double x, double y);	максимальне значення $\max(x, y)$; <i>стандарт С99</i>
fmin	double fmin(double x, double y);	мінімальне значення $\min(x, y)$; стандарт С99

^{*}Бібліотека <tgmath.h> (стандарт С99) дає можливість виконувати всі функції бібліотеки <math.h>; при цьому аргументи функцій можуть бути як дійсними, так і цілими. Проте в VS 2010 цієї бібліотеки нема.

Усі функції, які одержують або повертають значення кута, працюють з радіанами (наприклад, 180° відповідає число $\pi \approx 3,14159265$; 90° — $\pi/2 \approx 1,57079632$; 45° — $\pi/4 \approx 0,78539816$; 30° — $\pi/6 \approx 0,52359878$). Для переходу від градусної міри до радіанної треба виконати перетворення $\varphi_r = \varphi_\circ \cdot \pi/180$; навпаки — $\varphi_\circ = \varphi_r \cdot 180/\pi$.

Ім'я константи*	Значення в середовищі VS 2010	Опис
M_E	2,71828182845904523536	число е
M_LOG2E	1,44269504088896340736	$\log_2 e$
M_LOG10E	0,434294481903251827651	$\log_{10} e$
M_LN2	0,693147180559945309417	ln 2
M_LN10	2,30258509299404568402	ln 10
M_PI	3,14159265358979323846	число π
M_PI_2	1,57079632679489661923	$\pi/2$
M_PI_4	0,785398163397448309616	$\pi/4$
M_1_PI	0,318309886183790671538	$1/\pi$
M_2_PI	0,636619772367581343076	$2/\pi$
M_2_SQRTPI	1,12837916709551257390	$2/\sqrt{\pi}$
M_SQRT2	1,41421356237309504880	$\sqrt{2}$
M_SQRT1_2	0,707106781186547524401	$1/\sqrt{2}$

^{*}Щоб скористатися цими константами, треба препроцесорові вказати директиву #define _USE_MATH_DEFINES ще до директиви підмикання бібліотеки #include <math.h>

б) бібліотека stdlib.h (http://www.cplusplus.com/reference/cstdlib/) — функції

Ім'я функції	Прототип	Опис
abs labs llabs	<pre>int abs (int n); long int labs (long int n); long long int llabs (long long int n);</pre>	абсолютне значення* х
srand	void srand (unsigned int seed);	iнiцiалiзацiя генерацiї випадкових чисел (#include <time.h> /**/ srand(time(0));)</time.h>
rand	int rand (void);	генерація випадкових чисел (у VS 2010 максимальне згенероване число визначається константою RAND_MAX = 32767, мінімальне — 0; rand () %11 — від 0 до 10; rand () %3-1 — -1, 0 чи 1)

^{*}У середовищі VS 2010 функції abs, labs і llabs розміщуються також і в бібліотеці math.h. Функція abs з бібліотеки math.h дає можливість працювати з даними типу int, long int і long long int. Також функція abs з бібліотеки math.h може працювати з дійсними аргументами, але результатом при цьому є ціле значення (дробова частина відкидається). Функція abs з бібліотеки stdlib.h аргументом може мати тільки ціле значення.

^{**}Згідно зі стандартом С99 для роботи з типами float i long double існують функції-відповідники з постфіксами f i l до всіх вказаних у таблиці функцій (наприклад, поданій у таблиці функції sin — double sin(double x) відповідають функції sinf — float sinf(float x) i sinl — long double sinl(long double x)).

в) бібліотека limits.h (www.cplusplus.com/reference/climits/) — мінімальні й максимальні цілі значення

Ім'я константи	Значення в середовищі VS* і формат виве- дення функцією printf	Опис
SHRT_MIN	-32768 (-2 ¹⁵) %d або %hd	мінімальне значення об'єкта типу short int
SHRT_MAX	32767 (2 ¹⁵ –1) %d або %hd	максимальне значення об'єкта типу short int
USHRT_MAX	65535 (2 ¹⁶ –1) %d, aбо %hu, aбо %u	максимальне значення об'єкта типу
		unsigned short int
INT_MIN	$-2147483648 (-2^{31})$ %d	мінімальне значення об'єкта типу int
INT_MAX	2147483647 (2 ³¹ –1) %d aбo %u	максимальне значення об'єкта типу int
UINT_MAX	4294967295 (2 ³² –1) %u	максимальне значення об'єкта типу
		unsigned int
LONG_MIN	-2147483648 (-2 ³¹) %d або %ld	мінімальне значення об'єкта типу long int
LONG_MAX	2147483647 (2 ³¹ –1) %d, aбo %ld, aбo %u	максимальне значення об'єкта типу long int
ULONG_MAX	4294967295 (2 ³² -1) %u aбo %lu	максимальне значення об'єкта типу
		unsigned long int
LLONG_MIN	-9223372036854775808 (-2 ⁶³) %lld	мінімальне значення об'єкта типу long
		long int
LLONG_MAX	9223372036854775807 (2 ⁶³ –1) %lld	максимальне значення об'єкта типу long
		long int
ULLONG_MAX	18446744073709551615 (2 ⁶⁴ –1) %llu	максимальне значення об'єкта типу
		unsigned long long int

^{*}Значення залежить від конкретної системи і реалізації бібліотеки

Γ) бібліотека float.h (www.cplusplus.com/reference/cfloat/) — мінімальні й максимальні дійсні значення

Ім'я константи	Значення в середовищі VS 2010* і формат виведення функцією printf	Опис
DBL_EPSILON	2,2204460492503131e–016 %e aбo	найменше додатне значення типу double
LDBL_EPSILON	%g	чи long double таке, що
		1,0+DBL_EPSILON ≠1,0
DBL_MAX	1,7976931348623158e+308 %f, або	максимальне значення типу double чи
LDBL_MAX	%е, або %g	long double
DBL_MIN	2,2250738585072014e-308 %e aбo	мінімальне додатне значення типу
LDBL_MIN	%g	double чи long double
FLT_EPSILON	1,192092896e-07F %e aбo %g	найменше додатне значення типу float
		таке, що 1,0+ FLT_EPSILON ≠1,0
FLT_MAX	3,402823466e+38F %f, aбo %e, aбo %g	максимальне значення типу float
FLT_MIN	1,175494351e–38F %e aбo %g	мінімальне додатне значення типу float

Основні стандартні функції мови С для введення й виведення інформації

а) бібліотека stdio.h (www.cplusplus.com/reference/cstdio), яка реалізу ϵ основні можливості введення й виведення інформації

Ім'я функції	Прототип	Опис
printf	int printf(const char * format,);	форматований вивід даних у стандартний потік виведення (stdout)
scanf	int scanf(const char * format,);	форматований ввід даних із стандартного потоку введення (stdin)
getchar	int getchar(void);	ввід наступного символу із стандартного потоку введення; чекає натискання клавіші Entet
gets	char * gets(char * str);	ввід рядка символів (можуть бути пробіли) із стандартного потоку введення; чекає натискання клавіші Entet
fflush	int fflush(FILE * stream);	якщо потік відкрито для виводу, то із буфера дані записуються в зв'язаний з потоком файл; якщо потік відкрито для вводу, то буфер очищається
flushall	int flushall(void)	очистка всіх вхідних буферів і запис фізичного вмісту всіх вихідних буферів, зв'язаних з потоками файлів, у відповідні їм файли; усі потоки залишаються відкритими; не визначена стандартом С

Функція printf

Функція printf повертає кількість реально виведених символів (у випадку помилки — від'ємне значення). Звернення до функції:

printf ("рядок формату", список аргументів);

Аргументи у списку відокремлюються комами; аргументами можуть бути вирази у широкому розумінні (вирази, звернення до функцій, змінні, константи). Рядок формату містить специфікатори форматів і символи для виведення.

Специфікатор формату функції printf має вигляд (квадратні дужки не друкуються — вони лише вказують, що параметр не обов'язковий):

% [модифікатори] код формату

Специфікації формату зіставляються з аргументами відповідно до порядку в списку аргументів (напри-клад, printf("i=%d - %c",325,'?'); дає i=325 - ?; printf("%-+7.5d=i",325); дає +00325 =i).

Коди форматів, які означають, що значенням аргумента є:

- **d** або i десяткове ціле число зі знаком (ці коди еквівалентні);
- **u** беззнакове десяткове ціле число;
- вісьміркове ціле число без знака;
- ${\bf x}$ або ${\bf X}$ шістнадцяткове ціле число без знака з цифрами $0, \dots, 9,$ ${\bf a},$ ${\bf b},$ ${\bf c},$ ${\bf d},$ ${\bf e},$ ${\bf f}$ або $0, \dots, 9,$ ${\bf A},$ ${\bf B},$ ${\bf C},$ ${\bf D},$ ${\bf E},$ ${\bf F}$ відповідно;
- f дійсне десяткове число з фіксованою точкою;
- е або Е дійсне десяткове число в експоненційній формі виду 1.23457е+002 або 1.23457Е+002 відповідно;
- ${f g}$ або ${f G}$ використовується, як і код ${f f}$ чи ${f e}$; незначущі нулі не виводяться; залежно від того, яке подання числа буде коротшим, використовується код ${f f}$ чи ${f e}$ (якщо менше чотирьох значущих нулів, то ${f f}$);
- **с** символ:
- **s** рядок символів (символи рядка виводяться до символа кінця рядка або доки не буде виведено кількість символів, задану точністю);
- р вказівник (виводиться машинна адреса, формат якої сумісний з типом адресації комп'ютера);
- **n** ніяка інформація на екран не виводиться; аргумент, який відповідає цьому коду, має бути вказівником на цілочисельну змінну (у цю змінну записується кількість виведених символів).

Модифікатори (не обов'язкові; подано в порядку їхнього використання):

- **мінус** (-) вирівнювання значеня по лівому краю у своєму полі (ставиться зразу після %; якщо мінуса нема по правому);
- плюс (+) число виводиться зі знаком;
- **ціле число** специфікація мінімальної ширини поля (зайві позиції заповнюються пробілами; якщо довжина числа чи рядка символів більша, то значення виводиться повністю);
- **ціле число з нулем попереду** специфікація мінімальної ширини поля (зайві позиції заповнюються нулями; якщо довжина числа чи рядка символів більша, то значення виводиться повністю);

- **крапка і ціле число** модифікатор точності вказується після специфікації мінімальної ширини. Для форматів е, Е, f кількість цифр після коми; g чи G максимальна кількість значущих цифр; d чи і мінімальна кількість цифр і в разі необхідності перед числом буде додано нулі; s максимальна довжина поля (якщо рядок буде довшим, то кінцеві символи не виведуться);
- **зірочка** (*) значення специфікації мінімальної ширини поля і модифікатора точності можна задати не константами, а аргументами функції, вказавши зірочку, яка зіставляється з відповідним аргументом у списку аргументів;
- **h** визначає аргумент типу short int і записується перед кодами форматів d, i, o, u, x, X; перед кодом n вказує, що відповідний аргумент має тип short int;
- 1 визначає аргумен типу long int (записується перед кодами форматів d, i, u, o, x, X) чи long double (стандарт С99; записується перед кодами форматів f, e, E, g, G, але не дає ніякого ефекту); перед кодом п вказує, що відповідний аргумент має тип long int; перед кодом с вказує, що відповідний аргумент є символом в розширеному 16-бітовому алфавіті;
- L визначає аргумен типу long double (записується перед кодами форматів f, e, E, g, G);
- **hh** (стандарт С99) визначає аргумен типу signed чи unsigned char і записується перед кодами форматів d, i, u, o, x, X або вказівник на змінну типу signed char для коду n.
- **II** (стандарт С99) визначає аргумен типу signed чи unsigned long long int і записується перед кодами форматів d, i, u, o, x, X або вказівник на змінну типу long long int для коду n;
- **F** і **N** визначають відповідно вказівники типу far і near;
- # записується перед кодами форматів f, e, E, g, G, щоб завжди виводити десяткову точку; перед x чи X —виводити префікс 0x чи 0X перед шістнадцятковим поданням числа; перед о виводити префікс 0 перед вісьмірковим поданням числа;
- якщо після % записано не символ перетворення, то він виводиться на екран (якщо задати %%, то на екран буде виведено символ %).

Найчастіше використовувані керуючі символьні константи, які мають зарезервовані позначення:

```
\n — перехід на новий рядок;
```

- \t горизонтальна табуляція (8 позицій);
- **b** повернення курсора на на одну позицію вліво (назад) в поточному рядку;
- \a короткий звуковий сигнал;
- \\ виведення символа \;
- \' виведення символа ';
- \" виведення символа ";
- \? виведення символа ? (символ "?" потрапив до зарезервованих символів у зв'язку з тим, що в С є операція, яка позначається знаком "?"; у деяких ситуаціях це могло б призвести до неоднозначного тлумачення конструкцій мови. Символьну константу "знак питання" можна записати будь-яким способом: '?', "\77', "x3F' чи "\?').

Для переносу тексту на наступний рядок використовується символ \:

```
printf ("AAAA\ /*початок тексту*/
BBB\n "); /*закінчення тексту*/
printf("AAAABBB\n"); /*еквівалентний оператор*/
```

Функція scanf

Функція scanf повертає кількість реально введених і присвоєних змінним елементів даних (полів). При виявленні помилки до присвоєння значення першого поля функція повертає значення ЕОГ. Звернення до функції:

```
scanf ("рядок формату", список аргументів);
```

Усі аргументи повинні бути вказівниками на змінні — адресами змінних (наприклад, &aaa, &I, str, де str — рядок символів). Рядок формату містить символи трьох категорій: специфікатори форматів, пробільні символи і символи, відмінні від пробільних.

Специфікатор формату функції scanf має вигляд (модифікатори не обов'язкові):

```
% [модифікатори] код формату
```

Специфікації формату зіставляються з аргументами відповідно до їхнього порядку в списку аргументів (наприклад: scanf("%d%f%c%s",&a,&b,&ch,str); — введення цілого і дійсного чисел, символа і рядка; або scanf("%d %f %c %10s",&a,&b,&ch,str); — пробіли між форматами ролі не грають).

Коди форматів, які означають, що зчитуваним значенням аргумента ϵ :

```
d — десяткове ціле число зі знаком;
```

- і ціле число зі знаком у будь-якому форматі (десяткове, вісьміркове, шістнадцяткове);
- \mathbf{u} беззнакове десяткове ціле число;
- f або F (стандарт С99)— дійсне десяткове число типу float з фіксованою точкою;

- е або E дійсне десяткове число типу float в експоненційній формі (при введенні символ E має бути на тому ж регістрі, що й код);
- **g** або **G** дійсне десяткове число типу float;
- о вісьміркове ціле число без знака;
- х або Х шістнадцяткове ціле число без знака (при введенні цифри від А до F мають бути на тому ж регістрі, що й код);
- с один символ;
- s рядок символів (до першого пробільного символа; інакше застосовувати функцію gets);
- р вказівник;
- **n** набуває цілого значення, рівного кількості прочитаних досі символів;
- **%%** читає знак процента.

Модифікатори (не обов'язкові)

- I перед кодами f, e, E, g, G для зчитування даних у змінні типу double; перед c, s для зчитування у двобайтові символи чи рядки двобайтових символів (для зчитування даних типу double %f не підходить підходить %lf);
- L перед кодами f, e, E, g, G для зчитування даних у змінні типу long double;
- **hh** (стандарт С99) визначає аргумен типу signed чи unsigned char і записується перед кодами форматів d, i, u, o, x, X або вказівник на змінну типу signed char для коду n.
- **II** (стандарт С99) визначає аргумен типу signed чи unsigned long long int і записується перед кодами форматів d, i, u, o, x, X або вказівник на змінну типу long long int для коду n;
- **ціле число** модифікатор максимальної довжини поля (ставиться між знаком % і кодом формату) обмежує кількість символів, які зчитуються; якщо роздільник буде зчитано раніше, ніж досягнуто вказаної максимальної довжини поля, то введення даних припиниться;
- зірочка (*) —читає, але не присвоює дані заданого типу (ставиться між знаком % і кодом формату);

Пробільні символи — роздільники (якщо в рядку форматування поточним символом ϵ роздільник, то у вхідному потоці пропускається один чи кілька роздільників до першого символа, відмінного від роздільника):

пробіли;

символи табуляції;

роздільники рядків (Enter);

символи кома, крапка з комою тощо не є роздільниками.

Не зважаючи на те, що пробіли, символи табуляції і роздільники рядків використовуються як роздільники полів зчитування, при зчитуванні окремого символа (формат %c) вони читаються, як і будь-який інший символ.

Символи, *відмінні від пробільних* — якщо в рядку форматування поточним символом є символ, відмінний від роздільника, то функція прочитає і відкине аналогічний символ у вхідному потоці; якщо вказаного символа у вхідному потоці нема, то функція закінчує роботу.

б) бібліотека stdlib.h (www.cplusplus.com/reference/stdlib)

Ім'я функції	Прототип	Опис
system	int system(const char* command);	виконання системної команди (system("pause") — чекає натискання будьякої клавіші на клавіатурі; system("cls"); — очищає екран; system("chcp 1251") — установка кодової сторінки win-cp 1251 (кодування ANSI) в потік вводу і виводу (change codepage); system("chcp 1251 & cls"); system(NULL); system("dir"); system("color 0B");)