

Tech saksham

Case Study Report

Data Analtic with Power BI

"Real-Time Analysis of Bank Customers"

"Seared Heart College of Arts and Sicence

Dindigul"

NM ID	NAME
B501B5BC730895685264	M.VALLINAYAGI
D4171EB2DD40	

R.UMAMAHESWARI	Trainer Name
R.UMAMAHESWARI	Master Trainer

ABSTRACT

The successful implementation of the "SUPPLY CHAIN OF ANALYTICS" project, utilizing PowerBI, showcases the immense potential of data analytics within the sector. Through the thorough analysis of customer data along the supply chain, crucial insights into customer behavior, product preferences, sales trends, discount patterns, and total revenue have been uncovered. The interactive dashboards and reports provided offer a holistic perspective of customer data, enabling the identification of key patterns and correlations. This not only streamlines data analysis but also empowers the organization to deliver personalized services, identify cross-selling and up-selling opportunities, and tailor products and services to meet customer needs effectively. Furthermore, this initiative aligns with the broader goal of digital transformation in the banking sector, fostering efficiency, innovation, and a customer-centric approach

INDEX

Sr. No.	Table of Contents	Page No.
1	Chapter 1: Introduction	4
2	Chapter 2: Services and Tools Required	6
3	Chapter 3: Project Architecture	7
4	Chapter 4: Modeling and Result	9
5	Conclusion	18
6	Future Scope	19
7	References	20
8	Links	21

CHAPTER 1

INTRODUCTION

Problem Statement

In today's competitive banking landscape, understanding customer behavior and preferences is crucial for customer retention and revenue generation. However, banks often face challenges in analyzing customer data due to the sheer volume and velocity of data generated. Traditional data analysis methods are time-consuming and often fail to provide real-time insights. This lack of real-time analysis can lead to missed opportunities for customer engagement, cross-selling, and up-selling, impacting the bank's revenue generation and customer satisfaction. Furthermore, the complexity and diversity of customer data, which includes transaction history, customer feedback, and demographic data, pose additional challenges for data analysis.

Proposed Solution

The proposed solution is to develop a PowerBI dashboard that can analyze and visualize real-time customer data. The dashboard will integrate data from various sources such as transaction history, customer feedback, and demographic data. It will provide a comprehensive view of customer behavior, preferences, and trends, enabling banks to make informed decisions. The dashboard will be interactive, user-friendly, and customizable, allowing banks to tailor it to their specific needs. The real-time analysis capability of the dashboard will enable banks to respond promptly to changes in customer behavior or preferences, identify opportunities for cross-selling and up-selling, and tailor their products and services to meet customer needs.

Feature

- **Real-Time Analysis**: The dashboard will provide real-time analysis of customer data.
- **Customer Segmentation**: It will segment customers based on various parameters like age, income, transaction behavior, etc.
- Trend Analysis: The dashboard will identify and display trends in customer behavior.
- **Predictive Analysis**: It will use historical data to predict future customer behavior.

Advantages

- Data-Driven Decisions: Banks can make informed decisions based on real-time data analysis.
- **Improved Customer Engagement**: Understanding customer behavior and trends can help banks engage with their customers more effectively.
- **Increased Revenue**: By identifying opportunities for cross-selling and up-selling, banks can increase their revenue.

Scope

The scope of this project extends to all banking institutions that aim to leverage data for decision-making and customer engagement. The project can be further extended to incorporate more data sources and advanced analytics techniques, such as machine learning and artificial intelligence, to provide more sophisticated insights into customer behavior. The project also has the potential to be adapted for other sectors, such as retail, healthcare, and telecommunications, where understanding customer behavior is crucial. Furthermore, the project contributes to the broader goal of digital transformation in the banking sector, promoting efficiency, innovation, and customer-centricity.

CHAPTER 2

SERVICES AND TOOLS REQUIRED

2.1 Services Used

- Data Collection and Storage Services: Banks need to collect and store customer data in real-time. This could be achieved through services like Azure Data Factory, Azure Event Hubs, or AWS Kinesis for real-time data collection, and Azure SQL Database or AWS RDS for data storage.
- Data Processing Services: Services like Azure Stream Analytics or AWS Kinesis Data Analytics can be used to process the real-time data.
- Machine Learning Services: Azure Machine Learning or AWS SageMaker can be used to build predictive models based on historical data.

2.2 Tools and Software used

Tools:

• **PowerBI**: The main tool for this project is PowerBI, which will be used to create interactive dashboards for real-time data visualization.

• **Power Query**: This is a data connection technology that enables you to discover, connect, combine, and refine data across a wide variety of sources.

Software Requirements:

- PowerBI Desktop: This is a Windows application that you can use to create reports and publish them to PowerBI.
- **PowerBI Service**: This is an online SaaS (Software as a Service) service that you use to publish reports, create new dashboards, and share insights.
- **PowerBI Mobile**: This is a mobile application that you can use to access your reports and dashboards on the go.

CHAPTER 3

PROJECT ARCHITECTURE

3.1 Architecture

USER	FRONTEND	BACKEND
	 > HTML 5	NODEJS
		14.0
		© Cloudant Database

Here's a high-level architecture for the project:

- **Data Collection**: Real-time customer data is collected from various sources like bank transactions, customer interactions, etc. This could be achieved using services like Azure Event Hubs or AWS Kinesis.
- **Data Storage**: The collected data is stored in a database for processing. Azure SQL Database or AWS RDS can be used for this purpose.
- **Data Processing**: The stored data is processed in real-time using services like Azure Stream Analytics or AWS Kinesis Data Analytics.
- Machine Learning: Predictive models are built based on processed data using Azure Machine Learning or AWS SageMaker. These models can help in predicting customer behavior, detecting fraud, etc.
- **Data Visualization**: The processed data and the results from the predictive models are visualized in real-time using PowerBI. PowerBI allows you to create interactive dashboards that can provide valuable insights into the data.
- **Data Access**: The dashboards created in PowerBI can be accessed through PowerBI Desktop, PowerBI Service (online), and PowerBI Mobile.

This architecture provides a comprehensive solution for real-time analysis of bank customers. However, it's important to note that the specific architecture may vary depending on the bank's existing infrastructure, specific requirements, and budget. It's also important to ensure that all tools and services comply with relevant data privacy and security regulations.

CHAPTER 4

MODELING AND RESULT

Manage relationship

The "disp" file will be used as the main connector as it contains most key identifier (account id, client id and disp id) which can be use to relates the 8 data files together. The "district" file is use to link the client profile geographically with "district id"

Manage relationships

Active	From: Table (Column)	To: Table (Column)
✓	card (disp_id)	disp (disp_id)
✓	client (district_id)	district (district_id)
✓	disp (account_id)	account (account_id)
✓	disp (account_id)	loan (account_id)
✓	disp (client_id)	client (client_id)
✓	order (account_id)	account (account_id)
✓	transaction (account_id)	disp (account_id)
	account (district_id)	district (district_id)
	transaction (account_id)	loan (account_id)

Edit relationship

Select tables and columns that are related.

card_id	disp_id	type	issued	card issued on
1005	9285	classic	931107	Sunday, 7 November 1993
104	588	classic	940119	Wednesday, 19 January 1994
747	4915	classic	940205	Saturday, 5 February 1994

disp ▼

disp_id	client_id	account_id	type
1	1	1	OWNER
2	2	2	OWNER
4	4	3	OWNER

Cardinality

Cross filter direction

One to one (1:1)

■ Both

■ Apply security filter in both directions

Assume referential integrity

Modelling for Gender and Age data

Notice that the Gender and age of the client are missing from the data. These can be formulated from the birth number YYMMDD where at months (the 3rd and 4th digits) greater than 50 means that client is a Female. We can create a column for Gender.

For birthday, we need to reduce the birth month of the female by 50 and then change the date format to DD/MM/YYYY adding 1900 to the year.

For Age, we shall assume it is year 1999 as explain previously and use it to minus from the birth year.

Replacing values

Set some fields to English for easy understanding, we replace values to English with the Power Query Editor.

type	+/- transaction	"PRIJEM" stands for credit
		"VYDAJ" stands for withdrawal
k_symbol	characterization of the transaction	"POJISTNE" stands for insurance payment "SLUZBY" stands for payment for statement "UROK" stands for interest credited "SANKC. UROK" sanction interest if negative balance
		"SIPO" stands for household "DUCHOD" stands for old-age pension "UVER" stands for loan payment

Changing the order of Region name at Power Query

Duplicate the "district /region" then split column using space as delimiter.

Then merge column by Region and direction. Refer to applied steps for details.

Grouping of age by ranges

As the customers' age ranges from 12 to 88, we shall group them into different generation age range for easier profiling, we will group the ages into 5 groups.

The Gen Y are youths,

Gen X are young working adults, some starting their families

Baby Boomer are working adults with families.

The silent Generations some are working and retired, living on pensions.

The greatest Generation, retired elderly living on pensions.

Groups

Name	age (groups)	Field	age
Group type	List ▼		
Ungrouped	values	Groups and	l members
		▶ 0 - 20 G	Gen Y
		> 20 - 35	Gen X
		▶ 36 -54 l	Baby Boomers
		▶ 55-73	THE SILENT GENERATION
		▶ 74 and	above - THE GREATEST GENERATION

Credit Rating and Loan Status

As the Loan status uses A, B, C, D which are not reader friendly. We can add a column to represent what it stands for, we also simplify the classification of those with late or default on payment as bad credit, refer to the table below for details on the new columns added.

Stati	us in "loa	n" dat	a	New column "loan status"	New column "credit rating"
'A'	stands	for	contract	Fully Repaid	Good
finis	hed no pr	oblen	ıs		
'B'	stands	for	contract	Default	Bad
finished loan not payed		yed			
'C'	stands	for	running	Timely Payment	Good
contract OK so far					
'D'	stands	for	running	Late payment	Bad
cont	contract client in debt				

Values of such as "account Id" have also been set as Text.

And District name have been categorized as place to be use for the map to show the sum of the inhabitants in each region.

Dashboard

CONCLUSION

The "SUPPLY CHAIN OF ANALYTICS" project utilizing PowerBI has effectively demonstrated the transformative potential of data analytics within the sector. Through thorough supply chain analysis of customer data, invaluable insights into customer behavior, product preferences, sales trends, discount strategies, and total revenue have been uncovered. The interactive dashboards and reports provided have offered a holistic view of customer data, facilitating the identification of intricate patterns and correlations. This has not only streamlined data analysis processes but has also bolstered the product's capacity to provide tailored services to its clientele. Furthermore, the project underscores the critical role of data visualization in simplifying complex information, making it more comprehensible and accessible. By leveraging PowerBI, the project has succeeded in presenting data in visually engaging formats, thus enhancing product selling strategies.

FUTURE SCOPE

The project's future potential is expansive. With the advancement of analytics and machine learning, PowerBI can be harnessed to predict future trends from historical data. Integrating predictive analytics could enable the bank to preemptively address customer needs. Additionally, PowerBI's compatibility with diverse data sources allows for a more holistic customer view. To address data privacy concerns, future iterations should prioritize robust data governance. Exploring real-time data integration could further enhance insights, revolutionizing customer interactions and boosting satisfaction and loyalty.

REFERENCES

https://medium.com/analytics-vidhya/analysis-of-bankcustomers-using-dashboard-in-power-bi-a366f2b3e563

LINK

https://github.com/Vallinayagimurugesan/Vallinayagimurugesan.git