Part I

1 & 2

- $3. Verilog\ Code-Please\ check\ counter.\ v$
- 4. Simulate the circuit -

 $5. {\it Simulate the circuit again-}$

6. Create a new Quartus Project -

7. View the Synthesized Circuit.

Part II

A1. Since it is 4 bits only, adding 1 to 1111 will make it 0000 and we are back to the default postion.

A2. Since 9 is 1001 in binary, we change if (q = 4'b1111) to if (q = 4'b1001)

A3. At this speed we will see all the numbers flashing 50 Million times a second. Due to our persistence of vision, being 10 Hz we will see 8

A4. We should require not more than 2 counters

A5. Since $2^{26} = 67108864$, it will require 26 - bits minimum

Clock reset-n Gisplay Counter Hex out

- $2. Verilog\ Code Please\ check\ clk.\ v$
- 3. Simulate the circuit -

Part III

1.

Letter	Morse Code	Pattern Representation (pattern length is <u>14</u> bits)
S	• • •	10101 000 000 000
T	_	1110000000000
Π.	• • —	10101110000000
V	• • • —	10101011100000
W	• — —	10111011100000
X	_ • • _	111010101110
Y	- •	11101011101110
Z	<u> </u>	11101110101000

2.

- $3. Verilog\ Code Please\ check\ morse.\ v$
- 4. Screenshot of the Simulations -

