PATENT ABSTRACTS OF JAPAN

· (11) Publication number: 06216875 A

(43) Date of publication of application: 05 . 08 . 94

(54) SPREAD SPECTRUM COMMUNICATION EQUIPMENT

(57) Abstract:

PURPOSE: To utilize effectively a frequency by varying a processing gain of spread spectrum modulation based on a measured bit error ratio so as to change a radio frequency band width thereby making an occupied-frequency band narrow when the error ratio is small.

CONSTITUTION: A bit error measurement section 13 measures a bit error ratio, and discriminates it that: the status of a propagation line is excellent when the bit error rate is small, and decreases the processing gain of an SS modulation section 5 of a transmission section 1, which execute spread spectrum modulation. Then a frequency band width after the spread spectrum modulation is made narrow, and the occupied frequency band of a radio signal sent from an antenna 8 through a multicoupler 7 after frequency conversion is also made narrow. A reception section 2 applies frequency conversion to the received reception signal, and an SS demodulation section 10 executes spread spectrum demodulation with the processing gain decreased by the bit error measurement section 13. Thus, the occupied frequency band width of the radio signal is made narrow,

lots of signals are sent by the same band width and the frequency is effectively utilized.

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-216875

(43)公開日 平成6年(1994)8月5日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FΙ

技術表示箇所

H 0 4 J 13/00

A 8949-5K

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号

(22)出願日

特願平5-6513

平成5年(1993)1月19日

(71)出願人 000005821

松下電器産業株式会社

大阪府門真市大字門真1006番地

(72) 発明者 出 田 伸 彦

大阪府門真市大字門真1006番地 松下電器

産業株式会社内

(74)代理人 弁理士 蔵合 正博

(54)【発明の名称】 スペクトラム拡散通信装置

(57) 【要約】

【目的】 ビット誤り率によってスペクトラム拡散変調 の処理利得を変化させることにより、ビット誤り率が小 さいときに周波数の有効利用を図る。

【構成】 スペクトラム拡散通信装置において、受信部 2にビット誤り率測定部13を設け、ビット誤り率を測 定し、ビット誤り率が小さいときは送信部1のSS変調 部5および受信部2のSS復調部10の処理利得を下げ ることにより、周波数帯域幅が小さくなり、周波数の有 効利用が可能となる。

1

【特許請求の範囲】

【請求項1】 スペクトラム拡散通信方式を用いて無線信号を送信する送信部と、スペクトラム拡散通信方式の無線信号を受信する受信部とを備え、前記送信部が、情報信号に情報変調を行なう情報変調部と、前記情報変調を3 S変調するSを調部の出力信号をスペクトラム拡散変調するSを調部の出力信号を無線周波数帯域に周波数変換する送信周波数変換部とを備え、前記受信周波数変換部と、前記受信周波数変換部と、前記受信周波数変換部の出力信号を元の情報信号に情報復調する情報復調部と、ピット誤り率によってスペクトラム拡散変調部理利得を変化させるビット誤り率測定部とを備えたことを特徴とするスペクトラム拡散通信装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、周波数の有効利用が可能なスペクトラム拡散通信装置に関するものである。

[0002]

【従来の技術】近年、スペクトラム拡散通信装置は、多元接続性、秘話性、耐干渉性等に優れた通信方式を用いているため、軍用通信だけでなく公共通信やパーソナル通信にも利用されるようになった。

【0003】以下、図面を参照しながら従来のスペクト ラム拡散通信装置について説明する。図2は従来のスペ クトラム拡散通信装置の構成を示すプロック図である。 図2において、21は送信部、22は受信部、23は情 報信号に誤り訂正符号化を行なう誤り訂正符号部、24 は誤り訂正符号化後の信号に情報変調を行なう情報変調 部、25は情報変調後の信号をスペクトラム拡散変調す るSS変調部、26はスペクトラム拡散信号を無線周波 数帯域に周波数変換する送信周波数変換部、27は送受 信の信号を分ける共用器、28は無線周波数帯域の信号 を送受信するアンテナ、29は無線周波数帯域の信号を 中間周波数に変換する受信周波数変換部、30は周波数 変換部の信号をスペクトラム拡散復調するSS復調部、 31はスペクトラム拡散復調後の信号を情報復調する情 報復調部、32は情報復調後の信号を元の情報信号に復 号する誤り訂正復号部である。

【0004】以上のように構成された従来のスペクトラム拡散通信装置について、以下その動作を説明する。まず送信部21は、誤り訂正符号部23で情報信号に誤り訂正符号化を行ない、情報変調部24で位相シフトキーイング等の情報変調を行なう。次に、SS変調部25でスペクトラム拡散変調し、送信周波数変換部26で無線周波数帯域に周波数変換し、共用器27を通してアンテナ28で無線信号を送信する。また受信時には、アンテナ28で無線信号を受信し、共用器27を通して受信部22に入力する。受信部22は、受信周波数変換部29

で無線周波数帯域の信号の信号を中間周波数に変換し、 SS復調部30でスペクトラム拡散復調する。次に、情

報復調部31で位相シフトキーイング等の情報復調を行ない、誤り訂正復号部32で元の情報信号に復号する。 以上の動作により、スペクトラム拡散通信方式での通信 が可能となる。

2

[0005]

【発明が解決しようとする課題】しかしながら、上記した従来のスペクトラム拡散通信装置では、処理利得一定でスペクトラム拡散変調を行なっているため、誤り率が小さい伝搬路状況では、必要以上に処理利得を取ってしまい、これによりスペクトラム拡散変調後の周波数帯域が広くなり、広い無線周波数帯域を必要とするという問題点を有していた。

【0006】本発明は、上記課題を解決し、誤り率が小さい伝搬路状況のときに、周波数帯域を狭くすることが可能なスペクトラム拡散通信装置を提供することを目的とする。

[0007]

20 【課題を解決するための手段】本発明は、上記目的を達成するために、ピット誤り率を測定するピット誤り率測定部を設け、ピット誤り率によってスペクトラム拡散変調の処理利得を変化させることにより、無線周波数帯域幅を変化させるようにしたものである。

[0008]

【作用】本発明は、上記した構成により、スペクトラム 拡散通信において伝搬路状況に応じて周波数帯域幅を狭 くすることができ、周波数の有効利用が可能となる。

[0009]

【実施例】以下、本発明の一実施例について、図面を参照しながら説明する。図1は本実施例のスペクトラム拡散通信装置の構成を示すプロック図であり、1は送信部、2は受信部、3は情報信号に誤り訂正符号化を行なう誤り訂正符号部、4は誤り訂正符号化部後の信号に情報変調を行なう情報変調が、5は情報変調後の信号をスペクトラム拡散変調するSS変調部、6はスペクトラム拡散信号を無線周波数帯域に周波数変換する送信周波数変換部、7は送受信の信号を分ける共用器、8は無線周波数帯域の信号を送受信するアンテナ、9は無線周波数帯域の信号を送受信するアンテナ、9は無線周波数帯域の信号を時間周波数に変換する受信周波数変換部、10は周波数変換後の信号をスペクトラム拡散復調する

10は周波数変換後の信号をスペクトラム拡散復調する SS復調部、11はスペクトラム拡散復調後の信号を情 報復調する情報復調部、12は情報復調後の信号を元の 情報信号に復号する誤り訂正復号部、13はピット誤り 率を測定するビット誤り率測定部である。

【0010】以上のように構成されたスペクトラム拡散 通信装置について、以下その動作を説明する。まず送信 部1は、誤り訂正符号部3で情報信号に誤り訂正符号を 行ない、情報変調部4で位相シフトキーイング等の情報 変調を行なう。次に、SS変調部5でスペクトラム拡散 3

変調し、送信周波数変換部6で無線周波数帯域に周波数変換し、共用器7を通してアンテナ8で無線信号を送信する。また受信時には、アンテナ8で無線信号を受信し、共用器7を通して受信部2に入力する。受信部2は、受信周波数変換部9で無線周波数帯域の信号を中間周波数に変換し、SS復調部10でスペクトラム拡散復調する。次に、情報復調部11で位相シフトキーイング等の情報復調を行ない、誤り訂正復号部12で元の情報信号に復号する。

【0011】ビット誤り率測定部13では、ビット誤り 10 率を測定し、ビット誤り率が小さいときは、伝搬路の状況が良いと判断し、SS変調部5の処理利得を下げて、スペクトラム拡散変調を行なう。すると、スペクトラム拡散変調を行なう。すると、スペクトラム拡散変調後の周波数帯域幅が従来例と比べて狭くなり、周波数変換した後、共用器7を通してアンテナ8から送信する無線信号の占有周波数帯域幅も従来例と比べて狭くなる。受信部2では、入力した受信信号を周波数変換した後、SS復調部10において、ビット誤り率測定部13によって下げられた処理利得でスペクトラム拡散復調を行なう。このときSS復調部10の処理利得は、ビ 20 ット誤り率測定部13によってSS変調部5と同じ処理利得に下げられている。

【0012】この結果、無線信号の占有周波数帯域幅が 狭くなるので、同じ帯域幅で多くの信号が伝送できるこ とになり、周波数の有効利用が図れる。例えば、ビット 誤り率が小さいときに、スペクトラム拡散変調の処理利 得を1/2に下げると、スペクトラム拡散変調後の周波 数帯域幅が従来例の1/2になり、アンテナから送信さ れる無線信号の占有周波数帯域幅も1/2になり、同じ 4

帯域幅で2倍の信号が伝送できることになる。

【0013】このように、上記実施例によれば、ビット 誤り率が小さいとき、すなわち伝搬路の状況が良いとき に、周波数の有効利用が可能なスペクトラム拡散通信が 可能になる。

[0014]

【発明の効果】以上のように、本発明は、ビット誤り率 を測定し、ビット誤り率が小さいときにはスペクトラム 拡散変調の処理利得を下げることにより、占有周波数帯 10 域幅を狭くし、周波数の有効利用を図ることができる。

【図面の簡単な説明】

【図1】本発明の一実施例におけるスペクトラム拡散通信装置の構成を示すブロック図。

【図2】従来のスペクトラム拡散通信装置の構成を示す ブロック図。

【符号の説明】

- 1 送信部
- 2 受信部
- 3 誤り訂正符号部
- 20 4 情報変調部
 - 5 SS変調部
 - 6 送信周波数変換部
 - 7 共用器
 - 8 アンテナ
 - 9 受信周波数変換部
 - 10 SS復調部
 - 11 情報復調部
 - 12 誤り訂正復号部
 - 13 ビット誤り率測定部

