64-bit PowerPC Microprocessors Memory Management

- -- Gang Zhang
- -- Yang Luan

origin: http://www.cs.cmu.edu/~412/lectures/2009-09-18_ppc64vm.pdf

Abbreviations

EA Effective Address 64-bit

VA Virtual Address 80-bit

PA Physical Address 62-bit

SDR1 Storage Description Register 1

MSR Machine State Register

PR[49]: Privilege level

If set, run in user mode

IR[58] / DR [59]: Instruction address translation / Data address translation

If set, Instruction/Data address translation is enabled

Feature Category	64-Bit Imple
	Conventional
Address ranges	2 ⁶⁴ bytes of effective address
	2^n where $65 \le n \le 80$ bytes of virtual address
	≤ 2 ^m (m≤62) bytes of physical address
Page size	4 Kbytes Some large page sizes (2 ^p where 13 ≤ p ≤ 28)
Segment size	256 Mbytes
Block address translation	Not applicable
	Not applicable
Memory protection	Segments selectable as no-execute
	Pages selectable as user/supervisor and read-only
	Blocks selectable as user/supervisor and read-only
Page history	Referenced and changed bits defined and main- tained
Page address translation	Translations stored as PTEs in hashed page tables in memory
	Page table size determined by size programmed into SDR1 register
TLBs	Instructions for maintaining optional TLBs
Segment descriptors	Stored as STEs (explicit or implicit segment tables)
	Instructions for maintaining SLBs

Memory Addressing Overview

 PowerPC processors support two types of address translation:

Real addressing mode

EA = PA

Page address translation

translates the EA to VA then to PA.

Real Addressing Mode

MSR[IR] = 0 or MSR[DR] = 0

- EA is treated as PA.
- Bypass all memory protection checks.
- Processor would set MSR[IR] = 0 and MSR[DR] = 0 after exceptions occur. Must explicitly enable translation if needed.
- Attempts to access PA not physically present will cause a machine check exception

Page address translation

- The page translation proceeds in the following two steps:
- 1. From effective address to the virtual address, and
- 2. From virtual address to physical address.

EA to VA

 Segment Lookaside Buffer (SLB)
 Each SLB entry maps one ESID (Effective Segment ID) to one VSID (Virtual Segment ID).

SLB Search

Success if

SLBE[V] = 1 and SLBE[ESID] = EA[0-35]

VA to PA

Translation Lookaside Buffer (TLB)

- Holds PTEs that have recently been used.
- Prior to searching the page table.
- Needs to keep consistency with the page table.
- Not required in 64-bit PowerPC architecture.

- Hashed Page Tables
 If the PTE we search is not resident in a TLB.
- Page table entry groups (PTEG)
 The page table contains a number of PTEGs.
 A PTEG contains eight page table entries (PTE).
- Page table Entry (PTE)
 A PTE can reside in two possible PTEGs, primary and secondary.

Locate PTEG

The address of PTEG is derived from the **HTABORG** field of the SDR1 register and **output of hashing function** of VA.

Page Table

Storage Description Register (SDR1)
 SDR1 defines the physical base address of page table and the size of the table.

VA to PA cont. (Hashing function)

Primary Hash:

Secondary Hash:

VA to PA cont. (Secondary Hash fun.)

VA to PA cont. (PTE)

Page Table Entry Format

Page Table Entry Search

Summary

Summary

Reference

• "Programming Environments Manual for 64-Bit Microprocessors" Chapter 7.

Thanks!