1 February 16th, 2021

1.1 Basic Iterative Method

In this chapter, we will introduce iterative methods. There will be a lot of overlap with MATH5311. For iterative methods, we make use of the fact that matrix vector products are fast for sparse matrices.

Remark 1.1 — If the matrix is sparse, then the matrix vector product is on the order of non-zero entries.

Example 1.2

For the Discrete Laplacian in 2D, the matrix vector product is O(N).

We will solve Ax = b by stationary iterative methods. Given $x_k \in \mathbb{R}^n$, we want to improve the quality of x_k using:

$$x_{k+1} = Gx_k + f, \quad k \in [0, 1, 2...]$$

where $G \in \mathbb{R}^{n \times n}$ and $f \in \mathbb{R}^n$ are stationary matrices and vectors.

Definition 1.3. G is a stationary matrix, as it does not depend on k.

1.2 Jacobi Iteration

- $(y)_i$ denotes the *i*-th component of a vector y
- $\xi_i^{(k)}$ denotes the *i*-th component of x_k
- ξ_i denotes the *i*-th component of x (true solution)
- ξ_i denotes the *i*-th component of b

The idea of the Jacobi iteration is, given x_k , we obtain x_{k+1} by solving the *i*-th unknown from the *i*-th equation. More precisely, we are solving:

$$(Ax-b)_i=0$$
,

with ξ_j , $j \neq i$, fixed to be $\xi_j^{(k)}$, for i = 1, ..., n. As such, we have:

$$(Ax - b)_i = 0$$

$$\iff a_{ii}\xi_i^{(k+1)} + \sum_{j \neq i} a_{ij}\xi_j^{(k)} = \beta_i$$

$$\iff \xi_i^{(k+1)} = (\beta_i - \sum_{j \neq i} a_{ij}\xi_j^{(k)})/a_{ii}.$$

This can be expressed as Algorithm 1. In order to perform this effeciently, we reformulate this in matrix notation to make use of BLAS. Let A = D - E - F, where:

$$A = \begin{bmatrix} d_1 & * \\ & \ddots & \\ * & & d_n \end{bmatrix} = \begin{bmatrix} d_1 & & 0 \\ & \ddots & \\ 0 & & d_n \end{bmatrix} - \begin{bmatrix} 0 & & 0 \\ & \ddots & \\ -* & & 0 \end{bmatrix} - \begin{bmatrix} 0 & & -* \\ & \ddots & \\ 0 & & 0 \end{bmatrix} = D - E - F$$

Thus, we have Algorithm 2, which is in stationary form.

Algorithm 1 Element Wise Jacobi Iteration

```
1: for k = 0, 1, 2, \dots do
```

2: **for**
$$i = 1, ..., n$$
 do

2: **for**
$$i = 1, ..., n$$
 do
3: $\xi_i^{(k+1)} = (\beta_i - \sum_{j \neq i} a_{ij} \xi_j^{(k)}) / a_{ii}$

end for 4:

5: end for

Algorithm 2 Jacobi Iteration in Matrix Form

1: **for**
$$k = 0, 1, 2, \dots$$
 do

2:
$$x_{k+1} = D^{-1}(b + (E+F)x_k)$$

3: end for

Remark 1.4 — Some other equivalent forms of the Jacobi Iteration are:

$$x_{k+1} = D^{-1}(E+F)x_k + D^{-1}b$$

$$x_{k+1} = D^{-1}(D-A)x_k + D^{-1}b$$

$$x_{k+1} = (I - D^{-1}A)x_k + D^{-1}b$$

Review on Norms 1.3

1.3.1 **Vector Norms**

Definition 1.5. A (vector) **norm** on \mathbb{R}^n is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ that satisfies:

- 1. $||x|| \ge 0 \quad \forall x \in \mathbb{R}^n \text{ and } ||x|| = 0 \iff x = 0.$
- 2. $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R} \text{ and } x \in \mathbb{R}^n$.
- 3. $||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathbb{R}^n$ (triangle inequality).

This defines a **metric** on \mathbb{R}^n .

Definition 1.6. A *p*-norm on \mathbb{R}^n is defined as:

$$||x||_p = \left(\sum_{i=1}^n |x_1|^p\right)^{1/p}$$

Example 1.7 (Spedial p Norm)

Here are a few common norms on \mathbb{R}^n .

- *p*-norm $(p \ge 1)$:
- Euclidean norm (p=2)

$$||x||_2 = \left(\sum_{i=1}^n |x_1|^2\right)^{1/2}$$

• **1-norm** (p = 1)

$$||x||_1 = \sum_{i=1}^n |x_1|$$

• ∞ -norm $(p = \infty)$

$$||x||_{\infty} = \max_{i=1}^{n} |x_1|$$

Theorem 1.8 (Holder's Inequality)

$$|x^T y| \le ||x||_p ||y||_q$$

if $\frac{1}{p} + \frac{1}{q} = 1$, with $p, q \ge 1$.

Theorem 1.9 (Cauchy-Schwartz Inequality)

$$|\langle u, v \rangle| \le ||u|| ||v||, \quad \forall u, v \in \mathbb{R}^n$$

Example 1.10 (Weighted Norm)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix. Then:

$$||x||_A = (x^T A x)^{1/2}$$

is a norm, called the **weighted norm**.

From functional analysis, because \mathbb{R}^n is finite dimensional, any two norms are equivalent. More formally.

1.3 Review on Norms MATH5312 Notes

Theorem 1.11 (Norm equivalence of \mathbb{R}^n)

Given $\|\cdot\|_a$ and $\|\cdot\|_b$, $\exists C_1, C_2 > 0$ independent of x, s.t.

$$C_1 ||x||_b \le ||x||_a \le C_2 ||b|| \forall x \in \mathbb{R}^n$$

Consequently, from Theorem 1.11, the convergence of vectors in \mathbb{R}^n under any norm is the same. Thus, we can analyze the convergence under any norm.

Remark 1.12 — Theorem 1.11 does not hold for infinite dimensional space. However, for numerical analysis, we always work with finite dimensional space.

Example 1.13 (Equivalence of 1-norm and other p-norms)

$$||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2 \quad \forall x \in \mathbb{R}^n$$
$$||x||_{\infty} \le ||x||_1 \le n ||x||_{\infty} \quad \forall x \in \mathbb{R}^n$$

1.3.2 Matrix Norm

Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Let $A \in \mathbb{R}^{n \times n}$ be a matrix.

Definition 1.14. The norm of A induced by the vector norm $\|\cdot\|$ is:

$$||A|| = \sup_{x \in \mathbb{R}^n, x \neq 0} \frac{||Ax||}{||x||} = \max_{||x||=1} ||Ax||$$

Remark 1.15 — The second equality in 1.14 is due to the scaling property of A and because the norm is continuous. However, this might not be the case in infinite-dimensional spaces.

We can check that ||A|| is a matrix, i.e.:

- $||A|| \ge 0 \quad \forall A \in \mathbb{R}^{n \times n} \text{ and } ||A|| = 0 \iff A = 0.$
- $\|\alpha A\| = |\alpha| \|A\| \quad \forall \alpha \in \mathbb{R} \text{ and } A \in \mathbb{R}^{n \times n}$.
- $||A + B|| \le ||A|| + ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$ (triangle inequality).

In addition, since it is an **operator norm** that is induced, it has some consistency properties, namely

- $||AB|| \le ||A|| ||B|| \quad \forall A, B \in \mathbb{R}^{n \times n}$
- $||Ax|| \le ||A|| ||x|| \quad \forall A \in \mathbb{R}^{n \times n}, x \in \mathbb{R}^n$

Example 1.16 (matrix 2-norm)

$$||A||_2 = \max_{\|x\|_2 = 1} ||Ax||_2 = \left(\max_{\|x\|_{x=1}} ||Ax||_2^2\right)^{\frac{1}{2}} = \left(\max_{x^T x = 1} x^T A^T A x\right)^{\frac{1}{2}}$$
$$= (\text{maximum eivenvale of } A^T A)^{\frac{1}{2}}$$

which is the maximum **singular value** of A.

Remark 1.17 — The last equality in Example 1.16 can be shown by taking the eigenvalue decomposition of A.

Theorem 1.18

$$||A||_1 = \max_{1 \le j \le n} ||a_j||_1$$
, where $A = [a_1 \ a_2 \ \dots \ a_n], a_j \in \mathbb{R}^n$,

i.e. the maximum column 1-norm (column sum).

Proof. $\bullet \ \forall x \in \mathbb{R}^n \text{ with } \|\|_{1=1}$, we have:

$$||Ax||_1 = ||\sum_{j=1}^n x_j a_j||_1 \le \sum_{j=1}^n |x_j| ||a_j||_1 \le \max_{1 \le j \le n} ||a_j||_1 \sum_{j=1}^n |x_j| = \max_{1 \le j \le n} ||a_j||_1$$

Taking the max over all $x : ||x||_1 = 1$, we obtain:

$$||A||_1 \le \max_{1 \le j \le n} ||a_j||_1$$

• Let $j_0 = \arg \max_{1 \le j \le n} \|a_j\|_1$. Consider $x = e_{j_0}$. Then $\|x\|_1 = 1$ and $Ax = Ae_{j_0} = a_{j_0}$. Thus:

$$||Ax||_1 = ||a_{j_0}||_1 = \max_{1 \le j \le n} ||a_j||_1$$

Therefore:

$$||A||_1 \ge ||Ax||_1 = \max_{1 \le i \le n} ||a_i||_1$$

Remark 1.19 — This means that for the matrix 1-norm, the maximum is attained at the image of one of the standard unit vector. This is true, since the 1-ball is a convex polytope.

Theorem 1.20

$$||A||_{\infty} = \max_{1 \le i \le n} ||a^{(i)}||_{\infty}, \text{ where } A = \begin{bmatrix} (a^{(1)})^T \\ \vdots (a^{(n)})^T \end{bmatrix}, a^{(i)} \in \mathbb{R}^n,$$

i.e. the maximum row 1-norm (maximum row sum).

1.3 Review on Norms

Proof. (omitted).

Definition 1.21. The **spectral radius** of a matrix A is defined as:

$$\rho(A) = \max\{|\lambda_i| : \lambda_i \text{ is an eigenvalue of } A\}$$

Theorem 1.22

Let $A \in \mathbb{C}^{n \times n}$. Then:

- 1. $||A|| \ge \rho(A)$ for any matrix norm induced by $||\cdot||$.
- 2. For any $\epsilon > 0$, we can find a vector norm $\|\cdot\|$, s.t. the induced matrix norm satsfies:

$$||A|| \le \rho(A) + \epsilon$$

3. From (1) and (2), we have:

$$\rho(A) = \inf \|A\|$$

4. If A is diagonalizable, there exists a matrix operator norm s.t.

$$\rho(A) = ||A||$$

5. In particular, when A is symmetric, $\rho(A) = ||A||_2$.

Proof. 1. Let λ_0, x_0 be an eigenpair of A satisfying $|\lambda_0| = \rho(A)$. Assume that $||x_0|| = 1$. Then, for any vector norm $||\cdot||$, its induced operator norm satisfies:

$$||A|| \ge ||Ax_0|| = ||\lambda_0 x|| = |\lambda_0|||x_0|| = \rho(A)$$

2. We use a construction proof by finding such vector norm. Let

$$A = X \begin{bmatrix} \lambda_1 & \delta_1 & & & \\ & \lambda_2 & \delta_2 & & \\ & & \ddots & \ddots & \\ & & & \lambda_{n-1} & \delta_{n-1} & \\ & & & & \lambda_n \end{bmatrix}$$

be the Jordan decomposition, where: $\delta_i \in \{0, 1\}$, and λ_i are eigenvalues of A. Given $\epsilon > 0$, we define:

$$||x||_{\epsilon} = ||(XD_{\epsilon})^{-1}x||_{\infty}, \quad \text{with } D_{\epsilon} = \begin{bmatrix} 1 & & & \\ & \epsilon & & \\ & & \epsilon^{2} & & \\ & & & \ddots & \\ & & & & \epsilon^{n-1} \end{bmatrix}.$$

We can check that $\|\cdot\|_{\epsilon}$ is a norm on \mathbb{C}^n . So:

$$||A||_{\epsilon} = \max_{||x||_{\epsilon}=1} ||Ax||_{\rho} = \max_{||(XD_{\epsilon})^{-1}x||_{\infty}=1} ||(XD_{\epsilon})^{-1}Ax||_{\infty}$$

Let $y = (XD_{\epsilon})^{-1}x$, we have:

$$||A||_{\epsilon} = \max_{\|y\|_{\infty} = 1} ||(XD_{\epsilon})^{-1}A(XD_{\epsilon})y||_{\infty} = ||(XD_{\epsilon})^{-1}A(XD_{\epsilon})||_{\infty}$$

Note that we have:

$$(XD_{\epsilon})^{-1}A(XD_{\epsilon}) = D_{\epsilon}^{-1}X^{-1}AXD_{\epsilon} = D_{\epsilon} \begin{bmatrix} \lambda_{1} & \delta_{1} & & & \\ & \lambda_{2} & \delta_{2} & & & \\ & & \ddots & \ddots & \\ & & & \lambda_{n-1} & \delta_{n-1} & \\ & & & & \lambda_{n} \end{bmatrix} D_{\epsilon}$$

$$= \begin{bmatrix} \lambda_1 & \epsilon \delta_1 \\ & \lambda_2 & \epsilon \delta_2 \\ & & \ddots & \ddots \\ & & & \lambda_{n-1} & \epsilon \delta_{n-1} \\ & & & & \lambda_n \end{bmatrix}$$

Thus, since the infinity norm is the maximum row sum, we have:

$$||A||_{\epsilon} \le \max_{1 \le i \le n} (|\lambda_i| + \epsilon) \le \rho(A) + \epsilon$$

3. By part 2, if A is diagonalizable, $\delta_i = 0$ for all i. Then $||A||_{\epsilon} = \max_i |\lambda_i| = \rho(A)$. If $A = A^T$, then $\delta_i = 0$ for all i, λ_i are real, and X is unitary. Thus:

$$A^T A = X^{-1} \begin{bmatrix} \lambda_1^2 & & & \\ & \lambda_2^2 & & \\ & & \ddots & \\ & & & a\lambda_n^2 \end{bmatrix}$$

$$\rho(A) = (\rho(A^T A))^{\frac{1}{2}} = ||A||_2$$

Remark 1.23 — 1. and 2. imply

$$\rho(A) = \inf\{\|A\| : \|\cdot\| \text{ is an operator norm }\}$$

In particular

• If A diagonalizable, then minimum is attainable, meaning:

$$\rho(A) = \min\{||A|| : ||\cdot|| \text{ is an operator norm }\}$$

• If A is symmetric:

$$\rho(A) = ||A||_2 = \min\{||A|| : ||\cdot|| \text{ is an operator norm }\}$$