МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №23

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ

(5)

ПРЕПОДАВАТЕЛЬ

Ассистент

должность, уч. степень, звание

15.09

Т.С. Мисникова инициалы, фамилия

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

Исследование биполярных транзисторов

по курсу: Электроника

СТУДЕНТ ГР. №

2221

номер группы

15.04.20242

Е. Ю Дройзман

Санкт-Петербург 2024

Navagobanue Sunomoprioix mpanzueropob (09

	0					
	IS, MA	0,1	0,2	0,3	0,4	0,5
11 00	-8,111	0	0	9	0	0
Uko = OB			T)	8,2	12	136
UK3=BB	IK, MA JKS, B	22	5,2	8,6	12,0	15,0
Ukg = 28		2.24	5,4	8,6	12,0	15,0
UK= 3B		2,8	5,4		120	15,2
Ukg = 4B		3,2	5 0	3,6		
Uka = 5B		3,2	5,21	8,4	12,4	15,6
		2,8	5,6	9,0	12,6	16,2
Ukg=6B			F-11	9.0	12,8	16,2
Uv9=7B		2,8	514		13,0	16,2
Uv7=813		3,0	5,4	9,2/	13)	
			1 Secretaria			
			The state of the s			
	7		to the second			
	1				HEALTH FEBRUS	

							1				
	IS, MA	0	0,01	Q1	0,2	0,3	0,9	0,5	0,6	0,7	018
Urs = 0B		0	0,45	0,53	0,62	0,63	0,57	0,60	0,62	0,62	0,63
UKS = 2 B	VED, B	۵	0,55	0,60	0,62	0,63	0,64	0,65	0,66	0,67	0,67
Ura=8B	000,	0	0,63	63,0	0,69	0,71	0,72	0,73	PF,0	24,0	56,0
						1925					
					-						

KT 602

Programmer:

(Procouseau P. B.

Whenes A. U.

Aprinan E. 10.

Mucouseh A. C.

5,02.29

Цель работы

Изучение принципа действия, исследование статических характеристик и определение дифференциальных параметров биполярного транзистора, включенного по схеме с общим эмиттером (ОЭ).

1 Схема исследования

На рисунке 1 изображена схема исследования статических характеристик 21,602 A подкработо транзистора 2H103Б с управляющим р-п-переходом и каналом р-типа.

Рисунок 1 - Схема исследования статических характеристик биполярного транзистора 27602A, включенного по схеме «ОЭ»

2 Рабочие формулы

Входное сопротивление:

$$h_{113} = \frac{\Delta U_{\text{B3}}}{\Delta I_{\text{B}}},\tag{1}$$

где $I_{\rm B}$ – ток базы;

U_{БЭ} – напряжение база-эмиттер.

Выходная проводимость:

$$h_{223} = \frac{\Delta I_{\rm K}}{\Delta U_{\rm K3}},\tag{2}$$

где Uкэ – напряжение коллктор-эмиттер;

I_к – ток коллектора.

Коэффициент передачи тока базы:

$$h_{213} = \frac{\Delta I_{\rm K}}{\Delta I_{\rm B}}.\tag{3}$$

3 Результаты измерений и вычислений

В таблице 1 представлены результаты измерений тока коллектора.

Таблица 1 – Результаты измерений тока коллектора

U_{K9}, B	ІБ, мА	0,1	0,2	0,3	0,4	0,5
0		0	0	0	0	0
1		2,2	5,2	8,2	11,2	13,6
2		2,4	5,4	8,6	12,0	15,0
3	I _K , MA	2,8	5,4	8,6	12,0	15,0
4	-K, MI 1	3,2	5,2	8,6	12,0	15,2
5		3,2	5,2	9,4	12,4	15,6
6		2,8	5,6	9,0	12,6	16,2
7		2,8	5,4	9,0	12,8	16,2
8		3,0	5,4	9,2	13,0	16,2

В таблице 2 представлены результаты измерений напряжения база-эмиттер.

Таблица 2 – Результаты измерений напряжения база-эмиттер

$U_{K\mathfrak{I}}, B$	Іь, мА	0	0,01	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
0		0	0,45	0,53	0.62	0,63	0,57	0,60	0,62	0,62	0,63
2	UБЭ	0	0,55	0,60	0,62	0,63	0,64	0,65	0,66	0,67	0,67
8		0	0,63	0,67	0,69	0,71	0,72	0,73	0,74	0,75	0,75

4 Примеры вычислений

По формуле (1):

$$h_{119} = \frac{\Delta U_{\text{B9}}}{\Delta I_{\text{B}}} = \frac{0,03 \text{ B}}{0,3 \text{ MA}} = 100 \text{ Om}$$

По формуле (2):

$$h_{229} = \frac{\Delta I_{\rm K}}{\Delta U_{\rm K9}} = \frac{1,2~{\rm MA}}{4~{\rm B}} = 0,3 \cdot 10^{-3} {\rm Cm}$$

По формуле (3):

$$h_{213} = \frac{\Delta I_{\rm K}}{\Delta I_{\rm B}} = \frac{3,4 \text{ MA}}{0,1 \text{ MA}} = 34$$

5 Построение графиков

На рисунке 2 изображено семейство входных характеристик БПТ для схемы включения с ОЭ $I_{\bar{b}} = f(U_{\bar{b}\bar{9}})$.

Рисунок 2 - Семейство входных характеристик $I_{\bar{b}} = f(U_{\bar{b}\bar{\jmath}})$

На рисунке 3 изображено семейство выходных характеристик I_K = $f(U_K$ 3) для I_b равных 0,1, 0,2, 0,3, 0,4 и 0,5 мА (графики снизу вверх соответственно).

Рисунок 3 - Семейство выходных характеристик Ic = f(Uc)

6 Выводы

В данном исследовании был проведен анализ работы биполярного транзистора КТ602 с схемой включения с эмиттерным следователем. При изучении семейства выходных характеристик в зависимости от коллекторного тока (Іс) и напряжения коллектор-эмиттер (Uси), было выделено три режима - отсечки, насыщения и активный. В режиме отсечки, характеристики зависят от условий работы эмиттерного перехода, определяемых цепью базы. В активном и насыщенном режимах, эмиттерный переход включается путем подачи отрицательного напряжения на базу относительно эмиттера.

В схеме с эмиттерным следователем, увеличение тока базы приводит к увеличению коллекторного тока. Однако, при одинаковых приращениях тока базы, расстояние между выходными характеристиками различно. Это вызвано изменением статического коэффициента передачи тока базы (h21э) при изменении тока эмиттера.

В ходе данной работы были определены h-параметры биполярного транзистора с эмиттерным следователем:

h119 = 100 Om;

 $h229 = 0.3 \cdot 10-3$ Cm;

h219 = 34.

h11э был определен на линейном участке с помощью графика, изображенного на рисунке 2. h21э и h22э были определены в активном режиме с помощью графика, изображенного на рисунке 3.