Cyclic groups & (their) subgroups

Del A group H is cyclic it it can be generated by a shape descent, i.e. $\exists x \in H$ of. $H = \langle x \rangle = \{x^n \mid n \in Z\}$.

Prop H H= 1x>, ben HI= |x1. Majerver,

1) if $|H| = n \leq \infty$, then he elts $e, x, ..., x^{n-1}$ and all distinct and $u \leq (e, x, ..., x^{n-1})$

ii) if $|H| = \infty$ thun $H = \{1, 1^{-2}, \chi^{-1}, \ell, \chi, \chi^{2}, \ldots^{1}\}$ and $\chi^{a} \neq \chi^{b}$ if $a \neq b$.

Proof Case |x| = n:) We show $H = \langle x \rangle \subseteq \{e_1 x_1 ..., x^{n-s}\}$. Let $x^m \in H$, we write m = kn + r $0 \subseteq r \subseteq n-1$ (division with remainder).

Then $x^m = x^{kn+r} = x^n \cdot x^n \cdot x^r = e \cdot x^r = x^r$.

) To show $(e, x, ..., x^{n-1})$ are distinct assume $x^{n-1} = x^{n-1}$ for $0 \le i \le j \le n-1$. Then $x^{n-1} = c$ for $0 \le j-i \le n-1$. This contradicts |x| = n.

Case |x| = 00: We show xi + xi for i+ j as above. [

Thun Let $H=\langle \chi \rangle$. Then

i) if |H| = 1 , 4: Z/2 -> H

 $k \leftarrow x^k$

is if 141 = 0, 4: T - H

k L, xk

define group isomorphisms.

Pf. 9 mek-defined k=l (mod n) = k=l+mn for some $m \in \mathbb{Z}$. Then $x^k = x^{l+mn} = x^l \cdot (x^n)^m = x^l$

· 4 group hom: V

· 4 bijedian: previous prop.

Subgroups of the infinite cyclic group

Subgroups of cyclic groups

Prop Let G = (2) be cyclic an H = G a subgroup. Then H is also cyclic.

If H = fef we are done. Otherwise less $e = min f m \in \mathbb{Z}^{70} | x^m \in H^{\frac{1}{2}}$. Then clearly $(x^{2}) \in H$.

Let now $x^k \in H$ be arbitrary. Write $k = \ell \cdot k' + r$ $e = r = \ell - 1$ then $x^r = x^{k-\ell k'} = x^k \cdot (x^{\ell})^{-k'} \in H$. But I was uninimal hence r = 0, and thus $x^k = (x^{\ell})^{k'} \in (x^{\ell})$.

Prop Let $G = \langle x \rangle$ be infinite cyclic ($1G1 = \infty$). Then the assignment $n \mapsto r(x^n)$ define a bijection between \mathbb{N} and subgroups of G.

If I y prev prop every subgroup is of the form $\langle x^n \rangle$ for $n \in \mathbb{N}$.

Since $\langle x^n \rangle = \langle x^n \rangle$ we can assume $n \in \mathbb{N}$. Suppose $\langle x^n \rangle - \langle x^n \rangle$ then $x^n = x^{km} - r - n - km$ and similarly m - k'n and then n = kk'n, i.e. kk' = 1 but $k, k \in \mathbb{N}$ hence k = k' = 1.

Pune Using that G is isomosphic to I we have shown that subgroups of I are of the form nI - {uk/keIt for new.