Math 253 Homework assignment 8

- 1. Find the mass and centre of mass of the lamina that occupies the region bounded by $y = e^x$, y = 0, x = 0 and x = 1 and having density $\rho(x, y) = y$.
- 2. Find the moments of inertia I_x, I_y and I_0 for the lamina of problem 1.
- 3. A square lamina of constant density ρ occupies a square with vertices (0,0),(a,0),(a,a) and (0,a). Find the moments of inertia I_x,I_y and the radii of gyration \bar{x} and \bar{y} .
- 4. Use integration to verify the following formula for the area of a triangle in \mathbb{R}^3 with vertices at (a, 0, 0), (0, b, 0) and (0, 0, c), with a, b, c positive numbers:

Area =
$$\frac{1}{2}\sqrt{a^2b^2 + b^2c^2 + a^2c^2}$$
.

- 5. Find the area of the part of the cylinder $y^2 + z^2 = 9$ that lies above the rectangle with vertices (0,0), (4,0), (4,2) and (0,2).
- 6. Find the area of that part of the hyperbolic paraboloid $z = x^2 y^2$ that lies inside the cylinder $x^2 + y^2 = a^2$.
- 7. Find the area of the part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies inside the cylinder $x^2 + y^2 = ax$.