Statistics One

Lecture 10 Confidence intervals

Two segments

- Confidence intervals for sample means (M)
- Confidence intervals for regression coefficients (B)

2

Lecture 10 ~ Segment 1

Confidence intervals for sample means (M)

3

Confidence intervals

- All sample statistics, for example, a sample mean (M), are point estimates
- More specifically, a sample mean (M) represents a single point in a sampling distribution

The family of t distributions

Confidence intervals

- The logic of confidence intervals is to report a range of values, rather than a single value
- In other words, report an *interval estimate* rather than a *point estimate*

,

Confidence intervals

- Confidence interval: an interval estimate of a population parameter, based on a random sample
 - Degree of confidence, for example 95%, represents the probability that the interval captures the true population parameter

Confidence intervals

- The main argument for interval estimates is the reality of sampling error
- Sampling error implies that point estimates will vary from one study to the next
- A researcher will therefore be more confident about accuracy with an interval estimate

Confidence intervals for M

- · Example, IMPACT
- Assume N = 30 and multiple samples...
 - Symptom Score (Baseline), M = 0.05
 - Symptom Score (Baseline), M = 0.07
 - Symptom Score (Baseline), M = 0.03

– ...

.

Confidence intervals for M

- · Example, IMPACT
- Assume N = 10 and multiple samples...
 - Symptom Score (Baseline), M = 0.01
 - Symptom Score (Baseline), M = 0.20
 - Symptom Score (Baseline), M = 0.00
 - ...

10

Confidence intervals for M

- · Example, IMPACT
- Assume N = 30 and multiple samples...
 - Symptom Score (Post-injury), M = 12.03
 - Symptom Score (Post-injury), M = 12.90
 - Symptom Score (Post-injury), M = 14.13

_

11

Confidence intervals for M

- · Example, IMPACT
- Assume N = 10 and multiple samples...
 - Symptom Score (Post-injury), M = 19.70
 - Symptom Score (Post-injury), M = 8.40
 - Symptom Score (Post-injury), M = 13.30

-,,

Confidence intervals for M

- The width of a confidence interval is influenced by
 - Sample size
 - Variance in the population (and sample)
 - Standard error (SE) = SD / SQRT(N)

13

Confidence intervals for M

- · Example, IMPACT
- Assume N = 30
 - Symptom Score (Baseline)
 - 95% confidence interval
 - -0.03 0.10

14

Confidence intervals for M

- · Example, IMPACT
- Assume N = 10
 - Symptom Score (Baseline)
 - 95% confidence interval
 - -0.10 0.50

15

Confidence intervals for M

- · Example, IMPACT
- Assume N = 30
 - Symptom Score (Post-injury)
 - 95% confidence interval
 - 7.5 18.3

Confidence intervals for M

- · Example, IMPACT
- Assume N = 10
 - Symptom Score (Post-injury)
 - 95% confidence interval
 - 2.7 23.9

Confidence interval for M

- Upper bound = M + t(SE)
 Lower bound = M t(SE)
- SE = SD / SQRT(N)
- · t depends on level of confidence desired and sample size

The family of t distributions

Segment summary

- · All sample statistics, for example, a sample mean (M), are point estimates
- More specifically, a sample mean (M) represents a single point in a sampling distribution

Segment summary

- The logic of confidence intervals is to report a range of values, rather than a single value
- In other words, report an *interval estimate* rather than a *point estimate*

Segment summary

- The width of a confidence interval is influenced by
 - Sample size
 - Variance in the population (and sample)
 - Standard error (SE) = SD / SQRT(N)

22

END SEGMENT

23

Lecture 10 ~ Segment 2

Confidence intervals for regression coefficients (B)

Confidence intervals for B

- All sample statistics, for example, a regression coefficient (B), are point estimates
- More specifically, a regression coefficient
 (B) represents a single point in a sampling distribution

25

Confidence intervals for B

• In regression, t = B / SE

26

The family of t distributions

27

Confidence intervals for B

- The logic of confidence intervals is to report a range of values, rather than a single value
- In other words, report an *interval estimate* rather than a *point estimate*

Confidence intervals for B

- The main argument for interval estimates
- is the reality of sampling error
 Sampling error implies that point estimates will vary from one study to the next
 A researcher will therefore be more confident about accuracy with an interval estimate

Confidence intervals for B

- · The width of a confidence interval is influenced by
 - Sample size
 - Variance in the population (and sample)
 - Standard error (SE) = SD / SQRT(N)

Confidence intervals for B

- · Example, IMPACT
- Assume N = 40
 - Visual memory = B₀ + (B)Verbal memory

Confidence intervals for B

Confidence intervals for B

- · Example, IMPACT
- Assume N = 20
 - Visual memory = B₀ + (B)Verbal memory

Confidence intervals for B

33

Segment summary

- · All sample statistics are point estimates
- More specifically, a sample mean (M) or a regression coefficient (B) represents a single point in a sampling distribution

Segment summary

- The logic of confidence intervals is to report a range of values, rather than a single value
- In other words, report an *interval estimate* rather than a *point estimate*

Segment summary

- · The width of a confidence interval is influenced by

 - Sample size
 Variance in the population (and sample)
 - Standard error (SE) = SD / SQRT(N)

END SEGMENT

END LECTURE 10