CS663 Assignment 1 Question 2 Report

Part 1: Linear Contrast Stretching

Original image on the left, enhanced image on the right.

The algorithm used for the contrast stretching is the following: The lowest intensity range is mapped to 0 and the highest is mapped to 255. The formula is:

$$outputPixelValue = \frac{inputPixelValue - minPixelValue}{maxPixelValue - minPixelValue} \times 255$$

There is not much difference between the original and enhanced images because the intensity range in the original images was nearly the full range.

Part 2: Histogram Equalization

Part 3: Adaptive Histogram Equalization

Best result using windowSize = 100

Excessive noise amplification with windowSize = 20

Low contrast improvement with windowSize = 300

Image 2

Best result using windowSize = 100

Excessive noise amplification with windowSize = 20

Low contrast improvement with windowSize = 300

Best result using windowSize = 150

Excessive noise amplification with windowSize = 50

Low contrast improvement with windowSize = 350

Part 4: Contrast-Limited Adaptive Histogram Equalization

Best result with windowSize = 100, clipValue = 128

Result with clipValue = 64

Image 2

Best result with windowSize = 100, clipValue = 128

Result with clipValue = 64

Best result with windowSize = 150, clipValue = 200

Result with clipValue = 100