Boolean algebra

Peter Rowlett

Sheffield Hallam University p.rowlett@shu.ac.uk

Truth tables

- ▶ Remember we can prove two propositions are equivalent by showing they have the same truth table.
- ► For example, the truth table practice worksheet contained these:

p	q	$\neg(p \land q)$	p	q	$\neg p \lor \neg q$
Т	Т	F	Т	Т	F
Τ	F	Т	Т	F	Т
F	Т	Т	F	Т	Т
F	F	Т	F	F	Т

- ▶ Therefore we can say $\neg(p \land q) \iff \neg p \lor \neg q$.
- ▶ This is one of De Morgan's Laws, which we will meet shortly.

Boolean algebra

- ▶ Uses the logical connectives we have been working with, such as \land , \lor , and \neg .
- ► 'True' is represented using 1.
- ► 'False' is represented using 0.
- ▶ For example, if p is the proposition "some pigs can fly" we would say p = 0.
- ▶ Boolean algebra follows some algebra laws you will be familiar with, and some extras that will be less familiar.

Commutative law

p	q	$p \wedge q$	p	q	$q \wedge p$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	0	1	0
0	0	0	0	0	0

Commutative law

	q	$p \wedge q$	p q
1	1	1	1 1
1	0	0	1 0
0	1	0	0 1
0	0	0	0 0

▶ It doesn't matter which way around we consider p and q with \wedge or \vee .

$$p \lor q = q \lor p$$
 & $p \land q = q \land p$

Commutative law

p	q	$p \wedge q$	р	q	$q \wedge p$
1	1	1	1	1	1
1	0	0	1	0	0
0	1	0	0	1	0
0	0	0	0	0	0

▶ It doesn't matter which way around we consider p and q with \wedge or \vee .

$$p \lor q = q \lor p$$
 & $p \land q = q \land p$

▶ Note that ordinary multiplication and addition have commutativity too:

$$a + b = b + a$$
 & $a \times b = b \times a$

p	q	r	$p \lor q$	$(p \lor q) \lor r$		$q \vee r$	$p \lor (q \lor r)$
1	1	1	1	1	_	1	1
1	1	0	1	1		1	1
1	0	1	1	1		1	1
1	0	0	1	1		0	1
0	1	1	1	1		1	1
0	1	0	1	1		1	1
0	0	1	0	1		1	1
0	0	0	0	0		0	0

Peter Rowlett SHU Boolean algebra 4 / 16

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \lor r$	$p \lor (q \lor r)$
1	1	1	1	1	1	1
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	1	1	0	1
0	1	1	1	1	1	1
0	1	0	1	1	1	1
0	0	1	0	1	1	1
0	0	0	0	0	0	0

▶ Therefore $(p \lor q) \lor r = p \lor (q \lor r)$.

▶ This works for \land as well (you could check by writing out the truth tables), so we have:

$$(p \lor q) \lor r = p \lor (q \lor r)$$
 & $(p \land q) \land r = p \land (q \land r)$

▶ This works for \land as well (you could check by writing out the truth tables), so we have:

$$(p \lor q) \lor r = p \lor (q \lor r)$$
 & $(p \land q) \land r = p \land (q \land r)$

► Again multiplication and addition have associativity too:

$$(a+b)+c=a+(b+c)$$
 & $(a\times b)\times c=a\times (b\times c)$

Identity

▶ The identity leaves what it is acting upon unchanged.

p	0	$p \lor 0$
1	0	1
0	0	0

p	1	$p \wedge 1$
1	1	1
0	1	0

Identity

▶ The identity leaves what it is acting upon unchanged.

p	0	$p \vee 0$
1	0	1
0	0	0

p	1	$p \wedge 1$
1	1	1
0	1	0

► In Boolean algebra, we have

$$p \lor 0 = p$$
 & $p \land 1 = p$

Identity

► The identity leaves what it is acting upon unchanged.

p	0	$p \vee 0$
1	0	1
0	0	0

p	1	$p \wedge 1$
1	1	1
0	1	0

► In Boolean algebra, we have

$$p \lor 0 = p$$
 & $p \land 1 = p$

▶ Once again, we have parallels in addition and multiplication:

$$a+0=a$$
 & $a\times 1=a$

p	q	r	$q \lor r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \wedge q) \vee (p \wedge r)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

p	q	r	$q \vee r$	$p \wedge (q \vee r)$	$p \wedge q$	$p \wedge r$	$(p \land q) \lor (p \land r)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0
Τŀ	nere	efor	e (<i>p</i> ∧ ($(q \vee r) = (p \wedge q)$	$q) \vee (p \wedge r)$)	

Peter Rowlett SHU Boolean algebra 7 / 16

▶ This works for \land as well (you could check by writing out the truth tables), so we have:

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$
 & $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$

ightharpoonup This works for \land as well (you could check by writing out the truth tables), so we have:

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$
 & $p \vee (q \wedge r) = (p \vee q) \wedge (p \vee r)$

▶ This is similar to the rule that multiplication distributes over addition:

$$a \times (b + c) = (a \times b) + (a \times c)$$

Peter Rowlett SHU Boolean algebra 8 / 16

Some less familiar ones

Idempotent law

- ▶ If I add a number to itself, I get double the number.
- ▶ But if I tell you p is true and p is true, I'm not saying p is doubly true.

p	$p \wedge p$	p	$p \vee p$
1	1	1	1
0	0	0	0

Idempotent law

- ▶ If I add a number to itself, I get double the number.
- ▶ But if I tell you p is true and p is true, I'm not saying p is doubly true.

p	$p \wedge p$
1	1
0	0

p	$p \lor p$
1	1
0	0

► So we have

$$p \wedge p = p$$
 & $p \vee p = p$

Negation & Double negation

Т	U	$\neg 0$	\neg I
1	0	1	0

p	$\neg p$	$\neg \neg p$
1	0	1
0	1	0

Negation & Double negation

$$\begin{array}{cccc} p & \neg p & \neg \neg p \\ \hline 1 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$$

► So

$$\neg 1 = 0, \qquad \neg 0 = 1 \qquad \& \qquad \neg \neg p = p$$

Tautology

- ► A tautology is a statement that is always true.
- ▶ We can see that $p \lor \neg p$ is a tautology.

p	$\neg p$	$p \lor \neg p$
1	0	1
0	1	1

Contradiction

- ▶ A contradiction is a statement that is never true.
- ▶ We can see that $p \land \neg p$ is a contradiction.

p	$\neg p$	$p \wedge \neg p$
1	0	0
0	1	0

Annihilation law

p	0	$p \wedge 0$
1	0	0
0	0	0

p	1	$p \vee 1$
1	1	1
0	1	1

Annihilation law

$$\begin{array}{c|cccc} p & 0 & p \wedge 0 \\ \hline 1 & 0 & 0 \\ 0 & 0 & 0 \\ \end{array}$$

$$\begin{array}{c|cccc} p & 1 & p \lor 1 \\ \hline 1 & 1 & 1 \\ 0 & 1 & 1 \\ \end{array}$$

► So

$$p \wedge 0 = 0$$
 & $p \vee 1 = 1$

Absorption law

p	q	$p \lor q$	$p \wedge (p \vee q)$		p	q	$p \wedge q$	$p \lor (p \land q)$
1	1	1	1	,	1	1	1	1
1	0	1	1		1	0	0	1
0	1	1	0		0	1	0	0
0	0	0	0		0	0	0	0

Absorption law

	p	q	$p \lor q$	$p \wedge (p \vee q)$	p	q	$p \wedge q$	$p \lor (p \land q)$
	1	1	1	1	1	1	1	1
	1	0	1	1	1	0	0	1
	0	1	1	0	0	1	0	0
	0	0	0	0	0	0	0	0
•	So							

 $p \wedge (p \vee c)$

$$p \wedge (p \vee q) = p$$
 & $p \vee (p \wedge q) = p$

De Morgan's Laws

► The only ones named after a person, British mathematician Augustus De Morgan (1806–1871).

$$\neg (p \land q) = \neg p \lor \neg q$$

 $\neg (p \lor q) = \neg p \land \neg q$

