

I/O Management, System Protection and Security

Arya S S

Department of Computer Science

Domain of Protection: Unix, MULTICS examples

Arya S S

Department of Computer Science

Slides Credits for all PPTs of this course

- Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne - 9th edition 2013 and some slides from 10th edition 2018
- 2. Some conceptual text and diagram from Operating Systems Internals and Design Principles, William Stallings, 9th edition 2018
- 3. Some presentation transcripts from A. Frank P. Weisberg
- 4. Some conceptual text from Operating Systems: Three Easy Pieces, Remzi Arpaci-Dusseau, Andrea Arpaci Dusseau

Domain Implementation (UNIX)

PES UNIVERSITY ONLINE

- Domain = user-id
- Domain switch accomplished via file system
 - 4 Each file has associated with it a domain bit (setuid bit)
 - 4 When file is executed and setuid = on, then user-id is set to owner of the file being executed
 - 4 When execution completes user-id is reset
- Domain switch accomplished via passwords
 - su command temporarily switches to another user's domain when other domain's password provided
- Domain switching via commands
 - sudo command prefix executes specified command in another domain (if original domain has privilege or password given)

Domain Implementation (MULTICS)

- •The protection domains are organized hierarchically into a ring structure.
- Each ring corresponds to a single domain
- •The rings are numbered from 0 to 7.
- •A process executing in domain Do has the most privileges.
- MULTICS has a segmented address space.
- •Each segment is a file, and each segment is associated with one of the rings.
- •It includes three access bits to control reading, writing, and execution

Multiplexed Information and Computing Service

- was a cooperative project led by MIT along with General Electric and Bell Labs.
- -was started in 1964 and has influenced all modern operating systems from microcomputers to mainframes
 --was the first major OS to be designed as a secure system
- -- had hardware support for ring-oriented security

Multics ring Structure

PES UNIVERSITY ONLINE

- •Let Di and Dj be any two domain rings.
- •If $j < i \Rightarrow Di \subseteq Dj$

Multics Domain Implementation

- •A current-ring-number counter is associated with each process, identifying the ring in which the process is executing currently.
- •When a process is executing in ring i, it cannot access a segment associated, with ring j (j < i).
- •It can access a segment associated with ring k (k > i).
- •Domain switching in MULTICS occurs when a process crosses from one ring to another by calling a procedure in a different ring.

Multics Domain Switching

Ring field of the segment descriptor include the following:

- 1.Access bracket. A pair of integers, b1 and b2, such that b1<= b2.
- 2.Limit. An integer b3 such that b3 > b2.
- 3. List of gates. Identifies the entry points (or gates) at which the segments may be called.
 - •If a process operating in ring i calls a segment whose bracket is such that b1 <= i <= b2, then the call succeeds and the current ring no of process remains i.
 - •Otherwise a trap to the OS occurs, and is handled as follows:
 - If i < b1, then the call is allowed, because we are transferring to a procedure with fewer privileges.
 - If i > b2, then the call is allowed only if i <= b3 and the call is directed to one of the entries on the list of gates.

THANK YOU

Arya S S

Department of Computer Science Engineering

aryadeep@pes.edu