EC401 ASSIGNMENT 1 Compiled by - DIVYA 21224707087

DATA

Koop and Tobias (2004) Labour Market Experience Data is a panel of 2178 individuals with a total of 17, 919 Observations Time Trend takes values from 0 to 14. I have fined the time trend out 14, recent most year. This leaves us with I have applied filter Time Trend = 14, to get this subset of idata and stored it in encel file titled "kt.nlsn".

I imported 'numpy' - for linear algebra; panolas' - for visualization idealing with data frames; 'matplot lib. pyplot' - for visualization station of statemodel api for OLS and 'spicy state' for statistical tests.

DATA DESCRIPTION

1. Imported data with time brend fined at 14 as 'kt! The choice of 14 was drawin by the fact that it was recent most necent data of northin the panel and luds of education had Slabilised by then.

2. Displaying frist 10 enlares of the doctor.

	PERSONID	EDUC	LOGWAGE	POTEXPER	TIMETRND	ABILITY	MOTHERED	FATHERED	BRKNHOME	SIBLINGS
1	2	15	2.60	12	14	1.50	12	12	0	1
2	4	13	2.12	11	14	0.26	12	10	1	4
2	6	15	2.70	14	14	0.44	12	16	0	2
1	7	15	2,35	_9	14	0.91	12	12	0	1
5	8	13	2.01	18	14	0.51	12	15	1	2
5	10	11	2.60	16	- 14	0.26	12	12	0	2
7	12	13	2.91	16	14	-1.30	13	12	0	5
3	13	12	3.88	17	14	-0.63	12	. 12	1	4
)	15	13	. 3.22	12	14	0.28	10	12	1	. 3
)	16	12	2.56	12'.	. 14.	-0.72	14	12	0	1,

* the default inden as 0, command was given to ichange widen from 0 to 1

3. Now to get details about columns - count and dalatype

kt.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1499 entries, 1 to 1499
Data columns (total 10 columns):

Data	columns (total	10 columns):
#	Column	Non-I	Null Count	Dtype
0	PERSONID	1499	non-null	int64
1	EDUC	1499	non-null	int64
2	LOGWAGE	1499	non-null	float64
3	POTEXPER	1499	non-null	int64
4	TIMETRND	1499	non-null	int64
5	ABILITY	1499	non-null	float64
6	MOTHERED	1499	non-null	int64
7 .	FATHERED	1499	non-null	int64
. 8 .	BRKNHOME	1499	non-null	int64
9	SIBLINGS	1499	non-null	int64
dtype	es: float6	4(2),	int64(8)	
memor	y usage:	117.2	KB	

In the dataSet 'kt';

- There are a total of 10 columns

-> Each column has 1499 non null enterus

- -> Person Id, Education, enperience, timetrenol, mother's educations, fathers education, Broken home and siblings are Integer values
- -> Logwarge and Abelity are float
- 4. Adding a column tilled 'Constant'
 with valve = 1 everywhere;
 or adding 10x 1499x1 vector of 1s,
 to the dalaframe kt.

5. Descriptive Statistics about the revise ket variables in kt. I have ignored person Id ias s.d. word, mean etc don't make sense for Person Id.

√ kt.loc[:, kt.columns != 'PERSONID'].describe()

	oct., weres		SONID'].descr		ADILITY	MOTHERED	FATHERED	BRKNHOME	SIBLINGS	CONSTANT
	EDUC	LOGWAGE	POTEXPER	TIMETRND	ABILITY		1499.000000	1499.000000	1499.000000	1499.0
count	1499.000000	.1499.000000	1499.000000	. , 1499.0	1499.000000	1499.000000			3.063376	
mean .	13.110740:	2.495484	, 13.392929 ;	14.0	0.120734			0.359239	2.036873	0.0
std	2.192598	0.546943	3.028962	0.0	0.932445	3.026882	3.819037	0.000000	0.000000	1.0
min	9.000000	0.210000	4.000000	14.0	-3.960000	0.000000	0.000000		2.000000	. 1.0
25%	12.000000	2.180000	11.000000	14.0	-0.460000	11.000000		0.000000	3.000000	
50%	12.000000	2.500000	13.000000	14.0	0.280000	12.000000		0.000000		1.0
75%	15.000000	2,840000	16.000000	14.0	0.840000	12.000000	14.000000	0.000000	4.000000	
max	20.000000	4.320000	22.000000	14.0	2.010000	20.000000	20.000000	1.000000	15.000000	1.0

Inferences

On average, mother's have a slightly less level of education than
fore
fathers; median level of education is same = 12; but for
fathers; median level of education is for fathers it is 14. Thus
mothers 75% quantile is 12 but for fathers it is 14. Thus
a larger proportion of fathers tend to have education level
a larger proportion of mothers.

Greater than 74. relative to mothers.

Ability is concentrated around medicin, as the med men is -3.96 and about 25 % obs are left of -0.46, also the man is 201 but only 25 % obs are night of 0.84; man is 201 but only 25 % obs are night of 0.84; this needs to ichecked though so it could be the case that the valves are concentrated the valves are concentrated beyond -0.46 and 0.2.84 and min man are just outlier

DEFINING X1

X1 = [Conslant, Educ, Potenper, Abelity]

x1 = [Conslant, Educ, Potenper, as 1499 X4 matrin

DEFINING X2

X2 = [Mother Ed, Father Ed, Siblings]
1499 X3 matrin

DEFINING 4 $\gamma = [Logwage]$ 1499 x 1 matrin

DEFINING X X = [X1 X2] = 1499 X 7 mateun

Question 1 Scalter Plot of You XI

This graph is no doesn't offer much and is equivalent to ploelling of on a number line. We can infer logwage takes only positive valves varying b/no 0 & 5.

Education and log wage seem to be slightly positively correlated.

seem to be slightly negatively correlated

Ability and logwage appear to be positively correlated - moderately.

Question 2 Corvielation b/w Each Vanable in X anoth 4.

ONSTANT	NaN	
EDUC	0.319125	
POTEXPER	-0.133602	
ABILITY	0.311470	
OTHERED	0.211839	
ATHERED	0.228093	
IBLINGS	-0.085604	

- -> Nan N to be interpreted as no correlation, which is true as variable "constant" vis a constant
- Level of education is positively correlated as enperted.
- Enperience is negatively correlated with togwage which is a little counterintulive as enperience higher

should be arrounded with greater wages but something else like Age would be confounding this relationship.

- -> Ability and Cogwage are positively connectated as enpected Thigher, levels of mothers education and fathers collection are arrounded with higher thou normal levels of log wars.

 The strings is negatively arrounded with logwage.

Eclimated Reguession Formula Logwage = $\beta_0.1 + \beta_1.8dw + \beta_2.Potenper + \beta_3.Ability$ + $\beta_4.Mother8d + \beta_5.Fother8d + \beta_6.Siblings$ question 3 Linear Multiple Reg. Model Y= ZBiXi +e Enpected Signs Bo >0 - Due to minimum wage laws, subsistence wages etc. B1 >0 - conditional Increase in level of education, given everything else scelenus panishus should lead to increase in wage B2 >0 - Increase in livel of edu enperience, celenus pantour should in the lead to increase in log wage as enperience is valved in the inclustry. β3>0 - Therease in instituty, celemns pantiur, should lead to By, \$570 Horrease in Indurduals with queater father's or mothers education, conditional on everything else being same will have higher log wages are to synergy such industrial quolance and opportunities enflorted by such industrial \$6 < 0 This is because of resource constraints faced by family to and resources that received per head are likely to fall with Increase in no. of sublings Question 4 B's using behalt without using Inbuilt. 9 have used materia multiplication to calculate β $\hat{\beta} = (X^{\dagger}X)^{-1} (X^{\dagger}Y)$ 0 0.963104 97X1 Siejns ave as enkected encept the coefficient varocealed with siblings However we can't make any conclusion yet - need to look at pralver for significance 0.073498 0.029154 0.100931 0.005060 0.008557 0.001752

-6	vestion	5.	0100		Int.	.0+ 0	710	90
	Regressed	e y	on	x	irubu	uci c	163	U.S.
	lm_y_on_							
			OLS Reg		Reculte			
	Dep. Vari	able:		WAGE		R-squared	0.	145
	М	odel:		OLS		R-squared		142
	Met	thod:	Least So	quares		F-statistic	: 42	2.19
		Date: Ti	ue, 20 Sep	2022	Prob (F	-statistic)	: 1.01e	-47
	1	Time:		:29:59		ikelihood		14.5
	No. Observat	ions:		1499		AIC	: 22	223
	· Df Resid	luals:	,	1492		BIC	: 22	260
	Df M	odel:		. 6				
	Covariance 1	Туре:	non	robust			'	
		coef	std err	, t	P> t	[0.025	0.975]	
	CONSTANT	0.9631	0.182	5.305	0.000	0.607	1.319	
	EDUC	0.0735	0:009	8.092	0.000	0.056	0.091	
	POTEXPER	0.0292	0.006	4.952	0.000	0.018	0.041	
	. ABILITY	0.1009	0.018	5.536	0.000	0.065	0.137	
	MOTHERED	0.0051	0.006	0.821	0.412	-0.007	0.017	
	FATHERED	0.0086	0.005	1.767	0.077	-0.001	0.018	
	SIBLINGS	0.0018	0.007	0.253	0.801	-0.012	0.015	
	Omnib	us: 97.1	09 Du	rbin-Wa	itson:	1.903		
	Prob(Omnibu	ıs): 0.0	000 Jaro	que-Bera	a (JB):	246.656		
	Ske		157	Pro	b(JB):	2.75e-54		
	Kurtos	sis: 4.8	355	Conc	l. No.	354.		

Coefficients generated in 84

coefficients generated in 84

are approximately same as are approximately same as an easy using inbut regression punctions inbut regression punctions an 85, they have been rounded off sand hence rounded off sand hence have used approximately have used approximately though they should be enactly the same

3 p ≥ 0.05 Significant coefficients

3 p > 0.05 Significant

0 € CI

2 p > 0.05 Significant

0 € CI

Question 6 : Regress each of three varieables in X2 on X1; compute residuals; arrange them in X2*; Sample Mean; Enplain

/ lm_mothered=sm.OLS(X2.MOTHERED,X1).fit()

Kegraning Mother Ed on X1

	OLS Re	egression	Results		
Dep. Variable:	MC	THERED		-squared:	0.227
Model:		OLS		-squared:	. 0.225
Method:	Least	Squares		-statistic:	145.9
Date:	Tue, 20 S	ep 2022		210000	6.02e-83
Time:		14:22:28	Log-Li	kelihood:	-3594.2
No. Observations:		1499		AIC:	7196. 7218.
• Df Residuals:		1495		BIC	7210.
Df Model:		3			
Covariance Type:		robust	D- H	[0.025	0.975]
coef	std err		P> t	6.745	10.350
CONSTANT 8.5475	0.919	9.302	0.000	0.147	0.332
EDUC 0.2397	0.047	5.093	0.000		0.044
POTEXPER -0.0161	0.031	-0.524	0.600	-0.076	
ABILITY 1.1190	0.090	12.376	0.000	0.942	1.296
Omnibus: 295.74	10 Du	rbin-Wat	son:	1.497	
ob(Omnibus): 0.00	0 Jarq	ue-Bera	(JB):	770.336	
Skew: -1.04				29e-168	

lm_fathered=sm.OLS(X2.FATHERED,X1).fit() " **OLS Regression Results** 0.241 R-squared: Dep. Variable: **FATHERED** 0.239 Adj. R-squared: OLS Model: 157.8 F-statistic: Method: Least Squares 7.13e-89 Prob (F-statistic): Tue, 20 Sep 2022 Date: -3928.9 Log-Likelihood: 15:21:05 Time: 7866. AIC: 1499 No. Observations: 7887. BIC: 1495 Of Residuals: Df Model: nonrobust Covariance Type: 0.975] [0.025 P>|t| coef std err 9.483 4.976 0.000 6.293 1.149 7.2298 CONSTANT 0.490 0.259 0.000 6.359 **EDUC** 0.3742 0.059 0.047 ,-0.103 0.468 -0.726 -0.0279 0.038 POTEXPER 1.533 11.597 0,000 1.089 0.113 1.3109 ABILITY 1.543 Durbin-Watson: Omnibus: 122,046 186.377 Jarque-Bera (JB): 0.000 Prob(Omnibus): 3.38e-41 Prob(JB): -0.620Skew: 252. Cond. No. 4.202 Kurtosis:

Reguesing Father Ed on X1

Regressing Biblings on X1

X2_asterisk.describe()

	n othered_resid	fathered_resid	siblings_resid
count	1.499000e+03	1.499000e+03	1.499000e+03
mean	-1.357212e-14	-1.521457e-14	-3.762464e-15
std	2.662055e+00	3.328148e+00	1.957301e+00
min	-1.295448e+01	-1.412118e+01	-4.071056e+00
25%	1.072323e+00	-1.748878e+00	-1.314880e+00
50%	2.580314e-01	2.548543e-01	-3.512178e-01
75%	1.537228e+00	2.018712e+00	9.422830e-01
max	7.520909e+00	9.118324e+00	1.132803e+01
		. 1	

Storing residuals from
the above three mentioned
regressions in
X2_asterisk
The sample mean of each
of the residuals is
approximately
Though to check thir
and be able to say with
confidence, I mun one
sample thest

✓ lm_siblings=sm.OLS(X2.SIBLINGS,X1).fit() ···

✓ lm_siblings.summary() ···

		OLS Regi	ession R	esults			
	Dep. Variable:	SIB	LINGS	R-9	squared:	0.077	
	Model:		OLS	Adj. R-s	squared:	0.075	
	Method:	Least Sc	quares	F-	statistic:	41.34	
	. Date:	Tue, 20 Sép	2022	Prob (F-s	statistic):	1.15e-25	
	Time:	14	:23:42	Log-Lik	elihood:	-3133.2	
	No. Observations:		1499		AIC:	6274.	
	Df Residuals:	7 1	1495		BIC:	6296	ė,
	Df Model:		3				
	Covariance Type:	noni	obust				
	coe	f std err	t	P> t	[0.025	0.975]	
	CONSTANT 1.9729	0.676	2.920	0.004	0.648	3.298	
	EDUC -0.0161	0.035	-0.464	0.643	-0.084	0.052	
	POTEXPER 0.1004	0.023	4.438	0.000	0.056	0.145	
	ABILITY -0.3570	0.066	-5.371	0.000	-0.487	-0.227	
	Omnibus: 29	6.901 Du	ırbin-Wa	itson:	1.628		
,	· Prob(Omnibus):	0.000 Jar	que-Bera	a (JB):	645.544		
	Skew:	i.118	Pro	b(JB): 6	5.64e-141		
A	Kurtosis:	5.311 '	Cond	d. No.	252.		

Regressing Biblings on X1

Storing residuals from
the above three mentioned
regressions in
X2_asterisk
The sample mean of each
of the residuals is
apporonimally
Though to check this
and be able to say with
confidence, I wan one
Sample Elest

```
Journes o Testing
 Under Null Ho pop mean here mean of mothered - resid = 0
    stats.ttest_1samp(a=X2_asterisk.mothered_resid, popmean=0) ···
 since produce large, fail to reject Ho
Illy
       Ho = mean of forthered - resid = 0
  stats.ttest_1samp(a=X2_asterisk.fathered_resid, popmean=0)
  Ttest_1sampResult(statistic=-1.685156193819453e-13, pvalue=0.999999999999999656)
   p values large upol to regul Ho
 Illey
      H3 = mean of sublungs-resid = 0
  stats.ttest_1samp(a=X2_asterisk.siblings_resid, popmean=0) ...
  Ttest_1sampResult(statistic=-17.351023470063113e-14, pvalue=0.9999999999999414)
   pralves large fact to repet Ho3
 Thus none of the residual means are significantly different from O
   QUESTION 7 Regressing You X1
                                                           coefficients here are diff
                                                          from one's reported in
     / lm_y_on_x1=sm.OLS(Y,X1).fit() ...
                                                            Q5, happens because
                       OLS Regression Results
                                                            of Cov blo X2 and X1
         Dep. Variable:
                                        R-squared:
                          LOGWAGE
                                                    0.140
                                                           Vanabler
              Model:
                               OLS
                                    Adj. R-squared:
                                                    0.139
           Method:
                       Least Squares F-statistic:
                                                    81.39
                     Tue, 20 Sep 2022 . Prob (F-statistic):
                                                 8.93e-49
                           15:25:34
                                   Log-Likelihood:
                                                  -1108.6
                              1499
                                             AIC:
                                                    2225.
      No. Observations:
          Df Residuals:
                              1495
                                             BIC:
                                                    2246.
            Df Model:
      Covariance Type:
                         nonrobust
               coef std err
                                         [0.025]
                                               0.9751
                                    P>|t|
     CONSTANT 1.0717
                        0.175
                             6.123 0.000
                                         0.728
                                                1.415
                                                         4 All significant
                                                0.095
                        0.009
                             8.686 0.000
                                         0.060
          EDUC .: 0.0779
      POTEXPER : 0.0290
                        0.006 4.952 0.000
                                         0.018
                                                0.041
        ABILITY 0.1172
                        0.017 6.804 0.000
                                         0.083
                                                0.151
                  100.501
                           Durbin-Watson:
                                          1.895
          Omnibus:
                   0.000 | Jarque-Bera (JB):
     Prob(Omnibus):
                                         260.425
                    -0.364
                                Prob(JB):
             Skew:
                                        2.81e-57
                     4.908
                               Cond. No.
                                            252.
           Kurtosis:
```

This enercise is enactly same as performed under & 5.

Q 5 would have yielded different coefficients with the regression formula was differently defined -eg Brokenhome dum my was included.

However since Q 5. Y regressed on X1 and X 2; coefficients are yame in Q 5 and Q 8.

Question 9 Yon X1 and X2_asterisk

lm_y_on_x1_and_x2_asterisk=sm.OLS.from_formula('LOGWAGE ~ CONSTAI

/ lm_y_on_x1_and_x2_asterisk.summary()

OLS Regression	on Results
Dep. Variable: LOGWAGE	E R-squared: 0.145
Model: OLS	S Adj. R-squared: 0.142
Method: Least Squares	s F-statistic: 42.19
Date: Tue, 20 Sep 2022	2 Prob (F-statistic): 1.01e-47
Time: 14:29:40	0 Log-Likelihood: -1104.5
No. Observations: 1499	9 AIC: 2223.
Df Residuals: 1492	2 BIC: 2260.
Df Model: 6	6 ,
Covariance Type: nonrobust	t
coef	std err . t P> t [0.025 0.975]
CONSTANT 1.0717	0.175 6.133 0.000 0.729 1.414
EDUC 0.0779	0.009 8.701 0.000 0.060 0.095
POTEXPER 0.0290	0.006 4.960 0.000 0.018 0.040
ABILITY 0.1172	0.017 6.816 0.000 0.083 0.151
X2_asterisk.mothered_resid 0.0051	0.006 0.821 0.412 -0.007 0.017
X2_asterisk.fathered_resid 0.0086	0.005 1.767 0.077 -0.001 0.018
X2_asterisk.siblings_resid . 0.0018	0.007 0.253 0.801 -0.012 0.015
Omnibus: 97.109 Durbin-W	Watson: 1.903
Prob(Omnibus): 0.000 Jarque-Bei	era (JB): 246.656
Skew: -0.357 Pro	rob(JB): 2.75e-54
Kurtosis: 4.855 Con	nd. No. 252.

Refer Q .4

> Coefficients of X1 are
enactly same as
ones obtained by
rigressing Yon X1

> Coefficients on X2-astorisk

Variables over enactly same
vas ones obtained by
regressing you XI and

X2 > Refer Q8/185

Lovell Theorem

FNG Theorem

holds