Pumping Lemma

Sei A ein Alphabet und $L \square A^*$ eine reguläre Sprache. Dann lassen sich alle Wörter $x \square L$ ab einer gewissen Länge $|x| \square p$ (der Pumping-Länge) darstellen als

 $x = uvw \text{ mit } u, v, w \square A^*$

wobei

|v| > 0 und

 $|uv| \square p$,

so dass gilt

 $uv^k w \square L$ für alle $k \square \square_0$.

Alle Wörter x ab einer gewissen Länge p (der Pumping-Länge) enthalten also ein Teilwort v, mit dem sich das Wort x "aufpumpen" lässt — daher die Bezeichnung Pumping Lemma.

How To:

Beispiel: $L = \left\{ a^m b^k c^{2m} | \ m \ , k \in |\mathbb{N}_0 \right\}$ (c soll doppelt so oft wie a sein \to zählen geht hier nicht \to **nicht** reguläre Sprache)

- 1) Wort nur mit n-Potenzen suchen, dass in L enthalten ist, z.B.: $\chi = a^n b^1 c^{2n}$
- 2) Zerlegung in u,v,w (x = u v w) überlegen.
 - |u v| < n+1 (u+v max. Länge n)
 - |v| > 0 (v muss min. ein Zeichen enthalten)
 - u oder w dürfen auch leer sein

hier z.B. würde u = leer, $v = a^n$, $w = b^1 c^{2n}$ alle Bedingungen erfüllen.

3) Potenz für v finden, sodass u v^i w nicht mehr in L enthalten ist.

Formal:

Für alle $n \in \mathbb{N}$

Wähle
$$x = a^n b^1 c^{2n} \in L$$
 mit $|x| \ge n$

Für alle $u, v, w \in X^*$ mit $x = u \vee w$ und $|uv| \leq n$ und $|v| \geq 1$ gilt

Wähle i=2:
$$uv^2w = a^{2n}b^1c^{2n} \notin L$$

⇒ L nicht regulär!!

Beispiele zum Pumping-Lemma:

1) Man definiere eine nicht reguläre Sprache $L = \{O^P | p \text{ ist eine Primezahl}\}$.

Annahme : L ist regulär. \Rightarrow Dann muss L das Pumping-Lemma erfüllen. Daraus folgt diese Beweisführung:

Man wähle ein n nach dem Satz W und es sei r eine Primezahl mit r > n.

Des weiteren sei $z = O^r \in L$.

 \Rightarrow Dann existiert eine Zerlegung z = uvw mit $|uv| \le n$, $u = O^s$, $v = O^t$ mit $s, t \ne 0$.

Für O^r gilt auch $O^{r+i\cdot t} \in L$ für alle $i \ge 0$.

- \Rightarrow Folglich sind alle Zahlen $r+i\cdot t$ Primezahlen. Nach spätestens t Zahlen kommt also immer eine Primezahl. Nun setze man i=r, dann ist $r+r\cdot t$ eine Primezahl.
- \Rightarrow $r \cdot (1+t)$ ist eine Primezahl, andererseits sind r und 1+t Faktoren von $r \cdot (1+t)$.
- ⇒ L ist nicht regulär.
- 2) Es sei die Sprache $L = \{O^m | m \text{ ist Quadratzahl} \}$ nicht regulär.

Man gehe auch hier von der Annahme aus, dass L regulär ist.

Die Beweisführung lautet dann folgendermaßen:

Unter der Bedingung, dass L regulär ist, muss es ein $n \in IN$ existieren, so dass sich jedes Wort zu der Form O^m mit $m \ge n$ und m Quadratzahl, sich in die Form z = uvw zerlegen lässt, mit den entsprechenden Eigenschaften:

$$v \neq \varepsilon$$
, $|uv| \le n$, $uv^i w \in L \text{ mit } i \ge 0$.

Nun wähle man speziell: $z = 0^{n^2}$

und betrachte zugleich die Zerlegung z = uvw.

Daraus folgt wegen der Bedingung des Pumping-Lemma : $1 \le |v| \le |uv| \le n$.

Ferner ist für i = 2: $uv^2w \in L$, anderseits soll gelten: $n^2 = |z| = |uvw| < |uv^2w| \le n^2 + n < n^2 + n + 1 = (n+1)^2$ $\Rightarrow (nv^2w) < (n+1)^2 \Leftrightarrow L$ ist nicht regulär! $\notin L$

Beispiel 1:

Annahme: L₁ ist regulär ⇒ Anwendung des Pumping Lemma

Sei n die Zahl aus dem Pumping Lemma (beliebig aber fest)

Wähle w = aⁿbⁿ ∈ L

Zerlege w = xyz mit $|xy| \le n$, $y \ne \varepsilon$

Betrachte $xy^0z = a^{n-|y|}b^n \quad (n-|y| < n, da y \ge 1)$

- $\Rightarrow xv^0z \notin L_2$
- ⇒ L₂ erfüllt das Pumping Lemma nicht
- ⇒ Widerspruch zur Annahme
- ⇒ L₂ ist nicht regulär

(**Hinweis:** Eine Fallunterscheidung ist nicht nötig, da es für jedes $n \in N_0$ ein Wort $a^mb^m \in L$ mit m>n gibt, für das die oben genannte Argumentation gilt. Und nach PL müsste sich jedes Wort w mit |w|>n "aufpumpen lassen".)

Beispiel 2:

```
L_2 = \{vcv^R \mid v \in \{a,b\}^*, v^R \text{ Spiegelwort zu } v\} \text{ mit } \Sigma = \{a,b,c\}
```

Annahme: L₁ ist regulär ⇒ Anwendung des Pumping Lemma

```
Sei n die Zahl aus dem Pumping Lemma (beliebig aber fest) Wähle w = vcv^R \in L mit |v| = n = |v^R| Zerlege w = xyz mit |xy| \le n, y \ne \epsilon (\Rightarrow |\omega| = 2n + 1) \Rightarrow w = xyz_1cz_2 mit xyz_1 = v und z_2 = v^R Betrachte xy^0z = xz_1cz_2 \Rightarrow |xy^0z_1| = n - |y| < n (da y \ge 1) \Rightarrow xy^0z ist kein Palindrom, da |v| \ne |v^R| \Rightarrow xy^0z \ne L_2
```

- ⇒ L₂ erfüllt das Pumping Lemma nicht
- ⇒ Widerspruch zur Annahme
- ⇒ L₂ ist nicht regulär

Beispiel 3:

 $L_3 = \{0^p \text{ mit p ist Primzahl}\}$

Annahme: L₃ ist regulär ⇒ Anwendung des Pumping Lemma

```
Sei n die Zahl aus dem Pumping Lemma (beliebig aber fest) Wähle w = 0^p mit p \ge n+2 (es gibt unendlich viele Primzahlen) Zerlege w = xyz mit |xy| \le n, y \ne \epsilon (es gilt also |xz| \ge 2, da |xyz| \ge n+2 und |xy| \le n) Betrachte xy^{|xz|}z |xy^{|xz|}z| = |xz| + |xz|*|y| = |xz|*(1+|y|) Und das ist keine Primzahl, da 2 Faktoren \ge 2 \Rightarrow xy^{|xy|}z \notin L_3
```

- ⇒ L₃ erfüllt das Pumping Lemma nicht
- ⇒ Widerspruch zur Annahme
- ⇒ L₃ ist nicht regulär