Work in a man's shoes: Determinants of Female Mismatch in the UK

Yannis Galanakis

Ph.D. Candidate · University of Kent I.Galanakis@kent.ac.uk

July, 2019 WPEG Annual Conference 2019

Motivation

- O Active role of women:
 - Participate more in HE and the Labour Market (LM)
- Objective But, where are they employed?
 - Typically in lower-skilled occupations

 LM does not utilise fully their skills
 - ▶ Employment
 - More likely to be mismatched;
 - Margin case: If a woman is in the margin of working in a higher-skilled or a lower-skilled occupation, her probability of human capital mismatch increases.
 - o if not, they work in a high-skilled occupation.
- Result:
 - genuine greater potential of female mismatch
 - o mismatched women hold more skills than their male counterparts

Contributions

Questions:

- 1 How many women in lower-skilled occupations have similar skills to those (of men) in higher-skilled ones?
- Why? What drives their mismatch?
- Solution Control Co the mismatch?

Literature: Educational & skills mismatch in the Labour Market

Data: BHPS & UKHLS (Understanding Society)

Methodology: Multi-component measure of HC mismatch

Preview of Results

- Mixed effects of single motherhood on the probability of mismatch
- Number of children: probability increases with the number of children
- In the public sector, women are more likely to be mismatched
- Stronger effect of female flexibility when they are in the male LM; smaller, otherwise
- New entrants: higher likelihood of mismatch initially
- **o** A richer definition of HC does *not* generate important differences in the incidence of the mismatch

Outline

- Methodology
 - Identification Strategy
 - Data
- Results
- Conclusions

ID Strategy

- Mow many women in low-skilled occupations hold similar human capital to those in middle-skilled ones?
- Wage Equation:

$$\ln[\mathsf{wage}]_{i,t} = \alpha + oldsymbol{eta}_1 oldsymbol{x}_i + \sum_{k=2}^{\gamma} eta_k S_{k,i,t} + artheta_t + u_{i,t}$$

▶ Wage Distribution

Selection equation:

$$\begin{split} \mathsf{employed}_{i,t} &= \alpha + \pmb{\delta}_1 \pmb{z}_{i,t} + \delta_2 F S_{i,t} + \delta_3 \ \mathsf{region}_{i,t} + \delta_4 \mathsf{HHmembers}_{i,t} \\ &+ \vartheta_t + v_{i,t} \end{split}$$

▶ Incider

Yannis Galanakis (UoK)

3 cases - indices

I. Restricted (female) subsample Illustration (I)

Women in low-skilled occupation relative to women in middle-skilled one

$$\mathsf{mismatched}_i \big| (\mathsf{sex} = \mathsf{female})_I = \widehat{\mathsf{HC}}_{\mathsf{female}} \big| occ_j > p(50) \big| occ_{j-1}$$

II. Counterfactual female: • Illustration (II)

Women in low-skilled occupation relative to men in middle-skilled one

$$\mathsf{mismatched}_i \big| (\mathsf{sex} = \mathsf{female})_{II} = \widehat{\mathsf{HC}}_{\mathsf{men}} \big| occ_j > p(50)_{\mathsf{men}} \big| occ_{j-1}$$

Women in low-skilled occupation relative to *median employee* in middle-skilled one

$$\mathsf{mismatched}_i | (\mathsf{sex=female})_{III} = \widehat{\mathsf{HC}}_{\mathsf{overall}} | occ_j > p(50)_{\mathsf{overall}} | occ_{j-1}$$

Female Mismatch in the UK JULY, 2019

Why 3 indices?

The importance of the comparative group

- If you have a group that is more mismatched, estimating its probability of the mismatch depends on the comparative group.
- For example, if all women are mismatched, we could get zero estimates of mismatch using the female wage equation and the female job allocation.

Probability of HC Mismatch

$$\begin{split} \Pr\big(\mathsf{mismatched}_i\big|(\mathsf{sex=female})_{\mathsf{index}} = 1\big) &= f(x_{i,t},\mathsf{family}_{i,t}) \\ \text{, } \forall \; \mathsf{index} &= \{I,II,III\} \end{split}$$

x: entrance in LM, (regional) UR

family: Ione parenthood HH, number of children

Selection Equation

$$\begin{split} \mathsf{employed}_{i,t} &= \alpha + \pmb{\delta}_1 \pmb{z}_{i,t} + \delta_2 F S_{i,t} + \delta_3 \ \mathsf{region}_{i,t} + \delta_4 \mathsf{HHmembers}_{i,t} \\ &+ \vartheta_t + v_{i,t} \end{split}$$

Data

- Unbalanced Panel:

 British Household Panel Survey (BHPS)
 - o waves 1-18;
 - 0 1991-2009
 - UK Household Longitudinal Study (Understanding Society)
 - waves 2-7;
 - o 2010-2016

Contribution: No study employs both of these datasets to explore the mismatch effect dynamically

- Sample:
- \odot Employees; $23 \le age \le 59$; 65,346 women
- Exclude: self-employed; farmers; army sector; income outliers on top and bottom 1% of distribution

→ Descriptive Stats (II)

Determinants of female mismatch (I)

Individual and HH determinants

	Relative to overall		Counterfactual Female	Restricted sample
	Probit	HP	HP	HP
single parent HH	-0.011**	0.0069**	-0.036	0.0172***
	(0.0046)	(0.0032)	(0.0273)	(0.0045)
Number of childre	n			
1	-0.0022	-0.0044***	-0.0016	-0.0114***
	(0.0028)	(0.0015)	(0.0054)	(0.0027)
2	0.0055*	-0.0032**	0.0007	-0.0198***
	(0.003)	(0.0016)	(0.0054)	(0.0027)
3	0.015***	0.0066**	0.0153*	-0.0023
	(0.0058)	(0.0035)	(0.0086)	(0.0051)
4	-0.0342***	-0.0212***	0.0223	-0.0392***
	(0.0092)	(0.0053)	(0.0179)	(0.0109)

(Conditional) Marginal effects; Robust standard errors in parentheses; clustered at household level.

Note: HP stands for Heckman-Probit. * p < 0.1, ** p < 0.05, *** p < 0.01

Determinants of female mismatch (II)

Recent entrance in LM

	Relative to overall		Counterfactual Female	Restricted sample
	Probit	HP	HP	HP
single parent HH	-0.0111**	0.00669**	-0.0369	0.0169***
	(0.00466)	(0.00322)	(0.0273)	(0.00444)
Number of childre	n			
1	-0.00339	-0.00483***	-0.00135	-0.0125***
	(0.00278)	(0.00150)	(0.00540)	(0.00270)
2	0.00379	-0.00411**	0.000806	-0.0213***
	(0.00301)	(0.00161)	(0.00542)	(0.00265)
3	0.0118**	0.00462	0.0151*	-0.00516
	(0.00565)	(0.00337)	(0.00863)	(0.00509)
4	-0.0365***	-0.0218***	0.0224	-0.0424***
	(0.00881)	(0.00522)	(0.0179)	(0.0105)
Entered LM?	0.0211***	0.0118***	0.0449***	0.0226***
	(0.00384)	(0.00185)	(0.00955)	(0.00374)

(Conditional) Marginal effects; Robust standard errors in parentheses; clustered at household level.

Note: HP stands for Heckman-Probit. *p < 0.1, *p < 0.05, *p < 0.05

Determinants of female mismatch (II)

Recent entrance in LM

	Relative to overall		Counterfactual Female	Restricted sample
	Probit	HP	HP	HP
single parent HH	-0.0111**	0.00669**	-0.0369	0.0169***
	(0.00466)	(0.00322)	(0.0273)	(0.00444)
Number of childre	n			
1	-0.00339	-0.00483***	-0.00135	-0.0125***
	(0.00278)	(0.00150)	(0.00540)	(0.00270)
2	0.00379	-0.00411**	0.000806	-0.0213***
	(0.00301)	(0.00161)	(0.00542)	(0.00265)
3	0.0118**	0.00462	0.0151*	-0.00516
	(0.00565)	(0.00337)	(0.00863)	(0.00509)
4	-0.0365***	-0.0218***	0.0224	-0.0424***
	(0.00881)	(0.00522)	(0.0179)	(0.0105)
Entered LM?	0.0211***	0.0118***	0.0449***	0.0226***
	(0.00384)	(0.00185)	(0.00955)	(0.00374)

 $(Conditional)\ Marginal\ effects;\ Robust\ standard\ errors\ in\ parentheses;\ clustered\ at\ household\ level.$

Note: HP stands for Heckman-Probit. *p < 0.1, **p < 0.05, ***p < 0.01

Public vs. Private Sector

Example: Single mothers with at least 2 children in mismatch (in percentages)

p < 0.1, p < 0.05, p < 0.01

Part-time vs. Full-time employement

Example: Single mothers with at least 2 children in mismatch (in percentages)

Weaknesses

- Individual heterogeneous background affects distribution of skills
 - BCS70: cognitive and non-cognitive skills ► BCS70
- 2 Identification of mismatch may be biased
 - Structural model built up on Albrecht & Vroman (2002)

July, 2019

Conclusions

- 1 Lone-motherhood: mixed effects
- Number of children: probability increases with the number of children
- Opening Public sector: women are more likely to be mismatched
 - high concentration in administrative/clerical support and limited presence in high-skilled occupations
- Flexibility: Stronger effect when assigned to the male LM; smaller, otherwise
- 6 Higher probability of initial mismatch in the market not necessarily an issue
 - Structure of each market; potential matching frictions
- **10** A more detailed definition of HC does *not* generate important differences in the incidence of the mismatch

Thank you!

BCS70 A richer definition of Human Capital

BCS70

Human Capital: (Non-)Cognitive skills Cognitive Non-cognitive

Incidence (I): Relative to overall

Human Capital: (Non-)Cognitive skills

Incidence (II): Restricted sample

Human Capital: (Non-)Cognitive skills

Incidence (III): Counterfactual Female

University of

Expansion of Higher Education

1 / 16

University of

Participation in Labour Market (1991-2016)

Source: ONS UK Labour Market bulletin

Employment by occupation: all employees (1991-2016)

Employment by Occupation: all employees by children

Source: Own elaboration; based on BHPS & UKHLS Female Mismatch in the UK

Animated Employment Pyramid

Women in British labour market: At a glance

LONE MOTHERHOOD: Career discontinuities contribute to lower levels of

specialisation: gendering of occupations

OCCUPATIONAL Choice of occupations which empower the female

role SEGREGATION:

FLEXIBILITY: PT employment increases with (a) the number of

children or (b) the lower position a woman has in

the occupation distribution.

Sector:

more women concentrated in public sector

higher-quality jobs attract highly-educated

women

the private-public pay gap is narrower the higher one stands in the wage distribution

Overeducation:

traditional measures do not agree on the gender allocation of the mismatch

Descriptive Statistics (I)

Variables	Men	Women	Total
Age	40.52	40.47	40.49
	(10.24)	(10.22)	(10.23)
Real (Hourly) wage (\pounds)	14.6424	11.3769	12.9024
	(7.1409)	(6.0604)	(6.7857)
Married	0.5396	0.5439	0.5419
	(0.4984)	(0.4981)	(0.4982)
Part-time	0.0452	0.3557	0.1989
	(0.2078)	(0.4787)	(0.3992)
Public sector	0.2263	0.4494	0.3417
	(0.4184)	(0.4974)	(0.4743)
High-skilled Occ	0.3437	0.2626	0.3038
	(0.4749)	(0.44)	(.4599)
Middle-skilled Occ	0.4424	0.6349	0.5373
	(0.4967)	(0.4815)	(0.4986)
Low-skilled Occ	0.2139	0.1025	0.159
	(0.41)	(0.3033)	(0.3656)

Descriptive Statistics (II)

Variables	Men	Women	Total
EDUCATION			
Higher Degree	0.0444	0.0357	0.0397
	(0.2060)	(0.1857)	(0.1952)
1st degree or equiv	0.1356	0.135	0.1347
	(0.3424)	(0.3418)	(0.3414)
Other Degree	0.1052	0.1321	0.1196
	(0.3068)	(0.3386)	(0.3244)
A-level etc	0.3139	0.2254	0.2675
	(0.4641)	(0.4178)	(0.4426)
GSCE etc	0.3939	0.3336	0.3127
	(0.4533)	(0.4715)	(0.4636)
Other qualification	0.2889	0.1381	0.126
	(0.3154)	(0.345)	(0.3318)

Distribution of wages

Figure: Wage Distribution

Illustration

Example: High-/middle-skilled employees (overall population)

▶ Back

Illustration (I)

Example: High-/middle-skilled employees (restricted female subsample)

University of

Illustration (II)

Example: High-/middle-skilled employees (counterfactual women)

kernel = epanechnikov, bandwidth = 0.0258

Illustration (III)

Example: High-/middle-skilled employees (women relative to median employee)

Incidence of Mismatch

BCS70: Cognitive Tests

Table: Cognitive skills tests used in BCS70

Age	Test
5	HFDT: Human Figure Drawing Test CDT: Copying Designs Test EPVT: English Picture Vocabulary Test PT: Profile Test
10	PLCT: Pictorial Language Comprehension Test FMT: Friendly Math Test SERT: Shortened Edinburgh Reading Test BAS: British Ability Scales (Recall of Digits; Matrices; Word Definitions; Similarities)
16	AT: Arithmetic Test VT: Vocabulary Test ST: Spelling Test
30	Numeracy MC and OR assessment

Note: Tests have been normalised using the min/max method.

BCS70: Non-Cognitive Tests

Table: Non-cognitive skills tests used in BCS70 (summary)

Age	Test
Birth	Mother Malaise
5	Mother Malaise Child Behavioural Measures (on Rutter Scale)
10	Child Behavioural Measures (on Rutter Scale)
26	Malaise score

Note: For details, see Attanasio et al. (2018; table A1)

