# Programação Linear - algoritmo simplex: degenerescência

Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

15 de Março de 2023



# Prog. Linear - algoritmo simplex: situações especiais

#### antes

 O método Simplex foi aplicado para resolver um problema de programação linear.

#### Guião

- Há situações especiais que é necessário analisar com detalhe, para definir completamente as decisões e acções do algoritmo simplex:
  - vértice admissível inicial não disponível;
  - vértices degenerados.

#### depois

• Vemos a implementação do algoritmo simplex usando matrizes.

### Situações especiais do algoritmo simplex

```
Algoritmo 1 algoritmo simplex (esquema)
input: A, b, c
                                                         ➤ modelo
  if existir solução admissível then
     construir solução admissível inicial
  else
     return problema é impossível
  end if
  while existirem variáveis atractivas do
     seleccionar coluna pivô: é a da variável mais atractiva
     if todos coeficientes coluna piv\hat{o} \leq 0 then
        return solução óptima é ilimitada
     else
        seleccionar linha pivô: é a da menor razão
              end if
     efectuar pivô para obter nova solução
                                             ▶ eliminação de Gauss
  end while
  return solução óptima
```

• Quando não há degenerescência, o algoritmo simplex converge para a solução óptima (finita) num número finito de pivôs, porque ...

 Quando não há degenerescência, o algoritmo simplex converge para a solução óptima (finita) num número finito de pivôs, porque ... a soma de um número infinito de valores positivos (há um aumento do valor da função objectivo em cada pivô) não pode ter um valor finito.

- Quando não há degenerescência, o algoritmo simplex converge para a solução óptima (finita) num número finito de pivôs, porque ... a soma de um número infinito de valores positivos (há um aumento do valor da função objectivo em cada pivô) não pode ter um valor finito.
- Quando há degenerescência, o algoritmo simplex pode entrar em ciclo quando se usam algumas regras de selecção do elemento pivô.

- Quando não há degenerescência, o algoritmo simplex converge para a solução óptima (finita) num número finito de pivôs, porque ... a soma de um número infinito de valores positivos (há um aumento do valor da função objectivo em cada pivô) não pode ter um valor finito.
- Quando há degenerescência, o algoritmo simplex pode entrar em ciclo quando se usam algumas regras de selecção do elemento pivô.
- Mas há uma regra que garante a convergência.

#### Conteúdo

- Vértices degenerados
- Regra de Bland
- Omplexidade do algoritmo simplex
- Apêndices
  - Degenerescência e restrições redundantes

### Exemplo: 3 rectas no espaço a 2 dimensões



#### Exemplo: 3 rectas no espaço a 2 dimensões



### Vértice degenerado: caracterização no caso geral

• Vimos vértices determinados pela intersecção de (n-m) hiperplanos.

#### Vértice degenerado: número maior de hiperplanos

- Um vértice degenerado pertence a mais do que (n-m) hiperplanos.
- Ocorre quando, depois de fixar (n-m) variáveis não-básicas em 0, na solução do sistema de m equações em ordem a m variáveis básicas, há, pelo menos, uma variável básica com o valor 0.

#### Vértice degenerado: várias bases, a mesma solução básica (≡ vértice)

• Um vértice é *degenerado* se várias bases (cada uma correspondendo a um quadro simplex diferente) fornecerem a mesma solução básica.

# Exemplo: 3 bases diferentes, a mesma solução básica

|                       | Z | $x_1$                 | <i>x</i> <sub>2</sub> | $s_1$ | <b>s</b> 2            | <b>5</b> 3            |     |
|-----------------------|---|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----|
| $s_1$                 | 0 | 0                     | 2                     | 1     | 0                     | -3                    | 0   |
| <i>s</i> <sub>2</sub> | 0 | 0                     | 2                     | 0     | 1                     | -1                    | 40  |
| $x_1$                 | 0 | 1                     | 0                     | 0     | 0                     | 1                     | 40  |
| Z                     | 1 | 0                     | -10                   | 0     | 0                     | 12                    | 480 |
|                       |   |                       |                       |       |                       |                       |     |
|                       | Z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |     |
| <i>x</i> <sub>2</sub> | 0 | 0                     | 1                     | 0.5   | 0                     | -1.5                  | 0   |
| <i>s</i> <sub>2</sub> | 0 | 0                     | 0                     | -1    | 1                     | 2                     | 40  |
| $x_1$                 | 0 | 1                     | 0                     | 0     | 0                     | 1                     | 40  |
| Z                     | 1 | 0                     | 0                     | 5     | 0                     | -3                    | 480 |
|                       |   |                       |                       |       |                       |                       |     |
|                       | z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |     |
| <i>s</i> <sub>2</sub> | 0 | 0                     | 4/3                   | -1/3  | 1                     | 0                     | 40  |
| <b>s</b> 3            | 0 | 0                     | -2/3                  | -1/3  | 0                     | 1                     | 0   |
| <i>x</i> <sub>1</sub> | 0 | 1                     | 2/3                   | 1/3   | 0                     | 0                     | 40  |
| Z                     | 1 | 0                     | -2                    | 4     | 0                     | 0                     | 480 |
|                       |   |                       |                       |       |                       |                       |     |

Um quadro simplex corresponde a um *vértice degenerado* se houver uma ou mais variáveis básicas com valor 0.

O pivô entre o Quadro 1 e o Quadro 2 é um *pivô degenerado*.

Solução básica ( $\equiv$  vértice) é sempre  $(x_1, x_2, s_1, s_2, s_3)^{\top} = (40, 0, 0, 40, 0)^{\top}$ .

### Exemplo: resolução

|                                                    | Z | $x_1$ | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <b>s</b> 3 |     |
|----------------------------------------------------|---|-------|-----------------------|-------|-----------------------|------------|-----|
| $s_1$                                              | 0 | 3     | 2                     | 1     | 0                     | 0          | 120 |
| <i>s</i> <sub>2</sub>                              | 0 | 1     | 2                     | 0     | 1                     | 0          | 80  |
| s <sub>1</sub><br>s <sub>2</sub><br>s <sub>3</sub> | 0 | 1     | 0                     | 0     | 0                     | 1          | 40  |
| Z                                                  | 1 | -12   | -10                   | 0     | 0                     | 0          | 0   |

|                       | z | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$       | <i>s</i> <sub>2</sub> | <i>5</i> 3 |     |
|-----------------------|---|-----------------------|-----------------------|-------------|-----------------------|------------|-----|
| $\overline{x_1}$      | 0 | 1                     | 2/3                   | 1/3<br>-1/3 | 0                     | 0          | 40  |
| <i>s</i> <sub>2</sub> | 0 | 0                     | 4/3                   | -1/3        | 1                     | 0          | 40  |
| <i>s</i> <sub>3</sub> | 0 | 0                     | -2/3                  | -1/3        | 0                     | 1          | 0   |
| Z                     | 1 | 0                     | -2                    | 4           | 0                     | 0          | 480 |

|   |                                                                   | Z | $x_1$ | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <b>s</b> 3 |     |
|---|-------------------------------------------------------------------|---|-------|-----------------------|-------|-----------------------|------------|-----|
| _ | <i>x</i> <sub>1</sub>                                             | 0 | 1     | 0                     | 0.5   | -0.5                  | 0          | 20  |
|   | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> <i>s</i> <sub>3</sub> | 0 | 0     | 1                     | -0.25 | 0.75                  | 0          | 30  |
|   | <i>s</i> <sub>3</sub>                                             | 0 | 0     | 0                     | -0.5  | 0.5                   | 1          | 20  |
|   | Z                                                                 | 1 | 0     | 0                     | 3.5   | 1.5                   | 0          | 540 |

Solução óptima  $(x_1, x_2, s_1, s_2, s_3)^{\top} = (20, 30, 0, 0, 20)^{\top}$ .

#### Exemplo de execução do algoritmo simplex com ciclo

 O uso das seguintes regras no exemplo devido a Kuhn (citado em Balinski e Tucker (1969)) conduz a um ciclo.

#### Regras de selecção do elemento pivô:

- seleccionar para coluna pivô a coluna com o coeficiente mais negativo na linha da função objectivo;
- seleccionar para linha pivô a linha com menor razão e, em caso de empate, seleccionar a linha mais em cima.

|   |                       | z | $x_1$ | <i>x</i> <sub>2</sub> | <i>X</i> 3      | <i>X</i> 4 | $s_1$ | <i>s</i> <sub>2</sub> | <b>s</b> 3 |   |    |
|---|-----------------------|---|-------|-----------------------|-----------------|------------|-------|-----------------------|------------|---|----|
|   | <i>s</i> <sub>1</sub> | 0 | -2    | -9                    | 1               | 9          | 1     | 0                     | 0          | 0 |    |
|   | <b>s</b> 2            | 0 | 1/3   | 1                     | -1/3            | -2         | 0     | 1                     | 0          | 0 | a) |
|   | <i>5</i> 3            | 0 | 2     | 3                     | 1<br>-1/3<br>-1 | -12        | 0     | 0                     | 1          | 2 |    |
| _ |                       |   |       |                       | 1               |            |       |                       |            |   |    |

#### Exemplo: pivôs 1 e 2 do ciclo

|                       | Z | $x_1$                 | <i>X</i> 2            | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <i>s</i> <sub>2</sub> | <i>5</i> 3 |   |            |
|-----------------------|---|-----------------------|-----------------------|------------|------------|-----------------------|-----------------------|------------|---|------------|
| $\overline{s_1}$      | 0 | -2                    | -9                    | 1          | 9          | 1                     | 0                     | 0          | 0 |            |
| <i>s</i> <sub>2</sub> | 0 | 1/3                   | 1                     | -1/3       | -2         | 0                     | 1                     | 0          | 0 | a)         |
| <i>5</i> 3            | 0 | 2                     | 3                     | -1         | -12        | 0                     | 0                     | 1          | 2 | ,          |
| Z                     | 1 | -2                    | -3                    | 1          | 12         | 0                     | 0                     | 0          | 0 |            |
|                       | ļ |                       |                       |            |            |                       |                       |            |   |            |
|                       | Z | $x_1$                 | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <i>s</i> <sub>2</sub> | <i>5</i> 3 |   |            |
| $s_1$                 | 0 | 1                     | 0                     | -2         | -9         | 1                     | 9                     | 0          | 0 |            |
| <i>x</i> <sub>2</sub> | 0 | 1/3                   | 1                     | -1/3       | -2         | 0                     | 1                     | 0          | 0 | <i>b</i> ) |
| <i>5</i> 3            | 0 | 1                     | 0                     | 0          | -6         | 0                     | -3                    | 1          | 2 | •          |
| Z                     | 1 | -1                    | 0                     | 0          | 6          | 0                     | 3                     | 0          | 0 |            |
|                       | ' |                       |                       |            |            |                       |                       |            |   |            |
|                       | Z | <i>x</i> <sub>1</sub> | <i>X</i> 2            | <i>X</i> 3 | <i>X</i> 4 | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <b>5</b> 3 |   |            |
| <i>x</i> <sub>1</sub> | 0 | 1                     | 0                     | -2         | -9         | 1                     | 9                     | 0          | 0 |            |
| <i>x</i> <sub>2</sub> | 0 | 0                     | 1                     | 1/3        | 1          | -1/3                  | -2                    | 0          | 0 | c)         |
| <i>S</i> 3            | 0 | 0                     | 0                     | 2          | 3          | -1                    | -12                   | 1          | 2 | ŕ          |
| Z                     | 1 | 0                     | 0                     | -2         | -3         | 1                     | 12                    | 0          | 0 |            |

# Exemplo: pivôs 3 e 4 do ciclo

|                       | z | $x_1$                 | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <i>s</i> <sub>2</sub> | <i>s</i> 3 |   |    |
|-----------------------|---|-----------------------|-----------------------|------------|------------|-----------------------|-----------------------|------------|---|----|
| <i>x</i> <sub>1</sub> | 0 | 1                     | 0                     | -2         | -9         | 1                     | 9                     | 0          | 0 |    |
| <i>X</i> 2            | 0 | 0                     | 1                     | 1/3        | 1          | -1/3                  | -2                    | 0          | 0 | c) |
| <i>5</i> 3            | 0 | 0                     | 0                     | 2          | 3          | -1                    | -12                   | 1          | 2 | ,  |
| Z                     | 1 | 0                     | 0                     | -2         | -3         | 1                     | 12                    | 0          | 0 |    |
|                       | ' |                       |                       |            |            |                       |                       |            |   |    |
|                       | Z | $x_1$                 | <i>X</i> 2            | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <i>s</i> <sub>2</sub> | <i>s</i> 3 |   |    |
| <i>x</i> <sub>1</sub> | 0 | 1                     | 9                     | 1          | 0          | -2                    | -9                    | 0          | 0 |    |
| <i>X</i> 4            | 0 | 0                     | 1                     | 1/3        | 1          | -1/3                  | -2                    | 0          | 0 | d) |
| <i>5</i> 3            | 0 | 0                     | -3                    | 1          | 0          | 0                     | -6                    | 1          | 2 |    |
| Z                     | 1 | 0                     | 3                     | -1         | 0          | 0                     | 6                     | 0          | 0 |    |
|                       | ' |                       |                       |            |            |                       |                       |            | 1 |    |
|                       | Z | <i>x</i> <sub>1</sub> | <i>X</i> 2            | <i>X</i> 3 | <i>X</i> 4 | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>5</i> 3 |   |    |
| <i>X</i> 3            | 0 | 1                     | 9                     | 1          | 0          | -2                    | -9                    | 0          | 0 |    |
| <i>X</i> 4            | 0 | -1/3                  | -2                    | 0          | 1          | 1/3                   | 1                     | 0          | 0 | e) |
| <i>S</i> 3            | 0 | -1                    | -12                   | 0          | 0          | 2                     | 3                     | 1          | 2 | ,  |
| Z                     | 1 | 1                     | 12                    | 0          | 0          | -2                    | -3                    | 0          | 0 |    |

# Exemplo: pivôs 5 e 6 do ciclo

|                       |   |                       |                       |            |            |                       |                       |                       | 1 |    |
|-----------------------|---|-----------------------|-----------------------|------------|------------|-----------------------|-----------------------|-----------------------|---|----|
|                       | Z | $x_1$                 | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <b>s</b> 2            | <b>s</b> 3            |   |    |
| <i>X</i> 3            | 0 | 1                     | 9                     | 1          | 0          | -2                    | -9                    | 0                     | 0 |    |
| <i>X</i> 4            | 0 | -1/3                  | -2                    | 0          | 1          | 1/3                   | 1                     | 0                     | 0 | e) |
| <i>5</i> 3            | 0 | -1                    | -12                   | 0          | 0          | 2                     | 3                     | 1                     | 2 | -  |
| Z                     | 1 | 1                     | 12                    | 0          | 0          | -2                    | -3                    | 0                     | 0 |    |
|                       | ' |                       |                       |            |            |                       |                       |                       |   |    |
|                       | z | $x_1$                 | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | $s_1$                 | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |   |    |
| X3                    | 0 | -2                    | -9                    | 1          | 9          | 1                     | 0                     | 0                     | 0 |    |
| <i>s</i> <sub>2</sub> | 0 | -1/3                  | -2                    | 0          | 1          | 1/3                   | 1                     | 0                     | 0 | f) |
| <i>5</i> 3            | 0 | 0                     | -6                    | 0          | -3         | 1                     | 0                     | 1                     | 2 | ,  |
| Z                     | 1 | 0                     | 6                     | 0          | 3          | -1                    | 0                     | 0                     | 0 |    |
|                       |   |                       |                       |            |            |                       |                       |                       |   |    |
|                       | z | <i>x</i> <sub>1</sub> | <i>X</i> 2            | <i>X</i> 3 | <i>X</i> 4 | <i>s</i> <sub>1</sub> | <b>s</b> 2            | <b>s</b> 3            |   |    |
| <i>s</i> <sub>1</sub> | 0 | -2                    | -9                    | 1          | 9          | 1                     | 0                     | 0                     | 0 |    |
| <i>s</i> <sub>2</sub> | 0 | 1/3                   | 1                     | -1/3       | -2         | 0                     | 1                     | 0                     | 0 | g) |
| <i>5</i> 3            | 0 | 2                     | 3                     | -1         | -12        | 0                     | 0                     | 1                     | 2 |    |
| Z                     | 1 | -2                    | -3                    | 1          | 12         | 0                     | 0                     | 0                     | 0 |    |

#### Regra de Bland

#### Teorema (Bland(1977))

• Seleccionar para coluna pivô a coluna com coeficiente negativo e menor índice e para linha pivô a linha com menor razão e menor **indice** assegura a finitude do algoritmo simplex.

Antes de fazer a prova do Teorema de Bland, vamos mostrar:

- a direcção de uma aresta num pivô é ortogonal a todas as linhas da matriz A: e
- num pivô degenerado, a linha da função objectivo também é ortogonal a uma direcção relacionada.

### Direcção da aresta e linhas da matriz **A** são ortogonais

• Dado o modelo max z = cx, suj. a  $Ax = b, x \ge 0$ .

#### Lema

• Seja  $\mathbf{d} \in \mathbb{R}^{n \times 1}$  o vector que indica a direcção de uma aresta entre os vértices  $\mathbf{x}_I$  e  $\mathbf{x}_F$ . Então

$$Ad = 0$$

 Relembrar que, num pivô, há uma só variável não-básica que aumenta, as restantes se mantêm nulas, e que as variáveis básicas se alteram de acordo com o sistema de equações.

# Direcção da aresta e linhas da matriz **A** são ortogonais

#### Demonstração.

Os pontos da aresta no pivô são:

$$x = x_I + \theta d$$
,  $0 \le \theta \le \theta_{\text{max}}$ 

- Quando  $\theta = \theta_{\text{max}}$ , o ponto é o vértice  $x_F$ .
- Ambos os vértices obedecem ao sistema de equações:

$$Ax_I = b,$$
  $Ax_F = b$ 

Como todos os pontos da aresta pertencem ao domínio:

$$A(x_I + \theta d) = b$$
,  $0 \le \theta \le \theta_{max}$   
 $Ax_I + A\theta d = b$ ,  $0 \le \theta \le \theta_{max}$   
 $\theta Ad = 0$ ,  $0 \le \theta \le \theta_{max}$ 

ullet Como a relação é verdadeira para valores de heta positivos:

$$Ad = 0$$

### Exemplo: direcção da aresta [CD] ( $s_3$ aumenta)

• No vértice C, as equações que relacionam o valor das variáveis são:

$$\begin{cases} x_2 = 15 & -0.5 \, s_1 + 1.5 \, s_3 \\ s_2 = 20 & +1 \, s_1 & -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

• para caminhar para o vértice D, a variável não-básica  $s_3$  aumenta e  $s_1$  mantém-se igual a 0:

$$\begin{cases} x_2 = 15 & +1.5 \, s_3 \\ s_2 = 20 & -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta. \qquad \begin{pmatrix} \\ \\ \\ \\ \end{pmatrix}$$

### Exemplo: direcção da aresta [CD] (s<sub>3</sub> aumenta)

• No vértice C, as equações que relacionam o valor das variáveis são:

$$\begin{cases} x_2 = 15 & -0.5 \ s_1 & +1.5 \ s_3 \\ s_2 = 20 & +1 \ s_1 & -2 \ s_3 \\ x_1 = 30 & -1 \ s_3 \end{cases}$$

• para caminhar para o vértice D, a variável não-básica  $s_3$  aumenta e  $s_1$  mantém-se igual a 0:

$$\begin{cases} x_2 = 15 & +1.5 s_3 \\ s_2 = 20 & -2 s_3 \\ x_1 = 30 & -1 s_3 \end{cases}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta. \begin{pmatrix} \mathbf{0} \\ \mathbf{0} \\ 1 \end{pmatrix}$$

# Exemplo: direcção da aresta [CD] (s<sub>3</sub> aumenta)

• No vértice C, as equações que relacionam o valor das variáveis são:

$$\begin{cases} x_2 = 15 & -0.5 \, s_1 + 1.5 \, s_3 \\ s_2 = 20 & +1 \, s_1 & -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

• para caminhar para o vértice D, a variável não-básica  $s_3$  aumenta e  $s_1$  mantém-se igual a 0:

$$\begin{cases} x_2 = 15 & +1.5 s_3 \\ s_2 = 20 & -2 s_3 \\ x_1 = 30 & -1 s_3 \end{cases}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta. \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

### Exemplo: direcção da aresta [CD] (s<sub>3</sub> aumenta)

• No vértice C, as equações que relacionam o valor das variáveis são:

$$\begin{cases} x_2 = 15 & -0.5 \, s_1 + 1.5 \, s_3 \\ s_2 = 20 & +1 \, s_1 -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

• para caminhar para o vértice D, a variável não-básica  $s_3$  aumenta e  $s_1$  mantém-se igual a 0:

$$\begin{cases} x_2 = 15 & +1.5 s_3 \\ s_2 = 20 & -2 s_3 \\ x_1 = 30 & -1 s_3 \end{cases}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta. \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

$$\mathbf{z} = 510 + \theta. \quad 3$$

#### Direcção d com coeficientes do quadro simplex

 A prova usa os coeficientes do quadro simplex. Os elementos do vector -d têm o mesmo sinal dos coeficientes do quadro simplex:

| coeficiente | variável  |
|-------------|-----------|
| > 0         | diminui   |
| < 0         | aumenta   |
| = 0         | mantém-se |
|             |           |

 Exemplo: Linhas de A do quadro simplex do vértice C e direcção -d do pivô com aumento da variável s<sub>3</sub>:

|                | $x_1$ | <i>x</i> <sub>2</sub> | <i>s</i> <sub>1</sub> | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |            |
|----------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|------------|
|                | 0     | 1                     | 0.5                   | 0                     | -1.5                  |            |
|                | 0     | 0                     | -1                    | 1                     | 2                     |            |
|                | 1     | 0                     | 0                     | 0                     | 1                     |            |
| - <b>d</b> = [ | 1     | -1.5                  | 0                     | +2                    | -1                    | $]^{\top}$ |

- O segundo elemento do vector -d indica que  $x_2$  aumenta 1.5 unidades por cada unidade de aumento de  $s_3$  no pivô.
- Exercício: verificar que A(-d) = 0.



#### Matriz A aumentada com a linha da função objectivo c

- O modelo é equivalente a max z, suj. a Ax = b, z cx = 0,  $x \ge 0$ .
- Vamos designar a matriz aumentada por A', e o vector das variáveis x aumentado com z por x'.

$$\mathbf{A}'\mathbf{x}' = \begin{bmatrix} \mathbf{b} \\ \widetilde{\mathbf{z}} \end{bmatrix} = \mathbf{b}'$$

• Exemplo:

• O primeiro elemento do vector  $-\mathbf{d}'$  indica que z aumenta 3 unidades por cada unidade de aumento de  $s_3$  no pivô.



#### Pivô degenerado: valor da função objectivo

- Num pivô degenerado, o valor da função objectivo  $\tilde{z}$  não se altera, pelo que  $b'_{x_I} = b'_{x_F}$ .
- Portanto,  $\mathbf{A}'(-\mathbf{d}') = \mathbf{0}$  (todas as linhas da matriz  $\mathbf{A}'$  são ortogonais ao vector  $-\mathbf{d}'$ ).
- Exercício: verificar para o seguinte exemplo:

• (diz-se que -d' pertence ao complemento ortogonal do espaço das linhas de A').

#### Prova do Teorema de Bland

#### Demonstração.

Prova por contradição (Bland(1977)):

- Vamos assumir que:
  - P<sub>1</sub>) a execução com a regra de Bland origina um ciclo; e
  - $P_2$ )  $\mathbf{A}'(-\mathbf{d}) = \mathbf{0}$ , como acontece em pivôs degenerados.
  - e verificar que existe uma contradição.
- Vamos usar um problema apenas com o conjunto (ordenado por índice)  $T = \{p, ..., q\} \subseteq \{1, 2, ..., n\}$  das variáveis que entram e saem da base no ciclo.
- Seja q o maior índice, e vamos analisar o quadro simplex em que  $x_q$  entra na base e o quadro simplex em que  $x_q$  sai da base.



#### Quadro em que $x_q$ entra na base

• Vamos analisar os sinais dos coeficientes do vector  $\tilde{c}$ , dos elementos da linha da função objectivo:

|              | z | $x_p$ | $x_i$             | $x_q$             |   |
|--------------|---|-------|-------------------|-------------------|---|
|              | 0 |       |                   | ·                 | 0 |
|              | 0 |       |                   |                   | 0 |
|              | 0 |       |                   |                   | 0 |
| Z            | 1 |       | $\widetilde{c}_j$ | $\widetilde{c}_q$ |   |
| <b>c</b> = [ | 1 |       |                   |                   | 1 |

 Os coeficientes das variáveis básicas são nulos na linha da função objectivo.

#### Quadro em que $x_a$ entra na base

• Vamos analisar os sinais dos coeficientes do vector  $\tilde{c}$ , dos elementos da linha da função objectivo:

|   | Z | $x_p$ | $x_j$             | $x_q$             |   |
|---|---|-------|-------------------|-------------------|---|
|   | 0 |       |                   |                   | 0 |
|   | 0 |       |                   |                   | 0 |
|   | 0 |       |                   |                   | 0 |
| Z | 1 |       | $\widetilde{c}_j$ | $\widetilde{c}_q$ |   |

$$\tilde{c} = [1 \ge 0 \ge 0 \ge 0 \ge 0 \ge 0 \le 0 < 0]$$

- Os coeficientes das variáveis básicas são nulos na linha da função objectivo.
- Dado que se selecciona, de entre as variáveis com coeficientes negativos na linha da função objectivo, a de menor índice, então todos os coeficientes são ≥ 0, com excepção do coeficiente da variável xq, que é < 0.</li>

- ullet Vamos designar por  $x_t$  (t < q) a variável que entra na base.
- Vamos analisar os sinais dos coeficientes do vector  $-\mathbf{d}'$ , construído com informação da coluna de  $x_t$ .

|                  | Z | $x_p$ | $x_t$                | $x_q$ |   |              |
|------------------|---|-------|----------------------|-------|---|--------------|
| $X_{B_1}$        | 0 |       | $\widetilde{a}_{1t}$ | 0     | 0 | -            |
| $x_q = x_{B_r}$  | 0 |       | ã <sub>rt</sub>      | 1     | 0 | (linha $r$ ) |
| x <sub>B_m</sub> | 0 |       | $\widetilde{a}_{mt}$ | 0     | 0 |              |
| Z                | 1 |       | $\widetilde{c}_t$    | 0     |   | •            |
|                  |   |       |                      |       |   |              |

$$-\mathbf{d}' = [$$

- Vamos designar por  $x_t$  (t < q) a variável que entra na base.
- Vamos analisar os sinais dos coeficientes do vector  $-\mathbf{d}'$ , construído com informação da coluna de  $x_t$ .

|                  | Z | $x_p$ | $x_t$                | $x_q$ |   |              |
|------------------|---|-------|----------------------|-------|---|--------------|
|                  | 0 |       | $\widetilde{a}_{1t}$ | 0     | 0 | -            |
| $x_q = x_{B_r}$  | 0 |       | ã <sub>rt</sub>      | 1     | 0 | (linha $r$ ) |
| x <sub>B_m</sub> | 0 |       | $\widetilde{a}_{mt}$ | 0     | 0 |              |
| Z                | 1 |       | $\widetilde{c}_t$    | 0     |   |              |
|                  |   |       |                      |       |   |              |

$$-\mathbf{d}' = [ \quad <0$$

- Vamos designar por  $x_t$  (t < q) a variável que entra na base.
- Vamos analisar os sinais dos coeficientes do vector  $-\mathbf{d}'$ , construído com informação da coluna de  $x_t$ .

|                                   | Z   | $x_p$ | $x_t$                | $x_q$ |    |              |
|-----------------------------------|-----|-------|----------------------|-------|----|--------------|
| <i>x</i> <sub>B<sub>1</sub></sub> | 0   |       | $\widetilde{a}_{1t}$ | 0     | 0  | -            |
| $x_q = x_{B_r}$                   | 0   |       | ã <sub>rt</sub>      | 1     | 0  | (linha $r$ ) |
| <br>x <sub>Bm</sub>               | 0   |       | $\widetilde{a}_{mt}$ | 0     | 0  |              |
| Z                                 | 1   |       | $\widetilde{c}_t$    | 0     |    | -            |
| ٦ /اد                             | . 0 |       | 1                    |       | ıΤ |              |

$$-\boldsymbol{d}' = [ \quad < 0$$

$$-1$$

$$1^{T}$$

- Vamos designar por  $x_t$  (t < q) a variável que entra na base.
- Vamos analisar os sinais dos coeficientes do vector  $-\mathbf{d}'$ , construído com informação da coluna de  $x_t$ .

|                                   |     |       |                      |       | 1  |              |
|-----------------------------------|-----|-------|----------------------|-------|----|--------------|
|                                   | Z   | $X_p$ | $x_t$                | $x_q$ |    |              |
| <i>x</i> <sub>B<sub>1</sub></sub> | 0   |       | $\widetilde{a}_{1t}$ | 0     | 0  | -            |
| $x_q = x_{B_r}$                   | 0   |       | ã <sub>rt</sub>      | 1     | 0  | (linha $r$ ) |
| <br>x <sub>B<sub>m</sub></sub>    | 0   |       | ã <sub>mt</sub>      | 0     | 0  | _            |
| Z                                 | 1   |       | $\widetilde{c}_t$    | 0     |    | -            |
| <i>al</i>                         | . 0 |       | 1                    | . 0   | 1T |              |

$$-d' = [$$
 < 0

$$-1$$

$$> 0$$
 ]<sup>T</sup>

- Vamos designar por  $x_t$  (t < q) a variável que entra na base.
- Vamos analisar os sinais dos coeficientes do vector  $-\mathbf{d}'$ , construído com informação da coluna de  $x_t$ .

|                 | Z | $x_p$ | $x_t$                | $x_q$ |   |              |
|-----------------|---|-------|----------------------|-------|---|--------------|
| $x_{B_1}$       | 0 |       | $\widetilde{a}_{1t}$ | 0     | 0 | -            |
| $x_q = x_{B_r}$ | 0 |       | ã <sub>rt</sub>      | 1     | 0 | (linha $r$ ) |
| $X_{B_m}$       | 0 |       | $\widetilde{a}_{mt}$ | 0     | 0 |              |
| Z               | 1 |       | $\widetilde{c}_t$    | 0     |   | -            |

$$-\boldsymbol{d}' = [ \quad <0 \quad \le 0 \quad \le 0 \quad \le 0 \quad -1 \quad \le 0 \quad \ge 0 \quad >0 \quad ]^\top$$

- Para a variável que sai da base ser a variável  $x_a$ ,  $d_a = \tilde{a}_{rt} > 0$ , porque o elemento pivô é sempre positivo;
- todos os elementos  $\tilde{a}_{it} \leq 0$ , t < q, porque, de outro modo, a variável que sairia da base seria uma com menor índice.

#### notas sobre o vector **d**

|                                | Z | $x_p$ | $x_t$                | $x_q$ |   |              |
|--------------------------------|---|-------|----------------------|-------|---|--------------|
| $X_{B_1}$                      | 0 |       | $\widetilde{a}_{1t}$ | 0     | 0 | _            |
| $x_q = x_{B_r}$                | 0 |       | ã <sub>rt</sub>      | 1     | 0 | (linha $r$ ) |
| <br>X <sub>B<sub>m</sub></sub> | 0 |       | $\widetilde{a}_{mt}$ | 0     | 0 | _            |
| Z                              | 1 |       | $\widetilde{c}_t$    | 0     |   | _            |

$$-\mathbf{d}' = [ \quad <0 \quad \le 0 \quad \le 0 \quad \le 0 \quad -1 \quad \le 0 \quad \ge 0 \quad >0 \quad ]^{\top}$$

```
d_1 = \widetilde{c}_t , a variável x_t é atractiva; d_q = \widetilde{a}_{rt} , o elemento pivô é positivo; d_t = -1 , a variável x_t é a variável não-básica que aumenta de valor; (o coeficiente é -1, justamente indicando que aumenta). d_j = 0 , para todas as restantes variáveis não básicas j (j \neq t) d_{B_i} = \widetilde{a}_{it} , para todas as variáveis básicas B_i, da linha i do quadro.
```

# Análise do produto escalar de $\widetilde{\boldsymbol{c}} \cdot (-\boldsymbol{d}')$

 $Z X_D$ 

$$\tilde{c} = [ 1 \ge 0 \ge 0 \ge 0 \ge 0 \ge 0 \ge 0 < 0 ]$$

$$-d' = [ < 0 \le 0 \le 0 \le 0 -1 \le 0 \le 0 > 0 ]$$

 $X_t$ 

- Contradição: assumimos  $P_1 \wedge P_2$ , mas isso implica  $\neg P_2$ :
  - ullet  $P_1)$  a execução com a regra de Bland origina um ciclo; e
  - $P_2$ )  $\mathbf{A}'(-\mathbf{d}) = \mathbf{0}$ , como acontece em pivôs degenerados;

porque  $\tilde{c} \cdot (-d') < 0$ , dado que há termos do produto escalar que são negativos, e não há termos positivos (q.e.d.).

Xa

#### Resolução do exemplo de Kuhn com regra de Bland

|                       | Z | $x_1$      | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>X</i> 4 | $s_1$      | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |   |    |
|-----------------------|---|------------|-----------------------|------------|------------|------------|-----------------------|-----------------------|---|----|
| <i>s</i> <sub>1</sub> | 0 | -2         | -9                    | 1          | 9          | 1          | 0                     | 0                     | 0 |    |
| <i>s</i> <sub>2</sub> | 0 | 1/3        | 1                     | -1/3       | -2         | 0          | 1                     | 0                     | 0 | a) |
| <b>5</b> 3            | 0 | 2          | 3                     | -1         | -12        | 0          | 0                     | 1                     | 2 |    |
| Z                     | 1 | -2         | -3                    | 1          | 12         | 0          | 0                     | 0                     | 0 |    |
|                       |   |            |                       |            |            |            |                       |                       |   |    |
|                       | Z | <i>x</i> 1 | <i>x</i> 2            | <i>x</i> 3 | <i>x</i> 4 | <i>s</i> 1 | <i>s</i> 2            | <i>s</i> 3            |   |    |
| <i>s</i> <sub>1</sub> | 0 | 0          | -3                    | -1         | -3         | 1          | 6                     | 0                     | 0 |    |
| $x_1$                 | 0 | 1          | 3                     | -1         | -6         | 0          | 3                     | 0                     | 0 | b) |
| <i>s</i> <sub>3</sub> | 0 | 0          | -3                    | 1          | 0          | 0          | -6                    | 1                     | 2 |    |
| Z                     | 1 | 0          | 3                     | -1         | 0          | 0          | 6                     | 0                     | 0 |    |
|                       | ' |            |                       |            |            |            |                       |                       |   |    |
|                       | Z | <i>x</i> 1 | <i>x</i> 2            | <i>x</i> 3 | x4         | s1         | <i>s</i> 2            | <i>s</i> 3            |   |    |
| $s_1$                 | 0 | 0          | -6                    | 0          | -3         | 1          | 0                     | 1                     | 2 |    |
| $x_1$                 | 0 | 1          | 0                     | 0          | -6         | 0          | -3                    | 1                     | 2 | c) |
| <i>X</i> 3            | 0 | 0          | -3                    | 1          | 0          | 0          | -6                    | 1                     | 2 | ,  |
|                       |   |            |                       |            |            |            |                       |                       | - |    |

#### Complexidade do algoritmo simplex

- Há um exemplo especialmente construído (um hipercubo deformado no espaço a n-dimensões), em que o algoritmo simplex percorre todos os vértices quando se usa a regra de Dantzig.
- No espaço a 3 dimensões, percorre os  $2^3 = 8$  vértices do cubo.
- No pior caso, o algoritmo simplex é exponencial.
- Em termos de comportamento médio, há estudos computacionais de implementações do algoritmo simplex em que o número de iterações se aproxima bem de (m+n)/2.

Klee V, Minty GJ (1972) How good is the simplex algorithm? In: Shisha O. (ed.) Inequalities: III. Academic Press, New York.

#### Ainda falta identificar se o problema é impossível ...

#### Teorema (Fundamental de Programação Linear)

Dado um problema de programação linear, se não existir uma solução óptima com valor finito, então ou o problema é impossível ou a solução óptima é ilimitada.

#### Conclusão

- A regra de Bland assegura a convergência do algoritmo simplex num número finito de passos.
- Há outros algoritmos para resolver problemas de programação linear, como os métodos de pontos interiores (que são polinomiais).
- O algoritmo simplex permanece competitivo, embora tenham sido identificados exemplos em que os métodos de pontos interiores têm melhor desempenho.

#### **Apêndices**

#### A.1. Degenerescência e restrições redundantes

- Num vértice degenerado, pode haver uma restrição redundante, i.e., uma restrição que pode ser removida sem alterar o domínio.
- Isso n\u00e3o acontece na generalidade. H\u00e1 casos em que nenhuma restri\u00e7\u00e3o pode ser removida.
- Exemplo: as restrições que definem o vértice  $D: x_1 + x_2 \le 1$ ,  $x_2 + x_3 \le 1$  e  $x_1, x_2, x_3 \ge 0$  são todas necessárias:





### A.1. Degenescência e bases óptimas

|                       | z' | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> <sub>3</sub> |     |
|-----------------------|----|-----------------------|-----------------------|-------|-----------------------|-----------------------|-----|
| $s_1$                 | 0  | 0                     | 2                     | 1     | 0                     | -3                    | 0   |
| <i>s</i> <sub>2</sub> | 0  | 0                     | 2                     | 0     | 1                     | -1                    | 40  |
| $x_1$                 | 0  | 1                     | 0                     | 0     | 0                     | 1                     | 40  |
| $\overline{z}'$       | 1  | 0                     | -1                    | 0     | 0                     | 3                     | 120 |
|                       |    |                       |                       |       |                       |                       |     |
|                       | z' | <i>x</i> <sub>1</sub> | <i>X</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <b>5</b> 3            |     |
| <i>x</i> <sub>2</sub> | 0  | 0                     | 1                     | 0.5   | 0                     | -1.5                  | 0   |
| <i>s</i> <sub>2</sub> | 0  | 0                     | 0                     | -1    | 1                     | 2                     | 40  |
| $x_1$                 | 0  | 1                     | 0                     | 0     | 0                     | 1                     | 40  |
| $\overline{z}'$       | 1  | 0                     | 0                     | 1/2   | 0                     | 3/2                   | 120 |
|                       |    |                       |                       |       |                       |                       |     |
|                       | z' | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | $s_1$ | <i>s</i> <sub>2</sub> | <i>5</i> 3            |     |
| <i>s</i> <sub>2</sub> | 0  | 0                     | 4/3                   | -1/3  | 1                     | 0                     | 40  |
| <b>s</b> 3            | 0  | 0                     | -2/3                  | -1/3  | 0                     | 1                     | 0   |
| $x_1$                 | 0  | 1                     | 2/3                   | 1/3   | 0                     | 0                     | 40  |
| $\overline{z}'$       | 1  | 0                     | 1                     | 1     | 0                     | 0                     | 120 |

Se  $z' = 3x_1 + 1x_2$ , uma das três bases da solução básica óptima não é óptima.

O quadro 1 é uma base que não é óptima: é necessário fazer um pivô degenerado para se comprovar que a solução básica (que não se altera quando se faz o pivô) é uma solução óptima.

#### Interpretação geométrica



#### Fim