Definition 13.1 (Zero Divisor). Let R a commutative ring, a non-zero element $a \in R$ is a zero-divisor, if there is a non-zero element $b \in R$ such that ab = 0.

Definition 13.2 (Integral Domain). Let R a commutative ring with unity, R is integral domain if there is no zero-divisor.

It is equivalent to define integral domain by ab = 0 implies a = 0 or b = 0 instead of zero-divisor.

Lemma 13.1. Let R a integral domain, then for any a $b \in R$, ab = 0 implies a = 0 or b = 0.

Proof. Newline please!!

- If a = 0, then trivial.
- If $a \neq 0$ and b = 0, then trivial.
- If $a \neq 0$ and $b \neq 0$, then a is a zero-divisor, which contradict the definition of integral domain.

Theorem 13.1 (Cancellation). Let R a integral domain, for any a b $c \in R$, if $a \neq 0$ and ab = ac, then b = c.

Proof. $ab = ac \rightarrow ab - ac = 0 \rightarrow a(b-c) = 0$, since $a \neq 0$, we know b-c = 0 and then b = c.

Definition 13.3 (Field). Let R a commutative ring with unity, R is field if every non-zero element in R are unit.

Lemma 13.2 (Fields are Integral domains). Let R a field, then R is also a integral domain.

Proof. Let $a \in R$ and $a \neq 0$, then for any $b \in R$, $ab = 0 \rightarrow a^{-1}ab = a^{-1}0 \rightarrow b = 0$.

Theorem 13.2 (Finite Integral domains are Fields). Let R a finite integral domain, then R is field.

Proof. For any non-zero element $a \in R$, the mapping $f(b) = ab : R \to R$ is one-to-one by Theorem 13.1. Since R is finite, then f is also onto, therefore aR = R. By Exercise 12.60, we know R has a unity and every non-zero element are unit. Therefore R is a field.

The following solution comes from textbook.

For any non-zero element $a \in R$, consider the sequence $a^1 \ a^2 \ a^2 \dots$, since R is finite, there must be $a^i = a^j$ where i = j + k where k > 0. Then $a^i = a^{j+k} = a^j a^k = a^j 1$ implies $a^k = 1$ by cancellation, therefore $a^{k-1}a = a^k = 1$ and a^{k-1} is the inverse of a.

Corollary 13.1. Z_p is field.

Proof. For any non-zero element $a \in \mathbb{Z}_p$, and $b \in \mathbb{Z}_p$, if ab = 0, then

- If b = 0, everything is good.
- If $b \neq 0$, then $a \ b \in U(p)$, however, $0 \notin U(p)$, so $ab \neq 0$.

Therefore, Z_p has no zero-divisor, then Z_p is integral domain. By Theorem 13.2, Z_p is field.

Definition 13.4 (Characteristic). The **characteristic** of a ring R is the least positive integer n such that $n \cdot x = 0$ for all $x \in R$. If no such n exists, we say R has characteristic 0. The characteristic of R is denoted by char R

Theorem 13.3. Let R be a ring with unity. If the order under addition of 1 is infinite, then char R = 0. If the order under addition of 1 is n, then char R = n.

Proof. If $|1| = \infty$, so there is no positive integer n such that $n \cdot 1 = 0$, so char R = 0. If |1| = n, then for any $a \in R$, $n \cdot 1 = 0 \to (n \cdot 1)a = 0a \to n \cdot (1a) = 0 \to n \cdot a = 0$. Therefore char R = n.

Theorem 13.4 (Characteristic of Integral domain). The characteristic of a integral domain is 0 or prime.

Proof. Let R a integral domain, if $|i| = \infty$ or |i| = n and n is prime, then trivial. We focus on |i| = n but n is not prime. Note that $n \neq 1$ which implies 1 = 0.

Since n is not prime, then n = ij where i and j are positive integers but not 1. $(ij) \cdot 1 = 0 \rightarrow (ij) \cdot 11 = 0 \rightarrow (i \cdot 1)(j \cdot 1) = 0$ where $i \cdot 1$ and $j \cdot 1$ are

not 0, since |1| = ij and i < |1| and j < |1|. This contradict the definition of integral domain.

The following solution comes from textbook, I think it is better than mine. We need to show if |1| = n then n is prime. Let s be a divisor of n, then n = st where $1 \le s, t \le n$. Then $n \cdot 1 = (st) \cdot 1 = (s \cdot 1)(t \cdot 1) = 0$, which implies $s \cdot 1 = 0$ or $t \cdot 1 = 0$. But n is the least integer such that $n \cdot 1 = 0$, therefore s = n or t = n (then s = 1). From this, we conclude that any divisor of n is either 1 or n, therefore n is prime.