In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import *
```

In [17]:

```
dict={
    'x':np.arange(1,50,4),
    'y':np.random.choice([1,0],size=13)
}
```

In [19]:

dataFrame=pd.DataFrame(dict)
dataFrame

Out[19]:

	x	у	
0	1	1	
1	5	1	
2	9	1	
3	13	0	
4	17	1	
5	21	0	
6	25	1	
7	29	0	
8	33	1	
9	37	0	
10	41	0	

11 45 1 **12** 49 0

$$xi = mx + c$$

$$sigmoid = \frac{1}{1 + e^{-xi}}$$

```
In [24]:
```

```
class Logistic_Regression():
    def __inint__(self,dataframe,m,c):
        self.dataframe=dataframe
        self.y_org=0
        self.y_pred=0
    def sigmoid(self):
        self.m=3.4
        self.c=-0.6
        for value in dataframe['x'].values:
            X.append(self.m*(value)+self.c)
        pre=[]
        for v in X:
            pre.append(1/(1+np.exp(-v)))
        self.y_pred=[]
        for pri in pre:
            if pri > 0.5:
                self.y_pred.append(1)
            else:
                y_pred.append(0)
        self.y_org=dataframe['y'].values
        return self.y_org , self.y_pred
    def accuracy(self):
        self.correct=0
        for Y_org,Y_pre in zip(self.y_org,self.y_pred):
            if Y_org==Y_pre:
                self.correct+=1
        print(f"Total Correct {self.correct}, Total length {len(self.y_pred)}")
        return f"{(self.correct/len(self.y_pred))*100}%"
obj=Logistic_Regression()
obj.sigmoid()
obj.accuracy()
Total Correct 12, Total length 23
Out[24]:
'52.17391304347826%'
In [ ]:
In [ ]:
```