Problèmes inverses et optimisation convexe en traitement du signal et des images

Sandrine Anthoine, Valentin Emiya

M2 IAAA - UE SOAP

- Introduction et exemples
- 2 Généralisation à d'autres a priori sur x^o
- Généralisation à d'autres bruits
- 4 Les opérateurs : au-delà des matrices
- Application
- 6 Conclusion

Sommaire

- Introduction et exemples
- Généralisation à d'autres a priori sur x^c
- Généralisation à d'autres bruits
- Les opérateurs : au-delà des matrices
- 6 Application
- Conclusion

Programme de l'UE

- Bases de traitement du signal (12h):
 - analyse fréquentielle (Fourier)
 - échantillonnage
 - filtrage
 - représentations
- Calcul scientifique avec JAX (3h)
- Hybridations avec les problèmes inverses et l'optimisation convexe (8h)
 - Problèmes inverses et optimisation convexe : découverte

problème de déconvolution algorithme ISTA pour le cas parcimonieux

• Problèmes inverses et optimisation convexe : approfondissement

Généralisations

- Hybridation: méthodes Plug-and-Play
- Hybridation : algorithmes déroulés
- Hybridations avec la physique (4h)

Modèle direct : $y = D_{\sigma}(Ax^{o})$

- *y* : mesures/observations
- x° : objet à estimer/signal original
- *A* : opérateur linéaire
- D_{σ} : perturbation/bruit

Problème inverse : estimer x^o à partir de y, de A et d'informations sur le bruit et sur x^o

Exemple: déconvolution 1D

$$\underset{x}{\arg\min} \underbrace{ \frac{\|Ax-y\|_2^2}{\|Ax\|_2} + \underbrace{\lambda \|x\|_1}_{\text{régularisat selon hypot}} }$$

bruit gaussien

régularisation selon hypothèse sur x0

- hypothèse de parcimonie sur vecteur x^o
- A matrice associé à filtre h
- D_{σ} bruit additif gaussien de variance σ^2

$$D_{\sigma}(Ax) = Ax + b, b[i] \sim \mathcal{N}(0, \sigma^2)$$

 \rightarrow Autres a priori sur x° ? Autres bruits D_{σ} ? Autres opérateurs A?

Vers des problèmes inverses plus divers

Modèle direct : $y = D_{\sigma}(Ax^{o})$

- *y* : mesures/observations
- x^o : objet à estimer/signal original
- A : opérateur linéaire
- D_{σ} : perturbation/bruit

Problème inverse : estimer x^o à partir de y, de A et d'informations sur le bruit et sur x^o

$$\underset{x}{\operatorname{arg \, min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\text{régularisat}}$$

- régularisation selon hypothèse sur x^o
- autres hypothèses sur x^o?
- autres opérateurs *A* ?
- Autres bruits D_{σ} , attaches aux données E?

Sommaire

- Introduction et exemples
- ② Généralisation à d'autres a priori sur x^0
- Généralisation à d'autres bruits
- 4 Les opérateurs : au-delà des matrices
- Application
- Conclusion

Modèle direct : $y = D_{\sigma}(Ax^{o})$

Problème inverse

$$\underset{x}{\operatorname{arg \, min}} \underbrace{E(Ax,y)}_{\text{attache aux données en fonction de } D_{\sigma}} + \underbrace{R(x)}_{\text{régularisation selon hypothèse}}$$

- $R(x) = \lambda ||x||_1$: parcimonie sur x
- $R(x) = \lambda ||x||_2^2$: régularisation de Tikhonov
- $R(x) = \lambda ||\nabla x||_1$: variation totale, parcimonie sur les variations de x

Très utile pour les images (parcimonie des contours)

• $R(x) = \lambda ||Bx||_1$: parcimonie d'une représentation linéaire de x

Exemples : ondelettes pour les images, temps-fréquence pour les sons

• Plug'n Play : a priori via un réseau de neurones préentrainé

Voir prochaine séance

Bruit faible

Images observées

Bruit faible

SNR=15.72 dB

SNR=9.61 dB Régularisation de Tikhonov

SNR=0.05 dB

Bruit faible

Régularisation par Variation Totale

Bruit fort

Images observées

Bruit fort

SNR=10.62 dB

SNR=7.59 dB Régularisation de Tikhonov

SNR=-0.13 dB

Bruit fort

Régularisation par Variation Totale

Informations a priori sur la solution x^o : à retenir

- Sans a priori sur la solution, on a souvent un problème mal posé: une infinité de solutions sans intérêt
- Les informations sur x^o sont utiles pour orienter la solution vers un ensemble approprié.
- Le terme de régularisation R(x) encode ces informations.
- De nombreuses possibilités : parcimonie, norme l_2 , dans l'espace original ou sur une représentation, etc.

- Introduction et exemples
- Généralisation à d'autres a priori sur x'
- Généralisation à d'autres bruits
- 4 Les opérateurs : au-delà des matrices
- Application
- 6 Conclusion

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\operatorname{arg\,min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\substack{\text{régularisation selon hypothèse} \\ \text{sur } x^{\rho}}}$$

Bruit blanc gaussien:

- Très courant
- $D_{\sigma}(Ax) = Ax + b, \forall i, b[i] \sim \mathcal{N}(0, \sigma^2)$ (i.i.d.)
- Lien avec l'attache aux données $E(Ax, y) = ||Ax y||_2^2$ (maximum de vraisemblance)
- D'autres bruits sont parfois plus pertinents, selon la physique du modèle direct. Bruit coloré gaussien $\mathcal{N}(0,\Sigma)$, bruit de grenaille/Poisson
- Il faut choisir l'attache aux données en conséquence.

Problèmes inverses

M2 IAAA - HE SOAP

→ Bruit adapté pour les images

Généralisation à d'autres bruits Les opérateurs : au-delà des matrices

Problèmes inverses

M2 IAAA - UE SOAP

→ Bruit adapté pour les images

Original

Grenaille/Poisson

Gaussien

Généralisation à d'autres bruits Les opérateurs : au-delà des matric

Autre exemple de bruit : bruit de grenaille/Poisson

Original

èmes inverses M2 IAAA - UE SOAP

ightarrow Bruit adapté pour les images

→ Bruit adapté pour les images

Variable aléatoire réelle de Poisson

- $X \sim \mathcal{P}(\beta)$ est une variable de Poisson de paramètre $\beta > 0$.
- Sa loi est $P(X = n) = e^{-\beta} \frac{\beta^n}{n!}$ où n = 0, 1, ...
- Interprétation : si β est le nombre d'occurrence moyenne qui se produisent sur une durée donnée, P(X=n) est la probabilité que n occurrences surviennent sur cette durée.

La loi de Poisson modélise bien le bruit lié à l'émission des photons.

Bruit de Poisson sur une image Y

- $Z \sim \mathcal{P}(Y)$ est un vecteur aléatoire.
- $Z[m,n] \sim \mathcal{P}(y[m,n])$: les Z[m,n] sont indépendants mais pas identiquement distribués, le bruit est plus important sur les pixels plus lumineux.

- Le type de bruit dépend de la physique du modèle direct.
- Le terme d'attache aux données est à définir en fonction du bruit

- Introduction et exemples
- Généralisation à d'autres a priori sur x'
- Généralisation à d'autres bruits
- Les opérateurs : au-delà des matrices
- Application
- Conclusion

Les opérateurs : au-delà des matrices

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\operatorname{arg \, min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\substack{\text{régularisation selon hypothèse} \\ \text{sur } x^o}}$$

- Une matrice
- Autre?

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\operatorname{arg \, min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\substack{\text{régularisation} \\ \text{selon hypothèse}}}$$

- Une matrice
- Une convolution : Ax = h * x

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\operatorname{arg\,min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\text{régularisation selon hypothèse}}$$

- Une matrice
- Une convolution : Ax = h * x
- Sous échantillonnage Ax = x[indices_mask]

Modèle direct : $y = D_{\sigma}(Ax^{o})$

Problème inverse

$$\underset{x}{\operatorname{arg\,min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\text{régularisation selon hypothèse}}$$

- Une matrice
- Une convolution : Ax = h * x
- Sous échantillonnage Ax = x[indices_mask]
- Transformée de Fourier, ondelettes, etc.

Modèle direct : $y = D_{\sigma}(Ax^{o})$

Problème inverse

$$\underset{x}{\operatorname{arg \, min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\text{régularisation}}$$

A est un opérateur linéaire, par exemple

- Une matrice
- Une convolution : Ax = h * x
- Sous échantillonnage $Ax = x[indices_mask]$
- Transformée de Fourier, ondelettes, etc.

On peut parfois effectuer le calcul Ax de deux façons : produit matriciel ou calcul spécifique (filtrage, échantillonnage, masquage, etc.). Pourquoi?

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\arg\min} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\text{régularisation}}_{\text{selon hypothèse}}$$

A est un opérateur linéaire, par exemple

- Une matrice
- Une convolution : Ax = h * x
- Sous échantillonnage Ax = x[indices_mask]
- Transformée de Fourier, ondelettes, etc.

On peut parfois effectuer le calcul Ax de deux façons : produit matriciel ou calcul spécifique (filtrage, échantillonnage, masquage, etc.).

Pourquoi? Rapidité de calcul, codage plus facile

Exemple : résoudre $\arg\min_{x} \|Ax - y\|_{2}^{2} + \lambda \|x\|_{1} \text{ avec } \lambda > 0$

Algorithme 1 ISTA avec matrice A

Entrées:
$$A \in \mathbb{R}^{N \times M}$$
, $y \in \mathbb{R}^{N}$, $\lambda > 0$,

$$\eta > 0$$
, N_{iter}

1:
$$x \leftarrow 0_M$$

2: **pour**
$$i = 0 \dots N_{\text{iter}} - 1$$
 faire

3:
$$u \leftarrow x - 2\eta A^T (Ax - y)$$

4:
$$x \leftarrow S_{\lambda\eta}(u)$$

5: fin pour

Sorties: x

 \rightarrow Le coût de chaque itération est dominé par les produits Ax et $A^{T}(...)$.

Exemple : résoudre arg $\min_{x} ||Ax - y||_{2}^{2} + \lambda ||x||_{1}$ avec $\lambda > 0$

Algorithme 2 ISTA avec matrice A

Entrées:
$$A \in \mathbb{R}^{N \times M}$$
, $y \in \mathbb{R}^{N}$, $\lambda > 0$, $\eta > 0$, N_{iter}

- 1: $x \leftarrow 0_M$
- 2: pour $i = 0 \dots N_{\text{iter}} 1$ faire
- 3: $u \leftarrow x 2\eta A^T (Ax y)$
- 4: $x \leftarrow S_{\lambda \eta}(u)$
- 5: fin pour

Sorties: x

Algorithme 3 ISTA sans matrice *A*

Entrées: $A: \mathbb{R}^M \to \mathbb{R}^N$, $y \in \mathbb{R}^N$, $\lambda > 0$, $\eta > 0$, N_{iter}

- 1: $x \leftarrow 0_M$
- 2: **pour** $i = 0 \dots N_{\text{iter}} 1$ **faire**
- 3: $u \leftarrow x 2\eta A^T (A(x) y)$
- 4: $x \leftarrow S_{\lambda \eta}(u)$
- 5: fin pour

Sorties: *x*

- \rightarrow Le coût de chaque itération est dominé par les produits Ax et $A^{T}(...)$.
- \rightarrow On remplace le produit Ax en $\mathcal{O}(MN)$ par l'appel à une fonction A(x) de complexité parfois inférieure : $\mathcal{O}(N\log N)$ si transformée de Fourier rapide, $\mathcal{O}(N)$ si masquage, etc.

Appliquer un opérateur sans passer par une matrice

Exemple: résoudre arg min, $||Ax - y||_2^2 + \lambda ||x||_1$ avec $\lambda > 0$

Algorithme 4 ISTA avec matrice *A*

Entrées:
$$A \in \mathbb{R}^{N \times M}$$
, $y \in \mathbb{R}^{N}$, $\lambda > 0$, $\eta > 0$, N_{iter}

1:
$$x \leftarrow 0_M$$

2: **pour**
$$i = 0 \dots N_{\text{iter}} - 1$$
 faire

3:
$$u \leftarrow x - 2\eta A^T (Ax - y)$$

4:
$$x \leftarrow S_{\lambda\eta}(u)$$

5: fin pour

Sorties: x

Algorithme 5 ISTA sans matrice *A*

Entrées:
$$A : \mathbb{R}^M \to \mathbb{R}^N$$
, $y \in \mathbb{R}^N$, $\lambda > 0$, $\eta > 0$, N_{iter}

1:
$$x \leftarrow 0_M$$

2: **pour**
$$i = 0 \dots N_{\text{iter}} - 1$$
 faire

3:
$$u \leftarrow x - 2\eta (A(x) - y)$$

4:
$$x \leftarrow S_{\lambda \eta}(u)$$

5: fin pour

Sorties: x

- \rightarrow Le coût de chaque itération est dominé par les produits Ax et $A^{T}(...)$.
- On remplace le produit Ax en $\mathcal{O}(MN)$ par l'appel à une fonction A(x) de complexité parfois inférieure : $\mathcal{O}(N \log N)$ si transformée de Fourier rapide, $\mathcal{O}(N)$ si masquage, etc.
- → Problème?

Exemple : résoudre $\arg\min_{x} \|Ax - y\|_{2}^{2} + \lambda \|x\|_{1} \text{ avec } \lambda > 0$

Algorithme 6 ISTA avec matrice *A*

Entrées:
$$A \in \mathbb{R}^{N \times M}$$
, $y \in \mathbb{R}^{N}$, $\lambda > 0$, $\eta > 0$, N_{iter}

- 1: $x \leftarrow 0_M$
- 2: **pour** $i = 0 \dots N_{\text{iter}} 1$ **faire**
- 3: $u \leftarrow x 2\eta A^T (Ax y)$
- 4: $x \leftarrow S_{\lambda \eta}(u)$
- 5: fin pour

Sorties: x

Algorithme 7 ISTA sans matrice *A*

Entrées: $A: \mathbb{R}^M \to \mathbb{R}^N$, $y \in \mathbb{R}^N$, $\lambda > 0$, $\eta > 0$, N_{iter}

- 1: $x \leftarrow 0_M$
- 2: **pour** $i = 0 \dots N_{\text{iter}} 1$ **faire**
- 3: $u \leftarrow x 2\eta A^T (A(x) y)$
- 4: $x \leftarrow S_{\lambda \eta}(u)$
- 5: fin pour

Sorties: *x*

- \rightarrow Le coût de chaque itération est dominé par les produits Ax et $A^{T}(...)$.
- \rightarrow On remplace le produit Ax en $\mathcal{O}(MN)$ par l'appel à une fonction A(x) de complexité parfois inférieure : $\mathcal{O}(N\log N)$ si transformée de Fourier rapide, $\mathcal{O}(N)$ si masquage, etc.
- \rightarrow Problème? Comment faire la multiplication par A^T ?

Exemple: résoudre arg min, $||Ax - y||_2^2 + \lambda ||x||_1$ avec $\lambda > 0$

Algorithme 8 ISTA avec matrice *A*

Entrées:
$$A \in \mathbb{R}^{N \times M}$$
, $y \in \mathbb{R}^{N}$, $\lambda > 0$, $\eta > 0$, N_{iter}

1:
$$x \leftarrow 0_M$$

1:
$$x \leftarrow 0_M$$

2: **pour**
$$i = 0 \dots N_{\text{iter}} - 1$$
 faire

3:
$$u \leftarrow x - 2\eta A^T (Ax - y)$$

4:
$$x \leftarrow S_{\lambda \eta}(u)$$

5: fin pour

Sorties: x

Algorithme 9 ISTA sans matrice *A*

Entrées:
$$A: \mathbb{R}^M \to \mathbb{R}^N$$
, $y \in \mathbb{R}^N$, $\lambda > 0$, $\eta > 0$, N_{iter}

1:
$$x \leftarrow 0_M$$

2: **pour**
$$i = 0 \dots N_{\text{iter}} - 1$$
 faire

3:
$$u \leftarrow x - 2\eta A^T (A(x) - y)$$

4:
$$x \leftarrow S_{\lambda\eta}(u)$$

5: fin pour Sorties: x

- \rightarrow Le coût de chaque itération est dominé par les produits Ax et $A^{T}(...)$.
- On remplace le produit Ax en $\mathcal{O}(MN)$ par l'appel à une fonction A(x) de complexité parfois inférieure : $\mathcal{O}(N \log N)$ si transformée de Fourier rapide, $\mathcal{O}(N)$ si masquage, etc.
- \rightarrow Problème? Comment faire la multiplication par A^T ?
- $\rightarrow A^T$ s'appelle l'adjoint de A dans la théorie des opérateurs.

Notion d'opérateur adjoint

Définition : opérateur adjoint

Si $F: \mathbb{R}^M \to \mathbb{R}^N$ est un opérateur linéaire, alors il existe un unique opérateur $G: \mathbb{R}^N \to \mathbb{R}^M$ appelé adjoint de F tel que

$$\forall x \in \mathbb{R}^M, \forall y \in \mathbb{R}^N, \quad \underline{\langle F(x), y \rangle} = \underline{\langle x, G(y) \rangle}$$
Produit scalaire dans \mathbb{R}^N
Produit scalaire dans \mathbb{R}^M

Définition : opérateur adjoint

Si $F: \mathbb{R}^M \to \mathbb{R}^N$ est un opérateur linéaire, alors il existe un unique opérateur $G: \mathbb{R}^N \to \mathbb{R}^M$ appelé adjoint de F tel que

$$\forall x \in \mathbb{R}^M, \forall y \in \mathbb{R}^N, \quad \underbrace{\langle F(x), y \rangle}_{\text{Produit scalaire dans } R^N} = \underbrace{\langle x, G(y) \rangle}_{\text{Produit scalaire dans } R^M}$$

Opérateur adjoint dans le cas d'une matrice

Si
$$\forall x \in \mathbb{R}^M, F(x) = Ax$$
 où $A \in \mathbb{R}^{M \times N}$, alors $\forall y \in \mathbb{R}^N, G(y) = A^T y$.

Preuve?

Notion d'opérateur adjoint

Définition: opérateur adjoint

Si $F: \mathbb{R}^M \to \mathbb{R}^N$ est un opérateur linéaire, alors il existe un unique opérateur $G: \mathbb{R}^N \to \mathbb{R}^M$ appelé adjoint de F tel que

$$\forall x \in \mathbb{R}^M, \forall y \in \mathbb{R}^N, \qquad \underbrace{\langle F(x), y \rangle}_{\text{Produit scalaire dans } R^N} = \underbrace{\langle x, G(y) \rangle}_{\text{Produit scalaire dans } R^M}$$

Opérateur adjoint dans le cas d'une matrice

Si
$$\forall x \in \mathbb{R}^M$$
, $F(x) = Ax$ où $A \in \mathbb{R}^{M \times N}$, alors $\forall y \in \mathbb{R}^N$, $G(y) = A^Ty$.

Preuve? Pour tout $x \in \mathbb{R}^M$ et $y \in \mathbb{R}^N$, on a

$$\langle F(x), y \rangle = F(x)^T y = (Ax)^T y = x^T A^T y = x^T (A^T y) = \left\langle x, \underbrace{A^T y}_{G(y)} \right\rangle$$

Notion d'opérateur adjoint

Définition: opérateur adjoint

Si $F : \mathbb{R}^M \to \mathbb{R}^N$ est un opérateur linéaire, alors il existe un unique opérateur $G : \mathbb{R}^N \to \mathbb{R}^M$ appelé adjoint de F tel que

$$\forall x \in \mathbb{R}^M, \forall y \in \mathbb{R}^N, \quad \underbrace{\langle F(x), y \rangle}_{\text{Produit scalaire dans } R^N} = \underbrace{\langle x, G(y) \rangle}_{\text{Produit scalaire dans } R^M}$$

Opérateur adjoint dans le cas d'une matrice

Si
$$\forall x \in \mathbb{R}^M$$
, $F(x) = Ax$ où $A \in \mathbb{R}^{M \times N}$, alors $\forall y \in \mathbb{R}^N$, $G(y) = A^Ty$.

Remarque : si A est orthogonale, $A^T = A^{-1}$.

Exemple : transformée de Fourier et son inverse.

Sorties: x

Exemple : résoudre arg min_x $||Ax - y||_2^2 + \lambda ||x||_1$ avec $\lambda > 0$

Algorithme 10 ISTA sans matrice *A*

```
Entrées: A: \mathbb{R}^M \to \mathbb{R}^N, son adjoint A^T: \mathbb{R}^N \to \mathbb{R}^M, y \in \mathbb{R}^N, \lambda > 0, \eta > 0, N_{\text{iter}}

1: x \leftarrow 0_M

2: pour i = 0 \dots N_{\text{iter}} - 1 faire

3: u \leftarrow x - 2\eta A^T (A(x) - y)

4: x \leftarrow S_{\lambda\eta}(u)

5: fin pour
```

Il suffit de connaître l'opérateur A et son adjoint, noté A^{T} .

Opérateur et opérateur adjoint pour le masquage (inpainting)

Opérateur direct :
$$y = x[m]$$
 avec $m = [1, 0, 1, 0, 0, 1]$

$$y = \begin{bmatrix} x[0] \\ x[2] \\ x[5] \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{=A} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \end{bmatrix} = Ax$$

Opérateur adjoint

$$w = A^{T}z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} z[0] \\ z[1] \\ z[2] \end{bmatrix} = \begin{bmatrix} z[0] \\ 0 \\ z[1] \\ 0 \\ 0 \\ z[2] \end{bmatrix}$$

$$w = zeros(6)$$

 $w[m] = z$

h * x = Ax

avec

$$A = \begin{bmatrix} h[N/2] & h[N/2-1] & \dots & h[0] & h[N-1] & \dots & h[N/2+1] \\ h[N/2+1] & h[N/2] & h[N/2-1] & \dots & h[0] & \dots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & h[N-1] \\ h[N-1] & h[N-2] & \ddots & \ddots & \ddots & \ddots & h[0] \\ h[0] & h[N-1] & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & h[N/2-1] \\ h[N/2-1] & \dots & h[0] & h[N-1] & \dots & h[N/2+1] & h[N/2] \end{bmatrix}$$

L'adjoint est une convolution par une version retournée du filtre *h* :

$$A^T y = g * y$$

avec g = h[::-1] si h de longueur impaire, g = [h[0], h[-1:0:-1]] si h de longueur paire.

Codage des opérateurs avec numpy/scipy

La classe scipy.sparse.linalg.LinearOperator est faite pour vous:

- permet d'utiliser A @ x pour appliquer indistinctement une matrice ou un LinearOperator
- surcharger la méthode mat vec pour coder le calcul de A @ x
- surcharger la méthode rmatvec pour coder le calcul de A.T @ x (adjoint)
- de nombreux opérateurs (convolution, etc.) sont déjà codés, voir paquet pylops².

DEMO!

^{1.} https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg. LinearOperator.html

https://pylops.readthedocs.io/en/stable/

- Introduction et exemples
- Généralisation à d'autres a priori sur x'
- Généralisation à d'autres bruits
- 4 Les opérateurs : au-delà des matrices
- 6 Application
- 6 Conclusion

Problème inverse

Reconstruire une image floue, bruitée et dont on n'observe pas tous les pixels!

- flou/filtre gaussien
 - → problème de défloutage
- pixels manquants
 - → problème d'inpainting
- bruit additif
 - → problème de débruitage
- hypothèse de parcimonie dans le domaine des ondelettes

Exemple illustrant la flexibilité et la portée de l'approche

Problème inverse

Reconstruire une image floue, bruitée et dont on n'observe pas tous les pixels!

- flou/filtre gaussien
 - → problème de défloutage
- pixels manquants
 - → problème d'inpainting
- bruit additif
 - → problème de débruitage
- hypothèse de parcimonie dans le domaine des ondelettes

Exemple illustrant la flexibilité et la portée de l'approche

Problème inverse

Reconstruire une image floue, bruitée et dont on n'observe pas tous les pixels!

- flou/filtre gaussien
 - → problème de défloutage
- pixels manquants
 - → problème d'inpainting
- bruit additif
 - → problème de débruitage
- hypothèse de parcimonie dans le domaine des ondelettes

Problème inverse

Reconstruire une image floue, bruitée et dont on n'observe pas tous les pixels!

- flou/filtre gaussien
 - → problème de défloutage
- pixels manquants
 - → problème d'inpainting
- bruit additif
 - → problème de débruitage
- hypothèse de parcimonie dans le domaine des ondelettes

Problème inverse

Reconstruire une image floue, bruitée et dont on n'observe pas tous les pixels!

- flou/filtre gaussien
 - → problème de défloutage
- pixels manquants
 - → problème d'inpainting
- bruit additif
 - → problème de débruitage
- hypothèse de parcimonie dans le domaine des ondelettes

27 / 30

Modèle direct

Problème inverse

Étant donné l'opérateur de transformée en ondelette W :

$$\arg\min_{x} \|m \circ (h * x) - y\|_{2}^{2} + \lambda \|Wx\|_{1}$$

Changement de variable : z = Wx représentation en ondelettes de x

$$\arg\min_{z} \| \underbrace{m \circ (h * W^{T} z)}_{z} - y \|_{2}^{2} + \lambda \|z\|_{1}$$

 \rightarrow $A: z \mapsto m \circ (h*W^Tz)$ opérateur linéaire, composition de trois opérateurs linéaires. \rightarrow A = A1 @ A2 @ A3 en Python.

TP (avec code fourni + exemples de résultats)

- (TP précédent/déconv. 1D : coder opérateur convolution, comparer tps de calcul.)
- Débruitage d'image :
 - modèle direct : y = x + b où x est une image (2D!) et b est un bruit blanc gaussien
 - hypothèse : la représentation en ondelette Wx de x est parcimonieuse
 - problème inverse :

$$\underset{x}{\operatorname{arg\,min}} \|x - y\|_F^2 + \lambda \|Wx\|_1$$

• problème équivalent : changement de variable z = Wx

$$\arg\min_{z} \left\| W^{T}z - y \right\|_{F}^{2} + \lambda \left\| z \right\|_{1}$$

- TODO : coder W^T comme opérateur (attention, W doit correspondre à une base orthonormée), simuler et résoudre le problème Aide : vectoriser l'image en entrée et sortie de l'opérateur ($\mathbb{R}^N \to \mathbb{R}^N$ où N est le nombre total de pixels de l'image).
- Déconvolution d'image (y = x * h + b) avec parcimonie sur Wx
- Inpainting d'image (y = x[mask] + b) avec parcimonie sur Wx
- Déconvolution + inpainting + débruitage d'image

- Introduction et exemples
- 2 Généralisation à d'autres a priori sur x'
- Généralisation à d'autres bruits
- 4 Les opérateurs : au-delà des matrices
- Application
- 6 Conclusion

Conclusion

Modèle direct : $y = D_{\sigma}(Ax^{\circ})$

Problème inverse

$$\underset{x}{\operatorname{arg\,min}} \underbrace{E(Ax,y)}_{\text{attache aux données}} + \underbrace{R(x)}_{\substack{\text{régularisation} \\ \text{selon hypothèse}}}$$

Grande variété de problèmes inverses, flexibilité de modélisation et de mise en œuvre :

- x^{o} : signal (1D), image (2D), etc.
- Régularisation : selon les hypothèses sur x^{o} (parcimonie, etc.)
- Bruit/perturbation D_{σ} :
 - en fonction de la physique du modèle direct
 - choisir une attache aux données E(.,.) appropriée
- Opérateur linéaire *A* :
 - sous forme matricielle ou non (transformée rapide, convolution, échantillonnage, etc.) • combinaison possible d'opérateurs (inpainting, convolution, représentation, etc.)
- Algorithmes:
 - ISTA: vu pour le Lasso, existe dans un cadre plus général + version rapide (FISTA)
 - nombreux autres algorithmes d'optimisation convexe
- Toolboxes: scilops, deepinv, etc.
- À venir : problème inverse et réseaux de neurones!

M2 IAAA - HE SOAP

30 / 30