In []: # Hello Mr. Biddulph! This file serves to show how data could be easily appe # existing data set. For this project, I am using Jupyter Notebook. This is # used for AI and ML applications. I will add comments throughout to show yo

In []: import pandas as pd
 import matplotlib.pyplot as plt
 import numpy as np
 import seaborn as sns
Importing cool Python tools for visualization.

In []: originalData = pd.read_csv("/Users/alexhanley/MF/simulated_business_data.csv
Importing our data file. This is randomly generated business data from Cha

In []: originalData.head()
 # Displaying the first 5 lines of data for testing purposes.

Out[]:		Business Name	Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortç
	0	Smith- Obrien	756 Cruz Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	
	1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth, 	40	528	Engineer, control and instrumentation	196316	24	
	2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	
	3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	
	4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	

In []: # Uh oh! Looks like we forgot to add the data for each businesses' revenue a
structure. Dont worry! Well append that easily.

```
In [ ]:
        newDataToAppend = pd.read_csv("/Users/alexhanley/MF/business_structure_rever
        # Our new data, it contains the business structure and its revenue.
In [ ]: newDataToAppend.head()
        # Displaying the first 5 lines of data for testing purposes.
Out[]:
                    Business Structure Revenue
        0 Limited Liability Company (LLC)
                                       1877825
                                        429610
         1
                           Corporation
        2
                           Partnership 4624226
        3
                     Sole Proprietorship 4118603
        4
                           Corporation 3754854
In [ ]: import pandas as pd
        # Ensure the new data is in the same order and has the same number of rows
        assert len(originalData) == len(newDataToAppend), "Datasets do not match in
        # Concatenate the new data to the original data as new columns
        combinedData = pd.concat([originalData, newDataToAppend], axis=1)
```

Print first 5 lines
combinedData.head()

Out[]:		Business Name	Address	Owner Age	Credit Score	Occupation	Taxable Value	Business Age	Mortç
	0	Smith- Obrien	756 Cruz Creek Apt. 228, East Michaelstad, DC	65	414	Toxicologist	76225	24	
	1	Cruz- Juarez	521 Quinn Avenue Suite 544, New Michaelmouth, 	40	528	Engineer, control and instrumentation	196316	24	
	2	Richardson PLC	PSC 8796, Box 4913, APO AE 77742	68	389	Medical physicist	669176	14	
	3	Owen LLC	106 Jamie Mission, North William, AK 99899	26	395	Programmer, multimedia	279258	8	
	4	Anderson Ltd	86642 Ellis Flat Suite 369, West Regina, KY 54296	60	503	Human resources officer	800800	21	
In []:	#	The next s	tep would be t	to gain	access	to the Experi	an busine	ess data.	
In []:	#	Here is a	visualization	of the	AI pote	entially signi	ficant da	ata we app	pendec
Tn []:	n1	t figure(f	igsize-(10 6)	1					

```
In []: # Here is a visualization of the AI potentially significant data we appended
In []: plt.figure(figsize=(10, 6))
    sns.boxplot(x='Business Structure', y='Revenue', data=combinedData)
    plt.title('Revenue Distribution by Business Structure')
    plt.xlabel('Business Structure')
    plt.ylabel('Revenue')
    plt.ylabel('Revenue')
    plt.xticks(rotation=45)
    plt.show()
    # Business Structure to Revenue
```


In []: # Next, for fun, I created a small linear regression machine learning model # how easy it would be to gain AI insight after recieving data. Any data that # to be appended could be very easily. You can even switch out which data ty # with a simple copy and paste.

```
In []: from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
    from sklearn.metrics import mean_squared_error, r2_score
    from sklearn.preprocessing import OneHotEncoder

import numpy as np

one_hot_encoder = OneHotEncoder(sparse=False)
    X = one_hot_encoder.fit_transform(combinedData[['Business Structure']]) # COME Y = CombinedData['Revenue']
    xName = "Business Structure"
    yName = "Revenue"
    # Splitting the dataset into training and testing sets
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, rand)
```

```
# Initializing and training the linear regression model
model = LinearRegression()
model.fit(X_train, Y_train)

# Making predictions
Y_pred = model.predict(X_test)

# Evaluating the model
meanSquaredError = mean_squared_error(Y_test, Y_pred)
r2Score = r2_score(Y_test, Y_pred)

print("Mean Squared Error:", meanSquaredError)
print("Coefficient of Determination (R^2):", r2Score)

if r2Score < 0.4:
    print("The correlation between {} and {} is not statistically significar
elif r2Score > 0.4 and r2Score <= 1:
    print("The correlation between {} } and {} is statistically significar</pre>
```

Mean Squared Error: 8416218597912.085 Coefficient of Determination (R^2): -0.010416722198247852 The correlation between Business Structure and Revenue is not statistically significant. There is no correlation between the two.

/Library/Frameworks/Python.framework/Versions/3.12/lib/python3.12/site-packa ges/sklearn/preprocessing/_encoders.py:975: FutureWarning: `sparse` was rena med to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value. warnings.warn(

In []: # Wow, these numbers are horrific ;). This is beacuse this was randomly gene # odds that 1000 lines of randomly generated data lead to some correlation i