Урок 10. Сепарабельні і несепарабельні метричні простори

Щоб довести, що простір є сепарабельним достатньо указати його зліченну скрізь щільну підмножину. Щоб довести, що простір не є сепарабельним достатньо показати, що якби в ньому існувала скрізь щільна підмножина, вона не могла б бути зліченною. Для цього необхідно побудувати сімейство куль, центри яких утворюють незліченну множину (контінуум), потім вибрати радіуси цих куль, так щоб вони не перетиналися. Оскільки гіпотетична множина є скрізь щільною, в кожній з цих куль повинна була б містись хоча б одна точка цієї множини. Інакше кажучи, потужність цієї множини збігається з потужність множини куль — контінуум. Це суперечить припущенню, що вона є зліченною.

Задача 10.1. Доведіть, що простір
$$\left(s, \sup_{n} \frac{\left|\xi_{n} - \eta_{n}\right|}{1 + \left|\xi_{n} - \eta_{n}\right|}\right)$$
 не є сепарабельним.

$$P_{O3B}$$
'язок. Припустимо, що простір $\left(s, \sup_{n} \frac{\left|\xi_{n} - \eta_{n}\right|}{1 + \left|\xi_{n} - \eta_{n}\right|}\right)$ є сепарабельним, тобто

містить скрізь щільну зліченну множину M . Розглянемо множину усіх послідовностей, що складаються лише з нулів і одиниць $E_{0,1}$. З одного боку, $E_{0,1} \subset s$. З іншого боку, кожну послідовність, що складається з нулів і одиниць, можна вважати бінарним розкладом дробової частини дійсного числа із [0,1], тобто $card\ E_{0,1}=c$.

$$x \in E_{0,1}, y \in E_{0,1}, x \neq y \Rightarrow \rho(x,y) = \frac{1}{2} \Rightarrow S(x,r) \cap S(y,r) = \emptyset, r < \frac{1}{4}.$$

Отже, в кожну кулю $S(x,r), x \in E_{0,1}, r < \frac{1}{4}$ повинна потрапити хоча б одна

точка із M . Отже, $card\ M=card\ E_{0,1}=c$. Ця суперечність означає, що простір

$$\left(s, \sup_{n} \frac{\left|\xi_{n} - \eta_{n}\right|}{1 + \left|\xi_{n} - \eta_{n}\right|}\right)$$
 є несепарабельним.

Задача 10.2. Доведіть, що простір
$$\left(s, \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\left|\xi_k - \eta_k\right|}{1 + \left|\xi_k - \eta_k\right|}\right)$$
 є сепарабельним.

Розв'язок. Нехай $M = (r_1, r_2, ..., r_n, 0, ...), r_n \in \mathbb{Q}, n \in \mathbb{N}$. Очевидно, що множина M ϵ зліченою: $card\ M = \aleph_0$. Доведемо, що вона ϵ скрізь щільною в просторі

$$\left(s, \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\left|\xi_k - \eta_k\right|}{1 + \left|\xi_k - \eta_k\right|}\right)$$
. Оскільки ряд $\sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\xi_k}{1 + \xi_k}$ є збіжним, то

$$\forall x \in s, \varepsilon > 0 \,\exists n > 0 : \sum_{k=n+1}^{\infty} \frac{1}{2^k} \frac{\xi_k}{1+\xi_k} < \frac{\varepsilon}{2}.$$

3 іншого боку,

$$\overline{\mathbb{Q}} = \mathbb{R} \implies \forall x = (\xi_1, \xi_2, ..., \xi_n, ...) \exists x_0 = (r_1, r_2, ..., r_n, 0, ...) : \sum_{k=1}^{\infty} |\xi_k - r_k| < \frac{\varepsilon}{2}.$$

$$\rho(x,x_0) = \sum_{k=1}^n \frac{1}{2^k} \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} + \sum_{k=n+1}^\infty \frac{1}{2^k} \frac{|\xi_k - \eta_k|}{1 + |\xi_k - \eta_k|} \le \sum_{k=1}^n |\xi_k - r_k| + \frac{\varepsilon}{2} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \overline{M} = s . \blacksquare$$

Задача 10.3. Доведіть, що простір l_p , $p \ge 1$ є сепарабельним.

$$P$$
озв'язок. Нехай $x \in l_p$, $x = (\xi_1, \xi_2, ..., \xi_n, ...)$, $x_n = (\xi_1, \xi_2, ..., \xi_n, 0, ...)$. Тоді
$$\rho(x, x_n) = \sum_{k=n+1}^{\infty} \left| \xi_k \right|^p \Rightarrow \lim_{n \to \infty} \rho(x, x_n) = \lim_{n \to \infty} \sum_{k=n+1}^{\infty} \left| \xi_k \right|^p = 0.$$

Розглянемо послідовності $x_n' = (r_1, r_2, ..., r_n, 0, ...)$, де $r_n \in \mathbb{Q}$. Позначимо множину таких послідовностей як D_n .

$$\overline{\mathbb{Q}} = \mathbb{R} \implies \forall \xi_i \in \mathbb{R} \ \exists r_i \in \mathbb{Q} \ \left| \xi_i - r_i \right| < \frac{1}{n^{\frac{p+1}{p}}}, i = 1, 2, ..., n.$$

Покажемо, що в довільному околі точки $x_n = (\xi_1, \xi_2, ..., \xi_n, 0, ...)$ можна знайти точку $x'_n = (r_1, r_2, ..., r_n, 0, ...)$.

$$\rho(x'_{n}, x_{n}) = \left(\sum_{i=1}^{n} |r_{i} - \xi_{i}|^{p}\right)^{1/p} < \left(\sum_{i=1}^{n} \frac{1}{n^{p+1}}\right)^{1/p} = \left(\frac{1}{n^{p}}\right)^{1/p} = \frac{1}{n} \Rightarrow \lim_{n \to \infty} \rho(x'_{n}, x_{n}) = \lim_{n \to \infty} \frac{1}{n} = 0.$$

За нерівністю трикутника

$$\rho(x_n',x) \leq \rho(x_n',x_n) + \rho(x_n,x) < \frac{1}{n} + \rho(x_n,x) \to 0 \text{ при } n \to \infty.$$
 Отже, $x_n' \to x$ при $n \to \infty$, значить, $\bigcup_{n=0}^{\infty} D_n = l_p$.

$$card\ D_n=m{\aleph}_0\Rightarrow card\ igcup_{n-1}^\infty D_n=m{\aleph}_0\Rightarrow l_p$$
 — сепарабельний простір. $lacktriangledown$

Задача 10.4. Доведіть, що простір $L_{\infty}(0,1)$, де $\rho(x,y) = \sup_{t \in (0,1)} \left| x(t) - y(t) \right|$ не є сепарабельним.

Pозв'язок. Припустимо, що $L_{\infty}(0,1)$ ε сепарабельним, тобто містить зліченну скрізь щільну множину A. Розглянемо множину $M_0 \subset l_{\infty}(0,1)$ всіх характеристичних функцій, тобто функцій, що набувають лише два значення — нуль і одиниця.

$$x_{t}(u) = \begin{cases} 0, & \text{якщо } 0 < u \le t, \\ 1, & \text{якщо } u > t. \end{cases}$$

Кількість функцій $x_t(u)$ співпадає з кількістю точок в інтервалі (0,1), тобто $card\ M_0=c$. Неважко перевірити, що $t\neq s\Rightarrow \rho(x_t,x_s)=1$. Отже, якщо побудувати кулі з центрами в точках x_t і радіусами $r<\frac{1}{2}$, то $\forall x_t\neq x_s\ S(x_t,r)\cap S(x_s,r)=\varnothing$. Значить, в кожну кулю $S(x_t,r)$ повинна потрапити б хоча одна точка із A , тобто $card\ A=card\ M_0=c$. Це суперечить припущенню, що множина A ϵ зліченною. \blacksquare

Задача 10.5. Для того щоб метричний простір (X, ρ) був сепарабельним, необхідно і достатньо, щоб він мав злічену базу (тобто задовольняв другу аксіому зліченності).

Розв'язок. Необхідність. Нехай (X, ρ) — сепарабельний простір і $A = \{a_n\}_{n=1}^{\infty}$ — злічена всюди щільна підмножина носія X. Тоді кулі $S(a_n, r_m)$, де $n, m \in N$, $r_m \in Q$ утворюють злічену базу простору (X, ρ) .

Дійсно, нехай x_0 — довільна точка із множини X , а G — довільна відкрита множина, що містить точку x_0 . За означенням відкритої множини існує $\varepsilon>0$ таке, що $S(x_0,\varepsilon)\subset G$. Оскільки A — всюди щільна множина, то для кожного $r_0>0$ в кулі $S(x_0,r_0)$ знайдеться точка $a_{n_0}\in A$. Виберемо $r_0<\frac{\varepsilon}{2}$. Тоді куля $S(a_{n_0},r_0)$ буде містити точку x_0 і одночасно цілком міститись всередині кулі $S(x_0,\varepsilon)$:

$$\rho(x_0,x) \le \rho(x_0,a_{n_0}) + \rho(a_{n_0},x) < r_0 + r_0 < \varepsilon$$

Отже, для довільної відкритої множини G в системі множин $\left\{S\left(a_{n},r_{m}\right)\right\}_{n,m\in N}$ знайшлася куля $S\left(a_{n_{0}},r_{0}\right)$, що містить точку x_{0} і належить множині G . Це означає, що $\left\{S\left(a_{n},r_{m}\right)\right\}_{n,m\in N}$ — база.

Достатність. Нехай в просторі (X, ρ) є злічена база $\beta = \{\beta_n\}_{n=1}^\infty$. Вибравши з кожної множини β_n по точці $a_n \in \beta_n$, ми отримаємо множину $A = \{a_n\}_{n=1}^\infty$. Доведемо, що ця множина є всюди щільною. Дійсно, припустимо супротивне. Нехай $\overline{A} \neq X$, то відкрита множина $G = X \setminus \overline{A}$ була б непорожньою і не містила б жодної точки із множини $A = \{a_n\}_{n=1}^\infty$. Але це неможливо, оскільки G — відкрита множина, і значить, вона є об'єднанням деяких множин із бази $\beta = \{\beta_n\}_{n=1}^\infty$, які містять точки a_n .

Задача 10.6. Наведіть приклад топологічного простору, в якому властивість сепарабельності не ϵ спадковою.

Розв'язок. Розглянемо топологічний простір

$$X = (a,b), \tau = \{\emptyset, X, \mathbb{R}_{(a,b)} = \{x\} \cup (a,b) \setminus (\mathbb{R} \setminus \mathbb{Q})\}$$

топологія якого утворена об'єднаннями одноточкових множин, що містять дійсні числа із інтервалу (a,b), та множиною раціональних чисел із цього інтервалу. Побудуємо підпростір із індукованою топологією.

$$M = \mathbb{R}_{(a,b)} \setminus \mathbb{Q}, \ \tau_M = \{\tau_\alpha \cap M = \{x\}, \tau_\alpha \in \tau, x \in (a,b) \setminus \mathbb{Q}\}.$$

Підпростір (M, τ_M) складається із ізольованих точок, тобто є дискретним. Він не є сепарабельним, оскільки його топологія є незліченою множиною одноелементних множин і не може мати всюди щільну злічену множину.

Для метричних просторів ситуація ϵ більш простою.

Задача 10.7. Довільна підмножина X_0 сепарабельного метричного простору X сама ϵ сепарабельним простором, тобто сепарабельність ϵ спадковою властивістю.

Розв'язок. Нехай $\left\{X_n\right\}_{n=1}^{\infty}$ — злічена всюди щільна в X множина його точок. Візьмемо два натуральних числа n і k. Якщо існують кілька точок $x \in X_0 \subset X$, для яких

$$\rho(x,x_n)<\frac{1}{k},$$

виберемо хоча б одну із них і позначимо як $x_n^{(k)}$ (внаслідок щільності існує хоча б одна така точка). Позначимо множину таких точок через $A = \left\{ x_{n_k} \right\}$. Ця множина є скінченною або зліченною.

Покажемо, що $\overline{A}=X_0$. Нехай $x\in X_0$. Візьмемо $\varepsilon>0$ і підберемо натуральне число k , так щоб $\frac{1}{k}\!\leq\!\frac{\varepsilon}{2}$. Оскільки $\overline{\left\{x_n\right\}_{k=1}^\infty}=X$, то існує число n_0 , таке що

$$\rho(x_{n_0},x) < \frac{1}{k}$$
. Отже, існує $x_{n_0}^{(k)} \in A$, така що $\rho(x_{n_0}^{(k)},x_{n_0}) < \frac{1}{k}$. Таким чином,

$$\rho(x_{n_0}^{(k)}, x) \leq \rho(x_{n_0}^{(k)}, x_{n_0}) + \rho(x_{n_0}, x) < \frac{2}{k} \leq \varepsilon.$$

Оскільки число є є довільним, множина A є всюди щільною в X_0 . Отже, простір X_0 є сепарабельним.