Data Science Static data analysis

Stéphane Marchand-Maillet

Master en Sciences Informatiques - Semestre d'Automne

Linear Discriminant Analysis (LDA)

We look at the issue of modeling multivariate data (p quantitatives components and one categorical variable). Every data is described by (\mathbf{x}_i, y_i) , where $\mathbf{x}_i \in \mathbb{R}^p$ and $y_i = 1, \dots, q$.

Linear Discriminant Analysis

Class definition

Alternative interpretation: The categorical variable y_i describes the class to which data i belongs, characterised by variables \mathbf{x}_i . Hence, point i belongs to class C_k iff $y_i = k$.

Discriminant Analysis

Can the q classes be discriminated over the space of variables x? Is there a linear transform of x such that the q classes are better separated?

⇒ basis for supervised learning

2 Classes - Discriminant Axis

2 Classes - Discriminant Axis

Inter-classs discrimination criterion

- * Search for direction **a** where the *inter-class* discrimination is maximum.
- * Clearly, **a** must be parallel to the line $(\mathbf{g}_1, \mathbf{g}_2)$ across the centers of mass of the classes, since:

$$(\hat{\mathbf{g_1}} - \hat{\mathbf{g_2}})^2 = \left(\frac{\mathbf{a}^\mathsf{T}\mathbf{g_1}}{||\mathbf{a}||} - \frac{\mathbf{a}^\mathsf{T}\mathbf{g_2}}{||\mathbf{a}||}\right)^2 = \left(\frac{\mathbf{a}^\mathsf{T}}{||\mathbf{a}||}(\mathbf{g_1} - \mathbf{g_2})\right)^2$$

is maximum when $\mathbf{a} \propto \mathbf{g_1} - \mathbf{g_2}$

Intra-class discrimination criterion

Intra-class discrimination criterion

- * We must account for the intra-class variance of the projected data
- * Fisher criterion maximises

$$\max_{\mathbf{a}} \frac{(\hat{\mathbf{g_1}} - \hat{\mathbf{g_2}})^2}{\hat{\sigma}_1^2 + \hat{\sigma}_2^2}$$

where $\hat{\sigma_k}$ is the normalised variance of the projection of class k

$$\hat{\sigma}_k^2 = \sum_{\mathbf{x} \in \mathbf{C}} (\hat{\mathbf{x}} - \hat{\mathbf{g}_k})^\mathsf{T} (\hat{\mathbf{x}} - \hat{\mathbf{g}_k})$$

Discriminant axes

Discriminant axes

Generalisation: intra-classe criteria

- * Let $A_k = [\mathbf{x}_1 \mathbf{g}_k, \dots, \mathbf{x}_{n_k} \mathbf{g}_k], x_i \in C_k$ be the matrix of centered data
- * $\frac{1}{n_k} A_k A_k^{\mathsf{T}}$ is the *intra*-class covariance matrix
- * $S_w = \sum_k \frac{1}{n_k} A_k A_k^{\mathsf{T}}$ is the sum of *intra*-class covariance matrices
- * We minimise

$$\sum_{k} \sum_{x_i \in c_k} (\hat{\mathbf{x}}_i - \hat{\mathbf{g}}_k)^\mathsf{T} (\hat{\mathbf{x}}_i - \hat{\mathbf{g}}_k) = \sum_{k} \sum_{x_i \in c_k} \frac{(\mathbf{a}^\mathsf{T} (\mathbf{x}_i - \mathbf{g}_k))^\mathsf{T} \mathbf{a}^\mathsf{T} (\mathbf{x}_i - \mathbf{g}_k)}{||\mathbf{a}||^2}$$
$$= \sum_{k} \frac{1}{||\mathbf{a}||^2} \mathbf{a}^\mathsf{T} A_k A_k^\mathsf{T} \mathbf{a} = \frac{1}{||\mathbf{a}||^2} \mathbf{a}^\mathsf{T} S_w \mathbf{a}$$

Generalisation: inter-class criteria

- * Let $B = [\mathbf{g}_1 \mathbf{g}, \dots, \mathbf{g}_q \mathbf{g}]$ be the matrix of centered data centers $(\mathbf{g} = \frac{1}{N} \sum_{N} \mathbf{x}_i)$ and $N = \sum_{k} n_k$
- * $S_b = \frac{1}{a}BB^T$ is the covariance matrix of class centers
- * We maximise

$$\sum_{k} (\hat{\mathbf{g}}_k - \hat{\mathbf{g}})^\mathsf{T} (\hat{\mathbf{g}}_k - \hat{\mathbf{g}}) = \frac{1}{||\mathbf{a}||^2} \mathbf{a}^\mathsf{T} S_b \mathbf{a}$$

Mixing both criteria

Mixing both criteria

Fisher discrimination criteria: Raleigh coefficient

* Combining both

$$max_{\mathbf{a}}J_{\mathbf{a}} = max_{\mathbf{a}} \frac{\mathbf{a}^{\mathsf{T}}S_{b}\mathbf{a}}{\mathbf{a}^{\mathsf{T}}S_{w}\mathbf{a}}$$

* which is found if:

$$\frac{\partial J_{\mathbf{a}}}{\partial \mathbf{a}} = \frac{S_b \mathbf{a} (\mathbf{a}^\mathsf{T} S_w \mathbf{a}) - S_w \mathbf{a} (\mathbf{a}^\mathsf{T} S_b \mathbf{a})}{(\mathbf{a}^\mathsf{T} S_w \mathbf{a})^2} = 0$$

- \Rightarrow a is solution of the generalised eigen system: $S_b a = J_a S_w a$
 - * Hence, a is the first e.v of $S_w^{-1}S_b$

Discriminant subspaces

* eigenvectors corresponding to the largest eigenvalues λ_i are the most discriminative dimensions

$$\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_p$$
 avec $\lambda_1 > \lambda_2 > \dots \lambda_p$

- * q classes may be discriminated in a (at most) (q-1)-dimensional subspace
- \Rightarrow only q-1 non-zero eigenvalues

$$\star \ \mathcal{B}\mathcal{B}^\mathsf{T} = (\mathbf{g}_1 - \mathbf{g})(\mathbf{g}_1 - \mathbf{g})^\mathsf{T} + (\mathbf{g}_2 - \mathbf{g})(\mathbf{g}_2 - \mathbf{g})^\mathsf{T} = (\mathbf{g}_1 - \mathbf{g}_2)(\mathbf{g}_1 - \mathbf{g}_2)^\mathsf{T}$$

- * hence $BB^{\mathsf{T}}\mathbf{a}$ is a vector along direction $(\mathbf{g}_1 \mathbf{g}_2)$
- * hence $\mathbf{a} \simeq S_w^{-1}(\mathbf{g}_1 \mathbf{g}_2)$

Illustrations: character recognition

7291 images 16×16 (8 bits) numbers from 0 to 9

$$\Rightarrow$$
 $\{\mathbf{x}_i, y_i\}$ avec $\mathbf{x}_i \in \mathbb{R}^{256}$ et $y_i = 1, \dots, 10$, $i = 1 \dots 7291$

Stéphane Marchand-Maillet

Data Science: Linear Discriminant Analysis

Projection

 \Rightarrow LDA finds the optimal subspace to (linearly) separate data along labels y_i .

LDA as a support for decision making

- \star New data $j \rightarrow \mathbf{x}_i$ known, y_i unknown
- * To which class C_k point j belongs? (classification)
- \Rightarrow Predict $P(C_k|\mathbf{x}_i)$ (Bayes rule):

$$P(C_k|\mathbf{x}_j) = \frac{P(\mathbf{x}_j|C_k)P(C_k)}{P(\mathbf{x}_j)}$$

Gaussian approximation

- * Each class is modeled by $\mathcal{N}(\mu_k, W_k)$
- * Prior: $P(C_k) = 1/q$
- * evidence $P(\mathbf{x}_i)$ is ignored
- ⇒ Maximun likelihood

$$p(\mathbf{x}|C_k) \approx \exp\left(-(\mathbf{x} - \mu_k)^\mathsf{T} W_k(\mathbf{x} - \mu_k)\right)$$

Decision (classification)

$$\delta(\mathbf{x}) = \arg\max_{k} P(\mathbf{x}|C_k)$$

Decision (classification)

$$\delta(\mathbf{x}) = \arg\max_{k} P(\mathbf{x}|C_k)$$

Optimality

- \star LDA is optimal when the q classes are each Gaussian distributed
- ⇒ because of the discrimination criteria based on covariance matrices $S_{\mu\nu}$ et $S_{h\nu}$
 - ★ Linear discriminant Analysis → does not account for non-linear relationships between variables

ATI05 - 54/50 Stéphane Marchand-Maillet Data Science: Linear Discriminant Analysis