WHAT IS CLAIMED IS:

1

1.

2	acid sequence, said lyophilized bead comprising:	
3	a thermally stable enzyme; and	
4	mannitol;	
5	wherein said lyophilized bead has a weight percentage of said mannitol of between about	
6	53% and about 75% (w/w).	
1	2. The lyophilized bead of claim 1, wherein said amplification occurs in a	
2	reaction mixture comprising a volume of between about 5 μL and about 200 μL .	
1	3. The lyophilized bead of claim 1, further comprising a nucleoside	
2	triphosphate or a derivative thereof.	
1	4. The lyophilized bead of claim 1, wherein said lyophilized bead has an	
2	average cross-section of between about 1 millimeter and about 4.5 millimeters.	
1	5. The lyophilized bead of claim 1, wherein said weight percentage is	
2	between about 62% and about 75% (w/w).	
1	6. The lyophilized bead of claim 5, wherein said weight percentage is	
2	between about 68% and about 75% (w/w).	
1	7. The lyophilized bead of claim 1, wherein said thermally stable enzyme	
2	is selected from the group consisting of polymerase, ligase, and combinations thereof.	
1	8. The lyophilized bead of claim 1, further comprising a hot start	
2	methodology.	
1	9. The lyophilized bead of claim 1, further comprising HEPES.	
1	10. The lyophilized bead of claim 1, further comprising a probe.	
1	11. The lyophilized bead of claim 1, further comprising a reverse	
2	transcriptase.	
1	12. The lyophilized bead of claim 1, further comprising an internal control.	

A lyophilized bead suitable for use in the amplification of a nucleic

1	13. A lyophilized bead suitable for use in the amplification of a nucleic		
2	acid sequence, said lyophilized bead comprising:		
3	a forward polynucleotide primer;		
4	a reverse polynucleotide primer; and		
5	mannitol;		
6	wherein said lyophilized bead has a weight percentage of said mannitol of between about		
7	53% and about 75% (w/w).		
1	14. The lyophilized bead of claim 13, wherein said amplification occurs in		
2	a reaction mixture comprising a volume of between about 5 μ L and about 200 μ L.		
1	15. The lyophilized bead of claim 13, wherein said lyophilized bead has an		
2	average cross-section of between about 1 millimeter and about 4.5 millimeters.		
1	16. The lyophilized bead of claim 13, wherein said weight percentage is		
2	between about 62% and about 75% (w/w).		
1	17. The lyophilized bead of claim 16, wherein said weight percentage is		
2	between about 68% and about 75% (w/w).		
1	18. The lyophilized bead of claim 13, further comprising HEPES.		
1	19. The lyophilized bead of claim 13, further comprising a probe.		
1	20. The lyophilized bead of claim 13, further comprising an internal		
2	control.		
1	21. The lyophilized bead of claim 13, wherein said nucleic acid sequence		
2	is selected from the group consisting of bacterial, fungal, and viral nucleic acid sequences.		
1	22. The lyophilized bead of claim 21, wherein said bacterial nucleic acid		
2	sequence is derived from a member selected from the group consisting of Bacillus Anthracis,		
3	Yersinia pestis, Clostridium botulinum, Francisella tularensis, Group B Streptococcus,		
4	Neisseria gonorrhoeae, Chlamydia trachomatis, and Xylella fastidiosa.		

1		23.	The lyophilized bead of claim 21, wherein said viral nucleic acid
2	sequence is de	erived f	from a member selected from the group consisting of Vaccinia, West
3	Nile Fever virus, Equine Encephalitis virus, and Foot and Mouth Disease virus.		
1		24	A mosthed for the annulification of a muchoic soid according and mosthed
1		24.	A method for the amplification of a nucleic acid sequence, said method
2	comprising:		
3		, ,	solving a lyophilized bead in a liquid, wherein said lyophilized bead
4		compr	
5			a thermally stable enzyme; and
6			mannitol;
7		where	in said lyophilized bead has a weight percentage of said mannitol of
8		be	tween about 53% and about 75% (w/w), thus forming a reaction
9		mi	ixture; and
0		(b) sul	bjecting said reaction mixture to an amplification reaction.
1		25.	The method of claim 24, wherein said reaction mixture further
2	comprises a v	olume o	of between about 5 μL and about 200 μL.
1		26.	The method of claim 24, wherein said reaction mixture further
2	comprises a n	ucleosio	de triphosphate or a derivative thereof.
1		27.	The method of claim 24, wherein said thermally stable enzyme is
2	selected from	the gro	up consisting of polymerase, ligase, and combinations thereof.
1		28.	The method of claim 24, wherein said reaction mixture further
2	comprises a fo		polynucleotide primer.
	•		. •
1		29.	The method of claim 24, wherein said reaction mixture further
2	comprises a reverse polynucleotide primer.		olynucleotide primer.
1		30.	The method of claim 24, wherein said reaction mixture further
2	comprises a pr	robe.	
1		31.	The method of claim 24, wherein said reaction mixture further
2	comprises a n	ucleic a	cid comprising said nucleic acid sequence.

2	comprises HEPES.	
1	33. The method of claim 24, wherein said reaction mixture further	
2	comprises an internal control.	
1	34. The method of claim 24, wherein said reaction mixture further	
2	comprises a hot start methodology.	
1	35. The method of claim 24, wherein said lyophilized bead has an average	
2	cross-section of between about 1 millimeter and about 4.5 millimeters.	
1	36. A method for the amplification of a nucleic acid sequence, said method	
2	comprising:	
3	(a) dissolving a lyophilized bead in a liquid, wherein said lyophilized bead	
4	comprises:	
5	a forward polynucleotide primer;	
6	a reverse polynucleotide primer; and	
7	mannitol; and	
8	wherein said lyophilized bead has a weight percentage of said mannitol of	
9	between about 53% and about 75% (w/w), thus forming a reaction	
10	mixture; and	
11	(b) subjecting said reaction mixture to an amplification reaction.	
1	37. The method of claim 36, wherein said reaction mixture further	
2	comprises a volume of between about 5 μL and about 200 μL .	
1	38. The method of claim 36, wherein said reaction mixture further	
2	comprises a nucleoside triphosphate or a derivative thereof.	
1	39. The method of claim 36, wherein said reaction mixture further	
2	comprises a probe.	
1	40. The method of claim 36, wherein said reaction mixture further	
2	comprises a nucleic acid comprising said nucleic acid sequence.	

The method of claim 24, wherein said reaction mixture further

32.

1

1	41.	The method of claim 36, wherein said reaction mixture further
2	comprises HEPES.	
1	42	The world of a Calaire 200 rule are in a side and a secretary for the secretary
1	42.	The method of claim 36, wherein said reaction mixture further
2	comprises a thermally	stable enzyme.
1	43.	The method of claim 36, wherein said reaction mixture further
2	comprises an internal	control.
	•	
1	44.	The method of claim 36, wherein said lyophilized bead has an average
2	cross-section of between about 1 millimeter and about 4.5 millimeters.	
1	45.	A lyophilized bead suitable for use in the amplification of a nucleic
2		
3	acid sequence, prepared by a process comprising:	
	(a) crea	ating an aqueous solution, said aqueous solution comprising:
4		a thermally stable enzyme; and
5		mannitol;
6		n said solution has a concentration of said mannitol between
7		0.38 M (moles of mannitol/liter of solution) and about 0.99 M
8	(moles	of mannitol/liter of solution);
9	(b) qui	ck-freezing the product of (a); and
10	(c) free	ze-drying the product of (b).
1	46.	The lyophilized bead of claim 45, wherein the product of (c) has an
2		of between about 1 millimeter and about 4.5 millimeters.
	Č	
1	47.	The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises a nucleosid	e triphosphate or a derivative thereof.
1	48.	The lyambilized head of claim 45, wherein gold thermally stable
1		The lyophilized bead of claim 45, wherein said thermally stable
2	•	m the group consisting of polymerase, ligase, and combinations
3	thereof.	
1	49.	The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises a reverse tr	anscriptase.

1	50. The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises a hot start methodology.
1	51. The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises HEPES.
1	52. The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises a probe.
_	
1	53. The lyophilized bead of claim 45, wherein the product of (c) further
2	comprises an internal control.
1	54. A lyophilized bead suitable for use in the amplification of a nucleic
2	acid sequence, prepared by a process comprising:
3	(a) creating an aqueous solution, said aqueous solution comprising:
4	a forward polynucleotide primer;
5	a reverse polynucleotide primer; and
6	mannitol;
7	wherein said solution has a concentration of said mannitol between
8	about 0.38 M (moles of mannitol/liter of solution) and about 0.99 M
9	(moles of mannitol/liter of solution);
10	(b) quick-freezing the product of (a); and
11	(c) freeze-drying the product of (b).
1	55. The lyophilized bead of claim 54, wherein the product of (c) has an
2	average cross-section of between about 1 millimeter and about 4.5 millimeters.
1	56. The lyophilized bead of claim 54, wherein the product of (c) further
2	comprises a nucleoside triphosphate or a derivative thereof.
1	7 57. The lyophilized bead of claim 54, wherein the product of (c) further
2	comprises HEPES.
1	58. The lyophilized bead of claim 54, wherein the product of (c) further
2	comprises a probe.

1	59. Th	e lyophilized bead of claim 54, wherein the product of (c) further	
2	comprises an internal control.		
1	60. A l	yophilized bead suitable for use in microanalytic systems	
2	comprising:		
3	a n	noisture-sensitive reactant; and	
4	ma	nnitol;	
5	wherein said lyophilized bead has a weight percentage of said mannitol of		
6	betwee	en about 53% and about 75% (w/w); and	
7	wherein sa	aid lyophilized bead has an average cross-section of between about 1	
8	millim	eter and about 4.5 millimeters.	
1	61. Th	e lyophilized bead of claim 60, wherein said weight percentage is	
2	between about 62% and about 75% (w/w).		
1	62. Th	e lyophilized bead of claim 60, wherein said weight percentage is	
2	between about 68% and a	about 75% (w/w).	