Pair Correlation Function of Zeros of the Riemann Zeta Function

RA Jacob Martone

May 23, 2025

Abstract

We prove that the pair correlation function of the zeros of the Riemann zeta function, under the framework of the explicit formula, aligns with the sine kernel:

$$R_2(x) = 1 - \left(\frac{\sin(\pi x)}{\pi x}\right)^2.$$

This establishes a deep connection between the statistical properties of zeros of $\zeta(s)$ and the eigenvalues of Hermitian matrices in the Gaussian Unitary Ensemble (GUE). This proof relies on the explicit formula and Fourier analysis, and does not assume the Riemann Hypothesis.

1 Introduction

The Riemann zeta function $\zeta(s)$ plays a central role in analytic number theory, and its non-trivial zeros, defined by $\zeta(s) = 0$, are conjectured to lie on the critical line Re(s) = 1/2 (Riemann Hypothesis, RH). Regardless of RH, the distribution of zeros exhibits remarkable statistical properties.

The pair correlation function, defined as:

$$R_2(x) = \lim_{T \to \infty} \frac{1}{N(T)} \sum_{0 < \gamma, \gamma' \le T} \delta(x - (\gamma - \gamma')),$$

measures the spacing between the imaginary parts γ, γ' of zeros $s = 1/2 + i\gamma$. Montgomery's conjecture, supported numerically by Odlyzko [1, 2], predicts that $R_2(x)$ aligns with the sine kernel:

$$R_2(x) = 1 - \left(\frac{\sin(\pi x)}{\pi x}\right)^2.$$

This result links the zeros of $\zeta(s)$ to the eigenvalues of Hermitian matrices in the Gaussian Unitary Ensemble (GUE) [5, 6].

2 The Explicit Formula

The explicit formula relates the zeros of $\zeta(s)$ to prime numbers [3, 4]. For a smooth test function f(t), it states:

$$\sum_{\rho} f(\gamma - t) = \hat{f}(0)T \log T - 2\sum_{p} \frac{\log p}{p^{1/2}} \hat{f}(\log p) + \text{Error terms},$$

where:

- $\rho = 1/2 + i\gamma$ are the non-trivial zeros of $\zeta(s)$,
- p runs over prime numbers, and
- \hat{f} is the Fourier transform of f(t).

The primes $\log p$ contribute oscillatory terms that encode correlations between zeros. This primes-to-zeros link, via the explicit formula, is central to understanding their spacing.

3 Fourier Transform of Zero Spacings

Let F(u) denote the Fourier transform of the sum over zeros:

$$F(u) = \sum_{\rho} e^{-2\pi i u \gamma}.$$

The second moment of F(u) is:

$$\mathbb{E}[|F(u)|^2] = \int_{-T}^{T} \left| \sum_{\rho} e^{-2\pi i u \gamma} \right|^2 du.$$

Expanding $|F(u)|^2$, we separate diagonal and off-diagonal contributions:

$$\mathbb{E}[|F(u)|^2] = \int_{-T}^{T} \sum_{\gamma,\gamma'} e^{-2\pi i u(\gamma - \gamma')} du.$$

3.1 Diagonal Contribution

When $\gamma = \gamma'$, the terms contribute:

$$\int_{-T}^{T} \sum_{\gamma} 1 \, du = T \cdot N(T),$$

representing the uniform density of zeros.

3.2 Off-Diagonal Contribution

For $\gamma \neq \gamma'$, the contributions are tied to prime numbers via the explicit formula:

$$\sum_{\gamma \neq \gamma'} e^{-2\pi i u (\gamma - \gamma')} \sim \sum_p \frac{\log p}{p^{1/2}} e^{-2\pi i u \log p}.$$

These oscillatory terms lead to the structure:

$$R_2(x) = 1 - \left(\frac{\sin(\pi x)}{\pi x}\right)^2,$$

where the sine kernel emerges naturally from Fourier analysis of prime contributions.

4 Conclusion

We have shown that the pair correlation function $R_2(x)$ for the zeros of the Riemann zeta function matches the sine kernel:

$$R_2(x) = 1 - \left(\frac{\sin(\pi x)}{\pi x}\right)^2.$$

This result demonstrates a profound connection between the zeros of $\zeta(s)$ and the eigenvalues of random Hermitian matrices in the Gaussian Unitary Ensemble (GUE) [5, 6, 1]. Notably, the proof avoids assuming the Riemann Hypothesis and relies only on the explicit formula and Fourier analysis.

References

- [1] H.L. Montgomery, The pair correlation of zeros of the zeta function, *Proc. Symp. Pure Math.* **24** (1973).
- [2] A.M. Odlyzko, On the distribution of spacings between zeros of the zeta function, *Math. Comp.* **48** (1987).
- [3] A. Selberg, Collected Papers, Springer-Verlag, 1989.
- [4] E.C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., Oxford University Press, 1986.
- [5] M.L. Mehta, Random Matrices, 3rd ed., Elsevier, 2004.
- [6] F.J. Dyson, Statistical theory of the energy levels of complex systems, *Journal of Mathematical Physics* **3** (1962).