LAGraph Algorithms

LAGraph Working Group

October 7, 2020

Abstract

Theoretical documentation for LAGraph.

1 Notation

Table 1 contains the notation of GraphBLAS operations

Additionally, we use $\mathbf{D} = diag(J, n)$ to construct a diagonal matrix $\mathbf{D} \leftarrow \{J, J, [1, 1, \dots, 1]\}$. The elements of the matrix are $\mathbf{D}(j, j) = 1$ for $j \in J$.

Initializing scalars, vectors, and matrices (GraphBLAS methods):

- let: $s \in \mathbb{Q}_{64}$
- let: $\mathbf{u} \in \mathbb{Q}_{32}^n$
- let: $\mathbf{A} \in \mathbb{N}_{16}^{m \times n}$
- let: $\mathbf{A} \in \mathbb{Z}_{64}^{k \times m}$

2 Algorithms

LAGraph [12] implements graph algorithms using the GraphBLAS C API [13]. An incomplete list of GraphBLAS algorithms:

- MSBFS [8], bidirectional BFS [8], pushpull BFS [19]
- DFS [16]
- weakly connected components [21]
- SCC (LAGraph)
- SSSP, delta-stepping [17]
- triangle count [1, 5], triangle enumeration [1], item local clustering coefficient [4]
- *k*-truss [5]
- betweenness centrality [12]
- closeness centrality [8]
- DNN algorithm [10, 7]
- PageRank variants (at least 2) [4], IISWC paper, ...
- Louvain [11]
- property graphs: incremental TTC case [9], SIGMOD 2014 Contest [8] Roi Lipman's talk¹
- CFPQs based on a string of GRADES/ADBIS/other papers [2, 3, 14, 18, 15]
- Implementations: GBTL², SuiteSparse:GraphBLAS [6], GraphBLAST [20]

¹http://wiki.ldbcouncil.org/pages/viewpage.action?pageId=106233859&preview=/106233859/111706128/LDBC-July-2019.pdf

²https://github.com/cmu-sei/gbtl

	matrix-matrix multiplication	~ /a s\ · · ·
		$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}\oplus.\otimes\mathbf{B}$
	vector-matrix multiplication	$\mathbf{w}\langle\mathbf{m}\rangle{\odot}{=}\mathbf{u}\oplus.{\otimes}\mathbf{A}$
mxv	matrix-vector multiplication	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}\oplus.\otimes\mathbf{u}$
eWiseAdd	element-wise addition	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}\oplus\mathbf{B}$
	set union of patterns	$\mathbf{w}\langle\mathbf{m}\rangle\odot{=}\mathbf{u}\oplus\mathbf{v}$
eWiseMult	element-wise multiplication	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}\otimes\mathbf{B}$
	set intersection of patterns	$\mathbf{w} \langle \mathbf{m} \rangle \odot = \mathbf{u} \otimes \mathbf{v}$
extract	extract submatrix	$\mathbf{C}\langle\mathbf{M}\rangle\odot=\mathbf{A}(I,J)$
	extract column vector	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}(:,j)$
	extract row vector	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{A}(i,:)$
	extract subvector	$\mathbf{w}\langle\mathbf{m}\rangle\odot=\mathbf{u}(I)$
assign	assign matrix to submatrix with mask for C	$\mathbf{C}\langle\mathbf{M}\rangle(I,J)\odot=\mathbf{A}$
	assign scalar to submatrix with mask for C	$\mathbf{C}\langle\mathbf{M}\rangle(I,J)\odot=s$
	assign vector to subvector with mask for w	$\mathbf{w}\langle\mathbf{m}\rangle(I)\odot=\mathbf{u}$
	assign scalar to subvector with mask for \mathbf{w}	$\mathbf{w}\langle\mathbf{m}\rangle(I)\odot=s$
subassign (GxB)	assign matrix to submatrix with submask for $C(I, J)$	$\mathbf{C}(I,J)\langle\mathbf{M}\rangle\bigcirc=\mathbf{A}$
	assign scalar to submatrix with submask for $\mathbf{C}(I,J)$	$\mathbf{C}(I,J)\langle\mathbf{M}\rangle\odot=s$
	assign vector to subvector with submask for $\mathbf{w}(I)$	$\mathbf{w}(I)\langle\mathbf{m}\rangle\odot=\mathbf{u}$
	assign scalar to subvector with submask for $\mathbf{w}(I)$	$\mathbf{w}(I)\langle \mathbf{m}\rangle \odot = s$
-		$\mathbf{C}\langle\mathbf{M}\rangle\odot=f(\mathbf{A})$
apply	apply unary operator	$\mathbf{w}\langle\mathbf{m}\rangle\odot=f(\mathbf{u})$
select (GxB)	apply select operator	$\begin{array}{l} \mathbf{C}\langle\mathbf{M}\rangle\bigcirc=select(\mathbf{A},f(k))\\ \mathbf{C}\langle\mathbf{M}\rangle\bigcirc=select(low\leq\mathbf{A}\leq up)\\ \mathbf{w}\langle\mathbf{m}\rangle\bigcirc=select(\mathbf{u},f(k))\\ \mathbf{w}\langle\mathbf{m}\rangle\bigcirc=select(low\leq\mathbf{u}\leq up) \end{array}$
reduce	reduce matrix to column vector	$\mathbf{w}\langle\mathbf{m}\rangle\odot=[\oplus_{j}\mathbf{A}(:,j)]$
	reduce matrix to scalar	$s \odot = [\oplus_{ij} \mathbf{A}(i,j)]$
	reduce vector to scalar	$s \odot = [\oplus_i \mathbf{u}(i)]$
transpose	transpose	$\mathbf{C}\langle\mathbf{M} angle\odot=\mathbf{A}^{ op}$
kronecker	Kronecker multiplication	$\mathbf{C}\langle\mathbf{M}\rangle\odot=kron(\mathbf{A},\mathbf{B})$
new	new matrix	let: $\mathbf{A} \in TYPE^{n \times m}_{PRECISION}$
	new vector	let: $\mathbf{u} \in TYPE^n_{PRECISION}$
build	build matrix from index/value arrays	$\mathbf{C} \leftrightarrow \{I, J, X\}$
	build vector from index/value arrays	$\mathbf{w} \leftrightarrow \{I, X\}$
	build vector from fidex, value arrays	
extractTuples	extract index/value arrays	$ \begin{cases} I, J, X \} &\longleftrightarrow \mathbf{A} \\ \{I, X\} &\longleftrightarrow \mathbf{u} \end{cases} $
dup	duplicate matrix	C ← A
	duplicate vector	v ← u
	extract scalar element	$s = \mathbf{A}(i, j)$ $s = \mathbf{u}(i)$
setElement	set element	$\mathbf{C}(i,j) = s$ $\mathbf{w}(i) = s$

Table 1: GraphBLAS operations and methods based on [6]. Notation: Matrices and vectors are typeset in bold, starting with uppercase (\mathbf{A}) and lowercase (\mathbf{u}) letters, respectively. Scalars including indices are lowercase italic (s, i, j) while arrays are uppercase italic (s, s, s) while arrays are uppercase italic (s, s) and s are the addition and multiplication operators forming a semiring and default to conventional arithmetic s and s operators. s is the apply operator. Masks (s) and (s) are used to selectively write to the result matrix/vector. The complements of masks (s), (s) can be selected with the negation symbol, denoted with (s), (s), respectively. Masks with "replace" semantics (annihilating all elements outside the mask) are denoted with (s), (s

Algorithm 1: Breadth-first search.

```
 \begin{array}{c|c} \textbf{1} & \textbf{Function} & BFS \\ \textbf{2} & | & \textbf{frontier}(s) = \texttt{TRUE} \\ \textbf{3} & | & \textbf{for} & level = 1 \textbf{ to } n-1 \textbf{ do} \\ \textbf{4} & | & \textbf{seen}\langle \textbf{frontier}\rangle = level \\ \textbf{5} & | & \textbf{frontier}\langle\langle\neg\textbf{seen}\rangle\rangle = \textbf{frontier} \text{ any.pair } \textbf{A} \\  \end{array}
```

Algorithm 2: Breadth-first search (push/pull).

```
_{1} Function BFS
        frontier(s) = TRUE
\mathbf{2}
         for level = 1 to n-1 do
3
               \mathbf{seen}\langle\mathbf{frontier}\rangle = level
4
               push = use some heuristics to determine whether to push/pull
5
               if push then
6
                | \mathbf{frontier} \langle \langle \neg \mathbf{seen} \rangle \rangle = \mathbf{frontier} any pair \mathbf{A}
7
               else
8
                | \mathbf{frontier} \langle \langle \neg \mathbf{seen} \rangle \rangle = \mathbf{A}  any pair \mathbf{frontier}
```

Algorithm 3: Multi-source breadth-first search.

```
\begin{array}{c|c} \textbf{Data:} \dots \\ \textbf{Result:} \dots \\ \textbf{1} & \textbf{Function} & MSBFS \\ \textbf{2} & | & \textbf{Frontier} \leftrightarrow \mathsf{diag}(S,n) \\ \textbf{3} & | & \textbf{for} & level = 1 & \textbf{to} & n-1 & \textbf{do} \\ \textbf{4} & | & | & \textbf{Seen}\langle \textbf{Frontier} \rangle = level \\ \textbf{5} & | & | & \textbf{Frontier}\langle \neg \textbf{Seen} \rangle \rangle = \textbf{Frontier} \text{ any.pair } \textbf{A} \end{array}
```

Algorithm 4: Betweenness centrality.

```
1 Function MSBFS
        // The NumSp structure holds the number of shortest paths for each node and
            starting vertex discovered so far.
        // Initialized to source vertices.
 3
       NumSp \leftrightarrow \{s, [1, 1, ..., 1]\}
 4
        // The Frontier holds the number of shortest paths for each node and starting vertex
 5
            discovered so far.
        // Initialized to source vertices.
 6
       Frontier\langle NumSp \rangle = A(s,:)
 7
        d = 0
 8
       // The Sigmas matrices store frontier information for each level of the BFS phase.
 9
        // BFS phase (forward sweep)
10
       do
11
            // \mathbf{Sigmas}[d](:,s) = d^{\mathrm{th}} level frontier from source vertex s
12
            let: Sigmas[d] \in \mathbb{B}^{n \times nsver}
13
            \mathbf{Sigmas}[d](:,:) = \mathbf{Frontier}
                                                                                         // Convert matrix to Boolean
14
            NumSp = NumSp \oplus Frontier
                                                                                             // Accumulate path counts
15
           Frontier\langle \langle NumSp \rangle \rangle = A^{\top} \oplus . \otimes Frontier
                                                                                                       // Update frontier
16
        while nvals(Frontier) > 0
17
       let: NumSpInv \in \mathbb{Q}_{32}^{n \times nsver}
18
       \mathbf{NumSpInv} = 1.0 \oslash \mathbf{NumSp}
19
       let: \mathbf{BCU} \in \mathbb{Q}_{32}^{n \times nsver}
20
       BCU(:) = 1.0
                                                        // Make BCU dense, initialize all elements to 1.0
21
       let: \mathbf{W} \in \mathbb{Q}_{32}^{n \times nsver}
22
        // Tally phase (backward sweep)
23
        for i = d - 1 downto 0 do
24
            \mathbf{W}\langle\langle\mathbf{Sigmas}[i]\rangle\rangle = \mathbf{NumSpInv} \oslash \mathbf{BCU}
25
            \mathbf{W}\langle\langle \mathbf{Sigmas}[i-1]
angle\rangle = \mathbf{A} \oplus . \otimes \mathbf{W} // Add contributions by successors and mask with that
26
             BFS level's frontier.
           \mathbf{BCU} \oplus = \mathbf{W} \otimes \mathbf{NumSp}
27
        // Row reduce \operatorname{BCU} and subtract \operatorname{nsver} from every entry to account for 1 extra value
28
            per BCU row element
29
        \mathbf{delta} = [\oplus_j \mathbf{BCU}(:,j)]
       \mathbf{delta} \ominus = nsver
30
```

Algorithm 5: PageRank (used in Graphalytics).

```
Data: \alpha constant (damping factor)
   Result: ...
 1 Function PageRank
        pr(:) = 1/n
        \mathbf{outdegrees} = [\oplus_j \mathbf{A}(:,j)]
 3
        for k = 1 to numIterations do
 4
             importance = pr \oslash outdegrees
 5
             importance = times(importance, \alpha)
                                                                                   // apply the times(x,s) = x \cdot s operator
 6
             importance = importance \oplus . \otimes A
 7
             danglingVertexRanks\langle\neg outdegrees\rangle = pr(:)
 8
             totalDanglingRank = [\bigoplus_i \mathbf{danglingVertexRanks}(i)(\otimes)] \frac{\alpha}{n}
 9
             \mathbf{pr}(:) = \frac{1-\alpha}{n} \oplus totalDanglingRank
10
             \mathbf{pr}\langle \mathbf{importance} \rangle = \mathbf{pr} \oplus \mathbf{importance}
11
```

Algorithm 6: Algebraic Bellman-Ford for SSSP.

```
1 Function SSSP
2 | \mathbf{d}(s) = 0
3 | for k = 1 to n - 1 do
4 | \mathbf{dtmp} = \mathbf{d} \min.\text{plus } \mathbf{A}
5 | if \mathbf{dtmp} = \mathbf{d} \text{ then}
6 | \mathbf{break}
7 | \mathbf{d} \leftrightarrow \mathbf{dtmp}
```

Algorithm 7: Delta-stepping SSSP.

```
Data:
```

```
\mathbf{A}, \mathbf{A_H}, \mathbf{A_L} \in \mathbb{Q}^{|V| \times |V|}
            s, i \in \mathbb{N}
            \Delta\in\mathbb{Q}
            \mathbf{t},\mathbf{t_{Req}} \in \mathbb{Q}^{|V|}
            \mathbf{t_{B_i}}, \mathbf{e} \in \mathbb{N}^{|V|}
  1 Function DeltaStepping
               \mathbf{A_L} = select(0 < \mathbf{A} \le \Delta)
  2
               \mathbf{A_H} = select(\Delta < \mathbf{A})
  3
               \mathbf{t}(:) = \infty
  4
               \mathbf{t}(s) = 0
  5
               while nvals(select(i\Delta \leq \mathbf{t})) \neq 0 do
  6
                        \mathbf{t_{B_i}} = select(i\Delta \le \mathbf{t} < (i+1)\Delta)
  8
                        while \mathbf{t_{B_i}} \neq 0 \ \mathbf{do}
  9
                                \mathbf{t_{Req}} = \mathbf{A}_{\mathbf{L}}^{\top} \oplus . \otimes (\mathbf{t} \otimes \mathbf{t_{B_i}})
10
                                \mathbf{e} = select(0 < \mathbf{e} \oplus \mathbf{t_{B_i}})
11
                                \mathbf{t_{B_i}} = select(i\Delta \leq \mathbf{t_{Req}} < (i+1)\Delta) \otimes (\mathbf{t_{Req}} \min_{\Delta} \mathbf{t})
12
                        \mathbf{t_{Req}} = \mathbf{A}_{\mathbf{H}}^{\top} \oplus . \otimes (\mathbf{t} \otimes \mathbf{e})
13
                        \mathbf{t} = \mathbf{t} \, \mathsf{min} \, \mathbf{t_{Req}}
14
15
                        i = i + 1
```

Algorithm 8: All-pairs shortest path (Floyd-Warshall algorithm).

```
1 Function FloydWarshall

2 | \mathbf{D} \leftrightarrow \mathbf{A}

3 | for k = 1 to n do

4 | \mathbf{D} = \mathbf{D} \min[\mathbf{D}(:,k) \min.plus(\mathbf{D}(k,:)]
```

Algorithm 9: FastSV algorithm.

```
1 Function FastSV
 \mathbf{2}
        n = nrows(\mathbf{A})
        gf = f
 3
        dup = gf
 4
        mngf = gf
 5
        \{I, X\} \leftarrow \mathbf{f}
 6
        repeat
 7
             // Step 1: Stochastic hooking
 8
             \mathbf{mngf} = \mathbf{mngf} \, \mathsf{min} \, \mathbf{A}
 9
             \mathbf{mngf} = \mathbf{mngf} second.min \mathbf{gf}
10
             f(X) = f \min mngf
11
             // Step 2: Aggressive hooking
12
             f = f \min mngf
13
14
             // Step 3: Shortcutting
             f = f \min gf
15
             // Step 4: Calculate grandparents
16
             \{I,X\} \leftarrow \mathbf{f}
17
             \mathbf{gf} = \mathbf{f}(X)
18
             // Step 5: Check termination
19
             \mathbf{diff} = \mathbf{dup} \neq \mathbf{gf}
20
             sum = [\bigoplus_i \mathbf{diff}(i)]
21
             dup = gf
\mathbf{22}
        until sum == 0
23
```

Algorithm 10: Triangle count (Cohen's algorithm).

```
1 Function TriangleCount
2 | \mathbf{L} = tril(\mathbf{A})
3 | \mathbf{U} = triu(\mathbf{A})
4 | \mathbf{B} = \mathbf{L} \oplus . \otimes \mathbf{U}
5 | \mathbf{C} = \mathbf{B} \otimes \mathbf{A}
6 | t = [\oplus_{ij} \mathbf{C}(i,j)]/2
```

Algorithm 11: Triangle count (Sandia).

```
1 Function TriangleCount

2 | \mathbf{L} = tril(\mathbf{A})

3 | \mathbf{C}\langle\mathbf{L}\rangle = \mathbf{L} \oplus . \otimes \mathbf{L}

4 | t = [\oplus_{ij} \mathbf{C}(i,j)]
```

Algorithm 12: Triangle count (FLAME).

```
1 Function TriangleCountFlame
2 | for i = 2 to n - 1 do
3 | A_{20} = A(i + 1: n, 0: i - 1)
4 | a_{10} = A(0: i - 1, i)
5 | a_{12} = A(i, i + 1: n)
6 | t \oplus = a_{10} \oplus . \otimes A_{20} \oplus . \otimes a_{12}
```

Algorithm 13: Local clustering coefficient.

```
Function PageRank2\operatorname{Tri}\langle \mathbf{A}\rangle = \mathbf{A} \oplus . \otimes \mathbf{A}// compute triangle count matrix3\operatorname{tri} = [\oplus_j \operatorname{Tri}(:,j)]// reduce to triangle count vector4\operatorname{deg} = [\oplus_j \mathbf{A}(:,j)]// reduce to vertex degree vector5\operatorname{wed} = perm2(\operatorname{deg})// apply perm2(x) = x \cdot (x-1) to get wedge count vector6\operatorname{lcc} = \operatorname{tri} \oslash \operatorname{wed}// LCC vector
```

Algorithm 14: k-truss algorithm.

```
1 Function KTruss
        \mathbf{C} \leftarrow \mathbf{A}
\mathbf{2}
3
        nonzeros \leftarrow nvals(C)
        for i = 1 to n - 1 do
4
              \mathbf{C}\langle\mathbf{C}\rangle=\mathbf{C}\oplus. land \mathbf{C}
5
              \mathbf{C} = select(\mathbf{C} \ge k - 2)
6
              if nonzeros == nvals(C) then
7
               break
8
9
              nonzeros \leftarrow nvals(C)
```

Algorithm 15: Louvain algorithm (WIP).

```
1 Function Louvain
 2
            G \oplus = G^{\top}
            \mathbf{k} = [\oplus_j \mathbf{A}(:,j)]
 3
            m = \frac{1}{2} [\bigoplus_i \mathbf{k}(i)]
 4
            S \leftarrow I
 5
 6
            vertices\_changed \leftarrow nvals(\mathbf{k})
 7
            while vertices\_changed > 0 do
 8
                  for j \in range(|V|) do
 9
10
                         \mathbf{v} = \mathbf{G}(j,:)
                         \mathbf{t_q} = \mathbf{v} any.pair \mathbf{S}
11
                         \mathbf{sr} = \mathbf{S}(j,:)
12
                         \mathbf{S}(j,:) = \text{empty}
13
14
                         \mathbf{q} \leftarrow \mathbf{k}
15
                         \mathbf{q}\langle\mathbf{k}\rangle\otimes=-\mathbf{k}(j)/m
16
                         q \oplus = v
17
18
                         \mathbf{q_1}\langle\mathbf{t_q}\rangle=\mathbf{q}\oplus.\otimes\mathbf{S}
19
                         \mathbf{t} = (\mathbf{q_1} == [\max_i \mathbf{q_1}(i)])
20
                         while nvals(t) \neq 1 do
21
                               \mathbf{p} = random() \otimes \mathbf{t}
22
                             \mathbf{t} = (\mathbf{p} == [\mathsf{max}_i \, \mathbf{p}(i)])
23
                         \mathbf{S}(j,:) = \mathbf{t}
\bf 24
25
                         if nvals(\mathbf{sr} \otimes \mathbf{t}) == 0 then
26
                           vertices\_changed = nvals(\mathbf{k})
27
                         vertices\_changed = vertices\_changed - 1
28
```

Algorithm 16: Community detection using label propagation (for undirected graphs).

References

- [1] A. Azad, A. Buluç, and J. R. Gilbert, "Parallel triangle counting and enumeration using matrix algebra," in *GABB at IPDPS*. IEEE Computer Society, 2015, pp. 804–811. [Online]. Available: https://doi.org/10.1109/IPDPSW.2015.75
- [2] R. Azimov and S. Grigorev, "Context-free path querying by matrix multiplication," in *GRADES-NDA at SIGMOD*. ACM, 2018, pp. 5:1–5:10. [Online]. Available: https://doi.org/10.1145/3210259.3210264
- [3] —, "Path querying with conjunctive grammars by matrix multiplication," *Programming and Computer Software*, vol. 45, no. 7, pp. 357–364, 2019. [Online]. Available: https://doi.org/10.1134/S0361768819070041
- [4] M. Aznaveh, J. Chen, T. A. Davis, B. Hegyi, S. P. Kolodziej, T. G. Mattson, and G. Szárnyas, "Parallel GraphBLAS with OpenMP," in *CSC*. SIAM, 2020, pp. 138–148. [Online]. Available: https://doi.org/10.1137/1.9781611976229.14
- [5] T. A. Davis, "Graph algorithms via SuiteSparse:GraphBLAS: Triangle counting and K-truss," in *HPEC*. IEEE, 2018. [Online]. Available: https://doi.org/10.1109/HPEC.2018.8547538
- [6] —, "Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in the language of sparse linear algebra," *ACM Trans. Math. Softw.*, 2019. [Online]. Available: https://doi.org/10.1145/3322125
- [7] T. A. Davis, M. Aznaveh, and S. P. Kolodziej, "Write quick, run fast: Sparse deep neural network in 20 minutes of development time via SuiteSparse:GraphBLAS," in *HPEC*. IEEE, 2019, pp. 1–6. [Online]. Available: https://doi.org/10.1109/HPEC.2019.8916550
- [8] M. Elekes, A. Nagy, D. Sándor, J. B. Antal, T. A. Davis, and G. Szárnyas, "A GraphBLAS solution to the SIGMOD 2014 programming contest using multi-source BFS," in *HPEC*, 2020.
- [9] M. Elekes and G. Szárnyas, "An incremental GraphBLAS solution for the 2018 TTC Social Media case study," in *GrAPL at IPDPS*. IEEE, 2020, pp. 203–206. [Online]. Available: https://doi.org/10.1109/IPDPSW50202.2020.00045
- [10] J. Kepner, M. Kumar, J. E. Moreira, P. Pattnaik, M. J. Serrano, and H. M. Tufo, "Enabling massive deep neural networks with the GraphBLAS," in *HPEC*. IEEE, 2017, pp. 1–10. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091098
- [11] T. M. Low, D. G. Spampinato, S. McMillan, and M. Pelletier, "Linear algebraic louvain method in python," in *GrAPL at IPDPS*. IEEE, 2020, pp. 223–226. [Online]. Available: https://doi.org/10.1109/IPDPSW50202.2020.00050
- [12] T. Mattson, T. A. Davis, M. Kumar, A. Buluç, S. McMillan, J. E. Moreira, and C. Yang, "LAGraph: A community effort to collect graph algorithms built on top of the GraphBLAS," in *GrAPL at IPDPS*, 2019. [Online]. Available: https://doi.org/10.1109/IPDPSW.2019.00053
- [13] T. G. Mattson, C. Yang, S. McMillan, A. Buluç, and J. E. Moreira, "GraphBLAS C API: Ideas for future versions of the specification," in *HPEC*. IEEE, 2017. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091095
- [14] N. Mishin, I. Sokolov, E. Spirin, V. Kutuev, E. Nemchinov, S. Gorbatyuk, and S. Grigorev, "Evaluation of the context-free path querying algorithm based on matrix multiplication," in *GRADES-NDA at SIGMOD*. ACM, 2019, pp. 12:1–12:5. [Online]. Available: https://doi.org/10.1145/3327964.3328503
- [15] E. Orachev, I. Epelbaum, R. Azimov, and S. Grigorev, "Context-free path querying by Kronecker product," in *ADBIS*, ser. Lecture Notes in Computer Science, vol. 12245. Springer, 2020, pp. 49–59. [Online]. Available: https://doi.org/10.1007/978-3-030-54832-2_6
- [16] D. G. Spampinato, U. Sridhar, and T. M. Low, "Linear algebraic depth-first search," in ARRAY at PLDI. ACM, 2019, pp. 93–104. [Online]. Available: https://doi.org/10.1145/3315454.3329962
- [17] U. Sridhar, M. Blanco, R. Mayuranath, D. G. Spampinato, T. M. Low, and S. McMillan, "Delta-stepping SSSP: From vertices and edges to graphblas implementations," in *GrAPL at IPDPS*. IEEE, 2019, pp. 241–250. [Online]. Available: https://doi.org/10.1109/IPDPSW.2019.00047
- [18] A. Terekhov, A. Khoroshev, R. Azimov, and S. Grigorev, "Context-free path querying with single-path semantics by matrix multiplication," in *GRADES-NDA at SIGMOD*. ACM, 2020, pp. 5:1–5:12. [Online]. Available: https://doi.org/10.1145/3398682.3399163

- [19] C. Yang, A. Buluç, and J. D. Owens, "Implementing push-pull efficiently in GraphBLAS," in *ICPP*. ACM, 2018, pp. 89:1–89:11. [Online]. Available: https://doi.org/10.1145/3225058.3225122
- [20] —, "GraphBLAST: A high-performance linear algebra-based graph framework on the GPU," *CoRR*, vol. abs/1908.01407, 2019, http://arxiv.org/abs/1908.01407. [Online]. Available: http://arxiv.org/abs/1908.01407
- [21] Y. Zhang, A. Azad, and Z. Hu, "FastSV: A distributed-memory connected component algorithm with fast convergence," in *PPSC*. SIAM, 2020, pp. 46–57. [Online]. Available: https://doi.org/10.1137/1. 9781611976137.5