DIAGONALIZACIÓN III

MENV:

- · DIMENSION INFINITA
- · POLINOMIO MINIMAL

EJEMPLOS CU KM

Jum (KM) = 00 ~> NO HAY POL. CARACTERÍSTICO

1 SEA S:KM ->KM DADO FOR

(Ou, O2,...) 1-> (O2,O3,...)

TODO DEK ES DUTOWLOR DE S:

- S1 1 =0, (1,0,0,...) ∈ Ken S \ {0}.
- · 51 /1 +0,

2) $T: K^{N} \longrightarrow K^{N}, (\alpha_{1}, \alpha_{2}, ...) \longrightarrow (0, \alpha_{1}, \alpha_{2}, ...)$

NO TIENE AUTOVALORES:

$$T(\alpha) = \lambda \alpha \langle = \rangle$$

$$(0,01,02,...) = (\lambda \alpha_1, \lambda \alpha_2,...)$$

•
$$\lambda = 0$$
 : $(0,04,01,...) = 0 => 0 = 0$

$$\lambda \alpha_2 = \alpha_1 = 0 \Rightarrow \alpha_2 = 0$$
; ETC.

POLINDMIO MINIMAL

AEKMXM MAEKIX] > DE GNODO MINIMO MÓNICO

EJEMPLOS:

1)
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = A^{\circ}$$

 $A = \times I : NO$.

$$\leq i : \alpha_1 = 4, \alpha_0 = -3$$

$$\rightarrow m_A = x^2 - 4x + 3 = (= \chi_A)$$

TEO (HAMILTON-CAYLEY); $\chi_{A}(A) = 0$. ie, $m_{A} | \chi_{A}$. ALGO 21TMO: $A \circ S_1 A^m \notin S_1 PONER m = m+1$ $\in 12 AL PASO 2$ EJEMPLOS (CONT.): Z) A = (0000) SE TIENE QUE $\chi_A = \chi^A$. LUEGO $m_A = \chi^k$, CON $k \in \{1,2,3,4\}$ $A^{1} \neq 0, A^{2} \neq 0, A^{3} \neq 0 = k = 4$ 2NATIVAMENTE: 7 MINIMAL DEL VECTOR 2i (CON RESP-A A) 2i (CON RESP-A A) ALTERNATIVAMENTE:

•
$$A \cdot e_1 = c_2 \notin \langle A^0 e_1 \rangle$$

• $A^2 e_1 = e_3 \notin \langle A^0 e_1, A^1 e_1 \rangle$
• $A^3 e_1 = e_4 \notin \langle A^0 e_1, A^1 e_1, A^2 e_1 \rangle$
• $A^4 e_1 = 0$
= $\sum_{k=0}^{3} \chi_{k} = 0$
 $\sim \chi_{k} = \chi_{k} = 0$

4) $T: K^{IN} \rightarrow K^{IN}$, $(\alpha_1, \alpha_2, ...) \rightarrow (0, \alpha_1, \alpha_2, ...)$

NO ADMITE POLINOMIO MINIMAL PUES YM >1

CORRETODA

SI
$$U = \sum_{k=0}^{\ell} d_k T^k$$
 con $\{ \angle M \}$

LUGARES A

Y $d_{\ell} \neq 0$, ENTONCES

LUGAR ℓ
 $d_{\ell} = 0$
 $d_{\ell} \neq 0$

LUGAR ℓ
 $d_{\ell} = 0$
 $d_{\ell} \neq 0$
 $d_{\ell} \neq$

RECORDAZ:

- TODO RAÍZ DE XA ES RAÍZ DE MA A ES DIAGIBLE SIT MA SE FACTORIZA COMPLETAMENTE EN K, CON RAÍCES SIMPLES

PROBLEMA: DADO KED, HALLAR MA PARA

$$A = \begin{pmatrix} k & -2k+4 & k-2 & 2k-4 \\ 0 & 2 & 0 & 0 \\ 0 & -2 & 4 & k-2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

CALCULAMOS: $\chi_A = (\lambda - 2)^2 (\lambda - 4)(\lambda - k)$

· SI K = L, A, ENTONCES

más aun,
$$A$$
 es dia GBLE sii $fim(E_2)=2$
Sii $r_7(A-2I)=2$;

$$m_{\Delta} = (\lambda - 2)(\lambda - 4)(\lambda - k)$$

•
$$\leq 1 \quad (\lambda-2)(\lambda-4) \quad m_A \quad (\lambda-2)^3(\lambda-4)$$

$$\rightarrow$$
 $m_A = (\lambda - 2)(\lambda - 4)$ ($\langle = \rangle$ A DIAG'BLE)

• SI
$$k-A$$
: $(\lambda-2)(\lambda-4)$ m_A $(\lambda-2)(\lambda-4)$

•
$$(A-2I)^2(A-4I) \neq 0$$

•
$$(A-2I)(A-4I)^2=0$$

$$\rightarrow m_A = (\lambda - 2)(\lambda - 4)^2$$