

Visualisations and Network Theory Network Statistics and Measures

Lecture 3 February 3rd and February 4th, 2020

Agenda

Metrics and Measures

Global and Individual

Density

 Number of ties, expressed as percentage of the total number of possible ties

ΒI

low density: 25%

high density: 39%

Average Degree

Average number of ties in a network

Density: 0,47

Average Degree: 4

Density: 0,14

Average Degree: 4

Average Distance

Average geodesic distance between all pairs of nodes

avg. distance 1.9

avg. distance 2.4

Diameter

 Maximum distance (length of the shortest path between the two most distant nodes)

diameter 3

diameter 4

Number of Components

 Component ratio: number of components minus 1 divided by number of nodes minus 1

CR is 1 when all nodes are isolates.

CR is 0 when all nodes are in one component.

CR: (3-1)/(14-1) = 0.154

Metrics and Measures Actors and Centrality

Centrality Measures

- Degree Centrality
- Degree Prestige
- Closeness Centrality
- Betweenness Centrality
- Eigenvector Centrality & PageRank

Example – Communication ties within a sawmill

Distance

 The larger the number of sources accessible to a person, the easier it is to obtain information. Social ties constitute social capital that may be used to mobilize social resources.

A geodesic is the shortest path between two vertices.

The **distance** from vertex u to vertex v is the length of the geodesic from u to v.

Degree Centrality

 The simplest indicator of centrality is the number of its ties (degree in a simple undirected network)

The degree centrality of a node is its degree.

Degree Centrality for whole networks

Degree centralization of a network is the variation in the degrees of vertices divided by the maximum degree variation which is possible in a network of the same size.

Network A

Network B

Degree Centralization = 0.17

Prestige Centrality = Indegree

• Prestige can be expressed as the relative indegree of an actor (*degree prestige*)

Prestige of node 3:

$$P_d(n_3) = 2_{+3} / (11-1) = 0,2$$

 $P_d(n_i) = x_{+i} / (g-1)$

Closeness Centrality

• Closeness centrality: A person is always then central, if that person regarding to the network relation is very close to all other persons. Such a central position allows to improve the efficiency of the communication of an actor. Such an actor is able to desseminate and receive information fast.

$$C_c(n_i) = \frac{g-1}{\sum_{j=1}^g d(n_i, n_j)}$$

Closeness Centrality

ni	nj	d
3	1	1
3	2	1
3	4	1
3	5	1
3	6	2
3	7	2
3	8	3
3	9	4
3	10	5
3	11	5
		25

$$C_c(n_3) = \frac{11-1}{25} = 0,4$$

Notice: We are only analyzing symmetrical relations and fully connected networks.

n	Сс
1	0.27
2	0.29
3	0.4
4	0.45
5	0.45
6	0.45
7	0.45
8	0.45
9	0.37
10	0.27

Betweenness Centrality

- Nodes that connect two in other respects unconnected subpopulations are actors with a high *betweenness centrality* score.
- Betweenness centrality measures bridging or being a bridge.
- Notice: We are assuming that information always travels on the shortest paths!

$$\sum_{\substack{j \neq k \\ C_b(n_i) = \frac{j \neq k }{i \neq j,k}}} \frac{g_{jk}(n_i)}{g_{jk}}$$
Normalization $g_{jk}(g-1)(g-2)$

Betweenness centrality

• Notice: In directed networks it is possible that some actors are not reachable by others, but are themselves able to reach other nodes by themselves.

1	2	3	4	5	6	7	8	9	10	11
0	0	0.37	0.22	0.22	0.22	0.22	0.48	0.37	0	0

Hue (from red=0 to blue=max) shows the node betweenness.

Eigenvector Centrality

Don Corleone did not have many strong ties. He was a man of few words, yet he could make an offer you can't refuse. Don Corleone surrounded himself with his sons and his trusted *capos*, who in turn, handled the day to day management issues of the family.

Eigenvector-like centrality measures look at the **value** of connections, not only the number of connections.

Rationale: Being connected to well connected friends is better than being connected to friends without many connections.

Example: Google PageRank Algorithm

- Google's PageRank algorithm ranks websites based on an eigenvector-type centrality logic
- Sites that receive a lot of links from important sites are ranked highly

Computer Networks and ISDN Systems

Volume 30, Issues 1-7, April 1998, Pages 107-117

The anatomy of a large-scale hypertextual Web search engine ☆

Sergey Brin ⊠, Lawrence Page A ⊠

Computer Science Department, Stanford University, Stanford, CA 94305, USA

Centralities in Comparison

- Degree: How many people can this person reach directly?
- Betweenness: How likely is this person to be the most direct route between two people in the network?
- Closeness: How fast can this person reach everyone in the network?
- **Eigenvector:** How well is this person connected to other well-connected people?

Number of Nodes and Ties

- Gives information about the **size** and **connectendness** of the network.
- The higher these numbers, the bigger and more complex the network.
- Depends a lot on the phenomenon: What type of nodes and ties do we have?

Density

- Density = number of realized ties as fraction of number of possible ties [0,1].
- Density tells us how connected a graph is, how much interaction or connection there is on average.
- Larger networks are often less dense. Interpret density with size and type of your network in mind. Would it be realistic to have a dense network?
- With social networks, there is often a limit to the number of connections (resource constraints) => Social networks often have low density.

Diameter and Average Path Length

Parameters: Network Interpretation: directed Results: Diameter: 4 Radius: 0 Average Path length: 2.040632054176072

- Diameter = Shortest path between the two nodes that are furthest away
- Average Path Length = How many steps it takes for two nodes to reach each other
- The lower the diameter and average path length, the more small world and bridged the network
- High diameter and average path length indicate a dispersed, chain-like network
- Interpret average path length and diameter with size and type of your network in mind.

Number of Connected Components and Isolates

Connected Components Report

Parameters:

Network Interpretation: directed

Results:

Number of Weakly Connected Components: 119
Number of Strongly Connected Components: 1221

- **Components** are the connected parts of a network. Often, there is one giant connected component and few, if any, smaller components.
- This is quite visible in the network **visualization**.
- Isolates (nodes with degree 0) are counted as components.
- We are interested in the number of weakly connected components, again in relation to the size of the network.

