Introduction to Gaussian Processes

Smartstart Student Retreat

July 2, 2017

Introduction to Gaussian Processes

Coding: Sampling from a Gaussian Process

Gaussian Process Regression

Coding: Curve fitting with a Gaussian Process

Bayesian Optimization

Coding: Gaussian Processes for Global Optimization

Supervised learning

- Input-output mappings from empirical data
 - robotic control, digit classification, spike sorting
- Input vector **x**, output *y*

mapping
$$y = f(\mathbf{x}) + \epsilon$$

data set

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\}$$

Two common approaches

1. Restrict the class of functions we consider:

linear - or quadratic functions, sum of basis functions

Problem: How to decide for the correct class?

2. Give a prior probability to any possible function

Problem: How to evaluate infinitely many functions?

Solution: Gaussian Processes

The Gaussian Process

generalization of the Gaussian distribution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

not over a scalar variable:

$$x \sim \mathcal{N}(\mu, \sigma)$$

or a vector,

$$\mathbf{x} \sim \mathcal{N}(\mu, \mathbf{\Sigma})$$

but over functions

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

Definition:

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})]$$

$$k(\mathbf{x}, \mathbf{x}') \, k(\mathbf{x}) \, (\mathbf{x}) \, \exp((\mathbf{x}')) \, (f(\mathbf{x}'))^2 \, m(\mathbf{x}'))]$$

Coding

Introduction to Gaussian processes

Coding: Sampling from a Gaussian process

Gaussian process regression

Coding: Curve fitting with a Gaussian process

Bayesian Optimization

Coding: Gaussian processes for global optimization

Bayesian linear regression

Data set

$$\mathcal{D} = \{(\mathbf{x}_i, y_i) | i = 1, \dots, n\}$$

Standard linear model:

$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{x} \mathbf{y}^T \mathbf{w}$$
 $y = f(\mathbf{x}) + \epsilon$ $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Bayesian approach:

$$posterior = \frac{likelihood \times prior}{normalization} \qquad p(\mathbf{w}|\mathbf{y}, X) = \frac{p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|X)}$$

Bayesian linear regression

• Make predictions $f(\mathbf{x}_*)$ for new data \mathbf{x}_*

The crucial Bayesian step: average over all possible parameters

$$p(f_*|\mathbf{x}_*, X, \mathbf{y}) = \int p(f_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|X, \mathbf{y}) d\mathbf{w}$$

Gaussian process regression

Define the linear model as a Gaussian process, noise free

$$f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w}$$
 $p(\mathbf{w}) \sim \mathcal{N}(0, \Sigma)$

$$f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

The mean is zero:

$$\mathbb{E}[f(\mathbf{x})] = \phi(\mathbf{x})^T \mathbb{E}[\mathbf{w}] = 0$$

• Define a covariance function: $k(\mathbf{x}, \mathbf{x}') = \exp(-\frac{1}{2l}|\mathbf{x} - \mathbf{x}'|^2)$

This gives a Gaussian process prior:

$$f \sim \mathcal{N}(0,K(X,X))$$
 $f_*|X_*,X,\mathbf{f}$

- But we want a posterior with incorporated training data
 - condition the prior on the training data

 make predictions by evaluating the mean

Coding

Introduction to Gaussian processes

Coding: Sampling from a Gaussian process

Gaussian process regression

Coding: Curve fitting with a Gaussian process

Bayesian Optimization

Coding: Gaussian processes for global optimization

Bayesian Optimization

Global optimization: find extrema of an objective function

- What if it is costly to evaluate or non-convex or unknown?
 - minimize evaluations
 - build a model of the function to evaluate effectively
 - combine prior knowledge with current evidence

• Estimate f(x) given accumulated observations

$$\mathcal{D} = \{\mathbf{x}_{1:t}, f(\mathbf{x}_{1:t})\}\$$

and prior information p(f)

to calculate the posterior over f(x)

$$p(f|\mathcal{D}_{1:t}) \propto p(\mathcal{D}_{1:t}|f)p(f)$$

- Use this model of the objective function to find the next sampling location
- What kind of model...? Gaussian Process

GP for Bayesian optimization

Define a GP with prior information in the covariance fun

$$f \sim \mathcal{N}(0, K(X, X))$$

Define an acquisition function to decide where to sample:

$$\mathcal{U}(\mathbf{x}) = \mu(\mathbf{x}) + \kappa \cdot \sigma(\mathbf{x})$$

Algorithm 1 Bayesian optimization

- 1: **for** $t = 1, 2, \dots$ **do**
- 2: Find \mathbf{x}_t by maximizing the acquisition function: $\mathbf{x}_t = \operatorname{argmax}_{\mathbf{x}} \mathcal{U}(\mathbf{x}|\mathcal{D}_{1:t-1})$.
- 3: Sample the objective function at the new location: $\mathbf{y}_t = f(\mathbf{x}_t)$.
- 4: Add the new data point to \mathcal{D} and update the GP model.
- 5: end for

Coding

Thank you!

References:

Rasmussen and Williams. *Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)*. The MIT Press, 2005.

Resources:

Book link: http://www.gaussianprocess.org/gpml/

Podcast: http://www.thetalkingmachines.com/blog/2016/1/28/openai-and-gaussian-processes

Lecture: https://www.youtube.com/watch?v=4vGiHC35j9s