Digitaltechnik Wintersemester 2017/2018 8. Vorlesung

Inhalt

- 1. Einleitung
- 2. Konzept, Notationen und Anwendungsbeispiele
- 3. Mealy vs. Moore
- 4. Zerlegen von Zustandsautomaten
- 5. Zusammenfassung

Einleitung

1100101110111111110010101001001111100	1101
0000101010010100000001010001000011000	0111
1011111001010010011010010010000011111	0001
110000110000000110111111001111000000000	0011
10000010101000101010101111010110001	1011
00110110100001111000100001110110101010	1010
001101101001111111001000000001101111	0110
111010011110110001000111110000100011	1111
110010011101110101000110001001111011	1110
110010100110100110110001110011111001	1100
101011101011010110000010010101010011000	0011
1001010101110100111100001010010111000	1001
101101011001010101011000010110101111	0110
11001001100101101101101101110111011	1001
011111000101010100001111000100100110	1111
101000000001010101010001011111111000	1000

Überblick der heutigen Vorlesung

- Endliche Zustandsautomaten
 - Konzept, Notationen und Anwendungsbeispiele
 - Moore vs. Mealy
 - Zerlegen von Zustandsautomaten

Harris 2013 Kap. 3.1-3.3 Seite 103 - 117

Konzept, Notationen und Anwendungsbeispiele

11101001111111110010110000000000011001000
1010011001110111001010110110001011010001
00110010010010111011000100100110011010
100010100101101110101010111001001010010
1010111100010001001011100101011000111000
1111101111111100011000001111111100111010
100011010000101001011001011110000101111
100111100101101001001011111010011111110011
1101000001110010001100101110001000110010
0000000101110001011101011101100001000110
00110011011011000101000100111111100010010
001011001001111100111011000001100011011
10100101101010011111100100110000001000100
0001010000011110111010001110110000100110
0000000100100011101110111011001001001010
1000001110001111011111000100000111110000

Endliche Zustandsautomaten Finite State Machines (FSM)

- synchrone sequentielle Schaltungen mit
 - n Eingabebits
 - k Ausgabebits
 - ein interner Zustand (besteht aus $m \ge 1$ Bits)
 - Takt und Reset
- in jedem Takt (zur steigenden Flanke)
 - - \blacktriangleright Reset inaktiv \rightarrow neuen Zustand und Ausgaben aus aktuellem Zustand und Eingaben berechnen
 - CLK Reset

 FSM kAusgaben $y_{k-1},...,y_0$

FSM Anwendungsbeispiele

- Zahlenschloss (bspw. an Tresor)
 - Eingaben: Taste i gedrückt
 - Ausgaben: Schloss öffnen, Fehlermeldung anzeigen
 - Zusammenhang zwischen Zuständen: nur Öffnen, wenn letzte (4) Eingaben korrekt und in richtiger Reihenfolge

- Steuerwerk von Rechnern (Mikroarchitektur)
 - Eingaben: Bits des aktuellen Instruktionswortes
 - Ausgaben: Steuersignale für
 - Arithmetik (welche Operation)
 - Speicher (welche Operanden)
 - Zusammenhang zwischen Zuständen: bspw. in Pipeline-Stufen
- vieles mehr (sehr häufig verwendetes Konzept)

FSM Beispiel für Ampelsteuerung

► Eingänge:

- a_{A=1}
- ▶ $a_k = 1 \leftarrow \text{Induktionsschleife } k \text{ erkennt Fahrzeug für } k \in \{A, B\}$
- Ausgänge
 - ▶ $y_k \in \{\text{rot,grün,gelb}\} \Rightarrow \text{Ampelphase für } k \in \{A, B\}$
- ⇒ FSM für Bedarfssteuerung
 - halte Spur grün, solange auf dieser
 Fahrzeuge erkannt werden
 - ansonsten schalte aktuelle Fahrbahn über gelb nach rot und andere Fahrbahn auf grün

Moore-Automat für Ampelsteuerung

Mealy-Automat für Ampelsteuerung

Zustandsübergangs- und Ausgabetabelle

- kompaktere (maschinenlesbare) Darstellung
- kann noch mit abstrakten Zuständen und Ausgaben arbeiten
- kann Don't Cares verwenden
- Kurzschreibweise
 - aktueller Zustand S
 - nächster Zustand S'
- Achtung: implizite Bedingungen (bspw. Selsbstschleifen) beim Ableiten aus Diagrammen beachten

Zustandsübergangs- und Ausgabetabelle für Moore-Automat der Ampelsteuerung

Zustandsübergangs- und Ausgabetabelle für Mealy-Automat der Ampelsteuerung

S	a_A	a_B	S'	٦
Α	1	*	Α	
Α	0	*	AB	- 1
AB	*	*	В	- 1
В	*	1	В	
В	*	0	BA	1
BA	*	*	Α	

S	a_A	a_B	_Y _A	УB
A	1	*	grün	rot
Α	0	*	gelb	rot
AB	*	*	rot	grün
В	*	1	rot	grün
В	*	0	rot	gelb
BA	*	*	grün	rot

FSM als synchrone sequentielle Schaltungen

- Zustandsregister
 - speichert aktuellen Zustand
 - überimmt nächsten Zustand bei Taktflanke
- kombinatorische Logik realisiert
 - Zustandübergangstabelle ("next state logic")
 - Ausgangstabelle ("output logic")
- ⇒ binäre Kodierung der Zustände und Ein-/Ausgaben notwendig

Zustandskodierung cs : $S \to \mathbb{B}^m$

- weist jedem Zustand einen m Bit breiten Wert zu
- kann idR. frei gewählt werden (da nach außen nicht sichtbar)
- bspw. "Durchnummerieren": $cs(S_k) = (s_{m-1}...s_0)$ mit $u_{2,m}(s_{m-1}...s_0) = k$
- manchmal führen aber andere Kodierungen zu effizienterer kombinatorischer Logik, auch wenn mehr Zustandsbits benötigt werden
 - ► One-Hot ✓
 - bestehende Ausgabekodierung (wenn jeder Zustand eine spezifische Ausgabe verursacht)
- ▶ Kodierung der Ein-/Ausgänge ist idR. von der Anwendung vorgegeben
 - kann ansonsten für jede Ein/Ausgabe spezifisch gewählt werden

Kodierte Tabellen für Moore-Automat der Ampelsteuerung

1														
λ_{s}	<i>S</i> ₁	s_0		A	УA	<i>y</i> ₃ <i>y</i> ₂		У	в	y 1	y 0			
$\rightarrow A$	0	0	-	g	rün	0 0	-	gri	in	0	0			
AB	0	1		g	elb	0 1/		ge	lb	0	1			
В	1	0			rot	10		rc	ot	1	0			
BA	1	1							'					
				u			/	1						
S	S ₁	s_0	a_A	a_B	s_1'	s_0'	S	<i>s</i> ₁	s_0	<i>y</i> ₃	y 2	<i>y</i> ₁	y ₀	
$\frac{S}{A}$	s ₁ /	s ₀	a_A	a _B ▼	<i>s</i> ₁ 0	s_0'	S	s ₁	<i>s</i> ₀	<i>y</i> ₃	<i>y</i> ₂	<i>y</i> ₁	<i>y</i> ₀	
		s ₀	_			0		_				<i>y</i> ₁ 1 1		
Α	0	0	11	*	0	0	Α	0	0	0		<i>y</i> ₁ 1 1 0	0	
A A	0	0	0	*	0	1	A AB	0	0	0	0	1	0	
A A AB	0 0 0	0) 0 1	0	*	0	0 \ 1 0	A AB B	0	0	0	0 1 0	1 1 0	0 0 0	

- ightharpoonup n = 2 Eingängssignale, m = 2 Zustandsbits, k = 4 Ausgabesignale
- ⇒ sechs bool'sche Funktionen aus Wahrheitswertetabellen ableiten

Minimierte kombinatorische Logik für Moore-Automat der Ampelsteuerung

Minimierte kombinatorische Logik für Moore-Automat der Ampelsteuerung

11-- 00

espresso ampel/state.esp

$$S_1' = \underbrace{S_1} \oplus \underbrace{S_0}$$

$$S_0' = S_1 \ \overline{S_0} \ \overline{A_B} + \overline{S_1}$$

Minimierte kombinatorische Logik für Moore-Automat der Ampelsteuerung

ampel/state.esp

espresso ampel/state.esp

1	.i	2
2	. 0	4
3	00	0010
4	01	0110
5	10	1000
6	11	1001

espresso ampel/output.esp

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = S_{1} \overline{S_{0}} \overline{a_{B}} + \overline{S_{1}} \overline{S_{0}} \overline{a_{A}}$$

$$y_3 = s_1$$

$$y_2 = \overline{s_1} \ s_0$$

$$y_1 = \overline{s_1}$$

 $V_0 = S_1 S_0$

Schaltplan für Moore-Automaten der Ampelsteuerung

Zusammenfassung FSM Entwurfverfahren

- definiere Ein- und Ausgänge
- wähle zwischen Moore- und Mealy-Automat
- zeichne Zustandsdiagramm
- kodiere Zustände (und ggf. Ein-/Ausgänge)
- stelle Zustandsübergangstabelle auf
- stelle boole'sche Gleichungen für Zustandsübergangs- und Ausgangslogik unter Ausnutzung von Don't Cares auf
- entwerfe Schaltplan: Gatter + Register

Mealy vs. Moore

01000001110001110110010110101111101100	00
111010110011111110000111000110100011000	11
0110111100011111011001010011100000100010	11
10101011010011001100000001101000011110	11
01100100011101100100000000101101100111	10
000010111000010011000111111100011101011	0 1
1000111100010001001001011010110111	10
000101101010101011 0011 111110100011111000	11
11000101110111001101000011011100001110	10
1011011101000010011111110010101111011001	00
0010010101001000110111111111001011010	10
00011011100101110101110101011111111101	0 1
101101111010101000100001001011110000	00
1011101110111010111010110000110100011111	0 1
00100011000110111101101110101010101001	00
11000011110001001001110111111010001100	01

Mealy vs. Moore

- für Ampelsteuerung war Moore-Automat effizienterer
- das ist aber nicht allgemein so
- ⇒ muss von Fall zu Fall neu bewertet werden
- in der Regel
 - Moore besser, wenn Ausgaben statisch
 - Mealy besser, wenn Ausgaben kurzfristige Aktionen auslösen
 - Mealy reagiert schneller auf Änderungen der Eingabe
- Verdeutlichung durch weitere Beispiele

FSM Beispiel für Zahlenschloss

Eingänge:

- a_k = 1 ← Taste k gedrückt für 0 < k ≤ 9
 a_C = 1 ← Taste "Cancel" gedrückt
- ► a_E = 1 ← Taste "Enter" gedrückt

Ausgänge

- ▶ $y_S = 1 \Rightarrow$ Schloss entriegeln
- $V_F = 1 \Rightarrow$ Fehlermeldung angezeigen
- Vereinfachungen
 - Zustandsübergang nur dann, wenn überhaupt eine Taste gedrückt
 - immer nur eine Taste gleichzeitig aktivierbar
- Passwort: 2017
- Achtung: Fehlermeldung nicht direkt bei erster falscher Ziffer zeigen

(1R)

(2R)

(3R)

(4R)

F

Mealy vs. Moore für Zahlenschloss

- Moore-Automat braucht zwei zusätzliche Zustände, um die beiden unterschiedlichen Übergänge zurück in den Ausgangszustand (nach richtiger oder falscher Eingabe) voneinander zu unterscheiden
- Ausgaben beschreiben eher
 - Aktionen (Schloss öffnen, Fehler anzeigen) als
 - Zustände (Schloss ist geöffnet, Fehler wird angezeigt)
- ⇒ Mealy-Automat besser geeignet

Weiteres Beispiel: Mustererkennung

- typisch in Bild- und Textanalyse (bspw. Suche nach regulären Ausdrücken)
- bspw.: Erkenne Bitfolge "1101" in zufälliger Bitsequenz
- ▶ Eingänge: das nächste Bit $a \in \mathbb{B}$
- ▶ Ausgabe: $y = 1 \Rightarrow$ gesuchte Bitfolge erkannt

Moore- und Mealy-Automat für 1101 Mustererkennung

Moore-Automat für 1101 Mustererkennung: Zustandübergangs- und Ausgabetabellen

Moore-Automat für 1101 Mustererkennung: Logikgenerierung mit vielen Don't Cares


```
pattern/moore/state.esp
                         espresso pattern/moore/state.esp
                                                               pattern/moore/output.esp
                                                                                        espresso pattern/moore/output.esp
      . 0
                              . 0
                                                                    . 0
     0000
              000
                              .p
                                                                    000 0
     0001
              001
                                                                    001 0
                              0001
                                       001
     0010
              000
                              -100
                                       001
                                                                    010
     0011
              010
                              -111
                                      100
                                                                    011 0
     0100
              011
                              -011
                                                                    100
                                       010
     0101
              010
                                       010
                                                                    101
     0110
              000
                              -10 - 010
                                                                    110
              100
     0111
                              . е
                                                               10
                                                                    111
     1000
              000
              010
     1001
                        s_2' = s_1 s_0 a
     1010
13
     1011
                        S_1' = \overline{S_1} S_0 a + S_2 a + S_1 \overline{S_0}
     1100
15
                        S_0' = \overline{S_2} \ \overline{S_1} \ \overline{S_0} \ a + S_1 \ \overline{S_0} \ \overline{a}
     1101
16
     1110
17
     1111
```

```
. 0
```

$$y = s_2$$

Moore-Automat für 1101 Mustererkennung: Schaltwerk

Mealy-Automat für 1101 Mustererkennung: Zustandübergangs- und Ausgabetabellen

S	а	\mathcal{S}'
S_0	0	S_0
S_0	1	S_1
S_1	0	S_0
S_1	1	S_2
S_2	0	S_3
S_2	1	S_2
S_3	0	S_0
S_3	1	S_1

S	s ₁	s_0
S_0	0	0
$S_0 \ S_1$	0	1
S_2	1	0
S_2 S_3	1	1
'		

S	а	y
S_0	0	0
S_0	1	0
S_1	0	0
S_1	1	0
S_2	0	0
S_2	1	0
S_3	0	0
Sa	1	1

Mealy-Automat für 1101 Mustererkennung: Logikgenerierung ohne Don't Cares

$$S'_{1} = \overline{S_{1}} S_{0} a + S_{1} \overline{S_{0}}$$

$$S'_{0} = S_{1} \overline{S_{0}} \overline{a} + \overline{S_{1}} \overline{S_{0}} a$$

$$+ S_{1} S_{0} a$$

111

pattern/mealy/output.esp

$$y=s_2\ s_1\ a$$

Mealy-Automat für 1101 Mustererkennung: Schaltwerk

Mealy-Automat erkennt Muster einen Takt früher

Zerlegen von Zustandsautomaten

				1	1	0	1	1	0	1	0	0	1	0	1	1	0	1	1	0	1	1	0	0	1	0	0	1	0	1	0	1	1 1	1	0
		1		1		1	1	0	0	0	0	1	1	0	1	1	1	0	0	1	0	1	0	1	1	0	1	1	1	0	1	0 () (0 (0
			1		1	0	0	0	1	0	0	0	1	0	0	0	1	0	1	1	1	0	1	0	1	1	1	1	0	0	0	0 .	1 (0 (1
		1				0	0	1	0	0	1	1	0	0	0	0	0	1	1	1	0	0	1	0	1	1	0	0	1	0	1	0 () 1	1	0
				1		1	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	1	1 () (0 (1
		1				1	0	0	1	0	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	0	0	0	0	0	0 () 1	1	1
			1		1	0	1	1	1	1	0	1	0	0	0	1	0	1	1	1	0	0	0	1	0	0	1	0	1	0	0	1	1 1	1	0
			1		1	0	0	0	1	0	0	1	0	1	0	1	0	0	1	0	1	1	1	1	1	0	1	1	0	1	1	1 () (0 (1
		1	1		1	1	0	1	1	1	0	0	1	1	0	0	1	1	0	1	0	1	0	0	1	1	1	0	1	0	0	0 () 1	0	0
		1		1	1	0	0	0	1	1	0	0	1	1	1	0	1	0	1	1	1	0	1	1	1	0	0	0	1	0	1	0 .	1 (0 (1
				1	1	0	1	1	1	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	1	0	0	0	1	1	0 () 1	1	1
						0	0	1	1	1	0	1	1	0	0	0	0	1	0	1	0	0	0	0	0	0	1	1	1	0	0	0 () 1	0	0
		1		1		0	0	1	1	1	0	0	0	1	1	0	1	1	0	1	0	1	0	0	0	0	1	1	1	1	1	0 .	1 (0 (0
			1	1		1	0	1	1	0	1	0	1	1	1	1	1	0	0	0	1	1	1	1	0	0	1	1	1	0	1	0 () 1	0	1
				1		0	1	0	1	1	1	0	0	0	1	0	1	0	1	1	1	1	0	1	0	1	1	1	1	1	1	1 () (0 (1
		1	1			1	1	1	0	0	0	0	()	1	()	1	1	0	0	1	0	0	1	0	1	1	0	0	1	0	0	0 () (0 (0

Zerlegen von Zustandsautomaten (FSM Dekomposition)

- Aufteilen komplexer FSMs in einfachere interagierende FSMs
- Beispiel: Ampelsteuerung mit Modus für Festumzüge (Ampel B bleibt permanent grün)
 - FSM bekommt zwei weitere Eingänge: a_F, a_R
 - a_F = 1 ⇒ aktiviert Festumzugsmodus
 - ▶ $a_R = 1 \Rightarrow$ deaktiviert Festumzugsmodus

Unzerlegte FSM

Zerlegung in kommunizierende FSMs

Zusammenfassung

101110110101111110001001001111000001000	11
1100011011010010011001101111100111100	11
001101100010111011111101100101111111	00
10011000100011011010001001101000110101	0 1
00010100001000011000001011101000010000	0 1
00100010110000111110111011011011011011	11
0010001100110110111000010100010000111	0 1
01100110101111101001011000110001101011	11
0111010001101011110110110111111010000	10
10100111100100101000110101111101001000	10
111101010011001101110111010101111000101	10
0111010110111000001011110001000010100	0 1
001110010111000111101111101010000111	0 1
10000101010101110001110111010111000010	11
01001010000101000110000001100110010000	10
101001010011111111111111110100010010010	10

Zusammenfassung und Ausblick

- Endliche Zustandsautomaten
 - Konzept, Notationen und Anwendungsbeispiele
 - Moore vs. Mealy
 - Zerlegen von Zustandsautomaten
- Nächste Vorlesung behandelt
 - Zeitverhalten Sequentieller Schaltungen
 - Parallelität