

Prof.José Claudio

jcsousa@cruzeirodosul.edu.br

Expressão regular

As expressões regulares são utilizadas principalmente como descritores de linguagens, ou seja, a partir destas expressões podemos identificar uma linguagem regular e dada uma linguagem podemos escrevê-la de forma simplificada usando expressões.

Uma Expressão Regular (ER) trata-se de um formalismo denotacional, também considerado gerador, pois se pode inferir como construir ("gerar") as palavras de uma linguagem. Uma expressão regular é definida a partir conjuntos (linguagem) básicos e operações de concatenação e de união.

Expressão regular

Operações:

União (r U s)

Concatenação

Flecho de Kleene ou estrela

Expressão regular

```
L = \{001,110\} e M = \{\epsilon,11,110\}
```

União

```
L \cup M = \{001,110,\epsilon,11\}
```

Concatenação

L.M{001,00111,001110,110,11011,110110}

Flecho de Kleene ou estrela

.

Linguagens Formais

Na teoria das linguagens formais, uma linguagem formal pode ser vista como mecanismos formais para representação e especificação de linguagens.

Habitualmente, as representações são realizadas por **reconhecedores** e **geradores**.

Os reconhecedores são mecanismos formais que são utilizados para verificar se uma palavra pertence ou não pertence a uma linguagem.

Nesta aula, iremos estudar os reconhecedores Autômatos

Autômatos

Um Autômato é um formalismo matemático reconhecedor de linguagens. Sendo composto por estados e transações, um Autômato reconhece se uma pertence a um alfabeto.

Um Autômato pode se considerado com um sistema de estados finitos.

Sistema de Estados Finitos

Um exemplo clássico de um Sistema de Estados Finitos, pode ser dado por um elevador.

Um elevador é um exemplo clássico e de fácil entendimento sobre Sistema de Estados Finitos.

O elevador é um sistema que não memoriza as requisições anteriores.

Os andares são representados por **estados** que guarda as informações "andar atual" e "direção de movimentação".

As entradas para o sistema são as chamadas pendentes.

Assim como um elevador, um Sistema de Estados Finito também é formado por estados (andares) que armazenam somente as informações "onde estou" e para "onde vou" dado uma entrada (MENEZES, P. B,2011).

Autômatos

Um autômato pode ser visto como um **sistema de estado finito**, onde é formado um modelo computacional sequencial que pode ser aplicado em diversas áreas da computação, tais como, linguagens formais, compiladores, semântica formal e modelos para concorrência (MENEZES, P. B,2011 e SIPSER, M, 2007).

Autômatos

Um autômato é considerado um **formalismo operacional** ou **reconhecedor**, que pode ser;

Determinístico: dependendo do símbolo lido e do estado corrente (atual), o sistema pode assumir um único estado bem definido.

Não determinístico: dependendo do símbolo lido e do estado corrente (atual), o sistema pode assumir um conjunto de estados alternativos.

Com movimento vazio: dependendo do estado atual e sem ler nenhum símbolo, o sistema pode assumir um conjunto de estados.

Autômato Finito Determinístico (AFD)

Um Autômato Finito Determinístico (AFD) pode ser compreendido como uma máquina formada, basicamente por três partes;

Fita, que pode ser vista como um dispositivo de entrada que contém a informação a ser processada.

Unidade de Controle, que reflete o estado corrente da máquina. Este possui uma unidade de leitura (cabeça da fita) a qual acessa uma célula da fita de cada vez e movimenta-se somente para a direita;

Programa, Função Programa ou Função de Transição, esta parte é responsável por comanda às leituras e define o estado da máquina.

Autômato Finito Determinístico (AFD)

Em relação à fita, podemos observar que; ela é finita, é dividida em células, e sendo que cada célula armazena um símbolo.

Tais símbolos pertencem a um alfabeto de entrada.

Não se pode gravar sobre a fita. A palavra que será processada, inicialmente, ocupa toda a fita.

Autômato Finito Determinístico (AFD)

Sobre a unidade de controle, podemos observar que, ela possui número finito e predefinido de estados, originando assim, o termo controle finito.

A unidade de controle processa a fita lendo os símbolos de uma célula de cada vez.

A cada leitura, a cabeça da fita se move uma célula para a direita.

Para iniciar o processamento, a cabeça fica posicionada na célula mais a esquerda da fita, conforme ilustrado na figura a seguir:

Autômato Finito Determinístico (AFD)

O programa é uma função parcial que; dependendo do estado corrente e do símbolo lido, determina o novo estado do autômato.

Autômato Finito Determinístico (AFD)

Formalmente, um Autômato Finito Determinístico (AFD) é uma 5-upla ordenada:

$$M = (\Sigma, Q, \delta, q_0, F)$$

onde,

Σ é o alfabeto de entrada

Q é o conjunto finito de estados possíveis do autômato

δ é uma função programa, também chamada de função transição. Por exemplo, vamos supor que a função programa é definida para um estado p e um símbolo a, resultando no estado q, então temos;

$$\delta(p,a) = q$$

Autômato Finito Determinístico (AFD)

A função programa é responsável pela transição de estados nos autômatos. No exemplo acima, o sistema estava no estado p, ao ler um símbolo a, ele passa para o estado q.

 q_0 é um elemento distinguindo de Q, chamado de estado inicial.

F é um subconjunto de Q, chamado de estados finais.

Autômato

Além da 5-upla, um autômato pode ser representado na forma de diagrama. Esta representação;

estados são nós, representados círculos;

as transições são representadas por arestas que ligam os nós correspondentes, conforme ilustrado na Figura a;

os estados inicial e final são representados de forma diferentes dos demais estados, tais representações são mostrada na Figura d; podem ocorrer transições paralelas, conforme ilustrado na Figura b.

A transação que ocorre na Figura c é equivalente que ocorre na Figura b.

Autômato

(d)

Autômato

Uma função programa também pode ser representada por uma tabela de dupla entrada. Por exemplo, a transição do tipo $\delta(q_1,a)q_2$ pode ser representado em forma de tabela como:

δ	a	
q_1	q_2	
q_2	•••	•••

Computação de Autômatos Finito

Para uma palavra w dada como entrada, a computação de um Autômato consiste na sucessiva aplicação da função programa para cada símbolo de w, sempre da esquerda para a direita, até ocorrer uma condição de parada (MENEZES, P. B,2011).

O exemplo a seguir, consiste em um Autômato para aa ou bb como subpalavras.

Para este exemplo, será considerado o alfabeto $\Sigma = \{a, b\}$: $L_1 = \{w \mid w \text{ possui aa ou bb como subpalavra}\}$:

Computação de Autômatos Finito

O autômato finito:

$$M_1 = (\{a,b\}, \{q_0, q_1, q_2, q_f\}, \delta 1, q_0, \{q_f\})$$

Onde, a função programa δ_1 é dada pela tabela a seguir:

δ	a	b
q_0	q_1	q_2
q_1	q_f	q_2
q_2	q_1	q_f
q_f	q_f	q_f

Computação de Autômatos Finito

O autômato M₁ é representado pelo diagrama a seguir:

Computação de Autômatos Finito

Neste Autômato, após identificar dois a ou dois bb consecutivos é assumido o estado q_f (final) e é varrido o sufixo da palavra de entrada, somente para terminar o processamento. A figura a seguir, ilustra a computação do Autômato Finito M_1 para a entrada w = abba, que é aceita pelo Autômato.

Computação de Autômatos Finito

Um Autômato Finito sempre para ao processar qualquer entrada w pois, como qualquer palavra é finita, e como um novo símbolo da entrada é lido a cada aplicação da função programa, não existe a possibilidade de ciclo (laço) infinito (MENEZES, P. B,2011).

Computação de Autômatos Finito

No processamento de uma palavra w, a parada de um Autômato Finito pode ser de duas maneiras:

- a) Aceita a entrada w, após processar a último símbolo da fita, o Autômato Finito assume um estado final.
- b) Rejeita a entrada w, são duas possibilidades:
 - i. após processar o último símbolo da fita, o Autômato Finito assume um estado não final.
 - ii.em algum momento, ao longo do processamento de w, a função programa é indefinida para o argumento (estado corrente e símbolo lido da fita)

Representações de um autômato - Diagrama

Autômato Finito Determinístico (AFD)

Leio um dado e vou para um único estado

Perguntas?

Fim

Material - Prof. Dr. Cleber Silva