Long Context LLMs: Challenges & Solutions

Large Language Models: Introduction and Recent Advances

ELL881 · AlL821

Gaurav Pandey
Research Scientist, IBM Research

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

Why is Long Context desirable?

- Allows summarization & generation of entire books while maintaining continuity.
- Allows inference over long videos & entire codebase.
- Retrieval Augmented generation
 - Doesn't require the retriever to be accurate

Why is Long Context desirable?

• Can replace task-specific finetuning with in-context learning.

Challenges

• Computational complexity of self-attention

Challenges

Computational complexity of self-attention

 $O(N^2)$ computations

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

LongNet: Scaling Transformers to 1,000,000,000 Tokens

LongNet – Input Segmentation

LongNet – Segment Attention

$$O\left(\frac{N}{w}w^2\right) = O(Nw)$$
 computations

w is the length of each segment

Adapted from https://www.youtube.com/watch?v=VMu0goeii3g

LongNet sparsification

LongNet sparsification

LongNet sparsification

Sparsification rate
$$r=2$$

$$\widetilde{O}_i = \operatorname{softmax}(\widetilde{Q}_i \widetilde{K}_i^T) \widetilde{V}_i$$

$$\hat{O}_i = \{\widetilde{O}_{i,j} | j \bmod r = 0; 0 | j \bmod r \neq 0\}$$

$$O = [\hat{O}_0, \hat{O}_1, ..., \hat{O}_{\frac{N}{w}-1}]$$

LongNet – segment/sparsification mixture

A mixture of segment sizes and dilation rates are used.

$$O = \sum_{i=1}^{k} \alpha_i O|_{r_i, w_i}$$

$$\alpha_i = \frac{s_i}{\sum_j s_j}$$

 s_i is the denominator of softmax for $O|_{r_i,w_i}$

LongNet - runtime

- Time taken for vanilla attention grows quadratically.
- For dilated attention, (w_i, r_i) can be chosen to keep it constant or linear albeit at the cost of performance.
 - Still requires training with data with long-context length
 - Expensive compute
 - Can we:
 - Train with short contexts
 - Test with long contexts

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

Recap: Position Embeddings

Question: What if the model was trained for max 1024 tokens? Can I still use t_{2048} ?

Extrapolating sinusoidal embeddings

Language model trained with L=1024 context length on WikiText103 247M parameters

Extrapolating sinusoidal embeddings

Extrapolating rotary embeddings

Extrapolating position embeddings

Extrapolating position embeddings

Remove position embeddings altogether

Can I remove position embeddings altogether and add position information only in the attention matrix?

Standard attention

$$\operatorname{softmax}(\mathbf{q}_i\mathbf{K}^{\top})$$

Let us add position information only in the attention matrix?

https://www.youtube.com/watch?v=Pp61Shl9VGc

Attention with linear bias (ALiBi)

softmax(
$$\mathbf{q}_{i}\mathbf{K}^{\top} + m \cdot [-(i-1), ..., -2, -1, 0]$$
)

Gaurav Pandev

ALiBi with multiple heads

Head 0

Head n-1

Head 1

Head n

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

From ALiBi to position interpolation

- ALiBi Some attention heads have narrow vision
 - Bias can get very large for long contexts
 - Model effectively learns to ignore distant tokens
- Back to Position Embeddings
 - Can we interpolate between the position embeddings used during training?

Recap: Rotary Position Embeddings (RoPE)

• Given $x = (x_0, ..., x_{d-1}) \in \mathbb{R}^d$ at position m

•
$$f(x,m) = \left[(x_0 + ix_1)e^{im\theta_0}, (x_2 + ix_2)e^{im\theta_1}, \dots, (x_{d-1} + ix_d)e^{im\theta_{\frac{d}{2}-1}} \right]^T$$

Extending Context Window of Large Language Models via Positional Interpolation

Gaurav Pandev

- *q* is the query vector, *k* is the key vector
- Apply RoPE on both query & key vector

$$f(q,m) = \left[(q_0 + iq_1)e^{im\theta_0}, (q_2 + iq_2)e^{im\theta_1}, \dots, (q_{d-1} + iq_d)e^{im\theta_{\frac{d}{2}-1}} \right]^T$$

- *q* is the query vector, *k* is the key vector
- Apply RoPE on both query & key vector

$$f(q,m) = \begin{bmatrix} (q_0 + iq_1)e^{im\theta_0}, (q_2 + iq_2)e^{im\theta_1}, \dots, (q_{d-1} + iq_d)e^{im\theta_{\frac{d}{2}-1}} \end{bmatrix}^T$$

$$f(k,n) = \begin{bmatrix} (k_0 + ik_1)e^{in\theta_0}, (k_2 + ik_2)e^{in\theta_1}, \dots, (k_{d-1} + ik_d)e^{in\theta_{\frac{d}{2}-1}} \end{bmatrix}^T$$

$$a(m,n) = Re < f(q,m), f(k,n) >$$

$$= Re \left[\sum_{j=0}^{\frac{d}{2}-1} (q_{2j} + iq_{2j+1})(k_{2j} - ik_{2j+1})e^{i(m-n)\theta_j} \right]$$

$$h_j$$

Intuitively, it is a function of

- The inner product between $(q_{2j}+iq_{2j+1})$ & $(k_{2j}+ik_{2j+1})$
- The angle between position embeddings $(m-n)\theta_i$

Extending Context Window of Large Language Models via Positional Interpolation

$$a(m,n) = Re < f(q,m), f(k,n) >$$

$$= Re \left[\sum_{j=0}^{\frac{d}{2}-1} (q_{2j} + iq_{2j+1}) (k_{2j} - ik_{2j+1}) e^{i(m-n)\theta_j} \right]$$

$$= Re \left[\sum_{j=0}^{\frac{d}{2}-1} h_j e^{i((m-n)\theta_j)} \right]$$
Is bounded by $\frac{d}{2} \max_{j} |h_j|$

Extending Context Window of Large Language Models via Positional Interpolation

Position Interpolation

$$\frac{L}{L'} = 2$$
 in this figure

This is called linear interpolation

$$f'(x,m) = f\left(x, \frac{mL}{L'}\right)$$

L is the max length used during pretraining L^\prime is the desired max-length

Interpolation bound

- The original LLM has been trained with integer values of m-n
- During interpolation, this can be fractional.
- How do the attention scores for these new fractional values look like?

Interpolation bound

- The original LLM has been trained with integer values of m-n
- During interpolation, this can be fractional.
- How do the attention scores for these new fractional values look like?

Theorem 2.1 (Interpolation bound). For attention score $a(s) = \text{Re}\left[\sum_{j=0}^{d/2-1} h_j e^{\mathrm{i}s\theta_j}\right]$, where $\theta_j = c^{-2j/d}$, its interpolation value a(s) for $s \in [s_1, s_2]$ is bounded as follows:

$$|a(s) - a_{\text{linear}}(s)| \le d\left(\max_{j} |h_j|\right) \frac{(s - s_1)(s_2 - s)}{8 \ln c} \tag{5}$$

where $a_{linear}(s)$ is the linear interpolation of two grid point $a(s_1)$ and $a(s_2)$ that are known to behave well, enforced by LLM pre-training:

$$a_{\text{linear}}(s) := (1 - \lambda(s))a(s_1) + \lambda(s)a(s_2), \qquad \lambda(s) := \frac{s - s_1}{s_2 - s_1}$$
 (6)

Extending Context Window of Large Language Models via Positional Interpolation

In practice, further finetuning

is desirable on small fraction

of examples

Position interpolation works

- Llama-13B trained on 2048 tokens
- Further finetuned on $\frac{L}{L'} = 0.25$

More complex interpolation schemes have been proposed:

- NTK inspired
- YaRN

From: https://github.com/ggerganov/llama.cpp/discussions/1965#discussioncomment-6256563

Agenda

- Long Contexts & Challenges
- Key Papers and Their Contributions
 - LongNet
 - ALiBi
 - Positional Interpolation
 - Lost in the Middle
- Discussion and Future Directions

How well do these models use long-context?

Experimental setting

- Vary the number of distractor documents.
- Vary the position of the gold document

An example

_ Input Context -

Write a high-quality answer for the given question using only the provided search results (some of which might be irrelevant).

Document [1] (Title: Asian Americans in science and technology) Prize in physics for discovery of the subatomic particle J/ψ . Subrahmanyan Chandrasekhar shared...

Document [2] (Title: List of Nobel laureates in Physics) The first Nobel Prize in Physics was awarded in 1901 to Wilhelm Conrad Röntgen, of Germany, who received...

Document [3] (Title: Scientist) and pursued through a unique method, was essentially in place. Ramón y Cajal won the Nobel Prize in 1906 for his remarkable...

Question: who got the first nobel prize in physics Answer:

Desired Answer

Wilhelm Conrad Röntgen

Effect of changing the position of gold document

Effect of changing the position of gold document

Effect of changing the position of gold document

30 Total Retrieved Documents (~6K tokens)

30th Position of Document with the Answer

Effect of model architecture

Do bidirectional models fair better?

Encoder-decoder models

Effect of instruction fine-tuning

Retriever recall vs model performance

Retrieving more documents doesn't lead to improved performance

Discussion

- Techniques like LongNet, ALiBi, and Positional Interpolation aim to enable LLMs to process longer sequences efficiently.
 - LongNet Dilated attention to reduce computational complexity
 - ALiBi, and Positional Interpolation Improve how models handle position information
- As noted in "Lost in the Middle", models may still overlook important information in lengthy inputs.
- Ensuring model's performance when extending beyond trained context lengths remains an active research area.

