(19)日本国特許庁 (JP)

四公開特許公報 四

(11)特許出願公開番号 特開2003-147508

(P2003-147508A)(43)公開日 平成15年5月21日(2003.5.21)

(51) Int. Cl. 7

識別記号

FΙ

テーマコート (参考)

C23C 14/06

// B23B 27/14

C23C 14/06

F 3C046

B23B 27/14

A 4K029

審査請求 未請求 請求項の数8 OL (全7頁)

(21)出願番号

特願2001-342218(P2001-342218)

(22)出願日

平成13年11月7日(2001.11.7)

(71)出願人 000002130

住友電気工業株式会社

大阪府大阪市中央区北浜四丁目5番33号

(72)発明者 織田 一彦

兵庫県伊丹市昆陽北一丁目1番1号 住友

電気工業株式会社伊丹製作所内

(72)発明者 大原 久典

兵庫県伊丹市昆陽北一丁目1番1号 住友

電気工業株式会社伊丹製作所内

(74)代理人 100075155

弁理士 亀井 弘勝 (外2名)

最終頁に続く

(54) 【発明の名称】炭素膜、炭素膜の成膜方法、および炭素膜被覆部材

(57)【要約】

【課題】ダイヤモンド膜あるいはダイヤモンド状炭素膜 に代わって、工具、金型、機械部品などの耐磨耗性およ び耐久性を向上させるための炭素膜を提供する。

【解決手段】密度が2.8~3.3g/cm゚である炭 素膜であって、当該膜はスピン密度が1×10'8~1× 1021spins/cm³、炭素濃度が99.5原子%以 上、水素濃度が0.5原子%以下、希ガス元素濃度が 0. 5原子%以下、ヌープ硬度が2000~6000で あることが好ましい。この炭素膜は、カソードアークイ オンプレーティング法またはレーザーアブレーション法 で、固体炭素を原料とし、真空度0.05Pa以下の雰 囲気下で、水素および希ガス元素を含むガスを雰囲気に 導入しないことにより、成膜できる。この炭素膜が被覆 された炭素膜被覆部材は、耐磨耗性および耐久性に優れ ている。

【特許請求の範囲】

【請求項1】密度が2.8g/cm³以上3.3g/cm³以下であることを特徴とする炭素膜。

【請求項2】スピン密度が1×10¹ spins/cm¹以上1×10¹ spins/cm¹以下であることを特徴とする請求項1記載の炭素膜。

【請求項3】炭素濃度が99.5原子%以上、水素濃度が0.5原子%以下、希ガス元素濃度が0.5原子%以下であることを特徴とする請求項1または2に記載の炭素膜。

【請求項4】実質的に炭素元素のみから形成されていることを特徴とする請求項1から3のいずれかに記載の炭素膜。

【請求項5】ヌーブ硬度が2000以上6000以下であることを特徴とする請求項1から4のいずれかに記載の炭素膜。

【請求項6】カソードアークイオンプレーティング法またはレーザーアプレーション法で、固体炭素を原料とし、真空度0.05Pa以下の雰囲気下で、水素および希ガス元素を含むガスを雰囲気に導入せずに、成膜を行20うことを特徴とする請求項1から5のいずれかに記載の炭素膜の成膜方法。

【請求項7】請求項1から5のいずれかに記載の炭素膜が被覆されていることを特徴とする炭素膜被覆部材。

【請求項8】請求項6の製造方法で製造された炭素膜が被覆されていることを特徴とする炭素膜被覆部材。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高硬度の炭素膜、その成膜方法、およびその炭素膜を被覆してなる部材に関 30 し、工具、金型、機械部品、電気・電子部品あるいは光学部品などの被覆に適用される。

[0002]

【従来の技術】炭素系被膜は、その機械的特性および化学的安定性を利用して各種部材の耐磨耗性や耐久性を向上するための被覆材料として用いられてきている。従来、炭素からなる膜としては、ダイヤモンド膜、グラファイト膜あるいはダイヤモンド状炭素膜などが挙げられ、これらの製法や特徴は次のとおりである。ダイヤモンド膜は、一般にフィラメントCVD法、マイクロ波プ40ラズマCVD法などで合成され、その合成温度は700で以上の高温である。この合成は、1%前後のメタンなどの炭化水素ガスに、99%程度の多量の水素ガスを導入することにより行われる。このように水素ガスを導入することにより行われる。このように水素ガスを導入するのは、多量の原子状水素を発生させ、合成される膜中の非晶成分をこの原子状水素と反応させて除去するためである。

【0003】ダイヤモンド膜の構造は立方晶系で、電子線回折やX線回折では、ダイヤモンド構造を反映した回折像が得られる。ラマン分光分析では、1333cm⁻

付近にダイヤモンド構造に対応する狭いピークが見られる。結晶質であるため、得られる膜は、結晶を反映した凹凸の激しい表面となる。物性は、ヌープ硬度が9000以上、密度は3.51g/с㎡以上である。一方、グラファイト膜は、真空蒸着法や炭化水素ガスの熱分解で得られる。前者は500℃以下の低温で、後者は1000℃以上の高温で合成される。グラファイトの結晶構造は、六方晶系での結晶質である。ヌープ硬度は200以下ときわめて軟質で、密度は約2.25g/с㎡である。

【0004】ダイヤモンド状炭素膜は、ダイヤモンドとグラファイトまたはダイヤモンドと炭素系樹脂との中間をなすものとされるが、その範囲は明確ではない。その製法には、プラズマCVD法、イオン化蒸着法、スパッタ法など種々の手法が存在するが、いずれも合成温度が400℃以下と低いことが共通する。プラズマCVD法やイオン化蒸着法などでは、炭化水素ガスを原料とし、膜質を制御するため水素ガスを添加することが多い。また、スパッタ法などでは、スパッタ用にアルゴンなどの希ガスを用い、膜質の制御のため水素や炭化水素ガスを添加することが一般的である。その構造、組成および物性は次のとおりである。

【0005】その構造は非晶質で、ダイヤモンド構造を 反映したsp3構造と、グラファイト構造を反映したs p2構造、水素との結合などが混ざったものであると考 えられている。電子線回折やX線回折では、非晶質構造 を反映したハローパターンが得られ、ラマン分光分析で は1300~1600cm」付近に広いピークと肩を持 った構造を示す。このように非晶質であるため、得られ る膜は平滑である。その組成は、一般には水素を10~ 40原子%程度含有しており、例えば特公平5-580 68号公報には水素含有量が20~30原子%のものが 開示されている。さらに、硬度を向上させるなどの目的 で水素含有量数~10原子%程度まで低下させたものが 提案されており、特開平3-158455号公報や特開 平9-128708号公報には水素含有量数原子%のも のが開示されている。水素以外にも各種元素の添加が試 みられており、金属や窒素、ハロゲン原子などを添加し た例が報告されている。また、スパッタ法など固体炭素 を原料とする場合は、アルゴンなどの希ガス元素雰囲気 下で成膜が行われるため、膜中に希ガス元素が取り込ま れる。さらに、特開2000-80473号公報では希 ガス元素を積極的に取り込ませて応力や硬度、耐磨耗性 などを制御する例を提示している。

【0006】その物性に関しては、ヌーブ硬度が一般に 1000~2000、密度が1.5~2.5g/cm³ であって広い範囲を有する。例えば、特開平9-128 708号公報には密度1.5~2.2g/cm³のもの が開示されている。前記した炭素系の膜のうち、ダイヤ 50 モンドやダイヤモンド状炭素膜は、耐磨耗性が高く、磨

擦係数が小さく、焼き付けが小さいという特徴を有して おり、このために工具や金型、機械部品などへの適用が 試みられている。

[0007]

【発明が解決しようとする課題】ダイヤモンドやダイヤ モンド状炭素膜を工具、金型、機械部品などに適用しよ うとするとき、以下の点が問題になる。ダイヤモンド膜 に関する問題点としては、成膜温度が700℃以上の高 温であること、また成膜したままの状態では表面粗さが きわめて大きいことなどが挙げられる。処理温度が高い 10 ことは、適用できる部材の材料が限定されることであ り、具体的にはセラミックスや超硬合金などに限定さ れ、鉄系材料などの汎用的で安価な材料に適用できない という問題がある。また、表面粗さが大きいため、工 具、金型、機械部品など多くの用途においてはそのまま で使用することができず研磨工程が必要不可欠になる。 【0008】ダイヤモンド状炭素膜に関しては、成膜温

度が低く、表面粗さが小さい点においてはダイヤモンド 膜よりも利用しやすいといえる。しかし、その一方で硬 度が十分に高くないこと、耐熱性が低いことなどが問題 20 点である。ダイヤモンド状炭素膜の一般的なヌーブ硬度 は、前述のように約1000~2000であって、ダイ ヤモンドのヌープ硬度約10000に比べて、1/10 ~1/5である。耐磨耗性などを要求する場合、更なる 高硬度の材料が望まれている。また、ダイヤモンド状炭 素膜の大気中での耐熱性は、一般に350~450℃の 範囲である。これより高い温度に曝されると、膜中の水 素が脱離したり、酸化が進んだりして、硬度が大幅に低 下する。従って、使用温度が高い工具や金型、機械部品 などに適用できないという問題がある。

【0009】本発明の目的は、上記のように、ダイヤモ ンド膜あるいはダイヤモンド状炭素膜にはその利用にあ たって一長一短を有することから、これらに代わる新し い炭素膜とその成膜方法、およびその炭素膜で被覆して なる部材を提供しようとするものである。

[0010]

【課題を解決するための手段および発明の効果】本発明 者らは、上記課題を解決するために種々検討を重ねた結 果、以下の1)~8)項に記載の発明を完成したもので ある。

- 1) 密度が2. 8 g/c m³以上3. 3 g/c m³以下で あることを特徴とする炭素膜。
- 2) スピン密度が1×10¹⁸ spins/c m³以上1×10 *'spins/cm'以下であることを特徴とする上記1) 項 記載の炭素膜。

【0011】3)炭素濃度が99.5原子%以上、水素 濃度が0.5原子%以下、希ガス元素濃度が0.5原子 %以下であることを特徴とする上記1)または2)項に 記載の炭素膜。

4) 実質的に炭素元素のみから形成されていることを特 50 炭素原子1個につき約6. 7×10^{-1} 以上6. 7×10

徴とする上記1)から3)項のいずれかに記載の炭素 膜。

5) ヌープ硬度が2000以上6000以下であること を特徴とする上記1)から4)項のいずれかに記載の炭 素膜。

【0012】6)カソードアークイオンプレーティング 法またはレーザーアブレーション法で、固体炭素を原料 とし、真空度0.05Pa以下の雰囲気下で、水素およ び希ガス元素を含むガスを雰囲気に導入せずに、成膜を 行うことを特徴とする上記1)から5)項のいずれかに 記載の炭素膜の成膜方法。

7) 上記1) から5) 項のいずれかに記載の炭素膜が被 覆されていることを特徴とする炭素膜被覆部材。

【0013】8)上記6)項の製造方法で製造された炭 素膜が被覆されていることを特徴とする炭素膜被覆部 材。

上記の本発明の炭素膜は、硬度が高く耐熱性があり、こ の炭素膜で被覆した工具、金型、機械部品、電気・電子 部品あるいは光学部品などの本発明の炭素膜被覆部材は 優れた耐磨耗性と耐久性を有する。本発明の炭素膜は、 上記6)項記載の成膜方法によって成膜することができ る。この方法によると比較的、低温下において成膜する ことが可能であり、広範な被覆対象部材に工業的有利に 実施できる。

[0014]

30

【発明の実施の形態】本発明の炭素膜は、前記1) 項の とおり、密度が2.8g/cm³以上3.3g/cm³以 下であることを特徴とする。ダイヤモンドの密度は3. 529g/cm¹であり、その一方で一般のダイヤモン ド炭素膜の密度は1.5~2.5g/cm¹程度であ る。本発明の炭素膜は、これらの中間領域の密度を有す るものである。密度が本発明でいう範囲に達しないとき すなわち2.8g/cm³未満では十分な耐熱性や硬度 が得られず、一方密度が3.3g/cm³を超えると数 百℃の前半という低温での合成が困難であり現実てきで はない。耐熱性、硬度および生産の安定性等の観点から みて、本発明の炭素膜は密度が2.9g/cm。以上 3. 2g/cm³以下であることがより好ましい。 【0015】本発明の炭素膜は、前記2)項のとおり、

スピン密度が1×10¹⁸ spins/cm³以上1×10²¹ sp ins/cm³以下であることが好ましい。スピン密度とは 不対電子の密度に対応するパラメーターである。スピン 密度が大きいほど未結合手、すなわち欠陥が多いことを 示す。ダイヤモンドのスピン密度は一般に1×10¹¹sp ins/cm¹以下であり、このことは炭素原子1個につき 約5.7×10⁻¹個以下の不対電子があることに対応す る。本発明の炭素膜は、スピン密度が1×10¹¹ spins /cm³以上1×10³¹ spins/cm³以下であることが 好ましく、このことは密度が3.0g/cm²の場合、

40

- 1個以下の不対電子を有することに対応する。スピン密 度は小さいほど高硬度で耐熱性も高くなるが、現実的に はスピン密度が1×10¹¹ spins/cm¹に達しない炭素 膜は数百℃の前半という低温での合成が困難であり好ま しくない。また、スピン密度が1×10¹¹ spins/c m³ を超えた炭素膜は、不対電子が多く、すなわち欠陥が多 くなってくることになり、硬度が小さくなり耐熱性にも 劣ってくるので好ましくない。耐熱性、硬度および生産 の安定性等の観点からみて、本発明の炭素膜はスピン密 度が1×10¹ spins/cmi以上8×10¹ spins/c m'以下であることがより好ましい。

【0016】本発明の炭素膜は、前記3)項のとおり、 炭素濃度が99.5原子%以上、水素濃度が0.5原子 %以下、希ガス元素濃度が0.5原子%以下であること が好ましい。一般のダイヤモンド状炭素膜は、水素が数 ~数十原子%含まれている。水素は1個の結合手しか持 たないため、炭素原子と結合するとそこで炭素原子同士 の結合の連続性が途切れてしまうことになる。こうした 水素と炭素との結合は、炭素膜の硬度低下と耐熱性の低 下につながる。

【0017】また、炭素膜の合成中にアルゴン、ネオ ン、ヘリウム、キセノンなどの希ガスを使用すると、希 ガス原子が膜中に多く取り込まれやすい。取り込まれた 希ガス原子は特に結合手は形成しないものの欠陥の原因 となりやすい。欠陥の存在は、硬度低下と耐熱性を下げ る方向に作用する。以上のことから、水素や希ガス元素 含有量が少ないほど、炭素原子同士の結合が多く耐熱性 に強い膜となり得る。炭素濃度が99.5原子%未満で は不純物に起因する欠陥が増え、硬度、耐熱性が低下す るので好ましくない。水素濃度が0.5原子%を超える 30 と炭素同士の結合の連続性が途切れる箇所が多くなり、 硬度、耐熱性が低下し好ましくない。希ガス元素濃度が 0. 5原子%を超えると欠陥が形成され、硬度、耐熱性 が低下し好ましくない。本発明の炭素膜は、前記4)項 のとおり、実質的に炭素元素のみから形成されているこ とが好ましい。すなわち、前記3)項でいう炭素膜をさ らに特定したものであって、実質的に炭素のみからな り、水素、希ガス元素が不純物レベルでしか検出されな い炭素膜は極めて安定性が高くなる。ここでいう不純物 レベルとは不可避混入レベルを意味する。具体的には、 ppmオーダーの濃度をさす。実際には、成膜中に水素 や希ガス元素、あるいは水素を含む材料を積極的に導入 しないことによって得られるものである。

【0018】本発明の炭素膜は、前記5)のとおり、ヌ ープ硬度が2000以上6000以下であることが好ま しい。炭素膜は、一般にグラファイト成分が増加すると 耐熱性は低下する。グラファイト成分が少ないための条 件としては、ヌーブ硬度が200以上であることが好ま しい。一方、ヌープ硬度が6000を超えるものは数百 ℃の前半という低温では実質的得ることが困難であり好 50

ましくない。ここでいうヌーブ硬度は、Siウエハ上に 膜厚1. 0μm以上2. 0μm以下の膜厚で被覆した炭 素膜を荷重50g以上100g以下で測定したときの値 とする。

【0019】本発明の炭素膜は、前記6)項のとおり、 カソードアークイオンプレーティング法またはレーザー アブレーション法により、原料炭素を固体炭素とし、真 空度0.05Pa以下の努囲気下で、水素または希ガス を含むガスを導入せずに、成膜することにより得られ る。現在工業的に多く適用されている炭素膜の成膜方法 10 は、プラズマCVD法やイオンビーム蒸着法、スパッタ リング法などにより行われている。これらの手法では、 原料や補助原料に、炭化水素や水素、希ガス元素などが 使用される。従って、膜中に水素や希ガス元素が取り込 まれやすい。一方、カソードアークイオンブレーティン グ法またはレーザーアブレーション法は、固体炭素を原 料とする。従って、合成時に水素、希ガス元素、あるい は水素を含む材料などを原料または補助原料として使用 せずに、真空度0.05Pa以下の雰囲気下で炭素膜の 合成を行うことにより、水素や希ガス元素を含まない炭 素膜を得ることができる。雰囲気が 0.05 Paより大 きいと、残留ガスに含まれる水などの成分が膜中に多く 取り込まれるので、所期目的の炭素膜が得られない。本 成膜方法で原料となる固体炭素は、例えば高純度化処理 を施した等方性グラファイト、CVD法で合成された熱 分解炭素、熱硬化性樹脂などを炭素化したグラッシ--カ ーボン、ダイヤモンド焼結体、樹脂等が用いられる。本 発明におけるカソードアークイオンプレーティング法に よる成膜は、例えば、通常のカソードや、磁場収束型の カソード、磁場偏向型カソードなどを用いて合成でき る。合成温度100~300℃、合成時間5~120分 条件で実施できる。

【0020】本発明におけるレーザーアブレーション法 による成膜は、例えばエキシマレーザーなどが適用でき る。合成温度は100~300℃、合成時間は5~12 0分の条件で実施できる。本発明の炭素膜は、前記7) 項のように、所望の部材に被覆することにより、硬度お よび耐熱性を付与することができる。このような適用部 材の具体例としては、工具、各種金型、機械部品、電気 ・電子部品などが挙げられる。

【0021】本発明の炭素膜被覆部材における炭素膜の 厚みは、その対象部材などにより適宜決められるが、通 常は10nm ~ 3 μ m、好ましくは0. 05 μ m ~ 2 μ mである。この膜厚が薄すぎると耐磨耗性の向上が不十 分になり耐久性を付与するための満足な効果が得られな い。一方、あまりに厚すぎると膜の剥離が生じやすくな り寿命の低下が起こることがある。

[0022]

【実施例】次に、本発明を実施例および比較例によって さらに具体的に説明する。

【0023】・プラズマCVD法では、原料にアセチレンガスを適用した。すなわち、努囲気中にアセチレンガスを導入し、13.56MHzの高周波を基板に印加して炭素膜の成膜を行った。成膜時間は80分とした。

・レーザーアブレーション法では、原料にグラッシーカーボンを適用した。ターゲットにエキシマレーザーを照射して、そのエネルギーで表面の炭素を蒸発・プラズマ化し、負に印加した基板上に成膜した。成膜時間は50分とした。

【0024】・カソードアークイオンプレーティング法では、原料に等方性グラファイトを適用した。ターゲットに負の電位を印加してアーク放電を発生させ、そのエネルギーで炭素を蒸発・プラズマ化し、負に印加した基板上に炭素膜を成膜した。成膜時間は300分とした。

・フィラメントCVD法では、1%メタン、99%水素を原料として適用した。Wフィラメントでメタンおよび水素を分解させ、基板上に炭素膜(ダイヤモンド膜)を析出させた。成膜時間は200分とした。

【0025】・マイクロ波CVD法では、1%メタン、99%水素を原料として適用した。2.45GHzのマイクロ波でメタンおよび水素を分解させ、基板上に炭素膜(ダイヤモンド膜)を析出させた。

・イオンビーム蒸着法では、ベンゼンガスを原料に適用 した。イオン化したベンゼンイオンを加速し基板に照射 して炭素膜を析出させた。成膜時間は60分とした。

【0026】・非平衡型マグネトロンスパッタリング法では、原料に上記の炭素ターゲットを適用した。すなわりの ち、努囲気中にはアルゴンガスを導入し、ターゲットに負の直流電圧を印加して放電を派生させた。ターゲット表面よりスパッタされプラズマ中で活性化した炭素イオンが、負に印加した基板上に照射され炭素膜を形成した。成膜時間は60分とした。炭素膜の物性等は、次の方法により測定した。

・密度:成膜前後の基材の重量変化と膜厚から導出した。

・スピン密度: ESR法で導出した。

・炭素・水素・希ガス濃度:SIMS、HFS、RBS 20 法を適用した。

・ヌープ硬度:荷重50gまたは100gで測定を行った。

・硬度低下開始温度:電気炉にて大気中で加熱し、所定の温度で1時間保持した後、室温まで冷却し、20%以上の硬度低下が観測された温度を開始温度とした。

【0027】測定結果を表1、表2および表3に示す。 【0028】

【表1】

	密度 (g/cm³)	硬度低下開 始温度(℃)	ヌーブ硬度	製法	合成温度 (℃)
比較例1	2.28	380	1400	プラズマCVD法	200
実施例1	2.85	490	2200	レーザーアブレーション法	180
実施例2	3.09	530	3900	カソードアークイオン ブレーティルグ法	220
比較例2	3.5	600以上	測定不能	フィラメントCVD法	1100

[0029]

【表2】

	スピン密度 (spins/cm³)	硬度低下開 始温度(℃)	ヌープ硬度	製法	合成温度 (℃)
比較例3	2.50E+16	600以上	測定不能	マイクロ波CVD法	950
実施例3	5.00E+19	560	4500	カソードアークイオン ブレーティIング法	190
実施例4	7.90E+20	520	3800	レーザーアブレーション法	230
比較例4	6.00E+21	410	1600	イオンビーム蒸券法	220

[0030]

【表3】

	9					10	
	炭素濃度	水素濃度	希ガス元素 濃度	硬度低下開始 温度℃)	ヌーブ硬度	製法	合成温度 (°C)
比較例5	68at%	31at%	0.5at%未溢	370	1200	プラズマCVD法	220
比較例6	99.5at%以上	1.5at%	0.5atX未満	430	1900	非平衡型マグネトロ ンスパッタリング法	260
実施例5	99.5at%以上	0.5at%未满	0.5at%未满	510	3600	カソードアークイオン プレーティング法	180
実施例6	99.5at%以上	800ppm	5ppm未満	580	4900	レーザーアブレー ション法	220
実施例7	99.5at%以上	5ppm未満	50ppm	580	5100	レーザーアブレー ション法	180
実施例8	99.5at%以上		5ppm未満	580	5300	カソードアークイオン プレーティング法	230
	(atX: 原子%)					

【0031】表1の結果から密度が高いほど、表2の結 果からスピン密度が小さいほど、表3の結果から水素お よび希ガス濃度が小さいほど、硬度および耐熱性が大き くなることを示している。

<実施例9~11および比較例7、8>超硬合金製平板 に、プラズマCVD法(比較例7)、レーザーアブレー ション法(実施例10)、カソードアークイオンプレー ティング法(実施例9、11)および非平衡型マグネト ロンスパッタリング法(比較例8)の各方法よって炭素 20 膜を被覆した。

【0032】得られた各炭素膜について、ピン・オン・ ディスクタイプの摩擦磨耗試験機で磨耗量の比較試験を 実施した。ここで、ピンには先端径R3mmのSUJ2 を、ディスクには炭素膜を被覆した超硬合金を適用し、 荷重は10N、回転速度は100mm/sec、温度は 室温、雰囲気は大気とした。ディスクの磨耗量を相対値

で比較した。また、リング・オン・ディスクタイプの摩 擦磨耗試験機で耐久試験を実施した。ここで、相手材の リングに外径50mmのSUJ2を、ブレートに炭素膜 を被覆した超硬合金を適用し、リングの外周の一点が常 時プレートの同じ場所にあるように配置しリングを回転 させて試験を行った。なお、荷重は50N、回転速度は 3000mm/sec、温度は摩擦熱の温度、雰囲気は 大気とした。摩擦抵抗をモニターし、抵抗値が大きく変 化する時点を膜のなくなった時点と判断して寿命比較を 相対値で比較した。

【0033】さらに、同一ロットのテストピースで、密 度、スピン密度、各種元素濃度、ヌーブ硬度を測定し た。上記の測定結果等をまとめて表4に示す。

[0034]

【表4】

	成膜方法	密度 (g/cm³)	スピン密度 (spins/cm³)		水来濃度	希ガス元 素濃度	ターブ硬度	磨耗量	耐久性
比較例7	プラズマCVD法	1.70	5.0E+21	64	33at%	0.5at%来满	1200	1	1
比較例8	非平衡型マグネトロ ンスパッタリング法	2.25	7.0E+21	99.5以上	0.5at%未満	1a t%	2100	0.8	1.5
実施例9	カソードアークイオン プレーティング法	2.90	9.0E+20	99.5以上	500ppm	300ppm	2800	0.25	6.8
実施例10	レーザーアブレーション法	3.05	7.6E+20	99.5以上	5ppm未満	5ppm未满	3900	0.1以下	10以上
	カソードアークイオン プレーティング法	3.25	8.0E+18	99.5以上	5ppm未満	5ppm未満	5200	0.1以下	10以上

at%:原子%

ピン・オン・ディスク試験 :リング・オン・ディスク試験

【0035】これらの結果から、実施例9~11の炭素 膜は、比較例7および8のものに比べて、耐磨耗性が高 くかつ耐久性に優れていることを示している。すなわ ち、密度が高いほど、スピン密度が小さいほど、炭素濃 度が高く水素・希ガス元素濃度が小さいほど、また硬度 が高いほど、耐磨耗性が高く耐久性に優れていることが わかる。

<実施例12>超硬合金製ドリルに、カソードアークイ オンプレーティング法により、炭素膜を被覆した(本発 明)。この炭素膜は、密度を3.11g/cm³、スピ ン密度を2. 0×10¹⁰ spins/cm¹、炭素濃度を9 9. 9原子%以上で水素および希ガス元素濃度はHFS **/RBSの検出限界以下、およびヌーブ硬度1500と 50 た。**

した。

【0036】一方、同じ超硬合金製ドリルに、プラズマ 40 CVD法で炭素膜を被覆した(対照)。この炭素膜は、 密度が2.05g/cm³、スピン密度が2.5×10 ²¹ spins/cm³、炭素濃度が71原子%、水素濃度が2 7原子%、希ガス元素濃度が0.5原子%以下、ヌープ 硬度が1500であった。上記の各ドリルを、Si15 %含有アルミ合金の乾式穴あけ加工に供したところ、本 発明のドリルは未コートドリル寿命の10倍もの時間に わたって加工を行っても異常は見られなかった。これに 対して、対照のドリルは未コートドリル寿命の1.5倍 の時間、加工を行った時点で膜はほぼ完全に消失してい

【0037】〈実施例13〉SDK11製のマグネシウム合金による射出成型金型の成型面に、実施例12におけると同様にして2種類の炭素膜を被覆して射出成型を行った。未コートの金型では、毎回離型剤を塗布しなければマグネシウム合金が固着した。プラズマCVD法の炭素膜を被覆した金型では、数回の成型は離型剤を塗布しなくても固着なしに成型できたが、10回成型した段階では被膜はなくなっており固着が発生した。一方、本発明によりカソードアークイオンプレーティング法の炭素膜を被覆した金型では、1000回の成型を終えても10被膜は残っており良好な成型特性を示した。

【0038】〈実施例14〉自動車エンジンのピストンリングに、実施例12におけると同様にして2種類の炭素膜を被覆し、実車のエンジンに組み込んで走行試験を行って耐久性を調査した。その結果、ブラズマCVD法の炭素膜を被覆したピストンリングは、1時間の走行試験で炭素膜は完全に消失していた。一方、本発明によりカソードアークイオンプレーティング法の炭素膜を被覆したピストンリングでは、500時間の走行試験後も異常はみられなかった。

【0039】〈実施例15〉カソードアークイオンプレーティング法およびレーザーアブレーション法で成膜時の雰囲気を変えてDLCの成膜を行い、被膜部材の寿命を調べた。カソードアークイオンプレーティング法において、真空度が0.001Paで特にガスを導入せずに成膜した炭素膜は、密度3.05g/cm³、スピン密

度4×10¹⁰ spins/cm³、炭素濃度99.5原子%以上、水素濃度と希ガス元素濃度5ppm以下、およびヌープ硬度1800であった(本発明)。一方、アルゴンを10mTorr導入して被覆した炭素膜は、密度2.44g/cm³、スピン密度3×10²¹ spins/cm³、炭素濃度99.5原子%以上、希ガス元素濃度0.5原子%以下、およびヌープ硬度1800であった(対照)。これらの2種の炭素膜をそれぞれアルミ合金穴あけドリルに被覆して寿命を調べたところ、本発明の炭素膜を被覆したドリルは対照被膜を被覆したものに比べて5倍以上の寿命を示した。

【0040】次に、レーザーアブレーション法において、真空度が0.003Paで特にガスを導入せずに成膜した炭素膜は、密度3.13g/cm³、スピン密度6.2×10²° spins/cm³、炭素濃度99.5原子%以上、水素濃度と希ガス元素濃度5ppm以下、およびヌーブ硬度3800であった(本発明)。一方、水素ガスを10mTorr導入して被覆した炭素膜は、密度2.20g/cm³、スピン密度2×10²' spins/cm³、炭表濃度94原子%以上、水素濃度6原子%以下、およびヌーブ硬度1600であった(対照)。これらの2種の炭素膜をそれぞれマグネシウム合金の射出成型金型の被覆に適用したところ、本発明の炭素膜を被覆した金型は対照被膜を被覆したものに比べて15倍以上の寿命を示した。

フロントページの続き

(72)発明者 内海 慶春

兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内

Fターム(参考) 3C046 FF09

4K029 AA02 BA34 BC02 BD03 BD05 CA01 CA03 DB20 EA03 EA05