REPOSITORIO ACADÉMICO UPC

Propuesta de implementación de un sistema de gestión de mantenimiento para la flota de cargadores frontales 950H en una empresa constructora empleando la metodología del mantenimiento basado en confiabilidad o RCM

Item Type	info:eu-repo/semantics/bachelorThesis			
Authors Huaman Rodriguez, David Enrique; Chura Borda, Erick Paul				
Publisher	Universidad Peruana de Ciencias Aplicadas (UPC)			
Rights	info:eu-repo/semantics/openAccess			
Download date	15/09/2025 18:37:32			
Item License	http://creativecommons.org/licenses/by-nc-sa/4.0/			
Link to Item	http://hdl.handle.net/10757/671898			

UNIVERSIDAD PERUANA DE CIENCIAS APLICADAS

FACULTAD DE INGENIERÍA

PROGRAMA ACADÉMICO DE INGENIERÍA INDUSTRIAL

Propuesta de implementación de un sistema de gestión de mantenimiento para la flota de cargadores frontales 950H en una empresa constructora empleando la metodología del mantenimiento basado en confiabilidad o RCM

TRABAJO DE SUFICIENCIA PROFESIONAL

Para optar el título profesional de Ingeniero Industrial

AUTOR(ES)

Huaman Rodriguez, David Enrique 0009-0006-9836-4858 Chura Borda, Erick Paul 0009-0001-0791-2841

ASESOR(ES)

Sáenz Morón, Martín Joaquín 0000-0003-4274-0456

Lima, 15 de noviembre de 2023

Dedicatoria

El presente trabajo está dedicado de manera especial a nuestra familia por haber sido nuestro apoyo incondicional en cada etapa de nuestra carrera técnica y universitaria. A todas las personas especial que Dios y la vida nos puso en el camino, aportando en nuestra formación profesional y como ser humano.

Resumen

El presente proyecto se desarrolla en una de las empresas líderes en el sector de la construcción, la compañía Conalvías (Perú).

Actualmente, Conalvías no ha sido ajena a los problemas de gestión mantenimiento. En este sentido, la materia de investigación del presente proyecto estudia: "Implementar un Sistema de gestión de mantenimiento para la flota de cargadores 950H CAT empleando RCM, aumentado la disponibilidad en 8% y disminuir los costos de mantenimiento en 10% en la obra de Construcción de carreteras Canta – Huallay".

El proyecto se logró utilizando distintas herramientas de Ingeniería Industrial, permitiendo el análisis y la selección técnico – económica de la propuesta de solución óptima para la empresa.

Finalmente se demuestra, a través de la implementación y su análisis financiero, que el proyecto y a propuesta de solución fue viable y rentable.

Palabras clave: Mantenimiento centrado en confiabilidad; gestión de mantenimiento; disponibilidad; confiabilidad.

Proposal for the implementation of a maintenance management system for the fleet of 950H front loaders in a construction company using the reliability-based maintenance or RCM methodology

Abstract

This project is developed in one of the leading companies in the construction sector, the Conalvías company (Peru).

Currently, Conalvías has not been immune to maintenance management problems. In this sense, the research subject of this project studies: "Implementing a maintenance management system for the fleet of CAT 950H loaders using RCM, increased availability by 8% and decreased maintenance costs by 10% at the construction site. Construction of Canta – Huallay roads."

The project was achieved using different Industrial Engineering tools, allowing the technical-economic analysis and selection of the optimal solution proposal for the company.

Finally, it is demonstrated, through the implementation and its financial analysis, that the project and a proposed solution were viable and profitable.

Keywords: Maintenance focused on reliability; maintenance management; availability; reliability.

u201318603_David Enrique Huaman Rodriguez_Propuesta de implementación de un sistema de gestión de mantenimiento para la flota de cargadores frontales 950H en una empresa constructora empleando la

INFORME	DE ORIGINALIDAD				
5 ₉	∕6 DE SIMILITUD	5% FUENTES DE INTERNET	0% PUBLICACIONES	3% TRABAJOS DEL ESTUDIANTE	
FUENTES	PRIMARIAS				
1	Submitte Ciencias A Trabajo del estu		d Peruana de		2%
2	repositor Fuente de Inter	ioacademico.up	oc.edu.pe		1%
3	upc.aws.o	openrepository.	com		1%
4	documen			<	<1%
5	hdl.handl			<	<1%
6	WWW.COU Fuente de Inter	rsehero.com		<	<1%

Tabla de contenido

1. Capítı	alo I – ANTECEDENTES DEL PROYECTO	1
1.1	Antecedentes	1
1.2	Marco teórico	3
1.2.	1 Curva de confiabilidad	3
1.2.2	2 Patrón de las fallas	3
1.2.	Modelos básicos de confiabilidad	5
2. PROB	BLEMÁTICA DE LA ORGANIZACIÓN	6
2.1	Descripción de la Organización	6
2.1.	1 Descripción de la empresa	6
2.1.2	2 Cadena de Valor	6
2.1.	3 Mapa de procesos	6
2.1.4	4 Diagrama SIPOC de Mantenimiento	7
2.1.	5 Mapa Estratégico de Mantenimiento	8
2.1.0	6 Flujograma del proceso de Mantenimiento	8
2.2	Identificación del Problema	9
2.2.	1 Impacto Económico	9
2.2.2	2 Indicadores de Mantenimiento	10
2.3	Planteamiento de objetivos	14
2.3.	1 Objetivo General	14
2.3.	2 Objetivos específicos	14
3. Capítı	ulo III – PROPUESTA DE INGENIERÍA	15
3.1	Vinculación de causa con la solución	15
3.2	Diseño detallado de la Solución	16
3.2.	1 Flujograma del proceso de atención de mantenimientos	16
3.2.2	Pasos para la implementación de RCM	17
3.3	Diseño de indicadores	19
3.4	Consideraciones de la implementación	19
3.4.	1 Cronograma de ejecución de RCM	19
3.4.2	2 Presupuesto para la ejecución del proyecto	21
4. Result	ado del Proyecto	25

4.1	Validación funcional	25
4.2	Evaluación del Impacto Económico	27
4.2	.1 Flujo de caja	27
4.2	.2 Análisis Financiero Indicadores de Rentabilidad	28
4.3	Evaluación de impactos no económicos	29
4.3	.1 Reducción de Accidentes Laborales	29
4.3	.2 Personal Motivado	29
4.3	.3 Mejora de las Relaciones con el Cliente Interno	30
4.3	.4 Reducción de Multas por Retrasos	30
5. Conc	lusiones y recomendaciones	31
5.1	Conclusiones	31
5.2	Recomendaciones	31
Referen	ıcias	32
Anexo(s	s)	33

Lista de Tablas

Tabla 1 Gastos reales y presupuestados de mantenimiento y/o reparación	10
Tabla 2 Comparativo con el Benchmarking de Mantenimiento	10
Tabla 3 Evaluación de las causas según la tabla de jerarquización y su nivel de in	ıpacto11
Tabla 4 Disponibilidad mecánica, MTTR y MTBF	19
Tabla 5 Resultado de indicadores	19
Tabla 6 Presupuesto personal de mantenimiento	21
Tabla 7 Presupuesto Implementación de recursos	22
Tabla 8 Costos de servicios	23
Tabla 9 Costo de materiales y herramienta, capacitación y subcontratación	24
Tabla 10 Gastos administrativos post- proyecto	24
Tabla 11 Disponibilidad 2018 - 2022	25
Tabla 12 <i>MTBF 2018 - 2022</i>	26
Tabla 13 <i>MTTR</i> 2018 - 2022	26
Tabla 14 Estado de resultado	27
Tabla 15 Flujo de caja del proyecto	28
Tabla 16 Resultados de TIR, VAN, B/C, PAYBACK	29
Tabla 17 Medición del KPI en 2018 y 2022	30

Lista de Figuras

Figura 1 Contribución a la construcción global crecimiento 2020-2030	1
Figura 2 PBI global y PBI de la construcción: 2017 - 2022	2
Figura 3 Curva de la bañera	4
Figura 4 Tiempo promedio de las fallas	4
Figura 5 Tiempo promedio entre las fallas	5
Figura 6 Cadena de valor – 2022	6
Figura 7 Mapa de procesos-2022	6
Figura 8 SIPOC de mantenimiento	7
Figura 9 Mapa Estratégico de Mantenimiento -2022	8
Figura 10 Flujograma del proceso de Mantenimiento -2018	9
Figura 11 Diagrama de Ishikawa	12
Figura 12 Diagrama de Pareto	13
Figura 13 Diagrama del árbol de motivos y causas del problema	15
Figura 14 Flujograma del proceso de Mantenimiento -2022	16
Figura 15 Funciones generales de los equipos de trabajo	17
Figura 16 Pasos para la implementación del RCM	18
Figura 17 Cronograma de ejecución de RCM	20

1. Capítulo I - ANTECEDENTES DEL PROYECTO

1.1 Antecedentes

Marsh McLennan (2021) señala que, en 2021, el mundo empezó a recuperarse del problema sanitario, mientras que el sector de la construcción experimentó un notable avance con un crecimiento del 6.6%.

Adicionalmente, debemos tener en cuenta que países como la India, Indonesia, China y Estados Unidos representan el 58.3% del crecimiento en el mundo (Marsh McLennan, 2021) como se muestra en la figura 1 en la contribución global de los países más importantes, siendo estos países el motor fundamental del globo para el abastecimiento de insumos, materiales y equipos para el resto del mundo en el sector de la construcción.

Figura 1

Contribución a la construcción global crecimiento 2020-2030

Nota. De "Informe sobre el futuro de la construcción", por Marsh McLennan, 2021 (https://www.marsh.com/content/dam/marsh/Documents/PDF/it/it/
The Future of Construction ExecSum 2021.pdf).

En el 2022, este sector de la construcción en Perú logró finalizar con un crecimiento del 3% con respecto al 2021, según datos de la Cámara Peruana de la Construcción (CAPECO, 2023), como se ilustra en la Figura 2.

Figura 2

PBI global y PBI de la construcción: 2017 - 2022

Nota. De "¿Cómo afrontar los desafíos de un país en emergencia permanente?", por el Instituto Nacional de Estadística e Informática, 2023

http://www.construccioneindustria.com/iec/descarga/IEC62 0223.pdf).

A lo largo de estos últimos años, el sector de la construcción en nuestro país ha tenido muchas variantes que están relacionadas con el entorno político, social, sanitario (pandemia) y una serie de variables que el Instituto Nacional de Estadística e Informática (INEI, 2023) evalúa. Estas variantes han impactado en el PBI nacional con la caída de las ventas de viviendas en un 4% en el primer bimestre del 2023 (CAPECO, 2023) por motivos del alza de los precios al consumidor e índice de precios de materiales de construcción (CAPECO, 2023) .

Finalmente, el sector de la construcción es uno de los motores más relevantes en el globo y en nuestro país, ésta ha presentado un desarrollo importante en los últimos años,

incluso después de la pandemia, y a pesar de los retos político social que tiene que enfrentar deben asegurar su desarrollo y sostenibilidad a largo plazo.

Hoy en día tener un modelo de gestión eficiente en las empresas es fundamental para la competitividad con empresas de talla mundial, además de beneficiarse con el aumento de la rentabilidad de las empresas y poder estar vigentes en el mercado.

1.2 Marco teórico

Cuando hablamos de confiabilidad decimos que es la probabilidad de que un equipo o sistema continue operando de acuerdo condiciones establecidas durante un tiempo determinado. La confiabilidad también es conocida como la probabilidad de éxito, visto de un punto cuantitativo. Existen 2 tipos de confiabilidad: la prevista y la evaluada. La confiabilidad prevista es aquella que ya es conocida como dato de algún componente de forma individual y la confiabilidad evaluada es aquella en que se realiza mediante un estudio para poder calcularlo (Kumar, 2015).

1.2.1 Curva de confiabilidad

En los estudios de confiabilidad se utilizan las distribuciones continuas exponencial, normal y Weibull (Kumar, 2015).

1.2.2 Patrón de las fallas

Las fallas de los equipos suelen seguir la distribución de Poisson, es decir que tienen una baja frecuencia de fallas durante la vida normal del equipo (Kumar, 2015). Este comportamiento de fallas está representado mediante la curva de la bañera como se muestra en la figura 3. En una interpretación colectiva de los equipos mediante la curva de la bañera es en equipos estadísticamente iguales y con las mismas características operativas, de lo contrario tendrá que realizarse un análisis individual por cada equipo (Kumar, 2015).

Figura 3

Curva de la bañera

Nota. De "Industrial Engineering and Management", por Kumar, 2015.

MTTR

Este es un indicador de mantenimiento muy utilizado que significa tiempo medio de reparación el cual se calcula mediante la siguiente fórmula que se muestra en la figura 4.

Figura 4

Tiempo promedio de las fallas

$$MTTR = \frac{Tiempo \text{ total de reparación por falla}}{N^{\circ} \text{ de fallas}}$$

Nota. De "Industrial Engineering and Management", por Kumar, 2015.

• MTBF

Es otro indicador de mantenimiento que muestra el promedio del tiempo entre una falla y otra, el cual se calcula mediante la siguiente fórmula que se muestra en la figura 5.

Figura 5

Tiempo promedio entre las fallas

$$MTBF = \frac{Tiempo \text{ total de operación}}{N^{\circ} \text{ de fallas}}$$

Nota. De "Industrial Engineering and Management", por Kumar, 2015.

1.2.3 Modelos básicos de confiabilidad

De acuerdo a kumar (2015) menciona que los modelos de confiabilidad están representados en base a patrones de fallas basados en curvas exponencial weibull y normal.

Modelo CFR

Este modelo representa una de las distribuciones más comunes en los análisis de confiabilidad ya que siguen un patrón de falla aleatoria. En la industria los equipos electrónicos están representados por una distribución exponencial.

Modelo weibull

No siempre la tasa de fallas es constante y aleatoria como es el CFR. En el modelo Weibull se adapta para una tasa de fallos decreciente y creciente. Las piezas mecánicas suelen fallar debido al desgaste diario lo cual este modelo se adapta a ese tipo de componentes

Modelo normal

Este tipo de modelo es la distribución más utilizada para evaluar comportamientos aleatorios de los sistemas. En prácticas se utiliza para calcular la confiabilidad en modelos de falla de fatiga y desgaste de los componentes.

2. PROBLEMÁTICA DE LA ORGANIZACIÓN

2.1 Descripción de la Organización

2.1.1 Descripción de la empresa

CONALVÍAS S.A. es una empresa creada en el año 1980, en Cali - Colombia, dedicado a la ejecución de proyectos de infraestructura vial.

2.1.2 Cadena de Valor

A continuación, vamos a revisar la cadena de valor de la compañía

Figura 6

Cadena de valor – 2022

2.1.3 Mapa de procesos

En la Figura 7, tenemos el Mapa de Procesos y sus áreas de soporte.

Figura 7

Mapa de procesos-2022

2.1.4 Diagrama SIPOC de Mantenimiento

En la Figura 8, se detalla las entradas y salidas del proceso de mantenimiento.

Figura 8

SIPOC de mantenimiento

2.1.5 Mapa Estratégico de Mantenimiento

En la Figura 9, se observa el Mapa de Estratégico de mantenimiento que nos ayudará a trazar una línea clara de los procesos que se tiene que asegurar para alcanzar el objetivo.

Figura 9 *Mapa Estratégico de Mantenimiento -2022*

2.1.6 Flujograma del proceso de Mantenimiento

En la Figura 10, se muestrea el flujograma del proceso de mantenimiento donde se planifica todos las actividades preventivas y correctivas, finalizando el proceso con el cierre de la OT y el informe respectivo como se puede evidenciar en la siguiente figura.

Figura 10Flujograma del proceso de Mantenimiento -2018

2.2 Identificación del Problema

La empresa Conalvías en el año 2018 experimentó una disminución en la rentabilidad del proyecto debido a sobrecostos en el mantenimiento de la flota de cargadores frontales del Proyecto.

Esta desviación fue resaltada en la junta anual del directorio a través del gerente de proyecto donde manifiesta que el centro de costos de servicio de mantenimiento a aumentado con respecto al planeado.

Teniendo en cuenta que en las mismas condiciones operativas de otros proyectos el presupuesto de mantenimiento se mantiene dentro del estándar.

2.2.1 Impacto Económico

A continuación, mostramos en la Tabla 1

Gastos reales y presupuestados de mantenimiento y/o reparación en donde se evidencia un sobrecosto del 48%.

Tabla 1Gastos reales y presupuestados de mantenimiento y/o reparación

enero - diciembre 2022								
Presupuesto por reparaciones	S/. 1.319.725,51							
Gastos reales por reparaciones	S/. 1.953.489,70							
Sobrecostos	-S/. 633.764,19							
sobrecostos (%)	48,02%							

En el Anexo 6 tenemos el análisis del impacto económico de un (01) Cargador frontal malogrado en 1 día, según el área de trazabilidad de costos, la no producción asciende a S/ 8.840,0 por día.

2.2.2 Indicadores de Mantenimiento

Se muestra el cuadro comparativo de los resultados de los principales indicadores de mantenimiento con su respectiva meta corporativa y el benchmarking como brecha técnica.

Tabla 2Comparativo con el Benchmarking de Mantenimiento

INDICADOR	RESULTADO	META EMPRESA	BENCHMARKS DE MANTENIMIENTO
MTTR (HRS)	17.8	6	3-6 HRS
MTBF (HRS)	110.4	140	140 - 160 HRS
DISPONIBILIDAD	85%	90%	88% A 92%

Nota. Información al 30 de agosto de 2023. Adaptado de "Performance metrics for mobile mining equipment", por Caterpillar, 2017 (www.caterpillar.com).

De acuerdo con la tabla 2, el área de mantenimiento no está cumpliendo con las metas de la empresa que están alineados con el Benchmarking de mantenimiento de caterpilar, 2017 para equipos de maquinarias de construcción de vías.

A continuación, mostramos en la tabla 3 las causas principales del problema y el impacto económico que afecta la rentabilidad del proyecto.

Tabla 3Evaluación de las causas según la tabla de jerarquización y su nivel de impacto

N°	Clasificación "M"	Causa Principal	Impacto en el costo	Grado de importancia
6.1	Máquinas y equipos	Disponibilidad insuficiente de equipo debido a tareas de reparación	S/185,648.40	Muy importante
1.1	Métodos	Enfoques inadecuados en el mantenimiento preventivo y correctivo	S/180,342.60	Muy importante
4.2	Control	Procesos deficientes para la asignación de recursos	S/170,177.70	Muy importante
4.1	Control	Indicadores de desempeño ineficaces	S/165,432.00	Muy importante
2.3	Materiales	Falta de stock de repuestos críticos y no críticos	S/47,887.00	Muy importante
2.2	Materiales	Deficiente mantenimiento de los activos adquiridos	S/43,222.00	Importante
3.2	Medio Ambiente	Entorno inadecuado del área de reparaciones	S/28,765.00	Importante
5.1	Mano de obra	Equipo inapropiado y carencia de trabajadores	S/14,553.00	Medianamente importante
5.3	Mano de obra	Falta de motivación entre los empleados	S/10,232.00	Medianamente importante
2.1	Materiales	Requerimiento inapropiado en las solicitudes de recambio	S/9,322.00	Medianamente importante
5.2	Mano de obra	Roles de trabajo no definidos	S/8,755.00	Medianamente importante
6.3	Máquinas y equipos	Mala asignacion del recursos del área.	S/7,211.00	Medianamente importante
6.2	Máquinas y equipos	Uso de Herramientas de trabajos en mal estado.	S/6,400.00	Medianamente importante
1.3	Métodos	Falta de registros en el departamento	S/5,244.00	Poca importancia
3.1	Medio Ambiente	Deficiencia en la señalización en el lugar de operaciones	S/3,399.00	Poca importancia
1.2	Métodos	Falta de procedimeintos de trabajos	S/1,899.00	Poca importancia

Mediante este cuadro, y su análisis interno identificamos cuáles son las causas que tienen un mayor impacto en nuestro proyecto.

Ahora procederemos a crear un Diagrama de Ishikawa y Pareto (ver Figura 11 y Figura 12) para obtener una representación visual más clara de las causas que originan el problema.

Figura 11Diagrama de Ishikawa

Figura 12Diagrama de Pareto

13

En la gráfica de Pareto, se puede notar 4 causas que forman el 80% de los problemas:

- Disponibilidad insuficiente de equipo debido a tareas de reparación.
- Enfoques inadecuados en el mantenimiento preventivo y correctivo
- Procesos deficientes para la asignación de recursos.
- Indicadores de desempeño ineficaces

2.3 Planteamiento de objetivos

2.3.1 Objetivo General

Implementar un Sistema de gestión de mantenimiento para la flota de cargadores frontales CAT empleando la metodología RCM, aumentado la disponibilidad en 5% y disminuir los costos de mantenimiento en 10% anual en la obra de Construcción de carreteras Canta – Huallay para diciembre del 2022.

2.3.2 Objetivos específicos

- 1. Incrementar la disponibilidad de la flota en un 90% para diciembre del 2022.
- 2. Incrementar el tiempo medio entre fallas (MTBF) en un 20% para diciembre del 2022.
- 3. Reducir el tiempo medio por reparación (MTTR) en un 60% para diciembre del 2022.

3. Capítulo III - PROPUESTA DE INGENIERÍA

3.1 Vinculación de causa con la solución

En capítulo realizamos el diagrama de árbol de motivos y causas y proponemos las herramientas de ingeniería qué aplicaremos.

Figura 13Diagrama del árbol de motivos y causas del problema.

En la Figura 13 evidenciamos el impacto del problema de una ineficiente gestión de mantenimiento en los cargadores frontales 950H que se está realizando en el proyecto de Canta Huallay, así mismo, se muestra los motivos y causas que esta generado esta deficiencia.

3.2 Diseño detallado de la Solución

3.2.1 Flujograma del proceso de atención de mantenimientos

A continuación, se presenta el nuevo flujo del proceso de mantenimiento alineado a la metodología del mantenimiento centrado en la confiabilidad (ver figura 14).

Figura 14Flujograma del proceso de Mantenimiento -2022

3.2.2 Pasos para la implementación de RCM

Para el inicio del presente proyecto se propone la creación de equipos multidisciplinarios compuestos por la gerencia de mantenimiento y producción. En este contexto, se designará un líder de RCM para guiar el proceso de RCM, el cual se describe a continuación en la Figura 15.

Figura 15Funciones generales de los equipos de trabajo

En conjunto, estos roles desempeñan un papel crucial en el proceso de RCM, desde la dirección y coordinación del proyecto hasta la facilitación de las actividades de análisis y la generación de estrategias de mantenimiento efectivas. La comunicación efectiva y la colaboración son clave para el éxito del equipo de RCM.

Una vez conformado el equipo de trabajo continuaremos con los pasos de la implementación del RCM como lo indica Kumar ,2015.

Figura 16Pasos para la implementación del RCM

Nota. De "Industrial Engineering and Management", por Kumar, 2015.

3.3 Diseño de indicadores

A continuación, se presenta los indicadores de mantenimiento propuestos en la metodología RCM.

Tabla 4Disponibilidad mecánica, MTTR y MTBF

INDICADOR Unidad FÓRMULA		EXPLICACIÓN	PERIODICIDAD	
Disponibilidad Mecánica (DM)	%	Σ Tiempo Real operativo de Equipos /(Σ Tiempo Real operativo de Equipos + Σ Tiempo Varado+ Σ Tiempo en Mantenimiento)	Este indicador nos mide la Disponibilidad Mecánica de los equipos, con respecto a la Gestión de Equipos y Mantenimiento del mes evaluado. Sirve para realizar un análisis selectivo de los Equipos cuyo comportamiento está por debajo de la meta.	Mensual
Tiempo medio entrer fallas (MTBF)	Hrs	Horas trabajadas / # de paradas	Muestra el tiempo prmomedio que la maquina trabaja antes de parar por algún motivo mecánico. Proporciona información sobre la adecuada gestión del mantenimiento.	Mensual
Tiempo Medio para reparar (MTTR)	Hrs	Hrs de reparaciones / # de paradas	Muestra el tiempo promedio que demoran las repacaciones o intervenciones a la maquina por motivos mecanicos. Es el tiempo que la maquina se encuentra en estado de reparación.	Mensual

Nota. Adaptado de "Industrial Engineering and Management", por Kumar, 2015.

Luego mostramos el resultado actual de los indicadores vs los esperados.

Tabla 5 *Resultado de indicadores*

INDICADOR	Unidad	AS - IS	то ве	VARIACION
Disponibilidad Mecánica (DM)	%	85%	90%	Incremento 5%
Tiempo medio entrer fallas (MTBF)	Hrs	110.4	140	Incremento 20%
Tiempo Medio para reparar (MTTR)	Hrs	17.8	6	Disminuye > 60%

3.4 Consideraciones de la implementación

3.4.1 Cronograma de ejecución de RCM

Para la implementación del RCM del presente proyecto, se programa como inicio de desarrollo a partir del 1ero de enero 2018 y finaliza a mediados de diciembre de 2018.

Figura 17Cronograma de ejecución de RCM

3.4.2 Presupuesto para la ejecución del proyecto

Para que esta implementación sea exitosa y cumpla con los estándares de ejecución y control de una empresa de clase mundial se propone lo siguiente.

- Invertir en reparaciones mayores a los equipos con la finalidad de lograr mantener hasta el término del proyecto (5 años) una disponibilidad implementando la metodología RCM.
- 2. 1 taller de mantenimiento que soporte la implementación
- 3. Oficinas administrativas de control y gestión.
- **4.** Personal capacitado para soportar y mantener la implementación como mejora continua de los procesos de mantenimiento.
- **5.** Todos estos conceptos tienen un valor de inversión de S/. 1,884,620.
- 6. Y el costo de la implementación de la metodología RCM es S/. 105,554.

A continuación, mostramos en la Tabla 6 los gastos por incremento de personal de mantenimiento, que incluyen todos los costos de carga laboral (CTS, EPS, Es salud). Es importante destacar que el personal fue contratado exclusivamente para la implementación de RCM.

Tabla 6 *Presupuesto personal de mantenimiento*

N°	ÁREA	J	efe de Equipos		Supervisor intenimiento	1	Técnico de nantenimiento	Т	ecnico Junior	Total personal	Total promedio
		N°	Prom. Salarial	Nº I	Prom. Salaria	l Nº	Prom. Salarial	Nº	Prom. Salarial	Planilla	Salarial
1	OBRA	0		2	5,000.00	5	3,500.00	7	1,800.00	14	40,100.00
2	ADMINISTRATIVO	1	8,000.00	0		0		0		1	8,000.00

TOTAL S/. 577.200,00

En este cuadro se cuantifica el incremento de personal dando como resultado un gasto anual de S/. 577,200.

En la siguiente Tabla 7 muestra el desglose del presupuesto (**S/. 1,884,620.**) por implementación de recursos (oficina, taller y reparaciones mayores), y el financiamiento del 55% del costo total de la Inversión.

Tabla 7Presupuesto Implementación de recursos

Recursos	S/1,884,620	%
Capital Propio	S/848,079	45%
Financiamiento (Préstamo)	S/1,036,541	55%
RCM	S/.105,554	
Inversión Total árrea de mantenimiento in situ		
Descripción	Inversión	%
Valor Proyecto Taller - Oficinas Canta -Huaylla	306,000	75.89%
Edificación , trampa de residuos y zona de lavado	13,940	3.46%
Instalaciones	10,200	2.53%
Inversión Técnica (infraestructura de obra)	5,100	1.26%
Flota de Transporte (3)	68,000	16.86%
Total	S/403,240	100%
Mantenimiento		
Descripción	Inversión S/.	%
Mantenimiento instalación eléctrica	5,100	41%
Mantenimiento instalación sanitaria	4,080	32%
Otros gastos generales	3,400	27%
Total	S/12,580	100%
Instalaciones		
Descripción	Inversión S/.	%
Red contra incendios	4,080	26%
Red IT	3,400	21%
Instalación de aire acondicionado	2,720	17%
Gas	2,720	17%
Líneas de aire (Equipos)	3,060	19%
Total	S/15,980.00	100%
Maquinarias , Muebles y Enseres		
Descripción	Inversión S/.	%
Maquina Cargador frontal	1,428,000	100%
Muebles y enseres	6,800	0%
Total	S/1,434,800.00	100%
Tramites y otros		
Descripción	Inversión S/.	%
Seguridad	6,800	38%
-		
Legales	6,120	34%
Legales otros	6,120 5,100	34% 28%

A continuación, en la Tabla 8 , Mostramos los gastos proyectados para el proyecto que incluyen, costos indirectos, costos de mantenimiento y la depreciación.

Tabla 8 *Costos de servicios*

		COSTOS INDIRI	ECTOS		
DETALLE	2018	2019	2020	2021	2022
Agua Potable m3	S/. 24,000.00	S/. 25,000.00	S/. 26,000.00	S/. 27,000.00	S/. 28,000.00
Varios Indirectos	S/. 91,560.00				
Energía Eléctrica	S/. 36,000.00	S/. 37,000.00	S/. 38,000.00	S/. 39,000.00	S/. 40,000.00
TOTAL (S/.)	S/. 151,560.00	S/. 153,560.00	S/. 155,560.00	S/. 157,560.00	S/. 159,560.00
		COSTOS DE VE	NTAS		
DETALLE	2018	2019	2020	2021	2022
Servicio de Mantenimiento	S/. 687,398.40	S/. 712,857.60	S/. 734,073.60	S/. 804,793.60	S/. 980,414.93
TOTAL (S/.)	S/. 687,398.40	S/. 712,857.60	S/. 734,073.60	S/. 804,793.60	S/. 980,414.93
		DEPRECIACI	ION		
DETALLE	2018	2019	2020	2021	2022
Depreciación	S/. 485,520.00				
TOTAL (S/.)	S/. 485,520.00				

Luego, mostramos el presupuesto por Implementar la metodología de RCM y su continuidad en los 4 años divididos en materiales y herramientas, capacitación y subcontratación.

Tabla 9 *Costo de materiales y herramienta, capacitación y subcontratación.*

cos	OS DE MATERIALES Y HERRAMIENTAS A	UTILIZAR EN LA IMPLE	MENTACION	CANTIDAD	
DESCRIPCION					COSTO
Anaqueles	·			4 unid.	S/. 250
Cuadro Mural de mantenimiento para crear conc	iencia			2 und.	S/. 300
Imprenta , formatos				260 unid	S/. 35
Equipo de medición de carrileri	1 und.	S/. 1,500			
Herramientas Equipo de diagnostico de moto	1 und.	S/. 2,10			
Equipo predictivo (temperatur	a, rpm,)			1 und.	S/. 1,80
Separatas explicación del RCM al Área de equipos				30 und.	S/. 150
Publicaciones de resultados mensuales				10 und	S/. 50
Incentivos				4 unid.	S/. 600
Pintura				7 gln	S/. 30
Materiales varios				20 und	S/. 23
				TOTAL	S/. 7,630.0
	COSTO DEL PROGRAMA DE	CARACITACION			
DESCRIPCION	PERSONAL	CAPACITACION	HORAS	COSTO H-H	COSTO S/.
Capacitación en la metodología del RCM	Jefe de Equipo	1	30	45	S/. 1,350.0
Capacitación en la metodología del RCM	Asistente y auxiliares de equipos	2	30	30	S/. 1,800.0
Capacitación en la metodología del RCM	Técnico mecánicos / eléctricos	8	30	15	S/. 3,600.0
Capacitación en la metodología del RCM	Supervisor de Mantenimiento	1	30	30	S/. 900.0
Capacitación en la metodología del RCM	Operadores de maquinaria	7	30	10	S/. 2.100.0
Implementación del RCM	Supervisor de Mantenimiento	1	250	30	S/. 7,500.00
Implementación del RCM	Técnico mecánicos / eléctricos	8	250	15	S/. 30,000.00
Implementación del RCM	Operadores de maguinaria	7	250	10	S/. 17,500.00
Implementación del RCM	Facilitador del RCM	1	250	45	S/. 11,250.00
				TOTAL	
	OSTO POR SUB-CONTRATACIÓN DE PERS				
DESCRIPCION	PERSONAL	CANTIDAD	HORAS	соѕто н-н	COSTO S/.
Implementación en la metodología del RCM	Practicante de Ing. Industrial	1	720	13	S/. 9,360.00
Implementación en la metodología del RCM	Practicante de Ing. Mecánica	1	720	9	S/. 6,804.0
Implementación en la metodología del RCM	Instructor de Excavadora	1	720	8	S/. 5,760.0
				TOTAL	S/. 21,924.00
				TOTAL	S/. 105,554.00

Después de haber ejecutado el proyecto con éxito, los futuros gastos administrativos que se tendrán que asumir se muestran en la tabla 10.

Tabla 10Gastos administrativos post- proyecto

Descripción	Costo
Ing. responsable	\$/5.500,00
Transporte	S/1.500,00
Alimento	S/2.200,00
Apoyo técnico	\$/3.500,00
Insumos y materiales	S/1.000,00
Presupuesto para gestión	S/12.000,00
TOTAL,S/ 25.700,00	

Es necesario para poder realizar el ciclo Deming de la mejora continua y poder perfeccionar nuestro proceso de mantenimiento tener esto costo fijo dentro del presupuesto hasta llegar estandarizarlo en toda la empresa.

4. Resultado del Proyecto

4.1 Validación funcional

Durante la fase de implementación del RCM, se llevaron a cabo la ejecución de los planes de acción y un monitoreo de los indicadores que guardaban una relación directa con los objetivos del proyecto. A continuación, en la Tabla 11, se exhibe el rendimiento alcanzado en cuanto a la disponibilidad, logrando un 90% en el año 2022.

Tabla 11Disponibilidad 2018 - 2022

Como se evidencia en la Tabla 11, se ha conseguido un aumento en la disponibilidad del sistema, llegando a un 90%. Esto se traduce en la recuperación de 15.6 días al año, de los 312 programados inicialmente. Este incremento en la disponibilidad se refleja directamente en un incremento en la producción, con un valor estimado de S/965.328,00 anuales.

Con respecto al indicador MTBF, se ha registrado un incremento del 18% desde 2018 hasta 2022, tal como se detalla en la Tabla 12.

Tabla 12 *MTBF 2018 - 2022*

En la Tabla 12 se observa que aún falta superar el índice de MTBF, se plantea utilizar la metodología de mejora continua para superar este indicador.

Finalmente, se observa en la Tabla 13 una notable reducción del 71% en el indicador del Tiempo Medio para Reparar (MTTR).

Tabla 13 *MTTR 2018 - 2022*

El indicador destacado en este proyecto es el Tiempo Medio para Reparar (MTTR), como se observa en la Tabla 13. Este indicador refleja el impacto directo del trabajo realizado en las tareas de mantenimiento programado y la disponibilidad de repuestos críticos que previamente retrasaban las reparaciones

4.2 Evaluación del Impacto Económico

4.2.1 Flujo de caja

A continuación, en la Tabla 14, se presenta el Estado de Resultados al 2022, periodo que duró el proyecto.

Tabla 14 *Estado de resultado*

	(mile	es de nuevos sol	les)		
	2018	2019	2020	2021	2022
INGRESOS					
VENTAS	3,158,400	3,000,480	1,579,200	1,895,040	2,210,880
EGRESOS					
COSTOS DE VENTA	838,958	866,418	889,634	962,354	1,139,975
Costos de Ventas	687,398	712,858	734,074	804,794	980,415
Costos Indirectos	151,560	153,560	155,560	157,560	159,560
UTILIDAD BRUTA	2,319,442	2,134,062	689,566	932,686	1,070,905
GASTOS OPERATIVOS	720,000	720,000	720,000	720,000	720,000
Gastos de Ventas	0	0	0	0	0
Gastos Administrativos	577,200	577,200	577,200	577,200	577,200
Depreciación	142,800	142,800	142,800	142,800	142,800
UTILIDAD OPERATIVO	1,599,442	1,414,062	-30,434	212,686	350,905
GASTOS FINANCIEROS	142,918	21,464	<u>0</u>	<u>0</u>	<u>0</u>
Intereses financieros	142,918	21,464			
UTILIDAD ANTES DE IMPUESTOS	1,456,524	1,392,598	-30,434	212,686	350,905
Impuestos (30%)	436,957	417,779	-9,130	63,806	105,272
UTILIDAD NETA	S/. 1,019,566	S/. 974,819	S/21,304	S/. 148,880	S/. 245,634
RENTABILIDAD	32.28%	32.49%	-1.35%	7.86%	11.11%

Tabla 15Flujo de caja del proyecto

	FLUJO DE CAJA (miles de nuevos soles)													
	Año 0	2018	2019	2020	2021	2022								
INGRESOS		<u>'</u>												
VENTAS	-	3,158,400	3,000,480	1,579,200	1,895,040	2,210,880								
FINANCIACIÓN (Préstamo bancario)	1,036,541													
INVERSIÓN														
Capital de Trabajo	848,079													
COSTOS DE VENTA		838,958	866,418	889,634	962,354	1,139,975								
Costos de Ventas		687,398	712,858	734,074	804,794	980,415								
Costos Indirectos		151,560	153,560	155,560	157,560	159,560								
UTILIDAD BRUTA		2,319,442	2,134,062	689,566	932,686	1,070,905								
GASTOS OPERATIVOS		720,000	720,000	720,000	720,000	720,000								
Gastos de Ventas		0	0	0	0	0								
Gastos Administrativos		577,200	577,200	577,200	577,200	577,200								
Depreciación		142,800	142,800	142,800	142,800	142,800								
UTILIDAD OPERATIVA (EBIT)		1,599,442	1,414,062	-30,434	212,686	350,905								
Impuestos a la renta (30%)		479,832	424,219	-9,130	63,806	105,272								
UTILIDAD NETA OPERATIVA NOPAT		1,119,609	989,844	-21,304	148,880	245,634								
(+) Depreciación		142,800	142,800	142,800	142,800	142,800								
FLUJO DE CAJA OPERATIVO (FCO)		1,262,409	1,132,644	121,496	291,680	388,434								
Capital de trabajo						848,079								
FLUJO DE CAJA LIBRE (FCL)=FCE	-1,884,620	1,262,409	1,132,644	121,496	291,680	1,236,513								
Prestamo	1,036,541													
Amortizacion del préstamos		-657,698	-378,843											
Interés del préstamo		-142,918	-21,464											
Ahorro tribuitario del prestamo		42,875	6,439											
Inversión proyecto		-105,554	-25,700	-25,700	-25,700	-25,700								
FLUJO DE CAJA FINANCIERO	-S/. 848,079	S/. 399,115	S/. 713,075	S/. 95,796	S/. 265,980	S/. 1,210,813								

Se observa en la Tabla 1515, que el flujo de caja financiero en el primer año es positivo.

4.2.2 Análisis Financiero Indicadores de Rentabilidad

A continuación, se mostrarán los indicadores más significativos y útiles para la evaluación económica del proyecto.

Tabla 16Resultados de TIR, VAN, B/C, PAYBACK

INTERES DEL BANCO	20.95%
сок	24.22%
TIR	48.19%
VAN	S/. 1,123,734.06
PAYBACK	4,33
VAN INGRESOS	S/. 6,854,904.77
VAN COSTOS	S/. 3,338,915.48
B/C	2.05
INTERES DEL BANCO	20.95%
WACC	25.05%
TIR	48.19%
VAN	S/. 1,107,108.44
VAN INGRESOS	S/. 6,750,044.17
VAN COSTOS	S/. 3,294,338.30
B/C	2.05

El proyecto es rentable por tener un VAN >1 y la TIR > al WACC y al COK, además el payback es de 4 años 4 meses y un beneficio de 2.05 soles por cada sol.

4.3 Evaluación de impactos no económicos

La implementación del Mantenimiento Centrado en Confiabilidad no solo tiene impactos económicos, sino que también puede tener impactos no económicos significativos en la organización como se describe a continuación:

4.3.1 Reducción de Accidentes Laborales

El departamento de seguridad reportó una disminución del 40% en la incidencia de accidentes en el proyecto, evaluando esta tasa por cada 100 trabajadores. Se inició con 5 accidentes en el año 2018, alcanzando una notable reducción a 3 accidentes en el año 2022.

4.3.2 Personal Motivado

Se realizo una encuesta llevada el 2018, en la cual participaron 70 trabajadores. La encuesta se basó en una escala de 0 a 100, resultando en un puntaje del 70% en ese año y experimentando un aumento a un 85% en el periodo 2022.

4.3.3 Mejora de las Relaciones con el Cliente Interno

Con el propósito de medir las relaciones internas, se llevó a cabo una encuesta en 2018 y otra en 2022. Estos estudios revelaron un incremento significativo del 20% en la evaluación de las relaciones internas durante este periodo.

4.3.4 Reducción de Multas por Retrasos

Al mejorar la confiabilidad y disponibilidad de los activos, la implementación del RCM ayudó a cumplir con los plazos y horarios de producción. Esto reduce la probabilidad de incumplir con entregas y plazos, evitando multas y sanciones por retrasos en la entrega de los avances de la obra, de esta manera se eliminó en un 100% las multas para el 2022.

Tabla 17 *Medición del KPI en 2018 y 2022*

Aspecto	KPI	Cifra en 2018	Cifra en 2022	Mejora
Reducción de Accidentes Laborales	Tasa de Accidentes Laborales por 100 empleados	5.0	3.0	Reducción de 40%
Personal Motivado	Encuesta de Satisfacción del Empleado	70 (en una escala de 0-100)	85	Aumento de 21.4%
Mejora de las Relaciones con el Cliente Interno	Encuesta de Evaluación de Relaciones Internas.	3.5 (en una escala de 1-5)	4.2	Aumento de 20%
Reducción de Multas por Retrasos	Monto total de multas por retrasos	S/ 390,000	S/ 0	Reducción del 100%

En la Tabla 17, se presenta la evaluación de los Indicadores Clave de Desempeño (KPI) para los años 2018 y 2022, lo cual refleja mejoras significativas que han resultado de la implementación exitosa del RCM. Estas mejoras evidencian el impacto positivo y el éxito de la estrategia de RCM en la gestión y el rendimiento de la organización.

5. Conclusiones y recomendaciones

5.1 Conclusiones

Esta propuesta de mejora consiste en reducir las actividades correctivas y en consecuencia mejorar la disponibilidad de los equipos, analizando las fallas, y mejorando los tiempos de atención, así como; la mejora en la estrategia de mantención de acuerdo con el contexto operacional y criticidad de los equipos con la finalidad de garantizar la producción continua del proyecto.

La implementación del RCM logró aumentar la disponibilidad en un 5% cumpliendo la brecha esperada por la organización, así como, la reducción de los costos de mantenimiento del 41% a lo largo de los 5 años.

Se logró realizar un diagnóstico completo de la situación con la selección de un modelo de mantenimiento basado en la confiabilidad (RCM) satisfaciendo las prioridades de nuestro cliente interno y bajo la comprobación de éxito de esta metodología en el Mantenimiento de Clase Mundial que solucionará las 4 principales causas que impactan en el 80% del problema.

Se logró incrementar en un 18% el MTBF y disminuir el MTTR en un 71% durante los 5 años de duración del proyecto.

Se logró evaluar el impacto económico financiero que genera la implementación de la metodología en términos de rentabilidad para la empresa, logrando tener un VAN positivo y la TIR mayor al WACC siendo rentable para la empresa, llegando a tener una sobre ganancia de S/. 1,1 MM.

5.2 Recomendaciones

Se recomienda actualizar mensualmente los indicadores del sistema de gestión propuestos con la finalidad de observar posibles variaciones en el sistema y así poder tomar acciones correctivas o preventivas de manera programada.

Hacer seguimiento de posibles oportunidades de mejoras enfocada en el desarrollo de esta metodología del RCM para la mejora continua del proceso.

Se recomienda actualizar los modos de fallas en la flota de Cargadores Frontales para ajustar los planes de mantenimiento y contribuir a la mejora continua del proceso.

Referencias

- Cámara Peruana de la Construcción (2023). Informe Económico de la construcción.
 ¿Cómo afrontar los desafíos de una país en emergencia permanente?.

 http://www.construccioneindustria.com/iec/descarga/IEC62_0223.pdf
- Caterpilar. (2017). *Performance metrics for mobile mining equipment*. Recuperado el 30 de agosto de 2023, de www.caterpillar.com
- Instituto Nacional de Estadística e Informática (2023). *Principales Indicadores Macroeconómicos*. Recuperado el 30 de agosto de 2023, de

 https://m.inei.gob.pe/estadisticas/indice-tematico/economia/
- Kumar, K. (2015). *Industrial Engineering and Management.* Pearson India Education Services Pvt.
- Marsh McLennan. (2021). Future of Construction. Recuperado el 30 de agosto de 2023, de https://www.marsh.com/mx/industries/construction/insights/the-future-of-construction-report.html

Anexo(s)

Anexo 1 *Análisis FODA*

OPORTUNIDADES ESTRATÉGICAS	AMENAZAS ESTRATÉGICAS			
1. Crecimiento del sector construcción y Exigencia de	 Desaceleración de proyectos de inversión 			
mercado internacional para ser una empresa de clase mundial.	sectorial por coyuntura política actual y desaceleración de nuevos proyectos de construcción.			
 Posibilidad de integración mejora del ranking nacional con empresas del sector construcción. Solvencia del corporativo a nivel internacional. 	2. Nuevos competidores en el rubro de construcción provenientes de China. 3. Nuevas requerimientos y requisitos post			
	pandemia.			
FORTALEZAS ESTRATÉGICAS	DEBILIDADES CRÍTICAS			
 Solvencia financiera de la casa Matriz por 	 Sobrecosto de mantenimiento y falta de 			
 Solvencia financiera de la casa Matriz por Megaproyectos ejecutados a nivel LATAM. 	 Sobrecosto de mantenimiento y falta de estandarización de procesos claves. 			
•	-			
Megaproyectos ejecutados a nivel LATAM.	estandarización de procesos claves. 2. Falta de desarrollo de una metodología			
Megaproyectos ejecutados a nivel LATAM. 2. Convenio Estratégico a nivel internacional con	estandarización de procesos claves. 2. Falta de desarrollo de una metodología aplicado a la flota de equipos para aumentar la			

Anexo 2Gastos de mantenimiento por reparación de máquinas enero-diciembre 2022.

descripción de gastos	Monto (S/.)
Reparación de Cargador Frontal 1	S/ 270,237.30
Reparación de Cargador Frontal 2	S/ 265,630.70
Reparación de Cargador Frontal 3	S/ 290,290.90
Reparación de Cargador Frontal 4	S/ 295,634.50
Reparación de Cargador Frontal 5	S/ 295,149.40
Reparación de Cargador Frontal 7	S/ 285,634.70
Reparación de Cargador Frontal 8	S/ 250,912.20
	S/ 1,953,489.70

Anexo 3 *Tarifa cargador frontal 950H*

		CARGADOR 950 H - TARIFA SECA	< 180HORAS	
		Horas Presupuesto	180	
		Consumo gl/hr	8.50	
		Precio: NS / Galón	8.78	
		COSTOS OBRA	Valores	
		Combustible		09
		Mano de obra		09
		TOTAL COSTOS OBRA	0.00	
		COSTOS EQUIPO	Valores	
		Elementos de desgaste	6,185.64	
Poconia nara				22
	65%	Lubricantes y filtros	3,855.20	
Mtto y	65%	Lubricantes y filtros Repuestos	3,855.20 5,492.86	149
Mtto y	65%			14°
Reserva para Mtto y reparaciones Costos de		Repuestos	5,492.86	14° 20° 89
Mtto y reparaciones Costos de	65% 31%	Repuestos Reparaciones	5,492.86 2,296.15	14° 20° 8° 2°
Mtto y reparaciones Costos de		Repuestos Reparaciones Otros costos	5,492.86 2,296.15 500.00	14° 20° 8° 2°
Mtto y reparaciones		Repuestos Reparaciones Otros costos Depreciación	5,492.86 2,296.15 500.00 7,943.18	14° 20° 8° 2°
Mtto y reparaciones Costos de		Repuestos Reparaciones Otros costos Depreciación TOTAL COSTOS EQUIPO	5,492.86 2,296.15 500.00 7,943.18 26,273.02	22° 14° 20° 8° 2° 29°
Mtto y reparaciones Costos de		Repuestos Reparaciones Otros costos Depreciación TOTAL COSTOS EQUIPO TOTAL COSTOS Facturación Facturación segundo turno	5,492.86 2,296.15 500.00 7,943.18 26,273.02 26,273.02 27,586.67 27,061.67	14° 20° 8° 2°
Mtto y reparaciones Costos de		Repuestos Reparaciones Otros costos Depreciación TOTAL COSTOS EQUIPO TOTAL COSTOS	5,492.86 2,296.15 500.00 7,943.18 26,273.02 26,273.02	14° 20° 8° 2°

Anexo 4

Reserva por reparaciones del Periodo enero – diciembre 2022

CUADRO	D DE RESERVA POR														
CENTRO DE COSTO	DESCRIPCION	% RESERVA POR REPARACIONE S		FIE FEBRERO 2022 Nuevos Soles	FIE MARZO 2022 Nuevos Soles	FIE ABRIL 2022 Nuevos Soles	FIE MAYO 2022 Nuevos Soles	FIE JUNIO 2022 Nuevos Soles	FIE JULIO 2022 Nuevos Soles	FIE AGOSTO 2022 Nuevos Soles	FIE SEPTIEMBRE 2022 Nuevos Soles	FIE OCTUBRE 2022 Nuevos Soles	FIE NOVIEMBRE 2022 Nuevos Soles	Soles	RESERVA TOTAL PARA REPARACIONES HASTA DICIEMBRE 2022 Nuevos Soles
EPE25950H1	Cargador Frontal Cat 950H	65.40%	26,336.74	19,049.52	6,979.33	24,594.11	31,621.68	32,526.39	38,332.36	23,550.98	16,555.80	20,957.72	22,322.00	22,585.89	186,659.79
EPE25950H2	Cargador Frontal Cat 950H	65.40%	28,557.94	32,590.17	22,282.31	27,597.65	30,664.48	32,288.91	31,320.35	11,080.45	23,078.42	19,576.26	5,654.00	20,937.16	186,800.77
EPE25950H3	Cargador Frontal Cat 950H	65.40%	30,734.42	23,675.97	27,346.65	27,971.45	34,930.49	35,066.05	17,510.12	32,037.76	1,225.17	6,847.79	5,234.00	6,693.04	163,024.48
EPE25950H4	Cargador Frontal Cat 950H	65.40%	33,309.50	26,722.97	25,838.59	27,544.30	27,711.63	40,037.32	24,737.81	47,578.20	16,228.21	14,379.50	10,222.00	13,015.91	200,991.16
EPE25950H5	Cargador Frontal Cat 950H	65.40%	34,370.11	27,679.44	27,275.07	29,250.53	29,843.69	34,348.40	37,697.27	10,727.47	21,205.76	20,230.33	13,567.00	22,148.36	201,656.61
EPE25950H6	Cargador Frontal Cat 950H	65.40%	33,225.32	26,390.29	25,309.58	28,939.50	38,383.38	27,513.70	32,331.11	14,028.55	22,500.55	20,712.34	11,233.00	15,261.09	193,471.78
EPE25950H7	Cargador Frontal Cat 950H	65.40%	27,825.75	27,306.04	22,520.68	32,090.52	29,022.04	33,806.16	47,406.64	15,695.51	12,173.56	20,057.67	8,766.00	9,447.03	187,120.91
SUB-TOTAL			214,359.78	183,414.40	157,552.21	197,988.06	222,177.39	235,586.93	229,335.66	154,698.92	112,967.47	122,761.61	76,998.00	110,088.47	1,319,725.50

Anexo 5Comparativo evolución Gastos de mantenimiento por reparaciones año 2022

Anexo 6Precio de trazabilidad de producción de un cargador frontal en un frente de trabajo

CANTI DAD	UNID	CONCEPTO	PRECIO TRAZABILI DAD (S/. / M3)	TOTAL (400 m3)
1	M3	De material producido	S/ 19,0	S/ 7.600,0
1	M3	De material transportado	S/ 3,1	S/ 1.240,0
		-	TOTAL (1	
			día de	S/ 8.840,0
			producción de cargador	
			frontal)	
			1 hora de	
			producción de	S/ 736,7
			Cargador	
			Frontal	

Anexo 7Disponibilidad Equipo

CENTRO DE COSTO	DESC. EQUIPO	TARGET.	D.E.
EPE25950H1	Cargador Frontal Cat 950H Serie M4T00219	90%	81.00%
EPE25950H2	Cargador Frontal Cat 950H Serie M4T00210	90%	87.99%
EPE25950H3	Cargador Frontal Cat 950H Ser 00877	90%	89.15%
EPE25950H4	Cargador Frontal Cat 950H Ser 00968	90%	81.76%
EPE25950H5	Cargador Frontal Cat 950H Ser M4T014	90%	82.00%
EPE25950H7	Cargador Frontal Cat 950H Ser M4T01822	90%	87.35%
EPE25950H8	Cargador Frontal Cat 950H Ser M4T01823	90%	86.04%

Anexo 8 *Tiempo medio de reparaciones*

Anexo 9 *Tiempo medio entre fallas*

Anexo 10Balance del mantenimiento preventivo y correctivo

Anexo 11 *Árbol de problemas*

Anexo 12 *Procedimiento de AMEF de los cuatro sistemas*

Nombre o	del Equipo: Excavadora C	AT		Equipo de diseño		3)-				
Sistema :	Sistema : Carrilería			David Huaman	Fecha: 08/12/2017	№ AMEF:3				
Pieza	Funcion que desempeña	Modo de fallo potencial	Efectos potenciales de fallo	Causas potenciales de fallo	Controles actuales	G	o	D	NPR	
Cadena	Trasmite el movimiento	Dientes rotos	Equipo sin desplazamiento	Sobre fuerza inclinada	Correctivo	9	6	4	216	
Cadena	para el traslado	ara el traslado Desgaste de componentes Equ		por deterioro	correctivo	9	6	4	216	
Sprocket	Activa el movimiento	Dientes rotos	Equipo sin desplazamiento	Desgastes internos	correctivo	9	6	6	324	
Rodillos	Trasmite el movimiento	Fugas de aceites	Fugas de aceite hidráulico	Desgaste de retenes	Inspección Visual	7	8	6	336	
Rodillos	para el traslado	deterioro	Equipo sin desplazamiento	Por incrustacion de piedras	Inspección Visual	7	8	6	336	

Nombre del Equipo: Exc	avadora CAT			Equipo de diseño		8				
Sistema : Hidráulico		David Huaman	Fecha: 08/12/2017		№ AMEF : 2					
Pieza	Funcion que desempeña	Modo de fallo potencial	Efectos potenciales de fallo	Causas potenciales de fallo	Controles actuales	G	0	D	NPR	
Bomba hidráulica	Mantiene la presion del	Baja presión	Equipo sin desplazamiento	Desgaste interno	Correctivo	9		144		
Bomba nidraulica	sistema Baja presión Equipo sin desplazamiento Falta de presión Hdráulica correctivo 9	2	8	144						
Motores de traslación y	Activa el movimiento para la rotacion en su propio	Activa el movimiento para	Baja presión	Motor activa	Desgastes internos	correctivo	9	2	8	144
		baja presion	No gira la tornameza	Desgastes internos	Correctivo	9	2	8	144	
giro	eje y su traslado	Rotura de dientes internos	No gira la tornameza	Desgaste de dientes	Correctivo	9	2	8	144	
Pistones de Levante de	Levantan el brazo de la	desgaste de retenes hidráulicos	Fugas de aceite hidráulico	Por rayaduras del vástago	Inspección Visual	6	8	5	240	
brazo	excavadora	Deterioro del vástago	Fugas de aceite hidráulico	Por desprendimiento de piedras	Inspección Visual	6	8	2 8 2 8 2 8 8 5	240	
Pistones de la cuchara	Anticulación de la contensa	desgaste de retenes hidráulicos	Fugas de aceite hidráulico	Por rayaduras del vástago	inspección Visual	6	8	5	240	
Pistones de la cuchara	Articulación de la cuchara	Deterioro de los vástagos	Fugas de aceite hidráulico	Por desprendimiento de piedras	Inspección Visual	6	8	5	240	
Mangueras Hidráulicas	Permite el paso del fluido hidráulico	Fugas Hidrúlicas	Equipo parado	Por rotura y desgaste	inspección Visual	7	9	3	189	

Nombre del Equip	o: Excavadora CAT	Equipo de diseño									
Sistema : Motor			David Huaman		Fecha: 08/12/2017		№ AMEF : 1				
Pieza	Funcion que desempeña	Modo de fallo potencial	Efectos potenciales de fallo	Causas potenciales de fallo	Controles actuales		o	D	NPF		
Cremallera	Rompe la inercia de la volante para	Rotura de dientes	Motor no arranca	Desgaste de dientes	Inspección Visual	8	6	2	96		
Comment	arrancar	Vibración	Motor no arranca	Desgaste de dientes	Inspección Visual	8	6	2	96		
		No hay corriente	Motor no arranca	Bateria Desgastada	Inspección Visual		6	2	96		
Bendix	Transmite movimiento a la cremallera para el arranque		motor no arranca	Cable de bateria Roto	Correctivo	8	6	3	144		
benuix		Rotura de dientes	motor no arranca	Desgaste de dientes	Correctivo	8	6	3	144		
		Vibración	motor no arranca	desgaste de dientes	Correctivo	8	6	3	144		
		Rotura de horquilla	motor no arranca	Desgaste de Horquilla	Correctivo	8	6	3	144		
Tuberías de	Traslado de flujo de refrigerante	Fuga de refrigerante	Sobrecalentamiento	Mal diseño	Mtto. Preventivo	8	6	3	144		
refrigerante	rrasiado de ridjo de reirigerante	Rotura de tuberia	Sobrecalentamiento	Corrosión	Inspección Visual	8	4	2	64		
Ventilador	Enfria el refrigerante en el radiador	No hay flujo de aire	sobrecalentamiento	Desgaste de rodamiento	inspección Visual		4	5	160		
ventilation	Ellitta el terrigerante en el radiador	Aspas rotas	sobrecalentamiento	Fatiga por desgaste de Material	Correctivo	8	2	2	32		
nillos de	Mantienen la presion y lubricacion	Baja compresión	Pérdida de potencia	Desgaste de Anillos	Mtto. Preventivo	8	8	4	256		
ompresión	del motor	Motor no comprime	El motor no arranca	Desgaste de Anillos	Inspección Visual	8	8	4	256		
Unipresion	del motor	wotor no comprime	Falla al arrancar	Desgaste de Anillos	inspección Visual	8	8	4	256		
/álvula de aliment	a Permite el ingreso de petroleo al siste	Restricción de petroleo	Motor parado	Válvula cerrada	Correctivo	9	3	4	108		

Nombre del Equ	uipo: Excavadora CAT	Equipo de diseño								
Sistema : Chásis y Gets				David Huaman	Fecha: 08/12/2017	№ AMEF : 3				
Pieza	Funcion que desempeña	Modo de fallo potencial	Efectos potenciales de fallo	Causas potenciales de fallo	Controles actuales	G	0	D	NPR	
D	ronpe el material a excavar	Adapter roto	Equipo parado	Mala operación	Correctivo	8	8	3	192	
runtas cuchara	ronpe ei materiai a excavar	punta rota	Equipo parado	sobre esfuerzo	correctivo	6	10	3	180	
Pluma	soporta el peso de la carga y de la extensión y su traslado principal	Rajadura	Equipo parado	mala operación	correctivo	9	4	3	108	
extension	Soporta el peso de la carga	Rajadura	Equipo parado	mala operación	Correctivo	9	4	3	108	

Anexo 13 *Resultado de NPR según los cuadros AMEF*

SUBSISTEMA	NPR	CARACTERISTICA
Rodillos	336	INACEPTABLE
Sprocket	324	INACEPTABLE
Anillos de compresión	256	INACEPTABLE
Pistones de Levante de brazo	240	INACEPTABLE
Pistones de la cuchara	240	INACEPTABLE
Cadena	216	INACEPTABLE
Puntas cuchara	192	REDUCCION DESEABLE
Mangueras Hidráulicas	189	REDUCCION DESEABLE
Ventilador	160	REDUCCION DESEABLE
Bomba hidráulica	144	REDUCCION DESEABLE
Bendix	144	REDUCCION DESEABLE
Motores de traslación y giro	144	REDUCCION DESEABLE
Tuberías de refrigerante	144	REDUCCION DESEABLE
Pluma	108	ACEPTABLE
extension	108	ACEPTABLE
Cremallera	96	ACEPTABLE

Anexo 14

Ponderación de criterios de análisis de criticidad

Frecuencia de fallas	Flexibilidad Operacional					
		No existe opción igual o Existe equipo similar de repuesto	4			
Elevado mayor a 40 fallas/año	4	El equipo puede seguir funcionando	2-3			
Promedio 20-40 fallas/año	3	Existe otro igual o disponible fuera del sistema (stand by)	1			
Buena 10-20 fallas/año	2					
Excelente menos de 10 fallas/año	1					
and the menor we are named and	Costo de mantenimiento					
	Mayor o igual a US\$ 2000 (incluye repuestos)	2				
		Inferior a US\$ 2000 (incluye repuestos)	1			
Impacto Operacional						
Parada total del equipo y repercute a otros equipos o sistemas	10	Impacto a Seguridad Ambiente e Higiene				
		Accidente catastrófico	8			
Parada parcial del equipo	7-9	Accidente mayor serio	6-7			
Impacta a niveles de producción o calidad por debajo de lo normal	5-6	Accidente menor e incidente menor	4-5			
Repercute en cosots operacionales asociado a disponibilidad 2-4		Cuasiaccidente o incidente menor	2-3			
		Desvio	1			
No genera ningún efecto significativo	1	No provoca nigún tipo de riesgo	0			

Anexo 15 *Escala de referencia*

ESCALA DE REFERENCIA	CANT
CRITICO	X>30
IMPORTANTE	20=< X< =30
REGULAR	10=< X< =10
OPCIONAL	X<10

Anexo 16Cuadro de criticidad

SUBSISTEMA	FRECU_ ENCIA	IMPACTO OPERACI_ ONAL	_	COSTOS DE MTTO.	IMPACTO SHA	CONSE_ CUENCI A	TOTAL	JERARQUI_Z ACION	PRIORIDAD
Pistones de Levante de brazo	2	8	3	2	2	28	56	CRITICO	
Pistones de la cuchara	2	8	3	2	2	28	56	CRITICO	
Bomba hidráulica	1	10	4	2	0	42	42	CRITICO	
Bendix	3	4	3	1	0	13	39	CRITICO	ALTA
Motores de traslación y giro	1	9	4	2	0	38	38	CRITICO	Ψ
Cadena	1	8	4	2	0	34	34	CRITICO	
Anillos de compresión	1	10	3	1	2	33	33	CRITICO	
Cremallera	3	3	3	1	0	10	30	CRITICO	
Rodillos	2	6	2	2	0	14	28	IMPORTANTE	⊴
Mangueras Hidráulicas	3	4	1	1	4	9	27	IMPORTANTE	MEDIA
Puntas cuchara	4	4	1	1	0	5	20	IMPORTANTE	Σ
Tuberías de refrigerante	2	3	2	1	2	9	18	REGULAR	
Pluma	1	8	2	1	0	17	17	REGULAR	4
extension	1	8	2	1	0	17	17	REGULAR	BAJA
Sprocket	1	7	2	2	0	16	16	REGULAR	Щ
Ventilador	1	3	3	1	0	10	10	OPCIONAL	

Anexo 17 *Gráfico de criticidad de fallas*

Anexo 18

Formato de Inspecciones

1.1.22.1		T T	T	Te c c c ·	_	_	1
Mangueras del cilindro				Reductor de jiro	Ь		
Pines				Nivel de aceite de motor de jiro	Щ		
bocinas				Manguerasy válvula			
Cilindro izquierdo de la pluma				Varilla medidora de aceite			
Cilindro derecho de la pluma				Respirador del motor de jiro	-		
Vástago izquierdo	$\overline{}$				-		
Vástago derecho	\vdash		-		-	_	
	\vdash				₩	_	
Pinesy bocinas	\vdash				₩		
Reten del cilindro izquierdo					Ш		
Reten del cilindro derecho							
Pluma							
Fugas de aceite hidráulico				1	-		
		l l		.L			
SISTEMA HIDRAULICO	lok I	Х	OBSERVA CIONES	MOTOR	ОК	Ιv	OBSERVACIONES
	On I	^	OBSER#ACIONES		Un	^	OBSER VACIONES
Bomba superior	\vdash			Nivel de aceite de motor	₩		
Bomba inferior				Varilla del medidor	\perp		
Manqueras				Tapón de llenado de aceite motor			
Medidores de presión				Tapa de balancines(empaquetadura)			
Abrazaderasy pernos				Manguera de entrada de aire	-		
Mangueras de retorno y salida	\vdash			Carter del motor	-		
	\vdash				-		
Caja de válvulas	\vdash			Turbo compresor (turbina)	\vdash	-	-
Válvula de distribución de aceite m. finales				Filtros de aceite motor	\perp		
Tanque de aceite hidráulico	ΙT			Filtro de aire primario			
Tapa del tanque				Filtro de aire secundario			
Visor de aceite hidráulico	\vdash		1	Desfogue de aceite de motor	-		
	\vdash		+		\vdash	-	
Válvula de alivio del tanque	\vdash			Tapa del filtro de aire	—	_	
Tapón de drenaje de aceite hidráulico	\sqcup			Ante filtro de aire	\perp		
Filtros de aceite hidráulico				Puerta de protección			
Fugas de aceite hidráulico				Fugas de aceite de motor			
				12	_		
SISTEMA DE ENFRIAMIENTO	lok I	X	OBSERVA CIONES	SISTEMA ELECTRICO	l ok	l X	OBSERVACIONES
MOTOR	on	^	ODSERVACIONES	SISTEMA ELECTRICO	On	1 ^	OBSERVACIONES
	\vdash		-	Deterie	₩	-	
Ventilador	\vdash			Batería	₩	_	
Radiador				Postes de batería	Щ		
Celdas del radiador				Bornes de batería			
Tina de radiador				Cablespositivos			
Tapa del radiador				Cable negativo	-		
Tanque de reserva de refrigerante	\vdash		 	Disyuntores o rearmadores	-		
	\vdash				₩	_	
Manqueas				Caja de fusibles	₩.		
Caja de termostato				Fusibles de reserva			
Poleas del ventilador				Alternador			
Guardas				Polea del alternador			
Visor del refrigerante				Correas	-		
	\vdash		-		\vdash	_	
Fugas de refrigerante				Líneas eléctricas (cables)			
SISTEMA MONITOR	OK	x	OBSERVACIONES	CABINA DE LA	OH	X	OBSERVACIONES
				EXCAVAD OR A			
Temperatura de refrigerante de motor				Parabrisa superior			
Temperatura de aceite hidráulico				Parabrisa inferior			
Nivel de combustible	\vdash			Lava limpia parabrisa	-		
	\vdash		+		-	_	
Pantalla de mensajes	\vdash			Ventana lado derecho vizquierdo	₩	_	
Sistema de aire acondicionado				Interruptores de luces	\perp		
circulan	▃Ӏ			Asiento ergonómico regulable	\perp		
	ГП			Luz de cabina			
				Dos conos de seguridad			
	\Box			Extintor	$\overline{}$		
	\vdash				-		
<u> </u>	\Box		1		_	_	L
1			ODGEDWAY!	150.			
			OBSERVACION	1E3			
MODEL ON MARON							
MODELOY MARCA:							
N° DE SERIE:		I					
SERIE DE MOTOR:	1				_		
ANO DE FABRICACION:		I					
HOROMETRO:							
HOROWEIRO.	ı		_				
1							
l l		:	FIRMA CERTIFICAD	10R			
i l							
			THEMACERTHICAL	7.01			CIDM
			A EMPRESA	7011			FIRM

Anexo 19 *Plan de mantenimiento de Excavadoras*

	PROGRAMA DE MANTENIMIENTO EXCAVADORAS CAT											
Νº	ACTIVIDADES	FRECUENCIA	FORMATO	A CARGO	CANTIDAD	н-н						
1	Revisión del equipo antes de inicio de jornada	Diaria	Pre- uso	Operador	1	0,2						
2	Revisión Mecánica de todos los sistemas	Quincenal	Formato de inspección	Técnico	1	6						
	Programa de mantenimiento preventivos	250 hrs	-Cartillas de Mantenimiento l	Técnico	1	2						
١,		500 hrs		Técnico	1	2,5						
٥		1000 hrs		Técnico	2	5						
		2000 hrs		Técnico	2	8						