Практическая работа 3. Окислительно-восстановительные реакции.

Опыт 1. Реакции с участием кислорода воздуха

Реактивы

Сухие соли $FeSO_4 \times (NH4)_2 SO_4 \times 6H_2O$ и $MnSO_4$, раствор NaOH, Mg стружка, раствор фенолфталеина.

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка, пинцет, спиртовка.

Порядок работы

а) Реакции гидроксидов металлов в промежуточной степени окисления с кислородом воздуха

Возьмите две пробирки, в одну поместите немного твёрдой соли Мора $(FeSO_4 \times (NH4)_2SO_4 \times 6H_2O)$, в другую немного сульфата марганца(II). Обе соли растворите в небольшом количестве воды, затем в обе пробирки прилейте по каплям раствор щелочи.

 \triangleright Отметьте изменение цвета осадков Fe(OH) $_2$ и Mn(OH) $_2$ со временем в результате их окисления на воздухе. Составьте уравнения реакций получения гидроксида железа(II) и марганца(II), их последующего окисления кислородом воздуха (в присутствии воды в качестве среды) до $Fe(OH)_3$ и $MnO_2 \times 2H_2O$. Подберите коэффициенты в окислительно-восстановительных реакциях методами электронного и электронно-ионного баланса.

б) Горение металлов на воздухе (опыт выполняется вы вытяжном шкафу!)

Возьмите металлическим пинцетом небольшой кусочек магниевой стружки и подожгите его с помощью спиртовки. (Осторожно! Не смотрите прямо на очень яркое пламя!). После остывания остатка исследуйте его свойства: попытайтесь растворить его в воде, проведите реакцию раствора на гидроксид-ионы с фенолфталеином.

Опишите наблюдения. Сделайте вывод о химических свойствах полученных соединений, запишите уравнения реакций.

Опыт 2. Окислительные свойства дихромата калия

Реактивы

Сухая соль Мора (FeSO₄×(NH4)₂SO₄×6H₂O), растворы $K_2Cr_2O_7$ и HCl (0,1M).

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка.

Порядок работы

В пробирку поместите 2-3 капли раствора дихромата калия, добавьте 7-8 капель 0,1М соляной кислоты, внесите в подкислённый раствор один микрошпатель кристаллической соли Мора и размешайте до растворения. Наблюдайте за изменением окраски при протекании реакции.

Запишите уравнение реакции, учитывая, что продуктами являются хлориды хрома(III), железа(III), калия и вода, подобрав коэффициенты методом электронно-ионного баланса.

Опыт 3. Окислительно-восстановительные свойства ионов металлов в различных степенях окисления

Реактивы

Растворы солей: FeCl₃, K₄[Fe(CN)₆], SnCl₂.

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка.

Порядок работы

В пробирку поместите 2 капли раствора хлорида железа (III) и добавьте одну каплю раствора желтой кровяной соли $K_4[Fe(CN)_6]$. К полученному ярко-синему раствору добавьте несколько капель раствора хлорида олова (II).

Что наблюдается при добавлении хлорида олова (II)? Желтая кровяная соль является качественным реактивом на ион Fe^{3+} : $FeCl_3 + K_4[Fe(CN)_6] \rightarrow KFe[Fe(CN)_6] + 3KCl$.

Напишите уравнение реакции восстановления $FeCl_3$ хлоридом олова(II), подобрав коэффициенты методом электронного баланса. С учетом результатов опытов 1а и 2 сделайте вывод об окислительно-восстановительных свойствах ионов Fe^{2+} , Fe^{3+} и Sn^{2+} и роли степени окисления металлов в определении этих свойств.

Опыт 4. Термическое разложение дихромата аммония (демонстрационный опыт, выполняется в вытяжном шкафу!)

Реактивы

Сухая соль $(NH_4)_2Cr_2O_7$.

Порядок работы

На лист алюминиевой фольги поместите немного кристаллического дихромата аммония (NH₄)₂Cr₂O₇. Прикоснитесь зажжённой спичкой к его поверхности.

Что наблюдается в ходе реакции? Запишите уравнение реакции, учитывая, что продуктами разложения является оксид хрома(III), азот и вода. Уравняйте реакцию методом электронного баланса.

Опыт 5. Влияние среды на окислительные свойства перманганата калия

Перманганат-ион MnO_4^- является сильным окислителем. В зависимости от кислотности среды восстановление перманганат-иона происходит по-разному.

Реактивы

Растворы KMnO₄ (0,01M), HCl (0,1M), NaOH (1M), сухая соль Na₂SO₃.

Оборудование

Пробирки, шпатель для реактивов, стеклянная палочка.

Порядок работы

а) Восстановление MnO_4^- в сильнокислой среде

В пробирку поместите 3-4 капли 0,01М раствора перманганата калия, добавьте 5-10 капель 0,1M раствора HCl, а затем внесите один микрошпатель кристаллического сульфита натрия (Na_2SO_3).

Что наблюдается при этом? Напишите уравнение реакции, учитывая, что продуктами являются сульфат марганца(II), сульфат натрия, сульфат калия и вода. Подберите коэффициенты этой реакции методом электронно-ионного баланса.

б) Восстановление MnO₄⁻ в нейтральной среде

Проведите опыт, аналогичный описанному в пункте (а), но вместо кислоты в пробирку добавьте воду (5-10 капель), а затем внесите один микрошпатель кристаллического сульфита натрия. В результате реакции образуется коричневый осадок диоксида марганца.

Напишите уравнение реакции и подберите коэффициенты методом электронноионного баланса.

в) Окислительные свойства MnO_4^- в сильнощелочной среде

Порядок проведения опыта аналогичен описанному в пункте (а): к раствору перманганата калия добавьте 5-10 капель 1М раствора щелочи (NaOH), затем внесите один микрошпатель кристаллического сульфита натрия.

Что наблюдается? Допишите уравнение реакции:

 $KMnO_4 + Na_2SO_3 + NaOH \rightarrow K_2MnO_4 + ...$

Методом электронно-ионного баланса подберите его коэффициенты.

Опыт 6. Окислительные и восстановительные свойства пероксида водорода

Реактивы

Растворы: KI (0,05M), $K_2Cr_2O_7$ (0,1M), HCI (0,1M), H_2O_2 (3%).

Оборудование

Пробирки, пипетки.

Порядок работы

а) Налейте в пробирку 1 мл 0,05М раствора иодида калия и подкислите его 1-2 каплями 0,1М соляной кислоты. Прибавьте 3%-ный раствор пероксида водорода.

🖻 Чем объясняется появление бурой окраски? Составьте уравнение реакции, используя метод электронно-ионного баланса. Укажите окислитель и восстановитель.

б) Налейте в пробирку 1 мл 0,1М раствора дихромата калия и подкислите его 1-2 каплями 0,1М соляной кислоты. Затем добавьте 1 мл 3%-ного раствора пероксида водорода.

Опишите наблюдения в ходе протекания этой реакции. Какие свойства проявляет пероксид водорода в этом случае? Составьте уравнение реакции, используя метод электронно-ионного баланса.

Практическая работа 4. Синтез наночастиц Sr_{1-x}La_xF₂

Реактивы

Sr(NO₃)₂, La(NO₃)₃*5H₂O, KF, NaF, NH₄F.

Оборудование

Пластиковые стаканы, бюретка, перистальтический насос, магнитная мешалка, диализные мешки.

Порядок работы

Необходимо синтезировать 1 г соединения $Sr_{1-x}La_xF_2$ ($x=0.01,\,0.02,\,0.03$ или 0.04) по методике из работы [1]. Теоритический выход продукта в синтезе считать 100%. Напишите уравнение реакции синтеза. Рассчитайте навески нитрата стронция и нитрата редкоземельного элемента (РЗЭ) для приготовления 0,08 М раствора с заданным соотношением элементов (Раствор 1). Рассчитайте навеску фторирующего агента (КF, NaF или NH₄F) для приготовления 0,16 М раствора (Раствор 2). Учитывайте, что Раствор 2 необходимо использовать с избытоком 7% по отношению к Раствору 1. Почему для синтеза необходимо использовать разбавленный раствор?

Синтез проводится в вытяжном шкафу. Приготовить исходный раствор нитратов стронция и РЗЭ с концентрацией 0,08 М, покапельно добавить его в раствор фтор-агента с концентрацией 0,16 М при перемешивании (такая методика смешения называется прямой). В случае добавления фторирующего агента в раствор нитратов методика смешения называется обратной. Через 1 час выпадает осадок.

Декантируйте раствор, оставшийся осадок поместите в предварительно вымоченный в воде диализный мешок. Установите диализный мешок в стакан с дистиллированной водой, периодически меняйте воду в процессе диализа. Под контролем преподавателя извлеките раствор с очищенным осадком из диализного мешка и высушите под лампой при температуре около 45 °C. Взвесте сухой продукт.

Что происходит в процессе диализа? Рассчитайте практический выход продукта $(Sr_{1-x}La_xF_2)$.

^[1] Федоров П.П., Кузнецов С.В., Маякова М.Н. Синтез бинарных фторидов методом соосаждения из водных растворов. // Журнал неорганической химии, 2011. — Т. 56. № 10. — С. 1525-1531.