

Enrico Ribiani 4AUB

Esperienza laboratoriale bipolo ohmico-capacitivo-induttivo serie

esperienza n°2

Indice

1	_	po:Verificare il comportamento di un bipolo sperimentalmente confrontanto i	1
	vaio 1.1	ori reali con quelli teorici. Materiale	1
	1.1		1
		1.2.1 Schema	
2	Cen	ni teorici	2
	2.1	Previsione comportamento	2
3	Proc	cedimento	3
	3.1	Foto	3
	3.2	Tabelle	6
	3.3	Calcoli	6
4		iclusioni	9
	4.1	Diagrammi vettoriali	0
1.	1 N	Materiale	
	• Bı	readboard	
	• Co	ondensatore da 100nF	
	• Re		
	• In	esistenza da $2,2k\Omega$	
1.		esistenza da $2,2k\Omega$ aduttore da $47mH$	
	2 S		
		aduttore da 47mH	
	• G	duttore da 47mH Strumenti	
	• Ge	Strumenti eneratore di funzione	

1.2.1 Schema

Il primo circuito verrà utilizzato per effettuare le misure su R, il secondo per effettuare le misure su C e il terzo per le misure su L.

2. Cenni teorici

2.1 Previsione comportamento

Il bipolo RLC è un circuito formato da un induttore, un resistore e un capacitore che in un aregime alternato si comporta diversamente al variare della frequenza dal momento che X_L e X_C ne dipendono, ci sono tre scenari possibili:

1.
$$X_C > X_L$$

In questo caso il bipolo si comporterà come un bipolo RC quindi la tensione \vec{V} sarà in ritardo di 90° rispetto alla corrente \vec{I}

2. $X_L > X_C$

In questo caso il bipolo si comporterà come un bipolo RL quindi la tensione \vec{V} sarà in anticipo di 90° rispetto alla corrente \vec{I}

3. $X_L=X_C$

In questo caso il bipolo si comporterà come un bipolo puramente resistivo quindi \vec{V} sarà in fase con \vec{I} in quanto la parte immaginaria del vettore sarà completamente nulla.

In questa esperienza osserveremo sperimentalmente tutti i tre casi utilizzando tre diverse frequenze, mi aspetto che le sinusoidi si comportnordicino in base alla frequenza come scritto precendentemente a meno di piccole variazioni dovuti agli srumenti di misura e a i vari errori.

3. Procedimento

Dopo aver controllato il materiale, calcolato fr, misurato R e R_{pind} che è la resistenza parassita dell'induttore abbiamo collegato il circuito al generatore di funzione e l'oscilloscopio, con un circuito montato abbiamo eseguito le misurazioni per tutte le frequenze prima su R, poi abbiamo collegato l'oscilloscopio ai capi di C e abbiamo preso le misure per tute le frequenze, idem per L.

Mentre cambiavamo frequenza dal generatore d'onda abbiamo scritto le misure sulla tabella e fatto le foto dell'oscilloscopio. una volta misurato il valore di tensione e tempo di ritardo t_r abbiamo calcolato lo sfasamento.

3.1 Foto

Figura 1: *V_R* 500Hz

Figura 2: V_L 500Hz

Figura 3: V_C 500Hz

Figura 4: V_R fr

Figura 5: V_L fr

Figura 6: V_C fr

Figura 7: V_R f=20kHz

Figura 8: V_L f=20kHz

Figura 9: V_C f=20kHz

3.2 Tabelle

f[Hz]	Comp-	V_{pp} [V]	$t_r [\mu s]$	$arphi^\circ$	φ rad
500	R	3,48	300	54	0,94
500	L	0,4	620	116,6	2,04
500	С	5,84	-216	-39	-0,68
fr	R	6,40	3	5,4	0,1
fr	L	2,2	100	83,52	1,46
fr	С	2,2	-102	-85	1,5
20k	R	2,64	-8,8	-63,4	1,12
20k	L	6,48	2,8	20,16	0,35
20k	С	0.1	-12	-86	-1,5

R_{pind}	132Ω
R_{sperim}	$2,16k\Omega$

3.3 Calcoli

$$fr = rac{1}{2\pi \cdot \sqrt{LC}} = rac{1}{2\pi \cdot \sqrt{0.047H \cdot (100 \cdot 10^{-9})F}} = 2,32kHz$$

$$V_{pp} = 7V$$

$$V = rac{V_{pp}}{2\sqrt{2}} = rac{V_{pp}}{7\sqrt{2}} = 2,47V$$

$$X_{L} = \omega L = 2\pi \cdot f \cdot L = 147, 8\Omega = 2\pi \cdot 500Hz \cdot 47mH = 147, 8\Omega$$

$$X_{C} = \frac{1}{\omega \cdot C} = \frac{1}{2\pi \cdot f \cdot C} = \frac{1}{2\pi \cdot 500Hz \cdot (100 \cdot 10^{-9})F} = 3185\Omega$$

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = 3038\Omega$$

$$I = \frac{V}{Z} = \frac{2,47V}{3038\Omega} = 0, 8mA$$

$$V_{R} = R \cdot I = 2, 2k\Omega \cdot 0, 8mA = 1,76V$$

$$V_{L} = X_{L} \cdot I = 147, 8\Omega \cdot 0, 8mA = 0,12V$$

$$V_{C} = X_{C} \cdot I = 3185\Omega \cdot 0, 8mA = 2,55V$$

$$V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}} = \sqrt{1,76^{2} + (0,12 - 2,55)^{2}} = 3V$$

$$\varphi = \arctan(\frac{X_{L} - X_{C}}{R}) = \arctan(-1,38) = -54^{\circ}$$

fr:

$$X_L = \omega L = 2\pi \cdot fr \cdot L = 147, 8\Omega = 2\pi \cdot 2,32kHz \cdot 47mH = 685\Omega$$

$$X_{C} = \frac{1}{\omega \cdot C} = \frac{1}{2\pi \cdot fr \cdot C} = \frac{1}{2\pi \cdot 2,32kHz \cdot (100 \cdot 10^{-9})F} = 686\Omega$$

$$X_{L} \simeq X_{C}$$

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = R = 2,2k\Omega$$

$$I = \frac{V}{Z} = \frac{V}{R} = \frac{2,47V}{2,2k\Omega} = 1,2mA$$

$$V_{R} = R \cdot I = 2,2k\Omega \cdot 1,2mA = 2,64v$$

$$V_{L} = X_{L} \cdot I = 685\Omega \cdot 1,2mA = 0,77V$$

$$V_{C} = X_{C} \cdot I = 686\Omega \cdot 1,2mA = 0,82V$$

$$V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}} = \sqrt{2,64^{2} + (0,77 - 0,82)^{2}} = 2,64V$$

$$\varphi = \arctan(\frac{X_{L} - X_{C}}{R}) = \arctan(\frac{1}{2200}) = 0,026^{\circ}$$

$$f=20kHz$$

$$X_{L} = \omega L = 2\pi \cdot f \cdot L = 147, 8\Omega = 2\pi \cdot 20kHz \cdot 47mH = 5,9k\Omega$$

$$X_{C} = \frac{1}{\omega \cdot C} = \frac{1}{2\pi \cdot f \cdot C} = \frac{1}{2\pi \cdot 20kHz \cdot (100 \cdot 10^{-9})F} = 80\Omega$$

$$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}} = 6621\Omega$$

$$I = \frac{V}{Z} = \frac{2,47V}{6621\Omega} = 0,04mA$$

$$V_{R} = R \cdot I = 2,2k\Omega \cdot 0,04mA = 0.88V$$

$$V_{L} = X_{L} \cdot I = 5,9k\Omega \cdot 0,04mA = 2,36V$$

$$V_{C} = X_{C} \cdot I = 80\Omega \cdot 0,04mA = 0,03V$$

$$V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}} = \sqrt{0,88^{2} + (2,36 - 0,03)^{2}} = 2,49V$$

$$\varphi = \arctan(\frac{X_{L} - X_{C}}{R}) = \arctan(2,64) = 69,3^{\circ}$$

Calcoli con valori sperimentali

$$V_R = \frac{V_{PPR}}{2\sqrt{2}} = \frac{3,48}{2\sqrt{2}} = 1,23V$$

$$V_L = \frac{V_{PPL}}{2\sqrt{2}} = \frac{0,4}{2\sqrt{2}} = 0,14V$$

$$V_C = \frac{V_{PPC}}{2\sqrt{2}} = \frac{5,84}{2\sqrt{2}} = 2,06V$$

$$V = \sqrt{V_R^2 + (V_L - V_C)^2} = \sqrt{1,23^2 + (0,14-2,06)^2} = 2,28V$$

formule generali:

$$\varphi : 2\pi = t : T$$

$$\varphi = \frac{2\pi \cdot t}{T}$$

$$\varphi rad : 2\pi = x : 360$$

$$\varphi^{\circ} = \frac{\varphi rad \cdot 360}{2\pi}$$

$$\varphi_R = \frac{2\pi \cdot t_R}{T} = \frac{2\pi \cdot (300 \cdot 10^{-6})s}{1/500Hz} = 1\text{rad}$$

$$\varphi_R^\circ = \frac{\varphi_{rad} \cdot 360}{2\pi} = \frac{1 \cdot 360}{2\pi} = 57^\circ$$

$$\varphi_L = \frac{2\pi \cdot t_L}{T} = \frac{2\pi \cdot (620 \cdot 10^{-6})s}{1/500Hz} = 1,94 \text{ rad}$$
$$\varphi_L^{\circ} = \frac{\varphi_{rad} \cdot 360}{2\pi} = \frac{1,94 \cdot 360}{2\pi} = 111^{\circ}$$

$$\varphi_C = \frac{2\pi \cdot t_C}{T} = \frac{2\pi \cdot (-216 \cdot 10^{-6})s}{1/500Hz} = -0,67\text{rad}$$
$$\varphi_C \circ = \frac{\varphi rad \cdot 360}{2\pi} = \frac{-0,67 \cdot 360}{2\pi} = -38^\circ$$

fr=2,32kHz

$$V_R = \frac{V_{PPR}}{2\sqrt{2}} = \frac{6.4}{2\sqrt{2}} = 2,26V$$

$$V_L = \frac{V_{PPL}}{2\sqrt{2}} = \frac{2.2}{2\sqrt{2}} = 0,78V$$

$$V_C = \frac{V_{PPC}}{2\sqrt{2}} = \frac{2.2}{2\sqrt{2}} = 0,78V$$

$$V = V_R = 2,26V$$

formule generali:

$$\varphi: 2\pi = t: T$$

$$\varphi = \frac{2\pi \cdot t}{T}$$

$$\varphi rad: 2\pi = x: 360$$

$$\varphi^{\circ} = \frac{\varphi rad \cdot 360}{2\pi}$$

$$\varphi_R = \frac{2\pi \cdot t_R}{T} = \frac{2\pi \cdot (3 \cdot 10^{-6})s}{1/2320} = 0,044 \text{rad}$$

$$\varphi_R \circ = \frac{\varphi_{rad} \cdot 360}{2\pi} = \frac{0,44 \cdot 360}{2\pi} = 2,5^\circ$$

$$\varphi_L = \frac{2\pi \cdot t_L}{T} = \frac{2\pi \cdot (100 \cdot 10^{-6})s}{1/2320Hz} = 1,45\text{rad}$$

$$\varphi_L^{\circ} = \frac{\varphi rad \cdot 360}{2\pi} = \frac{1,45 \cdot 360}{2\pi} = 83^{\circ}$$

$$\varphi_C = \frac{2\pi \cdot t_C}{T} = \frac{2\pi \cdot (-102 \cdot 10^{-6})s}{1/2320Hz} = -1,48\text{rad}$$
$$\varphi_C \circ = \frac{\varphi rad \cdot 360}{2\pi} = \frac{-1,48 \cdot 360}{2\pi} = -85^\circ$$

f=20kHz

$$V_R = \frac{V_{PPR}}{2\sqrt{2}} = \frac{2.64}{2\sqrt{2}} = 0.9V$$

$$V_L = \frac{V_{PPL}}{2\sqrt{2}} = \frac{6.48}{2\sqrt{2}} = 2.29V$$

$$V_C = \frac{V_{PPC}}{2\sqrt{2}} = \frac{0.1}{2\sqrt{2}} = 0.03V$$

$$V = \sqrt{V_R^2 + (V_L - V_C)^2} = \sqrt{0.9^2 + (2.29 - 0.03)^2} = 2.4V$$

formule generali:

$$\varphi: 2\pi = t: T$$

$$\varphi = \frac{2\pi \cdot t}{T}$$

$$\varphi rad: 2\pi = x: 360$$

$$\varphi^{\circ} = \frac{\varphi rad \cdot 360}{2\pi}$$

$$\varphi_R = \frac{2\pi \cdot t_R}{T} = \frac{2\pi \cdot (-8.8 \cdot 10^{-6})s}{1/20kHz} = -1, 1\text{ rad}$$

$$\varphi_R^\circ = \frac{\varphi_{rad} \cdot 360}{2\pi} = \frac{-1.1 \cdot 360}{2\pi} = 63.4^\circ$$

$$\phi_L = \frac{2\pi \cdot t_L}{T} = \frac{2\pi \cdot (2.8 \cdot 10^{-6})s}{1/20kHz} = 0,35 \text{rad}$$
$$\phi_L^{\circ} = \frac{\phi rad \cdot 360}{2\pi} = \frac{1.94 \cdot 360}{2\pi} = 20,2^{\circ}$$

$$\varphi_C = \frac{2\pi \cdot t_C}{T} = \frac{2\pi \cdot (-12 \cdot 10^{-6})s}{1/20kHz} = -1,5\text{rad}$$

$$\varphi_C \circ = \frac{\varphi_{rad} \cdot 360}{2\pi} = \frac{-0.67 \cdot 360}{2\pi} = -86,4^\circ$$

4. Conclusioni

Osservando i risultati ottenuti possiamo notare che viene seguito il comportamento teorico del circuito a parte per lo sfasamento dato dalla resistenza parassita dell'induttore che risulta rilevante solo quando vengono paragonati i valori teorici e quelli misurati, per quanto riguarda i diagrammi vettoriali esso non presenta un problema. Lo sfasamento pratico della tensione sulla corrente è uguale a φ di R perchè la tensione ai capi di R è in fase con la corrente e dal momento che per comodità abbiamo stabilito che \vec{V} è posizionato sull'asse delle X.

Avendo eseguito i calcoli possiamo comparare i valori teorici con quelli pratici e calcolarne la discrepanza:

$$\textit{Discrepanza\%} = \frac{\textit{Val.teo.-Val.sper.}}{\textit{Val.teo.}} \cdot 100$$

freq		val. teo	val sper.	disc. %
	V_R	1,76V	1,23	30
	V_L	0,12 V	0,14V	16
500Hz	V_C	2,55 V	2,06V	20
	V	3V	2,28V	24
	φ	-54°	-57°	5
	V_R	2,64V	2,26V	14
	V_L	0,77V	0,78V	1,2
2,32kHz	V_C	0,82V	0,78V	5
	V	2,64V	2,26V	14
	φ	0,026°	2,5°	1000
	V_R	0,88V	0,9V	2
	V_L	2,36V	2,29V	3
20kHz	V_C	0,03V	0,03V	0
	V	2,49V	2,4V	3,61
	φ	69,3°	63,4°	8

$$Discrepanza = \frac{Val.teo.-Val.sper.}{Val.teo.} \cdot 100$$

Possiamo notare osservando la discrepanza che gli i valori pratici e teorici alla frequenza di 500Hz sono mediamente pù distanti tra loro , questo perchè a quella frequenza si nota maggiormente la resistenza parassita dell'induttore che va a influire sulle tensioni sperimentali infatti possiamo calcolare la caduta di tensione provocata tramite la legge di Ohm $V_{rp} = I \cdot R_{pind} = 0.8 \text{mA} \cdot 132\Omega = 0.11V$, inoltre questa resistenza parassita va a influire anche sugli sfasamenti infatti con la formula

$$\varphi_L = \arccos(\frac{V_{Lteo}}{V_{Lsper}}) = \arccos(\frac{0.12V}{0.14V}) = 30^{\circ}$$

$$\varphi_L = \arccos(\frac{V_{Lteo}}{V_{Lsper}}) = \arccos(\frac{0.12V}{0.14V}) = 30^{\circ}$$

si va a ricavare lo sfasamento provocato da questo fenomeno (φ_L) che si andrà ad aggiungere allo sfasamento totale (φ) usando la formula $\varphi_{tot} = \varphi + 90 - \varphi_L$, nel nostro caso lo sfasamento totale risulta 98°.

L'ultimo punto da chiarire è la discrepanza di φ nella frequenza di risonanza, risulta altissima perchè lo sfasamento dovrebbe essere di 0° mentre a causa degli errori sistematici e gli errori accumulati dai vari strumenti da 0° sperimentalmente ne risulta 2,5° che è comunque accettabile ma visto che il valore teorico è cosi basso la discrepanza risulta sfalsata.

4.1 Diagrammi vettoriali

u=1V ma sono stati usati nel grafico i valori picco picco. f=500Hz u=1V

f=20kHz

