Predicting Race and Ethnicity From Sequence

of Characters in a Name

March 23, 2019

Often all you have is a name
 Media, lenders and creditors, patients, ...

Often all you have is a name
 Media, lenders and creditors, patients, ...

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)
 - Fairness in lending

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)
 - Fairness in lending
 - Media coverage, sources

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)
 - Fairness in lending
 - Media coverage, sources
 - Political Accountability

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)
 - Fairness in lending
 - Media coverage, sources
 - Political Accountability
 - Personalization—recommending same race doctor

- Often all you have is a name
 Media, lenders and creditors, patients, ...
- Highlight, Fight, Prevent (Regress Out)
 - Fairness in lending
 - Media coverage, sources
 - Political Accountability
 - Personalization—recommending same race doctor
- Flip side: Instrument for Discrimination

-p(|abe||data) or $p(\neg|abe||data)$

- -p(|abel|data) or $p(\neg |abel|data)$
- Bayes Classifier:

- -p(|abel|data) or $p(\neg |abel|data)$
- Bayes Classifier:
 - Classify to the majority class

- -p(|abel|data) or $p(\neg |abel|data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes

- -p(|abel|data) or $p(\neg |abel|data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset

- -p(|abe||data) or $p(\neg|abe||data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset
- When can you do better?

- -p(|abe||data) or $p(\neg|abe||data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset
- When can you do better?
 - More than last name. e.g. African-American have more distinctive first names

- -p(|abe||data) or $p(\neg|abe||data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset
- When can you do better?
 - More than last name. e.g. African-American have more distinctive first names
 - Not all first names

- -p(|abe||data) or $p(\neg|abe||data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset
- When can you do better?
 - More than last name. e.g. African-American have more distinctive first names
 - Not all first names
 - Capturing sounds, abstracting out

- -p(|abe||data) or $p(\neg|abe||data)$
- Bayes Classifier:
 - Classify to the majority class
 - Makes the least mistakes
 - Census Last Name Dataset
- When can you do better?
 - More than last name. e.g. African-American have more distinctive first names
 - Not all first names
 - Capturing sounds, abstracting out
 - Common Sequences: da_as_sh_ia_an, ne_ej_ja_ad, sa_ad_eh, jo_oh_ha_an_ns_se_en

Text → Embeddings → Classifier

- Text → Embeddings → Classifier
 - Embeddings leverage the adage:
 You are the company you keep.

- Text → Embeddings → Classifier
 - Embeddings leverage the adage:
 You are the company you keep.
 - Use a large corpus

- Text → Embeddings → Classifier
 - Embeddings leverage the adage:
 You are the company you keep.
 - Use a large corpus
 - Learn context well

Text → Embeddings → Classifier

- Embeddings leverage the adage:
 You are the company you keep.
- Use a large corpus
- Learn context well
- Preserve a few hundred vectors and pass it to a model

Text → Embeddings → Classifier

- Embeddings leverage the adage:
 You are the company you keep.
- Use a large corpus
- Learn context well
- Preserve a few hundred vectors and pass it to a model
- Skiena et al. use communication networks to find embeddings of names

- Text → Embeddings → Classifier
 - Embeddings leverage the adage:
 You are the company you keep.
 - Use a large corpus
 - Learn context well
 - Preserve a few hundred vectors and pass it to a model
 - Skiena et al. use communication networks to find embeddings of names
- In Our Case:

Text → Embeddings → Classifier

- Embeddings leverage the adage:
 You are the company you keep.
- Use a large corpus
- Learn context well
- Preserve a few hundred vectors and pass it to a model
- Skiena et al. use communication networks to find embeddings of names

- In Our Case:

Embeddings of bi-chars

Text → Embeddings → Classifier

- Embeddings leverage the adage:
 You are the company you keep.
- Use a large corpus
- Learn context well
- Preserve a few hundred vectors and pass it to a model
- Skiena et al. use communication networks to find embeddings of names

- In Our Case:

- Embeddings of bi-chars
- LSTM

– What do you mean by race and ethnicity?

What do you mean by race and ethnicity?
 Self-described

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?
 - There is systematic variation across names across linguistic groups within India

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?
 - There is systematic variation across names across linguistic groups within India
- Data

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?
 - There is systematic variation across names across linguistic groups within India

Data

Voting Registration data from Florida

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?
 - There is systematic variation across names across linguistic groups within India

Data

- Voting Registration data from Florida
- Race/Ethnicity = Asian or Pacific Islander, Hispanic, NH Black, NH White

Dependent Variable, Data

- What do you mean by race and ethnicity?
 - Self-described
 - Crudely coded
 - One measure of group = Are you willing to fight for it?
 - There is systematic variation across names across linguistic groups within India

Data

- Voting Registration data from Florida
- Race/Ethnicity = Asian or Pacific Islander, Hispanic, NH Black, NH White
- Wikipedia Data

Success

		F1-Score		
		Last Name	Fu∥ Name	
Race	Asian	.54	.60	
	Hispanic	.72	.75	
	NH Black	.32	.55	
	NH White	.88	.90	

Success

		F1-Score		
		Last Name	Full Name	
Race	Asian	.54	.60	
	Hispanic	.72	.75	
	NH Black	.32	.55	
	NH White	.88	.90	

Success

		F1-Score		
		Last Name	Full Name	
Race	Asian	.54	.60	
	Hispanic	.72	.75	
	NH Black	.32	.55	
	NH White	.88	.90	

Application

Percentage Donated to Political Campaigns in 2000 and 2010 by People of Different Races/Ethnicities.

	Census		Florida	
race	2000	2010	2000	2010
asian	2.22%	2.74%	2.00%	2.28%
black	11.04%	10.22%	8.93%	7.92%
hispanic	3.24%	4.32%	3.23%	3.31%
white	83.49%	82.71%	85.84%	86.49%

Does the relationship between X and Y:

- Does the relationship between X and Y:

– Vary by time?

- Does the relationship between X and Y:
 - Vary by time?
 - Vary by space?

- Does the relationship between X and Y:
 - Vary by time?
 - Vary by space?
 - Capture variation not captured in Xs in arguments to the API call

- Does the relationship between X and Y:
 - Vary by time?
 - Vary by space?
 - Capture variation not captured in Xs in arguments to the API call
- Is the model fixed? Add versioning.

- Does the relationship between X and Y:
 - Vary by time?
 - Vary by space?
 - Capture variation not captured in Xs in arguments to the API call
- Is the model fixed? Add versioning.
- API call for Model Performance on Benchmarks

- Does the relationship between X and Y:
 - Vary by time?
 - Vary by space?
 - Capture variation not captured in Xs in arguments to the API call
- Is the model fixed? Add versioning.
- API call for Model Performance on Benchmarks
- Failsafe on predictions

Python Package

- > import pandas as pd
- > from ethnicolr import census_In, pred_census_In Using TensorFlow backend.
- > names = ['name': 'smith',
- ... 'name': 'zhang',
- ... 'name': 'jackson']
- > df = pd.DataFrame(names)
- > census_In(df, 'name', 2010)

name	race	pctwhite	pctblack	pctapi
smith	white	70.9	23.11	0.5
zhang	api	0.99	0.16	98.06
jackson	black	39.89	53.04	0.39

Last Words

Thank you!