Intégrale double

Exercice 1 Calculer
$$I = \iint_{\mathcal{D}} xy \, dx \, dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid x,y \ge 0 \text{ et } x+y \le 1\}$.

Exercice 2 Calculer
$$I = \iint_{\mathcal{D}} \sin(x+y) dx dy$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid x,y \geq 0 \text{ et } x+y \leq \pi \}$.

Exercice 3 Calculer
$$I = \iint_{\mathcal{D}} yx^2 \, \mathrm{d}x \, \mathrm{d}y$$
 où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \mid x \le 1, y \ge 0 \text{ et } y^2 \le x\}$.

Exercice 4 Calculer
$$\iint_{\mathcal{D}} x^2 dxdy$$
 où \mathcal{D} est l'intérieur de l'ellipse d'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Intégration en coordonnées polaires

- **Exercice 5** Calculer $I = \iint_{\mathcal{D}} \cos(x^2 + y^2) dx dy$ où \mathcal{D} est le disque de centre O et de rayon R.
- **Exercice 6** Calculer $\iint_{\mathcal{D}} \sin(x^2 + y^2) dx dy$ où \mathcal{D} désigne le disque de centre O et de rayon $\sqrt{\pi}$.
- Exercice 7 Calculer $I = \iint_{\mathcal{D}} \frac{x^2 + y^2}{x + \sqrt{x^2 + y^2}} dx dy$ où \mathcal{D} est le quart de disque unité inclus dans $\mathbb{R}^+ \times \mathbb{R}^+$.
- Exercice 8 Calculer $\iint_{\mathcal{D}} x dx dy$ où \mathcal{D} désigne le domaine borné délimité par la cardioïde déquation polaire $\rho = 1 + \cos \theta$.
- Exercice 9 Calculer $I = \iint_{\mathcal{D}} x^2 y^2 \, \mathrm{d}x \, \mathrm{d}y$ où \mathcal{D} est l'intérieur de la boucle de la lemniscate d'équation polaire $\rho = \sqrt{\cos 2\theta}$ obtenue pour $\theta \in [-\pi/4, \pi/4]$.
- $\begin{aligned} \textit{Exercice 10} \quad \text{Soit } r > 0 \text{ . On note } A_r &= \big[0, r\big] \times \big[0, r\big] \text{ et } B_r = \left\{ (x, y) \in \mathbb{R}^{+2} \, / \, 0 \leq x^2 + y^2 \leq r \right\}. \\ \text{On pose } f(r) &= \iint_{A_r} \exp(-(x^2 + y^2)) \mathrm{d}x \mathrm{d}y \text{ et } g(r) = \iint_{B_r} \exp(-(x^2 + y^2)) \mathrm{d}x \mathrm{d}y \ . \end{aligned}$
 - a) Montrer que $g(r) \le f(r) \le g(r\sqrt{2})$.
 - b) En déduire la valeur de $\lim_{r \to +\infty} \int_0^r \exp(-t^2) \mathrm{d}t$.
- **Exercice 11** Calculer $\iint_{\mathcal{D}} x \mathrm{d}x \mathrm{d}y$ où $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 x \leq 0\}$.
- **Exercice 12** Calculer $\iint_{\mathcal{D}} (x+y)^2 dxdy$ où $\mathcal{D} = \{(x,y)/x^2 + y^2 x \le 0, x^2 + y^2 y \le 0, y \ge 0\}$.

Application du théorème de Fubini

Exercice 13 a) Observer que
$$\ln(1+x) = \int_0^1 \frac{x \, dy}{1+xy} \, \sin\left[0,1\right]$$
.

b) En déduire la valeur de l'intégrale
$$I = \int_0^1 \frac{\ln(1+x) \mathrm{d}x}{1+x^2}$$
 .

david Delaunay http://mpsiddl.free.fr