PESQUISA RÁPIDA

Clique aqui e faça sua busca rápida

Inicial (http://www.alfaconnection.pro.br) / Matemática (http://www.alfaconnection.pro.br/matematica/)

- $/\ Limites, Derivadas\ e\ Integrais\ (http://www.alfaconnection.pro.br/matematica/limites-derivadas\ -e-integrais/)$
- / Derivadas (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/)
- / Interpretação gráfica das derivadas primeira e segunda

Interpretação gráfica das derivadas primeira e segunda

Qual é a interpretação gráfica da derivada de uma função?

A derivada de uma função y = f (x) é a razão entre os acréscimos infinitesimais da função y e da variável x. A derivada é portanto uma taxa de variação instantânea, logo a interpretação gráfica é a mesma.

Seja y = f(x) cujo gráfico é mostrado na figura. A derivada dy/dx para x = a é representada graficamente pelo coeficiente angular da tangente à curva no ponto x = a ou seja

Qual é o significado do sinal da derivada?

Consideremos a função y = f (x) cujo gráfico é mostrado na figura.

No ponto x = a a função é crescente e como dy/dx >> tg a sendo a $< 90^{\circ} >> tg$ a > 0

função crescente >>> dy/dx > 0

Consideremos a função y = f (x) cujo gráfico é mostrado na figura.

No ponto x = b a função é decrescente e como dy/dx >> tg a sendo a $> 90^{\circ} >> tg$ a < 0

função decrescente >>> dy/dx < 0

Conclusão

derivada	função
y' = f'(x)	y = f (x)
positiva	crescente
negativa	decrescente

Exemplo:

Seja a função $y = x^2 - 6x + 10$. A sua derivada é y' = 2x - 6. Constatamos que:

valor de x	alor de x derivada					
x < 3	y' < 0	decrescente				
x > 3	y' > 0	crescente				

Qual é o valor da derivada quando a função passa por um valor máximo ou mínimo?

Quando a função passa por um máximo ou por um mínimo a tangente é paralela ao eixo OX.

como dy/dx >> tg a sendo $a = 0^{\circ} >> tg a = 0$

máximo ou mínimo da função >>> dy/dx = 0

Sempre que a derivada de uma função é nula podemos afirmar que a função passa por um máximo ou mínimo ?

Não.

A derivada de uma função pode ser nula quando há um ponto de inflexão (ponto de mudança da concavidade da curva) com tangente paralela ao eixo OX.

Resumo das propriedades da derivada

A derivada primeira informa sobre a declividade do gráfico da função

O que é a derivada segunda de uma função num ponto?

É a taxa de variação da função derivada no ponto considerado.

O que é função derivada segunda da função y=f(x)?

É a derivada da derivada da função y=f(x) num ponto genérico de abscissa x

Que símbolos são utilizados para representar a função derivada segunda da função y=f(x)?

A derivada segunda de uma função pode ser representada como mostramos abaixo

função	derivada	derivada segunda
y=f(x)	$\frac{\mathrm{d}y}{\mathrm{d}x} \Leftrightarrow y' \Leftrightarrow f'(x) \Leftrightarrow f'$	$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} \Leftrightarrow y'' \Leftrightarrow f''(x) \Leftrightarrow f''$

O que representa o sinal da derivada segunda?

Consideremos o gráfico de uma função crescente de concavidade voltada para cima.

Pela inclinação da tangente verificamos que a derivada da função é positiva e crescente, consequentemente a derivada segunda é positiva.

Consideremos o gráfico de uma função crescente de concavidade voltada para baixo.

Pela inclinação da tangente verificamos que a derivada da função é positiva e decrescente, consequentemente a derivada segunda é negativa.

Conclusão:

O sinal da derivada segunda de uma função indica a orientação da concavidade de seu gráfico.

Como identificar um ponto de inflexão usando a derivada segunda?

O ponto de inflexão é um ponto de alteração do sentido da concavidade, consequentemente é um ponto onde a derivada segunda muda de sinal ou seja é um ponto que corresponde a uma derivada segunda nula.

Como identificar um máximo ou um mínimo de uma função usando a derivada segunda?

Um ponto máximo corresponde a uma derivada nula e concavidade voltada para baixo e portanto derivada segunda negativa.

Um ponto mínimo corresponde a uma derivada nula e concavidade voltada para cima e portanto derivada segunda positiva.

Resumo das propriedades da derivada segunda

A derivada segunda nos informa sobre a orientação da concavidade do gráfico da função

Propriedade da derivada segunda

Resumo das propriedades das derivadas primeira e segunda

A derivada primeira informa sobre a declividade do gráfico da função e a derivada segunda sobre a orientação da concavidade do gráfico da função dando em conjunto uma informação do aspecto mais preciso do gráfico.

Quadro resumo das propriedades das derivadas

Exemplos do cálculo de máximos, mínimos e pontos de inflexão de funções algébricas

Exemplo 1:

Seja a função:
$$f(x)=x^3-3x^2$$

zeros da função
$$f(x)=0 \Rightarrow x^3-3x^2=0 \Rightarrow x^2(x-3)=0 \Rightarrow x=0 \cdot \cdot e \cdot \cdot x=3$$

Derivada primeira da função: $f'(x) = 3x^2 - 6x$

zeros da derivada primeira $f'(x)=0 \Rightarrow 3x^2-6x=0 \Rightarrow 3x(x-2) \Rightarrow x=0 \cdot \cdot \cdot \cdot x=2$

pontos de máximo, mínimo ou inflexão $x = 0 \rightarrow f(0) = 0^3 - 3.0^2 = 0$

$$x = 2 \rightarrow f(2) = 2^3 - 3.2^2 = -4$$

Derivada segunda da função: f''(x) = 6x - 6

zeros da derivada segunda $f''(x) = 0 \Rightarrow 6x - 6 = 0 \Rightarrow x = 1$

ponto de inflexão $x=1 \rightarrow f(1)=1^3-3.1^2=-2$

Exemplo 2:

Seja a função:
$$f(x) = x^4 - 5x^2 + 4$$

zeros da função
$$x^4 - 5x^2 + 4 = 0 \Rightarrow (x^2)^2 - 5x^2 + 4 = 0 \Rightarrow$$

$$x^{2} = 4 \Rightarrow x = \pm 2$$

$$x^{2} = 1 \Rightarrow x = \pm 1$$

Derivada primeira da função: $f'(x) = 4x^3 - 10x$

zeros da derivada primeira $4x^3-10x=0 \Rightarrow 2x(2x^2-5)=0 \Rightarrow$

$$x = 0$$

$$2x^2 - 5 = 0 \Rightarrow x^2 = \frac{5}{2} \Rightarrow x = \pm \sqrt{\frac{5}{2}} \Rightarrow x \cong \pm 1,6$$

pontos de máximo, mínimo ou inflexão $x=0 \rightarrow f(0)=0^4-5.0^2+4=4$

$$x = \pm \sqrt{\frac{5}{2}} \rightarrow f\left(\pm \sqrt{\frac{5}{2}}\right) = \left(\pm \sqrt{\frac{5}{2}}\right)^4 - 5\left(\sqrt{\frac{5}{2}}\right)^2 + 4 \cong -2,25$$

Derivada segunda da função: $f''(x) = 12x^2 - 10$

zeros da derivada segunda
$$12x^2 - 10 = 0 \Rightarrow x^2 = \frac{5}{6} \Rightarrow x = \pm \sqrt{\frac{5}{6}} \Rightarrow x \cong \pm 0.9$$

ponto de inflexão
$$x = \pm \sqrt{\frac{5}{6}} \rightarrow f'' \left(\pm \sqrt{\frac{5}{6}} \right) = \left(\pm \sqrt{\frac{5}{6}} \right)^4 - 5 \cdot \left(\pm \sqrt{\frac{5}{6}} \right)^2 + 4 \cong 0,5$$

zeros	valor		-2		-1,6		-1		-0,9		0		+0,9		+1		+1,6		+2	
f(x)	valor		0		-2,2		0		+0,5		4		+0,5		0		-2,2		0	
f'(x)	valor	_	_	_	0	+	+	+	+	+	0	_	_	_	_	_	0	+	+	+
	inclinação tangente	\downarrow	\downarrow	\downarrow	min	↑	↑	↑	↑	↑	max	\downarrow	\	\downarrow	\downarrow	\downarrow	min	↑	↑	1
f"(x)	valor	+	+	+	+	+	+	+	0	_	_	_	0	+	+	+	+	+	+	+
	concavidade	U	U	U	U	U	U	U	inf	\cap	\cap	\cap	inf	U	U	U	U	U	U	U

GRÁFICO

Exemplos do cálculo de máximos, mínimos e pontos de inflexão de funções trigonométricas

Exemplo 1:

Seja a função:
$$f(x) = senx + cos x \rightarrow 0 \le x \le 360^{\circ}$$

zeros da função $senx + cos x = 0 \Rightarrow senx = -cos x \Rightarrow \frac{senx}{cos x} = -1 \Rightarrow tgx = -1$

$$x = 135^{\circ}$$

 $x = 315^{\circ}$

Derivada primeira da função: $f'(x) = \cos x - \sin x$

zeros da derivada primeira $\cos x - \sin x = 0 \Rightarrow \sin x = \cos x \Rightarrow tgx = 1$

pontos de máximo, mínimo ou inflexão
$$x = 225^{\circ} - f(45^{\circ}) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \cong 1,4$$

$$x = 225^{\circ} - f(225^{\circ}) = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} = -\sqrt{2} \cong -1,4$$

Derivada segunda da função: f''(x) = -senx + cos x

zeros da derivada segunda $-\operatorname{sen} x - \cos x = 0 \Rightarrow \operatorname{sen} x = -\cos x \Rightarrow \operatorname{tg} x = -1$

$$x = 135^{\circ}$$
$$x = 315^{\circ}$$

pontos de inflexão
$$x = 135^{\circ} \rightarrow f(135^{\circ}) = \frac{\sqrt{2}}{2} + \left(-\frac{\sqrt{2}}{2}\right) = 0$$
 $x = 315^{\circ} \rightarrow f(315^{\circ}) = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = 0$

RESUMO

zeros limites	valor	0		45°		135°		225°		315°		360°
f(x)	valor	1		$\sqrt{2}$		0		$-\sqrt{2}$		0		1
f'(x)	valor	+	+	0	_	_	_	0	+	+	+	+
	inclinação tan gente	1	1	max	\downarrow	→	\	min	1	↑	↑	1
f"(x)	valor	-	_	-	_	0	+	+	+	0	_	_
	concavidade	\cap	\cap	\cap	\cap	inf	U	U	J	inf	\cap	\cap

Exemplos do cálculo de máximos, mínimos e pontos de inflexão de funções exponenciais

Exemplo 1:

Seja a função: $f(x) = e^{2x} + e^{-x}$

zeros da função: a função não possui zeros,

uma vez que é a soma de duas parcelas sempre positivas

Derivada primeira da função: $f'(x) = 2e^{2x} - e^{-x}$

zeros da derivada primeira $2e^{2x}-e^{-x}=0 \Rightarrow 2e^{2x}=e^{-x} \Rightarrow L2e^{2x}=Le^{-x} \Rightarrow L2+Le^{2x}=Le^{-x} \Rightarrow L2+Le^{2x}=Le^{-x} \Rightarrow L2+Le^{2x}=Le^{-x}$

$$L2+2x = -x \Rightarrow L2 = -3x \Rightarrow x = -\frac{L2}{3} \cong -0.23$$

 $L2+2x=-x\Rightarrow L2=-3x\Rightarrow x=-\frac{L2}{3}\cong -0.23$ pontos de máximo, mínimo ou inflexão $x=-\frac{L2}{3}\cong -0.23 \rightarrow f(-\frac{L2}{3})=f(-0.23)=e^{2(-0.23)}+e^{-(-0.23)}=1.89$

Derivada segunda da função: $f''(x) = 4e^{2x} + e^{-x}$

zeros da derivada segunda: a derivada segundo não possui zeros,

uma vez que é a soma de duas parcelas sempre positivas

pontos de inflexão: a função não possui pontos de inflexão

uma vez que a derivada segunda não possui zeros

RESUMO

zeros limites	valor	$-\infty$		$-\frac{L2}{3} \cong -0.23$		+∞
f(x)	valor	$+\infty$		1,89		$+\infty$
f'(x)	valor	_	_	0	+	+
	inclinação tangente	\downarrow	\	min	1	1
f"(x)	valor	+	+	+	+	+
	concavidade	J	U	U	U	U

Alguns valores para auxiliar no esboço do gráfico

X	-1	0	0,5
f(x)	2,8	2	3,3

Exemplos de problemas de máximos e mínimos

Exemplo 1:

Um granjeiro deseja cercar um terreno retangular com a maior área possível utilizando uma tela de 40 m de comprimento. Determinar os lados do retângulo e a sua área.

Comprimento da tela $2x+2y=40 \Rightarrow x+y=20 \Rightarrow y=20-x$

Área do terreno $A = x \cdot y \Rightarrow A = x \cdot (20 - x) \Rightarrow A = 20x - x^2$

Cálculo de x para que a área seja máxima $\frac{dA}{dx} = 0 \Rightarrow 20 - 2x = 0 \Rightarrow -2x = -20 \Rightarrow x = 10$

Cálculo de y $y = 20 - x \implies y = 20 - 10 = 10$

Calculo da área máxima A=x·y⇒A=10·10=100

Resposta:

Exemplo 2:

Uma reta que contém o ponto (1; 2) forma com os eixos coordenados um triângulo. Determinar os vértices do triângulo de área mínima.

Os triângulos amarelo e xOy são semelhantes
$$\xrightarrow{y-2} \frac{1}{x} \Rightarrow xy-2x=y \Rightarrow xy-y=2x \Rightarrow y(x-1)=2x \Rightarrow y=\frac{2x}{x-1}$$
 (1)

Área do triângulo xOy \longrightarrow $A = \frac{xy}{2} \Rightarrow A = \frac{x}{2} \times y \Rightarrow A = \frac{x}{2} \times \frac{2x}{x-1} \Rightarrow A = \frac{x^2}{x-1}$

Calculo de x para a área mínima
$$\frac{dA}{dx} = 0 \Rightarrow \frac{2x \cdot (x-1) - x^2 \cdot 1}{(x-1)^2} = 0 \Rightarrow \frac{2x^2 - 2x - x^2}{(x-1)^2} \Rightarrow \frac{x^2 - 2x}{(x-1)^2} = 0 \Rightarrow x^2 - 2x = 0 \Rightarrow x = 0 \cdot \cdot \cdot \cdot e \cdot \cdot \cdot x = 2$$
 (2)

Calculo de y para a área mínima \longrightarrow substituindo (2) em (1) \longrightarrow $y = \frac{2 \times 2}{2 - 1} \Longrightarrow y = 4$

Os vértices do triângulo de área mínima são: (0;0), (0;4) e (2;0)

Exemplo 3:

Um retângulo está inscrito numa circunferência de raio r. Determine em função de r a área máxima do retângulo.

Veja também:

- > Como derivar funções implícitas ? (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/como-derivar-funcoes-implicitas/)
- > Conceitos básicos (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/conceitos-basicos/)
- > Derivadas das funções hiperbólicas (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/derivadas-das-funcoes-hiperbolicas/)
- > Derivadas das funções trigonométricas (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/derivadas-funcoes-trigonometricas/)
- > Derivadas de funções elementares (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/derivadas-de-funcoes-elementares/)
- > Derivadas parciais (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/derivadas-parciais/)

- > Logaritmo Neperiano no cálculo de derivadas (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/logaritmo-neperiano-no-calculo-de-derivadas/)
- > Propriedades operatórias das derivadas (http://www.alfaconnection.pro.br/matematica/limites-derivadas-e-integrais/derivadas/propriedades-operatorias-das-derivadas/)

Inicial (http://www.alfaconnection.pro.br/)

Sobre

(http://www.alfaconnection.pro.br/sobre/)

Contato

(http://www.alfaconnection.pro.br/contato/)

Fórum

(http://www.alfaconnection.pro.br/forum)

BUSCA RÁPIDA

Desenvolvimento

Criação

(http://www.proxuser.com)

(http://www.sambamarketing.com.br)

© Alfa Connection 2017