1. Το άτομο του υδρογόνου βρίσκεται στη θεμελιώδη κατάσταση. Η ακτίνα της τροχιάς του ηλεκτρονίου είναι $r = 5,3 \times 10^{-11}$ m. Να υπολογιστούν: α. η ταχύτητα του ηλεκτρονίου,

γ. η κινητική, η δυναμική και η ολική ενέργεια του ηλεκτρονίου.

β. η περίοδος της κίνησης του ηλεκτρονίου.

Απάντηση:

Απαντηση: α. Η ταχύτητα του ηλεκτρονίου δίνεται από την εξίσωση $\upsilon = e\sqrt{\frac{k}{m \cdot r}}$. Αντικαθιστώντας $e = 1,6 \cdot 10^{-19} \, \text{C}$, $k = 9 \cdot 10^9 \, \text{Nm}^2 / \, \text{C}^2$, $m_e = 9.1 \cdot 10^{-31} \, \text{kg}$ και

 $r = 5, 3 \cdot 10^{-11} \text{ m}$ βρίσκουμε: $\upsilon = 2, 19 \times 10^6 \text{ m/s}$.

Β. Η περίσδος της κίνησης του ηλεκτρονίου είναι:

$$T = \frac{2\pi r}{r} = \frac{2 \cdot 3,14 \cdot 5,3 \cdot 10^{-11}}{2.10 \cdot 10^{6}} s = 1,52 \cdot 10^{-16} s$$

γ. Η κινητική, η δυναμική και η ολική ενέργεια του ηλεκτρονίου δίνονται από τις εξισώσεις:

$$K = \frac{1}{2}mv^2 = k\frac{e^2}{2e}$$
, $U = -k\frac{e^2}{2e}$, $E = K + U = -k\frac{e^2}{2e}$

 $\frac{2}{2}$ 2r r $\frac{2}{2}$ 2r Aντικαθιστώντας τις τιμές των k. e. r και λαμβάνοντας υπόψη ότι $\frac{1}{2}$ eV = $\frac{1}{2}$. 6x $\frac{10^{-19}}{2}$ J

βρίσκουμε: K = 13.6eV, U = -27.2eV και E = -13.6eV.