Rec'd PCT/PTO 0 6 MAY 2005

PLIMETUS/72365

BUNDEREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

10/534172

REC'D 2 1 DEC 2003

WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 52 622.2

Anmeldetag:

11. November 2002

Anmelder/Inhaber:

Continental Teves AG & Co oHG,

Frankfurt am Main/DE

Bezeichnung:

Motor-Pumpen-Aggregat

IPC:

B 60 T 17/02

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 4. April 2003 Deutsches Patent- und Markenamt Der Präsident Im Auftrag

Eper

Continental Teves AG & Co. OHG

- P P 10565 8. November 2002 GP/Ne
- S. Martin
- T. Bartsch
- A. Niescher

Motor-Pumpen-Aggregat

Die vorliegende Erfindung betrifft ein Motor-Pumpen-Aggregat für ein Kraftfahrzeugbremssystem, mit einem Motor und mit einer Pumpe, welche eine von dem Motor angetriebene Welle umfasst, deren Wellenende in einem mit Ventilen und verbindenden Kanälen versehenen Aufnahmekörper mit wenigstens einem Lager drehbar gelagert ist, wobei die Welle Verdrängungsmittel antreibt, die zumindest teilweise in einem druckmittelbefüllbaren Raum angeordnet sind, in dem das Lager zumindest teilweise läuft, und wobei das Wellenende in einen Freiraum mündet.

Ein derartiges Motor-Pumpen-Aggregat ist beispielsweise aus der DE 199 27 658 A1 bekannt. Generell erfolgt die Befüllung eines Kraftfahrzeugbremssystems mit dem erforderlichen Druckmittel nach Montage der einzelnen Systemkomponenten wie insbesondere einem Hauptbremszylinder, einem Rohr- und Schlauchleitungssystem, dem Motor-Pumpen-Aggregat sowie Radbremsen beim Fahrzeughersteller. Zu diesem Zweck wird das gesamte Bremssystem in einem ersten Verfahrensschritt evakuiert, um in einem zweiten Verfahrensschritt das vorgesehene Druckmittel zuzuführen.

Es hat sich gezeigt, dass Wälzlageranordnungen von MotorPumpenaggregaten insbesondere während dem
Druckmittelbefüllprozeß hohen, sowie wälzlageruntypischen
Beanspruchungen ausgesetzt sind. Infolge einer
wechselgerichteten Unter- beziehungsweise
Überdruckbeaufschlagung kann es bei abgedichteten Wälzlagern

beispielsweise zum Ausknöpfen von Dichtelementen wie Dichtlippen kommen. Dies wiederum kann zu Schmiermittelauswaschungen und folglich zu einer Verringerung der Pumpenlebensdauer führen. Die Lager versagen verfrüht, was insbesondere bei Bremssystemen mit hohen Pumpenlaufzeiten, wie insbesondere elektrohydraulischen Bremssystemen problematisch ist. Unabgedichtete Lager weisen einen freien Zugang zu den Wälzflächen auf, und erlauben nicht die Verwendung eines speziellen Schmierstoffes. Dies ist problematisch, wenn die Schmiereigenschaften des verwendeten Druckmittels nicht ausreichen, oder wenn das Druckmittel Verschleißprodukte enthält, welche eine Laufflächenschädigung bewirken können. Die Erfindung beruht auf der Aufgabe, ein verbessertes Motor-Pumpen-Aggregat zur Verfügung zu stellen.

Diese Aufgabe wird erfindungsgemäß gelöst, indem das Lager den Raum von dem Freiraum trennt, und dass zwischen dem Raum und dem Freiraum eine Verbindung vorgesehen ist, welche gewissermaßen als Bypass zur Umgehung des Wälzlagerinnenraumes wirksam ist, so dass weder Schmiermittelauswaschungen noch Dichtmittelbeschädigungen zu befürchten sind. Im Ergebnis können abgedichtete Wälzlager Verwendung finden, welche gegen Schmierstoffauswaschungen geschützt sind. Dennoch wird ein schneller und damit kostengünstiger Druckmittelbefüllprozeß ermöglicht.

Bei einer vorteilhaften Ausführungsform der Erfindung ist der Freiraum und der Raum zur Aufnahme von Druckmittel, insbesondere zur Aufnahme von Leckagedruckmittel vorgesehen, wobei ferner zwischen einem Druckmittelvorratsbehälter und dem Raum ein Kanal vorgesehen ist, so dass der Freiraum insbesondere zu Befüllzwecken mit dem

Druckmittelvorratsbehälter verbindbar ist. Bei hohen
Pumpenlaufzeiten wird es daher ermöglicht, das in dem Raum
sowie dem Freiraum sukzessiv gesammelte Leckagedruckmittel in
den Druckmittelvorratsbehälter und damit dem Bremssystem
zurückgeführt werden kann.

Bei einer weiterhin vorteilhaften Ausführungsform der Erfindung ist das Lager als Loslager derart ausgebildet, dass die Verbindung zwischen Freiraum und Raum über einen Spalt zwischen einem Lagerinnenring und einem Lagersitz erfolgt. Dadurch sind keine besonderen Maßnahmen erforderlich, um die Verbindung bereitzustellen.

Bei einer anderen Ausführungsform der Erfindung ist die Verbindung als Kanal ausgebildet, wobei dessen Wandung aus Umfangsbereichen von Innenring und Lagersitz besteht. Der Kanal kann grundsätzlich beliebigen Querschnitt aufweisen und ermöglicht die genannte Verbindung an einer definierten Stelle.

Wenn der Lagersitz zur Bildung des Kanals wenigstens eine Abflachung aufweist, kann diese bei der Herstellung der Welle einfach durch spanende Bearbeitung angebracht werden. Dadurch werden gehäuseseitige Bypassbohrungen vermieden. Der dadurch im Gehäuse eingesparte Bauraum kann zu anderen Zwecken genutzt werden.

Wenn die Welle einen Exzenter zum Antrieb von wenigstens einem Pumpenkolben aufweist, wird das Maximum der Exzentrizität und der Kanal bezogen auf eine Axialrichtung im wesentlichen zueinander fluchtend angeordnet. Durch diese Anordnung wird die Flächenpressung am Lagerinnenring verringert, weil die zur Verfügung stehende Auflagefläche nicht durch den Kanal verringert wird.

Erfindungsgemäß ist das Lager in einer gestuften Durchgangsbohrung des Aufnahmekörpers angeordnet, wobei das Lager an den Freiraum angrenzt, und die Durchgangsbohrung sowie der Freiraum mit einem Verschluß versehen ist. Die Herstellung einer Durchgangsbohrung ist im Vergleich mit einer Sackbohrung einfach und ermöglicht darüber hinaus die Abstützung des Wellenende bei der Montage eines motorseitigen Lagers.

Der Verschluss ist vorzugsweise als Deckel ausgebildet, welcher auf einer Bohrungsstufe aufliegt, und wobei der Deckel mit dem Aufnahmekörper verstemmt ist. Der Deckel ist als Tiefzieh- oder Pressteil herstellbar und auch die gehäuseseitige Verstemmung senkt die Herstellungskosten. Ganz grundsätzlich ist eine werkzeugfreie Verclinchung zwischen Deckel und Aufnahmekörper möglich, ohne die Erfindung zu verlassen. Hierbei ist darauf zu achten, dass der Deckel eine geeignete Profilierung aufweist, und aus einem härteren Werkstoff besteht, als der Aufnahmekörper. Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der Zeichnung. In der Zeichnung zeigt

Fig. 1 einen Schnitt durch eine Ausführungsform eines Motor-Pumpenaggregates in größerem Maßstab, und

Fig. 2 eine Skizze zur schematischen Verdeutlichung der Lage von Exzenter und Kanal.

Ein Motor-Pumpen-Aggregat 1 zum Einsatz in einem Kraftfahrzeugbremssystem ist einerseits an nicht dargestellte Radbremsen und andererseits an einen nicht dargestellten Geber wie beispielsweise einen Hauptbremszylinder mit einem Druckmittelvorratsbehälter angeschlossen. Zu diesem Zweck verfügt ein Aufnahmekörper 2 über wenigstens sechs hydraulische Anschlüsse. Das Aggregat ist insbesondere geeignet und bestimmt für elektrohydraulische Bremssysteme, welche über einen, an oder in dem Aufnahmekörper 2 integrierten Hochdruckspeicher verfügen, der zur Speisung der Radbremsen dient. Der Hauptbremszylinder wird hierbei nur im Notfall für die Bremsbetätigung herangezogen und dient primär der Simulation von Bremsbetätigungskräften.

Das Motor-Pumpen-Aggregat 1 enthält weiterhin eine Pumpe 3 zur Versorgung des Hochdruckspeichers oder zur Versorgung von Radbremsen sowie einen Motor 4 zum Antrieb der Pumpe 3. Eine Elektronikeinheit 14 zur Steuerung und Regelung des Systems befindet sich auf einer, dem Motor 4 gegenüberliegenden Seite des Aufnahmekörpers 2, wobei elektronische Steuer- und Versorgungsleitungen des Motors 4 durch den Aufnahmekörper 3 hindurchgeführt sind.

Der Motor 4 treibt eine Pumpenwelle 5 an, welche innerhalb einer gestuften Durchgangsbohrung 6 mittels Lager 7,8 drehbar angeordnet ist. Lager 7 ist als Festlager ausgebildet, während Lager 8 als Loslager ausgebildet ist, und daher keine Axialkräfte aufnehmen kann. Die Pumpenwelle 5 wirkt auf Verdrängungsmittel für das Druckmittel. Bei dem dargestellten, bevorzugten Ausführungsbeispiel handelt es sich um eine Radialkolbenpumpe, welche als Verdrängungsmittel über Pumpenkolben 9,10 verfügt, die in einen etwa mittig zwischen den Lagern 7,8 angeordneten Raum 11 einmünden, und von einem mit der Welle verbundenen Exzenter (zeichnerisch nicht dargestellt) angetrieben werden. Die Anzahl der

Pumpenkolben ist prinzipiell beliebig, wobei 3 Kolben bevorzugt werden, weil dies Pulsationen und Geräuschentwicklung verringert. Zwischen Exzenter und Pumpenkolben 9,10 ist ein Wälzlager 12, insbesondere ein Nadellager zwecks Reibungsreduktion angeordnet. Um beispielsweise Leckagebedingt in dem Raum 11 angesammeltes Druckmittel dem System zur Verfügung zu stellen - oder wenn der Raum 11 ohnehin mit Druckmittel geflutete ist- mündet in den Raum 11 ein Kanal 13, welcher mit dem Druckmittelvorratsbehälter in Verbindung steht. Ein motorabgewandtes Wellenende 15 reicht bis in einen Freiraum 16 und durchgreift einen, in die Durchgangsbohrung 6 eingefügten Boden 17, welcher axial auf einem Außenring von Lager 8 aufliegt. Zwischen Welle 5 und einer Durchgangsbohrung durch den Boden 17 befindet sich ein Spalt zum Durchlass von Druckmittel. Ein Innenring des Lager 8 ist im Schiebesitz auf einem wellenseitigen Lagersitz 18 angeordnet, und zwischen Raum 11 und Freiraum 16 befindet sich eine Verbindung 19. Nach dem Ausführungsbeispiel ist die Verbindung als Kanal 20 ausgeführt, wobei dessen Wandung aus Umfangsbereichen von Innenring und Lagersitz besteht. Zur Bildung des Kanals 20 weist der Lagersitz 18 eine Abflachung 21 auf, während der Innenring unverändert ringförmig ist, so dass zwischen diesen benachbarten Bauteilen ein sichelförmiger, freier Kanalquerschnitt zur pneumatischen Evakuierung und zum Druckmitteldurchtritt vorliegt. Exzentrizität und Kanal 20 sind für einen unverändert guten Lagersitz in Axialrichtung zueinander fluchtend angeordnet, wie es aus Fig. 2 hervorgeht. Mit anderen Worten befindet sich die Abflachung 21 im wesentlichen in derselben Winkelstellung, wie das Exzentermaximum (maximaler Hub), wie dies durch eine strichpunktierte Linie in Fig. 2 verdeutlicht ist. Weil die maximalen Lagerkräfte im Verdrängungshub auf

der dem Exzentermaximum gegenüberliegenden Seite abgetragen werden (aus Sicht des Lagerinnenrings), erfolgt trotz Kanal 20 keine Verringerung der wirksamen, kraftübertragenden Fläche am Lagersitz. Lagersitzbeschädigungen sind dadurch ausgeschlossen.

Die Abflachung 21 kann prinzipiell mittels durch die Welle 5 verlaufende Bohrungen ersetzt werden.

Wie aus Fig. 1 hervorgeht, ist der Freiraum 16 mit einem als Deckel ausgebildeten Verschluß 22 versehen, welcher einen Druckmittelverlust auf der Seite der Elektronikeinheit 14 verhindert. Der Deckel ist an eine Bohrungsstufe 23 der Durchgangsbohrung 6 aufgelegt und mit dem Aufnahmekörper 2 flüssigkeits- sowie gasdicht verstemmt. Zum Zweck der Abdichtung des Raumes 11 ist zwischen Exzenter und Lager 7 im Bereich des motorseitigen Wellenendes 24 ein Dichtelement 25 vorgesehen, das in einem Haltekörper 26 angeordnet ist, so dass keinerlei Leckageflüssigkeit aus dem Aufnahmekörper 2 in Richtung Motor 4 gelangen kann.

Es versteht sich, dass die Erfindung bei vielfältigen Pumpentypen angewendet werden kann, und prinzipiell auch für eine Innenzahnradpumpe vorgesehen werden kann, welche Innenzahnradpaare als Verdrängungsmittel aufweist.

Patentansprüche

- 1. Motor-Pumpen-Aggregat für ein Kraftfahrzeugbremssystem, mit einem Motor (4) und mit einer Pumpe (3), welche eine von dem Motor (4) angetriebene Welle (5) umfasst, deren Wellenende (15) in einem mit Ventilen und verbindenden Kanälen versehenen Aufnahmekörper (2) mit wenigstens einem Lager (8) drehbar gelagert ist, wobei die Welle (5) Verdrängungsmittel antreibt, die zumindest teilweise in einem druckmittelbefüllbaren Raum (11) angeordnet sind, in dem das Lager (8) zumindest teilweise läuft, und wobei das Wellenende (15) in einen Freiraum (16) mündet, dadurch gekennzeichnet, dass das Lager (8) den Raum (11) von dem Freiraum (16) trennt, und dass zwischen dem Raum (11) und dem Freiraum (16) eine Verbindung (19) vorgesehen ist.
- 2. Motor-Pumpen-Aggregat nach Anspruch 1, dadurch gekennzeichnet, dass der Freiraum (16) und der Raum (11) zur Aufnahme von Druckmittel, insbesondere zur Aufnahme von Leckagedruckmittel vorgesehen sind.
- 3. Motor-Pumpen-Aggregat nach Anspruch 1, dadurch gekennzeichnet, dass zwischen einem Druckmittelvorratsbehälter und dem Raum (11) ein Kanal (13) vorgesehen ist, so dass der Freiraum (16) insbesondere zu Befüllzwecken mit dem Druckmittelvorratsbehälter verbindbar ist.
- 4. Motor-Pumpen-Aggregat nach Anspruch 1, dadurch gekennzeichnet, dass das Lager (8) als Loslager ausgebildet ist, und dass die Verbindung (19) zwischen Freiraum (16) und

Raum (11) über einen Spalt zwischen einem Lagerinnenring und einem Lagersitz (18) erfolgt.

- 5. Motor-Pumpen-Aggregat nach einem der Ansprüche 1-3, dadurch **gekennzeichnet**, dass die Verbindung (19) als Kanal (20) ausgebildet ist, und dass dessen Wandung aus Umfangsbereichen von Innenring und Lagersitz (18) besteht.
- 6. Motor-Pumpen-Aggregat nach Anspruch 5, dadurch gekennzeichnet, dass der Lagersitz (18) zur Bildung des Kanals (20) wenigstens eine Abflachung (21) aufweist.
- 7. Motor-Pumpen-Aggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Welle (5) einen Exzenter zum Antrieb von wenigstens einem Pumpenkolben (9,10) aufweist, und dass das Maximum der Exzentrizität und die Verbindung (19) bezogen auf eine Axialrichtung im wesentlichen zueinander fluchtend angeordnet sind.
- 8. Motor-Pumpen-Aggregat nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Lager (8) in einer gestuften Durchgangsbohrung (6) des Aufnahmekörpers (2) angeordnet ist, dass das Lager (8) mittelbar oder unmittelbar an den Freiraum (11) angrenzt, und dass die Durchgangsbohrung (6) mit einem Verschluß (22) versehen ist.
- 9. Motor-Pumpen-Aggregat nach Anspruch 8, dadurch gekennzeichnet, dass der Verschluss (22) als Deckel ausgebildet ist, welcher auf einer Bohrungsstufe (23) aufliegt, und dass der Deckel mit dem Aufnahmekörper (2) verstemmt ist.

Continental Teves AG & Co. OHG

Zusammenfassung

Motor-Pumpen-Aggregat

Die Erfindung betrifft ein Motor-Pumpen-Aggregat 1 für ein Kraftfahrzeugbremssystem, mit einem Motor 4 und mit einer Pumpe 3, welche eine von dem Motor 4 angetriebene Welle 5 umfasst, deren Wellenende 15 in einem mit Ventilen und verbindenden Kanälen versehenen Aufnahmekörper 2 mit wenigstens einem Lager 8 drehbar gelagert ist, wobei die Welle 5 Verdrängungsmittel antreibt, die in einem druckmittelbefüllbaren Raum 11 angeordnet sind. Zur Verbesserung der Vakuumbefüllung des Bremssystems mit Druckmittel wird vorgeschlagen, dass das Wellenende 15 in einen Freiraum 16 mündet, und dass zwischen dem Freiraum 16 und dem Raum 11 wenigstens eine Verbindung 19 vorgesehen ist.

(Fig. 1)

Fig. 2

