

AdaCat: Adaptive Categorical Discretization for Autoregressive Models

Qiyang Li, Ajay Jain, Pieter Abbeel

University of California, Berkeley

Motivations

- Autoregressive generative models can estimate complex data distributions such as language, audio and images.
- Most existing methods either operate on discrete data distribution or discretize continuous data into several bins and use categorical distributions over the bins to approximate the continuous data distribution.
- Such approximation cannot express sharp changes in density without using significantly more bins, making it parameter inefficient.

Adaptive Discretization

AdaCat is a mixture of k non-overlapping truncated uniforms $(w, h \in \mathbb{R}^k)$

$$AdaCat_{k}(w,h): f_{w,h,k}(x) = \sum_{i=1}^{k} \left\{ \mathbb{I}_{[c_{i} \leq x < c_{i} + w_{i}]} \frac{h_{i}}{w_{i}} \right\}, c_{i} = \sum_{j=1}^{k-1} w_{j}$$
(1)

- If w is fixed: Uniform discretization
- ullet If h is fixed: Quantile regression

1D Illustrative Example (k = 6)

Uniform Discretization

Adaptive Discretization

2D Toy Density Estimation (k = 12)

Overcoming Non-Smoothness

Empirical Negative Log-likelihood Objective

$$\hat{\mathcal{L}}_{\text{orig}}(\theta) = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \log p_{\theta}(x_d^t | x_d^{< t}) = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \log f_{w^t, h^t, k}(x_d^t)$$

where $w^t, h^t = \text{nn}(x_d^{< t})$ are the predicted parameters of the AdaCat distribution.

- ullet The gradient of $\hat{\mathcal{L}}_{ ext{orig}}$ with respect to the w^t, h^t is ill-defined at the bin boundaries.
- ullet Therefore, $abla_{ heta}\hat{\mathcal{L}}_{ ext{orig}}$ might be biased. Optimizing $\hat{\mathcal{L}}_{ ext{orig}}$ can lead to bin collapse (red below).

Smooth Objective

$$\hat{\mathcal{L}}_{\mathsf{smooth}} = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \left[\int_{\tilde{x}} \zeta(\tilde{x} | x_d^t) \log p_{\theta}(\tilde{x} | x_d^{< t}) d\tilde{x} \right]$$

where $\zeta(\tilde{x}|x_d^t)$ is a smoothing distribution.

The inner integral can be computed as follows:

$$\int_{\tilde{x}} \zeta(\tilde{x}) \log f_{w,h,k}(\tilde{x}) d\tilde{x} = \sum_{j=1}^{k} \left[(F(c_j + w_j) - F(c_j)) (\log h_j - \log w_j) \right]$$

where F(x) is the cumulative density function (CDF) of $\xi(x)$.

- The integral can be easily computed for ζ 's when their CDFs are simple (uniform and Gaussian).
- ullet The gradient is well-defined everywhere and $\mathcal{L}_{\mathrm{smooth}}$ prevents bin collapse (blue below).

Optimization Dynamics of Original vs. Smooth Objective

Empirical Results

MNIST Density Estimation

Parameters	Uniform	Adaptive Quantile	DMoL [2]	AdaCat
512	N/A	×	0.761	0.561
256	0.561	×	0.698	0.573
216	0.838	×	0.704	0.615
180	1.061	×	0.684	0.629
152	1.299	×	0.776	0.612
128	1.490	×	0.700	0.608
64	2.453	×	0.720	$\boldsymbol{0.695}$
32	3.392	1.276	0.715	0.793
Best	0.561	1.276	0.715	0.561

×: training diverged

Offline RL with Model-based Planning in D4RL (Trajectory Transformer [1])

Dataset	Uniform	Quantile	AdaCat
HalfCheetah-Medium	44.0 ± 0.31	46.9 ± 0.4	47.8 ± 0.22
Hopper-Medium	67.4 ± 2.9	61.1 ±3.6	69.2 ± 4.5
Walker2d-Medium	81.3 ± 2.1	79.0 ± 2.8	$79.3_{\pm0.8}$

See our paper for more results on tabular and audio data: arxiv.org/abs/2208.02246

Try it out on PyTorch! - pip install adacat

```
from adacat.torch import Adacat
params = torch.nn.Parameter(torch.randn(10 * 2))
optim = torch.optim.Adam([params], lr=0.01)
for _ in range(n_its):
    dist = Adacat(params) # PyTorch distribution
    xs = sample_batch() # Sample from data distribution
    loss = -dist.log_prob(xs, smooth_coeff=0.001).mean()
    optim.zero_grad()
    loss.backward()
                          # Optimize the smooth loss
    optim.step()
```

References

- [1] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling problem. In Advances in Neural Information Processing Systems, 2021.
- [2] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517, 2017.