Deep Learning

Index

Sr. No	Title	Date	Sign
1.	Performing matrix multiplication and finding eigen		
	vectors and eigen values using TensorFlow.		
2.	Solving XOR problem using deep feed forward network.		
3.	Implementing deep neural network for performing		
	binary classification task		
4.	a) Aim: Using deep feed forward network with two		
	hidden layers for performing multiclass classification and		
	predicting the class.		
	b) Aim: Using a deep feed forward network with two		
	hidden layers for performing classification and predicting		
	the probability of class.		
	c) Aim: Using a deep feed forward network with two		
	hidden layers for performing linear regression and		
	predicting values.		
5.	Evaluating feed forward deep network for regression		
	using KFold cross validation.		
6.	Implementing regularization to avoid overfitting in		
	binary classification.		
7.	Demonstrate recurrent neural network that learns to		
	perform sequence analysis.		
8.	Performing encoding & decoding of images autoencoder.		
9.	Implementation of convolutional neural network to		
	predict numbers from number images		
10.	Denoising of images using autoencoder.		

Aim: Performing matrix multiplication and finding eigen vectors and eigen values using TensorFlow.

```
import tensorflow as tf
print("Matrix Multiplication Demo")
x=tf.constant([1,2,3,4,5,6],shape=[2,3])
print(x)
y=tf.constant([7,8,9,10,11,12],shape=[3,2])
print(y)
z=tf.matmul(x,y)
print("Product:",z)
e_matrix_A=tf.random.uniform([2,2],minval=3,maxval=10,dtype=tf.float32,name="matrixA")
print("Matrix A:\n{}\n\n".format(e_matrix_A))
eigen_values_A,eigen_vectors_A=tf.linalg.eigh(e_matrix_A)
print("Eigen Vectors:\n{}\n\nEigen Values:\n{}\n".format(eigen_vectors_A,eigen_values_A))
```

```
    Matrix Multiplication Demo

    tf.Tensor(
    [[1 2 3]
    [4 5 6]], shape=(2, 3), dtype=int32)
    tf.Tensor(
    [[ 7 8]
    [ 9 10]
     [11 12]], shape=(3, 2), dtype=int32)
    Product: tf.Tensor(
    [[ 58 64]
     [139 154]], shape=(2, 2), dtype=int32)
    Matrix A:
    [[8.920948 9.958236]
     [7.6198754 5.5510497]]
    Eigen Vectors:
    [[-0.62613505 0.7797147]
    Eigen Values:
    [-0.56794643 15.039947 ]
```

Aim: Solving XOR problem using deep feed forward network.

```
import numpy as np
def unitStep(v):
  if v \ge 0:
    return 1
  else:
    return 0
def perceptronModel(x, w, b):
  v = np.dot(w, x) + b
 y = unitStep(v)
  return y
def NOT_logicFunction(x):
  wNOT = -1
  bNOT = 0.5
  return perceptronModel(x, wNOT, bNOT)
def AND_logicFunction(x):
 w = np.array([1, 1])
  bAND = -1.5
  return perceptronModel(x, w, bAND)
def OR_logicFunction(x):
  w = np.array([1, 1])
  bOR = -0.5
```

```
return perceptronModel(x, w, bOR)
def XOR_logicFunction(x):
y1 = AND logicFunction(x)
y2 = OR logicFunction(x)
y3 = NOT_logicFunction(y1)
final x = np.array([y2, y3])
finalOutput = AND logicFunction(final x)
y3 = NOT_logicFunction(y1)
 return finalOutput
test1 = np.array([0, 1])
test2 = np.array([1, 1])
test3 = np.array([0, 0])
test4 = np.array([1, 0])
print("XOR({}, {}) = {}".format(0, 1, XOR_logicFunction(test1)))
print("XOR({}, {}) = {}".format(1, 1, XOR_logicFunction(test2)))
print("XOR({}, {}) = {}".format(0, 0, XOR logicFunction(test3)))
print("XOR({}, {}) = {}".format(1, 0, XOR logicFunction(test4)))
Output:
 \rightarrow XOR(0, 1) = 1
```

XOR(1, 1) = 0 XOR(0, 0) = 0XOR(1, 0) = 1

Aim: Implementing deep neural network for performing binary classification task.

```
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
from scikeras.wrappers import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
# load dataset
dataframe = pd.read csv("//content//sonar.all-data", header=None)
dataset = dataframe.values
# split into input (X) and output (Y) variables
X = dataset[:,0:60].astype(float)
Y = dataset[:,60]
# encode class values as integers
encoder = LabelEncoder()
encoder.fit(Y)
encoded_Y = encoder.transform(Y)
# baseline model
def create_baseline():
```

```
# create model
       model = Sequential()
       model.add(Dense(60, input dim=60, activation='relu'))
       model.add(Dense(1, activation='sigmoid'))
       # Compile model
       model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
       return model
# evaluate model with standardized dataset
estimator = KerasClassifier(build fn=create baseline, epochs=100, batch size=5, verbose=0)
kfold = StratifiedKFold(n splits=10, shuffle=True)
results = cross val score(estimator, X, encoded Y, cv=kfold)
print("Baseline: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
# evaluate baseline model with standardized dataset
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_baseline, epochs=100, batch_size=5,
verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(n splits=10, shuffle=True)
results = cross val score(pipeline, X, encoded Y, cv=kfold)
print("Standardized: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
def create smaller():
       # create model
       model = Sequential()
       model.add(Dense(30, input dim=60, activation='relu'))
       model.add(Dense(1, activation='sigmoid'))
```

```
return model
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build fn=create smaller, epochs=100, batch size=5,
verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(n_splits=10, shuffle=True)
results = cross val score(pipeline, X, encoded Y, cv=kfold)
print("Smaller: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
# larger model
def create_larger():
       # create model
       model = Sequential()
       model.add(Dense(60, input dim=60, activation='relu'))
       model.add(Dense(30, activation='relu'))
       model.add(Dense(1, activation='sigmoid'))
       # Compile model
       model.compile(loss='binary crossentropy', optimizer='adam', metrics=['accuracy'])
       return model
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasClassifier(build_fn=create_larger, epochs=100, batch_size=5,
verbose=0)))
pipeline = Pipeline(estimators)
kfold = StratifiedKFold(n splits=10, shuffle=True)
```

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

results = cross_val_score(pipeline, X, encoded_Y, cv=kfold)
print("Larger: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

Output:

Baseline: 82.69% (9.24%) Standardized: 87.52% (7.73%)

Smaller: 83.12% (5.11%) Larger: 86.10% (7.49%)

Aim: A] Using deep feed forward network with two hidden layers for performing multiclass classification and predicting the class.

```
from keras.models import Sequential
from keras.layers import Dense
from sklearn.datasets import make blobs
from sklearn.preprocessing import MinMaxScaler
X,Y=make blobs(n samples=100,centers=2,n features=2,random state=1)
scalar=MinMaxScaler()
scalar.fit(X)
X=scalar.transform(X)
model=Sequential()
model.add(Dense(4,input_dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary crossentropy',optimizer='adam')
model.summary()
model.fit(X,Y,epochs=200)
Xnew,Yreal=make_blobs(n_samples=3,centers=2,n_features=2,random_state=1)
Xnew=scalar.transform(Xnew)
Yclass=model.predict(Xnew)
```

```
import numpy as np

def predict_prob(number):
    return [number[0],1-number[0]]

y_prob = np.array(list(map(predict_prob, model.predict(Xnew)))))

y_prob

for i in range(len(Xnew)):
    print("X=%s,Predicted_probability=%s,Predicted_class=%s"%(Xnew[i],y_prob[i],Yclass[i]))

#second way

predict_prob=model.predict([Xnew])

predict_classes=np.argmax(predict_prob,axis=1)

predict_classes
```

Model: "sequential"

Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	4)	12
dense_1 (Dense)	(None,	4)	20
dense_2 (Dense)	(None,	1)	5
Total params: 37 (148.0 Trainable params: 37 (1 Non-trainable params: 0	148.00 Byte)		
Epoch 1/200 4/4 [=======]	- 1s 5ms/ste	ep - loss: 0.6918
Epoch 200/200 4/4 [=======			
1/1 [===================================] - 0s 233ms/	step

Aim: B] Using a deep feed forward network with two hidden layers for performing classification and predicting the probability of class.

```
from keras.models import Sequential
from keras.layers import Dense
from sklearn.datasets import make_blobs
from sklearn.preprocessing import MinMaxScaler
X,Y=make_blobs(n_samples=100,centers=2,n_features=2,random_state=1)
scalar=MinMaxScaler()
scalar:MinMaxScaler()
scalar:fit(X)
X=scalar.transform(X)
model=Sequential()
model.add(Dense(4,input_dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary_crossentropy',optimizer='adam')
model.fit(X,Y,epochs=500)
Xnew,Yreal=make_blobs(n_samples=3,centers=2,n_features=2,random_state=1)
```

```
Xnew=scalar.transform(Xnew)
Ynew=model.predict(Xnew)
for i in range(len(Xnew)):
    print("X=%s,Predicted=%s,Desired=%s"%(Xnew[i],Ynew[i],Yreal[i]))
```

```
Epoch 1/500
Epoch 2/500
4/4 [========= ] - 0s 7ms/step - loss: 0.6145
Epoch 3/500
Epoch 4/500
4/4 [========= ] - 0s 6ms/step - loss: 0.6058
Epoch 495/500
4/4 [========= ] - 0s 4ms/step - loss: 0.0925
Epoch 496/500
4/4 [======== ] - 0s 4ms/step - loss: 0.0923
Epoch 497/500
4/4 [======== ] - 0s 4ms/step - loss: 0.0920
Epoch 498/500
4/4 [========== ] - 0s 4ms/step - loss: 0.0918
Epoch 499/500
4/4 [========== ] - 0s 4ms/step - loss: 0.0916
Epoch 500/500
4/4 [=========== ] - 0s 4ms/step - loss: 0.0914
1/1 [======= ] - 0s 84ms/step
X=[0.89337759 0.65864154], Predicted=[0.00614816], Desired=0
X=[0.29097707 0.12978982], Predicted=[0.8343555], Desired=1
X=[0.78082614 0.75391697], Predicted=[0.00339534], Desired=0
```

Aim: C] Using a deep feed forward network with two hidden layers for performing linear regression and predicting values.

Code:

from keras.models import Sequential

from keras.layers import Dense

from sklearn.datasets import make regression

```
from sklearn.preprocessing import MinMaxScaler
X,Y=make regression(n samples=100,n features=2,noise=0.1,random state=1)
scalarX,scalarY=MinMaxScaler(),MinMaxScaler()
scalarX.fit(X)
scalarY.fit(Y.reshape(100,1))
X=scalarX.transform(X)
Y=scalarY.transform(Y.reshape(100,1))
model=Sequential()
model.add(Dense(4,input dim=2,activation='relu'))
model.add(Dense(4,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='mse',optimizer='adam')
model.fit(X,Y,epochs=1000,verbose=0)
Xnew,a=make_regression(n_samples=3,n_features=2,noise=0.1,random_state=1)
Xnew=scalarX.transform(Xnew)
Ynew=model.predict(Xnew)
for i in range(len(Xnew)):
print("X=%s,Predicted=%s"%(Xnew[i],Ynew[i]))
```

```
1/1 [=======] - 0s 54ms/step X=[0.29466096 0.30317302],Predicted=[0.18238887] X=[0.39445118 0.79390858],Predicted=[0.7612629] X=[0.02884127 0.6208843 ],Predicted=[0.3965788]
```

Aim: Evaluating feed forward deep network for regression using KFold cross validation.

```
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
import matplotlib.pyplot as plt
# Model configuration
batch size = 50
img width, img height, img num channels = 32, 32, 3
loss function = sparse categorical crossentropy
no classes = 100
no_epochs = 10 # you can increase it to 20,50,70, 100
optimizer = Adam()
verbosity = 1
# Load CIFAR-10 data
(input_train, target_train), (input_test, target_test) = cifar10.load_data()
# Determine shape of the data
input shape = (img width, img height, img num channels)
# Parse numbers as floats
input train = input train.astype('float32')
input_test = input_test.astype('float32')
```

```
# Normalize data
input train = input train / 255
input test = input test / 255
# Create the model
model = Sequential()
model.add(Conv2D(32, kernel size=(3, 3), activation='relu', input shape=input shape))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool size=(2, 2)))
model.add(Flatten())
model.add(Dense(256, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(no classes, activation='softmax'))
model.summary()
# Compile the model
model.compile(loss=loss_function, optimizer=optimizer,metrics=['accuracy'])
# Fit data to model (this will take little time to train)
history = model.fit(input train, target train, batch size=batch size, epochs=no epochs,
verbose=verbosity)
# Generate generalization metrics
score = model.evaluate(input test, target test, verbose=0)
print(f'Test loss: {score[0]} / Test accuracy: {score[1]}')
# Visualize history
# Plot history: Loss
plt.plot(history.history['loss'])
plt.title('Validation loss history')
plt.ylabel('Loss value')
```

```
plt.xlabel('No. epoch')
plt.show()
# Plot history: Accuracy
plt.plot(history.history['accuracy'])
plt.title('Validation accuracy history')
plt.ylabel('Accuracy value (%)')
plt.xlabel('No. epoch')
plt.show()
# By Adding k fold cross validation
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.losses import sparse_categorical_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import KFold
KFold
import numpy as np
# Model configuration
batch_size = 50
img width, img height, img num channels = 32, 32, 3
loss function = sparse categorical crossentropy
no classes = 100
no epochs = 10
optimizer = Adam()
verbosity = 1
num folds = 5
```

```
# Load CIFAR-10 data
(input_train, target_train), (input_test, target_test) = cifar10.load_data()
# Determine shape of the data
input shape = (img width, img height, img num channels)
# Parse numbers as floats
input train = input train.astype('float32')
input test = input test.astype('float32')
# Normalize data
input train = input train / 255
input_test = input_test / 255
# Define per-fold score containers
acc per fold = []
loss per fold = []
# Merge inputs and targets
inputs = np.concatenate((input train, input test), axis=0)
targets = np.concatenate((target_train, target_test), axis=0)
# Define the K-fold Cross Validator
kfold = KFold(n splits=num folds, shuffle=True)
# K-fold Cross Validation model evaluation
fold no = 1
for train, test in kfold.split(inputs, targets):
# Define the model architecture
 model = Sequential()
 model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
 model.add(MaxPooling2D(pool size=(2, 2)))
 model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
```

```
model.add(MaxPooling2D(pool_size=(2, 2)))
 model.add(Flatten())
 model.add(Dense(256, activation='relu'))
 model.add(Dense(128, activation='relu'))
 model.add(Dense(no_classes, activation='softmax'))
 # Compile the model
 model.compile(loss=loss function,
        optimizer=optimizer,
        metrics=['accuracy'])
 # Generate a print
 print('-----')
 print(f'Training for fold {fold_no} ...')
 # Fit data to model
 history = model.fit(inputs[train], targets[train],
       batch size=batch size,
       epochs=no_epochs,
       verbose=verbosity)
 # Generate generalization metrics
 scores = model.evaluate(inputs[test], targets[test], verbose=0)
 print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]};
{model.metrics_names[1]} of {scores[1]*100}%')
 acc_per_fold.append(scores[1] * 100)
 loss_per_fold.append(scores[0])
 # Increase fold number
 fold_no = fold_no + 1
# == Provide average scores ==
```

```
print('------')
print('Score per fold')
for i in range(0, len(acc_per_fold)):
    print('-----')
    print(f'> Fold {i+1} - Loss: {loss_per_fold[i]} - Accuracy: {acc_per_fold[i]}%')
    print('-----')
    print('Average scores for all folds:')
    print(f'> Accuracy: {np.mean(acc_per_fold)} (+- {np.std(acc_per_fold)})')
    print(f'> Loss: {np.mean(loss_per_fold)}')
    print('------')
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 30, 30, 32)	896
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 15, 15, 32)	0
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 6, 6, 64)	0
flatten (Flatten)	(None, 2304)	0
dense (Dense)	(None, 256)	590080
dense_1 (Dense)	(None, 128)	32896
dense_2 (Dense)	(None, 100)	12900

Total params: 655268 (2.50 MB) Trainable params: 655268 (2.50 MB) Non-trainable params: 0 (0.00 Byte)

Test loss: 1.137102484703064 / Test accuracy: 0.6966999769210815


```
Training for fold 1 ...
Epoch 1/10
960/960 [================ ] - 71s 73ms/step - loss: 1.5497 - accuracy: 0.4419
Epoch 2/10
960/960 [================ ] - 71s 74ms/step - loss: 1.1217 - accuracy: 0.6035
Epoch 3/10
960/960 [================== ] - 72s 75ms/step - loss: 0.9531 - accuracy: 0.6672
Epoch 4/10
960/960 [================= ] - 70s 73ms/step - loss: 0.8358 - accuracy: 0.7075
Epoch 5/10
Epoch 6/10
960/960 [================== ] - 73s 76ms/step - loss: 0.6461 - accuracy: 0.7727
Epoch 7/10
960/960 [================== ] - 68s 70ms/step - loss: 0.5593 - accuracy: 0.8024
Epoch 8/10
960/960 [================== ] - 69s 72ms/step - loss: 0.4746 - accuracy: 0.8320
Epoch 9/10
960/960 [================= ] - 69s 72ms/step - loss: 0.4027 - accuracy: 0.8556
Epoch 10/10
960/960 [================= ] - 68s 71ms/step - loss: 0.3315 - accuracy: 0.8819
Score for fold 1: loss of 1.1447182893753052; accuracy of 69.01666522026062%
Training for fold 2 ...
Epoch 1/10
960/960 [=============== ] - 67s 69ms/step - loss: 1.4946 - accuracy: 0.4574
Epoch 2/10
960/960 [================== ] - 66s 69ms/step - loss: 1.0824 - accuracy: 0.6143
Epoch 3/10
960/960 [=========== ] - 67s 70ms/step - loss: 0.9355 - accuracy: 0.6705
Epoch 4/10
960/960 [=============== ] - 65s 68ms/step - loss: 0.8318 - accuracy: 0.7074
Epoch 5/10
Epoch 6/10
960/960 [========== ] - 66s 69ms/step - loss: 0.6879 - accuracy: 0.7597
Epoch 7/10
Epoch 8/10
960/960 [================ ] - 69s 72ms/step - loss: 0.5677 - accuracy: 0.8015
Epoch 9/10
960/960 [============ ] - 68s 71ms/step - loss: 0.5144 - accuracy: 0.8185
Epoch 10/10
960/960 [============ ] - 66s 69ms/step - loss: 0.4610 - accuracy: 0.8378
Score for fold 2: loss of 0.9815402030944824; accuracy of 70.333331823349%
```

```
Training for fold 3 ...
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
960/960 [==================== ] - 70s 73ms/step - loss: 1.0199 - accuracy: 0.6381
Epoch 5/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
Score for fold 3: loss of 0.9777575135231018; accuracy of 67.64166951179504%
Training for fold 4 ...
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
960/960 [======================= ] - 68s 71ms/step - loss: 0.9051 - accuracy: 0.6813
Epoch 5/10
Epoch 6/10
960/960 [================== ] - 69s 71ms/step - loss: 0.7510 - accuracy: 0.7357
Epoch 7/10
960/960 [================== ] - 66s 69ms/step - loss: 0.6871 - accuracy: 0.7579
Epoch 8/10
Epoch 9/10
960/960 [=============== ] - 67s 70ms/step - loss: 0.5766 - accuracy: 0.7966
Epoch 10/10
Score for fold 4: loss of 0.9539607167243958; accuracy of 69.25833225250244%
```

```
Training for fold 5 ...
Epoch 1/10
960/960 [=============== ] - 67s 69ms/step - loss: 1.5813 - accuracy: 0.4209
960/960 [=============== ] - 73s 76ms/step - loss: 1.2035 - accuracy: 0.5685
960/960 [==================== ] - 68s 70ms/step - loss: 1.0382 - accuracy: 0.6306
Epoch 4/10
960/960 [================] - 68s 71ms/step - loss: 0.9473 - accuracy: 0.6646
Epoch 5/10
960/960 [============== ] - 66s 68ms/step - loss: 0.8742 - accuracy: 0.6905
Epoch 6/10
960/960 [=================== ] - 66s 69ms/step - loss: 0.8167 - accuracy: 0.7120
Epoch 7/10
960/960 [=============== ] - 69s 71ms/step - loss: 0.7613 - accuracy: 0.7337
Epoch 8/10
960/960 [=============== ] - 66s 69ms/step - loss: 0.7087 - accuracy: 0.7507
Epoch 9/10
960/960 [============== ] - 68s 71ms/step - loss: 0.6611 - accuracy: 0.7652
Epoch 10/10
960/960 [============== ] - 67s 70ms/step - loss: 0.6132 - accuracy: 0.7837
Score for fold 5: loss of 0.9543024301528931; accuracy of 68.57500076293945%
Score per fold
> Fold 1 - Loss: 1.1447182893753052 - Accuracy: 69.01666522026062%
> Fold 2 - Loss: 0.9815402030944824 - Accuracy: 70.333331823349%
------
> Fold 3 - Loss: 0.9777575135231018 - Accuracy: 67.64166951179504%
> Fold 4 - Loss: 0.9539607167243958 - Accuracy: 69.25833225250244%
______
> Fold 5 - Loss: 0.9543024301528931 - Accuracy: 68.57500076293945%
______
Average scores for all folds:
> Accuracy: 68.96499991416931 (+- 0.8791300324813014)
> Loss: 1.0024558305740356
```

Aim: Implementing regularization to avoid overfitting in binary classification.

```
from matplotlib import pyplot
from sklearn.datasets import make_moons
from keras.models import Sequential
from keras.layers import Dense
X,Y=make_moons(n_samples=100,noise=0.2,random_state=1)
n train=30
trainX,testX=X[:n_train,:],X[n_train:]
trainY,testY=Y[:n_train],Y[n_train:]
print(trainX.shape)
print(trainY.shape)
print(testX.shape)
print(testY.shape)
model=Sequential()
model.add(Dense(500,input dim=2,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary crossentropy',optimizer='adam',metrics=['accuracy'])
model.summary()
history=model.fit(trainX,trainY,validation_data=(testX,testY),epochs=100)
pyplot.plot(history.history['accuracy'],label='train')
```

```
pyplot.plot(history.history['val_accuracy'],label='test')
pyplot.legend()
pyplot.show()
from keras.regularizers import 12
model=Sequential()
model.add(Dense(500,input dim=2,activation='relu',kernel regularizer=I2(0.001)))
model.add(Dense(1,activation='sigmoid'))
model.summary()
model.compile(loss='binary crossentropy',optimizer='adam',metrics=['accuracy'])
history=model.fit(trainX,trainY,validation data=(testX,testY),epochs=100)
pyplot.plot(history.history['accuracy'],label='train')
pyplot.plot(history.history['val accuracy'],label='test')
pyplot.legend()
pyplot.show()
from keras.regularizers import l1 l2
model=Sequential()
model.add(Dense(500,input dim=2,activation='relu',kernel regularizer=l1 l2(l1=0.001,l2=0.001
)))
model.add(Dense(1,activation='sigmoid'))
model.compile(loss='binary crossentropy',optimizer='adam',metrics=['accuracy'])
model.summary()
history=model.fit(trainX,trainY,validation_data=(testX,testY),epochs=100)
```

```
pyplot.plot(history.history['accuracy'],label='train')
pyplot.plot(history.history['val_accuracy'],label='test')
pyplot.legend()
pyplot.show()
```

(30, 2) (30,) (70, 2) (70,)

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 500)	1500
dense_1 (Dense)	(None, 1)	501

Total params: 2001 (7.82 KB)
Trainable params: 2001 (7.82 KB)
Non-trainable params: 0 (0.00 Byte)

Epoch 1/100 Epoch 2/100 Epoch 4/100 1/1 [==========] - 0s 42ms/step - loss: 0.6635 - accuracy: 0.8667 - val loss: 0.6675 - val accuracy: 0.6857 Epoch 5/100 1/1 [=========] - 0s 43ms/step - loss: 0.6481 - accuracy: 0.8333 - val_loss: 0.6577 - val_accuracy: 0.6857 Epoch 95/100 Epoch 96/100 Epoch 97/100 Epoch 98/100 Epoch 99/100 1/1 [===========] - 0s 67ms/step - loss: 0.1896 - accuracy: 0.9000 - val_loss: 0.4256 - val_accuracy: 0.7429 Epoch 100/100

Model: "sequential_1"

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 500)	1500
dense_3 (Dense)	(None, 1)	501

Total params: 2001 (7.82 KB)
Trainable params: 2001 (7.82 KB)
Non-trainable params: 0 (0.00 Byte)

Model: "sequential_2"

Layer (type)	Output Shape	Param #
dense_4 (Dense)	(None, 500)	1500
dense_5 (Dense)	(None, 1)	501

Total params: 2001 (7.82 KB)
Trainable params: 2001 (7.82 KB)
Non-trainable params: 0 (0.00 Byte)

```
Epoch 1/100
1/1 [==========] - 1s 1s/step - loss: 0.7606 - accuracy: 0.4667 - val_loss: 0.7435 - val_accuracy: 0.6429
Epoch 2/100
Epoch 3/100
Epoch 4/100
        1/1 [======
Epoch 5/100
1/1 [============] - 0s 42ms/step - loss: 0.6985 - accuracy: 0.8667 - val_loss: 0.7029 - val_accuracy: 0.7286
Epoch 95/100
Epoch 96/100
1/1 [===========] - 0s 136ms/step - loss: 0.2582 - accuracy: 0.9000 - val loss: 0.4705 - val accuracy: 0.7571
Epoch 97/100
1/1 [===========] - 0s 91ms/step - loss: 0.2574 - accuracy: 0.9000 - val_loss: 0.4698 - val_accuracy: 0.7571
Epoch 98/100
Epoch 99/100
1/1 [======
          :========] - 0s 43ms/step - loss: 0.2558 - accuracy: 0.9000 - val_loss: 0.4682 - val_accuracy: 0.7571
Epoch 100/100
1/1 [=============] - 0s 43ms/step - loss: 0.2550 - accuracy: 0.9000 - val_loss: 0.4675 - val_accuracy: 0.7571
```


Aim: Demonstrate recurrent neural network that learns to perform sequence analysis.

```
import numpy as np
import tensorflow datasets as tfds
import tensorflow as tf
tfds.disable_progress_bar()
import matplotlib.pyplot as plt
def plot_graphs(history, metric):
 plt.plot(history.history[metric])
 plt.plot(history.history['val_'+metric], '')
 plt.xlabel("Epochs")
 plt.ylabel(metric)
 plt.legend([metric, 'val '+metric])
dataset, info = tfds.load('imdb_reviews', with_info=True,
              as_supervised=True)
train dataset, test dataset = dataset['train'], dataset['test']
train dataset.element spec
for example, label in train dataset.take(5):
 print('text: ', example.numpy())
 print('label: ', label.numpy())
BUFFER_SIZE = 10000
```

```
BATCH_SIZE = 64
train dataset =
train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE)
test dataset = test dataset.batch(BATCH SIZE).prefetch(tf.data.AUTOTUNE)
for example, label in train_dataset.take(1):
 print('texts: ', example.numpy()[:3])
 print()
 print('labels: ', label.numpy()[:3])
VOCAB_SIZE = 1000
encoder = tf.keras.layers.TextVectorization(max_tokens=VOCAB_SIZE)
encoder.adapt(train_dataset.map(lambda text, label: text))
vocab = np.array(encoder.get_vocabulary())
vocab[:20]
encoded_example = encoder(example)[:3].numpy()
encoded example
for n in range(3):
 print("Original: ", example[n].numpy())
 print("Round-trip: ", " ".join(vocab[encoded_example[n]]))
 print()
model = tf.keras.Sequential([
  encoder,
```

```
tf.keras.layers.Embedding(
    input_dim=len(encoder.get_vocabulary()),
    output dim=64,
    # Use masking to handle the variable sequence lengths
    mask_zero=True),
  tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64)),
  tf.keras.layers.Dense(64, activation='relu'),
  tf.keras.layers.Dense(1)
1)
print([layer.supports masking for layer in model.layers])
# predict on a sample text without padding.
sample_text = ('The movie was cool. The animation and the graphics'
        'were out of this world. I would recommend this movie.')
predictions = model.predict(np.array([sample text]))
print(predictions[0])
# predict on a sample text with padding
padding = "the " * 2000
predictions = model.predict(np.array([sample_text, padding]))
print(predictions[0])
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from logits=True),
        optimizer=tf.keras.optimizers.Adam(1e-4),
        metrics=['accuracy'])
history = model.fit(train dataset, epochs=10,
           validation data=test dataset,
```

```
test loss, test acc = model.evaluate(test dataset)
print('Test Loss:', test_loss)
print('Test Accuracy:', test acc)
plt.figure(figsize=(16, 8))
plt.subplot(1, 2, 1)
plot_graphs(history, 'accuracy')
plt.ylim(None, 1)
plt.subplot(1, 2, 2)
plot_graphs(history, 'loss')
plt.ylim(0, None)
sample text = ('The movie was cool. The animation and the graphics'
        'were out of this world. I would recommend this movie.')
predictions = model.predict(np.array([sample text]))
predictions
model = tf.keras.Sequential([
  encoder,
  tf.keras.layers.Embedding(len(encoder.get vocabulary()), 64, mask zero=True),
  tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(64, return sequences=True)),
  tf.keras.layers.Bidirectional(tf.keras.layers.LSTM(32)),
  tf.keras.layers.Dense(64, activation='relu'),
```

validation_steps=30)

tf.keras.layers.Dropout(0.5),

```
tf.keras.layers.Dense(1)
])
model.compile(loss=tf.keras.losses.BinaryCrossentropy(from logits=True),
       optimizer=tf.keras.optimizers.Adam(1e-4),
       metrics=['accuracy'])
history = model.fit(train dataset, epochs=10,
           validation data=test dataset,
           validation_steps=30)
test_loss, test_acc = model.evaluate(test_dataset)
print('Test Loss:', test_loss)
print('Test Accuracy:', test acc)
# predict on a sample text without padding.
sample text = ('The movie was not good. The animation and the graphics'
        'were terrible. I would not recommend this movie.')
predictions = model.predict(np.array([sample_text]))
print(predictions)
plt.figure(figsize=(16, 6))
plt.subplot(1, 2, 1)
plot graphs(history, 'accuracy')
plt.subplot(1, 2, 2)
plot graphs(history, 'loss')
```

Original: b'I voted 3 for this movie because it looks great as does all of Greenaways output. However it was his usual mix of "art" sex and pretentious crap. I know lots of people like this film but I gree Round-trip: i [UNK] for this movie because it looks great as does all of [UNK] [UNK] however it was his usual [UNK] of art sex and [UNK] [UNK] know lots of people like this film but i [UNK] [UNK] for it
Original: b'Justifications for what happened to his movie in terms of distributors and secondary directors, drunks and receptionists doing script rewrites aside, let\'s just take this movie as it\'s offer
Round-trip: [UNK] for what happened to his movie in [UNK] of [UNK] and [UNK] directors [UNK] and [UNK] doing script [UNK] [UNK] Lets just take this movie as its [UNK] without [UNK] but his movie is
Original: b'A commedy that worked surprisingly well was the little British effort "The Divorce Of Lady X (1938)". It marks the first pairing of Laurence Olivier and Merle Oberon, before that little film about [UNK] [UNK] of ILMN] [UNK] the first [UNK] of [UNK] [UNK] well was the little british effort the [UNK] Of ILMN] [UNK] the first [UNK] of [UNK] [UNK] [UNK] well was the little British effort the [UNK] [UNK] of ILMN] [UNK] the first [UNK] of [UNK] [UNK] [UNK] [UNK] before that little film about [UNK] [UNK] of ILMN] [UNK] of [UNK] [UNK] the first [UNK] [

[False, True, True, True, True]

dtype='<U14')

1/1 [======] - 4s 4s/step [-0.01484437]

```
Epoch 1/10
Epoch 2/10
391/391 [===
       Epoch 3/10
         391/391 [===
Epoch 4/10
391/391 [=========] - 26s 67ms/step - loss: 0.3275 - accuracy: 0.8604 - val loss: 0.3400 - val accuracy: 0.8438
Epoch 5/10
391/391 [===========] - 25s 65ms/step - loss: 0.3147 - accuracy: 0.8658 - val_loss: 0.3287 - val_accuracy: 0.8526
Epoch 6/10
391/391 [===
        Epoch 7/10
391/391 [==========] - 25s 64ms/step - loss: 0.3024 - accuracy: 0.8722 - val_loss: 0.3269 - val_accuracy: 0.8646
Epoch 8/10
Epoch 9/10
391/391 [============] - 25s 64ms/step - loss: 0.2965 - accuracy: 0.8746 - val_loss: 0.3277 - val_accuracy: 0.8615
Epoch 10/10
391/391 [==========] - 26s 65ms/step - loss: 0.2971 - accuracy: 0.8757 - val_loss: 0.3174 - val_accuracy: 0.8625
```

Test Loss: 0.3137068450450897 Test Accuracy: 0.8617600202560425


```
Epoch 1/10
391/391 [==
                                ======] - 56s 142ms/step - loss: 0.2895 - accuracy: 0.8780 - val_loss: 0.3192 - val_accuracy: 0.8615
Epoch 2/10
391/391 [===
                                         - 48s 123ms/step - loss: 0.2892 - accuracy: 0.8765 - val_loss: 0.3272 - val_accuracy: 0.8542
Epoch 3/10
391/391 [==
                                         - 47s 120ms/step - loss: 0.2862 - accuracy: 0.8788 - val_loss: 0.3291 - val_accuracy: 0.8510
Epoch 4/10
                                        - 47s 119ms/step - loss: 0.2792 - accuracy: 0.8816 - val_loss: 0.3356 - val_accuracy: 0.8349
391/391 [==:
Epoch 5/10
                                        - 46s 117ms/step - loss: 0.2767 - accuracy: 0.8824 - val_loss: 0.3319 - val_accuracy: 0.8594
391/391 [====
Epoch 6/10
391/391 [==:
                             =======] - 48s 121ms/step - loss: 0.2735 - accuracy: 0.8860 - val_loss: 0.3491 - val_accuracy: 0.8594
Epoch 7/10
391/391 [==
                                         - 46s 117ms/step - loss: 0.2692 - accuracy: 0.8883 - val loss: 0.3308 - val accuracy: 0.8573
Epoch 8/10
391/391 [==
                                         - 45s 115ms/step - loss: 0.2650 - accuracy: 0.8901 - val_loss: 0.3390 - val_accuracy: 0.8536
Epoch 9/10
391/391 [==
                                         - 47s 120ms/step - loss: 0.2622 - accuracy: 0.8906 - val_loss: 0.3489 - val_accuracy: 0.8500
Epoch 10/10
391/391 [===
                            ========] - 47s 119ms/step - loss: 0.2592 - accuracy: 0.8941 - val_loss: 0.3649 - val_accuracy: 0.8583
```

391/391 [===========] - 20s 51ms/step - loss: 0.3604 - accuracy: 0.8529

Test Loss: 0.3603912889957428 Test Accuracy: 0.8529199957847595

Practical No: 8

Aim: Performing encoding and decoding of images using deep autoencoder.

Code:

```
import keras
from keras import layers
from keras.datasets import mnist
import numpy as np
encoding dim=32
#this is our input image
input img=keras.Input(shape=(784,))
#"encoded" is the encoded representation of the input
encoded=layers.Dense(encoding_dim, activation='relu')(input_img)
#"decoded" is the lossy reconstruction of the input
decoded=layers.Dense(784, activation='sigmoid')(encoded)
#creating autoencoder model
autoencoder=keras.Model(input img,decoded)
#create the encoder model
encoder=keras.Model(input img,encoded)
encoded input=keras.Input(shape=(encoding dim,))
#Retrive the last layer of the autoencoder model
decoder layer=autoencoder.layers[-1]
#create the decoder model
decoder=keras.Model(encoded_input,decoder_layer(encoded_input))
autoencoder.compile(optimizer='adam',loss='binary crossentropy')
#scale and make train and test dataset
```

```
(X_train,_),(X_test,_)=mnist.load_data()
X_train=X_train.astype('float32')/255.
X test=X test.astype('float32')/255.
X train=X train.reshape((len(X train),np.prod(X train.shape[1:])))
X_test=X_test.reshape((len(X_test),np.prod(X_test.shape[1:])))
print(X train.shape)
print(X test.shape)
#train autoencoder with training dataset
autoencoder.fit(X train,X train,
epochs=50,
batch size=256,
shuffle=True,
validation_data=(X_test,X_test))
encoded_imgs=encoder.predict(X_test)
decoded imgs=decoder.predict(encoded imgs)
import matplotlib.pyplot as plt
n = 10 # How many digits we will display
plt.figure(figsize=(40, 4))
for i in range(10):
# display original
ax = plt.subplot(3, 20, i + 1)
plt.imshow(X test[i].reshape(28, 28))
plt.gray()
ax.get xaxis().set visible(False)
ax.get_yaxis().set_visible(False)
# display encoded image
ax = plt.subplot(3, 20, i + 1 + 20)
```

```
plt.imshow(encoded_imgs[i].reshape(8,4))
plt.gray()
ax.get xaxis().set visible(False)
ax.get yaxis().set visible(False)
# display reconstruction
ax = plt.subplot(3, 20, 2*20 + i + 1)
plt.imshow(decoded imgs[i].reshape(28, 28))
plt.gray()
ax.get xaxis().set visible(False)
ax.get_yaxis().set_visible(False)
plt.show()
Output:
Epoch 1/50
235/235 [=========== ] - 4s 16ms/step - loss: 0.1695 - val loss: 0.1527
Epoch 3/50
Epoch 4/50
Epoch 5/50
235/235 [=========== ] - 3s 11ms/step - loss: 0.1180 - val loss: 0.1127
Epoch 45/50
235/235 [===========] - 3s 12ms/step - loss: 0.0927 - val_loss: 0.0917
Epoch 46/50
235/235 [===========] - 3s 12ms/step - loss: 0.0927 - val_loss: 0.0915
Epoch 47/50
235/235 [===========] - 4s 16ms/step - loss: 0.0927 - val_loss: 0.0915
Epoch 48/50
235/235 [===========] - 3s 12ms/step - loss: 0.0926 - val_loss: 0.0915
Epoch 49/50
235/235 [===========] - 3s 12ms/step - loss: 0.0926 - val_loss: 0.0915
Epoch 50/50
235/235 [===========] - 3s 12ms/step - loss: 0.0926 - val_loss: 0.0915
```

Practical No: 9

Aim: Implementation of convolutional neural network to predict numbers from number images.

Code:

```
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train.shape
y_train.shape
X test.shape
y_test.shape
import matplotlib.pyplot as plt
plt.imshow(X_train[2])
plt.show()
plt.imshow(X_train[2], cmap=plt.cm.binary)
X train[2]
X_train = tf.keras.utils.normalize(X_train, axis=1)
X_test = tf.keras.utils.normalize(X_test, axis=1)
plt.imshow(X_train[2], cmap=plt.cm.binary)
print(X_train[2])
import tensorflow as tf
```

```
import tensorflow.keras.layers as KL
import tensorflow.keras.models as KM
inputs = KL.Input(shape=(28, 28, 1))
c = KL.Conv2D(32, (3, 3), padding="valid", activation=tf.nn.relu)(inputs)
m = KL.MaxPool2D((2, 2), (2, 2))(c)
d = KL.Dropout(0.5)(m)
c = KL.Conv2D(64, (3, 3), padding="valid", activation=tf.nn.relu)(d)
m = KL.MaxPool2D((2, 2), (2, 2))(c)
d = KL.Dropout(0.5)(m)
c = KL.Conv2D(128, (3, 3), padding="valid", activation=tf.nn.relu)(d)
f = KL.Flatten()(c)
outputs = KL.Dense(10, activation=tf.nn.softmax)(f)
model = KM.Model(inputs, outputs)
model.summary()
model.compile(optimizer="adam", loss="sparse_categorical_crossentropy",
metrics=["accuracy"])
model.fit(X train, y train, epochs=5)
test loss, test acc = model.evaluate(X test, y test)
print("Test Loss: {0} - Test Acc: {1}".format(test_loss, test_acc))
```

Output:

Model: "model"

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 28, 28, 1)]	0
conv2d (Conv2D)	(None, 26, 26, 32)	320
<pre>max_pooling2d (MaxPooling2 D)</pre>	(None, 13, 13, 32)	0
dropout (Dropout)	(None, 13, 13, 32)	0
conv2d_1 (Conv2D)	(None, 11, 11, 64)	18496
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 5, 5, 64)	0
dropout_1 (Dropout)	(None, 5, 5, 64)	0
conv2d_2 (Conv2D)	(None, 3, 3, 128)	73856
flatten (Flatten)	(None, 1152)	0
dense (Dense)	(None, 10)	11530

Total params: 104202 (407.04 KB) Trainable params: 104202 (407.04 KB) Non-trainable params: 0 (0.00 Byte)

Practical No: 10

Aim: Denoising of images using autoencoder.

Code:

```
import keras
from keras.datasets import mnist
from keras import layers
import numpy as np
from keras.callbacks import TensorBoard
import matplotlib.pyplot as plt
(X_train, _), (X_test, _) = mnist.load_data()
X train = X train.astype('float32') / 255.
X_{\text{test}} = X_{\text{test.astype}}(\text{'float32'}) / 255.
X_{train} = np.reshape(X_{train}, (len(X_{train}), 28, 28, 1))
X \text{ test} = \text{np.reshape}(X \text{ test}, (\text{len}(X \text{ test}), 28, 28, 1))
noise_factor = 0.5
X_train_noisy = X_train + noise_factor * np.random.normal(loc=0.0, scale=1.0,
size=X train.shape)
X test noisy = X test + noise factor * np.random.normal(loc=0.0, scale=1.0, size=X test.shape)
X_train_noisy = np.clip(X_train_noisy, 0., 1.)
X test noisy = np.clip(X test noisy, 0., 1.)
n = 10
plt.figure(figsize=(20, 2))
```

```
for i in range(1, n + 1):
  ax = plt.subplot(1, n, i)
  plt.imshow(X test noisy[i].reshape(28, 28))
  plt.gray()
  ax.get_xaxis().set_visible(False)
  ax.get yaxis().set visible(False)
plt.show()
input img = keras.Input(shape=(28, 28, 1))
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(input img)
x = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
x = layers.UpSampling2D((2, 2))(x)
x = layers.Conv2D(32, (3, 3), activation='relu', padding='same')(x)
x = layers.UpSampling2D((2, 2))(x)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)
autoencoder = keras.Model(input img, decoded)
autoencoder.compile(optimizer='adam', loss='binary crossentropy')
autoencoder.fit(X_train_noisy, X_train,
        epochs=3,
        batch_size=128,
        shuffle=True,
        validation_data=(X_test_noisy, X_test),
```

```
predictions = autoencoder.predict(X_test_noisy)
m = 10

plt.figure(figsize=(20, 2))
for i in range(1, m + 1):
    ax = plt.subplot(1, m, i)
    plt.imshow(predictions[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

plt.show()
```

Output:

