Display Elektronik GmbH

DATA SHEET

LCD MODULE

DEM 20485 SYH-LY

Product specification

GENERAL SPECIFICATION

COB MODULE NO.:

DEM 20485 SYH-LY

CUSTOMER P/N:

VERSION NO.	CHANGE DESCRIPTION	DATE
0	ORIGINAL VERSION	20001/01/11

PREPARED BY: ZDK DATE: 11.01.2001

APPROVED BY: MH DATE: 14.04.2003

CONTENTS

1. FUNCTIONS & FEATURES	2
2. MECHANICAL SPECIFICATIONS	2
3. BLOCK DIAGRAM	2
4. EXTERNAL DIMENSIONS	3
5. PIN ASSIGNMENT	3
6.1 PCB DRAWING AND DESCRIPTION	4
6.2 EXAMPLE APPLICATION	5
6.3 THE SILK TEXTS ARE ON THE PCB	5
7. BACKLIGHT & SWITCH	6
8. DISPLAY DATA RAM (DRAM)	6
9. MAXIMUM ABSOLUTE POWER RATINGS	7
10. ELECTRICAL CHARACTERISTICS	7
10 -1 DC CHARACTERISTICS	7
10-2 AC CHARACTERISTICS	8
10-2-1 WRITE MODE	8
10-2-2 READ MODE	9
11.CONTROL AND DISPLAY COMMAND	10
12.STANDARD CHARACTER PATTERN	11
13.LCM INITIALIZING BY INSTRUCTION	12
13-1 8 bit INTERFACE MODE	12
13-2 4 bit INTERFACE MODE	13
14. LCD MODULES HANDLING PRECAUTIONS	14
5 OTHERS	15

1. FUNCTIONS & FEATURES

DEM 20485-Series LCD type:

MODULE	LCD MODEL	LCD TYPE
DEM 20485 SYH-LY	STN Yellow/Green	Transflective Positive Mode

Viewing Direction : 6 O'clock

Driving Scheme : 1/16 Duty Cycle, 1/5 Bias
 Power Supply Voltage : 2.7V to 5.5V (typ. 5V)
 Backlight color : Yellow Green (lightbox)

VLCD Adjustable for Best Contrast : 4.5V (typ.)

Display Format : 20 x 4 Characters (5 x 8 dots, Format : 208 Kinds)

Internal Memory : CGROM (10,080 bits): CGRAM (64 x 8 bits)

: DDRAM (80 x 8 bits for Digits)

Interface : Easy Interface with a 4 - bit or 8 - bit MPU

2. MECHANICAL SPECIFICATIONS

Character Pitch : 3.55(w) x 5.35(h) mm
 Character Size : 2.95(w) x 4.75(h) mm

Character Font : 5 x 8 dots

Dot Size : 0.55(w) x 0.55(h) mm

● Dot Gap : 0.05 mm

3. BLOCK Diagram

Figure 1.0

4. External Dimensions

Figure 2.0

5. PIN Assignment

Pin No.	Symbol	Function
1	Vss	Ground terminal of module
2	Vdd	Supply terminal of module +5 V
3	V ₀	Power Supply for Liquid crystal Drive
4	RS	Register Select
		RS = 0 (Instruction Register)
		RS = 1 (Data Register)
5	R/W	Read / Write
		R/W = 1 (Read)
		R/W = 0 (Write)
6	Ш	Enable
7	DB0	
8	DB1	Bi-directional Data Bus, Data Transfer is performed
9	DB2	once , thru DB0~DB7 , in the case of interface data .
10	DB3	Length is 8-bits; and twice, thru DB4~DB7 in the case
11	DB4	of interface data length is 4-bits.
12	DB5	Upper four bits first then lower four bits.
13	DB6	
14	DB7	
15	LED - (K)	Please also refer to 6.1 PCB drawing and description.
16	LED+(A)	Please also refer to 6.1 PCB drawing and description.

6.1 PCB DRAWING AND DESCRIPTION

Figure 3.0

Description:

6-1-1. The polarity of the pin 15 and the pin 16

	Symbol	J3,J5	J2,J4	LED Polarity		
Symbol	State			15 Pin	16 Pin	
J2,J4	Each Solder- Bridge	Each Open		Anode	Cathode	
J3,J5	Each Solder- Bridge		Each Open	Cathode	Anode	

6-1-2. The metal-bezel should be on ground when the J1 is Solder- Bridge .

6-1-3. The LED Resistor should be bridged when the J6 is Solder-Bridge .

6-1-4. The R7 and R8 are the LED Resistor. (R7=R8=10 Ohm).

6.2 Example application

6-2-1 The LED resistor should be bridged as following.

6-2-2 The 15 pin is the Anode and the 16 pin is the cathode as following .

6-2-3 The 15 pin is the cathode and the 16 pin is the Anode as following.

6-2-4 The metal-bezel is on ground as following .

6.3 The module No. is printed on the PCB.

Figure 4.0

VERSION: 0 5

7. BACKLIGHT & SWITCH (Ta = $-20 \sim +70$ °C)

Item	Symbol	Standard Value	Unit	Applicable Terminal
Backlight Voltage	V	5	V	LED+ / LED-
Backlight Current	I	~ 200	mA	LED+/LED-

Figure 5.0

8. DISPLAY DATA RAM (DDRAM)

																DIS	SPLA	Y PO	OSIT	ION-	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	←
FIRST LINE	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	
SECOND LINE	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50	51	52	53	
THIRD LINE	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F	20	21	22	23	24	25	26	27	
FOURTH LINE	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F	60	61	62	63	64	65	66	67	
																DE) RAI	м аг	DRI	=88	

9. MAXIMUM ABSOLUTE POWER RATINGS (Ta = 25°C)

Item	Symbol	Standard value	Unit
Power supply voltage(1)	V_{DD}	-0.3 ~ +7.0	V
Power supply voltage(2)	V_0	V_{DD} -15.0 ~ V_{DD} +0.3	V
Input voltage	V_{IN}	-0.3 ~ V _{DD} +0.3	V
Volt. For BL	VLED1	4 ~ 4.5	V
Operating temperature	Topr	-20 ~ +70	°C
Storage temperature	T _{stg}	-30 ~ +80	°C

10. Electrical Characteristics

10-1. DC Characteristics (VDD = $4.5V \sim 5.5V$, Ta = $-20 \sim +70$ °C)

Τ.	Symbol	Sta	ndard Va	lue	Test	Unit	
Item	Symbol	MIN	TYP	MAX	Condition	Omt	
Operating Voltage	V_{DD}	4,5	5	5,5	_	V	
Supply Current	I_{DD}	_	0,35	0,6	VDD=5V,fosc=270kHz	mA	
Input Voltage(1)	$V_{\rm IL1}$	-0,3	_	0,6	_	V	
(except OSC1)	$V_{\rm IH1}$	2,2	_	V_{DD}	_	v	
Input Voltage(2)	$V_{\rm IL2}$	-0,2	_	1.0	_	V	
(OSC1)	V_{IH2}	V _{DD} -1.0	_	V_{DD}	_	v	
Output Voltage (1)	V_{OL1}	_	_	0,4	I _{OL} =1.2mA	V	
(DB0 TO DB7)	V_{OH1}	2,4	_	_	I _{OH} =-0.205mA	v	
Output Voltage (2)	V_{OL2}	_	_	0.1Vdd	I _{OL} =40uA	V	
(except DB0 TO DB7)	V_{OH2}	$0.9V_{\rm DD}$	_	_	I _{OH} =-40uA		
Voltage Drop	Vd_{COM}	_	_	1	I 0.1A	V	
Voltage Diop	Vd_{SEG}		_	1	$I_{O}=0.1\pm mA$	V	
Input Leakage Current	I_{IKG}	-1	_	1	V _{IN} =0 V to V _{DD}	uA	
Input Low Current	$I_{\rm IL}$	-50	-125	-250	VIN=0V,VDD=5V(pull up)	uA	
Internal Clock	f_{OSC1}	190	270	350	$Rf = 91k \pm 2\%$	kHz	
(external Rf)					$(V_{DD}=5V)$		
	t_{OSC}	125	270	410	_	kHz	
External Clock	duty	45	50	55	_	%	
	t_R, t_F	_	_	0,2	_	us	
LCD Driving Voltage	VLCD	3.0	_	13.0	V _{DD} -V ₅ (1/5,1/4 Bias)	V	

10-2 AC Characteristics ($V_{DD} = 4.5 V \sim 5.5 V$, Ta = -20 ~ +70°C)

10-2-1. Write mode (writing data from MPU to DEM 20485-Series)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	t _C	500	_		ns	Е
E Rise Time	t _R		_	20	ns	Е
E Fall Time	t _F	_	_	20	ns	Е
E Pulse width (High,Low)	t _W	230	_		ns	Е
R/W and RS Set-up Time	t _{SU1}	40	_		ns	R/W,RS
R/W and RS Hold Time	t _{H1}	10	_		ns	R/W,RS
Data Set-up Time	t _{SU2}	80	_		ns	DB0~DB7
Data Hold Time	t _{H2}	10		_	ns	DB0~DB7

Figure 6.0

10-2-2.Read mode (Reading data from DEM 20485-Series to MPU)

Characteristic	Symbol	Min	Тур	Max	Unit	Test PIN
E Cycle Time	t _C	500	_	1	ns	Е
E Rise Time	t_R		_	20	ns	Е
E Fall Time	t _F	_	_	20	ns	Е
E Pulse width (High , Low)	t_W	230	_	_	ns	Е
R/W and RS Set-up Time	t _{SU}	40	_	_	ns	R/W,RS
R/W and RS Hold Time	t _H	10	_	_	ns	R/W,RS
Data output Delay Time	t_D	_	_	120	ns	DB0~DB7
Data Hold Time	t _{DH}	5	_		ns	DB0~DB7

Figure7.0

11. CONTROL AND DISPLAY COMMAND

Command	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Execution time	Remark
clear	L	L	L	L	L	L	L	L	L	Н	(fosc=270KHz) 1.53ms	
Display	_	_	_		_	_	_	_		''	1.001113	
Return home	L	L	L	L	L	L	L	L	Н	Χ	1.53ms	Cursor move to first digit
Entry mode set	L	L	L	Г	Г	Г	Г	Н	I/D	SH	39us	I/D:set cursor move direction I/D H Increase I Decrease SH:Specifies shift of display SH H Display is shifted L Display is not shifted
Display on/off control	L	L	L	L	L	L	I	D	С	В	39us	Display D H Display on L Display off Cursor C H Cursor on L Cursor off Blinking B H Blinking on L Blinking off
Cursor or Display Shift	L	L	L	L	L	Н	S/C	R/L	Х	X	39us	SC H Display shift L Cursor move R/L H Right shift L Left shift
function Set	L	L	L	П	I	DL	Z	F	X	X	39us	DL H 8bits interface L 4bits interface N H 2 line display L 1 line display F H Display on L Display off
Set CGRAM address		L	L		AC5							CGRAM data is sent and received after this setting
Set DDRAM address	L	L	Η	AC6	AC5	AC4	AC3	AC2	AC1	AC0	39us	DDRAM data is sent and received after this setting
Read busy flag& address	L	Н	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	0us	BF H Busy L Ready -Reads BF indication internal operating is being performed -Reads address counter contents
Write data to RAM	Н	L	D7	D6	D5	D4	D3	D2	D1	D0	43us	Write data into DDRAM or CGRAM
Read data from RAM	Н	Н	D7	D6	D5	D4	D3	D2	D1	D0	43us	Read data from DDRAM or CGRAM

^{*}X:Don't care

12. STANDARD CHARACTER PATTERN

Lowers(4bit)	LLLL	LLLH	LLHL	LLHH	LHLL	LHLH	LHHL	LHHH	HLLL	HLLH	HLHL	HLHH	HHLL	HHLH	HHHL	нннн
LLLL	CG RAM (1)															
LLLH	(2)															
LLHL	(3)															
LLHH	(4)															
LHLL	(5)															
LHLH	(6)															
LHHL	(7)															
ІННН	(8)															
HLLL	(1)															
HLLH	(2)															
HLHL	(3)															
НГНН	(4)															
HHLL	(5)															
ннін	(6)															
нннг	(7)															
нннн	(8)															

13. LCM INITIALIZING BY INSTRUCTION

13-1 8-bit interface mode

13 -2 4-bit interface mode

14. LCD Modules Handling precautions

- The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place ,etc.
- If the display panel is damaged and the liquid crystal substance inside it leaks out, do not get any in your mouth. If the substance come into contact with your skin or clothes promptly wash it off using soap and water.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- The polarizer covering the display surface of the LCD module is soft and easily scratched. handle this polarize carefully
- To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - -Be sure to ground the body when handling the LCD Modules.
 - -Tools required for assembly, such as soldering irons, must be properly grounded.
 - -To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
 - -The LCD Module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

• Storage Precautions

When storing the LCD Modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags designed to prevent static electricity charging under low temperature / normal humidity conditions (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD Modules should be stored in the same conditions in which they were shipped from our company.

15. Others

- Liquid crystals solidify at low temperature (below the storage temperature range) leading to defective orientation of liquid crystal or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subjected to a strong shock at a low temperature.
- If the LCD Modules have been operating for a long time showing the same display patterns the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. Abnormal operating status can be resumed to be normal condition by suspending use for some time. It should be noted that this phenomena does not adversely affect performance reliability.
- To minimize the performance degradation of the LCD Modules resulting from caused by static electricity, etc. Exercise care to avoid holding the following sections when handling the modules:
 - -Exposed area of the printed circuit board
 - -Terminal electrode sections