Geoffrey Parker - grp352 HW 16: 3.13-3.17 M328K March 22th, 2012

3.13 Theorem. Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ is a polynomial of degree n>0 with integer coefficients. Then f(x) is a composite number for infinitely many integers x. *Proof.* Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ is a polynomial of degree n > 0 with integer coefficients and $a_n > 0$. We will show that f(x) is a composite number for infinitely many integers x. Let S be the set of integers x such that f(x) is composite. Assume by way of contradiction that S is finite. Let m be the largest element of S. By theorem 2.12, there exists an integer k such that for all integers j > k, f(j) > f(m). Now consider these two cases: $a_0 = 0$ and $a_0 \neq 0$. In the case that $a_0 \neq 0$, let $y = (k+1)|a_0|.$ **3.14 Theorem.** Given any integer a and any natural number n, there exists a unique integer t in the set $\{0, 1, 2, \dots, n-1\}$ such that $a \equiv t \pmod{n}$. *Proof.* Type your proof here! **3.15 Exercise.** Find three complete residue systems modulo 4: the canonical complete residue system, one containing negative numbers, and one containing no two consecutive numbers. Solution. Type your solution here! **3.16 Theorem.** Let n be a natural number. Every complete residue system modulo n contains n elements. *Proof.* Type your proof here! **3.17 Theorem.** Let n be a natural number. Any set of n integers $\{a_1, a_2, \ldots, a_n\}$ for which no two are congruent modulo n is a complete residue system modulo n.

Proof. Type your proof here!