Follow the Sun and Go with the Wind: Carbon-Footprint Optimized Timely E-Truck Transportation

Junyan Su, Qiulin Lin, Minghua Chen City University of Hong Kong

06/22/2023

US Trucking Industry: A Top-20 Economy with High Environmental Impact

☐ U.S. freight tonnage: 11B

(72% of all freight)

☐ U.S. freight revenue: \$875.5B

Rank	Country	GDP (USD billion)	
1	United States	23,315	
2	China	17,734	
3	Japan	4,940	
•••			
18	Saudi Arabia	833	
19	Turkey	815	
20	Switzerland	812	

GDP rank in 2021

source: world bank

☐ Carbon emission of U.S. heavy trucks: 456.6M

□ 25% of transportation sector (8.8%

of whole U.S.)

Carbon emissions of U.S. transportation sector

source: transportation energy data book

E-Truck: Future Towards Net-Zero

- ☐ High energy efficiency
 - Electric motor: ~95%
 - Internal combustion engine (ICE):~35%

□ Carbon optimized truck operation saves 28% carbon.

Carbon Footprint Optimized Timely Transportation

□ Objective

Minimize the carbon footprint incurred at each charging stop

□ Constraints

- State of Charge (SoC) constraints
- Deadline constraint

□ Design space

- Path planning, speed planning, and charge planning

Design Space

Charge planning

- When, where, and how long to charge
- Carbon intensity is diverse geographically and temporally
- □ Carbon footprint = carbon intensity × charged energy

Path Planning

☐ Energy-related factors: distance, congestion, road type...

Speed Planning

☐ A faster speed means more energy consumption

	Carbon intensity (kg/kWh)		
Coal	1.02		
Natural gas	0.39		
Petroleum	0.91		
Renewable	0		

Research Landscape

	Charge planning	Path planning	Speed planning	Hard deadline	Truck type
[1,2,3]	N/A	✓	✓	✓	ICE
[4]	N/A	X	✓	X	ICE
[5]	✓	✓	✓	X	Electric
[6]	X	X	✓	✓	Electric
Current practice	Human intelligence				
This work	✓	✓	✓	✓	Electric

- [1] L. Deng, et al, Energy-Efficient Timely Transportation of Long-Haul Heavy-Duty Trucks. IEEE Transactions on Intelligent Transportation Systems, 2017.
- [2] Q. Liu, et al, Energy-Efficient Timely Truck Transportation for Geographically-Dispersed Tasks. IEEE Transactions on Intelligent Transportation Systems, 2019.
- [3] W. Xu, et al, Ride the Tide of Traffic Conditions: Opportunistic Driving Improves Energy Efficiency of Timely Truck Transportation. IEEE Transactions on Intelligent Transportation Systems, 2023.
- [4] E, Hellström, at al, Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Engineering Practice, 2009.
- [5] M. Strehler, et al, Energy-efficient shortest routes for electric and hybrid vehicles. Transportation Research Part B: Methodological, 2017.
- [6] Y. Zhang, et al, Optimal Eco-driving Control of Autonomous and Electric Trucks in Adaptation to Highway Topography: Energy Minimization and Battery Life Extension. IEEE Transactions on Transportation Electrification, 2022.

Our Contributions

Important and challenging problem

■ We identify and study an important and challenging problem, namely the carbon footprint optimization problem for e-trucks

Efficient algorithm

- ☐ Performance guarantee:
 - ☐ Convergence rate,
 - ☐ Polynomial run time per iteration
 - ☐ Performance bound

Novel formulation

- ☐ It reveals an elegant problem structure with low model complexity
- ☐ It is widely applicable beyond this work

Extensive simulation

- ☐ Based on real-world traces
- ☐ Carbon-optimized solutions achieve up to 28% carbon reduction

The Carbon Footprint Optimization (CFO) Problem

Input

- \Box Graph G = (V, E), speed limits
- Origin s, destination d, deadline T
- ☐ The e-truck parameters
- \Box Charge functions $\phi(t)$
- \square Carbon intensity functions $\pi(\tau)$

Output

- \Box Path selection \vec{x}
- lue Travel time \vec{t}
- \Box Wait time \vec{t}^w , charge time \vec{t}^c

Objective

Minimize carbon footprint

Constraints

- ☐ Ensure positive state of charge (SoC) at each road segment
- ☐ Arrive the destination before deadline

Remark

- ☐ The CFO problem is NP-hard.
- ☐ Common approaches (e.g., branch and bound) incur a large time complexity

Explore Problem Structure: Stage-Expanded Graph

Key observation: Given the charging planning, we can efficiently solve subproblems between charging stops.

Benefits: It reveals an elegant problem structure with low model complexity

Result: The CFO problem is a Generalized Restricted Shortest Path (GRSP) problem on the stage-expanded graph

The Dual Subgradient Approach

$$\max_{\vec{\lambda} \geq 0} D(\vec{\lambda}) = \max_{\vec{\lambda} \geq 0} \min_{\substack{(\vec{x}, \vec{y}) \in \mathcal{P}, \\ \vec{\beta} \in \mathcal{S}_{\alpha}, \vec{\tau} \in \mathcal{T}_{\tau}, \vec{t} \in \mathcal{T}}} L(\vec{x}, \vec{y}, \vec{t}, \vec{\beta}, \vec{\tau}, \vec{\lambda}) - D(\lambda)$$

- \square At the iteration k
 - Compute the dual function $D(\vec{\lambda}_k)$
 - Solve the easy subproblems in parallel
 - (Single-variable problem) determine the speed planning for each road segment
 - (4-variable problem) determine the charge scheduling for each charging station
 - (An integer problem) solve the path and charging location selection problem
 - Update $\vec{\lambda}$ via the subgradient direction: $\vec{\lambda}_{k+1} = \left[\vec{\lambda}_k + \theta_k \frac{\partial D}{\partial \lambda}(\lambda_k)\right]_+$

Solve the Integer Problem

At the iteration *k*

- Compute the dual function $D(\vec{\lambda}_k)$
 - Solve the easy subproblems in parallel
 - (Single-variable problem) determine the speed planning for each road segment
 - (4-variable problem) determine the charge scheduling for each charging station
 - (An integer problem) solve the path and charging location selection problem
- Update $\vec{\lambda}$ via the subgradient direction: $\vec{\lambda}_{k+1} = \left[\vec{\lambda}_k + \theta_k \frac{\partial D}{\partial \lambda}(\lambda_k)\right]_+$

Theorem: The problem of determining path and charge locations is equivalent to a shortest path problem on an extended charging station graph

Intuition: The optimal values of the subproblems are the cost for each road segment and charging station

Performance Analysis

Theorem [convergence rate]: Let D^* be the optimal dual objective and let $\overline{D_K}$ be the maximum dual value over K iterations. For some constant C, we have

$$D^* - \overline{D_K} \le \frac{C}{\sqrt{K}}$$

Theorem [time complexity]: The time complexity per iteration is $\tilde{O}(|V|^2|E|)$

Theorem [posterior bound]: Let OPT be the optimal objective. If our algorithm produces a feasible solution at iteration k with objective ALG, then ALG - OPT is bounded by $(-\vec{\lambda}^T \vec{\delta})$. Here $\vec{\delta}$ is the value of constraint functions.

Convergence rate of $\frac{1}{\sqrt{K}}$.

Polynomial run time per iteration

When the solution is active at all constraints (i.e., $\vec{\delta} = 0$), then we find the optimal solution

Simulation Setup

- ☐ Highway network: U.S. national highway network
 - **□** 84,505 nodes and 178,238 edges
 - ☐ 2,555 charging stations
- 500 origin-destination pairs longer than 800 miles from Freight Analysis Framework (FAF)
- Carbon intensity data from U.S. Energy Information Administration (EIA)

Simulation Results

Compared to the fastest path

☐ The carbon-optimized solutions save up to 28% carbon footprint

Compared to energy-efficient solution

☐ The carbon-optimized solutions save up to 9% carbon footprint

Compared to ICE truck

☐ E-truck saves up to 59% carbon as compared to ICE trucks

Conclusion and Future Work

Summary ☐ Important and Challenging CFO problem ☐ Novel formulation and efficient approach which is widely applicable beyond CFO ☐ Simulation results: 28% carbon reduction

Future work

- ☐ Explore the potential of our approach in other applications
- ☐ Explore the problem with uncertainty

Thank you!

