Chapter 6 Nombres entiers, itérations

6.1 Nombres entiers

Solution 6.1

Solution 6.2

Solution 6.3

Solution 6.4

1. Pour $n \in \mathbb{N}$, on pose R(n) la relation

$$(1+a)^n \ge 1 + na + \frac{n(n-1)}{2}a^2.$$

L'assertion R(0) est vérifiée puisque

$$(1+a)^0 = 1 = 1 + 0a + 0a^2.$$

Soit $n \in \mathbb{N}$ tel que R(n), alors

$$(1+a)^{n+1} = (1+a) \times (1+a)^n$$

$$\geq (1+a)(1+na+\frac{n(n-1)}{2}a^2$$

$$\geq 1+a+na+na^2+\frac{n(n-1)}{2}a^2+\frac{n(n-1)}{2}a^3$$

$$\geq 1+(n+1)a+\frac{n^2-n+2n}{2}a^2$$

$$\geq 1+(n+1)a+\frac{(n+1)n}{2}a^2,$$

d'où R(n + 1).

Conclusion

D'après le principe de récurrence, on a

$$\forall n \in \mathbb{N}, (1+a)^n \ge 1 + na + \frac{n(n-1)}{2}a^2.$$

2. Soit $n \in \mathbb{N}$. En applicant le résultat précédent avec a = 2.

$$(1+2)^n = 3^n > 1 + 2n + 2n(n-1) = 1 + 2n^2$$
.

Et donc $\frac{1}{3^n} \le \frac{1}{2n^2+1}$. En multipliant cette relation par 3n (positif), on obtient alors l'inégalité demandée

$$0 \le u_n \le \frac{3n}{2n^2 + 1}.$$

Solution 6.5

Pour $n \in \mathbb{N}^*$, on pose R(n): « $9^n - 1$ est multiple de 8».

• On a $9^1 - 1 = 8$ qui est un multiple de 8 d'où R(1).

• Soit $n \in \mathbb{N}$ tel que R(n) est vraie, c'est-à-dire $9^n - 1$ est multiple de 8. Il existe donc $k \in \mathbb{N}$ tel que $9^{n} - 1 = 8k$, ou encore $9^{n} = 8k + 1$. D'où

$$9^{n+1} = 9 \times 9^n = 9 \times (8k+1) = 8 \times 9k + 9.$$

Finalement,

$$9^{n+1} - 1 = 8 \times (9k + 1)$$

est un multiple de 8.

• Conclusion: par récurrence

 $\forall n \in \mathbb{N}, R(n).$

Solution 6.6

On souhaite essayer de démontrer ce résultat par récurrence. Commençons par établir un lien entre α^n + $1/\alpha^n$ et $\alpha^{n+1} + 1/\alpha^{n+1}$. On a

$$\left(\alpha^{n} + \frac{1}{\alpha^{n}}\right)\left(\alpha + \frac{1}{\alpha}\right) = \alpha^{n+1} + \frac{1}{\alpha^{n-1}} + \alpha^{n-1} + \frac{1}{\alpha^{n+1}}.$$

Ce qui fait également apparaître α^{n-1} . On a alors

$$\alpha^{n+1} + \frac{1}{\alpha^{n+1}} = \left(\alpha^n + \frac{1}{\alpha^n}\right) \left(\alpha + \frac{1}{\alpha}\right) - \left(\alpha^{n-1} + \frac{1}{\alpha^{n-1}}\right).$$

Ce qui suggère d'utiliser plutôt une récurrence à deux pas.

Pour $n \in \mathbb{N}$, on pose R(n) l'assertion $\alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}$. L'assertion R(0), c'est-à-dire $1 + 1 \in \mathbb{Q}$, est vraie. L'assertion R(1) est également vraie par hypothèse sur α.

Soit $n \in \mathbb{N}^*$ tel que R(n) et R(n-1). Puisque R(1) est également vraie, on peut écrire

$$\alpha + \frac{1}{\alpha} \in \mathbb{Q}$$
 $\qquad \qquad \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}$ $\qquad \qquad \alpha^{n-1} + \frac{1}{\alpha^{n-1}}.$

Or, on a vu que

$$\alpha^{n+1} + \frac{1}{\alpha^{n+1}} = \underbrace{\left(\alpha^n + \frac{1}{\alpha^n}\right)}_{\in \mathbb{Q}} \underbrace{\left(\alpha + \frac{1}{\alpha}\right)}_{\in \mathbb{Q}} - \underbrace{\left(\alpha^{n-1} + \frac{1}{\alpha^{n-1}}\right)}_{\in \mathbb{Q}}.$$

Puisque le produit de deux rationnel est un rationnel, et que la somme de deux rationnels est un rationnel, on en déduit que $\alpha^{n+1} + \frac{1}{\alpha^{n+1}} \in \mathbb{Q}$, c'est-à-dire R(n+1). Ainsi, on a montré que si R(n) et R(n-1) sont vraies, alors R(n+1) est vraie. De plus, R(0) et R(1) sont

vraies.

Conclusion

D'après le principe de récurrence

$$\forall n \in \mathbb{N}, \alpha^n + \frac{1}{\alpha^n} \in \mathbb{Q}.$$

Solution 6.7

Solution 6.8

Solution 6.9

Pour $n \in \mathbb{N}$, on note R(n) l'assertion $|u_n| \le 7 \cdot \left(\frac{1}{2}\right)^n$.

On a bien $|u_0| = 7 \le 7\frac{1}{20}$ et $|u_1| = \frac{1}{10} \le \frac{7}{2} = 7 \cdot \frac{1}{21}$. Donc R(0) et R(1) sont vraies.

Soit $n \in \mathbb{N}$ tel que R(n) et R(n+1) soient vraies. Nous allons montrer R(n+2). On a

$$|u_{n+2}| = \left| \frac{1}{10} u_{n+1} + \frac{1}{5} u_n \right|$$

$$\leq \frac{1}{10} |u_{n+1}| + \frac{1}{5} |u_n| \qquad \text{:inégalité triangulaire}$$

$$\leq \frac{1}{10} \cdot 7 \cdot \frac{1}{2^{n+1}} + \frac{1}{5} \cdot 7 \cdot \frac{1}{2^n} \qquad \text{::} R(n) \text{ et } R(n+1)$$

$$= \frac{7}{5} \cdot \frac{1}{2^{n+2}} + \frac{28}{5} \cdot \frac{1}{2^{n+2}}$$

$$= 7 \cdot \frac{1}{2^{n+2}};$$

D'où R(n+2).

Conclusion

Par récurrence : $\forall n \in \mathbb{N}, R(n)$.

Solution 6.10

Solution 6.11

Récurrence double.

Solution 6.12

Pour $n \in \mathbb{N}^*$, on pose R(n): «il existe $p, q \in \mathbb{N}$ tels que $n = 2^p (2q + 1)$.

On a $1 = 2^0 (0 + 1)$, d'où R(1) est vraie.

Soit $n \in \mathbb{N}^{\star}$. On suppose que $R(1), R(2), \dots, R(n)$. Montrons R(n+1).

- Si n+1 est impair, alors n est pair. Il existe donc $q \in \mathbb{N}$ tel que n=2q et on a donc $n+1=2^0(2q+1)$, d'où R(n+1).
- Si n+1 est pair, alors il existe $m \in \mathbb{N}$ tel que n+1=2m. Or m < n+1, donc R(m) est vraie : il existe $p,q \in \mathbb{N}$ tel que $m=2^p(2q+1)$. On a donc $n+1=2\times 2^p(2q+1)=2^{p+1}(2q+1)$, d'où R(n+1).

Dans chaque cas, R(n + 1) est vraie. Par récurrence forte, on a

$$\forall n \in \mathbb{N}^{\star}, R(n+1).$$

6.2 Suites définies par une relation de récurrence

Solution 6.13

1. On a
$$u_6 = q^6 u_0 = 2^6 u_0 = 64 u_0$$
, d'où $u_0 = 96/64 = 3/2$.

2. On a
$$u_1 = qu_0$$
 et $u_4 = q^4u_0$, d'où

$$\frac{u_4}{u_1} = q^3 = \frac{-8}{3 \times 72} = -\frac{1}{27}.$$

On a donc q = -1/3 et $u_0 = -216$.

3. On a
$$u_7 = u_0 q^7$$
 et $u_3 = u_0 q^3$, d'où

$$\frac{u_7}{u_3} = q^4 = 16 = 2^4,$$

d'où $q = \pm 2$ puis $u_0 = u_3/q^3 = \pm 5$ (du même signe que q).

Solution 6.14

1. Pour $n \in \mathbb{N}$, on a

$$b_{n+1} = \frac{a_{n+1} - 1}{a_{n+1} + 2} = \frac{\frac{3a_n + 2}{a_n + 4} - 1}{\frac{3a_n + 2}{a_n + 4} + 2} = \frac{2a_n - 2}{5a_n + 10} = \frac{2}{5} \frac{a_n - 1}{a_n + 2} = \frac{2}{5} b_n.$$

Conclusion

La suite (b_n) est une suite géométrique de raison $\frac{2}{5}$.

2. On a $b_0 = \frac{a_0 - 1}{a_0 + 2} = \frac{1}{2}$, d'où

Conclusion

$$\forall n \in \mathbb{N}, b_n = \frac{1}{2} \left(\frac{2}{5}\right)^n.$$

3. Pour $n \in \mathbb{N}$,

$$b_n = \frac{a_n - 1}{a_n + 2} \implies b_n(a_n + 2) = a_n - 1$$

$$\implies 1 + 2b_n = a_n(1 - b_n)$$

$$\implies a_n = \frac{1 + 2b_n}{1 - b_n}$$

$$\implies a_n = \frac{1 + \left(\frac{2}{5}\right)^n}{1 - \frac{1}{2}\left(\frac{2}{5}\right)^n}.$$

Conclusion

$$\forall n \in \mathbb{N}, a_n = 2 \frac{1 + \left(\frac{2}{5}\right)^n}{2 - \left(\frac{2}{5}\right)^n} = \frac{5^n + 2^n}{5^n - 2^{n-1}}.$$

Solution 6.15

On trouve $u_n = 2^n - 1$.

Solution 6.16

On a une suite arithmético-géométrique: $p_{n+1} = \frac{3}{2}p_n - 1000$. On cherche r le point fixe de la fonciton $f: x \mapsto \frac{3}{2}x - 1000$, on trouve r = 2000. On introduit $y_n = p_n - r$, alors

$$y_{n+1} = p_{n+1} - 2000 = \frac{3}{2}p_n - 1000 - 2000 = \frac{3}{2}(p_n - 2000) = \frac{3}{2}y_n.$$

Ainsi, la suite (y_n) est une suite géométrique de raison $\frac{3}{2}$, donc

$$y_n = \left(\frac{3}{2}\right)^n y_0 = 8000 \left(\frac{3}{2}\right)^n.$$

En particulier, $p_{50} = 8000 \left(\frac{3}{2}\right)^{50} + 2000$, qui est de l'ordre de 5.1×10^{12} .

Solution 6.17

1. Montrons par récurrence $\forall n \in \mathbb{N} \ x_n > 3$. Soit l'hypothèse de récurrence :

$$(\mathcal{H}_n)$$
: $x_n > 3$.

- La proposition \mathcal{H}_0 est vraie car $x_0 = 4 > 3$.
- Soit $n \ge 0$, supposons \mathcal{H}_n vraie et montrons que \mathcal{H}_{n+1} est alors vraie. On a alors

$$x_{n+1} - 3 = \frac{2x_n^2 - 3}{x_n + 2} - 3 = \frac{2x_n^2 - 3x_n - 9}{x_n + 2}.$$

Par hypothèse de récurrence $x_n > 3$, donc $x_n + 2 > 0$ et $2x_n^2 - 3x_n - 9 > 0$ (ceci par étude de la fonction $x \mapsto 2x^2 - 3x - 9$ pour x > 3). Donc $x_{n+1} - 3 > 0$ et \mathcal{H}_{n+1} est vraie.

• Nous avons montré

$$\forall n \in \mathbb{N} \quad \mathcal{H}_n \implies \mathcal{H}_{n+1}$$

et comme \mathcal{H}_0 est vraie alors \mathcal{H}_n est vraie quelque soit n. Ce qui termine la démonstration.

2. Montrons que $x_{n+1} - 3 - \frac{3}{2}(x_n - 3)$ est positif. On a

$$x_{n+1} - 3 - \frac{3}{2}(x_n - 3) = \frac{2x_n^2 - 3}{x_n + 2} - \frac{3}{2}(x_n - 3) = \frac{1}{2} \frac{x_n^2 - 3x_n}{x_n + 2} = \frac{x_n}{2} \frac{x_n - 3}{x_n + 2}$$

Ce dernier terme est positif car $x_n > 3$.

3. Montrons par récurrence que pour tout $n \in \mathbb{N}$, on a $x_n > \left(\frac{3}{2}\right)^n + 3$. Soit notre nouvelle l'hypothèse de récurrence :

$$\mathcal{H}_n: \quad x_n > \left(\frac{3}{2}\right)^n + 3.$$

- La proposition \mathcal{H}_0 est vraie.
- Soit $n \ge 0$, supposons que \mathcal{H}_n vraie et montrons que \mathcal{H}_{n+1} est vérifiée. D'après la question précédente $x_{n+1}-3>\frac{3}{2}(x_n-3)$ et par hypothèse de récurrence $x_n>\left(\frac{3}{2}\right)^n+3$; en réunissant ces deux inégalités nous avons $x_{n+1}-3>\frac{3}{2}(\left(\frac{3}{2}\right)^n)=\left(\frac{3}{2}\right)^{n+1}$.
- Nous concluons en résumant la situation : \mathcal{H}_0 est vraie, et quelque soit $n \in \mathbb{N}$, $\mathcal{H}_n \Longrightarrow \mathcal{H}_{n+1}$. Donc \mathcal{H}_n est toujours vraie.
- **4.** La suite (x_n) tend vers $+\infty$ et n'est donc pas convergente.

6.3 Entiers relatifs

Solution 6.18

On a $842 = 256 \times 3 + 74$, d'où

$$96842 = 256 \times 375 + 256 \times 3 + 74 = 256 \times 378 + 74$$
 et $0 \le 74 < 256$.

Le quotient et le reste de la division euclidienne de 96842 par 256 sont respectivement 378 et 74. De manière analogue, on On a $842 = 2 \times 375 + 92$, d'où

$$96842 = 256 \times 375 + 2 \times 375 + 92 = 258 \times 375 + 92$$
 et $0 \le 92 < 375$.

Le quotient et le reste de la division euclidienne de 96842 par 375 sont respectivement 258 et 92.

6.4 Les nombres rationnels