数学

第一章函数极限和连续

1.函数

- y=f(x)
 - o x是自变量 x 的范围叫定义域
 - 。 y是因变量 y 的范围叫做值域
 - o f是对应法则
- $\frac{b}{a}$ 、 $\frac{x}{y}$ 、 $\frac{1}{x+1}$ ** $\sqrt[Hit]{$ 被开方数

常数函数

• y=c(常数) 偶函数 关于y轴对称

基本初等函数

幂函数

幂函数 y=x^μ (μ!= 0)

y=x¹=x 奇函数

注意 奇函数特点关于圆点对称

• y=kx+b (一条直线) 例子 y=2-x 如何判断是直线 x是一次幂

y=x² 偶函数

注意偶函数特点关于y轴对称

y=x⁴ 偶函数

- y=ax² +bx +c(抛物线)
 - a>0 开口向上
 - a<0 开口向下
- y=-x² 偶函数

● y=x³ 奇函数

• $y=x^{-1} = \frac{1}{x}$ 奇函数 定义域 $(-\infty,0)\cup (0, +\infty)$

• y= \sqrt{x} =x^ $\frac{1}{2}$ ^ 非奇非偶 定义域 [0,+ ∞)

幂函数的性质

1.
$$(x^p)^q = x^{p*q}$$

2.
$$X^p * X^q = x^{p+q}$$

3.
$$x^{q} \setminus x^{p} = x^{p-q}$$

例子
$$x^3 \setminus x^2 = x$$

4.
$$x^p \setminus 1 = x^{-p}$$

例子
$$x \setminus 1 = x^{-1}$$
 (反比例函数) $x^3 \setminus 1 = x^{-3}$

5.
$$m\sqrt{-x^n} = x^{m \cdot n}$$

例子
$$2\sqrt{-x^1} = \sqrt{-x} = x^{2 \setminus 1}$$
 $3\sqrt{-x} = x^{3 \setminus 1}$ $4\sqrt{-x^3} = x^{4 \setminus 3}$

指数函数

• y= a \times (a>0 \perp , a!= 1) \times (- ∞ ,+ ∞) \times (0,+ ∞)

1. a⁰ =1 a必须大于0

2. a>1 y=2^x y=3^x

3. 0<a<1 y=($\frac{1}{2}$)^X y=($\frac{1}{3}$)^X

4. y=e^X e=2.718281... >1

注意: y=e^x<=>x=In^y

5. $y=e^{-x} = (e^{-1})^x = (e\1)^x e\1<1$ 和 $y=e^x$ 对称

指数函数性质

1.
$$(e^{x})^{y} = e^{xy}$$

2.
$$e^{x1} * e^{x2} = e^{x1+x2}$$

3.
$$e^{x1} \setminus e^{x2} = e^{x1-x2}$$

5.
$$m\sqrt{-}(e^x)^n = m\sqrt{-}e^{xn} = e^{m/xn}$$

6.
$$(a*b)^X = a^X * b^X$$

7. 例题

$$(e^x)^2 = e^{2x} != e^{x^2}$$

o
$$e^{3x} * e^{2x} = e^{5x}$$

o
$$e^{3x} - e^{2x} = e^{2x} (e^x - 1)$$
 ! = e^x

o
$$e^{3x} \setminus e^{2x} = e^x$$

o
$$3\sqrt{-}e^{2x} = e^{3\sqrt{2x}}$$

$$\circ 2^{x} * e^{x} = (2e)^{x}$$

对数函数

- y=log $^{x}_{a}$ x>0 x是对数里面的真数 a >0 a != 1 a是对数里面的底数 定义域 $(0, +\infty)$
- a>1

• 0<a<1

- $y = log_a^1 = 0$ $y = log_a^a = 1$
- a=e 时 y=log^X_e =ln^X

• a=10 时 y=log^X₁₀ =lg^X

对数性质

1.
$$\log^{x}_{a} + \log^{y}_{a} = \log^{xy}_{a}$$
 $\ln^{x} + \ln^{y} = \ln^{xy}$

$$ln^{x} + ln^{y} = ln^{xy}$$

$$2 \log^{X} a - \log^{y} a = \log^{y/X} a$$

$$\ln^x - \ln^y = \ln^{y/x}$$

2.
$$\log^{x} a - \log^{y} a = \log^{y/x} a$$
 $\ln^{x} - \ln^{y} = \ln^{y/x}$
3. $\log^{x} a = m \log^{x} a$ $\ln^{x} = m \ln^{x} X$

$$l_n x'' = m l_n x$$

4. 对数恒等式 e^{lnA} =A

5.
$$\log^b a = \frac{\log b}{\log a}$$

$$5. \log^{b} a = \frac{\log^{b} b}{\log^{a} a} \qquad \log^{3} 2 = \frac{\ln^{3}}{\ln^{2}} = \frac{\log^{4} 3}{\log^{4} 2}$$

三角函数

1. 正弦函数 y=sinx 周期 $t=2\pi$ 有界函数 奇函数 最大1 最小-1

2. 余弦函数 y=cosx 周期 t= 2π 有界函数 偶函数 最大1 最小-1

cosπ=-1 必考

cos0=1 必考

3. 正切函数 y=tanx = $\frac{sinx}{cosx}$ 周期 t= π 奇函数

4. 余切函数 y=cotx= $\frac{1}{tanx}$ = $\frac{cosx}{sinx}$ 周期 t= π 奇函数

- 5. 正割函数 y=secx= $\frac{1}{cosx}$ 偶函数
- 6. 余割函数 y=cscx= $\frac{1}{sinx}$ 奇函数

记忆技巧

- $\sin^2 x + \cos^2 x = 1 \tan^2 x + 1 = \sec x^2 + 1 + \cot^2 x = \csc^2 x$ 三角形上顶点的平方等于下顶点的平方
- $tanx = \frac{sinx}{cosx}$ $cotx = \frac{cosx}{sinx}$ 任意一个顶点等于顺时针的两个相邻顶点的商
- $secx = \frac{1}{cosx}$ $tanx = \frac{1}{cotx}$ $cscx = \frac{1}{sinx}$ 对角线互为倒数

二倍角公式:

- sin2x=xsinx * cosx
- $\cos 2x = \cos^2 x \sin^2 x = 2\cos^2 1 = 1 2\sin^2 x$

降幂公式

- $\sin^2 x = \frac{1 \cos 2x}{2}$ $\cos^2 x = \frac{1 + \cos 2x}{2}$

三角函数值

角α	0°	30°	45°	60∘	90°	120°	135°	150°	180∘
弧度制	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sinx	0	1/2	√2/2	√3/2	1	√3/2	√2/2	1/2	0
COSX	1	√3/2	√2/2	1/2	0	-1/2	-√2/2	-√3/2	-1
tanx	0	√3/3	1	√3	\	-√3	-1	-√3/3	0
cotx	\	√3	1	√3/3	0	-√3/3	-1	-√3	\
$cotx = \frac{1}{tanx}$									
$Secx = \frac{1}{cosx}$									
$Secx = \frac{1}{sinx}$									
◆									

反三角函数

1. 反正弦函数 y=arcsinx 奇函数 有界函数 定义域 x [-1,1] y[- $\frac{\pi}{2}$, $\frac{\pi}{2}$]

2. 反余弦 y=arccosx 定义域 x [-1,1] y[0,π]

3. **反正切函数** y=arctanx 奇函数 有界函数 定义域 x $[-\infty,\infty]$ y $[-\frac{\pi}{2},\frac{\pi}{2}]$

4. **反余切函数** y=arccotx 有界函数 定义域 $x [-\infty,\infty]$ $y[0,\pi]$

图像可能有差距

5. 考试题型

- 1. $\sin \frac{\pi}{6} = \frac{1}{2}$ $\arcsin \frac{1}{2} = \frac{\pi}{6}$ 2. $\tan \frac{\pi}{4} = 1$ $\arctan 1 = \frac{\pi}{4}$

复合函数

- 例 y=(x²+3)³ 由u=x²+3 和 y=u³ 复合
- 技巧符合拆分分单独的初等函数
- 例题
 - 1. y=sin(x+1) 由u=x+1 和 y=sinu 复合
 - 2. $y=log^{2x+2}$ 3 由u=^2x+2 和 y= log^u 3 复合

- 3. y=arssinx² 由u=x² 和 y=arssinu 复合
- 4. y=cos²x 由u=cosx 和 y=y=u² 复合
- 5. y=ln²x 由u=lnx 和 y=u² 复合

初等函数

• 初等函数:由基本初等函数及常数,经过有限次的加,减,乘,除及有限次的复合运算所构成,并能用一个式子表示的函数

分段函数

$$\bullet \quad y = \begin{cases} x & x > 0 \\ 1 - x & x <= 0 \end{cases}$$

考点一求函数定义域

1. 求初等函数及分段函数的定义域

1.
$$\frac{1}{\Box}$$
 口 !=0 例 $\frac{1}{x}$!=0

3.
$$2n+1\sqrt{-}$$
口 口 $[-\infty,\infty]$ 例 $y=3\sqrt{-}x$ $[-\infty,\infty]$

4.
$$y=log^{\square}a$$
 口 > 0 或者 $y=ln^x$ x>0 $y=lg^x$ x>0

5. arcsin口 或者 arccos口 口 [-1,1] 例子 arcsinx [-1,1] arccosx [-1,1]

6. 例子

$$y=\sqrt{2}-x \qquad 2-x>=0 \ -> x<=2 \ -> \infty$$

$$y=\ln(x-3) \qquad x-3>0 \ -> x>3 \ -> \infty$$

$$y=\frac{1}{x+1} \qquad x+1 \ !=0 \ -> x!=-1 \ -> (-\infty,-1)U(-1,\infty)$$

$$y=\frac{\sqrt{-64-x^2}}{\ln(x-5)} \begin{cases} 64-x^2 & 70 \Rightarrow x^2 \le 64 \\ x-5>0 \Rightarrow x>5 \end{cases} \qquad x>5 \end{cases} \qquad x>6 \end{cases} \qquad (5.6)U(6.8)$$

注意In算法是 In¹ =0 所以 x-5!=1 大于取两边小于取中间

$$y = \sqrt{16-x^2 + \ln(x-2)} \begin{cases} 16-x^2 + \ln(x-2) \\ 16-x^2 > 0 \Rightarrow x^2 \le 16 \end{cases}$$

$$y = \sqrt{16-x^2 + \ln(x-2)} \begin{cases} 16-x^2 + \ln(x-2) \\ 16-x^2 > 0 \Rightarrow x^2 \le 16 \end{cases}$$

$$(2, 4]$$

$$y = \frac{\arcsin(\frac{x-1}{3})}{\sqrt[3]{x-2}} \quad \begin{cases} -1 \leqslant \frac{x-1}{3} \le 1 \implies -3 \leqslant x-1 \leqslant 3 \\ x-2 \ne 0 \implies x \ne 2 \end{cases} \xrightarrow{-2 \leqslant x \leqslant 4} \xrightarrow{-2 \leqslant x \leqslant 4} \xrightarrow{-2 \leqslant x \leqslant 4}$$

$$\text{y=} \begin{cases} x & x <= 0 \\ x+1 & 0 < x < 2 \\ x^2 & 2 <= x <= 5 \end{cases} \quad \textbf{(-0.5)}$$

分段函数求定义域 就是把所有加一起

7. 真题

- 7. 第6题 分段函数取并集
- 8. 求抽象函数的定义域
 - 1. 定义域×的取值范围
 - 2. f对()内的范围一致

例: y=f(x)的定义域 (0, 1]则f(x+1)的定义域 (-1, 0]

0<x<=1

0 < x+1 <= 1 -> -1 < x <= 0

例: y=f(x)的定义域[0, 1]则f(ln^x)的定义域 [1,e]

0 <= x <= 1

 $0 <= \ln^{x} <= 1 -> 1 <= x <= e$

注In^x 函数性质 x=1 时y=0 x=e时y=1

例: y=f(2x-1)的定义域[0,1], 求f(x)的定义域 [-1,1]

0 <= x <= 1 0 <= 2x <= 2 -1 <= 2x -1 <= 1 [-1,1]

解题思路: f(2x-1)=f(x) 需要用当前x的定义域去还原

考点二

单调性

 定义:若对任意x₁,x₂ ∈(a,b),当x₁<x₂则f(x₁)<f(x₂)称f(x)在a,b单调递增 若对任意x₁,x₂ ∈(a,b),当x₂<x₁则f(x₂)<f(x₁)称f(x)在a,b单调递减

奇偶性

- 定义: 设函数f(x)在定义域D关于圆点对称(-a,a)
 f(x)=f(-x) 偶函数 关于y轴对称
 f(-x)=-f(x)或f(x)+f(-x)=0 奇函数 关于圆点对称
- 常见奇函数

x,x³,x⁵,...,x²ⁿ⁺¹,sinx,tanx,cotx,cscx,arcsinx,arctanx

g(x)=f(x)-f(-x) 例: $g(x)=e^{X}-e^{-X}-g(-x)=e^{-X}-e^{X}-g(x)=-g(x)=-g(x)=-g(x)$

• 常见偶函数

 x^2 , x^4 , x^6 ,..., x^{2n} , cosx ,secx, |x| ,c(常数)

g(x)=f(x)+f(-x) 例: $g(x)=e^X+e^{-X}$ -> $g(x)=e^X+e^{-X}$ -> g(x)=-g(x)=>偶函数

- 计算
 - 加减奇偶性: 奇 +/- 奇=奇 偶 +/- 偶 =偶 奇 +/- 偶 =非奇, 非偶
 - 乘除奇偶性: 同偶异奇 , 奇 x/÷ 奇=偶 偶 x/÷ 偶 =偶 奇 x/÷ 偶 =奇
 - 。 复合函数奇偶性: 内偶则偶, 内奇同外 奇与奇复合=奇、

内层是偶的复合函数是偶

• 例题

判断奇偶性:

1.
$$y=x^3$$
-3sinx 奇-奇=奇
2. $y=\frac{1-x^2}{1+x^2}$ 偶 =偶

周期性

- € 定义:设函数的定义域D,若存在实数T>0,对于任意x∈恒有f(x+/-T)=f(x),则称 f (x) 为周期函数 T周期
- 注意: 周期一般是最小正周期

• y=Asin(
$$\omega$$
x+ φ)+B T= $\frac{2\pi}{|\omega|}$

• y=Acos(
$$\omega$$
x+ φ)+B T= $\frac{2\pi}{|\omega|}$

例子 y=sin2x 周期 T=
$$\frac{2\pi}{2}$$
 = π

例子 y=cos(x+3)+4 周期
$$T=\frac{2\pi}{1}$$
 =2 π 看x前面系数

例子 y=sin2x+cos
$$\frac{x}{3}$$
 周期 T1= $\frac{2\pi}{2}$ = π T2= $\frac{2\pi}{\frac{1}{3}}$ =6 π 然后找最小公倍数 6π

• y=Atan(
$$\omega x + \varphi$$
)+B T= $\frac{\pi}{|\omega|}$

$$\circ$$
 y=Acot(ω x+ ϕ)+B T= $\frac{\pi}{|\omega|}$

例子: y=tan2x+1 周期
$$\frac{\pi}{2}$$

有界性

- 定义:设函数f(x)在某个区间有定义,若存在实数M>0,对于改区间内任意的x恒有 | f(x) | < M 则称 函数f(x)在该区间内有界函数
- 例

• y=arctanx |arctanx| <
$$\frac{\pi}{2}$$

 \circ y=arccotx arccotx $<\pi$

2.极限

数列极限

• 分析下面几个数列的变化趋势 n->∞

o
$$1, \frac{1}{2}, \frac{1}{2}, \frac{2}{2}, \frac{1}{2}, \frac{3}{3}, \dots, \frac{1}{2}$$
 n -->0 收敛 o $2, \frac{3}{2}, \frac{4}{3}, \dots, \frac{n+1}{n}, \dots$ $1+\frac{1}{n}$ -->1 收敛 o $1, \sqrt{-2}, \sqrt{-3}, \dots, \sqrt{-n}, \dots$ -->∞ 发散 o $0, 1, 0, 1, \dots, \frac{1+(-1)^n}{2}$ 不清楚0/1 发散

o
$$2, \frac{3}{2}, \frac{4}{3}, \dots, \frac{n+1}{n}, \dots$$
 1+ $\frac{1}{n}$ -->1 收敛

• 数列的定义: $\exists n--\infty$ 时,若数列 $\{x_n\}$ 无限接近某个确定的常数a则称

$$n-->\infty$$
时, $\{x_n\}$ 收敛于a

$$\lim_{n \to +\infty} x_n$$
=a

若这样的a不存在,则称 $|x_n|$ 发散 $\lim_{n\to+\infty} x_n$ 不存在

• 结论:

o
$$\lim_{n \to +\infty} c$$
=c 例: $\lim_{n \to +\infty} 6$ =6

$$\circ \lim_{n \to +\infty} q^n$$
=0(|q|<1)例: $\lim_{n \to +\infty} \frac{1}{2}^n$ =0

$$\circ \lim_{n \to +\infty} \frac{1}{n} = 0$$

o
$$\lim_{n\to+\infty}\frac{1}{n}$$
=0
o $\lim_{n\to+\infty}\frac{1}{n^k}$ =0 (k>0) 例: $\lim_{n\to+\infty}\frac{1}{n^2}$ =0

例:
$$\lim_{n\to+\infty}\frac{1}{n^2}=0$$

2. 有界性, 若{xn}收敛则{xn}比有界, 反之不成立

注意: 有界不一定收敛(), (), () 有名 但应发药

无界一定发散 例如: 1²,2²,3³,....,n²....发散

3. 单调有界数列必收敛

例:收敛是有界的**充分不必要**条件

箭头向右=>充分条件

箭头向左<=必要条件

箭头向左向右<=>充分必要条件

• 数列极限四则运算法则

$$\circ \lim_{n o +\infty} x_n$$
=A , $\lim_{n o +\infty} y_n$ =B 则

1.
$$\lim_{n o +\infty} (x_n + y_n)$$
=A +/- B

2.
$$\lim_{n \to +\infty} (x_n * y_n)$$
=A * B

2.
$$\lim_{n \to +\infty} (x_n * y_n)$$
=A * B 3. $\lim_{n \to +\infty} (\frac{x_n}{y_n})$ = $\frac{A}{B}$ (B != 0)

例题

$$\circ \lim_{n \to +\infty} \left(\frac{n-2}{3n+3} \right) \lim_{n \to \infty} \frac{\frac{1}{n} \frac{2}{n}}{\frac{3n}{n} + \frac{3}{n}} = \lim_{n \to \infty} \frac{1 - \frac{2}{n}}{3 + \frac{3}{n}} = \frac{1 - 0}{3 + 0} = \frac{1}{3}$$

技巧抓大头 $\frac{n}{3n} = \frac{1}{3}$

$$\circ \lim_{n \to +\infty} \left(\frac{n^2 + 2n + 3}{4n^2 + 5n + 6} \right) \quad \frac{n^2}{4n^2} = \frac{1}{4}$$

$$\circ \lim_{n \to +\infty} \left(\frac{(n+1)(n+2)(n+3)}{5n^3} \right) \frac{n^3}{5n^3} = \frac{1}{5}$$

$$\circ$$
 2017.12 $\lim_{n\to+\infty} \left(\frac{2n^2+n-1}{3n^2-5n+7}\right) \frac{2n^2}{3n^2} = \frac{2}{3}$

$$\circ \lim_{n \to +\infty} \left(\frac{3n+1}{2n+5}\right)^2 \frac{9n^2}{4n^2} = \frac{9}{4}$$

$$\circ$$
 $\lim_{n\to+\infty} \frac{(4n+5)(2n+8)}{(3n+6)(n+2)} \frac{8n^2}{3n^2} = \frac{8}{3}$

$$\circ \lim_{n \to +\infty} \frac{3^n}{5^n} = \lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$$

$$\circ \lim_{n \to +\infty} \left(\frac{1}{2}\right) + \left(\frac{1}{2^{2}}\right) + \left(\frac{1}{2^{3}}\right) + \dots + \left(\frac{1}{2^{n}}\right) = \lim_{n \to \infty} \frac{1}{\left|-\frac{1}{2^{n}}\right|} = \lim_{n \to \infty} \left|-\frac{1}{2^{n}}\right|^{n} = \left|\lim_{n \to \infty} \left(-\frac{1}{2^{n}}\right)^{n}\right| = \left|\lim_$$

等比数列求和公式 $\frac{a_1(1-q^n)}{1-q}$

$$\circ$$
 $\lim_{n\to+\infty} \left(\frac{1}{n^2}\right) + \left(\frac{2}{n^2}\right) + \left(\frac{3}{n^2}\right) + \dots \left(\frac{n}{n^2}\right)$

等差数列求和公式
$$\frac{(a_1+a_n)n}{2} = \begin{vmatrix} 1 & 1+2+3+\cdots & 1 \\ 1 & 1 & 1+2+3+\cdots \\ 1 & 1 & 1+2+3+\cdots$$

$$0 \quad \lim_{N \to \infty} \frac{2^{n} + 6^{n}}{2^{n+1} + 6^{n+1}} = \frac{1}{6}$$

函数极限

x --> x₀ 时极限

● —.x --> x₀ 时极限

- x ——> x₀的含义:
 - 1. $x - > x_0$
 - 2. $x - > x_0^+$
 - 3. $x != x_0$
- 定义: 当x ——> x0时, 若f(x)无限接近某个确定常数A,则称x ——> x0时, t(x)以A为极限
- $i\exists$: $\lim_{x\to x_0} f(x) = A$
- 结论: $\lim_{x\to x_0}f(x)$ =A <=> $\lim_{x\to x_0^-}f(x)$ = $\lim_{x\to x_0^+}f(x)$ =A
- 真题: 2019.1 $\lim_{x\to a} f(x) = A$ 的充要条件 ()

A:
$$\lim_{x \to a^-} f(x)$$
=A B: $\lim_{x \to a^+} f(x)$ =A

C:
$$\lim_{x o a^-} f(x)$$
= $\lim_{x o a^+} f(x)$ D:C: $\lim_{x o a^-} f(x)$ = $\lim_{x o a^+} f(x)$ =A

- 极限的性质: 如果函数的极限存在, 则极限唯一
 - 1. $\lim_{x \to x_0} c$ =c
 - 2. $\lim_{x\to x_0} x=x_0$
- 函数极限四则运算法则:

设:
$$\lim_{x \to x_0} f(x)$$
=A $\lim_{x \to x_0} g(x)$ =B (均存在),则

$$\circ \lim_{x \to x_0} [f(x) + g(x)] = A + B$$

$$\circ \lim_{x \to x_0} [f(x) - g(x)]$$
=A-B

$$\circ \ \lim_{x\to x_0} [f(x)*g(x)] = \mathsf{A}^\mathsf{+}\mathsf{B} \quad \lim_{x\to x_0} cf(x) = \mathsf{C}^\mathsf{+}\mathsf{A} \quad \lim_{x\to x_0} f^2(x) = \mathsf{A}^\mathsf{n}$$

$$\circ \lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{A}{B} \text{ (B !=0)}$$

• 例题:

1.
$$\lim_{x \to 2} [2x^3 - x^2 + 1]$$
= 2*2³-2²+1=16-4+1=13

2.
$$\lim_{x\to 1} [x^3 + 2\sqrt{x} + \frac{1}{x}] = 1 + 2 + 1 = 4$$

3.
$$\lim_{x\to -1} \frac{4x^2-3x+1}{2x^2-6x+4} = \frac{4+3+1}{2+6+4} = \frac{8}{12} = \frac{2}{3}$$

推广:
$$\lim_{x \to x_0} (a_n x^n + \ldots a_1 x^1 + a_0)$$
= $a_n x_0^n + \ldots a_1 x_0 + a_0$ (将 \mathbf{x}_0 代入)

4.
$$\lim_{x\to 3} \frac{x^2-4x+3}{x^2-9} = \frac{(x-1)(x-3)}{(x+3)(x-3)} = \frac{2}{6} = \frac{1}{3}$$

做题思路因为带入之后分母为0分母因式分解 $a^2-b^2=(a+b)(a-b)$ 分子十字相乘法

$$\begin{array}{l} \text{5. } \lim_{x \to 2} \left(\frac{x^2}{x^2 - 4} - \frac{1}{x - 2} \right) = \lim_{x \to 2} \left(\frac{x^2}{(x - 2)(x + 2)} - \frac{1}{x - 2} \right) = \lim_{x \to 2} \left(\frac{x^2}{(x - 2)(x + 2)} - \frac{x + 2}{(x - 2)(x + 2)} \right) \\ = \lim_{x \to 2} \frac{x^2 - x - 2}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{(x - 2)(x + 1)}{(x - 2)(x + 2)} = \stackrel{\text{\tiny thr}}{\text{\tiny Tr}} \lambda = \frac{3}{4} \end{array}$$

6.
$$f(x)=$$
 $\begin{cases} x^2+1 & x!=0 \\ 2 & x=0 \end{cases}$ 求 $\lim_{x\to 0} f(x)$ 找不等于0 的式子 $=\lim_{x\to 0} x^2+1$ =1

7. f(x)=\$ \begin{cases}

$$2x+5& x > 0 \ 0 & x=0\ x^2+1& x<0$$

\end{cases}\$ 求 $\lim_{x\to 0} f(x)$ 正方向 负方向分别求

=
$$\lim_{x o 0^+} 2x + 5$$
=5

$$=\lim_{x \to 0^-} x^2 + 1$$
=1

因为
$$\lim_{x o x_0^+} f(x)$$
 !**= $\lim_{x o x_0^-} f(x)$

所以 $\lim_{x\to 0} f(x)$ 不存在

x-->∞时的极限

• 含义
$$\begin{cases} x->+\infty \\ x->-\infty \end{cases}$$

● 定义:如果当 $x-->\infty$ 时,f(x)无限接近某个确定的常数A,则称 $x-->\infty$ 时,f(x)以A为极限

• 记作:
$$\lim_{x \to \infty} f(x)$$
=A

• 结论:
$$\lim_{x\to\infty} f(x) = A \iff \lim_{x\to-\infty} f(x) = \lim_{x\to+\infty} f(x) = A$$

• 例:

1.
$$\lim_{x\to\infty}1+\frac{1}{x^2}$$
=1 x^2 分之1相当于1

2.
$$\lim_{x\to\infty} \frac{2x^2-2x+1}{x^2+6x+5}$$
=抓大头 =2

3.
$$\lim_{x\to\infty} \frac{4x^2+5x-3}{2x^3+8} = \frac{4x^2}{2x^3} = \frac{4x^2}{2x^3} = \frac{2}{x} = 0$$

4.
$$\lim_{x\to\infty}\frac{3x^4-2x^2-7}{5x^2+3}=\infty$$
 5分之无穷大=无穷大

$$\lim_{X\to\infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \cdots + a_n x + a_n}{b_m x^m + b_{n-1} x^{n-1} + \cdots + b_n x + b_n} = \begin{cases} \frac{a_n}{b_m} & m=n \\ 0 & \frac{n < m}{n > m} \end{cases}$$

口诀分母大则为0 分子大则为 ∞ 相等看系数

5. 2020.12
$$\lim_{x \to \infty} \frac{2x^2 + 10x - 1}{3x^3 - 5x^2 + 8}$$
 =0

6. 2022.12
$$\lim_{x \to \infty} \frac{ax^2}{(x+2)^3 - x^3} = 2$$
 则a= $\frac{1}{\sqrt{6x^2 + 0x + 8}} = 2$ $0 = 2$ $0 = 12$

$$(0+b)^3 = 0^3 + 30^2b + 30b^2 + b^3$$

7.
$$\lim_{x\to\infty} \arctan x = x - \infty$$
 | In arctonx $\neq \lim_{x\to +\infty} \operatorname{arcton} x$ $x - x + \infty$

考点: 无穷大量与无穷小亮

• 无穷小量

• 若 $\lim_{x\to \Box} f(x) = 0$ 则称x-->口时,f(x)为**无穷小**量

注: 口表示x--> x_0 ,x--> x_0 ,x--> x_0 ,x-->- ∞ ,x-->+ ∞

• 例题:

$$\lim_{x\to\infty}\frac{1}{x+1}$$
= 0,所以当x--> ∞ 时,y= $\frac{1}{x+1}$ 是无穷小

 $\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2}$, 所以当x-->1时, y= $\frac{1}{x+1}$ 就不是无穷小 $\lim_{x \to 1} x - 1$ = 0, 所以当x-->1时, y=x+1是无穷小

- 若 $\lim_{x\to \Box} 0=0$,零是可作为无穷小的唯一常数
- 无穷小的性质:

1. 有限个无穷小的和,差,积,仍为无穷小

例1:
$$\lim_{x\to\infty}\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}$$
=0 例2: $\lim_{n\to\infty}\frac{1}{n^2}+\frac{2}{n^2}+\frac{3}{n^2}\dots+\frac{n}{n^2}=\lim_{n\to\infty}\frac{1+2+3\dots+n}{n^2}=\lim_{n\to\infty}\frac{\frac{(1+n)n}{2}}{n^2}=\lim_{n\to\infty}\frac{\frac{n^2+n}{2}}{\frac{n^2}{2n^2}}=\lim_{n\to\infty}\frac{n^2+n}{2n^2}=\frac{1}{2}$ 不是无穷小

2. 有界函数与无穷小的乘积为无穷小

例1:
$$\lim_{x\to\infty}\frac{\sin x}{x}=\lim_{x\to\infty}\sin x*\frac{1}{x}=0$$
例2: $\lim_{x\to\infty}\frac{\arctan x}{x}=\frac{1}{x}=0$
例3: $\lim_{x\to 0}x\sin *\frac{1}{x}=0$

3. 常数与无穷小的乘积还是无穷小

• 无穷小量

- 当x->口, 若 | f(x) | 无限增大,则称x->口时, f(x)为无穷大量
- 记作: $\lim_{x\to\Box} f(x) = \infty$ (不存在)
- 例:

1.
$$\lim_{x o 0^+} lnx$$
= ∞

2.
$$\lim_{x\to 1} \frac{1}{x-1} = \infty$$
(分母为0 是无穷大)

• 无穷大与无穷小的关系

1. 定理:
$$\lim_{x \to \Box} f(x) = \infty$$
 , 则 $\lim_{x \to \Box} \frac{1}{f(x)} = 0$ 反之: $\lim_{x \to \Box} f(x) = 0$, 则 $\lim_{x \to \Box} \frac{1}{f(x)} = \infty$
$$\frac{1}{0} = \infty \quad \frac{2}{0} = \infty \quad \frac{k(k!=0)}{0} = \infty$$

$$\frac{1}{\infty} = 0 \quad \frac{2}{\infty} = 0 \quad \frac{k(k!=0)}{\infty} = 0$$

考点: 无穷小的比较

• 定义: 设
$$\lim \alpha(x) = 0 \lim \beta(x) = 0 \ \exists \beta(x) = 0 \$$

1.
$$\lim \frac{\alpha(x)}{\beta(x)} = 0$$
 ,则 $\alpha(x)$ 是 $\beta(x)$ 的高阶无穷小

例子:
$$\lim_{x\to 0} \frac{x^2}{x} = \lim_{x\to 0} x = 0$$

2.
$$\lim \frac{\alpha(x)}{\beta(x)} = \infty$$
,则 $\alpha(x)$ 是 $\beta(x)$ 的低阶无穷小

例子:
$$\lim_{x \to 0} \frac{x}{x^2} = \lim_{x \to 0} x = \infty$$

3.
$$\lim \frac{\alpha(x)}{\beta(x)}$$
 = c (c!=0 c!=1 常数) ,则 $\alpha(x)$ 是 β (x) 的同阶无穷小

例子:
$$\lim_{x\to 0} \frac{2x}{x}$$
=2

4.
$$\lim \frac{\alpha(x)}{\beta(x)} = 1$$
 ,则称 $\alpha(x)$ 是 $\beta(x)$ 的等价无穷小,记: $\alpha(x) \sim \beta(x)$

例子:
$$\lim_{x\to 0} \frac{x}{x}$$
=1 (x~x)

• 必背八个等价无穷小代换

$$X \rightarrow 0$$
 $\begin{cases} \sin X \sim X \\ \tan X \sim X \end{cases}$ $1 - 1 \cos X \sim \frac{1}{2} X^{2}$ $0 \times \cos \ln X \sim X$ $(1 + X)^{m} - 1 \sim m \times \infty$ $e^{X} - 1 \sim X$ $\ln (1 + X) \sim X$

- o 例题:
 - 1. f(x)=2x³+4x² g(x)=2x² 当x->0时f(x)是g(x)的___无穷小

注意: 不能抓大头无穷才能抓大头、

$$\lim_{X \to 0} \frac{2X^3 + 4X^2}{2X^2} = \lim_{X \to 0} \frac{2X^3}{2X^2} + \frac{4X^2}{2X^2} = \lim_{X \to 0} X + 2 = 2 \text{ and } X + 2 = 2 \text{ and } X = 2 \text{ and } X$$

2. $\lim_{x \to 0} \frac{sinx}{x^2}$ = $\sin(x)$ 是 x^2 的___无穷小 低阶

$$|\mathcal{F}_{M}| : \lim_{X \to 0} \frac{|\mathcal{F}_{M}|_{X}}{|\mathcal{F}_{M}|_{X}} = \lim_{X \to 0} \frac{|\mathcal{F}_{M}|_{X}}{|\mathcal{F}_{M}|_{X}} = \lim_{X \to 0} \frac{|\mathcal{F}_{M}|_{X}}{|\mathcal{F}_{M}|_{X}}$$

$$= |\mathcal{F}_{M}|_{X} = |\mathcal{F}_{M}|_{X}$$

$$= |\mathcal{F}_{M}|_{X} = |\mathcal{F}_{M}|_{X}$$

。 等价无穷小替换定理:

在同一极限过程中则 $\alpha(x) \sim \alpha_1(x) \beta(x) \sim \beta_1(x)$ 则

1.
$$\lim \frac{\beta(x)}{\alpha(x)} = \lim \frac{\beta_1(x)}{\alpha_1(x)}$$
 必须 $\frac{0}{0}$

2. $\lim \alpha(x)\beta(x)=\lim \alpha_1(x)\beta_1(x)$

注意:乘积和除法是可以无穷小替换

加法和减法不可以替换

o 例题:

例1
$$\lim_{x\to 0} \frac{\tan 2x}{\sin 3x} = \frac{\lim_{x\to 0} \frac{\tan 2x}{5 + 3x}}{\frac{5}{2} + \frac{1}{2}} = \frac{2x}{5}$$

例2
$$\lim_{x\to 0} \frac{1-\cos x}{x\sin x} = \lim_{X\to 0} \frac{\frac{1}{2}X^2}{X\cdot X} = \frac{1}{2}$$

例3 当x->0时 ax^2 与 $\sin^2 x$ 等价 $a=\lim_{X\to 0} \frac{0X^2}{5iX} = \lim_{X\to 0} \frac{0X^2}{5iX} = \lim_{X\to 0} \frac{0X^2}{5iX} = 0 = 1$

例4 例4: $f(x) = e^{-X} - 1$. $g(x) = X + \cos x$. $g(x) = x$

20m. 4. 为X-20时,不到各组函数为等价无常小量 D A SHEXE ZXL 13 Ln(1+(2x) 45x

2019.4.岁X>0时,不到无病小量中有一个是比其底三个更高阶乐制,

C
$$(n(1+4x^{3}))$$
 D $1-100+x$ $\frac{1}{2}(5x)^{2}=\frac{1}{2}\cdot 25x^{2}=\frac{25x^{2}}{2}$

$$\frac{2018 \cdot 12}{x \Rightarrow 0} = \frac{11}{100} = \frac{20}{100} = -3 \cdot \frac{20}{100} = -3 = \frac{2}{100} = -3 = \frac$$

2018、4、 当 x つの时
$$\alpha(1-105x)$$
 与 $\sqrt{1+x^2}$ 一 等作、外 $\alpha = 1$
 $x > 0$ $\sqrt{1+x^2}$ 一 $x > 0$ $\sqrt{2}$ \sqrt{x} $\sqrt{$

2017.4. 對X一0叫 及=X3 及=JA2-1 Y=ex-1 排在后面附是断面的高阶天病小网正输排序 2X2

考点:两个重要极限

1. 重要极限 " $\frac{0}{0}$ "型

$$\circ$$
 式子: $\lim_{x\to 0} \frac{sinx}{x}$ =1

○ 例:

1.
$$\lim_{x\to 0} \frac{tanx}{x}$$
=1

2.
$$\lim_{x\to 2} \frac{\sin(x-2)}{x^2-4} = \lim_{x\to 2} \frac{x^2-2}{x^2-4} = \lim_{x\to 2} \frac{x^2-2}{(x+2)} = \frac{1}{(x+2)}$$

虽然x->2但是复合函数整体趋近于0 所以可以用公式

2. 重要极限 " 1°"型 (未定式)

o 式子:
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$
=2.71828...=e $\lim_{x\to \infty} (1+\frac{1}{x}_0)^x$ =2.71828...=e

o 例:

1.
$$\lim_{x\to\infty} (1+\frac{2}{x})^x = \lim_{x\to\infty} \left(\frac{1+\frac{2}{x}}{x} \right)^2 = e^{2x}$$

教材方法 必须变成互为相反数缺的在补上

把这两个数1以外的数(正负号)直接相乘得数就是幂的次方如果没有1的形式需要换成有1的如果两个数相乘不出结果就把极限带入算极限

2.
$$\lim_{x \to 0} (1-2x)^{\frac{1}{x}}$$
=e⁻²

○ 真题:

$$2017.3 \lim_{X \to \infty} (1 - \frac{1}{X})^{X} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} x = e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} x = e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} x = e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} x = e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} = e^{\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} = e^{\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2018.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_{X \to \infty} (1 + \frac{1}{X})^{\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}} \stackrel{1}{=} 0 \qquad e^{-\frac{1}{X}}$$

$$2019.3 \lim_$$

3.连续

考点:函数的连续性

- 1. 函数连续的定义
 - \circ 定义:设f(x)在 x_0 附近有定义,且 $\lim_{x\to x_0}f(x)=f(\mathbf{x}_0)$ 则称f(x)在 \mathbf{x}_0 出是连续的
 - 注: f(x)在**x**₀处连续的3个要素:
 - 1. 设f(x)在x₀处有定义: 能把点带入
 - 2. $\lim_{x o x_0}f(x)$ 存在 : $\lim_{x o x_0^-}f(x)$ = $\lim_{x o x_0^+}f(x)$
 - 3. $\lim_{x \to x_0} f(x) = f(\mathbf{x}_0)$: 极限值等于函数值
 - \circ $\lim_{x \to x_0^-} f(x)$ 则称f(x)在 x_0 处左连续
 - \circ $\lim_{x \to x_0^+} f(x)$ 则称f(x)在 x_0 处右连续
- 2. 例题

0

伤小儿女的存在是一个在X。到重要处理不多年

伤了,Minth 存在见与长的钢等是fx)在xx处重读充变、条件

3. 例题

0

解题思路:因为正负无穷所以第一个式子求极限就可以求极限把加法分开单独计算在把两个式子单独求极限最后相加因为极限值等于函数值所以2+2a=3a

(3) 4:
$$f(x) = \begin{vmatrix} ln(1+20x^2) \\ xarcshx \end{vmatrix}$$
 X70
 $f(x) = ln(1+20x^2)$ X20
 $f(x) = ln(1+20x^2)$ $f(x) = ln(1+20x^$

解题思路:因为x>0和x<0都有式子所以分开求极限第一个极限为2a第二个极限值为2+a因为极限左右极限值必须相等所以2+a=2a a=2

考点: 函数的间断点及类型的判定

1. 例1:讨论 f(x)
$$\begin{cases} \frac{sinx}{x} & x! = 0 \\ 0 & x = 0 \end{cases}$$
 在x=0处的连续性

 \circ f(0)=0

$$\circ \lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin x}{x} = 1$$

 $\circ \lim_{x \to 0} f(x)$!=f(0) 在x=0处不连续 => x=0为可去间断点

例2:讨论 $f(x) \frac{-x}{|x|}$ 在x=0处的连续性

。 x=0处无定义

o
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{-x}{|x|} = \frac{-x}{x} = -1$$
 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{-x}{|x|} = \frac{-x}{-x} = 1$ 左右及极限值不相等所以极限值不存在 $x>0$ 绝对值是自己 $x<0$ 绝对值是相反数

○ 在x=0处不连续 => x=**0为跳跃间断点**

例3: 讨论 $f(x) \frac{1}{x^2}$ 在x=0处的连续性

。 x=0处无定义

$$\circ$$
 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1}{x^2} = \infty$ 在 $x = 0$ 处不连续 => $x = 0$ 为无穷间断点

例4: 讨论 $f(x)=\sin\frac{1}{x}$ 在x=0处的连续性

。 x=0处无定义

 \circ $\lim_{x\to 0} f(x) = \lim_{x\to 0} sin \frac{1}{x} = sin \infty$ [-1,1] 在x=0处不连续 => x=0为震荡间断点

总结:
$$X=X=h$$
的脚点 (可发的脚点) (可发的) (可能力) (可能

第一类正负方向都有极限值

第二类正负方向极限值至少有一个不存在(不知道无穷没有确定值是不存在振荡有范围不知道是几也是不存在)

注意:必须通过求极限 $\lim_{x \to 0} f(x)$ 才能来确定间断点的类型

2. 例题:

* (4) 1:
$$X=1$$
 = $\{ x^2+1 \ x<1 \}$ = $\{ x^2+1 \ x>1 \}$ = $\{ x^2+1$

例2: 付化
$$+ (x) = \frac{x^2 - 4}{x^2 - 3x + 2}$$
 在 $x = 1$. $x = 2$ m $x = 1$ を $x = 1$ を

思路:直接带入无穷小分之1无穷大

思路: 求极限因为是可去间断点所以分子分母不能得0所以需要约掉最后a=1