Análise de sensibilidade Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

7 de fevereiro de 2015

Análise de sensibilidade

antes

- Na resolução de um dado problema, assumimos que os dados eram constantes que não podiam ser alteradas.
- Na realidade, os dados podem não estar totalmente correctos, ou podemos querer avaliar se os deveremos alterar.

Guião

- Após determinar a solução óptima, queremos analisar como é que a solução óptima varia quando varia o valor de um dado (passaremos a tratá-lo como um parâmetro),
- ou seja, analisar a sensibilidade da solução óptima ao parâmetro.
- Parâmetros a analisar: quantidade de recurso disponível e coeficiente da função objectivo.

depois

• Os solvers de programação linear produzem relatórios que ajudam a efectuar a análise de sensibilidade.

Motivação

• Resolvendo o seguinte modelo com um solver de PL:

```
max: 30x1 +20x2 +10x3;

restricao1: 1x1 + 1x2 + 2x3 <= 40;

restricao2: 2x1 + 2x2 + 1x3 <= 150;

restricao3: 2x1 + 1x2 <= 20;
```

obtém-se o seguinte relatório com a solução óptima:

Objective	
Variables	result
	500
x1	0
x2	20
х3	10

- Para além de conhecer a solução óptima, fazer 20 unidades da actividade 2 e 10 unidades da actividade 3, com vendas de 500,
- podemos querer saber ...

Questões pós-optimização

- Se a quantidade do recurso 1 variasse, como variaria o valor da solução óptima?
- E essa variação é válida dentro de que limites de variação do recurso?
- Se o preço da actividade 3 descesse, será que ainda seria atractiva?
- Qual o limite dessa descida para ainda ser atractiva?
- Qual o preço mínimo da actividade 1 para ela ser atractiva?

- Os Relatórios de análise de sensibilidade têm informação que permite dar directamente resposta a estas questões.
- Os solvers de programação linear elaboram-nos usando a definição matricial de PL.

Relatórios de análise de sensibilidade

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
x3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Conteúdo

- Objectivo da análise de sensibilidade
- Relatórios de análise de sensibilidade
- Alteração num termo independente das restrições
 - Exemplo
- Alteração num coeficiente da função objectivo
 - Exemplo1: variável não-básica no quadro óptimo
 - Exemplo2: variável básica no quadro óptimo
- Apêndices

Objectivo

 A análise de sensibilidade estuda as alterações na solução óptima que resultam de variações nos dados do problema (quadro inicial).

A análise de sensibilidade permite:

- analisar as alterações dos valores dos elementos do quadro óptimo quando há uma variação no quadro inicial:
 - num termo independente de uma restrição, b_i,
 - num coeficiente da função objectivo, ci.
- determinar os limites máximos de variação dos elementos do quadro inicial sem alterar o conjunto de variáveis básicas da solução óptima.
- Análise pós-optimização é uma designação alternativa de análise de sensibilidade.

Alteração do termo independente b_i

- O valor do termo independente b_i da restrição $A^i x \le b_i$ indica frequentemente a quantidade de recurso disponível.
- O valor pode alterar-se ou podemos estar interessados em comprar mais unidades de recurso.

Questões pós-optimização

- Se a quantidade do recurso 1 variasse, como variaria o valor da solução óptima?
- E essa variação é válida dentro de que limites de variação do recurso?

Lembrete (ver diapositivos sobre Dualidade):

 O preço-sombra de um recurso (variável dual associada à restrição do recurso) traduz a variação do valor da função objectivo quando a quantidade disponível do recurso varia.

Exemplo: variação de b_1 , da primeira restrição

		z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
	-s ₁	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s ₁	<i>s</i> ₂	<i>s</i> ₃	
	X3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500

• A quantidade actualmente disponível de recurso 1 é 40 ($b_1 = 40$).

Lembrete: o preço-sombra do recurso 1 é 5 :

- se a quantidade de recurso 1 aumentar uma unidade, a função objectivo aumenta 5 unidades;
- se a quantidade de recurso 1 diminuir uma unidade, a função objectivo diminui 5 unidades.

Relatório Duals

- A coluna value apresenta os valores das variáveis do problema dual,
 i.e., os valores da linha da função objectivo do quadro simplex:

 - {recurso1,...,recurso3} \leftrightarrow variáveis de decisão do dual ($c_B B^{-1}$).

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
x3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

• O relatório *Duals* indica que o preço-sombra do recurso 1 é 5.

Relatório Duals: interpretação

Duals			
Variables	value	from	till
objective	500	500	500
x1	-5	-20	10
x2	0	-inf	+inf
х3	0	-inf	+inf
recurso1	5	20	240
recurso2	0	-inf	+inf
recurso3	15	0	40

Relativamente ao recurso 1:

- ullet quando a quantidade de recurso 1 (b_1) varia desde 20 até 240,
- o valor do óptimo da função obj. é $500 + 5(b_1 40), \forall b_1 \in [20, 240],$
- e as variáveis básicas óptimas continuam a ser x_3 , s_2 e x_3 .
- ... como vamos ver ...

Alteração de b_i : quais as alterações no quadro óptimo?

Quais os vectores / matrizes que sofrem alterações no quadro óptimo?

- Quando há uma alteração de um elemento do vector b (vector dos termos independentes das restrições),
- as únicas alterações no quadro óptimo são no vector $B^{-1}b$ e no elemento $c_BB^{-1}b$ (ver quadros no diapositivo seguinte).
- Lembrete: a matriz B é a submatriz de $[A \mid I]$ com as colunas das variáveis básicas:

$$B = \begin{bmatrix} x_3 & s_2 & x_2 \\ 2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_B = \begin{bmatrix} 10 & 0 & 20 \end{bmatrix}$$

ullet O vector c_B tem os coeficientes do vector c das mesmas variáveis.

Exemplo

Quadro	Inicial

	4	x_1	<i>x</i> 2	<i>x</i> 3	51	S 2	5 3	
s_1	0	1	1	2	1	0	0	40
s ₁ s ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃	0	1 2 2	1	0	0	0	1	20
Z	1	-30	-20	-10	0	0	0	0
	z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>5</i> 3	Ì

Quadro Óptimo

	Х3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	500
1	ala.								

$$\begin{array}{c|c}
B^{-1} & \widetilde{0} \\
\hline
c_B B^{-1} & 1
\end{array}$$

*

А	1	b
-c	õ	0

=

Alterações no vector $B^{-1}b$ e no valor de $c_BB^{-1}b$

O novo vector $B^{-1}b_{novo}$ pode ser expresso em função do vector anterior $B^{-1}b_{ant}$ e de uma parcela de variação:

$$B^{-1}b_{novo} = B^{-1}b_{novo} + B^{-1}b_{ant} - B^{-1}b_{ant} =$$

= $B^{-1}b_{ant} + B^{-1}(b_{novo} - b_{ant})$

O novo valor da função objectivo $c_B B^{-1} b_{novo}$ pode ser expresso em função do valor anterior $c_B B^{-1} b_{ant}$ e de uma parcela de variação:

$$c_B B^{-1} b_{novo} = c_B B^{-1} b_{novo} + c_B B^{-1} b_{ant} - c_B B^{-1} b_{ant} =$$

= $c_B B^{-1} b_{ant} + c_B B^{-1} (b_{novo} - b_{ant})$

Exemplo 1: variação de b_1 (passa a ser $40 + \alpha$):

$$b_{ant} = \begin{bmatrix} 40 \\ 150 \\ 20 \end{bmatrix}$$
 , $b_{novo} = \begin{bmatrix} 40 + \alpha \\ 150 \\ 20 \end{bmatrix}$

• Novo vector $B^{-1}b_{novo}$:

$$B^{-1}b_{novo} = B^{-1}b_{ant} + B^{-1}(b_{novo} - b_{ant})$$

$$B^{-1}b_{novo} = \begin{bmatrix} 10 \\ 100 \\ 20 \end{bmatrix} + \begin{bmatrix} 1/2 & 0 & -1/2 \\ -1/2 & 1 & -3/2 \\ 0 & 0 & 1 \end{bmatrix} * \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 + \alpha/2 \\ 100 - \alpha/2 \\ 20 \end{bmatrix}$$

• Novo valor de $c_B B^{-1} b_{novo}$:

$$c_B B^{-1} b_{novo} = c_B B^{-1} b_{ant} + c_B B^{-1} (b_{novo} - b_{ant})$$

$$c_B B^{-1} b_{novo} = \begin{bmatrix} 500 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 & 0 & 15 \\ 0 & 0 \end{bmatrix} * \begin{bmatrix} \alpha \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 500 + 5\alpha \\ 0 \end{bmatrix}$$

Exemplo: quadro óptimo quando há uma variação de b_1

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	s 2	<i>5</i> 3	
	s_1	0	1	1	2	1	0	0	$40 + \alpha$
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	-30	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
		0	-1/2	0	1	1/2	0	-1/2	$10 + \alpha/2$
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	$100 - \alpha/2$
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	5	0	0	5	0	15	$500 + 5\alpha$

- Este quadro é óptimo dentro dos limites de variação máxima de α , *i.e.*, enquanto todos os elementos de $B^{-1}b_{novo}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo no lado direito do quadro, e é necessário usar o simplex dual para determinar o novo quadro óptimo.

Determinação da variação máxima de α , e de b_1

ullet Variação máxima de lpha :

$$B^{-1}b_{novo} = \begin{bmatrix} 10 + \alpha/2 \\ 100 - \alpha/2 \\ 20 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{cases} \alpha \ge -20 \\ \alpha \le 200 \end{cases}$$

ou seja,

$$-20 \le \alpha \le 200$$
.

Variação máxima de b₁:

$$40 - 20 \le b_1 \le 40 + 200$$
,

ou seja,

$$20 \le b_1 \le 240$$
.

Estes são os limites apresentados no relatório Duals.

Alteração num coeficiente da função objectivo

- O valor de um coeficiente c_j da função objectivo está frequentemente relacionado com o preço de venda ou com o lucro associado a uma actividade.
- O valor pode alterar-se ou podemos estar interessados em alterá-lo para tornar uma actividade mais competitiva.

Questões pós-optimização

- Se o preço da actividade 3 descesse, será que ainda seria atractiva?
- Qual o limite dessa descida para ainda ser atractiva?
- Qual o preço mínimo da actividade 1 para ela ser atractiva?

Relatório Objective

- Os coeficientes da função objectivo são $(c_1, c_2, c_3) = (30, 20, 10)$.
- Não há alteração das actividades atractivas (variáveis básicas na solução óptima) se os coeficientes de custo se mantiverem dentro do intervalo definido pelas colunas from e till.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

... como vamos ver ...

Alteração de c_i : quais as alterações no quadro óptimo?

- Há alterações nas matrizes e nos vectores do quadro óptimo que envolvem os coeficientes de custo que se alteram nos dados iniciais.
- É necessário distinguir 2 casos:

Caso I: Variável é não-básica no quadro óptimo

- só se altera um elemento do vector c,
- e só há alterações no vector $c_B B^{-1} A c$ do quadro final;

Caso II: Variável é básica no quadro óptimo

- alteram-se um elemento do vector c e um elemento do vector c_B (que é construído a partir de c),
- e há alterações nos vectores $c_B B^{-1} A c$, $c_B B^{-1}$ e $c_B B^{-1} b$ do quadro final.

Exemplo

Quadro	Inicial

		x_1						
<i>s</i> ₁	0	1	1	2	1	0	0	40
<i>s</i> ₂	0	2	2	1	0	1	0	150
<i>s</i> ₃		1 2 2						
Z	1	-30	-20	-10	0	0	0	0
	z	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	

Quadro Óptimo

	l .	_	_	•	_	_	•	
Х3	0	-1/2	0	1	1/2	0	-1/2	10
<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
<i>x</i> ₂	0	-1/2 -3/2 2	1	0	0	0	1	20
Z	1	5	0	0	5	0	15	500

 $B^{-1} \qquad \widetilde{0}$ $c_B B^{-1} \qquad 1$

 $\begin{array}{c|cccc} A & I & b \\ \hline -c & \widetilde{0} & 0 \end{array}$

=

Alterações nos vectores $c_B B^{-1} A - c$ e $c_B B^{-1}$

Cada novo vector pode ser expresso em função do vector anterior e de uma parcela de variação:

Caso I: Variável é não-básica no quadro óptimo

$$c_B B^{-1} A - c_{novo} = c_B B^{-1} A - c_{novo} + c_{ant} - c_{ant} =$$

= $(c_B B^{-1} A - c_{ant}) + (c_{ant} - c_{novo})$

Caso II: Variável é básica no quadro óptimo

$$c_{B_{novo}}B^{-1} = c_{B_{novo}}B^{-1} + (c_{B_{ant}} - c_{B_{ant}})B^{-1}$$

= $c_{B_{ant}}B^{-1} + (c_{B_{novo}} - c_{B_{ant}})B^{-1}$

$$c_{B_{novo}}B^{-1}A - c_{novo} = c_{B_{novo}}B^{-1}A - c_{novo} - c_{B_{ant}}B^{-1}A + c_{B_{ant}}B^{-1}A + c_{ant} - c_{ant}$$
$$= c_{B_{ant}}B^{-1}A - c_{ant} + (c_{B_{novo}} - c_{B_{ant}})B^{-1}A + (c_{ant} - c_{novo})$$

Exemplo 2: variação de c_1

• Como a actividade 1 não é atractiva, interessa analisar o aumento do valor do coeficiente c_1 , que passa a ser igual a $30 + \alpha$,

Caso I: Variável x_1 é não-básica no quadro óptimo

$$c_{ant} = \begin{bmatrix} 30 & 20 & 10 \\ 30 + \alpha & 20 & 10 \end{bmatrix}$$

Novo vector $c_B B^{-1} A - c_{novo}$:

$$c_B B^{-1} A - c_{novo} = \begin{bmatrix} 5 & 0 & 0 \\ -\alpha & 0 & 0 \end{bmatrix} + \begin{bmatrix} -\alpha & 0 & 0 \\ -\alpha & 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 - \alpha & 0 & 0 \end{bmatrix}$$

Exemplo: quadro óptimo quando há uma variação de c_1

		Z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	s 3	
	<i>s</i> ₁	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>5</i> 3	0	2	1	0	0	0	1	20
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	s 3	
	X3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5-\alpha$	0	0	5	0	15	500

- Este quadro é óptimo dentro dos limites de variação máxima de α , *i.e.*, enquanto todos os elementos de $c_B B^{-1} A c_{novo}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo na linha da função objectivo, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

Determinação da variação máxima de α , e de c_1

• Variação máxima de α :

$$c_B B^{-1} A - c_{novo} = \begin{bmatrix} 5 - \alpha & 0 & 0 \\ 5 - \alpha \ge 0 & \{ \alpha \le 5 \end{bmatrix}$$

ou seja,

$$-\infty \le \alpha \le 5$$
.

• Variação máxima de c₁ :

$$-\infty \le c_1 \le 30 + 5,$$

ou seja,

$$-\infty \le c_1 \le 35$$
.

Estes são os limites apresentados no relatório Objective.

Relatório Objective: interpretação

Relativamente ao coeficiente da função objectivo c_1 :

- A solução óptima terá como variáveis básicas óptimas x_3, s_2 e x_2 enquanto o valor associado à actividade x_1 for inferior a 35.
- Para além desse limite, a actividade não-básica x₁ tornar-se-á atractiva para entrar na base, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Exemplo 3: variação de c_3

• Como a actividade 3 é atractiva, interessa analisar o decremento do valor do coeficiente c_3 , que passa a ser igual a $10 - \alpha$,

Caso II: Variável x3 é básica no quadro óptimo

$$c_{ant} = \begin{bmatrix} 30 & 20 & 10 \end{bmatrix}$$

$$c_{novo} = \begin{bmatrix} 30 & 20 & 10 - \alpha \end{bmatrix}$$

$$c_{B_{ant}} = \begin{vmatrix} 10 & 0 & 20 \end{vmatrix}$$

$$c_{B_{novo}} = \begin{vmatrix} 10 - \alpha & 0 & 20 \end{vmatrix}$$

(continua)

Exemplo 3: variação de c_3 (cont.)

Caso II: Variável x3 é básica no quadro óptimo

Novo vector $c_{B_{novo}}B^{-1}$:

$$c_{B_{novo}}B^{-1} = \begin{bmatrix} 5 & 0 & 15 \\ & 5 & 0 & 15 \end{bmatrix} + \begin{bmatrix} -\alpha & 0 & 0 \\ & -\alpha & 0 & 0 \end{bmatrix} * \begin{bmatrix} 1/2 & 0 & -1/2 \\ & -1/2 & 1 & -3/2 \\ & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 - \alpha/2 & 0 & 15 + \alpha/2 \end{bmatrix}$$

Novo vector $c_{B_{novo}}B^{-1}A-c_{novo}$ (após efectuar todos os cálculos):

$$c_{B_{novo}}B^{-1}A - c_{novo} = \begin{bmatrix} 5 + \alpha/2 & 0 & 0 \end{bmatrix}$$

Exemplo: quadro óptimo quando há uma variação de c_3

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>s</i> ₁	0	1	1	2	1	0	0	40
Quadro Inicial	s ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	s ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

- Este quadro é óptimo dentro dos limites de variação máxima de α , *i.e.*, enquanto todos os elementos de $c_B B^{-1} A c_{novo}$ e de $c_{B_{novo}} B^{-1}$ forem não-negativos.
- Se o valor de α estiver para além desses limites, haverá um elemento negativo na linha da função objectivo, e é necessário usar o simplex primal para determinar o novo quadro óptimo.

Determinação da variação máxima de α , e de c_3

• Variação máxima de α :

ou seja,

$$-10 \le \alpha \le 10$$
.

Variação máxima de c₃:

$$10-10 \le c_3 \le 10-(-10),$$

ou seja,

$$0 \le c_3 \le 20$$
.

Estes são os limites apresentados no relatório Objective.

Relatório Objective: interpretação

Relativamente ao coeficiente da função objectivo c_3 :

- A solução óptima terá como variáveis básicas óptimas x_3, s_2 e x_2 enquanto o valor associado à actividade x_3 se mantiver entre 0 e 20.
- Se o valor for inferior a 0, a actividade x₃ deixa de ser atractiva (ver apêndice).
- Se o valor for superior a 20, a actividade x_3 permanece atractiva, mas a solução óptima terá outras variáveis básicas (ver apêndice).

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x3	0	20	-inf	0

Conclusão

- A análise de sensibilidade permite avaliar alternativas ao cenário actual, e ajuda em processos de decisão.
- Análises semelhantes às efectuadas podem ser feitas quando há mais de um parâmetro a variar simultaneamente.
- É também possível fazer uma análise de sensibilidade para a variação dos coeficientes tecnológicos, os elementos a_{ii} da matriz A.

Resultados de aprendizagem

- Descrever os objectivos da análise de sensibilidade.
- Interpretar os relatórios de análise de sensibilidade produzidos por um solver de programação linear.
- Para uma variação de um elemento do lado direito das restrições e para uma variação de um coeficiente da função objectivo:
 - Saber identificar as matrizes e os vectores que têm alterações no quadro óptimo quando há uma variação num dado vector ou matriz do quadro inicial.
 - Determinar as alterações no quadro óptimo quando há uma variação num dado vector ou matriz do quadro inicial.
 - Determinar os limites máximos de variação de um elemento no quadro inicial para a solução básica de manter a mesma.

Apêndices

Como usar a informação dada pelos preços-sombra?

Após determinar a solução óptima,

- Será que devo usar mais unidades de um dado recurso?
- Ou será que devo usar menos?

Resposta: depende do preço-sombra e do custo do recurso no mercado:

- Se o custo for menor, devo comprar mais unidades.
- Se o custo for maior, devo comprar menos unidades.

Atenção: o preço-sombra não é constante de uma forma ilimitada:

- há um limite acima do qual o preço-sombra decresce,
- e um limite abaixo do qual o preço-sombra aumenta.
- Exemplo: para o recurso 1, as soluções óptimas do problema para valores de $20-\epsilon$ e $240+\epsilon$ indicam:
- se a quantidade for um pouco menor do que 20, o preço-sombra é 10; se for um pouco maior do que 240, é 3.333.

Exemplo (variação do recurso 1, *cæteris paribus*^(*))

• Resolvendo o problema para vários valores do parâmetro recurso 1:

unidades de recurso 1:	20-€	20	 40	 240	240 $+\epsilon$
preço-sombra	10	5	 5	 5	3.333
valor f.objectivo		400	 500	 1500	

Em cada cenário, o custo unitário das unidades de recurso 1 é diferente, e o lucro = vendas (valor f.objectivo) - custo das unidades usadas:

unidades de recurso 1:	20- ϵ	20	• • •	40	• • •	240	$240+\epsilon$
custo de mercado=4/unid.		80		160		960	
lucro		320		340		540	
custo de mercado=5/unid.		100		200		1200	
lucro		300		300		300	
custo de mercado=6/unid.		120		240		1440	
lucro		280		260		60	

• que fazer em cada cenário? porque é que os preços estabilizam?

1. Aumento do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a $20 + \varepsilon$ (*i.e.*, $\alpha = -10 \varepsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	s 2	<i>5</i> 3	
	s_1	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>s</i> ₃	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

1. Decréscimo do preço associado à actividade x_3

- Qual a variável não-básica que se tornaria atractiva se o preço associado à actividade x_3 fosse igual a 0ϵ (i.e., $\alpha = 10 + \epsilon$)?
- Qual a variável básica que sairia da base?

		z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>s</i> ₁	0	1	1	2	1	0	0	40
Quadro Inicial	<i>s</i> ₂	0	2	2	1	0	1	0	150
	s 3	0	2	1	0	0	0	1	20
	Z	1	30	-20	$-(10-\alpha)$	0	0	0	0
		z	x_1	<i>x</i> ₂	<i>x</i> ₃	s_1	<i>s</i> ₂	<i>s</i> ₃	
	<i>X</i> 3	0	-1/2	0	1	1/2	0	-1/2	10
Quadro Óptimo	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha/2$	0	0	$5-\alpha/2$	0	$15 + \alpha/2$	$500-10\alpha$

2. Relatório *Objective* (cont.)

- O elemento da coluna from value só é significativo para variáveis não-básicas na solução óptima.
- Quando x_1 é atractiva (coluna pivot), entra na base, e toma o valor 20/2 = 10.
- Este valor corresponde à menor razão positiva (linha pivot), saindo da base a variável x₂ (ver diapositivo seguinte).

Objective				
Variables	from	till	from value	till value
objective	500	500	500	500
x1	-inf	35	10	0
x2	17.5	+inf	-inf	0
x 3	0	20	-inf	0

2. Exemplo

Quadro Inicial		z	x_1	<i>x</i> ₂	<i>X</i> 3	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
	s_1	0	1	1	2	1	0	0	40
	<i>s</i> ₂	0	2	2	1	0	1	0	150
	<i>5</i> 3	0	2	1	0	0	0	1	20
	Z	1	$-(30+\alpha)$	-20	-10	0	0	0	0
Quadro Óptimo		Z	x_1	<i>x</i> ₂	<i>X</i> 3	s_1	<i>s</i> ₂	<i>s</i> ₃	
	X3	0	-1/2	0	1	1/2	0	-1/2	10
	<i>s</i> ₂	0	-3/2	0	0	-1/2	1	-3/2	100
	<i>x</i> ₂	0	2	1	0	0	0	1	20
	Z	1	$5 + \alpha$	0	0	5	0	15	500

Fim