Algorithmic Game Theory COMP6207

Lecture 14: Stable Roommates

Baharak Rastegari

b.rastegari@soton.ac.uk

Electronics and Computer Science University of Southampton

Learning Outcomes

- By the end of this session, you should be able to
 - Describe the stable roommate problem and its objective.
 - *Identify* blocking pairs in an instance of SR
 - Compute a stable matching using Irving's algorithm
 - Describe the extensions of SR and their corresponding results

Stable Roommates

- School starts, find your roommate (even number of students)
- Each of you have a strict preference list
- Same notion of stability as stable marriage
- Not a bipartite graph anymore
- Stable matching (a.k.a. stable marriage) is special case

Stable Roommates problem (SR)

Participants

2n students or agents

Preferences

Each agent has strict preferences over all other (2n-1) agents

Matching

A set of n disjoint pairs of agents

Stable Matching

- A matching M with no blocking pair
- That is, no {p,q}∉ M such that p prefers q to her partner in M, and q prefers p to her partner in M

Example

Example SR instance I_1 : A: C B D

B: D C (A)

C: B (A)(D)

D: A (C) B

The matching is not stable as {A,C} blocks.

Stable matching in I_1 : A: C B D

B: (D) C A

C: B(A)D

D: A \overline{C} \overline{B}

A stable matching not always exists

- Consider the following instance:
 - A: B > C > D
 - B: C > A > D
 - C: A > B > D
 - D: A > B > C
- No stable matching in this case, why?

Irving's Algorithm

Knuth (1976): is there an efficient algorithm for deciding whether there exists a stable matching, given an instance of **SR**?

Irving (1985): ``An efficient algorithm for the Stable Roommates problem'', Journal of Algorithms.

- Given an instance of SR, decides whether a stable matching exists
- If so, finds one.

Irving's algorithm runs in $O(n^2)$ time and works in two phases

- Phase 1: similar to GS algorithm for the Stable Matching problem
- Phase 2: elimination of "rotations"

Irving's Algorithm for SR

Semiengagement!

- Engagement is not a symmetric relation (unlike in SM)
 - If x is engaged to y, it is not necessarily the case that y is engaged to x
 - So we use the term semiengage and say that ``x is semiengaged to y''
 - y could be free, semiengaged to another agent z, or semiengaged to x

Free or not free

- All agents start out free
- A semiengaged agent x becomes free when her semi-fiancé rejects x

- x becomes semiengaged when she proposes to someone
 - The algorithm is designed so that when x proposes to y it
 must be the case that y is either free or finds x preferable
 to the current proposal she is holding

Irving's algorithm: Phase 1

Similar to Gale-Shapley

```
Phase 1 (agents, preferences)
      Assign all agents to be free; //initial state
      While (some free agent x has a nonempty list)
            y = first agent on x's list
           // next: x proposes to y
            If (some person z is semiengaged to y)
                 assign z to be free; // y rejects z
            Assign x to be semiengaged to y;
            For (each successor w of x on y's list)
                delete w from y's list;
                delete y from w's list;
```

Example

- A: C > D > B > F > E
- B: F > E > D > A > C
- C: B > D > E > A > F
- D: E > B > C > F > A
- E: C > A > B > D > F
- F: E > A > C > D > B

Phase 1:

- Every agent proposes to others in order.
- Recipients hold their best proposers.

From now on we use the following convention:

- X means X is semiengaged
- Y means there is a X that is semiengaged to Y

• A:
$$\overline{\mathbb{Z}} > \overline{D} > B > \underline{F} > \overline{\mathbb{Z}}$$

• B:
$$\overline{F} > E > D > A > \underline{C}$$

• C:
$$\overline{B} > D > E > A > F$$

• D:
$$E > B > C > F > A$$

• E:
$$\overline{C} > A > B > D > F$$

•
$$F: \mathbb{Z} > \overline{A} > \mathbb{Z} > D > \underline{B}$$

Phase 1:

- Every agent proposes to others in order.
- Recipients hold their best proposers.

From now on we use the following convention:

X means X is semiengaged

Y means there is a X that is semiengaged to Y

- A: $\overline{D} > B > \underline{F}$
- B: $\overline{F} > E > D > A > \underline{C}$
- C: $\overline{B} > D > \overline{E}$
- D: E > B > C > F > A
- E: \overline{C} > B > \overline{D}
- F: $\overline{A} > D > \underline{B}$

After Phase 1, there are two possibilities:

- 1) Exist an agent who got rejected by everyone else.
- ⇒ No stable matching
- 2) Every agent holds a proposal. In other words, each row should have one top bar and one bottom bar (could coincide)
- i. If every row has only one remaining entry (top bar and bottom bar coincide) then we have a unique stable matching.
- ii. \Rightarrow Phase 2

Phase 2: intuition

 The reduced preference lists (with deleted agents removed) at the end of phase 1 is referred to as phase-1 table

```
    A DB F
    B F E D A C
    C B D E
    D E B C F A
    E C B D
    F A D B
```

Phase 2: summary

- The reduced preference lists (with deleted agents removed) at the end of phase 1 is referred to as phase-1 table
- In phase 2, the preference table is further reduced until
 - All lists contain just one entry, in which case it constitutes a stable matching, or
 - Until some list becomes empty, in which case no stable matching exists.
- Reduction of preference table takes place by eliminating so called "exposed rotations"

Phase 2: intuition

 High-level intuition is that ``the existence of a stable matching is preserved by removing exposed rotations".

That is:

- If the original preference table admits a stable matching, so does all subsequent reduced tables.
- If a reduced table doesn't admit a stable matching, neither does the original preference table.

Exposed Rotation

- A pair of sequences $\rho = ((p_0, ..., p_{r-1}), (q_0, ..., q_{r-1}))$ constitute an *exposed rotation* if
 - q_i is the second entry on p_i's list, and
 - p_{i+1} is the last entry on q_i's list

i+1 is taken modulo r

Example

Last entry
Second entry

Eliminating an exposed rotation

- A pair of sequences $\rho = ((p_0, ..., p_{r-1}), (q_0, ..., q_{r-1}))$ constitute an *exposed rotation* if
 - q_i is the second entry on p_i's list, and
 - p_{i+1} is the last entry on q_i's list

i+1 is taken modulo r

- Exposed rotation $\rho = ((p_0, ..., p_{r-1}), (q_0, ..., q_{r-1}))$ is eliminated by deleting (q_i, p_{i+1}) from each other's lists, for all i
 - delete q_i from p_{i+1}'s list
 - delete p_{i+1} from q_i 's list

Example: elimination

- Exposed rotation $\rho = ((p_0, ..., p_{r-1}), (q_0, ..., q_{r-1}))$ is **eliminated** by deleting (q_i, p_{i+1}) from each other's lists, for all i
 - delete q_i from p_{i+1}'s list
 - delete p_{i+1} from q_i 's list

Last entry
Second entry

Irving's algorithm: Phase 2

Reducing preference table

```
Phase 2 (phase-1 Table)
      T= phase-1 table; //initial state
      While ((some list in T has more than one entry)
and (no list in T is empty))
            find a rotation \rho exposed in T
            T = T / \rho / eliminate \rho
       If (some list in T is empty)
             return instance unsolvable;
       Else
             return T, which is a stable matching;
```

• A:
$$\overline{D} > B > \underline{F}$$

• B:
$$\overline{F} > E > D > A > \underline{C}$$

• C:
$$\overline{B} > D > \overline{E}$$

• D:
$$\overline{E} > B > C > F > A$$

• E:
$$\overline{C}$$
 > B > \underline{D}

• F:
$$\overline{A} > D > \underline{B}$$

First round:

Least: A C A 2nd: B D

D will reject A! and B will reject C!

- A: $B > \underline{F}$
- B: $\overline{F} > E > D > A$
- C: $D > \overline{E}$
- D: $\overline{E} > B > C > F$
- E: \overline{C} > B > \underline{D}
- F: $\overline{A} > D > \underline{B}$

First round:

Least: A C A 2nd: B D

D will reject A! and B will reject C!

Second round:

Least: A B D A 2nd: F E B

• A:

F

- B:
- E > D

• C:

D > E

• D:

- B > C > F
- E: C
- > B

• F:

A

> D

- First round:
- Least: A
- 2nd:
- D will reject A! and B will reject C!

- Second round:
- Least: A 2nd: F
- 3/
- В

• A:

F

• B:

E > D

• C:

D > E

• D:

B > C > F

• E: C

> B

• F:

A

> D

First round:

Least: A

2nd:

2nd:

P

D

Second round:

Least: A

В

D

В

Third round:

Least: B

 2^{nd} : D

D

• A:

F

- B:
- E > D

• C:

D > E

• D:

- B > C
- E: C
- > B

• F:

- First round:
- Least: A

2nd:

- Second round:
- Least: A

2nd:

- Third round:
- Least: B
- 2nd:

• A:

F

• B: E > D

• C: D > E

• D: B > C

• E: \overline{C} > B

• F: Ā

Fourth round:

Least: B C B

2nd: D E

First round:

Least: A C A 2nd: B D

Second round:

Least: A B D A 2nd: F E B

Third round:

Least: B F F F 2nd: D D

2nd:

 \mathbf{F} • A: First round: Least: A • B: 2nd: • C: Second round: • D: B Least: A 2nd: • E: C • F: Third round: Least: B Fourth round: 2nd: Least: B

Quiz

- A: B > D > F > C > E
- B: D > E > F > A > C
- C:D>E>F>A>B
- D: F > C > A > E > B
- E: F > C > D > B > A
- F:A>B>D>C>E

Question

- If there is a stable matching, do all executions of Irving's algorithm return the same matching?
 - Phase 1 always returns the same preference table (the same phase-1 table)
 - Depending on the order of elimination in phase 2, we may arrive at different stable matchings.
 - So the answer is, no.

Question

• Is Irving's algorithm DS truthful?

 If not, how to find a best strategy to be matched with a roommate as good as possible?

Extensions of SR

1. Odd number of agents

- We might have odd number of agents, say 2n+1
- In any matching one agent is unmatched
- Stability defined as before
- Recall that an agent prefers being matched than to remain unmatched

Extending Irving's algorithm

- If after phase 1 all preference lists are nonempty then there exists no stable matching
 - Coursework 1 Exercise 4: prove the previous statement.
- If at the end of phase 1 exactly one agent's, say x, preference list becomes empty
 - x cannot be matched in any stable matching
 - If there exists a stable matching, no other person is unmatched
 - To check whether or not there exists a stable matching, we run phase 2 (without agent x)

After the execution of **phase 1**, at most one agent's preference list can be empty. **Proof**: left as an exercise.

2. Unacceptable partners

- As in the marriage market, some agents might find some other agents unacceptable. In this case we get Stable Roommates with Incomplete lists (SRI)
- Matching is a pairing of agents
 - One or more agents may remain unmatched

- Stability defined as before
- Recall that an agent prefers being matched to an acceptable partner than to remain unmatched

Extending Irving's algorithm

- After phase 1 one or more preference lists may become empty.
 - Any agent with empty list cannot be matched in any stable matching.
 - Any person with nonempty list must be matched in every stable matching
 - To check whether or not there exists a stable matching, we run phase 2 (without those agents whose lists are empty at the end of phase 1)

Stable Pairs

- Any pair (X, Y) removed during phase 1 cannot be a stable pair
 - i.e. X and Y are not matched in any of the stable matchings
- For each agent, the first entry in the phase-1 table is their best achievable roommate (if there is any achievable roommate)
- For each agent, the last entry in the phase-1 table is their worst achievable roommate (if there is any achievable roommate)

3. Ties

- As in the marriage market, some agents might be indifferent between several other agents. In this case we get Stable Roommates with Ties (SRT)
- As in SMT, different types of blocking pairs can be defined for SRT. Here we will focus on the straightforward extension of the stability notion we already know
 - A matching is stable if there is no pair such that each of whom would strictly prefer to match with each other rather than their assigned partner.

SRT

• Can we decide in polynomial time whether an instance of SRT admits a stable matching? And if so, fine one?

Theorem (Ronn, 1990)

Deciding whether a stable matching exists, given an instance of SRT, is NP-complete.

• Even if each preference list is either strictly ordered or contains a tie of length 2 at the head.

Acknowledgement

Some of the slides in this lecture were based on the slides by **David Manlove** and **Jie Zhang**.

Books

 The Stable Marriage Problem - Structure and Algorithms by Dan Gusfield and Robert W. Irving

 Algorithmics of Matching under Preferences by David F. Manlove.

Optional additional reading

 Chapter 4 of The Stable Marriage Problem - Structure and Algorithms by Dan Gusfield and Robert W. Irving

