Terna Engineering College Computer Engineering Department Program: Sem VIII

Course: Natural Language Processing

Experiment No. 4

A.1 Aim: Perform and analyse smoothing operations for n-gram models using the virtual lab.

PART B (PART B: TO BE COMPLETED BY STUDENTS)

Roll No. 50	Name: AMEY THAKUR
Class: BE COMPS B	Batch: B3
Date of Experiment: 14/02/2022	Date of Submission: 14/02/2022
Grade:	

B.1 Virtual Lab (Input & Output):

B.2 Observations and learning:

- The bigram model uses just the conditional probability of one preceding word to estimate the likelihood of a word given all previous words. In other words, you use probability to approximate it: P(the | that)

B.3 Conclusion:

As a result, we've figured out how to apply add-one smoothing to a sparse bigram table and put it into practice.

B.4 Question of Curiosity

Q1. Add-one smoothing works horribly in practice because of giving too much probability mass to unseen n-grams. Prove using an example.

ANS:

Add-one smoothing

$$p(wi | wi-1) = 1 + c(wi-1wi) / P wi [1 + c(wi-1wi)] = 1 + c(wi-1wi) / |V| + P wi c(wi-1wi)$$

- Originally due to Laplace.
- Typically, we assume $V = \{w : c(w) > 0\} \cup \{UNK\}$
- Add-one smoothing is generally a horrible choice.

JOHN READ MOBY DICKENS
MARY READ A DIFFERENT BOOK
SHE READ A BOOK BY CHER

p(JOHN READ A BOOK) = 1+1 11+3 1+1 11+1 1+2 11+3 1+1 11+2 1+1 11+2 \approx 0.0001 p(CHER READ A BOOK) = 1+0 11+3 1+0 11+1 1+2 11+3 1+1 11+2 1+1 11+2 \approx 0.00003

 Ω 2. In Add- δ smoothing, we add a small value ' δ ' to the counts instead of one. Apply Add- δ smoothing to the below bigram count table where δ =0.02. ANS:

	(eos)	John	read	Fountainhead	Mary	a	different	book	She	by	Dickens
(eos)	0	300	0	0	300	0	0	0	300	0	0
John	0	0	300	0	0	0	0	0	0	0	0
read	0	0	0	300	0	600	0	0	0	0	0
Fountainhead	300	0	0	0	0	0	0	0	0	0	0
Mary	0	0	300	0	0	0	0	0	0	0	0
a	0	0	0	0	0	0	300	300	0	0	0
different	0	0	0	0	0	0	0	300	0	0	0
book	300	0	0	0	0	0	0	0	0	300	0
She	0	0	0	300	0	0	0	0	0	0	0
by	0	0	0	0	0	0	0	0	0	0	300
Dickens	300	0	0	0	0	0	0	0	0	0	0

N = 5100 V = 11

Q3. Given S = Dickens read a book, find P(S)

- (a) using unsmoothed probability
- (b) applying Add-One smoothing.
- (c) applying Add-δ smoothing

ANS:

	(eos)	John	read	Fountainhead	Marry	a	different	book	She	by	Dickens
(eos)	0.0003	0.0527	0.0527	0.0003	0.0003	0.0003	0.0003	0.0003	0.0527	0.0003	0.0527
John	0.0003	0.0003	0.0003	0.0003	0.0527	0.0003	0.0003	0.0003	0.0003	0.0003	0.0527
read	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0527	0.0003	0.0003
Fountainhead	0.0003	0.0003	0.0003	0.0527	0.0527	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003
Marry	0.0003	0.0003	0.0003	0.0527	0.0003	0.0527	0.0003	0.0003	0.0003	0.0003	0.1053
а	0.0003	0.0003	0.0003	0.0527	0.0003	0.0003	0.0527	0.0527	0.0003	0.0003	0.0003
different	0.0527	0.0003	0.0527	0.0003	0.0003	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003
book	0.0527	0.0003	0.0527	0.0003	0.0003	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003
She	0.0527	0.0003	0.0527	0.0003	0.0003	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003
by	0.0527	0.0003	0.0527	0.0003	0.0003	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003
Dickens	0.0527	0.0003	0.0527	0.0003	0.0003	0.1053	0.0003	0.0003	0.0003	0.0003	0.0003