Generated on 2024-10-28 10:11:09 by gEcon version 1.2.1 (2023-01-18) Model name: RSW\_RP\_ONEOBJ\_ENDO\_COMMITMENT

#### 1 OPTIMALMP

#### 1.1 Optimisation problem

$$\begin{split} \max_{p\!i\!H_t, y\!H_t, p\!i\!L_t, y\!L_t} U_t &= -0.25 \left( p\!i\!t\!H - p\!i\!t\!C\!B + p\!i\!H_t \right)^2 - 0.25 \left( -p\!i\!t\!C\!B + p\!i\!L + p\!i\!L_t \right)^2 + \beta \mathbf{E}_t \left[ U_{t+1} \right] - 0.25 \lambda y\!H_t^{\ 2} - 0.25 \lambda y\!L_t^{\ 2} \\ \mathrm{s.t.}: \\ p\!i\!H_{t-1} &= \log e\!t\!a\!p\!i_{t-1} + \beta p\!i\!H_t + \kappa y\!H_{t-1} + \beta \left( -p\!i\!H_t + p\!i\!L_t \right) \left( 1 - p\!H\!s\!s - \tau \left( -p\!i\!t\!C\!B + p\!i\!H_t \right)^2 \right) \quad \left( \lambda_t^{\mathrm{OPTIMALMP}^1} \right) \end{split} \tag{1.2}$$

$$p\!\!\!/ L_{t-1} = \log \textit{etapi}_{t-1} + \beta p\!\!\!/ L_t + \kappa y\!\!\!/ L_{t-1} + \beta \left( p\!\!\!/ H_t - p\!\!\!/ L_t \right) \left( 1 - p\!\!\!/ L_{SS} - \tau \left( - p\!\!\!/ t\!\!\!/ C\!B + p\!\!\!/ L_t \right)^2 \right) \quad \left( \lambda_t^{\text{OPTIMALMP}^2} \right)$$

#### 1.2 First order conditions

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_t - \beta \mathbf{E}_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^1} \right] + \lambda_t^{\text{OPTIMALMP}^1} \left( \beta - \beta \left( 1 - \textit{pHs} - \tau \left( - \textit{pitCB} + \textit{piH}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piH}_t \right) \left( - \textit{pitH}_t + \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piH}_t \right)^2 \right) \\ - 0.5 \lambda \textit{yH}_t + \beta \kappa \mathbf{E}_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \quad (\textit{yH}_t) \\ 0.5 \textit{pitCB} - 0.5 \textit{pitL} - 0.5 \textit{pitL}_t - \beta \mathbf{E}_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^2} \right] + \lambda_t^{\text{OPTIMALMP}^2} \left( \beta - \beta \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( \textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\text{OPTIMALMP}^1} \left( 1 - \textit{pHss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) \\ - 0.5 \lambda \textit{yL}_t + \beta \kappa \mathbf{E}_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \quad (\textit{yL}_t) \\ (1.6)$$

#### 2 EXOG

#### 2.1 Identities

$$e tapi_t = e^{\epsilon_t^{\pi} + \phi \log e tapi_{t-1}} \tag{2.1}$$

## 3 Equilibrium relationships (after reduction)

$$-\operatorname{dispi}_{t} + e^{\epsilon_{t}^{\pi} + \phi \log \operatorname{dispi}_{t-1}} = 0 \tag{3.1}$$

$$-0.5\lambda y H_t + \beta \kappa \mathcal{E}_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^1} \right] = 0 \tag{3.2}$$

$$-0.5\lambda y L_t + \beta \kappa E_t \left[ \lambda_{t+1}^{\text{OPTIMALMP}^2} \right] = 0 \tag{3.3}$$

$$-piH_{t-1} + \log \exp i_{t-1} + \beta piH_t + \kappa yH_{t-1} + \beta \left(-piH_t + piL_t\right) \left(1 - pHss - \tau \left(-pitCB + piH_t\right)^2\right) = 0 \tag{3.4}$$

$$-piL_{t-1} + \log etapi_{t-1} + \beta piL_t + \kappa yL_{t-1} + \beta \left(piH_t - piL_t\right) \left(1 - pLss - \tau \left(-pitCB + piL_t\right)^2\right) = 0 \tag{3.5}$$

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_t - \beta \mathbf{E}_t \left[ \lambda_{t+1}^{\mathrm{OPTIMALMP}^1} \right] + \lambda_t^{\mathrm{OPTIMALMP}^1} \left( \beta - \beta \left( 1 - \textit{pHss} - \tau \left( - \textit{pitCB} + \textit{piH}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piH}_t \right) \left( - \textit{pitH}_t + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piH}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( \textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( \textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( \textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( - \textit{piH}_t - \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) - 2\beta \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right)^2 \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{\mathrm{OPTIMALMP}^2} \left( 1 - \textit{pLss} - \tau \left( - \textit{pitCB} + \textit{piL}_t \right) \right) + \beta \lambda_t^{$$

$$U_t + 0.25 \left( pitH - pitCB + piH_t \right)^2 + 0.25 \left( -pitCB + pitL + piL_t \right)^2 - \beta E_t \left[ U_{t+1} \right] + 0.25 \lambda y H_t^2 + 0.25 \lambda y L_t^2 = 0$$

$$(3.8)$$

### 4 Steady state relationships (after reduction)

$$-dqi_{ss} + e^{\phi \log dqi_{ss}} = 0 \tag{4.1}$$

(3.7)

$$-0.5\lambda y H_{ss} + \beta \kappa \lambda_{ss}^{\text{OPTIMALMP}^{1}} = 0 \tag{4.2}$$

$$-0.5\lambda y L_{\rm ss} + \beta \kappa \lambda_{\rm ss}^{\rm OPTIMALMP^2} = 0 \tag{4.3}$$

$$-piH_{ss} + \log \cot pi_{ss} + \beta piH_{ss} + \kappa yH_{ss} + \beta \left(-piH_{ss} + piL_{ss}\right) \left(1 - pHss - \tau \left(-piHCB + piH_{ss}\right)^{2}\right) = 0$$

$$(4.4)$$

$$-piL_{ss} + \log \cot pi_{ss} + \beta piL_{ss} + \kappa yL_{ss} + \beta \left(piH_{ss} - piL_{ss}\right) \left(1 - pLss - \tau \left(-pitCB + piL_{ss}\right)^{2}\right) = 0$$

$$(4.5)$$

$$-0.5 \textit{pitH} + 0.5 \textit{pitCB} - 0.5 \textit{pitH}_{\text{ss}} - \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} + \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(\beta - \beta \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right) \left(-\textit{pitH}_{\text{ss}} + \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^2} \left(1 - \textit{pLss} - \tau \left(-\textit{pitCB} + \textit{piH}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^2} \left(\beta - \beta \left(1 - \textit{pLss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right) - 2\beta \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right) \left(\textit{piH}_{\text{ss}} - \textit{piL}_{\text{ss}}\right)\right) + \beta \lambda_{\text{ss}}^{\text{OPTIMALMP}^1} \left(1 - \textit{pHss} - \tau \left(-\textit{pitCB} + \textit{piL}_{\text{ss}}\right)^2\right)$$

$$U_{\rm ss} + 0.25 \left( pitH - pitCB + piH_{\rm ss} \right)^2 + 0.25 \left( -pitCB + pitL + piL_{\rm ss} \right)^2 - \beta U_{\rm ss} + 0.25 \lambda y H_{\rm ss}^2 + 0.25 \lambda y L_{\rm ss}^2 = 0 \tag{4.8}$$

### 5 Parameter settings

 $\sim$ 

$$\beta = 0.99 \tag{5.1}$$

$$\kappa = 0.2465 \tag{5.2}$$

$$\lambda = 0.04106 \tag{5.3}$$

$$\phi = 0.95 \tag{5.4}$$

$$pitH = 2 (5.5)$$

$$pitCB = 2 (5.6)$$

$$pitL = 4 (5.7)$$

$$pHss = 0.99 \tag{5.8}$$

$$pLs = 0.99$$
 (5.9)

$$\sigma = 1 \tag{5.10}$$

$$\tau = 0.01 \tag{5.11}$$

$$\theta = 6 \tag{5.12}$$

## 6 Steady-state values

|                               | Steady-state value |
|-------------------------------|--------------------|
| etapi                         | 1                  |
| $\lambda^{	ext{OPTIMALMP}^1}$ | -0.0202            |
| $\lambda^{ m OPTIMALMP^2}$    | 0.0881             |
| $pi\!H$                       | -0.0236            |
| piL                           | -1.9469            |
| $y\!H$                        | -0.24              |
| yL                            | 1.0471             |
| U                             | -1.269             |

## 7 The solution of the 1st order perturbation

#### Matrix P

#### Matrix Q

$$\begin{array}{c} \epsilon tapi \\ piH \\ piL \\ yH \\ yL \\ -3.2281 \end{array} \begin{pmatrix} \epsilon^{\pi} \\ 0 \\ 0 \\ -3.2281 \\ \end{array}$$

#### Matrix R

#### Matrix S

$$\begin{array}{c} \epsilon^{\pi} \\ \lambda^{\text{OPTIMALMP}^1} \\ \lambda^{\text{OPTIMALMP}^2} \begin{pmatrix} -20.455 \\ -2.5996 \\ 0.8902 \end{pmatrix} \end{array}$$

#### 8 Model statistics

#### 8.1 Basic statistics

|                               | Steady-state value | Std. dev. | Variance | Loglin |
|-------------------------------|--------------------|-----------|----------|--------|
| etapi                         | 1                  | 0.1303    | 0.017    | Y      |
| $\lambda^{	ext{OPTIMALMP}^1}$ | -0.0202            | 2.4833    | 6.1668   | Y      |
| $\lambda^{ m OPTIMALMP^2}$    | 0.0881             | 0.44      | 0.1936   | Y      |
| piH                           | -0.0236            | 0.421     | 0.1772   | Y      |
| $p\!i\!L$                     | -1.9469            | 0.0112    | 0.0001   | Y      |
| $y\!H$                        | -0.24              | 2.2561    | 5.0901   | Y      |
| yL                            | 1.0471             | 0.4526    | 0.2048   | Y      |
| U                             | -1.269             | 0.1175    | 0.0138   | Y      |

#### 8.2 Correlation matrix

|                               | etapi | $\lambda^{	ext{OPTIMALMP}^1}$ | $\lambda^{ m OPTIMALMP^2}$ | piH    | piL    | yH     | yL     | U      |
|-------------------------------|-------|-------------------------------|----------------------------|--------|--------|--------|--------|--------|
| etapi                         | 1     | -0.996                        | -0.974                     | 0.666  | -0.671 | -0.999 | -0.997 | 1      |
| $\lambda^{	ext{OPTIMALMP}^1}$ |       | 1                             | 0.951                      | -0.599 | 0.604  | 0.999  | 0.987  | -0.995 |
| $\lambda^{ m OPTIMALMP^2}$    |       |                               | 1                          | -0.817 | 0.821  | 0.966  | 0.988  | -0.977 |
| piH                           |       |                               |                            | 1      | -1     | -0.64  | -0.72  | 0.677  |
| piL                           |       |                               |                            |        | 1      | 0.645  | 0.725  | -0.681 |
| $y\!H$                        |       |                               |                            |        |        | 1      | 0.994  | -0.999 |
| $y\!L$                        |       |                               |                            |        |        |        | 1      | -0.998 |
| U                             |       |                               |                            |        |        |        |        | 1      |

## 8.3 Cross correlations with the reference variable (pH)

|                                 | $\sigma[\cdot]$ rel. to $\sigma[piH]$ | $pH_{t-5}$ | $pH_{t-4}$ | $pH_{t-3}$ | $piH_{t-2}$ | $pH_{t-1}$ | $piH_t$ | $piH_{t+1}$ | $piH_{t+2}$ | $piH_{t+3}$ | $piH_t$ |
|---------------------------------|---------------------------------------|------------|------------|------------|-------------|------------|---------|-------------|-------------|-------------|---------|
| $etapi_t$                       | 0.31                                  | 0.234      | 0.431      | 0.652      | 0.863       | 0.963      | 0.666   | 0.418       | 0.216       | 0.054       | -0.0    |
| $\lambda_t^{	ext{OPTIMALMP}^1}$ | 5.899                                 | -0.25      | -0.442     | -0.656     | -0.856      | -0.936     | -0.599  | -0.351      | -0.16       | -0.014      | 0.09    |
| $\lambda_t^{	ext{OPTIMALMP}^2}$ | 1.045                                 | -0.185     | -0.386     | -0.617     | -0.851      | -0.999     | -0.817  | -0.575      | -0.346      | -0.152      | 0.00    |
| $pi\!H_t$                       | 1                                     | 0.012      | 0.174      | 0.374      | 0.606       | 0.843      | 1       | 0.843       | 0.606       | 0.374       | 0.17    |
| $p\!i\!L_t$                     | 0.027                                 | -0.017     | -0.179     | -0.379     | -0.611      | -0.846     | -1      | -0.833      | -0.593      | -0.361      | -0.1    |
| $yH_t$                          | 5.359                                 | -0.241     | -0.436     | -0.654     | -0.861      | -0.953     | -0.64   | -0.391      | -0.193      | -0.038      | 0.0     |
| $y\!L_t$                        | 1.075                                 | -0.219     | -0.418     | -0.644     | -0.864      | -0.98      | -0.72   | -0.473      | -0.26       | -0.087      | 0.04    |
| $U_t$                           | 0.279                                 | 0.232      | 0.429      | 0.651      | 0.864       | 0.967      | 0.677   | 0.429       | 0.224       | 0.06        | -0.0    |

## 8.4 Autocorrelations

|                               | Lag 1 | Lag 2 | Lag 3 | Lag 4 | Lag 5  |
|-------------------------------|-------|-------|-------|-------|--------|
| etapi                         | 0.713 | 0.471 | 0.271 | 0.11  | -0.016 |
| $\lambda^{	ext{OPTIMALMP}^1}$ | 0.661 | 0.416 | 0.229 | 0.084 | -0.028 |
| $\lambda^{ m OPTIMALMP^2}$    | 0.826 | 0.587 | 0.358 | 0.163 | 0.006  |
| piH                           | 0.843 | 0.606 | 0.374 | 0.174 | 0.012  |
| piL                           | 0.837 | 0.598 | 0.366 | 0.168 | 0.009  |
| $y\!H$                        | 0.693 | 0.449 | 0.254 | 0.099 | -0.021 |
| yL                            | 0.755 | 0.514 | 0.303 | 0.13  | -0.008 |
| U                             | 0.721 | 0.479 | 0.277 | 0.114 | -0.015 |

# 9 Impulse response functions



Figure 1: Impulse responses  $(p\!i\!H,p\!i\!L,y\!H,y\!L)$  to  $\epsilon^\pi$  shock