考试方式

华中科技大学计算机科学与技术学院 2021~2022 第一学期

"算法设计与分析"考试试卷(A卷)

单击或点击此

考试方式		闭卷	考试	日期	处输入日	期。	考试时长	150) 分钟
专业班级			学	号		#	生 名		
题号	_	=	三	四	五	六	七	总分	核对。
分值	24	8	12	16	12	14	14	100	
得分									
] , ∦	法择题 (\$	1. 小颞的	A. B. C.	n	先项中。7	有一个或 多	《个选 项》
分 数								ューペン 厦2分,井	
评卷人			1,1,0,1		, , , , , , , ,	,			, , ,
1 以工进方	h P	工色计工	人丢無灶	사선					
1. 以下选项	中, 馮 つ	丁异 伝丑:	个里安特	性的定_		o			
A、确定	产性	В	、有穷性	:	C, F	可行性	D,	能行性	
2、假设 <i>f(n)</i>	和 <i>g(n)</i> 是	渐近正图	函数,若不	字在正常	数 c_1 、 c_2	和 <i>n</i> ₀ ,使	得对所有	`的 <i>n≥n₀</i> ₹	有
$c_{l}g(n) \leq$	$f(n) \leq c_{2g}$	g(n),则i	记作		0				
$\Delta = f(n)$	=O(\(\sigma(n)\)	R	g(n)=C)(f(n))	C. f	(n)=\(\theta(\sigma(n))	n D.	$g(n) = \Theta(f(n))$	n)
								5(11)	<i>7)</i>
3、如果 <i>d(n)</i>	走 O(f(n)), e(n)	是 O(g(n)), 那么	d(n)+e(n)	走	o		
$A \cdot O(f($	(n)+g(n)	В	\cdot O $(d(n))$	+e(n)	С, 6	O(f(n)+g(n))	i)) D, ($\Theta(d(n)+e(n))$	r))
4、以下属于	稳定排	亨的算法:	有		.°				
A、快速	5排序	В	、归并排	序	C、拍	插入排序	D,	冒泡排序	
5、用动态规									
								소 > >+> 14	L.
					C, 7	七后效性	D _v j	贪心选择性	Ė.
6、以下属于	贪心算》	去的是		o					
A, Bell	man-For	d 算法	B, Pri	m 算法	C. Dijks	stra 算法	D, F	loyd-Warsł	nall 算法
7、以下可以	使用动态		行求解的	问题是_		0			
A、最长	公共子	序列问题	В,	活动选择	译问题				
C、单源	点最短	路径问题	D.	所有结点	点对之间的	最短路径	圣问题		

8,	以下属于启发式搜	索算法的是	•	
	A, BFS	B、LC-检索	C、LIFO-检索	D、FIFO-检索
9、	设 G 是一个流网络	f,则定义在 G 上的流 f	应满足	o
	A、容量守恒	B、流量限制	C、容量限制	D、流量守恒
10	关于最优二叉检索	尽树,以下描述正确的是	o	
	A、最优二叉检索	树的加权平均检索次数。	是最少的	
	B、相比包含相同	结点的其它二叉树,最低	尤二叉检索树的高度是	是最矮的
	C、相比包含相同	结点的其它二叉树,最低	尤二叉检索树的叶子约	吉点数是最少的
	D、最优二叉检索	树可以为单分支的二叉	对	
11、	以下可用于求解说	追归式的方法有	o	
	A、列表法	B、递归树法	C、主方法	D、代入法
12、	任何以比较为基础	出的排序算法,最坏情况	下的时间下界是	o
	A, $\Omega(\log n)$	B、 $\Omega(n\log n)$	$C \cdot \Omega(n^2)$	D、无法不确定
5	· 数	二、求下列递归式的渐	近紧确界(本题8分)
<u> </u>		更	计程	

分 数	
评卷人	

要求: 写出计算过程。

$$T(n) = 4T\left(\frac{n}{2}\right) + n^2\sqrt{n}$$

订线

三、简答与计算(本题共2小题,每小题6分,共12分)

1、简述活动选择问题求最大兼容活动集合的贪心算法设计思想,并对以下活动集合 (s_i, f_i) 别是活动的开始时间和结束时间)求出它的一个最大兼容活动集合,要求:写出一定的计算过程。

i	1	2	3	4	5	6	7	8	9	10
S_i	0	1	2	3	3	5	5	6	8	12
f_i	6	4	14	5	9	7	9	10	11	16

过 2、请画出下面的差分约束系统的约束图。并回答如何利用约束图求一个差分约束系统的可行解 装 或判定该系统没有可行解。

 $x_1 - x_2 \leq 1$

 x_1 - $x_3 \le -4$

 x_2 - x_4 \leq 7

 x_3 - x_2 ≤ 2

 x_4 - $x_1 \le -1$

*x*₄-*x*₃≤3

分 数	
评卷人	

四、(本题 16 分) 对给定的两个序列 X 和 Y,记 c[i,j] 为前缀序列 X_i 和 Y_j 的一个 LCS 的长度:

$$c[i,j] = \begin{cases} 0 & \text{如果} i = 0 \ \vec{xj} = 0 \\ c[i-1,j-1] + 1 & \text{如果 i,j} > 0 \ \textit{£x}_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{如果 i,j} > 0 \ \textit{£x}_i \neq y_j \end{cases}$$

已知序列 X=< C, B, C, A, B, A, C, B>和 Y=<A, C, B, D, A, B, C>, 求 LCS(X, Y)。

	j	0	1	2	3	4	5	6	7
i		y_j	A	C	В	D	A	В	C
0	Xi								
1	C								
2	В								
3	C								
4	A								
5	В								
6	A								
7	С								
8	В								

LCS(X,Y)=	

五、(本题 12 分)数组 A[1..n]中含有 n 个互不相同的整数元素。对 A 中的元素 A[i] ($1 \le i \le n$),若有 A[i] 〈A[i-1] 并且 A[i] 〈A[i+1],则称 A[i] 为 A 的局部最小元素,即局部最小元素是比其两个相邻元素都小的元素

(注: 在边界上,即 i=1 或 i=n 时,只需考虑一侧的邻居即可)。例: 如果 $A=\{5,3,4,1,2\}$,那么 A 有二个局部最小元素 3 和 1; 而若 $A=\{1,2,3,4,5\}$,那么 A 就只有一个局部最小值元素 1。

请设计一个时间复杂度为 0 (1ogn) 的算法输出 A 中的一个局部最小元素(当有多个局部最小元素时,输出任意一个即可),给出算法的伪代码描述,并证明你的算法关于时间复杂度的结论。

分 数	
评卷人	

六、(本题 14 分)设有 n 个任务(用编号 $1\sim n$ 表示),每个任务 $j\in[1...n]$,都有一个权重(记为 W_i)、执行时间(记为 I_j),其中, $W_j\in[0,1]$ 且

 $\sum_{j=1}^{n} W_{j} = 1$,并记其完成时间为 C_{j} 。这里仅考虑任务的串行调度,即一个任务接着一个任务被调度执行,不考虑等待和空闲时间,则 C_{j} 即是串行调度至任务 j 并执行完任务 j 的总时间。

请设计一个调度算法,求出一种执行顺序,使得所有任务按顺序执行完后, $\sum_{j=1}^n W_j C_j$ 最小,并证明算法的正确性。

七、(本题 14 分)符号乘法问题: 定义在符号集 S= {a, b, c} 上的一种乘法运算规则如下表所示:

	a	b	c
a	b	b	a
b	c	b	a
c	a	c	c

如,ab=b,ba=c等。注:该乘法规则不满足结合律和交换律。

请设计一个有效的算法,对给定的 S上的符号串,如 bbbbac,判定是否可以通过适当加括号的方式,使得其"乘积"等于 a,若可以则返回 TRUE,否则返回 FALSE。如,对 bbbbac,算法返回 TRUE,因为((b(bb))(ba)c=a。