

Workshop

2-class, table

2-class, ข้อความ (อังกฤษ)

AI in Healthcare

Fake News

multi-class, image

Al in Fruit Industry

Al in Insurance

- Abstract
- Why this project important?
- Who this project for?
- Heart Disease Dataset
- What we learn from this project?

Abstract

สร้าง model <mark>เพื่อวินิจฉัยผู้ป่วยโรคหัวใจ</mark> โดย feature ที่นำมาใช้ คือ ข้อมูลสภาวะ ร่างกาย เช่น

- ลักษณะการเจ็บหน้าอก
- ค่าความเข้มข้นน้ำตาลในเลือด
- ระดับคอลเลสเตอรอลในเลือด

Why this project important?

- สามารถสร้างระบบสำหรับตรวจโรคหัวใจที่ทำงาน ได้ตลอด 24 ชั่วโมง
- สามารถนำไปต่อยอดกับการวินิจฉัยโรคอื่น ๆ
- 🔷 สามารถใช้เป็นพื้นฐานสำหรับการแพทย์ทางไกล

Who this project is for?

- ผู้บริหารโรงพยาบาล
- บุคลากรทางการแพทย์
- นักวิเคราะห์ข้อมูล

Heart Disease Dataset

https://www.kaggle.com/ronitf/heart-disease-uci

Heart Disease Dataset

Feature

- age : อายุ
- sex : เพศ (1 = ชาย, 0 = หญิง)
- cp : ลักษณะการเจ็บหน้าอก (0, 1, 2, 3)
- tresbph : ความดันโลหิตขณะพัก
- chol : ระดับคอลเลสเตอรอลในเลือด
- fbs : ค่าความเข้มข้นน้ำตาลในเลือด > 120 mg/dl (1 = จริง, 0 = เท็จ)
- restecg : ผลคลื่นไฟฟ้าหัวใจขณะพัก

ข้อดี

- ถามความรู้พื้นฐาน
- ช่วยงานง่าย ๆ เขียน code (ระบบที่ไม่ซับซ้อน)
- ช่วยคิดไอเดีย (สิ่งเร้าทางความคิด)

ข้อเสีย

- ข้อมูลที่มันให้มามีโอกาสผิดได้
- ข้อมูลลึก ๆ
- ระบบที่ต้องการความรัดกุม (เราควรเขียนเอง)

Heart Disease Dataset

Feature

- thalach : อัตราการเต้นหัวใจสูงสุด
- exang : อาการเจ็บหน้าอกระหว่างออกกำลังกาย (1 = เจ็บ, 0 = ไม่เจ็บ)
- oldpeak : การเกิดกราฟ ST depression ในผลการตรวจคลื่นไฟฟ้าของหัวใจ
- slop : ลักษณะความชั้นของกราฟ ST segment (0 = ชั้นขึ้น, 1 = ราบ, 2 = ชั้นลง)
- ca : จำนวนเส้นเลือดตีบ
- thal : ลักษณะความเครียดของหัวใจ (0, 1, 2, 3)

Target

• target : การเป็นโรคหัวใจ (1 = เป็น, 0 = ไม่เป็น)

What we learn from this project?

key success ของการสร้างโมเดล

- 1. right algorithm
- 2. right feature

Data Preparation

01. HEART DISEASE

Workshop

AI in Healthcare

Fake News

Al in Fruit Industry

Fake News

- Abstract
- Why this project important?
- Who this project for?
- Fake News Dataset
- What we learn from this project?

Abstract

สร้าง mode<mark>l เพื่อตรวจสอบข่าวปลอมโ</mark>ดยพิจารณาจาก<mark>หัวข้อข่าว, เนื้อหาข่าว</mark> และ

หมวดหมู่ข่าว

Why this project important?

- สามารถสร้างระบบตรวจสอบข่าวปลอมที่ทำงานได้
 ตลอด 24 ชั่วโมง
- สามารถนำไปต่อยอดเพื่อจัดอันดับความน่าเชื่อถือของ สื่อมวลชน
- สามารถนำไปประยุกต์ใช้กับงานที่มีลักษณะใกล้เคียงได้ เช่น sentimental analysis

Who this project is for?

- 🔸 บุคลากรด้านสื่อมวลชน
- 🔸 นักลงทุน
- นักวิเคราะห์ข้อมูล

Fake News Dataset

https://www.kaggle.com/c/fake-news/data

Fake News Dataset

Feature

• title : หัวข้อข่าว

• text : เนื้อหาข่าว

• subject : หมวดหมู่ข่าว

Target

• class : ค่าความจริงของข่าว (fake, true)

What we learn from this project?

point

- 1. use case
- 2. วิธีการจัดการกับข้อมูลที่เป็น ข้อความ

Import Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.model selection import train test split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler, MinMaxScaler
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.metrics import plot_confusion_matrix, classification_report

import warnings
warnings.filterwarnings('ignore')

np.random.seed(12345)
```


Data Preparation

Data Preparation

Count vectorization

สร้าง feature ใหม่ โดยการหา unique word จาก ข้อความทั้งหมดใน dataset จากนั้นให้พิจารณาว่าแต่ละ ข้อความประกอบด้วย unique word อะไรบ้าง และ จำนวนกี่ครั้ง

ati.	'apple'	'green'	'is'	'kiwi'	'orange'	'red'
'Apple is red'	1	0	1	0	0	1
'Kiwi is green'	0	1	1	1	0	0
'Orange is orange'	0	0	1	0	2	0

Count Vectorization

	cnt_title _000	cnt_title _10	cnt_title _100		cnt_title _year	cnt_title _years	
BAGHDAD (Reuters) - A Russian Islamic State fi	0	0	0		0	0	
WASHINGTON (Reuters) - President Donald Trump	0	0	0		0	0	
WASHINGTON (Reuters) - Russian President Vladi	0	0	0		0	0	
:	:	:	i .	ŧ	:	ŧ	:


```
corpus = คลังคำศัพท์
```

Code

Count vectorization for training set

```
1 title_cnt_vec_feature_name = [
2 "cnt_title_" + feature for feature in title_vectorizer.get_feature_names()
3 ]
```

```
1 X_train[title_cnt_vec_feature_name] = title_cnt_vec_train เพิ่ม feature จากการทำ CVZ ลงใน training set X_train.drop("title", axis=1, inplace=True) drop feature ที่เราทำ count vectorization ไปเสร็จแล้ว
```


Code

Count vectorization for test set

```
corpus_test = X_test['title'].tolist()
title_cnt_vec_test = title_vectorizer.transform(corpus_test).toarray()
```

```
1 X_test[title_cnt_vec_feature_name] = title_cnt_vec_test
```

2 X_test.drop('title', axis=1, inplace=True)

03. FAKE NEWS

dataset

fake_news_mc.ipynb

fake_news_md.ipynb

fake_news_model.pickle

Workshop

AI in Healthcare

Fake News

Al in Fruit Industry

AI in Fruit Industry

- Abstract
- Why this project important?
- Who this project for?
- Fruit Dataset
- What we learn from this project?

Abstract

สร้าง model เพื่อจำแนกผลไม้สด และผลไม้เสีย สำหรับ apple, banana และ orange

โดยพิจารณาจากรูปผลไม้

Why this project important?

- สามารถสร้างระบบคัดแยกผลผลิตที่ทำงานได้อย่างมีประสิทธิภาพ
- 🔸 สามารถนำความรู้ไปต่อยอดเพื่อสร้าง smart farm
- สามารถนำไปต่อยอดเพื่อจำแนกผลไม้ หรือ สินค้า ชนิดอื่น

Who this project is for?

- เกษตรกรที่สนใจ AI กับการเกษตร
- ผู้ควบคุมสายการผลิต
- นักวิเคราะห์ข้อมูล

Fruit Dataset

Dataset

Fruits fresh and rotten for classification

Apples Oranges Bananas

Sriram Reddy Kalluri • updated 3 years ago (Version 1)

https://www.kaggle.com/sriramr/fruits-fresh-and-rotten-for-classification

Fruit Dataset

Feature

Q : ทำไมต้องมีทั้งรูปเอียง, รูปตรง, รูปถ่ายจากหลายมุม, และถ่ายผลไม้หลากหลายลูกด้วย

Target

• target: freshapples, freshbanana, freshoranges, rottenapples, rottenbanana, rottenoranges

What we learn from this project?

- 1. use case การใช้งาน
- 2. วิธีการดีลกับ image 3. วิธีการเตรียม dataset ที่เป็นรูปภาพที่ดี

Import Libraries

```
import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from glob import glob
                                      ใช้ในการเข้าถึงชื่อไฟล์
   from PIL import Image
                                      ใช้ในการอ่านไฟล์ภาพ
   import cv2
                                       ใช้ในการจัดการบางอย่างกับรูปภาพ
                                       เป็นตัวโชว์ progress bar
   from tqdm.auto import tqdm
   from sklearn.model selection import train test split
   from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler, MinMaxScaler
   from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
   from sklearn.metrics import (
        plot confusion matrix,
13
14
        classification report
15
16
   import warnings
   warnings.filterwarnings('ignore')
19
   np.random.seed(12345)
```


Read Data

```
1 classes = ['freshapples', 'freshbanana', 'freshoranges',
2 'rottenapples', 'rottenbanana', 'rottenoranges']
```

```
1 | X = np.empty([0, 32*32*3]) สร้าง matrix X ว่างเปล่าไว้รอ
    y = np.empty([0, 1]) as vector y ว่างเปล่าไว้รอ
    for _class in tqdm(classes): ไล่อ่านข้อมูลที่ละ folder
        img_path = glob('dataset/' + _class + '/*') เข้าถึงชื่อไฟล์ทุกไฟล์ใน folder ที่กำลังพิจารณา
        for path in tqdm(img_path): ไล่พิจารณาทีละชื่อไฟล์
            img = Image.open(path) อ่านภาพ จากชื่อไฟล์
             img = img.resize((32, 32)) resize
            img = np.array(img) แปลงให้เป็น matrix
            if img.shape[2] == 4:
10
                                                                  การตรวจสอบและการแปลงไฟล์ภาพให้อยู่ใน format RGB
                 img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
11
                                           ยืด dataset ให้เป็นเส้นตรง
            img = img.reshape(1, -1)
12
            X = np.vstack([X, img])
13
                                             เอาข้อมูลแต่ละภาพมาต่อตึกกัน
14
             y = np.vstack([y, class])
```


Read Data

Read Data

\mathbf{x}_1	$\mathbf{x_2}$	x_3		x ₃₀₇₂
0.0	0.0	0.0		0.0
0.0	0.0	0.0	•••	0.0
0.0	0.0	0.0	•••	0.0
;	:	:	٠.	į.
255.0	255.0	255.0		255.0

у			
freshapples			
freshapples			
freshapples			
ŧ			
rottenoranges			

X

Data Preparation

Model Evaluation

Confusion Matrix for training set

Confusion Matrix for test set

Code

Confusion Matrix for training set

```
fig, ax = plt.subplots(figsize=(6, 6))
plot_confusion_matrix(clf, X_train_scaled, y_train, ax=ax)
plt.xticks(rotation=90)
plt.show()
```

Confusion Matrix for test set

```
fig, ax = plt.subplots(figsize=(6, 6))
plot_confusion_matrix(clf, X_test_scaled, y_test, ax=ax)
plt.xticks(rotation=90)
plt.show()
```


Model Evaluation

Scoring for training set

	precision	recall	f1-score	support
freshapples	0.679363	0.711733	0.695172	1679.00000
freshbanana	0.820115	0.905457	0.860676	1576.00000
freshoranges	0.802318	0.886119	0.842139	1484.00000
rottenapples	0.705682	0.666667	0.685620	1863.00000
rottenbanana	0.882521	0.857143	0.869647	2156.00000
rottenoranges	0.714083	0.612195	0.659225	1640.00000
accuracy	0.772360	0.772360	0.772360	0.77236
macro avg	0.767347	0.773219	0.768746	10398.00000
weighted avg	0.770561	0.772360	0.770028	10398.00000

Code

Scoring for training set

```
1 report = classification_report(y_train, y_pred_train, output_dict=True)
```

```
1 print('accuracy =', report['accuracy'])
```

pd.DataFrame.from_dict(report).T

Model Evaluation

Scoring for test set

	precision	recall	f1-score	support
freshapples	0.657277	0.684597	0.670659	409.000000
freshbanana	0.822967	0.891192	0.855721	386.000000
freshoranges	0.760664	0.867568	0.810606	370.000000
rottenapples	0.698630	0.638831	0.667394	479.000000
rottenbanana	0.883162	0.859532	0.871186	598.000000
rottenoranges	0.659236	0.578212	0.616071	358.000000
accuracy	0.758462	0.758462	0.758462	0.758462
macro avg	0.746989	0.753322	0.748606	2600.000000
weighted avg	0.756430	0.758462	0.756053	2600.000000

Code

Scoring for test set

```
1 report = classification_report(y_test, y_pred_test, output_dict=True)
```

```
1 print('accuracy =', report['accuracy'])
```

pd.DataFrame.from_dict(report).T

05. FRUIT INDUSTRY

dataset

|≡ fruit_industry_mc.ipynb

|**■** fruit_industry_md.ipynb

|≡ fruit_industry_model.pickle

Workshop

AI in Healthcare

Fake News

Al in Fruit Industry

Logistic Regression

Logistic Regression (Binary)

Logistic Regression (Multi-Class)

Workshop