Mathcad

Mathcad Mathematical Functions

Mathcad and the Mathcad Extension Packs give you access to hundreds of powerful mathematical functions that enable you to solve your critical scientific and engineering calculations with ease.

Mathcad Functions

Function Name (Parameters)	Function Definition
acos (z)	Returns the angle (in radians) whose cosine is z. Principal value
	for complex z.
acosh (z)	Returns the angle (in radians) whose hyperbolic cosine is z. The
	result is the principal value for complex z.
acot (z)	Returns the angle (in radians) whose cotangent is z. The result is
	between 0 and pi if z is real, and the principal value if z is
	complex.
acoth (z)	Returns the angle (in radians) whose hyperbolic cotangent is z.
	The result is the principal value for complex z.
acsc (z)	Returns the angle (in radians) whose cosecant is z. The result is
	the principal value for complex z.
acsch (z)	Returns the angle (in radians) whose hyperbolic arccosecant is
	z. The result is the principal value for complex z.
Adams (y, x1, x2, npoints, D, [tol])	Returns a matrix of solution values for the differential equation
	specified by the derivatives in D, and having initial conditions y
	on the interval [x1,x2], using Adams methods. Parameter npoints
	controls the number of rows in the matrix output.
AdamsBDF (y, x1, x2, npoints, D, [J], [tol])	Returns a matrix of solution values for the differential equation
	specified by the derivatives in D, and having initial conditions y
	on the interval [x1,x2], using BDF methods for stiff systems and
	Adams methods for non-stiff systems. Parameter npoints
	controls the number of rows in the matrix output.
Ai (z)	Returns the value of the Airy function of the first kind.
Ai.sc (x)	Returns the value of the Airy function of the first kind, scaled by
	the factor Re(exp(2/3*z^(3/2))).
angle (x, y)	Returns the angle (in radians) between the x-axis and the point
	(x, y). x and y must be real.
antisymmetric tensor (i, j, k)	Returns the completely antisymmetric tensor of rank 3. Result is
	0 if any two arguments are the same, 1 for even permutations, -1
	for odd permutations
APPENDPRN (file, [M])	Writes the contents of an array to the end of a delimited ASCII
	file.
arg (z)	Returns the principal argument of the complex number z,
	between -pi and pi, including pi.

asec (z)	Returns the angle (in radians) whose secant is z. The result is
1 doctor (2)	the principal value for complex z.
asech (z)	Returns the angle (in radians) whose hyperbolic secant is z.
(a)	Result is the principal value for complex z.
asin (z)	Returns the angle (in radians) whose sine is z. Principal value for
	complex z.
asinh (z)	Returns the angle (in radians) whose hyperbolic sine is z.
	Principal value for complex z.
atan (z)	Returns the angle (in radians) whose tangent is z. Principal value
	for complex z.
atan2 (x, y)	Returns the angle (in radians) from the x-axis to a line containing
	the origin (0,0) and the point (x,y). Both x and y must be real.
atanh (z)	Returns the angle (in radians) whose hyperbolic tangent is z.
	Principal value for complex z.
augment (A, B, C,)	Returns an array formed by placing A, B, C, left to right
BDF (y, x1, x2, npoints, D, [J], [tol])	Returns a matrix of solution values for the stiff differential
	equation specified by the derivatives in D, and initial conditions y
	on the interval [x1,x2], using backwards differentiation formula
	methods. Parameter npoints controls the number of rows in the
	matrix output.
bei (m, x)	Returns the value of the imaginary Bessel Kelvin function of
	order m.
ber (m, x)	Returns the value of the real Bessel Kelvin function of order m.
Bi (x)	Returns the value of the Airy function of the second kind.
Bi.sc (x)	Returns the value of the Airy function of the second kind, scaled
	by the factor exp(- Re(2/3*z^3/2)).
bspline (vx, vy, u, n)	Returns a vector of the coefficients of a B-spline of degree n for
	the data in vx and vy, given the knot values in u. The vector
	returned becomes the first argument of the interp function.
Bulstoer (y, x1, x2, npoints, D)	Returns a matrix of solution values for the smooth differential
	equation specified by the derivatives in D using a Bulirsch-Stoer
	method.
bvalfit (v1, v2, x1, x2, xf, D, load1, load2, score)	Returns a vector of initial conditions for the boundary value
	problem specified by the derivatives in D where the solution is
	known at the intermediate point xf.
ceil (z)	Returns the smallest integer greater than or equal to z.
Ceil (z, y)	Returns the smallest multiple of y greater than or equal to z,
	typically used for correct unit scaling.
cfft (A)	Returns the Discrete Fourier transform of any size vector or
	matrix of real or complex numbers. Returns an array of the same
	size as its argument.
CFFT (A)	Returns the Discrete Fourier transform of any size vector or
	matrix of real or complex numbers. Returns an array of the same
	size as its argument. Similar to cfft(A), with a different
	normalizing factor and sign convention.
Chi (x)	Returns the value of the hyperbolic cosine integral function. Can
	only be evaluated symbolically.

cholesky (M)	Returns the lower triangular matrix L such that L times L
	transpose is M. L is the cholesky square root of the input matrix.
Ci (x)	Returns the value of the cosine integral function. Can only be
	evaluated symbolically.
cnorm (x)	Returns the cumulative probability distribution with mean 0 and
	variance 1.
cnper (rate, pv, fv)	Returns the number of compounding periods for an investment to
	yield a specified future value.
cols (A)	Returns the number of columns in A.
combin (n, k)	Returns the number of subsets (combinations) of k elements that
	can be formed from n elements.
concat (S1, S2, S3,)	Returns the string formed by concatenating strings S1, S2, and
	so on.
cond1 (M)	Returns the condition number of the matrix M based on the L1
	norm.
cond2 (M)	Returns the condition number of the matrix M based on the L2
	norm.
conde (M)	Returns the condition number of the matrix M based on the
Solido (ili)	Euclidean norm.
condi (M)	Returns the condition number of the matrix M based on the
Solidi (W)	infinity norm.
corr (A, B)	Returns the Pearson's r correlation coefficient of the elements in
(', ', ')	A and B.
correl (vx, vy)	Returns the correlation of vectors vx and vy. Result is a vector
	for which each element contains the summed vector product of
	vx and a shifted version of vy.
correl2d (M, K)	Returns the 2D correlation of matrix M with kernel K. The
100110124 (M, 11)	resulting matrix contains the summed element-wise product of K
	overlapped with a subset of M.
cos (z)	Returns the cosine of z.
cosh (z)	Returns the hyperbolic cosine of z.
cot (z)	Returns the cotangent of z.
coth (z)	Returns the hyperbolic cotangent of z.
crate (nper, pv, fv)	Returns the fixed interest rate per period required for an
	investment at present value to yield a specified future value over
	a number of compounding periods.
CreateMesh (function(s), [s0, s1, t0, t1], [sgrid, tgrid], [fmap])	Returns a nested array of three matrices representing the x-, y-,
	and z-coordinates of a parametric surface defined by the
	·
Croate Space (function(a) [t0 t1] [tarid] [fman])	function(s) of two variables in the first argument(s). Returns a nested array of three vectors representing the x-, y-,
CreateSpace (function(s), [t0, t1], [tgrid], [fmap])	
	and z-coordinates of a space curve defined by the function(s) of
200 (7)	one variable in the first argument.
CSC (Z)	Returns the cosecant of z.
csch (z)	Returns the hyperbolic cosecant of z.
csgn (z)	Returns the complex sign of z, given by 0 if $z = 0$, 1 if the real or
	imaginary part of z is > 0, and -1 otherwise.
csort (A, n)	Returns an array formed by rearranging rows of A until column n
	is in ascending order.

	·
cspline (vx, vy)	Returns a vector of cubic spline coefficients with cubic endpoints
	which fits the independent data in vector or matrix vx and
	dependent data in vy. This vector becomes the first argument of
	the interp function.
cumint (rate, nper, pv, start, end, [type])	Returns the cumulative interest paid on a loan between a starting
	period and an ending period given a fixed interest rate, the total
	number of compounding periods, and the present value of the
	loan.
cumprn (rate, nper, pv, start, end, [type])	Returns the cumulative principal paid on a loan between a
, , , , , , , , , , , , , , , , , , , ,	starting period and an ending period given a fixed interest rate,
	the total number of compounding periods, and the present value
	of the loan.
cvar (A, B)	Returns the covariance of the elements in A and B.
cyl2xyz (r, q, f)	Converts the cylindrical coordinates of a point in 3D space to
	rectangular coordinates.
DAi (z)	Returns the value of the first derivative of the Airy function of the
	first kind.
DAi.sc (x)	Returns the value of the first derivative of the Airy function of the
DAI.36 (X)	·
dhata (y. a1. a2)	first kind, scaled by the factor Re(exp(2/3*z^(3/2))). Returns the probability density for the beta distribution with
dbeta (x, s1, s2)	
DD: (-)	shape parameters s1 and s2.
DBi (z)	Returns the value of the first derivative of the Airy function of the
DD: ()	second kind.
DBi.sc (x)	Returns the value of the first derivative of the Airy function of the
	second kind, scaled by the factor exp(- Re(2/3*z^3/2)).
dbinom (k, n, q)	Returns the probability density for the Binomial distribution.
dcauchy (x, l, s)	Returns the probability density for the Cauchy distribution with
	location I and scale s.
dchisq (x, d)	Returns the probability density for the chi-squared distribution
	with degrees of freedom d.
denom (x)	Returns the denominator of the fraction or rational expression x.
, ,	Can only be evaluated symbolically.
dexp (x, r)	Returns the probability density for the exponential distribution
	with rate of decay r.
dF (x, d1, d2)	Returns the probability density for the F distribution with degrees
a. (x, a., a.)	of freedom d1 and d2.
dgamma (x, s)	Returns the probability density for the gamma distribution with
agamma (x, 3)	shape parameter s.
dgeom (k, p)	Returns the probability density for the Geometric distribtuion,
ageom (k, p)	with probability of success p.
dhypergeom (m, a, b, n)	Returns the probability density for the hypergeometric
dilypergeom (m, a, b, n)	
diam (r.)	distribution.
diag (v)	Returns a matrix containing on its diagonal the elements of v.
dilog (x)	Returns the value of the dilogarithm function. Can only be
	evaluated symbolically.
dlnorm (x, mu, sigma)	Returns the probability density for the lognormal distribution with
	logmean mu and logdeviation sigma.
dlogis (x s)	
dlogis (x, l, s)	Returns the probability density for the logistic distribution with

DMS (x)	Returns the angle in radians given a vector containing degrees,
	minutes, and seconds; or returns the vector given the angle
	when used in the units placeholder.
dnbinom (k, n, p)	Returns the probability density for the negative binomial
, , , , , , , , , , , , , , , , , , ,	distribution with size n and probability of failure p.
dnorm (x, mu, sigma)	Returns the probability density for the normal distribution with
	mean mu and standard deviation sigma.
dpois (k, l)	Returns the probability density for the Poisson distribution in
	which mean I.
dt (x, d)	Returns the probability density for Student's t distribution with
	degrees of freedom d.
dunif (x, a, b)	Returns the probability density for the uniform distribution on an
(,,,,,,,	interval [a,b].
dweibull (x, s)	Returns the probability density for the Weibull distribution with
(,)	shape parameter s.
eff (rate, npery)	Returns the effective annual interest rate (APR), given the
(,	nominal interest rate and the number of compounding periods
	per year.
Ei (x)	Returns the value of the exponential integral function.
eigenvals (M)	Returns a vector of eigenvalues for the square matrix M.
eigenvec (M, z)	Returns the normalized eigenvector associated with eigenvalue z
	of the square matrix M. The eigenvector is normalized to unit
	length.
eigenvecs (M)	Returns a matrix containing the normalized eigenvectors
Joint Coo (iii)	corresponding to the eigenvalues of the square matrix M. The
	nth column of the matrix returned is an eigenvector
	corresponding to the nth eigenvalue returned by eigenvals.
	Optional last argument "L" specifies the left eigenvalue.
erf (z)	Returns the error function.
erfc (x)	Returns the complementary error function.
error (S)	Returns the string S as a Mathcad error tip.
exp (z)	Returns the number e raised to the power z.
expfit (vx, vy, [vg])	Returns a vector containing three coefficients for an exponential
	curve of the form a*e^(b*x)+c that best approximates the data in
	vectors vx and vy. The optional vector vg contains guess values
	for the three coefficients.
fft (v)	Returns the fast Fourier transform of real data vector v with 2^n
()	elements. Returns a vector of size 2 ⁿ -1 + 1. Similar to FFT(v),
	except uses a different normalizing factor and sign convention.
	except uses a different flormalizing factor and sign convention.
FFT (v)	Returns the fast Fourier transform of real data vector v with 2^n
' ' (*)	elements. Returns a vector of size 2 ⁿ -1 + 1. Similar to fft(v),
	except uses a different normalizing factor and sign convention.
fhyper (a, b, c, x)	Returns the value of the Gauss hypergeometric function at the
FIF (x)	point x given parameters a, b, c.
FIF (X)	Returns a length given a string representing feet-inches-
	fractions; or returns the FIF string given a length when used in
	the units placeholder.

Find (var1, var2,)	Returns the values of var1, var2,, that solve a system of
	equations in a Solve Block. Returns a scalar if there is only one
	argument, otherwise returns a vector of answers.
floor (z)	Returns the greatest integer less than or equal to z.
Floor (z, y)	Returns the greatest multiple of y less than or equal to z, typically
	used for correct unit scaling.
format (S, x, y, z,)	Returns a string containing the value of the arguments x, y, z,
	with print order and surrounding text specified by S. S is optional
	if only one value is printed.
FresnelC (x)	Returns the value of the Fresnel cosine integral function.
FresnelS (x)	Returns the value of the Fresnel sine integral function.
fv (rate, nper, pmt, [[pv], [type]])	Returns the future value of an investment or loan given a
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	periodic, constant payment and a fixed interest rate.
fvadj (prin, v)	Returns the future value of an initial principal after applying the
	series of compound interest rates in vector v.
fvc (rate, v)	Returns the future value of a vector of cash flows, v, earning a
(5.05, 1)	specified interest rate.
Gamma ([a], z)	Returns either Euler's gamma function of z, or the incomplete
([a], 2)	gamma function of z with degree a. To type G, press G+[Ctrl]+G.
	gamma famoustr of 2 with degree at the type of, press of [outi] to:
gcd (A, B, C,)	Returns the greatest common divisor: the largest integer that
	evenly divides all the elements of A, B, C,
genfit (vx, vy, vg, F)	Returns a vector of parameters that make the first function in the
gorint (vx, vy, vg, r)	vector F best fit the data in the vectors vx and vy. The remaining
	elements in F are partial derivatives of the fitting function with
	· · · · · · · · · · · · · · · · · · ·
	respect to its n parameters, and vg is a vector of guess values.
	Right-click on this function to choose a solver.
geninv (A)	Returns the generalized (pseudo) inverse of the input matrix A,
	giving the least-squares solution to a system of equations
	grang are reacted quantities as a system or equantities
genvals (M, N)	Returns a vector of eigenvalues which satisfy the generalized
	eigenvalue problem.
genvecs (M, N)	Returns a matrix of normalized eigenvectors corresponding to
3 3 3 3	the eigenvalues returned by genvals. Optional last argument "L"
	specifies the left eigenvalue.
GETWAVINFO (file)	Returns a vector containing, in order, the number of channels,
()	the sample rate, the bit resolution, and the average bytes per
	second for a WAV file.
gmean (A, B, C,)	Returns the geometric mean of the elements of A, B, C,
H1 (m, z)	Returns the Hankel function of the first kind (Bessel function of
	the third kind).
H1.sc (m, z)	Returns the Hankel function of the first kind (Bessel function of
	the third kind), scaled by the factor exp(-z*i).
H2 (m, z)	Returns the Hankel function of the second kind (Bessel function
	·
	of the third kind). Returns the Hankel function of the second kind (Bessel function
H2.sc (m, z)	,
hooviside step (v)	of the third kind), scaled by the factor exp(z*i).
heaviside step (x)	Returns the heaviside step function with value 1 if x is greater
	than or equal to 0, 0 otherwise. To type Phi, press F+[Ctrl]+G.

Her (n, x)	Returns the value of the Hermite polynomial of degree n at x.
hhmmss (x)	Returns a time given a string containing hours:minutes:seconds; or returns the string given a time when used in the units
hist (intvls, data)	placeholder. Returns a vector representing the frequencies with which values in data fall into the intervals represented by intvls. intvls can be a vector of interval endpoints, or an integer number of subintervals of equal length.
histogram (intvls, data)	Returns a two-column matrix containing the midpoints of the intvls subintervals. The second column is identical to the vector returned by hist. The resulting matrix has intvls rows.
hlookup (z, A, r)	Looks in the first row of a matrix, A, for a given value, z, and returns the value(s) in the same column(s) in the row specified, r. When multiple values are returned, they appear in a vector.
hmean (A, B, C,)	Returns the harmonic mean of the elements of A, B, C,
I0 (z)	Returns the zeroth order modified Bessel function of the first kind.
10.sc (z)	Returns the zeroth order modified Bessel function of the first kind, scaled by the factor exp(- Re(z)).
I1 (z)	Returns the first order modified Bessel function of the first kind.
I1.sc (z)	Returns the first order modified Bessel function of the first kind, scaled by the factor exp(- Re(z)).
ibeta (a, x, y)	Returns the value of the incomplete beta function of x and y with parameter a.
icfft (A)	Returns the inverse Fourier transform corresponding to cfft. Returns an array of the same size as its argument.
ICFFT (A)	Returns the inverse Fourier transform corresponding to CFFT. Returns an array of the same size as its argument.
identity (n)	Returns an n x n identity matrix (a matrix of 0's with 1's along the diagonal).
if (cond, x, y)	Returns x if logical condition cond is true (non-zero), y otherwise.
ifft (u)	Returns the inverse Fourier transform corresponding to fft. Takes a vector of size 1 + 2^n-1, where n is an integer. Returns a real vector of size 2^n.
IFFT (u)	Returns the inverse Fourier transform corresponding to FFT. Takes a vector of size 1 + 2^n-1, where n is an integer. Returns a real vector of size 2^n.
lm (z)	Returns the imaginary part of complex number, vector, or matrix, z.
In (m, z)	Returns the mth order modified Bessel function of the first kind.
In.sc (m, z)	Returns the mth order modified Bessel function of the first kind, scaled by the factor exp(- Re(z)).
intercept (vx, vy)	Returns the intercept of line that best fits data in vx and vy.

interp (vs, vx, vy, x)	Returns an interpolated value at x from the coefficients in vector
	vs, and the original data in vx and vy. Coefficient vector vs is the
	output of one of the following: cspline, lspline, pspline, bspline,
	loess, or regress.
ipmt (rate, per, nper, pv, [[fv], [type]])	Returns the interest payment of an investment or loan for a given
	period based on periodic, constant payments over a given
	number of compounding periods using a fixed interest rate and a
	specified present value.
irr (v, [guess])	Returns the internal rate of return for a series of cash flows
	occurring at regular intervals.
IsArray (x)	Returns 1 if x is a matrix or vector. Returns 0 otherwise.
IsNaN (x)	Returns 1 if x is NaN. Returns 0 otherwise.
IsPrime (n)	Returns 1 if n is prime and 0 otherwise. Can only be evaluated
· ,	symbolically.
IsScalar (x)	Returns 1 if x is a real or complex scalar. Returns 0 otherwise.
()	'
IsString (x)	Returns 1 if x is a string. Returns 0 otherwise.
iwave (v)	Returns the inverse one-dimensional discrete wavelet transform
` ,	of v computed using the Daubechies 4-coefficient wavelet filter in
	the wave function.
J0 (z)	Returns the zeroth order Bessel function of the first kind.
J0.sc (z)	Returns the zeroth order Bessel function of the first kind, scaled
(=)	by exp(- Im(z)).
J1 (z)	Returns the first order Bessel function of the first kind.
J1.sc (z)	Returns the first order Bessel function of the first kind, scaled by
01.55 (2)	$\exp(- \operatorname{Im}(z))$.
Jac (n, a, b, x)	Returns the value of the Jacobi polynomial of degree n at x with
(., 4, 5, 7,	parameters a and b.
Jacob (F(x),x,[k])	Returns the Jacobian matrix of the vector function F(x).
Jn (m, z)	Returns the mth order Bessel function of the first kind.
Jn.sc (m, z)	Returns the mth order Bessel function of the first kind, scaled by
······································	exp(- Im(z)).
js (m, z)	Returns the value of the spherical Bessel function of the first
je (, <i></i> /	kind, of order m.
K0 (z)	Returns the zeroth order modified Bessel function of the second
(2)	kind.
K0.sc (z)	Returns the zeroth order modified Bessel function of the second
110.00 (2)	kind, scaled by the factor exp(z).
K1 (z)	Returns the first order modified Bessel function of the second
(2)	kind.
K1.sc (z)	Returns the first order modified Bessel function of the second
K1.30 (2)	kind, scaled by the factor exp(z).
Kn (m, z)	Returns the mth order modified Bessel function of the second
Kii (iii, 2)	
Kn.sc (m, z)	kind. Returns the mth order modified Bessel function of the second
Kranaakar dalta (v. v.)	kind, scaled by the factor exp(z).
Kronecker delta (x, y)	Returns the Kronecker delta function with value 1 if $x = y$, 0
Icama a the (cur, cur, h)	otherwise. To type Delta, press d+[Ctrl]+G.
ksmooth (vx, vy, b)	Returns a vector of local weighted averages of vy using a
	Gaussian kernel with bandwidth b.
kurt (A, B, C,)	Returns the kurtosis of the elements of A, B, C,

Lag (n, x)	Returns the value of the Laguerre polynomial of degree n at x.
LambertW ([n],x)	Lambert(x) returns the value of the Lambert W function.
	Lambert(n,x) returns the value of the nth branch of the Lambert
	W function.
last (v)	Returns the scalar index of the last element in vector v.
Icm (A, B, C,)	Returns the least common multiple: the smallest positive integer
	that is a multiple of all the elements of A, B, C,
Leg (n, x)	Returns the value of the Legendre polynomial of degree n at x.
length (v)	Returns the integer number of elements in vector v.
lgsfit (vx, vy, vg)	Returns a vector containing the 3 coefficients for a logistic curve
	of the form a/(1+b*e^(-c*x)) that best approximates the data in
	vectors vx and vy, using guess values in vg.
line (vx, vy)	Returns a vector containing the coefficients for a line of the form
	a + bx that best approximates the data in vectors vx and vy.
linfit (vx, vy, F)	Returns a vector containing the coefficients used to create a
	linear combination of the functions in vector F which best
	approximates the data in vx and vy.
linterp (vx, vy, x)	Returns a linearly interpolated value at x for data vectors vx and
	vy of the same size.
ln (z)	Returns the natural logarithm (base e) of z. Returns principal
	value (imaginary part between pi and -pi) for complex z.
In0 (z)	Returns the natural logarithm (base e) of z but allows $z = 0$.
	Returns principal value (imaginary part between pi and -pi) for
	complex z.
Infit (vx, vy)	Returns a vector containing the 2 coefficients for a logarithmic
	curve of the form a*ln(x) + b that best approximates the data in
	vx and vy.
InGamma (z)	Returns the natural logarithm of Euler's gamma function,
	evaluated at z. To type G, press G[Ctrl]G.
LoadColormap (file)	Returns an array containing the values in the colormap named
	file.
loess (vx, vy, span)	Returns a vector used by the interp function to find a set of
	second order polynomials that best fit a neighborhood of data
	values in vectors or matrices vx and vy. The size of the
	neighborhood is controlled by span.
log (z, [b])	Returns the base b logarithm of z. If b is omitted, returns the
	base 10 logarithm.
logfit (vx, vy, vg)	Returns a vector containing the three coefficients for a
	logarithmic curve of the form a*ln(x+b)+c that best approximates
	the data in vectors vx and vy. Vector vg contains guess values
	for the three coefficients.
logpts (minexp, dec, dnpts)	Returns a vector with dec decades of evenly-spaced points
	starting at 10 raised to the exponent minexp, with dnpts points
	per decade.
logspace (min, max, npts)	Returns a vector of npts logarithmically-spaced points starting at
. , ,	min, ending at max.

Looks in a vector or matrix, A, for a given value, z, and returns
the value(s) in the same position(s) (i.e., with the same row and
column numbers) in another matrix, B. When multiple values are
returned, they appear in a vector.
Returns the vector x solving the linear system of equations $M^*x =$
v.
Returns a vector of cubic spline coefficients with linear endpoints
which fits the independent data in vector or matrix vx and
dependent data in vy. This vector becomes the first argument of
the interp function.
Returns a matrix containing three augmented square matrices P,
L, and U, all having the same size as M; these satisfy the
equation P M = L U.
Looks in a vector or matrix, A, for a given value, z, and returns
the index (indices) of its positions in A.
Returns a m x n matrix in which the ijth element is given by f(i,j).
Returns the largest value from A, B, C, If any value is
complex, returns max(Re(A, B, C,)) + i*max(Im(A, B, C,)).
Returns the values of var1, var2,, that satisfy the constraints in
a Solve Block, and make the function f take on its greatest value.
Returns a scalar if there is only one argument, otherwise returns
a vector of answers.
Returns the arithmetic mean, or average, of the elements of A, B,
C,
Returns a vector containing the coefficients for a line of the form
a + bx that best approximates the data in vectors vx and vy using
median-median regression.
Returns the median of the elements of A, B, C
Returns a smoothed vector by replacing each value in vy with the
median of the n points centered on that value.
Returns the value of the confluent hypergeometric function,
M(a,b,x), at the point x with parameters a and b.
Returns the smallest value in A, B, C, If any value is complex,
returns min(Re(A, B, C,)) + i*min(Im(A, B, C,)).
Returns the values of var1, var2,, coming closest to satisfying
, , , ,
a system of equations and constraints in a Solve Block, Returns
a system of equations and constraints in a Solve Block. Returns a scalar if only one argument, otherwise returns a vector of
a scalar if only one argument, otherwise returns a vector of
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration.
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value.
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value. Returns a scalar if there is only one variable, otherwise returns a
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value. Returns a scalar if there is only one variable, otherwise returns a vector of answers.
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value. Returns a scalar if there is only one variable, otherwise returns a vector of answers. Returns the modified internal rate of return for a vector v of cash
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value. Returns a scalar if there is only one variable, otherwise returns a vector of answers. Returns the modified internal rate of return for a vector v of cash flows given a finance rate and a reinvestment rate.
a scalar if only one argument, otherwise returns a vector of answers. If Minerr cannot converge, it returns the results of the last iteration. Returns the values of var1, var2,, that satisfy the constraints in a Solve Block, and make the function f take on its smallest value. Returns a scalar if there is only one variable, otherwise returns a vector of answers. Returns the modified internal rate of return for a vector v of cash

multigrid (M, ncycle)	Returns a square matrix of solution values for Poisson's partial
	differential equation, controlled by ncycle, in the case of zero
	boundaries. Otherwise, use the relax function.
nom (APR, npery)	Returns the nominal interest rate, given the effective annual
(Ar IX, lipery)	
	interest rate (APR) and the number of compounding periods per
noved (M)	year.
norm1 (M)	Returns the L1 norm of the matrix M.
norm2 (M)	Returns the L2 norm of the matrix M.
norme (M)	Returns the Euclidean norm of the matrix M.
normi (M)	Returns the infinity norm of the matrix M.
nper (rate, pmt, pv, [[fv], [type]])	Returns the number of compounding periods for an investment
	or loan based on periodic, constant payments using a fixed
	interest rate and a specified present value.
npv (rate, v)	Returns the net present value of an investment given a discount
	rate and a series of cash flows occuring at regular intervals.
num2str (z)	Returns the number z to a string.
numer (x)	Returns the numerator of the fraction or rational expression x.
	Can only be evaluated symbolically.
numol (x_endpts, xpts, t_endpts, tpts, num_pde, num_pae,	Returns an xpts by tpts matrix containing the solutions to the one-
pde_func, pinit, bc_func)	dimensional PDEs in pde_func. Each column represents a
	solution over 1-D space at a single solution time. For a system of
	equations, the solution for each function is appended
	horizontally, so the matrix always has xpts rows, and tpts *
	(num pde + num pae) columns.
Odesolve ([vf], x, b, [step])	Returns a function or vector of functions of x representing the
	solution to a system of ordinary differential equations in a Solve
	Block. vf is omitted when solving a single ODE.
pause (S, x, y, z,)	Returns a string containing the value of the arguments x, y, z,
	with print order and surrounding text specified by S. Prints values
	in the Trace Window and pauses execution when debug mode is
	on. S is optional if only one value is printed.
	, a supplied to the supplied t
pbeta (x, s1, s2)	Returns the cumulative probability beta distribution with shape
	parameters s1 and s2.
pbinom (k, n, q)	Returns the cumulative probability binomial distribution for k
	successes in n trials, given a probability of success, q, per trial.
	γ, γ
pcauchy (x, l, s)	Returns the cumulative probability Cauchy distribution with
	location I and scale s.
pchisq (x, d)	Returns the cumulative probability chi-squared distribution with
	degrees of freedom d.
Pdesolve (u, x, xrange, t, trange, [xpts], [tpts])	Returns a vector u of functions of x and t representing the
r deserve (d, x, xrange, t, trange, [xpt3], [tpt3])	solution to a system of partial differential equations in a Solve
permut (n, k)	Block over the ranges specified in xrange and trange. Returns the number of ways of ordering n distinct objects taken k
permut (II, K)	· · · · · · · · · · · · · · · · · · ·
nove (v. rl	at a time (permutations).
pexp (x, r)	Returns the cumulative exponential probability distribution with
F (14 10)	rate r.
pF (x, d1, d2)	Returns the cumulative F probability distribution with degrees of
	freedom d1 and d2.

pgamma (x, s)	Returns the cumulative gamma probability distribution with shape
	parameter s.
pgeom (k, p)	Returns the cumulative geometric probability distribution with
	probability of success p.
phypergeom (m, a, b, n)	Returns the cumulative hypergeometric probability distribution.
plnorm (x, mu, sigma)	Returns the cumulative lognormal probability distribution with
	logmean mu and logdeviation sigma.
plogis (x, l, s)	Returns the cumulative logistic probability distribution with
	location I and scale s.
pmt (rate, nper, pv, [[fv], [type]])	Returns the payment for an investment or loan based on
	periodic, constant payments over a given number of
	compounding periods using a fixed interest rate and a specified
	present value.
pnbinom (k, n, p)	Returns the cumulative negative binomial probability distribution
	with size n and probability of failure p.
pnorm (x, mu, sigma)	Returns the cumulative normal probability distribution with mean
	mu and standard deviation sigma.
pol2xy (r, theta)	Converts the polar coordinates of a point in 2D space to
	rectangular coordinates.
Polyhedron (S)	Generates the uniform polyhedron whose name, number code,
	or Wythoff symbol is string S.
PolyLookup (n)	Returns a vector containing the name, the dual name, and the
	Wythoff symbol for the polyhedron whose number code is n.
polyroots (v)	Returns a vector containing all the roots of the polynomial whose
	coefficients are in v. Right-click on this function to choose a
	solver.
ppmt (rate, per, nper, pv, [[fv], [type]])	Returns the payment on the principal of an investment or loan for
	a given period based on periodic, constant payments over a
	given number of compounding periods using a fixed interest rate
	and a specified present value.
ppois (k, l)	Returns the cumulative Poisson probability distribution in which I
	> 0.
predict (v, m, n)	Returns a vector of n predicted values past the last element in v,
,	based on autocorrelation coefficients of m consecutive values in
	a sliding window.
Psi ([n],x)	Psi(x) returns the digamma function of x. Psi(n,x) returns the
	polygamma function of x. Can only be evaluated symbolically.
pspline (vx, vy)	Returns a vector of cubic spline coefficients with parabolic
	endpoints that fits the independent data in vector or matrix vx
	and dependent data in vy. This vector becomes the first
	argument of the interp function.
pt (x, d)	Returns the cumulative probability Student's t distribution with
•	degrees of freedom d.
punif (x, a, b)	Returns the cumulative uniform probability distribution on the
parm (x, a, b)	rectains the samalative aniform probability distribution on the

pv (rate, nper, pmt, [[fv], [type]])	Returns the present value of an investment or loan based on
	periodic, constant payments over a given number of
	compounding periods using a fixed interest rate and a specified
	payment.
pweibull (x, s)	Returns the cumulative Weibull probability distribution with shape
	parameter s.
pwrfit (vx, vy, vg)	Returns a vector containing the coefficients for a power curve of
	the form a*x^b + c that best approximates the data in vectors vx
	and vy. Vector vg contains guess values for the three
	coefficients.
qbeta (p, s1, s2)	Returns the inverse cumulative beta distribution with shape
	parameters s1 and s2.
qbinom (p, n, q)	Returns the inverse cumulative binomial distribution with size n
	and probability of success q.
qcauchy (p, l, s)	Returns the inverse cumulative Cauchy distribution with location I
	and scale s.
qchisq (p, d)	Returns the inverse cumulative chi-squared distribution with
	degrees of freedom d.
qexp (p, r)	Returns the inverse cumulative exponential distribution with rate
The leader /	r.
qF (p, d1, d2)	Returns the inverse cumulative F distribution with degrees of
1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	freedom d1 and d2.
qgamma (p, s)	Returns the inverse cumulative gamma distribution with shape
- (1-77)	parameter s.
qgeom (p, q)	Returns the inverse cumulative geometric distribution with
14300 (p, 4)	probability of success q.
qhypergeom (p, a, b, n)	Returns the inverse cumulative probability distribution for the
	hypergeometric distribution. p is a real number between 0 and 1.
	a, b, and n are integers.
qlnorm (p, mu, sigma)	Returns the inverse cumulative lognormal distribution with
quiem (p, ma, eigina)	logmean mu and logdeviation sigma.
qlogis (p, l, s)	Returns the inverse cumulative logistic distribution with location I
14-25-5 (F) 1, 3/	and scale s.
qnbinom (p, n, q)	Returns the inverse cumulative negative binomial distribution
4, (6,, 4)	with size n and probability of failure q.
qnorm (p, mu, sigma)	Returns the inverse cumulative normal distribution with mean mu
que ma, e.g.ma)	and standard deviation sigma.
qpois (p, l)	Returns the inverse cumulative Poisson distribution with I > 0.
ηροιο (ρ, ι)	Totalis ale inverse samalaire i sissen aleansaisin marr
qr (A)	Returns a matrix whose first n columns contain the square,
ų (^)	orthonormal matrix, Q, and whose remaining columns contain
	the upper triangular matrix, R, forming the QR decomposition of
	the input matrix Q*R = A.
qt (p, d)	Returns the inverse cumulative Student's t distribution with
	degrees of freedom d.
qunif (p, a, b)	Returns the inverse cumulative uniform distribution on the
qweibull (p, s)	interval [a,b]. Returns the inverse cumulative Weibull distribution with shape
iqweibuli (μ, ο)	·
	parameter s.

Radau (y, x1, x2, npoints, D, [J], [M], [tol])	Returns a matrix of solution values for the stiff differential
() / / / / DL //	equation specified by the derivatives in D, and initial conditions y
	on the interval [x1,x2], using a RADAU5 method. Parameter
	npoints controls the number of rows in the matrix output.
rank (A)	Returns the rank of matrix A, the number of linearly independent
	columns.
rate (nper, pmt, pv, [[fv], [type], [guess]])	Returns the interest rate per period of an investment or loan over
	a specified number of compounding periods given a periodic,
	constant payment and a specified present value.
rbeta (m, s1, s2)	Returns a vector of m random numbers having the beta
	distribution with shape parameters s1 and s2.
rbinom (m, n, q)	Returns a vector of m random numbers having the binomial
	distribution with size n and probability of success q.
rcauchy (m, l, s)	Returns a vector of m random numbers having the Cauchy
	distribution with location I and scale s.
rchisq (m, d)	Returns a vector of m random numbers having the chi-squared
	distribution with degrees of freedom d.
Re (z)	Returns the real part of complex number z.
READ_BLUE (file)	Returns a matrix representing the RGB blue component of the
	BMP, GIF, JPG, or TGA color image in file.
READ_GREEN (file)	Returns a matrix representing the RGB green component of the
	BMP, GIF, JPG, or TGA color image in file.
READ_HLS (file)	Returns a packed matrix of hue, lightness, and saturation
	components based on the Ostwald color model for the BMP,
	GIF, JPG, or TGA color image in file. The returned matrix
	contains the H, L, and S matrices packed side by side.
READ_HLS_HUE (file)	Returns a matrix representing the HLS hues based on the
	Ostwald color model for the BMP, GIF, JPG, or TGA color image in file.
READ_HLS_LIGHT (file)	Returns a matrix representing the HLS lightness components
INCAD_NEO_EIGHT (IIIC)	based on the Ostwald color model for the BMP, GIF, JPG, or
	TGA color image in file.
READ_HLS_SAT (file)	Returns a matrix representing the HLS saturation components
112/15_1126_6/11 (1116)	based on the Ostwald color model for the BMP, GIF, JPG, or
	TGA color image in file.
READ HSV (file)	Returns a packed matrix of hue, saturation, and value
	components based on Smith's HSV color model for the BMP,
	GIF, JPG, or TGA color image in file. The returned matrix
	contains the H, S, and V matrices packed side by side.
	contains the H, O, and V mathees packed side by side.
READ_HSV_HUE (file)	Returns a matrix representing the HSV hues based on Smith's
	HSV color model for the BMP, GIF, JPG, or TGA color image in
	file.
READ_HSV_SAT (file)	Returns a matrix representing the HSV saturation components
	based on Smith's HSV color model for the BMP, GIF, JPG, or
	TGA color image in file.
READ_HSV_VALUE (file)	Returns a matrix representing the HSV value components based
, (,	on Smith's HSV color model for the BMP, GIF, JPG, or TGA
	color image in file.
	poloi image in inc.

rlogis (m, l, s)	Returns a vector of m random numbers having the logistic
	distribution with location I and scale s.
rnbinom (m, n, p)	Returns a vector of m random numbers having the negative
	binomial distribution with size n and probability of failure p.
rnd (x)	Returns a uniformly distributed random number between 0 and x.
rnorm (m, mu, sigma)	Returns a vector of m random numbers having the normal
	distribution with mean mu and standard deviation sigma.
root (f(var), var, [a, b])	Returns the value of var to make the function f equal to zero. If a
	and b are specified, root finds var on this interval. Otherwise, var
	must be defined with a guess value before root is called.
round (z, n)	Rounds z to n places. If n is omitted, z is rounded to the nearest
	integer. If n < 0, z is rounded to the left of the decimal point.
Round (z, y)	Rounds z to the closest multiple of y, typically used for correct
	unit scaling.
rows (A)	Returns the number of rows in A.
rpois (m, l)	Returns a vector of m random numbers having the Poisson
	distribution with I > 0.
rref (A)	Returns a matrix representing the row-reduced echelon form of
	A.
rsort (A, n)	Returns an array formed by rearranging columns of A until row n
	is in ascending order.
rt (m, d)	Returns a vector of m random numbers having Student's t
	distribution with d degrees of freedom.
runif (m, a, b)	Returns a vector of m random numbers having the uniform
	distribution on interval [a,b].
rweibull (m, s)	Returns a vector of m random numbers having the Weibull
	distribution with shape parameter s.
SaveColormap (file, M)	Creates a colormap named file containing the values in the
	matrix M. Returns the number of rows written to the file.
sbval (v, x1, x2, D, load, score)	Returns a set of initial conditions for the boundary value problem
	specified by the derivatives in D and guess values in v on the
	interval [x1,x2]. Parameter load contains both known initial
	conditions and guess values from v, and score measures
. (24.2.12.)	solution discrepancy at x2.
search (S1, SubS, m)	Returns the starting position of the substring SubS in S1
	beginning from position m.
sec (z)	Returns the secant of z.
sech (z)	Returns the hyperbolic secant of z.
Seed (x)	Resets the random number seed to x and returns the previous value.
Shi (x)	Returns the value of the hyperbolic sine integral function.
Si (x)	Returns the value of the sine integral function.
sign (x)	Returns 0 if $x = 0$, 1 if $x > 0$, and -1 otherwise. For complex
	values, use csgn.
signum (z, [x])	Returns x if $z = 0$ and $z/ z $ otherwise.
sin (z)	Returns the sine of z.
sinc (z)	Returns the value of sin(z)/z, with correct behavior in the limit as
1	· · · · · · · · · · · · · · · · · · ·

sinfit (vx, vy, vg)	Returns a vector containing the coefficients for a sine curve of
(vx, vy, vg)	the form a*sin(x +b) + c that best approximates the data in
	vectors vx and vy. Vector vg contains guess values for the three
	coefficients.
sinh (z)	Returns the hyperbolic sine of z.
SIUnitsOf (x)	Returns the units of x. If x has no units, returns 1.
skew (A, B, C,)	Returns the skewness of the elements of A, B, C,
slope (vx, vy)	Returns the slope of line that best fits data in vx and vy.
sort (v)	Returns a vector with the values from v sorted in ascending
	order.
sph2xyz (r, theta, phi)	Converts the spherical coordinates of a point in 3D space to
(-, u.o.o., p)	rectangular coordinates.
stack (A, B, C,)	Returns an array formed by placing A, B, C, top to bottom. A,
	B, C, are arrays having the same number of columns, or they
	are scalars and column vectors.
statespace (init, t1, t2, npoints, A, [B], [u])	Returns the solution to a system of linear, first-order ordinary
	differential equations.
stderr (vx, vy)	Returns the standard error associated with a linear regression for
Stacii (vx, vy)	the points described by the vectors vx and vy. Measures the
	spread of data points about the regression line.
stdev (A, B, C,)	Returns the population standard deviation of the elements of A,
	В, С,
Stdev (A, B, C,)	Returns the sample standard deviation of the elements of A, B, C
(,, 2, 5,)	
Stiffb (y, x1, x2, npoints, D, AJ)	Returns a matrix of solution values for the stiff differential
,	equation specified by the derivatives in D, the augmented
	Jacobian function AJ, and initial conditions y on the interval
	[x1,x2] using a Bulirsch-Stoer method. Parameter npoints
	controls the number of rows in the matrix output.
Stiffr (y, x1, x2, npoints, D, AJ)	Returns a matrix of solution values for the stiff differential
	equation specified by the derivatives in D, the augmented
	Jacobian function AJ, and initial conditions y on the interval
	[x1,x2] using a Rosenbrock method. Parameter npoints controls
	the number of rows in the matrix output.
str2num (S)	Returns a constant formed by converting string S into a number.
()	
str2vec (S)	Returns a vector of ASCII codes corresponding to the characters
, ,	in S.
strlen (S)	Returns the number of characters in string S.
submatrix (A, ir, jr, ic, jc)	Returns the submatrix of array A consisting of elements in rows in
(, , , , , , , , , , , , , , , , , , ,	through jr and columns ic through jc of A.
substr (S, m, n)	Returns a substring of S beginning at character m and having
	maximum length n.
supsmooth (vx, vy)	Returns a vector created by the piecewise use of a symmetric
, · · • • • • • • • • • • • • • • • • •	nearest neighbor linear least-squares fitting on each element in
	vy, in which the number of nearest neighbors is adaptively
	chosen.
svd2 (A)	Returns a vector of 3 nested arrays. The first array contains the
v y	vector of singular values. The following two arrays are the
	matrices U and V.

tan (z)	Returns the tangent of z.
tanh (z)	Returns the hyperbolic tangent of z.
Tcheb (n, x)	Returns the value of the Chebyshev polynomial of degree n, of
	the first kind, at x.
time (z)	Returns the current system time. The value z is an arbitrary
	Mathcad expression with no impact on the return.
tr (M)	Returns the trace of square matrix M: sum of diagonal elements.
trace (S, x, y, z,)	Returns a string containing the value of the arguments x, y, z,
	with print order and surrounding text specified by S. Prints values
	in the Trace Window when debug mode is on. S is optional if only
	one value is printed.
trunc (z)	Returns the integer part of z by removing the fractional part.
Trunc (z, y)	Returns the value of trunc(z/y)*y, typically used for correct unit
	scaling.
Ucheb (n, x)	Returns the value of the Chebyshev polynomial of degree n, of
	the second kind, at x.
until (icond, x)	Returns x until icond is negative.
var (A, B, C,)	Returns the population variance of the elements of A, B, C,
Var (A, B, C,)	Returns the sample variance of the elements of A, B, C,
vec2str (v)	Returns a string formed by converting the ASCII codes in v to
()	characters.
vlookup (z, A, c)	Looks in the first column of a matrix, A, for a given value, z, and
	returns the value(s) in the same row(s) in the column specified,
	c. When multiple values are returned, they appear in a vector.
wave (v)	Returns the one-dimensional discrete wavelet transform of the
	data in v using the Daubechies 4-coefficient wavelet filter.
WRITE_HLS (file)	Writes a packed matrix consisting of the hue, lightness, and
	saturation components of an image to a 16 million color Windows
	BMP file on your file system.
WRITE_HSV (file)	Writes a packed matrix consisting of the hue, saturation, and
	value components of an image to a 16 million color Windows
	BMP file on your file system.
WRITEBIN (file, type, endian)	Writes an array of scalars to the binary data file named file.
WRITEBMP (file)	Writes an array into a grayscale BMP file on your file system.
WRITEPRN (file)	Writes an array into a file on your file system.
WRITERGB (file)	Writes a packed matrix consisting of the red, green, and blue
	components image to a 16 million color Windows BMP file on
	your file system.
WRITEWAV (file, s, b)	Writes a WAV signal file out of a matrix.
xy2pol (x, y)	Converts the rectangular coordinates of a point in 2D space to
	polar coordinates.
xyz2cyl (x, y, z)	Converts the rectangular coordinates of a point in 3D space to
	cylindrical coordinates.
xyz2sph (x, y, z)	Converts the rectangular coordinates of a point in 3D space to
	spherical coordinates.
Y0 (z)	Returns the zeroth order Bessel function of the second kind.

Y0.sc (z)	Returns the zeroth order Bessel function of the second kind,
	scaled by the factor exp(- Im(z)).
Y1 (z)	Returns the first order Bessel function of the second kind.
Y1.sc (z)	Returns the first order Bessel function of the second kind, scaled
	by the factor exp(- Im(z)).
Yn (m, z)	Returns the mth order Bessel function of the second kind.
Yn.sc (m, z)	Returns the mth order Bessel function of the second kind, scaled
	by the factor exp(- Im(z)).
ys (m, z)	Returns the value of the spherical Bessel function of the second
	kind, of order m.
Zeta (s)	Returns the value of the Riemann Zeta function. Can only be
	evaluated symbolically.

Mathcad Data Analysis Extension Pack Functions

Mathcad Data Analysis Extension Pack Functions	
Function Name (Parameters)	Function Definition
Bicubic2D (vx, vy, Z, p, q)	Interpolates between 2-D values in Z, with locations in vx and vy,
	at intermediate point (p, q).
Binterp (x, b)	Interpolates results b from Spline2 (b) at point x, along with the
	first, second, and third derivatives.
confidence (vx, vy, F, b, conf)	Returns the confidence limits on the parameters b of a fitting
	function F(x,b) fit to the data vx and vy.
contingtbl (M)	Returns chi-squared, degrees of freedom, probability that chi-
	squared or larger would occur if variables had no association,
	Cramer's V, and the contingency coefficient, C for a contingency
	table M.
DWS (b)	Returns the Durbin-Watson statistic for the result vector, b, of the
	Spline2 function.
filterNaN (v)	Removes the rows of the data set, v, that have NaNs.
Ftest (v1, v2)	Tests the hypothesis that v1 and v2 are drawn from distributions
	having the same variance. Returns the F statistic, and the
	probability that a value this large or larger would occur when the
	distributions have the same variance.
Grubbs (v, a)	Returns indices of suspected outliers, and their Grubbs test
	statistics for a confidence level a.
GrubbsClassic (v, a)	Returns index of the data point most likely to be an outlier, and
	its Grubbs test statistic for a confidence level a.
Hlookup (z, A, r,"modifier")	Looks in the first row of A for values matched by z according to
	the boolean modifier. Returns the value(s) in the matched
	column(s) in row r.
kendltau (v1, v2)	Returns Kendall's tau, number of standard deviations from 0, and
	the probability that a value this large or larger would occur if the
	samples were uncorrelated.
kendltau2 (M)	Returns Kendall's tau, number of standard deviations from 0, and
	the probability that a value this large or larger would occur if
	contingency table M were uncorrelated.
LeastSquaresFit (vx, vy, F, guess, conf, [Stdy], [LBUB],[Acc])	Returns parameters and their confidence limits for the nonlinear
	fitting function F for the data vx and vy, for a confidence level
	conf, with optional standard deviations Stdy and optional lower
	and upper bounds on acceptable parameter values to accuracy
	Acc.

loadings (nipals)	Returns the loadings of the principal components (eigenvalues)
	from multivariate data returned by the nipals function.
localmax (data, [w])	Returns the local maxima in data by nearest neighbor
	comparison, with an optional window width w of comparison
	points.
localmin (data, [w])	Returns the local minima in data by nearest neighbor
	comparison, with an optional window width w of comparison
	points.
Lookup (z, A, B, modifier)	Looks in the matrix A for values matched by z according to the
	boolean modifier. Returns the value(s) in the same position(s) in
	matrix B.
markNaN (data, vindex)	Changes each element in data specified by vindex to contain a
	NaN.
Match (z, A, "modifier")	Returns the indices of entries in A which match z according to
	the boolean modifier.
matchNaN (data)	Returns the index or pair of indexes of the NaN entries in data.
Nipals (Data, numPC, maxiter, ["scale"])	Returns numPC principal components (eigenvalues), loadings,
7	scores, and accumulated variance explained by each PC from
	multivariate data using a maximum of maxiter iterations. TOL
	specifies the termination accuracy used for eigenvalue
	generation. Data may be optionally scaled to the standard
Nipals2 (nipals, numPC)	deviation. Returns numPC additional principal components (eigenvalues),
	loadings, scores, and accumulated variance explained by each
	PC given the results calculated by Nipals.
	r c given the results calculated by Nipals.
order (v)	Returns the index in which the entries of v occur if sorted, based
	on the current value of ORIGIN.
PCAeigenvals (nipals)	Returns the principal components (eigenvalues) from multivariate
	data returned by the nipals function.
PCAvariance (nipals)	Returns the accumulated percentage of variance explained by
	the calculated principal components (eigenvalues) returned by
	the nipals function.
percentile (v, p)	Returns the number of values in v below p percent of the total
	number of points.
polycoeff (vx, vy)	Returns the coefficients of the interpolating polynomial function.
polyint (vx, vy, x)	Returns interpolated value at x using a polynomial function, and
	the expected error.
polyiter (vx, vy, x, N, e)	Returns interpolated value at x using a polynomial function with
	maximum order N and maximum error, e. Also returns the
	calculated error, and whether the function converged.
qqplot (v1, [v2 or "distrib"])	Returns points on a probability plot. If only v1 is specified,
	quantiles for v1 and the normal distribution are returned. If v2 is
	specifed, quantiles for v1 and v2 are returned. If 'weibull' is
	specified, returns natural log quantiles for v1 and the weibull
	quantiles.
Rank (v)	
Rank (v)	Returns the averaged position at which each value in v appears

rationalfit (vx, vy, conf, [m, n], [resid], [Stdy], [LBUB])	Returns parameters and their confidence limits for a rational polynomial fit of order m and n on the top and bottom, or an allowable residual chi-squared, if the function should determine the optimal order. Confidence level conf is achieved, with optional standard deviations Stdy and optional lower and upper bounds on acceptable parameter values.
rationalfitnp (vx, vy, conf, [m, n], [resid], [Stdy], [LBUB])	Returns parameters and their confidence limits for a rational polynomial fit of order m and n on the top and bottom, or an allowable residual chi-squared, if the function should determine the optimal order. Confidence level conf is achieved, with optional standard deviations Stdy and optional lower and upper bounds on acceptable parameter values.
rationalint (vx, vy, x)	Returns interpolated value at x using rational functions, and the expected error.
Scale (M, min, max)	Scales all values in M between min and max.
scores (nipals)	Returns the scores of the principal components (eigenvalues) from multivariate data returned by the nipals function.
Spear (v1, v2)	Returns Spearman's rank correlation coefficient, and associated statistics.
Spline2 (vx, vy, n, [vw], [u], [level])	Returns the optimal set of order-n B-spline knots to interpolate on data vx and vy, with optional weights vw, optional desired knots u, and an optional reject level. Output is used with Binterp.
Thiele (vx, coeff, x)	Returns the interpolated y value for the real scalar x, using the data points in vx and the coefficients returned by Thielecoeff.
Thielecoeff (vx,vy)	Returns the continued fraction coefficients of the vectors vx and vy.
ThreeSigma (v)	Returns indices of points in v whose mean divided by standard deviation is greater than three (outlier test), and the value of this quantity for each point.
trim (vdata, vindex)	Trims out the entries (rows) specified by vindex.
vhlookup (z1, z2, A)	Looks in the first column and row of A for values matched by z1 and z2, respectively. Returns the value(s) in the intersection of matched rows and columns.
VHlookup (z1, z2, A, "modifier")	Looks in the first column and row of A for values matched by z1 and z2 according to the boolean modifier. Returns the value(s) in the intersection of matched rows and columns.
Vlookup (z, A, c, "modifier")	Looks in the first column of a matrix, A, for values matched by z according to the boolean modifier. Returns the value(s) in the matched row(s) in column c. When multiple values are returned, they appear in a vector.
VSmooth (v, w)	Repeatedly median smoothes v until no additional change has occurred for each window width in w.

Mathcad Image Processing Extension Pack Functions

Function Name (Parameters)	Function Definition
addnoise (M, p, n)	Returns matrix M with added noise, where the noise has
	probabilty p/2 to add n to a pixel, and p/2 to subtract n.

and (M, N)	Returns the boolean AND of two image matrices M and N, which
	must be the same size.
augment3 (X, Y, Z)	Returns a matrix formed by putting matrices (or vectors) X, Y,
	and Z side by side. They must all have the same number of
	rows.
binarize (M, thresh)	Returns a binarized version of matrix M with pixels above
	threshold thresh set to 1 and below to 0.
binarize_auto (M)	Returns a binarized version of matrix M, choosing the threshold
	automatically.
binarize2 (M, lowThresh, highThresh, inValue, outValue)	Returns a binarized version of matrix M with pixels between
	lowThresh and highThresh set to inValue, and pixels outside to
	outValue.
blend (M, N)	Returns a blend of same-size matrices M and N (pixelwise sum -
	[product/255]).
canny (M, sigma, low, high)	Returns a binary edge image resulting from Canny edge
	detection on matrix M, using standard deviation sigma and
	hysteresis thresholds low and high.
center (M)	Returns fourier transform image matrix M tansformed so that DC
	is in the center.
centsmooth (M)	Returns matrix M smoothed with a 3x3 center weighted kernel.
clip (M, Min, Max)	Returns matrix M with elements clipped to lie between Min and
	Max.
close (M, Melem, b)	Performs binary closing on matrix M at threshold b with
	structuring element Melem.
cnvxhull (M, fg)	Returns a matrix containing the convex hull of pixels of value fg
1 1/04)	in matrix M.
colgrad (M)	Returns the column gradient (difference by columns) of matrix M.
compgrad (M)	Performs edge detection by comparing the gradients of the 8
	neighbors on matrix M.
concomp (M, con, fg)	Performs connected component labeling of the pixels with
	grayscale value fg in matrix M, considering 4-connected
	neighbors if con is 4 or 8-connected if con is 8.
convol2d (M, K)	Returns the convolution of matrix M with kernel K.
convolve3 (M, K)	Returns the quick convolution of matrix M with 3x3 kernel K.
convolve5 (M, K)	Returns the quick convolution of matrix M with 5x5 kernel K.
dct2d (M)	Returns the 2D discrete cosine transform (type II) of matrix M.
diacrisp (M)	Returns matrix M crisped with a 3x3 diagonally weighted kernel.
difedge (M)	Performs edge-detection by differential convolution on matrix M.
dilate (M, Melem, r_origin, c_origin, b)	Performs binary dilation on matrix M at threshold b using
	structuring element Melem with origin at row r_origin and column
	c_origin.
dilate4 (M, b)	Performs dilation on matrix M at threshold b using 4 neighbors.
dilate8 (M, b)	Performs dilation on matrix M at threshold b using 8 neighbors.

distform (M, fg)	Returns the distance transform of image M using foreground
P /A.A.	gray value fg.
equalize (M)	Returns matrix M with grayscale adjusted to form a linear cumulative histogram.
erode (M, Melem, r_origin, c_origin, b)	Performs binary erosion on matrix M at threshold b using
	structuring element Melem with origin at row r_origin and column
	c_origin.
erode4 (M, b)	Performs erosion on matrix M at threshold b using 4 neighbors.
C1000+ (ivi, b)	T GHOTHIS GROSION ON MIGHING WILL BUILDING & HEIGHISOIS.
erode8 (M, b)	Performs erosion on matrix M at threshold b using 8 neighbors.
extract (M, n)	Returns the nth (1, 2, or 3) color component of packed 3-color
	matrix M.
freichen (M)	Performs edge detection by Frei-Chen convolution on matrix M.
funcdeconv (M, f, e)	Deconvolution of matrix M with frequency domain function f and
	error e.
funconv (M, f)	Convolution of matrix M with frequency domain function f.
funmap (M, f)	Returns matrix M with function f applied to each element.
gaussconv (M, s)	Convolution of matrix M with frequency domain gaussian of half-
	width s.
gaussdeconv (M, s, e)	Deconvolution of matrix M with frequency domain gaussian of
gaaccacca (, c, c)	half-width s with error e.
getnoise (M)	Returns the difference between matrix M and median filtered M.
geniose (w)	Tretains the difference between matrix in and median intered in.
gray_close (M, Melem)	Performs grayscale closing on matrix M with structuring element
	Melem.
gray_dilate (M, Melem, r_origin, c_origin)	Performs grayscale dilation on matrix M using structuring
	element Melem with origin at row r_origin and column c_origin.
gray_erode (M, Melem, r_origin, c_origin)	Performs grayscale erosion on matrix M using structuring
	element Melem with origin at row r_origin and column c_origin.
	grand and a significant in a significant
gray_open (M, Melem)	Performs grayscale opening on matrix M with structuring element
3-3-1 ()	Melem.
gray_to_rgb (gray, colormap)	Returns grayscale matrix gray converted to color using color
g. ayga (g. ay, caraap)	palette matrix colormap.
hist2d (M, N, n)	Returns a two-dimensional histogram with n bins on equal-sized
11.5.12.4 (111, 117)	matrices M and N.
hls_to_rgb (HLS)	Returns array HLS in HLS color representation converted to
Tilis_to_rgb (TILO)	RGB color representation.
horzflip (M)	Returns the matrix M flipped horizontally.
hsv_to_rgb (HSV)	Returns array HSV in HSV color representation converted to
1113v_to_19b (110 v)	· · · · · · · · · · · · · · · · · · ·
(M) LO4-L:	RGB color representation. Returns the inverse 2D discrete cosine transform (type II) of
idct2d (M)	
	matrix M.
imhist (M, n)	Returns an n-bin histogram of M for values between 0 and 255
: 1: (0 (14)	(ignores values outside that range).
imhist2 (M, n)	Returns an n-bin histogram of M over its range of values.
immse (M, Q)	Returns the mean-squared-error (MSE) between image matrices
<u> </u>	M and Q.

imquant (M, n)	Returns a quantized version of matrix M containing only n
	equally-spaced grayscale levels between 0 and 255.
imquant2 (M, v)	Returns a quantized version of matrix M containing only the
	grayscale levels in vector v.
imsnr (M, Q)	Returns the signal-to-noise ratio (SNR) between image matrices
	M and Q.
invert (M)	Returns the matrix M with each element set to 255 - element.
invert2 (M)	Returns the matrix M with each element set to max(M) - element
	+ min(M).
iwave2d (M, n)	The n-level inverse wavelet transform of M.
kirsch (M)	Performs edge detection by kirsch convolution and comparison
	on matrix M.
laplace24 (M)	Returns the convolution of matrix M with a 5x5 Laplacian kernel.
	The kernel's center is 24.
laplace4 (M)	Returns the convolution of matrix M with a 3x3 Laplacian kernel.
	The kernel's center is 4.
laplace8 (M)	Returns the convolution of matrix M with a 3x3 Laplacian kernel.
	The kernel's center is 8.
levelmap (M, vec)	Returns matrix with values in vec assigned by matching vec's
	indices to elements in matrix M. vec must be such that the
	elements of M are between 0 and length(vec) - 1.
mask (M, N)	Returns matrix M masked by same-size matrix N (i.e. with zeros
	where N is zero).
matconv (M, N)	Convolution of matrix M with frequency domain mask N.
matdeconv (M, N, e)	Deconvolution of matrix M with frequency domain mask N and
	error e.
medfilt (M)	Returns median filtered M.
moment_invariant (M)	Returns a vector containing the seven typical moment invariants
	of M.
open (M, Melem, b)	Performs binary opening on matrix M at threshold b using
	structuring element Melem.
or (M, N)	Returns boolean OR of two image matrices M and N, which must
	be the same size.
orthocrisp (M)	Returns matrix M crisped with a 3x3 orthogonally weighted
,	kernel.
orthocrisp5 (M)	Returns matrix M crisped with a 5x5 orthogonally weighted
, ,	kernel.
orthosmooth (M)	Returns matrix M smoothed with a 3x3 orthogonally weighted
,	kernel.
orthosmooth5 (M)	Returns matrix M smoothed with a 5x5 orthogonally weighted
	kernel.
prewitt (M)	Performs edge detection by Prewitt convolution on matrix M.
putregion (M, N, row, col)	Returns the matrix N inserted into M at row row and column col.
	reserve the matrix is most out into its action for and coldinist col.
quantfilt (M. elem. quantile)	Performs quantile filtering on M using neighborhood matrix elem
quantfilt (M, elem, quantile)	IL CHOHIS ANGULUC HICHING OH M ASHA HERADOHIOOG HANK EICH

READRAW (filename, rows, cols, bits, endian, skip)	Returns the contents of a raw binary image file as a matrix. The
(, , , , , , , , , , , , , , , , , , ,	binary file is interpreted to contain a rows x cols matrix of bits (8
	or 16) bits per pixel packed integers, in "Little" or "Big" endian
	format, and skip bytes are skipped for header at the beginning of
	the file.
reg_grow (M, x_gridsize, y_gridsize, num_regions)	Performs the piecewise-constant energy-based region growing
3-5 () -5 () -5 ()	segmentation of M into num_regions regions, using initial grid
	spaced by x_gridsize along x and y_gridsize along y.
relerror (M, Q)	Returns the relative error between matrices M and Q.
replace (M, N, n)	Returns packed image matrix M with the nth (1, 2, or 3) color
	component replaced by matrix N, which must have the same
	number of rows as M and 1/3 as many columns.
rgb_to_gray (RGB)	Returns RGB color array RGB converted to grayscale.
rgb_to_hls (RGB)	Returns array RGB in RGB color representation converted to
	HLS color representation.
rgb_to_hsv (M)	Returns array RGB in RGB color representation converted to
	HSV color representation.
rgb_to_ycbcr (RGB)	Returns array RGB in RGB color representation converted to
	YCbCr color representation.
rgb_to_yiq (RGB)	Returns array RGB in RGB color representation converted to
	YIQ color representation.
roberts (M)	Performs edge detection by Roberts convolution on matrix M.
robinson3 (M)	Performs edge detection by 3x3 Robinson convolution and
	comparison on matrix M.
robinson5 (M)	Performs edge detection by 5x5 Robinson convolution and
	comparison on matrix M.
rotate (M, angle)	Returns the matrix M rotated angle degrees counterclockwise.
rotate180 (M)	Returns the matrix M rotated 180 degrees counterclockwise.
rotate270 (M)	Returns the matrix M rotated 270 degrees counterclockwise.
rotate90 (M)	Returns the matrix M rotated 90 degrees counterclockwise.
rowgrad (M)	Returns the row gradient (difference by rows) of matrix M.
scale (M, Min, Max)	Returns matrix M with elements scaled between Min and Max.
shape_features (M)	Returns a matrix of moments and shape features for each
	distinct pixel value in labeled image M.
skeleton (B)	Returns binary matrix B eroded to its innermost level.
skeleton2 (M, b)	Returns the skeleton of matrix M binarized with threshold b.
sobel (M)	Performs edge detection by Sobel convolution on matrix M.
subcolor (M, ir, jr, ic, jc)	Returns the submatrix from row ir to jr, column ic to jc, of packed
	color matrix M.
thin (M, b)	Returns the thinned version of matrix M binarized with threshold
throchold (M. throch)	D. Poturns the matrix M with every element below thresh set to
threshold (M, thresh)	Returns the matrix M with every element below thresh set to
	thresh. If thresh is negative, every element above -thresh is set
Annual de AM annua and an an	to -thresh.
translate (M, rows, cols, pad)	Returns matrix M translated by rows rows and cols colums,
	padding unfilled matrix elements with pad.

unicrisp (M)	Returns matrix M crisped with a 3x3 uniformly weighted kernel.
unismooth (M)	Returns matrix M smoothed with a 3x3 uniformly weighted kernel.
unismooth5 (M)	Returns matrix M smoothed with a 5x5 uniformly weighted kernel.
vertflip (M)	Returns the matrix M flipped vertically.
warp (M, T)	Performs bilinear warping on matrix M, using tie-points stored in matrix T.
wave2d (M, n)	The n-level wavelet tranform of M.
wavescale (M, n, Min, Max)	The n-level wavelet transform of M, scaled between Min and Max.
wiener2d (M, win_h, win_w)	Perform 2D adaptive Wiener filtering on M using a local window win_w pixels wide by win_h pixels high.
WRITERAW (filename, bits, endian)	Writes a matrix M to raw binary integer image file filename, using either 8 or 16 bits per pixel, in "Little" or "Big" endian storage order. Set this function equal to the matrix M.
ycbcr_to_rgb (YCbCr)	Returns array YCbCr in YCbCr color representation converted to RGB color representation.
yiq_to_rgb (YIQ)	Returns array YIQ in YIQ color representation converted to RGB color representation.
zoom (M, hscale, vscale)	Return image matrix M resized by factor hscale horizontally and vscale vertically.

Mathcad Signal Processing Extension Pack Functions

Function Name (Parameters)	Function Definition
bandpass (f1, f2, n, [w])	Returns coefficients for a bandpass FIR filter with n coefficients
	and cutoff frequencies f1 and f2, windowed with a taper w.
bandstop (f1, f2, n, [w])	Returns coefficients for a bandstop FIR filter with n coefficients
	and cutoff frequencies f1 and f2, windowed with taper w.
bessel (n, scale)	Returns coefficients for an analog Bessel filter of order n; scale
	controls the gain at cutoff. The output is an argument to the
	functions iirlow, iirhigh, iirpass or iirstop.
blackman (n)	Returns a Blackman window of width n.
burg (v, n)	Returns coefficients for nth order linear prediction generated
	from the vector v using Burg's method.
butter (n)	Returns coefficients for an analog Butterworth filter of order n.
	The output is used as an argument to one of the functions iirlow,
	iirhigh, iirpass or iirstop.
ccepstrum (A)	Returns a matrix containing the complex cepstrum of a
	multichannel signal A.
cepstrum (v)	Returns the cepstrum of the vector v.
cheby (n, b)	Returns a Chebyshev window of width n and parameter b.
cheby1 (n, e)	Returns coefficients for a Type I Chebyshev analog filter of order
	n; ripple is controlled by the parameter e. The output is used as
	an argument to one of the functions iirlow, iirhigh, iirpass or
	iirstop.

cheby2 (n, scale, atten)	Returns coefficients for a Type II Chebyshev analog filter of ord.
	n with the lower edge of the stopband at scale and stopband
	attenuation atten. The output is an argument to the functions
	iirlow, iirhigh, iirpass or iirstop.
chirpz (v, lo, hi, d)	Returns the frequency spectrum of the signal v between lo and hi
	at frequency intervals of d.
coherence (vx, vy, n, r, [w])	Returns the coherence of vectors vx and vy. The signal vectors
	are divided into n overlapping intervals with fraction of overlap r.
	Each data segment is windowed with taper w.
convol (vx, vy)	Returns the convolution of the arrays vx and vy.
costaper (n, a)	Returns a cosine taper window of length n, with the percentage
	of raised cosine given by a.
costr (v)	Returns the cosine transform of the array v.
covar (vx, vy)	Returns the covariance of the arrays vx and vy.
cspectrum (vx, vy, n, r, [w])	Returns the cross spectrum of the vectors vx and vy. The signal
	vectors are divided into n overlapping intervals with fraction of
	overlap r. Each data segment is windowed with taper w.
deconvol (vz, vx)	Returns the deconvolution of the array vz by the array vx.
detrend (v)	Returns the vector or matrix v with any linear trend removed.
dht (v)	Returns the Hartley transform of the array v.
dwavelet (v)	Returns a discrete wavelet transform of the array v.
expsmooth (v, a)	Returns a smoothed version of data in array v generated by
oxpomodar (v, d)	exponential smoothing with weight a.
fftfilt (v, C, [nfft])	Returns a matrix with the result of the convolution of a
(v, o, [imi])	multichannel signal v, with an array C, calculated by computing
	the FFT of length nfft.
gain (C, f)	Returns the gain at frequency f of a filter with coefficients C.
gaussian (n, a)	Returns a Gaussian window of width n; the parameter a controls
	the peak width.
gaussn (n)	Returns an n-element vector of random numbers following a
	Gaussian probability distribution of mean 0 and standard
	deviation 1.
hamming (n)	Returns a Hamming window of width n.
hanning (n)	Returns a Hanning window of width n.
highpass (f, n, [w])	Returns a Hairling window of width. Returns coefficients for a highpass FIR filter with n coefficients
	- '
hilbert (v)	and cutoff frequency f, windowed with taper w. Returns the Hilbert transform of the array v.
icostr (v)	Returns the inverse cosine transform of the array v.
idht (v)	Returns the inverse Hartley transform of the array v.
idwavelet (v)	Returns the inverse of the discrete wavelet transform carried out
"1:1.00	by the dwavelet function.
iirhigh (C, f)	Returns coefficients for a highpass IIR filter with cutoff frequency
	f. The input array C is generated by one of the functions cheby1,
"1. (0.0	cheby2, bessel, or butter.
iirlow (C, f)	Returns coefficients for a lowpass IIR filter with cutoff frequency
	f. The input array C is generated by one of the functions cheby1,
	cheby2, bessel, or butter.
iirpass (C, lowf, highf)	Returns coefficients for a bandpass IIR filter with cutoff
	frequencies lowf and highf. The input array C is generated by
	one of the functions cheby1, cheby2, bessel, or butter.

iirstop (C, lowf, highf)	Returns coefficients for a bandstop IIR filter with cutoff
	frequencies lowf and highf. The input array C is generated by
	one of the functions cheby1, cheby2, bessel, or butter.
interpolate (v, n)	Returns an interpolated version of the vector v with n times as
	many points as v.
isintr (v)	Returns the inverse sine transform of the array v.
kaiser (n, b)	Returns a Kaiser window of width n and parameter b.
lcorr (vx, vy)	Returns a vector giving the correlation of the vectors vx and vy at
	each possible lag.
lowpass (f, n, [w])	Returns coefficients for a lowpass FIR filter with n coefficients
	and cutoff frequency f, windowed with taper w.
mag (v)	Returns a vector containing the magnitudes of the elements in
	the complex array v.
makeri (magvec, phasevec)	Returns a vector of complex numbers whose magnitudes and
,	phases are contained in magvec and phasevec.
medfilt1d (M, n)	Returns the multichannel signal M, filtered with a median filter of
, ,	length n.
movavg (v, n)	Returns a smoothed version of data in array v created by taking
	a moving average with a window of width n.
multirate (v, n, m, [f])	Returns a version of multichannel signal v resampled by a factor
	of n/m, using the optional argument f as the lowpass interpolating
	filter.
nuttall (n)	Returns a Nuttall window of width n.
onefn (n)	Returns an n-element vector of 1/f noise.
phase (v)	Returns a vector containing the phases of the elements in the
phasecor (phasevec)	complex array v. Returns a vector generated from the array of phases phasevec
priasecoi (priasevec)	
place (u)	by removing jump discontinuities.
plcorr (v)	Returns a vector giving the partial autocorrelation of the vector v
	at each lag. Returns the power spectrum of v, computed by dividing v into n
pspectrum (v, n, r, [w])	
	overlapping segments with overlap fraction r. Each data segment
	is windowed with taper w.
quantize (v, n)	Returns a vector that assigns the elements of v to n equally
(4)	spaced levels.
recenter (A)	Returns a recentered version of array A, cyclically permuted to
	bring the first element of A to the middle.
remez (vg, vr, vw, n)	Returns coefficients for an FIR filter of length n generated by the
	Remez exchange algorithm.
resample (v, m, n)	Returns a vector obtained from v by n-fold interpolation and then
	sampling every mth point.
response (v, C, n)	Returns a vector giving n terms of the response of an input
	vector v to an FIR filter with coefficient array C.
sintr (v)	Returns the sine transform of the array v.
snr (vx, vy, n, r, [w])	Returns the signal-to-noise ratio for vx and vy. The signal vectors
	are divided into n overlapping segments with fraction of overlap r.
	Each data segment is windowed with taper w.
stft (v, [n], [s], [w])	Returns a matrix containing the short time Fourier transform of a
	signal v; computes n frequencies, every s samples, and tapers
	each block with window (or window type) w.
taprect (n)	Returns a tapered rectangular window of width n.

timecorr (v, t, l, s, [d])	Returns a matrix containing the samples of a time-dependent autocorrelation function for a signal v, type t, I number of lags, step size s, and an optional scalar or matrix argument d.
timefreq (v, t, f, s, [d])	Returns a matrix containing the samples of a time-dependent autocorrelation function for a signal v, type t, f number of frequencies, step size s, and an optional scalar or matrix argument d.
triangular (n)	Returns a triangular window of width n.
twodconvol (A, B)	Returns the two-dimensional convolution of the arrays A and B.
walsh (n, k)	Returns the kth Walsh function of order n (n between 0 and 12).
whiten (n)	Returns an n-element vector of uniformly distributed white noise.
yulew (v, n)	Returns coefficients for nth order linear prediction generated from the vector v using the Yule-Walker algorithm.

Mathcad Wavelets Extension Pack Functions

Function Name (Parameters)	Function Definition
applybs (w, b, f)	Returns the result of applying the function f to each subband of
	the wavelet packet basis b comprising the coefficients in w. b is a
	2- or 3-column matrix representing a packet basis.
applytbl (T, f)	Returns a new wavelet packet table by applying the function f to
	each subband of the wavelet packet table T.
basis_display2d (b)	Creates a matrix for graphically displaying 2-dimensional basis b.
best_basis (T, f)	Returns the best packet basis from a packet table T, based on
	the additive cost function f.
bl (n)	Returns the Battle-Lemarie wavelet based upon the degree n
	cardinal B-spline. n is an integer bewtween 0 and 6.
Bspline (m, n)	Returns the analysis and synthesis low-pass filters for a spline-
	based biorthogonal wavelet. m is 1, 2, or 3. When m=1, n is an
	odd number between 1 and 5. When m=2, n is an even number
	between 2 and 8. When m=3, n is an odd number between 1 and
	9.
coiflet (n)	Returns the low-pass filter of the n-coefficient Coiflet wavelet. n
 	is 6, 12, 18, 24, or 30.
cpt (a, n)	Returns the n-level local cosine packet table for the data array a,
	using the default trig data taper function.
create_level (n, d)	Returns a d-dimensional wavelet packet basis of all wavelet
	packets at the level n.
daublet (n)	Returns the low-pass filter of the n-coefficient minimum phase
	Daubechies wavelet. n is an even integer between 2 and 20.
dlfather (x, [j, k], s)	Returns the value at x of the dual father wavelet packet based on
	the filter represented by string s at scale j and position k. If j and
	k are omitted, they are assumed to be 0.
dlfather2d (x, y, [j, kx, ky], s)	Returns the value at (x,y) of the 2D dual father wavelet packet
	based on the filter represented by string s at scale j and position
	(kx,ky). If j, kx, and ky are omitted, they are assumed to be 0.

Returns the value at x of the dual mother wavelet packet based on the filter represented by string s at scale j and position k. If j
and k are omitted, they are assumed to be 0.
Returns the value at (x,y) of the 2D dual mother wavelet packet
based on the filter represented by string s at scale j and position
(kx,ky). String ds is either "H", "V", or "D", and indicates either
the horizontal, vertical, or diagonal mother wavelet. If j, kx, and
ky are omitted, they are assumed to be 0.
Returns the value at x of the nth dual wavelet packet based on
the filter f at scale j and position k. f is either a vector or a 2-
column matrix. f can have an offset o and negation i.
Returns the value at (x,y) of the (m,n)th dual wavelet packet
based on filter f at scale j and position (kx,ky). f is either a vector
or a 2-column matrix. f can have an offset o and negation i.
Returns the n-level wavelet transform of the array a by the
wavelet filter f. f is either a vector or a 2-column matrix. f can
have an offset o and negation i.
Returns the n-level interval wavelet transform of the array a by
the wavelet filter f. f is a vector returned by daublet or symmlet.
the wavelet litter i. This a vector returned by daublet or symmet.
Returns the n-level symmetric wavelet transform of the array a
by the wavelet filter f. f is either a vector or a 2-column matrix
returned by bl, Bspline, or daublet(2).
Returns the result of applying the function f to each subband of
the wavelet packet basis b comprising the coefficients in w. b is a
2- or 3-column matrix representing a packet basis.
Returns the result of applying the function f to each subband of
the wavelet packet table T.
Returns coefficients in the basis specified by b from a 1D or 2D
packet table T.
Returns the value at x of the father wavelet packet based on the
filter represented by string s at scale j and position k. If j and k
are omitted, they are assumed to be 0.
Returns the value at (x,y) of the 2D father wavelet packet based
on the filter represented by string s at scale j and position (kx,ky).
If j, kx, and ky are omitted, they are assumed to be 0.
Returns the result of extracting the index-1 block of wavelet
packet coefficients at level I from the wavelet packet transform w.
packet does located at level 1 from the wavelet packet transform w.
Returns the result of extracting the subband indicated by the
string ds of wavelet packet coefficients at level I from the 2-
dimensional wavelet packet transform M. ds is either "H", "V", or
"D", and indicates either the index-(1,0), index-(0,1), or index-
(1,1) subband.
Returns the result of extracting the 0th block of wavelet packet
coefficients at level I from the wavelet packet transform w.
· · · · · · · · · · · · · · · · · · ·

get_smooth2d (M, I)	Returns the result of extracting the (0,0)th subband of wavelet
got_smootiza (m, r)	packet coefficients at level I from the 2-dimensional wavelet
	packet transform M.
get_subband (w, l, n)	Returns the nth block of wavelet packet coefficients at level I
	extracted from the wavelet packet transform w. w is a vector.
	o a solo i a
get_subband2d (M, I, m, n)	Returns the result of extracting the (m,n)th subband of wavelet
	packet coefficients at level I from the 2-dimensional wavelet
	packet transform M. M is an array.
icpt (w, n, b)	If w is an array of cosine packet coefficients constructed from a
	cosine packet table with n levels, returns the inverse cosine
	packet transform with respect to the basis specified by b, using
	the default trig data taper function. b is a 2- or 3-column matrix
	representing a cosine packet basis.
idwt (a, n, f, [o, [i]])	Returns the n-level inverse wavelet transform of the array a by
	the wavelet filter f. f is either a vector or a 2-column matrix. f can
	have an offset o and negation i.
idwti (a, n, f)	Returns the n-level inverse interval wavelet transform of the
	array a by the wavelet filter f. f is a vector returned by daublet or
	symmlet.
idwts (a, n, f)	Returns the n-level inverse symmetric wavelet transform of the
	array a by the wavelet filter f. f is either a vector or a 2-column
	matrix returned by bl, Bspline, or daublet(2).
ilct (w, n, b, f)	If w is an array of cosine packet coefficients constructed from a
	cosine packet table with n levels, returns the inverse cosine
	packet transform with respect to the basis specified by b, using
	data taper function f. b is a 2- or 3-column matrix representing a
	cosine packet basis.
iwpt (w, b, f, [o, [i]])	Returns the inverse wavelet packet transform of the array w with
	respect to basis b by the wavelet filter f. b is a 2- or-3-column
	matrix representing a packet basis. f is either a vector or a 2-
	column matrix. f can have an offset o and negation i.
iwpti (w, b, f)	Returns the inverse interval wavelet packet transform of the
	array w with respect to basis b by the wavelet filter f. b is a 2- or
	3-column matrix representing a packet basis. f is a vector.
	5-column matrix representing a packet basis. His a vector.
iwpts (w, b, f)	Returns the inverse symmetric wavelet packet transform of the
	array w with respect to basis b by the wavelet filter f. b is a 2- or
	3-column matrix representing a packet basis. f is either a vector
	or a 2-column matrix.
lct (a, n, f)	Returns the n-level local cosine packet table for the data array a
	using data taper function f.
mother (x, [j, k], s)	Returns the value at x of the mother wavelet packet based on the
	filter represented by string s at scale j and position k. If j and k
	are omitted, they are assumed to be 0.
mother2d (x, y, [j, kx, ky], s, ds)	Returns the value at (x,y) of the 2D mother wavelet packet based
	on the filter represented by string s at scale j and position (kx,ky).
	String ds is either "H", "V", or "D", and indicates either the
	horizontal, vertical, or diagonal wavelet. If j, kx, and ky are
	omitted, they are assumed to be 0.

put_detail (w, l, y)	Returns the result of inserting the vector y into the index-1 block
	of wavelet packet coefficients of w at level I.
put_detail2d (M, I, N, ds)	Returns the result of inserting the matrix N into the subband
	indicated by the string ds of wavelet packet coefficients at level I
	of the 2-dimensional wavelet packet transform M. ds is either
	"H", "V", or "D", and indicates either the index-(1,0), index-(0,1),
	or index-(1,1) subband.
put_smooth (w, l, y)	Returns the result of inserting the vector y into the index-0 block
	of wavelet packet coefficients of w at level I.
put_smooth2d (M, I, N)	Returns the result of inserting the matrix N into the index-(0,0)
	subband of wavelet packet coefficients at level I of the 2-
	dimensional wavelet packet transform M.
put_subband (w, l, n, y)	Returns the result of inserting the vector y into the nth block of
	wavelet packet coefficients at level I of the wavelet packet
	transform w. w is a vector.
put_subband2d (M, I, m, n, N)	Returns the result of inserting the matrix N into the (m,n)th
	subband of wavelet packet coefficients at level I of the 2-
	·
	dimensional wavelet packet transform M. M is an array.
swaveterp (x, v, j, n, f)	Returns the value at x of the symmetric multiresolution
	approximation of v corresponding to the nth subband at level j,
	based on the filter f. f is an array returned by bl, Bspline, or
	daublet(2).
swaveterp2d (x, y, v, j, m, n, f)	Returns the value at (x,y) of the symmetric multiresolution
	approximation of v corresponding to the (m,n) th subband at level
	j, based on the filter f. f is an array returned by bl, Bspline, or
	daublet(2).
symmlet (n)	Returns the low-pass filter of the n-coefficient least asymmetric
	Daubechies wavelet. n is an even integer between 4 and 20.
wavebs (n, d)	Returns the d-dimensional wavelet packet basis corresponding
	to the wavelet transform of level n.
wavelet (x, j, k, n, f, [o, [i]])	Returns the value at x of the nth wavelet packet based on filter f
	at scale j and position k. f is either a vector or a 2-column matrix.
wavalat2d (y y i ky ky m n f [a [ii])	f can have an offset o and negation i. Returns the value at (x,y) of the (m,n)th wavelet packet based on
wavelet2d (x, y, j, kx, ky, m, n, f, [o, [i]])	
	filter f at scale j and position (kx,ky). f is either a vector or a 2-
	column matrix. f can have an offset o and negation i.
waveterp (x, v, j, n, f, [o, [i]])	Returns the value at x of the periodic multiresolution
1 () / 3/ / / 1 / 134/	approximation of v corresponding to the nth subband at level j,
	based on the filter f. f is either a vector or a 2-column matrix. f
waveterp2d (x, y, v, j, m, n, f, [o, [i]])	can have an offset o and negation i. Returns the value at (x,y) of the periodic multiresolution
ννανοισιρευ (λ, y, ν, j, iii, ii, i, [υ, [i]])	
	approximation of v corresponding to the (m,n) th subband at level
	j, based on the filter f. f is either a vector or a 2-column matrix. f
. (/ . . (F . F . F . T .)	can have an offset o and negation i.
wpt (a, b, f, [o, [i]])	Returns the wavelet packet transform of the array a with respect
	to basis or level b by the wavelet filter f. b is either an integer or a
	2-or-3-column matrix representing a packet basis. f is either a
	vector or a 2-column matrix. f can have offset o and negation i.

wpti (a, b, f)	Returns the interval wavelet packet transform of the array a with respect to basis or level b by the wavelet filter f. b is either an integer or a 2- or 3-column matrix representing a packet basis. f
	is a vector.
wpts (a, b, f)	Returns the symmetric wavelet packet transform of the array a
	with respect to basis or level b by the wavelet filter f. b is either
	an integer or a 2- or 3-column matrix representing a packet
	basis. f is either a vector or a 2-column matrix.