Lecture 30

Inference for Proportions I

STAT 8010 Statistical Methods I November 6, 2019

Cle

Notes

Whitney Huang emson University	

Inference for Categorical Data

In the next few lectures we will focus on categorical data analysis:

- Inference for a single proportion p
- Comparison of two proportions p_1 and p_2
- $\bullet~\chi^2$ tests: Inference for Multi-category data and contingency tables

Notes			

Inference for a single proportion: Motivated Example

Researchers in the development of new treatments for cancer patients often evaluate the effectiveness of new therapies by reporting the proportion of patients who survive for a specified period of time after completion of the treatment. A new genetic treatment of 870 patients with a particular type of cancer resulted in 330 patients surviving at least 5 years after treatment. Estimate the proportion of all patients with the specified type of cancer who would survive at least 5 years after being administered this treatment.

- Dichotomous (two-category) outcomes: "success" & "failure"
- ullet Similar to the inferential problem for μ , the population mean, we would like to infer p, the population proportion of success \Rightarrow point estimate, interval estimate, hypothesis testing

Inference for Proportions I
CLEMS N

Notes			

Point/Interval Estimation

Point estimate:

$$\hat{p} = \frac{X(\text{# of "successes"})}{n}$$

Recall the Binomial random variable, we have $\mathbb{E}[X] = np$ where

$$X \sim \text{Bin}(n, p) \Rightarrow \mathbb{E}[\hat{p}] = \mathbb{E}[\frac{X}{p}] = \frac{1}{p}\mathbb{E}[X] = p$$

• $100(1 - \alpha)\%$ CI:

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}}$$

Why?

- CLT approximation: $\hat{p} \approx N(p, \sigma_{\hat{p}}^2)$ where n "sufficiently large" $\Rightarrow \min(np, n(1-p)) \geq 5$
- $\sigma_{\hat{p}}^2 = Var(\frac{X}{n}) = \frac{1}{n^2} Var(X) = \frac{1}{n^2} n(p)(1-p) = \frac{p(1-p)}{n}$

Motivated Example Revisited

A new genetic treatment of 870 patients with a particular type of cancer resulted in 330 patients surviving at least 5 years after treatment.

- Estimate the proportion of all patients who would survive at least 5 years after being administered this treatment.
- Construct a 95% CI for p

Notes

Notes

Notes

Another Example

Among 900 randomly selected registered voters nationwide, 63% of them are somewhat or very concerned about the spread of bird flu in the United States.

- What is the point estimate for p (Proportion of U.S. voters who are concerned about the spread of bird flu?
- Construct a 99% CI for p
- Onstruct a 95% CI for p

Notes			

Margin of error & Sample Size Calculation

Margin of error:

$$z_{\alpha/2}\sqrt{rac{n\hat{p}(1-\hat{p})}{n}}$$

 \Rightarrow CI for $p=\hat{p}\pm$ margin of error

Sample size determination:

$$n = \frac{\tilde{p}(1 - \tilde{p}) \times z_{\alpha/2}^2}{\text{margin of error}^2},$$

What value of \tilde{p} to use?

- An educated guess
- A value from previous research
- Use a pilot study
- \bullet The "most conservative" choice is to use $\tilde{p}=0.5$

Example

A researcher wants to estimate the proportion of voters who will vote for candidate A. She wants to estimate to within 0.05 with 90% confidence.

- How large a sample does she need if she thinks the true proportion is about .9?
- O How large a sample does she need if she thinks the true proportion is about .6?
- How large a sample does she need if she wants to use the most conservative estimate?

Notes

Notes

Hypothesis Testing for p

State the null and alternative hypotheses:

$$H_0: p = p_0 \text{ vs. } H_a: p > \text{ or } \neq \text{ or } < p_0$$

Oompute the test statistic:

$$z_{obs} = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

Make the decision of the test:

Rejection Region/ P-Value Methods

lack O Draw the conclusion of the test: We (do/do not) have enough statistical evidence to conclude that (H_a in words) at lpha% significant level.

Notes				

Bird Flu Example Revisited

Among 900 randomly selected registered voters nationwide, 63% of them are somewhat or very concerned about the spread of bird flu in the United States. Conduct a hypothesis test at .01 level to assess the research hypothesis: p < .667.

Notes

30.10

Another CI for p: Wilson Score Confidence Interval

Idea: Solving $\rho=\hat{\rho}\pm z_{\alpha/2}\sqrt{\frac{p(1-\rho)}{n}}\Rightarrow (p-\hat{\rho})^2=z_{\alpha/2}^2\frac{p(1-\rho)}{n}$

100(1 $-\alpha$)% Wilson Score Confidence Interval:

$$\frac{X + \frac{z_{\alpha/2}^2}{2}}{n + z_{\alpha/2}^2} \pm \frac{z_{\alpha/2}}{n + z_{\alpha/2}^2} \sqrt{\frac{X(n-X)}{n} + \frac{z_{\alpha/2}^2}{4}}$$

Notes

Rule of Three: An Approximate 95% CI for p When $\hat{p}=0$ or 1

When $\hat{p} = 0$, we have

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{(\hat{p})(1-\hat{p})}{n}} = 0 \pm z_{\alpha/2} \times 0 = (0,0)$$

Similarly, when $\hat{p} = 1$, we have

$$\hat{\rho}\pm z_{\alpha/2}\sqrt{\frac{(\hat{\rho})(1-\hat{\rho})}{n}}=1\pm z_{\alpha/2}\times 0=(1,1)$$

These CIs degenerate to a point , which do not reflect the estimation uncertainty. Here we could apply the rule of three to approximate 95% CI:

(0,3/n), if
$$\hat{p} = 0$$

(1-3/n,1), if $\hat{p} = 1$

Notes

Summary

In this lecture, we learned statistical inference for population proportion, p:

- Point estimate
- Interval estimate
- Hypothesis testing

In next lecture we will learn statistical inference for two proportions ρ_1 and ρ_2

Notes Notes Notes