Linguistic Complexity in Firm Disclosures: Obfuscation or Information

Bryan

June 7, 2024

Research Question

Motivation

Design

Figures

Conclusion

Research Quesion

Two previous views on the use of complex language

- 1. obfuscate to increase the information processing costs and delay the market reaction to the news Li, 2008
- 2. It is necessary to convey information about the firm's business transactions and operating strategy Bloomfield, 2008

How do two latent components of complexity language, the first is Obfuscation, the second is information, related to information asymmetry?

Conference calls are informative to market participants and lead to reductions in information asymmetry

Research Question

Motivation

Design

Figures

Conclusion

Motivation

Regulators have often expressed concern that the language in firms' disclosures has become increasingly complex.

And previous literature shows concern about the old methods (fog index), which would provide valuable information now.

This one focus on the use of complex language in conference calls, rather than in mandatory SEC filings

Individual investors might overreact, so the management has a stronger incentive to obfuscate. So the call would be a perfect proxy for this analysis.

Research Question

Motivation

Design

Figures

Conclusion

LC_Manager: the language complexity of manager, determined by two composition.

- $Info^*$: the information content of a manager's language in the absence of obfuscation
- ullet $Obfu^*$: intentional obfuscation, or an intentional reduction in informative language

$$LC_Manager = \phi_0 + \phi_1 Info^* + \phi_2 Obfu^* + \varepsilon, (1)$$

$$where \phi_1 \geq 0$$
 and $\phi_2 \geq 0$.

We seek to recover empirical estimates of the latent variables, $Info^*$ and $Obfu^*$

Analysts have incentives to acquire and convey value-relevant information during conference calls. Accordingly, we assume that the analyst's linguistic complexity on the call, which we represent as LC Analyst, reflects only the intrinsic amount of informative technical disclosure on the call. Formally,

$$LC_Analyst = \delta_0 + \delta_1 Info^* + \nu, (2)$$

Under the identifying assumption that analysts' linguistic complexity does not reflect intentional obfuscation, we can use the linguistic complexity of analysts on the call as a benchmark level of complexity that one would expect in the absence of obfuscation.

In particular, appendix A shows that we can recover estimates of $Info^*$ and $Obfu^*$ from a regression of $LC_Manager$ on $LC_Analyst$,

$$LC_Manager = \beta_0 + \beta_1 LC_Analyst + \eta, (3)$$

where the fitted value is an estimate of the latent information component Info and the residual is an estimate of the latent obfuscation component Obfu.

to validate that our estimates of the two latent components measure the respective theoretical constructs, we rely on economic theory that suggests that obfuscatory (informative) disclosure is associated with greater (lower) information asymmetry between shareholders and managers, InfoAsym (e.g., Bloomfield [2002]). Formally we assume,

$$InfoAsym = \gamma_0 + \gamma_1 Info^* + \gamma_2 Obfu^* + \eta, (4)$$

where $\gamma_2 \geq 0$ and $\gamma_1 < 0$. Note that equation (4) expresses information asymmetry as a function of the unobserved latent components of linguistics.

$$InfoAsym = \gamma_0 + \gamma_1 Info^* + \gamma_2 Obfu^* + \eta, (5)$$

if our decomposition is empirically descriptive, we expect to decompose a single variable—whose relation to information asymmetry is ambiguous—into two separate components, one that is positively related to information asymmetry and one that is negatively related to information asymmetry.

And the epirmrical exanmie show that obfuscation in analyst words is mild and no effect on result .

To equation 3

LC Manager: use $Fog(.) = 0.4 \times (average number of words per sentence+percent of complex words).$

Fog(Present) represents the Fog index of managers' language during the presentation, Fog(Response) is the Fog of managers' responses to questions.

Fog (analyst), using the analysts' questions and statements during the QA portion of the call

To equation 5

We measure information asymmetry using the Amihud [2002] illiquidity construct (see, e.g., Lang and Maffett [2011]). Following Amihud [2002], Illiquidity, is defined as

$$Illiquidity_t = \frac{|R_t|}{DVolume_t},$$

where Rt is the daily return and DVolumet is the daily dollar volume (in millions).

Research Question

Motivation

Design

Figures

Conclusion

Stats

Panel A: Firm ch	aracteristics				
Variable	Mean	Std. Dev.	P25	Median	P75
Acquinitions	0.006	0.025	0.000	0.000	0.000
BM	0.509	0.382	0.257	0.431	0.67
Caplatourity	0.247	0.242	0.059	0.159	0.36
Cupex	0.012	0.016	0.008	0.007	0.013
Greenage	9.240	6.318	4.000	7.000	13.00
Dispersion	0.002	0.004	0.000	0.001	0.000
Financing	0.056	0.096	0.000	0.003	0.02
Goodwill	0.028	0.165	0.000	0.000	0.000
Idioval	0.023	0.013	0.014	0.019	0.025
Leavinge	0.211	0.200	0.028	0.176	0.32
Lou	0.167	0.373	0.000	0.000	0.00
MontFirecout	0.514	0.500	0.000	1.000	1.00
Rice	0.011	0.023	0.000	0.000	0.01
Restructuring	0.228	0.419	0.000	0.000	0.00
Returns	2.314	23.284	-11.012	1.826	14.20
Size	7.168	1.590	6.033	6,998	8.15
SmallBeat	0.150	0.357	0.000	0.000	0.00
Specheun	-0.003	0.015	-0.001	0.000	0.00
Susprise	0.000	0.010	-0.001	0.001	0.00
a CPO	0.060	0.069	0.022	0.0(9)	0,009
Panel B: Measure	s of linguistic	complexity and in	eformation asym	metry	
Variable	Mean	Std. Des.	P25	Median	P75
Fag(Analyst)	8.851	2.513	8.584	9.231	10.000
Fag(Present)	15.861	1.591	14.849	15.899	16.935
Fig(Response)	11.956	1.644	10.804	11.840	12.957
fillioni GPv	0.076	2.297	0.000	0.002	0.000

Figure: stats

test result for equation 3

		pValue: Test o Difference in					
	Fig(Penew)			Fog(Ropense)			Coefficients (5) = (6)
Variable	(1)	(2)	(20	(4)	(5)	(6)	(7)
Fog(Asuloz)	0.09**		0.09**	0.22**		0.23**	[=0.001]
	(20.19)		(20.57)	(50.24)		(31.49)	
Nia		-0.59**	-0.59**		0.54**	0.25**	[<0.001]
		(-6.58)	(-6.78)		(4.75)	(4.10)	
Leonage		0.23***	0.24***		0.06	0.00	[0.049]
		(2.99)	(3.10)		(1.29)	(1.54)	
AM .		-0.68	-0.97		-4.21**	-9.16**	[0.10]
		(-1.99)	(-0.98)		(-3.564	(-3.29)	
Anne		-0.13**	-0.15***		0.00	-9.05**	[<0.001]
		(-4.54)	(-5.93)		(0.64)	(-2.11)	
Aspeciations		-0.65	-0.99		-0.05	-9.05	[0.499]
		(-1.26)	(-1.47)		(-0.57)	1-1.004	
Gabbatowsky		-0.47**	-0.99**		-9.76**	-4.55**	[0.042]
		(-4.51)	(-3.20)		(-9.15)	6 - 7.284	
Cohes		-0.01	-0.97		0.07	0.00	[0.329]
		(-0.53)	(-0.97)		(1.07)	(9.06)	
800		0.58**	0.57=		0.44**	0.42***	[0.128]
		(5.54)	(5.57)		14.006	(5.66)	
Financing		0.02	0.02		0.00	0.00	[0.975]
		(03.44)	(0.45)		(0.54)	(0.51)	
1070		0.22**	0.99**		0.00**	0.24**	[0.399]
		(3.24)	(3.90)		13.466	(3.91)	
Graduill		0.12*	0.11"		0.061	9.65	[0.44]
		(2.25)	(2.22)		(1.66)	(1.60)	
Amotoice		0.00	-0.92		0.12**	0.06**	[0.030]
		(0.04)	(=0.47)		(3.09)	(2.14)	
		69.172	69.172	60.172	60.172	60.172	
Note	93.172						

Figure: stats

Decomposition on Obfuscation and information.

TABLE 3

Distribution of Estimated Latent Components of Linguistic Complexity

Panel A: Descriptive s	tatistics					
Variable	Mean	Std. Dev.	P25	M	edian	P75
Obfu(Present)	0.000	1.533	-0.978		0.028	1.026
Info(Present)	15.861	0.423	15.599	1	5.855	16.132
Obfu(Response)	0.000	1.521	-1.061		0.122	0.915
Info(Response)	11.956	0.623	11.724	13	2.038	12.332
Panel B: Correlation						
Variable	(1)	(2)	(3)	(4)	(5)	(6)
Presentation Portion						
(1) $Fog(Present)$	1.00	0.96	0.25	0.37	0.32	0.19
(2) Obfu(Present)	0.96	1.00	0.00	0.31	0.34	0.02
(3) Info(Present)	0.27	0.00	1.00	0.25	0.02	0.62
Response Portion						
(4) Fog(Response)	0.38	0.32	0.26	1.00	0.91	0.45
(5) Obfu(Response)	0.34	0.35	0.00	0.93	1.00	0.09
(6) Info (Response)	0.19	0.00	0.70	0.38	0.00	1.00

This table presents descriptive statistics and correlations among the latest components of linguistic complexity. Fund R reports the distribution of our empirited estimates of the latest components of manageria linguistic complexity. Fund R reports the correlations among the latest components of linguistic complexity $R_{\rm pol}(R)$ is the R pinds of the respective portion of the conflictence and $(R/R_{\rm pol}(R))$ is the R pinds of the respective exciton of the call and $R_{\rm pol}(R)$ is the latest information component during the expective exciton of the call R point R pinds of R pinds of the R pinds of R pinds R pinds of R pinds R

Figure: stats

To eqution 5

	Linguistic	Complexity		Complexity nposed		r Additiona r Attributes
	(1)		(2)		(5)	
Vorkshile	coeff.	FeLAL	coeff.	HIM	coeff.	Fetal
Linguistic Complexity						
Fig(Penest)	0.01***	(3.41)				
Fig(Response)	-0.01***	(-5.04)				
Linguistic Complexity	Десотвром	d into Later		mis		
Obje(Pennst)			0.02***	(4.02)	0.01***	(2.95)
Olfv(Response)			0.01	(1.58)	0.01***	(4.07)
hylicitisch)			-0.04***	(-8.56)	-0.05***	(-8.18)
Base Model Controls						
Size	-0.61**	(-73.75)	-0.62***	(-74.54)	-0.65***	(-78.98)
BM .	0.03**	(6.27)	0.02***	(4.29)	0.01	(1.19)
Returns	-0.10^{-1}	(-28.54)	-0.11***	(-29.50)	-0.10^{-1}	(-29.55)
Minkle	0.10**	(13.92)	0.10***	(14.11)	0.10***	(14.51)
Coverage	-0.19**	(-29.00)	-0.19^{-1}	(-28.55)	-0.16***	(-25.82)
Dispersion	-0.04**	(-10.16)	-0.04***	(-10.06)	-0.05***	(-11.10)
ManuForcost	-0.01***	(-6.19)	-0.01***	(-5.64)	-0.01***	(-3.56)
Suspeiar	-0.04**	(-16.96)	0.04***	(-16.29)	-0.05***	(-14.16)
Lois	0.04**	(13.19)	0.05***	(14.06)	0.04***	(15.30)
Spechons	0.00	(-0.00)	0.00	(-1.06)	-0.00	(-0.47)
Smalthon	0.01***	(5.92)	0.01***	(6.15)	0.01***	(7.96)
Additional Controls fo	r Character	stics of Pres	entation an	d Response	Language	
Length(Present)					-0.06***	(7.45)
httpss(Pesest)					0.02***	(2.91)
FernsentLook(Present)					-0.02***	(-4.64)
PostiveTexe(Pennst)					-0.02***	(-4.22)
NegotiveToxe(Persent)					0.06***	(14,06)
Length(Response)					-0.07···	(-9.07)
Jergma (Rospense)					0.01"	(2,09)
FarrourdLook(Ropous)					-0.01**	(-2.35)
PostiveTowe(Response)					-0.01	(-1.21)
NepotiurTown Response)					0.05***	(7,55)
Nobs / Adi R	40.170	/ 82.00	40.170	/ 82.82	00.170	/ 83.48

Figure: stats

Other test

- 1. more complex businesses have permanently higher information asymmetry, and that our latent components simply proxy for business complexity that is independent of the disclosure response to complexity
- 2. examine whether our results are robust to including industry fixed effects firm fixed effects , and both firm and manager fixed effects
- 3. assess the relative importance of analyst linguistic complexity and the business complexity variables to our empirical estimation strategy by estimating the latent components separately using only analyst complexity and only business complexity.

other test

Also this paper examine the complexity with the earning Candice and Consistent with Li, 2008, we find that loss firms have significantly higher Fog during both the presentation and response

ANd they do experiment with the unique decomposition elements they find.

Mante Carlo Test

Panel A: Monte carlo	placebo test: Randos	n non-conference call dates			
	Table 4				
	Column 3	Random Non-Call Date	Diff(1) = (2)		
	β	E(\$1	pvalue		
Variable	(1)	(2)	(8)		
Ob(s(Present)	0.011***	0.004	[<0.001]		
Obfu(Besponse)	0.013***	0.008	[<0.001]		
Info(Both)	-0.054*** -0.018 [<				
Controls Included	Base Model Cons	rols + Additional Controls for C	haracteristics of		
	Presentation a	nd Response Language			
Panel B: Monte carlo	placebo test: Randor	n conference call dates			
	Table 4				
	Column 3	Random Call Date	Diff(1) = (2)		
	p	$E(\beta)$	pvalue		
Variable	(1)	(2)	(3)		
Obfa(Present)	0.011***	0.010	[0.820]		
Obfs(Response)	0.013***	-0.002	[=:0.001]		
Info(Both)	-0.034***	-0.015	[<0.001]		
Controls Included		rols + Additional Controls for C nd Response Language	haracteristics of		
Panel C: Monte carlo	placebo test: Randor	n decomposition			
	Table 4	Random			
	column 5	Decomposition	Diff(1) = (2)		
	8	EIFI	évalue		
Variable	(1)	(2)	(3)		
OMs(Present)	0.011***	0,000	[<0.001]		
Objec Bropoveri	0.013***	0.000	[<0.001]		
Info(Bulk)	-0.034***	0.000	[<0.001]		
Obfa(Response) Info(Buth) Controls Included	0.013*** 0.000 [<0.001				

Figure: stats

Research Question

Motivation

Design

Figures

Conclusion

Conclusion

- develop an empirical approach to estimate these two latent components within the context of quarterly earnings conference calls.
- Testify their assumption.
- find a predicted negative (positive) relation between the estimated information (obfuscation) component of linguistic complexity and information asymmetry.

Research Question

Motivation

Design

Figures

Conclusion

References I

- **Bloomfield, Robert (2008).** "Discussion of "annual report readability, current earnings, and earnings persistence"". *Journal of Accounting and Economics* 45.2-3, pp. 248–252.
- Li, Feng (2008). "Annual report readability, current earnings, and earnings persistence". Journal of Accounting and Economics 45.2. Economic Consequences of Alternative Accounting Standards and Regulation, pp. 221–247. ISSN: 0165-4101. DOI:

https://doi.org/10.1016/j.jacceco.2008.02.003.