UFFS - Ciência da Computação - Matemática Discreta Lista 1 - Lógica - Data: 17/08/2023 - Profa. Rosane R. Binotto

- 1ª Questão Quais destas sentenças são proposições? Quais são os valores verdade das que são proposições?
 - 1) Rondônia é um estado brasileiro.
 - **3)** O jogo vai acabar logo?
 - 5) Dois é um número primo.
 - 7) Porto Alegre é a capital do Paraná.
- **2)** x + 2 = 11
- 4) $2^n > 100$.
- 6) 5+7=10.
- 8) Dois é um número ímpar.
- $2^{\underline{a}}$ Questão Considere que p e q são as proposições: p: "A eleição está decidida" e q: "Os votos foram contados". Expresse cada uma das destas proposições compostas como uma sentença em português.
 - 1) $\sim p$.
 - 3) $\sim p \wedge q$.
 - 5) $\sim q \rightarrow \sim p$.

- **2)** $p \vee q$.
- 4) $q \rightarrow p$.
- 6) $\sim p \rightarrow \sim q$.

- 7) $\sim q \vee (\sim p \wedge q)$.
- $3^{\underline{a}}$ Questão Considere que p, q e r são as proposições: p: "Você está doente", q: "Você perde a prova final" e r: "Você foi aprovado no curso". Expresse cada uma das destas proposições compostas como uma sentença em português.
 - 1) $p \rightarrow q$.

2) $\sim q \leftrightarrow r$.

3) $q \rightarrow \sim r$.

4) $p \vee q \vee r$.

5) $(p \rightarrow \sim r) \lor (q \rightarrow \sim r)$.

- **6)** $(p \wedge q) \vee (\sim q \wedge r)$.
- $4^{\underline{a}}$ Questão Sejam p: "A casa é azul", q: "A casa tem 30 anos" e r "A casa é feia". Passe para a linguagem simbólica as seguintes proposições:
 - 1) Se a casa tem 30 anos, então ela é feia.
 - 2) Se a casa é azul, então ela é feia ou tem 30 anos.
 - 3) Se a casa é azul, então ela é feia, ou tem 30 anos.
 - 4) A casa não é feia se, e somente, ela tem 30 anos.
 - 5) A casa tem 30 anos se ela é azul, e ela não é feia se ela tem 30 anos.
- $5^{\underline{a}}$ Questão Considere que p e q são as proposições: p: "Você dirige a mais de 104 km/h" e q: "Você recebe uma multa por excesso de velocidade". Escreva estas proposições usando p, q e os conectivos lógicos.

- 1) Você não dirige a mais de 104 km/h.
- ${\bf 2)}$ Você dirige a mais de 104 km/h, mas não recebe multa por excesso de velocidade.
- 3) Você receberá uma multa por excesso de velocidade, se você dirigir a mais de 104 km/h.
- 4) Dirigir a mais de 104km/h é suficiente para receber uma multa por excesso de velocidade.
- ${f 6^a}$ Questão Supondo que p seja sentença verdadeira, que q seja falsa, que r seja falsa e que s seja verdadeira, decida quais das sentenças abaixo são verdadeiras e quais são falsas.

1)
$$p \vee r$$
.

2)
$$\sim s \lor \sim r$$
.

3)
$$(r \wedge s) \vee q$$
.

4)
$$(s \wedge p) \vee (q \wedge r)$$
.

5)
$$\sim (p \wedge q)$$
.

6)
$$r \vee (s \vee (p \wedge q)).$$

- $7^{\underline{a}}$ Questão Suponha que p seja uma sentença falsa, que q seja verdadeira, que r seja falsa e que s seja verdadeira. Quais das sentenças da sequência são verdadeiras e quais são falsas?
 - 1) $r \longrightarrow q$.
 - 2) $s \longrightarrow (p \longrightarrow \sim s)$.
 - 3) $p \longleftrightarrow s$.
 - **4)** $(q \longleftrightarrow s) \land p$.
- 8ª Questão Determine V(p) (o valor lógico da proposição p) em cada um dos seguintes casos, sabendo que:
 - 1) V(q) = V e $V(p \wedge q) = F$.
 - **2)** V(q) = F e $V(q \longrightarrow p) = V$.
 - **3)** V(q) = F e $V(p \lor q) = F$.
 - **4)** V(q) = F e $V(p \longrightarrow q) = F$.
- 9º Questão Determine V(p) e V(q) em cada um dos seguintes casos, sabendo que:

1)
$$V(p \longrightarrow q) = V$$
 e $V(p \land q) = F$.

- **2)** $V(p \longrightarrow q) = V$ e $V(p \lor q) = F$.
- **3)** $V(p \longleftrightarrow q) = V$ e $V(p \land q) = V$.
- 10^a Questão Determine se estas proposições são verdadeiras ou falsas.
 - a) Se 1+1=2, então 2+2=5.
 - **b)** Se 1+1=3, então 2+2=4.
 - c) 2+2=4 se, e somente se, 1+1=2.
 - d) 1+1=2 se, e somente se, 2+1=4.
- 11ª Questão Sabendo que as proposições x=0 e x=y são verdadeiras e que as proposições y=z e y=t são falsas, determinar o valor-verdade (V ou
 - F) de cada uma das seguintes proposições:
 - 1) $x = 0 \land x = y \longrightarrow y \neq z$.
 - 2) $x = 0 \lor y = t \longrightarrow y = z$.
 - 3) $x \neq y \lor y \neq z \longrightarrow y = t$.
 - **4)** $x \neq 0 \lor x \neq y \longrightarrow y \neq z$.
- 12ª Questão Para cada uma destas sentenças, determine se o ou é exclusivo ou inclusivo. Explique sua resposta.
 - a) Uma senha deve ter ao menos três dígitos ou oito caracteres de comprimento.
 - b) Experiência em C++ ou Java é necessário.
 - c) O almoço inclui sopa ou salada.
 - d) O pré-requisito para o curso é um curso em teoria dos números ou um curso em criptografia.
- 13ª Questão Determine a oposta, a contrapositiva e a inversa de cada uma das proposições condicionais.
 - a) Se chover hoje, viajarei amanhã.
 - b) Eu venho à aula sempre que há uma prova.
 - c) Um inteiro positivo é um primo apenas se não tem divisores além de 1 e dele mesmo.
- $14^{\underline{a}}$ Questão Construa a tabela-verdade de cada uma das proposições abaixo:

1)
$$p \wedge \sim q$$
.

3)
$$(r \vee s) \wedge \sim r$$
.

5)
$$p \lor (\sim q \lor r)$$
.

7)
$$(p \lor q) \land (p \lor s)$$
.

$$2) \sim (p \rightarrow \sim q).$$

4)
$$(p \wedge q) \rightarrow (p \vee q).$$

6)
$$p \oplus (p \vee q)$$
.

8)
$$\sim (p \wedge q) \vee \sim (p \leftrightarrow q)$$
.

15ª Questão Mostre que as seguintes proposições são equivalentes (use a tabela verdade ou quando possível use as regras de equivalência estudadas em aula):

1)
$$p \wedge (q \vee r)$$
 e $(p \wedge q) \vee (p \wedge r)$ - (propriedade distributiva do \wedge).

2)
$$\sim (p \lor q)$$
 e $\sim p \land \sim q$ - (lei de Morgan do \lor).

3)
$$p \rightarrow q \quad e \quad \sim p \lor q \quad \text{- (regra do condicional)}.$$

4)
$$\sim (p \rightarrow q)$$
 e $p \wedge \sim q$.

- $16^{\underline{a}}$ Questão Qual o valor de x depois que cada uma destas proposições se deparar com um programa de computador, se x=1 antes de a proposição ser alcançada?
 - a) if 1+2=3 then x := x + 1.
 - b) if (1+1=3) OR (2+2=3) then x := x + 1.
 - c) if (2+3=5) AND (3+4=7) then x := x + 1.
 - d) if (1+1=2) XOR (1+2=3) then x := x + 1.
 - e) if x < 2 then x := x + 1.

Para as questões $17^{\underline{a}}$ e $18^{\underline{a}}$ seguinte tabela verdade:

Valor verdade	${f Bit}$
V	1
F	0

- 17ª Questão Encontre a disjunção binária OR, a conjunção binária AND e a disjunção binária exclusiva XOR de cada uma destas sequências de bit.
 - **a)** 101 1110, 010 0001

c) 00 0111 0001, 10 0100 1000

b) 1111 0000, 1010 1010

- **d)** 11 1111 1111, 00 0000 0000
- $18^{\underline{a}}$ Questão Dê os valores de cada uma destas expressões.
 - a) 1 1000 \wedge (0 1011 \vee 1 1011)

c) $(0\ 1010\ \oplus\ 1\ 0111)\ \oplus\ 0\ 1000$

b) (0 1111 \(\) 1 0101) \(\) 0 1000

d) (1 1011 ∨ 0 1010) ∧ (1 0001 ∨ 1 1011)