Margen de fase y margen de ganancia

Visualizacion de los margenes de Fase y Ganancia en los diagramas de Bode y Nyquist.

Diagrama de BODE

Margen de Fase = 180 + argumento de G(s) cuando el módulo de G(s) es unitario |G(s)|=1. [Cruce de la gráfica de Bode del módulo |G(s)| con el eje de frecuencias ω de cero dB.]

Margen de Ganancia = 1/|G(s)| en el punto donde la fase de G(s) en la gráfica de Bode = -180°

Diagrama de Nyquist

Margen de Fase = 180 + argumento de G(s) cuando el módulo de G(s) es unitario |G(s)|=1. Margen de Ganancia = 1/|G(s)| en el punto donde la fase de G(s) en la gráfica de Bode = -180°

En el límite de estabilidad, el sistema con una ganancia K = 42, se desarrolla en MatLab con los siguientes comandos:

Transfer function:

bode(g)

Para el punto en donde el módulo de |G(s)| = 1 y simultáneamente la fase (argumento de G(s) es igual a -180°) en el diagrama se ubica sobre el punto s = -1 + j0 que es el punto donde el sistema se torna oscilatorio.

Para un sistema inestable, con K>42, los márgenes de fase y ganancia son negativos

```
num=[0 0 0 100];
den=[1 7 6 0];
g = tf(num,den)
```

Transfer function:

$$\begin{array}{c}
 100 \\
 \hline
 s^3 + 7 s^2 + 6 s
 \end{array}$$

bode(g)

Los graficos realizados en la respuesta en frecuencia se corresponden con los puntos de ganancias 8, 42 y 100 dados en el siguiente lugar de raíces

SINTONIA CLASICA DE CONTROLADORES – METODO DE ZIEGLER-NICHOLS

Primer método de Ziegler Nichols

Figura 1

Sistema compensado con un controlador PID

El metodo pretende obtener una respuesta similar a la de un sistema de 2do orden con un sobrepaso no mayor al 25%.

Figura 2

Si la respuesta en lazo abierto de la planta (sin integradores) tiene la forma de la figura 3

Figura 3

(forma sigmoidal), se aproxima mediante un sistema de primer orden y un retardo

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

Tipo de controlador	K_p	Ti	T_d	
P	$\frac{T}{L}$	80	0	
PI	$0.9\frac{T}{L}$	L 0.3	0	
PID	$1.2\frac{T}{L}$	2L	0.5 <i>L</i>	

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

Segundo metodo

Tipo de controlador	K_{p}	Ti	T_d
P	$0.5K_{\mathrm{cr}}$	80	0
PI	0.45K _{cr}	$\frac{1}{1.2}P_{cr}$	0
PID	$0.6K_{ m cr}$	$0.5P_{\rm cr}$	0.125P _{cr}

$$G_{r}(s) = K_{p} \left(1 + \frac{1}{T_{t}s} + T_{d}s \right)$$

$$= 0.6K_{cr} \left(1 + \frac{1}{0.5P_{cr}s} + 0.125 P_{cr}s \right)$$

$$= 0.075K_{cr}P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^{2}}{s}$$