Introduction to Cryptography – LMAT2450 Final Examination

January 8, 2014

Instructions

0

0

- 1. You can use the slides presented during the class, and all your personal notes. No book or other printed/photocopied material is allowed.
- 2. The duration of the exam is 3 hours. Answer the questions on separate sheets of paper.
- 3. You have the possibility to present your answers to the examiners.

Question 1 Let $\Pi_{MAC} = \langle Gen, Mac, Vrfy \rangle$ be a Message Authentication Code defined as follows.

Gen(1): from the security parameter λ , choose $x, y \leftarrow \{0, 1\}^{\lambda}$ and set sk := (x, y).

 $\mathsf{Mac}_{\mathsf{sk}}(m)$: choose $r \overset{\mathtt{R}}{\leftarrow} \{0,1\}^{\lambda}$ and set $m_x := m \oplus r$ and $m_y := r$, then compute and output the tag $t := (t_x, t_y)$ for the message m where $t_x = x \oplus m_x$ and $t_y = y \oplus m_y$.

Vrfy_{sk}(t): parse t as $t = (t_x, t_y)$ and compute $m_x = t_x \oplus x$ and $m_y = t_y \oplus y$ from the secret key sk = (x, y) and then return 1 if and only if $m_x \neq 0^{\lambda}$, $m_y \neq 0^{\lambda}$ and $m = m_x \oplus m_y$ hold.

1. Show that the MAC scheme is correct (i.e. that $Vrfy_{sk}(Mac_{sk}(m)) = 1$) with overwhelming probability.

2. Give the best forgery attack that you can. Mai que pas bon (e+ Smil + chand) a Letector florgery sur

Question 2 Let $\Pi_{SIG} = \langle Gen, Sign, Vrfy \rangle$ be an EUF-CMA secure signature scheme with signatures that are 2λ -bit long, λ being the security parameter.

From Π_{SIG} , we build a second signature scheme $\Pi'_{SIG} = \langle Gen, Sign', Vrfy' \rangle$, where $Sign'_{sk}(m) :=$ $\operatorname{Sign}_{\operatorname{sk}}(m)|_{\lambda}$, that is, the first λ bits of a signature produced by Sign on the same inputs.

- 1. Define Vrfy' such that Π'_{SIG} is not EUF-CMA anymore.
- 2. Show one way to define Π_{SIG} and Vrfy' that makes Π'_{SIG} EUF-CMA-secure as well.

Indication: you can start from the assumption of the existence of a secure signature scheme producing signatures of any length linear in λ .

Question 3 The IND-CPA security of ElGamal encryption in a group \mathbb{G} relies on the decisional Diffie-Hellman (DDH) assumption in \mathbb{G} . In this question, we are interested in extending ElGamal to be able to encrypt l messages in an efficient way. A trivial method is to encrypt each message separetely using ElGamal, but this results in ciphertexts containing 2l elements in \mathbb{G} , and in the need to select l random values taken in \mathbb{Z}_q (where q is the prime order of the group \mathbb{G}).

We propose the following scheme in order to save l-1 group elements and l-1 random values, while still relying on the same DDH assumption. Let $\Pi_{ENC} = \langle Gen, Enc, Dec \rangle$ be such that:

- Gen(1^{\lambda}, l): for the security parameter λ , select a generator g of a group \mathbb{G} of prime order $q \geq 2^{\lambda}$ where the DDH assumption is assumed to hold. Then pick l random secret keys $\alpha_1, \ldots, \alpha_l \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$ and compute $h_1 = g^{\alpha_1}, \ldots, h_l = g^{\alpha_l}$ in \mathbb{G} . Return the public key $\mathrm{pk} = (\mathbb{G}, q, g, h_1, \ldots, h_l)$ and the secret key $\mathrm{sk} = (\alpha_1, \ldots, \alpha_l)$.
- Enc_k(m): for a message $m=(m_1,\ldots,m_l)\in\mathbb{G}^l$ choose one $r\stackrel{R}{\leftarrow}\mathbb{Z}_q$ and return the ciphertext $c=(c_0,c_1,\ldots,c_l)$ such that $c_0=g^r,\,c_1=m_1\cdot h_1^r,\,\ldots,\,c_l=m_l\cdot h_l^r$ in \mathbb{G} .
- $\mathsf{Dec}_{\mathsf{sk}}(c)$: return the decryption of each ElGamal ciphertext (c_0, c_i) using the secret key α_i , for each $i \in \{1, \ldots, l\}$, in order to recover and return (m_1, \ldots, m_l) .

Before answering the following questions, notice that an instance $(g_0, g_1, g_2, g_3) \in \mathbb{G}^4$ of the DDH problem can be sampled as $(g_0, g_1, g_2, g_3) = (g, g^x, g^y, g^{xy+bz})$ for random $x, y, z \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Solving the DDH experiment is then equivalent to guessing the random bit b.

- 1. Given a DDH instance (g_0, g_1, g_2, g_3) , show that, by selecting random $s, t \stackrel{R}{\leftarrow} \mathbb{Z}_q$, we can define $(g'_0, g'_1, g'_2, g'_3) := (g_0, g^s_0 \cdot g^t_1, g_2, g^s_2 \cdot g^t_3)$, which is another DDH instance with the same bit b.
 - Hint: simply specify the new x', y', z' and show that they are uniformly distributed in \mathbb{Z}_a .
- 2. Prove the CPA security of the extended ElGamal cryptosystem Π_{ENC} for l=2. A fully rigorous reduction is required.

Hint: apply the argument used to prove the security of the traditional ElGamal encryption scheme by using both DDH instances, (g_0, g_1, g_2, g_3) and (g'_0, g'_1, g'_2, g'_3) . Note that $g_0 = g'_0$ and $g_2 = g'_2$.