

A | สารบัญ

สารข์ญ

- 1 | พันธะไอออนิก (Ionic bond)
- 2 | Atomic model development
- 3 | Electron
- 4 | Transition & oxidation number & แนวโน้มสมบัติของธาติ & กัมมันตรังสี

พู่หะะเอ่ทู

โมเลกุล คือตั้งแต่ 2 อะตอมมารวมกันยึดเหนี่ยวกัน พันธะเคมี คือแรงยึดเหนี่ยวระหว่งอะตอมในโมเลกุล En ต่ำ + En สูง = พัพธะ Ionic En สูง + En สูง = พัพธะ Covalent

พันธะไอออนิก (Ionic bond)

คือแรงยึดเหพียวระหว่างไอออน (+) และไอ<mark>ออน (-)</mark> (ธาตุที่มี En ต่ำ) (ธาตุที่มี En สูง) โลงะ

IA	ตารางธาตุ						สลียร VIIIA	
H•	IIA		IIIA	IVA	VA	VIA	VIIA	He:
Li •	• Be • Beryllum	การอ่าน	Beren	· Carbon	Nitrogen	Oxygen	Flourine	Ne:
Na • Sodium	•Mg • Magnesium	สัญลักษณ์ อะตอม ร่ออะตอม	• Al •	• Si •	Phosphorus	Suffer	Chlorine	:Ar:
K + Potassium	•Ca• Calcium	Transition	• Ga •	• Ge • Germanium	As Arsenic	Se Setenium	Br Bromine	Kr : Krypton
Rb •	• Sr • Strontium		•In •	50 • S n • Tin	Sb Antimony	Tellurium	53 Lodine	Xe Xenon
Cs •	•Ba •		•TI •	• P b •	Bi Bismuth	Polonium	At :	:Rn:
Fr • Francium	•Ra • Radium		•Nh • Nihanium	Flerovien	MC • Moscovium	LV: Livermorium	Ts:	oganesson

ระวัจ He พราะมันมี electron ไม่ตรงกับหมู่

ตารางธาต (สำหรับพันธะไออนิก)

การเขียนชื่อสูตร (ไอออนิก)

1) เขียนไอออนบวกของโลหะหรือกลุ่มไอออนบวกไว้ข้างหน้า ตามด้วย ไอออนลบของอโลหะหรือกลุ่มไอออนลบ

2)ไอออนบวกและไอออนลบจะรวมกันในอัตราส่วนที่ทำให้ผลรวมของ ประจุเป็นศูนย์ซึ่งทำได้โดยใช้จำนวนประจุบวกและไออนลบไขว้กัน 3)ถ้ากลุ่มไอออนบวกและลบมีมากกว่า 1 กลุ่ม ให้ใส่วงเล็บ () และใส่ จำนวนกลุ่มไว้ที่มุมขวาล่าง

การเกิดพันธะไอออนิก

ไอออนบวกและไอออนลบมีประจุไฟฟ้าต่างกันจึงยึดเหนี่ยวกันด้วย แรงดึงดูดไฟฟ้า

ใช้ตารางธาตุแล้วดูว่ามันมีกี่อิเล็กตรอน (ดูจากตาราง)

อธิบายให้เห็นภาพคือทำให้ธาตุนั้นๆครบ 8 ตามกฎออกเตต

CI มีเลขอะตอม = 17 (ขาด 1)

รู้ได้ใงว่าขาดไป 1 = ดูจากตาราง : ci :

:ci : +e⁻ [:ci :]

อิเล็กตรอนไม่สามารถหายไปเฉยๆได้ จึงต้องให้กับธาตุอื่นๆ

Na ให้อิเล็กตรอนกับ CI เพื่อทำให้เป็นไปตามกฎ

ธาตุ 1 ตัวสามารถรับได้หลายอิเล็กตรอนจากธาตุที่ต่างกัน

การเรียกชื่อสารประกอบไอออนิก (เพิ่มเติม) อ่านชื่อโลนะที่เป็นไอออนบวกก่อนตามด้วยชื่อของไอออนลบ

NaCI: โซเดียมคลอไรค์ NaNo₂: โซเดียมไนไตรต์ KBr: โพแทสเซียมโบรไมค์ CaCo₃: แคลเซียมคาร์บอเนต

การเรียก/อ่านชื่อสารไอออนิก (หลัก)

ไอออนบวก (cation +)

-ไอออนบวกมีประจุค่าเดียวกับหมู่ IA , IIA (หมู่ 1 กับ 2) ให้เรียกชื่อธาตไออนของนั้น

-ไอออนบวกที่มีเลขประจุหลายค่า (เลขออกซิเดชัน) (ราตุโลนะแทรกซิเดชัน)

ให้เรียกชื่อไออนบวกก่อนแล้วตามด้วยเลขประจุของไอออนบวก

Cu⁺ : คอปเปอร์ (i) ไอออน Cu ²⁺คอปเปอร์ (ii) ไอออน

** NH⁴⁺ - ammonium ion

ไอออนลบ (Anion)

-ธาตุอโลนะนร็อธาตุที่มีใอออน (-1) ในเติม -ide

H: ไฮโดรด์ไอออน O^{2-} : ออกไซด์ไอออน N^{3-} : Nitride

-ไอออนลบที่มีออกซิเจนเป็นองประกอบให้ลงท้ายเป็น ไ-ต์ (-ite) หรือ เ-ต (-ate)

ถ้าไอออนลบมีจำนวนประจุเท่ากัน แต่ มีจำนวนออกซิเจนน้อยกว่าใช้ (-ide)

No ไนไตรต์ไอออน

มีจำนวนออกซิเจนมากกว่าใช้ (-ate)

No _ ไนเตรตไอออน

-ไอออนลบที่มีออกซิเจนและมีแฮโลเจนอยู่ด้วย (หมู่ 7)

ออกซิเจนลดลง 1 อะตอม จะใช้คำ ว่า "ไ-ต์" หน้าคำว่า ไฮโป- (hypo)

CIO on CIO ใชโปคลอไรต์โอออง

ออกซิเจนเพิ่มขึ้น 1 อะตอม จะใช้คำ ว่า "เ-ต" หน้าคำว่า เปอร์ - (Per-)

CIO 3 CIO เปอร์คลอเรตไอออน

-ไอออนลบที่มีออกซิเจน เมื่อเติม H⁺ จะเติมคำว่า ไฮโครเจน หรือ ไดไฮโครเจน

Trasition -> ระบุ oxidation number ใน () ด้วยตัวเลขโรมัน

		ยกเว้น
Fe²⁺= Iron (II)	Ca²⁺= Copper (II)	Sc³= scandivi
Fe³⁺= Iron (III)	Cr⁴= Chromium (IV)	$Z_n^{2+} = Z_{inc}$
Ca = Copper (I)	Mn = Manganese (V)	Aa⁺ = Siver

พลังงานกับการเกิดสารประกอบไอออนิก

จะมีการเปลี่ยนแปลงพลังงานเกิดขึ้นระหว่างการเกิดปฏิกิริยาระหว่างธาตุสามารถ พิจารณจากวัฎจักรนอร์-ฮาเบอร์ (born-harber)

Born-harber พลังงานรวมแต่ละขั้นตอนจะเท่ากับพลังงานในการเกิดสารประกอบไอออนิก

พลังงานทั้งหมดของปฏิกิริยาคือเอา ΔH ทั้งหมคมาบวกกัน

สมบ์ติของสารประกอบไอออนิก

1)มีความเปราะ แตกหักถ่ายเพื่อจากเกิดแรงผลักกันระหว่งประจุที่เหมือนกัน 2)นำไฟฟ้าเมื่อหลอมเหลวหรือละลายเป็นน้ำ เพราะหลอมเหลวโครงผลิกจะเสียไป 3)มีจุดหลอมเหลวและจุดเดือดสูงมากเพราะพันธะไอออนิกขีดเหนี่ยวกันด้วย ไอออนที่มีประจุไฟฟ้าต่างชนิดกัน

5)ละลายได้ดีในด้วทำละลายที่มีขั้ว เช่น น้ำ แต่ไม่ละลายหรือละลายได้น้อยในตัว ทำละลายที่ไม่มีขั้ว

6)เกิดปฏิกิริยาได้เร็ว โดยเฉพาะสารละลายหรือสภาวะแก็ส

7)มีสภาพิการละลายน้ำต่างกัน ขึ้นอยู่กับโครงสร้างและส่วนประกอบของสารนั้นๆ

สารประกอบไอออนิกเมื่อเป็นของแป้งจะไม่มีการนำไฟฟ้า (ไอออน + และ - ที่อยู่ในโครงผลิกไม่มีการเคลื่อนที่)

แต่เมื่อสถานะเป็นของเหลว (L) หรือเป็นสารละลาย (A q) จะนำไฟฟ้าได้ (มีการเคลื่อนที่ของไอออน + และ - ได้อย่างอิสละและครบวงจรไฟฟ้า)

ความเป็นไอออนิก (ผลต่างของค่า EN ~ △EN)

การละลายน้ำของสารประกอบไอออนิก

ปฎิกิริยาเคมีของสารประกอบไอออนิก (สารละลาย)

AgNo, (aq) + NaCl (aq) -> AlCl(s) + NaNo (aq)
สารตั้งตัน ผลิตภัณฑ์

สมการไอออนิก -> แสดงสุตรไอออน (+) และ (-) ทุกสารที่เป็น (aq - ละลายน้ำ)

 $Ag^{+}(aq) + No^{-}(aq) + Na^{+}(aq) + Ci^{-}(aq) \longrightarrow AgC^{-}(is) + No^{-}(aq) + Na^{+}(aq)$

สมการไอออนิกุสุทธิ์ -> แสดงสุตรไอออน (+) และ (-) ที่เกิดปฏิกิรายาแล้ว ได้ผลิตภัณฑ์ ที่เป็น <mark>(s) , (l) , (g)</mark> - เกิดปฏิกิริยา

Ag+(aq) + CI-(aq) -> AgCI(s) (เฉพาะตัวที่ใช้)

Done timestamp : 3:19 (9/25/24)

พันธะโควาเลนต์ (Covalent bond)

แรงยึดเหนี่ยวที่เกิดขึ้นจากการนำอิเล็กตรอนชั้นนอกสุดมาใช้ร่วมกัน

สารประกอบโคเวเลนต์

สารประกอบที่เกิดจากอะตอมที่น้ำ e- ขั้นนอกสุดมาใช้ร่วมกัน

อะตอมที่เกิดขึ้นเมื่อ Covalent bond

อโลนะ + อโลนะ (ราคุที่มี En สุง) = F_2 , O_2 , N_2 , NO_2 , OF_2 ,HCI ก็จโลนะ + อโลนะ = Bh_3 , SIO_2 โลนะ + อโลนะ = $BeCl_2$, $SnCl_2$, Fe_2O_3 , Fe_3O_4

ธาตุที่เสถียร -> Valence e- ต้องเป็น 8 (ธาตุหมู่ 8)

การเขียนชื่อธาต

เขียนธาตุที่มีค่ En พ้อย (เป็นบวก) ก่อนแล้วตามค้วยธาตุที่มีค่า En มาก (เป็นลบ) ถ้ามีธาตุใคมีจำนวอะตอมมากกว่า 1 อะตอม ให้ระบุจำนวนอะตอมของธาตุนั่นไว้

NO, CO, CO2, BF3, P2O5, SICL4, P4O10

การอ่านชื่ออออ Ӱ

ระบบ (1)

1 โมเลกุลมี่ธาตุ 1 ชนิด (อ่านตามชื่อธาตุปกติ)

 H_2 = Hydrogen O_3 = Ozone and unaniferation O_2 = Oxygen P_4 = Phosphorus P_4 = Sulfur P_4 = Sulfur

1 โมเลกุลมีธาตุ 2 ชนิด Binnary

เลขห้อยตัวที่ 1 ชื่อธาตุ 1 (ปกติ) <mark>เ</mark>ลขห้อยตัวที่ 2 ชื่อธาตุ 2 เติม -ide

เลขพ้อยตัวที่ 1 ธาตุนั้นอ่านตามชื่อปกติเลขพ้อยตัวที่ 2 เติม ide

1 mono- 6 hexa 2 di- 7 hepta 3 tri- 8 octa 4 tetra- 9 hona 5 penta- 10 deca

ระบบ (2)

C₃H₈ = H-C-C-C-C-H BP=1C H H H H 2) Alkene -> พี C=C 1 ที่เท่าพัพ

สมการทั่วไป = C _nH _{2n} ก คือจำหวน carbon _{ต้องใช้ carb} h

H
C H H - C - C = C - H BP = 9 เดี๋ยว 7 คู่ 1
3 6 H H H
3) Alkune มี C = C อย่างพ้อย 1 เท่า

หyne พ C ≘ C อยาจพอย า เทา **สมการทั่วไป = C n H** 2n 2 ก คือจำพวพ carbon คือเจ๋ สะถา ก็ต้าจ้า เคียว 8 สาม 1

H - C ≣ C - C - C - H BP = 11 เดี๋ยว 8 สาม 1

Good Luck on the test 🐎

หากมีข้อแนะนำหรือมีอะไรที่ไม่ถูกต้องสามารถติดต่อ IG : JxxnO3z เพื่อจะได้พัฒนาสรุปให้ดีที่สุดครับ

ขอบคุณที่อ่านน้ำาา 🛡

