Divvy Bike Usage Patterns

Jean Chao Snigda Gedela Takuma Koide Trang Dang

CHAPTERS

Introduction

Project Overview

Divvy

A bike-sharing program that operates in Chicago, Illinois, United States.

Objective

Predicting the number of trips for Divvy bikes on a monthly basis

Expected Outcome

- **1. Resource Optimization**: Strategically allocate bikes and docking stations to high-demand areas, reducing instances of unavailability or overcrowding.
- **2. Expansion and Infrastructure Planning**: Installing additional docking stations or expanding Divvy's bike fleet during months with high demand.

Data

Data

Our original dataset consists of approximately 4GB of data with Divvy bike trips between 2013 and 2023, with 9 features.

Due to the large size, which may cause the kernel to crash, we have finalized our data for modeling to include 3 main features, which are:

- 1. Year_month: from 06/2013 and 04/2023
- 2. Monthly Trip Count: number of trips in each month (in thousands)
- 3. Average Monthly Duration: average length of time for each trip in minutes (formula = total duration/total trip*60)

Train period = July 2013 - Dec 2021 & Test period = Jan 2022 - Apr 2023

Trip Duration

The users tend to use divvy bikes only for short durations.

Most Popular Stations

EDA

Most Popular Stations

Model

Yearly Divvy Rides in Chicago

Trend:
Slightly
Increasing

- Seasonal
 patterns
 occurring on
 an annual
 basis
- KPSS Test : stationary time series

Regression

r = 0.342

Regression

Observed Vs Fitted Trend

Setting up for Regression with ARIMA error

Residuals

Regression with ARIMA error

ARIMA(1,0,0)(0,1,1)[12]

Regression & Regression with ARIMA Error

Forecast

ARIMA Model

ARIMA(2,0,3) with non-zero mean

ARIMA (2,0,3) Model

Forecast

SARIMA Model

ARIMA (1,0,0)(0,1,1)[12] with drift

SARIMA (1,0,0)(0,1,1)[12] Model

Forecast

VAR (10) Model

Forecast

Multiplicative vs. Additive

Accuracy comparison

Additive without damping

MI	MI: RMSE		MAE	MPE	MAPE	MASE	ACF1
-1.368893	65.85313	43.	22621	-5.772363	26.12261	0.624781	0.0763598

Multiplicative without damping

ME	RMSE		MAE	MPE	MAPE	MASE	ACF1
-4.53528	62.63694	40.2	0102	-12.49822	24.29647	0.5810557	0.1876421

Additive with damping

ME	RMSE		MAE	MPE	MAPE	MASE	ACF1
2.804036	62.78255	39.9	1608	-8.187681	23.32441	0.5769372	0.1316823

Multiplicative with damping

ME	550000000000000000000000000000000000000		MAE	MPE	MAPE	MASE	ACF1
2.804036	62.78255	39.9	1608	-8.187681	23.32441	0.5769372	0.1316823

Decomposition of multiplicative Time Series

Forecast

Neural Network Autoregression(1,1,2) [12] Model

Forecast

Model Selection

Comparing Forecast Residuals in a box plot

Model Selection

Observed Vs Predicted trip count values for test period Jan 2022 - April 2023

Future Work

Model

- Can apply expanding and sliding window to validate prediction (currently using only one time period to test prediction)
- Extend testing period to more than one year to see if the models can factor in seasonality for longer forecast period

Business Indication

- Fine Grained Temporal Analysis: Explore granular time intervals such as weekly, daily, or even hourly, helping Divvy optimize resources on a smaller time scale.
- Incorporating External Factors: Expand the predictive model by incorporating external factors that may influence trip counts
- User Behavior Analysis: Analyze user behavior and preferences from trip count data to inform marketing, infrastructure, and service improvements

THANK YOU!