b) Topun 6. s'deki yüksekliği, maksimum noktaya ulaştıktan 2 s sonraki konumudur. Maksimum yüksekliğe 4 s'de ulaşan topun, tepe noktasından düşey doğrultuda hareket ederken 2. s'deki yer değiştirmesi maksimum yükseklikten çıkarılırsa 6. s'deki yerden yüksekliği bulunur. Bu durumda  $h = \frac{1}{2} \cdot g \cdot t_2^2 - \frac{1}{2} \cdot g \cdot t_1^2 \;, \; h = \frac{1}{2} \cdot 10 \cdot 4^2 - \frac{1}{2} \cdot 10 \cdot 2^2 = 60 \; \text{m} \; \text{bulunur}.$ 

Farklı bir yöntem olarak topun 6 ve 8. s'deki hız büyüklükleri ele alınır. Zamansız hız matematiksel modeli kullanılırsa

 $\vartheta^2=\vartheta_0^2+2\cdot g\cdot h$  matematiksel modelinde 6. s'de düşey hızı  $\vartheta_0=20$  m/s ile 8. s'de düşey hızı  $\vartheta=40$  m/s yazılırsa topun yerden yüksekliği

$$40^2 = 20^2 + 2 \cdot 10 \cdot h$$

h = 60 m bulunur.

c) Topun yukarı çıkarken düşey doğrultudaki yer değiştirmesinin büyüklüğü  $\vartheta^2 = \vartheta_0^2 - 2 \cdot g \cdot h$  ve aşağı inerken düşey doğrultudaki yer değiştirmesinin büyüklüğü  $\vartheta^2 = \vartheta_0^2 + 2 \cdot g \cdot h$  matematiksel modelleri ile hesaplanır. Buna göre her bir zaman aralığında hesaplanan topa ait yer değiştirme büyüklükleri aşağıdaki tabloda gösterilmiştir.

| Zaman Aralığı (s) | Düşey Doğrultudaki/Eksendeki<br>Yer Değiştirmesi (m) | Zaman Aralığı (s) |
|-------------------|------------------------------------------------------|-------------------|
| (0-1)             | 35                                                   | (7-8)             |
| (1-2)             | 25                                                   | (6-7)             |
| (2-3)             | 15                                                   | (5-6)             |
| (3-4)             | 5                                                    | (4-5)             |

Top için hesaplanan değerler aşağıdaki şekilde gösterildiği gibidir:

