לאחר כמה ניסיונות קצרים שנכשלו מכל מיני סיבות הבנתי שאני חייב להבין איך הנגזרת עוברת ברשת לפי כל פונקציה ושלב ברשת.

לכן אני רוצה לעבור פונקציות שונות ולהגיע לחישובים של הפונקציה שלא חורגים למספרים גדולים ולהגיע לנגזרות פשוטות שישארו בטווח ערכים סביר ויהיו קלות לחישוב.

פונקציות שימושיות והנגזרות שלהם:

SoftMax:

$$f(x_i) = \frac{e^{x_i}}{\sum_{j=1}^d e^{x_j}}$$

): אם הא נקבל אין פוף נקבל מידי גדול אם אם e^x אם הוא שיכול לחרוג שיכול אחרוג פה הוא

אפשר לפתור את זה ע"י הורדה של הx המקסימלי בדוגמה מכל הפיצ'רים בדוגמה לפני העלאה בחזקה

ואז בהעלאה בחזקה נקבל:

$$e^{x_i - max(x)} = \frac{e^{x_i}}{e^{max(x)}}$$

: i ואז לכל

$$f(x_{i}-max(x)) = \frac{e^{x_{i}}/e^{max(x)}}{\sum_{j=1}^{d} e^{x_{j}}/e^{max(x)}} = \frac{e^{x_{i}}}{\sum_{j=1}^{d} e^{x_{j}}} = f(x_{i})$$

כלומר תוצאת החישוב עדיין נכונה אבל לא נחרוג במהלך החישוב כמובן לא חשבתי על זה לבד, זה המקור:

https://www.tutorialexample.com/implement-softmax-function-without-underflow-and-overflow-/deep-learning-tutorial

לכל מספר בתוצאה הוא הושפע באופן כלשהו ע"י כל המספרים בווקטור הנכנס ולכן בחישוב הנגזרות נצטרך לחשב נגזרת מכל מספר בתוצאה לכל המספרים במקור. כלומר מטריצה מהצורה:

$\frac{\delta softmax(X)[1]}{\delta x_1}$	$\frac{\delta softmax(X)[1]}{\delta x_2}$	$\frac{\delta softmax(X)[1]}{\delta x_3}$	 $\frac{\delta softmax(X)[1]}{\delta x_d}$
$\frac{\delta softmax(X)[2]}{\delta x_1}$	$\frac{\delta softmax(X)[2]}{\delta x_2}$	$\frac{\delta softmax(X)[2]}{\delta x_3}$	 $\frac{\delta softmax(X)[2]}{\delta x_d}$
$\frac{\delta softmax(X)[3]}{\delta x_1}$	$\frac{\delta softmax(X)[3]}{\delta x_2}$	$\frac{\delta softmax(X)[3]}{\delta x_3}$	 $\frac{\delta softmax(X)[3]}{\delta x_d}$
•••	•••	•••	
$\frac{\delta softmax(X)[d]}{\delta x_1}$	$\frac{\delta softmax(X)[d]}{\delta x_2}$	$\frac{\delta softmax(X)[d]}{\delta x_3}$	 $\frac{\delta softmax(X)[d]}{\delta x_d}$

בסוף לכל x_i נסכום את השורה הi וזו הנגזרת שתזרום בו – ההצדקה שלי לזה היא שתמיד אחרי softmax צריך לבוא crossEntrophyLoss שיגרום לזה שהנגזרות ברוב הפלטים של הsoftmax יהיו i מבלבד שהוא התיוג הנכון ואז כל ה-i יושפעו מהאחד הזה.

צורת באותה כי היא באותה בנגזרת שזרמה בנגזרת ניתן להכפיל בלי בעיה ביתן ניתן $(d_{\mathrm{in}},)$

נחלק את חישוב הנגזרת לשתי מקרים:

: j=i

$$\frac{\delta \frac{e^{x_i}}{\int_{-\frac{1}{2}}^{d} e^{x_j}} \delta \frac{e^{x_i}}{\int_{-\frac{1}{2}}^{d} e^{x_j}}}{\delta x_i} = \frac{\delta \frac{e^{x_i}}{\int_{-\frac{1}{2}}^{d} e^{x_j}}}{\delta e^{x_i}} \cdot e^{x_i} = \frac{e^{x_i} + \sum_{j=1, j \neq i}^{d} e^{x_j}}{\delta e^{x_i}} \cdot e^{x_i} = \dots$$

$$\dots = \frac{1 \cdot \sum_{i \in \{1...d\}} e^{x} - 1 \cdot e^{x_i}}{\sum_{i=1}^{d} e^{x_i}} * e^{x_i} = \left(\frac{1}{\sum_{i=1}^{d} e^{x_i}} - \frac{e^{x_i}}{\sum_{i=1}^{d} e^{x_i}}\right) * e^{x_i} = f(x_i) - f^2(x_i) = f(x_i) \cdot (1 - f(x_i))$$

: *i*≠*j*

$$\frac{\delta \frac{e^{x_i}}{\sum_{j=1}^{d} e^{x_j}}}{\delta x_j} = \frac{\delta \frac{e^{x_i}}{\sum_{j=1}^{d} e^{x_j}}}{\delta e^{x_j}} \cdot e^{x_j} = \frac{-e^{x_i}}{\left(\sum_{j=1}^{d} e^{x_j}\right)^2} \cdot e^{x_j} = \frac{-f^2(x_i) \cdot e^{x_j}}{e^{x_i}} = -f^2(x_i) \cdot e^{x_j - x_i}$$

... (batch size, d, d) בצורה: tensor זה אומר שבכל חישוב נגזרת צריך

CrossEntrophyLoss:

בשלב זה מעורבים שתי וקטורים:

softmax תוצאה של -X.1

onehot חיוג בצורת -Y.2

ואז מחשבים:

$$f(x_i) = Avg(-y_i * \ln(x_i))$$

חישוב שהוא לא מסוכן מבחינת חריגה לכן נעבור ישר לנגזרת

$$\frac{\delta f(x_i)}{\delta x_i} = \frac{\delta Avg(-y_i * \ln(x_i))}{\delta - y_i * \ln(x_i)} \frac{\delta - y_i * \ln(x_i)}{\delta x_i} = \frac{-1}{d} \frac{\delta y_i * \ln(x_i)}{\delta \ln(x_i)} \frac{1}{x_i} = \frac{-y_i}{d \cdot x_i}$$

הוא כמות הפיצ'רים d *

SoftMax אווי בייי שוה מימד הפלט של צורת הנגזרת היא א שוה מימד ($d_{
m out}$,) אווי שוה מימד אווי צורת אווי צורת איא

ReLu:

$$f(x_i) = \begin{cases} 0 & if \quad x_i \le 0 \\ x_i & if \quad x_i > 0 \end{cases}$$

הנגזרת כאן ממש פשוטה:

$$f'(x_i) = \begin{cases} 0 & if & x_i \le 0 \\ 1 & if & x_i > 0 \end{cases}$$

ניתן להכפיל ישירות בנגזרת משכבת הפלט כי אין הבדל בצורה

לבסוף צריך נגזרת של שכבה לינארית כלשהי:

כאן חשוב לזכור שצריך נגזרת לw אבל גם חייב נגזרת לX כי זה יכול להיות פלט של שכבה קודמת

$$f(x_i)[k] = \sum_{j=1}^{d_{in}} x_{i,j} w_{j,k}$$

הנגזרת עבור w תהיה:

$$\frac{\delta f(x_{i})[k]}{\delta w_{j,k}} = \frac{\delta \sum_{j=1}^{d_{in}} x_{i,j} w_{j,k}}{\delta w_{j,k}} = x_{i,j}$$

אינדקס של הפלט שממנו הנגזרת מגיעה – k *

אינדקס הפיצ'ר בקלט – j *

ינדקס הדוגמה בקלט - i *

זה אומר שבעצם הנגזרת של השכבה הלינארית היא שיכפול של אורך איר הפלט והכפלה בנגזרת מהפלט מהפלט מהפלט

<u>...x הנגזרת עבור</u>

. בקלט הוא משתתף בכל אחד מהפלטים. בקלט הוא משתתף בכל אחד מהפלטים.

כאן המטריצה מהצורה:

$\frac{\delta f(x_i)[1]}{\delta x_{i,1}}$	$\frac{\delta f(x_i)[2]}{\delta x_{i,1}}$	 $\frac{\delta f(x_i)[d_{\text{out}}]}{\delta x_{i,1}}$
$\frac{\delta f(x_i)[1]}{\delta x_{i,2}}$	$\frac{\delta f(x_i)[2]}{\delta x_{i,2}}$	 $\frac{\delta f(x_i)[d_{\text{out}}]}{\delta x_{i,2}}$
$\frac{\delta f(x_i)[1]}{\delta x_{i,d}}$	$\frac{\delta f(x_i)[2]}{\delta x_{i,d}}$	 $\frac{\delta f(x_i)[d_{\text{out}}]}{\delta x_{i,d_i}}$
		$\delta x_{i,2}$

ואז הנגזרת תהיה סכום העמודות.

נחשב את איברי הטבלה:

נחשב נגזרת של ביחס איבר $x_{i,m}$ של נחשב נגזרת נחשב נגזרת של

$$\frac{\delta f(x_{i})[k]}{\delta x_{i,m}} = \frac{\delta \sum_{j=1}^{d_{in}} x_{i,j} w_{j,k}}{\delta x_{i,m}} = w_{m,k}$$

יוצא שהנגזרת היא הכפלה של שורות W בנגזרת מהפלט ואז סכום העמודות שלו :)

כתיבת הרשת:

ננסה לכתוב מנגנון דינאמי לרשת כעץ:

כל צומת ברשת מחזיק מטריצה שעוברת ברשת קדימה והנגזרת עד אליו מסוף הרשת

לכל צומת יש מילון ילדים שממפה כל ילד לתפקיד שלו – לדוגמא בcrossEntrophyLoss יהיה ילד שהוא התוצאה של softmax וילד שהתפקיד שלו הוא onehot של התיוגי אמת.

כל צומת יכיל את הפונקצייה שתקבל מילון של ילדים ותפקידם ותחשב את המטריצה של הצומת.

בדרך חזרה הצומת יחשב לכל ילד את הנגזרת אליו ויעביר אותה

כלומר צומת גם צריך לדעת לקבל נגזרת מההורים שלו.

הרשת עבדה למימדים קטנים (לא טוב – אבל לפחות הצליחה ללמוד משהו)

ראיתי שהבעיה נובעת מהנגזרת של crossEntrophy. מקבלים מספרים נורא גדולים במימדים לא כל כך גדולים.

https://towardsdatascience.com/derivative-of-the-softmax-function-and-the- לפי המקור הזה: categorical-cross-entropy-loss-ffceefc081d1

כדאי לאחד את הנגזרת של SoftMax ושל CrossEntrophyLoss ואז מקבלים נגזרת פשוטה לחישוב שלא תחרוג המוז.

ננסה לחשב להם נגזרת מאוחדת:

- softmax, פיצ'ר ה-i של קלט של ה x_i
 - נכונה i ונכונה אם או 0 y_i *
- i-ה פלט של הSoftMax פלט של ה s, *

: i≠i

$$\frac{\delta CrossEntrophy(s_i, y_i)}{\delta x_j} = \frac{\delta - \sum_{i=1}^{C} y_i * \ln(s_i)}{\delta s_i} \frac{\delta s_i}{\delta x_j} = \frac{\delta \sum_{i=1}^{C} y_i * \ln(s_i)}{\delta \ln(s_i)} \frac{1}{s_i} s_i^2 * e^{x_j - x_i} = \sum_{i=1}^{C} (y_i) * s_i * e^{x_j - x_i} = s_i * e^{x_j - x_i}$$

: i=j

$$\frac{\delta CrossEntrophy(s_i, y_i)}{\delta x_i} = \frac{\delta - \sum_{i=1}^{C} y_i * \ln(s_i)}{\delta s_i} \frac{\delta s_i}{\delta x_i} = \frac{\delta \sum_{i=1}^{C} y_i * \ln(s_i)}{\delta \ln(s_i)} \frac{1}{s_i} s_i * (1 - s_i) = \sum_{i=1}^{C} (y_i)(1 - s_i) = 1 - s_i$$

נזכרתי ששכחתי להוסיף bias לרשת שלי.

שינוי הנגזרת של CrossEntrophyLoss לא כל כך עזר אז אחזור לקודם

יש שתי דרכים שאני יכול להתמודד עם הbias:

- 1. להוסיף אותו כmode לעץ הווקטורים ברשת
- 2. לעשות אותו אוטומטי כחלק מהשכבה הלינארית

ננסה את הראשון כי הוא לא דורש שיכתוב מוחלט של הקוד קודם.

לאחר כמה ימים:

מספר ניסיונות הבאים די נכשלו. כנראה שעקב סיבות אחרות מהנגזרות אבל לא הצלחתי למצוא אותם בהתחלה. לאחר מכן גיליתי שעשיתי shuffle רק לX אז הוספתי את הY גם אבל זה לא פתר כי מסתבר ש numpy.random.shuffle משנה את סדר הפיצ'רים בדוגמאות גם ואז התבנית במידע נאבדת

אבל לפני שהבנתי את זה החלטתי לשפר את הנגזרות. התחלתי מלעבור שוב על הנגזרות ולהחליף את התוכנה לדוגמה יחידה במקום batch.

לבסוף סיימתי עם השלבים הבאים:

בשכבה הלינארית:

הנגזרת הלינארית ביחס למשקולות היא עדיין X עצמו אבל הדרך חישוב יותר יעילה, ומסתבר שבחישוב הקודם בנגזרת לX העברתי נגזרות לא נכונות כי חתכתי את הbias בצד הלא נכון.

מה שאני עושה בנגזרת של W זה להכפיל מכפלה חיצונית של X בנגזרת שחלחלה מקצה הרשת, ואז מוסיף רגולריזציה ע"י הוספה של w*2

:batch את שתי אילו תרגמתי למימד

את X הופכים לעמודה של עמודות ואת הנגזרת שחלחלה הופכים לעמודה של שורות כך מכפלה סקלרית ביניהם תיצור מכפלה חיצונית בין כל דוגמה של X לנגזרת שחילחלה מקצה הרשת בדוגמה זו.

בW חותכים את הbias מהקצה שזה המקום הנכון ואז עושים מכפלה סקלרית עם הנגזרת שחלחלה כאשר הנגזרת בצורת עמודה ואז המשקולות כפול עמודה יצור שורה באורך הקלט של השכבה

:softmax

https://towardsdatascience.com/derivative-of-the-softmax-function-and-the-לפי המאמר הזה: categorical-cross-entropy-loss-ffceefc081d1

ניתן לפשט את הנגזרת של softmax ו- cross entrophy וכך להימנע מהמטריצה:

 $: i=j \quad \forall \supset$

$$\frac{\delta \frac{e^{x_i}}{\sum_{j=1}^{d} e^{x_j}}}{\delta x_i} = f(x_i) \cdot (1 - f(x_i))$$

:(כאן הייתה לי טעות בחישוב שעכשיו ראיתי): $i \neq j$

יסמן את זה ניתן אם $i\!=\!j$ אם או 1 אם פונקציה שבה מציבים את הביטוי כאותה הביטוי כאותה פונקציה או 1 אם יסמן את זה כך:

$$\{i=j\} = \begin{cases} 0 & if & i \neq j \\ 1 & if & i=j \end{cases}$$

נראה כך: ביבה איבר j כלשהו איבר x_i שבו לכל כל נגזרות וקטור של נגזרות כל איבר s_i

$$s_i(\{i=j\}-s_j)$$

softmax את תוצאת את הנגזרת של Softmax נסמן בה את הנגזרת ונשלב בה את ונשלב בה את ונשלב בה את הנגזרת אל x_i softmax אנחשב נגזרת לקלט של נגזרת

$$f(x_i) = \sum_{i=1}^{d} (-y_i * \ln(s_i))$$

$$\frac{\delta f(x_i)}{\delta x_i} = \frac{\delta \sum_{i=1}^{d} (-y_i * \ln(s_i))}{\delta x_i} = -\sum_{i=1}^{d} \frac{\delta y_i * \ln(s_i)}{\delta x_i} = -\sum_{i=1}^{d} y_i * \frac{\delta \ln(s_i)}{\delta x_i} = -\sum_{i=1}^{d} \frac{y_i}{s_i} \frac{\delta s_i}{\delta x_i} = \dots$$

$$\dots = -\sum_{i=1}^{d} \frac{y_i}{s_i} s_i (\{i = j\} - s_j) = -\sum_{i=1}^{d} y_i (\{i = j\} - s_j) = \sum_{i=1}^{d} y_i * s_j - \sum_{i=1}^{d} y_i \{i = j\} = s_j * \sum_{i=1}^{d} (y_i) - y_j = s_j - y_j$$

ומצאנו נגזרת הרבה הרבה יותר פשוטה:)

מכאן מצאתי עוד כמה באגים. הוספתי שמירה של המשקולות הכי טובים על ולידציה ושמירה לקובץ וזה הסתדר:) מכאן התחלתי לנסות לאמן את הרשת עם פרמטרים שונים:

נסיון ראשון עקבתי אחרי 3blue1brown עם רשת של 3blue1brown נסיון ראשון עקבתי אחרי 3blue1brown עם מיון ראשון עקבתי מיר רגולריזציה של 1e-3 עשיתי רגולריזציה של מידה זהה.

64 נקבע להיות batch size

:התחלתי להריץ אותו כל פעם 10 אפוקים ואז לתעד דיוק

			try1ofcse - נסיון
טעות	הפסד על ולידציה	הפסד על אימון	מספר אפוק
0.17	0.5675	0.60749	10
0.1225	0.39922	0.42871	20
0.1112	0.35668	0.37887	30
0.1033	0.33458	0.35166	40
0.0964	0.32054	0.33335	50
0.0916	0.31068	0.32022	60

לוג של האימון יצורף כקובץ טקסט

כאן כבר החלתי לעצור ולנסות רשת שנייה עם MSE:

:alpha וגם batch size עם אותו שם אותו מבנה במה ואו וגם פה עקבתי אחרי אותו מבנה ל+16 + 16 + 10

על אותו עיקרון כל פעם 10 אפוקים:

טעות	הפסד על ולידציה	הפסד על אימון	מספר אפוק
0.8865	0.90589	0.90718	10
0.8862	0.89887	0.89905	20
0.8852	0.89777	0.89789	30

פה החלטתי לעצור ולהעלות את קצב הלמידה ל 1e-2 אבל להשאיר את אותה רגולריזציה

	, ,	,	try1ofmse - נסיון
טעות	הפסד על ולידציה	הפסד על אימון	מספר אפוק
0.8852	0.8953	0.8957	10
0.7171	0.88693	0.88796	20
0.6972	0.853	0.85629	30
0.6211	0.78515	0.79096	40
0.5	0.70224	0.70943	50
0.3862	0.59283	0.60269	60
0.3282	0.5099	0.51749	70
0.2988	0.46645	0.47247	80
0.2782	0.44209	0.44727	90
0.2554	0.42644	0.4313	100
0.2384	0.41889	0.41416	110
0.2237	0.40223	0.40716	120
0.2034	0.38855	0.39375	130
0.1786	0.3706	0.37607	140
0.1556	0.34685	0.35235	150

0.1367	0.32238	0.32722	160
0.1236	0.30188	0.30544	170
0.1174	0.28711	0.28948	180
0.1149	0.2775	0.27901	190

לוג יצורף בקובץ

ננסה שוב את MSE מהתחלה הפעם נשים רגולריזציה עם נשים הראשונים מהתחלה שוב את אונים מוכ

			try2ofmse - נסיון
טעות	הפסד על ולידציה	הפסד על אימון	מספר אפוק
0.1021	0.18921	0.20037	10
0.0809	0.13716	0.13238	20
0.0765	0.12258	0.10985	30
0.0745	0.11531	0.09698	40

כאן אקטין את קצב הלמידה פי 10 ואמשיך באימון על אותן משקולות

מהשורה השנייה אתחיל לדווח כל 20 אפוקים

טעות	הפסד על ולידציה	הפסד על אימון	מספר אפוק
0.0733	0.11484	0.09324	50
0.0727	0.11403	0.09127	70
0.0728	0.11327	0.08957	90
0.0725	0.11259	0.08784	110

המודל עדיין לומד אבל ממש לאט. אני עוצר פה והלוג יצורף גם לריצה הזו

בכל ניסיון רשום שם של התיקייה שמכילה קובץ בינארי ולוג אימון או פרמטרים של האימון

לאחר מכן הרצתי את שתי המודלים כמה פעמים בניסיון לשפר ולכל אחד הגעתי לנסיון הכי טוב שהצלחתי:

:softmax_relu_94p נמצא בתיקייה – CrossEntrophy מודל

מבחינת קצב למידה:

1e-4 אפוקים עם 10, 1e-3 אפוקים עם 10, 1e-2 אפוקים עם 10

רגולריזציה: 0

מבנה השכבות: [784,200,100,10]

הגיע לטעות של 20.062

הלוג מצורף

:best_attempt_97p נמצא בתיקייה MSE במודל

מבנה שכבות: [784,200,100,10]

1e-3 עם אפוקים עם 100 אוז 100 אפוקים עם 300 אפוקים עם

alpha = 0

הגיע לטעות של 0.0273

* על מנת לטעון את הקבצים צריך לסמן בהערה את השורה של fit ואז להחליף את f_name לנתיב היחסי של הקובץ הבינארי. ואז להחליף את סוג הרשת בין MSEnet ל-SoftmaxNet בהתאם למודל