FORECASTING STAT0010

Alexandros Beskos

a.beskos@ucl.ac.uk

'Lecture 9' Outline

- Forecasting ARMA
 - example: ARMA(1,1)
- Forecasting non-stationary (ARIMA) models
 - example: *ARIMA*(0, 1, 1)
 - example: *ARIMA*(1, 1, 0)
- Measuring forecast performance
 - measures of deviation
 - example: share dealing
 - logarithmic scoring rule

From last week...

Corollary 1

Any stationary ARMA process $\{Y_t\}$, can be written as

$$Y_t - \mu = \sum_{i=0}^{\infty} \psi_j \, \epsilon_{t-j} \,.$$

Corollary 2

Let $\{Y_t\}$ be an invertible ARMA process. Then,

$$\mathbb{E}(\epsilon_{T+j}|Y_{1:T}) = \begin{cases} \epsilon_{T+j}, & j \leq 0 \\ 0, & j > 0 \end{cases}$$

Corollary 3

Let $\{Y_t\}$ be a stationary and invertible ARMA process. Then,

$$\widehat{Y}_{T+h} = \mu + \sum_{j=h}^{\infty} \psi_j \, \epsilon_{T+h-j} \,, \qquad \mathbf{e}_T(h) = \sum_{j=0}^{h-1} \psi_j \, \epsilon_{T+h-j} \,.$$

Corollary 4

Let Y_t be a stationary and invertible ARMA(p,q) process and let the coefficients $\{\psi_j\}$ be defined as above. Then the h-step ahead forecast error, with origin T, satisfies:

$$\mathbb{E}(e_T(h)) = 0,$$

$$\operatorname{var}(e_T(h)) = \sigma^2 \sum_{j=0}^{h-1} \psi_j^2.$$

Example 5

Let $\{Y_t\}$ be a stationary, invertible ARMA(1,1) process with mean $\mathbb{E}(Y_t) = \mu$. Find:

- $e_T(h)$ [h-step ahead forecast error]
- \bullet var $(e_T(h))$ [variance of h-step ahead forecast error]

$$ARMA(1,1): Y_t = \mu + \phi_1(Y_{t-1} - \mu) + \epsilon_t - \theta_1\epsilon_{t-1}.$$

I.e.

$$Y_{T+h} = \mu + \phi_1(Y_{T+h-1} - \mu) + \epsilon_{T+h} - \theta_1\epsilon_{T+h-1}$$
.

Forecast is:

$$\widehat{Y}_{T+h} = \mathbb{E}(Y_{T+h}|Y_{1:T})
= \mathbb{E}(\mu + \phi_1(Y_{T+h-1} - \mu) + \epsilon_{T+h} - \theta_1\epsilon_{T+h-1}|Y_{1:T})
= \mu + \phi_1(\widehat{Y}_{T+h-1} - \mu) + \mathbb{E}(\epsilon_{T+h}|Y_{1:T}) - \theta_1\mathbb{E}(\epsilon_{T+h-1}|Y_{1:T})$$

Now, [from Corollary 2]

$$\mathbb{E}(\epsilon_{T+h-1}|Y_{1:T}) = \begin{cases} \epsilon_T, & h = 1 \\ 0, & h > 1 \end{cases}$$

Hence, (noting $\hat{Y}_T = Y_T$) we have:

$$\widehat{\mathbf{Y}}_{T+h} = \begin{cases} \mu + \phi_1(\mathbf{Y}_T - \mu) - \theta_1 \epsilon_T, & h = 1\\ \mu + \phi_1(\widehat{\mathbf{Y}}_{T+h-1} - \mu), & h > 1 \end{cases}$$

Hence, answer to part 10 is:

$$\widehat{Y}_{T+h} = \begin{cases} \mu + \phi_1(Y_T - \mu) - \theta_1 \epsilon_T, & h = 1 \\ \mu + \phi_1(\widehat{Y}_{T+h-1} - \mu), & h > 1 \end{cases}$$

However, in this particular case, we can go further. Note

$$\widehat{Y}_{T+2} = \mu + \phi_1(\widehat{Y}_{T+1} - \mu)
= \mu + \phi_1(\mu + \phi_1(Y_T - \mu) - \theta_1\epsilon_T - \mu)
= \mu + \phi_1^2(Y_T - \mu) - \phi_1\theta_1\epsilon_T.$$

Similarly:

$$\widehat{Y}_{T+3} = \mu + \phi_1(\widehat{Y}_{T+2} - \mu)
= \mu + \phi_1(\mu + \phi_1^2(Y_T - \mu) - \phi_1\theta_1\epsilon_T - \mu)
= \mu + \phi_1^3(Y_T - \mu) - \phi_1^2\theta_1\epsilon_T.$$

By induction:

 $e_{\tau}(h)$: In general, to find error, recall it is convenient to find MA

example: ARMA(1, 1)

representation.
$$\{Y_t\}$$
 is $ARMA(1,1)$; hence

$$(1 - \phi_1 B)(Y_t - \mu) = (1 - \theta_1 B)\epsilon_t$$

$$Y_t - \mu = (1 - \theta_1 B) (1 - \phi_1 B)^{-1} \epsilon_t$$

$$= (1 - \theta_1 B) \sum_{i=0}^{\infty} (\phi_1 B)^{i} \epsilon_t \qquad [\{Y_t\} \text{ stationary}]$$

$$= (1 - \theta_1 B) \sum_{i=0}^{\infty} \phi_1^j B^j \epsilon_t$$

$$= \left(\sum_{j=0}^{\infty} \phi_1^j B^j - \theta_1 \sum_{k=0}^{\infty} \phi_1^k B^{k+1}\right) \epsilon_t$$
$$= \left(1 + \sum_{j=0}^{\infty} \phi_1^j B^j - \theta_1 \sum_{k=0}^{\infty} \phi_1^k B^{k+1}\right)$$

$$= \left(1 + \sum_{j=1}^{\infty} \phi_1^j B^j - \theta_1 \sum_{k=0}^{\infty} \phi_1^k B^{k+1}\right) \epsilon_t$$

$$= \left(1 + \sum_{i=1}^{\infty} \phi_1^j B^j - \theta_1 \sum_{\ell=1}^{\infty} \phi_1^{\ell-1} B^\ell\right) \epsilon_t \qquad [\ell = k+1]$$

7/24

$$Y_{t} - \mu = \left(1 + \sum_{j=1}^{\infty} \phi_{1}^{j} B^{j} - \theta_{1} \sum_{\ell=1}^{\infty} \phi_{1}^{\ell-1} B^{\ell}\right) \epsilon_{t}$$

$$= \left(1 + \sum_{j=1}^{\infty} \left(\phi_{1}^{j} - \theta_{1} \phi_{1}^{j-1}\right) B^{j}\right) \epsilon_{t}$$

$$= \epsilon_{t} + \sum_{j=1}^{\infty} \left(\phi_{1}^{j} - \theta_{1} \phi_{1}^{j-1}\right) \epsilon_{t-j}$$

$$= \epsilon_{t} + \sum_{j=1}^{\infty} (\phi_{1} - \theta_{1}) \phi_{1}^{j-1} \epsilon_{t-j}$$

$$= \sum_{j=0}^{\infty} \psi_{j} \epsilon_{t-j},$$

where

$$\psi_{j} := \begin{cases} 1, & j = 0 \\ (\phi_{1} - \theta_{1})\phi_{1}^{j-1} & j \ge 1 \end{cases}$$

We want $e_T(h) = Y_{T+h} - \widehat{Y}_{T+h}$, with $Y_{T+h} = \mu + \sum_{i=0}^{\infty} \psi_i \epsilon_{T+h-i}$. Recall [from Corollary 3 or c.f. lecture 8], that $\hat{Y}_{T+h} = \mathbb{E}(Y_{T+h}|Y_{1:T})$

$$= \mathbb{E}\left(\mu + \sum_{j=0}^{\infty} \psi_j \, \epsilon_{T+h-1} | Y_{1:T}\right)$$

$$= \mu + \sum_{j=0} \psi_j \mathbb{E}(\epsilon_{T+h-j}|Y_{1:T})$$

$$= \mu + \sum_{j=h}^{\infty} \psi_j \, \epsilon_{T+h-j} \,, \qquad \left[\mathbb{E}(\epsilon_{T+h-j} | Y_{1:T}) = \begin{cases} \epsilon_{T+h-j} \,, & j \geq h \\ 0 \,, & j < h \end{cases} \right]$$

Hence, [from Corollary 3 or c.f. lecture 8]

$$e_{T}(h) = \mu + \sum_{j=0}^{\infty} \psi_{j} \epsilon_{T+h-j} - \mu - \sum_{j=h}^{\infty} \psi_{j} \epsilon_{T+h-j}$$
$$= \sum_{j=0}^{h-1} \psi_{j} \epsilon_{T+h-j}$$

$$e_T(h) = \sum_{j=0}^{h-1} \psi_j \, \epsilon_{T+h-j}$$

In the ARMA(1, 1) case,

$$\psi_{j} := \begin{cases} 1, & j = 0 \\ (\phi_{1} - \theta_{1})\phi_{1}^{j-1} & j \ge 1 \end{cases}$$

Hence, for ARMA(1, 1):

2
$$e_T(h) = \epsilon_{T+h} + (\phi_1 - \theta_1) \sum_{j=1}^{h-1} \phi_1^{j-1} \epsilon_{T+h-j}$$
.

Therefore

And [from Corollary 4]

$$\operatorname{var}(e_T(h)) = \sigma^2 \sum_{j=0}^{h-1} \psi_j^2 = \sigma^2 \left(1 + (\phi_1 - \theta_1)^2 \sum_{j=1}^{h-1} \phi_1^{2j-2} \right)$$

(Sum is geometric series)

ARMA Forecasting Summary

- Write model equation for Y_{T+h}
- 2 Put hats on everything ('hat', $\hat{\cdot}$ means expectation conditional on $Y_{1:T}$)
- **3** Calculate \hat{Y}_{T+1} using $\hat{Y}_{T+j} = Y_{T+j}$, for $j \leq 0$, and

$$\hat{\epsilon}_{T+j} := \mathbb{E}(\epsilon_{T+j}|Y_{1:T}) = \begin{cases} 0, & j > 0 \\ \epsilon_{T+j}, & j \leq 0 \end{cases}$$

- Calculate \hat{Y}_{T+2} using above (together with the value of \hat{Y}_{T+1})
- **Similarly, calculate** \hat{Y}_{T+h}
- **5** To find error properties, find sequence of coefficients ψ_j in the following *MA* representation of the model:

$$Y_t - \mu = \sum_{j=0}^{\infty} \psi_j \, \epsilon_{t-j} \,,$$

and use $\mathbb{E}(e_T(h)) = 0$, and $\operatorname{var}(e_T(h)) = \sigma^2 \sum_{i=0}^{h-1} \psi_i^2$

For non-stationary models, an *MA* representation does not exist —recall, e.g. $(1 - \phi_1 B)Y_t = \epsilon_t \Rightarrow Y_t = (1 - \phi_1^j B)^{-1} \epsilon_t = \sum_{j=0}^{\infty} \phi_1^j \epsilon_{t-j}$ which only exists (converges) if $|\phi_1| < 1$. However, recall

$$\operatorname{var}(\boldsymbol{e}_{T}(\boldsymbol{h})) = \sigma^{2} \sum_{j=0}^{h-1} \psi_{j}^{2},$$

i.e., variance of h-step error (with finite h) only depends on first h-many values of ψ_i . Therefore, we can proceed in a similar way as before.

Remark 6 (Caveat: non-stationary error variance increases without bound)

Recall that, for stationary models, as $h \to \infty$:

$$\operatorname{var}(e_T(h)) \to \operatorname{var}(Y_t)$$
.

However for nonstationary models $\text{var}(e_T(h))$ diverges. (Because $\sum_{j=0}^{\infty} \psi_j^2 \not< \infty$ for nonstationary models.)

Example 7 (Forecasting *ARIMA*(0, 1, 1) models)

Find the h-step ahead forecast and associated error. Show mean error is zero. Find error variance.

Model equation:

$$(1-B)Y_{T+h}=(1-\theta_1B)\epsilon_{T+h}.$$

l.e.

$$Y_{T+h} = Y_{T+h-1} + \epsilon_{T+h} - \theta_1 \epsilon_{T+h-1}.$$

2 Put hats on everything ($\hat{\cdot}$ means expectation conditional on $Y_{1:T}$):

$$\widehat{Y}_{T+h} = \widehat{Y}_{T+h-1} + \widehat{\epsilon}_{T+h} - \theta_1 \widehat{\epsilon}_{T+h-1}.$$

3 Calculate \hat{Y}_{T+1} . Note, that $\hat{Y}_T = Y_T$, $\hat{\epsilon}_{T+1} = 0$ and $\hat{\epsilon}_T = \epsilon_T$. Hence

$$\widehat{Y}_{T+1} = Y_T - \theta_1 \epsilon_T.$$

4 Calculate \hat{Y}_{T+2} . Note, that $\hat{\epsilon}_{T+2} = 0$ and $\hat{\epsilon}_{T+1} = 0$. Hence

$$\widehat{Y}_{T+2} = \widehat{Y}_{T+1}$$

5 Similarly, for h > 2

$$\widehat{Y}_{T+h} = \widehat{Y}_{T+h-1} = \ldots = \widehat{Y}_{T+1}$$

5 Find *MA* representation, i.e. ψ_j , s.t. $Y_t = \sum_{j=0}^{\infty} \psi_j \, \epsilon_{t-j}$: $(1 - B) Y_t = (1 - \theta_1 B) \epsilon_t$,

i.e.

$$Y_{t} = (1 - \theta_{1}B)(1 - B)^{-1}\epsilon_{t} = (1 - \theta_{1}B)\sum_{j=0}^{\infty}B^{j}\epsilon_{t}$$

$$= \left(\sum_{j=0}^{\infty}B^{j} - \theta_{1}\sum_{k=0}^{\infty}B^{k+1}\right)\epsilon_{t}$$

$$= \left(1 + \sum_{j=1}^{\infty}B^{j} - \theta_{1}\sum_{k=0}^{\infty}B^{k+1}\right)\epsilon_{t}$$

$$= \left(1 + \sum_{j=1}^{\infty}B^{j} - \theta_{1}\sum_{k=1}^{\infty}B^{k}\right)\epsilon_{t} \quad [k+1 \leftrightarrow k]$$

$$= \left(1 + \sum_{j=1}^{\infty}(1 - \theta_{1})\right)\epsilon_{t-j}$$

I.e. $\psi_0 = 1$ and $\psi_i = 1 - \theta_1$ for j > 0.

$$\psi_0=$$
 1 and $\psi_j=$ 1 $heta_1$ for $j>$ 0. We have $\mathbb{E}(m{e}_T(m{h}))=$ 0 ,

and

$$var(e_{T}(h)) = \sigma^{2} \sum_{j=0}^{h-1} \psi_{j}^{2}$$

$$= \sigma^{2} \left(1 + \sum_{j=1}^{h-1} (1 - \theta_{1}) \right)$$

$$= \sigma^{2} \left(1 + (1 - \theta_{1}) \sum_{j=1}^{h-1} 1 \right)$$

$$= \sigma^{2} \left(1 + (h-1)(1 - \theta_{1}) \right).$$

Note, $h \to \infty$, $var(e_T(h)) \not< \infty$.

Example 8 (Forecasting *ARIMA*(1, 1, 0) models)

Find the h-step ahead forecast and associated error. Show mean error is zero. Find error variance.

Model equation:

$$(1 - \phi_1 B)(1 - B) Y_{T+h} = \epsilon_{T+h}.$$

Expand brackets:

$$Y_{T+h} = (1 + \phi_1)Y_{T+h-1} - \phi_1Y_{T+h-2} + \epsilon_{T+1}$$
.

Put hats on everything:

$$\hat{Y}_{T+h} = (1 + \phi_1)\hat{Y}_{T+h-1} - \phi_1\hat{Y}_{T+h-2} + \hat{\epsilon}_{T+1}$$
.

3 Calculate \widehat{Y}_{T+1} . Note, that $\widehat{Y}_T = Y_T$, $\widehat{Y}_{T-1} = Y_{T-1}$ and $\widehat{\epsilon}_{T+1} = 0$:

$$\hat{Y}_{T+1} = (1 + \phi_1)Y_T - \phi_1Y_{T-1}$$

4 Calculate \hat{Y}_{T+2} . Note that $\hat{Y}_{T+1} \neq Y_{T+1}$, $\hat{Y}_T = Y_T$ and $\hat{\epsilon}_{T+2} = 0$:

$$\widehat{Y}_{T+2} = (1 + \phi_1)\widehat{Y}_{T+1} - \phi_1 Y_T.$$

5 Similarly, for h > 2 (n.b. error in course notes)

$$\hat{Y}_{T+h} = (1+\phi_1)\hat{Y}_{T+h-1} - \phi_1\hat{Y}_{T+h-2}$$
.

§ Find *MA* representation, i.e. ψ_j , s.t. $Y_t = \sum_{j=0}^{\infty} \psi_j \, \epsilon_{t-j}$: $(1 - \phi_1 B)(1 - B) Y_{T+h} = \epsilon_{T+h}$,

i.e.

$$Y_{t} = \frac{1}{(1 - \phi_{1}B)(1 - B)} \epsilon_{t}$$

$$= \frac{1}{1 - \phi_{1}} \left(\frac{1}{1 - B} - \frac{\phi_{1}}{1 - \phi_{1}B} \right) \epsilon_{t} \quad \text{[partial fractions]}$$

$$= \frac{1}{1 - \phi_{1}} \left(\sum_{j=0}^{\infty} B^{j} - \phi_{1} \sum_{j=0}^{\infty} \phi_{1}^{j} B^{j} \right) \epsilon_{t}$$

$$= \frac{1}{1 - \phi_{1}} \sum_{j=0}^{\infty} (1 - \phi_{1}^{j+1}) B^{j} \epsilon_{t}$$

$$= \sum_{i=0}^{\infty} \frac{1 - \phi_{1}^{j+1}}{1 - \phi_{1}} \epsilon_{t-j}.$$

I.e. $\psi_j = (1 - \phi_1^{j+1})/(1 - \phi_1)$.

$$\psi_j = (1 - \phi_1^{j+1})/(1 - \phi_1).$$

we have

$$\mathbb{E}(e_T(h))=0\,,$$

and

$$var(e_{T}(h)) = \sigma^{2} \sum_{j=0}^{h-1} \psi_{j}^{2}$$

$$= \sigma^{2} \sum_{j=0}^{h-1} \left(\frac{1 - \phi_{1}^{j+1}}{1 - \phi_{1}} \right)^{2}.$$

Note, $h \to \infty$, $var(e_T(h)) \not< \infty$.

Question 9 (measuring forecast performance)

Given, at time T, we forecast values $\hat{y}_{T+1}, \hat{y}_{T+2}, \dots, \hat{y}_{T+h}$, and by time T+h, we observe actual values $y_{T+1}, y_{T+2}, \dots, y_{T+h}$. How can we assess how good our forecasts are?

Definition 10 (error measures)

Mean square error

$$FMSE_h(T) := \frac{1}{h} \sum_{j=1}^{h} (y_{T+j} - \hat{y}_{T+j})^2$$
.

Mean absolute error

$$FMAE_h(T) := \frac{1}{h} \sum_{i=1}^{n} |y_{T+j} - \hat{y}_{T+j}|.$$

Mean absolute percentage error

$$FMAPE_h(T) := \frac{1}{h} \sum_{i=1}^h \left| \frac{y_{T+j} - \hat{y}_{T+j}}{y_{T+h}} \right|.$$

All these error measures quantify average deviation from forecasts. However, the do not take into account uncertainty (error variance).

Example 11 (importance of forecast uncertainty!)

Think about buying 1000 shares @ £3.20/share. Forecasts for next month:

Forecaster A: predicts £3.30 exactly

Forecaster B: predicts £3.40 \pm 0.20 (error std. dev.)

I.e.

Forecast A: $\mathbb{P}(price < 3.20) = 0$

Forecast B: $\mathbb{P}(\textit{price} < 3.20) = 0.159$ [Assuming price $\sim \mathcal{N}(340, 20^2)$]

Now suppose (unfortunately) that next month true price = £3.18. Forecaster A definitely looses us money! Forecaster B might have put us off buying any shares, i.e. loss = 0! But measures \Rightarrow A is better?!?

measure	Α	В
FMSE ₁	144	484
FMAE ₁	12	22
FMAPE ₁	0.038	0.069

Probabilistically, a forecast is a probability distribution of Y_{T+h} , i.e. we have asserted that Y_{T+h} has some density function $f_{Y_{T+h}|Y_{1:T}}$, conditioned on $Y_{1:T}$, with mean \hat{y}_{T+h} and variance $var(e_T(h))$.

E.g., let $\epsilon_T \sim \mathcal{N}(0, \sigma^2)$. Then $\{Y_t\}$ are normally distributed and the probability forecast asserts

$$Y_{T+h}|Y_{1:T} \sim \mathcal{N}(\hat{y}_{T+h}, \text{var}(e_T(h)))$$
.

I.e., density function

$$f_{Y_{T+h}|Y_{1:T}}(y) = (2\pi \operatorname{var}(e_T(h)))^{-1/2} \exp\left(-\frac{(y-\hat{y}_{T+h})^2}{2\operatorname{var}(e_T(h))}\right),$$

quantifies the relative likelihood that the actual value is drawn from our probability forecast. Now take $-\log(\cdot)$ (small value \Rightarrow good forecast):

$$-\log f_{Y_{T+h}|Y_{1:T}}(y) = -\log \left(\left(2\pi \operatorname{var}(e_{T}(h)) \right)^{-1/2} \right) + \frac{(y - \hat{y}_{T+h})^{2}}{2 \operatorname{var}(e_{T}(h))}$$

$$= \frac{1}{2} \log 2\pi + \frac{1}{2} \log \operatorname{var}(e_{T}(h)) + \frac{(y - \hat{y}_{T+h})^{2}}{2 \operatorname{var}(e_{T}(h))}$$

I.e., for an actual value $y = y_{T+h}$, this is

$$-\log f_{Y_{T+h}|Y_{1:T}}(y_{T+h}) = \text{const.} + \frac{1}{2}\log \text{var}(e_T(h)) + \frac{(y_{T+h} - \hat{y}_{T+h})^2}{2 \text{var}(e_T(h))}$$

Summing these quantities (without const.) over all h-many forecasts...

Definition 12

Define logarithmic scoring rule over forecasts $\hat{y}_{T+1:T+h}$, as

$$\mathcal{L}_h := \frac{1}{2} \sum_{j=1}^h \log \operatorname{var}(e_T(j)) + \frac{(y_{T+j} - \hat{y}_{T+j})^2}{\operatorname{var}(e_T(j))}.$$

Remark 13

Note:

- Small $\mathcal{L}_h \Leftrightarrow$ 'good' forecast
- 1st term: $\log \text{var}(e_T(j))$ large \Leftrightarrow error variance large
- 2nd term: $\frac{(y_{T+j} \hat{y}_{T+j})^2}{\text{var}(e_T(j))}$ large \Leftrightarrow squared error \gg error variance

If we apply logarithmic scoring rule to the share dealing Example 11, we get

measure	Α	В
FMSE ₁	144	484
FMAE ₁	12	22
FMAPE ₁	0.038	0.069
\mathcal{L}_1	∞	3.60

I.e., simple measures of deviation imply (incorrectly) that Forecaster A is better, whereas logarithmic rule (correctly) identifies Forecaster B is better.

Remark 14

In practice, the forecast performance measures can be used as part of the validation procedure, as follows.

- split data up into two sets:
 - 'fitting' (or 'training') set [# data points typically = 80% of total data;
 e.g., for T = 100, choose Y₁,..., Y₈₀, say]
 - validation (or 'hold-out') set [on remaining data Y_{81}, \dots, Y_{100}]
- use Box-Jenkins approach only on the training set to choose a few good candidate models
- for each model:
 - generate forecasts
 - check forecasting performance by comparing forecasts with your hold-out set