

Adjustable and Fixed LDO Voltage Regulator

Descriptions

The S1117 series of positive adjustable and fixed regulators are designed to provide 1A with high efficiency. All internal circuitry is designed to operate down to 1.3V input to output differential. On-chip trimming adjusts reference voltage to 2%.

Features

- Adjustable or Fixed output
- Output Current of 1A
- Low Dropout, 1.3V maximum at 1A Output Current
- Thermal Shutdown Protection
- Fast Transient Response

Ordering Information

Type NO.	Marking	Package Code
S1117API/S1117xxPI	S1117□□PI/ S1117□□□PI	TO-220F

□□:Voltage Code (Aj : 1.25V, 15:1.5V,:18: 1.8V, 25:2.5V, 33:3.3V, 50:5.0V)
□□□:Voltage Code (285:2.85V)

KSI-2068-002

Absolute Maximum Ratings

1 a=25 °C

Characteristic	Symbol	Rating	Unit
Input voltage	$V_{\rm I}$	16	V
Power Dissipation	P_{D}	2.0	W
Junction Temperature	T _J	150	°C
Storage Temperature Range	T_{stg}	-55 ~ 150	°C

Device Selection Guide (NOTE1)

Device	Output Voltage
S1117API	Adjustable
S1117-15PI	1.5V
S1117-18PI	1.8V
S1117-25PI	2.5V
S1117-285PI	2.85V
S1117-33PI	3.3V
S1117-50PI	5.0V

Note 1 : Other fixed versions are available $V_0 = 1.5 V$ to 5 V

KSI-2068-002

Electrical Characteristics

(Electrical Characteristics at T_J = 25 $^{\circ}$ C and V_I =(V_O +1.5V), I_L =10 $^{\circ}$ MA, C_O =10 $^{\circ}$ μ F unless otherwise specified.)

Characteristic	Symbol	Device	Test Condition		Min	Тур	Max	Unit
Output Voltage V _O		S1117A	$V_{\rm I} = (V_{\rm O} + 1.5 V), I_{\rm O} = 10 \text{ mA}$		1.225	1.25	1.275	
			$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	1.200		1.300	
		S1117-	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		1.470		1.530	
		15	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	1.440	1.5	1.560	
		S1117- 18	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		1.764	1.8	1.836	
			$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	1.728		1.872	
	S1117-	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		2.450	2.5	2.550	V	
	25	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	2.400		2.600		
		S1117-	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		2.793		2.907	
		285	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	2.736	2.85	2.964	
		S1117-	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		3.234	3.3	3.366	
		33	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	3.168		3.432	
		S1117-	$V_{I} = (V_{O} + 1.5V), I_{O} = 10 \text{ mA}$		4.900	5.0	5.100	
		50	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 0$ to 1000 mA	*	4.800		5.200	
Line Regulation (Note2)	$\triangle V_{O(\triangle VI)}$	All	$ \begin{array}{c c} 1.5V \leq V_{I} \text{-} V_{O} \leq 7V \\ I_{O} = 10 \text{ mA} \end{array} $		-	5	10	mV
Load Regulation (Note2)	$\triangle V_{O(\triangle IL)}$	All	$ \begin{array}{c} V_{\rm I} {=} (V_{\rm O} {+} 1.5 V) \\ I_{\rm O} {=} 10 \text{ mA} \sim \text{1000 mA} \end{array} $		-	10	30	mV
Quiescent Current	I_{QC}	All	$V_{I}=V_{O}+1.5V$ $V_{ADJ}=0V$	*	-	7	13	mA
Minimum Load Current	I _{L(MIN)}	S1117A	$V_{I}=(V_{O}+1.5V), V_{O}=0V$	*		3	7	mA
Adjust Pin Current	I_{ADJ}	S1117A	$V_{I} = (V_{O}+1.5V)$ to 7V $I_{O} = 10$ mA	*		55	90	μA
Dropout Voltage (Note4)	V_{DROP}	All	$I_{\rm O}$ =1000 mA	*	-	1.2	1.3	V
Ripple Rejection (Note3)	RR	All	V_{I} - V_{O} =1.5 V , I_{O} =1000 mA V_{Ripple} =1 V_{P-P} , f=120 Hz		60	72	-	dB
Current Limit	I_{LIMIT}	All	(V _I -V _O)=1.5V	*	1			Α

The * denotes the specifications which apply over the full temperature range.

Note 2: Low duty pulse testing with Kelvin connections required.

Note 3: 120 Hz input ripple (C_{ADJ} for ADJ=25 μ F)

Note 4: \triangle V₀ = 1%

■ Typical Applications

Fig. 1 Fixed Voltage Regulator

 $V_O = V_{ADJ} * (1 + R_2/R_1) + I_{ADJ} * R_2$

Fig. 2 Adjustable Voltage Regulator

Notes:

- 1) $C_{\rm I}$ needed if device is far from filter capacitors
- 2) C_0 minimum value required for stability

Electrical Characteristic Curves

Fig. 3 V_{DROP} vs. I_O

Fig. 5 RR vs. Frequency

Fig. 7 I_{ADJ} vs. T_a

Fig. 4 ΔV_0 vs. T_a

Fig. 6 Temperature Stability

Fig. 8 P_D vs. T_a

These AUK Corp. products are intended for usage in general electronic equipment (Office and communication equipment, measuring equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.) AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation