Exercice 1: (2.5 points)

La parabole suivante est la représentation graphique d'un trinôme $f(x) = ax^2 + bx + c$ dont la forme canonique est $f(x) = a(x - \alpha)^2 + \beta$. On note Δ le discriminant de f(x).

Donner sans justification le signe des paramètres $a, c, \alpha, \beta, \Delta$ pour le trinôme dont la représentation graphique est la suivante :

a < 0, c > 0, $\alpha > 0$, $\beta > 0$ et $\Delta > 0$. (0.5 pt par réponse)

Exercice 2: (6 points)

- 1. Développer et réduire l'expression $(3x+2)(x+1) + (x-5)^2 + x 51$ = $3x^2 + 3x + 2x + 2 + x^2 - 10x + 25 + x - 51 = 4x^2 - 4x - 24$ (1 pt)
- 2. Calculer le discriminant du trinôme $g(x) = 4x^2 4x 24$. $\Delta = b^2 - 4ac = (-4)^2 - 4(4)(-24) = 16(1+24) = 4^25^2 = 20^2 \text{ (1 pt)}$
- **3.** Combien le trinôme g(x) admet-il de racines ? Calculer toutes ses racines. Comme $\Delta > 0$, g(x) admet deux racines. (1 pt)

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-(-4) - 20}{2 \times 4} = \frac{-16}{8} = -2 \text{ (1 pt) et } x_2 = \frac{-(-4) + 20}{2 \times 3} = 3 \text{ (1 pt)}$$

4. Donner si possible la forme factorisée de g(x).

$$g(x) = 4(x-3)(x+2) = 4x^2 - 4x - 24$$
 (1 pt)

Exercice 3: (3 points)

Déterminer toutes les valeurs du réél m pour lesquelles l'équation $mx^2 + 2x + m = 0$ n'admet pas de racine. $mx^2 + 2x + m = 0$ n'admet une racine double.

$$mx^2 + 2x + m = 0$$

 \iff

$$\Delta < 0$$

 \iff

$$4 - 4m^2 < 0$$

 \iff

$$1 - m^2 < 0$$

 \iff

$$(1-m)(1+m)<0$$

Le trinôme $mx^2 + 2x + m = 0$ n'admet pas de racine équivaut à $m \in]-\infty; -1[\cup]1; +\infty[$.

Exercice 4: (4.5 points)

Résoudre dans \mathbb{R} :

1.
$$\frac{x^2}{12} - 4x + 3 = 0$$

Les solutions de cette équation sont les racines du trinôme $\frac{x^2}{12} - 4x + 3$ dont le discriminant est $\Delta =$

$$b^2 - 4ac = (-4)^2 - 4 \times \frac{1}{12} \times 3 = 16 - 1 = 15$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{4 - \sqrt{15}}{2(\frac{1}{12})} = 6(4 - \sqrt{15})$$

$$x_2 = 6(4 + \sqrt{15})$$

d'où
$$S = \{6(4 - \sqrt{15}); 6(4 + \sqrt{15})\}$$
 (1 pt)

$$2. \ 7x^2 - 10x + 9 > 7$$

$$7x^2 - 10x + 9 > 7$$

$$7x^2 - 10x + 2 > 0$$

$$7x^2 - 10x + 2 = 0$$
, $\Delta = b^2 - 4ac = 100 - 4(7)(2) = 44$, If y a 2 racines.

3.
$$(x+1)(-x+4) = (5x+5)x$$

$$(x+1)(-x+4) = (5x+5)x$$

$$(x+1)(-x+4) - 5(x+1)x = 0$$

$$(x+1)(-x+4-5x) = 0$$

$$(x+1)(-6x+4) = 0$$

$$x = -1$$
 ou $x = \frac{2}{3}$

donc
$$S = \{-1; \frac{2}{3}\}$$
 (1 pt)

4.
$$\frac{2-5x}{x-5} > x$$
. $\frac{2-5x}{x-5} > x$

$$\frac{2-5x}{x-5} > x$$

$$\iff \frac{2-5x}{x-5} - x > 0$$

$$\iff \Rightarrow$$

$$\frac{2 - 5x - x(x - 5)}{x - 5} > 0$$

$$\frac{-x^2+2}{x-5} > 0$$
 (0.5 pt pour la réduction)

$$\frac{-(x-\sqrt{2})(x+\sqrt{2})}{x-5} > 0 \text{ (0.5 pt pour le calcul des racines)}$$

Soit
$$f(x) = \frac{-(x - \sqrt{2})(x + \sqrt{2})}{x - 5}$$

x	-∞		$-\sqrt{2}$		$\sqrt{2}$		5		+∞
<i>x</i> – 5				_			0	+	
$x + \sqrt{2}$		-	0			+			
$-(x-\sqrt{2})$			+		0		-		
f(x)		+	0	_	0	+		_	

d'où
$$S = \left] -\infty; -\sqrt{2} \right[\cup \left] \sqrt{2}; 5 \right[(0.5 \text{ pt}) \right]$$

Exercice 5: (4 points)

Soient $f_1(x) = (x+5)^2 + 2$ et $f_2(x) = -x^2 + 7x + 5$ deux trinômes. Soient $\mathcal{P}_1 : y = f_1(x)$ et $\mathcal{P}_2 : y = f_2(x)$ leurs représentations graphiques.

1. Calculer les coordonnées du sommet des paraboles \mathcal{P}_1 et \mathcal{P}_2 . $f_1(x)$ est sous forme canonique, on peut lire directement les coordonnées du sommet S(-5;2) (1 pt) $\alpha = \frac{-b}{2a} = \frac{-7}{-2} = \frac{7}{2} \text{ et } \beta = f_2(\frac{7}{2}) = -(\frac{7}{2})^2 + 7(\frac{7}{2}) + 5 = -\frac{49}{4} + \frac{98}{4} + \frac{20}{4} = \frac{69}{4} \text{ et } S(\frac{7}{2}; \frac{69}{4})$ (1 pt)

2. Dresser les tableaux de variations de f_1 et f_2 .

 \int car a = 1 > 0 (1 pt)

x	-∞	$\frac{7}{2}$	+∞
$f_2(x)$	-∞	$\frac{69}{4}$	-∞

 $\int car \ a = -1 < 0 \ (1 \ pt)$