Solution and Marking

Section 1: Fill in the Blanks [40 marks] Solutions: Q 1.1 CPU, Memory, I/O [3 marks] Q 1.2 5 or 7. Correctly answer one of them, 2 marks; both correct, 3 marks Q 1.3 xy' + z [3 marks] Q 1.4 -60 [2 marks]; 1100 0100 [2 marks] Q 1.5 BC'D' + A'C'D + AB'D [3 marks] Q 1.6 0000000C [3 marks] Q 1.7 28; 4; \$s0; \$t0 [4 marks] Q 1.8 subu \$s2, \$0, \$s1 [3 marks] Q 1.9 \$s3, \$s3, \$0, \$0 [4 mark] Q 1.12 11, 01 [4 marks]

Section 2: MIPS [30 marks]

Q 2.1 Solution:

```
MIPS program code to be completed:
li $t0,0
for1:
li $t1, 0
li $t2, 0
lw $t3, 0($a1)
move $t4, $a2
for2:
lw $t5, 0($t4)
[bne] $t3, $t5, skip # 1 mark
addiu $t1, [$t1], [1] # 2 mark, can change order
skip:
addiu $t4, [$t4], [4] # 2 mark, can change order
addiu $t2, [$t2], [1] # 2 mark, can change order
bne $t2, [$a0], [for2] # 2 marks
sw $t1, 0($a3)
addiu $a1, [$a1], [4] # 2 mark, can change order
addiu $a3, [$a3], [4] # 2 mark, can change order
addiu $t0, $t0, 1 # i++
bne $t0, [$a0], [for1] # 2 marks
```

Q 2.2 Solution:

Function: this program will compute the sum of the decimal digits. [5 marks]

For example: suppose the unsigned integer 1121 is stored in $\mathbf{\$a0}$, the result is 1+1+2+1=5, which will be stored in $\mathbf{\$v0}$. [5 marks]

Section 3: MIPS

Q 3.3 Solution:

- (a) $A = S_1' S_0' D_0 + S_1' S_0 D_1 + S_1 S_0' D_2 + S_1 S_0 D_3$. [3 marks]
- (b) For A: $S_1 = x$, $S_0 = y$, $D_0 = z$, $D_1 = z'$, $D_2 = z'$, $D_3 = z$. Substitute into above question, we get A = x'y'z + x'yz' + xy'z' + xyz [3 marks] Then, $A = \Sigma(m_1, m_2, m_4, m_7)$ or $A = \Sigma(1, 2, 4, 7)$. [1 marks]

For B:
$$S_1 = x$$
, $S_0 = y$, $D_0 = 0$, $D_1 = z$, $D_2 = z$, $D_3 = 1$. $B = x'yz + xy'z + xy$ or $B = x'yz + xy'z + xyz'$ [3 marks] Then $B = \Sigma(m_3, m_5, m_6, m_7)$ or $B = \Sigma(3, 5, 6, 7)$. [1 marks]

(c) The circuit implements a 1 bit full adder (or addition operation). [2 marks] A is the SUM, B is the carry forward bit. [2 marks]

Qt1 = XQt + YQt

(3) Given
$$J-K$$
: $Qt+1 = JQt'+K'Qt$

compose to $Qt+1 = XQt+YQt'$

$$\Rightarrow$$
 $J=Y$, $K=X'$ (2 pts)

