

Université Abdelmalek ESSAADI (UAE) Ecole Nationale des Sciences Appliquées Al Hoceima, Maroc

ANALYSE 3 : FONCTIONS DE PLUSIEURS VARIABLES

AP2: DEUXIÈME ANNÉE CYCLE PRÉPARATOIRE

RÉDIGÉ PAR

MOUSSAID AHMED

Professeur Assistant Département de Mathématiques-Informatique ENSAH

Table des matières

l	Esp	paces Métriques et Espaces Vectoriels Normés	4
	1.1	Espaces Métriques	4
		1.1.1 Distance	4
		1.1.2 Espaces Métriques	6
		1.1.3 Suites et étude de la convergence dans un Espace métrique	7
		1.1.4 Suites de Cauchy - Espace métrique complet	8
	1.2	Espaces Vectoriels Normés	10
		1.2.1 Distance associée à une norme	11
		1.2.2 Normes Équivalentes	11
		1.2.3 Normes subordonnées	12
		1.2.4 Suites dans un K-espace vectoriel normé	12
		1.2.5 Suites extraites	15
		1.2.6 Espace vectoriel normé complet :	16
2	Fon	nctions de plusieurs variables : Limites et continuité	18
	2.1	Fonctions de plusieurs variables	18
		2.1.1 Definition et Notation	18
		2.1.2 Fonctions Partielles	19
	2.2	Limite en un point	20
		2.2.1 Opérations sur les limites	24
		2.2.2 Fonctions composantes, fonctions coordonnées	24
	2.3	Continuité d'une fonction de plusieurs variables	25
		2.3.1 Fonctions lipschitziennes	26
	2.4		26
3	D:0	00/ 1/10/1/ 1/01 1 100/ 1/ 1	29
	Diff	férentiabilité et Calcul différentiel	45
		Définitions et Exemples :	29

Chapitre 1

Espaces Métriques et Espaces Vectoriels Normés

1.1 Espaces Métriques

1.1.1 Distance

Définition 1 Soit X un ensemble. Une application :

$$d : X \times X \rightarrow \mathbb{R}^+ = \{x \in \mathbb{R}/x \ge 0\}$$
$$(x, y) \mapsto d(x, y)$$

est appelée distance sur X si elle vérifie : pour tout x; y et $z \in X$, on ait

- 1. Positivité: $d(x, y) \ge 0, \forall x, y \in X$
- 2. Séparation : $d(x, y) = 0 \Leftrightarrow x = y$
- 3. Symétrie: $d(x, y) = d(y, x), \forall x, y \in X$
- 4. Inégalité triangulaire : $d(x,y) \le d(x,z) + d(z,y), \forall x,y,z \in X$

Quelques Exemples:

1. Prenons $X = \mathbb{R}$ ou \mathbb{C} , on a une distance définie, pour tous x et $y \in X$ par

$$d(x,y) = |x-y|$$

appelée distance usuelle.

où |.|: représente la valeur absolue dans $\mathbb R$ ou le module dans $\mathbb C$.

2. Prenons $X = \mathbb{K}^n$, ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Pour tous $x = (x_i)_{1 \le i \le n}$ et $y = (y_i)_{1 \le i \le n}$ de \mathbb{K} , l'application définie par :

$$d_1(x,y) \stackrel{def}{=} \sum_{i=1}^n |x_i - y_i|$$

$$d_2(x,y) \stackrel{def}{=} (\sum_{i=1}^n (x_i - y_i)^2)^{\frac{1}{2}}$$

$$d_{\infty}(x,y) \stackrel{def}{=} \max_{1 \le i \le n} |x_i - y_i|$$

alors d_1 ; d_2 et d_∞ sont des distances sur \mathbb{K}^n ; d_2 est appelée distance euclidienne classique sur \mathbb{K}^n .

PROPOSITION 1 Nous avons les propriétés suivantes.

1. Pour $x_1; \dots; x_n$ des points de X on a:

$$d(x_1,x_n) \le d(x_1,x_2) + d(x_2,x_3) + \dots + d(x_{n-1},x_n)$$

2. Pour tout x, y et z dans X on a:

$$|d(x,y) - d(y,z)| \le d(x,z)$$

3. Pour x; x' et y; y' dans X on a:

$$|d(x,y)-d(x',y')| \le d(x,x')+d(y,y')$$

Démonstration.

- 1. La démonstration de (1) est immédiate par récurrence sur n.
- 2. Pour (2), nous avons, en effet,

$$d(x,y) \le d(x,z) + d(z,y)$$
 (inégalité triangulaire)

ce qui donne

$$d(x,y) - d(y,z) \le d(x,z)$$

En permutant x et z, on a de la même manière

$$d(z, y) - d(y, x) \le d(x, z)$$

ce qui donne finalement

$$-d(x,z) \le d(x,y) - d(y,z) \le d(x,z)$$

3. Pour x; x' et y; y' dans X on a

$$d(x,y) \le d(x,x') + d(x',y') + d(y',y)$$

ďoù

$$d(x,y) - d(x',y') \le d(x,x') + d(y',y)$$

En permutant les couples (x; y) et (x'; y') on a

$$d(x', y') - d(x, y) \le d(x, x') + d(y', y)$$

PROPOSITION 2 Soient d_1 et d_2 deux distances sur X. On suppose qu'il existe α , $\beta > 0$ tels que

$$\alpha d_2(x, y) \le d_1(x, y) \le \beta d_2(x, y) \quad \forall x, y \in X$$

Alors d_1 et d_2 sont dites **équivalentes**.

1.1.2 Espaces Métriques

Définition 2 On appelle Espace métrique tout ensemble non vide X muni d'une distance d et on le note (X;d).

Définition 3 : (Boules et Sphères) Soit (X;d) un espace métrique.

- 1. Pour $a \in X$ et $r \ge 0$, on définit les ensembles suivants :
 - $B(a,r) = x \in X$, d(x,a) < r, boule ouvert de centre a et rayon r.
 - $-\overline{B}(a,r) = x \in X, d(x,a) \le r$, boule ermée de centre a et rayon r.
 - $S(a,r) = \overline{B}(a,r) \setminus B(a,r) = x \in X, d(x,a) = r$, sphère de centre a et rayon r.
- 2. Une partie $U \subset X$ est dite ouverte si

$$\forall a \in U, \exists r > 0 \quad t.q. \quad B(a,r) \subset U$$

- 3. Une partie $F \subset X$ est dite fermée si son complémentaire $F^c = X \setminus F$ est ouvert.
- 4. Une partie $A \subset X$ est dite bornée si

$$\exists M > 0, \quad \forall x, y \in A, \quad d(x, y) \leq M$$

Lemme

Si x est dans X, pour $\epsilon < \epsilon'$, $B(x,\epsilon) \subset B(x,\epsilon')$, $et \overline{B(x,\epsilon)} \subset \overline{B(x,\epsilon')}$

Théoréme 1 (Propriétés des ensembles ouverts) Soit (E, d) un espace métrique. Alors

- 1. \emptyset et E sont des ouverts.
- 2. Si $(\vartheta_i)_{i \in I}$ est une famille quelconque d'ouverts, alors $\cup_{i \in I} \vartheta_i$ est ouvert.
- 3. Si $\theta_1, \theta_2, \dots, \theta_n$ sont des ouverts, alors $\theta_1 \cap \theta_2 \cap \dots \cap \theta_n$ est ouvert.

Démonstration:

- 1. Evident.
- 2. Soient $\vartheta = \bigcup_{i \in I} \vartheta_i$ et $x \in \vartheta$ alors $\exists i_0 \in I$ tel que $x \in \vartheta_{i_0}$ comme ϑ_{i_0} est ouvert $\Rightarrow \exists r > 0$ tel que $B(x,r) \subset \vartheta_{i_0} \Rightarrow B(x,r) \subset \bigcup_{i \in I} \vartheta_i = \vartheta$ comme $x \in \vartheta$ était quelconque $\Rightarrow \vartheta$ est ouvert.
- 3. Soit $x \in \partial_1 \cap \partial_2 \cap ... \cap \partial_n$ alors $x \in \partial_1$, et $x \in \partial_2$ et \cdots et $x \in \partial_n$. comme ∂_i est ouvert, il existe $r_1 > 0, r_2 > 0, \cdots, r_n > 0$ tels que $B(x, r_1) \subset \partial_1$ et $B(x, r_2) \subset \partial_2$ et, \cdots et $B(x, r_n) \subset \partial_n$. soit $r = \min(r_1, r_2, \cdots, r_n)0$ Alors $B(x, r) \subset \partial_1 \cap \partial_2 \cap ... \cap \partial_n$. donc $\partial_1 \cap \partial_2 \cap ... \cap \partial_n$ est ouvert.

Définition 4 : (Intérieur, adhérence) Soit (X;d) un espace métrique.

Pour $A \subset X$,

On définit l'intérieurde A, A° , par

$$A^{\circ} = \bigcup_{UOuvert, U \subset A} U$$

et l'adhérence de A, \overline{A} , par

$$\overline{A} = \bigcap_{F \, ferm\'e, F \supset A} F$$

Définition 5 : (voisinage, intérieur) Soit (X;d) un espace métrique.

- 1. Soit V un sous-ensemble de X et $x \in X$: on dit que V est un voisinage de x s'il contient une boule ouverte de centre x.
- 2. Soit A un sous-ensemble de X : on dit qu'un élément a de X est un point intérieur à A si A est un voisinage de a ou, ce qui est équivalent, s'il existe r > 0 tel que $B(a;r) \subset A$. On appelle intérieur de A et on note A° l'ensemble des points intérieurs à A.

PROPOSITION 3 Soit A est un sou ensemble d'un espace métrique F. Alors :

- A° est un ouvert contenu dans A.
- Si U est un ouvert et $U \subset A$, alors $U \subset A^{\circ}$. Autrement dit, A° est le plus grand ouvert contenu dans A.
- A est un fermé contenant A.
- Si F est un fermé et $F \supset A$, alors $F \supset \overline{A}$ Autrement dit, \overline{A} est le plus petit fermé contenant A.

Remarque

1-Si x appartient à A° il existe, $\varepsilon > 0$, tel que $x \in B(x, \varepsilon) \subset A^{\circ} \subset A$

2- Un point x est dans \overline{A} si et seulement si pour tout $\varepsilon > 0$, $B(x, \varepsilon)$ intersecte A.

PROPOSITION 4 Soient A et B, deux sous ensembles d'un espace métrique E. Alors :

- 1. On $a A \subseteq B \Rightarrow A^{\circ} \subseteq B^{\circ}$ et $\overline{A} \subseteq \overline{B}$
- 2. $x \in A^{\circ} \Leftrightarrow \exists \varepsilon > 0 \text{ tel que } B(x, \varepsilon) \subset A$
- 3. $x \in \overline{A}$, $\Leftrightarrow \forall \varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset$
- 4. A ouvert $\Leftrightarrow A = A^{\circ}$
- 5. A fermé $\Leftrightarrow A = \overline{A}$
- 6. A ouvert \Leftrightarrow A est une union de boules ouvertes.

Démonstration.(Exercice)

1.1.3 Suites et étude de la convergence dans un Espace métrique

Définition 6 :(une suite extraite)

Si (x_n) est une suite, on notera une suite extraite (=sous-suite) soit par (x_{n_k}) , soit par $(x_{\varphi(n)})$. Dans le premier cas n_0 , n_1 ,..., est une suite strictement croissante d'entiers; dans le second, $\varphi : \mathbb{N} \to \mathbb{N}$ est une application strictement croissante.

Par abus de notation, si tous les termes d'une suite (x_n) appartiennent à un ensemble X, on écrit $(x_n) \subset X$.

Définition 7 :(une suite convergente)

Soit (X;d) un espace métrique. Si $(x_n) \subset X$ et $x \in X$, alors, par définition, $x_n \to x$, $((x_n)$ converge vers x) si et seulement si $d(x_n;x) \to 0$.

Une suite (x_n) *est convergente s'il existe un* $x \in X$ *tel que* $x_n \to x$.

On écrit alors $\lim_{n\to+\infty} x_n = x$

Traduction de $x_n \to x$: pour tout $\varepsilon > 0$, il existe un $n_0 \in \mathbb{N}$ tel que

$$\forall n \ge n_0 \Rightarrow d(x_n, x) < \varepsilon$$

On dit que la suite $(x_n)_n \in \mathbb{N}$ diverge ou est divergente si elle n'est pas convergente.

Il est évident, à partir de la définition, que si $x_n \to x$, et si (x_{n_k}) est une sous-suite, alors $x_{n_k} \to x$

Rq:

Dans \mathbb{R} muni de la distance usuelle, cette définition coïncide avec la définition usuelle de la convergence.

Définition 8 :(valeur d'adhérence) Soit (X;d) un espace métrique. Si $(x_n) \subset X$ et $x \in X$, alors, par définition, x est une **valeur d'adhérence** de la suite (x_n) s'il existe une sous-suite (x_{n_k}) telle que $x_{n_k} \to x$.

Exemple

Dans \mathbb{R} muni de la distance usuelle, soit $x_n = (-1)^n$, $n \in \mathbb{N}$. Alors 1 est une valeur d'adhérence de (x_n) , car $x_{2n} \to 1$.

PROPOSITION 5 Soit (X;d) un espace métrique.

- 1. Si une suite (x_n) , $n \in \mathbb{N}$ d'éléments de X converge vers $x \in X$, alors x est unique : on dit alors que x est la limite de la suite (x_n) , $n \in \mathbb{N}$;
- 2. on peut énoncer la définition de la convergence d'une suite avec le langage des voisinages : une suite (x_n) , $n \in \mathbb{N}$ d'éléments de X converge vers $x \in X$ si pour tout voisinage V de x, $\exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq N \Rightarrow x_n \in V$
- 3. Si $x_n \to x$, alors x est la seule valeur d'adhérence de la suite (x_n) .
- 4. une suite $(x_n)_n$ d'éléments de X converge vers $x \in X$ si et seulement si la suite de réels positifs $(d(x_n;x))_n$ converge vers 0.

1.1.4 Suites de Cauchy - Espace métrique complet.

Définition 9 : (Suites de Cauchy) Soit $(x_n)_n$ une suite dans un espace métrique (X;d). On dit que $(x_n)_n$ est suite de Cauchy si elle satisfait :

$$\forall \varepsilon > 0$$
, $\exists n_0 \in \mathbb{N}$, $\forall n \ge n_0$, $\forall m \ge n_0$, $d(x_n, x_m) \le \varepsilon$

Remarque

La définition est équivalente à

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N}, \quad \forall n \ge n_0, \quad \forall p \ge 0, \quad d(x_n, x_{n+p}) \le \varepsilon$$

Exemple

dans \mathbb{R} , la suite $(\frac{1}{n})$ est de Cauchy.

Autrement dit, une suite de Cauchy est une suite dont les éléments sont arbitrairement proches

9

à partir d'un certain rang. En effet, on peut aisément montrer qu'une suite est de Cauchy si et seulement si pour tout $\varepsilon > 0$ il existe une boule B_{ε} (ouverte ou fermée, cela ne change rien) de rayon ε (dont le centre n'est pas précisé mais dépend possiblement de ε) qui contient tous les élements de la suite à partir d'un certain rang

$$\exists n_0 \ge 0, \quad tq, \quad \forall n \ge n_0, \quad x_n \in B_{\varepsilon}$$

La remarque essentielle concernant les suites de Cauchy est la suivante.

PROPOSITION 6 -Dans un espace métrique (X;d) toute suite convergente est de Cauchy.

Preuve : Soit $(x_n)_n$ une suite qui converge vers une limite x. Pour $\frac{\varepsilon}{2} > 0$ fixé, on peut trouver n_0 tel que $d(x_n; x) \le \frac{\varepsilon}{2}$ pour tout n_0 . Ainsi, si $n \ge n_0$ et $m \ge n_0$, on a par inégalité triangulaire

$$d(x_n, x_m) < d(x_n, x) < d(x, x_m) < \varepsilon$$

Ceci montre bien que la suite est de Cauchy.

- **PROPOSITION 7** 1. Dans un espace métrique (X;d) Toute suite de Cauchy est bornée. Ceci résulte essentiellement du fait que, pour tout $n \ge n_0$, $x_n \in B_f(x_{n_0}; \varepsilon)$.
 - 2. Si les métriques d et d' sont équivalentes sur X, alors toute suite de Cauchy pour d est une suite de Cauchy pour d'.

Définition 10 : (Espaces métriques complets)

Un espace métrique (X;d) est dit complet si toute suite de Cauchy dans (X;d) est convergente.

- **PROPOSITION 8** 1. Soit (X,d) un espace métrique complet et $F \subset X$. Alors (F,d) est complet si et seulement si F est fermé dans X
 - 2. Soit (X,d) un espace métrique. Si X est compact alors il est borné : il existe M > 0 tel que $\forall x, y \in X, d(x,y) \leq M$.

1.2 Espaces Vectoriels Normés

On étudie des espaces vectoriels sur le corps K avec $K = \mathbb{R}$ ou $K = \mathbb{C}$

Définition 11 : (Norme)

Soit E un K - espace vectoriel réel. Une application N: $E \to \mathbb{R}^+$ est appelée norme sur E si elle vérifie

1. Positivité:

$$\forall x \in E$$
, $N(x) \ge 0$

2. Séparation:

$$N(x) = 0 \Leftrightarrow x = 0$$

3. Homogénéité:

$$\forall \lambda \in \mathbb{R}, \quad \forall x \in E, \quad N(\lambda x) = |\lambda| N(x)$$

4. Inégalité triangulaire :

$$\forall x, y \in E \quad N(x+y) \leq N(x) + N(y)$$

 \mathbf{Rq} : Le plus souvent, on note une norme par $\|.\|$.

- Exemples classiques

- 1. Les applications définies par $\forall X = (x_1, x_2, ..., x_n) \in K^n$
 - (a) $N_1(X) = \sum_{i=1}^n |x_i| = ||X||_1$

(b)
$$N_2(X) = \sqrt{|x_1|^2 + |x_2|^2 + ... + |x_n|^2} = ||X||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

- (c) $N_2(X) = \max_{1 \le i \le n} (|x_i|) = ||X||_{\infty}$ Sont des Normes dans K^n
- 2. Les applications définies par $\forall f \in C^0([a,b],K)$
 - (a) $N_1(f) = \int_a^b |f(t)| dt$
 - (b) $N_2(f) = \sqrt{\int_a^b |f(t)|^2 dt}$
 - (c) $N_{\infty}(f) = \sup_{t \in [a,b]} |f(t)|$ Sont des normes sur $C^0([a,b],K)$

Req

Lorsque seules les propriétés (1), (3) et (4) de la définition sont vérifiées, ont dit que N est une semi norme.

Définition 12 : (Espaces Vectoriels Normés) Un espace **vectoriel normé** est un couple (E,N) où E est un K-espace vectoriel et N est une norme sur E (en abrégé. e.v.n.).

PROPOSITION 9 Soient E un K- espace verctoriel et N une norme sur E alors :

$$\forall (x, y) \in E^2$$
, $|N(x) - N(y)| \le N(x + y)$

Démonstration:

Soit $(x, y) \in E^2$

$$N(x) = N(x + y + (-y)) \le N(x + y) + N(-y) = N(x + y) + N(y) \operatorname{car} N(-y) = N(y)$$

donc $N(x) - N(y) \le N(x + y)$

En échangeant les rôle de x et y, on obtient

$$N(y) - N(x) \le N(x + y)$$
 et finalement

$$|N(x) - N(y)| \le N(x + y)$$

PROPOSITION 10
$$\forall (x_1,...,x_n) \in E^n$$
, $\forall (\lambda_1,...,\lambda_n) \in K^n$, $\|\sum_{k=1}^n \lambda_k x_k\| \le \sum_{k=1}^n |\lambda_k| \|x_k\|$

1.2.1 Distance associée à une norme

Définition 13 : Soit $(E, \|.\|)$ un espace vectoriel normé. Pour $(x, y) \in E^2$, la distance de s à y est $d(x, y) = \|x - y\|$

PROPOSITION 11 Si N est une norme sur E, l'application définie par : $\forall (x,y) \in E^2$, d(x,y) = N(x-y), est une distance sur E appelée distance associée (ou liée) à la Norme N.

Démonstration:

- d est bien une application de $E \times E$ dans \mathbb{R}^+ ie. $\forall (x, y) \in E^2$, $d(x, y) \ge 0$.
- pour $(x, y) \in E^2$

$$d(x, y) = 0 \iff N(x - y) = 0$$
$$\iff x - y = 0$$
$$\iff x = y$$

— pour $(x, y) \in E^2$

$$d(y,x) = N(y-x)$$

$$= N(-(x-y))$$

$$= |-1|N(x-y)$$

$$= N(x-y)$$

$$= d(x,y)$$

- pour $(x, y, z) \in E^3$

$$d(x,z) = N(x-z)$$

$$= N((x-y)+(y-z))$$

$$\leq N(x-y)+N(y-z)$$

$$= d(x,y)+d(y,z).$$

1.2.2 Normes Équivalentes

Définition 14 : Soient E un K-espace vectoriel puis N et N' deux normes sur E, N' est équivalente à N si et seulement si il existe deux réels strictement positifs α et β tels que :

$$\forall x \in E$$
 $\alpha N(x) \leq N'(x) \leq \beta N(x)$

Exercice

Dans $E = \mathbb{R}^n$ Montrer que $\|.\|_1$, $\|.\|_2$ et $\|.\|_\infty$ des normes deux à deux équivalentes.

Définition 15 : Si F est un sous-espace vectoriel d'un espace vectoriel normé E, la restriction à F de la norme de E est une norme sur F, appelée norme induite.

Rq:

Evident car les propriétés sont vraies pour tous les éléments de E, donc pour ceux de F. La norme induite sur F sera notée comme la norme sur E.

Théoréme 2 Si $E = \prod_{k=1}^{n} E_k$ est un produit d'espaces vectoriels E_k normés par la norme N_k , l'application N définie sur E par $N(x) = \max_{1 \le k \le p} N_k(x_k)$ si $x = (x_1, ..., x_p)$ est une norme sur E appelée norme produit.

Démonstration:

C'est évidemment une application de E dans \mathbb{R}^+ .

- * N(x) = 0 si et seulement si $\forall k \in [1; p]$, $N_k(x_k) = 0$, donc si $\forall k \in [1; p]$, $x_k = 0$ donc x = 0
- * Soit $\lambda \neq 0$:

$$N(\lambda x) = \max_{1 \leq k \leq p} N_k(\lambda x_k) = \max_{1 \leq k \leq p} |\lambda| N_k(x_k)$$

Or $\forall k \in [1;p]$, $N_k(x_k) \leq N(x)$.

Donc: $\forall x \in E$, $N(\lambda x) \le |\lambda| N(x)$. Donc $\forall x \in E$, $N(\frac{1}{\lambda} \lambda x) \le \frac{1}{|\lambda|} N(\lambda x)$

Donc: $\forall x \in E$, $|\lambda| N(x) \le N(\lambda x)$.

Donc si $\lambda \neq 0$ on a $\forall x \in E$, $N(\lambda x) = |\lambda| N(x)$

Pour $\lambda = 0$, l'égalité est évidente.

Donc: $\forall x \in E$, $\forall \lambda \in K$ $|\lambda| N(x) \leq N(\lambda x)$.

* $N(x+y) = \max_{1 \le k \le p} N_k(x_k + y_k).$

Or $\forall k \in [1; p]$, $N_k(x_k + y_k) \le N_k(x_k) + N_k(y_k)$

Donc $\forall k \in [1; p], N_k(x_k + y_k) \le N(x) + N(y).$

Donc $N(x + y) \le N(x) + N(y)$.

1.2.3 Normes subordonnées

Définition 16 : Soient E et F deux espaces vectoriels normés et T une application linéaire de E dans F. La norme de T est :

$$||t|| = \sup_{x \neq 0} \frac{||T(x)||}{||x||} = \sup_{||x|| = 1} ||T(x)||$$

dite norme subordonnée à la norme ||.||.

1.2.4 Suites dans un K-espace vectoriel normé.

Suites bornées

Définition 17 Soit (E,N) un K-espace vectoriel normé. Soit $(U_n)_n \in E^{\mathbb{N}}$ (une suite d'élément de E est une application de \mathbb{N} dans E) $(U_n)_{n\in\mathbb{N}}$ est bornée si et seulement si $\exists M \in \mathbb{R}^+$ telque $\forall n \in \mathbb{N}$, $N(U_n) \leq M$

Théoréme 3 Soit E un K-espace vectoriel. Soint N et N' deux normes sur E.

Si N et N' sont équivalentes, alors pour tout suite $(U_n)_{n\in\mathbb{N}}$) d'éléments de E,

 $(U_n)_{n\in\mathbb{N}}$) est une suite bornée de l'espace vectoriel normé (E,N) si et seulement si $(U_n)_{n\in\mathbb{N}}$) est une suite bornée de l'espace vectoriel normé (E,N')

Démonstration:

Par hypothése, il existe deux réels strictement positifs telque $\alpha N \leq N' \leq \beta N$.

Soit $(U_n)_{n\in\mathbb{N}}$) est une suite d'élément de E .

On suppose la suite $(U_n)_{n\in\mathbb{N}}$) bornée pour la norme N.

il existe $M \in \mathbb{R}^+$ telque $\forall n \in \mathbb{N}, \quad N(U_n) \leq M$.

Mais alors pour tout $n \in \mathbb{N}$.

$$N'(U_n) \le \beta N(U_n) \le \beta M$$

Donc, la suite $(U_n)_{n\in\mathbb{N}}$) est borné par la norme N'.

En échangeant les rôle de N et N', on a aussi, si la suite $(U_n)_{n\in\mathbb{N}}$) est borné par la norme N', alors la suite $(U_n)_{n\in\mathbb{N}}$) est borné par la norme N.

Finalement, pour toute suite $(U_n)_{n\in\mathbb{N}}$) d'élément de E, la suite $(U_n)_{n\in\mathbb{N}}$) est bornée par la norme N ssi $(U_n)_{n\in\mathbb{N}}$) est bornée par la norme N'.

Suites convergentes

Définition 18 Soit (E,N) un K-espace vectoriel normé.

Soient $(U_n)_{n\in\mathbb{N}}$) $\in E^{\mathbb{N}}$ et $l\in E$.

La suite $(U_n)_{n\in\mathbb{N}}$) Converge vers l si et seulement si $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ / $\forall n \in \mathbb{N}$ $(n \ge n_0 \Rightarrow N(U_n - l) \le \varepsilon)$.

La suite $(U_n)_{n\in\mathbb{N}}$) Converge ssi il existe $l\in E$ telque la suite $(U_n)_{n\in\mathbb{N}}$) Converge vers l. Dans le cas contraires la suite $(U_n)_{n\in\mathbb{N}}$) est diverge.

Commentaire

une définition équivalente est :

 $(U_n)_{n\in\mathbb{N}}$) Converge vers $l \Leftrightarrow \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} / \forall n \in \mathbb{N} (n \ge n_0 \Rightarrow U_n \in B_f(l, \varepsilon))$

Théoréme 4 $(U_n)_{n\in\mathbb{N}}$) Converge vers $l \Leftrightarrow (u_n-l)_{n\in\mathbb{N}}$ Converge vers $0_E \Leftrightarrow (N(U_n-l))_{n\in\mathbb{N}}$ Converge vers 0_E .

Théoréme 5 Si une suite $(U_n)_{n\in\mathbb{N}}$ converge vers l, alors l est unique.

Commentaire

Si une suite $(U_n)_{n\in\mathbb{N}}$ converge vers l, on peut dire que l est la limite de U_n quand n tend vers $+\infty$ et on écrit $\lim_{n\to+\infty}U_n=l$.

Théoréme 6 Soit E un K-espace vectoriel, soient N et N' deux Normes sur E. Si N et N' sont équivalentes, alors pour tout $l \in E$, et toute suites $(U_n)_{n \in \mathbb{N}}$. $(U_n)_{n \in \mathbb{N}}$ converge vers l dans (E, N) si et seulement si $(U_n)_{n \in \mathbb{N}}$ converge vers l dans (E, N').

Démonstration.

Soient N et $N^{'}$ deux normes équivalentes. Soient α et β deux réels strictement positifs tels que $\alpha N \leq N^{'} \leq \beta N$.

Soient $(U_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$. Supposons que $(U_n)_{n\in\mathbb{N}}$ converge vers l dans dans l'espace vectoriel normé (E,N). Alors,

 $\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N} \quad / \quad \forall n \in \mathbb{N} \quad (n \ge n_0 \Rightarrow N(U_n - l) \le \varepsilon).$

Soit $\frac{\varepsilon}{\beta} > 0$. Soit $n_0 \in \mathbb{N}$ tel que pour $n \ge n_0$ $N(U_n - l) \le \frac{\varepsilon}{\beta}$. Pour $n \ge n_0$, on a

$$N^{'}(U_n-l) \leq \beta N(U_n-l) \leq \beta \frac{\varepsilon}{\beta} = \varepsilon$$

On a montré que

$$\forall \varepsilon > 0, \quad \exists n_0 \in \mathbb{N} \quad / \quad \forall n \in \mathbb{N} \quad (n \ge n_0 \Rightarrow N'(U_n - l) \le \varepsilon)$$

et donc que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N'). En échangeant les rôles de N et N', ceci montre aussi que si la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N'), alors la suite $(u_n)_{n\in\mathbb{N}}$ converge vers l dans l'espace vectoriel normé (E,N).

Exemple.

Reprenons l'exemple des normes N et N' définies sur $E=C^1([0,1],\mathbb{R})$ par :

$$N(f) = \int_{0}^{1} |f(t)| dt \quad et \quad N'(f) = |f(0)| + \int_{0}^{1} |f'(t)| dt$$

. Pour $n \in \mathbb{N}$ et $x \in [0, 1]$, posons $f_n(x) = x^n$.

La suite $(f_n)_{n\in\mathbb{N}}$ est une suite d'éléments de E. Pour tout entier naturel n,

$$N(f_n) = \frac{1}{n+1}$$

et pour tout entier naturel n,

$$N'(f_n)=1$$

Donc, la suite $(f_n)_{n\in\mathbb{N}}$ converge vers 0 dans l'espace vectoriel normé (E,N) et ne converge pas vers 0 dans l'espace vectoriel normé (E,N'). On en déduit que les normes N et N' ne sont pas des normes équivalentes.

Théoréme 7 Si la suite $(U_n)_n$ converge (pour la norme N), alors $(U_n)_n$ est bornée (pour la même norme N).

Démonstration.

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E convergeant vers un certain élément l de E. Il existe un entier n_0 strictement positif tel que pour $n \ge n_0$, $N(U_n - l) \le 1$.

Pour $n \ge n_0$, on a

$$N(U_n) = N(U_n - l + l) \le N(U_n - l) + N(l) \le 1 + N(l)$$

Mais alors, pour tout entier naturel n,

$$N(U_n) \le \max(N(U_0 - l), ..., N(U_{n_0 - 1} - l), 1 + N(l))$$

Ceci montre que la suite $(u_n)_n$ est bornée.

- **Théoréme 8** 1. Si la suite $(U_n)_n$ converge vers l et la suite $(V_n)_n$ converge vers l', Alors pour tout $(\alpha, \beta) \in K^2$, la suite $(\alpha U_n + \beta V_n)_{n \in \mathbb{N}}$ converge vers $\alpha l + \beta l'$
 - 2. Si la suite $(U_n)_n$ converge vers l et la suite $(V_n)_n$ converge vers l', alors la suite $(U_nV_n)_n$ converge vers ll'

Théorème 9 (Liens entre suite et suites coordonnées dans une base de l'espace)

Soit E un espace de dimension finie $p \in \mathbb{N}^*$

Soit $\beta = (e_1, ..., e_p)$ une base donnée de E.

Soient $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et l un élément de E.

Pour tout entier naturel n, on pose : $U_n = \sum_{k=1}^p u_{n,k} e_k$ et $l = \sum_{k=1}^p l_k e_k$ la suite $(U_n)_{n \in \mathbb{N}}$ converge vers l si et seulement si pour tout $k \in [1;p]$ la suite numérique $(u_{n,k})_{n \in \mathbb{N}}$

converge vers l_k .

Suites extraites 1.2.5

Définition 19 *Soit* (E,N) *un espace vectoriel normé.*

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

une suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ est une suite de la forme $(U_{\varphi(n)})_{n\in\mathbb{N}}$. où φ est une application $de \mathbb{N} dans \mathbb{N} strictement croissante sur \mathbb{N}$.

Théorème 10 Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de l'espace normée (E,N).

Si la suite $(U_n)_{n\in\mathbb{N}}$ convergente dans (E,N), alors toute suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ est convergente de même limite que $(U_n)_{n\in\mathbb{N}}$. Ce résultat s'énonce encore de la façon suivante : toute suite extraite d'une suite convergente dans un espace vectoriel normé est convergente dans cet espace de même limite.

PROPOSITION 12 Une suite extraite d'une suite convergente est convergente.

Toute suite extraite d'une suite (u_n) convergeant vers une limite l est une suite convergeant vers l

COROLLAIRE 1 (Critère de divergence d'une suite) Soit (u_n) une suite d'un evn $(E, \|.\|)$.

On suppose qu'il existe deux suites extraites $u_{\varphi(n)}$ et $u_{\varphi'(n)}$ telles que :

$$-\lim_{x \to +\infty} u_{\varphi(n)} = \ell$$

$$-\lim_{x \to +\infty} u_{\varphi'(n)} = \ell'$$

$$-\ell \neq \ell'$$

Alors la suite (u_n) est divergente.

PROPOSITION 13 Deux suites extraites particulières

Si les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent vers la même limite $\ell \in E$, alors la suite (u_n) converge vers ℓ .

Exemple:

$$\overline{\text{Si }U_n=(-1)^n}$$
 alors $\lim_{x\to +\infty}u_{2n}=1$ et $\lim_{x\to +\infty}u_{2n+1}=-1$ donc la suite $(U_n)_{n\in\mathbb{N}}$ est diverge.

Définition 20 Soit (E,N) un espace vectoriel normé.

Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E et soit $\ell\in E$.

 ℓ est une valeur d'adhérence de la suite $(U_n)_{n\in\mathbb{N}}$ si et seulement si il existe une suite extraite de la suite $(U_n)_{n\in\mathbb{N}}$ convergente de limite ℓ .

Théorème 11 Soit $(U_n)_{n\in\mathbb{N}}$ une suite d'éléments de E.

Si la suite $(U_n)_{n\in\mathbb{N}}$ converge, alors la suite $(U_n)_{n\in\mathbb{N}}$ a une valeur d'adhérence et une seule, à savoir sa limite. Ainsi, si la suite $(U_n)_{n\in\mathbb{N}}$ admet au moins deux valeurs d'adhérence distinctes, alors la suite $(U_n)_{n\in\mathbb{N}}$ diverge.

Théoréme 12 (Théoréme de Bolzano-Weierstrass.)

Soit E un K-espace de dimension finie.

De toute suite bornée, on peut extraire une sous-suite convergente ou encore toute suite bornée d'éléments de E admet au moins une valeur d'adhérence.

Définition 21 (SUITES DE CAUCHY)

Soit $(U_n)_{n\in\mathbb{N}}$ une suite de E. On dit $que(U_n)_{n\in\mathbb{N}}$ est une suite de Cauchy si et seulement si pour tout $\varepsilon > 0$ il existe $N \in \mathbb{N}$, tel que pour tous

$$n, m \ge N \quad \Rightarrow ||U_n - U_m|| < \varepsilon$$

Théoréme 13 Toute suite convergente $(U_n)_{n\in\mathbb{N}}$ d'éléments de E est une suite de Cauchy.

Démonstration:

Soit la suite $(U_n)_{n\in\mathbb{N}}$ converge vers ℓ alors

$$\forall \varepsilon > 0, \quad \forall n \in \mathbb{N} \quad \exists n_0 \in \mathbb{N}, \quad \forall n \ge n_0 \Rightarrow \|U_n - \ell\| \le \frac{\varepsilon}{2}.$$

Donc si
$$n \ge n_0$$
, et $m \ge n_0$: $||U_n - U_m|| \le ||U_n - \ell|| + ||U_m - \ell|| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$

Donc la suite $(U_n)_{n\in\mathbb{N}}$ est une suite de Cauchy.

PROPOSITION 14 Soit (E,N), un espace vectoriel normé. Alors :

- 1- Si deux normes N_1 et N_2 sont équivalentes sur E, alors, toute suite de Cauchy pour N_1 est également une suite de Cauchy pour N_2 .
- 2- Toute suite de Cauchy est bornée

PROPOSITION 15 (Caractérisation séquentielle des points adhérents).

Soit A une partie non-vide d'un evn (E,N) Soit $x \in E$. Alors, les propositions suivantes sont équivalentes

- 1. $x \in \overline{A}$;
- 2. il existe une suite de points de A, $(u_n) \in A$ telle que $u_n \xrightarrow[n \to \infty]{} x$

PROPOSITION 16 Caractérisation séquentielle des fermés.

Soit (E,N), un espace vectoriel normé, et A, un sous-ensemble de E. Alors, les propositions suivantes sont équivalentes :

- 1. A est fermé dans E.
- 2. Toute suite $(U_n)_{n\in\mathbb{N}}$ d'éléments de A qui converge vers $\ell\in E$ implique que $\ell\in A$

1.2.6 Espace vectoriel normé complet :

Définition 22 Espace Vectoriel Normé complet. Soit (E,N), un espace vectoriel normé. On dit que E est complet si, et seulement si toute suite de Cauchy de E converge dans E.

PROPOSITION 17 L'espace vectoriel \mathbb{R} muni de la norme euclidienne est un espace vectoriel normé complet.

Démonstration.(exercice)

PROPOSITION 18 Soient (E_1, N_1) et (E_2, N_2) , deux espaces vectoriels normés complets. Alors, l'espace produit $E_1 \times E_2$ est également complet.

PROPOSITION 19 Soit (E,N), un espace vectoriel normé complet. Soit X, une partie de E. Alors, X est complète si, et seulement si X est fermée.

Démonstration : On va démontrer les deux implications :

- Sens \Rightarrow :

supposons X complète dans E complet. Soit $(u_n)_{n\in\mathbb{N}}$, une suite de X convergeant dans E. On note ℓ sa limite dans E. $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy (car convergente) dans E, donc en particulier dans X qui est complet. On en déduit l'existence de $\ell' \in X$ tel que

$$U_n \stackrel{dansX}{\rightarrow} \ell'$$
 pour $n \mapsto +\infty$

.

Or, $(u_n)_{n\in\mathbb{N}}$ étant convergente dans E, par unicité de la limite, $\ell^{'}=\ell\in X$. On retrouve la caractérisation séquentielle des fermés. Ainsi, X est une partie fermée.

- Sens ←

supposons X fermée. Soit $(u_n)_{n\in\mathbb{N}}$, une suite de Cauchy d'éléments de X. En particulier, $(u_n)_{n\in\mathbb{N}}$ est une suite de Cauchy de E, donc est convergente vers $\ell\in E$ Mais puisque X est fermée, toujours d'après la caractérisation séquentielle des fermés, il s'ensuit que $\ell\in X$. Donc $(u_n)_{n\in\mathbb{N}}$, converge dans X.

Chapitre 2

Fonctions de plusieurs variables : Limites et continuité

2.1 Fonctions de plusieurs variables

2.1.1 Definition et Notation

Définition 23 Soit $(E, ||.||_E)$ et $(F, ||.||_F)$ deux espaces vectoriels normés de dimensions n et m respectivement.

On appelle fonction de plusieurs variables une application f d'une partie $D \subseteq E$ dans un ensemble F ($f:D\subseteq E\to F$) L'ensemble D s'appelle le domaine de définition de f, qui à chaque vecteur $x=(x_1,x_2,...,x_n)$ de son domaine de définition D de E, associe un unique vecteur $y=(f_1(x),f_2(x),...,f_m(x))$

Et on note

$$f: D \subseteq E \rightarrow F$$

 $x = (x_1, x_2, ..., x_n) \mapsto f(x) = y = (f_1(x), f_2(x), ..., f_m(x))$

Remarque 1

- -Lorsque E est une partie de \mathbb{R}^2 ou \mathbb{R}^3 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de plusieurs variables.
- Lorsque E est une partie de \mathbb{R}^2 une application de E dans \mathbb{R} ou \mathbb{C} s'appelle fonction numérique de deux variables.

Notation:

- $\{f(x)/x \in D\}$ est appelée l'image de f.
- $\{(x, f(x))/x \in D\} \subseteq E \times F$ est appelé graphe de f.

Exemple 1:

Considérons un rectangle ABCD. On appelle x la longueur AB et, y la longueur BC. On suppose x > 0 et y > 0.

On appelle p(x,y), le périmètre de ABCD, et S(x,y) l'aire de ce rectangle. On a alors : P et S sont définier sur $(\mathbb{R}_+^*)^2$ dans \mathbb{R}_+^* par :

$$p(x, y) = 2 \times (x + y)$$
 et $S(x, y) = x \times y$

donc les fonctions P et S sont des fonctions numiréque de deux variables.

Exemple 2:

Soit la fonction $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $: f(x,y) = (r\cos\theta, r\sin\theta)$ (r > 0) est une fonction vectorielle de deux variables.(avec les coordonnées polaires).

Définition 24 Soient D_1 et D_2 deux parties de E telles que $D_1 \subset D_2$ et f et g deux fonctions définies respectivement sur D_1 et D_2 On dit que g est un prolongement de f à D_2 si pour tout $x \in D_1$ on a f(x) = g(x).

Dans cette situation, on dit aussi que f est la restriction de $g \ a \ D_1$.

Exemple 3:

 $f(x,y) = \frac{x^3}{x^2 + y^2}$ qu'on prolonge en une fonction g définie sur \mathbb{R}^2 en posant

$$g(x,y) = \begin{cases} f(x,y) & \text{si } (x,y) \neq (0,0) \\ a & \text{si } (x,y) = (0,0) \end{cases}$$

où $a \in \mathbb{R}$

2.1.2 Fonctions Partielles

Définition 25 (fonction partielle)

Soit f une fonction de deux variables. La fonction partielle f_x est définie par :

$$f_x: x \mapsto f(x,y)$$

(la variable y est alors considérée comme un paramètre). De même la fonction partielle f_y est définie par :

$$f_{v}: y \mapsto f(x,y)$$

(la variable x est alors considérée comme un paramètre).

2.2 Limite en un point

Définition 26 (limite)

Soient deux evn $(E, ||.||_E)$ et $(F, ||.||_F)$, une partie $A \subset E$ et une application

$$f: A \to F$$

. Soit un point $x_0 \in \overline{A}$ adhérent à A et $\ell \in F$.

On dit que la fonction f admet ℓ comme limite au point x_0 ssi :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in A, \quad \|x - x_0\|_E \le \eta \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

On écrit alors $f(x) \xrightarrow[x \to x_0]{} \ell$.

Remarque 2

La définition précédente s'écrit avec des boules fermées :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(\overline{B}(x_0, \eta) \cap A) \subset \overline{B}(\ell, \varepsilon)$$

et avec des boules ouvertes :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad f(B(x_0, \eta) \cap A) \subset B(\ell, \varepsilon)$$

Théorème 14 (Unicité de la limite)

Si f a une limite en x_0 , alors celle ci est unique.

Démonstration:

Supposons que f tend vers ℓ et ℓ' quand x tend x_0 . Alors :

Soit
$$\varepsilon > 0$$
 il existe $\eta_1 > 0$ (resp. $\eta_1 > 0$) on a $||f(x) - \ell||_F \le \frac{\varepsilon}{2}$ (resp. $||f(x) - \ell'||_F \le \frac{\varepsilon}{2}$)

Donc, soit $x \in A$ et $\eta = \min(\eta_1, \eta_2)$ tel que $||x - x_0||_E \le \eta$

on a
$$\|\ell - \ell'\|_F \le \|f(x) - \ell\|_F + \|f(x) - \ell'\|_F \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

Comme ε est quelconque, on a nécessairement $\ell = \ell'$

Remarque 3

 $\overline{\operatorname{Pour} f}: \mathbb{R} \to \mathbb{R}$ une fonction d'une seule variable réelle à valeurs réelles on retrouve la définition de la limites de f au point x_0 :

$$\lim_{x \to x_0} f(x) = \ell \Leftrightarrow \forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in \mathbb{R}, \quad |x - x_0| \le \eta \Rightarrow |f(x) - \ell| \le \varepsilon$$

Exemple 4

1. On considère la fonction

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(x, y) \mapsto f(x, y) = 3x + y$

On montre que

$$\lim_{(x,y)\mapsto(1,1)}f(x,y)=4$$

d'aprés la difénition de la limite, on montre que :

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x,y) \in \mathbb{R}^2, \quad |(x,y) - (1,1)| < \eta \Rightarrow |f(x,y) - 4| \leq \varepsilon$$

alors

$$\forall \varepsilon > 0$$
, $\exists ? \eta > 0$, $\forall (x, y) \in \mathbb{R}^2$, $(|x - 1| < \eta \text{ et } |y - 1| < \eta) \Rightarrow |3x + y - 4| \le \varepsilon$

donc on a

$$|x-1|<\eta\Rightarrow 3-3\eta<3x<3+3\eta$$

et
$$|y-1| < \eta \Rightarrow 1-\eta < y < 1+\eta$$

Donc
$$|f(x, y) - 4| < 4\eta \le \varepsilon$$

Alors $\eta \leq \frac{\varepsilon}{4}$

Donc on pose $\eta = \frac{\varepsilon}{4}$

finallement

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{4} > 0, \quad \forall (x,y) \in \mathbb{R}^2, \quad |(x,y) - (1,1)| < \eta \Rightarrow |f(x,y) - 4| \le \varepsilon$$

donc

$$\lim_{(x,y)\to(1,1)} f(x,y) = 4$$

2. Considérons la fonction de 2 variables $f:(\mathbb{R}^2,\|.\|_2)\to(\mathbb{R},|.|)$ définie par

$$f(x,y) = \frac{6x^2y}{x^2 + y^2}$$

Montrons par la difénition de la limite, que

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

i.e

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

C'est à dire

$$\forall \varepsilon > 0, \quad \exists ? \eta > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \sqrt{x^2 + y^2} < \eta \Rightarrow \left| \frac{6x^2y}{x^2 + y^2} \right| \le \varepsilon$$

on a
$$\forall (x, y) \neq (0, 0)$$
 $x^2 \le x^2 + y^2 \Rightarrow \frac{x^2}{x^2 + y^2} \le 1$

or
$$\left| \frac{6x^2y}{x^2+y^2} \right| = 6 \times \frac{x^2}{x^2+y^2} |y| \le 6|y|$$

et on a
$$y^2 \le x^2 + y^2 \Rightarrow 6|y| \le 6\sqrt{x^2 + y^2}$$

et on a
$$y^2 \le x^2 + y^2 \Rightarrow 6|y| \le 6\sqrt{x^2 + y^2}$$

Par conséquent $6\sqrt{x^2 + y^2} \le \varepsilon \Rightarrow \sqrt{x^2 + y^2} \le \frac{\varepsilon}{6} = \eta$

finallement on donne $\eta = \frac{\varepsilon}{6}$

donc

$$\forall \varepsilon > 0, \quad \exists \eta = \frac{\varepsilon}{6} > 0, \quad \forall (x, y) \in \mathbb{R}^2, \quad \|(x, y) - (0, 0)\|_2 < \eta \Rightarrow |f(x, y) - 0| \le \varepsilon$$

alors

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

Remarque 4

la limite d'une fonction en un point ne dépend pas du choix des normes sur \mathbb{R}^n et, \mathbb{R}^p qui sont des espaces de dimensions finies.car toutes les normes de \mathbb{R}^n sont équivalentes $(\|.\|_{\infty} \leq \|.\|_2 \leq$ $||.||_1 \le n ||.||_{\infty}$

Théorème 15 (Caractérisation séquentielle de la limite)

Soient deux e.v.n. de dimension finie $(E, \|.\|_E)$ et $(F, \|.\|_F)$, une partie $A \subset E$

et une application $f: A \to F$, Soit un point $x_0 \in A$ adhérent à A et $\ell \in F$ On a l'équivalence entre :

1.
$$f(x) \xrightarrow[x \to x_0]{} \ell$$
.

2.
$$\forall (x_n)_n \in A$$
, $x_n \xrightarrow[n \to +\infty]{} x_0 \Rightarrow f(x_n) \xrightarrow[n \to +\infty]{} \ell$.

Démonstration

 \Rightarrow

Supposons que $f(x) \xrightarrow[x \to x_0]{} \ell$.

soit $\varepsilon > 0$, soit $\eta > 0$, tel que pour tout x de A,

si $||x - x_0||_E \le \eta$, alors $||f(x) - \ell||_F \le \varepsilon$.

puisque x_0 est adhérent à A,

il existe au moins une suite d'éléments de A convergeant vers x_0 .

Soit $(x_n)_n$ une suite d'éléments de A convergeant vers x_0 .

Alors il existe $n_0 \in \mathbb{N}$ tel que , pour $n \ge n_0$, $||x_n - x_0||_E \le \eta$.

alors pour $n \ge n_0$, $||f(x_n) - \ell||_F \le \varepsilon$.

On a montré que $\varepsilon > 0$, $\exists n_0 \in \mathbb{N}/\forall n \ge n_0$, $\|f(x_n) - \ell\|_F \le \varepsilon$

et donc la suite $(f(x_n))_n$ converge vers ℓ . Ainsi, si $f(x) \xrightarrow[x \to x_0]{} \ell$

alors , pour toute suite $(x_n)_n$ d'éléments de A, convergente , de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

 \Leftarrow

Supposons que pour toute suite $(x_n)_n$ d'éléments de A convergente , de limite x_0 , la suite $(f(x_n))_n$ converge vers ℓ .

Supposons par l'absurde que f(x) ne tende pas vers ℓ quand x tend vers x_0 . Alors

$$\exists \varepsilon > 0$$
, $\forall \eta > 0$, $\exists x \in A / (\|x - x_0\|_E \le \eta \text{ et } \|f(x) - \ell\|_F > \varepsilon)$

 ε est ainsi fixé.

Pour chaque $n \in \mathbb{N}$, il exixte $u_n \in A$ tel que $||u_n - x_0||_E \le \frac{1}{n+1}$ et $||f(u_n) - \ell||_F > \varepsilon$.

Puisque $\frac{1}{n+1}$ tend vers 0 quand n tend vers $+\infty$, la suite $(u_n)_n$ est une suite d'éléments de A, convergente, de limite x_0 .

D'aprés ce qui précéde, on doit avoir $\lim_{n \to +\infty} f(u_n) = \ell$ ce qui contredit le fait que $\forall n \in \mathbb{N}, \quad \|f(u_n) - \ell\|_F > \varepsilon$. Donc, f(x) tend vers ℓ quand x tend vers x_0 .

Théorème 16 (Théorème de majoration)

On considère une norme $\|.\|_E$ sur E.

On suppose qu'il existe une fonction $g : \mathbb{R} \to \mathbb{R}$, un voisinage $V \in \partial_{x_0}$ tels que :

1.
$$\forall x \in V$$
, $||f(x) - \ell||_F \le g(||x - x_0||_E)$

2.
$$g(\theta) \xrightarrow[\theta \to 0]{0} 0$$
Alors $f(x) \xrightarrow[x \to x_0]{} \ell$

Démonstration

Soit $\varepsilon > 0$, comme $\lim_{\theta \to 0} g = 0$, il existe $\eta > 0$ tel que $|\theta| < \eta$ alors $0 \le g(\theta) < \varepsilon$

Mais alors si $x \in V \cap B(x_0, \eta)$.

alors
$$\theta = \|x - x_0\|_E \le \eta$$
 et $\|f(x) - \ell\|_F \le g(\|x - x_0\|_E \le \varepsilon$

Donc $f(x) \xrightarrow[x \to x_0]{} \ell$

Remarque 5:

On se sert souvent de ce théorème pour montrer qu'une application n'admet pas de limite en un point.

Posons par exemple pour $\forall (x, y) \in \mathbb{R}^2 \setminus (0, 0)$.

$$f(x,y) = \frac{x}{\sqrt{x^2 + y^2}}$$

On a $f(0, \frac{1}{n}) \xrightarrow[n \to +\infty]{} 0$ et $f(\frac{1}{n}, \frac{1}{n}) \xrightarrow[n \to +\infty]{} \frac{\sqrt{2}}{2}$. Pourtant $(0, \frac{1}{n}) \xrightarrow[n \to +\infty]{} (0, 0)$ et $(\frac{1}{n}, \frac{1}{n}) \xrightarrow[n \to +\infty]{} (0, 0)$.

Donc par le théorème de caractérisation séquentielle de la limite, f ne peut avoir de limite en (0,0).

PROPOSITION 20 (On définit également des limites « infinies ») :

1. Si $f: X \subset E \to \mathbb{R}$, on dit que $f(x) \xrightarrow[x \to x_0]{} +\infty$ lorsque

$$\forall A > 0$$
, $\exists \eta > 0$, $\forall x \in X$ $\|x - x_0\|_E \le \eta \Rightarrow f(x) \ge A$

2. Si $f : \mathbb{R} \to (F, \|.\|_F)$, on dit que $f(x) \xrightarrow[x \to +\infty]{} \ell$ lorsque

$$\forall \varepsilon > 0, \quad \exists A > 0, \quad \forall x \ge A, \quad \|f(x) - \ell\|_F \le \varepsilon$$

3. Si $f: X \subset E \to F$, on dit que $f(x) \xrightarrow[x \to \infty]{} \ell$ lorsque

$$\forall \varepsilon > 0, \quad \exists R > 0, \quad \forall x \in X \quad \|x\|_E \ge R \Rightarrow \|f(x) - \ell\|_F \le \varepsilon$$

Théorème 17 (THEOREME DES GENDARMES)

Soient f; g et h trois fonctions de $E \rightarrow F$ vérifiant les deux propriétés suivantes :

- 1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \ell$
- 2. il existe $\alpha \in \mathbb{R}_{*}^{+}$ tel que pour tout $x \in \{x \in Etel \ que \ 0 < \|x x_0\| < \alpha\}$ $tel\ que\ f(x) \le h(x) \le g(x)$

Alors
$$\lim_{x \to x_0} h(x) = \ell$$

PROPOSITION 21 (PERMUTATION DES LIMITES)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction telle que $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \ell$ Supposons de plus que pour tout $x \in \mathbb{R}$, $\lim_{y \to y_0} f(x, y)$ existe et que pour tout $y \in \mathbb{R}$, $\lim_{x \to x_0} f(x, y)$ existe. Alors

$$\lim_{x \to x_0} (\lim_{y \to y_0} f(x, y)) = \lim_{y \to y_0} (\lim_{x \to x_0} f(x, y)) = \ell$$

2.2.1 Opérations sur les limites

Les propriétés de base pour les limites de fonctions de plusieurs variables sont les mêmes que pour les fonctions d'une variable réelle.

PROPOSITION 22 (Combinaison linéaire de limites)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$ une partie $X \subset E$, $x_0 \in \overline{X}$, deux applications $f, g : X \to F$ et deux scalaires $(\alpha, \beta) \in K^2$ si :

$$\begin{cases} \lim_{x \to x_0} f(x) = \ell, & ; \\ \lim_{x \to x_0} g(x) = \ell', & . \end{cases}$$

alors

$$\lim_{x \to x_0} (\alpha f(x) + \beta g(x))) = \alpha \ell + \beta \ell'$$

PROPOSITION 23 (Produit de limites)

Soient deux evn $(E, \|.\|_E)$ et $(F, \|.\|_F)$ une partie $X \subset E$, $x_0 \in \overline{X}$, une application vectorielle $f: X \to F$ et une fonction numérique. $g: X \to \mathbb{R}$ si :

$$\begin{cases} \lim_{x \to x_0} f(x) = \ell \in F, & ; \\ \lim_{x \to x_0} g(x) = \ell' \in \mathbb{R}, & . \end{cases}$$

alors l'application $\left\{ \begin{array}{ll} X \to F, & ; \\ x \mapsto g(x)f(x), & . \end{array} \right.$ admet une limite lorsque $x \to x_0$

$$g(x)f(x) \xrightarrow[x \to x_0]{} \ell'\ell$$

2.2.2 Fonctions composantes, fonctions coordonnées.

Soit E et F deux espaces vectoriels normés de dimensions n et m respectivement, $B(e_1, e_2, ..., e_m)$ base de F.

On not

$$f: E \xrightarrow{x=(x_1,\dots,x_n)\to f((x_1,\dots,x_n))} F$$

tel que $f((x_1,...,x_n)) = (f_1(x_1,...,x_n),...,f_m(x_1,...,x_n))$ s'appelle fonction vectorielle.

- 1- Les fonctions $f_1,...,f_m$, sont les fonctions composantes de la fonction f. Ce sont toujours des fonctions de n variables, mais à valeurs dans K.
- * Par exemple, la fonction $f: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\cos(\theta),r\sin(\theta))]{} \mathbb{R}^2$ (passage des coordonnées polaires aux coordonnées cartésiennes) a deux fonctions composantes. les fonctions $f_1: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\cos(\theta))]{} \mathbb{R}$ et $f_2: \mathbb{R}^2 \xrightarrow[(r,\theta) \to (r\sin(\theta))]{} \mathbb{R}$
- 2- pour décrire les valeurs de f, on peut utiliser une base $B(e_1, e_2, ..., e_m)$ de F alors

$$f(x) = f_1(x)e_1 + f_2(x)e_2 + \dots + f_m(x)e_m = \sum_{i=1}^m f_i(x)e_i$$

Les fonctions $f_1,...,f_m$, sont les fonctions coordonnées dans la base B de la fonction f. Ce sont des fonctions d'une partie de E vers R.

Théoréme 18 (Limite d'une application dans un espace produit)

Soit un evn $(E, \|.\|_E)$, et un espace produit $F = F_1 \times F_2 \times ... \times F_m$ chaque evn F_i étant muni d'une norme $\|.\|_{F_i}$ Soit $X \subset E$, $x_0 \in \overline{X}$ et

$$f: \left\{ \begin{array}{l} X \rightarrow F = F_1 \times F_2 \times \ldots \times F_m, \\ x \mapsto (f_1(x), f_2(x, \ldots, f_m(x)) \end{array} \right. ;$$

On se ramène à l'étude de la limite de chacune des applications f_i

$$(f(x) \xrightarrow[x \to x_0]{} (\ell_1, \ell_2, ..., \ell_m)) \Leftrightarrow (\begin{cases} f_1(x) \xrightarrow[x \to x_0]{} \ell_1 & ; \\ \vdots & ; \\ f_m(x) \xrightarrow[x \to x_0]{} \ell_m & . \end{cases}$$

2.3 Continuité d'une fonction de plusieurs variables

Définition 27 (Continuité en un point)

Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, $f : E \to F$ et $x_0 \in D_f$ $(D_f L'ensemble de définition de <math>f$.

On dit que f est continue en x_0 SSI $\lim_{x\to x_0} f(x) = f(x_0)$

La définition de la continuité au point x_0 s'écrit avec des quantificateurs :

$$\forall \varepsilon > 0, \quad \exists \eta > 0, \quad \forall x \in D_f, \quad \|x - x_0\|_E \le \eta \Rightarrow \|f(x) - f(x_0)\|_F \le \varepsilon$$

Définition 28 (continuité sur une partie)

On dit que l'application $f: E \to F$ est (globalement) continue sur E lorsque f est continue en tout point de E.

On note $\mathscr{C}(E,F)$ ou $\mathscr{C}^0(E,F)$ l'ensemble des fonctions continues sur E.

Remarque 6

D'après les propriétés des opérations sur les limites on obtient :

- La somme, le produit, de deux fonctions continues en x_0 est continue en x_0 .
- Si f et g sont deux fonctions continues en x_0 et si $g(x_0) \neq 0$ la fonction quotient $\frac{f}{g}$ est continue en x_0 .
- Applications : les polynômes, les fonctions rationnelles sont continues en tout point de leur ensemble de définition.

PROPOSITION 24 (Continuité à valeurs dans un espace produit)

Soient E et F deux espaces vectoriels normés de dimension n et m respectivement, $f: E \to F$ une fonction à composantes $f_1, f_2, ..., f_m$ dans la base $\mathscr{B}(e_1, ..., e_m)$ de F et $x_0 \in E$.

- f est continue en $x_0 \Leftrightarrow pour \ tout \ 1 \leq i \leq m$, f_i est continue en x_0 .
- f est continue en E \Leftrightarrow pour tout $1 \le i \le m$, f_i est continue en E.

Théorème 19 (Caractérisation séquentielle de la continuité locale)

Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et $f: X \to F$. Alors la fonction f est continue au point x_0 si et seulement si pour toute suite $(x_n) \in X^{\mathbb{N}}$ de points de X, $x_n \xrightarrow[n \to +\infty]{} x_0 \Rightarrow f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$

2.3.1 Fonctions lipschitziennes

Définition 29 (Fonctions lipschitziennes)

Soient Soit $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et $f: X \to F$. On dit que l'application f est **lipschitzienne** (ou **k-lipschitzienne**) si il existe K > 0 tel que

$$\forall (x, y) \in X^2$$
, $||f(x) - f(y)||_F \le k ||x - y||_E$

Théorème 20 (Toute fonction lipschitzienne est continue)

Soient Soit $(E, ||.||_E)$ et $(F, ||.||_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et une application k-lipschitzienne $f: X \to F$ Alors f est continue.

Démonstration

Soient $x_0 \in X$ et $\varepsilon > 0$.

Posons $\eta = \frac{\varepsilon}{h}$, Alors pour tout $x \in B(x_0, \eta) \cap X$, On a

$$||f(x)-f(x_0)||_F \le k ||x-x_0||_E \le k \frac{\varepsilon}{k} = \varepsilon$$

et f est continue en x_0 . Comme x_0 est quelconque dans X, f est continue sur X.

Remarque 7:

la continuité partielle n'entraine pas la continuité.

Continuité ⇒ Continuité partielle mais la la réciproque est faux.

Exemple 5:

Soit f la fonction définie par $f(x,y) = \frac{xy}{x^2 + y^2}$ si $(x,y) \neq (0,0)$ et f(0,0) = 0

Les applications partielles $f_x: x \mapsto f(x,0)$ et $f_y: x \mapsto f(0,y)$ sont toutes deux constantes nulles sur \mathbb{R} et en particulier elles sont continues en 0. Par contre f n'est pas continue en (0,0) puisque pour tout réel x non nul : $f(x,x) = \frac{1}{2}$

2.4 Prolongement par continuité:

Définition 30 (Prolongement par continuité)

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ deux espaces vectoriels normés, Soient $X \subset E$ et $f: X \to F$ une fonction continue sur X et $x_0 \notin X$.

Supposons que $\lim_{x \to x_0} f(x) = \ell$ avec $\ell \in F$, alors la fonction définie par :

$$\check{f} = \begin{cases}
f(x), & si \ x \in X/x_0; \\
\ell, & si \ x = x_0.
\end{cases}$$

est une fonction continue appelée le prolongement par continuité de f en x_0 .

Exemple 6

Soit f la fonction définie sur \mathbb{R}^2 par :

$$\forall (x,y) \in \mathbb{R}^2, f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{pour } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Etudier la continuité de f sur \mathbb{R}^2

Solution

La fonction f est continue sur $\mathbb{R}^2 \setminus (0,0)$ en tant que quotient de fonctions continues sur $\mathbb{R}^2 \setminus (0,0)$ dont le dénominateur ne s'annule pas sur $\mathbb{R}^2 \setminus (0,0)$. Pour $(x,y) \in \mathbb{R}^2 \setminus (0,0)$

$$|f(x,y)| = \frac{|xy||x^2 - y^2|}{x^2 + y^2} \le \frac{|xy|(|x^2| + |y^2|)}{x^2 + y^2} = |xy|$$

Puisque $\lim_{(x,y)\to(0,0)}|xy|=0$, on en déduit que $\lim_{\substack{(x,y)\to(0,0)\\(x,y)\neq(0,0)}}f(x,y)=0$ Ceci montre que f est continue

en (0,0). En résumé, f est continue sur $\mathbb{R}^2 \setminus (0,0)$ et en (0,0) et finalement, f est continue sur \mathbb{R}^2 .

Exemple 7

Soit f la fonction définie sur $\mathbb{R}^2 \setminus (0,0)$ par

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

Comme f(0,y) = 0 et $f(x,x) = \frac{1}{2}$ alors f ne peut pas être prolongée par continuité en (0,0).

Remarque 8

En pratique, dans \mathbb{R}^2 il est souvent utile de passer aux coordonnées polaires pour ramener le calcul de la limite d'une fonction de deux variables à celui de la limite d'une fonction d'une seule variable. En effet, tout point (x,y) de $\mathbb{R}^2 \setminus (a,b)$ peut être représenté par ses coordonnées polaires centrées autour d'un point (a,b) grâce aux relations $x = a + r\cos(\theta)$ et $y = b + r\sin(\theta)$ avec x > 0 et $x = a + r\cos(\theta)$ et $x = a + r\cos(\theta)$

Dans cette écriture, r représente la distance entre (a,b) et (x,y) de sorte que

$$\lim_{\substack{(x,y)\to(a,b)}} f(x,y) = \lim_{\substack{r\to 0\\\forall \theta}} f(a+r\cos(\theta),b+r\sin(\theta))$$

On peut alors utiliser la condition suffisante suivante :

PROPOSITION 25 S'il existe $\ell \in \mathbb{R}$ et une fonction $r \to s = s(r)$ telle que au voisinage de (a,b) on a

$$|f(a+r\cos(\theta),b+r\sin(\theta))-\ell| \le s(r) \xrightarrow[r\to 0]{} 0$$

alors

$$\lim_{(x,y)\to(a,b)} f(x,y) = \ell$$

Exemple 8

Montrons de deuxmanières que $\lim_{(x,y)\to(0,0)} f(x,y)$ avec $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$ n'existe pas.

Première méthode. La première méthode utilise la définition de limite. En effet, le long de l'axe horizontal qui a équation y = 0, on a

$$\lim_{\substack{(x,y)\to(0,0)\\y=0}} \frac{x^2-y^2}{x^2+y^2} = \lim_{x\to 0} \frac{x^2}{x^2} = 1$$

tandis que, le long de l'axe vertical qui a équation x = 0, on a

$$\lim_{\substack{(x,y)\to(0,0)\\x=0}} \frac{x^2-y^2}{x^2+y^2} = \lim_{y\to 0} \frac{-y^2}{y^2} = -1$$

de sorte que les deux limites ne coïncident pas.

Deuxième méthode. La secondemanière est basée sur les coordonnées polaires. En posant $x = r\cos(\theta)$ et $y = r\sin(\theta)$ avec r > 0 et $\theta \in [0, 2\pi[$.

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{\substack{r\to 0\\ \forall \theta}} \frac{r^2(\cos^2(\theta) - \sin^2(\theta))}{r^2(\cos^2(\theta) + \sin^2(\theta))} = \lim_{\substack{r\to 0\\ \forall \theta}} \cos^2(\theta) - \sin^2(\theta) = \cos(2\theta)$$

Le résultat varie selon la direction θ , donc $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ n'existe pas

FIN

Chapitre 3

Différentiabilité et Calcul différentiel

- 3.1 Définitions et Exemples :
- 3.1.1 Definition et Notation

Définition 31