

Tipos de aprendizado de máquina

Variáveis

Variável Independente (ou explicativa, preditora)

- É a variável que **controlamos ou observamos** para explicar ou prever outra
- Representa a causa ou o fator que influencia a outra variável
- Fica do lado direito da fórmula do modelo
- **Exemplo**: horas_estudo

Quanto mais horas a pessoa estuda, maior tende a ser sua nota.

Variável Dependente (ou resposta, regressanda)

- •É a variável que **queremos prever ou explicar**
- •Representa o **efeito** ou o resultado influenciado pela variável independente.
- •Fica do lado esquerdo da fórmula do modelo.
- **Exemplo**: nota_prova

A nota depende das horas de estudo.

Lm()-Linear Model – Modelo linear

• A função lm() ajusta modelos lineares, como **regressão linear simples** ou **múltipla**, usando o método dos **mínimos quadrados**

Sintaxe:

• lm(formula, data, subset, weights, na.action, method = "qr", ...)

Argumento	Descrição
formula	A equação do modelo. Ex: y ~ x1 + x2 significa "y em função de x1 e x2"
data	Data frame onde as variáveis estão definidas
subset	Subconjunto dos dados a ser usado
weights	Pesos para os valores das observações
na.action	Como tratar valores ausentes (NA)
method	Método usado para calcular (geralmente "qr" por padrão)

Retorno:

Um objeto da classe "lm" que contém:

- •Coeficientes do modelo (intercepto e inclinações)
- Resíduos
- Valores ajustados (fitted)
- •Informações de diagnóstico

Regressão linear

- A Regressão Linear permite gerar um modelo matemático através de uma reta que explique a relação linear entre variáveis
- No caso mais simples, teremos a relação entre uma variável explicativa X (independente) e uma variável resposta Y (dependente)
- Outro fator bastante positivo da regressão linear, e que faz dela um algoritmo
- muito utilizado tanto na estatística "tradicional" quanto em machine learning, é que o algoritmo nos traz informações inferenciais, ou seja, podemos extrapolar conclusões para a população a partir da amostra e também podemos utilizá-lo para modelagem preditiva

Regressão linear Simples

• A regressão linear simples é quando temos apenas uma variável preditora e uma variável resposta

 $Vendas\ do\ Caf\'e=115,37+(-19,28*Pre\~co\ do\ Caf\'e)$

Onde 115,37 é o intercepto B_0 e -19,28 é o coeficiente angular B_1 . Ou seja, a cada real que aumenta no preço, as vendas caem, em média, em 19,28 unidades.

Regressão linear múltipla

- Quando se inclui mais uma variável independente
- Por exemplo, suspeita-se que na nossa empresa, o leite seja um produto complementar ao café, ou seja, o cliente que compra café tende a comprar leite
 - Se essa hipótese for verdadeira, ao realizar mudanças no preço do leite as vendas do café também poderão ser impactadas
 - Ao incluir mais uma variável no modelo (preço do leite) estamos trabalhando com três variáveis:
 - duas variáveis independentes (preço do café, preço do leite) e uma variável dependente (quantidade vendida do café)

Regressão linear múltipla

É possível ver que quando o preço do leite aumenta as vendas do café caem, assim como quando o preço do café aumenta as vendas do café também caem.

Regressão linear múltipla

A equação de regressão múltipla ficou:

Vendas do Café= 151,31 + (-18,72 * Preço do Café) + (-8,78 * Preço do Leite)

```
# Instala e carrega os pacotes
install.packages("effects") #, dependencies=TRUE)
#install.packages("ggplot2") #, dependencies=TRUE)
library(effects)
library(ggplot2)
```

```
# Carregar os dados a partir de um arquivo CSV
dados <- read.csv("dados_cafeteria.csv")
# Ver os primeiros registros
head(dados)</pre>
```

Projeto Cafeteria: Estatística descritiva

```
### Conhecendo os dados ###
# Como estão distribuídos os preços e as vendas?
summary (dados)
sd(dados$Vendas_Cafe)
sd(dados$Preco_Cafe)
sd(dados$Preco_Leite)
# Visualizando a distribuição das variáveis
par(mfrow=c(2,2))
hist(dados$Vendas_Cafe, col='skyblue', main='Distribuição das Vendas de Café')
hist(dados$Preco_Cafe, col='salmon', main='Distribuição dos Preços do Café')
hist(dados$Preco_Leite, col='lightgreen', main='Distribuição dos Preços do Leite')
par(mfrow=c(1,1))
```

A função grid() no R **desenha linhas de grade no gráfico** quando você está usando **funções do sistema gráfico grid,** como grid.rect(), grid.text(), grid.points() etc.

```
### E as promoções, fazem diferença? ###
# Pontos em vermelho quando há promoção.
cores <- ifelse(dados$Promocao == "Sim", "red", "black")</pre>
plot(dados$Preco_Cafe, dados$Vendas_Cafe,
     col = cores,
     pch = 16,
     xlab = 'Preço do Café',
     ylab = 'Vendas de Café',
     main = 'Impacto da Promoção nas Vendas')
legend("topright", legend=c("Com Promoção", "Sem Promoção"),
       col=c("red", "black"), pch=16)
grid()
```

```
### Acima ou abaixo da média? ###
# Quantas vezes as vendas ficaram acima ou abaixo da média histórica?

media <- mean(dados$Vendas_Cafe)
variavel <- ifelse(dados$Vendas_Cafe > media, 'Acima da média', 'Abaixo da média')
variavel <- factor(variavel)
plot(variavel, col=c('gray','orange'), main='Vendas em relação à média')
table(variavel)</pre>
```

função table() cria uma **tabela de frequências absolutas**— ou seja, ela **conta quantas vezes cada valor único aparece em uma variável**

Projeto Cafeteria: Regressão Linear

Argumentos mais usados em legend():

Argumento	Significado
col	Cor das linhas ou pontos da legenda (ex: "red", "blue", 1, 2, etc.)
pch	Símbolo de ponto (point character) usado nos gráficos e na legenda (ex: 1 = círculo, 16 = ponto cheio, etc.)
lty	Tipo de linha (line type), usado para gráficos de linha (ex: 1 = linha contínua, 2 = tracejada, etc.)
lwd	Espessura da linha (line width), ex: 1, 2, 3

```
### Regressão linear simples ###
# Vamos modelar a relação entre preço do café e vendas.
modelo <- lm(Vendas_Cafe ~ Preco_Cafe, data = dados)</pre>
summary (modelo)
# Gráfico com linha de regressão
plot(dados$Preco_Cafe, dados$Vendas_Cafe,
     col = cores,
     pch = 16,
     xlab = "Preço do Café",
     ylab = "Vendas",
     main = "Linha de Regressão: Preço vs Vendas")
abline(modelo, col = "blue", lwd = 2)
legend("topright",
       legend = c("Promoção", "Sem Promoção", "Linha de Regressão"),
       col = c("red", "black", "blue"),
       pch = c(16, 16, NA),
       lty = c(NA, NA, 1),
       lwd = c(NA, NA, 2))
grid()
```

Projeto Cafeteria: Regressão linear Múltipla

```
# Convertendo a variável 'Promocao' para fator (variável categórica)
dados$Promocao <- factor(dados$Promocao)

# Ajuste da regressão múltipla com 3 variáveis explicativas:
# Preco_Cafe (quantitativa), Promocao (categórica), Preco_Leite (quantitativa)
modelo_multiplo <- lm(Vendas_Cafe ~ Preco_Cafe + Promocao + Preco_Leite, data = dados)

# Resumo da regressão múltipla
summary(modelo_multiplo)</pre>
```

Sem factor(), R trata as categorias como texto comum (strings), o que **impede muitos tipos de análise estatística ou plotagem automática**

Com factor(), o R entende que "SIM" e "NÃO" são categorias distintas, não valores contínuos

Uma variável dummy (ou variável indicadora) é uma variável numérica binária que representa categorias qualitativas com valores 0 ou 1. É usada em modelos estatísticos, como regressão linear múltipla, para incluir variáveis categóricas (como sexo, cor, região) na análise, já que esses modelos requerem variáveis numéricas

```
# Gera os efeitos marginais estimados do modelo múltiplo
efeitos <- allEffects(modelo_multiplo)

# Ajusta layout: 2 linhas por 2 colunas, com espaço para título externo (parte superior)
par(mfrow = c(2, 2), oma = c(0, 0, 3, 0)) # oma = margem externa: top = 3 linhas

# Plota os efeitos com ggplot2 para melhor visualização
plot(efeitos,
    multiline = TRUE,
    ci.style = "bands", # bandas de confiança
    main = "Variáveis x Vendas Café")</pre>
```

A função allEffects(), do pacote **effects**, calcula e organiza **os efeitos principais e de interação de um modelo de regressão** em um formato que facilita a **visualização e interpretação**

```
#. Visualizar Interações
Se houver uma interação no modelo (ex: Preco_Cafe * Promocao),
você pode visualizar como o efeito do preço varia com a promoção ativa ou não:
# Corrigir a variável Promocao pois effects não aceita var.categóricas, só factor
dados$Promocao <- factor(dados$Promocao, levels = c("Nao", "Sim"))</pre>
# Ajustar modelo novamente
modelo <- lm(Vendas Cafe ~ Preco Cafe * Promocao + Preco Leite, data = dados)
# calcular o efeito da interação
efeito interacao <- Effect(c("Preco Cafe", "Promocao"), modelo)
# Plotar
plot(efeito_interacao, multiline = TRUE, ci.style = "bands")
#a inclinação da linha para "Sim" vs "Não" mostra como a efetividade do preço
# muda com a promoção.
```

```
#Analisando somente o efeito de uma variável
modelo <- lm(Vendas_Cafe ~ Preco_Cafe * Promocao + Preco_Leite, data = dados)
efeito_preco <- Effect("Preco_Cafe", modelo)
plot(efeito_preco, multiline = TRUE, ci.style = "bands")

#"Para diferentes valores de Preco_Cafe, qual é a estimativa de Vendas_Cafe,
# considerando que Promocao está em um nível fixo (ex: 'Nao') e
#Preco_Leite está em seu valor médio?"</pre>
```

```
modelo_completo <- lm(Vendas_Cafe ~ Preco_Cafe + Preco_Leite + Promocao, data = dados)
modelo sem promocao <- lm(Vendas Cafe ~ Preco Cafe + Preco Leite, data = dados)
# Comparar efeitos marginais
plot(allEffects(modelo_completo), main = "Com Promoção")
plot(allEffects(modelo sem promocao), main = "Sem Promoção")
#Mesmo sob a condição de promoção ativa:
# O preço do café ainda impacta fortemente as vendas (quanto menor, mais vende);
# 0 preço do leite também afeta negativamente as vendas de café,
# possivelmente por serem consumidos juntos;
#A própria promoção tem um efeito positivo nas vendas, como esperado.
#Os gráficos representam efeitos marginais condicionais e mostram como cada variável
#influencia a resposta mantendo as outras fixas (Promocao = "Sim").
```


- Você foi contratado por uma floricultura especializada em espécies do gênero Iris. A empresa deseja entender como diferentes características das flores se relacionam entre si, a fim de prever o comprimento das pétalas a partir de outras medições físicas.
- Para isso, você terá acesso a uma base de dados clássica da estatística chamada iris, que contém medições de 150 flores de três espécies (setosa, versicolor e virginica). Cada flor foi medida em relação a:
 - Sepal.Length comprimento da sépala (em cm)
 - Sepal.Width largura da sépala (em cm)
 - Petal.Length comprimento da pétala (em cm)
 - Petal.Width largura da pétala (em cm)
 - Species espécie da flor

- Qual variável teve o maior impacto sobre o comprimento da pétala: o comprimento da sépala ou a largura da sépala?
- O modelo parece se ajustar bem visualmente aos dados?
- Como você interpretaria esse modelo para um colega da floricultura que não conhece estatística?

```
install.packages("effects")
install.packages("scatterplot3d")
# Carregar a base iris
data(iris)
# Visualização geral
head(iris)
str(iris)
summary(iris)
# Tabela de frequência para a variável categórica
table(iris$Species)
# Gráficos exploratórios
boxplot(Petal.Length ~ Species, data = iris, main = "Petal Length por Espécie", col = "lightblue")
pairs(iris[1:4], main = "Matriz de dispersão")
```

pairs()

- •Mostra visualmente a correlação entre pares de variáveis.
- •Ajuda a identificar relações lineares, padrões e outliers.
- •Útil como **análise exploratória inicial** em conjuntos de dados multivariados.

- A biblioteca scatterplot3d é usada para criar gráficos de dispersão em 3 dimensões (3D)
- útil para visualizar relações entre três variáveis numéricas em modelos exploratórios e até mesmo para ilustrar planos de regressão linear múltipla.

```
library(scatterplot3d)
# Atribuir cores por espécie
colors <- as.numeric(iris$Species)</pre>
scatterplot3d(iris$Sepal.Length,
              iris$Sepal.Width,
              iris$Petal.Length,
              color = colors,
              pch = 16,
              xlab = "Sepal Length",
              vlab = "Sepal Width",
              zlab = "Petal Length",
              main = "Gráfico 3D Estático com scatterplot3d")
legend("topright", legend = levels(iris$Species), col = 1:3, pch = 16)
```

```
# Regressão Linear Simples
modelo_simples <- lm(Petal.Length ~ Sepal.Length, data = iris)
summary(modelo_simples)
# Gráfico com a reta de regressão
plot(iris$Sepal.Length, iris$Petal.Length,
     main = "Petal.Length vs Sepal.Length",
     xlab = "Sepal Length", ylab = "Petal Length", pch = 16)
abline(modelo_simples, col = "blue", lwd = 2)
grid()
```

```
Regressão Linear multipla
# Ajustar modelo de regressão linear múltipla
modelo_multiplo <- lm(Petal.Length ~ Sepal.Length + Sepal.Width, data = iris)
summary(modelo_multiplo)
# Extrair coeficientes
coef <- round(coef(modelo_multiplo), 2)</pre>
eq_text <- paste0("Petal.Length = ", coef[1], " + ",
                  coef[2], " * Sepal.Length + ",
                  coef[3], " * Sepal.Width")
# Criar gráfico 3D com pontos
grafico <- scatterplot3d(iris$Sepal.Length, iris$Sepal.Width, iris$Petal.Length,</pre>
                         pch = 16, color = as.numeric(iris$Species),
                         xlab = "Sepal Length", ylab = "Sepal Width", zlab = "Petal Length",
                         main = "Regressão Linear Múltipla: Petal.Length ~ Sepal.Length + Sepal.Width")
# Adicionar plano de regressão
grafico$plane3d(modelo_multiplo)
# Adicionar a equação no gráfico (posição X, Y, Z ajustável)
text(x = 4.5, y = 4.2, labels = eq_text, cex = 0.8, pos = 4)
```

Comparação com o modelo anterior anova(modelo_simples, modelo_multiplo)

Coluna	Significado
Res.Df	Graus de liberdade residual de cada modelo
RSS	Soma dos quadrados dos resíduos (erro)
Df	Diferença nos graus de liberdade entre os modelos
Sum of Sq	Redução na soma dos quadrados (ganho explicativo)
F	Estatística F calculada para comparar os modelos
Pr(>F)	Valor-p: se for pequeno (< 0.05) , o modelo mais complexo é significativamente melhor

Neste exemplo, observe o RSS (erro)

```
# ------
# Inclusão de variável categórica e efeitos
# ------
is.factor(iris$Species) # Deve retornar TRUE

modelo_species <- lm(Petal.Length ~ Sepal.Length + Species, data = iris)
summary(modelo_species)

# Visualização dos efeitos
library(effects)
efeitos <- allEffects(modelo_species)
plot(efeitos)</pre>
```

Atividade: concessionária

- Você trabalha em uma concessionária de carros e deseja entender como características técnicas dos veículos influenciam o consumo de combustível (mpg - miles per gallon)
- Você tem à disposição a base de dados mtcars, que contém informações de 32 modelos de carro, com variáveis como:
 - mpg: consumo (milhas por galão)
 - hp: potência do motor (horsepower)
 - wt: peso do carro
 - cyl: número de cilindros
 - am: tipo de transmissão (0 = automática, 1 = manual)

Atividade

- Parte 0 Estatística descritiva
- Use summary(mtcars) e str(mtcars) para explorar a base.
- Gere gráficos de dispersão com plot() ou pairs().
- Parte 1 Regressão Linear Simples
- Ajuste um modelo de regressão linear simples prevendo mpg a partir de hp
- Parte 2 Regressão Linear Múltipla
- Adicione o peso do carro como segunda variável

Atividade

Parte 3 – gráfico 3D

 Existe algum ponto extremo (outlier) que parece não se ajustar bem à reta/plano de regressão?

Parte 4 – Interpretação

- Responda:
 - O que significa o sinal dos coeficientes?
 - O modelo com duas variáveis é melhor que o modelo simples? Justifique usando o anova()
 - Que variáveis poderiam ser incluídas para melhorar o modelo?