DATA DICTIONARY - Human Activity Recognition Using Smartphones Dataset

180 obs. of 88 variables:

Subjects 1

Unique identifier from 1 to 30 indicating the subject code who performed the activity.

Activity

The 6 activity names which the subject performed.

- WALKING
- WALKING UPSTAIRS
- WALKING DOWNSTAIRS
- SITTING
- STANDING
- LAYING

tBodyAcc.mean...X

Mean of body acceleration in time domain signals at x axis $0.222\ 0.261\ 0.279\ 0.277\ 0.289\ \dots$

tBodyAcc.mean...Y

Mean of body acceleration in time domain signals at y axis -0.04051 -0.00131 -0.01614 -0.01738 -0.00992 ...

tBodyAcc.mean...Z

Mean of body acceleration in time domain signals at z axis -0.113 -0.105 -0.111 -0.108 ...

tGravityAcc.mean...X

Mean of gravity acceleration in time domain signals x axis $-0.249 \ 0.832 \ 0.943 \ 0.935 \ 0.932 \dots$

tGravityAcc.mean...Y

Mean of gravity acceleration in time domain signals y axis 0.706 0.204 -0.273 -0.282 -0.267 \dots

tGravityAcc.mean...Z

Mean of gravity acceleration in time domain signals z axis 0.4458 0.332 0.0135 -0.0681 -0.0621 ...

tBodyAccJerk.mean...X

Mean the body linear acceleration derived in time to obtain Jerk signals ${\bf x}$ axis

0.0811 0.0775 0.0754 0.074 0.0542 ...

tBodyAccJerk.mean...Y

Mean the body linear acceleration derived in time to obtain Jerk signals y axis

0.003838 -0.000619 0.007976 0.028272 0.02965 ...

tBodyAccJerk.mean...Z

Mean of the body linear acceleration derived in time to obtain Jerk signals \boldsymbol{z} axis

0.01083 -0.00337 -0.00369 -0.00417 -0.01097 ...

tBodyGyro.mean...X

Mean of the body angular velocity derived in time domain signals \boldsymbol{x} axis

-0.0166 -0.0454 -0.024 -0.0418 -0.0351 ...

tBodyGyro.mean...Y

Mean of the body angular velocity derived in time domain signals Y axis

-0.0645 -0.0919 -0.0594 -0.0695 -0.0909 ...

tBodyGyro.mean...Z

Mean of the body angular velocity derived in time domain signals ${\bf z}$ axis

0.1487 0.0629 0.0748 0.0849 0.0901 ...

tBodyGyroJerk.mean...X

Mean of the body angular velocity derived in time to obtain Jerk signals x axis

-0.1073 -0.0937 -0.0996 -0.09 -0.074 ...

tBodyGyroJerk.mean...Y

Mean of the body angular velocity derived in time to obtain $\mbox{Jerk signals Y axis}$

-0.0415 -0.0402 -0.0441 -0.0398 -0.044 ...

tBodyGyroJerk.mean...Z

Mean of the body angular velocity derived in time to obtain Jerk signals Z axis

-0.0741 -0.0467 -0.049 -0.0461 -0.027 ...

tBodyAccMag.mean..

Mean of the magnitude of body acceleration in time domain signal.

-0.8419 -0.9485 -0.9843 -0.137 0.0272 ...

tGravityAccMag.mean..

Mean of the magnitude of gravity acceleration in time domain signal.

-0.8419 -0.9485 -0.9843 -0.137 0.0272 ...

tBodyAccJerkMag.mean..

Mean of the magnitude of the body linear acceleration derived in time to obtain Jerk signals.

-0.9544 -0.9874 -0.9924 -0.1414 -0.0894 ...

tBodyGyroMag.mean..

Mean of the magnitude the body angular velocity derived in time domain signals.

-0.8748 -0.9309 -0.9765 -0.161 -0.0757 ...

tBodyGyroJerkMag.mean..

Mean of the magnitude the body angular velocity derived in time to obtain Jerk signals.

-0.963 -0.992 -0.995 -0.299 -0.295 ...

${\tt fBodyAcc.mean...X}$

Mean of body acceleration in frequency domain signals at \mathbf{x} axis

-0.9391 -0.9796 -0.9952 -0.2028 0.0382 ...

fBodyAcc.mean...Y

Mean of body acceleration in frequency domain signals at y axis

-0.86707 -0.94408 -0.97707 0.08971 0.00155 ...

fBodyAcc.mean...Z

Mean of body acceleration in frequency domain signals at \boldsymbol{z} axis

-0.883 -0.959 -0.985 -0.332 -0.226 ...

fBodyAcc.meanFreq...X

Mean frequency of body acceleration in frequency domain signals at ${\bf x}$ axis

-0.1588 -0.0495 0.0865 -0.2075 -0.3074 ...

fBodyAcc.meanFreq...Y

Mean frequency of body acceleration in frequency domain signals at y axis

0.0975 0.0759 0.1175 0.1131 0.0632 ...

fBodyAcc.meanFreq...Z

Mean frequency of body acceleration in frequency domain signals at ${\bf z}$ axis

0.0894 0.2388 0.2449 0.0497 0.2943 ...

fBodyAccJerk.mean...X

Mean the body linear acceleration derived in frequency domain to obtain Jerk signals x axis

-0.9571 -0.9866 -0.9946 -0.1705 -0.0277 ...

${\tt fBodyAccJerk.mean...Y}$

Mean the body linear acceleration derived in frequency domain to obtain Jerk Signals Y axis

-0.9225 -0.9816 -0.9854 -0.0352 -0.1287 ...

${\tt fBodyAccJerk.mean...Z}$

Mean the body linear acceleration derived in frequency domain to obtain Jerk Signals Z axis

-0.948 -0.986 -0.991 -0.469 -0.288 ...

fBodyAccJerk.meanFreq...X

Mean frequency of the body linear acceleration derived in frequency domain to obtain Jerk Signals X axis

0.132 0.257 0.314 -0.209 -0.253 ...

fBodyAccJerk.meanFreq...Y

Mean frequency of the body linear acceleration derived in frequency domain to obtain Jerk Signals Y axis 0.0245 0.0475 0.0392 -0.3862 -0.3376 ...

fBodyAccJerk.meanFreq...Z

Mean frequency of the body linear acceleration derived in frequency domain to obtain Jerk Signals Z axis 0.02439 0.09239 0.13858 -0.18553 0.00937 ...

fBodyGyro.mean...X

Mean of the body angular velocity derived in frequency domain signals x axis

-0.85 -0.976 -0.986 -0.339 -0.352 ...

fBodyGyro.mean...Y

Mean of the body angular velocity derived in frequency domain signals Y axis

-0.9522 -0.9758 -0.989 -0.1031 -0.0557 ...

fBodyGyro.mean...Z

Mean of the body angular velocity derived in frequency domain signals Z axis

-0.9093 -0.9513 -0.9808 -0.2559 -0.0319 ...

fBodyGyro.meanFreq...X

Mean frequency of the body angular velocity derived in frequency domain signals X axis

-0.00355 0.18915 -0.12029 0.01478 -0.10045 ...

fBodyGyro.meanFreq...Y

Mean frequency of the body angular velocity derived in frequency domain signals Y axis

-0.0915 0.0631 -0.0447 -0.0658 0.0826 ...

fBodyGyro.meanFreq...Z

Mean frequency of the body angular velocity derived in frequency domain signals Z axis

0.010458 -0.029784 0.100608 0.000773 -0.075676 ...

fBodyAccMag.mean..

Mean of the magnitude of body acceleration in frequency domain signal

-0.8618 -0.9478 -0.9854 -0.1286 0.0966 ...

fBodyAccMag.meanFreq..

Mean Frequency of the magnitude of body acceleration in frequency domain signal

0.0864 0.2367 0.2846 0.1906 0.1192 ...

fBodyBodyAccJerkMag.mean..

Mean of the magnitude of the body linear acceleration derived in frequency domain to obtain Jerk signals.

-0.9333 -0.9853 -0.9925 -0.0571 0.0262 ...

fBodyBodyAccJerkMag.meanFreq..

Mean frequency of magnitude of the body linear acceleration derived in frequency domain to obtain Jerk signals.

0.2664 0.3519 0.4222 0.0938 0.0765 ...

fBodyBodyGyroMag.mean..

Mean of magnitude of the body angular velocity derived in frequency domain signals $% \left(1\right) =\left(1\right) +\left(1\right)$

-0.862 -0.958 -0.985 -0.199 -0.186 ...

fBodyBodyGyroMag.meanFreq..

Mean frequency of magnitude of the body angular velocity derived in frequency domain signals

-0.139775 -0.000262 -0.028606 0.268844 0.349614 ...

fBodyBodyGyroJerkMag.mean..

Mean of magnitude of the body linear acceleration derived in frequency domain to obtain Jerk signals.

-0.942 -0.99 -0.995 -0.319 -0.282 ...

fBodyBodyGyroJerkMag.meanFreq..

Mean frequency of magnitude of the body linear acceleration derived in frequency domain to obtain Jerk signals.

0.176 0.185 0.334 0.191 0.19 ...

angle.tBodyAccMean.gravity.

gravity mean of the angle of the body linear acceleration in time domain.

0.021366 0.027442 -0.000222 0.060454 -0.002695 ...

angle.tBodyAccJerkMean..gravityMean.

gravity mean of the angle of the body linear acceleration derived in time to obtain Jerk signals.

0.00306 0.02971 0.02196 -0.00793 0.08993 ...

angle.tBodyGyroMean.gravityMean.

gravity mean of the angle of the body angular velocity derived in time domain signals.

-0.00167 0.0677 -0.03379 0.01306 0.06334 ...

angle.tBodyGyroJerkMean.gravityMean.

gravity mean of the angle of the body angular velocity derived in time to obtain Jerk signals $0.0844 - 0.0649 - 0.0279 - 0.0187 - 0.04 \dots$

angle.X.gravityMean.

gravity mean of the angle in X direction. $0.427 \ -0.591 \ -0.743 \ -0.729 \ -0.744 \ \dots$

angle.Y.gravityMean.

gravity mean of the angle in y direction. $-0.5203 -0.0605 \ 0.2702 \ 0.277 \ 0.2672 \dots$

angle.Z.gravityMean.

gravity mean of the angle in z direction. $-0.3524 -0.218 \ 0.0123 \ 0.0689 \ 0.065 \dots$

tBodyAcc.std...X

Standard deviation of body acceleration in time domain signals at ${\bf x}$ axis

-0.928 -0.977 -0.996 -0.284 0.03 ...

tBodyAcc.std...Y

Standard deviation of body acceleration in time domain signals at Y axis

-0.8368 -0.9226 -0.9732 0.1145 -0.0319 ...

tBodyAcc.std...Z

Standard deviation of body acceleration in time domain signals at ${\bf Z}$ axis

-0.826 -0.94 -0.98 -0.26 -0.23 ...

tGravityAcc.std...X

Standard deviation of gravity acceleration in time domain signals X axis

-0.897 -0.968 -0.994 -0.977 -0.951 ...

tGravityAcc.std...Y

Standard deviation of gravity acceleration in time domain signals Y axis

-0.908 -0.936 -0.981 -0.971 -0.937 ...

tGravityAcc.std...Z

Standard deviation of gravity acceleration in time domain signals Z axis

-0.852 -0.949 -0.976 -0.948 -0.896 ...

tBodyAccJerk.std...X

Standard deviation of the body linear acceleration derived in time to obtain Jerk signals ${\tt X}$ axis

-0.9585 -0.9864 -0.9946 -0.1136 -0.0123 ...

tBodyAccJerk.std...Y

Standard deviation of the body linear acceleration derived in time to obtain Jerk signals Y axis

-0.924 -0.981 -0.986 0.067 -0.102 ...

$\verb|tBodyAccJerk.std...Z||$

Standard deviation of the body linear acceleration derived in time to obtain Jerk Signals ${\tt Z}$ axis

-0.955 -0.988 -0.992 -0.503 -0.346 ...

tBodyGyro.std...X

Standard deviation of the body angular velocity derived in time domain signals ${\bf x}$ axis

-0.874 -0.977 -0.987 -0.474 -0.458 ...

tBodyGyro.std...Y

Standard deviation of the body angular velocity derived in time domain signals Y axis

-0.9511 -0.9665 -0.9877 -0.0546 -0.1263 ...

tBodyGyro.std...Z

Standard deviation of the body angular velocity derived in time domain signals Z axis

-0.908 -0.941 -0.981 -0.344 -0.125 ...

tBodyGyroJerk.std...X

Standard deviation of the body angular velocity derived in time to obtain Jerk Signals X axis $-0.919 \ -0.992 \ -0.993 \ -0.207 \ -0.487 \dots$

tBodyGyroJerk.std...Y

Standard deviation of the body angular velocity derived in time to obtain Jerk Signals Y axis $-0.968 -0.99 -0.995 -0.304 -0.239 \dots$

tBodyGyroJerk.std...Z

Standard deviation of the body angular velocity derived in time to obtain Jerk Signals Z axis
-0.958 -0.988 -0.992 -0.404 -0.269 ...

tBodyAccMag.std..

Standard deviation of the magnitude of body acceleration in time domain signal $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

-0.7951 -0.9271 -0.9819 -0.2197 0.0199 ...

tGravityAccMag.std..

Standard deviation of the magnitude of gravity acceleration in time domain signal

-0.7951 -0.9271 -0.9819 -0.2197 0.0199 ...

tBodyAccJerkMag.std..

Standard deviation of the magnitude of the body linear acceleration derived in time to obtain Jerk signals.

-0.9282 -0.9841 -0.9931 -0.0745 -0.0258 ...

tBodyGyroMag.std..

Standard deviation of the magnitude the body angular velocity derived in time domain signals.

-0.819 -0.935 -0.979 -0.187 -0.226 ...

tBodyGyroJerkMag.std..

Standard deviation of the magnitude the body angular velocity derived in time to obtain Jerk signals.

-0.936 -0.988 -0.995 -0.325 -0.307 ...

fBodyAcc.std...X

Standard deviation of body acceleration in frequency domain signals at X axis

-0.9244 -0.9764 -0.996 -0.3191 0.0243 ...

fBodyAcc.std...Y

Standard deviation of body acceleration in frequency domain signals at Y $\ensuremath{\mathrm{axis}}$

-0.834 -0.917 -0.972 0.056 -0.113 ...

fBodyAcc.std...Z

Standard deviation of body acceleration in frequency domain signals at $\ensuremath{\text{Z}}$ axis

-0.813 -0.934 -0.978 -0.28 -0.298 ...

fBodyAccJerk.std...X

Standard deviation the body linear acceleration derived in frequency domain to obtain Jerk signals \boldsymbol{x} axis

fBodyAccJerk.std...Y

Standard deviation the body linear acceleration derived in frequency domain to obtain Jerk Signals Y axis
-0.932 -0.983 -0.987 0.107 -0.135 ...

fBodyAccJerk.std...Z

Standard deviation the body linear acceleration derived in frequency domain to obtain Jerk Signals Z axis $-0.961 -0.988 -0.992 -0.535 -0.402 \dots$

fBodyGyro.std...X

Standard deviation of the body angular velocity derived in frequency domain signals X axis

-0.882 -0.978 -0.987 -0.517 -0.495 ...

fBodyGyro.std...Y

Standard deviation of the body angular velocity derived in frequency domain signals Y ${\tt axis}$

-0.9512 -0.9623 -0.9871 -0.0335 -0.1814 ...

fBodyGyro.std...Z

Standard deviation of the body angular velocity derived in frequency domain signals Z axis

-0.917 -0.944 -0.982 -0.437 -0.238 ...

fBodyAccMag.std..

Magnitude of Standard deviation of body acceleration in frequency domain signals.

-0.798 -0.928 -0.982 -0.398 -0.187 ...

fBodyBodyAccJerkMag.std..

Magnitude of Standard deviation the body linear acceleration der ived in frequency domain to obtain Jerk Signals.

-0.922 -0.982 -0.993 -0.103 -0.104 ...

fBodyBodyGyroMag.std..

Magnitude of Standard deviation of the body angular velocity derived in frequency domain signals.

-0.824 -0.932 -0.978 -0.321 -0.398 ...

${\tt fBodyBodyGyroJerkMag.std.}.$

Magnitude of Standard deviation of the magnitude the body angula r velocity derived in frequency domain to obtain Jerk signals.

-0.933 -0.987 -0.995 -0.382 -0.392 ...