Chapter 1: Introduction

Chapter 1: Introduction

- What Operating Systems Do
- Operating-System Operations
- Process Management
- Memory Management
- Storage Management
- Protection and Security

Objectives

- To describe the basic organization of computer systems
- To provide a grand tour of the major components of operating systems
- To give an overview of the many types of computing environments
- To explore several open-source operating systems

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs and make solving user problems easier
 - Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Computer System Structure

- Computer system can be divided into four components:
 - Hardware provides basic computing resources
 - CPU, memory, I/O devices
 - Operating system
 - Controls and coordinates use of hardware among various applications and users
 - Application programs define the ways in which the system resources are used to solve the computing problems of the users
 - Word processors, compilers, web browsers, database systems, video games
 - Users
 - People, machines, other computers

Four Components of a Computer System

What Operating Systems Do

- Depends on the point of view
- Users want convenience, ease of use and good performance
 - Don't care about resource utilization
- But shared computer such as mainframe or minicomputer must keep all users happy
- Users of dedicate systems such as workstations have dedicated resources but frequently use shared resources from servers
- Handheld computers are resource poor, optimized for usability and battery life
- Some computers have little or no user interface, such as embedded computers in devices and automobiles

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer

Operating System Definition (Cont.)

- No universally accepted definition
 - "Everything a vendor ships when you order an operating system" is a good approximation
 - But varies wildly
 - "The one program running at all times on the computer" is the kernel.
- Everything else is either
 - a system program (ships with the operating system), or
 - an application program.

Computer Startup

- bootstrap program is loaded at power-up or reboot
 - Typically stored in ROM or EPROM, generally known as firmware
 - Initializes all aspects of system
 - Loads operating system kernel and starts execution

Computer System Organization

- Computer-system operation
 - One or more CPUs, device controllers connect through common bus providing access to shared memory
 - Concurrent execution of CPUs and devices competing for memory cycles

Computer-System Operation

- I/O devices and the CPU can execute concurrently
- Each device controller is in charge of a particular device type
- Each device controller has a local buffer
 - CPU moves data from/to main memory to/from local buffers
- ► I/O is from the device to local buffer of controller
- Device controller informs CPU that it has finished its operation by causing an interrupt

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine generally, through the interrupt vector, which contains the addresses of all the service routines
- Interrupt architecture must save the address of the interrupted instruction
- A trap or exception is a software-generated interrupt caused either by an error or a user request
- An operating system is interrupt driven

Interrupt Handling

- The operating system preserves the state of the CPU by storing registers and the program counter
- Determines which type of interrupt has occurred:
 - polling
 - vectored interrupt system
- Separate segments of code determine what action should be taken for each type of interrupt

Storage Definitions and Notation Review

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed
 - Cost
 - Volatility
- Caching copying information into faster storage system;
 main memory can be viewed as a cache for secondary storage
- Device Driver for each device controller to manage I/O
 - Provides uniform interface between controller and kernel

Storage-Device Hierarchy

Computer-System Architecture

- Most systems use a single general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors systems growing in use and importance
 - Also known as parallel systems, tightly-coupled systems
 - Advantages include:
 - Increased throughput
 - 2. Economy of scale
 - 3. Increased reliability graceful degradation or fault tolerance
 - Two types:
 - 1. **Asymmetric Multiprocessing** each processor is assigned a specie task.
 - 2. Symmetric Multiprocessing each processor performs all tasks

Symmetric Multiprocessing Architecture

A Dual-Core Design

- Multi-chip and multicore
- Systems containing all chips
 - Chassis containing multiple separate systems

Clustered Systems

- Like multiprocessor systems, but multiple systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other
 - Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
 - Some have distributed lock manager (DLM) to avoid conflicting operations

Clustered Systems

Operating System Structure

- Multiprogramming (Batch system) needed for efficiency
 - Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - When it has to wait (for I/O for example), OS switches to another job
- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second</p>
 - Each user has at least one program executing in memory process
 - If several jobs ready to run at the same time CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Operating-System Operations

- **Interrupt driven** (hardware and software)
 - Hardware interrupt by one of the devices
 - Software interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - Request for operating system service
 - Other process problems include infinite loop, processes modifying each other or the operating system

Operating-System Operations (cont.)

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
 - Increasingly CPUs support multi-mode operations
 - i.e. virtual machine manager (VMM) mode for guest VMs

Transition from User to Kernel Mode

- Timer to prevent infinite loop / process hogging resources
 - Timer is set to interrupt the computer after some time period
 - Keep a counter that is decremented by the physical clock.
 - Operating system set the counter (privileged instruction)
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a *passive entity*, process is an *active* entity.
 - Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
 - Multi-threaded process has one program counter per thread
 - Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory Management

- To execute a program all (or part) of the instructions must be in memory
- All (or part) of the data that is needed by the program must be in memory.
 - Memory management determines what is in memory and when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

Storage Management

- OS provides a uniform, logical view of information storage
 - Abstracts physical properties to the logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, data-transfer rate, access method (sequential or random)
- File-System management
 - Files are usually organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- Usually disks are used to store data that does not fit in main memory or data that must be kept for a "long" period of time.
- Secondary storage is used frequently, so it must be used efficiently.
- Most pgms- editors, compilers, word processors, assemblers, formatters are on disk until loaded into memory.
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling
- Some storage need not be fast
 - Tertiary storage includes optical storage, magnetic tape- do not effect performance but still must be managed - by OS or applications
 - Tertiary storage varies between WORM (write-once, read-many-times) and RW (read-write)

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information stored in use is copied from slower to faster storage(cache) temporarily.
- Faster storage (cache) checked first to determine if the information is there
 - If it is, information used directly from the cache (fast)
 - If not, data is copied to the cache from the main memory and used

Cache smaller than storage being cached

- Cache management important design problem as caches have limited size
- Careful selection of Cache size and replacement policy can greatly affect performance of the system.

Performance of Various Levels of Storage

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

Migration of data "A" from Disk to Register

Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache
 - Distributed environment situation even more complex
 - Several copies of a datum can exist
 - Various solutions covered in Chapter 17

Protection and Security

Protection - any mechanism for controlling access of processes or users to resources defined by the OS

- Security defense of the system against internal and external attacks
 - Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

- Systems generally first distinguish among users, to determine who can do what
 - User identities (user IDs, security IDs) include name and associated number, one per user
 - User ID then associated with all files, and processes of that user to determine access control
 - Group identifier (group ID) allows a set of users to be defined and controls managed, then also associated with each process, file
 - Privilege escalation allows the user to change to an effective ID with more rights

Computing Environments - Distributed

- Distributed computing
 - Collection of separate, possibly heterogeneous, systems networked together
 - Network is a communications path, TCP/IP most common
 - Local Area Network (LAN)
 - Wide Area Network (WAN)
 - Metropolitan Area Network (MAN)
 - Personal Area Network (PAN)
 - Network Operating System provides features between systems across network
 - Communication scheme allows systems to exchange messages
 - Illusion of a single system

End of Chapter 1