MINIMUM SPANNING TREE ALGORITHMS

Mohammad Minhazul Haq

Computer Science & Engineering

The University of Texas at Arlington

Minimum Spanning Tree

Given:

- a Connected, Undirected graph G(V, E)
- \blacksquare each edge $(u, v) \in E$ has a weight w(u, v)

□ Find:

- Acyclic subset (tree) $T \subseteq E$ that:
 - connects all vertices, and
 - total weight $w(T) = \sum_{(u,v) \in T} w(u,v)$ is minimized

Algorithm 1: Kruskal

```
MST-KRUSKAL (G, w)
                                                                                 O(1)
1. A = \emptyset
2. for each vertex v \in G.V
                                                                                 |V| MAKE-SET
3.
           MAKE-SET(v)
                                                                                O(E IgE)
4. sort the edges of G.E into non-decreasing order by weight w
5. for each edge (u, v) \in G. E taken in non-decreasing order by weight
           if FIND-SET(u) \neq FIND-SET(v)
6.
                                                                                 O(E)
7.
                      A = A \cup \{(u, v)\}\
                                                                                 FIND-SET &
8.
                       UNION(u, v)
                                                                                 UNION
9. return A
```

Running time:

```
O(E lgE) + O((V+E)\alpha(V)), where \alpha is very slowly growing function 
= O(E lgE) + O(E\alpha(V)), since G is connected |E| \ge |V| - 1
= O(E lgE) + O(E lgV)
= O(E lgE) + O(E lgE)
= O(E lgE)
```

Algorithm 2: Prim

```
MST-PRIM(G, w, r)
1. for each u \in G. V
2.
         u.key = \infty
                                                             O(V)
3.
    u.\pi = NIL
4. r.key = 0
5. Q = G.V
                                                             O(V), for Binary Heap
6. while Q \neq \emptyset
                                                             O(V lgV), for Binary-heap
7.
          u = EXTRACT-MIN(Q)
                                                             O(V<sup>2</sup>), for Linear-search
8.
          for each v \in G.Adj[u]
9.
                      if v \in Q and w(u,v) < v.key
                                                            O(E lgV), for Adj. List + Binary Heap
                                                             O(V^2), for Adj. Matrix + Linear Search
10.
                                v.\pi = u
11.
                                 v.key = w(u,v)
```

Running time (Adj. List + Binary Heap):
O(V |gV) + O(E |gV)

= O(E IgV)

Running time (Adj. Matrix + Linear Search): $O(V^2)$

Visualization of an Intermediate step

 $A = \{(g,h), (c,i), (f, g), (a,b)\}$

Kruskal's algorithm

 $Q = \{h, d, e\}$

Prim's algorithm

Similarities between Kruskal & Prim

- Greedy algorithm
- Follow a GENERIC-MST(G, w) algorithm
- Solution Tree (T) may or may not be unique
 - Kruskal's algorithms
 - Two edges with same weight, w
 - Prim's algorithm
 - Arbitrary root vertex, r
 - Two vertices in min-priority-queue having same keys

Differences between Kruskal & Prim

	Kruskal algorithm	Prim algorithm	
Input	(G, w)	(G, w, r)	
Output	A	No output. We can get MST from: $A = \{(v, v.\pi): v \in V - \{r\}\}$	
Growing subset of a MST, A	a forest (one/more components)	a single tree	
Safe Edge added to A	a least-weight edge that connects two distinct components	a least-weight edge that connects the tree to a vertex not in the tree	
Running time	Disjoint-set & Edge-list: O(E lgE)	Binary min-heap & Adj. List: $O(E lgV)$ Linear-Search & Adj. Matrix: $O(V^2)$	
Running time dependency on Data Structures	Depends on the implementation of Disjoint-set data structure (Union-by-rank and Path-compression heuristic)	Depends on: 1. the implementation of min- priority-queue, Q 2. how we store the graph	

Which one is better? When?

	Relationship between E and V	Kruskal	Prim (Binary-heap + Adj. List)	Prim (Linear-search + Adj. Matrix)
In General	E ≥ V -1	O(E lgE)	O(E lgV)	O(V ²)
Connected Sparse graph, Cycle graph	E ≅ V	O(V lgV)	O(V lgV)	O(V ²)
Dense graph, Complete graph	$ E \cong V ^2$	O(V ² lgV)	O(V ² lgV)	O(V ²)

Sparse Graph

Dense Graph

Further Improvements of Prim's algorithm

- Use Fibonacci heap to implement min-priority-queue, Q
 - DECREASE-KEY operation: O(1) amortized time
- Running time of Prim's algorithm improves to O(E + V lgV)
 - Sparse graph: O(V lgV)
 - Dense graph: O(V²)

THANK YOU