河海大学常州校区 2004-2005 学年数学竞赛

一、填空题(16×4分)

- 1. 当 $x \rightarrow 0$ 时, $3x 4\sin x + \sin x \cos x$ 与 x^n 为同阶无穷小,则n =______。

- 4. 设 f(u,v) 具有二阶连续偏导数, $z = f\left(2x y, \frac{x}{y}\right)$,则 $\frac{\partial^2 z}{\partial x \partial y} =$

_____0

- 5. 设三角形的三条边的边长分别为a,b,c (其面积记为S),则该三角形内一点到三边距离之乘积的最大值为
- 6. 空间曲线 $\begin{cases} z = x^2 + 4y^2 \\ y = \frac{1}{2} \end{cases}$ 在点 $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{7}{4}\right)$ 处的切线与 x 轴正向的夹角为______。
- 7. 已知平面过直线 $\begin{cases} x+y=0\\ x-y+z=2 \end{cases}$ 且平行另一直线 x=y=z ,则该平面方程

为_____。

- 8. 将函数 $f(x) = \frac{x-1}{x^2 + 2x}$ 展开为 x+1 的幂级数,则其展开式为_____。
- 为_____。
 9. 级数 $x \frac{1}{3}x^3 + \frac{1}{5}x^5 \frac{1}{7}x^7 + \cdots$ 的和函数为____。
- 11. 设 f(x) 具有连续导数, f(0) = 0 , $\int_C xy^2 dx + yf(x) dy$ 与路径无关,则 $\int_{(0,0)}^{(1,1)} xy^2 dx + yf(x) dy =$
- 12. 设 Σ 为 x + 2y + 3z = 1 在第一卦限的部分,则 $\iint_{\Sigma} \left(\frac{x}{6} + \frac{y}{3} + \frac{z}{2} \right) dS = \underline{\hspace{1cm}}$
- 13. 设 Σ 为 半 球 面 $z = -\sqrt{a^2 x^2 y^2}$ 的 上 侧 , 则 $\iint_{\Sigma} \frac{x dy dz + z dx dy}{x^2 + y^2 + z^2} = \underline{\hspace{1cm}}_{\circ}$

- 14. 设有向曲线 C 为 $x^2+y^2+z^2=a^2$ 与 x+z=a 的交线,从原点看去 C 的方向为顺时针,则 $\int_C y dx+z dy+x dz=\underline{\hspace{1cm}}.$
- 15. 微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解为_______。
- 16. 设 $y = e^x (C_1 \sin x + C_2 \cos x)$ (C_1, C_2 为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____。
- 二、设 f(x)在 [-L,L]上可微,且 $f'(0) \neq 0$,1)试证: $\forall 0 < x < L$, $\exists 0 < \theta < 1$,使 $\int_0^x f(t) dt + \int_0^{-x} f(t) dt = x [f(\theta x) f(-\theta x)]; 2) 求 \lim_{x \to 0^+} \theta \circ (9 \%)$

三、设 f(x) 具二阶连续导数,且 f(a) = f(b) = 0, $|f''(x)| \le 8$,证明: $|f(\frac{a+b}{2})| \le (b-a)^2$ 。 (9分)

四、一个高为h的雪堆,其侧面满足方程 $z = h - \frac{2(x^2 + y^2)}{h}$,求雪堆的体积与侧面积之比。(9分)

五、设
$$f(x)$$
 连续且恒大于零, $F(t) = \frac{\displaystyle \iiint_{\Omega} f(x^2 + y^2 + z^2) dv}{\displaystyle \iint_{D} f(x^2 + y^2) d\sigma}$, 其中 $\Omega = \left\{ (x, y, z) \middle| x^2 + y^2 + z^2 \le t^2 \right\}$, $D = \left\{ (x, y) \middle| x^2 + y^2 \le t^2 \right\}$, 证明: $F(t)$ 在区间 $(0, +\infty)$ 内单调增加。 (9%)

参考答案

—,

- 1. 5 提示: 泰勒公式
- 2. $-\frac{a}{2}$
- 3. $\frac{4}{15}$
- 4. $-2f_{11}'' \left(\frac{2x}{y^2} + \frac{1}{y}\right)f_{12}'' \frac{1}{y^2}f_2' \frac{x}{y^3}f_{22}''$
- $5. \quad \frac{8S^3}{27abc}$
- 6. $\frac{\pi}{3}$
- 7. x-3y+2z-4=0
- 8. $f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 3 + 1}{2} (x+1)^n, -2 < x < 0$
- 9. $S(x) = \arctan x, -1 \le x \le 1$
- 10. $\int_{-1}^{0} dy \int_{0}^{y+1} f(x,y) dx + \int_{0}^{1} dy \int_{0}^{\sqrt{1-y^{2}}} f(x,y) dx$
- 11. $\frac{1}{2}$
- 12. $\frac{\sqrt{14}}{72}$
- 13. $-\frac{4}{3}\pi a$ 提示: 高斯公式
- 14. $-\frac{\sqrt{2}}{2}\pi a^2$ 提示: 斯托克斯公式
- 15. $y = \frac{1}{3}x \ln x \frac{x}{9}$
- 16. y'' 2y' + 2y = 0

二、提示:

令
$$F(x) = \int_0^x f(t) dt + \int_0^{-x} f(t) dt, -L \le x \le L$$
,

则 $F'(x) = f(x) - f(-x)$, $F''(x) = f'(x) + f'(-x)$,
从而 $F(0) = 0$, $F'(0) = 0$, $F''(0) = 2f'(0) \ne 0$ 。

1) 由拉格朗日中值定理, $\forall 0 < x < L$, $\exists 0 < \theta < 1$, 使得 $F(x) = F(x) - F(0) = xF'(\theta x) = x[f(\theta x) - f(-\theta x)]$ 。

注意: θ 的取值与x 有关,即 $\theta = \theta(x)$,故 2)应理解为 $\lim_{x\to 0^+} \theta = \lim_{x\to 0^+} \theta(x)$ 。

2) 由
$$F''(0) = \lim_{x \to 0^+} \frac{F'(\theta x) - F'(0)}{\theta x} = \lim_{x \to 0^+} \frac{F(x)}{x} - F'(0) = \lim_{x \to 0^+} \frac{F(x) - F'(0)x}{\theta x^2}$$
,

可得 $\lim_{x \to 0^+} \theta = \frac{\lim_{x \to 0^+} \frac{F(x) - F'(0)x}{x^2}}{F''(0)}$,

 $\lim_{x \to 0^+} \frac{F(x) - F'(0)x}{x^2} = \lim_{x \to 0^+} \frac{F'(x) - F'(0)}{2x} = \frac{1}{2}F''(0)$,

故 $\lim_{x \to 0^+} \theta = \frac{1}{2}$.

三、提示: 泰勒公式

四、体积
$$V = \frac{\pi}{4}h^3$$
,侧面积 $S = \frac{13}{12}\pi h^2$, $\frac{V}{S} = \frac{3h}{13}$

五、提示:
$$\iint_{\Omega} f(x^2 + y^2 + z^2) dv = 4\pi \int_0^t f(r^2) \cdot r^2 dr,$$

$$\iint_{\Omega} f(x^2 + y^2) d\sigma = 2\pi \int_0^t f(r^2) \cdot r dr$$