

大学物理实验 (一)

等厚干涉

HISTORY PHYSICS HEIGHT LIM PORTION PORTION PORTION PORTION PROPERTY PROPER

课前问答

- 光的干涉形成的条件是什么?
- 如何消除显微镜的视差?
- 怎么样消除螺旋测微器的空程差?
- 干涉条纹明纹与暗纹的条件是什么?

背景简介

- 牛顿环是牛顿在1675年首先观察到的。
- 将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。

一、实验目的

- 利用等厚干涉图像测量平面凸透镜的曲率半径
- 了解读数显微镜的调节和使用
- 学习使用逐差法处理数据

二、实验原理

等厚干涉 (牛顿环)

- 当入射光垂直入射时,经平面凸透镜与平面 玻璃之间的空气层,上下表面反射的两束光 存在光程差,它们在平面凸透镜的凸面上相 遇就会产生干涉现象。
- 以O点为圆心的同心圆的光程差相等,形成等厚干涉,生成一系列明暗相间的同心圆环,成为牛顿环。如图1所示。

图1 牛顿环等厚干涉光路图

PHYSICS PHYSICS PHYSICS PHYSICS PHYSICS PHYSICS PHODESITY PHODESIT

二、实验原理

- 由几何关系:
- $R^2 = (R e)^2 + r_k^2 = R^2 + r_k^2 2Re + e^2$
- 由于 e^2 为高阶无穷小,可舍去,即得: $r_k^2 = 2Re$
- 其中,R为平面凸透镜的曲率半径, r_k 为k级圆环半径,e为k级圆环处空气层厚度。
- 由于 δ_2 存在半波损失,故应有 λ / 2的附加光程差,两束相干光的光程差为:
- $\Delta = \delta_2 \delta_1 = 2ne + \frac{\lambda}{2}$
- 根据干涉原理(由于是空气, n=1)可得:

•
$$\Delta = 2ne + \frac{\lambda}{2} = \begin{cases} k\lambda & (k = 1,2,3...) & \text{BFM} \\ \frac{(2k+1)\lambda}{2} & (k = 1,2,3...) & \text{BFM} \end{cases}$$

图1 牛顿环等厚干涉光路图

二、实验原理

由 $r_k^2 = 2Re$, $\Delta = 2ne + \frac{\lambda}{2}$ 和干涉条件得:

•
$$r_k^2 = (k + \frac{1}{2})R\lambda$$
, $k = 0,1,2,...$ r_k 为k级明环半径

•
$$r_k^2 = kR\lambda, k = 0, 1, 2, ...$$
 r_k 为k级**暗环**半径

- 设m级、n级**暗环**半径分别为 r_m, r_n
- $r_m^2 = mR\lambda$, $r_n^2 = nR\lambda$
- $r_m^2 r_n^2 = (m-n)R\lambda$

•
$$R = \frac{r_m^2 - r_n^2}{(m-n)\lambda} = \frac{D_m^2 - D_n^2}{4(m-n)\lambda}$$

• 其中, D_m , D_n 分别为m级暗环和m级暗环的直径。

$$R_m^2 - r_m^2 = R_n^2 - r_n^2 = OP^2$$

不必确定某一环的级数; 不必确定牛顿环的中心

三、实验仪器

牛顿环装置、读数显微镜、钠光灯、稳压源

1、调节仪器

- ① 调整牛顿环装置金属框上的螺丝,使干涉条纹呈圆形 并处于牛顿环仪的中心(不可挤压过紧);
- ② 开启钠光灯,将牛顿环仪置于显微镜筒下方,调节显微镜座架高度,使套在显微镜镜头上的45度反光镜与钠光灯等高,入射光近乎垂直入射,并使钠黄光充满整个视场;
- ③ 调节目镜,使十字叉丝清晰(消除视差);
- ④ 显微镜聚焦,使干涉条纹清晰(显微镜筒自下而上缓慢移动),摇动测微鼓轮,使十字叉丝交点位置大致再牛顿环中心位置;
- ⑤ 观察待测各环,上下左右是否清晰,光强均匀。

2、测量平面凸透镜的曲率半径

- ① 调节目镜镜筒,使一根十字叉丝与显微镜移动方向垂直,另一根和显微镜移动方向一致
- ② 旋转显微镜测微鼓轮,使十字叉丝由牛顿环中央缓慢 移动到一侧,然后自此开始,单方向移动,依次测出 显微镜十字叉丝与各条纹相切的位置读数x₂₄,x₂₃,...,x₅, 继续越过中央暗斑,读取x'₅,x'₆,x'₇,...,x'₂₄

 $m = 15 \sim 24 \text{ }$ $n = 5 \sim 14 \text{ }$

测量顺序:

环的级 数	m	24	23	22	21	20	19	18	17	16	15
环的位 置	右侧 (mm)						—	4			_
	左侧 (mm)		1								

环的级 数	n	14	13	12	11	10	9	8	7	6	5
环的位 置	右侧 (mm)						—	3			
	左侧		2								
	(mm)										

已知,钠黄光波长 $\lambda = 589.3nm$

环的级数	m	24	23	22	21	20	19	18	17	16	15
环的位置	右侧										
	(mm)										
	左侧										
	(mm)										
环的直径	(mm)										
Dm	(111111)										
D_m^2	(mm ²)										
环的级数	n	14	13	12	11	10	9	8	7	6	5
环的位置	右侧										
	(mm)										
	左侧										
	(mm)										
环的直径Dn	(mm)										
D_n^2	(mm ²)										
$D_m^2 - D_n^2$	(mm ²)										
$R = \frac{D_m^2 - D_n^2}{4(m-n)\lambda}$	(m)										
△R	(m)										

曲率半径 R 的结果需规范表示

五、数据处理

任意两环可以确定R

$$R = \frac{1}{4(m-n)\lambda} \times (D_m^2 - D_n^2)$$

$$m = 15 \sim 24 \text{ FM}$$

 $n = 5 \sim 14 \text{ FM}$

小环k=5开始, Δ_k 间隔可取10环,求得R平均值:

$$\bar{R} = \frac{1}{4\Delta_k \lambda} \times \sum_{k=5}^{(N+4)} \frac{(D_{k+\Delta_k}^2 - D_k^2)}{N}$$

$$\Delta \bar{R} = \sqrt{\sum_{5}^{N+4} \left[\left(\frac{\partial \bar{R}}{\partial D_{k+\Delta_{k}}} \right)^{2} \cdot \Delta D_{k+\Delta_{k}}^{2} + \left(\frac{\partial \bar{R}}{\partial D_{k}} \right)^{2} \cdot \Delta D_{k}^{2} \right]}$$

$$= \frac{1}{4\Delta_k \lambda} \cdot 2 \cdot \Delta D \cdot \sqrt{\sum_{5}^{N+4} \left(D_{k+\Delta_k}^2 + D_k^2\right)}$$

$$\frac{\partial \bar{R}}{\partial D_k} = \frac{1}{4\Delta_k \lambda} \cdot 2D_k$$

$$\Delta D_{k+\Delta_k} = \Delta D_k = \Delta D = \frac{\Delta_1 \chi}{\sqrt{3}}$$

五、数据处理

或者, 为方便理解, 将每项展开写:

$$\bar{R} = \frac{1}{4(m-n)\lambda} \cdot \left[\frac{\left(D_{15}^2 - D_5^2\right) + \left(D_{16}^2 - D_6^2\right) + \dots + \left(D_{24}^2 - D_{14}^2\right)}{10} \right]$$

$$\frac{\partial \bar{R}}{\partial D_{15}} = \frac{1}{40(m-n)\lambda} \cdot 2D_{15} = \frac{1}{20(m-n)\lambda} \cdot D_{15}$$

$$\Delta D_{15} = \Delta D_5 = \Delta D = \frac{\Delta \chi}{\sqrt{3}}$$

$$\Delta \, \bar{R} = \sqrt{\left(\frac{\partial \bar{R}}{\partial D_{15}}\right)^2 \cdot \Delta D_{15}^2 + \left(\frac{\partial \bar{R}}{\partial D_5}\right)^2 \cdot \Delta D_5^2 + \cdots}$$

六、思考题

- ① 分析本次牛顿环实验误差的可能来源。
- ② 若测量某种透明液体光学介质的折射率,设计具体的实验装置(放置牛顿环的装置,包含设计简图),及分析需要注意的事项。

深圳大学

本节完毕, 谢谢观看

更多资源:

http://wlsyzhao.ys168.com/

