

Implementing U-Test for Segmentation

Markus Lacher

Can Firtina

Outline

Background on RawHash

U-test implementation

Results

Future steps

Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology

- Can sequence large fragments of nucleic acid molecules (up to >2Mbp)
- Offers high throughput
- Cost-effective
- Enables real-time genome analysis

Real-Time Analysis with Nanopore Sequencing

Raw Signals: Ionic current measurements generated at a certain throughput

Real-Time Analysis: Analyzing all raw signals by matching the throughput

Real-Time Decisions: Stopping sequencing early based on real-time analysis

RawHash - Key Idea

Key Observation: Identical nucleotides generate **similar** raw signals

Challenge #1: Generating the **same** hash value for **similar enough** signals

Challenge #2: Accurately finding similar regions as few as possible

RawHash Overview

Mapping (Real-Time)

Events in Raw Nanopore Signals

- Event: A segment of the raw signal
 - Corresponds to a **particular k**-mer
- Event detection finds these segments to identify k-mers
 - Start and end positions are marked by abrupt signal changes
 - Statistical methods identify these abrupt changes
 - Event value: average of signals within an event

Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
 - Preconstructed based on nanopore sequencer characteristics
- Use the k-mer model to convert all k-mers
 of a reference genome to their expected event values

Signal-to-Event Conversion

- **Event detection:** Identifies signal regions corresponding to specific k-mers
 - Uses statistical test (**segmentation**) to spot abrupt signal changes

Consecutive events → consecutive k-mers

T-test

 A t-test is a statistical method used to determine if there is a significant difference between the means of two groups

$$T = \frac{\overline{x_1} + \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

- T-test value is generated by two adjacent sliding windows
 Peaks in the T-test values are identified as beginning of an event
- Results in two configurable parameters, threshold and window length

Sample Data

First 4'000 values of a nanopore signal. (From top to bottom: Signal values, T-test values, Event values)

Peak detection

Zoomed in from 1900 to 2100

- Peak detection function uses two T-tests with different parameters.
- Zoomed in from the previous plot. Red dots represent peaks found by rawhash.

Executive Summary

Problem: Is T-test the best statistical tool for detecting events?

Goal: Try **U-test** as a different statistical tool and evaluate performance.

Key observations:

- 1) T-Test detects differences in the mean of two distributions
- 2) T-Test uses two different window sizes and thresholds to detect events.
- 3) Events are clearly visible as peaks in the T-test.

Outline

Background on RawHash

U-test implementation

Results

Future steps

Mann-Whitney U-test

Goal: The goal of the Mann-Whitney U test is to assess whether there is a **significant difference** between **two independent groups**' distributions.

Difference to T-test: U-test **does not rely** on the assumptions that the samples are **normal distributed** and have approximately the **same** variance.

Mann-Whitney U-test

Assuming **two independent non-normal distributed** datasets → compare the ranksum of both distributions.

T₁: ranksum of datapoints n₁

T₂: ranksum of datapoints n₂

$$U_1 = n_1 * n_2 + \frac{n_1(n_1 + 1)}{2} - T_1$$

$$U_2 = n_1 * n_2 + \frac{n_2(n_2 + 1)}{2} - T_2$$

$$U = \min\{U_1, U_2\}$$

Low U-test value: significant difference in the two distributions

Functions in RawHash code

All functions are located in revent.c

U-test peak detection

- First version only looks at U-values
- If U-values fall below threshold a peak is detected
- If multiple values below threshold → take center

Red dots represent peaks found with U-test

Drawbacks

- Peaks are not well spaced
- taking the center point does not always take the minimum Uvalue.
- Resulting performance was bad.

→ Implement peak detection similar to T-test

U-test peak detection

- Space peaks according to window length. If new peak to close old peak: discard it.
- Search maximum U-value between two peaks. **Difference** between maximum and current U-value **must be higher than threshold.**

Red dots represent peaks found with new variant.

Zoomed in from 1900 to 2100

Outline

Background on RawHash

U-test implementation

Results

Future steps

Evaluation Methodology

- Evaluation metrics:
 - Accuracy
 - **Baseline:** Mapping basecalled reads using minimap2
 - Precision, recall, and F1 scores

Datasets:

- Only D2 E. coli

	Organism	Reads (#)	Bases (#)	Genome Size
		Read Mapp	ping	
D1	SARS-CoV-2	1,382,016	594M	29,903
D2	E. coli	353,317	2,365M	5M
D3	Yeast	49,989	380M	12M
D4	Green Algae	29,933	609M	111M
D5	Human HG001	269,507	1,584M	3,117M
	Relativ	e Abundance	e Estimatior	1
	D1-D5	2,084,762	5,531M	3,246M
	Con	ntamination	Analysis	
	D1 and D5	1,651,523	2,178M	29,903

 Results were generated by sweeping the window length from 2-20 and threshold accordingly to a significance of 20%.

Average peak distance

Average peak distance for T-test on d2 is 8.912

U-test average peak distance difference to T-test

Observation: single step in threshold has big impact on average distance, which results in a big change in the number of peaks found.

Average peak distance

Average peak distance for T-test on d2 is 8.912

U-test average peak distance difference to T-test

Observation: This problem occurs because U-test uses discrete values.

Problem: Is U-test to sensitive to parameter changes?

Observation: There is some correspondence between T-test and U-test

Observation: regions were signal is continuously increasing /
decreasing result in low U-test value

→ Result in bad correlation to T-test

Accuracy

Top 10 parameter combinations sorted by F-1 score > precision > recall

Windowsize	Threshold	Precision	Recall	F-1 score
3	1	0.013123	0.001389	0.002512
10	22	0.013699	0.001085	0.00201
6	3	0.012739	0.001091	0.00201
8	7	0.012158	0.001095	0.00201
6	4	0.011976	0.001097	0.00201
6	15	0.012739	0.001091	0.002009
10	21	0.010417	0.000813	0.001508
6	8	0.010239	0.000814	0.001508
14	32	0.009868	0.000816	0.001508
13	3	0.009615	0.000818	0.001508

Observation: Accuracy is low

Executive Summary

Goal: Try **U-test** as a different statistical tool and evaluate performance.

Key observations:

- Changes in threshold have big impact on average peak distance → T-test to sensitive to parameter changes
- 2) There exits correspondence between T-test und U-test signals
- 3) Overall accuracy is low

Outline

Background on Rawhash

U-test implementation

Results

Future steps

Future steps

Improve peak detection algorithm

- Use multiple window sizes
- Try to match average peak distance to T-test results

Try to make end-to-end itegration more accurate

double check U-test implementation

Try different statistical tests

- Non-discrete Tests, which can be parameterized more sensitively
- E.g.

Title

