

A Statistical Learning Algorithm for Inferring Reaction Networks from Time Series Data

Julien Martinelli, Jeremy Grignard, Sylvain Soliman, François Fages EP Lifeware, INRIA Saclay IIe de France

Explainable AI by Learning Mechanistic Models

- ► The Machine Learning field provides tools to analyze time series data and yield predictions.
 - Classical algorithms are Recurrent Neural Networks
 - ▶ While predictions can be accurate, they do not come with an explanation
 - Black box model
- ► Mechanistic Model Learning aims at achieving the same predictive power with an explainable learned model

Focus: Chemical Reaction Networks (CRN) Inference

- Input: time series data on molecular concentrations
 - single trace (wild type)
 - multiple traces with perturbed conditions (gene knock outs)
- Output :
 - \triangleright **CRN structure**: reactions with -1/0/1 stoichiometry
 - ▶ CRN kinetics: mass action law, Michaelis-Menten or Hill functions

The learned CRN provides a mechanistic explanation of the observations and allows predictions

Learning parameters: well-understood

Learning structure: hard without prior knowledge (see DREAM challenge)

Chain CRN Example

Learning from a single simulation trace

Hidden CRN			Learned CRN		
A	$\xrightarrow{1}$	В	A	<u>1.07</u>	В
В	$\stackrel{1}{\Longrightarrow}$	C	В	<u>1.09</u> →	C
C	$\stackrel{1}{\Longrightarrow}$	D	C	<u>1.04</u> →	D
D	$\stackrel{1}{\Longrightarrow}$	E	D	$\xrightarrow{0.99}$	E

Application to Time Lapse Videomicroscopy Data

- ► NIH3T3 embryonic mouse fibroblasts
- Time lapse of 15 min during 72 hours
- ► Cell tracking (through cell divisions)
- ► 3 fluorescent markers of
 - \triangleright cell cycle (G1 and S-G2-M)
 - \triangleright circadian clock (*Reverb-* α)

Feillet Delaunay INSERM 2013

Statistical Learning Algorithm

- ► **Greedy algorithm** that iteratively infers reactions
- ightharpoonup Reaction structures that maximise the pairing between reactant consumption and product formation in the observed transitions ${\cal F}$
- ightharpoonup Choice of reaction rates that minimize standard deviation on ${\mathcal F}$

Proposition

Time complexity in $\mathcal{O}(t.n^2)$ where

- ▶ t is the number of observed transitions in the traces
- and *n* the number of observed molecular species

F-score on Simulation Traces from a Hidden Model

$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$
 where precision $= \frac{\text{tp}}{\text{tp+fp}}$ recall $= \frac{\text{tp}}{\text{tp+fr}}$

⇒ Sensitivity of the F-score w.r.t. algorithmic parameters

Chain CRN example red: single trace (wild type)

blue: multiple traces (from perturbed initial states with random zeroes)

Results on the Yeast Cell Cycle Model [Tyson 1991]

Slow/fast multiple time scales make fast reactions unobservable. The slow dynamics is inferred.