

LEIC-T 2023/2024 Aprendizagem - Machine Learning

Homework I - Group 007

Miguel Teixeira - 103449

Rodrigo Alves - 103299

In both cases, the correlation coefficients are 1, suggesting that the two variables, x1 and x2, are perfectly positively correlated.

	Pearn R(a1)																
	2(22)			9													
	poetia			ro or	Decor	(10	ر((ه	en	402	05	Ra	,ks	nēo	00	ne	mas	
	(e(a1)			5 =	15	1	2(14)) = 7	2.5	R	(22)) = 7	1.(5				
Co	re(Ro	an) ₁ e(:	72))	= (2	0.U(K	((21)	era.	(32)	=	1							
100	Spec 21			1000				Ral	ation	h	ave	đh	Fer	Sent	V	alv.	er,

0)	F ₁	= 2 a	F3	x	Output	P(n)=p(m)=p(F)=1
	a	6	6	9	+ +	P(t)=2	
	0	6	16	10	F		
Inal	de)=	3 (09 1	- 10	2 10025	= 1,92	2 611	
Fi		1,m3		+,‡,\$}			
	- 2 [wg	7 No. 15 Page 10/15 10			092 - 13	109 1 - 0,4183	
F(Fn)	= 2 x	1 + 2	× 0191	33 =	0,95098		

F2: Ca = { 1, t3	C6={t, m, t3
P(1)= 2	P(t)=1
P(A)=1	P(M)=1
T=-2 log 2=1	P(F)=2
2109 2	1=-31093=1,585
I(+2) = 2 x1 + 3 x1/595	± 1,381
901/(F2) = 1922 - 1,351	= 0,571
9011(+2) - 1122 1	
- CO 500C)	Cc={t,m}
F3: (8={NT,F}	P(t) = 1
P(1)=1	
P(t)=3	D(m) = 1
P(F)=13	I=-21092=1
1 1 2 58 5	
$7 - \log \frac{1}{3} = 1,585$ $7 = 7 + 3 \times 1$ $7 = 7 + 3 \times 1$	535-1351
F(F3) = = ×1 F5 X11	
9 ain (+3) = 1,422 - 1,351=	0,577
Jan (15)	
4 6 6 6 1 1 6 1	
F4: 0 Cx 2 1, m3 Ca 2+ +3	Cc 863
P(1) = 1 P(+)=1	P(F)-1
$p(m) = \frac{1}{2}$ $2 - (0.9) = 0$	F=10921=0
7	
12 1092 2-1	
F(Fq)= = x1 + 2 x0 +=	x0 = 2
Jain (Fy) = 1,922 - 0,4=1,52	2
Fy in the root because it	poolides The Gest gain

III Software Experiments

```
import matplotlib.pyplot as plt
     from sklearn.model_selection import train_test_split
     wine = datasets.load_wine()
     X, y = wine.data, wine.target
     train_sizes = [0.2, 0.5, 0.7]
     group_number = 7
     for train_size in train_sizes:
         X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size, stratify=y, random_state=int(group_number))
         depths = range(1, 11) # Test depths from 1 to 10
         accuracies = []
          for depth in depths:
23
             # Create a decision tree classifier with the current depth
             clf = tree.DecisionTreeClassifier(max_depth=depth, random_state=int(group_number))
             clf.fit(X_train, y_train)
             y_pred = clf.predict(X_test)
             # Calculate accuracy
             accuracy = metrics.accuracy_score(y_test, y_pred)
             accuracies.append(accuracy)
             print(f"Train Size: {train_size}, Depth: {depth}, Accuracy: {accuracy:.4f}")
         plt.figure()
         plt.plot(depths, accuracies, marker='o', linestyle='-')
         plt.title(f"Train Size: {train_size}")
         plt.xlabel("Depth")
         plt.ylabel("Accuracy")
         plt.grid(True)
         plt.show()
```

Train Size: 0.2, Depth: 1, Accuracy: 0.6154
Train Size: 0.2, Depth: 2, Accuracy: 0.8811
Train Size: 0.2, Depth: 3, Accuracy: 0.8811
Train Size: 0.2, Depth: 4, Accuracy: 0.8811
Train Size: 0.2, Depth: 5, Accuracy: 0.8811
Train Size: 0.2, Depth: 6, Accuracy: 0.8811
Train Size: 0.2, Depth: 7, Accuracy: 0.8811
Train Size: 0.2, Depth: 8, Accuracy: 0.8811
Train Size: 0.2, Depth: 9, Accuracy: 0.8811
Train Size: 0.2, Depth: 10, Accuracy: 0.8811

Train Size: 0.5, Depth: 1, Accuracy: 0.6742
Train Size: 0.5, Depth: 2, Accuracy: 0.8989
Train Size: 0.5, Depth: 3, Accuracy: 0.8764
Train Size: 0.5, Depth: 4, Accuracy: 0.8764
Train Size: 0.5, Depth: 5, Accuracy: 0.8876
Train Size: 0.5, Depth: 6, Accuracy: 0.8876
Train Size: 0.5, Depth: 7, Accuracy: 0.8876
Train Size: 0.5, Depth: 8, Accuracy: 0.8876
Train Size: 0.5, Depth: 9, Accuracy: 0.8876
Train Size: 0.5, Depth: 10, Accuracy: 0.8876

Train Size: 0.7, Depth: 1, Accuracy: 0.6111
Train Size: 0.7, Depth: 2, Accuracy: 0.8889
Train Size: 0.7, Depth: 3, Accuracy: 0.9259
Train Size: 0.7, Depth: 4, Accuracy: 0.9444
Train Size: 0.7, Depth: 5, Accuracy: 0.9444
Train Size: 0.7, Depth: 6, Accuracy: 0.9444
Train Size: 0.7, Depth: 7, Accuracy: 0.9444
Train Size: 0.7, Depth: 8, Accuracy: 0.9444
Train Size: 0.7, Depth: 9, Accuracy: 0.9444
Train Size: 0.7, Depth: 10, Accuracy: 0.9444


```
import matplotlib.pyplot as plt
from sklearn import datasets, tree
from sklearn.model_selection import train_test_split

# Load the Wine dataset
wine = datasets.load_wine()
X, y = wine.data, wine.target

# Define the classifier (Decision Tree with entropy)
predictor = tree.DecisionTreeClassifier(criterion='entropy')

# Split the dat
train_size = 0.7

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size, stratify=y, random_state=7)

# Train the classifier on the training data
predictor.fit(X_train, y_train)

# Plot the decision tree
figure = plt.figure(figsize=(12, 6))
tree.plot_tree(predictor, feature_names=wine.feature_names, class_names=wine.target_names, impurity=False)

# Save the decision_tree as an image (e.g., PNG)
plt.savefig('decision_tree.png')

# Display the plot (optional)
plt.show()
```



```
import matplotlib.pyplot as plt
from sklearn import datasets, tree
from sklearn.model_selection import train_test_split

# Load the Wine dataset
wine = datasets.load_wine()
X, y = wine.data, wine.target

# Define the classifier (Decision Tree with entropy)
predictor = tree.DecisionTreeClassifier(criterion='entropy')

# Split the data
train_size = 0.7

# X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=train_size, random_state=7)

# Train the classifier on the training data
predictor.fit(X_train, y_train)

# Plot the decision tree
figure = plt.figure(figsize=(12, 6))
tree.plot_tree(predictor, feature_names=wine.feature_names, class_names=wine.target_names, impurity=False)
plt.show()
```


The results may be different when not using stratify=y because, without stratification, the class distribution in the training and testing sets may not be representative of the overall dataset, potentially leading to biased model evaluations, while stratify=y ensures a stratified fashion, preserving the same proportion of target classes in both subsets.