DIVIDE AND CONQUER PARADIGM

ANGEL NOÉ MARTÍNEZ GONZÁLEZ

June 25, 2015

THE PARADIGM I

This paradigm solves a problem **recursively** applying three steps at each level of the recursion

- ► **DIVIDE** the problem into a smaller sub-problems.
- ► **CONQUER** via recursive calls.
- ► **COMBINE** solutions of sub-problems into one of the original problem.

Consider also a base case for small enough sub-problems.

THE PARADIGM II

INSIGHTS AND HINTS

- ► Sub-problems can be any size: 1/2, 1/3, etc.
- Generally, third step is the key to achieve good performance.
- ▶ Base case is often too ingnue.

THE PARADIGM III

MERGE SORT (RETAKE)

MERGE-SORT(A, p, r)

- 1: **if** p < r **then**
- 2: $q = \lfloor (p+r)/2 \rfloor$
- 3: MERGE-SORT(A, p, q)
- 4: MERGE-SORT(A, q, r)
- 5: MERGE(A, p, q, r)
- 6: end if

MERGE(A, p, q, r)

- 1: $B = 1^{st}$ part of array.
- 2: $C = 2^{nd}$ part of array.
- 3: i = 1, j = 1
- 4: **for** k = 1 to n **do**
- 5: **if** B[i] < C[j] **then**
- 6: A[k] = B[i++]
- 7: **else**
- 8: A[k] = C[j++]
- 9: end if
- 10: end for

COUNTING INVERSIONS I

THE MAXIMUM SUBARRAY I

BINARY SEARCH I

ADIGM COUNTING INVERSIONS THE MAXIMUM SUBARRAY BINARY SEARCH RECURRENCE TREE MASTER METHOD

RECURRENCE TREE

MERGE SORT RECURSION TREE

At each level $j = 0, 1, ..., log_2(n)$, there are 2^j subproblems of size $n/2^j$.

THE MASTER METHOD I

A BLACK BOX

