

Why look at case studies?

Outline

Classic networks:

- LeNet-5 <
- AlexNet <
- VGG <

ResNet (152)

Inception

Classic networks

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Andrew Ng

Residual Networks (ResNets)

Residual Network

Andrew Ng

Why ResNets work

Why do residual networks work?

ResNet

Network in Network and 1×1 convolutions

Why does a 1×1 convolution do?

Using 1×1 convolutions

Inception network motivation

The problem of computational cost

Inception network

Inception module 18x18x 1×1 128 28 1 × 1 3×3 96 58.458(415/8) Channel Previous Activation Concat 5×5 1×1 28×28×192 58×58×526 1×1 $3 \times 3, s = 1$

28 +28 × 192

32 filter, 1x1x197. Andrew Ng

same

Practical advice for using ConvNets

Transfer Learning

Practical advice for using ConvNets

Data augmentation

Common augmentation method

Color shifting R GB +20,-20,+20 -20,+20,+20 +5,0,+50

Advanced! PCA ml-class.org [Alex Net paper ["PCA color augustation."

Implementing distortions during training

Practical advice for using ConvNets

The state of computer vision

Data vs. hand-engineering

Two sources of knowledge

- → Labeled data (44)
- Hand engineered features network architecture other components

 Andrew Ng

Tips for doing well on benchmarks/winning competitions

Ensembling

• Train several networks independently and average their outputs

Multi-crop at test time

• Run classifier on multiple versions of test images and average results

Use open source code

• Use architectures of networks published in the literature

• Use open source implementations if possible

Use pretrained models and fine-tune on your dataset