Advanced Multivariate Methods

JOHNSON DEAN W.

Factor Analysis and Inference for Structured Covariance Matrices

9.1 Introduction

Factor analysis has provoked rather turbulent controversy throughout its history. Its modern beginnings lie in the early-20th-century attempts of Karl Pearson, Charles Spearman, and others to define and measure intelligence. Because of this early association with constructs such as intelligence, factor analysis was nurtured and developed primarily by scientists interested in psychometrics. Arguments over the psychological interpretations of several early studies and the lack of powerful computing facilities impeded its initial development as a statistical method. The advent of high-speed computers has generated a renewed interest in the theoretical and computational aspects of factor analysis. Most of the original techniques have been abandoned and early controversies resolved in the wake of recent developments. It is still true, however, that each application of the technique must be examined on its own merits to determine its success.

The essential purpose of factor analysis is to describe, if possible, the covariance relationships among many variables in terms of a few underlying, but unobservable, random quantities called factors. Basically, the factor model is motivated by the following argument: Suppose variables can be grouped by their correlations. That is, suppose all variables within a particular group are highly correlated among themselves, but have relatively small correlations with variables in a different group. Then it is conceivable that each group of variables represents a single underlying construct, or factor, that is responsible for the observed correlations. For example, correlations from the group of test scores in classics, French, English, mathematics, and music collected by Spearman suggested an underlying "intelligence" factor. A second group of variables, representing physical-fitness scores, if available, might correspond to another factor. It is this type of structure that factor analysis seeks to confirm.

Orthogonal Factor Model

Factor analysis can be considered an extension of principal component analysis. Both can be viewed as attempts to approximate the covariance matrix Σ . However, the approximation based on the factor analysis model is more elaborate. The primary question in factor analysis is whether the data are consistent with a prescribed structure.

9.2 The Orthogonal Factor Model

The observable random vector \mathbf{X} , with p components, has mean μ and covariance matrix Σ . The factor model postulates that \mathbf{X} is linearly dependent upon a fewer observable random variables F_1, F_2, \ldots, F_m , called components of variation $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_m$. particular, the factor analysis model is

$$X_{1} - \mu_{1} = \ell_{11}F_{1} + \ell_{12}F_{2} + \dots + \ell_{1m}F_{m} + \varepsilon_{1}$$

$$X_{2} - \mu_{2} = \ell_{21}F_{1} + \ell_{22}F_{2} + \dots + \ell_{2m}F_{m} + \varepsilon_{2}$$

$$\vdots$$

$$X_{p} - \mu_{p} = \ell_{p1}F_{1} + \ell_{p2}F_{2} + \dots + \ell_{pm}F_{m} + \varepsilon_{p}$$

$$(9-1)$$

or, in matrix notation,

$$\mathbf{X} - \boldsymbol{\mu} = \mathbf{L} \quad \mathbf{F} + \boldsymbol{\varepsilon}$$

$$(p \times 1) \quad (p \times m)(m \times 1) \quad (p \times 1)$$

$$(9-2)$$

The coefficient ℓ_{ij} is called the *loading* of the *i*th variable on the *j*th factor, so the matrix **L** is the matrix of factor loadings. Note that the ith specific factor ε_i is associated only with the ith response X_i . The p deviations $X_1 - \mu_1$, $X_2 - \mu_2$, ..., $X_p - \mu_p$ are

L = Matrix of Factor Loadings (Indicated by lowercase I)

or, in matrix notation,

$$\mathbf{X} - \boldsymbol{\mu} = \mathbf{L} \mathbf{F} + \boldsymbol{\varepsilon}$$

$$(9-2)$$

The coefficient ℓ_{ij} is called the *loading* of the *i*th variable on the *j*th factor, so the matrix **L** is the matrix of factor loadings. Note that the *i*th specific factor ε_i is associated only with the *i*th response X_i . The p deviations $X_1 - \mu_1, X_2 - \mu_2, \ldots, X_p - \mu_p$ are expressed in terms of p + m random variables $F_1, F_2, \ldots, F_m, \varepsilon_1, \varepsilon_2, \ldots, \varepsilon_p$ which are unobservable. This distinguishes the factor model of (9-2) from the multivariate regression model in (7-23), in which the independent variables [whose position is occupied by **F** in (9-2)] can be observed.

With so many unobservable quantities, a direct verification of the factor model from observations on X_1, X_2, \ldots, X_p is hopeless. However, with some additional assumptions about the random vectors \mathbf{F} and ε , the model in (9-2) implies certain covariance relationships, which can be checked.

We assume that

$$E(\mathbf{F}) = \mathbf{0}_{(m \times 1)}, \quad Cov(\mathbf{F}) = E[\mathbf{F}\mathbf{F}'] = \mathbf{I}_{(m \times m)}$$

$$E(\boldsymbol{\varepsilon}) = \mathbf{0}_{(p \times 1)}, \qquad \operatorname{Cov}(\boldsymbol{\varepsilon}) = E[\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'] = \mathbf{\Psi}_{(p \times p)} = \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$
(9-3)

¹As Maxwell [12] points out, in many investigations the ϵ_i tend to be combinations of measurement error and factors that are uniquely associated with the individual variables.

Orthogonal Factor Model with m Common Factors With Random Vectors F and μ = mean of variable i

and that \mathbf{F} and ε are independent, so

$$Cov(\varepsilon, \mathbf{F}) = E(\varepsilon \mathbf{F}') = \mathbf{0}_{(p \times m)}$$

These assumptions and the relation in (9-2) constitute the orthogonal factor model.²

Orthogonal Factor Model with m Common Factors

$$\mathbf{X}_{(p\times 1)} = \mathbf{\mu}_{(p\times 1)} + \mathbf{L}_{(p\times m)(m\times 1)} + \mathbf{\varepsilon}_{(p\times 1)}$$

$$\mu_{i} = mean \text{ of variable } i$$

$$\varepsilon_{i} = i\text{th specific factor}$$

$$F_{j} = j\text{th common factor}$$

$$\ell_{ij} = loading \text{ of the } i\text{th variable on the } j\text{th factor}$$
(9-4)

The unobservable random vectors **F** and ε satisfy the following conditions:

F and
$$\boldsymbol{\varepsilon}$$
 are independent $E(\mathbf{F}) = \mathbf{0}$, $Cov(\mathbf{F}) = \mathbf{I}$ $E(\boldsymbol{\varepsilon}) = \mathbf{0}$, $Cov(\boldsymbol{\varepsilon}) = \boldsymbol{\Psi}$, where $\boldsymbol{\Psi}$ is a diagonal matrix

Covariance of ith Specific Factor and Factor Loading = 0

The orthogonal factor model implies a covariance structure for X. From the model in (9-4),

$$(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})' = (\mathbf{LF} + \boldsymbol{\varepsilon})(\mathbf{LF} + \boldsymbol{\varepsilon})'$$
$$= (\mathbf{LF} + \boldsymbol{\varepsilon})((\mathbf{LF})' + \boldsymbol{\varepsilon}')$$
$$= \mathbf{LF}(\mathbf{LF})' + \boldsymbol{\varepsilon}(\mathbf{LF})' + \mathbf{LF}\boldsymbol{\varepsilon}' + \boldsymbol{\varepsilon}\boldsymbol{\varepsilon}'$$

so that

$$\Sigma = \text{Cov}(\mathbf{X}) = E(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})'$$

$$= \mathbf{L}E(\mathbf{F}\mathbf{F}')\mathbf{L}' + E(\boldsymbol{\varepsilon}\mathbf{F}')\mathbf{L}' + \mathbf{L}E(\mathbf{F}\boldsymbol{\varepsilon}') + E(\boldsymbol{\varepsilon}\boldsymbol{\varepsilon}')$$

$$= \mathbf{L}\mathbf{L}' + \boldsymbol{\Psi}$$

according to (9-3). Also by independence, $Cov(\varepsilon, \mathbf{F}) \approx E(\varepsilon, \mathbf{F}') = \mathbf{0}$ Also, by the model in (9-4), $(\mathbf{X} - \mu)\mathbf{F}' = (\mathbf{LF} + \varepsilon)\mathbf{F}' = \mathbf{LF}\mathbf{F}' + \varepsilon\mathbf{F}'$. $Cov(\mathbf{X}, \mathbf{F}) = E(\mathbf{X} - \mu)\mathbf{F}' = \mathbf{L}E(\mathbf{FF}') + E(\varepsilon\mathbf{F}') = \mathbf{L}$.

²Allowing the factors **F** to be correlated so that Cov(**F**) is *not* diagonal gives the oblique factor model. The oblique model presents some additional estimation difficulties and will not be discussed in this book. (See [20].)

Linearity Inherent in Formulation of Traditional Factor Model

Covariance Structure for the Orthogonal Factor Model

1.
$$Cov(\mathbf{X}) = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$$
or
$$Var(X_i) = \ell_{i1}^2 + \cdots + \ell_{im}^2 + \psi_i$$

$$Cov(X_i, X_k) = \ell_{i1}\ell_{k1} + \cdots + \ell_{im}\ell_{km}$$
2. $Cov(\mathbf{X}, \mathbf{F}) = \mathbf{L}$
or
$$Cov(X_i, F_i) = \ell_{ii}$$

The model $X - \mu = LF + \varepsilon$ is linear in the common factors. If the p responses X are, in fact, related to underlying factors, but the relationship is nonlinear, such as in $X_1 - \mu_1 = \ell_{11}F_1F_3 + \varepsilon_1$, $X_2 - \mu_2 = \ell_{21}F_2F_3 + \varepsilon_2$, and so forth, then the covariance structure $LL' + \Psi$ given by (9-5) may not be adequate. The very important assumption of linearity is inherent in the formulation of the traditional factor model.

Communality – Portion of Variance of ith Variable Contribute by m Common Factor; Portion of Var $(X_i) = \sigma$ Due to Specific Is Uniqueness or Specific Variance

That portion of the variance of the *i*th variable contributed by the *m* common factors is called the *i*th communality. That portion of $Var(X_i) = \sigma_{ii}$ due to the specific factor is often called the uniqueness, or specific variance. Denoting the *i*th communality by h_i^2 , we see from (9-5) that

$$\nabla \sigma_{ii} = \ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2 + \psi_i$$

$$\nabla \operatorname{ar}(X_i) = \operatorname{communality} + \operatorname{specific variance}$$

or

$$h_i^2 = \ell_{i1}^2 + \ell_{i2}^2 + \dots + \ell_{im}^2 \tag{9-6}$$

and

$$\sigma_{ii} = h_i^2 + \psi_i, \qquad i = 1, 2, \dots, p$$

The *i*th communality is the sum of squares of the loadings of the *i*th variable on the *m* common factors.

Verifying the Shared Variance Relationship for Two Factors

Example 9.1 (Verifying the relation $\Sigma = LL' + \Psi$ for two factors) Consider the ∞ -variance matrix

$$\Sigma = \begin{bmatrix} 19 & 30 & 2 & 12 \\ 30 & 57 & 5 & 23 \\ 2 & 5 & 38 & 47 \\ 12 & 23 & 47 & 68 \end{bmatrix}$$

The equality

$$\begin{bmatrix} 19 & 30 & 2 & 12 \\ 30 & 57 & 5 & 23 \\ 2 & 5 & 38 & 47 \\ 12 & 23 & 47 & 68 \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \\ -1 & 6 \\ 1 & 8 \end{bmatrix} \begin{bmatrix} 4 & 7 & -1 & 1 \\ 1 & 2 & 6 & 8 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

or

$$\Sigma = LL' + \Psi$$

may be verified by matrix algebra. Therefore, Σ has the structure produced by an m=2 orthogonal factor model. Since

$$\mathbf{L} = \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{21} & \ell_{22} \\ \ell_{31} & \ell_{32} \\ \ell_{41} & \ell_{42} \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \\ -1 & 6 \\ 1 & 8 \end{bmatrix},$$

$$\Psi = \begin{bmatrix} \psi_1 & 0 & 0 & 0 \\ 0 & \psi_2 & 0 & 0 \\ 0 & 0 & \psi_3 & 0 \\ 0 & 0 & 0 & \psi_4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Variance X_i Decomposed As Communality + Specific Variance

$$\Sigma = LL' + \Psi$$

may be verified by matrix algebra. Therefore, Σ has the structure produced by an m=2 orthogonal factor model. Since

$$\mathbf{L} = \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{21} & \ell_{22} \\ \ell_{31} & \ell_{32} \\ \ell_{41} & \ell_{42} \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 7 & 2 \\ -1 & 6 \\ 1 & 8 \end{bmatrix},$$

$$\Psi = \begin{bmatrix} \psi_1 & 0 & 0 & 0 \\ 0 & \psi_2 & 0 & 0 \\ 0 & 0 & \psi_3 & 0 \\ 0 & 0 & 0 & \psi_4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

the communality of X_1 is, from (9-6),

$$h_1^2 = \ell_{11}^2 + \ell_{12}^2 = 4^2 + 1^2 = 17$$

and the variance of X_1 can be decomposed as

$$\sigma_{11} = (\ell_{11}^2 + \ell_{12}^2) + \psi_1 = h_1^2 + \psi_1$$

or

$$\begin{array}{rcl}
19 & = & 4^2 + 1^2 & + & 2 & = & 17 + 2 \\
\text{variance} & = & \text{communality} + & \text{specific} \\
\text{variance} & & \text{variance}
\end{array}$$

A similar breakdown occurs for the other variables.

Factor Model Assumes that p +p(p-1)/2 = p(p+1)/2 variances and Covariance for X Can Be Reproduced From the pm Factor Loadings and Variances

The factor model assumes that the p + p(p-1)/2 = p(p+1)/2 variances and covariances for **X** can be reproduced from the pm factor loadings ℓ_{ij} and the p specific variances ψ_i . When m = p, any covariance matrix Σ can be reproduced exactly as **LL**' [see (9-11)], so Ψ can be the zero matrix. However, it is when m is small relative to p that factor analysis is most useful. In this case, the factor model provides a "simple" explanation of the covariation in **X** with fewer parameters than the p(p+1)/2 parameters in Σ . For example, if **X** contains p=12 variables, and the factor model in (9-4) with m=2 is appropriate, then the p(p+1)/2=12(13)/2=78 elements of Σ are described in terms of the mp+p=12(2)+12=36 parameters ℓ_{ij} and ψ_i of the factor model.

Nonexistence of a Proper Solution

Example 9.2 (Nonexistence of a proper solution) Let p = 3 and m = 1, and suppose the random variables X_1, X_2 , and X_3 have the positive definite covariance matrix

$$\Sigma = \begin{bmatrix} 1 & .9 & .7 \\ .9 & 1 & .4 \\ .7 & .4 & 1 \end{bmatrix}$$

Using the factor model in (9-4), we obtain

$$X_1 - \mu_1 = \ell_{11}F_1 + \epsilon_1$$

 $X_2 - \mu_2 = \ell_{21}F_1 + \epsilon_2$
 $X_3 - \mu_3 = \ell_{31}F_1 + \epsilon_3$

The covariance structure in (9-5) implies that

$$\Sigma = LL' + \Psi$$

or

$$1 = \ell_{11}^2 + \psi_1 \qquad .90 = \ell_{11}\ell_{21} \qquad .70 = \ell_{11}\ell_{31}$$

$$1 = \ell_{21}^2 + \psi_2 \qquad .40 = \ell_{21}\ell_{31}$$

$$1 = \ell_{31}^2 + \psi_3$$

Factor Loading Too Large

or

$$1 = \ell_{11}^2 + \psi_1 \qquad .90 = \ell_{11}\ell_{21} \qquad .70 = \ell_{11}\ell_{31}$$

$$1 = \ell_{21}^2 + \psi_2 \qquad .40 = \ell_{21}\ell_{31}$$

$$1 = \ell_{31}^2 + \psi_3$$

The pair of equations

$$.70 = \ell_{11}\ell_{31}$$
$$.40 = \ell_{21}\ell_{31}$$

implies that

$$\ell_{21} = \left(\frac{.40}{.70}\right)\ell_{11}$$

Substituting this result for ℓ_{21} in the equation

$$.90 = \ell_{11}\ell_{21}$$

yields $\ell_{11}^2 = 1.575$, or $\ell_{11} = \pm 1.255$. Since $Var(F_1) = 1$ (by assumption) and $Var(X_1) = 1$, $\ell_{11} = Cov(X_1, F_1) = Corr(X_1, F_1)$. Now, a correlation coefficient cannot be greater than unity (in absolute value), so, from this point of view, $|\ell_{11}| = 1.255$ is too large. Also, the equation

$$1 = \ell_{11}^2 + \psi_1$$
, or $\psi_1 = 1 - \ell_{11}^2$

Negative Value for Variance – Can Not Statistically Interpret

gives

$$\psi_1 = 1 - 1.575 = -.575$$

which is unsatisfactory, since it gives a negative value for $Var(\varepsilon_1) = \psi_1$.

Thus, for this example with m = 1, it is possible to get a unique numerical solution to the equations $\Sigma = LL' + \Psi$. However, the solution is not consistent with the statistical interpretation of the coefficients, so it is not a proper solution.

When m > 1, there is always some inherent ambiguity associated with the factor model. To see this, let **T** be any $m \times m$ orthogonal matrix, so that TT' = T'T = I. Then the expression in (9-2) can be written

$$X - \mu = LF + \varepsilon = LTT'F + \varepsilon = L*F* + \varepsilon \tag{9-7}$$

where

$$L^* = LT$$
 and $F^* = T'F$

Factor Rotation Rationale: Orthogonal Matrices Correspond to Rotations (Reflections) of Coordinate System for X

where

$$L^* = LT$$
 and $F^* = T'F$

Since

$$E(\mathbf{F}^*) = \mathbf{T}'E(\mathbf{F}) = \mathbf{0}$$

and

$$Cov(\mathbf{F}^*) = \mathbf{T}'Cov(\mathbf{F})\mathbf{T} = \mathbf{T}'\mathbf{T} = \mathbf{I}_{(m \times m)}$$

it is impossible, on the basis of observations on X, to distinguish the loadings L from the loadings L^* . That is, the factors F and $F^* = T'F$ have the same statistical properties, and even though the loadings L^* are, in general, different from the loadings L, they both generate the same covariance matrix Σ . That is,

$$\Sigma = LL' + \Psi = LTT'L' + \Psi = (L^*)(L^*)' + \Psi$$
 (9-8)

This ambiguity provides the rationale for "factor rotation," since orthogonal matrices correspond to rotations (and reflections) of the coordinate system for X.

Factor loadings L are determined only up to an orthogonal matrix T. Thus, the loadings

$$L^* = LT \quad \text{and} \quad L \tag{9-9}$$

both give the same representation. The communalities, given by the diagonal elements of $\mathbf{LL'} = (\mathbf{L^*})(\mathbf{L^*})'$ are also unaffected by the choice of \mathbf{T} .

Rotation: Multiplication of Loading Matrix by Orthogonal Matrix; Loadings and Specific Variances Computed With Estimated Values of Factor Scores

The analysis of the factor model proceeds by imposing conditions that allow one to uniquely estimate L and Ψ . The loading matrix is then rotated (multiplied by an orthogonal matrix), where the rotation is determined by some "ease-of-interpretation" criterion. Once the loadings and specific variances are obtained, factors are identified, and estimated values for the factors themselves (called factor scores) are frequently constructed.

Principal Components, Related Principal Factor and Maximum Likelihood Estimation

9.3 Methods of Estimation

Given observations x_1, x_2, \dots, x_n on p generally correlated variables, factor analysis seeks to answer the question, Does the factor model of (9-4), with a small number of factors, adequately represent the data? In essence, we tackle this statistical model—building problem by trying to verify the covariance relationship in (9-5).

The sample covariance matrix S is an estimator of the unknown population covariance matrix Σ . If the off-diagonal elements of S are small or those of the sample correlation matrix R essentially zero, the variables are not related, and a factor analysis will not prove useful. In these circumstances, the *specific* factors play the dominant role, whereas the major aim of factor analysis is to determine a few important common factors.

If Σ appears to deviate significantly from a diagonal matrix, then a factor model can be entertained, and the initial problem is one of estimating the factor loadings ℓ_{ij} and specific variances ψ_i . We shall consider two of the most popular methods of parameter estimation, the principal component (and the related principal factor) method and the maximum likelihood method. The solution from either method can be rotated in order to simplify the interpretation of factors, as described in Section 9.4. It is always prudent to try more than one method of solution; if the factor model is appropriate for the problem at hand, the solutions should be consistent with one another.

Current estimation and rotation methods require iterative calculations that must be done on a computer. Several computer programs are now available for this purpose.

Principal Component (and Principal Factor) Method

The Principal Component (and Principal Factor) Method

The spectral decomposition of (2-16) provides us with one factoring of the covariance matrix Σ . Let Σ have eigenvalue-eigenvector pairs $(\lambda_i, \mathbf{e}_i)$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$. Then

$$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1' + \lambda_2 \mathbf{e}_2 \mathbf{e}_2' + \dots + \lambda_p \mathbf{e}_p \mathbf{e}_p'$$

$$= \left[\sqrt{\lambda_1} \mathbf{e}_1 \mid \sqrt{\lambda_2} \mathbf{e}_2 \mid \dots \mid \sqrt{\lambda_p} \mathbf{e}_p \right] \begin{bmatrix} \sqrt{\lambda_1} \mathbf{e}_1' \\ \sqrt{\lambda_2} \mathbf{e}_2' \\ \vdots \\ \sqrt{\lambda_p} \mathbf{e}_p' \end{bmatrix}$$
(9-10)

This fits the prescribed covariance structure for the factor analysis model having as many factors as variables (m = p) and specific variances $\psi_i = 0$ for all *i*. The loading matrix has *j*th column given by $\sqrt{\lambda_i} e_i$. That is, we can write

$$\sum_{(p \times p)} = \sum_{(p \times p)(p \times p)} \mathbf{L}' + \mathbf{0}_{(p \times p)} = \mathbf{L}\mathbf{L}'$$
(9-11)

Apart from the scale factor $\sqrt{\lambda_j}$, the factor loadings on the jth factor are the coefficients for the jth principal component of the population.

Although the factor analysis representation of Σ in (9-11) is exact, it is not particularly useful: It employs as many common factors as there are variables and does not allow for any variation in the specific factors ε in (9-4). We prefer models that explain the covariance structure in terms of just a few common factors. One

Factoring of \sum (Variance-Covariance Matrix) = LL' + Ψ

approach, when the last p-m eigenvalues are small, is to neglect the contribution of $\lambda_{m+1}\mathbf{e}_{m+1}\mathbf{e}'_{m+1}+\cdots+\lambda_p\mathbf{e}_p\mathbf{e}'_p$ to Σ in (9-10). Neglecting this contribution, we obtain the approximation

$$\Sigma \doteq \left[\sqrt{\lambda_1} \, \mathbf{e}_1 \mid \sqrt{\lambda_2} \, \mathbf{e}_2 \mid \cdots \mid \sqrt{\lambda_m} \, \mathbf{e}_m\right] \begin{bmatrix} \frac{\sqrt{\lambda_1} \, \mathbf{e}_1'}{\sqrt{\lambda_2} \, \mathbf{e}_2'} \\ \vdots \\ \sqrt{\lambda_m} \, \mathbf{e}_m' \end{bmatrix} = \underbrace{\mathbf{L}}_{(p \times m) \ (m \times p)} \mathbf{L}' \tag{9-12}$$

The approximate representation in (9-12) assumes that the specific factors ε in (9-4) are of minor importance and can also be ignored in the factoring of Σ . If specific factors are included in the model, their variances may be taken to be the diagonal elements of $\Sigma - LL'$, where LL' is as defined in (9-12).

Allowing for specific factors, we find that the approximation becomes

$$\Sigma = LL' + \Psi$$

$$= \left[\sqrt{\lambda_1} \, \mathbf{e}_1 \, \mid \, \sqrt{\lambda_2} \, \mathbf{e}_2 \, \mid \, \cdots \, \mid \, \sqrt{\lambda_m} \, \mathbf{e}_m \right] \begin{bmatrix} \frac{\sqrt{\lambda_1} \, \mathbf{e}_1'}{\sqrt{\lambda_2} \, \mathbf{e}_2'} \\ \vdots \\ \sqrt{\lambda_m} \, \mathbf{e}_m' \end{bmatrix} + \begin{bmatrix} \psi_1 & 0 & \cdots & 0 \\ 0 & \psi_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \psi_p \end{bmatrix}$$
(9-13)

where
$$\psi_i = \sigma_{ii} - \sum_{j=1}^{m} \ell_{ij}^2$$
 for $i = 1, 2, ..., p$.

Center At the Mean and Then Standardize, i.e. Divide by the S.D. to Avoid Problem of One Variable's Large Variance Influencing the Factor Loadings

To apply this approach to a data set x_1, x_2, \ldots, x_n , it is customary first to center the observations by subtracting the sample mean \bar{x} . The centered observations

$$\mathbf{x}_{j} - \widetilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_{j1} \\ \mathbf{x}_{j2} \\ \vdots \\ \mathbf{x}_{jp} \end{bmatrix} - \begin{bmatrix} \widetilde{\mathbf{x}}_{1} \\ \overline{\mathbf{x}}_{2} \\ \vdots \\ \widetilde{\mathbf{x}}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{j1} - \widetilde{\mathbf{x}}_{1} \\ \mathbf{x}_{j2} - \overline{\mathbf{x}}_{2} \\ \vdots \\ \mathbf{x}_{jp} - \widetilde{\mathbf{x}}_{p} \end{bmatrix} \qquad j = 1, 2, \dots, n \qquad (9-14)$$

have the same sample covariance matrix S as the original observations.

In cases in which the units of the variables are not commensurate, it is usually desirable to work with the standardized variables

$$\mathbf{z}_{j} = \begin{bmatrix} \frac{(x_{j1} - \bar{x}_{1})}{\sqrt{s_{11}}} \\ \frac{(x_{j2} - \bar{x}_{2})}{\sqrt{s_{22}}} \\ \vdots \\ \frac{(x_{jp} - \bar{x}_{p})}{\sqrt{s_{pp}}} \end{bmatrix} \qquad j = 1, 2, \dots, n$$

whose sample covariance matrix is the sample correlation matrix **R** of the observations $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$. Standardization avoids the problems of having one variable with large variance unduly influencing the determination of factor loadings.

Principal Component Solution of the Factor Model

The representation in (9-13), when applied to the sample covariance matrix S or the sample correlation matrix R, is known as the *principal component solution*. The name follows from the fact that the factor loadings are the scaled coefficients of the first few sample principal components. (See Chapter 8.)

Principal Component Solution of the Factor Model

The principal component factor analysis of the sample covariance matrix S is specified in terms of its eigenvalue-eigenvector pairs $(\hat{\lambda}_1, \hat{\mathbf{e}}_1)$, $(\hat{\lambda}_2, \hat{\mathbf{e}}_2)$,..., $(\hat{\lambda}_p, \hat{\mathbf{e}}_p)$, where $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_p$. Let m < p be the number of common factors. Then the matrix of estimated factor loadings $\{\tilde{\ell}_{ij}\}$ is given by

$$\widetilde{\mathbf{L}} = \left[\sqrt{\hat{\lambda}_1} \, \hat{\mathbf{e}}_1 \, \mid \, \sqrt{\hat{\lambda}_2} \, \hat{\mathbf{e}}_2 \, \mid \, \dots \, \mid \, \sqrt{\hat{\lambda}_m} \, \hat{\mathbf{e}}_m \right] \tag{9-15}$$

The estimated specific variances are provided by the diagonal elements of the matrix $S - \widetilde{LL}'$, so

$$\widetilde{\boldsymbol{\Psi}} = \begin{bmatrix} \widetilde{\boldsymbol{\psi}}_1 & 0 & \cdots & 0 \\ 0 & \widetilde{\boldsymbol{\psi}}_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \widetilde{\boldsymbol{\psi}}_B \end{bmatrix} \quad \text{with} \quad \widetilde{\boldsymbol{\psi}}_i = \boldsymbol{s}_{ii} - \sum_{j=1}^m \widetilde{\boldsymbol{\ell}}_{ij}^2 \tag{9-16}$$

Communalities are estimated as

$$\widetilde{h}_i^2 = \widetilde{\ell}_{i,1}^2 + \widetilde{\ell}_{i,2}^2 + \dots + \widetilde{\ell}_{i,m}^2 \tag{9-17}$$

The principal component factor analysis of the sample correlation matrix is obtained by starting with **R** in place of **S**.

Choice of m factors Based on Estimated Eigenvalues (Like Principal Components)

For the principal component solution, the estimated loadings for a given factor do not change as the number of factors is increased. For example, if m = 1, $\widetilde{\mathbf{L}} = \left[\sqrt{\hat{\lambda}_1} \, \hat{\mathbf{e}}_1 \right]$, and if m = 2, $\widetilde{\mathbf{L}} = \left[\sqrt{\hat{\lambda}_1} \, \hat{\mathbf{e}}_1 \right] = \left[\sqrt{\hat{\lambda}_2} \, \hat{\mathbf{e}}_2 \right]$, where $(\hat{\lambda}_1, \hat{\mathbf{e}}_1)$ and $(\hat{\lambda}_2, \hat{\mathbf{e}}_2)$ are the first two eigenvalue-eigenvector pairs for S (or R).

By the definition of $\widetilde{\psi}_i$, the diagonal elements of **S** are equal to the diagonal elements of $\widetilde{\mathbf{LL}}' + \widetilde{\mathbf{\Psi}}$. However, the off-diagonal elements of **S** are not usually reproduced by $\widetilde{\mathbf{LL}}' + \widetilde{\mathbf{\Psi}}$. How, then, do we select the number of factors m?

If the number of common factors is not determined by a priori considerations, such as by theory or the work of other researchers, the choice of m can be based on the estimated eigenvalues in much the same manner as with principal components. Consider the residual matrix

$$\mathbf{S} - (\widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' + \widetilde{\mathbf{\Psi}}) \tag{9-18}$$

resulting from the approximation of S by the principal component solution. The diagonal elements are zero, and if the other elements are also small, we may subjectively take the m factor model to be appropriate. Analytically, we have (see Exercise 9.5)

Sum of squared entries of
$$(S - (\widetilde{L}\widetilde{L}' + \widetilde{\Psi})) \le \hat{\lambda}_{m+1}^2 + \dots + \hat{\lambda}_p^2$$
 (9-19)

Contributions of First Few Factors t Sample Variances of Variables Quite Large

Consequently, a small value for the sum of the squares of the neglected eigenvalues implies a small value for the sum of the squared errors of approximation.

Ideally, the contributions of the first few factors to the sample variances of the variables should be large. The contribution to the sample variance s_{ii} from the first common factor is $\tilde{\ell}_{i1}^2$. The contribution to the *total* sample variance, $s_{11} + s_{22} + \cdots + s_{pp} = \operatorname{tr}(\mathbf{S})$, from the first common factor is then

$$\widetilde{\ell}_{11}^2 + \widetilde{\ell}_{21}^2 + \dots + \widetilde{\ell}_{p1}^2 = \left(\sqrt{\widehat{\lambda}_1}\,\widehat{\mathbf{e}}_1\right)'\left(\sqrt{\widehat{\lambda}_1}\,\widehat{\mathbf{e}}_1\right) = \widehat{\lambda}_1$$

since the eigenvector ê1 has unit length. In general,

$$\begin{pmatrix}
\text{Proportion of total} \\
\text{sample variance} \\
\text{due to } \text{jth factor}
\end{pmatrix} = \begin{cases}
\frac{\hat{\lambda}_j}{s_{11} + s_{22} + \dots + s_{pp}} & \text{for a factor analysis of } \mathbf{S} \\
\frac{\hat{\lambda}_j}{p} & \text{for a factor analysis of } \mathbf{R}
\end{cases}$$
(9-20)

Suitable Proportion of Sample Variance Explained Or Set m Equal to No. Eigenvalues of R Greater Than 1

NO. OF FACIOIS NCIAINED BASEA ON

Criterion (9-20) is frequently used as a heuristic device for determining the appropriate number of common factors. The number of common factors retained in the model is increased until a "suitable proportion" of the total sample variance has been explained.

Another convention, frequently encountered in packaged computer programs, is to set m equal to the number of eigenvalues of \mathbf{R} greater than one if the sample correlation matrix is factored, or equal to the number of positive eigenvalues of \mathbf{S} if the sample covariance matrix is factored. These rules of thumb should not be applied indiscriminately. For example, m = p if the rule for \mathbf{S} is obeyed, since all the eigenvalues are expected to be positive for large sample sizes. The best approach is to retain few rather than many factors, assuming that they provide a satisfactory interpretation of the data and yield a satisfactory fit to \mathbf{S} or \mathbf{R} .

Example: Factor Analysis of Consumer-Preference Data: Correlation Matrix

Example 9.3 (Factor analysis of consumer-preference data) In a consumer-preference study, a random sample of customers were asked to rate several attributes of a new product. The responses, on a 7-point semantic differential scale, were tabulated and the attribute correlation matrix constructed. The correlation matrix is presented next:

Attribute (Variable)		1	2	3_	4	5
Taste	1	1.00	.02	(96)	.42	.01
Good buy for money	2	.02	1.00	.13	.71	(85)
Flavor	3	.96	.13	1.00	.50	.11
Suitable for snack	4	.42	.71	.50	1.00	(79)
Provides lots of energy	5	.01	.85	.11	.79	1.00

It is clear from the circled entries in the correlation matrix that variables 1 and 3 and variables 2 and 5 form groups. Variable 4 is "closer" to the (2, 5) group than the (1, 3) group. Given these results and the small number of variables, we might expect that the apparent linear relationships between the variables can be explained in terms of, at most, two or three common factors.

How Many Factors: Two or Three?

The first two eigenvalues, $\ddot{\lambda}_1 = 2.85$ and $\ddot{\lambda}_2 = 1.81$, of **R** are the only eigenvalues greater than unity. Moreover, m = 2 common factors will account for a cumulative proportion

$$\frac{\hat{\lambda}_1 + \hat{\lambda}_2}{p} = \frac{2.85 + 1.81}{5} = .93$$

of the total (standardized) sample variance. The estimated factor loadings, communalities, and specific variances, obtained using (9-15), (9-16), and (9-17), are given in Table 9.1.

Table 9.1					
Variable	Estimated factor loadings $\widetilde{\ell}_{ij} = \sqrt{\widehat{\lambda}_i} \widehat{e}_{ij}$ $F_1 \qquad \qquad F_2$		Communalities \widetilde{h}_i^2	Specific variances $\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
1. Taste	.56	.82	.98	.02	
2. Good buy for money 3. Flavor 4. Suitable	.78 .65	53 .75	.88 .98	.12 .02	
for snack 5. Provides	.94	10	.89	.11	
lots of energy	.80	54	.93	.07	
Eigenvalues	2.85	1.81			
Cumulative proportion of total (standardized) sample variance	.571	.932			

Factor Loadings Reveal Two-But Need to Rotate Before Interpretation

Now,

$$\widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' + \widetilde{\mathbf{\Psi}} = \begin{bmatrix} .56 & .82 \\ .78 & -.53 \\ .65 & .75 \\ .94 & -.10 \\ .80 & -.54 \end{bmatrix} \begin{bmatrix} .56 & .78 & .65 & .94 & .80 \\ .82 & -.53 & .75 & -.10 & -.54 \end{bmatrix}$$

$$+ \begin{bmatrix} .02 & 0 & 0 & 0 & 0 \\ 0 & .12 & 0 & 0 & 0 \\ 0 & 0 & .02 & 0 & 0 \\ 0 & 0 & 0 & .11 & 0 \\ 0 & 0 & 0 & 0 & .07 \end{bmatrix} = \begin{bmatrix} 1.00 & .01 & .97 & .44 & .00 \\ & 1.00 & .11 & .79 & .91 \\ & & & 1.00 & .53 & .11 \\ & & & & & 1.00 & .81 \\ & & & & & & & 1.00 \end{bmatrix}$$

nearly reproduces the correlation matrix **R**. Thus, on a purely descriptive basis, we would judge a two-factor model with the factor loadings displayed in Table 9.1 as providing a good fit to the data. The communalities (.98, .88, .98, .99, .93) indicate that the two factors account for a large percentage of the sample variance of each variable.

We shall not interpret the factors at this point. As we noted in Section 9.2, the factors (and loadings) are unique up to an orthogonal rotation. A rotation of the factors often reveals a simple structure and aids interpretation. We shall consider this example again (see Example 9.9 and Panel 9.1) after factor rotation has been discussed.

Factor Analysis of Stock-Price Data

Example 9.4 (Factor analysis of stock-price data) Stock-price data consisting of n = 103 weekly rates of return on p = 5 stocks were introduced in Example 8.5. In that example, the first two sample principal components were obtained from **R**. Taking m = 1 and m = 2, we can easily obtain principal component solutions to the orthogonal factor model. Specifically, the estimated factor loadings are the sample principal component coefficients (eigenvectors of **R**), scaled by the square root of the corresponding eigenvalues. The estimated factor loadings, communalities, specific variances, and proportion of total (standardized) sample variance explained by each factor for the m = 1 and m = 2 factor solutions are available in Table 9.2. The communalities are given by (9-17). So, for example, with m = 2, $\widetilde{h}_1^2 = \widetilde{\ell}_{11}^2 + \widetilde{\ell}_{12}^2 = (.732)^2 + (-.437)^2 = .73$.

Table 9.2					
	One-factor	Two-factor solution			
Variable	Estimated factor loadings F ₁	Specific variances $\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$		ted factor dings	Specific variances $\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$
 J P Morgan Citibank Wells Fargo Royal Dutch Shell ExxonMobil 	.732 .831 .726 .605 .563	.46 .31 .47 .63 .68	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17
Cumulative proportion of total (standardized) sample variance explained	.487		.487	.769	

Stock-Price Data: One Factor or Two?

Table 9.2						
	One-factor	Two-factor solution				
Variable	Estimated factor loadings F ₁	loadings variances loadings		dings	Specific variances $\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	
 J P Morgan Citibank Wells Fargo Royal Dutch Shell ExxonMobil 	.732 .831 .726 .605 .563	.46 .31 .47 .63 .68	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17	
Cumulative proportion of total (standardized) sample variance explained	.487		.487	.769		

The residual matrix corresponding to the solution for m = 2 factors is

$$\mathbf{R} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' - \widetilde{\mathbf{\Psi}} = \begin{bmatrix} 0 & -.099 & -.185 & -.025 & .056 \\ -.099 & 0 & -.134 & .014 & -.054 \\ -.185 & -.134 & 0 & .003 & .006 \\ -.025 & .014 & .003 & 0 & -.156 \\ .056 & -.054 & .006 & -.156 & 0 \end{bmatrix}$$

Factor Analysis: Consider Proportion of Total Variance Explained by m-Factor Solution

The proportion of the total variance explained by the two-factor solution is appreciably larger than that for the one-factor solution. However, for m = 2, \widetilde{LL}' produces numbers that are, in general, larger than the sample correlations. This is particularly true for r_{13} .

It seems fairly clear that the first factor, F_1 , represents general economic conditions and might be called a market factor. All of the stocks load highly on this factor, and the loadings are about equal. The second factor contrasts the banking stocks with the oil stocks. (The banks have relatively large negative loadings, and the oils have large positive loadings, on the factor.) Thus, F_2 seems to differentiate stocks in different industries and might be called an industry factor. To summarize, rates of return appear to be determined by general market conditions and activities that are unique to the different industries, as well as a residual or firm specific factor. This is essentially the conclusion reached by an examination of the sample principal components in Example 8.5.

Modified Approach – Principal Factor Solution

A Modified Approach—the Principal Factor Solution

A modification of the principal component approach is sometimes considered. We describe the reasoning in terms of a factor analysis of \mathbf{R} , although the procedure is also appropriate for \mathbf{S} . If the factor model $\boldsymbol{\rho} = \mathbf{L}\mathbf{L}' + \boldsymbol{\Psi}$ is correctly specified, the *m common* factors should account for the *off-diagonal* elements of $\boldsymbol{\rho}$, as well as the *communality portions* of the diagonal elements

$$\rho_{ij} = 1 = h_i^2 + \psi_i$$

If the specific factor contribution ψ_i is removed from the diagonal or, equivalently, the 1 replaced by h_i^2 , the resulting matrix is $\rho - \Psi = LL'$.

Suppose, now, that initial estimates ψ_i^* of the specific variances are available. Then replacing the *i*th diagonal element of **R** by $h_i^{*2} = 1 - \psi_i^*$, we obtain a "reduced" sample correlation matrix

$$\mathbf{R}_{r} = \begin{bmatrix} h_{1}^{*2} & r_{12} & \cdots & r_{1p} \\ r_{12} & h_{2}^{*2} & \cdots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1p} & r_{2p} & \cdots & h_{p}^{*2} \end{bmatrix}$$

Now, apart from sampling variation, all of the elements of the reduced sample correlation matrix \mathbf{R}_r , should be accounted for by the m common factors. In particular, \mathbf{R}_r is factored as

$$\mathbf{R}_{t} \doteq \mathbf{L}_{t}^{*} \mathbf{L}_{t}^{*} \tag{9-21}$$

where $\mathbf{L}_{i}^{*} = \{\ell_{ii}^{*}\}$ are the estimated loadings.

Principal Factor Method Factor Analysis Where m Are Largest Eigenvalue-Eigenvector Pairs Determined from R

The principal factor method of factor analysis employs the estimates

$$\mathbf{L}_{r}^{*} = \left[\sqrt{\hat{\lambda}_{1}^{*}} \, \hat{\mathbf{e}}_{1}^{*} \mid \sqrt{\hat{\lambda}_{2}^{*}} \, \hat{\mathbf{e}}_{2}^{*} \mid \dots \mid \sqrt{\hat{\lambda}_{m}^{*}} \, \hat{\mathbf{e}}_{m}^{*} \right]$$

$$\psi_{i}^{*} = 1 - \sum_{j=1}^{m} \ell_{ij}^{*2}$$
(9-22)

where $(\hat{\lambda}_i^*, \hat{\mathbf{e}}_i^*)$, i = 1, 2, ..., m are the (largest) eigenvalue-eigenvector pairs determined from \mathbf{R}_r . In turn, the communalities would then be (re)estimated by

$$\widetilde{h}_{i}^{*2} = \sum_{j=1}^{m} \ell_{ij}^{*2} \tag{9-23}$$

The principal factor solution can be obtained iteratively, with the communality estimates of (9-23) becoming the initial estimates for the next stage.

In the spirit of the principal component solution, consideration of the estimated eigenvalues $\hat{\lambda}_1^*, \hat{\lambda}_2^*, \dots, \hat{\lambda}_p^*$ helps determine the number of common factors to retain. An added complication is that now some of the eigenvalues may be negative, due to the use of initial communality estimates. Ideally, we should take the number of common factors equal to the rank of the reduced *population* matrix. Unfortunately, this rank is not always well determined from \mathbf{R}_r , and some judgment is necessary.

Added Complication: Some Eigenvalues May be Negative Due to Use of Communality Estimates

In the spirit of the principal component solution, consideration of the estimated eigenvalues $\hat{\lambda}_1^*, \hat{\lambda}_2^*, \dots, \hat{\lambda}_p^*$ helps determine the number of common factors to retain. An added complication is that now some of the eigenvalues may be negative, due to the use of initial communality estimates. Ideally, we should take the number of common factors equal to the rank of the reduced *population* matrix. Unfortunately, this rank is not always well determined from \mathbf{R}_r , and some judgment is necessary.

Although there are many choices for initial estimates of specific variances, the most popular choice, when one is working with a correlation matrix, is $\psi_i^* = 1/r^{ii}$, where r^{ii} is the *i*th diagonal element of \mathbf{R}^{-1} . The initial communality estimates then become

$$h_i^{*2} = 1 - \psi_i^* = 1 - \frac{1}{r^{ii}} \tag{9-24}$$

which is equal to the square of the multiple correlation coefficient between X_i and the other p-1 variables. The relation to the multiple correlation coefficient means that h_i^{*2} can be calculated even when **R** is not of full rank. For factoring **S**, the initial specific variance estimates use s^{ii} , the diagonal elements of S^{-1} . Further discussion of these and other initial estimates is contained in [6].

Maximum Likelihood Method

Although the principal component method for **R** can be regarded as a principal factor method with *initial* communality estimates of unity, or specific variances equal to zero, the two are philosophically and geometrically different. (See [6].) In practice, however, the two frequently produce comparable factor loadings if the number of variables is large and the number of common factors is small.

We do not pursue the principal factor solution, since, to our minds, the solution methods that have the most to recommend them are the principal component method and the maximum likelihood method, which we discuss next.

The Maximum Likelihood Method

If the common factors \mathbf{F} and the specific factors $\boldsymbol{\varepsilon}$ can be assumed to be normally distributed, then maximum likelihood estimates of the factor loadings and specific variances may be obtained. When \mathbf{F}_j and $\boldsymbol{\varepsilon}_j$ are jointly normal, the observations $\mathbf{X}_j - \boldsymbol{\mu} = \mathbf{L}\mathbf{F}_j + \boldsymbol{\varepsilon}_j$ are then normal, and from (4-16), the likelihood is

$$L(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = (2\pi)^{-\frac{np}{2}} |\boldsymbol{\Sigma}|^{-\frac{n}{2}} e^{-\left(\frac{1}{2}\right) \operatorname{tr}\left[\boldsymbol{\Sigma}^{-1}\left(\sum_{j=1}^{n} (\mathbf{x}_{j} - \bar{\mathbf{x}}) (\mathbf{x}_{j} - \bar{\mathbf{x}})' + n(\bar{\mathbf{x}} - \boldsymbol{\mu})'\right)\right]}$$

$$= (2\pi)^{\frac{-(n-1)p}{2}} |\boldsymbol{\Sigma}|^{-\frac{(n-1)}{2}} e^{-\left(\frac{1}{2}\right) \operatorname{tr}\left[\boldsymbol{\Sigma}^{-1}\left(\sum_{j=1}^{n} (\mathbf{x}_{j} - \bar{\mathbf{x}}) (\mathbf{x}_{j} - \bar{\mathbf{x}})'\right)\right]}$$

$$\times (2\pi)^{-\frac{p}{2}} |\boldsymbol{\Sigma}|^{-\frac{1}{2}} e^{-\left(\frac{n}{2}\right) (\bar{\mathbf{x}} - \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{x}} - \boldsymbol{\mu})}$$

$$(9-25)$$

Common and Specific Factors Assumed to be Normal To Obtain Maximum Likelihood

which depends on L and Ψ through $\Sigma = LL' + \Psi$. This model is still not well defined, because of the multiplicity of choices for L made possible by orthogonal transformations. It is desirable to make L well defined by imposing the computationally convenient uniqueness condition

$$\mathbf{L}' \mathbf{\Psi}^{-1} \mathbf{L} = \mathbf{\Delta}$$
 a diagonal matrix (9-26)

The maximum likelihood estimates $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$ must be obtained by numerical maximization of (9-25). Fortunately, efficient computer programs now exist that enable one to get these estimates rather easily.

We summarize some facts about maximum likelihood estimators and, for now, rely on a computer to perform the numerical details.

Maximum Likelihood: Proportion of Total Sample Variance Due to jth Factor

Result 9.1. Let $X_1, X_2, ..., X_n$ be a random sample from $N_p(\mu, \Sigma)$, where $\Sigma = LL' + \Psi$ is the covariance matrix for the *m* common factor model of (9-4). The maximum likelihood estimators $\hat{\mathbf{L}}, \hat{\Psi}$, and $\hat{\mu} = \bar{\mathbf{x}}$ maximize (9-25) subject to $\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}}$ being diagonal.

The maximum likelihood estimates of the communalities are

$$\hat{h}_{i}^{2} = \hat{\ell}_{i1}^{2} + \hat{\ell}_{i2}^{2} + \dots + \hat{\ell}_{im}^{2} \quad \text{for } i = 1, 2, \dots, p$$
 (9-27)

SO

$$\begin{pmatrix}
\text{Proportion of total sample} \\
\text{variance due to } j \text{th factor}
\end{pmatrix} = \frac{\hat{\ell}_{1j}^2 + \hat{\ell}_{2j}^2 + \dots + \hat{\ell}_{pj}^2}{s_{11} + s_{22} + \dots + s_{pp}} \tag{9-28}$$

Proof. By the invariance property of maximum likelihood estimates (see Section 4.3), functions of L and Ψ are estimated by the same functions of \hat{L} and $\hat{\Psi}$. In particular, the communalities $h_i^2 = \ell_{i1}^2 + \cdots + \ell_{im}^2$ have maximum likelihood estimates $\hat{h}_i^2 = \hat{\ell}_{i1}^2 + \cdots + \hat{\ell}_{im}^2$.

Maximum Likelihood: Consequence of Factorization Pertaining to the Correlation Matrix

If, as in (8-10), the variables are standardized so that $\mathbf{Z} = \mathbf{V}^{-1/2}(\mathbf{X} - \boldsymbol{\mu})$, then the covariance matrix $\boldsymbol{\rho}$ of \mathbf{Z} has the representation

$$\rho = V^{-1/2} \Sigma V^{-1/2} = (V^{-1/2} L) (V^{-1/2} L)' + V^{-1/2} \Psi V^{-1/2}$$
(9-29)

Thus, ρ has a factorization analogous to (9-5) with loading matrix $\mathbf{L}_z = \mathbf{V}^{-1/2}\mathbf{L}$ and specific variance matrix $\Psi_z = \mathbf{V}^{-1/2}\Psi\mathbf{V}^{-1/2}$. By the invariance property of maximum likelihood estimators, the maximum likelihood estimator of ρ is

$$\hat{\rho} = (\hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}})(\hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}})' + \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{\Psi}}\hat{\mathbf{V}}^{-1/2}$$

$$= \hat{\mathbf{L}}_{z}\hat{\mathbf{L}}'_{z} + \hat{\mathbf{\Psi}}_{z}$$
(9-30)

where $\hat{\mathbf{V}}^{-1/2}$ and $\hat{\mathbf{L}}$ are the maximum likelihood estimators of $\mathbf{V}^{-1/2}$ and \mathbf{L} , respectively. (See Supplement 9A.)

As a consequence of the factorization of (9-30), whenever the maximum likelihood analysis pertains to the correlation matrix, we call

$$\hat{h}_i^2 = \hat{\ell}_{i1}^2 + \hat{\ell}_{i2}^2 + \dots + \hat{\ell}_{im}^2 \qquad i = 1, 2, \dots, p$$
 (9-31)

Maximum Likelihood: Proportion of Total Standardized Sample Variance Due to jth Factor

the maximum likelihood estimates of the communalities, and we evaluate the importance of the factors on the basis of

$$\begin{pmatrix}
\text{Proportion of total (standardized)} \\
\text{sample variance due to } j \text{th factor}
\end{pmatrix} = \frac{\hat{\ell}_{1j}^2 + \hat{\ell}_{2j}^2 + \dots + \hat{\ell}_{pj}^2}{p} \tag{9-32}$$

To avoid more tedious notations, the preceding $\hat{\ell}_{ij}$'s denote the elements of $\hat{\mathbf{L}}_z$.

Comment. Ordinarily, the observations are standardized, and a sample correlation matrix is factor analyzed. The sample correlation matrix \mathbf{R} is inserted for $[(n-1)/n]\mathbf{S}$ in the likelihood function of (9-25), and the maximum likelihood estimates $\hat{\mathbf{L}}_z$ and $\hat{\mathbf{\Psi}}_z$ are obtained using a computer. Although the likelihood in (9-25) is appropriate for \mathbf{S} , not \mathbf{R} , surprisingly, this practice is equivalent to obtaining the maximum likelihood estimates $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$ based on the sample covariance matrix \mathbf{S} , setting $\hat{\mathbf{L}}_z = \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}_z = \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{\Psi}}\hat{\mathbf{V}}^{-1/2}$. Here $\hat{\mathbf{V}}^{-1/2}$ is the diagonal matrix with the reciprocal of the sample standard deviations (computed with the divisor \sqrt{n}) on the main diagonal.

Going in the other direction, given the estimated loadings $\hat{\mathbf{L}}_z$ and specific variances $\hat{\Psi}_z$ obtained from \mathbf{R} , we find that the resulting maximum likelihood estimates for a factor analysis of the covariance matrix $[(n-1)/n]\mathbf{S}$ are $\hat{\mathbf{L}} = \hat{\mathbf{V}}^{1/2}\hat{\mathbf{L}}_z$ and $\hat{\Psi} = \hat{\mathbf{V}}^{1/2}\hat{\Psi}_z\hat{\mathbf{V}}^{1/2}$, or

$$\hat{\ell}_{ij} = \hat{\ell}_{\mathbf{z},ij} \sqrt{\hat{\sigma}_{ii}}$$
 and $\hat{\psi}_i = \hat{\psi}_{\mathbf{z},i} \hat{\sigma}_{ii}$

where $\hat{\sigma}_{ii}$ is the sample variance computed with divisor n. The distinction between divisors can be ignored with principal component solutions.

Example: Factor Analysis of Stock-Price Data Using Maximum Likelihood Method

The equivalency between factoring S and R has apparently been confused in many published discussions of factor analysis. (See Supplement 9A.)

Example 9.5 (Factor analysis of stock-price data using the maximum likelihood method) The stock-price data of Examples 8.5 and 9.4 were reanalyzed assuming an m=2 factor model and using the maximum likelihood method. The estimated factor loadings, communalities, specific variances, and proportion of total (standardized) sample variance explained by each factor are in Table 9.3.³ The corresponding figures for the m=2 factor solution obtained by the principal component method (see Example 9.4) are also provided. The communalities corresponding to the maximum likelihood factoring of \mathbf{R} are of the form [see (9-31)] $\hat{h}_i^2 = \hat{\ell}_{i1}^2 + \hat{\ell}_{i2}^2$. So, for example,

$$\hat{h}_1^2 = (.115)^2 + (.765)^2 = .58$$

³ The maximum likelihood solution leads to a *Heywood case*. For this example, the solution of the likelihood equations give estimated loadings such that a specific variance is negative. The software program obtains a feasible solution by slightly adjusting the loadings so that all specific variance estimates are nonnegative. A Heywood case is suggested here by the .00 value for the specific variance of Royal Dutch Shell.

Example: Factor Analysis of Stock-Price Data Using Maximum Likelihood

Table 9.3						
	N	Maximum I	ikelihood	Pr	incipal cor	nponents
	1	ted factor dings	Specific variances		ed factor lings	Specific variances
Variable	F_1	F_2	$\hat{\psi}_i = 1 - \hat{h}_i^2$	F_1	F ₂	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$
 J P Morgan Citibank Wells Fargo Royal Dutch Shell Texaco 	.115 .322 .182 1.000 .683	.755 .788 .652 000 032	.42 .27 .54 · .00 .53	.732 .831 .726 .605 .563	437 280 374 .694 .719	.27 .23 .33 .15 .17
Cumulative proportion of total (standardized) sample variance explained	.323	.647		.487	.769	

The residual matrix is

$$\mathbf{R} - \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\mathbf{\Psi}} = \begin{bmatrix} 0 & .001 & -.002 & .000 & .052 \\ .001 & 0 & .002 & .000 & -.033 \\ -.002 & .002 & 0 & .000 & .001 \\ .000 & .000 & .000 & 0 & .000 \\ .052 & -.033 & .001 & .000 & 0 \end{bmatrix}$$

Example: Factor Analysis of Stock-Price Data Using Maximum Likelihood Method

The residual matrix is

$$\mathbf{R} - \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\boldsymbol{\Psi}} = \begin{bmatrix} 0 & .001 & -.002 & .000 & .052 \\ .001 & 0 & .002 & .000 & -.033 \\ -.002 & .002 & 0 & .000 & .001 \\ .000 & .000 & .000 & 0 & .000 \\ .052 & -.033 & .001 & .000 & 0 \end{bmatrix}$$

The elements of $\mathbf{R} - \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\mathbf{\Psi}}$ are much smaller than those of the residual matrix corresponding to the principal component factoring of \mathbf{R} presented in Example 9.4. On this basis, we prefer the maximum likelihood approach and typically feature it in subsequent examples.

The cumulative proportion of the total sample variance explained by the factors is larger for principal component factoring than for maximum likelihood factoring. It is not surprising that this criterion typically favors principal component factoring. Loadings obtained by a principal component factor analysis are related to the principal components, which have, by design, a variance optimizing property. [See the discussion preceding (8-19).]

Focusing attention on the maximum likelihood solution, we see that all variables have positive loadings on F_1 . We call this factor the *market factor*, as we did in the principal component solution. The interpretation of the second factor is not as clear as it appeared to be in the principal component solution. The bank stocks have large positive loadings and the oil stocks have negligible loadings on the second factor F_2 . From this perspective, the second factor differentiaties the bank stocks from the oil stocks and might be called an *industry factor*. Alternatively, the second factor might be simply called a *banking factor*.

Factor Analysis of Olympic Decathlon Data

The patterns of the initial factor loadings for the maximum likelihood solution are constrained by the uniqueness condition that $\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}$ be a diagonal matrix. Therefore, useful factor patterns are often not revealed until the factors are rotated (see Section 9.4).

Example 9.6 (Factor analysis of Olympic decathlon data) Linden [11] originally conducted a factor analytic study of Olympic decathlon results for all 160 complete starts from the end of World War II until the mid-seventies. Following his approach we examine the n = 280 complete starts from 1960 through 2004. The recorded values for each event were standardized and the signs of the timed events changed so that large scores are good for all events. We, too, analyze the correlation matrix, which based on all 280 cases, is

_	
	-
	_

	1.000	.6386	.4752	.3227	.5520	.3262	.3509	.4008	.1821	0352]
1	.6386	1.0000	.4953	.5668	.4706	.3520	.3998	.5167	.3102	.1012	
1	.4752	.4953	1.0000	.4357	.2539	.2812	.7926	.4728	.4682	0120	
1	.3227	.5668	.4357	1.0000	.3449	.3503	.3657	.6040	.2344	.2380	
1	.5520	.4706	.2539	.3449	1.0000	.1546	.2100	.4213	.2116	.4125	
1	.3262	.3520	.2812	.3503	.1546	1.0000	.2553	.4163	.1712	.0002	Ì
1	.3509	.3998	.7926	.3657	.2100	.2553	1.0000	.4036	.4179	.0109	l
	.4008	.5167	.4728	.6040	.4213	.4163	.4036	1.0000	.3151	.2395	l
	.1821	.3102	.4682	.2344	.2116	.1712	.4179	.3151	1.0000	.0983	l
l	0352	.1012	0120	.2380	.4125	.0002	.0109	.2395	.0983	1.0000	

_	
•	-

ſ	1.000	.6386	.4752	.3227	.5520	.3262	.3509	.4008	.1821	0352	1
١	.6386	1.0000	.4953	.5668	.4706	.3520	.3998	.5167	.3102	.1012	
1	.4752	.4953	1.0000	.4357	.2539	.2812	.7926	.4728	.4682	0120	
1	.3227	.5668	.4357	1.0000	.3449	.3503	.3657	.6040	.2344	.2380	
1	.5520	.4706	.2539	.3449	1.0000	.1546	.2100	.4213	.2116	.4125	
1	.3262	.3520	.2812	.3503	.1546	1.0000	.2553	.4163	.1712	.0002	Ì
١	.3509	.3998	.7926	.3657	.2100	.2553	1.0000	.4036	.4179	.0109	l
1	.4008	.5167	.4728	.6040	.4213	.4163	.4036	1.0000	.3151	.2395	l
1	.1821	.3102	.4682	.2344	.2116	.1712	.4179	.3151	1.0000	.0983	l
L	0352	.1012	0120	.2380	.4125	.0002	.0109	.2395	.0983	1.0000	

From a principal component factor analysis perspective, the first four eigenvalues, 4.21, 1.39, 1.06, .92, of **R** suggest a factor solution with m = 3 or m = 4. A subsequent interpretation, much like Linden's original analysis, reinforces the choice m = 4.

In this case, the two solution methods produced very different results. For the principal component factorization, all events except the 1,500-meter run have large positive loading on the first factor. This factor might be labeled *general athletic ability*. Factor 2, which loads heavily on the 400-meter run and 1,500-meter run might be called a *running endurance* factor. The remaining factors cannot be easily interpreted to our minds.

For the maximum likelihood method, the first factor appears to be a general athletic ability factor but the loading pattern is not as strong as with principal component factor solution. The second factor is primarily a strength factor because shot put and discus load highly on this factor. The third factor is running endurance since the 400-meter run and 1,500-meter run have large loadings. Again, the fourth factor is not easily identified, although it may have something to do with jumping ability or leg strength. We shall return to an interpretation of the factors in Example 9.11 after a discussion of factor rotation.

The four-factor principal component solution accounts for much of the total (standardized) sample variance, although the estimated specific variances are large in some cases (for example, the javelin). This suggests that some events might require unique or specific attributes not required for the other events. The four-factor maximum likelihood solution accounts for less of the total sample

variance, but, as the following residual matrices indicate, the maximum likelihood estimates $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$ do a better job of reproducing \mathbf{R} than the principal component estimates $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$.

Principal component:

$$\mathbf{R} - \widetilde{\mathbf{L}}\widetilde{\mathbf{L}}' - \widetilde{\mathbf{\Psi}} =$$

Table 9.4										
			Principa	l compon	ent		M	faximum l	ikelihood	
			ted factor dings	r	Specific variances		Estimate load	ed factor ings		Specific variances
Variable	F_1	F_2	F ₃	F_4	$\widetilde{\phi}_i = 1 - \widetilde{h}_i^2$	F_1	F ₂	F ₃	F ₄	$\hat{\psi}_i = 1 - \hat{h}_i^2$
1. 100-m run	.696	.022	468	416	.12	.993	069	021	.002	.01
2. Long jump	.793	.075	255	115	.29	.665	.252	.239	.220	.39
Shot put	.771	434	.197	112	.17	.530	.777	141	079	.09
 High jump 	.711	.181	.005	.367	.33	.363	.428	.421	.424	.33
5. 400-m run	.605	.549	045	397	.17	.571	.019	.620	305	.20
6. 100 m hurdles	.513	083	-,372	.561	.28	.343	.189	.090	,323	.73
7. Discus	.690	456	.289	078	.23	.402	.718	102	095	.30
8. Pole vault	.761	.162	.018	.304	.30	.440	407	.390	.263	.42
9. Javelin	.518	252	.519	074	.39	.218	.461	.084	085	.73
10. 1500-m run	.220	.746	.493	.085	.15	016	.091	.609	145	.60
Cumulative proportion of total variance										
explained	.42	.56	.67	.76		.27	.45	.57	.62	

Principal component:

Maximum likelihood:

Large Sample Test for Number of Common Factors Using Maximum Likelihood

A Large Sample Test for the Number of Common Factors

The assumption of a normal population leads directly to a test of the adequacy of the model. Suppose the m common factor model holds. In this case $\Sigma = LL' + \Psi$, and testing the adequacy of the m common factor model is equivalent to testing

$$H_0: \quad \sum_{(\rho \times \rho)} = \mathbf{L} \quad \mathbf{L}' + \mathbf{\Psi} \quad (9-33)$$

versus H_1 : Σ any other positive definite matrix. When Σ does not have any special form, the maximum of the likelihood function [see (4-18) and Result 4.11 with $\hat{\Sigma} = ((n-1)/n)S = S_n$] is proportional to

$$|\mathbf{S}_n|^{-n/2}e^{-np/2}$$
 (9-34)

Under H_0 , Σ is restricted to have the form of (9-33). In this case, the maximum of the likelihood function [see (9-25) with $\hat{\mu} = \bar{\mathbf{x}}$ and $\hat{\Sigma} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\Psi}$, where $\hat{\mathbf{L}}$ and $\hat{\Psi}$ are the maximum likelihood estimates of \mathbf{L} and Ψ , respectively] is proportional to

$$|\hat{\mathbf{\Sigma}}|^{-n/2} \exp\left(-\frac{1}{2} \operatorname{tr} \left[\hat{\mathbf{\Sigma}}^{-1} \left(\sum_{j=1}^{n} (\mathbf{x}_{j} - \bar{\mathbf{x}}) (\mathbf{x}_{j} - \bar{\mathbf{x}})'\right)\right]\right)$$

$$= |\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}|^{-n/2} \exp\left(-\frac{1}{2}n \operatorname{tr}\left[(\hat{\mathbf{L}}\hat{\mathbf{L}} + \hat{\mathbf{\Psi}})^{-1}\mathbf{S}_{n}\right]\right) \quad (9-35)$$

Using Result 5.2, (9-34), and (9-35), we find that the likelihood ratio statistic for testing H_0 is

$$-2 \ln \Lambda = -2 \ln \left[\frac{\text{maximized likelihood under } H_0}{\text{maximized likelihood}} \right]$$

$$= -2 \ln \left(\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_n|} \right)^{-n/2} + n \left[\text{tr} (\hat{\mathbf{\Sigma}}^{-1} \mathbf{S}_n) - p \right]$$
(9-36)

Large Sample Test for Number of Common Factors Using Maximum Likelihood

$$-2 \ln \Lambda = -2 \ln \left[\frac{\text{maximized likelihood under } H_0}{\text{maximized likelihood}} \right]$$

$$= -2 \ln \left(\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_n|} \right)^{-n/2} + n \left[\text{tr} (\hat{\mathbf{\Sigma}}^{-1} \mathbf{S}_n) - p \right]$$
(9-36)

with degrees of freedom,

$$v - v_0 = \frac{1}{2}p(p+1) - [p(m+1) - \frac{1}{2}m(m-1)]$$

= $\frac{1}{2}[(p-m)^2 - p - m]$ (9-37)

Supplement 9A indicates that $\operatorname{tr}(\hat{\mathbf{\Sigma}}^{-1}\mathbf{S}_n) - p = 0$ provided that $\hat{\mathbf{\Sigma}} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}$ is the maximum likelihood estimate of $\mathbf{\Sigma} = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$. Thus, we have

$$-2\ln\Lambda = n\ln\left(\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_n|}\right) \tag{9-38}$$

Bartlett [3] has shown that the chi-square approximation to the sampling distribution of $-2 \ln \Lambda$ can be improved by replacing n in (9-38) with the multiplicative factor (n-1-(2p+4m+5)/6).

Large Sample Test for Number of Common Factors Using Maximum Likelihood Using Chi-Square Critical Value

Supplement 9A indicates that $\operatorname{tr}(\hat{\mathbf{\Sigma}}^{-1}\mathbf{S}_n) - p = 0$ provided that $\hat{\mathbf{\Sigma}} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}$ is the maximum likelihood estimate of $\mathbf{\Sigma} = \mathbf{L}\mathbf{L}' + \mathbf{\Psi}$. Thus, we have

$$-2\ln\Lambda = n\ln\left(\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_n|}\right) \tag{9-38}$$

Bartlett [3] has shown that the chi-square approximation to the sampling distribution of $-2 \ln \Lambda$ can be improved by replacing n in (9-38) with the multiplicative factor (n-1-(2p+4m+5)/6).

Using Bartlett's correction, we reject H_0 at the α level of significance if

$$(n-1-(2p+4m+5)/6)\ln\frac{|\hat{\mathbf{L}}\hat{\mathbf{L}}'+\hat{\boldsymbol{\Psi}}|}{|\mathbf{S}_n|} > \chi^2_{[(p-m)^2-\rho-m]/2}(\alpha)$$
 (9-39)

provided that n and n-p are large. Since the number of degrees of freedom, $\frac{1}{2}[(p-m)^2-p-m]$, must be positive, it follows that

$$m < \frac{1}{2}(2p + 1 - \sqrt{8p + 1})$$
 (9-40)

in order to apply the test (9-39).

⁴ Many factor analysts obtain an approximate maximum likelihood estimate by replacing S_n with the unbiased estimate $S = [n/(n-1)]S_n$ and then minimizing $\ln |\Sigma| + \text{tr}[\Sigma^{-1}S]$. The dual substitution of S and the approximate maximum likelihood estimator into the test statistic of (9-39) does not affect its large sample properties.

Comment. In implementing the test in (9-39), we are testing for the adequacy of the m common factor model by comparing the generalized variances $|\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}|$ and $|\mathbf{S}_n|$. If n is large and m is small relative to p, the hypothesis H_0 will usually be rejected, leading to a retention of more common factors. However, $\hat{\mathbf{\Sigma}} = \hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}$ may be close enough to \mathbf{S}_n so that adding more factors does not provide additional insights, even though those factors are "significant." Some judgment must be exercised in the choice of m.

Example 9.7 (Testing for two common factors) The two-factor maximum likelihood analysis of the stock-price data was presented in Example 9.5. The residual matrix there suggests that a two-factor solution may be adequate. Test the hypothesis $H_0: \Sigma = LL' + \Psi$, with m = 2, at level $\alpha = .05$.

The test statistic in (9-39) is based on the ratio of generalized variances

$$\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_n|} = \frac{|\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}|}{|\mathbf{S}_n|}$$

Let $\hat{\mathbf{V}}^{-1/2}$ be the diagonal matrix such that $\hat{\mathbf{V}}^{-1/2}\mathbf{S}_n\hat{\mathbf{V}}^{-1/2} = \mathbf{R}$. By the properties of determinants (see Result 2A.11),

$$|\hat{\mathbf{V}}^{-1/2}||\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}||\hat{\mathbf{V}}^{-1/2}| = |\hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}}\hat{\mathbf{L}}'\hat{\mathbf{V}}^{-1/2} + \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{\Psi}}\hat{\mathbf{V}}^{-1/2}|$$

and

$$|\hat{\mathbf{V}}^{-1/2}||\mathbf{S}_n||\hat{\mathbf{V}}^{-1/2}| = |\hat{\mathbf{V}}^{-1/2}\mathbf{S}_n\hat{\mathbf{V}}^{-1/2}|$$

Let $\hat{\mathbf{V}}^{-1/2}$ be the diagonal matrix such that $\hat{\mathbf{V}}^{-1/2}\mathbf{S}_n\hat{\mathbf{V}}^{-1/2} = \mathbf{R}$. By the properties of determinants (see Result 2A.11),

$$|\hat{\mathbf{V}}^{-1/2}||\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}||\hat{\mathbf{V}}^{-1/2}| = |\hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}}\hat{\mathbf{L}}'\hat{\mathbf{V}}^{-1/2} + \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{\Psi}}\hat{\mathbf{V}}^{-1/2}|$$

and

$$|\hat{\mathbf{V}}^{-1/2}||\mathbf{S}_n||\hat{\mathbf{V}}^{-1/2}| = |\hat{\mathbf{V}}^{-1/2}\mathbf{S}_n\hat{\mathbf{V}}^{-1/2}|$$

Consequently,

$$\frac{|\hat{\mathbf{\Sigma}}|}{|\mathbf{S}_{n}|} = \frac{|\hat{\mathbf{V}}^{-1/2}|}{|\hat{\mathbf{V}}^{-1/2}|} \frac{|\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}}|}{|\mathbf{S}_{n}|} \frac{|\hat{\mathbf{V}}^{-1/2}|}{|\hat{\mathbf{V}}^{-1/2}|}$$

$$= \frac{|\hat{\mathbf{V}}^{-1/2}\hat{\mathbf{L}}\hat{\mathbf{L}}'\hat{\mathbf{V}}^{-1/2} + \hat{\mathbf{V}}^{-1/2}\hat{\mathbf{\Psi}}\hat{\mathbf{V}}^{-1/2}|}{|\hat{\mathbf{V}}^{-1/2}\mathbf{S}_{n}\hat{\mathbf{V}}^{-1/2}|}$$

$$= \frac{|\hat{\mathbf{L}}_{z}\hat{\mathbf{L}}'_{z} + \hat{\mathbf{\Psi}}_{z}|}{|\mathbf{R}|}$$
(9-41)

by (9-30). From Example 9.5, we determine

Using Bartlett's correction, we evaluate the test statistic in (9-39):

$$[n-1-(2p+4m+5)/6] \ln \frac{|\hat{\mathbf{L}}\hat{\mathbf{L}}'+\hat{\boldsymbol{\Psi}}|}{|\mathbf{S}_n|}$$

$$= \left[103-1-\frac{(10+8+5)}{6}\right] \ln (1.0216) = 2.10$$

Since $\frac{1}{2}[(p-m)^2-p-m]=\frac{1}{2}[(5-2)^2-5-2]=1$, the 5% critical value $\chi_1^2(.05)=3.84$ is not exceeded, and we fail to reject H_0 . We conclude that the data do not contradict a two-factor model. In fact, the observed significance level, or P-value, $P[\chi_1^2>2.10]=.15$ implies that H_0 would not be rejected at any reasonable level.

Large sample variances and covariances for the maximum likelihood estimates $\hat{\ell}_{ij}$, $\hat{\psi}_i$ have been derived when these estimates have been determined from the sample covariance matrix S. (See [10].) The expressions are, in general, quite complicated.

Factor Rotation

9.4 Factor Rotation

As we indicated in Section 9.2, all factor loadings obtained from the initial loadings by an orthogonal transformation have the same ability to reproduce the covariance (or correlation) matrix. [See (9-8).] From matrix algebra, we know that an orthogonal transformation corresponds to a rigid rotation (or reflection) of the coordinate axes. For this reason, an orthogonal transformation of the factor loadings, as well as the implied orthogonal transformation of the factors, is called factor rotation.

If $\hat{\mathbf{L}}$ is the $p \times m$ matrix of estimated factor loadings obtained by any method (principal component, maximum likelihood, and so forth) then

$$\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T}$$
, where $\mathbf{T}\mathbf{T}' = \mathbf{T}'\mathbf{T} = \mathbf{I}$ (9-42)

is a $p \times m$ matrix of "rotated" loadings. Moreover, the estimated covariance (or correlation) matrix remains unchanged, since

$$\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}} = \hat{\mathbf{L}}\mathbf{T}\mathbf{T}'\hat{\mathbf{L}} + \hat{\mathbf{\Psi}} = \hat{\mathbf{L}}^*\hat{\mathbf{L}}^{*'} + \hat{\mathbf{\Psi}}$$
(9-43)

Equation (9-43) indicates that the residual matrix, $\mathbf{S}_n = \hat{\mathbf{L}}\hat{\mathbf{L}}' - \hat{\mathbf{\Psi}} = \mathbf{S}_n - \hat{\mathbf{L}}*\hat{\mathbf{L}}*' - \hat{\mathbf{\Psi}}$, remains unchanged. Moreover, the specific variances $\hat{\psi}_i$, and hence the communalities \hat{h}_i^2 , are unaltered. Thus, from a mathematical viewpoint, it is immaterial whether $\hat{\mathbf{L}}$ or $\hat{\mathbf{L}}^*$ is obtained.

Uncorrelated Common Factor Loadings As Vectors on Perpendicular Coordinate Axes

Since the original loadings may not be readily interpretable, it is usual practice to rotate them until a "simpler structure" is achieved. The rationale is very much akin to sharpening the focus of a microscope in order to see the detail more clearly.

Ideally, we should like to see a pattern of loadings such that each variable loads highly on a single factor and has small to moderate loadings on the remaining factors. However, it is not always possible to get this simple structure, although the rotated loadings for the decathlon data discussed in Example 9.11 provide a nearly ideal pattern.

We shall concentrate on graphical and analytical methods for determining an orthogonal rotation to a simple structure. When m = 2, or the common factors are considered two at a time, the transformation to a simple structure can frequently be determined graphically. The uncorrelated common factors are regarded as unit

vectors along perpendicular coordinate axes. A plot of the pairs of factor loadings $(\hat{\ell}_{i1}, \hat{\ell}_{i2})$ yields p points, each point corresponding to a variable. The coordinate axes can then be visually rotated through an angle—call it ϕ —and the new rotated loadings $\hat{\ell}_{ij}^*$ are determined from the relationships

$$\mathbf{\hat{L}} * = \mathbf{\hat{L}} \mathbf{T}
(p \times 2) = (p \times 2)(2 \times 2)$$

$$\mathbf{T} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \text{ clockwise }
\text{rotation}$$
where
$$\mathbf{T} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \text{ counterclockwise }
\text{rotation}$$

Orthogonal Matrix Translates to Visual Assessment of Rotated Loadings

$$\hat{\mathbf{L}} = \hat{\mathbf{L}} \mathbf{T}
(p \times 2) = (p \times 2)(2 \times 2)$$

$$\mathbf{T} = \begin{bmatrix} \cos \phi & \sin \phi \\ -\sin \phi & \cos \phi \end{bmatrix} \text{ clockwise }
\text{rotation}$$
where
$$\mathbf{T} = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \text{ counterclockwise }
\text{rotation}$$

The relationship in (9-44) is rarely implemented in a two-dimensional graphical analysis. In this situation, clusters of variables are often apparent by eye, and these clusters enable one to identify the common factors without having to inspect the magnitudes of the rotated loadings. On the other hand, for m > 2, orientations are not easily visualized, and the magnitudes of the rotated loadings must be inspected to find a meaningful interpretation of the original data. The choice of an orthogonal matrix **T** that satisfies an analytical measure of simple structure will be considered shortly.

Example: Factor Rotation

Example 9.8 (A first look at factor rotation) Lawley and Maxwell [10] present the sample correlation matrix of examination scores in p = 6 subject areas for n = 220 male students. The correlation matrix is

	Gaelic	English	History	Arithmetic	Algebra	Geometry
	1.0	.439	.410	.288	.329	.248
_		1.0	.351	.354	.320	.329
$\mathbf{R} =$			1.0	.164	.190	.181
				1.0	.595	.470
					1.0	.464
	L					1.0

and a maximum likelihood solution for m = 2 common factors yields the estimates in Table 9.5.

Table 9.5			
		mated loadings	Communalities
Variable	F_1	F_2	\hat{h}_i^2
1. Gaelic	.553	.429	.490
English	.568	.288	.406
3. History	.392	.450	.356
4. Arithmetic	.740	273	.623
Algebra	.724	211	.569
6. Geometry	.595	132	.372

Visual Evaluation: Factor Loadings As Distinct Groups of Variables

All the variables have positive loadings on the first factor. Lawley and Maxwell suggest that this factor reflects the overall response of the students to instruction and might be labeled a general intelligence factor. Half the loadings are positive and half are negative on the second factor. A factor with this pattern of loadings is called a bipolar factor. (The assignment of negative and positive poles is arbitrary, because the signs of the loadings on a factor can be reversed without affecting the analysis.) This factor is not easily identified, but is such that individuals who get above-average scores on the verbal tests get above-average scores on the factor. Individuals with above-average scores on the mathematical tests get below-average scores on the factor. Perhaps this factor can be classified as a "math-nonmath" factor.

The factor loading pairs $(\hat{\ell}_{i1}, \hat{\ell}_{i2})$ are plotted as points in Figure 9.1. The points are labeled with the numbers of the corresponding variables. Also shown is a clockwise orthogonal rotation of the coordinate axes through an angle of $\phi \approx 20^{\circ}$. This angle was chosen so that one of the new axes passes through $(\hat{\ell}_{41}, \hat{\ell}_{42})$. When this is done, all the points fall in the first quadrant (the factor loadings are all positive), and the two distinct clusters of variables are more clearly revealed.

Factor Rotation: Are the Communalities Changed or Unchanged?

The factor loading pairs (ℓ_{i1}, ℓ_{i2}) are plotted as points in Figure 9.1. The points are labeled with the numbers of the corresponding variables. Also shown is a clockwise orthogonal rotation of the coordinate axes through an angle of $\phi \approx 20^{\circ}$. This angle was chosen so that one of the new axes passes through (ℓ_{41}, ℓ_{42}) . When this is done, all the points fall in the first quadrant (the factor loadings are all positive), and the two distinct clusters of variables are more clearly revealed.

The mathematical test variables load highly on F_1^* and have negligible loadings on F_2^* . The first factor might be called a mathematical-ability factor. Similarly, the three verbal test variables have high loadings on F_2^* and moderate to small loadings on F_1^* . The second factor might be labeled a verbal-ability factor. The general-intelligence factor identified initially is submerged in the factors F_1^* and F_2^* .

The rotated factor loadings obtained from (9-44) with $\phi = 20^{\circ}$ and the corresponding communality estimates are shown in Table 9.6. The magnitudes of the rotated factor loadings reinforce the interpretation of the factors suggested by Figure 9.1.

The communality estimates are unchanged by the orthogonal rotation, since $\hat{\mathbf{L}}\hat{\mathbf{L}}' = \hat{\mathbf{L}}\mathbf{T}'\hat{\mathbf{L}}' = \hat{\mathbf{L}}^*\hat{\mathbf{L}}^{*'}$, and the communalities are the diagonal elements of these matrices.

Factor Rotation Graph for Test Scores

We point out that Figure 9.1 suggests an oblique rotation of the coordinates. One new axis would pass through the cluster {1,2,3} and the other through the {4,5,6} group. Oblique rotations are so named because they correspond to a nonrigid rotation of coordinate axes leading to new axes that are not perpendicular.

Figure 9.1 Factor rotation for test scores.

Estimated Rotated Factor Loadings for Test Scores and Communalities

Table 9.6		,	
Variable	Estimated factor le	d rotated sadings	Communalities $\hat{h}_i^{*2} = \hat{h}_i^2$
1. Gaelic 2. English 3. History 4. Arithmetic	.369	.594	.490
	.433	.467	.406
	.211	.558	.356
	.789	.001	.623
 Algebra Geometry 	.752	.054	.568
	.604	.083	.372

It is apparent, however, that the interpretation of the oblique factors for this example would be much the same as that given previously for an orthogonal rotation.

Spreading Out the Squares of the Loadings on Each Factor For Varimax Rotation

Kaiser [9] has suggested an analytical measure of simple structure known as the varimax (or normal varimax) criterion. Define $\tilde{\ell}_{ij}^* = \hat{\ell}_{ij}^*/\hat{h}_i$ to be the rotated coefficients scaled by the square root of the communalities. Then the (normal) varimax procedure selects the orthogonal transformation **T** that makes

$$V = \frac{1}{p} \sum_{j=1}^{m} \left[\sum_{i=1}^{p} \widetilde{\ell}_{ij}^{4} - \left(\sum_{i=1}^{p} \widetilde{\ell}_{ij}^{2} \right)^{2} / p \right]$$
 (9-45)

as large as possible.

Scaling the rotated coefficients $\hat{\ell}_{ij}^*$ has the effect of giving variables with small communalities relatively more weight in the determination of simple structure. After the transformation **T** is determined, the loadings $\tilde{\ell}_{ij}^*$ are multiplied by \hat{h}_i so that the original communalities are preserved.

Although (9-45) looks rather forbidding, it has a simple interpretation. In words,

$$V \propto \sum_{j=1}^{m} \left(\text{variance of squares of (scaled) loadings for} \right)$$
 (9-46)

Effectively, maximizing V corresponds to "spreading out" the squares of the loadings on each factor as much as possible. Therefore, we hope to find groups of large and negligible coefficients in any *column* of the rotated loadings matrix $\hat{\mathbf{L}}^*$.

Dominant Single Factor Obscured by Orthogonal Rotation

Computing algorithms exist for maximizing V, and most popular factor analysis computer programs (for example, the statistical software packages SAS, SPSS, BMDP, and MINITAB) provide varimax rotations. As might be expected, varimax rotations of factor loadings obtained by different solution methods (principal components, maximum likelihood, and so forth) will not, in general, coincide. Also, the pattern of rotated loadings may change considerably if additional common factors are included in the rotation. If a dominant single factor exists, it will generally be obscured by any orthogonal rotation. By contrast, it can always be held fixed and the remaining factors rotated.

Rotated Loadings for Consumer-Preference Data

Example 9.9 (Rotated loadings for the consumer-preference data) Let us return to the marketing data discussed in Example 9.3. The original factor loadings (obtained by the principal component method), the communalities, and the (varimax) rotated factor loadings are shown in Table 9.7. (See the SAS statistical software output in Panel 9.1.)

Table 9.7					
	Estin fact load	tor	Rota estimate load	d factor ings	Communalities
Variable	F_1	F_2	F_1	F_2^{\bullet}	\widetilde{h}_i^2
 Taste Good buy for money Flavor Suitable for snack Provides lots of energy 	.56 .78 .65 .94 .80	.82 52 .75 10 54	.02 .94) .13 .84 .97	99 01 98 .43 02	.98 .88 .98 .89 .93
Cumulative proportion of total (standardized) sample variance explained	.571	.932	.507	.932	

Factor Loading Graph for Marketing Hypothetical Data

It is clear that variables 2, 4, and 5 define factor 1 (high loadings on factor 1, small or negligible loadings on factor 2), while variables 1 and 3 define factor 2 (high loadings on factor 2, small or negligible loadings on factor 1). Variable 4 is most closely aligned with factor 1, although it has aspects of the trait represented by factor 2. We might call factor 1 a nutritional factor and factor 2 a taste factor.

The factor loadings for the variables are pictured with respect to the original and (varimax) rotated factor axes in Figure 9.2.

Figure 9.2 Factor rotation for hypothetical marketing data.

Factor Analysis SAS Output

PANEL 9.1 SAS ANALYSIS FOR EXAMPLE 9.9 USING PROC FACTOR.

```
title 'Factor Analysis';
data consumer(type = corr);
_type_='CORR';
input _name_$ taste money flavor snack energy;
cards;
taste
            1.00
             .02
                 1.00
money
             .96 .13 1.00
flavor
                                                       PROGRAM COMMANDS
snack
             .42
                    .71 .50 1.00
             .01
                   .85 .11
                                .79
                                      1.00
energy
proc factor res data=consumer
  method=prin nfact=2rotate=varimax preplot plot;
  var taste money flavor snack energy;
```

		Prior Commun	ality Estimates:	ONE	
	Eigenvalues	of the Correlat	ion Matrix: Tot	al = 5 Average :	= 1
	1	2	3	4	5
Eigenvalue	2.853090	1.806332	0.204490	0.102409	0.033677
Difference	1.046758	1.601842	0.102081	0.068732	
Proportion	0.5706	0.3613	0.0409	0.0205	0.0067
Cumulative	0.5706	0.9319	0.9728	0.9933	1.0000

Factor Analysis SAS Output

	Method: Princi	pal Compone	ints		OUTPUT
		Prior Commu	nality Estimates:	ONE	
	Eigenvalues	of the Correla	ntion Matrix: Tot	al = 5 Average	= 1
	1	2	3	4	5
Eigenvalue Difference	2.853090 1.046758	1.806332 1.601842	0.204490 0.102081	0.102409 0.068732	0.033677
Proportion	0.5706	0.3613	0.0409	0.0205	0.0067
Cumulative	0.5706	0.3613	0.9728	0.0205	0.0067 1.0000
		Fac	tor Pattern		
		Fac	tor Pattern		
	TAS'	FACT	OR1 FACTO		
	MOI	FACTO TE 0.55 NEY 0.77	OR1 FACTO	10 20	
	MOI FLA	FACTO FE 0.55 NEY 0.77 /OR 0.64	OR1 FACTOI 1986 0.816 1726 -0.524 1534 0.747	10 20 95	
	MOI	FACTO FE 0.55 NEY 0.77 /OR 0.64 CK 0.93	OR1 FACTOR 1986 0.816 1726 -0.524 1534 0.747 1911 -0.104	10 20 95 92	
	MOI FLAY SNA ENE	FACTO FE 0.55 NEY 0.77 OR 0.64 CK 0.93	OR1 FACTO 986 0.816 726 -0.524 1534 0.747 1911 -0.104 1821 -0.543	10 20 95 92	
TAST	MOI FLAV SNA ENE	FACTO FE 0.55 NEY 0.77 /OR 0.64 CK 0.93 RGY 0.79	OR1 FACTO 986 0.816 726 -0.524 1534 0.747 1911 -0.104 1821 -0.543	10 20 95 92 23 = 4.659423	kGY

Factor Analysis SAS Output

PANEL 9.1 (continued)

Rotation of factor loadings is recommended particularly for loadings obtained by maximum likelihood, since the initial values are constrained to satisfy the uniqueness condition that $\hat{\mathbf{L}}'\hat{\Psi}^{-1}\hat{\mathbf{L}}$ be a diagonal matrix. This condition is convenient for computational purposes, but may not lead to factors that can easily be interpreted.

Rotated Loadings for Stock-Price Data

Example 9.10 (Rotated loadings for the stock-price data) Table 9.8 shows the initial and rotated maximum likelihood estimates of the factor loadings for the stock-price data of Examples 8.5 and 9.5. An m = 2 factor model is assumed. The estimated

Table 9.8						
	estimate load	likelihood s of factor dings	factor l	estimated oadings	Specific variances	
· Variable	F_1	F_2	F_1^*	F [*]	$\hat{\psi}_i^2 = 1 - \hat{h}_i^2$	
J P Morgan Citibank Wells Fargo Royal Dutch Shell ExxonMobil	.115 .322 .182 1.000 .683	.755 .788 .652 000 .032	.763 .821 .669 .118 .113	.024 .227 .104 .993 .675	.42 .27 .54 .00 .53	
Cumulative proportion of total sample variance explained	.323	.647	.346	.647		

Rotated Loadings for Stock-Price Data

specific variances and cumulative proportions of the total (standardized) sample variance explained by each factor are also given.

An interpretation of the factors suggested by the unrotated loadings was presented in Example 9.5. We identified market and industry factors.

The rotated loadings indicate that the bank stocks (JP Morgan, Citibank, and Wells Fargo) load highly on the first factor, while the oil stocks (Royal Dutch Shell and ExxonMobil) load highly on the second factor. (Although the rotated loadings obtained from the principal component solution are not displayed, the same phenomenon is observed for them.) The two rotated factors, together, differentiate the industries. It is difficult for us to label these factors intelligently. Factor 1 represents those unique economic forces that cause bank stocks to move together. Factor 2 appears to represent economic conditions affecting oil stocks.

As we have noted, a general factor (that is, one on which all the variables load highly) tends to be "destroyed after rotation." For this reason, in cases where a general factor is evident, an orthogonal rotation is sometimes performed with the general factor loadings fixed.⁵

Some general-purpose factor analysis programs allow one to fix loadings associated with certain factors and to rotate the remaining factors.

Rotated Loadings for Olympic Decathlon Data

Example 9.11 (Rotated loadings for the Olympic decathlon data) The estimated factor loadings and specific variances for the Olympic decathlon data were presented in Example 9.6. These quantities were derived for an m=4 factor model, using both principal component and maximum likelihood solution methods. The interpretation of all the underlying factors was not immediately evident. A varimax rotation [see (9-45)] was performed to see whether the rotated factor loadings would provide additional insights. The varimax rotated loadings for the m=4 factor solutions are displayed in Table 9.9, along with the specific variances. Apart from the estimated loadings, rotation will affect only the distribution of the proportions of the total sample variance explained by each factor. The cumulative proportion of the total sample variance explained for all factors does not change.

The rotated factor loadings for both methods of solution point to the same underlying attributes, although factors 1 and 2 are not in the same order. We see that shot put, discus, and javelin load highly on a factor, and, following Linden [11], this factor might be called explosive arm strength. Similarly, high jump, 110-meter hurdles, pole vault, and—to some extent—long jump load highly on another factor. Linden labeled this factor explosive leg strength. The 100-meter run, 400-meter run, and—again to some extent—the long jump load highly on a third factor. This factor could be called running speed. Finally, the 1500-meter run loads heavily and the 400-meter run loads heavily on the fourth factor. Linden called this factor running endurance. As he notes, "The basic functions indicated in this study are mainly consistent with the traditional classification of track and field athletics."

Rotated Loadings for Olympic Decathlon Data

Table 9.9											
	Principal component					Maximum likelihood					
	Estimated rotated factor loadings, $\widetilde{\ell}_{ij}^{\star}$			Specific variances		Estimated rotated factor loadings, $\hat{\ell}_{ij}^*$			Specific variances		
Variable	F_1^*	F_2^{\bullet}	F_3^*	F_4^{ullet}	$\widetilde{\psi}_i = 1 - \widetilde{h}_i^2$	F_1^{\bullet}	F_2^*	F_3^{\bullet}	F_4^{\bullet}	$\hat{\psi}_i = 1 - \hat{h}_i^2.$	
100-m run	.182	.885	.205	139	.12	.204	.296	.928	~.005	.01	
Long jump	.291	.664	429	.055	.29	.280	.554	.451	.155	.39 .	
Shot put	.819	.302	.252	097	.17	.883	.278	.228	045	.09	
High jump	.267	.221	.683	.293	.33	.254	.739	.057	.242	.33	
400-m run	.086	.747	.068	.507	.17	.142	.151	.519	.700	.20	
110-m hurdles	.048	.108	.826	161	.28	.136	.465	.173	033	.73	
Discus	.832	.185	.204	076	.23	.793	.220	.133	~.009	.30	
Pole vault	.324	.278	.656	.293	.30	.314	613	.169	.279	.42	
Javelin	.754	.024	.054	.188	.39	477	.160	.041	.139	.73	
1500-m run	002	.019	.075	.921	.15	.001	.110	070	.619	.60	
Cumulative proportion of total sample variance							-				
explained	.22	.43	.62	.76		.20	.37	.51	.62		

Oblique Rotations: Use When Factors Are Independent

Plots of rotated maximum likelihood loadings for factors pairs (1,2) and (1,3) are displayed in Figure 9.3 on page 513. The points are generally grouped along the factor axes. Plots of rotated principal component loadings are very similar.

Oblique Rotations

Orthogonal rotations are appropriate for a factor model in which the common factors are assumed to be independent. Many investigators in social sciences consider oblique (nonorthogonal) rotations, as well as orthogonal rotations. The former are

Figure 9.3 Rotated maximum likelihood loadings for factor pairs (1, 2) and (1, 3)—decathlon data. (The numbers in the figures correspond to variables.)

Oblique Rotations: Use When Factors Are Independent

Figure 9.3 Rotated maximum likelihood loadings for factor pairs (1, 2) and (1, 3)—decathlon data. (The numbers in the figures correspond to variables.)

often suggested after one views the estimated factor loadings and do not follow from our postulated model. Nevertheless, an oblique rotation is frequently a useful aid in factor analysis.

If we regard the m common factors as coordinate axes, the point with the m coordinates $(\hat{\ell}_{i1}, \hat{\ell}_{i2}, \dots, \hat{\ell}_{im})$ represents the position of the ith variable in the factor space. Assuming that the variables are grouped into nonoverlapping clusters, an orthogonal rotation to a simple structure corresponds to a rigid rotation of the coordinate axes such that the axes, after rotation, pass as closely to the clusters as possible. An oblique rotation to a simple structure corresponds to a nonrigid rotation of the coordinate system such that the rotated axes (no longer perpendicular) pass (nearly) through the clusters. An oblique rotation seeks to express each variable in terms of a minimum number of factors—preferably, a single factor. Oblique rotations are discussed in several sources (see, for example, [6] or [10]) and will not be pursued in this book.

Factor Scores

9.5 Factor Scores

In factor analysis, interest is usually centered on the parameters in the factor model. However, the estimated values of the common factors, called *factor scores*, may also be required. These quantities are often used for diagnostic purposes, as well as inputs to a subsequent analysis.

Factor scores are not estimates of unknown parameters in the usual sense. Rather, they are estimates of values for the unobserved random factor vectors \mathbf{F}_j , j = 1, 2, ..., n. That is, factor scores

 $\hat{\mathbf{f}}_{j} = \text{estimate of the values } \mathbf{f}_{j} \text{ attained by } \mathbf{F}_{j} (j \text{th case})$

The estimation situation is complicated by the fact that the unobserved quantities \mathbf{f}_j and $\mathbf{\varepsilon}_j$ outnumber the observed \mathbf{x}_j . To overcome this difficulty, some rather heuristic, but reasoned, approaches to the problem of estimating factor values have been advanced. We describe two of these approaches.

Both of the factor score approaches have two elements in common:

- They treat the estimated factor loadings ℓ̂_{ij} and specific variances ψ̂_i as if they were the true values.
- 2. They involve linear transformations of the original data, perhaps centered or standardized. Typically, the estimated rotated loadings, rather than the original estimated loadings, are used to compute factor scores. The computational formulas, as given in this section, do not change when rotated loadings are substituted for unrotated loadings, so we will not differentiate between them.

Weighted Least Squares Method

The Weighted Least Squares Method

Suppose first that the mean vector μ , the factor loadings L, and the specific variance Ψ are known for the factor model

$$\mathbf{X}_{(p\times 1)} - \mathbf{\mu}_{(p\times 1)} = \mathbf{L}_{(p\times m)(m\times 1)} + \mathbf{\varepsilon}_{(p\times 1)}$$

Further, regard the specific factors $\varepsilon' = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_p]$ as errors. Since $Var(\varepsilon_i) = \psi_i$, $i = 1, 2, \dots, p$, need not be equal, Bartlett [2] has suggested that weighted least squares be used to estimate the common factor values.

The sum of the squares of the errors, weighted by the reciprocal of their variances, is

$$\sum_{i=1}^{p} \frac{\varepsilon_i^2}{\psi_i} = \varepsilon' \Psi^{-1} \varepsilon = (\mathbf{x} - \boldsymbol{\mu} - \mathbf{L} \mathbf{f})' \Psi^{-1} (\mathbf{x} - \boldsymbol{\mu} - \mathbf{L} \mathbf{f})$$
(9-47)

Bartlett proposed choosing the estimates $\hat{\mathbf{f}}$ of \mathbf{f} to minimize (9-47). The solution (see Exercise 7.3) is

$$\hat{\mathbf{f}} = (\mathbf{L}' \mathbf{\Psi}^{-1} \mathbf{L})^{-1} \mathbf{L}' \mathbf{\Psi}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$
 (9-48)

Motivated by (9-48), we take the estimates $\hat{\mathbf{L}}$, $\hat{\Psi}$, and $\hat{\mu} = \bar{\mathbf{x}}$ as the true values and obtain the factor scores for the jth case as

$$\hat{\mathbf{f}}_j = (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}(\mathbf{x}_j - \bar{\mathbf{x}})$$
(9-49)

When $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$ are determined by the maximum likelihood method, these estimates must satisfy the uniqueness condition, $\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}}=\hat{\mathbf{\Delta}}$, a diagonal matrix. We then have the following:

Factor Scores Obtained from Weighted Least Squares and Maximum Likelihood Estimates

Factor Scores Obtained by Weighted Least Squares from the Maximum Likelihood Estimates

$$\hat{\mathbf{f}}_{j} = (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1}\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}(\mathbf{x}_{j} - \hat{\boldsymbol{\mu}})$$

$$= \hat{\boldsymbol{\Delta}}^{-1}\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}(\mathbf{x}_{j} - \tilde{\mathbf{x}}), \qquad j = 1, 2, \dots, n$$

or, if the correlation matrix is factored

(9-50)

$$\hat{\mathbf{f}}_{j} = (\hat{\mathbf{L}}_{z}'\hat{\mathbf{\Psi}}_{z}^{-1}\hat{\mathbf{L}}_{z})^{-1}\hat{\mathbf{L}}_{z}'\hat{\mathbf{\Psi}}_{z}^{-1}\mathbf{z}_{j}
= \hat{\mathbf{\Delta}}_{z}^{-1}\hat{\mathbf{L}}_{z}'\hat{\mathbf{\Psi}}_{z}^{-1}\mathbf{z}_{j}, \qquad j = 1, 2, \dots, n$$

where
$$z_j = D^{-1/2}(x_j - \bar{x})$$
, as in (8-25), and $\hat{\rho} = \hat{L}_z \hat{L}'_z + \hat{\Psi}_z$.

The factor scores generated by (9-50) have sample mean vector **0** and zero sample covariances. (See Exercise 9.16.)

If rotated loadings $\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings in (9-50), the subsequent factor scores, $\hat{\mathbf{f}}_j^*$, are related to $\hat{\mathbf{f}}_j$ by $\hat{\mathbf{f}}_j^* = \mathbf{T}^*\hat{\mathbf{f}}_j$, j = 1, 2, ..., n.

Factor Loadings from Principal Component, Then Generate Factor Scores Using Unweighted Least Squares Procedure

Comment. If the factor loadings are estimated by the principal component method, it is customary to generate factor scores using an unweighted (ordinary) least squares procedure. Implicitly, this amounts to assuming that the ψ_i are equal or nearly equal. The factor scores are then

$$\hat{\mathbf{f}}_j = (\widetilde{\mathbf{L}}'\widetilde{\mathbf{L}})^{-1}\widetilde{\mathbf{L}}'(\mathbf{x}_j - \overline{\mathbf{x}})$$

or

$$\hat{\mathbf{f}}_j = (\widetilde{\mathbf{L}}_z' \widetilde{\mathbf{L}}_z)^{-1} \widetilde{\mathbf{L}}_z' \mathbf{z}_j$$

for standardized data. Since $\widetilde{\mathbf{L}} = \left[\sqrt{\hat{\lambda}_1} \, \hat{\mathbf{e}}_1 \mid \sqrt{\hat{\lambda}_2} \, \hat{\mathbf{e}}_2 \mid \cdots \mid \sqrt{\hat{\lambda}_m} \, \hat{\mathbf{e}}_m \right]$ [see (9-15)], we have

$$\hat{\mathbf{f}}_{j} = \begin{bmatrix} \frac{1}{\sqrt{\hat{\lambda}_{1}}} \hat{\mathbf{e}}'_{1}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \\ \frac{1}{\sqrt{\hat{\lambda}_{2}}} \hat{\mathbf{e}}'_{2}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \\ \vdots \\ \frac{1}{\sqrt{\hat{\lambda}_{m}}} \hat{\mathbf{e}}'_{m}(\mathbf{x}_{j} - \bar{\mathbf{x}}) \end{bmatrix}$$
(9-51)

For these factor scores,

$$\frac{1}{n}\sum_{j=1}^{n}\hat{\mathbf{f}}_{j}=\mathbf{0}\qquad \text{(sample mean)}$$

and

$$\frac{1}{n-1} \sum_{j=1}^{n} \hat{\mathbf{f}}_{j} \hat{\mathbf{f}}_{j}' = \mathbf{I} \qquad \text{(sample covariance)}$$

Comparing (9-51) with (8-21), we see that the $\hat{\mathbf{f}}_i$ are nothing more than the first m (scaled) principal components, evaluated at \mathbf{x}_i .

Regression Method

The Regression Method

Starting again with the original factor model $X - \mu = LF + \varepsilon$, we initially treat the loadings matrix L and specific variance matrix Ψ as known. When the common factors F and the specific factors (or errors) ε are jointly normally distributed with means and covariances given by (9-3), the linear combination $X - \mu = LF + \varepsilon$ has an $N_p(\theta, LL' + \Psi)$ distribution. (See Result 4.3.) Moreover, the joint distribution of $(X - \mu)$ and F is $N_{m+p}(\theta, \Sigma^*)$, where

$$\sum_{(m+p)\times(m+p)}^{*} = \begin{bmatrix} \Sigma = LL' + \Psi & L \\ \frac{(p\times p)}{(m\times p)} & \frac{L'}{(m\times m)} \end{bmatrix}$$
(9-52)

and 0 is an $(m + p) \times 1$ vector of zeros. Using Result 4.6, we find that the conditional distribution of $\mathbf{F}|\mathbf{x}$ is multivariate normal with

mean =
$$E(\mathbf{F} | \mathbf{x}) = \mathbf{L}' \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = \mathbf{L}' (\mathbf{L}\mathbf{L}' + \boldsymbol{\Psi})^{-1} (\mathbf{x} - \boldsymbol{\mu})$$
 (9-53)

and

covariance =
$$Cov(\mathbf{F}|\mathbf{x}) = \mathbf{I} - \mathbf{L}'\mathbf{\Sigma}^{-1}\mathbf{L} = \mathbf{I} - \mathbf{L}'(\mathbf{L}\mathbf{L}' + \mathbf{\Psi})^{-1}\mathbf{L}$$
 (9-54)

Regression Method

The quantities $\mathbf{L}'(\mathbf{L}\mathbf{L}' + \mathbf{\Psi})^{-1}$ in (9-53) are the coefficients in a (multivariate) regression of the factors on the variables. Estimates of these coefficients produce factor scores that are analogous to the estimates of the conditional mean values in multivariate regression analysis. (See Chapter 7.) Consequently, given any vector of observations \mathbf{x}_j , and taking the maximum likelihood estimates $\hat{\mathbf{L}}$ and $\hat{\mathbf{\Psi}}$ as the true values, we see that the *j*th factor score vector is given by

$$\hat{\mathbf{f}}_j = \hat{\mathbf{L}}'\hat{\mathbf{\Sigma}}^{-1}(\mathbf{x}_j - \overline{\mathbf{x}}) = \hat{\mathbf{L}}'(\hat{\mathbf{L}}\hat{\mathbf{L}}' + \hat{\mathbf{\Psi}})^{-1}(\mathbf{x}_j - \overline{\mathbf{x}}), \qquad j = 1, 2, \dots, n \quad (9-55)$$

The calculation of $\hat{\mathbf{f}}_j$ in (9-55) can be simplified by using the matrix identity (see Exercise 9.6)

$$\hat{\mathbf{L}}'_{(m \times p)} (\hat{\mathbf{L}} \hat{\mathbf{L}}' + \hat{\mathbf{\Psi}})^{-1} = (\mathbf{I} + \hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1} \hat{\mathbf{L}})^{-1} \hat{\mathbf{L}}' \hat{\mathbf{\Psi}}^{-1}$$

$$(9-56)$$

This identity allows us to compare the factor scores in (9-55), generated by the regression argument, with those generated by the weighted least squares procedure [see (9-50)]. Temporarily, we denote the former by $\hat{\mathbf{f}}_{j}^{R}$ and the latter by $\hat{\mathbf{f}}_{j}^{LS}$. Then, using (9-56), we obtain

$$\hat{\mathbf{f}}_{j}^{LS} = (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1}(\mathbf{I} + \hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})\mathbf{f}_{j}^{R} = (\mathbf{I} + (\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1})\mathbf{f}_{j}^{R}$$
(9-57)

For maximum likelihood estimates $(\hat{\mathbf{L}}'\hat{\mathbf{\Psi}}^{-1}\hat{\mathbf{L}})^{-1} = \hat{\mathbf{\Delta}}^{-1}$ and if the elements of this diagonal matrix are close to zero, the regression and generalized least squares methods will give nearly the same factor scores.

In an attempt to reduce the effects of a (possibly) incorrect determination of the number of factors, practitioners tend to calculate the factor scores in (9-55) by using S (the original sample covariance matrix) instead of $\hat{\Sigma} = \hat{L}\hat{L}' + \hat{\Psi}$. We then have the following:

Factor Scores Obtained by Regression

Factor Scores Obtained by Regression

$$\hat{\mathbf{f}}_j = \hat{\mathbf{L}}'\mathbf{S}^{-1}(\mathbf{x}_j - \bar{\mathbf{x}}), \quad j = 1, 2, \dots, n$$

or, if a correlation matrix is factored,

(9-58)

$$\hat{\mathbf{f}}_j = \hat{\mathbf{L}}_{\mathbf{z}}' \mathbf{R}^{-1} \mathbf{z}_j, \qquad j = 1, 2, \dots, n$$

where, see (8-25),

$$\mathbf{z}_i = \mathbf{D}^{-1/2}(\mathbf{x}_i - \bar{\mathbf{x}})$$
 and $\hat{\boldsymbol{\rho}} = \hat{\mathbf{L}}_z \hat{\mathbf{L}}_z' + \hat{\boldsymbol{\Psi}}_z$

Again, if rotated loadings $\hat{\mathbf{L}}^* = \hat{\mathbf{L}}\mathbf{T}$ are used in place of the original loadings in (9-58), the subsequent factor scores $\hat{\mathbf{f}}_i^*$ are related to $\hat{\mathbf{f}}_i$ by

$$\hat{\mathbf{f}}_{j}^{\star} = \mathbf{T}'\hat{\mathbf{f}}_{j}, \qquad j = 1, 2, \ldots, n$$

A numerical measure of agreement between the factor scores generated from two different calculation methods is provided by the sample correlation coefficient between scores on the same factor. Of the methods presented, none is recommended as uniformly superior.

Example: Computing Factor Scores

Example 9.12 (Computing factor scores) We shall illustrate the computation of factor scores by the least squares and regression methods using the stock-price data discussed in Example 9.10. A maximum likelihood solution from **R** gave the estimated rotated loadings and specific variances

$$\hat{\mathbf{L}}_{\mathbf{z}}^{*} = \begin{bmatrix} .763 & .024 \\ .821 & .227 \\ .669 & .104 \\ .118 & .993 \\ .113 & .675 \end{bmatrix} \text{ and } \hat{\boldsymbol{\Psi}}_{\mathbf{z}} = \begin{bmatrix} .42 & 0 & 0 & 0 & 0 \\ 0 & .27 & 0 & 0 & 0 \\ 0 & 0 & .54 & 0 & 0 \\ 0 & 0 & 0 & .00 & 0 \\ 0 & 0 & 0 & 0 & .53 \end{bmatrix}$$

The vector of standardized observations,

$$\mathbf{z}' = [.50, -1.40, -.20, -.70, 1.40]$$

yields the following scores on factors 1 and 2:

Example: Computing Factor Scores

Weighted least squares (9-50):6

$$\hat{\mathbf{f}} = (\hat{\mathbf{L}}_{\mathbf{z}}^{\bullet,\prime} \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{\bullet})^{-1} \hat{\mathbf{L}}_{\mathbf{z}}^{\bullet,\prime} \hat{\mathbf{\Psi}}_{\mathbf{z}}^{-1} \mathbf{z} = \begin{bmatrix} -.61 \\ -.61 \end{bmatrix}$$

Regression (9-58):

$$\hat{\mathbf{f}} = \hat{\mathbf{L}}_{\mathbf{z}}^{\bullet} \mathbf{R}^{-1} \mathbf{z} = \begin{bmatrix} .331 & .526 & .221 & -.137 & .011 \\ -.040 & -.063 & -.026 & 1.023 & -.001 \end{bmatrix} \begin{bmatrix} .50 \\ -1.40 \\ -.20 \\ -.70 \\ 1.40 \end{bmatrix} = \begin{bmatrix} .50 \\ -.70 \\ 1.40 \end{bmatrix}$$

In this case, the two methods produce very similar results. All of the regression factor scores, obtained using (9-58), are plotted in Figure 9.4.

⁶ In order to calculate the weighted least squares factor scores, .00 in the fourth diagonal position $\hat{\Psi}_{z}$ was set to .01 so that this matrix could be inverted.

Example: Computing Factor Scores

Comment. Factor scores with a rather pleasing intuitive property can be constructed very simply. Group the variables with high (say, greater than .40 in absolute value) loadings on a factor. The scores for factor 1 are then formed by summing the (standardized) observed values of the variables in the group, combined according to the sign of the loadings. The factor scores for factor 2 are the sums of the standardized observations corresponding to variables with high loadings.

Figure 9.4 Factor scores using (9-58) for factors 1 and 2 of the stock-price data (maximum likelihood estimates of the factor loadings).

on factor 2, and so forth. Data reduction is accomplished by replacing the standardized data by these simple factor scores. The simple factor scores are frequently highly correlated with the factor scores obtained by the more complex least squares and regression methods.

Creating Summary Scores from Factor Analysis Groupings

Example 9.13 (Creating simple summary scores from factor analysis groupings) The principal component factor analysis of the stock price data in Example 9.4 produced the estimated loadings

$$\widetilde{\mathbf{L}} = \begin{bmatrix} .732 & -.437 \\ .831 & -.280 \\ .726 & -.374 \\ .605 & .694 \\ .563 & .719 \end{bmatrix} \text{ and } \widetilde{\mathbf{L}}^* = \widetilde{\mathbf{L}}\mathbf{T} = \begin{bmatrix} .852 & .030 \\ .851 & .214 \\ .813 & .079 \\ .133 & .911 \\ .084 & .909 \end{bmatrix}$$

For each factor, take the loadings with largest absolute value in \widetilde{L} as equal in magnitude, and neglect the smaller loadings. Thus, we create the linear combinations

$$\hat{f}_1 = x_1 + x_2 + x_3 + x_4 + x_5$$

$$\hat{f}_2 = x_4 + x_5 - x_1$$

as a summary. In practice, we would standardize these new variables.

If, instead of \widetilde{L} , we start with the varimax rotated loadings \widetilde{L}^* , the simple factor scores would be

$$\hat{f}_1 = x_1 + x_2 + x_3
\hat{f}_2 = x_4 + x_5$$

The identification of high loadings and negligible loadings is really quite subjective.

Linear compounds that make subject-matter sense are preferable.

Perspectives and Strategies for Factor Analysis (Use Multiple Methods to Check)

Although multivariate normality is often assumed for the variables in a factor analysis, it is very difficult to justify the assumption for a large number of variables. As we pointed out in Chapter 4, marginal transformations may help. Similarly, the factor scores may or may not be normally distributed. Bivariate scatter plots of factor scores can produce all sorts of nonelliptical shapes. Plots of factor scores should be examined prior to using these scores in other analyses. They can reveal outlying values and the extent of the (possible) nonnormality.

9.6 Perspectives and a Strategy for Factor Analysis

There are many decisions that must be made in any factor analytic study. Probably the most important decision is the choice of m, the number of common factors. Although a large sample test of the adequacy of a model is available for a given m, it is suitable only for data that are approximately normally distributed. Moreover, the test will most assuredly reject the model for small m if the number of variables and observations is large. Yet this is the situation when factor analysis provides a useful approximation. Most often, the final choice of m is based on some combination of

the proportion of the sample variance explained,
 subject-matter knowledge,
 the "reasonableness" of the results.

Heuristic Steps to Factor Analysis

The choice of the solution method and type of rotation is a less crucial decision. In fact, the most satisfactory factor analyses are those in which rotations are tried with more than one method and all the results substantially confirm the same factor structure.

At the present time, factor analysis still maintains the flavor of an art, and no single strategy should yet be "chiseled into stone." We suggest and illustrate one reasonable option:

- 1. Perform a principal component factor analysis. This method is particularly appropriate for a first pass through the data. (It is not required that **R** or **S** be nonsingular.)
 - (a) Look for suspicious observations by plotting the factor scores. Also, calculate standardized scores for each observation and squared distances as described in Section 4.6.
 - (b) Try a varimax rotation.
- 2. Perform a maximum likelihood factor analysis, including a varimax rotation.
- Compare the solutions obtained from the two factor analyses.
 - (a) Do the loadings group in the same manner?
 - (b) Plot factor scores obtained for principal components against scores from the maximum likelihood analysis.
- 4. Repeat the first three steps for other numbers of common factors m. Do extra factors necessarily contribute to the understanding and interpretation of the data?
- 5. For large data sets, split them in half and perform a factor analysis on each part. Compare the two results with each other and with that obtained from the complete data set to check the stability of the solution. (The data might be divided by placing the first half of the cases in one group and the second half of the cases in the other group. This would reveal changes over time.)

Factor Analysis Chicken Bone Data

Example 9.14 (Factor analysis of chicken-bone data) We present the results of several factor analyses on bone and skull measurements of white leghorn fowl. The original data were taken from Dunn [5]. Factor analysis of Dunn's data was originally considered by Wright [15], who started his analysis from a different correlation matrix than the one we use.

The full data set consists of n = 276 measurements on bone dimensions:

Head:
$$\begin{cases} X_1 = \text{skull length} \\ X_2 = \text{skull breadth} \end{cases}$$
Leg:
$$\begin{cases} X_3 = \text{femur length} \\ X_4 = \text{tibia length} \end{cases}$$
Wing:
$$\begin{cases} X_5 = \text{humerus length} \\ X_6 = \text{ulna length} \end{cases}$$

The sample correlation matrix

$$\mathbf{R} = \begin{bmatrix} 1.000 & .505 & .569 & .602 & .621 & .603 \\ .505 & 1.000 & .422 & .467 & .482 & .450 \\ .569 & .422 & 1.000 & .926 & .877 & .878 \\ .602 & .467 & .926 & 1.000 & .874 & .894 \\ .621 & .482 & .877 & .874 & 1.000 & .937 \\ .603 & .450 & .878 & .894 & .937 & 1.000 \end{bmatrix}$$

was factor analyzed by the principal component and maximum likelihood methods for an m = 3 factor model. The results are given in Table 9.10.⁷

Notice the estimated specific variance of .00 for tibia length in the maximum likelihood solution. This suggests that maximizing the likelihood function may produce a Heywood case. Readers attempting to replicate our results should try the Hey(wood) option if SAS or similar software is used.

Factor Analysis Chicken Bone Data

Table 9.10 Factor Analysis of Chicken-Bone Data												
Principal Component	t											
	Estima	ted factor	loadings	Rotated								
Variable	F_1	F_2	F_3	F_1^*	F_2^*	F_3^*	$\widetilde{m{\psi}}_i$					
1. Skull length	.741	.350	.573	.355	.244	(.902)	.00					
2. Skull breadth	.604	.720	340	.235	(.949)	.211	.00					
Femur length	.929	233	075	.921	.164	.218	.08					
4. Tibia length	.943	175	067	.904	.212	.252	.08					
Humerus length	.948	143	045	.888	.228	.283	.08					
6. Ulna length	.945	189	047	.908	.192	.264	.07					
Cumulative proportion of total (standardized) sample variance explained	.743	.873	.950	.576	.763	.950						
Maximum Likelihood	i											
	Estima	ted factor	loadings	Rotated								
Variable	F_1	F_2	F_3	F_1^{\star}	F_2^*	F_3^{\bullet}	<i>‡</i>					
1. Skull length	.602	.214	.286	.467	.506	.128	.51					
Skull breadth	.467	.177	.652	.211	(.792	.050	.33					
Femur length	.926	.145	057	.890	.289	.084	.12					
4. Tibia length	1.000	.000	000	.936	.345	073	.00					
Humerus length	.874	.463	012	.831	.362	.396	.02					
6. Ulna length	.894	.336	039	.857	.325	.272	.09					
Cumulative proportion of total (standardized) sample variance explained	.667	.738	.823	.559	.779	.823						

Rotation of Factors for Chicken Bone Data

After rotation, the two methods of solution appear to give somewhat different results. Focusing our attention on the principal component method and the cumulative proportion of the total sample variance explained, we see that a three-factor solution appears to be warranted. The third factor explains a "significant" amount of additional sample variation. The first factor appears to be a body-size factor dominated by wing and leg dimensions. The second and third factors, collectively, represent skull dimensions and might be given the same names as the variables, skull breadth and skull length, respectively.

The rotated maximum likelihood factor loadings are consistent with those generated by the principal component method for the first factor, but not for factors 2 and 3. For the maximum likelihood method, the second factor appears to represent head size. The meaning of the third factor is unclear, and it is probably not needed.

Further support for retaining three or fewer factors is provided by the residual matrix obtained from the maximum likelihood estimates:

$$\mathbf{R} - \hat{\mathbf{L}}_{\mathbf{z}} \hat{\mathbf{L}}_{\mathbf{z}}' - \hat{\boldsymbol{\Psi}}_{\mathbf{z}} = \begin{bmatrix} .000 \\ -.000 & .000 \\ -.003 & .001 & .000 \\ .000 & .000 & .000 & .000 \\ -.001 & .000 & .000 & .000 & .000 \\ .004 & -.001 & -.001 & .000 & -.000 & .000 \end{bmatrix}$$

Pairs of Scores Using PCA and ML Cluster Tightly on the 45 Degree Line

$$\mathbf{R} - \hat{\mathbf{L}}_{\mathbf{z}} \hat{\mathbf{L}}_{\mathbf{z}}' - \hat{\boldsymbol{\Psi}}_{\mathbf{z}} = \begin{bmatrix} .000 \\ -.000 & .000 \\ -.003 & .001 & .000 \\ .000 & .000 & .000 & .000 \\ -.001 & .000 & .000 & .000 & .000 \\ .004 & -.001 & -.001 & .000 & -.000 & .000 \end{bmatrix}$$

All of the entries in this matrix are very small. We shall pursue the m=3 factor model in this example. An m=2 factor model is considered in Exercise 9.10.

Factor scores for factors 1 and 2 produced from (9-58) with the rotated maximum likelihood estimates are plotted in Figure 9.5. Plots of this kind allow us to identify observations that, for one reason or another, are not consistent with the remaining observations. Potential outliers are circled in the figure.

It is also of interest to plot pairs of factor scores obtained using the principal component and maximum likelihood estimates of factor loadings. For the chickenbone data, plots of pairs of factor scores are given in Figure 9.6 on pages 524–526. If the loadings on a particular factor agree, the pairs of scores should cluster tightly about the 45° line through the origin. Sets of loadings that do not agree will produce factor scores that deviate from this pattern. If the latter occurs, it is usually associated with the last factors and may suggest that the number of factors is too large. That is, the last factors are not meaningful. This seems to be the case with the third factor in the chicken-bone data, as indicated by Plot (c) in Figure 9.6.

Large Data Set: Divide in Half and Perform Factor Analysis

Plots of pairs of factor scores using estimated loadings from two solution methods are also good tools for detecting outliers. If the sets of loadings for a factor tend to agree, outliers will appear as points in the neighborhood of the 45° line, but far from the origin and the cluster of the remaining points. It is clear from Plot (b) in Figure 9.6 that one of the 276 observations is not consistent with the others. It has an unusually large F_2 -score. When this point, [39.1, 39.3, 75.7, 115, 73.4, 69.1], was removed and the analysis repeated, the loadings were not altered appreciably.

When the data set is large, it should be divided into two (roughly) equal sets, and a factor analysis should be performed on each half. The results of these analyses can be compared with each other and with the analysis for the full data set to

Rotated Factor Scores: Two Factors Chicken Bone

Figure 9.5 Factor scores for the first two factors of chicken-bone data.

test the stability of the solution. If the results are consistent with one another, confidence in the solution is increased.

Chicken Bone Data: Two Sets Divided Equally into n = 137 and n = 139

The chicken-bone data were divided into two sets of $n_1 = 137$ and $n_2 = 139$ observations, respectively. The resulting sample correlation matrices were

$$\mathbf{R_1} = \begin{bmatrix} 1.000 \\ .696 & 1.000 \\ .588 & .540 & 1.000 \\ .639 & .575 & .901 & 1.000 \\ .694 & .606 & .844 & .835 & 1.000 \\ .660 & .584 & .866 & .863 & .931 & 1.000 \end{bmatrix}$$

and

$$\mathbf{R}_2 = \begin{bmatrix} 1.000 \\ .366 & 1.000 \\ .572 & .352 & 1.000 \\ .587 & .406 & .950 & 1.000 \\ .587 & .420 & .909 & .911 & 1.000 \\ .598 & .386 & .894 & .927 & .940 & 1.000 \end{bmatrix}$$

Pairs of Factor Scores for Chicken Bone Data Estimated by PCA and ML

Figure 9.6 Pairs of factor scores for the chicken-bone data. (Loadings are estimated by principal component and maximum likelihood methods.)

Two Data Sets Reveal Same Factor Structure as Full Data Set (Chicken Bone Data

The rotated estimated loadings, specific variances, and proportion of the total (standardized) sample variance explained for a principal component solution of an m = 3 factor model are given in Table 9.11 on page 525.

The results for the two halves of the chicken-bone measurements are very similar. Factors F_2^* and F_3 interchange with respect to their labels, skull length and skull breadth, but they collectively seem to represent head size. The first factor, F_1^* , again appears to be a body-size factor dominated by leg and wing dimensions. These are the same interpretations we gave to the results from a principal component factor analysis of the entire set of data. The solution is remarkably stable, and we can be fairly confident that the large loadings are "real." As we have pointed out however, three factors are probably too many. A one- or two-factor model is surely sufficient for the chicken-bone data, and you are encouraged to repeat the analyses here with fewer factors and alternative solution methods. (See Exercise 9.10.)

Principal Component (PC) vs. Maximum Likelihood (ML)

Figure 9.6 (continued)

Two Data Set Factor Loadings (Chicken Bone Data)

Table 9.11									
	First set $(n_1 = 137 \text{ observations})$ Rotated estimated factor loadings				Second set $(n_2 = 139 \text{ observations})$ Rotated estimated factor loadings				
Variable	F_1^*	F ₂ *	F_3^{\bullet}	$\widetilde{\psi}_{i}$	F_1^{\bullet}	F_2^{\bullet}	F ₃ *	$\widetilde{\psi}_i$	
Skull length Skull breadth Femur length Tibia length Humerus length Ulna length	.360 .303 .914 .877 .830 .871	.361 (.899) .238 .270 .247 .231	.853 .312 .175 .242 .395 .332	.01 .00 .08 .10 .11	.352 .203 .930 .925 .912 .914	.921) .145 .239 .248 .252 .272	.167 (.968) .130 .187 .208 .168	.00 .00 .06 .05 .06	
Cumulative proportion of total (standardized) sample variance explained	.546	.743	.940		.593	.780	.962		

Principal Component (PC) vs. Maximum Likelihood (ML)

Figure 9.6 (continued)

Factor Analysis and the WOW Criterion

Factor analysis has a tremendous intuitive appeal for the behavioral and social sciences. In these areas, it is natural to regard multivariate observations on animal and human processes as manifestations of underlying unobservable "traits." Factor analysis provides a way of explaining the observed variability in behavior in terms of these traits.

Still, when all is said and done, factor analysis remains very subjective. Our examples, in common with most published sources, consist of situations in which the factor analysis model provides reasonable explanations in terms of a few interpretable factors. In practice, the vast majority of attempted factor analyses do not yield such clear-cut results. Unfortunately, the criterion for judging the quality of any factor analysis has not been well quantified. Rather, that quality seems to depend on a

WOW criterion

If, while scrutinizing the factor analysis, the investigator can shout "Wow, I understand these factors," the application is deemed successful.