Day 3 Informed Search

(some slides based on Downy, Sood)

- Class business
 - Piazza/OH still best way to ask questions
 - Don't use comments in canvas (we can't easily see them)
 - Lab 0 grades posted on canvas
 - If you struggled with lab 0, I would be concerned about your ability to do well in this class.
 - Lab 0 first resubmission due April 10, 7pm
 - Lab 1 due April 14
- recap Uninformed search
- Informed search
 - Introduce lab 2

Summary

- Search problems
- Search strategies
 - DFS, BFS, Depth limited, ID, Bi-directional
 - Issue: all these methods are slow (blind)
 - Can we fix this by adding guidance...
 - Next: Informed search

BFS example

Exploration order: Up, Right, Down, Left

Α	В	С	D	Ε
F				
G	Н			J
K				L
M	N	0	P	Q

DFS example

Exploration order: Up, Right, Down, Left

Α	В	С	D	Ε
F				
G	Н			J
K				L
M	N	0	P	Q

Uninformed search

- DFS, Depth limited, ID
- BFS, Bi-directional
- Advantage of uninformed search?
- Disadvantages?

- Issue: all these methods are slow (blind)
- Can we fix this by adding guidance?

Informed search

- A search strategy is defined by picking the order of node expansion
- Idea: use an evaluation function f(n) for each node
 - Estimate of "desirability" or quality
 - Expand most desirable nodes first
- Implementation: expand nodes on frontier in decreasing order of desirability

example

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy best first

- Evaluation function f(n)=h(n) (heuristic)
 - Estimated cost from n to goal
 - Not computed from the problem itself, uses some expert knowledge
 - Example
 - h_{sld}(n)= straight-line distance from n to goal
- Greedy best-first search expands the node that appears to be closest to goal

tree search algorithm –keeping track of visited:

- 1. start with the initial node as curr
- 2. have expanded to curr before?
- 3. is curr the goal?
- 4. if neither, expand curr add children/successors to frontier, add curr to expanded
- 5. choose a node in frontier according to the smallest f(n)=h(n) & go to step 2

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
 = estimate of cost from n to goal
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	2.26
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

374

Straight-line distance

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distance

arraignt-inic distan	en leer
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	2.26
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Problem with greedy best-first search?

Straight-line distand	e.
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu V ilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	
ACT HE	374

Non-optimal (Arad to Bucharest)
Arad->Sibiu->Faragas->Bucharest is 23km longer than
Arad->Sibiu->R.V.->Pitesti->Bucharest

Problem with greedy best-first search?

Non-optimal (Arad to Bucharest)
Arad->Sibiu->Faragas->Bucharest is 23km longer than
Arad->Sibiu->R.V.->Pitesti->Bucharest

Stuck in local minimum

Combining backward cost and Greedy

- backward-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

Example: Teg Grenager

A* search

- Idea: Estimate total path through nodes and avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through n to goal (the evaluation of the desirability of n)

A* tree search algorithm –keeping track of visited nodes:

- 1. start with the initial node as curr
- 2. have I been to curr before? (is it in CLOSED)
- 3. is curr the goal?
- 4. if neither, expand curr add children/successors to Frontier, add curr to CLOSED
- 5. choose a node curr from frontier according to the smallest f(n) & go to step 2

Note: This is basically* lab3!

When should A* terminate?

Should we stop when put a goal node in frontier?

No: only stop when we expand a goal from frontier

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

- A heuristic h(n) is admissible if for every node n,
 - $h(n) \le h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)

Oradea 71 Zerind 151 Arad 140	Neamt	87 Lasi 92
118	97 Pitesti 211	Vaslui 142
70 Mehadia 14 75 Drobeta 120 Craic	138 Puchai	Urziceni \ \ 86

orraignt-inic distan	CC.
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	2.26
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu V ilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

374

to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	2.26
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	3.74

374

Straight-line distance

118

Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199

Zerind

374

o buchanesi	
Arad	36
Bucharest	
Craiova	16
Dobreta	24
Eforie	16
Fagaras	17/
Giurgiu	7
Hirsova	15
Iasi	2.2
Lugoj	24
Mehadia	24
Neamt	23
Oradea	38
Pitesti	19
Rimnicu Vilcea	19.
Sibiu	25
Timisoara	3/2/
Urziceni	8

374

Vaslui

Zerind

Zerind

449=75+374

Properties of A*

- If we use an admissible heuristic
 - Complete
 - If there are finite number of nodes with f(n)<f(Goal)
 - Optimal -yes!
 - Proof

Optimal A*

By contradiction:

Suppose G2 is a suboptimal goal and is in the frontier. Let n
be an unexpanded node on the shortest path to optimal goal
G1

• F(G2)=g(G2)

> g(G1) (since G2 is suboptimal)

>= f(n) since h is admissible

Since f(G2)>f(n), A* will never Select G2 for expansion

Properties of A*

- If we use an admissible heuristic
 - Complete
 - If there are finite number of nodes with f()<f(Goal)
 - Optimal -yes!
 - Proof
 - Optimally efficient
 - No algorithm that is optimal is guaranteed to expand fewer nodes than A*

Relax constraints of problem:

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Goal State

•
$$h_1(S) = ?$$

•
$$h_{2}^{-}(S) = ?$$

Relax constraints of problem:

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

Start State

Goal State

- $h_1(S) = 8$
- $\underline{h}_{2}(S) = 3+1+2+2+3+3+2=18$
- Which one is closer to the correct value?

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

7	2	4
5		6
8	3	1

Start State

	1	2
3	4	5
6	7	8

Goal State

Average nodes expanded

	Depth 4	Depth 12
BFS	112	3.6x10 ⁶
H1	13	227
H2	12	73

Heuristic functions

Sub-problem database

- Admissible?
- 15 puzzle reduction of 10,000 nodes vs Manhattan distance
- 24 puzzle, roughly 1 million reduction

Combining heuristics

- 0<=h()<=h_{exact}()
 - Closer to exact, the better
 - What happens if h()=h_{exact}() ?
- $h(n) = max(h_a(n), h_b(n)....)$
 - -h(n) is >= any of the component heuristics
 - h(n) is still admissible

A* example

From past midterm:

A robot starts in location "P" and its goal is "B" in the map below. The robot can only move up/down/left/right (no diagonals). Give the order in which it expands nodes given it is using A* and the "manhattan distance" heuristic.

Write order of node expansion

Α		В	С	D
E				F
G		Н		ı
J		K		L
M	N	0	Р	Q

Local search algorithms

- Many optimization problems the path to the goal is irrelevant, only finding the goal is important.
- State space= set of valid configurations
- Find configuration satisfying constraints
- In such cases, we can use local search algorithms
- For example:
 - Keep a single "current" state, and try to improve it

Greedy Hill climbing

 "like climbing Everest in thick fog with amnesia" *Lab 2*

```
function Hill-Climbing (problem) returns a state that is a local maximum inputs: problem, a problem local variables: current, a node neighbor, \text{ a node} current \leftarrow \text{Make-Node}(\text{Initial-State}[problem]) loop do neighbor \leftarrow \text{a highest-valued successor of } current if \text{Value}[\text{neighbor}] \leq \text{Value}[\text{current}] then return \text{State}[current] current \leftarrow neighbor
```

Example: n-queens

Put n queens on a nxn board with no queens able to attack each other

Greedy Hill-climbing search: 8 queens

- Number of queens attacking for moving within a column.
- Greedy will solve 8queens %14 of the time
 - On average taking 4 steps
- Not bad considering 8queens has 17 million states

Greedy Hill climbing

 Problem: depending on initial state, can get stuck in local maxima

Greedy Hill-climbing search: 8 queens

- Local minimum with cost = 1
- No move (in column)
 can reduce cost (so in
 local minima)

Greedy Hill climbing random restart

- If stuck at non-goal, choose a new starting state, re-run hill climbing
 - If probability of solving is P
 - Expected restarts till goal found is 1/P
- Can solve the million queens problem in under a min

Local beam search

- Keep track of K states rather than 1
- Start with K randomly generated states
- At each iteration, generate all successors for all K states
- If any one is the goal state, stop;
 - Else select the K best successors and repeat
- Stochastic beam search
 - Choose successors at random, with higher likelihood to successors with higher value.

Simulated annealing

 Idea: escape local maxima by allowing some "bad" moves, but gradually decrease how frequently you allow this

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T_{\rm r}, a "temperature" controlling prob. of downward steps
   current \leftarrow Make-Node(Initial-State[problem])
   for t \leftarrow 1 to \infty do
         T \leftarrow schedule[t]
        if T=0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing search

 One can prove: if T decreases slowly enough, then simulated annealing will find a global optimum with probability approaching 1

Simulated annealing example

Genetic algorithms

- Start with K randomly generated states (population)
- 2. Evaluate the fitness for all states in population using a fitness function
- Generate next generation of population through reserving, selection, crossover, and mutation.
- 4. Goto step 2.

Individuals

- Each individual consists of an encoded description of its state
- The encoded description is evaluated by the fitness function
- Example:N-queens
 - description
 - 2,4,1,3
 - Fitness function
 - Number of queens attacking

		₩	
₩			
			w
	w		

Generate new population

- 1. Select 2 individuals based on fitness
 - Higher the fitness, more likely the selection (survival of the fittest)
- 2. Create "offspring" using crossover

Generate new population

- 1. Select 2 individuals based on fitness
 - Higher the fitness, more likely the selection (survival of the fittest)
- 2. Create "offspring" using crossover
- 3. Modify offspring using mutation

Generate new population

- 1. Select 2 individuals based on fitness
 - Higher the fitness, more likely the selection (survival of the fittest)
- 2. Create "offspring" using crossover
- 3. Modify offspring using mutation
- 4. Add offspring to next population
- 5. While (population not full), goto 1

Genetic algorithm example

Genetic algorithm example

Karl Sims 1994

Summary

- Informed search
 - Greedy best first
 - $-A^*$
- Local search
 - Greedy hill climb
 - Simulated annealing
 - Local beam
 - Genetic algorithm
- Next class: adversarial search

Lab 2, Due April 21, 7pm

- 10-queens problem
 - Queens constrained to column

Lab 2

- 10-queens problem
 - Queens constrained to column
 - Find local minima using greedy search
 - Each step is motion of one queen in her column
 - 81 possible next moves
 - Follow tie breaking rules