# Non-convex Projections for Low-rank Matrix Recovery

Prateek Jain Microsoft Research, India

#### Acknowledgements:

- a) Matrix Linear Regression: Raghu Meka, Inderjit Dhillon
- b) Matrix Completion: Praneeth Netrapalli
- c) Robust PCA: Anima Anandkumar, Praneeth Netrapalli, Niranjan U N, Sujay Sanghavi

#### Overview

Provable non-convex projections for low-rank matrix recovery

$$\min_{X} f(X)$$
s.t.  $rank(X) \le r$ 

Projected gradient descent:

$$X_{t+1} = P_r(X_t - \eta \nabla f(X_t))$$

- $P_r(Z)$ : projection onto set of rank-r matrices
  - Non-convex set

$$P_r(Z) = \arg\min_{X, \, \operatorname{rank}(X) \le r} ||X - Z||_F^2$$

## Non-convexity of Low-rank manifold

 0.5
 0
 0

 0
 0
 0

 0
 0
 0

+ 0.5 0 0 0 0 1 0 0 0 0

| 0.5 | 0   | 0 |  |  |
|-----|-----|---|--|--|
| 0   | 0.5 | 0 |  |  |
| 0   | 0   | 0 |  |  |

#### Projection onto set of Low-rank Matrices

- Non-convex projections: NP-hard in general
- But  $P_r(Z)$  can be computed efficiently:

$$Z = U\Sigma V^T$$



•  $P_r(Z) = U_r \Sigma_r V_r^T$ 

#### Convex-projections vs Non-convex Projections

• For non-convex sets, we only have:

$$\forall Y \in C$$
,  $||P_r(Z) - Z|| \le ||Y - Z||$ 

- 0-th order condition
- But, for projection onto convex set *C*:

$$\forall Y \in C$$
,  $||Z - P_C(Z)||^2 \le \langle Y - Z, P_C(Z) - Z \rangle$ 

1-st order condition

- 0 order condition sufficient for convergence of Proj. Grad. Descent?
  - In general, NO ⊗
  - But, for certain specially structured problems, YES!!!

#### Our Results

RIP/RSC based Linear Regression

$$\min_{X} ||A(X) - b||_2^2 \quad s.t. \quad rank(X) \le r$$

- $A(\cdot)$ : RIP operator
- $A(\cdot)$ : RSC operator (statistical setting)
- Matrix Completion

$$\min_{X} ||P_{\Omega}(X - M)||_F^2 \quad s.t. \quad rank(X) \le r$$

- $\Omega$ : randomly sampled, M: incoherent matrix
- Non-convex Robust PCA

$$\min_{X} ||M - X||_0^2 \quad s.t. \quad rank(X) \le r$$

• M = L + S, L: low-rank incoherent matrix, S: sparse matrix

## Low-rank Matrix Sensing



#### Matrix Linear Regression

$$\mathbb{A}(M) = b$$

- A:  $\mathbb{R}^{n \times n} \to \mathbb{R}^d$ 
  - Linear operator
  - $\mathbb{A} = \{\mathbf{A_1}, \mathbf{A_2}, \dots, \mathbf{A_d}\}$

$$\mathbb{A}(X) = \begin{bmatrix} \langle A_1, X \rangle \\ \langle A_2, X \rangle \\ \vdots \\ \langle A_d, X \rangle \end{bmatrix}$$

Optimization Version:

$$\min_{X} ||A(X) - b||_{2}^{2}$$
s. t.  $rank(X) \le r$ 

#### Low-rank Matrix Estimation

$$\min_{X} ||A(X) - b||_{2}^{2}$$
s. t.  $rank(X) \le r$ 

- NP-hard in general
  - Hard to even approximate within log(n + d) [Meka, J., Caramanis, Dhillon'08]
- Tractable solutions under certain conditions
  - RIP conditions

Restricted Isometry Property



- For all rank-r matrix (X):  $(1 \delta_r) ||X||_F^2 \le ||A(X)||_2^2 \le (1 + \delta_r) ||X||_F^2$
- Examples:
  - A : sampled from multivariate normal distribution
  - m =  $O(\frac{r}{\delta_r^2} n \log n)$

## Approach 1: Trace-norm minimization

$$\min_{X} ||A(X) - b||_{2}^{2}$$
s. t.  $||X||_{*} \le \tau_{r}$ 

- $||X||_*$ : sum of singular values
- Provable recovery of M
  - RIP based Matrix Sensing: [Recht, Fazel, Parrilo'07]
  - For Gaussian distributed samples:  $O(r n \log n)$
- However, convex optimization methods for this problem don't scale well
  - SVD computation per step
  - Intermediate iterates can have rank much larger than "r"

## Approach 2: Alternating Minimization



- Provable convergence to M [J., Netrapalli, Sanghavi'13]
  - RIP property satisfied
  - Gaussian distribution:  $O(nr^3 \log n)$ 
    - Suboptimal bounds

## Approach 3: Projected Gradient based Methods

- $X_0 = 0$
- For t=1:T

$$X_t = P_r \left( X_{t-1} - \eta \mathbb{A}^{\mathrm{T}} (\mathbb{A}(X_{t-1}) - \mathbf{b}) \right)$$

- $P_r(Z)$ : projection onto set of rank-r projection
- Singular Value Projection
- Several other variants exist (ADMiRA [Lee, Bresler'09])

#### Guarantees

- SVP converges to global optima
  - $\delta_{2r} \le 1/3$
  - For Gaussians:  $O(r n \log n)$
  - Info. theoretically optimal
- Noisy case analysis also available
- Analysis: a simple extension of analysis of iterative hard thresholding [Garg, Khandekar'08]

#### Extensions

• Optimize general *f* 

$$\min_{X} f(X)$$
s.t.  $rank(X) \le r$ 

• Assume RSC-style condition:  $\forall X, s.t. rank(X) \leq r$  $(1 + \delta_r)I \geqslant \nabla^2 f(X) \geqslant (1 - \delta_r)I$ 

- SVP converges to the optima for such a case as well [J., Kar, Tewari'14]
- Extensions to the "statistical setting" as well

#### Summary

$$\min_{X} f(X)$$
s.t.  $rank(X) \le r$ 

- Projected gradient descent converges to the global optima
  - Assuming certain RSC/RIP style conditions
- Standard matrix sensing:
  - Information theoretic optimal bounds
- Analysis:
  - Only requires 0-th order property

$$||Y - Z|| \ge ||P_r(Z) - Z||, \quad \forall Y \in C$$

# Low-rank Matrix Completion

#### Low-rank Matrix Completion



- Task: Complete ratings matrix
- Applications: recommendation systems, PCA with missing entries

#### Low-rank



- M: characterized by U, V
   DoF: nr
- No. of variables:
  - U:  $n \times r = nr$
  - $V: n \times r = nr$

## Low-rank Matrix Completion

$$\min_{X} Error_{\Omega}(X) = \sum_{(i,j)\in\Omega} (X_{ij} - M_{ij})^{2} = ||P_{\Omega}(X - M)||_{F}^{2}$$
s. t rank(X) \le r

- $\Omega$ : set of known entries
- $P_{\Omega}(X)_{ij} = X_{ij}, (i,j) \in \Omega$ 
  - 0 otherwise

| 1 |         |   |               | 1 | 0            | 0              | 0 |
|---|---------|---|---------------|---|--------------|----------------|---|
|   |         | 2 |               | 0 | 0            | 2              | 0 |
|   |         | 1 | $\Rightarrow$ | 0 | 0            | 1              | 0 |
|   | 4       |   |               | 0 | 4            | 0              | 0 |
|   | $N_{c}$ | 1 |               |   | $P_{\Omega}$ | $\overline{M}$ | ) |

## Approach 1

- Convex relaxation: Replace rank(X) with  $||X||_*$
- Provably recovers *M* if:
  - M:rank-r incoherent matrix (non-spiky matrix)

• 
$$M = U\Sigma V^T$$
,  $||U^i||_2 \le \frac{\mu\sqrt{r}}{\sqrt{n}}$ 

- $\Omega$ : sampled uniformly at random and  $|\Omega| \ge O(r n \log^2 n)$
- Worst Computation time:  $O(n^3)$
- Refs: [Candes, Recht 2008], [Candes, Tao 2008], [Recht 2010]

## Approach 2

- Alternating Minimization:  $X = UV^T$
- Provably recovers *M* if:
  - $|\Omega| \ge O(poly(r)n\log n\log\left(\frac{\sigma_1}{\sigma_r}\right)\log\left(\frac{1}{\epsilon}\right)$
  - $\sigma_i$ : i-th singular value of M
  - ε: accuracy parameter
- Computation time:  $O(|\Omega|r^2)$ 
  - Nearly linearly computation time
- Sample complexity: dependence on  $\kappa = \sigma_1/\sigma_r$
- Refs: [J., Netrapalli, Sanghavi'13], [Hardt, Wooters'14]

## Approach 3: Singular Value Projection

Sample 
$$\Omega$$
  
 $X_t = P_r(X_t - P_{\Omega}(X_t - M))$ 

- Previous analysis applies only if  $P_{\Omega}(\cdot)$  satisfies RIP
  - RIP holds but only for incoherent matrices
  - $X_t M$ : need not be incoherent

| 1 | 1 | 1 |   | 1  | 1  | 1  |          | 0  | 0  | 0  |
|---|---|---|---|----|----|----|----------|----|----|----|
| 1 | 1 | 1 | _ | 1  | 1  | 1  | <b>=</b> | 0  | 0  | 0  |
| 1 | 1 | 1 |   | .5 | .5 | .5 |          | .5 | .5 | .5 |

• Require:  $X_t \to M$  in  $L_\infty$  norm

#### Guarantees

- Our approach:
  - Analyze  $||X_t M||_{\infty}$  instead!
  - At first seems tricky:  $P_r(\cdot)$  optimal only w.r.t. spectral norm or Frobenius norm
- Three key tricks:
  - Use a Taylor series expansion technique by [Erdos et al' 2013]
  - Convert  $L_{\infty}$ -norm error bounds into  $||\cdot||_2$  error bounds
  - Analyze  $||H^a u||_{\infty}$

## Setting up the proof (Rank-one Case)

$$X_{t} = P_{1}(X_{t-1} - P_{\Omega}(X_{t-1} - M))$$

$$= P_{1}(M + X_{t-1} - M - P_{\Omega}(X_{t-1} - M))$$

$$= P_{1}(M + E_{t} - P_{\Omega}(E_{t}))$$

$$= P_{1}(M + H_{t})$$

- $H_t = E_t P_{\Omega}(E_t)$
- $E[H_t] = 0$  : assuming  $\Omega$  is independent of  $E_t$
- $E[H_t(i,j)^2] \le \frac{||M-X_{t-1}||_{\infty}^2}{p}$
- $||H_t||_2 \le \delta n ||M X_{t-1}||_{\infty}$  (assuming  $p \ge \log n / \delta^2$ )
- $||M X_t||_2 \le 2||H_t||_2$  (but only spectral norm bound)

## Key Step 1

• Let  $v, \lambda$  be the largest eigenvector/value of  $M + H_t$ 

$$(M + H_t)v = \lambda v$$

$$(I - \frac{H_t}{\lambda})v = \frac{Mv}{\lambda}$$

$$v = (I - \frac{H_t}{\lambda})^{-1} \frac{Mv}{\lambda} = \frac{Mv}{\lambda} + \sum_{a=1}^{\infty} (\frac{H_t}{\lambda})^a \frac{Mv}{\lambda}$$

$$\begin{aligned} \bullet \ X_t &= \lambda v v^T \\ M - X_t &= M - \lambda v v^T \\ &= M - M \frac{v v^T}{\lambda} M - \sum_{a \geq 0, b \geq 0, a + b \geq 1}^{\infty} \left(\frac{H_t}{\lambda}\right)^a \frac{M v v^T M^T}{\lambda} \left(\frac{H_t}{\lambda}\right)^b \end{aligned}$$

## Key Step 2

$$||M - X_t||_{\infty}$$

$$\leq ||M - M \frac{vv^T}{\lambda} M||_{\infty} + \sum_{a \geq 0, b \geq 0, a+b \geq 1}^{\infty} \left| \left( \frac{H_t}{\lambda} \right)^a \frac{Mvv^T M^T}{\lambda} \left( \frac{H_t}{\lambda} \right)^b \right|_{\infty}$$

 $M = u^* u^{*T}$ 

• 
$$M = u^* u^{*^T}$$

$$||M - M \frac{vv^T}{\lambda} M||_{\infty} \le \max_{i,j} e_i^T u^* \left(1 - u^{*T} \frac{vv^T}{\lambda} u^*\right) u^{*T} e_j$$

$$\le \max_{i,j} |e_i^T u^*| |e_j^T u^*| |1 - (u^{*T} v)^2 / \lambda|$$

$$\le \frac{\mu^2}{n} 4||H_t||_2 \le 8\mu^2 \delta ||M - X_{t-1}||_{\infty}$$

## Key Step 3

Need to bound

$$||(H_t)^a u^*||_{\infty}$$

- $H_t = M X_{t-1} P_{\Omega}(M X_{t-1})$
- $(H_t)^a$  has several correlated entries
  - Use technique of [Erdos et al'2013]
  - Intuitively, counts the total no. of paths between any pair of nodes
- Bound:  $||(H_t)^a u^*||_{\infty} \le \frac{\mu}{\sqrt{n}} (\delta ||M X_{t-1}||_{\infty} c \log n)^a$
- Sum up terms to bound  $||M X_t||_2$

#### Guarantee for SVP

• At *t*-th step :

$$||M - X_t||_{\infty} \le .5 ||M - X_{t-1}||_{\infty}$$

- After  $\log(\frac{\mu}{\epsilon})$  steps:  $||M X_t||_{\infty} \le \epsilon$
- Sample complexity:  $|\Omega| \ge nr^2 \mu^2 \left(\frac{\sigma_1}{\sigma_r}\right)^2 \log^2 n \log \frac{1}{\epsilon}$ 
  - Dependence on condition number!!!

## Stagewise-SVP

- $X_0 = 0$
- For k=1...r
  - For t=1:T

• 
$$X_t = P_r(X_{t-1} - P_{\Omega}(X_{t-1} - M))$$

- End For
- $\bullet X_0 = X_T$
- End For

#### Guarantees

• After t-th step of *k*-th stage:

$$||M - X_t||_{\infty} \le \frac{2\mu^2 r}{n} \left(\sigma_{k+1} + \left(\frac{1}{2}\right)^t \sigma_k\right)$$

- M: rank-r i.e.  $\sigma_{r+1} = 0$
- After T =  $\log(\frac{1}{\epsilon})$  steps of r-th stage:  $||M X_T||_{\infty} \le \epsilon$
- Sample complexity:  $|\Omega| \ge nr^4\mu^2 \log n \log 1/\epsilon$
- Computation complexity:  $O(nr^6\mu^2 \log n \log \frac{1}{\epsilon})$ 
  - Linear in *n*
  - No explicit dependence on  $\sigma_1/\sigma_r$

#### Simulations



#### Summary

- Study matrix completion problem
- Projected gradient descent works!
- With some tweaks, obtain a nearly linear time algorithm for matrix completion
  - No explicit dependence on condition number
- Future work:
  - Remove dependence on  $\epsilon$  for sample complexity
  - AltMin: remove condition no. dependence using similar techniques?

#### Robust PCA

#### Robust PCA

- M=L+E
  - Standard PCA: recover L upto  $||E||_2$
  - $||\hat{L} L|| \le ||E||_2$ ,  $rank(\hat{L}) \le rank(L) = r$
- Corrupted with arbitrarily large (but sparse) errors M = L + S
  - L: low-rank matrix
  - S: sparse matrix
- Goal: Given  $M \in \mathbb{R}^{n \times n}$ , decompose matrix into L, S

#### Motivation

- Adversarial corruption of a few coordinates per data point
- Foreground-background subtraction



### Harder Problem than Matrix Completion?



- But, in MC: known and correct entries are only  $O(\log n)$  per row
- In Robust PCA, we can allow O(n) correct elements per row

# Identifiability?

- Unique decomposition not achievable in general:
  - $L = e_1 e_1^T$ ,  $S = e_1 e_1^T$
- Assumptions:
  - L: rank-r  $\mu$  —incoherent matrix
    - $L = U\Sigma U^T$
    - $||U^i||_2 \le \frac{\mu\sqrt{r}}{\sqrt{n}}$
  - S: d-sparse matrix
    - Each row and column of S has at most d nonzeros

# Existing Method

$$\min_{\hat{L},\hat{S}} ||\hat{L}||_* + \lambda ||\hat{S}||_1$$
s. t.  $M = \hat{L} + \hat{S}$ 

- Convex program
- Running time:  $O(n^3)$
- Assumption:  $d \le \frac{n}{\mu^2 r}$
- Question: PCA time complexity for Robust PCA?
  - $O(n^2r)$  algorithm?

# Our Approach (NcRPCA)

- $M_0 = 0$
- $L_0 = 0$
- For k=1...r
  - For t=1, 2... T
    - $M_t = M_{t-1} H_{\tau}(M_{t-1} L_{t-1})$  //Hard Thresholding
    - $L_t = P_r(M_t)$  //Projection onto low-rank matrices
  - End For
- End For
- Runtime:  $O(n^2r^2)$

### Results

• 
$$T = \log(\frac{1}{\epsilon})$$

$$||L_T - L||_2 \le \epsilon$$

- Assumption:  $d \le \frac{n}{\mu^2 r}$  (same as convex relaxation)
- Running time:  $O(n^2r^2\log\frac{1}{\epsilon})$

### Proof Technique

- $M_t = M_{t-1} H_{\tau}(M_{t-1} L_{t-1})$
- $L_t = P_r(M_t)$
- Let  $M_t = L + S_t$
- Good properties only if  $S_t$  is "sparse"
- Set  $\tau$  s.t.
  - $supp(S_t) \subseteq supp(S)$
  - $||S_t||_{\infty} \le .5 ||S_{t-1}||_{\infty}$
- But for this, we need  $||L_t L||_{\infty} \le .1 ||S_{t-1}||_{\infty}$ 
  - Somewhat similar to matrix completion, but different assumptions

## Proof setup

• 
$$L_t = P_1(L + S_{t-1}), L_t = \lambda v v^T$$

$$(L + S_{t-1})v = \lambda v$$

$$\left(I - \frac{S_{t-1}}{\lambda}\right)v = \frac{Lv}{\lambda}$$

$$v = \left(I - \frac{S_{t-1}}{\lambda}\right)^{-1} \frac{Lv}{\lambda} = \frac{Lv}{\lambda} + \sum_{a=1}^{\infty} \left(\frac{S_{t-1}}{\lambda}\right)^{a} \frac{Lv}{\lambda}$$

$$L - L_t = L - \lambda v v^T$$

$$= L - L \frac{v v^T}{\lambda} L - \sum_{a \ge 0}^{\infty} \sum_{b \ge 0}^{\infty} \frac{\left(S_{t-1} - \frac{1}{\lambda}\right)^a}{\lambda} \frac{L v v^T L^T}{\lambda} \left(\frac{S_{t-1}}{\lambda}\right)^b$$

#### Result

• After t-th step of *k*-th stage:

$$||L - L_t||_{\infty} \le \frac{2\mu^2 r}{n} \left(\sigma_{k+1} + \left(\frac{1}{2}\right)^t \sigma_k\right)$$

- L: rank-r i.e.  $\sigma_{r+1} = 0$
- After T =  $\log(\frac{1}{\epsilon})$  steps of r-th stage:  $||L L_T||_{\infty} \le \epsilon$
- Computation complexity:  $O(n^2r^2\log\frac{1}{\epsilon})$ 
  - $O(r \log \frac{1}{\epsilon})$  more expensive than PCA
- Require conditions similar to Chandrasekharan et al'2009

### **Empirical Results**



# **Empirical Results**



Original Image



Non-Convex RPCA



**PCA** 



Convex RPCA

#### Runtime:

Convex RPCA: 3500s

• NcRPCA: 118s

### Summary

- Main message: non-convex projected gradient descent converges
  - If underlying functions has special structure
- Problems considered:
  - RIP/RSC based function optimization
  - Matrix completion
  - Robust PCA
- Provable guarantees
  - Significantly faster than the convex-surrogate based methods
  - Empirical results match the theoretical observation

### Future Work

- RIP/RSC based Matrix sensing:
  - Necessity of the required RIP/RSC conditions?
- Matrix completion:
  - Remove dependence of  $|\Omega|$  on error  $\epsilon$
  - Optimal dependence of  $|\Omega|$  on r
- Robust PCA:
  - Extension to [Candes et al'09] style conditions
  - Can handle  $O(\frac{n}{\mu^2})$  corruptions per row (currently,  $O(\frac{n}{\mu^2 r})$ )
- Develop a more generic framework to jointly analyze these problems
  - Similar to unified M-estimator technique of [Negahban et al'09]

Thanks!