Universidade Federal da Campina Grande Departamento de Engenharia Elétrica Processamento Digial de Sinais Prof. Edmar Candeia Gurjão

Exercício composição da primeira avaliação Setembro de 2020

Todas as perguntas se referem ao sinal $x(t) = \cos(2\pi 3200t) + 0.5 * \cos(2\pi 600t) + 0.01 \cos(2\pi 300t)$.

Problema 1 Determine a frequência de amostragem e mostre como ficam as amostras do sinal no tempo e os espectros do sinal original e do sinal amostrado.

Problema 2 Para a frequência que você escolheu (F_s) , mostre como fica o sinal recuperado das amostras obtidas com $F_s/4$, $F_s/2$.

Problema 3 Considere que a frequência de amostragem foi de Fs = 6ksps. Aplique a decimação no sinal amostrado pelos fatores L = 2, L = 5 e L = 10 e esboce como fica o espectro do sinal após a decimação.

Problema 4 Considere que a frequência de amostragem foi de Fs = 6ksps. Aplique a interpolação no sinal amostrado pelos fatores M = 2, M = 5 e M = 10 e esboce como fica o espectro do sinal após a decimação.

Problema 5 Considere que você tem a disposição um Arduino Nano e um Processador Digital Totalmente Configurável (você pode terá que definir todos os parâmetros do ADC), e que ambos serão utilizados para digitalizar o o sinal x(t) original. Em ambos os casos e mostre o erro entre o sinal amostrado e o recuperado após a quantização.

Instruções: Você pode responder todas as perguntas implementando um software que realize as operações desejadas e apresente os gráficos.