MATH-F-112 - MATHÉMATIQUES Exercices - Module A Nicolas Richard

Renato Costa Ribeiro

 $25~{\rm septembre}~2015$

Table des matières

1 Logique 2

Chapitre 1

Logique

Rappel:

Logique

NON/NOT		
A	$\neg A$	
0	1	
1	0	

Co	njone	$\operatorname{ction}/\operatorname{ET}/\operatorname{AND}$	$-{\rm Disjonction/OU/OR}$		
A	В	$A \wedge B$	A	В	$A \vee B$
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

Implication					
A	В	$A \Rightarrow B$			
0	0	1			
0	1	1			
1	0	0			
1	1	1			

Démonstration par récurrence

On veut une propriété P(m) por tout $m \in \mathbb{N}$

- · <u>Cas de base</u>: Montrons P(0)
- · Cas récursif :
- Supposons que P(m) est vrai pour m=k ($k \in \mathbb{N}$ quelconque) et montrons P(m) pour m=k+1
- · Remarque:

 $\overline{P(k)}$ s'appelle l'hypothèse de récurrence

1.1

a.
$$B \Rightarrow G$$

e.
$$O \Rightarrow F$$

$$i D \Rightarrow C$$

$$m. V \Rightarrow D$$

b.
$$R \Rightarrow S$$

$$(O \rightarrow IV) \land (IV \rightarrow O)$$

$$k (T \wedge N) \Rightarrow I$$

$$d H \rightarrow \neg V$$

h.
$$\neg C \Rightarrow \neg I$$

1.
$$I \Rightarrow P$$

1.2

- (1). $A \vee B \vee C$
- $(2). C \Rightarrow A$
- (3). $B \Rightarrow (A \lor C)$

Pour savoir si A est le coupable il faut : $(1) \land (2) \land (3)$

			$A \lor B \lor C$	$C \Rightarrow A$		$B \Rightarrow (A \lor C)$		
A	\mathbf{B}	$\mathbf{C} \mid$	(1)	(2)	$A \lor C$	(3)	$(1) \wedge (2) \wedge (3)$	$(1) \land (2) \land (3) \Leftrightarrow A$
0	0	0	0	1	0	1	0	1
0	0	1	1	0	1	1	0	1
0	1	0	1	1	0	0	0	1
0	1	1	1	0	1	1	0	1
1	0	0	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

Comme nous pouvons le constater, la dernière colonne uprouve que $(1) \land (2) \land (3) \Leftrightarrow A$. A est donc le coupable.

1.3

a. Faux. Faisons une table de vérité pour le cas où $P\Rightarrow L$ et $L\Rightarrow P$. Le résultat n'est pas le même. L'affirmation est donc fausse.

P	L	$P \Rightarrow L$	$L \Rightarrow P$
0	0	1	1
0	1	1 1	0
1	0	0	1
1	1	1 1	1

- b. Vrai. $E \Rightarrow C$ et $C \Rightarrow P$.
- c. Faux. $(P \lor T) \Leftrightarrow (P \Rightarrow \neg T)$

P	T	$\neg T$	$P \vee T$	$P \Rightarrow \neg T$
0	0	1	0	1
0	1	0	1	1
1	0	1	1	1
1	1	0	1	0

- d. Vrai. $R \Rightarrow H$
- e. Vrai. $N \Rightarrow F$
- f. Faux. $(D \Rightarrow P) \Leftrightarrow (\neg D \Rightarrow \neg P)$

D	P	$D \Rightarrow P$	$\neg D \Rightarrow \neg P$
0	0	1	1
0	1	1 1	0
1	0	0	1
1	1	1 1	1

g. Vrai.
$$(D \Rightarrow P) \Leftrightarrow (\neg P \Rightarrow \neg D)$$

1.9

b. Démontrons que $\forall m \in \mathbb{N} \setminus \{0\}$:

$$\underbrace{1^{3} + 2^{3} + \dots + m^{3}}_{\sum_{i=1}^{m} i^{3}} = \frac{m^{2}(m+1)^{2}}{4}$$
(1.1)

· Cas de base :

Lorsque m = 1, on a bien que :

$$\underbrace{1^3 + \ldots + m^3}_{= \ 1} = \underbrace{\frac{m^2(m+1)^2}{4}}_{= \ 1}$$

· <u>Cas récursif</u> :

Supposon que l'on sait que :

$$\sum_{i=1}^{k} i^3 = \frac{k^2(k+1)^2}{4}$$

Montrons alors l'équation (1.1) lors que m=k+1 (pour un $k\in\mathbb{N}\backslash\big\{0\big\})$: On a :

$$\sum_{i=1}^{k+1} i^3 = 1^3 + \dots + k^3 + (k+1)^3$$

$$= \sum_{i=1}^k i^3 + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{4} + (k+1)^3$$

$$= \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$$

$$= \frac{(k+1)^2}{4}(k^2 + 4k + 4)$$

$$\frac{(k+1)^2(k+2)^2}{4} = \frac{(k+1)^2(k+2)^2}{4}$$
ok