COMPRESSIVE FAILURE OF THICK-SECTION COMPOSITE LAMINATES WITH AND WITHOUT CUTOUTS SUBJECTED TO BIAXIAL LOADING

L. Rouxel* and S. S. Wang**
National Center for Composite Materials Research
College of Engineering
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

^{*} Graduate Research Assistant

^{**} Professor and Director

Coordinates and geometry of a composite laminate with a central circular cutout under compressive loading

The composites studied are fiber-composite laminate plates made of carbon fibers and a thermoplastic-matrix material. The elastic properties of the lamina are: $\rm E_{11}=15.6~x~10^6~(psi),~E_{22}=0.9~x~10^6~(psi),~\nu_{12}=0.313,~G_{12}=G_{13}=0.77~x~10^6~(psi),~and~G_{23}=0.31~x~10^6~(psi).$ The plates have a square geometry with a length of 12 (in), a cutout diameter of 2 (in) and a constant lamina thickness of 0.005 (in). A $[0/90/\pm45]_{ns}$ layup is considered. Biaxial loading is applied in the form of uniform displacements along the edges of the laminates.

Solution convergence for transverse shear Q_x at (-3.,-3.) (in) in a clamped $[0/90/\pm45]_{12s}$ plate without cutout under biaxial compression $(N_x/N_y=2,\ t/L=0.04)$

The transverse shear force $Q_{\mathbf{X}}$ is the resultant of $\tau_{\mathbf{XZ}}$ integrated over the laminate thickness. $Q_{\mathbf{X}}$ is interpolated at (-3.,-3.) (in) from the values at the four Gaussian points of the element containing this location (using a bilinear interpolation). Three finite-element meshes are considered.

Effects of cutout and laminate thickness on maximum shear Q_x in buckling and postbuckling response of a clamped $\left[0/90/\pm45\right]_{ns}$ plate under biaxial compression

Without cutout, $|Q_{x \text{ max}}|$ is located at (±3.3,0.) for t/L = 0.02 and t/L = 0.04, and also for t/L = 0.06 and t/L = 0.08 before activation of higher (i.e., second and third lowest) modes takes place for these two thickness/length ratios (beyond N_x = 1.7 N_{xcr} and N_x = 1.5 N_{xcr} , respectively). After activation of higher modes, the location is at (±6.,±4.7) for t/L = 0.06 and t/L =0.08.

With cutout, $|Q_{x \text{ max}}|$ is located at $(\pm 3.5, \pm 1.8)$ for t/L = 0.02 and t/L = 0.04, and for t/L = 0.06 before activation of higher modes $(N_x < 1.7 N_{xcr})$. However, for t/L = 0.08, $|Q_{x \text{ max}}|$ is located at the hole free edge at $(0.38, \pm 0.92)$ before activation of higher modes. After activation of higher modes for t/L = 0.06 and t/L =0.08, the location is at $(\pm 6., \pm 4.7)$.

Effects of cutout and laminate thickness on maximum shear Q_y in buckling and postbuckling response of a clamped $[0/90/\pm45]_{ns}$ plate under biaxial compression

Without cutout, $|Q_{y~max}|$ is located at $(0.,\pm6.)$ for t/L = 0.02 and t/L = 0.04, and also for t/L = 0.06 and t/L = 0.08 before activation of higher modes takes place (beyond N_{x} = 1.7 N_{xcr} and N_{x} = 1.5 N_{xcr} , respectively). After activation of higher modes, the location is at $(0.,\pm4.7)$ for t/L = 0.06 and t/L =0.08.

With cutout, $|Q_{y \text{ max}}|$ is located at $(0.,\pm6.)$ for all four thickness/length ratios considered. Activation of higher modes for t/L = 0.06 and t/L = 0.08 does not change the location of $|Q_{y \text{ max}}|$.

Effect of mesh refinement on buckling and postbuckling solution convergence for a clamped plate $[0/90/\pm45]_{24_S}$ without cutout under biaxial compression $(N_x/N_y=2,\ t/L=0.08)$

For this thick laminate, activation of second and third lowest eigenmodes takes place beyond $N_{\rm x}$ = 1.5 $N_{\rm xc}$, but no change in buckling mode occurs as the structure gradually loses its stiffness and becomes unstable.

Effects of cutout and laminate thickness of lowest three eigenvalues of a clamped $[0/90/\pm45]_{ns}$ plate under biaxial compression $(N_x/N_y = 2)$

The eigenvalue parameter (λ N_{Xo} L₂ / D₂₂) is defined in such form that the lowest eigenvalue would have the same value for all thickness/length ratios if transverse shear was not present. This parameter is plotted with respect to the thickness/length ratio.

Effects of cutout and laminate thickness on buckling and postbuckling response of a clamped $[0/90/\pm45]_{\rm ns}$ plate under biaxial compression $(N_{\rm x}/N_{\rm y}=2)$

The load parameter (N $_{\rm X}$ L 2 / D $_{2\,2}$) is defined in such form that buckling would occur at the same value for all thickness/length ratios if transverse shear was not present. Likewise, the strain parameter U L / t 2 is such that all load/end-shortening curves for the cases with cutout and for the cases without cutout are identical prior to buckling, respectively.

Effect of imperfection sensitivity on transverse shear Q_x at (-3.,-3.) (in) in a clamped $[0/90/\pm45]_{12s}$ plate without cutout under biaxial compression $(N_x/N_y=2,\ t/L=0.04)$

Three imperfection magnitudes (with respect to the laminate thickness) are considered: 0.1%, 1% and 10%. The imperfections are made of a linear combination of the normalized three lowest eigenmodes. The resulting imperfection geometry is close to the first eigenmode (buckling mode).

Effects of boundary conditions and stress-biaxiality ratio on maximum transverse shear $Q_{\rm x}$ in a clamped $[0/90/\pm45]_{12s}$ laminate without cutout (t/L = 0.04)

