Rozšírený Euklidov algoritmus.

Veta. Ak nsd(u,v) = d, potom a d = nsd(v,u-vq)

Príklad 1. Nájdite nsd(65,40).

i	u_i	v_i	d_{i}	A_i	B_{i}	
0	65	40	1	-3€	5	
1	40	25	1	2	, /	
2	25	15	1	-1<		2= 1-(-1).1
3	15	10	1	1<	-1	-1= 0-1.1
4	10	5	2	0	1	
5	5	0				$5 = u_i A_i + v_i B_i$

Najväčší spoločný deliteľ je posledný nenulový zvyšok, teda nsd(65,40) = 5.

Čísla A_i, B_i volíme tak, aby platilo, že $nsd(u, v) = u_i A_i + v_i B_i$, pre každé i = 0,1,...k.

V našom prípade platí, že $5 = u_4 A_4 + v_4 B_4$, pre $A_4 = 0$, $B_4 = 1$.

Počítame zdola nahor hodnoty v stĺpcoch pre A_i, B_i , i = 3,2,1,0 a dopĺňame správne hodnoty takto:

$$A_i = B_{i+1}$$
 a $B_i = A_{i+1} - d_i B_{i+1}$

Platí 65(-3) + 40(5) = 5.

Nájdenie čísel x = -3 a y = -5, sú jedným riešením rovnice 65x + 40y = 5.

Rovnice typu ax + by = c sa nazývajú diofantickými rovnicami.

Diofantická rovnica ax+by=c , kde $a,b,c\neq 0$ sú celé čísla, je riešiteľná práve vtedy, keď nsd(a,b)|c .

Ak $\left(x_{0},y_{0}\right)$ je riešením diofantickej rovnice ax+by=c , potom x,y je riešením práve vtedy, keď

$$x = x_0 + \frac{b}{d}t$$

 $y = y_0 - \frac{a}{d}t$ pre $t \in \mathbb{Z}$, $d = nsd(a,b)$

Príklad 2. Nájdite celočíselné riešenia rovnice 3x + 5y = 64.

Riešenie. 1 = nsd(3,5), 1 | 64, teda úloha je riešiteľná.

Pomocou Euklidovho rozšíreného algoritmu dostaneme:

		d_{i}	A_{i}	B_{i}
5	3	1	-1	2
3	2	1	1	-1
2	1	2	0	1

Máme 3(2)+5(-1)=1, vynásobením oboch strán rovnice číslom 64 dostaneme 3(128)+5(-64)=64. Jedno riešenie rovnice je teda $(x_0,y_0)=(128,-64)$, všetky riešenia majú tvar

$$x = 128 + \frac{5}{1}t = 128 + 5t$$
$$y = -64 - \frac{3}{1}t = -64 - 3t$$

Príklad 3.

Nájdite najmenší počet trojeurových a päťeurových známok, ktorými je možné zaplatiť sumu 64 eúr. Riešenie.

Využijeme všeobecné riešenie rovnice z predchádzajúceho príkladu 3x + 5y = 64,

$$x = 128 + 5t$$

$$y = -64 - 3t$$

Naviac musí platiť, že $x=128+5t\ge 0$, a $y=-64-3t\ge 0$.

Odtiaľ je
$$-25\frac{3}{5} \le t \le -21\frac{1}{3}$$
, čiže $t \in \{-25, -24, -23, -22\}$.

Takto dostaneme

t	-25	-24	-23	-22
х	3	8	13	18
У	11	8	5	2
spolu	14	16	18	20

Najmenší počet bankoviek je 14, a musíme zobrať 3 trojeurové a 11 päťeurových bankoviek.

Príklad 4.

Koľkými spôsobmi možno preliať 45 l do 3 a 6-litrových nádob?

Riešenie: 9 alebo 8, ak každý druh nádoby musí byť použitý aspoň raz.