

Sommaire

- I/ Présentation du projet
- II/ Présentation du prototype
- III/ Programmation
 - 1/ Gestion de l'esquive
 - 2/ Application Android
- IV/ Conclusion
- V/ Diffusion

Notre problématique

La sécurité des personnes à mobilité réduite

Comment diminuer le risque d'accident durant un moment d'inattention?

Notre solution

Récupération d'informations sur le rapprochement d'un facteur environnemental à risque par un groupe de capteurs à ultrason.

le besoin

Pourquoi ce besoin?

 Car l'utilisateur étant humain
 La réhabilitation totale de et ayant des rapports sociaux, il lui est difficile de ne se concentrer que sur sa conduite.

Comment ce besoin pourrait disparaître?

l'environnement ou un remaniement génétique qui supprimerait les handicaps physiques peuvent être les causes de la disparition du besoin.

I/ Présentation du projet II/ Présentation du prototype III/ Programmation 1/ Gestion de l'esquive 2/ Application Android IV/ Conclusion

V/ Diffusion

Concept

Je vais vous présenter le concept du projet

Fauteuil roulant intelligent

- Equipé de capteurs
- Boitier adaptable sur tous les fauteuils
- Communique avec un smartphone

Modèle présenté : Fauteuil roulant électrique Bora - Invacare

I/ Présentation du projet

II/ Présentation du prototype

III/ Programmation

1/ Gestion de l'esquive

2/ Application Android

IV/ Conclusion

V/ Diffusion

Des capteurs

• 8 capteurs :

- 4 sur les côtés
- 2 à l'arrière
- 2 à l'avant

I/ Présentation du projet II/ Présentation du prototype

- III/ Programmation
 1/ Gestion de l'esquive
- 2/ Application Android
- IV/ ConclusionV/ Diffusion

Boitier de commande – interface homme-machine

Commande depuis le fauteuil

Commande à distance (ex par un éducateur)

I/ Présentation du projet

II/ Présentation du prototype

III/ Programmation

1/ Gestion de l'esquive

2/ Application Android

IV/ ConclusionV/ Diffusion

Projet

Organigramme

Yaël Radolanirina Responsable SI -Communication

Louis L'Haridon Chef de projet Tom Kisiela Responsable technique

Louis L'Haridon
Responsable Développement

Répartition des tâches

	Les différentes fonctions et tâches que nous nous sommes réparties	Réalisation	Temps de travail en heure
	Algorithmique global dont :	Louis –Yaël – Tom	140
1	Librairie	Tom	10
	Moteur	Tom	10
	Bluetooth	Yaël – Louis	25
]	Séquence d'initialisation	Yaël	5
	Gestion de l'esquive	Louis	25
	Avertisseur visuel	Yaël	5
	Simplification du code - recherche des erreurs	Louis –Yaël – Tom	5
	Application Java	Louis	25
	Site web	Louis	10
	Science de l'ingénieur (synoptique, chaine d'énergie)	Yaël – Tom	7
	Mécanique assemblage	Louis – Tom	5
	Mise en page finale	Louis	10

I/ Présentation du projet

II/ Présentation du prototype

III/ Programmation

1/ Gestion de l'esquive

2/ Application Android

IV/ Conclusion

V/ Diffusion

Prototype

Je vais vous présenter ce système sur un ShieldBot

Prototype

- Modèle: ShieldBot V1.0
- Système: Projet Sade v1.2
- Modules
 - 2 Capteurs Ultrasons •
 - 1 Module Bluetooth
 - 1 Led •
- Nom de code « RobotTYLT »

I/ Présentation du projet
II/ Présentation du prototype
III/ Programmation
1/ Gestion de l'esquive
2/ Application Android
IV/ Conclusion

V/ Diffusion

Programmation

I/ Présentation du projet
II/ Présentation du prototype
III/ Programmation
1/ Gestion de l'esquive
2/ Application Android

IV/ Conclusion

V/ Diffusion

Choix des langages et des IDE

- Arduino (C++)
- Android Studio (Java, XML)

Gestion de l'esquive

Premier algorithme d'esquive

Premières équations de calcul de la vitesse des roues en fonction de la distance mesurée par un capteur

$$V_{roue\ oppos\'ee} = -1.6 * D + 108$$

 $V_{roue\ obstacle} = 1.6 * D + 6$

Equations améliorées de calcul de la vitesse des roues en fonction de la distance mesurée par un capteur

$$V_{roue\ oppos\acute{e}e} = -15 + \frac{5}{15^4(5^{-5} + D^{-5})}$$

$$V_{roue\ obstacle} = 100 + \frac{-40}{15^5(15^{-5} + D^{-5})}$$

Fonction globale

```
if( (D < DistArret) || (G < DistArret) )</pre>
        // Si la distance du capteur droit est inférieure à DistArret cm, arrêt
d'urgence
else if ((D < DistSecu || G < DistSecu))</pre>
                       // Si la distance du capteur droit est inférieure à
DistSecu cm, procédure d'esquive
                   // Sinon (donc si il n'y a pas d'obstacles détectés)
                   else
                     //On passe en mode commande
```

Cas (1)

```
if( (D < DistArret) || (G <DistArret) )</pre>
      if((D < DistArret) )</pre>
                            fastStop();
                                          // Le robot s'arrête en urgence
                             delay(500); // pendant 500 ms (0.5s)
                             drive(-50,50); // Le robot tourne à gauche
                             delay(250); // pendant 250 ms (0.25s)
      if((G < DistArret) && (G > 0))
                                            // Le robot s'arrête en urgence
                             fastStop();
                             delay(500); // pendant 500 ms (0.5s)
                             drive(50,-50); // Le robot tourne à droite
                             delay(250);
                                          // pendant 250 ms (0.25s)
```

Cas (2)

```
else if ((D < DistSecu || G < DistSecu))</pre>
              if(D < DistSecu)</pre>
                               Rd= 100+((-40)/((15^5)*((15^5)+(D^5))));
La vitesse de la roue gauche est calculée par l'expression sigmoide
                               Rq = -15 + (5/(-15^4) * ((15^-5) + (D^-5)));
La vitesse de la roue gauche est calculée par l'expression sigmoide
                                   drive(Rg,Rd);
                                                     // Le robot avance en
fonction des vitesse calculées ci-dessus et roule de façon à détourner sa
trajectoire de l'obstacle
                      else if(G < DistSecu)</pre>
                              Rg= 100+((-40)/((15^5)*((15^-5)+(G^-5))));
La vitesse de la roue gauche est calculée par l'expression sigmoide
                              Rd= -15+(5/(-15^4)*((15^-5)+(G^-5)));
                                                                             // La
vitesse de la roue droite est calculée par l'expression sigmoide
                              drive(Rq,Rd);
                                              // Le robot avance en fonction
des vitesse calculées ci-dessus et roule de façon à détourner sa trajectoire de
1'obstacle
```

Cas (3)

```
else

{
      command(); //On passe en mode commande
}
```

Application Android

L'envoi de données depuis l'application

L'exemple du bouton « aller à gauche »

Déclarer le bouton

• Gérer l'appui sur le bouton

 Envoi de données via Bluetooth

```
btnleft = (Button) findViewById(R.id.left);

btnleft.setOnClickListener(new View.OnClickListener() {
    @Override
    public void onClick(View v) {
        left();
        lo6
        }
    });
```

```
218
         private void left()
219
220
221
             if (btSocket!=null) {
222
                  try {
223
btSocket.getOutputStream().write("q".toString().getBytes());
                  } catch (IOException e) {
224
                      msq("Error");
225
226
227
228
```

Réception des données sur le robot

Traitement des données avec la fonction command(); sur le robot

```
void command() {
          switch (DonneeBluetooth) //On lit les données du bluetooth
                                          // Si DonneeBluetooth='a'
                             drive(0,0); // Alors le robot s'arrete
                           break:
                           case 'd':
                                           // Si DonneeBluetooth='d'
                             drive(60,-60);// Alors le robot tourne à droite
                           break:
                                            // Si DonneeBluetooth='q'
                           case 'q':
                             drive (-60,60); // Alors le robot tourne à gauche
                           break:
                                           // Si DonneeBluetooth='z'
                          case 'z':
                            drive(60,60); // Alors le robot avance
                          break;
```

```
// Si DonneeBluetooth='s'
case 's':
  drive(-60,-60);// Alors le robot recule
break;
case 'w':
                 // Si DonneeBluetooth='w'
  drive(0,-100); // Alors le robot recule à gauche
break;
case 'c':
                 // Si DonneeBluetooth='c'
  drive(-100,0); // Alors le robot recule à droite
break;
                 // Si DonneeBluetooth='e'
case 'e':
  drive(0,100); // Alors le robot avance à gauche
break;
                 // Si DonneeBluetooth='r'
case 'r':
  drive(100,0); // Alors le robot avance à droite
break;
```

Conclusion

Réussite?

Création d'une Entreprise

TYLT {code the world} – Société en Nom Collectif au capital de 5 euros

3 gérants: - Kisiela Tom

- Radolanirina Yaël
- L'Haridon Louis

Diffusion du projet

Pas de diffusion du projet – volonté de continuer Diffusion des fichiers pour le Bac/OSI : Licence Creative Commons

Projet Sade de KISIELA Tom RADOLANIRINA Yaël L'HARIDON Louis -TYLT {code the wold} est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International.

Merci