Textbook Problems 8.4.10, 9.1.1, 9.1.2, 9.1.4, 9.1.5, 9.3.1, 9.3.2.

Notes Work out Problem 9.1.5 by two methods:

- 1. Use $\operatorname{var} W = \operatorname{var} X + \operatorname{var} Y + 2\operatorname{cov}(X, Y)$.
- 2. First determine $f_W(w)$.

Supplementary Problems

- 1. Let $\mathbf{Y} = [Y_1 \ Y_2]^{\top}$ and $\mathbf{X} = [X_1 \ X_2]^{\top}$ be two random vectors such that $\mathbf{Y} = A \mathbf{X}$, where A is a 2×2 invertible real matrix. Determine $f_{\mathbf{Y}}$ in terms of $f_{\mathbf{X}}$.
- 2. Show that

$$\operatorname{var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(X_i, X_j).$$

Compare this formula with var(X+Y) = var X + var Y + 2 cov(X,Y).

3. The expectation operator E can be applied to a random vector. Specifically, if $\mathbf{X} = [X_1 \ X_2 \ \cdots \ X_n]^{\top}$, then $E \mathbf{X} = [EX_1 \ EX_2 \ \cdots \ EX_n]^{\top}$. Show that

$$E[(\mathbf{X} - E\mathbf{X})(\mathbf{X} - E\mathbf{X})^{\top}] = [\operatorname{cov}(X_i, X_j)]_{i,j=1}^{n}.$$

This matrix is called the covariance matrix of the random vector \mathbf{X} .

- 4. Let X_1, X_2, \cdots be i.i.d. random variables $\sim X$, and let N be random variable taking values in $\{0, 1, 2, \cdots\}$.
 - (a) Show that $E[X_1 + X_2 + \cdots + X_N] = (EN)(EX)$ if N is independent of X_1, X_2, \cdots .
 - (b) Is it true in general that $E[X_1 + X_2 + \cdots + X_N] = (EN)(EX)$?