Reg. No.

B. Tech. Degree V Semester Examination November 2017

CE/CS/EC/EE/IT/ME/SE AS 15-1501 NUMERICAL AND STATISTICAL METHODS (2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A (Answer ALL questions)

 $(10 \times 2 = 20)$

Show that $\Delta^3 y_0 = y_3 - 3y_2 + 3y_1 - y_0$. I.

(1+1)

- Find the cubic polynomial y(x) such that y(0)=1, y(1)=0, y(2)=1 and $(\frac{1}{2}+\frac{1}{2}$ y(3)=10, hence find y(4).
- Find the third divided difference with arguments 2, 4, 9, 10 where (1+1) $f(x) \equiv x^3 - 2x.$
- slope at x=1.
- Develop a general polynomial for numerical integration. (e)

(1+1)

- Define the following.
 - Random variable (ii) Sample space (iii) Mathematical expectation.
- Check whether $f(x) = \begin{cases} e^{-x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$ is a probability density function or not. (g) (1+1)
- The probabilities of Poisson variate taking the values 3 and 4 are equal. (\(\frac{1}{2} + 1 + 1 \) (h) Calculate the probabilities of the Poisson variate taking the value 1.
- (i) Write normal equations when fitting the straight line $y = ax^2 + bx + c$.

(1+1)

Define (i) Critical region (ii) Significance level and (iii) Power of the test. (j) (1++++)

PART B

 $(4\times10=40)$

- By using Newton Raphson's method find the real root of $x^4 x 10 = 0$, (1+2+1+1)II. (a) correct to three decimal places.
 - Solve the system of equations by Gauss-Siedel method. (b) 8x+y+z=8, 2x+4y+z=4, x+3y+5z=5.

(1+1+1+1+1

The population of a town in the census is given below. Examine the population (1+1+2+1) III. (a) for the year 1896.

Year	1891	1901	1911	1921	1931
Population in thousands	46	66	81	93	101

Using the following table, find f(x) as a polynomial by Newton's formula (b)

Х	-1	0	3	6	7
у	3	-6	39	122	1611

Find $f^{11}(1.6)$ from the following table. IV.

 ,	()		0				
x	1.0	1.1		1.3		1.5	1.6
v	7.829	8,403	8.781	9.129	9.451	9.750	10.031
-							

Using Simpson's $\frac{1}{3}rd$ rule, evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$, taking $h = \frac{1}{4}$.

Consider the initial value problem $\frac{dy}{dx} = xy$, y(0) = 1. Find y(0.4) by Euler's method.

Using Runge-Kutta method of second order solves. ٧. (a)

(b) Using Runge-Kutta method of second order, solve

$$\frac{dy}{dx} = x - 2y$$
, $y(0) = 1$ at $x = 0.1$, 0.2.

Six coins are thrown simultaneously. Find the probability of getting at least VI. (a) four heads.

C1+1+3)

For a binomial distribution, prove that mean = np and variance = npq. (b)

(3+2)

Prove that Poisson distribution as the limiting case of Binomial distribution. / Lp + 6 (1+1+2+1) VII. (a)

Fit a curve $y = ae^{bx}$ for the points (1, 10), (5, 15), (7, 12), (9, 15), (12, 21). (b)

The mean breaking strength of a certain kind of metallic rope is 160 pounds. If VIII. (a) six pieces of ropes (randomly selected from different rolls) have a mean breaking strength of 154.3 pounds with standard deviation 6.4 pounds, test the null hypothesis μ <160 pounds at 1% l.o.s. Assume that population follows normal distribution.

The mean values of birth rate with standard deviations and sample sizes are **(b)** given below by Socio-economic status. Is the mean difference in birth weight significant between Socio-economic groups?

(2+1+1+1+1)

-	High Socio-economic	Low Socio-economic		
	group	group		
Sample size	$n_1 = 15$	$n_1 = 10$		
Birth weight in kg	$\overline{x} = 2.91$	$\overline{y} = 2.26$		
Standard deviation	$S_1 = 0.27$	$S_2 = 0.22$		

OR

Test the null hypothesis that $\sigma = 0.022$ inch for the diameters of certain wire IX. (a) rope against the alternative hypothesis $\sigma \neq 0.022$ inch. Given that a random sample of size 18 yielded $S^2 = .000324$.

The standard deviation of a sample size 15 from a normal population was found (b) to be 7. Examine whether the hypothesis that the S.D is 7.6 is acceptable.